Definition)

arithmetic progression: Given $k, r, a \in \mathbb{Z}$ with $k \geq 1$, we denote $a + [0, k) \cdot r = \{a + ri | 0 \leq i \leq k - 1\}$. We call k the **length**, and a the **basepoint** of the arithmetic progression.

We say a function $c: \{1,...,N\} \rightarrow \{1,...,m\}$ an m coloring of $\{1,...,N\}$.

Given an m coloring $c: \{1,...,N\} \rightarrow \{1,...,m\}$ of $\{1,...,N\}$, we say an arithmetic progression $a+[0,k) \cdot r$ in $\{1,...,N\}$ to be **monochromatic** if all elements of the progression are in the same color.

Van der Waerden's Theorem)

Let $k,m \ge 1$. Then there is an $N \in \mathbb{N}$ such that any m coloring of $\{1,2,...,N\}$ contains a monochromatic progression of length k.

Proof)

We prove the theorem using induction on k. It is obvious that the theorem holds for k=1. Suppose that $k \ge 2$ and that the theorem holds for k-1.

We define the notion of 'polychromatic fan' and then we proceed to prove the theorem.

Let $c: \{1,...,N\} \rightarrow \{1,...,m\}$ be a coloring.

Let $k \ge 1, d \ge 0, \text{ and } a \in \{1, ..., N\}.$

We call a d-tuple $(a+[0,k) \cdot r_1, ..., a+[0,k) \cdot r_d)$ a **fan** of progressions in $\{1,...,N\}$ with $r_1,...,r_d>0$. Let us call k the **radius**, d the **degree**, and a the **basepoint** of the fan.

We call each progression $a+[1,k) \cdot r_i$ a **spoke** of the fan, for $1 \le i \le d$.

We call the fan $(a+[0,k) \cdot r_1, \dots, a+[0,k) \cdot r_d)$ to be **polychromatic** if the base point a and the d spokes are all monochromatic with distinct colors, i.e. if

 $(1) c(a+j_1r_i) = c(a+j_2r_i) \quad \text{for each fixed } i \ \text{in } \{1,...,d\} \ \text{ and each } j_1,j_2 \ \text{in } \{1,...,k-1\}.$

 $(2) c(a) \neq c(a+jr_i)$ for each $j \in \{1,...,k-1\}$ and $i \in \{1,...,d\}$.

and $(3) c(a + j_1 r_{i_1}) \neq c(a + j_2 r_{i_2})$ whenever $i_1 \neq i_2$.

With these definitions, our main claim is what follows:

For each $d \ge 0$, there is an N such that any m coloring of $\{1,...,N\}$ contains a monochromatic progression of length k or a polychromatic progression of radius k and degree d. This actually shows our theorem. (Why? Suppose that we have shown this claim and consider the case where d > m.)

We prove the claim using the induction on d. It is obvious that the claim holds if d=0. The claim also holds for d=1 by the induction hypothesis (Why? let N be any positive integer which guarantees the existence of a monochromatic progression of length k-1 and consider an m coloring of $\{1,...,2N\}$.).

Suppose that d > 1 and that the claim holds for d-1.

Let N_1 be a positive integer which guarantees that any m coloring of $\{1,...,N_1\}$ contains a monochromatic progression of length k or a polychromatic fan of radius k and degree d-1.

Let N_2 be a positive integer which guarantees that any $m^d N_1^d$ coloring of $\{1,...,N_2\}$ contains a monochromatic progression of length k-1.

Let $N = 4kN_1N_2$. Let $c: \{1,...,N\} \rightarrow \{1,...,m\}$ be a m coloring of $\{1,...,N\}$. If $b \in \{1,...,N_2\}$, then $\{bkN_1+1,...,bkN_1+N_1\}$ is a subset of $\{1,...,N\}$ with cardinality N_1 , because we have

 $bkN_1 + N_1 \leq \ kN_1N_2 + N_1 \leq kN_1N_2 + kN_1N_2 = 2kN_1N_2 < 4kN_1N_2 = N$

By our definition of N_1 , for each $b \in \{1,...,N_2\}$, the set $\{bkN_1+1,...,bkN_1+N_1\}$ contains a monochromatic progression of length k or a polychromatic fan of radius k and degree d-1.

If there is at least one b in $\{1,\ldots,N_2\}$ such that the set $\{bkN_1+1,\ldots,bkN_1+N_1\}$ contains a monochromatic progression of length k, then our proof is done, so we may assume that for each $b \in \{1,\ldots,N_2\}$, there is no monochromatic progression of length k in $\{bkN_1+1,\ldots,bkN_1+N_1\}$. Then for each $b \in \{1,\ldots,N_2\}$, there are $a(b),r_1(b),\ldots,r_{d-1}(b) \in \{1,\ldots,N_1\}$ and distinct colors $c_0(b),\ldots,c_{d-1}(b) \in \{1,\ldots,m\}$ such that $c(bkN_1+a(b))=c_0(b)$ and $c(bkN_1+a(b)+jr_i)=c_i(b)$ for each

 $1 \le i \le d-1, 1 \le j \le k-1$. Then we can consider the map

 $b\mapsto (a(b),r_1(b),\dots,r_{d-1}(b),c_0(b),\dots,c_{d-1}(b))$ as an $m^dN_1^d$ coloring of $\{1,\dots,N_2\}$. Then, by our definition of N_2 , there is a monochromatic progression b+[0,k-1) • s for some $b\in \{1,\dots,N_2\}$ and s>0, with some color $(a,r_1,\dots,r_{d-1},c_0,\dots,c_{d-1})$ among those $m^dN_1^d$ colors. To ease the proof we may assume that s<0 by reversing the original monochromatic progression b+[0,k-1) • s.

Let $b_0=(b-s)kN_1+a$. Note that b_0 lies in $\{1,...,N\}$ since we have $b_0=(b-s)kN_1+a\leq (N_2+N_2)kN_1+N_1\leq 2kN_1N_2+2kN_1N_2=4kN_1N_2=N$.

Consider the fan

 $(b_0+[0,k) \bullet skN_1,b_0+[0,k) \bullet (skN_1+r_1),\dots,b_0+[0,k) \bullet (skN_1+r_{d-1}))$ of radius k, degree d, basepoint b_0 .

We see that each spoke of this fan is monochromatic. For the first spoke we have $c(b_0+jskN_1)=c((b-s)kN_1+a+jskN_1)=c((b-s+js)kN_1+a)=c((b+(j-1)s)kN_1+a)=c((b+(j-1)s)=c_0$

, for $1 \le j \le k-1$.

For $1 \le t \le d-1$ we have

$$\begin{split} c(b_0+j(skN_1+r_t)) &= c((b-s)kN_1+a+j(skN_1+r_t)) \\ &= c((b-s+js)kN_1+a+jr_t) = c((b+(j-1)s)kN_1+a+jr_t) \\ &= c_t(b+(j-1)s) = c_t \end{split}$$

, for $1 \leq j \leq k-1$. Hence, each spoke of the fan is monochromatic. If $c(b_0)$ is identical with the color of some spoke, then we have found a monochromatic progression of length k. Otherwise, we have found a polychromatic fan of radius k, degree d, so this completes the proof of our claim on d, and this in turn completes the proof of the theorem.

Lemma)

If $c: \mathbb{Z} \to \{1,...,m\}$ is an m coloring of \mathbb{Z} , then there is a color i in $\{1,...,m\}$ such that there is a monochromatic progression of color i with arbitrary length. Proof)

Let $m \geq 1$ and let $c \colon \mathbb{Z} \to \{1, ..., m\}$ be an m coloring of \mathbb{Z} . Suppose the contrary that for each i in $\{1, ..., m\}$, there is an $k_i \in \mathbb{N}$ such that there is no monochromatic progression in \mathbb{Z} of length k_i with the color i. Let $k = \max\{k_1, ..., k_m\}$. By the Van der Waerden's Theorem, there is some N such that there is a monochromatic progression in $\{1, ..., N\}$ of length k with some color i. Since $k_i \leq k$, there is a monochromatic progression of length k_i with the color i in $\{1, ..., N\}$ so the monochromatic progression lies in \mathbb{Z} . This contradicts to our definition of k_i .

Corollary)

Let α be a real number and let $\epsilon > 0$. Then $\|\alpha r^2\|_{\mathbb{R}/\mathbb{Z}} < \epsilon$ for infinitely many $r \in \mathbb{N}$, where $\|x\|_{\mathbb{R}/\mathbb{Z}}$ denote the distance from x to the closest integer of x.

Partition the interval [0,1) with some finite half open subintervals $I_1,...,I_m$, in such a way that the lengths are all less than $\epsilon/4$. For each $i \in \{1,...,m\}$, let $N_i = \{n \in \mathbb{Z} \mid (\alpha n^2/2) \mod 1 \in I_i\}$. Then $\{N_1,...,N_m\}$ induces an m coloring of \mathbb{Z} . By the previous lemma, one of the m colors has a monochromatic progression n, n+r, n+2r of length 3 for arbitrarily large spacing r. This means that $\alpha n^2/2, \alpha (n+r)^2/2, \alpha (n+2r)^2/2$ belongs to some $I_i \mod 1$. It follows that $\alpha r^2 = \alpha n^2/2 - 2\alpha (n+r)^2/2 + \alpha (n+2r)^2/2$ satisfies $\|\alpha r^2\|_{\mathbb{R}/\mathbb{Z}} < \epsilon$ for such large r's.