### В.В. Подбельский

# Иллюстрации к курсу лекций по дисциплине «Программирование»

О языках программирования и дисциплине «Программирование»

# Обработка данных



# Парадигмы, выделенные для сравнения языков программирования

- Императивная
- Объектноориентированная
- Функциональная
- Рефлексивная

- Обобщенная
- Логическая
- Декларативная
- Распределенная

"СРАВНЕНИЕ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ":

https://ru.m.wikipedia.org/wiki/

# Краткая Хронология Языков Программирования

### Процедурные языки

| 1954           | 1959   | 1960  | 1964        | 1964 | 1970    | 1972  | 1978-1983 |
|----------------|--------|-------|-------------|------|---------|-------|-----------|
| <b>FORTRAN</b> | COBOL  | ALGOL | BASIC       | PL/1 | Pascal  | С     | Ada       |
| Джон           | Грейс  | IFIP  | Томас Курц, | IBM  | Никлаус | Денис | Honeywell |
| Бэкус          | Хоппер |       | Джон Кемени |      | Вирт    | Ритчи |           |

### Объектно-ориентированные языки

| 1967                                         | 1969                         | 1980                       | 1985                           |
|----------------------------------------------|------------------------------|----------------------------|--------------------------------|
| Simula<br>Кристен Ньюгорд,<br>Оле-Йохан Даль | <b>Smalltalk</b><br>Алан Кэй | Smalltalk-80<br>Xerox PARK | <b>С++</b><br>Бьерн Страуструп |

### «Мультипарадигменные» языки

| 1987       | 1990      | 1994    | 1994         | 1995     | 2001      |
|------------|-----------|---------|--------------|----------|-----------|
| Perl       | Python    | PHP     | Java         | Ruby     | C#        |
| Ларри Уолл | Гвидо ван | Расмус  | Sun          | Юкихиро  | Андерс    |
|            | Россум    | Лердорф | Microsystems | Мацумото | Хейлсберг |

# Процедурные языки

- 1954 FORTRAN (Джон Бэкус)
- 1959 COBOL (Грейс Хоппер)
- 1960 ALGOL (IFIP)
- 1963 BASIC (Джон Кемени и Томас Куртц)
- 1964 PL/1 (IBM)
- 1970 Pascal (Никлаус Вирт)
- 1972 С (Денис Ритчи)
- 1978-1983 Ada (Honeywell)

# Объектно-ориентированные

- 1967 Simula, Кристен Ньюгорд и Оле-Йохан Даль
- 1969 Smalltalk, Алан Кэй;
- 1980 Smalltalk-80, Xerox PARK
- 1985 С++, Бьерн Страуструп

# Декларативные языки

- 1958 Лисп (LISP), Джон Маккарти (язык обработки списков)
- 1972 Prolog (Пролог язык логического программирования)
- 1974 SQL, Язык управления реляционными базами данных (Oracle).
- 1990 Haskell (функциональный язык, назван в честь математика Хаскелла Карри)
- 2008 F#, Дон Сайм (Microsoft Research)

# Мультипарадигменные языки

- 1987 Perl, Ларри Уолл
- 1990 Python, Гвидо ван Россум
- 1994 PHP, Расмус Лердорф
- 1994 Java, Sun Microsystems
- 1995 Ruby, Юкихиро Мацумото
- 2001 C#, Microsoft, Андерс Хейлсберг

# Парадигмы Программирования С#



# Рубрики классификации языков

- Семантика
- Класс языка
- Появился
- Автор
- Выпуск
- Система типов

- Основные реализации
- Диалекты
- Испытал влияние
- Повлиял
- Стандартизован

# Признаки классификации языков программирования

- Парадигмы
- Типизация
- Компилятор / интерпретатор
- Управление памятью
- Управление потоком вычислений
- Типы и структуры данных

- Объектноориентированные возможности
- Функциональные возможности
- Разное
- Стандартизация

"СРАВНЕНИЕ ЯЗЫКОВ ПРОГРАММИРОВАНИЯ": https://ru.m.wikipedia.org/wiki/

# Условные обозначения, используемые при классификации

| (+)   | указанная возможность присутствует          |
|-------|---------------------------------------------|
| ( - ) | указанная возможность отсутствует           |
| (+/-) | возможность поддерживается не полностью     |
| (-/+) | возможность поддерживается очень ограничено |

# Наличие парадигм для С#

| • | Императивная             | ( + )   |
|---|--------------------------|---------|
| • | Объектно-ориентированная | (+)     |
| • | Рефлексивная             | ( -/+ ) |
| • | Функциональная           | ( +/- ) |
| • | Обобщенная               | (+)     |
| • | Логическая               | ( - )   |
| • | Доказательная            | ( - )   |
| • | Декларативная            | ( -/+ ) |
| • | Распределенная           | ( -/+ ) |

# Типизация

| Статическая типизация                                 | (+)   | Вывод типов переменных из инициализатора         | (+)   |
|-------------------------------------------------------|-------|--------------------------------------------------|-------|
| Динамическая типизация                                | (+)   | Вывод типов переменных из<br>использования       | (-)   |
| Явная типизация                                       | (+)   | Вывод типов-аргументов при<br>вызове метода      | (+)   |
| Неявная типизация                                     | (-/+) | Вывод сигнатуры для локальных<br>функций         | (-)   |
| Явное приведение типов                                | (+)   | Параметрический полиморфизм                      | (+)   |
| Неявное приведение типов без<br>потери (точности)     | (+)   | Параметрический полиморфизм<br>с ковариантностью | (+/-) |
| Неявное приведение типов с<br>потерей данных          | (-)   | Параметрический полиморфизм высших порядков      | (-)   |
| Неявное приведение типов в<br>неоднозначных ситуациях | (+)   | Информация о типах в runtime                     | (+)   |
| Алиасы типов                                          | (+)   | Информация о типах-параметрах в runtime          | (+)   |

### Возможности С#

- 1. Настольные приложения
- 2. Приложения для Windows-магазина (плюс **Xamarin** разработка для iOS, Android, Win.Phone)
- 3. Web-приложения
- 4. Сервисы (WCF) и распределенные приложения

**Механизм** ADO .NET (ActiveX Data Objects .NET) **для работы с базами данных.** 

- ADO.NET Entity Framework
- LINQ (Language Integrated Query)

# Microsoft Imagine (ex. DreamSpark)

- 1. Для получения доступа к Imagine (MSDN) Вам необходимо заполнить «Заявку на подключение к DreamSpark (MSDN)».
- 2. Заявки от студентов принимаются по aдресу msdn.reg@hse.ru со студенческой почты @edu.hse.ru.

Полная информация о подключении к Microsoft Imagine доступна на странице: https://it.hse.ru/dream

# План преподавания дисциплины

Распределение аудиторных часов по модулям:

**Модуль 1**: 42 часа, в неделю: лек. 2, практ. 1. Экзамен.

**Модуль 2**: 42 часа, в неделю: лек. 1, практ. 2.

Контрольная; КДЗ. Экзамен

**Модуль 3**: 44 часа, в неделю: лек. 1, практ. 1.

Контрольная; КДЗ.

**Модуль 4**: 40 часов, в неделю: лек. 1, практ. 1.

Контрольная. Экзамен

Итого: 168 часов аудиторных занятий.

Самостоятельная работа: 212 часов

# Порядок формирования оценок

### Условные обозначения:

- **HO<i>** накопленная оценка і-го модуля;
- **ТП<i>** (сумма баллов по проверкам i-го модуля) / (количество проверок в i-м модуле); текущая проверка может быть компьютерным тестом (до 10 вопросов) или самостоятельной работой по решению задач на компьютере;
- **CP**<**i>\_**<**j>** оценка самостоятельной работы ј в i-м модуле;
- **KP<i>** оценка контрольной работы i-го модуля;
- **КДЗ<i>** оценка контрольного домашнего задания i-го модуля;
- **ЭК<i>** оценка за экзаменационную контрольную работу (первая часть экзамена) і-го модуля;
- **ЭT<i>** оценка за экзаменационный тест (вторая часть экзамена) і-го модуля;
- **30<i>** экзаменационная оценка (является блокирующей) і-го модуля (задача и/или тест);
- ИО<i> итоговая оценка і-го модуля;

# Порядок формирования оценок 1-го модуля

**ИО1** = Округление(0,6\*301 + 0,4\*H01).

**HO1** = Округление( $CP1_1 / 3 + CP1_2 / 3 + CP1_3 / 3$ ).

Если экзамен состоит из двух частей (контрольная и тест): 901 = Округление(0,5\*9K1 + 0,5\*9T1), если  $\min(9\text{K1}; 9\text{T1}) > 3$ ; иначе  $901 = \min(9\text{K1}; 9\text{T1})$ .

# Порядок формирования оценок 2-го модуля

**ИО2** = Округление(0,6\*302 + 0,4\*H02).

**HO2** = Округление $(0,3*(CP2_1 / 3 + CP2_2 / 3 + CP2_3 / 3) + 0,5*KP2 + 0,2*KД3).$ 

Если экзамен состоит из двух частей (контрольная и тест): 902 = 0кругление(0,5\*9K2 + 0,5\*9T2), если min(9K2; 9T2)>3; иначе 902 = min(9K2; 9T2).

### Обозначения:

ЭК<i> - экзаменационная контрольная <i>-го модуля;

ЭТ<і> - экзаменационный тест <i>-го модуля.

# Порядок формирования оценок 4-го модуля

 $\mathbf{VO4} = \mathbf{O}$ кругление(0,6\*304 + 0,1\*302 + 0,3\*HO4).

**HO4** = Округление $(0,1*(CP3_1 / 4 + CP3_2 / 4 + CP3_3 / 4 + CP3_4 / 4) + 0,2*KP3 + 0,15*(CP4_1 / 3 + CP4_2 / 3 + CP4_3 / 3) + 0,25*KP4 + 0,3*KД33).$ 

Если экзамен состоит из двух частей (контрольная и тест): 904 = Округлениe(0,5\*9K4 + 0,5\*9T4), если min(9K4; 9T4)>3; иначе <math>904 = min(9K4; 9T4).

### Обозначения:

ЭК4 - экзаменационная контрольная четвертого модуля;

ЭТ4 - экзаменационный тест четвертого модуля.

# Критерии выставления оценки за программу

### "НЕУДОВЛЕТВОРИТЕЛЬНО":

### 1 балл:

- 1. Разработка программы не завершена.
- 2. Программа имеет синтаксические ошибки (не компилируется).

### 2 балла:

- 1. Программа не решает основную задачу или не соответствует спецификации.
- 2. В программе обнаруживаются не обработанные исключения при решении основных и второстепенных подзадач.

### <u> 3 балла:</u>

- 1. Программа не решает основную задачу при некоторых вариантах исходных данных.
- 2. Программа завершается аварийно при некоторых вариантах исходных данных.

# **Критерии выставления оценки за программу** "удовлетворительно":

### <u>4 балла:</u>

1. Программа решает основную задачу, но имеет отклонения от спецификации.

### <u>5 баллов:</u>

- 1. Программа соответствует критериям получения оценки 4 балла.
- 2. Программа соответствует отдельным дополнительным критериям.

### "ХОРОШО":

### 6 баллов:

- 1. Программа решает поставленную задачу и соответствует спецификации. Отклонения от спецификации допущены при реализации второстепенных подзадач.
- 2. Исходный текст документирован.

### 7 баллов:

- 1. Программа соответствует критериям получения оценки 6 баллов.
- 2. Программа в целом соответствует дополнительным критериям.

# Критерии выставления оценки за программу

### "ОТЛИЧНО":

### 8 баллов:

- 1. Программа решает все поставленные задачи и полностью соответствует спецификации.
- 2. Студент в комментариях обосновал принятые конструктивные решения.
- 3. Исходный текст документирован. Присутствуют сведения о назначении используемых переменных, параметров, методов, классов, объектов.
- 4. Программа остается работоспособной при вводе неверных исходных данных.
- 5. Предусмотрено повторное решение задачи без повторного запуска программы.

# Критерии выставления оценки за программу

### "ОТЛИЧНО":

### 9 баллов:

- 1. Программа соответствует критериям получения оценки 8 баллов.
- 2. Программа соответствует некоторым дополнительным критериям.

### <u>10 баллов:</u>

- 1. Программа соответствует критериям получения оценки 8 баллов.
- 2. Программа полностью соответствует всем дополнительным критериям.
- 3. Студент отразил в комментариях возможность альтернативных вариантов решения задачи.

# Дополнительные критерии оценивания

- 1. Исходный текст программы структурирован.
- 2. Программа имеет средства изменения размерности и формы представления данных без изменения исходного текста или при минимальных изменениях (динамическое выделение памяти, именованные константы, и т.п.).
- 3. Программа реализована по модульному принципу и соответствующим образом декомпозирована.
- 4. В коде программы обоснованно использованы конструкции, изученные студентом самостоятельно, и их применение не противоречит основным требованиям, предъявляемым к решаемой задаче.
- 5. Предусмотрено самодокументирование программы.

# План проверочных работ (модуль 1)

- 23-28 сентября Самостоятельная работа 1
- 30 сентября 5 октября Самостоятельная работа 2
- 14-19 октября Самостоятельная работа 3
- 21-27 октября Экзамен

# Где искать материалы?

# Материалы занятий (OneDrive)

– <a href="http://bit.do/progCS2019">http://bit.do/progCS2019</a>

## Работа в компьютерном классе

- В начале сеанса работы в классе студент должен на диске **D** создать папку и назвать ее своей фамилией.
- В папке следует сохранять результаты работы на практическом занятии.

Внимание: После выключения компьютера, все папки с рабочего стола и диска C:\ автоматически удаляются!