# LAJE TRELIÇADA

### • DETALHE DA GEOMETRIA DA VIGA "T"



Figura 4: Variáveis de uma seção genérica

# DETALHES DA NBR 6118:2014 PARA LAJES NERVURADAS:

Seja o item 13.2.4.2 da NBR 6118:2014:

- a) "A espessura da mesa, quando não existirem tubulações horizontais embutidas, deve ser maior ou igual a 1/15 da distância entre as faces das nervuras (l<sub>o</sub>) e não menor que 4 cm;
- b) O valor mínimo absoluto da espessura da mesa deve ser 5 cm, quando existirem tubulações embutidas de diâmetro menor ou igual a 10 mm. Para tubulações com diâmetro  $\phi$  maior que 10 mm, a mesa deve ter a espessura mínima de 4 cm +  $\phi$ , ou 4 cm +  $2\phi$  no caso de haver cruzamento destas tubulações;
- c) A espessura das nervuras não pode ser inferior a 5 cm;
- d) Nervuras com espessura menor que 8 cm não podem conter armadura de compressão."

$$b_w \geq 5 cm$$

$$h_f \ge \begin{cases} 4 \ cm \\ l_0/15 \end{cases}$$

Por isso, essas considerações serão levadas em consideração na hora da escolha da seção. Além disso, o valor de lcc será menor que 65 cm.

Outras restrições da norma:

# • VIGOTA ESCOLHIDA\SEÇÃO ESCOLHIDA\DIREÇÃO NA LAJE:

Assim, temos o detalhamento de uma treliça préfabricada:



Figura 5: Detalhamento da viga - Fonte: Grupo Belgo

Seja a tabela comercial das vigotas do grupo Belgo:

| Modele | Designação | Altura (h)<br>(mm) | Composição / Fios (mm) |                   |                   |                       |
|--------|------------|--------------------|------------------------|-------------------|-------------------|-----------------------|
|        |            |                    | Superior<br>(# S)      | Diagonal<br>(# D) | inferior<br>(# I) | Poso Linear<br>(kg/m) |
| TB 8L  | TR 8644    | 80                 | 6,0                    | 4,2               | 4,2               | 0,735                 |
| TB 8M  | TR 8645    | 80                 | 6,0                    | 4,2               | 5,0               | 0,825                 |
| TB 12M | TR 12645   | 120                | 6,0                    | 4,2               | 5,0               | 0,886                 |
| TB 12R | TR 12646   | 120                | 6,0                    | 4,2               | 6,0               | 1,016                 |
| TB 16L | TR 16745   | 160                | 7,0                    | 4,2               | 5,0               | 1,032                 |
| TB 16R | TR 16746   | 160                | 7,0                    | 4,2               | 6,0               | 1,168                 |
| TB 20L | TR 20745   | 200                | 7,0                    | 4,2               | 5,0               | 1,111                 |
| TB 20R | TR 20756   | 200                | 7,0                    | 5,0               | 6,0               | 1,446                 |
| TB 25M | TR 25856   | 250                | 8,0                    | 5,0               | 6,0               | 1,686                 |
| TB 25R | TR 25858   | 250                | 8,0                    | 5,0               | 8,0               | 2,024                 |
| TB 30M | TR 30856   | 300                | 8,0                    | 5,0               | 6,0               | 1,823                 |
| TB 30R | TR 30858   | 300                | 8,0                    | 5,0               | 8,0               | 2,168                 |

Figura 6: Tabela das treliças pré-fabricadas

Assim, foi-se escolhida a vigota TB-8645.

# • VIGA T SEÇÃO:



Figura 7: Corte da seção



Figura 8: Viga "T"

#### • VIGOTA ESCOLHIDA:



Asinf = 0,3926990817 cm<sup>2</sup>

#### • DADOS DE ENTRADA:

1. Fck = 35 MPa

2. bw = 12 cm

3. bf = 40 cm

4. hf = 4 cm

## • FUNÇÃO OBJETIVO:

1. PESO DO AÇO:

$$\rho_s = A_s l_x \rho_{stell}$$
 [kg] eq. 18

2. VOLUME DE CONCRETO:

$$V_{concreto} = \left[h_f b_f + \left(x_1 - h_f\right) b_w\right] l_x N_{vigas} \quad [m^3] \quad eq. 19$$

Onde:

 $x_1 = h$ 

Nvigas = ly/bf

3. CUSTO DO MATERIAL DE ENCHIMENTO:

%NÃO VAI ENTRAR

4. FUNÇÃO OBJETIVO:

$$f_{obj} = \left\{ C_1 A_s l_x \rho_{stell} + C_2 \left[ h_f b_f + \left( x_1 - h_f \right) b_w \right] \right\} N_{vigotas} ~ [R\$] ~ eq. \, 20$$

Onde:

C1 = custo do aço por kg;

C2 = custo do concreto por m<sup>3</sup>;

N° vigotas: = ly/bf;

# • AÇÕES NA LAJE:

1. Peso próprio

No cálculo do peso próprio, iremos encontrar a carga por metro de viga, isto é,  $\gamma_{conc}$ .  $A_{seção}$ :

$$g_1 = \gamma_c [h_f b_f + (x_1 - h_f) b_w] [kN/m] eq.21$$

2. Outras ações permanentes:
 No caso, iremos utilizar as ações g2, g3 e g4 da
 tabela 1. Assim, temos:

$$\sum g_2 + g_3 + g_4 \left[ \frac{kN}{m^2} \right] eq. 22$$

Portanto, multiplicando essa carga pela largura colaborante, teremos a carga por metro da viga:

$$\{\sum (g_2+g_3+\ g_4)\}\,b_f\ \left[\frac{kN}{m}\right]\ eq.\,23$$

Assim, temos:

$$g_t = [g_1 + g_2 + g_3 + g_4]b_f \left[\frac{kN}{m}\right] eq.24$$

3. Carregamento Acidental:
Analogamente, temos a eq.5:

$$q = 2.5$$
  $\left[\frac{kN}{m^2}\right]$   $eq.5$ 

Assim, sua carga por metro fica de:

$$q' = qb_f \quad \left[\frac{kNm}{m}\right] \quad eq. 25$$

4. Combinação Última:

$$P'_{nervura} = \gamma_G g_t + \gamma_q q' \quad \left[\frac{kNm}{m}\right] \quad eq. 26$$

#### • MOMENTO SOLICITANTE:

Considera-se a viga "t" como uma viga bi apoiada. Assim, seu momento solicitante máximo é de:

$$M_{sd} = \frac{P'_{nervura}l_x^2}{8} \left[\frac{kNm}{nervura}\right]$$
 eq. 27

# • DIMENSIONAMENTO PARA VIGA "T":

Seguindo a eq.12 e isolando o "x", temos a seguinte expressão:

$$x_{neutra} = \frac{0.68(h - d') \pm \sqrt{(0.68(h - d')^2 - 4.0.383.(\frac{Md}{bw.fdc})}}{0.544}$$
 eq. 28

Para o dimensionamento de uma viga "t" deve-se seguir o passo a passo a seguir:

- I. Segue o dimensionamento como uma viga retangular;
  - NOTA: bf = bw na eq.28
- II. Verifica a altura da linha neutra pela eq.28;
- III. Caso a altura da linha neutra esteja na mesa segue o dimensionamento de uma viga retangular seguindo o "CASO A";
  - IV. Caso esteja na alma segue o dimensionamento
     de acordo com o "CASO B";



Figura 9: Seção para o caso "A"

O dimensionamento pode ser feito como se fosse uma seção retangular:

$$M_d = (0.68xd - 0.272x^2)b_f f_{cd}$$
 eq. 29

Fazendo a substituição da eq.13:

$$Md = \{0,306(x1 - d')(x1 - d') - 0,0558(x1 - d')^{2}b_{f}.fcd\} \quad eq. 30$$

Já para o cálculo da armadura temos:

$$As = \frac{F_c z}{z f_s} = \frac{F_C}{f_s} = \frac{(0.85 f_{cd}) b_f (0.36 (x1 - d'))}{f_s} \quad eq.31$$

Reescrevendo a equação 31:

$$As = \frac{0,306b_f(x1 - d')}{f_s} eq.32$$

Onde:

$$d' = c + \phi/2$$

 $h = x_1$ 

$$d = h - d'$$

#### 3. CASO B [0,8x > hf]



Neste caso, deve-se calcular os momentos parciais e, posteriormente, encontrar a armadura. Assim, do equilíbrio da figura encontrar as seguintes equações:

$$M_{1d} = (b_f - b_w)h_f 0.85 f_{cd}(d - 0.5h_f)$$
 eq. 33

$$M_{2d} = 0.68b_w f_{cd}(d - 0.4x)$$
 eq. 34

Fazendo as substituições da eq.13 e d = (h-d') nas equações 29 e 30:

$$M_{1d} = \big(b_f - b_w\big)h_f \, 0.85 f_{cd} \big((x_1 - d') - 0.5 h_f\big) \quad eq.\,35$$

$$M_{2d} = 0.68b_w f_{cd}((x_1 - d') - 0.18(x_1 - d'))$$
 eq. 36

Sendo:

$$x1 = h;$$

Assim, pelo equilíbrio da figura também podemos obter as áreas de aço:

$$A_{s1} = \frac{M_{1d}}{f_{yd}(d - 0.5h_f)}$$
 eq. 37

$$A_{s2} = \frac{M_{2d}}{f_{yd}(d - 0.4x)} \quad eq.38$$

Dessa forma, substituindo as equações 31 e 32 nas equações 33 e 34 respectivamente, vamos obter:

$$A_{s1} = \frac{(b_f - b_w)h_f 0.85 f_{cd}}{f_{yd}}$$
 eq. 39

$$A_{s2} = \frac{0.68b_w f_{cd}}{f_{vd}} \quad eq.40$$

# • RESTRIÇÕES:

Como o objetivo desta otimização é encontrar a altura ótima para uma armadura pré-definida da vigota escolhida.

- 1. PARA O CASO "A"
  - I. Restrição h.1

Para essa restrição igualamos as equações a 27 e a 30.

$$M_{sd} - Md = 0$$
 h. 1

II. Restrição h.2 Para essa restrição utilizamos a equação 32.

$$As - \frac{0.306b_f(x1 - d')}{f_c} = 0 \ h.2$$

- 2. PARA O CASO "B"
  - I. Restrição h.1 Para essa restrição iremos utilizar as seguintes equações:

$$M_{sd} - (M_{1d} + M_{2d}) = 0$$
 h. 1

II. Restrição h.2

$$A_s - \frac{M_{1d}}{f_{yd}(d - 0.5h_f)} + \frac{M_{2d}}{f_{yd}(d - 0.4x)} = 0$$

#### • LIMITES DAS VARIÁVEIS DE PROJETO:

A altura de projeto deverá suprimir a seguinte restrição:

 $9.5 \leq x_1 \leq lnf \hspace{0.5cm} [cm] \hspace{0.5cm} r.1$  Onde ao limite inferior será a soma da altura da treliça mais o cobrimento.