Matemática Discreta

Relações

Felipe Augusto Lima Reis felipe.reis@ifmg.edu.br

1 / 57

Sumário

- Introdução
- Conceitos
- 3 Propriedades
- 4 Composição
- Sepresentações
- 6 Fecho
- Equivalência

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 3/57

000

- Relações podem ocorrer em diferentes cenários, tanto na Matemática / Computação, quanto no cotidiano
 - Em Matemática, podemos traçar relações entre números inteiros, relações entre funções, entre outras;
 - No cotidiano, podemos traçar relações entre empresas e funcionários, disciplinas e alunos, relações entre indivíduos, dentre outras:
- Relações como as previamente citadas podem ser modeladas usando conceitos matemáticos;
 - Técnicas computacionais possibilitam representar muitos desses tipos de relações.

00

5 / 57

- Nesta seção, aprenderemos:
 - Identificar pares ordenados relacionados por relações binárias;
 - Avaliar propriedades reflexivas, transitivas, simétricas e antissimétricas em relações binárias;
 - Analisar fechos transitivos, reflexivos e simétricos em relações binárias:
 - Desenhar e analisar diagramas PERT;
 - Aprender a escrever consultas relacionais em bancos de dados, usando SQL1.

Prof. Felipe Reis Matemática Discreta - Relações 10/2021

¹Somente serão desenvolvidas consultas em bancos de dados, para aplicação de lógica e relações. Teoria de Banco de Dados será estudada posteriormente, em disciplina própria.

Conceitos

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 6 / 57

Relações Binárias

Introdução

- Definição: Uma relação binária entre dois conjuntos A e B é um subconjunto de $A \times B$ [Rosen, 2019]²
- Para expressar uma relação entre dois conjuntos, podemos usar pares ordenados de elementos desse conjunto;
 - Uma relação binária, pode ser descrita como um conjunto R de pares ordenados de A para B (a, b);
 - Podemos dizer que *a* está relacionado a *b* por *R* [Rosen, 2019];
- Notação: $a R b \leftrightarrow (a, b) \in R^3$
 - Negação: $a R b \leftrightarrow (a, b) \notin R$

Prof. Felipe Reis

 $^{^2}$ O subconjunto $A \times B$ corresponde a um produto cartesiano de A e B.

³[Gersting, 2014] utiliza a notação $a\rho b \leftrightarrow (a, b) \in \rho$.

Relações Binárias - Exemplo [Rosen, 2019]

Introdução

- Suponha dois conjuntos $A = \{0, 1, 2\}$ e $B = \{a, b\}$. Suponha também a relação $R = \{(0, a), (0, b), (1, a), (2, b)\}$;
 - Relações possíveis: 0 R a, 0 R b, 1 R a, 2 R b;
 - Relações não possíveis: 1 R b, 2 R a.

Fonte: [Rosen, 2019]

X

Auto-Relações

Introdução

- Definição: Uma relação de um único conjunto A é dada de A para A, ou seja, um subconjunto de $A \times A$ [Rosen, 2019].
- Exemplo
 - Suponha um conjunto inteiro $A = \{1, 2, 3, 4\}$. Suponha a relação $R = \{(a, b) \mid b \div a \in \mathbb{Z}\}$.
 - $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}$

Auto-Relações

- Definição: Uma relação de um único conjunto A é dada de A para A, ou seja, um subconjunto de $A \times A$ [Rosen, 2019].
- Exemplo:
 - Suponha um conjunto inteiro $A = \{1, 2, 3, 4\}$. Suponha a relação $R = \{(a, b) \mid b \div a \in \mathbb{Z}\}$.
 - $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$

Auto-Relações

- Definição: Uma relação de um único conjunto A é dada de A para A, ou seja, um subconjunto de A × A [Rosen, 2019].
- Exemplo:
 - Suponha um conjunto inteiro $A = \{1, 2, 3, 4\}$. Suponha a relação $R = \{(a, b) \mid b \div a \in \mathbb{Z}\}$.
 - $R = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)\}.$

Fonte: [Rosen, 2019]

Relações *n*-árias

- Definição: Dado n conjuntos $S_1, S_2, ..., S_n$, para n > 2, uma relação n-ária é um subconjunto de $S_1 \times S_2 \times ... \times S_n$ [Gersting, 2014]
 - Os conjuntos $S_1, S_2, ..., S_n$ são chamados de domínio da relação e n é chamado de grau [Rosen, 2019].

Tipos de Relações

Introdução

12 / 57

- As relações podem ser divididas nos seguintes tipos [Gersting, 2014]⁴:
 - Um para um: elementos de A e B aparecem uma vez na relação;
 - Um para muitos: elementos de A aparecem mais de uma vez;
 - Muitos para um: elementos de B aparecem múltiplas vezes;
 - Muitos para muitos: elementos de A e B aparecem múltiplas vezes.

Fonte: Adaptado de [Gersting, 2014].

Prof. Felipe Reis Matemática Discreta - Relações 10/2021

⁴Esses tipos de relações serão vistos frequentemente nas disciplinas de Eng. de Software e/ou Banco de Dados.

Cardinalidade

• A cardinalidade de um produto cartesiano $A \times A$ é dada por:

$$|A \times A| = |A|^2 = n^2$$

- Uma relação R é um subconjunto do produto cartesiano
 - Considerando relações binárias, temos:

$$|R|=2^{(n^2)}$$

Propriedades das Relações Binárias

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 14/57

Relação Reflexiva

Introdução

- Definição: Uma relação R para um conjunto S é reflexiva se, para cada elemento $x \in S$, existir $(x,x) \in R$ [Rosen, 2019] [Gersting, 2014]
 - Não é necessário que o conjunto seja formado apenas por elementos reflexivos;
 - No entanto, todas as situações reflexivas devem estar no conjunto.
- Definição Formal: $\forall x \ (x \in S \rightarrow (x, x) \in R)$;
- Definição Informal: Todo elemento x está relacionado a si mesmo [da Silva, 2012].

Prof. Felipe Reis

Relação Reflexiva - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\};$
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\}$:
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2), (2,3), (1,3)\}$:
 - \bullet $R_6 = \{(2,3), (3,2)\};$
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são reflexivas?

Relação Reflexiva - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\};$
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\}$:
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2), (2,3), (1,3)\}$:
 - \bullet $R_6 = \{(2,3), (3,2)\};$
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são reflexivas?
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\}$:

Relação Simétrica

Conceitos

Introdução

- Definição: Uma relação R para um conjunto S é simétrica se existir $(y,x) \in R$ sempre que existir $(x,y) \in R$, para todo $x,y \in S$ [Rosen, 2019] [Gersting, 2014]
 - É necessário que sempre que haja um elemento simétrico a outro elemento do conjunto.
- Definição Formal⁵: $\forall x \forall y \ ((x,y) \in R \to (y,x) \in R)$.
- Definição Informal: Se x está relacionado a y, então y está relacionado a x [da Silva, 2012].

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 17/57

⁵ Notação completa: $\forall x \forall y ((x \in S \land y \in S \land (x, y) \in R) \rightarrow (y, x) \in R)$.

Relação Simétrica - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\};$
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\}$:
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2), (2,3), (1,3)\}$:
 - $R_6 = \{(2,3), (3,2)\};$
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são simétricas?

Equivalência

Relação Simétrica - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\};$
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\}$:
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2), (2,3), (1,3)\}$:
 - $R_6 = \{(2,3), (3,2)\};$
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são simétricas?
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - \bullet $R_6 = \{(2,3),(3,2)\}.$

Relação Antissimétrica

19 / 57

- Definição: Uma relação R para um conjunto S é antissimétrica se, para $(x, y) \in R$ e $(y, x) \in R$, então x = y, para todo $x, y \in S$ [Rosen, 2019] [Gersting, 2014]
 - A simetria somente ocorre para a = b
 - Caso existam outras simetrias, a relação não é antissimétrica;
 - Relações simétricas e antissimétricas não são necessariamente opostas;
- Definição Formal⁶: $\forall x \forall y (((x,y) \in R \land (y,x) \in R) \rightarrow x = y)$
- Definição Informal: Se x está relacionado a y e y está relacionado a x, então x = y [da Silva, 2012].

Prof. Felipe Reis Matemática Discreta - Relações 10/2021

⁶ Notação completa: $\forall x \forall y ((x \in S \land y \in S \land (x, y) \in R \land (y, x) \in R) \rightarrow x = y)$.

Relação Antissimétrica - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\}$:
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2),(2,3),(1,3)\};$
 - \bullet $R_6 = \{(2,3),(3,2)\}$:
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são antissimétricas?

Conceitos

Relação Antissimétrica - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\};$
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2),(2,3),(1,3)\};$
 - \bullet $R_6 = \{(2,3),(3,2)\}$:
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são antissimétricas?
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - \bullet $R_5 = \{(1,2),(3,2)\};$
 - $R_7 = \{(1,2)\}.$

 R_1 , R_2 e R_4 não são antissimétricas pois existe (1, 2) e (2, 1). R_6 não é antissimétrica pois existe (2, 3) e (3, 2).

Introdução

Relação Transitiva

21 / 57

- Definição: Uma relação R para um conjunto S é transitiva se, sempre que $(x,y) \in R$ e $(y,z) \in R$, então $(x,z) \in R$, para todo $x, y, z \in S$ [Rosen, 2019] [Gersting, 2014]:
- Definicão Formal⁷: $\forall x \forall y \forall z \ ((x,y) \in R \land (y,z) \in R \rightarrow (x,z) \in R)$:
- Definição Informal: Se x está relacionado a y e y está relacionado a z, então x está relacionado a z [da Silva, 2012].

⁷ Notação completa: $\forall x \forall v \forall z ((x \in S \land v \in S \land z \in S \land (x, v) \in R \land (v, z) \in R) \rightarrow (x, z) \in R)$.

Relação Transitiva - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\}$:
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2),(2,3),(1,3)\};$
 - \bullet $R_6 = \{(2,3),(3,2)\}$:
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são transitivas?

Relação Transitiva - Exemplo

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (3,1)\}$:
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\};$
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_4 = \{(1,2), (2,1), (3,1), (3,2), (3,3)\}$:
 - $R_5 = \{(1,2),(2,3),(1,3)\};$
 - \bullet $R_6 = \{(2,3),(3,2)\}$:
 - $R_7 = \{(1,2)\}.$
- Quais dessas relações são transitivas?
 - $R_2 = \{(1,1), (1,2), (2,1), (2,2)\}$:
 - $R_3 = \{(1,1), (1,2), (1,3), (2,2), (3,3)\};$
 - $R_5 = \{(1,2), (2,3), (1,3)\}$:
 - $R_7 = \{(1,2)\}.$

Prof. Felipe Reis Matemática Discreta - Relações

 R_1 não é transitiva pois existe (2,1) e (1,2), mas não existe (2,2). R_4 não é transitiva pois existe (1,2) e (2,1), mas não existe (2, 2). R₆ não é transitiva pois não existe (2, 2).

10/2021

23 / 57

Relação Transitiva - Exemplo [Rosen, 2019]

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$
 - $R_2 = \{(1,1), (1,2), (2,1)\}$
 - $R_3 = \{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$
 - $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$
 - $R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
 - $R_6 = \{(3,4)\}$
 - Quais dessas relações são transitivas?
 - $R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}$
 - $R_5 = \{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$
 - $R_6 = \{(3,4)\}$

 R_1 não é transitiva pois existe (3,4) e (4,1), mas não existe (3,1). R_2 não é transitiva pois existe (2,1) e (1,2), mas não existe (2,2). R_3 não é transitiva pois existe (4,1) e (1,2), mas não existe (4,2).

Relação Transitiva - Exemplo [Rosen, 2019]

- Considere as relações sobre o conjunto $A = \{1, 2, 3\}$
 - $R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}$
 - $R_2 = \{(1,1), (1,2), (2,1)\}$
 - $R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}$
 - $R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
 - $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
 - $R_6 = \{(3,4)\}$
 - Quais dessas relações são transitivas?
 - $R_4 = \{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$
 - $R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}$
 - $R_6 = \{(3,4)\}.$

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 23 / 57

 R_1 não é transitiva pois existe (3,4) e (4,1), mas não existe (3,1). R_2 não é transitiva pois existe (2,1) e (1,2), mas não existe (2, 2). R_2 não é transitiva pois existe (4, 1) e (1, 2), mas não existe (4, 2).

Composição de Relações

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 24/57

Composição de Relações

- Definição: Seja R_1 uma relação de um conjunto A para B e R_2 uma relação do conjunto B para C. A relação composta de R_1 e R_2 , denotada por $R_2 \circ R_1$, consiste em pares ordenados (a,c) onde $a \in A$ e $c \in C$, no qual existe um elemento $b \in B$ tal que $(a,b) \in R_1$ e $(b,c) \in R_2$ [Rosen, 2019];
- Definição Formal: $R_2 \circ R_1 = ((a,c)|(a,b) \in R_1 \land (b,c) \in R_2)$.

Introdução

Composição de Relações - Exemplo [Rosen, 2019]

- Considere os conjuntos
 - $A = \{1, 2, 3\};$
 - $B = \{1, 2, 3, 4\};$
 - $C = \{0, 1, 2\};$
- Considere as relações
 - $R_{AB} = \{(1,1), (1,4), (2,3), (3,1), (3,4)\};$
 - $R_{BC} = \{(1,0), (2,0), (3,1), (3,2), (4,1)\};$
- Qual a relação composta entre R_{AB} e R_{BC} ?

Equivalência

- Objetivo: Encontrar $R_2 \circ R_1$ ($R_{BC} \circ R_{AB}$);
- Relações (a partir do enunciado):
 - $R_{AB} = \{(1,1), (1,4), (2,3), (3,1), (3,4)\};$
 - $R_{BC} = \{(1,0), (2,0), (3,1), (3,2), (4,1)\};$
- Sequência

Introdução

- ① $R_{AB1} = (1,1), R_{BC1} = (1,0), R_{BC1} \circ R_{AB1} = (1,0);$

- 4 ...
- Conclusão

$$R_{BC} \circ R_{AB} = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 27/57

Equivalência

- Objetivo: Encontrar $R_2 \circ R_1$ ($R_{BC} \circ R_{AB}$);
 - Relações (a partir do enunciado):
 - $R_{AB} = \{(1,1), (1,4), (2,3), (3,1), (3,4)\};$
 - $R_{BC} = \{(1,0),(2,0),(3,1),(3,2),(4,1)\};$
 - Sequência

Introdução

- ① $R_{AB1} = (1,1), R_{BC1} = (1,0), R_{BC1} \circ R_{AB1} = (1,0);$

- 4 ...
- Conclusão

$$R_{BC} \circ R_{AB} = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 27/57

- Objetivo: Encontrar $R_2 \circ R_1$ ($R_{BC} \circ R_{AB}$);
- Relações (a partir do enunciado):
 - $R_{AB} = \{(1,1), (1,4), (2,3), (3,1), (3,4)\};$
 - $R_{BC} = \{(1,0), (2,0), (3,1), (3,2), (4,1)\};$
- Sequência:

 - **2** $R_{AB2} = (1,4), R_{BC5} = (4,1), R_{BC5} \circ R_{AB2} = (1,1);$
 - **3** $R_{AB3} = (2,3), R_{BC3} = (3,1), R_{BC3} \circ R_{AB3} = (2,1);$
 - **4** ...
- Conclusão

$$R_{BC} \circ R_{AB} = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Introdução

Equivalência

- Objetivo: Encontrar $R_2 \circ R_1$ ($R_{BC} \circ R_{AB}$);
- Relações (a partir do enunciado):
 - $R_{AB} = \{(1,1),(1,4),(2,3),(3,1),(3,4)\};$
 - $R_{BC} = \{(1,0), (2,0), (3,1), (3,2), (4,1)\};$
- Sequência:

Introdução

- $R_{AB2} = (1,4), R_{BC5} = (4,1), R_{BC5} \circ R_{AB2} = (1,1);$
- 3 $R_{AB3} = (2,3), R_{BC3} = (3,1), R_{BC3} \circ R_{AB3} = (2,1);$
- 4 ...
- Conclusão:

$$R_{BC} \circ R_{AB} = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 27/57

Composição de Relações - Exemplo [Rosen, 2019]

Resultado analítico:

$$R_{BC} \circ R_{AB} = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}$$

Resultado visual:

Fonte: Adaptado de [Rosen, 2019]

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 28 / 57

Potências de uma Relação

• Definição: Seja R uma relação em um conjunto. As potências R^n , onde n=1,2,3,... são definidas recursivamente como: [Rosen, 2019]

$$R^1 = R$$
 e $R^{(n+1)} = R^n \circ R$

- Exemplo: [Rosen, 2019]
 - Seja $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Encontre R^2 e R^3 .
 - $R^2 = R \circ R = \{(1,1),(2,1),(3,1),(4,2)\}$
 - $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$

Prof. Felipe Reis

Potências de uma Relação

• Definição: Seja R uma relação em um conjunto. As potências R^n , onde n=1,2,3,... são definidas recursivamente como: [Rosen, 2019]

$$R^1 = R$$
 e $R^{(n+1)} = R^n \circ R$

- Exemplo: [Rosen, 2019]
 - Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre R^2 e R^3 .

•
$$R^2 = R \circ R = \{(1,1),(2,1),(3,1),(4,2)\}$$

•
$$R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$$

Prof. Felipe Reis

Potências de uma Relação

• Definição: Seja R uma relação em um conjunto. As potências R^n , onde n=1,2,3,... são definidas recursivamente como: [Rosen, 2019]

$$R^1 = R$$
 e $R^{(n+1)} = R^n \circ R$

- Exemplo: [Rosen, 2019]
 - Seja $R = \{(1,1), (2,1), (3,2), (4,3)\}$. Encontre R^2 e R^3 .
 - $R^2 = R \circ R = \{(1,1),(2,1),(3,1),(4,2)\}$
 - $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,1), (4,1)\}$

Introdução

Operações (Composição de Relações)

- Operações também podem ser aplicadas às relações:
 - União: R1 ∪ R2;
 - Interseção: R1 ∩ R2;
 - Diferença: R1 R2;
 - Complemento: $\overline{R1}$.
- Exemplo: [Rosen, 2019]
 - Considere as relações $R1 = \{(1,1), (2,2), (3,3)\}$ e $R2 = \{(1,1), (1,2), (1,3), (1,4)\}$. Encontre $R1 \cup R2$, $R1 \cap R2$ e R2 R1.
 - $R1 \cup R2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$
 - $R1 \cap R2 = \{(1,1)\}$
 - $R1 R2 = \{(2, 2), (3, 3)\}$
 - $R2 R1 = \{(1, 2), (1, 3), (1, 4)\}$

Operações (Composição de Relações)

- Operações também podem ser aplicadas às relações:
 - União: R1 ∪ R2;
 - Interseção: R1 ∩ R2;
 - Diferença: R1 R2;
 - Complemento: $\overline{R1}$.
- Exemplo: [Rosen, 2019]
 - Considere as relações $R1 = \{(1,1), (2,2), (3,3)\}$ e $R2 = \{(1,1), (1,2), (1,3), (1,4)\}$. Encontre $R1 \cup R2$, $R1 \cap R2$, R1 R2 e R2 R1.

```
• R1 \cup R2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}
```

•
$$R1 \cap R2 = \{(1,1)\}$$

•
$$R1 - R2 = \{(2, 2), (3, 3)\}$$

•
$$R2 - R1 = \{(1, 2), (1, 3), (1, 4)\}$$

Operações (Composição de Relações)

- Operações também podem ser aplicadas às relações:
 - União: R1 ∪ R2;
 - Interseção: R1 ∩ R2;
 - Diferença: R1 R2;
 - Complemento: $\overline{R1}$.
- Exemplo: [Rosen, 2019]
 - Considere as relações $R1 = \{(1,1), (2,2), (3,3)\}$ e $R2 = \{(1,1), (1,2), (1,3), (1,4)\}$. Encontre $R1 \cup R2$, $R1 \cap R2$, R1 R2 e R2 R1.
 - $R1 \cup R2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$
 - $R1 \cap R2 = \{(1,1)\}$
 - $R1 R2 = \{(2, 2), (3, 3)\}$
 - $R2 R1 = \{(1, 2), (1, 3), (1, 4)\}$

Representações

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 31/57

Representações de Relações

Introdução

- Existem diferentes formas de representação de uma relação⁸
 - Pares ordenados;
 - Matrizes de zero-ou-um;
 - Grafos direcionados (dígrafos).

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 32/57

⁸Nesta secão, todas as relações apresentadas correspondem a relações binárias.

Representações usando Dígrafos⁹

- Definição Dígrafo: Um dígrafo consiste em um conjunto V de vértices (ou nós) junto a um conjunto E de pares ordenados, chamados de arestas [Rosen, 2019]
 - Em uma aresta (a, b), o vértice a é chamado de inicial e o vértice b é chamado de terminal;
 - Uma aresta (a, a) é chamada de laço (ou loop).

Fonte: [Rosen, 2019]

⁹Também chamados de grafos direcionados, grafos orientados ou grafos dirigidos.

Representações Dígrafos - Exemplo [da Silva, 2012]

- Suponha um conjunto $A = \{a, b, c, d\}$.
- Relação: $R = \{(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)\}$
- Representação:

Fonte: [da Silva, 2012]

Representações usando Matrizes

- Considere conjuntos $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$
- Uma relação R pode ser representada por uma matriz $M_R = [m_{ij}]$, onde:

$$m_{ij} = \begin{cases} 1, se \ (a_i, b_j) \in R \\ 0, se \ (a_i, b_j) \notin R \end{cases}$$

• Exemplo:

$$R = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$

Prof. Felipe Reis

Introdução

Representações Matrizes - Exemplo [da Silva, 2012]

- Suponha dois conjuntos $A = \{1, 2, 3\}$ e $B = \{1, 2\}$. A relação entre eles é dada por $R = \{(a, b) \mid a \in A \land b \in B \land a > b\}.$
- Resultado: $R = \{(2,1), (3,1), (3,2)\}$
- Representação:

$$R = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

Representações Matrizes - Propriedades

• As propriedades reflexivas, simétricas e antissimétricas podem ser vistas na figura abaixo:

Fonte: Adaptado de [Rosen, 2019]

Representações

Equivalência

00000000000

•0000000

Composição

0000000

Introdução

000

Conceitos

Propriedades

0000000000

FECHO

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 38/57

Fecho de uma Relação

- Definição: Uma relação binária R* em um conjunto S é o fecho de uma relação R em S, com respeito a uma à propriedade P, se:
 - \bullet R^* respeitar a propriedade P;
 - $P \subseteq R^*;$
 - **3** R^* é subconjunto de qualquer outra relação S que inclua R e satisfaça P [Gersting, 2014].

Propriedades P: reflexiva, simétrica, antissimétrica, transitiva, etc.

Fecho vem da expressão *closure* em inglês. Não confundir com fechamento.

Fecho de uma Relação

Introdução

Equivalência

- Definição Informal:
 - Suponha que R é uma relação binária sobre um conjunto S e não possua uma propriedade P;
 - Suponha "extensão" da relação R, chamada de R*, que contenha P;
 - R^* é o menor conjunto que conterá os pares de R, tal que $R \subseteq R^*$, de modo a satisfazer a propriedade P;
 - Se existir uma relação R' que contém R e possui P, então $R^* \subseteq R'$;
 - R* é chamado de fecho de R [Rosen, 2019].
- Obs.: Se uma relação R já possui a propriedade P, então ela é o seu próprio fecho [da Silva, 2012].

Um fecho R^* não contém somente os itens que faltam na relação. O fecho será composto pela relação R acrescido de itens necessários para que seia respeitada uma propriedade P.

Tipos de Fecho

- Tipos de fechos existentes:
 - Fecho Reflexivo;
 - Fecho Simétrico;
 - Fecho Transitivo;

Fecho Reflexivo

42 / 57

- Definição: O fecho reflexivo R^* de uma relação binária R em A corresponde a $R^* = R \cup \{(x,x) \mid x \in A\}$ [da Silva, 2012].
- Exemplo: [Rosen, 2019]
 - Suponha um conjunto $A = \{1, 2, 3\}$ e uma relação não reflexiva $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)\}.$
 - O objetivo é encontrar uma relação R* que complemente R e torne a relação reflexiva;
 - Temos que: $R^* = R \cup \{(x, x) \mid x \in A\}$
 - Logo, $R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,1), (3,3)\}$
 - R* deve ser a menor relação que atenda à propriedade

Prof. Felipe Reis Matemática Discreta - Relações 10/2021

Fecho Reflexivo

- Definição: O fecho reflexivo R^* de uma relação binária R em A corresponde a $R^* = R \cup \{(x,x) \mid x \in A\}$ [da Silva, 2012].
- Exemplo: [Rosen, 2019]
 - Suponha um conjunto $A = \{1, 2, 3\}$ e uma relação não reflexiva $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)\}.$
 - O objetivo é encontrar uma relação R* que complemente R e torne a relação reflexiva;
 - Temos que: $R^* = R \cup \{(x, x) \mid x \in A\}$;
 - Logo, $R^* = \{(1,1), (1,2), (1,3), (2,2), (2,3), (3,1), (3,3)\};$
 - R* deve ser a menor relação que atenda à propriedade.

10/2021

43 / 57

Fecho Simétrico

- Definição: O fecho simétrico R* de uma relação R em A corresponde a $R^* = R \cup \{(x, y) \mid (y, x) \in R\}$ [da Silva, 2012].
- Exemplo: [Rosen, 2019]

Fecho Simétrico

Introdução

- Definição: O fecho simétrico R* de uma relação R em A corresponde a $R^* = R \cup \{(x, y) \mid (y, x) \in R\}$ [da Silva, 2012].
- Exemplo: [Rosen, 2019]
 - Suponha um conjunto $A = \{1, 2, 3\}$ e uma relação não reflexiva $R = \{(1,1), (1,2), (1,3), (2,3), (3,1)\}.$
 - O objetivo é encontrar uma relação R* que complemente R e torne a relação simétrica:
 - Temos que: $R^* = R \cup \{(x, y) \mid (y, x) \in R\}$;
 - Logo, $R^* = \{(1,1), (1,2), (2,1), (1,3), (2,3), (3,2), (3,1)\}.$

Lembrete: pela definição, um conjunto é uma coleção não ordenada de objetos distintos [Rosen, 2019].

Fecho Transitivo

- Definição: O fecho transitivo R* de uma relação R em A que satisfaz: [da Silva, 2012]
 - \bullet R^* respeitar a propriedade transitiva P;
- Ao contrário dos fechos reflexivos e simétricos, o fecho transitivo pode exigir uma análise mais elaborada;
- O fecho transitivo pode ser obtido pelo algoritmo abaixo:
 - 1: R* ← R
 - 2: while (R* não for uma relação transitiva) do
 - 3: Inspecionar os pares ordenados de R*
 - 4: Adicionar novos pares em R* se necessário
 - 5: end while
 - 6: return R*

Fonte: [da Silva, 2012]

Fecho Transitivo

Introdução

- Exemplo: [da Silva, 2012]
 - Suponha um conjunto $A = \{1, 2, 3\}$ e uma relação não transitiva $R = \{(1, 1), (1, 2), (1, 3), (2, 3), (3, 1)\}.$
 - Devemos executar o algoritmo, seguindo os passos:

$$R^* = \{(1,1),(1,2),(1,3),(2,3),(3,1),(3,2),(3,3),(2,1),(2,2)\};$$

• Após a execução do algoritmo, R^* é uma relação transitiva e $R \subseteq R^*$.

RELAÇÕES DE EQUIVALÊNCIA

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 46 / 57

Relações de Equivalência

- Definição: Uma relação binária em um conjunto A é uma relação de equivalência se for reflexiva, simétrica e transitiva
 - Dois elementos a e b relacionados por uma relação de equivalência são chamados equivalentes e denotados por $a \sim b$;
 - Para que a equivalência entre elementos tenha sentido, cada elemento deve ser equivalente a si mesmo [Rosen, 2019].

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse¹⁰ $a-b\in\mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?

- Supor aRa
- $a-a=0, \forall a\in\mathbb{Z}$, onde $0\in\mathbb{Z}$. Logo, R é reflexiva
- Simétrica
 - Supor aRb
 - $(a-b=k \land b-a=-k), \ \forall a \forall b \in \mathbb{Z}$. Logo, R é simétrica
- Transitiva?
 - Supor aRb, bRc e $((a-b) \in \mathbb{Z} \land (b-c) \in \mathbb{Z})$
 - Temos $(a-c)=(a-b)+(b-c), \forall a\forall b\forall c\in\mathbb{Z}$. Logo, R é transitiva.
- Como R é reflexiva, simétrica e transitiva, logo é equivalente.

¹⁰Se e somente se.

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse¹⁰ $a-b\in\mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - Supor aRa;
 - $a a = 0, \forall a \in \mathbb{Z}$, onde $0 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica
 - Supor aRb
 - ullet $(a-b=k\wedge b-a=-k), \ orall aorall b\in \mathbb{Z}.$ Logo, R é simétrica
 - Transitiva
 - Supor aRb, bRc e $((a-b) \in \mathbb{Z} \land (b-c) \in \mathbb{Z})$;
 - Temos $(a-c)=(a-b)+(b-c), \forall a\forall b\forall c\in\mathbb{Z}$. Logo, R é transitiva
 - Como R é reflexiva, simétrica e transitiva, logo é equivalente.

¹⁰Se e somente se.

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse¹⁰ $a-b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - Supor aRa;
 - $a-a=0, \forall a\in\mathbb{Z}$, onde $0\in\mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica?
 - Supor aRb;
 - $(a b = k \land b a = -k)$, $\forall a \forall b \in \mathbb{Z}$. Logo, R é simétrica.

¹⁰Se e somente se.

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse¹⁰ $a-b\in\mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - Supor aRa;
 - $a-a=0, \forall a\in\mathbb{Z}$, onde $0\in\mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica?
 - Supor aRb;
 - $(a-b=k \land b-a=-k), \ \forall a \forall b \in \mathbb{Z}$. Logo, R é simétrica.
 - Transitiva?
 - Supor aRb, bRc e $((a-b) \in \mathbb{Z} \land (b-c) \in \mathbb{Z})$;
 - Temos $(a-c)=(a-b)+(b-c), \forall a\forall b\forall c\in\mathbb{Z}$. Logo, R é transitiva.
 - Como R é reflexiva, simétrica e transitiva, logo é equivalente.

¹⁰Se e somente se.

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse¹⁰ $a-b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - Supor aRa;
 - $a a = 0, \forall a \in \mathbb{Z}$, onde $0 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica?
 - Supor aRb;
 - $(a b = k \land b a = -k)$, $\forall a \forall b \in \mathbb{Z}$. Logo, R é simétrica.
 - Transitiva?
 - Supor aRb, bRc e $((a b) \in \mathbb{Z} \land (b c) \in \mathbb{Z})$;
 - Temos $(a-c)=(a-b)+(b-c), \forall a\forall b\forall c\in\mathbb{Z}$. Logo, R é transitiva.
 - Como R é reflexiva, simétrica e transitiva, logo é equivalente.

¹⁰Se e somente se.

Relações Equivalência - Exemplo [Rosen, 2019]

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse $a \div b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - $a \div a = 1, \forall a \in \mathbb{Z}$, onde $1 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica
 - $(a \div b = k \land b \div a \neq -k), \forall a \forall b \in \mathbb{Z}. \text{ Logo, } R \text{ não é simétrica}$
 - Como R não é simétrica. logo não é equivalente

Relações Equivalência - Exemplo [Rosen, 2019]

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse $a \div b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - $a \div a = 1, \forall a \in \mathbb{Z}$, onde $1 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica
 - $(a \div b = k \land b \div a \neq -k), \forall a \forall b \in \mathbb{Z}. \text{ Logo, } R \text{ não} \text{ é simétrica}$
 - Como R não é simétrica. logo não é equivalente

Introdução

Relacões Equivalência - Exemplo [Rosen, 2019]

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse $a \div b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - $a \div a = 1, \forall a \in \mathbb{Z}$, onde $1 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica?
 - $(a \div b = k \land b \div a \ne -k), \forall a \forall b \in \mathbb{Z}$. Logo, R não é simétrica.

Introdução

Relacões Equivalência - Exemplo [Rosen, 2019]

- Seja R uma relação sobre o conjuntos dos números inteiros tal que aRb sse $a \div b \in \mathbb{Z}$. A relação R é equivalente?
 - Reflexiva?
 - $a \div a = 1, \forall a \in \mathbb{Z}$, onde $1 \in \mathbb{Z}$. Logo, R é reflexiva.
 - Simétrica?
 - $(a \div b = k \land b \div a \ne -k)$, $\forall a \forall b \in \mathbb{Z}$. Logo, R não é simétrica.
 - Como R não é simétrica, logo não é equivalente.

Classes de Equivalência

- Definição: Seja R uma relação de equivalência sobre um conjunto A. O conjunto de todos os elementos que estão relacionados com um dado elemento a ∈ A é denominado de classe de equivalência de a [Rosen, 2019].
 - A classe de equivalência é denotada por [a]_R;
 - Em alguns cenários, com somente uma relação, a classe de equivalência pode ser denotada somente por [a].
- Definição Formal: $[a]_R = \{b \mid b \in A \land (a, b) \in R\}.$

Representante da Classe de Equivalência

- Definição: Se $x \in [a]_R$, então x é chamado de representante da classe de equivalência [Rosen, 2019].
 - Qualquer elemento da classe pode ser definido como representante;
 - Não existe qualquer característica especial nesse elemento.

Introdução

Classes de Equivalência - Exemplo [Rosen, 2019]

- Definição (Congruência Módulo m): Se x e y são inteiros e m>1 é um inteiro positivo, $x\equiv y \pmod{m}$ se x-y é um múltiplo inteiro de m [da Silva, 2012] [Gersting, 2014];
- Seja $R = \{a \in \mathbb{Z} \mid a \mod 4 \in \mathbb{Z}\}$. Defina as classes de equivalência dos números 0, 1, 2 e 3.
 - Devemos obter todos os inteiros tal que a mod 4 = n, para n = 0, 1, 2, 3;
 - $a \equiv 0$: $[0] = {..., -8, -4, 0, 4, 8, ...}$;
 - $a \equiv 1$: [1] = {..., -7, -3, 1, 5, 9,}:
 - $a \equiv 2$: [2] = {..., -6, -2, 2, 6, 10, ...};
 - $a \equiv 3$: [3] = {..., -5, -1, 3, 7, 11, ...}.

Partições de um conjunto

- Definição: A partição de um conjunto A é uma coleção de subconjuntos disjuntos não vazios cuja união é igual a A [Gersting, 2014].
 - Os subconjuntos que constituem a partição são chamados de blocos da partição;
 - Toda relação de equivalência R particiona um conjunto A no qual está definida em uma partição [Gersting, 2014] [da Silva, 2012].

Prof. Felipe Reis Matemática Discreta - Relações 10/2021 53/57

Classes de Equivalência e Partições

- Definição: Uma relação de equivalência R em um conjunto A determina a partição de A.
 - Analogamente, a partição de um conjunto A determina a relação de equivalência R em A [Gersting, 2014].
- Definição Seja R uma relação de equivalência em um conjunto A. Temos, para os elementos a e b, pertencentes ao conjunto A, as seguintes propriedades [Rosen, 2019]:
 - aRb;
 - **2** [a] = [b];
 - **3** $[a] \cap [b] \neq \emptyset$.

Equivalências e Partições - Exemplo [Rosen, 2019]

- Suponha um conjunto *S* correspondente ao alunos de uma classe. Suponha uma relação *R*, no qual um aluno senta-se na mesma fileira que outro aluno.
- Formalmente:
 - $S = \{x \mid x \text{ \'e um aluno da classe}\};$
 - $R = \{(x, y) \mid x \text{ senta-se na mesma fileira que } y\}.$
- S pode ser dividido em subconjuntos disjuntos tal que cada aluno pertence à um destes e cuja união gera o conjunto S.
 - Suponha que João e Maria se sentam na mesma fileira;
 - Temos: $[João] = [Maria] e [João] \cap [Maria] \neq \emptyset$.

Equivalências e Partições - Exemplo [da Silva, 2012]

• Seja R a relação de equivalência que particiona elementos em números pares e ímpares, definida por:

$$R = \{(x, y) \mid x + y \text{ \'e par e } x + y \in \mathbb{N}\}$$

- Temos, então, as seguintes classes de equivalências:
 - Se x é par, para todo y par temos x + y par;
 - Se x é ímpar, para todo y ímpar temos x + y par;
- Podemos representar as classes de equivalência como:
 - Classe números pares: [2] = [4] = ... = [2k];
 - Classe números ímpares: [1] = [3] = ... = [2k + 1].

Referências I

da Silva, D. M. (2012).

Slides de aula

Gersting, J. L. (2014).

Mathematical Structures for Computer Science.
W. H. Freeman and Company, 7 edition.

Levin, O. (2019).

Discrete Mathematics - An Open Introduction.

University of Northern Colorado, 7 edition.

[Online] Disponível em http://discrete.openmathbooks.org/dmoi3.html.

Rosen, K. H. (2019).

Discrete Mathematics and Its Applications.

McGraw-Hill, 8 edition.