Huntington Postulates

A Boolean Algebra is a set *B* with two binary operators + and And the equivalence relation = that satisfies the following properties:

- Closure
 - with respect to +
 - with respect to ·
- Identity elements
 - 0 with respect to +
 - 1 with respect to -
- Commutative
 - $-x \cdot y = y \cdot x$
 - -x + y = y + x
- Distributive
 - · is distributive over +
 - + is distributive over ·
- Complements: $\forall x \in B, \exists x' \in B$ (called the complement of x) such that
 - -x + x' = 1 and
 - $-x \cdot x' = 0$
- There are at least 2 distinct elements in B

UM EECS 270 Fall 203

Formal Definition of Switching Algebra

- Base set: $B_2 = \{0, 1\}$
- One unary operation: NOT or COMPLEMENT: $(x', \bar{x}, \neg x)$
- Two binary operations: AND (\cdot, Λ) , OR (+, V)
- Postulates (axioms):

Postulate	Defines	A	В
P1	Switching Variables	$x = 0$ iff $x \neq 1$	$x = 1 \text{ iff } x \neq 0$
P2	NOT	0'=1	1'= 0
P3		$0 \cdot 0 = 0$	1 + 1 = 1
P4	AND / OR	$1 \cdot 1 = 1$	0 + 0 = 0
P5		$0\cdot 1=1\cdot 0=0$	0+1=1+0=1

• Duality: $0 \leftrightarrow 1, \leftrightarrow +$

UM EECS 270 Fall 2022

Properties (Theorems) of Switching Algebra

- From postulates, we can derive many theorems which can be used to manipulate switching expressions
- Recursive definition of switching expressions:
 - Any switching constant or variable is a switching expression
 - If E and F are switching expressions, then so are E', F', $E \cdot F$, and E + F
- A literal is a variable x or its complement x'
- Theorems can be proved by:
 - Perfect induction (enumerating all possible combinations of variables)
 - Finite induction
 - Algebraic manipulation (using postulates and already proved theorems)
 - Use of duality

UM EECS 270 Fall 2022

Some) Theorems then you do T1 Idempotency many times x+1=1Involution oppy the same in algorithm of the in algorithm (x')'=xInvolution operation, it deems (x')'=x12 $x \cdot 0$ Т3 $x \cdot x = x$ **T**4 T5 $x \cdot x' = 0$ Complements x + x' = 1T6 Commutativity x + y = y + x $x \cdot y = y \cdot x$ $x + (x \cdot y) = x + \forall \hat{n} \otimes \hat{r}$ T7 $x \cdot (x + y) = x$ Absorption $x + (x' \cdot y) = x + y \times (x + x') \cdot (x + y)$ T8 $x \cdot (x' + y) = x \cdot y$ No Name (x + y) + z = x + (y + z) = x + yT9 $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ Associativity T10 $x \cdot (y + z) = x \cdot y + x \cdot z$ Distributivity $x + (y \cdot z) = (x + y) \cdot (x + z)$ $x \cdot y + x \cdot z + y \cdot z$ of these two Consensus T11 $(x + y) \cdot (x'+z) \cdot (y + z)$ $=(x+y)\cdot(x'+z)$ terms around x - this is redundant and not necessary only one of x, y, \ge

with / without compliment

T12

X there called consensus which the of Fall 2022

De Morgan's there is duality in there, but something more $f(x_1,\ldots,x_n,0,1,\cdot,+)'=f(x_1',\ldots,x_n',1,0,+,\cdot)$

 $+\rightarrow \cdot$, $x_1 \rightarrow x_1'$, $0 \rightarrow 1$: this is duality in there

O dualizing the expression ...

absorption X(x+y) = X X + xy = XNo name X(x'+y) = Xy X + x'y = x + yConsensus X + x'z + y = x + y X + x'z + y = x + yX + x'z + y = x + y

Proof by Perfect Induction

Prove the truth of the distributive law (theorem T10)

xyz	$x \cdot y$	$x \cdot z$	y + z	$x \cdot (y+z)$	$x \cdot y + x \cdot z$	Using
000	0	0	0	0	0	P3A, P4B
001	0	0	1	0	0	P3A, P5A, P5B, P4B
010	0	0	1	0	0	P5A, P3A, P5B, P4B
011	0	0	1	0	0	P5A, P3B, P4B
100	0	0	0	0	0	P5A, P4B
101	0	1	1	1	1	P5A, P4A, P5B
110	1	0	1	1	1	P4A, P5A, P5B
111	1	1	1	UM (FE) 270 Fa	_{III 2022} \1/	P4A, P3B

Proof by Finite Induction

Prove that $(x_1 + x_2 + \ldots + x_n)' = x_1' \cdot x_2' \cdot \ldots \cdot x_n'$

• Basis: Establish truth for n = 2 by perfect induction:

$$(x_1 + x_2)' = x_1' \cdot x_2'$$

• Induction: Assume statement is true for $n = k, k \ge 2$ and prove its truth for n = k + 1

Induction Hypothesis:
$$(x_1 + x_2 + ... + x_k)' = x_1' \cdot x_2' \cdot ... \cdot x_k'$$

$$(x_1 + x_2 + \dots + x_k + x_{k+1})' = [(x_1 + x_2 + \dots + x_k) + x_{k+1}]'$$

$$= (x_1 + x_2 + \dots + x_k)' \cdot x'_{k+1}$$

$$= (x_1 + x_2 + \dots + x_k)' \cdot x'_{k+1}$$

$$= x'_1 \cdot x'_2 \cdot \dots \cdot x'_k \cdot x'_{k+1}$$

Proof by Algebraic Manipulation

Prove the consensus theorem (T11)

$$xy + x'z + yz = xy + x'z$$

$$xy + x'z + yz = xy + x'z + yz \frac{1}{z^2} \text{ with not have change (identity)}$$

$$= xy + x'z + yz(x + yz) \text{ (Complement)}$$

$$= xy1 + x'z1 + xyz + x'yz \text{ (Id., Dist., Assoc.)}$$

$$= xy(1+z) + x'z(1+y) \text{ (Assoc., Dist.)}$$

$$= xy1 + x'z1 \text{ (Null Element)}$$

$$= xy + x'z \text{ (Identity)}$$

UM EECS 270 Fall 2022

Additional Comments about Theorems

- The following properties are peculiar to switching algebra and are not true for the algebra of real numbers:
 - Idempotency f+f=f f-f (its not of or f)
 - All properties involving complements
 - Distributivity of sum over product X+iy = (X+y)(X+y)
- Associativity allows the extension of the two binary operators AND and OR to three or more variables
- The involution property and De Morgan's laws provide the rules for complementing switching expressions

UM EECS 270 Fall 2022