

TP électronique 2023/2024

AMPLIFICATEUR OPERATIONNEL ET CONTRE-REACTION

L'objectif de ce TP est de mettre en oeuvre un amplificateur opérationnel (AOP) dans différents modes de fonctionnement :

- amplificateurs de base
- comparateur à hystérésis
- alimentation dissymétrique

Les défauts dynamiques de l'amplificateur opérationnel (AOP) sont également mis en évidence dans ce TP.

1. MATERIEL

Matériel par poste de travail:

- 1 plaquette d'essai
- 1 alimentation double
- 1 oscilloscope numérique
- 1 générateur de fonctions
- 1 Té BNC
- 2 cordons coax. BNC/BNC
- 1 adaptateur BNC/fil
- 1 sonde d'oscilloscope "par 10"
- 3 cordons BANANE/BANANE long (rouge, noir, bleu)

- 1 cordon BANANE/BANANE court (noir)
- 1 AOP uA 741
- 2 condensateurs 220 nF
- $1 \text{ r\'esistance } 1 \text{ k}\Omega \text{ (marron, noir, rouge)}$
- 1 résistance 4,7 k Ω (jaune, violet, rouge)
- 3 résistances 10 kΩ (marron, noir, orange)
- 1 résistance 47 k Ω (jaune, violet, orange)
- 1 résistance $100~k\Omega$ (marron, noir, jaune)

Le brochage (datasheet en annexe) du circuit intégré AOP est la suivante :

Fig. 1: brochage AOP

Sauf mention contraire, l'alimentation des différents boîtiers utilisés se fera de façon symétrique par rapport à la masse du montage avec Vcc = 12V comme ci-dessous.

Fig. 2: alimentation symétrique de l'AOP

2. PREPARATION

Lire intégralement avant la séance l'énoncé du TP, faire les calculs demandés dans chaque paragraphe « préparation » et anticiper la méthode de résolution des différents problèmes.

Les résistances sont choisies dans la liste du matériel disponible.

La résistance de charge de l'AOP doit être supérieure ou égale à 2 kΩ.

3. Montages à boucle de réaction unique en fonctionnement linéaire

3.1. Préparation : montages amplificateur de base à AOP

La figure ci-dessous présente le montage de base qui permet d'obtenir les différents types de montage amplificateur.

Fig. 3: montage de base amplificateur

A partir des caractéristiques de l'amplificateur idéal, calculer la fonction de transfert générale : $s = K(K2.e_2 - K1.e_1)$ avec coefficients K, K1 et K2 sans unité

En déduire les schémas (éliminer les éléments inutiles), les amplifications sous forme littérale et la valeur des éléments afin d'obtenir :

- un montage amplificateur *inverseur* d'amplification $A_1 = -10$
- un amplificateur non inverseur d'amplification $A_2 = 11$, $A_3 = 48$ et $A_4 = 101$
- un montage *suiveur* (A=1)

3.2. Manipulation: montages amplificateur de base à AOP

A partir de la configuration de base de la figure 3 et en utilisant un amplificateur opérationnel de type 741, on construira les différents montages proposés.

3.2.1. Montage amplificateur "inverseur"

Le signal d'entrée est sinusoïdal de fréquence 1 kHz.

- Donner le schéma d'un amplificateur *inverseur* d'amplification A_1 = -10 en faisant apparaître :
 - o le numéro des broches (pins ou « pattes ») de l'amplificateur opérationnel,
 - o la valeurs des résistances.
 - o tous les appareils et leurs liaisons en couleur.
- Construire le montage amplificateur *inverseur*.
- Vérifier expérimentalement ses caractéristiques.
- Quelle source d'énergie permet d'amplifier le signal d'entrée ?

Nota: les mesures d'amplification et de fréquence de coupure n'ont de sens que si l'amplificateur reste dans un domaine linéaire : ve(t) sinusoïdal $\rightarrow vs(t)$ sinusoïdal.

3.2.2. Montage "suiveur"

Le montage suivant permet de mettre en évidence la propriété fondamentale de séparateur du montage *suiveur*.

Fig. 4 : propriété séparatrice du montage suiveur

Le signal d'entrée est sinusoïdal de fréquence 1 kHz.

- Compléter le schéma ci-dessus en faisant apparaître :
 - o la fonction suiveur réalisée avec un amplificateur opérationnel,
 - o le numéro des broches de l'amplificateur opérationnel.
- Construire le montage afin de mettre en évidence la propriété fondamentale de séparateur du montage *suiveur*.
- Placer l'interrupteur dans la position 1.
- Mesurer le rapport de transfert T1 = s/e.
- Placer l'interrupteur dans la position 2.
- Mesurer le rapport de transfert T2 = s/e.
- Rappeler les impédances théoriques d'entrée Zin et de sortie Zout du montage suiveur.
- Justifier les rapports de transfert T1 et T2 mesurés.

- Quelle configuration (avec ou sans suiveur) permet d'avoir un rapport de transfert s/e constant lorsque la valeur de la résistance de charge R3 change ?
- Quel est l'intérêt du suiveur ?

3.2.3. Montage amplificateur "non inverseur"

Le signal d'entrée est sinusoïdal de fréquence 1 kHz.

- Etablir le schéma d'un amplificateur *non inverseur* d'amplification A₂= 11 en faisant apparaître :
 - o le numéro des broches de l'amplificateur opérationnel,
 - o la valeurs des résistances.
- Construire l'amplificateur non inverseur.
- Mesurer l'amplification de l'amplificateur.
- Conserver le montage pour la suite.

4. Mise en évidence des défauts dynamiques de l'amplificateur opérationnel

4.1. Manipulation : défaut dû au "slew rate"

On utilise l'amplificateur non inverseur avec l'amplification $A_2=11$.

Le signal d'entrée est sinusoïdal de fréquence 100 Hz.

- Ajuster son amplitude pour obtenir un signal de sortie de 10 V d'amplitude crête à crête.
- Augmenter progressivement la fréquence jusqu'à 50 kHz
- Que constatez vous ?
- Mesurer le "slew rate" ou vitesse de croissance limite de la tension de sortie Vs :

$$SlewRate = \left| \frac{\Delta Vs}{\Delta t} \right| \max$$

- Comparer cette mesure au paramètre "slew rate" typique de l'AOP 741 (datasheet en annexe)
- Quelle règle mathématique permet de prédéterminer si le signal sinusoïdal $Vs(t) = VS.\sin(2\pi.f.t)$ sera ou non perturbé par le "slew rate" sachant qu'il faut que $\frac{dVs}{dt} < SlewRate$ pour que le signal reste sinusoïdal ?
- Conserver le montage pour la suite.

4.2. Manipulation : défaut dû à la bande passante

On utilise l'amplificateur non inverseur.

- Construire successivement des amplificateurs non inverseur d'amplifications $A_2=11$, $A_3=48$ et $A_4=101$.
- Pour chaque amplificateur :
 - o mesurer l'amplification A à la fréquence 100 Hz.
 - o mesurer la bande passante B à -3 dB.
 - o montrer que la contrainte du "slew rate" est respectée.

Nota : dans le cas d'un filtre passe-bas, la bande passante est égale à la fréquence de coupure.

- Vérifier que le facteur de mérite ou produit gain bande définie par M = A x B est constant.
- Comparer cette mesure au paramètre "gain bandwidth product" typique de l'AOP 741 (datasheet en annexe).
- Conclure sur la relation entre l'amplification et la bande passante d'un montage à AOP.

5. Montages à boucle de réaction unique en fonctionnement non linéaire

Le montage de la figure suivante est un comparateur à hystérésis .

Fig. 5 Comparateur à hystérésis

5.1. Préparation : comparateur à hystérésis

Etude du comparateur à hystérésis de la figure 5 :

- Déterminer les tensions v et v_+ quand u = -VCC?
- Déterminer les tensions v et v_+ quand u = +VCC?
- Tracer l'évolution de la tension de sortie v en fonction de la tension d'entrée u dans le sens croissant puis décroissant.

Rappel: la tension de sortie évolue entre les tensions de saturation –VSAT et +VSAT avec VSAT<VCC.

5.2. Manipulation: comparateur à hystérésis

- Construire le comparateur à hystérésis de la figure 5.

Le signal d'entrée est triangulaire d'amplitude 4 V crête à crête et de fréquence 100 Hz. On s'intéresse à la caractéristique de transfert et à ses paramètres de réglage (position et largeur de l'hystérésis).

- Relever la fonction de transfert v = f(u) en précisant le sens de parcours.
- Mesurer les seuils de basculement
- En déduire la largeur de l'hystérésis.
- Justifier la dissymétrie des seuils de basculement mesurés ?
- Comparer aux résultats théoriques.

UA741

GENERAL PURPOSE SINGLE OPERATIONAL AMPLIFIER

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION
- REQUIRED
- SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

The UA741 is a high performance monolithic operational amplifier constructed on a single silicon chip. It is intented for a wide range of analog applications.

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator

The high gain and wide range of operating voltages provide superior performances in integrator, summing amplifier and general feedback applications. The internal compensation network (6dB/octave) insures stability in closed loop circuits.

ORDER CODE

Part Number	Temperature Range –	Package	
		N	D
UA741C	0°C, +70°C	•	
UA741I	-40°C, +105°C	•	
UA741M	-55°C, +125°C	•	

N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT)

PIN CONNECTIONS (top view)

November 2001 1/5

SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	UA741M	UA741I	UA741C	Unit
Vcc	Supply voltage	±22		V	
Vid	Differential Input Voltage	±30		٧	
Vi	Input Voltage	±15		٧	
P _{tot}	Power Dissipation 1)	500		mW	
	Output Short-circuit Duration	Infinite			
Toper	Operating Free-air Temperature Range	-55 to +125	-40 to +105	0 to +70	°C
T _{stg}	Storage Temperature Range	-65 to +150		°C	

^{1.} Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded.

2/5

ELECTRICAL CHARACTERISTICS

V_{CC} = ±15V, T_{amb} = +25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
100	Input Offset Voltage ($R_6 \le 10k\Omega$)		Q I	(S)	mV
Vio	T _{amb} = +25°C		1	5	555,70
~	T _{min} ≤ T _{amb} ≤ T _{max}			6	
	Input Offset Current			- 4	nA
IIo	T _{amb} = +25°C		2	30	****
10	T _{min} ≤ T _{amb} ≤ T _{max}		10724	70	
	Input Bias Current		Ø	: 8	nA
IID	T _{amb} = +25°C		10	100	nA.
AID.	T _{min} ≤ T _{amb} ≤ T _{max}			200	
	Large Signal Voltage Gain ($V_0 = \pm 10V$, $R_L = 2k\Omega$)		-	Consess.	V/mV
Λ.	T _{amb} = +25°C	100,000	-		3,5675674
Avd		50	200		
	$T_{min} \le T_{amb} \le T_{max}$	25		. 3	
	Supply Voltage Rejection Ratio $(R_s \le 10k\Omega)$				dB
SVR	T _{amb} = +25°C	77	90		N MA
	$T_{min} \le T_{amb} \le T_{max}$	77			
	Supply Current, no load				mA
lcc	T _{amb} = +25°C		1.7	2.8	
-0340409	T _{min} ≤ T _{amb} ≤ T _{max}		105.00	3.3	
-00 II	Input Common Mode Voltage Range	100000			V
Vicm	T _{amb} = +25°C	±12			25423
	$T_{min} \le T_{amb} \le T_{max}$	±12			
	Common Mode Rejection Ratio (R _S ≤ 10kΩ)			- 3	dB
CMR	T _{amb} = +25°C	70	90		10000
25,005,50	$T_{min} \le T_{amb} \le T_{max}$	70	2013:		
los	Output short Circuit Current	10	25	40	mA
(1000)	Output Voltage Swing	(0.55	V	Sec. (8)	V
	$T_{amb} = +25^{\circ}C$ $R_L = 10k\Omega$	12	14		V
±V _{opp}	$R_L = 2k\Omega$	10	13		
opp	$T_{min} \le T_{amb} \le T_{max}$ $R_L = 10k\Omega$	12			
	$R_{L} = 2k\Omega$	10			
	Slew Rate	2.000		- 8	V/µs
SR	$V_I = \pm 10V$, $R_L = 2k\Omega$, $C_L = 100pF$, unity Gain	0.25	0.5		1,43
tr	Rise Time			9	μs
	$V_I = \pm 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity Gain		0.3		(8)
V.	Overshoot			- 8	%
Kov	V_{\parallel} = 20mV, R_{\perp} = 2k Ω , C_{\perp} = 100pF, unity Gain		5	k 98	
R	Input Resistance	0.3	2		MΩ
GBP	Gain Bandwith Product		-	1 3	MHz
SEF	$V_I = 10 \text{mV}, R_L = 2 \text{k}\Omega, C_L = 100 \text{pF}, f = 100 \text{kHz}$	0.7	1		
THD	Total Harmonic Distortion		885000		96
	$f = 1 \text{kHz}$, $A_V = 20 \text{dB}$, $R_L = 2 \text{k}\Omega$, $V_0 = 2 V_{pp}$, $C_L = 100 \text{pF}$, $T_{amb} = +25 ^{\circ}\text{C}$		0.08		100000
e _n Eo	Equivalent Input Noise Voltage				nV
	$f = 1kHz$, $R_8 = 100\Omega$		23		
Øm	Phase Margin		50	8	Degree
e de	i nase marght		30		Degre

477