FIL1006 - oblig 2

Bjørn-Andreas Lamo janilam

21.02.18

1 Relations

I'm using the term "operand" for what has the relation, because relations are somewhat similar to operators.

- (a) What is it for a relation to be reflexive?
 - The reflexive relation is a relation to the operand itself.
- (b) What is it for a relation to be symmetric?
 - · The operands must be commutative.
- (c) What is it for a relation to be transitive?
 - Given that there is a relation between a and b, and the same relation between b and c, if the relation is transitive there must also be a relation between a and c.
- (d) Is the relation 'x is related as a family member to y' an equivalence relation? Discuss.
 - No, it's not. First think intuitively; are everyone that are related to you as a family member also you? Thought not. The "family member" relation is both symmetric and transitive, but not reflexive.

2 Formalize the statement

- (a) Formalize the following statement using truth-functional connectives and sentence variables.
 - "Either the President is not a genius, or, if there is a conspiracy, then neither the Senator nor the judge is right."
 - p =the president is not a genius
 - q =the senator is right
 - r =the judge is right
 - s =there is a conspiracy
 - $t = s \supset \neg (q \lor r)$
 - $(p \land \neg t) \lor (\neg p \land t)$
- (b) Does the statement in (a) imply that the Senator is right?
 - No, it does not imply the Senator to be right.

$$(p \land \neg t) \lor (\neg p \land t) \equiv (p \land s \land (q \lor r)) \lor (p \lor (s \land (q \lor r)))$$

We can see that in the equivalent statement the "q" variable is connected to an "or" operator, therefore we cannot say the statement implies anything from the variable.

3 Insert quotation marks

- (a) Bernhard Borge is a pseudonym for the author André Bjerke.
 - · "Bernhard Borge" is a pseudonym for the author André Bjerke.
- (b) Be not afraid of greatness is a quote from a play called The Twelfth Night.
 - "Be not a fraid of greatness" is a quote from a play called The Twelfth Night.
- (c) One of the De Morgan equivalences is -p. -q is equivalent to $-(p \lor q)$.
 - One of the De Morgan equivalences is " -p. -q" is equivalent to " $-(p\vee q)$ ".
- (d) River Thames consists of 10 letters and rhymes with burning flames.
 - $\boldsymbol{\cdot}$ "River Thames" consists of 10 letters and rhymes with "burning flames".

4 Natural deduction

(a) " $p \supset q \lor r$ " and "-r" implies " $p \supset q$ "

[1]	(1)	$p\supset q\vee r$	P
[2]	(2)	$\neg r$	P
[3]	(3)	p	P
[1][3]	(4)	$q \vee r$	(1)(3) MP
[1][2][3]	(5)	q	(2)(4) CE
[1][2]	(6)	$p\supset q$	[3](5) D

(b) " $p \wedge q$ " and " $q \supset r$ " implies " $p \wedge (r \vee q)$ "

(c) " $p \supset \neg q$ " and " $r \lor s \supset q$ " implies " $r \supset \neg p$ "

(d) " $p \supset \neg q$ " implies " $p \land r \supset (q \lor r \supset r)$ "

[1]	(1)	$p\supset \lnot q$	P
[2]	(2)	$p \wedge r$	P
[2]	(3)	r	(2) CE
[2]	(4)	$q \lor r$	(3) DI
[2]	(5)	$q \lor r \supset r$	(3)(4) D
	(6)	$p \wedge r \supset (q \vee r \supset r)$	[2](5) D

5 Natural deduction II

By using natural deduction, show that " $p \supset (q \supset r)$ " is equivalent to " $p \land q \supset r$ ".

[1]	(1)	$p \wedge q \supset r$	P
[2]	(2)	p	P
[3]	(3)	q	P
[2][3]	(4)	$p \wedge q$	(2)(3) CI
[1][2][3]	(5)	r	(1)(4) MP
[1][2]	(6)	$q\supset r$	[3](5) D
[1]	(7)	$p\supset (q\supset r)$	[2](6) D