Chapter 12

Coping with the Limitations of Algorithm Power

Tackling Difficult Combinatorial Problems

There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems):

- **Q** Use a strategy that guarantees solving the problem exactly but doesn't guarantee to find a solution in polynomial time
- **Q** Use an approximation algorithm that can find an approximate (sub-optimal) solution in polynomial time

Exact Solution Strategies

- **Q** exhaustive search (brute force)
 - useful only for small instances
- **A** dynamic programming
 - applicable to some problems (e.g., the knapsack problem)
- **Q** backtracking
 - eliminates some unnecessary cases from consideration
 - yields solutions in reasonable time for many instances but worst case is still exponential
- **Q** branch-and-bound
 - further refines the backtracking idea for optimization problems

Backtracking

- **Q** Construct the state-space tree
 - nodes: partial solutions
 - edges: choices in extending partial solutions
- **Q** Explore the state space tree using depth-first search
- **Q** "Prune" <u>nonpromising nodes</u>
 - dfs stops exploring subtrees rooted at nodes that cannot lead to a solution and backtracks to such a node's parent to continue the search

Example: *n*-Queens Problem

Place *n* queens on an *n*-by-*n* chess board so that no two of them are in the same row, column, or diagonal

State-Space Tree of the 4-Queens Problem

Example: Hamiltonian Circuit Problem

Branch-and-Bound

- **An enhancement of backtracking**
- **Applicable to optimization problems**
- **Q** For each node (partial solution) of a state-space tree, computes a bound on the value of the objective function for all descendants of the node (extensions of the partial solution)
- **Q** Uses the bound for:
 - ruling out certain nodes as "nonpromising" to prune the tree – if a node's bound is not better than the best solution seen so far
 - guiding the search through state-space

Example: Assignment Problem

Select one element in each row of the cost matrix C so that:

- no two selected elements are in the same column
- the sum is minimized

Example

_	Job 1	Job 2	Job 3	Job 4
Person a	9	2	7	8
Person b	6	4	3	7
Person <i>c</i>	5	8	1	8
Person d	7	6	9	4

<u>Lower bound</u>: Any solution to this problem will have total cost at least: 2 + 3 + 1 + 4 (or 5 + 2 + 1 + 4)

Example: First two levels of the state-space tree

Figure 11.5 Levels 0 and 1 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm. The number above a node shows the order in which the node was generated. A node's fields indicate the job number assigned to person a and the lower bound value, lb, for this node.

Example (cont.)

Figure 11.6 Levels 0, 1, and 2 of the state-space tree for the instance of the assignment problem being solved with the best-first branch-and-bound algorithm

Example: Complete state-space tree

Figure 11.7 Complete state-space tree for the instance of the assignment problem solved with the best-first branch-and-bound algorithm

Example: Traveling Salesman Problem

