Wydział	Imię i nazwisko		Rok	Grupa	Zespół
	1. Michał Rogo	owski			
WFiIS	2. Ihnatsi Yern	nakovich	II	10	02
PRACOWNIA	Temat	Temat			Nr ćwiczenia
ELEKTRONICZNA					
WFiIS AGH	Wzmacniacze operacyjne			03	
Data wykonania	Data oddania	Zwrot do poprawy	Data oddania	Data zaliczenia	OCENA
7.04.2022	21.04.2022				

Wzmacniacze operacyjne

Ćwiczenie nr 03

Michał Rogowski

Ihnatsi Yermakovich

Cel	ćwiczenia	2
Prz	ebieg ćwiczenia	2
2.1	Badanie wtórnika napięciowego	2
	2.1.1 Wyznaczenie charakterystyki przenoszenia $U_2=f(U_1)$ dla napięć stałych	2
	2.1.2 Pomiar czasu narastania sygnału na wyjściu wzmacniacza	4
	2.1.3 Pomiar szybkości zmian napięcia na wyjściu wzmacniacza	5
	2.1.4 Wyznaczenie charakterystyki amplitudowej K_u =f(f)	5
2.2	Wzmacniacz o wzmocnieniu 11V/V	6
2.3	Wzmacniacz o wzmocnieniu -10V/V	8
2.4	Wzmacniacz odejmujący o wzmocnieniu 10 V/V	10
2.5	Wzmacniacz sumujący o wzmocnieniach -10 V/V (U2) i -2 V/V (U1) $$	11
	Prz 2.1 2.2 2.3 2.4	2.1.1 Wyznaczenie charakterystyki przenoszenia $U_2 = f(U_1)$ dla napięć stałych 2.1.2 Pomiar czasu narastania sygnału na wyjściu wzmacniacza 2.1.3 Pomiar szybkości zmian napięcia na wyjściu wzmacniacza 2.1.4 Wyznaczenie charakterystyki amplitudowej K_u =f(f)

1 Cel ćwiczenia

Celem ćwiczenia było zbadanie parametrów wzmacniacza operacyjnego pracującego w różnych konfiguracjach układowych oraz wyznaczenie amplitudowych charakterystyk częstotliwościowych oraz stałoprądowe funkcję przenoszenia.

2 Przebieg ćwiczenia

W każdej konfiguracji układ był zasilany napięciem symetrycznym +/-15V.

2.1 Badanie wtórnika napięciowego

Rysunek 1: Schemat wtórnika napięciowego

Układ skonfigurowaliśmy jako wtórnik napięciowy tak jak na powyższym schemacie (rys. 1). Do obwodu jego sprzężenia zwrotnego podłącząliśmy rezystor R_2 o rezystancji $10\text{k}\Omega$. Sygnał wejściowy $U_1=15\text{V}$ z generatora podaliśmy bezpośrednio na wejście nieodwracające.

Dla tego układu mieliśmy zrealizowalizować następujące zadania:

2.1.1 Wyznaczenie charakterystyki przenoszenia $U_2=f(U_1)$ dla napięć stałych

Pomiarów dokonaliśmy zmieniając napięcie wejściowe od -15V do 15V z krokiem 1V oraz w punktach gdzie wzmacniacz może wejść w obszar nasycenia, czyli od -15V do -12V oraz od 12V do 15V z krokiem 0.1V. Wyniki znajdują się w poniższej tabeli.

Tabela 1: Charakterystyka przenoszenia $U_{out}=f\left(U_{in}\right)$

V_{wejsc} [V]	V_{wyjsc} [V]
-15,0	-12,4460
-14,9	-12,4460
-14,8	-12,4460
-14,7	-12,4460
-14,6	-12,4460
-14,5	-12,4460
-14,4	-12,4460
-14,3	-12,4460
-14,2	-12,4460
-14,1	-12,4460
-14,0	-12,4460
-13,9	-12,4460
-13,8	-12,4460
-13,7	-12,4460
-13,6	-12,4460
-13,5	-12,4460
-13,4	-12,4460
-13,3	-12,4460
-13,2	-12,4460
-13,1	-12,4460
-13,0	-12,4460
-12,9	-12,4460
-12,8	-12,4460
-12,7	-12,4460
-12,6	-12,4420

V_{wejsc} [V]	V_{wyjsc} [V]
-12,5	-12,4270
-12,4	-12,3790
-12,3	-12,2890
-12,2	-12,1900
-12,1	-12,0890
-12,0	-11,9900
-11,0	-10,9897
-10,0	-9,9895
-9,0	-8,9889
-8,0	-7,9883
-7,0	-6,9878
-6,0	-5,9977
-5,0	-4,9976
-4,0	-3,9973
-3,0	-2,9977
-2,0	-1,9972
-1,0	-0,9974
1,0	0,9974
2,0	1,9997
3,0	2,9999
4,0	4,0007
5,0	5,0010
6,0	6,0015
7,0	7,0008
8,0	8,0010

V_{wejsc} [V]	V_{wyjsc} [V]
9,0	9,0015
10,0	9,9918
11,0	10,9912
12,0	11,9915
13,0	12,9920
13,1	13,0920
13,2	13,1920
13,3	13,2920
13,4	13,3920
13,5	13,4920
13,6	13,5910
13,7	13,6910
13,8	13,7910
13,9	13,8920
14,0	13,9430
14,1	13,9430
14,2	13,9430
14,3	13,9430
14,4	13,9420
14,5	13,9540
14,6	14,4420
14,7	14,5500
14,8	14,6330
14,9	14,7120
15,0	14,7900

Rysunek 2: Wyznaczenie charakterystyki przenoszenia na podstawie dopasowanej prostej

Współczynniki dopasowania prostej z powyższego wykresu sa wyznaczone ze skutecznościa 95%.

Zauważmy, że przy krańcowych wartościach napięcia wejściowego wzmacniacz wchodzi w stan nasycenia, dla pozostałych wartości widzimy, że $\Delta y/\Delta x>0$. Z równania dopasowanej krzywej wyznaczymy charakterystykę przenoszenia:

$$U_{out} = 0,99398 \cdot U_{in} - 0,024066 \tag{1}$$

Widzimy, że wzmocnienie stałoprądowe wynosi 0,99398 [V/V], co jest blisko 1 [V/V] ($\Delta k = 0,6\%$), co z kolei jest zgodne z oczekiwaniami, bo dla wzmacniacza idealnego pracującego w konfiguracji wtórnika napięciowego wzmocnienie stałoprądowe wynosi 1 [V/V]. Napięcie niezrównoważenia (offset), czyli wartość napięcia U_{in} , dla której U_{out} wynosi 0 obliczymy następująco:

$$U_{in} = \frac{0,024066}{0,99398} \approx 0,0242 \ (V) = 24,2 \ (mV)$$
 (2)

Bez względu na to, że powyższy wynik jest rzędu kilkunastu miliwoltów, nie wygląda on zbyt wiarygodnie, ponieważ oczekiwana wartość napiecia niezrównoważenia wynosi pomiedzy 2 a 10 miliwoltów.

2.1.2 Pomiar czasu narastania sygnału na wyjściu wzmacniacza

Dokonaliśmy pomiaru czasu narastania na wyjściu (U_2) wzmacniacza podając sygnał U_1 na wejściu o częstotliwości 10kHz, amplitudzie 100mV i o prostokątnym przebiegu.

Rysunek 3: Odpowiedź wtórnika na skok napięcia o małej amplitudzie

Czas narastania odczytaliśmy z oscyloskopu (rysunek 2) wyniósł $t_r=200$ ns. Wartość katalogowa wynosi $t_r=250$ ns. Wartość uzyskana w doświadczeniu jest podobna do wartości teoretycznej ($\Delta t_r=50\,ns$) co potwierdza skuteczność wykonanego ćwiczenia.

2.1.3 Pomiar szybkości zmian napięcia na wyjściu wzmacniacza

Dokonaliśmy pomiaru szybkości zmiany napięcia (slew rate) na wyjściu wzmacniacza U_2 podając sygnał U_1 na wejściu o częstotliwości 10kHz, przebiegu prostokątnym i większej amplitudzie 5V. Wybraliśmy dwa punkty na liniowym odcinku zbocza narastającego sygnału wyjściowego i zmierzyliśmy ΔV w wybranym odcinku czasu Δt korzystając z oscyloskopu.

Rysunek 4: Odpowiedź wtórnika na skok napięcia o dużej amplitudzie

Zmierzony czas $\Delta t=5,14~\mu s$ oraz zmiana napięcia $\Delta V=2,99~\rm V$. Korzystając ze wzoru SR = $\Delta V/\Delta t$ obliczyliśmy maksymalną szybkość zmian napięcia SR = 0,58 (V/ μs). Teoretyczna minimalna wartość SR = 0,3 (V/ μs), a typowa wartość SR = 0,7 (V/ μs). Wartość otrzymana w ćwiczeniu znajduje się pomiędzy powyższymi wartościami, zatem jest zgodna z wartościami katalogowymi.

2.1.4 Wyznaczenie charakterystyki amplitudowej $K_u=\mathbf{f}(\mathbf{f})$

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) podając sygnał U_1 na wejściu o małej amplitudzie 100 mV oraz o przebiegu sinusoidalnym. Dokonaliśmy serii pomiarów amplitudy sygnału wyjściowego U_2 dla częstotliwości z przedziału od 100 Hz do 6 MHz. Pomiary wzmocnienia znajdują się w tabeli poniżej.

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	99,75	-0,0217
0,2	99,75	-0,0217
0,3	99,75	-0,0217
90,0	99,75	-0,0217
100,0	102,00	0,1720
110,0	104,25	0,3615
150,0	106,00	0,5061
250,0	114,00	1,1381
350,0	126,50	2,0418
500,0	152,50	3,6654

Tabela 2: Amplituda sygnąłu w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
800,0	$155,\!25$	3,8206
900,0	136,25	2,6867
950,0	127,25	2,0932
1000,0	119,00	1,5109
2000,0	43,88	-7,1557
3000,0	28,30	-10,9643
4000,0	21,33	-13,4222
5000,0	15,95	-15,9448
6000,0	10,85	-19,2914

Wartość wzmocnienia obliczyliśmy ze wzoru:

$$G = 20 \cdot log \frac{V_{out}}{V_{in}} \tag{3}$$

Teraz sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 5: Wyznaczenie charakterystyki amplitudowej K_u =f(f)

Wzmocnienie dla małych częstotliwości wynosi k = -0.021 (dB) = 0.9975 (V/V). Częstotliwość graniczna odczytana z wykresu jest w przybliżeniu równa 1521 kHz. Wzmocnienie GBW obliczymy następująco:

$$GBW = k \cdot f_g = 0,9975 \cdot 1521 = 1517, 2 \ (kHz)$$
 (4)

Wartość uzyskana przez nas jest podobna do katalogowej wartości, która wynosi 1,5 MHz, zatem uzyskana przez nas wartość jest wiarygodna.

2.2 Wzmacniacz o wzmocnieniu 11V/V

Rysunek 6: Schemat wzmacniacza nieodwracającego o wzmocnieniu $11\mathrm{V/V}$

Układ skonfigurowaliśmy jako wzmacniacz nieodwracający tak jak na powyższym schemacie (rys.). Do obwodu jego sprzężenia zwrotnego podłączyliśmy rezystor R_2 o rezystancji $10k\Omega$, a na jego wejściu odwracającym dołączyliśmy rezystor R_1 o rezystancji 10Ω . Sygnał wejściowy U_1 z generatora podaliśmy bezpośrednio na wejście nieodwracające.

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) podając sygnał U_1 na wejściu o małej amplitudzie 100 mV oraz o przebiegu sinusoidalnym. Zmierzyliśmy jednorazowo amplitudę sygnału wejściowego U_1 , a następnie dokonaliśmy serii pomiarów amplitudy sygnału wyjściowego U_2 dla częstotliwości z przedziału od 100 Hz do 5 MHz. Pomiary wzmocnienia znajdują się w tabeli poniżej.

Tabela 3: Amplituda sygnąłu w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	1080,000	20,6685
0,2	1080,000	20,6685
0,5	1080,000	20,6685
1,0	1080,000	20,6685
5,0	1080,000	20,6685
20,0	1055,000	20,4650
30,0	1023,000	20,1975
50,0	920,000	19,2758

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
70,0	807,500	18,1429
100,0	650,000	16,2583
200,0	383,750	11,6810
500,0	161,875	4,1836
1000,0	80,500	-1,8841
2000,0	41,125	-7,7179
3000,0	29,575	-10,5815
5000,0	16,825	-15,4809

Wartość wzmocnienia obliczyliśmy ze wzoru:

$$G = 20 \cdot log \frac{V_{out}}{V_{in}} \tag{5}$$

Teraz sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 7: Wyznaczenie charakterystyki amplitudowej K_u =f(f)

Wzmocnienie dla małych częstotliwości wynosi k = 20,669 (dB) = 10,8 (V/V). Otrzymana wartość wzmocnienia zgadza się z wartością teoretyczną wzmocnienia dla tego układu (k = 11 V/V) bo Δk = 1,82%. Częstotliwość graniczna odczytana z wykresu jest w przybliżeniu równa 77,5 kHz. Wzmocnienie GBW obliczymy następująco:

$$GBW = k \cdot f_q = 10, 8 \cdot 77, 5 = 837 \ (kHz) \tag{6}$$

Pole wzmocnienia wynosi 837 kHz, jest to wartość zdecydowanie mniejsza od wartości katalogowej 1,5 MHz, natomiast otrzymana wartość jest większa od wartości katalogowej minimalnej 437 kHz.

2.3 Wzmacniacz o wzmocnieniu -10V/V

Rysunek 8: Schemat wzmacniacza odwracającego o wzmocnieniu -10V/V

Układ skonfigurowaliśmy jako wzmacniacz nieodwracający tak jak na powyższym schemacie (rys. 8). Do obwodu jego sprzężenia zwrotnego podłączyliśmy rezystor R_2 o rezystancji $10\text{k}\Omega$, a na jego wejściu odwracającym dołączyliśmy rezystor R_1 o rezystancji $1\text{k}\Omega$. Wejście nieodwracające podłączyliśmy do masy za pomocą rezystora R_3 o rezystancji ~ 0.9 k Ω . Sygnał wejściowy U_1 z generatora podaliśmy bezpośrednio na R_1 .

Wyznaczyliśmy charakterystykę amplitudową K_u =f(f) podając sygnał U_1 na wejściu o małej amplitudzie 100 mV oraz o przebiegu sinusoidalnym. Zmierzyliśmy jednorazowo amplitudę sygnału wejściowego U_1 , a następnie dokonaliśmy serii pomiarów amplitudy sygnału wyjściowego U_2 dla częstotliwości z przedziału od 100 Hz do 2 MHz. Pomiary wzmocnienia znajdują się w tabeli poniżej.

Tabela 4: Amplituda sygnąłu w zależności od częstotliwości

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
0,1	940,000	19,4626
1,0	940,000	19,4626
40,0	855,000	18,6393
60,0	746,250	17,4577
100,0	580,000	15,2686
200,0	345,000	10,7564

Częst. [kHz]	Amp. [mV]	Wzm. [dB]
400,0	181,875	5,1955
600,0	120,500	1,6197
800,0	90,250	-0,8911
1000,0	69,875	-3,1136
2000,0	31,425	-10,0545

Wartość wzmocnienia obliczyliśmy ze wzoru:

$$G = 20 \cdot log \frac{V_{out}}{V_{in}} \tag{7}$$

Teraz sporządzimy wykres zależności wzmocnienia od częstotliwości:

Rysunek 9: Wyznaczenie charakterystyki amplitudowej K_u =f(f)

Wzmocnienie dla małych częstotliwości wynosi k = 19,46 (dB) = 9,4 (V/V). Ze względu na to, że mierzymy amplitudę, a nie wartość rzeczywistą otrzymaliśmy wzmocnienie powyżej 0. Ale przyjrzyjmy się wykresom z oscyloskopu:

Rysunek 10: Konfiguracja nieodwracająca

Rysunek 11: Konfiguracja odwracająca

Widzimy, że sygnał na wyjściu przy odwracającej konfiguracji wzmacniacza jest pomnożony przez -1 razy wzmocnienie. Więc otrzymane przez naz wzmocnienie wynosi k = -9,4 (V/V). Otrzymana wartość wzmocnienia zgadza się z wartością teoretyczną wzmocnienia dla tego układu (k = -10 V/V) bo $\Delta k = 6\%$. Częstotliwość graniczna odczytana z wykresu jest w przybliżeniu równa 77,9 kHz. Wzmocnienie GBW obliczymy następująco:

$$GBW = k \cdot f_q = 9, 4 \cdot 77, 9 = 732, 2 \ (kHz) \tag{8}$$

Pole wzmocnienia wynosi 732,2 kHz, jest to wartość zdecydowanie mniejsza od wartości katalogowej 1,5 MHz, natomiast otrzymana wartość jest większa od wartości katalogowej minimalnej 437 kHz.

2.4 Wzmacniacz odejmujący o wzmocnieniu $10~{ m V/V}$

Rysunek 12: Schemat wzmacniacza odejmującego o wzmocnieniu 10V/V

Układ skonfigurowaliśmy jako wzmacniacz odejmujący tak jak na powyższym schemacie (rys. 12). Do obwodu jego sprzężenia zwrotnego podłączyliśmy rezystor R_2 o rezystancji 10 k Ω oraz R_1 o rezystancji 1 k Ω , a do wejścia nieodwracającego podłączyliśmy dzielnik złożony z rezystorów R_3 o rezystancji 1 k Ω oraz R_4 o rezystancji 10 k Ω . Sygnał wejściowy U_1 podaliśmy na R_1 , a sygnał U_2 podaliśmy na R_3 .

Wyznaczyliśmy charakterystykę przenoszenia $U_3={\rm f}(U_1,U_2)$ dla napięć stałych. Napięcie wejściowe U_2 było stałe i było równe 1,3 V, zmienialiśmy tylko napięcie U_1 od 0 do 2,8 V z krokiem 0,2 V. Pomiary napięcia wyjściowego U_3 znajdują się w tabeli poniżej.

Tabela 5: Amplituda sygnąłu na wyjściu w zależności od U_1

Amp. U_1 [V]	Amp. U_3 [V]
0,0	13,0560
0,2	11,0500
0,4	9,0420
0,6	7,0280
0,8	5,0201
1,0	3,0144
1,2	1,0050
1,4	-1,0010

Amp. U_1 [V]	Amp. U_3 [V]
1,6	-3,0090
1,8	-5,0103
2,0	-7,0191
2,2	-9,0249
2,4	-11,0320
2,6	-12,3200
2,8	-12,3380

Teraz zwizualizujemy powyższe dane na wykresie i dopasujemy prostą do wyników, kiedy wzmaczniacz jeszcze nie jest w zakresie nasycenia:

Rysunek 13: Wyznaczenie charakterystyki przenoszenia $U_3 = f(U_1, U_2)$

Współczynniki dopasowania prostej z powyższego wykresu są wyznaczone ze skutecznością 95%.

Zauważmy, że przy krańcowych wartościach napięcia wejściowego wzmacniacz wchodzi w stan nasycenia, dla pozostałych wartości widzimy, że $\Delta y/\Delta x < 0$. Z równania dopasowanej krzywej wyznaczymy charakterystykę przenoszenia:

$$U_{out} = -10.0367 \cdot U_1 + 13.0532 \tag{9}$$

Widzimy, że wzmocnienie stałoprądowe wynosi -10.0388 [V/V], co jest blisko -10 [V/V] ($\Delta k = 0,4\%$), co z kolei jest zgodne z oczekiwaniami dla wzmacniacza idealnego pracującego w powyżej opisanej konfiguracji.

2.5 Wzmacniacz sumujący o wzmocnieniach -10 V/V (U2) i -2 V/V (U1)

Rysunek 14: Schemat wzmacniacza sumującego wzmocnieniu -10V/V

Układ skonfigurowaliśmy jako wzmacniacz sumujący tak jak na powyższym schemacie (rys. 14). Do obwodu jego sprzężenia zwrotnego podłączyliśmy rezystor R_2 o rezystancji $10 \text{ k}\Omega$ oraz R_{1a} o rezystancji

5 k Ω i R_{1b} o rezystancji 1 k Ω . Wejście nieodwaracające podłączyliśmy do masy za pomocą R_3 . Sygnał wejściowy U_1 podaliśmy na R_{1a} , a sygnał U_2 na R_{1b} .

Wyznaczyliśmy charakterystykę przenoszenia $U_3 = f(U_1, U_2)$ dla napięć stałych. Napięcie wejściowe U_2 było stałe i było równe 1 V, zmienialiśmy tylko napięcie U_1 od -1,6 V do 1,6 V z krokiem 0,2 V. Pomiary napięcia wyjściowego U_3 znajdują się w tabeli poniżej.

Tabela 6: Amplituda sygnąłu na wyjściu w zależności od U_1

Amp. U_1 [V]	Amp. U_3 [V]
-1,6	-6,8228
-1,4	-7,2242
-1,2	-7,6258
-1,0	-8,0273
-0,8	-8,4290
-0,6	-8,8308
-0,4	-9,2322
-0,2	-9,6337
0,0	-10,0260

80
90
20
30
50
50
70
00

Rysunek 15: Wyznaczenie charakterystyki przenoszenia $U_3=\mathbf{f}(U_1,U_2)$

Współczynniki dopasowania prostej z powyższego wykresu są wyznaczone ze skutecznością 95%.

Zauważmy, że przy krańcowych wartościach napięcia wejściowego wzmacniacz wchodzi w stan nasycenia, dla pozostałych wartości widzimy, że $\Delta y/\Delta x < 0$. Z równania dopasowanej krzywej wyznaczymy charakterystykę przenoszenia:

$$U_{out} = -2.0034 \cdot U_1 - 10.0302 \tag{10}$$

Widzimy, że wzmocnienie stałoprądowe dla U_2 wynosi -10.0302 [V/V], co jest blisko -10 [V/V] ($\Delta k = 0.37\%$), natomiast wzmocnienie stałoprądowe dla U_1 wynosi -2.0034 [V/V], co jest blisko -2 [V/V] ($\Delta k = 0.17\%$), co z kolei jest zgodne z oczekiwaniami dla wzmacniacza idealnego pracującego w powyżej opisanej konfiguracji.