

قضیه تلگان (ادامه بحث)

امير عباس شايگاني اكمل

21 Let N be the two-port described in Prob. 20. Consider the following experiments

Experiment 1. Drive port 1 with a voltage source with voltage E and measure the current i'2 in the short circuit across port 2. (See Fig. P1.21.)

Experiment 2. Drive port 2 with a voltage source with an identical voltage E and measure the current i_1'' in the short circuit across port 1.

Prove that $i_2 = i_1^n$, and state this remarkable property in words (reciprocity property).

$$-Ei_1'' + 0 = 0 - Ei_2'$$

$$i_1^{"}=i_2^{\prime}$$

ای قضیه تلگان برای قضیه تلگان

25 Consider the circuit shown in Fig. P1.25. Two sets of measurements on this circut give the following results:

(i) When
$$R_L = 2\Omega$$
: $v_1 = 8 \text{ V}$ $i_1 = -2 \text{ A}$ $v_L = 2 \text{ V}$

$$v_{1} = 8 \text{ V}$$

$$i_1 = -2 A$$
 $v_2 = -2 A$

(ii) When
$$R_L = 4\Omega$$
: $\hat{v}_1 = 12 \text{ V}$ $\hat{i}_1 = -2.4 \text{ A}$ $\hat{v}_L = ?$

$$\hat{v}_1 = 12 \text{ V}$$

$$\hat{i}_1 = -2.4 \text{ A}$$

$$\hat{v}_L = 2$$

Determine \hat{v}_L , given that R_1 , R_2 , R_3 , and R_4 are linear resistors satisfying Ohm's law.

Figure P1.25

شاخه	منبع ١	منبع ۲	بار ۱	بار۲
ولتاژ (ولت)	٨	17	٢	\mathcal{V}_{L}
جريان (آمپر)	-7	-7/2	١	V _L /4

$$8*(-2.4) + 2*\frac{v_L}{4} = 12*-2+vL$$

$$4.8 = vL/2$$

$$9.6 = vL$$

یاد آوری فازور

$$A_{m}\cos(\omega t + \phi) \tag{1.1}$$

where the amplitude A_m , the phase ϕ , and the frequency ω are real constants. The amplitude A_m is always taken to be positive. The frequency ω is measured in radians per second. The period is $T = 2\pi/\omega$ in seconds.

If the frequency is measured in hertz and labeled f, then the sinusoid becomes $A_m \cos(2\pi f t + \phi)$ and T = 1/f.

To the sinusoid above we associate a complex number A called the phasor (of that sinusoid) according to the rule

$$A \stackrel{\Delta}{=} A_m e^{j\phi} \tag{1.2}$$

روابط شاخه ها

Resistor:	v(t) = R i(t)	V = RI	(2.8)
Inductor:	$v(t) = L \frac{di}{dt}$	$V = j\omega LI$	(2.9)
Capacitor:	$i(t) = C \frac{dv}{dt}$	$I = j\omega CV$	(2.10)
VCVS:	$v_3(t) = \mu v_1(t)$	$V_3 = \mu V_1$	(2.11a)
VCCS:	$i_4(t) = g_m v_5(t)$	$I_4 = g_m V_5$	(2.11b)
CCVS:	$v_6(t) = r_m i_5(t)$	$V_6 = r_m I_5$	(2.11c)
CCCS:	$i_8(t) = \alpha \ i_7(t)$	$I_8 = \alpha I_7$	(2.11d)
Gyrator:	$i_9(t) = G v_{10}(t)$ $i_{10}(t) = -G v_9(t)$	$I_9 = GV_{10} I_{10} = -GV_9$	(2.11 <i>e</i>)
Ideal	$v_1(t) = \frac{1}{n} v_2(t)$	$V_1 = \frac{1}{n} V_2$	
transformer	$i_1(t) = -n \ i_2(t)$	$I_1 = -nI_2$	(2.12)

نمایش گرافیکی فازور

نمونه مسئله تلگان در حالت دائم سینوسی

حل نمونه مسئله

10<45*0+14.14<0*(-10<45)

(10<45/Z)-14.14<0=0

(10 < 45/14.14) = Z = 0/707 < 45

$$v_1(t) = \operatorname{fsin}(\omega t + \operatorname{fo^{\circ}}) i_{\mathsf{f}}(t) = \sin(\omega t + \operatorname{fo^{\circ}}) i_{\mathsf{f}}(t) = v_{\mathsf{f}}(t) = v_$$

$$\sin\left(\omega t - \mathbf{\hat{r}}^{\circ}\right)$$
 ($\mathbf{\hat{r}}$

$$\sin (\omega t - \mathcal{F} \circ ^{\circ})$$
 ($\mathbf{Y} = \frac{1}{\mathbf{Y}} \sin (\omega t + \mathbf{Y} \circ ^{\circ})$ ($\mathbf{Y} = \frac{1}{\mathbf{Y}} \sin (\omega t + \mathbf{Y} \circ ^{\circ})$

$$\operatorname{fsin}(\omega t - \operatorname{ND}^{\circ})$$
 (f

حل نمونه ۲

شرايط 1	V ₁ =4<-45	I ₁ =2<-60	V ₂ =0	l ₂ =1<-30
شرايط 2	V ₁ '=?	1 ₁ '=.5<-75	V ₂ '=1<-90	l ₂ '=?

$$V_1$$
'=0.5<-60

حل دیگری برای نمونه ۲

شرايط 1	V ₁ =4<45	I ₁ =2<30	V ₂ =0	l ₂ =1<60
شرايط 2	V ₁ '=?	1 ₁ '=.5<15	V ₂ '=1<0	l ₂ '=?

$$2<60=1<60+V_1'*2<30$$

$$V_1$$
'=0.5<30

نمونه ۳

۸. دوقطبی N و یک قطبی N_1 فقط از اجزاء L ، R و L خطی تغییرناپذیر با زمان تشکیل شده N_1 دوقطبی N و یک قطبی N_1 فقط از اجزاء N_2 و است. با است. در شکلهای (الف) و (ب) نتایج دو آزمایش در حالت دائمی سینوسی داده شده است. با توجه به نتایج دو آزمایش، کدام یک از گزینه های زیر می تواند معادل یک قطبی N_1 باشد؟ «۱۳۷۴»

حل نمونه ۳

شرايط 1	V _s =2<0	I _s =.5<-60	V _o =.5<-20	l _o =-1<-20
شرايط 2	V _s '=2<0] _s '=1<0	V _o '=1<-40	l _o '=?

$$I_{o}' = -4 < 20$$

ادامه حل نمونه ۲

$$Z = \frac{V_o'}{-I_o'} = 0.25 < -60 = 0.25 \left(.5 - j\frac{\sqrt{3}}{2}\right) = R + \frac{1}{j\omega C}$$

$$Y = \frac{1}{Z} = 4 < 60 = 4\left(.5 + j\frac{\sqrt{3}}{2}\right) = G + j\omega C$$