The Distribution of a Function of a RV

Gregory M. Shinault

The Problem

X is a RV, with known PDF $f_X(x)$ or PMF $p_X(k)$. The function $g: \mathbb{R} \to \mathbb{R}$ is given. Find the PDF/PMF of Y = g(X).

This is the only type of problem we solve in this section. The case where *X* is a discrete RV is usually easy, so we will primarily focus on the case where *X* is a continuous RV.

Goals for this Lecture

- 1. Learn how to find the PMF of g(X) if X is discrete.
- 2. Learn how to find the PDF of g(X) if X is continuous.

This material corresponds to section 5.2 of the textbook.

Discrete Case

Example

Example 5.14. Suppose the range of *X* is $\{-1,0,1,2\}$ with $P\{X = k\} = \frac{1}{4}$ for each $k \in \{-1,0,1,2\}$. Let $Y = X^2$. Find the PMF of *Y*.

Example

Example 5.15. Suppose that X takes values in the set $\{-1,0,1,2\}$ with

$$P{X = -1} = \frac{1}{10}$$
 $P{X = 0} = \frac{2}{10}$

$$P{X = 1} = \frac{3}{10}$$
 $P{X = 2} = \frac{4}{10}$.

Let $Y = 2X^3$. Find the PMF of Y.

Examples for Continuous RVs

General Strategy

- 1. Find the CDF: $F_Y(y) = \mathbb{P}(g(X) \leq y)$.
- 2. Differentiate the CDF: $f_Y(y) = F'_Y(y)$.

Suppose $X \sim U([0,4])$. Set $Y = X^2$. Find $f_Y(y)$.

Easy Example

Suppose $X \sim U([-4,4])$. Set $Y = X^2$. Find $f_Y(y)$.

Moderate Example

Suppose $X \sim U([-3,4])$. Set $Y = X^2$. Find $f_Y(y)$.

Theory and Special Examples for Continuous RVs

Simplest General Case

Fact: If g(u) has a differentiable inverse then

$$f_{g(X)}(y) = \frac{f_X(g^{-1}(y))}{|g'(g^{-1}(y))|}.$$

Most General Case

Fact: If g(u) is differentiable and g'(u) = 0 at only finitely many points then

$$f_{g(X)}(y) = \sum_{x:g(x)=y} \frac{f_X(x)}{|g'(x)|}.$$

Special Example

Suppose *X* is $N(\mu, \sigma^2)$. Prove that the distribution of Y = aX + b is $N(a\mu + b, a^2\sigma^2)$.

This is a general fact worth remembering, especially for the duration of this course.

Log-Normal Distribution

Suppose *X* is $N(\mu, \sigma^2)$. Find the PDF of $Y = e^X$.

Definition: The distribution of *Y* is called the *log-normal* distribution.

Application of Log-Normal

- 1. Modeling in mathematical finance
- 2. Distribution of income in the USA
- 3. Number of alcoholic drinks consumed by an individual per week in every culture

The Wrap Up

Summary

- 1. Use the CDF method or the formula to find the PDF of g(X).
- 2. The CDF method is probably better practice because it requires more thought about probabilities, rather than analysis. (Personal preference)