

FUNCTIONS OF COMPLEX VARIABLES

DR. Makram Roshdy Eskaros

makram_eskaros@eng.asu.edu.eg

Agenda

- Introduction
- Algebraic interpretation
- Geometric interpretation
- Mapping

Applications

Fundamental Theorem of Algebra AC circuit analysis

Differential Equations

Fourier Transform

Motivation

The equation $x^2 + 1 = 0$ a real problem but has no real solutions

Why?

So we make up a new symbol for the roots and call it a **complex number.**

Definition. The symbols \pm i will stand for the solutions to the equation $x^2 = -1$

According to the defined quantity $\sqrt{-1} = i$

$$i^2 = -1$$
, $i^3 = -i$, $i^4 = (-1)^2$

Motivation

This number ±i is called an **imaginary number**.

These are valid numbers that don't lie on the real number line.

If z = a + bi,

a is called the real part of z denoted by **Re**{z} b is called the imaginary part of z denoted by **Im**{z} The symbol z is called a complex variable.

We're going to show the algebra, geometry of complex numbers

Agenda

- Introduction
- Algebra of Complex Numbers
- Geometry of Complex Numbers
- Mapping

Algebra of Complex Numbers

- Addition $(x_1 + i y_1) + (x_2 + i y_2) = (x_1 + x_2) + i(y_1 + y_2)$
 - \circ Example: (2 + 3i) + (1 + 2i)
- Subtraction $(x_1 + i y_1) (x_2 + i y_2) = (x_1 + x_2) i (y_1 + y_2)$
 - o Example: (2 + 3i) (1 + 2i)
- Multiplication $(x_1 + i y_1)(x_2 + i y_2) = (x_1x_2 y_1y_2) + i(x_1y_2 + x_2y_1)$
 - Example: (2 + 3i)(1 + 2i)

Algebra of Complex Numbers

- Complex Conjugation $\overline{(x+yi)} = x yi$
 - \circ Example: $\overline{(2+3i)}$
- Norm or Absolute Value $|(x+yi)| = \sqrt{Z\overline{Z}} = \sqrt{x^2+y^2}$
 - \circ Example: |(2+3i)|
- Division $\frac{(x_1+y_1i)}{(x_2+y_2i)} = \frac{(x_1+y_1i)(x_2-y_2i)}{(x_2+y_2i)(x_2-y_2i)} = \frac{(x_1x_2+y_1y_2)+(x_2y_1+x_1y_2)i}{(x_2^2+y_2^2)}$

Agenda

- Introduction
- Algebra of Complex Numbers
- Geometry of Complex Numbers
- Conformal Mapping

Geometry of Complex Numbers

$$Z_1 = 3 + i$$
 $Z_2 = 1 + 2i$

$$Z_1 + \overline{Z_1} =$$

$$Z_1 + 2 =$$

$$Z_1 + Z_2 =$$

Complex Numbers in Polar form

If $z = re^{i\theta}$, r is called the absolute value of z θ is called argument of z

$$r = \sqrt{x^2 + y^2} \quad \theta = \tan^{-1} \frac{y}{x}$$

$$x = r \cos \theta$$
 $y = r \sin \theta$

$$z = re^{i\theta} = r\cos\theta + i r\sin\theta$$

Complex Numbers in Polar form

$$Z_{1} = (\sqrt{3} + i) \qquad \Gamma = \sqrt{3} + i = 2 \qquad 0 = \lim_{z \to 1} (\frac{1}{z})$$

$$= \frac{11}{6}$$

$$Z_{2} = Z_{1} \qquad Y_{2} = Z_{1} = 2$$

$$Z_{2} = Z_{1} \qquad 0 = \lim_{z \to 1} (\frac{1}{z})$$

$$Z_{2} = Z_{1} \qquad 0 = \lim_{z \to 1} (\frac{1}{z})$$
The Principal Argument Arg $(z) \in (-\pi, \pi]$

$$\int_{0}^{1} dt \ Z_{2} = Z_{1}$$

$$\int_{0}^{1} Z_{2} = Z_{1} = Z_{1}$$

$$\int_{0}^{1} Z_{2} = Z_{1} = Z_{1}$$

The Principal Argument Arg $(z)\epsilon(-\pi,\pi)$

$$egin{arctan} rac{y}{x} & ext{if } x>0,\,y\in\mathbb{R} \ rctanrac{y}{x}+\pi & ext{if } x<0,\,y\geq0 \ rctanrac{y}{x}-\pi & ext{if } x<0,\,y<0 \ rac{\pi}{2} & ext{if } x=0,\,y>0 \ -rac{\pi}{2} & ext{if } x=0,\,y<0 \ \end{array}$$

Complex Numbers in Polar form

Multiplication

$$(r_1, \theta_1)(r_2, \theta_2) = r_1 r_2(\cos \theta_1 + i \sin \theta_1) (\cos \theta_2 + i \sin \theta_2)$$

$$r_1 r_2(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i(\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2)$$

$$= (r_1 r_2, \theta_1 + \theta_2)$$

Results

$$(r_1, \theta_1)....(r_n, \theta_n) = (r_1....r_n, \theta_1...+\theta_n)$$

$$(r_1, \theta_1)^n = (r_1^n, n \theta_1)$$

$$(\mathbf{Z})^n = \mathbf{r} (\cos \theta + i \sin \theta) = \mathbf{r}^n (\cos n \, \boldsymbol{\theta_1} + i \sin n \, \boldsymbol{\theta_1})$$

De Moivre Theorem

Geometry of Complex Numbers

$$Z_1 = 3e^{i\frac{\pi}{4}}$$
 $Z_2 = 2e^{i\frac{\pi}{3}}$

$$Z_2=2e^{i\frac{n}{3}}$$

$$Z_1.2 =$$

$$Z_1.i =$$

$$Z_{1\cdot}(e^{i\frac{4\pi}{3}}) =$$

$$Z_1Z_2 =$$

Agenda

- Introduction
- Algebra of Complex Numbers
- Geometry of Complex Numbers
- Mapping

Functions of Complex Variables as Transformations

Consider the function

$$w = f(z)$$
, $z = x + iy$

$$\Rightarrow w = u(x, y) + i v(x, y)$$

Example 1:

$$w = z^{2}$$
 = $(x + iy)^{2}$ = $(x^{2} - y^{2}) + i(2xy)$

$$\Rightarrow u(x,y) = x^2 - y^2 \& v(x,y) = 2xy$$

Example 2:

$$w = e^z = e^{x+iy} = e^x (\cos y + i \sin y)$$

$$\Rightarrow u(x,y) = e^x \cos y$$
 $v(x,y) = e^x \sin y$

$$W = U + iV$$
Range $\in \mathbb{R}^2$

The region B is called the image od A and A is called the pre – image of B under the transformation w = f(z).

Transformations of Complex Numbers

Translation

Scaling

Example:

Find the image of the region $R(z) \ge 0$ under the transformation w = z + 3 . Show the regions graphically.

Solution:

$$w = z + 3 = x + i y + 3 = (x + 3) + i y$$

$$\Rightarrow u = (x+3)$$
 & $v = y$

If
$$x \ge 0 \implies u \ge 3$$

Example:

Find the image of the region $|z| \le 2$, $0 < arg(z) < \pi/4$ under the transformation $w = z^2$. (Show the regions graphically).

Solution:

$$w = z^2 = (r e^{i\theta})^2 = r^2 e^{i(2\theta)} \Rightarrow |w| = |z|^2, \quad arg(w) = 2arg(z)$$

$$: |w| = |z|^2, |z| \le 2 \implies |w| \le 4$$

$$\therefore arg(w) = 2arg(z)$$
, $0 < arg(z) < \pi/4 \implies 0 < arg(w) < \pi/2$

The Linear Transformations w = a z + b

Where a and b are in general complex constants

- > The linear transformation doesn't change figures shapes
- > The linear transformation has three effects:
 - 1: Shifting the origin to the point b
 - 2: Scaling with $\left|a\right|$. (shrinking if $\left|a\right| < 1$ and enlarging if $\left|a\right| > 1$)
 - 3: Rotation with arg(a). (Anti clockwise if arg(a) > 0 and with clockwise if arg(a) < 0)

Example:

Find the image of the region bounded by the rectangle with vertices (0,0),(1,0),(1,2)&(0,2) under the transformation w=(1+i)z+2. (Show the regions graphically).

Solution:

$$w(0,0) = (1+i)(0) + 2 = 2 \equiv (2,0)$$

$$w(1,0) = (1+i)(1) + 2 = 3+i \equiv (3,1)$$

$$w(1,2) = (1+i)(1+2i) + 2 = 1+3i \equiv (1,3)$$

$$w(0,2) = (1+i)(2i) + 2 = 2i \equiv (0,2)$$

$$(0,0) \rightarrow (2,0)$$

$$(1,0) \rightarrow (3,1)$$

$$(1,2) \rightarrow (1,3)$$

$$(0,2) \rightarrow (0,2)$$

$$w = (1+i)z + 2$$

The Reciprocal Transformations w = 1 / z

$$w = \frac{1}{z}$$

$$Z = \frac{z}{|z|^2}, \quad w = \overline{Z}$$

The Reciprocal Transformations w = 1 / z

$$w = \frac{1}{z} = \frac{1}{r e^{i\theta}} = \frac{1}{r} e^{-i\theta} \qquad \Rightarrow |w| = \frac{1}{|z|} \qquad \Rightarrow arg(w) = -arg(z)$$

$$\Rightarrow |w| = \frac{1}{|z|}$$

$$\Rightarrow arg(w) = -arg(z)$$

$$|z| = a \implies |w| = 1/a$$

$$|z| < a \implies |w| > 1/a$$

$$|z|=a \Rightarrow |w|=1/a$$
 $|z|1/a$ & $|z|>a \Rightarrow |w|<1/a$

$$arg(z) = \alpha \implies arg(w) = -\alpha$$

The z plane

The w plane

Transformations of Complex Numbers

Inversion

Horizontal and vertical lines are transformed into circles tangent the u and v axes respectively

Example:

Find the image of the line $y=1\ /\ 2$ under the transformation $\ w=1\ /\ z$. Show the regions graphically.

Solution:

$$w = 1/z \implies z = \frac{1}{w} = \frac{1}{u+iv} = \frac{1}{u+iv} \times \frac{u-iv}{u-iv} = \frac{u}{u^2+v^2} + i\frac{-v}{u^2+v^2} \equiv x+iy$$

$$\Rightarrow x = \frac{u}{u^2 + v^2} \quad \& \quad y = \frac{-v}{u^2 + v^2}$$

$$\Rightarrow y = 1/2 \Rightarrow \frac{-v}{u^2 + v^2} = \frac{1}{2} \Rightarrow u^2 + v^2 + 2v = 0 \Rightarrow u^2 + (v+1)^2 = 1$$

$$\Rightarrow u^2 + (v+1)^2 = 1$$

Example:

Show that straight lines or circles are transformed into straight lines or circles under the reciprocal transformation.

Solution:

Consider the following equation

$$A(x^2+y^2)+Bx+Cy+D=0$$

Which represents straight lines or circles if A, B, C and D are real.

Under the reciprocal transformation, $(x^2 + y^2) = \frac{1}{u^2 + v^2}$, $x = \frac{u}{u^2 + v^2}$ & $y = \frac{-v}{u^2 + v^2}$

$$\Rightarrow \frac{A}{u^2 + v^2} + \frac{Bu}{u^2 + v^2} - \frac{Cv}{u^2 + v^2} + D = 0$$

$$\Rightarrow D(u^2 + v^2) + Bu - Cv + A = 0$$

Which represents straight lines or circles also.

$$A(x^{2}+y^{2})+Bx+Cy+D=0$$
 $\Rightarrow D(u^{2}+v^{2})+Bu-Cv+A=0$

(a) a circle $(A \neq 0)$ not passing through the origin $(D \neq 0)$ in the z plane is transformed into a circle not passing through the origin in the w plane;

(b) a circle ($A \neq 0$) through the origin (D = 0) in the z plane is transformed into a line that does not pass through the origin in the w plane;

$$A(x^{2}+y^{2})+Bx+Cy+D=0$$
 $\Rightarrow D(u^{2}+v^{2})+Bu-Cv+A=0$

((c) a line (A = 0) not passing through the origin (D \neq 0) in the z plane is transformed into a circle through the origin in the w plane;

(d) a line (A = 0) through the origin (D = 0) in the z plane is transformed into a line through the origin in the w plane.