נוסחאות ונתונים בפיזיקה

נספח לבחינות הבגרות ברמה של 5 יח״ל

לשאלונים מסי 917531, 197521, 197552, 98, 797555, 98, 17554, 917553, 26, 653, 654, 653, 652, 654, 653

(החל בקיץ תשס״ז)

תוכן העניינים

<u>ווסחאות</u>	<u>עמוד</u>	<u>נתונים</u>	<u>עמוד</u>
מכניקה	2	קבועים בסיסיים	6
אלקטרומגנטיות	3	פירוש קיצורי היחידות	7
קרינה וחומר	5	קשרים בין יחידות	7
פעילויות מעבדה	6	נוסחאות מתמטיות	7
		נתונים הקשורים בשמש ובירח	8
		נתונים הקשורים בכוכבי הלכת	8
		המסות של חלקיקים ואטומים אחדים	8

מכניקה

עבודה של כוח הקבוע בגודלו ובכיוונו	אורך קו ישר

$$W = F_x \Delta x = F \cos \theta \Delta s$$
 $\Delta s = |\Delta x|$ כאשר

$$E_k = \frac{1}{2} m v^2$$
 אנרגיה קינטית

אנרגיה פוטנציאלית כובדית (שדה אחיד) אנרגיה פוטנציאלית
$$U_{\rm G} = {\rm mgh} \qquad \qquad (U_{\rm G} \, ({\rm h} = 0) = 0)$$

אנרגיה פוטנציאלית אלסטית
$$U_{sp} = \frac{1}{2} k \left(\Delta \ell\right){}^2 \qquad \qquad (U_{sp} = 0 \; term \; te$$

$$\mathbf{W}_{\text{ruddy}} = \Delta \mathbf{E}_{\mathbf{k}}$$
 משפט עבודה-אנרגיה

עבודת שקול הכוחות הלא-משמרים – L) אנרגיה מכנית כוללת)

$$W_{}_{}$$
לא משמרים ΔE

$$\overline{P} = \frac{\Delta W}{\Delta t}$$
 הספק ממוצע

מתקף ותנע

$$ilde{\mathbf{J}} = \int\limits_{t}^{t_2} ilde{\mathbf{F}} \mathrm{d} t$$
 מתקף של כוח משתנה

$$\hat{\mathbf{J}} = \hat{\mathbf{F}} \Delta \mathbf{t}$$
 מתקף של כוח קבוע

$$\vec{p} = m\vec{v}$$
 תנע

$$\hat{\mathbf{J}}_{\text{cutd}} = \Delta\,\hat{\mathbf{p}}$$
 נוסחת מתקף-תנע

שימור תנע

$$\mathbf{m}_{\mathrm{A}}\vec{\mathbf{v}}_{\mathrm{A}} + \mathbf{m}_{\mathrm{B}}\vec{\mathbf{v}}_{\mathrm{B}} = \mathbf{m}_{\mathrm{A}}\vec{\mathbf{u}}_{\mathrm{A}} + \mathbf{m}_{\mathrm{B}}\vec{\mathbf{u}}_{\mathrm{B}}$$

בהתנגשות אלסטית חד-ממדית בהתנגשות אלסטית בהתנגשות
$$\vec{\mathrm{v}}_{\scriptscriptstyle \mathrm{A}}-\vec{\mathrm{v}}_{\scriptscriptstyle \mathrm{R}}=-\left(\vec{\mathrm{u}}_{\scriptscriptstyle \mathrm{A}}-\vec{\mathrm{u}}_{\scriptscriptstyle \mathrm{R}}\right)$$

מודל של גז אידאלי

האנרגיה הקינטית הממוצעת של מולקולת גז האנרגיה הקינטית אידאלי $\overline{E}_k = \frac{3}{2}kT$

קינ**מטיקה - תנועה לאורך קו ישר**
$$v = \frac{\mathrm{d}x}{\mathrm{d}t}$$
 מהירות רגעית

$$a = \frac{dv}{dt}$$
 תאוצה רגעית

תנועה שוות-תאוצה

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$x = x_0 + \frac{v_0 + v}{2}t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

A -ט ביחס ל

$$\mathbf{v}_{_{\mathrm{B},\mathrm{A}}} = \mathbf{v}_{_{\mathrm{B}}} - \mathbf{v}_{_{\mathrm{A}}}$$

דינמיקה

$$w = mg$$
 משקל

$$F = k \Delta \ell$$
 חוק הוק (גודל כוח אלסטי)

גודל כוח חיכוד

$$f_s \le \mu_s N$$
 סטטי

$$f_{k} = \mu_{k}N$$
 קינטי

$$\Sigma \vec{F} = m\vec{a}$$
 החוק השני של ניוטון

$$ho = rac{\mathrm{m}}{\mathrm{V}}$$
 צפיפות חומר

עבודה, אנרגיה והספק

עבודה הנעשית על גוף הנע לאורך ציר x עבודה הנעשית על גוף הנע אורך די כוח F ידי כוח

$$W = \int_{x_1}^{x_2} F_x dx$$

$v = -\omega \operatorname{Asin} (\omega t + \phi)$	מהירות
$v = \pm \omega \sqrt{A^2 - x^2}$	
$a = -\omega^2 A\cos(\omega t + \phi)$	תאוצה
$a = -\omega^2 x$	
$T = 2\pi \sqrt{\frac{m}{c}}$	זמן המחזור

$$T=2\pi\sqrt{rac{\ell}{g}}$$
 מטוטלת פשוטה (מתמטית)

נבידה
$$\left(\frac{\overline{r}_1}{\overline{r}_2}\right)^3 = \left(\frac{T_1}{T_2}\right)^2 \qquad \qquad \text{ר quadrate}$$

$$F = G \frac{m_1 m_2}{r^2} \qquad \qquad \text{ גודל כוח הכבידה}$$

אנרגיה פוטנציאלית כובדית
$$U_{G}=-\frac{GMm}{r} \qquad \qquad (U_{G}(r{\to}\infty)=0)$$

אנרגיה של לוויין במסלול מעגלי

$$E_k = \frac{GMm}{2r} = -\frac{U_G}{2}$$
 קינטית

$$E = -\frac{GMm}{2r}$$
 כוללת

טרנספורמציית שדה כבידה

$$\vec{g}_{\text{B}} = \vec{g}_{\text{A}} - \vec{a}_{\text{B,A}}$$

$$pV = NkT$$
 משוואת המצב של גז אידאלי

החוק הראשון של התרמודינמיקה

$$\Delta \mathbf{U} = \mathbf{Q} + \mathbf{W}$$

תנועות מחזוריות

$$\omega = 2\pi f = \frac{2\pi}{T}$$

תנועה מעגלית

$$\overline{\omega} = rac{\Delta \theta}{\Delta t}$$
 מהירות זוויתית ממוצעת

תאוצה צנטריפטלית (רדיאלית)

$$a_{R} = \frac{v^{2}}{r} = \omega^{2} r$$

הקשר בין מהירות קווית ומהירות זוויתית $v = \omega r$

תנועה הרמונית פשוטה

$$-cx = ma$$

משוואת התנועה

$$\omega = \sqrt{\frac{c}{m}}$$

$$x = A\cos(\omega t + \phi)$$
 נוסחת מקום-זמן

אלקטרומגנטיות

גודל שדה חשמלי הנוצר על ידי לוח טעון
$$E = \frac{\sigma}{2\epsilon_0} \qquad \qquad \epsilon_0 = \frac{1}{4\pi k}$$

פוטנציאל חשמלי סביב מטען נקודתי
$$V=k\frac{q}{r} \qquad \qquad (U_{_{\rm F}}(r{\to}\infty)=0)$$

אנרגיה פוטנציאלית חשמלית של מטען
$$\mathbf{U}_{\scriptscriptstyle E} = \mathbf{q} \mathbf{V}$$
נקודתי

$$U = \frac{1}{2}QV$$
 אנרגיה של מוליך טעון

$$ec{ ext{E}} = rac{ec{ ext{F}}}{ ext{q}}$$
 שדה חשמלי

גודל שדה חשמלי סביב מטען נקודתי

$$E = k \frac{q}{r^2}$$

מתח רגעי בפריקת קבל $V_{c} = V_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\mathrm{RC}}}$	$C = \frac{Q}{V}$ הגדרת הקיבול
$V_c = V_0 e^{-RC}$	$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$ קיבול של קבל לוחות
שדה מגנטי	C = d
גודל כוח הפועל על מטען בשדה מגנטי	$V_{AB} = V_A - V_B$ מתח חשמלי
$F = qvB \sin\alpha$	גודל השדה החשמלי בין לוחות קבל
גודל כוח הפועל על תיל נושא זרם בשדה	$E = \frac{V_{AB}}{d}$
$F = I \ell B \sin \alpha$ מגנטי	1 2
	$U = \frac{1}{2}CV_{AB}^2$ אנרגיה של קבל טעון
גודל הכוח ליחידת אורך בין שני תילים $_{ m F}$ $\mu_{ m o}$ $I_{ m i}I_{ m o}$	קיבול שקול
$rac{ ext{F}}{\ell} = rac{\mu_0}{2\pi} rac{ ext{I}_1 ext{I}_2}{ ext{d}}$ ארוכים מקבילים	$\frac{1}{C_{T}} = \sum \frac{1}{C_{:}}$ של קבלים המחוברים בטור
$\frac{\mu_0}{2\pi} = 2 \cdot 10^{-7} \frac{\mathbf{T} \cdot \mathbf{m}}{\mathbf{A}}$	$\mathbf{C}_{\mathrm{T}} = \mathbf{\Sigma} \mathbf{C}_{\mathrm{i}}$ של קבלים המחוברים במקביל
גודל שדה מגנטי	זרם חשמלי
$B = \frac{\mu_0 I}{2\pi r}$ סביב תיל ישר וארוך	אם וושמלי
$B = 2\pi r$	$i = \frac{dq}{dt}$ זרם רגעי
$\mathrm{B} = \mu_0 rac{\mathrm{NI}}{2\mathrm{R}}$ במרכז סליל מעגלי דק	
(בעל רדיוס R ו־ N כריכות)	$V_{AB} = RI$ חוק אום
$B = \mu_0 rac{NI}{L}$ בתוך סילונית ארוכה	$R = \rho \frac{\ell}{A}$ התנגדות של תיל
ו־ N כריכות) L בעלת אורך $ m L$	התנגדות שקולה
כא״מ מושרה	$R_{_{ m T}} = \Sigma R_{_{ m i}}$ של נגדים המחוברים בטור
$\phi_{\scriptscriptstyle m R} = { m BA}{ m cos}lpha$ שטף מגנטי דרך משטח	$\frac{1}{R_{\mathrm{T}}} = \sum \frac{1}{R_{\mathrm{s}}}$ של נגדים המחוברים במקביל
הזווית בין השדה לנורמל למשטח – α	$W_{A o B} = V_{AB} It$ עבודת הזרם החשמלי
$\epsilon = -N rac{\mathrm{d} \phi_\mathrm{B}}{\mathrm{d} t}$ כאיימ מושרה	$P = V_{AB}I$ הספק
$\varepsilon = -N \frac{d}{dt}$ כא"מ מושרה	
$arepsilon = \mathrm{v}\ell_{_\perp}\mathrm{B}_{_\perp}$ כא״מ מושרה בתיל מוליך	$V_{AB} = \varepsilon - rI$ מתח הדקים
היטל התיל על הכיוון הניצב למהירות – ℓ_{\perp}	$\Sigma \epsilon = \Sigma IR$ $\Sigma I = 0$ חוקי קירכהוף
רכיב השדה המגנטי בכיוון ניצב – B_{\perp}	$V_{_{AB}} = \Sigma IR - \Sigma \epsilon$ מתח במעגל חשמלי
כאיימ מושרה במחולל	זרם רגעי בטעינת קבל
$\varepsilon = -NBA\omega \cos(\omega t + \phi)$	$i = I_0 e^{-\frac{t}{RC}}$ או בפריקתו
$\frac{\varepsilon_1}{\varepsilon_2} = \frac{N_1}{N_2}$ שנאי אידאלי	מתח רגעי בטעינת קבל
$\epsilon_2 - N_2$	$V_{c} = \varepsilon (1 - e^{-\frac{t}{RC}})$
	<u> </u>

קרינה וחומר

$\mathbf{E}_{\mathrm{ph}} = \mathbf{E}_{\mathrm{k}} + \mathbf{B}$ אפקט פוטואלקטרי

האטום והגרעין

$$m_e v_n r_n = n \frac{h}{2\pi}$$

הנחות בוהר

$$E_{ph} = |E_f - E_i|$$

רמות אנרגיה באטום מימן

$$E_n = -\frac{R^*}{n^2} \qquad (U_{\infty} = 0)$$

$$R^* = \frac{2\pi^2 k^2 m_e e^4}{h^2} = \frac{m_e e^4}{8\epsilon_0^2 h^2} = 13.6 \text{ eV}$$

רדיוסי המסלולים המותרים של האלקטרון באטום המימן

$$r_n = r_1 n^2$$

$$r_1 = \frac{h^2}{4\pi^2 m_e ke^2} = 0.529 \text{ Å}$$

$$\lambda = \frac{h}{mv} = \frac{h}{p}$$
 נוסחת דה־ברויי

$$\Delta \, x \, \Delta \, p \geqslant rac{h}{4\pi}$$
 עקרון אי־הוודאות

$$\Delta E = \Delta mc^2$$
 שקילות מסה-אנרגיה

$$rac{\mathrm{d}N}{\mathrm{d}t}$$
 = - λN קבוע הדעיכה $-\lambda$

$$N = N_0 e^{-\lambda t}$$

$$R = \lambda N$$
 פעילות של מקור רדיואקטיבי

$$T_{1/2} = rac{\ell n 2}{\lambda}$$
 ממן מחצית החיים

אופטיקה גאומטרית

$$\mathbf{n_1} \mathrm{sin} \boldsymbol{\theta_1} = \mathbf{n_2} \mathrm{sin} \boldsymbol{\theta_2}$$
 חוק סנל

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f}$$
 נוסחת העדשות

$$m = \frac{H_i}{H_0} = \frac{|v|}{|u|}$$
 הגדלה קווית

$$C = \frac{1}{f}$$
 עוצמת עדשה

גלים מכניים ואלקטרומגנטיים

$$v=\lambda f$$
 מהירות גל מחזורי

$$\frac{\sin\theta_1}{\sin\theta_2}=\frac{n_2}{n_1}=\frac{v_1}{v_2}$$
 חוק השבירה

גל עומד במיתר שקצותיו קשורים

$$\ell = n\frac{\lambda}{2}$$

קווי מקסימום בהתאבכות משני מקורות (ויותר) שווי מופע

$$\sin \theta_n = \frac{X_n}{L_n} = n \frac{\lambda}{d}$$

קווי מינימום בהתאבכות משני מקורות שווי מופע

$$\sin \theta_n = \frac{X_n}{L_n} = (n - \frac{1}{2})\frac{\lambda}{d}$$

$$\frac{\Delta X}{I} = \frac{\lambda}{d}$$
 נוסחת יאנג

קווי מקסימום בהתאבכות בסריג עקיפה $\sin\!\theta_n = n\frac{\lambda}{d} = nN*\lambda$

$$\sin\theta_{n} = \frac{X_{n}}{L_{n}} = n\frac{\lambda}{w}$$

$$E_{ph}=hf$$
 אנרגיה של פוטון
$$E(eV)=\frac{12400}{\lambda(\mathring{A})}=\frac{1240}{\lambda(nm)}$$

פעילויות מעבדה

הקירוב של טיילור מסדר שני:

$$\begin{split} \boldsymbol{x}_{n+1} &\approx \boldsymbol{x}_n + \boldsymbol{v}_n \Delta t + \frac{1}{2} \boldsymbol{a}_n \Delta t^2 \\ \boldsymbol{v}_{n+1} &\approx \boldsymbol{v}_n + \frac{1}{2} \big(\boldsymbol{a}_n + \boldsymbol{a}_{n+1}\big) \Delta t \end{split}$$

$$\boldsymbol{x}_{_{n+1}}\approx\boldsymbol{x}_{_{n}}+\boldsymbol{v}_{_{n}}\Delta\boldsymbol{t}$$

$$v_{n+1} \approx v_n + a_n \Delta t$$

קבועים בסיסיים

(ערכי הקבועים רשומים בדיוק נמוך מהדיוק הניסיוני הידוע, ומשמשים לבחינת בגרות.)

ערד	יחידות	סימון	שם הקבוע
$1.38 \cdot 10^{-23}$	J ⋅ K ⁻¹	k	קבוע בולצמן
$6.67 \cdot 10^{-11}$	$N \cdot m^2 \cdot kg^{-2}$	G	קבוע הגרביטציה
9 · 10 ⁹	$N \cdot m^2 \cdot C^{-2}$	k	המקדם בחוק קולון
$3 \cdot 10^{8}$	$\mathbf{m \cdot s}^{-1}$	c	מהירות האור בריק
$1.257 \cdot 10^{-6}$	$H \cdot m^{-1}$	μ_0	פרמיאביליות הריק
$8.85 \cdot 10^{-12}$	$F \cdot m^{-1}$	$\epsilon_{_{0}}$	דיאלקטריות הריק
$1.60 \cdot 10^{-19}$	С	e	מטען האלקטרון
$6.63 \cdot 10^{-34}$	$J \cdot s$	h	
$4.14 \cdot 10^{-15}$	eV · s	П	קבוע פלאנק
$9.11 \cdot 10^{-3}$	kg	m _e	מסת אלקטרון
$1.67 \cdot 10^{-27}$	kg	m _p	מסת פרוטון
$1.67 \cdot 10^{-27}$	kg	m _n	מסת נויטרון
$6.02 \cdot 10^{23}$	mol ⁻¹	N _A	קבוע אבוגדרו

פירוש קיצורי היחידות

יחידה	סימן
פרד	F
אמפר	A
אום	Ω
וולט	V
טסלה	Т
הנרי	Н
הרץ	Hz
פסקל	Pa
ſ	I

סימן	יחידה
J	גיאול
eV	אלקטרון וולט
MeV	מיליון אלקטרון וולט
W	וט
mol	מול
°C	מעלות צלזיוס
K	מעלות קלווין
С	קולון
1	

יחידה	סימן
מטר	m
אנגסטרם	Å
קילוגרם	kg
גרם	gr
יחידת מסה אטומית	u
שנייה	s
שעה	h
ניוטון	N

קשרים בין יחידות

אנרגיה

 $1eV = 1.6 \cdot 10^{-19}J$

 $1\text{Å} = 10^{-10} \text{ m}$

 $1 \text{ nm} = 10^{-9} \text{ m}$

<u>לחץ</u>

אטמוספרה 1.01 • 10 $\frac{N}{m^2}$

<u>מסה</u>

<u>אורד</u>

 $1u = 931.494 \frac{\text{MeV}}{c^2} = 1.66 \cdot 10^{-27} \text{kg}$

מעבר ממעלות קלווין למעלות צלזיוס

 $t_{\rm C} = T_{\rm K} - 273$

<u>תנע</u>

$$1\frac{\mathrm{kg}\cdot\mathrm{m}}{\mathrm{s}} = 1.87\cdot10^{-21}\frac{\mathrm{MeV}}{\mathrm{c}}$$

נוסחאות מתמטיות

נפח כדור נפח כדור $\sin\theta \approx tg \; \theta \qquad \qquad$ $\sin\theta \approx tg \; \theta \qquad \qquad$ $\sin\theta \approx \theta \qquad \qquad$ לזוויות קטנות ברדיאנים

 $2\pi R$ היקף מעגל πR^2 שטח עיגול

 $4\pi R^2$ שטח פני כדור

נתונים הקשורים בשמש ובירח

זמן מחזור (יממות)	רדיוס מסלול ממוצע (m)	רדיוס (m)	מסה (kg)	
		6.96×10^{8}	1.99×10^{30}	שמש
27.3	3.84×10^{8}	1.74×10^{6}	7.35×10^{22}	ירח

נתונים הקשורים בכוכבי הלכת

זמן מחזור (שנים)	רדיוס מסלול ממוצע (10 ⁶ km)	רדיוס (10 ⁶ m)	מסה (10 ²⁴ kg)	כוכב לכת
0.2408	57.9	2.44	0.330	כוכב חמה (Mercury)
0.6152	108.2	6.05	4.869	(Venus) נוגה
1.00	149.6	6.38	5.974	(Earth) ארץ
1.881	227.9	3.4	0.642	(Mars) מאדים
11.86	778.3	71.4	1899.1	(Jupiter) צדק
29.46	1427.0	60.0	568.6	שבתאי (Saturn)
84.01	2871.0	26.1	86.98	(Uranus) אוּרנוּס
164.8	4497.1	24.3	103	(Neptun) נפטון

המסות של חלקיקים ואטומים אחדים

u־ב המסה ב	האטום
1.007825	$^{1}\mathrm{H}$ מימן
2.014101	$^2\mathrm{H}$ דויטריום
4.00260	⁴ He הליום
7.01601	⁷ Li ליתיום
12.00000	¹² C פחמן

$\frac{\text{MeV}}{\text{c}^2}$ המסה ב	u־ב המסה ב	החלקיק
0.511	0.000549	אלקטרון
938.272	1.007276	פרוטון
939.566	1.008665	נויטרון