

EARLE M. JORGENSEN COMPANY

REFERENCE BOOK

ALLOY • ALUMINUM • BRASS • BRONZE
CARBON • CAST IRON • CHROME • NICKEL
STAINLESS • SUPER ALLOY • TITANIUM
BAR • PIPE • PLATE • SHEET • TUBE

SECTION P

CHEMICAL ANALYSES OF STANDARD SIZES

STANDARD METALS AND DESIGNATION SYSTEMS 2	
EFFECTS OF COMMON ALLOYING ELEMENTS IN STEEL	ļ
DESIGNATION OF CARBON STEELS	,
DESIGNATION OF ALLOY STEELS	2
STAINLESS AND HEAT RESISTING STEELS	17
HIGH TEMPERATURE HIGH STRENGTH ALLOYS 18	
DESIGNATION OF ALLUMINUM ALLOYS	·20
OIL TOOL MATERIALS	
API SPECIFICATION REQUIREMENTS22	

STANDARD METALS AND DESIGNATION SYSTEMS UNS

Studies have been made in the metals industry for the purpose of establishing certain "standard" metals and eliminating as much as possible the manufacture of other metals which vary only slightly in composition from the standard metals. These standard metals are selected on the basis of serving the significant metallurgical and engineering needs of fabricators and users of metal products.

UNIFIED NUMBERING SYSTEM: UNS is a system of designations established in accordance with ASTM E 527 and SAE J1086, Recommended Practice for Numbering Metals and Alloys. Its purpose is to provide a means of correlating systems in use by such organizations as American Iron and Steel Institute (AISI), American Society for Testing Materials (ASTM), and Society of Automotive Engineers (SAE), as well as individual users and producers. UNS designation assignments are processed by the SAE, the ASTM, or other relevant trade associations. Each of these assignors has the responsibility for administering a specific UNS series of designations. Each considers requests for the assignment of new UNS designations, and informs the applicants of the action taken. UNS designation assignors report immediately to the office of the Unified Numbering System for Metals and Alloys the details of each new assignment for inclusion into the system.

The UNS number is not in itself a specification, but an identification symbol to provide for efficient indexing, record keeping, data storage and retrieval, cross referencing, and avoidance of the same number being used for entirely different alloys. Specifications may alter composition requirements.

Composition of the various grades shown herein correspond to the respective AISI specifications.

The UNS designations for metals and alloys are as follows:

UNS Descriptor	Metals and Alloys
AXXXXX	Aluminum
CXXXXX	Copper and copper alloys
DXXXXX	Specified mechanical properties steels
FXXXXX	Cast irons
GXXXXX	AISI and SAE carbon and alloy steels (except tool steels)
HXXXXX	AISI and SAE H-steels
JXXXXX	Cast steels
KXXXXX	Miscellaneous steels and ferrous alloys
RXXXXX	Reactive and refractive alloys
SXXXXX	Heat and corrosion resistant (stainless) steels
TXXXXX	Tool steels

EFFECTS OF COMMON ALLOYING ELEMENTS IN STEEL

By definition, steel is a combination of iron and carbon. Steel is alloyed with various elements to improve physical properties and to produce special properties, such as resistance to corrosion or heat. Specific effects of the addition of such elements are outlined below:

ALUMINUM (AI) is a deoxidizer and degasifier. It retards grain growth and is used to control austenitic grain size. In nitriding steels it aids in producing a uniformly hard and strong nitrided case when used in amounts of 1.00%-1.25%.

BISMUTH (Bi) is an element added to improve machinability in a variety of alloys.

CALCIUM (Ca) is used in certain steel to control the shape, size and distribution of oxide and/or sulfide inclusions. Benefits may include improved ductility, impact strength and machinability.

CARBON (C), although not usually considered as an alloying element, is the most important constituent of steel. It raises tensile strength, hardness, and resistance to wear and abrasion. It lowers ductility, toughness, and machinability.

CHROMIUM (Cr) increases tensile strength, hardness, hardenability, toughness, resistance to wear and abrasion, resistance to corrosion, and scaling at elevated temperatures.

COBALT (Co) increases strength and hardness and permits higher quenching temperatures. It also intensifies the individual effects of other major elements in more complex steels.

LEAD (Pb), while not strictly an alloying element, is added to improve machining characteristics. It is almost completely insoluble in steel, and minute lead particles, well dispersed, reduce friction where the cutting edge contacts the work. Addition of lead also improves chip-breaking formations.

MANGANESE (Mn) is a deoxidizer and degasifier and reacts with sulfur to improve forgeability. It increases tensile strength, hardness, hardenability, and resistance to wear. It decreases tendency toward scaling and distortion. It increases the rate of carbon penetration in carburizing.

MOLYBDENUM (Mo) increases strength, hardness, hardenability, and toughness, as well as creep resistance and strength at elevated temperatures. It improves machinability and resistance to corrosion and it intensifies the effects of other alloying elements. In hot-work steels, it increases red-hardness properties.

EFFECTS OF COMMON ALLOYING ELEMENTS IN STEEL (cont.)

NICKEL (Ni) increases strength and hardness without sacrificing ductility and toughness. It also increases resistance to corrosion and scaling at elevated temperatures when introduced in suitable quantities in high-chromium (stainless) steels.

PHOSPHORUS (P) increases strength and hardness and improves machinability. However, it adds marked brittleness and cold-shortness of steel.

SILICON (Si) is a deoxidizer and degasifier. It increases tensile and yield strength, hardness, forgeability, and magnetic permeability.

SULPHUR (S) improves machinability in free-cutting steels, but without sufficient manganese it produces brittleness at red heat. It decreases weldability, impact toughness, and ductility.

TITANIUM (Ti), COLUMBIUM (Cb), and TANTALUM (Ta) are used as stabilitizing elements in stainless steels. Each has a high affinity for carbon and forms carbides, which are uniformly dispersed throughout the steel. Thus localized depletion of carbon at grain boundaries is prevented.

TUNGSTEN (W) increases strength, hardness, and toughness. Tungsten steels have superior hot-working and greater cutting efficiency at elevated temperatures.

VANADIUM (V) increases strength, hardness, and resistance to shock impact. It retards grain growth, permitting higher quenching temperatures. It also enhances the red-hardness properties of high-speed metal cutting tools and intensifies the individual effects of other major elements.

DESIGNATION OF CARBON STEELS AISI/SAE

DEFINITION: Steel is considered to be carbon steel when no minimum content is specified or required for aluminum, chromium, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, or zirconium, or any other element added to obtain a desired alloying effect; when the specified minimum for copper does not exceed .40%; or when the maximum content specified for any of the following elements does not exceed the percentages noted: manganese 1.65, silicone .60, cooper .60.

NUMBERING SYSTEM: A four-numeral series is used to designate graduations of chemical composition of carbon steel. The first two digits indicate the grade of carbon steel. The last two numbers are intended to indicate the approximate middle of the carbon range of .32% - .38%.

It is necessary, however, to deviate from this system and to interpolate numbers in the case of some carbon ranges and for variations in manganese, phosphorus or sulfur with the same carbon range.

Within the numerical designation system the special-purpose elements lead and boron are commonly designated by inserting the letter "L" or "B" respectively between the second and third numerals of the AISI number, e.g., 10L45 and 10B46.

The prefix "M" indicates "merchant quality". The "M" grades are produced to wider carbon and manganese ranges than the corresponding standard grades which are not so prefixed.

Grade	Description
10XX	Non-resulfurized Carbon Steels, Manganese 1.00% maximum
11XX	Resulfurized Carbon Steels
12XX	Rephosphorized and Resulfurized Carbon Steels
15XX	Non-resulfurized Carbon Steels, Manganese max. over 1.00%

First two digits indicate grade of carbon steel. Last two digits represent middle of carbon range.

The standard carbon steels and their compositions are shown on the following pages.

STANDARD CARBON STEELS Chemical Analysis

	AISI/SAE number		С	Mn	P (Max.)	S (Max.)	Si	Cu, Pb
Non-	1008	G100800	.10 Max.	0.30/0.50	0.040	0.050	When silicon	When required,
resulfur-	1010	G10100	0.08/0.13	0.30/0.60	0.040	0.050	is required, the	copper is speci-
ized	1012	G10120	0.10/0.15	0.30/0.60	0.040	0.050	following ranges	fied as 0.20%
	1015	G10150	0.13/0.18	0.30/0.60	0.040	0.050	and limits are	minimum.
	1016	G10160	0.13/0.18	0.60/0.90	0.040	0.050	commonly speci-	
	1017	G10170	0.15/0.20	0.30/0.60	0.040	0.050	fied:	When lead is
	1018	G10180	0.15/0.20	0.60/0.90	0.040	0.050		required as an
	1019	G10190	0.15/0.20	0.70/1.00	0.040	0.050	0.10 max or	added element
	1020	G10200	0.18/0.23	0.30/0.60	0.040	0.050	0.10-0.20 or	to a standard
	1021	G10210	0.18/0.23	0.60/0.90	0.040	0.050	0.15-0.30 or	steel, a range of
	1022	G10220	0.18/0.23	0.70/1.00	0.040	0.050	0.20-0.40	0.15%-0.35%,
	1023	G10230	0.20/0.25	0.30/0.60	0.040	0.050		inclusive, is
	1025	G10250).22/0.28	0.30/0.60	0.040	0.050		generally used.
	1026	G10260	0.22/0.28	0.60/0.90	0.040	0.050		Such a steel
	1029	G10290	0.25/0.30	0.60/0.90	0.040	0.050		is identified by
	1030	G10300	0.28/0.34	0.60/0.90	0.040	0.050		inserting the let-
	1035	G10350	0.32/0.38	0.60/0.90	0.040	0.050		ter "L" between
	1037	G10370	0.32/0.38	0.70/1.00	0.040	0.050		the second and
	1038	G10380	0.35/0.42	0.60/0.90	0.040	0.050		third numeral of
	1039	G10390	0.37/0.42	0.70/1.00	0.040	0.050		the AISI number.
	1040	G10400	0.37/0.42	0.60/0.90	0.040	0.050		A heat analysis
	1042	G10420	0.40/0.47	0.60/0.90	0.040	0.050		for lead is not
	1043	G10430	0.40/0.47	0.70/1.00	0.040	0.050		determinable,
	1044	G10440	0.43/0.50	0.30/0.60	0.040	0.050		since lead is
	1045	G10450	0.43/0.50	0.60/0.90	0.040	0.050		added to the
	1046	G10460	0.43/0.50	0.70/1.00	0.040	0.050		ladle stream
	1049	G10490	0.46/0.53	0.60/0.90	0.040	0.050		while each ingot
	1050	G10500	0.48/0.55	0.60/0.90	0.040	0.050		is poured.
	1053	G10530	0.48/0.55	0.70/1.00	0.040	0.050		
	1055	G10550	0.50/0.60	0.60/0.90	0.040	0.050		
	1060	G10600	0.55/0.65	0.60/0.90	0.040	0.050		
	1070	G10700	0.65/0.75	0.60/0.90	0.040	0.050		
	1078	G10780).72/0.85	0.30/0.60	0.040	0.050		
	1080	G10800	0.75/0.88	0.60/0.90	0.040	0.050		
	1084	G10840	0.80/0.93	0.60/0.90	0.040	0.050		
	1090	G10900	0.85/0.98	0.60/0.90	0.040	0.050		
	1095	G109500	.90/01.03	0.30/0.50	0.040	0.050		
	1513	G15130	0.10/0.16	1.00/1.40	0.040	0.050		
	1522	G15220	0.18/0.24	1.00/1.40	0.040	0.050		
	1524	G15240	0.19/0.25	1.35/1.65	0.040	0.050		
	1526	G15260	0.22/0.29	1.10/1.40	0.040	0.050		
	1527	G15270	0.22/0.29	1.20/1.50	0.040	0.050		
	1541	G15410	0.36/0.44	1.35/1.65	0.040	0.050		
	1548	G15480	0.44/0.52	1.10/1.40	0.040	0.050		
	1551	G15510	0.45/0.56	0.85/1.15	0.040	0.050		
	1552	G15520	0.47/0.55	1.20/1.50	0.040	0.050		
	1561	G15610	0.55/0.65	0.75/1.05	0.040	0.050		
	1566	G15660	0.60/0.71	0.85/1.15	0.040	0.050		

STANDARD CARBON STEELS

AISI/SAE Number	UNS Number	С	Mn	P (Max.)	S (Max.)	Si	Cu, Pb
1110	G11100	0.08/0.13	0.30/0.60	0.040	0.08/0.13	When silicone is	When required,
1117	G11170	0.14/0.20	1.00/1.30	0.040	0.08/0.13	required, the fol- lowing ranges and	copper is specified as 0.20% minimum.
1118	G11180	0.14/0.20	1.30/1.60	0.040	0.08/0.13	limits are com-	
1137	G11370	0.32/0.39	1.35/1.65	0.040	0.08/0.13	monly specified: 0.10 Max. or	When lead is required as an added
1139	G11390	0.35/0.43	1.35/1.65	0.040	0.13/0.20	0.10-0.20 or 0.15-0.30 or	element to a stan- dard steel, a range
1140	G11400	0.37/0.44	0.70/1.00	0.040	0.08/0.13	0.15-0.30 01	of 0.15%-0.35%,
1141	G11410	0.37/0.45	1.35/1.65	0.040	0.08/0.13		inclusive, is generally used. Such a steel is
1144	G11440	0.40/0.48	1.35/1.65	0.040	0.24/0.33		identified by inserting
1146	G11460	0.42/0.49	0.70/1.00	0.040	0.08/.013		the letter "L" between the second and third
1151	G11510	0.48/0.55	0.70/1.00	0.040	0.08/0.13		numberal of the AISI
		Resulfu	rized and F	Rephosphor	ized		number. A heat analysis for lead is
1211	G12110	0.13 Max.	0.60/0.90	0.07/0.12	0.10/0.15	It is not common	not determinable,
1212	G12120	0.13 Max.	0.70/1.00	0.07/0.12	0.16/0.23	practice to produce these steels to	since lead is added to the ladle stream
1213	G12130	0.13 Max.	0.70/1.00	0.07/0.12	0.24/0.33	specified limits for silicon because of	while each ingot is poured.
1215	G12150	0.09 Max.	0.75/1.05	0.04/0.09	0.26/0.35	its adverse effect	poureu.
12L14	G12144	0.15 Max.	0.85/1.15	0.04/0.09	0.26/0.35	on machinability.	Pb .1535
		Resulfu	rized and F	Rephosphor	ized	1	
M1008	N/A	0.10 Max.	0.25/0.60	0.040	0.050	Merchant qual- ity steels are not	
M1010	N/A	0.07/0.14	0.25/0.60	0.040	0.050	produced to any	
M1012	N/A	0.09/.016	0.25/0.60	0.040	0.050	specified silicon content.	
M1015	N/A	0.12/0.19	0.25/0.60	0.040	0.050	. Content.	
M1017	N/A	0.14/0.21	0.25/0.60	0.040	0.050		
M1020	N/A	0.17/0.24	0.25/0.60	0.040	0.050		
M1023	N/A	0.19/0.27	0.25/0.60	0.040	0.050		
M1025	N/A	0.20/0.30	0.25/0.60	0.040	0.050		
M1031	N/A	0.26/.036	0.25/0.60	0.040	0.050		
M1044	N/A	0.40/0.50	0.25/0.60	0.040	0.050		

DESIGNATION OF ALLOY STEELS

DEFINITION: Steel is considered to be alloy steel when the maximum of the range given for the content of alloying elements exceeds one or more of the following limits: manganese, 1.65%; silicon, .60%, copper, .60%; or in which a definite range or a definite minimum quantity of any of the following elements is specified or required within the limits of the recognized field of constructional alloy steels: aluminum, chromium up to 3.99%, cobalt, columbium, molybdenum, nickel, titanium, tungsten, vanadium, zirconium, or any other alloying element added to obtain a desired alloying effect.

NUMBERING SYSTEM: The compositions listed here may apply to open hearth, basic oxygen, or electric furnace steels. Where they apply to electric furnace steels, the maximum phosphorus and sulfur shall be .025 each.

The first two digits of the four-numeral series indicate the grade of alloy. The last two digits are intended to indicate the approximate middle of the carbon range. For example, in the grade designation 4142,42 represents a carbon range of 0.40% to 0.45%. (Where a five-numeral series occurs, the last digits indicate the approximate mean of the carbon range.) It is necessary, however, to deviate from this rule and to interpolate numbers in the case of some carbon range, and for variations in manganese, sulfur, chromium, or other elements.

Grade	Principal alloying elements	% Content
13XX	Manganese	1.75
23XX	Nickel	3.50
25XX	Nickel	5.00
31XX	Nickel	1.25
	Chromium	0.65
E33XX	Nickel	3.50
	Chromium	1.55
	Electric Furnace	
40XX	Molybdenum	0.25
41XX	Chromium	0.50 or 0.95
	Molybdenum	0.12 or 0.20
43XX	Nickel	1.80
	Chromium	0.50 or 0.80
	Molybdenum	0.25
E43XX	Same as above,	
	produced in Basic Electric Furnace	
44XX	Manganese	0.80
	Molybdenum	0.40
45XX	Manganese	0.55
	Molybdenum	0.50
46XX	Nickel	1.85
10701	Molybdenum	0.25
47XX	Nickel	1.05
11701	Chromium	0.45
	Molybdenum	0.20 or 0.35
50XX	Chromium	0.28 or 0.40
51XX	Chromium	0.80,0.88,0.93,0.95, or 1.00
E5XXXX	High Carbon	0.00,0.00,0.93,0.93, 01 1.00
LJXXXX	High Chromium	
	Electric Furnace Bearing Steel	
E50100	Carbon	1.00
L30 100	Chromium	0.50
E51100	Carbon	1.00
L31100	Chromium	1.00
E52100	Carbon	1.00
E32 100	Chromium	1.45
61XX	Chromium	0.60,0.80, or 0.95
0177	Vanadium	0.12, 0.10 min or 0.15 min
7140	Carbon	0.12, 0.10 11111 01 0.15 11111
7140	04.20	
	Chromium	1.60
	Molybdenum	0.35
04)///	Aluminum	1.15
81XX	Nickel	0.30
	Chromium	0.40
	Molybdenum	0.12

Grade	Principal alloying elements	% content
86XX	Nickel	0.55
	Chromium	0.50
	Molybdenum	0.20
87XX	Nickel	0.55
	Chromium	0.50
	Molybdenum	0.25
88XX	Nickel	0.55
	Chromium	0.50
	Molybdenum	0.35
92XX	Manganese	0.85
	Silicon	2.00
9262	Chromium	0.25-0.40
93XX	Nickel	3.25
	Chromium	1.20
	Molybdenum	0.12
98XX	Nickel	1.00
	Chromium	0.80
	Molybdenum	0.25
14BXX	Boron	*
50BXX	Chromium	0.50 or 0.18
	Boron	*
51BXX	Chromium	0.80
	Boron	*
81BXX	Nickel	0.33
	Chromium	0.45
	Molybdenum	0.12
	Boron	*
86BXX	Nickel	0.55
	Chromium	0.50
	Molybdenum	0.20
	Boron	*
84BXX	Nickel	0.45
	Chromium	0.40
	Molybdenum	0.12
	Boron	*

First two digits indicate grade of alloy steel. Last two digits represent middle of carbon range. If carbon over 1.00%, a third digit is added.

NOTES PERTAINING TO STANDARD ALLOY STEELS: Most grades are normally manufactured as electric furnace quality with adjustments in phosphorus and sulfur and shown as prefix letter E.

The phosphorus and sulfur limitations for each process are as follows:

	Ma	x %
	P	S
Electric furnace quality	0.025	0.025
Regular quality '	0.035	0.040

Small quantities of certain elements are present in alloy steels which are not specified or required. These elements are considered as incidental and may be present to the following maximum amounts: copper, 0.35%; nickel, 0.25%; chromium, 0.20%; molybdenum, 0.06%.

Standard alloy steels can be produced with a lead range of 0.15% - 0.35%. Such steels are identified by inserting the letter "L" between the second and third numerals of the AISI number, e.g., 41L40. Lead is reported only as a range of 0.15% - 0.35% since it is added to the ladle stream as the steel is being poured. The letter "B" within the AISI number indicates boron steel.

^{*}Content may vary.

STANDARD ALLOY STEELS CHEMICAL ANALYSIS

	Ni	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
Chemical composition limits (%)	Si	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35
	S (Max.)	0.040	0.040	0.040	0.040	0.040	0.035/0.050	0.040	0.035/0.050	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
hemical comp	P (Max.)	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
0	Mn	1.60/1.90	1.60/1.90	1.60/1.90	1.60/1.90	0.70/0.90	0.70/0.90	0.70/0.90	0.70/0.90	06.0/07.0	0.70/0.90	0.70/0.90	0.40/0.60	0.70/0.90	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00
	၁	0.28/0.33	0.33/0.38	0.38/0.43	0.43/0.48	0.20/0.25	0.20/0.25	0.25/0.30	0.25/0.30	0.35/0.40	0.45/0.50	0.18/0.23	0.28/0.33	0.35/0.40	0.38/0.43	0.40/0.45	0.43/0.48	0.45/0.50

G40240 G40270 G40280 G40370

4023 4024 4027 4028 4037

G40470 G41180 G41300 G41370 G41400 G41420 G41450 G41470

4047

4118 4130 4137 4140

0.80/1.10 0.80/1.10 0.80/1.10 0.80/1.10 0.80/1.10 0.80/1.10 0.80/1.10 0.70/0.90

0.40/0.60

0.20/0.30 0.20/0.30 0.20/0.30 0.20/0.300.20/0.30 0.20/0.30 0.08/0.15 0.15/0.25 0.15/0.250.15/0.25 0.15/0.25 0.15/0.25 0.15/0.25 0.15/0.25 0.25/0.35 0.20/0.30 0.20/0.300.20/0.30 0.20/0.30

ŝ

ರ

UNS number

AISI number

G13400 G13450 G40230

1340 1345 0.20/0.30

0.40/0.60 0.70/0.90 0.70/0.90

.65/2.00 .65/2.00 1.65/2.00 .65/2.00

0.15/0.35 0.15/0.35

0.035 0.035 0.035 0.035 0.025 0.035

> 0.75/1.00 0.45/0.65 0.60/0.80 0.60/0.80 0.45/0.65 0.45/0.65

0.48/0.53 0.56/0.64 0.17/0.22

G41500 G41610

4142 4145

4147 4150 4320

G43200 G43400 G43406 G46150 346200

0.38/0.43 0.38/0.43 0.13/0.18

> **≣4340** 4615

0.17/0.22

0.15/0.35

0.040 0.040 1.65/2.00

0.15/0.35 0.15/0.35 0.15/0.35 0.15/0.35

0.040 0.040

0.025 0.040

STANDARD ALLOY STEELS CHEMICAL ANALYSIS (continued)

	>	I	I	I	I		I	I	I	1	I	I	I	I	I	I	I	0.10/0.15	0.15 Min.	I	I	1	I	I	I
	Mo	0.15/0.25	0.15/0.25	0.20/0.30	0.20/0.30	0.20/0.30	I	I	I	ı	I	I	ı	ı	I	I	I	I	I	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25
	పే		0.35/0.55	I	I	ı	0.70/0.90	0.70/0.90	0.80/1.10	0.75/1.00	0.80/1.05	0.70/0.90	0.70/0.90	06.0/07.0	0.70/0.90	0.90/1.15	1.30/1.60	0.50/0.70	0.80/1.10	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60
	ï	0.70/1.00	0.90/1.20	3.25/3.75	3.25/3.75	3.25/3.75	ı	ı	ı	ı	I	I	I	ı	I	I	I	ı	ı	0.40/.70	0.40/.70	0.40/.70	0.40/.70	0.40/.70	0.40/.70
	S	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35
sition limits (%)	S (Max.)	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
Chemical composition limits (%)	P (Max.)	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
U	Mn	0.45/0.65	0.50/0.70	0.40/0.60	0.40/0.60	0.50/0.70	0.70/0.90	0.70/0.90	0.70/0.90	0.60/0.80	0.60/0.80	0.70/0.90	0.70/0.90	0.70/0.90	0.75/1.00	0.25/0.45	0.25/0.45	0.50/0.70	0.70/0.90	0.70/0.90	0.70/0.90	0.70/0.90	0.70/0.90	0.70/0.90	0.70/0.90
	ပ	0.24/0.29	0.17/0.22	0.13/018	0.15/0.20	0.18/0.23	0.15/0.20	0.17/0.22	0.28/0.33	0.30/0.35	0.33/0.38	0.38/0.43	0.48/0.53	0.51/0.59	0.56/0.64	0.98/01.10	0.98/01.10	0.16/0.21	0.48/0.53	0.13/0.18	0.15/0.20	0.18/0.23	0.20/0.25	0.23/0.28	0.25/0.30
	UNS number	G46260	G47200	G48150	G48170	G48200	G51170	G51200	G51300	G51320	G51350	G51400	G51500	G51550	G51600	G51986	G52986	G61180	G61500	G86150	G86170	G86200	G86220	G86250	G86270
	AISI number	4626	4720	4815	4817	4820	5117	5120	5130	5132	5135	5140	5150	5155	5160	E51100	E52100	6118	6150	8615	8617	8620	8622	8625	8627

STANDARD ALLOY STEELS CHEMICAL ANALYSIS (continued)

	^	ı	I	I	I	I	I	I	I	I	I
	Mo	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25	0.15/0.25	0.20/0.30	0.20/0.30	0.30/0.40	-
	Ċ	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	0.40/0.60	_
	Ŋ	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	0.40/0.70	
	Si	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	1.80/2.20
Chemical composition limits (%)	S (Max.)	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
Chemical compo	P (Max.)	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	Mn	06.0/07.0	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	06.0/07.0	0.75/1.00	0.75/1.00	0.75/1.00
	C	0.28/0.33	0.35/0.40	0.38/0.43	0.40/0.45	0.43/0.48	0.51/0.59	0.18/0.23	0.38/0.43	0.20/0.25	0.56/0.64
	UNS number	G86300	G86370	G86400	G86420	G86450	G86550	G87200	G87400	G88220	G92600
	AISI number	8630	8637	8640	8642	8645	8655	8720	8740	8822	9260

	I	I	I	I	I	I	I	I
	_	ı	ı	1		0.08/0.15	0.08/0.15	0.08/0.15
	0.40/0.60	0.20/0.35	0.40/0.60	0.40/0.60	0.70/0.90	0.35/0.55	0.30/0.50	0.30/0.50
	-	I	I	ı		0.20/0.40	0.30/0.60	0.30/0.60
	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35	0.15/0.35
tandard boron steels*	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040
Standard b	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035
	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00	0.75/1.00
	0.43/0.48	0.44/0.49	0.48/0.53	0.56/0.64	0.56/0.64	0.43/0.48	0.15/0.20	0.28/0.33
	G50441	G50461	G50501	G50601	G51601	G81451	G94171	G94301
	50B44	50B46	50B50	50B60	51B60	81B45	94B17	94B30

These steels can be expected to have 0.005% minimum boron content.

STAINLESS AND HEAT-RESISTING STEELS GRADE

Stainless Steels possess unusual ability to resist attack by corrosive media at atmospheric and elevated temperatures. These properties are due principally to the addition of relatively large amounts of chromium, and also nickel and/or manganese in certain grades. Stainless Steels are melted exclusively by the electric furnace process.

The analyses shown below have been adopted as standard in the steel industry, and the American Iron & Steel Institute has assigned the "type" numbers indicated. The various types fall into four classes, according to analysis:

chromium-nickel-manganese types
chromium-nickel types
straight chromium types
low chromium types

Note: Specifications may slightly alter chemical requirements.

STAINLESS AND HEAT-RESISTING STEELS STANDARD GRADES

Chemical composition limits (%) Maximum unless otherwse shown

			j	Chemical composition limits (%) Maximum unless otherwse shown	l (%) SIIIIII uor	Maximum unless	onierwse snow	=		
П	AISI number	UNS number	U	Mn	۵	S	Si	ວ້	ïZ	Other Elements
	201	S20100	0.15	5.50/7.50	090.0	0:030	1.00	16.00/18.00	3.50/5.50	N 0.25
	202	S20200	0.15	7.50/10.00	090.0	0.030	1.00	17.00/19.00	4.00/6.00	N 0 .25
	205	S20500	0.12/0.25	14.00/15.50	090.0	0.030	1.00	16.50/18.00	1.00/1.75	N 0.32/0.40
	301	S30100	0.15	2.00	0.045	0.030	1.00	16.00/18.00	6.00/8.00	
	302	830200	0.15	2.00	0.045	0.030	1.00	17.00/19.00	8.00/10.00	
	302B	S30215	0.15	2.00	0.045	0.030	2.00/3.00	17.00/19.00	8.00/10.00	
	303	830300	0.15	2.00	0.200	0.150 Min.	1.00	17.00/19.00	8.00/10.00	Mo 0.60 (optional)
	303Se	S30323	0.15	2.00	0.200	0.060	1.00	17.00/19.00	8.00/10.00	Se 0.15 Min.
	304	S30400	0.08	2.00	0.045	0.030	1.00	18.00/20.00	8.00/10.50	N 0.10 Max.
	304L	S30403	0.03	2.00	0.045	0.030	1.00	18.00/20.00	8.00/12.00	N 0.10 Max.
	1	S30430	0.08	2.00	0.045	0.030	1.00	17.00/19.00	8.00/10.00	Cu 3.00/4.00
	304N	S30451	0.08	2.00	0.045	0.030	1.00	18.00/20.00	8.00/10.50	N 0.10/0.16
	305	830500	0.12	2.00	0.045	0.030	1.00	17.00/19.00	10.50/13.00	
	308	830800	0.08	2.00	0.045	0.030	1.00	19.00/21.00	10.00/12.00	
	309	830900	0.20	2.00	0.045	0.030	1.00	22.00/24.00	12.00/15.00	
	309S	830908	0.08	2.00	0.045	0.030	1.00	22.00/24.00	12.00/15.00	
	310	S31000	0.25	2.00	0.045	0.030	1.50	24.00/26.00	19.00/22.00	
	310S	S31008	0.08	2.00	0.045	0.030	1.50	24.00/26.00	19.00/22.00	
	314	S31400	0.25	2.00	0.045	0.030	1.50/3.00	23.00/26.00	19.00/22.00	
	316	S31600	0.08	2.00	0.045	0.030	1.00	16.00/18.00	10.00/14.00	16.00/18.00 10.00/14.00 Mo 2.00/3.00; N 0.10 Max.

STANDARD STAINLESS STEELS (continued)

Chemical composition limits (%) Maximum unless otherwise shown

	AICI	TINE CHAPTE	c	M	-	ú	č	ċ	N.	Other Flements
	AISI number	ONS number	ر	INI	2	0	5	כ	Z	Omer Elements
Stainless	316F	S31620	0.08	2.00	0.200	0.100 Min.	1.00	16.00/18.00	10.00/14.00	Mo 1.75/2.50
and heat-	316L	S31603	0.03	2.00	0.045	0:030	1.00	16.00/18.00	10.00/14.00 N	10.00/14.00 Mo. 2.00/3.00; N. 0.10 Max.
resisiirig steels	316N	S31651	0.08	2.00	0.045	0:030	1.00	16.00/18.00	10.00/14.00	Mo 2.00/3.00; N. 10/16
2	317	S31700	0.08	2.00	0.045	0:030	1.00	18.00/20.00	11.00/15.00	Mo 3.00/4.00
	317L	S31703	0.03	2.00	0.045	0:030	1.00	18.00/20.00	11.00/15.00	Mo 3.00/4.00
	321	S32100	0.08	2.00	0.045	0:030	1.00	17.00/19.00	9.00/12.00	Ti 5XC Min.
	329	S32900	0.10	2.00	0.040	0:030	1.00	25.00/30.00	3.00/6.00	Mo 1.00/2.00
	330	N08330	0.08	2.00	0.040	0.030	0.75/1.50	17.00/20.00	34.00/37.00	
	347	S34700	0.08	2.00	0.045	0:030	1.00	17.00/19.00	9.00/13.00	Cb+Ta 10xC Min.
	348	S34800	0.08	2.00	0.045	0.030	1.00	17.00/19.00	9.00/13.00	Cb+Ta 10xC Min.
	ı	I	ı	I	I	I	I	I	I	Ta 0.10 Max; Co 0.20 Max.
	384	S38400	0.08	2.00	0.045	0.030	1.00	15.00/17.00	17.00/19.00	
	403	S40300	0.15	1.00	0.040	0:030	0:20	11.50/13.00	I	
	405	S40500	0.08	1.00	0.040	0:030	1.00	11.50/14.50	I	AI 0.10/0.30
	409	S40900	0.08	1.00	0.045	0.045	1.00	10.50/11.75	l	TI 6XC Min./0.75 Max.
	410	S41000	0.15	1.00	0.040	0:030	1.00	11.50/13.50	I	
	414	S41400	0.15	1.00	0.040	0:030	1.00	11.50/13.50	1.25/2.50	
	416	S41600	0.15	1.25	090.0	0.150 Min.	1.00	12.00/14.00	I	Mo 0.60 (optional)
	416Se	S41623	0.15	1.25	090.0	090'0	1.00	12.00/14.00	I	Se 0.15 Min.
	420	S42000	Over 0.15	1.00	0.040	0:030	1.00	12.00/14.00	1	

STANDARD STAINLESS STEELS (continued)

de oriente de orden mineral (0) Movie en la contra de contra de la contra dela contra dela contra de la contra dela contra de la contra del la contra dela contra del la contra del la contra del la contra del la contra

		Che	emical composi	tion limits (%) N	Chemical composition limits (%) Maximum unless otherwise shown	otherwise sho	nwc		
SI number	UNS number	C	Mn	Ь	S	Si	Cr	N	Other Elements
420F	S42020	Over 0.15	1.25	090.0	0.150 Min.	1.00	12.00/14.00	I	Mo 0.60 (optional)
422	S42200	0.20/0.25	1.00	0.025	0.025	0.75	11.00/13.00	0.50/1.0	Mo 0.75/1.25; V .015/0.30:
429	S42900	0.12	1.00	0.040	0:030	1.00	14.00/16.00	I	W 0.75/1.25
430	S43000	0.12	1.00	0.040	0:030	1.00	16.00/18.00	I	1
430F	S43020	0.12	1.25	090.0	0.150 Min.	1.00	16.00/18.00	I	Mo 0.60 (optional)
430Se	S43023	0.12	1.25	090.0	090:0	1.00	16.00/18.00	I	Se 0.15 Min.
431	S43100	0.20	1.00	0.040	0:030	1.00	15.00/17.00	1.25/2.50	I
434	S43400	0.12	1.00	0.040	0:030	1.00	16.00/18.00	I	Mo 0.75/1.25
436	S43600	0.12	1.00	0.040	0:030	1.00	16.00/18.00	I	Mo 0.75/1.25; Cb+Ta 5xC/0.70 Max.
440A	S44002	0.60/0.75	1.00	0.040	0:030	1.00	16.00/18.00	I	Mo 0.75
440B	S44003	0.75/0.90	1.00	0.040	0:030	1.00	16.00/18.00	I	Mo 0.75
440C	S44004	0.95/1.20	1.00	0.040	0:030	1.00	16.00/18.00	I	Mo 0.75
442	S44200	0.20	1.00	0.040	0:030	1.00	18.00/23.00	I	I
446	S44600	0.20	1.50	0.040	0:030	1.00	23.00/27.00	I	N 0.25
501	S50100	Over 0.10	1.00	0.040	0:030	1.00	4.00/6.00	I	Mo 0.40/0.65
502	S50200	0.10	1.00	0.040	0:030	1.00	4.00/6.00	I	Mo 0.40/0.65
I	S13800	0.05	0.10	0.010	0.008	0.10	12.25/13.25	7.50/8.50	Mo 2.00/2.50; AI 0.90/1.35; N 0.010
I	S15500	0.07	1.00	0.040	0:030	1.00	14.00/15.50	3.50/5.50	Cu 2.50/4.50; Cb+Ta 0.15/0.45
_	S17400	0.07	1.00	0.040	0:030	1.00	15.50/17.50	3.00/5.00	Cu 3.00/5.00; Cb+Ta 0.15/0.45
I	S17700	0.09	1.00	0.040	0.040	1.00	16.00/18.00	6.50/7.75	AI 0.75/1.50

DUPLEX STAINLESS STEELS

	S (Max.)	.020	.030	
	P (Max.)	.030	.040	.025
	M	I	I	.80/1.20
	ō	I	1.5/2.5	1.2/2.0
	z	0.08/0.20	0.10/0.25	0.23/0.22
S	Mo	2.5/3.5	2.0/4.0	3.0/4.0
ANALYS	Si (Max.)	1.00	1.00	0.80
CHEMICAL ANALYSIS	Mn (Max.)	2.00	1.50	1.00
O	ï	4.5/6.5	4.5/6.5	0.8/5.9
	b	21.00/23.00	24.0/27.00	24.0/26.00
	C (Max.)	0.03	0.04	.025
	JNS Number Trade Name	2205	244 Alloy	918 Alloy
	UNS Number	S31803	S32550	S39277
		Duplex	stainless	steels

PRECIPITATION-HARDENING NICKEL BASE CHEMICAL ANALYSIS

Мо	2.8/3.3
Si (Max.)	0.35
Mn (Max.)	0.35
Fe	Bal
ï	50.0/55.0
ò	17.0/21.0
C (Max.)	0.08
Trade Name	718 Alloy
UNS Number	N07718
	Precipitation-hardening nickel base

NICKEL-COPPER ALLOYS CHEMICAL ANALYSIS

S (Max.)	.024	.010
Al	I	2.30/3.15
ΪŢ	I	0.35/0.85
Si (Max.)	0.50	1.50
Mn (Max.)	2.00	2.00
Fe	2.50 max	I
Cu	Bal	Bal
N	63.0/70.0	63.0/70.0
C (Max.)	0.30	0.25
Trade Name	400 Alloy	K200
UNS Number	N04400	N05500
	Nickel-copper alloys	

HIGH TEMPERATURE HIGH STRENGTH ALLOYS

The alloys listed here are in current use in wrought form. Many of them are proprietary and are commonly referred to by their trade names. As an aid in identifying and describing these materials, the American Iron and Steel Institute has assigned a series of three-digit numbers beginning with 601. The AISI number identifies only the typical chemical composition, as shown below.

Typical	Chemical	composition	(%)

AISI	Trade name	С	Mn	Si	Cr	Ni	Мо	w
number		C	MIII	31	Cr	INI	IVIO	w
	designation							
602	17-22 AS	0.30	0.55	0.65	1.25	_	0.50	_
603	17-22 AV	0.27	0.75	0.65	1.25	_	0.50	_
604	Chromoloy	0.20	0.50	0.75	1.00	_	1.00	_
610	H-11	0.40	0.30	0.90	5.00	_	1.30	_
 611	M-2	0.84	0.25	0.30	4.20	_	5.00	6.35
612	M-10	0.87	0.20	0.30	4.00	_	8.25	_
614	410	0.12	0.42	0.32	12.20	_	_	_
615	Greek Ascoly	0.17	0.40	0.28	13.00	2.00	0.20	2.95
616	422	0.23	0.75	0.35	12.00	0.80	1.00	1.00
617	440C	1.10	0.50	0.40	7.50	_	0.50	_
619	Lapelloy	0.30	1.10	0.35	11.40	0.30	2.75	_
630	17-4	0.04	0.28	0.60	16.00	4.25	_	_

DESIGNATION OF ALUMINUM ALLOYS

MAJOR ALLOY GROUPS: Aluminum employs a four-digit system. The first digit indicates the alloy group. The last two digits identify the alloy or, in the instance of the 1000 Series, the purity. The second digit indicates a modification of the alloy. The alloy groups are:

		U	N	S
Number				
1XXX	Aluminum — 99% and greater	A91	XXX	
2XXX	Copper — major alloying element	A92	XXX	
3XXX	Manganese — major alloying element	A93	XXX	
4XXX	Silicon — major alloying element	A94	XXX	
5XXX	Magnesium — major alloying element	A95	XXX	
6XXX	Magnesium and Silicon — major alloying elements	A96	XXX	
7XXX	Zinc — major alloying element	A97	XXX	
8XXX	Other elements	A98	XXX	
9XXX	Unused to date	A99	XXX	

STANDARD ALUMINUM ALLOYS CHEMICAL ANALYSIS

	Ι¥		Remainder						
	Total	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	Others each	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05
	F	I	0.15	I	I	0.15	0.15	0.10	0.20
	Zu	0.10	0.25	0.10	0.10	0.25	0.25	0.10	5.1/6.1
	ប៉	I	0.10	I	0.15/0.35	0.05/0.25	0.04/0.35	0.10	0.18/0.28
	Mg	I	1.2/1.8	I	2.2/2.8	3.5/.45	0.80/1.2	0.45/0.90	2.1/2.9
	Mn	0.05	06.0/08.0	1.0/1.5	0.10	0.20/0.70	0.15	0.10	0.30
as a range.	ō		3.8/4.9						
unless shown	Fe	I	0.50	0.70	0.40	0.50	0.70	0.35	0.50
alues are in percent maximum unless s	Si	0.95 Si+Fe	0.50	09:0	0.25	0.40	0.40/0.80	0.20/0.60	0.40
Values are in p	Alloy	1100	2024	3003	5052	2086	6061	6063	7075

OIL TOOL MATERIALS

BARS

1018 HR

4140 HR Annealed

4140 HR Quench & Tempered 80-100 KSI Yield, 95 KSI Min Tensile, 235 max BHN*

4140 HR Quench & Tempered 110 KSI min Yield, 125 KSI Min Tensile

4130 M7 Quench & Tempered T-95

4130 M7 Quench & Tempered Q-125

4130 HR Normalized, Quench & Tempered, 75 KSI Min Yield, RC 22 Max*

9 Chrome 1 Moly HR RT Quench & Tempered, 80-100 KSI Yield, 95 KSI Min Tensile, 235 Max BHN*

410 HR RT Quench & Double Tempered, 80 KSI Min Yield*

420 (13 Chrome) HR RT Quench & Tempered, 80-100 KSI Yield, 95 KSI Min Tensile, 235 Max BHN

Super 13 Chrome HR RT Quench & Tempered, 80-100 KSI Yield, 95 KSI Min Tensile, 235 Max BHN

4340 HR Normalzed & Tempered

4340 HR Quench & Tempered, 130 KSI Min

K 500 Nickel Based Alloy Aged Hardened*

718 Nickel Based Allov Age Hardened*

17-4 PH HR RT DBL H 1150

2205 Duplex Alloy (UNS S31803) HR RT, 65 KSI Min Yield, 90 KSI Min Tensile, 25% Min Elongation.

MECHANICAL TUBING

1018 HR Smls

1018 CD Smls

4130, 4140 HR Annealed

4130, 4140 HR Smls Quench & Tempered 80-100 KSI Yield, 95 KSI Min Tensile, 235 max BHN*

4130, 4140 HR Smls Quench & Tempered 110 KSI Yield, 125 KSI Min Tensile

4130, 4140 CD Smls Stress Relief Annealed

4130, 4140 CD Smls Quench & Tempered 80-100 KSI Yield, 95 KSI Min Tensile, 235 max BHN*

4130, 4140 CD Smls Quench & Tempered 110 KSI Yield, 125 KSI Min Tensile

4130 M7 HR Smls Quench & Tempered T-95

4130 M7 HR Smls Quench & Tempered Q-125

9 Chrome 1 Moly CF Smls Quench & Tempered 80-100 KSI Yield, 95 KSI Min Tensile, 235 max BHN*

420 (13 Chrome) HR Smls RT Quench & Tempered 80-100 KSI Yield, 95 KSI Min Tensile, 235 max BHN*

Legend: HR = Hot Rolled, BHN = Brinell Hardness Number, RT = Rough Turned, DBL H = Double Aged, CD = Cold Drawn, CF = Cold Finished, M7 = Molybdenum .070 nominal

^{*} Properties Per NACE MRO-1-75

API SPECIFICATION REQUIREMENTS

							Chemistry	stry							Mech	Mechanical Properties	perties	
API 5CT	CARBON	NON	MANGA	ANESE	MOLYB	MOLYBDENUM	CHRO	CHROMIUM	NICKEL	COPPER	PHOSPHOROUS SULPHUR	S SULPHUR	SILICON	YIELD	YIELD	TENSILE	HARDNESS	HEAT
	MIN	MAX	WIN	MAX	MIN	MAX	MIN	MAX	MAX	MAX	MAX	MAX	MAX	WIN	MAX	WIIN	MAX	
H-40	,	,	1	1	1		,	,	-	,	0.03	0.03	-	40,000	80,000	000'09	1	9
J-55								,			0.03	0.03		55,000	80,000	75,000		9
K-55						•		,			0.03	0.03		55,000	80,000	95,000		9
C-75 1	,	0.50		1.90	0.15	0.40			-		0.04	90.0	0.45	75,000	90,000	95,000		N&T
C-75 2	,	0.43	•	1.50	•		,	,		,	0.04	90.0	0.45	75,000	90,000	95,000		Q&T
C-753	.038	0.48	.075	1.00	.015	.025	.080	1.10		,	0.04	90.0		75,000	90,000	95,000	,	N&T
N-80	,	,	1		1		,	1	1	1	0.03	0.03		80,000		110,000 100,000	1	N or Q&1
L-80 1	,	0.43		1.90				,	0.25	0.35	0.03	0.03	0.45	80,000	95,000	95,000	23	Q&T
80 9CR	,	0.15	0:30	09:0	06.0	1.10	8.00	10.00	0.50	0.25	0.02	0.01	1.00	80,000	95,000	95,000	23	Q&T
80 13CR	0.15	0.22	0.25	1.00		•	12.00	14.00	0.50	0.25	0.02	0.01	1.00	80,000	95,000	95,000	23	Q&T
C-90 1	-	0.35	-	1.00	0.250	92'0	-	1.20	66.0	-	0.02	0.01	•	90,000	-	105,000 100,000	25.4	T&D
C-90 2	,	0.50	•	1.90	,		'	'	0.99	,	0.03	0.01		90,000	105,000	105,000 100,000	25.4	Q&T
C-95		0.45		1.90	-	•			-		0.03	0.03	0.45	95,000	110,000	110,000 105,000	-	Q&T
T-95 1	,	0.35		1.20	0.250	0.85	0.40	1.50	0.99		0.02	0.01		95,000		110,000 105,000	25.4	Q&T
T-95 2		0.50		1.90				,	0.99		0.03	0.01		95,000	_	110,000 105,000	25.4	Q&T
P-105	-		-	-	-	-	-	-	-	-	0.04	90'0	-	105,000	105,000 135,000 120,000	120,000	-	T&N
P-110	,							'		,	0.03	0.03		110,000		140,000 125,000		Q&T
Q-125 1	-	0.35	-	1.00	-	92'0	-	1.20	0.99	-	0.02	0.01	-	125,000	150,000 135,000	135,000	-	T&D
Q-125 2	,	0.35	,	1.00	,	·	'	1	0.99	1	0.02	0.02		125,000	150,000	150,000 135,000	1	Q&T
Q-1253	,	0.50		1.90			'	'	0.99	,	0.03	0.01		125,000	125,000 150,000 135,000	135,000	,	Q&T
2-125 4 1	0.50	0.50	•	1.90	•		,	,	0.99		0.03	0.02		125,000	125,000 150,000 135,000	135,000	,	Q&T

API mechanical properties may not be available in all wall thicknesses and bar sizes NACE MR0175 may require lower Indress values Legend: N = Normalized, RZF = Normalized & Tempered, Q&T = Quench & Tempered

For all your metal needs... Call EMJ First! (800) 3EMJ-EMJ

> © Copyright 2007 Earle M. Jorgensen Company