P4 de Álgebra Linear I -2009.2

Data: 30 de novembro de 2009.

Matrícula:		
Turma:		

Caderno de Respostas

Preencha CORRETA e COMPLETAMENTE todos os campos acima (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota ZERO.

Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Respostas a caneta. Respostas a lápis não serão corrigidas e terão nota <u>ZERO</u>.

Duração: 1 hora 50 minutos

Q	1	2	3.a	3.b	3.c	4.a	4.b	4.c	soma
\mathbf{V}	2.0	2.0	1.0	1.0	1.0	1.0	1.0	1.0	10.0
N									
\mathbf{R}									

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- <u>Verifique</u>, <u>revise</u> e <u>confira</u> cuidadosamente suas respostas e resoluções.
- Escreva de forma clara, ordenada e legível.
- Somente serão aceitas respostas devidamente <u>JUSTIFICADAS</u>.

Respostas a lápis não serão corrigidas e terão nota ZERO.

Questão 1)

Consider o plano π de equação cartesiana x+2y+z=1. Ache a equação cartesiana do plano ρ , perpendicular a π e contendo os pontos (2,0,-1) e (1,1/2,-1).

Resposta:					
ho :					

Questão	2)

Determine a matriz na base canônica da transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^2$, que tem autovalores -2 e 3, associados aos autovetores (3,1) e (-2,1), respectivamente.

Resposta:

$$[T]_{\operatorname{can}} =$$

Questão 3)

Decida se as afirmações abaixo são falsas ou verdadeiras.

(a) Se $\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{u} \times \overrightarrow{w}$ para todo $\overrightarrow{u} \in \mathbb{R}^3$, então $\overrightarrow{v} = \overrightarrow{w}$.

(b) Se $\{\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}\}$ é conjunto L.I., então $\{\overrightarrow{u} + \overrightarrow{v}, \overrightarrow{v} + \overrightarrow{w}, \overrightarrow{w} + \overrightarrow{u}\}$ também é L.I.

(c) Para toda transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$, o conjunto $\mathbb{V} = \{\overrightarrow{v} \in \mathbb{R}^3: T(\overrightarrow{v}) = \overrightarrow{0}\}$ é subespaço vetorial.

Respostas:

(a)

(b)

(c)

Questão 4)

Considere a transformação linear S cuja matriz na base canônica é

$$\begin{pmatrix} 5 & 4 & 3 \\ -1 & 0 & -3 \\ 1 & -2 & 1 \end{pmatrix}.$$

Sabendo que $\lambda_1=4$ é um autovalor de S:

- (a) Ache os outros autovalores λ_2 e λ_3 .
- (b) S é diagonalizável? Explique.
- (b) Ache, se possível, uma base $\mathcal B$ na qual a matriz de S é

$$\begin{pmatrix} -2 & 3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 4 \end{pmatrix}.$$

Respostas:

(a)
$$\lambda_2 = \lambda_3 =$$

$$\mathcal{B} =$$