Heuristic Analysis

AIND - Feb Cohort Peeradej Pete Tanruangporn Due 16 march 2017

Role of Heuristics

In the context of game-playing AI, the role of heuristics (or evaluation functions) is to evaluate the input state of the game and help select moves. This is critical when the search space is too big. The AI agent would run out of time, and it would still have to make some move. An evaluation function helps it make those decisions, given the state of board. Put differently, heuristics serve as the best estimate of a complete search.

Good Heuristics

A good evaluation function should be accurate and fast. Being accurate means that the AI agent will make the correct move that gives it the highest chance of winning. Being fast allows the AI agent to search deeper.

Accuracy vs Speed tradeoffs

Designing an evaluation function that out performs intuitive basic types in both accuracy and speed is non-trivial. Frequently it requires a trade-off that may not be worth it. Higher accuracy evaluation functions usually require more computation, slowing it down, while faster functions are often less accurate. The tradeoffs are not easily overcome and a lot of high performing evaluation functions end up being hand-crafted, based on game opening books, or people's knowledge of different piece's worth in various situations in the game.

My three custom heuristics (code in appendix)

- 1. Inverse Open moves (aka: KILL MODE)
- 2. Aggressive Improved
- 3. Improved + Distance/8 (Best performance)

Inverse Open moves

How would an agent that solely seeks to minimize the opponents move compare to one that seeks to solely seeks to maximize? Would the result be even against MM_Open?

Result

The result is horrible, giving a lower performance against every type of player. I guess turning a blind eye to one's survival is never a good strategy, ever. Further, I imagine that knights have a much harder time trying to find path that it could block each other. When it can't, then it simply has no heuristics.

Playing Matches:

Match 1: ID_Improved vs	Random	Result: 930 to 70
Match 2: ID_Improved vs	MM_Null	Result: 821 to 179
Match 3: ID_Improved vs	MM_Open	Result: 522 to 478
Match 4: ID_Improved vs	MM_Improved	Result: 500 to 500
Match 5: ID_Improved vs	AB_Null	Result: 634 to 366
Match 6: ID_Improved vs	AB_Open	Result: 431 to 569
Match 7: ID_Improved vs	AB_Improved	Result: 386 to 614

Results:

ID Improved 60.34%

Evaluating: Student

Playing Matches:

Match 1:	Student	vs	Random	Result: 805 to 195
Match 2:	Student	vs	MM_Null	Result: 554 to 446
Match 3:	Student	vs	MM_Open	Result: 271 to 729
Match 4:	Student	VS	MM_Improved	Result: 264 to 736
Match 5:	Student	VS	AB_Null	Result: 365 to 635
Match 6:	Student	vs	AB_Open	Result: 228 to 772
Match 7:	Student	VS	AB_Improved	Result: 217 to 783

Results:

Student 38.63%

Aggressive Improved

The baseline algorithm balances the agent's move left with the opponent's. My hypothesis is that a more aggressive version of this should outperform the baseline because as a rule of thumb in games and sports, offense is the best defense. A multiplier of 1.1 is introduced to the code that counts the opponent's moves. The multiplier is small as I only want it to break ties, preferring to reduce the opponent's moves rather than increasing one's moves, when the score is equal.

Result

This heuristics gave a very slight improve performance at 1%. However, gains mostly came from playing against bad heuristics (MM_null and MM_open) and there was no change for MM_improved and the AB branch. I believe this is because against worse heuristics (or bad players), playing aggressive can actually help corner the opponent. Against a good heuristic or deeper search however, preferring a type of move with the same score as another made no difference.

Additional test runs with higher multiple of 1.5 and 2.0 performed quite worse than the baseline. Tampering with moves selected by basic move counts have had steep cost.

Evolucting: ID Improv

Evaluating: ID_Improved

Playing Matches:

Match 1: ID_Improved vs	Random	Result: 930 to 70
Match 2: ID_Improved vs	MM_Null	Result: 830 to 170
Match 3: ID_Improved vs	MM_Open	Result: 492 to 508
Match 4: ID_Improved vs	MM_Improved	Result: 500 to 500
Match 5: ID_Improved vs	AB_Null	Result: 620 to 380
Match 6: ID_Improved vs	AB_Open	Result: 426 to 574
Match 7: ID_Improved vs	AB_Improved	Result: 382 to 618

Results:

ID Improved 59.71%

Evaluating: Student

Playing Matches:

Match 1:	Student	VS	Random	Result: 941 to 59
Match 2:	Student	vs	MM_Null	Result: 854 to 146
Match 3:	Student	vs	MM_Open	Result: 524 to 476
Match 4:	Student	vs	MM_Improved	Result: 502 to 498
Match 5:	Student	vs	AB_Null	Result: 618 to 382
Match 6:	Student	vs	AB_Open	Result: 427 to 573
Match 7:	Student	VS	AB_Improved	Result: 383 to 617

Results:

Student 60.70%

Improved + Distance/8

This heuristics came from a the idea that there is probably different strategical value between being in the center of the board, and being in the fringe. It also derives insight from a "knight's tour", which is a puzzle regarding how a knight should move so that it eventually traverses all over the board without repeating any position. The solution to a knight's tour mostly involves a knight traversing on the side of the board. From that, I reasoned that in the long term, being on the "side" of the board probably creates more chances of survival. To incorporate that insight into the heuristics, we added distance into the baseline score. The distance is divided by 8 because we only want the heuristics to help break ties, preferring the side over the center, without sacrificing better net-worth moves just to avoid the center.

Result

This algorithm produced good improvement at about 2% increased in win-chance over baseline. Against Random, it does slightly worse probably because searching deeper would be more useful, but the slight increase in win rate in the rest, especially against MM_open makes up for it. The fact that it does slightly better against decent opponents, MM_improved, and AB_improved, signifies that being on the side of the board has real strategic or survival values that may be found with a deeper search.

Evaluating: ID_Improved

Playing Matches:

Random	Result: 935 to 65
MM_Null	Result: 829 to 171
MM_Open	Result: 515 to 485
MM_Improved	Result: 500 to 500
AB_Null	Result: 634 to 366
AB_Open	Result: 415 to 585
	MM_Null MM_Open MM_Improved AB_Null

Results:

ID_Improved 59.79%

Evaluating: Student (Improved + Distance/8)

Playing Matches:

Match 1:	Student	VS	Random	Result: 923 to 77
Match 2:	Student	VS	MM_Null	Result: 850 to 150
Match 3:	Student	VS	MM_Open	Result: 599 to 401
Match 4:	Student	VS	MM_Improved	Result: 512 to 488
Match 5:	Student	VS	AB_Null	Result: 639 to 361
Match 6:	Student	VS	AB_Open	Result: 433 to 567
Match 7:	Student	vs	AB_Improved	Result: 367 to 633

Results:

Student 61.76%

Recommendation

Of my three heuristics, I would recommend the third one. It gave the most improvement in performance, as seen in the graph, especially against decent heuristics such as Open and Improved. The slight drop in win against random can ignored because winning against a random agent is trivial.

Appendix

1. Inverse Open_moves

```
opp_moves = len(game.get_legal_moves(opponent))
return -(opp_moves)
```

2. Aggressive improved

```
own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(opponent))
diff = float(own_moves - 1.1 * opp_moves)
return diff
```

3. Improved + Distance/8 (Best performance)

```
row, col = game.get_player_location(player)
dist_row = abs(2 - row)
```

```
dist_y = abs(2 - col)
dist = (dist_row + dist_y)/8

own_moves = len(game.get_legal_moves(player))
opp_moves = len(game.get_legal_moves(opponent))
diff = float(own_moves - opp_moves)

return diff + dist
```