Numerical Analysis Homework 2

Margaret Dorsey

September 29, 2016

Problem 1

No, a degree 3 polynomial cannot intersect a degree 4 polynomial in exactly 5 points - let f(x) be a degree 3 polynomial, and g(x) be degree 4. Any intersection of f and g must be a root of f - g and g - f, which are degree 4 polynomials, and therefore may have at most 4 real roots.

It is, however, possible for f and g to intersect at exactly four points. Consider $f(x)=x^3$, and $g(x)=x^4+3x^3-12x^2-2x+6$. Their difference, $x^4+2x^3-12x^2-2x+6$, is plotted below and clearly has exactly 4 distinct real roots. f and g can intersect only at those roots, and must intersect at them, so thus f and g intersect exactly 4 times, as shown on the second plot.

Problem 2

Using the formula

$$P_n(x) - \sum_{j=1}^n y_j \prod_{k=1, k \neq j}^n \frac{x - x_k}{x_j - x_k}$$

we obtain

$$P_2(x) = \frac{(x-2)(x-4)}{3} \cdot 0 + \frac{(x-1)(x-4)}{-2} \cdot \ln 2 + \frac{(x-1)(x-2)}{6} \cdot \ln 4$$

$$P_2(x) = \frac{-(x-1)(x-4)}{2} \cdot \ln 2 + \frac{(x-1)(x-2)}{3} \cdot \ln 2$$

$$P_2(x) = \frac{-\ln 2}{6} x^2 + \frac{3\ln 2}{2} x - \frac{4\ln 2}{3}$$

The graph of this polynomial fit is shown below.

Using this approximation, we obtain $\ln 3 \approx P_2(3) = \frac{-9 \ln 2}{6} + \frac{9 \ln 2}{2} - \frac{4 \ln 2}{3} = \frac{5}{3} \ln 2 \approx$ 1.1552453. Using the formula

$$|f(x) - P(x)| \le \max_{[2,4]} \left| \frac{f^{(n+1)}(\xi)}{(n+1)!} \right| \cdot \max_{[2,4]} \left| \prod_{i=0}^{n} (x - x_i) \right|$$

with $f(x) = \ln x$, $f^{(3)}(x) = \frac{2}{x^3}$, we obtain

$$|f(x) - P(x)| \le \max_{[2,4]} \left| \frac{1}{3(\xi)^3} \right| \cdot \max_{[2,4]} \left| x^3 - 7x^2 + 14x - 8 \right|$$

Because $f^{(3)}(\xi)$ is strictly decreasing and non-negative on our interval, we know the maximum on [2,4] is $\frac{1}{24}$ at 2. Using the derivative of $x^3-7x^2+14x-8$ with the quadratic formula, we find that the maximum absolute value on [2,4] is $-\frac{2}{27}(10+7\sqrt{7})$ at $x = \frac{7}{3} + \frac{\sqrt{7}}{3}$, or approximately 2.11261. Multiplying these values, we obtain $|f(x) - P(x)| \le .0880255$.

Comparing our value of 1.1552453 to the actual value of $\ln 3 \approx 1.0986123$, we have $|f(x) - P_2(x)| = .056630 < .0880255$, as expected.

Problem 3

Using the formulas $B(0) = P_0$ and $B(1) = P_3$, we obtain $P_0 = (1,1)$ and $P_3 = (9,1)$. We then calculate $B'(t) = (x'(t), y'(t)) = (12t + 6t^2, 3t^2 - 1)$, and note that because in general $B'(t) = 3(1-t)^2(P_1 - P_0) + 6(1-t)t(P_2 - P_1) + 3t^2(P_3 - P_2)$, $B'(0) = 3(P_1 - P_0)$ and $B'(1) = 3(P_3 - P_2)$. Thus we have $P_1 = (1, \frac{2}{3})$ and $P_2 = (3, \frac{1}{3})$. This gives us the complete set of control points for the curve, namely

$$\{(1,1),(1,\frac{2}{3}),(3,\frac{1}{3}),(9,1)\}$$

Problem 4

Natural Endpoint Condition

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ x_2 - x_1 & 2(x_3 - x_1) & x_3 - x_2 & 0 \\ 0 & x_3 - x_2 & 2(x_4 - x_2) & x_4 - x_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ 6\left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}\right) \\ 6\left(\frac{y_4 - y_3}{x_4 - x_3} - \frac{y_3 - y_2}{x_3 - x_2}\right) \\ 6\left(\frac{y_4 - y_3}{x_4 - x_3} - \frac{y_3 - y_2}{x_3 - x_2}\right) \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 - 0 & 2(2 - 0) & 2 - 1 & 0 \\ 0 & 2 - 1 & 2(3 - 1) & 3 - 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ 6\left(\frac{2 - 5}{2 - 1} - \frac{5 - 3}{1 - 0}\right) \\ 6\left(\frac{1 - 2}{3 - 2} - \frac{2 - 5}{2 - 1}\right) \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_3'' \end{bmatrix} = \begin{bmatrix} 0 \\ -30 \\ 12 \\ 0 \end{bmatrix}$$

Curvature-Adjusted Endpoint Condition

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ x_2 - x_1 & 2(x_3 - x_1) & x_3 - x_2 & 0 \\ 0 & x_3 - x_2 & 2(x_4 - x_2) & x_4 - x_3 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} k_1 \\ 6\left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}\right) \\ 6\left(\frac{y_4 - y_3}{x_3 - x_2} - \frac{y_3 - y_2}{x_3 - x_2}\right) \\ k_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 - 0 & 2(2 - 0) & 2 - 1 & 0 \\ 0 & 2 - 1 & 2(3 - 1) & 3 - 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} k_n \\ 6\left(\frac{2 - 5}{2 - 1} - \frac{5 - 3}{1 - 0}\right) \\ 6\left(\frac{1 - 2}{3 - 2} - \frac{2 - 5}{2 - 1}\right) \\ k_n \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} k_1 \\ -30 \\ 12 \\ k_n \end{bmatrix}$$

Clamped Endpoint Condition

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ x_2 - x_1 & 2(x_3 - x_1) & x_3 - x_2 & 0 \\ 0 & x_3 - x_2 & 2(x_4 - x_2) & x_4 - x_3 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 6\left(\frac{y_2 - y_1}{x_2 - x_1} - c_n\right) \\ 6\left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}\right) \\ 6\left(\frac{y_4 - y_3}{x_4 - x_3} - \frac{y_3 - y_2}{x_3 - x_2}\right) \\ 6\left(c_n - \frac{y_4 - y_3}{x_4 - x_3}\right) \end{bmatrix}$$
$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 - 0 & 2(2 - 0) & 2 - 1 & 0 \\ 0 & 2 - 1 & 2(3 - 1) & 3 - 2 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 6\left(\frac{5 - 3}{1 - 0} - c_n\right) \\ 6\left(\frac{2 - 5}{2 - 1} - \frac{5 - 3}{1 - 0}\right) \\ 6\left(\frac{1 - 2}{3 - 2} - \frac{2 - 5}{2 - 1}\right) \\ 6\left(\frac{1 - 2}{3 - 2} - \frac{2 - 5}{2 - 1}\right) \\ 6\left(\frac{1 - 2}{3 - 2} - \frac{2 - 5}{2 - 1}\right) \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 12 - 6c_n \\ -30 \\ 12 \\ 6c_n + 1 \end{bmatrix}$$

Parabolically Terminated Endpoint Condition

$$\begin{bmatrix} 1 & -1 & 0 & 0 \\ x_2 - x_1 & 2(x_3 - x_1) & x_3 - x_2 & 0 \\ 0 & x_3 - x_2 & 2(x_4 - x_2) & x_4 - x_3 \\ 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ 6\left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}\right) \\ 6\left(\frac{y_4 - y_3}{x_4 - x_3} - \frac{y_3 - y_2}{x_3 - x_2}\right) \end{bmatrix}$$

Not-a-Knot Endpoint Condition

$$\begin{bmatrix} x_3 - x_2 & -(x_3 - x_1) & x_2 - x_1 & 0 \\ x_2 - x_1 & 2(x_3 - x_1) & x_3 - x_2 & 0 \\ 0 & x_3 - x_2 & 2(x_4 - x_2) & x_4 - x_3 \\ 0 & x_4 - x_3 & -(x_4 - x_2) & x_3 - x_2 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ 6\left(\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}\right) \\ 6\left(\frac{y_4 - y_3}{x_4 - x_3} - \frac{y_3 - y_2}{x_3 - x_2}\right) \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 2 & 0 \\ 1-0 & 2(2-0) & 2-1 & 0 \\ 0 & 2-1 & 2(3-1) & 3-2 \\ 0 & -1 & 4 & -3 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ 6\left(\frac{2-5}{2-1} - \frac{5-3}{1-0}\right) \\ 6\left(\frac{1-2}{3-2} - \frac{2-5}{2-1}\right) \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} -3 & 1 & 2 & 0 \\ 1 & 4 & 1 & 0 \\ 0 & 1 & 4 & 1 \\ 0 & -1 & 4 & -3 \end{bmatrix} \begin{bmatrix} y_1'' \\ y_2'' \\ y_3'' \\ y_4'' \end{bmatrix} = \begin{bmatrix} 0 \\ -30 \\ 12 \\ 0 \end{bmatrix}$$

Problem 5

- i.)
- ii.)
- iii.)

Problem 6

- i.)
- ii.)
- iii.)

Problem 7

Problem 8

- i.)
- ii.)
- iii.)