INF102 Algorithms and Data Structures

Marc Bezem¹

¹Department of Informatics University of Bergen

Fall 2015

INF102

- ► Lecturer: Marc Bezem, teaching assistants: NN
- ► Homepage: INF102 (hyperlinks in red)
- ► Textbook: Algorithms, 4th edition, R. Sedgewick and K. Wayne, Pearson, 2011
- ▶ Prerequisites: INF100 + 101 (\approx Ch. 1.1 + 1.2)
- Syllabus (pensum): Ch. 1.3–1.5, Ch. 2, Ch. 3, Ch. 4
- Exam: two or three compulsory exercises and a written exam
- ▶ Old exams: 2004–2013, 2014
- Contents of these slides here

Didactical stuff

- ► Good textbook from USA: many pages, exercises etc.
- Average speed must be ca 50 pages p/w
- Lectures focus on the essentials
- Prepare yourself by reading in advance
- Workshops about selected exercises
- ► Test yourself by trying some exercises in advance
- ▶ If you can do the exercises (incl. compulsory), you are fine

Generic Bags, Queues and Stacks

- Generic programming in Java, example: PolyPair
- Bag, Queue and Stack are generic, iterable collections
- Queue and Stack: Ch. 9 in textbook INF100/1
- ► APIs include: boolean isEmpty() and int size()
- All three support adding an element
- Queue and Stack support removing an element (if any)
- FIFO Queue, LIFO Stack
- Dijkstra's Two-Stack Expression Evaluation Movie

Implementations

- ResizingArray_Stack.java
- Resizing takes time and space proportional to size
- LinkedList_Stack.java
- Pointers take space and dereferencing takes time
- Programming with pointers: make a picture
- LinkedList_Queue.java

Computation time and memory space

- Two central questions:
 - ► How long will my program take?
 - Will there be enough memory?
- Example: TheeSum
- Inner loop is important

Methods of Analysis

Empirical:

- Run the program with randomized inputs and measure time and space
- Run the program repeatedly, doubling the input size
- Measuring time: StopWatch
- ▶ Plot, log-plot, log-log-plot

Theoretical:

- Define a cost model by abstraction (e.g., array accesses, comparisons, operations)
- Try to count/estimate/average this cost as function of the input (size)
- ▶ Use O(f(n)) and $f(n) \sim g(n)$

ToC and topics of general interest

- ► Table of Contents on next slide (all items clickable)
- ► Practical stuff: slide 2

Introduction

Ch.1.3 Bags, Queues and Stacks

Ch.1.4 Analysis of Algorithms

Table of Contents