

Prof. Dr. Christoph Scholl Dr. Paolo Marin Freiburg, 06. November 2015

Technische Informatik Übungsblatt 2

Aufgabe 1 (2 Punkte)

Mengen

Seien $A := \{1, 2, 3\}$ und $B := \{a, b, c\}$. Geben Sie die folgenden Mengen an:

- a) $A \cup B$
- b) A^{3}
- c) $B \setminus (A \cup B)$
- d) $Pot(B) \setminus \{B\}$

Aufgabe 2 (2 Punkte)

Wir bezeichnen mit \mathbb{B}_n die Menge $\{f \mid f \colon \mathbb{B}^n \to \mathbb{B}\}$ und mit $\mathbb{B}_{n,m}$ die Menge $\{f \mid f \colon \mathbb{B}^n \to \mathbb{B}^m\}$, $n, m \in \mathbb{N}_0$. Zu Erinnerung: $\mathbb{B} = \{0, 1\}$.

Berechnen Sie die Kardinalitäten, d.h. die Anzahl der Elemente, dieser Mengen:

- a) $|\mathbb{B}_n|$
- b) $|\mathbb{B}_{n,m}|$

Begründen sie dabei jeweils ihr Ergebnis.

Aufgabe 3 (1+3+1+1) Punkte)

Sei folgender Text gegeben:

INSTITUT FUER INFORMATIK

- a) Bestimmen Sie die Häufigkeitsverteilung der Zeichen des Textes. Ignorieren Sie dabei die Leerzeichen.
- b) Erzeugen Sie für diese Häufigkeitsverteilung einen Huffman-Code. Gehen Sie analog zur Vorlesung vor.
- c) Kodieren Sie obigen Text mit dem erzeugten Huffman-Code. Ignorieren Sie wiederum die Leerzeichen.
- d) Ein Kommilitone erhält eine andere Kodierung des gleichen Textes. Bedeutet dies notwendigerweise, dass er einen Fehler gemacht hat? Begründen Sie!

Aufgabe 4 (2+2+1) Punkte)

Sei ein Alphabet $A = a_1, ..., a_m$ mit $m \geq 3$ gegeben. Sei weiterhin eine Häufigkeitsverteilung p gegeben, die jedem Zeichen $a_i \in A$ eine Häufigkeit zuordnet mit $\sum_{i=1}^m p(a_i) = 1$. Der zugehörige Huffman-Code sei mit c bezeichnet.

- a) Zeigen Sie: Falls es ein $i \in 1, ..., m$ gibt mit $p(a_i) > 0.5$, dann gilt $|c(a_i)| = 1$ (d.h. das Codewort, das a_i zugeordnet wird, hat die Länge 1).
- b) Zeigen Sie: Falls es ein $i \in 1, ..., m$ gibt mit $|c(a_i)| = 1$, dann muss $p(a_i) >= 1/3$ gelten. (*Hinweis*: Beweis durch Widerspruch.)
- c) Nehmen Sie nun eine Häufigkeitsverteilung an, die für jedes Zeichen des Alphabets den gleichen Wert ergibt, d.h. $P(a_i) = P(a_j)$ für $1 \le i < j \le m$. Nehmen Sie an, Sie würden einen Huffman-Code erzeugen. Wie groß wäre nun die mittlere Codelänge? Begründen Sie Ihre Antwort.

Aufgabe 5 (1+4) Punkte)

- a) Sei [1001]₂ eine Zahl in Zweier-Komplement-Darstellung *ohne Nachkommastellen*. Um welche ganze Zahl (mit der Basis 10) handelt es sich?
- b) Beweisen Sie folgendes Lemma:

Lemma: Sei $[a]_2 = [a_{n-1}a_{n-2}\dots a_0]_2$ eine *ganze* Zahl in Zweier-Komplement-Darstellung mit n Vorkommastellen und keinen Nachkommastellen. Dann gilt:

$$[\overline{a}]_2 + 1 = -[a]_2$$

Hierbei sei $[\overline{a}]_2$ die Zahl im Zweier-Komplement, die aus $[a]_2$ durch Invertieren aller Bits hervorgeht.

Abgesehen von der geometrischen Summenformel sollen keine Sätze aus der Vorlesung ohne Beweis benutzt werden.

Aufgabe 6 (4 Punkte)

Konvertieren Sie die Zahlen in Betrag & Vorzeichen, Einerkomplement und Zweierkomplement Darstellung.

$$FCB1_{16}$$
 -1_{10} -10_{16} -654_{8}

Abgabe: 13. November 2015, $17^{\underline{00}}$ über das Übungsportal