dplyr E

大纲

第一部分 dplyr简介与安装 第二部分 数据预览 第三部分 数据筛选 第四部分数据重排序 第五部分数据变形 第六部分数据汇总 第七部分数据分组 第八部分其他技巧

第一部分 dplyr简介与安装

- * dplyr是plyr包的升级版,可以轻松地对数据进行筛选、变形、汇总、分组、管道等各式各样的数据处理操作,完全可以满足90%以上用户的使用需求。
- * 安装: >install.packages("dplyr")

官方教程讲解

我们所用的数据集是来自nycflights13包里的flights,这也是flight官方例子所用的包。

◆导入包: >library(dplyr)

→导入数据包: >library(nycflights13)

数据有时候会有很多条,如果一次全部打印,将会花费很多时间,同时也看不到每一行的名称等信息。所以R语言里为我们提供了head()函数,在dplyr里面有一个实现类似功能的tbl_df()函数,分别使用效果如下。可以看到这个数据集包括了年、月、日、离开时间、计划到达时间、实际到达时间、延误时间等行。

> head(flights)

Source: local data frame [6 x 19]

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay

(int) (int	(in	t)	(int)	(int)	(dbl)	(iı	nt)	(int)	(db	l)
1 2013	1	1	517	51	5 2	2	830	8	19	11
2 2013	1	1	533	52	.9 4	4	850	8	30	20
3 2013	1	1	542	54	0 2	2	923	8	50	33
4 2013	1	1	544	54	-5	1	1004	1	022	-18
5 2013	1	1	554	60	0 -	6	812	8	337	-25
6 2013	1	1	554	55	8 -	4	740	7	28	12

Variables not shown: carrier (chr), flight (int), tailnum (chr), origin (chr), dest (chr), air_time (dbl), distance (dbl), hour (dbl), minute (dbl), time_hour (time)

> tbl_df(flights)

Source: local data frame [336,776 x 19]

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay

	-			–			_			_		_	_	
((int) (int) (int	t)	(int)	(int)	(dbl)	(in	t)	(int)	(dbl)				
1	2013	1	1	517	51	5	2	830		819	11			
2	2013	1	1	533	52	.9	4	850		830	20			
3	2013	1	1	542	54	-0	2	923		850	33			
4	2013	1	1	544	54	-5	-1	1004		1022	-18			
5	2013	1	1	554	60	00	-6	812		837	-25			
6	2013	1	1	554	55	8	-4	740		728	12			
7	2013	1	1	555	60	00	-5	913		854	19			
8	2013	1	1	557	60	00	-3	709		723	-14			
9	2013	1	1	557	60	00	-3	838		846	-8			
10	2013	1	1	558	60	00	-2	753		745	8			

Variables not shown: carrier (chr), flight (int), tailnum (chr), origin (chr), dest (chr), air_time (dbl), distance (dbl), hour (dbl), minute (dbl), time_hour (time)

- * head: 只统计前六条, 也只显示前六条数据
- * table_df: 信息更加详细统计全部数据,显示前 十条数据

第三部分数据筛选

以往我们对data.frame进行数据筛选是通过筛选索引,比如,我们想找出一月一日的数据就可以用一下:

> flights[flights\$month == 1 & flights\$day == 1,]

在dplyr里面,则提供了一个filter()函数,可以更加简便的实现上述功能。

第三部分数据筛选

filter(flights, month == 1, day == 1)

Source: local data frame [842 x 19]

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay

(int) (int) (int)				(int)	(int)	(dbl)	(int)	(int)	(dbl)			
	1	2013	1	1	517	515	2	830	8	19	11	
	2	2013	1	1	533	529	4	850	8	30	20	
	3	2013	1	1	542	540	2	923	8	50	33	
	4	2013	1	1	544	545	-1	1004	1	022	-18	
	5	2013	1	1	554	600	-6	812	8	337	-25	
	6	2013	1	1	554	558	-4	740	7	'28	12	
	7	2013	1	1	555	600	-5	913	8	354	19	
	8	2013	1	1	557	600	-3	709	7	23	-14	
	9	2013	1	1	557	600	-3	838	8	346	-8	
	10	2013	1	1	558	600) -2	753		745	8	

Variables not shown: carrier (chr), flight (int), tailnum (chr), origin (chr), dest (chr), air_time (dbl), distance (dbl), hour (dbl), minute (dbl), time_hour (time)

第三部分数据筛选

类似的,下面语句也经常用到

>filter(flights, month == 1 | month == 2)

>filter(flights, month > 6)

第四部分数据重排序

除了filter()函数,dplyr还提供了一个arrange()函数可以帮助用户对于数据各行进行重新排序。

例如将所有数据按年月日的优先度进行row的重新排序

第四部分数据重排序

arrange(flights, year, month, day)

Source: local data frame [336,776 x 19]

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay

	year month day dep_time sched_dep_time dep_deray an_time sched_an_time an_deray											
	(int) (int	t) (in	t)	(int)	(int) (dbl) (int)			(int) (dbl)				
1	2013	1	1	517	515	2	830	819	11			
2	2013	1	1	533	529	4	850	830	20			
3	2013	1	1	542	540	2	923	850	33			
4	2013	1	1	544	545	-1	1004	1022	-18			
5	2013	1	1	554	600	-6	812	837	-25			
6	2013	1	1	554	558	-4	740	728	12			
7	2013	1	1	555	600	-5	913	854	19			
8	2013	1	1	557	600	-3	709	723	-14			

第四部分数据重排序

也可以用desc关键字将航班延误时间做降序

arrange(flights, desc(arr_delay))

Source: local data frame [336,776 x 19]

year month day dep time sched dep time dep delay arr time sched arr time arr delay (dbl) (int) (int) (int) (int) (int) (int) (int) (dbl) 2 2013 6 15 1 10 9 20 4 10 9 2013 10 2013

选取数据框里面的部分列,这一功能以前也是利用索引 实现的,dplyr则使用select函数可以更加便捷的实现选择 功能。

例如选择这个数据集前三列(年月日)的数据。

select(flights, year, month, day) select(flights, year:day)

Source: local data frame [336,776 x 3]

```
year month day
(int) (int) (int)
1 2013 1 1
2 2013 1 1
3 2013 1 1
4 2013 1 1
5 2013 1 1
6 2013 1 1
7 2013 1 1
8 2013 1 1
9 2013 1 1
10 2013 1 1
```

也可以利用distinct()函数根据某列的数值对重复行进行筛选。

例如择origin与dest组合互不相同的所有行的数据。

distinct(select(flights, origin, dest))

Source: local data frame [224 x 2]

origin dest (chr) (chr)

- 1 EWR IAH
- 2 LGA IAH
- 3 JFK MIA
- 4 JFK BQN
- 5 LGA ATL
- 6 EWR ORD

第六部分数据变形

在dplyr包里,我们可以用mutate()函数直接利用已有的数据生成新的变量,这在使用相关分类和聚类算法的时候尤其好用。

还可以用transform()函数直接修改已经存在的列(变量)。如果只想保留新生成的列(变量),可以使用transmute()函数:

第六部分数据变形

mutate(flights,gain = arr_delay - dep_delay, speed = distance/air_time * 60)

Source: local data frame [336,776 x 21]

year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay (int) (int) (int) (int) (int) (int) (int) (int) (dbl)

١.	()	(/	(1116)	((00)	١,	,	((00)	
1	2013	1	1	517	51	5	2	830	8	319	11
2	2013	1	1	533	52	9	4	850	8	330	20
3	2013	1	1	542	54	0	2	923	8	350	33
4	2013	1	1	544	54	5	-1	1004	•	1022	-18
5	2013	1	1	554	60	0	-6	812	8	337	-25
6	2013	1	1	554	55	8	-4	740	7	728	12
7	2013	1	1	555	60	0	-5	913	8	354	19
8	2013	1	1	557	60	0	-3	709	7	723	-14
9	2013	1	1	557	60	0	-3	838	8	346	-8
10	2013	1	1	558	60	00	-2	753		745	8

Variables not shown: carrier (chr), flight (int), tailnum (chr), origin (chr), dest (chr), air_time (dbl), distance (dbl), hour (dbl), minute (dbl), time_hour (time), gain (dbl), speed (dbl)

第六部分数据选择

当然我们还可以用 transform()函数直接修改以生成的行列(变量)。

```
transform(flights,
  gain = arr_delay - delay,
  gain_per_hour = gain / (air_time / 60)
)
```

第六部分数据选择

如果你只想保留新生成的行列(变量),可以使用 transmute()函数:

```
transmute(flights,
        gain = arr_delay - dep_delay,
        gain_per_hour = gain / (air_time / 60)
Source: local data frame [336,776 x 2]
   gain gain_per_hour
  (dbl)
             (db1)
   9
            2.378855
     16
            4.229075
```

第七部分数据分组

在dplyr中我们使用group_by来分类数据,比如以下代码第一句便表示通过tailnum这个属性对航班数据进行分类

```
by_tailnum <- group_by(flights, tailnum)
delay <- summarise(by_tailnum,
  count = n(),
  dist = mean(distance, na.rm = TRUE),
  delay = mean(arr_delay, na.rm = TRUE))
delay <- filter(delay, count > 20, dist < 2000)</pre>
```

第七部分数据分组

```
by_tailnum <- group_by(flights, tailnum)

delay <- summarise(by_tailnum,

count = n(),

dist = mean(distance, na.rm = TRUE),

delay = mean(arr_delay, na.rm = TRUE))|

delay <- filter(delay, count > 20, dist < 2000)</pre>
```

第八部分 数据汇总

在dplyr包里我们使用summerise()函数进行数据汇总。下面的代码表示对平均离开时间的延误时间取平均,其中na.rm则表示去除所有含有缺失数据的行。

除此之外,我们还可以用sample_n() and sample_frac()函数随机选择计算汇总数据。

```
summarise(flights,
  delay = mean(dep_delay, na.rm = TRUE))
Source: local data frame [1 x 1]
```

delay (dbl) 1 12.63907

第九部分其他技巧

dplyr包里的一些小技巧

n(x) #x中行的数量 n_distinct(x): #x中不重复行的数量 first(x), last(x) #x中第一行与最后一行 dplyr包

10 01

谢谢