



## **CONTENT**

- 1. Ensemble Learning
- 2. bagging
- 3. Random Forests
- 4. Boosting

# **Ensemble Learning**

### **Ensemble Learning**

Predictive performance in classification tasks can be improved by combining predictions from multiple models.

- → Ensemble of classifiers
  - Homogeneous: models created with the same technique
  - Heterogeneous : models created with different techniques

#### Base classifier:

- classifier whose predictions are combined in the ensemble
- Each can be created using
  - the original trainset
  - Parts of the original trainset

#### base requirements ensemble classifiers:

- Predictive performance: they must outperform the model that predicts the majority class
- Predictive diversity: should be independent, ideally making mistakes on different parts of the data

#### Approaches:

- Parallel ( eg : bagging , random forests )
- Sequential ( eg *AdaBoost* )
- hierarchical



## **Ensemble learning: parallel approach**

- the most common
- Attempts to explore the similarities and differences of predictions made by different base classifiers
- each base classifier
  - It is induced using instances of the original trainset
    - All instances | all features
    - Sample instances | all features
    - All instances | features



## **Ensemble learning: parallel approach – combination of predictions**

Voting: the class predicted by most classifiers is the class predicted by the ensemble

**weighted voting**: the class predicted by each base *classifier* is associated with a weight, which represents how much the prediction of this *classifier* should be considered for the final prediction of the *ensemble* 

**Stacking**: a classification algorithm is used to predict the final class of the *ensemble*, having as *features* the predictions of the various base *classifiers* 

### **Ensemble learning: sequential approach**

The induction of a base *classifier* uses information from previously induced base *classifiers* (eg, combine predictions of previously induced *base classifiers with features*)

#### Can be used for:

- Hierarchical sorting tasks
- multilabel tasks classification



# bagging

### bagging

- · each base classifier is induced using a trainset
  - bootstrap \* approach , have the same number of objects as the trainset
- · Combines predictions from base classifiers by voting
- Can be used for <u>unstable classification techniques</u> ( <u>unstable predictors</u> ): Your predictive performance is affected by changes in *trainset composition*. Ex: decision trees, neural networks)
- Robust to overfitting when there is trainset
- Number of generated models is a hyper-parameter for the bagging technique
  - The higher, the lower the prediction variance (and the higher the computational cost)
- It can also be used for regression
  - · Combination is done by averaging

Results:

- Forecasts
- · base models generated

\* Next chapter



### **Bagging**: definition of *hyper-parameters*

- Number of base models to generate
  - The bigger the better
    - · Paying attention to the computational cost
  - Generally, 100 is considered a good choice.

- base learner to use to generate the models
  - Some approaches use decision trees
  - Others allow the user to choose the base learner
  - Most common: decision trees, neural networks (due to their instability)

# **Baggage:** advantages and disadvantages

| Benefits                                                                                                                                                         | Disadvantages                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Improves the predictive performance of the base learner</li> <li>since this is an unstable predictor</li> <li>Few hyper-parameters to define</li> </ul> | <ul> <li>bootstrapping sampling has a random component</li> <li>but the variability of the results can be minimized by choosing the number of base models to generate</li> <li>Computationally more "expensive" than using a simple model</li> <li>But it can be run in parallel</li> </ul> |

## **Random Forests**



#### **Random Forests**

- Combine multiple decision trees
- Similar to bagging: Each decision tree is created with a different bootstrapped sample
- Different from *bagging*: at each node of the tree, instead of choosing the *split* from all *features*, only a predefined number of randomly selected attributes are used
- Good choice for datasets with many features
- Results:
  - Forecasts
  - Statistics on the importance of *features*

## Random Forests: definition of hyper-parameters

- Number of base models to generate
  - Recommended: 1000
  - To get more reliable statistics on the importance of features: 5000

- number of features to choose randomly at each node
  - · depends on the problem
  - Rule of thumb:  $\sqrt{\#features}$

# Random Forests: advantages and disadvantages

| Benefits                                                                                                                                           | Disadvantages                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Good predictive performance in several problems</li> <li>Relatively easy to interpret</li> <li>Easy to define hyper-parameters</li> </ul> | <ul> <li>Computationally "expensive"         <ul> <li>Because the recommended number of trees is high</li> <li>But it can be run in parallel</li> </ul> </li> <li>randomness         <ul> <li>Can be minimized by using the minimum recommended number of trees</li> </ul> </li> </ul> |

# **Boosting**

## **Boosting: generic algorithm**

- 1. the base learner assigns all instances equal weights
- 2. Repeat up to *base learner limit* be achieved, or the predictive performance increases:
  - 1. If there is any prediction error caused by the first base learner, the weight of the errored observations is increased
  - 2. Apply next base learner

### **Boosting**: AdaBoost

- One of the most representative boosting
- In each training iteration, a *base classifier* is induced using the *trainset* and each instance is assigned a weight according to how well the model predicted its class
- The more difficult the class prediction, the greater the weight associated with the instance
- The weight of an instance defines the probability of being chosen for the trainset of the next (sequential) base classifier
- Good to use with weak classifiers: predictive performance only slightly better than random prediction
- Can be used for regression: gradient Boosting, KGBoost
- Results:
  - Forecasts

## AdaBoost: definition of hyper-parameters

#### number of iterations

• Algorithm authors use: 100

( Freund, Y. and Shapire, RE (1996) Experiments with a new boosting algorithm, in Proceedings of the 13th International Conference on Machine Learning, ICML 1996, pp. 148–156.)

# AdaBoost: advantages and disadvantages

| Benefits                                                                                                            | Disadvantages                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Good predictive performance in several problems</li> <li>Easy to define <i>hyper-parameters</i></li> </ul> | <ul> <li>Computationally "expensive"</li> <li>Because the number of models generated depends on the number of iterations</li> <li>Cannot run in parallel (sequential)</li> <li>hard to interpret</li> </ul> |



Do conhecimento à prática.