Элементная база наноэлектроники

Лекция 3

Основные термины

Международная технологическая дорожная карта для полупроводникового производства

INTERNATIONAL
TECHNOLOGY ROADMAP
FOR
SEMICONDUCTORS 2.0

2015 EDITION

EXECUTIVE REPORT

Дорожная карта составляется международным сообществом экспертов, в которое входит более 1200 специалистов из США, Японии, Тайваня, Европы Кореи. Международная технологическая дорожная карта издается с 1999 г и обновляется каждый год. Она включает в себя информацию по всем аспектам развития кремниевой электроники на 15 лет вперед. Дорожная карта представляет собой подробный план развития электронной отрасли, содержит основные тенденции, ближайшие и отдаленные задачи, а так же трудности и проблемы каждого раздела полупроводниковой промышленности.

С 2017 г. - IRDS -Международная дорожная карта для устройств и систем

Принципы масштабирования

Закон Мура

1965 - Гордон Мур, доклад «Будущее интегральной электроники», график (5 точек, период 1959–1964), связывающий число компонентов на чип (и их минимальную цену) и время

Эти чипы - источник закона Мура

19 апреля 1965 - отредактированная версия доклада публикуется в журнале «Electronics»

Закон Мура (биполярная и полевая логика, память, 1975)

Основной вывод Мура: «Число компонентов на чипе удваивается каждый год»

Принципы масштабирования

Степень интеграции интегральных схем в зависимости от года выпуска: 1 — первые ИС, 2 — микропроцессоры компании Intel, 3 — схемы оперативной памяти

Закон Мура с поправками звучит так: «количество транзисторов на кристалле удваивается каждые 1,5...2 года»

Реализация закона возможна при наличии возможности масштабирования (scaling)

С уменьшением геометрических размеров транзисторов

- снижается площадь кристалла
- уменьшаются паразитные емкости
- улучшается быстродействие
- снижается энергопотребление

Увеличение тактовой частоты

Основным критерием возможности увеличения плотности упаковки элементов является мощность, рассеиваемая чипом.

Изменение напряжения питания при масштабировании по данным Intel.

$$V_{\rm D}$$
 = const,
 $F = V_{\rm D} * k$,

$$(V_D \cdot k)^2$$

До 90-х годов площадь сложных кристаллов увеличивалась на 14% в год

Технологическая норма

Технологическая норма λ – это минимальный размер топологических элементов интегральных схем, изготовление которых гарантировано выбранной технологией.

 $\sqrt{2}$

Соответствующий ряд параметров технологических норм исторически имеет следующий вид:

0.5 мкм..0.35..0.25..0.18..0.13 (130 нм)..90..60..45..32..22..16..10..8..5 нм...

Технологическая норма

Правила масштабирования

Основная идея масштабирования — это уменьшение геометрических размеров транзисторов с сохранением его функциональных и параметрических характеристик. В частности, необходимо, чтобы при масштабировании сохранялись ВАХ транзисторов.

IBM Роберт Деннард (R. H. Dennard)

В 1974 г. Р. Деннард опубликовал статью о масштабировании «Scaling Paper»

Классическая теория масштабирования, предложенная Р. Денардом, предполагает масштабирование всех геометрических размеров МДП-транзисторов (длины $L_{\rm G}$ и ширины $W_{\rm G}$ затвора, толщины подзатворного диэлектрика $d_{\rm ox}$, глубины залегания p-n — перехода $d_{\rm pn}$), а также размеров межсоединений, исходя из принципа постоянства напряженности электрического поля (F, от англ. field). Численной характеристикой масштабирования является безразмерный масштабный фактор k.

Параметр	формула	Класс. F=const	Обобщ. F=V _D /L
1	2	3	4
1. Физические размеры L_G , W , d_{ox} , d_{pn} , $d_{O\Pi 3}$, межсоединения		1/ <i>k</i>	1/k
2. Электрическое поле	$F = \frac{V_D}{L_G}$	1	$V_{D}.k$
3. Напряжения V_D , V_G , V_T	$V = F \cdot L$	1/k	V_{D}
4. Время пролета	$\tau = \frac{L}{v}$	1/k	1/k
5. Емкость затвора	$C_{ox} = \varepsilon \frac{W \cdot L_G}{d_{ox}}$	1/ <i>k</i>	1/k
6. Переносимый заряд	$Q = C_{ox} \cdot (V_D - V_T)$	1/k2	$V_{\rm D}/k$
7. Ток	$I = \frac{Q}{\tau}$	1/k	V_{D}
 Концентрация легирующей примеси в подложке 	N	k	$V_{\rm D}k^2$
 Глубина области пространственного заряда (ОПЗ) 	$d_{OII3} = \sqrt{\frac{2 \cdot \varepsilon \cdot V}{\epsilon \cdot N}}$	1/ <i>k</i>	1/k
10.Рассеиваемая мощность	$P = V \cdot I = \frac{C \cdot V^2}{\tau}$	1/k2	$V_{\rm D}^{2}$
 Плотность мощности на единицу площади 	$P_{y\partial} = \frac{P}{W \cdot L_G}$	1	$(V_D k)^2$
 Энергия, затрачиваемая на операцию с одним битом 	$E_{bit} = P \cdot \tau$	1/k ³	V_D^2/k
13. Сопротивление межсоединений	$R_{MC} = \rho_{MC} \cdot \frac{L_{MC}}{S_{MC}}$	k	k
14. Омические потери в межсоединениях	$\Delta V = I \cdot R_{_{AC}}$	1	$V_{\rm D}k$
15. Плотность тока в межсоединениях	$J = \frac{I}{S_{MC}}$	k	$V_D k^2$
 Относительные потери в межсоединениях 	$\frac{\Delta V}{V}$	k	k

Законы масштабирования МОП-транзисторов

Основная идея масштабирования — уменьшение геометрических размеров приборов с сохранением некоторых функциональных и параметрических инвариантов.

Численной характеристикой масштабирования является безразмерный масштабный фактор k

Параметр	формула	Класс. F=const	Обобщ. F=V _D /L
1	2	3	4
1. Физические размеры L_G , W , d_{ox} , d_{pn} , d_{OII3} , межсоединения		1/k	1/k
2. Электрическое поле	$F = \frac{V_D}{L_G}$	1	$V_{\mathrm{D}} \cdot k$
3. Напряжения V_D , V_G , V_T	$V = F \cdot L$	1/k	V_{D}
4. Время пролета	$\tau = \frac{L}{v}$	1/k	1/k
5. Емкость затвора	$C_{ox} = \varepsilon \frac{W \cdot L_G}{d_{ox}}$	1/k	1/k
6. Переносимый заряд	$Q = C_{ox} \cdot (V_D - V_T)$	$1/k^{2}$	$V_{\rm D}/k$
7. Ток	$I = \frac{Q}{\tau}$	1/k	V_{D}
 Концентрация легирующей примеси в подложке 	N	k	$V_{\rm D}k^2$
 Глубина области пространственного заряда (ОПЗ) 	$d_{OII3} = \sqrt{\frac{2 \cdot \varepsilon \cdot V}{\varepsilon \cdot N}}$	1/k	1/k
10.Рассеиваемая мощность	$P = V \cdot I = \frac{C \cdot V^2}{\tau}$	$1/k^{2}$	$V_{\rm D}^{2}$
 Плотность мощности на единицу площади 	$P_{y\partial} = \frac{P}{W \cdot L_G}$	1	$(V_D k)^2$
 Энергия, затрачиваемая на операцию с одним битом 	$E_{bit} = P \cdot \tau$	1/k ³	V_D^2/k
13. Сопротивление межсоединений	$R_{MC} = \rho_{MC} \cdot \frac{L_{MC}}{S_{MC}}$	k	k
14. Омические потери в межсоединениях	$\Delta V = I \cdot R_{_{MC}}$	1	$V_{\rm D}k$
15. Плотность тока в межсоединениях	$J = \frac{I}{S_{MC}}$	k	$V_{\rm D}k^2$
16. Относительные потери в межсоединениях	$\frac{\Delta V}{V}$	k	k

$$V_{\rm D}$$
 = const,
 $F = V_{\rm D} * k$,

$$P = (V_D \cdot k)^2$$

Технологическая норма

Технологическая норма λ – это минимальный размер топологических элементов интегральных схем, изготовление которых гарантировано выбранной технологией.

 $\sqrt{2}$

Соответствующий ряд параметров технологических норм исторически имеет следующий вид:

0.5 мкм..0.35..0.25..0.18..0.13 (130 нм)..90..60..45..32..22..16..10..8..5 нм...

