Assignment per il 12/04/2023 Linguaggi e Compilatori, gruppo 12.

Primo esercizio: Very Busy Expressions

1. Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati.

	Dataflow Problem Very Busy Expressions	
Domain	Sets of expressions	
Direction	$\begin{aligned} & Backward \\ & in[b] = f_b \ (out[b]) \\ & out[b] = ^ in[succ(b)] \end{aligned}$	
Transfer function	$f_b(x) = GEN_b \cup (x - Kill_b)$	
Meet Operation (^)	Λ	
Boundary Condition	in[exit]= Ø	
Initial interior points	$in[b] = \mu$	

GEN e Kill sono rispettivamente: USE_{expr} e la definizione di un operando già usato.

2. Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema.

Bit Vector: <b-a, a-b>

	ITERAZIONE 1		ITERAZIONE 2		ITERAZIONE 3	
	in	out	in	out	in	out
BB1	1,1	1,1	1,0	1,0	1,0	1,0
BB2	1,1	1,1	1,0	1,0	1,0	1,0
BB3	1,1	1,1	1,1	0,1	1,1	0,1
BB4	1,1	Ø	0,1	Ø	0,1	Ø
BB5	1,1	1,1	1,0	0,0	1,0	0,0
BB6	1,1	1,1	0,0	0,1	0,0	0,1
BB7	1,1	Ø	0,1	Ø	0,1	Ø
BB8	Ø	0,0	Ø	Ø	Ø	Ø

Non serve fare una quarta iterazione perché si è verificata la stabilità in due iterazioni successive, quindi l'algoritmo si stopperà.

Secondo esercizio: Dominator analysis

1. Derivare una formalizzazione per il framework di Dataflow Analysis, riempiendo lo specchietto coi parametri adeguati.

	Dataflow Problem Dominator Analysis	
Domain	Sets of Basic Blocks	
Direction	Forward $ out[b] = f_b (in[b]) $ $ in[b] = ^ out[prec(b)] $	
Transfer function	$f_b(x) = B \cup x$	
Meet Operation (^)	Λ	
Boundary Condition	out[entry]= entry	
Initial interior points	$out[b_i] = \mu$	

2. Per il CFG di esempio fornito popolare una tabella con le iterazioni dell'algoritmo iterativo di soluzione del problema.

	ITERAZIONE 1		ITERAZIONE 2		ITERAZIONE 3	
	in	out	in	out	in	out
Α	Α	A	A	A	A	A
В	A	В	A	AB	A	AB
С	AC	С	A	AC	A	AC
D	AC	D	AC	ACD	AC	ACD
Е	AC	E	AC	ACE	AC	ACE
F	Ø	F	AC	ACF	AC	ACF
G	Ø	G	A	AG	A	AG

Non serve fare una quarta iterazione perché si è verificata la stabilità in due iterazioni successive, quindi l'algoritmo si stopperà.