Introduction to Computational Thinking and Programming for CFD

Module 13251

Dr. rer. nat. Marten Klein Numerical Fluid and Gas Dynamics BTU Cottbus - Senftenberg

Dr. rer. nat. Marten Klein

8 Random numbers

Dr. rer. nat. Marten Klein

Examples

- How do we convert "Text" _____ "Cipher-text"?
- What are encryptions?
 Mathematical Algorithms
- What are the most important numbers for encryption?
 - PRIME NUMBERS
- But there are other numbers that are as important as prime numbers...
 - RANDOM NUMBERS

General requirements

- Requirements:
 - Should be <u>un</u>predictable. (Examples: one-time passwords, unpredictable perturbations)
 - Should be <u>un</u>biased, thus having a uniform distribution.

 (All numbers should be equally likely to occur unless we have physical reasons to change that ...)
- Types of random numbers:
 - True random numbers → from a complex physical process, like rolling a dice, radioactive decay, quantum experiments
 - Pseudo random numbers \rightarrow obtained from a (deterministic) algorithm

Random number generators (RNGs)

- **True RNGs:** They use an unpredictable physical system to generate numbers (like rolling a dice, recording atmospheric noise)
- **Pseudo RNGs:** They use mathematical algorithms for construction, thus they <u>cannot</u> be truly random (all kinds of arithmetically generated number sequences from a computer)
 - Pseudo means `a kind of but not really the same' or `pretty close'
 - We can predict the weather a few days in a row, but we actually cannot fully rely on the weather report

Overview of some RNGs

	True random number generators TRNG	Pseudo random number generators PRNG
Mechanism	Physical element involved (Example: Dice roll)	No physical means, but instead a discrete mathematical algorithm
Uniformity	Yes, if care is taken.	Yes, if care is taken.
Independence (Statistically)	Independent of the previous action (Example: Dice roll - The construction mechanism for the numbers is unknown or uncontrollable.)	Not independent of the previous action - periodic - deterministic (predictable) (Why? Because there is an algorithm, hence the construction is known.)
Efficiency	Usually time consuming (inefficient)	Usually very efficient (millions of calculations done by a computer

Dr. rer. nat. Marten Klein

Example: Linear congruential generator (LCG)

Mathematical formula:

$$X_{n+1} = a X_n + c \mod m$$

Where X₀, a, c < m all values are positive integers

X₀ is the seed (starting point)

• Example:
$$X_0 = 1$$
, $a = 2$, $c = 3$, $m = 5$

$$=> X_1 = 2*1 + 3 \pmod{5}$$

$$=> X_1 = 5 \pmod{5}$$

$$=> X_1 = 0$$

$$X_2 = (a*X_1 + c) \mod 5 = (2*0 + 3) \mod 5 = 3$$
 $X_3 = (a*X_2 + c) \mod 5 = (2*3 + 3) \mod 5 = 9 \pmod 5 = 4$
 $X_4 = 11 \pmod 5 = 1 \rightarrow \text{ seed! Now the sequence will cycle again}$

We have generated a seemingly random permutation. The sequence 1, 0, 3, and 4, however, will retrace itself.

- Why do we only get a sequence of 4 numbers?
- m is 5. We have limited the sequence to the value range {0, 1, 2, 3, 4}
- We need large seed (c) and large modulus (m) for the pseudo random numbers to be 'reasonably good'.

Results of LCG for m = 5

Results of LCG for various m I

m = 7

Results of LCG for various m II

m = 10 m = 11

Observations for the LCG

• The pseudo-random **integer range of values** is governed by and increases with the modulus *m*. In some cases it can be smaller, but m is always excluded

$$0 \le x_i \le m-1 \quad \forall i$$

• We obtain **normalized pseudo-random numbers** in the half-open interval [0,1) by floating-point division float(x_i) / float(m)

$$r_i = \frac{X_i}{m} \qquad 0 \le r_i < 1 \qquad \forall i$$

Summary of the LCG

- Why is m = 11 better than m = 10 and, in particular, than m = 8?
 - 10 factors into 1 * 2 * 5, but 11 is prime
 - 8 is a poor choice since seed 3 and increment 5 yields 5+3, which is commensurate with the present value of m
- Why does the graph change as the modulus m increases?
 - Because we have a wider range of values to choose from.
 The limit has been increased.
- If we further increase the value of m, what will happen? Try it ...

Applications

- Generation of perturbed initial conditions or random forcing for CFD applications in order to seed turbulence
- Generation of an **ensemble of flow realizations** by variation of a parameter, boundary, or initial conditions (like in weather forecast, climate prediction, combustion applications)
- Utilization in stochastic modeling methods for fluid flow problems
 - stochastic turbulence and mixing models
 - tracer dispersion and tracer diffusion models (random walks)
 - Monte Carlo simulations
 - Ohrenstein-Uhlenbeck processes for stochastic modeling of small-scale noise

Sampling uniform random numbers in Python

- The module **numpy.random** provides means to obtain pseudo random numbers and at least one PRNG (the Mersenne Twister)
- Get an array of N = 10,000 pseudo random numbers $\{r_i\}$ that are sampled from a **uniform distribution** over the interval [0,1], hence, $0 \le r_i \le 1$ for all i = 0,1,2,...,N-1

```
import numpy.random as rnd
r = rnd.rand(10000)
```

• See the documentation for details: https://numpy.org/doc/stable/reference/random/generated/numpy.random.rand.html

Sampling <u>non</u>uniform random numbers in Python

• It is possible to sample from **some preimplemented** <u>non</u>uniform distributions (like Gaussian or exponential distribution etc.)

See here for details: https://numpy.org/doc/1.16/reference/routines.random.html

• Sampling from **arbitrary distributions**, that is, sampling from an experimentally measured or CFD simulated *probability density function (PDF)* often requires case-specific methods such as:

- Cumulative density function (CDF) inversion
- Monte Carlo methods
- Rejection sampling

CDF:
$$c(x) = \int_{-\infty}^{x} p(x') dx'$$

- c(x) is monotonic and has values in [0,1]
- c(x) is steepest where p(x) has a maximum
- Procedure:
 - 1. Calculate a random number r in [0,1]
 - 2. Invert the CDF to yield random $x = c^{-1}(r)$ obeying the specified PDF

Example: CDF inversion method

- Independent events often follow an exponential distribution
 (e.g., radioactive decay, but approx. also `eddy events' in stochastic mixing and turbulence models LEM and ODT)
- **Exponential PDF** p(t) and **CDF** c(t) for time interval t between two successive events; the typical (average) time interval is τ

$$p(t) = \frac{1}{\tau} e^{-t/\tau} \Rightarrow c(t) = \int_0^t p(t') dt' = 1 - e^{-t/\tau}$$

Inverse CDF $c^{-1}(r)$ is called for a **uniform random number 0** ≤ r ≤ **1** to yield time increment $0 \le t < \infty$ sampled from exponential distribution

$$r = c(t) \Rightarrow r = 1 - e^{-t/\tau} \Rightarrow t = -\tau \ln(1 - r)$$

 \rightarrow Exercise!

Keywords

True and pseudo random numbers

Algebraic pseudo random number generation