Post-hoc distribution-free calibration

(Mixture of two Gaussians in two dimensions)

(Mixture of three Gaussians in two dimensions)

Part 2: Calibrated probabilities

- Top-label calibration
 C. Gupta, A. Ramdas ICLR, 2022 arxiv
- Distribution-free calibration guarantees for histogram binning without sample splitting
 C. Gupta, A. Ramdas
 ICML, 2021 arxiv proc
- Distribution-free uncertainty quantification for classification under label shift
 A. Podkopaev, A. Ramdas
 UAI, 2021 arxiv
- Distribution-free binary classification: prediction sets, confidence intervals and calibration
 C. Gupta, A. Podkopaev, A. Ramdas NeurIPS, 2020 arxiv proc talk

First: binary, later: multiclass

$$\Pr(Y_{n+1} \in C(X_{n+1})) \ge 1 - \alpha$$

Prediction sets

Uninformative (binary)

Confidence intervals

$$\Pr(\mathbb{E}[Y_{n+1} | X_{n+1}] \in C(X_{n+1})) \ge 1 - \alpha$$

Trivial (binary)

Calibration

$$\mathbb{E}[Y_{n+1} | f(X_{n+1})] \approx f(X_{n+1})$$

Calibration in the binary setting

A function $f: \mathcal{X} \to [0,1]$ returns calibrated probabilities if

$$\mathbb{E}[Y_{n+1} | f(X_{n+1})] = f(X_{n+1})$$

Eg: Suppose we predict $f(X_{n+1}) \approx 0.3$ for 100 points, then ≈ 30 of those will have label one, and the rest label zero.

Reality: exact calibration is impossible with a finite data of size n.

Typically, trained classifiers are not automatically calibrated.

"Post-hoc calibration" method $\mathscr{A}:(g,D_n)\mapsto f_n$

(Take in a classifier and some "calibration dataset", output approximately calibrated classifier)

We say that ${\mathscr A}$ is distribution-free (ϵ_n,α) -calibrated if

 $\forall P \text{ over } \mathcal{X} \times \{0,1\}, P(|\mathbb{E}[Y_{n+1}|f_n(X_{n+1})] - f_n(X_{n+1})| > \epsilon_n) \le \alpha,$

Calibration in the binary setting

Theorem (informal):

Asymptotic distribution-free calibration is impossible if $\lim_{n\to\infty} \text{Range}(f_n)$ is uncountable.

(The output of the calibrated classifier has to be "discrete")

Asymptotic distribution-free calibration is impossible if $\mathcal{A}(\cdot, D_n)$ is an injective map.

(Many input classifiers must be mapped to the same output classifier)

Split Binning

Training data Random split

$$A = \mathcal{A}(D_1) : \mathcal{X} \to [0,1]$$

(generalize to any number of bins)

$$J(A_{n+1}) = \prod_{i \in \mathbb{N}} J(A_{n+1}) = \prod_{$$

 $\left(|\mathbb{E}[Y_{n+1}|f(X_{n+1})] - f(X_{n+1})| \le c\hat{\sigma}\sqrt{\frac{\ln(1/\alpha)}{n}} \right)$ no assumptions on distribution P_{XY} or algorithm A

Zadrozny, Elkan'99

Gupta*, Podkopaev*, Ramdas'20

Gupta, Ramdas'2 I

Improve to "uniform mass binning"

 \rightarrow smaller half of $A(X_i)$

 \rightarrow larger half of $A(X_i)$

Sharpness?

One cannot guarantee sharpness without distributional assumptions.

Number of bins, properties of P_{XY} and quality of original classifier, all together determine sharpness, but not calibration.

Eg: consider the setting where P(Y = 1 | X) = 0.5, i.e. $Y \perp X$. No classifier can be sharp, and not all classifiers are calibrated.

(Halfway)

Distribution-free binary classification: prediction sets, confidence intervals and calibration

Chirag Gupta*1, Aleksandr Podkopaev*1,2, Aaditya Ramdas^{1,2}

4.3 Distribution-free calibration in the online setting

Use "confidence sequences" (or anytime-valid confidence intervals) for estimating the bias (the fraction of ones) in each bin.

Covariate shift or Label shift

The classifier A is assumed to output an uncalibrated probability vector.

Size of bin determines sharpness

$$|\mathcal{Y}| = 3$$

"Sierpinski binning"

For held-out calibration data:

 $A(X_i) = (0.9, 0.05, 0.05)$ gets mapped to top triangle bin, $A(X_i) = (0.4, 0.3, 0.3)$ gets mapped to middle triangle bin.

For test data:

Use $A(X_{n+1})$ to identify the bin.

Report empirical distribution of labels in the bin.

Results in distribution-free multi-class calibration.

What if there are too many classes?

The classifier A is assumed to output an uncalibrated score vector.

Number of bins grows exponentially large in $|\mathcal{Y}|$.

"Full-vector/joint calibration" or "marginal calibration" is not practical. For any given X_{n+1} , we care little about nearly impossible labels.

We define a new notion called "top-label calibration". Intuitively, if $A(X_{n+1}) = (0.1, 0.8, 0.05, 0.01, 0.01, 0.01, 0.01, \cdots)$, then we care most about whether the 0.8 is not over/under-confident.

But the top label is not a fixed label, it is a data-dependent label, so one has to be careful with analysis.

Can achieve top-label calibration without distributional assumptions.

Top-label calibration

"Post-hoc calibration" method $\mathscr{A}:(f,D)\mapsto(c,h)$

(Take in a classifier and a calibration dataset, output top-label and its predicted probability)

We say that \mathscr{A} is distribution-free (ϵ, α) top-label-calibrated if

$$\forall P, P[Y = \ell \mid c(X) = \ell, h(X) = r] \approx_{\epsilon, \alpha} r$$

"Confidence calibration" (Guo et al. 17) only conditions on h(X). Not intuitive (we always output c,h), and empirically fails to calibrate.

Class-wise calibration asks that $\forall \ell \in [L], P(Y = \ell \mid h_{\ell}(X)) \approx h_{\ell}(X)$

Full-vector/joint calibration asks that $P(Y = \ell \mid h(X)) \approx h_{\ell}(X)$

TopLabel ECE := $\mathbb{E} | LHS - RHS |$

(Extra slides)

Reducing top-label calibration to binary calibration

1. For each class *l*, create a separate dataset:

$$D_l = \{(X_i, \mathbf{1}\{Y_i = l\}) : c(X_i) = l\}$$

$$D = \{(X_1, 2), (X_2, 1), \dots\}$$

$$c(\cdot)=1$$

$$D_1 = \{(X_1, 0), (X_2, 1)\}$$

2. For each *l*, learn a different calibrated predictor $h_l: \mathcal{X} \to [0,1]$:

$$h_l = \text{binary-calibrator}(D_l, g)$$

3. Merge the h'_l s to form a single $h: \mathcal{X} \to [0,1]$, given by

$$h(x) = h_{c(x)}(x)$$

Theorem (informal): Fix number of points per bin k (say 50). For any distribution, TopLabel ECE $\leq \sqrt{1/2k}$ (= 0.1).

Top-label histogram binning performs better than temperature scaling on CIFAR-10

[Guo et al. 2017]

- The improvement in performance is higher for top-label maximum calibration error (MCE)
- We also propose a <u>class-wise</u> version of histogram binning that performs better than temperature scaling on CIFAR-10 and CIFAR-100