21-484 Notes JD Nir jnir@andrew.cmu.edu February 8, 2012

1, 1, 3, 16, 125 n^{n-2}

Theorem (Cayley's Formula, Thm. 4.15): The number of labeled trees with vertex set $[n] = \{1, 2, \dots, n\}$ is n^{n-2} .

Def: A directed graph is a graph in which the set of edges is a set of order pairs (instead of 2-sets)

- Generally, in a directed graph we allow loops.

<u>Proof:</u> (Joyal) Let \mathcal{T}_n be the set of all trees with vertex set [n] and two marking \bigcirc , \square . Let T_n be the number of trees with vertex set [n]. Clearly $|\mathcal{T}_n| = n^2 \cdot T_n$. We are going to show that $|\mathcal{T}_n| = n^n$, by showing a bijection between \mathcal{T}_n and $[n]^{[n]}$.

 \rightarrow Let $f:[n] \rightarrow [n]$ be any function from $[n]^{[n]}$.

- \rightarrow Let \overrightarrow{G}_f be the directed graph $([n],\{(i,f(i))|i\in[n]\})$
 - The <u>outdegree</u> of every vertex (the number of edges going out of the vertex) is 1 (since f is a function)
 - → In every connected component, the number of edges is the same as the number of vertices.
 - \rightarrow Every conponent is unicyclic (a tree + one edge)
 - \rightarrow This cycle is a <u>directed cycle</u> (otherwise, we will have a vertex with outdegree 2).
- \rightarrow Let M be the set of all vertices in cycles
 - \rightarrow notice: M is the largest subset of [n] such that $f|_m$ is a bijection.
 - → Define T_f : $V[t_f] = [n]$ - write $f|_m = f(m_1), f(m_2), \dots, f(m_{|M|})$ - create a path $f(m_1), f(m_2), \dots, f(m_{|M|})$
 - \rightarrow mark $f(m_1)$ by a \bigcirc mark $f(m_{|M|})$ by a \square
 - \rightarrow for any vertex i out of m add $\{i, f(i)\}$
- \rightarrow To complete the proof we need to show that the mapping $f \rightarrow T_f$ is a bijection, by describing the inverse map.
- \rightarrow write the elements of the $\bigcirc \rightarrow \square$ path write them again sorted to get $f|_m$. any element not in M is mapped to the next vertex in the path connecting it to the $\bigcirc \rightarrow \square$ path

$$M = \{1, 4, 5, 7, 8, 9\}$$

$$f|_{m} = \left(\begin{array}{ccccc} 1 & 4 & 5 & 7 & 8 & 9 \\ 7 & 9 & 1 & 5 & 8 & 4 \end{array}\right)$$

