

Logistic regression for inference

Dr Gianluca Campanella 31st May 2016

Contents

Regression models

Logistic regression

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Question

Do the $x_1, ..., x_p$ capture the variability of y?

Regression models explore associations between:

- · a response variable y
- explanatory variables (or predictors) x_1, \ldots, x_p

Question

Do the x_1, \ldots, x_p capture the variability of y?

Aims

- 1. Predict the future (easy)
- 2. Understand the system being modelled (hard)

Regression modelling steps

- Formulation
 - 1. Error distribution for the response **y**
 - 2. Combination of predictors
 - 3. Link function
- Estimation of parameters
- Diagnostics (does the model fit the data well?)
- · Selection (can we improve the fit?)

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - · y is categorical \rightarrow binomial distribution

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - · y is categorical \rightarrow binomial distribution
- (2) A combination of predictors x_1, \ldots, x_p
 - Often linear, e.g. $2x_1 + 3x_2$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients

Components of regression models

- (1) A model for the **variability** of the response **y**
 - y is continuous \rightarrow normal distribution
 - \cdot y is categorical \rightarrow binomial distribution
- (2) A combination of predictors x_1, \ldots, x_p
 - Often linear, e.g. $2x_1 + 3x_2$
 - $\beta_1 = 2$ and $\beta_2 = 3$ are regression coefficients
- (3) A link between the two
 - Often depends on the model for the response
 - Linear regression: $\mathbb{E}[y] = 2x_1 + 3x_2$

Linear regression

For the *i*th observation:

$$\mathbb{E}[y_i] = \beta_0 + \sum_j \beta_j x_{ij} + \epsilon$$

 eta_0 Intercept eta_j Regression coefficients eta Error term

- Easy to estimate
- Easy to interpret

Classification problems

What happens if the outcome **y** is **categorical**?

Classification problems

What happens if the outcome **y** is **categorical**?

For binary outcomes, we can model the probability

$$\Pr(y_i = 1 \mid \mathbf{x}_i) = p_i,$$

i.e. the probability of belonging to some category, as a function of the predictors x_1,\dots,x_p

...but how?

Logistic regression

Logistic regression

Idea

Transform the linear predictor to lie on the unit interval

For the ith observation:

$$logit(p_i) = log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \sum_j \beta_j x_{ij} + \varepsilon$$

 β_0, \dots, β_p represent the \mbox{log} odds ratios between classes

Probability and odds

$$logit(p) = log\left(\frac{p}{1-p}\right)$$

Throw a fair die. How often will you get a 1?

Probability

$$p = \frac{1}{6} \approx 16.67\%$$
 of the time

Odds

$$\frac{p}{1-p} = \frac{1/6}{5/6} = \frac{1}{5} = 0.2$$

(once for every 5 times you don't)

Odds ratio

$$OR = \frac{\text{odds in some group } (y = 1)}{\text{odds in a reference group } (y = 0)}$$

Odds ratio

Example

$$\mathsf{OR} = \frac{\mathsf{odds} \; \mathsf{of} \; \mathsf{smoking} \; \mathsf{in} \; \mathsf{lung} \; \mathsf{cancer} \; \mathsf{patients}}{\mathsf{odds} \; \mathsf{of} \; \mathsf{smoking} \; \mathsf{in} \; \mathsf{cancer-free} \; \mathsf{individuals}}$$

Interpretation

```
 OR \begin{cases} < 1 & \text{smoking is less likely} \\ = 1 & \text{smoking is no more likely in lung cancer patients} \\ > 1 & \text{smoking is more likely}  \end{cases}
```

EXAMPLE: Crime Survey for England and Wales

Outcome

'Did you experience any crime in the previous 12 months?' (1,297 yes + 6,976 no = 8,273 respondents)

Predictors

- Sex
- · Age
- 'How safe do you feel walking alone in after dark?'
 (variable walkdark, four categories)

Logistic regression coefficients

	β	$exp(\beta)$
(Intercept)	-0.56	0.57
Sex		
Male	_	_
Female	-0.29	0.75
Age	-0.03	0.97
walkdark		
Very safe	_	_
Fairly safe	0.17	1.19
A bit unsafe	0.50	1.64
Very unsafe	0.81	2.24

Interpretation of logistic regression coefficients

Age

- $exp(\beta) = 0.97 < 1$
- Reduction in risk of 1 0.97 = 3% per year of age (other things being equal)
- → 'Elderly less subject to crime'

Interpretation of logistic regression coefficients

Age

- $\exp(\beta) = 0.97 < 1$
- Reduction in risk of 1 0.97 = 3% per year of age (other things being equal)
- ightarrow 'Elderly less subject to crime'

walkdark = 'Very unsafe'

- $exp(\beta) = 2.24 > 1$
- Increase in risk of 2.24 1 = 124% if participant declares feeling 'very unsafe'
- → 'Trust your gut feeling'

RECAP: logistic regression

Model

- Outcome is the probability of being in some class (dichotomised for prediction)
- Regression coefficients represent log odds ratios

Interpretation

- $\exp(\beta)$ is the **odds ratio** between y = 0 and y = 1
- OR = 1 is threshold (= no effect)