Notes on conical metric

孙天阳

2023年7月14日

目录

1	锥度量定义	2
2	Uniformization theorem	3
3	Hurwitz theorem	4

1 锥度量

定义 1.1. 设 Σ 是紧黎曼曲面, p 是 Σ 上的一点, $d\sigma^2$ 是 Σ 上的共形度量. 称 $d\sigma^2$ 在 p 点有一个角度为 $2\pi\alpha>0$ 的锥奇点, 如果在以 p 点为中心的某个坐标卡 (U,z) 内,

$$d\sigma^2 = e^{2\varphi} |dz|^2,$$

且其中 $\varphi - (\alpha - 1) \ln |z|$ 在邻域 U 内连续.

- 关于锥奇点的定义中存在的一个细节是 $d\sigma^2$ 其实并不是 Σ 上传统意义下的度量, 而是 $\Sigma \setminus \{p\}$ 上的度量.
- 因为二维黎曼流形局部上总是存在等温坐标系, 所以局部上总可以写成 $e^u | dz |^2$ 这种样子. 但这个局部应该说并不包含 p 点. 所以首先 p 点周围可以写成这个样子本身似乎就挺强的.
- 问题: 角度的概念是否良定, 比如会不会同时存在坐标卡 (V,w) 和其上的函数 ψ , 使得 $d\sigma^2=e^{2\psi}|dw|^2$ 且 $\psi-(\beta-1)\ln|w|$ 在邻域 V 内连续但 $\alpha\neq\beta$.
- φ 在 0 < |z| < 1 满足的方程是

$$\Delta \varphi + K e^{2\varphi} = 0.$$

 φ 在原点处满足的方程是什么?

• 如何将 α 直观理解为角度? 或许可以考虑 $z \mapsto z^{\alpha}$ 的拉回度量

2 Uniformization theorem

3 Hurwitz theorem