RELATIONAL

NOSOL

DATASASIS

AMR ELHELW

Relations

Shopping Order

Header

Order No.: 156

Customer: Bob

Date: 05/06/2023

Store Location: London

Line Items

Item	Qty	Unit Price	Subtotal
Notebook	5	\$5.00	\$25.00
Pen	3	\$2.00	\$6.00
Total			\$31.00

Relational Database

Orders

	Customer	Date	Location
156	Bob	05/06/2023	London
	Alice	07/04/2023	Paris
162	Carl	07/10/2023	New York

Line Items

Order	ID	Line	Item	Qty	UnitPrice
	156	1	Notebook	5	\$5.00
	156	2	Pen	3	\$2.00
	160	1	TV	1	\$450.00
	160	2	Microwave	1	\$35.00
	160	3	Laptop	2	\$1,250.00
	162	1	Chair	4	\$120

Normalized

Join

MongoDB

```
"OrderID": 156,
"Customer": "Bob",
"Date": "05/06/2023",
"Location": "London",
"Items": [
    "Item": Notebook,
    "Qty": 5,
    "Unit Price": 5.00
    "Item": Pen,
    "Qty": 3,
    "Unit Price": 2.00
"OrderID": 160,
• • •
```

All related data is together

No join needed

Vertical Scaling

Increase or decrease the capacity of existing services/instances.

Horizontal Scaling

Add more resources like virtual machines to your system to spread out the workload across them.

Sharding

Original Table

CUSTOMER ID	FIRST NAME	LAST NAME	CITY
1	Alice	Anderson	Austin
2	Bob	Best	Boston
3	Carrie	Conway	Chicago
4	David	Doe	Denver

Vertical Shards

VS1 VS2

CUSTOMER ID	FIRST NAME	LAST NAME	CUSTOMER ID	CITY
1	Alice	Anderson	1	Austin
2	Bob	Best	2	Boston
3	Carrie	Conway	3	Chicago
4	David	Doe	4	Denver

Horizontal Shards

HS1

CUSTOMER ID	FIRST NAME	LAST NAME	CITY
1	Alice	Anderson	Austin
2	Bob	Best	Boston

HS2

CUSTOMER ID	FIRST NAME	LAST NAME	CITY
3	Carrie	Conway	Chicago
4	David	Doe	Denver

Transactions

• Groups of operations that must happen together

Example

• Transfer \$100 from account (A) to account (B)

Account (A)
Subtract \$100 from balance

Account (B)
Add \$100 to balance

ACID Properties

Atomicity

Each transaction is "all or nothing"

Consistency

Data should be valid according to all defined rules

Isolation

Transactions do not affect each other

Durability

Committed data would not be lost, even after power failure.

Summary

	SQL Databases	NoSQL Databases
Structure	Relational, structured tables with schemas	Non-relational, flexible data models
Flexibility	Well-defined schemas, less flexible	Flexible schemas, easily adaptable to changes
Query Language	Standardized SQL	Varied, specific to the database type
Scalability	Typically vertical scaling	Horizontal scaling for distributed environments
Data Integrity	ACID compliant, strict data consistency	Eventual consistency, varying data consistency
Use Cases	Transactional systems, complex queries	Big data, real-time analytics, flexible schemas T
		V