UNIVERZA V LJUBLJANI

FAKULTETA ZA MATEMATIKO IN FIZIKO

Poročilo

Vaja 44 - Sila na vodnik v magnetnem polju

Luka Orlić

Kazalo

1	Teoretični uvod	2
2	Naloga	3
3	Vprašanja	3
4	Potrebščine	3
5	Skica	3
6	Meritve	5
	6.1 Metodologija	6
7	Obdelava meritev	6
8	Analiza rezultatov	9

1 Teoretični uvod

Na vodnik, ki leži v homogenem magnetnem polju pravokotno na smer silnic, deluje sila, ki je sorazmerna s tokom I skozi vodnik in z dolžino in z dolžino l vodnika v polju. Za enačbo sile uporabimo enačbo (1). Sorazmernostni koeficient B je gostota magnetnega polja. Magnetni pretok Φ_m skozi okvir, ki je pravokoten na silnicah je v homogenem polju opisan z enačbo (2), kjer je S ploščina okvirja, enota za B pa je $[T = Vs/M^2]$, enota za Φ_m pa je [Vs].

$$\vec{F} = l \cdot \vec{I} \times \vec{B}$$

$$F = lIB \cdot \sin(\phi) \tag{1}$$

$$F = lIB; \ \phi = 90 \deg$$

$$\Phi_m = BS \tag{2}$$

2 Naloga

- i.) S tehtanjem pokaži, da je sila na vodnik sorazmerna s tokom.
- ii.) Določi gostoto magnetnega polja in magnetni pretok med poloma magneta.

3 Vprašanja

- i.) Kako je sila na vodnik odvisna od kota, ki ga oklepata smeri polja in toka? Kakšna je smer sile?
- ii.) Tehtnica silo preračuna v maso. Kaj bi taka tehtnica pokazala, če bi poskus izvajali npr. na Luni, kjer je g=1,6m/s2?

4 Potrebščine

- Občutljiva tehnica z magnetom
- Stojalo s prečko
- Usmernik 20V, 4A
- ampermeter
- Reostat
- 4 žice

5 Skica

Skica (1) je skica poskusa.

Slika 1: Shema poskusa

6 Meritve

Meritev toka in mase 1. smer				
Index	tok [mA]	masa $[g]$		
1	0	0		
2	203	-0.15		
3	412	-0.34		
4	606	-0.52		
5	810	-0.71		
6	989	-0.89		
7	1194	-1.08		
8	1414	-1.28		
9	1607	-1.47		
10	1805	-1.65		
11	1985	-1.82		
12	2232	-2.05		
13	2401	-2.21		
14	2586	-2.38		
15	2799	-2.59		
16	3025	-2.81		
Meritev toka in mase 2. smer				
Index	tok [mA]	masa $[g]$		
1	0	0		
2	209	0.15		
3	418	0.33		
4	601	0.49		
5	809	0.68		
6	999	0.85		
7	1188	1.01		
8	1419	1.22		
9	1599	1.37		
10	1798	1.55		
11	2034	1.76		
12	2215	1.92		
13	2403	2.08		
14	2624	2.28		
15	2836	2.46		
16	3050	2.65		

$$l = 0,022 m$$

$$S = 0,0002 m^2$$
(3)

6.1 Metodologija

Na tehnico smo postavili stojalo z magnetoma, ki tvorita homogeno polje. Tehnico smo umerili, da kaže 0 g pri toku 0 mA, ter nato spreminjali tok in odčitavili meritve mase. Privzamemo, da tehnica uporablja konstano $g = 9,81\frac{m}{s^2}$.

7 Obdelava meritev

Naš cilj je da pridobimo podatek o Φ_m . Da bi to dosegli, moramo izračunat B, to pa naredimo s pomočjo enačbo (1). To enačbo bomo razdelali v enačbi (4). Ker je tehnica umerjena na 0 g pri 0 A, je F_g skriti n v linearni enačbi, ki nam pove samo težo objekta. a pa je računska konstanta tehnice, za katero velja |a| = |g|.

$$F = lBI$$

$$F = ma$$

$$F_q = mg$$

$$m_{real} = F_g \pm F = mg \pm ma = m(g \pm a)$$
Zaradi 7, \Longrightarrow

$$mg = lBI$$

$$B = \frac{mg}{lI}$$
(4)

$$k = \frac{m}{I}$$
; k je koeficient premice $k = \frac{Bl}{a} = \frac{Bl}{q}$

V enačbi (4) smo pokazali kako bi lahko "na roke" izračunali B, ter kako ga lahko določimo s fit funkcijo. Namreč vemo, da je n=0, kar pomeni da je naša fit funkcija f(I)=kI, ter ta k uporabimo za izračun B. Ko to imamo enostavno z enačbo (2), določimo še Φ_m , ter odgovrimo na vprašanja. Grafa (2) in (3) prikazujeta fit in podatke.

Rezultati so:

$$\begin{split} k\left(graf\ 1\right) &= 0,000918587\,\frac{g}{mA}\\ k\left(graf\ 2\right) &= 0,000864326\,\frac{g}{mA}\\ k\left(avg\right) &= 0,00089145650\,\frac{g}{mA} \end{split} \tag{5}$$

$$B = 0,40 T \pm 0,02 T$$

$$\Phi_m = 7,9 \cdot 10^{-5} \ (1 \pm 0,07) Vs$$

Slika 2: 1. meritev m(A)

Slika 3: 2. meritev $\mathbf{m}(\mathbf{A})$

8 Analiza rezultatov

Obdelil smo rezultate na približno 10% natančno.

Sila je pravzaprav odvisna od kota, tako kot vektorski produkt. Kajti v resnici v enačbi (1), obstaja med vektorjem toka in vektorjem magnetnega polja vektorski produkt. Potemtakem, je velikost sile odvisna od sinusa kota, smer pa od tega ali je manjši kot od I do B ali obratno, kajti vektorski produkt je anti-komutativna operacija $(A \times B = -B \times A)$.

Tehnica na luni, bi enako kazala, kajti ona meri isto silo, ter uporablja isti pospešek a za računanje sile. Edina razilka je da v m_{real} je F_g različen, in se potemtakem, skriti n v enačbi. Premakne za $n=m\cdot\frac{a}{g}$. Ker pa tehnico nastavimo na 0 g pri 0 A, te spremembe ne opazimo.