Course 02418
Statistical Modelling: Theory and practice

Module 10: Design of Experiments

Murat Kulahci

DTU Informatics
Technical University of Denmark
2800 Lyngby – Denmark
E-mail: mk@imm.dtu.dk

Experimentation

- An experiment is a test or a series of tests
- Experiments are used widely in the engineering and physical sciences
 - Process characterization & optimization
 - Evaluation of material properties
 - Product design & development
 - Component & system tolerance determination
- "All experiments are designed experiments, some are poorly designed, some are well-designed"

Strategy of Experimentation

- "Best-guess" experiments
 - Used a lot
 - More successful than you might suspect, but there are disadvantages...
- One-factor-at-a-time (OFAT) experiments
 - Sometimes associated with the "scientific" or "engineering" method
 - Devastated by interaction, also very inefficient
- Statistically designed experiments
 - Based on Fisher's factorial concept

Paper Helicopter

Basic Principles of DOE

Randomization

- Running the trials in an experiment in random order
- Notion of balancing out effects of "lurking" variables

Replication

- Sample size (improving precision of effect estimation, estimation of error or background noise)
- Replication versus repeat measurements?

Blocking

Dealing with nuisance factors

2^k Factorial Design

- Special case of the general factorial design; k factors, all at two levels
- The two levels are usually called low and high (they could be either quantitative or qualitative)
 - Assumes response is approximately linear over the range chosen
- Very widely used in industrial experimentation
- Form a basic "building block" for other very useful experimental designs (DNA)
- Special (short-cut) methods for analysis

Example

- In a chemical process, it is speculated that the reactant concentration and catalyst amount affect the yield
- We would like to investigate whether and how these factor are affecting the yield
- We change the current settings for these factors which were 20% and 1.5lb the reactant concentration and the catalyst amount respectively
- There are 4 possible factorial combinations if both factors are tested only at two levels.
- To estimate the error variance we also decide to replicate the factorial experiments three times

Data

Concentration	Catalyst Amount	Yield
15%	1lb	28
15%	1lb	25
15%	1lb	27
25%	1lb	36
25%	1lb	32
25%	1lb	32
15%	2lb	18
15%	2lb	19
15%	2lb	23
25%	2lb	31
25%	2lb	30
25%	2lb	29

How to analyze this data?

 We can use a simple regression model with the main effects and the two factor interaction

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \varepsilon$$

Using the usual equation, we have

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$Cov(\hat{\boldsymbol{\beta}}) = (\mathbf{X}'\mathbf{X})^{-1}\sigma^2$$

Alternative Approach

Treatment combinations in the 2² design.

$$A = \text{reactant concentration}, B = \text{catalyst amount},$$

 $y = \text{yield}$

	Fa	ctor	Treatment				
	\boldsymbol{A}	В	Combination	I	П	III	Total
(1)	<u></u>	_	A low, B low	28	25	27	80
a	+	_	A high, B low	36	32	32	100
b	· . 	: +.	A low, B high	18	19	23	60
ab	ab + +		A high, B high	31	30	29	90

To represent the experimental runs, we use lower case letters. If for an experimental run a factor is at its high level then we include the corresponding lower case letter in the representation. For example for the run "a" only factor A will be at the high level and the rest of the factors (in this case only B) will be at the low level. To represent the run with both factors are at the low level we use "(1)" representation.

Analysis Procedure for a Factorial Design

- Estimate factor effects
- Formulate model
 - With replication, use full model
 - With an unreplicated design, use normal probability plots
- Statistical testing (ANOVA)
- Refine the model
- Analyze residuals (graphical)
- Interpret results

Estimation of Factor Effects

$$A = \overline{y}_{A^{+}} - \overline{y}_{A^{-}}$$

$$= \frac{ab + a}{2n} - \frac{b + (1)}{2n}$$

$$= \frac{1}{2n} [ab + a - b - (1)]$$

$$B = \overline{y}_{B^{+}} - \overline{y}_{B^{-}}$$

$$= \frac{ab + b}{2n} - \frac{a + (1)}{2n}$$

$$= \frac{1}{2n} [ab + b - a - (1)]$$

$$AB = \frac{ab + (1)}{2n} - \frac{a + b}{2n}$$

$$= \frac{1}{2n} [ab + (1) - a - b]$$

Treatment combinations in the 2² design.

Estimation of Factor Effects

AB = average difference between the effect of B at the high level of A and the effect of B at the low level of A.

$$AB = \frac{ab - b}{2n} - \frac{a - (1)}{2n}$$

$$= \frac{ab + (1)}{2n} - \frac{a + b}{2n}$$

$$= \frac{1}{2n} [ab + (1) - a - b]$$

Treatment combinations in the 2² design.

Estimation of Factor Effects

Factor		Treatment				
A	В	Combination	I	П	III	Total
_	_	A low, B low	28	25	27	80
+	_	A high, B low	36	32	32	100
-	: .	A low, B high	18	19	23	60
+	+	A high, B high	31	30	29	90

$$A = \frac{1}{2*3}[90+100-60-80] = 8.33$$

$$B = \frac{1}{2*3}[90+60-100-80] = -5.0$$

$$AB = \frac{1}{2*3}[90+80-100-60] = 1.67$$

Practical interpretation?

Magnitude

Direction

Sum of Squares: Use of Contrasts

$$SS_{contrast} = \frac{Contrast^2}{4n}$$

Factor		Treatment					
A	В	Combination	Ī	П	III	Total	
_	_	A low, B low	28	25	27	80	
+	_	A high, B low	36	32	32	100	
_	: 🕂	A low, B high	18	19	23	60	
+	+	A high, B high	31	30	29	90	

$$SS_A = \frac{1}{4*3}[90+100-60-80]^2 = 208.33$$

$$SS_B = \frac{1}{4*3}[90+60-100-80]^2 = 75$$

$$SS_{AB} = \frac{1}{4*3}[90+80-100-60]^2 = 8.33$$

Statistical Testing - ANOVA

Response: Conversion

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	291.67	3	97.22	24.82	0.0002
Α	208.33	1	208.33	53.19	< 0.0001
В	75.00	1	75.00	19.15	0.0024
AB	8.33	1	8.33	2.13	0.1828
Pure Error	31.33	8	3.92		
Cor Total	323.00	11			
Std. Dev.	1.98		R-Squared		0.9030
Mean	27.50		Adj R-Squ	ared	0.8666
			Pred R-Sq	uared	0.7817
PRESS	70.50				

The *F*-test for the "model" source is testing the significance of the overall model; that is, is either *A*, *B*, or *AB* or some combination of these effects important?

Statistical Testing - ANOVA

	Coefficient	St	Standard 95% C		95% C	
Factor Intercept A-Concert	Estimate 27.50 4.17	DF 1 1	Error 0.57 0.57	Low 26.18 2.85	High 28.82 5.48	
B-Catalyst	-2.50	1	0.57	-3.82	-1.18	
AB	0.83	1	0.57	-0.48	2.15	

General formulas for the standard errors of the model coefficients and the confidence intervals are available. They will be given later.

Refine Model

Response: Conversion

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	283.33	2	141.67	32.14	< 0.0001
Α	208.33	1	208.33	47.27	< 0.0001
В	<i>75.00</i>	1	<i>75.00</i>	17.02	0.0026
Residual	39.67	9	4.41		
Lack of Fit	8.33	1	8.33	2.13	0.1828
Pure Error	31.33	8	3.92		
Cor Total	323.00	11			
Std. Dev.	2.10		R-Squared		
Mean	27.50		Adj R-Squa Pred R-Squ		0.8499 0.7817
PRESS	70.52				

There is now a residual sum of squares, partitioned into a "lack of fit" component (the AB interaction) and a "pure error" component

Regression Model for the Process

	Coefficient		Standard	95% CI	95% CI
Factor	Estimate	DF	Error	Low	High
Intercept	27.50	1	0.61	26.13	28.87
A-Concent	4.17	1	0.61	2.80	5.54
B-Catalyst	-2.50	1	0.61	-3.87	-1.13

Final Equation in Terms of Coded Factors:

Final Equation in Terms of Actual Factors:

```
Conversior =
18.33333
0.833333 * Concentration
-5 * Catalyst
```

Conversion between Coded & Natural Variables

Factor A: Concentration

$$X_{A} = \frac{\text{Conc-(Conc}_{\text{Low}} + \text{Conc}_{\text{High}})/2}{(\text{Conc}_{\text{High}} - \text{Conc}_{\text{Low}})/2}$$

e.g.

$$Low = 15 \qquad High = 25$$

$$X_A = \frac{\text{Conc-}(15+25)/2}{(25-15)/2} = \frac{\text{Conc-}20}{5}$$

What happens if:

$$Conc = 15$$

$$Conc = 25$$

$$Conc = 20$$

Residuals and Diagnostic Checking

The Response Surface

The 2³ Factorial Design Hight-T

Geometric presentation of contrasts corresponding to the main effects and interactions in the 2^{3} design.

$$A = \frac{a+ab+ac+abc}{4n} - \frac{(1)+b+c+bc}{4n}$$

$$= \frac{1}{4n} [a + ab + ac + abc - (1) - b - c - bc]$$

-+ High
$$B = \frac{b + ab + bc + abc}{4n} - \frac{(1) + a + c + ac}{4n}$$

$$= \frac{1}{4n} [b + ab + bc + abc - (1) - a - c - ac]$$

$$= \frac{1}{4n} [b + ab + bc + abc - (1) - a - c - ac]$$

$$C = \frac{c + ac + bc + abc}{4n} - \frac{(1) + a + b + ab}{4n}$$
$$= \frac{1}{4n} [c + ac + bc + abc - (1) - a - b - ab]$$

$$A = \frac{1}{4n} [a + ab + ac + abc - (1) - b - c - bc]$$

Treatment	Factorial Effect							
Combo.	I	A	В	AB	C	AC	BC	ABC
(1)	+	-						
a	+	+						
b	+	-						
ab	+	+						
c	+	_						
ac	+	+						
bc	+	-						
abc	+	+						

$$B = \frac{1}{4n}[b + ab + bc + abc - (1) - a - c - ac]$$

Treatment	Factorial Effect							
Combo.	I	A	В	AB	С	AC	BC	ABC
(1)	+	_	-					
a	+	+	_					
b	+	_	+					
ab	+	+	+					
c	+	_	_					
ac	+	+	_					
bc	+	_	+					
abc	+	+	+					

$$C = \frac{1}{4n} [c + ac + bc + abc - (1) - a - b - ab]$$

Treatment	Factorial Effect								
Combo.	Ι	A	В	AB	С	AC	BC	ABC	
(1)	+	-	_		_				
a	+	+	_		-				
b	+	-	+		-				
ab	+	+	+		_				
c	+	_	_		+				
ac	+	+	_		+				
bc	+	_	+		+				
abc	+	+	+		+				

$$AB = \frac{1}{4n}[abc + ab + c + (1) - bc - b - ac - a]$$

Treatment	Factorial Effect							
Combo.	I	A	В	AB	C	AC	BC	ABC
(1)	+	_	-	+	_			
a	+	+	-	-	_			
b	+	_	+	-	_			
ab	+	+	+	+	_			
c	+	_	-	+	+			
ac	+	+	-	-	+			
bc	+	_	+	-	+			
abc	+	+	+	+	+			

$$ABC = \frac{1}{4n}[-(1) + a + b - ab + c - ab - bc + abc]$$

Treatment	Factorial Effect									
Combo.	I	A	В	AB	C	AC	BC	ABC		
(1)	+	_	_	+	-	+	+	-		
a	+	+	-	-	-	-	+	+		
b	+	_	+	-	-	+	_	+		
ab	+	+	+	+	-	-	_	_		
С	+	_	_	+	+	-	_	+		
ac	+	+	-	-	+	+	_	_		
bc	+	_	+	-	+	_	+	_		
abc	+	+	+	+	+	+	+	+		

Example: Plasma Etching Experiment

	Cod	led Fac	tors	Etch Rate			Factor Levels			
Run A		B C		Replicate 1	Replicate 2	Total	Low (-1)	High (+1)		
1	-1	-1	-1	550	604	(1) = 1154	A (Gap, cm)	0.80	1.20	
2	1	-1	-1	669	650	a = 1319	B (C_2F_6 flow, SCCM)	125	200	
3	-1	1	-1	633	601	b = 1234	C (Power, W)	275	325	
4	1	1	-1	642	635	ab = 1277				
5	-1	-1	1	1037	1052	c = 2089				
6	1	-1	1	749	868	ac = 1617				
7	-1	1	1	1075	1063	bc = 2178				
8	1	1	1	729	860	abc = 1589				

A = Gap between electrodes, B = Gas Flow, C = RF Power, y = Etch Rate

Treatment		Factorial Effect								
Combo.		I	A	В	AB	C	AC	BC	ABC	
(1)	=1154	+	1	ı	+	-	+	+	_	
a	= 1319	+	+	-	_	_	-	+	+	
b	=1234	+	-	+	_	_	+	_	+	
ab	= 1277	+	+	+	+	_	-	_	_	
c	= 2089	+	-	-	+	+	-	_	+	
ac	= 1617	+	+	-	_	+	+	_	_	
bc	= 2178	+	-	+	_	+	-	+	_	
abc	= 1589	+	+	+	+	+	+	+	+	
Contrast			-813	59	2449	-199	-1229	-17	45	

The General 2^k Factorial Design

There will be k main effects, and

$$\begin{pmatrix} k \\ 2 \end{pmatrix}$$
 two-factor interactions
$$\begin{pmatrix} k \\ 3 \end{pmatrix}$$
 three-factor interactions

$$\begin{pmatrix} k \\ 3 \end{pmatrix}$$
 three-factor interactions

$$1 k$$
 – factor interaction

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

General Factorial Equations

$$Effect = \frac{2*Contrast}{n*2^k}$$

$$SS_{contrast} = \frac{Contrast^2}{n*2^k}$$

Unreplicated 2^k Factorial Designs

- These are 2^k factorial designs with one observation at each corner of the "cube"
- An unreplicated 2^k factorial design is also sometimes called a "single replicate" of the 2^k
- These designs are very widely used
- Modeling "noise"?

Unreplicated 2^k Factorial Designs

- Lack of replication causes potential problems in statistical testing
 - Replication admits an estimate of "pure error" (a better phrase is an internal estimate of error)
 - With no replication, fitting the full model results in zero degrees of freedom for error
- Potential solutions to this problem
 - Pooling high-order interactions to estimate error
 - Normal probability plotting of effects (Daniels, 1959)
 - Other methods...

Example

Run Number		Fa	ctor		Filtration Rate	
	A	В	С	D	Run Label	(gal/h)
1	-	-	_	_	(1)	45
2	+	-	-		a	71
3	-	+	_	·	b	48
4	+	+	_	<i>‡</i> –	ab	65
5	_	-	+	-	c	68
6	+	-	+	_	ac	60
7	_	+	+	- "	bc	80
8	+9	+	+	-	abc	65
9	_	-	_	+	d	43
10	. +		, -	+	ad	100
11	_	+	-	+	bd	45
12	+	+	-	+	abd	104
13		_	+	+	cd	75
14	, + ,:	_	+	+	acd	86
15	_	+	+	+	bcd	70
16	+	+	+	+	abcd	96

Estimates of the Effects

Term	Effect	SumSqr	% Contribtn
А	21.6	1870.6	32.6
В	3.1	39.1	0.7
С	9.9	390.1	6.8
D	14.6	855.6	14.9
AB	0.1	0.1	0.0
AC	-18.1	1314.1	22.9
AD	16.6	1105.6	19.3
ВС	2.4	22.6	0.4
BD	-0.4	0.6	0.0
CD	-1.1	5.1	0.1
ABC	1.9	14.1	0.2
ABD	4.1	68.1	1.2
ACD	-1.6	10.6	0.2
BCD	-2.6	27.6	0.5
ABCD	1.4	7.6	0.1

Normal Probability Plot of Effects

Effects that lie along the line are negligible... large effects are far from the line

ANOVA Summary for the Model

Response: Filtration Rate

ANOVA for Selected Factorial Model

Analysis of variance table [Partial sum of squares]

Source Model A C D AC AD Residual Cor Total	Sum of Squares 5535.81 1870.56 390.06 855.56 1314.06 1105.56 195.12 5730.94	DF 5 1 1 1 1 1 10 15	Mean Square 1107.16 1870.56 390.06 855.56 1314.06 1105.56 19.51	F Value 56.74 95.86 19.99 43.85 67.34 56.66	Prob >F < 0.0001 < 0.0001 0.0012 < 0.0001 < 0.0001 < 0.0001
Std. Dev. Mean	4.42 70.06		R-Square Adj R-Squ Pred R-Sc	ıared	0.9489 0.9128
PRESS	499.52				

The Regression Model

Final Equation in Terms of Coded Factors:

```
Filtration Rate = 
+70.06250
+10.81250 * Temperature
+4.93750 * Concentration
+7.31250 * Stirring Rate
-9.06250 * Temperature * Concentration
+8.31250 * Temperature * Stirring Rate
```

November 8, 2011

Model Interpretation – Response Surface Plots

With concentration at either the low or high level, high temperature and high stirring rate results in high filtration rates

Addition of Center Points to a 2^k Designs

- Based on the idea of replicating some of the runs in a factorial design
- Runs at the center provide an estimate of error and allow the experimenter to distinguish between two possible models:

First-order model (interaction)
$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \sum_{j>i}^k \beta_{ij} x_i x_j + \varepsilon$$

Second-order model
$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \sum_{j>i}^k \beta_{ij} x_i x_j + \sum_{i=1}^k \beta_{ii} x_i^2 + \varepsilon$$

Figure 6-34 A 2^2 design with center points.

$$\overline{y}_F = \overline{y}_C \implies$$
 no "curvature"

The hypotheses are:

$$H_0: \sum_{i=1}^k \beta_{ii} = 0$$

$$H_1: \sum_{i=1}^k \beta_{ii} \neq 0$$

$$SS_{\text{Pure Quad}} = \frac{n_F n_C (\overline{y}_F - \overline{y}_C)^2}{n_F + n_C}$$

Example

$$n_C = 5$$

Usually between 3 and 6 center points will work well

Design-Expert provides the analysis, including the *F*-test for pure quadratic curvature

ANOVA

Response: yield ANOVA for Selected Factorial Model Analysis of variance table [Partial sum of squares] Sum of F Mean **Squares** DF Value Prob > FSource Square Model 2.83 0.94 21.92 0.0060 3 2.40 2.40 55.87 0.0017 Α В 0.42 0.42 9.83 0.0350 2.500E-003 1 2.500E-003 0.058 0.8213 AΒ 2.722E-003 1 0.8137 Curvature 2.722E-003 0.063 Pure Error 0.17 0.043 3.00 Cor Total 8 Std. Dev. 0.21 R-Squared 0.9427 40.44 Adj R-Squared 0.8996 Mean Pred R-Squared N/A **PRESS** N/A

What if curvature was significant?

 Can we determine parameters for the second order model?

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2$$

- No only have 5 independent runs and we need to estimate 6 parameters.
- Have to do something else.

If curvature is significant, augment the design with axial runs to create a central composite design. The CCD is a very effective design for fitting a second-order response surface model

Overview of Response Surface Methods

- Primary focus of previous chapters is factor
 screening
 - Two-level factorials, fractional factorials are widely used
- Objective of RSM is optimization
- RSM dates from the 1950s; early applications in chemical industry

RSM is a Sequential Procedure

- Factor screening
- Finding the region of the optimum
- Modeling &
 Optimization of the response

The sequential nature of RSM.

The Method of Steepest Ascent

A procedure for moving sequentially from an initial "guess" towards to region of the optimum

Based on the fitted first-order model

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2$$

Steepest ascent is a gradient procedure

First-order response surface and path of steepest ascent.

An Example of Steepest Ascent

- Objective: Determine the operating conditions that maximize yield.
- Variables: Reaction Time & Temperature
- Current Settings: 35 minutes, and 155 F
 - Resultant yield = 40%
- Parameter settings:
 - Time (30, 40) minutes
 - Temp (150, 160) minutes
- Design: Full Factorial with 5 center points

An Example of Steepest Ascent Initial Design

Design: Full Factorial with 5 center points

- Allows us to estimate error
- Can check for interactions in the model
- Can check for curvature
- Economical if more factors, what could we do?

An Example of Steepest Ascent Experimental Data & Regression Model

			A:Time	B:Temp	yield
Std	Run	Block	minutes	degC	percent
1	7	{1}	-1	-1	39.3
2	6	{1}	1	-1	40.9
3	5	{1}	-1	1	40
4	2	{1}	1	1	41.5
5	9	{1}	0	0	40.3
6	4	{1}	0	0	40.5
7	1	{1}	0	0	40.7
8	3	{1}	0	0	40.2

$$[A] = 2/4*(-39.3+40.9-40+41.5) = 1.55$$

 $[B] = 2/4*(-39.3-40.9+40+41.5) = 0.65$

$$\hat{y} = 40.44 + 0.775x_1 + 0.325x_2$$

An Example of Steepest Ascent Experimental Data & Regression Model

$$\hat{y} = 40.44 + 0.775x_1 + 0.325x_2$$

$$X_{1} = \frac{A - (30 + 40)/2}{(40 - 30)/2} = \frac{A - 35}{5}$$

$$X_{2} = \frac{B - (150 + 160)/2}{(160 - 150)/2} = \frac{B - 155}{5}$$

$$\hat{y} = 40.44 + 0.775 \left(\frac{A - 35}{5} \right) + 0.325 \left(\frac{B - 155}{5} \right)$$

An Example of Steepest Ascent Checking for Curvature

$$SS_{quad} = \frac{n_F n_C (\bar{y}_{F} - \bar{y}_C)^2}{n_F + n_C} = \frac{(4*5*-0.035)}{9} = 0.0027$$

$$MS_E = \frac{\sum_{centerpo \text{ int } s} (y_i - y)^2}{n_C - 1} = \frac{0.172}{4} = 0.43$$

No evidence of Curvature...

F would be well below 1 and well below F_{1,4}

An Example of Steepest Ascent

An approximate step size and path can be determined graphically

Formal methods can also be used

Types of experiments along the path:

- Single runs
- Replicated runs

A: Reaction Time

Steepest Ascent

$$\hat{y}=40.44+0.775x_1+0.325x_2$$

Slope=
$$\frac{.325}{.775}$$
=0.42

StepSize=5 minutes (x_1)

Steepest Ascent Experiment

	Coded Variables		Natural	Response	
Steps	x_1	x_2	$\overline{\xi_1}$	ξ ₂	y
Origin	0	0	35	155	
Δ	1.00	0.42	5	2	
Origin $+ \Delta$	1.00	0.42	40	157	41.0
Origin $+ 2\Delta$	2.00	0.84	45	159	42.9
Origin $+ 3\Delta$	3.00	1.26	50	161	47.1
Origin $+ 4\Delta$	4.00	1.68	55	163	49.7
Origin $+ 5\Delta$	5.00	2.10	60	165	53.8
Origin $+ 6\Delta$	6.00	2.52	65	167	59.9
Origin + 7∆	7.00	2.94	70	169	65.0
Origin + 8∆	8.00	3.36	75	171	70.4
Origin + 9∆	9.00	3.78	80	173	77.6
Origin + 10∆	10.00	4.20	85	175	80.3
Origin + 11∆	11.00	4.62	90	179	76.2
Origin + 12Δ	12.00	5.04	95	181	75.1

Results from the Example

Yield versus steps along the path of steepest ascent

Local Optimum found at Step 10.

Next steps:
Run another 1st Order Model
at new conditions

Augment if necessary so that quadratic terms can be assessed

Analysis of the Second-Order Response Surface Model

			Factor 1	Factor 2	Response 1	Response 2	Response 3
Std	Run	Block	A:time	B:temp	yield	viscosity	Mn
			min	degF		***************************************	
1	8	Block 1	80	170	76.5	62	2940
2	6	Block 1	90	170	78	66	3680
3	9	Block 1	80	180	77	60	3470
4	11	Block 1	90	180	79.5	59	3890
5	12	Block 1	77.93	175	75.6	71	3020
6	10	Block 1	92.07	175	78.4	68	3360
7	7	Block 1	85	167.93	77	57	3150
8	1	Block 1	85	182.07	78.5	58	3630
9	5	Block 1	85	175	79.9	72	3480
10	3	Block 1	85	175	80.3	69	3200
11	13	Block 1	85	175	80	68	3410
12	2	Block 1	85	175	79.7	70	3290
13	4	Block 1	85	175	79.8	71	3500

This is a central composite design

Analysis of the Second-Order Response Surface Model

central composite design

The Second-Order Response Surface Model

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{12} x_1 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \varepsilon$$

- These models are used widely in practice
- The Taylor series analogy
- Fitting the model is easy, some nice designs are available
- Optimization is easy
- There is a lot of empirical evidence that they work very well

ANOVA

ANOVA for Response Surface Quadratic Model Analysis of variance table [Partial sum of squares]

	Sum of		Mean	F	
Source	Squares	DF	Square	Value	Prob > F
Model	28.25	5	5.65	79.85	< 0.0001
Α	7.92	1	7.92	111.93	< 0.0001
В	2.12	1	2.12	30.01	0.0009
A^2	13.18	1	13.18	186.22	< 0.0001
B^2	6.97	1	6.97	98.56	< 0.0001
AB	0.25	1	0.25	3.53	0.1022
Residual	0.50	7	0.071		
Lack of Fit	0.28	3	0.094	1.78	0.2897
Pure Error	0.21	4	0.053		
Cor Total	28.74	12			

$$\hat{y} = 79.94 + 0.99x_1 + 0.52x_2 + 0.25x_1x_2$$
$$-1.38x_1^2 - 1.00x_2^2$$

Contour Plots

Contour Plots

These plots are given in the natural variables

The optimum is at about 87 minutes and 176.5 degrees

Formal optimization methods can also be used (particularly when k > 2)

Designs for Fitting Response Surface Models

- For the first-order model, two-level factorials (and fractional factorials) augmented with center points are appropriate choices
- The central composite design is the most widely used design for fitting the second-order model
- Selection of a second-order design is an interesting problem
- There are numerous excellent second-order designs available