

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesores: Constanza del Campo, Camilo Sánchez

AYUDANTES: AGUSTÍN GILBERT, MARTINA RUZ,

SANTIAGO MARCANO, OMAR NEYRA

## Introducción al Álgebra y Geometría - MAT1207 Ayudantía 9

## 14 de Mayo, 2024

Ejercicio 1: Calcule

$$i^{54} + i^{12} + (i)^{90} + (-i)^{63} + i^{89}$$

**Ejercicio 2:** Exprese los siguientes números en forma polar, luego, calcule su décima potencia (i.e. calcular  $x^{10}$ ).

1. 
$$-1 + i\sqrt{3}$$
.

$$2. -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

3. 
$$\sqrt{\frac{2+\sqrt{3}}{4}} + i\sqrt{\frac{2-\sqrt{3}}{4}}$$
.

Ejercicio 3: Encuentre todas las raíces a las siguientes ecuaciones:

1. 
$$x^{10} - x^5 = 0$$
.

2. 
$$x^4 + x^2 = 1$$
.

3. 
$$x^n = -1$$
 para n natural impar.

4. 
$$x^4 = i$$
.

**Ejercicio 4:** Sea  $w \neq 1$  una raíz cúbica de la unidad, calcule

$$w^2 + w^{-2}$$

Ejercicio 5: Demuestre las siguientes identidades:

a) 
$$\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right)$$
.

b) 
$$\arctan\left(\frac{x}{\sqrt{1-x^2}}\right) = \arcsin(x)$$
.

c) 
$$\cos(\arcsin(x) + \arcsin(y)) = \sqrt{1 - x^2} \cdot \sqrt{1 - y^2} - xy$$
.

d) 
$$\operatorname{tg}(\operatorname{arc}\cos(x)) = \frac{\sqrt{1-x^2}}{x}$$
.

e) 
$$\cos(\operatorname{arccot}(x)) = \frac{x}{\sqrt{1+x^2}}$$
.

## **Propuestos:**

**Ejercicio 6:** Dado un número complejo w = a + ib con  $a, b \in \mathbb{R}$ , definimos su conjugado como  $\overline{w} = a - ib$ , es decir, cambiamos el signo de la parte imaginaria del número, alternativamente se puede pensar como una reflexión en torno al eje real.

Adicionalmente, definimos la parte real de w por Re(w) = a (lo que no acompaña a i) y la parte imaginaria de w por Im(w) = b (lo que acompaña a i).

Demuestre las siguientes propiedades sobre el conjugado, sean  $z, w \in \mathbb{C}$ :

- 1.  $\overline{z+w} = \overline{z} + \overline{w}$ .
- 2.  $z + \overline{z} = 2 \operatorname{Re}(z)$ .
- 3.  $z \overline{z} = 2i \operatorname{Im}(z)$ .
- 4.  $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- 5. Si |z| viene definido por  $|z| := \sqrt{\text{Re}(z)^2 + \text{Im}(z)^2}$ , entonces  $|z|^2 = z \cdot \overline{z}$ .
- 6. Si  $z \neq 0$ , entonces su inverso multiplicativo cumple que  $z^{-1} = \overline{z}/|z|^2$ .

**Ejercicio 7:** Escribiendo  $z = r \operatorname{cis}(\theta) \in \mathbb{C}$ , con r > 0 y  $\theta \in [0, 2\pi)$ , encuentre todas las soluciones a la ecuación

$$\frac{z^5 + (\overline{z})^5}{2} = -32$$

**Ejercicio 8:** Sean  $z = r \operatorname{cis}(\theta)$ ,  $w = s \operatorname{cis}(\phi)$  complejos escritos en forma polar, demuestre que:

$$zw = rs\operatorname{cis}(\theta + \phi)$$
  $y$   $\frac{z}{w} = \frac{r}{s}\operatorname{cis}(\theta - \phi)$