Technology

Focus on Language Models

You said Large Language Model?

- Generative deep learning models for understanding and generating text, images and other types
- A special kind : Transformers
 - "Attention is All you Need", Vaswani et al. 2017 (https://arxiv.org/abs/1706.03762)
- Transformers analyse chunks of data, called "tokens" and learn to predict the next token in a sequence
- Prediction is a probability
- Model that can generalize : one single model to address several use cases

How large are they?

Transformer model Neural network

Function: weight * input plus bias

BERT Large - 2018 **345M**

GPT2 - 2019

1.5B

GPT3 - 2020

175B

Turing Megatron NLG 2021

530B

GPT4 - 2023

1.4T (estimated)

Build the model - Training What it's like?

- Foundational models
- Datasets

LLM are trained using techniques that requires huge text-based datasets, e.g.

"The Pile": +880 Gb (Wikipedia, Youtube st, Github, ...)

"RedPajama": +5Tb (wikipedia, StackExchange, ArXiv, ...)

Choosing and curating datasets for training is the secret sauce!

Computing Power

Transformer-based model have limitations: quadratic-complexity of attention mechanism

Computationally intensive for long sequences

Use the model - Inference Common patterns

Context

The size of input data given to the model: size is limited!

Prompt

The question / the task, enriched with 'preprompt'

Zero-shot / Few-shot, ...

To give or not samples of answers expected

Temperature

How much the model is imaginative

Which Model?

Criteria to take in account for a use case

- Open Source vs Commercial
- Best of breed
- Versioning & lifecycle
- Cost efficiency vs Overkill -> Size
- Accuracy

Infrastructure At the heart of the machine

- On Premises
 - Compute: GPUs choice / VRAM size / Model quantization
 - NVIDIA T4 = 16Gb / 1100\$
 - NVIDIA A100 = 80Gb / 8000\$
 - Scalability: concurrent users, context size
 - · Online vs batch
- On Cloud
 - · Which one ? Cost, diversity and availability
 - Pricing model: 1M token comes very fast ! 1 word ~ 4 tokens
 - Sovereignty, data privacy

CLOUD GPU PROVIDERS

	Serverless VM Bare Metal				Big To
H100	S BANANA	∑Lambda	Scaleway	Data Latitude.sh	aw
A100	fal Modal	Ace Cloud 3 seeweb	Crusoe Cloud	Jarvislabs.ai	Google C
V100	B baseten	V	Paperspace	▲ EXOSCALE LeaderGPU	A
RTX	RunPod	CoreWeave linode	FluidStac TensorDock	vXtream	DGX DGX
Non-NVIDIA		fasthosts	HIVELOCITY	Cirrascale HETZNER	ORA GLO

Note: The table shows vendor logos only once for simplicity. Each vendor offers several different models

Real-world usage

Very common use case = "Retrival Augmented Generation"

Aka your search engine 2.0

RAG - 101 Search & Summarize In 4 Steps

Step 1 - Document loading

- Documents are loaded from data connectors
- They are split into chunks

Step 2 - Embeddings

- Chunks are 'transformed' into vectors (numbers)
 - √ It's the process of word embedding, using a pre-trained model
 - √ hundreds (even thousands!) of dimensions are required to represent the space of all words
- Vectors are stored in a dedicated database (a vector database)

Step 3 - Retrieval

- Previous steps were preparatory work, now comes the live part
- Question is vectorized as well, used as an input for similarity search
- Most relevant chunks are retrieved, i.e. vectors coordinates are close together

Step 4 - Generation

- Retrieved chunks are used to feed the LLM prompt context
- Question is added to the prompt
- LLM reads the prompt and generates a natural language answer
- During this inference time, the model requires a lot of GPU power!

RAG engineering

Lots of moving part to reach performance!

