

Model Development Phase Template

Date	15 July 2024
Team ID	739648
Project Title	Smartwatch Price Prediction
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
from sklearn.ensemble import RandomForestRegressor

rfr = RandomForestRegressor(n_estimators = 50,

max_dep+b______

min_wei_Loading... on_leaf = 0.05,

max_features = 0.8,

random_state = 42)

rfr.fit(X_train,y_train)

RandomForestRegressor

RandomForestRegressor(max_depth=8, max_features=0.8,

min_weight_fraction_leaf=0.05, n_estimators=50,

random_state=42)
```


Model Validation and Evaluation Report:

Model	Classification Report	Score	RMS Values
Linear Regression	<pre>predict_test = lr.predict(X_test) error_score_lr_test = r2_score(y_test, predict_test) print("R2 error is: ",error_score_lr_test) mse = mean_squared_error(y_test, predict_test) rmse_lr_test = np.sqrt(mse) print('Root Mean Squared Error:', rmse_lr_test)</pre>	0.85	R2 error is: 0.16590308669836795 Root Mean Squared Error: 172.25078376734078

Decision Tree	<pre>predict_test_dtr = dtr.predict(X_test) error_score_dtr_test = r2_score(y_test, predict_test_dtr) print("R2 error is:",error_score_dtr_train) mse = mean_squared_error(y_test, predict_test_dtr) rmse_dtr_test = np.sqrt(mse) print('Root Mean Squared Error:', rmse_dtr_test)</pre>	0.90	R2 error is: 0.3429614927518523 Root Mean Squared Error: 170.69978774403583
Gradient Boosting	<pre>predict_test_gbr = gbr.predict(X_test) error_score_gbr_test = r2_score(y_test, predict_test_gbr) print("R2 error is: ",error_score_gbr_test) mse = mean_squared_error(y_test, predict_test_gbr) rmse_gbr_test = np.sqrt(mse) print('Root Mean Squared Error:', rmse_gbr_test)</pre>	0.89	R2 error is: 0.6921013198704671 Root Mean Squared Error: 104.65424845542633
Random Forest Tree	<pre>predict_test_rfr = rfr.predict(X_test) error_score_rfr_test = r2_score(y_test, predict_test_rfr) print("R2 error is: ", error_score_rfr_test) mise = mean_squared error(y_test, predict_test_rfr) rmse_rfr_test = np.sqrt(mse) print('Root Mean_Squared Error:', rmse_rfr_test)</pre>	0.92	R2 error is: 0.4682019160232922 Root Mean Squared Error: 137.5391492918106