SC1015 Mini-Project

FCE3 Group 8

Joel Tan Xin Wei Han Sheng Jie, Philip

Table of contents

01 02 03

Problem Data Cleaning EDA
Definition

04 05 06

Machine Outcomes Final Insights
Learning

O1
Problem
Definition

Introduction

In 2019, global cancellation rate of hotel reservations was almost 40%

"Book now, pay later" practice

Zero booking fee

High cancellation rates → Lower room occupancy rates → Lower revenue for hotels

Dataset

Hotel Reservations Dataset by Ahzan Raza

Found on Kaggle

The Variables

Data Dictionary

- . Booking_ID: unique identifier of each booking
- · no_of_adults: Number of adults
- no_of_children: Number of Children
- no_of_weekend_nights: Number of weekend nights (Saturday or Sunday) the guest stayed or booked to stay at the hotel
- no_of_week_nights: Number of week nights (Monday to Friday) the guest stayed or booked to stay at the hotel
- type_of_meal_plan: Type of meal plan booked by the customer:
- required_car_parking_space: Does the customer require a car parking space? (0 No, 1- Yes)
- room_type_reserved: Type of room reserved by the customer. The values are ciphered (encoded) by INN Hotels.
- lead_time: Number of days between the date of booking and the arrival date
- · arrival_year: Year of arrival date
 - · arrival_month: Month of arrival date
 - · arrival_date: Date of the month
 - · market_segment_type: Market segment designation.
 - repeated_guest: Is the customer a repeated guest? (0 No, 1- Yes)
 - no_of_previous_cancellations: Number of previous bookings that were canceled by the customer prior to the current booking
 - no_of_previous_bookings_not_canceled: Number of previous bookings not canceled by the customer prior to the current booking
 - avg_price_per_room: Average price per day of the reservation; prices of the rooms are dynamic. (in euros)
 - no_of_special_requests: Total number of special requests made by the customer (e.g. high floor, view from the room, etc)
 - booking_status: Flag indicating if the booking was canceled or not.

19 variables

Problem Definition

How do variables such as room type, lead time, and number of previous cancellations affect the likelihood of a booking being cancelled?

O2
Data
Cleaning

Data Cleaning

Remove Invalid Data

Invalid dates

Adults + children is 0

Weekdays + weeknights is 0

Arrival Date and Time

Combining arrival year, month, date into single variable

Variable Encoding

Encoding into
machine-readable
categorical values
E.g. One Hot Encoding
Label Encoding

Data Cleaning

115 invalid entries removed

```
train = train.dropna(subset=['arrival datetime'])
    train.reset index(drop=True, inplace=True)
    train.shape

√ 0.0s

 (36238, 17)
Number of rows has been reduced from 36275 to 36238, thus there were 37 cases of invalid dates that was removed
    train = train[~((train['no_of_adults'] == 0) & (train['no_of_children'] == 0))]
    train.reset_index(drop=True, inplace=True)
    train.shape
  ✓ 0.0s
 (36238, 17)
There was no change in rows after this, so there was at least one person per booking.
    #drop any rows where both weekend nights and week nights are 0 (did not stay a night)
    train = train[~((train['no of weekend nights'] == 0) & (train['no of week nights'] == 0))]
    train.reset index(drop=True, inplace=True)
    train.shape

√ 0.0s

 (36160, 17)
Number of rows has been reduced from 36238 to 36160, thus there were 78 cases of invalid dates that was removed
```

O3
Exploratory
Data Analysis

Variables

```
In [2]:
            clean = pd.read csv('CleanedEDA.csv')
         2 clean.info()
             Unnamed: 0
                                                  36160 non-null int64
                                                  36160 non-null object
             Booking ID
             no of adults
                                                  36160 non-null
                                                                 int64
                                                  36160 non-null int64
             no of children
            no of weekend nights
                                                  36160 non-null int64
            no of week nights
                                                  36160 non-null int64
            type of meal plan
                                                  36160 non-null object
                                                                                15 variables for consideration
             required car parking space
                                                  36160 non-null int64
            room type reserved
                                                  36160 non-null object
            lead time
                                                  36160 non-null int64
                                                  36160 non-null object
            market segment type
            repeated guest
                                                  36160 non-null int64
         12 no of previous cancellations
                                                  36160 non-null int64
         13 no of previous bookings not canceled
                                                 36160 non-null int64
         14 avg price per room
                                                  36160 non-null float64
         15 no of special requests
                                                  36160 non-null int64
                                                  36160 non-null object
         16 booking status
            arrival datetime
                                                  36160 non-null object
        dtypes: float64(1), int64(11), object(6)
```

Uni-Variate Analysis

Room Type Reserved

Room Type 1 is most commonly chosen room

Standard room

Room Type 4 has a sizeable number of bookings

Larger room for families

Other types have small number of bookings

Luxury room types e.g. suites

Uni-Variate Analysis

Lead Time (Days booked in advance)

Mean > Median 85 57

Small number of bookings made many days in advance → Right-skewed graph

Bi-Variate Analysis

Number of Previous Cancellations and Booking Status

booking_status
Not_Canceled 24284
Canceled 11876
Name: count, dtype: int64

Bookings with >= 1 previous cancellation

→ Lower ratio of cancelled bookings

compared to total

People who previously cancelled their bookings are less likely to cancel them again

Bi-Variate Analysis

Lead Time and Booking Status

Cancelled bookings had a greater median lead time → Possibly due to sudden issues coming up

Cancelled bookings have more spread out lead times

04 Machine Learning

Identifying the top predictors

- Started with Decision Tree Classifier
- Used all individual variables to predict booking_status
- Majority was around 67% accurate

Predictor	lassification Score
no_of_adults	0.665597
no_of_children	0.669912
no_of_weekend_nights	0.675664
no_of_week_nights	0.672013
type_of_meal_plan	0.673009
required_car_parking_space	0.675111
room_type_reserved	0.665265
lead_time	0.769580
repeated_guest	0.670907
no_of_previous_cancellations	0.676549
no_of_previous_bookings_not_canceled	0.673341
avg_price_per_room	0.704093
no_of_special_requests	0.668142
market_segment_type_Aviation	0.668584
market_segment_type_Complementary	0.667146
market_segment_type_Corporate	0.672456
market_segment_type_Offline	0.669801
market_segment_type_Online	0.674115

Using top predictors / all predictors

- Used top 4 predictors: 80% accuracy
- Using all predictors: 86% accuracy

Top Predictors: 0.8 Everything: 0.86

Random Forest Classifier

- Ensemble Learning
 - Creates multiple decision tree
 - Each tree predicts independently
 - Final prediction averages the predictions of all trees
- Hyperparameters for performance
 - N_estimators: number of trees in forest
 - max_depth

GridSearchCV

- Assist in finding best hyperparameters for Random Forest
 - n_estimators
 - Max_depth
- Cross validates 5 times

```
# Random Tree Classifier using Train Data
# Define the Parameter Grid
param_grid = {
    'n_estimators': [100, 500, 1000],
    'max_depth': [None, 5, 10, 15]
}
rtree = RandomForestClassifier()
#Use Grid Search to Find the Best Parameters
grid_search = GridSearchCV(estimator=rtree, param_grid=param_grid, cv=5)
grid_search.fit(X_train, y_train)
#Use the best tree from the grid search
best_rtree = grid_search.best_estimator_
```

Logistic Regression

Usually used for binary classification and prediction

Why not Linear Regression?

Handling categorical variables e.g. meal plan type, room type

Linear regression is usually used for numeric variables only

05Outcomes

3 Models Compared

Decision Tree

Quite accurate

Random Forest

Most accurate model, can be recommended to predict booking status

Logistic Regression

Not as accurate as the other two models

06 Final Insights

Learnings

- Cleaning invalid values of dataset
- Different encoders and their use cases
 - One Hot Encoding
 - Label Encoding
- How to analyse variables, both individually and in relation to the variable of interest, booking status
- New machine learning techniques
 - Logistic Regression
 - Random Forest Classifier
 - GridSearchCV
- Advantages/Disadvantages of each learning model

Data-driven insight

- Reliable Models (88% accuracy)
- Recommendations
 - Dataset shows that 1 in 3 people cancels their booking
 - Using our model allows the hotel to
 - Overbook properly
 - Predict cancelled bookings earlier

Thank you!

CREDITS: This presentation template was created by **Slidesgo**, and includes icons by **Flaticon**, and infographics & images by **Freepik**

Please keep this slide for attribution

