TD3 Régulation de niveau d'eau dans une cuve

Régulation du niveau d'eau

Le but de ce TD est de réguler le niveau d'eau dans une cuve en utilisant le processus décrit ci-dessous :

Figure 1 – Deux réservoirs

Avec:

- La pompe est non réversible et son débit $q_e(t)[m^3/min]$ est relié à sa tension d'alimentation $V_c(t)$ par la relation $q_e(t) = k_p V_c(t)$ avec $k_p = 10 \ [m^3/min.V]$. Le débit maximum de la pompe est $q_{em} = 10 \ [m^3/min]$.
- La cuve 1 est cylindrique, a une hauteur maximale $h_{1m} = 22 [m]$ et un rayon $r_1 = 0.4 [m]$.
- La cuve 2 est cylindrique, a une hauteur maximale $h_{2m} = 15 [m]$ et un rayon $r_2 = 0.2 [m]$.
- Le débit entre les deux réservoirs est $q_{12}(t) = k_1\{h_1(t) h_2(t)\}$ avec $k_1 = 0.1$ $[m^2/min]$.
- Le débit de sortie de la deuxième cuve est $q_s(t) = k_2 h_2(t)$ avec $k_2 = 0.1 \, [m^2/min]$.

On a donc les relations suivantes où S_i représentent les surfaces des cuves.

$$S_{1} \frac{dh_{1}(t)}{dt} = -k_{1}\{h_{1}(t) - h_{2}(t)\} + q_{e}(t)$$

$$S_{2} \frac{dh_{2}(t)}{dt} = k_{1}\{h_{1}(t) - h_{2}(t)\} - q_{s}(t)$$

$$q_{s}(t) = k_{2}h_{2}(t)$$

$$(1)$$

$$(2)$$

$$(3)$$

$$S_2 \frac{dh_2(t)}{dt} = k_1 \{h_1(t) - h_2(t)\} - q_s(t)$$
 (2)

$$q_s(t) = k_2 h_2(t) \tag{3}$$

L'objectif de ce travail est de contrôler l'évolution du niveau de la deuxième cuve $h_2(t)$ en agissant sur le débit d'entrée $q_e(t)$ à l'aide de la tension $v_c(t)$. On veut obtenir $h_2 = 10$ [m] en régime permanent et on veut remplir la cuve la plus rapidement possible tout en évitant un fonctionnement par à coup de la pompe.

Boucle ouverte 1

Simulation 1.1

Vérifier que le schéma suivant permet de simuler le montage étudié en boucle ouverte.

Le contexte est :

```
r1=0.4;
r2=0.2;
S1=\%pi*(r1^2);
S2=\%pi*(r2^2);
h1m=22; // Hauteur max pour la cuve 1
h2m=15; // Hauteur max pour la cuve 2
k1=0.1;
k2=0.1;
kp=10;
```

```
qem=10; // Débit max de la pompe
Ts=60; // Durée de la simulation
```

Faire une simulation avec $v_c = 0.1 [V]$. Mesurer les valeurs atteintes en régime permanent par h_1 et h_2 en utilisant un afficheur que l'on trouve dans la rubrique

Xcos > palettes > Sinks palette > AFFICH_m

1.2 Théorie

- 1. Calculer la valeur de q_e lorsque $v_c = 0.1 [V]$
- 2. Donner la relation liant $q_e,\,q_s$ et q_{12} lorsque l'équilibre a été atteint
- 3. En déduire les valeurs des hauteurs h_1 et h_2 atteintes en régime permanent.
- 4. Calculer la valeur de v_c donnant $h_2 = 5[\mathrm{m}]$ en régime permanent. Vérifier en faisant une simulation.

2 Boucle fermée

Pour mesurer la hauteur d'eau $h_2(t)$ on utilise un capteur de gain $k_c = 0.5[V/m]$. Donc si la mesure vaut 5V cela correspond à une hauteur $h_2(t)$ de 10m.

2.1 Simulation

Vérifier que le schéma de simulation permet de simuler le montage étudié en boucle fermée.

Rajouter dans le contexte les paramètres k_c et G

- 1. Pourquoi a-t-on pris comme consigne une tension de 5V?
- 2. Faire des simulations avec G = 0.1, 1 et 10. Mesurer la valeur de h_2 atteinte en régime permanent pour chaque gain. Que peut-on dire sur la précision du montage en boucle fermée en fonction de G? Que peut-on dire sur la forme du régime transitoire en fonction de G? Visualiser la forme de $q_e(t)$ pour chaque valeur de G. Que peut-on en conclure sur l'utilisation de la pompe?

2.2 Théorie

2.2.1 Régime permanent

- 1. Calculer la valeur de h_2 en régime permanent en fonction de G
- 2. A-t-on $h_1=2\times h_2$ en régime permanent? Si oui expliquer pourquoi (ex parce que $S_1=4S_2$ ou/et $k_1=k_2$ )

2.2.2 Fonction de transfert en boucle fermée

Nous allons tout d'abord déterminer la relation existante entre $h_2(t)$ et $q_e(t)$ en dehors de tout autre élément du montage.

1. Montrer que l'on peut écrire

$$S_1 S_2 \frac{d^2 h_2(t)}{dt^2} + \left(S_1(k_1 + k_2) + S_2 k_1\right) \frac{d h_2(t)}{dt} + k_1 k_2 h_2(t) = k_1 q_e(t)$$

2. Montrer que l'on peut écrire

$$\frac{1}{\omega_0^2} \frac{d^2 h_2(t)}{dt^2} + \frac{2\zeta}{\omega_0} \frac{dh_2(t)}{dt} + h_2(t) = Kq_e(t)$$

avec ω_0 , ζ et K fonctions des paramètres S_1, S_2, k_1, k_2 . Simplifier ensuite les expressions en utilisant $S_1 = 4S_2$ et $k_1 = k_2$. Calculer les valeurs numériques des paramètres. Que peut-on affirmer sur la forme de $h_2(t)$ lorsque $q_e(t)$ est un échelon?

3. En utilisant la transformée de Laplace et en supposant toutes les conditions initiales nulles (préciser lesquelles) montrer que l'on peut écrire

$$\frac{H_2(p)}{Q_e(p)} = \frac{K}{1 + \frac{2\zeta}{\omega_0} p + \frac{p^2}{\omega_0^2}}$$

On étudie désormais le système en boucle fermée.

FIGURE 2 – Schéma fonctionnel en Boucle Fermée

On notera que la pompe est supposée fonctionner en régime linéaire soit $q_e(t) = k_p v_c(t)$. On ne prend pas en compte la limitation du débit de la pompe à $10 [\mathrm{m}^3/\mathrm{min}]$. Le fonctionnement du montage des deux cuves est maintenant décrit par la fonction de transfert $\frac{H_2(p)}{Q_e(p)}$ déterminée précédemment.

(a) Montrer que la fonction de transfert en boucle fermée est

$$\frac{V_s(p)}{V_e(p)} = \frac{Gk_pKk_c}{1 + Gk_pKk_c + \frac{2\zeta}{\omega_0}p + \frac{p^2}{\omega_0^2}}$$

Les paramètres K, ζ et ω_0 correspondent aux paramètres de la fonction de transfert $\frac{H_2(p)}{Q_e(p)}$.

(b) Montrer que l'on peut écrire

$$\frac{V_s(p)}{V_e(p)} = \frac{K_1}{1 + \frac{2\zeta_1}{\omega_{01}}p + \frac{p^2}{\omega_{01}^2}}$$

Avec

$$K_1 = \frac{Gk_pKk_c}{1 + Gk_pKk_c}$$
$$\omega_{01} = \omega_0\sqrt{1 + Gk_pKk_c}$$
$$\zeta_1 = \frac{\zeta}{\sqrt{1 + Gk_pKk_c}}$$

- (c) Calculer les valeurs numériques de K_1 , ω_{01} et ζ_1 pour G=0.1, 1 et 10
- (d) Quelle est l'influence de G sur la forme de $v_s(t)$ lorsque $v_e(t)$ est un échelon d'amplitude 5V?
- (e) Comment peut-on obtenir $h_2(t)$ quand on a $v_s(t)$?
- (f) Pourquoi avec G = 10 les simulations ne correspondent-elles pas exactement aux prévisions théoriques?
- (g) Calculer la valeur de G donnant $\zeta_1 = 0.9$. Faire une simulation avec la valeur de G trouvée. Commenter le résultat obtenu.

3 Boucle fermée avec intégration

3.1 Simulation

Vérifier que le schéma suivant permet de simuler le montage étudié en boucle fermée avec une intégration.

On fera des simulations avec les gains G = 0.001, 0.01 et 0.1.

- 1. Mesurer la valeur de h_2 atteinte en régime permanent pour chaque gain. Que peut-on en déduire sur la précision du montage en boucle fermée en fonction de G?
- 2. Que peut-on dire sur la forme du régime transitoire en fonction de G?
- 3. Visualiser la forme de $q_e(t)$ pour chaque valeur de G. Que peut-on en conclure sur l'utilisation de la pompe?

3.2 Théorie

- 1. Pour que la sortie d'un intégrateur soit constante comment doit être son entrée : positive, négative ou nulle ?
- 2. Expliquer en utilisant la remarque précédente l'idée qui nous pousse à utiliser un intégrateur placé en sortie du comparateur.
- 3. On suppose que le système a un fonctionnement sans saturation (domaine linéaire). Déterminer les marges de gain et de phase du sytème en boucle ouverte lorsqu'on utilise un intégrateur. Que peut-on en déduire?