TP - Problemas del trabajo práctico 03MIAR - Algoritmos de optimización

Viu Universidad Internacional de Valencia

Problema 1. Organizar sesiones de doblaje

 Se precisa coordinar el doblaje de una película. Los actores del doblaje deben coincidir en las tomas en las que sus personajes aparecen juntos en las diferentes tomas. Los actores de doblaje cobran todos la misma cantidad por cada día que deben desplazarse hasta el estudio de grabación independientemente del número de tomas que se graben. No es posible grabar más de 6 tomas por día. El objetivo es planificar las sesiones por día de manera que se gasto por los servicios de los actores de doblaje sea el menor posible. Los datos son:

Número de actores: 10 Número de tomas : 30

Actores/Tomas: https://bit.ly/36D8luK

1 indica que el actor participa en la toma 0 en caso contrario

- Desde la La Liga de fútbol profesional se pretende organizar los horarios de los partidos de liga de cada jornada. Se conocen algunos datos que nos deben llevar a diseñar un algoritmo que realice la asignación de los partidos a los horarios de forma que maximice la audiencia.
- Los horarios disponibles se conocen a priori y son los siguientes:

Viernes	20 🖟
Sábado	12,16,18,20
Domingo	12,16,18,20
Lunes	20

- En primer lugar se clasifican los equipos en tres categorías según el numero de seguidores(que tiene relación directa con la audiencia). Hay 3 equipos en la categoría A, 11 equipos de categoría B y 6 equipos de categoría C.
- Se conoce estadisticamente la audiencia que genera cada partido según los equipos que se enfrentan y en horario de sábado a las 20h (el mejor en todos los casos)

	Categoría A	Categoría B	Categoría C
Categoría A	2 Millones	1,3 Millones	1 Millones
Categoría B		0.9 Millones	0.75 Millones
Categoría C			0.47 Millones

- Si el horario del partido no se realiza a las 20 horas del sábado se sabe que se reduce según los coeficientes de la siguiente tabla
- Debemos asignar obligatoriamente siempre un partido el viernes y un partido el lunes

	Viernes	Sábado	Domingo	Lunes
12h	-	0.55	0.45	-
16h	-	0.7	0.75	-
18h	-	0.8	0.85	-
20h	0.4	1	1	0.4

 Es posible la coincidencia de horarios pero en este caso la audiencia de cada partido se verá afectada y se estima que se reduce en porcentaje según la siguiente tabla dependiendo del número de coincidencias:

Coincidencias	-%
0	0%
1	25%
2	45%
3	60%
4	70%
5	75%
6	78%
7	80%
8	80%

Los cálculos asociados a una jornada de ejemplo se realizan según se muestra en la siguiente tabla:

	Pa	rtido	Categorías	Horario	Base(Mill.)	Ponderación	Base*Ponderación	Correción Coincidencia
Celta	-	Real Madrid	B-A	V20	1,3	0,4	0,52	0,52
Valencia	-	R. Sociedad	B-A	S12	1,3	0,55	0,72	0,72
Mallorca	~	Eibar	C-C	S16	0,47	0,7	0,33	0,33
Athletic	-	Barcelona	B-A	S18	1,3	0,8	1,04	1,04
Leganés	-	Osasuna	C-C	S20	0,47	1	0,47	0,47
Villarreal	-	Granada	B-C	D16	0,75	0,75	0,56	0,42
Alavés	-	Levante	В-В	D16	0,9	0,75	0,68	0,51
Espanyol	- 2	Sevilla	B-B	D18	0,9	0,85	0,77	0,77
Betis	-	Valladolid	B-C	D20	0,75	1	0.73	0,75
Atlético	-	Getafe	B-B	L20	0,9	0,4	0,36	0,36

Total: 5,88

 $=0,56 \times 0,75$

 $=0,68 \times 0,75$

Viu Universidad Internacional de Valencia

Problema 3. Combinar cifras y operaciones

- El problema consiste en analizar el siguiente problema y diseñar un algoritmo que lo resuelva.
- Disponemos de las 9 cifras del 1 al 9 (excluimos el cero) y de los 4 signos básicos de las operaciones fundamentales: suma(+), resta(-), multiplicación(*) y división(/)
- Debemos **combinarlos alternativamente sin repetir ninguno de ellos** para obtener una cantidad dada. Un ejemplo sería para obtener el 4:

$$4+2-6/3*1=4$$

Problema 3. Combinar cifras y operaciones

- Debe analizarse el problema para encontrar todos los valores enteros posibles planteando las siguientes cuestiones:
 - ¿Qué valor **máximo** y **mínimo** se pueden obtener según las condiciones del problema?
 - ¿Es posible encontrar todos los valores enteros posibles entre dicho mínimo y máximo ?
- Nota: Es posible usar la función de python "eval" para evaluar una expresión:

```
expresion = "4-2+6/3*1"
print(eval(expresion))
4.0
```


Generar un Notebook en GitHub (carpeta SEMINARIO)

Entrega de documento .pdf con en Notebook (como las A. Guiadas)

Desarrollar algoritmos con la técnica de biologueda aleatorio a Controllar algoritmos con la técnica de biologueda aleatorio a Desarrollar algoritmos con la técnica de biologueda destorio a Desarrollar algoritmos con la técnica de biologueda de recocido amulandismidated ammealing/ISA)
Desarrollar algoritmos con la técnica de recocido amulandismidated ammealing/ISA)
Desarrollar algoritmos con la técnica de recocido amulandismidated ammealing/ISA)
Desarrollar de algoritmos con la técnica de recocido amulandismidated ammealing/ISA)
Desarrollar de algoritmos agendiscon de locaria de hormigas/IACO)
Desarrollar modelar y amultar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar algoritmos según diferentes técnicas para resioner el problema planteado en la asignitar el pr

Plantilla para el documento

https://colab.research.google.com/drive/1NVFHsnmrE-wFLX8y1SC3tKlh2et5FOz8

Cabecera

- Algoritmos de optimización - Seminario

Nombre y Apellidos:

Url https://github.com/.../03MAIR---Algoritmos-de-Optimizacion---2019/tree/master/SEMINARIO

Problema:

1. Elección de grupes de publicación homogóneos
2. Organizar los inorarios de partidos de La Liga
3. Combinar cifras y operaciones

Añadir texto del enunciado

Descripción del problema:(copiar enunciado)
....

(*) La respuesta es obligatoria

Pregunta – Respuesta (texto + Python)

Trabajo de Seminario. Entregable. Ejemplo

Pregunta – Respuesta (texto + Python)

(*)¿Cuantas posibilidades hay sin tener en cuenta las restricciones?

¿Cuantas posibilidades hay teniendo en cuenta todas las restricciones.

Respuesta:

Para calcular el numero posible de soluciones es necesario algunas algo de combinatoria y saber contar.

Suponemos que el número de ciudades es N y que partimos de una ciudad dada. Podemos suponer un procedimiento que vaya construyendo todas las soluciones.

Para el primer viaje disponemos de N-1 ciudades ya que debemos eliminar la ciudad de partida como posible candidata. Para la segunda ciudad a visitar disponemos de N-2 posiblidades. Por tanto ya tenemos (N-1)x(N-2) para visitar 2 ciudades.

Si seguimos el razonamiento deducimos que hay (N-1)! (factoria de N-1) posibilidades.

Puesto que el camino es circular(comienza y termina en la misma ciudad) debemos tener en cuenta que cada ruta tiene una ruta inversa semejante. La primera se convierte en la última, la segunda en la penultima y así sucesivamente. Por tanto sin no gueremos tener en cuenta esta repeticion en total tenemos (N-1)!/2

Trabajo de Seminario. Preguntas(1/3)

Pregunta – Respuesta (texto + Python)

- (*)¿Cuantas posibilidades hay sin tener en cuenta las restricciones?
- ¿Cuantas posibilidades hay teniendo en cuenta todas las restricciones.
- (*) ¿Cual es la estructura de datos que mejor se adapta al problema? Argumenta la respuesta
 (Es posible que hayas elegido una al principio y veas la necesidad de cambiar, argumenta)
- (*)¿Cual es la función objetivo?
- (*)¿Es un problema de maximización o minimización?

(*) Obligatorio responder

Trabajo de Seminario. Preguntas(2/3)

Pregunta – Respuesta (texto + Python)

- Diseña un algoritmo para resolver el problema por fuerza bruta
- Calcula la complejidad del algoritmo por fuerza bruta
- (*)Diseña un algoritmo que mejore la complejidad del algoritmo por fuerza bruta.
 Argumenta porque crees que mejora el algoritmo por fuerza bruta
- (*)Calcula la complejidad del algoritmo
- Según el problema (y tenga sentido), diseña un juego de datos de entrada aleatorio.

(*) Obligatorio responder

Trabajo de Seminario. Preguntas (3/3)

Pregunta – Respuesta (texto + Python)

- Aplica el algoritmo al juego de datos aleatorio generado.
- Enumera las referencias que has utilizado(si ha sido necesario) para llevar a cabo el trabajo
- Describe brevemente en unas líneas como crees que es posible avanzar en el estudio del problema. Ten en cuenta incluso posibles variaciones del problema y/o variaciones al alza del tamaño.

Trabajo de Seminario. Evaluación.

Total 13 cuestiones:

6 obligatorias(*), aseguran 7/10

- 7 opcionales , añaden 2 puntos más: 9/10
- 1 punto por presentación, descripción
 - lenguaje claro
 - código comentado
 - acompaña ilustraciones si es necesario(imágenes)

. . .

Gracias

raul.reyero@campusviu.es

Viu Universidad Internacional de Valencia