§2. Метрические пространства

Одним из часто встречающихся в математике понятий является понятие *расстояния*. Оно используется в аналитической геометрии при изучении свойств геометрических объектов в евклидовых пространствах, в математическом анализе при определении такого фундаментального понятия как предел числовой последовательности (или функции) и.д. Обобщив некоторые понятия, французский математик *М. Фреше* построил теорию метрических пространств.

П.1 Понятие метрического пространства.

Пусть X произвольное непустое множество. Говорят, что на X задана *метрика* (расстояние), если для каждой паре элементов $x,y \in X$ поставлено в соответствие единственное неотрицательное число $\rho(x,y)$, удовлетворяющее следующим трем условиям (аксиомам метрического пространства)

- 1. $\rho(x,y)=0$ тогда и только тогда, когда x=y (аксиома тождества);
- 2. $\rho(x,y) = \rho(y,x)$ для $\forall x,y \in X$ (аксиома симметрии);
- 3. $\rho(x,y)+\rho(y,z) \ge \rho(x,z) \ \forall x,y,z \in X$ (аксиома треугольника);

Пара (X, ρ) т.е. множество X с заданной на нем метрикой называется метрическим пространством.

Если (X, ρ) - метрическое пространство и $A \subset X$, то пара (A, ρ) , где $\rho(x,y)$ расстояние между точками $x,y \in A$ равно расстоянию между этими точками в пространстве (X, ρ) , также будет являться метрическим пространством и называется **подпространством** пространства (X, ρ) .

Примеры:

1. На любом непустом множестве X можно определить метрику следующим образом:

$$\rho(x,y) = \begin{cases} 0, & x = y; \\ 1, & x \neq y. \end{cases}$$

Такое пространство называется пространством изолированных точек.

2. Пусть X - множество действительных чисел. В качестве расстояния между точками возьмем функцию

$$\rho(x,y) = |x-y|.$$

Справедливость аксиом метрического пространства вытекает из свойств функции абсолютная величина числа. Полученное метрическое пространство называется одномерным арифметическим пространством или числовой прямой.

3. Пусть X - множество упорядоченных наборов п вещественных чисел. Тогда для любых двух его точек $x = (x_1, x_2, ... x_n)$ и $y = (y_1, y_2, ..., y_n)$ определим расстояние

$$\rho(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
;

Получим метрическое пространство, называемое п-мерным арифметическим пространством, которое обозначается R^n .

4. Множество оставим прежним, а метрику определим иначе

$$\rho(x,y) = \max_{1 \le i \le n} |x_i - y_i|.$$

Полученное пространство обозначают R_n^0 .

5. Воспользуемся множеством вех функций, непрерывных на отрезке [a;b]. Расстоянием между двумя его элементами будем вычислять по формуле

$$\rho(f,g) = \sup_{x \in [a;b]} |f(x) - g(x)|.$$

Получили пространство непрерывных на [a;b] функций (обозначается $C_{[a;b]}$).

6. Возьмем множество числовых последовательностей, квадраты членов которых образуют сходящийся числовой ряд. Метрику определим аналогично метрики примера 3, т.е. $x = (x_1, x_2, ..., x_n, ...)$ $y = (y_1, y_2, ..., y_n, ...)$ $\rho(x,y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$;

$$\rho(x,y) = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2};$$

Получили метрическое пространство, называемое координатным пространством Гильберта.

П.2 Основные определения.

Пусть (X, ρ) произвольное метрическое пространство.

Отврытым шаром радиуса r и c центром b точке x_0 называется множество точек этого пространства, расстояние до которых меньше г

$$B(x_0,r) = \left\{ x \in X \middle| \rho(x_0,x) < r \right\}.$$

Замкнутым шаром радиуса r и c центром в точке x_0 называется множество точек этого пространства, расстояние до которых меньше или равно r

$$B[x_0,r] = \left\{ x \in X \middle| \rho(x_0,x) \le r \right\}.$$

Окрестностью точки а (сферической окрестностью) называется открытый шар с центром в этой точке и радиуса ε .

В пространстве R^1 открытым шаром $B(x_0, r)$ является интервал $(x_0 - r, x_0 + r)$.

Пусть A - произвольное множество метрического пространства (X, ρ) .

Точка $a \in A$ называется *внутренней точкой множества* A, если существует окрестность этой точки, целиком входящая во множество A. Совокупность всех внутренних точек множества A называется *внутренностью* множества A и обозначается A^0 (другое обозначение intA). Множество, состоящее только из внутренних точек называется *отрытым*.

Внутренняя точка

Точка b называется *внешней точкой* множества A, если она является внутренней точкой дополнения т.е. множества $X \setminus A$ (т.е. существует окрестность точки b, не имеющая с множеством A общих точек).

Внешняя точка

Точка $a \in A$ называется *предельной точкой множества* A, если в любой окрестности точки содержится бесчисленное количество точек из множества A. Множество всех предельных точек множества A называется *производным множеством* и обозначается A'

Точка а называется $\underline{mочкой}$ $\underline{nрикосновения}$ $\underline{mножества}$ A, если в любая окрестность точки а имеет с множеством A непустое пересечение.

Замечание: Каждая предельная точка является точкой прикосновения, но не наоборот.

Точка множества А, не являющуюся предельной точкой называется *изолированной точкой* (если точка изолированная, то существует такая окрестность этой точки, которая содержит из множества только саму эту точку). Каждая точка прикосновения или предельная точка или изолированная.

Множество M метрического пространства (X,ρ) называется *ограниченным* если существует открытый шар, целиком содержащий множество M.

Диаметром множества М называется число

$$d(M) = \sup_{x,y \in M} \rho(x,y)$$

Расстоянием от точки а до множества M называется число $\rho(a,M) = \inf_{x \in M} \rho(a,x).$

Расстоянием между двумя множествами М и N называется число

$$\rho(M,N) = \inf_{x \in M, y \in N} \rho(x,y)$$

Если $M \cap N \neq \emptyset$ то $\rho(M,N)=0$. Обратное, вообще говоря не верно. Примеры:

- 1) В пространстве R^1 множество $A = \left\{1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...\right\}$ обладает следующими свойствами:
 - все точки изолированные (внутренних точек не имеется $A^0 = \emptyset$).
 - точка $0 \notin A$ является точкой прикосновения этого множества;
 - множество ограничено;
 - диаметр множества d(A)=1;
 - множеством внешних точек является множество

$$\mathbf{B} = (-\infty;0) \cup (1;+\infty) \cup \bigcup_{n=1}^{\infty} \left(\frac{1}{n+1};\frac{1}{n}\right)$$

- 2) Множество $C=(a;b)\subset R^1$ обладает следующими свойствами:
 - множество С открыто, т.к. все его точки внутренние;
 - множество точек прикосновения совпадает с производным множеством $C^0=[a;b];$
 - изолированных точек нет;
 - множество С ограничено;
 - диаметр множества d(C)=b-a;

П.3 Понятие сходимости.

Последовательность точек $x_1, x_2, x_3,...$ метрического пространства (X, ρ) называется *сходящейся* к точке **a**, если

$$\lim_{n\to\infty} \rho(x_n,a) = 0$$

т.е. $\forall \ \varepsilon > 0 \ \exists \ \mathbf{n}_0, \ \forall \mathbf{n} > \mathbf{n}_0 \ \Rightarrow \rho(\mathbf{x}_{\mathbf{n}}, a) < \varepsilon$. При этом точку **а** называют *пределом* последовательности и записывают $\lim_{n \to \infty} x_n = a$.

<u>Теорема</u> 1 Последовательность точек метрического пространства может иметь только один предел.

 \triangleright Предположим, что последовательность $\{x_n\}$ имеет два предела:

$$\lim_{n\to\infty} \rho(x_n,a_1) = \lim_{n\to\infty} \rho(x_n,a_2) = 0.$$

Тогда в неравенстве треугольника для точек a_1 и a_2 ($a_1 \neq a_2$)

$$\rho(a_1, a_2) \le \rho(a_1, x_n) + \rho(x_n, a_2)$$

правая часть стремится к нулю, а левая часть постоянна и отлична от нуля. Полученное противоречие доказывает теорему.

✓

<u>Теорема</u> 2 Точка **а** метрического пространства (X,ρ) является точкой прикосновения множества A, тогда и только тогда, когда во множестве A существует последовательность точек, сходящихся к точке **а**.

ightharpoonup Если точка a точка прикосновения множества A, то любая ее окрестность, в частности, открытый шар $B\!\left(a,\frac{1}{n}\right)$ имеет с множеством A непустое пересечение, следовательно в каждом таком шаре существует хотя бы одна точка $x_n \in A$. Очевидно, что $\lim_{n \to \infty} \rho(x_n,a) = 0$. Следовательно $x_n \to a$. \lhd

<u>Теорема</u> 3 Точка **а** метрического пространства (X,ρ) является предельной точкой множества A, тогда и только тогда, когда во множестве A существует последовательность попарно различных точек, сходящихся к точке **а.**

Доказательство аналогично доказательству предыдущей теоремы.

Определение.

Последовательность точек $x_1, x_2, x_3,...$ пространства (X, ρ) называется фундаментальной если для любого числа $\varepsilon > 0$ найдется такое число N, что для всех n, m > N выполняется неравенство: $\rho(x_m, x_n) < \varepsilon$.

Всякая сходящаяся последовательность является фундаментальной.

Определение.

Метрическое пространство в котором всякая фундаментальная последовательность сходится называется **полным**.

В терминах теории метрических пространств известный критерий Коши сходимости числовой последовательности означает полноту метрического пространства \mathbb{R}^1 .

Полными являются пространства R^n , R_0^n , $C_{[a:b]}$.

П.4 Замыкание множества. Свойства операции замыкания.

Определение: Присоединение к множеству всех его точек прикосновения называется замыканием множества.

Замыкание множества M обозначается \overline{M} .

Определение: Множество M метрического пространства (X,ρ) называется замкнутым если оно совпадает со своим замыканием.

Операция замыкания обладает следующими свойствами:

- 1. $A \subset \overline{A}$;
- 2. $M \subset N \Rightarrow \overline{M} \subset \overline{N}$; 3. $\overline{\overline{A}} = \overline{A}$;
- 4. $\overline{M \cup N} = \overline{M} \cup \overline{N}$;

(Доказательство этих свойств будет приведено для более общего случая топологических пространств).

П.5 Свойства открытых и замкнутых множеств метрического пространства.

<u>Теорема</u> 4 Множество метрического пространства замкнуто тогда и только тогда, когда его дополнение открыто.

hd Пусть F замкнутое множество. И точка $x_0 \in X \setminus F$. Так как множество F содержит все свои точки прикосновения, то x_0 не является таковой, а следовательно существует окрестность этой точки, целиком содержащаяся в дополнении множества F т.е. в $X \setminus F$. Таким образом мы получаем, что произвольная точка $X \setminus F$ является внутренней, а само множество - открыто.

Предположим теперь, что множество $X \setminus F$ - отрытое множество. Докажем, что множество F содержит все свои точки прикосновения. Пусть точка $y_0 \in \overline{F}$ (т.е. y_0 точка прикосновения множества F) и $y_0 \notin F$. Тогда $y_0 \in X \setminus F$, в силу открытости множества $X \setminus F$ существует окрестность $B(y_0, \varepsilon) \subset X \setminus F$. Тогда точка y_0 не является точкой прикосновения множества F. Получили противоречие с тем что $y_0 \notin F$, следовательно множество F содержит все свои точки прикосновения т.е. замкнуто. ⊲

Теорема 5 (О свойствах системы открытых множеств)

Отрытые множества обладают следующими свойствами:

- 1. Все пространство X и \emptyset открытые множества;
- 2. Объединение любого количества открытых множеств, есть множество открытое.
- 3. Пересечение конечного числа открытых множест есть множество открытое.

1 утверждение теоремы очевидно.

Пусть множества G_{α} - открыты в метрическом пространстве (X, ρ). Рассмотрим произвольную точку $x_0 \in G = \bigcup G_{\alpha}$. Так как точка x_0 принадлежит объединению множеств, то существует по крайней мере, одно множество $G_{\scriptscriptstyle\beta}$, которое содержит эту точку. Множество G_{β} - открытое, следовательно все его точки внутренние. Значит существует такой открытый шар

 $B(x_0,\varepsilon)\subset G_\beta$. Следовательно $B(x_0,\varepsilon)\subset\bigcup_\alpha G_\alpha$. Таким образом произвольная точка $x_0\in G$ оказалась внутренней, следовательно множество G - открытое.

3. Выберем произвольную точку $y_0 \in \widetilde{G} = \bigcap_{n=1}^k G_n$. Так как все множества $G_1, G_2, ..., G_n$ открытые то

$$\exists \ B(y_0, \varepsilon_1) \subset G_1, \ \exists \ B(y_0, \varepsilon_2) \subset G_2, ..., \exists \ B(y_0, \varepsilon_k) \subset G_k.$$

Все сферические окрестности точки y_0 отличаются лишь радиусами. Обозначим $\varepsilon = \min_{1 \le i \le k} \{ \varepsilon_i \}$. Тогда сферическая окрестность $B(y_0, \varepsilon)$ будет входить во **все** множества $G_1, G_2, ..., G_n$, а следовательно и в пересечение этих множеств. Таким образом произвольная точка $y_0 \in \widetilde{G}$ оказалась внутренней, следовательно множество \widetilde{G} открытое. \lhd

<u>Теорема</u> Семейство всех замкнутых множеств обладает следующими свойствами:

- 1. Все пространство Х и Ø -являются замкнутыми множествами;
- 2. Объединение конечного числа замкнутых множеств замкнуто;
- 3. Пересечение любого числа замкнутых множеств замкнуто.

Доказательство теоремы основано на применении формул Де Моргана. Замечание:

Пересечение бесконечного числа открытых множеств может быть и не открыто. Рассмотрим, например, в пространстве R^1 пересечение множеств $\bigcap_{n=1}^{\infty} \left(-\frac{1}{n};\frac{1}{n}\right) = \{0\}$. Результат пересечения одноточечное множество $\{0\}$ не является отрытым множеством в R^1 .