Finding best algorithm using R² value in Machine Learning:

- 1. Multiple Linear Regression R² value = 0.9358680
- 2. Support Vector Machine:

S.No	Regularization	LINEAR	RBF	POLY	SIGMOID
	parameter				
1.	C2000	0.87677	0.10741	0.34545	0.44394
2.	C10000	0.92399	0.46894	0.46894	0.81006
3.	C15000	0.93012	0.54633	0.69995	0.77902
4.	C25000	0.93012	0.69858	0.76242	0.77465
5.	C30000	0.93012	0.74009	0.77120	0.70145

3. Decision Tree:

S.No	Criterion	Splitter	R ² value
1.	friedman_mse	random	0.88441
2.	friedman_mse	best	0.88339
3.	squared_error	best	0.92830
4.	squared_error	random	0.87573
5.	absolute_error	<mark>random</mark>	0.94750
6.	absolute_error	best	0.92214
7.	poisson	best	0.91979
8.	poisson	random	0.89693