01:640:481 - Homework 4

Pranav Tikkawar

October 31, 2024

1. Question 10.53 Given a random sample of size n from a Poisson population, use the method of moments to obtain an estimator for the parameter λ .

Solution: We need to solve the following equation for λ :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \lambda$$

Thus, $\hat{\lambda} = \bar{X}$ is the method of moments estimator for λ .

2. Question 10.56 If X_1, X_2, \ldots, X_n is a random sample from a population given by

$$g(x; \theta, \delta) = \begin{cases} 1/\theta e^{-(x-\delta)/\theta} & \text{if } x > \delta \\ 0 & \text{otherwise} \end{cases}$$

find estimators for δ and θ by the method of moments. This distribution is sometimes referred to as the two-parameter exponential distribution, and for $\theta = 1$ it is the distribution of Example 3.

Solution: We can solve the following equations for δ and θ :

$$m'_{1} = \mu'_{1} = \bar{X} = \delta + \theta$$

$$m'_{2} = \mu'_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = \delta^{2} + 2\delta\theta + \theta^{2}$$

$$\delta = \bar{X} - \theta$$

$$\theta = \sqrt{\mu'_{2} - \mu'_{1}^{2}}$$

$$\delta = \mu'_{1} - \sqrt{\mu'_{2} - \mu'_{1}^{2}}$$

Thus we have a method of moments estimator for δ and θ .

3. Question 10.59 Use the method of maximum likelihood to rework Exercise 53.

Solution: We want to max the likelihood function $L(\lambda) = \prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$ We can take

the log of the likelihood function and solve for λ :

$$ln(L(\lambda)) = \sum_{i=1}^{n} x_i ln(\lambda) - n\lambda - \sum_{i=1}^{n} ln(x_i!)$$
$$\frac{\partial ln(L(\lambda))}{\partial \lambda} = \frac{1}{\lambda} \sum_{i=1}^{n} x_i - n = 0$$
$$\lambda = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{X}$$

Thus $\hat{\lambda} = \bar{X}$ is the maximum likelihood estimator for λ .

4. Question 10.66 Use the method of maximum likelihood to rework Exercise 56

Solution: We want to max the likelihood function $L(\delta, \theta) = \prod_{i=1}^{n} \frac{1}{\theta} e^{-(x_i - \delta)/\theta}$ We can take the log of the likelihood function and solve for δ and θ :

$$ln(L(\delta, \theta)) = -\sum_{i=1}^{n} \frac{x_i - \delta}{\theta} - nln(\theta)$$
$$\frac{\partial ln(L(\delta, \theta))}{\partial \delta} = \frac{n}{\theta} = 0$$
$$\frac{\partial ln(L(\delta, \theta))}{\partial \theta} = \sum_{i=1}^{n} \frac{x_i - \delta}{\theta^2} - \frac{n}{\theta} = 0$$

We can solve the above equations to get the maximum likelihood estimators for δ and θ . We can see that $\hat{\delta} = min(X_i)$ and $\hat{\theta} = \bar{x} - min(X_i)$.

5. Question 10.3 Use the formula for the sampling distribution of \tilde{X} on page 253 to show that for random samples of size n=3 the median is an unbiased estimator of the parameter θ of a uniform population with $\alpha=\theta-\frac{1}{2}$ and $\beta=\theta+\frac{1}{2}$.

Solution: We can notice that the sample median for this population is $h(x) = \frac{(2n-1)!}{m!m!} \cdot \int_{-\infty}^{x} f(x)dx \cdot \int_{x}^{\infty} f(x)dx f(x)$.

$$h(x) = 6\left(x - \theta + \frac{1}{2}\right)\left(\theta + \frac{1}{2} - x\right)$$

$$E[x] = 6 \int_{\theta - \frac{1}{2}}^{\theta + \frac{1}{2}} x \left(x - \theta + \frac{1}{2} \right) \left(\theta + \frac{1}{2} - x \right)$$

After a bunch of algebra, we can see that $E[x] = \theta$. Thus, the median is an unbiased estimator of the parameter θ of a uniform population with $\alpha = \theta - \frac{1}{2}$ and $\beta = \theta + \frac{1}{2}$.

6. Question 10.15 Show that the mean of a random sample of size n is a minimum variance unbiased estimator of the parameter λ of a Poisson population.

Solution: Consider the possion distribution $f(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$. The mean of a random sample of size n is $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$. We know that the mean of a Poisson distribution is λ . Thus, \bar{X} is an unbiased estimator of λ . We also know that the variance of a Poisson distribution is λ . We can calculate the CRLB of λ by solving the following equation:

$$var(\bar{X}) = \frac{1}{nE\left[\frac{\partial ln(f(X))}{\partial \lambda}^2\right]}$$

We can see that the CRLB is

$$ln(f(X)) = -\lambda + xln(\lambda) - ln(x!)$$

$$\frac{\partial ln(f(X))}{\partial \lambda} = \frac{x}{\lambda} - 1$$

$$E\left[\frac{\partial ln(f(X))^{2}}{\partial \lambda}\right] = E\left[\left(\frac{x}{\lambda} - 1\right)^{2}\right] = \frac{1}{\lambda}$$

$$var(\bar{X}) = \frac{1}{n \cdot \frac{1}{\lambda}} = \frac{\lambda}{n}$$

Since the variance of \bar{X} is $\frac{\lambda}{n}$, we can see that the mean of a random sample of size n is a minimum variance unbiased estimator of the parameter λ of a Poisson population.

7. Question 10.18 Show that for the unbiased estimator of Example 4, $\frac{n+1}{n} \cdot Y_n$, the Cramer-Rao inequality is not satisfied.

Solution: We kno the sample distribution of Y_n is

$$\frac{n}{\beta^n} \cdot y_n^{n-1}$$

We know that the CRLB is given by

$$var(\hat{\theta}) = \frac{1}{nE\left[\frac{\partial ln(f(X))^{2}}{\partial \theta}\right]}$$

Pranav Tikkawar 01:640:481 Homework 4

We can calculate the CRLB for the unbiased estimator $\frac{n+1}{n} \cdot Y_n$ by solving the following equation:

$$ln(f(X)) = \ln(n) - n\ln(\beta) + (n-1)\ln(y_n)$$

$$\frac{\partial ln(f(X))}{\partial \beta} = -\frac{n}{\beta}$$

$$E\left[\frac{\partial ln(f(X))^2}{\partial \beta}\right] = E\left[\left(-\frac{n}{\beta}\right)^2\right] = \frac{n^2}{\beta^2}$$

$$var(\hat{\theta}) = \frac{1}{n \cdot \frac{n^2}{\beta^2}} = \frac{\beta^2}{n^3}$$

We can see that the CRLB is $\frac{\beta^2}{n^3}$. We can calculate the variance of the unbiased estimator $\frac{n+1}{n} \cdot Y_n$ by solving the following equation:

$$var\left(\frac{n+1}{n}\cdot Y_n\right) = \left(\frac{n+1}{n}\right)^2 \cdot var(Y_n) = \left(\frac{n+1}{n}\right)^2 \cdot \frac{\beta^2}{n^3} = \frac{\beta^2(n+1)^2}{n^4}$$

We can see that the variance of the unbiased estimator $\frac{n+1}{n} \cdot Y_n$ is $\frac{\beta^2(n+1)^2}{n^4}$ and that it is greater than the CRLB $\frac{\beta^2}{n^3}$. Thus, the Cramer-Rao inequality is not satisfied.