20. Gleichmäßige Stetigkeit

Vereinbarung: In diesem Paragraphen seien stets: $\emptyset \neq D \subseteq \mathbb{R}, f: D \to \mathbb{R}$ eine Funktion.

Erinnerung: Sei $f \in C(D)$, $x_0 \in D$ und $\varepsilon > 0$. 17.1 $\Longrightarrow \exists \delta = \delta(\varepsilon, x_0)$ mit: $(*) |f(x) - f(x_0)| < \varepsilon \ \forall x \in D$ mit $|x - x_0| < \delta$ Im allgemeinen hängt δ von ε und x_0 ab.

Definition

f heißt auf D gleichmäßig stetig : $\iff \forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 : (**) |f(x) - f(z)| < \varepsilon \ \forall x, z \in D \ \text{mit} |x - z| < \delta.$

Beachte: Ist f gleichmäßig stetig auf $D \implies f \in C(D)$; Die Umkehrung ist im allgemeinen falsch.

Beispiel

 $\begin{array}{ll} D=[0,\infty), f(x):=x^2. \text{ Klar: } f\in C(D). \text{ Annahme: } f \text{ ist auf } D \text{ gleichmäßig stetig. Dann} \\ \text{existiert zu } \varepsilon=1 \text{ ein } \delta>0: |x^2-z^2|<1 \ \forall x,z\in D \text{ mit } |x-z|<\delta. \text{ Sei } x\in D. \ z:=x+\frac{\delta}{2} \Longrightarrow |x-z|=\frac{\delta}{2} \Longrightarrow |x^2-z^2|=|x+z||x-z|=(2x+\frac{\delta}{2})\frac{\delta}{2}=x\delta+\frac{\delta^2}{4}<1 \Longrightarrow x\delta<1 \Longrightarrow \delta<\frac{1}{x}. \\ \text{Also: } \delta<\frac{1}{x} \ \forall x>0 \stackrel{x\to\infty}{\Longrightarrow} \delta\leq 0, \text{ Widerspruch!} \end{array}$

Definition

$$f$$
 heißt auf D Lipschitz stetig : $\iff \exists L \ge 0 : \underbrace{|f(x) - f(z)| \le L|x - z|}_{(***)} \ \forall x, z \in D$

Satz 20.1 (Stetigkeitsstätze)

- (1) Ist f auf D Lipschitz stetig $\implies f$ ist auf D gleichmäßig stetig
- (2) Ist D beschränkt und abgeschlossen und $f \in C(D) \implies f$ ist auf D gleichmäßig stetig (Satz von Heine).

Reweis

- (1) Sei $L \ge 0$ und es gelte (***). O.B.d.A.: L 0. Sei $\varepsilon > 0$. $\delta := \frac{\varepsilon}{L}$. Seien $x, z \in D$ und $|x z| < \delta \implies |f(x) f(z)| \le L|x z| < L\delta = \varepsilon$
- (2) Annahme: f ist auf D nicht gleichmäßig stetig $\Longrightarrow \exists \varepsilon > 0$: (**) ist für kein $\delta > 0$ richtig. $\Longrightarrow \forall \delta > 0 \exists x = x(\delta), z = z(\delta) \in D$: $|x z| < \delta$ aber $|f(x) f(z)| \ge \varepsilon$. $\Longrightarrow \forall n \in \mathbb{N} \exists x_n, z_n : |x_n z_n| < \frac{1}{n}$, aber $|f(x_n) f(z_n)| \ge \varepsilon$. D beschränkt $\Longrightarrow (x_n)$ beschränkt $\Longrightarrow (x_n)$ enthält eine konvergente Teilfolge $(x_{n_k}), x_0 := \lim x_{n_k}$. D abgeschlossen $\Longrightarrow x_0 \in D$. $|x_{n_k} z_{n_k}| \le \frac{1}{n_k} \ \forall k \in \mathbb{N} \implies z_{n_k} x_{n_k} \to 0 (k \to \infty) \Longrightarrow z_{n_k} = z_{n_k} x_{n_k} + x_{n_k} \to x_0$. f stetig $\Longrightarrow |f(x_{n_k}) f(z_{n_k})| \to |f(x_0) f(x_0)| = 0$. Widerspruch zu $|f(x_{n_k}) f(z_{n_k})| \ge \varepsilon \ \forall k \in \mathbb{N}$

Beispiel

 $D = [0, 1], f(x) := \sqrt{x}$. Satz $\implies f$ ist auf D gleichmäßig stetig. Annahme: $\exists L > 0 : |\sqrt{x} - \sqrt{z}| \le L|x - z| \ \forall x, z \in [0, 1] \implies \sqrt{x} \le Lx \ \forall x \in [0, 1] \implies 1 \le L\sqrt{x} \ \forall x \in (0, 1] \stackrel{x \to 0}{\Longrightarrow} 1 \le 0$, Widerspruch!