The group G is isomorphic to the group labelled by [34, 2] in the Small Groups library. Ordinary character table of $G \cong C34$:

1a	17a	17b	17c	17d	17e	17 <i>f</i>	17g	17h	17i	17j	17k	17l	17m	17n	170	17p	2a 34	a = 3	4b	34c	34d	34e	34f	34g	34h	34i	34j	34k	34l	34m	34n	340	34p
χ_1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-1 -	1 –	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1
χ_3 1	E(17)	$E(17)^{2}$	$E(17)^{3}$	$E(17)^4$	$E(17)^{5}$	$E(17)^{6}$	$E(17)^{7}$	$E(17)^{8}$	$E(17)^9$	$E(17)^{10}$	$E(17)^{11}$	$E(17)^{12}$	$E(17)^{13}$	$E(17)^{14}$	$E(17)^{15}$	$E(17)^{16}$	1 E(E(1)	$(17)^2$	$E(17)^{3}$	$E(17)^4$	$E(17)^{5}$	$E(17)^{6}$	$E(17)^{7}$	$E(17)^{8}$	$E(17)^9$	$E(17)^{10}$	$E(17)^{11}$	$E(17)^{12}$	$E(17)^{13}$	$E(17)^{14}$	$E(17)^{15}$	$E(17)^{16}$
χ_4 1	E(17)	$E(17)^{2}$	$E(17)^{3}$	$E(17)^4$	$E(17)^{5}$	$E(17)^{6}$	$E(17)^{7}$	$E(17)^{8}$	$E(17)^9$	$E(17)^{10}$	$E(17)^{11}$	$E(17)^{12}$	$E(17)^{13}$	$E(17)^{14}$	$E(17)^{15}$	$E(17)^{16}$	-1 $-E$	(17) -E($(17)^2$ -	$-E(17)^3$	$-E(17)^4$	$-E(17)^5$	$-E(17)^6$	$-E(17)^7$	$-E(17)^8$	$-E(17)^9$	$-E(17)^{10}$	$-E(17)^{11}$	$-E(17)^{12}$	$-E(17)^{13}$	$-E(17)^{14}$	$-E(17)^{15}$	$-E(17)^{16}$
χ_5 1	$E(17)^2$	$E(17)^4$	$E(17)^{6}$	$E(17)^{8}$	$E(17)^{10}$	$E(17)^{12}$	$E(17)^{14}$	$E(17)^{16}$	E(17)	$E(17)^{3}$	$E(17)^{5}$	$E(17)^{7}$	$E(17)^9$	$E(17)^{11}$	$E(17)^{13}$	$E(17)^{15}$	1 E(1	$F(1)^2$ $E(1)^2$	$(17)^4$	$E(17)^{6}$	$E(17)^{8}$	$E(17)^{10}$	$E(17)^{12}$	$E(17)^{14}$	$E(17)^{16}$	E(17)	$E(17)^{3}$	$E(17)^{5}$	$E(17)^{7}$	$E(17)^9$	$E(17)^{11}$	$E(17)^{13}$	$E(17)^{15}$
χ_6 1	$E(17)^2$	$E(17)^4$	$E(17)^{6}$	$E(17)^{8}$	$E(17)^{10}$	$E(17)^{12}$	$E(17)^{14}$	$E(17)^{16}$	E(17)	$E(17)^{3}$	$E(17)^{5}$	$E(17)^{7}$	$E(17)^9$	$E(17)^{11}$	$E(17)^{13}$	$E(17)^{15}$	-1 $-E($	$(17)^2 -E($	$(17)^4$ -	$-E(17)^6$	$-E(17)^8$	$-E(17)^{10}$	$-E(17)^{12}$	$-E(17)^{14}$	$-E(17)^{16}$	-E(17)	$-E(17)^3$	$-E(17)^5$	$-E(17)^7$	$-E(17)^9$	$-E(17)^{11}$	$-E(17)^{13}$	$-E(17)^{15}$
χ_7 1	$E(17)^{3}$	$E(17)^{6}$	$E(17)^9$	$E(17)^{12}$	$E(17)^{15}$	E(17)	$E(17)^4$	$E(17)^{7}$	$E(17)^{10}$	$E(17)^{13}$	$E(17)^{16}$	$E(17)^2$	$E(17)^{5}$	$E(17)^{8}$	$E(17)^{11}$	$E(17)^{14}$	1 E(1	$(7)^3$ $E(1)$	$(17)^6$	$E(17)^9$	$E(17)^{12}$	$E(17)^{15}$	E(17)	$E(17)^4$	$E(17)^{7}$	$E(17)^{10}$	$E(17)^{13}$	$E(17)^{16}$	$E(17)^2$	$E(17)^{5}$	$E(17)^{8}$	$E(17)^{11}$	$E(17)^{14}$
$ \chi_8 $ 1	$E(17)^{3}$	$E(17)^{6}$	$E(17)^9$	$E(17)^{12}$	$E(17)^{15}$	E(17)	$E(17)^4$	$E(17)^{7}$	$E(17)^{10}$	$E(17)^{13}$	$E(17)^{16}$	$E(17)^2$	$E(17)^{5}$	$E(17)^{8}$	$E(17)^{11}$	$E(17)^{14}$	-1 $-E($	$(17)^3 -E($	$(17)^6$ -	$-E(17)^9$	$-E(17)^{12}$	$-E(17)^{15}$	-E(17)	$-E(17)^4$	$-E(17)^7$	$-E(17)^{10}$	$-E(17)^{13}$	$-E(17)^{16}$	$-E(17)^2$	$-E(17)^5$	$-E(17)^8$	$-E(17)^{11}$	$-E(17)^{14}$
χ_9 1	$E(17)^4$	$E(17)^{8}$	$E(17)^{12}$	$E(17)^{16}$	$E(17)^{3}$	$E(17)^{7}$	$E(17)^{11}$	$E(17)^{15}$	$E(17)^{2}$	$E(17)^{6}$	$E(17)^{10}$	$E(17)^{14}$	E(17)	$E(17)^{5}$	$E(17)^9$	$E(17)^{13}$	1 E(1	$F(1)^4$	$(17)^8$	$E(17)^{12}$	$E(17)^{16}$	$E(17)^{3}$	$E(17)^{7}$	$E(17)^{11}$	$E(17)^{15}$	$E(17)^2$	$E(17)^{6}$	$E(17)^{10}$	$E(17)^{14}$	E(17)	$E(17)^{5}$	$E(17)^9$	$E(17)^{13}$
χ_{10} 1	$E(17)^4$	$E(17)^{8}$	$E(17)^{12}$	$E(17)^{16}$	$E(17)^{3}$	$E(17)^{7}$	$E(17)^{11}$	$E(17)^{15}$	$E(17)^{2}$	$E(17)^{6}$	$E(17)^{10}$	$E(17)^{14}$	E(17)	$E(17)^{5}$	$E(17)^9$	$E(17)^{13}$	-1 $-E($	$(17)^4 -E($	$(17)^8$ -	$-E(17)^{12}$	$-E(17)^{16}$	$-E(17)^3$	$-E(17)^7$	$-E(17)^{11}$	$-E(17)^{15}$	$-E(17)^2$	$-E(17)^6$	$-E(17)^{10}$	$-E(17)^{14}$	-E(17)	$-E(17)^5$	$-E(17)^9$	$-E(17)^{13}$
$ \chi_{11} $ 1	$E(17)^5$	$E(17)^{10}$	$E(17)^{15}$	$E(17)^{3}$	$E(17)^{8}$	$E(17)^{13}$	E(17)	$E(17)^{6}$	$E(17)^{11}$	$E(17)^{16}$	$E(17)^4$	$E(17)^9$	$E(17)^{14}$	$E(17)^2$	$E(17)^{7}$	$E(17)^{12}$	1 E(1	$(7)^5$ $E(1)$	$(7)^{10}$	$E(17)^{15}$	$E(17)^{3}$	$E(17)^{8}$	$E(17)^{13}$	E(17)	$E(17)^{6}$	$E(17)^{11}$	$E(17)^{16}$	$E(17)^4$	$E(17)^9$	$E(17)^{14}$	$E(17)^2$	$E(17)^{7}$	$E(17)^{12}$
χ_{12} 1	$E(17)^{5}$	$E(17)^{10}$	$E(17)^{15}$	$E(17)^3$	$E(17)^{8}$	$E(17)^{13}$	E(17)	$E(17)^{6}$	$E(17)^{11}$	$E(17)^{16}$	$E(17)^4$	$E(17)^9$	$E(17)^{14}$	$E(17)^2$	$E(17)^{7}$	$E(17)^{12}$	-1 $-E($	$(17)^5 - E($	$17)^{10}$ -	$-E(17)^{15}$	$-E(17)^3$	$-E(17)^8$	$-E(17)^{13}$	-E(17)	$-E(17)^6$	$-E(17)^{11}$	$-E(17)^{16}$	$-E(17)^4$	$-E(17)^9$	$-E(17)^{14}$	$-E(17)^2$	$-E(17)^{7}$	$-E(17)^{12}$
χ_{13} 1	$E(17)^{6}$	$E(17)^{12}$	E(17)	$E(17)^{7}$	$E(17)^{13}$	$E(17)^{2}$	$E(17)^{8}$	$E(17)^{14}$	$E(17)^{3}$	$E(17)^9$	$E(17)^{15}$	$E(17)^4$	$E(17)^{10}$	$E(17)^{16}$	$E(17)^{5}$	$E(17)^{11}$	1 E(1	$F(1)^{6}$	$(7)^{12}$	E(17)	$E(17)^{7}$	$E(17)^{13}$	$E(17)^{2}$	$E(17)^{8}$	$E(17)^{14}$	$E(17)^{3}$	$E(17)^9$	$E(17)^{15}$	$E(17)^4$	$E(17)^{10}$	$E(17)^{16}$	$E(17)^{5}$	$E(17)^{11}$
χ_{14} 1	$E(17)^{6}$	$E(17)^{12}$	E(17)	$E(17)^{7}$	$E(17)^{13}$	$E(17)^{2}$	$E(17)^{8}$	$E(17)^{14}$	$E(17)^{3}$	$E(17)^9$	$E(17)^{15}$	$E(17)^4$	$E(17)^{10}$	$E(17)^{16}$	$E(17)^{5}$	$E(17)^{11}$	-1 $-E($	-E($(17)^{12}$	-E(17)	$-E(17)^7$	$-E(17)^{13}$	$-E(17)^2$	$-E(17)^8$	$-E(17)^{14}$	$-E(17)^3$	$-E(17)^9$	$-E(17)^{15}$	$-E(17)^4$	$-E(17)^{10}$	$-E(17)^{16}$	$-E(17)^5$	$-E(17)^{11}$
χ_{15} 1	$E(17)^{7}$	$E(17)^{14}$	$E(17)^4$	$E(17)^{11}$	E(17)	$E(17)^{8}$	$E(17)^{15}$	$E(17)^{5}$	$E(17)^{12}$	$E(17)^2$	$E(17)^9$	$E(17)^{16}$	$E(17)^{6}$	$E(17)^{13}$	$E(17)^{3}$	$E(17)^{10}$	1 E(1	$7)^7$ $E(1$	$(7)^{14}$	$E(17)^4$	$E(17)^{11}$	E(17)	$E(17)^{8}$	$E(17)^{15}$	$E(17)^{5}$	$E(17)^{12}$	$E(17)^{2}$	$E(17)^9$	$E(17)^{16}$	$E(17)^{6}$	$E(17)^{13}$	$E(17)^{3}$	$E(17)^{10}$
χ_{16} 1	$E(17)^{7}$	$E(17)^{14}$	$E(17)^4$	$E(17)^{11}$	E(17)	$E(17)^{8}$	$E(17)^{15}$	$E(17)^5$	$E(17)^{12}$	$E(17)^2$	$E(17)^9$	$E(17)^{16}$	$E(17)^{6}$	$E(17)^{13}$	$E(17)^3$	$E(17)^{10}$	-1 $-E($	$(17)^7 - E($	$(17)^{14}$ -	$-E(17)^4$	$-E(17)^{11}$	-E(17)	$-E(17)^8$	$-E(17)^{15}$	$-E(17)^5$	$-E(17)^{12}$	$-E(17)^2$	$-E(17)^9$	$-E(17)^{16}$	$-E(17)^6$	$-E(17)^{13}$	$-E(17)^3$	$-E(17)^{10}$
$ \chi_{17} $ 1	$E(17)^{8}$	$E(17)^{16}$	$E(17)^{7}$	$E(17)^{15}$	$E(17)^{6}$	$E(17)^{14}$	$E(17)^{5}$	$E(17)^{13}$	$E(17)^4$	$E(17)^{12}$	$E(17)^3$	$E(17)^{11}$	$E(17)^2$	$E(17)^{10}$	E(17)	$E(17)^9$	1 E(1	$(7)^8 E(1)$	$(7)^{16}$	$E(17)^{7}$	$E(17)^{15}$	$E(17)^{6}$	$E(17)^{14}$	$E(17)^{5}$	$E(17)^{13}$	$E(17)^4$	$E(17)^{12}$	$E(17)^3$	$E(17)^{11}$	$E(17)^2$	$E(17)^{10}$	E(17)	$E(17)^9$
χ_{18} 1	$E(17)^{8}$	$E(17)^{16}$	$E(17)^{7}$	$E(17)^{15}$	$E(17)^{6}$	$E(17)^{14}$	$E(17)^{5}$	$E(17)^{13}$	$E(17)^4$	$E(17)^{12}$	$E(17)^3$	$E(17)^{11}$	$E(17)^2$	$E(17)^{10}$	E(17)	$E(17)^9$	-1 $-E($	$(17)^8 - E($	$(17)^{16}$ -	$-E(17)^7$	$-E(17)^{15}$	$-E(17)^6$	$-E(17)^{14}$	$-E(17)^5$	$-E(17)^{13}$	$-E(17)^4$	$-E(17)^{12}$	$-E(17)^3$	$-E(17)^{11}$	$-E(17)^2$	$-E(17)^{10}$		$-E(17)^9$
$\chi_{19} \mid 1$	$E(17)^9$	E(17)	$E(17)^{10}$	$E(17)^2$	$E(17)^{11}$	$E(17)^{3}$	$E(17)^{12}$	$E(17)^4$	$E(17)^{13}$	$E(17)^{5}$	$E(17)^{14}$	$E(17)^6$	$E(17)^{15}$	$E(17)^{7}$	$E(17)^{16}$	$E(17)^8$	1 E(1	$E(1)^{9}$	17)	$E(17)^{10}$	$E(17)^2$	$E(17)^{11}$	$E(17)^{3}$	$E(17)^{12}$	$E(17)^4$	$E(17)^{13}$	$E(17)^{5}$	$E(17)^{14}$	$E(17)^{6}$	$E(17)^{15}$	$E(17)^{7}$	$E(17)^{16}$	$E(17)^8$
χ_{20} 1	$E(17)^9$	E(17)	$E(17)^{10}$	$E(17)^2$	$E(17)^{11}$	$E(17)^3$	$E(17)^{12}$	$E(17)^4$	$E(17)^{13}$	$E(17)^5$	$E(17)^{14}$	$E(17)^6$	$E(17)^{15}$	$E(17)^{7}$	$E(17)^{16}$	$E(17)^8$	-1 $-E($	$(-17)^9 - E$	- (17) $-$	$-E(17)^{10}$	$-E(17)^2$	$-E(17)^{11}$	$-E(17)^3$	$-E(17)^{12}$	$-E(17)^4$	$-E(17)^{13}$	$-E(17)^5$	$-E(17)^{14}$	$-E(17)^6$	$-E(17)^{15}$	$-E(17)^7$	$-E(17)^{16}$	$-E(17)^8$
χ_{21} 1	$E(17)^{10}$	$E(17)^{3}$	$E(17)^{13}$	$E(17)^{6}$	$E(17)^{16}$	$E(17)^9$	$E(17)^2$	$E(17)^{12}$	$E(17)^5$	$E(17)^{15}$	$E(17)^{8}$	E(17)	$E(17)^{11}$	$E(17)^4$	$E(17)^{14}$	$E(17)^{7}$	1 E(1	$E(1)^{10}$	$(17)^3$	$E(17)^{13}$	$E(17)^{6}$	$E(17)^{16}$	$E(17)^9$	$E(17)^2$	$E(17)^{12}$	$E(17)^{5}$	$E(17)^{15}$	$E(17)^{8}$	E(17)	$E(17)^{11}$	$E(17)^4$	$E(17)^{14}$	$E(17)^{7}$
χ_{22} 1	$E(17)^{10}$	$E(17)^3$	$E(17)^{13}$	$E(17)^{6}$	$E(17)^{16}$	$E(17)^9$	$E(17)^2$	$E(17)^{12}$	$E(17)^5$	$E(17)^{15}$	$E(17)^{8}$	E(17)	$E(17)^{11}$	$E(17)^4$	$E(17)^{14}$	$E(17)^{7}$	-1 $-E(1)$	$-E(-7)^{10}$ $-E(-7)^{10}$	$(17)^3$ -	$-E(17)^{13}$	$-E(17)^6$	$-E(17)^{16}$	$-E(17)^9$	$-E(17)^2$	$-E(17)^{12}$	$-E(17)^5$	$-E(17)^{15}$	$-E(17)^8$	-E(17)	$-E(17)^{11}$	$-E(17)^4$	$-E(17)^{14}$	$-E(17)^7$
χ_{23} 1	$E(17)^{11}$	$E(17)^{5}$	$E(17)^{16}$	$E(17)^{10}$	$E(17)^4$	$E(17)^{15}$	$E(17)^9$	$E(17)^3$	$E(17)^{14}$	$E(17)^8$	$E(17)^2$	$E(17)^{13}$	$E(17)^{7}$	E(17)	$E(17)^{12}$	$E(17)^{6}$	1 E(1	$E(1)^{11}$	$(17)^5$	$E(17)^{16}$	$E(17)^{10}$	$E(17)^4$	$E(17)^{15}$	$E(17)^9$	$E(17)^3$	$E(17)^{14}$	$E(17)^{8}$	$E(17)^2$	$E(17)^{13}$	$E(17)^{7}$	E(17)	$E(17)^{12}$	$E(17)^6$
$\chi_{24} \mid 1$	$E(17)^{11}$	$E(17)^{5}$	$E(17)^{16}$	$E(17)^{10}$	$E(17)^4$	$E(17)^{15}$	$E(17)^9$	$E(17)^3$	$E(17)^{14}$	$E(17)^8$	$E(17)^2$	$E(17)^{13}$	$E(17)^{7}$	E(17)	$E(17)^{12}$	$E(17)^{6}$	-1 $-E(1)$	$-E(-7)^{11}$ $-E(-7)^{11}$	$(17)^5$ -	$-E(17)^{16}$	$-E(17)^{10}$	$-E(17)^4$	$-E(17)^{15}$	$-E(17)^9$	$-E(17)^3$	$-E(17)^{14}$	$-E(17)^8$	$-E(17)^2$	$-E(17)^{13}$	$-E(17)^7$	-E(17)	$-E(17)^{12}$	$-E(17)^6$
χ_{25} 1	$E(17)^{12}$	$E(17)^{7}$	$E(17)^2$	$E(17)^{14}$	$E(17)^9$	$E(17)^4$	$E(17)^{16}$	$E(17)^{11}$	$E(17)^{6}$	E(17)	$E(17)^{13}$	$E(17)^{8}$	$E(17)^3$	$E(17)^{15}$	$E(17)^{10}$	$E(17)^{5}$	1 E(1	$E(1)^{12}$	$(17)^7$	$E(17)^2$	$E(17)^{14}$	$E(17)^9$	$E(17)^4$	$E(17)^{16}$	$E(17)^{11}$	$E(17)^{6}$	E(17)	$E(17)^{13}$	$E(17)^{8}$	$E(17)^3$	$E(17)^{15}$	$E(17)^{10}$	$E(17)^5$
χ_{26} 1	$E(17)^{12}$	$E(17)^{7}$	$E(17)^2$	$E(17)^{14}$	$E(17)^9$	$E(17)^4$	$E(17)^{16}$	$E(17)^{11}$	$E(17)^{6}$	E(17)	$E(17)^{13}$	$E(17)^{8}$	$E(17)^3$	$E(17)^{15}$	$E(17)^{10}$	$E(17)^{5}$	-1 $-E(1)$	$-E(-7)^{12}$ $-E(-7)^{12}$	$(17)^7$ -	$-E(17)^2$	$-E(17)^{14}$	$-E(17)^9$	$-E(17)^4$	$-E(17)^{16}$	$-E(17)^{11}$	$-E(17)^6$	-E(17)	$-E(17)^{13}$	$-E(17)^8$	$-E(17)^3$	$-E(17)^{15}$	$-E(17)^{10}$	$-E(17)^5$
χ_{27} 1	$E(17)^{13}$	$E(17)^9$	$E(17)^{5}$	E(17)	$E(17)^{14}$	$E(17)^{10}$	$E(17)^{6}$	$E(17)^2$	$E(17)^{15}$	$E(17)^{11}$	$E(17)^{7}$	$E(17)^3$	$E(17)^{16}$	$E(17)^{12}$	$E(17)^{8}$	$E(17)^4$	1 E(1	$E(1)^{13}$	$(17)^9$	$E(17)^5$	E(17)	$E(17)^{14}$	$E(17)^{10}$	$E(17)^{6}$	$E(17)^2$	$E(17)^{15}$	$E(17)^{11}$	$E(17)^{7}$	$E(17)^{3}$	$E(17)^{16}$	$E(17)^{12}$	$E(17)^{8}$	$E(17)^4$
$ \chi_{28} $ 1	$E(17)^{13}$	$E(17)^9$	$E(17)^{5}$	E(17)	$E(17)^{14}$	$E(17)^{10}$	$E(17)^{6}$	$E(17)^2$	$E(17)^{15}$	$E(17)^{11}$	$E(17)^{7}$	$E(17)^3$	$E(17)^{16}$	$E(17)^{12}$	$E(17)^{8}$	$E(17)^4$	-1 $-E(1)$	$-E(-7)^{13}$	$(17)^9$ -	$-E(17)^5$	-E(17)	$-E(17)^{14}$	$-E(17)^{10}$	$-E(17)^6$	$-E(17)^2$	$-E(17)^{15}$	$-E(17)^{11}$	$-E(17)^7$	$-E(17)^3$	$-E(17)^{16}$	$-E(17)^{12}$	$-E(17)^8$	$-E(17)^4$
χ_{29} 1	$E(17)^{14}$	$E(17)^{11}$	$E(17)^{8}$	$E(17)^5$	$E(17)^2$	$E(17)^{16}$	$E(17)^{13}$		$E(17)^{7}$	$E(17)^4$	E(17)	$E(17)^{15}$	$E(17)^{12}$	$E(17)^9$	$E(17)^{6}$	$E(17)^3$	1 $E(1)$	$E(1)^{14}$	$(7)^{11}$	$E(17)^{8}$	$E(17)^{5}$	$E(17)^2$	$E(17)^{16}$	$E(17)^{13}$	$E(17)^{10}$	$E(17)^{7}$	$E(17)^4$	E(17)	$E(17)^{15}$	$E(17)^{12}$	$E(17)^9$	$E(17)^{6}$	$E(17)^3$
χ_{30} 1	$E(17)^{14}$	$E(17)^{11}$	$E(17)^{8}$	$E(17)^{5}$	$E(17)^2$	$E(17)^{16}$	$E(17)^{13}$	$E(17)^{10}$	$E(17)^{7}$	$E(17)^4$	E(17)	$E(17)^{15}$	$E(17)^{12}$	$E(17)^9$	$E(17)^{6}$	$E(17)^3$	-1 $-E(1)$	$(-7)^{14}$ $-E($	$(17)^{11}$ -	$-E(17)^8$	$-E(17)^5$	$-E(17)^2$	$-E(17)^{16}$	$-E(17)^{13}$	$-E(17)^{10}$	$-E(17)^7$	$-E(17)^4$	-E(17)	$-E(17)^{15}$	$-E(17)^{12}$	$-E(17)^9$	$-E(17)^{6}$	$-E(17)^3$
χ_{31} 1	$E(17)^{15}$	$E(17)^{13}$	$E(17)^{11}$	$E(17)^9$	$E(17)^{7}$	$E(17)^{5}$	$E(17)^3$		$E(17)^{16}$		$E(17)^{12}$	$E(17)^{10}$	$E(17)^{8}$	$E(17)^{6}$	$E(17)^4$	$E(17)^2$	1 $E(1)$	$E(1)^{15}$	$7)^{13}$	$E(17)^{11}$	$E(17)^{9}$	$E(17)^{7}$	$E(17)^{5}$	$E(17)^3$	E(17)	$E(17)^{16}$	$E(17)^{14}$	$E(17)^{12}$	$E(17)^{10}$	$E(17)^{8}$	$E(17)^{6}$	$E(17)^4$	$E(17)^{2}$
χ_{32} 1	$E(17)^{15}$	$E(17)^{13}$	$E(17)^{11}$	$E(17)^9$	$E(17)^{7}$	$E(17)^{5}$	$E(17)^3$	E(17)	$E(17)^{16}$	$E(17)^{14}$	$E(17)^{12}$	$E(17)^{10}$	$E(17)^{8}$	$E(17)^{6}$	$E(17)^4$	$E(17)^2$	-1 $-E(1)$	$(-7)^{15}$ $-E($	$(17)^{13}$ –	$-E(17)^{11}$	$-E(17)^9$	$-E(17)^7$	$-E(17)^5$	$-E(17)^3$	-E(17)	$-E(17)^{16}$	$-E(17)^{14}$	$-E(17)^{12}$	$-E(17)^{10}$	$-E(17)^{8}$	$-E(17)^{6}$	$-E(17)^4$	$-E(17)^2$
χ_{33} 1	$E(17)^{16}$	$E(17)^{15}$	$E(17)^{14}$	$E(17)^{13}$	$E(17)^{12}$	$E(17)^{11}$	$E(17)^{10}$	$E(17)^{9}$	$E(17)^{8}$	$E(17)^7$	$E(17)^{6}$	$E(17)^5$	$E(17)^4$	$E(17)^3$	$E(17)^{2}$	E(17)	1 $E(1)$	$E(1)^{16}$ $E(1)^{16}$	$7)^{15}$	$E(17)^{14}$	$E(17)^{13}$	$E(17)^{12}$	$E(17)^{11}$	$E(17)^{10}$	$E(17)^{9}$	$E(17)^{8}$	$E(17)^{7}$	$E(17)^{6}$	$E(17)^{5}$	$E(17)^{4}$	$E(17)^{3}$	$E(17)^{2}$	E(17)
χ_{34} 1	$E(17)^{16}$	$E(17)^{15}$	$E(17)^{14}$	$E(17)^{13}$	$E(17)^{12}$	$E(17)^{11}$	$E(17)^{10}$	$E(17)^9$	$E(17)^{8}$	$E(17)^{7}$	$E(17)^{6}$	$E(17)^{5}$	$E(17)^4$	$E(17)^3$	$E(17)^2$	E(17)	-1 $-E(1)$	$(-7)^{16} - E($	$(17)^{15}$ -	$-E(17)^{14}$	$-E(17)^{13}$	$-E(17)^{12}$	$-E(17)^{11}$	$-E(17)^{10}$	$-E(17)^9$	$-E(17)^8$	$-E(17)^{7}$	$-E(17)^6$	$-E(17)^5$	$-E(17)^4$	$-E(17)^3$	$-E(17)^2$	-E(17)

Trivial source character table of $G \cong C34$ at $p = 17$:			
Normalisers N_i	N_1	N_2	
p-subgroups of G up to conjugacy in G	P_1	P_2	
Representatives $n_j \in N_i$	1a 2a	1a 2	a
$\boxed{1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 0 \cdot \chi_{12} + 1 \cdot \chi_{13} + 0 \cdot \chi_{14} + 1 \cdot \chi_{15} + 0 \cdot \chi_{21} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 1 \cdot \chi_{23} + 0 \cdot \chi_{24} + 1 \cdot \chi_{25} + 0 \cdot \chi_{26} + 1 \cdot \chi_{27} + 0 \cdot \chi_{30} + 1 \cdot \chi_{31} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 1 \cdot \chi_{33} + 0 \cdot \chi_{34}}$	17 17	0 (J
$ \left[0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12} + 0 \cdot \chi_{13} + 1 \cdot \chi_{16} + 0 \cdot \chi_{17} + 1 \cdot \chi_{18} + 0 \cdot \chi_{19} + 1 \cdot \chi_{20} + 0 \cdot \chi_{21} + 1 \cdot \chi_{22} + 0 \cdot \chi_{23} + 1 \cdot \chi_{24} + 0 \cdot \chi_{25} + 1 \cdot \chi_{26} + 0 \cdot \chi_{27} + 1 \cdot \chi_{28} + 0 \cdot \chi_{29} + 1 \cdot \chi_{30} + 0 \cdot \chi_{31} + 1 \cdot \chi_{32} + 0 \cdot \chi_{33} + 1 \cdot \chi_{34} \right] $	17 -17	0 (J
$1 \cdot \chi_{1} + 0 \cdot \chi_{2} + 0 \cdot \chi_{3} + 0 \cdot \chi_{4} + 0 \cdot \chi_{5} + 0 \cdot \chi_{6} + 0 \cdot \chi_{7} + 0 \cdot \chi_{8} + 0 \cdot \chi_{9} + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{23} + 0 \cdot \chi_{24} + 0 \cdot \chi_{25} + 0 \cdot \chi_{26} + 0 \cdot \chi_{27} + 0 \cdot \chi_{28} + 0 \cdot \chi_{29} + 0 \cdot \chi_{30} + 0 \cdot \chi_{31} + 0 \cdot \chi_{32} + 0 \cdot \chi_{33} + 0 \cdot \chi_{34}$	1 1	1 !	1
$\boxed{0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{13} + 0 \cdot \chi_{14} + 0 \cdot \chi_{15} + 0 \cdot \chi_{16} + 0 \cdot \chi_{17} + 0 \cdot \chi_{18} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 \cdot \chi_{22} + 0 \cdot \chi_{21} + 0 \cdot \chi_{22} + 0 $	1 -1	1 -	-1

 $P_1 = Group([()]) \cong 1$

 $P_2 = Group([(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)]) \cong C17$

 $N_1 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)]) \cong C34$ $N_2 = Group([(1,2), (3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)]) \cong C34$