Auto Covariance

$$C_{XX}(t_1t_2) = E\left[\left(X(t_1) - \eta_X(t_1)\right)(X(t_2) - \eta_X(t_2))\right] = R_{XX}(t_1t_2) - \eta_X(t_1)$$

$$\overrightarrow{X}(t_1)$$

$$\overrightarrow{X}(t_1)$$

$$\overrightarrow{X}(t_2)$$

$$\overrightarrow{X}(t_1)$$

$$\overrightarrow{X}(t_2)$$

$$\overrightarrow{X}(t_1)$$

Pxx (tiste) = Cxx (tiste)

· Correlation - coefficient

$$S_{x,x} = \frac{C_{xx}(t_1, t_2)}{\sqrt{C_{xx}(t_1, t_2)}} \quad \text{as} \quad C_{xx}(t_1, t_2) = Vox(x(t_1)).$$

Note of X(H) and X(H) one independent, then

$$Rxx(t_1,t_2) = E[X(t_1),X(t_2)] = \eta_X(t_1),\eta_X(t_2).$$

and thus,

At
$$\chi(1) = \gamma_0 \cos(\omega t + \phi)$$

1

P.V. $\omega(-\pi,\pi)$

=
$$\frac{E[r^2]}{2\pi}$$
, $\int \cos(\cot t + \phi)$, $\cos(\cot t + \phi)$, $d\phi$

$$Rxx(t_1,t_2) = \frac{E[Y^2]}{2\pi} \left(\cos \cot i \cos \phi - \sin \cot i \sin \phi \right) \left(\cos \cot i \cos \phi - \sin \cot i \sin \phi \right) d\phi$$

$$Rxx(t_1,t_2) = \frac{E[Y^2]}{2\pi} \cos \left(\cos \left(t_1 - t_2 \right) \right)$$

(only upon the sufference ti-ti)

At west and we (ti, ti, ti, ti). M(t)

then N(t) for this wis

then N(t; w) is R.P. function

N(t) is R.P.

T(n) represent the armival time of 1th costomer.

un can easily show that

the will get $fr(d, n) = \frac{(\lambda d)^{n-1}}{(n-1)!} \exp(-\lambda d)$; d>0Exlangs Dishibution.

[Sum of iid exp(x) is Enlarg's Dist]
$$f_{z}(t) = \lambda \exp(-\lambda t) \quad t \gg 0$$

P[N(t) = n] = 1P[T(n) = t and T(n+1) > t]. Now since $T(n) = T(n+1) - T(n) \Rightarrow T(n+1) = T(n) + T(n)$ 1 [N(+)= n) = 1 [T(n) = + > T(n)] = IP[T(n) < t]. IP[T(n) > 1-T(n)]. (we will any IP[N(+)=n]= $\int_{t}^{\infty} \int_{t}^{\infty} f(x, n) \cdot \int_{t}^{\infty} f(x,$ Counting Process M(t) Poisson (1t) [Poisson Process] [when This are i'd & exp(x)] E[M(+)] = At.

=> 1 = arrival rate of costomers.