

2º Grado Informática Estructura de Computadores 7 Septiembre 2016

Test de Teoría (3.0p)

]	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
6	a	b	a	a	d	d	С	d	a	С	b	a	b	d	d	b	С	a	С	d	d	С	С	d	d	С	b	b	С	a

Test de Prácticas (4.0p)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	b	b	b	С	a	a	С	a	d	С	d	a	a	С	a	a	d	a	b

Examen de Problemas (3.0p)

1. Ensamblador a C (0.6 puntos).

```
int loop(int a[], int n)
{
    int i, sum;
    sum = 0;
    for (i = 0; i < n; i + +) {
        sum += a[i]/4;
//alter.sum += (a[i]>0? a[i] : a[i]+3) >> 2;
    }
    return sum;
}
```

2. Acceso a estructuras (0.5 puntos).

```
En orden: gamma, alpha, beta, delta, epsilon
```

- 3. Acceso a matrices (0.5 puntos).
 - a) **%ebp**, **%ebx**, **%edx**, **%eax**, **%ecx** (**%ebp** en ajuste marco pila, **%esp**, **%eip** implícitamente)
 - b) %ebp, %ebx
 - c) 100
 - d) char
 - e) %eax

f.c

```
#define N 100
typedef char number;

int f(number v[N][N]){
  int i, sum=0;
  for (i=0; i<N; i++) sum += v[i][i];
  return sum;
}</pre>
```

4. Unidad de control (0.5 puntos).

Solución 1:

Solución 2:

branch: Y:=PC; branch: Z:=Y+IR; Z:=Y+IR;

PC:=Z; goto fetch; PC:=Z; goto fetch;

5. Diseño de memoria (0.5 puntos).

La solución es el enunciado del problema 5 del examen de febrero de 2015

6. Memoria cache (0.4 puntos).

a) $32 \text{ KB} = 2^{15} \text{ bytes.}$

Como cada línea tiene 2^6 bytes, el nº de líneas es (2^{15} bytes) / (2^6 bytes/línea) = 2^9 líneas = 512 líneas. Como la cache es asociativa por conjuntos de 2 vías, cada conjunto tiene 2 líneas, por tanto el número de conjuntos es 512 / 2 = 256 conjuntos.

b) F=1/4

64 bytes/línea: $2^6/2^2 = 2^4$ ints/línea, y como se avanza de 4 en 4 ints, hay un fallo cada $2^4/2^2 = 4$ accesos