## Final

## Mengxiang Jiang EEEN 5338 Digital and DSP Based Control

## December 6, 2023

**Problem 1.** Find the z-domain transfer function for ADC, DAC, and the shown series R-L circuit with the inductor voltage as output.



From Example 3.4 of Lecture Notes 3:

Using the voltage divider rule gives:

$$\frac{V_o}{V_{in}} = \frac{Ls}{R + Ls} = \frac{(L/R)s}{1 + (L/R)s} = \frac{\tau s}{1 + \tau s}, \ \tau = \frac{L}{R}$$
$$G_{ZAS}(z) = (1 - z^{-1})\mathcal{Z}\left\{\frac{1}{s + 1/\tau}\right\}$$
$$= \frac{z - 1}{z} \times \frac{z}{z - e^{-T/\tau}} = \frac{z - 1}{z - e^{-T/\tau}}$$

**Problem 2.** Find the steady-state position error for the digitally controlled DC motor with unity-feedback and make sure to <u>explain your results</u>.

$$G_{ZAS}(z) = \frac{K(z+a)}{(z-1)(z-b)}, \ C(z) = K_c \frac{(z-b)}{(z-c)}$$
  
 $0 < a, b, c < 1$ 

From Example 3.10 of textbook (p. 78):

(a) Due to a sampled unit step.

The loop gain of the system is given by:

$$L(z) = C(z)G_{ZAS}(z) = \frac{KK_c(z+a)}{(z-1)(z-c)}$$

The system is type 1 (only one pole at unity). Therefore, it has 0 steady-state error for unit step.

(b) Due to a sampled unit ramp input.

The finite steady-state error for a sampled ramp input is given by:

$$e(\infty) = \frac{T}{(z-1)L(z)|_{z=1}} = \frac{T}{KK_c} \left(\frac{1-c}{1+a}\right)$$

This steady-state error can be reduced by increasing the controller gain and is also affected by the choice of controller pole and zero

**Problem 3.** Find the state equations given the following simulation diagram:



$$x_1(k+1) = T[u_1(k) + u_2(k) + 0.5x_1(k)]$$

$$x_2(k+1) = T[x_1(k) + u_2(k) - x_2(k)]$$

$$y_1(k) = x_1(k) + 2.0x_2(k)$$

$$y_2(k) = x_2(k) + u_2(k)$$

**Problem 4.** Given

$$G(z) = \frac{N(z)}{D(z)}$$

where

$$D(z) = z^3 - z^2 - 0.2z + 0.1$$

Use the Routh-Hurwitz criterion to find the number of z-plane poles of G(z) inside, outside, and on the unit circle. Is the system stable? From Example 4 of Lecture Note 5A:

Use the bilinear transformation equation for D(z) = 0:

$$z = \frac{s+1}{s-1}$$
 We get: 
$$s^3 - 19s^2 - 45s - 17 = 0$$

Table 1: Routh Table

| $s^3$ | 1      | -45 |
|-------|--------|-----|
| $s^2$ | -19    | -17 |
| $s^1$ | -45.89 | 0   |
| $s^0$ | -17    | 0   |

One sign change in the first column  $\implies$  one root in the R.H.P and two roots in the L.H.P in the s-plane.

- $\implies$  G(z) has one pole outside the unit circle, no poles on the unit circle, and two poles inside the unit circle
- ⇒ system is unstable because of the pole outside the unit circle.

**Problem 5.** Find the stable range of the gain K for the unity-feedback digital control system with analog plant

$$G(s) = \frac{K}{s+3}$$

with DAC and ADC if the sampling period is 0.02 seconds.

From Example 4.7 of the textbook (p. 107):

The transfer function for analog subsystem ADC and DAC is:

$$G_{ZAS} = (1 - z^{-1})\mathcal{Z}\left\{\mathcal{L}^{-1}\left[\frac{G(s)}{s}\right]\right\}$$

$$= (1 - z^{-1}) \mathcal{Z} \left\{ \mathcal{L}^{-1} \left[ \frac{K}{s(s+3)} \right] \right\}$$

Using the partial fraction expansion

$$\frac{K}{s(s+3)} = \frac{K}{3} \left[ \frac{1}{s} - \frac{1}{s+3} \right]$$

we obtain the transfer function

$$G_{ZAS}(z) = \frac{1.9412 \times 10^{-2} K}{z - 0.9418}$$

For unity feedback, the closed-loop characteristic equation is:

$$1 + G_{ZAS}(z) = 0$$

which can be simplified to

$$z - 0.9418 + 1.9412 \times 10^{-2}K = 0$$

The stability conditions are

$$0.9418 - 1.9412 \times 10^{-2} K < 1$$

$$-0.9418 + 1.9412 \times 10^{-2} K < 1$$

Thus, the stable range of K is

$$-3 < K < 100.03$$