M16600 Lecture Notes

Sections 6.4: Derivatives of Logarithmic Functions

SUMMARY

New Differentiation Formulas

$$\bullet \ \frac{d}{dx} (\ln x) = \frac{1}{x}$$

•
$$\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}$$

•
$$\frac{d}{dx}(b^x) = b^x \ln b$$

New Integral Formulas

$$\bullet \int \frac{1}{x} dx = \ln|x| + C$$

•
$$\int b^x dx = \frac{b^x}{\ln b} + C$$
, where $b \neq 1$.

New Differentiation Technique: Logarithmic Differentiation

• The Derivative and Integral Formula of $\ln x$

$$\boxed{\frac{d}{dx}(\ln x) = \frac{1}{x}}$$

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

Example 1: Differentiate

(a)
$$f(x) = \sqrt{\ln x}$$

Let
$$z = lnx \Rightarrow f(x) = Jz$$

$$f'(x) = \frac{d}{dx}(\sqrt{2}) = \frac{d}{dz}(\sqrt{2}) \frac{dz}{dx} = \frac{1}{2\sqrt{2}} \cdot \frac{dx}{dx}(\ln x)$$

$$=\frac{1}{2 \ln x} \cdot \frac{1}{2} = \frac{1}{2 \times \ln x}$$

(b)
$$g(x) = \ln(\sin x)$$

Let
$$Z = 8inx \Rightarrow 9(x) = 2nz$$

$$g'(x) = \frac{d}{dx}(\ln z) = \frac{d}{dz}(\ln z) \frac{dz}{dx}$$

$$= \frac{1}{2} \cdot \frac{d}{dx} (8inx) = \frac{1}{8inx} \cos x = \frac{\cos x}{8inx}$$

Example 2: Evaluate

(a)
$$\int \frac{x}{x^2 + 1} \, dx$$

Let
$$U = \chi^2 + 1$$

$$\Rightarrow \frac{dx}{du} = 3x$$

Let
$$u = x^2 + 1$$
 $\Rightarrow \frac{du}{dx} = 2x \Rightarrow du = 2x dx$

 $dx \cdot du = 2x \cdot dx$

$$I = \int \frac{\chi}{\chi^2 + 1} d\chi = \int \frac{1}{\chi^2 + 1} \cdot \chi d\chi$$

$$\Rightarrow \frac{1}{2} du = x dx$$

$$= \int \frac{1}{u} \cdot \frac{1}{a}$$

$$= \int \frac{1}{u} \cdot \frac{1}{a} du = \frac{1}{a} \int \frac{1}{u} du = \frac{1}{a} \ln |u| + C$$

$$= \frac{1}{2} \ln |x^2 + 1| + C$$

(b)
$$\int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \frac{\ln x}{x} dx$$

Let
$$U = \ln x$$
 $\Rightarrow \frac{du}{dx} = \frac{1}{x} \Rightarrow du = \frac{1}{x} dx$

$$\Rightarrow I = \int U \cdot du$$

$$x=1 \Rightarrow U = ln I = 0$$

$$x=e \Rightarrow U = ln e = 1$$

$$= \int_0^1 u \, du = \frac{u^2}{2} \Big|_0^2 = \frac{1}{2}$$

• Logarithmic Differentiation

The calculation of derivatives of complicated functions involving products, quotients, or powers can often be simplified by taking logarithms. This method is called *Logarithmic Differentiation*

Example 3: Use Logarithmic Differentiation to find the derivative of

$$y = \frac{x^{3/4}\sqrt{x^2+1}}{(3x+2)^5}$$
Step 1 Take In on both sides and simplify using log Property
$$y = \frac{x^{3/4}}{(3x+2)^5} \Rightarrow \ln y = \ln \left[\frac{x^{3/4}}{(3x+2)^5} \right]$$

$$\Rightarrow \ln y = \ln \left[x^{3/4} \sqrt{x^2+1} \right] - \ln \left[(3x+2)^5 \right]$$

$$= \ln x^{3/4} + \ln (x^2+1)^2 - \ln (3x+2)^5$$

$$= \frac{3}{4} \ln x + \frac{1}{4} \ln (x^2+1) - 5 \ln (3x+2)$$
Step 2 Diff. both sides with x
$$\Rightarrow \frac{1}{4} \frac{dy}{dx} = \frac{3}{4} \left(\frac{1}{x} \right) + \frac{1}{4} \left(\frac{8x}{x^2+1} \right) - 5 \left(\frac{3}{3x+2} \right)$$

$$= \frac{3}{4x} + \frac{x}{x^2+1} - \frac{15}{3x+2}$$
Step 3 multiply both sides by y to get $\frac{dy}{dx}$

$$\Rightarrow \frac{1}{4} \frac{dy}{dx} = \frac{3}{4} \left(\frac{1}{x} \right) + \frac{1}{4} \left(\frac{3x}{x^2+1} \right) - \frac{15}{3x+2}$$

$$\Rightarrow \frac{1}{4} \frac{dy}{dx} = \frac{3}{4} \left(\frac{1}{x} \right) + \frac{1}{4} \left(\frac{3}{x^2+1} \right) - \frac{15}{3x+2}$$

$$\Rightarrow \frac{1}{4} \frac{dy}{dx} = \frac{3}{4} \left(\frac{1}{x^2+1} \right) + \frac{1}{4} \left(\frac{3}{x^2+1} \right) - \frac{15}{3x+2}$$

$$\Rightarrow \frac{1}{3x+2} \frac{1}{3x+2} \left(\frac{3}{3x+2} + \frac{x}{2^2+1} \right) - \frac{15}{3x+2}$$

$$\Rightarrow \frac{1}{3x+2} \frac{1}{3x+2} \left(\frac{3}{3x+2} + \frac{x}{2^2+1} \right) - \frac{15}{3x+2}$$

Example 4: Differentiate

(a)
$$y = x^2$$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \ln y = \ln x^2 \Rightarrow \ln y = 2 \ln x$
 $\frac{\text{Step } 3}{\text{step } 3} \Rightarrow \frac{1}{\text{step } 4} = \frac{2}{x}$

(b) $y = e^x$ $\frac{\text{Step } 3}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{2}{x} = \frac{2}{x}$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} = \frac{2}{x} = \frac{2}{x}$

(c) $y = x^{\sqrt{x}}$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} = \frac{1}{x} = \frac{1}{x} \ln x$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} = \frac{1}{x} \ln x$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} = \frac{1}{x} \ln x$
 $\frac{\text{Step } 1}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} = \frac{1}{x} \ln x$
 $\frac{\text{Step } 3}{\text{step } 2} \Rightarrow \frac{1}{\text{step } 4} = \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$
 $\frac{1}{x} \ln x + \frac{1}{x} = \frac{1}{x} \ln x + \frac{1}{x} \ln x$

$$\frac{3tep3}{dx} = y \left(\frac{1x \ln x + 31x}{3x} \right)$$

$$= \frac{dy}{dx} = x^{\sqrt{x}} \left(\frac{\sqrt{x} \ln x + 2\sqrt{x}}{2x} \right)$$

$$= x^{\sqrt{x}} \left(\frac{\ln x + 2}{x} \right) = x^{\sqrt{x}} \left(\frac{\ln x + 2}{x} \right)$$

$$= x^{\sqrt{x}} \sqrt{x} \sqrt{x}$$

Example 5: Evaluate

(a)
$$\frac{d}{dx} (\log_2 x)$$

$$= \frac{1}{2 \ln 2}$$

(b)
$$\frac{d}{dx}(2^{2x})$$

$$= \frac{d}{dx} \left(\mathcal{U}^{\chi} \right)$$

$$= 4^{2} \ln 4 = 2^{2x} \ln 4$$

$$= 2^{2x} (2 \ln 2)$$

$$=2x+1$$

$$2x+1$$

 $\Theta \ln 4 = \ln 2^2$

= 2 ln 2

(c)
$$\int 2^x dx$$

$$= \frac{2^{2}}{\ln 2} + C$$

Section 6.4 exercises, page 436, #3, $\underline{5}$, 7, 9, 10, 11, 15, $\underline{13}$, $\underline{35}$, 43, 45, $\underline{47}$, 49, 51, $\underline{53}$, 71, 73, 75, 77, 78, 80. Hint on #13: rewrite G(y) first.