

UNIVERSIDADE FEDERAL DO CEARÁ CAMPUS DA UFC EM RUSSAS PLANO DE ENSINO DE DISCIPLINA

DISCIPLINA	CÓDIGO	CRÉDITOS	TURMA	ANO/SEMESTRE
Processos de Software	RUS0068	4	01A	2018

PROFESSOR RESPONSÁVEL	TITULAÇÃO	REGIME DE TRABALHO
Francisco Nauber Bernardo Gois	Doutor	DE

CURSO	UNIDADE ACADÊMICA	NÍVEL	UNIDADE CURRICULAR
Engenharia de Software	Campus de Russas	Graduação	Conteúdos Básicos

PRÉ-REQUISITOS EXIGIDOS	PRÉ-REQUISITO PARA
Introdução a Processos e Requisitos de Software	Gerência de Configuração

EMENTA

Conceitos e terminologia. Infraestrutura de processos (pessoas, ferramentas, treinamentos e outros). Modelagem e especificação de processos de software. Medição e análise de processos de software. Melhoria de processos de software (individual e equipe). Análise e controle de qualidade (prevenção de defeitos, revisão de processos, métricas de qualidade, análise de causa e outros). Níveis de definição de processos. Modelos de ciclo de vida (ágil, processos "pesados", cascata, espiral, modelo V e outros). Modelos de processos e padrões (IEEE, ISO e outros). Modelo, definição, medida, análise e melhoria tanto de processo de software individual quanto de equipe. Personalização de processo. Requisitos para processos de software (ISO/IEEE 12207). Visão geral do CMMI e ITIL. Detalhada apresentação do MSP.BR (guias). Implementação do MPS.BR.

CALENDÁRIO DE ATIVIDADES

AULA	LOCAL	DATA	ASSUNTO
Sem aula		06/08	RECEPÇÃO DOS ALUNOS
T 01	Sala	07/08	Introdução a processo de Software
T 02	Sala	09/08	Modelagem e especificação de processos de software
T 03	Sala	14/08	Modelos de ciclo de vida
T 04	Sala	16/08	Processos ágeis vs Tradicionais
T 05	Sala	21/08	Introdução ao Scrum
	Sala	22/08	Aula Extra- Pesquisa em Engenharia de Software
			(Aula para possível reposição)
P 01	Laboratório	23/08	Story Points
P 06	Laboratório	28/08	Desenvolvimento Ágil – XP Programming
	Sala	29/03	Aula Extra- Pesquisa em Engenharia de Software – Latex
			(Aula para possível reposição)
P 07	Laboratório	30/08	Desenvolvimento Ágil – XP Programming
P 08	Sala	04/09	Lean – Kanban – Desenvolvimento ágil
T 02	Sala	06/09	Visão geral do CMMI
T 03	Sala	11/09	CMMI
P 09	Laboratório	13/09	Visão Geral do ITIL
P 10	Laboratório	18/09	Desenvolvimento de software com ITIL e CMMI
	Sala	19/09	Aula Extra- Pesquisa em Engenharia de Software - Latex

				_
			(Aula para possível reposição)	
P 11	Laboratório	20/09	Desenvolvimento de software com ITIL e CMMI	
P 12	Laboratório	25/09	Processos de Testes de Software	
P 13	Laboratório	27/09	TMM e Testes Exploratórios	
P 14	Laboratório	02/10	Prática de desenvolvimento e Testes de Software	
T 04	Sala	04/10	Prática de desenvolvimento e Testes de Software	
T 05	Sala	09/10	Introdução a Governança de TI e COBIT	
P 15	Sala	11/10	PROVA PRÁTICA 1	
T 06	Sala	16/10	PROVA TEÓRICA 1	
T 07	Sala	18/10	Resolução da Prova Teórica 1	
P 16	Laboratório	23/10	IGovernança de TI utilizando COBIT	
		25/10	Encontros Universitário	
P 17	Laboratório	30/10	Normas ISO para qualidade e desenvolvimento de Software	
P 18	Laboratório	01/11	Normas ISO para qualidade e desenvolvimento de Software	
P 19	Laboratório	06/11	Padrões de Software IEEE	
	Sala	07/11	Aula Extra-Pesquisa em Engenharia de Software	
			(Aula para possível reposição)	
P 20	Laboratório	08/11	Padrões de Software IEEE	
P 21	Laboratório	13/11	Padrões de Software IEEE	
		15/11	FERIADO	
P 22	Laboratório	20/11	PROVA PRÁTICA 2	
T 08	Sala	22/11	PROVA TEÓRICA 2	
T 09	Sala	27/11	Resolução da Prova Teórica 2	
T 10	Sala	29/11	Projetos de Pesquisa	
	Sala	11/12	Avaliação Final	
				1
	1	I		┙

SISTEMA DE AVALIAÇÃO

O sistema de avaliação utilizará três tipos de notas: de trabalhos práticos, de avaliações teóricas, e de avaliações práticas.

- Trabalhos práticos (em equipes): Somente para a matéria de cálculo numérico, todos os métodos numéricos deverão ser implementados.
- Avaliações teóricas (individuais): Serão seis avaliações teóricas, três por semestre. A terceira
 avaliação de cada semestre serve como segunda chamada para quem faltou alguma das duas
 primeiras avaliações. Caso um aluno falte as duas primeiras avaliações do semestre, a terceira
 avaliação contará como segunda chamada para as duas avaliações.
- Avaliações práticas (em equipes): Serão duas avaliações práticas, uma por semestre. Em cada avaliação, a equipe resolverá um ou mais problemas implementando uma solução por um método numérico, utilizando as implementações dos trabalhos práticos.

A média parcial (MP) será uma média aritmética das notas dos dois semestres (MS₁ e MS₂). Em cada semestre, as notas serão como a seguir:

- Trabalhos práticos (MT): Será feita a média aritmética de todos os métodos pontuados. A média dos trabalhos práticos vale de 0 a 10.
- Avaliações teóricas (AT): Das três avaliações de cada semestre, as duas maiores notas serão contabilizadas. Caso um aluno falte uma das avaliações, a nota dessa avaliação será 0. Cada

avaliação vale de 0 a 10.

• Avaliação prática (AP): Vale de 0 a 10.

A média semestral será uma média aritmética, feita entre as notas do trabalho, da avaliação prática e das avaliações teóricas.

De maneira geral, o cálculo é apresentado a seguir. MP é a média parcial, MS_1 é a média do primeiro semestre, MS_2 é a média do segundo semestre, $AT_{1/1m}$ e $AT_{1/2m}$ são duas maiores notas das avaliações teóricas do primeiro semestre, $AT_{2/1m}$ e $AT_{2/2m}$ são as duas maiores notas das avaliações teóricas do segundo semestre, AP_1 é a nota da primeira avaliação prática, AP_2 é a nota da segunda avaliação prática, MT_1 é a média do trabalhos do primeiro semestre, e MT_2 é a média dos trabalhos do segundo semestre.

$$M = \frac{M _{1} + M _{2}}{2};$$

$$M _{1} = \frac{3 \times M _{1/1m} + 3 \times M _{1/2m} + 3 \times M _{1/2m} + 3 \times M _{1} + 3 \times M _{1}}{0}; M _{2} = \frac{3 \times M _{2/1m} + 3 \times M _{2/1m} + 3 \times M _{2/2m} + 3 \times M _{2} + 3 \times M _{2}}{0}$$

Se MP \geq 7, o aluno está aprovado. Se MP < 4, o aluno está reprovado. Se 4 \leq MP < 7, o aluno precisará fazer a avaliação final (AF), e sua nota final será MF = (MP + AF)/2. Se AF > 4 e MF \geq 5, o aluno está aprovado. Senão, está reprovado.

No critério de frequência, se o aluno tiver faltado a mais de 25% das aulas, o aluno estará reprovado por faltas. Não existe falta justificada.

BIBLIOGRAFIA RECOMENDADA

Bibliografia Básica:

- 1. André Koscianski e Michel dos Santos Soares. Qualidade de Software. Editora Novatec. 2a Edição. ISBN 978-85-7522-112-9
- 2. Wazlawick, Raul Sidnei; Engenharia de Software Conceitos e Práticas. Campus. Edição : 1 / 2013. ISBN 9788535260847
- 3. CMMI for Development®: Guidelines for Process Integration and Product Improvement. CHRISSIS, M.
- B.; KONRAD, M.; SHRUM, S. 3/2011 Addison Wesley

Bibliografia Complementar:

- 1. ZAHARAN, S., 1998, Software Process Improvement Practical Guidelines for Business Success, Addison-Wesley.
- 2. SCOTT, Kendall. O processo unificado explicado. Porto Alegre: Bookman, 2003. 160 p. ISBN

DATA: 07/08	3/2018
PROFESS	SOR
COORDENADOR	DO CURSO
HOMOLOGADO PELA COORD	DENAÇÃO ACADÊMICA

COORDENADOR ACADÊMICO