BUNDESREPUBLIK DEUTSCHLAND

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 59 943.2

Anmeldetag:

20. Dezember 2002

Anmelder/Inhaber:

Rolls-Royce Deutschland Ltd & Co KG,

Dahlewitz/DE

Bezeichnung:

Schutzring für das Fan-Schutzgehäuse

eines Gasturbinentriebwerks

IPC:

F 02 K, F 01 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 20. November 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Stark

1

Rolls-Royce Deutschland Ltd & Co KG Eschenweg 11 15827 Dahlewitz EM 70209 19. Dezember 2002

5

10

15

20

Schutzring für das Fan-Schutzgehäuse eines Gasturbinentriebwerks

Beschreibung

Die Erfindung betrifft einen Schutzring für ein als Voll-Containment oder als Durchschlag-Containment mit Fangschicht ausgebildetes Fan-Schutzgehäuse eines Gasturbinentriebwerks.

10 Das Gebläse (oder der Fan) eines Strahltriebwerks für Flugzeuge ist unter den maximalen Leistungsanforderungen während der Startphase höchsten Belastungen ausgesetzt, die im Extremfall, zum Beispiel, wenn große Vögel oder Gegenstände auf der Startbahn vom Fan angesaugt werden 15 und mit hoher kinetischer Energie auf das Gebläse treffen, zum Bruch der Fanschaufeln führen können. Bei einem derartigen Ereignis muss in jedem Fall verhindert werden, dass abgebrochene Teile des Gebläses das Gehäuse des Triebwerks durchschlagen, um schwerwiegende Folgen am 20 Flugzeug selbst zu vermeiden. Zur Verhinderung einer Zerstörung des Triebwerks ist der besonders gefährdete Gehäusebereich am Außenumfang des Gebläses von einem in besonderer Weise ausgebildeten, auch als Containment bezeichneten Fan-Schutzgehäuse oder Schutzring umgeben.

Es wird zwischen zwei nach Ausbildung und Funktion unterschieden Arten von Schutzgehäusen unterschieden, und zwar dem Voll-Containment und dem Durchschlag-Containment.

Das Voll-Containment ist so ausgelegt, dass eine abgebrochene Fanschaufel oder ein Schaufelfragment zwar eine Deformation des Schutzringes bewirken, aber den Schutzring nicht durchschlagen kann, und das Triebwerk mithin, ohne weiteren Schaden anzurichten, über den sogenannten Bypassduct verlassen kann. Diese funktionell vorteilhafte Lösung ist jedoch insofern nachteilig, als ein derartiges

25

30

Schutzgehäuse aus einem kompakten Metallring besteht und dadurch ein hohes Gewicht aufweist.

5

10

15

20

25

30

35

Ein bekanntermaßen ausgebildetes Durchschlag-Containment umfasst einen in der Wandstärke schwach ausgelegten Metallring, der von einem abgebrochenen Gebläseteil durchschlagen werden kann, wobei aber das Gebläsefragment von einem am Außenumfang des Metallringes angeordneten Gewebe, der sogenannten Fangschicht, zurückgehalten wird. Das gegenüber dem Voll-Containment deutlich leichtere und insofern vorteilhafte Durchschlag-Containment bereitet jedoch nach dem durchschlagen dahingehend Probleme, als das durch die Havarie beschädigte, nunmehr in Unwucht laufende Gebläserad (Fan) Schwingungen im Triebwerksgehäuse erzeugt, die zu einer Vergrößerung der an der Durchschlagstelle des Metallringes vorhandenen Risse und zu entsprechenden Folgeschäden führen kann.

Bei einem in der US 4 699 567 beschriebenen Durchschlag-Containment ist ein starrer, dünnwandiger Zylinder aus Leichtmetall oder faserverstärktem Kunstharz zunächst mit verwebten Faserstoffmaterialschichten, die aus einzelnen Materialstücken bestehen, beschichtet, und auf diese inneren Schichten sind weitere Faserstoffschichten mit kontinuierlicher Bahnlänge gewickelt. Die Außenfläche des Containments ist mit einer undurchlässigen metallischen oder nichtmetallischen Schutzschicht überzogen. Ein weggeschleudertes Schaufelteil durchschlägt den Innenring (metallischen Schutzring), wird dann mit den inneren Fasermaterialstücken umwickelt und abgepolstert und wird schließlich an den äußeren kontinuierlichen Fasermaterialschichten, die sich elastisch deformieren und daher die Stoßenergie absorbieren, aufgefangen. Ein weiteres Fortschreiten der an dem starren Schutzring des Containments entstandenen Schäden kann jedoch nicht verhindert werden.

Bei einem aus der US 5 486 086 bekannten Fangehäuseaufbau ist der innere starre Sicherungszylinder (Schutzring),

der die Fanschaufeln im Abstand umgibt, an der Außenfläche mit einer Vielzahl von in Längs- und Umfangsrichtung verlaufenden Rippen ausgebildet, die ein weiteres Fortschreiten der Risse über die durch die Rippen versteiften Materialbereiche hinaus verhindern sollen.

5

10

15

20

25

30

35

Der Erfindung liegt die Aufgabe zugrunde, einen Schutzring für das Gebläserad (Fan) eines Gasturbinentriebwerks
zu entwickeln, der in der Ausbildung als Voll-Containment
ein hohes Stoßabsorptionsvermögen und ein gegenüber den
bekannten Bauweisen verringertes Gewicht aufweist und in
der Ausbildung als Durchschlag-Containment ein Fortschreiten bzw. Vergrößern der im Durchschlagsbereich entstandenen Risse oder Löcher verhindert.

Erfindungsgemäß wird die Aufgabe mit einem gemäß den Merkmalen des Patentanspruchs 1 ausgebildeten Schutzring gelöst. Aus den Unteransprüchen ergeben sich weitere Merkmale und vorteilhafte Weiterbildungen der Erfindung.

Der Grundgedanke der Erfindung besteht darin, dass der im Abstand vom Außenumfang des Fan angeordnete Schutzring aus mehreren im Wechsel angeordneten Lagen von Metallblechgurten und polymergebundenen Fasergewebeschichten besteht. Die inneren Metallgurte können anstatt aus Blech auch aus einem Metallgurt bestehen. Entsprechend der Anzahl der Lagen kann der Schutzring bei ausreichender Wandstärke als Voll-Containment oder bei geringer Wandstärke und einer am Außenumfang angeordneten Fangschicht als Durchschlag-Containment verwendet werden. In der Ausführung als Voll-Containment weist der Schutzring zähelastische Eigenschaften auf, um von Fanschaufelsegmenten verursachte Stöße ohne Zerstörung des Schutzringmaterials absorbieren zu können. Bei der Nutzung des Schutzrings als Durchschlag-Containment wird bei entsprechend geringer Wandstärke wird bewusst ein Durchschlagen des Schutzrings in Kauf genommen, wobei die Bruchstücke jedoch in der Fangschicht zurückgehalten werden. Aufgrund der erfindungsgemäß eingesetzten Materialkombination aus im Wechsel und in engem adhäsivem Verbund angeordneten dünnen Metallblechschichten und polymergebundenen Faserschichten ist trotz der durch die beschädigte Fanscheibe bewirkten Unwucht und der entsprechend großen mechanischen Belastung keine Vergrößerung der im Schutzring entstandenen Löcher und Risse mit den dann zu erwartenden Folgeschäden für das Triebwerk und das Flugzeug zu befürchten. Ein weiterer wesentlicher Vorteil des so ausgebildeten Schutzringes besteht sowohl beim Durchschlag-Containment als auch insbesondere beim Voll-Containment in der erheblichen Gewichtsersparnis.

15

20

5

10

Zur Erzeugung eines geschlossenen Schutzringes werden die Enden des jeweiligen Metallgurtes überlappend durch einen Kleber verbunden, während die Fasergewebeschichten zwischen den gegenüberliegenden Enden benachbarter Metallgurte kontinuierlich weitergeführt sind. Dadurch sind die beabsichtigten Eigenschaften und eine innige Verbindung auch an der Stoßstelle gewährleistet. Zur Erzielung großer Wandstärken des Schutzringes kann eine Materialbahn mit geringer Stärke auch zu einem Schutzring gewickelt werden oder es können zwei oder mehrere Schutzringen mit entsprechend aufeinander abgestimmten Innen- und Außendurchmessern ineinander gesteckt und an den aneinandergrenzenden Flächen miteinander verbunden werden.

25 لر 🚣

Ein Ausführungsbeispiel der Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen:

- Fig. 1 eine Schnittansicht des Lufteintrittsbereichs eines Gasturbinentriebwerks in schematischer Darstellung;
- 35 Fig. 2 eine Detailansicht Z nach Fig. 1, in der ein Schnitt durch die Wand eines Durchschlag-Schutzrings (Durchschlag-Containment) schematisch dargestellt ist;

Fig. 3 eine Detailansicht X nach Fig. 1, in der ein Schnitt durch die Wand eines Vollschutzrings (Voll-Containment) schematisch dargestellt ist.

5

angeordnet.

35

Fig. 4 eine vergrößerte Darstellung des für den Schutzring vorgesehenen Compositmaterials an der Verbindungsstelle der Enden.

10 In Fig. 1 ist der Lufteintrittsbereich eines Gasturbinentriebwerks dargestellt, und zwar mit einem in einem Triebwerksgehäuse 1 umlaufenden Gebläserad, bestehend aus einer Fanscheibe 2 und an dieser angebrachten Fanschaufeln 3. Zum Schutz des Triebwerksgehäuses und des Trieb-15 werks ist am Innenumfang des Triebwerksgehäuses 1 in dem oberhalb der Fanschaufeln 2 befindlichen Bereich ein Schutzring 4 (Containment) angebracht. Im Falle des überwiegend in der Startphase möglichen Auftreffens eines Objektes, zum Beispiel eines großen Vogels, auf die Fan-20 schaufeln und einem dabei möglicherweise auftretenden Bruch verhindert der Schutzring 4, dass Fragmente der Fanschaufeln das Triebwerk oder Triebwerksgehäuse zerstören. Der Schutzring 4 ist in Fig. 1 der Einfachheit halber einmal als mehrteiliger Vollschutzring oder Voll-25 Containment 4' (Einzelheit X) und einmal als Durchschlag-Containment 4'' (Einzelheit Z) dargestellt. Tatsächlich ist im Abstand oberhalb der Enden der Fanschaufeln 3 entumlaufender weder ein Vollschutzring (als Containment 4') oder einen umlaufender Durchschlagschutz-30 ring mit Fangvorrichtung als Durchschlag-Containment 4''

Das Durchschlag-Containment 4'' umfasst - angeordnet zwischen zwei Flanschen 5 - einen aus mehreren Werkstofflagen bestehenden, hier als Durchschlaghülse 6 bezeichneten Schutzring und eine auf dessen Außenumfangsfläche angebrachte Fangschicht 7, bestehend aus verwebten und/oder verwirkten Faserstoffmaterialschichten. Als Faserstoffma-

terial sind aromatische Polyamidfasern, vorzugsweise unter der Bezeichnung KEVLAR vertriebene Faserstoffe verwendet.

5

10

15

20

25

30

35

Bei einem Bruch einer Fanschaufel 3 können Schaufelfragmente zwar die Durchschlaghülse 6 (Schutzring) durchdringen, werden aber von den Faserstoffen der Fangschicht 7 aufgefangen, so dass die Bruchstücke keine Folgeschäden verursachen können. Wichtig ist, dass durch die aufgrund eines Schaufelbruchs verursachte erhebliche Unwucht des Gebläserades dennoch ein Fortschreiten oder Vergrößern der beim Durchschlagen der Fragmente in der Durchschlaghülse 6 erzeugten Risse bzw. Löcher verhindert wird. Das Vergrößern der Risse und Löcher wird durch die spezifische Ausbildung der Durchschlaghülse 6 aus einer Materialkombination erreicht, die, wie Fig. 4 zeigt, aus mehreren, im Wechsel angeordneten Lagen aus Metallgurten 8 und polymerimprägnierten Fasergewebeschichten 9 besteht. Die hohe mechanische Belastung der Durchschlaghülse 6 aufgrund der Unwucht des Gebläserades nach der oben beschriebenen Havarie wird von den dünnen Metallgurten 8 (8.1, 8.2, 8.3) und den Fasergewebeschichten 9 (9.1, 9.2) elastisch aufgenommen und zum anderen werden Risse und Löcher von den Querfasern der Fasergewebeschichten 9 elastisch zusammengehalten bzw. überbrückt, da sich die Risse nicht oder nur sehr langsam in den Fasergewebeschichten fortsetzen können.

In Fig. 4 ist eine Schnittansicht eines Teils einer Durchschlaghülse 6 an der Verbindungsstelle der beiden Enden gezeigt. Dabei sind die Enden des jeweiligen Metallgurtes 8 überlappend angeordnet, während die Fasergewebeschicht 9 jeweils auch an der Stoßstelle kontinuierlich weiterläuft und durch den mit Kleber gefüllten Raum zwischen zwei gegenüberliegenden Enden unterschiedlicher Metallgurte 8.1 und 8.2 bzw. 8.2 und 8.3 geführt ist. Das heißt, die überlappenden bzw. einander gegenüberliegenden Metallgurtenden sind durch einen Kleber 10 verbunden.

In der hier dargestellten Ausführungsform besteht die Durchschlaghülse 6 aus fünf Lagen, nämlich drei Metall-gurten 8.1, 8.2 und 8.3 und zwei Faser-Polymer-Compositschichten 9.1 und 9.2. In jedem Fall ist aber die äußere und innere Lage als Metallgurt 8.1, 8.3 ausgebildet, der gleichzeitig als Feuchteschutz dient.

Bei dem in Fig. 3 (Einzelheit X in Fig. 1) gezeigten Voll-Containment 4' (Vollschutzring) entfällt die Anordnung der Fangschicht 7. Stattdessen ist die Wandstärke des Schutzringes 4 und dementsprechend die Anzahl der im Wechsel angeordneten Metallgurte und polymerimprägnierten Fasergewebeschichten so gewählt, dass der Schutzring 4 nicht durchschlagen wird und Fanschaufelfragmente über freie Durchgangskanäle 11 des Triebwerks nach hinten herausgeführt werden.

Um die für den Schutzring 4 für ein Voll-Containment 4' erforderliche, bei der Ausbildung zum Ring noch verformbare Wandstärke erzielen zu können, kann ein noch leicht verformbarer Materialstrang geringer Stärke auf den Vollschutzring in der erforderlichen Wandstärke gewickelt werden. Gleichermaßen ist es denkbar, zwei oder mehrere einzelne Hülsen geringer Wandstärke und mit aufeinander abgestimmtem Durchmesser ineinander zu stecken.

Der so ausgebildete Schutzring 4 (Vollschutzring), der ein gegenüber den bekannten Vollschutzringen deutlich verringertes Gewicht aufweist, absorbiert die von auftreffenden Schaufelfragmenten erzeugten Stöße und federt sie elastisch ab. Gegebenenfalls durch die Stöße erzeugte Risse vergrößern sich jedoch durch die aufgrund der Havarie und des Bruches bewirkte Unwucht des Triebwerkes nicht weiter, da die fest mit den Metallgurten verbundenen elastischen polymergebundenen Fasergewebeschichten einen Rissfortschritt verhindern.

B zugszeichenliste

5			
	1	Triebwerksgehäuse	
	2	Fanscheibe	
	3	Fanschaufel	
	4	Schutzring	
10	4′	Voll-Containment (V	ollschutzring)
	4′′	Durchschlag-Contain	ment
	5	Flansche	
	6	Durchschlaghülse	
	7	Fangschicht	
15	8	Metallgurt	
	8.1 - 8.3	Metallgurte	
	9, 9.1, 9.2	polymergebundene Fa	sergewebeschichten
	10	Kleber	
	11	Durchgangskanal	
20			

Pat ntansprüche

 Schutzring für ein als Voll-Containment (4') oder als Durchschlag-Containment (4'') mit Fangschicht ausgebildetes Fan-Schutzgehäuse eines Gasturbinentriebwerks, dadurch gekennzeichnet, dass der Schutzring (4) aus mehreren im Wechsel angeordneten, miteinander verbundenen Lagen, die jeweils aus einem Metallgurt (8) und einer polymerimprägnierten Fasergewebeschicht (9) bestehen, gebildet

5

10

15

20

ist.

2. Schutzring nach Anspruch 1, dadurch gekennzeichnet, dass die polymerimprägnierten Fasergewebeschichten (9) aus mit Polyester oder mit stark energieabsorbierenden Harzen imprägnierten Glasfasern und/oder Polyethylenfasern und/oder Polyamidfasern und/oder Aramidfasern und/oder Kohlefasern bestehen und für die Metallgurte (8) jeweils eine Aluminium- oder Titanoder Nickelbasislegierung vorgesehen ist.

- 3. Schutzring nach Anspruch 2,
 dadurch gekennzeichnet, dass
 für die Fasergewebeschichten unter dem Handelsnamen
 KEVLAR bzw. DYNEEMA bekannte Polyamid- bzw. Polyethylenfasern vorgesehen sind.
- 4. Schutzring nach Anspruch 1,
 dadurch gekennzeichnet, dass
 jeweils dessen Innen- und dessen Außenumfangsfläche
 von einem Metallgurt (8) gebildet ist.

- 5. Schutzring nach Anspruch 1,
 dadurch gekennzeichnet, dass
 mehrschichtige Bahnen aus den Metallgurten (8) und
 Fasergewebeschichten (9) zur Ausbildung des Schutzringes (4) an den Enden durch einen Kleber (10) miteinander verbunden sind.
- 6. Schutzring nach Anspruch 5,
 dadurch gekennzeichnet, dass
 sich die beiden Enden des jeweiligen Metallgurtes
 (8.1, 8.2, 8.3) überlappen und die Fasergewebeschichten (9.1, 9.2) zwischen stirnseitig gegenüberliegenden Enden benachbarter Metallgurte weitergeführt sind.

5

20

25

30

- 7. Schutzring nach Anspruch 1,
 dadurch gekennzeichnet, dass
 zur Erzielung einer bestimmten, ausreichend großen
 Wandstärke mindestens zwei Schutzringe mit aufeinander abgestimmtem Durchmesser ineinander gesteckt
 sind.
- 8. Schutzring nach Anspruch 1,
 dadurch gekennzeichnet, dass
 zur Erzielung einer ausreichenden Wandstärke mehrschichtige Bahnen aus Metallgurten und polymergebundenen Fasergewebeschichten spiralförmig zu einem
 Schutzring aufgewickelt sind.
- 9. Schutzring nach Anspruch 1, gekennzeichnet durch seine Anwendung in einer ausreichend großen Wandstärke als Voll-Containment (4').
- 10.Schutzring nach Anspruch 1,
 gekennzeichnet durch
 seine Anwendung als Durchschlag-Containment (4'') in

einer ein Durchschlagen von Fanschaufelfragmenten erlaubenden Wandstärke des Schutzringes (4) als Durchschlaghülse (6) mit einer am Außenumfang angebrachten Fangschicht (7) aus Fasermaterial zum Auffangen der Fragmente.

11.Schutzring nach Anspruch 1,
 gekennzeichnet durch
 seine Anwendung als
 (4'')oder als Vollcontainme

(4'') oder als Vollcontainment (4') wobei der jeweils äussere und innere Metallgurt aus Blech besteht und die metallischen Zwischengurte aus einem Metallgewebe auf der Basis Nickel, Titan, Eisen oder Aluminium bestehen.

Durchschlag-Containment

12.Schutzring nach Anspruch 1,
gekennzeichnet durch
seine Anwendung als Durchschlag-Containment
(4'')oder als Vollcontainment (4') wobei die Faserlagen in Wickeltechnik hergestellt werden und beim
Wickeln die beiden seitlichen Flansche formschlüssig
integriert werden

25

5

10

15

Zusammenfassung

Der Schutzring (4) für die Fanschaufeln (2, 3) eines Gasturbinentriebwerks besteht aus einer Materialkombination aus im Wechsel miteinander verbundenen Metallgurten und polymergebundenen Fasergewebeschichten. Der so ausgebildete Schutzring, der sich durch zäh-elastische Eigenschaften und ein geringes Gewicht auszeichnet, kann in ausreichend großer Wandstärke als Voll-Containment (4') und mit geringer Wandstärke und am Außenumfang angeordneter Fangschicht als Durchschlag-Containment (4'') eingesetzt werden und wirkt als Voll-Containment stoßabsorbierend und verhindert in der Anwendung als Durchschlag-Containment eine weitere Zerstörung eines durchgeschlagenen Schutzringes.

(Fig. 1)

5

10

