1 Applicazioni del teorema dei residui in campo reale

1.1 Primo tipo

$$\int_0^{2\pi} f(\cos t, \sin t) dt$$

$$\cos t = \frac{e^{it} + e^{-it}}{2}$$
$$\sin t = \frac{e^{it} - e^{-it}}{2}$$

Dunque

$$\int_0^{2\pi} f(\cos t, \sin t) dt = \int_0^{2\pi} g(e^{it}) i e^{it} dt$$

$$\int_{C_1(0)} g(z) dz$$

Se g soddisfa le ipotesi del teorema dei residui su $C_1(0) \subseteq \Omega$, con $\gamma = C_1(0)$

$$=2\pi i \sum_{|z_0|<1} \operatorname{Res}(g,z_0)$$

Esempio: $\int_0^{2\pi} \frac{1}{2+\sin t} dt$

1.2 Secondo tipo

V.P.
$$\int_{\mathbb{R}} f(x) dx := \lim_{R \to +\infty} \int_{-R}^{R} f(x) dx$$

La definizione cambia leggermente nel caso sia presente una singolarità su $\mathbb{R}.$ Se f è integrabile (secondo Riemann) allora

$$\int_{\mathbb{R}} f(x)dx = \lim_{R \to +\infty} \int_{-R}^{R} f(x)dx$$

In generale può accadere che il V.P. $\int_{\mathbb{R}} f(x) dx \in \mathbb{R}$ ma f non è integrabile **Esempio:**

$$f(x) = \begin{cases} \frac{1}{x} & x \ge 1\\ 1 & x \in [0, 1]\\ -1 & x \in [-1, 0]\\ \frac{1}{x} & x \le -1 \end{cases}$$

fnon è integrabile secondo Riemann, ma il V.P. è uguale a 0.

Ipotesi: f = f(z) abbia un numero finito di singolarità nel semipiano $\{\text{Im}z > 0\}$ (e nessuna singolarità sull'asse reale)+ (*) ipotesi di decadimento.

$$I = \lim_{R \to +\infty} \int_{-R}^{-R} f(x)dx + \int_{C_P^+(0)} f(z)dz - \int_{C_P^+(0)} f(z)dz$$

Figura 1: Semicirconferenza

$$I = \lim_{R \to +\infty} \int_{\gamma_R} f(z)dz - \lim_{R \to +\infty} \int_{C_R(0)^+} f(z)dz$$

Dove $\gamma_R = [-R, R] + C_R^+(0)$ Per il teorema dei residui

$$I = 2\pi i \sum_{\substack{z_0 \in S, \\ \operatorname{Im} z_0 > 0}} \operatorname{Res}(f, z_0)$$

L'indice di avvolgimento è uguale a 1.

1.2.1 Lemma tecnico di decadimento

Se $\exists \alpha > 1$ tale che $|f(z)| \leq \frac{c}{|z|^{\alpha}}$ (per |z| abbastanza grande) (*), allora

$$\lim_{R \to +\infty} \int_{C_{\sigma}^{+}(0)} f(z) dz = 0$$

Aggiungendo l'ipotesi di decadimento all'integrale precedente si avrà il risultato scritto.

Si ha un calcolo analogo per il semipiano $\{\text{Im} < 0\}$

1.3 Terzo tipo

$$I = \text{V.P. } \int_{\mathbb{R}} f(x)e^{i\omega x}dx = 2\pi i \sum_{\substack{z_0 \in S \\ \text{Im}z_0 > 0}}^{\infty} \text{Res}(f(z)e^{i\omega z}, z_0)$$

Dove $\omega \in \mathbb{R}^+$

Ipotesi: $f(z)e^{i\omega x}$ abbia un numero finito di singolarità nel semipiano $\{\text{Im}z>0\}$ (e nessuna singolarità sull'asse reale) + (**) lemma di Jordan.

$$I = \lim_{R \to +\infty} \int_{-R}^{-R} f(z)e^{i\omega z} dz + \int_{C_R(0)^+} f(z)e^{i\omega z} dz - \int_{C_R(0)^+} f(z)e^{i\omega z} dz$$

Figura 2: Semicirconferenza

$$I = \lim_{R \to +\infty} \int_{\gamma_R} f(z)e^{i\omega z}dz - \lim_{R \to +\infty} \int_{C_R(0)^+} f(z)e^{i\omega z}dz$$

Dove $\gamma_R = [-R, R] + C_R^+(0)$ Per il teorema dei residui

$$I = 2\pi i \sum_{\substack{z_0 \in S, \\ \operatorname{Im}(z_0) > 0}} \operatorname{Res}(f(z)e^{i\omega x}, z_0)$$

L'indice di avvolgimento è uguale a 1. Il secondo termine dell'integrale si elide grazie a il

1.3.1 Lemma di Jordan

Sotto l'ipotesi

$$\begin{split} &\lim_{R\to +\infty} \sup_{z\in c_R^+(0)} |f(z)| = 0 \quad (**) \\ &\lim_{R\to +\infty} \int_{C_R^+(0)} f(z) e^{i\omega x} dz = 0 \end{split}$$

Osservazione: Variante analoga nel semipiano $\{\operatorname{Im} z < 0\}$ quando $\omega \in \mathbb{R}^-$ Jordan vale anche per $\omega \in \mathbb{R}^-$ in $C_R^-(0)$ Esempio: $I = \operatorname{V.P.} \int_{\mathbb{R}} \frac{\cos x}{1+x^2} dx$

1.4 Quarto tipo

$$I=\text{V.P.}\int_{\mathbb{R}}f(x)dx$$

Ipotesi: f(z) abbia un numero finito di singolarità su $\{\text{Im} > 0\}$, $\lim_{R \to +\infty} \int_{C_R^+(0)} f(z) dz = 0$ (***) e abbia un numero finito di poli semplici su \mathbb{R} .

$$\gamma_{R,\varepsilon} = [-R, x_0 - \varepsilon] - C_{\varepsilon}^+(x_0) + [x_0 + \varepsilon, R] + C_R^+(0)$$

$$I = \lim_{R \to +\infty} \int_{\gamma_{R,\varepsilon}} f(z)dz + \lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^+(x_0)} f(z)dz - \lim_{R \to +\infty} \int_{C_R^+(0)} f(z)dz$$

1.4.1 Lemma del polo semplice

Se x_0 è un polo semplice

$$\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}^{+}(x_{0})} f(z)dz = \pi i \operatorname{Res}(f, x_{0})$$

Esempio: $I=(\text{V.P.})\int_{\mathbb{R}}\frac{1-\cos2x}{x^2}dx$

Figura 3: Quarto tipo

2 Cenni aggiuntivi sull'analisi complessa

2.1 Residuo all'infinito

Definizione: Diciamo che ∞ è una singolarità isolata per f se f olomorfa nel complementare di una palla

In modo equivalente: $g(z) = f(\frac{1}{z})$ ha una singolarità isolata nell'origine.

Olomorfa su
$$\left| \frac{1}{z} \right| > R \iff |z| < R$$

$$\mathrm{Res}(f,\infty) := \mathrm{Res}(-\frac{1}{z^2}f(\frac{1}{z}),0)$$

Teorema: La somma di tutti i residui di una funzione olomorfa su $\mathbb{C} \setminus \{n. \text{ finito di punti}\}$ è zero. (compreso il punto all'infinito).

Da utilizzare quando si deve calcolare la somma di tanti residui al finito. (stesso indice di avvolgimento)

2.2 Funzioni polidrome

Completare

 $z \mapsto \sqrt[n]{z}, \log z$ non sono funzioni!

Per definire una radice n-esima funzione si può specificare l'intervallo di variabilità di Argz. $z \in \mathbb{C} \mapsto \sqrt[n]{|z|} e^{i\frac{\text{Arg}z}{n}}$ con Arg $z \in [\overline{\theta}, \overline{\theta} + 2\pi]$: Branca della radice n-esima.

Osservazione: Una branca della radice n-esima non è continua su \mathbb{C} . (è continua su $\mathbb{C} - \{\theta = \overline{\theta}\}$

Non è possibile incollare due branche diverse ottenendo una funzione olomrofa su $\mathbb{C}.$

2.3 Funzioni armoniche

Definizione: $u: \mathbb{R}^2 \to \mathbb{R}$ si dice armonica se

$$\nabla^2 u = 0 = u_{xx} + u_{yy}$$

Osservazione: f = f(z) olomorfa, $f = u + iv \implies u, v$ armoniche.

$$\begin{cases} u_x = v_y \\ u_y = -v_x \end{cases} \begin{cases} u_{xx} = v_{yx} \\ u_{yy} = -v_{xy} \end{cases}$$

Sommando le due equazioni

$$u_{xx} + u_{yy} = 0$$

(Analogamente per $\nabla^2 v = 0$

Osservazione 2: u armonica su Ω , con Ω semplicemente connesso $\implies \exists v$ armonica coniugata di u t.c. f = u + iv olomorfa.