

# 大规模场景下Kubernetes Service负载均衡性能优化

#### 杜军

华为Cloud BU - PaaS开源组 Github: @m1093782566



### QCON 全球软件开发大会

10月17-19日 上海・宝华万豪酒店



扫码锁定席位

#### 九折即将结束

团购还享更多优惠,折扣有效期至9月17日 扫描右方二维码即可查看大会信息及购票



如果在使用过程中遇到任何问题,可联系大会主办方,欢迎咨询!

微信: qcon-0410 电话: 010-84782011





扫码锁定席位

12月8-9日 北京・国际会议中心

#### 七折即将截止立省2040元

使用限时优惠码AS200, 以目前最优惠价格报名ArchSummit 仅限前20名用户,优惠码有效期至9月19日, 扫描右方二维码即可使用



如果在使用过程中遇到任何问题,可联系大会主办方,欢迎咨询!

微信: aschina666 电话: 15201647919



# 极客搜索

全站干货,一键触达,只为技术

s.geekbang.org





扫描二维码立即体验

有没有一种搜索方式,能整合 InfoQ 中文站、极客邦科技旗下12大微信公众号矩阵的全部资源? 极客搜索,这款针对极客邦科技全站内容资源的轻量级搜索引擎,做到了!

扫描上方二维码, 极客搜索!



# 这里只有者技术。

EGO会员第二季招募季正式开启



E小欧

报名时间: 9月1日-9月15日

扫描添加E小欧,

邀您进入EGO会员预报名群

立即报名

TECHNOLOGY

EGO

#### TABLE OF CONTENTS

#### Kubernetes的Service机制

lptables实现Service负载均衡

当前lptables实现存在的问题

IPVS实现Service负载均衡

Iptables vs. IPVS





### Kubernetes的Service



#### 但,简单的生活总是暂时的:

- 多个后端实例,如何做到负载均衡?
- 如何保持会话亲和性?
- 容器迁移, IP发生变化如何访问?
- 健康检查怎么做?
- 怎么通过域名访问?





### Kubernetes Service与Endpoints







### Service与Endpoints定义

```
apiVersion: v1
    kind: Service
    metadata:
      name: nginx-service
      namespace: default
    spec:
      clusterIP: 10.101.28.148
      ports:
      name: http
        port: 80
10
        protocol: TCP
12
        targetPort: 8080
13
      selector:
14
        app: nginx
```

```
apiVersion: v1
    kind: Endpoints
    metadata:
      name: nginx-service
      namespace: default
    subsets:
    addresses:
      - ip: 172.17.0.2
 9
        nodeName: 100-106-179-237.node
10
        targetRef:
11
           kind: Pod
12
          name: nginx-rc-c8tw2
13
          namespace: default
14
      - ip: 172.17.0.3
15
        nodeName: 100-106-179-238.node
16
        targetRef:
           kind: Pod
18
          name: nginx-rc-x14tv
19
          namespace: default
20
      ports:
21
      - name: http
22
        port: 8080
23
        protocol: TCP
```





### Service 内部逻辑







#### TABLE OF CONTENTS

Kubernetes的Service机制

lptables实现Service负载均衡

当前iptables实现存在的问题

IPVS实现Service负载均衡

Iptables vs. IPVS





### lptables是什么?

· 用户空间应用程序,通过配置Netfilter规则表(Xtables)来构建linux内核防火墙。







### 网络包通过Iptables全过程







### lptables实现流量转发与负载均衡

- · lptables如何做流量转发?
- > DNAT实现IP地址和端口映射

iptables -t nat -A PREROUTING -d 1.2.3.4/32 --dport 80 -j DNAT --to-destination 10.20.30.40:8080

- · Iptables如何做负载均衡?
- > statistic模块为每个后端设置权重

iptables -t nat -A PREROUTING -d 1.2.3.4 --dport 80 -m statistic --mode random --probability .25 -j DNAT --to-destination 10.20.30.40:8080

- · Iptables如何做会话保持?
- > recent模块设置会话保持时间

iptables -t nat -A FOO -m recent --rcheck --seconds 3600 --reap --name BAR -j BAR





### Iptables在Kubernetes中的应用举例

VIP:Port -> PREROUTING(OUTPUT) -> KUBE-SERVICES -> KUBE-SVC-XXX -> KUBE-SEP-XXX -> RIP:Port

```
Chain PREROUTING (policy ACCEPT)
                                     destination
         prot opt source
target
KUBE-SERVICES all -- 0.0.0.0/0
                                         0.0.0.0/0
Chain KUBE-SERVICES (2 references)
                                     destination
target prot opt source
KUBE-SVC-6IM33IEVEEV7U3GP tcp -- 0.0.0.0/0 10.20.30.40 tcp dpt:80
Chain KUBE-SVC-6IM33IEVEEV7U3GP (1 references)
target prot opt source
                             destination
KUBE-SEP-Q3UCPZ54E6Q2R4UT all -- 0.0.0.0/0
                                                   0.0.0.0/0
Chain KUBE-SEP-Q3UCPZ54E6Q2R4UT (1 references)
target prot opt source
                                  destination
       tcp -- 0.0.0.0/0
                                 0.0.0.0/0
                                                    tcp to:172.17.0.2:8080
DNAT
```





#### TABLE OF CONTENTS

Kubernetes的Service机制

lptables实现Service负载均衡

#### 当前iptables实现存在的问题

IPVS实现Service负载均衡

Iptables vs. IPVS





# lptables做负载均衡的问题

#### ·规则线性匹配时延

KUBE-SERVICES链挂了一长串KUBE-SVC-\*链;访问每个service,要遍历每条链直到匹配,时间复杂度**O(N)** 

・规则更新时延

非增量式

・可扩展性

当系统存在大量iptables规则链时,增加/删除规则会出现kernel lock

Another app is currently holding the xtables lock. Perhaps you want to use the -w option?

・可用性

后端实例扩容,服务会话保持时间更新等都会导致连接断开。





# Iptables规则匹配时延



注:上面测试中,每个service在kube-services对应1条chain





# 更新Iptables规则的时延

- ・时延出现在哪?
- ▶ 非增量式,即使加上—no-flush(iptables-restore)选项
- > Kube-proxy定期同步iptables状态:
- ✓ 拷贝所有规则 iptables-save
- ✓ 在内存中更新规则
- ✓ 在内核中修改规则 iptables-restore
- ✓ 规则更新期间存在kernel lock
- · 5K service (40K 规则),增加一条iptables规则,耗时11min
- · 20K service(160K 规则),增加一条iptables规则,耗时5h





# lptables周期性刷新导致TPS抖动







# 优化方案

- ·使用树形结构组织iptables规则
- · IPVS



# 树形结构的iptables规则



路由时间复杂度取决于搜索树的高度(m),时间复杂度 $O(\sqrt[m]{N})$ 





#### TABLE OF CONTENTS

Kubernetes的Service机制

lptables实现Service负载均衡

当前iptables实现存在的问题

IPVS实现Service负载均衡

Iptables vs. IPVS





# 什么是IPVS (IP Virtual Server)

- · Linux内核实现的L4 LB, LVS负载均衡的实现
- · 基于netfilter, hash table
- 支持TCP, UDP, SCTP协议, IPV4, IPV6
- 支持多种负载均衡策略
- rr, wrr, Ic, wlc, sh, dh, lblc...
- 支持会话保持
- > persistent connection调度算法





# IPVS工作流



LVS工作原理





# IPVS三种转发模式

- ・ 支持三种LB模式: Direct Routing(DR), Tunneling, NAT
- ➤ DR模式工作在L2,最快,但不支持端口映射
- > Tunneling模式用IP包封装IP包,不支持端口映射
- ▶ DR和Tunneling模式,回程报文不会经过IPVS Director
- NAT模式支持端口映射,回程报文经过IPVS Director 内核原生版本只做 DNAT,不做SNAT





# DR







# Tunneling







# NAT







### IPVS做流量转发

• 绑定VIP

✓ dummy网卡

# ip link add dev dummy0 type dummy

# ip addr add 192.168.2.2/32 dev dummy0

✓ 本地路由表

# ip route add to local 192.168.2.2/32 dev eth0 proto kernel

✓ 网卡别名

# ifconfig eth0:1 192.168.2.2 netmask 255.255.255.255 up

• IPVS Virtual Server

# ipvsadm -A -t 192.168.60.200:80 -s rr -p 600

• IPVS Real Server

# ipvsadm -a -t 192.168.60.200:80 -r 172.17.1.2:80 -m

# ipvsadm -a -t 192.168.60.200:80 -r 172.17.2.3:80 -m



### 方案实现







### IPVS实现Kubernetes Service

```
nginx-service
Name:
               ClusterIP
Type:
TP:
              10.102.128.4
            http 80/TCP
Port:
Endpoints: 10.244.0.235:8080,10.244.1.237:8080
Session Affinity:
                  10800
# ip addr
73: kube-ipvs0: <BROADCAST, NOARP> mtu 1500 gdisc noop state DOWN glen 1000
   link/ether la:ce:f5:5f:c1:4d brd ff:ff:ff:ff:ff:ff
   inet 10.102.128.4/32 scope global kube-ipvs0
      valid lft forever preferred lft forever
# ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
                                Forward Weight ActiveConn InActConn
 -> RemoteAddress:Port
TCP 10.102.128.4:80 rr persistent 10800
                                Masq 1 0
 -> 10.244.0.235:8080
                               Masq 1 0
 -> 10.244.1.237:8080
```





### Kubernetes支持IPVS模式

- [merged] PR #46580
- 16K LOCs
- 200+ 讨论
- 社区1.8 Alpha特性, Owner @Huawei, 目标1.9进beta
- 支持ClusterIP , NodePort , External IP , Load Balancer , OnlyLocalNode...
- · 依赖iptables做SNAT和访问控制





#### TABLE OF CONTENTS

Kubernetes的Service机制

lptables实现Service负载均衡

当前iptables实现存在的问题

IPVS实现Service负载均衡

Iptables vs. IPVS





### Iptables vs. IPVS 增加规则时延

| Service基数      | 1     | 5000   | 20000   |
|----------------|-------|--------|---------|
| Rules基数        | 8     | 40000  | 160000  |
| 增加1条lptables规则 | 50 us | 11 min | 5 hours |
| 增加1条IPVS规则     | 30 us | 50 us  | 70 us   |

#### 观察结果:

- ✓ 增加一条Iptables的时延,随着规则数的增加"指数"上升
- ✓ 增加一条IPVS的时延,规则基数对其几乎没影响





# Iptables vs. IPVS 网络带宽

- ➤ 使用iperf测量
- ➤ 每个Service暴露4个端口(KUBE-SERVICES下挂4条KUBE-SVC-\*)



| service数          | 1    | 1000 | 5000 | 10000 | 25000 | 50000 |
|-------------------|------|------|------|-------|-------|-------|
| 带宽,iptables,first | 66.6 | 64   | 50   | 15    | 0     | 0     |
| 带宽,iptables,last  | 66.6 | 56   | 38.6 | 6     | 0     | 0     |
| 带宽,IPVS,first     | 65.3 | 61.7 | 53.5 | 43    | 30    | 24    |
| 带宽,IPVS,last      | 65.3 | 55.3 | 53.8 | 43.5  | 28.5  | 23.8  |





# Iptables vs. IPVS CPU/内存消耗

| Metrics         | number of service | IPVS    | Iptables  |  |
|-----------------|-------------------|---------|-----------|--|
| Memory<br>Usage | 1000              | 386 MB  | 1.1 G     |  |
|                 | 5000              | N/A     | 1.9 G     |  |
|                 | 10000             | 542 MB  | 2.3 G     |  |
|                 | 15000             | N/A     | ООМ       |  |
|                 | 50000             | 1272 MB | ООМ       |  |
| CPU Usage       | 1000              |         | N/A       |  |
|                 | 5000              |         | 50% - 85% |  |
|                 | 10000             | 0%      | 50%-100%  |  |
|                 | 15000             |         | N/A       |  |
|                 | 50000             |         | N/A       |  |





# Iptables vs. IPVS

#### Iptables

- ✓ 灵活,功能强大
- ✓ 在prerouting, postrouting, forward, input, output不同阶段都能对包进行操作
- IPVS
- ✓ 更好的性能(hash vs. chain)
- ✓ 更多的负载均衡算法
  - rr, wrr, lc, wlc, ip hash...
- ✓ 连接保持
  - IPVS service更新期间,保持连接不断开
- ✓ 预先加载内核模
  - nf\_conntrack\_ipv4, ip\_vs, ip\_vs\_rr, ip\_vs\_wrr, ipvs\_sh
- √ # echo 1 > /proc/sys/net/ipv4/vs/conntrack
- ✓ 原生不支持port range





### THANKS!

智能时代的新运维

CNUTCon 2©17