

The boolean Pythagorean Triples problem subtitle

Tobias John Aldo Kurmeta Patrick Wienhöft

TU Dresden

date of the presentation

Example

▶ Set of Integers: {1, . . . , 15}

Example

- ▶ Set of Integers: {1,...,15}
- ► Triples:

$$3^2 + 4^2 = 5^2$$

$$6^2 + 8^2 = 10^2$$

$$9^2 + 12^2 = 15^2$$

$$5^2 + 12^2 = 13^2$$

Example

- ▶ Set of Integers: {1, . . . , 15}
- ► Triples:

$$3^2 + 4^2 = 5^2$$

$$6^2 + 8^2 = 10^2$$

$$9^2 + 12^2 = 15^2$$

$$5^2 + 12^2 = 13^2$$

▶ Partition: {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14}, {5, 10, 13, 15}

Encoding - Intuition

Idea:

one variable for each number

Encoding - Intuition

Idea:

- one variable for each number
- one constraint clause for each Pythagorean triple

Encoding - Intuition

Idea:

- one variable for each number
- one constraint clause for each Pythagorean triple
- interpretation gives partition

Binary Pythagorean triple problem with n numbers

Binary Pythagorean triple problem with *n* numbers

Set of variables
$$V = \{p_k \mid 1 \le k \le n\}$$

Binary Pythagorean triple problem with *n* numbers

Set of variables $V = \{p_k \mid 1 \le k \le n\}$

Constraint for non-equality: *NotEqual* $(x, y, z) = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$

Binary Pythagorean triple problem with *n* numbers

Set of variables
$$V = \{p_k \mid 1 < k < n\}$$

Constraint for non-equality: *NotEqual*
$$(x, y, z) = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$$

Constraint for all Pythagorean triples:
$$F = \bigwedge_{\substack{1 \leq x,y,z \leq n \\ x^2+y^2=z^2}} NotEqual(p_x,p_y,p_z)$$

Binary Pythagorean triple problem with *n* numbers

Set of variables
$$V = \{p_k \mid 1 \le k \le n\}$$

Constraint for non-equality: *NotEqual*
$$(x, y, z) = (x \lor y \lor z) \land (\neg x \lor \neg y \lor \neg z)$$

4

Constraint for all Pythagorean triples:
$$F = \bigwedge_{\substack{1 \leq x,y,z \leq n \\ x^2+y^2=z^2}} NotEqual(p_x,p_y,p_z)$$

For an interpretation $I \subseteq V$ with $I \models F$, the resulting partition is:

$$P_1 = \{x \mid p_x \in I\}$$

$$P_2 = \{x \mid p_x \notin I\}$$

As in beginning example, n = 15

As in beginning example, n = 15

$$V = \{p_1, p_2, \dots, p_{15}\}$$

As in beginning example, n = 15

$$V = \{p_1, p_2, \dots, p_{15}\}$$

$$F = (p_3 \lor p_4 \lor p_5) \land (\neg p_3 \lor \neg p_4 \lor \neg p_5)$$

$$\land (p_6 \lor p_8 \lor p_{10}) \land (\neg p_6 \lor \neg p_8 \lor \neg p_{10})$$

$$\land (p_9 \lor p_{12} \lor p_{15}) \land (\neg p_9 \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_5 \lor p_{12} \lor p_{13}) \land (\neg p_5 \lor \neg p_{12} \lor \neg p_{13})$$

As in beginning example, n = 15

$$V = \{p_1, p_2, \dots, p_{15}\}$$

$$F = (p_{3} \lor p_{4} \lor p_{5}) \land (\neg p_{3} \lor \neg p_{4} \lor \neg p_{5})$$

$$\land (p_{6} \lor p_{8} \lor p_{10}) \land (\neg p_{6} \lor \neg p_{8} \lor \neg p_{10})$$

$$\land (p_{9} \lor p_{12} \lor p_{15}) \land (\neg p_{9} \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_{5} \lor p_{12} \lor p_{13}) \land (\neg p_{5} \lor \neg p_{12} \lor \neg p_{13})$$

Possible interpretation: $I = \{p_5, p_{10}, p_{13}, p_{15}\}$

As in beginning example, n = 15

$$V = \{p_1, p_2, \ldots, p_{15}\}$$

$$F = (p_3 \lor p_4 \lor p_5) \land (\neg p_3 \lor \neg p_4 \lor \neg p_5)$$

$$\land (p_6 \lor p_8 \lor p_{10}) \land (\neg p_6 \lor \neg p_8 \lor \neg p_{10})$$

$$\land (p_9 \lor p_{12} \lor p_{15}) \land (\neg p_9 \lor \neg p_{12} \lor \neg p_{15})$$

$$\land (p_5 \lor p_{12} \lor p_{13}) \land (\neg p_5 \lor \neg p_{12} \lor \neg p_{13})$$

Possible interpretation: $I = \{p_5, p_{10}, p_{13}, p_{15}\}$

Resulting partition:

$$P_1 = \{1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 14\}$$

$$P_2 = \{5, 10, 13, 15\}$$

Goal: from F, find formula F' which

▶ is easier to solve

Goal: from F, find formula F' which

- ▶ is easier to solve
- preserves satisfiability

Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

Approaches:

eliminate clauses with variables only occuring once

Goal: from F, find formula F' which

- is easier to solve
- preserves satisfiability
- has models that can be easily transformed into models for F

Approaches:

- eliminate clauses with variables only occuring once
- break partition symmetry

- $F = NotEqual(p_3, p_4, p_5)$
 - \land NotEqual(p_6, p_9, p_{12})
 - \land NotEqual(p_9, p_{12}, p_{15})
 - \land NotEqual (p_5, p_{12}, p_{13})

- $F = NotEqual(p_3, p_4, p_5)$
 - \land NotEqual(p_6, p_9, p_{12})
 - \land NotEqual(p_9, p_{12}, p_{15})
 - \land NotEqual (p_5, p_{12}, p_{13})

Note p_3 only occurs in **NotEqual** (p_3, p_4, p_5) and thus does not affect any other clauses

• if $p_4^l \neq p_5^l$ then $NotEqual(p_3, p_4, p_5)$ is satisfied

- $F = NotEqual(p_3, p_4, p_5)$
 - \land NotEqual (p_6, p_9, p_{12})
 - \land NotEqual (p_9, p_{12}, p_{15})
 - \land NotEqual (p_5, p_{12}, p_{13})

- if $p_4^I \neq p_5^I$ then $NotEqual(p_3, p_4, p_5)$ is satisfied
- ightharpoonup if $p_4^I=p_5^I= op$ then choose $p_3^I= op$

- $F = NotEqual(p_3, p_4, p_5)$
 - \land NotEqual (p_6, p_9, p_{12})
 - \land NotEqual (p_9, p_{12}, p_{15})
 - \land NotEqual (p_5, p_{12}, p_{13})

- if $p_4^l \neq p_5^l$ then $NotEqual(p_3, p_4, p_5)$ is satisfied
- ightharpoonup if $p_4^I=p_5^I= op$ then choose $p_3^I= op$
- ightharpoonup if $p_4^I=p_5^I=ot$ then choose $p_3^I=ot$

- $F = NotEqual(p_3, p_4, p_5)$
 - \land NotEqual(p_6, p_9, p_{12})
 - \land NotEqual (p_9, p_{12}, p_{15})
 - \land NotEqual (p_5, p_{12}, p_{13})

- ightharpoonup if $p_4^I
 eq p_5^I$ then $NotEqual(p_3, p_4, p_5)$ is satisfied
- ightharpoonup if $p_4^I=p_5^I= op$ then choose $p_3^I= op$
- ▶ if $p_4^I = p_5^I = \bot$ then choose $p_3^I = \top$
- \rightarrow clause **NotEqual(p₃, p₄, p₅)** will not cause conflict

$$F = NotEqual(p_3, p_4, p_5)$$

- \land NotEqual (p_6, p_9, p_{12})
- \land NotEqual(p_9, p_{12}, p_{15})
- \land NotEqual(p_5, p_{12}, p_{13})

- ightharpoonup if $p_4^I
 eq p_5^I$ then $NotEqual(p_3, p_4, p_5)$ is satisfied
- ightharpoonup if $p_4^I=p_5^I= op$ then choose $p_3^I= op$
- if $p_4^I = p_5^I = \bot$ then choose $p_3^I = \top$
- \rightarrow clause *NotEqual*(p_3, p_4, p_5) will not cause conflict

$$F' = NotEqual(p_6, p_9, p_{12})$$

- \land NotEqual(p_9, p_{12}, p_{15})
- \land NotEqual (p_5, p_{12}, p_{13})

Notes:

F' might have more models than F

Notes:

- F' might have more models than F
- choice for variables occurring only once in F is important but not represented in F'

Notes:

- F' might have more models than F
- choice for variables occurring only once in F is important but not represented in F'
- ightharpoonup remember deleted clauses and modify interpretation of F' accordingly

Notes:

- F' might have more models than F
- choice for variables occurring only once in F is important but not represented in F'

8

ightharpoonup remember deleted clauses and modify interpretation of F' accordingly

Example:

ightharpoonup deleted clause NotEqual (p_3, p_4, p_5) because p_3 only occurred once

Notes:

- F' might have more models than F
- choice for variables occurring only once in F is important but not represented in F'
- ightharpoonup remember deleted clauses and modify interpretation of F' accordingly

Example:

- ightharpoonup deleted clause NotEqual (p_3, p_4, p_5) because p_3 only occurred once
- \vdash $I' \models F'$ and $\{p_3, p_4, p_5\} \subseteq I'$

Notes:

- F' might have more models than F
- choice for variables occurring only once in F is important but not represented in F'

8

ightharpoonup remember deleted clauses and modify interpretation of F' accordingly

Example:

- ▶ deleted clause NotEqual (p_3, p_4, p_5) because p_3 only occurred once
- \vdash $I' \models F'$ and $\{p_3, p_4, p_5\} \subseteq I'$
- $I = I' \setminus p_3$
- ▶ while $I' \not\models F$, we have $I \models F$

▶ formulas F and F' are symmetric

- ▶ formulas F and F' are symmetric
- ▶ if $I \models F'$ then $V \setminus I \models F'$

- formulas F and F' are symmetric
- ▶ if $I \models F'$ then $V \setminus I \models F'$
- → introduce unit clause for variable occurring in F'
- $F'' = F' \wedge p_X$

- formulas F and F' are symmetric
- ▶ if $I \models F'$ then $V \setminus I \models F'$
- ightharpoonup introduce unit clause for variable occurring in F'
- $F'' = F' \wedge p_X$

Note that every model for ${\it F''}$ is a model for ${\it F'}$ and the transformation is satisfiability preserving

▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow

- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ▶ Solution:
 - ▶ use different heuristics ⇒ cube-and-conquer solver (C&C)
 - use parallelization (800 cores)

- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- Solution:
 - ▶ use different heuristics ⇒ cube-and-conquer solver (C&C)
 - ▶ use parallelization (800 cores)

- ▶ Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ▶ Solution:
 - ▶ use different heuristics ⇒ cube-and-conquer solver (C&C)
 - ▶ use parallelization (800 cores)

- Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ▶ Solution:
 - ▶ use different heuristics ⇒ cube-and-conquer solver (C&C)
 - use parallelization (800 cores)

- Problem: solving with conflict-driven clause learning (CDCL) is too slow
- ► Solution:
 - ▶ use different heuristics ⇒ cube-and-conquer solver (C&C)
 - ▶ use parallelization (800 cores)

Validation of the program

each step must be validated

Picture of the Framework

Runtime

► Cubing: 22000 CPU hours

► Solving: 13000 CPU hours

▶ Validation: 16000 CPU hours

Runtime

► Cubing: 22000 CPU hours

Solving: 13000 CPU hours

Validation: 16000 CPU hours

