DM N°9 (pour le 28/01/2011)

Notations.

On note:

 $-\mathbb{N}$: l'ensemble des entiers naturels,

— ℝ : l'ensemble des nombres réels,

— e : le nombre réel dont le logarithme népérien est égal 1.

Pour x appartenant à \mathbb{R} , on note |x| la valeur absolue de x.

Pour tout entier naturel, on note n! la factorielle de n avec la convention 0!1 = ...

Si j et n sont deux entiers naturels fixes tels que $0 \le j \le n$, on note :

— [|j,n|] l'ensemble des naturels k vérifiant $j \le k \le n$,

 $\binom{n}{i}$ le nombre de parties ayant j éléments d'un ensemble de n éléments.

On rappelle que pour tout entier naturel j élément de [0,n] on a : $\binom{n}{j} = \frac{n!}{j!(n-j)!}$.

Si f est une fonction k fois dérivable sur un intervalle I (avec $k \ge 1$) on note f' (resp. $f^{(k)}$) sa fonction dérivée (resp. sa fonction dérivée k-ième).

Si u est une application de \mathbb{N} dans \mathbb{R} , donc une suite réelle, on utilise la notation usuelle : $u(n) = u_n$ pour tout *n* appartenant à \mathbb{N} .

Soit x un nombre réel, on rappelle que s'il existe un nombre entier p qui vérifie $|p-x|<\frac{1}{2}$ alors p est l'entier le plus proche de x.

Objectifs.

L'objet du problème est d'une part d'établir, pour tout entier naturel non nul, un lien entre l'entier naturel β_n le plus proche de $e^{-1}n!$ et le nombre γ_n d'éléments sans point fixe du groupe symétrique \mathcal{S}_n et d'autre part, d'étudier l'écart $\delta_n = e^{-1}n! - \beta_n$.

Dans la partie I on étudie β_n et on le caractérise grâce à une récurrence, dans la partie II on étudie γ_n et on établit un lien avec β_n . La partie III est consacrée à une estimation de δ_n puis à une étude des deux séries $\sum_{n\geqslant 0} \delta_n \text{ et } \sum_{n\geqslant 1} \frac{|\delta_n|}{n}.$

Les suites α et β .

On définit la suite α par $\alpha_0 = 1$ et la relation de récurrence :

$$\forall n \in \mathbb{N}, \ \alpha_{n+1} = (n+1)\alpha_n + (-1)^{n+1}$$

On rappelle que pour tout x réel, la série $\sum_{n\geq 0} \frac{x^n}{n!}$ est convergente, et que $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$; en particulier, pour x = -1

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = e^{-1}$$

Pour $n \in \mathbb{N}$, on note: $\beta_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$ et $\rho_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!}$.

I.1. Etude de la suite α .

I.1.1 Expliciter α_k pour k dans [0,4].

I.1.2 Montrer que α_n est un entier naturel pour tout n de \mathbb{N} .

I.2. Etude de la suite β .

I.2.1 Expliciter β_k pour k dans [|0,4|].

I.2.2 Montrer que β_n est un entier relatif pour tout n de \mathbb{N} .

I.2.3 Expliciter $\beta_{n+1} - (n+1)\beta_n$ en fonction de n, pour tout entier n de \mathbb{N} .

I.2.4 Comparer les deux suites α et β .

I.3. Etude de ρ_n .

I.3.1 Préciser le signe de ρ_n en fonction de l'entier naturel n.

I.3.2 Etablir, pour tout entier naturel n, l'inégalité suivante : $n! |\rho_n| \le \frac{1}{n+1}$. L'inégalité est-elle stricte ?

I.3.3 Déduire de ce qui précède que pour tout entier naturel $n \ge 1$, β_n est l'entier naturel le plus proche de $e^{-1}n!$.

I.4. Etude d'une fonction.

On désigne par f la fonction définie et de classe C^1 (au moins) sur l'intervalle]-1,1[à valeurs réelles, vérifiant les deux conditions :

$$f(0) = 1$$
 et $\forall x \in]-1,1[, (1-x)f'(x)-xf(x)=0$

I.4.1 Justifier l'existence et l'unicité de la fonction f. Expliciter f(x) pour tout x de]-1,1[.

I.4.2 Justifier l'affirmation : "f est de classe C^{∞} sur]-1,1[".

I.4.3 Expliciter (1-x)f(x), puis exprimer pour tout entier naturel n:

$$(1-x)f^{(n+1)}(x) - (n+1)f^{(n)}(x)$$

en fonction de n et de x.

I.4.4 En déduire une relation, valable pour tout entier naturel n, entre β_n et $f^{(n)}(0)$.

2 La suite γ .

Dans cette partie, on désigne par n un entier naturel.

Pour $n \ge 1$, on note :

— \mathcal{S}_n l'ensemble des permutations de [|1,n|],

— γ_n le nombre d'éléments de \mathcal{S}_n sans point fixe (τ appartenant à \mathcal{S}_n est sans point fixe si pour tout kde [|1,n|], on a $\tau(k) \neq k$).

Pour n = 0 on adopte la convention : $\gamma_0 = 1$.

II.1. Calculer γ_1 et γ_2 .

II.2. Classer les éléments de \mathcal{S}_3 selon leur nombre de points fixes et calculer γ_3 .

II.3. On suppose dans cette question que n = 4.

II.3.1 Quel est le nombre d'éléments τ appartenant à \mathcal{S}_4 ayant deux points fixes?

II.3.2 Quel est le nombre d'éléments τ appartenant à \mathcal{S}_4 ayant un point fixe?

II.3.3 Calculer γ_4 .

II.4. Relation entre les γ_k .

II.4.1 Rappeler sans justification le nombre d'éléments de \mathcal{S}_n .

II.4.2 Si $0 \le k \le n$, combien d'éléments de \mathcal{S}_n ont exactement k points fixes?

II.4.3 Etablir pour tout entier naturel n la relation : $\sum_{k=0}^{n} {n \choose k} \gamma_k = n!$.

II.5. On considère la série entière $\sum_{n\geq 0} \frac{\gamma_n}{n!} x^n$ et l'on pose $g(x) = \sum_{n=0}^{+\infty} \frac{\gamma_n}{n!} x^n$ lorsque la série converge.

II.5.1 Montrer que cette série est absolument convergente pour |x| < 1.

II.5.2 Pour tout x de]-1,1[, on pose $g(x)=e^xg(x)$. Justifier l'existence du développement en série entière de la fonction h sur]-1,1[et expliciter ce développement.

II.5.3 Expliciter g(x) pour tout nombre réel x de]-1,1[.

II.5.4 Comparer les deux suites β et γ .

II.5.5 La fonction g est-elle définie en 1 ?

II.5.6 La fonction g est-elle définie en -1?

II.5.7 Calculer γ_8 .

Sur $\delta_n = e^{-1}n! - \beta_n$.

Pour tout entier naturel n, on note:

$$- \delta_n = e^{-1}n! - \beta_n.$$

$$- J_n = \int_0^1 x^n e^x dx$$

$$- v_n = (-1)^{n+1} J_n$$

- $J_n = \int_0^1 x^n e^x dx$. - $v_n = (-1)^{n+1} J_n$. III.1. La série $\sum_{n \ge 0} v_n$.

PSI* 10-11 - DM N°9 -

III.1.1 Quelle est la limite de J_n lorsque n tend vers $+\infty$? III.1.2 Etablir la convergence de la série $\sum_{n\geq 0} v_n$.

III.2. Estimation intégrale de δ_n .

III.2.1 Justifier, pour tout nombre réel x et pour tout entier naturel n, l'égalité :

$$e^{x} = \sum_{k=0}^{n} \frac{x^{k}}{k!} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} e^{t} dt$$
 (1)

III.2.2 Déduire de (1) l'expression de δ_n en fonction de ν_n . III.3. Sur la série $\sum_{n\geqslant 0}\delta_n$.

Justifier la convergence de la série $\sum_{n\geqslant 0} \delta_n$; la convergence est-elle absolue?

III.4. Sur la série $\sum_{n\geqslant 1} \frac{|\delta_n|}{n}$.

III.4.1 Justifier la convergence de la série $\sum_{n>1} \frac{|\delta_n|}{n}$.

III.4.2 On pose $A = -\int_0^1 e^x \ln(1-x) \, dx$. III.4.2.1 Justifier la convergence de l'intégrale impropre A.

III.4.2.2 Exprimer la somme $\sum_{n=1}^{+\infty} \frac{|\delta_n|}{n}$ en fonction de l'intégrale A.

III.4.3 Justifier la convergence de la série $\sum_{n>0} \frac{(-1)^n}{n!(n+1)^2}$ et expliciter la somme $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!(n+1)^2}$ en fonction de

$$\sum_{n=0}^{+\infty} \frac{|\delta_n|}{n}.$$

III.4.4 Expliciter un nombre rationnel $\frac{p}{q}$ vérifiant $\left|\sum_{n=0}^{+\infty} \frac{|\delta_n|}{n} - \frac{p}{q}\right| \leqslant \frac{1}{600}$.

