APÉNDICE III

TRANSFORMADAS DE LAPLACE

f(t)	$\mathcal{L}\{f(t)\} = F(s)$
1. 1	$\frac{1}{s}$
2. <i>t</i>	$\frac{1}{s^2}$
3. <i>t</i> ⁿ	$\frac{n!}{s^{n+1}}$, n un entero positivo
4. $t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$
5. $t^{1/2}$	$\frac{\sqrt{\pi}}{2s^{3/2}}$
6. t^{α}	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \alpha > -1$
7. sen <i>kt</i>	$\frac{k}{s^2 + k^2}$
8. cos <i>kt</i>	$\frac{s}{s^2 + k^2}$
9. $\operatorname{sen}^2 kt$	$\frac{2k^2}{s(s^2+4k^2)}$
10. $\cos^2 kt$	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$
11. e^{at}	$\frac{1}{s-a}$
12. senh <i>kt</i>	$\frac{k}{s^2-k^2}$
13. cosh <i>kt</i>	$\frac{s}{s^2-k^2}$
14. $\operatorname{senh}^2 kt$	$\frac{2k^2}{s(s^2-4k^2)}$
15. $\cosh^2 kt$	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$
16. te ^{at}	$\frac{1}{(s-a)^2}$
17. $t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$, <i>n</i> un entero positivo

f(t)	$\mathcal{L}\{f(t)\} = F(s)$
18. $e^{at} \operatorname{sen} kt$	$\frac{k}{(s-a)^2+k^2}$
$19. e^{at} \cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
20. $e^{at} \operatorname{senh} kt$	$\frac{k}{(s-a)^2-k^2}$
21. $e^{at} \cosh kt$	$\frac{s-a}{(s-a)^2-k^2}$
22. <i>t</i> sen <i>kt</i>	$\frac{2ks}{(s^2+k^2)^2}$
23. t cos kt	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$
$24. \operatorname{sen}kt + kt \cos kt$	$\frac{2ks^2}{(s^2+k^2)^2}$
$25. \operatorname{sen}kt - kt \cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$
26. <i>t</i> senh <i>kt</i>	$\frac{2ks}{(s^2-k^2)^2}$
27. <i>t</i> cosh <i>kt</i>	$\frac{s^2 + k^2}{(s^2 - k^2)^2}$
$28. \ \frac{e^{at}-e^{bt}}{a-b}$	$\frac{1}{(s-a)(s-b)}$
$29. \ \frac{ae^{at}-be^{bt}}{a-b}$	$\frac{s}{(s-a)(s-b)}$
30. $1 - \cos kt$	$\frac{k^2}{s(s^2+k^2)}$
31. $kt - \operatorname{sen}kt$	$\frac{k^3}{s^2(s^2+k^2)}$
$32. \frac{a \operatorname{sen} bt - b \operatorname{sen} at}{ab(a^2 - b^2)}$	$\frac{1}{(s^2+a^2)(s^2+b^2)}$
$33. \frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{(s^2+a^2)(s^2+b^2)}$
34. sen <i>kt</i> senh <i>kt</i>	$\frac{2k^2s}{s^4+4k^4}$
35. sen <i>kt</i> cosh <i>kt</i>	$\frac{k(s^2 + 2k^2)}{s^4 + 4k^4}$
36. cos <i>kt</i> senh <i>kt</i>	$\frac{k(s^2 - 2k^2)}{s^4 + 4k^4}$
37. cos <i>kt</i> cosh <i>kt</i>	$\frac{s^3}{s^4+4k^4}$

APE-23

 e^{-st_0}

58. $\delta(t-t_0)$