Q-Learning Example: Solved by Hand

Instructor: Ahmed Métwalli

Problem Setup: A Simple Gridworld

We have a simple 3×3 grid where the agent starts in the top-left corner and needs to reach the goal at the bottom-right corner. The agent can move in four directions: up, down, left, or right. Every step incurs a penalty of -1, except for reaching the goal, which provides a reward of +10.

$$\begin{array}{cccc} (0,0) & (0,1) & (0,2) \\ (1,0) & (1,1) & (1,2) \\ (2,0) & (2,1) & (2,2) \text{ [Goal]} \end{array}$$

Rewards and Setup

- Reward for each step: -1
- Reward for reaching the goal: +10
- Start state: (0,0)
- Goal state: (2,2)
- Learning rate (α): 0.5
- Discount factor (γ) : 0.9
- Q-table initialization: All entries are initialized to zero.

Q-Learning Update Formula

The Q-learning update formula is as follows:

$$Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

Where:

- Q(s, a) is the Q-value for state s and action a.
- α is the learning rate.
- r is the reward received after taking action a in state s.
- \bullet γ is the discount factor, which determines how much future rewards are valued.
- $\max_{a'} Q(s', a')$ is the maximum Q-value for the next state s'.

Q-Table (Before the Last 3 Iterations)

The Q-table is partially filled and given below. Your task is to complete the last three iterations.

State	Up	Down	Left	Right
(0,0)	0.0	0.0	0.0	-0.5
(0,1)	0.0	0.0	0.0	-0.5
(0,2)	0.0	-0.75	0.0	0.0
(1,0)	0.0	0.0	0.0	0.0
(1,1)	0.0	0.0	0.0	0.0
(1,2)	0.0	??	0.0	??
(2,0)	0.0	0.0	0.0	0.0
(2,1)	0.0	0.0	0.0	0.0
(2,2)	-	-	-	- (Goal)

Your Task

You are asked to complete the next 3 iterations of the Q-learning process by applying the update formula. **Iteration 1**: - State: (0,2) - Action: Down - Next state: (1,2) - Reward: -1 Update the Q-value for Q(0,2,Down) using the Q-learning formula.

$$Q(0, 2, \text{Down}) \leftarrow Q(0, 2, \text{Down}) + \alpha \left[r + \gamma \max_{a'} Q(1, 2, a') - Q(0, 2, \text{Down}) \right]$$

 $Q(0, 2, \text{Down}) \leftarrow -0.5 + 0.5 \left[-1 + 0.9 \times 0 - (-0.5) \right]$

$$Q(0, 2, \text{Down}) \leftarrow -0.5 + 0.5 \times (-0.5) = -0.75$$

Iteration 2: - State: (1,2) - Action: Down - Next state: (2,2) (Goal state) - Reward: +10 Update the Q-value for Q(1,2, Down).

$$Q(1,2,\text{Down}) \leftarrow Q(1,2,\text{Down}) + \alpha \left[r + \gamma \max_{a'} Q(2,2,a') - Q(1,2,\text{Down}) \right]$$

$$Q(1,2,\text{Down}) \leftarrow 0 + 0.5 \left[10 + 0.9 \times 0 - 0 \right]$$

$$Q(1, 2, Down) = 0 + 0.5 \times 10 = 5.0$$

Iteration 3: - State: (1,2) - Action: Right - Next state: (2,2) - Reward: +10 Update the Q-value for Q(1,2, Right).

$$Q(1, 2, \text{Right}) \leftarrow Q(1, 2, \text{Right}) + \alpha \left[r + \gamma \max_{a'} Q(2, 2, a') - Q(1, 2, \text{Right}) \right]$$

$$Q(1, 2, \text{Right}) \leftarrow 0 + 0.5 \left[10 + 0.9 \times 0 - 0 \right]$$

$$Q(1, 2, \text{Right}) = 0 + 0.5 \times 10 = 5.0$$

Final Updated Q-Table

After completing these iterations, the Q-table becomes:

State	Up	Down	Left	Right
(0,0)	0.0	0.0	0.0	-0.5
(0,1)	0.0	0.0	0.0	-0.5
(0,2)	0.0	-0.75	0.0	0.0
(1,0)	0.0	0.0	0.0	0.0
(1,1)	0.0	0.0	0.0	0.0
(1,2)	0.0	5.0	0.0	5.0
(2,0)	0.0	0.0	0.0	0.0
(2,1)	0.0	0.0	0.0	0.0
(2,2)	-	-	-	- (Goal)

Conclusion

Through this exercise, you have seen how the Q-learning update formula is applied step-by-step. Continue practicing by filling in Q-tables for different iterations to fully grasp how the agent learns from its environment.