Quiz Logistic Regression

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x) = 0.4$. This means (check all that apply):

1 point

- ightharpoonup Our estimate for $P(y=1|x;\theta)$ is 0.4.
- \square Our estimate for $P(y=1|x;\theta)$ is 0.6.
- \square Our estimate for $P(y=0|x;\theta)$ is 0.4.
- ightharpoonup Our estimate for $P(y=0|x;\theta)$ is 0.6.

CORRECT

1. Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

1 point

- ightharpoonup Our estimate for $P(y=1|x;\theta)$ is 0.7.
- \square Our estimate for $P(y=0|x;\theta)$ is 0.7.
- ightharpoonup Our estimate for $P(y=0|x;\theta)$ is 0.3.
- \square Our estimate for $P(y=1|x;\theta)$ is 0.3.

CORRECT

2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

1 point

x_1	x_2	У
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.
- \checkmark At the optimal value of θ (e.g., found by fminunc), we will have $J(\theta) \geq 0$.
- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) would increase $J(\theta)$ because we are now summing over more terms.
- If we train gradient descent for enough iterations, for some examples $x^{(i)}$ in the training set it is possible to obtain $h_{\theta}(x^{(i)}) > 1$.

CORRECT

2. Suppose you have the following training set, and fit a logistic regression classifier $h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$.

\boldsymbol{x}_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

- $I(\theta)$ will be a convex function, so gradient descent should converge to the global minimum.
- Adding polynomial features (e.g., instead using $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2)$) could increase how well we can fit the training data.
- The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.
- Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.

CORRECT

3. For logistic regression, the gradient is given by $\frac{\partial}{\partial \theta_j}J(\theta)=\frac{1}{m}\sum_{i=1}^m \left(h_\theta(x^{(i)})-y^{(i)}\right)x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

1 point

- lacksquare $heta_j := heta_j lpha rac{1}{m} \sum_{i=1}^m \left(rac{1}{1+e^{- heta^T x^{(i)}}} y^{(i)}
 ight) x_j^{(i)}$ (simultaneously update for all j).
- igvee hinspace hinspa

CORRECT

4. Which of the following statements are true? Check all that apply.

1 point

- Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- \checkmark The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.
- igwedge The cost function J(heta) for logistic regression trained with $m\geq 1$ examples is always greater than or equal to zero.

CORRECT

4. Which of the following statements are true? Check all that apply.

1 point

- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- Linear regression always works well for classification if you classify by using a threshold on the prediction made by linear regression.
- igspace The cost function J(heta) for logistic regression trained with $m\geq 1$ examples is always greater than or
- ${\color{red} \checkmark}$ The sigmoid function $g(z)=\frac{1}{1+e^{-z}}$ is never greater than one (> 1).

CORRECT

5. Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=6, \theta_1=-1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

O Figure:

O Figure:

Figure:

CORRECT