

TI Precision Labs - ADCs

Presented by Scott Cummins
Prepared by Dale Li

Unidirectional TVS Diode

(Transient Voltage Suppressor)

			"	
Symbol	Parameter		I _F	
V_{BR}	Breakdown voltage			
V_R	Stand-off voltage			
V_{C}	Clamping voltage			
V_{F}	Forward voltage drop	$V_{c}V_{BR}V_{R}$		V
I_{BR}	Breakdown Current @ V _{BR}	- C - BK - K		
I_R	Reverse Leakage @ V _R			
l _F	Forward Current @ V _F		\ \I _{BR}	
I_{PP}	Peak Pulse current @ V_{c}			
	TVS Uni	Ī	I _{PP}	
	1 1 0 _ 0 111	•	•	

Bidirectional TVS Diode

(Transient Voltage Suppressor)

Symbol	Parameter			
V_{BR}	Breakdown voltage			
V_R	Stand-off voltage			
V_{C}	Clamping voltage		I _{BR}	
V_{F}	Forward voltage drop	$V_C V_{BR} V_R$	Ä	······
I_{BR}	Breakdown Current @ V _{BR}	- C - BK - K	R	V
I_R	Reverse Leakage @ V _R			$V_R V_{RR}$
I _F	Forward Current @ V _F		`I _{BR}	ii bii
I_{PP}	Peak Pulse current @ V_{C}			
_ 1	TVS Bi	•		

Protection: 3-Wire RTD, Low-side Reference Measurement

Current limiting resistors:

- ➤ R_{P1}/R_{P2}/R_{P3}/R_{P4}: limit current to TVS and ADC inputs
- R₁ limits current to IDAC (no R_{flt} on AIN5).
- ➤ Large value R_{P1} and R₁ limit current more: Advantage: lower clamped voltage under fault condition. -Disadvantage: higher voltage under normal operation. (violate compliance voltage on IDAC).
- > Small value R_{P1} and R_1 limit less current, have higher power dissipation on R_{P1} and R_1 .
- Mismatching and drift affect accuracy.

TVS diode considerations:

- ➤ Proper standoff voltage(14V) -> tradeoff for R_{P1} and R₁.
- > Bidirectional TVS instead of unidirectional TVS.
- Leakage current is a key error contribution to accuracy.
- > Temp drift of leakage current affects accuracy.

Absolute Maximum Ratings (Single 5V Power Supply)				
Parameter	MIN	TYP	MAX	UNIT
Analog Input Voltage (V _{in_Abs})	-0.3		+5.3	V
Analog Input Current (I _{in_Abs})	-10		+10	mA
Normal Input Signal				
AlNx Signal (V _{in})	0		+5	V

ADC internal ESD diode structure

Protection Circuit tradeoffs

- R_{P1} limits current into TVS diode
- R₁ limits current into ESD diodes
- TVS, R₁, and RP1 must have a power rating to allow continuous 30V fault
- R_{P1} + R₁ must be small enough to avoid IDAC compliance issues
- Fault current into ADC must be less than 10mA

Why do we select 14V standoff voltage of TVS diode?

- Voltage drop across Rp1 may not be acceptable and Power Dissipation on Rp1 may be a challenge.
- Leakage current(maximum): 1uA SMBJ14CA vs. 800uA SMBJ5.0CA (Diodes from Bourns Inc.)

Diodes Inc.	SMBJ14CA	SMBJ5.0CA
V _B (Minimum Breakdown Voltage)	15.6V	6.4 <i>V</i>
$V_{RP} = V_{EOS} - V_B$ (Volts drop on R _P)	14.4V	23.6V
$P_P = \frac{V_{RP}^2}{R_{P1}}$ (Power Dissipation on Rp)	$\frac{14.4V^2}{590\Omega} = 0.351W$	$\frac{23.6V^2}{590\Omega} = 0.944W$

TEXAS INSTRUMENTS

Why do we use bidirectional TVS diode?

• Voltage drop across Rp1 can not be acceptable and Power Dissipation on Rp1 can be a challenge.

Diodes Inc.	SMBJ14CA (Bidirectional)	SMBJ14A (Unidirectional)
V _B (Breakdown Voltage)	-15.6V	- 0.7 <i>V</i>
$V_{RP} = V_{EOS} - V_B$ (Volts on R _P)	-14.4V	-29.3 <i>V</i>
$P_P = \frac{V_{RP}^2}{R_{P1}}$ (Power Dissipation on Rp)	$\frac{(-14.4V)^2}{590\Omega} = 0.351W$	$\frac{(-29.3V)^2}{590\Omega} = \mathbf{1.455W}$

7

Thanks for your time! Please try the quiz.

- 1. For the circuits below, why is a bidirectional TVS diode used?
 - a. The input signal is bidirectional so the diode needs to be bidirectional.
 - b. All TVS diodes are bidirectional.
 - c. Bidirectional diodes are needed in case a negative overstress signal is applied.
 - d. A unidirectional diode would require a unreasonably high power rating on Rp1.
 - e. A unidirectional diode would require a unreasonably high power rating on R1.

- 1. For the circuits below, why is a bidirectional TVS diode used?
 - a. The input signal is bidirectional so the diode needs to be bidirectional.
 - b. All TVS diodes are bidirectional.
 - Bidirectional diodes are needed in case a negative overstress signal is applied.
 - d. A unidirectional diode would require a unreasonably high power rating on Rp1.
 - e. A unidirectional diode would require a unreasonably high power rating on R1.

- 2. For the circuits below, why is a TVS diode with a 14V standoff voltage used on a device with a 5V input range?
 - a. Choosing a higher standoff voltage will decrease the power dissipation in R1 under fault conditions.
 - b. Choosing a higher standoff voltage will decrease the power dissipation in Rp1 under fault conditions.

- 1. For the circuits below, why is a TVS diode with a 14V standoff voltage used on a device with a 5V input range?
 - a. Choosing a higher standoff voltage will decrease the power dissipation in R1 under fault conditions.
 - b. Choosing a higher standoff voltage will decrease the power dissipation in Rp1 under fault conditions.

Thanks for your time!

© Copyright 2021 Texas Instruments Incorporated. All rights reserved.

This material is provided strictly "as-is," for informational purposes only, and without any warranty.

Use of this material is subject to TI's Terms of Use, viewable at TI.com

