CheXpert Saliency map Visualization Comparison: 10% Fine-Tuning vs Baselines

This document contains the results of gpt-4o-mini's analysis of the saliency map images.

ConVIRT's 10% fine-tune saliency maps exhibit substantially more focused, pathology-relevant activations compared to both ImageNet-pretrained and randomly-initialized baselines. Below is a detailed breakdown:

1. Atelectasis

- **ConVIRT**: Strong activation in the upper-lateral region of the affected lung, matching the typical collapse zone.
- **ImageNet**: Diffuse highlights across the lung fields, with no clear anatomical focus.
- Random: Uniform noise—no discernible pattern.

2. Cardiomegaly

- **ConVIRT**: Concentrated saliency over the cardiac silhouette, especially at the medial heart border where enlargement is most evident.
- **ImageNet**: Sprinkled attention across the mid-thorax without clear correspondence to the heart shape.
- Random: Scattered, meaningless activations.

3. Edema

- **ConVIRT**: Localizes around the perihilar regions—consistent with interstitial fluid patterns ("bat-wing" distribution).
- ImageNet: Broad, patchy saliency across both lungs, diluting clinical relevance.
- Random: Random speckles, no clinical alignment.

4. Pleural Effusion

- ConVIRT: Focuses on dependent lung areas—costophrenic angles and diaphragmatic interface—where fluid accumulates.
- ImageNet: Signals spread across the lung fields; fails to isolate pleural spaces.
- Random: Evenly distributed noise.

Multiple Perspectives

1. Clinical Interpretability

ConVIRT's maps align with established radiographic signs (e.g., perihilar fluid for edema). This increases clinician trust by showing the model "looks" at the right regions.

2. Data-Efficiency

Achieving precise localization with just 10% of labels demonstrates that contrastive pretraining yields robust feature priors, reducing dependence on large annotated sets.

3. Model Reliability

Compared to ImageNet-fine-tuned models, ConVIRT's tighter activations suggest less reliance on spurious background cues, potentially improving generalization on unseen datasets.

Recommendations & Next Steps

- **Quantify Localization**: Compute overlap (e.g., IoU) between saliency peaks and expert-annotated bounding boxes to move beyond qualitative assessment.
- Alternative Explainability: Apply Grad-CAM++ or Integrated Gradients to compare sensitivity profiles.
- **Fine-tuning Strategies**: Investigate layer-wise learning rates to further sharpen focus under low-data regimes.
- **Cross-modal Validation**: Use corresponding report text to verify whether highlighted image regions match described findings.