

What's inside the box?

An introduction to explainability in Finance

Magdalena Zych and Petra Gibcus

From black box to glass box

So, what does this look like in a machine learning model?

Would you trust this model?

Why are we discussing this if our field is finance?

Importance of Explainable AI in finance

Actionable insights

Bias detection

Regulatory compliance

Trust predictions

Techniques for Explainable Al

SHAPLEY
ADDITIVE
EXPLANATION

A Unified Way to Understand Any Model

SHAP? What is it?

SHAP is a method based on game theory that computes features contribution to predictions in ML model on both global and local level.

Coalition values*

$$C_{12} = 10,000$$
 $C_{1} = 7,500$
 $C_{2} = 5,000$
 $C_{0} = 0$

The increase in a coalition's value due to a player joining that coalition

 $C_{12} - C_2 = 5,000$ $C_1 - C_0 = 7,500$

(5,000 + 7,500) / 2 = € 6,250

 $C_{12} - C_1 = 2,500$ $C_2 - C_0 = 5,000$

(2,500 + 5,000) / 2 = € 3,750

Shapley value = expected marginal contribution

Workshop on Explainable Al Mortgage churn use case

Use case mortgage churn

Improve customer mortgage retention

Workflow

Exercise

Dataset use case mortgage churn

- Generated data*
- No ABN AMRO customers
- Not representative for ABN AMRO

- All data is ordered
- All data is cleaned
- Ordinal and continuous variables

- Target: churn
- Balanced data

^{*} Credits: dataset is adapted based on: https://archive.ics.uci.edu/dataset/34/diabetes

Exercise 1: Introduction to SHAP visuals

1.1 Global SHAP

Generate two SHAP summary plots

- one for a model trained with the leaky feature (model_b)
- another without it (model)

1.2 Local SHAP

Fill in samples in the waterfall plot.

1.3 Comparing SHAP explanations with different background samples (BONUS)

Based on EDA choose appropriate activity level that would describe a subset of people more likely to churn based on their activity

Exercise 2: SHAP and feature interactions

15 minutes

- **2.1** SHAP and clusters dendrogram
 - Make a dependence plot between the top two clustered features.
- **2.2** SHAP and highly correlated features
 - Make a dependence plot between age and randomly generated feature
 n correlated noise age
 - Experiment with different feature correlations

Exercise 3: SHAP clustering

15 minutes

- 3.1 Calculate SHAP values

 Run the cell in the notebook.
- 3.2 *UMAP dimensionality reduction*Run the cell in the notebook.
- 3.3 HBDSCAN clustering

 Are there clusters that contain solely specific values? Check it out!
- 3.4 SkopeRules to extract meaningful insights (BONUS)

 Run the cell in the notebook. Can you explain the results?

Learnings SHAP

ADVANTAGES

- Model agnostic
- Local and global explainability for feature importance
- Capturing feature interactions
- Visualising results

DISADVANTAGES

- Computationally intensive
- Challenging: interpretation of the results
- Not to be used as causal or counterfactual explanations
- Sensitive to correlation in data

KEY TAKE AWAYS

• Explainability is the key in data science projects

Keeping stakeholders in the loop is essential

• EDA should be reflected in model interpretations

SHAP is not the holy grail of explainability

Thanks to...

