

# **Note For Finite Element Methods**

# **Zhejiang University**

作者: Shuang Hu

组织: Zhejiang University

时间: Sept 14, 2022

版本: 1.0

简介: 2022 秋冬学季"有限元方法"课程笔记



# 目录

| 第1章   | 一维有限元方法                                                  | 1  |
|-------|----------------------------------------------------------|----|
| 1.1   | 为什么需要有限元方法?                                              | 1  |
| 1.2   | 从一维边值问题说起                                                | 1  |
| 1.3   | 有限元思想的导出                                                 | 2  |
|       | 1.3.1 Galerkin 近似                                        | 2  |
|       | 1.3.2 Ritz 方法                                            | 2  |
| 1.4   | 有限元方法                                                    | 3  |
|       | 1.4.1 线性有限元空间                                            | 3  |
|       | 1.4.2 刚度矩阵与负载                                            | 3  |
| 1.5   | 误差分析                                                     | 4  |
| 1.6   | 一阶非齐次 BVP                                                | 8  |
| 1.7   | 其他边值问题                                                   | 9  |
|       | 1.7.1 Neumann 边值问题                                       | 9  |
|       | 1.7.2 Robin 边值问题                                         | 9  |
| 1.8   | 本章总结                                                     | 9  |
| 第2章   | 变分原理                                                     | 10 |
| 2.1   | 变分问题以及等价形式                                               | 10 |
|       | 2.1.1 预备知识                                               |    |
|       | 2.1.2 存在唯一性                                              | 11 |
|       | 2.1.3 变分问题的等价形式                                          | 12 |
| 2.2   | Lax-Milgram 引理                                           | 13 |
| 2.3   | 具体实例                                                     | 14 |
|       | 2.3.1 二阶椭圆方程                                             | 14 |
|       | 2.3.2 四阶双调和方程                                            | 15 |
| 2.4   | 本章总结                                                     | 16 |
| 笙 3 音 | Sobolev 空间                                               | 17 |
| -     | $L^p$ 空间内容回顾 $\ldots \ldots \ldots \ldots \ldots \ldots$ |    |
|       | 广义导数                                                     |    |
| 3.3   | 磨光算子以及相关应用                                               |    |
|       | 3.3.1 磨光算子                                               |    |
|       | 1115 = 2 1 1                                             | 21 |
|       |                                                          | 23 |
| 3.4   |                                                          | 24 |
|       |                                                          | 24 |
|       |                                                          | 25 |
|       | 3.4.3 迹算子                                                |    |
| 3.5   | 本章小结                                                     |    |

# 第1章 一维有限元方法

# 1.1 为什么需要有限元方法?

此前在《微分方程数值解》课程中,我们已经学习了有限差分法和有限体积法。这两种方法有不少优点:首先,比较直观,只要知道如何利用差分近似导数即可得到对应的差分公式;其次,在一些情形下,有限差分和有限体积方法可以实现较高的计算精度。

但是,这两种算法有一些明显的缺陷。

- 算法稳定性的分析比较复杂。
- 处理不规则区域的问题时较为麻烦,需要多次利用插值近似。
- 只是求解离散格点的近似点值/离散网格的近似积分平均值,未能给出函数整体的近似。

为此,基于函数逼近论的**有限元方法**被提出。该算法能弥补有限差分法的一些明显缺陷,目前是最主流的数值算法之一。

# 1.2 从一维边值问题说起

考虑如下例子:

$$\begin{cases}
-u'' + u = f(x), x \in (0, 1) \\
u(0) = u(1) = 0.
\end{cases}$$
(1.1)

类似于"偏微分方程"课程中对弱解的讨论方式,在(1.1)两边同时乘某个函数  $\nu$  并在 [0,1] 上积分,得到如下形式:

$$\int_0^1 (-u'' + u)v dx = \int_0^1 f v dx.$$
 (1.2)

定义函数空间 V 如下:

$$V := \left\{ v \mid v(0) = v(1) = 0, \int_0^1 ((v')^2 + v^2) dx < \infty \right\}.$$
 (1.3)

如果函数  $v \in V$ , 利用分部积分法, (1.1)可以转化为以下问题:

**例题 1.1** 记  $a(u,v) = \int_0^1 (u'v' + uv) dx$ ,  $h(v) = \int_0^1 fv dx$ ,  $v \in V$ . 求  $u \in V$ ,使得  $a(u,v) = h(v) \forall v \in V$ . 下面的定理说明了该问题可以转化为一个优化问题:

#### 定理 1.1

记泛函  $J(v):=\frac{1}{2}a(v,v)-h(v)$ ,问题1.1与最小化 J(v) 的优化问题等价。即: 如果  $a(u,v)=h(v) \forall v \in V$ ,那 么  $J(u) \leq J(v) \forall v \in V$ 。

证明 ⇒:

$$J(v) - J(u) = \frac{1}{2}a(v, v) - h(v) - \frac{1}{2}a(u, u) + h(u)$$

$$= \frac{1}{2}(a(v, v) - a(u, u) - 2h(v - u))$$

$$= \frac{1}{2}(a(v, v) - a(u, u) - 2a(u, v - u))$$

$$= \frac{1}{2}(a(v, v) + a(u, u) - 2a(v, u))$$

$$= \frac{1}{2}(a(v - u, v - u)) \ge 0.$$
(1.4)

由(1.4)可得,如果 a(u,v) = h(v),那么  $J(u) \leq J(v)$ .

 $\Leftarrow$ :  $\forall v \in V, t \in \mathbb{R}$ , 有  $J(u+tv) \ge J(u)$ 。我们定义函数 g(t) := J(u+tv),根据上面的讨论可知:g'(0) = 0。另一方面,计算 g(t) 的表达式,有:

$$g(t) = J(u + tv)$$

$$= \frac{1}{2} \int_0^1 ((u' + tv')^2 + (u + tv)^2) dx - \int_0^1 f(u + tv) dx$$
(1.5)

对(1.5)求一阶导数, 可得:

$$g'(0) = \int_0^1 (u'v' + uv) dx - \int_0^1 fv dx.$$
 (1.6)

根据 g 的一阶条件,可得 a(u,v) = h(v)。又由于 v 的任意性,结论得证。

如此,我们把一个解微分方程的问题,利用1.1和1.2转化为了一个变分问题。由于V是一个无穷维空间,我们不能期望利用算法给出这个变分问题的精确解,但我们可以考虑对空间V进行有限维近似,并在有限维空间上近似求解这个变分问题。

# 1.3 有限元思想的导出

接下来,根据上一节的思路,我们继续问题(1.1)的近似求解。根据上面的分析,我们的数值算法需要解决两个问题:

- 如何对函数空间 V 进行有限维近似?
- 在进行有限维近似之后,如何在有限维空间中对变分问题进行求解?

首先,我们考虑第二个问题。根据上面的讨论,近似求解变分问题有两种不同的思路,分别对应的是 Galerkin 近似方法和 Ritz 近似方法。

### 1.3.1 Galerkin 近似

假设已经给出有限维子空间  $V_N \leq V$ , Galerkin 近似的目的是求解  $u_N \in V_N$  使得

$$a(u_N, v_N) = h(v_N) \tag{1.7}$$

对所有  $v_N \in V_N$  都成立。

由于  $V_N$  是有限维的空间,我们可以找到这个空间中的一组基函数  $\{\phi_1, \dots, \phi_N\}$ ,注意到 a(u,v) 是对称双线性函数,设  $u_N = \alpha_1 \phi_1(x) + \dots + \alpha_N \phi_N(x)$ , $v_N(x) = \phi_i(x)$ ,代人(1.7),可得一个线性方程组:

$$\begin{bmatrix} a(\phi_{1},\phi_{1}) & a(\phi_{1},\phi_{2}) & \cdots & a(\phi_{1},\phi_{N}) \\ a(\phi_{2},\phi_{1}) & a(\phi_{2},\phi_{2}) & \cdots & a(\phi_{2},\phi_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ a(\phi_{N},\phi_{1}) & a(\phi_{N},\phi_{2}) & \cdots & a(\phi_{N},\phi_{N}) \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{N} \end{bmatrix} = \begin{bmatrix} h(\phi_{1}) \\ h(\phi_{2}) \\ \vdots \\ h(\phi_{N}) \end{bmatrix}$$

$$(1.8)$$

解这个线性方程组,得到系数向量,即可给出该方程的近似解。

### 1.3.2 Ritz 方法

同样,假设有限维子空间  $V_N \leq V$  已经给出,**Ritz 方法**的思路是求解有关 J(u) 的优化问题,即:求  $u_N \in V_N$ ,使得

$$J(u_N) \le J(v) \forall v \in V_N. \tag{1.9}$$

这里  $J(v) := \frac{1}{2}a(v,v) - h(v)$ 。

给出这个问题之后,我们在有限维空间中,利用最优化算法求解该问题。

这两个思路都是建立在有限维子空间 $V_N$ 已经给出的前提下的。但这个有限维空间如何构造?

一个很容易想到的思路是利用 v(0) = v(1) 这一性质,构造三角函数系作为基底。这种选取思路对于问题(1.1)而言当然是极好的,三角函数系的正交性也使得(1.8)中的系数矩阵变得相当简单易求解。但这个方案的可扩展性并不强,如果扩展到二维平面上,乃至更高维度的椭圆偏微分方程,就很难找到像这样全局定义的基函数。如果问题区域非规则或是存在不同方程的耦合,则更是如此。

有限元方法由此引出。

# 1.4 有限元方法

在上面两种思路的基础上,我们需要一个方便推广的构建有限维子空间的方法。

多项式函数空间是最容易表示的函数空间,因此这是我们的首选。但全局定义的多项式很难保证其符合边界条件。于是,借助样条插值的思想,我们转为考虑分段多项式空间。

### 1.4.1 线性有限元空间

我们先针对问题(1.1),考虑最简单的近似形式-分段线性近似。在这种情形下,有限维子空间 $V_h$ 由(0,1)上的分段线性函数表示。

### 定义 1.1 (线性有限元空间)

线性有限元空间的定义为:

$$V_h := \{ v_h \in C(0,1) : v_h(0) = v_h(1) = 0, v_h|_{[x_i, x_{i+1}]} \in \mathbb{P}_1 \}. \tag{1.10}$$

其中  $\{x_i\}_{i=0}^n$  为 [0,1] 上给定的互异节点, $x_0 = 0$ ,  $x_n = 1$ 。

首先需要讨论的是,空间  $V_h$  的维数和基底。空间(1.10)的形式很容易联想到数值分析课程中学习过的 **B-样条空间**。特别地,一维 **B-**样条基函数为所谓的 "hat-function",定义如下:

$$\phi_{i}(x) = \begin{cases} \frac{x - x_{i-1}}{x_{i} - x_{i-1}}, x_{i-1} \le x \le x_{i} \\ \frac{x_{i+1} - x}{x_{i+1} - x_{i}}, x_{i} \le x \le x_{i+1} \\ 0, otherwise \end{cases}$$
(1.11)

图 1.1: hat 函数的示意图



容易验证,如此定义的  $(\phi_1, \dots, \phi_{n-1})$  构成了空间  $V_h$  的一组基。从而可得  $\dim(V_h) = n-1$ 。

### 1.4.2 刚度矩阵与负载

此处我们采用 Galerkin 近似的思路,下面我们需要讨论的是方程组(1.8)的导出与求解。

### 定义 1.2 (刚度矩阵)

线性有限元空间1.1的刚度矩阵定义为:

$$A = (a(\phi_i, \phi_j))_{i, j=1}^{n-1}.$$
(1.12)

其中  $\phi_i$  为(1.11)中定义的基函数。

### 定义 1.3 (负载)

方程(1.1)关于线性有限元空间1.1的负载向量定义为:

$$\mathbf{b} := \left( \int_0^1 f(x)\phi_i(x) dx \right)_{i=1}^{n-1}.$$
 (1.13)

下面讨论(1.1)负载的计算。由于我们是用一次样条多项式近似真实解的,在选取数值积分公式的时候只需要使用一阶代数精度的公式即可不损失计算精度。因此此处采用复化梯形公式进行负载的近似计算。

记  $h_i = x_i - x_{i-1}$ , 负载的近似计算公式如下:

$$b_i = \int_0^1 f(x)\phi_i(x)dx = \int_{x_{i-1}}^{x_{i+1}} f(x)\phi_i(x) \approx \frac{1}{2}(h_i + h_{i+1})f(x_i). \tag{1.14}$$

对于刚度矩阵的计算,虽然基函数  $\phi_i$  在整个区间 (0,1) 上并不可导,但不可导点为零测集,不会对积分的计算产生影响。将基函数  $\phi_i$  的表达式代入刚度矩阵,计算得:

$$\begin{cases}
a_{ij} = 0, |i - j| > 1 \\
a_{ii} = \frac{1}{h_i} + \frac{1}{h_{i+1}} + \frac{1}{3}(h_i + h_{i+1}) \\
a_{i-1,i} = -\frac{1}{h_i} + \frac{1}{6}h_i \\
a_{i,i+1} = -\frac{1}{h_{i+1}} + \frac{1}{6}h_{i+1}
\end{cases}$$
(1.15)

由(1.15)可知, 刚度矩阵是一个三对角矩阵, 因此如果采用传统的矩阵存储方式和求解方式可能会造成计算资源的浪费。下面给出一种采用"局部矩阵"的形式存储(1.15)的技巧。

记负载矩阵  $A = \sum_{k=1}^{n} A^{(k)}$ ,其中  $A^{(k)} := (a_{ij}^{(k)})$ , $a_{ij}^{(k)} := \int_{x_{k-1}}^{x_k} [\phi_i'(x)\phi_j'(x) + \phi_i(x)\phi_j(x)] dx$ ,由定义可得, $a_{ij}^{(k)}$  只在  $i,j \in \{k-1,k\}$  时取非零值。所以每个  $A^{(k)}$  都可以存储为一个  $2 \times 2$  的矩阵,而整体的负载矩阵 A 可以视为把所有的  $A^{(k)}$  "装配"起来的结果。在求解最终的线性方程组的时候,由于矩阵 A 是一个三对角对称正定矩阵,我们可以采用一系列数值代数算法加速方程组的求解。

# 1.5 误差分析

在本节中我们针对求解(1.1)的线性有限元近似算法进行误差分析。在叙述之前,为方便起见,先给出两个记号。

注  $\|f\|_0$ : 表示  $L^2$  范数,  $\|f\|_0 := \sqrt{\int_0^1 f^2 dx}$ 。  $\|f\|_1$ : 表示  $W^{1,2}$  范数,  $\|f\|_1 := \sqrt{\int_0^1 ((f')^2 + f^2) dx}$ 。

回顾一下有限元逼近问题的提法:

**例题 1.2** 记泛函  $a(u,v) = \int_0^1 (uv + u'v') dx$ ,  $h(v) = \int_0^1 fv dx$ ,  $V = \{v(x) : v(0) = v(1) = 0, \int_0^1 ((v')^2 + v^2) dx < \infty\}$ , 原问题是求解  $u \in V$  使得  $a(u,v) = h(v) \forall v \in V$ , 而在线性有限元空间上的逼近问题则是,在线性有限元空间  $V_h \leq V$  上求解  $u_h \in V$  使得  $a(u_h,v_h) = h(v_h) \forall v_h \in V_h$ 。

在进行讨论前,首先给出一个重要的引理。该引理保证了在 $W^{1,2}$ 范数的意义下, $u_h \in V_h$  是 $u \in V$  在子空间 $V_h$  下的最优逼近。

### 引理 1.1 (Cea 引理)

设 u 和 uh 是1.2的解,则有:

$$||u - u_h||_1 \le \inf_{v_h \in V_h} ||u - v_h||_1.$$
(1.16)

证明 由于 u 满足:  $\forall v \in V, a(u, v) = h(v) \Rightarrow \forall v_h \in V_h, a(u, v_h) = h(v_h)$ 。又有:  $u_h$  满足  $a(u_h, v_h) = h(v_h) \forall v_h \in V_h$ ,两式相减,得:

$$a(u - u_h, v_h) = 0 \,\forall v \in V_h. \tag{1.17}$$

(1.17)表示了向量  $u - u_h$  和空间  $V_h$  的正交性。下面讨论  $||u - u_h||_1^2$  的估计。

$$||u - u_{h}||_{1}^{2} = a(u - u_{h}, u - u_{h})$$

$$= a(u - u_{h}, u - v_{h})$$

$$= \int_{0}^{1} ((u' - u'_{h})(u' - v'_{h}) + (u - u_{h})(u - v_{h})) dx$$

$$\leq \left( \int_{0}^{1} (u' - u'_{h})^{2} dx \right)^{\frac{1}{2}} \left( \int_{0}^{1} (u' - v'_{h})^{2} \right)^{\frac{1}{2}} + \left( \int_{0}^{1} (u - u_{h})^{2} \right)^{\frac{1}{2}} \left( \int_{0}^{1} (u - v_{h})^{2} \right)^{\frac{1}{2}}$$

$$\leq \left\{ \int_{0}^{1} \left( (u' - u'_{h})^{2} + (u - u_{h})^{2} \right) dx \right\}^{\frac{1}{2}} \left\{ \int_{0}^{1} \left( (u' - v'_{h})^{2} + (u - v_{h})^{2} \right) dx \right\}^{\frac{1}{2}}$$

$$= ||u - u_{h}||_{1} ||u - v_{h}||_{1} \Rightarrow ||u - u_{h}||_{1} \leq ||u - v_{h}||_{1}.$$

$$(1.18)$$

该引理在  $\|\cdot\|$  的意义下,把有限元解的误差转化为计算解函数的插值误差 (这个插值误差可以作为一个上界)。目前解函数用 u 表示,假设 u 在节点  $\{x_i\}_{i=0}^n$  上的分段线性插值多项式记为  $u_I$ ,考虑  $\|u-u_I\|_1$  的估计。关于分段线性插值,我们有下面的误差估计公式:

### 定理 1.2

$$\begin{cases}
\max_{[0,1]} |u(x) - u_I(x)| \le \frac{1}{8} h^2 \max_{[0,1]} |u''(x)| \\
\max_{[0,1]} |u'(x) - u_I'(x)| \le h \max_{[0,1]} |u''(x)|
\end{cases} (1.19)$$

其中  $h = \max_{1 \le i \le n} |x_i - x_{i-1}|$ 。

Ö

证明 见任何一本数值分析教材。

根据1.2和1.1,可以针对  $||u - u_h||_1$  进行估计。

$$||u - u_h||_1^2 \le ||u - u_I||_1^2 = \int_0^1 ((u - u_I)^2 + (u' - u_I')^2) dx \le \left(\frac{1}{64}h^4 + h^2\right) \max_{[0,1]} |u''(x)|^2. \tag{1.20}$$

从而, 我们导出了下面的估计定理:

### 定理 1.3

$$||u - u_h||_1 \le 2h \max_{[0,1]} |u''|.$$
 (1.21)

1.3给出了利用无穷范数控制  $\|\cdot\|_1$  的方法。但由于二阶求导可能会大幅度提升 u 的振幅, $\max_{[0,1]}|u''|$  可能会大的令人难以接受,所以我们最好能找到更合理的范数估计。事实上,如果右端项取 u'' 的  $L^2$  – norm,我们可以有下面的估计:

### 定理 1.4

$$||u - u_h||_1 \le Ch||u''||_0 \le Ch||f||_0.$$
 (1.22)

证明 在介绍1.4的证明前,我们需要先给出一些命题。

### 命题 1.1

如果  $w \in \mathbb{C}^2$  是下面的微分方程的解:

$$\begin{cases}
-w'' + w = g(x), x \in (0, 1), \\
w(0) = w(1) = 0.
\end{cases}$$
(1.23)

则有

$$\int_0^1 (w'')^2 \mathrm{d}x \le \int_0^1 g^2 \mathrm{d}x. \tag{1.24}$$

证明 在(1.23)的第 (1) 式左右两边同乘 w", 并同时在区间 [0,1] 上积分:

$$\int_{0}^{1} (-w'' + w)w'' dx = \int_{0}^{1} g(x)w''(x)dx$$

$$\Rightarrow \int_{0}^{1} (w'')^{2} dx + \int_{0}^{1} (w')^{2} dx = -\int_{0}^{1} g(x)w''(x)dx$$

$$\Rightarrow \int_{0}^{1} (w'')^{2} dx \le \int_{0}^{1} g(-w'') dx \le ||g||_{0} ||w''||_{0}$$

$$\Rightarrow ||w''||_{0} \le ||g||_{0}$$
(1.25)

注 该结论的证明思路正是偏微分方程理论中非常常见的"能量模估计"。

### 命题 1.2

记

$$G_i(x,t) = \begin{cases} (t-x_i)(x-x_{i+1}), x > t, \\ (x-x_i)(t-x_{i+1}), x \le t. \end{cases}$$
 (1.26)

那么在  $[x_i, x_{i+1}]$  上,有下面这一等式成立:

$$(u(x) - u_I(x))(x_{i+1} - x_i) = \int_{x_i}^{x_{i+1}} G_i(x, t) u''(t) dt.$$
 (1.27)

证明 记符号  $h_i := x_{i+1} - x_i$ , 计算右端项的积分, 有:

$$\int_{x_{i}}^{x_{i+1}} G_{i}(x,t)u''(t)dt 
= (x - x_{i+1}) \int_{x_{i}}^{x} (t - x_{i})u''(t)dt + (x - x_{i}) \int_{x}^{x_{i+1}} u''(t)(t - x_{i+1})dt 
= (x - x_{i+1}) \left[ \int_{x_{i}}^{x} (t - x_{i})du'(t) \right] + (x - x_{i}) \left[ \int_{x}^{x_{i+1}} (t - x_{i})du'(t) \right] 
= (x - x_{i+1}) \left[ (x - x_{i})u'(x) - \int_{x_{i}}^{x} u'(t)dt \right] + (x - x_{i}) \left[ (x_{i+1} - x)u'(x) - \int_{x}^{x_{i+1}} u'(t)dt \right] 
= h_{i}u(x) + (x - x_{i+1})u(x_{i}) - (x - x_{i})u(x_{i+1}) 
= h_{i}(u(x) - u_{I}(x)).$$
(1.28)

下面利用1.1和1.2证明定理1.4。首先讨论  $||u-u_1||_0$  的估计。由1.2,我们有:

$$\int_{0}^{1} [u(x) - u_{I}(x)]^{2} dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} [u(x) - u_{I}(x)]^{2} dx$$

$$= \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \left[ \frac{1}{x_{i+1} - x_{i}} \int_{x_{i}}^{x_{i+1}} G_{i}(x, t) u''(t) dt \right]^{2} dx.$$

$$\leq \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) \left[ \frac{1}{x_{i+1} - x_{i}} \int_{x_{i}}^{x_{i+1}} (t - x_{i}) (x_{i+1} - t) |u''(t)| dt \right]^{2}$$

$$\leq \sum_{i=0}^{n-1} (x_{i+1} - x_{i}) \left[ \frac{x_{i+1} - x_{i}}{4} \int_{x_{i}}^{x_{i+1}} |u''(t)| dt \right]^{2}$$

$$\leq \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_{i})^{3}}{16} \left[ \int_{x_{i}}^{x_{i+1}} |u''(t)| dt \right]^{2}$$

$$\leq \sum_{i=0}^{n-1} \frac{(x_{i+1} - x_{i})^{4}}{16} \int_{x_{i}}^{x_{i+1}} |u'''(t)|^{2} dt$$

$$\leq \frac{h^{4}}{16} \int_{0}^{1} |u'''(t)|^{2} dt.$$
(1.29)

(1.29)中,第三行和第四行的不等式都源于对函数  $G_i(x,t)$  的估计,第六行的不等式则源于柯西不等式。由1.2可知,在  $[x_i,x_{i+1}]$  上,我们有:

$$|u'(x) - u'_{I}(x)| = \left| \frac{1}{x_{i+1} - x_{i}} \left[ \int_{x_{i}}^{x} \frac{(t - x_{i})u''(t)}{x_{i+1} - x_{i}} dt + \int_{x}^{x_{i+1}} \frac{(t - x_{i+1})u''(t)}{x_{i+1} - x_{i}} dt \right] \right|$$

$$\leq C(x_{i+1} - x_{i})^{\frac{1}{2}} \left( \int_{x_{i}}^{x_{i+1}} |u''(t)|^{2} dt \right)^{\frac{1}{2}}.$$

$$(1.30)$$

(1.30)中, C 为常数, 该不等式由柯西不等式导出。借助该式, 我们有:

$$\int_{0}^{1} |u'(x) - u'_{I}(x)|^{2} dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} [u'(x) - u'_{I}(x)]^{2} dx$$

$$\leq \sum_{i=0}^{n-1} C^{2} (x_{i+1} - x_{i})^{2} \int_{x_{i}}^{x_{i+1}} |u''(t)|^{2} dt$$

$$\leq C^{2} h^{2} \int_{0}^{1} |u''(t)|^{2} dt.$$
(1.31)

联立(1.29)和(1.31),结合引理1.1和命题1.1,定理1.4得证。

注对1.4,可以用Fourier分析给出一个更优的估计。

△ 练习 1.1 补充(1.31)的证明细节,并给出常数 C 的值。

利用定理1.4,对于  $||u-u_h||_0$ ,我们可以给出更精细的估计:

### 定理 1.5 (Aubin-Nitsche 技巧)

$$||u - u_h||_0 \le Ch^2 ||u''||_0. \tag{1.32}$$

证明 考虑辅助问题:

$$\begin{cases}
-z'' + z = u - u_h, \\
z(0) = z(1) = 0.
\end{cases}$$
(1.33)

其变分形式为:

$$a(z, v) = (u - u_h, v)_{L^2}, \forall v \in V.$$
(1.34)

从而:

$$||u - u_h||_0 = a(z, u - u_h)$$
  
=  $a(z - \omega_h, u - u_h) \, \forall \omega_h \in V_h$  (1.35)

取 $\omega_h$ 为函数z的分段线性插值 $z_I$ ,那么:

$$a(z - z_I, u - u_h) \le C \|z - z_I\|_1 \|u - u_h\|_1 \le Ch^2 \|z''\|_0 \|f\|_0. \tag{1.36}$$

由 (1.24),  $||z''||_0 \le C||u-u_h||_0$ , 结论得证。

### 1.6 一阶非齐次 BVP

接下来我们把研究对象改为一般的非齐次两点边值问题。事实上,虽然方程看似复杂了些,但处理方法和之前基本一致。

考虑下面的例子:

$$\begin{cases} -(k(x)u')' + q(x)u = f(x), & x \in (0,1), \\ u(0) = \alpha, & u(1) = \beta. \end{cases}$$
 (1.37)

其中  $k(x) \in C^1$ ,  $k(x) \ge k_0 > 0$ ,  $q(x) \ge 0$ .

和齐次问题同样的道理, 先考虑该问题的变分形式。在(1.37)两端同乘函数 v 并在 [0,1] 上积分, 有:

$$\int_{0}^{1} \left[ -(k(x)u')'v(x) + q(x)u(x)v(x) \right] dx = \int_{0}^{1} f(x)v(x)dx$$

$$\Rightarrow \int_{0}^{1} quvdx - \int_{0}^{1} v(x)d(k(x)u') = \int_{0}^{1} f(x)v(x)dx$$

$$\Rightarrow \int_{0}^{1} (quv + ku'v')dx + v(0)k(0)u'(0) - v(1)k(1)u'(1) = \int_{0}^{1} f(x)v(x)dx.$$
(1.38)

要保证(1.38)有意义,同样需要确保  $u,v \in V := W^{1,2}$ 。在此基础上,如果 v(0) = v(1) = 1,令  $a(u,v) := \int_0^1 (ku'v' + quv) dx$ , $h(v) := \int_0^1 fv dx$ ,则有:

$$a(u, v) = h(v) \ \forall v \in V, \ v(0) = v(1) = 0.$$
 (1.39)

其中  $u \in W := \{v : \int_0^1 ((v')^2 + v^2) dx < \infty, v(0) = \alpha, v(1) = \beta\}.$ 

同样地,该问题也有与之相对应的极小化问题:

例题 1.3 求  $u \in W$  s.t.  $J(u) \leq J(v) \forall v \in W$ , 此处  $J(v) := \frac{1}{2}a(v,v) - f(v)$ 。

下一步则是构造对应的线性有限元空间。注意到,对于非齐次边值问题,函数集合W并不构成线性空间,所以我们构建的"线性有限元空间"实际上是一个由分段线性函数构成的子集。但与此同时,这个子集可以写成陪集 (coset) 的形式,所以我们依旧可以利用基底的线性组合来表示这个函数集合。

取 [0,1] 区间的分划  $0 = x_0 < x_1 < \cdots < x_{n-1} < x_n = 1$ ,由于  $u(0) = \alpha, u(1) = \beta$ ,记函数集合  $W_h := \{w \in C(0,1): w|_{[x_i,x_{i+1}]} \in \mathbb{P}_1, w(0) = \alpha, w(1) = \beta\}$ ,那么我们必定有  $u \in W_h$ 。 $V_h$  的定义同1.10,设分段线性函数 g(x)满足:

$$g(0) = \alpha, g(1) = \beta, \forall i \in [1, n-1], g(x_i) = 0.$$
(1.40)

那么我们有  $W_h = g + V_h$ 。

最后考虑有限元近似求解。此处  $\phi_i$  的定义沿用(1.11)的表达式,记  $u_h(x) := g(x) + \sum_{i=1}^{n-1} \alpha_i \phi_i(x)$  ,  $v_i(x) := \phi_i(x)$  , 代人(1.39),得:

$$a(g,\phi_i) + \sum_{j=1}^{n-1} \alpha_j a(\phi_j,\phi_i) = h(\phi_i).$$
 (1.41)

由  $a(\cdot,\cdot)$  的对称性,我们把(1.41)转化为矩阵形式 (Ax = b)。其中刚度矩阵  $A := a(\phi_i,\phi_j)_{i,j=1}^{n-1}$ ,负载  $b := (h(\phi_i) - a(g,\phi_i))^t$ 。可以证明,刚度矩阵仍旧为对称正定三对角矩阵。但刚度矩阵和负载向量的计算则需要通过数值积

分完成。当然,在编程计算刚度矩阵时,利用装配技巧同样能节省存储空间并增加程序的可读性。

与齐次方程同样,非齐次方程变分问题的有限元解也有与之相对应的 Cea 引理和各种范数估计,且证明方法近乎雷同,故此处省略不表,留作习题。

**注** (1.37)中  $q(x) \ge 0$  的条件似乎应当改为  $q(x) \ge q_0 > 0$ , 否则 Cea 引理的证明会出问题。举个例子, 如果  $q(x) \equiv 0$ , 引出的就不再是对  $\|u - u_h\|_1$  的估计,而是  $\|u' - u_h'\|_0$  的估计。

## 1.7 其他边值问题

### 1.7.1 Neumann 边值问题

问题描述:

$$\begin{cases} -(ku')' + qu = f \\ -k(0)u'(0) = \gamma_1, k(1)u'(1) = \gamma_2 \end{cases}$$
 (1.42)

变分形式:

$$\int_0^1 (ku'v' + quv) dx = \int_0^1 fv dx + \gamma_2 v(1) + \gamma_1 v(0).$$
 (1.43)

### 1.7.2 Robin 边值问题

问题描述:

$$\begin{cases} -(ku')' + qu = f \\ -k(0)u'(0) = -\beta_1 u(0) + \gamma_1, k(1)u'(1) = -\beta_2 u(1) + \gamma_2 \end{cases}$$
 (1.44)

变分形式:

$$\int_0^1 (ku'v' + quv) dx = \int_0^1 fv dx + \gamma_1 v(0) + \gamma_2 v(1) - \beta_1 u(0) v(0) - \beta_2 u(1) v(1).$$
 (1.45)

# 1.8 本章总结

有限元的基本逻辑:

- 两边相乘试验函数,同时积分。
- 给出变分形式。
- 构造函数空间的有限维子空间。
- 在有限维子空间上求解变分形式。
- 误差估计。

由于有限元方法的输出并非解函数在某些点上的取值或者控制体上的积分平均值,而是整体函数,其误差范数 定义和有限差/有限体方法有一些区别。本章中常用的范数是  $L^2$  范数和  $W^{1,2}$  范数。同样,由于有限元方法是在 函数空间中求解优化问题或者线性方程,函数逼近论在有限元方法的研究中居于重要地位。

# 第2章 变分原理

上一章中,我们用一个具体的例子说明了有限元的大体思路和操作步骤。本章则会着眼于变分问题的提法,给出一般情形下的变分问题(以及其等价形式),并证明其解的存在唯一性。最后则是给出几个具体的算例以及它们各自的变分形式。

# 2.1 变分问题以及等价形式

在上一章定理1.2中,我们针对一个特殊问题,提出了两种变分问题,并证明了这两种问题的等价性。本节中,我们将着眼于更一般的问题,并对一般的问题尝试说明两者的等价性,以及其解的存在唯一性。在此之前,先要做一些概念和定理上的准备。

### 2.1.1 预备知识

首先,我们讨论双线性函数。

### 定义 2.1 (双线性函数)

一个双线性函数  $a(\cdot,\cdot):V\times V\to\mathbb{R}$  需要满足下面的条件:

- $a(k_1u + k_2v, w) = k_1a(u, w) + k_2a(v, w)$ .
- $a(u, k_1v + k_2w) = k_1a(u, v) + k_2a(u, w)$ .

对任意  $u,v \in V$ ,  $k_1,k_2 \in F$  均成立。特别地,假设 V 是以  $\|\cdot\|$  为范数的赋范线性空间,如果对任意  $u,v \in V$ ,存在 M>0 使得:

$$|a(u,v)| \le M||u||||v|| \tag{2.1}$$

总成立,那么我们称双线性型 a 为有界的或连续的。如果  $\forall u, v \in V$ ,均有:

$$a(u, v) = a(v, u), \tag{2.2}$$

那么双线性型 a 为对称的。如果满足下面的性质:

$$\exists \alpha > 0, \forall v \in V, \alpha \|v\|^2 \le a(v, v), \tag{2.3}$$

则称双线性型a是V-椭圆的。

特别地,第一章所述

$$a(u,v) = \int_0^1 (uv + u'v') dx,$$
 (2.4)

是一个有界且 V-椭圆的双线性函数。双线性函数的性质在后续对变分问题的讨论中相当重要。

为方便后续内容的展开,本节中将给出一些泛函分析中的重要结论。

### 命题 2.1 (Riesz 表示定理)

设 H 是 Hilbert 空间,则任意  $f \in H^*$ ,存在唯一  $x_f \in H$ ,使得:

$$f(y) = (x_f, y) \ \forall y \in H, \|f\|_{H^*} = \|x_f\|_H. \tag{2.5}$$

证明 存在性:考查闭子空间  $\ker f \leq H$ 。

如果  $\ker f = H$ , 这意味着  $f(x) = 0 \forall x \in H$ , 取  $x_f = 0$  则有  $f(y) = 0 = (x_f, y)$ ,  $\forall y \in H$ , 且  $\|f\|_{H^*} = \|x_f\|_H = 0$ 。 如果  $\ker f \neq H$ ,由于  $f \in H^*$ ,由第一同构定理可知  $\operatorname{codim} \ker f = 1$ 。记  $(\ker f)^{\perp}$  的一组基为  $\{y_0\}$ ,则由正交分解定理, $\forall y \in H$ , $y = ky_0 + \tilde{y}$ ,其中  $\tilde{y} \in \ker f$ 。

此时, $f(y)=kf(y_0)$ ,记 $x_f=\lambda y_0$ , $(x_f,y)=\lambda k\|y_0\|_H^2$ 。从而:取 $x_f=\frac{f(y_0)}{\|y_0\|_H^2}y_0$ ,等式(2.5)成立。且有:

$$||x_f||_H = \frac{|f(y_0)|}{||y_0||_H} = ||f||_{H^*}.$$
(2.6)

唯一性: 如果存在  $w_f$  s.t.  $f(y) = (w_f, y)$ , 那么  $\forall y \in H$ , 我们有

$$(x_f - w_f, y) = 0, \forall y \in H.$$
 (2.7)

取  $y = x_f - w_f$ , 由内积的定义即得  $x_f - w_f = 0$ , 即  $x_f = w_f$ 。

### 命题 2.2 (闭凸子集投影的存在唯一性)

设 V 是一个 Hilbert 空间,如果 U 是 V 的闭凸子集,对于  $v \in V$ ,存在唯一  $u_0 \in U$  使得:

$$\langle v - u_0, v - u_0 \rangle = \min_{u \in U} \langle v - u, v - u \rangle.$$
 (2.8)

证明 记范数  $||u|| := \langle u, u \rangle^{\frac{1}{2}}$ ,U 是闭凸子集,由 F-Riesz 定理, $||v - u||_U$  在  $u \in U$  中存在下确界 d。由此,存在序列  $\{u_n\} \subset U, \forall \epsilon > 0, \exists N, \exists n > N$  时有:

$$d^{2} \le d_{n}^{2} := \|v - u_{n}\|^{2} < d^{2} + \epsilon \tag{2.9}$$

往证序列  $\{u_n\}$  存在极限,且极限在集合 U 内部。由平行四边形公式,  $\forall n, m > N$ ,有:

$$||u_m + u_n - 2v||^2 + ||u_m - u_n||^2 = 2(d_m^2 + d_n^2).$$
(2.10)

根据等式(2.10), 我们有:

$$||u_{m} - u_{n}||^{2} = 2(d_{m}^{2} + d_{n}^{2}) - ||u_{m} + u_{n} - 2v||^{2}$$

$$< 4d^{2} + 4\epsilon - 4(||\frac{u_{m} + u_{n}}{2} - v||^{2})$$

$$\leq 4\epsilon.$$
(2.11)

最后一个不等号源于 U 为凸集,从而  $\frac{u_m+u_n}{2} \in U$ ,这意味着  $\|\frac{u_m+u_n}{2} - v\| \ge d^2$ 。

(2.11)保证了  $\{u_n\}$  是 Cauchy 列, 即该序列收敛。又 U 是闭的, 该序列收敛于  $u_0 \in U$ 。存在性得证。唯一性证明完全同理, 留作习题。

### 命题 2.3 (压缩映射原理)

设V是Banach 空间, 连续映射T满足:

$$||Tv_1 - Tv_2|| \le L||v_1 - v_2||, \forall v_1, v_2 \in V,$$
(2.12)

其中0 < L < 1为常数,则存在唯一的 $u \in V$ 使得u = Tu。

该定理证明从略, 留作习题。

### 2.1.2 存在唯一性

本节中讨论抽象意义下的优化问题。

#### 定义 2.2 (优化问题)

给定赋范线性空间 V 以及其上的有界双线性函数 a,  $f \in V^*$ , 对于  $U \subset V$ , 寻找  $u \in U$ , 使得:

$$J(u) = \inf_{v \in U} J(v), \ J(v) := \frac{1}{2}a(v, v) - f(v)$$
 (2.13)

2.2中叙述的优化问题和第一章对应的问题相比,极大放宽了对U的要求,这也使得第一章对该问题的讨论不一定适用于此。为此,我们需要给出问题2.2解存在唯一的条件。

### 定理 2.1

如果2.2满足下列额外条件:

- V 完备,
- *U* 是 *V* 的闭凸子集,
- 双线性函数 a(u,v) 是对称且 V-椭圆的,

那么优化问题2.2存在唯一解。

证明 由于 a(u,v) 是连续对称椭圆双线性型,可知 a(u,v) 构成空间 V 上的一个内积,导出的范数记作  $\|\cdot\|$ 。由 Riesz 表示定理,可以把 f 用 a 表示,即:

$$\forall v \in V, f(v) = a(\sigma_f, v). \tag{2.14}$$

由(2.14), 代入(2.13)可得:

$$J(v) = \frac{1}{2}a(v,v) - a(\sigma_f, v)$$

$$= \frac{1}{2}a(v - \sigma_f, v - \sigma_f) - \frac{1}{2}a(\sigma_f, \sigma_f).$$
(2.15)

由此,该极小化问题转化为在U上最小化  $||v-\sigma_f||$ 。由于 $\sigma_f \in V$ ,而U是V的闭凸子集,借助闭凸子集投影的存在唯一性,当且仅当v是 $\sigma_f$ 在U上的投影时,优化问题2.2取极小值。由此便证明了该问题解的存在唯一性。

### 2.1.3 变分问题的等价形式

在第一章中,我们说最小化 J(v) 的问题等价于求解泛函方程 a(u,v)=f(v)。本节中,我们将进一步探究这两个问题之间的关系。

### 定理 2.2

1. 如果 u 是问题2.2的解, 当且仅当

$$\forall v \in U, a(u, v - u) \ge f(v - u). \tag{2.16}$$

2. 特别地,如果 U 是以 O 为顶点的凸锥,那么:

$$\begin{cases} \forall v \in U, a(u, v - u) \ge f(v - u), \\ a(u, u) = f(u). \end{cases}$$
 (2.17)

3. 特别地,如果U是V的闭子空间,那么:

$$\forall v \in U, a(u, v) = f(v). \tag{2.18}$$

证明 由 Riesz 表示定理,  $f(v-u) = a(\sigma_f, v-u)$ 。

先证明问题 1 的充分性部分。任取  $v \in U$ , 可得:

$$a(v - \sigma_f, v - \sigma_f) = a(v - u + u - \sigma_f, v - u + u - \sigma_f)$$

$$= a(v - u, v - u) + 2a(v - u, u - \sigma_f) + a(u - \sigma_f, u - \sigma_f)$$

$$\geq a(u - \sigma_f, u - \sigma_f).$$
(2.19)

即, 在(2.16)成立时, u 是2.2的解。

再证明其必要性部分。由于 U 是凸集,  $\forall t \in (0,1)$ ,  $tv + (1-t)u \in U$ 。如果 u 是2.2的解, 那么:

$$a(\sigma_f - tv - (1 - t)u, \sigma_f - tv - (1 - t)u) \ge a(\sigma_f - u, \sigma_f - u). \tag{2.20}$$

化简,有:

$$-2ta(\sigma_f - u, v - u) + t^2a(v - u, v - u) \ge 0.$$
(2.21)

取  $t \rightarrow 0$  即可证(2.16)成立。

对于问题 2, 由凸锥的性质,  $u+v \in U$ , 在(2.16)中取  $v_1 := u+v$ , 可得  $a(u,v) \ge f(v)$ 。又 0 在凸锥顶点,取 v=0, 可得  $a(u,u) \le f(u)$ 。由此, a(u,u) = f(u)。

对于问题 3, 根据刚刚对于凸锥的推理,  $a(u,v) \ge f(v)$ 。根据闭子空间的性质,  $-v \in U$ , 将  $\tilde{v} := -v$  可得  $a(u,-v) \ge f(-v)$ , 即  $a(u,v) \le f(v)$ 。由此, a(u,v) = f(v)。

# 2.2 Lax-Milgram 引理

### 定理 2.3 (Lax-Milgram 引理)

设 V 是一个 Hilbert 空间, $a(\cdot,\cdot): V\times V\to\mathbb{R}$  是一个连续 V-椭圆双线性型, $f:V\to\mathbb{R}$  是连续线性泛函,那么,存在唯一  $u\in V$ ,使得:

$$a(u, v) = f(v) \tag{2.22}$$

对任意ν∈Ⅴ成立。

 $\nabla$ 

 $\dot{\mathbf{L}}$  此处 a(u,v) 并没有对称性条件,故不能诱导 V 上的内积。

证明 第一步: 将双线性型 a(u,v) 转化为  $V \to V'$  的映射。

定义 Au(v) := a(u,v), 则  $Au \in V'$ , 且

$$||Au|| = \sup_{v \in V} \frac{|Au(v)|}{||v||} \le M||u||. \tag{2.23}$$

由 a 的有界性,即可直接推出 Au 的有界性。由此: 映射  $A:V\to V',u\mapsto Au$  为连续线性映射。(2.22)转换为 Au(v)=f(v)。但直接比较 V' 上的两个元素并不容易。

第二步: 将 V' 中两元素的比较转化为 V 中两元素的比较。

设 $\tau$ 为 $V'\to V$ 的 Riesz 表示映射,那么 $Au=f\Leftrightarrow \tau Au=\tau f$ 。下面需要证明满足该等式的u存在唯一。关于存在唯一性的问题,我们可以通过构造压缩映射求解。

第三步:构造压缩映射。

记 $T:V\to V$ , 其定义为:

$$T(v) = v - \rho(\tau A v - \tau f). \tag{2.24}$$

 $\rho$  为一个可以自行选定的参数。T 的不动点即  $v = v - \rho(\tau A v - \tau f)$ ,可得  $\tau A v = \tau f$ 。下证 T 在  $\rho$  取适当值的时候是压缩映射。

记 $\varphi = v - w$ ,  $v \in V$ ,  $w \in V$ , 那么

$$||Tv - Tw||^{2}$$

$$= ||T\varphi||^{2}$$

$$= ||\varphi - \rho(\tau A\varphi)||^{2}$$

$$= ||\varphi||^{2} - 2\rho \langle \tau A\varphi, \varphi \rangle + \rho^{2} \langle \tau A\varphi, \tau A\varphi \rangle$$

$$\leq ||\varphi||^{2} - 2\rho\alpha||\varphi||^{2} + \rho^{2}M^{2}||\varphi||^{2}.$$
(2.25)

最后一个不等号的依据是: 1.7 是等距同构。2.A 是有界线性算子。 $3.a(\varphi,\varphi)$  的椭圆性。事实上:

$$\langle \tau A \varphi, \varphi \rangle = (A \varphi)(\varphi) = a(\varphi, \varphi) \ge \alpha \|\varphi\|^2.$$
 (2.26)

$$\langle \tau A \varphi, \tau A \varphi \rangle = (A \varphi)(\tau A \varphi) = a(\varphi, \tau A \varphi) \le M \|\varphi\| \|\tau A \varphi\| \le M^2 \|\varphi\|^2. \tag{2.27}$$

由此,只要 $\rho < \frac{2\alpha}{M^2}$ ,T即为压缩映射,这意味着 $\tau Au = \tau f$ 存在唯一解。

# 2.3 具体实例

注 此处内容可能用到一些 Sobolev 空间的相关知识,由于之后会专题讨论该内容,此处不过多赘述相关知识点。请读者翻阅后续的笔记内容,或参考任何一本泛函分析教材。

### 2.3.1 二阶椭圆方程

# 定义 2.3 (齐次边界二阶椭圆问题)

设  $\Omega \subset \mathbb{R}^2$  是一个有界单连通区域, 其边界为  $\partial\Omega$ , 考虑下面的 Poisson 方程:

$$\begin{cases} -\Delta u = f, x \in \Omega, \\ u = 0, x \in \partial \Omega. \end{cases}$$
 (2.28)

其中  $f \in C(\Omega)$ 。

在(2.28)的第1式两边同乘测试函数 $\nu$ 并在区域 $\Omega$ 上积分,得:

$$-\int_{\Omega} \Delta u v dx = \int_{\Omega} f v dx \Rightarrow \int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\partial \Omega} \frac{\partial u}{\partial n} v dx = \int_{\Omega} f v dx \tag{2.29}$$

取测试函数空间为:

$$v \in H_0^1(\Omega) := \{ v | v, \nabla v \in L^2(\Omega), v |_{\partial \Omega} = 0 \}.$$
 (2.30)

那么(2.29)转化为

$$\int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx, \forall v \in H_0^1(\Omega). \tag{2.31}$$

(2.31)称为问题(2.28)的弱形式。根据本章定理2.2、该问题等价于如下泛函极小化问题:

$$J(v) := \frac{1}{2} \int_{\Omega} \nabla v \cdot \nabla v dx - \int_{\Omega} f v dx, J(u) := \inf_{v \in V} J(v).$$
 (2.32)

### 定理 2.4

(2.28)的弱解存在唯一。

证明 取  $a(u,v) := \int_{\Omega} \nabla u \cdot \nabla v, f(v) := \int_{\Omega} f v dx$ ,只需验证 Lax-Milgram 引理的两个条件。

a(u,v) 的双线性由积分的线性性质即可导出,其连续性则是 Cauchy-Schwarz 不等式的直接推论,下证其 $H_0^1(\Omega)$ -椭圆性。证明该结论前,先不加证明地给出 Friedrichs 不等式的叙述,该不等式的证明可以参考 Evans 的偏微分方程教材。

### 命题 2.4 (Friedriches 不等式)

如果  $\Omega$  是  $\mathbb{R}^n$  的有界单连通子区域, 其直径为 d, 设  $u \in H_0^1(\Omega)$ , 我们有:

$$||u||_{L^{2}(\Omega)} \le d||\nabla u||_{L^{2}(\Omega)}. \tag{2.33}$$

由2.4, 我们有: $\exists C_1 > 0$  s.t.

$$a(v,v) = \int_{\Omega} \nabla v \cdot \nabla v \ge C_1 \|v\|_{L^2(\Omega)}^2.$$
 (2.34)

又由 Sobolev 空间范数的定义,

$$\|v\|_{H_0^1(\Omega)}^2 = \int_{\Omega} (v^2 + \nabla v \cdot \nabla v) dx.$$
 (2.35)

联立上面两等式可得:

$$(1+C_1)a(v,v) \ge C_1 \|v\|_{H_0^1(\Omega)}^2. \tag{2.36}$$

a 的椭圆性即得证。

关于泛函f的有界性,证明如下:

$$\frac{|f(v)|}{\|v\|_{H_0^1}} = \frac{\int_{\Omega} fv}{\|v\|_{H_0^1}} \le \frac{\|f\|_{L^2} \|v\|_{L^2}}{\|v\|_{H_0^1}} \le \|f\|_{L^2} < \infty. \tag{2.37}$$

由 Lax-Milgram 引理,可知问题(2.28)的弱解存在唯一。

△ 练习 2.1 用同样的方法讨论 Poisson 方程非齐次 Dirichlet 边界问题的弱解。

# 定义 2.4 (Neumann 边界二阶椭圆方程)

设 $\Omega \subset \mathbb{R}^2$ 是一个有界单连通区域, 其边界为 $\Gamma$ ,  $b, f, g \in C(\Omega)$ , 考虑下面的方程:

$$\begin{cases}
-\Delta u + bu = f, \ x \in \Omega \\
\frac{\partial u}{\partial v} = g. \ x \in \Gamma
\end{cases}$$
(2.38)

取测试函数空间  $V = H^1(\Omega)$ , 定义双线性型

$$a(u,v) := \int_{\Omega} (\nabla u \cdot \nabla v + b(x)uv) dx.$$
 (2.39)

右端的线性泛函

$$f(v) := \int_{\Omega} f v dx + \int_{\Gamma} g v ds. \tag{2.40}$$

这里  $b(x) \ge b_0 > 0, f \in L^2(\Omega), g \in L^2(\Omega)$ 。则问题(2.38)的弱形式为:

$$a(u, v) = f(v), \forall v \in V. \tag{2.41}$$

对应的极小化问题同(2.13)。事实上,该弱形式同样存在唯一解,直接验证 Lax-Milgram 引理即可。

**△ 练习 2.2** 如果我们把问题(2.38)左端项中 b(x) 取为  $b(x) \equiv 0$ ,该问题弱形式的适定性是否还满足? 如果不满足适定性,是 Lax-Milgram 引理的哪个部分出了问题?

### 2.3.2 四阶双调和方程

### 定义 2.5 (四阶双调和方程)

设 $\Omega \in \mathbb{R}^n$ 是一个有界单连通区域,其边界为 $\partial \Omega$ ,考虑下面的双调和方程:

$$\begin{cases}
-\Delta^2 u = f, x \in \Omega \\
u = \frac{\partial u}{\partial n} = 0, x \in \partial \Omega
\end{cases}$$
(2.42)

该方程称为四阶双调和方程。

对这个方程,首先我们需要给出其变分问题的具体形式。此处取测试函数空间  $V = H_0^2(\Omega)$ ,即  $v \in H_0^2(\Omega)$ ,在(2.42)左右两边同乘函数 v,并在  $\Omega$  上作积分,得:

$$\int_{\Omega} -v\Delta^{2}u dx = -\int_{\Omega} \left[ \nabla \cdot (v \nabla \Delta u) - \nabla v \cdot \nabla (\Delta u) \right] dx$$

$$= \int_{\Omega} \nabla v \cdot \nabla (\Delta u) dx$$

$$= \int_{\Omega} \Delta u \Delta v dx$$
(2.43)

注(2.43)真的没有少一个负号?

由(2.43), 设  $B(u,v) = \int_{\Omega} \Delta u \Delta v dx$ ,  $\langle f,v \rangle = \int_{\Omega} f v dx$ , 变分问题的描述为:

$$B(u, v) = \langle f, v \rangle. \tag{2.44}$$

由于此处  $u,v\in H^2_0(\Omega)$ ,验证 Lax-Milgram 引理条件可得该弱形式具有适定性。下面给出 B(u,v) 满足  $H^2_0(\Omega)$ -椭

圆性的证明。

### 引理 2.1

设  $u \in H_0^2(\Omega)$ ,  $|\cdot|$  为 Sobolev 半范数,  $||\cdot||$  为 Sobolev 范数, 那么

$$\|\Delta u\|_{0,\Omega}^2 = |u|_{2,\Omega}^2. \tag{2.45}$$

证明 根据定义:

$$\|\Delta v\|_{0,\Omega}^2 = \int_{\Omega} \left( \sum_{i=1}^n (\partial_{ii} v)^2 + \sum_{i \neq j} \partial_{ii} v \partial_{jj} v \right) dx.$$
 (2.46)

$$|v|_{2,\Omega}^2 = \int_{\Omega} \left( \sum_{i=1}^n (\partial_{ii} v)^2 + \sum_{i \neq j} (\partial_{ij} v)^2 \right) \mathrm{d}x. \tag{2.47}$$

由分部积分公式 (该公式由 Green 公式导出), 有:

$$\int_{\Omega} (\partial_{ij} v)^{2} dx = \int_{\Omega} \partial_{ij} v \partial_{j} (\partial_{i} v) dx$$

$$= -\int_{\Omega} \partial_{i} v \partial_{ijj} v dx$$

$$= \int_{\Omega} \partial_{ii} v \partial_{jj} v dx.$$
(2.48)

由此即证明了引理2.1。

### 定理 2.5 (Poincare-Friedrichs)

设集合  $\Omega$  有界,  $v \in H_0^m(\Omega)$ , 那么必定存在一个常数  $C(\Omega)$ , 使得:

$$||v||_{0,\Omega} \le C(\Omega)|v|_{m,\Omega}. \tag{2.49}$$

由2.1和2.5可知:

$$B(u,u) = \|\Delta u\|_{0,\Omega}^2 = |u|_{2,\Omega}^2 \ge C\|u\|_{2,\Omega}^2. \tag{2.50}$$

即: 算子 B 是椭圆算子。

# 2.4 本章总结

本章主要讨论有限元方法的第一步:将微分方程转化为其弱形式。重点讨论了两个结论的成立条件:

- 方程弱形式和它对应优化问题的等价性。
- 方程弱形式的适定性。

Lax-Milgram 引理是本章的核心内容,弱解的存在唯一性由该引理保证。后面我们同样讨论了一些具体方程的例子。时间所限,我没有把所有课本例子记录下来。并且,这一章用到了很多 Sobolev 空间的相关记号和定理,这部分将在第三章进行讲述。

# 第3章 Sobolev 空间

本章的内容主要是在 Lebesgue 积分的框架下,简单介绍一下广义函数与 Sobolev 空间,为后续的讨论巩固基础,提供依据。

为叙述方便, 先给出一些符号的定义。

### 定义 3.1

$$\operatorname{supp}(u) := \overline{\{\mathbf{x} : \mathbf{x} \in \Omega, u(\mathbf{x}) \neq 0\}}.$$
(3.1)

$$C_0^{\infty}(\Omega) = D(\Omega) := \{ u : u \in C^{\infty}(\Omega), \operatorname{supp}(u) \subset \Omega \}.$$
(3.2)

$$L^{1}_{loc}(\Omega) := \{ f : f \in L^{1}(\Omega_{1}) \forall \text{ compact set } \Omega_{1} \subset \Omega \}.$$
(3.3)

### $3.1 L^p$ 空间内容回顾

 $L^p$  空间的内容我们早在"实变函数"课程中已经学过,此处仅作简单回顾,不给出具体证明。如无特殊说明,本章中  $\int_\Omega f(x)\mathrm{d}x$  均表示 Lebesgue 积分。

### 定义 3.2 (LP 范数)

设区域  $\Omega \in \mathbb{R}^n$  为 Lebesgue 非空可测集,  $f \in \Omega$  上的实值函数, f 的  $L^p$  范数定义为:

$$||f||_{L^{p}(\Omega)} = \left(\int_{\Omega} |f(x)|^{p} dx\right)^{\frac{1}{p}}, 1 \le p < \infty,$$
 (3.4)

$$||f||_{L^{\infty}(\Omega)} = ess \sup_{x \in \Omega} |f(x)|. \tag{3.5}$$

定义空间:

$$L^{p}(\Omega) = \{ f : ||f||_{L^{p}(\Omega)} < \infty \}, 1 \le p \le \infty.$$
(3.6)

### 命题 3.1 (L<sup>p</sup> 空间上的一些重要不等式)

1. (Young 不等式) 对于  $a, b \ge 0, 0 \le p, q \le +\infty, \frac{1}{p} + \frac{1}{q} = 1$ , 我们有:

$$ab \le \frac{1}{p}a^p + \frac{1}{q}b^q. \tag{3.7}$$

2. (Holder 不等式) $1 \le p, q \le \infty, f, g \in L^p(\Omega), 则$ :

$$||fg||_{L^1(\Omega)} \le ||f||_{L^p(\Omega)} \cdot ||g||_{L^q(\Omega)}.$$
 (3.8)

3. (Minkowski 不等式) $1 \le p \le \infty$ ,  $f,g \in L^p(\Omega)$ , 则:

$$||f + g||_{L^{p}(\Omega)} \le ||f||_{L^{p}(\Omega)} + ||g||_{L^{p}(\Omega)}. \tag{3.9}$$

 $\stackrel{\mathbf{L}}{\mathbf{L}}$  Minkowski 不等式表明了  $\stackrel{\mathbf{L}}{\mathbf{L}}$  范数满足三角不等式,结合其正定性和正齐次性,可以说明由(3.4)定义的表达式确实是一个范数。

#### 定理 3.1

对 1 ≤ p ≤ ∞,  $L^p(\Omega)$  是一个 Banach 空间。

### 定理 3.2

对于  $1 \le p < \infty$ ,  $C_0^{\infty}(\Omega)$  在  $L^p(\Omega)$  中稠密。其中  $C_0^{\infty}(\Omega)$  表示  $\Omega$  上所有紧支集光滑函数构成的集合。

Ç

上面两个定理的证明可以参考任何一本"实变函数"课程的教材。

# 3.2 广义导数

在数学分析课程中, 我们给出的导数定义如下:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}.$$
(3.10)

但这个形式逐渐无法适应我们对方程广义解的研究,原因主要有两点:

- 该定义式对函数 f 的光滑性要求较高。
- 在广义解的研究中,我们更关注导数的整体的性质而非某点处的取值。但传统导数却是逐点定义的。 这是我们推广导数定义的动机。

把局部定义的导数概念向全局定义推广,重要的突破口是分部积分公式。

### 命题 3.2 (分部积分)

设 $\Omega \in \mathbb{R}^n$ ,  $f(x) \in C^n(\Omega)$ ,  $\alpha := \{\alpha_1, \dots, \alpha_n\}$  为多重指标且 $|\alpha| \le n$ ,  $\phi(x) \in D(\Omega)$ , 那么:

$$\int_{\Omega} \partial^{\alpha} f(x) \cdot \phi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) \partial^{\alpha} \phi(x) dx.$$
 (3.11)

可以看到,等式(3.11)右端仅仅要求  $f(x) \in L^1(\Omega)$ 。相比(3.10),(3.11)降低了对函数正则性的要求,并且也是一个  $\Omega$  上全局定义的函数。已知分部积分公式对  $f \in C^n(\Omega)$  成立,我们不妨利用该公式进行一些推广。设 g(x) 满足

$$\int_{\Omega} g(x)\phi(x)dx = (-1)^{|\alpha|} \int_{\Omega} f(x)\partial^{\alpha}\phi(x)dx.$$
(3.12)

对任意  $\phi \in D(\Omega)$  均成立,那么在允许相差一个零测集的情形下我们可以近似认为  $g(x) = \partial^{\alpha} f(x)$ 。于是,我们由此给出了广义导数的定义。

### 定义 3.3 (广义导数)

对于  $f(x) \in L^1_{loc}(\Omega)$ , 如果存在  $g(x) \in L^1_{loc}(\Omega)$ , 使得:

$$\int_{\Omega} g(x)\phi(x)\mathrm{d}x = (-1)^{|\alpha|} \int_{\Omega} f(x)\partial^{\alpha}\phi(x)\mathrm{d}x, \forall \phi \in C(\Omega), \tag{3.13}$$

那么我们称 g(x) 为 f(x) 的  $|\alpha|$  阶广义导数,记作

$$D^{\alpha}f(x) = g(x). \tag{3.14}$$

**例题 3.1** 设区域  $\Omega = (-1,1)$ ,求  $f(x) = |x|^t$  的广义导数。

按定义(3.12), 计算下面的积分:

$$\int_{-1}^{1} f(x)\phi'(x)dx = \int_{-1}^{0} (-x)^{t}\phi'(x)dx + \int_{0}^{1} x^{t}\phi'(x)dx$$

$$= (-x)^{t}\phi(x)|_{0-} + \int_{-1}^{0} t(-x)^{t-1}\phi(x)dx - x^{t}\phi(x)|_{0+} - \int_{0}^{1} tx^{t-1}dx.$$
(3.15)

取

$$g(x) = \begin{cases} t|x|^{t-1}, 0 < x < 1\\ -t|x|^{t-1}, -1 < x < 0 \end{cases}$$
(3.16)

当 t < 0 时,

$$\int_{-1}^{1} f(x)\phi'(x)dx = -\int_{-1}^{1} g(x)\phi(x)dx,$$
(3.17)

且  $g(x) \in L^1_{loc}(\Omega)$ ,于是 t > 0 时我们有 Df = g。而 t < 0 时,f 的广义导数不存在。

关于广义导数, 我们有下面这些结论:

### 命题 3.3

如果  $u \in C^{|\alpha|}(\Omega)$ , 那么它的弱导数  $D^{\alpha}$  存在, 且该弱导数恰好就是其常义导数。

证明 由分部积分公式即可直接得到。

### 命题 3.4

设  $\Omega = \Omega_1 \cup \Omega_2$ ,  $m(\Omega_1 \cap \Omega_2) = 0$ , 设函数 u 在  $\bar{\Omega}$  上连续,分别在  $\Omega_1$ ,  $\Omega_2$  上连续可微,那么 u 的一阶弱导数总是存在,并且在  $\Omega_1$  或是  $\Omega_2$  内部与常义的一阶导数相等。

证明 设  $v(x) = \frac{\partial u}{\partial x_i}$ , 那么对于任何  $\phi(x) \in C_0^{\infty}(\Omega)$ , 我们有:

$$\int_{\Omega} v(x)\phi(x)dx = \int_{\Omega_{1}} \frac{\partial u}{\partial x_{i}} \phi(x)dx + \int_{\Omega_{2}} \frac{\partial u}{\partial x_{i}} \phi(x)dx 
= \int_{\Gamma} u \frac{\partial \phi}{\partial x_{i}} ds - \int_{\Omega_{1}} u \frac{\partial \phi}{\partial x_{i}} dx - \int_{\Omega_{2}} u \frac{\partial \phi}{\partial x_{i}} ds + \int_{\tilde{\Gamma}} u \frac{\partial \phi}{\partial x_{i}} ds.$$
(3.18)

其中 $\Gamma$ 和 $\Gamma$ 位置相同,方向相反。由(3.18)可知

$$\int_{\Omega} v\phi dx = -\int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx. \tag{3.19}$$

从而, $\nu$  是 $\phi$  关于  $x_i$  的弱导数。这就说明了弱导数的存在性,并且 $\nu$  分别限制在  $\Omega_1$  和  $\Omega_2$  上,就是常义导数的定义。

### 命题 3.5

 $Ω_1$ ,  $Ω_2$  的定义同上面的命题, 函数 u(x) 定义为:

$$u = \begin{cases} 1, x \in \Omega_1, \\ 2, x \in \Omega_2. \end{cases}$$
 (3.20)

那么u至少一个方向的弱偏导数不存在。

证明 如果所有方向上弱偏导数  $v(x) = \frac{\partial u}{\partial x_i}$  均存在,那么 v 在区域  $\Omega_1$  和  $\Omega_2$  上均等于其常义导数。由广义导数的定义:

$$-\int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx = \int_{\Omega} v \phi dx = 0.$$
 (3.21)

与此同时, 由格林公式:

$$-\int_{\Omega} u \frac{\partial \phi}{\partial x_i} dx = \int_{\Gamma} u|_{\Omega_1} \phi n_i ds + \int_{\tilde{\Gamma}} u|_{\Omega_2} \phi n_i ds = \int_{\tilde{\Gamma}} \phi n_i ds.$$
 (3.22)

这意味着对任意  $i \in [1,n] \cap \mathbb{N}$ , 均有

$$\int_{\tilde{\Gamma}} \phi n_i \mathrm{d}s = 0. \tag{3.23}$$

这说明  $n_i \equiv 0$ , 矛盾!

# 3.3 磨光算子以及相关应用

### 3.3.1 磨光算子

### 定义 3.4 (磨光算子)

设 j(x) 是  $\mathbb{R}^n$  上的实值函数, 且:

- $j(x) \in C_0^{\infty}(\mathbb{R}^n)$ ;
- $j(x) \ge 0$  且当  $|x| \ge 1$  时,  $j(x) \equiv 0$ ;

对于  $u(x) \in L^1(\Omega)$ , 作该函数的简单延拓

$$\tilde{u}(x) = \begin{cases} u(x), x \in \Omega, \\ 0, x \notin \Omega. \end{cases}$$
(3.24)

那么 $\tilde{u} \in L^1(\mathbb{R}^n)$ 。我们定义磨光算子如下:

$$J_{\epsilon}u(x) := \epsilon^{-n} \int_{\mathbb{R}^n} j(\frac{x-y}{\epsilon}) \tilde{u}(y) dy = \epsilon^{-n} \int_{\Omega} j(\frac{x-y}{\epsilon}) u(y) dy.$$
 (3.25)

注

- 1. 将 j(x) 通过伸缩变换写为  $j_{\epsilon}(x) := \epsilon^{-n} j(\frac{x}{\epsilon})$ ,变换后的函数依旧满足光滑性和区域积分为 1 的性质,但此时其支集可以进行收缩。
- 2. 对 u(x) 作用磨光算子是一个"光滑化"的过程,也就是说,在尽量少改变函数值的情况下,提升输入函数 u(x) 的光滑性。

下面考虑磨光算子对函数光滑性的影响,有下面的定理成立:

### 定理 3.3

若  $u(x) \in L^1(\Omega)$  ,则  $u_{\epsilon}(x) \coloneqq J_{\epsilon}u(x) \in C^{\infty}(\mathbb{R}^n)$  。又设  $\bar{A} \subset \Omega$ ,  $\operatorname{dist}(\bar{A},\partial\Omega) > 0$ , 且 u 在  $\Omega \setminus A$  上等于 0,而  $\operatorname{dist}(A,\partial\Omega) > \epsilon$ ,则  $u_{\epsilon}(x) \in C_0^{\infty}(\Omega)$  。

证明 由于  $h_x(y) = \tilde{u}(y) j_{\epsilon}(x,y)$  关于 x 具有一致的紧支集,且  $j_{\epsilon}(x,y)$  关于 x 无穷次可微,我们有:

$$D_x^{\alpha} J_{\epsilon} u(x) = \int_{\mathbb{R}^n} \tilde{u}(y) D_x^{\alpha} j_{\epsilon}(x, y) dy.$$
 (3.26)

由此即得 $u_{\epsilon}(x) \in C^{\infty}(\mathbb{R}^n)$ 。

下面证明第二个结论。首先对(3.25)进行换元,记 $t:=\frac{x-y}{6}$ ,我们有:

$$J_{\epsilon}u(x) = \epsilon^{-n} \int_{\mathbb{R}^n} j(t)\tilde{u}(x - \epsilon t) d(y + \epsilon t) = \int_{\mathbb{R}^n} \tilde{u}(x - \epsilon t)j(t) dt.$$
 (3.27)

作集合

$$A_{\epsilon} := \{x : x \in \mathbb{R}^n, \operatorname{dist}(x, A) < \epsilon\}, B(x, \epsilon) := \{x - \epsilon y, ||y|| \le 1\}. \tag{3.28}$$

在 $x \notin A_{\epsilon}$  时, $B(x,\epsilon) \cap A = \phi$ 。由题目条件,当 $x \notin A_{\epsilon}$  时, $u_{\epsilon}(x) = 0$ 。而  $\operatorname{dist}(A,\partial\Omega) > \epsilon$ ,此即  $\Omega \setminus A_{\epsilon} \neq \phi$ 。由此, $u_{\epsilon}(x) \in C_0^{\infty}(\Omega)$ 。

下面讨论广义导数和磨光算子的交换性:

### 定理 3.4

设  $f(x) \in L^1_{loc}(\Omega)$ , 且具有  $|\alpha|$  阶广义导数  $D^{\alpha}f(x)$ , 那么

$$D^{\alpha}J_{\epsilon}f(x) = J_{\epsilon}D^{\alpha}f(x). \tag{3.29}$$

证明 对  $\delta > 0$ , 作集合

$$\Omega_{\delta} := \{ x : x \in \Omega, \operatorname{dist}(x, \partial \Omega) \ge \delta \}. \tag{3.30}$$

对于 $x \in \Omega_{\delta}(\delta > \epsilon)$ , 我们有:

$$J_{\epsilon}f(x) = \epsilon^{-n} \int_{\Omega} j(\frac{x-y}{\epsilon}) f(y) dy.$$
 (3.31)

求导可得:

$$D^{\alpha}J_{\epsilon}f(x) = \epsilon^{-n} \int_{\Omega} (-1)^{|\alpha|} f(y) D_{y}^{\alpha} j(\frac{x-y}{\epsilon}) dy.$$
 (3.32)

由于 j 的紧支集包含在 x 为球心,  $\epsilon$  为半径的闭球中, 可得  $j(\frac{x-y}{\epsilon}) \in D(\Omega)$ 。由广义导数的定义可得:

$$\int_{\Omega} (-1)^{|\alpha|} f(y) D_y^{\alpha} j(\frac{x-y}{\epsilon}) dy = \int_{\Omega} (-1)^{|\alpha|} (-1)^{|\alpha|} j(\frac{x-y}{\epsilon}) D_y^{\alpha} f(y) dy = \int_{\Omega} j(\frac{x-y}{\epsilon}) D_y^{\alpha} f(y) dy. \tag{3.33}$$
 综上所述,我们可以推知,在 $\Omega_{\delta}$ 内, $D^{\alpha} J_{\epsilon} = J_{\epsilon} D^{\alpha}$ 。

### 3.3.2 均值逼近定理

根据上面的结论,磨光算子  $J_{\epsilon}$  可以把一个一般的函数 u 转化为一个光滑函数  $J_{\epsilon}u$ ,由此导出了一个很自然的问题: 作用后的  $J_{\epsilon}u$  和函数 u 之间具体有什么关系? 这就是本节即将描述的**均值逼近定理**。作为重要推论,该定理说明了之前讨论的**变分原理**的合理性。

在讨论均值逼近定理之前, 先给出一个引理。

#### 定理 3.5

设 $\Omega$ 是 $\mathbb{R}^n$  中的有界可测集,  $u(x) \in L^p(\Omega)$  是有界函数,  $1 \le p < +\infty$ , 如果在 $\Omega$ 外补充定义u(x) = 0, 那么u 一致连续。

$$||u(x+h) - u(x)||_{L^p(\Omega)} < \epsilon. \tag{3.34}$$

无妨假设  $\Omega$  是闭长方体, 否则可以将  $\Omega$  置于某个闭长方体内。由有界性,  $|u(x)| \le M$ , 根据 Borel 定理,  $\forall \epsilon_1 > 0$ ,  $\delta_1 > 0$ , 存在连续函数 v(x) 使得  $|v(x)| \le M$  且:

$$|u(x) - v(x)| < \epsilon_1, \forall x \in \Omega \setminus E, m(E) < \delta_1. \tag{3.35}$$

其中  $E = \{x : |u(x) - v(x)| \ge \epsilon_1\}$ 。根据三角不等式 (在  $L^p$  空间中表现为 Minkovsky 不等式), 我们有:

$$||u(x+h) - u(x)||_{L^p} \le ||u(x+h) - v(x+h)||_{L^p} + ||v(x+h) - v(x)||_{L^p} + ||u(x) - v(x)||_{L^p}.$$
(3.36)

对(3.36)右端的三项内容逐次进行分析。首先,由(3.35),我们如下估计:

$$||u(x) - v(x)||_{L^{p}(\Omega)}^{p} = \int_{\Omega \setminus E} |u(x) - v(x)|^{p} dx + \int_{E} |u(x) - v(x)|^{p} dx$$

$$\leq \epsilon_{1}^{p} m(\Omega \setminus E) + (2M)^{p} \delta_{1}.$$
(3.37)

可以取充分小的  $\epsilon_1$  和  $\delta_1$ , 使得(3.36)的右端项小于  $\frac{\epsilon}{3}$ 。

如果对 $\nu$ 在 $\Omega$ 外做零延拓,我们可得:

$$||u(x+h) - v(x+h)||_{L^{p}(\Omega)} = \left( \int_{\Omega} |u(x+h) - v(x+h)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq \left( \int_{\mathbb{R}^{n}} |u(x+h) - v(x+h)|^{p} dx \right)^{\frac{1}{p}}$$

$$= \left( \int_{\Omega} |u(x) - v(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$= ||u - v||_{L^{p}(\Omega)} < \frac{\epsilon}{3}.$$
(3.38)

最后,由v(x)在 $\Omega$ 上的一致连续性(此处为微积分里定义的一致连续性,依据是 Cantor 定理),可以取 |h| 充分小,使得

$$|v(x+h) - v(x)| < \frac{1}{6} (m(\Omega))^{-\frac{1}{p}} \epsilon.$$
 (3.39)

从而:

$$||v(x+h) - v(x)||_{L^{p}(\Omega)} = \left( \int_{\Omega} |v(x+h) - v(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$\leq \left( \int_{\Omega_{i}} |v(x+h) - v(x)|^{p} dx \right)^{\frac{1}{p}} + \left( \int_{\Omega_{e}} |v(x+h) - v(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$< \frac{\epsilon}{6} + \left( \int_{\Omega_{e}} |v(x)|^{p} dx \right)^{\frac{1}{p}}$$

$$< \frac{\epsilon}{6} + M(m(\Omega_{e}))^{\frac{1}{p}}.$$
(3.40)

其中

$$\Omega_i := \{x : x \in \Omega, x + h \in \Omega\}, \Omega_e := \{x : x \in \Omega, x + h \notin \Omega\}. \tag{3.41}$$

取 $\eta$ 足够小即可保证(3.40)小于 $\frac{\epsilon}{3}$ ,从而原定理得证。

 $\dot{\mathbf{L}}$  该定理的证明思路在一致连续的证明中非常常见,即先寻求一个光滑函数 v 来逼近已知的函数 u,然后使用三段估计法来估计  $\|u(x+h)-u(x)\|$ 。

下面介绍均值逼近定理,该定理表明用  $J_{\epsilon}u$  来估计 u 是合理的。

### 定理 3.6 (均值逼近定理)

设  $u(x) \in L^p(\Omega), 1 \le p < +\infty$ , 则:

- $||J_{\epsilon}u||_{0,p,\Omega} \le ||u||_{0,p,\Omega}$ .
- $\bullet \lim_{\epsilon \to 0} \|J_{\epsilon}u u\|_{0,p,\Omega} = 0.$

证明 对 1 < p < +∞, 由 Holder 不等式, 有:

$$|u_{\epsilon}(x)|^{p} = \epsilon^{-np} \left| \int_{\Omega} u(y) \left[ j \left( \frac{x - y}{\epsilon} \right)^{\frac{1}{p}} \right] \left[ j \left( \frac{x - y}{\epsilon} \right)^{\frac{1}{q}} \right] dy \right|^{p}$$

$$\leq \epsilon^{-np} \left[ \int_{\Omega} |u(y)|^{p} \left| j \left( \frac{x - y}{\epsilon} \right) \right| dy \right] \left[ \int_{\Omega} \left| j \left( \frac{x - y}{\epsilon} \right) \right| dy \right]^{\frac{p}{q}}$$

$$\leq \epsilon^{-np(1 - \frac{1}{q})} \int_{\Omega} |u(y)|^{p} \left| j \left( \frac{x - y}{\epsilon} \right) \right| dy$$

$$= \epsilon^{-n} \int_{\Omega} |u(y)|^{p} j \left( \frac{x - y}{\epsilon} \right) dy.$$
(3.42)

对p=1,直接可得(3.42)依旧成立。从而,我们在(3.42)两端同时对x进行积分,有:

$$\int_{\Omega} |u_{\epsilon}(x)|^{p} dx \le \int_{\Omega} \left[ \int_{\Omega} |u(y)|^{p} e^{-n} j\left(\frac{x-y}{\epsilon}\right) dx \right] dy = \int_{\Omega} |u(y)|^{p} dy. \tag{3.43}$$

从而:

$$||J_{\epsilon}u||_{0,p,\Omega} \le ||u||_{0,p,\Omega}.$$
 (3.44)

此即第一个结论。

下面证明第二个结论, 即  $u_{\epsilon}(x)$  在  $L^{p}(\Omega)$  中收敛于 u。为此, 首先对 u(x) 做零延拓, 设延拓后的函数为  $\tilde{u}$ , 则:

$$\|u - u_{\epsilon}\|_{0,p,\Omega}^{p} \le \int_{\mathbb{R}^{n}} |\tilde{u}(x) - u_{\epsilon}(x)|^{p} dx.$$

$$(3.45)$$

$$\|u - u_{\epsilon}\|_{0,p,\Omega}^{p} \leq \int_{\mathbb{R}^{n}} \epsilon^{-n} \left| \int_{\mathbb{R}^{n}} \left( \tilde{u}(x) - \tilde{u}(y) \right) j \left( \frac{x - y}{\epsilon} \right) dy \right|^{p} dx$$

$$\leq \epsilon^{-n} \int_{\mathbb{R}^{n}} \left[ \int_{\mathbb{R}^{n}} |\tilde{u}(x) - \tilde{u}(x - \xi)| j \left( \frac{\xi}{\epsilon} \right) d\xi \right]^{p} dx$$

$$\leq \epsilon^{-n} \int_{\mathbb{R}^{n}} \left[ \int_{|\xi| \leq \epsilon} |\tilde{u}(x) - \tilde{u}(x - \xi)|^{p} d\xi \right] \left[ \int_{|\xi| \leq \epsilon} \left| j \left( \frac{\xi}{\epsilon} \right) \right|^{q} d\xi \right]^{\frac{p}{q}} dx$$

$$\leq C \epsilon^{-n} \int_{\Omega} \left( \int_{|\xi| \leq \epsilon} |u(x) - u(x - \xi)|^{p} d\xi \right) dx.$$

$$(3.46)$$

由 u 的一致连续性, 可得

$$\lim_{\epsilon \to 0} \|u_{\epsilon} - u\|_{L^{p}(\Omega)} = 0 \tag{3.47}$$

 $\mathbf{L}^{p}(\Omega)$  空间上的函数"的行为,在后面的讨论中,这个结论非常常用。下面两个非常有用的推论就是一些例子。

### 推论 3.1

对  $1 \le p < +\infty$ ,  $\Omega$  有界, 则  $C_0^{\infty}(\Omega)$  在  $L^p(\Omega)$  中稠密。

证明 对  $\delta > 0$ , 基于有界区域  $\Omega$ , 可以作子区域如下:

$$\Omega_{\delta} := \{x : x \in \Omega, \operatorname{dist}(x, \partial\Omega) \ge \delta\}.$$
 (3.48)

 $\forall u \in L^p(\Omega), \exists \delta \notin \forall \eta > 0,$ 

$$\int_{\Omega \setminus \Omega_{\delta}} |u(x)|^p \mathrm{d}x < \eta^p. \tag{3.49}$$

考虑函数

$$u_{\delta}(x) = \begin{cases} u(x), x \in \Omega_{\delta}, \\ 0, x \notin \Omega_{\delta}. \end{cases}$$
 (3.50)

对于  $0 < \epsilon < \frac{\delta}{2}, J_{\epsilon}u_{\delta} \in C_0^{\infty}(\Omega)$ , 并且:

$$\|u - J_{\epsilon} u_{\delta}\|_{0,p,\Omega} \le \|u - u_{\delta}\|_{0,p,\Omega} + \|u_{\delta} - J_{\epsilon} u_{\delta}\|_{0,p,\Omega} \tag{3.51}$$

取  $\eta, \delta \to 0$  即得  $||u - J_{\epsilon}u_{\delta}||_{0,p,\Omega} \to 0$ 。

### 推论 3.2 (变分法基本原理)

设  $u(x) \in L^p(\Omega)$ ,  $1 \le p < +\infty$ ,  $\Omega$  有界, 且

$$\int_{\Omega} u(x)\varphi(x)dx = 0, \forall \varphi(x) \in C_0^{\infty}(\Omega), \tag{3.52}$$

则在 $\Omega$ 上有u=0a.e.

证明  $\forall \delta > 0$ ,接(3.48)式做区域  $\Omega_{\delta}$ ,取  $0 < \epsilon < \delta$ ,当  $x \in \Omega_{\delta}$  时 $j(\frac{x-y}{\epsilon}) \in C_0^{\infty}(\Omega)$ 。由变分法条件:

$$J_{\epsilon}u(x) = 0. \tag{3.53}$$

由均值逼近定理: 在 $\Omega_{\delta}$ 上, u(x) = 0a.e. 又由 $\delta$  的任意性, u(x) = 0在 $\Omega$ 上几乎处处成立。 **注**上面的推论保证了第二章阐述的弱形式和变分原理是处理原方程的合理方案。

### 3.3.3 单位分解定理

在前面几个小节,我们通过磨光算子研究了  $L^p(\Omega)$  上函数的**局部光滑逼近**。接下来我们需要着眼于局部性质与整体性质的联系,建立局部与整体的关系。**单位分解定理**正是在局部性质和整体性质之间,构建了一道桥梁。

此处给出单位分解定理的叙述、具体证明详见微分几何的教材。

### 定理 3.7 (有穷单位分解定理)

设  $O_1, \cdots, O_n$  是有限个开集, $F \in \mathbb{R}^n$  是一个有界闭集,且  $F \subset \bigcup_{i=1}^m O_i$ ,那么存在函数  $\phi_i(x)$  满足下面几条性质:

- $0 \le \phi_i(x) \le 1, i = 1, 2, \cdots, m$ .
- $\phi_i(x) \in C_0^{\infty}(\mathbb{R}^n)$ ,  $\mathbb{L} \operatorname{supp}(\phi_i) \subset O_i$ .
- $\bullet \sum_{i=1}^{m} \phi_i(x) = 1, \forall x \in F_{\circ}$

#### $\Diamond$

### 定理 3.8 (无穷单位分解定理)

设 $\Omega$ 是 $\mathbb{R}^n$ 中的任何有界开集,开集族 $\{O_i\}_{i=1}^\infty$ 是 $\Omega$ 的一个开覆盖,则存在一族函数 $\phi_i(x)$ 满足:

- $0 \le \phi_i(x) \le 1$ ;
- $\phi_i(x) \in C_0^\infty(\mathbb{R}^n)$ ;
- 对任何  $\phi_i(x)$ , 存在  $O_{n_i}$  使得  $supp(\phi_i) \subset O_{n_i}$ ;
- $\bullet \sum_{i=1}^{\infty} \phi_i(x) = 1_{\circ}$

 $\circ$ 

# 3.4 Sobolev 空间

### 3.4.1 相关定义

注 本节中仅就之后可能用到的 Sobolev 空间相关结论做一简介,并不关注具体细节,如对具体细节感兴趣可以 关注"偏微分方程"和"泛函分析"的相关著作。

#### 定义 3.5 (Sobolev 空间)

对非负整数m,定义空间

$$H^{m,p}(\Omega) := \{ u \in L^p(\Omega) : D^\alpha u \in L^p(\Omega), \forall |\alpha| \le m \}, \tag{3.54}$$

并定义其上的范数为

$$||u||_{H^{m,p}(\Omega)} := \left(\sum_{|\alpha| \le m} ||D^{\alpha}u||_{L^{p}(\Omega)}^{p}\right)^{\frac{1}{p}}.$$
(3.55)

$$||u||_{H^{m,\infty}(\Omega)} := \max_{|\alpha| \le m} ||D^{\alpha}u||_{L^{\infty}(\Omega)}. \tag{3.56}$$

特别地,如果p=2,我们可以把 $H^{m,2}(\Omega)$ 简写为 $H^m(\Omega)$ 。

### 引理 3.1

对于  $1 \le p \le \infty$ , Sobolev 空间  $H^{m,p}(\Omega)$  均为 Banach 空间。特别地, $H^m(\Omega)$  是 Hilbert 空间,其上的内积 定义为

$$\langle u, v \rangle := \sum_{|\alpha| \le m} \langle D^{\alpha} u, D^{\alpha} v \rangle.$$
 (3.57)

 $\Diamond$ 

### 命题 3.6

直接根据定义可以推知,对于不同上标的 Sobolev 空间  $H^{m,p}(\Omega)$ ,有下面的包含关系:

$$C^{\infty}(\bar{\Omega}) \subset \cdots \subset H^{m+1,p}(\Omega) \subset H^{m,p}(\Omega) \subset \cdots \subset H^{0,p}(\Omega) = L^p(\Omega). \tag{3.58}$$

Sobolev 空间的指数 m 可以小于 0, 对于负指数的 Sobolev 空间我们如下定义:

### 定义 3.6

 $H^{-m}(\Omega)$  定义为  $H_0^m(\Omega)$  的对偶空间,并赋范数

$$||f||_{-m,\Omega} := \sup_{0 \neq \nu \in H_0^m(\Omega)} \frac{|\langle f, \nu \rangle|}{|\nu|_{m,\Omega}}.$$
(3.59)

在 Sobolev 空间  $H^{m,p}(\Omega)$  上可以定义**半范数**如下:

$$|u|_{m,p,\Omega} := \left(\sum_{|\alpha|=m} \|D^{\alpha}u\|_{0,p,\Omega}^{p}\right)^{\frac{1}{p}}, 1 \le p < +\infty, \tag{3.60}$$

$$|u|_{m,\infty,\Omega} := \sup_{|\alpha|=m} ||D^{\alpha}u||_{0,\infty,\Omega}.$$
 (3.61)

事实上,如果  $\Omega$  满足一定条件,Sobolev 半范数和 Sobolev 范数是等价的。该结论由下面的 Poincare-Friedriches 不等式保证,为我们研究 Sobolev 范数提供了不小便利。

### 定理 3.9 (Poincare-Friedriches 不等式)

如果  $\Omega$  单连通, 且至少在一个方向上有界, 那么对任何正整数 m, 存在常数 C(m) 使得:

$$||v||_{m,\Omega} \le C(m)|v|_{m,\Omega}, \forall v \in H_0^m(\Omega). \tag{3.62}$$

### 3.4.2 Sobolev 嵌入定理

本节中讨论 Sobolev 嵌入定理, 主要思路是将一些比较难以直接研究的 Sobolev 空间, 转移到更大的 Sobolev 空间中进行处理。

首先我们需要给出连续嵌入的定义。

### 定义 3.7

如果空间 X, Y 满足下面两个条件:

- $\bullet$   $X \subset Y$ .
- $\exists C > 0$ s.t.

$$||x||_Y \le C||x||_X, \forall x \in X. \tag{3.63}$$

则称空间 X 嵌入到 Y,记作  $X \hookrightarrow Y$ 。特别地,如果  $id: X \to Y, x \mapsto x$  为紧算子,称 X 紧嵌入到 Y,记作  $X \hookrightarrow \hookrightarrow Y$ 。

对于一个 Sobolev 空间,我们希望找到一个类似连续函数空间的 Banach 空间来方便研究其内部函数的解析性质。为此我们对  $C^{(m)}(\Omega)$  的定义做一些扩展,给出下面的  $(m,\alpha)$  阶 Holder 连续函数空间的定义。

### 定义 3.8

Holder 连续函数空间  $C^{(m,\alpha)}(\Omega)$  由满足下面性质的函数组成:

- $f \in C^m(\Omega)$ .
- $\forall$ 0 ≤  $|\beta|$  ≤ m, f 满足下面的 Holder 条件:

$$|\partial^{\beta} f(x) - \partial^{\beta} f(y)| \le C|x - y|^{\alpha}. \tag{3.64}$$

在该函数空间中赋予范数

$$||v||_{C^{m,\alpha}(\bar{\Omega})} := ||v||_{m,\infty,\Omega} + \max_{|\beta| \le m} \sup_{x,y \in \bar{\Omega}, x \ne y} \frac{|\partial^{\beta} v(x) - \partial^{\beta} v(y)|}{||x - y||^{\alpha}}, \tag{3.65}$$

可知此时  $C^{m,\alpha}(\bar{\Omega})$  为一个 Banach 空间。

讨论嵌入定理前,我们对区域 $\Omega$ 的性质做一些限定,下面介绍两类特殊的区域形式。

### 定义 3.9 (有限锥形区域)

称区域  $\Omega$  为有限锥形区域,如果它满足下面两个条件:

- $\Omega$  是  $\mathbb{R}^n$  中的有界开集。
- $\Omega$  中任何一点都是有限维  $C_x$  ( $\subset$   $\Omega$ ) 的顶点,并且每一个有限维  $C_x$  全同于过原点的一个有限维  $C_0$ 。

### 定义 3.10 (L 型区域)

称区域  $\Omega$  为 L 型区域, 如果  $\Omega$  满足下面的条件:

- $\Omega$  是  $\mathbb{R}^n$  中的有界开集, 且  $\Omega$  在其边界  $\partial\Omega$  的固定一侧。
- 存在有限个开集  $O_1, \dots, O_m$  使得  $\Omega$  的边界满足  $\partial \Omega \subset \bigcup_{i=1}^m O_i$ ,且  $\partial \Omega_i := \partial \Omega \cap O_i$  在某一局部坐标  $(\xi_{i_1}, \xi_{i_2}, \dots, \xi_{i_n})$  中可用一个 Lip 函数

$$\xi_{i_n} = f_i(\xi_{i_1}, \dots, \xi_{i_{n-1}})$$
 (3.66)

表示。

<u>注</u> Lipschitz 区域的几何意义: 在区域  $\Omega$  边界上每一点 x 有一个邻域  $U_x$  使得  $\partial\Omega \cap U_x$  是一个 Lipschitz 连续函数 的图形。

注 Lipschitz 区域是一个有限锥形区域,反之则不一定,但有限锥形区域是有限个 Lipschitz 区域的并。

在做完上述准备后,给出一些常用的 Sobolev 嵌入定理的介绍。嵌入定理的目标大多是  $L^p$  空间和  $C^{m,\alpha}$  空间。具体的证明则略去不表。

### 定理 3.10

设 $\Omega$  ∈  $\mathbb{R}^d$  是一个 Lipschitz 区域,则下面的结论成立:

- 若  $k < \frac{d}{p}$ , 则  $W^{k,p}(\Omega) \hookrightarrow L^q(\Omega)$  对任何  $q \le p^*$  成立,其中  $\frac{1}{p^*} = \frac{1}{p} \frac{k}{d}$ 。
- 若  $k = \frac{d}{p}$ , 则  $W^{k,p}(\Omega) \hookrightarrow L^q(\Omega)$  对任何  $q < \infty$  成立。
- 若  $k > \frac{d}{p}$ , 则:

$$W^{k,p}(\Omega) \hookrightarrow C^{k-\left[\frac{d}{p}\right]-1,\beta}(\Omega),\tag{3.67}$$

如果  $\frac{d}{p}$  不为整数,那么  $\beta = \left[\frac{d}{p}\right] + 1 - \frac{d}{p}$ ,否则  $\beta$  可取任何小于 1 的正数。事实上,把该定理中的"嵌入"改为"紧嵌入",结论依然成立。

下面是几个常用的 Sobolev 嵌入结论:

### 命题 3.7

 $H^1(\Omega) \hookrightarrow \hookrightarrow L^2(\Omega)$  (3.68)

对任何维数的 Lipschitz 空间  $\Omega \subset \mathbb{R}^n$  成立。

 $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^p(\Omega), W^{k+1,p}(\Omega) \hookrightarrow \hookrightarrow W^{k,p}(\Omega). \tag{3.69}$ 

在 n = 2 时,

$$H^2(\Omega) \hookrightarrow C^0(\Omega), H^2(\Omega) \hookrightarrow \hookrightarrow C^0(\bar{\Omega});$$
 (3.70)

 $(\Omega)$  并不嵌入到  $C^0(\Omega)$ 。

### 3.4.3 迹算子

### 定理 3.11 (迹定理)

设 $\Omega \subset \mathbb{R}^n$  为一个Lipschitz 空间,则存在一个有界线性算子

$$\gamma: W^{1,p}(\Omega) \to L^p(\partial\Omega)$$
 (3.71)

满足:

$$\gamma u = u|_{\partial\Omega}.\tag{3.72}$$

对  $u \in W^{1,p}(\Omega) \cap C(\bar{\Omega})$  成立。线性算子  $\gamma$  称为迹算子。

迹定理给出了 u 的内部信息和边界信息的关系。关于迹算子, 有下面这些不等式成立:

### 命题 3.8 (迹不等式)

存在C>0使得

$$\|\gamma\phi\|_{0,\partial\Omega} \le C\|\phi\|_{1,\Omega}.\tag{3.73}$$

存在C>0使得

$$\|\gamma v\|_{0,\partial\Omega} \le C\|v\|_{0,\Omega}^{\frac{1}{2}} \cdot \|v\|_{1,\Omega}^{\frac{1}{2}}.$$
(3.74)

• 对于 $1 \le p \le \infty$ ,存在C > 0使得

$$\|\gamma v\|_{0,p,\partial\Omega} \le C\|v\|_{0,p,\Omega}^{1-\frac{1}{p}} \cdot \|v\|_{1,p,\Omega}^{\frac{1}{p}}.$$
(3.75)

# 3.5 本章小结

本章中对有限元方法中可能用到的一系列 Sobolev 相关的知识内容做了简单的归纳。由于本课程的重点并不在于研究 Sobolev 空间,故很多结论都只是粗略介绍或是省去了证明过程。如果读者对 Sobolev 空间理论感兴趣,更建议去阅读相关的专著,或是与泛函分析/偏微分方程相关的著作。