Summary of β Instruction Formats

Operate Class:

3	1 2	26	25	21	20	16	15	11	10		0
	10xxxx		R	c	R	la	R	b		unused	

Register	Symbol	Usage
R31		Always zero
R30	_	Exception pointer
R29		Stack pointer
R28		Linkage pointer
R27		Base of frame pointer

OP(Ra,Rb,Rc): $Reg[Rc] \leftarrow Reg[Ra] \text{ op } Reg[Rb]$

Opcodes: ADD (plus), SUB (minus), MUL (multiply), DIV (divided by)

AND (bitwise and), OR (bitwise or), XOR (bitwise exclusive or), XNOR (bitwise exclusive nor), CMPEQ (equal), CMPLT (less than), CMPLE (less than or equal) [result = 1 if true, 0 if false] SHL (left shift), SHR (right shift w/o sign extension), SRA (right shift w/ sign extension)

31	26	25	21	20	16	15		0
11xx	XXX	R	c	R	la		literal (two's complement)	

 $OPC(Ra, literal, Rc): Reg[Rc] \leftarrow Reg[Ra] \text{ op } SEXT(literal)$

Opcodes: ADDC (plus), SUBC (minus), MULC (multiply), DIVC (divided by)

ANDC (bitwise and), ORC (bitwise or), XORC (bitwise exclusive or), XNORC (bitwise exclusive nor) CMPEQC (equal), CMPLTC (less than), CMPLEC (less than or equal) [result = 1 if true, 0 if false] SHLC (left shift), SHRC (right shift w/o sign extension), SRAC (right shift w/ sign extension)

Other:

_3	1 26	25 21	20 16	15)
	01xxxx	Rc	Ra	literal (two's complement)	

LD(Ra,literal,Rc): $Reg[Rc] \leftarrow Mem[Reg[Ra] + SEXT(literal)]$ **ST**(Rc,literal,Ra): $Mem[Reg[Ra] + SEXT(literal)] \leftarrow Reg[Rc]$

JMP(Ra,Rc): $Reg[Rc] \leftarrow PC + 4$; $PC \leftarrow Reg[Ra]$

BEQ/BF(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] = 0 then PC \leftarrow PC + 4 + 4*SEXT(literal) **BNE/BT**(Ra,label,Rc): Reg[Rc] \leftarrow PC + 4; if Reg[Ra] \neq 0 then PC \leftarrow PC + 4 + 4*SEXT(literal)

LDR(label,Rc): $Reg[Rc] \leftarrow Mem[PC + 4 + 4*SEXT(literal)]$

Opcode Table: (*optional opcodes)

2:0								
5:3	000	001	010	011	100	101	110	111
000								
001								
010								
011	LD	ST		JMP	BEQ	BNE		LDR
100	ADD	SUB	MUL*	DIV*	CMPEQ	CMPLT	CMPLE	
		~ ~ 2	1.102	2017		CIVII DI	CIVIL	
101	AND	OR	XOR	XNOR	SHL	SHR	SRA	
101 110	AND ADDC			-	,			