

☼-Compléments de la réduction

Je laisse le soin aux lecteurs de faire les calculs nécessaires pour la recherche du polynôme caractéristique, des valeurs propres, des sous espace propres

Deuxième exemple

On cherche une famille de suites $((u_n)_n, (v_n)_n, (w_n)_n)$ vérifiant le système suivant

$$\forall n \in \mathbb{N} , \begin{cases} u_{n+1} = 13u_n - 12v_n - 6w_n \\ v_{n+1} = 6u_n - 5v_n - 3w_n \\ w_{n+1} = 18u_n - 18v_n - 8w_n \end{cases}$$

Si on note pour n entier $X_n = \begin{pmatrix} u_{n+1} = 13u_n - 12v_n - 6w_n \\ v_{n+1} = 6u_n - 5v_n - 3w_n \\ w_{n+1} = 18u_n - 18v_n - 8w_n \end{pmatrix}$, le problème se ramène à la recherche des $\begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$, le problème se ramène à la recherche des

suites
$$(X_n)_n$$
 à termes dans $\mathcal{M}_{3,1}(\mathbb{R})$ vérifiant : $\forall n \in \mathbb{N}$, $X_{n+1} = A.X_n$
Avec $A = \begin{pmatrix} 13 & -12 & -6 \\ 6 & -5 & -3 \\ 18 & -18 & -8 \end{pmatrix}$. Par une récurrence facile on a

 $\forall n \in \mathbb{N}$, $X_n = A^n.X_0$, il suffit alors de calculer A^n . Pour cela on va essayer de diagonaliser la matrice A .Le polynôme caractéristique de la matrice A est :

 $\chi_A = -(X-1)^2(X+2)$ et les sous espaces propres de A est :

$$E_{-2}(A) = \mathcal{V}ect\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \text{ et } E_1(A) = \mathcal{V}ect\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \text{, la matrice } A \text{ est alors}$$
diagonalisable et on a $A = P.D.P^{-1}$ avec $P = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 0 & -2 \end{pmatrix}$ et $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

diagonalisable et on a
$$A = P.D.P^{-1}$$
 avec $P = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 3 & 0 & -2 \end{pmatrix}$ et $D = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

ce qui donne
$$A^n = P$$
. $\begin{pmatrix} (-2)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. P^{-1} . L'inverse de la matrice P est

ce qui donne
$$A^n = P$$
. $\begin{pmatrix} (-2)^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. P^{-1} . L'inverse de la matrice P est $P^{-1} = \begin{pmatrix} -2 & 2 & 1 \\ 5 & -4 & -2 \\ -3 & 3 & 1 \end{pmatrix}$, le calcul de P^{-1} peut se faire par exemple par opération

$$\forall n \in \mathbb{N} , \begin{cases} u_n = (5 - (-2)^{n+2})u_0 + (-4 + (-2)^{n+2})v_0 + (-2 - (-2)^{n+1})w_0 \\ v_n = (2 + (-2)^{n+1})u_0 + (-1 - (-2)^{n+1})v_0 + (-1 + (-2)^n)w_0 \\ w_n = (6 + 3(-2)^{n+1})u_0 + (-6 - 3(-2)^{n+1})v_0 + (-2 + 3(-2)^n)w_0 \end{cases}$$

On constate que le sous espace de suites $(u_n)_n$, $(v_n)_n$, $(w_n)_n$ solutions est alors un espace vectoriel de dimension 3

Deuxième exemple

On veut déterminer toutes les suites $(u_n)_n$ et $(v_n)_n$ vérifiant

$$\forall n \in \mathbb{N}$$
, $\begin{cases} u_{n+1} = u_n + v_n \\ v_{n+1} = -u_n + 3v_n \end{cases}$ Si on pose $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$, alors le système est

équivalent à $X_{n+1} = A.X_n$ avec $A = \begin{pmatrix} 1 & 1 \\ -1 & 3 \end{pmatrix}$ ce qui entraine alors par récurrence que $\forall n \in \mathbb{N}$, $X_n = A^n.X_0$. Tout calcul fait on a $\chi_A = (X-2)^2$ et le sous espace propre associé à la valeur propre 2 de A est $E_2(A) = \mathcal{V}ect \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et par suite An'est pas diagonalisable, mais son polynôme caractéristique est scindé donc elle est

trigonalisable , on peut alors écrire $A = P.T.P^{-1}$ avec

 $T=egin{pmatrix} 2 & -1 \ 0 & 2 \end{pmatrix}$ et $P=egin{pmatrix} 1 & 1 \ 1 & 0 \end{pmatrix}$. Et par une récurrence facile ou en décomposant Tsous là formé 2I + N avec N est nilpotente

-Compléments de la réduction

Deuxième exemple

$$\forall n \in \mathbb{N} , T^n = \begin{pmatrix} 2^n & -n2^{n-1} \\ 0 & 2^n \end{pmatrix}$$
 Et par suite $\forall n \in \mathbb{N} , \begin{cases} u_n = (-n2^{n-1})u_0 + (2-n)2^{n-1}v_0 \\ v_{n+1} = (-2-n)2^{n-1}u_0 + 2^nv_0 \end{cases}$

On constate alors que l'étude des systèmes des suites liées par des relations de récurrences linéaires se ramène au calcul des puissances n-eme d'une matrice

Suites récurrentes linéaires d'ordre 2

Soit $(a, b) \in \mathbb{C}^2$. L'ensemble des suite complexes $(u_n)_n$ vérifiant :

 $\forall n \in \mathbb{N}$, $u_{n+2} = au_{n+1} + bu_n$ est un sous espace vectoriel complexe de dimension

Si le polynôme $X^2 - aX - b$ admet deux racines distinctes λ et μ il est engendré

par la famille $((\lambda^n)_n, (\mu^n)_n)$ \circledast . Si le polynôme $X^2 - AX - b$ à une racine double μ , il est engendré par la famille $((\mu^n)_n, (n\mu^n)_n)$ Soit $(u_n)_n$ une suite complexe .Si on pose pour toit entier naturel

n, $X_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$, alors la suite $(u_n)_n$ vérifie la relation de la proposition si, et

seulement si $X_{n+1} = A.X_n$ avec $A = \begin{pmatrix} 0 & 1 \\ b & a \end{pmatrix}$ ce qui donne par récurrence que

 $\forall n \in \mathbb{N}$, $X_n = A^n.X_0$, il faut alors calculer la puissance n-ème de la matrice A. Le polynôme caractéristique de la matrice A est $X^2 - aX - b$. On distingue alors deux cas si χ_A à deux racines distinctes ou une seule

So χ_A a deux racines districtes ou une seule χ_A a deux racines χ_A et χ_A a deux racines χ_A et χ_A and χ_A and χ_A and χ_A explained as χ_A and χ_A and χ_A explained as χ_A explained as χ_A and χ_A and χ_A explained as χ_A and χ_A

sont deux matrices unicolonnes indépendantes de A^n on en déduit alors l'existence de deux scalaires α et β tels que $\forall n \in \mathbb{N}$, $u_n = \alpha . \lambda^n + \beta . \mu^n$. Réciproquement toute suite $(u_n)_n$ de nombres complexes telle que $\exists (\alpha,\beta) \in \mathbb{C}^2$, $\forall n \in \mathbb{N}$, $u_n =$ $\alpha.\lambda^n + \beta.\mu^n$ vérifie bien la relation demandée

 $\ \ \ \,$. Dans le cas ou χ_A admet une seule racine μ , alors comme A n'est pas une matrice scalaire alors elle est n'est pas digonalisable, mais elle est trigonalisable .Alors il

existe une matrice inversible P d'ordre 2 et une matrice de la forme $T = \begin{pmatrix} \mu & c \\ 0 & \mu \end{pmatrix}$ telles que $A = P.TP^{-1}$ et par une récurrence on a $T^n = \begin{pmatrix} \mu^n & nc\mu^{n-1} \\ 0 & \mu^n \end{pmatrix}$. De la

relation $X_n = A^n X_0$ on en déduit qu'il existe un couple $(\alpha, \beta) \in \mathbb{C}^2$ tel que $\forall n \in \mathbb{C}$ \mathbb{N} , $u_n = \alpha . v^n + \beta . n \mu^n$. L'ensemble des solutions solutions est l'espace vectoriel de dimension 2 engendré par la famille des suites $((\mu^n)_n, (n\mu^n))$

On peut généraliser cette étude à des suites récurrentes linéaire d'ordre p . Soit a_0, \ldots, a_{p-1} des nombres complexes. L'ensemble des suites complexes $(u_n)_n$ qui vérifient : $\forall n \in \mathbb{N}$, $u_{n+p} = a_{p-1}u_{n+p-1} + a_{p-2}u_{n+p-2} + \ldots + a_0u_n$. Est un espace

vectoriel de dimension p .Si on pose $P = X^p - \sum_{k=0}^{p-1} a_k X^k$ et si on suppose que P est

scindé sur \mathbb{K} avec $P = \prod_{k=1}^r (X - \lambda_k)^{\alpha_k}$ alors l'espace précédent est : $\left\{ \sum_{k=1}^r P_k(n) \lambda_k^n , \ \forall k \in \llbracket 1,r \rrbracket \ , \ P_k \in \mathbb{K}_{\alpha_k-1}[X] \right\}$

$$\left\{\sum_{k=1}^{r} P_k(n)\lambda_k^n , \forall k \in \llbracket 1,r \rrbracket , P_k \in \mathbb{K}_{\alpha_k-1}[X] \right\}$$

-Compléments de la réduction

Sous espaces caractéristiques

Soit *E* un K-espace vectoriel de dimension finie non nulle et *u* un endomorphisme de E , dont le polynôme caractéristique est scindé sur $\mathbb K$ tel que $\chi_u = \prod (\lambda_k - X)^{m_{\lambda_k}}$

.Le sous espace $\ker(u - \lambda_k.id_E)^{m_{\lambda_k}}$ est appelé le sous espace caractéristique de uassocié à la valeur propre λ_k

 \blacksquare .Le lemme de des compositions des noyaux donne : $E = \bigoplus_{k=1}^r \ker(u - \lambda_k.id_E)^{m_{\lambda_k}}$

- ① Le sous espace propre associé à une valeur propre λ_k est inclus dans le sous espace caractéristique associé à λ_k
- ② Les sous espace caractéristiques sont stables par u
- 3 Les sous espaces caractéristiques permettent de décomposer E en somme directe des sous espaces stables par u, il est alors intéressant d'étudier les endomorphismes induit par u sur ses sous espaces
- $\textcircled{4} \quad \forall k \in \llbracket 1, r \rrbracket$, $\dim \ker (u \lambda_k.id_E)^{m_{\lambda_k}} = m_{\lambda_k}$
- ⑤ Si pour $k \in [1, r]$, n_k désigne la multiplicité de λ_k en tant que racine de π_u alors on a

$$\ker(u - \lambda_k.id_E)^{n_k} = \ker(u - \lambda_k.id_E)^{m_{\lambda_k}}$$
 (Voir les exercices 7 et 8 pour la solution)

⑥ Soit $i \in [1, r]$, l'endomorphisme induit par $u - \lambda_i . id_E$ sur le sous espace caractéristique $\ker (u - \lambda_i . i d_E)^{m_{\lambda_k}}$ est nilpotent d'indice l'ordre de multiplicité de λ_i en tant que racine de π_u et pour tout $k \in [1, n]$ tel que $k \neq i$, l'endomorphisme induit par $u - \lambda_k . id_E$ sur ker $(u - \lambda_i . id_E)$ est un automorphisme de ker $(u - \lambda_i.id_E)$

Décomposition de Dunford

Soit E un \mathbb{K} espace vectoriel de dimension finie non nulle et u un endomorphisme de E dont le polynôme minimal ou caractéristique est scindé sur K. Alors il existe un unique couple (d, n) d'endomorphisme vérifiant

- * u = d + n
- ***** *d* est diagonalisable
- * n est nilpotent
- * *n* et *d* commutent
- ★ n et d sont des polynômes en u

Démonstration

① Posons $Sp(u) = \{\lambda_1, \dots, \lambda_r\}$ et $\chi_u = \prod_{k=1}^r (X - \lambda_k)^{m_{\lambda_k}}$ donc d'après le lemme

des noyaux on a $: E = \bigoplus_{i=1}^r \ker(u - \lambda_k.id_E)^{m_{\lambda_k}}$.Si on note F_i le sous espace

caractéristique associé à la valeur propre λ_i et u_i l'endomorphisme induit par u sur F_i , alors d'après la partie précédente l'endomorphisme $u_i - \lambda_i.id_{F_i}$ de F_i est nilpotent , notons le n_i .Il est clair que $\forall x \in F_i$, $u_i(x) = \lambda_i . x + n_i(x)$ et $n_i(x) \in F_i$

② Soit x un élément de E tel que $x = \sum_{k=1}^{n} x_k$ avec $\forall k \in [[1, r]]$, $x_k \in F_k$. Considérons les endomorphismes d et n de \widetilde{E} définis par :

$$d(x) = \sum_{k=1}^{r} \lambda_k x_k = \sum_{k=1}^{r} \lambda_k p_k(x)$$
 avec $(p_k)_{k \in [i,r]}$ est la famille des projecteurs

associés à la décomposition $E=\bigoplus_{k=1}^r E_k$ et $n(x)=\sum_{k=1}^r n_k(x_k)$.Il est clair que Page :3

Théorème

Démonstration du théorème

 $\forall x \in E$, u(x) = d(x) + n(x) , il reste alors à prouver que n est nilpotent , d est diagonalisable et nod = don Soit $x = \sum_{k=1}^{r} x_k$, $x_k \in F_k$. Par récurrence on a

 $\forall k \in \mathbb{N}$, $n^k(x) = \sum_{i=1}^k n^k_i(x)$, donc si on choisi p supérieure à chacun des indices de

nil
potence des n_i par exemple $p=\dim E$, il vient $n^p(x)=0$ ce qui prouve alors que n est nipotent

S.L'écriture de d assure que cet endomorphisme est diagonalisable

 $\det d(x) \text{ dans la } E = \bigoplus_{k=1}^r F_k \text{ , alors on a } n(d(x)) = \sum_{k=1}^r n_k(\lambda_k.x_k) = \sum_{k=1}^r \lambda_k.n_k(x_k) \text{ et}$

un calcul similaire justifie que $d(n(x)) = \sum_{k=1}^{r} \lambda_k . n_k(x_k)$ ce qui prouve l'égalité et par suite nod = don

3. Montrons maintenant l'unicité, supposons alors l'existence d'un autre couple (d', n') vérifiant les mêmes conditions du théorème et montrons que d = d' et n = n'. On a d - d' = n' - n, il suffit alors de montrer que d - d'est à la fois diagonalisable et nilpotent pour cela on va montrer que d et d'commutent et on utilise le résultat de l'exercice de la codiagonalisation .On a $n'od' = n'od' \text{ donc } d'ou = d'o(n' + d') = d'on' + d'^2 = n'od' + d'od' = uod' \text{ et}$ comme $d = \sum_{k=1}^{\infty} \lambda_k . p_k$ et chaque p_k est un polynôme en u (voir Td) alors d' et dcommutent et par suite ils sont codiagonalisables donc $d-d^\prime$ est diagonalisable et comme $n \circ n' = (u - d)o(u - d') = (u - d')o(u - d)$ alors n' - n est nilpotent et par suite d - d' est nilpotent et diagonalisable donc il est nul et

🎨 Exercice :1.Sous espace stable par l'opérateur de dérivation

part suite d = d' et donc n = n'

Soit D l'endomorphisme de $\mathbb{K}[X]$ défini par

$$\forall P \in \mathbb{K}[X], D(P) = p'$$

Déterminer les sous espace vectoriels stables par l'endomorphisme D

Solution:1

Le sous espace nul et l'espace $\mathbb{K}[X]$ sont stables par D , cherchons les sous espaces stables non triviaux . Soit Fun sous espace stable par l'opérateur de dérivation, on va distinguer deux cas:

- Si F est de dimension finie non nul r. Soient (P_1, \ldots, P_r) une base de F et $m = \max(\deg P_1, \ldots, \deg P_r)$. Il est clair que $F \subset \mathbb{K}_m[X]$. Soit $i_0 \in \llbracket 1, r \rrbracket$ tel que deg $P_{i_0} = m$, la famille $(P_{i_0}, P'_{i_0}, \ldots, P^{(m)}_{i_0})$ est une famille de degré échelonnée donc elle est libre et par suite dim $\left(\mathcal{V}ect(P_{i_0}, P'_{i_0}, \ldots, P^{(m)}_{i_0}) = m+1 \right)$, or $\mathcal{V}ect(P_{i_0}, P'_{i_0}, \ldots, P^{(m)}_{i_0}) \subset \mathbb{K}_m[X]$, alors $\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^{(m)}_{i_0})=\mathbb{K}_m[X]$. comme F est stable par D, alors $\mathcal{V}ect(P_{i_0},P'_{i_0},\ldots,P^n_{i_0})\subset F$ c'est à dire $\mathbb{K}_m[X]\subset F$ donc $F=\mathbb{K}_m[X]$
- ② Si F est de dimension infinie.Alors $\forall n \in \mathbb{N}$, $F \not\subset \mathbb{K}_n[X]$ ce qu'est équivalent de dire que $\forall n \in \mathbb{N}$, $\exists P \in F$, $m = \deg P > n$. Soit $n \in \mathbb{N}$ et $P \in F$ $m = \deg P > n$ La famille $(P, P', \dots, P^{(m)})$ est une famille libre de $\mathbb{K}_m[X]$, comme famille de degré échelonnée d'éléments de $\mathbb{K}_m[X]$, de cardinal est égale à m+1, alors $\mathbb{K}_m[X] = \mathcal{V}ect(P,P',\ldots,P^{(n)})$ et par stabilité de F par D, on a $\mathcal{V}ect(P,P',\ldots,P^{(n)}) \subset F$, c'est à dire que $\mathbb{K}_m[X] \subset F$ et comme $\mathbb{K}_n[X] \subset \mathbb{K}_m[X]$, alors $\mathbb{K}_n[X] \subset F$ et ceci pour tout entier naturel ndonc $F = \mathbb{K}[X]$

🎨 Exercice :2.L'ordre et le rang d'une matrice

Soit *n* un entier non nul et *A* une matrice carrée d'ordre *n* a coefficients réels.

- ① On suppose que $A^2 + A + I_n = 0$.Montrer que n est pair
- ② On suppose que $A^3 + A^2 + A = 0$. Montrer que le rang de A est pair

Solution:2

- ① Le polynôme $X^2 + X + 1$ est annulateur de A donc les valeurs propres de A sont dans $\{i, j^2\}$ et par suite si n est impaire, alors χ_A admet au moins une racine réelle c'est à dire que A admet une valeur propre réelle ce qu'est absurde donc n est paire
- ② On a $A(A^2 + A + I_n) = 0_n$ donc d'après le lemme des noyaux

$$\ker u_A \oplus \ker(u_A^2 + u_A + id_{\mathbb{K}^n}) = \mathbb{K}^n$$

Ou u_A désigne l'endomorphisme canoniquement associé à A. Le sous espace $F = \ker(u_A^2 + u_A + id_{\mathbb{K}^n})$ est stable par u_A , notons v l'endomorphisme induit par u_A sur F .Si F est de dimension impaire , alors χ_v est de degré impaire, donc admet au moins une racine réelle c'est à dire que v aura au moins une valeur propre réelle λ , et comme le polynôme X^2+X+1 est un polynôme annulateur de v , alors λ est une racine réelle de ce polynôme ce qui est absurde, donc la dimension de F est paire. Or d'après le théorème du rang on a $rg(u_A) = \dim F$, d'ou le résultat

🌄 Exercice :3.

Soit *A* une matrice inversible d'orde *n* à coefficient dans C.Déterminer le polynôme caractéristique de la matrice A^{-1}

Solution:3

Soit λ un scalaire non nul , on a : $\chi_{A^{-1}}(\lambda) = \det(A^{-1} - \lambda . I_n) = \det\left(A^{-1} \left(I_n - \lambda . A\right)\right)$ $= \frac{(-\lambda)^n}{\det A} \det\left(A - \frac{1}{\lambda} . I_n\right) = \frac{(-\lambda)^n}{\det A} \chi_A\left(\frac{1}{\lambda}\right)$

$$= \frac{(-\lambda)^n}{\det A} \det \left(A - \frac{1}{\lambda} I_n \right) = \frac{(-\lambda)^n}{\det A} \chi_A \left(\frac{1}{\lambda} \right)$$

Autrement

On montre facilement que $Sp(A^{-1}) = \left\{\frac{1}{\lambda}, \lambda \in Sp(A)\right\}$, comme χ_A est scindé sur \mathbb{C} , alors on a pour tout $x \in \mathbb{C}^*$

$$\chi_{A^{-1}}(x) = (-1)^n \prod_{k=1}^n \left(x - \frac{1}{\lambda_k} \right) = \frac{(-1)^n}{\prod_{k=1}^n \lambda_k} x^n \prod_{k=1}^n \left(\lambda_k - \frac{1}{x} \right) = \frac{(-x)^n}{\det A} \chi_A \left(\frac{1}{x} \right)$$

Exercice :4.

Soit A , B et P trois matrices carrés non nulles à coefficients dans $\mathbb C$

- ① Montrer que $\chi_A(B) \in \mathcal{G}L_n(\mathbb{C}) \Leftrightarrow \mathcal{S}p(A) \cap \mathcal{S}p(B) = \phi$
- ② Montrer que si AP = PB, alors A et B ont au moins une valeur propre commune

Solution:4

- ① $(i): (\Rightarrow)$. Supposons que $\chi_A(B) \in \mathcal{G}l_n(\mathbb{C})$, le polynôme caractéristique de A est scindé sur \mathbb{C} , donc $\chi_A = (-1)^n \prod_{k=1}^n (X - \lambda_k)$ et par suite $\chi_A(B) = (B - \lambda_1.I_n)....(B - \lambda_n.I_n)$, l'hypothèse assure que pour tout $i \in [1, n]$, $B - \lambda_i I_n$ est inversible, c'est à dire que $\forall i [1, n]$, $\lambda_i \notin Sp(B)$, ce qui veut dire que $Sp(A) \cap Sp(B) = \phi$
 - $(ii): (\Leftarrow)$ Supposons que $Sp(A) \cap Sp(B) = \phi$, alors $\forall \lambda \in Sp(A)$, $\lambda \notin Sp(B)$ c'est à dire que $B - \lambda I_n \in \mathcal{G}L_n(\mathbb{K})$. Et comme $\chi_A(B) = (B - \lambda_1 I_n) \dots (B - \lambda_n I_n)$, alors $\chi_A(B)$ est inversible comme produit de matrice inversibles
- ② Supposons que AP=PB, alors par une récurrence facile on a $: \forall k \in \mathbb{N}$, $A^kP=PB^k$. Et par linéarité on a $\forall Q \in \mathbb{K}[X]$, Q(A)P = PQ(B), en particulier pour $Q = \chi_A$, on a $0_n = P\chi_A(B)$, ce qui entraine alors que $0_n = P.\chi_A(B)$ et par suite $\chi_A(B)$ est non inversible et d'après la question précédente $\mathcal{S}p(A) \cap \mathcal{S}p(B) \neq \phi$, d'ou le résultat

Exercice :5

Soit A et B deux matrices carrées à coefficients complexes . Montrer les propositions suivantes sont équivalentes :

- ① $\forall C \in \mathcal{M}_n(\mathbb{C})$, $\exists X \in \mathcal{M}_n(\mathbb{C})$, AX XB = C
- ② $\forall X \in \mathcal{M}_n(\mathbb{C})$, $AX = XB \Rightarrow X = 0$

Exercice :5(Suite)

- 3 $\chi_B(A)$ est inversible
- 4 A et B n'ont pas de valeur propre commune

Solution:5

- ① $(1 \Rightarrow 2)$ En prenant $C = 0_n$, alors d'après l'hypothèse il existe une unique matrice X dans $\mathcal{M}_n(\mathbb{C})$ telle que AX - XB = 0 et comme la matrice nulle est aussi solution , alors $X = 0_n$
- $\ \ \, (2\Rightarrow 1)$ Notre hypothèse nous permet de dire que l'endomorphisme

$$\varphi: \begin{cases} \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}) \\ X \longmapsto AX - XB \end{cases}$$

 $\varphi: \begin{cases} \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C}) \\ X \longmapsto AX - XB \end{cases}$ est injective et comme on est en dimension finie , alors c'est un automorphisme de $\mathcal{M}_n(\mathbb{C})$ d'ou le résultat

- $3 (3 \Leftrightarrow 4)$ est immédiate d'après l'exercice précéent
- 4 Pour $(2\Rightarrow3)$, on montre sa contraposée supposons , alors que $\chi_A(B)$ est non inversible , donc A et Badmettent une valeur propre commune λ , soit alors U un vecteur propre de A associé à λ et V un vecteur propre de tB associé à λ et posons $X=U^tV$, il est clair que X est non nul car c'est une matrice de rang 1 et on a $AX = AU^tV = \lambda . X$ et $XB = U^tVB = \lambda . X$ ce qui prouve que la négation de 2 est vrai
- $(3 \Rightarrow 2)$. Supposons que $\chi_A(B)$ est inversible et soit X une matrice d'ordre n vérifiant AX = XB, alors par une récurrence facile on a $\forall k \in \mathbb{N}$, $A^k X = X B^k$ et par linéairité on a $\chi_A(A) X = X \chi_A(B) = 0_n$, alors l'inversibilité de $\chi_A(B)$ entraine que $X=0_n$ d' ou le résultat

Exercice :6

Soit A une matrice de $\mathcal{M}_n(\mathbb{C})$.Montrer que les propositions suivantes sont équivalentes

- ① A est nilpotente
- ② A est semblable à une matrice triangulaire supérieure dont les éléments diagonaux sont tous nuls
- $3 \forall k \in \mathbb{N}^*, tr(A^k) = 0$

Solution:6

Remarque : Si T est une matrice triangulaire supérieure (inférieure) de coefficients diagonaux t_1, \ldots, t_n , alors pour tout entier naturel non nul k la matrice T^k est triangulaire supérieure (inférieure) de coefficients diagonaux

- ① $(1 \Rightarrow 2)$ La matrice A est nilpotente donc elle admet 0 comme seule valeur propres et par suite A est trigonalisable donc semblable à une matrice triangulaire supérieure dont les éléments diagonaux sont ses valeurs propres donc nuls
- ② $(2 \Rightarrow 3)$ Soit P une matrice inversible et T une matrice triangulaire supérieure dont les éléments diagonaux sont nuls tels que $A=P^{-1}TP$, alors par une récurrence facile on montre que $\forall k\in\mathbb{N}^*$, $A^k=P^{-1}T^kP$, et par suite $\forall k \in \mathbb{N}^*$, $tr(A^k) = 0$
- $(3 \Rightarrow 1)$. Supposons que $\forall k \in \mathbb{N}$, $tr(A^k) = 0$, montrons que A est nilpotente c'est à dire que son spectre est réduit à $\{0\}$. Raisonnons par l'absudre et supposons que A admet au moins une valeur propre non nulle , soit alors $\lambda_1, \ldots, \lambda_r$ les valeurs propres non nulles de A de multiplicité respectivement $m_{\lambda_1}, \ldots, m_{\lambda_r}$

comme on travaille dans $\mathbb C$, alors on a $\forall k \in \mathbb N^*$, $tr(A^k) = \sum_{i=1}^r m_{\lambda_i} \lambda_i^k$. On va s'intéresser au r égalités

suivantes : $\forall k \in [1, r]$, $\sum_{i=1}^{r} m_{\lambda_i} \lambda_i^k = 0$. Ce qui se traduit matriciellement par :

$$\underbrace{\begin{pmatrix} \lambda_1 & \dots & \lambda_r \\ \lambda_1^2 & \dots & \lambda_r^2 \\ \vdots & \ddots & \vdots \\ \lambda_1^r & \dots & \lambda_r^r \end{pmatrix}}_{A} \begin{pmatrix} m_{\lambda_1} \\ m_{\lambda_2} \\ \vdots \\ m_{\lambda_r} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Soution :6(Suite)

Ceci d'une part d'autre part on a
$$det A = \left(\prod_{k=1}^{r} \lambda_k\right) \begin{vmatrix} 1 & \dots & 1 \\ \lambda_1 & \dots & \lambda_r \\ \vdots & \ddots & \vdots \\ \lambda_1^{r-1} & \dots & \lambda_r^{r-1} \end{vmatrix} = \left(\prod_{k=1}^{r} \lambda_k\right) \cdot \left(\prod_{1 \leq i < j \leq n} (\lambda_j - \lambda_i)\right) \neq 0$$

ce qui contredit la définition de la multiplicité d'une valeur propre, on conclut alors que A est nilpoter

Exercice :7. Sous espaces caractéristiques

Soient *E* un **K**-espace vectoriel de dimension finie non nulle et *u* un endomorphisme de *E*.Pour toute valeur propre $\lambda \in \mathbb{K}$ de multiplicité m_{λ} , on pose $F_{\lambda} = \ker (u - \lambda.Id_E)^{m_{\lambda}}$ appelé sous espace caractéristique associé à λ Montrer que pour toute valeur propre λ de u le sous espace caractéristique associé à λ est de dimension la multiplicité de λ

Solution:7

Soit λ une valeur propre de u de multiplicité m_{λ} , donc

$$\chi_u = (X - \lambda)^{m_\lambda} Q(X)$$
 avec $Q(\lambda) \neq 0$

D'après le théorème décomposition des noyaux on a $E = F_{\lambda} \oplus \ker Q(u)$. Posons $d_{\lambda} = \dim F_{\lambda}$, on a F est Stable par *u* donc

$$\forall x \in F$$
 , $(u_F - \lambda . id_F)^{m_\lambda} = 0_{\mathcal{L}(F)}$

Ce qui montre que $u_F - \lambda.id_E$ est nilpotent et par suite $\chi_{v-\lambda.id_F} = (-X)^d$. Or $\chi_v = \det{(v-X.id_F)} = \det{((v-\lambda.id_F)-(X-\lambda).id_F)}$

$$\chi_v = \det\left(v - X.id_F\right) = \det\left(\left(v - \lambda.id_F\right) - \left(X - \lambda\right).id_F\right)$$

$$= \chi_{v-\lambda.id_F}(X-\lambda) = (-1)^d (X-\lambda)^d$$

Comme F et ker Q(u) sont stables , alors $\chi_u = \chi_v \chi_w$ avec w l'endomorphisme induit par u sur ker Q(u) et avec la convention $\chi_w = 1$ si $\ker Q(u) = \{0_E\}$. Donc $(X - \lambda)^{m_\lambda}Q = (-1)^d(X - \lambda)^d\chi_w : (*)$. Si λ est une racine de χ_w alors il existe

 $x \in \ker Q(u)$, $w(x) = u(x) = \lambda x$, et comme $Q(u)(x) = Q(\lambda)x = 0$, alors $Q(\lambda) = 0$ ce qui absurde, donc $\chi_w(\lambda) \neq 0$, et par suite

$$\forall n \in \mathbb{N}^* \ (X - \lambda) \land \gamma_m = 1$$

 $\forall p \in \mathbb{N}^* \text{ , } (X-\lambda) \wedge \chi_w = 1$ Et de l'égalité (*) en déduit que $(X-\lambda)^{m_\lambda}$ divise $(X-\lambda)^d \chi_w$ et comme $\chi_w \wedge (x-\lambda)^{m_\lambda}$, alors d'après Gaus on a $(X - \lambda)$ divise $(X - \lambda)^d$ ce qui entraine que $m_\lambda \le d$. De même de l'égalité (*) on a $(X - \lambda)^d$ divise $(X - \lambda)^{m_\lambda}Q$ et comme $Q \wedge (X - \lambda)^d = 1$, alors $(X - \lambda)^d$ divise $(X - \lambda)^{m_\lambda}Q$ ce qui entraine que $d \le m_\lambda$ et par suite l'égalité

Exercice :8

Soit E un \mathbb{K} -espace vectoriel de dimension finie non nulle , u un endomorphisme de E , λ une valeur propre de u de multiplcité m_{λ} et p un entier naturel non nul.

- ① Montrer que la multiplicité de λ en tant que racine de π_u est le plus petit entier naturel vérifiant $\ker (u - \lambda . id_E)^p = \ker (u - \lambda . id_E)^{p+1}$
- ② En déduire que : dim $E_{\lambda}(u) = m_{\lambda} \Leftrightarrow \lambda$ est une racine simple de π_u

Solution:8

- ① .Notons n_{λ} la multiplicité de λ comme racine de π_u et posons $\pi_u = (X \lambda)^{n_{\lambda}}Q$ avec $Q(\lambda) \neq 0$ et $P = (X - \lambda)^q \cdot Q$
- 1.1 Si $q > n_{\lambda}$, alors π_u divise le polynôme Q d'après le lemme de décomposition des noyaux on a $E = \ker(u - \lambda . id_E)^{n_\lambda} \oplus \ker Q(u) = \ker(u - \lambda . id_E)^q \oplus \ker Q(u)$

Ce qui entraine alors que dim $\ker(u - \lambda.id_E)^{n_\lambda} = \dim \ker(u - \lambda.id_E)^q$, or la suite $\left(\ker(u - \lambda.id_E)^k\right)_{k \in \mathbb{N}}$ est une suite croissante au sens de l'inclusion (Voir les grands classiques d'algèbre linéaire),ce qui nous permet de conclure que $\ker(u - \lambda . id_E)^q = \ker(u - \lambda . id_E)^{n_\lambda}$

Solution:8(Suite)

1.2 Si $q < n_{\lambda}$, alors le polynôme $P = (X - \lambda)^q \cdot Q$ n'est pas divisible par π_u , donc il n'est pas annulateur de udonc en appliquant toujours le lemme de décomposition des noyaux, on a

 $\ker P(u) = \ker(u - \lambda . id_E)^q \oplus \ker Q(u)$ et comme $P(u) \neq 0_{\mathcal{L}(E)}$, alors $\ker P(u)$ est inclus strictement dans $E = \ker(u - \lambda . id_E)^{n_\lambda} \oplus \ker Q(u)$ en passant au dimensions on a :

$$\dim \ker(u - \lambda . id_E)^q + \dim \ker Q(u) < \dim \ker(u - \lambda . id_E)^{n_\lambda} + \dim \ker Q(u)$$

Ce qui entraine que dim $\ker(u - \lambda . id_E)^q < \dim \ker(u - \lambda . id_E)^{n_\lambda}$ et par suite que $\ker(u - \lambda . id_E)^q$ est inclus strictement dans $\ker(u - \lambda . id_E)^{n_\lambda}$. On a alors démontrer que

$$\forall q > n_{\lambda}$$
, $\ker(u - \lambda . id_E)^{n_{\lambda}} = \ker(u - \lambda . id_E)^q$

ET

$$\forall q < n_{\lambda}$$
, $\ker(u - \lambda . id_E)^q \neq \ker(u - \lambda . id_E)^{n_{\lambda}}$

① (\Rightarrow) . Si dim $E_{\lambda}(u) = m_{\lambda}$, alors d'après l'exercice précédent on a :

 $\dim \ker(u - \lambda . id_E) = \dim \ker(u - \lambda . id_E)^{m_\lambda}$ ce qui entraine que le plus petit entier non nul p vérifiant $\ker (u - \lambda . id_E)^p = \ker (u - \lambda . id_E)^{p+1}$ est égale à 1 c'est à dire que la multiplicité de λ en tant que racine de π_u est égale à 1

 (\Leftarrow) . Si λ est une racine simple de π_u , alors $\ker(u - \lambda.id_E) = \ker(u - \lambda.id_E)^2$ ce qui entraine alors que $\ker(u - \lambda . id_E) = \ker(u - \lambda . id_E)^{m_\lambda}$ et par suite d'après l'exercice précédent on a dim $\ker(u - \lambda . id_E) = m_\lambda$

Exercice :9.Caractérisation de la multiplicité m_{π_λ} d'une valeur propre

Soit E un \mathbb{K} -espace vectoriel de dimension finie n , u un endomorphisme de E et λ une valeur propre de E.

- ① Montrer que les assertions suivantes sont équivalentes :
 - (i) $E_{\lambda}(u) = \ker(u \lambda Id_E)^2$
 - (ii) $E_{\lambda}(u) \oplus \mathcal{I}m(u \lambda Id_{E}) = E$
 - (iii) $E_{\lambda}(u)$ possède un supplémentaire stable par u
 - (iv) La dimension de $E_{\lambda}(u)$ est égale à la multiplicité de λ dans le polynôme caractéristique de u.
 - (v) λ est une racine simple du polynôme minimale de u
- ② Montrer que dans ces conditions , $\mathcal{I}m(u \lambda Id_E)$ est le seul supplémentaire de $E_{\lambda}(u)$ stable par u

Solution :9

Soit λ une valeur propre de u de multiplicité m_{λ} , on a alors

$$\chi_u = (X - \lambda)^{m_\lambda} Q$$
 , avec , $Q(\lambda) \neq 0$

1 $(i \Rightarrow ii)$. Supposons que $E_{\lambda}(u) = \ker(u - \lambda . id_E)^2$, alors d'après le théorème du rang il suffit de montrer que $E_{\lambda}(u) \cap \mathcal{I}m(u - \lambda.id_E)$ {0}. Soit alors $x \in E_{\lambda} \cap \mathcal{I}m(u - \lambda.id_E)$, on a

$$(u - \lambda . id_E)(x) = 0$$
 et $\exists a \in E$, $x = (u - \lambda . id_E)(a)$

Ce qui entraine que $(u - \lambda . id_E)^2(a) = 0$ c'est à dire que $a \in \ker(u - \lambda . id_E)^2$ et comme

 $\ker(u - \lambda . id_E)^2 = \ker(u - \lambda . id_E)$, alors $x = (u - \lambda . id_E)(a) = 0$ d'ou le résultat

 $(ii \Rightarrow iii)$ Si $E_{\lambda}(u) \oplus \mathcal{I}m(u - \lambda.id_E) = E$, alors il est clair que $\mathcal{I}m(u - \lambda.id_E)$ est un sous supplémentaire de $E_{\lambda}(u)$ stable par u ($iii \Rightarrow iv$).

Soit F un supplémentaire stable par u de $E_{\lambda}(u)$, notons v (resp. w) l'endomorphisme induit sur $E_{\lambda}(u)$ (resp F), alors on a $\chi_u = \chi_v \chi_w$, or $v = \lambda . id_{E_{\lambda}}$, alors $\chi_u = (\lambda - X)^{\dim E_{\lambda}} . \chi_w$. En raisonnant de la même façon que l'exercice précédent , on montre que $\chi_w(\lambda) \neq 0$ et enfin de l'égalité

$$(X-\lambda)^{m_{\lambda}}Q = \chi_w(\lambda-X)^{\dim E_{\lambda}(u)}$$
 et $\forall p \in \mathbb{N}^*$, $Q \wedge (X-\lambda)^p = \chi_w \wedge (X-\lambda)^p = 1$

On en déduit que $(X - \lambda)^{m_{\lambda}}$ divise $(X - \lambda)^{\dim E_{\lambda}}$ et $(X - \lambda)^{\dim E_{\lambda}(u)}$, divise $(X - \lambda)^{m_{\lambda}}$ ce qui entraine alors que $m_{\lambda} = \dim E_{\lambda}(u)$

Pour $(iv \Rightarrow v)$ et $v \Rightarrow i$ voir l'exercice précédent

① On suppose que $E_{\lambda}(u) \oplus \mathcal{I}m(u - \lambda.id_E) = E$. Soit F un sous espace supplémentaire stable par u de $E_{\lambda}(u)$. Montrons que $F = \mathcal{I}m(u - \lambda.id_E)$, notons w l'endomorphisme induit par u sur F, w' l'endomorphisme induit par u sur $\mathcal{I}mu$ et v l'endomorphisme induit sur $E_{\lambda}(u)$ par u.On a $\chi_u = \chi_v \chi_w = \chi_v \cdot \chi_{w'}$ ce qui entraine que $\chi_w = \chi_{w'}$. Soit $x \in F$ tel que $x = x_1 + x_2$ avec $x_1 \in E_{\lambda}(u)$ et $x_2 \in \mathcal{I}m(u - \lambda.id_E)$. Il est facile à voir que $\chi_w(u)(x) = \chi_w(u)(x_1) + \chi_w(u)(x_2)$, c'est à dire que $\chi_w(w)(x) = \chi_w(\lambda).x_1 + \chi_{w'}(w')(x_2)$, et par suite $\chi_w(\lambda).x_1=0$ et comme $\chi_w(\lambda)\neq 0$, alors $x_1=0$ ce qui entraine alors que $F\subset \mathcal{I}m(u-\lambda.id_E)$ et comme ils ont même dimension alors ils sont égaux

Un endomorphisme u d'un \mathbb{C} -espace E de dimension finie est dit semi simple si tout sous espace stable par uadmet un supplémentaire stable par u. Montrer que u est semi simple si, et seulement si il est diagonalisable

Solution :10

- ① Supposons que *u* est diagonalisable , soit *B* une base de diagonalisation de *u* et *F* un sous espace stable par u . Si B_1 une base de F, d'après le théorème de la base incomplète, il existe une sous famille B_2 de B telle que (B_1, B_2) est un e base de E.Le sous espace $G = \mathcal{V}ect(B_2)$ est un sous espace de E stable par u
- ② Supposons que tout sous espace de E stable par u possède un supplémentaire stable par u .Soit $\{\lambda_1, \ldots, \lambda_r\}$ le spectre de u , si on pose $F=\bigoplus E_{\lambda}(u)$, alors il est clair que F est non réduit au singleton $\{0\}$, soit Gun supplémentaire stable par u de F dans E. Si $G \neq \{0_E\}$, alors l'endomorphisme u_G induit sur G par uadmet au moins une valeur propre dans C, donc un vecteur propre associé à cette valeur propre est alors un élément non nul de F et de G ce qui absurde , donc $G=\{0\}$ et par suite $\bigoplus_{k=1} E_{\lambda}(u)=E$

Exercice :11

Montrer que le polynôme minimal d'un endomorphisme u d'un \mathbb{K} espace E de dimension fini non nulle admet un nombre fini de diviseur unitaire

Solution :11

On pose $\pi_u = \prod_{k=1}^r P_k^{\alpha_k}$ avec P_1, \dots, P_r sont des polynômes irréductibles unitaires de $\mathbb{K}[X]$. Remarauons que si D est un diviseur unitaire de π , alors $D = \prod_{k=1}^r P_k^{\alpha_k'}$ avec $\forall k \in \llbracket 1,r \rrbracket$, $\alpha_k' \in \llbracket 0,\alpha_k \rrbracket$. On verfie aisement en utilisant l'unicité de la décopomisition en facteurs irrédictubles que l'application : $\varphi: \begin{cases} \mathcal{D}_{\pi_u} \to \prod_{k=1}^r \llbracket 0,\alpha_k \rrbracket \\ D \longmapsto (\alpha_1',\dots,\alpha_r') \end{cases}$ est une bijection et par suite $Card(\mathcal{D}_{\pi_u}) = \prod_{k=1}^r (1+\alpha_k)$ Avec \mathcal{D}_{π_u} désigne l'ensemble des diviseurs unitaire de

$$\varphi: \begin{cases} \mathcal{D}_{\pi_u} \to \prod_{k=1}^r \llbracket 0, \alpha_k \rrbracket \\ D \longmapsto (\alpha'_1, \dots, \alpha'_r) \end{cases}$$

 π_u

Exercice :12

Soit E un espace de dimension finie non nulle n , u un endomorphimse de E et x un vecteur de E,

- ① Montrer qu'il existe un unique polynôme unitaire de degré minimal noté $\pi_{x,u}$ tel que $\pi_{x,u}(u)(x) = 0_E$
- ② Vérifier que $\pi_{x,u}$ divise π_u
- ③ En déduire que $\{\pi_{x,u}, x \in E \text{ et } x \neq 0_E\}$ est fini

Solution:12

Soit *x* un vecteur non nul de *E*

- ① On montre facilement que $I_{x,u} = \{P \in \mathbb{K}[X] , P(u)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$ contenant π_u , donc il est engendré par un unique polynôme unitaire Q .Par définition du générateur unitaire d'un idéal non nul de $\mathbb{K}[X]$ est clair que le polynôme Q est celui qu'on cherche
- ② On a déja dit à la question précédente que $\pi_u \in I_{x,u}$, donc $\pi_{x,u}$ divise π_u
- ③ D'après l'exercice précédent le polynôme π_u admet un nombre fini de diviseurs unitaire , donc l'ensemble $\{\pi_{x,u}, x \in E , x \neq 0_E\}$ est fini

Exercice :13

Soit *E* un espace de dimension finie non nulle *n* et *u* un endomorphisme cyclique de *E* c'est à dire il existe un vecteur non nul x_0 tel que $E = \mathcal{V}ect\left(u^k(x_0)\right)$

 $1 \ \text{Montrer que l'application} \ \varphi_{x_0,u}: \begin{cases} \mathbb{K}[X] \to E \\ P \longmapsto P(u)(x_0) \end{cases} \ \text{ est une application linéaire , surjective de noyau}$

Exercice :13(Suite)

 $\pi_u.\mathbb{K}[X]$

- 2 Montrer que $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une base de E
- 3 En déduire que $\pi_u = \chi_u$
- 4 Donner la matrice de *u* dans cette base

Solution :13

① \angle n. La linéarité de $\varphi_{x,u}$ est clair ℤ Soit y ∈ E , alors on a

$$y \in \mathcal{V}ect(u^k(x)) \Leftrightarrow \exists r \in \mathbb{N}^*, \exists (\alpha_0, \dots, \alpha_r) \in \mathbb{K}^r, y = \sum_{k=0}^r \alpha_k u^k(x_0) = P(u)(x_0)$$

Avec $P = \sum_{k=0}^{n} \alpha_k X^k$ d'ou la surjectivité de $\varphi_{x,u}$

$$P \in \ker \varphi_{x,u} \Leftrightarrow P(u)(x_0) = 0$$

Soit $k \in \mathbb{N}$, on a :

$$P(u)\left(u^{k}(x_{0})\right) = P(u)ou^{k}(x_{0}) = u^{k}oP(u)(x_{0}) = u^{k}\left(P(u)(x_{0})\right) = 0_{E}$$

L'endomorphisme P(u) est nule sur une famille génératrice, ce qui entraine alors que $P(u) = 0_{\mathcal{L}(E)}$ et par suite que $P \in \pi_u.\mathbb{K}[X]$,et donc ker $\varphi_{x,u} \subset \mathbb{K}[X]$, l'autre inclusion est évidente , donc ker $\varphi_{x,u} = \pi_u.\mathbb{K}[X]$

- ② Soit $x \in E$, d'après la première question on a : $\exists P \in \mathbb{K}[X]$, $x = P(u)(x_0)$ d'après le théorème de Cayley -Hamilton on a $x = R(u)(x_0)$ tel que R est le reste de la divison euclidienne de P par χ_u et comme $R \in \mathbb{K}_{n-1}[X]$, alors $x \in \mathcal{V}ect(x_0, u(x_0), \dots, u_{n-1}(x_0))$ et par suite $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est une famille génératrice de *E* , donc c'est une base de *E*
- ③ On sait que deg $\pi_u \leq n$. Supposons que deg $\pi_u < n$ et posons $\pi_u = \sum_{k=0}^r a_k X^k$, on a par définition de π_u , on a $\pi_u(u) = 0$ _{$\mathcal{L}(E)$} ce qui entraine que $\pi_u(u)(x_0) = 0$, c'est à dire $a_0x_0 + a_1u(x_0) + \ldots + a_ru^r(x_0) = 0_E$ et comme $(x_0, u)(x_0), \ldots, u^r(x_0)$) est une sous famille de la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$, alors elle est libre donc $\forall k \in [0, r]$, $a_k = 0$, donc $\pi_u = 0_{\mathcal{L}(E)}$ ce qui est absurde donc r = n et comme π_u divise χ_u , alors $\pi_u = (-1)^n \chi_u$
- 4 Si on pose $u^n(x_0) = \sum_{k=0}^{n-1} \alpha_k.u^k(x_0)$, alors la matrice de u dans la base $(x_0,u(x_0),\ldots,u^{n-1}(x_0))$ est :

$$\begin{pmatrix} 0 & 0 & \dots & & & \alpha_0 \\ 1 & 0 & \dots & & & \alpha_1 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & \alpha_{n-1} \end{pmatrix}$$

Exercice :14

Soit E un K-espace vectoriel de dimension finie non nulle .Montrer l'équivalence suivante : $\{0_E\}$ et E sont les seuls sous espaces stables par si, et seulement si χ_u est irréductible dans $\mathbb{K}[X]$

Solution:14

- ① (\Rightarrow) . Supposons que $\{0_E\}$ et E sont les seuls sous espaces stables par u. Pour tout vecteur non nul z de E, le sous espace $E_u(z) = \mathcal{V}ect\left(u^k(z)\right)$ est un sous espace stable par u et comme il n'est pas nul , alors il est égale à E , et par suite l'endomorphisme u est cyclique et donc $\pi_{z,u} = \pi_u = (-1)^n \chi_u$. Soit P un diviseur unitaire de χ_u différent de 1 et distincts de χ_u , ce qui entraine que $\chi_u = P.Q$ avec $\deg Q \in [1, n-1]$. Soit x un vecteur non nul de E, posons y = P(u)(x). Si $y \neq 0_E$, alors $\pi_{y,u} = \pi_u$ et on a $Q(u)(y) = (PQ)(u)(y) = \pi_{y,u}(u)(y) = 0$ et par suite π_u divise Q ce qui'est absurde , donc $P(u)(x) = 0_E$
 - et donc π_u divise P et par suite $P = \pi_u$ ce qui est absurde , donc P est soit 1 soit π_u et comme deg $\pi_u \ge 1$, alors π_u est irréductible
- (\Leftarrow) .Supposons que χ_u est irréductible dans $\mathbb{K}[X]$ et soit F un sous espace non nul stable par u .Soit x un élément non nul de F. D'après l'exercice (7) le polynôme $\pi_{x,u}$ est un diviseur de π_u donc de χ_u et comme il est irréductible alors $\pi_{x,u} = \chi_u$ ce qui entraine alors que $E = Vect(u^k(x)) \subset F$, car F est stable par u

Soit A et B deux matrices carrées d'ordre n

- ① Montrer que si A est inversible , alors $\chi_{AB} = \chi_{BA}$
- 2 Dans cette question on se propose de montrer dans le cas générale

$$\chi_{AB} = \chi_{BA}$$
 par plusieurs méthodes

A). Première méthode

- ① Soit $r \in \mathbb{N}^*$, montrer que $\chi_{I_rB} = \chi_{BI_r}$
- ② En déduire que $\chi_{AB} = \chi_{BA}$

B). Deuxième méthode

Soit $x \in \mathbb{K}$, on pose pour t dans \mathbb{K} , $P(t) = \chi_{(A-t,I_n)B}(x) - \chi_{B(A-t,I_n)}(x)$

- ① Montrer que *P* est une fonction polynômiale en *t*
- ② Montrer que *P* s'annule une infinité de fois sur **K**
- ③ En déduire que $\chi_{AB}(x) \chi_{BA}(x) = 0$ et puis que $\chi_{AB} = \chi_{BA}$

C). Troisième méthode

Soit $\lambda \in \mathbb{K}$.

① Etablir que:

$$\begin{pmatrix} \lambda.I_n - BA & B \\ 0 & \lambda.I_n \end{pmatrix} \cdot \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} \cdot \begin{pmatrix} \lambda.I_n & B \\ 0 & \lambda.I_n - AB \end{pmatrix}$$

② En déduire que $\chi_{AB} = \chi_{BA}$

D). Quatrième méthode

- ① Montrer que l'ensemble des matrice inversible à coefficients dans $\mathbb K$ est un ouvert dense dans $\mathcal M_n(\mathbb K)$
- ② En déduire que $\chi_{AB} = \chi_{BA}$

Solution :15

- ① Si A est inversible, alors on a $AB = A(BA)A^{-1}$, donc AB et BA sont semblables donc elles ont même polynôme caracéristique
- ② A). Première méthode
 - ① Soit $r \in \mathbb{N}^*$,on a

$$J_r = \begin{pmatrix} I_r & 0_{r,n-r} \\ 0_{n-r,r} & 0_{n-r} \end{pmatrix}$$
 , posons $B = \begin{pmatrix} B_1 & B_2 \\ B_3 & B_4 \end{pmatrix}$

avec

$$B_1\in\mathcal{M}_r(\mathbb{K})$$
 , $B_2\in\mathcal{M}_{r,n-r}(\mathbb{K})$, $B_3\in\mathcal{M}_{n-r,r}(\mathbb{K})$ et $B_4\in\mathcal{M}_{n-r}(\mathbb{K})$

On a

$$J_r B = \begin{pmatrix} B_1 & * \\ 0_{n-r,r} & 0_{n-r} \end{pmatrix} \ et \ B J_r = \begin{pmatrix} B_1 & 0_{r,n-r} \\ * & 0_{n-r} \end{pmatrix}$$
 ces dexu matrice sont des matrices triangulaires par blocs donc on a $\chi_{J_r B} = \chi_{BJ_r} = (-x)^{n-r} \chi_{B_1}$

② Posons r = rg(A), alors il existe deux matrices inversible P et Q telle que $A = PJ_rQ$, donc:

$$\chi_{AB} = \chi_{P(J_rQB)} = \chi_{J_r(QBP)} = \chi_{Question1} \chi_{Q(BPJ_r)} = \chi_{Q(BPJ_r)} = \chi_{B(PJ_rQ)} = \chi_{BA}$$
Question1

B). Deuxième méthode. Soit $(x, t) \in \mathbb{K}^2$.

① Si on pose $A = (a_{i,j})_{i,j}$ et $B = (b_{i,j})_{i,j}$, alors le coefficient générique de $(A - t.I_n)B$ est : $C_{i,j}(t) = \sum_{k=1}^{n} (a_{i,k} - t\delta_{i,k})b_{k,j}$ et par suite celui de $(A - t.I_n)B - xI_n$ est $d_{i,j}(t) = C_{i,j}(t) - x\delta_{i,j}$, par suite

on a det
$$((A - t.I_n)B - xI_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{k=1}^n d_{k,\sigma(k)}(t)$$
 et comme $C_{i,j}$ sont des fonctions polynomiales

en t de degré inferieure ou égale à 1 , alors $d_{i,j}$ aussi et par suite $\det((A-t.I_n)B-x.I_n)$ est une fonction polynômiale en t de degré inferieure ou égale à n. De même pour det $(B(A-t.I_n)-x.I_n)$ est une fonction polynômiale en t de degré inférieure ou égale à n ce qui entraine que P est une fonction polynômiale en *t* de degré inférieure ou égale à *n*

② On a $\forall t \in \mathbb{K}$, $t \notin \mathcal{S}p(A)$, $A - t.I_n \in \mathcal{G}L_n(\mathbb{K})$ et d'après la première question on a P(t) = 0

Solution :15(Suite)

Et comme Sp(A) est fini et $\mathbb K$ est infini , alors P admet une infinité de point d'annulation et par suite P=0 ce qui entraine que P(0)=0 , c'est à dire que $\chi_{AB}(x)-\chi_{BA}(x)=0$ et ceci pour tout x dans $\mathbb K$, donc le polynôme $\chi_{AB} - \chi_{BA}$ admet une infinité de racines donc il est nul d'ou l'égalité : $\chi_{AB} = \chi_{BA}$

C). Troisième méthode

① On a
$$\begin{pmatrix} \lambda.I_n - BA & B \\ 0 & \lambda.I_n \end{pmatrix}$$
 · $\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \begin{pmatrix} (\lambda.I_n - BA) + BA & B \\ \lambda.A & \lambda.I_n \end{pmatrix}$
= $\begin{pmatrix} \lambda.I_n & B \\ \lambda.A & \lambda.I_n \end{pmatrix}$ et $\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix}$ · $\begin{pmatrix} \lambda.I_n & B \\ 0 & \lambda.I_n - AB \end{pmatrix} = \begin{pmatrix} \lambda.I_n & B \\ \lambda.A & \lambda.I_n \end{pmatrix}$

$$\det\begin{pmatrix} \lambda.I_n - BA & B \\ 0 & \lambda.I_n \end{pmatrix} \cdot \det\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix} = \lambda^n \det(\lambda.I_n - BA)$$

$$\det\begin{pmatrix} I_n & 0 \\ A & I_n \end{pmatrix}. \det\begin{pmatrix} \lambda.I_n & B \\ 0 & \lambda.I_n - AB \end{pmatrix} = \lambda^n \det(\lambda.I_n - AB)$$
 On a donc : $\forall \lambda \in \mathbb{K}^*$, $\det(AB - \lambda.I_n) = \det(BA - \lambda.I_n)$ ce qui entraine que le polynôme

 $\det(AB - X.I_n) - \det(BA - X.I_n)$ admet une infinité de racine donc il est nul c'est à dire $\chi_{AB} = \chi_{BA}$

D)Quatrième méthode

L'espace vectoriel $\mathcal{M}_n(\mathbb{K})$ est de dimension finie donc toutes ses normes sont équivalentes , on est alors libre de choisir chaque fois la norme qui nous convient

- ① L'application det : $\mathcal{M}_n(\mathbb{K}) \to \mathbb{K}$ qui à chaque A associé son déterminant est continue et comme \mathbb{K}^* est un ouvert de $\mathbb K$,alors son image réciproque par det est un ouvert de $\mathcal M_n(\mathbb K)$ à savoir $\mathcal GL_n(\mathbb K)$ Montrons maintenant la densité . Soit A une matrice carrée d'ordre n comme le spectre de A est fini , alors $\exists n_0 \in \mathbb{N}$, $\forall p \geq n_0$, $\frac{1}{p} \notin \mathcal{S}p(A)$ si on pose alors pour $p \geq n_0$, $A_p = A - \frac{1}{p}.I_n$, alors la suite $(A_p)_{p \geq n_0}$ est une suite de matrices inversibles de limite la matrice A ce qui prouve la densité de $\mathcal{G}L_n(\mathbb{K})$ dans l'espace
- ② Soit $(A,B) \in \mathcal{M}_n(\mathbb{K})^2$. Par densité de $\mathcal{G}L_n(\mathbb{K})$ dans $\mathcal{M}_n(\mathbb{K})$, alors il existe une suite $(A)_v$ de matrices inversibles telle que $A_p \to A$.D'après la première question on a $\forall p \in \mathbb{N}$, $\chi_{A_pB} = \chi_{BA_p}$. Le produit matriciel est une application bilinéaire continue , alors les suites $(A_pB)_p$ et $(BA_p)_p$ convergent respectivement vers AB et BA .L'application $M \longmapsto \chi_M$ est continue sur $\mathcal{M}_n(\mathbb{K})$ comme composée de deux applications continues à savoir det , c'est un résultat du cours et $M \longmapsto M - XI_n$ qu'est une application lipschitzienne. donc en passant à la limite quand p tend vers $+\infty$, on a $\chi_{AB} = \chi_{BA}$

Exercice :16

Montrer qu'une matrice de permutation à coefficients dans C est diagonalisable

Solution :16

On note \mathcal{P}_n l'ensemble des matrices de permutations , il est clair que (\mathcal{P}_n, \times) est un groupe . L'application :

$$\Sigma: \begin{cases} \mathcal{S}_n \to \mathcal{P}_n \\ \sigma \longmapsto P_{\sigma} \end{cases}$$

Est un isomorphisme de groupe donc l'ensemble \mathcal{P}_n est fini de cardinal n! et donc d'après le théorème de Lagrange vue dans la fiche 1 on a $\forall \sigma \in \mathcal{S}_n$, $P_{\sigma}^{n!} = I_n$ ce qui entraine que le polynôme $X^{n!} - 1$ est un polynôme annulateur de P_σ et comme il est scindé et à racine simple dans $\mathbb C$, alors elle est diagonalisable

Exercice :17

Soient n un entier naturel non nul et A une matrice à coefficients réels dont le polynôme caractéristique est scindé .Montrer que : $tr(A^2 + A + I_n) \ge \frac{3n}{4}$

Solution:17

Le plolynôme χ_A est scindé sur $\mathbb R$, donc A est trigonalisable dans $\mathcal M_n(\mathbb R)$.Il existe une matrice inversible P et une matrice triangulaire supérieure T à coefficients réelles telles que $A = PTP^{-1}$.

Solution :17(Suite)

On a alors $A^2 + A + I_n = P(T^2 + T + I_n)P^{-1}$ et par suite si on désigne par $\lambda_1, \ldots, \lambda_n$ les valeurs propres de A, alors on a

$$tr(A^2 + A + I_n) = \sum_{k=1}^{n} (\lambda_k^2 + \lambda_k + 1)$$

Or $\forall t \in \mathbb{R}$, $t^2 + t + 1 = \left(t + \frac{1}{2}\right)^2 + \frac{3}{4} \ge \frac{3}{4}$, ce qui entraine alors que $tr(A^2 + A + I_n) \ge \sum_{k=1}^n \frac{3}{4} = \frac{3n}{4}$

Exercice :18

Soit n un entier non nul et A une matrice carrée à coefficients réels telle que $A^3 = A + I_n$. Montrer que det A > 0

Solution :18

La matrice A est inversible car elle annule le polynôme $P = X^3 - X - 1$ à coefficient constant non nul, donc son déterminant est non nul .Le polynôme P est scindé à racines simples dans $\mathbb C$, donc A est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$. Le polynôme P a trois racines complexe : une racine réelle α et une racine complexe non réelle β et son conjugué $\overline{\beta}$. Posons m_{α} L multiplicité de la valeur propre α ($m_{\alpha}=0$ si α n'est pas valeur propre de A) et m_{β} la multiplicité de la valeur propre β ($m_{\beta}=0$ si β , n'est pas valeur propre de A).

 \otimes . Remarquons que $\alpha.\beta.\overline{\beta}=(-1)^3\frac{a_0}{a_3}$ avec $a_0(respa_n)$ est le coefficient constant (dominant) de P ce qui entraine alors que α . $|\beta|^2 = 1 > 0$ ce qui prouve alors que $\alpha > 0$

 $ilde{S}$. On a déterminant de A est alors égale $\alpha^{m_{\alpha}} |\beta|^{2.m_{\beta}} > 0$

Exercice :19

Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de rang r.Montrer qu'il existe un polynôme annulateur de ude degré r+1

Solution :19

Le rang de u est égale à r, alors d'après le théorème du rang la dimension du ker u est égale à n-r, soit alors $B = (e_1, \dots, e_{n-r}, \dots, e_n)$ une base de E adaptée à ker u.La matrice de u dans cette base est de la forme

$$M = \begin{pmatrix} 0_{n-r} & U \\ 0_r & V \end{pmatrix}$$
 par une récurrence facile on a $\forall k \in \mathbb{N}^*$, $M^k = \begin{pmatrix} 0_{n-r} & UV^{k-1} \\ 0_r & V^k \end{pmatrix}$ et par linéarité on a $\forall Q \in \mathbb{K}[X]$, $MQ(M) = \begin{pmatrix} 0_{n-r} & UQ(V) \\ 0_r & VQ(V) \end{pmatrix}$

$$\forall Q \in \mathbb{K}[X], MQ(M) = \begin{pmatrix} 0_{n-r} & UQ(V) \\ 0_r & VQ(V) \end{pmatrix}$$

Si on pose $P = X\chi_V$, alors on a $P(M) = 0_n$ et comme deg $P = 1 + \deg \chi_V = 1 + r$, alors le polynôme P convient

🤻 Exercice :20.Une preuve du théorème du Cayley Hamilton

Soit *E* un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$ et $u \in \mathcal{L}(E)$.

① On suppose qu'il existe $x_0 \in E$ tel que $(u^i(x_0))_{i \in \{0...n-1\}}$ est une base de E .On pose

$$u^{n}(x_{0}) = \sum_{k=0}^{n-1} a_{k} u^{k}(x_{0})$$

- 1.1 Calculer χ_u en fonction des a_k .
- 1.2 En déduire que $\chi_u(u) = 0_{\mathcal{L}(E)}$.
- ② Pour $x \in E$ tel que $x \neq 0_E$, on pose

$$E_u(x) = \mathcal{V}ect\left\{u^k(x_0), k \in \mathbb{N}\right\}$$

- 2.1 Montrer que $E_u(x)$ admet une base de la forme $(x, u(x), \dots, u^{p-1}(x))$.
- 2.2 En déduire que $\chi_u(u)(x) = 0$.
- 3 Retrouver le théorème de Cayley Hamilton

Solution :20

1

1.1 La matrice de u relativement à la base $(x_0, u(x_0), \dots, u^{n-1}(x_0))$ est :

$$M = \begin{pmatrix} 0 & 0 & \dots & \dots & a_0 \\ 1 & 0 & \dots & \dots & a_1 \\ 0 & 1 & 0 & \dots & \dots & a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & 1 & a_{n-1} \end{pmatrix}$$

En éfféctuant l'opération $L_1 \leftarrow L_1 + \sum_{k=2}^n X^{k-1} L_k$, et en developpant par rapport à la première ligne on a $\chi_u = (-1)^n \left(X^n - \sum_{k=0}^{n-1} a_k X^k \right)$

1.2 Pour montrer que $\chi_u(u)=0_{\mathcal{L}(E)}$, il suffit de montrer que $\chi_u(u)$ est nulle dans la base $(x_0,u(x_0),\ldots,u^{n-1}(x_0))$. Soit alors $k\in [\![0,n-1]\!]$, on a

$$\chi_u(u)\left(u^k(x_0)\right) = \left(\chi_u(u) \circ u^k\right)(x_0) = u^k(\chi_u(u)(x_0)) = u^k(0_E) = 0_E$$
 d'ou le résultat

②

2.1 Posons $A_u(x) = \{k \in \mathbb{N} \text{ , } (x, u(x), \dots, u^{k-1}(x_0)) \text{ est libre} \}$, on a $A_u(x)$ est non vide car il contient 1 et il est majoré par la dimension de $E_u(x)$, donc admet un plus grand élément noté p On montre maintenant par récurrence que :

$$\forall k \geq p$$
, $u^k(x) \in \mathcal{V}ect\left(u^l(x), l \in \llbracket 1, p-1 \rrbracket\right)$

Pour k = p c'est clair

Soit $k \ge p$, supposons que $u^k(x) \in \mathcal{V}ect\left(u^l(x), l \in [1, p-1]\right)$. On a :

$$u^{k+1}(x) = u\left(u^{k}(x)\right) \in u\left(\operatorname{Vect}\left(u^{l}(x), l \in [1, p-1]\right)\right)$$

= $\operatorname{Vect}\left(u(x), \dots, u^{p}(x)\right) \subset \operatorname{Vect}\left(u^{l}(x), l \in [1, p-1]\right)$

D'ou

$$\forall k \geq p$$
 , $u^k(x) \in \mathcal{V}ect\left(u^l(x) \text{ , } l \in \llbracket 1, p-1 \rrbracket \right)$

, c'est à dire que $E_u(x) = \mathcal{V}ect\left(u^l(x), l \in [\![1,p-1]\!]\right)$ ce qui est équaivalent de dire que $(x,u(x),\ldots,u^{p-1}(x))$ est une famille génératrice de $E_u(x)$ et comme la famille $(x,u(x),\ldots,u^{p-1}(x))$ est libre , alors c'est une base de $E_u(x)$

- 2.2 L'espace $E_u(x)$ est stable par u, si on note v l'endomorphisme, alors $E_u(x)$ admet une base de la forme $(x,v(x),\ldots,v^{p-1}(x))$, donc $\chi_v(v)(x)=0$ ce qui entraine alors que $\chi_u(u)(x)=0$
- ③ Soit $x \in E$, si x = 0 , alors $\chi_u(u)(x) = 0$ et si $x \neq 0_E$, alors d'après la question précédente on a $\chi_u(u)(x) = 0$, ce qui entraine alors que $\chi_u(u) = 0_{\mathcal{L}(E)}$

🤻 Exercice :21.Commutant d'un endomorphisme

Soit f un endomorphisme diagonalisable d'un \mathbb{K} -espace vectoriel de dimension finie n ,on note par $\mathcal{C}(f) = \{g \in \mathcal{L}(E) \text{ , } fog = gof \}$

- ① Montrer que : C(f) est un sous espace vectoriel de L(E)
- ② Montrer qu'un endomorphisme g est un élément de $\mathcal{C}(f)$ si et seulement si chaque sous espace propre de f est stable par g .
- ③ En déduire que $\dim(\mathcal{C}(f)) = \sum_{\lambda \in Sp(f)} m_{\lambda}^2$ où m_{λ} est la multiplicité de la valeur propre de λ .
- 4 On suppose que les valeurs propres de f sont simples .Montrer que $(id_e, f, \ldots, f^{n-1})$ est une base de $\mathcal{C}(f)$.

Solution:21

- ① C'est clair
- ② . (\Rightarrow) .C'est du cours

 (\Leftarrow) . Supposons que tous les sous espaces propres de f sont stables par g, comme f est diagonalisable , alors $(*): E = \bigoplus_{k=1}^r E_{\lambda_k}(f)$, donc pour montrer que g commute avec f il suffit de montrer que ceci à lieu sur tout sous espace propre de f .Soit $k \in [1, r]$ et $x \in E_{\lambda_k}(f)$, on a $f \circ g(x) = f(g(x)) = \lambda_k \cdot g(x)$ car $g(x) \in E_{\lambda_k}(f)$ ceci d'une part d'autre part on a $g\circ f(x) = g(f(x)) = g(\lambda_k.x) = \lambda_k.g(x)$ ce qui prouve l'égalité de gof et fog sur chaque sous espace propre de f , et par suite l'égalité

3 Soit g un endomorphisme de E. D'après la question précédente g est un élément de C_f si et seulement si, la matrice de g dans une base de E adaptée à la décomposition (*) est de la forme :

$$\begin{pmatrix} A_{E_{\lambda_1}(f)} & 0 & \dots & 0 \\ 0 & A_{E_{\lambda_2}(f)} & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & A_{E_{\lambda_r}(f)} \end{pmatrix}$$
 Considérons maintenant l'application :

$$\varphi: \begin{cases} \mathcal{C}_f \longrightarrow \prod_{k=1}^r \mathcal{M}_{\dim\left(E_{\lambda_k}(f)\right)}(\mathbb{K}) \\ g \longmapsto \left(A_{E_{\lambda_1}(f)}, \dots, A_{E_{\lambda_r}(f)}\right) \end{cases}$$

L'application φ est un isomorphisme d'espace vectoriel , donc les deux espaces ont même dimension et par suite dim $C_f = \sum_{k=1}^r (\dim (E_{\lambda_k}))^2$

4 Si on suppose que les valeurs propres de f sont simples ,alors $\forall k \in [1,r]$, dim $(E_{\lambda_k}) = 1$, ce qui entraine que dim $C_f = n$. Le degré du polynôme minimal de l'endomorphisme f est égale à n, car il admet n racines distinctes, ce qui entraine alors que dim $\mathbb{K}[f] = n$ et qu'il admet la famille $(id_E, f, ..., f^{n-1})$ comme base (Voir le cours de l'arithmétique des entiers et des polynômes) .Or $\mathbb{K}[f] \subset \mathcal{C}_f$, alors on a égalité et par suite $(id_E, f, \dots, f^{n-1})$ est une base de \mathcal{C}_f

Exercice :22.Diagonalisation simultanée

Soit f et g deux endomorphismes d'un espace vectoriel de dimension finie, diagonalisables qui commutent. Montrer que f et g admettent une base de diagonalisation commune .

Solution :22

On a f est diagonalisable, alors si on désigne par $\lambda_1, \ldots, \lambda_r$ les valeurs propres distinctes de f, alors on a $E = \bigoplus_{k=1}^r E_{\lambda_k}(f)$, et comme f et g commutent, alors pour tout entier $k \in [1, r]$, le sous espace $E_{\lambda_k}(f)$ est stable par g , notons alors g_k l'endomorphisme induit par g sur $E_{\lambda_k}(f)$, comme g est diagonalisable , alors pour $k \in [1, r]$, l'endomorphisme g_k est diagonalisable donc il existe une base B_k de l'espace $E_{\lambda_k}(f)$ formée des vecteurs propres de g_k donc de g . Si on pose $B=B_1\cup B_2\cup\ldots\cup B_r$, alors B est une base de E formée à la fois des vecteurs propres de f et de g donc c'est une base de diagonalisation commune de f et g

🛠 Exercice :Diagonalisation simultanée -Généralisation

Soit *E* un espace vectoriel de dimension finie non nulle *n* et $(u_i)_{1 \le i \le m}$ une famille d'endomorphisme diagonalisables de E qui commutent deux à deux avec $m \ge 2$ Montrer qu'il existe une base \mathcal{B}_m de E de diagonalisation de tous les endomorphismes $u_1 \dots, u_m$

Solution :23

On va raisonner par récurrence sur m.

Solution : Pour m = 2 c'est fait à l'exercice 22

 \otimes . Héridité: Soit $m \geq 2$ supposons le résultat à l'ordre m-1 et prouvons le à l'ordre m. Soit alors (u_1, \ldots, u_m) une famille d'endomorphismes diagonalisables de E qui commutent deux à deux. Soit λ une valeur propre de u_1 et $E_{\lambda}(u_1)$ le sous espace propre de E associé à λ , comme les endomorphisme $u_2 \dots, u_m$ commutent avec u_1 ,alors $E_{\lambda}(u_1)$ est stable par u , notons alors pour $i \in [\![2,m]\!]$, v_i l'endomorphisme induit sur $E_{\lambda}(u_1)$ par u_i .Il est clair que v_2, \ldots, v_m sont diagonalisables et commutent deux à deux donc par l'hypothèse de récurrence il existe

Solution:23

Une base \mathcal{B}_{λ} de $E_{\lambda}(u_1)$ de diagnalisation commune des endomorphismes v_2, \ldots, v_m .il est clair aussi que cette base diagonalise l'endomorphisme v_1 induit sur $E_\lambda(u)$ par u_1 , puisque $v_1=\lambda.id_{E_\lambda(u_1)}$.Il suffit alors de réunir les bases \mathcal{B}_{λ} , pour λ décrivant le spectre de u_1 , pour obtenir une base de E qui diagonalise tous les u_i . D'ou le résultat à l'ordre m

Exercice :24

Soit A et B deux matrices carrées d'ordre n diagonalisables ayant même spectre et telles que $\forall k \in \mathbb{N}$, $tr(A^k) = tr(B^k)$. Montrer que A et B sont semblables

🖏 Solution :24

Soit $\lambda_1, \ldots, \lambda_p$ des valeurs propres distinctes de A (etB) et m_1, \ldots, m_p et m'_1, \ldots, m'_p les ordres de multiplicités respectivement de A et de B, il s'agit de montrer que $\forall i \llbracket 1, p \rrbracket$, $m_i = m'_i$. L'égalité $tr(A^k) = tr(B^k)$ pour $k \in \mathbb{N}$ s'écrit $\sum_{i=1}^p m_i \lambda_i^k = \sum_{i=1}^p m_i' \lambda_i^k$ ce qui équivalent de dire $\sum_{i=1}^p \lambda_i^k (m_i - m_i') = 0$, ce qui se traduit matriciellement

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_p \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{p-1} & \lambda_2^{p-1} & \dots & \lambda_p^{p-1} \end{pmatrix} \begin{pmatrix} m_1 - m_1' \\ \vdots \\ \vdots \\ m_p - m_p' \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix}$$

Comme les valeurs propres sont distinctes donc la matrice de Vandermande $\begin{pmatrix} 1 & 1 & \dots & 1 \\ \lambda_1 & \lambda_2 & \dots & \lambda_p \\ \vdots & \vdots & \vdots & \vdots \\ \lambda_1^{p-1} & \lambda_2^{p-1} & \dots & \lambda_p^{p-1} \end{pmatrix} \text{ est }$

inversible et par suite $\forall i \llbracket 1,p \rrbracket$, $m_i'=m_i'$, donc les matrices A et B sont semblables à une même matrice diagonale ce qui entraine alors Aet B sont semblables

Exercice :25

Soit n un entier naturel non nul et A une matrice à coefficients dans $\mathbb R$, telle que

$$A^3 = A + 6I_n$$

Montrer que $:\exists (p,q)\in \mathbb{N}^2$, $\det A=2^p3^q$ avec p+2q=n

Solution :25

Le polynôme $P = X^3 - X - 6$ est un polynôme annulateur de A, il est scindé à racines simples dans \mathbb{C} :

$$P = (X - 2)(X + 1 + i\sqrt{2})(X + 1 - i\sqrt{2})$$

Il en résulte que A est diagonalisable dans $\mathcal{M}_3(\mathbb{C})$, car elle annule un polynôme scindé à racine simples dans \mathbb{C} et que $\mathcal{S}p_{\mathbb{C}}(A)\subset \left\{2,-1+i\sqrt{2},-1-2\sqrt{2}\right\}$. Si $-1+i\sqrt{2}$ est une valeur propre de A de multiplicité q, alors $-1 - i\sqrt{2}$ est aussi une valeur propre de multiplicité aussi égale à q, si 2 est une valeur propre de A notons p sa multiplicité .Si $-1 + i\sqrt{2}$ (resp 2) n'est pas une valeur propre de A , on convient de poser q = 0(resp p0) :on a alors:

$$\det A = 2^p (-1 + i\sqrt{2})^q (-1 - i\sqrt{2})^q = 2^p \left(|-1 + i\sqrt{2}|^2 \right)^q = 2^p 3^q$$

Il est alors clair que p + 2q = n

Exercice :26

Soit A une matrice carrée d'ordre n à coefficient réels et B la transposée de sa comatrice. Montrer que tout vecteur propre de *A* est vecteur propre de *B*

Solution :26

On a $AB = BA = \det A.I_n$

① Si rg(A) = n, alors A est inversible et $B = (\det A) \cdot A^{-1} \cdot \text{Si } \lambda$ est une valeur propre de A, alors elle est non nulle, soit X un vecteur propre de A associé à λ .On a $AX = \lambda$.X ce qui entraine que $A^{-1}X = \frac{1}{\lambda}X$

Solution :26

Et donc $BX = \frac{\det A}{\lambda}X$ ce qui prouve alors que X est un vecteur propre de B associé à la valeur propre $\frac{\det A}{\lambda}$

- 2 Si $rg(A) \le n-2$, alors dans ce cas B est la matrice nulle et par suite tout vecteur non nul de E est un vecteur propre de *B* en particulier ceux de *A*
- ① Si rg(A) = n 1, alors dans ce cas le rang de B est 1, voir la fiche révision sup, et par suite B admet 0comme valeur propre d'ordre au moins égale à n-1 . Soit U un vecteur propre de A associé à la valeur propre 0 , si on désigne par f l'endomorphisme de \mathbb{C}^n associé canoniquement à A , alors son noyau est une droite vectoriel engendré par le vecteur ${}^tU=(\alpha_1,\ldots,\alpha_n)$. Comme det A=0 alors $AB=BA=0_n$ ce qui entraine alors que $\forall j \in [\![1,n]\!]$, $AV_j=0$ ou V_j désigne la jeme colonne de B ce qui entrâine alors que les tV_i sont des vecteurs propres de f associés à la valeurs propre 0 ce qui entraine alors que

$$\forall j \in \llbracket 1, n \rrbracket$$
, $\exists \lambda_j \in \mathbb{K}$, $V_j = \lambda_j$. tU

 $\forall j \in [\![1,n]\!] \ , \ \exists \lambda_j \in \mathbb{K} \ , \ V_j = \lambda_j.^t U$ Si on pose $Y = (\lambda_1,\dots,\lambda_n)$, on a B = UY ce qui entraine que

$$BU = UYU = \left(\sum_{i=1}^{n} \lambda_i \alpha_i\right) U$$

Ce qui veut dire que U est un vecteur propre de B associé à la valeur propre $\sum_{k=1}^{n} \lambda_k . \alpha_k$ Dans le cas ou U est un vecteur propre associé à une valeur propre λ non nulle .On a alors $BAU = \lambda BU$ et comme λ est non nulle , alors BU=0 et par suite U est un vecteur propre de B associé à la valeur propre 0

Exercice :27

Soit $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, $B = \begin{pmatrix} b & c \\ 0 & b \end{pmatrix}$ et $C \in \mathcal{M}_2(\mathbb{C})$. A quelle condition nécéssaire et suffisante la matrice $M = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ est diagonalisable

 $ilde{S}$. Rappel.Si M est une matrice carré à coefficients dans $\mathbb C$ dont le polynôme caractéristique est $\chi_M = \prod_{k=1}^{m} (X - \lambda_k)^{m_{\lambda_k}}$. Alors la matrice M est diagonalisable si, et seulement si M annule le polynôme

$$P = \prod_{k=1}^{r} (X - \lambda_k)$$

⋄. Le polynôme caractéristique de la matrice M est $\chi_M = (X-1)^2(X-b)^2$.

 \otimes . \otimes . Si b=1 , alors la matrice M est diagonalisable si, et seulement si $M=I_4$ ce qu'est équivalent à a = c = 0 et $C = 0_2$

 \odot . \odot . Si $b \neq 1$, alors dans ce cas M est diagonalisable si, et seulement si $(M - I_4)(M - b.I_4) = 0_4$. Un calcul direct montre que cette condition est équivalente à a = c = 0.

S.Résumé: La matrice M est diagonalisable si, et seulement si (a=c=0) et $(b \neq 1 \text{ ou } C=0_2)$

Exercice :28

Exercice: 28 Une équation matricielle

Montrer que l'équation : $X^r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ n'a pas de solutions dans $\mathcal{M}_2(\mathbb{C})$ pour tout entier naturel $r \geq 2$

Solution :28

 $ilde{N}$. Rappel. Soit A une matrice d'ordre n à coefficients dans \mathbb{K} . Les propositions suivantes sont équivalentes

⊗.Le polynôme caractéristique est $χ_A = X^n$

Solution State State

 \odot . Le polynôme minimale de A est $\pi_A = X^r$ avec r est l'indice de nilpotence de A

*. Supposons qu'il existe un entier naturel $r \geq 2$ et une matrice A d'ordre 2 à coefficients dans $\mathbb C$ tels que $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. Il est clair que $A^{2r} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ ce qui entraîne que A est nilpotente et par suite $A^2 = 0$ et comme rest supérieur ou égale à 2 ,alors $A^r = 0_2$ ce qu'est absurde .D'ou le résultat

Soit n un entier naturel non nul et A une matrice d'ordre n à coefficients dans \mathbb{C} et B la matrice d'ordre 2n à coefficients dans C définie par $B = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$. Montrer que B est diagonalisable si, et seulement si A est nulle

Solution :29

 \otimes .(\leftrightarrow).Si $A = 0_n$, alors la matrice B est nulle et par suite elle st diagonalisable

 \otimes .(\Leftrightarrow).Si $A = 0_n$, alors in matrice B and A are A and A are A and A are A are A and A are A and A are A and A are A and A are A are A are A and A are A are A are A are A are A and A are A are A are A and A are A are A are A and A are A are A and A are A are A and A are A and A are A are A and A are A are A and A are A and A are A are A are A and A are A are A

linéarité on a

linéarité on a
$$\forall P \in \mathbb{C}[X] \text{ , } P(B) = \begin{pmatrix} P(A) & AP'(A) \\ 0 & P(A) \end{pmatrix} \text{ et en particulier } \pi_B(B) = \begin{pmatrix} \pi_B(A) & A\pi_B(A) \\ 0 & \pi_B(A) \end{pmatrix} = 0_{2n} \text{ ce qui entraine}$$

alors que $\begin{cases} \pi_B(A) = 0_n \ . (1) \\ A\pi'_B(A) = 0 \ . (2) \end{cases}$. Ce qui entraine alors que π_A divise π_B et comme B est diagonalisable alors π_B

est à racines simples dans $\mathbb C$ et donc π_A aussi .Par définition de B on a $\chi_B = \chi_A^2$ ce qui entraine alors que les

matrices B et A ont le même spectre et par suite π_B et π_A aussi et par suite $\pi_A = \pi_B$.
• Comme $A\pi'_B(A) = 0$ alors π_A divise $X\pi_B = X\pi'_A$ et comme ils ont même degré et unitaires alors $\pi_A = X\pi'_A$. Ce qui entrâire que $\pi_A = X^r$ (Voir exercice 12 Solution fiche 0) et comme $\pi_A = \pi_B$ n'as que des racines simples alors $\pi_A=0$ et donc par définition de π_A , on a $\pi_A(A)=A=0$ d'ou le résultat

Exercice :30

Soit A une matrice d'ordre d à coefficients dans C à valeurs propres réelles vérifiant : $A^5 + A^3 + A = 3I_d$. Montrer que $A = I_d$

Solution :30

Le polynôme $P = X^5 + X^3 + X - 3$ est un polynôme anulateur de A. Le polyôme dérivé $P' = 5X^4 + 3X^2 + 1$ n'a pas de racines réelles et par suite le polynôme P admet au plus une racine réelle et comme P(1) = 0 donc 1 est la seule racine réelle de P. On a P est divisible par π_A et comme π_A à toutes ses racines réelles alors $\pi_A = X - 1$ ce qui entraine alors que $A = I_d$

Exercice :31

On considère l'application $\varphi: \begin{cases} \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R}) \\ A \longmapsto -A + \operatorname{tr}(A).I_n \end{cases}$ Etudier la diagonalisabilité de φ

Solution :31

Soit λ un réel et A une matrice carrée d'ordre n à coefficients dans \mathbb{R} . On a $\varphi(A) = \lambda A \Leftrightarrow (1 + \lambda)A = tr(A).I_n$ d'ordre au moins égale à $n^2 - 1$.

Soit A une matrice de trace non nulle , alors $\varphi(A) = \lambda.A$ est équivalent à $: A = \left(\frac{tr(A)}{1+\lambda}\right).I_n$ ce qui entraine alors que $tr(A) = n\left(\frac{tr(A)}{1+\lambda}\right)$ et donc $\lambda = n-1$ et que $E_{n-1} = \mathcal{V}ect(I_n)$

En conclusion , l'endomorphisme φ admet deux valeurs propres à savoir -1 et n-1 , les sous espaces propres associés sont de dimension respectives n^2-1 et 1 , donc de somme $n^2=\dim\mathcal{M}_n(\mathbb{R})$ ce qui prouve alors que φ est diagonalisable et que son polynôme caractéristique est $\chi_{\varphi} = (-1)^{n^2} (X+1)^{n^2-1} (X-n+1)$

Soit A, B et C trois matrices carrées d'ordre 2 . Montrer qu'il existe un triplet (a,b,c) de réels non tous nuls tel que aA + bB + cC possède une valeur propre double

Solution:32

⋄.Si la famille (A, B, C) est liée alors il existe $(a, b, c) ∈ \mathbb{R}^3$ tel que (a, b, c) ≠ (0, 0, 0) et $aA + bB + cC = 0_2$ et la matrice nulle admet des valeurs propres doubles d'ou le résultat

 \otimes . Si la famille (A, B, C) est libre alors le sous espace F de $\mathcal{M}_2(\mathbb{R})$ engendré par la famille (A, B, C) est de dimension 3 et le sous espace G de $\mathcal{M}_2(\mathbb{R})$ engendré par $E_{1,1}$ et $E_{1,2}$ c'est à dire $\left\{\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, (a,b) \in \mathbb{R}^2\right\}$ est de dimension 2 .L'inégalité dim $F + \dim G > \dim \mathcal{M}_2(\mathbb{R})$ entraine que $F \cap G$ contient une matrice non nulle $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$ cette matrice admet a comme valeur propre double , d'ou le résultat

Exercice :32

Existe-t-il une matrice nilpotente de $\mathcal{M}_n(\mathbb{R})$ à coefficients strictement positifs?

Solution :33

Si une telle matrice A existe alors pour tout $k \in \mathbb{N}$ la matrice A^k est aussi à coefficients strictement positifs ce qui est absurde

Exercice :33

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$.On suppose que χ_A est scindé sur \mathbb{K} .Déterminer $\chi_{P(A)}$

Solution :33

Comme χ_A est scindé alors A est trigonalisable ,donc il existe une matrice inversible Q telle que

Comme
$$\chi_A$$
 est scindé alors A est trigonalisable ,donc il existe une matrice inversible Q telle que
$$A = Q \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & \lambda_n \end{pmatrix} . Q^{-1}$$
 et par suite $P(A) = Q \begin{pmatrix} P(\lambda_1) & 0 & \dots & \dots & 0 \\ 0 & P(\lambda_2) & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & P(\lambda_n) \end{pmatrix} . Q^{-1}$. On en déduit alors que χ_A or A :

Exercice :34

Soit u et v deux endomorphismes d'un \mathbb{K} - espace vectoriel E de dimension finie .On suppose que u est diagonalisable .Montrer que uov = vou si, et seulement si tout sous espace propre de u est stable par v

Solution :34

Selection Selection Property Property Property (Selection Property Prop

 \odot . Supposons que chaque sous espace propre de u est stable par u . On pose $\mathcal{S}p(u)=\{\lambda_1,\ldots,\lambda_r\}$, puisque

$$E = \bigoplus_{i=1}^r E_{\lambda_i}(u)$$
 alors, pour tout $x \in E$, on peut écrire $x = \sum_{i=1}^r x_{\lambda_i}$ avec $x_{\lambda_i} \in E_{\lambda_i}(u)$ et alors

 $E = \bigoplus_{i=1}^r E_{\lambda_i}(u) \text{ alors , pour tout } x \in E \text{ , on peut \'ecrire } x = \sum_{i=1}^r x_{\lambda_i} \text{ avec } x_{\lambda_i} \in E_{\lambda_i}(u) \text{ et alors } (vou)(x) = \sum_{i=1}^r \lambda_i v \left(x_{\lambda_i}\right) \text{ , or } (uov)(x) = \sum_{i=1}^r u \left(v(x_{\lambda_i}) = \sum_{i=1}^r \lambda_i v \left(x_{\lambda_i}\right) \text{ car } \forall i \in \llbracket 1, r \rrbracket \text{ , } v(x_{\lambda_i}) \in E_{\lambda_i}(u) \text{ , ce qui } v \in \llbracket 1, r \rrbracket \text{ .} v(x_{\lambda_i}) = v \in \llbracket 1, r \rrbracket \text{ .} v(x_{\lambda_i}) \in E_{\lambda_i}(u) \text{ , ce qui } v \in \llbracket 1, r \rrbracket \text{ .} v(x_{\lambda_i}) \in E_{\lambda_i}(u) \text{ .} v(x_{\lambda_i}) \in E_{\lambda_$ montre alors l'égalité

Soit u un endomorphisme diagonalisable d'un espace vectoriel E de dimension finie avec $Sp(u) = \{\lambda_1, \dots, \lambda_r\}$. Soit $k \in [1, r]$. Montrer que la projection p_k de E sur le sous espace propre $E_{\lambda_k}(u)$ parallèlement à $\bigoplus_{i=1, i \neq k} E_{\lambda_i}(u)$ est donnée par :

$$p_k = \prod_{i=1}^r \prod_{i \neq k} \left(\frac{u - \lambda_i . i d_E}{\lambda_k - \lambda_i} \right)$$

Solution :35

Comme u est diagonalisable alors son polynôme minimale est $\pi_u = \prod (X - \lambda_i)$. La décomposition en éléments simples de la fraction $\frac{1}{\pi_u}$ est $\frac{1}{\pi_u} = \sum_{i=1}^r \frac{\alpha_i}{X - \lambda_i}$ avec $\alpha_k = \frac{1}{\prod\limits_{i=1, i \neq k}^r (\lambda_k - \lambda_i)}$, cette décomposition permet

d'obtenir l'égalité de Bezout : $\sum_{k=1}^r \alpha_k \left(\prod_{i=1}^r \sum_{i \neq k} (X - \lambda_i) \right) = 1$ ce qui entraine alors que :

$$\forall x \in E$$
, $x = \sum_{k=1}^{r} \alpha_k \left(\prod_{i=1, i \neq k}^{r} (u - \lambda_i . id_E) \right) (x)$

Comme $\pi_u(u) = 0_{\mathcal{L}(E)}$ alors de l'égalité précédente on obtient $: (u - \lambda_k.id_E)o\left(\prod_{i=1}^r (u - \lambda_i.id_E)\right)(x) = 0_E$,

on déduit alors que α_k . $\left(\prod_{i=1}^r (u-\lambda_i.id_E)\right)(x) \in \ker(u-\lambda_k.id_E)$, c'est à dire que les projecteurs p_k s'écrivent

$$p_k = \alpha_k \left(\prod_{i=1, i \neq k}^r (u - \lambda_i . i d_E) \right) \text{ avec } \alpha_k = \frac{1}{\prod_{i=1, i \neq k}^r (\lambda_k - \lambda_i)}.$$

En particulier ces projecteurs sont des polynômes en

Exercice :36

Soit n et m deux entiers naturels non nuls .Soit G un sous groupe fini de $\mathcal{G}L_n(\mathbb{K})$ tel que $\forall A \in G$, $A^2 = I_n$

- ① Montrer que *G* est commutatif
- ② Soit H un sous groupe strict de G et $D \in G$ tel que $D \notin H$.Montrer que $H' = H \cup D.H$ est un sous groupe de G et de cardinal 2.card(H)
- ③ Montrer que pour tout entier naturel $k \in \mathbb{N}$ tel que $2^k \leq cardG$, alors il existe $(a_1, \ldots, a_k) \in G^k$ tel que $H_k = \left\{\prod_{i=1}^k a_i^{j_i}, \ (j_1, \dots, j_k) \in \{0,1\}^k\right\}$ soit un sous groupe de G de cardinal 2^k
- ④ En déduire que *G* est de cardinal une puissance de 2
- **⑤** Montrer que les groupes $\mathcal{G}_n(\mathbb{K})$ *et* $\mathcal{G}L_m(\mathbb{K})$ sont isomorphes si, et seulement si n=m

Solution :36

- 1 Soit $(A, B) \in G^2$, on a $I_n = (AB)^2 = ABAB$ donc AB = (AA)BA(BB) = BA. Donc G est commutatif
- ① Il est clair que $H \subset H'$.Soit $(A, B) \in H^2$, alors

∠ Si (A, B) ∈ H^2 , alors AB ∈ H ⊂ H'

 $\angle S$ i (A, B) ∈ $(D.G)^2$ alors il existe (M, N) ∈ H^2 tel que A = D.N et B = D.M et par suite $AB = (D.N)(D.M) = D^2.NM = NM \in H \subset H'$

∠a. SI A ∈ H et B ∈ D.H, alors AB ∈ D.H et par suite H' est stable par la multiplication matricielle et comme tout élément de G est égal à son inverse alors H' est un sous groupe de G.

Solution:36

à chaque A de H fait correspondre D.A est une bijection donc cardH' = 2cardH

2 On va raisonner par récurrence sur k.

∠ Pour k = 0 , il suffit de poser $H_0 = \{I_n\}$.

∠Soit k un entier supposons l'existence d'une famille $(a_1, ..., a_k) ∈ G^k$ telle que

$$H_k = \left\{ \prod_{i=1}^k a_i^{j_i}, (j_1, \dots, j_k) \in \{0, 1\}^k \right\}$$
 soit un sous groupe de cardinal 2^k et $2^{k+1} \le card\ G$. Donc H est un sous groupe strict de G soit alors a_{k+1} un élément de G n'appartenant pas H_k . D'après la question

précédente $H_{k+1} = H_k \cup a_{k+1}.H_k$ est un sous groupe de G de cardinal 2.card $H_k = 2^{k+1}$ engendré par

$$H_k.(a_{k+1}H_k)$$
 c'est à dire de la forme $H_{k+1} = \left\{\prod_{i=1}^{k+1} a_i^{j_i}, (j_1, \ldots, j_{k+1}) \in \{0,1\}^{k+1}\right\}$. Puisque G est fini, le processus s'arrête forcément, donc le cardinal de G est une puissance de 2 c'est à dire de la forme 2^p . Il

reste à montrer que p < n

 \angle n. Tous les éléments de G sont diagonalisable car annulés par le polynôme $X^2 - 1$ scindé à racines simples dans K et comme elles commutent deux à deux alors ils sont simultanément diagonalisable , c'est à dire qu'il existe une matrice inversible P telle que pour tout élément M de G la matrice $P^{-1}.M.P$ est diagonale et comme les valeurs propres possibles de M sont 1 ou -1 alors $D=P^{-1}.M.P$ est de la forme $D = diag(\lambda_1(M), \dots, \lambda_n(M))$ avec $\lambda_i(M) \in \{-1, 1\}$. On en déduit que l'application

 $M \longmapsto (\lambda_1(M), \dots, \lambda_n(M))$ est un morphisme injective de groupe donc elle réalise un isomorphisme de G dans un sous groupe du groupe multiplicatif $\{-1,1\}$ et comme le cardinal d'un sous groupe divise le cardinal du groupe et le cardinal du groupe $\{-1,1\}$ est égale à 2^n alors $2^p \le 2^n$ et par suite $p \le n$

3 Supposons qu'il existe un isomorphisme de groupe φ de $\mathcal{G}L_n(\mathbb{K})$ dans $\mathcal{G}L_m(\mathbb{K})$. On désigne par G le sous groupe des matrices diagonales de $\mathcal{G}L_n(\mathbb{K})$ dont les coefficients diagonaux sont dans $\{-1,1\}$. Le cardinal de ce sous groupe est 2ⁿ dont tous les éléments sont d'ordre inférieur ou égale à 2 et par suite son image par ϕ est un sous groupe de $\mathcal{G}L_m(\mathbb{K})$ dont tous les éléments sont d'ordre inférieur ou égale à 2 , donc $n \leq m$.En raisonnant avec l'isomorphisme $arphi^{-1}$ on déduit qu'on a aussi $m \leq n$, ce qui donne en définitive n = m

Exercice :37

Soit G un sous groupe commutatif de $GL_n(\mathbb{C})$ dont tous les éléments sont d'ordre fini .Nous noterons $r_G = \max{(\mathcal{O}(A))}$.Montrer que G est de cardinal fini de cardinal une un diviseur de r_G^n

Solution :37

Tous les éléments de G sont diagonalisable car ils sont annulés par le polynôme $X^r - 1$ scindé à racines simples dans \mathbb{C} et comme G est commutatif alors ils sont simultanément diagonalisables , soit alors P une matrice inversible de $\mathcal{M}_n(\mathbb{C})$ tel que pour toute matrice M élément de G , on a $P^{-1}.M.P$ est diagonale de la forme $diag(\lambda_1(M),...,\lambda_n(M))$ et comme $M^{r_G}=I_n$ alors les $\lambda_i(M)$ sont des racines r-ème de l'unité .On en déduit alors que l'application $M \longmapsto (\lambda_1(M), \dots, \lambda_n(M))$ est un morphisme injectif de groupe et par suite G est isomorphe à un sous groupe de \mathcal{U}_r^n , il est donc fini de cardinal divisant r_G^n

Exercice :38

Soit *A* une matrice carrée inversible d'ordre 6 à coefficients dans \mathbb{R} vérifinat $A^3 - 3A^2 + 2A = 0$ et tr(A) =8. Déterminer le polynôme caractéristique de A

Solution :38

Comme A inversible alors $A^3 - 3A^2 + 2A = 0$ entraine que $A^2 - 3A + 2I_6 = 0$ et par suite le polynôme P = (X - 2)(X - 1) est un polynôme annulateur de de la matrice A et comme il est scindé à racines simples dans \mathbb{R} alors A est diagonalisable dans $\mathcal{M}_6(\mathbb{R})$ et du spectre inclus dans $\{1,2\}$ si on désigne par p etq les multiplicités de 1 et 2 respéctivement avec la convention p = 0 (resp q = 0) si 1 (resp 2) n'est pas une valeur propre de A, alors $\chi_A = (X-1)^p (X-2)^q$. Comme le degré de χ_A est égale à 6 et tr(A) = 8 alors p+q=6 et p+2q=8 ce qui donne p = 4 et q = 2, puis que $\chi_A = (X - 1)^4 (X - 2)^2$