Wykład 7 Diagramy związków encji

Diagramy związków encji

***** TEMATYKA:

Składowe diagramów: zbiory encji, atrybuty, związki

Składowe diagramów związków encji

- Zbiory encji
- Atrybuty opisują encje
- Związki opisują połączenia pomiędzy zbiorami encji.

Encje

- * Encja
 - jednoznaczny składnik badanej rzeczywistości dziedziny konceptualnej
 - składnik w którym są przechowywane dane, wystąpienie encji
 - Przykład: Szkoła, Uczeń, Sprzedaż, Naprawa, Samochód itp.
 - encja: samochód (właściwie typ encji)
 - instancja: Skoda ZNA6362 (właściwie encja)
- **Encja** (obiekt) coś co istnieje, co jest odróżnialne od innych, o czym informację trzeba znać lub przechowywać. Encje o tych samych własnościach tworzą typy (zbiory) encji.
 - AUTOR dane osobowe autorów,
 - KSIĄŻKA dane o książce,
 - WYDAWNICTWO dane o wydawnictwie
 - Reprezentacją graficzną encji jest ramka (prostokąt).
 - Encje są opisywane przez atrybuty.
- Należy odróżniać <u>typ encji</u> oraz jej <u>instancje (egzemplarze</u>) np. *Osoba* jako *typ* i jako konkretny *obiekt* (instancja, egzemplarz).
- Encje są opisywane za pomocą rzeczowników lub wyrażeń rzeczownikowych w liczbie pojedynczej

AUTOR

Nazwisko Imię Rok urodzenia

...

Atrybuty

***** Atrybuty

- opisują właściwości encji są elementami charakteryzującymi encje i związki w dziedzinie konceptualnej
- zbiór atrybutów jest zestawem jednoznacznie opisującym encję
- Identyfikowany atrybut powinien opisywać encję, przy której się go umieszcza (a nie związki z innymi encjami)!
 - Np.:: Numer miejsca w kinie jest atrybutem encji Miejsce na widowni, a nie atrybutem encji Bilet, na którym się pojawia.

Związki

- Związki opisują połączenia pomiędzy zbiorami encji.
 - związek stanowi naturalne powiązanie pomiędzy dwoma lub więcej encjami w danej dziedzinie konceptualnej
 - ogólny podział związków:
 - binarne (dwuargumentowe) obejmuje dwie encje,
 - wielorakie (wieloargumentowe) obejmuje więcej niż dwie encje
 - w modelowaniu związku istotne są
 - liczebność związku stosunek liczebnościowy między wystąpieniami encji uczestniczącymi w danym związku
 - reguly biznesowe
- * Każdy związek określa pewną relację między zbiorami egzemplarzy encji wchodzącymi w skład związku instancję związku.
- Przykładowe związki
 - dwuargumentowe (binarne):
 - autor piszę książkę,
 - wydawnictwo wydaje książki,
 - książka ma swoje egzemplarze,
 - pracownik pracuje w dziale,
 - kraj eksportuje towar,
 - trójargumentowe:
 - czytelnik wypożycza książki z danej dziedziny,

Przykład diagramu związków encji (ERD)

Struktura konceptualna może być przedstawiona za pomocą diagramu ER

Liczebność (typy związków encji)

- Liczebność dotyczy liczby instancji biorących udział w związku.
- Typy związków dwuargumentowych:
 - jeden do jeden 1:1
 - osoba kieruje jedną szkołą
 szkoła jest kierowana przez jedna osobę
 - ieden do wiele 1:N
 - wydawnictwo wydaje wiele książek książka jest wydana przez jedno wydawnictwo
 - wiele do wiele M:N
 - autor pisze wiele książek książka jest napisana przez wielu autorów
- Często na każdej końcówce linii związku podaje się minimalna oraz maksymalną dopuszczalną liczebność
- Nie ma standardowej notacji do opisu liczbności (krotnośc)

Bachman style

Bazy danych Wykład 7

Chen style

1:N (n=0,1,2,3...) one to zero or more

M:N (m and n=0,1,2,3...) zero or more to zero or more (many to many)

1:1 one to one

Martin style

- 1 one, and only one (mandatory)
- * many (zero or more optional)
- 1...* one or more (mandatory)
- **0...1** zero or one (optional)
- (0,1) zero or one (optional)
- (1,n) -one or more (mandatory)
- (0,n) zero or more (optional)
- (1,1) one and only one (mandatory)

Bazy danych Wykład 7

Związki rekurencyjne

- Najczęściej związki są binarne.
- Jeżeli związek jest jednoargumentowy (dotyczy tylko jednej encji) to mówimy o nim, że jest rekurencyjny

Modelowanie semantyczne

- Niektóre dane można modelować na wiele sposobów, często wymiennie używając encji, związków i atrybutów;
- * Przykład: umowa kupna jako encja (sprzedajacy, kupujacy, cena) albo jako dwie encje Sprzedajacy, Kupujący połączone związkiem Kupno;
- Wybieramy model najodpowiedniejszy z punktu widzenia projektowanego systemu;
- ★ Dane reprezentujemy tak jak one są widziane w organizacji.

Zawieranie i wykluczanie

Role w związkach

- Zdarza się, że jeden zbiór encji występuje w danym związku więcej niż jeden raz. Wówczas trzeba narysować tyle krawędzi pomiędzy związkiem a zbiorem ile razy pojawia się on w związku.
- Każda krawędź symbolizuje inną rolę

Związki wieloargumentowe

- Związków wieloargumentowe łączą więcej niż 2 encje.
- Związki wieloargumentowe należy rozbić na związki binarne lub trójargumentowe (jeżeli nie da się ich przekształcić na binarne.
- 🖊 Związki trójargumentowe reprezentują związki w piątej postaci normalnej

Przekształcanie związków wieloargumentowych w binarne

W celu przekształcenia związku wieloargumentowego na binarny tworzy się dodatkowy zbiór encji i odpowiednie związki łączące go z encjami wchodzącymi w skład związku pierwotnego (wieloargumentowego)

Modelowanie czasu

- Problemem, przed którym często staje projektant schematu bazy danych jest uwzględnienie w modelu danych zmian w czasie.
 - Interesuje nas:
 - ile zarabia aktualnie pracownik, na jakim jest zatrudniony stanowisku, w którym aktualnie pracuje dziale,
 - ile zarabiał w zeszłym roku, jakie piastował stanowiska, w jakich działach pracował od początku zatrudnienia.

Modelowanie czasu - przykład

Nasz diagram ER

