Dec 6, 2015 version

Thyroid H-P-T-Axis Simulator Equations For Hypothyroid, Euthroid & Mildly-Hyperthyroid Human Adults & Children

(13 ODE's, 12 algebraic terms, 3 outputs & ~56 parameters)

Notes: All mass units are μ mol, time units are hours = h, volumes liters = L, unless otherwise noted;

 $DE \equiv differential equation$

Thyroid Secretion & D&E Submodel Equations (Eisenberg 2008)

$$\dot{q}_{1}(t) \equiv \dot{T}_{AP}(t) = SR_{4}(t) + k_{12}q_{2}(t) + k_{13}q_{3}(t) - \left(k_{31}^{free} + k_{21}^{free}\right)FT_{AP}(t) + k_{4}^{absorb}T_{4}^{GUT}(t) + u_{1}(t)$$

$$\dot{q}_{2}(t) = k_{21}^{free}FT_{AP}(t) - \left(k_{12} + k_{02} + \frac{v_{\max}^{D1 fast}}{K_{m}^{D1 fast} + q_{2}(t)}\right)q_{2}(t)$$

$$\dot{q}_{3}(t) = k_{31}^{free}FT_{AP}(t) - \left(k_{13} + \frac{v_{\max}^{D1 slow}}{K_{m}^{D1 slow} + q_{3}(t)} + \frac{v_{\max}^{D2 slow}}{K_{m}^{D2 slow} + q_{3}(t)}\right)q_{3}(t)$$

$$\dot{q}_{4}(t) \equiv \dot{T}_{3P}(t) = SR_{3}(t) + k_{45}q_{5}(t) + k_{46}q_{6}(t) - \left(k_{64}^{free} + k_{54}^{free}\right)FT_{3P}(t) + k_{3}^{absorb}T_{3}^{GUT}(t) + u_{4}(t)$$

$$\dot{q}_{5}(t) = k_{54}^{free}FT_{3P}(t) + \frac{v_{\max}^{D1 fast}}{K_{m}^{D1 fast}}q_{2}(t) - \left(k_{45} + k_{05}\right)q_{5}(t)$$

$$\dot{q}_{6}(t) = k_{64}^{free}FT_{3P}(t) + \frac{v_{\max}^{D1 slow}}{K_{m}^{D1 slow}}q_{3}(t) + \frac{v_{\max}^{D2 slow}}{K_{m}^{D2 slow}}q_{3}(t) - \left(k_{46} + k_{06}\right)q_{6}(t)$$

$$FT_{3P}(t) = \left(a + bT_{4P}(t) + cT_{4P}^{2}(t) + dT_{4P}^{3}(t)\right)T_{3P}(t)$$

$$FT_{4P}(t) = \left(A + BT_{4P}(t) + CT_{4P}^{2}(t) + DT_{4P}^{3}(t)\right)T_{4P}(t)$$

$$SR_{3}(t) = S_{3}TSH_{P}(t - \tau)$$

$$SR_{4}(t) = S_{4}TSH_{P}(t - \tau)$$

DE for Plasma
$$T_4$$
 (T_{4P}) (µmol/h)

DE for Fast tissue T_4 (µmol/h)

DE for Slow tissue T_4 (µmol/h)

DE for Plasma T_3 (µmol/h)

DE for Fast tissue T_3 (µmol/h)

DE for Slow tissue T_3 (µmol/h)

free T_3 in plasma (µmol)

free T_4 in plasma (µmol)

TH secretion rates (μ mol/h), τ is hrs time-delay

$$\begin{split} f_{\text{deg}}^{TSH} &= k_{\text{deg}TSH}^{HYPO} + \frac{V_{\text{max}}^{TSH}}{K_{50}^{TSH} + TSH_{P}(t)} \\ f_{LAG} &\equiv k_{LAG}^{HYPO} + \frac{2T_{3B}^{11}(t)}{K_{LAG}^{11} + T_{3B}^{11}(t)} \\ f_{4} &\equiv k_{3} + \frac{5k_{3}}{1 + e^{2T_{3B}(t) - 7}} \\ f_{CIRC} &\equiv 1 + \left(\frac{A_{\text{max}}}{A_{0}e^{-T_{3B}^{LAG}(t)}} - 1\right) \left(\frac{1}{1 + e^{10T_{3B}^{LAG}(t) - 55}}\right) \end{split}$$

Nonlinear TSH degradation rate function (h-1)

Nonlinear lag-time function for T_{3B} in brain (h⁻¹

Nonlinear rate function for T_4 transport into & conversion of T_4 to T_3 in brain (h⁻¹)

Circadian rhythm saturation function (h⁻¹) $f_{\rm circ} \approx 1$ for eu- & mild hyper model

2-Compartment Gut Input Submodels (Mak et al. 1973; Eisenberg et al. 2008)

$$\dot{q}_{10}(t) \equiv \dot{T}_4^{PILL}(t) = -k_4^{dissolve} T_4^{PILL}(t), \qquad T_4^{PILL}(0) \equiv T_4 Dose$$
 DE for L-T₄ pink
$$\dot{q}_{11}(t) \equiv \dot{T}_4^{GUT}(t) = k_4^{dissolve} T_4^{PILL}(t) - \left(k_4^{excrete} + k_4^{absorb}\right) T_4^{GUT}(t)$$
 DE for absorbation
$$\dot{q}_{12}(t) \equiv \dot{T}_3^{PILL}(t) = -k_3^{dissolve} T_3^{PILL}(t), \qquad T_3^{PILL}(0) \equiv T_3 Dose$$
 DE for L-T₃ pink
$$\dot{q}_{13}(t) \equiv \dot{T}_3^{GUT}(t) = k_3^{dissolve} T_3^{PILL}(t) - \left(k_3^{excrete} + k_3^{absorb}\right) T_3^{GUT}(t)$$
 DE for absorbation of the properties o

DE for L- T_4 pill dissolution in gut (μ mol/h)

DE for absorbable L- T_4 in gut (μ mol/h)

DE for L- T_3 pill dissolution in gut (µmol/h)

DE for absorbable L- T_3 in gut (µmol/h)

3 Measured Outputs

$$\begin{aligned} y_{T_{4P}}(t) &\equiv y_1(t) \equiv T_{4P}(t) / V_P = q_1(t) / V_P \ \mu \text{mol/L} \rightarrow 777 q_1(t) / 10 V_P \ \mu \text{g/dL} \\ y_{T_{3P}}(t) &\equiv y_4(t) \equiv T_{3P}(t) / V_P = q_4(t) / V_P \ \mu \text{mol/L} \rightarrow 651 q_4(t) / V_P \ \mu \text{g/L} \\ y_{TSH_P}(t) &\equiv y_7(t) \equiv TSH_P(t) / V_{TSH} = q_7(t) / V_{TSH} \ \mu \text{mol/L} \rightarrow 5.6 q_7(t) / V_{TSH} \ \text{mU/L} \end{aligned} \end{aligned} \end{aligned} \end{aligned}$$
 Plasma T_4 concentration Plasma T_3 concentration Plasma T_3 Concentration

Parameter Values for 3 Conditions: (1) Adult Eu- & Mildly Hyper- (same #s); (2) Adult Hypo-; and (3) Child Hypothyroid

Note: Unless otherwise specified, parameter values are for both children & adults

Parameter	Units	Estimate	% CV	Source
ϕ	h	-3.71	1.04	Eisenberg 2008
A_0	μmol/h	581	61.4	Eisenberg 2008
B_{θ}	μmol/h	1166	60.7	Eisenberg 2008
$k_3 = k_4$	μmol/h	0.118	6.43	Eisenberg 2008
f_4 range	h^{-1}	0.118-0.708		Eisenberg 2010
$k_{ m deg}^{T_{3B}}$	h^{-I}	0.037	12.6	Eisenberg 2008
V_P (kids)	L	1	-	Ben-Shachar 2011
V_P (adults)	L	3.2	-	Eisenberg 2008
V_{TSH} (kids)	L	2.5	-	Ben-Shachar 2011
V_{TSH} (adults)	L	5.2	-	Eisenberg 2008

K_m^{D1fast}	μmol	2.85		Eisenberg 2008 fixed
	,		_	_
K_m^{D1slow}	μmol	95	-	Eisenberg 2008 fixed
K_m^{D2slow}	μmol	0.075	-	Eisenberg 2008
$v_{ m max}^{D1{\it fast}}$	μmol/h	9.99x10 ⁻³	30.6	Eisenberg 2008
$v_{ m max}^{D1slow}$	μmol/h	6.63x10 ⁻⁴	6.27	Eisenberg 2008
$v_{ m max}^{D2slow}$	μmol/h	7.46x10 ⁻⁴	6.27	Eisenberg 2008
S_3	h^{-1}	3.36x10 ⁻⁴	6.49	Eisenberg 2008
S_4	h^{-1}	1.74x10 ⁻³	7.4	Eisenberg 2008
au	h	8	-	Eisenberg 2008
k_4^{absorb}	h^{-1}	0.88	2.2	Eisenberg 2008
$k_4^{dissolve}$	h^{-1}	1.3	-	Eisenberg 2008
$k_4^{excrete}$	h^{-1}	0.12	16.3	Eisenberg 2008
k_3^{absorb}	h^{-1}	0.88	7.2	Eisenberg 2008
$k_3^{dissolve}$	h^{-1}	1.78	32.0	Eisenberg 2008
$k_3^{excrete}$	h^{-1}	0.12	7.2	Eisenberg 2008
A	unitless	0.000289		Eisenberg 2006
В	mmol ⁻¹	0.000214		Eisenberg 2006
C	mmol ⁻²	0.000128		Eisenberg 2006
D	mmol ⁻³	-8.83x10 ⁻⁶		Eisenberg 2006
a	unitless	0.00395		Eisenberg 2006
b	mmol ⁻¹	0.00185		Eisenberg 2006
C	mmol ⁻²	0.000610		Eisenberg 2006
d	mmol ⁻³	-0.000505		Eisenberg 2006
k ₀₂ (kids)	h^{-I}	0.0114	17.0	Ben-Shachar 2011
k_{12} (kids)	h^{-I}	0.523	19.2	Ben-Shachar 2011
k ₁₃ (kids)	h^{-I}	0.0514	28.8	Ben-Shachar 2011
k_{21}^{free} (kids)	h^{-1}	2275	14.4	Ben-Shachar 2011
k_{31}^{free} (kids)	h^{-1}	255	36.0	Ben-Shachar 2011
k ₀₂ (adults)	h^{-I}	0.0189	25.7	Eisenberg 2006
k_{12} (adults)	h^{-1}	0.868	18.3	Eisenberg 2006
k_{13} (adults)	h^{-1}	0.108	12.4	Eisenberg 2006
k_{21}^{free} (adults)	h^{-1}	1503	31.2	Eisenberg 2006
k_{31}^{free} (adults)	h^{-1}	584	16.6	Eisenberg 2006
k_{54}^{free}	h^{-1}	2043		Eisenberg 2006
k_{64}^{free}	h^{-1}	127		Eisenberg 2006
k ₀₅	h^{-1}	0.207	12.8	Eisenberg 2006
k_{45}	h^{-1}	5.37	16.3	Eisenberg 2006
k_{46}	h^{-1}	0.0689	4.79	Eisenberg 2006
A_{max}	mmol/h	2.37	61.4	Eisenberg 2010
A max	กเกเบเ/ก	2.31	01.4	Lischberg 2010

$k_{ ext{deg}TSH}^{HYPO}$	h^{-1}	0.53		Eisenberg 2010
K_{LAG} (kids)	unitless	6.5		Ben-Shachar 2011
K_{LAG} (adults)	unitless	5		Eisenberg 2010
$k_{\scriptscriptstyle LAG}^{\scriptscriptstyle HYPO}$	h^{-1}	0.0034	5.87	Eisenberg 2010
K_{50}^{TSH}	μmol	23		Eisenberg 2010
T_{3P}^{EU} (kids)	nmol/L	2.6		Elmlinger 2001
T_{4P}^{EU} (kids)	nmol/L	100.8		Elmlinger 2001
T_{3P}^{EU} (adults)	μmol	0.006		Eisenberg 2010
T_{4P}^{EU} (adults)	μmol	0.29		Eisenberg 2010
$V_{ m max}^{\it TSH}$	h^{-l}	0.037	12.6	Eisenberg 2010
Next 4 params	are for	linearized	model	
k_{21}	h^{-I}	0.544	31.2	Eisenberg 2006
k_{31}	h^{-I}	0.211	16.6	Eisenberg 2006
k ₅₄	h^{-I}	9.24	13.7	Eisenberg 2006
k ₆₄	h^{-1}	0.573	6.20	Eisenberg 2006

Equation and Parameter NOTES

- (1) $u_1(t)$ and $u_4(t)$ in the first and fourth equations are exogenous IV inputs of T_4 and T_3 . They are normally zero, but are needed for structural identifiability analysis and IV simulation studies.
- (2) Parameters k_{03} and k_{06} are shown in red in the equations. They are assumed to be approximately zero in adult and children models: degradation (other than to T_3) and elimination of T_4 in slow compartments (mostly muscle) are assumed negligible compared to T_4 conversion to T_3 .
- (3) ICs on the ODEs are not included here. To get ICs, run the model to steady state with normal SR_3 and SR_4 values and use the results to set ICs and the first $\tau = 8$ hr results for representing the 8 hr delay in the loop. For parameter estimation, the ICs are functions of the parameters to be estimated. These need to be evaluated and used as constraints on the search.