

Dr. Han Huang

South China University of Technology

Chapter 3. Relations

Equivalence Relations

Section 3.5

Contents

Equivalence Relations

Equivalence Class

Equivalence and Partitions

§ 7.5: Equivalence Relations

- **❖ Definition:** An equivalence relation on a set A is any binary relation on A that is reflexive, symmetric, and transitive.
 - E.g., = is an equivalence relation.
 - But many other relations follow this pattern too

§ 7.5: Equivalence Relations

- Definition: An equivalence relation on a set A is any binary relation on A that is reflexive, symmetric, and transitive.
- **⋄***E.g.*, = is an equivalence relation.
- **⋄** For any function $f:A \rightarrow B$, the relation "have the same f value", or $=_f := \{(a_1, a_2) \mid f(a_1) = f(a_2)\}$ is an equivalence relation,
- •e.g., let m="mother of" then =m = "have the same mother" is an equivalence relation

Equivalence Relation Examples

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."

Let's talk about relations between functions:

- 1. How about: $R(f,g) \Leftrightarrow f(2)=g(2)$?
- 2. How about: $R(f,g) \Leftrightarrow f(1)=g(1) \lor f(2)=g(2)$?

Equivalence Relation Examples

- 1. How about: $R(f,g) \Leftrightarrow f(2)=g(2)$?
- Yes. Reflexivity: f(2)=f(2), for all f Sym: f(2)=g(2) implies g(2)=f(2) Trans: f(2)=g(2) and g(2)=h(2) implies f(2)=h(2).
- 1. How about: $R(f,g) \Leftrightarrow f(1)=g(1) \lor f(2)=g(2)$?

Equivalence Relation Examples

How about $R(f,g) \Leftrightarrow f(1)=g(1)\lor f(2)=g(2)$?

No. Counterexample against transitivity:

Example 4

- Congruence Modulo m
- Let m be a positive integer with m>1.
 Show that the relation
- $R = \{ (a,b) \mid a \equiv b \pmod{m} \}$
- is an equivalence relation on the set of integers.

Example 5

设 $A = \{T_1, T_2, T_3, T_4, T_5, T_6\}$ 是某台微机上 6 项任务的集合,有五个子程序 S_1 , S_2 , S_3 , S_4

和 S_5 供它们选择调用,下表列出了它们调用子程序的情况。

任务名称	调用的子程序
T_1	S_1, S_2
T_2	S_2, S_3
T_3	S_3, S_1
T_4	S_5
T_{5}	S_4
T_{6}	S_5

定义 A 上的关系 $\varphi = \{(x,y) | x, y \in A \perp x = y$ 调用了相同的子程序 $\}$, φ 是一个等价关系。

$$\varphi = \{ (T_1, T_1), (T_1, T_2), (T_2, T_1), (T_2, T_2), (T_1, T_3), (T_3, T_1), (T_2, T_3), (T_3, T_2), (T_3, T_3), (T_4, T_4), (T_4, T_6) \}$$

$$(T_6, T_4), (T_6, T_6), (T_5, T_5)$$

设R表示S×S上的二元关系,当且仅当xy=uv时,便有<x,y>R<u,v>,试证明R是S×S上的等价关系

证明

- (1) 对任意<x,y>∈ S× S,由xy=xy,所以
 <x,y>R<x,y>。所以R是自反的。
- (2) 对任意 $\langle x, y \rangle, \langle u, v \rangle \in S \times S$, $\langle x, y \rangle R \langle u, v \rangle \Rightarrow xy = uv$ $\Rightarrow uv = xy$ $\Rightarrow \langle u, v \rangle R \langle x, y \rangle$

所以R是对称的。

证明

(3)对任意
$$\langle x, y \rangle, \langle u, v \rangle, \langle w, t \rangle \in S \times S,$$

 $\langle x, y \rangle R \langle u, v \rangle \land \langle u, v \rangle R \langle w, t \rangle \Rightarrow (xy = uv) \land (uv = wt)$
 $\Rightarrow xy = wt$
 $\Rightarrow \langle x, y \rangle R \langle w, t \rangle$

所以R是传递的。

由(1)(2)(3)知,R是等价关系。

Definition 2

- Let R be an equivalence relation on a set A.
- The set of all elements that are related to an element a of A is called the equivalence class of a.
- ❖The equivalence class of a with respect to R is denoted by [a]_R.
- When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class.

- In other words, if R is an equivalence on a set A, the equivalence class of the element a is
- $*[a]_R = \{ s \mid (a,s) \in R \}$
- ❖If b∈[a]R, then b is called a representative of this equivalence class. Any element of a class can be used as a representative of this class.
- $[0]=\{...,-8,-4,0,4,8,...\}$ { (a,0) | a \equiv 0 (mod 4) }

Equivalence Classes

- Why can we talk so loosely about elements being equivalent to each other (as if the relation didn't have a direction)?
- In some sense, it does not matter which representative of an equivalence class you take as your starting point:

If aRb then $\{x \mid aRx\} = \{x \mid bRx\}$

Equivalence Classes

If aRb then aRx ⇔ bRx Proof:

- 1. Suppose aRb while bRx.
 Then aRx follows directly by *transitivity*.
- 2. Suppose aRb while aRx. aRb implies bRa (symmetry). But bRa and aRx imply bRx by transitivity

Equivalence Classes

```
We now know that
 If aRb then \{x \mid aRx\} = \{x \mid bRx\}
Equally,
 If aRb then \{x \mid xRa\} = \{x \mid xRb\}
 (due to symmetry)
 In other words, an equivalence class
  based on R is simply a maximal set of
 things related by R
```

Equivalence Class Examples

- "(Strings a and b) have the same length."
 - Suppose a has length 3. Then [a] = the set of all strings of length 3.
- *"(Integers a and b) have the same absolute value."
 - [a] =the set ${a, -a}$

Partitions

A partition of a set A is a collection of disjoint nonempty subsets of A that have A as their union.

Intuitively: a partition of A divides A into separate parts (in such a way that there is no remainder).

Partitions and equivalence classes

- **Consider** a *partition* of a set A into A_1 , .. A_n
 - The A_i's are all disjoint: For all x and for all i, j ∈[1,n], if x∈A_i and x∈A_j then A_i = A_j
 - The union of the A_i 's = A

Partitions and equivalence classes

- **A** partition of a set A can be viewed as the set of all the equivalence classes $\{A_1, A_2, ...\}$ for some equivalence relation on A.
- **❖** For example, consider the set A={1,2,3,4,5,6} and its partition {{1,2,3},{4},{5,6}}
- $R = \{$ (1,1),(2,2),(3,3),(1,2),(1,3),(2,3),(2,1),(3,1), (3,2),(4,4),(5,5),(6,6),(5,6),(6,5) \}

Theorem

给定集合 A 的一个划分 $\pi = \{S_1, S_2, \dots, S_m\}$, 则由该划分确定的关系 $R = (S_1 \times S_1) \cup (S_2 \times S_2) \cup \dots \cup (S_m \times S_m)$ 是 A 上的等价关系。

Proof.

- 对 $\forall x \in A$, 必 $\exists i > 0$, 使得 $x \in S_i$, 所以 $\langle x, x \rangle \in S_i \times S_i$, 即 $\langle x, x \rangle \in R$, 因此 R 是自反的.
- 对 $\forall x, y \in A$, 如果 $< x, y > \in R$, 必 $\exists j > 0$, 使得 $< x, y > \in S_j \times S_j$, 从而 $< y, x > \in S_j \times S_j$, 即 $< y, x > \in R$, 因此 R 是对称的。
- 对 ∀x, y, z ∈ A, 如果 < x, y > ∈ R, < y, z > ∈ R, 必 ∃i, j > 0, 使得 < x, y > ∈ S_i × S_i,
 < y, z > ∈ S_j × S_j, 即 x, y ∈ S_i 且 y, z ∈ S_j, 从而 y ∈ S_i ∩ S_j, 由集合划分定义, 必有 S_i = S_j,
 因此 x 和 z 同属于集合 A 的一个划分块 S_i, 从而 < x, z > ∈ R, 所以 R 是传递的.

Partitions and equivalence classes

- We sometimes say:
 - A partition of A induces an equivalence relation on A
 - An equivalence relation on A induces a partition of A
 - One to one correspondence(一一对应)
 between a partition of A and an equivalence relation on A

Partitions and equivalence classes

- **♦** A={1,2,3}, How many equivalence relation on the set A (include every element in A)?
- There are 5 ways to partition set A

Properties of Partitions

- Theorem 1 Let R be an equivalence relation on a set A. These statements are equivalent:

Properties of Partitions

- Theorem 2 Let R be an equivalence relation on a set S.
- **⋄**Then the equivalence classes of R form a partition $\{A_i \mid i \in I\}$ of the set S, there is an equivalence relation R that has the sets A_i ($i \in I$), as its equivalence classes.

Example 8

List the ordered pairs in the equivalence relation R produced by the partition

 $A_1 = \{1,2,3\}, A_2 = \{4,5\}, \text{ and } A_3 = \{6\} \text{ of } S = \{1,2,3,4,5,6\}, \text{ given in Example 7.}$

Solution.

- a)关系是自反、对称、传递的。所以(a)图是 等价的。
- b)关系是自反、对称、但不传递。所以(b)图 不是等价关系。

Exercises

- How many equivalence relation on the set {
 a, b, c} (include every element in the set)
 ()
- A. 4

B. 5

C. 6

D. 7

Exercises

- 1. How many equivalence relation on the set {a, b, c} (include every element in the set)(B)
- A. 4

B. 5

C. 6

D. 7

2. Which of the following relations is an equivalence relation? (A)

A.
$$\{(f, g) \mid f(1) = g(1)\}$$

B.
$$\{(f, g) \mid f(0) = g(0) \text{ or } f(1) = g(1)\}$$

C.
$$\{(f, g) \mid f(x) - g(x) = 1 \text{ for all } x \in Z\}$$

D.
$$\{(f, g) \mid f(0) = g(1) \text{ and } f(1) = g(0)\}$$

3)}

3. Which of these relations on {0, 1, 2, 3} are equivalence relations? (**B**)

```
A. {(0, 0), (1, 1), (2, 0), (2, 2), (2, 3), (3, 2), (3, 3)}
B. {(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}
C. {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 2), (3, 3)}
D. {(0, 0), (1, 1), (1, 3), (2, 2), (2, 3), (3, 1), (3, 2), (3, 4)}
```

- 4. For the set S={a, b, c, d}, which is an equivalence relation? (**D**)
- A. {(a,b), (a,c), (b,a), (b,d), (c,a), (c,d), (d,c), (d,b)}.
- B. {(a,b), (b,a), (c,c), (c,d), (d,c), (d,d)}.
- C. $\{(a,c), (a,b), (b,b), (c,c), (c,a), (d,b)\}.$
- D. {(a,a), (a,b), (b,a), (b,b), (c,c), (d,d)}.

- 5. Select the relationship R which is **not** an equivalence relation. (B)
- A) Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b.
- B) Let R be the relation on the set of real numbers such that aRb if and only if a+b is an integer.
- C) Let R be the relation on the set of strings of English letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the string x.
- D) Let R be the relation on the set of ordered pairs of positive integers such that $((a,b),(c,d)) \in R$ if and only if a+d=b+c.

6 Assume the set is $A = \{1,2,3\}$, select the relationship R which is **not** an equivalence relation (\mathbb{C})

A.
$$R = \{ < 1,1 >, < 2,2 >, < 3,3 > \}$$

B. $R = \{ < 1,1 >, < 2,2 >, < 3,3 >, < 3,2 >, < 2,3 > \}$
C. $R = \{ < 1,1 >, < 2,2 >, < 1,2 >, < 2,1 >, < 1,3 >, < 3,3 > \}$
D. $R = \{ < 1,1 >, < 2,2 >, < 1,2 >, < 2,1 >, < 1,3 >, < 3,1 >, < 3,3 >, < 3,2 >, < 2,3 > \}$

• 7. Which of the following relations on {a,b,c,d} are equivalence relations?

- A) $\{(a,a),(b,b),(c,a),(c,c),(c,d),(d,c),(d,d)\}$
- B) $\{(a,a),(b,b),(b,c),(c,b),(c,c),(d,d)\}$
- C) $\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,c),(d,d)\}$
- D) $\{(a,a),(b,b),(b,d),(c,c),(c,d),(d,a),(d,c),(d,d)\}$

7. Which of the following relations on {a,b,c,d} are equivalence relations? (B)

- A) $\{(a,a),(b,b),(c,a),(c,c),(c,d),(d,c),(d,d)\}$
- B) $\{(a,a),(b,b),(b,c),(c,b),(c,c),(d,d)\}$
- C) $\{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(c,a),(c,c),(d,d)\}$
- D) $\{(a,a),(b,b),(b,d),(c,c),(c,d),(d,a),(d,c),(d,d)\}$

- ◆8. For the set A={a,b,c,d,e}, how many equivalence relations that contain (a,b) can be obtained in A (include every element in the set)? (D) 解析见下页
- **⋄**A) 5
- **♦**B) 8
- *****C) 10
- **❖**D) 15

等价关系中包含(a,b)说明a和b必须在一个划分块中

①首先考虑a和b单独在一个划分块中,即{a,b},剩下的c,d,e 有5种划分

 $\{c,d,e\}\ \{\{c\},\{d,e\}\}\ \{\{d\},\{c,e\}\}\ \{\{e\},\{c,d\}\}\ \{\{c\},\{d\},\{e\}\}\}$

- ②考虑a,b和{c,d,e}中的某一个构成一个划分块,有3种情况,剩下的两个元素有2种划分方式,共3*2=6种划分
- ③考虑a, b和{c, d, e}中的某两个构成一个划分块,有3种情况,剩下的一个元素有1种划分方式,共3种划分
- ④ {a, b, c, d, e} 1种划分

5+6+3+1=15

9. The smallest equivalence relation on the set {1,2,3,4} containing the relation {(1,2),(1,4),(3,3),(4,1)} (include every element in the set) is R, then the equivalence class induced from R is

{{1,2,4},{3}}

10. The smallest equivalence relation on the set {a,b,c,d,e} containing the relation {(a,b),(a,c),(d,e)} (include every element in the set) is _____

{(a,a),(b,b),(c,c),(d,d),(e,e),(a,b), (b,a),(a,c),(c,a),(b,c),(c,b),(d,e),(e,d)}

12. Set A = Z, suppose R is a relation on $A \times A$, where $((x, y), (u, v)) \in R \Leftrightarrow x+y = u+v$. Prove: R is an equivalence relation on $A \times A$.

- (1) reflexivity: Any $< x, y > \in A \times A$ $x + y = x + y \Leftrightarrow << x, y >, < x, y >> \in R$
- (2) symmetry: Any $<< x, y>, < u, v>> \in R$ $\Leftrightarrow x+y=u+v \Leftrightarrow u+v=x+y \Leftrightarrow << u, v>, < x, y>> \in R$
- (3) transitivity: Any $<< x, y>, < u, v>> \in R \land << u, v>, < r, s>> \in R \Leftrightarrow x+y=u+v \land u+v=r+s \Leftrightarrow x+y=r+s \Leftrightarrow << x, y>, < r, s>> \in R$

13 Suppose R is relation on A, where $S = \{\langle a,b\rangle | \exists c(\langle a,c\rangle \in R \land \langle c,b\rangle \in R)\}$. Please prove: if R is an equivalence relation, S is an equivalence relation.

```
(1) Reflexive \forall x, x \in A \Rightarrow \langle x, x \rangle \in R \Rightarrow \exists x \ (\langle x, x \rangle \in R \land \langle x, x \rangle \in R) \Rightarrow \langle x, x \rangle \in S
(2) Symmetric \forall \langle x, y \rangle, \langle x, y \rangle \in S \Rightarrow \exists c \ (\langle x, c \rangle \in R \land \langle c, y \rangle \in R) \Rightarrow \exists c \ (\langle c, x \rangle \in R \land \langle y, c \rangle \in R) \Rightarrow \langle y, x \rangle \in S
(3) Transitive \forall \langle x, y \rangle, \langle y, z \rangle, \langle x, y \rangle \in S \land \langle y, z \rangle \in S \Rightarrow \exists c \ (\langle x, c \rangle \in R \land \langle c, y \rangle \in R) \land \exists d \ (\langle y, d \rangle \in R \land \langle d, z \rangle \in R) \Rightarrow \langle x, y \rangle \in R \land \langle y, z \rangle \in R \Rightarrow \langle x, z \rangle \in S
```

14 Suppose R is a reflexive and transitive relation on A. Prove $R \cap R^{-1}$ is an equivalence relation on A.

(1) Reflexive $\forall x$, $x \in A \Rightarrow \langle x, x \rangle \in R \Rightarrow \langle x, x \rangle \in R \land \langle x, x \rangle \Leftrightarrow R^{-1} \Rightarrow \langle x, x \rangle \in R \cap R^{-1}$ (2) Symmetric $\forall \langle x, y \rangle$, $\langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in R \cap R^{-1} \Rightarrow \langle x, y \rangle \in R \cap R^{-1}$ $\Rightarrow \langle y, x \rangle \in R^{-1} \land \langle y, x \rangle \in R \Rightarrow \langle y, x \rangle \in R \cap R^{-1}$ (3) Transitive $\forall \langle x, y \rangle, \langle y, z \rangle, \langle x, y \rangle \in R \cap R^{-1} \land \langle y, z \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \cap R^{-1} \land \langle y, z \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \land \langle x, y \rangle \in R^{-1} \land \langle y, z \rangle \in R^{-1}$ $\Rightarrow \langle x, y \rangle \in R \land \langle x, z \rangle \in R \land \langle x, z \rangle \in R^{-1} \Rightarrow \langle x, z \rangle \in R \cap R^{-1}$ $\Rightarrow \langle x, z \rangle \in R \land \langle x, z \rangle \in R^{-1} \Rightarrow \langle x, z \rangle \in R \cap R^{-1}$

15. Suppose R is a reflexive and transitive relation on A. T is also a relation on A, such that:<a, b>∈T⇔<a, b>∈R and <b, a>∈R Prove that T is an equivalence relation.

- (1) Since R is reflexive, $\langle a,a \rangle \in R$ and $\langle a,a \rangle \in R \Leftrightarrow \langle a,a \rangle \in T$. T is reflexive.
- (2) Since $\langle a, b \rangle \in R$ and $\langle b, a \rangle \in R \Leftrightarrow \langle a, b \rangle \in T$ and $\langle b, a \rangle \in T$. T is symmetric.
- (3) If a, $b \in T$ and b, $c \in T$, then a, $b \in R$ and b, $c \in R$. Since R is transitive, a, a, $b \in R$. Also, a and a be a and a be a. Therefore, a, a, a is the a be a and a be a and a be a and a be a in a. Therefore, a, a, a is a be a and a be a in a.

16. Given $S = \{ \langle x, y \rangle | x, y \in \mathbb{R}, (x-y)/3 \text{ is integer } \}$, prove the relation S is an equivalence relations.

- (1) (x-x)/3 = 0 is integer, so x S x, S is reflexive.
- (2) If x S y that (x-y)/3 is integer, (y-x)/3 = -(x-y)/3 is integer. Hence, y S x, so S is symmetric.
- (3) If x S y and y S z, (x-y)/3 and (y-z)/3 are integer. Thus, (x-z)/3 = (x-y)/3 + (y-z)/3 is integer, so x S z. S is transitive.

17. Which is these collections of subsets are partitions of {a,b,c,d,e,f,g}?

- A) $\{a, b, c\}, \{c, d, e\}, \{f, g\}$
- B) $\{a, b\}, \{c, d\}, \{e, f\}, \{g\}$
- C) $\{a, b, c, d, e\}, \{e, f, g\}$
- D) $\{a, c\}, \{e, f, g\}$

17. Which is these collections of subsets are partitions of {a,b,c,d,e,f,g}? (B)

- A) $\{a, b, c\}, \{c, d, e\}, \{f, g\}$
- B) $\{a, b\}, \{c, d\}, \{e, f\}, \{g\}$
- C) $\{a, b, c, d, e\}, \{e, f, g\}$
- D) $\{a, c\}, \{e, f, g\}$

End of Section 3.5