CS 460 MP-1 RUSHI PATEL (RAP295) SMITKUMAR PATEL (SHP109)

2) KALMAN FILTER 2D IMPLEMENTATION:

 $\widehat{x}_{k}^{-} = A\widehat{x}_{k-1}^{-} + B\widehat{u}_{k-1}^{-}$: (Time Update Stage \rightarrow Project the state ahead)

$$\Rightarrow \hat{x}_k^- = \begin{pmatrix} 1 & \Delta T \\ 0 & 1 \end{pmatrix} \hat{x}_{k-1}^- + \begin{pmatrix} 0 & \frac{\Delta T^2}{2} \\ 0 & \Delta T \end{pmatrix} \hat{u}_{k-1}^-$$

• We can guess any points for this 2*1 matrix: \hat{x}_{k-1}^- and for this question \hat{u}_{k-1}^- is given.

 $P_k^- = AP_{k-1}A^T + Q$: (Time Update Stage \rightarrow Project the error covariance ahead, initiate estimates for \widehat{x}_{k-1} and P_{k-1})

- $\rightarrow P_{k-1}$ will be scalar * I (Identity matrix) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. We have to guess the scalar.
- ⇒ $\begin{pmatrix} 1 & \Delta T \\ 0 & 1 \end{pmatrix} P_{k-1} \begin{pmatrix} 1 & 0 \\ \Delta T & 1 \end{pmatrix} + Q$. Q is given in this problem.

After getting P_k^- using above equation we now will find Kalman Gain.

$$K_k = \frac{P_k^- H^T}{H P_k^- H^T + R}$$

(Measurement Update ("Correct") Stage → Computing the Kalman Gain)

 \rightarrow At this point, we will know the value of P_k^- using above equations and H will be Identity Matrix $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ and value of R is given in this problem.

After finding Kalman gain, we will find $\mathbf{new} \, \widehat{\boldsymbol{x}}_k$

New $\hat{x}_k = \hat{x}_k^- + K_k(z_k - H\hat{x}_k^-)$: (Measurement Update ("Correct") Stage \rightarrow Updating estimate with measurement z_k), Value of z_k is given in this problem.

Now, we will find new P_k^- : ((Measurement Update ("Correct") Stage \rightarrow Updating the error covariance)

New
$$P_k = (I - K_k H) P_k^-$$

Now, for the next iteration our new \widehat{x}_k and P_k value will be used for \widehat{x}_k^- and P_k^- respectively. Continue this process to find further values. Store the data of \widehat{x}_k and plot \widehat{x}_k and z_k using matplotlib.