Decision Making - ex 3

Filippo Brajucha, Youssef Hanna

October 2023

1 nQueens

1.1 Table

		30	35	45	50
input order	min value	1.588.827	-	-	-
input order	random value	9	10	6	42
min domain size	min value	15	21	6	123
iiiii domaiii size	random value	1	0	1	10
domWdeg	min value	15	21	6	123
domwdeg	random value	1	0	1	10

Table 1: nQueens problem with n = 30, 35, 45, 50

1.2 Comment

 $https://www.minizinc.org/doc-2.7.6/en/mzn_search.html$

We can observe that the number of failures with the "input_order - min_value" is extremely high compared to other ones. It is in the order of the 10^6 , other datas are in the order of 10^2 ; this is the only case where the system cannot perform the research for n = 35, 45, 50.

Generally we can observe that the random model is always better in terms of failures for this problem.

2 Poster Placement

2.1 Table

		19x19		20x20		
		Fails	Time	Fails	Time	
input order	min value	1.315.598	11s 35ms	26.063.823	3m 12s	
	random value	_	-	-	-	
min domain size	min value	239.954	1s 796ms	1.873	244ms	
	random value	2.929.153	$19s\ 172ms$	5.797.312	35s 987ms	
domWdeg	min value	236.024	1s~820ms	1.873	244ms	
	random value	2.929.030	19s~30ms	5.797.456	35s 957ms	

Table 2: Poster Placement using 19x19.dzn and 20x20.dzn (unsorted)

2.2 Table with sorted rectangles

	19x19		20x20	
	Fails	Time	Fails	Time
min value	29.871	562ms	16.631	479ms
random value	-	-	-	-

Table 3: Poster Placement using 19x19.dzn and 20x20.dzn (sorted)

2.3 Comment

3 Quasigroup

3.1 Table

		default	domWdeg - random	domWdeg + Luby
qc30-03	Fails	-	234.522	234.522
	Time	-	15s~569ms	$19s \ 109ms$
qc30-05	Fails	-	36.866	36.866
	Time	-	2s 909ms	2s 820ms
qc30-08	Fails	324	324	324
	Time	$373 \mathrm{ms}$	$394 \mathrm{ms}$	$583 \mathrm{ms}$
qc30-12	Fails	470	470	470
	Time	$409 \mathrm{ms}$	$399 \mathrm{ms}$	$396 \mathrm{ms}$
qc30-19	Fails	2.192	2.192	2.192
	Time	$513 \mathrm{ms}$	$500\mathrm{ms}$	$574 \mathrm{ms}$

Table 4: Quasigroup problem resolution with using qc30-03.dzn, qc30-05.dzn, qc30-08.dzn, qc30-12.dzn and qc30-19.dzn

3.2 Comment

rifai tutti i tempi

4 Questions

- 1. When are random decisions (not) useful? Why?
- 2. Are dynamic heuristics always better than static heuristics? Why?
- 3. Is programming search and/or restarting always a good idea? Why?

4.1 Answers

1. Measured data varies greatly depending on the nature of the problem; the only scenario where resolving with random heuristic is the best solution is with the nQueens problem.

In the poster placement problem, it's always the worst solution, differing by orders of magnitude both in the number of errors (6 million errors compared to around 2 thousand) and in resolution times (several seconds compared to about 300ms). In the situation with ordered posters, it times out.

Using the random heuristic with the quasigroup problem, that result to be the best solution 2 times out of 5. Due to this we can think that the input order is crucial in the poster placement problem.

Random solutions, therefore, are not suitable in situations where maintaining an order in data usage is necessary. In fact, in both the quasigroup and nQueens problems, the choice of starting point isn't important since finding a solution requires starting from any point.

The scenario where it becomes most apparent that the random heuristic is the worst is solving the nQueens problem when input order is specified. Using the input order heuristic means that each element, in order, is assigned the minimum value from the domain. The issue arises when it's necessary to find a solution; the solver encounters a situation where all elements do not satisfy the constraints. Consequently, it has to perform numerous backtracking operations to ensure that all points on the grid adhere

 $to the constraints. \ perchedomwde g\`euguale amindomain? condelle semplificazioni perch\`e\`e costante si ottiene de la constraint de la const$

2.

3.