Model Selection Using Cross-Validation Comparing Linear Models with Increasing Complexity

Eldad Haber

UBC

February 15, 2025

Introduction

Objective and Context

- Objective: Explain how to use cross-validation to select the best model among four linear models with increasing complexity.
- Context:
 - Trained four linear models with more basis functions (e.g., polynomial features).
 - Need to decide which model generalizes best to unseen data.

What is Model Complexity?

- **Definition:** The flexibility of a model to fit the training data.
- **Example:** Linear model with 1 basis function (simple) vs. 10 basis functions (complex).

The Four Models

- **Model 1:** Linear model with 1 basis function (e.g., $y = w_0 + w_1 x$).
- Model 2: Linear model with 2 basis functions (e.g., $y = w_0 + w_1 x + w_2 x^2$).
- Model 3: Linear model with 3 basis functions (e.g., $y = w_0 + w_1x + w_2x^2 + w_3x^3$).
- Model 4: Linear model with 4 basis functions (e.g., $y = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$).

The Challenge: Overfitting

- Increasing model complexity can lead to overfitting.
- Overfitting: Complex models fit training data well but may fail on unseen data.

Visual:

Underfitted

Good Fit/Robust

Overfitted

What is Cross-Validation?

- **Definition:** A technique to evaluate how well a model generalizes to unseen data.
- **Purpose:** To compare models and select the one that performs best on unseen data.
- **Analogy:** "Testing your knowledge on different questions, not just the ones you've memorized."

K-Fold Cross-Validation

Steps:

- Split data into K folds.
- Train on K-1 folds, validate on the remaining fold.
- 3 Repeat K times and average the results.

Visual:

Applying CV to Compare Models

- Steps:
 - 1 Train each model on the training set.
 - Use K-Fold CV to evaluate each model's performance.
 - Ompare the average validation scores.
- Metric: Use a performance metric like Mean Squared Error (MSE) or R².

Example: Model 1 (1 Basis Function)

- Description: Simple linear model.
- **CV Results:** Average validation score (e.g., MSE =).

Example: Model 2 (2 Basis Functions)

- Description: Quadratic model.
- **CV Results:** Average validation score (e.g., MSE =).

Example: Model 3 (3 Basis Functions)

- Description: Cubic model.
- **CV Results:** Average validation score (e.g., MSE =).

Example: Model 4 (4 Basis Functions)

- Description: Quartic model.
- **CV Results:** Average validation score (e.g., MSE =).

Comparing the Models

Model	Basis Functions	Avg. Validation MSE
Model 1	1	
Model 2	2	
Model 3	3	
Model 4	4	

• Analysis:

- Model ??? has the lowest validation error.
- Model ??? is slightly worse,

Selecting the Best Model

- **Decision:** Choose **Model ???** because it has the best generalization performance.
- Why not Model ??? Higher complexity without significant improvement in validation error.

Summary and Questions

Recap:

- Cross-validation helps compare models and select the one that generalizes best.
- Increasing complexity improves performance up to a point, after which overfitting occurs.
- Model 3 (3 basis functions) is the best choice for this dataset.
- Call to Action: "Use cross-validation in your projects to make informed model selection decisions!"
- Questions?