

CLAIMS

What is claimed is:

1 1. A method of scheduling cable modems using virtual
2 upstream channels in a broadband communications system,
3 comprising:

4 segregating a transmission area reserved for said
5 virtual upstreams according to a first set of constraints;
6 and

7 enabling each of said cable modems to transmit data in
8 accordance with a second set of constraints and in
9 accordance with said segregation.

1 2. A method according to claim 1 wherein said cable
2 modems are grouped by which virtual upstream channel they
3 belong to.

1 3. A method according to claim 2 wherein said
2 transmission area is segregated by subdividing said
3 transmission area into a transmission sub-area for each
4 virtual upstream channel, the cable modems belonging to a
5 virtual upstream channel enabled to transmit only in its
6 corresponding transmission sub-area.

1 4. A method according to claim 3 wherein each said
2 transmission sub-area occupies a contiguous portion of said
3 transmission area.

1 5. A method according to claim 3 wherein each said
2 transmission sub-area is distributed and not contiguous
3 over said transmission area.

1 6. A method according to claim 1 wherein said first
2 set of constraints is to provide optimal utilization of
3 said physical upstream channel by said cable modems.

1 7. A method according to claim 1 wherein said second
2 set of constraints includes providing latency
3 differentiation among said cable modems.

1 8. A method according to claim 6 wherein enabling
2 includes:
3 providing bandwidth allocation request messages to
4 said system.

1 9. A method according to claim 8 wherein enabling
2 further includes:
3 converting said request messages to a unified form;
4 and

5 scheduling said requests in their unified form in
6 accordance with said second set of constraints.

1 10. A method according to claim 1 wherein information
2 elements in MAP messages are synchronized among all said
3 virtual upstream channels.

1 11. A method of scheduling cable modems using virtual
2 upstream channels in a broadband communications system,
3 comprising:

4 segregating a transmission area reserved for said
5 virtual upstreams according to a first set of constraints;

6 providing bandwidth allocation request messages to
7 said system;

8 converting said request messages to a unified form;
9 and

10 scheduling said requests in their unified form in
11 accordance with a second set of constraints.

1 12. A method according to claim 11 wherein said cable
2 modems are grouped by which virtual upstream channel they
3 belong to.

1 13. A method according to claim 12 wherein said
2 transmission area is segregated by subdividing said

3 transmission area into a transmission sub-area for each
4 virtual upstream channel, the cable modems belonging to a
5 virtual upstream channel enabled to transmit only in its
6 corresponding transmission sub-area.

1 14. A method according to claim 13 wherein each said
2 transmission sub-area occupies a contiguous portion of said
3 transmission area.

1 15. A method according to claim 13 wherein each said
2 transmission sub-area is distributed and not contiguous
3 over said transmission area.

1 16. A method according to claim 11 wherein said first
2 set of constraints is to provide optimal utilization of
3 said physical upstream channel by said cable modems.

1 17. A method according to claim 11 wherein said
2 second set of constraints includes providing latency
3 differentiation among said cable modems.

1 18. A method according to claim 11 wherein information
2 elements in MAP messages are synchronized among all said
3 virtual upstream channels.

1 19. An article comprising a computer-readable medium
2 having instructions stored thereon which when executed
3 cause:

4 segregating a transmission area reserved for said
5 virtual upstreams according to a first set of constraints;
6 and

7 enabling each of said cable modems to transmit data in
8 accordance with a second set of constraints and in
9 accordance with said segregation.

1 20. An article according to claim 19 wherein said
2 cable modems are grouped by which virtual upstream channel
3 they belong to.

1 21. An article according to claim 20 wherein said
2 transmission area is segregated by subdividing said
3 transmission area into a transmission sub-area for each
4 virtual upstream channel, the cable modems belonging to a
5 virtual upstream channel enabled to transmit only in its
6 corresponding transmission sub-area.

1 22. An article according to claim 21 wherein each
2 said transmission sub-area occupies a contiguous portion of
3 said transmission area.

1 23. An article according to claim 21 wherein each
2 said transmission sub-area is distributed and not
3 contiguous over said transmission area.

1 24. An article according to claim 19 wherein said
2 first set of constraints is to provide optimal utilization
3 of said physical upstream channel by said cable modems.

1 25. An article according to claim 19 wherein said
2 second set of constraints includes providing latency
3 differentiation among said cable modems.

1 26. An article according to claim 24 wherein enabling
2 includes:

3 providing bandwidth allocation request messages to
4 said system.

1 27. An article according to claim 26 wherein enabling
2 further includes:

3 converting said request messages to a unified form;
4 and

5 scheduling said requests in their unified form in
6 accordance with said second set of constraints.

1 28. An article according to claim 19 wherein
2 information elements in MAP messages are synchronized among
3 all said virtual upstream channels.

1 29. An article comprising a computer-readable medium
2 having instructions stored thereon which when executed
3 cause:

4 segregating a transmission area reserved for said
5 virtual upstreams according to a first set of constraints;
6 providing bandwidth allocation request messages to
7 said system;

8 converting said request messages to a unified form;
9 and

10 scheduling said requests in their unified form in
11 accordance with a second set of constraints.

1 30. An article according to claim 29 wherein said
2 cable modems are grouped by which virtual upstream channel
3 they belong to.

1 31. An article according to claim 30 wherein said
2 transmission area is segregated by subdividing said
3 transmission area into a transmission sub-area for each
4 virtual upstream channel, the cable modems belonging to a

5 virtual upstream channel enabled to transmit only in its
6 corresponding transmission sub-area.

1 32. An article according to claim 31 wherein each
2 said transmission sub-area occupies a contiguous portion of
3 said transmission area.

1 33. An article according to claim 31 wherein each
2 said transmission sub-area is distributed and not
3 contiguous over said transmission area.

1 34. An article according to claim 29 wherein said
2 first set of constraints is to provide optimal utilization
3 of said physical upstream channel by said cable modems.

1 35. An article according to claim 29 wherein said
2 second set of constraints includes providing latency
3 differentiation among said cable modems.

1 36. An article according to claim 29 wherein
2 information elements in MAP messages are synchronized among
3 all said virtual upstream channels.