tridiagonal matrix.h Apr 13, 18 5:40 Page 1/2 #include <iostream> #include <fstream> #include <vector> #include <iomanip> #include <cmath> using namespace std; class tridiagonal matrix private: int dimension; vector <double> diag; vector <double> upperdiag; vector <double> lowerdiag; vector <double> hatupperdiag; // modified upper diag entries vector <double> r; // vector containing denominators bool transformed; public: tridiagonal_matrix(int m); tridiagonal_matrix(const tridiagonal_matrix *mat); int get_dimension() const; void set_diagonal_entry(int i, double val); void set_upper_diagonal_entry(int i, double val); void set_lower_diagonal_entry(int i, double val); double get_diagonal_entry(int i) const; double get_upper_diagonal_entry(int i) const; double get_lower_diagonal_entry(int i) const; double get_r_entry(int i) const; double get_hat_upper_diagonal_entry(int i) const; bool is_transformed() const; // diag[i] = diag[i] + val;void add_to_diagonal_entry(int i, double val); // upperdiag[i] = diag[i] + val; void add_to_upper_diagonal_entry(int i, double val); // lowerdiag[i] = diag[i] + val; void add_to_lower_diagonal_entry(int i, double val); void transform(); vector <double> solve_linear_system(const vector<double> & rhs) const; // perform matrix vector multiplication vector<double> Mult(const vector<double> & lhs) const;

Apr 13, 18 5:40	tridiagonal_matrix.h	Page 2/2
~tridiagonal_matrix();		
};		
2/2		Nov April 21 2019