8x8 Dadda Multiplier (MAC)

by

Suman Mahato

August 18, 2022

Dependencies:

compilation was done using icarus-iverilog, this can be installed in ubuntu 18 and above by sudo apt install iverilog for other operating systems please goto http://iverilog.wikia.com/wiki/Installation Guide to analyze the waveforms, gtkwave was used can be installed in ubuntu by sudo apt install gtkwave A small java program, GenLoops.java was used to generate test data and certain recurring assign statements. This doesn't pose any requirement on java runtime if you are using the txt files includes for the test benches. Verilog code uses constructs in verilog like generate loops, and parameters, you can refer to IEEE standard for verilog for details.

Top level module:

An 8x8 dadda multiplier was designed and verified using verilog. The details of the top level module are as given below. A,B - 8 bit multiplicants M - previous result existing in Accumulator(16bits) RES - 17 bit output. submodules: gen part products - generate the partial products of the multiplication, A*B as an 8x8 array. processing block - takes the partial products,M and does the dadda reduction adder 16 - 16 bit Carry select adder , test data was randomly generated using a small program and verified the circuit using the test bench - top level tb(file:top level tb.v). Test data was loaded from files ain.txt,bin.txt,m.txt and res.txt

• run.sh will compile all modules

// Codes for the top level module is given below :

```
module top_level(
input [7:0] A,
input [7:0] B,
input [15:0] M,
output [16:0] RES);

genvar i;
wire [7:0] P [7:0];
wire [1:0] PRE[15:0];
gen_part_products U1(A,B,P);

processing_block U2(P,M,PRE);

adder16 U3(PRE[1],PRE[0],1'b0,RES);
```

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
m	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
p0									•	•	•	•	•	•	•	•
р1								•	•	•	•	•	•	•	•	
p2							•	•	•	•	•	•	•	•		
рЗ						•	•	•	•	•	•	•	•			
p4					•	•	•	•	•	•	•	•				
p5				•	•	•	•	•	•	•	•					
p6			•	•	•	•	•	•	•	•						
p7		•	•	•	•	•	•	•	•							

Capacity – 9

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
● m1 5	m1 4	m1 3	m1 2	m1 1	m1 0	fs5	fs3	fs1	• fs0	hs0	m4	m3	m2	m1	m0
	• 7,6	6,7	5 ,7	4,7	• fc5	• fc3	• fc1	• fc0	hc0	• 0,5	0,4	0,3	0,2	0,1	0,0
		• <mark>7,6</mark>	<mark>●</mark> 6,6	● 5,6	• 3,7	fs6	fs4	fs2	hs1	• 1,4	• 1,3	• 1,2	• 1,1	• 1,0	
			6 7,5	6,5	fc6	fc4	fc2	hc1	• <mark>6</mark>	2,3	2,2	2,1	2 ,0		
				7 ,4	fs/7	m9	hs3	hs2	• 0,6	• 3,2	<mark>●</mark> 3,1	● 3,0			

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•	•	•	•	•	•	•	•				
				fc7	<mark>4,6</mark>	hc3	hc2	<mark>m7</mark>	<mark>1,5</mark>	<mark>m5</mark>	4,0				

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Cap	-4															
_																
	• <mark>m15</mark>	• <mark>m1</mark>	• <mark>m13</mark>	• fs2 3	• fs2	• fs1	• fs1/7	fs15	• fs/l 3	fs ₁	fs9	fs8	hş4	• <mark>m2</mark>	• <mark>m1</mark>	• m0
		4	/	/3	/1	9	/ ,	/ .	/3	/1	/ ,					
		• <mark>7,6</mark>	• fc23	fc2	fc1	• fc1	• fc15	• fc13	fc1	fs9	fc8	• hc4	• m3	• 0,2	• 0,1	• 0,0
		, o	1020	1	9	7			1		100	1104		0,2	Ο, ι	0,0
			•	•	• ,	• ,	• ,	• ,	• ,	• /	• ,	•,	_	•	•	
			<mark>●</mark> 6,7	m1 2	fs2 /2	fs2 0	fs18	fs16	fs/1 /4	fs1	fs/1 0	hs5	• 0,3	• 1,1	• 1,0	
				1		,	4			× ,						
			• 7,6	•	•	•	•	•	•	•	•	•	• 1,2	_		
			<mark>7,6</mark>	fc2 2	fc2 0	fc1 8	fc16	fc14	fc1 2	fc1 0	hc5	<mark>m4</mark>	<mark>1,2</mark>	<mark>2,0</mark>		

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Cap	-3															
						_			_	_		_				
	m1	• <mark>m14</mark>	fs34	fş/3	fs3	fs ₃	fs30	fs29	fs2	fs2	fs2	fs2 /5	fs2	h s 6	m1	m0
	<mark>5</mark>		/ /	/3	/2	<u>/</u> 1		/ .	/8	7	6	5	4			
		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
		fc34	fc33	fc3	fc3	fc3	fc29	fc28	fc2	fc2	fc2	fc2	hc6	<mark>m2</mark>	<mark>0,1</mark>	0,0
				2	1	0			7	6	5	4				
		• <mark>7,6</mark>	fc23	• fs2	• fs2	• <mark>fs1</mark> 9	fs17	fs15	• fs1 3	• fs1	• fs9	• fs8	• hs4	• 0,2	1,0	
		_		2	1	9			3	1						

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	m15	ts47	rs46	rs45	fs44	fs4 3	fs42	fs41	rs40	fs39	fs38	£s37	£36	fs35	ns7	m0
Cap	2 c47	fc46	fc45	fc44	fc43	fc4	fc41	fc40	fc39	fc38	fc37	fc3	fc35	hc7	• m1	• 0,0
1												9				

Simulation Results for 8-bit Dadda Multiplier:

									4,000,000 ps	
Name	Value		3,999,994 ps	3,999,995 ps	3,999,996 ps	3,999,997 ps	3,999,998 ps	3,999,999 ps	4,000,000 ps	4,000,
► 🕌 a[7:0]	255				255					
▶ 🕌 b[7:0]	255				255					
▶ 💥 p[15:0]	65025				65025					
▶ 1 p1[10:0]	11100000001 650	125			11100000001					
▶ 1 p2[15:8]	11110111				11110111					
▶ 🦷 p22[15:11]	11111				11111					
▶ 🦷 c[63:0]	1111111111111111		111111	111111111111111111	111111111111111111	1111111111111111111	1111111			
▶ 5 s[41:0]	111000111111111			111000111111	11000001000000100	00001010010010				
▶ 🐝 co[41:0]	111111111001111			1111111111001	111111111111111111	11111111111111				
▶ 5 c0[7:0]	11111111				11111111					
▶ 🔣 c1[5:0]	111000				111000					
▶ 5 c2[2:0]	111				111					
▶ 5 c3[2:0]	000				000					
		X1: 4,000,000 p	S							

Codes:

Testbench :

```
`timescale 1ps/100fs
module top level tb(); //testbench doesnt have any inputs or outputs
                    reg [7:0] A;
                                    //inputs are takens as registers ( they need to hold the value)
                    reg [7:0] B;
                    reg[15:0] M;
                    wire [16:0] RES; //outputs are takens as wires in tb .
                    reg[7:0] ain_array[0:250];
                    reg[7:0] bin array[0:250];
                    reg[16:0] res_array[0:250];
                    reg[15:0] M_array[0:250];
                    top_level dut(
                                   A,B, M,RES); //since all the inputs to the dut are the wires of same name
                    integer i;
                    initial begin
                           $dumpfile("top_level_tb.vcd");
                           $dumpvars(0,top level tb);
                                                                                  //first argument is the level of debugging
                                                                                           //level 0 will log all the variable even in
                           $monitor(A,B,M,RES);
                           $readmemb("ain.txt",ain_array);
                           $readmemb("bin.txt",bin_array);
                           $readmemb("res.txt",res_array);
                           $readmemb("m.txt",M_array);
```

```
//sub modules
       //whereas level 1 will log only the ones in the top module
       A = 8'h0;
       B = 8'h0;
       M = 16'h0;
       #2000;
       A = 8'hff;
       B = 8'haa;
       #2000;
       B = 8'hff;
       #200;
       #1000;
       M = 16'h02;
       $display("starting....");
       for(i = 0; i < 250; i = i+1)begin
                 A = ain_array[i];
                 B = bin_array[i];
                 M = M_array[i];
                 #1000;
                 \frac{1}{2} $\text{display}("A = \%h, B = \%h, M = \%h, RES = \%h", A,B,M,RES);
                 if(RES != res_array[i])
                           $display("error");
                 else
                           $display("test passed");
       end
end
```

• Generate partial products :

endmodule

```
`timescale 1ps/100fs
module gen_part_products(
                     input [7:0] A,
                     input [7:0] B,
                     output[7:0] P[7:0]);
                                                //portlist can be 2D array in verilog
                     genvar i;
                     generate
                             for(i = 0; i < 8; i = i + 1) begin:part_product
                                       assign P[i][0] = A[0] \& B[i];
                                       assign P[i][1] = A[1] \& B[i];
                                       assign P[i][2] = A[2] \& B[i];
                                       assign P[i][3] = A[3] \& B[i];
                                       assign P[i][4] = A[4] \& B[i];
                                       assign P[i][5] = A[5] \& B[i];
                                       assign P[i][6] = A[6] \& B[i];
                                       assign P[i][7] = A[7] \& B[i];
                             end
                     endgenerate
endmodule
```

Carry Out Select :

```
`timescale 1ps/100fs
module CSA block #(parameter width = 4)(
           input [width -1:0]A,
           input [width -1:0]B,
           output[1:0][width -1:0]SUM,
           output[1:0]c_out);
           genvar i;
           wire [1:0][width - 1:0]carry out;
           full adder fa0(A[0],B[0],1'b0,SUM[0][0],carry out[0][0]);
           full_adder fa1(A[0],B[0],1'b1,SUM[1][0],carry_out[1][0]);
           generate
                  for (i = 1; i < width -1; i = i + 1) begin:gen_CSA_block
                           full_adder fa_carry_out_zero(A[i],B[i],carry_out[0][i-1],SUM[0][i],carry_out[0][i]);
                           full_adder fa_carry_out_one(A[i],B[i],carry_out[1][i-1],SUM[1][i],carry_out[1][i]);
                  end
           endgenerate
           full adder fa carry out zero last(A[width-1],B[width-1],carry out[0][width-2],SUM[0][width-1],c out[0]);
          full_adder fa_carry_out_one_last(A[width-1],B[width-1],carry_out[1][width-2],SUM[1][width-1],c_out[1]);
endmodule
module selector #(parameter width = 4)(
           input [1:0][width -1:0]SUM,
           input [1:0]c out,
           input c in,
           output [width -1:0]SUM OUT,
           output CARRY_OUT);
           genvar i;
           assign SUM OUT = c in?SUM[1]:SUM[0];
           assign CARRY_OUT = c_in?c_out[1]:c_out[0];
endmodule
module adder16(
          input [15:0]A,
           input [15:0]B,
           input c in,
           output [16:0]SUM);
           wire [2:0][1:0] block carry out;
           wire [1:0][3:0] sum_block1;
           wire [1:0][4:0] sum_block2;
           wire [1:0][5:0] sum_block3;
          wire [3:0]cout_inter;
           wire cout 0;
          //carry select adder is implemented in stages of 1, 4, 5, 6
```

```
full_adder fa0_in16(A[0],B[0],c_in,SUM[0],cout_0);
CSA_block #(.width(4)) block_1(A[4:1],B[4:1],sum_block1,block_carry_out[0]);
CSA_block #(.width(5)) block_2(A[9:5],B[9:5],sum_block2,block_carry_out[1]);
CSA_block #(.width(6)) block_3(A[15:10],B[15:10],sum_block3,block_carry_out[2]);

selector #(.width(4)) sel0(sum_block1,block_carry_out[0],cout_0,SUM[4:1],cout_inter[0]);
selector #(.width(5)) sel1(sum_block2,block_carry_out[1],cout_inter[0],SUM[9:5],cout_inter[1]);
selector #(.width(6)) sel2(sum_block3,block_carry_out[2],cout_inter[1],SUM[15:10],SUM[16]);
```

endmodule