Seminor 8

@ Sd se drate co Z2[x] ~ Z2 xZ2 si col

(x²+1) este un inel au 4 elemente core nu este izomorf au Z2 Z2.

- @ Fie idealul I=(2, X) en inelul Z(X). So se droteca:
 - (i) I nu este ideal principal.
 - $\frac{(ii)}{(2, \times)} = \frac{Z[x]}{(2, \times)} \sim Z_{2}$
 - ciii) I este ideal maximal in ZCX3.
- (3) Fie $f = (X_1 X_2)^2 (X_1 X_3)^2 (X_2 X_3)^2 \in \mathbb{Z}[X_1, X_2, X_3]$ Så se orate col f este polinom simetric si sol se sovie f ca polinom de polinoome simetrice fundamentale.
- 4) Fie f=(x,+x2-x3)(x,-x2+x3)(-x1+x2+x3) din
 2[x1, x2, x3]. So se diate of feste polinom simetric
 or so de serie f co polinom de polinoame simetrice
 fundamentale.

- (5) Så se sorie polinomul simeteric $f = (X_1 + X_2 + X_3 X_4)(X_1 + X_2 X_3 + X_4)(X_1 X_2 + X_3 + X_4)(-X_1 + X_2 + X_3 + X_4) \in \mathbb{Z}(X_1 X_2 X_3 X_4)$ co polinom de polinoome simeterice fundamentale.
- 6 Sa se serie polinomul simethic f=(y, +y2)(y, +y3)(y2+y3) din 2[y1, y2, y3] ca polinom de polinoome simethice fundamentale.
- File x_1, x_2, x_3 roldécinile complexe de écuelise $x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$.
- (8) Fix x_1, x_2, x_3, x_4 reddécimile complexe els ecussies $x^4 2x^3 + x + 1 = 0$. So se colculer $x_1^9 + x_2^9 + x_3^9 + x_4^9$.
- (3) So se colculeze (sin 20°) + (sin 40°) + (sin 80°) +.
- (a) Fie $\mathfrak{T}_1, -, \mathfrak{T}_n \in \mathbb{C}$ perteu core $\mathfrak{T}_1^k + + \mathfrak{T}_n^k \in \mathbb{R}$ perteu orice $1 \leq k \leq n$. So se drote co $\mathfrak{T}_1^k + + \mathfrak{T}_n \in \mathbb{R}$ perteu orice $k \in \mathbb{N}^k$.
- (1) Fix K un corp commetative de conocteristico o, $n \ge 2$ un number notwerd of $x_n -, x_n \in K$ ostfel $2n \cot x_n^k + + x_n^k = 0$ plutlem drice $1 \le k \le n$. So se orate as $x_1 = + x_n = 0$. Române aderade ot pentem char $(k) \ne 0$?