Entrega 02: Ajuste do modelo de propagação

Ana Paula Medeiros Amarante

Universidade Federal do Rio Grande do Norte Curso de Engenharia de Telecomunicações 05 de julho de 2020

1. Introdução

A entrega 02 foi desenvolvida a partir da entrega 01. Foi escrito um código para determinar o raio celular aproximado para diferentes frequências da portadora (800 900 1800 1900 2100)MHz, considerando uma Outage de potência máxima de 10%, para o modelo de propagação COST Hata model (COST 231).

2. Experimento

O modelo COST Hata model (COST 231) é indicado para frequências acima de 900 MHz, ele foi calculado conforme aprendemos em Antenas e Propagação (DCO1006). A Tabela 1 foi criada para melhor visualização das características deste modelo em comparação com os valores utilizados nesta entrega.

	Frequência	Altura da ERB	Altura da EM	Distância entre ERB - EM
COST 231	1500 – 2000 MHz	30 – 200 m	1 – 10 m	1 – 20 km
Utilizados	800 – 2100 MHz	30 m	1.8 m	6 – 4 km

Tabela 1: Comparação entre os parâmetros do COST 231 e os utilizados nesta entrega

Esse modelo pode ser comparado ao Okumura-Hata, que foi utilizado na entrega 01, podemos observar que o COST 231 atende melhor a faixa de frequência que estamos usando, cobrindo até 2000 MHz, enquanto o Okumura-Hata atende apenas até 1000 MHz.

Da mesma forma que foi trabalhado na entrega anterior, foi calculado uma outage que fosse menor ou igual a 10%. O resultado final está mostrado na Tabela 2.

Frequência da portadora	Raio	Taxa de outage	
800 MHz	6940 m	9.9219 %	
900 MHz	6210 m	9.9983 %	
1800 MHz	3180 m	9.9006 %	
1900 MHz	3020 m	9.9826 %	
2100 MHz	2740 m	9.9615 %	

Tabela 2: Cálculo da outage de potência para COST 231

3. Conclusão

Os raios para o modelo de Okumura-Hata e COST 231 podem ser comparados por meio da Tabela 3. Nela conseguimos observar que todos os raios sofreram diminuição para o segundo modelo de propagação, esse comportamento era esperado porque este modelo em questão atende as frequências de 1800 MHz e 1900 MHz, ainda ficando próximo de atender 2100 MHz.

Modelo de propagação	Frequência da portadora	Raio	Taxa de outage
COST 231	800 MHz	6940 m	9.9219 %
Okumura-Hata	800 MHz	8040 m	9.9709 %
COST 231	900 MHz	6210 m	9.9983 %
Okumura-Hata	900 MHz	7360 m	9.9922 %
COST 231	1800 MHz	3180 m	9.9006 %
Okumura-Hata	1800 MHz	4390 m	9.9308 %
COST 231	1900 MHz	3020 m	9.9826 %
Okumura-Hata	1900 MHz	4220 m	9.9409 %
COST 231	2100 MHz	2740 m	9.9615 %
Okumura-Hata	2100 MHz	3910 m	9.8243 %

Tabela 3: Comparação entre o Okumura-Hata e COST 231

Essa entrega foi alcançada mais facilmente, devido ser necessário apenas trocar a linha do modelo de propagação da entrega 01.

Link do vídeo: http://youtu.be/VgcaNg03ris?hd=1

4. Referências

[1] RODRIGUES, Marcio. 2017. 43 slides. **Propagação ponto-área e Modelos de Predição** no curso de Antenas e Propagação (DCO1006) da UFRN.