24.8 יום ראשון – 10

NL ,L מחלקות

nכל TM אמור לקרוא את כל הקלט, אז המקום הוא לפחות n. מה אם, חוץ מקריאת הקלט, הוא משתמש רק במספר קטן של תאים, אפילו פחות מ-M או ש-M רץ במקום נשתמש במודל אחר: יש סרט אחד שהוא רק קלט (קריאה בלבד, m וסרט עבודה. נאמר שיש ל-M סיבוכיות מקום m או ש-m קורא הוא לכל היותר m.

n עבור קלט באורך, עבור עדיר את כל הענפים של עץ המספר המקסימלי של תאי עבודה שנסרקים מעל כל הענפים של עץ החישוב, עבור עבור אורך NNTM

$$L := SPACE(\log n), \qquad NL := NSPACE(\log n)$$

לדוגמה

$$L_1 := \{0^{n/2}1^{n/2} : n \in \mathbb{N}\} \in L$$

. בודה. את סרט -2 סרט את סרט 1, ויש את סרט -2 סרט עבודה. $\log n$ נניח שהקלט מתקבל על סרט 1, ויש את סרט -2

- .2 בסרט 1 לספירה נוסיף 1 שרואים, נוסיף 1 הראשון. בכל .1
 - .2 נמשיך על סרט 1 עד הסוף. לכל 1 שרואים, נחסיר 1 מהספירה בסרט 2.
 - .3 אם קוראים מקום ריק בסרט 1 ובסרט 2 כתוב 0, נקבל. אחרת, נדחה.

n עבור שמירת עבור עבור המקום הדרוש הוא $O(\log n)$

דוגמה 2

 $PATH := \{(G, s, t) : directed graph G \text{ has a path from } s \text{ to } t\} \in NL$

:בידקודים m G-באשר יש ב- $\langle G,s,t \rangle$ כאשר עבור השפה. עבור את אמכריע שמכריניסטי שלגוריתם פולינומי אי-דטרמיניסטי שמכריע את השפה

- .s נשמור מצביע לקודקוד .1
- :פעמים m פעמים ברוץ עד שנגיע ל-2.
- (a,b) אלע אי-דטרמיניסטי) צלע (באופן אי-דטרמיניסטי) ונצביע על (a,b), ונצביע על (a,b)
 - . אם הגענו ל-m פעמים, נדחה. b
 - .3 נקבל.

 $O(\log m)$ בסה"כ, מקום (שיכול להיות עד m) ומונה (שיכול לקודקוד (מספר עד אוומר רק מצביע לקודקוד (מספר עד אוומר m).

קונפיגורציה של TM עם שני סרטים

ב-TM עם סרט קריאה בלבד, התוכן שלו לא משתנה - ולכן הוא לא חלק מהקונפיגורציה (רק המיקום של הראש). אם M הוא מ"ט שרץ במקום תת-לינארי TM. $n \cdot f(n) \cdot 2^{O(f(n))}$, אז מספר הקונפיגורציות שלו הוא $f(n) \cdot 2^{O(f(n))}$.

.2 סרט לתוכן של האפשרויות מספר האפשרויות שני הראשים. $2^{O(f(n))}$ זה מספר האפשרויות לתוכן של סרט $n \cdot f(n)$

 $L,NL \in P$:אם NL-1 הם בזמן פולינומי: $O(n^2 \log n)$ היותר לכל היותר הם בזמן פולינומי: TM- אם ה

משפט סביץ' בהרחבה למקום תת-לינארי

 $NSPACE(f(n))\subseteq SPACE(f^2(n))$ מתקיים: $f(n)\geq n$ כך ש- $f:\mathbb{N}\to\mathbb{R}^+$ ניזכר במשפט סביץ': לכל פונקציה

. $NSPACE(f(n)) \subseteq SPACE(f^2(n))$ מתקיים: $f(n) \ge \log n$ כך ש- $f: \mathbb{N} \to \mathbb{R}^+$ משפט סביץ' המורחב: לכל פונקציה

ההוכחה אבי סרטים (אחד לקריאה בלבד). ההוכחה ההוכחה של משפט סביץ' הרגיל, כאשר משתמשים ב-TM עם שני סרטים

L=NL -שבל לא ש- PSPACE=NPSPACE משפט סביץ' מוכיח ש-

. מזה לא זמן לוגריתם, $NL \subseteq SPACE(\log^2 n)$ ני המעבר הריבועי גדול יותר מהלוגריתם. כלומר, המשפט נותן לנו:

. היא שאלה פתוחה השאלה $L=_{?}NL$ אז השאלה

NL-reducibility

מכונת log space transducer (LST) מכונת

- סרט קלט לקריאה בלבד.
- סרט פלט לכתיבה בלבד שלא יכול לזוז שמאלה.
- תווים. $O(\log n)$ עד להכיל להכיל וכתיבה וכתיבה לקריאה לקריאה ישיכול

-f את שמחשב M כלשהו LST כך שקיים $f\colon \Sigma^* o \Sigma^*$ פונקציה: היא פונקציה מחשב את (log space computable function, LSC) כלשהו M(x) שמתקבל על סרט הקלט, יהיה כתוב f(x) על סרט הפלט בסוף הריצה אחרי ש- M(x) עוצר.

 $. \forall A \in NL: A \leq_L B$: שפה $A = log\ space\ reducible$ אם כל שפה A = NL אם כל שפה בל שפחב בל שפה בל שפה בל שפה

NL-complete (NLC) אז B היא $B \in NL$, אם בנוסף,

נשים לב שרדוקציה שהיא \leq_L (לוגריתמית במקום) היא גם \leq_p (פולינומית בזמן), כי לוגריתמי במקום גורר פולינומי במקום, ופולינומי במקום גורר פולינומי בזמן.

NL-completeness

 $B \in L \Longrightarrow A \in L$ אז $A \leq_L B$ טענה: אם

המתקבל מה-LST המתקבל מה-LST הוא לא בהכרח בגודל ועםר אז איך אפשר לומר שהרדוקציה לוגריתמית? כדי לשמור את הפלט, צריך מקום לא-לוגריתמי.

נעשה טריק: במקום לחשב את כל f(x) ואז להעביר את הפלט בתור קלט ל-TM של B, נריץ את ה-TM של B במקביל לTM, וכשה-TM של B צריך עוד תו. נחשב אותו. פורמלית:

יהי M_A את את M_A (משתמש במקום לוגריתמי). ויהי M_A ה- M_A המחשב את M_B בהינתן M_B בהינתן M_B עד שנקבל תו. נריץ את M_A עד שנקבל תו. וכו'. וכו'. שהראש רוצה לקרוא את התו הבא. ואז נריץ את M_A עד שמקבלים את התו הבא, ונריץ את M_B עד שהוא רוצה לקרוא עוד תו... וכו'.

A את שמכריע שמכרית לוגריתמי לוגריתמי היא DTM היא (M_A,M_B) המערכת

L=NL וגם ב-L, אז NL-complete מסקנה: אם יש שפה אחת שפה

NLC היא PATH

 $A \leq_L PATH$ מתקיים אם , $A \in NL$ שפה שלכל עכשיו בראה .
PATH $\in NL$ שר כבר הראינו

יהי את הרדוקציה: נבנה את שמכריע את שמכריע את שמכריע את א שמכריע את NTM ,Nיהי

אנחנו צריכים לבנות גרף שיתאר את תהליך הריצה של N. נשנה את N כך שתהיה לו קונפיגורציה מקבלת יחידה (פשוט מכל קונפיגורציה מקבלת, נמחק את הראט למיקום הכי שמאלי). עכשיו, בהינתן קלט x עבור N, נבנה את $\zeta(s,t)$:

- . כל קונפיגורציה של N תהיה קודקוד של G. זה נותן לנו $O(n^2)$ קודקודים.
 - $.s\coloneqq c_{start},\ t\coloneqq c_{accept}$ נגדיר
 - . נוסיף צלע (c_i,c_i) אם מניבה את נוסיף צלע (c_i,c_i)

מתאר סדרת $s \leadsto t$ והפוך, מסלול $s \leadsto t$ מתאר סדרת מעברים בין קונפיגורציות שמסתיימת במצב המקבל. שזה בדיוק מסלול $s \leadsto t$ והפוך, מסלול c_{accent} והפוך, מסלול c_{start} בין מחילה ב- c_{accent} ומגיעה ל- c_{start}

נוכיח שהפונקציה היא לוגריתמית במקום. ניזכר שאנחנו לא צריכים לשמור את כל הפלט ביחד – רק להעביר אותו למכונה של PATH. נתייחס לקונפיגורציה ע"י מספר סדרתי – עבור $O(n^2)$ קונפיגורציות, זה דורש רק $O(\log n) = O(\log n) = O(\log n)$ מקום. לכל אחת, גם נבדוק לאיזה קונפיגורציות אפשר להגיע בצעד יחיד (בשביל הצלעות). אפשר לבדוק כל קונפיגורציה בנפרד ולא צריך לשמור מידע בין לבין, אז כל זה קורה ב- $O(\log n)$ מקום. והבדיקה היא פולינומית בזמן.

$NL \subseteq P$ מסקנה:

מתקיים, $A \in NL$ מתקיים, כלומר לכל שפה f(n) הים שמשתמש במקום לרוץ בזמן אז גם הרדוקציה שתיארנו יכולה לרוץ בזמן פולינומי. כלומר לכל שפה $n \cdot 2^{O(f(n))}$, אז גם הרדוקציה שתיארנו יכולה לרוץ בזמן פולינומי. .Pב היא גם ב-NL היא כל שפה ב-NL אז כל שפה ב-NL היא גם ב-NL היא גם ב-NL היא גם ב-NL היא גם ב-NL

מחלקת coNL

$$coNL := \{A : \overline{A} \in NL\}$$

במקום לוגריתמי, בעצמה ע"י שפה שהמשלים שלה מוכרע י"י NL = conL :(Immerman – Szelepcsényi) טענה – משפט אימרמן ניתנת להכרעה ע"י DTM במקום לוגריתמי.

: כלומר: $x \in A \Leftrightarrow f(x) \in PATH$ שלכל מתקיים $A \in NL$ אנחנו כבר יודעים שלכל. אנחנו - עדעים אנחנו - עדעים אנחנו - עדעים אנחנו - אנחנו - עדעים אנחנו - אונחנו - אנחנו -

$$x \in \overline{A} \iff x \notin A \iff f(x) \notin PATH \iff f(x) \in \overline{PATH}$$

. כנדרש. אז $\overline{A} \in coNL$ אז $\overline{A} \in NL$ אז תהי שפה אז אנחנו יודעים שמתקיים שמתקיים $\overline{A} \in NL$ אז תהי שפה אז תהי

A בגודל $O(\log n)$ במקום A במקום NTMN שמכריע את $A \in NL$ תהי תהי $\overline{PATH} \in NL$.

נשתמש באותה בנייה של הגרף מהרדוקציה של $A \leq_L PATH$, אבל הפעם נרצה לבדוק אם אין מסלול $s \leadsto t$ לכאורה, נוכל פשוט לבדוק את כל המסלולים באורך m שיוצאים מ-s, ואם הגענו ל-t, נדחה. הבעיה היא שנצטרך לשמור רשימה של המסלולים והקודקודים שעברנו בהם, וזה דורש יותר $O(\log n)$ מקום מ-

... בצעד אחד, לכמה קודקודים אפשר להגיע בשני צעדים... נשאל: לכמה להגיע בשני אפשר להגיע בשני בשני צעדים... m = |V(G)| נשאל: לכמה להגיע בשני צעדים... נגדיר: בירת, נגדיר פורמלית, נגדיר: m-בית להגיע לכמה

 $R_0 = \{s\}$

$$R_i := \{v : v \text{ is reacable from } s \text{ in } \le i \text{ steps}\}, \quad c[i] := |R_i|$$

. בזמן לוגריתמי בזמן לחשב את להשב מ-c[m] אנחנו רוצים מ-s. אנחנו הקודקודים שאפשר הקודקודים הל R_m -ו ה $R_0=\{s\},\;c[0]=1$

 $.c[0] \leftarrow 1$ נתחיל עם •

 $0 \le i < m$ לכל: L לכל •

 $.c[i+1] \leftarrow 1$ נאתחל ס

- c[i] מתוך מתוך לכל שכבה, נחשב את c[i+1]
 - $s \in R_{i+1}$ כי תמיד
 - $v \in R_{i+1}$ אנחנו רוצים לקבוע

 - R_{i+1} -ם יהיו ב- קודקודים סופר
- $v \neq s$ לכל קודקוד ס $d \leftarrow 0$ נאתחל
- . בדרך ע פניט שיגיעו שפוטנציאלים שפודקודים את לפני u בדרך.
 - :u לכל קודקוד ullet
 - אז: עבחר לבדוק, אז: עבחר אם לבדוק את או לא. אם נבחר לבדוק, אז: ס
- נבחר את הצעדים באופן לא דטרמיניסטי), ואם לא הגענו ל-u, נדחה את בעדים מ's נכחר עלך נלך מ'ל
 - $d \leftarrow d + 1 : d 1$ ל-מצאנו את אם מצאנו את נוסיף
 - $c[i+1] \leftarrow c[i+1] + 1$ אם בנוסף, $c[i+1] \leftarrow c[i+1] + 1$ אז
 - ונחזור לשלב L (נעבור לקודקוד v הבא).
 - את כל בדיוק את מצא בדיוק את הענף. זה מודא את בדיוק את בדיוק את d=c[i] אם אחרי שבדקנו את כל ה-u, נבדוק את כל R_i של הקודקורים.

באינטואיציה, למה זה עובד:

- . אודא. שאנחנו רוצים של R_i שאנחנו בדיוק את ה- בדיוק את ה- בדיוק אודא.
 - . מבטלת מדי או יותר ענף ענף כל מבטלת מבטלת d=c[i]
- c[i+1] יחיד עם לתוך (u,v) כדי שנספור את לתוך $u \in R_i$ יחיד עו לכל $u \in R_i$
 - $O(\log m)$ אנחנו לא שומרים קבוצות רק את האינדקס והספירה. זה דורש הקבוצות אנחנו

$:R_m$ -ב נמצא לא t-ש לבדוק צריכים צריכים אנחנו אנחנו

- . אפשר להגיע. אפשר אפשר לכמה קודקודים ב- R_m אפשר להגיע.
- באופן לא דטרמיניסטי, נבחר אם לבדוק את u או לא. אם נבחר לבדוק, אז: \circ

מקום איררכיית תשפ"ו) – הרצאה אר היררכיית מקום, כס
NL אר, או מחלקות – הרצאה הרצאה הרצאה היררכיית מקום, מקום חישוביות היא מקום הרצאה או חישוביות הרצאה או היררכיית מקום הישוביות הרצאה או היררכיית מקום הרצאה הרצאה מקום הרצאה הרצאה מקום הרצאה הר

- . נעשה m צעדים (נבחר את הצעדים באופן לא דטרמיניסטי), ואם לא הגענו ל-u, נדחה את הענף הזה.
 - אם u=t, נדחה. u=t אם u=t
 - $d \leftarrow d + 1$, אחרת ס
 - d=c[m] בדיקה אם
- . אם אסלול לישמור היינו אולי שומרים ענף לא תקין. הדרישה הזו גורמת לנו לשמור רק ענפים שמגיעים לt, אם יש מסלול כזה). ס
 - ס אחרת, נקבל.

סיבוכיות מקום: שומרים את:

- (מספר הקודקודים), m •
- , מספרים שנבדקים של הקודקודים שנבדקים) u,v
 - אינדקס), $i \bullet$
 - ,(מונים מהשלב מראשון) (מונים מהשלב $c[i], \ c[i+1]$
 - .(מונה כללי לווידוא) d •

ים. בסה"כ: $O(\log m)$ אז הקלט המקורי). בסה"כ: $O(\log m)$ אז הקלט המקורי). בסה"כ:

 $\overline{PATH} \in NL\text{-}complete \Rightarrow PATH \in coNL\text{-}complete \Rightarrow NL = coNL$

כנדרש.

סיכום ביניים

The Space Hierarchy Theorem – משפט היררכיית המקום

המשך יבוא...