Table 1.1: 運算(operator)符號彙整表

運算方式	符號	說 明
加法	+	$\mathbf{C} = \mathbf{A} + \mathbf{B} \circ \mathbf{D}$, $c_{ij} = a_{ij} + b_{ij}$ 。註: \mathbf{A} 和 \mathbf{B} 維度需相同。
減法	_	$\mathbf{C} = \mathbf{A} - \mathbf{B} \circ \mathbf{D}$, $c_{ij} = a_{ij} - b_{ij}$ 。註: \mathbf{A} 和 \mathbf{B} 維度需相同。
乘法	*	$\mathbf{C} = \mathbf{A} * \mathbf{B} \circ \mathbb{D}$, $c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$ 。註:若 $\mathbf{A}_{n \times p}$ 和 $\mathbf{B}_{p \times m}$,則兩 矩陣乘積結果為 $\mathbf{C}_{n \times m}$ 。
陣列乘法	.*	$C = B.*A$ 。即, $c_{ij} = b_{ij}a_{ij}$ 。註: A 和 B 維度需相同。 C 矩陣的維度與 A 和 B 相同。
除法	/或\	兩數相除, a/b 表 $\frac{a}{b}$;而 $a \setminus b$ 則表示 $\frac{b}{a}$ 。
陣列右除法	./	$\mathbf{C} = \mathbf{A} . / \mathbf{B} \circ \mathbb{D} , c_{ij} = a_{ij} / b_{ij} \circ \mathbf{A} : \mathbf{A} \cdot \mathbf{B}$ 維度需相同。 $\mathbf{C} \cdot \mathbf{E}$ 陣的維度與 $\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{B}$ 相同。
陣列左除法	\.	$\mathbf{C} = \mathbf{A} \setminus \mathbf{B}$ 。即, $c_{ij} = b_{ij} / a_{ij}$ 。註: \mathbf{A} 和 \mathbf{B} 維度需相同。 \mathbf{C} 矩 陣的維度與 \mathbf{A} 和 \mathbf{B} 相同。
次方	^	<i>a</i> ^ <i>b</i> 表示 <i>a</i> ^{<i>b</i>} 。
陣列次方	.^	$\mathbf{B} = \mathbf{A}.^n$ 表示 $b_{ij} = a^n_{ij} \circ \mathbf{B}$ 矩陣的維度與 \mathbf{A} 相同。
複數共軛轉置	,	$B = A'$ 表示 $b_{ij} = \operatorname{conj}(a_{ji})$ 。
轉置但不共軛	2	$\mathbf{B} = \mathbf{A}$.' 表示 $b_{ij} = a_{ji}$ 。

Hint:

- (1) Basic arithmetic expression (n⊌mber or variable A,B,C) + operator
- (2) Number or variable: constant, or array (include vector, and matrix).
- (3) Statement Variable= arithmetic expression.

Table 2.1: 變數名稱限制與規定

變數名稱規定與限制	說明
變數名稱長度小於等於 63 位元	若超過 63 位元,則被忽略,即僅認定前 (含) 63 位元。
第一個字元不可為數字	需以英文字母帶頭,如:c123、C_123。
字元大小符號不同,代表不同變數	Dog、dOG、DoG、dog 等,分別代表不同 變數。

Table 2.2 : Constant symbol (Cannot be used as variable name)

常數	說明	
eps	代表 2.2204×10 ⁻¹⁶ ,系統相對精確度。	
pi	圓周率 π。	
i	代表虛數 √-1。	
j	代表虛數 √-1。	
NaN	Not a Number,代表運算過程有 0 除以 0 的情形。	
inf	無窮大,即 ∞。	
realmax	系統中最大的浮點數值 1.7977×10 ^{308。}	
realmin	系統中最小的浮點數值 2.2251×10 ⁻³⁰⁸ 。	

Table 2.3 (I): Intialize row vector

MATLAB 指令	說明
$[x_1 \ x_2 \ \cdots \ x_n]$	數值大小無特定次序關係的一組數據向量之給定。
x=起始點:增量:終值	由起始點至終值產生向量,向量成員數值具有增量值之等差關係。
x=起始點:終值	內定增量 (公差) 為 1,由起始點至終值產生向量。
linspace(起始點,終值,點數)	在起始點與終值間,線性等比例的取出指定點數,形成 向量。
linspace(起始點,終值)	未指定點數時,自動在起始點與終值間,線性等比例的 取出 100 點,形成向量。
logspace(起始點,終值,點數)	對數 log 的取值方式。輸入引數中為以 10 為底的指數,依線性等比例取點,然後以 10 的次方輸出形成向量。
logspace(起始點,終值)	未指定點數時,自動以 logspace 的取值方式,取出 50 點形成向量。

Table 2.3 (II) : Inner product & Cross product

指令	說明
dot(x, y)	兩個相同長度之一維向量之內積。
cross(x, y)	兩個三維 (three dimension) 向量之外積。

Table 2.6: (Common Input-Output functions)

指 令	說明
input	由鍵盤輸入。
menu	由所設定之選單輸入。
fopen	資料檔開啟。
fclose	資料檔關閉。
disp(x) 或 disp('x')	列印變數 x 數值或文字字串 'x'。
fprintf('格式及文字',變數)	夾雜文字及數值之列印。
fprintf(fid, '格式及文字', 變數)	列印至檔案。需與 fopen 及 fclose 指令合併應用。

fprintf format

常用列印指令語法	說明	
\n	跳一空白行 (line feed)。	
\t	跳一個 tab 空白位置。	
%7.4f	用定點格式 (fixed-point) 顯示結果。7.4 表示預留 7 個位置,其中小數點以下佔 4 個位置,即小數點以下取 4 位。	
%.4f	定點格式列印,僅表明小數點以下取 4 位,而不指定預 %.4f 總共位置數。此用法較簡便。	
%.3e	用科學記號顯示結果,.3表示小數點以下取3位。	
%4d 或 %4i 整數格式,預留 4 個位置。		
%d 或 %i	整數格式,位置數由 MATLAB 自行決定。此用法較為簡便。	
%s	字串列印。	
%%	列印 % 之符號。	
н	列印 ' 之符號。	

 $\begin{tabular}{ll} Table 4.1: (Common build-in functions (I)- Triangular functions) \\ \end{tabular}$

三角函數指令	說明
sin(x)	正弦函數 sin(x) 值。
cos(x)	餘弦函數 cos(x) 值。
tan(x)	正切函數 tan(x) 值。
cot(x)	餘切函數 cot(x) 值。
sec(x)	正割函數 sec(x) 值。
csc(x)	餘割函數 csc(x) 值。
asin(x)	反正弦函數 sin ⁻¹ (x) 值。
acos(x)	反餘弦函數 cos ⁻¹ (x) 值。
atan(x)	反正切函數 tan ⁻¹ (x) 值。
acot(x)	反餘切函數 cot ⁻¹ (x) 值。
asec(x)	反正割函數 sec ⁻¹ (x) 值。
acsc(x)	反餘割函數 csc ⁻¹ (x) 值。
sinh(x)	雙曲正弦函數 sinh(x) 值。
cosh(x)	雙曲餘弦函數 cosh(x) 值
tanh(x)	雙曲正切函數 tanh(x)值。
coth(x)	雙曲餘切函數 coth(x) 值。
sech(x)	雙曲正割函數 sech(x) 值。
csch(x)	雙曲餘割函數 csch(x) 值。
asinh(x)	反雙曲正弦函數 $sinh^{-1}(x)$ 值。
acosh(x)	反雙曲餘弦函數 $\cosh^{-1}(x)$ 值。
atanh(x)	反雙曲正切函數 $tanh^{-1}(x)$ 值。
acoth(x)	反雙曲餘切函數 $\coth^{-1}(x)$ 值。
asech(x)	反雙曲正割函數 $\operatorname{sech}^{-1}(x)$ 值。
acsch(x)	反雙曲餘割函數 $\operatorname{csch}^{-1}(x)$ 值。

Table 4.1: (Common build-in functions (II) - Some other math. functions)

函數指令	說明	
abs(x)	絕對值。註:其用法另有二,請見本書 3.2 及 7.2 節之説明。	
sign(x)	取正負號。 即, $sign(x) = \begin{cases} x/abs(x), & x \neq 0 \\ 0, & x = 0 \end{cases}$	
ceil(x)	取最接近且大於原數的整數。	
floor(x)	取最接近且小於原數的整數。	
round(x)	四捨五入,取至整數。	
fix(x)	無條件捨去,取至整數。	
exp(x)	自然指數 (exponential),即 e ^x 。	
log(x)	自然對數 $\log_e x$,即 $\ln x$ 。	
log10(x)	對數 log ₁₀ x °	
log2(x)	對數 log ₂ x。	
sqrt(x)	開根號 \sqrt{x} 。	
nthroot(x, n)	開 n 次方函數, √x 。	
rem(x, y)	x/y 的餘數。	
factor(n)	求出整數 n 的所有質因數。	
primes(n)	求出小於等於整數 n 的所有質數。	
isprime(n)	檢查整數 n 是否為質數 ? 若是,則回應 1,否則回應 0。	
factorial(n)	計算 n!。	
gcd(n, m)	求出整數 n 和 m 的最大公因數。	
lcm(n, m)	求出整數 n 和 m 的最小公倍數。	
nchoosek(n, k)	求出 C_k^n ,即 $\frac{n!}{(n-k)!k!}$ 之值。	

Table 4.1: (Common build-in functions (III) - Some other math. functions)

函數指令	函數名稱
erf(x)	誤差函數 (error function)
erfc(x)	補誤差函數 (complementary error function)
gamma(x)	gamma 函數 (gamma function)
beta(z, w)	beta 函數 (beta function)
zeta(x)	zeta 函數 (zeta function)
sinint(x)	sine 積分函數 (sine integral)
cosint(x)	cosine 積分函數 (cosine integral)
heaviside(x)	Heaviside 階梯函數 (Heaviside step function)
dirac(x)	脈衝函數 (impulse function)
fft(x)	離散傅立葉轉換 (discrete Fourier transfer)
ifft(X)	離散傅立葉逆轉換 (inverse discrete Fourier transfer)
besselj(v, z)	Bessel 函數第一型 (Bessel function of first kind)
besseli(v, z)	修飾 Bessel 函數第一型 (Modified Bessel function of first kind)
bessely(v, z)	Bessel 函數第二型 (Bessel function of second kind)
besselk(v, z)	修飾 Bessel 函數第二型 (Modified Bessel function of second kind)
besselh(v, z, k)	Bessel 函數第三型 (Bessel function of third kind)

Table 5.1: Relationship operators

關係運算元符號	說明
>	大於
>=	大於等於
<	小於
<=	小於等於
==	等於
~=	不等於

Table 5.2 Logical operators

邏輯運算元符號	說明
&	AND (且)
	OR (或)
~	NOT (非)

Table 5.4 Logical functions

邏輯判斷函數	用法說明	
any(x)	若向量 x 中有任何一個元素不等於 0,則回傳 1。	
any(A)	矩陣 A 中任一行向量不等於 0 向量,則回傳 1 給該行向量。	
all(x)	若向量 x 中所有元素均不為 0,則回傳 1。	
all(A)	矩陣 A 中任一行向量中均不為 0 向量,則回傳 1 給該行向量。	
find(邏輯條件)	找出符合指定邏輯條件元素的位置指標。	

Table 5.3 in text p.116

Table 5.3 Operator Precedence (See Help on operator precedence)	
Precedence	Operators
1.	()
2.	~ .~ ' .' (pure transpose)
3.	+ (unary plus) - (unary minus) ~ (NOT)
4.	* / \ .* ./ .\
5.	+ (addition) - (subtraction)
6.	:
7.	> < >= <= == ~=
8.	& (AND)
9.	I (OR)

Table 6.1 (I): Functions for matrix operation

指令	說明	
flipud(A)	矩陣上下顛倒。	
fliplr(A)	矩陣左右顛倒。	
rot90(A)	旋轉 90 度 (逆時針)。	
rot90(A,k)	旋轉 90×k 度 (逆時針), k 為整數。	
reshape(A, m, n)	重定矩陣 $A \stackrel{\cdot}{\to} m \stackrel{\cdot}{\to} n$ 行矩陣。注意: $m \stackrel{\cdot}{\to} n \stackrel{\cdot}{\to} n$ 為整數引數,其必 須滿足 $m \times n$ 為原 A 矩陣元素總數之關係。	
diag(A)	取對角線 (diagonal) 元素所形成之向量。	
triu(A)	取出矩陣 A 之右上部,其餘元素設定為 0,形成一個上三角矩陣。	

Table 6.1 (II) : Generate the special matrix

指令	說明
eye(n, m)	n×m 單位矩陣 (identify matrix)。
eye(n)	n×n 單位矩陣。
ones(n, m)	$n \times m$ 常數矩陣,元素全部為 1 。
ones(n)	$n \times n$ 常數矩陣,元素全部為 1 。
zeros(n, m)	$n \times m$ 常數矩陣,元素全部為 0 。
zeros(n)	$n \times n$ 常數矩陣 ,元素全部為 0 。
rand(n, m)	亂數所形成之 $n \times m$ 的矩陣。亂數在 0 與 1 間均匀分布 (uniform
	distribution) °
randn(n)	亂數所形成之 n×n 的矩陣。亂數成常態分配 (normal distribution)。
pascal(n)	產生一個 n×n 的 Pascal 矩陣。
magic(n)	形成一個 n×n (n > 2) 的魔術矩陣 (magic matrix)。
compan(p)	建構多項式 p 的伴隨矩陣 (companion matrix)。
$\text{cat}(n,A,B,C,\cdots)$	輸入 n 維矩陣。即,將 n -1 維矩陣 A,B,C 等,疊成為 n 維矩陣。

Table 6.1 (III): Functions for matrix value

數據分析指令	說明
[m, index]=max(A)	求數據矩陣 A 中各行 (column) 中之最大值。輸出引數中,m 為由各行最大值所形成之向量,index 為各行發生最大值之位置所形成之向量。
[m, index]=max(x)	求出向量 x 中之最大值。輸出引數中, m 為最大值,index 為發生最大值之位置。
max(x)	求出向量 x 中之最大值並輸出。
[n, index]=min(A)	求數據矩陣 A 中各行中之最小值。輸出引數中,n 為由各行最小值所形成之向量,index 為各行發生最小值之位置所形成之向量。
[n, index]=min(x)	求出向量 x 中之最小值。輸出引數中, n 為最小值,index 為發生最小值之位置。
min(x)	求出向量 x 中之最小值並輸出。
mean(A)	求數據矩陣A中各行平均值。

Table 6.1 (IV): Functions for matrix value

數據分析指令	說 明
mean(x)	求出向量 x 之平均值。
median(A)	計算數據矩陣 A 中各行之中間值,其輸出為各行中間值所 形成之向量。
median(x)	求出向量 x 之中間值。
sum(A)	求數據矩陣 A 中各行之總和,其輸出為各行之總和值所形成之向量。
sum(x)	求出向量 x 之總和。
norm(x)	求出向量 x 與原點之距離 (Euclidean norm)。
std(A)	求數據矩陣 A 中各行之標準差 (standard deviation),其輸出 為各行之標準差所形成之向量。
std(x)	求出向量 x 之標準差。
cov(A)	計算矩陣 A 之共變異數 (covariance) 矩陣。
cov(x)	計算向量 x 之共變異數。
cov(x, y)	計算向量 x 與 y 之共變異數。
var(A)	計算矩陣 A 之變異數 (variance)。
var(x)	計算向量 x 之變異數。
corrcoef(A)	計算矩陣 A之相關係數 (correlation coefficient)。
corrcoef(x, y)	計算向量 x 與 y 之相關係數。
diff(A)	計算矩陣 A 之行向量元素間之差值 (difference)。
diff(x)	計算向量 x 元素間之差值。
[dAdx, dAdy] = gradient(A)	計算矩陣 A 之梯度值 (gradient)。
cumprod(x)	計算向量 x 的累乘 (cumulative product)。
cumsum(x)	計算向量 x 的累加 (cumulative sum)。
sort(A)	將矩陣 A 之各行元素由小到大排列。
sort(A, 'descend')	將矩陣 A 之各行元素由大到小排列。
sort(x)	將向量x之各元素由小到大排列。
sort(x, 'descend')	將向量x之各元素由大到小排列。
prod(A)	計算矩陣 A 之各行乘積。
prod(x)	計算向量 x 之各元素乘積。

Table 6.2 matrix operation

指令	說明
tril(A)	取出矩陣 A 之左下部,其餘元素設定為 0 ,形成一個下三角矩
det(A)	行列式值 (determinant),即 A 。
inv(A)	反矩陣 (matrix inverse),即 A^{-1} 。注意:反矩陣存在時,必有 $\det(A) \neq 0$ 之性質。
eig(A)	特徴值 (eigenvalue) 向量,即滿足行列式 $ \mathbf{A}-\lambda\mathbf{I} =0$ 之所有 λ 值 所形成的向量。
[U, S, V]=svd(A)	矩陣 A 的奇異值分解 (singular value decomposition)。輸出引數 S 為奇異值所形成的對角矩陣 (diagonal matrix),U 及 V 分別為左右分解矩陣,滿足 $USV^T = A$ 之關係。
[L, U]=lu(A)	矩陣 A 的 LU 分解 (LU factorization)。L 和 U 分別為下三角與上三角矩陣,滿足 $A = LU$ 。
rank(A)	秩 (rank)、階數。
cond(A)	2-norm 條件數 (condition number)。
poly(A)	特徴多項式(characteristic polynomial),即 $ \mathbf{A} - \lambda \mathbf{I} = 0$ 展開所形成之多項式。注意:此多項式之解即為特徵值。
polyvalm(v, A)	矩陣多項式求值,見範例5-2之説明。
expm(A)	計算 e ^A 。
logm(A)	計算 $\ln(A)$ 。即 e^A 的反運算。
sqrtm(A)	計算 √A。
kron(A, B)	計算 Kronecker tensor product,即 A 矩陣的每個元素乘上矩陣 B,形成一個新矩陣。
[m, n]=size(A)	取矩陣維度大小輸出,即 m 列、n 行。
length(A)	矩陣 A 的行數。
length(x)	向量 x 之長度 (元素個數)。
ndims(A)	矩陣 A 的維數 (dimension)。

Table 7 : Function definition

指令或語法	說明
global	定義全域變數 (global variables)。
inline	定義 inline 函數。
@	匿名函數握把符號。
	自定函數的第一行語法。
function output_arg=fun_name(input_arg)	output_arg 為函數輸出,而 input_arg 為輸
	入引數。fun_name 為函數名。
	定義匿名函數。
6 1 11 0/ 1:0	fun_handle 為函數名稱。@符號後括號內
fun_handle=@(arg_list) anonymous_function	之 arg_list 為輸入引數,而函數表達式定
	義在 anonymous_function 的位置。
	整合主程式與副程式 (自訂函數) 於同一
function prog_name	檔案時,程式第一行的語法。prog_name
	為程式名。

Table 8 : Loop control functions

指令	說明
for	for 迴圈。
while	while 迴圈。
if	if-else-end 架構。
switch	switch 架構。
case	配合 switch 架構。
pause	程式暫停執行,並等待使用者按任意鍵後,繼續執行程式。
pause(n)	程式暫停 n (n>0) 秒後,繼續執行。
return	結束 return 指令所在處函數之執行,返回主程式或命令列視窗。
error('message')	顯示 message 字串訊息,並中斷程式,以表示錯誤之發生。
echo on echo off	打開與關閉命令文件的顯示方式。
break	配合迴圈使用。當程式執行到 break 時,即會離開迴圈,並繼續往下一個指令執行。
continue	配合迴圈使用。當程式執行到 continue 指令時,即會停止剩餘的迴圈內指令,回到迴圈的開始處繼續執行。
tic 指令群 toc	計算指令群執行時間。tic 啟動計時器,而 toc 則關閉計時器。執行完後,會顯示指令群執行所花的計算時間。

Table 9.1 : Basic 2-D Graphics

指令	說 明
plot(x, y)	繪製直角坐標圖。
polar(theta, r)	繪製極座標圖。
stairs(x, y)	繪製階梯圖。
pie(x, explode, label)	繪製餅圖。
errorbar(x, y, e)	繪製數據點之誤差範圍圖。
bar(x, y)	繪製長條圖。
loglog	繪製對數座標圖。x與y軸均為對數座標。
semilogx	繪製 x 軸為對數座標, y 軸為一般線性座標之圖形。
semilogy	繪製 y 軸為對數座標, x 軸為一般線性座標之圖形。
plotyy	繪製兩個不同 y 軸刻度之圖形。
area(x, y)	繪法同 plot,但曲線與橫軸間之區域以顏色填滿。
fill(x, y, 'c')	圖形填色函數。顏色 c 之參數,請見 9.1 節所列之顏色代號。
hist(x, n)	直方圖 (histogram)。以組別為橫軸,次數或者密度為縱軸所繪出的累計統計圖。n 為資料分布的堆數。
rose(x)	極座標直方圖。顯示資料 x 的統計分布特性。
compass(x, y)	羅盤圖。
feather(x, y)	羽毛圖。
stem(x, y)	針頭圖。
stem(x, y, 'fill')	實心針頭圖。
barh(x, y)	水平長條圖。
bar(x, 'stack')	堆疊垂直長條圖。
barh(x, 'stack')	堆疊水平長條圖。
comet(x, y, p)	彗星軌跡圖。彗星尾巴托的長度為 $p*length(y)$ 。若 p 省略,則內定 $p=0.1$ 。
scatter(x, y, s)	散射圖。s為數據點圖示大小之參數。

Table 9.2 : Basic 3-D Graphics

指令	說明
meshgrid(x, y)	網格取點。
plot3(x, y, z)	繪製 3D 曲線圖,僅顯示繪圖結果。
comet3(x, y, z)	繪製 3D 曲線圖,顯示繪圖過程。
pie3(x, explode, label)	繪製 3D 餅圖。見 9.3.3 節範例。
bar3(Z)	繪製 3D 長條圖。
bar3h(Z)	繪製 3D 水平長條圖。
stem3(Z)	繪製 3D 立體針頭圖。
peaks	內建 MATLAB peaks 函數。
contour3(X, Y, Z)	繪製 3D 等高線圖 (輪廓圖)。
mesh(X, Y, Z)	繪製 3D 曲面。
meshc(X, Y, Z)	繪製 3D 曲面,且將等高線投影於 x-y 平面。
meshz(X, Y, Z)	繪製 3D 曲面,加上高度 (z 方向) 之顯示。
surf(X, Y, Z)	繪製 3D 圖形表面。
surfc(X, Y, Z)	繪製 3D 圖形表面,加上二維投影等高線。
surfl(X, Y, Z)	繪製 3D 圖形表面加上光照。
waterfall(X, Y, Z)	繪製 3D 横切面圖形。
quiver(X, Y, u, v)	繪製切線向量圖。
${\tt quiver3}(X,Y,Z,u,v,w)$	繪製 3D 切線向量圖。
surfnorm(X, Y, Z)	繪製 3D 法向量圖。
gradient(Z, dx, dy)	計算梯度向量場。
sphere	繪製球形圖,球心 (0, 0, 0),半徑為 1。
cylinder(r)	繪製圓柱體,半徑為 r,高度為 1。
ellipsoid(xc, yc, zc, a, b, c)	繪製橢圓體。