

Aufgaben zur Algebra 1

Besprechungstermin: Do. 28. November 2024

Aufgabe 1

Bestimmen Sie sämtliche Ideale in $\mathbb{Z}/18\mathbb{Z}$ und entscheiden Sie, welche davon Primideale sind.

Aufgabe 2

Sei I ein Ideal in einem kommutativen Ring R und $\pi\colon R\to R/I$ die kanonische Projektion. Zeigen Sie:

- (i) Die Vorschrift $J \mapsto \pi^{-1}(J)$ liefert eine Bijektion zwischen der Menge der Ideale in R/I und der Menge der Ideale in R, die I enthalten.
- (ii) Unter der Bijektion aus (i) entsprechen sich Primideale.

Aufgabe 3

Sei $R = \mathcal{C}([0,1],\mathbb{R})$ der Ring der stetigen reellwertigen Funktionen auf [0,1]. Zeigen Sie:

- (i) Für jedes echte Ideal $I \not \supseteq R$ gibt es ein $a \in [0,1]$ mit f(a) = 0 für alle $f \in I$.
- (ii) Für jedes $a \in [0,1]$ ist die Menge $\mathfrak{m}_a := \{ f \in R \mid f(a) = 0 \}$ ein maximales Ideal in R.
- (iii) Jedes maximale Ideal in R ist von der Gestalt \mathfrak{m}_a für ein $a \in [0,1]$.

Aufgabe 4

- (i)Bestimmen Sie den Quotientenkörper des Rings $\mathbb{Z}[i]$ der ganzen Gauss'schen Zahlen.
- (ii) Zeigen Sie, dass zwei isomorphe Integritätsringe auch isomorphe Quotientenkörper besitzen.
- (iii) Geben Sie zwei nicht-isomorphe Integritätsringe an, deren Quotientenkörper isomorph sind.