HW 1 - Inferência Estatística

Wellington José Leite da Silva Escola de Matemática Aplicada, Fundação Getulio Vargas, Brasil.

August 15, 2024

Problema 1:

Prove o seguinte Teorema considerando A_n monotona crescente:

Teorema 1. (Continuidade de probabilidade). Se $A_n \rightarrow A$, então

$$P(A_n) \to P(A)$$

quando $n \rightarrow \infty$.

E prove o caso de monotonicidade decrescente.

Solução: Supondo primeiro que A_n é monotona crescente, então $A_1 \subset A_2 \subset \ldots$ Seja $A = \lim_{n \to \infty} A_n = \bigcup_{i=1}^{\infty} A_i$. Defina $B_1 = A_1$, $B_2 = \{w \in \Omega : w \in A_2, w \notin A_1\}$, $B_3 = \{w \in \Omega : w \in A_3, w \notin A_2, w \notin A_1\}$, ... Por construção, B_i são disjuntos, $A_n = \bigcup_{i=1}^n A_i = \bigcup_{i=1}^n B_i$ para cada n e $\bigcup_{i=1}^{\infty} B_i = \bigcup_{i=1}^{\infty} A_i$. Daí, pelo Axioma 3 do livro texto:

$$P(A_n) = P\left(\bigcup_{i=1}^n B_i\right) = \sum_{i=1}^n P(B_i)$$

e portanto pelo Axioma 3 de novo

$$\lim_{n\to\infty} P(A_n) = \lim_{n\to\infty} \sum_{i=1}^n P(B_i) = \sum_{i=1}^\infty P(B_i) = P\left(\bigcup_{i=1}^\infty B_i\right) = P(A).$$

Supondo agora A_n monotona decrescente, ou seja, $A_1 \supset A_2 \supset \dots$ Seja $A = \bigcap_{n=1}^{\infty} A_n$. Podemos definir uma nova sequencia $B_n = \{w \in \Omega : w \in A_1, w \notin A_n\}$ para todo n. Assim, $\lim_{n \to \infty} B_n = A_1 \setminus \bigcap_{n=1}^{\infty} A_n = A_1 \setminus A$.

Agora, B_n é uma sequencia monotona crescente, então pela primeira parte temos que $P(B_n) \to P(A_1 \setminus A) = P(A_1) - P(A)$, quando $n \to \infty$. Usando agora que $P(A_n) = P(A_1) - P(B_n)$ e usando o limite

$$\lim_{n\to\infty} P(A_n) = \lim_{n\to\infty} [P(A_1) - P(B_n)] = P(A_1) - \lim_{n\to\infty} P(B_n) = P(A_1) - (P(A_1) - P(A)) = P(A).$$