X	$\frac{n_{A,X}}{n_A}$	$\frac{n_{B,X}}{n_B}$	$\frac{n_{A,B,X}}{n_{A,B}}$	μ^{min}	μ^{max}
Apple	$1.66 \cdot 10^{-1}$	$2.36 \cdot 10^{-1}$	$2.71 \cdot 10^{-1}$	$1.02 \cdot 10^{-1}$	$3.34 \cdot 10^{-1}$
Parsley	$1.21 \cdot 10^{-2}$	$4.52 \cdot 10^{-2}$	$3.19 \cdot 10^{-2}$	$1.31 \cdot 10^{-2}$	$5.95 \cdot 10^{-2}$
Yam	$2.88 \cdot 10^{-3}$	$3.48 \cdot 10^{-3}$	$4.76 \cdot 10^{-3}$	$1.15 \cdot 10^{-3}$	$7.30 \cdot 10^{-3}$
Elderberry	$2.16 \cdot 10^{-3}$	$3.95 \cdot 10^{-3}$	$4.57\cdot 10^{-3}$	$1.25 \cdot 10^{-3}$	$6.49 \cdot 10^{-3}$
Olive	$5.22 \cdot 10^{-2}$	$2.13 \cdot 10^{-1}$	$2.90 \cdot 10^{-1}$	$6.56 \cdot 10^{-2}$	$2.12 \cdot 10^{-1}$
Raisin	$3.49 \cdot 10^{-2}$	$3.83 \cdot 10^{-2}$	$1.04 \cdot 10^{-1}$	$1.45 \cdot 10^{-3}$	$9.69 \cdot 10^{-2}$
Almond	$9.01 \cdot 10^{-2}$	$1.10 \cdot 10^{-1}$	$2.55\cdot 10^{-1}$	$6.21 \cdot 10^{-3}$	$2.35 \cdot 10^{-1}$
Lentils	$1.42 \cdot 10^{-2}$	$1.69 \cdot 10^{-2}$	$4.39 \cdot 10^{-2}$	$1.38 \cdot 10^{-3}$	$4.10 \cdot 10^{-2}$

Table 1: Individual and joint probabilities for the words "A = Fruits" and "B = Vegetables", with respect to the exemplars "X = Apple, Parsley, Yam, Elderberry, Olive, Raisin, Almond and Lentils." For "Apple, Parsley, Yam, Elderberry" data can be modeled using only 'interference effects', *i.e.*, formula (??), whereas for "Olive, Raisin, Almond, Lentils" the values of $\frac{n_{AB,X}}{n_{AB}}$ lie outside of the 'interference interval' $[\mu^{\min}, \mu^{\max}]$.