

MOSFET – N-Channel, DUAL COOL[®] 33, POWERTRENCH[®] 60 V, 40 A, 6.3 mΩ

FDMC86520DC

General Description

This N-Channel MOSFET is produced using **onsemi**'s advanced POWERTRENCH process. Advancements in both silicon and DUAL COOL package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance by extremely low Junction-to-Ambient thermal resistance.

Features

- DUAL COOL Top Side Cooling PQFN Package
- Max $r_{DS(on)} = 6.3 \text{ m}\Omega$ at $V_{GS} = 10 \text{ V}$, $I_D = 17 \text{ A}$
- Max $r_{DS(on)} = 8.7 \text{ m}\Omega$ at $V_{GS} = 8 \text{ V}$, $I_D = 14.5 \text{ A}$
- High Performance Technology for Extremely Low r_{DS(on)}
- This Device is Pb-Free, Halide Free and RoHS Compliant

Applications

- Primary DC-DC Switch
- Motor Bridge Switch
- Synchronous Rectifier

MOSFET MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Symbol	Parameter			Rating	Unit
V _{DS}	Drain to Source Voltage			60	V
V_{GS}	Gate to Source	Voltage		±20	V
I _D	Drain Current	Continuous $T_C = 25^{\circ}C$		40	Α
		Continuous (Note 1a)	T _A = 25°C	17	
		Pulsed		80	
E _{AS}	Single Pulse Avalanche Energy (Note 3)			128	mJ
P _D	Power Dissipat	on $T_C = 25^{\circ}C$		73	W
	Power Dissipat	ower Dissipation (Note 1a) $T_A = 25^{\circ}C$		3.0	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to + 150	°C	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

V _{DS}	r _{DS(ON)} MAX	I _D MAX	
60 V	$6.3~\text{m}\Omega$ @ 10 V	40 A	
	8.7 mΩ @ 8 V		

PQFN8 3.3X3.3, 0.65P CASE 483AL DUAL COOL 33

MARKING DIAGRAM

6L = Specific Device Code A = Assembly Plant Code YW = Date Code (Year and Week)

Z = Lot Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet.

THERMAL CHARACTERISTICS

Symbol	Parameter		Ratings	Unit
$R_{\theta JC}$	Thermal Resistance, Junction to Case	(Top Source)	4.2	°C/W
$R_{ heta JC}$	Thermal Resistance, Junction to Case	(Bottom Drain)	1.7	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	(Note 1k)	12	

ELECTR	ICAL CHARACTERISTICS ($T_J = 25^{\circ}C$	unless otherwise noted)				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
OFF CHAI	RACTERISTICS					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	60	_	_	V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I_D = 250 μA , referenced to 25°C	-	30	-	mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 48 V, V _{GS} = 0 V	-	-	1	μΑ
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$	-	_	±100	nA
ON CHAR	ACTERISTICS		-			
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \mu A$	2.5	3.7	4.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	I_D = 250 μA , referenced to 25°C	-	-10	-	mV/°C
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 17 A	-	5.1	6.3	mΩ
, ,		V _{GS} = 8 V, I _D = 14.5 A	-	6.5	8.7	
		V _{GS} = 10 V, I _D = 17 A, T _J = 125°C	-	8.2	10.2	
g _F s	Forward Transconductance	V _{DS} = 10 V, I _D = 17 A	-	49	-	S
DYNAMIC	CHARACTERISTICS	•				
C _{iss}	Input Capacitance	V _{DS} = 30 V, V _{GS} = 0 V, f = 1 MHz	-	2097	2790	pF
C _{oss}	Output Capacitance	1	-	557	745	pF
C _{rss}	Reverse Transfer Capacitance	1	-	13	40	pF
Rg	Gate Resistance		0.1	0.5	2.5	Ω
SWITCHIN	IG CHARACTERISTICS					
td _(on)	Turn-On Delay Time	V _{DD} = 30 V, I _D = 17 A,	-	18	33	ns
t _r	Rise Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	-	6.6	14	
t _{d(off)}	Turn-Off Delay Time	1	-	19	35	
t _f	Fall Time	1	-	4	10	
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}, V_{DD} = 30 \text{ V}, I_D = 17 \text{ A}$	-	29	40	nC
		V _{GS} = 0 V to 8 V, V _{DD} = 30 V, I _D = 17 A	-	23	33	
Q _{gs}	Gate to Source Charge	V _{DD} = 30 V, I _D = 17 A	-	12	-	nC
Q _{gd}	Gate to Drain "Miller" Charge	1	-	5.5	-	nC
DRAIN-S	OURCE DIODE CHARACTERISTICS					
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 17 A (Note 2)	-	0.83	1.3	V
		V _{GS} = 0 V, I _S = 2.5 A (Note 2)	-	0.74	1.2	
t _{rr}	Reverse Recovery Time	I _F = 17 A, di/dt = 100 A/μs	-	41	65	ns
Q _{rr}	Reverse Recovery Charge	1	-	23	37	nC

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

THERMAL CHARACTERISTICS

Rejc	Thermal Resistance, Junction to Case	(Top Source)	4.2	°C/W
Rejc	Thermal Resistance, Junction to Case	(Bottom Drain)	1.7	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1a)	42	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1b)	105	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1c)	29	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1d)	40	
Reja	Thermal Resistance, Junction to Ambient	(Note 1e)	19	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1f)	23	
Reja	Thermal Resistance, Junction to Ambient	(Note 1g)	30	
Reja	Thermal Resistance, Junction to Ambient	(Note 1h)	79	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1i)	17	
Reja	Thermal Resistance, Junction to Ambient	(Note 1j)	26	
Rеja	Thermal Resistance, Junction to Ambient	(Note 1k)	12	
RеJA	Thermal Resistance, Junction to Ambient	(Note 1I)	16	

NOTES:

R_{θ,JA} is determined with the device mounted on a FR-4 board using a specified pad of 2 oz copper as shown below. R_{θ,JC} is guaranteed by design while R_{θ,CA} is determined by the user's board design.

a. 42°C/W when mounted on a 1 in² pad of 2 oz copper

b. 105°C/W when mounted on a minimum pad of 2 oz copper

- c. Still air, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- d. Still air, $20.9 \times 10.4 \times 12.7$ mm Aluminum Heat Sink, minimum pad of 2 oz copper
- e. Still air, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- f. Still air, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, minimum pad of 2 oz copper
- g. 200FPM Airflow, No Heat Sink, 1 in² pad of 2 oz copper
- h. 200FPM Airflow, No Heat Sink, minimum pad of 2 oz copper
- i. 200FPM Airflow, 20.9 × 10.4 × 12.7 mm Aluminum Heat Sink, 1 in² pad of 2 oz copper
- j. 200FPM Airflow, 20.9 \times 10.4 \times 12.7 mm Aluminum Heat Sink, minimum pad of 2 oz copper
- k. 200FPM Airflow, 45.2 × 41.4 × 11.7 mm Aavid Thermalloy Part # 10-L41B-11 Heat Sink, 1 in² pad of 2 oz copper
- I. 200FPM Airflow, $45.2 \times 41.4 \times 11.7$ mm Aavid Thermalloy Part # 10–L41B–11 Heat Sink, minimum pad of 2 oz copper
- 2. Pulse Test: Pulse Width < 300 μ s, Duty cycle < 2.0%.
- 3. E_{AS} of 128 mJ is based on starting T_J = 25°C, L = 1 mH, I_{AS} = 16 A, V_{DD} = 54 V, V_{GS} = 10 V, 100% test at L = 0.3 mH, I_{AS} = 24 A.

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Figure 1. On Region Characteristics

Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

Figure 3. Normalized On Resistance vs. Junction Temperature

Figure 4. On-Resistance vs. Gate to Source Voltage

Figure 5. Transfer Characteristics

Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

TYPICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted) (continued)

Figure 7. Gate Charge Characteristics

Figure 8. Capacitance vs. Drain to Source Voltage

Figure 9. Unclamped Inductive Switching Capability

Figure 10. Maximum Continuous Drain Current vs Case Temperature

Figure 11. Forward Bias Safe Operating Area

Figure 12. Single Pulse Maximum Power Dissipation

TYPICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted) (continued)

Figure 13. Junction-to-Ambient Transient Thermal Response Curve

PACKAGE MARKING AND ORDERING INFORMATION

Device	Device Marking	Package	Reel Size	Tape Width	Quantity
FDMC86520DC	6L	DUAL COOL 33	13"	12 mm	3000 Units

PQFN8 3.30x3.30x1.00, 0.65P CASE 483AL **ISSUE B**

DATE 20 DEC 2023

NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-2009.
- ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH. MOLD FLASH OR BURRS DOES NOT EXCEED 0.10MM.

DIM	MILLIMETERS			
Diivi	MIN.	NOM.	MAX.	
Α	0.90	1.00	1.10	
A1	0.00	-	0.05	
b	0.27	0.32	0.37	
A3	O).20 REF		
D	3.20	3.30	3.40	
D2	2.17	2.27	2.37	
D3	1.40	1.55	1.70	
D4	0.63 REF			
E	3.20	3.30	3.40	
E2	1.90	2.00	2.10	
E3	2.10 2.25		2.40	
E4	(0.56 REF	:	
E5	Ú	0.20 REF		
е	(0.65 BSC	;	
e1	1.95 BSC			
e2	0.98 BSC			
L	0.30	0.40	0.50	
L4	0.29	0.39	0.49	
Z	0.52 REF			
z1	0.52 REF			

TOP VIEW

*FOR ADDITIONAL INFORMATION ON OUR PB-FREE STRATEGY AND SOLDERING DETAILS. PLEASE DOWNLOAD THE ON SEMICONDUCTOR SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

GENERIC MARKING DIAGRAM*

XX = Specific Device Code = Assembly Location

= Year W = Work Week = Assembly Lot Code *This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "■", may or may not be present. Some products may not follow the Generic Marking.

DOCUMENT NUMBER:	98AON13661G	Electronic versions are uncontrolled except when accessed directly from the Document Repositor Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	PQFN8 3.30x3.30x1.00, 0.65P		PAGE 1 OF 1	

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

onsemi, Onsemi, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA class 3 medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

 $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$

onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at

www.onsemi.com/support/sales