Задача 6. Да се докаже, че за всеки три множества A , B и C е изпълнено, че $A \times (B \setminus C) = (A \times B) \setminus (A \times C)$.

Доказателство:

Нека A, B и C са произволни множества.

 (\subseteq) Нека $x \in A \times (B \setminus C)$. Тогава съществуват елементи $a \in A$ и $b \in (B \setminus C)$ такива, че x = (a,b). От тук заключаваме, че $b \in B \land b \not\in C \Rightarrow x = (a,b) \in A \times B$. Да допуснем, че $x \in A \times C$. Тогава съществуват елементи $a' \in A \land c \in C$ такива, че x = (a',c). Но x = (a,b) и следователно $x = (a,b) = (a',c) \Rightarrow a = a' \land b = c$, но $c \in C$, откъдето следва, че $b \in C$, което е противоречие с допускането, че $x \in A \times C \Rightarrow x \not\in A \times C$. Така $x \in (A \times B) \setminus (A \times C)$.

 (\supseteq) Нека $x\in (A\times B)\backslash (A\times C)$. Следователно $x\in A\times B$ и $x\not\in A\times C$. От $x\in A\times B$ следва, че съществуват елементи $a\in A$ и $b\in B$ такива, че x=(a,b). Да допуснем, че $b\in C$. Тогава, тъй като $a\in A$ имаме, че $x=(a,b)\in A\times C$, което е провиворечие с допускането и следователно $b\not\in C$ и тъй като $b\in B$, то $b\in B\backslash C$. Така $x=(a,b)\in A\times (B\backslash C)$.