RMIT Classification: Trusted

Content

Adaptive Control of Manipulators (not included in exam)

Adaptive Control

 In the previous section, we saw that if the model parameters are correct, then we achieve zero tracking error:

$$\ddot{E} + K_{v}\dot{E} + K_{p}E = 0$$

 However, if the model parameters do not match the real parameters, this will result in servo errors:

$$\ddot{E} + K_{v}\dot{E} + K_{p}E = \hat{M}^{-1}[(M - \hat{M})\ddot{q} + (V - \hat{V}) + (G - \hat{G}) + (F - \hat{F})]$$

 The adaptive control is based on the idea that the model parameters could be continuously updated until the servo error diminishes.

Adaptive Control

One adaptive control scheme is as follows:

- If there is servo error (E and E-dot), the adaptation law will adjust the parameters in the dynamic model, until the error disappears.
- The system learns its own dynamic properties.

- Let's derive one adaptive control scheme here. (There are many other algorithms and this is just one of them).
- The manipulator's dynamic equation is:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \tau$$

- The model structure is known.
- However, the parameters are not accurately known (or they may change).
- Now, the land hand side of the equation can be written in a Linear-in-the-Parameters form:

$$M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \varphi^T \theta = \tau$$

- where θ is the unknown parameters, and
- φ is the known regressor.

- Aside: What does linear-in-parameters mean?
- It means the parameters can be separated into a vector.
- E.g. 2R robot:

$$\begin{split} \tau_1 &= m_2 L_2^2 \big(\ddot{\theta}_1 + \ddot{\theta}_2 \big) + m_2 L_1 L_2 c_2 \big(2 \ddot{\theta}_1 + \ddot{\theta}_2 \big) + \big(m_1 + m_2 \big) L_1^2 \ddot{\theta}_1 - m_2 L_1 L_2 s_2 \dot{\theta}_2^2 \\ &- 2 m_2 L_1 L_2 s_2 \dot{\theta}_1 \dot{\theta}_2 + \big(m_1 + m_2 \big) g L_1 c_1 + m_2 g L_2 c_{12} \\ \tau_2 &= m_2 L_1 L_2 c_2 \ddot{\theta}_1 + m_2 L_1 L_2 s_2 \dot{\theta}_1^2 + m_2 g L_2 c_{12} + m_2 L_2^2 \big(\ddot{\theta}_1 + \ddot{\theta}_2 \big) \end{split}$$

$$\tau_{2} = m_{2}L_{1}L_{2}c_{2}\ddot{\theta}_{1} + m_{2}L_{1}L_{2}s_{2}\dot{\theta}_{1}^{2} + m_{2}gL_{2}c_{12} + m_{2}L_{2}^{2}(\ddot{\theta}_{1} + \ddot{\theta}_{2})$$

$$\begin{bmatrix} \tau_{1} \\ \tau_{2} \end{bmatrix} = \begin{bmatrix} (\ddot{\theta}_{1} + \ddot{\theta}_{2}) & c_{2}(2\ddot{\theta}_{1} + \ddot{\theta}_{2}) - s_{2}\dot{\theta}_{2}^{2} - 2s_{2}\dot{\theta}_{1}\dot{\theta}_{2} & \ddot{\theta}_{1} & gc_{1} & gc_{12} \\ (\ddot{\theta}_{1} + \ddot{\theta}_{2}) & c_{2}\dot{\theta}_{1}^{2} + s_{2}\dot{\theta}_{1}^{2} & 0 & 0 & gc_{12} \end{bmatrix} \begin{bmatrix} m_{2}L_{2}^{2} \\ m_{2}L_{1}L_{2} \\ (m_{1} + m_{2})L_{1}^{2} \\ (m_{1} + m_{2})L_{1} \\ m_{2}L_{2} \end{bmatrix}$$

The initially-inaccurate model can be written as:

$$\hat{M}(q)\ddot{q} + \hat{V}(q,\dot{q}) + \hat{G}(q) = \varphi^{T}\hat{\theta}$$

- where the "hat" symbol means estimates.
- We define:
 - $\tilde{\theta} = \theta \hat{\theta}$ as the parameter estimation error.
 - $e = \varphi^T \theta \varphi^T \hat{\theta} = \varphi^T \tilde{\theta}$ as the model error.
 - This model error is available to us, because:
 - $M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \varphi^T \theta = \tau$ is the torque values at the joints, which can be measured.
 - $\hat{M}(q)\ddot{q} + \hat{V}(q,\dot{q}) + \hat{G}(q) = \varphi^T\hat{\theta}$ is calculated by multiplying the measured regressor (joint acceleration, velocity, angles) with the parameter estimates.

- How can we update the parameter estimates $\hat{\theta}$ such that it gets closer and closer to θ ?
- We will use the so-called Lyapunov method as a design tool.
- What is it?

Lyapunov Stability Analysis

- In the 19th century, a Russian mathematician, Lyapunov, introduced the method of deducing the stability of a system, by analyzing its energy and the rate of change of the energy.
- The idea is intuitive:
 - Assume the energy of a system is always non-negative (positive or zero).
 - If the rate of change of energy is negative, it means the system is losing energy.
 - System will slow down and eventually stops.
 - Asymptotically stable!
 - If the rate of change of energy is positive, then the is gaining energy.
 - System will speed up and eventually grow unbounded.
 - Unstable!

Lyapunov Stability Analysis

- Example: mass-spring-damper system: $m\ddot{x} + b\dot{x} + kx = 0$
- The total energy of the system, V, is given by:

$$V = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

- Note that this energy is always non-negative.
- The rate of change of the energy is obtained by differentiating V wrt. time:

$$\dot{V} = m\dot{x}\ddot{x} + kx\dot{x} = \dot{x}(m\ddot{x} + kx)$$

Substituting the first equation into V-dot gives:

$$\dot{V} = \dot{x}(m\ddot{x} + kx) = \dot{x}(-b\dot{x}) = -b\dot{x}^2$$

- The rate of change of energy is always negative (for positive b), except that it becomes zero when x-dot becomes zero.
- This implies that the system will lose energy and come to a stop.

- Coming back to our system:
- Let: $V = \frac{1}{2} \widetilde{\theta}^T \Gamma^{-1} \widetilde{\theta}$
 - where $\Gamma = \Gamma^T > 0$ is a positive definite matrix, which determines the learning rate of the parameters.
 - Larger entries would make learning faster, but the parameter updates may become oscillatory.
 - Need some trade-offs.

- The derivatives of V is: $\dot{V} = \tilde{\theta}^T \Gamma^{-1} \dot{\tilde{\theta}}$
- Our aim is to design the updates of $\hat{\theta}$ such that \vec{v} becomes non-positive.
- If we design: $\dot{\tilde{\theta}} = -\dot{\hat{\theta}} = -\Gamma \varphi e$
- Then: $\dot{V} = \tilde{\theta}^T \Gamma^{-1} (-\Gamma \varphi e)$ $= -\tilde{\theta}^T \varphi e$ $= -2e^T e$

When model error is big, the parameters will be updated fast.

- V-dot is non-positive, thus: $\frac{1}{2}\widetilde{\theta}(t)^T \Gamma^{-1}\widetilde{\theta}(t) \leq \frac{1}{2}\widetilde{\theta}(0)^T \Gamma^{-1}\widetilde{\theta}(0)$
 - The estimates are likely to become better!

- Finally, as the parameter estimates are being updated, we use the values into any control techniques, as if the parameters are correct.
 - This is called the Certainty Equivalence Principle.
- Summary:
 - Manipulator dynamics: $M(q)\ddot{q} + V(q,\dot{q}) + G(q) = \varphi^T \theta = \tau$
 - Model with estimated parameters: $\hat{M}(q)\ddot{q} + \hat{V}(q,\dot{q}) + \hat{G}(q) = \varphi^T\hat{\theta}$
 - Update the parameters as: $\dot{\hat{\theta}} = \Gamma \varphi e$
 - where $e = \varphi^T \theta \varphi^T \hat{\theta} = \varphi^T \tilde{\theta}$
 - · Use the estimated parameters in the control law, for e.g.

$$\tau = \hat{M}(q)f + \hat{V}(q,\dot{q}) + \hat{G}(q) \qquad f = \ddot{q}_d + K_v \dot{E} + K_p E$$

Thank you!

Have a good evening.

