Государственное образовательное учреждение Московский государственный технологический университет «СТАНКИН»

Кафедра физики

Лабораторная работа

«Изучение электрических свойств сегнетоэлектриков (ферроэлектриков)»

Цель работы. Получение на экране осциллографа кривой поляризации $\vec{D}(E) = \varepsilon_0 \vec{E} + \vec{P}(E) = \varepsilon_0 \varepsilon(E) \vec{E}$ для сегнетоэлектрика. Здесь $\vec{D}(E)$ - электрическое смещение (электрическая индукция), \vec{E} - вектор напряженности электрического поля, $\vec{P}(E)$ -поляризованность (вектор поляризации, равный сумме дипольных моментов всех атомов в единице объема), $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\phi}{M}$ - электрическая постоянная, ε — относительная диэлектрическая проницаемость. Определение основных параметров кривой поляризации: D_1 — остаточного электрического смещения, E_1 — коэрцитивной силы и относительных потерь γ энергии на переполяризацию сегнетоэлектрика за один цикл.

Введение

К сегнетоэлектрикам относятся полярные диэлектрики (атомы диэлектрика обладают отличным от нуля постоянным дипольным моментом в отсутствие внешнего электрического поля), которые могут спонтанно (самопроизвольно) поляризоваться в отсутствие внешнего электрического поля, если температура сегнетоэлектрика меньше температуры Кюри T_{κ} . В результате поляризации суммарный дипольный момент единицы объема сегнетоэлектрика $\vec{P}(E=0) \neq 0$. Кроме того, зависимость $\vec{P}(E)$ от E для сегнетоэлектрика является нелинейной, а величина $\varepsilon(E)$ зависит от предыстории поляризации сегнетоэлектрика и может достигать величин порядка 10^3 и выше. При температуре Кюри в сегнетоэлектрике происходит фазовый переход II рода и в области температур $T > T_{\kappa}$ он ведет себя как обычный диэлектрик. В случае понижения температуры до значений, меньших температуры Кюри наблюдается обратный фазовый переход диэлектрик — сегнетоэлектрик.

На рис. 1 приведена типичная зависимость электрического смещения D сегнетоэлектрика от напряженности электрического поля E. Пусть в отсутствие внешнего электрического поля

сегнетоэлектрик не был поляризован: E = 0, P = 0, D = 0. При монотонном увеличении поля E от нуля до E_m смещение D монотонно растет до величины D_m согласно кривой 1 на рис. 1. Если величину поля E монотонно уменьшать до нуля и изменить направление вектора

напряженности \vec{E} на обратное с последующим возрастанием $|\vec{E}|$ до величины E_m , то смещение D будет изменяться согласно кривой 2, не совпадающей с кривой 1. Величина электрического смещения D_1 , получаемая при E=0, называется остаточной, а величина напряженности электрического поля E_1 , которую необходимо создать для устранения остаточного электрического смещения, называется коэрцитивной силой. Как видно из рис. 1, для ликвидации остаточного смещения D_1 необходимо приложить электрическое поле E_1 , направление которого противоположно направлению электрического поля, вызвавшего поляризацию сегнетоэлектрика.

При последующих периодических изменениях внешнего электрического поля от E_m до $-E_m$ смещение D(E) описывается одной и той же гистерезисной петлей 23. В области достаточно больших величин E наступает насыщение поляризации сегнетоэлектрика, где P = const. Площадь петли гистерезиса на рис. 1 определяет величину потерь энергии электрического поля на переполяризацию сегнетоэлектрика за один цикл. Эти потери связаны с преобразованием энергии электрического поля во внутреннюю энергию сегнетоэлектрика (тепло).

1. Получение кривой зависимости D(E) на экране осциллографа

Принципиальная схема установки, позволяющей получить кривую зависимости D(E) на экране осциллографа, приведена на рис. 2. Переменное напряжение U_{g_H} от внешнего источника подается на потенциометр R, с которого напряжение U_R прикладывается к двум последовательно соединенным плоским конденсаторам емкостью C, где между обкладками конденсатора находится сегнетоэлектрик и емкостью C_0 , где между обкладками находится обычный диэлектрик. Напряжение с обкладок конденсатора C подается на горизонтально отклоняющие пластины осциллографа, а напряжение с обкладок конденсатора C_0 — на вертикально отклоняющие пластины осциллографа O.

Покажем, что напряжение на обкладках конденсатора C_0 пропорционально электрическому смещению (электрической индукции) внутри сегнетоэлектрика конденсатора C. Напряжение на обкладках конденсатора C_0

$$U_0 = \frac{q}{C_0},\tag{1}$$

где q — заряд конденсатора C_0 , равный заряду конденсатора C, поскольку эти конденсаторы соединены последовательно. Согласно теореме Гаусса электрическое смещение D внутри конденсатора C равно поверхностной плотности заряда σ

$$D = \sigma = \frac{q}{S}. (2)$$

где S – площадь обкладок конденсатора C. Из (1) и (2)следует, что напряжение U_0 на обкладках конденсатора C_0 пропорционально электрическому смещению D внутри сегнетоэлектрика конденсатора C

$$U_0 = \frac{SD}{C_0} \tag{3}$$

Напряжение (3) подается на вертикально отклоняющие пластины осциллографа и вызывает вертикальное смещение у электронного луча

$$U_{y} = U_{0} = \kappa_{2} y \tag{4}$$

где κ_2 – коэффициент отклонения электронного луча по вертикали. Из (3) и (4) видно, что

$$D = \frac{C_0}{S} \kappa_2 y,\tag{5}$$

где смещение у измеряется в делениях вертикальной шкалы экрана осциллографа.

Покажем, что напряжение на обкладках конденсатора C пропорционально напряженности электрического поля внутри сегнетоэлектрика этого конденсатора. Согласно известному соотношению между напряженностью электрического поля E и напряжением на плоском конденсаторе

$$U = U_{r} = dE, (6)$$

где d — расстояние между обкладками конденсатора. Напряжение (6), подаваемое на горизонтально отклоняющие пластины, вызывает смещение x электронного луча по горизонтали

$$U_{x} = \kappa_{1} x, \tag{7}$$

где κ_1 – коэффициент отклонения электронного луча осциллографа по горизонтали. Из (5) и (6) следует, что

$$E = \frac{\kappa_1}{d} x,\tag{8}$$

где смещение х измеряется в делениях горизонтальной шкалы экрана осциллографа.

Таким образом, из формул (5) и (8) следует, что на экране осциллографа с помощью измерительной схемы, показанной на рис. 2, получается кривая поляризации сегнетоэлектрика D(E), помещенного внутри конденсатора C. Иными словами, с помощью физических процессов в цепи, показанной на рис. 2, напряженность электрического поля преобразуется в смещение

электронного луча вдоль горизонтальной оси осциллографа, а электрическое смещение – в смещение электронного луча вдоль вертикальной оси экрана осциллографа.

За один цикл переполяризации сегнетоэлектрика потери электрической энергии

$$W_1 = \int \vec{E} d\vec{D} = \frac{C_0 \kappa_1 \kappa_2}{Sd} \int \vec{X} dy = \frac{C_0 \kappa_1 \kappa_2}{Sd} S_{II}, \tag{9}$$

где S_{Π} — площадь петли гистерезиса в делениях горизонтальной и вертикальной шкал экрана осциллографа. Плотность энергии электрического поля при $E=E_m$ и $D=D_m$

$$W_{m} = \frac{1}{2} E_{m} D_{m} = \frac{C_{0} \kappa_{1} \kappa_{2}}{2 dS} x_{m} y_{m}, \tag{10}$$

где использованы формулы (4) и (7). Здесь x_m и y_m – координаты вершины петли гистерезиса на экране осциллографа. С помощью (9) и (10) находим относительные потери энергии электрического поля за один цикл переполяризации сегнетоэлектрика

$$\gamma = \frac{W_1}{W_m} = 2 \frac{S_{\Pi}}{x_m y_m}. \tag{11}$$

2. Описание лабораторной установки

Установка состоит из источника питания **ИП**, вырабатывающего переменное напряжение, кассеты **ФПЭ-02**, в которой находится потенциометр, конденсаторы C_0 и C, и осциллографа O (рис. 3). Напряжение, подаваемое на конденсаторы C_0 и C, регулируется ручкой потенциометра C_0 на передней панели кассеты.

Рис. 3.

Параметры установки, используемые в формулах (5) и (8), имеют следующие значения: $C_0 = 220\,\mathrm{H}\Phi \pm 10\,\%, \quad S = 2,\!83\,\mathrm{cm}^2, \quad d = 1,\!5\,\mathrm{mm}.$

3. Проведение измерений

I. Определение зависимости D = D(E)

- 1. Соберите измерительную установку согласно рис. 3. Соблюдая меры техники безопасности, включите источник питания и осциллограф в сеть, и дайте им прогреться 5-7 мин.
- 2. При отсутствии напряжения на конденсаторах с помощью ручек регулировки на передней панели осциллографа установите светящуюся точку на экране в центре координатной сетки.
- 3. Ручкой потенциометра \mathbf{R} , а также регулируя усиление каналов \mathbf{Y} и \mathbf{X} осциллографа установите петлю гистерезиса так, чтобы петля занимала большую площадь экрана и имела

- область насыщения. Определите координаты x_m и y_m вершин в единицах деления шкал экрана осциллографа и запишите в таблицу 1.
- 4. Уменьшая напряжение потенциометром \mathbf{R} , снимите координаты x_m и y_m вершин еще для 3-4 петель гистерезиса.
- 5. С помощью формул (6) и (9) рассчитайте значения **E** и **D**, результаты запишите в таблицу 1.
- 6. Постройте график D = D(E).
- 7. Определите погрешности измерений Е и D.

Таблица 1

№ n/n	x_m , дел	ут, дел	<i>E</i> , <i>B</i> / <i>M</i>	D , Кл/м ²	$\Delta E, B/M$	$\Delta D, K_{\pi}/M^2$

II. Определение остаточного смещения и коэрцитивной силы

- 1. Получите на экране осциллографа максимальную петлю гистерезиса с участком насыщения.
- 2. Используя координатную сетку экрана, найдите координату y_1 , соответствующую остаточному смещению $\mathbf{D_1}$, и координату $\mathbf{X_1}$, соответствующую коэрцитивной силе $\mathbf{E_1}$.
- 3. С помощью формул (5) и (8) определите остаточное смещение \mathbf{D}_1 и коэрцитивную силу \mathbf{E}_1 .
- 4. Рассчитайте погрешности измерений коэрцитивной силы и остаточного смещения.

III. Определение относительных потерь энергии

- 1. Получите на экране осциллографа максимальную петлю гистерезиса с участком насыщения.
- 2. Используя координатную сетку экрана, измерьте координаты x_m и y_m вершин полученной петли гистерезиса.
- 3. На миллиметровой бумаге, соблюдая масштаб, постройте в координатах $\mathbf{y} = \mathbf{f}(\mathbf{x})$ петлю гистерезиса, и рассчитайте ее площадь.
- 4. С помощью формулы (11) найдите относительные потери энергии у.

Контрольные вопросы

- 1. Объяснить суть явления поляризации диэлектриков в электрическом поле.
- 2. Что такое сегнетоэлектрики?
- 3. Что такое коэрцитивная сила?
- 4. Что такое остаточное смещение?
- 5. Чем определяется напряженность электрического поля в диэлектрике?
- 6. Как определяется смещение электрического поля?
- 7. Что такое однородное электрическое поле?

- 8. Как определяется электрический дипольный момент?
- 9. Какими свойствами обладают полярные диэлектрики?
- 10. Чем отличаются диэлектрики от металлов с точки зрения данной теории?

Литература

- 1. Сивухин Д. В. *Общий курс физики*. Т. 3. Электричество. М.: Наука, 1977, с. 48 51, 59 69, 141 173.
- 2. Струков Б. А. Сегнетоэлектричество. М.: 1979.
- 3. Лайнс М., Гласс А. Сегнетоэлектрики и родственные им материалы. М.: 1981.