

描述

HR8833为玩具、打印机和其它电机一体化应用提供一种双通道电机驱动方案。HR8833有两路H桥驱动,可以驱动两路刷式直流电机,或者一个双极步进电机,或者螺线管或者其它感性负载。

每一个桥的功率输出模块由N通道功率MOSFET组成,叫作H 桥驱动器。每个桥包含整流电路和限流电路。

内部关断功能包含过流保护,短路保护,欠压锁定保护和过温 保护,并提供一个错误输出管脚。

HR8833提供两种封装,一种是带有裸露焊盘的TSSOP-16封装,能有效改善散热性能,且是无铅产品,引脚框采用100%无锡电镀。另一种封装为SOP16,不带裸露焊盘。

应用

- 锂电池供电玩具
- POS 打印机
- 安防相机
- 办公自动化设备
- ■游戏机
- 机器人

型号选择

Part Number	Package
HR8833MTE	TSSOP16 with exposed thermal pad
HR8833SP	SOP16

特点

- ●双通道H桥电流控制电机驱动器
- •驱动两路直流电机或者一个步进电机
- ●低RDS(ON)电阻
- ●1.5A驱动输出(TSSOP16封装) 1.4A驱动输出(SOP16封装)
- ●输出可以并用,最大提供3A驱动输出
- ●宽电压供电, 2.7V-12.8V
- ●PWM电流整流/限流
- ●过温关断电路
- ●短路保护
- ●欠压锁定保护

封装形式

SOP16 TSSOP16

典型应用原理图

功能结构框图

电路工作极限 at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Load Supply Voltage	VM		-0.3 – 13	V
Output Current	I _{OUT}		±1.5	A
Logic Input voltage	V _{IN}		-0.7 to 7	V
Sense Voltage	V _{SENSE}		-0.3 to 0.5	V
Operating Ambient Temperature	T _A	Range S	-40 to 85	°C
Maximum Junction	T _J (max)		150	°C
Storage Temperature	$T_{ m stg}$		-55 to 150	°C

推荐工作条件 at Ta = 25℃

		Min	NOM	Max	Unit
Load Supply Voltage Range	VM	2.7	-	12.8	V
Logic Input Voltage Range	VIN	0	-	5.75	V
	IOUT	0		1.5	
Continuous RMS or DC output current per bridge	(TSSOP16)	0		1.5	A
	IOUT	0		1.4	
	(SOP16)	0		1.4	

注意 1, HR8833 最大供电电压为 12.8V, 此电压是针对步进电机的应用。如使用在直流电机应用方案中,请控制 VM 电压在 10.8V 以下。

注意 2,目前 HR8833 提供两种封装,TSSOP16 封装的最大持续输出电流为 1.5A,SOP16 封装的最大持续输出电流为 1.4A,使用时请注意控制电流。另外,SOP16 与TSSOP16-PP 封装在管脚定义上也有区别,请制板时特别注意,管脚具体定义请参考本文档第 12 页。

电特性 at Ta = 25°C, VM=5 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
POWER	RSUPPLY			1	1	1
IVM	VM operating supply current	VM = 5 V, xIN1 = 0 V, xIN2 = 0 V		1.7	3	mA
IVMQ	VM sleep mode supply current	VM = 5 V		1.6	2.5	uA
VUVLO	VM undervoltage lockout voltage	VM falling			2.6	V
VHYS	VM undervoltage lockout hysteresis			500		mV
LOGIC	-LEVEL INPUTS					I
VIL	Input low voltage	nSLEEP			0.5	V
		All other pins			0.7	
VIH	Input High voltage	nSLEEP	2.5			V
		All other pins	2			
VHYS	Input hysteresis			0.4		V
RPD	Input pull-down resistance	nSLEEP		500		kΩ
		All except nSLEEP		150		
IIL	Input low current	VIN = 0			1	uA
IIH	Input high current	VIN = 3.3 V, nSLEEP		6.6	13	uA
		VIN = 3.3 V, all except nSLEEP		16.5	33	
tDEG	Input deglitch time			450		ns
nFAUL	Г OUTPUT (OPEN-DRAIN	OUTPUT)	-		1	ı
VOL	Output low voltage	IO = 5 mA			0.5	V
ЮН	Output high leakage current	VO = 3.3 V			1	uA
H-BRID	GE FETS				•	
	HS FET on resistance	VM = 5 V, I O = 500 mA		200		
RDS(ON)		VM = 2.7 V, I O = 500 mA		250		mΩ
	LS FET on resistance	VM = 5 V, I O = 500 mA		180		
		VM = 2.7 V, I O = 500 mA		220		
IOFF	IOFF	VM = 5 V, $VOUT = 0 V$	-1		1	uA
MOTOI	R DRIVER					
fPWM	Current control PWM frequency	Internal PWM frequency		50		kHz

HR8833

双通道 H 桥电机驱动芯片

₄ D	n: .:	VM 5V 1/O (CND 100/ (000/		240		
tR	Rise time	VM =5V, 16Ω to GND, 10% to 90%		240		ns
tF	Fall time	VM =5V, 16Ω to GND, 10% to 90%		200		ns
tPROP	Propagation delay INx to OUTx	VM = 5 V		0.9		us
tDEAD	Dead time	VM = 5 V		340		ns
PROTE	CTION CIRCUITS					
ІОСР	Overcurrent protection trip level		2.5			A
tDEG	OCP Deglitch time			2.25		us
tOCP	Overcurrent protection period			1.35		ms
tTSD	Thermal shutdown temperature	Die temperature	150	160	180	$^{\circ}$ C
CURRE	NT CONTROL					
VTRIP	xISEN trip voltage		160	200	240	mV
tBLANK	Current sense blanking time			2.6		us
SLEEP	MODE		•	•		
tWAKE	Startup time	nSLEEP inactive high to H-bridge on		0.2	1	ms

模块功能描述

HR8833 为刷式直流电机或者步进电机提供一种集成的驱动方案。芯片内部集成双通道 H 桥和整流电路。 HR8833 的供电范围为 2.7V 到 12.8V,并提供 1.5A(TSSOP16-PP)或者 1.4A(SOP16)的连续输出。简单的 PWM 接口允许简单的接口控制电路。内部整流电路的固定关闭时间为 13us。HR8833 还包含一个低功耗睡眠模式,允许不需要驱动芯片的时候节省功耗。

PWM Motor Drivers

HR8833 包含两路 H 桥电机驱动电路,使用 PWM 电流控制。下图显示电路功能模块:

H-Bridge and Current-Chopping Circuitry

Bridge Control and Decay Modes

输入管脚 AIN1 和 AIN2 控制着输出管脚 AOUT1 和 AOUT2 的状态。类似的,输入管脚 BIN1 和 BIN2 控制着输出管脚 BOUT1 和 BOUT2 的状态。下表显示了彼此间的逻辑关系。

xIN1	xIN2	xOUT1	xOUT2	FUNCTION
0	0	Z	Z	Coast / fast decay
0	1	L	Н	Reverse
1	0	Н	L	Forward
1	1	L	L	Brake / slow decay

H-Bridge Logic

逻辑输入也可以使用 PWM 控制来达到调速功能。当用 PWM 波控制一个桥臂时,并且在驱动电流为关断时,由于电机的电感特性要求电流连续流通。这个电流叫做续流。为了操作这种电流,H 桥可以操作在两种不同的状态,快衰减或者慢衰减。在快衰减模式,H 桥是被禁止的,续流电流流经体二极管;在慢衰减模式,电机的下臂是短路的。

当 PWM 控制用于快衰模式, PWM 信号控制一个 xIN 管脚, 而另一个管脚维持低电平; 当运用于慢衰减, 另一管脚维持高电平。

PWM Control of Motor Spe	ed
--------------------------	----

xIN1	xIN2	FUNCTION
PWM	0 Forward PWM, fast decay	
1	PWM Forward PWM, slow decay	
0	PWM	Reverse PWM, fast decay
PWM	1	Reverse PWM, slow decay

下图显示了在不同驱动和衰减模式下的电流通路。

Drive and Decay Modes

Current Control

通过固定频率的 PWM 电流整流器,流过电机驱动桥臂的电流是被限制的或者是被控制的。在 DC 电机应用中,电流控制功能作用于限制开启电流和停转电流。在步进电机应用中,电流控制功能始终存在。

当一个 H 桥被使能,流过相应桥臂的电流以一个斜率上升,此斜率由直流电压 VM 和电机的电感特性决定。当电流达到设定的阈值,驱动器会关闭此电流,直到下一个 PWM 循环开始。注意,在电流被使能的那一刻,xISEN 管脚上的电压是被忽略的,经过一个固定时间后,电流检测电路才被使能。这个消隐时间一般固定在2.6us。这个消隐时间同时决定了在操作电流衰减时的最小 PWM 时间。

PWM 目标电流由比较器比较连接在 xISEN 管脚上的电流检测电阻上的电压和一个参考电压决定。这个参考电压 VTRIP 一般固定是 200mV。下公式计算目标电流:

$$I_{CHOP} = \frac{200 \text{ mV}}{R_{XISEN}}$$

举个例子: 假如使用了一个 1Ω 的电阻,这样目标电流为 200mA。注意: 假如电流控制功能不需要使用, xISEN 管脚需直接接地。

nSLEEP Operation

当驱动 nSLEEP 管脚为低时,会使芯片进入低功耗睡眠模式。在这个状态下,H 桥是被禁止的,电荷泵停止工作,内部所有逻辑被复位,内部所有时钟停止。所有输入被忽略直到 nSLEEP 管脚被拉高。当睡眠模式消除后,需要一些时间(一般 1ms)延时,电机驱动才会正常工作。为了简化板级设计,nSLEEP 管脚可以上拉到 VM。在这种情况下,推荐使用一个上电阻。这个电阻限制输入电流当 VM 大于 6.5V 时。nSLEEP 管脚内部下拉 $500k\Omega$ 电阻到地,同时内部还有一个 6.5V 的齐纳钳位二极管。当电流大于 250uA 时,可能会损坏内部输入结构。因此,推荐上拉电阻阻值一般在 $20k\Omega$ 到 $75k\Omega$ 之间。

保护电路

HR8833 有过流保护,过温保护和欠压保护。

过流保护 (OCP)

在每一个 FET 上有一个模拟电流限制电路,此电路限制流过 FET 的电流,从而限制门驱动。如果此过流模拟电流维持时间超过 OCP 脉冲时间,H 桥内所有 FET 被禁止,nFAULT 管脚输出低电平。经过一个 OCP 尝试时间(tOCP),驱动器会被重新使能,同时 nFAULT 管脚输出高电平。如果这个错误条件仍然存在,上述这个现象重复出现。如果此错误条件消失了,驱动恢复正常工作,但 nFAULT 管脚仍然被拉低。注意,只有被检测到过流的 H 桥被会禁止,而其余 H 桥仍是正常工作的。

H 桥上臂和下臂上的过流条件是被独立检测的。对地短路,对 VM 短路,和输出之间短路,都会造成过流关闭。注意,过流保护不使用 PWM 电流控制的电流检测电路,所以过流保护功能不作用与 xISEN 电阻。

过温保护 (TSD)

如果结温超过安全限制阈值,H 桥的作用 FET 被禁止,nFAULT 管脚输出低电平。一旦结温降到一个安全水平,所有操作会自动恢复正常。

欠压锁定保护(UVLO)

在任何时候,如果 VM 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部所有复位。当 VM 上的电压上升到 UVLO 以上,所有功能自动恢复。nFAULT 管脚输出低电平当欠压情况出现时。

电路应用信息

复用输出模式

HR8833 的两路 H 桥可以接在一起并行输出,这样输出电流是单路 H 桥的两倍。HR8833 内部死区时间阻止两个 H 桥之间的任何交越导通冒险,此交越导通由两个 H 桥的时序存在差异造成。下图显示了并行输出连接。注意,以下典型原理图和 PCB 布局图均以 TSSOP16 封装为例。

Parallel Mode

双极步进电机模式

01/2016, V2.1

典型原理图

典型 PCB 布局图

整步控制时序

半步控制时序

版图注意事项

PCB 板上应覆设大块的散热片,地线的连接应有很宽的地线覆线。为了优化电路的电特性和热参数性能,芯片应该直接紧贴在散热片上。

对电极电源 VM,应该连接不小于 10uF 的电解电容对地耦合,电容应尽可能的靠近器件摆放。

为了避免因高速 dv/dt 变换引起的电容耦合问题,驱动电路输出端电路覆线应远离逻辑控制输入端的覆线。逻辑控制端的引线应采用低阻抗的走线以降低热阻引起的噪声。

地线设置

芯片所有的地线都应连接在一起,且连线还应改尽可能的短。一个位于器件下的星状发散的地线覆设,将是一个优化的设计。

在覆设的地线下方增加一个铜散热片会更好的优化电路性能。

电流取样设置

为了减小因为地线上的寄生电阻引起的误差,马达电流的取样电阻 RS 接地的地线要单独设置,减小其他因素引起的误差。单独的地线最终要连接到星状分布的地线总线上,该连线要尽可能的短,对小阻值的 Rs,由于Rs上的压降 V=I*Rs 为 0.2V, PCB 上的连线压降与 0.2V 的 电压将显得不可忽视,这一点要考虑进去。

PCB 尽量避免使用测试转接插座,测试插座的连接电阻可能会改变 Rs 的大小,对电路造成误差。Rs 值的选择遵循下列公式:

 $Rs = 0.2/I_{TRIP max}$

热保护

当内部电路结温超过 165 $^{\circ}$ C时,过温模块开始工作,关断内部多有驱动电路。过温保护电路只保护电路温度过高产生的问题,而不应对输出短路的情况产生影响。热关断的阈值窗口大小为 45 $^{\circ}$ 。

管脚定义

TOP VIEW

TSSOP16-PP

SOP₁₆

管脚列表

NAME	PIN Pir		Pin Description	EXTERNAL COMPONENTS
	TSSOP	SOP		OR CONNECTIONS
POWER A	ND GROUN	ND	1	
GND	13	1	Device ground	Both the GND pin and device PowerPAD must be connected
PPAD	-	-		to ground
VM	12	16	Device power supply	Connect to motor supply. A 10uF (minimum) ceramic bypass capacitor to GND is recommended.
VINT	14	2	Internal supply	Bypass to GND with 2.2uF, 6.3-V capacitor
VCP	11	15	High-side gate	Connect a 0.01uF, 16V (minimum) X7R ceramic capacitor to
CONTROL	1			
AIN1	16	4	Bridge A input 1	Logic input controls state of AOUT1. Internal pulldown.
AIN2	15	3	Bridge A input 2	Logic input controls state of AOUT2. Internal pulldown.
BIN1	9	13	Bridge B input 1	Logic input controls state of BOUT1. Internal pulldown.
BIN2	10	14	Bridge B input 2	Logic input controls state of BOUT2. Internal pulldown.
nSLEEP	1	5	Sleep mode input	Logic high to enable device, logic low to enter low-power sleep mode
STATUS			l	
nFAULT	8	12	Fault output	Logic low when in fault condition (overtemp, overovercurrent)
OUTPUT	'			
AISEN	3	7	Bridge A ground /	Connect to current sense resistor for bridge A, or GND if
			Isense	current control
BISEN	6	10	Bridge B ground /	Connect to current sense resistor for bridge B, or GND if
			Isense	current control
AOUT1	2	6	Bridge A output 1	Connect to motor winding A
AOUT2	4	8	Bridge A output 2	
BOUT1	7	11	Bridge B output 1	Connect to motor winding B
BOUT2	5	9	Bridge B output 2	

TSSOP16 with exposed thermal pad

Symbol	Dimensions II	n Millimeters	Dimensions In Inches		
Symbol	Min.	Max.	Min.	Max.	
Α	pa <u>r 10</u> 0	1.200	<u>===</u> +(c	0.047	
A1	0.050	0.150	0.002	0.006	
A2	0.800	1.050	0.031	0.041	
b	0.190	0.300	0.007	0.012	
С	0.090	0.200	0.004	0.008	
D	4.900	5.100	0.193	0.201	
D1	2.900	3.100	0.114	0.122	
Е	6.250	6.550	0.246	0.258	
E1	4.300	4.500	0.169	0.177	
E2	2.900	3.100	0.114	0.122	
е	0.650(BSC)		0.026	(BSC)	
	0.450	0.750	0.018	0.030	
θ	0°	8°	0°	8°	

SOP16

CLI	Dimensions I	n Millimeters	Dimensions	In Inches
Symbol	Min	Max	Min	Max
Α	1. 350	1. 750	0. 053	0.069
A1	0. 100	0. 250	0.004	0. 010
A2	1. 350	1. 550	0.053	0.061
b	0. 330	0.510	0.013	0. 020
С	0. 170	0. 250	0. 007	0.010
D	9. 800	10. 200	0. 386	0. 402
Ε	3. 800	4. 000	0. 150	0. 157
E1	5. 800	6. 200	0. 228	0. 244
е	1. 270 (BSC)		0. 050	O (BSC)
L	0.400	1. 270	0.016	0.050
θ	0°	8°	0°	8°