Домашнее задание 2. Курс «Алгебра». 2022—2023 учебный год. БПИ-221. Вариант 4

- 1. Пусть $z = 2\sqrt{3} + 2i$. Вычислить значение $\sqrt[4]{z^3}$, для которого число $\frac{\sqrt[4]{z^3}}{\frac{3}{2} \frac{3\sqrt{3}i}{2}}$ имеет аргумент $-\frac{37\pi}{24}$.
- 2. Решить систему уравнений:

$$\begin{cases} x(-2+6i) + y(4+7i) = -19 - 140i \\ x(2+2i) + y(-12+3i) = 125 + 88i \end{cases}$$

- 3. Найти корни многочлена $x^6 + 5x^5 + 12x^4 + 16x^3 153x^2 101x + 1020$ и разложить его на множители над \mathbb{R} и \mathbb{C} , если известны корни $x_1 = -1 4i$, $x_2 = 2 i$, $x_3 = -3$.
- 4. Даны 3 комплексных числа: -26-2i, -23-5i, 25-5i. Найти число z, образующее параллелограмм с данными тремя на комплексной плоскости.
- 5. Даны числа $z_1 = 2$, $z_2 = -1 + \sqrt{3}i$ соседние комплексные корни степени n числа z. Найти степень n и исходное число.
- 6. На комплексной плоскости нарисуйте область, заданную системой $(arg(z) \in (-\pi, \pi])$:

$$\begin{cases} |z+5+5i| < 2\\ |arg(z-6+6i)| < \frac{2\pi}{3} \end{cases}$$

7. Даны 3 некомпланарных вектора a = (3, -2, 1), b = (4, 0, -3), c = (-7, 9, -9). Найдите вектор x, удовлетворяющий системе уравнений:

$$(a, x) = \alpha, \quad (b, x) = \beta, \quad (c, x) = \gamma$$

- 8. Дана точка A(-13,1,-10) и плоскость P:-50x+22y-22z+842=0. Найти координаты точки A_0 , расположенной симметрично точке A относительно плоскости P.
- 9. Даны точки A(5, -13, -5), $M_1(-1, 11, 2)$, $M_2(-15, -3, 2)$. Написать каноническое уравнение прямой L, проходящей через точки M_1 и M_2 . Найти координаты точки A_0 , расположенной симметрично точки A относительно прямой L.
- 10. Заданы две прямые L_1 и L_2 своими общими уравнениями

$$L_1: \begin{cases} -5x - 30y - 21z - 487 = 0 \\ 2x - 11y - 10z - 164 = 0 \end{cases} \qquad L_2: \begin{cases} -7x - 19y - 11z - 2978 = 0 \\ -13x - 19y - 8z - 3044 = 0 \end{cases}$$

Написать каноническое уравнение прямой, являющейся общим перпендикуляром к L₁ и L₂.