Elastomeric Bearing Design AASHTO LRFD Method A Design ~ English Units

Based upon 4th ed. AASHTO LRFD through Interim 2009 revisions.

Spreadsheet applies to rectangularly shaped bearings only. All boxed entities must be input by user.

Units: in, kips, psi unless noted otherwise

Units: in, kips, psi unl Coordinates: x, L are p		ar; y, W are para	llel, to the primary rotation axis	s. Usually W>L.	
	INPUT DATA				
Date:	10/6/09		Designer:	ABC	
Job Title:	All Pass C	ase			
		1000			
	(psi)	= 200	P _{DL} (kips)	= 2	
	(psi)	= 220	P _{LL} (kips)	= 1	
	(ksi)	= 2	$\Delta_{\rm s}$ (in)	= 0.8	
	(ksi)	= 2	θ_{x} (rads)	= 0.5	
h _{cover}	(111)	= 0.250	θ_{y} (rads)	= 0.5	
BEARING DESIGN					
	М	ax/min allowable		Actual values	
Area	(In²)	≥ 2.4	P _{TL} (kips)	= 3.00	
L	(in)	≥ 0.40	Area (in²)	= 36.00	
	` (in)	≥ 0.40	L (in)	=6 OK	
	(psi)	≤ 1250	W (in)	= 6 OK	
			σ _{TL} (psi)	= 83	
h _{ri} [TL]	(in)	≤ 4.50	σ _{LL} (psi)	= 28	
S [TL]	(-)	≥ 0.33			
S	(-)	> 16.91	h_{ri} (in)	=0.010 OK	
			S (-)	= 150.00	
N lay [∆s]		< 110.0	h _{rt} (in)	= 0.62	
N lay [θ _x		< 35639999.0			
N lay [θ _y		< 35639999.0	No. of int. layers (-)	= 12 NG	
N lay [Stab _x]		≤ 142.8	No. of shims (-)	= 13	
N lay [Stab _y]	(-)	≤ 142.8			
			Steel Shim Requirements		
h _s [service]		< 0.001	h _s (in)	= 0.0005 NG	
h _s [fatigue]		≥ 0.000	h _{st} (in)	= 0.007	
h _s [minimum]	(in)	< 0.063			
METHOD A DESIGN			Compressive Deformation		
PROCEDURE DISAL			E _c (psi)	≈ 28350000	
PER LRFD SECTION	N 14.7.6.1		$\delta_{DL-initial}$ (in)	≈ 0.00	
(S^2/N > 22)			δ_{LL} (in)	≈ 0.00	
$[\delta_{DL}$ and δ_{LL} va	alues are ap	proximate and bas	ed upon Commentary Eqn. C14.7	7.5.3.6-1.]	
SUMMARY					
L =			Approx. weig		
W = 6.00 in Allowable shear displacement = 0.31 in					
				•	
Loaded (DL) height = 0.63 in (prog. by R. Dornsife; WSDOT; 2008)					