МАТРИЧНЫЕ ИГРЫ В ЧИСТЫХ СТРАТЕГИЯХ

Цель работы: приобретение практических навыков в составлении матрицы игры и нахождении минимаксных (максиминных) стратегий, определении цены игры и нахождении седловой точки.

Задания

- 1. Составить матрицу игры m×n, которая проводится по следующим правилам:
 - Случайно выбирается целое число z из интервала $[a_1, a_2, ... a_k]$, каждое возможное значение может быть выбрано с вероятностью 1/k.
 - Игрок A, не зная результата этого хода, выбирает целое число x.
 - Игрок **B**, не зная ни z, ни x, выбирает целое число y.
 - Выигрыш А определяется следующим образом:

$$(|y-z|-|x-z|).$$

Определить спектр *обоснованных* ходов игроков. Доказать, что игра является игрой с нулевой суммой, и составить матрицу ожидаемого выигрыша для игрока $\bf A$.

№	Границы интервала	№	Границы интервала	№	Границы интервала
1	[1,, 5]	6	[-4,,0]	11	[1,, 6]
2	[2,, 6]	7	[-3, 1]	12	[2,, 7]
3	[3,, 7]	8	$[-2, \dots, 2]$	13	[3,,8]
4	[4,, 8]	9	[-1,, 3]	14	[4,,9]
5	[5,, 9]	10	[0,, 4]	15	[5,,10]

2. Для данной матрицы выигрышей игрока **A** определить седловую точку (если она существует). Определить в каком промежутке находится цена игры, если игра не имеет седловой точки.

№	Матрица выигрыша А	№	Матрица выигрыша А			
1	$A = \begin{pmatrix} -1 & -1 & 2 & 2 & -3 & -3 \\ 0 & 2 & -2 & -3 & -3 & 2 \\ 2 & -1 & 0 & -1 & 2 & -2 \\ 2 & -1 & -1 & -2 & 2 & -2 \\ -2 & -1 & -3 & 1 & -1 & -2 \\ -1 & -1 & 0 & -2 & -2 & -1 \end{pmatrix}$	9	$A = \begin{pmatrix} -5 & 2 & 7 & -4 & -5 & -4 \\ 0 & 1 & 9 & 3 & 9 & -2 \\ 2 & -7 & 9 & 3 & 5 & 3 \\ 4 & -4 & 1 & -6 & 5 & 4 \\ -7 & 5 & -7 & -4 & 2 & 9 \\ 5 & -7 & 2 & 6 & 5 & -6 \end{pmatrix}$			

3. В следующей игре заданы платежи игроку **A**. Укажите область значений параметров p и q, при которых пара (2;2) будет седловой точкой.

No	Матрица выигрыша А	№	Матрица выигрыша А № Матрица выигрыша А
1	$A = \begin{pmatrix} 1 & p & 1 \\ 3 & -5 & q \\ -1 & -4 & 1 \end{pmatrix}$	6	$A = \begin{pmatrix} 1 & p & 1 \\ 3 & -5 & q \\ -1 & -4 & 1 \end{pmatrix} 11 A = \begin{pmatrix} 1 & p & 1 \\ 3 & -5 & q \\ -1 & -4 & 1 \end{pmatrix}$
2	$A = \begin{pmatrix} 1 & p & 1 \\ 3 & -5 & q \\ -1 & -4 & 1 \end{pmatrix}$	7	$A = \begin{pmatrix} 1 & -2 & 1 \\ 3 & -4 & q \\ -1 & p & 1 \end{pmatrix} 12 A = \begin{pmatrix} 1 & q & 0 \\ p & 5 & 2 \\ -3 & -4 & 1 \end{pmatrix}$
3	$A = \begin{pmatrix} -4 & p & -4 \\ -5 & -1 & q \\ -2 & 2 & 6 \end{pmatrix}$	8	$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & -3 & q \\ 4 & p & 4 \end{pmatrix} 13 A = \begin{pmatrix} 1 & q & 1 \\ p & 2 & 3 \\ -1 & -5 & -2 \end{pmatrix}$
4	$A = \begin{pmatrix} 1 & p & 3 \\ -7 & 6 & q \\ 2 & 5 & 4 \end{pmatrix}$	8	$A = \begin{pmatrix} 1 & 7 & 1 \\ 3 & -5 & q \\ 1 & p & -3 \end{pmatrix} 14 A = \begin{pmatrix} 1 & q & 1 \\ p & 5 & 6 \\ -1 & -4 & 1 \end{pmatrix}$
5	$A = \begin{pmatrix} 8 & p & -2 \\ 0 & 5 & q \\ 5 & 4 & -9 \end{pmatrix}$	10	$A = \begin{pmatrix} 1 & 2 & 1 \\ 3 & -5 & q \\ -2 & p & 1 \end{pmatrix} 15 A = \begin{pmatrix} 0 & q & 1 \\ p & -5 & 2 \\ -1 & -4 & 1 \end{pmatrix}$