Now, let's define the truth values for p and q and construct the truth table for $(\sim p) \lor (\sim q)$:

p	q	~p	~ q	(~p) ∨ (~q)
Т	Т	T	F	F
Т	F	F	Т	Т
F	Т	T	F	Т
F	F	T	Т	Т

By comparing the outputs of the two truth tables, we can see that $\sim(p \land q)$ and $(\sim p) \lor (\sim q)$ have the same truth values for all possible combinations of p and q. Therefore, we can conclude that $\sim(p \land q)$ and $(\sim p) \lor (\sim q)$ are logically equivalent.

B. Consider the set $G = \{1, 5, 7, 11, 13, 17\}$ under multiplication modulo 18 as a group. Construct the multiplication table for G and find the inverse of each element of G.

To construct the multiplication table for the group $G = \{1, 5, 7, 11, 13, 17\}$ under multiplication modulo 18, we need to perform the multiplication operation on each pair of elements in G. Let's denote the operation as *.

Multiplication Table for G:

*	1	5	7	11	13	17
1	1	5	7	11	13	17
5	5	7	11	13	17	1
7	7	11	13	17	1	5
11	11	13	17	1	5	7