Contoh soal

Dari uji konsolidasi terhadap lempung jenuh didapat data tersaji ditabel 2.1. pada akhir uji, tanah uji dibongkar dan diukur data, didapat kadar air w=24,5%, G=2,7.

Tegangan efektif p' (kN/m²)	Tebal contoh tanah uji sesudah	
	konsolidasi (mm)	
0	20,00	
50	19,65	
100	19,52	
200	19,35	
400	19,15	
800	18,95	
0	19,25	

- a) Gambarkan grafik hubungan angka pori terhadap tegangan efektifnya!
- b) Carilah (dari grafik soal a) koefisien a_v dan m_v pada tegangan 250 kN/m² sampai 350 kN/m²!
- c) Carilah C_c tanah (dari grafik soal a) dan C_c dari empiris hasil penelitian orang!
- d) Carilah C_r tanah (dari grafik soal a)!

Penyelesaian

Untuk tanah jenuh, maka S=1, maka $G\cdot w=e\cdot S$ menjadi $G\cdot w=e$ Saat akhir uji, angka porinya

$$e = G \cdot w = 2,7 \cdot 0,254 = 0,662$$

Tebal contoh tanah saat akhir uji = H1 = 19,25 mm (lihat tabel)

Saat awal uji, angka porinya $e_o = e_1 + \Delta e$

Hubungan antara Δe dan ΔH ialah :

$$\frac{\Delta H}{H} = \frac{\Delta e}{1 + e_0}$$

$$\frac{\Delta e}{\Delta H} = \frac{1 + e_0}{H} = \frac{1 + e_1 + \Delta e}{H}$$

$$\Delta H = 20 - 19,25 = 0,75 \text{ mm}$$

$$\frac{\Delta e}{0,75} = \frac{1 + 0,662 + \Delta e}{20}$$

Didapat $\Delta e = 0.065$

$$e_0 = e_1 + \Delta e = 0.662 + 0.065 = 0.727$$

Dari persamaan

$$\frac{\Delta e}{\Delta H} = \frac{1 + e_0}{H} = \frac{1,727}{20} = 0,0864$$

Didapat $\Delta e = 0.0864 \cdot \Delta H$. Persamaan ini dipakai untuk menghitung angka pori e semua data pembebanan (tabel), kemudian digambarkan grafik hubungan $e - \log p'$ berikut

Tabel hitungan

Teg. Efektif p' (kN/m²)	H (mm)	Δ <i>H</i> (mm)	Δ <i>e</i> = 0,0864 · Δ <i>H</i>	$e = e_0 - \Delta e$ $(e_0 = 0.727)$
0	20	0,00	0,000	0,727
50	19,65	0,35	0,030	0,697
100	19,52	0,48	0,041	0,686
200	19,35	0,65	0,056	0,671
400	19,15	0,85	0,073	0,654
800	18,95	1,05	0,091	0,636
0	19,25	0,75	0,065	0,662

Grafik e - log p

a) Gambar Grafik hubungan $e - \log p'$

b) Dari grafik tersebut, pada

$$p_1' = 250 \ kN/m^2$$
 $e_1 = 0,665$
 $p_2' = 350 \ kN/m^2$ $e_2 = 0,658$

Maka koefisien penampatan tanah (a_v)

$$a_v = \frac{\Delta e}{\Delta p} = \frac{e_1 - e_2}{p_2' - p_1'} = \frac{0,665 - 0,658}{350 - 250} = 0,00007 \, m^2/kN$$

Koefisien perubahan volume m_v

$$m_v = \frac{a_v}{1 + e_1} = \frac{0,00007}{1,665} = 0,000042 \, m^2/kN$$

c) Berdasarkan grafik tadi C_c = gradient bagian lurus grafik (ada di dekat ujung bawah)

$$C_c = \frac{\Delta e}{\Delta \log p} = \frac{(0.671 - 0.636)}{\log(\frac{800}{200})} = 0.058$$

Menurut penelitian para ahli ada rumus empiris pendekatan nilai C_c tanah

 $C_c = 0.007 (LL - 10)$ --- (Terzaghi & Peck)

 $C_c = 0.0115 \, w_n$ untuk tanah organik, gambut. (Azzouz, et all, 1976)

 $w_N =$ kadar air natural asli lapangan, dll

 $C_c = 0.01 w_N$ (untuk lempung Chicago)

d) C_r = gradient garis pengembangan/recompresi tanah saat pengurangan beban Pada 2 titik terakhir:

 $e_1 = 0.636$

 $p_1 = 800 \, kN/m^2$

 $e_2 = 0,662$

 $p_2 = 10 \ kN/m^2$ (=0, tapi didekati dengan angka=10)

$$C_r = \frac{\Delta e}{\Delta p} = \frac{e_E - e_D}{\log\left(\frac{p_D}{p_E}\right)} = \frac{0,662 - 0,636}{\log\left(\frac{800}{10}\right)} = 0,013$$