Formulas de Estadística Inferencial (MAT302)

Leonardo H. Añez Vladimirovna

20 de octubre de 2018

1. Variables Aleatorias

1.1. Definiciones

1.1.1. Discretas

Notación: P(A), P(X = x), f(x).

1.
$$p(x) \ge 0; \forall x \in \mathbb{R}$$

$$2. \sum_{x_i \in Rec_x} p(x_i) = 1$$

3.
$$\sum_{i=1}^{n} p(x_i) = 1$$

4.
$$\sum_{i=1}^{\infty} p(x_i) = 1$$

1.2. Propiedades

1.2.1. Discreta

1.
$$0 \le F(x) \le 1, \forall x \in \mathbb{R}$$

2.
$$F(-\infty) = 0$$

3.
$$F(+\infty) = 1$$

4.
$$P(X \le a) = F(a)$$

5.
$$P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

6.
$$P(X < a) = \begin{cases} F(a-1); a \in \mathbb{Z} \\ F(\llbracket x \rrbracket); a \notin \mathbb{Z} \end{cases}$$

7.
$$P(X \le -a) = 1 - P(x \le a) = 1 - F(a)$$

8.
$$P(a < x < b) = F(b) - F(a)$$

9.
$$P(X \le x \le) = F(b) - F(a) + P(X = a)$$

10.
$$P(a < x < b) = F(b) - F(a) - P(X = b)$$

11.
$$P(X = x_i) = F(x_i) - F(x_{i-1})$$

1.3. Esperanza

1.1.2. Continuas

Notación: $F(x), P(X \le x)$.

1.
$$f(x) \ge 0; \forall x \in \mathbb{R}$$

$$2. \int_{-\infty}^{+\infty} f(x)dx = 1$$

3.
$$P(a \le x \le b) = \int_a^b f(x)dx = 1$$

1.2.2. Continua

1.
$$0 < F(x) < 1, \forall x \in \mathbb{R}$$

2.
$$F(-\infty) = 0$$

3.
$$F(+\infty) = 1$$

4.
$$P(X \le a) = P(X < a) = F(a)$$

5.
$$P(X > a) = 1 - P(X \le a) = 1 - F(a)$$

6.
$$P(X \ge a) = 1 - P(X < a) = 1 - F(a)$$

7.
$$P(X < -a) = 1 - P(X < a) = 1 - F(a)$$

8.
$$P(a < X \le b) = P(a \le X \le b) = P(a < X < b) = F(b) - F(a)$$

$$9. \ f(x) = \frac{dF(x)}{dx}$$

1.3.1. V.A.s Discretas

 $E(x) = \int_{-\infty}^{+\infty} x f(x) dx$

1.3.3. Propiedades

 \bigstar a y b constantes.

1.
$$E(a) = a$$

2.
$$E(x \pm a) = E(x) \pm a$$

3.
$$E(ax) = aE(x)$$

4.
$$E(ax \pm b) = aE(x) \pm b$$

X v.a. con función f:

Varianza

1.4.1. V.A.s Discretas

1.4.

$$E(g(x)) = \mu_{g(x)} = \sum_{x} g(x) \cdot f(x)$$
 $E(x) = \int_{-\infty}^{+\infty} g(x) \cdot f(x) dx$

 $E(x) = \mu = \mu_x = \sum_{x} x \cdot p(x)$

X v.a. con función f:

1.4.2. V.A.s Continua

1.4.3. Propiedades

$$V(x) = \sigma^2 = E(x - \mu)^2$$
$$= \sum (x - \mu)^2 f(x)$$

$$V(x) = \sigma^2 = E(x - \mu)^2$$

$$= \sum_{x} (x - \mu)^2 f(x)$$

$$V(x) = \sigma^2 = E(x - \mu)^2$$

$$= \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

$$V(x) = \sigma^2 = E(x - \mu)^2$$

$$= \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$
3. $V(ax) = aV(x)$
4. $V(ax \pm b) = a^2 V(x) \pm b$

1.
$$V(x) \ge 0$$

2.
$$V(a) = 0$$

3.
$$V(ax) = aV(x)$$

4.
$$V(ax \pm b) = a^2V(x) \pm b^2$$

5.
$$V(x) = E(x^2) - [E(x)]^2$$

1.5. Función de Probabilidad Conjunta

1.5.1. Función de Cuantía Conjunta

1.
$$P(x,y) = P(X = x, Y = y) \ge 0$$

2.
$$\sum_{x} \sum_{y} P(x, y) = 1$$

3.
$$P((x,y) \in A) = \sum_{A} \sum_{A} P(x,y)$$

Distribuciones Marginales 1.6.

1.7. Covarianza

1.8. Resultados Importantes

2. Distribuciones

1.5.2. Función de Densidad Conjunta