

Machine Learning Case Study

Data Source: University of Wisconsin

15%

of loans are resulting in a default in our dataset. Can we use machine learning to identify problematic applications that will likely result in a default?

Project Pipeline

Data Wrangling

- Understanding missing values & how to address them.
- Consolidation of target feature: Loan Status
- Late status categories dropped (1.6% of the data)

Missing Value Summary				
Feature	Count	%		
Employment	2784	5.57		
Length (Employment)	2680	5.36		
Ratio Total Credit Card Balance to Total Credit Card Limits	520	1.04		
Open Credit on Credit Cards	488	0.98		
Revolving Ratio	18	0.04		

(Pre-Consolidation) Loan Status Summary				
Loan Status	Count	%		
Fully Paid	27,073	54.15		
Current	14,531	29.06		
Charged Off	7,578	15.16		
Late (31-120 days)	449	0.90		
In Grace Period	261	0.52		
Late (16-30 days)	102	0.20		
Default	2	0.004		

amount rate - -0.1 - -0.4

Looking for Correlation

(In Numerical Features)

- 99% correlation between 'totalBal' & 'totalLim',
- 'totalLim' feature removed

Will Loan Term Make The Biggest Impact On Default Prediction?

Chi Squared Testing

(Between Categorical Features)

Defaulters Have A Higher Debt to Income Ratio

Renters & Small Business Loans Default More

Those With Highest Incomes

Are Getting Loans for Credit Cards & Debt Consolidation

Does it Matter Where The Applicant Lives?

Side Track: Math Scores

Is there a correlation between math scores & loan defaults?

Link to Education Dataset

More Credit Lines, Higher Debt to Income Ratio

Defaults Go Up As Debt to Income Ratio Increases

Visualized Two Ways

Model Performance Metrics & Comparison

Model Performance Testing					
Model	Recall	Precision	Accuracy	F1 Score	Run Time (Sec)
Logistic Regression	64.4%	23.8%	63.9%	34.8%	0.13
Random Forest Classifier	0.3%	55.6%	85.1%	0.7%	8.19
Gradient Boosting	1.4%	55.6%	85.1%	2.7%	13.34
Support Vector Machines	62.9%	23.6%	64.0%	34.3%	208.88

Tuning The Model

Logistic Regression + Sampling Techniques				
Model	Recall	Precision	Accuracy	F1 Score
(No Sampling)	64.4%	23.8%	63.9%	34.8%
Smote - Synthetic Oversampling	65.2%	24.0%	63.9%	35.0%
Random Oversampling	64.1%	23.8%	63.9%	34.7%
Random Undersampling	63.6%	23.8%	64.1%	34.6%

Logistic Regression + Sampling + Tuning				
Model	Recall	Precision	Accuracy	F1 Score
(No Sampling)	64.4%	23.8%	63.9%	34.8%
Smote - Synthetic Oversampling	65.2%	24.0%	63.9%	35.0%
Smote - Synthetic Oversampling + Hyperparam Tuning	65.3%	24.0%	63.9%	35.1%

- 3 Different Sampling Methods Explored.
- The winner Smote
 Synthetic Oversampling
 - is hyperparameter
 tuned using randomized
 search.

reason_House
reason_Major Purchase
home_OWN
verified_Not Verified
term_36 months
state_Quartile_3
reason_Debt Consolidation
home_MORTGAGE

reason_Renewable Energy

openAcc

reason_Vacation state DC

Features

Absolute Coefficients: Top 8

Our Chi Test Frontrunner (Term) Makes the Cut

How Can We Achieve Better Results?

Better. Features. More samples wouldn't hurt either.

Final Model Performance Summary				
Model	Recall	Precision Accuracy		F1 Score
Smote - Synthetic Oversampling + Hyperparam Tuning	65.3%	24.0%	63.9%	35.1%

Possible Additional Features

- Borrower Information:
 - Credit score, Age, Education level, Marital status, Number of dependents, Geography
- Loan Characteristics:
 - Interest rate type (fixed or variable), Type of loan (secured or unsecured), Loan origination date, payment frequency
- Economic Factors:
 - Interest rates, Inflation rate, Unemployment rate, GDP growth rate

Jill Berry

<u>imarleyberry@gmail.com</u>

LinkedIn Profile

More Details: Project Report

GitHub: Loan Default Prediction

(Datasets & Jupyter Notebooks)