KIÉM TRA HỌC KÌ 2 - 2022-2023

KIỂM TRA HOC KÌ 2 - 2022-2023 — ĐỀ 4 LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

B
$$4^{x+1} + C$$

$$\mathbf{c}$$
 $\frac{4^{x+1}}{x+1}$.

CÂU 2. Cho hàm số $f(x) = x^2 + 2$. Khẳng định nào dưới đây đúng t

B
$$\int f(x) dx = \frac{x^3}{3} + 2x + C$$

$$\int f(x) dx = x^2 + 2x + C.$$

(A)
$$\int f(x) dx = 2x + C$$
.
(B) $\int f(x) dx = \frac{x^3}{3} + 2x + C$.
(C) $\int f(x) dx = x^2 + 2x + C$.
(D) $\int f(x) dx = x^3 + 2x + C$.

CÂU 3. Tìm họ nguyên hàm của hàm số $f(x) = \frac{1}{2x-1}$.

A
$$\int f(x) dx = \ln|2x - 1| + C$$
.

(A)
$$\int f(x) dx = \ln|2x - 1| + C$$
.
(B) $\int f(x) dx = -\ln|2x - 1| + C$.
(C) $\int f(x) dx = \frac{1}{2} \ln|2x - 1| + C$.
(D) $\int f(x) dx = 2 \ln|2x - 1| + C$.

$$\int f(x) dx = \frac{1}{2} \ln|2x - 1| + C.$$

CÂU 4. Họ nguyên hàm của hàm số $f(x) = 4x^3 - 2020$ là

 $(A) x^4 - 2020x + C.$

(B) $12x^3 + C$.

(C) $x^4 + C$.

(D) $4x^3 - 2020x + C$.

CÂU 6. Họ nguyên hàm của hàm số $f(x) = 2x(\sin x + 1)$ là

- (A) $x^2 + 2x \cos x 2 \sin x + C$.
- **(B)** $x^2 2x \cos x 2 \sin x + C$.

 $(\mathbf{C}) x^2(x - \cos x) + C.$

 $(\mathbf{D}) x^2 - 2x \cos x + 2 \sin x + C.$

CÂU 7. Cho a < b < c, $\int_{a}^{b} f(x) dx = 5$ và $\int_{a}^{b} f(x) dx = 2$. Tính $\int_{a}^{c} f(x) dx$.

CÂU 8. Nếu $\int\limits_0^3 f(x) \, \mathrm{d}x = 3$, $\int\limits_3^5 f(x) \, \mathrm{d}x = 7$ thì $\int\limits_0^5 f(x) \, \mathrm{d}x$ bằng

CÂU 9. Gọi z_1 và z_2 là hai nghiệm phức của phương trình $z^2 + z + 3 = 0$. Khi đó $|z_1| + |z_2|$ bằng

CÂU 10. Cho $\int_{1}^{13} f(x) dx = 2019$. Tính $\int_{0}^{4} f(3x+1) dx$.

CÂU 11. Xét tích phân $I=\int \mathrm{e}^{\sqrt{2x+1}}\mathrm{d}x$, nếu đặt $u=\sqrt{2x+1}$ thì I bằng

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK NOTE

•	•					•	•	•	•	•					•		•

•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

 • • •	• • • •	 	

•		•															

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠

QUICK NOTE

$$\bigcirc \int_{1}^{3} u e^{u} du.$$

$$\mathbf{D} \frac{1}{2} \int_{1}^{3} e^{u} du.$$

CÂU 12. Nếu $\int_{a}^{a} \ln x \, dx = 1 + 2a$ với a > 1 thì a thuộc khoảng nào sau đây?

$$\bigcirc$$
 (6; 9).

CÂU 13. Tích phân $I = \int_{1}^{2} x e^{x} dx$ bằng

$$lack A$$
 e^2 .

$$\mathbf{B}$$
 $-\mathrm{e}^2$.

(D)
$$3e^2 - 2e$$
.

CÂU 14. Cho hình (D) giới hạn bởi các đường $y=f(x),\,y=0,\,x=\pi,\,x=\mathrm{e.}$ Quay (D)quanh trục Ox ta được khối tròn xoay có thể tích V. Khi đó V được xác định bằng công

$$\bigcirc V = \pi \int_{-\pi}^{\pi} f^2(x) \, \mathrm{d}x.$$

$$\mathbf{D} V = \int_{0}^{\pi} \left| f(x) \right| \mathrm{d}x.$$

CÂU 15. Cho đồ thị hàm số y = f(x). Diện tích hình phẳng S (phần tô đậm trong hình) bằng

(A)
$$\int_{-2}^{0} f(x) dx - \int_{0}^{2} f(x) dx$$
.

$$\boxed{\mathbf{C}} \left| \int_{-2}^{0} f(x) \, \mathrm{d}x + \int_{0}^{2} f(x) \, \mathrm{d}x \right|.$$

CÂU 16. Cho hàm số y = f(x) xác định và liện tục trên đoạn [a;b]. Diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và hai đường thẳng x = a; x = b được tính theo công thức

$$\mathbf{C}$$
 $S = \int_{b}^{a} |f(x)| dx$.

CÂU 17. Phần hình phẳng (H) được gạch chéo trong hình vẽ dưới đây được giới hạn bởi đồ thị hàm số $y = f(x), y = x^2 + 4x$ và hai đường thẳng x = -2; x = 0.

Biết $\int f(x) dx = \frac{4}{3}$. Diện tích hình (H) là

A
$$\frac{7}{3}$$
.

B
$$\frac{16}{3}$$

$$\bigcirc \frac{4}{3}$$
.

$$\bigcirc \frac{20}{3}$$
.

CÂU 18.

Thể tích của vật thể tròn xoay thu được khi quay hình phẳng (phần gach sọc của hình vẽ) xung quanh truc hoành bằng

B $\frac{53\pi}{15}$. **C** $\frac{153\pi}{5}$. **D** $\frac{31\pi}{13}$

CÂU 19. Cho số phức z=4-3i mô-đun của nó tương ứng là

(A) |z| = 1.

(B) |z| = 25.

(**C**) |z| = 5.

(D) $|z| = \sqrt{5}$.

CÂU 20. Cho số phức z và w có điểm biểu diễn trong mặt phẳng Oxy lần lượt là M(2;1)và $N\left(1\,;\,2\right)$. Tính mô-đun của số phức z-w

(B) $\sqrt{2}$.

 (\mathbf{D}) 2.

CÂU 21. Số phức z thỏa mãn $\bar{z} = 1 - 2i$ được biểu diễn trên mặt phẳng tọa độ bởi điểm nào sau đây?

(A) Q(-1;-2).

(B) M(1;2).

 $(\mathbf{C}) P(-1; 2).$

(**D**) N(1; -2).

CÂU 22. Trên mặt phẳng tọa độ Oxy, điểm biểu diễn số phức $z=(1+2i)^2$ là điểm nào dưới đây?

(A) P(-3;4).

B Q(5;4).

(**c**) N(4; -3).

(D) M(5;4).

CÂU 23. Cho số phức z thỏa mãn $z \cdot \bar{z} = 16$ giá trị của |z| tương ứng bằng

(A) 16.

CÂU 24.

Điểm M trong hình vẽ bên là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo của số phức z.

(A) Phần thực là 4 và phần ảo là 3.

(**B**) Phần thực là 3 và phần ảo là 4i.

(**C**) Phần thực là 3 và phần ảo là 4.

(**D**) Phần thực là 4 và phần ảo là 3i.

CÂU 25. cho hai số phức z = 4 + 3i và w = 1 - i. Số phức z - w bằng

(B) 7 - i.

(**C**) 3+4i.

 $(\mathbf{D}) - 3 - 4i$.

CÂU 26. Cho số phức z thỏa mãn z=3-4i. Điểm biểu diễn số phức u=iz trên mặt phẳng phức có tọa độ tương ứng là

(A) (4;3).

(B) (3; -4).

 (\mathbf{C}) (3; 4).

 $(\mathbf{D})(3;-3).$

CÂU 27. Cho hai số phức z và z'. Trong các mệnh đề sau, mệnh đề nào sai?

(A) |z + z'| = |z| + |z'|.

 $(\mathbf{B})|z\cdot z'|=|z|\cdot |z'|.$

 $(\mathbf{C})\,\overline{z}\cdot\overline{z'}=\overline{z\cdot z'}.$

 $(\overline{\mathbf{D}}) \overline{z} + \overline{z'} = \overline{z + z'}.$

CÂU 28. Cho hai số phức $z_1 = 1 + 3i$ và $z_2 = 2i - 3$. Số phức $\frac{z_1}{z_2}$ bằng

B $-\frac{3-11i}{13}$. **C** $\frac{3+11i}{13}$.

CÂU 29. Cho số phức z thỏa mãn (1-2i)z=(4+3i)(2-z). Giá trị |z| bằng

B $\frac{5\sqrt{26}}{13}$.

© $2\sqrt{3}$.

CÂU 30. Số phức z thỏa mãn điều kiện $z = 4 + 3\overline{z}$ có mô-đun bằng

(A) $\sqrt{5}$.

(B) 2.

(**D**) 4.

CÂU 31. Cho số phức z thỏa mãn |z-1+2i|=|z+3i-2|. Trên mặt phẳng tọa độ Oxytập hợp điểm biểu diễn số phức z là

QUICK NOTE

QUICK NOTE	$oldsymbol{lack}$ đường thẳng x – $oldsymbol{oldsymbol{C}}$ đường thẳng $2x$		$lackbox{\bf B}$ đường thẳng x - $lackbox{\bf D}$ đường thẳng x^2	•
	CÂU 32. Cho hai số p là hai điểm biểu diễn s \mathbf{A} $2\sqrt{3}$.			2z + 3 = 0. Gọi A và B
	CÂU 33. Có bao nhiê (A) 1.	êu số phức z thỏa mãn \bigcirc B 3.	phương trình $z^2 - 4z - \mathbf{C}$ 2.	+3 = 0?
	CÂU 34. Trong không $(A) A (3; 4; -5).$		$= 3\vec{i} + 4\vec{j} - 5\vec{k}$. Tọa co $A(3;4;5)$.	
	CÂU 35. Trong không Diện tích của mặt cầu	(S) bằng		
	A 42π .	0	\bigcirc 9π .	
	CÂU 36. Trong không pháp tuyến là	g gian $Oxyz$, mặt phẩ	$\log (P) : 2x - 6y - 8z$	+1 = 0 có một véc-tơ
	l ·	B) (1; 3; 4).	\bigcirc $(1; -3; -4).$	\bigcirc $(1; -3; 4).$
	CÂU 37. Trong không	_	_	_
	đây không thuộc mặt p	phẳng (P) ?		
			© (3; 1; 1).	
	CÂU 38. Trong không và vuông góc với mặt p			
			B $x + y + z - 2 =$	
	(c) x - y = 0.			
	CÂU 39. Trong không	g gian $Oxyz$, cho mặt j	phẳng (α) đi qua $A(1; -1)$	-2;3) và song song mặt
	$\begin{array}{c} \text{phẳng } (Oxy) \text{ thì phươn} \\ & \end{array}$			
	(A) x - 1 = 0.	$\mathbf{B}) \ x + 2y + z = 0.$	© $y + 2 = 0$.	
	CÂU 40. Trong không	g gian $Oxuz$, một véct ϵ	o chỉ phương của đường	thẳng Δ : $\begin{cases} x = 1 \\ y = 2 + 2t \end{cases}$
		, g.a 0 wg. , , e e e e	o om pridong odd ddong	$\begin{cases} z = 1 - 3t \end{cases}$
	là	(1 a a)	(a, a, a)	(1 0 1)
	_		$ \mathbf{C} \ \vec{u} = (0; 2; -3). $	
	CÂU 41. Trong không $x + 1$	g gian $Oxyz$, mặt phắn $1 y+2 z+3$	ng nào trong các mặt p	ohẳng sau song song với
	dường thẳng (d) : $\frac{x+1}{1}$			
	(A) (P) : $z + 2y + 3z$ (C) (α) : $3x - 3y + z$	z=5.	B (Q) : $3x - y - 2x$ D (β) : $3x - 3y + z$	z=5.
	_		_	
	CÂU 42. Trong không	g gian Orug cho đườ	$x = 1 - \frac{1}{2}$	+2t - t ($t\in\mathbb{R}$) và điểm
	OAO 42. ITOII KIIOII	g gian $Oxyz$, eno duo	$\begin{cases} y = z \\ z = -2 \end{cases}$	
	M(1;2;m). Tìm giá trị	i của tham số m để điể	`	
		B $m = -2$.	(C) $m = 1$.	
	CÂU 43. Cho hàm số	f(x) có đạo hàm $f'(x)$	$) = x(x-1)(x+4)^3, \forall x$	$x \in \mathbb{R}$. Số điểm cực tiểu
	của hàm số đã cho là $\stackrel{\frown}{\mathbf{A}}$ 2.	(B) 3.	© 4.	(D) 1.
	_	\smile	_	\sim
	CÂU 44. Trong không			_
	và đường thẳng Δ_2 : $\frac{x}{}$	$\frac{+2}{1} = \frac{y-a}{m} = \frac{z-b}{n}.$	Nếu hai đường thẳng	Δ_1,Δ_2 trùng nhau thì
	ta có $(a+b+m+n)$ t			
	(A) 11.	B 7.	\bigcirc -12.	(D) -9 .
	CÂLLAE CIZALI ?	$\int_{1}^{\frac{\pi}{3}}$	l. (-:) 1	1. >
	CÂU 45. Giá trị của t	$\lim \operatorname{pnan} I = \int_{\pi} \cos x \mathrm{d}x$	$\lim (\sin x) dx$ tương ứng	bang

$$\bigcirc \frac{\sqrt{3}}{2} - 1.$$

B
$$\frac{\sqrt{3}\ln 3 + (2 - 2\sqrt{3})(\ln 2 + 1)}{4}$$
.

$$\mathbf{c} \frac{3\sqrt{3}-2}{4}$$

$$(\mathbf{D})\sqrt{3}\ln 3 - 2\ln 2 + 1$$

CÂU 46. Tích phân $\int x(x-1)(x-2)...(x-2020) dx$ bằng

- **(A)** 2020!.
- (\mathbf{B}) 0.
- **(C)** 2019!.

CÂU 47. Cho hàm số f(x) có đạo hàm cấp hai xác định trên \mathbb{R} thỏa mãn hệ thức

$$f''(x) + f(x) = 2f'(x) + x \ \forall x \in \mathbb{R}.$$

Biết f'(0) = 1, f(0) = 2. Giá trị $\hat{\int} f(x) \, \mathrm{d}x$ bằng

- **(A)** 3.

CÂU 48. Cho hai số phức z_1, z_2 khác 0 thỏa mãn $\frac{z_1}{z_1}$ là số thuần ảo và $|z_1 - z_2| = 10$. Giá trị lớn nhất của $|z_1| + |z_2|$ bằng

- **(A)** 10.
- **(c)** $10\sqrt{3}$.

CÂU 49. Trong không gian với hệ tọa độ Oxyz, cho điểm H(a;b;c) với a,b,c>0. Mặt phẳng (P) chứa điểm H và lần lượt cắt các trục Ox, Oy, Oz tại A, B, C thỏa mãn H là trực

$$\mathbf{C} \ ax + by + cz - a^2 - b^2 - c^2 = 0.$$

CÂU 50. Trong không gian tọa độ Oxyz, cho hai điểm A(3;1;1), B(7;3;9) và mặt phẳng (P): x + y + z + 3 = 0. Điểm $M(x; y; x) \in (P)$ sao cho $|\overrightarrow{MA} + \overrightarrow{MB}|$ đạt giá trị nhỏ nhất. Giá trị x + y + z bằng

- (B) 3.
- $(\mathbf{C}) 0.$
- $(\mathbf{D}) \, 2$.

•	-	-	•	•	•	•	•	•	÷	•	Ŧ	•	•		•	-	•	•	•	•	•	•	•	•	•	•	•	•	•	-		
•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	

																	•

•			•	•	•	•	•	•	•	•	•	•				•	•	•	•	•	•	•	•	•	•

ĐIỂM:

Be yourself; everyone else is already taken.

QUICK NOTE

Ngày làm đề:/..../.....

KIẾM TRA HỌC KÌ 2 - 2022-2023

KIỂM TRA HỌC KÌ 2 - 2022-2023 — ĐỀ 5 LỚP TOÁN THÂY PHÁT

Thời gian làm bài: 90 phút, không kể thời gian phát đề

CÂU 1. Họ nguyên hàm của hàm số $f(x) = \frac{1}{\sqrt{x^2 + a}}$ bằng

$$-a$$
 $+ C$.

$$\mathbf{B} \ln \left| x + \sqrt{x^2 + a} \right| + C.$$

$$\left| \mathbf{C} \right| \ln \left| \sqrt{x^2 + a} \right| + C.$$

$$\boxed{\mathbf{D}} \ln \left| \sqrt{x^2 + a} - 2x \right| + C.$$

CÂU 2. Hàm số nào sau đây là một nguyên hàm của hàm số $f(x) = e^{2x}$?

(A)
$$F(x) = \frac{1}{2}e^{2x} + 2020.$$

$$\mathbf{B} F(x) = 2e^{2x} + 1.$$

(A)
$$F(x) = \frac{1}{2}e^{2x} + 2020.$$

(C) $F(x) = \frac{1}{2}e^{2x} + x.$

$$(\mathbf{D}) F(x) = e^{2x} + 2021.$$

CÂU 3. Họ nguyên hàm $F(x) = \int \cos^2 x \, dx$ là

B
$$F(x) = \frac{x}{4} - \frac{\cos 2x}{4} + C.$$

D
$$F(x) = x + \frac{\sin \frac{4}{2}x}{2} + C$$

CÂU 4. Biết $F(x) = (ax^2 + bx + c)\sqrt{2x - 3}$ là nguyên hàm của hàm số $f(x) = \frac{20x^2 - 30x + 11}{\sqrt{2x - 3}}$

Giá trị của a+b+c bằng

$$\bigcirc$$
 5.

$$\bigcirc$$
 8.

CÂU 5. Họ nguyên hàm của hàm số $f(x) = \frac{4^x + 1}{2^x}$ là

(A)
$$F(x) = \frac{2^x}{\ln 2} - \frac{1}{2^x \ln 2} + C.$$

(C) $F(x) = \frac{2^x}{\ln 2} + \frac{1}{2^x \ln 2} + C.$

B
$$F(x) = \frac{4^x}{2\ln 2} + \frac{2^x}{\ln 2} + C.$$

D $F(x) = \frac{4^x}{\ln 2} - \frac{2^x}{\ln 2} + C.$

$$\mathbf{C}$$
 $F(x) = \frac{\frac{\ln 2}{2^x}}{\ln 2} + \frac{2 \ln 2}{2^x \ln 2} + C$

(D)
$$F(x) = \frac{4^{x}}{\ln 2} - \frac{2^{x}}{\ln 2} + C.$$

CÂU 6. Họ nguyên hàm $F(x) = \int x e^{2x} dx$ là

(A)
$$F(x) = (2x - 1)e^{2x} + C$$
.

B
$$F(x) = (x-2)e^{2x} + C$$
.

$$\mathbf{C}$$
 $F(x) = \frac{1}{4}(2x+1)e^{2x} + C.$

(B)
$$F(x) = (x-2)e^{2x} + C$$
.
(D) $F(x) = \frac{1}{2}\left(x - \frac{1}{2}\right)e^{2x} + C$.

CÂU 7. Tính tích phân $I = \int (4x^3 - 3) dx$.

$$\bigcirc I = 4.$$

CÂU 8. Giá trị của tích phân $\int\limits_{-\infty}^{\mathrm{e}^{2020}-1} \frac{\mathrm{d}x}{x+1} \text{ bằng}$

$$\bigcirc 0.$$

CÂU 9. Biết $\int_{-1}^{1} [2f(x) + 3g(x)] dx = 12$ và $\int_{-1}^{1} [4f(x) - g(x)] dx = 5$. Giá trị của tích phân

$$\int_{0}^{1} [2019f(x) - 2020g(x)] dx \text{ bằng}$$

A
$$-\frac{201921}{14}$$
. **B** $-\frac{22247}{14}$. **C** $-\frac{52247}{28}$. **D** $\frac{31543}{14}$.

$$\mathbf{B} - \frac{22247}{14}$$

$$\bigcirc$$
 $-\frac{52247}{28}$

$$\bigcirc$$
 $\frac{31543}{14}$.

CÂU 10. Cho $\int_{-\infty}^{2} \frac{\cos x}{\sin^2 x - 5\sin x + 6} dx = a \ln \frac{4}{c} + b \text{ với } a, c > 0.$ Giá trị của a + b + c

bằng

- (\mathbf{A}) 0.

CÂU 11. Xét tích phân $\int_1^e \frac{\sqrt{\ln^{2020} x + 1}}{x} dx$, nếu đặt $u = \ln x$ thì $\int_1^e \frac{\sqrt{\ln^{2020} x + 1}}{x} dx$

(A) $2020 \int_0^1 (u+1) du$.

B $2020 \int_{0}^{1} (u^{2020} + 1) \, \mathrm{d}u.$

 \bullet $\int_{0}^{1} \sqrt{u^{2020} + 1} \, \mathrm{d}u.$

CÂU 12. Xét $I = \int_{0}^{\frac{\pi}{2}} (2-x) \sin x \, dx$ và đặt u = 2-x, $dv = \sin x \, dx$ thì

- $\mathbf{A} I = -(2-x)\cos x \Big|_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \cos x \, dx.$ $\mathbf{B} I = -(2-x)\cos x \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx.$ $\mathbf{D} I = (2-x) \Big|_{0}^{\frac{\pi}{2}} + \int_{0}^{\frac{\pi}{2}} \cos x \, dx.$

CÂU 13. Cho hàm số y=f(x) có đạo hàm liên tục trên [0;1], thỏa mãn $\int f(x) \, \mathrm{d}x = 3$ và

f(1)=4. Tích phân $\int\limits_{-\infty}^{\infty}xf'(x)\,\mathrm{d}x$ có giá trị là

- (**D**) -1.

CÂU 14. Gọi D là hình phẳng giới hạn bởi các đường $y=\mathrm{e}^{3x},\,y=0,\,x=0$ và x=1. Thể tích của khối tròn xoay tạo thành khi quay D quay quanh Ox bằng

- $\mathbf{C} \pi \int e^{6x} dx.$
- $\mathbf{D} \ \pi \ \int \mathrm{e}^{3x} \, \mathrm{d}x.$

CÂU 15. Diện tích phần hình phẳng tô đậm trong hình vẽ bên được tính theo công thức nào dưới đây?

(A) $\int_{1}^{2} (-2x+2) dx$.

- $\bigcirc \int_{-1}^{2} (-2x^2 + 2x + 4) dx.$

CÂU 16. Diện tích S của hình phẳng giới hạn bởi các đường $y=2\sin x, y=3, x=1$ và x=2 được tính bởi công thức nào dưới đây?

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
	•																•	•	•	•	•											•	

• • •	 	 	
• • •	 	 	
• • •	 	 	

	•	•	•	•	•	٠	٠	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•

٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

ည	ПС	7	Ν		i
51	шс	-18	N	О	

B
$$S = \int_{1}^{2} |3 - 2\sin x| \, \mathrm{d}x.$$

CÂU 17. Cho (H) là hình phẳng giới hạn bởi parabol $y=x^2$, cung tròn $y=\sqrt{2x-x^2}$ và trực hoành (phần tô gạch sọc trong hình). Diện tích của hình (H) bằng

(A)
$$\frac{\pi}{2} - \frac{1}{3}$$
. **(B)** $\frac{\pi}{4} - \frac{1}{3}$. **(C)** $\frac{\pi}{4} + \frac{1}{3}$. **(D)** $\frac{\pi}{2} + \frac{1}{3}$.

B
$$\frac{\pi}{4} - \frac{1}{3}$$
.

$$\frac{\pi}{4} + \frac{1}{3}$$
.

$$\frac{\pi}{2} + \frac{1}{3}$$
.

CÂU 18.

Nêu công thức tính thể tích vật thể tròn xoay thu được khi quay hình phẳng (phần gạch sọc của hình vẽ) xung quanh trực hoành Ox.

B
$$V = \pi \left[\int_{0}^{4} x \, dx - \int_{2}^{4} (x - 2)^2 \, dx \right].$$

©
$$V = \pi \left[\int_{0}^{2} x \, dx + \int_{2}^{4} (x - 2)^{2} \, dx \right]$$

$$(\mathbf{D}) V = \pi \left[\int_{0}^{2} \sqrt{x} \, dx - \int_{2}^{4} (x - 2) \, dx \right]$$

CÂU 19. Số phức liên hợp của số phức z = 1 - 2i là

$$\mathbf{B}) \, \overline{z} = -1 + 2i.$$

$$\bigcirc \overline{z} = 1 + 2i.$$

CÂU 20. Nghiệm của phương trình $2^{2x-4} = 2^x$ là

(B)
$$x = -4$$
.

$$(c)$$
 $x = -16$.

(D)
$$x = 16$$
.

CÂU 21.

Trong hình bên M, N lần lượt là điểm biểu diễn số phức z và w . Số phức z + w bằng

(A)
$$1-3i$$
. **(B)** $3+i$. **(C)** $1+3i$. **(D)** $3-i$.

$$(\mathbf{B}) 3 + i.$$

$$(\mathbf{C}) 1 + 3i.$$

$$\bigcirc$$
 $3-i$.

CÂU 22. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn số phức z=-3 + 4i?

$$(A)$$
 $P(-3;4).$

(B)
$$N(3;4)$$
.

$$(\mathbf{C}) Q(4; -3).$$

$$\bigcirc$$
 $M(4;3).$

CÂU 23. Cho số phức $z_1 = 1 + i$, $z_2 = 2 - 3i$. Phần ảo của số phức $w = z_1 + z_2$ là

$$\bigcirc$$
 -2 .

B
$$-3$$
.

$$\bigcirc$$
 2.

$$\bigcirc$$
 3.

CÂU 24. Trong mặt phẳngOxy, tập hợp tất cả các điểm biểu diễn của số phức z thỏa mãn $|\overline{z}+1-2i|=1$ là đường tròn có tọa độ của tâm là

$$(-2;-1).$$

B
$$(2;-1)$$
.

n là
$$(\mathbf{C}) (-1; -2).$$

$$(\mathbf{D})$$
 $(-1;2)$.

CÂU 25. Cho số phức z = 1 - 2i. Số phức $(2 + 3i)\overline{z}$ bằng

A
$$4 - 7i$$
.

B
$$-8 + i$$
.

$$(\mathbf{C}) 8 + i.$$

$$(\mathbf{D})$$
 -4 + 7*i*.

CÂU 26. Cho hai số phức $z_1 = 2 - 7i$ và $z_2 = -4 + i$. Điểm biểu diễn số phức $z_1 + z_2$ trên mặt phẳng tọa độ là điểm nào dưới đây?

A
$$Q(-2;-6)$$
.

B
$$P(-5; -3)$$
.

$$(\mathbf{C}) N(6; -8).$$

$$\bigcirc$$
 $M(3;-11).$

CÂU 27. Cho hai số phức z = 1 + 2i và w = 3 - 4i. Số phức z + w bằng

(A)
$$2 - 6i$$
.

B)
$$4 + 2i$$
.

(C)
$$4-2i$$
.

$$(\mathbf{D}) - 2 + 6i.$$

$$\bigcirc \frac{-3-11i}{13}$$

$$\bigcirc$$
 $-\frac{3-11i}{12}$.

$$\bigcirc$$
 $\frac{3+11i}{13}$.

$$\bigcirc$$
 $\frac{3-11i}{13}$

CĂU 29. Cho số phức z thỏa mãn phương trình (1-3i)(z-2i)-(3+i)z+3i=0. Phần ảo của số phức z bằng

$$\bigcirc -\frac{2}{5}$$
.

B
$$\frac{11}{10}$$
.

$$\bigcirc -\frac{9}{5}$$
.

$$\bigcirc$$
 $\frac{13}{10}$.

CÂU 30. Môđun của số phức $\omega = z + z^2$, với z là số phức thỏa mãn $(2+i)z + \frac{1-i}{1+i} = 5-i$

là.

(A) $2\sqrt{2}$.

$$\bigcirc$$
 $4\sqrt{2}$.

(c)
$$5\sqrt{2}$$
.

$$\bigcirc$$
 $3\sqrt{2}$

CÂU 31. Cho số phức z thỏa mãn |z-i|=|z-1+2i|. Tập hợp các điểm biểu diễn số phức w=(2-i)z+1 trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó.

$$(\mathbf{A}) x - 7y - 9 = 0.$$

$$\mathbf{B}) x + 7y - 9 = 0$$

$$(\mathbf{A}) x - 7y - 9 = 0.$$
 $(\mathbf{B}) x + 7y - 9 = 0.$ $(\mathbf{C}) x + 7y + 9 = 0.$ $(\mathbf{D}) x - 7y + 9 = 0.$

CÂU 32. Gọi z_1, z_2 là hai nghiệm phức của phương trình $z^2 - 4z + 13 = 0$. Giá trị $|z_1| + |z_2|$ bằng

(**A**) 10.

(B) -10.

CÂU 33. Tổng mô-đun các nghiệm phức của phương trình $z^2 + 4z + 5 = 0$ bằng

(A) $\sqrt{5}$.

(B) $\sqrt{3}$.

(**C**) $2\sqrt{5}$.

(D) $2\sqrt{3}$.

CÂU 34. Trong không gian Oxyz, cho ba điểm A(1;-2;3), B(-1;2;5), C(0;0;1). Tọa độ trọng tâm G của tam giác ABC là

(A) G(0;0;3).

(**B**) G(0;0;9).

(**C**) G(-1;0;3).

(**D**) G(0;0;1).

CĂU 35. 10Trong không gian với hệ trục tọa độ Oxyz. Hỏi có tất cả bao nhiêu mặt cầu (S) có tâm I(1;b;c) và bán kính bằng 3 tiếp xúc với hai trục Ox và Oy?

(A) 4.

(**B**) 1.

CÂU 36. Trong hệ trục tọa độ Oxyz cho mặt phẳng $(\alpha): 2x - y + 3z - 1 = 0$. Véc-tơ nào sau đây là véc-tơ pháp tuyến của mặt phẳng (α) .

(A) $\vec{n} = (2; 1; 3)$.

(B) $\vec{n} = (2; 1; -3).$

(**C**) $\vec{n} = (-2; 1; 3)$.

(**D**) $\vec{n} = (-4; 2; -6).$

CÂU 37. Trong không gian Oxyz, điểm M(3;4;-2) thuộc mặt phẳng nào trong các mặt phẳng sau?

(A) (P): x + y + z + 5 = 0.

(B) (Q): z-2=0.

(C) (R): x-1=0.

 $(\mathbf{D})(T): x + y - 7 = 0.$

CÂU 38. Trong không gian Oxyz, cho hai điểm A(5; -4; 2) và B(1; 2; 4). Mặt phẳng đi qua A và vuông góc với đường thẳng AB là

(A) 3x - y + 3z - 25 = 0.

(B) 2x - 3y - z + 8 = 0.

(C) 3x - y + 3z - 13 = 0.

(**D**) 2x - 3y - z - 20 = 0

CĂU 39. Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1;-1) có phương trình là

(A) z + 1 = 0.

(B) y + z = 0. **(C)** x + z = 0.

 $(\mathbf{D}) x - y = 0.$

CÂU 40. Trong không gian Oxyz, một véc-tơ chỉ phương của đường thẳng $d : \frac{x+2}{2} =$ $\frac{y+1}{-2} = \frac{z-3}{-1}$ là

(A) $\vec{u}_1 = (-2; 1; -3).$

(B) $\vec{u}_2 = (-3; 2; 1).$

(**c**) $\vec{u}_3 = (3; -2; 1)$.

 $(\mathbf{D}) \vec{u}_4 = (2; 1; 3).$

QUICK NOTE

		(3		J	J	(C)	K			١	()	l											
 		•	•		•						•	•	•	•	•					•	•	•	•	•	•	•	•	١,
 																												:
 																												,
 																												'
 								•	•																			
 		•	٠																					•	•	•		(
 																									•	•	•	,
 		•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	
 	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
 •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	(
 																												'
 																												;
 																												(
 																												: ا
 	٠.																											۱,

CÂU 41. Trong không gian tọa độ Oxyz, cho hai đường thẳng $\Delta_1 : \frac{x-1}{5} = \frac{y-3}{-2} = \frac{z+3}{1}$ rà đường thẳng Δ_2 : $\frac{x-3}{-5} = \frac{y+1}{2} = \frac{z-1}{-1}$. Nhận xét đúng về vị trí tương đối của hai ường thẳng Δ_1 , Δ_2 là $(\mathbf{B}) \Delta_1 \operatorname{c\acute{a}t} \Delta_2.$ (A) $\Delta_1 // \Delta_2$.

CÂU 42. Trong không gian với hệ tọa độ Oxyz, cho đường thắng $d : \frac{x-3}{1} = \frac{y+1}{2} = \frac{y+1}{2}$ $\frac{+2}{3}$. Điểm có hoành độ bằng 2 nằm trên đường thẳng d là

- (\mathbf{A}) (2; 1; 1).
- (\mathbf{C}) (2; 0; 0).
- (\mathbf{D}) (2; -3; -2).

CÂU 43. Trong không gian Oxyz, phương trình đường trung tuyến AM của tam giác ABCới A(3;1;2), B(-3;2;5), C(1;6;-3) là

$$x = 3 - 4t$$

$$y = 1 + 3t$$

$$z = 2 - t$$

CÂU 44. Trong không gian tọa độ Oxyz, cho hai đường thẳng $\Delta_1 : \frac{x-3}{2} = \frac{y+2}{3} = \frac{z-1}{1}$ rà đường thẳng Δ_2 : $\frac{x+2}{1}=\frac{y-a}{m}=\frac{z-b}{n}$. Nếu hai đường thẳng $\Delta_1,\,\Delta_2$ trùng nhau thì a có (a+b+m+n) tương ứng bằng

- $(\mathbf{C}) 12.$

CÂU 45. Cho hàm số y=f(x) có đạo hàm liên tục trên $\mathbb R$ và thỏa mãn f(2)=16, $\int f(x) dx = 4$. Khi đó $I = \int x f'(2x) dx$ bằng (\mathbf{C}) 12. (A) 20. **(B)** 7. **(D)** 13.

CÂU 46. Cho tích phân $I=\int x^2\sqrt{4-x^2}\,\mathrm{d}x$, nếu ta dùng một phép đổi biến số đặt

 $= 2 \sin u$ thì sẽ thu được tích phân tương ứng là

$$\int_{0}^{\frac{\pi}{2}} 2\sin^2 2u \, \mathrm{d}u.$$

$$\int_{0}^{\pi} 4\sin^2 u \, \mathrm{d}u$$

LÂU 47. Cho hàm số f(x) có đạo hàm liên tục và xác định trên $\mathbb R$ và thỏa mãn hệ thức $3x^2f\left(x^3+1\right)-xf'(x)=x^8+2x^5-x^2$ với $\forall\in\mathbb{R}$ và f(1)=1. Giá trị của tích phân

 $I = \int f(x) dx$ tương ứng bằng

CÂU 48. Cho số phức z thỏa mãn |z-2-3i|+|z+1+i|=5. Gọi giá trị lớn nhất và giá trị nhỏ nhất của biểu thức T=|z-2| tương ứng là a và b. Giá trị biểu thức T=a+bbằng

- $(A) \sqrt{10} + \frac{9}{5}$.
- **B** $\sqrt{13} + \sqrt{3}$. **C** $1 + \sqrt{5}$. **D** $2 + \sqrt{10}$.

CÂU 49. Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ và mặt phẳng (α) : 4x + 3y - 12z + 10 = 0. Lập phương trình mặt phẳng (β) thỏa mãn đồng thời các điều kiện: tiếp xúc với (S); song song với (α) và cắt trục Oz ở điểm có cao độ

- $(\mathbf{A}) 4x + 3y 12z 78 = 0.$
- **(B)**<math>4x + 3y 12z 26 = 0.
- (**C**) 4x + 3y 12z + 78 = 0.
- $(\mathbf{D}) 4x + 3y 12z + 26 = 0.$

CÂU 50. Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu $(S): (x-1)^2 + y^2 + y$ $(z-m)^2=25$. Gọi X là tập hợp chứa tất cả các giá trị thực của tham số m để mặt cầu (S) tiếp xúc với trục Ox. Tích tất cả các phần tử của tập hợp X là

- (A) 25.
- **(B)** -6.
- $(\mathbf{C}) = 25.$
- (**D**) 12.