Projektive Räume und Projektive Abbildungen

Themenbereich Projektive Geometrie

Inhalt

- Projektiver Raum, Projektive Koordinaten
- Vergleich zu Affinen Räumen
- Abschluss eines affinen Raums
- Projektive Unabhängigkeit
- Anwendungsbeispiel Dobble

Unendlich ferne Punkte

Der projektive Raum $\mathbb{P}(V)$

Sei V ein Vektorraum über einem Körper K.

Mit $\mathbb{P}(V)$ bezeichnen wir die Menge der eindimensionalen Untervektorräume von V.

Das ist die Menge der Ursprungsgeraden.

Projektive Abbildungen

Definition: Eine Abbildung $f: \mathbb{P}(V) \to \mathbb{P}(W)$ heißt *projektiv*, wenn es eine injektive lineare Abbildung $F: V \to W$ gibt, mit $f(K \cdot v) = K \cdot F(w)$ für jedes vom Nullvektor verschiedene $v \in V$. Man schreibt dafür kurz $f = \mathbb{P}(F)$.

Eine bijektive projektlive Abbildung heißt *Projektivität*.

Projektive Abbildungen

Für zwei injective lineare Abbildungen $F, F': V \to W$ gilt $\mathbb{P}(F) = \mathbb{P}(F) \Leftrightarrow$ es gibt ein $\lambda \in K$ mit $F' = \lambda \cdot F$

Der projektive Raum

Beispiel 1

Für haben wir eine kanonische Einbettung:

$$\mathbb{P}^n(K) \to \mathbb{P}^m(K), \quad (X_0: \ldots: X_n) \mapsto (X_0: \ldots: X_n: 0: \ldots: 0)$$

Homogene Koordinaten

• Ist $V = K^{n+1}$ und $v = (x_0, \dots, x_n)$ ungleich dem Nullvektor so setzen wir $(x_0 : \dots : x_n) = K \cdot (x_0, \dots, x_n)$

Inhomogene Koordinaten

- Projektive Gerade f
 ür dim Z = 1
- Projektive Ebene für dim Z = 2
- Projektive Hyperebene für dim $Z = \dim \mathbb{P}(V) 1$

Zusammenhang zu affinen Räumen

Affine Räume

- Spezialfall von projektiven Räumen
- Weist bestimmte Eigenschaften von Vektorräumen auf, aber ohne festen Ursprung oder Maßstab
- Erlauben Definition von Punkten, Geraden und Ebenen, wobei Parallelität und Verhältnisse unabhängig vom Koordinatensystem sind
- Affine Abbildungen bewahren Verhältnisse von Punkten auf Geraden

Zusammenhang zu affinen Räumen

Projektive Räume

- Projektive Räume Erweiterung affiner Räume
- Entsteht durch Erweiterung mit "unendlichen Punkten"
- Alle Geraden schneiden sich
- Einheitliche Darstellung von Punkten, die im affinen Raum unendlich weit entfernt sind

2 Hyperebene

- Wollen nun beweisen: man kann mit einer beliebigen Hyperebene des Projektiven Raums durch ihr Entfernen den affinen Raum erhalten
- Wie kann man Unterräume und Abbildungen ausdehnen oder einschränken?

Projektiver Abschluss im affinen Raum R

$$\iota: \mathsf{IR} \to \mathsf{S}_1$$

Sei V ein K Vektorraum und $H \subset \mathbb{P}(K)$ eine Hyperebene. Dann kann man das Komplement $X := \mathbb{P}(V) \backslash H$ so zu einem affinen Raum $(X, T(X), \tau)$ machen, dass folgendes gilt:

A) Es gibt eine kanonische bijektive Abbildung $H o X_{\infty}$

Sei V ein K Vektorraum und $H \subset \mathbb{P}(V)$ eine Hyperebene. Dann kann man das Komplement $X := \mathbb{P}(V) \backslash H$ so zu einem affinen Raum $(X, T(X), \tau)$ machen, dass folgendes gilt:

B.1) Für jeden projektiven Unterraum $Z \subset \mathbb{P}(V)$ mit $Z \not\subset H$ ist $Z \cap X$ ein affiner Unterraum von X mit $dim(Z \cap X) = dim \ Z$ und $dim(Z \cap H) = dim \ Z - 1$

Sei V ein K Vektorraum und $H \subset \mathbb{P}(K)$ eine Hyperebene. Dann kann man das Komplement $X := \mathbb{P}(V) \backslash H$ so zu einem affinen Raum $(X, T(X), \tau)$ machen, dass folgendes gilt:

B.2) Die durch $Z \mapsto Z \cap X$ definierte Abbildung von der Menge der nicht in H enthaltenen projektiven Unterräume $Z \subset \mathbb{P}(V)$ in die Menge der nichtleeren affinen Unterräume von X ist bijektiv.

Sei V ein K Vektorraum und $H \subset \mathbb{P}(K)$ eine Hyperebene. Dann kann man das Komplement $X := \mathbb{P}(V) \backslash H$ so zu einem affinen Raum $(X, T(X), \tau)$ machen, dass folgendes gilt:

B.3) Insbesondere kann man jeden affinen Unterraum $Y\subset X$ zu einem projektiven Unterraum $\overline{Y}\subset \mathbb{P}(V)$ mit $\overline{Y}\cap X=Y$ abschließen

Sei V ein K Vektorraum und $H \subset \mathbb{P}(K)$ eine Hyperebene. Dann kann man das Komplement $X := \mathbb{P}(V) \backslash H$ so zu einem affinen Raum $(X, T(X), \tau)$ machen, dass folgendes gilt:

C) Für jede Projektivität $f: \mathbb{P}(V) \to \mathbb{P}(V)$ mit f(H) = H

 $\operatorname{von} f|X:X\to X$ eine Affinität und die durch $f\mapsto f|X$ definierte Abbildung von der Menge der Projektivitäten $\mathbb{P}(V)$, die H in sich überführen in die Menge der Affinitäten von X ist bijektiv.

Insbesondere kann man jede Affinität g von X zu einer Projektivität \overline{g} von $\mathbb{P}(X)$ mit $\overline{g} \mid X = g$ und $\overline{g}(H) = H$ fortsetzen

3) Satz

Zu jedem affinen Raum $(X,T(X),\tau)$ gibt es einen projektiven Raum $\mathbb{P}(V)$ mit der Hyperebene H und der Affinität $h:X\to \mathbb{P}(V)\backslash H$ wobei $\mathbb{P}(V)\backslash H$ zu einem affinrn Raum gemacht ist

4 Eindeutigkeit

- Wissen aus der linearen Algebra, dass eine lineare Abbildung zwischen Vektorräumen eindeutig, wenn man die Bilder der Basisvektoren vorschreibt
- Dies ermöglicht Beschreibung linearer Abbildungen durch Matrizen
- Dies wollen wir auch in der projektiven Geometrie nutzen, und müssen untersuchen, wie weit eine projektlive Abbildung durch die Vorgabe der Bilder endlich vieler Punkte festgelegt ist

4 Definition

Ein $(r+1) - tupel (p_0, \ldots, p_r)$ von Punkten eines projektiven Raums $\mathbb{P}(V)$ heißt projektiv unabhängig, wenn eine der folgenden äquivalenten Bedingungen erfüllt ist:

- i) Es gibt linear unabhängige Vektoren $(v_0,\ldots,v_r)\in V$ mit $p_i=K\cdot v_i$ für $i=0,\ldots,r$.
- ii) Jedes $(r+1) tupel(v_0, \dots, v_r)$ von Vektoren aus V mit $p_i = K \cdot v_i$ für $i=0,\dots,r$ ist linear unabhängig.
- iii) $dim(p_0 \lor ... \lor p_r)$

4 Projektive Basis

- Ein $(n+2) tupel(p_0, \ldots, p_{n+1})$ von Punkten aus $\mathbb{P}(V)$ heißt Projektile Basis, wenn je n+1 Punkte davon projektiv unabhängig sind.
- Dabei ist $n = dim \mathbb{P}(V)$

4 Beispiel

In $\mathbb{P}_n(K)$ ist eine kanonische projektlive Basis gegeben durch

```
P_0: (1:0:...:0:0)
P_1: (0:1:0:...:0)
P_n: (0:0:...:0:1)
P_{n+1}: (1:1:...:1:1)
```


4 Vergleich

Beide Darstellungen sind möglich

5 Kanonische Basis

• Die kanonische Basis des projektiven Raumes $\mathbb{P}_n(K)$ erhält man aus der kanonischen Basis $(1,...,0),\ldots,(0,...1)$ des K^{n+1} und dem zusätzlichen Vektor (1,...,1). Eine derartige Basis von V gibt es zu jeder projektiven Basis von $\mathbb{P}(V)$.

5 Lemma

• Ist (p_0, \ldots, p_{n+1}) eine projektlive Basis von $\mathbb{P}(V)$, so gibt es eine Basis (v_0, \ldots, v_n) von V mit

$$P_0$$
: $K'v_0$,
 \vdots
 P_n : $K'v_n$,
 P_{n+1} : $K'(v_0 + ... + v_n)$

• Seien $\mathbb{P}(V)$ und $\mathbb{P}(W)$ projektlive Räume gleicher Dimension mit projektiven Basen (p_0,\ldots,p_{n+1}) und (q_0,\ldots,q_{n+1}) . Dann ergibt sich genau eine Projektivität $f:\mathbb{P}(V)\to\mathbb{P}(W)$ mit $f(p_i)=q_i$ für $i=0,\ldots,n+1$.

6 Projektives Koordinatensystem

In einem projektiven Raum $\mathbb{P}(V)$ der Dimension n über dem Körper K versteht man unter einem (projektiven) Koordinatensystem eine Projektivität $k: \mathbb{P}_n(K) \to \mathbb{P}(V)$

Ist $p = k(x_o : ... : x_n) \in \mathbb{P}(V)$, so heißt $(x_o : ... : x_n)$ ein homogener Koordinatenvektor des Punktes p. Man beachte, dass er nur bis auf einen Skalar $\lambda \neq 0$ eindeutig bestimmt ist (vgl 1.2)

6 Projektives Koordinatensystem

Ist eine projektive Basis (p_0, \dots, p_{n+1}) von $\mathbb{P}(V)$ gegeben, so gibt es dazu nach 2.5. genau ein produktives Koordinaten system $k: \mathbb{P}_n(K) \to \mathbb{P}(V)$

$$P_0 = k(1:0:...:0:0)$$

 $P_1 = k(0:1:0:...:0)$
 $\dots P_n = k(0:0:...:0:1)$
 $P_{n+1} = k(1:1:...:1:1)$

Anwendungen und Bedeutung

- Computergrafik
- Computer Vision
- Algebraische Geometrie
- Dobble Spiel