

Artificial and Computational Intelligence

AIMLCLZG557

Contributors & Designers of document content: Cluster Course Faculty Team

M2:: Problem Solving Agent using Search

Presented by Faculty Name BITS Email ID

Pilani Campus

Artificial and Computational Intelligence

Disclaimer and Acknowledgement

- Few content for these slides may have been obtained from prescribed books and various other source on the Internet
- I hereby acknowledge all the contributors for their material and inputs and gratefully acknowledge people others who made their course materials freely available online.
- I have provided source information wherever necessary
- This is not a full fledged reading materials. Students are requested to refer to the textbook w.r.t detailed content of the presentation deck that is expected to be shared over e-learning portal taxilla.
- I have added and modified the content to suit the requirements of the class dynamics & live session's lecture delivery flow for presentation
- Slide Source / Preparation / Review:
- From BITS Pilani WILP: Prof.Raja vadhana, Prof. Indumathi, Prof.Sangeetha
- From BITS Oncampus & External : Mr.Santosh GSK

Course Plan

M1	Introduction to AI
M2	Problem Solving Agent using Search
M3	Game Playing
M4	Knowledge Representation using Logics
M5	Probabilistic Representation and Reasoning
M6	Reasoning over time, Reinforcement Learning
M7	Ethics in Al

Learning Objective

At the end of this class, students Should be able to:

- 1. Compare given heuristics for a problem and analyze which is the best fit
- 2. Design relaxed problem with appropriate heuristic design
- 3. Prove the designed relaxed problem heuristic is admissible
- 4. Differentiate which local search is best suitable for given problem
- 5. Design fitness function for a problem
- 6. Construct a search tree
- Apply appropriate local search and show the working of algorithm at least for first 2 iterations with atleast four next level successor generation(if search tree is large)
- 8. Design and show Genetic Algorithm steps for a given problem

Module 2: Problem Solving Agent using Search

- A. Uninformed Search
- B. Informed Search
- Heuristic Functions
- D. Local Search Algorithms & Optimization Problems

Design of Heuristics

Heuristic Design

- Effective Branching Factor
- Good Heuristics
- Notion of Relaxed Problems
- Generating Admissible Heuristics

Effective branching factor (b*):

If the algorithm generates N number of nodes and the solution is found at depth d, then

$$N + 1 = 1 + (b^*) + (b^*)^2 + (b^*)^3 + ... + (b^*)^d$$

Heuristic Design

- Effective Branching Factor
- Good Heuristics
- Notion of Relaxed Problems
- Generating Admissible Heuristics

Simplify the problem

Assume no constraints

Cost of optimal solution to relaxed problem ≤ Cost of optimal solution for real problem

			Transition Model	Goal Test	Path Cost	No.Of.States
1	< Xi , Yi >	Place in any non-occupied row in board		isValid Non-Attacking	Transition + Valid Queens	n!

N-Tile

-	1	2
3	4	5
6	7	8

1	7	6
4	8	5
-	2	3

innovate	achie

lead

Initial

State

Goal State

Effective Branching Factor

:~3

: Avg.cost = 18

: No.of.States = $^{\sim}$ 3 18

¹ Graph states : 9!/2 = 181, 440 states

1	7	6
4	8	5
2	1 1	3

1	7	6		
1	8	5		
4	2	3		

1	7	6			
4	1	5			
2	8	3			

1	7	6
4	8	5
2	3	1

1	7	6	1
8	1	5	1
4	2	3	4

No.Of.States
9!

8

6

Initial State	Possible Actions	Transition Model	Goal Test	Path Cost	No.Of.States
<loc, id=""></loc,>	Move Empty to near by Tile		ID=LOC+1	Transition + Positional + Distance+ Other approaches	9!

Learn from experience

Trail / Puzzle	X1(n): No.of.Misplace d Tiles	X2(n): Pair of adjacent tiles that are not in goal	X3(n): Position of the empty tile	h`(n)
Example 1	7	10	7	
Example 2	5	6	6	

-	1	2
3	4	5
6	7	8

1	7	6
4	8	5
1	2	3

Create a suitable model:

$$h(n) = c1*X1(n) + c2*X2(n) + \dots$$

Local Search & Optimization

Local Search

Optimization Problem

Goal: Navigate through a state space for a given problem such that an optimal solution can

be found

Objective: Minimize or Maximize the objective evaluation function value

Scope: Local

Objective Function: Fitness Value evaluates the goodness of current solution

Local Search: Search in the state-space in the neighbourhood of current position until an

optimal solution is found

<u>Single Instance Based</u> <u>Multiple Instance Based</u>

Hill Climbing Genetic Algorithm

Simulated Annealing Particle Swarm Optimization

Local Beam Search Ant Colony Optimization

Tabu Search

Local Search

Terminology

Local Search: Search in the state-space in the neighbourhood of current position until an optimal solution is found

Algorithms:

- ☐ Choice of Neighbor
- Looping Condition
- Termination Condition

2	5	3	2	
¥	6	W	¥	
3	5	4	2	
4	W	4	2	

lead

Random Restart

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Select the next state based on the highest fitness
- 4. Repeat from Step 2

3 4 4 2 3

function HILL-CLIMBING(problem) returns a state that is a local maximum

 $current \leftarrow MAKE-NODE(problem.INITIAL-STATE)$

loop do

 $neighbor \leftarrow$ a highest-valued successor of current if neighbor. Value \leq current. Value then return current. State $current \leftarrow neighbor$

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state

h(n) = No.of non-conflicting pairs of queens in the board.

Q1-Q2 Q1-Q3 Q1-Q4 Q2-Q3 Q2-Q4 Q3-Q4

Note: Steps 3 & 4 in the above algorithm will be a part of variation of Hill climbing

- Select a random state
- Evaluate the fitness scores for all the successors of the state

1	4	2	2	

1	4	1	2
---	---	---	---

Local Maxima ☐ Random Restart

Random Restart

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

3	4	4	2	3

function HILL-CLIMBING(problem) returns a state that is a local maximum

```
current \leftarrow Make-Node(problem.Initial-State)
loop do
```

 $neighbor \leftarrow$ a highest-valued successor of current if neighbor. Value \leq current. Value then return current. State $current \leftarrow neighbor$

- Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

Stochastic Hill Climbing

 $\begin{array}{l} next \leftarrow \text{a randomly selected successor of } current \\ \Delta E \leftarrow next. \text{Value} - current. \text{Value} \\ \text{if } \Delta E > 0 \text{ then } current \leftarrow next \\ \text{else } current \leftarrow next \text{ only with probability } e^{\Delta E/T} \end{array}$

Stochastic Hill Climbing

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

 $12 N = \{4,2,2,3,3,2,1,3,2,1,3,2\}$

Simulated Annealing

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state inputs: problem, a problem schedule, \text{ a mapping from time to "temperature"} current \leftarrow \text{MAKE-NODE}(problem.\text{INITIAL-STATE}) \textbf{for } t = 1 \textbf{ to } \infty \textbf{ do} T \leftarrow schedule(t) \textbf{if } T = 0 \textbf{ then return } current next \leftarrow \textbf{ a randomly selected successor of } current \Delta E \leftarrow next.\text{VALUE} - current.\text{VALUE} \textbf{if } \Delta E > 0 \textbf{ then } current \leftarrow next \textbf{else } current \leftarrow next \textbf{ only with probability } e^{\Delta E/T}
```

Simulated Annealing

- 1. Select a random state
- 2. Evaluate the fitness scores for all the successors of the state
- 3. Calculate the probability of selecting a successor based on fitness score
- *** * ***

- 4. Select the next state based on the highest probability
- 5. Repeat from Step 2

12 N =
$$\{4,2,2,3,3,2,1,3,2,1,3,2\}$$

$$Init = 2$$

Simulated Annealing

Current Value = 4 (Local Maxima)

Global Maxima = 6

Next Value	ΔE	∆E/t			∆E/t		
2	2	0.1	1.12	0.47	0.4	1.49	0.40
3	1	0.05	1.05	0.49	0.2	1.22	0.45
5	-1	-0.05	0.95	0.51	-0.2	0.82	0.55

Maximization problem design to achieve global minima

```
Set Temp to very high temp t
Set n as number of iteration to be performed at a particular t
L1: Randomly select a random neighbour
Calculate Energy barrier E = f(N)-f(C)
If E > 0 then its a good move
    Move ahead for next tree search level
Else
    Create a random number r:[0-1]
    If r < e^{-E/t}
     Choose this bad state & move downhill
    Else
     Go to L1.
If Goal is reached or {acceptable goal(set criteria to check )node is reached & t is small END}
Else
    If no.of.neighbors explored has reached a threshold >=n
     then Lower t and go to L1.
```

Local Beam Search

Beam Search

- 1. Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability
- 6. Repeat from Step 2

Stochastic Beam Search

Sample from 1st State

- Initialize k random state
- 2. Evaluate the fitness scores for all the successors of the k states
- 3. Calculate the probability of selecting a successor based on fitness score
- 4. Select the next state based on the highest probability
- 5. If the goal is not found, Select the next 'k' states randomly based on the probability
- 6. Repeat from Step 2

Genetic Algorithm

```
function GENETIC-ALGORITHM(population, FITNESS-FN) returns an individual
  inputs: population, a set of individuals
           FITNESS-FN, a function that measures the fitness of an individual
  repeat
      new\_population \leftarrow empty set
      for i = 1 to SIZE(population) do
          x \leftarrow \text{RANDOM-SELECTION}(population, FITNESS-FN)
          y \leftarrow RANDOM-SELECTION(population, FITNESS-FN)
          child \leftarrow REPRODUCE(x, y)
          if (small random probability) then child \leftarrow MUTATE(child)
          add child to new_population
      population \leftarrow new\_population
  until some individual is fit enough, or enough time has elapsed
  return the best individual in population, according to FITNESS-FN
function REPRODUCE(x, y) returns an individual
  inputs: x, y, parent individuals
  n \leftarrow \text{LENGTH}(x); c \leftarrow \text{random number from 1 to } n
  return APPEND(SUBSTRING(x, 1, c), SUBSTRING(y, c + 1, n))
```

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

1	4	2	2

1 4 3 2	1	
---------	---	--

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens ☐ Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

1	4	2	2	4	

	1	4	3	2	2
--	---	---	---	---	---

Genetic Algorithm – Example 1

Eg., use roulette wheel mechanism to select pair/s

Proportion

B1 B2 B3 B4

Sample winners of game -1,2,3,4 : B4, B1, B1, B3

Genetic Algorithm –Example 2

Selection

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens ☐ Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Sample winners of game -1 ,2,3,4 : B4, B1, B1, B3

Genetic Algorithm - Example 2

Crossover

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \Box Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Genetic Algorithm - Example 2

Mutation

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens

 Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

1 4 2 2	1	
---------	---	--

- 1. Select 'k' random states **Initialization**: k=4
- 2. Evaluate the fitness value all states: Maximizing function: No.of.Non-attacking pairs Queens \Box Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens ☐ Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Other crossover and mutation operators are shared in separate document & uploaded in the elearn portal

- 1. Select 'k' random states Initialization : k=4
- 2. Evaluate the fitness value all states : Maximizing function : No.of.Non-attacking pairs Queens ☐ Threshold = 6
- 3. If anyone of the state's has achieved the threshold fitness value or threshold new states or no change is seen than previous iteration then the algorithm stops
- 4. Else, use roulette wheel mechanism to select pair/s
- 5. Pairs selected produces new state (successor) by crossover
- 6. Successor is allowed to mutate
- 7. Repeat from Step 2

Techniques:

- 1. Design of the fitness function
- 2. Diversity in the population to be accounted
- 3. Randomization

Application:

- ☐ Creative tasks
- ☐ Exploratory in nature
- Planning problem
- Static Applications

Required Reading: AIMA - Chapter #4.1, #4.2

Thank You for all your Attention