CSE/ECE 848 Introduction to Evolutionary Computation

Module 3 - Lecture 10 - Part 2
Evolutionary Strategies Mutation and Recombination

Wolfgang Banzhaf, CSE
John R. Koza Chair in Genetic Programming

Mutation

- As mentioned previously, mutation is the driving force
- x is the individual parameter value

$$x_i' = x_i + \sigma * N(0,1)$$

 where σ is the stepsize, and N(0,1) represents a single standard Gaussian random variable

- Early ES were concerned with the concept of stepsize σ
- "Stepsize" meant the strength of mutations
- However, the rate of change of each element of vector x should change over time as the element "converges" to better and better answers
- The issue of stepsize is the same as for any gradient hillclimber: If the step size is too small, little progress is made in exploring the space. If the stepsize is too big, the answer is missed because of overstepping in the space

Heuristic Mutation Strategy

Rechenberg used two common functions to estimate optimal step sizes:

Linear corridor

$$f_1(x) = F(x_1) = c_0 + c_1 x_1$$

 $\forall_i \in \{2, ..., n\} : -b/2 \le x_i \le b/2$

The sphere

$$f_2(x) = c_0 + c_1 * \sum_{i=1}^{n} (x_i - x_i^*)^2$$

The 1/5 Rule

 He solved the optimal expected convergence rates stepsizes for those two (which were respectively)

$$p_{opt} \approx 0.184 \ p_{opt} \approx 0.270$$

 and decided that the best rate of successful mutations to failed mutations should be about 0.20, or one fifth.

This led to the basic mutation rule:

- If more than 1/5th of the mutations cause an improvement (in the objective function) then multiply σ by a factor 1+s
- If less than 1/5th of the mutations cause an improvement, then multiply σ by (1+s)^(-1/4)

Algorithm: (1+1)-ES with 1/5 success-rule					
1. Initialize $\boldsymbol{X}_0,\sigma_0$					
2. repeat					
3. $\widetilde{\boldsymbol{X}}_n = \boldsymbol{X}_n + \sigma_n \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$	Sample one offspring				
4. if $f(\widetilde{\boldsymbol{X}}_n) \leq f(\boldsymbol{X}_n)$ then	If $f(\text{offsp.}) \leq f(\text{parent})$				
5. $X_{n+1} = \widetilde{X}_n$	New parent $=$ offsp.				
$6. \qquad \sigma_{n+1} = 1.5 \sigma_n$	Step-size is increased				
7. else	If offspring strictly worse				
8. $\boldsymbol{X}_{n+1} = \boldsymbol{X}_n$	$New\ parent = old\ parent$				
9. $\sigma_{n+1} = 1.5^{-1/4} \sigma_n$	Step-size is decreased				
10. until stopping criteria is met					

After one successful and 4 unsuccessful mutations, this results in:

$$E(\sigma_{n+1}|\sigma_n) = \left((1.5)^{-1/4}\right)^{4/5} (1.5)^{1/5} \sigma_n$$

$$E(\sigma_{n+1}|\sigma_n) = \sigma_n$$

First ES

- The first ES was based on a (1+1)-ES strategy, where the child competes with the parent, and mutation is driven by the 1/5 rule.
- Note, population size is 1, and σ is global
- This is a kind of stochastic gradient method, best characterized as a local hill climber

1/5th rule and what it's good for

The 1/5 rule was derived for unimodal linear functions

Thus not particularly useful for practical problems but indicative of a requirement:

One should adapt as the problem difficulty changes!

Test functions for single-objective optimization [edit]

Test	
Functions	>

http://en.wikipedia.org/wiki/Test_functions_for_optimization

Name	Plot	Formula	Global minimum	Search domain
Rastrigin function		$f(\mathbf{x}) = An + \sum_{i=1}^{n} \left[x_i^2 - A\cos(2\pi x_i) ight]$ where: $A = 10$	$f(0,\ldots,0)=0$	$-5.12 \le x_i \le 5.12$
Ackley's function	War and	$\begin{split} f(x,y) &= -20 \exp \left[-0.2 \sqrt{0.5 \left(x^2 + y^2 \right)} \right] \\ &- \exp [0.5 \left(\cos 2\pi x + \cos 2\pi y \right)] + e + 20 \end{split}$	f(0,0)=0	$-5 \leq x,y \leq 5$
Sphere function	And the second second	$f(\boldsymbol{x}) = \sum_{i=1}^n x_i^2$	$f(x_1,\dots,x_n)=f(0,\dots,0)=0$	$-\infty \leq x_i \leq \infty, 1 \leq i \leq n$
Rosenbrock function		$f(m{x}) = \sum_{i=1}^{n-1} \left[100 ig(x_{i+1} - x_i^2 ig)^2 + (x_i - 1)^2 ight]$	$\text{Min} = \begin{cases} n = 2 & \to & f(1, 1) = 0, \\ n = 3 & \to & f(1, 1, 1) = 0, \\ n > 3 & \to & f(1, \dots, 1) = 0 \end{cases}$	$-\infty \leq x_i \leq \infty, 1 \leq i \leq n$
Beale's function		$f(x,y) = \left(1.5 - x + xy\right)^2 + \left(2.25 - x + xy^2\right)^2 + \left(2.625 - x + xy^3\right)^2$	f(3, 0.5) = 0	$-4.5 \leq x,y \leq 4.5$
Goldstein-Price function		$f(x,y) = \left[1 + (x+y+1)^2 \left(19 - 14x + 3x^2 - 14y + 6xy + 3y^2\right)\right]$ $\left[30 + (2x - 3y)^2 \left(18 - 32x + 12x^2 + 48y - 36xy + 27y^2\right)\right]$	f(0,-1)=3	$-2 \leq x,y \leq 2$
Booth's function		$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$	f(1,3)=0	$-10 \leq x,y \leq 10$
Bukin function N.6		$f(x,y) = 100\sqrt{\left y - 0.01x^2\right } + 0.01\left x + 10\right .$	f(-10,1) = 0	$-15 \leq x \leq -5, -3 \leq y \leq 3$
Matyas function		$f(x,y) = 0.26 \left(x^2 + y^2 ight) - 0.48 xy$	f(0,0)=0	$-10 \leq x,y \leq 10$

Recombination in (µ+1)-ES

- (μ +1)-ES allows the possibility of creating new individuals based on a combination of features of the parents, where μ > 1
- Choose p parent vectors (1 <= p <= n), and mix characters from these p parent vectors to create a child
- Thus p=2 is similar to GA crossover

- Global intermediary recombination: Position i is average over all p parents
- Local intermediary recombination: Select two out of p parents for each child position i and take a weighted average
- Discrete recombination: copy a value from a randomly chosen parent for each child position
- Other scenarios are possible, too
- While recombination is used in ES, it is not the primary driving force, which is the previously described mutation