Chapitre 1 Ensembles

Table 1.1 – Objectifs. À fin de ce chapitre 1...

	Pour m'entraîner <u>é</u>		
Je dois connaître/savoir faire	&	Ö	
Vocabulaire des ensembles			
écrire un ensemble	1,		
utiliser les symboles \in , \ni , $\notin \not\ni$ et \subset et \supset	2, 3		
intersection \cap , union \cup , et complémentaire	4, 5	6, 14, 15	
exploiter et produire des diagrammes de Venn	7, 8, 9	10, 11, 12	16, 17
Ensembles de nombres réels			
justifier qu'un nombre est dans $\mathbb D$	20		
justifier qu'un nombre est dans $\mathbb Q$	18,	21	22
classification des réels et généralités	19	24, 25	

1.1 Vocabulaire des ensembles

■ Exemple 1.1 Les ensembles de la figure 1.1 s'écrivent : $A = \{43; 0; 7; 188\}$, $B = \{7; 4; 82\}$. L'ordre d'écriture des éléments entre accolades n'est pas important : $\{43; 0; 7; 188\} = \{7; 43; 188; 0\}$.

7 est un élément, {7} est un ensemble.

43; 0; 7 et 188 sont les **éléments** de l'ensemble A.

 $43 \in A$ se lit « 43 appartient à A ».

 $82 \notin A \text{ se lit } \text{``82 n'appartient pas \'a } A \text{``}.$

Tout élément de l'ensemble $D = \{188; 0; 43\}$ appartient à A.

On dira que $D \subset A$ (inclus) ou $A \supset D$ (contient).

 $B \not\subset A$. B n'est pas un sous-ensemble de A.

Figure 1.1 – Diagramme des ensembles A et B

R Les éléments d'un ensemble sont distincts deux-à-deux. Il n'est pas correct d'écrire $\{0; 5; 0\}$.

2 1 Ensembles

1.2 Ensembles particuliers

Définition $1.1 - \mathbb{R}$ ensemble des nombres réels. est l'ensemble des nombres que nous connaissons. \mathbb{R} est représenté par une droite graduée (figure 1.2).

Figure 1.2 – Chaque nombre réel $x \in \mathbb{R}$ correspond à un unique point M(x) de la droite graduée. Réciproquement, à chaque point de la droite graduée correspond un unique réel, appelé abscisse de ce point.

Définition 1.2 — \mathbb{N} ensemble des entiers naturels. $\mathbb{N}=\{0;1;2;3;4;\dots\}$. $\mathbb{N}^*=\mathbb{N}\setminus\{0\}=\{1;2;3;4;\dots\}$.

Définition 1.3 — \mathbb{Z} ensemble des entiers relatifs . $\mathbb{Z} = \{\ldots; -2; -1; 0; 1; 2; 3; \ldots\}$ et $\mathbb{Z}^* = \mathbb{Z} \setminus \{0\}$.

 $\mathbb Z$ est composé des nombres entiers naturels et de leurs opposés : $\mathbb N\subset \mathbb Z$

Définition 1.4 — nombres décimaux. L'ensemble des nombres qui peuvent s'écrire sous forme du produit d'une puissance de 10 par un entier non divisible par 10 sont dit décimaux.

$$\mathbb{D} = \left\{ a \times 10^n \mid a \in \mathbb{Z} \text{ non divisible par 10 et } n \in \mathbb{Z} \right\}$$

Proposition 1.1 Tout nombre décimal s'écrit sous la **forme scientifique** $a \times 10^n$, ou $n \in \mathbb{Z}$ et la mantisse $a \in \mathbb{D}$ vérifie $1 \le a < 10$. L'**ordre de grandeur** du nombre est alors le produit de l'entier le plus proche de a par 10^n .

■ Exemple 1.2 Les nombres décimaux ont une écriture décimale finie :

		écriture	ordre de
x	justification $x\in\mathbb{D}$ au sens de la définition 1.4	scientifique	grandeur
26 500	265×10^2	$2,65 \times 10^4$	3×10^4
42,5	425×10^{-1}	$4,25 \times 10^{1}$	4×10^1
0,001 65			
$\frac{3}{5} = 0.6$			

Il est imprécis de parler de « nombres à virgule ». 1 et $\frac{2}{5} \in \mathbb{D}$ mais il n'y a pas de virgule dans 1 bu $\frac{2}{5}$. De plus il ne faut pas confondre **écriture décimale** et **nombre décimal**.

Les nombres dont l'écriture décimale est infinie ne seront pas dans \mathbb{D} , en particulier : **Proposition 1.2** — admis provisoirement. $\frac{1}{3} = 0,333\ 333\ 3\dots$ n'est pas un nombre décimal $\frac{1}{3} \notin \mathbb{D}$.

 ${f R}$ L'écriture 0,999 999 9... n'est pas considérée une écriture décimale valable du nombre $1\in{\Bbb N}.$

Définition 1.5 — nombres rationnels. L'ensemble des nombres qui peuvent s'écrire comme une fraction irréductible d'entiers sont dit rationnels.

$$\mathbb{Q} = \left\{ \frac{a}{b} \quad \middle| \quad a \in \mathbb{Z}, \ b \in \mathbb{N}^*, \quad \text{sans diviseurs communs} \right\}$$

■ Exemple 1.3 Les nombres rationnels ont une écriture décimale finie ($\mathbb{Q} \supset \mathbb{D}$) ou **périodique** :

x	justification de $x\in\mathbb{Q}$	écriture décimale	classification
-13	$-13 = \frac{-13}{1}$ irréductible.	−13 (finie)	$\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}$
9,75	$9,75 = \frac{975}{100} =$	9,75 (finie)	$\mathbb{D}\subset\mathbb{Q}$
$\frac{251}{25}$		$251 \div 25 = 10,04$ (finie)	$\mathbb{D}\subset\mathbb{Q}$
150 7		$150 \div 7 = 21,428571$ (périodique)	$\mathbb{Q}\cap\overline{\mathbb{D}}$

L'écriture décimale d'un nombre rationnel peut avoir une longue période : $\frac{1}{49} = 1 \div 49 = 0, \underline{020408163265306122448979591836734693877551}...$

Définition 1.6 Les nombres réels mais pas rationnels $\mathbb{R} \cap \overline{\mathbb{Q}}$ sont dit **irrationnels**.

Proposition 1.3 — admis provisoirement. $\sqrt{2}$ est un irrationnel : $\sqrt{2} \notin \mathbb{Q}$.

■ Exemple 1.4 Il n'est pas trivial de justifier que des nombres réels comme π ou $\sqrt{5}$ sont irrationnels. Néanmoins, on peut *supposer* qu'un nombre est irrationnel lorsque son écriture décimale *semble infinie et non périodique* (explorer l'écriture décimale de π).

Figure 1.3 – $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$.

1 Ensembles

1.3 Exercices

1.3.1 Exercices : diagrammes de Venn et opérations sur les ensembles

- **Exemple 1.5** L'ensemble des diviseurs de 6 s'écrit $\{1; 2; 3; 6\}$.
- L'ensemble des entiers pairs positifs inférieurs ou égal à 10 s'écrit {2; 4; 6; 8; 10}

Exercice 1 Écrire les ensembles décrits :

- 1. Les entiers positifs impairs inférieurs ou égaux à 10.....
- 2. Les nombres premiers inférieurs ou égaux à 10......
- 3. Les solutions de l'équation (x-1)(x+2) = 0......
- Exemple 1.6 définition par compréhension. sous la forme { éléments | condition } :
- $\{x|x>0\}$ est l'ensemble des nombres strictement positifs. On peut dire que $5 \in \{x|x>0\}$.
- $\{x|x^2=4\}=\{-2;\ 2\}$. On peut dire que $-2\in\{x|x^2=4\}$
- $\{2n|0 \le n \le 3\} = \{0; 2; 4; 6\}$

On utilise les symboles \in et \notin pour préciser si un éléments appartient ou pas à un ensemble.

Exercice 2 Compléter par $\in \notin$. Si $A = \{x | x \text{ diviseur de } 12\}$ et $B = \{x | x \text{ impair positif}\}$ alors :

 $5 \dots A$

 $6 \dots A$

 $5 \dots B$

 $6 \dots B$

On écrit $A \subset B$ ou $B \supset A$ lorsque « pour tout $x \in A$ on a $x \in B$ ».

- Exemple 1.7 $\{4; 1\} \subset \{1; 2; 4\}$
- $\{x|x \text{ multiple de } 3\} \supset \{x|x \text{ multiple de } 6\}$
- \bullet L'ensemble vide \varnothing est inclus dans tout en
 - semble

Exercice 3 Quels ensembles sont inclus dans $\{1; 2; 3; 6\}$?

(A) {1; 2; 3}

(C) {3}

(E) $\{x|x \text{ diviseur de } 3\}$

(B) {1; 2; 4}

(D) Ø

(F) $\{x | x \text{ diviseur de } 6\}$

L'ensemble noté « $A \cap B$ » désigne intersection des ensembles A et B.

C'est l'ensemble des éléments appartenants à A **ET** appartenants à B.

■ Exemple 1.8 Si $\begin{cases} A = \{x | x \text{ diviseur de } 8\} = \{1; \ 2; \ 4; \ 8\} \\ B = \{x | x \text{ diviseur de } 12\} = \{1; \ 2; \ 4; \ 6; \ 12\} \end{cases}$, alors $A \cap B = \{1; \ 2; \ 4\}$

Exercice 4 Donner les intersections dans chaque cas :

$$\{1; \ 2; \ 3; \ 4\} \cap \{2; \ 4; \ 6\} = \dots$$

$$\{1; \ 2; \ 3; \ 6\} \cap \{2; \ 3\} = \dots$$

$$\{8; \ 4; \ 2\} \cap \{1; \ 2; \ 4\} = \dots$$

$$\{2; \ 4; \ 6\} \cap \{1; \ 3; \ 5\} = \dots$$
 $\left| \ \{x | 1 < x\} \cap \{x | x \le 2\} = \dots$

L'ensemble noté « $A \cup B$ » désigne l'union des ensembles A et B.

Exemple 1.9 $\{1; 2; 3; 6\} \cup \{1; 2; 4; 8\} = \{1; 2; 3; 4; 6; 8\}$

Exercice 5 Donner les unions dans chaque cas :

$$\{3;\ 2;\ 1\} \cup \{1;\ 2;\ 4;\ 8\} = \dots$$

$$\{1;\ 3;\ 9\} \cup \{1;\ 3;\ 5;\ 7;\ 9\} = \dots$$

$${x|0 < x < 2} \cup {x|1 < x} = \dots$$

Exercice 6 Compléter à l'aide de \in , \ni , \notin , $\not\ni$, \subset , \supset :

$$7...$$
 A
 $\{43; 7; 188\}$
 A
 $\{7\}$
 B
 $B...$
 A
 A

Multiples de 2

Multiples de 3

Les diagrammes de Venn nous permettent de représenter des ensembles ainsi que leurs éléments. L'univers noté Ω est l'ensemble de tous les éléments.

Exercice 7 Décomposer en facteurs premiers 585 et 455 puis compléter le diagramme de Venn : Facteurs premiers de 585

Facteurs premiers de 455 AB5

Exercice 8 Placer les éléments 750, 754, 755, 756,

758, 759 et 760 dans le diagramme de Venn :

B

$$A \cap B = \dots$$
 $A \cap B = \dots$

 $A \cup B = \dots$ $A \cup B = \dots$ Exercice 9 Complète les ensembles suivants à partir du diagramme de Venn.

 $A \cap B = \dots$

 $A \cup B = \dots$

Exercice 10 Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1; 2; 3; 4; 5; 6; 7; 8; 9\}$$

A =les nombres sont premiers

B = les nombres sont pairs

 $A \cap B = \dots$

 $A \cup B = \dots$

Exercice 11 Placer les nombres dans la bonne partie du diagramme de Venn

$$\Omega = \{1; 2; 3; 4; 5; 6; 7; 8; 9; 10\}$$

A =les nombres sont des carrés parfaits

B = les nombres sont impairs

 $A \cap B = \dots$

 $A \cup B = \dots$

Exercice 12 — Vrai ou Faux.

	Vrai	Faux	•
1/ 4 ∈ A			1/ A∩.
2/ 5 ∈ B			2/ {5;
3/ $6 \in A \cup B$			3/ <i>A</i> ∩

1/ $A \cap B \supset \{5; 6\}$	
2/ $\{5; 8\} \subset A \cup B$	
3/ $A \cap B = \emptyset$	

Exercice 13 Coloriez les ensembles indiqués sur chaque diagramme de Venn.

Vrai | Faux

 \overline{A} est le complémentaire de A dans Ω . C'est l'ensemble des éléments de Ω qui ne sont pas dans A.

■ Exemple 1.10 « $A \cap \overline{B}$ » est l'ensemble des éléments qui sont dans A et pas dans B.

■ Exemple 1.11 « $A \cup \overline{B}$ » est l'ensemble des éléments qui sont dans A ou ne sont pas dans B.

1.3 Exercices

Exercice 14 Complète les ensembles suivants à partir du diagramme de Venn.

Exercice 15 Complète les ensembles suivants à partir du diagramme de Venn.

Exercice 16 — raisonner. Complète le diagramme de Venn à l'aide des informations suivantes

$$\overline{C}=\left\{1;3;4;6;9;20\right\}$$

$$A\cap C=\left\{ 5;7\right\}$$

$$A \cap B = \emptyset$$

Exercice 17 Coloriez les ensembles indiqués sur chaque diagramme de Venn. Que constatez vous?

1 Ensembles

1.3.2 Exercices : réels, classification et opérations

- Exemple 1.12 Organiser un calcul. avec des fractions :
- On simplifie des **facteurs communs** : $\frac{5+3}{5+7} = \frac{8}{12} = \frac{4\times2}{4\times3} = \frac{2}{3}$
- On multiplie deux fractions en multiplicant les numérateurs et les dénominateurs :

$$\frac{9}{4} \times \frac{10}{21} = \frac{9 \times 10}{4 \times 21} = \frac{90}{84} = \frac{30}{28}$$

— On ajoute deux fractions en ramenant au même dénominateur :

$$\frac{3}{4} - \frac{2}{7} = \frac{3 \times 7}{4 \times 7} - \frac{2 \times 4}{7 \times 4} = \frac{21 - 8}{28} = \frac{13}{28}$$

— En l'absence de parenthèses, attention aux priorités :

$$\frac{5}{3} - \frac{2}{3} \times \frac{3}{5} = \frac{5}{3} - \frac{2}{5} = \frac{19}{15}$$

Exercice 18 — 🗹. Exprimer les expressions suivantes sous forme d'une fraction irréductible

Exercice 19 Compléter par \in , \notin et \ni :

$$245\dots\mathbb{N}; \quad -3^2\dots\mathbb{N}; \quad \frac{3}{15}\dots\mathbb{N}; \quad \frac{15}{3}\dots\mathbb{Z}; \quad 0\dots\mathbb{N}^*; \quad -5\dots\mathbb{Z}; \quad 4,3\dots\mathbb{Q}\cap\mathbb{D} \quad \frac{-12}{7}\dots\mathbb{N}\cup\mathbb{Q}$$

Exercice 20 Pour chaque nombre x, justifier l'appartenance à $\mathbb D$ et donner l'écriture scientifique et l'ordre de grandeur.

		écriture	ordre de
x	justification $x \in \mathbb{D}$ au sens de la définition 1.4	scientifique	grandeur
0,042 5			
470,84			
637,8			
97,65			
0,001 52			
10,42			
0,948 7			
$\frac{7}{2,5} = 2.8$			

Exercice 21 Simplifier les expressions pour justifier l'appartenance à \mathbb{Q} . Préciser le plus petit

ensemble auguel chacune appartient

x	justification de $x\in\mathbb{Q}$	écriture décimale	classification
$\frac{3\pi}{5\pi}$	$\frac{3\pi}{5\pi} = \frac{3}{5}$ fraction irréductible	$3 \div 5 = 0.6$ (finie)	$\mathbb{D}\subset\mathbb{Q}$
$\frac{1}{9}$	fraction irréductible	$1 \div 9 = 0, \underline{1}$ (périodique)	$\mathbb{Q}\cap\overline{\mathbb{D}}$
10^{-1}			
7^{-1}			
$\frac{5}{4} + \frac{7}{4}$	$=\frac{5+7}{4}=$		
$5 - \frac{4}{9}$			
$\frac{12}{5} \times \frac{1}{9}$			
$\frac{5}{4} + \frac{13}{12} =$	$\frac{5\times}{4\times} + \frac{13}{12}$		
$\frac{8}{3} - \frac{11}{12}$			
$\frac{2}{3} - \frac{7}{3} \times \frac{9}{12}$			

■ Exemple 1.13 Retrouver l'écriture en fraction irréductible du nombre réel donné par son écriture décimale périodique.

$$x = 0, \underline{7} = 0,777\dots$$

$$x = 0, \underline{7} = 0,777...$$
 $y = 0, \underline{371} = 0,371 \ 371 \ 371...$ $z = 1,432 \ 323 \ 2...$

$$z = 1, 432 = 1,432 323 2...$$

solution. On commence par multiplier par 10^p , ou p est la longueur de la période :

$$x = 0.7 = 0.777...$$

$$x = 0, \underline{7} = 0,777...$$
 $y = 0, \underline{371} = 0,371 \ 371 \ 371...$ $z = 1, 4\underline{32} = 1,432 \ 323 \ 2...$

$$z = 1.432 = 1.4323232...$$

$$10x = 7 \ 7 = 7 \ 777$$

$$10x = 7, \underline{7} = 7,777...$$
 $1000y = 371, \underline{371} = 371,371\ 371...$ $100z = 143, \underline{232} = 143,232\ 32...$

$$100z = 143 \ 232 = 143 \ 232 \ 32$$

$$10x - x = 7$$

$$1000y - y = 371$$
$$999y = 371$$

$$100z - z = 143, 2 - 1, 4$$

$$9x = 7$$

$$999y = 371$$

$$99z = 141.8$$

$$x=\frac{7}{9}$$

$$y = \frac{371}{999}$$

$$z = \frac{141.8}{99} = \frac{709}{495}$$

Exercice 22 Mêmes consignes

$$u = 5.41 = 5.414141...$$

$$t = 0, \underline{45} = 0,454\ 545\dots$$
 | $u = 5, \underline{41} = 5,414\ 141\dots$ | $v = 1, \underline{276} = 1,276\ 767\ 6\dots$

 $a\leqslant x\leqslant b$ est un encadrement décimal à 10^{-n} près du réel x si a et $b\in\mathbb{D}$ et $b-a=10^{-n}$.

■ Exemple 1.14 $3{,}141 \le \pi \le 3{,}142$ est un encadrement décimal à $3{,}142 - 3{,}141 = 0{,}001 = 10^{-3}$ près.

10 1 Ensembles

Exercice 23 À l'aide de la calculatrice, donner un encadren	nent dé	ecimal à	la préd	cision d	ema	andée
π à 10^{-5} près :					• • • •	
$\sqrt{2}$ à 10^{-4} près :				• • • • • • •		
$\frac{22}{7}$ à 10^{-3} près :				• • • • • • •		
$\cos(35^{\circ})$ à 10^{-3} près :	• • • • • • •				• • • •	
Exercice 24 Cochez les cases auxquels chaque nombre a	ppartie	ent :				
	N	Z	D	Q	F	R
1/ 2,25						
2/ $\frac{19}{25}$						
$3/-\frac{4}{3}$						
4/ $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$						
4/ $\frac{1}{2} + \frac{1}{3} + \frac{1}{6}$ 5/ $\frac{6 - (-5) + 1}{(-8)/2}$						
6/ $1+2\sqrt{3}$						
7/ $\sqrt{25} - 2\sqrt{4}$						
8/ $3 - \sqrt{-4 + 5 \times 8}$						
9/ 2.3×10^{-12}						
10/ $\frac{\sqrt{10}}{100}$						
11/ $\frac{15\sqrt{2}}{3\sqrt{2}}$						
12/ $\left(\sqrt{5}\right)^2$						
Exercice 25 — Vrai ou Faux?. Si faux, donner un contre-ex	xemple	à l'aid	e de l'ex			
				Vra	ai	Faux
1/ Un nombre décimal ne peut jamais être un nombre	e entier	•				
2/ Un nombre décimal est toujours un rationnel.						
3/ Un nombre irrationnel peut être un entier.						
4/ Un nombre entier relatif est toujours un décimal.						
5/ Le produit de deux nombres décimaux est toujours un décimal.						
6/ Le quotient de deux nombres décimaux est toujours un décimal.						
7/ Le produit de deux nombres rationnels est toujours un rationnel.						
8/ Le produit de deux nombres irrationnels est toujours un irrationnel.						
9/ Le quotient de deux nombres irrationnels peut être	un en	tier.				

1.4 Exercices : solutions et éléments de réponse

solution de l'exercice 1.	•
solution de l'exercice 2.	•
solution de l'exercice 3.	•
solution de l'exercice 4.	•
solution de l'exercice 5.	•
solution de l'exercice 6.	•
solution de l'exercice 7.	•
solution de l'exercice 8.	•
solution de l'exercice 9.	•
solution de l'exercice 10.	•
solution de l'exercice 11.	•
solution de l'exercice 12.	•
solution de l'exercice 14.	-
solution de l'exercice 15.	-
solution de l'exercice 15.	•
solution de l'exercice 16.	•
solution de l'exercice 17.	•
solution de l'exercice 18.	•
solution de l'exercice 19.	•
solution de l'exercice 20.	•
solution de l'exercice 21.	•
solution de l'exercice 22.	•

12 1 Ensembles

solution de l'exercice 24.

solution de l'exercice 25.