2、已知 $A = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 13-, 15-10

124 - 124 + 10 2 1 1 = : [43

1 -1 2 | L O Y | = | L Y | 5 (ff) | 3、设A=

[-1 0 1]

(DABC)T

河海大学常州校区 2006-2007 学年第二学期 L3AT | -1 = 3741

《线性代数》考试试卷A

一、填空(3分×10=30分)

-、填空(3分×10=30分)
1、设
$$A$$
是 n 阶方阵,且 $|A|=3$,则 $|(3A^r)^{-1}|=$

7. 填空(3 分×10=30 分)
1. 设
$$A$$
是 n 阶方阵,且 $|A|=3$,则 $|(3A^r)^{-1}|=$
2. 设 A 是 3 阶方阵, $A=\begin{pmatrix} 1 & 2 & 3 \\ 0 & 7 & 8 \\ 2 & 4 & -1 \end{pmatrix}$,则 $|A|$ 中元素 $A_{13}+A_{23}+A_{33}=$

3/
$$\partial A = \begin{pmatrix} 1 & -1 & 0 & 1 \\ -1 & 0 & 1 & 1 \\ 0 & 1 & -1 & k \end{pmatrix}$$
, $R(A) = 2$, $M = \frac{2}{2}$

4、设
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 2 & 0 & 4 \\ 3 & 2 & t \end{pmatrix}$$
,若存在非零向量 β 满足 $A\beta = 0$,则 $t = -\frac{b}{4}$

$$5 A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
,则特征向量 $\alpha = \begin{pmatrix} 1 & -1 \\ -1 \end{pmatrix}$ 对应的特征值 $\lambda = -\frac{2}{4}$

$$A(1 = \lambda)(1, 1)$$

$$\int_{0}^{1} A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}, \text{ 则特征向量} \alpha = \begin{pmatrix} 1 & 1 \\ -1 \end{pmatrix} \text{对应的特征值} \lambda = \frac{2}{1}$$

$$\int_{0}^{1} A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}, \text{ 则特征向量} \alpha = \begin{pmatrix} 1 & 1 \\ -1 \end{pmatrix} \text{对应的特征值} \lambda = \frac{2}{1}$$

$$A = \begin{pmatrix} 2 & 4 \end{pmatrix}$$
, 则存证问题 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} 2 & 4 \end{pmatrix}$, 则 $A = \begin{pmatrix} -1 \end{pmatrix}$
 $A = \begin{pmatrix} -1 & 4 \end{pmatrix}$
 $A =$

8、岩 3 阶方阵
$$A$$
 有 3 个特征值 -2 , 3, 5, 则 $|A| = -$ 。

9、若
$$\alpha_1 = \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ k \end{pmatrix}$ 线性相关,则 $k = \frac{17}{2}$

二、计算(6分×4=24分)

二、计算(6分×4=24分)
$$1. 计算行列式 D = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 4 & 9 & 16 \\ 1 & 8 & 27 & 64 \end{vmatrix} = (2-1) (3-2) (4-3)$$

(2-1)(3-1)(9-1)(3-2)(9-2)(9-3)

-1/1/2/2X/X/X/=12

刘玄 3分 うてなる分

