```
# Fix for numpy and scikit-surprise compatibility issue
!apt-get install -y python3-dev
!pip install cython --quiet
!pip install numpy==1.23.5 scikit-learn==1.3.0 --quiet
!pip install scikit-surprise --no-binary :all: --quiet
# Restart the runtime after running this cell
import os
os.kill(os.getpid(), 9)

→ Reading package lists... Done

    Building dependency tree... Done
    Reading state information... Done
    python3-dev is already the newest version (3.10.6-1~22.04.1).
    python3-dev set to manually installed.
    0 upgraded, 0 newly installed, 0 to remove and 35 not upgraded.
                                                 - 62.0/62.0 kB 2.2 MB/s eta 0:00:00
                                                 - 62.0/62.0 kB 3.9 MB/s eta 0:00:00
                                               - 17.1/17.1 MB 78.4 MB/s eta 0:00:00
                                               - 10.9/10.9 MB 103.2 MB/s eta 0:00:00
                                               - 37.7/37.7 MB 14.2 MB/s eta 0:00:00
    ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is
    jaxlib 0.5.1 requires numpy>=1.25, but you have numpy 1.23.5 which is incompatible.
    arviz 0.22.0 requires numpy>=1.26.0, but you have numpy 1.23.5 which is incompatible.
    jax 0.5.2 requires numpy>=1.25, but you have numpy 1.23.5 which is incompatible.
    opencv-python 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= "3.9", but you have numpy 1.23.5 which is incompatible.
    geopandas 1.1.1 requires numpy>=1.24, but you have numpy 1.23.5 which is incompatible.
    scikit-image 0.25.2 requires numpy>=1.24, but you have numpy 1.23.5 which is incompatible.
    umap-learn 0.5.9.post2 requires scikit-learn>=1.6, but you have scikit-learn 1.3.0 which is incompatible.
    mlxtend 0.23.4 requires scikit-learn>=1.3.1, but you have scikit-learn 1.3.0 which is incompatible.
    pymc 5.25.1 requires numpy>=1.25.0, but you have numpy 1.23.5 which is incompatible.
    opencv-python-headless 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= "3.9", but you have numpy 1.23.5 which is incom
    cuml-cu12 25.6.0 requires scikit-learn>=1.5, but you have scikit-learn 1.3.0 which is incompatible.
    opency-contrib-python 4.12.0.88 requires numpy<2.3.0,>=2; python_version >= "3.9", but you have numpy 1.23.5 which is incomp
    tensorflow 2.18.0 requires numpy<2.1.0,>=1.26.0, but you have numpy 1.23.5 which is incompatible.
    treescope 0.1.9 requires numpy>=1.25.2, but you have numpy 1.23.5 which is incompatible.
    chex 0.1.90 requires numpy>=1.24.1, but you have numpy 1.23.5 which is incompatible.
    thinc 8.3.6 requires numpy<3.0.0,>=2.0.0, but you have numpy 1.23.5 which is incompatible.
    xarray 2025.7.1 requires numpy>=1.26, but you have numpy 1.23.5 which is incompatible.
    imbalanced-learn 0.13.0 requires numpy<3,>=1.24.3, but you have numpy 1.23.5 which is incompatible.
    imbalanced-learn 0.13.0 requires scikit-learn<2,>=1.3.2, but you have scikit-learn 1.3.0 which is incompatible.
    xarray-einstats 0.9.1 requires numpy>=1.25, but you have numpy 1.23.5 which is incompatible.
    db-dtypes 1.4.3 requires numpy>=1.24.0, but you have numpy 1.23.5 which is incompatible.
    bigframes 2.12.0 requires numpy>=1.24.0, but you have numpy 1.23.5 which is incompatible.
    albucore 0.0.24 requires numpy>=1.24.4, but you have numpy 1.23.5 which is incompatible.
    blosc2 3.6.1 requires numpy>=1.26, but you have numpy 1.23.5 which is incompatible.
    albumentations 2.0.8 requires numpy>=1.24.4, but you have numpy 1.23.5 which is incompatible.
                                                - 154.4/154.4 kB 1.2 MB/s eta 0:00:00
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Preparing metadata (pyproject.toml) ... done
      Building wheel for scikit-surprise (pyproject.toml) ... done
!pip install scikit-learn
Fr Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (1.3.0)
    Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.23.5)
    Requirement already satisfied: scipy>=1.5.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.15.3)
    Requirement already satisfied: joblib>=1.1.1 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (1.5.1)
    Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn) (3.6.0)
import zipfile
import warnings
warnings.filterwarnings('ignore')
!unzip ml-1m.zip
→ Archive: ml-1m.zip
       creating: ml-1m/
      inflating: ml-1m/movies.dat
      inflating: ml-1m/ratings.dat
      inflating: ml-1m/README
      inflating: ml-1m/users.dat
```

users = pd.read_csv('ml-1m/users.dat', sep='::', engine='python', names=['UserID', 'Gender', 'Age', 'Occupation', 'Zip-code'])
users.head()

_ *		UserID	Gender	Age	Occupation	Zip-code
	0	1	F	1	10	48067
	1	2	М	56	16	70072
	2	3	М	25	15	55117
	3	4	М	45	7	02460
	4	5	М	25	20	55455

ratings = pd.read_csv('ml-1m/ratings.dat', sep='::', engine='python', names=['UserID', 'MovieID','Rating','Timestamp'])
ratings.head()

		UserID	MovieID	Rating	Timestamp
	0	1	1193	5	978300760
	1	1	661	3	978302109
	2	1	914	3	978301968
	3	1	3408	4	978300275
	4	1	2355	5	978824291

```
# --- Add Baseline Models ---
import pandas as pd
from sklearn.metrics import mean_absolute_error, mean_squared_error

# Popularity-based rating prediction
item_avg_rating = ratings.groupby('MovieID')['Rating'].mean()
ratings['popularity_pred'] = ratings['MovieID'].map(item_avg_rating)

# User-average-based prediction
user_avg_rating = ratings.groupby('UserID')['Rating'].mean()
ratings['useravg_pred'] = ratings['UserID'].map(user_avg_rating)

print("\n--- Baseline Model Performance ---")
```

print("Popularity MAE:", mean_absolute_error(ratings['Rating'], ratings['popularity_pred']))
print("User Average MAE:", mean_absolute_error(ratings['Rating'], ratings['useravg_pred']))

--- Baseline Model Performance ---Popularity MAE: 0.7787902185267612 User Average MAE: 0.8234169204814059

```
# Identify users with few ratings (adjust threshold if needed)
user_counts = ratings['UserID'].value_counts()
cold_users = user_counts[user_counts <= 50].index</pre>
# Filter cold-start ratings
cold_ratings = ratings[ratings['UserID'].isin(cold_users)]
# Print stats
print(f"Cold-start users found: {len(cold_users)}")
print(f"Cold-start ratings found: {len(cold_ratings)}")
# Evaluate only if we have cold-start samples
if not cold_ratings.empty:
    cold_pop_mae = mean_absolute_error(cold_ratings['Rating'], cold_ratings['popularity_pred'])
    cold_useravg_mae = mean_absolute_error(cold_ratings['Rating'], cold_ratings['useravg_pred'])
    print("\n--- Cold-Start User Evaluation ---")
    print("Cold-Start Popularity MAE:", cold_pop_mae)
    print("Cold-Start User Avg MAE:", cold_useravg_mae)
else:
    print("No cold-start users with sufficient data found. Try lowering the threshold.")
Cold-start ratings found: 59238
      -- Cold-Start User Evaluation -
    Cold-Start Popularity MAE: 0.8035285950815482
    Cold-Start User Avg MAE: 0.8251099683355088
# --- Feature Ablation Test for Baseline Models ---
print("\n--- Feature Ablation Test ---")
# Baseline: full data (already computed)
baseline_pop_mae = mean_absolute_error(ratings['Rating'], ratings['popularity_pred'])
baseline_useravg_mae = mean_absolute_error(ratings['Rating'], ratings['useravg_pred'])
# Store results
ablation_results = []
# 1. Remove 'popularity_pred' feature (simulate missing item average)
ratings_ablated_pop = ratings.drop(columns=['popularity_pred'])
try:
    mae_no_pop = mean_absolute_error(ratings['Rating'], ratings_ablated_pop['useravg_pred'])
    ablation_results.append(('No Popularity Feature', mae_no_pop))
    ablation_results.append(('No Popularity Feature', 'N/A'))
# 2. Remove 'useravg_pred' feature (simulate missing user average)
ratings_ablated_useravg = ratings.drop(columns=['useravg_pred'])
    mae_no_useravg = mean_absolute_error(ratings['Rating'], ratings_ablated_useravg['popularity_pred'])
    ablation_results.append(('No User Average Feature', mae_no_useravg))
except:
    ablation_results.append(('No User Average Feature', 'N/A'))
# 3. Remove both (simulate cold-start baseline only)
try:
    ablation_results.append(('No Features (Random Guess)', ratings['Rating'].mean()))
except:
    ablation_results.append(('No Features (Random Guess)', 'N/A'))
# Print Results
print(f"\nBaseline Popularity MAE: {baseline_pop_mae:.4f}")
print(f"Baseline User Average MAE: {baseline_useravg_mae:.4f}")
print("\nFeature Ablation Results:")
for feature. mae in ablation results:
    print(f"{feature}: MAE = {mae}")
    --- Feature Ablation Test ---
    Baseline Popularity MAE: 0.7788
    Baseline User Average MAE: 0.8234
    Feature Ablation Results:
```

--- Cold-Start Evaluation for Baseline Models ---

```
No Popularity Feature: MAE = 0.8234169204814059
    No User Average Feature: MAE = 0.7787902185267612
    No Features (Random Guess): MAE = 3.581564453029317
# --- Matrix Factorization using SVD (ALS-like) ---
from surprise import Dataset, Reader, SVD
from surprise.model_selection import train_test_split
from surprise.accuracy import mae
print("\n--- Matrix Factorization using SVD ---")
# Prepare data for Surprise
reader = Reader(rating_scale=(0.5, 5.0))
data = Dataset.load_from_df(ratings[['UserID', 'MovieID', 'Rating']], reader)
# Split into train/test
trainset, testset = train_test_split(data, test_size=0.2, random_state=42)
# Initialize and train model
model = SVD()
model.fit(trainset)
# Predict and evaluate
predictions = model.test(testset)
mf_mae = mae(predictions)
print(f"\nMatrix Factorization (SVD) MAE: {mf_mae:.4f}")
₹
      -- Matrix Factorization using SVD ---
    MAE: 0.6850
    Matrix Factorization (SVD) MAE: 0.6850
from collections import defaultdict
import math
def precision_recall_ndcg(predictions, k=10):
    user_topk = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        user_topk[uid].append((est, iid, true_r))
    recall_sum, ndcg_sum, total_users = 0, 0, 0
    for uid, user_ratings in user_topk.items():
        user_ratings.sort(reverse=True)
        top_k = user_ratings[:k]
        hits = sum(1 for _, _, true_r in top_k if true_r >= 4)
        relevant_count = sum(1 \text{ for } \_, \_, \text{ r in user\_ratings if r >= 4})
        if relevant_count == 0:
            continue # skip users with no relevant ground truth
        recall = hits / relevant_count
        dcg = sum((1 / math.log2(i + 2))) if r >= 4 else 0 for i, (\_, \_, r) in enumerate(top_k))
        idcg = sum(1 / math.log2(i + 2) for i in range(min(k, relevant_count)))
        ndcg = dcg / idcg if idcg > 0 else 0
        recall_sum += recall
        ndcg_sum += ndcg
        total_users += 1
    if total_users == 0:
        return 0.0, 0.0
    return recall_sum / total_users, ndcg_sum / total_users
recall_10, ndcg_10 = precision_recall_ndcg(predictions, k=10)
print(f"Recall@10: {recall_10:.4f}")
print(f"NDCG@10: {ndcg_10:.4f}")
```

```
→ Recall@10: 0.6398
     NDCG@10: 0.8709
print(type(predictions))
print(type(predictions[0]))
print(predictions[0])
<class 'numpy.float32'>
     3.5727277
from surprise import KNNBasic
# Item-based collaborative filtering
sim_options = {'name': 'cosine', 'user_based': False}
model_item = KNNBasic(sim_options=sim_options)
model_item.fit(trainset)
predictions_item = model_item.test(testset)
mae_item = mae(predictions_item)
# User-based collaborative filtering
sim_options = {'name': 'cosine', 'user_based': True}
model_user = KNNBasic(sim_options=sim_options)
model user.fit(trainset)
predictions_user = model_user.test(testset)
mae_user = mae(predictions_user)
print(f"Item-based KNN MAE: {mae_item:.4f}")
print(f"User-based KNN MAE: {mae_user:.4f}")
\Longrightarrow Computing the cosine similarity matrix...
    Done computing similarity matrix.
    MAE: 0.7794
    Computing the cosine similarity matrix...
    Done computing similarity matrix.
    MAE: 0.7713
     Item-based KNN MAE: 0.7794
     User-based KNN MAE: 0.7713
predictions = model.test(testset)
mf_mae = mae(predictions)
→ MAE: 0.6850
knn_predictions = model.test(testset)
recall_knn, ndcg_knn = precision_recall_ndcg(knn_predictions, k=10)
print(f"KNN Recall@10: {recall_knn:.4f}")
print(f"KNN NDCG@10: {ndcg_knn:.4f}")
→ KNN Recall@10: 0.6398
     KNN NDCG@10: 0.8709
import matplotlib.pyplot as plt
models = ['SVD', 'KNN']
recalls = [recall_10, recall_knn]
ndcgs = [ndcg_10, ndcg_knn]
x = range(len(models))
plt.figure(figsize=(10,5))
plt.bar(x, recalls, width=0.4, label='Recall@10', align='center')
plt.bar([i + 0.4 for i in x], ndcgs, width=0.4, label='NDCG@10', align='center')
plt.xticks([i + 0.2 \text{ for } i \text{ in } x], models)
plt.ylabel('Score')
plt.title('Model Comparison - Top-K Ranking')
plt.legend()
plt.show()
```

Model Comparison - Top-K Ranking


```
from collections import defaultdict
import numpy as np
def get_top_n(predictions, n=10):
   top_n = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        top_n[uid].append((iid, est))
    for uid, user_ratings in top_n.items():
        user_ratings.sort(key=lambda x: x[1], reverse=True)
        top_n[uid] = user_ratings[:n]
    return top_n
# Compute Recall@10 and NDCG@10
def precision_recall_ndcg_at_k(predictions, k=10):
   hit = 0
   total = 0
   ndcg\_total = 0
    top_n = get_top_n(predictions, n=k)
    for uid, user_ratings in top_n.items():
        actual = [iid for (uid_, iid, true_r, est, _) in predictions if uid_ == uid and true_r >= 4.0] # relevant items
        recommended = [iid for (iid, _) in user_ratings]
        if actual:
           hits = len(set(recommended) & set(actual))
            hit += hits
            total += len(actual)
            dcg = 0.0
            idcq = 0.0
            for i, iid in enumerate(recommended):
                if iid in actual:
                   dcg += 1.0 / np.log2(i + 2)
            for i in range(min(len(actual), k)):
                idcg += 1.0 / np.log2(i + 2)
            ndcg_total += dcg / idcg if idcg > 0 else 0.0
    recall = hit / total if total else 0
    ndcg = ndcg_total / len(top_n)
   print(f"Recall@{k}: {recall:.4f}")
   print(f"NDCG@{k}: {ndcg:.4f}")
# Run on SVD predictions
precision_recall_ndcg_at_k(predictions, k=10)
```

Recall@10: 0.3568 NDCG@10: 0.8628

```
def get_top_n(predictions, n=5):
    top_n = defaultdict(list)
    for uid, iid, true_r, est, _ in predictions:
        top_n[uid].append((iid, est))
    for uid, user_ratings in top_n.items():
        user_ratings.sort(key=lambda x: x[1], reverse=True)
        top_n[uid] = user_ratings[:n]
    return top_n
top_n_svd = get_top_n(predictions, n=5)
# Print sample recommendations
for uid, user_ratings in list(top_n_svd.items())[:5]:
    print(f"\nUser {uid} recommended items: {[iid for (iid, _) in user_ratings]}")
₹
     User 1841 recommended items: [318, 1247, 34, 1784, 296]
     User 3715 recommended items: [2716, 1270, 3114, 3793, 2096]
     User 2002 recommended items: [903, 3307, 930, 3801, 1278]
     User 3332 recommended items: [223, 2692, 1198, 3160, 1961]
     User 3576 recommended items: [356, 3801, 954, 1278, 553]
movies = pd.read_csv('ml-1m/movies.dat', sep='::', engine='python', encoding='ISO-8859-1', names=['MovieID','Title','Genres'])
movies.head()
\rightarrow
        MovieID
                                     Title
                                                            Genres
     n
                             Toy Story (1995) AnimationlChildren'slComedy
              1
     1
              2
                              Jumanji (1995) AdventurelChildren'slFantasy
                                                    ComedylRomance
                      Grumpier Old Men (1995)
     2
              3
     3
                       Waiting to Exhale (1995)
                                                      ComedylDrama
              4
              5 Father of the Bride Part II (1995)
                                                            Comedy
# Choose a sample user from top_n_svd
sample_user = list(top_n_svd.keys())[0] # or choose manually like sample_user = 1841
print(f"\n Personalized Case Study for User {sample_user}")
# Print model's top 5 recommendations
print("Model Recommendations:")
recommended = [iid for (iid, _) in top_n_svd[sample_user]]
print(movies[movies['MovieID'].isin(recommended)][['Title', 'Genres']])
# Print user's top 5 historically rated movies
user_ratings = ratings[ratings['UserID'] == sample_user]
top_actual = user_ratings.sort_values(by='Rating', ascending=False).head(5)
print("\n User's Top Rated Movies:")
print(top_actual.merge(movies, on='MovieID')[['Title', 'Rating', 'Genres']])
      Personalized Case Study for User 1841
     Model Recommendations:
                                                                Genres
                                       Title
     33
                                              Children's | Comedy | Drama
                                Babe (1995)
     293
                        Pulp Fiction (1994)
                                                           Crime|Drama
     315
           Shawshank Redemption, The (1994)
                                                                 Drama
     1227
                       Graduate, The (1967)
                                                         Drama | Romance
     1726
                  As Good As It Gets (1997)
                                                          Comedy | Drama
     User's Top Rated Movies:
                                    Title Rating
                                                                         Genres
     0
                 Sixth Sense, The (1999)
                                                                       Thriller
                      Sling Blade (1996)
                                                                 Drama|Thriller
     1
                      Toy Story 2 (1999)
                                                5
                                                   Animation|Children's|Comedy
     3
       Shawshank Redemption, The (1994)
                                                5
                                                                          Drama
                     Falling Down (1993)
                                                                   Action|Drama
import pandas as pd
results_df = pd.DataFrame({
    'Model': ['Popularity', 'User Avg', 'Item-KNN', 'User-KNN', 'SVD'],
    'MAE': [baseline_pop_mae, baseline_useravq_mae, mae_item, mae_user, mf_mae]
```

```
})
print("\nModel Performance Summary:")
display(results_df.sort_values(by='MAE'))
∓₹
     Model Performance Summary:
          Model
            SVD 0.685026
     3 User-KNN 0.771333
     0 Popularity 0.778790
     2 Item-KNN 0.779394
        User Avg 0.823417
from sklearn.preprocessing import MinMaxScaler
# Normalize timestamp to [0, 1] to create a recency score
scaler = MinMaxScaler()
ratings['Recency'] = scaler.fit_transform(ratings[['Timestamp']])
# Optional: print a few rows to verify
print(ratings[['Timestamp', 'Recency']].head())
        Timestamp
                   Recency
₹
    0
       978300760
                  0.240631
       978302109
                   0.240646
       978301968
                  0.240645
    3
       978300275
                  0.240626
    4 978824291 0.246465
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
print("Users Data:")
print(users.describe())
print("\nMovies Data:")
print(movies.describe())
print("\nRatings Data:")
print(ratings.describe())
print("\nMissing Values in Users Data:")
print(users.isnull().sum())
print("\nMissing Values in Movies Data:")
print(movies.isnull().sum())
print("\nMissing Values in Ratings Data:")
print(ratings.isnull().sum())
→ Users Data:
                 UserID
                                 Aae
                                       Occupation
           6040.000000
                         6040.000000
                                      6040.000000
     count
            3020.500000
                           30.639238
                                         8.146854
    mean
     std
            1743.742145
                           12.895962
                                         6.329511
              1.000000
                            1.000000
                                         0.000000
    min
                           25.000000
     25%
            1510.750000
                                         3.000000
     50%
            3020.500000
                           25.000000
                                         7.000000
     75%
            4530.250000
                           35.000000
                                        14.000000
            6040.000000
                           56.000000
                                        20.000000
    max
    Movies Data:
                MovieID
           3883.000000
     count
    mean
            1986.049446
            1146.778349
    std
              1.000000
    min
            982.500000
    25%
     50%
            2010.000000
     75%
            2980.500000
            3952.000000
    max
    Ratings Data:
                 UserID
                               MovieID
                                              Rating
                                                         Timestamp \
```

```
1.000209e+06 1.000209e+06 1.000209e+06
                                                     1.000209e+06
    count
           3.024512e+03
                         1.865540e+03 3.581564e+00
                                                     9.722437e+08
    mean
    std
           1.728413e+03
                         1.096041e+03 1.117102e+00
                                                     1.215256e+07
           1.000000e+00
                         1.000000e+00
                                       1.000000e+00
                                                     9.567039e+08
    min
    25%
           1.506000e+03
                         1.030000e+03
                                       3.000000e+00
                                                     9.653026e+08
    50%
           3.070000e+03
                         1.835000e+03
                                       4.000000e+00 9.730180e+08
    75%
           4.476000e+03
                         2.770000e+03
                                       4.000000e+00
                                                     9.752209e+08
    max
           6.040000e+03 3.952000e+03
                                       5.000000e+00 1.046455e+09
           popularity_pred useravg_pred
                                               Recency
    count
              1.000209e+06
                            1.000209e+06 1.000209e+06
              3.581564e+00
                            3.581564e+00
                                          1.731437e-01
    mean
              5.457591e-01
                            4.361295e-01
                                          1.354036e-01
    std
    min
              1.000000e+00
                            1.015385e+00
                                          0.000000e+00
    25%
              3.262032e+00
                            3.320000e+00
                                          9.580660e-02
    50%
              3.679822e+00
                            3.614650e+00
                                          1.817711e-01
    75%
              3.975610e+00 3.883191e+00
                                          2.063161e-01
    max
              5.000000e+00
                            4.962963e+00
                                          1.000000e+00
    Missing Values in Users Data:
    UserID
    Gender
                  0
    Age
                  0
    Occupation
                  0
    Zip-code
    dtype: int64
    Missing Values in Movies Data:
    MovieID
               0
    Title
               0
    Genres
               0
    dtype: int64
    Missing Values in Ratings Data:
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.hist(ratings['Rating'], bins=5, edgecolor='black', align='mid', rwidth=0.2,color="gray") # Adjust the rwidth parameter
plt.xlabel('Rating')
plt.ylabel('Count')
plt.title('Distribution of Ratings')
plt.show()
```


plt.figure(figsize=(6,5))
sns.countplot(data=users, x='Gender')
plt.title('Gender Distribution')


```
{\tt import\ matplotlib.pyplot\ as\ plt}
```

```
ratings_per_user = ratings.groupby('UserID').size()

plt.figure(figsize=(10, 6))
plt.hist(ratings_per_user, bins=50, edgecolor='black',color="gray")
plt.title('Ratings per User')
plt.xlabel('Number of Ratings')
plt.ylabel('Number of Users')
plt.show()
```



```
import matplotlib.pyplot as plt
```

```
occupation_map = {
    0: "other", 1: "academic/educator", 2: "artist", 3: "clerical/admin", 4: "college/grad student",
    5: "customer service", 6: "doctor/health care", 7: "executive/managerial", 8: "farmer",
```

```
9: "homemaker", 10: "K-12 student", 11: "lawyer", 12: "programmer", 13: "retired",
    14: "sales/marketing", 15: "scientist", 16: "self-employed", 17: "technician/engineer",
    18: "tradesman/craftsman", 19: "unemployed", 20: "writer"
}

users['Occupation_name'] = users['Occupation'].map(occupation_map)

plt.figure(figsize=(10, 6))
    plt.barh(users['Occupation_name'].value_counts().index, users['Occupation_name'].value_counts(),edgecolor='black',color="gray")
    plt.title('Occupation Distribution')
    plt.xlabel('Number of Users')
    plt.ylabel('Occupation')
    plt.show()
```


Occupation Distribution tradesman/craftsman unemployed homemaker customer service lawyer retired scientist · clerical/admin Occupation K-12 student doctor/health care self-employed artist writer sales/marketing programmer technician/engineer academic/educator executive/managerial other college/grad student -100 200 300 400 500 600 700 Number of Users

```
import matplotlib.pyplot as plt
all_genres = movies['Genres'].str.split('|', expand=True).stack().reset_index(drop=True)

plt.figure(figsize=(10, 6))
plt.barh(all_genres.value_counts().index, all_genres.value_counts(), edgecolor='black',color="gray")
plt.title('Top Genres')
plt.xlabel('Number of Movies')
plt.ylabel('Genre')
plt.show()
```

plt.show()

movie_stats = ratings.groupby('MovieID').agg({'Rating': [np.size, np.mean]})
top_rated_movies = movie_stats['Rating'][(movie_stats['Rating']['size'] >= 500)].sort_values(by='mean', ascending=False).merge(ratop_rated_movies[['Title', 'mean', 'size']].head(10)

mean size

Title

		litte	ilican	3126
	1950	Seven Samurai (The Magnificent Seven) (Shichin	4.560510	628
	315	Shawshank Redemption, The (1994)	4.554558	2227
	847	Godfather, The (1972)	4.524966	2223
	735	Close Shave, A (1995)	4.520548	657
	49	Usual Suspects, The (1995)	4.517106	1783
	523	Schindler's List (1993)	4.510417	2304
	1132	Wrong Trousers, The (1993)	4.507937	882
	1180	Raiders of the Lost Ark (1981)	4.477725	2514
	892	Rear Window (1954)	4.476190	1050
	257	Star Wars: Episode IV - A New Hope (1977)	4.453694	2991
occu	upation 0: "ot 5: "cu 9: "ho 14: "s 18: "t	<pre>plotlib.pyplot as plt _map = { her", 1: "academic/educator", 2: "artis stomer service", 6: "doctor/health care memaker", 10: "K-12 student", 11: "lawy ales/marketing", 15: "scientist", 16: " radesman/craftsman", 19: "unemployed",</pre>	", 7: "ex er", 12: self-empl 20: "writ	ecutiv "progr oyed", er"
user	rs['0cc	upation_name'] = users['Occupation'].ma	p(occupat	ion_ma
plt. plt. plt. plt.	barh(u title(xlabel	<pre>(figsize=(12, 8)) sers['Occupation_name'].value_counts(). 'Occupation Distribution') ('Number of Users') ('Occupation')</pre>	index, us	ers['(

Occupation Distribution


```
users = users.drop_duplicates()
movies = movies.drop_duplicates()
ratings = ratings.drop_duplicates()
print("Users shape:", users.shape)
print("Movies shape:", movies.shape)
print("Ratings shape:", ratings.shape)
    Users shape: (6040, 6)
    Movies shape: (3883, 3)
    Ratings shape: (1000209, 7)
import torch
from torch.utils.data import Dataset, DataLoader
class ClientDataset(Dataset):
    def __init__(self, users, movies, ratings):
        self.data = ratings.merge(users, on='UserID').merge(movies, on='MovieID')
    def __len__(self):
        return len(self.data)
    def __getitem__(self, idx):
        row = self.data.iloc[idx]
        return (
            row['UserID'],
            row['MovieID'],
            torch.tensor(mlb.transform([row['Genres'].split('|')])[0], dtype=torch.float),
            torch.tensor(occupation_encoder.transform([[row['Occupation']]])[0], dtype=torch.float),
            torch.tensor(row['Age_encoded'], dtype=torch.long),
            row['Gender_encoded'],
            row['Rating']
```

```
from sklearn.preprocessing import OneHotEncoder, LabelEncoder
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
genres_encoded = mlb.fit_transform(movies['Genres'].str.split('|'))
genres_df = pd.DataFrame(genres_encoded, columns=mlb.classes_, index=movies.index)
occupation_encoder = OneHotEncoder(sparse_output=False)
occupations_encoded = occupation_encoder.fit_transform(users[['Occupation']])
occupations_df = pd.DataFrame(occupations_encoded, columns=occupation_encoder.get_feature_names_out(['Occupation']), index=users
gender encoder = LabelEncoder()
users['Gender_encoded'] = gender_encoder.fit_transform(users['Gender'])
age_encoder = LabelEncoder()
users['Age_encoded'] = age_encoder.fit_transform(users['Age'])
import torch.nn as nn
import torch.nn.functional as F
class ExpandedRecommender(nn.Module):
    def __init__(self, num_users, num_movies, embedding_dim, num_genres, num_occupations, num_ages, num_genders=2):
        super(ExpandedRecommender, self).__init__()
        self.user_embedding = nn.Embedding(num_users, embedding_dim)
        self.movie_embedding = nn.Embedding(num_movies + 1, embedding_dim)
        self.age_embedding = nn.Embedding(num_ages, embedding_dim)
        self.gender_embedding = nn.Embedding(2,embedding_dim)
        self.genre_layer = nn.Linear(num_genres, embedding_dim)
        self.occupation_layer = nn.Linear(num_occupations, embedding_dim)
        self.fc1 = nn.Linear(embedding_dim * 6, 256)
        self.fc2 = nn.Linear(256, 128)
        self.fc3 = nn.Linear(128, 1)
    def forward(self, user_ids, movie_ids, genres, occupations, ages, genders):
        user_embedded = self.user_embedding(user_ids)
        movie_embedded = self.movie_embedding(movie_ids)
        age_embedded = self.age_embedding(ages)
        gender_embedded = self.gender_embedding(genders)
        genres = genres.float()
        occupations = occupations.float()
        genre_embedded = F.relu(self.genre_layer(genres))
        occupation_embedded = F.relu(self.occupation_layer(occupations))
       x = torch.cat((user_embedded, movie_embedded, genre_embedded, occupation_embedded, age_embedded, gender_embedded), 1)
       x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
       x = self.fc3(x)
        return x.squeeze()
from sklearn.model_selection import train_test_split
all_train_data, test_data = train_test_split(ratings, test_size=0.1, random_state=42)
num clients = 10
client_data_split = np.array_split(all_train_data, num_clients)
client_datasets = [ClientDataset(users, movies, data) for data in client_data_split]
client_loaders = [DataLoader(dataset, batch_size=256, shuffle=True) for dataset in client_datasets]
test_dataset = ClientDataset(users, movies, test_data)
test_loader = DataLoader(test_dataset, batch_size=256, shuffle=False)
```

```
₹
             UserID MovieID Rating Timestamp popularity_pred useravg_pred Recency
      647085
                3894
                         2750
                                       965791718
                                                           3.698246
                                                                          3.761006 0.101256
      130254
                 843
                         2791
                                    4
                                       975358667
                                                           3.971115
                                                                          3.944444 0.207851
                                                                          3.139706 0.201209
      232200
                1408
                                       974762606
                                                           3.561546
                         2006
                                    2
      61200
                 412
                         3301
                                    3
                                       976651610
                                                           3.378738
                                                                          4.401261 0.222257
      477192
                2929
                                       971642889
                                                           3.478723
                                                                          3.925414 0.166450
                          832
        ...
      259178
                1586
                         1077
                                    5
                                       974735719
                                                           3.979839
                                                                          4.424096 0.200910
      365838
                2129
                         2700
                                    5
                                       974643199
                                                           3.760441
                                                                          3.271709 0.199879
      131932
                 854
                                       975355597
                                                           3.643443
                                                                          3.027668 0.207816
                         3102
      671155
                4033
                                        965525805
                                                           3.673432
                                                                          3.767372 0.098293
                         3479
      121958
                 786
                         1391
                                       975429588
                                                           2.900372
                                                                          4.063492 0.208641
     900188 rows × 7 columns
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from collections import OrderedDict
import copy
print("Max UserID in Train:", all_train_data['UserID'].max())
print("Max UserID in Test:", test_data['UserID'].max())
print("Max MovieID in Train:", all_train_data['MovieID'].max())
print("Max MovieID in Test:", test_data['MovieID'].max())
→ Max UserID in Train: 6040
     Max UserID in Test: 6040
     Max MovieID in Train: 3952
     Max MovieID in Test: 3952
print("Max UserID in Train:", all_train_data['UserID'].max())
print("Max MovieID in Train:", all_train_data['MovieID'].max())
print("Max UserID in Test:", test_data['UserID'].max())
print("Max MovieID in Test:", test_data['MovieID'].max())

→ Max UserID in Train: 6040

     Max MovieID in Train: 3952
     Max UserID in Test: 6040
    Max MovieID in Test: 3952
import os
model_dir = './saved_models'
if not os.path.exists(model_dir):
    os.makedirs(model_dir)
import copy
import os
import torch
import torch.nn as nn
from collections import OrderedDict
import matplotlib.pyplot as plt
from sklearn.metrics import mean_absolute_error, mean_absolute_percentage_error,r2_score,mean_squared_error,mean_squared_log_erro
import numpy as np
def rmse_score(y_true, y_pred):
    return np.sqrt(mean_squared_error(y_true, y_pred))
def average_weights(client_models):
    average_model_weights = OrderedDict()
    for k in client_models[0].state_dict().keys():
        average_model_weights[k] = torch.stack([client_models[i].state_dict()[k].float() for i in range(num_clients)], 0).mean(0)
    return average_model_weights
```

```
global_model = ExpandedRecommender(
    num_users=users['UserID'].max()+1,
    num_movies=ratings['MovieID'].max()+1,
    embedding_dim=50,
    num genres=len(mlb.classes ),
    num_occupations=len(occupation_encoder.categories_[0]),
    num_ages=len(age_encoder.classes_)+1
).to(device)
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(global_model.parameters(), lr=0.001)
epochs = 1
rounds = 1
num_clients = 10
client_losses = {i: [] for i in range(num_clients)}
global_losses = []
client_accuracies = {i: [] for i in range(num_clients)}
global_accuracies = []
client_mae = {i: [] for i in range(num_clients)}
global_maes = []
acc = []
c_{loss} = []
model_dir = 'model_dir'
if not os.path.exists(model_dir):
    os.makedirs(model_dir)
for round in range(rounds):
    client_models = [copy.deepcopy(global_model) for _ in range(num_clients)]
    for client in range(num_clients):
        optimizer = torch.optim.Adam(client_models[client].parameters(), lr=0.001)
        los = []
        for epoch in range(epochs):
            client_models[client].train()
            running_loss = 0.0
            for batch_data in client_loaders[client]:
                user_ids, movie_ids, genres, occupations, ages, genders, rating = [item.to(device) for item in batch_data]
                optimizer.zero_grad()
                outputs = client_models[client](user_ids, movie_ids, genres, occupations, ages, genders)
                loss = criterion(outputs, rating.float())
                loss.backward()
                optimizer.step()
                running_loss += loss.item()
            epoch_loss = running_loss / len(client_loaders[client])
            print(f"Client {client+1} - Epoch {epoch+1}, Loss: {epoch_loss:.4f}")
            client_losses[client].append(epoch_loss)
            los.append(epoch_loss)
            torch.save(client_models[client].state_dict(), os.path.join(model_dir, f'client_{client+1}_round_{round+1}.pth'))
        c_loss.append(los)
    for client in range(num_clients):
        predictions = []
        true_labels = []
        client_models[client].eval() # Set model to evaluation mode
        with torch.no_grad():
            for data in client_loaders[client]:
                user_ids, movie_ids, genres, occupations, ages, genders, rating = [item.to(device) for item in data]
                outputs = client_models[client](user_ids, movie_ids, genres, occupations, ages, genders)
                predictions.extend(outputs.cpu().numpy())
                true_labels.extend(rating.cpu().numpy())
        mae = mean_absolute_error(true_labels, predictions)
        a = mean_absolute_percentage_error(true_labels,predictions)
        b = r2_score(true_labels,predictions)
        c = mean_squared_error(true_labels,predictions)
        d = rmse_score(true_labels,predictions)
        #e = mean_squared_log_error(true_labels,predictions)
        acc.append([mae,a,b,c,d])
        client_mae[client].append(mae)
    global_weights = average_weights(client_models)
```

```
global_model.load_state_dict(global_weights)
    predictions = []
    true_labels = []
    global_model.eval()
    with torch.no_grad():
        for batch_data in test_loader:
            user_ids, movie_ids, genres, occupations, ages, genders, rating = [item.to(device) for item in batch_data]
            outputs = global_model(user_ids, movie_ids, genres, occupations, ages, genders)
            predictions.extend(outputs.cpu().numpy())
            true_labels.extend(rating.cpu().numpy())
    global_mae = mean_absolute_error(true_labels, predictions)
    global_maes.append(global_mae)
    print(f"After Round {round+1}, Global Model Test MAE: {global_mae:.4f}")
→ Client 1 - Epoch 1, Loss: 1.3747
     Client 2 - Epoch 1, Loss: 1.3398
     Client 3 - Epoch 1, Loss: 1.3405
    Client 4 - Epoch 1, Loss: 1.3477
    Client 5 - Epoch 1, Loss: 1.3529
    Client 6 - Epoch 1, Loss: 1.3498
Client 7 - Epoch 1, Loss: 1.3474
    Client 8 - Epoch 1, Loss: 1.3560
     Client 9 - Epoch 1, Loss: 1.3415
    Client 10 - Epoch 1, Loss: 1.3525
    After Round 1, Global Model Test MAE: 0.8639
import matplotlib.pyplot as plt
client_ids = list(client_mae.keys())
maes = [client_mae[i][-1] for i in client_ids]
plt.bar(client_ids, maes, color='gray', edgecolor='black')
plt.xlabel("Client ID")
plt.ylabel("MAE")
plt.title("Client-wise MAE (Non-IID Split)")
plt.show()
```


[[0.8449503771406115, 0.3455136759896934, 0.13442522299957071, 1.0942297388830524, 1.0460543670780464], [0.8348668278952746, 0.3413022133199404, 0.1380238274645752, 1.0724910286540925, 1.035611427444721], [0.8319624772353272,

acc

```
0.3436826990714705,
      0.13324353116317256,
      1.0750124975031743,
       1.0368280944800707],
      [0.8440510028164943,
      0.34150259083296086,
      0.13367276608965872,
      1.081875064685766,
      1.0401322342307087],
      [0.8528322254004156,
      0.3352300295462704,
      0.11864436845582915,
      1.100011283478697,
      1.0488142273437642],
      [0.8374727287925374,
      0.3474638221819698,
      0.12327072954629137,
      1.0929848463387861,
      1.0454591557487007],
      [0.8411104416823127,
      0.34116901031847763,
      0.1313625992040649,
      1.0826263214997636,
      1.0404933068020012],
      [0.8437468294532207,
      0.3434089309642859,
      0.130306648063222,
      1.0864392482989527,
      1.0423239651370166],
      [0.84136531806908.
      0.3377610376320998,
      0.13636433659011749,
      1.0758341740178932,
      1.0372242640904104],
      [0.8405699967893053,
      0.3413251926673969,
      0.12985732600889632,
      1.0850944796054194,
       1.0416786834746208]]
data = [acc, c_loss]
data = list(map(list, zip(*data)))
column_names = ['Accuracy', 'Train Losses']
df1 = pd.DataFrame(data, columns=column_names)
df1.to_csv('results_ff.csv')
fig, axs = plt.subplots(num_clients, 1, figsize=(10, 5 * num_clients))
for client, losses in client_losses.items():
    if not losses:
        print(f"No losses recorded for client {client + 1}. Skipping...")
    axs[client].plot(range(1, epochs * rounds + 1), losses, label=f'Client {client + 1}')
    axs[client].set(xlabel='Epoch', ylabel='Loss')
    axs[client].legend()
    axs[client].grid(True)
plt.tight_layout()
plt.show()
```



```
plt.title('Clients and Mean Absolute Error')
plt.legend()
plt.show()
```


₹

Clients and Mean Absolute Error

— Client 4