Clase 3: Técnicas Multivariadas

Justo Andrés Manrique Urbina

7 de septiembre de 2019

1. Muestreo aleatorio

Sea $X=(x_1,x_2,\ldots,x_p)^T$ un vector aleatorio dónde cada X_i es una variable aleatoria. Una muestra de tamaño n para X es entonces (X_1,X_2,\ldots,X_n) (cada X_1 es un vector como X). Asumamos que la distribución de cada X_i es la misma que la X y además son independientes. Así, se obtiene la siguiente base de datos:

$$x = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1p} \\ X_{21} & X_{22} & \dots & X_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{np} \end{pmatrix}$$

En dónde cada $(x_1, x_2, \dots, x_p)^T$ es una observación de X_i .

1.1. Estadísticas

La media muestral, \bar{X} para \bar{X} es $\bar{X} = (\bar{X}_1, \bar{X}_2, \dots, \bar{X}_n)^T$, en dónde:

$$\bar{X}_i = \frac{(x_{1i} + x_{2i} + \ldots + x_{ni})}{n}.$$

Sí $y_i^{'}=(X_{1i},X_{2i},\ldots,X_{ni})$. Y se tiene que $\theta=(1,1,\ldots,1)^T$. Entonces su longitud es unitaria puesto que:

$$\left(\frac{1}{\sqrt{n}}\sqrt{1+\ldots+1}\right)=1.$$

Así, la proyección de $y_{i}^{'}$ sobre $\frac{1}{\sqrt{n}}\theta$ es

$$y_i^T * (\frac{1}{\sqrt{n}}\theta) \frac{1}{\sqrt{n}}\theta.$$

$$\frac{x_{1i} + \ldots + x_{ni}}{n} = \bar{X}_i.$$

2. Propiedades de \bar{X}

Para el vector $\bar{X}_n = (\mu_1, \mu_2, \dots, \mu_p)^T$, se tiene que:

$$E(\bar{X}) = E(\mu_1, \mu_2, \dots, \mu_p) = \mu$$
, vector.

$$\Sigma_{\bar{X}} = \frac{1}{n} \Sigma_X.$$

en dónde Σ_X es la matriz de varianza y covarianza de X.

Proof 1.

$$E(\bar{X}) = \frac{(X_1 + \dots + X_n)}{n}.$$
$$\frac{(E(X_1), E(X_2), \dots, E(X_n))}{n}.$$
$$\frac{n\mu}{n} = \mu.$$

Proof 2.

$$\Sigma_X = E((\bar{X} - \mu)(\bar{X} - \mu)^T).$$

3. Varianza Generalizada

$$|\Sigma| = det(\Sigma).$$

o la traza de la matriz. En componentes principales se utiliza la traza.

4. Fórmulas

$$E(S_n) = \frac{n-1}{n} \Sigma_X.$$

en dónde

 S_n varianza - covarianza muestral de tamaño n.

5. Distribución normal multivariada

Para un vector $X \in \mathbb{R}^p$:

$$\frac{1}{(2\pi)^{\frac{p}{2}|\Sigma|}} e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}.$$
$$\mu = E(X) \in \mathbb{R}^n.$$
$$\Sigma = \Sigma_X \text{ matriz } p * p.$$

El término $(\bar{X} - \mu)^T \Sigma^{-1} (\bar{X} - \mu) = c^2$ es un elipsoide. Se puede demostrar que los autovalores y autovectores de Σ^{-1} son:

$$\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_p}.$$

$$e_i = \Sigma^{-1} \Sigma e_i = \Sigma^{-1} (\lambda_i e_i) = \lambda_i \Sigma^{-1} e_i.$$

$$\rightarrow \frac{1}{\lambda_i} e_i = \Sigma_{-1} e_i \rightarrow e_i$$
 es autovector de Σ^{-1} y $\frac{1}{\lambda_i}$ es autovalor de Σ^{-1} .

Para ello se utilizó la siguiente propiedad: Si A es definida positiva \to sus autovalores son mayores que 0.

Proof 3. Si A es definida positiva, entonces

$$0 < x^T A x, \forall x \neq 0.$$

En particular, para Σ y $x \neq 0$ se tiene que $0 < x^T \Sigma x$, entonces para e, autovector con autovalor λ , se tiene que:

$$0 < e^T \Sigma e = e^T \lambda e = \lambda e^T e = \lambda.$$

Propiedad: También Σ^{-1} es definida positiva:

$$x^{T} \Sigma^{-1} x = x^{T} (\sum_{i=1}^{p} (\frac{1}{\lambda_{i}}) e_{i} e_{t}^{T}) x.$$

$$\sum_{i=1}^{p} \frac{1}{\lambda_i} (x^T e_i)^2, x \neq 0.$$

 Σ^{-1} es definida positiva.

Demostremos por qué indicamos que es una elipsoide:

$$(x - \mu)^T \sum_{i=1}^p \frac{1}{\lambda_1} e_i e_i^T (X - \mu).$$

$$\sum_{i=1}^{p} \frac{1}{\lambda_i} ((X - \mu)^T e_i)^2.$$

$$\sum_{i=1}^{p} \frac{1}{(\sqrt{\lambda_i})^2} ((X - \mu)^T e_i)^2.$$

La elipsoide se define como:

$$\frac{\left((X_1 - \mu_1)e_i\right)^2}{\frac{1}{c^2}(\sqrt{\lambda_1})^2} + \frac{\left((X_2 - \mu_2)e_2\right)^2}{\frac{1}{c^2}(\sqrt{\lambda_2})^2} = 1.$$

6. Componentes principales

Los componenes principales, el análisis de conglomerados, escalamiento multidimensional no requiere que las variables tengan distribuciones. Se tienen las siguientes variables univariadas (X_1, X_2, \ldots, X_p) . Cada X_i es un vector $(x_1, x_2, \ldots, x_p)^T$ con una matriz de varianza y covarianza Σ . Con estas variables se forman las siguientes combinaciones lineales:

$$Y_1 = \alpha_1' X = a_{11} X_1 + \ldots + a_{1p} X_p.$$

:

$$Y_p = \alpha_p^T X = a_{p1} X_1 + \ldots + a_{pp} X_p.$$

Cada a_i es un vector. La varianza de Y_i es definida por:

$$var(Y_i) = var(a_i^T X) = a_i^T \Sigma_X a_i.$$

 $cor(Y_i Y_j) = a_i^T \Sigma a_j.$

Entonces se define que Y_1 es el primer componente principal CP_1 . Si la varianza de Y es la mayor, con la condicion adicional de que $a_i^T a_i = 1$. ¿Cuàl es la combinación?

Resultado: El vector a que satisface el criterio es el que satisface: $max_a = \frac{a^T \Sigma a}{a^T a}$ por la última propiedad (Clase 2). Se tiene entonces que:

$$max_a \frac{a^T \Sigma a}{a^T a} = \lambda_1.$$

dónde λ_1 es el mayor autovalor de Σ y el máximo se alcanza cuando $a=e_1$ dónde e_1 es el autovector de Σ correspondiente a λ_1 . Para Y_2 se busca el a_2 de tal modo que explique la mayor varianza no explicada por Y_2 pero que además $a_2^Ta_2=1$ y $a_2^Ta_1=0$. Para Y_k se busca a_k de tal manera que explique en mayor grado la varianza no explicada por Y_1,\ldots,Y_{k-1} pero además $a_k^Ta=1$ y $a_k^Ta_j=0$ para $j=1,2,\ldots,k-1$.

6.1. Propiedades

$$var(Y_i) = var(e_1^T X) = var(e_1^T \Sigma_X e_i) = e_i^T \lambda_i e_i = \lambda_i.$$

Siempre y cuando se establezca que $0 \le \lambda_p \le \ldots \le \lambda_1$

$$Cov(Y_i, Y_j) = 0.$$

$$\sigma_{11} + \ldots + \sigma_{pp} = \sum_{i=1}^{p} \sigma_{ii} = tr(\Sigma).$$

$$\Sigma_X = P\Lambda P^T.$$

$$tr(\Sigma) = tr(P\Lambda P^T$$

Entonces $tr(\Sigma) = tr(\Lambda) = \lambda_1 + \ldots + \lambda_p$