

Bachelor

Master

Doktorat

Universitätslehrgang

Studienplan (Curriculum) für das

Bachelorstudium
Technische Informatik
E 033 535

Technische Universität Wien
Beschluss des Senats der Technischen Universität Wien
am 20. Juni 2022

Gültig ab 1. Oktober 2022

Inhaltsverzeichnis

1.	Grundlage und Geltungsbereich	3
2.	Qualifikationsprofil	3
3.	Dauer und Umfang	5
4.	Zulassung zum Bachelorstudium	5
5.	Aufbau des Studiums	5
6.	Lehrveranstaltungen	14
7.	Studieneingangs- und Orientierungsphase	14
8.	Prüfungsordnung	16
9.	Studierbarkeit und Mobilität	17
10.	Bachelorarbeit	17
11.	Akademischer Grad	17
12.	Qualitätsmanagement	18
13.	Inkrafttreten	20
14.	Übergangsbestimmungen	20
A.	Modulbeschreibungen	21
В.	Lehrveranstaltungstypen	80
С.	Zusammenfassung aller verpflichtenden Voraussetzungen	81
D.	Semestereinteilung der Lehrveranstaltungen	82
E.	Semesterempfehlung für schiefeinsteigende Studierende	84
F.	Wahlfachkatalog "Transferable Skills"	85
G.	Prüfungsfächer mit den zugeordneten Modulen und Lehrveranstaltungen	86
Н.	Bachelor-Abschluss with Honors	90

1. Grundlage und Geltungsbereich

Der vorliegende Studienplan definiert und regelt das ingenieurwissenschaftliche Bachelorstudium Technische Informatik an der Technischen Universität Wien. Es basiert auf dem Universitätsgesetz 2002 BGBl. I Nr. 120/2002 (UG) und dem Satzungsteil Studienrechtliche Bestimmungen der Technischen Universität Wien in der jeweils geltenden Fassung. Die Struktur und Ausgestaltung des Studiums orientieren sich an folgendem Qualifikationsprofil.

2. Qualifikationsprofil

Das Bachelorstudium *Technische Informatik* vermittelt eine wissenschaftlich fundierte und methodisch hochwertige, auf breites und dauerhaftes Wissen ausgerichtete Grundausbildung, welche den Absolvent_innen das Gebiet vernetzter eingebetteter Computersysteme in seiner ganzen Breite erschließt. Anwendungen finden sich nicht nur in "klassischen" Cyber-Physical Systems wie medizintechnischen Geräten, Automatisierungssystemen, Autos und Flugzeugen, sondern, im Zeitalter des "Internet of Things", auch zunehmend in Alltagsgegenständen.

Zusätzlich zu den Kernkompetenzen der Informatik bietet das Bachelorstudium Technische Informatik eine interdisziplinäre Grundausbildung, die von mathematischen und physikalischen Grundlagen über Mikroelektronik, Signalverarbeitung und Regelungstechnik bis hin zum Hardware/Software Engineering von fehlertoleranten eingebetteten Echtzeitsystemen reicht. Sie macht die Absolvent_innen sowohl für eine Weiterqualifizierung im Rahmen eines facheinschlägigen Master- oder Doktoratsstudiums als auch für die Tätigkeit in beispielsweise folgenden Bereichen international konkurrenzfähig.

- Applications Engineering an der Schnittstelle Software-Hardware
- Gehobene Entwicklungsaufgaben im Bereich Embedded/Cyber-Physical Systems (etwa VLSI Design, Microcontroller/DSP Software-Entwicklung, Design zuverlässiger Systeme)
- Unterstützende Aufgaben im einschlägigen Forschungsumfeld

Aufgrund der beruflichen Anforderungen werden im Bachelorstudium Technische Informatik Qualifikationen hinsichtlich folgender Kategorien vermittelt.

Fachliche und methodische Kompetenzen Das Studium vermittelt grundlegende Kenntnisse im Bereich der Informatik und ein kritisches Verständnis ihrer Theorien und Grundsätze sowie generell ein stabiles Grundlagen- und Methodenwissen vor allem in den folgenden Bereichen:

- Algorithmen und Datenstrukturen
- Architektur von Computer- und Softwaresystemen
- Mathematik, Wahrscheinlichkeitstheorie und Statistik
- Mensch-Maschine-Interaktion
- Programmierparadigmen

- Software Engineering
- Theoretische Informatik und Logik

Darüber hinaus vermittelt das Bachelorstudium *Technische Informatik* eine ergänzende und/oder vertiefende Ausbildung in folgenden Teilgebieten der Informatik, Mathematik und Elektrotechnik:

- Analysis
- Elektrotechnische Grundlagen
- Systemtheorie und Modellbildung, Regelungstechnik
- Signalverarbeitung
- Informationstheorie und stochastische Prozesse
- Formale Verifikation
- Entwurf von Integrierten Schaltungen und Hardware-Architekturen
- Programmierung von Microcontrollern
- Fehlertolerante verteilte Systeme
- Echtzeitsysteme
- Automation

Kognitive und praktische Kompetenzen Das Studium vermittelt generell wissenschaftlich fundierte Kompetenzen und die Fähigkeiten, auch neue Herausforderungen zu erkennen und kritisch zu hinterfragen sowie Probleme zu erkennen, zu formulieren, zu analysieren und zu lösen und deren Lösungen zu validieren. Durch die praktische Auseinandersetzung mit zukunftsorientierten Technologien, Methoden und Werkzeugen werden folgende kognitive und praktische Fertigkeiten vermittelt:

- Einsetzen formaler Grundlagen und Methoden zur Modellbildung, Lösungsfindung und Evaluation
- Empirisch-experimentelle Systemvalidierung
- Entwicklung und Umsetzung von Design-Konzepten
- Interdisziplinäre und systemorientierte Denkweise
- Kritische Reflexion
- Methodisch fundierte Herangehensweise an Probleme, insbesondere im Umgang mit offenen/unspezifizierten Problemsituationen
- Präsentieren und Dokumentieren
- Umsetzen von Analyse-, Entwurfs-, Simulations- und Implementierungsstrategien
- Wissenschaftliches Arbeiten

Im Bachelorstudium *Technische Informatik* werden diese Fertigkeiten primär in jenen Gebieten vermittelt, die für die Entwicklung vernetzter eingebetteter Computersysteme in Dependable Cyber-Physical Systems zentral sind.

Soziale Kompetenzen und Selbstkompetenzen Der Schwerpunkt liegt hier in der Vermittlung für Forschung und Beruf notwendiger sozialer Kompetenzen sowie auf der Förderung von Kreativitäts- und Innovationspotentialen.

• Aktive und passive Kritikfähigkeit

- Innovationsfähigkeit
- Kenntnisse der eigenen Fähigkeiten und Grenzen
- Neugierde, Eigeninitiative, Ausdauer, Flexibilität
- Reflexion der eigenen Arbeit und ihrer Wechselwirkung mit dem gesellschaftlichen, sozialen und beruflichen Kontext
- Selbstorganisation und Eigenverantwortlichkeit
- Teamfähigkeit
- Verantwortungsvoller Umgang mit Menschen sowie beruflichen und sozialen Gruppen in allen Tätigkeiten

3. Dauer und Umfang

Der Arbeitsaufwand für das Bachelorstudium *Technische Informatik* beträgt 180 ECTS-Punkte. Dies entspricht einer vorgesehenen Studiendauer von 6 Semestern als Vollzeitstudium.

ECTS-Punkte (ECTS) sind ein Maß für den Arbeitsaufwand der Studierenden. Ein Studienjahr umfasst 60 ECTS-Punkte, wobei ein ECTS-Punkt 25 Arbeitsstunden entspricht (gemäß § 54 Abs. 2 UG).

4. Zulassung zum Bachelorstudium

Voraussetzung für die Zulassung zum Bachelorstudium *Technische Informatik* ist die allgemeine Universitätsreife.

Personen, deren Erstsprache nicht Deutsch ist, haben die Kenntnis der deutschen Sprache, sofern dies gem. §63 Abs. 1 Z 3 UG erforderlich ist, nachzuweisen.

In einzelnen Lehrveranstaltungen kann der Vortrag in englischer Sprache stattfinden bzw. können die Unterlagen in englischer Sprache vorliegen. Daher werden Englischkenntnisse auf Referenzniveau B1 des Gemeinsamen Europäischen Referenzrahmens für Sprachen empfohlen.

5. Aufbau des Studiums

Die Inhalte und Qualifikationen des Studiums werden durch Module vermittelt. Ein Modul ist eine Lehr- und Lerneinheit, welche durch Eingangs- und Ausgangsqualifikationen, Inhalt, Lehr- und Lernformen, den Regelarbeitsaufwand sowie die Leistungsbeurteilung gekennzeichnet ist. Die Absolvierung von Modulen erfolgt in Form einzelner oder mehrerer inhaltlich zusammenhängender Lehrveranstaltungen. Thematisch ähnliche Module werden zu Prüfungsfächern zusammengefasst, deren Bezeichnung samt Umfang und Gesamtnote auf dem Abschlusszeugnis ausgewiesen wird.

Prüfungsfächer und zugehörige Module

Das Bachelorstudium Technische Informatik gliedert sich in nachstehende Prüfungsfächer mit den ihnen zugeordneten Modulen. Die mit Stern markierten Module sind Wahl-, die übrigen Pflichtmodule. Die Pflichtmodule sind in jedem Fall zu absolvieren. Aus der Liste der Wahlmodule sind Module in einem Gesamtumfang von mindestens 10 ECTS zu wählen. Im Rahmen des Moduls Freie Wahlfächer und Transferable Skills sind so viele Lehrveranstaltungen zu absolvieren, dass ihr Umfang zusammen mit den ECTS-Punkten der Lehrveranstaltungen aus den Pflichtmodule und dem Umfang der gewählten Wahlmodule mindestens 180 ECTS ergibt. Werden in den Wahlmodulen insgesamt mehr als 10 ECTS absolviert, können im Modul Freie Wahlfächer und Transferable Skills im gleichen Ausmaß weniger ECTS absolviert werden, jedoch sind darin mindestens 6 ECTS aus dem Bereich der Transferable Skills zu absolvieren.

Grundlagen der Informatik

Grundlagen Digitaler Systeme (6,0 ECTS) Denkweisen der Informatik (6,5 ECTS) Algorithmen und Datenstrukturen (8,0 ECTS) Theoretische Informatik (6,0 ECTS)

Hardware

Elektrotechnische Grundlagen (7,5 ECTS) Digital Design (15,0 ECTS)

Mathematik

Algebra und Diskrete Mathematik (9,0 ECTS) Analysis (6,0 ECTS) Analysis 2 (7,5 ECTS) Wahrscheinlichkeitstheorie und Stochastische Prozesse (7,5 ECTS)

Programmierung

Einführung in die Programmierung (9,5 ECTS) Betriebssysteme und Computernetzwerke (9,0 ECTS) Mikrocomputer (3,0 ECTS)

Signale und Systeme

Signale und Systeme (8,5 ECTS) Modellbildung und Regelungstechnik (10,0 ECTS)

Zuverlässige verteilte Echtzeitsysteme

Programm- und Systemverifikation (6,0 ECTS) Zuverlässige Echtzeitsysteme (5,0 ECTS) Dezentrale Automation (6,0 ECTS) Grundlagen Security (3,0 ECTS)

Vertiefung/Verbreiterung

Vertiefung:

- *Abstrakte Maschinen (6,0 ECTS)
- *Argumentieren und Beweisen (6,0 ECTS)
- *Introduction to Numerics (4,5 ECTS)
- *Praktikum Technische Informatik (6,0 ECTS)
- *Einführung in paralleles Rechnen (Parallel Computing) (6,0 ECTS)
- *Übersetzerbau (6,0 ECTS)
- *Vertiefung Bakkalaureat Technische Informatik Verbreiterung:
- *Datenbanksysteme (6,0 ECTS)
- *Einführung in Artificial Intelligence (6,0 ECTS)
- *Grundlagen der Computer Vision (6,0 ECTS)
- *Programmierparadigmen (6,0 ECTS)
- *Verteilte Systeme (6,0 ECTS)
- *Grundlagen der Betriebswirtschaft (8,0 ECTS)
- *Verbreiterung Bakkalaureat Technische Informatik

Freie Wahlfächer und Transferable Skills

Freie Wahlfächer und Transferable Skills (18,0 ECTS)

Bachelorarbeit

Bachelorarbeit (13,0 ECTS)

Kurzbeschreibung der Module

Dieser Abschnitt charakterisiert die Module des Bachelorstudiums *Technische Informatik* in Kürze. Eine ausführliche Beschreibung ist in Anhang A zu finden.

Abstrakte Maschinen (6,0 ECTS) Dieses Modul vermittelt die theoretischen Grundlagen und konkrete Ausprägungen von abstrakten Maschinen. Dazu gehören Grundlagen über die effiziente Implementierung von abstrakten Maschinen und konkrete Maschinen wie die Java Virtual Machine, die Dalvik Virtual Machine, die Warren Abstract Machine

und die SECD Maschine. Praktische Fertigkeiten werden durch die Implementierung einer eigenen abstrakten Maschine im Übungsteil erworben. Einfache Kenntnisse aus dem Übersetzerbau werden vorausgesetzt.

Algebra und Diskrete Mathematik (9,0 ECTS) Das Modul vermittelt zentrale Grundlagenkenntnisse, Theoreme und Beweistechniken der Algebra (algebraische Strukturen und lineare Algebra) und der Diskreten Mathematik (Kombinatorik und Graphentheorie). Es setzt sich aus einem Vorlesungsteil und einem begleitenden Übungsteil zusammen. Neben der Vertiefung des Verständnisses und der Vernetzung der Vorlesungsinhalte dient der Übungsteil vor allem der Entwicklung von praktischen Fertigkeiten in der Erstellung korrekter mathematischer Beweise sowie in der mathematischen Modellierung und Analyse von Anwendungsproblemen.

Algorithmen und Datenstrukturen (8,0 ECTS) Dieses Modul führt Studierende in grundsätzliche Methoden zur Entwicklung und Analyse von Algorithmen ein. Neben Fachkenntnissen zu fundamentalen Algorithmen und Datenstrukturen erwerben sich die Studierenden die Fähigkeit zum Einsatz theoretisch fundierter Methoden zur Analyse von Algorithmen. Eine abstrakte und effizienzorientierte Denkweise wird gefördert.

Analysis (6,0 ECTS) Das Modul vermittelt zentrale Grundlagenkenntnisse, Theoreme und Beweistechniken in der mathematischen Analysis (Folgen und Reihen, elementare Funktionen, Differential- und Integralrechnung in einer Variablen). Es setzt sich aus einem Vorlesungsteil und einem begleitenden Übungsteil zusammen. Neben der Vertiefung des Verständnisses und der Vernetzung der Vorlesungsinhalte dient der Übungsteil vor allem der Entwicklung von praktischen Fertigkeiten zur Erstellung korrekter mathematischer Beweise sowie zur mathematischen Modellierung und Analyse von Anwendungsproblemen.

Analysis 2 (7,5 ECTS) Das Modul vermittelt vertiefende Kenntnisse und Methoden in der mathematischen Analysis (gewöhnliche und partielle Differentialgleichungen, multivariate Analysis, Transformationen) sowie grundlegende numerische Methoden. Es setzt sich aus einem Vorlesungsteil und einem begleitenden Übungsteil zusammen, der der Weiterentwicklung mathematischer Beweis-, Modellierungs- und Analysefertigkeiten dient und die Vorlesungsinhalte vertieft bzw. zueinander in Beziehung setzt.

Argumentieren und Beweisen (6,0 ECTS) Das Modul bietet eine Einführung in die zentralen Beweistechniken. Es setzt sich aus einem Vorlesungsteil und einem begleitenden Übungsteil zusammen, welcher der Vertiefung der Vorlesungsinhalte und der Entwicklung von Fertigkeiten zur Erstellung korrekter mathematischer Beweise dient. Schwerpunkte sind die Strukturierung von Beweisen und Argumentationen sowie die unterschiedlichen Techniken zur Induktion, die an praktischen Fragestellungen der Informatik demonstriert werden.

Bachelorarbeit (13,0 ECTS) Ein Seminar führt in die wissenschaftliche Methodik und in den Wissenschaftsbetrieb ein. Darauf aufbauend bearbeitet der oder die Studierende im Rahmen eines Projektes ein dem Qualifikationsprofil des Studiums entsprechendes Thema und beschreibt Aufgabenstellung, Methodik, Umfeld und Ergebnisse in einer

schriftlichen Bachelorarbeit. Das Thema der Bachelorarbeit wird auf dem Abschlusszeugnis ausgewiesen.

Betriebssysteme (6,0 ECTS) Dieses Modul vermittelt grundlegende Kenntnisse über Betriebssysteme, deren Architektur, Funktionsweise und wesentliche Komponenten. Die Grundkonzepte und theoretischen Inhalte werden in der Vorlesung, das Arbeiten mit Betriebssystemen und Betriebssystemmechanismen zusätzlich in praktischen Übungen im Labor vermittelt.

Vorausgesetzt werden Kenntnisse der Grundlagen der Informatik sowie Programmierkenntnisse.

Betriebssysteme und Computernetzwerke (9,0 ECTS) Dieses Modul kombiniert das Modul Betriebssysteme mit der Lehrveranstaltung Computer Networks. Es vermittelt grundlegende Kenntnisse über Architektur, Funktionsweise und die wesentlichen Komponenten von Betriebssystemen und Computernetzwerken. In den begleitenden Übungen werden einschlägige praktische Fertigkeiten erworben, die von der Verwendung der Programmierschnittstellen von Betriebssystemen über Multitasking bis zur Netzwerkprogrammierung reichen.

Datenbanksysteme (6,0 ECTS) Das Modul vermittelt Grundkenntnisse von Datenmodellierung und Datenbankmanagementsystemen. Es bildet die Basis für die Verwendung von Datenbanksystemen bei künftigen Aufgaben im Bereich Softwareentwicklung. Der Schwerpunkt liegt auf dem relationalen Datenmodell. Neben den grundlegenden Techniken der Datenmodellierung wird die Umsetzung in ein relationales Schema sowie die Verwendung einer relationalen Datenbank vermittelt. Außerdem werden Kenntnisse über zentrale Datenbankkonzepte wie Transaktionen, Fehlerbehandlung/Recovery und Mehrbenutzersynchronisation vermittelt.

Denkweisen der Informatik (6,5 ECTS) Studierende werden mit einer Reihe verschiedener Denkweisen und Denkmodelle konfrontiert, die unterschiedliche Herangehensweisen an Probleme implizieren. Darüber hinaus lernen Studierende ausgewählte Aspekte der Geschichte der Informatik kennen, reflektieren die Rolle der Informatik in der Gesellschaft, und setzen sich exemplarisch mit besonderen Fragen aus diesem Bereich auseinander. Schließlich bietet das Modul einen Überblick und eine Einführung in die Themen des wissenschaftlichen Arbeitens sowie zum Lernen und Arbeiten an der TU Wien. Darüber hinaus gibt das Modul einen Überblick über die Informatikstudien, die Forschungsgebiete der Informatik und die Organisation von Fakultät und Universität, und vermittelt die Verhaltensregeln der Informatik sowie Strategien für einen erfolgreichen Studienabschluss.

Digital Design (15,0 ECTS) Dieses sich über 2 Semester erstreckende Modul vermittelt neben einem Überblick über Entwurf, Technologien und Fertigung digitaler integrierter Schaltungen auch grundlegende Kenntnisse über den Aufbau, die Organisation und die Performance von Rechensystemen. Schwerpunkte sind der Schaltungsentwurf in VHDL sowie das Verständnis von Funktion und Aufbau von FPGAs (Field-Programmable Gate-Arrays) als Zieltechnologie. Neben diesen anwendungsbezogenen Kenntnissen und Fertigkeiten wird darüberhinaus auch der Umgang mit Nicht-

Idealitäten und Grenzen der üblichen Modelle geschult, wie zum Beispiel Ursachen und Erkennung von Defekten, das Auftreten analoger Effekte und Metastabilität. Weitere Schwerpunkte sind Architektur, Funktionsweise und Komponenten von Computern, sowie die Schnittstelle zwischen Hardware und Software. Die Vermittlung der theoretischen Grundlagen erfolgt Vorlesungen; deren Vertiefung und Anwendung ist Gegenstand einer Laborübung, in der auch umfangreiche praktische Aufgabenstellungen (teilweise in Teams) zu lösen sind.

Dezentrale Automation (6,0 ECTS) Das Modul bietet einen Überblick über zentrale Themen der Automatisierungstechnik und setzt sich aus einem Vorlesungs- und Übungsteil zusammen. Der Vorlesungsteil behandelt Konzepte und Methoden der Automatisierung technischer Abläufe in ihren vielfältigen Anwendungsbereichen, mit Schwerpunkten in der industriellen Automation, Heim-/Gebäudeautomation sowie im KFZ-Bereich. Der Laborübungsteil ist auf die Vermittlung der für Entwurf und Implementierung von Automatisierungsapplikationen erforderlichen praktischen Fertigkeiten ausgerichtet.

Einführung in Artificial Intelligence (6,0 ECTS) Studierende mit Kenntnissen in Datenstrukturen und Algorithmen sowie mit Fertigkeiten in der Mathematik (wie z.B. Beweise selbst zu führen) erhalten in diesem Modul (a) grundlegende Kenntnisse der theoretischen Grundlagen und Methoden der Artificial Intelligence (AI) und (b) fundamentale Konzepte die zum Verständnis der Arbeitsweise als auch zur Erstellung von AI Systemen notwendig sind.

Einführung in wissensbasierte Systeme (6,0 ECTS) Studierende mit elementaren Logikkenntnissen sowie mit Fertigkeiten in der Mathematik (wie z.B. Beweise selbst zu führen) erhalten in diesem Modul (a) grundlegende Kenntnisse in den theoretischen Grundlagen wissensbasierter Systeme und (b) fundamentale Konzepte, die zum Verständnis der Arbeitsweise als auch zur Erstellung wissensbasierter Systeme notwendig sind.

Grundlagen der Computer Vision (6,0 ECTS) Das Modul vermittelt tiefergehende Kenntnisse im Bereich Computer Vision, aufbauend auf das Modul Ëinführung in Visual Computing". Die Inhalte werden theoretisch durch eine Vorlesung und praktisch durch eine Übung vermittelt. Die Studierenden sollen die grundlegenden methodischen Konzepte und das grundlegende Wissen über die Themengebiete kennen und anwenden lernen. Sie sollen die Zusammenhänge zwischen den Objekten einer Szene, dem Sensor und den Eingabedaten verstehen und in der Lage sein, die benötigten Informationen zu extrahieren und in einer Vielzahl von Anwendungen zu nutzen. Nach Abschluss dieses Moduls verfügen die Studierenden über ein umfassenderes Wissen über Computer Vision und fortgeschrittene, methodische Kenntnisse, um die Herausforderungen mit den effektivsten Methoden des jeweiligen Standes der Technik zu bewältigen.

Einführung in die Programmierung (9,5 ECTS) Das Modul richtet sich an ProgrammieranfängerInnen und bildet die Basis für die weitere Programmierausbildung. Der Schwerpunkt liegt auf einer systematischen Vorgehensweise beim Programmieren. Studierende erwerben neben Fachkenntnissen vor allem praktische Fertigkeiten in der Programmierung. Abstrakte Denkweisen werden gefördert.

Einführung in paralleles Rechnen (Parallel Computing) (6,0 ECTS) Das Modul gibt eine Einführung in das parallele Rechnen auf unterschiedlichen Rechnerarchitekturen, vom Mehrkern-Prozessor bis zum Hochleistungsrechensystem. Es werden Lösungsstrategien für spezifische Probleme und konkrete Programierschnittstellen aufgezeigt.

Grundlagen Security (3,0 ECTS) Security ist ein kritischer Aspekt in allen computerbasierenden Anwendungen. Die in diesem Modul vermittelten Grundlagen erlauben es den Studierenden, Sicherheitsprobleme zu erkennen und Sicherheitsmaßnahmen anzuwenden. Diese Kenntnisse sind auch Voraussetzung dafür, weiterführende Module etwa im Bereich Embedded Systems und Hardware Security absolvieren zu können.

Introduction to Cryptography (6,0 ECTS)

Dieses Modul vermittelt die grundlegenden Konzepte der (symmetrischen und publickey) Kryptographie im Bereich Verschlüsselung und Authentifizierung. Die Sicherheit der vorgestellten Verfahren wird mit den Methoden der beweisbaren Sicherheit formal argumentiert.

Introduction to Numerics (4,5 ECTS) Studierende werden mit den grundlegenden Konzepten algorithmisch-numerischer Lösungsmethoden vertraut gemacht. Inhaltlich gehören dazu grundlegende Fehlerbegriffe (Datenfehler, Verfahrens- oder Diskretisierungsfehler, Rundungsfehler), Kondition mathematischer Probleme, numerische Lösung linearer und nichtlinearer Gleichungssysteme, polynomiale Interpolation und Approximation, numerische Integration, numerische Lösungen von Differentialgleichungen, Design und Verwendung numerischer Algorithmen bzw. numerischer Software.

Elektrotechnische Grundlagen (7,5 ECTS) Das Modul vermittelt die elektrotechnisch-technologischen Voraussetzungen für das Verständnis der Funktion von Rechnersystemen bzw. rechnergesteuerten Geräten. Aufbauend auf elementaren physikalischen Grundlagen, wie sie im Gymnasium bzw. an facheinschlägigen HTLs vermittelt werden, vermittelt das Modul Kenntnisse und praktische Fertigkeiten für die Lösung von elektrotechnischen Fragestellungen, wie sie beim Entwurf und der theoretischen sowie meßtechnischen Analyse von Hardwarekomponenten auftreten. Aufgrund der beschränkten Laborressourcen und der Situierung im 2. Semester besteht für die LVA 182.692 (Laborübungen) ein Kapazitätslimit.

Freie Wahlfächer und Transferable Skills (18,0 ECTS) Die Lehrveranstaltungen dieses Moduls dienen der Vertiefung des Faches sowie der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen.

Grundlagen Digitaler Systeme (6,0 ECTS) Dieses Modul ist identisch mit dem Modul Grundzüge digitaler Systeme, erstreckt sich aber über zwei Semester (Lehrveranstaltungen Grundlagen digitaler Systeme und Formale Modellierung). Es vermittelt die Grundkenntnisse für die formale Modellierung statischer und dynamischer Systeme sowie für das Verständnis und den Entwurf digitaler Systeme.

Grundzüge digitaler Systeme (6,0 ECTS) Das Modul vermittelt die Grundkenntnisse für die formale Modellierung statischer und dynamischer Systeme sowie für das Verständnis und den Entwurf digitaler Systeme.

Grundlagen der Betriebswirtschaft (8,0 ECTS) In diesem Modul erhalten die Studierenden Einblicke in die Funktionsweise von Unternehmen, die Bewertung von betrieblich erstellten Sach- und Dienstleistungen, sowie das Rechnungswesen. In den Vorlesungsteilen der Lehrveranstaltungen werden die Inhalte vorgetragen und u.a. durch Diskussionen reflektiert. Im Übungsteil des Moduls haben die Studierenden vorzugsweise praktische Aufgabenstellungen mit den im Vorlesungsteil kennen gelernten Konzepten zu lösen.

Mikrocomputer (3,0 ECTS) Das Modul Mikrocomputer vermittelt Grundlagen der Architektur und Programmierung von Mikrocontrollern. Im Rahmen einer Laborübung wird das theoretisch erworbene Wissen selbständig vertieft und zur Programmierung einfacher Steuerungsaufgaben mit einem typischen Mikrocontroller angewandt.

Modellbildung und Regelungstechnik (10,0 ECTS) Das sich über 2 Semester erstreckende Modul bietet eine Einführung in die mathematische Regelungstechnik, beginnend bei der Modellbildung und den systemtheoretischen Grundlagen linearer zeitkontinuierlicher und zeitdiskreter Systeme über den systematischen Entwurf linearer Regler im Frequenzbereich bis hin zum Beobachter- und Reglerentwurf im Zustandsraum. Es setzt sich aus zwei Vorlesungsteilen (in denen die theoretischen Grundlagen und Methoden der Modellbildung und der Regelungstechnik vorgestellt werden), einem Übungsteil (in dem einfache Rechenbeispiele auf der Tafel vorgerechnet werden), und einem Laborübungsteil (in dem das Computeralgebraprogramm Maple und das Numerik- und Simulationsprogramm Matlab/Simulink sowie die Control System Toolbox zum Einsatz kommen) zusammen.

Praktikum Technische Informatik (6,0 ECTS) Dieses Modul ist der praktischen Vertiefung ausgewählter Inhalte der Technischen Informatik gewidmet. Individuell vergebene Problemstellungen werden in Einzel- oder Gruppenarbeit bearbeitet. Die Lösung wird in Form einer schriftlichen Arbeit dokumentiert.

Programm- und Systemverifikation (6,0 ECTS) Das Modul bietet eine Einführung in Methoden zur computerunterstützten Verifikation und Qualitätssicherung von Software und Hardware. Die in der Vorlesung vermittelten Grundlagen und Methoden werden an Hand von theoretischen und praktischen Aufgabenstellungen vertieft und in geeigneten Anwendungen erprobt.

Programmierparadigmen (6,0 ECTS) Das Modul veranschaulicht Konzepte, Techniken und Denkweisen von Programmierparadigmen, insbesondere des objektorientierten, funktionalen, nebenläufigen (concurrent) und parallelen Paradigmas. Im Vordergrund steht das praktische Lösen von Programmieraufgaben auf für die Paradigmen typische Weise.

Signale und Systeme (8,5 ECTS) Dieses sich über 2 Semester erstreckende Modul gibt eine Einführung in die Theorie und die grundlegenden Methoden zur Analyse und Modellierung linearer dynamischer Systeme und der Signalverarbeitung sowohl für zeitkontinuierliche als auch für zeitdiskrete Signale. Zentrale Ergebnisse und Methoden der rigorosen Signal- und Systemtheorie werden vorgestellt und an konkreten Modellen erprobt.

Theoretische Informatik (6,0 ECTS) Aufbauend auf elementaren Kenntnissen formaler Modellierungssprachen (wie Automaten oder Aussagenlogik) zur Spezifikation realer Sachverhalte vermittelt dieses Modul die theoretischen und logischen Grundlagen der Informatik und die Fähigkeit, formal-mathematische Beschreibungen verstehen und verfassen zu können.

Übersetzerbau (6,0 ECTS) Das Modul vermittelt die theoretischen Grundlagen des Übersetzerbaus und die praktischen Fähigkeiten der Entwicklung von Parsern und Übersetzern. Es werden alle Phasen eines Übersetzers von der lexikalischen Analyse, der Syntaxanalyse, der semantischen Analyse, der Optimierung und der Codeerzeugung abgedeckt. Weiters wird noch auf die Implementierung von objektorientierten Programmiersprachen eingegangen. In Vorlesungen werden die theoretischen Grundlagen vermittelt, in einer Laborübung in geführten Kleingruppen werden die Inhalte in Form von Programmieraufgaben praktisch geübt.

Verteilte Systeme (6,0 ECTS) Das Modul Verteilte Systeme vermittelt maßgebliche Konzepte verteilter Systeme sowie aktuelle Entwicklungen in diesem Bereich. Daher wird die Rolle verteilter Systeme in aktuellen Systemlandschaften diskutiert. Weiterhin werden Anforderungen an (große) verteilte Systeme und verschiedene Arten von verteilten Systemen vorgestellt. Der Fokus liegt auf fundamentalen Konzepten, Methoden und Algorithmen für verteilte Systeme, sowie deren Vor- und Nachteile und Einsatzmöglichkeiten. Ziel der Übung ist das Erlernen von grundlegenden Techniken wie beispielsweise Sockets, Remote Method Invocations (RMI), sowie einfachen Sicherheits-Mechanismen in verteilten Systemen. Die Übung verleiht in diesem Zusammenhang praxisnahe Fähigkeiten in der Netzwerk-Programmierung sowie beim Entwickeln von verteilten Anwendungen.

Verbreiterung Bakkalaureat Technische Informatik Dieses Modul enthält Lehrveranstaltungen und Module, die der Verbreiterung des Pflichtangebotes der Technischen Informatik dienen und von den Studierenden im Rahmen des Prüfungsfaches Vertiefung/Verbreiterung gewählt werden können. Die Wahl ist frei, allerdings müssen enthaltene Module zur Gänze gewählt werden.

Vertiefung Bakkalaureat Technische Informatik Dieses Modul enthält Lehrveranstaltungen, die der Vertiefung eines Teilgebiets der Technischen Informatik dienen und von den Studierenden im Rahmen des Prüfungsfaches Vertiefung/Verbreiterung gewählt werden können. Die Wahl ist frei, allerdings müssen enthaltene Module zur Gänze gewählt werden.

Wahrscheinlichkeitstheorie und Stochastische Prozesse (7,5 ECTS) Das Modul bietet eine fundierte Einführung in die Grundlagen der Wahrscheinlichkeitstheorie und stochastischer Prozesse und deren Anwendung in der Statistik und Informationstheorie. Durch Anwendung der in der Vorlesung vermittelten mathematischen Grundlagen, Methoden und Verfahren in den begleitenden Übungen werden Fertigkeiten in der Auswahl und Verwendung adäquater Verfahren für reale Problemstellungen in relevanten Anwendungsgebieten (Signalverarbeitung, fehlertolerante Systeme, probabilistische Algorithmen usw.) vermittelt.

Zuverlässige Echtzeitsysteme (5,0 ECTS) Das Modul vermittelt die wesentlichen Kenntnisse für die Spezifikation, den Entwurf, die Implementierung und das Testen von fehlertoleranten, sowie sicherheitskritischen verteilten Echtzeitsystemen. Fehlerarten, Fehlermodellierung, Fehlermaskierung, der Umgang mit zeitabhängiger Information, die Konstruktion von Computersystemen mit strikten Anforderungen im Zeitbereich und die Auswirkungen dieser Faktoren auf die Sicherheit von Computersystemen sind dabei zentrale Aspekte. Die Grundlagen zu zuverlässigen Systemen und Echtzeitsystemen werden in Vorlesungen vermittelt. Problemstellungen aus der Simulation von Fehlertoleranten Systemen und der Fehleranalyse/modellierung werden in praktischen Übungen behandelt.

6. Lehrveranstaltungen

Die Stoffgebiete der Module werden durch Lehrveranstaltungen vermittelt. Die Lehrveranstaltungen der einzelnen Module sind in Anhang A in den jeweiligen Modulbeschreibungen spezifiziert. Lehrveranstaltungen werden durch Prüfungen im Sinne des Universitätsgesetzes beurteilt. Die Arten der Lehrveranstaltungsbeurteilungen sind in der Prüfungsordnung (Abschnitt 8) festgelegt.

Betreffend die Möglichkeiten der Studienkommission, Module um Lehrveranstaltungen für ein Semester zu erweitern, und des Studienrechtlichen Organs, Lehrveranstaltungen individuell für einzelne Studierende Wahlmodulen zuzuordnen, wird auf § 27 des Studienrechtlichen Teils der Satzung der TU Wien verwiesen.

7. Studieneingangs- und Orientierungsphase

Die Studieneingangs- und Orientierungsphase (StEOP) soll den Studierenden eine verlässliche Überprüfung ihrer Studienwahl ermöglichen. Sie leitet vom schulischen Lernen zum universitären Wissenserwerb über und schafft das Bewusstsein für die erforderliche Begabung und die nötige Leistungsbereitschaft.

Die Studieneingangs- und Orientierungsphase des Bachelorstudiums $\mathit{Technische\ Informatik}$ umfasst die Lehrveranstaltungen

- 4,0 VO Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 2,0 VO Analysis für Informatik und Wirtschaftsinformatik
- 5,5 VU Einführung in die Programmierung 1
- 1,0 VU Orientierung Informatik und Wirtschaftsinformatik

sowie mindestens 4 ECTS aus dem Pool folgender Lehrveranstaltungen:

- 5,0 UE Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 4,0 UE Analysis für Informatik und Wirtschaftsinformatik
- 3,0 VU Formale Modellierung
- 3,0 VU Grundlagen digitaler Systeme

Die Studieneingangs- und Orientierungsphase gilt als positiv absolviert, wenn alle im Rahmen der StEOP verpflichtend vorgeschriebenen Lehrveranstaltungen sowie Lehrver-

anstaltungen aus dem Pool im Umfang von mindestens 4 ECTS mit positivem Erfolg abgeschlossen wurden.

Vor positiver Absolvierung der StEOP dürfen weitere Lehrveranstaltungen im Umfang von 22 ECTS absolviert werden, die aus den oben genannten Lehrveranstaltungen und den folgenden gewählt werden können.

- 8,0 VU Algorithmen und Datenstrukturen
- 3,0 VO Analysis 2 für Informatik
- 4,5 UE Analysis 2 für Informatik
- 5,5 VU Denkweisen der Informatik
- 4,0 VU Elektrotechnische Grundlagen
- 3,5 LU Elektrotechnische Grundlagen
- 4,0 VU Einführung in die Programmierung 2

Weiters können Lehrveranstaltungen im Rahmen des Moduls Freie Wahlfächer und Transferable Skills gewählt werden, sofern deren Absolvierung nicht anderweitig beschränkt ist.

Die positiv absolvierte Studieneingangs- und Orientierungsphase ist jedenfalls Voraussetzung für die Absolvierung der im Bachelorstudium vorgesehenen Lehrveranstaltungen, in deren Rahmen die Bachelorarbeit abzufassen ist.

Wiederholbarkeit von Teilleistungen

Für alle StEOP-Lehrveranstaltungen müssen mindestens zwei Antritte im laufenden Semester vorgesehen werden, wobei einer der beiden auch während der lehrveranstaltungsfreien Zeit abgehalten werden kann. Es muss ein regulärer, vollständiger Besuch der Vorträge mit prüfungsrelevanten Stoff im Vorfeld des ersten Prüfungstermins möglich sein.

Bei Lehrveranstaltungen mit einem einzigen Prüfungsakt ist dafür zu sorgen, dass die Beurteilung des ersten Termins zwei Wochen vor dem zweiten Termin abgeschlossen ist, um den Studierenden, die beim ersten Termin nicht bestehen, ausreichend Zeit zur Einsichtnahme in die Prüfung und zur Vorbereitung auf den zweiten Termin zu geben.

Die Beurteilung des zweiten Termins ist vor Beginn der Anmeldung für prüfungsimmanente Lehrveranstaltungen des Folgesemesters abzuschließen.

Bei prüfungsimmanenten Lehrveranstaltungen ist dies sinngemäß so anzuwenden, dass entweder eine komplette Wiederholung der Lehrveranstaltung in geblockter Form angeboten wird oder die Wiederholbarkeit innerhalb der Lehrveranstaltung sichergestellt wird.

Wiederholbarkeit innerhalb der Lehrveranstaltung bedeutet, dass Teilleistungen, ohne die keine Beurteilung mit einem Notengrad besser als "genügend" (4) bzw. "mit Erfolg teilgenommen" erreichbar ist, jeweils wiederholbar sind. Teilleistungen sind Leistungen, die gemeinsam die Gesamtnote ergeben und deren Beurteilungen nicht voneinander abhängen. Diese Wiederholungen zählen nicht im Sinne von § 15 (6) des studienrechtlichen Teils der Satzung der TU Wien als Wiederholung.

Zusätzlich können Gesamtprüfungen angeboten werden, wobei eine derartige Gesamtprüfung wie ein Prüfungstermin für eine Vorlesung abgehalten werden muss.

8. Prüfungsordnung

Für den Abschluss des Bachelorstudiums ist die positive Absolvierung der im Studienplan vorgeschriebenen Module erforderlich. Ein Modul gilt als positiv absolviert, wenn die ihm zuzurechnenden Lehrveranstaltungen gemäß Modulbeschreibung positiv absolviert wurden.

Das Abschlusszeugnis beinhaltet

- (a) die Prüfungsfächer mit ihrem jeweiligen Umfang in ECTS-Punkten und ihren Noten,
- (b) das Thema der Bachelorarbeit und
- (c) die Gesamtbeurteilung sowie
- (d) auf Antrag des_der Studierenden die Gesamtnote des absolvierten Studiums gemäß §72a UG.

Die Note eines Prüfungsfaches ergibt sich durch Mittelung der Noten jener Lehrveranstaltungen, die dem Prüfungsfach über die darin enthaltenen Module zuzuordnen sind, wobei die Noten mit dem ECTS-Umfang der Lehrveranstaltungen gewichtet werden. Bei einem Nachkommateil kleiner gleich 0,5 wird abgerundet, andernfalls wird aufgerundet. Wenn keines der Prüfungsfächer schlechter als mit "gut" und mindestens die Hälfte mit "sehr gut" benotet wurde, so lautet die Gesamtbeurteilung "mit Auszeichnung bestanden" und ansonsten "bestanden".

Die Studieneingangs- und Orientierungsphase gilt als positiv absolviert, wenn die im Studienplan vorgegebenen Leistungen zu Absolvierung der StEOP erbracht wurden.

Lehrveranstaltungen des Typs VO (Vorlesung) werden aufgrund einer abschließenden mündlichen und/oder schriftlichen Prüfung beurteilt. Alle anderen Lehrveranstaltungen besitzen immanenten Prüfungscharakter, d.h., die Beurteilung erfolgt laufend durch eine begleitende Erfolgskontrolle sowie optional durch eine zusätzliche abschließende Teilprüfung.

Zusätzlich können zur Erhöhung der Studierbarkeit Gesamtprüfungen zu prüfungsimmanenten Lehrveranstaltungen angeboten werden, wobei diese wie ein Prüfungstermin für eine Vorlesung abgehalten werden müssen und $\S 15 (6)$ des Studienrechtlichen Teils der Satzung der TU Wien hier nicht anwendbar ist.

Der positive Erfolg von Prüfungen und wissenschaftlichen sowie künstlerischen Arbeiten ist mit "sehr gut" (1), "gut" (2), "befriedigend" (3) oder "genügend" (4), der negative Erfolg ist mit "nicht genügend" (5) zu beurteilen. Bei Lehrveranstaltungen, bei denen eine Beurteilung in der oben genannten Form nicht möglich ist, werden diese durch "mit Erfolg teilgenommen" (E) bzw. "ohne Erfolg teilgenommen" (O) beurteilt.

Die Beurteilung der Lehrveranstaltung

1,0 VU Orientierung Informatik und Wirtschaftsinformatik

erfolgt bei positivem Erfolg durch "mit Erfolg teilgenommen", andernfalls durch "ohne Erfolg teilgenommen"; sie bleibt bei der Berechnung der gemittelten Note des Prüfungsfaches unberücksichtigt.

9. Studierbarkeit und Mobilität

Studierende des Bachelorstudiums *Technische Informatik*, die ihre Studienwahl im Bewusstsein der erforderlichen Begabungen und der nötigen Leistungsbereitschaft getroffen und die Studieneingangs- und Orientierungsphase, die dieses Bewusstsein vermittelt, absolviert haben, sollen ihr Studium mit angemessenem Aufwand in der dafür vorgesehenen Zeit abschließen können.

Den Studierenden wird empfohlen, ihr Studium nach dem Semestervorschlag in Anhang D zu absolvieren. Studierenden, die ihr Studium im Sommersemester beginnen, wird empfohlen, ihr Studium nach der Semesterempfehlung in Anhang E zu absolvieren.

Die Beurteilungs- und Anwesenheitsmodalitäten von Lehrveranstaltungen der Typen UE, LU, PR, VU, SE und EX sind im Rahmen der Lehrvereinbarungen mit dem Studienrechtlichen Organ festzulegen und den Studierenden in geeigneter Form, zumindest in der elektronisch zugänglichen Lehrveranstaltungsbeschreibung anzukündigen, soweit sie nicht im Studienplan festgelegt sind. Für mindestens eine versäumte oder negative Teilleistung, die an einem einzigen Tag zu absolvieren ist (z.B. Test, Klausur, Laborübung), ist zumindest ein Ersatztermin spätestens innerhalb von 2 Monaten anzubieten.

Die Anerkennung von im Ausland absolvierten Studienleistungen erfolgt durch das studienrechtliche Organ. Zur Erleichterung der Mobilität stehen die in § 27 Abs. 1 bis 3 der Studienrechtlichen Bestimmungen der Satzung der Technischen Universität Wien angeführten Möglichkeiten zur Verfügung. Diese Bestimmungen können in Einzelfällen auch zur Verbesserung der Studierbarkeit eingesetzt werden.

Die Zahl der jeweils verfügbaren Plätze und das Verfahren zur Vergabe dieser Plätze in Lehrveranstaltungen mit beschränkten Ressourcen wird von der Lehrveranstaltungsleitung festgelegt und vorab bekannt gegeben. Die Lehrveranstaltungsleitung ist berechtigt, für ihre Lehrveranstaltung Ausnahmen von der Teilnahmebeschränkung zuzulassen.

10. Bachelorarbeit

Die Bachelorarbeit ist eine im Bachelorstudium eigens anzufertigende schriftliche Arbeit, welche eigenständige Leistungen beinhaltet. Sie besitzt einen Regelarbeitsaufwand von 10 ECTS und kann im Rahmen des Moduls *Bachelorarbeit* erstellt werden.

11. Akademischer Grad

Den Absolvent_innen des Bachelorstudiums *Technische Informatik* wird der akademische Grad *Bachelor of Science* – abgekürzt *BSc* – verliehen.

12. Qualitätsmanagement

Das Qualitätsmanagement des Bachelorstudiums Technische Informatik gewährleistet, dass das Studium in Bezug auf die studienbezogenen Qualitätsziele der TU Wien konsistent konzipiert ist und effizient und effektiv abgewickelt sowie regelmäßig überprüft wird. Das Qualitätsmanagement des Studiums erfolgt entsprechend des Plan-Do-Check-Act Modells nach standardisierten Prozessen und ist zielgruppenorientiert gestaltet. Die Zielgruppen des Qualitätsmanagements sind universitätsintern die Studierenden und die Lehrenden sowie extern die Gesellschaft, die Wirtschaft und die Verwaltung, einschließlich des Arbeitsmarktes für die Studienabgänger_innen.

In Anbetracht der definierten Zielgruppen werden sechs Ziele für die Qualität der Studien an der TU Wien festgelegt: (1) In Hinblick auf die Qualität und auf die Aktualität des Studienplans ist die Relevanz des Qualifikationsprofils für die Gesellschaft und den Arbeitsmarkt gewährleistet. In Hinblick auf die Qualität der inhaltlichen Umsetzung des Studienplans sind (2) die Lernergebnisse in den Modulen des Studienplans geeignet gestaltet um das Qualifikationsprofil umzusetzen, (3) die Lernaktivitäten und -methoden geeignet gewählt um die Lernergebnisse zu erreichen und (4) die Leistungsnachweise geeignet um die Erreichung der Lernergebnisse zu überprüfen. (5) In Hinblick auf die Studierbarkeit der Studienpläne sind die Rahmenbedingungen gegeben um diese zu gewährleisten. (6) In Hinblick auf die Lehrbarkeit verfügt das Lehrpersonal über fachliche und zeitliche Ressourcen um qualitätsvolle Lehre zu gewährleisten.

Um die Qualität der Studien zu gewährleisten, werden der Fortschritt bei Planung, Entwicklung und Sicherung aller sechs Qualitätsziele getrennt erhoben und publiziert. Die Qualitätssicherung überprüft die Erreichung der sechs Qualitätsziele. Zur Messung des ersten und zweiten Qualitätszieles wird von der Studienkommission zumindest einmal pro Funktionsperiode eine Überprüfung des Qualifikationsprofils und der Modulbeschreibungen vorgenommen. Zur Überprüfung der Qualitätsziele zwei bis fünf liefert die laufende Bewertung durch Studierende, ebenso wie individuelle Rückmeldungen zum Studienbetrieb an das Studienrechtliche Organ, laufend ein Gesamtbild über die Abwicklung des Studienplans. Die laufende Überprüfung dient auch der Identifikation kritischer Lehrveranstaltungen, für welche in Abstimmung zwischen Studienrechtlichem Organ, Studienkommission und Lehrveranstaltungsleiter_innen geeignete Anpassungsmaßnahmen abgeleitet und umgesetzt werden. Das sechste Qualitätsziel wird durch qualitätssicherung wird alle sieben Jahre eine externe Evaluierung der Studien vorgenommen.

Jedes Modul besitzt eine_n Modulverantwortliche_n. Diese Person ist für die inhaltliche Kohärenz und die Qualität der dem Modul zugeordneten Lehrveranstaltungen verantwortlich. Diese wird insbesondere durch zyklische Kontrollen, inhaltliche Feinabstimmung mit vorausgehenden und nachfolgenden Modulen sowie durch Vergleich mit analogen Lehrveranstaltungen bzw. Modulen anderer Universitäten im In- und Ausland sichergestellt.

Die für die Abwicklung des Studiums zur Verfügung stehenden Labors und Ressourcen

sind für eine maximale Anzahl von 90 Studienanfängern pro Studienjahr ausgelegt, mit einem erwarteten Drop-Out von 33%.

Die Wahlpflichtmodule im Prüfungsfach Vertiefung/Verbreiterung erlauben eine gewisse Vertiefung bzw. Verbreiterung in einem für die Technische Informatik relevanten Gebiet. Lehrveranstaltungen im Modul Vertiefung Bakkalaureat Technische Informatik werden nach folgenden Kriterien in den Studienplan aufgenommen:

- Umfang, Niveau und Aufwand entsprechend Pflichtlehrveranstaltungen.
- Lehrveranstaltung ohne Übungsanteil nur in gut begründeten Ausnahmefällen.
- Thema passend zum Qualifikationsprofil der Technischen Informatik.
- Thematische und inhaltliche Distanz zu existierenden Pflicht- und Wahllehrveranstaltungen bzw. -modulen im Studienplan.

Aufgenommene Verbreiterungsmodule müssen folgenden Kriterien genügen:

- Umfang, Niveau und Aufwand entsprechend Pflichtmodulen.
- Modul ohne Übungsanteil nur in gut begründeten Ausnahmefällen.
- Thema passend zum Qualifikationsprofil der Technischen Informatik.
- Thematische und inhaltliche Distanz zu existierenden Pflicht- und Wahl-Modulen im Studienplan.
- Verbreiterungsmodule müssen Pflicht oder Wahlpflicht in einem regulären Bachelorstudium der Technischen Universität Wien sein.

Lehrveranstaltungskapazitäten und Teilnahmebeschränkungen

Für die verschiedenen Typen von Lehrveranstaltungen (siehe Anhang B) dienen die folgenden Gruppengrößen als Richtwert:

	Gruppengröße	
Lehrveranstaltungstyp	je Leiter(in)	je Tutor(in)
VO	200	
UE mit Tutor(inn)en	50	20
UE	20	
LU mit Tutor(inn)en	40	15
LU	15	
EX, PR, SE	20	

Für Lehrveranstaltungen des Typs VU werden für den Vorlesungs- bzw. Übungsteil die Gruppengrößen für VO bzw. UE herangezogen. Die Beauftragung der Lehrenden erfolgt entsprechend der tatsächlichen Abhaltung.

Zur Gewährleistung der Studierbarkeit gemäß § 58 Abs. 7 und 8 UG werden in allen Lehrveranstaltungen Studierende, die zum Bachelorstudium emphTechnische Informatik zugelassen sind und diese Lehrveranstaltungen im Rahmen ihres Studiums verpflichtend zu absolvieren haben, bevorzugt aufgenommen. Die Anmeldung Studierender anderer

Studien zu den Lehrveranstaltungen (außer vom Typ VO) sowie die Prüfungsberechtigung in Lehrveranstaltungen des Typs VO des Bachelorstudiums *Technische Informatik* setzt die bereits erfolgreich absolvierte STEOP im jeweiligen eigenen Studium voraus.

Lehrveranstaltungen mit ressourcenbedingten Teilnahmebeschränkungen sind in der Beschreibung des jeweiligen Moduls entsprechend gekennzeichnet; weiters sind dort die Anzahl der verfügbaren Plätze und das Verfahren zur Vergabe dieser Plätze festgelegt. Die Lehrveranstaltungsleiter_innen sind berechtigt, mehr Teilnehmer_innen zu einer Lehrveranstaltung zuzulassen als nach Teilnahmebeschränkungen oder Gruppengrößen vorgesehen, sofern dadurch die Qualität der Lehre nicht beeinträchtigt wird.

Kommt es in einer Lehrveranstaltung ohne explizit geregelte Platzvergabe zu einem unvorhergesehenen Andrang, kann die Lehrveranstaltungsleitung in Absprache mit dem studienrechtlichen Organ Teilnahmebeschränkungen vornehmen und die Vergabe der Plätze nach folgenden Kriterien (mit absteigender Priorität) regeln.

- Es werden jene Studierenden bevorzugt aufgenommen, die die formalen und inhaltlichen Voraussetzungen erfüllen. Die inhaltlichen Voraussetzungen können etwa an Hand von bereits abgelegten Prüfungen oder durch einen Eingangstest überprüft werden.
- Unter diesen hat die Verwendung der Lehrveranstaltung als Pflichtfach Vorrang vor der Verwendung als Wahlfach und diese vor der Verwendung als Freifach.
- Innerhalb dieser drei Gruppen sind jeweils jene Studierenden zu bevorzugen, die trotz Vorliegens aller Voraussetzungen bereits in einem früheren Abhaltesemester abgewiesen wurden.

Die Studierenden sind darüber ehebaldigst zu informieren.

13. Inkrafttreten

Dieser Studienplan tritt mit 1. Oktober 2022 in Kraft.

14. Übergangsbestimmungen

Die Übergangsbestimmungen werden gesondert im Mitteilungsblatt verlautbart und liegen im Dekanat der Fakultät für Informatik auf.

A. Modulbeschreibungen

Die den Modulen zugeordneten Lehrveranstaltungen werden in folgender Form angeführt:

9,9/9,9 XX Titel der Lehrveranstaltung

Dabei bezeichnet die erste Zahl den Umfang der Lehrveranstaltung in ECTS-Punkten und die zweite ihren Umfang in Semesterstunden. ECTS-Punkte sind ein Maß für den Arbeitsaufwand der Studierenden, wobei ein Studienjahr 60 ECTS-Punkte umfasst und ein ECTS-Punkt 25 Stunden zu je 60 Minuten entspricht. Eine Semesterstunde entspricht so vielen Unterrichtseinheiten wie das Semester Unterrichtswochen umfasst. Eine Unterrichtseinheit dauert 45 Minuten. Der Typ der Lehrveranstaltung (XX) ist in Anhang Lehrveranstaltungstypen auf Seite 80 im Detail erläutert.

Abstrakte Maschinen

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- · alle theoretischen Grundlagen von abstrakten Maschinen verstehen und
- Details konkreter abstrakter Maschinen erklären.

Kognitive und praktische Kompetenzen: Die Auseinandersetzung mit konkreten Beispielen von abstrakten Maschinen und die Implementierung eigener abstrakter Maschinen ermöglicht die Studierenden

- die Qualität von abstrakten Maschinen zu beurteilen,
- eigene abstrakte Maschinen zu entwerfen und
- abstrakte Maschinen zu implementieren.

Soziale Kompetenzen und Selbstkompetenzen: Eigeninitiative und Neugierde auf innovative und kreative Konzepte und Lösungsansätze werden besonders gefördert.

Inhalt:

- reale Maschinen, Prozesssorarchitekturen
- Interpretationstechniken (threaded code), Implementierung von Forth
- Pascal P4 Maschine
- Java Virtuelle Machine (just-in-time Übersetzung), Microsoft Intermediate Language
- Registermaschinen und die DalvikVM
- syntaxgesteuerte Editoren und Baummaschinen
- Prologmaschinen (WAM, VAM)
- funktionale Maschinen (Lamda Kalkül, SECD Maschine)

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlagen von Programmiersprachen und Übersetzerbau

Kognitive und praktische Kompetenzen: Programmierkenntnisse

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Einführung in die Programmierung, Programmierparadigmen, Übersetzerbau.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Vortrag und selbständiges Erlernen der eher theoretischen Grundlagen. Die Beurteilung erfolgt durch Prüfung. Übung am Computer zur Entwicklung praktischer Fähigkeiten zur Entwicklung von abstrakten Maschinen. Die Leistungsbeurteilung erfolgt durch die Beurteilung der Implementierung einer selbst entworfenen abstrakten Maschine und der Präsentation dieser Implementierung.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Abstrakte Maschinen

Algebra und Diskrete Mathematik

Regelarbeitsaufwand: 9,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Reproduzieren bzw. Herleiten der wichtigsten mathematischen Definitionen, Theoreme und Beweismethoden der Algebra und Diskreten Mathematik.

Kognitive und praktische Kompetenzen: Finden von Beweisen für mathematische Problemstellungen aus Algebra und Diskreter Mathematik; Modellieren einfacher Anwendungsprobleme aus Informatik, Naturwissenschaften und Technik als mathematische Problemstellungen und Lösen derselben mit geeigneten mathematischen Methoden.

Soziale Kompetenzen und Selbstkompetenzen: Präsentieren von Problemlösungen vor einer Übungsgruppe.

Inhalt:

- Grundlagen: elementare Logik (Aussagen, Implikation, Kontraposition, Verneinung, Quantoren); elementare Beweistechniken (direkter und indirekter Beweis, Gegenbeispiele); elementare Zahlentheorie.
- Mengenlehre: Grundlagen (Venn-Diagramme, Komplemente, kartesisches Produkt, Potenzmenge); Funktionen (Mengenrelationen, surjektive, injektive, bijektive Funktionen, Komposition); Relationen (Äquivalenzrelation, Partitionen, Ordnungsrelation, Maximumsprinzip); Kardinalität und Abzählbarkeit (endliche, unendlichen und abzählbare Mengen).
- Induktion: Induktionsprizip (vollständige Ind., transfinite Ind.); rekursive Definitionen.

- Grundlagen der Kombinatorik: Abzählprinzipien (Summen- und Produktregel); Schubfachschluss; Inklusions-Exklusions-Prinzip; kombinatorische Grundaufgaben (Permutationen, Auswahlen, Partitionen); elementare Identitäten (Binomischer Lehrsatz, binomische Identitäten); Rekursionen (Fibonacci-Zahlen, Derangements, Turm von Hanoi); Lösungsmethoden für Rekursionen (Rekursionen erster Ordnungen, lineare Rekursionen mit konstanten Koeffizienten).
- Graphentheorie: Grundlagen (gerichtete, ungerichtete, bipartite Graphen, Wege, etc.); Handshake-Lemma; Eulersche und Hamiltonsche Linien; Graphrelationen (Isomorphie, Subgraphen, Minore); Zusammenhang (Zusammenhangskomponenten, Menger's theorem); azyklische Graphen; ebene Graphen (inkl. Eulersche Polyederformel); elementare Graph-Algorithmen (Azyklizität, Kruskal-Alg., minimaler Spannbaum, Dijkstra-Alg.).
- Algebraische Strukturen: Gruppentheorie (inkl. Faktorgruppen, Homomorphiesatz, zyklische Gruppen, direkte Produkte); Ringe (Integritätsbereiche, Ideale); Körper (Polynomringe über Körpern); Verbände.
- Lineare Algebra: Vektoren; Matrizen; lineare Abbildungen; lineare Gleichungssysteme; Determinanten; Eigenwerte und Eigenvektoren; Skalarprodukte, Orthogonalität.
- Grundlagen algebraische Codierungstheorie: Gruppencodes, Linearcodes.

Erwartete Vorkenntnisse: Fundierte Mathematik-Kenntnisse auf AHS/BHS-Maturaniveau.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Wöchentliche Vorlesung mit kontinuierlicher begleitender Übung (individuell auszuarbeitende Übungsbeispiele, Lösungspräsentation an der Tafel), wodurch die in der Vorlesung vermittelten Inhalte effizient erlernt und die mathematische Problemlösungskompetenz trainiert wird. Leistungsfeststellung durch mehrere Lösungspräsentationen, Übungstests, Abschlussprüfung.

Lehrveranstaltungen des Moduls:

- $4,\!0/4,\!0$ VO Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 5,0/2,0 UE Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik

oder

9,0/6,0 VU Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik

Algorithmen und Datenstrukturen

Regelarbeitsaufwand: 8,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können Studierende Folgendes beschreiben:

- fundamentale Algorithmen und Datenstrukturen,
- Methoden zur Bewertung und Analyse von Algorithmen, und
- eine systematische Vorgehensweise zur Entwicklung von Algorithmen.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- abstrakt und effizienzorientiert an die Entwicklung von Algorithmen herangehen,
- theoretisch fundierte Methoden zur Analyse von Algorithmen benutzen, und
- ihre Kenntnisse von fundamentalen Algorithmen und Datenstrukturen anwenden.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- selbstorganisiert und eigenverantwortlich effiziente Lösungsansätze entwickeln und
- die eigenen Lösungsansätze präsentieren.

Inhalt:

- Fundamentale Prinzipien der Algorithmenanalyse
- Asymptotische Schranken für Laufzeit und Speicherplatzbedarf
- Fundamentale Datenstrukturen (z.B. Listen, Graphen, Suchbäume)
- Fundamentale algorithmische Prinzipien (z.B. Greedy, Divide-and-Conquer, Branch-and-Bound, Approximation, Dynamische Programmierung, Lokale Suche, Hashing)
- Problemlösungsstrategien und Optimierung
- Handhabbarkeit, Polynomialzeitreduktionen, NP-Vollständigkeit

Erwartete Vorkenntnisse: Inhalte der LVA *Einführung in die Programmierung 1* sowie fundierte Mathematik-Kenntnisse auf AHS/BHS-Maturaniveau.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Inhalte werden in Vorträgen vorgestellt und in begleitenden Übungen von Studierenden erarbeitet. Übungsaufgaben bestehen vorwiegend aus Aufgaben die schriftlich ausgearbeitet werden. Sie werden örtlich ungebunden innerhalb vorgegebener Fristen gelöst, die Lösungen werden in Übungsgruppen vorgestellt. Die Beurteilung erfolgt auf Basis mehrerer schriftlicher Tests und der kontinuierlich in den Übungen erbrachten Leistungen.

Lehrveranstaltungen des Moduls:

8,0/5,5 VU Algorithmen und Datenstrukturen

Analysis

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Reproduzieren bzw. Herleiten der wichtigsten mathematischen Definitionen, Theoreme und Beweismethoden der mathematischen Analysis.

Kognitive und praktische Kompetenzen: Finden von Beweisen für mathematische Problemstellungen aus der Analysis; Modellieren einfacher Anwendungsprobleme aus Informatik, Naturwissenschaften und Technik als mathematische Problemstellungen und Lösen derselben mit geeigneten Verfahren zur analytischen und numerischen Problemlösung.

Soziale Kompetenzen und Selbstkompetenzen: Präsentieren von Problemlösungen vor einer Übungsgruppe.

Inhalt:

- Folgen, Reihen und Funktionen: Folgen reeller Zahlen (Grenzwert, Monotonie und Beschränktheit, Konvergenzuntersuchungen); unendliche Reihen (Konvergenzkriterien, Cauchyprodukt und Potenzreihen); asymptotischer Vergleich von Folgen (Landausymbole: O(), o(), O()).
- Elementare Funktionen: Potenzen mit reellen Exponenten; Exponentialfunktion und Logarithmus; Darstellung der Exponentialfunktion; Winkelfunktionen und Arcusfunktionen.
- Grenzwerte und Nullstellen von Funktionen, Stetigkeit: metrische und topologische Grundbegriffe (offene, geschlossene Mengen, Umgebungen, Basis, Häufungspunkte); Umgebungs und Folgenstetigkeit Eigenschaften stetiger Funktionen: Nullstellensatz, Zwischenwertsatz, Monotonie.
- Differentialrechnung in einer Variablen: Differenzenquotient und Differenzierbarkeit; Ableitung einfacher Funktionen; Eigenschaften und Ableitungsregeln; Mittelwertsatz der Differentialrechnung; Taylorreihen; Monotonie und die erste Ableitung; höhere Ableitungen; verallgemeinerter Mittelwertsatz und die Regel von de l'Hospital.
- Integralrechnung in einer Variablen: Definition und Eigenschaften Riemann-Integral; Integration als Umkehrung der Differentiation, Fläche unter Kurven; Techniken des Integrierens; Mittelwert- und Hauptsatz der Differential- und Integralrechnung; uneigentliche Integrale.
- Elementare Differentialgleichungen: lineare Differentialgleichungen erster Ordnung.
- Grundlagen Differentialrechnung in mehreren Variablen: Funktionen in mehreren Variablen; partielle Ableitungen, totale Ableitung; Ableitungsregeln; Richtungsableitung; Taylorentwicklung; Hauptsatz über implizite Funktionen; lokale Extrema.

• Computer-Numerik: Zahlendarstellungsfehler; Konversionsfehler; Fehlerfortpflanzung (Summe, Produkte, Polynome, elementare Funktionen); algorithmische Fehlerfortpflanzung, Konditionszahlen.

Erwartete Vorkenntnisse: Fundierte Mathematik-Kenntnisse auf AHS/BHS-Maturaniveau.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Wöchentliche Vorlesungen mit kontinuierlich begleitender Übung (individuell auszuarbeitende Übungsbeispiele, Lösungspräsentation an der Tafel), wodurch die in der Vorlesung vermittelten Inhalte effizient erlernt und die mathematische Problemlösungskompetenz trainiert wird. Leistungsfeststellung durch mehrere Lösungspräsentationen, Übungstests, Abschlussprüfung.

Lehrveranstaltungen des Moduls:

 $2,\!0/2,\!0$ VO Analysis für Informatik und Wirtschaftsinformatik $4,\!0/2,\!0$ UE Analysis für Informatik und Wirtschaftsinformatik oder

6,0/4,0 VU Analysis für Informatik und Wirtschaftsinformatik

Analysis 2

Regelarbeitsaufwand: 7,5 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Reproduzieren bzw. Herleiten der wichtigsten mathematischen Definitionen, Theoreme und Beweismethoden der höheren mathematischen Analysis; Darstellen der Beziehungen zwischen den verschiedenen Resultaten und Lösungsmethoden.

Kognitive und praktische Kompetenzen: Anwenden von Beweistechniken der höheren Analysis zur Lösung einschlägiger mathematischer Problemstellungen; Modellieren von Anwendungsproblemen aus Informatik, Naturwissenschaften und Technik als mathematische Problemstellungen und Lösen derselben ohne und mit Computer-Unterstützung. Soziale Kompetenzen und Selbstkompetenzen: Präsentieren komplexerer mathematischer Problemlösungen vor einer Übungsgruppe.

Inhalt: Elementare Differentialgleichungen

• Lineare Differentialgleichungen höherer Ordnung mit konstanten Koeffizienten

Vertiefung der Differentialrechnung in mehreren Variablen

- Inverse Funktionen
- Kurven und Flächen (implizites Differenzieren)

• Extrema mit Nebenbedingungen

Integralrechnung in mehreren Variablen

- Gebietsintegrale
- Integrationstechniken (Fubini, Substitution)
- Vektorfelder und Kurvenintegrale

Fourier-Reihen

- · Periodische Funktionen, trigonometrisches Polynom, trigonometrische Reihe
- Fourier-Reihe, Differentiation, Integration, Bessel-Ungleichung, Parseval'sche Gleichung, Darstellungssätze
- Diskrete Fourier-Transformation (Definition, Parseval-Gleichung, FFT-Algorithmus)

Transformationen

- Fourier-Transformation (Definition, Konvergenzsatz, Integraltheorem, Umkehrund Eindeutigkeitssatz)
- Laplace-Transformation (Definition, Existenz- und Eindeutigkeitssatz)
- z-Transformation

Differentialgleichungen

- Spezielle Typen gewöhnlicher Differentialgleichungen
- Lineare und quasilineare partielle Differentialgleichungen erster Ordnung (Methode der Charakteristiken)
- Lineare partielle Differentialgleichungen zweiter Ordnung (Normalformen)
- Lösungsverfahren (Separationsansatz)

Verfahren zur Fixpunkt- und Nullstellenbestimmung

- Fixpunktsatz, Lipschitzbedingung
- Newton'sches Näherungsverfahren
- Die regula falsi

Verfahren zur Lösung linearer Gleichungssysteme

- Gauß'sches Eliminationsverfahren mit Pivotisierung
- Gesamtschrittverfahren von Jacobi
- Einzelschrittverfahren von Gauß-Seidel

Approximation und Interpolation

- Approximation mittels einer Ausgleichsgeraden
- Allgemeiner Ansatz zur Interpolation mittels Polynomfunktionen
- Interpolation nach Lagrange
- Interpolation nach Newton

• Spline-Interpolation

Simulation von Differentialgleichungen

- Euler'sches Polygonzugverfahren
- Verbessertes Euler'sches Polygonzugverfahren
- Klassisches Runge-Kutta-Verfahren
- Die Methode der Finiten Elemente

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlegende Konzepte, Theoreme und Beweistechniken der Analysis und Algebra.

Kognitive und praktische Kompetenzen: Finden mathematischer Beweise für einfache mathematische Probleme der Analysis und Algebra; Modellieren einfacher Anwendungsprobleme und Lösen derselben mit geeigneten mathematischen Methoden.

Soziale Kompetenzen und Selbstkompetenzen: Präsentation der Lösung einfacher mathematischer Probleme.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Analysis, Algebra und Diskrete Mathematik

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Wöchentliche Vorlesung mit kontinuierlicher begleitender Übung (individuell auszuarbeitende Übungsbeispiele, Lösungspräsentation an der Tafel), wodurch die in der Vorlesung vermittelten Inhalte effizient erlernt und die mathematische Problemlösungskompetenz trainiert wird. Leistungsfeststellung durch mehrere Lösungspräsentationen, Übungstests, Abschlussprüfung.

Lehrveranstaltungen des Moduls:

3.0/3.0 VO Analysis 2 für Informatik 4.5/2.0 UE Analysis 2 für Informatik

Argumentieren und Beweisen

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden die wesentlichen mathematischen Schlussweisen und Beweistechniken benennen, die Korrektheit der Schlussweisen argumentieren und den Zusammenhang der Beweistechniken mit Kalkülen der formalen Logik herstellen.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden die Korrektheit gegebener Beweise argumentieren, (auch komplexere)

Beweise selbst erstellen und strukturieren, unterschiedliche Induktionsprinzipien korrekt anwenden, sowie Induktionshypothesen kreativ erstellen.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden die Beweisideen und Beweise kommunizieren.

Inhalt:

- Was ist ein Beweis? Welche Aufgaben hat er?
- Einfache Beweistechniken
- Beweis von All- und Existenzaussagen, Konjunktionen, Disjunktionen, Implikationen, Äquivalenzen
- Nutzung dieser Aussagen in einem Beweis
- Zusammenhang zum Kalkül des natürlichen Schliessens
- Was ist Induktion? Wozu wird sie benötigt?
- Arten der Induktion (mathematische, starke, strukturelle, Noether'sche), jeweils mit Diskussion des entsprechenden Induktionsschemas und Anwendungsfälle (ausführlich demonstriert an Beispielen)
- Wie schreibt man einen Induktionsbeweis?

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls die grundlegenden Beweisprinzipien benennen und beschreiben können.

Kognitive und praktische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls einfache natürlichsprachlich gegebene Sachverhalte korrekt formalisieren und diese beweisen können. Desweiteren sollen die Studierenden vor der Absolvierung des Moduls einfache Programmieraufgaben als rekursives Programm formulieren können.

Soziale Kompetenzen und Selbstkompetenzen: Keine speziellen Voraussetzungen.

Diese Voraussetzungen werden im Modul Algebra und Diskrete Mathematik vermittelt.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Geblockte Einführungsvorlesung (im Gesamtumfang von knapp 1,5 ECTS), danach umfangreiche individuell auszuarbeitende Aufgaben zum Argumentieren und Beweisen (im Umfang von 4,5 ECTS). Ausführliche Präsentation der Beweise (alle Lösungen durch jede Teilnehmerin/jeden Teilnehmer). Exemplarische Ausarbeitung einiger Lösungen, Korrektur durch LVA Leiter/Tutoren zwecks Rückmeldung. Leistungsermittlung auf Grund der Präsentationen und der berichtigten schriftlichen Ausarbeitungen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Argumentieren und Beweisen

Bachelorarbeit

Regelarbeitsaufwand: 13,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen:

- Wissenschaftliche Methodik
- Internationaler Wissenschaftsbetrieb

Kognitive und praktische Kompetenzen:

- Systematische Recherche
- Präsentationstechniken
- Strukturierte und konzise Kommunikation von Inhalten in mündlicher und schriftlicher Form
- Fähigkeit zur Anwendung der im Studium erworbenen Kenntnisse und Fertigkeiten im Kontext einer größeren Problemstellung

Soziale Kompetenzen und Selbstkompetenzen:

- Selbstorganisation
- Eigenverantwortlichkeit und Eigeninitiative
- · Teamfähigkeit
- Finden kreativer Problemlösungen
- Reflexion der eigenen Arbeit im technischen und gesellschaftlichen Kontext

Inhalt: Im Rahmen des Seminars Wissenschaftliches Arbeiten lernen die Studierenden wissenschaftliche Methoden und den Wissenschaftsbetrieb kennen. An Hand eines vorgegebenen Themas üben sie Recherche sowie schriftliche und mündliche Präsentation. Darauf aufbauend wenden sie im Projekt Bachelorarbeit für Informatik und Wirtschaftsinformatik die im Studium erworbenen Kenntnisse und Fertigkeiten auf ein Thema an, das dem Qualifikationsprofil des Studiums entspricht. Die erzielten Ergebnisse werden neben der Aufgabenstellung, den angewandten Methoden und dem Umfeld in einer schriftlichen Abschlussarbeit dargestellt.

Erwartete Vorkenntnisse: Die Arbeit an der Bachelorarbeit erfordert die Kenntnisse, Fertigkeiten und Kompetenzen zumindest der Pflichtmodule des Bachelorstudiums.

Verpflichtende Voraussetzungen: Positive Absolvierung der Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Im Seminar besteht bei den Vorträgen zu Wissenschaftsmethodik und -betrieb sowie bei der Präsentation der Rechercheergebnisse Anwesenheitspflicht, ebenso bei der Präsentation der Bachelorarbeiten. Davon abgesehen können das Seminar- und das Bachelorarbeitsthema in Absprache mit den Lehrenden zeitlich und örtlich weitgehend ungebunden

bearbeitet werden. Die Beurteilung orientiert sich an der Qualität und Originalität der mündlichen und schriftlichen Darstellung der Themen sowie der dafür notwendigen Vorarbeiten und berücksichtigt auch das Engagement bei der Diskussion der Arbeiten anderer Studierender.

Lehrveranstaltungen des Moduls:

10,0/5,0 PR Bachelorarbeit für Informatik und Wirtschaftsinformatik 3,0/2,0 SE Wissenschaftliches Arbeiten

Betriebssysteme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse: Die Studierenden verstehen den Aufbau und die Funktionsweise von Computersystemen bzw. Prozessoren und wie Betriebssysteme die Ressourcen dieser Systeme - Rechenzeit, Speicher, Dateien und I/O-Geräte - verwalten. Designentscheidungen und Trade-Offs bei der Realisierung von Betriebssystemen können dargelegt werden. Weiters können Studierende nach Absolvierung der Lehrveranstaltung erklären, welche Mechanismen und Systemdatenstrukturen für die parallele (nebenläufige) Abarbeitung von Prozessen notwendig sind, und sind in der Lage, parallele Prozesse und deren koordinierten Ablauf zu programmieren.

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- Aufbau und Funktionsweise von Prozessoren und deren wichtigsten Komponenten sowie deren Funktion und Zusammenspiel skizzieren,
- · die Rolle und Aufgaben von Betriebssystemen erklären,
- Designentscheidungen für Managementmechanismen von Systemressourcen diskutieren bzw. aus gegebenen Anforderungen ableiten,
- Mechanismen zur Koordination und Synchronisation paralleler Prozesse verstehen und Koordinations- und Synchronisationsaufgaben mit diesen Mechanismen lösen,
- · Prinzipien und Mechanismen des Zugriffsschutzes beschreiben.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- Programmieraufgaben unter Verwendung des Application Programming Interfaces (API) eines Betriebssystems lösen und Betriebssystemservices über diese Programmierschnittstelle nutzen,
- gemeinsame Ressourcen und Kommunikations- sowie Synchronisationsmechanismen eines Betriebssystems zur Programmierung paralleler Prozesse verwenden.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

• Entwicklungen von Betriebssystemtechnologien diskutieren und bewerten,

- Abstraktionen ableiten,
- Probleme des Ressourcenmanagements und Synchronisationsaufgaben lösen.

Inhalt:

- Überblick Architektur und Arbeitsweise von Computersystemen bzw. Prozessoren
- Grundkonzepte Betriebssysteme
- Prozesse, Threads und Scheduling
- Prozesssynchronisation und Deadlock
- Speicherverwaltung
- Ein/Ausgabe und Disk Management
- Security und Protection
- Arbeiten mit Betriebssystemen

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Kenntnisse von Zahlendarstellungen in Computern, der grundlegenden Funktionsweise von Computern, endlicher Automaten, Transducer, Grammatiken, Programmiersprachen, sowie Kenntnisse der systematischen Vorgehensweise bei der Programmerstellung.

Kognitive und praktische Kompetenzen: Interpretieren und Arbeiten mit Zahlendarstellungen und Automaten. Kenntnisse der Programmierung in einer Programmiersprache und der systematischen Programmerstellung und Evaluation.

Soziale Kompetenzen und Selbstkompetenzen: Analyse komplexer Zusammenhänge und Wechselwirkungen, Strukturieren und Entwerfen von modularen, interagierenden Systemen.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Einführung in die Programmierung, Grundzüge digitaler Systeme.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Das Modul setzt sich aus einem Vorlesungsteil und einem Laborübungsteil zusammen. Eine Einführung zu Mikroprozessorsystemarchitekturen, sowie die Grundlagen, zentralen Konzepte und theoretischen Inhalte zu Betriebsystemen werden im Vorlesungsteil präsentiert. Ausgewählte Inhalte und Problemstellungen aus dem Bereich der Betriebssystemprogrammierung werden im Labor unter UNIX (Linux) programmiert. Einführungswissen zu den zu lösenden Aufgabenstellungen wird in begleitenden Vortragsblöcken angeboten. Schwerpunkte des Laborteils sind:

- Arbeiten unter Unix/Linux: Shell, Prozesse, Signale, Filesystem
- Programmieren mit der Systemprogrammiersprache C, Debugging
- Systemprogrammierung mit folgenden Mechanismen
 - Parameter und Optionsbehandlung, Filebehandlung
 - Sockets

- Signale und Signalbehandlung
- verwandte Prozesse (fork, exec, wait)
- Kommunikationsmechanismen: Named und Unnamed Pipes, Message Queues
- Synchronisation mit Semaphoren bzw. Sequencer und Eventcounts
- Kommunikation über Shared Memory
- Ressourcenverwaltung

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Betriebssysteme

Betriebssysteme und Computernetzwerke

Regelarbeitsaufwand: 9,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- die Aufgaben, Abstraktionen und zentralen Komponenten von Betriebssystemen und Computernetzwerken erklären,
- Designentscheidungen für Managementmechanismen von Systemressourcen, Netzwerkarchitekturen und Protokollen diskutieren bzw. aus gegebenen Anforderungen ableiten,
- Mechanismen zur Koordination und Synchronisation paralleler Prozesse verstehen und Koordinations- und Synchronisationsaufgaben mit diesen Mechanismen lösen,
- Prinzipien und Mechanismen des Zugriffsschutzes beschreiben,
- Physikalische Grundlagen, Mechanismen und Algorithmen moderner Netzwerkprotokolle erklären,
- · Wesentliche Performance-Maße und Methoden zur Leistungsanalyse aufzählen,
- Entwicklungen von Betriebssystemtechnologien und Computernetzwerken diskutieren und bewerten.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- Programmieraufgaben zur Argument- und Filebehandlung, sowie mit Prozessgenerierung/Prozesstermination unter Verwendung von Betriebssystemen und Betriebssystemservices lösen,
- gemeinsame Ressourcen und Kommunikations- sowie Synchronisationsmechanismen eines Betriebssystems (wie Shared Memory, Message Queues, Semaphore, Signale und Signalbehandlungsroutinen) bei der Programmierung paralleler Prozesse verwenden bzw. einsetzen,
- Programme in einer Systemprogrammiersprache entwickeln und das Programmverhalten mittels Debugger analysieren,

- grundlegende Aufgaben der Netzwerkprogrammierung (Sockets) und der Netzwerkkonfiguration lösen,
- die Performance eines Computernetzwerks und dessen Eignung für eine konkrete Anwendung einschätzen.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

· Konzepte und Lösungen präsentieren.

Inhalt: Betriebssysteme:

- Grundkonzepte Betriebssysteme
- Prozesse, Threads und Scheduling
- Prozesssynchronisation und Deadlock
- Speicherverwaltung
- Ein/Ausgabe und Disk Management
- Security und Protection
- Arbeiten mit Betriebssystemen

Computernetzwerke:

- Ziele, Anforderungen, Anwendungsgebiete
- Topologien und Netzstrukturen, Adressierung, Datenübertragung, Vermittlung, Management Modelle
- OSI Schichtenmodell
 - Layer 1: Physikalische Übertragungskanäle, Datenübertragung, Synchronisierung
 - Layer 2: Fehlersicherung, Zugriffsprotokolle, Flußkontrolle, Switches
 - Layer 3: Routing, Nameservice, Autorisierung und Netzwerksicherheit, Überlastabwehr
 - Layer 4-7: Verbindungslose/Verbindungsorientierte Services, Session-Management, Netzwerk-Management, Anwendungsbeispiele

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Kenntnisse von Zahlendarstellungen in Computern, der grundlegenden Funktionsweise von Computern, endlicher Automaten, Transducer, Grammatiken, Programmiersprachen, sowie Kenntnisse der systematischen Vorgehensweise bei der Programmerstellung. Elementare Grundlagen der Wahrscheinlichkeitsrechnung sowie elektrischer Signale und Systeme.

Kognitive und praktische Kompetenzen: Interpretieren und Arbeiten mit Zahlendarstellungen und Automaten. Kenntnisse der Programmierung in einer Programmiersprache und der systematischen Programmerstellung und Evaluation.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Grundlagen Digitaler Systeme, Einführung in die Programmierung, Wahrscheinlichkeitstheorie und Stochastische Prozesse, Signale und Systeme.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Das Modul setzt sich aus einem Vorlesungsteil und einer Laborübung Betriebssysteme sowie aus einer integrierten Vorlesung und Übung Computer Networks zusammen. Die Grundlagen, zentralen Konzepte und theoretischen Inhalte zu Betriebsystemen werden im Vorlesungsteil präsentiert. Ausgewählte Inhalte und Problemstellungen aus dem Bereich der Betriebssystem- und Netzwerkprogrammierung werden in der Laborübung unter UNIX (Linux) programmiert. Einführungswissen zu den zu lösenden Aufgabenstellungen wird in begleitenden Vortragsblöcken angeboten. In der integrierten Übung zu Computer Networks sind zusätzlich spezifische Aufgaben etwa im Bereich Netzwerkkonfiguration und Leistungsabschätzung zu lösen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Betriebssysteme 3,0/2,0 VU Computer Networks

Datenbanksysteme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden die unter "Inhalt" angeführten Konzepte und Techniken mit fachspezifischer Terminologie beschreiben.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- Datenmodelle mittels ER- und EER-Diagrammen erstellen,
- EER-Diagramme in ein relationales Schema in 3. Normalform umsetzen,
- SQL für die Manipulation und Abfrage von Daten verwenden,
- einfache Anfragen in relationaler Algebra und Relationenkalkül verstehen und selbst formulieren,
- Programmieraufgaben mit einer prozeduralen Datenbankprogrammiersprache lösen,
- unterschiedliche Isolations-Levels im Mehrbenutzerbetrieb gezielt einsetzen.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- gestellte Aufgaben selbständig und fristgerecht lösen,
- die erstellten Lösungen kommunizieren und begründen,

• ein deklaratives Programmierparadigma (SQL) anwenden.

Inhalt:

- Datenbankentwurf, Datenmodellierung mittels ER- und EER-Diagrammen,
- relationales Datenmodell,
- Umsetzung eines EER-Diagramms in ein relationales Schema in dritter Normalform,
- funktionale Abhängigkeiten, Normalformen,
- relationale Abfragesprachen (relationale Algebra, Relationenkalkül, SQL),
- komplexe Schemadefinitionen (Constraints, Views),
- komplexe SQL Abfragen (Schachtelung, Rekursion),
- prozedurale Datenbankprogrammierung,
- · Transaktionen,
- Fehlerbehandlung/Recovery,
- Mehrbenutzersynchronisation.

Erwartete Vorkenntnisse:

Kognitive und praktische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls

- mathematische Notationen lesen und schreiben können,
- grundlegende Datenstrukturen und Algorithmen verwenden können,
- eine allgemeine imperative Programmiersprache anwenden können,
- grundlegende Formalismen der Modellierung anwenden können,
- grundlegende Begriffe und Konzepte der Logik (Aussagenlogik, Prädikatenlogik) beschreiben und anwenden können.

Diese Vorkenntnisse werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Einführung in die Programmierung.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Inhalte werden in Vorträgen vorgestellt und in begleitenden Übungen von den Studierenden erarbeitet. Die Beurteilung erfolgt auf Basis schriftlicher Tests und der kontinuierlich in den Übungen erbrachten Leistungen. Der Übungsbetrieb und die Tests können computerunterstützt durchgeführt werden.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Datenbanksysteme

Denkweisen der Informatik

Regelarbeitsaufwand: 6,5 ECTS

Lernergebnisse: Denkweisen der Informatik bietet eine Einführung und einen Überblick über die Informatik aus der Sicht ihrer Arbeits- und Denkweisen, vermittelt als eine

Art angewandter Wissenschaftstheorie. Die LVA soll Interesse am weiteren Studium wecken, und die Studierenden in die Lage versetzen, die im weiteren Studium präsentierte Inhalte besser einzuordnen. Die Studierenden sollen so in die Lage versetzt werden, die Informatik sowohl als Wissenschaft als auch als Praxis nachhaltiger zu verstehen, und dieses Wissen im Rahmen des Studiums produktiv umzusetzen.

Fachliche und methodische Kompetenzen: Studierende können ...

- erklären, was Informatik ist;
- die Strukturen und Prozesse einer Universität darstellen;
- Lernmethoden und Organisationsformen für das erfolgreiche Fortkommen im eigenen Studium anwenden;
- ableiten, dass es bei Problemformulierung und Problemlösung unterschiedliche und zum Teil in Konflikt zueinander stehende Sichtweisen, Herangehensweisen und Motive gibt;
- die Strömungen und Perspektiven des Denkens seit der vorwissenschaftlichen Zeit bis in die Gegenwart aufzählen, sowie die jeweils wesentlichen Grundbegriffe, Problemlösungsansätze und -methoden diskutieren;
- die Notwendigkeit ethischen Handelns begründen, und können Methoden anwenden, mit denen ethische Fragestellungen systematisch behandelt werden;
- die Verantwortung der Informatik bei der Gestaltung von Technologien im gesellschaftlichen Wandel diskutieren;
- wesentliche Ereignisse und Ideen aus der Geschichte der Informationstechnologien aufzählen und deren Relevanz kritisch reflektieren.

Kognitive und praktische Kompetenzen: Durch die theoretische und praktische Auseinandersetzung mit den Inhalten werden folgende kognitive Fertigkeiten vermittelt:

- Auswahl und Einsatz von Strategien, Methoden und Werkzeugen zur Anwendung verschiedener Denk- und Problemlösungsformen;
- Formulierung von Kritik aus unterschiedlichen Perspektiven, rationale Auseinandersetzung im kritischen Dialog;
- Einbettung aktueller Entwicklungen und Technologien in einen historischkritischen Kontext
- selbständige Wissenssuche und Wissenserwerb
- Kritische Reflexion

Soziale Kompetenzen und Selbstkompetenzen: Gruppenarbeiten in verschiedenen Zusammensetzungen und Gruppengrößen erlauben Studierenden Erfahrungen zu sammeln, wie an Problemstellungen gemeinschaftlich herangegangen werden kann. In peer-review Aufgaben lernen Studierende, konstruktive Kritik an der Arbeit anderer zu üben, solche auch anzunehmen, und diese effektiv in ihre eigene Arbeit einfliessen zu lassen. Die unterschiedlichen Herangehensweisen an Probleme eröffnen Studierenden darüber hinaus Handlungsoptionen und Sichtweisen, die einen kreativen und innovativen Zugang zur Gestaltung von Technologie erlauben. Dadurch wird auch zu ethischem Verhalten in Informatik und Gesellschaft angeregt.

Inhalt:

- Vorwissenschaftliche Denkweisen
- Denkweisen der naturwissenschaftlichen Revolution
- Mathematisches Denken, insbesondere Rekursion, Abstraktion, Induktion und Deduktion
- Computational Thinking inklusive der Fragen der Berechenbarkeit
- Design Thinking, mit einem Schwerpunkt des Mottos der TU, "Technik für Menschen"
- Kreativität und Innovation
- · Kritisches Denken, mit besonderer Betonung von Bias und algorithmic Bias
- Verantwortung und Ethik, Verhaltensregeln, code of conducts, Freiheit der Forschung
- Organisation und Struktur der TU Wien sowie der Fakultät für Informatik
- Bachelor- und Masterstudien der Informatik
- Forschungsgebiete der Informatik (der Fakultät und allgemein)
- Strategien für einen erfolgreichen Studienabschluss (Lernen und Lernstrategien, soziales Lernen, Stressbewältigung, Umgang mit Krisen)

In die Behandlung dieser Themen werden folgende Inhalte übergreifend behandelt:

- Geschichte der Informatik
- Informatik und Gesellschaft
- Lernen und Forschen an der TU Wien
- Informatik als Wissenschaft
- Diversität und Genderkompetenz

Erwartete Vorkenntnisse: Keine.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Inhalte werden in Vorträgen von unterschiedlichen Vortragenden vorgestellt und teilweise von Studierenden selbst erarbeitet. In selbstorganisierter Arbeit bearbeiten die Studierenden in einem eigenen Online-System Übungsaufgaben und begutachten im double blind peer reviewing-Verfahren die Arbeit von Mitstudierenden. Zur Bewertung werden nicht nur die Leistungen in den Übungsaufgaben, sondern auch die Qualität des Reviewing herangezogen. Die Beurteilung des Orientierungsteils erfolgt auf Basis eines Online-Tests.

Lehrveranstaltungen des Moduls:

5,5/4,0 VU Denkweisen der Informatik

1,0/1,0 VU Orientierung Informatik und Wirtschaftsinformatik

Digital Design

Regelarbeitsaufwand: 15,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Absolventinnen und Absolventen dieses Moduls können

- den Entwurfs- und den Fertigungsprozess eines CMOS ASIC beschreiben, deren Schritte begründen und deren Herausforderungen nennen,
- die Abstraktion des Feldeffekt-Transistors als Schalter richtig verwenden und damit die grundlegende Funktion einfacher logischer Gatter erklären,
- grundlegende Funktionselemente der digitalen Logik in Aufbau und Funktion beschreiben und richtig einsetzen,
- Defekte und Funktionsfehler in digitalen integrierten Schaltungen in Verbindung mit den Schritten im Entwurfs- und Fertigungsprozess bringen, sowie deren wichtigste Einflussgrößen qualitativ und, wo möglich, auch quantitativ beschreiben,
- die wichtigsten Komponenten von Prozessoren nennen sowie deren Funktion und Zusammenspiel erklären,
- den Instruktionssatz als Sprache des Computers, hinsichtlich seiner Struktur und Auswirkung, erklären sowie Beispiele nennen,
- Entwurfsentscheidungen richtig treffen und deren Auswirkungen einschätzen,
- den Einfluß des techologischen Fortschritts auf Preis und Leitung digitaler Elektronik (insbesondere Computer) erklären und auf zukünftige Entwicklungen projizieren.

Kognitive und praktische Kompetenzen: Absolventinnen und Absolventen dieses Moduls können

- für eine gegebene Problemstellung eine (kombinatorische oder einfache sequenzielle) digitale Schaltung entwerfen und deren Implementierungsmöglichkeiten vergleichen,
- die Grenzen der beim digitalen Schaltungsentwurf verwendeten Modelle und Abstraktionen in der Anwendung erkennen und berücksichtigen,
- den kompletten Entwurfsprozess einer digitalen Schaltung für die Zeilplattform FPGA, von der Modellierung über Synthese und Download bis hin zu Simulation und systematischem, zielorientertem Debugging, eigenständig anwenden, sowie die dafür benötigten Entwicklungswerkzeuge und Meßgeräte (insbes. Logikanalysator) bedienen,
- das Konzept des Pipelining erklären und anwenden, sowie seine Grenzen geeignet berücksichtigen,
- das Konzept von Speicherhierarchien erklären und anwenden, sowie seine Grenzen geeignet berücksichtigen,
- die Performance von Rechnern methodisch korrekt bewerten und optimieren.

Soziale Kompetenzen und Selbstkompetenzen: Absolventinnen und Absolventen dieses Moduls können

- die komplexe physikalische Realität auf ein geeignetes vereinfachtes Modell abbilden und damit korrekt ein gegebenes Problem lösen,
- in einem kleineren Team für ein Projekt eine Verteilung von Zuständgkeiten vornehmen, einen gemeinsamen Zeitplan erstellen und Deadlines einhalten, sowie mit unvorhergesehenen Problemen umgehen,
- kreativ aber unter Einhaltung gegebener Randbedingungen eine Designaufgabe lösen.

Inhalt: Der inhaltliche Bogen spannt sich von der physikalischen Abbildung von Transistoren auf Chips (ASIC-Technologie) über den Aufbau logischer Gatter aus Transistoren bis hin zu Pipelines und Instruction Set in Microprozessoren. Flankierend werden wichtige Aspekte wie Verifikation, Defekte und deren Erkennung mittels Test, Verlustleistung und Wärmeabfuhr, Modellierung von Hardware (in VHDL), Grenzen der Modelle und Abstraktionen und Performance-Analyse behandelt.

Konkrete Inhalte aus dem Bereich des Digital Design:

- Chiptechnologie (physikalische Abbildung von Transistoren und Verbindungen auf Chips)
- Aufbau logischer Gatter aus Transistoren
- Modellierung von Hardware, speziell in VHDL
- Design-Flow digitaler Schaltungen
 - Optimierung und Synthese
 - Verifikation durch Simulation
 - Test und Debugging
- Zieltechnologien (CBIC, Gate-Array und programmierbare Logik, insbesondere FPGA)
- Speichertechnologien
- Defekte und deren Ursachen
- Umgang mit Datenblattangaben
- Verlustleistung und Wärmeabfuhr
- synchrones Design-Paradigma und dessen Grenzen; ausführliche Behandlung von Metastabilität und deren Modellierung
- Messgeräte zum Debugging digitaler Schaltungen

Konkrete Inhalte aus dem Bereich der Rechnerstrukturen:

- Instruktionssatz und Assembler der MIPS32-Architektur
- Rechnerarithmetik
 - Addressierung
 - ALU
 - Festkomma- und Gleitkomma-Darstellung

- Prozessor
 - Data- und Control-Path
 - Pipelining und Pipelining Hazards
 - Superpipelining, Superskalar- und VLIW-Prozessoren
- Speicherhierarchie
 - Register
 - Cache-Speicher
 - Hauptspeicher, virtuelle Speicherverwaltung
- Platten- und I/O-Systeme
- Multiprozessor-Systeme
 - Shared-Memory-Systeme
 - Message-Passing-Systeme

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen:

- Boole'sche Algebra, Entwurf und Minimierung von logischen Schaltungend und Schaltwerken, Grundlagen Metastabilität
- Moore/Mealy-Automaten
- Concurrency (CSP)
- Elektrotechnische Bauelemente (Widerstand, Kapazität, Induktivität), Halbleiter (Diode, Feldeffekt-Transistor: Kennlinien und Funktion)
- Zahlendarstellungen in Computern
- Rechnerstrukturen

Kognitive und praktische Kompetenzen:

- Erstellen und Lösen von elektrischen Netzwerken, reale und ideale Quellen, Arbeiten mit Kennlinien, differenzieller Widerstand
- Mathematische Grundfertigkeiten: Lösung lineare Differentialgleichungen, Umformungen mit Exponentialfunktion/Logarithmus, etc.
- Interpretieren und Arbeiten mit Zahlendarstellungen und logischen Ausdrücken.

Soziale Kompetenzen und Selbstkompetenzen:

• Analyse komplexer Zusammenhänge und Wechselwirkungen, Strukturieren und Entwerfen von modularen, interagierenden Systemen

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Grundlagen Digitaler Systeme, Elektrotechnische Grundlagen, Theoretische Informatik

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase sowie entweder die Lehrveranstaltung Grundlagen digitaler Systeme oder die Lehrveranstaltung Technische Grundlagen der Informatik.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Der theoretische Hintergrund und das Verständnis für den Stoff werden in Vorlesungen vermittelt. In der begleitenden Laborübung wird dieses Wissen durch ein umfassendes Designprojekt konkretisiert und vertieft. In einem ersten Schritt wird zunächst der Umgang mit den Entwicklungswerkzeugen anhand von einfachen Aufgaben erlernt. Im Anschluß daran wird ein komplexes Design entworfen, implementiert und in Betrieb genommen. Die entsprechenden Aufgabenstellungen stammen aus dem Kontext von Rechnerarchitekturen, sodaß das Modul Digital Design zugleich auch der Vertiefung und Konkretisierung dieser Kenntnisse dient. Die Vermittlung praktischer und sozialer Kompetenzen wird primär durch die Arbeit in Kleingruppen bewerkstelligt. Die Leistungsfeststellung erfolgt durch Beispielabgaben sowie schriftliche und mündliche Prüfungen/Tests.

Lehrveranstaltungen des Moduls:

3.0/3.0 VO Digital Design

1,5/1,5 VO Hardware Modeling

3,0/3,0 VO Rechnerstrukturen

7,5/7,5 LU Digital Design and Computer Architecture

Dezentrale Automation

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen:

- Automatisierungssysteme und deren hierarchische Darstellung als "Automationspyramide"
- Kommunikationsprotokolle in den verschiedenen Ebenen/Anwendungsbereichen
- Überblick und Beispiele zu Softwareumgebungen und Entwicklungsprozessen aus der industriellen Praxis
- Konkreter Aufbau industrielle Geräte und Komponenten anhand von Beispielen
- Gängige Normen und Standards in der Automatisierungstechnik

Kognitive und praktische Kompetenzen:

- Analyse technischer Prozesse
- Ableiten geeigneter Prozessmodelle
- Entwurf von Steuerungssystemen entsprechend einem Prozessmodell
- Simulation und Verifikation von Steuerungssystemen unter einem gegebenen Prozessmodell
- Vergleich und Auswahl industrieller Standards im Hinblick auf konkrete Anwendungsszenarien
- Anwendung standardisierter Protokolle und Softwarekomponenten
- Entwicklung von dezentralen/verteilten Steuerungssystemen

Soziale Kompetenzen und Selbstkompetenzen:

- Analytisches Denken (z.B. Bestimmen von Teilabläufen und deren Zusammenhängen innerhalb technischer Prozesse)
- Abstraktes Denken (z.B. beim Erstellen und Verwenden von Prozessmodellen)
- Strukturiertes Denken, Problemlösungskompetenz (Spezifizieren und Implementieren von Steuerungssystemen)
- Erweiterte Lesekompetenz (technisches Englisch): Arbeiten mit technischer Dokumentation und Datenblättern
- Selbstorganisation, Eigenverantwortlichkeit
- Kommunikationsfähigkeit (Teamarbeit)

Inhalt: Das Modul vermittelt Kenntnisse, die für den Entwurf von Applikationen in der (verteilten) Automatisierungstechnik notwendig sind. Relevante Grundlagen der industriellen Kommunikationstechnik und ihre Funktionsweise werden adressiert. Applikationen zur Interaktion mit einem technischen Modellprozess werden von den Studierenden eigenständig entwickelt, dokumentiert und präsentiert.

- Einsatzbereiche der Automatisierungstechnik mit dem Schwerpunkt auf industrieller Automation (Fertigungstechnik, Verfahrenstechnik), Automation im Kraftfahrzeugbereich, Heim- und Gebäudeautomation
- Systemmodell in der verteilten Automation
- Aufbau und Funktionsweise von verteilten Automatisierungssystemen: Kommunikation und Geräte
- Normen zur Modellierung und Programmierung speicherprogrammierbarer Steuerungen und verteilter Applikationen in der Automatisierungstechnik
- Modelle zum Datenaustausch in der industriellen Kommunikation
- Diskussion ausgewählter standardisierter Automationsnetzwerke

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen:

- Grundlagen digitaler Systeme, Logikschaltungen und Rechnerarchitekturen
- Grundkenntnisse in Elektrotechnik und Physik (Grundlage für das Verständnis von Sensoren/Aktoren)
- Grundlegendes Wissen über Netzwerke und Protokolle
- Systematische, konstruktive Vorgehensweise bei der Erstellung und Evaluation von Programmen

Kognitive und praktische Kompetenzen:

- Interdisziplinäre und flexible/anpassungsfähige Denkweise
- Praktische Fähigkeit zur Konstruktion von Programmen (auch für eingebettete Systeme)

Soziale Kompetenzen und Selbstkompetenzen:

• Selbstorganisation, Eigenverantwortlichkeit: selbstständiges Lösen von Aufgabenstellungen

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Betriebssysteme und Computernetzwerke, Mikrocomputer, Elektrotechnische Grundlagen, Modellbildung und Regelungstechnik, Zuverlässige Echtzeitsysteme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung:

- Vorlesungsteil: Vorträge; Leistungsüberprüfung durch Prüfung
- Laborübungsteil: Geführte Kleingruppen; individuell auszuarbeitende Übungsbeispiele und Laborprotokolle; Präsentation der Lösungen im Rahmen von Abgabegesprächen

Lehrveranstaltungen des Moduls:

2,0/2,0 VO Dezentrale Automation 4,0/4,0 LU Dezentrale Automation

Einführung in Artificial Intelligence

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden fundamentale Konzepte die zum Verständnis der Arbeitsweise als auch zur Erstellung von Systemen der Artificial Intelligence von Bedeutung sind benennen und erläutern und theoretische Zusammenhänge korrekt argumentieren.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- die eingesetzten Techniken und Methoden formal analysieren,
- Methoden und Techniken für eine vorgegebene Aufgabenstellung zielgerichtet auswählen, sowie
- · Lösungen kritisch bewerten.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden erarbeitete Lösungen kommunizieren.

Inhalt:

- Einführung und Geschichte;
- Intelligente Agenten;
- Suchverfahren (uninformierte Suche, informierte Suche, lokale Suche);
- Constraint Satisfaction Probleme (CSP);

- Aspekte der Wissensrepräsentation (Schließen, Ontologisches Engineering);
- Planen;
- Maschinelles Lernen (Lernen von Beispielen, Neuronale Netzwerkarchitekturen, Deep Learning);
- Entscheidungstheoretische Konzepte (Utility-Theorie, Decision Networks und Information);
- Philosophische und Ethische Aspekte der AI.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls

- elementare Beweistechniken, wie sie im Rahmen der einführenden Mathematiklehrveranstaltungen vermittelt werden, sowie
- die wesentlichen Konzepte in Datenstrukturen und Algorithmen beschreiben können

Kognitive und praktische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls

- Beweisprinzipien zur Erstellung eigener Beweise korrekt anwenden,
- die Korrektheit der einzelnen Beweisschritte formal argumentieren, sowie
- vorgegebene Problembeschreibungen algorithmisch umsetzen können.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Algorithmen und Datenstrukturen, Grundzüge digitaler Systeme, Theoretische Informatik.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Lehrveranstaltung des Moduls besteht aus einem Vorlesungsteil (Frontalvortrag) und einem begleitenden Übungsteil. Die Vorlesung dient zur Vermittlung der theoretischen Grundlagen des besprochenen Fachgebietes während in der Übung die Teilnehmer in selbständiger Weise Lösungen zu konkreten Aufgabenstellungen erarbeiten. Die Beurteilung der Vorlesung erfolgt auf Basis von Prüfungen (schriftlich und/oder mündlich) und die Beurteilung der Übung anhand der abgegebenen Lösungen der Aufgabenstellungen sowie mittels Abgabegesprächen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Einführung in Artificial Intelligence

Einführung in wissensbasierte Systeme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden fundamentale Konzepte, die zum Verständnis der Arbeitsweise als

auch zur Erstellung von wissensbasierten Systemen von Bedeutung sind, benennen und erläutern und theoretische Zusammenhänge korrekt argumentieren.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- · die eingesetzten Techniken und Methoden formal analysieren,
- Methoden und Techniken für eine vorgegebene Aufgabenstellung zielgerichtet auswählen, sowie
- Lösungen kritisch bewerten.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden erarbeitete Lösungen verständlich kommunizieren.

Inhalt:

- Einführung und geschichtlicher Hintergrund;
- Prädikatenlogik als Spezifikationssprache;
- Description Logik und Ontologisches Schließen;
- Nichtmonotones Schließen;
- Answer-Set Programmierung;
- Probabilistische Verfahren;
- Entwicklung von wissensbasierten Systemen.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls elementare Beweistechniken, wie sie im Rahmen der einführenden Mathematiklehrveranstaltungen vermittelt werden, beschreiben können.

Kognitive und praktische Kompetenzen: Es wird erwartet, dass die Studierenden vor der Absolvierung des Moduls

- elementare mathematische Beweisprinzipien zur Erstellung eigener Beweise korrekt anwenden,
- die Korrektheit der einzelnen Beweisschritte formal argumentieren, sowie
- vorgegebene Problembeschreibungen algorithmisch umsetzen können.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Algorithmen und Datenstrukturen, Grundzüge digitaler Systeme, Theoretische Informatik.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Lehrveranstaltung des Moduls besteht aus einem Vorlesungsteil (Frontalvortrag) und einem begleitenden Übungsteil. Die Vorlesung dient zur Vermittlung der theoretischen Grundlagen des besprochenen Fachgebietes während in der Übung Lösungen zu konkreten Aufgabenstellungen in selbständiger Weise erarbeit werden müssen. Die Beurteilung

der Vorlesung erfolgt auf Basis von Prüfungen (schriftlich und/oder mündlich) und die Beurteilung der Übung anhand der abgegebenen Lösungen der Aufgabenstellungen sowie mittels Abgabegesprächen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Einführung in wissensbasierte Systeme

Grundlagen der Computer Vision

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Dieses Modul vermittelt Kompetenzen in den wichtigsten Bereichen der Computer Vision und verwandten wissenschaftlichen Fragestellungen. Insbesondere werden die Studierenden in der Lage sein, die wesentlichen Prinzipien und Methoden der folgenden Bereiche aufzuzählen und zu erklären:

- Bildentstehung
- Struktur von Bildern (Textur, Szenen und Kontext)
- Lokale & Multiskala Repräsentationen
- Bildanalyse
- Szenenanalyse
- Maschinelles Lernen
- Lineare Modelle für Regression und Klassifizierung
- Neuronale Netze
- Fehlerfunktionen und Methoden zur Parameteroptimierung
- · Modellkomplexität, Regularisierung, Auswahl
- Kernel-Methoden
- Überwachtes- und unüberwachtes Lernen
- Hauptkomponentenanalyse
- Tiefenwahrnehmung
- Einzelansicht-Rekonstruktion
- Absolute 3D-Rekonstruktion
- Multiview-Geometrie
- Anwendungen der Computer Vision

Kognitive und praktische Kompetenzen: Durch die Umsetzung einer umfangreichen graphischen Anwendung können Studierende nach Absolvierung des Moduls:

- eine höhere Programmiersprache einsetzen,
- Methoden des Machine- und Deep Learning einsetzen,
- Computer Vision in praxisnahen Anwendungsgebieten einsetzen,
- Wissenschaftliche Analyse, Entwurfs- und Umsetzungsstrategien (Einbeziehung des Stands der Technik, kritische Bewertung und Reflexion von Lösungen).
- Auswahl geeigneter formaler mathematischer Methoden zur Modellierung, Abstraktion, Lösungsfindung und Bewertung

- Zielorientierte Arbeitsmethodik
- Einsatz von Technologien, Softwarewerkzeugen und Standards
- Präzise schriftliche Dokumentation und wissenschaftliche Diskussion von Lösungen
- Fähigkeit zu überzeugender fachlicher Präsentation und Kommunikation in einem interdisziplinären Umfeld

Soziale Kompetenzen und Selbstkompetenzen: Das Modul fördert

- die Arbeit in kleinen Teams,
- die Fähigkeit, Ergebnisse vor vielen Leuten zu präsentieren,
- die Fähigkeit, eigenständig Ziele zu definieren,
- Selbstorganisation, Initiative und Eigenverantwortung
- Steigerung der individuellen Kreativität und des Innovationspotenzials (Neugierde)
- Problemformulierung und Problemlösungskompetenz
- Kommunikations- und Kritikfähigkeit
- · Reflexion über die eigenen Fähigkeiten und Grenzen
- Folgenabschätzung und ethische Bewertung
- Strategisches Denken und Planen

Inhalt: In der Vorlesung werden fortgeschrittene Methoden der Computer Vision vertiefend behandelt:

- Texture, Scenes, und Context
- Local- and Multiscale Representations
- Interest Points, Corners
- Scene Emergent Features
- Scene Recognition, Bag of Words, SIFT
- Clustering, Pyramid Matching, Support Vector Machine
- Deep Learning, CNNs
- Perceptron, Linear Basis Function Models, RBF
- Neural Networks architectures und learning methods
- Error functions and methods for parameter optimization (e.g., pseudo-inverse, gradient descent, Newton method)
- Duality, Sparsity, Support Vector Machine
- Unsupervised methods and Self-Organizing Maps (SOM)

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen:

- Mathematik: Vektor und Matrizenrechnung, aus Lineare Algebra
- Programmieren, objektorientiertes Programmieren
- Computer Vision Kenntnisse, aus Modul Einführung in Visual Computing (beide Teile) sowie dessen Voraussetzungsmodule

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung:

- 3 ECTS Vorlesung (Frontalvortrag)
- 3 ECTS Übung

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Grundlagen der Computer Vision

Einführung in die Programmierung

Regelarbeitsaufwand: 9,5 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden Folgendes beschreiben:

- systematische Vorgehensweisen bei der Programmierung (einschließlich Erstellen, Nachvollziehen, Debuggen, Modifizieren und Dokumentieren von Programmen),
- wichtige Konzepte einer aktuellen alltagstauglichen Programmiersprache,
- ausgewählte Algorithmen, Datenstrukturen und Datenabstraktionen,
- häufige Fehlerquellen und Techniken zur Qualitätssicherung.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- Inhalte natürlichsprachiger Programmieraufgaben in ausführbare Programme umsetzen,
- · Vorgehensweisen und Werkzeuge beim Programmieren systematisch anwenden,
- beschriebene Datenabstraktionen, Algorithmen und Datenstrukturen implementieren,
- einfache Maßnahmen zur Verbesserung der Qualität von Programmen anwenden.

Soziale Kompetenzen und Selbstkompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- Programmieraufgaben selbständig lösen sowie in Zweierteams zusammenarbeiten,
- Programmeigenschaften kommunizieren.

Inhalt:

- Prozedurale Programmierkonzepte (Variablen, Datentypen, Operatoren, Verzweigungen, Schleifen, Arrays, Unterprogramme)
- Fundamentale Entwicklungsmethoden (prozedurale Abstraktion, dynamisches und statisches Programmverstehen, Prüfen auf Korrektheit, Debugging) und Programmierwerkzeuge einschließlich einer Programmierumgebung

- Rekursion
- Ein- und Ausgabe mit Überprüfung von Eingaben
- Datenabstraktion
- Implementierung und wesentliche Eigenschaften rekursiver Datenstrukturen (Listen und Bäume)
- Grundlegende Algorithmen (Einfügen, Löschen, Suchen, Sortieren, Vergleichen, Konvertieren) für verschiedene Datenstrukturen
- · Abstraktion über Datenstrukturen mit vergleichbaren Zugriffsfunktionen
- Exception-Handling
- Einfache Testmethoden und Code-Review
- Ansätze zur Programmoptimierung
- Programmierstile und Programmdokumentation

Erwartete Vorkenntnisse: Keine.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Inhalte werden in Vorträgen vorgestellt und in begleitenden Übungen von Studierenden erarbeitet. Übungsaufgaben sind vorwiegend Programmieraufgaben. Sie werden zu einem Teil örtlich ungebunden (für einige Aufgaben in Zweierteams) innerhalb vorgegebener Fristen, zum anderen Teil unter kontrollierten Bedingungen selbständig gelöst. Die Beurteilung erfolgt auf Basis schriftlicher Tests und kontinuierlich in Übungen erbrachter Leistungen.

Lehrveranstaltungen des Moduls:

5,5/4,0 VU Einführung in die Programmierung 1 4,0/3,0 VU Einführung in die Programmierung 2

Einführung in paralleles Rechnen (Parallel Computing)

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse: Das Modul vermittelt Prämisse und Ziele des parallelen Rechnens und gibt Einblicke in die Leistungsbewertung und -analyse von parallelen Algorithmen und Verfahren. Vermittelt werden allgemeine algorithmische Techniken zur Parallelisierung, grundlegende Eigenschaften paralleler Rechnerarchitekturen und elementare Fähigkeiten des parallelen Programmierens anhand konkreter Programmiermodelle, Programmiersprachen und -schnittstellen.

Fachliche und methodische Kompetenzen: Studierende erwerben fundierte Kenntnisse des parallelen Rechnens, insbesondere der Leistungsbewertung eines parallelen Algorithmus und dessen Implementierung. Studierende erwerben Kenntnisse von Schnittstellen und Sprachen zur Implementierung von parallelen Algorithmen, sowie deren Zusammenspiel auf unterschiedlichen Parallelrechnerarchitekturen, einschließlich einiger etablierter

Schnittstellen, wie z.B. OpenMP, Cilk und MPI (das "Message-Passing Interface"). Studierende erwerben einführende Kenntnisse in grundlegende algorithmische Werkzeuge und die Grenzen der Parallelisierbarkeit werden erörtert.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können Studierende selbständig

- angeben, wie die Leistung eines parallelen Algorithmus theoretisch und praktisch zu beurteilen ist,
- anhand vorgegebener Algorithmen und Implementierungen beurteilen, inwieweit diese effizient parallelisiert worden sind oder werden können,
- anhand von Problembeschreibungen und existierenden sequentiellen Algorithmen, parallele Lösungsansätze angeben, und eventuelle Grenzen dieser Ansätze angeben,
- einfache parallele Algorithmen selber für eine dafür geeignete Schnittstelle entwerfen und hierbei unterschiedliche Parallelisierungskonzepte, Schnittstellen und Sprachen berücksichtigen,
- entwickelte Algorithmen mit Hilfe einer Schnittstelle korrekt implementieren und zur Lauffähigkeit bringen,
- mittels Experimenten und Messungen die Güte der Umsetzung beurteilen.

Soziale Kompetenzen und Selbstkompetenzen: Studierenden lernen, algorithmische Probleme zu formulieren und Ansätze der Parallelisierung zu entwickeln und diese selbständig (oder in kleineren Gruppen) korrekt zu beschreiben.

Inhalt:

- Asymptotische Komplexität, Speed-up, Effizienz, Amdahlsches Gesetz.
- Parallelrechnerarchitekturen mit gemeinsamen und verteilten Speicher ("shared and distributed memory"), Hochleistungsrechensysteme.
- Algorithmische Muster und Probleme wie z.B. Schablone ("Stencil"), Präfixsumme, Mischen, Sortieren, und allgemeine Ansätze zur Parallelisierung.
- Theoretische und experimentelle Leistungsanalyse und -beurteilung.
- Datenaustausch und Kommunikationsprobleme, kollektive Kommunikationsoperationen.
- Synchronisationsprobleme und Vermeiden von Synchronisation.
- Einfache untere und obere Schranken für wichtige Kommunikationsprobleme.
- Modelle der Parallelität wie "Threads", Prozesse, Aufgaben ("Tasks").
- Unterscheidung zwischen Daten- und Aufgaben-Parallelität.
- Die Schnittstelle und Spracherweiterung OpenMP.
- Die Spracherweiterung Cilk.
- Die Schnittstelle MPI.
- Weitere Schnittstellen und Sprachen für das parallele Programmieren.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Grundlegende Kenntnisse in Algorithmen und Datenstrukturen, Rechnerarchitekturen, Programmiersprachen und Betriebssysteme werden erwartet und zum Teil vorausgesetzt.

Kognitive und praktische Kompetenzen: Programmierung in C oder ähnlicher Sprache. Grundlegende Methoden der Software-Entwicklung. Einfache asymptotische Laufzeitanalyse von Algorithmen und Datenstrukturen.

Soziale Kompetenzen und Selbstkompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls

- Programmieraufgaben selbständig lösen und
- in Zweierteams zusammenarbeiten können.

Dieses Modul baut auf den Kenntnissen und Fertigkeiten folgender Module auf: Algorithmen und Datenstrukturen, Betriebssysteme, Einführung in die Programmierung, Programmierparadigmen, Grundzüge digitaler Systeme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Inhalte werden durch obligatorische Vorlesungen vermittelt, welche durch einen Foliensatz und begleitende Literatur unterstützt werden. Die Projekte sind kleinere Programmieraufgaben, in denen vorgegebene Probleme in mehreren der vorgestellten Schnittstellen implementiert sowie theoretisch und praktisch analysiert werden sollen. Vorgaben für die Lösungen sowie zur Art und Form der Abgabe werden gegeben. Abgabefristen werden ebenfalls vorgegeben und sind bindend. Für die experimentelle Auswertung wird der Zugriff auf Parallelrechner gewährleistet. Die Beurteilung erfolgt anhand der abgegebenen schriftliche Projektlösungen, sowie einer mündliche oder auch schriftlichen Prüfung.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Einführung in paralleles Rechnen (Parallel Computing)

Grundlagen Security

Regelarbeitsaufwand: 3,0 ECTS

Lernergebnisse: Durch die Absolvierung des Moduls lernen die Studierenden, Aspekte der IT-Sicherheit zu identifizieren und Maßnahmen zu setzen, um diese zu berücksichtigen.

Fachliche und methodische Kompetenzen: Das Modul bietet eine Einführung in

- die theoretischen Grundlagen der IT-Sicherheit,
- wichtige Sicherheitsaspekte in IT-Projekten,
- Best-Practice Sicherheitsmaßnahmen,
- Verständnis der Denkweise von AngreiferInnen.

Kognitive und praktische Kompetenzen:

• Umsetzung von wichtigen Best-Practice Sicherheitsmaßnahmen

Inhalt:

- Grundlagen der Systemsicherheit (Sicherheitsprinzipien, Authentifizierung und Zugriffskontrolle, Control-Flow Hijacking)
- Grundlagen der Websicherheit (Browsersicherheit, Client Sicherheit, Sever Sicherheit)
- Grundlagen der Netzwerksicherheit (kryptograpische Protokolle, Netzwerkanonymität)

Erwartete Vorkenntnisse:

Dieses Modul baut auf den Kenntnissen und Fertigkeiten folgender Module auf: Einführung in die Programmierung, Grundlagen Digitaler Systeme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Abschlussprüfung und Lösung praktischer Aufgaben.

Lehrveranstaltungen des Moduls:

3,0/2,0 VU Introduction to Security

Introduction to Cryptography

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse: Nach positiver Absolvierung der Lehrveranstaltung sind Studierende in der Lage die grundlegenden Konzepte der Kryptographie, die zum Verschlüsseln und Authentifizieren verwendet werden, zu verstehen. Sie sind mit den grundlegenden Definitionen der symmetrischen und der public-key Kryptographie vertraut, sowie mit dem Prinzip der beweisbaren Sicherheit, dem Paradigma der modernen Kryptographie. Sie haben die wichtigsten Konstruktionen kryptografischer Objekte und einige Sicherheitsbeweise gesehen. Im Übungsteil den Stoff vertieft und gelernt, die Sicherheit von Systemen zu analysieren. Dieser Kurs ist eine gute Grundlage, um fortgeschrittene Themen wie kryptografische Protokolle zu studieren.

Inhalt:

- Information-theoretic security
- Computational security
- Symmetric encryption
- Message authentication codes
- · Hash functions
- Public-key encryption
- Digital signature schemes

Erwartete Vorkenntnisse: Es sind keine spezifischen Kenntnisse erforderlich (beispielsweise werden die benötigten Konzept der Zahlentheorie in den Vorträgen besprochen), mathematische Reife und die Fähigkeit, schlüssig zu argumentieren (essentiell für Sicherheitsbeweise) werden jedoch zum Lösen der Übungsbeispiele benötigt.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Note setzt sich aus der Anzahl der gelösten Hausübungsbeispiele, deren Qualität, der Präsentationen von Lösungen in den Übungseinheiten, sowie einer schriftlichen Abschlussprüfung über den vorgetragenen Stoff zusammen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Introduction to Cryptography

Introduction to Numerics

Regelarbeitsaufwand: 4,5 ECTS

Lernergebnisse: Vertrautheit der Studierenden mit den grundlegenden Konzepten algorithmisch-numerischer Lösungsmethoden, überlegte Auswahl und der effiziente Einsatz kommerzieller oder frei verfügbarer numerischer Software; Die Studierenden lernen zu erkennen, ob ein Programm eine angemessene Lösung geliefert hat und was zu tun ist, wenn dies nicht der Fall ist; Interpretation und Analyse numerisch erhaltener Lösungen.

Inhalt: Grundlegende Fehlerbegriffe: Datenfehler, Verfahrens- oder Diskretisierungsfehler, Rundungsfehler; Kondition mathematischer Probleme, numerische Lösung linearer und nichtlinearer Gleichungssysteme, polynomiale Interpolation und Approximation, numerische Integration, numerische Lösung von Differentialgleichungen, Design und Verwendung numerischer Algorithmen bzw. numerischer Software.

Die praktische Umsetzung und Vertiefung des Stoffes der Vorlesung erfolgt in den Übungen durch (realitätsnahe) numerische Übungsbeispiele. Diese beinhalten sowohl theoretische Aufgabenstellungen, etwa was das Design oder die Analyse numerisch stabiler Algorithmen betrifft, als auch die praktische Implementierung und das Testen und Bewerten am Computer. Standardsoftware kommt zum Einsatz (z.B. MATLAB).

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Mathematische Grundkenntnisse

Kognitive und praktische Kompetenzen: Programmierung mit MATLAB

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Analysis, Einführung in die Programmierung, Grundzüge digitaler Systeme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Vermittlung der theoretischen Grundlagen erfolgt in der Vorlesung, die Erarbeitung der praktische Fertigkeiten erfolgt in den wöchentlichen Übungen.

Die Prüfung ist mündlich und beinhaltet eher theoretisch gehaltene Fragen zum Vorlesungsstoff, teilweise auch kurz gehaltene praktische Beispiele; die Beurteilung der

Übungsleistung erfolgt aufgrund der Anzahl der gekreuzten Beispiele, der Tafelleistungen und der schriftlichen Ausarbeitung von Beispielen.

Lehrveranstaltungen des Moduls:

4,5/3,0 VU Introduction to Numerics

Elektrotechnische Grundlagen

Regelarbeitsaufwand: 7,5 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Erläutern der physikalische Grundlagen elektrischer Komponenten und elektrischer Netzwerke; Erklären der Methoden für die Analyse und den Entwurf von elektrischen Netzwerken; Erläutern der Funktionsweise elementarer elektrischer Schaltungen.

Kognitive und praktische Kompetenzen: Modellierung elektrischer Vorgänge und Einschätzung der Tragfähigkeit der gewonnenen Modelle; Verwendung der Rechenverfahren der Elektrotechnik zur Lösung einfacher Probleme; Umgang mit elektrotechnischen Laborinstrumenten; Praktische Realisierung einfacher elektrischer Schaltungen und deren messtechnische Untersuchung.

Soziale Kompetenzen und Selbstkompetenzen: Teamarbeit in Kleingruppen im Labor.

Inhalt: Physikalische Grundlagen von Bauelementen, Sensoren und Aktuatoren

- Elektrisches und magnetisches Feld, Ausbreitung von Feldzuständen
- Vom Feld zum idealen elektrischen Bauelement (Widerstand, Induktivität, Kapazität)
- Technische Bauelemente (Widerstände, Spulen/Transformatoren, Kondensatoren; Ersatzschaltungen)
- Ausnützung elektrischer Eigenschaften in Sensoren

Einfache elektrische Netzwerke

- Erstellung der Netzwerkgleichungen (Kirchhoff'sche Sätze)
- Lösung der Netzwerkgleichungen (Gleichspannungsanalyse, Wechselspannungsanalyse, Laplace-Transformation)

Halbleiter

- Diode und MOS-Transistor
- Operationsverstärker

Schaltungstechnik

- Einfache lineare Schaltungen
- Schaltungen mit OPV
- · Analoge Filter

Von analogen zu digitalen Schaltungen

- Abtasttheorem
- A/D- und D/A-Wandler

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Fundierte Kenntnisse in Mathematik (Algebra, Analysis, inklusive Fourier-Transformation); grundlegende physikalische Kenntnisse (AHS/BHS-Niveau).

Kognitive und praktische Kompetenzen: Elementare mathematische Modellierung von Anwendungsproblemen, insbesondere aus der Physik; Anwendung mathematischer Lösungsmethoden.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Analysis, Algebra und Diskrete Mathematik, Analysis 2

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Das Modul besteht aus einer Vorlesung mit integrierten Rechenbeispielen zur Vertiefung der Lehrinhalte und zur Entwicklung der Lösungskompetenz für elektrotechnische Probleme und einer begleitenden Laborübung. In der Laborübung werden einfache elektrische Schaltungen entworfen, aufgebaut und gemessen. Dabei werden auch elementare Methoden der Messtechnik (Messung von Strom und Spannung, Oszilloskopmesstechnik) und der praktische Umgang mit Labormeßgeräten vermittelt.

Aufgrund der beschränkten Laborressourcen und der Situierung im 2. Semester, wodurch das Modul nicht durch die STEOP zugangsbeschränkt ist, besteht für die Lehrveranstaltung 182.692 (Laborübungen) ein Kapazitätslimit von maximal 54 TeilnehmerInnen.

Lehrveranstaltungen des Moduls:

 $4,\!0/4,\!0$ VU Elektrotechnische Grundlagen

3,5/3,5 LU Elektrotechnische Grundlagen

Freie Wahlfächer und Transferable Skills

Regelarbeitsaufwand: 18,0 ECTS

Lernergebnisse: Die Lehrveranstaltungen dieses Moduls dienen der Vertiefung des Faches sowie der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen.

Inhalt: Abhängig von den gewählten Lehrveranstaltungen.

Erwartete Vorkenntnisse: Abhängig von den gewählten Lehrveranstaltungen.

Verpflichtende Voraussetzungen: Abhängig von den gewählten Lehrveranstaltungen.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Abhängig von den gewählten Lehrveranstaltungen.

Lehrveranstaltungen des Moduls: Die Lehrveranstaltungen dieses Moduls können frei aus dem Angebot an wissenschaftlichen und künstlerischen Lehrveranstaltungen, die der Vertiefung des Faches oder der Aneignung außerfachlicher Kenntnisse, Fähigkeiten und Kompetenzen dienen, aller anerkannten in- und ausländischen postsekundären Bildungseinrichtungen ausgewählt werden, mit der Einschränkung, dass zumindest 6 ECTS aus den Themenbereichen der Transferable Skills zu wählen sind. Für die Themenbereiche der Transferable Skills werden insbesondere Lehrveranstaltungen aus dem Wahlfachkatalog "Transferable Skills" der Fakultät für Informatik (Anhang F) und aus dem zentralen Wahlfachkatalog der TU Wien für "Transferable Skills" empfohlen.

Grundlagen Digitaler Systeme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- Zahlendarstellungen unterscheiden und nutzen,
- grundlegende Konzepte der Informations- und Codierungstheorie beschreiben und anwenden,
- Ausdrücke der Boolschen Algebra formulieren, manipulieren und interpretieren sowie Minimierungsverfahren darauf anwenden,
- grundlegende logische Konzepte nachvollziehen, anwenden und übertragen,
- einfache Schaltnetze entwerfen und erklären,
- ein System mit Hilfe einer geeigneten Logik oder eines geeigneten Automatentyps beschreiben,
- syntaktische und semantische Fehler in einem Modell erkennen und korrigieren,
- informell beschriebene Systeme analysieren, auf die relevanten Merkmale reduzieren und mit formalen Spezifikationsmethoden modellieren.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden methodische Ansätze auf konkrete Aufgabenstellungen umsetzen. Insbesondere sind sie in der Lage

- Auswirkungen verschiedener Spezifikations- und Abbildungsmethoden auf die Modellierung eines Systems zu analysieren,
- eine für die Problemstellung geeignete Abstraktionsebene sowie Spezifikationsmethode zu wählen und darauf eine passende Modellierung zu erstellen,
- eine fremde Modellierung zu analysieren und entsprechend Verbesserungsvorschläge zu formulieren,
- formal-mathematische Beschreibungen anzuwenden und in eigenen Worten zu erklären,

• die erlernten Formalismen auch im Kontext der in der Fachliteratur üblichen Varianten dieser Definitionen zu verwenden.

Soziale Kompetenzen und Selbstkompetenzen: Die Studierenden können umfangreichere Aufgabenstellungen eigenverantwortlich lösen und beherrschen Selbstorganisation und Zeitmanagement, um die Lösungen fristgerecht fertig zu stellen. Sie können ihre eigenen Gedanken, Lösungen und Modelle argumentieren und kommunizieren sowie mit anderen Personen professionell diskutieren.

Inhalt:

- Zahlendarstellung und Zahlencodierung
- Gleitkommaarithmetik
- Grundkonzepte der Informations- und Codierungstheorie
- Logik in der Informatik
- Aussagenlogik, Boolesche Algebra, Minimierungsverfahren
- Prädikatenlogik als Spezifikationssprache
- Endliche Automaten, inklusive Moore- und Mealy-Automaten
- Reguläre Ausdrücke und kontextfreie Grammatiken
- Schaltnetze
- Realisierungen von Automaten
- Petri-Netze

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls Mathematik auf AHS/BHS-Maturaniveau anwenden können.

Kognitive und praktische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls fachliche Texte auf AHS/BHS-Maturaniveau verstehen können.

Soziale Kompetenzen und Selbstkompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls grundlegendes Selbstmanagement anwenden können.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Vorträge und Repetitorien; Unterstützung durch eine Online-Plattform mit betreutem Forum und Streaming; Übung in Gruppen zur Vertiefung und Festigung des Lehrstoffes. Die Beurteilung erfolgt auf Basis schriftlicher Tests und kontinuierlich in Übungen und auf der Online-Plattform erbrachter Leistungen.

Lehrveranstaltungen des Moduls:

3,0/2,0 VU Grundlagen digitaler Systeme 3,0/2,0 VU Formale Modellierung

Grundzüge digitaler Systeme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- · Zahlendarstellungen unterscheiden und nutzen,
- grundlegende Konzepte der Informations- und Codierungstheorie beschreiben und anwenden,
- Ausdrücke der Boolschen Algebra formulieren, manipulieren und interpretieren sowie Minimierungsverfahren darauf anwenden,
- grundlegende logische Konzepte nachvollziehen, anwenden und übertragen,
- einfache Schaltnetze entwerfen und erklären,
- ein System mit Hilfe einer geeigneten Logik oder eines geeigneten Automatentyps beschreiben,
- syntaktische und semantische Fehler in einem Modell erkennen und korrigieren,
- informell beschriebene Systeme analysieren, auf die relevanten Merkmale reduzieren und mit formalen Spezifikationsmethoden modellieren.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden methodische Ansätze auf konkrete Aufgabenstellungen umsetzen. Insbesondere sind sie in der Lage

- Auswirkungen verschiedener Spezifikations- und Abbildungsmethoden auf die Modellierung eines Systems zu analysieren,
- eine für die Problemstellung geeignete Abstraktionsebene sowie Spezifikationsmethode zu wählen und darauf eine passende Modellierung zu erstellen,
- eine fremde Modellierung zu analysieren und entsprechend Verbesserungsvorschläge zu formulieren,
- formal-mathematische Beschreibungen anzuwenden und in eigenen Worten zu erklären,
- die erlernten Formalismen auch im Kontext der in der Fachliteratur üblichen Varianten dieser Definitionen zu verwenden.

Soziale Kompetenzen und Selbstkompetenzen: Die Studierenden können umfangreichere Aufgabenstellungen eigenverantwortlich lösen und beherrschen Selbstorganisation und Zeitmanagement, um die Lösungen fristgerecht fertig zu stellen. Sie können ihre eigenen Gedanken, Lösungen und Modelle argumentieren und kommunizieren sowie mit anderen Personen professionell diskutieren.

Inhalt:

- Zahlendarstellung und Zahlencodierung
- Gleitkommaarithmetik

- Grundkonzepte der Informations- und Codierungstheorie
- Logik in der Informatik
- Aussagenlogik, Boolesche Algebra, Minimierungsverfahren
- Prädikatenlogik als Spezifikationssprache
- Endliche Automaten, inklusive Moore- und Mealy-Automaten
- Reguläre Ausdrücke und kontextfreie Grammatiken
- Schaltnetze
- Realisierungen von Automaten
- Petri-Netze

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls Mathematik auf AHS/BHS-Maturaniveau anwenden können.

Kognitive und praktische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls fachliche Texte auf AHS/BHS-Maturaniveau verstehen können.

Soziale Kompetenzen und Selbstkompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls grundlegendes Selbstmanagement anwenden können.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Vorträge und Repetitorien; Unterstützung durch eine Online-Plattform mit betreutem Forum und Streaming; Übung in Gruppen zur Vertiefung und Festigung des Lehrstoffes. Die Beurteilung erfolgt auf Basis schriftlicher Tests und kontinuierlich in Übungen und auf der Online-Plattform erbrachter Leistungen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Grundzüge digitaler Systeme

Grundlagen der Betriebswirtschaft

Regelarbeitsaufwand: 8,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach erfolgreicher Absolvierung des Moduls können die Studierenden Folgendes beschreiben bzw. erklären

- wie Unternehmen organisiert sind und warum welche Funktionen in einem dynamischen und unsicheren Geschäftsumfeld erforderlich sind
- welche Managementsysteme in den verschiedenen Bereichen des Unternehmens eingesetzt werden, wie sie sich unterscheiden, welche jeweiligen Besonderheiten es zu beachten gilt
- was Kosten sind, wie Kosten von Prozessen, Unternehmensbereichen und ganzen Unternehmen aus dem Rechnungswesen abgeleitet werden, wie die im Unternehmen erstellten Sach- und Dienstleistungen kostenmäßig bewertet werden

• wie Geschäftsfällen im Rechnungswesen abgebildet werden, wie die Bilanz und G&V (Gewinn- & Verlustrechnung) erstellt wird, wie eine Jahresabschlussanalyse mit Kennzahlen durchgeführt wird, wie Sicherungsgeschäften im Rechnungswesen abgebildet werden

Kognitive und praktische Kompetenzen: Nach erfolgreicher Absolvierung des Moduls können die Studierenden Folgendes durchführen

- Design angemessener Managementsysteme in den verschiedenen Unternehmensbereichen
- Kostenarten-, Kostenstellen- und Kostenträgerrechnung
- Prozessorientierte Kostenrechnung (Activity Based Costing/ABC-Analyse)
- Verbuchung von Geschäftsfällen im Hauptbuch
- Analyse von IFRS-Jahresabschlüssen

Soziale Kompetenzen und Selbstkompetenzen: Nach erfolgreicher Absolvierung des Moduls sollten die Studierenden Folgendes beherrschen

- Denken in Modellen und entsprechende Abstraktion
- Kritisch reflektierte Denkweise
- Erweitern der individuellen Problemschau und Erlangen der Einsicht in die Prozesse der Kreativität bzw. der Verbesserung des individuellen Problemlösungsverhaltens
- Selbstorganisation und eigenverantwortliches Denken
- Teamfähigkeit, Anpassungsfähigkeit, Eigenverantwortung und Neugierde

Inhalt: Grundlagen der Unternehmensführung

- Produktions-Management
- Logistik-Management
- Qualitäts- und Projekt-Management
- Absatz-Management
- Innovations-Management
- Strategisches Management
- · Cash- und Finanz-Management
- Kosten-Management
- Erfolgs-Management
- Personal-Management
- Organisations-Management und Arbeitsgestaltung
- Management der Unternehmensgrenzen und -kooperationen

Kosten- und Leistungsrechnung

- Grundlagen der Produktions- und Kostentheorie
- Prozessorientierte Kostenrechnung (Activity Based Costing)

- Gesetzliche Kostenrechnung: Kostenarten-, Kostenstellen- und Kostenträgerrechnung
- Plankostenrechnung: Kostenplanung und Kontrolle von Kosten

Rechnungswesen

- Grundlagen des Rechnungswesen (inkl. IFRS (International Financial Reporting Standards))
- IFRS-Jahresabschlüsse
- Kennzahlenanalyse
- Abbildung von Beschaffungs-, Absatz- und Produktionsprozessen sowie von Finanzgeschäften
- Hedge-Accounting

Erwartete Vorkenntnisse: Keine.

Verpflichtende Voraussetzungen: Keine.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Präsentation der Inhalte in Vorlesungsteilen mit reflektierender Diskussion; Vertiefung der Inhalte durch Übungen teilweise auch auf einer e-Learning-Plattform.

Lehrveranstaltungen des Moduls:

3,0/2,0 VO Grundlagen der Unternehmensführung

3,0/2,0 VU Kosten- und Leistungsrechnung

2,0/1,5 VU Rechnungswesen

Mikrocomputer

Regelarbeitsaufwand: 3,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- die wesentlichen Komponenten eines Microcontrollers (Peripherie, Timer, US-ART/SPI, etc.) identifizieren,
- zentrale Architekturkonzepte (Interrupts, Speicherorganisation, etc.) beschreiben.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden

- mit einer typische Entwicklungsumgebung für Mikrocontroller umgehen,
- einfache Steuerungs- und Regelungsaufgaben mit einem Mikrocontroller lösen.

Inhalt:

- Microcontroller-Architekturen
- Peripheriemodule von Microcontrollern
- Serielle und parallele digitale Kommunikation
- Analog-Digital- und Digital-Analog-Interfaces
- Entwicklungs-Toolchain
- Microcontroller-Programmierung in Assembler und einer Hochsprache (C)

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen:

- Kenntnisse von Zahlendarstellungen in Computern
- Grundlagen der booleschen Algebra und Schaltlogik
- Aufbau digitaler Schaltungen
- Kenntnisse in Rechnerarchitekturen

Kognitive und praktische Kompetenzen:

• Fertigkeiten in der Programmierung in C

Soziale Kompetenzen und Selbstkompetenzen:

Selbstorganisation

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Elektrotechnische Grundlagen, Digital Design, Betriebssysteme und Computernetzwerke, Grundlagen Digitaler Systeme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase sowie entweder die Lehrveranstaltung Grundlagen digitaler Systeme oder die Lehrveranstaltung Technische Grundlagen der Informatik.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Das Modul erstreckt sich über 2 Semester und setzt sich aus einer Laborübung mit vorausgehender Vorlesung und Übung zusammen. In letzterer werden die konzeptuellen und theoretischen Grundlagen vorgestellt, deren Beherrschung in zwei Prüfungen nachgewiesen werden müssen. In der Laborübung ist, in Zweiergruppen an 3 aufeinanderfolgenden Tagen, ein individuell zugewiesenes Übungsprojekt durchzuführen.

Lehrveranstaltungen des Moduls:

1,0/1,0 VU Mikrocomputer für Informatik 2,0/2,0 LU Mikrocomputer für Informatik

Modellbildung und Regelungstechnik

Regelarbeitsaufwand: 10,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Erklären der Grundlagen und Methoden der mathematischen Modellierung physikalischer Systeme (Mechanik und Wärmelehre). Reproduktion bzw. Ableitung der wesentlichen mathematischen Grundlagen, Entwurfs- und Analysemethoden der Regelungstechnik, beginnend bei den systemtheoretischen Grundlagen linearer zeitkontinuierlicher und zeitdiskreter Systeme über den systematischen Entwurf linearer Regler im Frequenzbereich bis hin zum Beobachter- und Reglerentwurf im Zustandsraum.

Kognitive und praktische Kompetenzen: Analysieren regelungstechnischer Probleme; Ausführen eines mathematisch fundierten Reglerentwurfs; Praktisches Implementieren von Regelungssystemen; Durchführen einfacher Simulationen.

Inhalt: Einführung in die mathematische Modellierung mechanischer und thermischer physikalischer Systeme: Punkt-Kinematik, Newtonsche Gesetze, Kräftesysteme, Schwerpunkt, Impulserhaltung, translatorische kinetische Energie und potentielle Energie, dissipative Kräfte, Feder-Masse-Dämpfer System, Körper mit veränderlicher Masse, Drehimpulserhaltung, Euler-Lagrange Gleichungen, Wärmeleitung, Randbedingungen, erzwungene Konvektion, freie Konvektion, Wärmestrahlung, Wärmequellen, stationäre Wärmeübertragung, ebene Wand, zylinderförmige Wand, vorspringende Teile und Rippen, Wärmetauscher, transiente Wärmeübertragung, numerische Lösung von Wärmeübertragungsproblemen, Finite Differenzen Methode, konzentriert-parametrische Formulierung als RC-Netzwerk.

Einführung in die Theorie zeitkontinuierlicher und zeitdiskreter Systeme, das Zustandskonzept, Linearität, Zeitinvarianz, Transitionsmatrix, Jordan-Form, Ruhelagen, Linearisierung (um eine Ruhelage bzw. eine Trajektorie), asymptotische Stabilität der Ruhelage, Eingangs-Ausgangsbeschreibung (Übertragungsfunktion, Übertragungsmatrix), Realisierungsproblem für SISO-Systeme, Frequenzgang (Bode-Diagramm, Nyquist-Ortskurve), BIBO-Stabilität (Routh-Hurwitz-, Michaelov-, Nyquist-Kriterium), geschlossener und offener Regelkreis, Performance Überlegungen, interne Stabilität, asymptotisches Führungsverhalten, Störunterdrückung, Regelkreise mit einem und zwei Freiheitsgraden, Kaskadenregelung, Reglerentwurfsmethoden im Frequenzbereich: Frequenzkennlinienverfahren (P-, I-, PD-, PI-, PID-, Lead-, Lag-Regler, Notch-Filter), Erreichbarkeit und Beobachtbarkeit (Erreichbarkeits- und Beobachtbarkeitsmatrix, PBH-Test, Gramsche Matrizen, Markov-Parameter und Hankelmatrix), Reglerentwurfsmethoden im Zustandsraum: Polvorgabe (Formel von Ackermann), Beobachterentwurf (trivialer Beobachter, vollständiger Luenberger Beobachter), das Dualitätsprinzip, das Separationsprinzip, Implementierung digitaler Regler.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Fundierte Kenntnisse in höherer Analysis und linearer Algebra; Fundierte Kenntnisse über zeitkontinuierliche und zeitdiskrete Signale

und Systeme.

Kognitive und praktische Kompetenzen: Fertigkeiten in der Verwendung fortgeschrittener mathematischer Methoden (Analysis, Algebra); Fertigkeiten in der Analyse von zeitkontinuierlichen und zeitdiskreten Signalen und Systemen.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Analysis, Analysis 2, Elektrotechnische Grundlagen, Signale und Systeme

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Das Modul setzt sich aus zwei Vorlesungsteilen, in denen die theoretischen Grundlagen und Methoden der Modellbildung und der Regelungstechnik vorgestellt werden, einem Übungsteil, bei dem einfache Rechenbeispiele auf der Tafel vorgerechnet werden, und einem Laborübungsteil, bei dem das Computeralgebraprogramm Maple und das Numerikund Simulationsprogramm Matlab/Simulink sowie die Control System Toolbox zum Einsatz kommen, zusammen.

Lehrveranstaltungen des Moduls:

3,0/2,0 VU Modellbildung 4,5/3,0 VU Automatisierung 2,5/2,5 LU Regelungstechnik

Praktikum Technische Informatik

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Vertiefte Kenntnisse in den relevanten Teilgebieten.

Kognitive und praktische Kompetenzen: Verbesserte Fertigkeiten in der Anwendung relevanter Methoden und Verfahren sowie der Lösungsdokumentation.

Soziale Kompetenzen und Selbstkompetenzen: Verbesserte Problemlösungskompetenz.

Inhalt: Lösung individuell vergebener Problemstellungen, wie zum Beispiel Implementierungs- und Simulationsaufgaben oder Modellierungs- und Analyseproblemen in einem relevanten Teilgebiet der Technischen Informatik. Anwendung der in relevanten Grundlehrveranstaltungen vermittelten Kenntnisse und Methoden an realen Aufgabenstellungen. Rechtfertigung/Reflexion und Dokumentation der Lösung in einer schriftlichen Arbeit.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Für die individuelle Problemstellung relevante Grundkenntnisse.

Kognitive und praktische Kompetenzen: Für die individuelle Problemstellung relevante Fertigkeiten.

Soziale Kompetenzen und Selbstkompetenzen: Elementare Problemlösungskompetenz.

Die Module, in denen die erwarteten Vorkenntnisse vermittelt werden, sind abhängig von der individuellen Problemstellung.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Bearbeitung der individuell vergebenen Aufgabenstellung in Einzel- oder Gruppenarbeit, individuelle Betreuung.

Lehrveranstaltungen des Moduls:

6,0/4,0 PR Praktikum Technische Informatik

Programm- und Systemverifikation

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen:

- Kenntnis unterschiedlicher Spezifikationsformalismen, ihrer Semantik und ihrer Anwendungsgebiete
- Kenntnis unterschiedlicher Verifikationstools
- Verständnis grundlegender Methoden der Modellierung in Hinsicht auf Verifikationsfragen
- Beispielhafte Kenntnisse zu Zertifikation und Industriestandards in Hinsicht auf Verifikation

Kognitive und praktische Kompetenzen:

- Praktischer Umgang mit Spezifikationsformalismen hinsichtlich ihrer Semantik und hinsichtlich Requirement Engineering
- Praktischer Umgang mit Verifikationstools
- Praktische Modellierung und Verifikation von Systemen und Interpretation der Ergebnisse

Soziale Kompetenzen und Selbstkompetenzen:

- Verständnis für das Gefahrenpotential fehlerhafter Software und Hardware
- Verständnis für die Bedeutung formaler Methoden in der Produktentwicklung
- Anwendung theoretischer Konzepte auf angewandte Fragestellungen

Inhalt:

• Methoden der Modellierung und Spezifikation durch Logik, Automaten, Assertions, Coverage Kriterien

- Verifikationswerkzeuge, insbesonders Model Checker, Statische Analyse, Theorembeweisen, Testen
- Praktischer Umgang mit Verifikationswerkzeugen
- Grundlagen zur Zertifizierung und zu Standards in der industriellen Validierung

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Einführung in die Programmierung, Modellierung, theoretische Informatik und Mathematik.

Kognitive und praktische Kompetenzen: Geübter, fachgerechter Umgang mit Computerprogrammen und Konzepten der theoretischen Informatik und Mathematik.

Soziale Kompetenzen und Selbstkompetenzen: Fähigkeit zur selbständigen Einarbeitung in Tools anhand schriftlicher Unterlagen.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Einführung in die Programmierung, Theoretische Informatik

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die in der Vorlesung vermittelten Grundlagen und Methoden werden in praktischen Übungen am Computer und auf Papier vertieft und angewandt. Die Leistungsfeststellung erfolgt durch Beispiel-Abgaben und schriftliche Tests/Prüfungen.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Programm- und Systemverifikation

Programmierparadigmen

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls sind Studierende in der Lage

- die wichtigsten Ziele und einige typische Anwendungsbereiche und Techniken in der objektorientierten, funktionalen, nebenläufigen (concurrent) und parallelen Programmierung (Paradigmen) sowie der Modularisierung, Parametrisierung, Ersetzbarkeit und Typisierung (Konzepte) unter Verwendung fachspezifischer Terminologie zu beschreiben,
- diese Paradigmen und Konzepte und einige ihrer Ausprägungen durch ihre wesentlichen Eigenschaften klar voneinander zu unterscheiden.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls sind Studierende in der Lage

• ausgewählte, für diese Paradigmen typische Vorgehensweisen und Techniken sowie die genannten Konzepte der Programmierung in kleinen Teams in einer alltagstauglichen Programmiersprache (Java) praktisch anzuwenden,

- in natürlicher Sprache (unvollständig) beschriebene Programmieraufgaben in ausführbare Programme in einer alltagstauglichen Programmiersprache umzusetzen, die typische Merkmale vorgegebener Programmierstile aufweisen,
- eigene Programme nach vorgegebenen Kriterien kritisch zu beurteilen.

Inhalt:

- Überblick über Paradigmen in der Programmierung, ihre Zielsetzungen und Anwendungsbereiche
- typische Konzepte, Techniken und Denkweisen in der objektorientierten, funktionalen, nebenläufigen und parallelen Programmierung
- Arten der Programmfaktorisierung hinsichtlich Abhängigkeiten in Daten und Prozeduren (opaque Objekte, transparente Parameter und Funktionen, unabhängige Datenblöcke)
- Arten von Modularisierungseinheiten (Module, Komponenten, Klassen, Objekte), Parametrisierung (Generizität, Annotationen, Aspekte), Ersetzbarkeit (strukturell, abstrakt, basierend auf Design-by-Contract), Typisierung (statisch vs. stark vs. dynamisch, explizit vs. implizit)
- Umgang mit kovarianten Problemen, Überladen, Multimethoden, Exceptions
- referentielle Transparenz, funktionale Formen, applikative Programmierung
- diverse Arten der Iteration über Datenmengen
- Threads, Race-Conditions, Synchronisations methoden, Liveness-Properties, Map-Reduce/Collect
- Zusammenarbeit mehrerer Prozesse über gemeinsame Dateien und Streams, einfache Form der Prozesssynchronisation
- · Unterscheidung zwischen nebenläufiger, paralleler und verteilter Programmierung
- Beispiele in einer alltagstauglichen Programmiersprache (Java), die Stärken und Grenzen der Programmierparadigmen aufzeigen
- ausgewählte Entwurfsmuster

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls systematische Vorgehensweisen beim Programmieren und wichtige Konzepte einer aktuellen alltagstauglichen Programmiersprache (vorzugsweise Java) beschreiben können.

Kognitive und praktische Kompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls, in der Lage sind,

- natürlichsprachige Programmieraufgaben in ausführbare Programme umzusetzen,
- Vorgehensweisen und Werkzeuge beim Programmieren systematisch anzuwenden,
- vorgegebene Abstraktionen, Algorithmen und Datenstrukturen zu implementieren,
- Techniken der objektorientierten Modellierung anzuwenden.

Soziale Kompetenzen und Selbstkompetenzen: Es wird erwartet, dass Studierende vor Absolvierung des Moduls in der Lage sind, Programmieraufgaben selbständig zu lösen und in Zweierteams zusammenzuarbeiten.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Inhalte werden in Vorträgen und Skripten vorgestellt und in begleitenden Übungen von Studierenden erarbeitet. Übungsaufgaben sind vorwiegend Programmieraufgaben, die innerhalb vorgegebener Fristen in Teams zu lösen sind. Die Beurteilung erfolgt auf Basis einer kontinuierlichen Überprüfung der Lösungen dieser Aufgaben sowie durch Prüfung(en) bzw. Test(s).

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Programmierparadigmen

Signale und Systeme

Regelarbeitsaufwand: 8,5 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Darstellen des Begriffssystems der Signal- und Systemtheorie und Erklären der grundlegenden Modelle für die mathematische Beschreibung von Signalen und linearen Systemen im Zeit- und im Frequenzbereich.

Kognitive und praktische Kompetenzen: Formulieren und Klassifizieren von Problemen der Systemdynamik und der Signalverarbeitung; Beherrschen der erforderlichen mathematischen Standardmethoden; Lösen und Interpretieren der Ergebnisse konkreter Aufgaben; Erkennen der Beziehungen zwischen realen Objekten und deren mathematischen Modellen.

Soziale Kompetenzen und Selbstkompetenzen: Verstehen der Bedeutung des Erlernens und Anwendens theoretischer Konzepte; Problemlösung im Team mit Unterstützung von Tutoren.

Inhalt: Zeitkontinuierliche Signale und Systeme:

- Modellieren von Signalen und Systemen (determinierte Signale, Zufallssignale, Systemantworten, Linearität und Zeitinvarianz, Kausalität und Stabilität)
- LTI-Systeme im Zeitbereich (Aufstellen der System-Differenzialgleichung, Eigenfunktionen, Übertragungsfunktion, Pole und Nullstellen, klassische Lösungstechniken. Sprungantwort und Stoßantwort)
- Fourier-Transformation (Definition und anschauliche Bedeutung, Eigenschaften und Techniken, Faltungsprodukt, Korrelationsprodukt)
- LTI-Systeme im Frequenzbereich (Systemantworten bei Sinuseingängen, komplexer Frequenzgang, Bode-Diagramm, Totzeitsysteme, Erregung durch Zufallssignale)
- Fourier-Reihen (periodische Signale, Eigenschaften und Techniken, Systemantworten bei periodischen Eingängen)
- Ströme und Spannungen mit Oberschwingungen (Charakterisierung von Mischgrößen und Wechselgrößen, Leistungsgrößen, Entstehung von Oberschwingungen in nichtlinearen Systemen)

- Laplace-Transformation (Definition und Beziehung zur Fourier-Transformation, Eigenschaften und Techniken, Faltungssatz, Anfangs- und Endwertsatz)
- LTI-Systeme im Laplace-Bereich (Behandlung von Anfangsproblemen, Kombinieren von Systemen)
- Systeme im Zustandsraum (Aufstellen der Zustandsgleichungen, Lösungsdarstellungen im Zustandsraum, Eigenwerte und Eigenvektoren, Transitionsmatrix, Übertragungsmatrix, Steuerbarkeit und Beobachtbarkeit)

Zeitdiskrete Signale und Systeme:

- Zeitdiskrete Signale (elementare zeitdiskrete Signale und Signaleigenschaften, Zeitachsentransformationen, Fourierreihen)
- Zeitdiskrete Systeme (Beschreibung im Zeit- und im Frequenzbereich)
- Fouriertransformation für zeitdiskrete Signale und Systeme (Eigenschaften, Abtastung und Rekonstruktion analoger Tiefpass- und Bandpasssignale)
- Differenzengleichungen und Z-Transformation (zeitdiskrete Netzwerke, Differenzengleichungen mit konstanten Koeffizienten, Z-Transformation, inverse Z-Transformation, Eigenschaften der Z-Transformation, Lösung von Differenzengleichungen mit der Z-Transformation, Anfangs- und Endwerttheorem)
- Digitale Filter (Idealisierte zeitdiskrete Filter, Hilberttransformator, FIR- und IIR-Filterentwurf, Filterrealisierungen)
- Diskrete Fouriertransformation (DFT) und schnelle DFT (Eigenschaften, Zusammenhang DFT und Z-Transformation, Fenstereffekt, Overlap-Add und Overlap-Save Faltungsoperation, schnelle Fouriertransformation (FFT))
- Multiratensignal verarbeitung (Interpolation, Dezimation, effiziente Multiratensysteme)

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Fundierte Kenntnisse aus linearer Algebra und Analysis, einschließlich lineare gewöhnliche Differenzialgleichungen; Kenntnis der idealisierten Eigenschaften elektrischer Stromkreiselemente und der Analysemethoden für elektrische Schaltungen.

Kognitive und praktische Kompetenzen: Sicheres Umgehen mit mathematischen Ideen, Strukturen und Werkzeugen; praktische Fertigkeit in der Analyse elektrischer Schaltungen; komplexe Wechselstromrechnung.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Analysis, Analysis 2, Elektrotechnische Grundlagen

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung:

• Zeitkontinuierliche Signale und Systeme: Vorlesung mit integrierten Rechenübungen; selbstständiges Lösen bereitgestellter Aufgaben als begleitende Mitarbeit; schriftliche und mündliche Abschlußprüfung.

• Zeitdiskrete Signale und Systeme: Jedes Teilgebiet wird mit repräsentativen Rechenbeispielen und Simulationsbeispielen mit MATLAB oder OCTAVE vorgestellt, mit Vorführung typischer Anwendungen der digitalen Signalverarbeitung (z.B. Abtastung und Filterentwurf). Die Leistungsfeststellung erfolgt durch studienbegleitende Prüfungen über den vorgestellten Stoff, durch die Beurteilung der Mitarbeit in der Übung (Kleingruppen, Betreuung mit Unterstützung durch Tutoren) sowie durch mündliche Prüfungen.

Lehrveranstaltungen des Moduls:

4,5/3,0 VU Signale und Systeme 1 4,0/3,0 VU Signale und Systeme 2

Theoretische Informatik

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse: Dieses Modul befasst sich mit den theoretischen und logischen Grundlagen der Informatik.

Fachliche und methodische Kompetenzen: Fundamentale Konzepte und Resultate der Mathematischen Logik, Automaten und formalen Sprachen, Berechenbarkeit und Komplexität sowie der formalen Semantik von Programmiersprachen.

Kognitive und praktische Kompetenzen: Die Studierenden erwerben die Fähigkeit, formale Beschreibungen lesen und verstehen und Konzepte formal-mathematisch beschreiben zu können. Weiters lernen sie, die Struktur von Beweisen und Argumentationen zu verstehen und selber solche zu führen.

Soziale Kompetenzen und Selbstkompetenzen: Selbständiges Lösen von Problemen.

Inhalt:

- Automatentheorie: endliche Automaten, Büchiautomaten, Transducer, Operationen auf Automaten
- Formale Sprachen: Chomsky Hierarchie
- Berechenbarkeit und Komplexität: universelle Berechenbarkeit, Unentscheidbarkeit, NP-Vollständigkeit
- Grundlagen der operationalen und axiomatischen Semantik von Programmiersprachen
- Grundlagen von Prozessalgebren und Concurrency (CSP, CCS)

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Inhalte werden in einem Vorlesungsteil vorgestellt und in begleitenden Übungen von den Studierenden erarbeitet. Die Übungsaufgaben können zeitlich und örtlich weitgehend ungebunden einzeln oder in Gruppen gelöst werden. Die Lösungen werden bei regelmäßigen

Treffen mit Lehrenden und TutorInnen besprochen und korrigiert. Die Beurteilung erfolgt auf Basis schriftlicher Tests und der kontinuierlich in den Übungen erbrachten Leistungen. Der Übungsbetrieb und die Tests können computerunterstützt durchgeführt werden.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Theoretische Informatik

Übersetzerbau

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls verstehen die Studierenden die theoretische Grundlagen des Übersetzerbaus und können diese erklären und anwenden.

Kognitive und praktische Kompetenzen: Durch die Auseinandersetzung mit Methoden und Werkzeugen des Übersetzerbaus erwerben die Studierenden

- die praktische Fähigkeit zur Assemblerprogrammierung und
- die praktische Fähigkeit zur Konstruktion von Parsern und Übersetzern

Soziale Kompetenzen und Selbstkompetenzen:

• Neugierde am Übersetzerbau

Inhalt:

- Grundlagen von Übersetzern und Interpretern, Struktur von Übersetzern
- Computerarchitektur
- lexikalische Analyse (reguläre Definition, endlicher Automat)
- Syntax-Analyse (Top-Down, Bottom-Up)
- syntaxgesteuerte Übersetzung (attributierte Grammatik)
- semantische Analyse, Zwischencode (Symboltabelle)
- Zwischendarstellungen
- Codeerzeugung (Befehlsauswahl, Befehlsanordnung, Registerbelegung)
- Laufzeitsystem (Stackverwaltung, Heapverwaltung)
- Optimierungen (Programmanalysen, skalare Optimierungen, Schleifenoptimierungen)
- Übersetzung objektorientierter Konzepte (Klassendarstellung und Methodenaufruf, Typüberprüfung, Analysen)

Erwartete Vorkenntnisse:

- theoretische Grundlagen der Informatik
- alle zur Erstellung von Programmen notwendigen Kenntnisse

• die praktische Fähigkeit zur Konstruktion von Programmen

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algorithmen und Datenstrukturen, Einführung in die Programmierung, Programmierparadigmen

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Vortrag und selbständiges Erlernen der eher theoretischen Grundlagen. Laborübung in geführten Kleingruppen zur Entwicklung praktischer Übersetzerentwicklungsfähigkeiten. Die Beurteilung erfolgt durch Prüfung oder Tests und die Beurteilung der Lösungen von Programmieraufgaben plus Abschlussgespräch.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Übersetzerbau

Verteilte Systeme

Regelarbeitsaufwand: 6,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen:

- · Anforderungen und Designmöglichkeiten komplexer, verteilter Systeme verstehen
- Grundlegende Methoden und Algorithmen verteilter Systeme verstehen, sowie deren Vor- und Nachteile und Einsatzmöglichkeiten kennen
- Paradigmen und Konzepte aktueller Technologien und Werkzeuge für verteilte Systeme verstehen und anwenden können
- Anwendungsgrenzen (v. a. asynchroner) verteilter Systeme kennen und verstehen

Kognitive und praktische Kompetenzen: Durch die Auseinandersetzung mit Methoden und Werkzeugen der Programmierung können die Studierenden

- Methodiken zur Abstraktion anwenden,
- methodisch fundiert an Probleme herangehen.
- Lösungen kritisch bewerten und reflektieren und
- Konzepte verteilter Systeme mit aktuellen Technologien in Form einfacher, verteilter Anwendungen umsetzen.

Soziale Kompetenzen und Selbstkompetenzen: Folgende Kompetenzen werden besonders gefördert:

- Selbstorganisation und Eigenverantwortlichkeit
- Finden kreativer Problemlösungen
- Kritische Reflexion, Bewertung und Analyse technischer Alternativansätze

Inhalt:

- Verteilte Systeme Übersicht, Grundlagen und Modelle
- Prozesse und Kommunikation
- · Benennung
- Fehlertoleranz in verteilten Systemen
- Synchronisierung
- Konsistenz und Replikation
- Verteilte Dateisysteme
- Sicherheit
- Anwendungen und Technologietrends

Erwartete Vorkenntnisse:

Dieses Modul baut auf den Kenntnissen, Fertigkeiten und Kompetenzen folgender Module auf: Algorithmen und Datenstrukturen, Einführung in die Programmierung, Programmierparadigmen

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Blended Learning:

- Den Studierenden wird empfohlen, vor der jeweiligen Vorlesung die auf der LVA-Homepage angegebenen Kapitel des Lehrbuchs zu lesen.
- Im Rahmen der Vorlesung wird die Theorie erläutert und Querverbindungen hergestellt. Es besteht die Möglichkeit, komplexe Sachverhalte interaktiv (durch Fragen der Studierenden) zu erarbeiten.
- Im Rahmen der parallel laufenden Laborübungen werden ausgewählte Themen der Lehrveranstaltung durch kleine Programmieraufgaben vertieft.

Lehrveranstaltungen des Moduls:

6,0/4,0 VU Verteilte Systeme

Verbreiterung Bakkalaureat Technische Informatik

Lernergebnisse:

Fachliche und methodische Kompetenzen: Vertiefte Kenntnisse in den gewählten Teilgebieten.

Kognitive und praktische Kompetenzen: Verbesserte Fertigkeiten in der Anwendung relevanter Methoden und Verfahren in den gewählten Teilgebieten.

Inhalt: Aufgenommene Module/LVAs müssen folgende Kriterien erfüllen:

- Umfang, Niveau und Aufwand entsprechend Pflicht-LVAs/Modulen
- LVA/Modul ohne UE-Anteil nur in gut begründeten Ausnahmefällen
- Thema passend zum Qualifikationsprofil der TI
- The matische und inhaltliche Distanz zu existierenden Pflicht- und Wahl- LVAs/Modulen

 Verbreiterungs-LVAs/Module müssen Pflicht oder Wahlpflicht in einem ordentlichen Bakk-Studium an der TU sein

Liste aufgenommener Wahl-Module und Wahl-LVAs:

- Module: Grundlagen Security, Introduction to Cryptography, Datenbanksysteme, Einführung in Artificial Intelligence, Einführung in wissensbasierte Systeme, Grundlagen der Computer Vision, Programmierparadigmen, Verteilte Systeme, Grundlagen der Betriebswirtschaft
- Lehrveranstaltungen:
 - 3,0/2,0 VU Objektorientierte Modellierung

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Für die gewählten Module/LVAs erforderliche Kenntnisse.

Kognitive und praktische Kompetenzen: Für die gewählten Module/LVAs erforderliche Fertigkeiten.

Diese Voraussetzungen können in Modulen erworben werden, die in den enthaltenen Modulen/Lehrveranstaltungen individuell angegeben sind.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Individuell nach gewählten Modulen/LVAs.

Vertiefung Bakkalaureat Technische Informatik

Lernergebnisse:

Fachliche und methodische Kompetenzen: Vertiefte Kenntnisse in den gewählten Teilgebieten.

Kognitive und praktische Kompetenzen: Verbesserte Fertigkeiten in der Anwendung relevanter Methoden und Verfahren in den gewählten Teilgebieten.

Inhalt: Aufgenommene Module/LVAs müssen folgende Kriterien erfüllen:

- Umfang, Niveau und Aufwand entsprechen jenen von Pflichtlehrveranstaltungen.
- Lehrveranstaltungen ohne Übungsanteil nur in gut begründeten Ausnahmefällen.
- Thema passend zum Qualifikationsprofil des Bachelorstudiums Technische Informatik
- Thematische und inhaltliche Distanz zu existierenden Pflicht- und Wahllehrveranstaltungen bzw. -modulen.

Liste aufgenommener Wahl-Module und Wahl-LVAs:

Module: Abstrakte Maschinen, Argumentieren und Beweisen, Introduction to Numerics, Praktikum Technische Informatik, Einführung in paralleles Rechnen (Parallel Computing), Übersetzerbau

• Lehrveranstaltungen:

3,0/3,0 VU Einführung in die Telekommunikation

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Für die gewählten Module/LVAs erforderliche Kenntnisse.

Kognitive und praktische Kompetenzen: Für die gewählten Module/LVAs erforderliche Fertigkeiten.

Diese Voraussetzungen können in Modulen erworben werden, die in den enthaltenen Modulen/Lehrveranstaltungen individuell angegeben sind.

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Individuell nach gewählten Modulen/LVAs.

Wahrscheinlichkeitstheorie und Stochastische Prozesse

Regelarbeitsaufwand: 7,5 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Reproduzieren bzw. Ableiten der wichtigsten Begriffe, Resultate und Methoden aus der Wahrscheinlichkeitstheorie und Stochastischen Prozesse; Erklären der darauf aufbauenden theoretischen Methoden und praktischen Verfahren und deren Bezug zueinander.

Kognitive und praktische Kompetenzen: Auswahl und Verwendung problemadäquater Verfahren zur Modellierung und Lösung von Problemen in Anwendungsgebieten wie Informationstheorie und Statistik.

Soziale Kompetenzen und Selbstkompetenzen: Präsentation von Lösungen vor einem Auditorium.

Inhalt: Elementare Wahrscheinlichkeitstheorie: diskrete Wahrscheinlichkeitsräume, Ereignisse, Additionstheorem, bedingte Wahrscheinlichkeiten, Unabhängigkeit, stetige Räume (mit naiver Interpretation). Zufallsvariable: Verteilungsfunktion, Wahrscheinlichkeitsfunktion, Dichte, mehrdimensionale Verteilungen, bedingte Verteilungen und Dichten, Unabhängigkeit von Zufallsvariablen, Erwartungswert, Varianz, Kovarianz, Korrelationskoeffizient, Momente, charakteristische und momentenerzeugende Funktion, Ungleichungen von Markov und Chebychev, Chernov-Schranke, Quantile, Median, wichtige diskrete und stetige Verteilungen. Folgen von Zufallsvariablen: Gesetze der großen Zahlen, zentraler Grenzwertsatz, Konvergenz fast sicher, in Wahrscheinlichkeit und in Verteilung, Definition von Markovketten und stationären Folgen. Markovketten: Chapman-Kolmogorov Gleichungen, Klassifikation der Zustände, stationäre Verteilungen. Statistische Grundbegriffe: Schätzer, Konfidenzintervall, Test, Regression. Informationstheorie: Entropie, Information, relative Entropie, Informationsquellen mit Gedächtnis (Markov,

stationär). Prozesse in stetiger Zeit: Markovketten, einfache Warteschlangenmodelle, Erneuerungsprozesse.

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Elementare Mengenlehre, Folgen und Reihen, Differential- und Integralrechnung in mehreren Veränderlichen, Matrizenrechnung, elementare Kombinatorik, maßtheoretische Grundlagen.

Kognitive und praktische Kompetenzen: Mathematische Modellierung von Anwendungsproblemen; Lösung mathematischer Probleme in den vorausgesetzten Teilgebieten.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Algebra und Diskrete Mathematik, Analysis, Analysis 2

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Vorlesung über die theoretischen Grundbegriffe und Methoden sowie deren Einsatz bei der Lösung praktischer Probleme. Schriftliche und mündliche Prüfung mit Rechenbeispielen und Theoriefragen, Vertiefung und Anwendung des gelernten Stoffes durch regelmäßiges Lösen von Übungsbeispielen. Leistungskontrolle durch Hausaufgaben und Präsentation der Lösungen.

Lehrveranstaltungen des Moduls:

4,0/4,0 VO Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik 3,5/2,0 UE Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik

Zuverlässige Echtzeitsysteme

Regelarbeitsaufwand: 5,0 ECTS

Lernergebnisse:

Fachliche und methodische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

- Methoden zur Konstruktion und Modellierung von zuverlässigen Systemen, die strikten zeitlichen Vorgaben gehorchen müssen, beschreiben und anwenden. Dazu benutzen sie die erworbenen Kenntnisse über Fehlerarten, Fehlermodelle, Fehlererkennung, Fehleranalyse, Redundanzverfahren, Zuverlässigkeitsmodellierung.
- Konzepte und Methoden der zeitabhängigen Information, Uhrensynchronisation, Echtzeitscheduling und Echtzeitkommunikation erklären und benutzen.
- Risiken des Einsatzes von Computersystemen in sicherheitskritischen und zeitkritischen Anwendungen diskutieren und beurteilen.

Kognitive und praktische Kompetenzen: Nach positiver Absolvierung des Moduls können die Studierenden:

• Fehlerwahrscheinlichkeiten und Ausfallrisiken einschätzen und modellieren,

- Verfahren zur Erhöhung der Zuverlässigkeit von Computersystemen anwenden,
- zeitliche Anforderungen an Computersysteme analysieren,
- Computersysteme mit Echtzeitanforderungen entwerfen und modellieren.

Inhalt:

- Grundlagen: Zuverlässigkeit, Wartbarkeit, Verfügbarkeit, MTTF
- Quantitative Analysen: Blockdiagramme, Fehlerbäume, Markov-Prozesse
- Sicherheit, Fehlermodelle, Wartung, Alterungsfehler, Entwurfsfehler
- Fehlertolerante Computersysteme: Redundanz, Fehlerlatenz, Voting, Recovery Blocks, N-Version-Programming, Synchronisation
- Fallstudien von zuverlässigen bzw. fehlertoleranten Systemen
- Fehler und Zuverlässigkeitsmodellierung/analyse mit Tools
- Grundlagen Echtzeitsysteme, Zeitabhängigkeit von Information, logische und temporale Ordnung
- Modellbildung von Echtzeitsystemen: Zustand und Ereignis, Komponenten, Interfaces, Echtzeitinformation
- Echtzeitkommunikation, Kommunikationsprotokolle für Echtzeitsysteme
- Uhrensynchronisation
- Fehlertoleranz in Echtzeitsystemen
- Echtzeitbetriebsysteme: Taskstruktur, Ressourcenmanagement, I/O, Scheduling, Worst-Case Zeitanalyse von Tasks
- Energieverbrauch und Energiemanagement in Echtzeitsystemen
- Design von Echtzeitsystemen: Architekturmodelle, Composability, Designprinzipien, Zertifizierung

Erwartete Vorkenntnisse:

Fachliche und methodische Kompetenzen: Kenntnisse in Boole'scher Algebra, theoretischer Informatik und Logik, Wahrscheinlichkeitsrechnung, Beschreibung und Modellierung stochastischer Prozesse, Aufbau und Funktionsweise von Microcomputern, Betriebssystemen und Netzwerken.

Kognitive und praktische Kompetenzen: Wahrscheinlichkeitsrechnung und Modellierung, Systematisches Arbeiten mit Softwaretools, Abstraktionsvermögen.

Soziale Kompetenzen und Selbstkompetenzen: Analyse komplexer Zusammenhänge und Wechselwirkungen, Problemlösung im Team.

Diese Voraussetzungen werden in folgenden Modulen vermittelt: Grundlagen Digitaler Systeme, Theoretische Informatik, Wahrscheinlichkeitstheorie und Stochastische Prozesse, Betriebssysteme und Computernetzwerke

Verpflichtende Voraussetzungen: Studieneingangs- und Orientierungsphase.

Angewendete Lehr- und Lernformen und geeignete Leistungsbeurteilung: Die Grundlagen und theoretischen Inhalte werden im Vorlesungsteil vermittelt. Praktische Fertigkeiten der Fehler- und Zuverlässigkeitsmodellierung werden in einem Übungsteil

erworben, in dem die Studierenden Softwaretools verwenden und Ergebnisse in Form von Laborberichten dokumentieren.

Lehrveranstaltungen des Moduls:

2,0/2,0 VO Echtzeitsysteme 3,0/2,0 VU Dependable Systems

B. Lehrveranstaltungstypen

EX: Exkursionen sind Lehrveranstaltungen, die außerhalb des Studienortes stattfinden. Sie dienen der Vertiefung von Lehrinhalten im jeweiligen lokalen Kontext.

LU: Laborübungen sind Lehrveranstaltungen, in denen Studierende in Gruppen unter Anleitung von Betreuer_innen experimentelle Aufgaben lösen, um den Umgang mit Geräten und Materialien sowie die experimentelle Methodik des Faches zu lernen. Die experimentellen Einrichtungen und Arbeitsplätze werden zur Verfügung gestellt.

PR: Projekte sind Lehrveranstaltungen, in denen das Verständnis von Teilgebieten eines Faches durch die Lösung von konkreten experimentellen, numerischen, theoretischen oder künstlerischen Aufgaben vertieft und ergänzt wird. Projekte orientieren sich an den praktisch-beruflichen oder wissenschaftlichen Zielen des Studiums und ergänzen die Berufsvorbildung bzw. wissenschaftliche Ausbildung.

SE: Seminare sind Lehrveranstaltungen, bei denen sich Studierende mit einem gestellten Thema oder Projekt auseinander setzen und dieses mit wissenschaftlichen Methoden bearbeiten, wobei eine Reflexion über die Problemlösung sowie ein wissenschaftlicher Diskurs gefordert werden.

UE: Übungen sind Lehrveranstaltungen, in denen die Studierenden das Verständnis des Stoffes der zugehörigen Vorlesung durch Anwendung auf konkrete Aufgaben und durch Diskussion vertiefen. Entsprechende Aufgaben sind durch die Studierenden einzeln oder in Gruppenarbeit unter fachlicher Anleitung und Betreuung durch die Lehrenden (Universitätslehrer_innen sowie Tutor_innen) zu lösen. Übungen können auch mit Computerunterstützung durchgeführt werden.

VO: Vorlesungen sind Lehrveranstaltungen, in denen die Inhalte und Methoden eines Faches unter besonderer Berücksichtigung seiner spezifischen Fragestellungen, Begriffsbildungen und Lösungsansätze vorgetragen werden. Bei Vorlesungen herrscht keine Anwesenheitspflicht.

VU: Vorlesungen mit integrierter Übung vereinen die Charakteristika der Lehrveranstaltungstypen VO und UE in einer einzigen Lehrveranstaltung.

C. Zusammenfassung aller verpflichtenden Voraussetzungen

Die positiv absolvierte Studieneingangs- und Orientierungsphase (Abschnitt 7) ist Voraussetzung für die Absolvierung aller in diesem Studienplan angeführten Module und ihrer Lehrveranstaltungen (inklusive der Bachelorarbeit), ausgenommen die Module

Algebra und Diskrete Mathematik (9,0 ECTS)

Algorithmen und Datenstrukturen (8,0 ECTS)

Analysis (6,0 ECTS)

Analysis 2 (7,5 ECTS)

Denkweisen der Informatik (6,5 ECTS)

Einführung in die Programmierung (9,5 ECTS)

Elektrotechnische Grundlagen (7,5 ECTS)

Grundlagen Digitaler Systeme (6,0 ECTS)

Zusätzlich setzen die Lehrveranstaltungen der Module Digital Design und Mikrocomputer voraus, dass entweder die Lehrveranstaltung Grundlagen digitaler Systeme oder die Lehrveranstaltung Technische Grundlagen der Informatik positiv abgeschlossen wurde.

D. Semestereinteilung der Lehrveranstaltungen

Die in der nachfolgenden Semestereinteilung mit Stern markierten Lehrveranstaltungen setzen eine positiv absolvierte Studieneingangs- und Orientierungsphase voraus.

1. Semester (WS)

- 4,0 VO Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 5,0 UE Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 2,0 VO Analysis für Informatik und Wirtschaftsinformatik
- 4,0 UE Analysis für Informatik und Wirtschaftsinformatik
- 5,5 VU Einführung in die Programmierung 1
- 3,0 VU Grundlagen digitaler Systeme
- 1,0 VU Orientierung Informatik und Wirtschaftsinformatik
- 5,5 VU Denkweisen der Informatik

2. Semester (SS)

- 8,0 VU Algorithmen und Datenstrukturen
- 3,0 VO Analysis 2 für Informatik
- 4,5 UE Analysis 2 für Informatik
- 4,0 VU Elektrotechnische Grundlagen
- 3,5 LU Elektrotechnische Grundlagen
- 4,0 VU Einführung in die Programmierung 2
- 3,0 VU Formale Modellierung

3. Semester (WS)

- * 6.0 VU Betriebssysteme
- * 3,0 VU Computer Networks
- * 3.0 VO Digital Design
- * 4,5 VU Signale und Systeme 1
- * 4,0 VO Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik
- * 3,5 UE Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik
- * 6,0 VU Theoretische Informatik

4. Semester (SS)

- * 3,0 VO Rechnerstrukturen
- * 7,5 LU Digital Design and Computer Architecture
- * 1.5 VO Hardware Modeling
- * 3,0 VU Dependable Systems
- * 2,0 VO Echtzeitsysteme
- * 6,0 VU Programm- und Systemverifikation

- * 4,0 VU Signale und Systeme 2
- * 3,0 VU Modellbildung

5. Semester (WS)

- * 1,0 VU Mikrocomputer für Informatik
- * 4,5 VU Automatisierung
- * 2,0 VO Dezentrale Automation
- * 4,0 LU Dezentrale Automation
- * 2,5 LU Regelungstechnik
- * 3,0 SE Wissenschaftliches Arbeiten

6. Semester (SS)

- * 2,0 LU Mikrocomputer für Informatik
- * 3,0 VU Introduction to Security
- *10,0 PR Bachelorarbeit für Informatik und Wirtschaftsinformatik

E. Semesterempfehlung für schiefeinsteigende Studierende

Wegen der starken Abhängigkeiten der Module in verschiedenen Semestern ist das Schiefeinsteigen zwar grundsätzlich möglich, aber nicht empfehlenswert. Eine Empfehlung kann daher nur für die ersten beiden Semester gegeben werden. Die in der nachfolgenden Semestereinteilung mit Stern markierten Lehrveranstaltungen setzen eine positiv absolvierte Studieneingangs- und Orientierungsphase voraus.

1. Semester (SS)

- 4,0 VO Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 5,0 UE Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- 2,0 VO Analysis für Informatik und Wirtschaftsinformatik
- 4,0 UE Analysis für Informatik und Wirtschaftsinformatik
- 5,5 VU Einführung in die Programmierung 1
- 3,0 VU Formale Modellierung
- 1,0 VU Orientierung Informatik und Wirtschaftsinformatik

2. Semester (WS)

- 3,0 VO Analysis 2 für Informatik
- 4,5 UE Analysis 2 für Informatik
- 3,0 VU Grundlagen digitaler Systeme
- 5,5 VU Denkweisen der Informatik

F. Wahlfachkatalog "Transferable Skills"

Die Lehrveranstaltungen, die im Modul Freie Wahlfächer und Transferable Skills aus dem Themenbereich "Transferable Skills" zu wählen sind, können unter anderem aus dem folgenden Katalog gewählt werden.

- 3,0/2,0 SE Coaching als Führungsinstrument 1
- 3,0/2,0 SE Coaching als Führungsinstrument 2
- 3,0/2,0 SE Didaktik in der Informatik
- 1,5/1,0 VO EDV-Vertragsrecht
- 3,0/2,0 VO Einführung in die Wissenschaftstheorie I
- 3,0/2,0 VO Einführung in Technik und Gesellschaft
- 3,0/2,0 SE Folgenabschätzung von Informationstechnologien
- 3,0/2,0 VU Forschungsmethoden
- 3,0/2,0 VO Frauen in Naturwissenschaft und Technik
- 3,0/2,0 SE Gruppendynamik
- 3,0/2,0 VU Kommunikation und Moderation
- 3,0/2,0 SE Kommunikation und Rhetorik
- 1,5/1,0 SE Kommunikationstechnik
- 3,0/2,0 VU Kooperatives Arbeiten
- 3,0/2,0 VU Präsentation und Moderation
- 1,5/1,0 VO Präsentation, Moderation und Mediation
- 3,0/2,0 UE Präsentation, Moderation und Mediation
- 3,0/2,0 VU Präsentations- und Verhandlungstechnik
- 4,0/4,0 SE Privatissimum aus Fachdidaktik Informatik
- 3,0/2,0 VU Rhetorik, Körpersprache, Argumentationstraining
- 3,0/2,0 VU Softskills für TechnikerInnen
- 3,0/2,0 VU Techniksoziologie und Technikpsychologie
- 3,0/2,0 VO Theorie und Praxis der Gruppenarbeit
- 3,0/2,0 VO Zwischen Karriere und Barriere

G. Prüfungsfächer mit den zugeordneten Modulen und Lehrveranstaltungen

Die mit einem Stern markierten Module sind Wahl-, die übrigen Pflichtmodule.

Prüfungsfach "Grundlagen der Informatik"

Modul "Grundlagen Digitaler Systeme" (6,0 ECTS)

3.0/2.0 VU Grundlagen digitaler Systeme 3.0/2.0 VU Formale Modellierung

Modul "Denkweisen der Informatik" (6,5 ECTS)

5,5/4,0 VU Denkweisen der Informatik 1,0/1,0 VU Orientierung Informatik und Wirtschaftsinformatik

Modul "Algorithmen und Datenstrukturen" (8,0 ECTS)

8,0/5,5 VU Algorithmen und Datenstrukturen

Modul "Theoretische Informatik" (6,0 ECTS)

6,0/4,0 VU Theoretische Informatik

Prüfungsfach "Hardware"

Modul "Elektrotechnische Grundlagen" (7,5 ECTS)

4,0/4,0 VU Elektrotechnische Grundlagen 3,5/3,5 LU Elektrotechnische Grundlagen

Modul "Digital Design" (15,0 ECTS)

3,0/3,0 VO Digital Design

1,5/1,5 VO Hardware Modeling

3,0/3,0 VO Rechnerstrukturen

7,5/7,5 LU Digital Design and Computer Architecture

Prüfungsfach "Mathematik"

Modul "Algebra und Diskrete Mathematik" (9,0 ECTS)

- $4,\!0/4,\!0$ VO Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- $5{,}0/2{,}0$ UE Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik
- $9,\!0/6,\!0$ VU Algebra und Diskrete Mathematik für Informatik und Wirtschaftsinformatik

Modul "Analysis" (6,0 ECTS)

2,0/2,0 VO Analysis für Informatik und Wirtschaftsinformatik

4,0/2,0 UE Analysis für Informatik und Wirtschaftsinformatik

6,0/4,0 VU Analysis für Informatik und Wirtschaftsinformatik

Modul "Analysis 2" (7,5 ECTS)

3,0/3,0 VO Analysis 2 für Informatik

4,5/2,0 UE Analysis 2 für Informatik

Modul "Wahrscheinlichkeitstheorie und Stochastische Prozesse" (7,5 ECTS)

4,0/4,0 VO Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik

3,5/2,0 UE Wahrscheinlichkeitstheorie und Stochastische Prozesse für Informatik

Prüfungsfach "Programmierung"

Modul "Einführung in die Programmierung" (9,5 ECTS)

5,5/4,0 VU Einführung in die Programmierung 1

4,0/3,0 VU Einführung in die Programmierung 2

Modul "Betriebssysteme und Computernetzwerke" (9,0 ECTS)

6,0/4,0 VU Betriebssysteme

3,0/2,0 VU Computer Networks

Modul "Mikrocomputer" (3,0 ECTS)

1,0/1,0 VU Mikrocomputer für Informatik

2,0/2,0 LU Mikrocomputer für Informatik

Prüfungsfach "Signale und Systeme"

Modul "Signale und Systeme" (8,5 ECTS)

4,5/3,0 VU Signale und Systeme 1

4,0/3,0 VU Signale und Systeme 2

Modul "Modellbildung und Regelungstechnik" (10,0 ECTS)

3,0/2,0 VU Modellbildung

4,5/3,0 VU Automatisierung

2,5/2,5 LU Regelungstechnik

Prüfungsfach "Zuverlässige verteilte Echtzeitsysteme"

Modul "Programm- und Systemverifikation" (6,0 ECTS)

6,0/4,0 VU Programm- und Systemverifikation

Modul "Zuverlässige Echtzeitsysteme" (5,0 ECTS)

2,0/2,0 VO Echtzeitsysteme 3,0/2,0 VU Dependable Systems

Modul "Dezentrale Automation" (6,0 ECTS)

2,0/2,0 VO Dezentrale Automation 4,0/4,0 LU Dezentrale Automation

Modul "Grundlagen Security" (3,0 ECTS)

3,0/2,0 VU Introduction to Security

Prüfungsfach "Vertiefung/Verbreiterung"

*Modul "Abstrakte Maschinen" (6,0 ECTS)

6,0/4,0 VU Abstrakte Maschinen

*Modul "Argumentieren und Beweisen" (6,0 ECTS)

6,0/4,0 VU Argumentieren und Beweisen

*Modul "Introduction to Numerics" (4,5 ECTS)

4,5/3,0 VU Introduction to Numerics

*Modul "Praktikum Technische Informatik" (6,0 ECTS)

6,0/4,0 PR Praktikum Technische Informatik

*Modul "Einführung in paralleles Rechnen (Parallel Computing)" (6,0 ECTS)

6,0/4,0 VU Einführung in paralleles Rechnen (Parallel Computing)

*Modul "Übersetzerbau" (6,0 ECTS)

6,0/4,0 VU Übersetzerbau

*Modul "Vertiefung Bakkalaureat Technische Informatik"

*Modul "Datenbanksysteme" (6,0 ECTS)

6,0/4,0 VU Datenbanksysteme

*Modul "Einführung in Artificial Intelligence" (6,0 ECTS)

6,0/4,0 VU Einführung in Artificial Intelligence

*Modul "Grundlagen der Computer Vision" (6,0 ECTS)

6,0/4,0 VU Grundlagen der Computer Vision

*Modul "Programmierparadigmen" (6,0 ECTS)

6,0/4,0 VU Programmierparadigmen

*Modul "Verteilte Systeme" (6,0 ECTS)

6,0/4,0 VU Verteilte Systeme

*Modul "Grundlagen der Betriebswirtschaft" (8,0 ECTS)

3,0/2,0 VO Grundlagen der Unternehmensführung

3,0/2,0 VU Kosten- und Leistungsrechnung

2,0/1,5 VU Rechnungswesen

Prüfungsfach "Freie Wahlfächer und Transferable Skills"

Modul "Freie Wahlfächer und Transferable Skills" (18,0 ECTS)

Prüfungsfach "Bachelorarbeit"

Modul "Bachelorarbeit" (13,0 ECTS)

 $10,\!0/5,\!0$ PR Bachelorarbeit für Informatik und Wirtschaftsinformatik $3,\!0/2,\!0$ SE Wissenschaftliches Arbeiten

^{*}Modul "Verbreiterung Bakkalaureat Technische Informatik"

H. Bachelor-Abschluss with Honors

Als Erweiterung eines regulären Bachelor-Studien der Informatik können Studierende mit hervorragenden Studienleistungen einen *Bachelor-Abschluss with Honors* nach angloamerikanischem Vorbild erwerben.

Die primären Ziele des Honors-Programms der Informatik und der Wirtschaftsinformatik sind:

- Individuelle Förderung und Forderung besonders begabter Studierender.
- Frühzeitige Erweckung des Forschungsinteresses in potentiellen Kandidatinnen und Kandidaten für ein späteres Doktoratsstudium.
- Erhöhung der Attraktivität der TU Wien und der Fakultät für Informatik für hervorragende Studieninteressierte.

Notwendige Bedingung für den Bachelor-Abschluss with Honors sind 45 bis 60 ECTS an zusätzlichen Bachelor- und/oder Master-Lehrveranstaltungen. Das jeweilige individuelle Honors-Programm wird von dem/der Studierenden in Abstimmung mit einem als Mentor/-in agierenden habilitierten Mitglied der Fakultät für Informatik individuell zusammengestellt und beim zuständigen studienrechtlichen Organ eingereicht. Die Lehrveranstaltungen des individuelle Honors-Programms sollen vorrangig so ausgewält werden, dass sie auch in einem parallelen anderen Bachelor- oder einem anschließenden Master-Studium verwendet werden können.

Für den erfolgreichen Bachelor-Abschluss with Honors ist es erforderlich, das Bachelorstudium mit Auszeichnung¹ und sowohl alle für den Abschluss dieses Bachelorstudiums erforderlichen Lehrveranstaltungen mit einem gewichteten Gesamtnotenschnitt $\leq 1,5$ als auch in Summe alle für den Abschluss dieses Bachelorstudiums erforderlichen Lehrveranstaltungen und jene im Rahmen des individuellen Honors-Programms absolvierten Lehrveranstaltungen mit einem gewichteten Gesamtnotenschnitt $\leq 1,5$ innerhalb von maximal 9 Semestern zu absolvieren (gegebenenfalls unter angemessener Berücksichtigung von Beurlaubung und Teilzeit). Als Bestätigung für den Bachelor-Abschluss with Honors wird vom Rektorat der TU Wien ein Zertifikat ausgestellt, das die hervorragenden Studienleistungen bestätigt und die im Rahmen des individuellen Honors-Programms absolvierten zusätzlichen Lehrveranstaltungen anführt.

H.1. Antragstellung und Aufnahme in das Honors-Programm

Nach positiver Absolvierung von mindestens 72 ECTS an Pflichtlehrveranstaltungen des Bachelorstudiums kann von der/dem Studierenden, in Abstimmung mit einem als Mentor/in agierenden habilitierten Mitglied der Fakultät für Informatik, das individuelle Honors-Programm zusammengestellt und zusammen mit einem Nachweis über die bisherigen Studienleistungen, d.h. über die für das gegenständliche Bachelorstudium absolvierten Lehrveranstaltungen, beim zuständigen studienrechtlichen Organ als Antrag auf Aufnahme in das Honors-Programm der Informatik und Wirtschaftsinformatik eingereicht werden. Das individuelle Honors-Programm muss auch ein kurze Rechtfertigung

¹im Sinne des Par. 73 Abs. 3 UG in der Fassung vom 26. Juni 2017

("Qualifikationsprofil") für die getroffene Auswahl der Lehrveranstaltungen enthalten. Darüber hinaus kann jede_r Studierende_r auch ohne die Erfüllung dieser Eingangsvoraussetzungen einen Antrag auf Aufnahme in das Programm für einen Bachelor-Abschluss with Honors stellen, wenn diese_r Studierende Empfehlungsschreiben von zwei habilitierten Personen (eine davon auch als Mentor_in) vorlegen kann. Das studienrechtliche Organ entscheidet nach qualitativer Prüfung des bisherigen Studienfortschritts über die Aufnahme.

Die konkreten Lehrveranstaltungen des individuellen Honors-Programms können beliebig aus Informatik-vertiefenden oder ergänzenden Pflichtlehrveranstaltungen aus universitären Bachelor-Studien und Pflicht- oder Wahllehrveranstaltungen aus universitären Masterstudien gewählt werden, unter Beachtung der gegebenenfalls erforderlichen Vorkenntnisse. Die Lehrveranstaltungen des individuelle Honors-Programms sollen vorrangig so ausgewählt werden, dass sie auch in einem parallelen anderen Bachelor- oder einem anschließenden Master-Studium verwendet werden können. Jedenfalls zu wählen ist die spezielle Lehrveranstaltung

1,0/1,0 VU Mentoring für das Honors-Programm die das individuelle Mentoring abdeckt.

Das studienrechtliche Organ überprüft folgende Bedingungen zur Aufnahme in das Honors-Programm der Informatik und Wirtschaftsinformatik:

- (a) Der/Die Studierende hat Pflichtlehrveranstaltungen des Bachelorstudiums im Ausmaß von mindestens 72 ECTS positiv absolviert.
- (b) Der gewichtete Notenschnitt aller bis zum Zeitpunkt der Antragstellung für den Abschluss des regulären Bachelor-Studiums absolvierten Lehrveranstaltungen muss $\leq 2,0$ sein.
- (c) Ein adäquates, alle Lehrveranstaltungsabhängigkeiten berücksichtigendes individuelles Honors-Programm liegt vor.
- (d) Allfällige Kapazitätslimits (z.B. der Betreuungskapazität der Mentorin/des Mentors) werden nicht überschritten.
- (e) Der/Die Studierende muss auf Basis der bisher erbrachten Leistungen, unter der Annahme eines zumutbaren Studienfortschritts, die Bedingungen für einen erfolgreichen Bachelor-Abschluss with Honors erfüllen können.
- (f) Bei einem Antrag auf Aufnahme in das Programm auf Basis von Empfehlungsschreiben von zwei habilitierten Personen müssen die Kriterien (a) und (b) nicht erfüllt sein. Die Erfüllung dieser Kriterien wird in diesem Fall durch eine qualitative Prüfung des Studienfortschritts durch das studienrechtliche Organ ersetzt.

Nach positivem Bescheid über die Aufnahme in das Honors-Programm der Informatik und Wirtschaftsinformatik verbleibt die/der Studierende bis zum erfolgreichen Abschluss oder bis zu einem eventuellen vorzeitigen Ausstieg (wie Abmeldung oder Studienwechsel), höchstens aber für 9 Semester in diesem Programm. Ein Abschluss des Bachelorstudiums

ist zwischenzeitlich möglich², ohne dass davon das Recht auf einen späteren *Bachelor-Abschluss with Honors* berührt würde, wenn schlussendlich alle notwendigen Kriterien erfüllt sind.

Eine Änderung des individuellen Honors-Programms während dieser Zeit ist zulässig, bedarf aber der Bewilligung durch das studienrechtliche Organ.

H.2. Abschluss

Studierende können jederzeit innerhalb der maximal erlaubten Dauer von 9 Semestern beim zuständigen studienrechtlichen Organ den Antrag auf einen Bachelor-Abschluss with Honors stellen. Die für einen Bachelor-Abschluss with Honors zu erfüllenden Kriterien sind folgende:

- Das gegenständliche reguläre Bachelor-Studium wurde mit Auszeichnung 3 abgeschlossen.
- Der gewichtete Gesamtnotenschnitt aller für den Abschluss des gegenständlichen Bachelor-Studiums verwendeten Lehrveranstaltungen ist < 1, 5.
- Alle Lehrveranstaltungen des individuellen Honors-Programms wurden positiv abgeschlossen.
- Der gewichtete Gesamtnotenschnitt aller für den Abschluss des gegenständlichen Bachelor-Studiums verwendeten Lehrveranstaltungen und aller Lehrveranstaltungen des individuellen Honors-Programms ist $\leq 1, 5$.
- Die Gesamtstudiendauer überschreitet nicht 9 Semester (gegebenenfalls unter angemessener Berücksichtigung von Beurlaubung und Teilzeit).

Als Bestätigung für den erfolgten *Bachelor-Abschluss with Honors* wird vom Rektorat der TU Wien ein Zertifikat und ein Empfehlungsschreiben ausgestellt, das die hervorragenden Studienleistungen bestätigt und die im Rahmen des individuellen Honors-Programms absolvierten zusätzlichen Lehrveranstaltungen anführt.

²Die für den Bachelor-Abschluss with Honors noch zu erbringenden Leistungen können in einem auf das abgeschlossene Bachelorstudium aufbauenden Masterstudium absolviert werden.

 $^{^3\}mathrm{im}$ Sinne des Par. 73 Abs. 3 UG in der Fassung vom 26. Juni 2017