Neural Network & Fuzzy Logic Paper Presentation

Hand Gesture Recognition

Using an Adapted CNN with Data Augmentation

Hand Gesture Recognition Challenges

- 1. Complexity of hand gesture structures
- 2. Differences in hand sizes and color
- 3. Differences in hand postures
- 4. Variation of light and background
- 5. Variation in gesture
- 6. Observability of hand

Previous Method (Classical Vision Algorithm)

- 1. Extract Features
- 2. Apply Machine Learning Classifier

Deep Learning Algorithm Advantage

- 1. Ability to extract robust and significant features of input via several nonlinear hidden layers.
- 2. Merge multiple extracted features efficiently.
- 3. Prevent overfitting (eg:- dropout).

Convolutional Neural Network

Primarily used for image classification, Objects detections, recognition faces etc

1. 3 Layers

- a. Convolutional layer
- b. Sub sampling or pooling layer
- c. Fully connected layer

2. Convolutional layers are followed by pooling layers

- a. Pooling layers could be maximum or average function
- b. Reduce size of features and decrease compilation time

3. Features extracted are hierarchical

- a. Bottom level layers:- low level features
- b. High level layers: Abstract information, features useful for classification

API's and Libraries used:

- 1. Keras API of Tensorflow
- 2. Sklearn
- 3. Matplotlib
- 4. Google.colab

Platform used for processing - Google Colab

Dataset

- 1. Number of Classes = 29
 - a. 26 alphabets (A Z)
 - b. Space, Del, Nothing
- 2. 1500 images for each class
- 3. Varied Illumination
- 4. Size = 200×200 initially, to be reduced to 128×96
- 5. Training set images= 39150; Validation set images= 4321
- 6. Validation ratio = 0.1 from training set
- 7. Testing set = New 300 images

Image Preprocessing:- For real time classification, images have been converted to grayscale

Baseline CNN Architecture

- 1. Two Convolutional Layers
- 2. Two Pooling Layer
- 3. Two Fully Connected Layers (ReLU)
- 4. Three Dropout Performance
 - a. One dropout each after the two pooling layers
 - b. One dropout after the first fully connected layer

Data Augmentation

Transforms base data and increases size of the dataset.

New images are generated from the original usually during training.

Goal is not only to reduce overfitting but also to augment data to improve the classifier.

Augmentations ->[Height and Width shift range = 0.1]

Proposed ADCNN

Performance of baseline CNN is improved by tuning parameters to include kernel initialization and regularization.

*Data Augmentation is done on both Baseline CNN and ADCNN

Network Initialization

Initializing weight correctly can influence how easily the network learn.

- Uniform 'He Initialization' for ReLU layers (he_uniform)
- 2. Uniform 'Xavier Initialization' for output softmax (glorot_uniform)

Regularization

We use Kernel regularizer L2 for ReLU layers.

Kernel regularizers tries to reduce the weights W (excluding bias).

L2 Regularization

Decreases complexity of model while maintaining the same parameter count.

Penalizes weights with large magnitudes by minimizing L2 norm

Lambda = 0.0001

Evaluation Measures

1. Precision =
$$\frac{TP}{TP + FP}$$

2. Recall =
$$\frac{TP}{TP + FN}$$

3. F1 Score =
$$\frac{2 * Precision * Recall}{Precision + Recall} \Rightarrow [0. 1]$$

4. Accuracy =
$$\frac{TP + TN}{TP + TN + FP + FN}$$

CNN Training Process

- 1. Combination of Back Propagation with Stochastic Gradient Descent.
- 2. Cost of function = Categorical Cross Entropy Loss Function
- 3. Adam Optimizer as optimization function
- 4. Number of Epochs = 10

For Baseline CNN

Results - For Baseline CNN

For Baseline CNN, Final Validation accuracy = 69.41 %

```
Epoch 1/10
Epoch 2/10
Epoch 3/10
Epoch 4/10
Epoch 5/10
Epoch 6/10
9787/9787 [===========] - 750s 77ms/step - loss: 0.3744 - accuracy: 0.8865 - val loss: 0.2235 - val accuracy: 0.6566
Epoch 7/10
Epoch 8/10
Epoch 9/10
9787/9787 [===========] - 752s 77ms/step - loss: 0.3103 - accuracy: 0.9106 - val loss: 0.0758 - val accuracy: 0.7052
Epoch 10/10
```

For Baseline CNN

Results - For Baseline CNN

Loss, accuracy v/s Epoch

For Baseline CNN Results -

Precision, recall and F-1 scores

With test accuracy of 60%

	precision	recall	f1-score	support	
A	0.80	0.94	0.86	301	
В	0.86	0.74	0.80	301	
C	0.86	0.87	0.87	301	
D	0.96	0.97	0.96	301	
E	0.69	0.64	0.66	301	
F	0.99	0.89	0.94	301	
G	0.76	0.59	0.67	301	
Н	0.69	0.80	0.74	301	
I	0.67	0.70	0.69	301	
J	0.75	0.87	0.81	301	
K	0.92	0.99	0.96	301	
L	0.93	0.62	0.75	301	
М	0.37	0.54	0.44	301	
N	0.13	0.08	0.10	301	
0	0.66	0.75	0.71	301	
P	0.53	0.59	0.56	301	
Q	0.50	0.63	0.56	301	
R	0.70	0.27	0.39	301	
S	0.26	0.32	0.29	301	
Т	0.29	0.86	0.44	301	
U	0.32	0.21	0.25	301	
V	0.34	0.46	0.39	301	
W	0.42	0.42	0.42	301	
Х	0.41	0.35	0.38	301	
Υ	0.50	0.30	0.37	301	
Z	0.44	0.08	0.14	301	
del	0.81	0.30	0.44	301	
nothing	0.84	1.00	0.91	301	
space	0.81	0.68	0.74	301	
100					
accuracy			0.60	8729	
macro avg	0.63	0.60	0.59	8729	
weighted avg	0.63	0.60	0.59	8729	
	1007002576	1000000	61700000	0.0005000000	

For Baseline CNN

Results - For Baseline CNN

Confusion matrix

ADCNN Results - ADCNN

For ADCNN, Final Validation accuracy = 72.23 %

```
F⇒ Epoch 1/10
  Epoch 2/10
  Epoch 3/10
  Epoch 4/10
  9787/9787 [==========] - 636s 65ms/step - loss: 0.2804 - accuracy: 0.9096 - val loss: 2.7824 - val accuracy: 0.6515
  Epoch 5/10
  9787/9787 [===========] - 636s 65ms/step - loss: 0.2498 - accuracy: 0.9212 - val loss: 4.8451 - val accuracy: 0.6529
  Epoch 6/10
  9787/9787 [==========] - 627s 64ms/step - loss: 0.2355 - accuracy: 0.9265 - val loss: 1.5497e-06 - val accuracy: 0.6931
  Epoch 7/10
  9787/9787 [============= ] - 628s 64ms/step - loss: 0.2217 - accuracy: 0.9324 - val loss: 2.8610e-06 - val accuracy: 0.7181
  Epoch 8/10
  9787/9787 [============== ] - 624s 64ms/step - loss: 0.2104 - accuracy: 0.9362 - val loss: 3.0898 - val accuracy: 0.7269
  Epoch 9/10
  9787/9787 [============ ] - 627s 64ms/step - loss: 0.2010 - accuracy: 0.9390 - val loss: 0.0053 - val accuracy: 0.6996
  Epoch 10/10
```

For ADCNN Results - ADCNN

Loss, accuracy v/s Epoch

For ADCNN Results -

Precision, recall and F-1 scores

With test accuracy of 62%

	precision	recall	f1-score	support	
A	0.82	0.94	0.88	301	
В	0.88	0.74	0.80	301	
C	0.87	0.90	0.88	301	
D	0.96	0.95	0.96	301	
E	0.71	0.70	0.71	301	
F	0.99	0.89	0.94	301	
G	0.80	0.61	0.70	301	
Н	0.71	0.85	0.77	301	
I	0.66	0.71	0.68	301	
J	0.75	0.86	0.80	301	
K	0.94	0.99	0.96	301	
L	0.97	0.61	0.75	301	
M	0.37	0.53	0.44	301	
N	0.14	0.09	0.11	301	
0	0.69	0.75	0.72	301	
P	0.56	0.63	0.59	301	
Q	0.53	0.65	0.58	301	
R	0.79	0.32	0.45	301	
S	0.26	0.30	0.28	301	
T	0.31	0.89	0.46	301	
U	0.31	0.20	0.24	301	
V	0.34	0.49	0.40	301	
W	0.42	0.44	0.43	301	
X	0.42	0.38	0.40	301	
Y	0.51	0.32	0.39	301	
Z	0.66	0.10	0.17	301	
del	0.81	0.30	0.44	301	
nothing	0.82	1.00	0.90	301	
space	0.83	0.71	0.76	301	
accuracy			0.62	8729	
macro avg	0.65	0.62	0.61	8729	
	0.65	0.62			
weighted avg	0.05	0.02	0.61	8729	

For ADCNN Results - ADCNN

Confusion matrix

