Table of Contents

```
%%%%%%%%%%%%%%%
% CODE CHALLENGE 1 -
% The purpose of this challenge is to estimate atmospheric pressure in
% Boulder CO using a pressure model and measurements, and compare the
% through error analysis and statistics.
% To complete the challenge, execute the following steps:
% 1) Load the given dataset
% 2) Extract altitude and pressure data
% 3) Determine standard deviation, variance, mean, and
   standard error of the mean of the pressure data
% 4) Using information given about the instrument, find uncertainty
associated
   with altitude measurements
% 5) Use the model to predict pressure measurements at each altitude
in the
   data set, along with propagated uncertainty
% 6) Compare results, discuss, and print answers to the command
window.
% Bonus) Repeat for larger measurement uncertainty in altitude
% NOTE: DO NOT change any variable names already present in the code.
% Upload your team's script to Canvas to complete the challenge.
% NAME YOUR FILE AS Challenge1_Sec{section number}_Group{group}
breakout #}.m
% ***Section numbers are 1 or 2***
% EX File Name: Challenge1_Sec1_Group15.m
% 1)
% 2)
% 3)
% 4)
% 5)
```

1) Load data from given file

```
data = readtable('PressureInBoulder.csv');

Warning: The DATETIME data was created using format 'MM/dd/uuuu HH:mm'
  but also
matched 'dd/MM/uuuu HH:mm'.
To avoid ambiguity, use a format character vector. e.g. '%{MM/dd/uuuu
    HH:mm}D'
Warning: Table variable names were modified to make them valid MATLAB
identifiers. The original names are saved in the VariableDescriptions
  property.
```

2) Extract just the altitude and station pressure data columns to meaningfully named variables

```
AltitudeData = data.Altitude_m_;
PressureData = data.StationPressure_kPa_;
```

3) Determine Statistics and Error

the standard deviation, variance, mean, and standard error of the mean (sem) of the pressure data

```
StdevPressure = std(PressureData);
VarPressure = var(PressureData);
MeanPressure = mean(PressureData);
Sem_Pressure = StdevPressure/sqrt(length(PressureData));
```

4) Uncertainty

The altitude measurements were taken using an instrument that displayed altitude to the nearest tenth of a meter.

```
% What is the associated absolute uncertainty with these
measurements?
AltitudeUncertainty = .05;% [m]
```

5) Pressure Predictions

Using the altitude measurements and uncertainty, predict pressure with t First, propagate uncertainty BY HAND before calculating uncertainty for Then check: is it different for each calculation?

6) Print Results

Display the predicted pressure from the model with it's associated uncer the average pressure with the it's standard error of the mean from the d

P_est	P_sig
83.765	0.32946
83.767	0.32947
83.766	0.32946
83.766	0.32946
83.767	0.32947
83.767	0.32947
83.765	0.32946
83.767	0.32947
83.767	0.32947
83.766	0.32946
83.764	0.32945
83.767	0.32947
83.765	0.32946
83.767	0.32947

```
83.767
        0.32947
83.766
         0.32946
83.767
        0.32947
83.767
        0.32947
83.767
        0.32947
83.767
         0.32947
83.767
        0.32947
83.766
        0.32946
83.764
        0.32946
83.765
         0.32946
83.765
        0.32946
         0.32947
83.767
```

84.3025 ± 0.00023221 kPa

Model Discussion: The model is accurate and does agree with the measurments, despite our readings hovering on the edge of the average pressure.

Bonus

Repeat steps 4--6, but assume the altitude measurements were taken on a lower precision instrument that only displayed altitude to nearest 10 meters

```
How does this change the results and comparison ?
```

```
altitude_uncertainty_new = 5; % [m]
```

```
P_sig_new = sqrt(((0.4*exp(-k*AltitudeData)).^2) +
  ((altitude_uncertainty_new*(-k*P_est)).^2));
```

disp(table(P_est, P_sig_new));

disp('Lowering the precision of the altitude increases the uncertainty
 of P_est, the estimated pressure.');

P_est	P_sig_new
83.765	0.33327
83.767	0.33328
83.766	0.33328
83.766	0.33327
83.767	0.33328
83.767	0.33328
83.765	0.33327
83.767	0.33328
83.767	0.33328
83.766	0.33328
83.764	0.33327
83.767	0.33328
83.765	0.33327
83.767	0.33328
83.767	0.33328
83.766	0.33327
83.767	0.33328

83.767	0.33328
83.767	0.33328
83.767	0.33328
83.767	0.33328
83.766	0.33328
83.764	0.33327
83.765	0.33327
83.765	0.33327
83.767	0.33328

Lowering the precision of the altitude increases the uncertainty of $P_{\rm est}$, the estimated pressure.

Published with MATLAB® R2019a