FINAL EXAMINATION SPRING 2018

Linear Algebra I A

This three-hour long test has 10 problems in total. Write *all your answers* on the examination book.

- (1) (10 points, 1 point each) True or false. No need to justify.
 - (a) If P is a permutation matrix, then $P^{-1} = P^{T}$.
 - (b) Suppose A is an $m \times n$ matrix, and rank (A) = r, then $\dim N(A) = m r$.
 - (c) Symmetric matrices have orthogonal eigenvectors.
 - (d) Every invertible matrix can be diagonalized.
 - (e) The eigenvalues of A equal the eigenvalues of A^T .
 - (f) Suppose A is an $n \times n$ matrix, then $\det(kA) = k \det(A), k \in \mathbb{R}$.
 - (g) The quadratic form $2x^2 + 4xy + y^2$ is positive definite.
 - (h) For any symmetric matrix A, the signs of the pivots agree with the signs of the eigenvalues.
 - (i) Every real symmetric A can be diagonalized by an orthogonal matrix Q.
 - (j) The difference equation $u_{k+1} = Au_k$ is stable if all eigenvalues satisfy $|\lambda_i| \leq 1$.
- (2) (12 points, 3 points each) Fill in the blanks.
 - (a) Suppose A has eigenvalues 0 and 1, corresponding to the eigenvectors $(1,2)^T$ and $(2,-1)^T$, then $A = \underline{\hspace{1cm}}$.
 - (b) The conditions on a, b, c ensure that the quadratic $f(x, y) = ax^2 + 2bxy + cy^2$ is positive definite are _____.
 - (c) The 2×2 matrix that projects every vector onto the " θ -line" containing all the multiples of $a = (\cos \theta, \sin \theta)$ is _____.
 - (d) Let $A = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 1 & 2 \end{pmatrix}$, $\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + a_{i3}C_{i3}$, then

$$C_{21} + C_{22} + C_{23} = \underline{\hspace{1cm}}.$$

- 2
- (3) (8 points)Consider the following system of linear equations:

$$\begin{cases} x_1 + 3x_2 + x_3 + 2x_4 = 1 \\ 2x_1 + 6x_2 + 4x_3 + 8x_4 = 3 \\ 2x_3 + 4x_4 = c \end{cases}.$$

- (a) (4 pts) Let A be the coefficient matrix of the above system. What condition on $b = (1, 3, c)^T$ makes the system Ax = b solvable?
- (b) (4 pts) Find the complete solution to Ax = b in the case it is solvable.
- (4) (10 points) Suppose

$$A = \begin{bmatrix} -2 & 1 \\ -1 & 1 \\ 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{bmatrix}.$$

- (a) Explain why Ax = b is inconsistent.
- (b) Find a solution to Ax = b in the sense of least squares.
- (5) (10 points) Consider the following matrix:

$$A = \left[\begin{array}{cccc} x & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{array} \right].$$

- (a) Let $f(x) = \det A$, find f(x).
- (b) Find

$$\det \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

(6) (10 pints) Let

$$A = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{array} \right].$$

- (a) Find the eigenvalues and eigenvectors of A.
- (b) Explain why A is diagonalizable, and find an invertible matrix S, such that $\Lambda = S^{-1}AS$.
- (c) Find A^k , where k is a positive integer.

(7) (10 points) Let A be the following matrix.

$$A = \left[\begin{array}{cc} 0 & 3 \\ 2 & -1 \end{array} \right]$$

- (a) Find e^{At} .
- (b) Solve the following system of differential equations:

$$\frac{du}{dt} = Au.$$

(8) (10 points) Consider the following matrix

$$\left[\begin{array}{ccc}
1 & 2 \\
-2 & -4 \\
1 & 2
\end{array}\right]$$

- (a) Find all the eigenvalues of AA^T and A^TA .
- (b) Find a Singular Value Decomposition of A.

(9) (10 points) For which numbers c is this matrix positive definite?

$$A = \left[\begin{array}{rrr} 1 & -1 & 0 \\ -1 & c & -1 \\ 0 & -1 & 1 \end{array} \right].$$

- (10) (10 points) Prove:
 - (a) (4 pts) Let A be a real symmetric matrix. Suppose all the pivots (without row exchanges) of A satisfy $d_k > 0$, then $x^T A x > 0$ for all nonzero real vectors x.
 - (b) (3 pts) Suppose A has independent columns, then A^TA is invertible.
 - (c) (3 pts) Prove or give a counterexample: Suppose A has independent columns, then the projection matrix

$$P = A(A^T A)^{-1} A^T$$

has only 0 or 1 as its eigenvalues.