Pattern Recognition Assignment#1

March 22, 2023

The format of your report is up to you. In general, your report should clearly show how you have obtained the results and a detailed analysis of your solutions. If you feel a bit inexperienced with writing scientific reports, have a look at the line¹. I recommend chapter 4 of this document if (like me) English is not your mother language.

- Q1. The maximum likelihood estimate is not always an unbiased estimator. Prove that the maximum likelihood estimator of the variance of a Gaussian variable is biased.
- Q2. People often decide their outdoor activities according to the weather conditions. Suppose you have a friend in London, where the weather conditions, denoted by $W = (\omega_1, \omega_2, \omega_3)$, is unknown. His activities option, denoted by $V = (v_1, v_2, v_3)$, is decided by the weather conditions. The initial state of the weather is $\pi = [0.3, 0.4, 0.3]$. Given the Hidden Markov model $\theta = (A, B, \pi)$, calculate the probability that you observe a specific activity sequence $O = [v_2, v_2, v_1, v_3]$ of your friend over the past four days, where $A_{i,j}$ is the transition probability from ω_i to ω_j , $B_{i,j}$ is the probability of observing the activity v_j under the state ω_i .

$$A = \begin{bmatrix} 0.3 & 0.2 & 0.5 \\ 0.1 & 0.4 & 0.5 \\ 0.2 & 0.5 & 0.3 \end{bmatrix}, B = \begin{bmatrix} 0.4 & 0.5 & 0.1 \\ 0.2 & 0.4 & 0.4 \\ 0.3 & 0.1 & 0.6 \end{bmatrix}.$$

- Q3. Suppose your friend buys a book and the book is either from online shopping (i.e., ω_1) or physical store shopping (i.e., ω_2). His satisfaction with the two methods is 0.3 and 0.7, respectively. It's known that online shopping has a 20% probability of delivering the wrong goods, while physical stores only have a 5% probability of doing so. Now he receives a book and finds it is wrong.
 - (a) Which method do you suspect the book is purchased by?
 - (b) The loss function is defined as: $\lambda_{11}=1$, $\lambda_{12}=5$, $\lambda_{21}=3$, $\lambda_{22}=1$. Considering the minimum risk Bayesian decision, which method do you suspect the book is purchased by?
- Q4. Consider the Bayesian belief network as shown in Figure 1.
 - (a) Which of the following are asserted by the network structure and why?

i.
$$P(B, I, L) = P(B)P(I)P(L)$$
.

ii.
$$P(J|G) = P(J|G, I)$$
.

¹http://www.cs.joensuu.fi/pages/whamalai/sciwri/sciwri.pdf

iii.
$$P(L|G, B, I) = P(L|G, B, I, J)$$
.

- (b) Calculate the value of P(B = t, I = t, L = f, G = t, J = t).
- (c) Calculate the probability that someone will go to jail given that he/she has broken the law, has been indicted, and his/her lawyer is inexperienced.
- (d) Suppose we want to add the variable P = Presidential Pardon to the network, draw the new network and briefly explain any links you add.

Figure 1: A Bayesian belief network with Bernoulli-distributed variables B = Broke Law, I = Indicted, L = Inexperienced Lawyer, G = Found Guilty, J = Jailed.