

Lecture 08 Potential games

Thomas Marchioro October 23, 2023

Potential games

Fictitious Play

- In fictitious play (G.W. Brown, 1951), regrets become actual changes of move
 - Each player *i* assumes the (possibly mixed) strategies played by −*i* to be fixed
 - If i gets a chance to play again, it plays the best response to what the other players' previous move
 - Somehow, "full rationality" is denied (we acknowledge predictions might be incorrect)
- How does a fictitious game evolve?
 - Nash equilibrium points are absorbing states. So, are they always convergence points?

Fictitious Play

- Not always! Players can also keep "cycling"
 - In Rock-Paper-Scissors, FP does not converge
- FP converges to a NE in some relevant cases:
 - The game can be solved via IESDS
 - Potential games
 - Other cases such as 2 × N games where every outcome has a different payoff for all players)

Potential games

- Consider $\mathbb{G} = (S_1, \dots, S_n; u_1, \dots, u_n)$ and $S = S_1 \times \dots \times S_n$
- Function $\Omega: S \to \mathbb{R}$ is an (exact) potential for \mathbb{G} if:

$$\Omega(s'_i, s_{-i}) - \Omega(s_i, s_{-i}) = u_i(s'_i, s_{-i}) - u_i(s_i, s_{-i}) = \Delta u_i$$

■ Function $\Omega: S \to \mathbb{R}$ is a **weighted potential** with weight $w = \{w_i > 0\}$ for \mathbb{G} if:

$$\Omega(\mathbf{s}_i', \mathbf{s}_{-i}) - \Omega(\mathbf{s}_i, \mathbf{s}_{-i}) = \mathbf{w}_i \Delta \mathbf{u}_i$$

■ Function $\Omega: S \to \mathbb{R}$ is an **ordinal potential** for \mathbb{G} if:

$$\Omega(s_i', s_{-i}) > \Omega(s_i, s_{-i}) \iff u_i(s_i', s_{-i}) > u_i(s_i, s_{-i})$$

■ If G admits a potential (resp., ordinal potential), it is called a potential (resp., ordinal potential) game

Potential games

- Potential games have nice properties
- If $\mathbb{G} = (S_1, \dots, S_n; u_1, \dots, u_n)$ has an ordinal potential Ω , its set of NE is the same as $\mathbb{G} = (S_1, \dots, S_n; \Omega, \dots, \Omega)$
- I.e., a game where all players want to maximize the potential
 - Game becomes a simple single-objective optimization problem
 - To some extent, it enables distributed optimization (player's decision is still independent)

Examples of potential

■ The Prisoner's dilemma is a potential game

		В		
		Μ	F	
7	M	-1, -1	-9, 0	
1	F	0, -9	-6, -6	

В				
M	F			
0	1			
1	4			

potential Ω

- This potential is exact
- However, the players are not very smart (they do not maximize the global welfare)
- There must be some "dummy" somewhere

Examples of potential

8

- The Cournot duopoly is an ordinal potential game
 - Recall that firms choose quantities q_1 and q_2
 - the market clearing price is $a q_1 q_2$
 - the unit production cost is c (so the cost for producing q_i is cq_i)
- Therefore, $u_i(q_i, q_j) = q_i(a q_i q_j c)$ and an ordinal potential function is

$$\Omega(q_1, q_2) = q_1q_2(a - q_1 - q_2 - c)$$

Potential games

- Theorem: Every finite ordinal potential game has (at least) one NE in pure strategies
 - This NE can be found deterministically (without using probabilities)
- Proof (Sketch): a consequence of fictitious play
 - All players move, one at a time, to maximize their utility \rightarrow they also maximize the potential
 - Continue fictitious play until a local maximum of Ω is found

Congestion games

- Congestion games are a special case of potential game, in which players aim to choose the "least congested" resource
 - Largely applied to network problems (finding the least congested route on a graph)
 - Or in resource allocation (minority games)
- It can be shown that:
 - congestion games are potential games
 - for every potential game, the is a congestion game with the same potential

- A coordination game models situations where players have incentive to coordinate their actions
- Players get a higher payoff when they choose the same strategy
- Example: Battle of the sexes
- Example: "Stag Hunt" (proposed by Rousseau). Two haunters they can decide to haunt together and aim for a bigger prey (sharing a payoff of 20); or they can hunt a smaller one separately (payoff 7).

- A coordination game has multiple pure-strategy NE
- In the Stag Hung, players can choose D = big prey (deer); or H = small prey (hare)

		Grunt		
		D	Н	
Srunt	D	10, 10	0, 7	
Brı	Н	7, 0	7, 7	

■ A coordination game can be seen as a potential game, with coordination points as potential maxima

		Grunt				Gri	unt
		D	Н			D	Н
runt	D	10, 10	0, 7	ınt	D	-4	-7
Br	Н	7, 0	7, 7	Bru	Н	-7	0
					4:41 0		

payoffs

potential Ω

- Another case is the anti-coordination game, where players get better payoffs for playing different strategies
 - For example, Hawk-and-Dove games, such as the Chicken game (H = hold the wheel and save your life; D = steer the wheel and be a chicken)

		В		
		Н	D	
_	Н	-99, -99	10, -10	
	D	-10, 10	0, 0	

Potential = coordination + dummy

- A dummy (or pure-externality) game is such that for all s_{-i} , $u_i(s_i, s_{-i}) = u_i(s'_i, s_{-i})$, i.e. player i's payoff depends only on s_{-i}
- Every potential game is a sum of a coordination game and a dummy game

M	F	
-1, -1	0, 0	 M
0, 0	3, 3	F

M	F	
0, 0	-9, 0	
0, -9	-9, -9	

coordination

dummy

M

Computational complexity of NE

How easy is to find NE?

- Since Nash equilibria are considered a "natural" evolution of the game, one may wonder how much does it take to reach them
- Nash theorem guarantees existence
- Plus, there are notable results for specific types of game

A negative result

- Unfortunately, in the general case, finding a NE is computationally hard
- This has been proven by Papadimitriou in 2007 ("The Complexity of Finding Nash Equilibria")
- However, computationally hard does not mean NP-complete
- The search for a NE cannot be NP-complete as a solution must exist
 - There may even be multiple solutions, which further complicates things

The PPAD class

- The NE search problem is PPAD-complete
- PPAD = Polynomial Parity Arguments on Directed graphs (Papadimitriou, 1994)
- More or less, P<PPAD<NP, which means that PPAD is computationally hard unless P=NP
- This class includes the problem equivalent to the end-of-line problem

The PPAD class

■ End-of-line problem: "Consider a directed graph with an unbalanced node (in-degree≠out-degree). There must be at least another one. Find it."

unbalanced node (start) other unbalanced node

- This problem is bound to have a solution
- However, finding it without exploring the whole graph is far from trivial, and in some cases cannot be avoided

How is NE search a PPAD problem?

- The NE search problem corresponds to finding a fixed point of the BR function
- Finding a fixed point over a compact set can be shown to be equivalent to finding the end of a proper path on a directed graph
- There is an elegant (not difficult but very long) proof of it, involving graph coloring and compact partitioning

Consequences on NE?

- This may imply bad consequences on the practical usefulness of Nash Equilibrium
- To be optimistic:
 - Certain simple problems can be shown to have a NE which can be found through constructive steps (good for engineering)
 - One may be "close" to a NE (maybe it is enough)
 - ightarrow relaxation: ϵ -Nash Equilibrium, i.e., rather than checking for "no unilateral improvement" ignore all improvements smaller than $\epsilon > 0$