Data Mining Project

Feras Al-Kassar (MLDM) 24/3/2017

Understanding the problem:

The goal of this problem to expect the prices for the houses. With missing data and a big number of features. The problem from "Kaggle" called "House Prices: Advanced Regression Techniques".

81 features and 1460 sample with many missing values. So during this project I am trying to deal with the big number of features and find the best model to predict the house prices correctly.

The source code in github with the dataset: https://github.com/enferas/Predict-House-Price-in-R

SalePrice - the property's sale price in dollars. This is the target variable that you're trying to predict.

MSSubClass: The building class

MSZoning: The general zoning classification

LotFrontage: Linear feet of street connected to property

LotArea: Lot size in square feet **Street**: Type of road access **Alley**: Type of alley access

LotShape: General shape of property LandContour: Flatness of the property Utilities: Type of utilities available LotConfig: Lot configuration LandSlope: Slope of property

Neighborhood: Physical locations within Ames city limits

Condition1: Proximity to main road or railroad

Condition2: Proximity to main road or railroad (if a second is present)

BldgType: Type of dwelling **HouseStyle**: Style of dwelling

OverallQual: Overall material and finish quality

OverallCond: Overall condition rating **YearBuilt:** Original construction date **YearRemodAdd:** Remodel date

RoofStyle: Type of roof **RoofMatl**: Roof material

Exterior1st: Exterior covering on house

Exterior2nd: Exterior covering on house (if more than one material)

MasVnrType: Masonry veneer type

MasVnrArea: Masonry veneer area in square feet

ExterQual: Exterior material quality

ExterCond: Present condition of the material on the exterior

Foundation: Type of foundation **BsmtQual**: Height of the basement

BsmtCond: General condition of the basement

BsmtExposure: Walkout or garden level basement walls

BsmtFinType1: Quality of basement finished area

BsmtFinSF1: Type 1 finished square feet

BsmtFinType2: Quality of second finished area (if present)

BsmtFinSF2: Type 2 finished square feet

BsmtUnfSF: Unfinished square feet of basement area **TotalBsmtSF**: Total square feet of basement area

Heating: Type of heating

HeatingQC: Heating quality and condition **CentralAir**: Central air conditioning

Electrical: Electrical system **1stFlrSF**: First Floor square feet **2ndFlrSF**: Second floor square feet

LowQualFinSF: Low quality finished square feet (all floors) **GrLivArea**: Above grade (ground) living area square feet

BsmtFullBath: Basement full bathrooms **BsmtHalfBath**: Basement half bathrooms **FullBath**: Full bathrooms above grade **HalfBath**: Half baths above grade

Bedroom: Number of bedrooms above basement level

Kitchen: Number of kitchens **KitchenQual:** Kitchen quality

TotRmsAbvGrd: Total rooms above grade (does not include bathrooms)

Functional: Home functionality rating **Fireplaces**: Number of fireplaces **FireplaceQu**: Fireplace quality **GarageType**: Garage location

GarageYrBlt: Year garage was built GarageFinish: Interior finish of the garage GarageCars: Size of garage in car capacity GarageArea: Size of garage in square feet

GarageQual: Garage quality **GarageCond**: Garage condition **PavedDrive**: Paved driveway

WoodDeckSF: Wood deck area in square feet OpenPorchSF: Open porch area in square feet EnclosedPorch: Enclosed porch area in square feet 3SsnPorch: Three season porch area in square feet ScreenPorch: Screen porch area in square feet

PoolArea: Pool area in square feet

PoolQC: Pool quality **Fence**: Fence quality

MiscFeature: Miscellaneous feature not covered in other categories

MiscVal: \$Value of miscellaneous feature

MoSold: Month Sold **YrSold**: Year Sold **SaleType**: Type of sale

SaleCondition: Condition of sale

The Features with Missing Values:

The correlation between the Features:

We can notice a big similar between the Garage Area and the number of cars in the garage

and between Overall material and finish quality and the price.

Data Prepration:

So to deal with the missing value.

We can notice for example about Garage features the features is null in the same time. when the GarageCars=0 and GarageArea=0. so that's meaning there are no information to the garage for this house.

In this way I will give "None" instead of null for this value in the data.

Gara	ageType Ga	arageYrBlt	GarageFinish	Gai	rageCars	GarageArea	GarageQual	GarageCond
1338	<na></na>	NA	<na></na>	(0 0	<na></na>	<na></na>	
1339	BuiltIn	2002	RFn	2	492	TA	TA	
1340	Attchd	1972	RFn	1	288	TA	TA	
1341	Detchd	1974	Unf	4	480	TA	TA	
1342	Detchd	2004	Unf	2	576	TA	TA	
1343	Attchd	2002	RFn	2	647	TA	TA	
1344	Detchd	1929	Unf	2	342	Fa	Fa	
1345	Attchd	2006	Fin	2	440	TA	TA	
1346	Detchd	1997	Unf	1	308	TA	TA	
1347	Attchd	1968	RFn	2	508	Gd	TA	
1348	Attchd	2006	Fin	3	712	TA	TA	
1349	Attchd	1998	RFn	2	514	TA	TA	
1350	<na></na>	NA	<na></na>	(0 0	<na></na>	<na></na>	

and for example for "LotFrontage" it is integer so I will replace the null value with the median.

And that processing for all the features.

Feature selection:

I used Decision tree in parallel and choose the best 15 feature. After that I saved the features because the code take long time. So the feature after the selection.

Modeling:

I tried 4 algorithms SVM, Bossting with laplace, Random forest and Regression.

Model Selection:

so at the end I found the SVM is the best model for this problem.

```
#The differnt between the predict value and the real value for all the algorithms p1 <- (predict-train_label)*(predict-train_label) p2 <- (predict2-train_label)*(predict2-train_label) p3 <- (predict3-train_label)*(predict3-train_label) p4 <- (predict4-train_label)*(predict4-train_label) plot(p1,type="l",col="red") par(new=TRUE) plot(p2,type="l",col="blue") par(new=TRUE) plot(p3,type="l",col="green") par(new=TRUE) plot(p4,type="l",col="orange")
```


Model Selection

So SVM has the lowest error. And now we can predict the test file for predict the answers.