MATH 0450: HOMEWORK 6

TEOH ZHIXIANG

Problem 1. (Ex. 2.2.8*) For some additional practice with nested quantifiers, consider the following invented definition:

Let's call a sequence (x_n) zero-heavy if there exists $M \in \mathbb{N}$ such that for all $N \in \mathbb{N}$ there exists n satisfying $N \leq n \leq N + M$ where $x_n = 0$.

- (a) Is the sequence $(0, 1, 0, 1, 0, 1, \ldots)$ zero-heavy?
- (b) If a sequence is zero-heavy does it necessarily contain an infinite number of zeros? If not, provide a counterexample.
- (c) If a sequence contains an infinite number of zeros, is it necessarily zero-heavy? If not, provide a counterexample?
- (d) From the logical negation of the above definition. That is, complete the sentence: A sequence is *not* zero-heavy if . . .

Proof.

- (a) Take M = 2. Because in between any two 1s is a 0, for all $N \in \mathbb{N}$ there is an n satisfying $N \leq n \leq N + 2$ where $x_n = 0$.
- (b) Yes. Assume for contradiction a zero-heavy sequence (x_n) contains a finite number of zeros. Then there exists an $N \in \mathbb{N}$ such that for all $n \geq N$, $x_n \neq 0$. But this means that $x_n \neq 0$ for any n satisfying $N \leq n \leq N + M$, which contradicts our initial assumption that the sequence is zero-heavy.
- (c) No. Consider the sequence given by

$$x_n = \begin{cases} 0 & \text{if } \sqrt{n} \in \mathbb{N} \\ n \in \mathbb{N} & \text{otherwise} \end{cases}$$

Because \mathbb{N} infinite, and there is an infinite number of perfect squares of natural numbers, (x_n) contains an infinite number of zeros. Consider M=3. Note that if N=1, (x_n) is conveniently zero-heavy, but if N=5, then there is no n in $1 \le n \le 5+3=8$ such that $1 \le n \le 5+3=8$ such that

(d) A sequence is not zero-heavy if for all $M \in \mathbb{N}$, there exists $N \in \mathbb{N}$ such that for all n satisfying $N \leq n \leq N + M$, $x_n \neq 0$.

Problem 2. (Ex. 2.3.5) Let (x_n) and (y_n) be given, and define (z_n) to be the "shuffled" sequence $(x_1, y_1, x_2, y_2, x_3, y_3, \ldots, x_n, y_n, \ldots)$. Prove that (z_n) is convergent if and only if (x_n) and (y_n) are both convergent with $\lim x_n = \lim y_n$.

Proof. We need to prove both directions.

Date: February 28, 2020.

 (\Rightarrow) Assume (z_n) converges to a limit L. By definition, $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |z_n - L| < \epsilon$. Define

$$x_n = z_{2n-1},$$

and

$$y_n = z_{2n}$$
.

Then $n \geq N \Rightarrow 2n-1 \geq n \geq N$ and $2n > n \geq N$, for all $n \in \mathbb{N}$. But this means

$$|z_{2n-1} - L| = |x_n - L| < \epsilon,$$

 $\lim x_n = L$, and

$$|z_{2n} - L| = |y_n - L| < \epsilon.$$

 $\lim y_n = L = \lim x_n.$

 (\Leftarrow) Assume $(x_n), (y_n)$ convergent with $\lim x_n = \lim y_n = L$. Then by definition $\forall \epsilon > 0, \exists N_1 \in \mathbb{N} : \forall n \geq N_1$,

$$|x_n - L| < \epsilon$$
,

and $\exists N_2 \in \mathbb{N} : \forall n \geq N_2$,

$$|y_n - L| < \epsilon$$
.

But $\exists N = \max\{2N_1 - 1, 2N_2\}$ such that $\forall n \geq N$,

$$|z_n - L| < \epsilon$$
.

Therefore (z_n) converges to L, meaning it is convergent.

Problem 3. (Ex. 2.3.7) Give an example of each of the following, or state that such a request is impossible by referencing the proper theorem(s):

- (a) sequences (x_n) and (y_n) , which both diverge, but whose sum $(x_n + y_n)$ converges;
- (b) sequences (x_n) converges, (y_n) diverges, and $(x_n + y_n)$ converges;
- (c) a convergent sequence (b_n) with $b_n \neq 0$ for all n such that $(1/b_n)$ diverges;
- (d) an unbounded sequence (a_n) and a convergent sequence (b_n) with $(a_n b_n)$ bounded;
- (e) two sequences (a_n) and (b_n) , where (a_nb_n) and (a_n) converge but (b_n) does not.

Proof.

- (a) Consider $x_n = n$, $y_n = -n$, for all $n \in \mathbb{N}$. Using the theorem that all convergent sequences are bounded, because x_n and y_n are respectively \mathbb{N} and $-\mathbb{N}$, they are unbounded, and therefore not convergent \Rightarrow divergent. But note that their sum $x_n + y_n = n + (-n) = 0$, for all $n \in \mathbb{N}$. So $(x_n + y_n) \to 0$.
- (b) Request impossible. If (x_n) and $(x_n + y_n)$ converge, then $(y_n) = ((x_n + y_n) x_n)$ must converge as well, by the Algebraic Limit Theorem. This is because by Algebraic Limit Theorem (i), take c = -1, and $\lim_{n \to \infty} -x_n = \lim_{n \to \infty} -1 \cdot x_n = -\lim_{n \to \infty} x_n$. In other words $(-x_n)$ converges. Then by (ii), $\lim_{n \to \infty} ((x_n + y_n) x_n) = \lim_{n \to \infty} y_n = \lim_{n \to \infty} (x_n + y_n) + \lim_{n \to \infty} (-x_n)$, and so (y_n) must converge as well.
- (c) Consider the known convergent sequence $b_n = \frac{1}{n} \to 0$, where $b_n \neq 0$ for all $n \in \mathbb{N}$. Then $\frac{1}{b_n} = \frac{1}{1/n} = n$ diverges, as discussed in part (a).
- (d) Request impossible. (b_n) convergent $\Rightarrow (b_n)$ bounded. Because $(a_n b_n)$ bounded, it follows that $(a_n) = (a_n b_n + b_n)$ bounded as well. Consider the triangle inequality

$$|a_n| = |(a_n - b_n) + b_n| \le |a_n - b_n| + |b_n|.$$

 $|a_n - b_n|$ and $|b_n|$ are each less than or equal to some real number, and it has been shown above that $|a_n|$ is bounded by the summation of these individual bounds.

(e) Consider $a_n = 0$, for all $n \in \mathbb{N}$, and (b_n) a divergent sequence given by $b_n = n$, for all $n \in \mathbb{N}$. Here, $(a_n b_n) \to 0 \cdot \lim b_n = 0$ and $(a_n) \to 0$, but (b_n) is divergent and does not converge, as exhibited in part (a).

Problem 4. (Ex. 2.3.9 (a-b))

- (a) Let (a_n) be a bounded (not necessarily convergent) sequence, and assume $\lim b_n = 0$. Show that $\lim (a_n b_n) = 0$. Why are we not allowed to use the Algebraic Limit Theorem to prove this?
- (b) Can we conclude anything about the convergence of (a_nb_n) if we assume that (b_n) converges to some nonzero limit b?

Proof.

(a) (a_n) bounded $\Rightarrow |a_n| \leq M$ for some positive $M \in \mathbb{R}$.

$$|a_n b_n| = |a_n||b_n| = M|b_n|.$$

Since $\lim b_n = 0, \forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N,$

$$|b_n - 0| < \epsilon,$$

Fix $\epsilon_0 = \frac{\epsilon}{M} > 0$. Then

$$|a_n b_n| = M|b_n| < M\epsilon_0 = \mathcal{M}\frac{\epsilon}{\mathcal{M}} = \epsilon.$$

And we have shown $\lim(a_nb_n)=0$, by definition of limit.

We are not allowed to use Algebraic Limit Theorem because (a_n) given is bounded but not necessarily convergent, but Algebraic Limit Theorem only applies if both (a_n) and (b_n) are convergent.

(b) No. Consider (a_n) a bounded but divergent sequence, defined by

$$a_n = (-1)^n$$
,

for all $n \in \mathbb{N}$. If $(b_n) \to b \neq 0$, then $(a_n b_n) = ((-b)^n)$ divergent. But now consider (a_n) bounded, convergent, defined by

$$a_n = \frac{1}{n}$$
.

Then $(a_nb_n) = (\frac{b}{n})$ convergent. Therefore depending on (a_n) , the resultant (a_nb_n) can be either convergent or divergent, therefore we cannot conclude anything if we assume (b_n) converges to a nonzero limit b.

Problem 5. (Ex. 2.3.10) Consider the following list of conjectures. Provide a short proof for those that are true and a counterexample for any that are false.

- (a) If $\lim (a_n b_n) = 0$, then $\lim a_n = \lim b_n$.
- (b) If $(b_n) \to b$, then $|b_n| \to |b|$.
- (c) If $(a_n) \to a$ and $(b_n a_n) \to 0$, then $(b_n) \to a$.
- (d) If $(a_n) \to 0$ and $|b_n b| \le a_n$, for all $n \in \mathbb{N}$, then $(b_n) \to b$.

- *Proof.* (a) False. Consider $a_n = b_n = n$, for all $n \in \mathbb{N}$. Then $\lim(a_n b_n) = \lim(n n) = \lim(0) = 0$, but the sequences $a_n = b_n = n$, for all $n \in \mathbb{N}$, are divergent, and hence don't converge to limits.
 - (b) True. By definition, $(b_n) \to b \Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N,$

$$|b_n - b| < \epsilon.$$

Separately, we have

$$|b_n| - |b| \le |b_n - b|$$
$$|b| - |b_n| \le |b - b_n|$$

which gives us

$$\Rightarrow ||b_n| - |b|| \le |b_n - b| < \epsilon$$

which proves that $|b_n| \to |b|$ follows from $b_n \to b$, which is exactly what we want.

(c) True. We have $(a_n) \to a$, which means that $\forall \epsilon_1 > 0, \exists N_1 \in \mathbb{N} : \forall n \geq N_1$,

$$|a_n - a| < \epsilon_1.$$

We also have $(b_n - a_n) \to 0$, which means that $\forall \epsilon_2 > 0, \exists N_2 \in \mathbb{N} : \forall n \geq N_2$,

$$|b_n - a_n - 0| < \epsilon_2.$$

Fix $\epsilon_1 = \epsilon_2 = \frac{\epsilon}{2}$, arbitrary. Then, applying triangle inequality, and choosing $N = \max\{N_1, N_2\}$, if $n \geq N$,

$$|b_n - a| \le |b_n - a_n| + |a_n - a|$$

$$< \epsilon_1 + \epsilon_2$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon.$$

(it was right about this moment I realized I could've just cited Algebraic Limit Theorem (ii), lol) So, we have shown $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |b_n - a| < \epsilon$. Therefore $(b_n) \to a$.

(d) True. We have $(a_n) \to 0$, which means that $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N$,

$$|a_n - 0| = |a_n| < \epsilon.$$

We also have that $(b_n - b)$ is bounded, as in $|b_n - b| \le a_n$. So we know

$$0 \le |b_n - b| \le a_n$$

$$\Rightarrow 0 \le |b_n - b| \le 0.$$

By Squeeze Theorem, we have $|b_n - b| \to 0$. This means that $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N$,

$$||b_n - b| - 0| = |b_n - b| < \epsilon.$$

By definition, $(b_n) \to b$.

Problem 6. (Ex. 2.3.11*) (Cesaro Means).

(a) Show that if (x_n) is a convergent sequence, then the sequence given by the averages

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

also converges to the same limit.

(b) Give an example to show that it is possible for the sequence (y_n) of averages to converge even if (x_n) does not.

Proof.

(a) Let $(x_n) \to x$. This means $\forall \epsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N$,

$$|x_n - x| < \epsilon$$
.

Now consider

$$y_{n} - x = \frac{x_{1} + x_{2} + \dots + x_{n}}{n} - x$$

$$= \frac{x_{1} + x_{2} + \dots + x_{n} - nx}{n}$$

$$\Rightarrow |y_{n} - x| = \left| \frac{(x_{1} - x) + (x_{2} - x) + \dots + (x_{n} - x)}{n} \right|$$

$$\leq \frac{|x_{1} - x| + |x_{2} - x| + \dots + |x_{N-1} - x| + \dots + |x_{N} - x| + \dots + |x_{n} - x|}{n}$$

$$< \frac{M(N - 1) + \epsilon(n - N + 1)}{n}$$

since there are (n-N+1) large terms of x_n above where $n \ge N$, and each $|x_n| - x < \epsilon$, So $|x_N - x| + \cdots + |x_n - x| < \epsilon (n-N+1)$. Also (x_n) convergent implies (x_n) bounded. This means for all smaller terms of x_n where n < N, from 1 to N-1, $|x_n| < M$, where $M \in \mathbb{R}$, positive.

We pick $\epsilon = M > 0$. We have

$$|y_n - x| < \frac{M(N-1) + \epsilon(n-N+1)}{n}$$

$$= \frac{\epsilon(N-1) + \epsilon(n-N+1)}{n}$$

$$= \frac{\kappa \epsilon}{\kappa}$$

$$= \epsilon,$$

and by limit definition, $\lim y_n = x = \lim x_n$.

(b) Consider $x_n = (-1)^n$ for all $n \in \mathbb{N}$, and correspondingly

$$0 = -\frac{1}{n} \le y_n = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{(-1) + 1 + \dots + (-1)^n}{n} \le 0$$

 $\lim_{n \to \infty} \left(-\frac{1}{n}\right) = 0$, $\lim_{n \to \infty} \frac{(-1)+1+\cdots+(-1)^n}{n} = 0$, therefore $\lim_{n \to \infty} y_n = 0$. (y_n) converges, but (x_n) diverges.

Problem 7. (Ex. 2.4.3)

(a) Show that

$$\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \dots$$

converges and find the limit.

(b) Does the sequence

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

converge? If so, find the limit.

Proof.

(a) Define the above sequence as follows:

$$a_1 = \sqrt{2},$$

$$a_2 = \sqrt{2 + \sqrt{2}}$$

$$= \sqrt{2 + a_1},$$

$$\vdots$$

$$a_{n+1} = \sqrt{2 + a_n}.$$

for all $n \in \mathbb{N}$. Consider the following representation:

$$x = \sqrt{2 + \sqrt{2 + \sqrt{2 + 4}}}$$

$$\Rightarrow x^2 = 2 + x$$

$$x^2 - x - 2 = 0$$

$$(x - 2)(x + 1) = 0$$

$$x = 2 \text{ or } x = 1$$

where $x \neq -1$ since x > 0. We will prove this bound by induction. For initial check $a_1 = \sqrt{2} \leq 2$, straightforward. Assume $a_n \leq 2$ for some $n \in \mathbb{N}$. Then

$$a_{n+1} = \sqrt{2 + a_n}$$

$$\leq \sqrt{2 + 2} = 2.$$

So $a_n \leq 2$ for all $n \in \mathbb{N}$, and (a_n) bounded above by 2. Note a_n is an increasing sequence, since $a_{n+1}^2 - a_n^2 = 2 + a_n - a_n^2 = (2 - a_n)(1 + a_n) > 0$, for all $n \in \mathbb{N}$. By Monotone Convergence Theorem, (a_n) increasing and bouunded $\Rightarrow (a_n)$ converges.

To evaluate $\lim a_n$, we use Lemma Thm 2.5.2 [Subsequences converge to same limit as original sequence], and set $\lim a_{n+1} = \lim a_n = L$. Then by Algebraic Limit Theorem we know

$$(\lim a_{n+1})^2 = L^2 = \lim a_{n+1}^2 = \lim (2 + a_n) = 2 + \lim a_n = 2 + L.$$

Therefore

$$L^2 - L - 2 = 0.$$

And we obtain a similar result as above when used to obtain upper bound for a_n . We get $\lim a_n = L = 2$.

(b) Yes, sequence converges. Consider

$$a_1 = \sqrt{2},$$

$$a_2 = \sqrt{2\sqrt{2}}$$

$$= \sqrt{2a_1},$$

$$\vdots$$

$$a_{n+1} = \sqrt{2a_n}.$$

Inductively we can prove (a_n) increasing: initial check $a_2 = \sqrt{2} \cdot \sqrt{\sqrt{2}} = a_1 \sqrt{\sqrt{2}} > a_1$. Assume $a_n > a_{n-1}$ for some $n \in \mathbb{N}$. Then $\sqrt{2a_{n-1}} > a_{n-1}$. We have

$$a_{n+1} = \sqrt{2a_n} = \sqrt{2} \cdot \sqrt{2a_{n-1}} > \sqrt{2} \cdot a_{n-1} > \sqrt{2a_{n-1}} = a_n.$$

We can also prove (a_n) bounded, inductively. By observation we guess that (a_n) bounded above by 2. We check this by induction: initial check $a_1 = \sqrt{2} < 2$, valid. Assume $a_n < 2$ for some $n \in \mathbb{N}$, and we know $a_n > 0$ for all n. Then

$$a_{n+1} = \sqrt{2a_n} < \sqrt{2 \cdot 2} = 2.$$

So $a_n < 2$ for all $n \in \mathbb{N}$. By Monotone Convergence Theorem, (a_n) converges.

We want to find $\lim a_n$. By Lemma [Subsequences preserve limits], similar to in part (a), we set $\lim a_{n+1} = \lim a_n = L$. Then we have

$$(\lim a_{n+1})^2 = L^2 = \lim a_{n+1}^2 = \lim (\sqrt{2a_n})^2 = \lim 2a_n = 2 \cdot \lim a_n = 2L.$$

Now

$$L^{2} = 2L$$

$$L = 2$$

since $a_n > 0 \Rightarrow L > 0$. We have shown $\lim a_n = L = 2$.