2.4 (a)

	age	%fat
Mean	46.44444	28.783333
Standard Deviation	13.218624	9.254395
Median	51.000000	30.700000

2.4(b)

2.4 (c)

Fig: scatter plot

fig: qq-plot

2.8 (a)

Implemented 4 similarity algorithms. Compared with Cosine similarity from Scikit Learn and Scipy. There are some differences between 3 Cosine implementations. It might happen due to internal normalization and decimal precision.

	A1	A2	Euclidean	Manhattan	Supremum	Cosine	Cosine- Scikit	Cosine- Scipy
x1	1.5	1.7	1	1	1	1	1	1
x2	2.0	1.9	5	5	4	2	3	4
х3	1.6	1.8	3	3	3	4	4	2
x4	1.2	1.5	2	2	2	5	2	3
x 5	1.5	1.0	4	4	4	3	5	5

2.8 (b) – used L2 norm

	A1	A2	A1norm	A2norm	Euclidean
x1	1.5	1.7	0.661622	0.749838	1
x2	2.0	1.9	0.724999	0.688749	4
х3	1.6	1.8	0.664364	0.747409	2
x4	1.2	1.5	0.624695	0.780869	3
x5	1.5	1.0	0.832050	0.554700	5

3.7 (a)

$$(35-13)/(70-13) = 0.38596491228070173$$

3.7 (b)

0.38926097658709724

3.7 (c)

0.35

3.7 (d)

I would use min-max normalization if there is no additional data which can change min or max. This is because to use z-score or decimal methods, we need to save extra parameters for future data and for reconstruction of original data. But if the min-max cannot be guaranteed, I would use the decimal method here, because the distribution of this small sample may not reflect the actual distribution of data, and hence, statistics of the sample might be wrong.

```
3.9 (a)
[5, 10, 11, 13],
[15, 35, 50, 55],
[72, 92, 204, 215]
3.9 (b)
[5, 10, 11, 13, 15, 35, 50, 55. 72],
[92],
[204, 215]
```

3.9 (c)

Using KMeans clustering

```
[5, 10, 11, 13, 15, 35],
[50, 55, 72, 92],
[204, 215]
```

Golam Md Muktadir