1

ASSEMBLY ASSIGNMENT

Koushik Kalyani koushikkalyani369@gmail.com IITH - Future Wireless Communication

CONTENTS

I	Question		1		B. K-Map Implentation						
							Q_1	Q_2			
11	Answer II-A II-B	Truth Table	1 1 1			00	01	11	10		
III	Components		2	Q_0	0	1	0	0	0		
IV	Implem	entation	2	4 0	1	1	0	0	0		

I. QUESTION

The digital circuit shown _____

II. ANSWER

The above question can be solved by using Truth Table and karnaugh-map.

A. Truth Table

Pres	sent S	State	Flip	-Flop	i/p	Next State			
Q_0	Q_1	Q_2	D_0	D_1	D_2	Q'_0	Q_1'	Q_2'	
0	0	0	1	0	0	1	0	0	
1	0	0	1	1	0	1	1	0	
1	1	0	0	1	1	0	1	1	
0	1	1	0	0	1	0	0	1	
0	0	1	0	0	0	0	0	0	

Therefore, given circuit is Divide by 5 circuit.

$$D_1 = Q_0 \cdot \overline{Q}_2$$
 $Q_1 Q_2$
 $00 \quad 01 \quad 11 \quad 10$
 $Q_0 \quad 1 \quad 0 \quad 0 \quad 1$

$$D_2 = \overline{Q}_0 \cdot Q_1 \cdot Q_2 + Q_0 \cdot Q_1 \cdot \overline{Q}_2$$

III. COMPONENTS

Components	Values	Quantity			
Arduino	Uno	1			
Jumper	M-M	25			
Wires					
Breadboard		1			
LED		3			
Resistor	$\geq 220\Omega$	3			
Flip Flop	7474	2			

IV. IMPLEMENTATION

	INPUT		OUTPUT			CLOCK						
	Q0	Q1	Q2	Q0'	Q1'	Q2'	CLOCK		5V			
Arduino	D9	D10	D11	D2	D3	D4	A5					
7474	5	9		2	12		CLK1	CLK2	1	4	10	13
7474			9			12	CLK1	CLK2	1	4	10	13

Connections

Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect LEDs to the output pins of the Arduino to see output.
- 3. Execute the circuit using the below code.

https://github.com/koushikkalyani/FWC/blob/main/Assembly/assembly.asm

4. Visit for video demonstration.

https://github.com/koushikkalyani/FWC/blob/main/Assembly/AssemblyDemo.mp4