SAARLAND UNIVERSITY FACULTY OF MATHEMATICS AND COMPUTER SCIENCE DEPARTMENT OF MATHEMATICS

ALGEBRAIC NUMBER THEORY

LECTURE NOTES

Prof. Dr. Gabriela Weitze-Schmithüsen

Table of contents

1	Sma	ill prefix	
	1.1	Motivation	
	1.2	The ring $\mathbb{Z}[\zeta]$	
	1.3	First case of Fermat in case of $\mathbb{Z}[\zeta]$ is a UFD (unique factorization domain) 1	
2	Ring of integers 1		
	2.1	Integral ring extensions	
	2.2	Integral closures in field extensions	
	2.3	Ideals	
	2.4	Lattices and Minkowski	
	2.5	Minkowski theory	
	2.6	The class number	
	2.7	The theorem of Dirichlet	
	2.8	Prime ideals in \mathcal{O}_K	
	2.9	Hilbert's theorem of ramification	
	2.10	Cyclotomic Fields	
3	Ferr	nat's theorem for regular primes 6	
		The proof using a lemma of Kummer	
4	Geo	metric aspects 6	
		Localisation	

1 Small prefix

Recall:

- L numberfield: $\iff L$ is a finite extension of \mathbb{Q} In particular: L/\mathbb{Q} is separable $\Rightarrow L/\mathbb{Q}$ is primitive, i.e. $L = \mathbb{Q}(\alpha), \mathbb{Q}[X] \ni f_{\alpha} = \min$ minimal polynomial of α over \mathbb{Q} and $[L:\mathbb{Q}] = \deg(f_{\alpha})$.
- $\mathcal{O} := \{ \alpha \in L \mid f_{\alpha} \in \mathbb{Z}[X] \}$ is called *ring of integers* (generalization of $\mathbb{Z} \subseteq \mathbb{Q}$). \mathcal{O} is an integral domain.
- Goal: study the ring \mathcal{O}
- Questions:
 - 1. What is \mathcal{O}^{\times} ? What is its structure?
 - 2. What are the prime ideals of \mathcal{O} ?
 - 3. Do we have a unique prime factorization, i.e. is \mathcal{O} a UFD?

1.1 Motivation

Problem 1.1.1 (Fermat's conjecture, \sim 1640). Show that the equation $x^n + y^n = z^n$ has no nontrivial integer solutions, i.e. solutions (x, y, z) with $x, y, z \in \mathbb{Z} \setminus \{0\}$ for $n \geq 3$.

History:

- 1770: Euler found solution for n=3
- 1825: Dirichlet and Legendre using Germain
- Kummer showed it for many primes, he showed as well that his idea doesn't work for all $n \in \mathbb{N}_{\geq 2}$
- Conjecture was proved by Wiles in 1997

Remark 1.1.2. i) If Fermat's is true for n, then also for nk for all $k \in \mathbb{N}$.

ii) It is sufficient to prove Fermat's conjecture for n=4 and all odd primes.

Proof. i) Suppose (x, y, z) is a nontrivial solution of $x^{nk} + y^{nk} = z^{nk} \Rightarrow (x^k, y^k, z^k)$ is a nontrivial solution to $x^n + y^n = z^n$.

ii) Follows from i).

Proposition 1.1.3 (n=2). Suppose $x, y, z \in \mathbb{Z}, \gcd(x, y, z) = 1$

- i) x, y, z are pairwise coprime if $x^2 + y^2 = z^2$
- ii) $x^2 + y^2 = z^2 \Rightarrow either x \text{ or } y \text{ is even}$
- iii) $x^2 + y^2 = z^2 \iff \exists r, s \in \mathbb{N}_0, \gcd(r, s) = 1 \text{ s.t. } x = \pm 2rs, y = \pm (r^2 s^2), z = \pm (r^2 + s^2).$

Proof. i) clear \checkmark

- ii) One of x, y, z has to be even, since $odd + odd \neq odd$. Suppose z is even. Then look at equation mod 4, this gives a contradiction. By i) only one of x and y is even.
- iii) " \Leftarrow ": calculation " \Rightarrow ": Wlog. assume $x, y, z \in \mathbb{N}_0$, x even, y, z odd: $\Rightarrow x = 2u, z + y = 2v, z - y = 2w, \gcd(w, v) = 1(y, z \text{ are coprime}), x^2 + y^2 = z^2$ $\Rightarrow 4u^2 = x^2 = z^2 - y^2 = (z - y)(z + y) = 4wv \Rightarrow u^2 = wv$

$$\overset{\gcd(v,w)=1}{\Longrightarrow} v = r^2, w = s^2 \Rightarrow z = v + w = r^2 + s^2, y = v - w = r^2 - s^2$$
and $x = 2u = 2\sqrt{vw} = 2rs$

Remark. $(x, y, z) \in \mathbb{Z}^3$ with $x^2 + y^2 = z^2$ are called pythagorean triples.

Proposition 1.1.4 (n = 4). The equation $x^4 + y^4 = z^2$ (and $x^4 + y^4 = z^4$) have no nontrivial integer solutions.

Proof. Suppose $x, y, z \in \mathbb{Z}$ with $x^4 + y^4 = z^2, xyz \neq 0$. Wlog x, y, z > 0, x, y, z coprime, $x = 2\tilde{x}$ for some $\tilde{x} \in \mathbb{N}$. Choose z minimal with this conditions.

Prop. 1.2
$$\Rightarrow \exists r, s \in \mathbb{N} \text{ s.t. } x^2 = 2rs, y^2 = r^2 - s^2, z = r^2 + s^2 \text{ and } \gcd(r, s) = 1$$

 $\Rightarrow y^2 + s^2 = r^2 \text{ with } y, s, r \text{ coprime.}$

Prop. 1.2
$$\Rightarrow \exists a, b \in \mathbb{N}$$
 s.t. $s = 2ab, y = a^2 - b^2, r = a^2 + b^2$ and $\gcd(a, b) = 1$.
plug in $\Rightarrow x^2 = 4ab(a^2 + b^2)$
 $\Rightarrow \tilde{x}^2 = ab(a^2 + b^2)$ and $a, b, a^2 + b^2$ pairwise coprime

As in proof of Prop. 1.2 (they are coprime but a square number)

$$\Rightarrow \exists c, d, e \in \mathbb{N} \text{ s.t. } a = c^2, b = d^2, a^2 + b^2 = e^2$$

 $\Rightarrow c^4 + d^4 = a^2 + b^2 = e^2 \text{ and } e < a^2 + b^2 = r < z$

f since z was chosen to be minimal.

From now on: n = p odd prime.

Idea 1.1.5 (by Germain). Distinguish 2 cases in Fermat's problem:

- 1. "First case": x, y, z with p does not divide xyz.
- 2. "Second case": exactly one of x, y, z is divided by p.

Some approach:

- Use primitive p-th root of unity $\zeta = \zeta_p$.
- Reminder: $X^p 1 = (X 1)(X \zeta) \dots (X \zeta^{p-1})$
- Setting $\tilde{y} = -y$ we get:

$$x^{p} + y^{p} = x^{p} - \tilde{y}^{p} = \tilde{y}^{p} \left(\left(\frac{x}{\tilde{y}} \right)^{p} - 1 \right)$$

$$= \tilde{y}^{p} \left(\frac{x}{\tilde{y}} - 1 \right) \left(\frac{x}{\tilde{y}} - \zeta \right) \dots \left(\frac{x}{\tilde{y}} - \zeta^{p-1} \right)$$

$$= (x - \tilde{y})(x - \tilde{y}\zeta) \dots (x - \tilde{y}\zeta^{p-1})$$

$$= (x + y)(x + y\zeta) \dots (x + y\zeta^{p-1})$$

Lemma 1.1.6. For $x, y, z \in \mathbb{Z}$ we have $x^p + y^p = z^p \iff (x+y)(x+y\zeta)\dots(x+y\zeta^{p-1}) = z^p$

<u>Idea:</u> Look at prime divisors in $\mathbb{Z}[\zeta]$.

<u>Problem:</u> Would be good to have unique prime factorization. This will not be true in general.

1.2 The ring $\mathbb{Z}[\zeta]$

Suppose ζ is a primitive *n*-th root of unity

Reminder 1.2.1. i) $\mathbb{Q}(\zeta)/\mathbb{Q}$ is algebraic extension of degree $[\mathbb{Q}(\zeta):\mathbb{Q}]=\varphi(n)$

- ii) $\mathbb{Q}(\zeta)/\mathbb{Q}$ is a Galois extension. In particular: $\operatorname{Hom}(\mathbb{Q}(\zeta)/\mathbb{Q}) \cong \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q}) = \{\sigma_i \text{ with } \sigma_i(\zeta) = \zeta^i \mid i \in (\mathbb{Z}/n\mathbb{Z})^{\times}\} \cong (\mathbb{Z}/n\mathbb{Z})^{\times}$
- iii) Consider the norm map $\mathcal{N}: \mathbb{Q}(\zeta) \to \mathbb{Q}$, $\alpha \mapsto \det(\gamma \mapsto \alpha \gamma)$. We have for $\alpha = r(\zeta)$ $(r \in \mathbb{Q}[X] \text{ polynomial})$ with min. polynomial $f_{\alpha} = X^k + c_{k-1}X^{k-1} + \cdots + c_0$:
 - If we have $\mathbb{Q}(\alpha) = \mathbb{Q}(\zeta)$, then $\mathcal{N}(\alpha) = (-1)^{\varphi(n)}c_0$
 - $\mathcal{N}(\alpha) = \prod_{\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})} \sigma(\alpha) = \prod_{i \in (\mathbb{Z}/n\mathbb{Z})^{\times}} r(\zeta^{i})$
 - $\alpha \in \mathbb{Q} \Rightarrow \mathcal{N}(\alpha) = \alpha^{\varphi(n)}$

iv)
$$X^{n-1} + X^{n-2} + \dots + 1 = \frac{X^{n-1}}{X-1} = (X - \zeta)(X - \zeta^2) \dots (X - \zeta^{n-1})$$

 $\stackrel{X=1}{\Rightarrow} n = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{n-1})$

Reminder 1.2.2 (and preview). i) $\mathcal{O} := \mathbb{Z}[\zeta] := \{r(\zeta) \mid r \in \mathbb{Z}[X]\}$

ii)
$$\mathbb{Z}[\zeta] = \{\alpha \in \mathbb{Q}(\zeta) \mid f_{\alpha} \in \mathbb{Z}[X]\}$$
 (proof later)

- iii) $\mathbb{Z}[\zeta]$ is a free \mathbb{Z} -module with basis $\{1, \zeta, \dots, \zeta^{d-1}\}$ with $d = \varphi(n)$ (proof later)
- iv) $\alpha \in \mathbb{Z}[\zeta] \Rightarrow \mathcal{N}(\alpha) \in \mathbb{Z}$ (proof later)
- v) $\{\alpha \in \mathcal{O} \mid |\alpha| = 1\}$ is finite (proof later)

Reminder 1.2.3. Suppose R is an integral domain:

- i) $\alpha \in R$ is irreducible: \iff If $\alpha = \alpha_1 \alpha_2$ with $\alpha_i \in R$, then $\alpha_1 \in R^{\times}$ or $\alpha_2 \in R^{\times}$
- ii) $\alpha, \alpha' \in R$ are associated to each other : $\iff \exists \varepsilon \in R^{\times} : \alpha = \varepsilon \alpha'$
- iii) R is called $factorial : \iff \text{each } \alpha \in R, \alpha \neq 0 \text{ can be written in a unique way as } \alpha = \varepsilon \pi_1 \cdot \ldots \cdot \pi_r \text{ with } \pi_i \text{ irreducible up to multiplication with } \varepsilon \in R^{\times}$
- iv) $\alpha_1, \alpha_2 \in R$ are called *coprime* : \iff If $\alpha' \in R$ with $\exists \beta_1, \beta_2 \in R : \alpha_1 = \alpha' \beta_1, \alpha_2 = \alpha' \beta_2$ then $\alpha' \in R^{\times}$.

Remark (and correction). 1. Recall: L/\mathbb{Q} field extensions:

$$\mathcal{O} := \{ \alpha \in L \mid f_{\alpha} \in \mathbb{Z}[X] \}$$

!! Here: f_{α} is by definition monic, i.e leading coefficient is 1.

Remark: $\mathcal{O} = \{ \alpha \in L \mid \exists f \in \mathbb{Z}[X] \text{ with } f \text{ monic and } f(\alpha) = 0 \}$

"⊆": clear

"⊇": Lemma of Gauss

2. Recall: Definition of field norm for L/K finite field extension How is norm defined? $\mathcal{N}: L \to K$ defined as follows:

Suppose $\alpha \in L \Rightarrow \varphi_{\alpha} : \beta \mapsto \alpha\beta$ is linear map over K. Then:

$$\mathcal{N}_{L/K}(\alpha) := \det(\phi_{\alpha})$$

Properties:

- a) If $L = K(\alpha)$ and $X^n + c_{n-1}X^{n-1} + \cdots + c_0$ is a minimal polynomial of α over K, then $\mathcal{N}_{L|K}(\alpha) = (-1)^n c_0$.
- b) $\mathcal{N}_{L/K}(\alpha) = (\prod_{i=1}^r \sigma_i(\alpha))^q$ with $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \dots, \sigma_r\}$ and $q = \operatorname{inseparable}$ ble degree, i.e. $[L:K] = [L:K]_s \cdot q$.
- c) $\alpha \in K \Rightarrow \mathcal{N}_{L|K}(\alpha) = \alpha^d$ with d = [L:K] (see Bosch "Algebra"4.7).

General reference: NEUKIRCH

This chapter: BOREVICH + SHAFEREVICH Chapter 3.1.

Recall: Goal: prove for p prime and odd

$$x^p + y^p = z^p$$

has no non-trivial solutions. Last time:

$$x^{p} + y^{p} = z^{p} = (x + y)(x + y\zeta)(x + y\zeta^{2})\dots(x + y\zeta^{p-1}) \in \mathbb{Z}[\zeta]$$

From now on: p odd prime, $\zeta = e^{\frac{2\pi i}{p}}$ primitive p - th root of unity $\mathcal{O} = \mathbb{Z}[\zeta]$.

Proposition 1.2.4. For the group of units \mathcal{O}^{\times} of $\mathcal{O} = \mathbb{Z}[\zeta]$ we have:

$$\mathcal{O}^{\times} = \{ \alpha \in \mathcal{O} \mid \mathcal{N}(\alpha) = \pm 1 \}$$

Notation: $\mathcal{N} = \mathcal{N}_{\mathbb{Q}(\zeta)/\mathbb{Q}}$ in this chapter.

Proof.
$$\subseteq$$
 " $\alpha \in \mathcal{O}^{\times} \Rightarrow \exists \beta \in \mathcal{O}$ with $\alpha\beta = 1 \Rightarrow 1 = N(\alpha\beta) \stackrel{!}{=} \underbrace{\mathcal{N}(\alpha)}_{\in \mathbb{Z}} \underbrace{\mathcal{N}(\beta)}_{\in \mathbb{Z}} \Rightarrow \text{claim}$

 $,\supseteq$ ": Suppose $\alpha \in \mathcal{O}$ with $\mathcal{N}(\alpha) = \pm 1$.

$$\Rightarrow \pm 1 = \mathcal{N}(\alpha) = \prod_{\sigma \in Gal(\mathbb{Q}(\zeta)|\mathbb{Q})} \sigma(\alpha)$$

Note:
$$\alpha = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2} \in \mathbb{Z}[\zeta]$$

 $\Rightarrow \sigma(\alpha) = a_0 + a_1 \zeta^i + \dots + a_{p-2} \zeta^{i(p-2)}$ for some $i \in \{1, \dots, p-1\} \Rightarrow \sigma(\alpha) \in \mathbb{Z}[\zeta]$
 $\Rightarrow \alpha$ is a divisor of 1 in $\mathbb{Z}[\zeta] \Rightarrow \alpha \in \mathcal{O}^{\times}$.

i) $\mathcal{N}(1-\zeta^s) = p \text{ for } s \in \mathbb{Z} \text{ with } s \not\equiv 0 \mod p$ Lemma 1.2.5.

- ii) 1ζ is irreducible in $\mathcal{O} = \mathbb{Z}[\zeta]$.
- iii) $p = \varepsilon \cdot (1 \zeta)^{p-1}$ with some $\varepsilon \in \mathcal{O}^{\times}$.

Proof. i) 2.1. iv)
$$\Rightarrow p = (1 - \zeta)(1 - \zeta^2) \dots (1 - \zeta^{p-1})$$

2.1. iii) $\Rightarrow \mathcal{N}(1 - \zeta^s) = \prod_{\sigma \in \text{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})} \sigma(1 - \zeta^s) = \prod_{i=1}^{p-1} (1 - \zeta^{si}) = \prod_{j=1}^{p-1} (1 - \zeta^j) = p$

- ii) We obtain from i) that $1 \zeta \notin \mathcal{O}^{\times}$. Suppose $1 \zeta = \alpha \beta$ with $\alpha, \beta \in \mathcal{O}$ $\Rightarrow p = \mathcal{N}(1 - \zeta) = \mathcal{N}(\alpha)\mathcal{N}(\beta) \Rightarrow \mathcal{N}(\alpha) = \pm 1 \text{ or } \mathcal{N}(\beta) = \pm 1 \overset{\text{Prop } 2.4}{\Longrightarrow} \alpha \in \mathcal{O}^{\times} \text{ or }$ $\beta \in \mathcal{O}^{\times}$.
- iii) Use: $1 \zeta^s = (1 \zeta) \underbrace{(1 + \zeta + \zeta^2 + \dots + \zeta^{s-1})}_{\varepsilon_s} = (1 \zeta)\varepsilon_s$ $\Rightarrow p = \mathcal{N}(1 \zeta^s) = \underbrace{\mathcal{N}(1 \zeta)}_{=p} \cdot \mathcal{N}(\varepsilon_s) \Rightarrow \mathcal{N}(\varepsilon_s) = 1 \Rightarrow \varepsilon_s \in \mathcal{O}^{\times}$

Hence
$$p = \prod_{s=1}^{p-1} (1 - \zeta^s) = \prod_{s=1}^{p-1} \underbrace{\varepsilon_s}_{\in \mathcal{O}^{\times}} (1 - \zeta) = (1 - \zeta)^{p-1} \prod_{s=1}^{p-1} \varepsilon_s$$

Notation: $\varepsilon_s = 1 + \zeta + \cdots + \zeta^s$.

Lemma 1.2.6. i) $a \in \mathbb{Z}$ with $1 - \zeta$ divides a in $\mathcal{O} \Rightarrow p$ divides a.

ii) An n-th root of unity lies in $\mathbb{Q}(\zeta) \iff n$ divides 2p.

i) $a = (1 - \zeta)\beta$ with $\beta \in \mathcal{O} \Rightarrow a^{p-1} = \mathcal{N}(a) = p \mathcal{N}(\beta) \stackrel{(\mathcal{N}(\beta) \in \mathbb{Z})}{\Longrightarrow} p$ divides a. Proof.

ii) =: $-1 \in \mathbb{Q}(\zeta)$ and thus $e^{\frac{2\pi i}{2p}} \in \mathbb{Q}(\zeta)$ $,\Rightarrow$ ": Consider $H:=\{\omega\in\mathbb{Q}(\zeta)\mid\omega\text{ is a root of unity}\}$

7 / 68

- a) $H \subseteq \mathbb{Z}[\zeta]$: Suppose $\omega \in H \Rightarrow \omega^n 1 = 0$ for some $n \in \mathbb{N} \Rightarrow f_\omega$ is a divisor of $X^n 1 \Rightarrow f_\omega \in \mathbb{Z}[X] \stackrel{2.2ii}{\Longrightarrow} \omega \in \mathbb{Z}[\zeta]$.
- b) $\tilde{\omega}$ some conjugate of $\omega \Rightarrow \tilde{\omega}$ is a root of $X^n 1 \Rightarrow |\tilde{\omega}| = 1 \stackrel{2.2v}{\Longrightarrow} H$ is finite $\Rightarrow H$ is a cyclic subgroup of $\mathbb{Q}(\zeta)^{\times}$. Choose some generator ω_0 of H and denote $m := \operatorname{ord}(\omega_0)$. Since $\zeta \in H$ and $\operatorname{ord}(\zeta) = p \Rightarrow p$ divides m. Decompose $m = p^s \cdot m'$ with $s \geq 1$ and $\operatorname{gcd}(m', p) = 1$. Consider the field extensions chain:

$$\mathbb{Q} \subseteq \mathbb{Q}(\omega_0) \subseteq \mathbb{Q}(\zeta)$$

with degrees $[\mathbb{Q}(\zeta):\mathbb{Q}] = p-1 = \varphi(p)$ and $[\mathbb{Q}(\omega_0):\mathbb{Q}] = \varphi(m) = p^{s-1}(p-1)\varphi(m') \leq p-1 \Rightarrow s=1$ and $\varphi(m')=1$ and thus $m'=1,2\Rightarrow \operatorname{ord}(\omega_0) \leq 2p$.

Notation 1.2.7.

- 1. L/K field extension, $\alpha \in L, \overline{K}$ given algebraic closure. The elements $\sigma(\alpha)$ with $\sigma \in \operatorname{Hom}_K(L, \overline{K})$ are called *conjugates of* α . In particular: L/K normal \Rightarrow conjugates live in L.
- 2. R ring, I ideal in R, $p: R \to R/I$ canonical projection. For $\alpha, \beta \in R$ we denote $\alpha \equiv \beta \mod I : \iff p(\alpha) = p(\beta)$. If I = < q > is a principal ideal, we denote $\alpha \equiv \beta \mod q : \iff \alpha \equiv \beta \mod < q >$

Example 1.2.8. Consider $\mathbb{Q}(\zeta)/\mathbb{Q}$ with $\zeta^p = 1, R = \mathcal{O} = \mathbb{Z}[\zeta], \alpha = a_0 + a_1\zeta + a_2\zeta^2 + \cdots + a_{p-2}\zeta^{p-2}$

- i) The conjugates of α are: $\alpha_h = a_0 + a_1 \zeta^h + a_2 \zeta^{2h} + \cdots + a_{p-2} \zeta^{h(p-2)}$ with $h \in \{1, \ldots, p-1\}$.
- ii) Consider $\lambda = 1 \zeta$ and $I = \langle \lambda \rangle$. $1 \equiv \zeta \mod \lambda$ and $\alpha \equiv a_0 + a_1 + \dots + a_{p-2} \mod \lambda (\in \mathbb{Z})$.

iii)
$$\alpha^p \equiv a_0^p + (a_1\zeta)^p + \dots + (a_{p-2}\zeta^{p-2})^p = \underbrace{a_0^p + a_1^p + \dots + a_{p-1}^p}_{\in \mathbb{Z}} \mod p$$

Theorem 1 (Kummer's Lemma). If $\varepsilon \in \mathbb{Z}[\zeta]$ is a unit, i.e. $\varepsilon \in \mathbb{Z}[\zeta]^{\times}$,

$$\frac{\varepsilon}{\bar{\varepsilon}} = \zeta^a \quad \text{for some } a \in \mathbb{Z}$$

Here $\bar{\varepsilon} = \tau(\varepsilon)$, where τ is the complex conjugation. Recall: $\tau \in \operatorname{Gal}(\mathbb{Q}(\zeta)/\mathbb{Q})$.

Proof. Denote $\varepsilon = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2} = r(\zeta)$ with $r(X) = \sum_{i=0}^{p-2} a_i X^i \in \mathbb{Z}[X]$. Observe:

1.
$$\varepsilon \in \mathcal{O}^{\times} \Rightarrow \exists \varepsilon' \in \mathcal{O} \text{ s.t. } \varepsilon \varepsilon' = 1 \Rightarrow \bar{\varepsilon} \bar{\varepsilon}' = 1 \Rightarrow \bar{\varepsilon} \in \mathcal{O}^{\times}$$

2. $\mu := \frac{\varepsilon}{\overline{\varepsilon}} = \frac{r(\zeta)}{r(\zeta^{-1})}$ and the conjugate μ_k of μ is $\frac{r(\zeta^k)}{r(\zeta^{-k})} = \frac{r(\zeta^k)}{r(\zeta^k)}$. In particular $|\mu_k| = 1$. It follows that $\mu_k \in \{\alpha \in \mathcal{O}^\times \mid |\alpha| = 1\}$ which is by 2.2. v) a finite subgroup of $\mathbb{Q}(\zeta)^\times \Rightarrow \mu$ is a root of unity

Lemma $2.6 \Rightarrow \mu = \pm \zeta^a$ for some $a \in \mathbb{Z}$.

Claim: $\mu = \zeta^a$

<u>Proof of claim:</u> suppose $\mu = -\zeta^a$, i.e. $\varepsilon = -\bar{\varepsilon}\zeta^a$ (*)

<u>Idea:</u> calculation mod $\lambda = 1 - \zeta$ $\varepsilon = a_0 + a_1 \zeta + \dots + a_{p-2} \zeta^{p-2}$

Ex. 2.8.ii)
$$\Rightarrow \varepsilon \equiv \underbrace{a_0 + a_1 + \dots + a_{p-2}}_{=:M \in \mathbb{Z}} \equiv \bar{\varepsilon} \mod \lambda$$

 $(\star) \Rightarrow \varepsilon \equiv -\bar{\varepsilon} \mod \lambda \Rightarrow M \equiv -M \mod \lambda \Rightarrow 2M \equiv 0 \mod \lambda \stackrel{\text{Lemma 2.6 i}}{\Longrightarrow} p \text{ divides } 2M \text{ in } \mathbb{Z} \stackrel{p \text{ odd}}{\Longrightarrow} p \text{ divides } M.$

 $\Rightarrow \lambda = 1 - \zeta$ divides M in O by Lemma 2.5.

 $\Rightarrow \varepsilon \equiv \bar{\varepsilon} \equiv M \equiv 0 \mod \lambda = 1 - \zeta \Rightarrow$ Contradiction to ε is unit and $1 - \zeta$ is irreducible

Corollary 1.2.9. ε unit in $\mathbb{Z}[\zeta] \Rightarrow \varepsilon = r\zeta^s$ with some $r \in \mathbb{R}, s \in \mathbb{Z}$.

Proof. Prop $2.9 \Rightarrow \exists \ a \in \mathbb{Z}, \varepsilon = \zeta^a \cdot \bar{\varepsilon}$.

Choose
$$s \in \mathbb{Z}$$
 with $2s \equiv a \mod p$

$$\Rightarrow \frac{\varepsilon}{\zeta^s} = \zeta^s \cdot \bar{\varepsilon} = \frac{\bar{\varepsilon}}{\zeta^{-s}} = \frac{\bar{\varepsilon}}{\zeta^s} = r \in \mathbb{R} \text{ and } \varepsilon = r \cdot \zeta^s.$$

Lemma 1.2.10. Suppose $x, y, m, n \in \mathbb{Z}$ with $m \not\equiv n \mod p$. $x + y\zeta^n$ and $x + y\zeta^m$ are relatively prime \iff (x and y are relatively prime) and (x + y not divisible by p)

 $Proof. ,,\Rightarrow$ ":

- d|x and $d|y \Rightarrow d|x + \zeta^n y$ and $d|x + \zeta^n y$
- "p|x + y" Recall: $p = \varepsilon (1 \zeta)^{p-1}$ with $\varepsilon \in O^{\times}$ $\Rightarrow x + \zeta^m y = \underbrace{x + y}_{\text{divisible by } p} + y \cdot \underbrace{(\zeta^m - 1)}_{(\zeta - 1)(1 + \zeta + \zeta^2 \cdots + \zeta^{m-1})} \equiv 0 \mod 1 - \zeta$ same way $x + \zeta^n y \equiv 0 \mod 1 - \zeta$

 $, \Leftarrow$ ": Idea: show: $\exists \alpha_0, \beta_0 \in \mathcal{O}$ with:

$$1 = \alpha_0(x + \zeta^m y) + \beta(x + \zeta^n y)$$

Consider: $A := \{ \alpha(x + \zeta^m y) + \beta(x + \zeta^n y) \mid \alpha, \beta \in \mathcal{O} \}$

A is an ideal in \mathcal{O} . We have:

1.
$$(x + \zeta^m y) - (x + \zeta^n y) = \zeta^m (1 - \zeta^{n-m}) y = \underbrace{\zeta^n \varepsilon_{n-m}}_{\in \mathcal{O}^{\times}} (1 - \zeta) y \Rightarrow (1 - \zeta) y \in A$$

2.
$$\zeta^n(x+\zeta^m y) - \zeta^m(x+\zeta^n y) = (\zeta^n - \zeta^m)x = \zeta^n \cdot (1-\zeta^{n-m})x = \underbrace{\zeta^n \varepsilon_{m-n}}_{\in \mathcal{O}^{\times}} \cdot (1-\zeta)x \Rightarrow (1-\zeta)x \in A.$$

3.
$$gcd(x,y) = 1 \Rightarrow \exists \ a,b \in \mathbb{Z} \text{ with } 1 = ax + by \Rightarrow (1-\zeta)xa + (1-\zeta)yb = 1-\zeta \stackrel{1.\&2}{\Rightarrow} 1-\zeta \in A$$

4.
$$x + y = \underbrace{x + \zeta^n y}_{\in A} + \underbrace{(1 - \zeta^n) y}_{\in A} \in A$$

5.
$$\gcd(p, x + y) = 1 \Rightarrow \exists \bar{a}, \bar{b} \in \mathbb{Z} : 1 = \underbrace{\bar{a}p}_{\in A} + \bar{b}\underbrace{(x + y)}_{\in A} \in A.$$

 \Rightarrow Hence $x + \zeta^n y$ and $x + \zeta^m y$ are coprime.

Remark 1.2.11. Suppose $\alpha = a_0 + a_1\zeta + \cdots + a_{p-1}\zeta^{p-1} \in \mathcal{O}$ with $a_i \in \mathbb{Z}$ and at least one $a_j = 0$.

If $n \in \mathbb{Z}$ with n divides α in \mathcal{O} , then n divides all a_i

Proof. Recall from 2.2 (preview):
$$1, \zeta, \zeta^2, \dots, \zeta^{p-2}$$
 is a basis of \mathcal{O} .
Furthermore: $1 + \zeta + \dots + \zeta^{p-1} = 0$
 $\Rightarrow \{1, \zeta, \dots, \zeta^{p-1}\} \setminus \{\zeta^j\}$ is a basis \Rightarrow claim.

1.3 First case of Fermat in case of $\mathbb{Z}[\zeta]$ is a UFD (unique factorization domain)

Reference: BOREVICH + SHAFEREVIC + WASHINGTON Chapter 1 As before: p odd prime, $\zeta = e^{\frac{2\pi i}{p}}p$ -th root of unity.

Theorem 2. Suppose that $\mathbb{Z}[\zeta]$ is a UFD, then $x^p + y^p = z^p$ has no non-trivial solutions (x, y, z), such that neither x, y nor z is divisible by p.

Theorem 3 (p=3). Suppose $x, y, z \in \mathbb{Z}$ with $x^3 + y^3 = z^3 \mod 9 \Rightarrow 3$ divides x, y or z.

Proof. Recall: Little Fermat's theorem $x^p \equiv x, y^p \equiv y, z^p \equiv z \mod p$.

$$x^{3} + y^{3} = z^{3} \mod 3 \Rightarrow x + y \equiv z \mod 3$$

$$\Rightarrow z = x + y + 3u \text{ with } u \in \mathbb{Z}$$

$$\Rightarrow \underline{x^{3} + y^{3}} \equiv (x + y + 3u)^{3} \equiv \underline{x^{3} + y^{3}} + 3xy^{2} + 3x^{2}y \mod 9$$

$$\Rightarrow 0 \equiv xy^{3} + x^{2}y \equiv xy(x + y) \equiv xyz \mod 3$$

$$\Rightarrow x, y \text{ or } z \text{ is divisible by } 3$$

Lemma 1.3.1. Let $p \ge 5$. Suppose $x, y, z \in \mathbb{Z}$ with $x^p + y^p = z^p$. If $x \equiv y \equiv -z \mod p$, then p|z.

Proof.
$$z \equiv z^p = x^p + y^p \equiv -2z^p \equiv -2z \mod p \Rightarrow 3z \equiv 0 \mod p \stackrel{p \neq 3}{\Longrightarrow} p|z.$$

Remark 1.3.2. It follows from Lemma 3.2 that in the first case of Fermat we may assume for $p \ge 5$ that $x \not\equiv y \mod p$ because we can replace $x^p + y^p = z^p$ by $x^p + (-z)^p = (-y)^p$ and $x \not\equiv -z \mod p$.

of Thm. 1. $p = 3 \Rightarrow$ claim follows from Prop 3.1.

Now: $p \ge 5$. Suppose $x, y, z \in \mathbb{Z}$ with p divides neither x, y nor z, x, y, z are pairwise coprime and $x \not\equiv y \mod p$. Suppose $z^p = x^p + y^p = (x + y)(x + \zeta y) \dots (x + \zeta^{p-1}y)$. Apply Lemma 2.11:

- gcd(x,y) = 1
- Little Fermat $\Rightarrow x + y \equiv x^p + y^p \equiv z^p \not\equiv 0 \mod p$

 $\overset{2.11}{\Longrightarrow} x + y, x + \zeta y, \dots, x + \zeta^{p-1} y \text{ are pairwise coprime.}$ $\overset{\mathbb{Z}[\zeta] \text{ UFD}}{\Longrightarrow} , x + \zeta^{i} y \text{ have to be p-power" More precisely: } x + \zeta y = \varepsilon \alpha^{p} \text{ with } \varepsilon \in \mathcal{O}^{\times}, \alpha \in \mathcal{O},$ since they are coprime factors of a \$p\$-th power.

- 1. Cor. $2.10 \Rightarrow \varepsilon = r\zeta^s$ with $r \in \mathbb{R}, s \in \mathbb{Z}$
- 2. Example 2.8. iii) $\Rightarrow \exists a \in \mathbb{Z} \text{ with } \alpha^p \equiv a \mod p$.

$$x + \zeta y = r\zeta^s \alpha^p \equiv r\zeta^s a \mod p$$

$$x + \zeta^{-1} y = \overline{x + \zeta y} \equiv r\zeta^{-s} a \mod p$$

$$\Rightarrow \zeta^{-s} (x + \zeta y) \equiv ra \equiv \zeta^s (x + \zeta^{-1} y) \mod p$$

$$\Rightarrow \underbrace{x + \zeta y - \zeta^{2s} x - \zeta^{2s-1} y}_{=x \cdot 1 + y\zeta - x\zeta^{2s} - y\zeta^{2s-1}} \equiv 0 \mod p$$

Idea: Use Rem. 2.12

Case 1: $1, \zeta, \zeta^{2s-1}, \zeta^{2s}$ are distinct $\stackrel{p \geq 5, \text{ Rem } 2.12}{\Longrightarrow} p|x$ and p|y. Contradiction to first case.

Recall: $L = \mathbb{Q}(\zeta)$, $\mathcal{O} = \mathbb{Z}[\zeta]$, where ζ is a p-th root of unity

Last time:

- (1) $a_1 1 + a_2 \zeta + \dots + a_p \zeta^{p-1} = \alpha$ and at least one $a_j = 0$ If α is divided by $n \in \mathbb{Z}$ then all the a_i are divided by n.
- (2) $x + y\zeta x\zeta^{2s} y\zeta^{2s-1} \equiv 0 \mod p$

Continuation of proof of Theorem 1. "Case 2" $1, \zeta, \ldots, \zeta^{2s}$ are not distinct. Observe: $1 \neq \zeta$ and $\zeta^{2s-1} \neq \zeta^{2s}$

"Case 2A"
$$1 = \zeta^{2s} (\Leftrightarrow p|s)$$
.

(2) implies $y\zeta - y\zeta^{2s-1} \equiv 0 \mod p$ such that Remark 2.12 yields the contradiction p|y.

"Case 2B"
$$1 = \zeta^{2s-1} (\Leftrightarrow \zeta = \zeta^{2s})$$
.

(2) implies $(x-y)1 + (y-x)\zeta \equiv 0 \mod p$ such that Remark 2.12 yields p|y-x, which contradicts the assumption $x \not\equiv y \mod p$.

"Case 2C"
$$\zeta = \zeta^{2s-1}$$
.

(2) implies $x - x\zeta^2 \equiv 0 \mod p$ such that Remark 2.12 yields the contradiction p|x. \square

Questions:

- (1) Under which assumption is \mathcal{O} a UFD?
- (2) What can we do if \mathcal{O} is not a UFD?
 - \rightarrow Idea of Kummer: "calculate with ideals"

Prospect: Theorem (Montgomery, Uchida, 1971) $\mathbb{Z}[\zeta]$ is a UFD if and only if $p \leq 19$, p prime.

Preview: From Kummer's idea we obtain a better criterion for p called **regular**, which ensures that Fermat's conjecture holds for p.

Conjecture. There are infinitely many regular primes.

2 Ring of integers

In this chapter, all rings are assumed to be commutative with 1.

2.1 Integral ring extensions

Definition 2.1.1 ("ganze Ringerweiterungen"). Let $A \subset B$ be a ring extension.

- (i) $b \in B$ is **integral** over A if there exists a monic polynomial $f(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$ with f(b) = 0.
- (ii) B is **integral** over A if all $b \in B$ are integral over A.

Proposition 2.1.2. Let $A \subset B$ be a ring extension and $b_1, \ldots, b_n \in B$. Then b_1, \ldots, b_n are integral over A if and only if

$$A[b_1,\ldots,b_n] = \{f(b_1,\ldots,b_n) \mid f \in A[X_1,\ldots,X_n]\}$$

is a finitely generated A-module.

Reminder 2.1.3 ("Adjunkte"). Let R be a ring and $A \in \mathbb{R}^{n \times n}$

- (i) $A^{\#} = (a_{i,j}^{\#})$ with $a_{i,j}^{\#} = (-1)^{i+j} \det(A_{j,i})$, where $A_{j,i}$ is obtained from A by deleting the j-th row and i-th column of A.
- (ii) We have $AA^{\#} = A^{\#}A = \det(A)I$. In particular, Ax = 0 implies $A^{\#}Ax = 0$ such that $\det(A)x = 0$.

Proof of Proposition 1.2. " \Rightarrow " If n=1 and b is integral over A, then there is an $f \in A[X]$ with f monic such that f(b)=0. Let $g \in A[X]$ be arbitrary. Then

$$g(X) = q(X)f(X) + r(X)$$

with $q, r \in A[X]$ and $\deg r < \deg f = d$. Hence g(b) = r(b) with $\deg r < d$. Thus $\{1, b, \dots, b^{d-1}\}$ generate A[b] as an A-module. The case $n \geq 2$ follows by induction.

" \Leftarrow " $A[b_1,\ldots,b_n]$ is finitely generated as an A-module by w_1,\ldots,w_r . If $b\in A[b_1,\ldots,b_n]$ then

$$bw_i = \sum_{j=1}^r a_{j,i} w_j$$

such that

$$(bI - (a_{i,j})) w = 0.$$

Thus, $\det(bI - (a_{i,j})) w = 0$ and hence

$$\det\left(bI - (a_{i,j})\right)w_i = 0$$

for all i = 1, ..., r. If we now use that

$$1 = c_1 w_1 + \dots + c_r w_r$$

we can infer det $(bI - (a_{i,j})) 1 = 0$. Consider

$$M = bI - (a_{i,j}) = \begin{pmatrix} b - a_{1,1} & -a_{1,2} & \cdots & -a_{1,r} \\ -a_{2,1} & b - a_{2,2} & \cdots & -a_{2,r} \\ \vdots & \vdots & \ddots & \vdots \\ -a_{r,1} & -a_{r,2} & \cdots & b - a_{r,r} \end{pmatrix}.$$

By the Leibniz formula we have

$$\det(M) = \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n m_{\sigma(i),j}$$

which is a polynomial over b with leading coefficient 1. Hence b is integral over A.

Corollary 2.1.4 (And Definition). (i) If $A \subset B$ is an extension of rings then

$$\overline{A} = \{b \in B \mid b \text{ is integral over } A\}$$

is a ring. It is called the **integral closure** of A in B. If $\overline{A} = A$ then A is called **integrally closed** in B.

- (ii) We have transitivity, that is to say, if A, B, C are rings with $A \subset B \subset C$ such that C is integral over B and B is integral over A then C is integral over A.
- (iii) The integral closure of A in B is integrally closed, i.e., $\overline{\overline{A}} = \overline{A}$.

Proof. "(i)" If $b_1, b_2 \in \overline{A}$ then $A[b_1], A[b_2]$ are finitely generated A-modules. Hence $A[b_1, b_2]$ is a finitely generated A-module. Thus, by Proposition 1.3, $b_1 + b_2$ and b_1b_2 are integral, i.e., elements of \overline{A} .

"(ii)" If $c \in C$ then c is integral over B and hence there is a monic polynomial $f = X^n + b_{n-1}X^{n-1} + \cdots + b_0 \in B[X]$ with f(b) = 0. This shows that c is integral over $R = A[b_1, \ldots, b_{n-1}]$ such that Proposition 1.3 shows that R[c] is a finitely generated R-module. Furthermore, b_0, \ldots, b_{n-1} are integral over A such that another application of Proposition 1.3 shows that R is a finitely generated A-module. Hence, R[c] is a finitely generated A module such that c is integral over A by Proposition 1.3.

Definition 2.1.5 ("ganzer Abschluss und normaler Ring"). If A is an integral domain we call its integral closure \overline{A} in $K = \operatorname{Quot}(A)$ the **normalization** or the **integral closure** of A. We say A is **integrally closed** if A is integrally closed in K.

Remark 2.1.6. If A is a UFD then A is integrally closed.

Proof. Suppose $b = \frac{a}{a'} \in \text{Quot}(A)$ with $\gcd(a, a') = 1$ is integral over A. Then there exist $a_0, \ldots, a_{n-1} \in A$ with

$$\left(\frac{a}{a'}\right)^n + a_{n-1} \left(\frac{a}{a'}\right)^{n-1} + a_{n-2} \left(\frac{a}{a'}\right)^{n-2} + \dots + a_0 = 0$$

such that

$$a^{n} + a_{n-1}a'a^{n-1} + a_{n-2}a'^{2}a^{n-2} + \dots + a_{0}a'^{n} = 0.$$

Let $a' = \varepsilon \pi_1 \cdots \pi_r$ be the prime factorization of a' with $\varepsilon \in A^{\times}$ and π_1, \ldots, π_r primes. Since $\pi_i | a'$ the above equation shows that actually $\pi_i | a^n$. But this implies $\pi_i | a$ which is a contradiction to $\gcd(a, a') = 1$. Hence we have $a' = \varepsilon \in A^{\times}$ such that $b \in A$.

2.2 Integral closures in field extensions

Setting:

- \bullet A is an integral domain.
- A is integrally closed.
- $K = \operatorname{Quot}(A)$.
- L/K is a finite field extension with $\overline{A}_K = A \subset K = \operatorname{Quot}(A) \hookrightarrow L \supset B = \overline{A}_L$.
- B is the integral closure of A in L. Observe: $B \cap K = A$

Remark 2.2.1. (i) B is integrally closed in L.

- (ii) If $\beta \in L$ then there are $b \in B$ and $a \in A \setminus \{0\}$ such that $\beta = \frac{b}{a}$. In particular, L = Quot(B).
- (iii) For $\beta \in L$ we have $\beta \in B$ if and only if $f_{\beta} \in A[X]$, where f_{β} is the minimal polynomial of β over K.

Proof. "(i)" Follows from the transitivity in Corollary 1.4.

"(ii)" Choose $a \in A$ with $a^n f_{\beta}(X) = a^n X^n + a^{n-1} c_{n-1} X^{n-1} + \cdots + c_0 \in A[X]$. Then we have

$$a^n \beta^n + c_{n-1} a^{n-1} \beta^{n-1} + \dots + c_0 = 0$$

and hence

$$(a\beta)^n + c_{n-1}(a\beta)^{n-1} + \dots + c_0 = 0$$

such that $a\beta$ is integral over A. Consequently, $b = a\beta \in B$ and $\beta = \frac{b}{a}$.

"(iii)" " \Leftarrow " Obvious. " \Rightarrow " Let β be a zero of $g(X) = \underline{X}^n + a_{n-1}X^{n-1} + \cdots + a_0 \in A[X]$. Then f_{β} divides g. If β_1, \ldots, β_n are the zeros of f_{β} in \overline{K} then they are also zeros of g and thus integral over A. Hence the coefficients of f_{β} are integral over A and are elements of K such that $f_{\beta} \in A[X]$ as claimed.

Reminder 2.2.2 (Trace, Norm). Let $K \subseteq L$ be a finite field extension. For α in L consider the map $T_{\alpha} : \beta \mapsto \alpha\beta$. The following holds

- i) $\operatorname{Tr}_{L/K}(\alpha) = \operatorname{Tr}(T_{\alpha})$ and $\mathcal{N}_{L|K}(\alpha) = \det(T_{\alpha})$,
- ii) If $L = K(\alpha)$ and $f_{\alpha}(X) = X^n + \sum_{i=0}^{n-1} a_i X^i$ then

$$\operatorname{Tr}_{L/K}(\alpha) = -a_{n-1}$$
 and $\mathcal{N}_{L/K}(\alpha) = (-1)^n \cdot a_0$,

iii) Since $T_{\alpha+\beta} = T_{\alpha} + T_{\beta}$ and $T_{\alpha\cdot\beta} = T_{\alpha} \circ T_{\beta}$, we conclude that

$$\operatorname{Tr}_{L/K}: (L,+) \to (K,+) \text{ and } \mathcal{N}_{L/K}: (L^*,\cdot) \to (K^*,\cdot)$$

are group homomorphisms,

- iv) Suppose $K \subseteq L$ is a seperable field extension with $L = K(\alpha)$. Further assume $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \ldots, \sigma_n\}$. Then the following holds
 - $f_{\alpha} = \prod_{i=1}^{n} (X \sigma_i(\alpha)),$
 - $\operatorname{Tr}_{L/K}(\alpha) = \sum_{i=1}^{n} \sigma_i(\alpha),$
 - $\mathcal{N}_{L|K}(\alpha) = \prod_{i=1}^n \sigma_i(\alpha)$,
- v) Trace and norm are transitive, i.e., for field extensions $K \subseteq L \subseteq M$ it holds
 - $\mathcal{N}_{L|K} \circ \mathcal{N}_{M/L} = \mathcal{N}_{M/K}$,
 - $\operatorname{Tr}_{L/K} \circ \operatorname{Tr}_{M/L} = \mathcal{N}_{M/K}$.

Definition 2.2.3 (Discriminant). Let $K \subseteq L$ be a seperable field extension and let $\alpha_1, \ldots, \alpha_n$ be a K-basis of L. Further let $\operatorname{Hom}_K(L, \overline{K}) = \{\sigma_1, \ldots, \sigma_n\}$. Consider the matrix

$$A := \begin{pmatrix} \sigma_1(\alpha_1) & \sigma_1(\alpha_2) & \cdots & \sigma_1(\alpha_n) \\ \sigma_2(\alpha_1) & \sigma_2(\alpha_2) & \cdots & \sigma_2(\alpha_n) \\ \vdots & \vdots & \cdots & \vdots \\ \sigma_n(\alpha_1) & \sigma_n(\alpha_2) & \cdots & \sigma_n(\alpha_n) \end{pmatrix} = (\sigma_i(\alpha_j))_{i,j} \in L^{n \times n}.$$

We call $d(\alpha_1, \dots, \alpha_n) := \det(A^2)$ the **discriminant** of L over K with respect to the basis $\alpha_1, \dots, \alpha_n$.

Remark 2.2.4. In the situation of Definition (2.2.3) the following holds.

- i) Consider the matrix $B = (\operatorname{Tr}_{L/K}(\alpha_i \alpha_j))_{i,j}$ in $K^{n \times n}$. Then the discriminant is given by $d(\alpha_1, \dots, \alpha_n) = \det(B)$. In particular, the discriminant $d(\alpha_1, \dots, \alpha_n)$ lies in K.
- ii) Suppose we have Θ in L such that $1, \Theta, \dots, \Theta^{n-1}$ forms a basis of L. Then the following equality holds

$$d(1,\Theta,\ldots,\Theta^{n-1}) = \prod_{1 \le i < j \le n} (\Theta_i - \Theta_j)^2.$$

Here Θ_i denotes $\sigma_i(\Theta)$. If $L = K(\Theta)$ then $d(1, \Theta, \dots, \Theta^{n-1})$ coincides with the discriminant of the minimal polynomial f_{Θ} . Note that we use the notion of discriminants for polynomials here.

Proof. We begin by proving statement i). One computes

$$\det(A)^2 = \det(A^t) \cdot \det(A) = \det(A^t \cdot A).$$

The following calculation proves the claim

$$A^{t} \cdot A = (\sigma_{j}(\alpha_{i}))_{i,j} \cdot (\sigma_{k}(\alpha_{\ell}))_{k,\ell}$$

$$= \left(\sum_{j=1}^{n} \sigma_{j}(\alpha_{i}) \cdot \sigma_{j}(\alpha_{\ell})\right)_{i,\ell}$$

$$= \left(\sum_{j=1}^{n} \sigma_{j}(\alpha_{i} \cdot \alpha_{\ell})\right)_{i,\ell}$$

$$= (\operatorname{Tr}_{L/K}(\alpha_{i} \cdot \alpha_{\ell}))_{i,\ell}$$

$$= R$$

For statement ii), we will compute the determinant of the following Vondermonde matrix

$$\det(A) = \det\begin{pmatrix} 1 & \Theta_1 & \cdots & \Theta_1^{n-1} \\ 1 & \Theta_2 & \cdots & \Theta_2^{n-1} \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \Theta_n(\alpha_2) & \cdots & \Theta_n^{n-1} \end{pmatrix} =: V_n(\Theta_1, \dots, \Theta_n).$$

By induction, we prove that $V_n(\Theta_1, \ldots, \Theta_n)$ is nonzero and that the following equality holds

$$V_n(\Theta_1, \dots, \Theta_n) = \prod_{1 \le i < j \le n} (\Theta_j - \Theta_i).$$

For n=2, we have

$$\det(A) = \det\begin{pmatrix} 1 & \Theta_1 \\ 1 & \Theta_2 \end{pmatrix} = \Theta_2 - \Theta_1 \neq 0.$$

Hence the claim holds for n = 2. Now we assume that the claim holds for a $n \in \mathbb{N}_{\geq 2}$. We want to prove that viewed as polynomials in Z the following equality holds

$$V_{n+1}(\Theta_1, \dots, \Theta_n, Z) = V_n(\Theta_1, \dots, \Theta_n) \cdot \prod_{i=1}^n (Z - \Theta_i).$$
 (2.1)

This implies that

$$V_n(\Theta_1, \dots, \Theta_{n+1}) = V_n(\Theta_1, \dots, \Theta_n) \cdot \prod_{i=1}^n (\Theta_{n+1} - \Theta_i) = \prod_{1 \le i < j \le n} (\Theta_j - \Theta_i).$$

To show equality (2.1), recall that

$$V_{n+1}(\Theta_1, \dots, \Theta_n, Z) = \det \begin{pmatrix} 1 & \Theta_1 & \cdots & \Theta_1^n \\ 1 & \Theta_2 & \cdots & \Theta_2^n \\ \vdots & \vdots & \cdots & \vdots \\ 1 & \Theta_n(\alpha_2) & \cdots & \Theta_n^n \\ 1 & Z & \cdots & Z^n \end{pmatrix}.$$

Ones sees that the polynomials on both sides of equality (2.1) have degree n. Moreover, $\{\Theta_1, \dots, \Theta_n\}$ is the set of zeros for both polynomials. Since the leading coefficient in both cases is $V_n(\Theta_1, \dots, \Theta_n)$, the polynomials are equal. This proves the claim.

Example 2.2.5. Consider $L = \mathbb{Q}(\sqrt{D})$ for a square free integer D different from 0 and 1. Then the following holds

- $\mathfrak{B}_1 = \{1, \sqrt{D}\}$ is a \mathbb{Q} -basis of L.
- Define $\sigma_2: L \to \overline{\mathbb{Q}}, a + b\sqrt{D} \mapsto a b\sqrt{D}$. Then we have

$$\operatorname{Hom}_{\mathbb{Q}}(L,\overline{\mathbb{Q}}) = \{\sigma_1 = \operatorname{id}, \sigma_2\}.$$

- $\operatorname{Tr}_{L/\mathbb{O}}(a+b\sqrt{D})=a+b\sqrt{D}+a-b\sqrt{D}=2a.$
- $\mathcal{N}_{L/\mathbb{O}}(a+b\sqrt{D}) = (a+b\sqrt{D}) \cdot (a-b\sqrt{D}) = a^2 b^2 \cdot D.$
- $d(\mathfrak{B}_1) = \det \begin{pmatrix} 1 & \sqrt{D} \\ 1 & -\sqrt{D} \end{pmatrix}^2 = (-2\sqrt{D}) = 4D.$
- We have

$$(\alpha_i \alpha_j)_{i,j} = \begin{pmatrix} 1 & \sqrt{D} \\ \sqrt{D} & D \end{pmatrix}.$$

Hence we compute

$$\det((\operatorname{Tr}(\alpha_i \alpha_j))_{i,j}) = \det\begin{pmatrix} 2 & 0 \\ 0 & 2D \end{pmatrix} = 4D.$$

• Consider the Q-basis of L given by $\mathfrak{B}_2 = \{1 + \sqrt{D}, 1 - \sqrt{D}\}$. Computing the discriminant for this basis yields

$$d(1 + \sqrt{D}, 1 - \sqrt{D}) = \det \begin{pmatrix} 1 + \sqrt{D} & 1 - \sqrt{D} \\ 1 - \sqrt{D} & 1 + \sqrt{D} \end{pmatrix}^2 = 16D.$$

Hence we see that the discriminant depends on the basis we choose.

Proposition 2.2.6. Let $K \subseteq L$ be a seperable field extension.

i) The bilinear map

$$h: L^2 \to K, \ (x,y) \mapsto \operatorname{Tr}_{L/K}(xy)$$

is non degenerate, i.e., h(x,y) = 0 for all $y \in L$ implies that x = 0.

ii) If $\alpha_1, \ldots, \alpha_n$ forms a basis of L/K then $d(\alpha_1, \ldots, \alpha_n) \neq 0$.

Proof. For statement i), we choose a primitive element Θ . Then $1, \Theta, \dots, \Theta^{n-1}$ is a K-basis of L. Let B be the matrix representation of h with respect to this basis. We find

$$\det(B) \stackrel{(2.4)}{=} {}^{i} d(1, \Theta, \dots, \Theta^{n-1})$$

$$\stackrel{(2.4)}{=} \prod_{1 \le i < j \le n} (\Theta_i - \Theta_j)^2 \ne 0.$$

Here Θ_i denotes $\sigma_i(\Theta)$. This shows that h is non degenerate. We now prove statement ii). Observe that the matrix $M = (\text{Tr}_{L/K}(\alpha_i \alpha_j))_{i,j}$ is the matrix representation of h with respect to $\alpha_1, \ldots, \alpha_n$. By Remark (2.4), we conclude

$$d(\alpha_1,\ldots,\alpha_n)=\det(M).$$

Now, i) implies that det(M) is nonzero.

Remark 2.2.7. Let $A \subseteq B$ be an integral ring extension with $B \subseteq L$ and $A = B \cap K \subseteq K$. Assuming that $\operatorname{Hom}_K(L, \overline{K}) = \{ \operatorname{id} = \sigma_1, \ldots, \sigma_n \}$ the following holds

- i) If $x \in B$ then $\sigma_i(x) \in B$ for all $1 \le i \le n$.
- ii) For all $x \in B$ the trace $\text{Tr}_{L/K}(x)$ and the norm $\mathcal{N}_{L|K}(x)$ lie in A.
- iii) Let $x \in B$. Then x lies in B^* if and only if the norm $\mathcal{N}_{L|K}(x)$ lie in A^* .

Proof. We start by proving i). Let x in B. By Remark (2.1), we have that the minimal polynomial f_x lies in A[X]. Since $\sigma(x)$ is also a zero of f_x , it is contained in B. This shows i). Now, statement ii) follows from i), Reminder (2.2) iv) and the fact that $A = B \cap K$. For iii), assume that x is a unit in B, i.e., we find y in B with xy = 1. Hence

$$\mathcal{N}_{L|K}(x) \cdot \mathcal{N}_{L|K}(y) = \mathcal{N}_{L|K}(xy) = 1.$$

Using ii), we deduce that $\mathcal{N}_{L|K}(x)$ lies in A^* . This proves one direction. For the other direction, assume that $\mathcal{N}_{L|K}(x)$ lies in A^* , i.e., we find $a \in A$ with

$$1 = a \cdot \mathcal{N}_{L|K}(x)$$

$$= a \cdot \prod_{i=1}^{n} \sigma_{i}(x)$$

$$= a \cdot x \cdot \prod_{i=2}^{n} \sigma_{i}(x).$$

$$\stackrel{}{\underset{\in B, \ by \ i)}{\underbrace{\qquad }}}$$

Hence x lies in B^* . This proves iii).

Proposition 2.2.8. Suppose $\alpha_1, \ldots, \alpha_n \in B$ forms a K-basis of L. Let d denote the discriminant $d(\alpha_1, \ldots, \alpha_n) \in A$. Then $d \cdot B$ is contained in $A\alpha_1 + \cdots + A\alpha_n$.

Proof. Suppose $\alpha = \sum_{j=1}^{n} c_j \alpha_i \in B$ for $c_i \in K$. We want to solve for (c_1, \ldots, c_n) . Applying the trace to the equalities

$$\alpha_i \alpha = \sum_{j=1}^n c_j \alpha_i \alpha_j, \ 1 \le i \le n,$$

we obtain

$$\operatorname{Tr}_{L/K}(\alpha_i \alpha) = \sum_{i=1}^n c_j \operatorname{Tr}_{L/K}(\alpha_i \alpha_j), \ 1 \le i \le n.$$

Hence $x = (c_1, \ldots, c_n)$ is the solution of the linear system Mx = y, where

$$M = ((\operatorname{Tr}_{L/K}(\alpha_i \alpha_j)))_{i,j} \in A^{n \times n}, \ y = (\operatorname{Tr}_{L/K}(\alpha_i \alpha))_i \in A^n.$$

By Reminder (1.3), we have

$$\det(M) \cdot x = M^{\#}Mx = M^{\#}y \in A^n.$$

Using Remark (2.4), we know $\det(M) = d(\alpha_1, \dots, \alpha_n) =: d$. We conclude that dc_i lies in A for $1 \le i \le n$, which proves the claim.

Definition 2.2.9 (Ganzheitsbasis). Suppose $\omega_1, \ldots, \omega_n \in B$ forms a basis of B over A, i.e., every $\alpha \in B$ can be written in a unique way as an A-linear combination $\sum_{i=1}^{n} c_i \omega_i$. Then $\omega_1, \ldots, \omega_n$ is called an **integral basis** of B over A.

Example 2.2.10. Same situation as in Ex. 2.5. $\mathcal{B}_1 = \{1, \sqrt{D}\} \subseteq B$. Consider:

$$\alpha = \frac{1}{2}(1 + \sqrt{D}) \Rightarrow 2\alpha = 1 + \sqrt{D}$$
$$\Rightarrow (2\alpha - 1)^2 = D \Rightarrow 4\alpha^2 - 4\alpha + 1 = D$$
$$\Rightarrow f_{\alpha}(X) = X^2 - X + \frac{1 - D}{4}$$

Hence if $D \equiv 1 \mod 4 \Rightarrow \alpha \in B$ and \mathcal{B}_1 is not an integral basis.

Proposition 2.2.11. Let $D \in \mathbb{Z}$, D square-free, $D \neq 0, 1, B := integral closure of <math>\mathbb{Z}$ in $\mathbb{Q}(\sqrt{D}) = L$.

- i) $D \equiv 2, 3 \mod 4 \Rightarrow \{1, \sqrt{D}\}\$ is an integral basis of B/\mathbb{Z} in particular $B = \mathbb{Z}[\sqrt{D}]$.
- ii) $D \equiv 1 \mod 4 \Rightarrow \{1, \frac{1}{2}(\sqrt{D}+1)\}$ is an integral basis of B/\mathbb{Z} . and $B = \mathbb{Z}[\frac{1}{2}(1+\sqrt{D})]$.

Proof. Consider $\alpha = a + b\sqrt{D} \in \mathbb{Q}(\sqrt{D})$ with $a, b, \in \mathbb{Q}$. $\Rightarrow f_{\alpha} = X^2 - 2aX + a^2 - b^2D$.

Rem 2.1: $\alpha \in B \iff f_{\alpha} \in \mathbb{Z}[X] \iff 2a \in \mathbb{Z} \text{ and } a^2 - b^2D \in \mathbb{Z}.$

- (1) Show: $\alpha \in B \Rightarrow 2b \in \mathbb{Z}$. $\alpha \in B \Rightarrow 4a^2 - 4b^2D = 4z$ with $z \in \mathbb{Z}$. Write $b = \frac{p}{q}$ with $p, q \in \mathbb{Z}, \gcd(p, q) = 1$ $\Rightarrow 4p^2D = ((2a)^2 - 4z)q^2 \quad (\star)$ $\Rightarrow q = 1 \text{ or } 2$.
- (2) Show: $q = 2 \Rightarrow D \equiv 1 \mod 4$ $(\star) \Rightarrow p^2 D = (2a)^2 - 4z \equiv (2a)^2 \mod 4$ $p \text{ is odd, hence } p^2 \equiv 1 \mod 4 \Rightarrow (2a) \text{ is odd (i.e. } a = \frac{2n-1}{2} \in \mathbb{Q})$ $\Rightarrow (2a)^2 \equiv 1 \mod 4 \Rightarrow D \equiv 1 \mod 4.$
- (3) It follows from (2) if $D \equiv 1 \mod 4$: $\alpha \in B \iff \alpha = a + b\sqrt{D}$ or $\alpha = \frac{1}{2}(a + b\sqrt{D})$ with $a, b \in \mathbb{Z}$. Hence we obtain:

$$B = \begin{cases} \mathbb{Z}[\sqrt{D}] & \text{, if } D \equiv 2, 3 \mod 4 \\ \mathbb{Z}[\frac{1}{2}(1+\sqrt{D}] & \text{, if } D \equiv 1 \mod 4 \end{cases}$$

For the second case observe that $\frac{a}{2} + \frac{b}{2}\sqrt{D} = \frac{a-b}{2} + \frac{b}{2}(1+\sqrt{D}) \in \mathbb{Z}[\frac{1}{2}(1+\sqrt{D})]$. This implies the claim.

Proposition 2.2.12. Suppose L/K separable and A is a principal ideal domain. Let $M \neq 0$ be a finitely generated B-submodule of $L \Rightarrow M$ is a free A-module. In particular: B is a free A-module of rank n := [L : K].

Reminder 2.2.13. Suppose A is a principal ideal domain and M_0 is a finitely generated free A-module.

- i) Any submodule M of M_0 is free.
- ii) $\operatorname{rank}(M_0) \ge \operatorname{rank}(M)$

of Prop 2.12. Let $\mu_1, \ldots, \mu_r \in M \subseteq L$ be generators of M as B-module and let $\alpha_1, \ldots, \alpha_n$ be a basis of L/K in B and $d := d(\alpha_1, \ldots, \alpha_n) \in A$. Recall: $L = \{ \frac{b}{a} \mid b \in B, a \in A \setminus \{0\} \}$.

(1) Prop $2.7 \Rightarrow dB \subseteq A\alpha_1 + \cdots + A\alpha_n$

 $(2) \ \exists a \in A : a\mu_1, \dots, a\mu_r \in B$

Hence: $daM \subseteq dB \subseteq A\alpha_1 + \cdots + A\alpha_n =: M_0$

 $(M_0 \text{ is a free } A\text{-module, since } \alpha_1, \dots, \alpha_n \text{ are basis of } L/K).$

Reminder $2.13 \Rightarrow adM$ is a free A-module $\Rightarrow M$ is a free A-module.

Furthermore: $\operatorname{rank}(M) = \operatorname{rank}(adM) \stackrel{Rem.2.13}{\leq} \operatorname{rank}(M_0) = n$.

Suppose that M = B. So far we got that B is a free A-module and rank $(B) \leq n$.

Show: $rank(B) \ge n$.

Let μ_1, \ldots, μ_r be a basis of B as A-module. By $L = \{\frac{b}{a} \mid b \in B, a \in A \setminus \{0\}\}$ we have that μ_1, \ldots, μ_r generate L over K.

Hence: if A is a principal ideal domain, then B has always an integral basis.

Proposition 2.2.14. Suppose we are in the following situation:

- L/K and L'/K are Galois extensions of degree n and m in some field E
- A a subring of K such that K = Quot(A) and B and B' are the integral closures of A in L and L'.
- $\{\omega_1, \ldots, \omega_n\}$ and $\{\omega'_1, \ldots, \omega'_m\}$ are integral basis for B/A and B'/A.
- $d := d(\omega_1, \ldots, \omega_n)$ and $d' := d(\omega'_1, \ldots, \omega'_m) \in A$ with d and d' are coprime in A, i.e. $\exists x, x' \in A$ with 1 = dx + d'x'.
- $K = L \cap L'$

Then we have: $\{\omega_i \omega_j' \mid i \in \{1, \dots, n\}, j \in \{1, \dots, m\}\}$ is an integral basis and its discriminant is $d^m(d')^n$.

Proof. Recall: $L \cap L' = K \Rightarrow [LL' : K] = nm$ and $\{\omega_i \omega_j'\}$ is a basis of the field extension LL'/K.

 $\operatorname{Gal}(L/K) = \{\sigma_1, \dots, \sigma_n\} \text{ and } \operatorname{Gal}(L'/K) = \{\sigma'_1, \dots, \sigma'_m\}$

 \Rightarrow obtain unique lifts $\hat{\sigma}_i \in \operatorname{Gal}(LL'/L')$ and $\hat{\sigma}_j' \in \operatorname{Gal}(LL'/L)$ and $\operatorname{Gal}(LL'/K) = \{\hat{\sigma}_i\hat{\sigma}_j' \mid i \in \{1,\ldots,n\}, j \in \{1,\ldots,m\}\}.$

Consider: $\alpha \in \tilde{B} := \text{integral closure of } A \text{ in } LL'.$

Write $\alpha = \sum_{i,j} \alpha_{i,j} \omega_i \omega'_j = \sum_j \beta_j \omega'_j$ with $\alpha_{i,j} \in K$ and $\beta_j = \sum_i \alpha_{i,j} \omega_i \in L$.

- $\Rightarrow \hat{\sigma}'_i(\alpha) = \sum_j \beta_j \hat{\sigma}'_i(\omega'_j), \text{ since } \hat{\sigma}'_i \in \text{Gal}(LL'/L).$
- \Rightarrow We have a linear system:

$$a = Tb \text{ with } a = \begin{pmatrix} \hat{\sigma}_1'(\alpha) \\ \vdots \\ \hat{\sigma}_m'(\alpha) \end{pmatrix} \in \tilde{B}^m \ , \ b = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_m \end{pmatrix} \in L^m \ , \ T = (\hat{\sigma}_i'(\omega_j'))_{(i,j)} \in \tilde{B}^{m \times m}$$

Observe: $det(T)^2 = d'$

$$\Rightarrow \det(T)b = T^{\#}Tb = T^{\#}a \in \tilde{B}^{m} \qquad \Rightarrow d'b \in \tilde{B}^{m}$$

$$\Rightarrow \forall j : d'\beta_{j} = \sum_{i} d'\alpha_{i,j}\omega_{i} \in \tilde{B} \cap L = B$$

$$\Rightarrow d'\alpha_{i,j} \in A, \text{ since } \{\omega_{1}, \dots, \omega_{n}\} \text{ is an integral basis.}$$

$$\Rightarrow d\alpha_{i,j} \in A \text{ in the same way}$$

$$\Rightarrow \alpha_{i,j} = (x'd' + xd)\alpha_{i,j} = x'd'\alpha_{i,j} + xd\alpha_{i,j} \in A.$$

Hence: $\{\omega_i \omega_j' \mid (i,j) \in \{(1,1),\ldots,(n,m)\}\}$ is an integral basis of \tilde{B}/A . For calculating the discrimant consider the matrix $M = (\hat{\sigma}_k \circ \hat{\sigma}_l'(\omega_i \omega_j'))_{(k,l),(i,j)} = (\hat{\sigma}_k(\omega_i)\hat{\sigma}_l'(\omega_j'))$. Consider $Q = (\hat{\sigma}_k(\omega_i))$

$$\Rightarrow M = \begin{pmatrix} Q & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & Q \end{pmatrix} \cdot \begin{pmatrix} I \cdot \hat{\sigma}'_1(\omega'_1) & \cdots & I \cdot & \hat{\sigma}'_1(\omega'_1) \\ \vdots & & \vdots & & \vdots \\ I \cdot \hat{\sigma}'_1(\omega'_m) & \cdots & I \cdot & \hat{\sigma}'_m(\omega'_m) \end{pmatrix}$$

Observe:

(1)
$$\det(Q)^2 = d(\omega_1, \omega_n) = d$$

(2) The second matrix can be transformed by switching rows and columns to $\begin{pmatrix} Q' & 0 & \dots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \dots & 0 & Q' \end{pmatrix}$ with $Q' = (\sigma'_l(\omega'_j))$ and $\det(Q') = d'$

Remark 2.2.15 (and Definition). Suppose $K = \mathbb{Q}, A = \mathbb{Z}, L$ a number field and $B = \mathcal{O}_k$.

(i) There is always an integral basis w_1, \ldots, w_n .

 $\Rightarrow \det(M)^2 = \det(Q)^{2m} \cdot \det(Q')^{2n} = d^m d'^n$

(ii) The **discriminant** $d_k = d_k(\mathcal{O}_k) = d(w_1, \dots, w_n)$ does not depend on the choice of integral basis.

Proof. "(i)" Proposition 2.12 "(ii)" Let w'_1, \ldots, w'_n be another integral basis. Then there exists a base change matrix $T \in GL_n(\mathbb{Z})$ with

$$\begin{pmatrix} w_1' \\ \vdots \\ w_n' \end{pmatrix} = T \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix}.$$

Hence

$$\begin{pmatrix} \sigma(w_1') \\ \vdots \\ \sigma(w_n') \end{pmatrix} = T \begin{pmatrix} \sigma(w_1) \\ \vdots \\ \sigma(w_n) \end{pmatrix}.$$

such that

$$d(w'_1, \dots, w'_n) = \underbrace{\det T}_{\in \{1,-1\}}^2 d(w_1, \dots, w_n) = d_k.$$

Example 2.2.16. Let $L = \mathbb{Q}(\sqrt{D})$ with $D \in \mathbb{Z}$ square-free. By Proposition 2.14 we have:

(i) $\mathcal{O}_k = \mathbb{Z}[\sqrt{D}]$ and $\{1, \sqrt{D}\}$ is an integral basis for $D \equiv 2, 3 \mod 4$ and $d_k = 4D$.

(ii) $\mathcal{O}_k = \mathbb{Z}\left[\frac{1+\sqrt{D}}{2}\right]$ and $\left\{1, \frac{1+\sqrt{D}}{2}\right\}$ is an integral basis for $D \equiv 1 \mod 4$ and $d_k = D$.

In particular, this holds for D = -1, i.e., the Gaussian integers $\mathbb{Z}[i]$.

2.3 Ideals

Let R be a commutative ring with 1.

Problem: O_k is not a UFD in many cases, e.g. in $\mathbb{Z}[\sqrt{-5}]$ we have

$$(1+\sqrt{-5})(1-\sqrt{-5}) = 1+5=6=2\cdot 3,$$

that is, two different ways to factor 6 in irreducible elements.

Idea:

(1) Maybe we have too few elements, i.e.,

$$1 + \sqrt{-5} = p_1 p_2, 1 - \sqrt{-5} = p_3 p_4$$
 and $2 = p_2 p_3, 3 = p_1 p_4$

for some primes p_i .

(2) An element is determined (up to units) by the set of elements it divides, e.g.

$$p_i \longleftrightarrow \{x \in \mathcal{O}_k; p_i | x\} = p_i \mathcal{O}_k \text{ (this is an ideal)}.$$

Notation 2.3.1. Let $I, J \subset R$ be ideals. We define

- $I + J = \{a + b; a \in I, b \in J\},\$
- $IJ = \{ \sum_{i} a_i b_i; a_i \in I, b_i \in J \}.$

Definition 2.3.2 (and Reminder). Let $I \subsetneq R$ be an ideal.

- (a) I is called **prime** if for all $a, b \in R$ with $ab \in I$ we already have $a \in I$ or $b \in I$. \Leftrightarrow For all ideals $A, B \subset R$ with $AB \subset I$ we have $A \subset I$ or $B \subset I$.
- (b) I is called **maximal** if for any ideal $I \subset J \subset R$ we have J = I or J = R. $\Leftrightarrow R/I$ is a field.
- (c) R is called **Noetherian** if every ascending chain of ideals

$$I_1 \subset I_2 \subset \cdots$$

becomes stationary, i.e., if there is an $N \in \mathbb{N}$ such that $I_n = I_N$ for alls $n \geq N$. \Leftrightarrow Every ideal in R is finitely generated.

- (d) R is called a **Dedekind domain** if
 - R is an integral domain,
 - R is integrally closed,
 - \bullet R is Noetherian, and
 - \bullet every prime ideal in R is maximal.

Proposition 2.3.3. *If* \mathcal{O} *is the integral closure of* \mathbb{Z} *in a number field then* \mathcal{O} *is a Dedekind domain.*

Proof. It is clear that \mathcal{O} is an integral domain and integrally closed. Furthermore, by Proposition 2.12 each \mathbb{Z} -submodule is finitely generated as a \mathbb{Z} -module, thus also as an \mathcal{O} -module. Hence \mathcal{O} is Noetherian.

Now, let $I \subset \mathcal{O}$ be a prime ideal. Then $I \cap \mathbb{Z} \subset \mathbb{Z}$ is a prime ideal such that $\mathbb{Z}/(I \cap \mathbb{Z}) = \mathbb{F}_p$. Using $\mathcal{O} = \mathbb{Z}[w_1, \dots, w_n]$ we conclude

$$\mathcal{O}/I = \mathbb{Z}/(I \cap \mathbb{Z})[w_1', \dots, w_n'] = \mathbb{F}_p[w_1', \dots, w_n'] = \mathbb{F}_p(w_1', \dots, w_n'),$$

where $w_i' \equiv w_i \mod I$. Thus \mathcal{O}/I is a field ad hence I maximal.

From now on: Let \mathcal{O} denote a Dedekind domain.

Theorem 4. Every ideal $0 \neq I \subset \mathcal{O}$ has a unique factorization

$$I = P_1 \cdots P_n$$

into prime ideals $P_i \subset \mathcal{O}$.

Lemma 2.3.4. For every ideal $0 \neq I \subset \mathcal{O}$ there exist nonzero prime ideals $P_i \subset \mathcal{O}$ such that

$$P_1 \cdots P_n \subset I$$
.

Proof. Set $M = \{0 \neq I \subset \mathcal{O} \text{ ideal}; I \text{ does not have such } P_i\}$ and suppose $M \neq \emptyset$. Then M is partially ordered by inclusion and since \mathcal{O} is Noetherian, every chain in M has an upper bound. Thus, the Lemma of Zorn yields a maximal element $I_0 \in M$. Since I_0 cannot be prime there are $a, b \in \mathcal{O}$ such that $ab \in I_0$ but $a, b \notin I_0$. Consider the ideals $I_1 = (a) + I_0$ and $I_2 = (b) + I_0$ which satisfy $I_0 \subsetneq I_1$, $I_0 \subsetneq I_2$ and $I_1I_2 \subset I_0$. Since I_0 is a maximal ideal in M, we have $I_{1,2} \notin M$ hence we find prime ideals $P_1, \ldots, P_n, P'_1, \ldots, P'_m \subset \mathcal{O}$ with

$$P_1 \dots P_n \subset I_1$$
 and $P'_1 \dots P'_m \subset I_2$.

Finally, we conclude $P_1 \dots P_n P_1' \dots P_m' = I_1 I_2 \subset I_0 \Rightarrow I_0 \notin M \not\in M = \emptyset$.

Lemma 2.3.5. Let $0 \neq P \subset \mathcal{O}$ be a prime ideal, $I \subset \mathcal{O}$ an ideal and $K = \operatorname{Quot}(\mathcal{O})$. Then:

(i)
$$P^{-1} := \{x \in K; xP \subset \mathcal{O}\} \supseteq \mathcal{O}$$

(ii)
$$I \subsetneq P^{-1}I := \{ \sum_i a_i x_i; \ a_i \in I, x_i \in P^{-1} \}$$

Proof. "(i)" Let $0 \neq a \in P$, $P_1 \cdots P_n \subset (a) \subset P$ as in Lemma 3.5 with n minimal.

Claim: Without loss of generality we can assume that $P_1 = P$.

Proof of the claim: Since $P_1 \cdots P_n \subset P$ and P is prime, there is an index i such that $P_i \subset P$, by reindexing we may assume that i = 1. However, we assumed \mathcal{O} to be Dedekind, hence P_1 is a maximal ideal in \mathcal{O} . Thus, $P_1 \subset P \subsetneq \mathcal{O}$ implies that $P_1 = P$ as claimed.

Now, since n was chosen minimal we have $P_2 \cdots P_n \not\subset (a)$, i.e, there exists an element $b \in (a) \backslash P_2 \cdots P_n$. On the one hand we thus have

$$a^{-1}b \notin \mathcal{O}$$

and on the other hand $bP \subset (a)$ such that $a^{-1}bP \subset \mathcal{O}$ and hence

$$a^{-1}b \in P^{-1}.$$

Both of this together shows that $P^{-1} \supseteq \mathcal{O}$.

"(ii)" Assume there is an ideal $I \subset \mathcal{O}$ such that $P^{-1}I \subset I$. Let $\{\alpha_1, \ldots, \alpha_n\} \subset I$ be a generating set and choose $x \in P^{-1} \setminus \mathcal{O}$. Then,

$$x\alpha_i = \sum_j a_{ij}\alpha_j$$

for some $a_{ij} \in \mathcal{O}$. Consider the matrix $A = xE_n - (a_{ij})_{i,j}$, which satisfies

$$A \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = 0.$$

Since $A^{\#}A = \det A$ we conclude $\det A = 0$ such that x is a zero of the monic polynomial $\det \left(XE_n - (a_{ij})_{i,j}\right)$ over \mathcal{O} . But since \mathcal{O} is integrally closed this implies $x \in \mathcal{O}$, a contradiction.

Proof of Theorem 3.4. Existence of a factorization: Let

$$M = \{0 \neq I \subset \mathcal{O} \text{ ideal}; I \text{ has no factorization}\}$$

and assume that $M \neq \emptyset$. As in Lemma 3.5, let $I_0 \in M$ be a maximal element and let $P \supset I_0$ be a maximal ideal containing I_0 . Since I_0 is not prime we have $I_0 \neq P$ such that by Lemma 3.6,

$$I_0 \subsetneq P^{-1}I_0 \subset P^{-1}P = \mathcal{O}.$$

Note that $I_0 = I_0 \mathcal{O} = I_0 P^{-1} P$ and $I_0 \neq P$ imply $P^{-1} I_0 \subsetneq \mathcal{O}$. Since I_0 was maximal in M we thus have $P^{-1} I_0 \not\in M$, i.e., there are prime ideals $P_1, \ldots, P_n \subset \mathcal{O}$ with $P^{-1} I = P_1 \cdots P_n$. This leads to the contradiction $I = P P_1 \cdots P_n$.

Uniqueness of the factorization: Suppose that

$$I = P_1 \cdots P_n = Q_1 \cdots Q_m$$

are two prime factorizations. Then $P_1 \supset I = Q_1 \cdots Q_m$, hence without loss of generality we can assume that $Q_1 \subset P_1$. Since \mathcal{O} is Dedekind we conclude $Q_1 = P_1$ such that

$$P_2 \cdots P_n = P_1^{-1} I = Q_2 \cdots Q_m.$$

The claim follows by induction.

Definition 2.3.6. We call two ideals $0 \neq I, J \subset \mathcal{O}$ coprime : $\Leftrightarrow I + J = \mathcal{O}$. For example, one could take two distinct prime ideals in a Dedekind ring.

Remark 2.3.7. Let $P_1, \ldots, P_n \subset \mathcal{O}$ be pairwise coprime. Then P_1 and $P_2 \cdots P_n$ are coprime and we have $\prod_{i=1}^n P_i = \bigcap_{i=1}^n P_i$.

Proof. Induction on n: The case n=2 is clear. Let n>2. Since P_1 and P_2 are coprime, $\exists p_1 \in P_1, p_2 \in P_2$, such that we can write $1=p_1+p_2$. By induction hypothesis, $\exists p_1' \in P_1, p_2 \in P_3 \cdots P_n$, such that $1=p_1'+p$. It follows

$$1 = p_1 + p_2 \cdot (p'_1 + p) = \underbrace{p_1 + p_2 p'_1}_{\in P_1} + \underbrace{p_2 p}_{\in P_2 \cdots P_n},$$

which yields the first claim.

For the second claim, first note that $\prod P_i \subset \bigcap P_i$ is clear.

For the converse, let $a \in \bigcap P_i$, which of course implies that $a \in P_i$ for all i. As above, we write $1 = p_1 + p$, $p_1 \in P_1$, $p \in P_2 \cdots P_n$. We get $a = ap_1 + ap$, which implies that $a \in aP_1 + P_1 \cdot \prod_{i=2}^n P_i$ for all i and by induction hypothesis, we get $a \in \prod P_i$.

Theorem 5 (Chinese Remainder Theorem). Let $P_1, \ldots, P_n \subset \mathcal{O}$ bet pairwise coprime ideals, $I = \bigcap_{i=1}^n P_i$. Then we have

$$\mathcal{O}/I \cong \bigoplus_{i=1}^n \mathcal{O}/P_i$$

Proof. Consider the map

$$\phi: \mathcal{O} \longrightarrow \bigoplus_{i} \mathcal{O}/P_i, \quad a \mapsto \bigoplus_{i} a \mod P_i.$$

Obviously, $\ker(\phi) = I$. It remains to show, that ϕ is surjective. Let first n = 2: For $p_1 \in P_1$, $p_2 \in P_2$ let $1 = p_1 + p_2$ and for any a_1 , $a_2 \in \mathcal{O}$ write $a = a_2p_1 + a_1p_2$. Then $\phi(a) = a_1 \oplus a_2 \in \mathcal{O}/P_1 \oplus \mathcal{O}/P_2$.

In general, by **3.8**, we know that $\exists y_i \in \mathcal{O}$ with $y_i \equiv 1 \mod P_i$ and $y_i \equiv 0 \mod \bigcap_{j \neq i} P_i$. Hence the element $a = \sum_{i=1}^n a_i y_i$ is mapped to $\bigoplus_{i=1}^n a_i \mod P_i$

Definition 2.3.8. A fractional ideal of K is a finitely generated \mathcal{O} -module $0 \neq I$ of K. Since \mathcal{O} is noetherian, this is equivalent to: $\exists c \in \mathcal{O}$, such that $c \cdot I \subset \mathcal{O}$ is an ideal (since every submodule of \mathcal{O} is finitely generated). The product of two fractional ideals is denoted in the same way as introduced in **3.3**. Ideals in \mathcal{O} are called **integral ideals**.

Theorem 6. The fractional ideals of K, together with the product, form an abelian group, which we denote by \mathcal{J}_K .

Proof. Commutativity and associativity are clear. The unit in \mathcal{J}_K is given by \mathcal{O} . We define $I^{-1} := \{x \in K \mid x \cdot I \subset K\}$ and show, that this defines an inverse for all $I \in \mathcal{J}_K$.

For a prime ideal $P \subset \mathcal{O}$, we have already seen in **3.4** that $P^{-1}P = \mathcal{O}$ and for an integral ideal $I = P_1 \cdots P_n$, we have $J = P_1^{-1} \cdots P_n^{-1}$ as an inverse:

 $J \subset I^{-1}$ is clear. For the converse, let $x \in I^{-1}$, we then have $x \cdot IJ \subset \mathcal{O}$, with $x \cdot I \subset \mathcal{O}$ and $IJ = \mathcal{O}$, therefore $x \cdot 1 \in J$ and $I^{-1} \subset J$ follows.

Let now I be fractional. Then $\exists c \in \mathcal{O}$, such that cI is integral. But then $(cI)^{-1} = c^{-1}I^{-1}$ and hence $II^{-1} = (cI)(c^{-1}I^{-1}) = \mathcal{O}$

Corollary 2.3.9. Every fractional ideal I has a unique factorization $I = \prod P_i^{n_i}$, with $n_i \in \mathbb{Z}$, $P_i \subset \mathcal{O}$ distinct prime ideals and only finitely many $n_i \neq 0$. In particular, \mathcal{J}_K is a free abelian group on the prime ideals of \mathcal{O} .

Proof. By **3.11**, every element $I \in \mathcal{J}_K$ can be written as $I = AB^{-1}$ for some integral ideals $A, B \subset \mathcal{O}$. Therefore, by **3.4**, we get $I = \prod P_i^{n_i}$ and by multiplying denominators, we see that this presentation is unique.

Definition 2.3.10. The principle ideals generate a subgroup \mathcal{P}_K of \mathcal{J}_K . We call the quotient group $\operatorname{Cl}_K := \mathcal{J}_K/\mathcal{P}_K$ the **ideal class group**. We have an exact sequence of groups

$$1 \longrightarrow \mathcal{O}^{\times} \longrightarrow K^{\times} \stackrel{a \mapsto a\mathcal{O}}{\longrightarrow} \mathcal{J}_{K} \longrightarrow \operatorname{Cl}_{K} \longrightarrow 1.$$

2.4 Lattices and Minkowski

Definition 2.4.1. Let V be an n-dimensional \mathbb{R} -vector space. A lattice $\Lambda \subset V$ is a subgroup of the form $\mathbb{Z}v_1 + \ldots \mathbb{Z}v_m$, where v_1, \ldots, v_m are linearly independent over V. We call (v_1, \ldots, v_m) a basis of Λ and $\phi := \{x_1v_1 + \ldots x_mv_m \mid x_i \in [0, 1)\}$ a fundamental domain of Λ . We call Λ complete, if n = m.

CAUTION: For many people, lattices are always complete!

Example 2.4.2. (a) $\mathbb{Z}\begin{pmatrix}1\\0\end{pmatrix} + \mathbb{Z}\begin{pmatrix}0\\1\end{pmatrix} \subset \mathbb{R}^2$ is a complete lattice

- (b) $\mathbb{Z} + \mathbb{Z}\sqrt{2} \subset \mathbb{R}$ is not a lattice, since 1 and $\sqrt{2}$ are not linearly independent.
- (c) $\mathbb{Z}\begin{pmatrix} \sqrt{2} \\ 1 \end{pmatrix} \subset \mathbb{R}^2$ is a non-complete lattice.

Proposition 2.4.3. A subgroup $\Lambda \subset V$ is a lattice $\Leftrightarrow \Lambda$ is a discrete subgroup of V.

Proof. " \Rightarrow ": Take $\{\lambda + x_1v_1 + \cdots + x_nv_n + \text{rest of basis } | |x_n| < 1\}$ as a neighbourhood for $\lambda \in \Lambda$.

" \Leftarrow ": Let $V_0 = \langle \Lambda \rangle_{\mathbb{R}}$. Then we can choose a basis v_1, \ldots, v_m of V_0 in Λ , such that $\Lambda_0 := \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_m$ is a lattice in V_0 .

Claim: The index $[\Lambda : \Lambda_0]$ is finite.

Proof of the claim: Since Λ_0 is complete, $V = \bigsqcup_{\lambda \in \Lambda_0} \phi_0 + \lambda$. Since Λ is discrete and ϕ_0 bounded, $\Lambda \cap \phi_0$ is finite. Hence we have only finitely many residue classes $\lambda + \Lambda_0$ of Λ and therefore $[\Lambda : \Lambda_0] =: d < \infty$.

From this follows, that $\Lambda \subset \frac{1}{d}\Lambda_0 = \mathbb{Z}(\frac{1}{d}v_1) + \cdots + \mathbb{Z}(\frac{1}{d}v_m)$. Therefore, Λ has a \mathbb{Z} -basis $w_1 = v_1 n_1, \ldots, w_r = v_r n_r$ for some $n_i \in \frac{1}{d}\mathbb{N}$ and since Λ spans V_0 , we get r = m and they are linearly independent.

Let $\Gamma = v_1 \mathbb{Z} + \cdots + v_n \mathbb{Z} \subset \mathbb{R}^n$ be a complete lattice. We define

$$\operatorname{vol} \Gamma = \operatorname{vol} \phi = |\det(v_1, \dots, v_n)|.$$

Note that this definition is independent of the chosen basis since for a transformation

$$A(v_1,\ldots,v_n)=(v_1',\ldots,v_n')$$

between two bases we have $\det A = \pm 1$.

Theorem 7 (Minkowski). Let $X \subset \mathbb{R}^n$ be a convex, symmetric central (i.e., $x \in X$ implies $-x \in X$) subset and let $\Gamma \subset \mathbb{R}^n$ be a complete lattice. If

$$\operatorname{vol} X > 2^n \operatorname{vol} \Gamma$$

then there exists some $\gamma \in \Gamma \setminus \{0\}$ such that $\gamma \in X$.

Proof. Claim: It suffices to show that there are $\gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2$, such that

$$\left(\frac{1}{2}X + \gamma_1\right) \cap \left(\frac{1}{2}X + \gamma_2\right) \neq \emptyset.$$

Proof of claim: Let $x = \frac{1}{2}x_1 + \gamma_1 = \frac{1}{2}x_2 + \gamma_2$ with some $x_1, x_2 \in X$. Then

$$y = \frac{1}{2} (x_1 - x_2) = \gamma_2 - \gamma_1 \in \Gamma \setminus \{0\}$$

with $y \in X$ since X is symmetrical central.

Now let us assume that the family $(\frac{1}{2}X + \gamma)_{\gamma \in \Gamma}$ is pairwise disjoint. Then

$$\left(\left[\frac{1}{2}X + \gamma \right] \cap \phi \right)_{\gamma \in \Gamma}$$

also consists of pairwise disjoint sets such that we obtain the contradiction

$$\operatorname{vol} \Gamma = \operatorname{vol} \phi \ge \sum_{\gamma \in \Gamma} \operatorname{vol} \left(\left[\frac{1}{2} X + \gamma \right] \cap \phi \right) = \sum_{\gamma \in \Gamma} \operatorname{vol} \left(\frac{1}{2} X \cap [\phi - \gamma] \right)$$
$$= \operatorname{vol} \left(\frac{1}{2} X \right) = \frac{1}{2^n} \operatorname{vol} X.$$

2.5 Minkowski theory

Let $[K : \mathbb{Q}] = n$ be a field extension, $\tau_i : K \hookrightarrow \mathbb{C}$ different embeddings and consider the embedding

$$j: K \hookrightarrow K_{\mathbb{C}} = \prod_{\tau} \mathbb{C}, \ a \mapsto (\tau_1(a), \dots, \tau_n(a)).$$

Define a hermitian scalar product on $K_{\mathbb{C}}$ by

$$\langle (x_{\tau_i}), (y_{\tau_i}) \rangle = \sum_{\tau_i} x_{\tau_i} \overline{y_{\tau_i}}$$

and consider the complex conjugation $F \in \operatorname{Gal}(\mathbb{C}/\mathbb{R})$ given by $\mathbb{C} \to \mathbb{C}, z \mapsto \overline{z}$. Let

$$F(\tau) = \overline{\tau} \colon a \mapsto \overline{\tau(a)}$$

and extend it to $K_{\mathbb{C}}$ by

$$F: K_{\mathbb{C}} \to K_{\mathbb{C}}, (x_{\tau}) \mapsto (\overline{x}_{\overline{\tau}}).$$

Example. Let D > 0 be square-free. Consider

$$\mathbb{Q}\left(\sqrt{D}\right) \hookrightarrow \mathbb{Q}\left(\sqrt{D}\right)_{\mathbb{C}} = \prod_{\tau_i} \mathbb{C}$$

with

$$\tau_1\left(a+b\sqrt{D}\right) = a+b\sqrt{D}$$
 and $\tau_2\left(a+b\sqrt{D}\right) = a-b\sqrt{D}$.

Then

$$j\left(a+b\sqrt{D}\right) = \left(a+b\sqrt{D}, a-b\sqrt{D}\right)$$

and $F(\tau_1) = \tau_1, F(\tau_2) = \tau_2$ such that

$$F\left(x_{\tau_1}, x_{\tau_1}\right) = \left(\overline{x}_{\tau_1}, \overline{x}_{\tau_2}\right).$$

Remark. • $F(\langle x, y \rangle) = \langle F(x), F(y) \rangle$

• Tr: $K_{\mathbb{C}} \to \mathbb{C}$, $(x_{\tau}) \mapsto \sum_{\tau} x_{\tau}$ such that $(\operatorname{Tr} \circ j)(a) = \operatorname{Tr}_{K/\mathbb{Q}}(a)$

Now define the F-invariant \mathbb{R} -vector space

$$K_{\mathbb{R}} = K_{\mathbb{C}}^+ = \{ x \in K_{\mathbb{C}} \mid F(x) = x \} = \{ x \in K_{\mathbb{C}} \mid x_{\overline{\tau}} = \overline{x_{\tau}} \text{ for all } \tau \}.$$

Since $\overline{\tau}(a) = \overline{\tau(a)}$ for all $a \in K$ and all τ , we have $j(K) \subset K_{\mathbb{R}}$. We call $K_{\mathbb{R}}$ the **Minkowski** space and $\langle \cdot, \cdot \rangle \big|_{K_{\mathbb{R}}}$ the **canonical metric**.

Remark. Note that $j: K \to K_{\mathbb{R}} \cong K \otimes_{\mathbb{Q}} \mathbb{R}$, where the isomorphism is given by $a \otimes x \mapsto j(a)x$ for $x \in \mathbb{R}$.

Explicit description of $K_{\mathbb{R}}$: Let n = r + 2s, where r and s are the number of embeddings

$$\varphi_1, \ldots, \varphi_r \colon K \hookrightarrow \mathbb{R}$$

and

$$\sigma_1, \overline{\sigma_1}, \ldots, \sigma_s, \overline{\sigma_s} \colon K \hookrightarrow \mathbb{C},$$

respectively. Notice that $F(\varphi_i) = \varphi_i$ and $F(\sigma_j) = \overline{\sigma_j}$. Then elements of $K_{\mathbb{C}}$ are of the form

$$x = (x_{\varphi(1)}, \dots, x_{\varphi(r)}, x_{\sigma_1}, x_{\overline{\sigma_1}}, \dots, x_{\sigma_s}, x_{\overline{\sigma_s}})$$

with

$$F(x) = (\overline{x_{\varphi_1}}, \dots, \overline{x_{\varphi_r}}, \overline{x_{\overline{\sigma_1}}}, \overline{x_{\sigma_1}}, \dots, \overline{x_{\overline{\sigma_s}}}, \overline{x_{\sigma_s}}).$$

Hence we have

$$K_{\mathbb{R}} = \left\{ x \in K_{\mathbb{C}} \mid x_{\varphi_i} \in \mathbb{R}, x_{\overline{\sigma_j}} = \overline{x_{\sigma_j}} \right\}.$$

Proposition 2.5.1. The map

$$f \colon K_{\mathbb{R}} \xrightarrow{\cong} \mathbb{R}^{r+2s} = \prod_{\tau} \mathbb{R},$$
$$x \mapsto (x_{\varphi_1}, \dots, x_{\varphi_r}, \operatorname{Re} x_{\sigma_1}, \operatorname{Im} x_{\sigma_1}, \dots, \operatorname{Re} x_{\sigma_s}, \operatorname{Im} x_{\sigma_s}.)$$

is an isomorphism. It transforms the canonical metric into the scalar product

$$\langle x, y \rangle = \sum_{\tau} \alpha_{\tau} x_{\tau} y_{\tau},$$

where

$$\alpha_{\tau} = \begin{cases} 1, & \tau = \varphi_i \text{ for some } i, \\ 2, & \tau = \sigma_j \text{ for some } j. \end{cases}$$

Proof. Obviously, f is an isomorphism. For $x = (x_{\tau}), y = (y_{\tau}) \in K_{\mathbb{R}}$ we have

$$\langle x, y \rangle \big|_{K_{\mathbb{R}}} = \sum_{\tau} x_{\tau} \overline{y_{\tau}}$$

$$= \sum_{\varphi_{i}} x_{\varphi_{i}} y_{\varphi_{i}} + \sum_{\sigma_{j}} x_{\sigma_{j}} \overline{y_{\sigma_{j}}} + \sum_{\overline{\sigma_{j}}} \overline{(x_{\sigma_{j}} \overline{y_{\sigma_{j}}})}$$

$$= \cdots = (f(x), f(y)).$$

Remark. • The canonical metric induces a volume vol_{can} on $K_{\mathbb{R}}$ and thus on \mathbb{R}^{r+2s} .

• If we denote the Lebesgue measure on \mathbb{R}^{r+2s} by $\operatorname{vol}_{\operatorname{Leb}}$ then, for $X \subset K_{\mathbb{R}}$,

$$2^s \operatorname{vol}_{\operatorname{Leb}} f(X) = \operatorname{vol}_{\operatorname{can}} X.$$

• We will thus consider $K \supset U \xrightarrow{j} j(U) \xrightarrow{f} \mathbb{R}^{r+2s}$.

Example. Let $e_j=(0,\ldots,1,\ldots,0)$. Note that we have $\langle e_{\varphi_i},e_{\varphi_i}\rangle=1$ and $\langle e_{\sigma_j},e_{\varphi_j}\rangle=2$, such that $\langle \frac{e_{\sigma_j}}{\sqrt{2}},\frac{e_{\sigma_j}}{\sqrt{2}}\rangle=1$. Hence

$$\left\{e_{\varphi_1},\ldots,e_{\varphi_r},\frac{e_{\sigma_1}}{\sqrt{2}},\frac{e_{\overline{\sigma_1}}}{\sqrt{2}},\ldots\right\}$$

is an orthonormal basis. Using the correspondence

$$X \subset K_{\mathbb{R}} \leftrightarrow f(X) \subset \mathbb{R}^{r+2s}$$

we thus define

$$\operatorname{vol}_{\operatorname{can}} X = \operatorname{vol}_{\operatorname{can}} f(X) = 2^{s} \operatorname{vol}_{\operatorname{Leb}} f(X)$$

Proposition 2.5.2. If $I \neq 0$ is an \mathcal{O}_k -ideal then $\Gamma = j(I)$ is a complete lattice in $K_{\mathbb{R}}$. Its fundamental domain has volume

$$\operatorname{vol} \Gamma = \operatorname{vol} \phi = \sqrt{|d_k|} \cdot [\mathcal{O}_k \colon I].$$

Proof. Choose α_i such that $I = \alpha_1 \mathbb{Z} + \cdots + \alpha_n \mathbb{Z}$. Then $\Gamma = j(I) = j(\alpha_1) \mathbb{Z} + \cdots + j(\alpha_n) \mathbb{Z}$. Define

$$A = (j(\alpha_1), \dots, j(\alpha_n))^T = \begin{pmatrix} \tau_1(\alpha_1) & \cdots & \tau_n(\alpha_1) \\ \vdots & \ddots & \vdots \\ \tau_1(\alpha_n) & \cdots & \tau_n(\alpha_n) \end{pmatrix}$$

such that

$$\operatorname{vol} \phi = |\det A| = \sqrt{|d_k|} \cdot [\mathcal{O}_k \colon I].$$

Furthermore,

$$d(I) = d(\alpha_1, \dots, \alpha_n) = |\det A|^2 = d(\mathcal{O}_k) \cdot [\mathcal{O}_k \colon I]^2,$$

with $[\mathcal{O}_k: I] = |\det M|$ for the change of basis M from \mathcal{O}_k to I.

Theorem 8. Let $I \neq 0$ be an ideal in \mathcal{O}_k . Let $(c_{\tau})_{\tau}$ be a collection of real number such that $c_{\tau} > 0$, $c_{\tau} = c_{\overline{\tau}}$ and

$$\prod_{\tau} c_{\tau} > \left(\frac{2}{\pi}\right)^{s} \sqrt{|d_{k}|} \cdot [\mathcal{O}_{k} \colon a].$$

Then there exists $a \in I \setminus \{0\}$ such that

$$|\tau(a)| < c_{\tau}$$

for all $\tau \in \text{Hom}(K, \mathbb{C})$.

Proof. Consider the convex, central symmetric set

$$X = \{(x_{\tau}) \in K_{\mathbb{R}} \mid |x_{\tau}| < c_{\tau} \text{ for all } \tau \}$$

and let $f: K_{\mathbb{R}} \to \mathbb{R}^n$, n = r + 2s, as in Proposition 5.1. Notice that for $x \in X$ we have $f(x) = (x_{\varphi_1}, \dots, x_{\varphi_r}, a_1, b_1, \dots, a_s, b_s)$ with $|x_{\varphi_i}| < c_{\varphi_i}$ and $a_j^2 + b_j^2 < c_{\sigma_j}^2$. Hence

$$\operatorname{vol}_{\operatorname{can}} X = 2^{s} \operatorname{vol}_{\operatorname{Leb}} f(X) = 2^{s} \left(\prod_{i=1}^{r} 2c_{\varphi_{i}} \right) \left(\prod_{j=1}^{s} \pi c_{\sigma_{j}}^{2} \right) = 2^{r+s} \pi^{s} \prod_{\tau} c_{\tau},$$

and thus, by Proposition 5.2,

$$2^{n} \operatorname{vol} \Gamma = 2^{r+2s} \sqrt{|d_{k}|} \cdot [\mathcal{O}_{k} : I]$$

$$= 2^{r+s} \pi^{s} \left[\left(\frac{2}{\pi} \right)^{s} \sqrt{|d_{k}|} \cdot [\mathcal{O}_{k} : a] \right]$$

$$< 2^{r+s} \pi^{s} \prod_{\tau} c_{\tau}$$

$$\operatorname{vol} \quad X$$

Consequently, by Minkowski's theorem, there exists $j(a) \in \Gamma \setminus \{0\}$ with $j(a) \in X$ and $|\tau(a)| < c_{\tau}$ for all τ .

Multiplicative Minkowsky theory

Define

$$j \colon K^* \hookrightarrow K_{\mathbb{C}}^* = \prod_{\tau} \mathbb{C}^*, \ a \mapsto (\tau(a))_{\tau}$$

and

$$\mathcal{N} \colon K_{\mathbb{C}}^* \to \mathbb{C}^*, \ (x_{\tau}) \mapsto \prod_{\tau} x_{\tau}.$$

Denote the composition of these maps by $\mathcal{N}_{K/\mathbb{Q}} = N \circ j$. Furthermore, consider

$$l: \mathbb{C}^* \to \mathbb{R}, z \mapsto \log|z|$$

and its extension

$$l \colon K_{\mathbb{C}}^* \to \prod_{\tau} \mathbb{R}, (x_{\tau}) \mapsto (\log |x_{\tau_1}|, \dots, \log |x_{\tau_n}|).$$

All in all, we have

$$K^* \stackrel{j}{\longleftarrow} K_{\mathbb{C}}^* \stackrel{l}{\longrightarrow} \prod_{\tau} \mathbb{R}$$

$$\mathcal{N}_{K/\mathbb{Q}} \downarrow \qquad \qquad \downarrow \mathcal{N} \qquad \qquad \downarrow \text{Tr}$$

$$\mathbb{Q}^* \stackrel{l}{\longleftarrow} \mathbb{C}^* \stackrel{l}{\longrightarrow} \mathbb{R}$$

with

$$\left[\prod_{\tau} \mathbb{R}\right]^{+} = \prod_{\varphi_{i}} \mathbb{R} \times \prod_{\sigma_{i}} \left[\mathbb{R} \times \mathbb{R}\right]^{+} \xrightarrow{\cong} R^{r+s},$$

where the isomorphism is given by

$$(x_{\varphi_1},\ldots,x_{\varphi_r},x_{\sigma_1},x_{\overline{\sigma_1}},\ldots,x_{\sigma_s},x_{\overline{\sigma_s}}) \mapsto (x_{\varphi_1},\ldots,x_{\varphi_r},2x_{\sigma_1},\ldots,2x_{\sigma_s}),$$

and we have

$$K_{\mathbb{R}} \to \mathbb{R}^{r+s}, (x_{\tau}) \mapsto (\log |x_{\varphi_1}|, \dots, \log |x_{\varphi_r}|, \log |x_{\sigma_1}|^2, \dots, \log |x_{\sigma_s}|^2).$$

2.6 The class number

Let $n = [K : \mathbb{Q}]$, denote by J_K the group of fractional ideals of K, by P_k its subgroup of principal ideals and by $\operatorname{Cl}_k = J_k/P_k$ the ideal class group. Define the **absolute norm** of an ideal $I \subset \mathcal{O}_k$ by

$$n(I) = [\mathcal{O}_k : I].$$

For $I = (\alpha)$, we have $n(I) = \mathcal{N}_{K/\mathbb{Q}}(\alpha)$. If $O_k = w_1 \mathbb{Z} + \cdots + w_n \mathbb{Z}$ and $I = \alpha w_1 \mathbb{Z} + \cdots + \alpha w_n \mathbb{Z}$ we have

$$\alpha w_i = \sum_j a_{ij} w_j$$

for some matrix $A = (a_{ij})$ such that $\mathcal{N}_{K/\mathbb{Q}}(\alpha) = |\det A| = [\mathcal{O}_k : I]$.

Proposition 2.6.1. If $I = P_1^{\nu_1} \cdots P_r^{\nu_r}$ then $n(I) = n(P_1)^{\nu_1} \cdots n(P_r)^{\nu_r}$.

Proof. By the Chinese remainder theorem,

$$\mathcal{O}_k/I \cong (\mathcal{O}_k/P_1^{\nu_1}) \oplus \cdots \oplus (\mathcal{O}_k/P_r^{\nu_r}),$$

such that

$$n(I) = [\mathcal{O}_k : I] = \prod_j \left[\mathcal{O}_k : P_j^{\nu_j} \right] = \prod_j n(P_j)^{\nu_j}.$$

Claim: $P \supseteq P^2 \supseteq \cdots \supseteq P^{\nu}$ and P^i/P^{i+1} is a (\mathcal{O}_k/P) -vector space of dimension 1 **Proof of Claim:** Let $a \in P^i/P^{i+1}$. Then we have

$$P^i \supset J = (a) + P^{i+1} \supseteq P^{i+1}$$

and

$$\mathcal{O}_k \supset J' = JP^{-i} \supseteq P = P^{i+1}P^{-i}.$$

Since J'|P we have $J=P^i$ and thus $[a] \in P^i/P^{i+1}$ is a basis.

Now, the Claim yields

$$n(P^{\nu}) = [\mathcal{O}_k \colon P^{\nu}] = [\mathcal{O}_k \colon P] [P \colon P^2] \cdots [P^{\nu-1} \colon P^{\nu}] n(P)^{\nu}.$$

In particular, for integral ideals I, J we have n(IJ) = n(I)n(J) such that we can extend n to J_k by

$$n: J_k \to \mathbb{R}^*_+, I = P_1^{\nu_1} \cdots P_r^{\nu_r} \mapsto n(I) = n(P_1)^{\nu_1} \cdots n(P_r)^{\nu_r}.$$

Reminder 2.6.2. \mathcal{J}_K = group of fractional ideals = abelian group enerated by all prime ideals

 $\mathcal{P}_K = \text{group of all principal fractional ideals.}$

 $\mathrm{Cl}_K := \mathcal{J}_K/\mathcal{P}_K$

 \Rightarrow obtain following exact sequence:

$$1 \to \underbrace{\mathcal{O}_{K}^{\times}}_{\text{How big?}} \to K^{\times} \to \mathcal{J}_{K} \to \underbrace{\text{Cl}_{K}}_{\text{How big?}} \to 1$$
$$a \mapsto (a) = a\mathcal{O}_{K}$$

Last Time: α ideal in \mathcal{O}_K , $\alpha \neq 0$.

• $\mathcal{N}(\alpha) = (\mathcal{O}_K : \alpha)$ absolute norm.

In particular: $\mathcal{N}((a)) := |\mathcal{N}_{K/\mathbb{O}}(a)|$.

• $u = \mathcal{P}_1^{\nu_1} \dots \mathcal{P}_r^{\nu_r}$ decomposition into primes $\Rightarrow \mathcal{N}(u) = \mathcal{N}(\mathcal{P}_1)^{\nu_1} \cdot \dots \cdot \mathcal{N}(\mathcal{P}_r)^{\nu_r}$

In particular: $\mathcal{N}(\alpha_1\alpha_2) = \mathcal{N}(\alpha_1)\mathcal{N}(\alpha_2)$.

• Hence \mathcal{N} can be extended to fractional ideals: $\mathcal{N}: \mathcal{J}_K \to \mathbb{R}_+^{\times}$.

<u>Goal</u>: Show that Cl_K is finite.

Idea:

- Find in each integral ideal α an element $a \neq 0$ of norm bounded by $\mathcal{N}(\alpha)$.
- Show: For M > 0 there are only finitely many integral ideals α with $N(\alpha) \leq M$.
- Show: Each class $[u] \in \operatorname{Cl}_K$ contains an integral ideal u_1 s.t. $\mathcal{N}(u_1) \leq M_0 = (\frac{2}{\pi})^s \sqrt{|d_K|}$.

Recall: $s = \text{number of not-real embeddings of } K \text{ into } \mathbb{C}.$

Lemma 2.6.3. Suppose: $\alpha \neq 0$ is an integral ideal $\Rightarrow \exists a \in \alpha, a \neq 0$ s.t. $|\mathcal{N}_{K/\mathbb{Q}}(a)| \leq (\frac{2}{\pi})^s \sqrt{|d_K|} \mathcal{N}(\alpha)$.

Proof. $M_0 := (\frac{2}{\pi})^s \sqrt{|d_K|}$

Idea: Use "Thm. 5.3"

given: $c_{\tau} \in \mathbb{R}_{>0}(\tau \in \text{Hom}(K,\mathbb{C}))$ with $c_{\tau} = c_{\overline{\tau}}$ and $\prod_{\tau} c_{\tau} > M_0 \mathcal{N}(u)$

 $\Rightarrow \exists a \in u, a \neq 0 \text{ with } |\tau(a)| < c_{\tau} \text{ for all } \tau.$

For each $\varepsilon > 0$ choose a sequence $c_{\tau} \in \mathbb{R}_{>0}$ with $c_{\tau} = c_{\overline{\tau}}$ and $\prod_{\tau} c_{\tau} = M_0 \mathcal{N}(\alpha) + \varepsilon$

 $\stackrel{\text{Thm 5.3}}{\Rightarrow}$ Find $a_{\varepsilon} \neq 0$ in α with

$$|\mathcal{N}_{K/\mathbb{Q}}(a)| = \prod_{\tau} |\tau(a)| < M_0 \mathcal{N}(a) + \varepsilon$$

Since left side is integer, we obtain: $\exists a \neq 0 \text{ in } \alpha \text{ with } |\mathcal{N}_{K/\mathbb{Q}}(a)| \leq M_0 \mathcal{N}(\alpha).$

Lemma 2.6.4. Let $M \in \mathbb{R}_{>0}$. There are only finitely many integral ideals α with $\mathcal{N}(\alpha) \leq M$.

Proof. (1) Consider first only prime ideals $\mathcal{P} \neq 0$: Suppose $\mathcal{N}(\mathcal{P}) \leq M$

Recall: $\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z}$ with p prime number (Prop. 3.3)

 \Rightarrow obtain embedding $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z} \hookrightarrow \mathcal{O}_K/\mathcal{P} \Rightarrow \mathcal{N}(\mathcal{P}) = (\mathcal{O}_K : \mathcal{P}) = \#\mathcal{O}_K/\mathcal{P} = p^f$

Hence: $p^f \leq M$. In particular P is bounded.

Furthermore: There are only finitely many prime ideals \mathcal{P} with $\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z}$.

Since $\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z} \Rightarrow p \in \mathcal{P} \Rightarrow (p) \subseteq \mathcal{P}$ But there are only finitely many prime ideals in \mathcal{O}_K which divide (p).

(2) Suppose now α is an arbitrary integral ideal, $\alpha \neq 0$:

 $\Rightarrow a = \mathcal{P}_1^{\nu_1} \cdot \dots \cdot \mathcal{P}_r^{\nu_r}$ with \mathcal{P}_i prime ideal and $\nu_i \in \mathbb{N}$ and $\mathcal{N}(a) = \mathcal{N}(\mathcal{P}_1)^{\nu_1} \cdot \dots \cdot \mathcal{N}(\mathcal{P}_r)^{\nu_r}$. Now the claim follows from (1).

Theorem 9 (Finiteness of Cl_K). The ideal class group of $Cl_K = \mathcal{J}_K/\mathcal{P}_K$ is finite.

Proof. Let $M_0 := (\frac{2}{\pi})^s \sqrt{|d_K|}$

Show that each class $[a] \in Cl_K$ contains an integral ideal a_1 with $\mathcal{N}(a_1) \leq M_0$. Then the

claim follows from Lemma 6.3.

Let $[\alpha] \in Cl_K$. Choose $\gamma \in \mathcal{O}_K, \gamma \neq 0$ with $\gamma \alpha^{-1}$ is integral.

Lemma 6.2
$$\Rightarrow \exists b \in \& := \gamma a^{-1} \text{ with } b \neq 0 \text{ and } |\mathcal{N}_{K/\mathbb{Q}}(b)| \leq M_0 \mathcal{N}(\&)$$

 $\Rightarrow \mathcal{N}((b)\&^{-1}) = \mathcal{N}((b)) \mathcal{N}(\&^{-1}) \leq M_0$

Observe: The factorial ideal $(b) \delta^{-1} = (b) \gamma^{-1} a \in [a]$, hence $a_1 := b \gamma^{-1} a$ does the job. a_1 is an integral ideal, since $(b) \subseteq \gamma a^{-1}$

Definition 2.6.5 ("Klassenzahl"). $h_K := \# \operatorname{Cl}_K := (\mathcal{J}_K : \mathcal{P}_K)$ is called the <u>class number</u> of K.

Proposition 2.6.6. Suppose R is a Dedekind domain.

R is a UFD \iff R is a PID (principal ideal domain).

Proof. $,\Leftarrow$ ": true for general domains.

 $,\Rightarrow$ ": Suppose R is a UFD.

Step 1: Every prime ideal is principal.

Let \mathcal{P} be a prime ideal, $\mathcal{P} \neq 0$. Choose $a \in \mathcal{P}, a \neq 0$. Let $a = p_1 \cdot \dots \cdot p_n$ be its prime factor decomposition. \mathcal{P} prime $\Rightarrow p_i \in \mathcal{P}$ for one of the i's $\Rightarrow \mathcal{P} \supseteq (p_i) \Rightarrow \mathcal{P} = (p_i)$, since (p_i) is a prime ideal and R is a Dedekinddomain.

Step 2: a arbitrary ideal.

 $\Rightarrow u = \mathcal{P}_1 \cdot \dots \mathcal{P}_n$ is a product of prime ideals

 $\Rightarrow a$ is principal, since each \mathcal{P}_i is.

Corollary 2.6.7. We have for a number field K:

 $h_K = 1 \iff \mathcal{O}_K \text{ is a prinicpal domain } \iff \mathcal{O}_K \text{ is a UFD.}$

2.7 The theorem of Dirichlet

Goal: Describe \mathcal{O}_K^{\times}

Recall:

- $\bullet \ \mathcal{O}^{\times} = \{ \varepsilon \in \mathcal{O}_K \mid \ \mathcal{N}_{K/\mathbb{Q}}(\varepsilon) = \pm 1 \}$
- $\mu(K) := \{x \in \mathcal{O}_K \mid \exists n \in \mathbb{N} \text{ with } x^n = 1\} \subseteq \mathcal{O}_K^{\times} \text{ is a finite subgroup.}$

Idea: Use multiplicative Minkowsky theory:

- $\operatorname{Hom}(K,\mathbb{C}) = \{\tau_1, \dots, \tau_r, \tau_{r+1}, \overline{\tau_{r+1}}, \tau_{r+s}, \overline{\tau_{r+s}}\}$
- $j: K^{\times} \hookrightarrow K_{\mathbb{R}}^{\times} = \{x \in \prod_{\tau} \mathbb{C}^{\times} \mid x_{\overline{\tau}} = \overline{x_{\tau}}\}, a \mapsto (\tau(a))_{\tau}$
- $l: K_{\mathbb{R}}^{\times} \to [\prod_{\tau} \mathbb{R}]^{+} := \{ z \in \prod_{\tau} \mathbb{R} \mid z_{\overline{\tau}} = z_{\tau} \}, x = (x_{\tau}) \mapsto (\log |x_{\tau}|)_{\tau}$

 \Rightarrow commutative diagramm:

$$\mathcal{O}_{K}^{\times} \qquad S \qquad H$$

$$\downarrow \cap \qquad \qquad \cap \qquad \qquad \cap \qquad \qquad \cap$$

$$K^{\times} \stackrel{j}{\longleftrightarrow} K_{\mathbb{R}}^{\times} \stackrel{l}{\longrightarrow} [\prod_{\tau} \mathbb{R}]^{+}$$

$$\downarrow \mathcal{N}_{K/\mathbb{Q}} \qquad \downarrow \mathcal{N} \qquad \qquad \downarrow \operatorname{Tr}$$

$$\mathbb{Q}^{\times} \longrightarrow \mathbb{R} \stackrel{\log|\cdot|}{\longrightarrow} \mathbb{R}$$
with
$$\mathcal{N}(x) = \prod_{\tau} x_{\tau} , \operatorname{Tr}(z) = \sum_{\tau} z_{\tau}.$$

Consider the three groups:

(1)
$$\mathcal{O}_K^{\times} = \{ \varepsilon \in \mathcal{O}_K \mid \mathcal{N}_{K/\mathbb{Q}}(\varepsilon) = \pm 1 \}$$

(2)
$$S := \{x \in K_{\mathbb{R}}^{\times} \mid \mathcal{N}(x) = \pm 1\}$$
 "Norm 1 hyper surface"

(3)
$$H := \{z \in [\prod_{\tau} \mathbb{R}]^+ \mid \operatorname{Tr}(z) = 0\}$$
 "Trace 0 hypersurface"

 \Rightarrow Morphisms restrict to

$$\mathcal{O}_K^{\times} \xrightarrow{j} S \xrightarrow{l} H.$$

Define $\Gamma := l \circ j(\mathcal{O}_K^{\times}) = \text{image of } l \circ j.$

Recall from additive Minkowski-Theory: $j(\mathcal{O}_K)$ is a complete lattice in $K_{\mathbb{R}}$

Proposition 2.7.1. The sequence

$$1 \to \mu(K) \to \mathcal{O}_K^{\times} \stackrel{l \circ j}{\to} \Gamma \to 1$$

is an exact sequence.

Proof. $\lambda := l \circ j$

We have to show: $\ker(\lambda) = \mu(K)$.

Observe: $a \in \ker(\lambda) \iff \forall \tau \in \operatorname{Hom}(K,\mathbb{C}) : \log |\tau(a)| = 0 \iff |\tau(a)| = 1$

Hence: $\ker(\lambda) = \{a \in \mathcal{O}^{\times} \mid |\tau(a)| = 1\}.$

"⊇": ✓

" \subseteq ": $j(\ker(\lambda))$ is bounded as subset of $K_{\mathbb{R}}^{\times}$. Furthermore: $j(\ker(\lambda)) \subseteq j(\mathcal{O})$ which is a lattice in $K_{\mathbb{R}} \Rightarrow j(\ker(\lambda))$ is finite and thus also $\ker(\lambda)$.

Altogether: $\ker(\lambda)$ is a finite subgroup of $K^{\times} \Rightarrow$ every element in $\ker(\lambda)$ has finite order \Rightarrow every element is a root of unity.

Goal: Describe Γ

<u>Recall:</u> $\alpha, \alpha' \in \mathcal{O}_K$ are associated: $\iff \exists, \varepsilon \in \mathcal{O}_K^{\times} \text{ s.t. } \alpha' = \alpha \cdot \varepsilon.$

Proposition 2.7.2. Let $a \in \mathbb{Z}$. There are at most $(\mathcal{O}_K : a\mathcal{O}_K) = \mathcal{N}((a))$ elements $\alpha \in \mathcal{O}_K$ up to associates with $\mathcal{N}_{K/\mathbb{Q}}(\alpha) = \pm a$.

Proof. Suppose w.l.o.g.: a > 1.

Consider the cosets of \mathcal{O}_K modulo the subgroup $a\mathcal{O}_K$. Show that each coset contains at most one such α up to associatives.

Suppose: $\alpha \in \mathcal{O}$ with $\mathcal{N}_{K/\mathbb{Q}}(\alpha) = \pm a$ and suppose $\beta = \alpha + a\gamma$ with $\gamma \in \mathcal{O}_K$ also satisfies $\mathcal{N}_{K/\mathbb{Q}}(\beta) = \pm a \Rightarrow \frac{\beta}{\alpha} = 1 \pm \frac{\mathcal{N}_{K/\mathbb{Q}}(\alpha)}{\alpha}\gamma$.

Recall: $\frac{\mathcal{N}(\alpha)}{\alpha} \in \mathcal{O}_K \Rightarrow \frac{\beta}{\alpha} \in \mathcal{O}_K$.

Obtain in the same way $\frac{\alpha}{\beta} \in \mathcal{O}_K$. Hence $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$ are in $\mathcal{O}_K^{\times} \Rightarrow \alpha$ and β are associated. \square

Lemma 2.7.3. Let V be an \mathbb{R} -vector space of dimension n, Γ a lattice in V.

 Γ is complete $\iff \exists M \subseteq V \text{ with } M \text{ bounded s.t. } \bigcup_{\gamma \in \Gamma} M + \gamma = V.$

Proof. \Rightarrow ": $\Gamma = \mathbb{Z}v_1 + \cdots + \mathbb{Z}v_n \Rightarrow M := \phi := \{r_1v_1 + \cdots + r_nv_n \mid 0 \leq r_i < 1\}$ does it. \Rightarrow ": Consider: $V_0 := \mathbb{R}$ -vector space generated by Γ . Have to show: $V_0 = V$.

Let $v \in V$. Consider the sequence $kv(k \in \mathbb{N})$.

Precondition $\Rightarrow \forall k \exists a_k \in M \text{ and } \gamma_k \in \Gamma \text{ with } kv = a_k + \gamma_k$

M bounded $\Rightarrow \frac{1}{k}a_k \to 0 \Rightarrow v = \lim_{k \to \infty} \frac{1}{k}a_k + \frac{1}{k}\gamma_k = \lim_{k \to \infty} \frac{1}{k}\gamma_k \Rightarrow v \in V_0$, since V_0 is closed.

Theorem 10. The group Γ is a complete lattice in $H = \{x \in [\prod_{\tau} \mathbb{R}]^+ \mid \operatorname{Tr}(x) = 0\} \cong \mathbb{R}^{r+s-1}$. Hence Γ is isomorphic to \mathbb{Z}^{r+s-1} .

Proof. Step 1: Show that Γ is a lattice, i.e. show that Γ is a discrete subgroup of H. More precisely: show that $\forall c > 0$:

$$\Gamma \cap \{(z_{\tau})_{\tau} \in \prod_{\tau} \mathbb{R} \mid |z_{\tau}| \le c\} =: Q_c$$

is finite.

Observe: $l^{-1}(Q_c) = \{(x_\tau)_\tau \in \prod_\tau \mathbb{C}^\times \mid e^{-c} \le |x_\tau| \le e^c\}$ since $l((x_\tau)_\tau) = (log|x_\tau|)_\tau$. $\Rightarrow l^{-1}(Q_c) \cap j(\mathcal{O}_K^\times)$ is finite, since $j(\mathcal{O}_K)$ is a lattice in $K_\mathbb{R}$. This shows the claim.

Step 2: Show that Γ is complete.

Idea: Use Lemma 7.3.

Hence: find $M \subseteq H$ as required in the lemma.

Equivalently: find $T \subseteq S$, s.t. $S = \bigcup_{\varepsilon \in \mathcal{O}_K^{\times}} T \cdot j(\varepsilon)$ and T is bounded.

Then we have for $M := l(T) : H = \bigcup_{\varepsilon \in \mathcal{O}_K^{\times}} M + l(j(\varepsilon)) = \bigcup_{\gamma \in \Gamma} M + \gamma$.

Furthermore: T bounded $\Rightarrow \exists C > 0 : \forall x \in T : \forall \tau : |x_{\tau}| < C$.

Since $\prod_{\tau} |x_{\tau}| = 1 \Rightarrow \exists c > 0 : \forall x \in T : \forall \tau : |x_{\tau}| > c \Rightarrow M = l(T)$ is bounded in H.

Step 3: Definition of T

- Choose sequence (c_{τ}) with $c_{\tau} > 0$, $c_{\bar{\tau}} = c_{\tau}$ and $C := \prod c_{\tau} > M_0 = (\frac{2}{\pi})^s \sqrt{d_K}$ and define $X := \{(x_{\tau})_{\tau} \mid |x_{\tau}| < c_{\tau}\}.$
- Choose $\alpha_1, \ldots, \alpha_N \in \mathcal{O}_K$ s.t. each $\alpha \in \mathcal{O}_K, \alpha \neq 0$ with $|\mathcal{N}_{K/\mathbb{Q}}(\alpha)| \leq C$ is associated to one α_i (by Prop 7.2. possible).

Define $T := S \cap \bigcup_{i=1}^n X \cdot j(\alpha_i)^{-1}$. Step 4: T does the job:

- (1) X is bounded $\Rightarrow Xj(\alpha_i)^{-1}$ is bounded $\Rightarrow T$ is bounded.
- (2) Observe: $y = (y_{\tau}) \in S \Rightarrow Xy = \{(x_{\tau}) \in K_{\mathbb{R}} \mid |x_{\tau}| < c'_{\tau}\} \text{ with } c'_{\tau} = c_{\tau} \cdot |y_{\tau}| \Rightarrow c'_{\tau} = c'_{\bar{\tau}} \text{ and } \prod_{\tau} c'_{\tau} = \prod_{\tau} c_{\tau} \underbrace{\prod_{j \in S} |y_{\tau}|}_{=1(y \in S)} = C.$ $\Rightarrow \exists \alpha \in \mathcal{O}_{K} \text{ with } |\tau(\alpha)| < c'_{\tau} \forall \tau \Rightarrow j(\alpha) \in Xy$
- (3) Show that: $S = \bigcup_{\varepsilon \in \mathcal{O}_K^{\times}} Tj(\varepsilon)$

Suppose $y \in S \stackrel{(2)}{\Rightarrow} \exists \alpha \in \mathcal{O}_K \setminus \{0\}$ with $j(\alpha) \in Xy^{-1} \Rightarrow j(\alpha) = xy^{-1}$ for some $x \in X$. Furthermore: $|\mathcal{N}_{K/\mathbb{Q}}(\alpha)| = |\mathcal{N}(xy^{-1})| = |\mathcal{N}(x)| < \prod_{\tau} c_{\tau} = C$. $\Rightarrow \alpha$ is associated to some α_i , hence $\alpha_i = \varepsilon \alpha$ with $\varepsilon \in \mathcal{O}_K^{\times}$. $\Rightarrow y = xj(\alpha)^{-1} = xj(\alpha_i^{-1}\varepsilon)$.

Finally: y and $j(\varepsilon) \in S \Rightarrow xj(\alpha_i)^{-1} \in S \cap Xj(\alpha_i)^{-1} \subseteq T \Rightarrow y \in Tj(\varepsilon)$.

Corollary 2.7.4. $\mathcal{O}_K^{\times} \cong \mathbb{Z}^{r+s-1} \times \mu(K)$.

Proof. We have the exact sequence

$$1 \to \mu(K) \to \mathcal{O}_K^{\times} \xrightarrow{l} \Gamma \cong \mathbb{Z}^{r+s-1} \to 1$$

Fix a basis $v_1, \ldots, v_t (t := r + s - 1)$ of Γ and preimages $\varepsilon_1, \ldots, \varepsilon_t$ in \mathcal{O}_k^{\times} . Let $A := < \varepsilon_1, \ldots, \varepsilon_t > \subseteq \mathcal{O}_K^{\times}$.

Then $\lambda_{|A}$ is an isomorphism and thus $A \cap \mu(K) = \{1\}$. In particular every $\alpha \in \mathcal{O}_K^{\times}$ decomposes in a unique way as $\alpha = \nu \cdot \mu$ with $\nu \in A$ and $\mu \in \mu(K)$.

2.8 Prime ideals in \mathcal{O}_K

Question: Describe the prime ideals in \mathcal{O}_K that "live above a prime ideal $\mathfrak{p} \subset \mathbb{Z}$ ". Consider the following, more general situation: Let

- O be a Dedekind domain,
- $K = \operatorname{Quot}(\mathcal{O})$,
- $L \mid K$ a finite and separable field extension,
- $\hat{\mathcal{O}}$ the integral closure of \mathcal{O} in L.

Definition 2.8.1. In the setting above, we say that a prime ideal $\hat{\mathfrak{p}} \in \hat{\mathcal{O}}$ lies above a prime ideal $\mathfrak{p} \in \mathcal{O} :\Leftrightarrow \hat{\mathfrak{p}} \cap \mathcal{O} = \mathfrak{p}$.

Proposition 2.8.2. $\hat{\mathcal{O}}$ is a Dedekind domain.

Proof. (1) $\hat{\mathcal{O}}$ is an integral domain and is integrally closed (see **Remark 2.1**).

(2) We show, that every prime ideal $0 \neq \hat{\mathfrak{p}} \in \hat{\mathcal{O}}$ is maximal: We know that $\mathfrak{p} := \hat{\mathfrak{p}} \cap \mathcal{O}$ is a prime ideal in \mathcal{O} .

(Claim:) $\mathfrak{p} \neq 0$. Choose $0 \neq x \in \hat{\mathfrak{p}}$. Since $\hat{\mathcal{O}}$ is integrally closed, $\exists a_0, \ldots, a_{n-1}$, such that

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0.$$

We may assume that the equation is minimal, i.e $a_0 \neq 0$. Then we have

$$0 \neq a_0 = -a_1 x - \dots - a_{n-1} x^{n-1} - x^n \in \hat{\mathfrak{p}} \cap \mathcal{O} = \mathfrak{p}.$$

Since \mathfrak{p} is a prime ideal of \mathcal{O} , it is also maximal, i.e \mathcal{O}/\mathfrak{p} is a field. Hence $\hat{\mathcal{O}}/\hat{\mathfrak{p}}$ is a finite extension of \mathcal{O}/\mathfrak{p} as an \mathcal{O}/\mathfrak{p} -algebra. Therefore \mathcal{O}/\mathfrak{p} a field $\Rightarrow \hat{\mathcal{O}}/\hat{\mathfrak{p}}$ is a field $\Rightarrow \hat{\mathfrak{p}}$ is a maximal ideal.

(3) $\hat{\mathcal{O}}$ is Noetherian: Choose a basis $\alpha_1, \ldots, \alpha_n$ of $L \mid K$ with $\alpha_1, \ldots, \alpha_n \in \hat{\mathcal{O}}$. Let $d := d(\alpha_1, \ldots, \alpha_n) \neq 0$ (**Proposition 2.6**). Recall that $d \cdot \hat{\mathcal{O}} \subset \mathcal{O}\alpha_1 + \cdots + \mathcal{O}\alpha_n$ (**Proposition 2.8**) and that therefore $\hat{\mathcal{O}} \subset \mathcal{O}\frac{\alpha_1}{d} + \cdots + \mathcal{O}\frac{\alpha_n}{d}$. Hence every ideal $I \subset \hat{\mathcal{O}}$ can be regarded as a submodule of the \mathcal{O} -module $\mathcal{O}\frac{\alpha_1}{d} + \cdots + \mathcal{O}\frac{\alpha_n}{d}$. But since this module is finitely generated and \mathcal{O} is Noetherian, I must be finitely generated as well.

Proposition 2.8.3. Let $\mathfrak{p} \subset \mathcal{O}$ be a prime ideal. Then $\mathfrak{p} \cdot \hat{\mathcal{O}} \subsetneq \hat{\mathcal{O}}$.

Proof. We may assume $\mathfrak{p} \neq 0$.

- (1) Choose $\pi \in \mathfrak{p} \setminus \mathfrak{p}^2$. Then we can write $\pi \cdot \mathcal{O} = \mathfrak{p} \cdot \mathfrak{u}$ with \mathfrak{p} , \mathfrak{u} coprime, i.e $\mathcal{O} = \mathfrak{p} + \mathfrak{u} \Rightarrow \exists s \in \mathfrak{u}, t \in \mathfrak{p} : 1 = s + t$. In particular, $s \notin \mathfrak{p}$ since $1 \notin \mathfrak{p}$ and $s \cdot \mathfrak{p} \subset \mathfrak{u} \cdot \mathfrak{p} = \pi \cdot \mathcal{O}$.
- (2) Suppose $\mathfrak{p}\hat{\mathcal{O}} = \hat{\mathcal{O}}$. Then $s \cdot \hat{\mathcal{O}} = s\mathfrak{p}\hat{\mathcal{O}} \subset \pi\hat{\mathcal{O}} \Rightarrow s = \pi x$ with some $x \in \hat{\mathcal{O}} \cap K = \mathcal{O} \Rightarrow s \in \pi \mathcal{O} \subset \mathfrak{p}$, a contradiction.

Remark 2.8.4. Let $\mathfrak{p} \neq 0$ be a prime ideal in \mathcal{O} . Then:

- (i) $\mathfrak{p} \cdot \hat{\mathcal{O}} = \mathfrak{p}_1^{e_1} \cdot \dots \cdot \mathfrak{p}_r^{e_r}$ with $e_1, \dots, e_r \in \mathbb{N}$ and $\mathfrak{p}_1, \dots, \mathfrak{p}_r$ prime ideals in $\hat{\mathcal{O}}$.
- (ii) A prime ideal $\hat{\mathfrak{p}}$ in $\hat{\mathcal{O}}$ satisfies: $\hat{\mathfrak{p}} \cap \mathcal{O} = \mathfrak{p} \Leftrightarrow \hat{\mathfrak{p}} = \mathfrak{p}_i$ for some i.

Proof. (i) follows from **Proposition 8.2+8.3**.

(ii) " \Leftarrow ": $\mathfrak{p}\hat{\mathcal{O}} = \mathfrak{p}_1^{e_1} \cdot \dots \cdot \mathfrak{p}_r^{e_r} \Rightarrow \mathfrak{p}\mathcal{O} \subset \mathfrak{p}_i \Rightarrow \mathfrak{p} \subset \mathfrak{p}_i \cap \mathcal{O}$. We have $\mathfrak{p}_i \cap \mathcal{O} \neq 0$, $1 \notin \mathfrak{p}_i \cap \mathcal{O}$ and \mathfrak{p} is maximal, hence $\mathfrak{p} = \mathfrak{p}_i \cap \mathcal{O}$.

" \Rightarrow ": $\hat{\mathfrak{p}} \cap \mathcal{O} = \mathfrak{p} \Rightarrow \mathfrak{p}\hat{\mathcal{O}} \subset \hat{\mathfrak{p}} \Rightarrow \hat{\mathfrak{p}}$ divides $\mathfrak{p}\hat{\mathcal{O}}$.

Definition 2.8.5. Let $0 \neq \mathfrak{p}$ be a prime ideal in \mathcal{O} and $\mathfrak{p}\hat{\mathcal{O}} = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}$ the decomposition into prime ideals.

- (i) e_i is called **ramification index of** \mathfrak{p}_i .
 - \mathfrak{p}_i is called **unramified** : $\Leftrightarrow e_i = 1$.
 - \mathfrak{p} is called unramified, if all \mathfrak{p}_i are unramified.
 - \mathfrak{p} is called **totally ramified** : $\Leftrightarrow r = 1$.
- (ii) $f_i := \dim_K \hat{\mathcal{O}}/\mathfrak{p}_i$ with $K := \mathcal{O}/\mathfrak{p}$ is called **local degree** or **relative degree** of \mathfrak{p}_i .

Theorem 11. In the situation of **Definition 8.5**, we have the fundamental equation:

$$\sum_{i=1}^{r} e_i \cdot f_i = n \quad with \ n = [L : K]$$

Proof. We can write

$$\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}=igoplus_{i=1}^r\hat{\mathcal{O}}/\mathfrak{p}_i^{e_i}$$

by the Chinese Remainder Theorem. Let $k = \mathcal{O}/\mathfrak{p}$

- Step 1: We show, that $\dim_k \hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}} = n$. Choose a basis $\bar{\omega}_1, \ldots, \bar{\omega}_m$ of $\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}$ over k and choose preimages $\omega_1, \ldots, \omega_m$ in $\hat{\mathcal{O}}$. We will show, that $\omega_1, \ldots, \omega_m$ is a basis of $L \mid K$, i.e m = n, from which the claim follows.
 - (1) Suppose $\omega_1, \ldots, \omega_m$ are linearly dependant, i.e $\exists \alpha_1, \ldots, \alpha_m \in K$, not all zero and such that

$$\alpha_1 \omega_1 + \dots + \alpha_m \omega_m = 0. \tag{*}$$

Since $K = \operatorname{Quot}(\mathcal{O})$, we may choose $\alpha_1, \ldots, \alpha_m \in \mathcal{O}$, since we can just clear denominators. Consider the ideal $\alpha := \langle \alpha_1, \ldots, \alpha_m \rangle \subset \mathcal{O}$. $\mathfrak{p} \neq 0 \Rightarrow \alpha^{-1}\mathfrak{p} \subsetneq \alpha^{-1}$. Choose some $\alpha \in \alpha^{-1} \setminus \alpha^{-1}\mathfrak{p} \Rightarrow \alpha \cdot \alpha \not\subseteq \mathfrak{p} \Rightarrow \alpha\alpha_1, \ldots \alpha\alpha_m \in \mathcal{O}$, but not all lie in \mathfrak{p} .

- $\stackrel{(*)}{\Longrightarrow} \alpha \alpha_1 \omega_1 + \dots + \alpha \alpha_m \omega_m = 0 \mod \mathfrak{p}$ with at least one of the $\alpha \alpha_i \notin \mathfrak{p}$. Hence $\alpha \alpha_1 \bar{\omega}_1 + \dots + \alpha \alpha_m \bar{\omega}_m = 0$ with at least one $\alpha \alpha_i \neq 0$, which contradicts the assumption that $\bar{\omega}_1, \dots, \bar{\omega}_m$ is a basis.
- (2) Consider $M := \mathcal{O}\omega_1 + \cdots + \mathcal{O}\omega_m$ and $N := \hat{\mathcal{O}}/M$. Since $\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}} = K\bar{\omega}_1 + \cdots + K\bar{\omega}_m$, we have $\hat{\mathcal{O}} = M + \mathfrak{p}\hat{\mathcal{O}} \stackrel{\text{mod }M}{\Longrightarrow} N = \mathfrak{p}N$. The proof of **Proposition 8.2** implies, that $\hat{\mathcal{O}}$ and N are finitely generated as \mathcal{O} -modules. Choose generators $\bar{\alpha}_1, \ldots, \bar{\alpha}_s$ of N. $N = \mathfrak{p}N \Rightarrow \exists \alpha_{i,j} \in \mathfrak{p}$ with $\bar{\alpha}_i = \sum_{i=1}^s \alpha_{i,j}\bar{\alpha}_j$. Consider $A = (\alpha_{i,j})_{i,j=1}^s I$. Then

$$A \cdot \begin{pmatrix} \bar{\alpha}_1 \\ \vdots \\ \bar{\alpha}_s \end{pmatrix} = 0.$$

Furthermore, $d := \det(A) = (-1)^s \mod \mathfrak{p} \Rightarrow d \neq 0$. We now see

$$0 = A^{\#} A \begin{pmatrix} \bar{\alpha}_1 \\ \vdots \\ \bar{\alpha}_s \end{pmatrix} = d \cdot \begin{pmatrix} \bar{\alpha}_1 \\ \vdots \\ \bar{\alpha}_s \end{pmatrix} \Longrightarrow d \cdot N = 0,$$

hence $d \cdot \hat{\mathcal{O}} \subset M = \mathcal{O}\omega_1 + \dots + \mathcal{O}\omega_m$. Now, for some $\beta \in L$, we have $\beta = d \underbrace{\beta'}_{\in L} = d \cdot \frac{b}{a} = \frac{1}{a}db$, with $b \in \hat{\mathcal{O}}$ and $a \in \mathcal{O}$. Hence $\beta \in K\omega_1 + \dots + K\omega_m \Rightarrow m = n$

Step 2: We show, that $\dim_K \hat{\mathcal{O}}/\mathfrak{p}_i^{e_i} = e_i f_i$. Consider the chain

and $\omega_1, \ldots, \omega_m$ generate $L \mid K$.

$$\hat{\mathcal{O}}/\mathfrak{p}_i^{e_i} \supseteq \mathfrak{p}_i/\mathfrak{p}_i^{e_i} \supseteq \cdots \supseteq \mathfrak{p}_i^{e_i-1}/\mathfrak{p}_i^{e_i} \supseteq 0$$

as a chain of K-vector spaces. Choose an $\alpha \in \mathfrak{p}_i^j \setminus \mathfrak{p}_i^{j+1}$ and consider the homomorphism

$$\hat{\mathcal{O}} \longrightarrow \mathfrak{p}_i^j/\mathfrak{p}_i^{j+1}$$
 $a \longmapsto \alpha \cdot a$,

which is surjective with kernel \mathfrak{p}_i (since \mathfrak{p}_i^{j+1} is coprime to $\alpha \hat{\mathcal{O}}$). Therefore $\mathfrak{p}_i^j/\mathfrak{p}_i^{j+1} \cong \hat{\mathcal{O}}/\mathfrak{p}_i$ and we have

$$\dim_K \hat{\mathcal{O}}/\mathfrak{p}_i^{e_i} = \sum_{j=0}^{e_i-1} \dim_K \mathfrak{p}_i^j/\mathfrak{p}_i^{j+1} = e_i \cdot f_i$$

Next, we will examine the example of the Gaussian integers $\mathbb{Z}[i]$. By **Proposition 2.10**, $\mathbb{Z}[i]$ is the ring of integers $\hat{\mathcal{O}}$ of the field extension $\mathbb{Q}[i] \mid \mathbb{Q}$.

Reminder 2.8.6. (i) $\mathbb{Z}[i]$ is an euclidean ring $\Rightarrow \mathbb{Z}[i]$ is a PID $\Rightarrow \mathbb{Z}[i]$ is an UFD

(ii) In particular, all prime ideals $\mathfrak{p}=\langle \pi \rangle$ with π prime.

Remark 2.8.7. Let R be a domain, $a, b \in R$. Then $\langle a \rangle = \langle b \rangle \Leftrightarrow a$ and b are associated.

Proof. " \Rightarrow ": $\langle a \rangle = \langle b \rangle \Rightarrow \exists r, r' \in R : b = ra \text{ and } a = r'b \Rightarrow b = rr'b \Rightarrow (1 - rr')b = 0 \stackrel{R \text{ domain}}{\Rightarrow} r, r' \in R^{\times}.$

"
$$\Leftarrow$$
": $a = \epsilon b$ with $\epsilon \in R^{\times} \Rightarrow b = \epsilon^{-1} a \Rightarrow \langle a \rangle = \langle b \rangle$.

Remark 2.8.8. For $L = \mathbb{Q}[i]$ and $K = \mathbb{Q}$, we have

- (i) Gal $L \mid K = \{ id, (a + bi \mapsto a bi) \}$
- (ii) $\mathcal{N}_{L|K}(a+bi) = (a+bi) \cdot (a-bi) = a^2 + b^2$.
- (iii) Since $\mathbb{Z}[i]$ is a UFD, an element is prime \Leftrightarrow it is irreducible.
- (iv) $\mathbb{Z}[i]^{\times} = \{ \alpha \in \mathbb{Z}[i] \mid \mathcal{N}_{L|K}(\alpha) = 1 \} = \{1, -1, i, -i\}.$
- (v) For $\alpha = a + bi$, its associated elements are -a bi, ai b, -ai + b.

Proposition 2.8.9 (Theorem of Wilson). Let $p \in \mathbb{Z}$ be a prime nuber. Then:

- (i) $(p-1)! \equiv -1 \mod p$.
- (ii) If p = 4n + 1 with $n \in \mathbb{N}$, then $(2n)!^2 \equiv -1 \mod p$

Proof. (i) Since the statement is obvious for p=2, let p>2. Consider $X^{p-1}-1\in \mathbb{Z}/p\mathbb{Z}[x]$ Then $1,\ldots,p-1$ are all zeroes and

$$X^{p-1} - 1 = (x-1) \cdot (x-2) \cdot \dots \cdot (x-(p-1)) \in \mathbb{Z}/p\mathbb{Z}[X].$$

When we look at the constant term, we see that $-1 = (-1)^{p-1} \cdot (p-1)! = (p-1)!$

(ii) $(-1) \equiv (p-1)! \equiv (4n)! = 1 \cdot 2 \cdot \dots \cdot 2n \cdot (p-1) \cdot \dots \cdot (p-2n) \equiv (2n)! \cdot (-1)^{2n} \cdot (2n)! \equiv (2n)!^2 \mod p.$

Proposition 2.8.10. If p is a prime in \mathbb{Z} with $p \equiv 1 \mod 4$, then p is not a prime in $\mathbb{Z}[i]$.

Proof. Write p = 4n + 1. By the Theorem of Wilson, we have $X^2 \equiv -1 \mod p$ for x = (2n)!. Then $p|X^2 + 1 = (x+i)(x-i) \in \mathbb{Z}[i]$, but $\frac{x \pm i}{n} \notin \mathbb{Z}[i]$.

Proposition 2.8.11. Each prime element $\pi \in \mathbb{Z}[i]$ is associated to one of the following prime elements of $\mathbb{Z}[i]$:

- (1) $\pi = 1 + i$.
- (2) $\pi = a + bi$, with $a^2 + b^2 = p$ prime in \mathbb{Z} and $p \equiv 1 \mod 4$.
- (3) $\pi = p$ prime in \mathbb{Z} and $p \equiv 3 \mod 4$.

Proof. We proof the proposition in 3 steps.

- Step 1: If π is as in (1) or (2), then π is prime. Suppose $\pi = \alpha\beta$. Then $p = \mathcal{N}(\pi) = \mathcal{N}(\alpha) \cdot \mathcal{N}(\beta) \in \mathbb{Z}$, so either $\mathcal{N}(\alpha) = 1$ or $\mathcal{N}(\beta) = 1$, i.e α or β is a unit.
- Step 2: If π is as in (3), then π is a prime in \mathbb{Z} . Suppose $\pi = \alpha\beta \in \mathbb{Z}[i]$. Then $p^2 = \mathcal{N}(\pi) = \mathcal{N}(\alpha) \cdot \mathcal{N}(\beta)$. If $\alpha, \beta \notin \mathbb{Z}[i]^{\times}$, then $\mathcal{N}(\alpha) = \mathcal{N}(\beta) = p$. Write $\alpha = a + bi$. Then $p = \mathcal{N}(\alpha) = a^2 + b^2 \not\equiv 3 \mod 4$, since it is always $a^2 + b^2 \equiv 0, 1 \mod 4$, a contradiction.
- Step 3: We have now shown, that the elements (1) (3) are prime. Let now $\pi_0 \in \mathbb{Z}[i]$ be a prime element. We wil show, that π_0 is associated to one of the three elements above. Look at $\mathcal{N}(\pi_0) = p_1 \cdot \dots \cdot p_r$ with p_1, \dots, p_r primes in \mathbb{Z} . Since π_0 is prime, it divides $p := p_i$, $1 \le i \le r \Rightarrow \mathcal{N}(\pi_0)$ divides $\mathcal{N}(p) = p^2$, i.e $\mathcal{N}(\pi_0) = p$ or p^2 .
 - Case 1: $\mathcal{N}(\pi_0) = p$. if p = 2, then $\pi_0 \in \{1 + i, 1 i, -1 + i, -1 1\}$, i.e π_0 is associated to 1 + i. If p > 2, then $p = \mathcal{N}(\pi_0) = a^2 + b^2 \equiv 1 \mod 4 \Rightarrow \pi_0$ is associated to an element as in (2).
 - Cbse 2: $\mathcal{N}(\pi_0) = p^2 \Rightarrow \pi_0|p^2 \Rightarrow \pi_0|p \Rightarrow \frac{p}{\pi_0} \in \mathbb{Z}[i]$ and $\mathcal{N}(\frac{p}{\pi_0}) = \frac{\mathcal{N}(p)}{\mathcal{N}(\pi_0)} = \frac{p^2}{p^2} = 1$, i.e $\frac{p}{\pi_0}$ is a unit, hence π_0 is associated to p. By **Proposition 8.10**, $p \not\equiv 1 \mod 4$. Also $p \not\equiv 2$, since 2 = (1+i)(1-i) is not prime in $\mathbb{Z}[i]$. Hence $p \equiv 3 \mod 4$ and π_0 is associated to an element as in (3).

Corollary 2.8.12 (Fermat). (i) If p is prime then $p = a^2 + b^2 \Leftrightarrow p \not\equiv 3 \mod 4$

- (ii) $\forall n \in \mathbb{N} : n = a^2 + b^2 \Leftrightarrow \nu_p(n)$ is even for all primes $p \equiv 3 \mod 4$ ($\nu_p(n) = exponent \ of \ p \ in \ prime \ factorization \ of \ n \ over \mathbb{Z}$).
- *Proof.* (i) " \Rightarrow ": Same as in Step 2 of **8.11**" \Leftarrow ": If p=2, then 2=1+1. If $p\equiv \mod 4$, then by **Proposition 8.10**, $p=\alpha\beta\in\mathbb{Z}[i]$ with $\mathcal{N}(\alpha)=\mathcal{N}(\beta)=p$. Write $\alpha=a+bi$ and get $p=\mathcal{N}(\alpha)=a^2+b^2$.
- (ii) " \Rightarrow ": $n = a^2 + b^2 \Rightarrow n = \mathcal{N}(\alpha)$ with $\alpha = a + bi \in \mathbb{Z}[i]$. Write $\alpha = \epsilon \cdot \pi_1 \cdot \dots \cdot \pi_r \cdot \pi_r \cdot \dots \cdot \pi_{r+1} \cdot \dots \cdot \pi_{r+s}$ with π_1, \dots, π_r as in (3) and $\pi_{r+1}, \dots, \pi_{r+s}$ as in (1) or (2). Then $\mathcal{N}(\alpha) = \prod_{i=1}^r \mathcal{N}(\pi_i) = p_1^2 \cdot \dots \cdot p_r^2 \cdot p_{r+1} \cdot \dots \cdot p_{r+s}$ with $p_1, \dots, p_r \equiv 3 \mod 4$ and $p_{r+1}, \dots, p_{r+s} \not\equiv 3 \mod 4$.

 " \Leftarrow ": $n = p_1^2 \cdot \dots \cdot p_r^2 \cdot p_{r+1} \cdot \dots \cdot p_{r+s}$ as above. By (i), $p_j \not\equiv 3 \mod 4$ and hence $p_j = a_j^2 + b_j^2$ for $r+1 \le j \le r+s$. Define $\alpha := p_1 \cdot \dots \cdot p_r \cdot (a_{r+1} + ib_{r+1}) \cdot \dots \cdot (a_{r+s} + ib_{r+s})$. Then $\mathcal{N}(\alpha) = n$.

Corollary 2.8.13. The prime ideals \mathfrak{p}_i in $\mathbb{Z}[i]$ that lie over a prime ideal $\mathfrak{p} = \langle p \rangle$ in \mathbb{Z} are obtained as follows:

(i) $p=2 \Rightarrow \langle 2 \rangle \mathbb{Z}[i] = \langle 1+i \rangle \langle 1-i \rangle = \langle 1+i \rangle^2$. Hence r=1, $e_1=2$, $f_1=1$.

(ii)
$$p \equiv 1 \mod 4 \stackrel{p=a^2+b^2}{\Longrightarrow} \langle p \rangle \mathbb{Z}[i] = \langle a+bi \rangle \langle a-bi \rangle$$
. Hence $r=2$, $e_1=e_2=1$, $f_1=f_2=1$.

(iii) $p \equiv 3 \mod 4 \Rightarrow \langle p \rangle \mathbb{Z}[i]$ is a prime ideal. Hence r = 1, $e_1 = 1$, $f_1 = 2$.

. \square

GOAL: Describe prime ideals explicitely for all simple extensions $L = K[\Theta]$ with $\Theta \in \hat{\mathcal{O}}$. **Caution:** Before, we had $\mathbb{Z}[i] = \hat{\mathcal{O}}$. In general, we might have $\hat{\mathcal{O}}' := \mathcal{O}[\Theta] \subsetneq \hat{\mathcal{O}}$. **Idea:** Take the largest ideal of $\hat{\mathcal{O}}$ which also lies in $\hat{\mathcal{O}}'$.

Definition 2.8.14. The set $\mathcal{F} := \left\{ \alpha \in \hat{\mathcal{O}} \mid \alpha \hat{\mathcal{O}} \subset \hat{\mathcal{O}}' \right\}$ is called **conductor**.

Example 2.8.15. If $\hat{\mathcal{O}} = \mathbb{Z}[i]$ and $\Theta = i$, then $\hat{\mathcal{O}}' = \mathcal{O}[\Theta] \Rightarrow \mathcal{F} = \hat{\mathcal{O}}$.

Proposition 2.8.16. In the situation above, let $f(X) := f_{\Theta}(X)$ be the minimal polynomial of Θ . Let \mathfrak{p} be a prime ideal in \mathcal{O} and $K := \mathcal{O}/\mathfrak{p}$. consider the image \bar{f} of f in K[X] and let $\bar{f} = \bar{f}_1^{e_1} \cdot \cdots \cdot \bar{f}_f^{e_r}$ be the prime factorization in K[X]. Choose preimages $f_1, \ldots, f_r \in \mathcal{O}[X]$. Then:

If \mathfrak{p} is coprime to \mathcal{F} , i.e $\mathfrak{p} + \mathcal{F} \cap \mathcal{O} = \mathcal{O}$, then the ideals in $\hat{\mathcal{O}}$ which lie over \mathfrak{p} are given as follows: $\mathfrak{p}_i := \mathfrak{p} \hat{\mathcal{O}} + f_i(\Theta) \hat{\mathcal{O}}$, $1 \leq i \leq r$ and the local degree of \mathfrak{p}_i is equal to $\deg(\bar{f}_i)$.

Proposition 2.8.17. Let R and S be rings and $\varphi \colon R \to S$ a ring homomorphism.

- (i) If \mathfrak{q} is a prime ideal in S then $\varphi^{-1}(\mathfrak{q})$ is a prime ideal in R.
- (ii) If φ is surjective and \mathfrak{p} is a prime ideal in R with $\ker \varphi \subset \mathfrak{p}$ then $\varphi(\mathfrak{p})$ is a prime ideal in S.

Proof. "(i)" Preimages of ideals are ideals. Suppose $ab \in \varphi^{-1}(\mathfrak{q})$. Then $\varphi(a)\varphi(b) \in \mathfrak{q}$ such that, without loss of generality, $\varphi(a) \in \mathfrak{q}$ and hence $a \in \varphi^{-1}(\mathfrak{q})$.

"(ii)" Images of ideals under surjective homomorphisms are ideals. Let $\overline{a}\overline{b} \in \varphi(\mathfrak{p})$. Since φ is surjective there are $a, b \in R$ with $\varphi(a) = \overline{a}, \varphi(b) = \overline{b}$ and there is $c \in \mathfrak{p}$ with $\varphi(c) = \overline{a}\overline{b}$. Hence

$$ab - c \in \ker \varphi \subset \mathfrak{p}$$

such that $ab \in \mathfrak{p}$. We may assume that $a \in \mathfrak{p}$ and conclude $\overline{a} = \varphi(a) \in \varphi(\mathfrak{p})$.

Definition 2.8.18. In the situation of Proposition 2.8.17 we define:

- (i) $\operatorname{Spec}(R) = \{ \mathfrak{p} \subset R \mid \mathfrak{p} \text{ is a prime ideal} \}$
- (ii) $\operatorname{Spec}_S(R) = \{ \mathfrak{p} \subset \operatorname{Spec}(R) \mid \mathfrak{p} \supset \ker \varphi \}$

Corollary 2.8.19. In the situation of Proposition 2.8.17 we have:

(i) If $\varphi \colon R \to S$ is a homomorphism of rings then φ induces a map

$$\varphi^* \colon \operatorname{Spec}(S) \to \operatorname{Spec}_S(R), \, \mathfrak{p} \mapsto \varphi^{-1}(\mathfrak{p}).$$

(ii) If φ is surjective then φ^* is a bijection with inverse map

$$\varphi_* \colon \operatorname{Spec}_S(R) \to \operatorname{Spec}(S), \, \mathfrak{p} \mapsto \varphi(\mathfrak{p}).$$

Reminder 2.8.20. For $a \in \mathbb{Z}$ and p prime in \mathbb{Z} the **Legendre symbol** is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 0, & p \text{ divides } a, \\ 1, & \text{there is an } x \in \mathbb{Z}/p\mathbb{Z} \text{ such that } x^2 \equiv a \mod p, \\ -1, & \text{else.} \end{cases}$$

Example 2.8.21. Apply Proposition 8.15 for quadratic number fields, D square-free:

$$\hat{\mathcal{O}} = \mathbb{Z}[\theta] \subset \mathbb{Q}(\sqrt{D})$$

$$\uparrow \qquad \qquad \uparrow$$

$$\mathcal{O} = \mathbb{Z} \subset \mathbb{Q}$$

Reminder 2.8.22. If $D \not\equiv 1 \mod 4$ then we can choose $\theta = \sqrt{D}$ and obtain $f = f_{\theta} = X^2 - D$ and $d(f_{\theta}) = 4D$.

If $D \equiv 1 \mod 4$ then we can choose $\theta = \frac{1}{2}(1 + \sqrt{D})$ and obtain $f = f_{\theta} = X^2 - X - \frac{D-1}{4}$ and $d(f_{\theta}) = D$.

Consider $p \in \mathbb{Z}$ prime and define $\overline{f} = \overline{f}_{\theta}$ as the image of f in $\mathbb{Z}/p\mathbb{Z}[X]$.

Observe: \overline{f} has two equal zeroes in $\mathbb{Z}/p\mathbb{Z}$ iff d(f) = 0 in $\mathbb{Z}/p\mathbb{Z}$ iff

$$\begin{cases} \left(\frac{4D}{p}\right) = 0, & D \not\equiv 1 \mod 4, \\ \left(\frac{D}{p}\right) = 0, & D \equiv 1 \mod 4. \end{cases}$$

 \overline{f} has two different zeroes in $\mathbb{Z}/p\mathbb{Z}$ iff d(f) is a non-zero square in $\mathbb{Z}/p\mathbb{Z}$ iff

$$\begin{cases} \left(\frac{4D}{p}\right) = 1, & D \not\equiv 1 \mod 4, \\ \left(\frac{D}{p}\right) = 1, & D \equiv 1 \mod 4 \end{cases} \Leftrightarrow \left(\frac{D}{p}\right) = 1.$$

 \overline{f} has no zeroes in $\mathbb{Z}/p\mathbb{Z}$ iff $\left(\frac{D}{p}\right) = -1$.

Proposition 8.15 then implies in the first case that $p\hat{\mathcal{O}} = \hat{\mathcal{P}}_1^2$ with

$$\mathcal{P}_1 = \begin{cases} p\hat{\mathcal{O}} + \theta\hat{\mathcal{O}}, & D \not\equiv 1 \mod 4, \\ p\hat{\mathcal{O}} + \left(\theta - \frac{1}{2}\right)\hat{\mathcal{O}}, & D \equiv 1 \mod 4, \end{cases}$$

In the second case we obtain $p\hat{\mathcal{O}} = \hat{\mathcal{P}}_1\hat{\mathcal{P}}_2$ with $\hat{\mathcal{P}}_{1,2} = p\hat{\mathcal{O}} + (\theta \pm x)\hat{\mathcal{O}}$, where $x^2 \equiv D \mod p$.

In the third case $p\hat{P}$ is a prime ideal.

Example. Let $D \not\equiv 1 \mod p$, $\left(\frac{4D}{p}\right) = 0$ and $p \neq 2$. Consider the map $\pi \colon \hat{\mathcal{O}} \to \hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}$ with $\hat{\mathcal{O}} = \mathbb{Z}[\sqrt{D}]$ and $\mathfrak{p}\hat{\mathcal{O}} = \left\{a + b\sqrt{D} \mid p|a \text{ and } p|b\right\}$ and thus

$$\hat{\mathcal{O}}/p\hat{\mathcal{O}} \cong \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}[\sqrt{D}] \cong (\mathbb{Z}/p\mathbb{Z}[X])/(X^2 - D),$$

$$\theta \leftrightarrow \qquad \left(0, \sqrt{D}\right) \leftrightarrow \qquad \overline{X}.$$

We have

$$\hat{\mathcal{P}}_1 = \pi^{-1}((\overline{\theta})) = \left\{ a + b\sqrt{D} \mid p \text{ divides } a \right\}.$$

Example. Let $D \not\equiv 1 \mod p$ and $\left(\frac{4D}{p}\right) = 1$. Then there exists $x \in \mathbb{Z}$ with $x^2 \equiv D \mod p$ and $p \not\mid x$. Here, $\pi : \hat{\mathcal{O}} \to \hat{\mathcal{O}}/p\hat{\mathcal{O}}$ is the map

$$\mathbb{Z}[\sqrt{D}] \to \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}[\sqrt{D}]$$

$$\cong (\mathbb{Z}/p\mathbb{Z}[X])/(X-x)(X+x)$$

$$\cong (\mathbb{Z}/p\mathbb{Z}[X])/(X-x) \oplus (\mathbb{Z}/p\mathbb{Z}[X])/(X+x)$$

given by

$$a + b\sqrt{D} \mapsto \overline{a} + \overline{b}\sqrt{D} \cong \overline{a} + \overline{b}X \cong (\overline{a} + \overline{b}x, \overline{a} - \overline{b}x).$$

Recall that $\overline{f}(X) = (X - x)(X + x) = \overline{f}_1 \overline{f}_2$ with $\overline{f}_1, \overline{f}_2 \in \mathbb{Z}[X]$ and

$$f_1(\theta) = \theta - x = \sqrt{D} - x = -x + \sqrt{D}$$

with $\pi(f_1(\theta)) \leftrightarrow (0, -2\overline{x})$. Observe that for $\overline{x} \in \mathbb{F}_p^x$ we have the correspondence

$$(\pi(f_1(\theta))) \leftrightarrow \mathcal{O} \oplus (\mathbb{Z}/p\mathbb{Z}[X])/(X+p) \cong \mathcal{O} \oplus \mathbb{Z}/p\mathbb{Z}$$

and hence $\hat{\mathcal{P}}_1 = \pi^{-1}(\mathcal{O} \oplus \mathbb{Z}/p\mathbb{Z})$.

Proof of Prop. 8.16. Consider the map $\pi: \hat{\mathcal{O}} \to \hat{\mathcal{O}}/p\hat{\mathcal{O}}$. By Corollary 8.19 we have a bijection

$$\left\{\hat{\mathcal{P}}\,|\,\hat{\mathcal{P}}\text{ prime ideal in }\hat{\mathcal{O}}\text{ with }\hat{\mathcal{P}}\cap\mathcal{O}=\mathfrak{p}\right\}\leftrightarrow\left\{\mathfrak{q}\,|\,\mathfrak{q}\text{ prime ideal in }\hat{\mathcal{O}}/p\hat{\mathcal{O}}\right\}.$$

We show:

$$\hat{\mathcal{O}}/p\hat{\mathcal{O}} \cong \hat{\mathcal{O}}'/p\hat{\mathcal{O}}' \cong k[X]/(\overline{f}),$$

where $k = \hat{\mathcal{O}}/p\hat{\mathcal{O}}$ and $\hat{\mathcal{O}}' = \mathcal{O}[\theta]$.

Step 1: $\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}\cong\hat{\mathcal{O}}'/\mathfrak{p}\hat{\mathcal{O}}'$

Consider the homomorphism $\varphi \colon \hat{\mathcal{O}}' \to \hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}$ induced by the inclusion $\hat{\mathcal{O}}' \hookrightarrow \hat{\mathcal{O}}$.

"(1)" φ is surjective: If $\mathfrak{p} + (\mathbb{F} \cap \mathcal{O}) = \mathcal{O}$ then $\mathfrak{p}\hat{\mathcal{O}} + \mathbb{F} = \hat{\mathcal{O}}$ and hence $\mathfrak{p}\hat{\mathcal{O}} + \hat{\mathcal{O}}' = \hat{\mathcal{O}}$ (multiply both sides of first equation with $\hat{\mathcal{O}}$).

"(2)" $\ker \varphi = \mathfrak{p}\hat{\mathcal{O}}'$: " \supset " Clear. " \subset " We have $\ker \varphi = \hat{\mathcal{O}}' \cap \mathfrak{p}\hat{\mathcal{O}}$. Use $\mathfrak{p} + (\mathbb{F} \cap \mathcal{O}) = \mathcal{O}$ and write 1 = p + a with $p \in \mathfrak{p}$ and $a \in \mathbb{F} \cap \mathcal{O}$. For $x \in \hat{\mathcal{O}}' \cap \mathfrak{p}\hat{\mathcal{O}}$ we have:

$$x = 1 \cdot x = (p+a)x = px + ax \in \mathfrak{p}\hat{\mathcal{O}}'.$$

Step 2: $\hat{\mathcal{O}}'/\mathfrak{p}\hat{\mathcal{O}}' \cong k[X]/(\overline{f})$

Recall that $\hat{\mathcal{O}}' = \mathcal{O}[\theta] \cong \mathcal{O}[X]/(f)$. Consider $\Psi \colon \mathcal{O}[X] \to k[X]/(\overline{f})$, which is surjective. It holds that $\ker \Psi = (\mathfrak{p}, f)$ and hence Ψ induces an isomorphism $\hat{\mathcal{O}}'/\mathfrak{p}\hat{\mathcal{O}}' \to k[X]/(\overline{f})$.

Step 3: Consider now $R = k[X]/(\overline{f})$ and determine $\operatorname{Spec}(R)$.

"(1)" Recall the prime decomposition $\overline{f} = \overline{f}_1^{e_1} \cdots \overline{f}_r^{e_r}$ in k[X] and consider the projection $k[X] \twoheadrightarrow k[X]/(\overline{f})$. By Corollary 8.19 we have the correspondence

$$\operatorname{Spec}(R) \leftrightarrow \{\mathfrak{p} \text{ prime ideal in } k[X] \mid \overline{f} \in \mathfrak{p}\}\$$

and hence $\operatorname{Spec}(R) = \{(\overline{f}_i) \mid i = 1, \dots, r\}.$

"(2)" Notice that

$$R/\left(\overline{f}_i\right) = \left(k[X]/(\overline{f})\right)\left(\overline{f}_i\right) \cong k[X]/(\overline{f_i})$$

is a k-vector space of dimension $deg(\overline{f_i})$ such that

$$[R/(\overline{f_i}):k] = \deg(\overline{f_i}).$$

"(3)" In R we have

$$\bigcap_{i=1}^{r} \left(\overline{f}_i\right)^{e_i} = \left(\overline{f}\right) = 0.$$

Step 4: Use the isomorphism

$$k[X]/(\overline{f}) \to \hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}, g \mapsto g(\theta)$$

and obtain from Step 3 with $\mathcal{P}_i = (f_i(\theta))$ that:

(i) Spec
$$\left(\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}\right) = \left\{\mathcal{P}_i \mid i = 1, \dots, r\right\}$$

(ii)
$$\left[\left(\hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}\right)/\mathcal{P}_i \colon k\right] = \deg(\overline{f_i})$$

(iii)
$$\bigcap_{i=1}^r \mathcal{P}_i^{e_i} = 0$$

Step 5: Take preimages in $\hat{\mathcal{O}}$ via $\hat{\mathcal{O}} \to \hat{\mathcal{O}}/\mathfrak{p}\hat{\mathcal{O}}$ and observe that (iii) implies $\bigcap_{i=1}^r \hat{\mathcal{P}}_i^{e_i} \subset \mathfrak{p}\hat{\mathcal{O}}$ such that $\mathfrak{p}\hat{\mathcal{O}}$ divides $\bigcap_{i=1}^r \hat{\mathcal{P}}_i^{e_i}$. Furthermore,

$$[L:K] = n = \deg(f) = \sum_{i=1}^{r} e_i f_i$$

such that by Theorem 11, $\mathfrak{p}\hat{\mathcal{O}} = \prod_{i=1}^r \hat{\mathcal{P}}_i^{e_i}$.

$$\hat{\mathcal{O}}\mathcal{P} = \hat{\mathcal{P}}_{1}^{e_{1}} \cdot \dots \cdot \hat{\mathcal{P}}_{r}^{e_{r}} \qquad \begin{array}{cccc} \hat{\mathcal{P}} & \subseteq & \hat{\mathcal{O}} & \subseteq & L \\ \uparrow & & \uparrow & & \uparrow \\ \mathcal{P} & \subseteq & \mathcal{O} & \subseteq & K \end{array}$$

Proposition 2.8.23. There are only finitely many prime ideals $\hat{\mathcal{P}}$ in $\hat{\mathcal{O}}$ which are ramified over $\mathcal{P} = \hat{\mathcal{P}} \cap \mathcal{O}$.

Proof. Choose primitive element θ of L|K in $\hat{\mathcal{O}}$. Let $f_{\theta} \in \mathcal{O}[X]$ be the minimal polynomial of θ and $d := \operatorname{discr}(f_{\theta}) = \operatorname{discr}(1, \theta, \dots, \theta^{n-1}) = \prod_{i < j} (\theta_i - \theta_j)^2 \in \mathcal{O}$. Here θ_i, θ_j are the zeroes of f_{θ} in the algebraic closure.

Claim: If \mathcal{P} is a prime ideal in \mathcal{O} s.t.

- \mathcal{P} is coprime to (d) and
- \mathcal{P} is coprime to $\mathbb{F} \cap \mathcal{O}$

then \mathcal{P} is unramified, i.e. all $\hat{\mathcal{P}}$ lying above \mathcal{P} are unramified.

From the claim we obtain that there are only finitely many \mathcal{P} which allow ramification. Proof of the claim: Write $\hat{\mathcal{O}}\mathcal{P} = \hat{\mathcal{P}}_1^{e_1} \cdot \cdots \cdot \hat{\mathcal{P}}_r^{e_r}$. Consider $\bar{f}_{\theta} \in \mathcal{O}/\mathcal{P}[X]$. As in Prop. 8.15

$$\bar{f}_{\theta} = \bar{f}_1^{e_1} \cdot \ldots \cdot \bar{f}_r^{e_r} \quad (\star)$$

a prime decomposition. (d) and \mathcal{P} are coprime $\Rightarrow \bar{d} = \text{image of } d \text{ in } \mathcal{O}/\mathcal{P} \neq 0 \Rightarrow \bar{f}_{\theta}$ has only single zeroes in an algebraic closure of $\mathcal{O}/\mathcal{P} \stackrel{(\star)}{\Rightarrow} e_1 = \cdots = e_r = 1$

Definition 2.8.24.

- \mathcal{P} is said to <u>split completly</u> or to be <u>totally split</u>: \iff $e_i = f_i = 1 \ \forall i \in \underline{r}$.
- \mathcal{P} is said to be indecomposed, nonsplit or totally ramified: $\iff r = 1$.

2.9 Hilbert's theorem of ramification

<u>Idea:</u> Consider Galois extensions $L|K \to \text{life}$ becomes much nicer. Same setting as in 8. Suppose further that L|K normal and consider G = Gal(L|K).

Remark 2.9.1. i) $\hat{\mathcal{P}}$ prime ideals in $\hat{\mathcal{O}}$ with $\mathcal{P} := \hat{\mathcal{P}} \cap \mathcal{O}$. For $\sigma \in \operatorname{Gal}(L|K)$ we have $\sigma(\hat{\mathcal{P}})$ is a prime ideal in $\hat{\mathcal{O}}$ above \mathcal{P} .

ii) $\operatorname{Gal}(L|K)$ acts transitively on the set of prime ideals $\hat{\mathcal{P}}$ in $\hat{\mathcal{O}}$ over \mathcal{P} .

Proof. i) Recall from Rem 2.1 iii) that $\sigma(\hat{\mathcal{O}}) = \hat{\mathcal{O}}$ $\Rightarrow \sigma(\hat{\mathcal{P}})$ is again a prime ideal in $\hat{\mathcal{O}}$. $\sigma(\hat{\mathcal{P}}) \cap \mathcal{O} = \sigma(\hat{\mathcal{P}} \cap \mathcal{O}) = \sigma(\mathcal{P}) = \mathcal{P}$ $\Rightarrow \sigma(\hat{\mathcal{P}})$ lies above \mathcal{P} .

ii) follows from i) that we have such an action. Let $\hat{\mathcal{P}}$ and $\hat{\mathcal{P}}'$ be prime ideals above $\mathcal{P} = \hat{\mathcal{P}} \cap \mathcal{O} = \hat{\mathcal{P}}' \cap \mathcal{O}$. Assume that $\hat{\mathcal{P}}$ and $\hat{\mathcal{P}}'$ are not in the same G-orbit. Hence $\hat{\mathcal{P}}'$ and $\sigma(\hat{\mathcal{P}})$ are coprime for each $\sigma \in G$.

$$\Rightarrow \hat{\mathcal{P}}'$$
 is coprime to $\sigma_1(\hat{\mathcal{P}}) \cdot \ldots \cdot \sigma_n(\hat{\mathcal{P}})$, where $G = {\sigma_1, \ldots, \sigma_n}$.

 $\operatorname{CRT} \Rightarrow \exists x \in \hat{\mathcal{O}} \text{ with } x \equiv 0 \mod \hat{\mathcal{P}}' \text{ and } x \equiv 1 \mod \sigma(\hat{\mathcal{P}}) \text{ for all } \sigma \in G.$

In particular: $\mathcal{N}_{L|K}(x) = \prod_{\sigma \in G} \sigma(x) \in \hat{\mathcal{P}}' \cap \mathcal{O} = \mathcal{P}$

Also: $\forall \sigma \in G : x \notin \sigma(\hat{\mathcal{P}}) \Rightarrow \forall \sigma \in G : \sigma(x) \notin \mathcal{P}$

$$\Rightarrow \mathcal{N}_{L|K}(x) = \prod_{\sigma \in G} \sigma(x) \notin \hat{\mathcal{P}} \cap \mathcal{O} = \mathcal{P}$$

Definition 2.9.2. Let $\hat{\mathcal{P}}$ be a prime ideal of $\hat{\mathcal{O}}$ above \mathcal{P} .

- i) $G_{\hat{\mathcal{P}}} := \operatorname{Stab}_{G}(\hat{\mathcal{P}}) = \{ \sigma \in G \mid \sigma(\hat{\mathcal{P}}) = \hat{\mathcal{P}} \}$ is called <u>decomposition group</u> ("Zerlegungsgruppe")
- ii) $Z_{\hat{\mathcal{P}}} := \{x \in L \mid \sigma(x) = x \text{ for all } \sigma \in G_{\hat{\mathcal{P}}}\}$ is called <u>decomposition field</u> ("Zerlegungskörper")

Remark 2.9.3. Let $\hat{\mathcal{P}}_0$ be a prime ideal which lies above \mathcal{P} .

i)
$$G/G_{\hat{\mathcal{P}}_0} := \{ gG_{\hat{\mathcal{P}}_0} \mid g \in G \} \stackrel{\text{1:1}}{\leftrightarrow} \{ \hat{\mathcal{P}} \mid \hat{\mathcal{P}} \text{ lies above } \mathcal{P} \}$$

ii)
$$G_{\hat{\mathcal{P}}_0} = \{1\} \iff [G:G_{\hat{\mathcal{P}}_0}] = [L:K] = n$$
 $(r = [G:G_{\hat{\mathcal{P}}_0}]) \iff Z_{\hat{\mathcal{P}}_0} = L$

iii)
$$G_{\hat{\mathcal{P}}_0} = G \iff [G:G_{\hat{\mathcal{P}}_0}] = 1 \iff \mathcal{P}$$
 is nonsplit $\iff Z_{\hat{\mathcal{P}}_0} = K$

iv)
$$G_{\sigma(\hat{\mathcal{P}}_0)} = \sigma \circ G_{\hat{\mathcal{P}}_0} \circ \sigma^{-1}$$

Proof. Follows from Prop 9.1 + definitions + group actions.

Remark 2.9.4. Suppose $\mathcal{P}\hat{\mathcal{O}} = \hat{\mathcal{P}}_1^{e_1} \cdot \dots \cdot \hat{\mathcal{P}}_r^{e_r}$ with local degrees $f_i = [\hat{\mathcal{O}}/\hat{\mathcal{P}}_i : \mathcal{O}/\mathcal{P}]$ Then $e_1 = \dots = e_r$ and $f_1 = \dots = f_r$.

Proof. Prop.
$$9.1 \Rightarrow \exists \sigma_i \in G \text{ s.t. } \sigma_i(\hat{\mathcal{P}}_1) = \hat{\mathcal{P}}_i$$

 $\Rightarrow \hat{\mathcal{O}}/\hat{\mathcal{P}}_1 \cong \hat{\mathcal{O}}/\hat{\mathcal{P}}_i$, $a \mod \hat{\mathcal{P}}_1 \mapsto \sigma_i(a) \mod \hat{\mathcal{P}}_i$ as $k = \mathcal{O}/\mathcal{P}$ -vectorspaces $\Rightarrow f_1 = f_i$ and $\hat{\mathcal{P}}_i^k \supseteq \mathcal{P}\hat{\mathcal{O}} \iff \hat{\mathcal{P}}_i^k = (\sigma_i(\hat{\mathcal{P}}_1))^k \supseteq \mathcal{P}\hat{\mathcal{O}} = \sigma_i(\mathcal{P}\hat{\mathcal{O}}) \Rightarrow e_i = e_1$.

Consider the field extensions $K \subseteq Z_{\hat{\mathcal{P}}} \subseteq L$. We have:

Observe $\hat{\mathcal{O}} \cap Z_{\hat{\mathcal{P}}}$ is the integral closure of \mathcal{O} in $Z_{\hat{\mathcal{P}}}$.

Proposition 2.9.5. Suppose $\mathcal{P}\hat{\mathcal{O}} = (\prod_{\sigma} \sigma(\hat{\mathcal{P}}))^e$ with local degree f.

- i) $\hat{\mathcal{P}}_Z$ is non-split in $\hat{\mathcal{O}}$, i.e. $\hat{\mathcal{P}}$ is the only prime ideal above $\hat{\mathcal{P}}_Z$.
- ii) $\hat{\mathcal{P}}/\hat{\mathcal{P}}_Z$ has ramification index e and local degree f.
- iii) $\hat{\mathcal{P}}_Z/\mathcal{P}$ has ramification index 1 and local degree 1, i.e. $\hat{\mathcal{P}}_Z/\mathcal{P}$ is totally split.

i) $Z_{\hat{\mathcal{D}}} = L^{G_{\hat{\mathcal{D}}}} \Rightarrow \operatorname{Gal}(L/Z_{\hat{\mathcal{D}}}) = G_{\hat{\mathcal{D}}}$. Now statement follows from 9.3 iii)

ii)+iii) Let $e' = \text{ramification index of } \hat{\mathcal{P}}/\hat{\mathcal{P}}_Z$ and $e'' = \text{ramification index of } \hat{\mathcal{P}}_Z/\mathcal{P}$ Let $f' = \text{local degree of } \hat{\mathcal{P}}/\hat{\mathcal{P}}_Z$ and $f'' = \text{local degree of } \hat{\mathcal{P}}_Z/\mathcal{P}$. Hence: $\hat{\mathcal{P}}_Z\hat{\mathcal{O}} = \hat{\mathcal{P}}^{e'}$ and $\mathcal{P}(\hat{\mathcal{O}} \cap Z_{\hat{\mathcal{P}}}) = \hat{\mathcal{P}}_Z^{e''} \cdot \ldots \Rightarrow \mathcal{P}\hat{\mathcal{O}} = (\hat{\mathcal{P}}^{e'})^{e''} \cdot \ldots$

Also we have for the field extensions

$$\hat{\mathcal{O}}/\hat{\mathcal{P}} \underbrace{\supseteq}_{f'} \hat{\mathcal{O}} \cap Z_{\hat{\mathcal{P}}}/\hat{\mathcal{P}}_Z \underbrace{\supseteq}_{f''} \mathcal{O}/\mathcal{P}$$

 $\Rightarrow f = f' \cdot f''$ (******).

Thm. 11 \Rightarrow 1) For $L|K: n = [L:K] = e \cdot f \cdot r$ with $r = [G:G_{\hat{\mathcal{P}}}] \quad (n = |G|)$.

2) For $L|Z_{\hat{\mathcal{P}}}: |G_{\hat{\mathcal{P}}}| = \frac{n}{r} \stackrel{Thm.11}{=} e' \cdot f' \cdot \underbrace{r'}_{=1(\text{by i})} \stackrel{1)}{=} e \cdot f \Rightarrow e' = e, f' = f \text{ and}$

 $e'' = 1 = f'' \Rightarrow \text{Claim}.$

Definition 2.9.6. In our general setting we call $\kappa(\hat{\mathcal{P}}) := \hat{\mathcal{O}}/\hat{\mathcal{P}}$ the residue class field ("Restklassenkörper").

Remark 2.9.7. Prop 9.5 iii) $\Rightarrow [\kappa(\hat{\mathcal{P}}_Z) : \kappa(\mathcal{P})] = 1$ hence, $\kappa(\hat{\mathcal{P}}_Z) = \kappa(\mathcal{P}) = \mathcal{O}/\mathcal{P} =: k$.

Proposition 2.9.8. If $\hat{\mathcal{P}}/\mathcal{P}$ is non-split, i.e. $\hat{\mathcal{P}}$ is the only prime ideal over \mathcal{P} , then we obtain the following surjective group homomorphism: $\varphi: G = \operatorname{Gal}(L/K) \to \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P}))$.

Proof. Step 1: φ is well-defined:

Since $\hat{\mathcal{P}}/\mathcal{P}$ is totally split, we have $\sigma(\hat{\mathcal{P}}) = \hat{\mathcal{P}}$. Therefore $\sigma \in \operatorname{Gal}(L/K)$ induces an automorphism of $\kappa(\hat{\mathcal{P}})$.

Step 2: $\kappa(\mathcal{P})/\kappa(P)$ is a normal extension:

Denote $k := \kappa(\mathcal{P})$ and $\kappa := \kappa(\mathcal{P})$. Consider $\bar{\theta} \in \kappa$ and let $\bar{q} \in k[X]$ be its minimal polynomial over k. Have to show that \bar{q} decomposes into linear factors over κ . Let θ be a preimage of $\bar{\theta}$ in \mathcal{O} and $f \in \mathcal{O}[X]$ its minimal polynomial $\Rightarrow f(\bar{\theta}) = 0$. Let \bar{f} be the image of f in k[X], hence $\bar{f}(\bar{\theta}) = 0$ and thus \bar{q} divides \bar{f} .

Furthermore: L/K is normal $\Rightarrow f$ decomposes into linear factors overs $L \Rightarrow$ also over $\hat{\mathcal{O}}$, since Galois-Automorphisms preserve $\hat{\mathcal{O}} \Rightarrow \bar{f}$ decomposes into linear factors over $\kappa = \mathcal{O}/\mathcal{P} \Rightarrow \bar{g}$ does so.

Step 3: φ is surjective:

Let
$$\bar{\sigma} \in \operatorname{Aut}(\kappa/k)$$
. Consider the field extension: $k \subseteq E \subseteq \kappa$ (*)

purely inseparable $\Rightarrow \operatorname{Aut}(\kappa/E) = \{1\}$

with E is the maximal separable field extension.

 $\Rightarrow \exists \bar{\theta} \in E \text{ with } E = k(\bar{\theta}) \text{ and } \theta \in \hat{\mathcal{O}} \text{ a preimage. Let again } \bar{g} \in k[X] \text{ be the minimal }$ polynomial of $\bar{\theta}$ and f, \bar{f} as in Step 2.

 $\Rightarrow \bar{\sigma}(\bar{\theta})$ is a zero of \bar{g} , hence $(X - \bar{\sigma}(\bar{\theta}))$ divides \bar{g} and hence \bar{f} since \bar{g} , f and \bar{f} decompose into linear factors.

 $\Rightarrow \exists \theta' \in \hat{\mathcal{O}} \text{ with } \theta' \mod \hat{\mathcal{P}} = \bar{\sigma}(\bar{\theta}) \text{ and } \theta' \text{ is a zero of } f \text{ (there is a linear factor } (X - \theta')$ of f which is send to the factor $(X - \bar{\sigma}(\bar{\theta}))$ of \bar{f}

 $\Rightarrow \exists \sigma \in \operatorname{Gal}(L/K) \text{ with } \sigma(\theta) = \theta' \text{ and thus } \sigma(\theta) \equiv \theta' \equiv \bar{\sigma}(\bar{\theta}) \mod \hat{\mathcal{P}}.$

$$\Rightarrow \varphi(\sigma)_{|E} = \bar{\sigma}_{|E} \stackrel{(\star)}{\Rightarrow} \varphi(\sigma) = \bar{\sigma}$$

Remark 2.9.9. Observe that for Step 2 we did not need that $\hat{\mathcal{P}}/\mathcal{P}$ is non-split. Hence we have in the general situation of this section:

$$L/K$$
 normal $\Rightarrow \kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})$ is normal.

Proposition 2.9.10. In general, we obtain the following surjective grouphomom.:

$$G_{\hat{\mathcal{P}}} \to \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})) , \ \sigma \mapsto (a \mod \hat{\mathcal{P}} \mapsto \sigma(a) \mod \hat{\mathcal{P}})$$

Proof. Idea: Consider $K \subseteq Z_{\hat{\mathcal{P}}} \subseteq L$. Remark $9.7 \Rightarrow \kappa(\hat{\mathcal{P}}_Z) = k := \kappa(\mathcal{P})$

Lemma 9.8
$$\Rightarrow \underbrace{\operatorname{Gal}(L/Z_{\hat{\mathcal{P}}})}_{=G_{\hat{\mathcal{P}}}} \xrightarrow{\longrightarrow} \underbrace{\operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\hat{\mathcal{P}}_Z))}_{\operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P}))} \Rightarrow \operatorname{Claim}.$$

Definition 2.9.11 ("Trägheitsgruppe"/"Trägheitskörper"). Let $\varphi : G_{\hat{\mathcal{P}}} \to \operatorname{Gal}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P}))$ be the surjective group homom. from Prop. 9.10.

- i) $I_{\hat{\mathcal{D}}} := \ker(\varphi)$ is called inertia group.
- ii) $T_{\hat{\mathcal{D}}} := \{x \in L \mid \sigma(x) = x \ \forall \sigma \in I_{\hat{\mathcal{D}}} \}$ is called inertia field.

Remark 2.9.12. i) We obtain the following chain of field extensions:

$$K \subseteq Z_{\hat{\mathcal{P}}} \subseteq T_{\hat{\mathcal{P}}} \subseteq L$$

ii) We have the following short exact sequence:

$$1 \to I_{\hat{\mathcal{P}}} \to G_{\hat{\mathcal{P}}} \to \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})) \to 1$$

Proposition 2.9.13. In the situation of 9.12 we have:

- i) $T_{\hat{\mathcal{P}}}/Z_{\hat{\mathcal{P}}}$ is normal and $\operatorname{Gal}(T_{\hat{\mathcal{P}}}/Z_{\hat{\mathcal{P}}}) \cong \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P}))$. Furthermore: $Gal(L/T_{\hat{\mathcal{D}}}) \cong I_{\hat{\mathcal{D}}}$.
- ii) If $\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})$ is separable, then: $\#I_{\hat{\mathcal{P}}} = [L:T_{\hat{\mathcal{P}}}] = e$ and $[G_{\hat{\mathcal{P}}}:I_{\hat{\mathcal{P}}}] = [T_{\hat{\mathcal{P}}}:Z_{\hat{\mathcal{P}}}] = f$

- iii) If $\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})$ is separable and $\hat{\mathcal{P}}_T := \hat{\mathcal{P}} \cap T_{\hat{\mathcal{P}}}$, then we have
 - The ramification index of \hat{P} over \hat{P}_T is e and the local degree is 1.
 - The ramification index of $\hat{\mathcal{P}}_T$ over $\hat{\mathcal{P}}_Z$ is 1 and the local degree is f.

Proof. i) • $I_{\hat{\mathcal{P}}}$ is normal in $G_{\hat{\mathcal{P}}}$.

- $\operatorname{Gal}(T_{\hat{\mathcal{P}}}/Z_{\hat{\mathcal{P}}}) \cong G_{\hat{\mathcal{P}}}/I_{\hat{\mathcal{P}}} \stackrel{Rem9.12}{\cong} \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P}))$
- $T_{\hat{\mathcal{D}}}$ is the fixed field of $I_{\hat{\mathcal{D}}}$

ii)
$$\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})$$
 is separable $\Rightarrow \#\operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\mathcal{P})) = \underbrace{[\kappa(\hat{\mathcal{P}})}_{\hat{\mathcal{O}}/\hat{\mathcal{P}}} : \underbrace{\kappa(\mathcal{P})}_{\mathcal{O}/\mathcal{P}} \stackrel{9.12}{=} \underbrace{\#G_{\hat{\mathcal{P}}}}_{e\cdot f} / \#I_{\hat{\mathcal{P}}} = f$

- iii) We will show below hat $\kappa(\hat{\mathcal{P}}_T) = \kappa(\hat{\mathcal{P}})$ This implies:
 - local degree of $\hat{\mathcal{P}}_T/\hat{\mathcal{P}}$ is 1
 - ramification index of $\hat{\mathcal{P}}_T/\hat{\mathcal{P}}$ is e since $[L/T_{\hat{\mathcal{P}}}] = \#I_{\hat{\mathcal{P}}} = e$
 - multiplicativity of e and $f \Rightarrow \operatorname{rest} \checkmark$

Show that $\kappa(\hat{\mathcal{P}}_T) = \kappa(\hat{\mathcal{P}})$:

Use Lemma $9.8 \Rightarrow$ Obtain surjective group homomorphism

$$I_{\hat{\mathcal{P}}} = \operatorname{Gal}(L/T_{\hat{\mathcal{P}}}) \stackrel{\varphi}{\twoheadrightarrow} \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\hat{\mathcal{P}}_T))$$

By definition of $I_{\hat{\mathcal{P}}}$ the image of this homomorphism is trivial.

$$\Rightarrow \operatorname{Aut}(\kappa(\hat{\mathcal{P}})/\kappa(\hat{\mathcal{P}}_T)) = \{1\} \stackrel{\text{normal+separable}}{\Longrightarrow} [\kappa(\hat{\mathcal{P}}) : \kappa(\hat{\mathcal{P}}_T)] = 1.$$

2.10 Cyclotomic Fields

In this section, we have

• $\zeta = \zeta_n$ =primitive n-th root of unity

- $L = \mathbb{Q}(\zeta)$
- $\mathcal{O} = \text{ring of integers in } L$
- $d = \varphi(n) = [L : \mathbb{Q}].$

GOAL:

- (1) Show, that $\mathcal{O} = \mathbb{Z}[\zeta]$
- (2) Describe the prime ideals in \mathcal{O}

Lemma 2.10.1. Suppose $n = l^k$ with l prime and hence $d = \varphi(n) = l^k - l^{k-1} = l^{k-1}(l-1)$.

- (i) The minimal polynomial $\phi(X)$ of ζ is $\phi(X) = X^{(l-1)l^{k-1}} + X^{(l-2)l^{k-1}} + \cdots + X^{l^{k-1}} + 1$.
- (ii) We have $l = \prod_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (1 \zeta^g)$.
- (iii) $1 \zeta^g = \epsilon_q (1 \zeta)$ with $\epsilon_q \in \mathcal{O}^{\times}$ for $g \not\equiv 0 \mod l$.
- (iv) $l = \epsilon (1 \zeta)^d$ with $\epsilon \in \mathcal{O}^{\times}$.
- (v) $\mathcal{N}_{L|\mathbb{Q}}(1-\zeta)=l$.

Proof. (i)

$$\phi(x) = \prod_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta^g) = \frac{\prod_{g \in (\mathbb{Z}/n\mathbb{Z})} (X - \zeta^g)}{\prod_{g \in (\mathbb{Z}/l^{k-1}\mathbb{Z})} (X - \zeta^{gl})} = \frac{X^{l^k} - 1}{X^{l^{k-1}} - 1}$$
$$= X^{(l-1)l^{k-1}} + X^{(l-2)l^{k-1}} + \dots + X^{l^{k-1}} + 1$$

- (ii) Follows from (i) with X = 1.
- (iii) Observe

$$\epsilon_g := \frac{1 - \zeta^g}{1 - \zeta} = 1 + \zeta + \dots + \zeta^{g-1} \in \mathcal{O}$$

and

$$\frac{1}{\epsilon_q} = \frac{1 - \zeta}{1 - \zeta^g}$$

Since $g \not\equiv 0 \mod l$, we can choose some $g' \in \mathbb{Z}$ with $gg' \equiv 1 \mod l^k$. Hence

$$\frac{1}{\epsilon_g} = \frac{1 - \zeta^{gg'}}{1 - \zeta^g} = 1 + \zeta^g + \dots + (\zeta^g)^{g'-1} \in \mathcal{O}.$$

(iv) Follows from (ii) and (iii) with $\epsilon := \prod_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} \epsilon_g$.

(v) Follows from (ii).

Proposition 2.10.2. Suppose again that $n = l^k$ with l prime. Set $\lambda := 1 - \zeta$. Then

- (i) $\Pi := (\lambda)$ is a prime ideal of local degree 1.
- (ii) $l \cdot \mathcal{O} = \Pi^d$. In particular, $l\mathcal{O}$ is non-split.

Proof. 10.1 (iv) $\Rightarrow l\mathcal{O} = (\lambda)^d$. Let $l\mathcal{O} = \mathfrak{p}_1^{e_1} \cdot \cdots \cdot \mathfrak{p}_r^{e_r}$ be the decomposition into prime ideals. By Theorem 11, $d = e_1 f_1 + \cdots + e_r f_r$, where $f_i = \text{local degree of } \mathfrak{p}_i$, hence the above is already the prime decomposition and the local degree is 1.

Remark 2.10.3. 10.1 and 10.2 generalize Lemma I.25.

Proposition 2.10.4. Let $n = l^k$, l prime. The basis $1, \zeta, \zeta^2, \ldots, \zeta^{d-1}$ of $\mathbb{Q}(\zeta)|\mathbb{Q}$ has the discriminant $d(1, \zeta, \ldots, \zeta^{d-1}) = (-1)^a l^s$ with $s = l^{k-1}(kl - k - 1)$ and $a \in \{0, 1\}$.

Proof. Step 1: Show $d(1, \ldots, \zeta^{d-1}) = \pm \mathcal{N}(\phi'(\zeta))$. Let $\zeta = \overline{\zeta_1, \zeta_2, \ldots, \zeta_d}$ be the conjugates of ζ .

Remark 2.4
$$\Rightarrow d(1, \dots \zeta^{d-1}) = d(\phi) = \prod_{1 \le i < j \le d} (\zeta_i - \zeta_j) = \pm \prod_{\substack{i,j=1 \ i \ne j}}^d (\zeta_i - \zeta_j).$$

Observe

$$\phi(X) = \prod_{i=1}^{d} (X - \zeta_i) \Rightarrow \phi'(X) = \sum_{m=1}^{d} \prod_{\substack{i=1\\i \neq m}}^{d} (X - \zeta_i)$$

and therefore

$$\phi'(\zeta_j) = \prod_{\substack{i=1\\i\neq j}}^d (\zeta_j - \zeta_i).$$

Hence we have $d(1, \ldots \zeta^{d-1}) = \pm \prod_{j=1}^d \phi'(\zeta_j) = \pm \mathcal{N}(\phi'(\zeta)).$

Step 2: Calculate $\mathcal{N}(\phi'(\zeta))$ partially.

Observe: $(X^{l^{k-1}}-1)\phi(X)=X^{l^k}-1$. Differentiating yields $(X^{l^{k-1}}-1)\phi'(X)+\phi(X)(\ldots)=l^kX^{l^k-1}$. Plugging in $X=\zeta$ gives $(\zeta^{l^{k-1}}-1)\phi'(\zeta)=l^k\zeta^{l^k-1}=l^k\zeta^{-1}$. Set $\xi:=\zeta^{l^{k-1}}$. Then ξ is a root of unity of order l and we have $\mathcal{N}(\phi'(\zeta))=\frac{(l^k)^d}{\mathcal{N}(\xi-1)}$.

Step 3: Calculate $\mathcal{N}(\xi - 1)$.

Lemma
$$10.1 \Rightarrow \mathcal{N}_{\mathbb{Q}(\xi)|\mathbb{Q}}(\xi - 1) = l$$
. Hence $\mathcal{N}_{L|\mathbb{Q}}(\xi - 1) = \left(\mathcal{N}_{\mathbb{Q}(\xi)|\mathbb{Q}}(\xi - 1)\right)^{l^{k-1}} = l^{l^{k-1}}$. Now combining all 3 steps yields: $d(1, \dots, \zeta^{d-1}) = \pm \frac{l^{k^d}}{l^{l^{k-1}}} = \pm l^s$.

Proposition 2.10.5. Let n be some natural number. Then $1, \zeta, \ldots \zeta^{d-1}$ is an integral basis of \mathcal{O} .

Proof. Step 1: Show the claim for $n = l^k$ with l prime.

- (1) Proposition $2.7 \Rightarrow \pm l^s = d(1, \dots, \zeta^{d-1}) \Rightarrow l^s \cdot \mathcal{O} \subset \mathbb{Z} + \dots + \mathbb{Z}\zeta^{d-1} = \mathbb{Z}[\zeta] \subset \mathcal{O}.$
- (2) Consider $\lambda := (1 \zeta)$. Proposition 10.2 \Rightarrow local degree of (λ) is $1 \Rightarrow \mathcal{O}/(\lambda) = \mathbb{Z}/(l)$ $\Rightarrow \mathcal{O} = \mathbb{Z} + \lambda \mathcal{O}$ (every element of $\mathcal{O} \mod (\lambda)$ has an representant in \mathbb{Z}) $\Rightarrow \mathcal{O} = \mathbb{Z}[\zeta] + \lambda \mathcal{O} \implies (*)$.

Multiplying with λ yields $\lambda \mathcal{O} = \lambda \mathbb{Z}[\zeta] + \lambda^2 \mathcal{O} \stackrel{(*)}{\Rightarrow} \mathcal{O} = \mathbb{Z}[\zeta] + \lambda^2 \mathcal{O} \Rightarrow \dots$ $\Rightarrow \mathcal{O} = \mathbb{Z}[\zeta] + \lambda^t \mathcal{O} \ \forall t \geq 1.$

(3) Plug in $t = s\varphi(l^k)$ and by Proposition 10.2 $l\mathcal{O} = \lambda^{\varphi(l^k)}\mathcal{O}$: $\mathcal{O} = \mathbb{Z}[\zeta] + \lambda^{s\varphi(l^k)}\mathcal{O} = \mathbb{Z}[\zeta] + l^s\mathcal{O} = \mathbb{Z}[\zeta]$.

Step 2: Generalize to arbitrary $n = l_1^{k_1} \cdot \ldots \cdot l_r^{k_r}$.

Consider $\zeta_i := \zeta^{n_i}$ with $n_i := \frac{n}{l_i^{k_i}}$, a primitive $l_i^{k_i}$ -th root of unity. Then $\operatorname{ord}(\zeta_1), \ldots, \operatorname{ord}(\zeta_r)$ are relatively prime. Hence:

- (1) $\mathbb{Q}(\zeta) = \mathbb{Q}(\zeta_1) \cdot \ldots \cdot \mathbb{Q}(\zeta_r)$.
- (2) $\mathbb{Q}(\zeta_1) \cdot \ldots \cdot \mathbb{Q}(\zeta_{i-1}) \cap \mathbb{Q}(\zeta_i) = \mathbb{Q}.$
- (3) Apply Proposition 2.13 to $\mathbb{Q}(\zeta_1) \cdot \ldots \cdot \mathbb{Q}(\zeta_r)$ successively. We obtain, that

$$\{\zeta_1^{j_1}, \dots, \zeta_r^{j_r} \mid 0 \le j_i \le d_i - 1\}$$

with $d_i = \varphi(l_i^{k_i})$ is an integral basis of $\mathbb{Q}(\zeta_1, \dots, \zeta_r) = \mathbb{Q}(\zeta)$. Hence $\mathcal{O} = \mathbb{Z}[\zeta] = \mathbb{Z} + \mathbb{Z}\zeta + \dots + \mathbb{Z}\zeta^{d-1}$, since all ζ_i 's are powers of ζ .

Lemma 2.10.6. Let p be a prime which does not divide n. Then we have in $\mathcal{O} = \mathbb{Z}[\zeta]$:

$$p\mathcal{O} = \hat{\mathcal{P}}_1 \cdot \ldots \cdot \hat{\mathcal{P}}_r$$

with $\hat{\mathcal{P}}_i$ different prime ideals in \mathcal{O} and the local degree of each $\hat{\mathcal{P}}_i$ is $f = \min(\{k \in \mathbb{N} \mid p^k \equiv 1 \mod n\}).$

Proof. Idea: Use Proposition 8.15.

Observe: Since $\mathcal{O} = \mathbb{Z}[\zeta]$, Proposition 8.15 can be applied to all prime ideals of \mathcal{O} .

- Consider $f(X) = \phi_n(X)$.
- Take the image $h(X) := f(X) \in \mathbb{F}_p[X]$ and decompose it as $h(X) = h_1^{e_1} \cdot \ldots \cdot h_r^{e_r}$ into irreducible factors over \mathbb{F}_p .

Then we have: $p\mathcal{O} = \mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_r^{e_r}$ with prime ideals \mathfrak{p}_i of local degree $f_i := \deg h_i$.

Step 1: Show $e_1 = \cdots = e_r = 1$.

Consider $q(X) := X^n - 1 \in \mathbb{F}_p[X]$. Since $p \not| n, q'(X) = nX^{n-1}$ and q have no common zeroes in $\mathbb{F}_p \Rightarrow q(X)$ has no multiple zeroes in $\overline{\mathbb{F}}_p \Rightarrow$ The same must be true for $h(x) \Rightarrow e_1 = \cdots = e_r = 1$.

Step 2: Show: $f_1 = f_2 = \dots = f_r = k_0 := \min\{k \mid p^k \equiv 1 \mod n\}$

Recall: $f(X) = \phi_n(X), h(X) := \text{image in } \mathbb{F}_p[X] = h_1^{l_1}(X) \cdot \ldots \cdot h_r^{l_r}(X)$

Consider the field $L := \mathbb{F}_{p^{k_0}}$ with p^{k_0} elements as field extension of \mathbb{F}_p . Write $p^{k_0} - 1 = nw$ with $w \in \mathbb{N}$.

Observe: $L^{\times} = \langle a \rangle$ with $\operatorname{ord}(a) = nw \Rightarrow \bar{\zeta} = a^w$ is a primitive *n*-th root of unity and *h* decomposes into linear factors over *L*.

Furthermore: $L = \mathbb{F}_p(\bar{\zeta})$ by minimality of k_0 , since $\#\mathbb{F}_p[\bar{\zeta}] = p^M$ for some M and $\operatorname{ord}(\bar{\zeta}) = n$ divides $p^M - 1 \Rightarrow k_0 = M$.

Let $\bar{f}_1(X)$ be the minimal polynomial of $\bar{\zeta}$ over $\mathbb{F}_p \Rightarrow$

- \bar{f}_1 is an irreducible divisor of $h(X) \Rightarrow$ w.l.o.g. $\bar{f}_1 = h_1$
- $f_1 = \deg(h_1) = \deg(\bar{f}_1) = [L : \mathbb{F}_p] = k_0 \Rightarrow f_1 = k_0$

Proposition 2.10.7 (CHARACTERISATION OF PRIME IDEALS). Let $n = p_1^{k_1} \cdot \dots \cdot p_r^{k_r}$ be the prime decomposition of n and p some arbitrary prime number.

Then $p\mathcal{O} = (\hat{\mathcal{P}}_1 \cdots \hat{\mathcal{P}}_r)^{e_p}$ with $e_p = \varphi(p^{k_p})$ is the factorisation into prime ideals and each prime ideal $\hat{\mathcal{P}}_i$ is of local degree $f_p := \min\{k \in \mathbb{N} \mid p^k \equiv 1 \mod \frac{n}{n^{k_p}}\}$

Proof. Again: Use Prop. 8.15 which applies to <u>all</u> prime ideals in \mathcal{O}

 $\Rightarrow \phi_n(X) \in \mathbb{Z}[X]$ min. polynomial of $\zeta \Rightarrow \bar{\phi}_n(X) \in \mathbb{F}_p[X]$ image in $\mathbb{F}_p[X]$.

Denote $n = mp^a$ with gcd(p, m) = 1, i.e. $a = k_p$.

Remember $U_m^{\times} = \{ \text{primitive } m - th \text{ roots of unity } \} \cong ((\mathbb{Z}/m\mathbb{Z})^{\times}, \cdot) \quad (\zeta^k \leftrightarrow k).$ Use the isomorphism:

$$\Rightarrow \phi_n(X) = \prod_{g \in (\mathbb{Z}/n\mathbb{Z})^{\times}} (X - \zeta^g) = \prod_{\substack{\xi \in U_m^{\times}, \\ \eta \in U_{p^a}^{\times}}} (X - \xi \eta)$$

Step 1: Show that $\phi_n(X) \equiv \phi_m(X)^{\varphi(p^a)} \mod p$

(1) Observe: $X^{p^a} - 1 \equiv (X - 1)^{p^a} \mod p$. For prime ideal $\hat{\mathcal{P}}$ over (p):

$$X^{p^a} - 1 \equiv (X - 1)^{p^a} \mod \hat{\mathcal{P}}$$

Let $\eta_1, \ldots, \eta_{\varphi(p^a)}$ be the primitve p^a -th roots of unity. $0 = \eta_j^{p^a} - 1 \equiv (\eta_j - 1)^{p^a} \mod \hat{\mathcal{P}} \Rightarrow \eta_j \equiv 1 \mod \hat{\mathcal{P}}.$
$$\phi_n(X) = \prod_{\substack{\xi \in U_m^{\times}, \\ \eta \in U_{p^a}^{\times}}} (X - \xi \eta) = \prod_{g \in (\mathbb{Z}/m\mathbb{Z})^{\times}} (X - \xi)^{\varphi(p^a)} = \phi_m^{\varphi(p^a)} \mod \hat{\mathcal{P}}$$

$$\Rightarrow \phi_n(X) \equiv \phi_m(X)^{\varphi(p^a)} \mod p$$

Step 2: Use Lemma 10.5:

Proof of Lemma 10.5 \Rightarrow exponents of $\phi_m(X) \mod p$ are all 1 \Rightarrow all exponents of $\phi_n(X) \mod p$ are $\varphi(p^a)$. The local degree of the prime factors are by Lemma 10.5 $f = \min\{k \in \mathbb{N} \mid p^k \equiv 1 \mod \underbrace{m}_{=n/p^a}\}$.

Corollary 2.10.8. i) p is ramified in $\mathbb{Q}(\zeta) \iff n \equiv 0 \mod p$ and we have \underline{not} $p = 2 = \gcd(4, n)$.

ii) $p \neq 2$. Then p is totally split $\iff p \equiv 1 \mod n$.

 $\begin{array}{ll} \textit{Proof.} & \text{i) Prop. } 10.6 \Rightarrow p \text{ is unramified} \iff e = 1 \stackrel{\textit{Prop10.6}}{\iff} \varphi(p^{k_p}) = 1 \iff k_p = 0 \text{ or } \\ p^{k_p} - p^{k_p-1} = p^{k_p-1}(p-1) = 1 \iff k_p = 0 \text{ or } (p=2 \text{ and } 2 = \gcd(4,n)). \end{array}$

ii)
$$p \neq 2 : e = 1 \iff k_p = 0 \iff p \not | n$$

 $f = 1 \iff \min\{k \mid p^k \equiv 1 \mod \frac{n}{p^k}\} = 1 \iff p \equiv 1 \mod n.$

Remark 2.10.9. We have now in particular proved I.2.2.

3 Fermat's theorem for regular primes

3.1 The proof using a lemma of Kummer

Setting: K-number field, $\mathcal{O} = \text{ring of integers}$ Recall: $\mathcal{J}_K := \text{group of fractional ideals}$, $\mathcal{P}_K = \text{subgroup of principal ideals}$, $\operatorname{Cl}_K = \mathcal{J}_K/\mathcal{P}_K$, $h_K = \#\operatorname{Cl}_K$

Definition 3.1.1. A prime $p \in \mathbb{N}$ is $\underline{\text{regular}} : \iff h_K$ is not divisible by p where $K = \mathbb{Q}(\zeta_p)$.

Remark 3.1.2. Suppose p regular. Then we have for each ideal I in $\mathcal{O} = \text{ring of integers}$ in K:

If I^p is a principal ideal, then I is a principal ideal.

Proof. $p \nmid h_K \Rightarrow \text{No element of } Cl_K \text{ has order } p.$

Recall: (Lemma I.2.11) $x, y \in \mathbb{Z}, \gcd(x, y) = 1, x + y \not\equiv 0 \mod p$ $\Rightarrow x + \zeta^i y$ and $x + \zeta^j y$ are coprime, if $i \not\equiv j \mod p$.

Theorem 12. If p is a regular prime, then Fermat's theorem holds, i.e.

$$x^p + y^p = z^p \text{ in } \mathbb{Z} \Rightarrow xyz = 0.$$

Recall:

(1)
$$x^p + y^p = (x + y)(x + \zeta y) \cdot \dots \cdot (x + \zeta^{p-1} y)$$
 in $\mathbb{Z}[\zeta]$.

- (2) $\lambda = 1 \zeta$ is prime in $\mathcal{O} = \mathbb{Z}[\zeta]$
- (3) $1 \zeta \sim 1 \zeta^g$ for all $g \not\equiv 0 \mod p$

Lemma 3.1.3. Suppose that $x, y \in \mathcal{O}$ with x, y are coprime and p does not divide y. Then we have: either the ideals $(x + \zeta^i y)$ (with $i \in \{0, \dots, p-1\}$) are relatively prime or they all have $(1 - \zeta)$ as a common factor and the ideals $(\frac{x + \zeta \cdot y}{1 - \zeta})$ (with $i \in \{0, \dots, p-1\}$) are relatively prime.

Proof. Use from the proof of Lemma I.2.11: Let $0 \le j < i \le p-1$. $A := (x + \zeta \cdot y, x + \zeta^j \cdot y) \Rightarrow$

$$(1) \ (1-\zeta) \cdot y \in A$$

- (2) $(1-\zeta)\cdot x\in A$
- (3) $1 \zeta \in A$ and thus $p \in A$
- $(4) x + y \in A$

Suppose q is a prime ideal with $q|(x+\zeta^i\cdot y)$ and $q|(x+\zeta^j\cdot y)$.

Hence $q \supseteq A \stackrel{(3)}{\ni} 1 - \zeta \stackrel{\text{1-}\zeta \text{ prime}}{\Longrightarrow} q = (1 - \zeta).$

Hence $q = (1 - \zeta)$ is the only prime ideal which possibly divides $(x + \zeta^i \cdot y), (x + \zeta^j \cdot y)$.

Show: If $q = (1 - \zeta)$ divides $(x + \zeta^i \cdot y)$, then it divides $(x + \zeta^{i+1} \cdot y)$.

This follows from the following calculation: $x + \zeta^{i+1} \cdot y = x + \zeta^i \cdot y + \zeta^i(\zeta - 1) \cdot y$

Finally show: If $(1 - \zeta)$ divides $x + \zeta^i \cdot y$, then the $(\frac{x + \zeta^i \cdot y}{1 - \zeta})$ and $(\frac{x + \zeta^j \cdot y}{1 - \zeta})$ are coprime for $0 \le j < i \le p - 1$.

Recall: $p \not| y \Rightarrow 1 - \zeta \not| y$

Proof: $x + \zeta^i \cdot y - (x + \zeta^j \cdot y) = \zeta^j \cdot y \underbrace{(\zeta^{i-j} - 1)}_{\sim (\zeta - 1)} \Rightarrow \frac{x + \zeta^i \cdot y}{1 - \zeta} - \frac{x + \zeta^h \cdot y}{1 - \zeta} \sim y.$

But $(1 - \zeta) \not| y \Rightarrow \text{Claim}$.

Proposition 3.1.4 ("First Case"). Suppose p is a regular prime with $p \geq 5$ such that $x^p + y^p = z^p$ and $p \nmid xyz$ with $x, y, z \in \mathbb{Z}$. Then xyz = 0.

Proof. Without loss of generality we may assume that x, y, z are coprime. Proceed as in the proof of Theorem 1:

- $z^p = x^p + y^p = (x+y)(x+\zeta y)\cdots(x+\zeta^{p-1}y)$
- Since $p \not\mid z$ we have $x + y \equiv x^p + y^p = z^p \equiv z \not\equiv 0 \mod p$ by little Fermat's theorem such that $p \not\mid x + y$.
- Lemma 2.11 implies that $(x+y), (x+\zeta y), \ldots, (x+\zeta^{p-1}y)$ are pairwise coprime such that the first bullet point together with the regularity of p and Remark 1.2 yields $(x+\zeta^i y)=(\alpha_i)^p$ for some $\alpha_i\in\mathcal{O}$. Thus $x+\zeta^i y=\varepsilon_i\alpha_i^p$ with $\varepsilon_i\in\mathcal{O}^\times$.

Now continue as in the proof of Theorem 1.

Recall (Example 1.2.8). If $\alpha \in \mathcal{O}$ then $\alpha = a_0 + a_1\zeta + \cdots + a_{p-2}\zeta^{p-2}$ such that

$$\alpha^p \equiv \underbrace{a_0^p + a_1^p + \dots + a_{p-2}^p}_{=a \in \mathbb{Z}} \mod p.$$

Lemma 3.1.5 (Kummer's Lemma II). Suppose p is a regular prime. If $u \in \mathcal{O}^{\times}$ such that $u \equiv a \mod p$ for some $a \in \mathbb{Z}$ then there is an $\alpha \in \mathcal{O}^{\times}$ such that $u = \alpha^p$.

The proof is hard and needs more theory.

Remark 3.1.6. $1, 1 - \zeta, \dots, (1 - \zeta)^{p-2}$ is an integral basis of $\mathcal{O} = \mathbb{Z}[\zeta]$.

Proof. $1, \zeta, \ldots, \zeta^{p-2}$ is an integral basis by Proposition 2.10.4. Furthermore,

$$\zeta^{i} = (1 - (1 - \zeta))^{i} = \sum_{k=0}^{i} {k \choose i} (-1)^{i-k} (1 - \zeta)^{i-k}$$

and $1-\zeta$ has minimal polynomial of degree lesser equal than p-1.

Lemma 3.1.7. If $\alpha \in \mathcal{O} \setminus (1 - \zeta)$ then there exist $a \in \mathbb{Z}$ and $l \in \mathbb{N}_0$ such that

$$\zeta^l \alpha \equiv a \mod (1 - \zeta)^2$$
.

Proof. We do the proof in multiple steps:

(1) Since $1, 1 - \zeta, \dots, (1 - \zeta)^{p-2}$ is an integral basis of \mathcal{O} we have

$$\alpha \equiv a_0 1 + a_1 (1 - \zeta) \mod (1 - \zeta)^2$$

with $a_0, a_1 \in \mathbb{Z}$.

- (2) Since $1 \zeta \not | \alpha$ we have $1 \zeta \not | a_0$ such that $p \not | a_0$ and hence there is $l \in \mathbb{Z}$ with $a_0 l \equiv a_1 \mod p$.
- (3) Since $\zeta = 1 (1 \zeta)$ we have

$$\zeta^l \equiv 1 - l(1 - \zeta) \mod (1 - \zeta)^2$$
.

(4) By (1), (2) and (3) we conclude

$$\zeta^{l} \alpha \equiv (1 - l(1 - \zeta)) (a_0 + a_1(1 - \zeta))$$

$$\equiv a_0 + (a_1 - la_0) (1 - \zeta)$$

$$\equiv a_0 \mod (1 - \zeta)^2.$$

Proposition 3.1.8 ("Second case"). Suppose p is a regular prime with $p \ge 5$ such that $x^p + y^p = z^p$ and $p \mid xyz$ with $x, y, z \in \mathbb{Z}$. Then xyz = 0.

Proof. Without loss of generality x, y, z are pairwise coprime. By changing the role of x, y and z and possibly replacing x by -x, y by -y and z by -z we can furthermore assume that p|z, $p \not|x$ and $p \not|y$. Then, by 2.10.1,

$$z = p^m z_0 = \varepsilon \left(1 - \zeta\right)^{(p-1)m} z_0$$

with $z_0 \in \mathbb{Z}, m \geq 1$, $\gcd(z_0, p) = 1$ and $\varepsilon \in \mathcal{O}^{\times}$ such that

$$x^{p} + y^{p} = \varepsilon^{p} (1 - \zeta)^{(p-1)mp} z_{0}^{p}.$$

By assumption:

- x, y and z_0 are pairwise coprime since x, y and z are pairwise coprime.
- 1ζ and z_0 are coprime since p and z are coprime.
- x and $1-\zeta$ are coprime since $p \not| x$. The same holds for y and $1-\zeta$.

Hence the following Lemma 1.9 yields $xyz_0 = 0$ such that xyz = 0 as claimed.

Lemma 3.1.9. Suppose p is a regular prime with $p \geq 5$, $x, y, z_0 \in \mathcal{O}$, $\varepsilon \in \mathcal{O}^{\times}$ and $x, y, z_0, 1 - \zeta$ are pairwise coprime. If $x^p + y^p = \varepsilon(1 - \zeta)^{kp} z_0^p$ with $k \in \mathbb{N}$, then $xyz_0 = 0$.

Proof. Assume that there are x, y, z_0 as in the lemma with $xyz_0 \neq 0$. We may assume that k is minimal.

"Step 1:" Show that $(1 - \zeta)^2 | x + y$.

(1) By assumption we have

$$\varepsilon(1-\zeta)^{kp}z_0^p = (x+y)(x+\zeta y)\cdots(x+\zeta^{p-1}y) \tag{*}$$

such that, since $1-\zeta$ is prime, there is $i \in \{0, \ldots, p-1\}$ with $1-\zeta|x+\zeta^i y$. Hence $1-\zeta$ divides all $x+\zeta^i y$ by Lemma 1.3, in particular x+y.

(2) By Lemma 1.7 there are $a, b \in \mathbb{Z}$ and $l, j \in \mathbb{N}_0$ such that

$$\zeta^l x \equiv a \mod (1 - \zeta)^2$$
 and $\zeta^j y \equiv b \mod (1 - \zeta)^2$.

- (3) We may replace x by $x\zeta^l$ and y by $y\zeta^j$ and thus can assume that $x \equiv a, y \equiv b \mod (1-\zeta)^2$ with $a,b \in \mathbb{Z}$.
- (4) $1 \zeta | x + y$ implies $1 \zeta | a + b$ such that $(1 \zeta)^{p-1} | a + b$ (since $a + b \in \mathbb{Z}$ we have also p | a + b) and hence $(1 \zeta)^2 | x + y$. In particular, $k \ge 2$.

"Step 2:" Show that $(1 - \zeta)^{(k-1)p+1}|x + y$.

Since the quotients $\frac{x+\zeta^i y}{1-\zeta}$ are pairwise coprime, all "extra powers" of $1-\zeta$ have to divide x+y. Thus,

$$(1-\zeta)^{kp-(p-1)}|x+y.$$

Furthermore:

$$1-\zeta \not | \frac{x+y}{(1-\zeta)^{kp-(p-1)}}$$

"Step 3:" Show that $\frac{x+\zeta^i y}{1-\zeta}$ is associated to a *p*-power.

From (*) we obtain

$$((1-\zeta)^{k-1}z_0)^p = \prod_{i=0}^{p-1} \left(\frac{x+\zeta^i y}{1-\zeta}\right).$$

Since the ideals on the right side are pairwise coprime, $\left(\frac{x+\zeta^i y}{1-\zeta}\right)$ is a p-th power. Thus Remark 1.2 yields

$$\frac{x + \zeta^i y}{1 - \zeta} = \varepsilon_i \alpha_i^p$$

with $\alpha_i \in \mathcal{O}$ and $\varepsilon \in \mathcal{O}^{\times}$. Furthermore, the α_i are pairwise coprime.

"Step 4:" Find $\varepsilon', \eta \in \mathcal{O}^{\times}$ and $\beta \in \mathcal{O}$ with $\varepsilon'(1-\zeta)^{(k-1)p}\beta^p = -\alpha_1^p + \eta \alpha_{-1}^p$. By Step 2, $(1-\zeta)^{k-1}$ divides α_0 . More precisely, $\alpha_0 = (1-\zeta)^{k-1}\beta$ with $\beta \in \mathcal{O}$ and $1-\zeta, \beta$ coprime. Do some ugly calculation:

$$y = \frac{x + y - (x + \zeta y)}{1 - \zeta} = \varepsilon_0 \alpha_0^p - \varepsilon_1 \alpha_1^p = \varepsilon_0 (1 - \zeta)^{(k-1)p} \beta^p - \varepsilon_1 \alpha_1^p$$
(A)

$$y = \frac{(x + \zeta^{-1}y) - (x + y)}{\zeta^{-1}(1 - \zeta)} = \zeta \varepsilon_{-1}\alpha_{-1}^p - \zeta \varepsilon_0 \alpha_0^p = \zeta \varepsilon_{-1}\alpha_{-1}^p - \zeta \varepsilon_0 (1 - \zeta)^{(k-1)p}\beta^p$$
 (B)

Then (B) - (A) yields

$$0 = \zeta \varepsilon_{-1} \alpha_{-1}^p + \varepsilon_1 \alpha_1^p + \varepsilon_0 (1 - \zeta)^{p(k-1)} \beta^p (-\zeta - 1).$$

Now define

$$\varepsilon' = \frac{(1+\zeta)\varepsilon_0}{-\varepsilon_1}$$
 and $\eta = \frac{\zeta\varepsilon_{-1}}{-\varepsilon_1}$

to obtain

$$\varepsilon'(1-\zeta)^{p(k-1)}\beta^p = \eta \alpha_{-1}^p - \alpha_1^p. \tag{**}$$

"Step 5:" Show that η is a p-th power.

By (**) we have $0 \equiv \eta \alpha_{-1}^p - \alpha_1^p \mod p$ such that Example 1.2.8 ascertains the existence of $a_{-1}, a_1 \in \mathbb{Z}$ with $a_{-1}^p \equiv a_1, \alpha_1^p \equiv a_1 \mod p$.

"Step 6:" Find a smaller solution to (\star) :

$$x' := \alpha_{-1}, y' := v\eta_1, z_0 := \beta.$$

With $(\star\star)$: $\varepsilon'(1-\zeta)^{p(k-1)}\cdot z_0^p=y'^p+x'^p$ is a smaller solution, a contradiction.

4 Geometric aspects

4.1 Localisation

Recall: Here all rings are commutative with 1.

Reminder 4.1.1. (i) Let R be a ring and $S \subseteq R \setminus \{0\}$ be a multiplicative system, i.e.

- (1) $a, b \in S \Rightarrow a \cdot b \in S$ and
- (2) $1 \in S$.

$$R \cdot S^{-1} := \{(a, s) \mid a \in R, s \in S\} / \sim$$

with $(a, s) \sim (a', s')$ if there is $t \in S : t(as' - a's) = 0$.

Denote $\frac{a}{s} := [(a, s)] / \sim$ equivalence class of (a, s).

 RS^{-1} becomes a ring with

$$\frac{a_1}{s_1} + \frac{a_2}{s_2} = \frac{a_1 s_2 + a_2 s_1}{s_1 s_2},$$
$$\frac{a_1}{s_1} \cdot \frac{a_2}{s_2} = \frac{a_1 a_2}{s_1 s_2}$$

 RS^{-1} is called localisation of R by S.

(ii) The map

$$j_S: R \to RS^{-1}, r \mapsto \frac{r}{1}$$

is a ring homomorphism with $j_S(S) \subseteq (RS^{-1})^{\times}$. $\ker(j_S) = \{r \in R \mid \exists a \in S \text{ with } ar = 0\}$. In particular: R is an integral domain $\Rightarrow j_S$ is an embedding an $\frac{a}{b} = \frac{a'}{b'}$ is equivalent to ab' = a'b.

Furthermore: R is an integral domain $\Rightarrow RS^{-1} \subseteq \operatorname{Quot}(R)$, $\frac{a}{b} \mapsto \frac{a}{b}$.

(iii) Localisation has the following universal property: $f: R \mapsto R'$ a ring homomorphism with $f(S) \subseteq (R')^{\times}$ then there exists a unique ringhomomorphism $g: RS^{-1} \to R'$ with $f = g \circ j_S$

$$R \xrightarrow{j_S} RS^{-1}$$

$$R' \xrightarrow{\exists !g}$$

Example 4.1.2. (i) R integral domain, $S = R \setminus 0 \Rightarrow RS^{-1} = \text{Quot}(R)$

(ii) p prime ideal in $R, S := R \setminus p \Rightarrow R_p := RS^{-1}$.

П

Proposition 4.1.3 (Description of prime ideals in localisations). We have the following bijection:

$$\{p \in \operatorname{Spec}(R) \mid p \subseteq R \setminus S\} \leftrightarrow \{q \in \operatorname{Spec}(RS^{-1})\}$$
$$\phi : p \mapsto pS^{-1} = \{\frac{a}{s} \mid a \in p, s \in S\}$$
$$j_S^{-1}(q) \leftrightarrow q : \psi$$

Proof. (1)
$$\frac{a}{s} = \frac{a'}{s'}$$
, then $a \in p \iff a' \in P$:
Suppose $a \in p, a' \in R, s, s' \in S$ and $\frac{a}{s} = \frac{a'}{s'} \Rightarrow \exists t \in S : \underbrace{t}_{\not\in p} (as' - a's) = 0 \in p$
So $as' - a's \in p$, hence $a's \in p$ and $a' \in p$.

- (2) ϕ is well defined, i.e. pS^{-1} is a prime ideal: clear.
- (3) ψ is well-defined by Prop. II.8.16.

(4)
$$\psi \circ \phi(p) = j_S^{-1}(pS^{-1}) = p$$
:
 $r \in j_S^{-1}(pS^{-1}) \iff j_S(r) \in pS^{-1} \iff \frac{r}{1} \in pS^{-1} \iff r \in p$

(5)
$$\phi \circ \psi(q) = \psi(j_S^{-1}(q)) = j_S^{-1}(q)S^{-1} = q$$
:
 $\frac{r}{s} \in j_S^{-1}(q)S^{-1} \iff r \in j_S^{-1}(q) \iff j_S(r) \in q \iff \frac{r}{1} \in q \iff \frac{r}{s} \in q$

Definition 4.1.4 (and Prop., lokaler Ring). A ring is a $\underline{local\ ring}$ if R has one of the following equivalent properties:

- (i) R has a unique maximal ideal m.
- (ii) $R \setminus R^{\times}$ is an ideal.
- (iii) $\forall x \in R : x \in R^{\times} \text{ or } 1 x \in R^{\times}.$

In particular we have: If R is a local ring then $m = R \setminus R^{\times}$ is the unique maximal ideal of R.

Proof. $(i) \Rightarrow (ii)$: Show that $R = R^{\times} \dot{\cup} m$:

- (1) $R = R^{\times} \cup m : a \in R \setminus m$. Hence (a) is not contained in m. So (a) = R and hence $a \in R^{\times}$.
- (2) $R^{\times} \cap m = \emptyset : a \in R^{\times}$, so $a \notin m$ since $m \neq R = (a)$. It follows that $m = R \setminus R^{\times}$ and thus $R \setminus R^{\times}$ is an ideal.
- $(ii) \Rightarrow (iii)$: Suppose x and $1 x \in R \setminus R^{\times}$. Hence $1 = x + (1 x) \in R \setminus R^{\times}E$.
- $(iii) \Rightarrow (i)$: Suppose that m and m' are two different maximal ideals. Let $a \in m' \setminus m$. Since m is maximal we have $(m, a) = R \Rightarrow \exists b \in m, r \in R$ with 1 = b + ra. We know $ra \in m'$, hence $ra \notin R^{\times}$ and by assumption $(iii) \Rightarrow b = 1 ra \in R^{\times}E$ to $b \in m$.

Proposition 4.1.5 (localisations by prime ideals are local). Let R be a ring and $p \in \operatorname{Spec}(R)$. Then R_p is a local ring with maximal ideal pS^{-1} where $S = R \setminus p$.

Proof. We show that $R_p = R_p^{\times} \dot{\cup} pS^{-1}$. Hence $R_p \setminus R_p^{\times} = pS^{-1}$ is an ideal. Thus R_p is a local ring.

- (1) $R_p = pS^{-1} \cup Rp^{\times}$: Let $a \in R, s \in S = R \setminus p$. Suppose $\frac{a}{s} \notin pS^{-1}$, i.e $a \notin p$. So $\frac{s}{a} \in R_p$ and $\frac{a}{s} \frac{s}{a} = 1$ Hence $\frac{a}{s} \in R_p^{\times}$.
- (2) $pS^{-1} \cap R_p^{\times} = \emptyset$: Suppose that $\frac{a}{s} \in R_p^{\times}$ (with $a \in R, s \in S$) $\Rightarrow \exists a' \in R, s' \in S : \frac{a}{s} \frac{a'}{s'} = 1 \Rightarrow \exists t \in S$ with $t(aa' - ss') = 0 \in p$ Since $t \notin p$ we have $aa' - \underbrace{ss'}_{\notin p} \in p$, so $aa' \notin p$. Since $a \notin p$ it follows $\frac{a}{s} \notin pS^{-1}$.

Proposition 4.1.6 (being Dedekind is stable under localisation). Let \mathcal{O} be a Dedekind domain, $S \subseteq \mathcal{O} \setminus \{0\}$ multiplicative system, then $\mathcal{O}S^{-1}$ is a Dedekind domain.

Proof. \mathcal{O} is an integral domain, so $\mathcal{O} \subseteq \mathcal{O}S^{-1} \subseteq \operatorname{Quot}(\mathcal{O})$.

- (1) $\mathcal{O}S^{-1}$ is an integral domain, since $\mathcal{O}S^{-1} \subseteq \text{Quot}(\mathcal{O})$.
- (2) Show that $\mathcal{O}S^{-1}$ is Noetherian, i.e. each ideal is finitely generated: Let q be an ideal in $\mathcal{O}S^{-1}$ and $p:=j_S^{-1}(q)$. Prop 1.3 says that $q=pS^{-1}$. \mathcal{O} is a Dedekind domain, hence p is finitely generated i.e. $p=(a_1,\ldots,a_n)\Rightarrow q=pS^{-1}=(\frac{a_1}{1},\ldots,\frac{a_n}{1})$ is finitely generated.
- (3) Show that $\mathcal{O}S^{-1}$ is integrally closed: Suppose $x \in \text{Quot}(\mathcal{O}S^{-1}) = \text{Quot}(\mathcal{O})$ with $x^n + \frac{r_{n-1}}{s_{n-1}}x^{n-1} + \cdots + \frac{r_0}{s_0} = 0$ and $r_0, \ldots, r_{n-1} \in \mathcal{O}, s_0, \ldots, s_{n-1} \in S$. Let $s := s_0 \cdot \ldots \cdot s_{n-1} \in S$, then

$$(sx)^n + \underbrace{s\frac{r_{n-1}}{s_{n-1}}}_{\in \mathcal{O}}(sx)^{n-1} + \dots + \underbrace{s^n\frac{r_0}{s_0}}_{\in \mathcal{O}} = 0$$

 $\Rightarrow sx$ is integral over \mathcal{O} and $\hat{x} = sx \in \mathcal{O}$, since \mathcal{O} is integrally closed. $\Rightarrow x = \frac{\hat{x}}{s} \in \mathcal{O}S^{-1}$. Thus $\mathcal{O}S^{-1}$ is integrally closed.

(4) Prop 1.3 implies that every prime ideal $q \neq 0$ in $\mathcal{O}S^{-1}$ is maximal.

Definition 4.1.7 ("diskreter Bewertungsring"). A ring is called $\underline{discrete\ valuation\ ring}$ (DVR) if

- ullet R is a principal ideal domain and
- R has a (unique) maximal ideal $m = (\Pi) \neq 0$.

In particular

- \bullet R is an integral domain
- \bullet R is not a field.