

MATHEMATICAL PROGRAMMING CO3

NON-LINEAR PROGRAMMING: WOLF METHOD

DR. VUDA SREENIVASA RAO

Wolfe's Method

It is used for solving the Quadratic programming problem (QPP)

The general form of the QPP is

$$f(x) = cx + \frac{1}{2}x^{T}Qx$$
where $x = a$ s.t. $Ax \le b$ and $x \ge 0$

where Q is a symmetric matrix and b, c are the real vectors.

Important features:

1) The function x^TQx defines a quadratic form.

2) The constraints are assumed to be LINEAR, which ensures the convex solution space.

Kuhn-Tucker conditions for QPP

Consider a QPP

Maximize
$$Z = f(x)$$

s.t.
$$g(x) \leq 0$$
, $x \geq 0$

Convert all constraints into equality.

Maximize
$$Z = f(x)$$

s.t.
$$g(x) + S^2 = 0$$
 Skek

$$x \ge 0$$

Kuhn-Tucker conditions for QPP

Consider a QPP

Maximize
$$Z = f(x)$$

s.t.
$$g(x) \le 0, x \ge 0$$

Convert all constraints into equality.

Maximize
$$Z = f(x)$$

$$\mathbf{s.t.} \ g(x) + S^2 = 0$$
$$x \ge 0$$

The Lagrangian function is

$$L(x,\lambda,S) = f(x) - \lambda (g(x) + S^2)$$

$$\frac{\partial L}{\partial x} = 0$$

$$\frac{\partial L}{\partial \lambda} = 0$$

$$\frac{\partial L}{\partial S} = 0$$

$$\Rightarrow \nabla f - \lambda \nabla g = 0$$

$$\Rightarrow g(x) + S^2 = 0$$

$$\Rightarrow \lambda S = 0$$

$$\lambda, S, x \geq 0$$

Steps involved in Wolfe's Method

Step 1: Write all constraints in ≤ sign

Step 2: Convert all constraints into Equality by adding slack variables S_i^2 in the i^{th} constraints.

Step 3: Obtain Kuhn-Tucker conditions:

Construct the Lagrangian function

$$L = f(x) - \lambda(g(x) + S^2) - \mu(-x + S^2)$$

The necessary and sufficient conditions are:

$$\frac{\partial L}{\partial X} = 0$$
; $\frac{\partial L}{\partial \lambda} = 0$; $\frac{\partial L}{\partial \mu} = 0$; $\frac{\partial L}{\partial S} = 0$

Take $s_i = S_i^2$, and derive the Kuhn-Tucker conditions.

Step 4: Construct the modified LPP using artificial variables.

Step 5: Solve by Simplex algorithm by Two-phase method.

Step 6: The optimal solution obtained in Step 5 is an optimal solution to the given QPP also.

Example: Apply Wolfe's method, solve the following quadratic programming problem

Maximize
$$Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$

s.t. $x_1 + 2x_2 \le 2$; $x_1, x_2 \ge 0$

Solution:

Step 1: Write all constraints in ≤ sign

$$x_1 + 2x_2 \le 2$$
;
 $-x_1 \le 0$;
 $-x_2 \le 0$

Step 2: Convert into Equality:

Maximize
$$Z = 4x_1 + 6x_2 - 2x_1^2$$

 $-2x_1x_2 - 2x_2^2$
s.t. $x_1 + 2x_2 + S_1^2 = 2$ λ_1
 $-x_1 + S_2^2 = 0$; μ_1
 $-x_2 + S_3^2 = 0$ μ_2
 $x_i, S_i \ge 0$

Step 3: Obtain Kuhn-Tucker conditions:

Construct the Lagrangian function

$$L(x_1, x_2, S_1, S_2, S_3, \lambda_1, \mu_1, \mu_2)$$

$$= (4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2)$$

$$- \lambda_1(x_1 + 2x_2 + S_1^2 - 2) - \mu_1(-x_1 + S_2^2)$$

$$- \mu_2(-x_2 + S_3^2)$$

Step 3: Obtain Kuhn-Tucker conditions:

Construct the Lagrangian function

$$L(x_1, x_2, S_1, S_2, S_3, \lambda_1, \mu_1, \mu_2)$$

$$= (4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2)$$

$$- \lambda_1(x_1 + 2x_2 + S_1^2 - 2) - \mu_1(-x_1 + S_2^2)$$

$$- \mu_2(-x_2 + S_3^2)$$

The necessary and sufficient conditions are:

$$\frac{\partial L}{\partial x_1} = 4 - 4x_1 - 2x_2 - \lambda_1 + \mu_1 = 0$$

$$\frac{\partial L}{\partial x_2} = 6 - 2x_1 - 4x_2 = 0$$

$$\frac{\partial L}{\partial \lambda_1} = -x_1 - 2x_2 - S_1^2 + 2 = 0$$

Take
$$s_i = S_i^2$$
, we have

$$\lambda_1 s_1 = 0, \qquad \mu_1 x_1 = 0, \qquad \mu_2 x_2 = 0$$

and
$$x_1, x_2, s_1, \lambda_1, \mu_1, \mu_2 \ge 0$$

Step 4: Construct the modified LPP

Maximize
$$Z = -A_1 - A_2$$

s.t. $4x_1 + 2x_2 + \lambda_1 - \mu_1 + A_1 = 4$
 $2x_1 + 4x_2 + 2\lambda_1 - \mu_2 + A_2 = 6$
 $x_1 + 2x_2 + s_1 = 2$

And $\lambda_1 s_1 = 0$, $\mu_1 x_1 = 0$, $\mu_2 x_2 = 0$

Step 3: Obtain Kuhn-Tucker conditions:

Construct the Lagrangian function

$$\begin{split} L(x_1, x_2, S_1, S_2, S_3, \lambda_1, \mu_1, \mu_2) \\ &= (4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2) \\ &- \lambda_1(x_1 + 2x_2 + S_1^2 - 2) - \mu_1(-x_1 + S_2^2) \\ &- \mu_2(-x_2 + S_3^2) \end{split}$$

The necessary and sufficient conditions are:

$$\frac{\partial L}{\partial x_1} = 4 - 4x_1 - 2x_2 - \lambda_1 + \mu_1 = 0$$

$$\frac{\partial L}{\partial x_1} = 4 - 4x_1 - 2x_2 + \lambda_1 - \mu_1 = 4$$

$$\frac{\partial L}{\partial x_2} = 6 - 2x_1 - 4x_2 - 2\lambda_1 + \mu_2 = 0$$

$$\frac{\partial L}{\partial x_2} = 4 - 2x_1 - 4x_2 - 2\lambda_1 + \mu_2 = 0$$

$$\frac{\partial L}{\partial x_1} = -x_1 - 2x_2 - x_1^2 + 2 = 0$$

Take
$$s_i = S_i^2$$
, we have

$$\lambda_1 s_1 = 0, \qquad \mu_1 x_1 = 0, \qquad \mu_2 x_2 = 0$$

and
$$x_1, x_2, s_1, \lambda_1, \mu_1, \mu_2 \ge 0$$

c_{j}	0	0	0	0	0	-1-	-1	0	
BV	x_1	x_2	λ_1	μ_1	μ_2	A_1	A_2	s_1	Sol
$z_j - c_j$	-é	, -6	-3	1	1	0	0	0	-10
A_1	4	2	1	-1	0	1	0	0	4-
A_2	2	4	2	0	-1	0	1	0	6
s_1	2	0	0	0	0	0	0	1	2
$z_j - c_j$	0				1		0	0	-4
\dot{x}_1	1	1/2	1/4	-1/4	0	1/4	0	0	1
A_2	0			7/2			1	0	
S ₁	0	•					0	1	

$$Maximize Z = -A_1 - A_2$$

s.t.
$$4x_1 + 2x_2 + \lambda_1 - \mu_1 + A_1 = 4$$

 $2x_1 + 4x_2 + 2\lambda_1 - \mu_2 + A_2 = 6$
 $x_1 + 2x_2 + x_1 = 2$

$$\lambda_1 s_1 = 0, \ \mu_1 x_1 = 0, \mu_2 x_2 = 0$$

c_j	0	0	0	0	0	-1-	-1	0		
BV	x_1	x_2	λ_1	μ_1	μ_2	A_1	A_2	S_1	Sol	
$z_i - c_i$	-6	,-6	-3	1	1	0	0	0	-10	
A_1	4	2	1	-1	0	1	0	0	4-	->
$\overline{A_2}$	2	4	2	0	-1	0	1	0	6	
S_1	2	0	0	0	0	0	0	1	2	
$z_i - c_i$	0	-3	-3/2	-1/2	1	3/2	0	0	-4	
x_1	1	1/2	1/4	-1/4	0	1/4	0	0	1	2
A_2	0	3	3/2	1/2	-1	-1/2	1	0	4	4/3
S ₁	0	3/2	-1/4	1/4	0	-1/4	0	1	1	2/3

$$Maximize Z = -A_1 - A_2$$

s.t.
$$4x_1 + 2x_2 + \lambda_1 - \mu_1 + A_1 = 4$$

 $2x_1 + 4x_2 + 2\lambda_1 - \mu_2 + A_2 = 6$
 $x_1 + 2x_2 + s_1 = 2$

$$\lambda_1 s_1 = 0, \ \mu_1 x_1 = 0, \mu_2 x_2 = 0$$

c_{j}	0	0	0	0	0	-1-	-1	0		
BV	x_1	x_2	λ_1	μ_1	μ_2	A_1	A_2	S_1	Sol	
$z_i - c_i$	-6	,-6	-3	1	1	0	0	0	-10	
A_1	4	2	1	-1	0	1	0	0	4-	
A_2	2	4	2	0	-1	0	1	0	6	8
s_1	2	0	0	0	0	0	0	1	2	
$z_i - c_i$	0	-3	-3/2	-1/2	1	3/2	0	0	-4	
<i>x</i> ₁	1	1/2	1/4	-1/4	0	1/4	0	0	1	
A_2	0	3	3/2	1/2	-1	-1/2	1	0	4_	-
S ₁	0	3/2	-1/4	1/4	0	-1/4	0	1	1	5
$z_j - c_j$	0	0	-2	0	1.	1	0	2	-2	
x_1	1	0	1/3	-1/3	0	1/3	0	-1/3	2/3	
A_2	0	0	2	0	-1	0	1	-2	2	8
x2	0	1	-1/6	1/6	0	-1/6	0	2/3	2/3	

Maximize
$$Z = -A_1 - A_2$$

s.t.
$$4x_1 + 2x_2 + \lambda_1 - \mu_1 + A_1 = 4$$

 $2x_1 + 4x_2 + 2\lambda_1 - \mu_2 + A_2 = 6$
 $x_1 + 2x_2 + s_1 = 2$

$$\lambda_1 s_1 = 0, \ \mu_1 x_1 = 0, \mu_2 x_2 = 0$$

c_j	0	0	0	0	0	-1-	-1	0		E.A.
BV	x_1	x_2	λ_1	μ_1	μ_2	A_1	A_2	S_1	Sol	
$z_i - c_i$	-6		-3	1	1	0	0	0	-10	
A_1	4	2	1	-1	0	1	0	0	4-	
A_2	2	4	2	0	-1	0	1	0	6	
S_1	2	0	0	0	0	0	0	1	2	
$z_j - c_j$	0	-3,	-3/2	-1/2	1	3/2	0	0	-4	
<i>x</i> ₁	1	1/2	1/4	-1/4	0	1/4	0	0	1	
A_2	0	3	3/2	1/2	-1	-1/2	1	0	4_	-
S ₁	0	3/2	-1/4	1/4	0	-1/4	0	1	1	- T
$z_j - c_j$	0	0	-2	0	1	1	0	2	-2	122
χ_1	1	0	1/3	-1/3	0	1/3	0	-1/3	2/3	
$\overline{A_2}$	0	0	2	0	-1	0	1	-2	2 -	×
x2	0	1	-1/6	1/6	0	-1/6	0	2/3	2/3	

Maximize
$$Z = -A_1 - A_2$$

s.t.
$$4x_1 + 2x_2 + \lambda_1 - \mu_1 + A_1 = 4$$

 $2x_1 + 4x_2 + 2\lambda_1 - \mu_2 + A_2 = 6$
 $x_1 + 2x_2 + s_1 = 2$

$$\lambda_1 s_1 = 0, \ \mu_1 x_1 = 0, \mu_2 x_2 = 0$$

$z_i - c_i$	0	0	0	0	0	1	1	0	0
x _{1.}	1	0	0	+1/3	1/6	1/3	11/6	0	1/3
λ_1	0	0	1	0	-1/2	0	1/2	-1	1
<i>x</i> ₂	0	1	0	1/6	-1/2	-1/6	1/2	1/2	5/6

Since all $z_i - c_i \ge 0$. Thus, it is optimal and solution is

$$x_1 = \frac{1}{3}, x_2 = \frac{5}{6}$$

and Value of Z is

$$Z = 4x_1 + 6x_2 - 2x_1^2 - 2x_1x_2 - 2x_2^2$$
$$= \frac{25}{6}$$

