Graph Theory Fall 2022

Assignment 7

- 1. We consider trying to draw Q_k graphs on surfaces.
 - A. Show that Q_3 can be drawn on the plane without edges crossing. The quickest way is to actually draw it.
 - B. Use the fact that Q_4 has no triangles as subgraphs and an edge counting argument similar to that used for $K_{3,3}$ to show that Q_4 cannot be drawn on the plane without edges crossing. Some data to recall: Q_4 has n=16 vertices and m=32 edges. What would r have to be in Euler's equation?
 - C. The graph Q_4 is isomorphic to $C_4 \times C_4$. Use this fact to draw Q_4 on the torus, using the representation in Figure 1.

Figure 1. A representation of the one-holed torus.

D. Recall that the graph Q_5 has n=32 vertices and m=80 edges. Since Q_5 is bipartite, there are no triangles as subgraphs. Use a total edge count argument to show that $r\leq 40$. If you feed this information into Euler's equation n-m+r=2-2h for the h-holed torus, find a lower bound on h.

2. Draw $K_{4,4}$ on a torus without the edges crossing. Here's a suggested layout for the parts; join every black vertex to every white vertex.

Figure 2. Starting layout for $K_{4,4}$ on a torus.

3. The tournament in Figure 3 shows the outcome of a round-robin event among five competitors. Recall that an arc from u to w means u defeated w in their match.

Figure 3. Round-robin tournament among five competitors a, b, c, d, e.

- A. Form the victory matrix *A* for this tournament.
- B. Let $\mathbf{w}_0 = \mathbf{1}$ be the all-ones vector and define $\mathbf{w}_{i+1} = A\mathbf{w}_i$. Compute \mathbf{w}_i for enough values of i to see a ranking stabilize. Suggestion: Automate this process.
- C. Use an online matrix calculator (e.g. https://matrixcalc.org) to find the eigenvector for the principal eigenvalue (this eigenvalue is about 1.395.) This eigenvector should provide the same ranking as your answer in part B.

4. Consider the digraph D depicted in figure 4.

- A. Compute its incidence matrix ${\it M}$
- B. Compute its Laplacian matrix \boldsymbol{L}