Practice Problems for Linear Algebra Review

Within Exam Scope

1. Subspaces and Spans

Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5$ are vectors in \mathbb{R}^3 . Do you agree with the statement that these vectors span \mathbb{R}^3 ?

2. Orthogonality

Which pairs are orthogonal among the vectors

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ -2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 4 \\ 0 \\ 4 \\ 0 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$$

3. Linear Independence

If \mathbf{v}_1 , \mathbf{v}_2 and \mathbf{v}_3 are independent vectors, would the following vectors be independent?

$$\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_3, \quad \mathbf{w}_2 = \mathbf{v}_1 + \mathbf{v}_2, \quad \mathbf{w}_3 = \mathbf{v}_2 + \mathbf{v}_3.$$

4. Range and Rank

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, if rank $(\mathbf{A}) = m < n$, then what is the dimension of the null space?

5. Matrix Inverse

We have matrices $\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Which of the following are true?

- (a) **A** is singular
- (b) **B** is invertible
- (c) $\mathbf{A} + \mathbf{B}$ is invertible.

6. Subspaces

The smallest subspace of \mathbb{R}^3 containing the vectors $\begin{pmatrix} 0 \\ -3 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ is the line whose equations are x = a and z = by. What are the values of a and b?

7. Matrix Inverse

For \mathbf{A} , $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\alpha \in \mathbb{R}$, assume \mathbf{A} and \mathbf{B} are invertible:

- (a) (True/False) $(\mathbf{A}^{-1})^{\top} = (\mathbf{A}^{\top})^{-1}$
- (b) (True/False) $(AB)^{-1} = A^{-1}B^{-1}$
- (c) (True/False) If $\det(\mathbf{A}) = 2$, then $\det(\mathbf{A}^{-1}) = 2^{-1}$.
- (d) (True/False) If $det(\mathbf{A}) = 2$ and $\alpha > 1$, then $det(\alpha \mathbf{A}) = 2$.

8. Linear Independence

Let
$$\mathbf{u} = \begin{pmatrix} \lambda \\ 1 \\ 0 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 1 \\ \lambda \\ 1 \end{pmatrix}$, $\mathbf{w} = \begin{pmatrix} 0 \\ 1 \\ \lambda \end{pmatrix}$. What are possible values of λ that make $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ linearly dependent?

9. Matrix Product

For
$$\mathbf{A} = \begin{bmatrix} 1 & 1/3 \\ x & y \end{bmatrix}$$
, find the value of x and y such that $\mathbf{A}^2 = 0$.

10. Inner Product

Consider the space of all matrices in
$$\mathbb{R}^{2\times 2}$$
. Define inner product as $\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{tr}(\mathbf{A}^{\top}\mathbf{B})$ for $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{2\times 2}$. Let $\mathbf{U} = \begin{bmatrix} 1 & 4 \\ -3 & 5 \end{bmatrix}$ and $\mathbf{V} = \begin{bmatrix} x^2 & x-1 \\ x+1 & -1 \end{bmatrix}$. Find all values of x such that $\mathbf{U} \perp \mathbf{V}$.

11. Matrix Inverse

If a non-singular matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ satisfies $\mathbf{A}^3 - 4\mathbf{A}^2 + 3\mathbf{A} - 2\mathbf{I}_n = \mathbf{0}$, what is \mathbf{A}^{-1} ?

12. Basis

Let
$$\mathbf{u} = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix}$$
, $\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $\mathbf{w} = \begin{pmatrix} 1 \\ 2 \\ c \end{pmatrix}$ where $c \in \mathbb{R}$. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is a basis for \mathbb{R}^3 provided that c is **not** equal to what value?

13. Subspaces

Consider the set of points $(x, y, z) \in \mathbb{R}^3$. Which one of the following is a subspace of \mathbb{R}^3 ?

2

- (a) x + 3y 2z = 3.
- (b) x + y + z = 0 and x y z = 2.
- (c) $\frac{x+1}{2} = \frac{y-2}{4} = \frac{z}{3}$. (d) $x^2 + y^2 = z$.
- (e) x = -z and x = z.
- (f) $\frac{x}{2} = \frac{y+1}{2}$.