Gaussian filter

$$f(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2 + y^2}{2\sigma^2}\right)$$

0.0113	0.0838	0.0113
0.0838	0.6193	0.0838
0.0113	0.0838	0.0113

Discretization on a 3x3 mask of a Gaussian with mean=0 and dev.standard =0.5

Derivative properties

f(x)	f'(x)	f"(x)
Constant trend	= 0	= 0
Discontinuity (begin-end)	≠ 0	≠ 0
Ramp	≠ 0	= 0

Objective:

Define 2 discrete operators f' and f" that verify these properties

$$f'(x) = f(x+1) - f(x)$$

$$f''(x) = ...$$

= $f(x+1) + f(x-1) - 2f(x)$

Example

 Let apply the derivative operators to the 1D line indicated by the arrows

Example (cont.)

$$f'(x) = f(x+1) - f(x)$$
$$f''(x) = f(x+1) + f(x-1) - 2f(x)$$

Another example

Considerations

Properties verified!

Moreover:

- f ':
 - Ramp → Thick contours
 - Step → Strong response in correspondence to steep edges
- f ":
 - Point → Stronger response to thin details
 - Edges → Double response to edges with the zero-crossing

Conclusion:

- f "ideal for sharpening
- f 'e f 'ideal for edge extraction

Gradient

The image gradient is defined as:

$$\Delta f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

 The gradient is a vector oriented toward the direction of maximum intensity variation

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \mathbf{0} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \end{bmatrix}$$

$$\nabla f = \begin{bmatrix} 0, \frac{\partial f}{\partial y} \end{bmatrix}$$

The direction of the gradient is given by:

$$\Theta = tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

- What can we conclude about the edge direction?
- The edge intensity is given by the gradient magnitude

$$\|\Delta f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Gradient

Gradient approximation

Roberts

0	1
-1	0

Prewitt

-1	-1	-1
0	0	0
1	1	1

Sobel

Roberts operator

Prewitt operator

-1	7	-1
0	0	0
1	1	1

-1	0	1
-1	0	1
-1	0	1

Sobel operator

-1	-2	-1
0	0	0
1	2	1

-1	0	1
-2	0	2
-1	0	1

Sobel Edge detector

Sobel Edge Detector

Sobel application

Original image, partial derivatives, and magnitude

Alternative: Gradient magnitude Thresholding

Let maintain the 33% of the edges with the highest magnitude

Starting from the original image (NOT BLURRED)

Starting from a BLURRED version of the original image

Laplacian

•def:
$$L(x,y) = \frac{d^2f}{dx^2} + \frac{d^2f}{dy^2}$$

We have already derived:

$$\frac{d^2f}{dx^2} = f(x+1,y) - 2f(x,y) + f(x-1,y)$$

Analogously we have:

$$\frac{d^2f}{dy^2} = f(x, y + 1) - 2f(x, y) + f(x, y - 1)$$

Laplacian, cont.

$$\frac{d^2f}{dx^2} = f(x+1,y) - 2f(x,y) + f(x-1,y)$$

$$\frac{d^2f}{dy^2} = f(x, y + 1) - 2f(x, y) + f(x, y - 1)$$

Adding the two components we have:

$$L(x,y) = \frac{d^2f}{dx^2} + \frac{d^2f}{dy^2} =$$

$$= f(x+1,y) + f(x-1,y) +$$

$$+f(x,y+1) + f(x,y-1) - 4f(x,y)$$

Masks:

0	1	0
1	-4	1
0	1	0

Isotropic to 90° rotations

1	1	1
1	-8	1
1	1	1

Isotropic to 45° rotations

Masks, cont.:

0	-1	0
-1	4	-1
0	-1	0

Sign changes

-1	-1	-1
-1	8	-1
-1	-1	-1

Observation

- Coefficient sum = 0 => constant areas =0
- To maintain the image information:

$$g(x,y) = \begin{cases} f(x,y) - L(x,y) & \text{se coeff centrale} < 0 \\ f(x,y) + L(x,y) & \text{se coeff centrale} > 0 \end{cases}$$

0	-1	0
-1	5	-1
0	-1	0

-1	-1	-1
-1	9	-1
-1	-1	-1

→ Sharpening!

Noise effect

OBS:

Noise obstruct the correct behavior of the derivative filters

→ Remove noise BEFORE applying the derivative filters

Marr model

- Marr approach:
 - Studied the <u>vision</u> mechanisms to reproduce them into the computational systems
 - Primal Sketch: scene lowest level description given by the vision system

Obs: the edges are a component of the primal sketch

Marr model

Marr conclusions

- 1. Characteristics at different details levels
 - → operators at different scales
- 2. Smoothing to remove non interesting details
 - Gaussian filter optimal for smoothing
- 3. Edge = zero-crossing of the second derivative
- 4. Laplacian optimal to this end (isotropic)

Marr-Hildreth Algorithm (1980)

Image smoothing by means of a Gaussian filter

Edge extraction by means of the Laplacian filter

Localization of the zero-crossing points

Marr-Hildreth Algorithm

- Let call I the input image and G(x,y) the bidimensional Gaussian filter
- Following the steps, we should proceed as:

$$\nabla^2(I*G(x,y))$$

• where $\nabla^2=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplacian,

• and I * G(x, y) applies the Gaussian filtering

Marr-Hildreth Algorithm

Given the linearity, we can invert the operators order:

$$\nabla^2(I * G(x,y)) = I * (\nabla^2 G(x,y))$$

- That is, we construct the Laplacian of the Gaussian (LoG) and apply it only once to the image.
- LoG:

$$\nabla^{2}G(x,y) = \frac{x^{2} + y^{2} - 2\sigma^{2}}{2\pi\sigma^{6}} \exp\left(-\frac{x^{2} + y^{2}}{2\sigma^{2}}\right)$$

LoG filter

Laplacian of Gaussian

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$

derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

LoG filter

Mask example

Example of a 5x5 mask approximating the LoG function shape: central positive value, surrounded by negative values augmenting going far away from the center till becoming 0

0	0	-1	0	0
0	-1	-2	-1	0
-1	-2	16	-2	-1
0	-1	-2	-1	0
0	0	-1	0	0

Obs: to produce masks of arbitrary dimensions:

- sample the Log eq.
- Or sample the G(x,y) and then apply the Laplacian

Zero crossing

- Zero crossing search: we have to take into account the fact that the edge could be in any of the 8 possible directions in the digital plane
- This corresponds to one of these configurations:

Further considerations

- The value of σ determines the highlighted level of detail
- To have more robust results, we could evaluate the LoG filter at different scales (different σ), finding the different zero crossing, and combining the results
- To describe the whole LoG shape, the mask should have dimensions WxW, with W>3c, where $c=2\sqrt{2}\sigma$ is the centrale lobe amplitude. Alternatively, we could adopt

$$W = \lceil 3\sigma \rceil * 2 + 1$$

Marr-Hildreth Algorithm Examples

• Image filtered setting:

$$\sigma = 2, \quad W = 13$$

Gray scales rescaled

Marr-Hildreth Algorithm Examples

Marr-Hildreth Algorithm Examples

_

Edge image

σ=2

Marr-Hildreth Algorithm, sigma dependency

 $\sigma = 1$

Marr-Hildreth Algorithm, sigma dependency

 $\sigma=2$ $\sigma=4$