Analisi di Immagini e Video (Computer Vision)

Giuseppe Manco

Outline

- Sift
- Harries Corner Detection

Crediti

- Slides adattate da vari corsi e libri
 - Analisi di Immagini (F. Angiulli) Unical
 - Intro to Computer Vision (J. Tompkin) CS Brown Edu
 - Computer Vision (I. Gkioulekas) CS CMU Edu
 - Cmputational Visual Recognition (V. Ordonez), CS Virgina Edu
 - Pattern Recognition and Machine Learning (C. Bishop, 2005)
 - Deep Learning (Bengio, Courville, Goodfellow, 2017)

Quali sono i descrittori di un keypoint?

- Vettori
- Istogrammi
- Risposte su patches

Image patch

Vettore di intensità dei colori, combinato con downsampling

Gradienti

Differenze sui pixel

Istogrammi di colori

Invarianti ai cambiamenti di scala e rotazione

Istogrammi spaziali

Calcoliamo gli istogrammi su celle

Invariante alle deformazioni

MOPS: Multi-Scale oriented patches

MOPS

Multi-Image Matching using Multi-Scale Oriented Patches. M. Brown, R. Szeliski and S. Winder. International Conference on Computer Vision and Pattern Recognition (CVPR2005). pages 510-517

$$(x, y, s, \theta)$$

Data una feature

- Considera una patch 40 x 40, campionata
- Standardizza i valori
- Applica i filtri di Haar

Haar-like features

Si calcola il responso della patch su ogni filtro come descrittore

SIFT (Scale Invariant Feature Transform)

Descrive sia un detector che un descrittore

- 1. Multi-scale extrema detection
- 2. Keypoint localization
- 3. Orientation assignment
- 4. Keypoint descriptor

https://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html

Scale Invariant Local Features

Scale Space

- Lo scale space è una rappresentazione multiscala dell'immagine basata su un parametro di scala continuo σ
- La rappresentazione a scala σ si ottiene effettuando la convoluzione di f con il kernel Gaussiano avente deviazione standard σ
- Le informazioni a scala più fine vengono progressivamente soppresse

Laplacian of Gaussian Detector

LoG scale invariant keypoint detector:

$$L(x,y;\sigma) = \sigma^2 \left[\nabla^2 G(x,y;\sigma) \star f(x,y) \right]$$

- dove il fattore σ^2 è richiesto per l'invarianza di scala
- Il LoG filter massimizza la risposta quando viene applicato ad una regione che contiene una struttura circolare approssimativamente della dimensione del filtro stesso (blob detector)

Laplacian response (in 1D)

Laplacian response (in 1D)

Laplacian of Gaussian Detector

• I LoG keypoint sono gli estremi in questa rappresentazione scale space

Piramide Gaussiana

- La piramide è una collezione di rappresentazioni di un'immagine strutturate su più livelli, in cui ogni livello ha in genere dimensione pari ad un quarto del livello sottostante
- In una piramide gaussiana, ogni livello è ottenuto da quello sottostante effettuando (1) un filtraggio con un kernel Gaussiano di deviazione standard σ e quindi (2) una scalatura di un fattore 0.5

Piramide Gaussiana

- Dato un fattore di scala σ ed un operatore di scalatura S:
 - $f_O(x,y) = f(x,y)$
 - $f_{n+1}(x,y) = S(G(x,y,\sigma)*f_n(x,y))$
- dove $f_{n+1}(x,y)$ ha sempre dimensione pari ad un quarto di $f_n(x,y)$ per effetto del dimezzamento del numero di pixel in verticale ed in orizzontale (l'immagine $f_n(x,y)$ al livello n della piramide è l'equivalente dell'immagine $G(x,y,2^{n-1}\sigma)*f_0(x,y)$)

Piramide Gaussiana

Piramide Gaussiana: Ottave

- Per rendere più efficiente l'analisi, lo scale space è diviso in **ottave**, ognuna delle quali copre un livello della piramide Gaussiana (scale da σ_L a $2\sigma_L$)
- Sia σ_L la scala di un certo livello della piramide, l'ottava (da σ_L a $2\sigma_L$) viene a sua volta suddivisa in s intervalli (n=0,1,...,s) aventi scala

•
$$\sigma_n = k^n \sigma_L$$
 con $k = 2^{1/s}$

- Si noti che $\sigma_0 = \sigma_L e \sigma_n = 2\sigma_L e quindi l'ultima scala di ogni ottava corrisponde alla prima scala dell'ottava successiva (in quanto il kernel Gaussiano utilizzato raddoppia ad ogni livello della piramide)$
- Nel passaggio all'ottava successiva, si dimezza la dimensione l'immagine ed è possibile riapplicare gli stessi kernel gaussiani utilizzati nell'ottava precedente (anziché raddoppiare la dimensione dei kernel)

Piramide Gaussiana: Ottave

- Ad esempio, per *s*=3 avremo:
 - $k = 2^{1/s} = 1.2599$
 - $\sigma_0 = k^0 = 1 \rightarrow \text{kernel } 7x7$
 - $\sigma_1 = k^1 = 1.2599 \rightarrow \text{kernel } 9x9$
 - $\sigma_2 = k^2 = 1.5874 \rightarrow \text{kernel } 11x11$
 - $\sigma_3 = k^3 = 2 \rightarrow \text{kernel } 13x13$
- Per ottenere le diverse ottave è sufficiente applicare sempre gli stessi kernel ad ogni livello della piramide

Difference of Gaussian Detector

• Il filtro LoG può essere approssimato dalla differenza di due Gaussiane (DoG) aventi differente deviazione standard:

$$D(x, y; \sigma) = [G(x, y; k\sigma) - G(x, y; \sigma)] \star f(x, y) \approx$$

$$\approx [(k-1)\sigma^2 \nabla^2 G(x, y; \sigma)] \star f(x, y) =$$

$$= (k-1)L(x, y; \sigma).$$

• Il vantaggio di questa espressione è che può essere efficientemente calcolata come differenza di due scale adiacenti

Difference of Gaussian Detector

- Al fine di determinare anche i veri massimi nella prima immagine di ogni ottava, per ogni livello della piramide si determinano s+3 intervalli
- Per s=2 si calcolano s+3=5 immagini con σ crescente di un fattore $k=\sqrt{2}$
- Si calcolano le differenze tra livelli adiacenti (DoG) e si determinano gli estremi nella corrispondente rappresentazione 3D

Scale-space extrema & Keypoint location

Interest Region Extraction

- Per catturare la struttura nell'intorno del keypoint, viene considerata la regione di raggio r centrata nel punto individuato (raggio r=3 σ viene utilizzato da diversi detector, dove σ denota la scala caratteristica del keypoint) detta anche *interest region*
- Dopo che l'interest region è stata selezionata, dev'essere *normalizzata* per invarianza alle rotazioni:
 - Si determina l'*orientazione dominante* e quindi si ruota il contenuto della regione in accordo all'associato angolo in modo da portarla in un'*orientazione* canonica

Interest Region Extraction

- Determinazione dell'orientazione dominante (Lowe 2004):
 - si costruisce un istogramma delle orientazioni con 36 intervalli (bins) che coprono 360 gradi (con un passo di 10 gradi)
 - Per ogni pixel nella regione considerata, si calcola il gradiente e la corripondente orientazione viene inserita nell'istogramma dopo averla pesata in base al rispettivo modulo e ad una funzione Gaussiana di deviazione standard 1.5σ centrata nel keypoint
 - Il picco dell'istogramma viene scelto come orientazione dominante (per determinare l'orientazione precisa si effettua un'interpolazione tra usando i 3 bin centrati nel picco)

- La **Scale Invariant Feature Transform** (SIFT) è stata introdotta da Lowe (2004) come una combinazione
 - del DoG interest point/region detector e
 - del SIFT feature descriptor
- Queste due componenti sono state utilizzate in seguito anche come tecniche a sé stanti

- Dopo che l'interest region è stata portata nell'orientazione canonica, viene costruita una griglia di 16x16 celle che copre l'intera interest region (per ottenere invarianza alla scala)
- Si determinano i gradienti in corrispondenza delle suddette celle e le rispettive orientazioni, dopo essere state pesate in base al rispettivo modulo e ad un kernel Gaussiano con σ =r/2, vengono inserite in una griglia 4x4 (avente grana più grossa della precedente) di istogrammi di orientazioni, ognuno dei quali è composto da 8 bin (associati alle 8 direzioni principali)

- Il SIFT descriptor (*localized set of gradient orientation histograms*) si ottiene concatenando i 16 istogrammi (4 x 4) da 8 bins, ottenendo un vettore a 4 x 4 x 8 = 128 dimensioni:
 - L'alta dimensionalità rende il descrittore distintivo
 - La suddivisione spaziale permette ai gradienti di subire piccoli spostamenti
- Per rendere il descrittore meno sensibile ai cambiamenti d'illuminazione il vettore viene normalizzato all'unità di lunghezza