TERMODINÁMICA

Examen Intersemestral

Nombre	Grupo

La figura adjunta representa un dispositivo cilindro-pistón que dispone, a su vez, de un pistón interno de 200 kg y calor específico 0,3 kJ/kg-K que puede deslizar sin rozamiento y que se considera diatermo. Las paredes del cilindro y del pistón externo (el que hace de tapa del sistema) son adiabáticas. El pistón interno tiene en su centro un taladro de modo que pone en comunicación ambas cámaras del cilindro. La presión ambiente es de 100 kPa. El cilindro presenta un diámetro interior de 500 mm. El pistón externo también puede deslizar sin rozamiento.

En el estado inicial se han realizado algunas modificaciones a la configuración, de modo que el taladro se ha taponado y ambas caras del pistón interno se han recubierto de un material aislante. Además, el pistón interno se encuentra inmovilizado por un mecanismo. En este estado inicial, de equilibrio, cada compartimento contiene 5 kg de una sustancia pura (tablas adjuntas), el volumen de B es de 600 litros y el de A de 1900 litros, la presión en B es de 2 bar y el pistón interior se encuentra a 100°C.

En un instante dado se libera el mecanismo que sujeta al pistón interior, se suprime su tapón y se le retiran los aislamientos, dejando que el sistema evolucione hasta alcanzar el equilibrio.

Determinar:

- a) Presión y temperatura final en cada cámara
- b) Desplazamiento del pistón exterior

Tabla de saturación (líquido-vapor)

р	t	V _f	Vg	Uf	u _g	h _f	hg	Sf	Sg
[bar]	[°C]	[m3/kg]	[m3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg-K]	[kJ/kg-K]
0,5	8,885	0,001586	0,63204	-385,95	-60,849	-385,87	-29,247	-1,81330	-0,54884
1	27,48	0,001634	0,33084	-344,58	-34,663	-344,41	-1,579	-1,67126	-0,53088
1,5	39,73	0,001669	0,22601	-316,35	-16,888	-316,10	17,014	-1,57922	-0,51455
2	49,13	0,001697	0,17216	-294,12	-2,993	-293,78	31,438	-1,50923	-0,50009
2,5	56,87	0,001722	0,13918	-275,45	8,595	-275,02	43,390	-1,45195	-0,48713
3	63,51	0,001744	0,11684	-259,16	18,629	-258,63	53,681	-1,40305	-0,47537
3,5	69,36	0,001765	0,10066	-244,58	27,532	-243,96	62,764	-1,36012	-0,46457
4	74,6	0,001784	0,08839	-231,32	35,568	-230,61	70,925	-1,32167	-0,45459
4,5	79,38	0,001802	0,07875	-219,10	42,916	-218,29	78,351	-1,28674	-0,44528
5	83,77	0,001820	0,07096	-207,72	49,700	-206,81	85,178	-1,25465	-0,43657
5,5	87,85	0,001837	0,06453	-197,05	56,011	-196,04	91,504	-1,22489	-0,42837
6	91,66	0,001853	0,05914	-186,98	61,920	-185,86	97,402	-1,19710	-0,42063
6,5	95,24	0,001869	0,05454	-177,41	67,481	-176,20	102,930	-1,17099	-0,41329
7	98,62	0,001885	0,05057	-168,30	72,736	-166,98	108,134	-1,14633	-0,40632
7,5	101,8	0,001900	0,04711	-159,57	77,722	-158,15	113,052	-1,12294	-0,39969
8	104,9	0,001916	0,04406	-151,20	82,465	-149,67	117,714	-1,10066	-0,39335
8,5	107,8	0,001931	0,04136	-143,14	86,990	-141,49	122,144	-1,07938	-0,38730
9	110,6	0,001945	0,03894	-135,35	91,317	-133,60	126,365	-1,05899	-0,38151
9,5	113,3	0,001960	0,03677	-127,82	95,464	-125,96	130,393	-1,03940	-0,37596
10	115,8	0,001975	0,03480	-120,53	99,443	-118,55	134,245	-1,02054	-0,37064
10,5	118,3	0,001990	0,03301	-113,44	103,268	-111,35	137,933	-1,00234	-0,36553

Tabla de vapor sobrecalentado

1 har (act = 27.490C)						2 har (act 40.420C)					
1 bar (sat = 27,48°C)						2 bar (sat = 49,13°C)					
Т	V	u	h	S		Т	V	u	h	s	
[°C]	[m3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]		[°C]	[m3/kg]	[kJ/kg]	[kJ/kg]	[kJ/kg]	
sat	0,33084	-34,663	-1,579	-0,53088		sat	0,17216	-2,993	31,438	-0,50009	
30	0,33412	-30,638	2,774	-0,51646		50	0,17277	-1,487	33,067	-0,49505	
35	0,34060	-22,576	11,484	-0,48796		55	0,17627	7,216	42,470	-0,46617	
40	0,34702	-14,412	20,290	-0,45962		60	0,17972	16,005	51,950	-0,43750	
45	0,35339	-6,145	29,194	-0,43141		65	0,18313	24,884	61,509	-0,40902	
50	0,35971	2,227	38,199	-0,40332		70	0,18649	33,854	71,152	-0,38071	
55	0,36600	10,705	47,305	-0,37536		75	0,18982	42,918	80,882	-0,35256	
60	0,37225	19,289	56,514	-0,34751		80	0,19312	52,078	90,701	-0,32456	
65	0,37846	27,980	65,826	-0,31976		85	0,19638	61,336	100,612	-0,29669	
70	0,38465	36,779	75,244	-0,29212		90	0,19962	70,692	110,617	-0,26895	
75	0,39080	45,687	84,767	-0,26457		95	0,20284	80,149	120,717	-0,24133	
80	0,39694	54,703	94,396	-0,23711		100	0,20604	89,706	130,914	-0,21382	
85	0,40304	63,827	104,132	-0,20973		105	0,20921	99,365	141,208	-0,18641	
90	0,40913	73,061	113,974	-0,18244		110	0,21237	109,127	151,601	-0,15911	
95	0,41520	82,404	123,924	-0,15523		115	0,21551	118,991	162,093	-0,13190	
100	0,42125	91,856	133,981	-0,12810		120	0,21864	128,958	172,686	-0,10479	
105	0,42729	101,417	144,146	-0,10104		125	0,22175	139,028	183,378	-0,07776	
110	0,43330	111,087	154,418	-0,07405		130	0,22485	149,201	194,172	-0,05082	
115	0,43931	120,866	164,797	-0,04714		135	0,22794	159,478	205,066	-0,02397	
120	0,44530	130,754	175,284	-0,02029		140	0,23102	169,858	216,062	0,00281	
125	0,45128	140,749	185,878	0,00648		145	0,23409	180,342	227,159	0,02951	

Piston intermi

$$D = TDUMM$$

$$m_{i}^{A} = m_{i}^{B} = TWy$$

$$V_{i}^{B} = 0.6 \text{ m}^{3} \quad P_{i}^{B} = 2 \text{ bar}$$

$$V_{i}^{A} = 1.4 \text{ m}^{3} \quad P_{i}^{A} = 1 \text{ bar}$$

$$T_{p_{i}}^{A} = 100^{\circ}\text{C}$$

Estado inicial

$$V_1^{B} = \frac{0.6}{1} = 0.12 \, \text{m}^3 / \text{kg} \, \text{J} \, \text{vopn windo}$$

$$P_1^{B} = 2 \, \text{bor}$$

$$0.12 = 0.001697 + x.3(0.17216 - 0.001697)$$

$$1.3 = 0.69401$$

$$1.3 = 0.69401$$

$$U_1^{B} = -294,12 + 0.69401 (-2.993 + 294,12) =$$

$$= -92,075 KJ/Kg$$

Debido a la brusca liberación de la presión el proces serie no estático, lo aque obligario a evaluer et trabajo à pertir de la fuertas

Tomando como sidema A+B+ pistón interno, la unice fuente externe es la deboida o presión ambiente sobre al pistón externo.

9/12 - W12 = (m, + + M,) U2 - m, U, A - m, B U, B + + mpi (p) (Tz - T1)

W12 = Po [(m, + + m, 3) 02 - 2, 5 m]]

Sustituçendo y o perando:

(1) $\begin{cases} 0 = 10 \text{ Mz} + 1000 \text{ Gz} + 60 \text{ Tz} - 5940, 4705 = f(7z) \\ P_z = 1 \text{ box} \end{cases}$

Pare hallor el estado tinal re jupone aque es vapor himmedo:

Tz = Trud (Pz) = 27,48C

con este temperatura os obvio que el astodo final no prode ser vopes himodo, pero no obstante re plusted

Uz = -344,58 + x2 (-34,663 + 344,58) = -344,58 + 309,92 X2 Uz = 0,001634 + ×2 0,329206

Sustituyendo en (1):

0 = 10 (-344,58 + x2309,917) + 1000 (0.001634 + x20,329200)+ + 600x27,48 - 5940,47057

Pa tanto, el estado final ha de ser vapor sobrecalen todo:

	1-)2 = 100 Kga	
· · · · · · · · · · · · · · · · · · ·	U2	U 2	f(Tz, Uz, Vz)
12	0.42125	91,856	1399,3395
100		73,061	599,2695
90	0.40913	14,703	-196,5005
80	0.34694	63,827	200, 8395
85	0.40304		

$$L_{5} = 85 = \frac{500'8341 + 146'2002}{500'8341 + 146'2002}$$

$$L_{5} = 85'7455, (0.4)$$

$$U_2 = 0.39694 = \frac{0.40304 - 0.39694}{200.8395 + 196,5005}$$

$$\frac{d2}{dt} = \frac{10 \times 0.3999 + 7 - 2.5}{\frac{70.5^2}{4}} = \frac{7.6372}{9} \text{ m}$$

12 = 10 × 0,3999 +7 -2,5 = 7,6372 m TO.52 iouro el volumen anmentor el pistón exterior te desphase have le derecto. (H>)