Lenguaje Conjuntista

Concebimos a un **conjunto** como una colección de objetos a los que podemos definir **por extensión** cuando denominamos a cada uno de los objetos que lo constituyen (el orden no interesa), ó **por comprensión** en donde se establece una propiedad característica de los elementos del conjunto.

Ejemplo:

A = $\{x: x \in IN, -2 \le x < 4\}$ está definido por comprensión, A = $\{0,1,2,3\}$ está definido por extensión.

Ejercicio 1

Escribe por extensión los siguientes conjuntos:

- a) $A = \{x: x \in IN, 3 \le x < 7\}$
- b) $B = \{x: x \in \mathbb{Z}, x 6 = -5\}$
- c) $C = \{x: x \in IR, x^2 16 = 0\}$

Ejercicio 2

Sea el conjunto $H = \{x: x \in IN, 2 \le x \le 40, x \text{ es múltiplo de 2 pero no es múltiplo de 3}\}$. Determina el número de elementos de H.

Conjuntos iguales

Dos conjuntos A y B son iguales cuando todo elemento de A pertenece a B y recíprocamente, todo elemento de B pertenece a A.

$$A = B \Leftrightarrow (\forall x)(x \in A \Leftrightarrow x \in B)$$

Conjunto vacío

El conjunto vacío es aquel que carece de elementos y se simboliza { } , o así Ø.

Inclusión

Un conjunto A esta incluido en B, cuando todos los elementos de A pertenecen a B.

$$A \subset B \Leftrightarrow (\forall x)(x \in A \Rightarrow x \in B)$$

Se dice que:

A está incluido en B A es parte de B A es subconjunto de B

Universidad de Mendoza Facultad de Ingeniería Algebra y Geometría Analítica

Curso de ambientación

Propiedades de la inclusión:

Siendo A, B y C conjuntos cualesquiera, valen las siguientes propiedades:

$$\emptyset \subset A$$
 $A \subset A$
 $(A \subset B \land B \subset C) \Rightarrow (A \subset C)$
 $(A \subset B \land B \subset A) \Leftrightarrow (A = B)$

Ejercicio 3

Siendo $A = \{m, p, o, t\}$, se puede afirmar que:

b)
$$p \subset A$$

b)
$$p \subset A$$
 c) $\{m\} \not\subset A$ d) $\{e, m\} \subset A$

Partes de un conjunto

Dado un conjunto A, se llama conjunto partes de A y se anota $\mathcal{P}(A)$, al conjunto formado por todos los subconjuntos de A.

$$\mathcal{P}(A) = \{X : X \subset A\}$$

Ejemplo:

Si A ={a} entonces $\mathcal{P}(A) = \{\{a\}, \{\}\}\},\$

Para B =
$$\{1, 2, 3\}$$
, es $\mathcal{P}(B) = \{\{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}\}, \{3,2\}\}, \{1,2,3\}, \{\}, B\}$

Si A es un conjunto finito de n elementos entonces $\mathcal{P}(A)$ tiene 2^n elementos.

Ejercicio 4

Determina si el número de elementos del conjunto $\mathcal{P}(A)$ es menor, mayor o igual al de $\mathcal{P}(B)$, siendo $A = \{1,2,3,4\}$ y $B = \{a, b, c\}$.

Ejercicio 5

Si $A = \{1, 3, 5, 7\}$ y $B = \{2, 4, 6\}$ coloca V ó F según corresponda:

a)
$$\{1,3\} \in \mathcal{P}(A)$$

b)
$$\mathcal{P}(A) = \{\{1\}, \{3\}\}$$

a)
$$\{1,3\} \in \mathcal{P}(A)$$
 b) $\mathcal{P}(A) = \{\{1\}, \{3\}\}\}$ c) $\mathcal{P}(B)$ tiene 8 elementos

$$d) \quad \mathcal{P}(A) = \mathcal{P}(B)$$

• Conjunto unión

Dados dos conjuntos A y B, se llama conjunto unión al conjunto que tiene por elementos a los elementos que pertenecen a A \sim a B.

$$A \cup B = \{x: x \in A \lor x \in B\}$$

Universidad de Mendoza Facultad de Ingeniería Álgebra y Geometría Analítica

Curso de ambientación

Propiedades

 $A \cup A = A$ $A \cup \{\} = A$ $A \cup B = B \cup A$ $(A \cup B) \cup C = A \cup (B \cup C)$

• Conjunto intersección

Dados dos conjuntos A y B, se llama conjunto intersección al conjunto formado por todos los elementos que pertenecen a A y a B.

$$A \cap B = \{x : x \in A \land x \in B\}$$

Propiedades

$$A \cap A = A$$

 $A \cap \{\} = \{\}$
 $A \cap B = B \cap A$
 $(A \cap B) \cap C = A \cap (B \cap C)$

Siendo A, B y C conjuntos cualesquiera, se cumplen las siguientes propiedades relativas a la unión e intersección:

$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$
 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$

Ejercicio 6

Siendo $G = \{1, 2, 3, 4\}$ y $H = \{2, 3, 4, 5\}$, encuentra el conjunto $G \cup H$ y $G \cap H$ por extensión.

Ejercicio 7

A y B son conjuntos cualesquiera. Existen elementos de A que pertenecen al conjunto B, entonces la proposición verdadera es:

- a) $A \cup B = B \cup A$
- b) B es un subconjunto de A
- c) A y B son conjuntos disjuntos
- *d*) $A \cap B = \{\}$

Ejercicio 8

Se sabe que $A \cup B \cup C = \{x: x \in IN, 1 \le x \le 10\}$, $A \cap B = \{2,3,8\}$, $A \cap C = \{2,7\}$, $B \cap C = \{2,5,6\}$ y que $A \cup B = \{x: x \in IN, 1 \le x \le 8\}$, entonces el conjunto C escrito por extensión es:

Universidad de Mendoza Facultad de Ingeniería Álgebra y Geometría Analítica

Curso de ambientación

Eiercicio 9

Siendo $A = \{\{1\},\{2\},\{3\}\}\}$, se puede afirmar que:

b)
$$\{1\} \subset A$$

b)
$$\{1\} \subset A$$
 c) $(\{2\} \cap \{1\}) \not\subset A$ d) $(\{1\} \cap \{2\}) \subset A$

• Conjunto diferencia

Se llama conjunto diferencia de A y B, al conjunto anotado A-B cuyos elementos pertenecen a A y no a B.

$$A - B = \{x : x \in A \land x \notin B \}$$

Propiedades:

$$(A - B) \cap B = \{ \}$$

 $A - A = \{ \}$
 $A - \{ \} = A$

Ejercicio 10

Considera los conjuntos $A = \{x: x \in IR, x^2 - 16 = 0\}$ y $B = \{x: x \in \mathbb{Z}, -4 \le x < 5\}$, determina por extensión los conjuntos: A-B y B-A.

Ejercicio 11

Sean los conjunto $A = \{x: x \in IN, x \text{ es múltiplo de 6 y menor que 18} \} y$

 $B=\{x:x\in IN, x \text{ es divisor de 6}\}$. Determina por extensión:

- a) *A*∩*B*
- b) A− (A∪B)
- c) $A (B \cap A)$
- $d) (B A) \cup A$

Conjunto complemento

Sea E un conjunto al cual denominaremos universal o referencial, se tienen todos los subconjuntos o partes de E que anotaremos como A, B, C,... } . Dados los conjuntos A y el referencial E, se llama complemento del conjunto A, al conjunto formado por los elementos que pertenecen a E y que no pertenecen a A.

$$A'=C_E\ A=E\text{-}\ A=\{x\colon\ x\in E\ \wedge\ x\not\in A\ \}$$

Ejercicio 12

Siendo $E = \{0, 1, 2, 3, 4, 5\}, A = \{x: x \in IN, x^2 - 16 = 0\} y B = \{x: x \in Z, 0 \le x < 5\},$ determina por extensión:

- a) E-A
- *b*) (*B*′*∩A*)
- c) (A∪B)'

Par ordenado

Un símbolo como (a,b) denota un par ordenado donde a es la primer componente y b la segunda componente.

Dos pares ordenados (a,b) y (c,d) se dicen iguales si y solo si las primeras componentes de cada par son iguales y las segundas componentes de cada par también son iguales:

$$(a,b) = (c,d) \Leftrightarrow (a = c \land b = d)$$

Conjunto producto cartesiano

Siendo A y B conjuntos cualesquiera, llamamos conjunto producto cartesiano de A por B al conjunto anotado AXB, cuyos elementos son pares ordenados (x, y), donde el primer elemento pertenece a A y el segundo pertenece a B.

$$\mathsf{AXB} = \{ (\mathsf{x},\,\mathsf{y}) \colon \, \mathsf{x} \in \mathsf{A} \land \, \mathsf{y} \in \mathsf{B} \}$$

Ejemplo

$$A = \{1,2,3\}$$
 y $B = \{4,5\}$
 $AXB = \{(1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5)\}$

Propiedades

- Si A ≠ B entonces AXB ≠ BXA
- Si A y B son conjuntos finitos con m y n elementos respectivamente, entonces AXB es un conjunto finito de m.n elementos.

Ejercicio 13

Marca la respuesta correcta:

- Si $A = \{x \in IN, 3 \le x < 5\}$ y $B = \{x \in Z, x 3 = 5\}$ entonces: a) $AXB = \{(3,4), (3,8)\}$ b) $AXB = \{(3,8), (4,8)\}$ c) $AXB = \{(3,8), (8,4)\}$
- Si AXB = {(2,1), (2,3),(4,1), (4,3)}, entonces: a) A ={0,1}y B ={4,2} b) A ={2,4}y B ={2,3} c) A ={2,4}y B ={1,3}