We Claim:

1. A polybenzoxazole precursor comprising a partial structure selected from the group consisting of

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

T is a residue selected from the group consisting of

wherein each of A^8 to A^{21} is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ;

$$6$$
 or \sqrt{x}

wherein X is selected from the group consisting of $-CH_2-$, $-CF_2-$, $-C(CH_3)_2-$, $-C(CH_3)$

wherein M is selected from the group consisting of residues represented by formulas 10-14

in which Q is selected from the group consisting of C-H, C-F, $C-CH_3$, $C-CF_3$, $C-OCH_3$, $C-OCF_3$ and N,

and residues represented by formulas 15-34 shown below:

wherein Q is defined as above, provided that at least one Q signifies N and a maximum of two N atoms are present per ring.

- 2. The polybenzoxazole precursor of claim 1, further comprising at least one acetylene group.
- 3. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the main chain.
- 4. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a side chain.

- 5. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in a chain terminating group.
- 6. The polybenzoxazole precursor of claim 2, wherein said acetylene group is present in the residue of a carboxylic acid selected from the group consisting of

- 7. A photoresist solution, comprising a polybenzoxazole precursor of claim 1, a diazoketone photoactive component, and an organic solvent.
- 8. The photoresist solution of claim 7, wherein the weight ratio of polybenzoxazole precursor to diazoketone is in the range from 1:20 to 20:1.
- 9. The photoresist solution of claim 8, wherein a weight ratio of polybenzoxazole precursor to diazoketone is in a range from 1:10 to 10:1.

10. A polybenzoxazole containing a partial structure selected from the group consisting of

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by formulas 5-34 defined above.

11. The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^3 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by formulas 5-34 defined above.

12. The polybenzoxazole precursor of claim 1, wherein said partial structure is

wherein each of A^1 to A^7 is a univalent substituent independently selected from the group consisting of H, F, CH_3 , CF_3 , OCH_3 and OCF_3 ; and

T is a residue selected from the group consisting of the residues represented by formulas 5-34 defined above.

- 13. The polybenzoxazole precursor of claim 1, wherein each of ${\tt A}^1$ to ${\tt A}^7$ is H.
- 14. The polybenzoxazole precursor of claim 1, wherein T is

in which each Q is CH and M is

15. The polybenzoxazole precursor of claim 1, wherein ${\tt T}$ is

in which each Q is CH and M is

16. The polybenzoxazole precursor of claim 1, wherein T is

in which Q in each outside ring is N and each Q in the middle ring is CH.

17. The polybenzoxazole precursor of claim 1, wherein T is

$$A^{\frac{18}{4}}A^{\frac{21}{4}}A^{\frac{15}{4}}A^{\frac{15}{4}}A^{\frac{15}{4}}A^{\frac{17}{4}}A^{\frac{15}{4}}A^{\frac{17}{4}}A^{\frac{18}{4}}A^{\frac{19}{4}}A^{\frac$$

in which six of the substituents A^8 to A^{21} are CH_3 and the remainder of the substituents A^8 to A^{21} are H.

18. The polybenzoxazole precursor of claim 5, wherein said chain terminating group is a residue of

19. The polybenzoxazole precursor of claim 18, wherein T is

in which each Q is CH and M is

20. A process for preparing a polybenzoxazole precursor containing a partial structure selected from the group consisting of

3 HO C-T-O CH HO C-T-O CH
$$\frac{1}{6}$$
 and $\frac{1}{6}$ $\frac{1}$

wherein each of ${\mbox{\bf A}}^1$ to ${\mbox{\bf A}}^7$ and T are as defined above, comprising the steps of

providing at least one reactant selected from the group consisting of bis-o-aminophenols and o-aminophenolcarboxylic acids,

causing the reactant to react with at least one dicarboxylic acid compound,

mixing the reaction mixture with a precipitating agent to precipitate a solid polybenzoxazole precursor,

and isolating the polybenzoxazole precursor from the reaction mixture.