Página Principal / Mis cursos / Carreras de Grado / Materias Comunes / Período Lectivo 2022 / Cálculo II 2022 / Cuestionarios en Moodle.

/ Cuestionario 3 - 30 de mayo

Comenzado el Monday, 30 de May de 2022, 17:36

Estado Finalizado

Finalizado en Monday, 30 de May de 2022, 19:46

Tiempo empleado 2 horas 9 minutos

Pregunta **1**

Finalizado

Puntúa como 25,00

Seleccione una o más de una:

- \square a. Sea R la región acotada por y=0 , $y=x^2$ y x=1 . Entonces la integral iterada para $\iint_R f(x,y) \ dA$ utilizando secciones transversales horizontales es $\int_0^1 \int_0^{x^2} f(x,y) \ dy \ dx$.
- \square b. Sea R la región acotada por y=0 , $y=x^2$ y x=1 y $f(x,y)=x\cos(y)$. Entonces $\iint_R f(x,y) \ dA = 2(1-\cos(1))$.
- ${
 m f Z}$ c. Sea R la región acotada por y=0 , $y=x^2$ y x=1 y $f(x,y)=x\cos(y)$. Entonces $\iint_R f(x,y)\ dA=rac{1}{2}(1-\cos(1))$.
- d. Sea g(x,y) una función de dos variables continua sobre una región D del plano cerrada y acotada. Si $m \leq g(x,y) \leq M$ para toda $(x,y) \in D$, entonces $m \cdot lpha rea(D) \leq \iint_D g(x,y) dA \leq M \cdot lpha rea(D)$.
- \square e. Sea R la región acotada por y=0, $y=x^2$ y x=1. Entonces la integral iterada para $\iint_R f(x,y) \ dA$ utilizando secciones transversales verticales es $\int_0^1 \int_{x^2}^1 f(x,y) \ dy \ dx$.
- f. Sea g(x,y) una función de dos variables continua sobre una región D del plano cerrada y acotada. Si $\iint_D g(x,y) \ dA \ge 0$, entonces dicha integral representa el volumen de la región sólida entre D y la superficie z=g(x,y).
- \square g. Sea R la región acotada por y=0, $y=x^2$ y x=1 y f(x,y) una función integrable sobre R. Entonces el valor promedio de f sobre R es igual al triple de $\iint_R f(x,y) \, dA$.

Pregunta 2

Finalizado

Puntúa como 25,00

Selecciones una o más de una:

- $\ \square$ a. Sea $D=\{(x,y): 1\leq x^2+y^2\leq 4, 0\leq y\leq x\}$. Entonces D en coordenadas polares está dado por $D=\{(r,\theta): 1\leq r\leq 2, \frac{\pi}{4}\leq \theta\leq \frac{\pi}{2}\}$.
- \square b. El volumen de la región sólida que se encuentra debajo del paraboloide $z=18-2x^2-2y^2~$ y arriba del plano xy se puede calcular mediante la siguiente integral iterada $\int_0^{2\pi}\int_0^3\left(18-2r^3\right)\,dr\;d\theta$.
- c. Ninguna de las opciones es correcta.
- \square d. El área de una región R cerrada y acotada en el plano de coordenadas polares es $A=\iint_{R}dr\ d heta$.
- \square e. El volumen de la región sólida que se encuentra debajo del paraboloide $z=18-2x^2-2y^2$ y arriba del plano xy es igual a 72π unidades cuadradas.

Pregunta 3

Finalizado

Puntúa como 25.00

 $\text{Sea } E = \{(x,y,z): 0 \leq y \leq 1, y \leq x \leq 1, 0 \leq z \leq y\} \quad \text{ y D la región sólida que está dentro del cilindro } x^2 + y^2 = 16 \ \text{ entre los planos } z = -5 \ \text{y } z = 4 \, .$

Seleccione una o más de una:

- \blacksquare a. La proyección de E sobre el plano yz es $E_2=\{(y,z):0\leq y\leq 1,0\leq z\leq y\}=\{(y,z):0\leq z\leq 1,z\leq y\leq 1\}$
- lacksquare b. $\iiint_D \sqrt{\overline{x^2+y^2}} \; dV = 144\pi$.
- lacksquare C. Sea f(x,y,z) una función continua sobre E. Entonces $\int_0^1 \int_y^1 \int_0^y f(x,y,z) \ dz \ dx \ dy = \int_0^1 \int_0^y \int_y^1 f(x,y,z) \ dx \ dz \ dy$.
- $\ \square$ d. La proyección de E sobre el plano xy es $E_1=\{(x,y): 0\leq x\leq 1, x\leq y\leq 1\}$.
- lacksquare e. $\iiint_D \sqrt{x^2+y^2} \; dV = \int_0^{2\pi} d heta \cdot \int_0^4 r \; dr \cdot \int_{-5}^4 dz$.
- \blacksquare f. En coordenadas cilíndricas, D está dada por: $\{(r,\theta,z):0\leq\theta\leq 2\pi,0\leq r\leq 4,-5\leq z\leq 4\}$.
- \square 8. Sea f(x,y,z) una función continua sobre E. Entonces $\iiint_E f(x,y,z) \ dV = \int_0^1 \int_x^1 \int_0^y f(x,y,z) \ dz \ dy \ dx$.

Pregunta 4

Finalizado

Puntúa como 25,00

Seleccione una o más de una:

- \square a. Sea C_2 el arco de la parábola $x=4-y^2$ desde (-5,-3) a (0,2). Entonces $\int_{C_2} y^2 \ dx + x \ dy = \int_{-5}^0 (-2y^3-y^2+4) \ dy$.
- \square b. Sea C_2 el arco de la parábola $x=4-y^2$ desde (-5,-3) a (0,2). Entonces $\int_{C_2} y^2 \ dx + x \ dy = rac{245}{6}$.
- lacksquare c. Sea C_2 el arco de la parábola $x=4-y^2$ desde (-5,-3) a (0,2). Entonces $\int_{C_2} y^2 \ dx + x \ dy = \int_{-3}^2 (-2y^3-y^2+4) \ dy$.
- lacktriangle d. Toda integral de linea a lo largo de una suave C es independiente de la parametrización de la curva.
- oxdot e. Sea C_1 la mitad derecha de la circunferencia $x^2+y^2=16$, desde (0,-4) a (0,4). Entonces $\int_{C_1} xy^4 \ dx=-rac{4^6}{3}$.
- If. Suponga que C es una curva parametrizada por x=x(t), y=y(t) con $a \le t \le b$. El hecho que x'(t) e y'(t) sean continuas sobre el intervalo cerrado [a,b], no garantiza que C es una curva suave.
- \square Sea C_1 la mitad derecha de la circunferencia $x^2+y^2=16$, desde (0,-4) a (0,4). Entonces $\int_{C_1} xy^4 \ ds=4^6 \cdot \int_0^{\frac{\pi}{2}} \sin^4 t \ \cos t \ dt$.

■ Confirmación de asistencia al Recuperatorio 1

Ir a...

Actas finales de cursado ▶