MATH 624 Algebraic Geometry

David Zhu

September 16, 2024

1 Prevarieties and Varieties

We will assume that K|k a finite extension, K is algebraically closed. We will use $\mathbb{A}^n(K) = K^n = \mathbb{A}^n_K$ to denote the underlying set, not the n-dimensional affine space. Given a point $a = (a_1, ..., a_n) \in \mathbb{A}^n_k$, we will use φ_a to denote the evaluation map $k[X] \to k$. Similarly, given $f \in k[x]$, we have the evaluation map $\tilde{f} : \mathbb{A}_k \to k$. This gives a morphism of k-algebras $k[x] \to Maps_k(\mathbb{A}_k, k)$ given by $f \mapsto \tilde{f}$.

Definition 1.0.1. Given $\Sigma \subset k[x]$, define $V(\Sigma) = \{a \in \mathbb{A}_k : f(a) = 0 \text{ for every } f \in \Sigma\}$. This is called the <u>affine k-algebraic set</u> defined by Σ . If $\Sigma = \{f\}$, then $H_f := V(\Sigma) = V(f)$ defines a hyperplane in \mathbb{A}_k .

Example 1.0.1. Easy examples

- 1. $V((0)) = \mathbb{A}_k$.
- 2. $V((1)) = \emptyset$
- 3. Let $k = \mathbb{C}$. Then, in \mathbb{A}^1_k , $V(x^2 1) = \{\pm 1\}$. In \mathbb{A}^2_k , $V(x^2 1) = \{(\pm 1, n) : n \in k\}$

Definition 1.0.2. Given $V \subset \mathbb{A}_{7}$, defined $I(V) = \{ f \in k[x] : f(V) = 0 \}$. This is called the <u>ideal</u> of V.

Proposition 1.0.1. 1. Let $I_{\Sigma} \subset k[x]$ be the ideal generated by Σ . Then, $V(\Sigma) = V(I)$.

- 2. There exists a finite system $f_1, ..., f_m$ such that $V(\Sigma) = V(f_1, ..., f_m)$
- 3. If $\Sigma_1 \subset \Sigma_2$, then $V(\Sigma_1) \supset V(\Sigma_2)$
- 4. Given \mathfrak{a} an ideal, then $I(V(\mathfrak{a})) = \mathfrak{a}$ iff $\mathfrak{a} = \sqrt{\mathfrak{a}}$.
- 5. Given ideals $\mathfrak{a}, \mathfrak{b}$, then $V(\mathfrak{a}) = V(\mathfrak{b})$ iff $\sqrt{\mathfrak{a}} = \sqrt{\mathfrak{b}}$.

Definition 1.0.3. Let $\mathcal{A}_K^n := \{V \subset \mathbb{A}_K^n : V \text{ affine } k - \text{algebraic sets}\}$. Given $V \in \mathcal{A}_K^n$, let k[V] := k[x]/I(V) be the **affine coordinate ring** generated by V.

Let $Id^{rd}(k[x])$ be the set of reduced ideals of k[x]. Let R_n be the set of reduced k-algebras with n-generators.

Theorem 1.1. There is a canonical bijection between the set of reduced affine k-algebras and reduced ideals of k[x], given by the maps

$$R_n \to Id^{re}(k[X]) \to \mathcal{A}_K^k$$
$$k[\underline{x}] \mapsto \mathfrak{a} := ker(k[x] \xrightarrow{f} k) \mapsto V(\mathfrak{a})$$

with f given by $x \mapsto \underline{x}$.

1.1 The Zariski Topology

Given $V \in \mathcal{A}_K^n$, there is a canonical map $K[X] \to K[V]$ given by $f \mapsto f_V$.

Proposition 1.1.1. Let $\Sigma_i \subset k[X]$, and $f \in k[X]$ be given, then

- 1. $V(\cup_i \Sigma_i) = \cap_i V(\Sigma_i)$
- 2. $V(\prod \Sigma_i) = \bigcup V(\Sigma_i)$
- 3. $V((0)) = \mathbb{A}_k^n$; $V((1)) = \emptyset$

By the proposition above, we can define the Zariski topology on \mathbb{A}^n_k

Definition 1.1.1. The Zariski topology on \mathbb{A}^n_K is given by the closed sets $V(\Sigma)$, with $\Sigma \in k[X]$. In particular, the sets $D_f := \mathbb{A}^n_k - H_f$ is an open set and forms a basis for the topology.

Note that the zariski topology on product spaces is not the product of zariski topologies. Moreover, the connectedness/irreducibility is dependent on K|k. A point is called a generic point of V if its closure contains V.

Example 1.1.1. If $K|k = \mathbb{C}|\mathbb{Q}$, then $V(x_1^2 - 2x_2^2)$ is connected and irreducible. If $K|k = \mathbb{C}|\mathbb{Q}[\sqrt{2}]$, then $V(x_1^2 - 2x_2^2)$ is connected but not irreducible.

Remark 1.1.1. For a topological space, X, the following are equivalent:

- 1. Every descending chain of closed subsets is stationary.
- 2. Every ascending chain of open subsets is stationary.

A topological space satisfying the above is called <u>Noetherian</u>. For example, Spec(R) is Noetherian if R is Noetherian. Note that if X is Noetherian, then it is automatically quasi-compact. Moreover, there are only finitely many irreducible components and connected components of X.

Proposition 1.1.2. The following hold:

- 1. The Zariski topology is Noetherian on \mathbb{A}_K , therefore also on any $V \in \mathcal{A}_K^n$.
- 2. For every $V \in \mathcal{A}_K$, there are only finitely many irreducible components and connected components.
- 3. $V \in \mathcal{A}_K$ is irreducible iff I(V) is a prime ideal.
- 4. Given $V_0 \subset V$, V_0 is irreducible iff $I_V(V_0) := I(V_0)/I(V) \in Spec(k(V))$ is minimal.
- 5. The connected components in $V \in \mathcal{A}_K$ correspond bijectively to the indecomposable idempotents of k[V].
- 6. For $V \in \mathcal{A}_K$, $a \in V$ is a generic point iff the evaluation map $k[V] \to k[a]$ is an isomorphism of k-algebras.

Definition 1.1.2. Let T be a topological space, and let $V \subset T$.

- 1. dim(V):=sup { chain of irreducible components ending in V: }
- 2. $\operatorname{codim}(V):=\sup\{\text{ chain of irreducible components starting with } V \text{ and ending in } T: \}$ Note that if $V = \cup V_{\alpha}$, then $\dim(V) = \operatorname{supdim}(V_{\alpha})$, and similarly for codimensions. Moreover, $\dim(V) = \dim(\overline{V})$.

Proposition 1.1.3. (Notions of dimension) Let $V \in \mathcal{A}_K$ be irreducible. Then, the dimension of V is the same as the krull dimension of K[V].

Proposition 1.1.4. Suppose irreducible $W \subset V \in \mathcal{A}_K$. Then,

$$dim(W) + codim_V(W) = dim(V)$$

Proposition 1.1.5. $V \in \mathcal{A}_K$ has generic points a iff $td(K|k) \geq dim(V) = td(k(V))$.

1.2 Base change and Rational Points

Definition 1.1.3. Suppose there is an embedding

$$\begin{array}{ccc} K & \longrightarrow L \\ \uparrow & & \uparrow \\ k & \longrightarrow l \end{array}$$

Then, there is a natural morphism $k[x] \to l[x]$, which induces a pushforward of ideals and a map $\mathcal{A}_K \to \mathcal{A}_L$. Take the vanishing locus of the pushforward of I(V) gives the base change of V.

Remark 1.1.2. Base change does not preserve connectedness or irreducibility.

Definition 1.1.4. $V \in \mathcal{A}_K$ is called **absolutely (geometrically) irreducible** if V_l is irreducible for all field extension l|k. It is **geometrically connected** is V_l is connected for all l|k.

Proposition 1.1.6. Let $V \in \mathcal{A}_K$ be affine k-algebraic set. Then the following are equivalent:

- 1. V is absolutely irreducible.
- 2. V_{k^s} is irreducible.
- 3. $V_{\overline{k}}$ irreducible.

The key observation is that $K^s[x] \to \overline{k}[X]$ is an integral extensions of domains. Therefore, we have going up and going down, and it straightforward to show that $Spec(k^s[X]) \to Spec(\overline{k}[X])$ is a homeomorphism. Thus, we have $(2) \Longrightarrow (3)$.

To $(3) \implies (1)$, apply the following:

Lemma 1.2. For every $V \in \mathcal{A}_K$, one has $V(\overline{k})$ is zariski dense in V. Therefore, $V_{\overline{k}}$ irreducible implies V irreducible

The proof is exercise. The key point is that if there exists f with k-coefficients such that f vanishes on all of A

Proposition 1.2.1. Let $V \in \mathcal{A}_K$ be affine k-algebraic set. Then the following are equivalent:

- 1. V is geometrically connected.
- 2. V_{K^s} is connected.
- 3. $V_{\overline{k}}$ is connected.

2 The category of quasi-affine k-algebraic sets

Definition 2.0.1. A quasi-affine k-algebrac set is any zariski open subset $U \subset V$ for $V \in \mathcal{A}_K$.

The complement of hyperplanes is a basis of quasi-affine k-algebraic sets. Let $V \in \mathcal{A}_K$ be non-empty, $f \in K[V]$. Then, the evaluation map $f: V \to \mathcal{A}_K$ is continuous. Moreover, $\varphi = (f_1, ..., f_n)$ is also continuous.

Definition 2.0.2. Let $V \in \mathcal{A}_K$ and $\mathcal{V} \subset V$ be zariski dense. Then, a functions $\varphi : \mathcal{V} \to \mathcal{A}_K$ is called **regular** at $x \in V$ if there exists $f_x, g_x \in k[x]$ and $\S \subset V$ such that $g_x \neq 0$ everywhere on \mathcal{U}_x and $\varphi = \frac{f_x}{g_x}$. A function $\varphi : \mathcal{V} \to \mathcal{A}_K$ is **regular** if it is regular at every point in V. Let $\mathcal{O}_x := \{\varphi \in Maps(\mathcal{V}, K) : \varphi \text{ regular at } x\}$. Define an equivalence relation on \mathcal{O}_x by equivalence on any open neiborhood around x. $\mathcal{O}(V)$ is the set of regular functions on V.

Proposition 2.0.1. (rings of regular functions) We have the following:

- 1. $k[V] \to \mathcal{O}(V)$ is an isomorphism of k-algebra.
- 2. $k[V]_f \to O(U_f)$ is an isomorphism of k-algebra.

It is helpful to remember that Zariski open sets are dense. Thus, it suffices to show that a function is zero on a basic open U_f to deduce it is globally zero.

3 Presheaves and Sheaves

Definition 3.0.1. Let \mathcal{C} be a concrete category such as **Top**, **Set**, **Ab**. Let X be a topological space with topology τ_X . Then, τ_X is naturally poset category where morphisms are inclusions. A **presheaf** is a contravariant functor $\mathcal{P}: \tau_X \to \mathcal{C}$.

Explicitly, \mathcal{P} is given by two data: $1.\mathcal{P}(U) \in Obj(\mathcal{C})$ for every $U \in \tau_X$. $2.\rho_{u',u''}: \mathcal{P}(U'') \to \mathcal{P}(U')$ for every $U' \subset U''$. The elements in the set P(U) are called <u>sections</u> above U. The image of a section under ρ is called the **restriction**.

Definition 3.0.2. A presheaf is a <u>sheaf</u> if it has the covering preperty: given an open cover of an open set $U = \bigcup_i U_i$, with $U + i, j := U_i \cap U_j$ with $s_i \in \mathcal{P}(U_i)$ such that $\rho_{U_i,U_{i,j}}(s_i) = \rho_{U_j,U_{i,j}}(s_i)$, then there exists $s \in \mathcal{P}(U)$ such that $s_i \in \rho_{U,U_i}(s)$ for every U_i .

Definition 3.0.3. Suppose that limits exists in \mathcal{C} . Then $\mathcal{P}_x := \mathcal{P}(U_x)$ is called the <u>stalk</u> of \mathcal{P} at x.

Proposition 3.0.1. \mathcal{P} is a sheaf iff for every $U \in \tau_X$, the map $\varphi_U : U \to \coprod_{x \in U} \mathcal{P}_x$ is injective.

Proposition 3.0.2. For every presheaf \mathcal{P} , there is a sheafification functor $\mathcal{P} \to \mathcal{F}$ that induces isomorphism on stalks.

Definition 3.0.4. Let $f: X \to Y$ be a continuous map of topological spaces. Then,

- 1. Given a (pre)sheaf \mathcal{P} on X, then the <u>direct image</u> (pre)sheaf $f_*\mathcal{P}$ on Y is defined by $f_*\mathcal{V} := \mathcal{P}(f^{-1}(V))$ for all $V \in \tau_Y$. In particular, the direct image sheaf is also a sheaf.
- 2. Given a presheaf \mathcal{P} on Y. There is an **inverse image** sheaf $f^{-1}\mathcal{P}$ on X defined by the limit:

$$f^{-1}\mathcal{P}(U) := \varprojlim_{U \subset U'} \mathcal{P}(f(U'))$$

where $U \subset U'$ and f(U') is open.

Remark 3.0.1. Note that the preimage sheaf is always a preseeaf, but not necessarily a sheaf.

Definition 3.0.5. A (locally) <u>ringed space</u> is a pair (X, \mathcal{F}) , where X is a topological space and \mathcal{F} a sheaf of rings on X such that the stalks at each point is a local ring.

Definition 3.0.6. Given locally ringed spaces (X, \mathcal{F}) , (Y, \mathcal{G}) , a morphism of locally ringed space is a pair (f, f^{\sharp}) such that $f: X \to Y$ is continuous and $f^{\sharp}: \mathcal{G} \to f_* \mathcal{F}$ a morphism of sheaves.

4 Back to Varieties

Proposition 4.0.1. Let V be an affine k-algebraic set, $U \subset V$ zariski open.

- 1. The assignment τ_U , $U' \mapsto \hat{O}(U')$ defined a locally ringed space on U.
- 2. A morphism of quasi-affine algebraic set $T \to U$ is any morphism of locally ringed spaces $(f, f^{\sharp}): (T, \mathcal{O}_T) \to (U, \mathcal{O}_U)$

The checks are fullfilled by proposition 2.0.1.

Proposition 4.0.2. Let $(T, \mathcal{O}_T), (U, \mathcal{O}_U)$, and $\Phi: T \to U$ continuous. Then,

- 1. Φ defined a morphism of locally ringed spaces iff $\mathcal{O}_U \circ \varphi \subset \mathcal{O}_T$, i.e for every U and T' open such that $\Phi(T') \subset U'$ and $\varphi \in \mathcal{O}_U(U')$, then $\varphi \circ \Phi \in \mathcal{O}_T(T')$.
- 2. Suppose Φ defines such a morphism, and let $U \subset \mathbb{A}_K$, $p : \mathbb{A}_K^n \to K$ the *i*th projection, then $p_i|_U \circ \Phi$ completely determines Φ .

Remark 4.0.1. Let $U_f := \{x \in V | f(x) \neq 0 : \}$ be a basic open. Consider $W_f \subset \mathbb{A}^n_K$ defined by $W_f := \{(a,b) | a \in \mathbb{A}^n_K, b \in \mathbb{A}^1_K : f(a)b-1=0\}$ is an algebraic set in \mathbb{A}^{mn}_K . Prove that $\Phi: W_f \to U_f$ given by $(a,b) \mapsto a$ is an isomorphism of quasi affine k-algebraic sets. Then inverse is given by $\psi: U_f \to W_f$ given by $a \mapsto (a, \frac{1}{f(a)})$.

Definition 4.0.1. A quasi-affine k-algebraic set is called <u>affine</u> if it is isomorphic as a locally ringed space to an affine k-algebraic set.