23.04.2025. Алгебра8 **T** Ypok №60

Тема. Розв'язування задач за допомогою квадратних рівнянь та рівнянь, які зводяться до квадратних

Задачі, які розв'язуємо за допомогою квадратних рівнянь та рівнянь, які зводяться до квадратних:

- > задачі на рух;
- > задачі на роботу;
- » задачі на співвідношення чисельників і знаменників дробу;
- > задачі на купівлю товарів;
- > задачі на запис числа;
- > геометричні задачі;
- > інші задачі.

При розв'язуванні задач за допомогою рівнянь Треба пам'ятати!

Значення коренів рівняння можуть задовольняти ОДЗ рівняння, але не задовольняти умову задачі.

ЗАПАМ'ЯТАЙ!

Алгоритм розв'язування задач за допомогою квадратних рівнянь.

Аналіз умови задачі

Математична модель задачі

Рівняння

Розв'язування рівняння

Аналіз отриманих результатів

Відповідь

Це треба знати!

Задачі на роботу
$$\mathbf{v} = \mathbf{p} * \mathbf{t}$$
 $\mathbf{p} = \frac{\mathbf{v}}{\mathbf{t}}$ $\mathbf{t} = \frac{\mathbf{v}}{\mathbf{p}}$ де $\mathbf{v} - \mathsf{oбсяг}$ роботи,

р – продуктивність праці (обсяг роботи, яку виконано за одиницю часу),

t – час, протягом якого кожний виконує весь обсяг роботи, працюючи самостійно.

Запам'ятай!

Якщо не зазначено, який обсяг роботи виконується, то вважається що v=1 (обсяг усієї роботи позначаємо через 1)

Скористайся алгоритмом!

№1. Два робітники, працюючи разом, виконали виробниче завдання за 12 годин. За скільки годин може виконати це завдання кожен робітник, працюючи самостійно, якщо один з них, може це зробити на 7 годин швидше за другого?. Аналіз умови задачі.

Основні величини:

>обсяг усієї роботи;

>час роботи I робітника;

>час роботи ІІ робітника; >час роботи І і ІІ робітників разом.

Аналізуємо обсяг роботи: всю роботу приймемо за одиницю. Ця величина не зазначена в умові й не впливає на розв'язання задачі.

<u>Аналізуємо час роботи:</u> позначаємо час виконання всієї роботи І робітником як X годин, тоді ІІ робітник, працюючи самостійно, виконає всю роботу за (X+7) годин.

<u> Аналізуємо продуктивність роботи:</u> продуктивність роботи І робітника буде , а ІІ робітника -

 $\frac{1}{X+7}$. Спільна продуктивність обох робітників (у разі спільної роб $\underline{\Phi}$ ти) буде

U
 $\mathbf{\mathcal{U}}$

	Продуктивність праці, <i>р</i>	Робота, <i>v=1</i>	Час, <i>t год</i>	
I робітник	$\frac{1}{X}$	1	X	
II робітник	$\frac{1}{X+7}$	1	X+7	
Працюючи разом I і II робітники	_1_	1	12	
II робітники	12	1	12	

3. Складаємо рівняння.

Враховуючи, що
$$p_l + p_{ll} = p_{cniльна}$$
 де $p_{cniльна} = \frac{1}{t_{cniльна}}$ маємо $\frac{1}{x} + \frac{1}{x+7} = \frac{1}{12}$

$$\partial e$$
 $\mathbf{p}_{\text{спільна}} = \frac{1}{t_{\text{спільний}}}$

$$Maemo \frac{1}{x} + \frac{1}{x+7} = \frac{1}{12}$$

4. Розв'язуємо рівняння.

1)
$$\frac{1}{x} + \frac{1}{x+7} = \frac{1}{12}$$

$$\frac{1}{x} + \frac{1}{x+7} - \frac{1}{12} = 0$$

$$\frac{12(x+7) + 12x - x(x+7)}{12x(x+7)} = 0$$

$$\begin{cases} 12(x+7) + 12x - x^2 - 7x = 0 \\ 12x(x+7) \neq 0 \end{cases}$$
$$\begin{cases} 12x + 84 + 12x - x^2 - 7x = 0 \\ x \neq 0; x \neq -7 \end{cases}$$
$$-x^2 + 17x + 84 = 0$$
$$x^2 - 17x - 84 = 0$$

$$x_1 + x_2 = 17$$

$$x_1 * x_2 = -84$$

$$x_1 = 21$$

 $x_2 = -4$ – не задовольняє умову задачі.

5. Аналізуємо отримані результати.

 $x_2 = -4$ не задовольняє умову задачі.

Отже, х=21 (год) – за стільки виконує роботу І робітник.

2) 21+7=27 (год) — за стільки виконує роботу ІІ робітник.

Відповідь: 21 година; 27 годин.

№2. Перший насос може наповнити басейн на 12 годин швидше, ніж другий. Через 4 години після того, як було включено другий насос, включили перший, і через 10 годин спільної роботи виявилося, що наповнено $\frac{2}{3}$ басейну.

За скільки годин може наповнити басейн кожен насос, працюючи самостійно?

1. Аналіз умови задачі

- 1) задача на спільну роботу;
- 2) основні величини: час роботи І і ІІ насосів, продуктивність роботи;
- 3) всю роботу приймаємо за одиницю.

Аналізуємо час роботи і продуктивність:

Нехай I насос може наповнити весь басейн за $x \, roduh$, тоді II насос може його наповнити за $(x+12) \, roduh$. І насос за 1 годину наповнює $\frac{1}{x}$ басейну, II насос $\frac{1}{x+12}$ басейну. Перший насос працював 10 годин і заповнив $\frac{10}{x}$ басейну, а II насос працював 4+10=14 (год) і заповнив $\frac{14}{x+12}$ басейну.

2. Математична модель (у вигляді таблиці)

	Ч ас, год	Продуктивність роботи	Робота	Спільна робота I і II насосів
І насос	X	$\frac{1}{x}$	$\frac{10}{x}$	2
II насос	x+12	$\frac{1}{x+12}$	$\frac{14}{x+12}$	3

3. Складаємо рівняння

$$\frac{10}{x} + \frac{14}{x+12} = \frac{2}{3}$$

1)
$$\frac{10}{x} + \frac{14}{x+12} = \frac{2}{3}|:2$$

$$\frac{5}{x} + \frac{7}{x+12} = \frac{1}{3}$$

$$\frac{5(x+12) + 7x}{x(x+12)} = \frac{1}{3}$$

$$\frac{5x + 60 + 7x}{x(x+12)} = \frac{1}{3}$$

$$\frac{12x + 60}{x(x+12)} = \frac{1}{3}$$

$$3(12x + 60) = x(x + 12)$$

$$36x + 180 = x^{2} + 12x$$

$$x^{2} + 12x - 36x - 180 = 0$$

$$x^{2} - 24x - 180 = 0$$

$$x_{1} = 30, x_{2} = -6$$

 π

5. Аналізуємо отримані результати $x_2 = -6$ – не задовольняє умову задачі.

Отже, $\mathbf{x_1} = \mathbf{30}$ (год) — може наповнити басейн I насос, працюючи самостійно.

2) 30+12=42 (год) – може наповнити басейн II насос при роботі самостійно.

6. Відповідь

30 годин; 42 години.

Рівняння виду $ax^4 + bx^2 + c = 0$, де х-змінна, а, b,с – числа, причому $a \neq 0$, називають **біквадратним**

Метод заміни змінної

Вводимо нову змінну t таку, що $x^2 = t$ (t > 0). Тоді біквадратне рівняння відносно змінної х перетворюється у квадратне рівняння відносно змінної t: $at^2 + bt + c = 0$.

Зведення рівняння до квадратного способом заміни

Приклад:

$$(x^2 + 5x)^2 - 2(x^2 + 5x) = 24$$

Розв'язання

Заміна:
$$x^2 + 5x = y$$

 $y^2 - 2y - 24 = 0$
 $y_1 = 6$, $y_2 = -4$
 $x^2 + 5x = 6$
 $x^2 + 5x = -4$
 $x^2 + 5x - 6 = 0$
 $x_1 = -6$, $x_2 = 1$
 $x_3 = -4$, $x_4 = -1$

Відповідь: -6, 1, -4, -1

Щоб розв'язати біквадратне рівняння, використаємо метод заміни змінної. Заміна $x^2=t$ зводить рівняння до квадратного відносно змінної t, корені якого легко знайти. Далі потрібно повернутися до змінної x.

Приклад:

Наприклад:

Розв'яжемо рівняння

$$x^4 - 5x^2 + 4 = 0.$$

Розв'язок:

Зробимо заміну $x^2=t$. Маємо:

$$t^2 - 5t + 4 = 0.$$

$$t_1 = 1, \ t_2 = 4.$$

Повернемося до заміни і знайдемо значення x:

$$x^2 = 1; x^2 = 4;$$

$$x = \pm 1; \ \ x = \pm \sqrt{4}$$

Отже, вихідне рівняння має корені:

$$x_1 = 1; \ x_2 = -1; \ x_3 = 2; \ x_4 = -2.$$

Відповідь: 1; -1; 2; -2.

Приклад: $2t^4 - 7t^2 - 4 = 0$

Розв'язання:

Використаємо метод заміни змінної.

$$t^2 = y$$
, тоді $t^4 = (t^2)^2 = y^2$.

Запишемо задане рівняння з використанням змінної у: $2y^2 - 7y - 4 = 0$.

Розв'яжемо отримане квадратне рівняння $2y^2 - 7y - 4 = 0$; a = 2, b = -7, c = -4;

$$D = b^{2} - 4ac; \quad D = (-7)^{2} - 4 \cdot 2 \cdot (-4) = 49 + 32 = 81, \quad D > 0.$$

$$y_{1} = \frac{7+9}{2 \cdot 2} = \frac{16}{4} = 4; \qquad y_{2} = \frac{7-9}{2 \cdot 2} = \frac{-2}{4} = -\frac{1}{2}.$$

Повернемося до початкової змінної:

$$y_1 = 4$$
 afo $y_2 = -\frac{1}{2}$; $x^2 = 4$ afo $x^2 = -\frac{1}{2}$.

Розв'яжемо отримані неповні квадратні рівняння:

$$x^2 = 4$$
 або $x^2 = -\frac{1}{2}$.
 $x = \pm 2$; розв'язків немає.

Відповідь: ±2

Алгоритм розв'язування дробово-раціонального рівняння

- 1. Знайдіть область допустимих значень рівняння.
- 2. Зведіть рівняння до вигляду $\frac{P(x)}{Q(x)} = 0$.
- 3. Використайте правило рівності добутку дробу нулю й розв'яжіть рівняння P(x)=0.
- 4. Перевірте, чи задовольняють знайдені роз'язки рівняння P(x) область допустимих значень. Вилучіть сторонні корені.
- 5. Запишіть відповідь

Приклад:

Розв'яжіть дробове раціональне рівняння 4 1

$$\frac{4}{x^2 - 10x + 25} - \frac{1}{x + 5} = \frac{10}{x^2 - 25}$$

Розв'язання

Виконаємо тотожні перетворення у знаменниках дробів (використаємо формули скороченого множення, знайдемо спільний знаменник і зведемо до нього дроби лівої та правої частин рівняння). Перенесемо доданок з правої частини рівняння до лівої, змінивши знак на протилежний, розкриємо дужки та зведемо подібні доданки. Одержимо:

$$\frac{4}{x^2 - 10x + 25} - \frac{1}{x + 5} = \frac{10}{x^2 - 25};$$

$$\frac{4}{(x - 5)^2} - \frac{1}{x + 5} - \frac{10}{(x - 5)(x + 5)};$$

$$\frac{4(x + 5) - (x - 5)^2 - 10(x - 5)}{(x - 5)^2(x + 5)} = 0;$$

$$\frac{4x + 20 - (x^2 - 10x + 25) - 10x + 50}{(x - 5)^2(x + 5)} = 0;$$

$$\frac{4x + 20 - x^2 + 10x - 25 - 10x + 50}{(x - 5)^2(x + 5)} = 0;$$

Використаємо умову рівності дробу нулю, перейдемо до системи рівнянь:

$$\frac{-x^2 + 4x + 45}{(x-5)^2(x+5)} = 0;$$

$$\begin{cases} x^2 - 4x - 45 = 0, \\ (x-5)^2(x+5) \neq 0; \end{cases}$$
1) $x^2 - 4x - 45 = 0,$ 2) $(x-5)^2(x+5) \neq 0,$ $x^2 - 9x + 5x - 45 = 0,$ $x \neq 5, x \neq -5.$ $x(x-9) + 5(x-9) = 0,$ $(x-9)(x+5) = 0,$ $x = 9, x = -5.$

Bionosiob: x = 9.

Приклад:

Розв'яжіть рівняння $(x^2 - 2)^2 - 8(x^2 - 2) + 7 = 0$

Розв'язання

Маємо рівняння $(x^2 - 2)^2 - 8(x^2 - 2) + 7 = 0$ Можна помітити, що в дужках містяться однакові вирази. Тому можемо ввести заміну. Позначимо $x^2 - 2 = t$

$$t^2 - 8t + 7 = 0,$$

 $t^2 - 7t - t + 7 = 0,$
 $t(t - 7) - (t - 7) = 0;$
 $(t - 7)(t - 1) = 0,$
 $t = 7, t = 1.$
 $\Re \text{KMO } t = 7, \text{ TO }$
 $x^2 - 2 = 7,$
 $x^2 = 9,$
 $x = \pm 3.$
 $\Re \text{KMO } t = 1, \text{ TO }$
 $x^2 - 2 = 1,$
 $x = \pm \sqrt{3}.$

Відповідь: $x_{1,2} = \pm \sqrt{3}$; $x_{3,4} = \pm 3$

Розв'яжіть самостійно

І варіант

1. Два вантажні крани, працюючи разом, можуть 1. Басейн наповнюється водою за допомогою двох розвантажити баржу за 6 годин. За скільки годин може розвантажити цю баржу кожен кран, працюючи окремо, якщо другому для цього потрібно на 9 годин менше, ніж першому?

2. Один з робітників може виконати виробниче завдання на 3 години швидше, ніж другий. Якщо перший робітник буде працювати 4 години, а потім його змінить другий, то останньому треба буде працювати 3 години, щоб закінчити завдання. За скільки годин може виконати все завдання перший робітник?

II варіант

- труб. Коли перша туба пропрацювала 7 годин, включили другу трубу. Разом вони пропрацювали 2 години до повного наповнення басейну. За скільки годин може наповнити басейн кожна труба, працюючи окремо, якщо першій потрібно на це на 4 години більше, ніж другій?
- 2. Одному робітникові для виконання виробничого завдання потрібно на 2 години більше, ніж другому. Перший робітник пропрацював 2 години, а потім його змінив другий. Після того як другий робітник пропрацював 3 години, виявилося, що виконано завдання. За скільки годин може виконати це завдання кожний з робітників, працюючи самостійно?

Перевір себе!

І варіант

II варіант

1. Рівняння:
$$\frac{1}{x} + \frac{1}{x-9} = \frac{1}{6}$$

Відповідь: 18 годин, 9 годин.

2. Рівняння:
$$\frac{4}{x} + \frac{3}{x+3} = 1$$

Відповідь: 6 годин.

1. Рівняння:
$$\frac{9}{x+4} + \frac{2}{x} = 1$$

Відповідь: 12 годин, 8 годин.

2. Рівняння:
$$\frac{2}{x+2} + \frac{3}{x} = \frac{3}{4}$$

Відповідь: 8 годин, 6 годин.

Домашне завдання Повторити §24, 25, 26 Виконати завдання за посиланням https://vseosvita.ua/test/start/szu910 або на с. 228 - 229 №1 - 9