Задача А. Циклы

Имя входного файла: cycles.in Имя выходного файла: cycles.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Дан неориентированный граф из n вершин и m рёбер. Посчитай количество циклов длины 3 в этом графе.

Формат входных данных

Первая строка входных данных содержит два целых числа n и m — количество вершин и рёбер графа соответственно $(1 \leqslant n, m \leqslant 3 \cdot 10^5)$. Каждая из следующих m строк содержит по два целых числа от 1 до n — описание рёбер графа. Гарантируется, что в графе нет кратных рёбер и петель.

Формат выходных данных

В единственной строке выходного файла выведите количество циклов длины 3 в графе.

Примеры

cycles.in	cycles.out
6 6	2
1 2	
2 3	
3 1	
4 2	
3 4	
5 1	

Задача В. Варенье

 Имя входного файла:
 jam.in

 Имя выходного файла:
 jam.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Малыш и Карлсон решили пойти на прогулку. Они знают, что прогулка будет совсем скучной, если перед ней не опустошить несколько банок варенья.

Малыш достал из кладовки N банок варенья и выставил их в ряд. В банке номер i содержится ровно a_i грамм варенья. Карлсон немного подумал и решил, что в некоторых банках недостаточно варенья, и что в банке номер i должно быть хотя бы b_i грамм варенья.

Выходить из этой ситуации Карлсон хочет в M этапов. На каждом этапе он выбирает числа $l,\,r,\,x$ и $y,\,$ а затем выполняет следующие операции: в банку номер l он добавляет x грамм варенья, в банку номер l+1-x+y грамм варенья, в банку номер $l+2-x+2\cdot y,\,$ и так далее. В банку номер r наш герой добавит $x+y\cdot (r-l)$ грамм варенья.

Малышу хочется определить для каждой банки i наименьший номер операции, после которой в ней станет хотя бы b_i грамм варенья. Помогите Малышу: найдите соответствующее число для каждой банки.

Формат входных данных

В первой строке входного файла задано одно число N $(1 \leqslant n \leqslant 10^5)$ — количество банок. Во второй строке заданы N чисел a_i $(0 \leqslant a_i \leqslant 2 \cdot 10^9)$ — изначальное количество варенья в банке номер i. В третьей строке заданы N чисел b_i $(0 \leqslant b_i \leqslant 2 \cdot 10^9)$ — минимальное количество варенья, которое должно быть в банке номер i.

В четвертой строке задано M ($0 \le M \le 10^5$) — число этапов добавления варенья в банки, которые выполнит Карлсон. В следующих M строках описаны сами этапы в хронологическом порядке. Каждый этап задан четырьмя числами $l,\ r,\ x$ и y ($1 \le l \le r \le N,\ 0 \le x, y \le 3 \cdot 10^5$).

Формат выходных данных

Выведите N чисел в одной строке, разделенные пробелом. Число номер i должно быть равно нулю, если в банке номер i изначально было достаточно варенья, номеру этапа, после которого в ней станет хотя бы b_i варенья, или -1, если даже после выполнения всех этапов, в этой банке будет недостаточно варенья. Этапы нумеруются с единицы.

Примеры

jam. in	jam.out
5	1 2 0 3 -1
5 4 4 2 1	
7 7 4 7 7	
3	
1 2 2 0	
2 5 1 1	
3 4 2 2	

Задача С. Range Minimum Query

 Имя входного файла:
 rmq.in

 Имя выходного файла:
 rmq.out

 Ограничение по времени:
 2 секунды

 Ограничение по памяти:
 256 мегабайт

Компания <u>Giggle</u> открывает свой новый офис в Судиславле, и вы приглашены на собеседование. Ваша задача — решить поставленную задачу.

Вам нужно создать структуру данных, которая представляет из себя массив целых чисел. Изначально массив пуст. Вам нужно поддерживать две операции:

- запрос: «? і ј» возвращает минимальный элемент между i-ым и j-м, включительно;
- изменение: «+ і x» добавить элемент x после i-го элемента списка. Если i=0, то элемент добавляется в начало массива.

Конечно, эта структура должна быть достаточно хорошей.

Формат входных данных

Первая строка входного файла содержит единственное целое число n — число операций над массивом ($1 \le n \le 200\,000$). Следующие n строк описывают сами операции. Все операции добавления являются корректными. Все числа, хранящиеся в массиве, по модулю не превосходят 10^9 .

Формат выходных данных

Для каждой операции в отдельной строке выведите её результат.

Примеры

rmq.in	rmq.out
8	4
+ 0 5	3
+ 1 3	1
+ 1 4	
? 1 2	
+ 0 2	
? 2 4	
+ 4 1	
? 3 5	

Задача D. Мощный массив

 Имя входного файла:
 power.in

 Имя выходного файла:
 power.out

 Ограничение по времени:
 5 секунд

 Ограничение по памяти:
 256 мегабайт

Имеется массив натуральных чисел a_1,a_2,\ldots,a_n . Рассмотрим некоторый его подмассив a_l,a_{l+1},\ldots,a_r , где $1\leqslant l\leqslant r\leqslant n$, и для каждого натурального числа s обозначим через K_s число вхождений числа s в этот подмассив. Назовем мощностью подмассива сумму произведений $K_s\cdot K_s\cdot s$ по всем различным натуральным s. Так как количество различных чисел в массиве конечно, сумма содержит лишь конечное число ненулевых слагаемых.

Необходимо вычислить мощности каждого из t заданных подмассивов.

Формат входных данных

Первая строка содержит два целых числа n и t $(1\leqslant n,t\leqslant 200000)$ — длина массива и количество запросов соответственно.

Вторая строка содержит n натуральных чисел a_i $(1\leqslant a_i\leqslant 10^6)$ — элементы массива.

Следующие t строк содержат по два натуральных числа l и r $(1 \le l \le r \le n)$ — индексы левого и правого концов соответствующего подмассива.

Формат выходных данных

Выведите t строк, где i-ая строка содержит единственное натуральное число — мощность подмассива i-го запроса.

Примеры

power.in	power.out
3 2	3
1 2 1	6
1 2	
1 3	
8 3	20
1 1 2 2 1 3 1 1	20
2 7	20
1 6	
2 7	