Organisation

JK-Flipflop

- Entschärfe verbotenen Zustand vom RS-FF
- Schalte nur, wenn es Q zulässt
- Prüfe Set und Q bzw. Reset und Q
- Verbotener Eingang = Toggle (im Takt)

J	K	Q	$\overline{\mathbf{Q}}$	Funktion
0	0	*	*	Speichern
0	1	1	0	Setzen
1	0	0	1	Zurückset zen
1	1	1	1	Toggeln

- Verknüpfung von Zuständen, Eingabe & Ausgabe
- Meist mit binärer Ein-/Ausgabe
- Beispiel: Ampel

- Zustand
 - Kreis mit Name des Zustands

- Übergang
 - Pfeil mit zwischen zwei Zuständen genutzter Eingabe
- Ausgabe
 - Zusätzlich an Zuständen oder Übergängen

- 3 Darstellungen/Typen
 - Mealy
 - Ausgabe auf Übergängen
 - Moore
 - Ausgabe im Zustand
 - Medwedev
 - Ausgabe entspricht Zustand
- Zeichen: http://madebyevan.com/fsm/

- Startzustand
 - Pfeil ohne "Herkunft"
- Endzustände
 - optional, doppelter Kreis
- Deterministisch
 - Alle Übergänge sind definiert
- Nicht-Deterministisch
 - Nicht alle Übergänge sind definiert

Formalisierung? Ein-/Ausgabe?

Die gezeichneten Pfeile sind für die Eingabe 1, die Eingabe 0 ändert den Zustand nicht. In den Übungen die 0 auch eintragen, da deterministisch!

Aufgabe:

- Stelle die Ampel als Moore, Mealy dar
- Schält bei Eingabe 1 weiter
- Bei Eingabe 0 bleibt sie konstant
- Wie lässt sich ein Medwedev realisieren?

Automaten - Schaltwerk

- Alle Zustände mit JK-FF codieren
- Zustandsübergangsdiagramm
 - Don't Care, falls Zustand ungenutzt
- Set/Reset/Speichern der FFs
- FF-Ansteuerungsgleichung minimieren
 - Eingabevariablen: Zustände und Eingabe

JK-Flipflops geschickt schalten

- 0 → 0: Nicht (Jump oder Toggle)
- 0 → 1: Jump oder Toggle
- 1 → 0: Kill oder Toggle
- 1 → 1: Nicht (Kill oder Toggle)

Q _n	Q_{n+1}	J	K
0	0	0	*
0	1	1	*
1	0	*	1
1	1	*	0

RS-Flipflops geschickt schalten

- [Verhindere zustand R=S=1]
- 0 → 0: Nicht (Set oder Toggle)
- 0 → 1: NUR Set
- 1 → 0: NUR Kill
- 1 → 1: Nicht (Reset oder Toggle)

Q _n	Q_{n+1}	S	R
0	0	0	*
0	1	1	0
1	0	0	1
1	1	*	0

Ampelschaltung

Phase	Q_2	Q_{1}	Q ₂ '	Q ₁ '	J_2	K ₂	J_{1}	K ₁
Rot	0	0						
Gelb	0	1						
Grün	1	0						
Rot/Gelb	1	1						

Ampelschaltung

Phase	Q_2	Q_{1}	Q ₂ '	Q ₁ '	J_2	K ₂	${\sf J}_{1}$	K ₁
Rot	0	0	0	1	0	*	1	*
Gelb	0	1	1	0	1	*	*	1
Grün	1	0	1	1	*	0	1	*
Rot/Gelb	1	1	0	0	*	1	*	1

Ansteuerungsgleichung

Schaltwerk → Automaten-Typ

- Keine Ausgangsfkt.?
 - Medwedev
- Ausgangsfkt. nutzen Eingabe?
 - Mealy
- Ausgangsfkt. der FF werden kodiert?
 - Moore

Jetzt Doch: Negative Binärzahlen

- Idee 1: Vorzeichenbehaftet
 - Höchstes Bit s gibt Vorzeichen an
 - 0 = positiv; $1 = negativ bzw. <math>(-1)^s$
 - Problem: Berechnung?

Negative Binärzahlen

- Invertieren: 0 ↔ 1
- Idee 2: 1er-Komplement
 - Invertiere Zahl zum Negieren
 - Wieder: Höchstes Bit s für Vorzeichen
 - Wertebereich: [-2n-1; 2n-1]
 - Problem: Doppelte 0
 - $0000_{1C} = 0_d$; $1111_{1C} = -0_d$

2er-Komplement

- Idee: 2er-Komplement
 - Subtrahiere im Negativen -1, um -0 zu verhindern
 - Wertebereich: [-2ⁿ⁻¹ 1; 2ⁿ⁻¹]
- Negieren (in beide Richtungen)
 - Invertieren
 - 1 darauf addieren

Wieso 2er-Komplement?

- Rechnen mit negativen Zahlen
- Subtrahieren = <u>Addieren</u> einer negativen 2er-Komplement-Zahl
- Testen: Rechne 3 7 = -4 bzw. -3 2 = -5