Feuille nº 3 : Corrélation linéaire.

Exercice 1: Chaque semaine de l'année comportant six jours ouvrables, on a relevé la recette, en milliers d'euros, d'un hypermarché le lundi et le samedi. Un échantillon de 10 semaines a donné les résultats suivants :

semaine	Recette du lundi	Recette du samedi
nº	$ x_i $	y_i
1	57	86
2	60	93
3	52	77
4	49	67
5	56	81
6	46	70
7	51	71
8	63	91
9	49	67
10	57	82

- 1. Donner une représentation graphique de cette série statistique double. Est-il pertinent d'envisager une corrélation linéaire entre les variables X et Y (où X est la recette du lundi, et Y la recette du samedi)?
- 2. Déterminer l'équation de la droite permettant d'estimer la recette du samedi, à partir de la connaissance de la recette du lundi de la même semaine. (Par la méthode des moindres carrés)
- 3. Quelle peut être la recette du samedi d'une semaine où la recette du lundi a été égale à 55?

Exercice 2: Un grand magasin dispose du tableau statistique suivant :

Années	Rang de l'année t_i	Nombre d'immatriculations de voitures	Nombre de paquets livrés
		(en dizaines de milliers) x_i	(en dizaines de milliers) y_i
2011	1	63	88
2012	2	65	87
2013	3	64	96
2014	4	66	106
2015	5	69	117
2016	6	71	118
2017	7	75	126
2018	8	76	134
2019	9	80	130
2020	10	81	138

- 1. Donner une représentation graphique de la série statistique double de variables X et T, où X est le nombre d'immatriculations de voitures en dizaines de milliers et T le rang de l'année.
- 2. Donner l'équation de la droite d'ajustement qui permet d'estimer le nombre des immatriculations à partir du rang de l'année .
- 3. Calculer le coefficient de corrélation linéaire entre le nombre d'immatriculations de voitures *X* et le nombre *Y* de paquets livrés par le grand magasin.
- 4. Donner une représentation graphique de la série statistique double de variables X et Y. Estelle en adéquation avec le résultat de la question précédente?
- 5. Donner l'équation de la droite de régression qui permet d'estimer le nombre de paquets livrés à partir de la connaissance du nombre d'immatriculations de voitures.
- 6. Utiliser les résultats qui précèdent pour essayer de prévoir le nombre de paquets livrés par le grand magasin en 2025.