第3回勉強会 レジュメ

B5EB1106 酒井洋輔

タイトル: Beyond the Stars: Improving Rating Predictions using Review Text Content

著者: Gayatree Ganu, Noēmie Elhadad, Amelie Marian

掲載: 12th International Workshop on the Web and Databases · WebDB 2009 (Providence, Rhode Island, USA)

【研究概要】

ある商品 a に評点(星の数など)をつけた消費者 i は、別の商品 b にどれほどの評点をつけるだろうという予測を立てる。そして予測評点が高い商品を消費者 i に推薦するというのが、レコメンデーションの仕組みの一つである。

この研究では、評点だけを考慮していた従来の方法に、テキスト情報を加えることで、 予測精度が向上するということを示した。

1. Introduction

インターネットのますますの普及により、WEB上には大量の商品のレビューテキストデータが蓄積している。しかし余りにも膨大であるため、目当ての情報を探し当てることもまた難しくなりつつある。特に消費者が商品についてあまり知識を持っていない場合、消費者から商品についての情報を得ることは困難であるため、レコメンデーション※1が必要となってくる。

※1 レコメンデーションには

- ①協調フィルタリング…「商品 A を購入した人は商品 B を購入する傾向があるため、A を購入した人に B を薦める」。という手法。閲覧履歴、購入履歴を使用。
- ②コンテンツベースフィルタリング…商品の属性があらかじめグループ化されており、ユーザーにはそのグループ内からレコメンドする手法
- ③ ①と②のハイブリッド

という種類がある

2. データの分類と分析

【用いたデータ】

Citysearch という口コミサイトの、レストランのレビューデータ 50000 件(2006 地域はニューヨーク)

レストランの数は 5531 軒、32284 人の識別されたユーザーを含む

【文の分類(Manual)】

①6 つのカテゴリー(Food, Service, Price, Ambience 雰囲気、 Anecdotes 伝聞性, Miscellaneous その他)

②4 つの極性 (Positive, Negative, Neutral, Conflict 良いことと悪いことどっちも書いてある)

に、3400 文を手作業で分類する。

450 文を、3 人の異なる判定者によって分類してみて、**K係数** $_{2}$ でその信頼性を測る Ancdotes 以外は概ね信頼性は確認された。

※2複数の判定者の一致度を測る指標

【文の分類(Automatic)】

上記のテストデータを用いて、SVM(サポートベクトルマシン)で分類する。

方法は K-cross validation※3 を用いる。

その結果を Accuracy(正解率), Precision(適合率), Recall(再現率)で評価する

※3 K 分割交差確認法…K 個にデータを分割して、その内の一つをトレーニングデータとして使って予測を行い、残りの K-1 個のデータで結果を評価する。を K 回繰り返す方法

【レビーテキストの分析】

以下の結果が得られた

- ・文全体の 56%が positive な文であった。対して、18%が negative な文であった
- ・32%の文が Food について、17%が Service について、10%が Ambiance(雰囲気)、6.5%が price について書かれていた
- ・上記のトピック別の割合は、料理のジャンル(中華、イタリアン…)によって異なり、 例えばフレンチとイタリアンは Service についての言及が多かった
- ・Price が上がると、値段についての positive な意見が減り、negative な意見が増えた

Figure1 参照

Figure 1: Impact of price level on perception.

【文の極性と評点の関係の分析】

Positive な文、negative な文を含む割合と、評点の相関係数を計算すると、

評点~positive: 0.45

評点~negative: -0.48

また、評点が $4\sim5$ の高評価なレビューの 71%が positive な文を含んでおり、評点が $1\sim2$ の低評価なレビューの 78%が negative な文を含んでいた

以上のが、テキストデータを評点の予測、レコメンデーションに組み入れた方が良いので はないかというモチベーションとなる

3. 評点の予測

仮説:従来使われている予測評点は、他のレビューの平均点である。テキストデータから、従来の方法よりも精度の高い予測評点が作れるのではないか

評価方法:約260件のレビューを二種類抽出(Test I、Test II)

Test $I \rightarrow 12$ 件以上のレストランのレビューを書いているユーザーのレビュー

Test $II \rightarrow 5$ 件以上のレストランのレビューを書いているユーザーのレビュー

MSE (Mean Square Error)を指標として採用

テキストデータを予測評点に変換: $TextRating = \left[\frac{P}{P+ N}*4\right] + 1$

P、N→それぞれ、あるレビューに含まれる positive な文、negative な文の数

※Neutral と Conflict は有益な情報が含まれていな いとして考慮しない ①TextRatingのみを用いて予 測

②料理のジャンル+ TextRating で予測

③文のカテゴリー(Food...)+
TextRating
で予測

④文のカテゴリー+ TextRatingで重回帰分析を行 う

【①の条件】

結果は Table 2 の通りとなった。比較対象となる、評点のみを用いた予測評点は、あるレストランについての他の評点の平均値を用いた。

Predicting Star Ratings	TESTI	TEST II
Star rating	1.217	1.295
Sentiment-based text rating	1.098	1.27
Predicting Text	TEST I	TEST II
Sentiment Ratings		
Star rating Sentiment-based text rating	1.430	1.342

Table 2: Prediction MSE using the restaurant average for prediction.

ウィルコクスン検定 (マンホイットニーの U 検定) ※4 を用いて、Star rating と Sentiment-based text rating の結果に有意な差が出ているかどうかを確認する

その結果、Test I については p=0..02 で有意な差が確認できたが、Test II では p=0..12 で有意な差が確認できなかった。

表の上部は Star Rating を推定したもの、下部は Text Sentiment Ratings を推定したものとなっている。

Text Sentiment Ratings において結果が悪化したのは、文には多様性があるためであると考えられる。

※4ウィルコクスン検定(マンホイットニーの U 検定… 2 つの集団の変数を比較したい場合で、正規分布に従っていない時に用いる

【②の条件】

①では、StarRating, TextRating 共にある一軒のレストランの評点の平均点を用いた。

②では、メタデータ(料理のジャンル、ロケーション、価格帯)が同じようなレストラン全体の平均点を用いる。

結果はTable3の通りである。

StarRating と TextRating に①ほどの大きな差が見られなかった。推察される理由は本文にはフワッとしか書かれていない

Predicting Star Ratings	TEST I	TEST II
Star rating	1.030	1.117
Sentiment-based text rating	1.051	1.135
Predicting Text	TEST I	TEST II
Sentiment Ratings		
Star rating	1.245	1.233
Sentiment-based text rating	1.275	1.199

Table 3: Prediction MSE using cuisine average for prediction.

【③の条件】

小仮説:カテゴリーの中には、予測に有用なもの、そうでないものがあるのではないか

結果はTable4の通りとなった。

表の上部は、それぞれ該当のカテゴリーに属する文の極性のみ用いて評点を予測した。 ①と比べても、あまり良い結果は得られていないが、その中でも Food は比較的良い結果が 得られている。

料理に関する情報は、評点を予測する上で有用なのではないかと推測される。

表の下部は、表の上部であまり良い結果が得られなかったカテゴリーを除くと、①の条件よりも予測精度が向上することを示している。

Predicting Star Ratings	TEST I	TEST II
Food	1.215	1.308
Price	1.377	1.424
Service	1.531	1.623
Ambience	1.427	1.559
Anecdotes	1.57	1.676
Miscellaneous	1.221	1.436
All but Food	1.130	1.281
All but Price	1.096	1.279
All but Service	1.096	1.269
All but Ambience	1.115	1.264
All but Anecdotes	1.096	1.254
All but Miscellaneous	1.181	1.352

Table 4: Prediction MSE using the restaurant average for prediction, only considering some categories for the text ratings.

カテゴリー毎に予測に対する有用度の差があることが、③の条件よりわかった。 ④の条件では、重回帰分析を行うことで、カテゴリーごとの weight を明らかにすることが 目的である。

従属変数:StarRating

独立変数:カテゴリー、極性で分類した文が占める割合

StarRating = $\beta_0 + \beta_1 X_1 + \beta_2 X_2 \dots$

 $X_1 = Food\ Positive,\ X_2 = Food\ Negative\ X_3 = Service\ Positive\ ...$

結果は Table5 と Table6 の通りとなった。

Table6 を見ると、③の条件で得られた結果通り、Food の weight が大きくなっている。 Regression では結果が評点の範囲($1\sim5$)を超えてしまうため、Table5 では標準化された結果が、StarRating と比較されている(Table2 と同じもの)

Predicting Star Ratings	TEST I	TEST II
Star rating	1.217	1.295
Regression-based text rating (scaled)	1.089	1.231
Predicting Regression-based	TEST I	TEST II
Text Ratings (scaled)		
Star rating	2.680	2.461
Regression-based text rating (scaled)	2.593	2.414
Predicting Regression-based	TEST I	TEST II
Text Ratings (raw)		
Regression-based text rating (raw)	0.702	0.742

Table 5: Prediction MSE using the restaurant average for prediction, two-sentiment regression.

Regression Weights	Positive	Negative
Food	4.86	1.53
Price	1.67	1.59
Service	2.61	0.51
Ambience	2.35	2.43
Anecdotes	3.65	2.02
Miscellaneous	5.17	2.27

Table 6: Two-sentiment regression weights.

4. Personalized Recommendation

個人の嗜好に合わせたレコメンドを提案する

KNN 法(K 近傍法)を使って、ユーザーをクラスタリング(?)する。

あるユーザーがあるレストランについてレビューしていない時、その代替値として 平均値を使う。

本研究の新規性は、この代替値にテキストデータを用いることによって予測精度を上げたことにある。

5. 今後の展望

- ・個人の興味、レビュースタイルに基づいたユーザーのグループ分けをしていきたい
- ・ユーザーが自分の興味のあるカテゴリー、極性に絞ったレビューを探すのを援助したい

参考サイト

Silver Egg Technology

https://www.silveregg.co.jp/archives/blog/49