Approximating Minimum Subset Feedback Sets in Undirected Graphs with Applications

Guy Even, Joseph (Seffi) Naor, Baruch Schieber, and Leonid Zosin

Gustavo Ciotto Pinton

University of Campinas - UNICAMP MO418 - Approximation Algorithms

November 28th, 2018

Outline

Introduction

Approximating the subset feedback set problem Approximating the SUBSET-FES problem Approximating the SUBSET-FVS problem

Linear Programming Formulation and Integrality Gap

Introduction

Problem definition

- G = (V, E) be an undirected graph with a weight function W associated with either the vertices or edges of G.
- ▶ A **feedback vertex set** (FVS) is defined to be a set of vertices that intersects all cycles in *G*.
- A feedback edge set (FES) is defined equally, but in respect to the edges.
- ➤ SUBSET-FVS or SUBSET-FES: restrict the set of cycles (interesting cycles) that the feedback set should intersect:
 - ▶ Let $S \subseteq V$ be a set of *special* vertices. A cycle is **interesting** if it contains a **special** vertex.
- We are interested in computing a minimum weight subset feedback set.

Introduction

Hardness

- Computing a minimum weight FVS is a classical NP-complete problem [1].
- ► FES problem can be solved in polynomial time: a minimum weight FES is the complement of a maximum weight spanning tree in *G* (Kruskal's algorithm).
- ▶ SUBSET-FES and SUBSET-FVS are NP-complete, even for |S| = 1:
 - ▶ Multiway cut problem: A multiway cut is a set of edges (or vertices) whose removal disconnects every pair of terminals in $T \subseteq V$. As seen in class, computing such a minimum cut in NP-complete.
 - Polynomial time reduction to the subset feedback set problem: connect a single special vertex s to all $t \in T$.
 - ▶ In vertex version, s has infinite weight. In the edge version, set the weight of all adjacent edges to s to infinite.
 - ▶ Any cycle passing through *s* corresponds to a path connecting two terminals in *T*.
 - A subset feedback set with respect to s is also a multiway cut of T.

Some details before the algorithm

- ▶ G = (V, E) be an undirected graph with a weight function $w : E \to \mathbb{R}$.
- ▶ $S = \{s_1, s_2, \dots s_k\}$ is the set of special vertices.
- ▶ Define $V_i \triangleq V \{s_i, \ldots, s_k\}$. Consequently, $V_i \subset V_{i+1}$, $V_{k+1} = V$ and V_1 is the set of of nonspecial vertices.
- ▶ Without loss of generality, assume *G* is connected and that for each special vertex:
 - ightharpoonup deg(s) = 2.
 - Its two neighbors are not special vertices.
 - its two adjacent edfs have infinite weight.
- ▶ Whenever a vertex *s* does not satisfy these conditions:
 - For each edge e adjacent to s, split it in e1, e2 and e3.
 - Add vertex s' between e_1 and e_2 .
 - Add vertex s'' between e_2 and e_3 .
 - $w(e_1) = w(e_2) = \infty \text{ and } w(e_3) = w(e).$
 - Add s' to S and remove s from this set.

Algorithm

- ▶ Let the two neighbors of s_i be x_i and y_i .
- ► Algorithm:

Algorithm 1 SUBSET-FES

```
M \leftarrow \emptyset for i=1 to k do M_i \leftarrow \text{minimum cut between } x_i \text{ and } y_i \text{ in } G_i = (V, E - \cup_{j=1}^{i-1} M_j) end for M \leftarrow M_1 \cup M_2 \cup \ldots \cup M_k return M
```

► The solution is feasible.

Analysis

- Let OPT denote a minimum weight solution.
- ▶ Define H = (V, E OPT) and H_i as the subgraph of H induced by V_i .
- ► Fact: *H* does not contain any interesting cycles.
- ▶ **Claim:** the number of connected components |C| in H_1 is k+1.
- ► Proof:
 - H₁ consists of connected components: for each special vertex s_i, x_i and y_i cannot belong to the same connected component. Otherwise, there would be another interesting cycle.
 - ▶ Build H' by contracting each component of H_1 into a vertex.
 - ightharpoonup Since H does not have any cycle, H' must be a tree.
 - Number of edges in H' is |E'| = 2k, since each s_i has two neighbors.
 - ▶ **Euler's theorem**: |V'| + |F'| = |E'| + 2. With |F'| = 1 and $|E'| = 2k \implies |V'| = 2k + 1$.
 - ► Therefore |C| = |V'| |S| = k + 1.

Analysis (II)

- ▶ Connected components of H_1 : C_1 , . . . , C_{k+1} .
- Let OPT_i denote the edges in OPT with one endpoint in C_i.
- ► Each edge in OPT touches two connected components $\implies \sum_{i=1}^{k+1} w(OPT_i) = 2w(OPT)$.
- ▶ Injective mapping from $M_1, ..., M_k$ to $C_1, ..., C_{k+1}$, i.e., each component can be the image of at most one cut:
- For each M_i , we identify $C_{I(i)}$ and $C_{r(i)}$:
 - ightharpoonup p is a simple path from x_i to y_i in $G_i = (V, E \bigcup_{j=1}^{i-1} M_j)$.
 - ▶ Discard from p all nonspecial vertices, except for x_i and y_i .
 - ▶ The remaining vertices, in order of appearance, are called the *backbone* of *p*.
 - ▶ Follow the *backbone*, from *x_i* until the first vertex *v* that is not connected in *H_i* to its subsequent vertex in the backbone.
 - ▶ Such a vertex always exists since the *p* is disconnected by OPT.
 - \triangleright v can be either x_i or a special vertex s_j such that j < i.
 - ▶ Define $C_{I(i)} = C_j$ such that $v \in C_j$.
 - ▶ Define $C_{r(i)}$ similarly by considering p in reverse order.

Analysis (III)

▶ **Claim 1:** All simple paths connecting x_i with y_i in G_i have the same backbone.

Proof:

- Consider two paths p and q and suppose that they have different sequences of special vertices.
- Union of p and q must contain an interesting cycle.
- Let j < i be the maximum index of a special vertex in this cycle.
- ▶ Path connecting x_j and y_j , obtained by removing s_j from the cycle, is in G_i .
- M_j must intersect this path and it cannot belong to G_i => contradiction.

Analysis (IV)

- ▶ Claim 2: For $i = 1, ..., k, w(M_i) \le \min\{w(OPT_{l(i)}), w(OPT_{r(i)})\}$
- ▶ Proof $w(M_i) \le w(OPT_{I(i)})$:
 - ▶ By Claim 1, all the paths from x_i to y_i in G_i traverse a vertex in $C_{I(i)}$.
 - ▶ By definition of $C_{l(i)}$ all these paths emanate from $C_{l(i)}$ using an edge from $OPT_{l(i)} \implies OPT_{l(i)}$ cuts them all.
 - ▶ Since M_i is a cut of minimum weight, $w(M_i) \leq w(OPT_{I(i)})$.
- ▶ Proof $w(M_i) \le w(OPT_{r(i)})$:
 - It can be shown as the previous case.

Injective mapping:

- Auxiliary graph H": vertex set consists of the the special vertices and one vertex for each connected component of H₁.
- ▶ H'' is a tree for the same reasons H' is. It has 2k edges and 2k + 1 vertices.
- Root this tree at an arbitrary nonspecial vertex.
- ▶ Each special vertex s_i has exactly one child which corresponds to either $C_{I(i)}$ or $C_{r(i)}$.
- Map M_i to this component.

Results

- ► **Theorem:** Algorithm SUBSET-FES computes a feasible solution whose weight is at most twice the weight of an optimal solution.
- ► Proof:

 - $\sum_{i=1}^{k} \min\{w(OPT_{I(i)}), w(OPT_{r(i)})\} \le \sum_{i=1}^{k} w(OPT_{M(i)})$ (Mapping)

 - ► Therefore $\sum_{i=1}^{k} M_i \leq 2w(OPT)$.
- The algorithm is tight.

Analysis

- ▶ With loss of generality, for each special vertex s: $w(s) = \infty$ and its two neighbors have infinite weight too.
- Same approximation algorithm as SUBSET-FES, however:
 - $ightharpoonup M_i$ is a minimum weight vertex cut between x_i and y_i .
 - Same algorithm as before. In iteration i, $G_i = (V \bigcup_{j=1}^{i-1} M_j, E)$. Return $\bigcup_{i=1}^k M_i$.
 - $\vdash H = (V OPT, E).$
 - ▶ H_1 has at least k + 1 connected components, denoted by $C_1, \ldots, C_{k+1}, \ldots, C_n$.
 - $ightharpoonup OPT_i$ are the vertices in OPT neighbors of C_i .
 - $ightharpoonup \Delta$ is the maximum vertex degree.
 - ▶ Since every vertex of OPT may be the neighbor of at most Δ components, $\sum_{i=1}^{k-1} w(OPT_i) \leq \Delta w(OPT)$.
 - By repeating a similar analysis done for SUBSET-FES (finding an injective mapping), we can show that $\sum_{i=1}^{k} w(M_i) \leq \Delta w(OPT)$.

▶ Given a **minimization problem**, the integrality gap is defined as

$$\mathsf{IG} = \max_{l} \frac{\mathsf{PLI}(l)}{\mathsf{PL}(l)}$$

where **PLI** is the integer linear problem's solution and **PL**, its fractional relaxation.

- ▶ Integer programming formulation for FES and FVS:
 - Let G = (V,E) be an undirected graph with |V| = n.
 - ▶ Denote C the set of cycles in G.
 - $ightharpoonup C_v$ is set of cycles passing through vertex v.
 - Let $x_v \in \{0,1\}$ (or x_e) be an indicator variable for membership in a feedback set in G.

Formulation for FES and FVS

Integer programming formulation for FVS:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{v \in V} w(v) * x_v \\ \text{subject to} & \displaystyle \sum_{v \in C} x_v \geq 1 \text{ for every } C \in \mathcal{C} \\ & x_v \in \{0,1\} \text{ for every } v \in V \end{array}$$

▶ Integer programming formulation for **FES**:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} w(e) * x_e \\ \text{subject to} & \displaystyle \sum_{e \in C} x_e \geq 1 \text{ for every } C \in \mathcal{C} \\ & \displaystyle x_e \in \{0,1\} \text{ for every } e \in E \end{array}$$

Formulation for SUBSET-FES and SUBSET-FVS

- ▶ We can extend the previous problems to consider only the cycles containing the special vertices *S*.
- Integer programming formulation for SUBSET-FVS:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{v \in V} w(v) * x_v \\ \text{subject to} & \displaystyle \sum_{v \in C} x_v \geq 1 \text{ for every } C \in \bigcup_{s \in S} \mathcal{C}_s \\ & x_v \in \{0,1\} \text{ for every } v \in V \end{array}$$

Integer programming formulation for SUBSET-FES:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} w(e) * x_e \\ \text{subject to} & \displaystyle \sum_{e \in C} x_e \geq 1 \text{ for every } C \in \bigcup_{s \in S} \mathcal{C}_s \\ & x_e \in \{0,1\} \text{ for every } e \in E \end{array}$$

Integrality Gap for FES and FVS

- Let's show that the integrality gap in the FVS and FES can be as big as $\Omega(\log |V|)$.
 - Let $H_n = (V, E)$ be a connected, 3-regular graph, with $|V(H_n)| = n$ and girth of H_n is $\lceil \log n \rceil$.
 - Such graphs exist and can be constructed explicitly. (See, e.g., Bollobás [6, pp. 108-110]).
 - Set all weights (edges or vertices) in G to 1.
 - **Claim 1:** The value of the optimal fractional FVS solution in H_n is at most $\frac{n}{\lceil \log n \rceil}$. The value of the optimal fractional FES solution in H_n is at most $1.5 \frac{n}{\lceil \log n \rceil}$.
 - Proof:

 - Length of the shortest cycle contained in G is [log n].
 A feasible fractional solution for FVS could be x_v = 1/[log n] ∀v ∈ V.

Its cost is
$$\sum_{v \in V} w(v) * x_v = \sum_{v \in V} \frac{1}{\lceil \log n \rceil} = \frac{n}{\lceil \log n \rceil}$$

- ▶ For FES, it could be $x_e = \frac{1}{\lceil \log n \rceil} \forall e \in E$.
- $|E| = 1.5n, \text{ since } \sum deg(v) = 2|E| \text{ and } deg(v) = 3 \ \forall v \in V.$ $v \in V$
- Therefore, FES solution's cost would be $\sum_{\substack{e \in E \\ \text{\downarrow a and b and a as a

Integrality Gap for FES and FVS (II)

- An optimal integral solution for the FES is the complement of any spanning tree of H_n .
- ► Its cost is $1.5n (n-1) = \frac{n}{2} + 1$.
- ► Therefore, $IG_{FES} = \frac{\frac{n}{2}+1}{1.5\frac{n}{\lceil \log n \rceil}} = \lceil \log n \rceil \frac{n+2}{3n}$, which is $\Omega(\log |V|)$.
- ▶ Claim 2: The value of an optimal integral solution for the FVS problem in H_n is $\Omega(n)$.
- Proof:
 - An optimal solution to the FES problem costs at most $\Delta=3$ times the cost of an optimal solution to the FVS problem.
 - ► Therefore, the cost of the FVS is at least $\frac{\frac{n}{2}+1}{3} = \frac{n}{6} + \frac{1}{3}$, which is $\Omega(n)$.
- ▶ We have then $IG_{FVS} = \frac{\frac{n}{6} + \frac{1}{3}}{\frac{n}{\lceil \log n \rceil}} = \lceil \log n \rceil \frac{n+2}{6n}$, which is also $\Omega(\log |V|)$.

Integrality Gap for SUBSET-FES and SUBSET-FVS

- \blacktriangleright Let F_n be the union of two graphs:
 - ▶ $H_k = (S, E)$, with |S| = k.
 - ▶ Clique C_{n-k} on the remaining n-k vertices.
- ▶ Connect H_k and C_{n-k} by a *single* edge.
- ▶ No cycle that goes through a vertex in *S* intersects the clique.
- ▶ Thus, for integrality gap, consider only H_k which has k vertices.
- ▶ By using claims 1 and 2, we obtain that $IG_{SUBSET-FES}$ and $IG_{SUBSET-FVS}$ are in $\Omega(\log k)$.