深度学习笔记

陈鸿峥

2020.03*

目录

1	简介		1
2	人工	神经网络基础	3
	2.1	神经元与多层神经网络	3
	2.2	卷积	4
	2.3	池化	5

本课程主要选用Ian Goodfellow, Yoshua Bengio, Aaron Courville的《深度学习》(Deep Learning)一书。一些众所周知的概念会在笔记中略过,而着重在一些容易忽略的知识点上面。

1 简介

图 1反映了深度学习与其他几个常见概念之间的关系。传统的机器学习(如决策树、SVM、随机森林等)常需要人工提取特征,这一步经常涉及到特征工程(feature engineering),如果特征没有进行一定处理,直接丢进去让其学习,往往会产生非常糟糕的结果。在一种表示下可能可以对数据进行线性二分,而另一种表示下则没有办法。因此,为了避免对特征的强依赖性,一种方法是利用机器学习来学习表示(representation)本身,再将新的表示送入到后面的学习器中让它学习表示到输出的映射,此即表示学习。再到后来,深度学习则更加将这种思想发扬光大,表示学习只能学习到浅层简单的特征,那深度学习则尝试去学习深层复杂的特征。

事实上现在**图神经网络**(GNN)也是遵循这样的发展过程,最开始尝试在图上做机器学习[1, 2, 3]; 然后又开始在图上以各种随机游走的方式做图表示学习-图嵌入(embedding)[4, 5]; 后来发现图嵌 入能够获得的特征依然太浅层了,因此现在更多则采用图神经网络[6, 7, 8, 9]的方式来做图相关的 工作。

^{*}Build 20200323

图 1: 深度学习Venn图

深度学习在发展过程中也起过几个名字:在1940年代到1960年代被称为**控制论**(cybernetics),之后 1980到1990年代则被称为**连接主义**(connectionism),而后从2006年到现在才被称为**深度学习**。2018年的 图灵奖正式颁发给深度学习三巨头—Geoffrey Hinton,Yoshua Bengio和Yann LeCun,也奠定了深度学习在学术界的历史地位。

我也一直在思考是什么造成了深度学习在2010年代的兴起,使得如今我们快速进入软件2.0时代[10]。总结来讲有以下几点:

- 数据: 我们每天产生的数据量越来越多,能够处理的数据量越来越大,名副其实地进入了大数据时代。其中的一些数据经过处理能够变得很干净,2010年拥有大量标注图片的数据集ImageNet就是这样的例子,它的提出使得有监督学习迎来了一波兴起。
- 算法: 我们有更多更优秀的模型,从AlexNet的dropout,再到后来ResNet的残差模块。 ImageNet的发展历程,也是深度学习算法/模型改进和发展的历程。
- 软件系统: 早年的深度学习框架Caffe、Theano、MXNet等使得研究人员可以方便地编写神经网络模型,而2015年前后诞生的TensorFlow和PyTorch则是成为了现在深度学习框架的主流范式,程序员不需知道底层的实施细节,只用"调库"和"调参"也可以实现很高效的模型,这些软件系统的诞生极大程度推动了深度学习的遍地开花。再到现在XLA和TVM等深度学习编译器的出现,更是进一步解放程序员,使上层模型可以方便快捷地部署到后端不同硬件平台上。
- 硬件: GPU为深度学习做出了不可磨灭的贡献,没有GPGPU的发展,很多深度学习任务根本没有办法完成。现在的TPU及各种神经网络加速器也都是在拓宽这一层面,以进一步提升深度学习的能力。

上面提到的这几点都不可或缺,它们共同造就了整个深度学习栈,从而带来现在深度学习的繁荣。

2 人工神经网络基础

2.1 神经元与多层神经网络

A cartoon drawing of a biological neuron (left) and its mathematical model (right).

图 2: 神经元(neuron)

常见的激活函数:

- Sigmoid: $g(x) = \frac{1}{1 + e^{-x}}$
- Tanh: $g(x) = \tanh(x) = \frac{e^x e^{-x}}{e^x + e^{-x}}$

• ReLU: $g(x) = \max(0, x)$

之所以要采用非线性激活函数,是因为它可以使神经网络也变成非线性的,进而捕获到更加复杂的特征。

图 3: 多层神经网络(MLP)

但全连接层一个问题在于参数量巨大,当网络变大时计算量将爆炸,故要采用更加好的方法,既能提取出特征,同时计算量也能维持在一个合理的程度,因此就有了**卷积**(convolution)层。

2.2 卷积

f为原图, g为卷积核(kernel)或滤波器(filter)

$$(f * g)[i, j] = \sum_{m=-M}^{M} \sum_{n=-N}^{N} f[i-m, j-n]g[m, n]$$

即对应元素相乘后相加(但注意卷积与相关操作的不同,卷积要先取反)。卷积在边界时可用0填充(padding)。

上面的公式只是2维卷积,现实我们训练的图片通常采用4维张量表示,即NCHW格式

 $n_samples \times n_channels \times height \times width$

因此对于每一张多通道的图片,卷积核也应表示为3维,且确保卷积核通道数与图片的通道数相同,这样就可以在3维空间做卷积,但出来的图片只剩1个通道了。故可以采用k个权重不同的卷积核分别对图片做卷积,那么就可以提取到k种不同的特征,出来的特征图(feature map)也会有k个通道。

在具体实施中,卷积层也是可训练的,卷积核的权重和偏置就可以通过网络学习得到。 卷积具有以下三个特征:

- 稀疏交互(sparse interactions): 卷积层不像全连接层,是对整个图像进行权重计算,它只选择与卷积层交叠的部分进行计算。参数少了,自然计算量也少了。
- **参数共享**(parameter sharing): 由于卷积核是滑过整个图片进行计算,因此对于卷积核的参数,都是被**多次**运用在不同位置的; 而传统的全连接层的参数在图片的每一个位置只会被使用**一次**,因此

捕获细节特征的能力也会相对弱一些。

• 平移等变(equivariant representation): 哪怕图片进行一定的平移变换,卷积依然有办法将对应特征 提取出来。

在图卷积神经网络(GCN)[6]中的卷积也是类似的道理,在一层中的所有图结点采用相同的神经网络进行聚集(aggregate)和更新(update)计算,这样子可以确保神经网络的参数共享,从而关注到图中的局部特征。

2.3 池化

普通的小卷积只能捕获到低层的特征,想要获得高层的语义特征则卷积核应该有更大的**感受野**(receptive field),但大卷积又会使图片的细节部分被忽略。为解决这两者之间的矛盾,可以在**缩小后的特征图做高层次的卷积**。那么问题就变成了怎么缩小特征图,常见有两种方法:

- 改变步长(stride)
- 池化(pooling)/降采样(subsampling): 对卷积核覆盖的范围取最值或平均

Subsampling

Convolutions

池化可以使得表示对于输入的微小变换保持近似不变(invariant),这也是好理解的,因为池化考虑的是一片区域的整体特征,对于取最值或是取平均来说,当局部区域一并改变时,池化后的结果确实不会有太多变化。

Convolutions Subsampling
图 4: LeNet5

Full connection

Full connection

Gaussian connections

参考文献

- [1] Limin Yao, David Mimno, and Andrew McCallum. Efficient methods for topic model inference on streaming document collections. In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining*, 2009.
- [2] Mu Li, David G Andersen, and Alexander Smola. Distributed delayed proximal gradient methods. In NIPS Workshop on Optimization for Machine Learning, 2013.
- [3] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. Large-scale matrix factorization with distributed stochastic gradient descent. In *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining*, 2011.
- [4] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: Online learning of social representations. 2014.
- [5] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In *Proceedings* of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining KDD '16, 2016.
- [6] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In *Proceedings of the International Conference on Learning and Representation (ICLR)*, 2017.
- [7] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in neural information processing systems (NeurIPS), 2017.
- [8] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph sequence neural networks. In Proceedings of the International Conference on Learning and Representation (ICLR), 2016.
- [9] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio. Graph attention networks. In *Proceedings of the International Conference on Learning and Representation (ICLR)*, 2018.
- [10] Kunle Olukotun. Designing computer systems for software 2.0. In Keynote of the 45th International Symposium on Computer Architecture (ISCA), 2018.