S.R. Bolding¹, C.J. Solomon²

 1 Texas A&M University, College station, TX 2 Los Alamos National Laboratory, Los Alamos, NM

ANS National Meeting, 14 November 2013

Outline

- 1. Background
- 2. Correlated Sampling
- 3. Methodology
- 4. Results
- 5. Conclusions

Background

.00000

1. Background

- 2. Correlated Sampling
- Methodology
- 4. Results
- Conclusions

Neutron Multiplicity Distributions

Neutron Multiplicity Distributions

Background

0.0000

Figure: Multiplicity distributions [PANDA Manual, 1991]

• Provide passive multiplication information about a subcritical, fissionable system

Conclusions

Constructing a Multiplicity Distribution (Ideal Case)

Background

Constructing a Multiplicity Distribution (Ideal Case)

Normalize to form a PDF

Multiplicity Experiments

Background

00000

*Not to scale

Simon R. Bolding 6 /

Multiplicity Experiments

Background

000000

*Not to scale

- Performed at LANL for validating subcritical simulations
- Experimental Parameters
 - 94% ²³⁹Pu sphere
 - 5 Different HDPE shells:
 - ► None, 0.5 cm, 1.0 cm, 1.5 cm, 3.0 cm

Multiplicity Experiments

Background

000000

*Not to scale

- Performed at LANL for validating subcritical simulations
- Experimental Parameters
 - 94% ²³⁹Pu sphere
 - 5 Different HDPE shells:
 - ► None, 0.5 cm, 1.0 cm, 1.5 cm, 3.0 cm
- Measured multiplicity distributions are well verified
- Repeated with ²⁵²Cf

MCNP5 multiplicity simulations

 LANL experiments modeled with a modified MCNP5 [Solomon, 2011]

Simon R Bolding

Background ○○○○●○ Background

000000

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

MCNP5 multiplicity simulations

- LANL experiments modeled with a modified MCNP5 [Solomon, 2011]
- Discrepancy b/w simulation & experiment for Pu. but not ²⁵²Cf

Pu with 3.0-cm HDPE reflector

Methodology

Results 0000000

MCNP5 multiplicity simulations

Background

000000

- LANL experiments modeled with a modified MCNP5 [Solomon, 2011]
- Discrepancy b/w simulation & experiment for Pu. but not ²⁵²Cf
- Previous work by Mattingly [2010]
 - Caused by nuclear data of ²³⁹Pu
 - Adjusted energy-integrated $\overline{
 u}$

Pu with 3.0-cm HDPE reflector

Simon R. Bolding 7 / 26

MCNP5 multiplicity simulations

Background

000000

- LANL experiments modeled with a modified MCNP5 [Solomon, 2011]
- Discrepancy b/w simulation & experiment for Pu. but not ²⁵²Cf
- Previous work by Mattingly [2010]
 - Caused by nuclear data of ²³⁹Pu
 - Adjusted energy-integrated $\overline{\nu}$
- ullet ENDF 239 Pu $\overline{
 u}$ adjusted to match $k_{
 m eff}$
 - $\overline{\nu}$ is $\sim 2\,\sigma$ above measured data for E < 1.5 MeV

Pu with 3.0-cm HDPE reflector

Simon R. Bolding 7 / 26

Objectives

Simon R. Bolding 8 / 26

Objectives

• Reduce discrepancy in multiplicity distributions w/o significantly altering $k_{\rm eff}$

Objectives

Background

00000

- Reduce discrepancy in multiplicity distributions w/o significantly altering k_{eff}
- Perform energy-dependent perturbations to $\overline{\nu}(E)$ in 239 Pu
 - Random samples that preserve covariance data
 - Compare experimental and simulated multiplicity distributions
 - ► Include a k_{eff} benchmark (Jezebel)

Objectives

Background

00000

- Reduce discrepancy in multiplicity distributions w/o significantly altering k_{eff}
- Perform energy-dependent perturbations to $\overline{\nu}(E)$ in 239 Pu
 - Random samples that preserve covariance data
 - Compare experimental and simulated multiplicity distributions
 - ► Include a k_{eff} benchmark (Jezebel)
- Compare $\overline{\nu}(E)$ results to energy-independent shifts of microscopic cross sections σ_i
 - Are these experiments a validation tool for $\overline{\nu}$?

Outline

- 2. Correlated Sampling

Methodology 00000 Results 0000000

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Covariance and Correlation Matrices

Consider N dependent random variables $X_i : i = 1, 2, ..., N$

 \bullet Covariance Matrix Σ :

$$\Sigma_{ij} = \mathsf{Cov}(X_i, X_j)$$

Methodology 00000

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Covariance and Correlation Matrices

Consider N dependent random variables $X_i: i=1,2,\ldots,N$

 \bullet Covariance Matrix Σ :

$$\Sigma_{ij} = \mathsf{Cov}(X_i, X_j)$$

Correlation Matrix C:

$$C_{ij} = \frac{\Sigma_{ij}}{\sqrt{\Sigma_{ii}\Sigma_{ij}}}, \quad C_{ij} \in [-1, 1]$$

1. Decompose correlation matrix:

$$\mathbf{V}\mathbf{V}^T = \mathbf{C}$$

Background

1. Decompose correlation matrix:

Background

$$\mathbf{V}\mathbf{V}^T = \mathbf{C}$$

2. Generate vector \mathbf{R} of independent random samples from the standard normal distribution ($\mu = 0, \sigma^2 = 1$).

1. Decompose correlation matrix:

Background

$$\mathbf{V}\mathbf{V}^T = \mathbf{C}$$

- 2. Generate vector \mathbf{R} of independent random samples from the standard normal distribution ($\mu = 0, \sigma^2 = 1$).
- 3. Transform ${f R}$ into vector of correlated samples

$$\widetilde{\mathbf{R}} = \mathbf{V}\mathbf{R}$$

1. Decompose correlation matrix:

Background

$$\mathbf{V}\mathbf{V}^T = \mathbf{C}$$

- 2. Generate vector \mathbf{R} of independent random samples from the standard normal distribution ($\mu = 0, \sigma^2 = 1$).
- 3. Transform ${f R}$ into vector of correlated samples

$$\widetilde{\mathbf{R}} = \mathbf{V}\mathbf{R}$$

ullet Cholesky decomposition for ${f V}{f V}^T$

Outline

- 1. Background
- 2. Correlated Sampling
- 3. Methodology
- 4. Results
- 5. Conclusions

rground Correlated Sampling Methodology Results Conclusion

○○○ ○○○ ○○○○ ○○○○○ ○○○○○

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Generating Energy-Dependent $\overline{\nu}$ Samples

Background

Generating Energy-Dependent $\overline{ u}$ Samples

- 1. Read original $\overline{\nu}(E)$ from **ACE** file and **ENDF/B-VII.1** covariance data
 - Using the LANL NDVV python modules

Background

Generating Energy-Dependent $\overline{ u}$ Samples

- 1. Read original $\overline{\nu}(E)$ from **ACE** file and **ENDF/B-VII.1** covariance data
 - Using the LANL NDVV python modules
- 2. Sample vector of correlated random numbers $\widetilde{\mathbf{R}}$ from \mathbf{C}
 - Each element $\widetilde{R}(E_g)$ is # of σ to shift $\overline{
 u}(E)$ in energy group E_g

Conclusions

Background

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Generating Energy-Dependent $\overline{\nu}$ Samples

- 1. Read original $\overline{\nu}(E)$ from ACE file and ENDF/B-VII.1 covariance data
 - Using the LANL NDVV python modules
- 2. Sample vector of correlated random numbers \mathbf{R} from \mathbf{C}
 - Each element $\widetilde{R}(E_a)$ is # of σ to shift $\overline{\nu}(E)$ in energy group E_a
- 3. Generate new set of $\overline{\nu}$:

Generating Energy-Dependent $\overline{\nu}$ Samples

- 1. Read original $\overline{\nu}(E)$ from ACE file and ENDF/B-VII.1 covariance data
 - Using the LANL NDVV python modules
- 2. Sample vector of correlated random numbers \mathbf{R} from \mathbf{C}
 - Each element $\widetilde{R}(E_a)$ is # of σ to shift $\overline{\nu}(E)$ in energy group E_a
- 3. Generate new set of $\overline{\nu}$:
 - IF E in E_a :

Background

$$\overline{\nu}'(E) = \sigma_{rel}(E_g)\nu(E)\widetilde{\mathbf{R}}(E_g) + \overline{\nu}(E)$$

Fractional shifts to Cross Sections

• Adjust energy-integrated cross sections (or $\overline{\nu}$)

$$\sigma_i = \int_0^{E_{max}} \sigma_i(E) \, \mathrm{d}E$$

Background

Fractional shifts to Cross Sections

Background

• Adjust energy-integrated cross sections (or $\overline{\nu}$)

$$\sigma_i = \int_0^{E_{max}} \sigma_i(E) \, \mathrm{d}E$$

Increase cross section by same fraction at each energy

$$\sigma_i'(E) = (1 + \alpha)\sigma_i(E) = \sigma_c(E) + \epsilon_i(E)$$

Fractional shifts to Cross Sections

Background

• Adjust energy-integrated cross sections (or $\overline{\nu}$)

$$\sigma_i = \int_0^{E_{max}} \sigma_i(E) \, \mathrm{d}E$$

Increase cross section by same fraction at each energy

$$\sigma_i'(E) = (1+\alpha)\sigma_i(E) = \sigma_c(E) + \epsilon_i(E)$$

• Adjust σ_f and σ_c separately

Fractional shifts to Cross Sections

Background

• Adjust energy-integrated cross sections (or $\overline{\nu}$)

$$\sigma_i = \int_0^{E_{max}} \sigma_i(E) \, \mathrm{d}E$$

Increase cross section by same fraction at each energy

$$\sigma_i'(E) = (1+\alpha)\sigma_i(E) = \sigma_c(E) + \epsilon_i(E)$$

- Adjust σ_f and σ_c separately
 - Need to compensate for ϵ_c and ϵ_f with σ_t or σ_s

Fractional shifts to Cross Sections

Background

• Adjust energy-integrated cross sections (or $\overline{\nu}$)

$$\sigma_i = \int_0^{E_{max}} \sigma_i(E) \, \mathrm{d}E$$

Increase cross section by same fraction at each energy

$$\sigma_i'(E) = (1 + \alpha)\sigma_i(E) = \sigma_c(E) + \epsilon_i(E)$$

- Adjust σ_f and σ_c separately
 - Need to compensate for ϵ_c and ϵ_f with σ_t or σ_s
- Compute average number of standard deviations shifted $\# s(\sigma_i)$

Comparing Results of Simulations

Comparing Results of Simulations

Background

ullet Reduced χ^2 values for the 5 multiplicity experiments and criticality benchmark

$$\chi^{2}_{red,mult,m} = \frac{1}{N_{bins} - 1} \sum_{i=1}^{N_{bins}} \frac{(P_{i}^{\text{exp}} - P_{i}^{\text{mcnp}})^{2}}{\sigma^{2}(P_{i}^{\text{exp}}) + \sigma^{2}(P_{i}^{\text{mcnp}})}$$

Comparing Results of Simulations

ullet Reduced χ^2 values for the 5 multiplicity experiments and criticality benchmark

$$\chi^2_{red,mult,m} = \frac{1}{N_{bins} - 1} \sum_{i=1}^{N_{bins}} \frac{(P_i^{\text{exp}} - P_i^{\text{mcnp}})^2}{\sigma^2(P_i^{\text{exp}}) + \sigma^2(P_i^{\text{mcnp}})}$$

Compute a Cost Function:

Background

$$\label{eq:cost} \boxed{ \text{Cost} = \sum_{m=1}^{5} \chi^2_{red,mult,m} + \chi^2_{red,k_{\,\text{eff}}} }$$

Conclusions

Summary of Procedure

FOR each trial:

Background

- 1. Generate a unique set of perturbed nuclear data
- 2. Run MCNP5 mult simulations (5 multiplicity, JEZEBEL)
- 3. Produce multiplicity distributions
- 4. Compute χ^2_{red} values and cost
- The lowest cost is the most accurate trial

Simon R Bolding 16 / 26

Outline

- 4. Results

Results Conclusions 000000

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Energy-dependent $\overline{\nu}$ perturbations

Cost results from 500 trials:

Trial	Cost	$\chi^2_{k_{\mathrm{eff}}}$
<i>v</i> -1.14% 303	164.24 197.07	33.66 4.18
55	267.9	0.01
Original	426.86	0.27

Energy-dependent $\overline{\nu}$ perturbations

Cost results from 500 trials:

Background

Trial	Cost	$\chi^2_{k_{\mathrm{eff}}}$
<i>ν</i> -1.14% 303	164.24 197.07	33.66 4.18
55	267.9	0.01
Original	426.86	0.27

- MCNP criticality test suite for trial 303:
 - 39 different ²³⁹Pu criticality benchmarks

$$\bullet \ RMSD = \sqrt{\frac{\sum_{i=1}^{N_{cases}} (k_{\text{eff},i} - k_{\text{eff},i}^{ref})^2}{N_{cases}}} \times 100\%.$$

Energy-dependent $\overline{\nu}$ perturbations

Cost results from 500 trials:

Background

Trial	Cost	$\chi^2_{k_{\mathrm{eff}}}$
<i>v</i> -1.14% 303	164.24 197.07	33.66 4.18
55	267.9	0.01
Original	426.86	0.27

- MCNP criticality test suite for trial 303:
 - 39 different ²³⁹Pu criticality benchmarks

•
$$RMSD = \sqrt{\frac{\sum_{i=1}^{N_{cases}} (k_{\text{eff},i} - k_{\text{eff},i}^{ref})^2}{N_{cases}}} \times 100\%.$$

D
6
6
6

20

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Energy-dependent $\overline{\nu}$ perturbations – 3.0 cm HDPE reflector

60

Multiplet

80

100

Simon R Bolding 19 / 26

U.S. Department of Energy

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Background

Energy-dependent $\overline{\nu}$ perturbations – 3.0 cm HDPE reflector

• Trial 303 data reduced bias in 1st and 2nd moments, averaged over all 5 simulations, by $\sim 35\%$

Simon R Bolding 19 / 26

Trial 303 $\overline{\nu}$ Data

000000

Simon R Bolding 20 / 26

Capture Cross Section – 3.0 cm HDPE reflector

Background

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Capture Cross Section – 3.0 cm HDPE reflector

• Adjust total cross section (σ_t) to compensate for change in σ_c

Background

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Capture Cross Section – 3.0 cm HDPE reflector

ullet Adjust total cross section (σ_t) to compensate for change in σ_c

• Correction is less for other experiments, and $\#s(\sigma_c) = 7 \sigma$

Methodolo 00000 Results ○0000●0

Conclusions

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Background

Fission Cross Section – 3.0 cm HDPE reflector

• Adjust elastic scattering (σ_s) to compensate change in σ_f , for E>1 keV

Background

Fission Cross Section – 3.0 cm HDPE reflector

• Adjust elastic scattering (σ_s) to compensate change in σ_f , for E>1 keV

Results

ullet High accuracy for all simulations: $\sum \chi^2_{red,mult,m} = 14.6$

Simon R Bolding 22 / 26

Methodolog 00000 Results

Simulations of Multiplicity Experiments with Nuclear Data Perturbations

Energy-Integrated $\overline{\nu}$ Shift – 3.0 cm HDPE reflector

Outline

- 1. Background
- 2. Correlated Sampling
- 3. Methodology
- 4. Results
- 5. Conclusions

Summary

Background

- ullet Energy-dependent $\overline{
 u}$ perturbations reduced inaccuracies in multiplicity while preserving $k_{
 m eff}$
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less

Conclusions

000

Summary

Background

- \bullet Energy-dependent $\overline{\nu}$ perturbations reduced inaccuracies in multiplicity while preserving $k_{\rm eff}$
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- Cross Section Results

Conclusions

000

Background

Summary

- ullet Energy-dependent $\overline{
 u}$ perturbations reduced inaccuracies in multiplicity while preserving k_{eff}
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- Cross Section Results
 - Increasing σ_c not effective, relative to uncertainties
 - Increasing σ_f is very effective, as expected

Summary

Background

- ullet Energy-dependent $\overline{
 u}$ perturbations reduced inaccuracies in multiplicity while preserving $k_{
 m eff}$
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- Cross Section Results
 - Increasing σ_c not effective, relative to uncertainties
 - Increasing σ_f is very effective, as expected
- \bullet Multiplicity simulations need to be considered in validation of nuclear data, particularly $\overline{\nu}$

Summary

Background

- Energy-dependent $\overline{\nu}$ perturbations reduced inaccuracies in multiplicity while preserving k_{eff}
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- Cross Section Results
 - Increasing σ_c not effective, relative to uncertainties
 - Increasing σ_f is very effective, as expected
- Multiplicity simulations need to be considered in validation of nuclear data, particularly $\overline{\nu}$
- Covariance sampling methodology has been developed and demonstrated, with promising results

Simon R Bolding 25 / 26

Summary

Background

- ullet Energy-dependent $\overline{
 u}$ perturbations reduced inaccuracies in multiplicity while preserving $k_{
 m eff}$
 - Majority of cross-correlation terms $\mathcal{O}(10^{-4})$ or less
- Cross Section Results
 - Increasing σ_c not effective, relative to uncertainties
 - Increasing σ_f is very effective, as expected
- Multiplicity simulations need to be considered in validation of nuclear data, particularly $\overline{\nu}$
- Covariance sampling methodology has been developed and demonstrated, with promising results
 - Ideally sample all cross sections and $\overline{\nu}$ simultaneously

Conclusions

Simon R Bolding 25 / 26

Questions?

Background

Simulations of Neutron Multiplicity Experiments with Nuclear Data Perturbations

S.R. Bolding¹, C.J. Solomon²

¹ Texas A&M University, College station, TX ²Los Alamos National Laboratory, Los Alamos, NM

ANS National Meeting, 14 November 2013

Backup Slides

 $^1\,{\it Texas}$ A&M University, College station, TX $^2\,{\it Los}$ Alamos National Laboratory, Los Alamos, NM

Summary of Procedure

Summary of Procedure

- FOR each "Trial":
 - 1. Generate a new set of perturbed nuclear data
 - 2. Run MCNP5 mult simulations (5 multiplicity, JEZEBEL)
 - 3. Produce multiplicity distributions
 - 4. Compute χ^2_{red} values and FOM

Summary of Procedure

- FOR each "Trial":
 - 1. Generate a new set of perturbed nuclear data
 - 2. Run MCNP5 mult simulations (5 multiplicity, JEZEBEL)
 - 3. Produce multiplicity distributions
 - 4. Compute χ^2_{red} values and FOM
- The lowest FOM is the most "accurate" trial

Sample Statistics

- Consider independent random samples $\{x_i: i=1,2,\ldots,N\}$ of a variable X with some PDF f(x)
- Statistics are some $f(x_1, x_2, \dots, x_N)$
 - Sample Mean: $\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$
 - Sample Variance: $s^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i \overline{x})^2$
- ullet As $N o \infty$, approach population (true) mean and variance

Energy-dependent $\overline{\nu}$ perturbations

Comparison of Moments

Reflector	Moment	EN	IDF/B-VII.1	$\overline{\nu}$	Trial 303 ₽			Experimental	
		Value	σ_{rel}	# σ away	Value	σ_{rel}	# σ away	Value	σ_{rel}
None	1	1.76E+001	2.68E-003	14.11	1.74E+001	2.68E-003	10.13	1.69E+001	1.38E-003
	2	3.31E+002	2.94E-003	24.43	3.24E+002	2.95E-003	17.59	3.08E+002	1.52E-003
0.5	1	2.40E+001	2.67E-003	16.72	2.37E+001	2.67E-003	11.75	2.29E+001	1.51E-003
	2	6.13E+002	2.90E-003	29.51	5.97E+002	2.90E-003	20.84	5.61E+002	1.65E-003
1.0	1	3.17E+001	2.66E-003	23.52	3.11E+001	2.66E-003	16.67	2.97E+001	1.77E-003
	2	1.07E+003	2.89E-003	41.52	1.03E+003	2.89E-003	29.59	9.38E+002	1.93E-003
1.5	1	3.80E+001	2.67E-003	28.61	3.70E+001	2.67E-003	19.27	3.51E+001	1.84E-003
	2	1.54E+003	2.92E-003	50.25	1.46E+003	2.91E-003	34.14	1.32E+003	2.01E-003
3.0	1	3.19E+001	2.70E-003	34.04	3.06E+001	2.70E-003	19.44	2.90E+001	1.75E-003
	2	1.11E+003	3.04E-003	58.05	1.02E+003	3.03E-003	33.72	9.17E+002	1.96E-003

Nuclear Data Formats

ACE format

```
94239.70c 236.998600 2.53010E-08 08/25/07
94-Pu-239 at 293.6K from endf/b-vii.0 njoy99.248
                                                                       mat 9437
  808738
            94239
                     72098
                                48
                                                14
           360491
                   371402
                           371450
                                    371498
                                              371546
                                                       371594
                                                                598924
  598970
           658265
                   658310
                           733847
                                    805945
                                              805959
                                                       805973
                                                                806478
  806492
           806492
                   806506
                            808735
                                     371781
                                              808738
                                                       715724
                                                                724200
  724211
           724253
                    724259
  1.0000000000E-11 1.03125000000E-11 1.0625000000E-11 1.0937500000E-11
```

ENDF format

7.000000+6	4.519930-9	7.520000+6	0.000000+0		943715102	56
0.000000+0	0.000000+0	0	0	0	0943715 09	9999
0.000000+0	0.000000+0	0	0	0	09437 0 0	0
9.423900+4	2.369986+2	0	0	0	1943731452	1
0.000000+0	0.000000+0	0	452	0	1943731452	2
0.000000+0	0.000000+0	1	5	1326	51943731452	3
1.000000-5	8.000000-3	1.000000+2	2.000000+2	3.000000+2	5.000000+2943731452	4

Capture Cross Section - Case 4

ullet Adjust elastic scattering (σ_s) to compensate for change in σ_c

$$\sigma'_s = \sigma_s - \epsilon_c \qquad \epsilon_c = \alpha \sigma_c \qquad \sigma'_c = \sigma_c + \epsilon_c$$

 \bullet Only for E > 1keV

Trial	χ^2_{mult}	$\chi^2_{k_{eff}}$	$\#s(\sigma_c)$
$\overline{ u}$ -1.14%	130.58	33.7	n/a
$\alpha = 10.0\%$	345.1	0.22	4.04
$\alpha = 4.0\%$	390.9	0.01	1.62
$\alpha = 1.0\%$	417.9	0.01	0.40
Original	426.6	0.27	0

Fission Cross Section – Case 1

Trial	χ^2_{mult}	$\chi^2_{k_{eff}}$	$\#s(\sigma_t)$	$s(\#s(\sigma_t))$
-4.0%	1318.2	167.72	-1.16	0.82
-2.0%	101.0	48.31	-0.58	0.41
-1.6%	27.1	22.97	-0.47	0.33
-1.4%	17.4	22.79	-0.41	0.29
-1.2%	23.1	14.25	-0.35	0.25
-1.0%	47.7	9.37	-0.29	0.21
-0.5%	178.7	1.33	-0.14	0.10
$\overline{ u}$ -1.14%	130.58	33.7	n/a	n/a
Original	426.6	0.27	0	0

Changing Fission and Capture Cross Sections

• Adjust fission to compensate for change in capture

$$\sigma'_f = \sigma_f - \epsilon_c$$
 $\epsilon_c = -\alpha \, \sigma_f$ $\sigma'_c = \sigma_c + \epsilon_c$

$$\epsilon_c = -\alpha \, \sigma_f$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

Trial	χ^2_{mult}	$\#s(\sigma_c)$
$\alpha = 10\%$	90.66	4.31
$\alpha = 4\%$	222.47	1.72
lpha=2%	314.82	0.86
$\overline{ u}$ -1.14%	130.58	n/a
Original%	426.6	0.0

Changing Fission and Capture Cross Sections

• Adjust fission to compensate for change in capture

$$\sigma'_f = \sigma_f - \epsilon_c$$
 $\epsilon_c = -\alpha \, \sigma_f$ $\sigma'_c = \sigma_c + \epsilon_c$

$$\epsilon_c = -\alpha \, \sigma_f$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

Trial	χ^2_{mult}	$\#s(\sigma_c)$
$\alpha = 10\%$	90.66	4.31
$\alpha = 4\%$	222.47	1.72
$\alpha = 2\%$	314.82	0.86
$\overline{ u}$ -1.14%	130.58	n/a
Original%	426.6	0.0

 \bullet $\sigma_{\mathbf{f}} >> \sigma_{\mathbf{c}}$

Effect of altering σ_t

Monoenergetic neutrons, unit atom density, two reaction types: $\sigma_t = \sigma_a + \sigma_b$

- Perturb σ_a : $\sigma_a' = \sigma_a + \epsilon_a$, $\sigma_t' = \sigma_t + \epsilon_t$ $\sigma_b' = \sigma_b$
- Interaction Probability:

$$P(\text{Interaction } i, x) = P(\text{Interaction, } x) * P(\text{Interaction } i \mid \text{Interaction, } x)$$
$$= [1 - e^{-\sigma_t x}] \frac{\sigma_i}{\sigma_t},$$

• Probability for σ'_b :

$$P'(\text{Interaction } b) = p'_b(x) = \left[1 - e^{-\sigma'_t x}\right] \frac{\sigma_b}{\sigma'_t}$$

Effect of altering σ_t

• Expand probability for σ'_b with Taylor series:

$$p_b'(x) = \left[1 - (1 - \sigma_t' x + \frac{(\sigma_t' x)^2}{2} + \mathcal{O}(\sigma_t'^3 x^3))\right] \frac{\sigma_b}{\sigma_t'}$$
$$p_b'(x) = \sigma_b x - \frac{\sigma_t' x^2}{2} - \mathcal{O}(\sigma_t'^2 x^3)).$$

Change in probability:

$$\Delta p_b(x) = p_b'(x) - p_b(x) = -\frac{(\sigma_t' - \sigma_t)x^2}{2} + \mathcal{O}((\sigma_t'^2 - \sigma_t^2)x^3)$$

$$\Delta p_b(x) = -\frac{\epsilon_a x^2}{2} + \mathcal{O}((\sigma_t'^2 - \sigma_t^2)x^3)$$

Simulations

Simulations

- Perform MCNP5 mult simulations
 - Use modified nuclear data from created ACE files
 - The 5 different Pu sphere multiplicity experiments
 - JEZEBEL fast critical benchmark

Simulations

- Perform MCNP5 mult simulations
 - Use modified nuclear data from created ACE files
 - The 5 different Pu sphere multiplicity experiments
 - JEZEBEL fast critical benchmark
- Generate multiplicity distributions with mtool.pl script
 - Non-paralyzable dead time correction

Comparing Results of Simulations

Comparing Results of Simulations

ullet Reduced χ^2 values for the 5 multiplicity experiments and criticality benchmark

$$\chi^2_{red,mult,m} = \frac{1}{N_{bins} - 1} \sum_{i=1}^{N_{bins}} \frac{(R_i - S_i)^2}{\sigma^2(R_i) + \sigma^2(S_i)}$$

$$\chi^2_{red,k_{\text{eff}}} = \frac{(k_{\text{eff}}^{\text{MCNP}} - k_{\text{eff}}^{ref})^2}{\sigma^2(k_{\text{eff}}^{\text{MCNP}}) + \sigma^2(k_{\text{eff}}^{ref})}$$

Comparing Results of Simulations

 \bullet Reduced χ^2 values for the 5 multiplicity experiments and criticality benchmark

$$\chi^2_{red,mult,m} = \frac{1}{N_{bins} - 1} \sum_{i=1}^{N_{bins}} \frac{(R_i - S_i)^2}{\sigma^2(R_i) + \sigma^2(S_i)}$$

$$\chi^2_{red,k_{\text{eff}}} = \frac{(k_{\text{eff}}^{\text{MCNP}} - k_{\text{eff}}^{ref})^2}{\sigma^2(k_{\text{eff}}^{\text{MCNP}}) + \sigma^2(k_{\text{eff}}^{ref})}$$

• Compute a FOM:

$$FOM = \sum_{m=1}^{5} \chi_{red,mult,m}^2 + \chi_{red,k_{eff}}^2$$

• Covariance data: ENDF/B-VII.1 library

• MCNP input nuclear data: ACE format

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files

• MCNP input nuclear data: ACE format

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data

MCNP input nuclear data: ACE format

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - ► Parsing data

MCNP input nuclear data: ACE format

- Covariance data: **ENDF/B-VII.1** library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - Parsing data
 - Constructing full matrices

MCNP input nuclear data: ACE format

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - Parsing data
 - Constructing full matrices
 - Sampling routines
- MCNP input nuclear data: ACE format

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - ► Parsing data
 - Constructing full matrices
 - Sampling routines
- MCNP input nuclear data: ACE format
 - Built Python modules to read, modify, and rewrite nuclear data

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - ► Parsing data
 - Constructing full matrices
 - Sampling routines
- MCNP input nuclear data: ACE format
 - Built Python modules to read, modify, and rewrite nuclear data
- Random samples of $\overline{\nu}(E)$, rather than linear optimization (LO)

- Covariance data: ENDF/B-VII.1 library
 - Python modules at LANL allow reading of ENDF files
 - Integrated ability to handle certain covariance data
 - ► Parsing data
 - Constructing full matrices
 - Sampling routines
- MCNP input nuclear data: ACE format
 - Built Python modules to read, modify, and rewrite nuclear data
- Random samples of $\overline{\nu}(E)$, rather than linear optimization (LO)
 - LO would not preserve statistical accuracy
 - Under-constrained problem, infinite solutions

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma_t' = \sigma_t + \epsilon_c \qquad \epsilon_c = \alpha \, \sigma_c \qquad \sigma_c' = \sigma_c + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma_t' = \sigma_t + \epsilon_c \qquad \epsilon_c = \alpha \, \sigma_c \qquad \sigma_c' = \sigma_c + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma_t' = \sigma_t + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\epsilon_c = \alpha \, \sigma_c \qquad \qquad \sigma_c' = \sigma_c + \epsilon_c$$

Trial	χ^2_{mult}	$\chi^2_{k_{eff}}$	$\#s(\sigma_t)$	$\#s(\sigma_c)$
	130.6	33.66	n/a	n/a
$\alpha = 16.0\%$	142.6	1.86	3.47	6.90
$\alpha = 8.0\%$	237.5	0.51	1.74	3.45
$\alpha = 2.0\%$	371.2	0.02	0.43	0.86
$\alpha = 1.0\%$	396.4	0.16	0.22	0.43
Original	426.6	0.27	0	0

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma_t' = \sigma_t + \epsilon_c \qquad \epsilon_c = \alpha \, \sigma_c \qquad \sigma_c' = \sigma_c + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma'_t = \sigma_t + \epsilon_c \qquad \epsilon_c = \alpha \, \sigma_c \qquad \sigma'_c = \sigma_c + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\sigma_c' = \sigma_c + \epsilon_c$$

• Adjust total cross section (σ_t) to compensate for change in σ_c

$$\sigma_t' = \sigma_t + \epsilon_c$$

$$\epsilon_c = \alpha \, \sigma_c$$

$$\epsilon_c = \alpha \, \sigma_c \qquad \qquad \sigma_c' = \sigma_c + \epsilon_c$$

Trial	χ^2_{mult}	$\chi^2_{k_{eff}}$	$\#s(\sigma_t)$	$\#s(\sigma_c)$
□ -1.14%	130.6	33.66	n/a	n/a
$\alpha = 16.0\%$	142.6	1.86	3.47	6.90
$\alpha = 8.0\%$	237.5	0.51	1.74	3.45
$\alpha = 2.0\%$	371.2	0.02	0.43	0.86
$\alpha = 1.0\%$	396.4	0.16	0.22	0.43
Original	426.6	0.27	0	0

Fission Cross Section

• Adjust elastic scattering (σ_s) to compensate for change in σ_f

$$\sigma'_s = \sigma_s + \epsilon_f \qquad \epsilon_f = -\alpha \, \sigma_f \qquad \sigma'_f = \sigma_f - \epsilon_f$$

$$\epsilon_f = -\alpha \, \sigma_f$$

$$\sigma_f' = \sigma_f - \epsilon$$

• Only for E > 1keV

Fission Cross Section

ullet Adjust elastic scattering (σ_s) to compensate for change in σ_f

$$\sigma'_s = \sigma_s + \epsilon_f \qquad \epsilon_f = -\alpha \, \sigma_f \qquad \sigma'_f = \sigma_f - \epsilon_f$$

 \bullet Only for E > 1keV

Trial	χ^2_{mult}	$\chi^2_{k_{eff}}$
$\alpha = 2.0\%$	65.8	29.6
$\alpha = 1.5\%$	14.6	24.4
$\alpha = 1.0\%$	56.5	9.4
$\alpha = 0.5\%$	195.7	3.0
$\overline{ u}$ -1.14%	130.58	33.7
Original%	426.6	0.0

ullet More energy-dependent $\overline{
u}$ trials

Simon R. Bolding 43 / 26

- ullet More energy-dependent $\overline{
 u}$ trials
- ullet Energy-dependent σ_f trials

- ullet More energy-dependent $\overline{
 u}$ trials
- ullet Energy-dependent σ_f trials
 - ullet σ_f has 400 covariance energy groups vs 50 for $\overline{
 u}$
 - Need constrained global optimization method

- ullet More energy-dependent $\overline{
 u}$ trials
- ullet Energy-dependent σ_f trials
 - ullet σ_f has 400 covariance energy groups vs 50 for $\overline{
 u}$
 - Need constrained global optimization method

