

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Modelos de Computación Examen III

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Modelos de Computación

Curso Académico 2021-22.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Descripción Parcial Tema 3.

Ejercicio 1. Determinar si los siguientes lenguajes son regulares o no:

1. $L_1 = \{a^m b^n c^p d^q \mid m, n, p, q \in \mathbb{N} \cup \{0\} \land m + n \geqslant p + q\}.$

Para cada $n \in \mathbb{N}$, consideramos la palabra $z = a^n b^n c^n d^n \in L_1$, con $|z| = 4n \geqslant n$. Para cada descomposición z = uvw con $u, v, w \in \{a, b, c, d\}^*$, $|uv| \leqslant n$ y $|v| \geqslant 1$, tenemos que:

$$u = a^k$$
, $v = a^l$, $w = a^{n-k-l}b^nc^nd^n$ con $0 \le k+l \le n$, $l \ge 1$.

Por tanto, para i=0, tenemos que $uv^0w=a^{k+n-k-l}b^nc^nd^n=a^{n-l}b^nc^nd^n\notin L_1$, ya que:

$$n - l + n \geqslant n + n \Longleftrightarrow -l \geqslant 0 \Longleftrightarrow l \leqslant 0$$

pero esto sabemos que no es posible, ya que $l \ge 1$. Por tanto, $uv^0w \notin L_1$, y por el recíproco del Lema del Bombeo, L_1 no es regular.

2. $L_2 = \{0^i 1^j 0^k \mid i, j, k \in \mathbb{N} \cup \{0\} \land (i > j \Longrightarrow j = k)\}.$

Para cada $n \in \mathbb{N}$, consideramos la palabra $z = 0^n 1^n \in L_2$, con $|z| = 2n \geqslant n$. Para cada descomposición z = uvw con $u, v, w \in \{0, 1\}^*$, $|uv| \leqslant n$ y $|v| \geqslant 1$, tenemos que:

$$u = 0^k$$
, $v = 0^l$, $w = 0^{n-k-l}1^n$ con $0 \le k+l \le n$, $l \ge 1$.

Por tanto, para i=2, tenemos que $uv^2w=0^{k+2l+n-k-l}1^n=0^{n+l}1^n\notin L_2$, ya que:

$$n+l > n \iff l > 0 \iff l \geqslant 1$$
 $n \neq 0$

Por tanto, como se da el antecedente de la implicación pero no el consecuente, $uv^2w \notin L_2$, y por el recíproco del Lema del Bombeo, L_2 no es regular.