1. Create a DFA M1 for the language $\{w \mid w is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0, and 1 is a binary string with even number of 1's, starts with a 0 is a binary string with even number of 1's, starts with a 0 is a binary string with even number of 1's, and 1 is a binary string with even number of 1 is a binary st$	nd
when	

interpreted as a number is divisible by 3}, $\Sigma = \{0,1\}$

- 2. Consider r1 = (ab + cd)* (c ε + d \emptyset), Σ = {a,b,c,d}
- (a) Draw an ϵ -NFA M2 which accepts L(r1)
- (b) Draw the corresponding DFA M3 for M2
- 3. Write a regular expression denoting the language of all strings over the alphabet {a,b} whose length is not

a multiple of 3.

- 4. Provide an algorithm for converting any ϵ -NFA to a corresponding NFA without epsilon transitions
- 5. Provide proof to Theorem 1

Theorem 1. If L is a regular language, then for some constant p and for each string $w \in L$, $|w| \ge p$ we can rewrite w as w = xyz such that:

- 1. |y| > 0
- 2. $|xy| \ge p$
- 3. for each $k = 0, 1, \dots$ the string $xy^kz \in L$