- Variable:
 - Categorical: nominal or ordinal
 - Numeric: continuous or discrete
- Frequency table and histogram
- Shapes of distributions:
 - Symmetric and bell-shaped
 - Skewed to the right
 - Skewed to the left
 - How to tell if a distribution is left skewed or right skewed?
 - o Mean v.s. median
 - Normal quantile plot
 - Transformations to correct skewness
 - Skewness of Binomial distribution
- Descriptive statistics:
 - mean and median
 - standard deviation, IQR, and range
 - percentile and quantile
 - robustness
- Boxplots
- · Effect of transformation of variables
 - lacktriangle How does mean, median, SD, IQR change under linear transformation Y'=aY+b?

- Probability rules (1) to (8)
 - Disjoint v.s. independent
 - Conditional probability
- Random variables:
 - Discrete:
 - o pmf, summation equals 1
 - Mean and variance
 - Binomial distribution
 - Continuous:
 - o pdf, integral equals 1
 - Areas under the curve

- Normal distribution
- Discrete v.s. continuous: the probability of single point
- Rules for means of random variables (1) to (4)
- Binomial distribution B(n, p):
 - \blacksquare Binary outcomes, independent trials, n is fixed, same value of p
 - pmf
 - Properties of binomial coefficients
 - The use of complement to calculate probability
 - Mean and variance

- Normal distribution $N(\mu, \sigma^2)$:
 - Note that the second argument denotes the variance, rather than the SD
 - pdf
 - Areas under a normal curve: standardization and Z table
 - Inverse reading of Z table
 - Empirical rule for normal distribution
 - Assessing normality: normal quantile plot (only R implementation required)

Chapter 5

- The sampling distribution of $ar{Y}$
 - $lacksquare \mu_{ar{Y}} = \mu$, $\sigma_{ar{Y}} = \sigma/\sqrt{n}$
 - $lacksquare If <math>Y \sim N(\mu, \sigma^2)$, then $ar{Y} \sim N(\mu, \sigma^2/n)$
 - Central Limit Theorem
- Normal Approximation to the Binomial Distribution
 - $lacksymbol{\bullet} Y \overset{\mathrm{approx}}{\sim} N(np, np(1-p))$ and $\hat{p} \overset{\mathrm{approx}}{\sim} N(p, p(1-p)/n)$
 - Continuity connection
 - $lacksquare np \geq 5 ext{ and } n(1-p) \geq 5$

- Student's t distribution
 - *t* Table
- Confidence intervals for μ
 - Two-sided

- One-sided: upper and lower
- Conditions
- Summary

 $1 - \alpha$ confidence interval for μ :

- * Two-sided: $\bar{Y} \pm t_{n-1}(\alpha/2) \times SE_{\bar{Y}}$
- * Upper one-sided: $(-\infty, \bar{Y} + t_{n-1}(\alpha) \times SE_{\bar{Y}})$
- * Lower one-sided: $(\bar{Y} t_{n-1}(\alpha) \times SE_{\bar{Y}}, \infty)$

where

$$SE_{\bar{Y}} = \frac{s}{\sqrt{n}}$$

- Interpretation of a confidence interval
- Planning a study to estimate μ
- ullet Confidence intervals for $\mu_1-\mu_2$
 - Two-sided
 - One-sided: upper and lower
 - Conditions
 - Summary

 $1 - \alpha$ confidence interval for $\mu_1 - \mu_2$:

- * Two-sided: $(\bar{Y}_1 \bar{Y}_2) \pm t_{\nu}(\alpha/2) \times SE_{\bar{Y}_1 \bar{Y}_2}$
- * Upper one-sided: $(-\infty, (\bar{Y}_1 \bar{Y}_2) + t_{\nu}(\alpha) \times SE_{\bar{Y}_1 \bar{Y}_2})$
- * Lower one-sided: $((\bar{Y}_1 \bar{Y}_2) t_{\nu}(\alpha) \times SE_{\bar{Y}_1 \bar{Y}_2}, \infty)$

where the degrees of freedom ν will be given and

$$SE_{\bar{Y}_1 - \bar{Y}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

- ullet Two-sample t test
 - Two-sided
 - One-sided: left and right
 - p-value and critical value
 - Conditions
 - Summary

H_0	H_A	Test statistic	Rejection region	<i>p</i> -value
$\mu_1 - \mu_2 = c$	$\mu_1 - \mu_2 \neq c$	$T = \frac{(\bar{Y}_1 - \bar{Y}_2) - c}{\operatorname{SE}_{\bar{Y}_1 - \bar{Y}_2}} \stackrel{H_0}{\sim} t_{\nu}$ with	$ T > t_{\nu}(\alpha/2)$	$2 \times P(t_{\nu} > T)$
$\mu_1 - \mu_2 \ge c$	$\mu_1 - \mu_2 < c$	$\mathrm{SE}_{ar{\mathrm{Y}}_1-ar{\mathrm{Y}}_2}^{\mathrm{SE}_{ar{\mathrm{Y}}_1-ar{\mathrm{Y}}_2}}$	$T < -t_{\nu}(\alpha)$	$P(t_{\nu} < T)$
$\mu_1 - \mu_2 \le c$	$\mu_1 - \mu_2 > c$	$\nu = \frac{(SE_1 + SE_2)}{SE_1^4/(n_1 - 1) + SE_2^4/(n_2 - 1)}$	$T > t_{\nu}(\alpha)$	$P(t_{\nu} > T)$

- Type I and Type II errors, power
- ullet How are H_0 and H_A chosen

- ullet One-sample t test
 - Two-sided
 - One-sided: left and right
 - p-value and critical value
 - Conditions
 - Summary

H_0	H_A	Test statistic	Rejection region	<i>p</i> -value
$\mu = c$	$\mu \neq c$	- 77	$ T > t_{n-1}(\alpha/2)$	$2 \times P(t_{n-1} > T)$
$\mu \ge c$	$\mu < c$	$T = \frac{\bar{Y} - c}{SE_{\bar{Y}}} \stackrel{H_0}{\sim} t_{n-1}$	$T < -t_{n-1}(\alpha)$	$P(t_{n-1} < T)$
$\mu \leq c$	$\mu > c$	-	$T > t_{n-1}(\alpha)$	$P(t_{n-1} > T)$

- Paired-sample
 - One-sample for differences
 - Conditions

Chapter 9

- ullet Confidence intervals for p
 - Two-sided
 - One-sided: upper and lower
 - Conditions
- Chi-square goodness-of-fit test
 - Null and alternative hypotheses
 - Test statistic and its null distribution
 - Conditions

- Confidence intervals for $p_1 p_2$
 - Two-sided
- Chi-square test of independence
 - Null and alternative hypotheses
 - Test statistic and its null distribution
 - Conditions

- One-way ANOVA
 - ANOVA table
 - \blacksquare F test
 - Conditions
- Multiple comparisons
 - Bonferroni's method

- Correlation coefficient
 - Interpretation
 - Test for population correlation
- Fitted regression line
 - lacksquare b_0 and b_1
 - Interpretation
 - SSE and residual standard deviation
 - Coefficient of determination
 - Confidence intervals and tests for the slope
 - Conditions