WO0222595

Title: N-SUBSTITUTED BENZOTHIOPHENESULFONAMIDE DERIVATIVES

Abstract:

Novel N-substituted benzothiophenesulfonamide derivatives represented by the general formula (I) or salts thereof and use of the same. Further, preventives and remedies for cardiocirculatory diseases caused by hyperproduction of angiotensin II or endothelin I based on chymase activity which have an effect of selectively inhibiting chymase.

(19) 世界知的所有権機関 国際事務局

- 1 MARIE ADDITAL S ARRES AND A MARIE SAN ARRES AND A SAN ARRES AND A SAN ARREST AND A SAN ARREST AND A SAN AR

(43) 国際公開日 2002 年3 月21 日 (21.03.2002)

PCT

(10) 国際公開番号 WO 02/22595 A1

(51) 国際特許分類⁷: **C07D 333/62**, 409/12, 413/12, 417/12, A61K 31/381, 31/4025, 31/4178, 31/422, 31/427, A61P 43/00, 9/10

[JP/JP]. 長谷川健志 (HASEGAWA, Takeshi) [JP/JP]; 〒960-0211 福島県福島市飯坂町湯野宇田中1番地 トーアエイヨー株式会社 福島研究所内 Fukushima (JP).

(21) 国際出願番号:

PCT/JP01/08061

(22) 国際出願日:

2001年9月17日(17.09.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-282046 特願2001-122972 2000年9月18日(18.09.2000) JF 2001年4月20日(20.04.2001) JF

- (71) 出願人 (米国を除く全ての指定国について): トーアエ イヨー株式会社 (TOA EIYO LTD.) [JP/JP]; 〒104-0031 東京都中央区京橋三丁目1番2号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 佐藤正次 (SATOH, Shoji) [JP/JP]. 山田秀宜 (YAMADA, Hideki) [JP/JP]. 風山真一 (KAZAYAMA, Shin-ichi) [JP/JP]. 森田孝博 (MORITA, Takahiro) [JP/JP]. 正木秀和 (MASAKI, Hidekazu) [JP/JP]. 高橋敦男 (TAKA-HASHI, Atsuo) [JP/JP]; 〒330-0834 埼玉県さいたま市天沼町二丁目293-3 トーアエイヨー株式会社東京研究所内 Saitama (JP). 龍井 晃 (TATSUI, Akira)

- (74) 代理人: 弁理士 小栗昌平, 外(OGURI, Shohei et al.); 〒107-6028 東京都港区赤坂一丁目12番32号 アーク 森ピル28階 栄光特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 *(*広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

— 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: N-SUBSTITUTED BENZOTHIOPHENESULFONAMIDE DERIVATIVES

(57) Abstract: Novel N-substituted benzothiophenesulfonamide derivatives represented by the general formula (I) or salts thereof and use of the same. Further, preventives and remedies for cardiocirculatory diseases caused by hyperproduction of angiotensin II or endothelin I based on chymase activity which have an effect of selectively inhibiting chymase.

[続葉有]

(57) 要約:

本発明は下記一般式(I)で表される新規なN置換ベンゾチオフェンスルホンアミド誘導体又はその塩及びその用途に関し、更にキマーゼに対する選択的な阻害作用を有し、キマーゼ活性に基づくアンンギオテンシンII又はエンドセリンI産生の異常亢進に起因する心臓・循環器系疾患の予防・治療剤を提供する。

$$X \xrightarrow{O_2} R^3$$

$$R^2$$

$$R^1$$

$$R^2$$

明細書

N置換ベンゾチオフェンスルホンアミド誘導体

技術分野

本発明は、医薬、特にキマーゼを選択的に阻害するN置換ベンゾチオフェンスルホンアミド誘導体又は薬剤学的に許容しうるその塩、及びそれらを有効成分とするキマーゼ阻害剤に関する。

それらの化合物は、キマーゼに対する選択的な阻害作用を有するため、キマーゼ活性に基づくアンギオテンシンII (以下、AngIIと略す)産生又はエンドセリンI (以下、ET-1と略す)産生の異常亢進に起因する高血圧、心肥大、心筋梗塞、心不全、動脈硬化、糖尿病性又は非糖尿病性腎疾患、糖尿病性網膜症、経皮的冠状動脈形成術 (以下、PTCAと略す)施行後の再狭窄、バイバスグラフト施行後の内膜肥厚、虚血再灌流障害、慢性関節リウマチ、ケロイド、乾癬、アレルギー、炎症、喘息、アトビー性皮膚炎及び固形腫瘍の予防・治療剤として有用である。

背景技術

AngII及びET-1は、血圧上昇作用のほか、細胞増殖促進作用を有することから、高血圧、心肥大、心筋梗塞、動脈硬化、糖尿病性及び非糖尿病性腎疾患、PTCA施行後の再狭窄等の疾患の原因物質又は危険因子と考えられている。 また、AngIIはアンギオテンシン変換酵素(以下、ACEと略す)によりアンギオテンシンI(以下、AngIと略す)から生成することが知られており、ACE阻害剤は上記疾病の予防・治療剤として多数開発されている。

一方、ET-1はエンドセリン変換酵素(以下、ECEと略す)によりビッグエンドセリン(以下、BigET-1と略す)から生成する21アミノ酸残基からなる生理活性ペプチド(以下、ET(1-21) と略す)であることが知られているが、ECE阻害剤及びET-1 受容体拮抗剤は未だ医薬品として開発段階にある。

WO 02/22595 PCT/JP01/08061.

近年、ACEの他にもAngIからAngIIを産生する酵素が発見され、キマーゼと名付けられた。浦田らは、ヒト心臓からキマーゼを精製し、心臓や血管で産生されるAngII量の $7\sim8$ 割がキマーゼによるものであることを示した(J.Biol.Chem., 265巻, 22348頁, 1990年)。

また、ACE阻害剤にPTCA後の再狭窄に対する有効性が認められなかった事実 [MERCAPTOR試験 (Circulation, 86巻, 1号, 100頁, 1992年)及びMARCAPTOR試験 (J. Am. Coll. Cardiol., 27巻, 1号, 1頁, 1996年)]及びイヌ頸静脈を用いたグラフト血管の内膜肥厚モデルに対しキマーゼ阻害剤が有効であったこと(宮崎、高井ら;Febs. Lett., 467巻, 141頁, 2000年)を考え合わせるとAngII産生の異常亢進に起因する心臓・循環器系疾患の予防・治療には、ACEよりもむしろキマーゼを阻害することが重要であり、キマーゼ阻害剤の心臓・循環器系疾患への応用を示唆するものである。

さらに、最近においてキマーゼはBigET-1を特異的に31アミノ酸残基からなる生理活性ペプチド(以下ET (1-31) と略す)に分解することが明らかとなった。このET (1-31) は、本来のET (1-21) が作用する受容体に作用して、気管支収縮や血管収縮を起こすことが報告されている(木戸ら;J. Immunol., 159巻, 1987頁, 1997年)。なお、ヒト血中での濃度はET (1-31) 及びET (1-21) 共、ほぼ同程度の分布と活性を有し、心筋梗塞後ではET (1-31) がET (1-21) よりも増加し、発症2週間後まで維持されることが明らかとなり(玉置、西栖ら;Jpn. J. Pharmacol., 82巻(suppl I),26頁,2000年)、キマーゼを阻害することの重要性、キマーゼ阻害剤の心臓・循環器系疾患への応用を示唆するものである。

以上より、キマーゼは、生理活性ペプチドの産生・分解、細胞外マトリックスのリモデリング、サイトカインとのネットワーク、免疫等に関与し、代謝回転の修復に寄与するものと考えられる。これらのことから、キマーゼ阻害剤は心臓・循環器系疾患への応用が期待される。

また、ハムスタースポンジ皮下移植モデルに対し、AngIIをスポンジ内投与し、 $7日目に摘出し、ヘモグロビン含量を測定した結果、血管新生が認められた(毛細血管が主)。感作動物に抗原であるオボアルブミン(<math>10\mu g/site$ /day)をスポンジ投与するとコンパウンド 48/80 の場合と同様に血管新生が起こる。この血管新生もキモスタチンにより阻害された(村松ら、J.Bi ol. Chem. 275巻(8号), 5545頁, 2000年)。

以上の結果から、抗原刺激による肥満細胞活性化も血管新生を引き起こし得ることを示しており、この過程にもキマーゼが関与すると考えられ、様々な炎症性アレルギー疾患におけるキマーゼの新たな役割を示唆している。このような観点から、キマーゼ阻害剤は固形腫瘍、糖尿病性網膜症、関節リウマチ、粥状動脈硬化に対する効果が期待される。

現在、キマーゼに対する阻害剤としては、特開平10-7661号、特開平11-49739号、特開平11-246437号、国際公開WO98/09949号、WO98/18794号、WO99/32459号及びWO00/06594号にペプチド型のキマーゼ阻害剤が開示されている。一方、特開平10-87493号、特開平10-245384号、特開平12-95770号、WO96/04248号、WO97/11941号、WO99/09977号、WO00/03997号、WO00/10982号及びWO00/32587に非ペプチド型のキマーゼ阻害剤が開示されている。

しかしながら、現在までに臨床的に応用可能なキマーゼ阻害剤は見出されておらず、AngII及びET-1産生の異常亢進に起因する心臓・循環器系疾患の予防・治療に結びつく臨床応用可能なキマーゼ阻害剤の開発が望まれている。

発明の開示

本発明者らは、上記目的を達成するために鋭意検討した結果、N置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学的に許容しうる塩が、優れたヒトキマーゼ阻害活性と酵素選択性を有し、ラット血漿中でも安定なことを見出した。すなわち、本発明は、一般式(I)

$$X \xrightarrow{O_2} \overset{R^3}{\underset{R^1}{\bigvee}} R^2 \qquad (I)$$

[式中、Xは水素原子、Nロゲン原子又は低級アルキル基を、Yは低級アルキル基を、 R^1 及び R^2 はそれぞれ異なっていてもよく、水素原子、低級アルコキシカルボニル基、低級アルキルスルホニル基、ベンゾイル基、炭素数 $1\sim4$ 個のアシル基、低級アルコキシ基、低級アルコキシカルボニルメチルチオアセチル基、ニトロ基、 $-CONHR^4$ (式中、 R^4 は水素原子、低級アルコキシカルボニルメチル基、カルボキシメチル基又は-CH(CH_2OH) $COOR^5$ (式中、 R^5 は水素原子又は低級アルキル基を示す)を示す)、

$$-\text{CON}$$
 CO_2R^5

で表される基(式中、 R^5 は前記と同義である)、 CO_2R^5 (式中、 R^5 は前記と同義である)で置換されていてもよい

(Aは、O、S又はNHを、点線部分は単結合又は二重結合を示す)で表される単環複素環基、ヒドロキシ低級アルキル基又はシアノ基を(ただし、 R^1 と R^2 は同時に水素原子ではない)、 R^3 は水素原子、低級アルコキシ基又は低級アルキル基を示す]により表されるN置換ベンゾチオフェンスルホンアミド誘導体又はその塩に関するものである。

本発明の一般式 (I) で表される N置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学的に許容しうる塩は、キマーゼに対して強力な阻害活性を有し、キマーゼ活性に基づくAngII及びET-1産生の異常亢進に起因する心

臓・循環器系疾患の予防・治療に結びつく極めて有用な化合物である。なお、 式

で示される化合物についても、キマーゼに対して強力な阻害活性を有し、キマーゼ活性に基づくAngII及びET-1産生の異常亢進に起因する心臓・循環器系疾患の予防・治療に結びつき、極めて有用であることを見出した。

発明の実施の形態

Xのハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子又はヨウ素原子が挙げられ、なかでもフッ素原子又は塩素原子が好ましい。Xの低級アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基又はtertーブチル基が挙げられ、なかでもメチル基又はエチル基が好ましい。

Yの低級アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基又はtertーブチル基が挙げられ、なかでもメチル基又はエチル基が好ましい。

R¹及びR²の低級アルコキシカルボニル基としては、例えばメトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、secーブトキシカルボニル基又はtertーブトキシカルボニル基が挙げられ、なかでもメトキシカルボニル基、エトキシカルボニル基、イソプロポキシカルボニル基、又はtertーブトキシカルボニル基が好ましい。

R¹及びR²の低級アルキルスルホニル基としては、例えばメタンスルホニル

基、エタンスルホニル基、プロパンスルホニル基、イソプロパンスルホニル基 、ブタンスルホニル基、イソブタンスルホニル基、secーブタンスルホニル 基又はtertーブタンスルホニル基が挙げられ、なかでもメタンスルホニル 基又はエタンスルホニル基が好ましい。

 R^1 及び R^2 の炭素数 $1\sim 4$ 個のアシル基としては、例えばホルミル基、アセチル基、プロピオニル基、ブチリル基又はイソブチリル基が挙げられ、なかでもアセチル基が好ましい。

 R^1 、 R^2 及び R^3 の低級アルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソプトキシ基、secーブトキシ基又はtertーブトキシ基が挙げられ、なかでもメトキシ基又はエトキシ基が好ましい。

 R^1 及び R^2 の低級アルコキシカルボニルメチルチオアセチル基としては、例えばメトキシカルボニルメチルチオアセチル基、エトキシカルボニルメチルチオアセチル基、プロポキシカルボニルメチルチオアセチル基、イソプロポキシカルボニルメチルチオアセチル基、ブトキシカルボニルメチルチオアセチル基、イソプトキシカルボニルメチルチオアセチル基、secーブトキシカルボニルメチルチオアセチル基又はtertーブトキシカルボニルメチルチオアセチル基又はtertーブトキシカルボニルメチルチオアセチル基又はエトキシカルボニルメチルチオアセチル基が好ましい。

R¹及びR²の-CONHR⁴の場合、R⁴の低級アルコキシカルボニルメチル基としては、例えばメトキシカルボニルメチル基、エトキシカルボニルメチル基、プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、ブトキシカルボニルメチル基、イソブトキシカルボニルメチル基、secーブトキシカルボニルメチル基又はtertーブトキシカルボニルメチル基が挙げられ、なかでもメトキシカルボニルメチル基又はエトキシカルボニルメチル基、イソプロポキシカルボニルメチル基が好ましい。

R¹及びR²が-CONHR⁴であり、R⁴が-CH(CH₂OH)COOR⁵基である場合のR⁵の低級アルキル基としては、例えばメチル基、エチル基、プロ

ビル基、イソプロビル基、ブチル基、イソブチル基、sec-ブチル基又はtert-ブチル基が挙げられ、なかでもメチル基又はエチル基が好ましい。 R^1 及び R^2 が

で表される基であり、 R^5 が低級アルキル基である場合は上記と同様である。 R^1 及び R^2 が、 CO_2R^5 で置換されていてもよい

で表される単環複素環基である場合において、 R^5 の低級アルキル基は上記と同様であり、で置換されていてもよい

(Aは、O、S又はNHを、点線部分は単結合又は二重結合を示す)で表されるる単環複素環基は、例えば、

が挙げられる。具体的には、

が好ましく、またこれらの置換基は R^2 として置換されていることが好ましい。 また、このとき、 R^1 がメタンスルホニル基であり、 R^3 が水素原子であること が、さらに好ましい。

 R^{1} 及び R^{2} のヒドロキシ低級アルキル基としては、例えばヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基等の炭素数 $1\sim4$ 個の直鎖状又は分枝状のヒドロキシ低級アルキル基が挙げられ、なかでもヒドロキシメチル基、1-ヒドロキシエチル基、2-ヒドロキシエチル基が好ましい。

R³の低級アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、secーブチル基又はtertーブチル基が挙げられ、なかでもメチル基又はエチル基が好ましい。

なお、具体的な化合物の例としては、メチル 4-(5-クロロ-3-メチ ルベンゾ [b] チオフェンー2-スルホニルアミノ) -3-メタンスルホニル ベンゾエート、メチル 4-(5-クロロー3-メチルベンゾ [b] チオフェ ンー2ースルホニルアミノ) ー3ーメタンスルホニルベンゾエートナトリウム 塩、イソプロピル 4-(5-クロロ-3-メチルベンゾ[b]チオフェンー 2-スルホニルアミノ) -3-メタンスルホニルベンゾエート、5-クロロー 3-メチルベンゾ「b]チオフェン-2-スルホン酸(4-アセチル-2-メ タンスルホニルフェニル)アミド、5-クロロ-3-メチルベンゾ[b]チオ フェン-2-スルホン酸(4-ベンゾイル-2-メタンスルホニルフェニル) アミド、エチル 4-(5-クロロ-3-メチルベンゾ [b] チオフェン-2 -スルホニルアミノ) -3 -メタンスルホニルベンゾエート、tertル 4-(5-クロロ-3-メチルベンゾ[b] チオフェン-2-スルホニル アミノ)-3-メタンスルホニルベンゾエート、メチル 4- (5-クロロー 3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ) -3-エタンス ルホニルベンゾエート、メチル 4-(5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ) -5-メタンスルホニル-2-メチルベ ンゾエート、ジメチル 4-(5-クロロ-3-メチルベンゾ [b] チオフェ

ンー2-スルホニルアミノ) イソフタレート、メチル 4-(5-クロロー3 ーメチルベンゾ [b] チオフェン-2-スルホニルアミノ) -3-メトキシベ ンゾエート、メチル 4-(5-クロロ-3-メチルベンゾ [b] チオフェン -2-スルホニルアミノ)-3-ニトロベンゾエート、エチル 4-(5-ク ロロー3-メチルベンゾ[b] チオフェン-2-スルホニルアミノ) ベンゾエ ート、5-クロロー3ーメチルベンゾ[b]チオフェンー2ースルホン酸(2 , 4 ージメタンスルホニルフェニル)アミド、5 ークロロー3ーメチルベンゾ [b] チオフェン-2-スルホン酸 (4-アセチル-2-ニトロフェニル) ア ミド、5-クロロ-3-メチルベンゾ[b] チオフェン-2-スルホン酸(4 ーヒドロキシメチルー2ーメタンスルホニルフェニル)アミド、5ークロロー 3-メチルベンゾ [b] チオフェン-2-スルホン酸(4-ベンゾイルフェニ ル)アミド、5-クロロー3ーメチルベンゾ[b]チオフェンー2ースルホン 酸 (2-メタンスルホニルフェニル) アミド、メチル 4-(5-フルオロー 3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ) -3-メタンス ルホニルベンゾエート、メチル 4-(5-メチル-3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ)-3-メタンスルホニルベンゾエート、 5-フルオロー3-メチルベンゾ「b]チオフェン-2-スルホン酸(4-ア セチルー2ーメタンスルホニルフェニル)アミド、メチル 4ー(3ーメチル ベンゾ [b] チオフェンー2-スルホニルアミノ) -3-メタンスルホニルベ ンゾエート、2-[4-(5-クロロ-3-メチルベンゾ [b] チオフェンー 2-スルホニルアミノ)-3-メタンスルホニルフェニル オキサゾールー4 オフェンー2ースルホニルアミノ)-3ーメタンスルホニルフェニル]オキサ ゾール-4-カルボン酸メチル、2-[4-(5-クロロ-3-メチルベンゾ 「b] チオフェンー2ースルホニルアミノ)-3-メタンスルホニルフェニル 1 オキサゾールー4ーカルボン酸、2-[4-(5-7)] カステルベ ンゾ「b]チオフェンー2ースルホニルアミノ)-3ーメタンスルホニルフェ ニル]オキサゾール-4-カルボン酸、2-[4-(5-クロロ-3-メチル

ベンゾ [b] チオフェンー2ースルホニルアミノ) ー3ーメタンスルホニルフェニル] オキサゾールー4ーカルボン酸2ナトリウム塩、2ー[4ー(5ーフルオロー3ーメチルベンゾ[b] チオフェンー2ースルホニルアミノ) ー3ーメタンスルホニルフェニル] オキサゾールー4ーカルボン酸2ナトリウム塩が挙げられる。

上記の化合物の中でも、メチル 4-(5-クロロ-3-メチルベンゾ「b] チオフェンー2ースルホニルアミノ) -3-メタンスルホニルベンゾエート 、メチル 4-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-スル ホニルアミノ) -3-メタンスルホニルベンゾエートナトリウム塩、イソプロ ピル 4-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-スルホニ ルアミノ) -3-メタンスルホニルベンゾエート、5-クロロ-3-メチルベ ンゾ「b] チオフェンー2ースルホン酸(4ーアセチルー2ーメタンスルホニ ルフェニル)アミド、5-クロロ-3-メチルベンゾ[b]チオフェン-2-スルホン酸(4-ベンゾイル-2-メタンスルホニルフェニル)アミド、メチ ル 4-(5-フルオロ-3-メチルベンゾ「b] チオフェン-2-スルホニ ルアミノ) -3-メタンスルホニルベンゾエート、メチル 4-(5-メチル - 3 - メチルベンゾ「b] チオフェン- 2 - スルホニルアミノ) - 3 - メタン スルホニルベンゾエート、5-フルオロ-3-メチルベンゾ [b] チオフェン -2-スルホン酸(4-アセチル-2-メタンスルホニルフェニル)アミド、 メチル 4-(3-メチルベンゾ[b]チオフェン-2-スルホニルアミノ) ベンゾ[b] チオフェンー2ースルホニルアミノ) -3ーメタンスルホニルフ ェニル] オキサゾールー4ーカルボン酸、2-[4-(5-7)]ルオロー3ーメ チルベンゾ[b] チオフェン-2-スルホニルアミノ) -3-メタンスルホニ ルフェニル]オキサゾールー4ーカルボン酸、2-「4-(5-クロロー3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ) -3-メタンスルホ ニルフェニル

コキサゾールー4ーカルボン酸2ナトリウム塩、2ー[4ー(5-フルオロ-3-メチルベンゾ「bl チオフェン-2-スルホニルアミノ)

-3-メタンスルホニルフェニル]オキサゾール-4-カルボン酸2ナトリウム塩が好ましい。

次に、本発明のN置換ベンゾチオフェンスルホンアミド誘導体又はその塩の 製造法について説明する。本発明の一般式(I)の化合物は、下記に示すよう な反応式で説明される製造法によって製造することができる。

$$X$$
 SO_2CI $+$ H_2N R^2 工程A X S N R^2 R^2 R^2 R^3 R^3

すなわち、式中、一般式(III)で示されるアミン(式中 R^1 , R^2 及び R^3 は一般式(I)の化合物と同義)をジオキサン、テトラヒドロフラン(以下、T HFと略す)、アセトン、ジメチルホルムアミド(以下、DMFと略す)、ジメチルスルホキシド(以下、DMSOと略す)、クロロホルム、ピリジン等、又はそれらの混合溶媒中、-10 Cから溶媒の沸点温度までの範囲でナトリウムアミド、リチウムアミド、水素化ナトリウム、炭酸カリウム、カリウム tert ーブトキシド、トリエチルアミン、エチルジイソプロピルアミン、ピリジン、1,8 -ジアザビシクロ[5.4.0] ウンデック-7-エン(以下、DBUと略す)等の塩基存在下、スルホニルクロリド(II)(式中、X及びYは一般式(I)の化合物と同義)と反応させることにより製造することができる

なお、 R^1 及び/又は R^2 がエステル基を有する化合物である場合は、さらに、エステル基の還元によりヒドロキシメチル基に変換することにより目的化合物である一般式(I)に示す化合物を製造することができる。

また、 R^1 及び/又は R^2 が $-CONHR^4$ であり、 R^4 が低級アルコキシカルボニルメチル基の場合は、さらに、エステル加水分解した後、目的化合物である一般式(I)に示す化合物を製造することができ、塩形成を行うこともできる。

また、例えば、R²に前記単環複素環基、具体的には

を導入する場合は、以下の反応工程を順次行うこともできる。

$$X$$
 O_2 O_2 O_2 O_3 O_4 O_5 O_4 O_5 O_5 O_4 O_5 O_5 O_5 O_5 O_5 O_5 O_6 O_7 O_8 O_8

 R^2 が CO_2R^6 (R^6 は低級アルキル基を示す)である化合物(IV)をエステル加水分解により R^2 が CO_2H である化合物(V)を得(工程B)、この化合物(V)とセリンエステル塩酸塩(VI)(式中 R^7 は低級アルキル基を示す)をトリエチルアミン、エチルジイソプロピルアミン、DBU等の塩基存在下、N、 N^\prime -ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピルカルボジイミド(以下、EDCと略す)等の縮合剤を用いて反応させ化合物(VII)を得た(工程C)後、文献既知の方法(Tetrahedron. Lett.,33巻,907頁,1992年,J. Org. Chem.,38卷,26 頁,1973年,J. Org. Chem.,58卷,4494 頁,1993年,Org. Lett.,2卷,1165 頁,2000年)に従い化合物(Ia)及び化合物(Ib)を得る(工程D,E)ことにより製造することができる。

さらに、化合物 (Ia) 及び化合物 (Ib) は、必要に応じてエステル加水分解を行う。このようにして、目的化合物である一般式 (Ic) に示す化合物を製造することができる。さらに、塩形成を行うこともできる。

このようにして生成された一般式 (I) の化合物は、再結晶やカラムクロマトグラフィー等の慣用的手段により単離精製することができる。

本発明は一般式(I)の化合物の塩も含有する。一般式(I)の化合物の塩としては、医薬の使用を考えると薬剤学的に許容しうる塩が好ましい。

塩の具体例としては、常法により薬剤学的に許容しうる酸又は塩基との塩、 化合物によって塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、硝酸塩、燐酸塩等の無機酸との塩、酢酸塩、トリフルオロ酢酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、酒石酸塩、メシル酸塩、トシル酸塩等の有機酸との塩、ナトリウム塩、カリウム塩等のアルカリ金属との塩、カルシウム塩等のアルカリ土類金属との塩等が挙げられる。

- 一般式 (I) の化合物又はその薬剤学上許容し得る塩はキマーゼ阻害剤として有用である。
 - 一般式(I)の化合物には、不斉炭素原子に基づく光学異性体が存在する場

合がある。本発明には、これらの各種異性体の単離されたもの及びこれら異性体の混合物が含まれる。また、一般式(I)の化合物には、水和物、各種溶媒和物が含まれる。一般式(I)の化合物にはそれらの結晶形がすべて包含される。

本発明は、上記一般式(I)により表されるN置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学的に許容しうる塩を含有する医薬も包含する。その医薬はキマーゼ活性阻害剤も含む。

医薬としては、アンギオテンシン II またはエンドセリンIの産生の異常亢進に起因する疾患の診断、予防及び/又は治療のために有効なものである。

上記の疾患としては、循環器系疾患、炎症性アレルギー疾患が挙げられる。

具体的には、高血圧、心肥大、心不全、心筋梗塞、動脈硬化、糖尿病性あるいは非糖尿病性腎疾患、糖尿病性網膜症、虚血再灌流障害、経皮的冠状動脈形成術施行後の再狭窄、バイパスグラフト施行後の内膜肥厚、慢性関節リュウマチ、ケロイド、乾癬、アレルギー、炎症、喘息、アトピー性皮膚炎、又は固形腫瘍が挙げられる。

一般式(I)の化合物又はその薬剤学的に許容しうる塩は、経口又は非経口的(例えば、静脈もしくは筋肉内に注射)に投与することができる。

経口投与用製剤としては、例えば錠剤(糖衣錠、フィルムコーティング錠を含む)、丸剤、顆粒剤、散剤、カプセル剤(ソフトカプセル剤を含む)、シロップ剤、乳剤、懸濁剤等が挙げられる。

この経口投与用製剤は製剤分野において通常用いられる添加剤を配合し、公 知の方法に従って製造することができる。

このような添加剤としては、例えば乳糖、マンニトール、無水リン酸水素カルシウム等の賦形剤、ヒドロキシプロビルセルロース、メチルセルロース、ポリビニルピロリドン等の結合剤、でんぷん、カルボキシメチルセルロース等の崩壊剤、ステアリン酸マグネシウム、タルク等の滑沢剤等が用いられる。

非経口投与用製剤としては、例えば注射剤等が挙げられる。このような注射 剤は公知の方法、例えば一般式(I)の化合物又はその薬剤学的に許容しうる

塩を日局注射用水に溶解することにより製造される。必要により塩化ナトリウム等の等張化剤、リン酸水素ナトリウム、リン酸一水素ナトリウム等の緩衝剤等を配合してもよい。

本発明の化合物の成人1日当たりの投与量は、患者の症状や体重、年齢、化合物の種類、投与経路等によって変動し得るが、経口投与の場合には、投与量は約1~1,000mgが適切であり、約10~300mgが好ましい。非経口投与の場合は、経口投与の場合の10分の1量~2分の1量を投与すればよい。これらの投与量は、患者の症状や体重、年齢等により適宜増減することが可能である。

発明を実施するための最良の形態

次に本発明について、参考例及び実施例を挙げてより具体的に説明するが、 本発明はこれらにより限定されるものではない。

[実施例1] メチル 4-(5-2) (5-2)

メチル $4-r \ge J-3-y$ タンスルホニルベンゾエート985mgをTHF20mL及びDMF3mLの混合溶媒に溶解し、0 \mathbb{C} にて水素化ナトリウム(油状、60%) 170mgを加えた。同温にて20分間撹拌後、0 \mathbb{C} にて5-クロロ-2-クロロスルホニル-3-メチルベンゾ[b]チオフェン1.28gを加え、室温にて1時間撹拌した。さらに室温にて水素化ナトリウム(油状、60%) 150mgを加え、同温にて2時間撹拌した。原料消失を確認後、0 \mathbb{C} にて飽和塩化アンモニウム水を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(酢酸エチル:0 \mathbb{C} \mathbb{C}

融点:179-181℃

¹H-NMR (CDCl₃): δ 2.70 (3H,s), 3.06 (3H,s), 3.90 (3H,s), 7.48 (1H,dd, J=2.1,8.6Hz), 7.74 (1H,d,J=8.6Hz), 7.89 (1H,d,J=2.1Hz), 7.86 (1H,d,J=8.

8Hz) ,8.19 (1H,dd,J=2.0,8.8Hz) ,8.50 (1H,d,J=2.0Hz) ,9.84 (1H,s) .

IR ν_{max} (KBr) :3217,1720,1608,1504,1442,1392,1308,1165,1119 cm⁻¹.

[実施例2] エチル 4-(5-000-3-3) [b] チオフェン

-2-スルホニルアミノ)-3-メタンスルホニルベンゾエート

実施例 1 と同様にしてエチル 4-r ミノー3- メタンスルホニルベンゾエート 5 5 9 m g から無色粉末として標題化合物 5 2 9 m g を得た。

融点:167-169℃

¹H-NMR (CDCl₃): δ 1.36 (3H,t,J=7.1Hz),2.70 (3H,s),3.06 (3H,s),4.36 (2H,q,J=7.1Hz),7.47 (1H,dd,J=2.0,8.8Hz),7.74 (1H,d,J=8.8Hz),7.78 (1H,d,J=2.0Hz),7.86 (1H,d,J=8.8Hz),8.19 (1H,dd,J=2.0,8.8Hz),8.50 (1H,d,J=2.0Hz),9.83 (1H,brs).

IR ν_{max} (KBr) :3224,2985,1716,1608,1500,1358,1300,1142 cm⁻¹.

[実施例3] tert-ブチル 4-(5-クロロ-3-メチルベンゾ[b]チオフェン-2-スルホニルアミノ) -3-メタンスルホニルベンゾエート

実施例1と同様にしてtert-ブチル 4-アミノー3-メタンスルホニルベンゾエート128mgから無色粉末として標題化合物148mgを得た。

融点:236-238℃

¹H-NMR (CDCl₃): δ 1.54 (9H,s), 2.52 (3H,s), 3.28 (3H,s), 7.55-7.80 (4 H,m), 8.00 (1H,s), 8.25-8.30 (1H,m).

IR ν_{max} (KBr) :3467,2974,2327,1705,1662,1597,1477,1396,1296,1130,109 9cm⁻¹.

[実施例4] メチル 4-(5-0) -3-1

実施例1と同様にしてメチル 4-アミノ-3-エタンスルホニルベンゾエート76mgから無色粉末として標題化合物80mgを得た。

融点:172-173℃

¹H-NMR (CDCl₃): δ 1.27 (3H,t,J=7.3Hz),2.74 (3H,s),3.24 (2H,q,J=7.3Hz),3.77 (3H,s),7.20-7.31 (2H,m),7.43-7.56 (3H,m),8.31 (1H,s).

IR ν_{max} (KBr):3482,3217,2931,1709,1597,1481,1439,1284,1126 cm⁻¹. [実施例5]メチル 4 - (5 - クロロ- 3 - メチルベンゾ[b] チオフェン - 2 - スルホニルアミノ)- 5 - メタンスルホニル- 2 - メチルベンゾエートメチルベンゾエートメチル 4 - アミノ- 5 - メタンスルホニル- 2 - メチルベンゾエート135 mgをTHF (10mL)に溶解し、室温にて水素化ナトリウム(油状、60%)22 mgを加えた。同温にて20分間撹拌後、0℃にて5 - クロロ- 2 - クロロスルホニル- 3 - メチルベンゾ[b] チオフェン130 mgを加え、室温にて1時間撹拌後、5時間加熱還流した。さらにDMF (1mL)、水素化ナトリウム(油状、60%)22 mg及び5 - クロロ- 2 - クロロスルホニル- 3 - メチルベンゾ[b] チオフェン50 mgを加え、2.5時間加熱還流した。原料消失を確認後、0℃にて飽和塩化アンモニウム水を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=3:2)にて精製し、無色粉末として標題化合物102 mgを得た。

融点:205-207℃

¹H-NMR (CDCl₃): δ 2.65 (3H,s),2.71 (3H,s),3.04 (3H,s),3.87 (3H,s),7.49 (1H,dd,J=2.0,8.6Hz),7.68 (1H,s),7.77 (1H,d,J=8.6Hz),7.80 (1H,d,J=2.0Hz),8.42 (1H,s),9.73 (1H,s).

IR ν_{max} (KBr) :3259,1728,1604,1554,1504,1439,1385,1354,1300,1257,1157,1092 cm⁻¹.

[実施例 6] ジメチル 4-(5-2)000 4-300 4-3

ジメチル 4-Pミノイソフタレート 115 m g を T H F 8 m L に溶解し、水素化ナトリウム (油状、60%) 22 m g を加え、室温にて 20 分間攪拌した後、同温にて 5- クロロー 2- クロロスルホニルー 3- メチルベンゾ [b] チオフェン 130 m g を加え、室温にて 30 分間攪拌した。 さらに水素化ナトリウム (油状、60%) 26 m g を加え、6 時間加熱還流した。原料消失を確

認後、0℃にて飽和塩化アンモニウム水を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(酢酸エチル: ヘキサン=1:1)にて精製し、淡黄色アモルファスとして標題化合物62mgを得た。

 1 H-NMR (CDCl₃) : δ 2.64 (3H,s) ,3.88 (3H,s) ,3.95 (3H,s) ,7.44 (1H,dd, J=2.0,8.8Hz) ,7.71 (1H,d,J=8.8Hz) ,7.74 (1H,d,J=2.0Hz) ,7.86 (1H,d,J=8.8Hz) ,8.11 (1H,dd,J=2.0,8.8Hz) ,8.63 (1H,d,J=2.0Hz) .

IR ν_{max} (KBr) : 3440,3140,2954,1724,1693,1608,1500,1439,1331,1246,116 5,1119 cm⁻¹.

[実施例7] メチル 4-(5-2) (5-2)

メチル 4-Pミノー3-メトキシベンゾエート120 m g 及び5-クロロー2ークロロスルホニルー3-メチルベンゾ [b] チオフェン150 m g をピリジン4 m L に溶解し、室温で14 時間攪拌した。原料消失を確認後、0 ℃にて水を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(クロロホルム:メタノール=9:1)にて精製し、無色アモルファスとして標題化合物 110 m g を得た。

 1 H-NMR (CDCl₃) : δ 2.55 (3H,s) ,3.79 (3H,s) ,3.86 (3H,s) ,7.42 (1H,dd, J=2.0,8.6Hz) ,7.45 (1H,dd,J=2.0,8.6 Hz) ,7.61 (1H,d,J=2.0Hz) ,7.62 (1H,d,J=8.6Hz) ,7.68 (1H,d,J=8.6Hz) ,7.71 (1H,d,J=2.0Hz) .

IR ν_{max} (KBr) : 3248,2951,1716,1601,1512,1439,1350,1284,1242,1161,111 5 cm⁻¹.

[実施例8] メチル 4-(5-2) (5-2)

実施例6と同様にしてメチル 4-アミノー3-ニトロベンゾエート122 mgから黄色粉末として標題化合物146mgを得た。

融点:164-165℃

 1 H-NMR (CDCl₃) : δ 2,47 (3H,s) ,3.84 (3H,s) ,7.56 (1H,d,J=8.6Hz) ,7.57 (1H,brd,J=8.6Hz) ,8.01 (1H,d,J=1.8Hz) ,8.06 (1H,d,J=8.6Hz) ,8.07 (1H,brd,J=8.6Hz) ,8.25 (1H,d,J=1.8Hz) .

IR ν_{max} (KBr) : 3442,3237,3060,2949,1732,1621,1535,1507,1440,1356,129 7,1164,1106 cm⁻¹.

[実施例9] 5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホン酸(2,4-ジメタンスルホニルフェニル) アミド

実施例 6 と同様にして 2 、 4 - ジメタンスルホニルアニリン 2 0 0 m g から 無色粉末として標題化合物 3 6 8 m g を得た。

融点:176-178℃

 1 H-NMR (DMSO-d₆) : δ 2,65 (3H,s) ,3.00 (3H,s) ,3.07 (3H,s) ,7.44 (1H,d d,J=1.8,8.6Hz) ,7.71 (1H,d,J=8.6Hz) ,7.76 (1H,d,J=1.8Hz) ,7.92 (1H,d,J=8.8Hz) ,8.04 (1H,dd,J=1.8,8.8Hz) ,8.34 (1H,d,J=1.8Hz) .

IR ν_{max} (KBr) : 3236,3020,1593,1489,1392,1354,1304,1157 cm⁻¹.

[実施例10] 5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホン酸 (4-アセチル-2-ニトロフェニル) アミド

実施例 6 と同様にして 4 ーアセチルー 2 ーニトロアニリン 9 6 m g から無色 粉末として標題化合物 5 9 m g を得た。

融点:130-131℃

¹H-NMR (CDCl₃) : δ 2.58 (3H,s) ,2.69 (3H,s) ,7.46 (1H,dd,J=2.0,8.6Hz) ,7.73 (1H,d,J=8.6Hz) ,7.78 (1H,d,J=2.0Hz) ,8.05 (1H,d,J=8.8Hz) ,8.16 (1H,d,J=1.8,8.8 Hz) ,8.74 (1H,d,J=1.8Hz) .

IR ν_{max} (KBr) : 3745,3479,3363,3262,3089,2927,2858,1689,1620,1531,141 9,1354,1115,1080 cm⁻¹.

[実施例11] 5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホン酸 (4-アセチル-2-メタンスルホニルフェニル) アミド

4-アミノ-3-メタンスルホニルアセトフェノン 241 m g を T H F 20 m L 及び D M F 5 m L の混合溶媒に溶解し、-78 $^{\circ}$ にて水素化ナトリウム(

油状、60%) 136 mg を加えた。同温にて<math>20分間撹拌後、-78%にて5-クロロ-2-クロロスルホニル-3-メチルベンゾ [b] チオフェン35 0 mg を加え、徐々に昇温し、<math>-10%にて1時間撹拌した。原料消失を確認後、0%にて飽和塩化アンモニウム水を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(酢酸エチル:-1)にて精製し、無色粉末として標題化合物 -10 mg を得た。

融点:207-209℃

¹H-NMR (CDCl₃): δ 2.56 (3H,s) ,2.69 (3H,s) ,3.07 (3H,s) ,7.46 (1H,dd ,J=1.9,8.7Hz) ,7.72-7.79 (2H,m) ,7.86 (1H,d,J=8.6Hz) ,8.10 (1H,d,J=8.6Hz) ,8.40 (1H,d,J=1.9Hz) .

IR ν_{max} (KBr) :3456,3236,3086,3005,2924,2854,1670,1593,1489,1389,1354,1308,1261,1165,1130,1053 cm⁻¹.

[実施例 $1 \ 2$] 5 - クロロ - 3 - メチルベンゾ [b] チオフェン - <math>2 -スルホン酸 (4 -ベンゾイル - 2 -メタンスルホニルフェニル) アミド

実施例11と同様にして4-アミノ-3-メタンスルホニルベンゾフェノン94mgから無色粉末として標題化合物68mgを得た。

融点:144-146℃

¹H-NMR (CDCl₃): δ 2.70 (3H,s), 3.08 (3H,s), 7.45-7.50 (3H,m), 7.58-7. 62 (2H,m), 7.68-7.71 (4H,m), 7.85 (1H,d,J=8.6Hz), 7.97 (1H,d,J=8.6Hz), 8.31 (1H,brs).

IR ν_{max} (KBr) :3456,3248,3001,2927,2858,2256,1709,1655,1597,1496,1450,1389,1350,1308,1161,1130,1084 cm⁻¹.

[実施例13] 5-クロロ-3-メチルベンゾ[b] チオフェン-<math>2-スルホン酸 (4-ヒドロキシメチル-2-メタンスルホニルフェニル) アミド

実施例 1 の化合物 3 0 5 m g を トルエン 1 0 m L 溶媒に溶解し、- 7 8 $^{\circ}$ に 冷却後、 1 . 0 1 M の ジイソブチルアルミニウムヒドリドトルエン溶液 2 . 2 m L を 加えた。 同温にて 2 0 分間撹拌後、 0 $^{\circ}$ まで徐々に昇温し 1 時間撹拌し

た。反応溶液に水を加えて反応を停止した後、酢酸エチルで希釈し、さらに酒石酸ナトリウム,カリウム飽和水溶液を加え、30分間室温で攪拌した。酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(酢酸エチル:ヘキサン=1:1)にて精製し、無色粉末として標題化合物230mgを得た。

融点:183-184℃

¹H-NMR (CDCl₃): δ 1.83 (1H,brs), 2.69 (3H,s), 2.97 (3H,s), 4.69 (2H,d, J=5.7Hz), 7.47 (1H,dd,J=2.1Hz,8.7Hz), 7.57 (1H,dd,J=2.1Hz,8.7Hz), 7.74 (1H,d,J=9.3Hz), 7.78 (1H,d,J=9.3Hz), 7.79 (1H,d,J=2.1Hz), 7.86 (1H,d,J=2.1Hz), 9.49 (1H,brs).

IR ν_{max} (KBr) :3563,3236,1612,1500,1392,1277,1142cm⁻¹.

[実施例14] エチル 4-(5-クロロ-3-メチルベンゾ[b] チオフェン-2-スルホニルアミノ) ベンゾエート

4-アミノ安息香酸エチルエステル60mgをピリジン3mLに溶解し、0 ℃にて5-クロロ-2-クロロスルホニル-3-メチルベンゾ[b]チオフェ ン123mgを加え、室温で2時間攪拌した。原料消失を確認後、2mo1/ L塩酸を加え、エーテルで抽出し、有機層を飽和食塩水で洗浄した後、無水硫 酸マグネシウムで乾燥した。溶媒を減圧留去し、得られた粗生成物をシリカゲ ルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:3)にて精製し、 淡桃色粉末として標題化合物80mgを得た。

融点:224-226℃

¹H-NMR (DMSO-d₆) : δ 1.26 (3H,t,J=7.1Hz) ,2.50 (3H,s) ,4.23 (2H,q,J=7.1Hz) ,7.27 (2H,d,J=8.8Hz) ,7.57 (1H,dd,J=2.0,8.6Hz) ,7.84 (2H,d,J=8.8Hz) ,8.01 (1H,d,J=2.0Hz) ,8.05 (1H,d,J=8.6Hz) .

IR ν_{max} (KBr) : 3213,1696,1608,1511,1347,1288,1159 cm⁻¹.

[実施例15] 5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホン酸 (4-ベンゾイルフェニル) アミド

実施例14と同様にして4ーベンゾイルアニリン126mgから無色粉末と

して標題化合物187mgを得た。

融点:198-200℃

¹H-NMR (CDCl₃) : δ 2.56 (3H,s) ,7.22-7.26 (2H,m) ,7.44-7.48 (3H,m) ,7. 55-7.60 (1H,m) ,7.70-7.76 (6H,m) .

IR ν_{max} (KBr) : 3213,2927,1724,1639,1589,1508,1450,1408,1288,1234,114 9 cm⁻¹

[実施例 16] 5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホン酸 (2-メタンスルホニルフェニル) アミド

実施例14と同様にして2-メタンスルホニルアニリン100mgから無色 粉末として標題化合物52mgを得た。

融点:191-193℃

¹H-NMR (CDCl₃): δ 2.68 (3H,s), 3.00 (3H,s), 7.24-7.29 (1H,m), 7.35 (1 H,s), 7.74-7.80 (2H,m), 7.46 (1H,dd,J=1.8,8.6Hz), 7.74-7.80 (1H,m), 7.8 5 (1H,dd,J=1.5,7.9Hz).

IR ν_{max} (KBr) :3467,3371,3228,3016,2927,2858,1712,1624,1566,1485,1408,1288,1134,1026 cm⁻¹.

[実施例17] メチル 4-(5-7) (5-7) 4-(5-7) (5-7) 4-7 (5-7) 4-7 (5-7) 1-7 (1-7) 1-7

メチル $4-r \ge J-3-y$ タンスルホニルベンゾエート 14.0 gをTH F 300 m L に溶解し、0 \mathbb{C} にて水素化ナトリウム(油状、60%) 6.10 gを加えた。同温にて40 分間撹拌後、0 \mathbb{C} にて5-7 ルオロー2-7 ロロスルホニルー3-y チルベンゾ [b] チオフェン16.0 gを加え、室温にて 3 時間撹拌した。原料消失を確認後、0 \mathbb{C} にて 2 m o 1 / L 塩酸を加えて反応を停止した後、酢酸エチルにて抽出し、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、残渣を酢酸エチルにて希釈し、その溶液を活性炭処理した後に再結晶(酢酸エチル / エーテル)にて精製し、無色粉末として標題化合物 24.8 gを得た。

融点:202-204℃

¹H-NMR (CDCl₃): δ 2.69 (3H,s), 3.06 (3H,s), 3.90 (3H,s), 7.28 (1H,ddd, J=2.6,8.7,8.9Hz), 7.46 (1H,dd,J=2.6,9.2Hz), 7.76 (1H,dd,J=4.7,8.9Hz), 7.87 (1H,d,J=8.8Hz), 8.19 (1H,dd,J=2.0,8.8Hz), 8.50 (1H,d,J=2.0Hz), 9.8 (1H,s).

IR ν_{max} (KBr):3182,1724,1604,1504,1442,1396,1346,1303,1157 cm⁻¹. [実施例18]メチル 4-(5-メチル-3-メチルベンゾ[b]チオフェン-2-スルホニルアミノ)-3-メタンスルホニルベンゾエート

メチル 4-rミノー3-メタンスルホニルベンゾエート183mgをTH F8.0mLに溶解し、0 \mathbb{C} にて水素化ナトリウム(油状、60%)96mg を加えた。同温にて20分間撹拌後、0 \mathbb{C} にて5-メチルー2-クロロスルホニルー3-メチルベンゾ [b] チオフェン250 mg を加え、室温にて6時間 撹拌した。原料消失を確認後、0 \mathbb{C} にて1 mo1 / \mathbb{L} 塩酸を加えて反応を停止した後、クロロホルムにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、シリカゲルカラムクロマトグラフィー(酢酸エチル/10 では、容は、シリカゲルカラムクロマトグラフィー(酢酸エチル/11 にて精製し、無色粉末として標題化合物 181 mg を得た。

融点:179-181℃

¹H-NMR (CDCl₃): δ 2.48 (3H,s),2.70 (3H,s),3.02 (3H,s),3.89 (3H,s),7.35 (1H,dd,J=2.2,8.8Hz),7.60 (1H,d,J=2.2Hz),7.69 (1H,d,J=8.8Hz),7.8 (1H,d,J=8.8Hz),8.18 (1H,dd,J=1.8,8.8Hz),8.50 (1H,d,J=1.8Hz). IR ν_{max} (KBr):3460,3178,3016,2927,2861,1724,1604,1500,1439,1396,1300,1130,1061 cm⁻¹.

[実施例19] 5-フルオロ-3-メチルベンゾ[b]チオフェン-2-スルホン酸 (4-アセチル-2-メタンスルホニルフェニル) アミド

 $(4-r \in J-3-y$ タンスルホニル) アセトフェノン 6.30 gを THF 168 m L 及び DM F 42 m L の混合溶媒に溶解し、-40 $^{\circ}$ Cにて水素化ナトリウム (油状、60%) 4.70 gを加えた。同温にて 10 分間撹拌後、同温にて 5-7 ルオロ-2-7 ロロスルホニル-3-y チルベンゾ [b] チオフェ

ン8.60gを加え、同温にて4時間撹拌した。原料消失を確認後、同温にて1mol/L塩酸を加えて反応を停止した後、濃塩酸にてpH1とし、クロロホルムにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、残渣をクロロホルムにて希釈し、その溶液を活性炭処理した後に溶媒留去し、得られた結晶をメタノールで洗浄し、無色粉末として標題化合物10.9gを得た。

融点:174-175℃

¹H-NMR (CDCl₃): δ 2.56 (3H,s), 2.69 (3H,s), 3.08 (3H,s), 7.29 (1H,ddd, J=2.5,8.8,8.8Hz), 7.47 (1H,dd,J=2.5,8.8Hz), 7.77 (1H,dd,J=4.6,8.8Hz), 7.84 (1H,d,J=8.6Hz), 8.12 (1H,dd,J=2.2,8.6Hz), 8.42 (1H,d,J=2.2Hz), 9.8 3 (1H,brs).

IR ν_{max} (KBr):3243,3092,3006,2925,1672,1599,1443,1392,1262,1130,1056, 1029 cm⁻¹.

[実施例20] メチル 4-(3-メチルベンゾ[b]チオフェン-2-スルホニルアミノ) <math>-3-メタンスルホニルベンゾエート

融点:170-172℃

¹H-NMR (CDCl₃): δ 2.75 (3H,s), 3.04 (3H,s), 3.90 (3H,s), 7.49 (1H,dd, J=7.1,7.7Hz), 7.51 (1H,dd,J=7.1,7.7Hz), 7.83 (2H,d,J=7.7Hz), 7.89 (1H,d ,J=8.8Hz), 8.20 (1H,dd,J=2.0, 8.8Hz), 8.51 (1H,d,J=2.0Hz), 9.82 (1H,s)

IR ν_{max} (KBr) :3209,1720,1604,1500,1442,1392,1350,1308,1165,1122 cm⁻¹.

¹H-NMR (CDCl₃): δ 2.71 (3H,s), 3.07 (3H,s), 3.81 (3H,s), 4.00 (1H,dd, J=4.2,11.4Hz), 4.15 (1H,dd,J=5.4,11.4Hz), 4.85 (1H,dd,J=4.2,5.4Hz), 7.3 (1H,dd,J=2.1,8.6Hz), 7.48 (1H,dd,J=2.1,8.6Hz), 7.79 (1H,dd,J=4.6,8.6Hz), 7.87 (1H,d,J=8.8Hz), 8.00 (1H,dd,J=2.1,8.8Hz), 8.32 (1H,d,J=2.1Hz), 9.76 (1H,s).

IR ν_{max} (KBr) :3401,1735,1655,1606,1510,1491,1440,1353,1308,1164,1136 cm⁻¹.

[実施例22] 2-[4-(5-7) ルオロ-3-メチルベンゾ[b] チオフェン-2-スルホニルアミノ) -3-メタンスルホニルフェニル] -4,5-ジヒドローオキサゾール-4-カルボン酸メチルエステル

3年、J. Org. Chem., 58巻、4494頁、1993年)6.80 gを加え、60℃にて2時間撹拌した。原料消失を確認後、溶媒留去し、水を加え、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、残渣をシリカゲルクロマトグラフィー(酢酸エチル: $^{+}$ $^{$

¹H-NMR (CDCl₃): δ 2.68 (3H,s), 3.02 (3H,s), 3.81 (3H,s), 4.60 (1H,dd,J=9.0,10.6Hz), 4.69 (1H,dd,J=7.9,9.0Hz), 4.93 (1H,dd,J=7.9,10.6Hz), 7. 29 (1H,ddd,J=2.1,8.8,8.8Hz), 7.46 (1H,dd,J=2.1,8.8Hz), 7.76 (1H,dd,J=4.6,8.8Hz), 7.87 (1H,d,J=8.8Hz), 8.15 (1H,dd,J=2.1,8.8Hz), 8.43 (1H,d,J=2.1Hz), 9.81 (1H,s).

IR ν_{max} (KBr) :3226,1737,1647,1608,1498,1441,1395,1355,1308,1248,1211 ,1164 cm⁻¹.

[実施例23] 2-[4-(5-7)] 2-3-3-3 3-

融点:290-292℃

 $^{1}\text{H-NMR}$ (CDCl₃) : δ 2.70 (3H,s) ,3.06 (3H,s) ,3.95 (3H,s) ,7.30 (1H,ddd

J=2.4,8.7,8.7Hz) ,7.47 (1H,dd,J=2.4,9.0Hz) ,7.77 (1H,dd,J=4.8,9.0Hz) ,7.94 (1H,d,J=9.0Hz) , 8.27 (1H,s) ,8.28 (1H,dd,J=2.1,9.0Hz) ,8.57 (1H,d ,J=2.1Hz) ,9.78 (1H,s) .

IR ν_{max} (KBr) :3243,1720,1618,1590,1518,1485,1440,1355,1320,1303,1259,1162,1136 cm⁻¹.

[実施例 24] 2-[4-(5-7)] 2-3-4 2-3-4 2-3-4 2-3-4 2-3-4 2-3-4 2-3-4 2-3-4 3-4

2-[4-(5-7)(1)] で 2-3 で 3-3 で

融点:289-291℃

¹H-NMR (DMSO-d₆) : δ 2.55 (3H,s) ,3.41 (3H,s) ,7.44 (1H,ddd,J=1.8,8.7, 9.0Hz) ,7.64 (1H,d,J=8.4Hz) ,7.79 (1H,dd,J=1.8,9.9Hz) ,8.08 (1H,dd,J=4.8,8.7Hz) ,8.19 (1H,dd,J=1.8,8.4Hz) ,8.41 (1H,d,J=1.8Hz) ,8.84 (1H,s) . IR ν_{max} (KBr) : 3232,1717,1690,1616,1487,1440,1355,1313,1161,1140 cm⁻¹

[実施例25] 2-[4-(5-クロロ-3-メチルベンゾ[b] チオフェン -2-スルホニルアミノ) -3-メタンスルホニルフェニル] オキサゾールー 4-カルボン酸メチルエステル

二臭化銅495mgをジクロロメタン(10mL)に溶解し、室温にてヘキ

サメチルテトラミン310mgを加えた。0℃にてDBU337mgを滴下し、同温にて5分間撹拌後、0℃にて2- [4-(5-0)]クロロー3ーメチルベンゾ[b]チオフェンー2ースルホニルアミノ)ー3ーメタンスルホニルフェニル]ー4,5ージヒドローオキサゾールー4ーカルボン酸メチルエステルを加え、室温にて3時間攪拌した。原料消失を確認後、反応液に酢酸エチルを加えた後、有機層を飽和塩化アンモニウム水溶液及び25%アンモニア水溶液の1:1混合液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥した。溶媒留去後、シリカゲルクロマトグラフィー(クロロホルム:メタノール=10:1)にて精製し、無色粉末として標題化合物110mgを得た。

融点:237-239℃

¹H-NMR (CDCl₃) : δ 2.70 (3H,s) ,3.05 (3H,s) ,3.95 (3H,s) ,7.47 (1H,dd, J=2.1,8.7Hz) ,7.74 (1H,d,J=8.7 Hz) ,7.79 (1H,d,J=2.1Hz) ,7.93 (1H,d,J=9.0Hz) ,8.27 (1H,s) ,8.28 (1H,dd,J=2.1,9.0Hz) ,8.56 (1H,d,J=2.1Hz) , 9.72 (1H,brs) .

IR ν_{max} (KBr) : 3231,1744,1486,1317,1136 cm⁻¹.

[実施例26] 2-[4-(5-クロロ-3-メチルベンゾ[b] チオフェン-2-スルホニルアミノ) -3-メタンスルホニルフェニル] オキサゾールー4-カルボン酸

融点:296-298℃

¹H-NMR (DMSO-d₆) : δ 2.58 (3H,s) ,3.37 (3H,s) ,7.55 (1H,dd,J=2.1,8.7Hz) ,7.62 (1H,d,J=8.7Hz) ,8.01 (1H,d,J=2.1Hz) ,8.09 (1H,d,J=8.4Hz) ,8.12 (1H,dd,J=2.1,8.4Hz) ,8.40 (1H,d,J=2.1Hz) ,8.83 (1H,s) .

IR ν_{max} (KBr) : 3221,2924,1701,1485,1311,1153 cm⁻¹.

[実施例27] 2-[4-(5-7)] 2-3-3 2-3 2-3 3-

融点:341-343℃

¹H-NMR (DMSO-d₆) : δ 2.49 (3H,s) ,3.42 (3H,s) ,7.26 (1H,ddd,J=2.4,8.8, 9.0Hz) ,7.40 (1H,dd,J=9.0,9.0Hz) ,7.56 (1H,dd,J=2.4,8.9Hz) ,7.89 (1H,dd ,J=2.2,9.0Hz),7.95 (1H,d,J=9.0Hz) ,8.19 (1H,d,J=2.2Hz) .

IR ν_{max} (KBr) : 3490,1609,1570,1523,1470,1441,1400,1302,1280,1119 cm⁻¹

以下、実施例1と同様にして実施例28~49の化合物を合成した。

 $X \longrightarrow S \cdot N \longrightarrow R^3$ (I)

表 1

表 1			₹ 5 ⊓	H'	
実施列	Х	Υ	R ¹	R ²	R ³
28	CI	Ме	Н	NO ₂	н
29	CI	Ме	н	CN	н
30	CI	Ме	н	COMe	Н
31	CI	Ме	н	CONH ₂	Н
32	CI	Ме	н	COCH ₂ SCH ₂ CO ₂ Me	Н
33	CI	Ме	OMe	NO_2	Н
34	CI	Ме	NO ₂	CN	Н
35	CI	Ме	NO_2	NO_2	Н
36	CI	Ме	NO ₂	OMe	н
37	CI	Ме	OMe	CONHCH ₂ CO ₂ Et	н
38	CI	Ме	CO ₂ Me	OMe	OMe
39	CI	Ме	н	SO ₂ (CH ₂) ₂ CH ₃	Н
40	Н	Ме	н	SO ₂ (CH ₂) ₂ CH ₃	н
41	Ме	Ме	н	SO ₂ (CH ₂) ₂ CH ₃	Н
42	a	Me	SO ₂ Me	CO ₂ CH(CH ₃) ₂	н
43	CI	Me	SO₂Me	CONHCH ₂ CO ₂ Et	н
44	CI	Me	SO ₂ Me	CO ₂ Me HNOH	Н

$$X \longrightarrow S \xrightarrow{R^3} R^2$$

$$X \longrightarrow S \xrightarrow{R^1} H^2 \qquad (I)$$

表1続き

実施列	Х	Υ	R ¹	R ²	R ³
45	Cl	Ме	SO ₂ Me	HN-CO ₂ Me O SMe	Н
46	CI	Me	SO₂Me	$ CO_2Me$	Н
47	CI	Me	SO₂Me	CO ₂ Me	н
48	F	Me	SO ₂ Me	-CN	Н
49	F	Ме	SO ₂ NEt ₂	CO ₂ Me	н .

[実施例 50] 2-[4-(5-クロロ-3-メチルベンゾ[b] チオフェン <math>-2- スルホニルアミノ) -3- メトキシベンゾイルアミノ] 酢酸

実施例26の化合物104mgをエタノール25mLに溶解し、室温にて1N水酸化ナトリウム水溶液1mLを加えた後、同温にて15時間攪拌した。原料消失を確認後、溶媒留去し、エーテル抽出し、水層に2mol/L塩酸を加え、酢酸エチルにて抽出し、有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。溶媒留去後、得られた粉体をエーテルで洗浄し、淡黄色粉体として標題化合物97mgを得た。

融点:282-285℃

¹H-NMR (CDCl₃/CD₃OD) : δ 2.50 (3H,s) ,3.82 (2H,s) ,3.84 (3H,s) ,7.10-7. 15 (2H,m) ,7.20-7.35 (2H,m) ,7.60-7.70 (2H,m) .

IR ν_{max} (KBr):3394,2974,1604,1554,1493,1412,1284,1230,1130 cm⁻¹ [実施例 5 1] メチル 4 - (5 - クロロー 3 - メチルペンゾ [b] チオフェ

ンー2ースルホニルアミノ) -3ーメタンスルホニルベンゾエートナトリウム 塩

実施例1の化合物115mgをTHF(8mL)に溶解し、室温にて水素化ナトリウム(油状、60%)15mgを加えた。同温にて1.5時間撹拌後、溶媒留去し、得られた粉体をエーテルで洗浄し、無色粉末として標題化合物61mgを得た。

融点:>300℃

¹H-NMR (DMSO-d₆): δ 2.51 (3H,s), 3.37 (3H,s), 3.72 (3H,s), 7.39 (1H,d, J=2.1,8.8Hz), 7.40 (1H,dd,J=1.8,8.5Hz), 7.68 (1H,dd,J=1.8,8.8Hz), 7.80 (1H,d,J=1.8Hz), 7.93 (1H,d,J=8.5Hz), 8.23 (1H,d,J=1.8Hz).

IR ν_{max} (KBr) :3448,1705,1597,1481,1442,1292,1134, 1103 cm⁻¹.

実施例 43、 44及び 46 の化合物をエステル加水分解した後、実施例 51 と同様の条件でナトリウム塩とし、それぞれ実施例 52、 53 及び 54 の化合物を合成した。

表2 R^1 R^2 R^3 実施列 Χ Υ Н CI CONHCH2CO2Na 52 Me SO₂Me Н Ме SO₂Me CI 53 54 CI Me SO₂Me Н

以下に、各実施例の機器データを示す。

表3

実 施	融点	H ¹ -NMR (δ)	IR
例	(℃)		In 20/0W) T 20/0W 1 7 0	(ν cm ⁻¹ , KBr)
28	アモルファス	CDC1 ₃	2.62(3H,s),7.29(2H,d,J= 9 .1Hz),7.46(1H,dd,J=2.0,8. 7Hz),7.47(1H,brs),7.73(1H ,d,J=8.7Hz),7.76(1H,d,J=2 .0Hz),8.15(2H,d,J= 9.1Hz	
29	226-227	CDC1 ₃ / CD ₃ OD	2.60(3H,s),7.29(2H,d,J= 9 .0Hz),7.45(1H,dd,J=2.1,8. 7Hz),7.53(2H,d,J=9.0Hz),7 .75(1H,d,J=2.1Hz), 7.76 -7.77(1H,m)	3236, 2222, 1 606, 1508, 14 69, 1356, 116 0
30	223-225	CDC1 ₃	2.53(3H,s),2.54(3H,s), 7 .20-7.23(2H,m),7.45(1H,dd ,J=2.1,8.6Hz),7.72(2H,d,J =8.6Hz),7.88(2H,d,8.6Hz)	3178, 2927, 2 233, 1666, 15 93, 1508, 140 4, 1338, 1273 , 1153
31	254-258	CDC1 ₃	2.55(3H,s),7.24(2H,d,J= 7 .4Hz),7.36-7.45(3H,m), 7. 72(2H,d,J=8.6Hz)	3379, 3255, 3 174, 2911, 28 46, 2765, 165 1, 1512, 1404 , 1335, 1223, 1157
32	151-153	CDC1 ₃	2.57(3H,s),3.30(2H,s), 3 .71(3H,s),3.93(2H,s), 7. 20-7.25(2H,m),7.44- 7.4 7(1H,m),7.71-7.75(2H,m),7 .86-7.90(2H,m)	3221, 3059, 2 935, 1736, 16 62, 1593, 151 2, 1466, 1404 , 1338, 1296, 1153
33	188-190	CDC1₃	2.63(3H,s),3.92(3H,s), 7 .45(1H,dd,J=2.0,8.8Hz),7. 63(1H,brs),7.67(1H,d,J=2. 4Hz),7.71(1H,d,J=8.8 Hz), 7.76(1H,d,J=2.0Hz), 7.84(1H,dd,J=2.4,8.8Hz)	3293, 3088, 2 930, 2846, 17 35, 1596, 152 5, 1500, 1442 , 1402, 1342, 1281, 1254, 1163, 1130

表3続き

表3続き				
実 施	融点	H1-NMR. (δ)	IR
例	(℃)			(v cm ⁻¹ , KBr)
34	204-206	CDC1 ₃	2.71(3H,s),7.51(1H,dd,J=2 .0,8.6Hz),7.76(1H,d,J=8.6 Hz),7.83(1H,dd,J=2.0, 8.8 Hz),7.85(1H,d,J=2.0Hz),8. 12(1H,d,J=8.8Hz), 8.51(1H,d,J=2.0Hz)	3234, 3081, 2 923, 2235, 16 20, 1561, 153 8, 1499, 1415 , 1360, 1324, 1278, 1164, 1145, 1113
35	162-164	CDC1 ₃	2.71(3H,s),7.50(1H,dd,J=2 .0,8.6Hz),7.74(1H,d,J= 8. 6Hz),7.80(1H,d,J=2.0Hz),8 .15(1H,d,J=9.4Hz), 8.43 (1H,dd,J=2.5,9.4Hz),9.08(1H,d,J=2.5Hz)	604, 1493, 14 23, 1346, 116 5
36	120-122	CDC1 ₃	2.52(3H,s),3.82(3H,s), 7 .18-7.22(1H,m),7.42- 7. 50(2H,m),7.67-7.73(2H,m), 7.88(1H,d,J=9.2Hz)	3325, 3078, 2 931, 2838, 19 05, 1619, 152 3, 1439, 1346 , 1265, 1153
37	196-198	CDC13	1.30(3H,t,J=7.2Hz),2.55(3 H,s),3.77(3H,s),4.18(2H,d ,J=4.9Hz),4.25(2H,q,J=7.2 Hz),7.33(1H,d,J=1.8Hz),7. 40-7.45(2H,m),7.60-7.75(3H,m)	639, 1550, 15 08, 1408, 135 0, 1215, 1165
38	203-205	CDC1 ₃	2.56(3H,s),3.82(6H,s), 3 .96(3H,s),7.30(1H,s), 7. 41(1H,s),7.39-7.44(1H,m), 7.67(1H,s),7.68-7.75(1H,m)	947, 1678, 16 12, 1520, 144
39	181-183	CDC1 ₃	0.96(3H,t,J=7.6Hz),1.69(2 H,sext,J=7.6Hz),2.58(3H,s),3.00(2H,t,J=7.6Hz), 7.3 1(2H,d,J=8.8Hz),7.47(1H,d d,J=2.1,8.7Hz),7.72(1H,d, J=8.7Hz),7.74(1H,d,J=2.1H z),7.79(2H,d,J=8.8Hz)	3217, 2966, 1 593, 1493, 14 04, 1350, 128 8, 1238, 1142 , 1088

表3続き

衣3的	· · · · · · · · · · · · · · · · · · ·			
実 施	融点	H ¹ -NMR (δ)	IR
例	(℃)			(v cm ⁻¹ , KBr)
40	201-203	CDC1 ₃	0.95(3H,t,J=7.9Hz),1.66(2 H,sext,J=7.9Hz),2.67(3H,s),3.05(2H,t,J=7.9Hz),7.4 0(2H,d,J=9.0Hz),7.47(1H,td,J=7.9,1.5Hz),7.51(1H,td,J=7.9,1.5Hz),7.74(2H,d,J=9.0Hz),7.84(2H,dt,J=7.9,1.5Hz)	3195, 3058, 2 930, 2878, 15 94, 1497, 148 9, 1346, 1281 , 1160, 1132
41	201-203	CDC1₃	0.96(3H,t,J=7.7Hz),1.69(2 H,sext,J=7.7Hz),2.49(3H,s),2.59(3H,s),3.00(2H,t,J= 7.7Hz),7.11(1H,s), 7.30 (2H,d,J=8.6Hz),7.34(1H,d, J=8.4Hz),7.56(1H,s),7.68(1H,d,J=8.4Hz),7.78(2H,d,J=8.6Hz)	3194, 3059, 2 962, 2877, 15 93, 1493, 140 0, 1342, 1292 , 1138
42	164-166	CDC1₃	1.33(6H,d,J=6.2H),2.70(3H,s),3.06(3H,s),5.22(1H,q,6.2Hz),7.47(1H,dd,J=2.1,8.8Hz),7.74(1H,d,J=8.8Hz),7.79(1H,d,J=1.5Hz),7.85(1H,d,J=8.6Hz),8.48(1H,d,J=1.5Hz),9.82(1H,s)	924, 1709, 16
43	88-90	CD30D	1.25(3H,t,J=7.2Hz),2.64(3 H,s),3.19(3H,brs),4.05(2H,s),4.17(2H,q,J=7.2Hz)7.4 5(1H,d,J=8.7Hz),7.75(1H,brd,J=6.9Hz),7.85(1H,d,J=8.7Hz),7.87(1H,s),7.96(1H,brd,J=6.9Hz),8.34(1H,d,J=1.8Hz)	5, 1604, 1485 , 1304, 1211,

表3続き

実 施	融点	H ¹ -NMR (δ)	IR
例	(℃)			(v cm ⁻¹ , KBr)
44	154-156	CD₃OD	2.65(3H,s),3.07(3H,s), 3 .73(3H,s),3.89(1H,dd,J=4. 2Hz,11.4Hz),3.95(1H,dd,J= 5.4,11.4Hz),4.68(1H,dd,J= 4.2,5.4Hz),7.47(1H,dd,J= 2.1,8.4Hz),7.85(2H,dd,J=2.1,8.7Hz),7.91(H,d,J=2.1Hz),8.09(1H,dd,J=2.1,8.7Hz),8.36(1H,d,J=2.1Hz)	3220, 2924, 1 736, 1643, 16 08, 1496, 130 3, 1161, 1130
45	アモルファス	CDCl ₃	2.10 (3H, s), 2.20 (2H, m), 2.56 (2H, m), 2.70 (3H, s), 3.05 (3H, s), 3.78 (3H, s), 4.89 (1H, m), 7.09 (1H, brs), 7.48 (1H, brm), 7.87 (2H, m), 7.96 (1H, m), 8.29 (1H, brs), 9.73 (1H, brs)	3230, 2921, 2853, 1739, 1653, 1604, 1541, 1492, 1440, 1393, 1353, 1307, 1226, 1166, 1131, 1105
46	アモルファス	CDCl_3	2.00-2.30(4H, m), 2.70 (3H, s), 2.98 (3H, s), 3.50-3.65 (2H, m), 3.76 (3H, s), 4.61 (1H, m), 7.48(1H, d, J=8.4 Hz), 7.75(1H,d, J=8.4Hz), 7.70-7.80 (3H, m), 8.10 (1H, s), 9.69 (1H, brs)	3228, 2952, 2925, 1741, 1631, 1496, 1423, 1390, 1353, 1308, 1281, 1203, 1167, 1133, 1107, 1080
47	アモルファス	CDCl_3	2.69 (3H, s), 3.01 (3H, s), 3.80 (3H, s), 4.58 (1H, dd, J=9.0, 10.5 Hz), 4.68 (1H, dd, J=8.1,9.0 Hz), 4.93 (1H, dd, J=8.1,10.5 Hz), 7.47 (1H, dd, J=2.1, 8.4 Hz), 7.73 (1H, d, J=8.4 Hz), 7.78 (1H, d, J=2.1 Hz), 7.86 (1H, d, J=8.7 Hz), 8.14 (1H, dd, J=2.1, 8.7Hz), 8.43 (1H, d, J=2.1 Hz)	3224, 2958, 1739, 1500, 1308, 1161

表3続き

実 施	融点	H ¹ -NMR ((8)	IR
例	(°C)			$(v cm^{-1}, KBr)$
48	199-201	DMSO -d ₆	2.51(3H, s), 3.17(3H, s), 7.46(1H, ddd, J=1.8, 9.0, 9.0Hz), 7.52 (1H, d, J=8.4 Hz), 7.75 (1H, d, J= 1.8 Hz), 7.81 (1H, dd, J=1.8, 8.7 Hz), 7.98 (1H, dd, J=1.8, 8.4Hz), 8.10 (1H, dd, J=4.8, 9.0Hz), 8.15 (1H, s), 8.48 (1H, s)	3243, 3119, 1606, 1501, 1303, 1151
49	137-140	CDCl_3	1.14 (6H, t, J=7.1 Hz), 2.68 (3H, s), 3.31 (4H, q, J=7.1 Hz), 3.88 (3H, s), 7.29 (1H, ddd, J=2.1, 8.8, 8.8Hz), 7.45 (1H, dd, J=2.1, 8.8 Hz), 7.75 (1H, dd, J=4.8, 8.8 Hz), 7.84 (1H, d, J=8.6 Hz), 8.07 (1H, dd, J=2.0, 8.6 Hz), 8.35 (1H, d, J=2.0 Hz), 9.88 (1H, s)	3157, 3076, 2979, 2949, 1727, 1604, 1577, 1560, 1521, 1498, 1473, 1458, 1438, 1389, 1344, 1325, 1307, 1280, 1200, 1159, 1134, 1100
52	290-292	D ₂ O	2.50(3H,s),3.47(3H,s), 3 .82(2H,s),7.22(1H,d,J= 8. 7Hz),7.42(1H,dd,J=1.8,8.7 Hz),7.69(1H,dd,J=2.1,8.7H z),7.80(1H,d,J=8.7Hz),7.8 3(1H,d,J=2.1Hz), 8.21(1 H,d,J=1.8Hz)	3410, 1600, 1 473, 1400, 12 96, 1134, 110
53	260	D ₂ 0	2.47(3H,s),3.48(3H,s), 3 .81(1H,dd,J=5.7Hz,11.4 Hz),3.87(1H,dd,J=3.6, 11. 4Hz),4.38(1H,dd,J=3.6,5.7 Hz),7.24(1H,d,8.7Hz),7.33 (1H,d,J=8.7Hz),7.68-7.73(3H,m),8.24(1H,d,J=2.1Hz)	3464, 1597, 1 473, 1408, 12 92, 1134, 110 7

表3続き

実 施	融点	H1-NMR	(δ)	IR
例	(°C)			(v cm ⁻¹ , KBr)
54	298	D ₂ O	1.66-1.78 (2H, m), 2.06-2 .12 (2H, m), 2.32 (3H, s) , 3.43 (3H, s), 3.37-3.48 (2H, m), 4.14 (1H, m), 6 .99 (1H, d, J=8.7 Hz), 7 .10-7.25 (2H, m), 7.34-7. 40 (2H, m), 7.51 (1H, d, J=8.7 Hz), 7.95 (1H, d, J=1.8 Hz)	436, 1308, 11

次に、本発明の代表的な化合物について、下記の試験例により、キマーゼ阻 害活性及びラット血漿中での安定性について試験した。

「試験例1] サルキマーゼ阻害活性の測定

キマーゼは、種により基質選択性に差があることが知られている。サルキマーゼは、ヒトキマーゼと比較して一次構造、酵素学的性質ともに極めて類似していることが報告されている(宮崎ら;血管,20巻,207頁,1997年)。

そこで、浦田らのヒト心臓キマーゼ精製法 (文献既述) に準じてアカゲザル 心臓よりキマーゼを精製し、これを実験に用いた。

本発明の化合物のキマーゼに対するin vitroにおける阻害活性は下 記の方法により求めた。

キマーゼ活性は、文献既知の方法(宮崎ら;血管,20巻,207頁,1997年)を参考にした。すなわち、AngIIと共に生成する遊離His-Leuとの-フタルアルデヒド(以下、OPTと略す)を反応させて蛍光誘導体とし、その量を蛍光光度計を用いて定量することにより測定した。

各化合物の阻害効果は次のようにして測定した。まず各被検化合物 3. 6μ molを試験管に秤量し、DMSO3mLに溶解した。このDMSO溶液を 0. 0.1%トライトンX-1.00及び 0. 5 M 塩化カリウムを含む 2.0 mMトリス・塩酸緩衝液(p H 8. 0)で 1.00 0 倍希釈して 3. 6×10^{-6} M溶液とし、さらに緩衝液で順次希釈して、 3. 6×10^{-6} Mから 3. 6×10^{-9} Mまで

の被検試料溶液を調製した。各濃度の被検試料溶液又は緩衝液 500μ L に対し酵素溶液 50μ L を加え、37%で 10 分間プレインキュベーションした後、0.1mM Ang I 溶液 50μ L を加えて反応を開始した。

Ang Iはヒトアンギオテンシン I(SIGMA製)を使用した。反応に用いる酵素(キマーゼ)溶液はこの条件で約6割の基質を加水分解するように調整し、酵素を含まない緩衝液を添加した反応を盲検とした。37%で120分間インキュベートした後トリクロロ酢酸900 μ Lを加えて反応を停止した。その後反応液を4%、3,000rpmで10分間遠心分離して得た上清1mLに2N水酸化ナトリウム水溶液2mL及びメタノール1mLを加えた。ここに1mL中にN-アセチルーLーシステイン 1.2mg及びOPT1mgを含むメタノール溶液 100μ Lを加えて誘導体化反応を開始し、室温にて正確に1時間放置した後、励起波長304nm、蛍光波長502nmの蛍光強度を測定した。

測定は各試料及び盲検について2回繰返し、その平均値から盲検の平均値を 差引いた蛍光強度をキマーゼ活性とした。

なお、被検試料溶液に替えて緩衝液を用いて酵素反応を行ったものをコントロールとし、またキマーゼ活性の阻害率はコントロールのキマーゼ活性から被検試料添加時の活性を減じた差をコントロールのキマーゼ活性で除した百分率として求め、各阻害率から50%阻害濃度(以下、 IC_{50} 値という)を算出した。

「試験例2]カテプシンG阻害活性及びキモトリプシン阻害活性の測定

カテプシンG及びキモトリプシンの各活性は、発色性合成基質を用い、遊離 pーニトロアニリドの量として分光光度計により定量することで測定した。ウシ膵臓由来キモトリプシンTypeIーSはSIGMAより購入した。カテプシンGはElastin Products Company, Inc.のヒト 膿性痰由来のものを使用した。合成基質はSuc-Ala-Ala-Pro-Phe-pNA (SIGMA製)を使用した。各酵素に対する化合物の阻害効果は下記の方法により求めた。

各被検化合物 $5 \mu m o 1$ を試験管に秤量しDMSO 2 m L に溶解した。この DMSO溶液を 0.01%トライトンX-100 及び 0.5 M塩化カリウムを 含む 20 m Mトリス-塩酸緩衝液(pH7.5)で 1000 倍希釈して 3.6×10^{-6} M溶液とし、さらに順次希釈して、 3.6×10^{-6} Mから 3.6×10^{-6} M から 3.6×10^{-6} M から 3.

なお、被検試料溶液に替えて緩衝液を用いて酵素反応を行ったものをコントロールとし、各酵素活性の阻害率はコントロールの酵素活性から被検試料添加時の活性を減じた差をコントロールの酵素活性で除した百分率として求め、各阻害率から $IC_{5.0}$ 値を算出した。

代表的な化合物についてのサルキマーゼ阻害活性並びにカテプシンG阻害活性及びキモトリプシン阻害活性のIC50値を表3に示す。

表 4 活性化合物の阻害特異性

	IC50値(n	mol/L)	
化合物	キマーゼ	キモトリプシ	カテプシンG
		ン	
キモスタチン	287	9.67	5.99
実施例 1	5.0	>1 0 0 0 0	>10000
実施例 2	4 2		
実施例3	178		
実施例 4	1 1 1	>1 0 0 0 0	>10000
実施例 5	150	>1 0 0 0	>1000
実施例7	185	>1 0 0 0	>1000
実施例8	1 5 9	>1 0 0 0 0	>10000
実施例11	100		
実施例13	271		
実施例14	278	>1 0 0 0 0	>10000
実施例17	9	>1 0 0 0 0	>10000
実施例19	2 0		
実施例20	3 9		
実施例24	2	>1 0 0 0 0	>1 0 0 0 0
実施例25	7 5		
実施例26	1 0	>1 0 0 0 0	>10000
実施例52	157		

[試験例3] ラット血漿中における安定性

本発明の化合物のラット血漿中における安定性について試験した。

窒素気流下に乾固した残渣をアセトニトリル 200μ L に溶解し試料溶液とした。一方、被検化合物を 1%DMSO- アセトニトリル中に 10μ g / m L となるよう溶解し、対照溶液とした。試料溶液と対照溶液を高速液体クロマトグラフ法(以下、HPLC と略す)により、試験を行った。残存率(%)は、試料溶液のピーク面積を対照溶液のピーク面積で除した百分率として求めた。

HPLC条件

カラム :Waters Nova Pack C₁₈ (内径3.9 mm、長さ150mm)

移動相A:アセトニトリル:水(10:90)

移動相B:アセトニトリル:メタノール(50:50)

溶出液 :移動相A-移動相B (100:0→0:100、直線濃度勾

配、50分間)

流速 : 1.0 mL/min

注入量 : 50 μ L

代表的な化合物についてのラット血漿中の残存率を表 4 に示す。

表 5

化合物	ラット血漿中残存率(%)
実施例 1	93.9
実施例 4	93.5
実施例 5	85.2
実施例7	96.4
実施例8	92.0
実施例14	79.2
実施例19	96.2
実施例24	1 0 0
実施例26	1 0 0

産業上の利用可能性

本発明は新規なN置換ベンゾチオフェンスルホンアミド誘導体又はその塩を 提供でき、そのN置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学 的に許容しうる塩は、キマーゼに対する選択的な阻害作用を有し、キマーゼ活 性に基づくアンギオテンシンII又はエンドセリンI産生の異常亢進に起因する 疾患、例えば心臓・循環器系疾患、特に心筋梗塞、PTCA施行後の再狭窄及 びバイパスグラフト後の内膜肥厚の予防・治療剤として有用である。

請求の範囲

1. 一般式(I)

$$X \xrightarrow{Q_2} \overset{R^3}{\underset{R^1}{\bigvee}} R^2 \qquad (I)$$

[式中、Xは水素原子、Nロゲン原子又は低級アルキル基を、Yは低級アルキル基を、 R^1 及び R^2 はそれぞれ異なっていてもよく、水素原子、低級アルコキシカルボニル基、低級アルキルスルホニル基、ベンゾイル基、炭素数 $1\sim 4$ 個のアシル基、低級アルコキシ基、低級アルコキシカルボニルメチルチオアセチル基、ニトロ基、 $-CONHR^4$ (式中、 R^4 は水素原子、低級アルコキシカルボニルメチル基、カルボキシメチル基又は-CH(CH_2OH) $COOR^5$ (式中、 R^5 は水素原子又は低級アルキル基を示す)を示す)、

$$-CON$$
 CO_2R^5

で表される基(式中、 R^5 は前記と同義である)、 CO_2R^5 (式中、 R^5 は前記と同義である)で置換されていてもよい

(Aは、O、S又はNHを、点線部分は単結合又は二重結合を示す)で表される単環複素環基、ヒドロキシ低級アルキル基又はシアノ基を(ただし、R¹とR²は同時に水素原子ではない)、R³は水素原子、低級アルコキシ基又は低級アルキル基を示す]により表されるN置換ベンゾチオフェンスルホンアミド誘導体(ただし、式

で示される化合物を除く)又はその塩。

2. メチル 4-(5-クロロ-3-メチルベンゾ [b] チオフェン-2-スルホニルアミノ) -3-メタンスルホニルベンゾエート、メチル 4-(5 -クロロ-3-メチルベンゾ「b] チオフェン-2-スルホニルアミノ) -3 ーメタンスルホニルベンゾエートナトリウム塩、イソプロピル 4-(5-ク ロロー3-メチルベンゾ「b]チオフェン-2-スルホニルアミノ)-3-メ タンスルホニルベンゾエート、5-クロロ-3-メチルベンゾ [b] チオフェ ン-2-スルホン酸(4-アセチル-2-メタンスルホニルフェニル)アミド 5-2000-3-メチルベンゾ「b]チオフェン-2-スルホン酸(4-ベ ンゾイルー2ーメタンスルホニルフェニル)アミド、メチル 4-(5-フル オロー3-メチルベンゾ「b]チオフェン-2-スルホニルアミノ)-3-メ タンスルホニルベンゾエート、メチル 4-(5-メチル-3-メチルベンゾ 「b] チオフェンー2ースルホニルアミノ) -3-メタンスルホニルベンゾエ ート、5-フルオロー3ーメチルベンゾ「b]チオフェンー2ースルホン酸(4 -アセチル- 2 -メタンスルホニルフェニル) アミド、メチル 4 - (3 -メチルベンゾ「b] チオフェン-2-スルホニルアミノ) -3-メタンスルホ ニルベンゾエート、2~「4~(5~クロロ~3~メチルベンゾ「b]チオフ ェンー2-スルホニルアミノ)-3-メタンスルホニルフェニル]オキサゾー オフェン-2-スルホニルアミノ)-3-メタンスルホニルフェニル]オキサ チオフェン-2-スルホニルアミノ)-3-メタンスルホニルフェニル]オキ

サゾールー4ーカルボン酸2ナトリウム塩、2ー[4ー(5ーフルオロー3ーメチルベンゾ[b]チオフェンー2ースルホニルアミノ)ー3ーメタンスルホニルフェニル]オキサゾールー4ーカルボン酸2ナトリウム塩から選ばれる請求項1記載のN置換ベンゾチオフェンスルホンアミド誘導体又はその塩。

3. 一般式(I)

$$\begin{array}{c|c} & & & \\ & & & \\ X & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

[式中、Xは水素原子、N口ゲン原子又は低級アルキル基を、Yは低級アルキル基を、 R^1 及び R^2 はそれぞれ異なっていてもよく、水素原子、低級アルコキシカルボニル基、低級アルキルスルホニル基、ベンゾイル基、炭素数 $1\sim 4$ 個のアシル基、低級アルコキシ基、低級アルコキシカルボニルメチルチオアセチル基、ニトロ基、 $-CONHR^4$ (式中、 R^4 は水素原子、低級アルコキシカルボニルメチル基、カルボキシメチル基又は-CH(CH_2OH) $COOR^5$ (式中、 R^5 は水素原子又は低級アルキル基を示す)を示す)、

で表される基(式中、 R^5 は前記と同義である)、 CO_2R^5 (式中、 R^5 は前記と同義である)で置換されていてもよい

(Aは、O、S又はNHを、点線部分は単結合又は二重結合を示す)で表される単環複素環基、ヒドロキシ低級アルキル基又はシアノ基を(ただし、R¹とR²は同時に水素原子ではない)、R³は水素原子、低級アルコキシ基又は低級アルキル基を示す]により表されるN置換ベンゾチオフェンスルホンアミド誘導

体又はその薬剤学的に許容しうる塩を含有することを特徴とするキマーゼ阻害 剤。

- 4. 請求項3に記載のN置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学的に許容しうる塩を含有することを特徴とする医薬。
- 5. 請求項3に記載のN置換ベンゾチオフェンスルホンアミド誘導体又はその薬剤学的に許容しうる塩を含有することを特徴とする心筋梗塞、経皮的冠状動脈形成術施行後の再狭窄及びバイパスグラフト施行後の内膜肥厚の予防・治療剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08061

A. CLASS Int.	IFICATION OF SUBJECT MATTER C1 ⁷ C07D333/62, 409/12, 413/12 427, A61P43/00, 9/10	2, 417/12, A61K31/381, 40	025, 4178, 422,		
According to	International Patent Classification (IPC) or to both nat	ional classification and IPC			
	SEARCHED				
Minimum do Int.	cumentation searched (classification system followed b C1 ⁷ C07D333/62, 409/12, 413/12 427, A61P43/00, 9/10	oy classification symbols) 2, 417/12, A61K31/381, 4	025, 4178, 422,		
	on searched other than minimum documentation to the				
	ata base consulted during the international search (name US, REGISTRY (STN)	e of data base and, where practicable, sear	rch terms used)		
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.		
A	WO 00/12623 A2 (SmithKline Beec 09 March, 2000 (09.03.00), & AU 9959706 A	ham P.L.C.),	1-5		
A	WO 99/42465 A2 (SmithKline Beec 26 August, 1999 (26.08.99), & EP 1066288 A2	ham P.L.C.),	1-5		
A	WO 96/31492 A1 (Texas Biotechnol 10 October, 1996 (10.10.96), & US 5594021 A & AU 965536 & EP 819125 A1 & BR 960487 & US 596249 & US 596249 & US 596249 & US 559402 & US 5464853 A & US 559402 & US 5591761 A & US 557182 & CA 2217169 A & CN 118447 & EP 1048657 A1 & US 596249	57 A 75 A 90 A 21714 A 21 A 91 A	1-5		
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.			
"A" docume conside "E" earlier date "L" docume cited to special "O" docume means "P" docume than the	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later expriority date claimed actual completion of the international search	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory und document of particular relevance; the considered novel or cannot be considered to real to the considered to involve an inventive step combined with one or more other such combination being obvious to a persor document member of the same patent. Date of mailing of the international sear	ne application but cited to erlying the invention cannot be red to involve an inventive claimed invention cannot be red to involve an inventive claimed invention cannot be to when the document is documents, such a skilled in the art family		
13 N	13 November, 2001 (13.11.01) 27 November, 2001 (27.11.01)				
	nailing address of the ISA/ unese Patent Office	Authorized officer			
Facsimile N	о.	Telephone No.			

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/08061

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
A	JP 2000-95770 A (Toa Eiyo, Ltd.), 04 April, 2000 (04.04.00) (Family: none)		1-5
PA	JP 2001-97946 A (Mitsubishi Chemical Corpora 10 April, 2001 (10.04.01) (Family: none)	ation),	1-5
Α	WO 97/11941 A1 (Suntory, Limited), 03 April, 1997 (03.04.97), & EP 795548 A1 & US 5814631 A		1-5
:			
·			

Form PCT/ISA/210 (continuation of second sheet) (Jury 1992)

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl ⁷ C07D333/62, 409/12, 413/12, 417/12, A61K31/381, 4025, 4178, 422, 427, A61P43/00, 9/10					
			•		
	テった分野				
調査を行った最	b小限資料(国際特許分類(IPC))				
Int. C1' C07D	333/62, 409/12, 413/12, 417/12, A61K31/381, 402	5, 4178, 422, 427, A61P43/00, 9/10			
.FL.J. #日次(2011) A	トの資料で調査を行った分野に含まれるもの				
取小似页科以为	トの資料で制重を行った万野に占まれるもの		• 1		
•			, i		
	·				
		:			
 -	·				
国際調査で使用	目した電子データベース(データベースの名称、	調査に使用した用語)			
CAPLUS, REGIS	STRY (STN)				
•	•				
			,		
		. , ,			
O . BB.4t-7- 2	1. 長りは た .lo マートは .				
	6と認められる文献		HB 7dr 2- 7		
引用文献の			関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	請求の範囲の番号		
	WO 00/12623 A2 (SMITHKLINE BEECHAM	ID I C) 0 Mor 2000 (00 03	1-5		
. A		F. L. C. / 9. Mal. 2000. (09. 05.	1 0		
	00) & AU 9959706 A				
			İ		
٨	WO OO /494GE A9 (CMITHIUI IND DEECHAM	TD T C \ 26 Aug 1000 (26 00	1-5·		
A	WO 99/42465 A2(SMITHKLINE BEECHAM	1 P. L. C. / 20. Aug. 1999 (20. 00.	1-0		
	99) & EP 1066288 A2				
	,				
-					
		:	•		
	•				
	•				
x C 内の続き	とにも文献が列挙されている。	□ パテントファミリーに関する別	紙を参照。		
			7,710		
* 引用文献の	ウカテゴリー ·	の日の後に公表された文献	•		
	ウカテゴリー かんけん かんけんしゅう		とれた女部でなって		
	車のある文献ではなく、一般的技術水準を示す	「丁」国際出願日又は優先日後に公表			
もの		出願と矛盾するものではなく、多	帝明の原理又は理論		
「E」国際出題	頁日前の出願または特許であるが、国際出願日	の理解のために引用するもの			
以後にな	公表されたもの	「X」特に関連のある文献であって、			
「L」優先権主	ヒ張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え			
日若しく	は他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、	当該文献と他の1以		
	理由を付す)	上の文献との、当業者にとって			
	「O」ロ頭による開示、使用、展示等に言及する文献 よって進歩性がないと考えられるもの				
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
「「」 国际山殿日間 (、/*ン図元祖ツ土沢ツ杏伽(はる山殿)(02」同一ハアノトノチミソー入制					
California a al al	7) ± H	日時期大却生のなど。			
国際調査を完了	「した甘 19 11 01	国際調査報告の発送日	11 01		
	13. 11. 01				
					
国際調査機関の	D名称及びあて先	特許庁審査官(権限のある職員) 😑	4P 9159		
日本国特許庁(ISA/JP)					
	郵便番号100-8915	300	₹		
	第千代田区霞が関三丁目4番3号	電話番号 03-3581-1101	内線 3490		
>1571 H	the state of the s		•		

_C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示・	関連する 請求の範囲の番号
A	WO 96/31492 A1 (TEXAS BIOTECHNOLOGY CORP.) 10. Oct. 1996 (10. 10. 96) & US 5594021 A & AU 9655367 A & EP 819125 A1 & BR 9604875 A & JP 11-507015 A & US 5962490 A & NO 9704577 A & US 2001021714 A & AU 9935803 A & US 5594021 A & US 5464853 A & US 5514691 A & US 5591761 A & US 5571821 A & CA 2217169 A & CN 1184470 A & EP 1048657 A1 & US 5962490 A	1-5
A	JP 2000-95770 A(TOA EIYO LTD.) 4. Apr. 2000(04.04.00) (ファミリーなし)	1-5
PA	JP 2001-97946 A (MITSUBISHI CHEMICAL CORP.) 10. Apr. 2001 (10.0 4.01) (ファミリーなし)	1-5
A	WO 97/11941 A1 (SUNTORY LIMITED) 3. Apr. 1997 (03. 04. 97) & EP 795548 A1 & US 5814631 A	1-5
		;
		•
	·	