Exercise sheet 3: Sequence Alignment

Exercise 1 - Alignments

For the given examples which ones can be called alignments:

Question 1A

 $\begin{array}{c} {\tt AGTTTTTT} \\ {\tt AGGTTTTT} \end{array}$

Solution True

Question 1B

CCGTTTTTT -AGGTTTTT

Solution True

Question 1C

CCCGTTTTTTGC -CGGTTTTT

Solution False. In an alignment both strings must have the same length

Question 1D

AG--TTTTTT AG-GTTTTTT

Solution False. Gaps cannot be aligned with gaps

Exercise 2 - Hands on Needleman-Wunsch algorithm

The Needleman-Wunsch algorithm enables the calculation of the optimal pairwise sequence alignment with linear gap cost. Given the following two sequences S1, S2 and the given cost function complete the tasks A-D.

$$S1 = TACCGCGC \tag{1}$$

$$S2 = TCCGA \tag{2}$$

$$w(x,y) = \begin{cases} +1 & if \ x = `-` \lor \ y = `-` \\ -1 & if \ x = y \\ 0 & else \end{cases}$$

Question 2A Complete the provided table with the correct initialization step.

Hint1: Formulae

$$D_{0,0} = 0 (3)$$

$$D_{0,0} = 0$$

$$\forall i \le |S1| : D_{i,0} = \sum_{k=0}^{i} w(S1_i, -)$$
(4)

$$\forall j \le |S2| : D_{0,j} = \sum_{k=0}^{j} w(-, S2_j)$$
 (5)

Solution

Question 2B Using dynamic programming technique fill in all values in the matrix.

Hint1: Formulae

$$\forall \ i,j>0 \ : D_{i,j}=\min \begin{cases} D_{i-1,j-1}+w(S1_i,S2_j) \\ D_{i,j-1}+w(-,S2_j) \\ D_{i-1,j}+w(S1_i,-) \end{cases}$$

Solution

Question 2C Using the matrix from 1B) find the optimal alignment of the given sequences.

Solution

TACGCGC | | | | | : T-C-CGA

Question 2D Find an optimal alignment of the given sequences, while assuming that the first G character in each sequence has to be matched/aligned.

Hint1: You can split the alignment at the G and treat it as two separate alignments

Solution

TACGCGC TACGCGC TACGCGC |:|| : || : |:|| : TCCGA-- TCCG-A- TCCG-A

Exercise 3 - Hirschberg recursion

Which statements about Needleman-Wunsch and the Hirschberg recursion are True and which are False.

Question 3
\square Hirschberg computes global alignment in $O(n^2)$ space. \square Needleman-Wunsch computes global alignment in $O(n^2)$ time. \square The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. \square Hirschberg computes global alignment in $O(n)$ time.
Solution
 ☐ Hirschberg computes global alignment in O(n²) space. ☑ Needleman-Wunsch computes global alignment in O(n²) time. ☑ The Hirschberg recursion is a space optimized version of the Needleman-Wunsch algorithm. ☐ Hirschberg computes global alignment in O(n) time.
Exercise 4 - Programming assignment
Programming assignments are available via Github Classroom and contain automatic tests.
We recommend doing these assignments since they will help you to further understand this topic.

Access the Github Classroom link: Programming Assignment: Sheet 03.