Desafio Cientista de Dados INDICIUM - Davi Ribeiro

Importing libraries

```
import warnings
warnings.filterwarnings('ignore')

from collections import Counter
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import re
import seaborn as sns

df = pd.read_csv("teste_indicium_precificacao.csv")
df.head()
```

	id	nome	host_id	host_name	bairro_group	bairro	latitude	longitude	room_type	price	minimo_noites
0	2595	Skylit Midtown Castle	2845	Jennifer	Manhattan	Midtown	40.75362	-73.98377	Entire home/apt	225	1
1	3647	THE VILLAGE OF HARLEMNEW YORK!	4632	Elisabeth	Manhattan	Harlem	40.80902	-73.94190	Private room	150	3
2	3831	Cozy Entire Floor of Brownstone	4869	LisaRoxanne	Brooklyn	Clinton Hill	40.68514	-73.95976	Entire home/apt	89	1
3	5022	Entire Apt: Spacious Studio/Loft by central park	7192	Laura	Manhattan	East Harlem	40.79851	-73.94399	Entire home/apt	80	10
4	5099	Large Cozy 1 BR Apartment In Midtown East	7322	Chris	Manhattan	Murray Hill	40.74767	-73.97500	Entire home/apt	200	3

Exploratory Data Analysis

```
df.isna().sum()
id
                                     16
nome
host_id
                                      0
host_name
                                     21
bairro_group
                                      0
bairro
latitude
longitude
room_type
price
minimo_noites
                                      0
numero_de_reviews
ultima_review
                                  10052
reviews_por_mes
{\tt calculado\_host\_listings\_count}
                                      0
disponibilidade_365
dtype: int64
```

```
# Dropping unnecessary columns
df.drop(columns=['id', 'host_name', 'ultima_review', 'reviews_por_mes'], inplace=True)

# Just making the name smaller
df.rename(columns={'calculado_host_listings_count': 'host_listings_count'}, inplace=True)
```

```
df['bairro_group'].value_counts()
# 5 different groups
```

```
Manhattan 21661
Brooklyn 20103
Queens 5666
Bronx 1091
Staten Island 373
Name: bairro_group, dtype: int64
```

```
df['bairro'].value_counts()
# 221 different "bairros"
```

```
Williamsburg
                     3920
Bedford-Stuyvesant
                    3714
Harlem
Bushwick
                     2465
Upper West Side
                     1971
Fort Wadsworth
Richmondtown
New Dorp
                        1
Rossville
                        1
Willowbrook
Name: bairro, Length: 221, dtype: int64
```

```
df['room_type'].value_counts()
```

```
Entire home/apt 25409
Private room 22325
Shared room 1160
Name: room_type, dtype: int64
```

Analysis of the price based on some features

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].boxplot(df[df['room_type'] == "Entire home/apt"]['price'])
axes[0].set_title('Price variation of Entire home/apt')

axes[1].boxplot(df[df['room_type'] == "Entire home/apt"]['price'])
axes[1].set_title('Price variation of Entire home/apt ZOOM')
axes[1].set_ylim(-10, 400);
print(f'Mean price of Entire home/apt: U${np.mean(df[df["room_type"] == "Entire home/apt"]["price"]):.2f}')
```

Mean price of Entire home/apt: U\$211.79

As we can see the price varies a lot, with several outliers, but by zooming in on the boxplot we can see that the price is mainly concentrated between 100 and 250.

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].boxplot(df[df['room_type'] == "Private room"]['price'])
axes[0].set_title('Price variation of Private room')

axes[1].boxplot(df[df['room_type'] == "Private room"]['price'])
axes[1].set_title('Price variation of Private room ZOOM')
axes[1].set_ylim(-10, 175);
print(f'Mean price of Private room: U${np.mean(df[df["room_type"] == "Private room"]["price"]):.2f}')
```

Mean price of Private room: U\$89.78

As we saw in the previous boxplot for Entire home/apt, in this one the price also varies a lot, with several outliers, but by zooming in on the boxplot we can see that the price is concentrated between **50 and 100**.

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].boxplot(df[df['room_type'] == "Shared room"]['price'])
axes[0].set_title('Price variation of Shared room')

axes[1].boxplot(df[df['room_type'] == "Shared room"]['price'])
axes[1].set_title('Price variation of Shared room ZOOM')
axes[1].set_ylim(-10, 140);
print(f'Mean price of Shared room: U${np.mean(df[df["room_type"] == "Shared room"]["price"]):.2f}')
```

Mean price of Shared room: U\$70.13

As in the previous boxplots, the price varies a lot, with several outliers, but by zooming in on the boxplot we can see that the price is concentrated between **30 and 80**. This is interesting, because the shared room could have the same price as the private room, which in theory, more private is more comfortable and should be more expensive, but the price is almost the same.

```
# Pivoting to see bairro group and room type averages
pivot_room_bairro = df.pivot_table(values='price', index='bairro_group', columns='room_type', aggfunc=np.mean)
pivot_room_bairro
```

room_type	Entire home/apt	Private room	Shared room	
bairro_group				
Bronx	127.506596	66.788344	59.800000	
Brooklyn	178.327545	76.492942	50.527845	
Manhattan	249.239109	116.776622	88.977083	
Queens	147.050573	71.762456	69.020202	
Staten Island	173.846591	62.292553	57.444444	

```
# Sorting the the means to see which bairro_group is more expensive
pivot_bairro = df.pivot_table(values='price', index='bairro_group', aggfunc=np.mean)
pivot_bairro.sort_values(by='price', ascending=False)
```

	price			
bairro_group				
Manhattan	196.875814			
Brooklyn	124.381983			
Staten Island	114.812332			
Queens	99.517649			
Bronx	87.496792			

Here we can clearly see that across all room types, Manhattan is the most expensive place to stay, and the cheapest place is the Bronx. And it is expected that as Manhattan is a large commercial, financial and cultural center, and this attracts many tourists, and is guided by the law of supply and demand, the more people want to stay in a place, the more expensive it becomes.

Analysis of minimo noites

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))

axes[0].boxplot(df['minimo_noites'])
axes[0].set_title('Variation of minimo noites')

axes[1].boxplot(df['minimo_noites'])
axes[1].set_title('Variation of minimo noites ZOOM')
axes[1].set_ylim(0, 15)
```

```
(0.0, 15.0)
```


This is interesting, the number of *minimum nights* is concentrated between **1 and 5**, but we have many outliers, that the rent for the *minimo noites* is 1250(more than 3 years) as we can see above.

	nome	host_id	bairro_group	bairro	latitude	longitude	room_type	price	minimo_noites	numero_de_reviews
5766	Prime W. Village location 1 bdrm	17550546	Manhattan	Greenwich Village	40.73293	-73.99782	Entire home/apt	180	1250	2

Analysis of calculado_host_listings_count

We have to be careful here because this variable depends on the host, so we can't repeat the hosts.

```
df['host_id'].duplicated().sum()
# Like expected, we have a lot of duplicated hosts
```

```
11437
```

```
df_host_listings_count = df.drop_duplicates(subset='host_id', keep='first').reset_index(drop=True)
```

```
fig, axes = plt.subplots(1, 2, figsize=(10, 5))
axes[0].boxplot(df_host_listings_count['host_listings_count'])
axes[0].set_title('Variation of calculado_host_listings_count')

axes[1].boxplot(df_host_listings_count['host_listings_count'])
axes[1].set_title('Variation of calculado_host_listings_count ZOOM')
axes[1].set_ylim(0, 5)
```

```
(0.0, 5.0)
```



```
5154
```

```
num_of_unique_listing = df_host_listings_count[df_host_listings_count['host_listings_count'] == 1].shape[0]
num_of_unique_listing
```

```
32303
```

```
print(f"With the calculations above, {num_of_multiple_listing / df_host_listings_count.shape[0] * 100:.2f}% are owners of multiple li
```

With the calculations above, 13.76% are owners of multiple listings, that means that could be a real estate agency

```
print(f"With the calculations above, {num_of_unique_listing / df_host_listings_count.shape[0] * 100:.2f}% are owners of unique listing
```

With the calculations above, 86.24% are owners of unique listings, that means that could be a normal person listing their house

Plotting Correlation map

```
df_encoded = pd.concat((df, pd.get_dummies(df['room_type'], dtype=int)), axis=1).drop(columns=['room_type'])
df_encoded = pd.concat((df_encoded, pd.get_dummies(df['bairro_group'], dtype=int)), axis=1).drop(columns=['bairro_group'])

# Being sure that only numeric features are on the correlation map
corr_matrix = df_encoded.select_dtypes(include=['number']).drop(columns=['host_id', 'latitude', 'longitude']).corr()
mask = np.triu(np.ones_like(corr_matrix))

plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, mask=mask, cmap='magma');
```


Looking at the correlation map we can't find any big correlation, the only thing we can take from it is the correlation between *price* and *Entire home/apt* and *price* and *Private room* which respectively says that the price is higher when the place is entire and the price is lower when the is private room, but since the correlation in both are less than 0.3, it is a weak correlation. And very weak between *price* and *Manhattan*., but I think it's important to say this.

Answering some questions

a. Supposing a person is thinking about investing in an apartment to rent on the platform, where would it be best to buy?

This is not a simple question, but we can analyze some factors:

- · Manhattan is clearly the most expensive place to invest;
- Bronx is the cheapest place to invest;
- The airport is located in Queens, so it could be a good place to invest, because of the tourists that come to the city;
- Brooklyn is a good place to invest as it is the most populous neighborhood in New York City;
- Staten Island is the least populated of the five boroughs, probably because of its distance from the city, so it is not a good place to invest if you are looking to rent
 for tourists.

With that in mind, and looking at the crime rates, I would say that the best place to invest is in **Queens**, buying a property to rent near the airport can be well regarded by tourists, and the crime rate is not it's as high as in Brooklyn and the Bronx, for example. Furthermore, the price is not as high as in Manhattan, even though it is close. But if you want a quiet place to live, but a little far from Manhattan, **Staten Island** is a good place to invest.

Below I have placed a map of New York City, to make it clearer about the distance from Staten Island to others, the proximity of Manhattan to other neighborhoods and to look at the airports in Queens.

Font: Wikipedia

b. Do the minimum number of nights and availability throughout the year affect the price?

	price	disponibilidade_365	minimo_noites
price	1.000000	0.081833	0.042799
disponibilidade_365	0.081833	1.000000	0.144320
minimo_noites	0.042799	0.144320	1.000000

As we can see here, according to the correlation between these characteristics, the minimum number of nights and availability do not have a major impact on the price.

c. Is there any pattern in place name text for higher value places?

To be clear, high value will be anything greater than the 2* average price to ensure it is a high value. But we can't divide anyway, so we will use as average parameters the DataFrame below

pivot_room_bairro

room_type	Entire home/apt	Private room	Shared room	
bairro_group				
Bronx	127.506596	66.788344	59.800000	
Brooklyn	178.327545	76.492942	50.527845	
Manhattan	249.239109	116.776622	88.977083	
Queens	147.050573	71.762456	69.020202	
Staten Island	173.846591	62.292553	57.44444	

```
def mask_means(row):
    if row['price'] > (pivot_room_bairro.loc[row['bairro_group'], row['room_type']] * 2):
        return True
    else:
        return False

df['mean_mask_df'] = df.apply(mask_means, axis=1)
```

```
df_mean_mask = df[df['mean_mask_df'] == True].reset_index(drop=True)
df_mean_mask['nome'].dropna().reset_index(drop=True, inplace=True)
df_mean_mask
```

	nome	host_id	bairro_group	bairro	latitude	longitude	room_type	price	minimo_noites	numero_de_
0	perfect for a family or small group	74303	Brooklyn	Brooklyn Heights	40.69723	-73.99268	Entire home/apt	800	1	25
1	2000 SF 3br 2bath West Village private townhouse	93790	Manhattan	West Village	40.73096	-74.00319	Entire home/apt	500	4	46
2	3 Story Town House in Park Slope	119588	Brooklyn	South Slope	40.66499	-73.97925	Entire home/apt	400	2	16
3	Luxury Brownstone in Boerum Hill	165789	Brooklyn	Boerum Hill	40.68559	-73.98094	Entire home/apt	475	3	23
4	Luxurious Condo in DUBMO with View	171851	Brooklyn	DUMBO	40.70207	-73.98571	Private room	250	3	14
2451	Best room in nyc	273877318	Bronx	Claremont Village	40.83926	-73.91173	Private room	140	1	0
2452	Crash at a sofabed.Unique apt In the heart of NYC	67738361	Manhattan	Hell's Kitchen	40.75579	-73.99094	Shared room	260	1	0
2453	Seas The Moment	211644523	Staten Island	Great Kills	40.54179	-74.14275	Private room	235	1	1
2454	Massage Spa. Stay overnight. Authors Artist dr	274079964	Brooklyn	Sheepshead Bay	40.59866	-73.95661	Private room	800	1	0
2455	Brooklyn Oasis in the heart of Williamsburg	274307600	Brooklyn	Williamsburg	40.71790	-73.96238	Private room	190	7	0

2456 rows × 13 columns

Now that we're sure it's just the high values, let's see if there's any pattern in the name for higher value locations.

```
# Extract place names using regular expressions, and avoiding small non-important words
place_names = df_mean_mask['nome'].apply(lambda x: re.findall(r'\b(?:[A-Z][a-Z]{2,}\b|\w{3,})', str(x)))
# Convert the list of place names to a flat list
place_names = [name.capitalize() for sublist in place_names for name in sublist]
```

Modern: 79

```
# Count the frequency of each place name
place name counts = Counter(place names)
# Display the most common place names
{\tt most\_common\_names = dict}({\tt place\_name\_counts.most\_common}())
# Removing words that show up less than 10 times
filtered\_dict\_0 = \{k: v for k, v in most\_common\_names.items() if v >= 10\}
# List of non-desired words
non_desired = list(df['bairro_group'].unique())
non_desired.extend(['Room', 'Bedroom', 'Apartment', 'Private', 'The',
                      'New york', 'Nyc', 'With', 'For', 'And', 'Apt',
                      'Bed', 'Bath', 'From'])
filtered_dict_1 = {k: v for k, v in filtered_dict_0.items() if k.capitalize() not in non_desired}
 from itertools import islice
print("Top 25 most common words in the place names:\n")
 for key, value in islice(filtered_dict_1.items(), 25):
    print(f"{key}: {value}")
Top 25 most common words in the place names:
Loft: 233
Luxury: 207
Park: 150
Suite: 141
Williamsburg: 128
New: 127
Midtown: 125
Townhouse: 118
Duplex: 117
Village: 113
Home: 112
House: 104
Beautiful: 102
Spacious: 102
Studio: 99
Central: 98
West: 93
Near: 91
Heart: 85
East: 83
Brownstone: 82
Cozy: 82
Square: 81
```

With this we can see that some words are adjectives that can be used to describe the place, such as "Luxuryâ€□, "Beautifulâ€□, "Spaciousâ€□, "Cozyâ€□, but one thing that is interesting is the name "Williamsburgâ€□, with a quick research, Williamsburg is in Brooklyn(pink on image below), very close to Manhattan and Queens and, according to some research, a good neighborhood.

Font: Wikipedia

With this Exploratory Data Analysis we were able to understand the data, now let's predict some prices in the notebook indicium_prediction.ipynb