Optical chaos based on a laser diode with positive feedback

Eskoskin D., Khoruzhii K., Primak E.

05.03.2021

Goals

Globally we would like to transmit a high-frequency signal in encrypted form.

Here, we will consider the following steps towards this goal:

- dynamical chaos and synchronization (to encrypt and decrypt signal);
- theory of the laser evolution and its adaptation under our needs;
- realization of the positive feedback in laser: theory, modeling and practice.

Definition of dynamic chaos and applications

$\mathrm{Map}^1 f$ is **chaotic**, if

- periodic orbits are dense everywhere;
- orbits are mixed;
- \blacksquare f sensitive to the initial conditions.

Possible applications:

- random numbers generation;
- signal encryption.

¹W. Hirsch, S. Smale, Introduction to Chaos.

Synchronization

Possible² synchronization of chaotic systems:

enough to transmit
part of the signal;
configure system parameters.

The use of optics to transmit the signal allows to achieve a greater bandwidth of the channel.

UHFO (ultrahight frequency oscillations) is a characteristic to optic systems.

²M. Pecora, L. Carroll, Synchronization in Chaotic Systems, 1990.

Scheme

After several experiments came to this scheme with the summing amplifier:

Photodiode power is enough to not use an additional amplifier.

Realization

For testing, the assembly was carried out on the dumping board.

Thus, a scheme with positive feedback was implemented. However, no desired oscillations were observed.

I–V curve

Makes sense to be in the most sensitive range, it was measured:

- I-V curve for a laser
- the dependence of the ph. diode voltage on the laser power.

So, laser voltage range of 0.95 - 1.00 mV selected.

Problems

With used amplifiers, the following oscillations at the amplifier output with DC power can be observed:

This is due to the instability of the amplifier. This instability can be eliminated by the adjustment of the scheme.

The main problem is that desired oscillations ~ 10 ns. Thus, we proceeded to experiments with faster amplifiers.

Problems

However, it was not possible to move to the chaotic regime in the laser. Possible cause of the problem may be

parasitic capacity and inductance,

In terms of solutions – neatly soldered scheme.