

ALJABAR LINEAR

Pertemuan ke-6 dan 7 - Ruang vektor, Norm, Dot Product dan Ortogonalitas

Oleh:

Annastya Bagas Dewantara, S.T., M.T.

(email: annastya.bagas@ui.ac.id)

Fakultas Teknik

Universitas Indonesia

Daftar Paparan

- $lacktriang{f I}$ Ruang Vaktor pada $\mathbb{R}^2,~\mathbb{R}^3$ dan \mathbb{R}^n
- **2** Norm, Dot Product dan Jarak \mathbb{R}^n
- Ortogonalitas
- 4 Daftar Pustaka

1 Ruang Vaktor pada \mathbb{R}^2 , \mathbb{R}^3 dan \mathbb{R}^n

4 Daftar Pustaka

- **2** Norm, Dot Product dan Jarak \mathbb{R}^n
- Ortogonalitas

Introduksi

Vektor pada 2-Space (\mathbb{R}^2)

Vektor pada 3-Space (\mathbb{R}^3)

Vektor pada n-Space (\mathbb{R}^n)

Vektor Geometri

Length:

Merepresentasikan magnitude vektor

Direction:

Merepresentasikan arah dari vektor

Equivalent:

Apabila kedua vektor memiliki arah dan magnitude yang sama

Zero Vector:

Apabila initial point dan terminal point bernilai nol.

Penjumlahan, Pengurangan dan Multiplikasi Skalar pada Vektor

Penambahan:

Penambahan vektor \vec{v}_1 dan \vec{v}_2 dapat diartikan sebagai translasi dari vektor \vec{v}_1 sebesar \vec{v}_2 .

$$ec{\mathbf{v}_1 + \mathbf{v}_2} = ec{\mathbf{v}_2} + ec{\mathbf{v}_1} = egin{bmatrix} 2+1 \ 1+3 \end{bmatrix} = egin{bmatrix} 3 \ 4 \end{bmatrix}$$

Pengurangan:

Pengurangan vektor \vec{v}_1 dan \vec{v}_2 dapat diartikan sebagai penambahan vektor \vec{v}_1 dengan vektor \vec{v}_2 yang berlawanan arah.

$$egin{aligned} ec{v}_1-ec{v}_2=egin{bmatrix}2-1\1-3\end{bmatrix}=egin{bmatrix}1\-2\end{bmatrix} \end{aligned}$$

Multiplikasi Skalar:

Multiplikasi skalar vektor \vec{v}_1 dengan k, dimana $k \neq 0$, menghasilkan vektor dengan panjang k kali dari \vec{v}_1 . Jika k < 0, arah vektor berlawanan.

$$||k\vec{\mathbf{v}}_1|| = k||\vec{\mathbf{v}}_1||$$

Vektor Parallel dan Collinear

Collinear:

Jika dua atau lebih vektor terletak pada satu garis yang sama (atau garis perpanjangan yang sama), maka vektor tersebut adalah collinear.

$$ec{u}$$
 dan $ec{v}$ collinear jika $ec{u}=kec{v},\;k\in\mathbb{R}$

Parallel:

Jika dua vektor memiliki arah yang sama atau berlawanan arah, tetapi tidak harus terletak pada garis yang sama (bisa berada pada garis sejajar), maka vektor tersebut adalah **parallel**.

$$\vec{u} \parallel \vec{v} \iff \exists k \in \mathbb{R}, \ k \neq 0 \ \text{ sehingga } \vec{u} = k\vec{v}$$

Vektor yang Titik Awal Tidak di Origin

Parallel:

Apabila vektor memiliki initial point yang tidak terletak pada origin $\begin{bmatrix} 0,0,0 \end{bmatrix}$, dan vektor P_1P_2 memiliki initial point pada $\vec{P_1}$ dan terminal point pada $\vec{P_2}$, maka nilai vektor P_1P_2 dapat diperoleh dengan melakukan pengurangan koordinat initial point dengan terminal point.

$$\boxed{P_1\vec{P}_2 = \vec{OP}_2 - \vec{OP}_1 = \begin{bmatrix} x_2 - x_1 \\ y_2 - y_1 \\ z_2 - z_1 \end{bmatrix}}$$

Vektor n-space \mathbb{R}^n

Theorem 3.1.1

If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k and m are scalars, then:

- (a) $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{v}$
- (b) (u + v) + w = u + (v + w)
- (c) u + 0 = 0 + u = u
- (d) $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$ (e) $k(\mathbf{u} + \mathbf{v}) = k\mathbf{u} + k\mathbf{v}$
- (f) $(k+m)\mathbf{u} = k\mathbf{u} + m\mathbf{u}$
- (g) $k(m\mathbf{u}) = (km)\mathbf{u}$
- (h) $1\mathbf{u} = \mathbf{u}$

Jika $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ dan $w = \begin{bmatrix} w_1 & w_2 & \cdots & w_n \end{bmatrix}$ adalah vektor \mathbb{R}^n , dan k adalah skalar, maka:

$$v + w = \begin{bmatrix} v_1 + w_1 & v_2 + w_2 & \cdots & v_n + w_n \end{bmatrix}$$

$$kv = \begin{bmatrix} kv_1 & kv_2 & \cdots & kv_n \end{bmatrix}$$

$$-v = \begin{bmatrix} -v_1 & -v_2 & \cdots & -v_n \end{bmatrix}$$

$$v - w = v + (-w) = \begin{bmatrix} v_1 - w_1 & v_2 - w_2 & \cdots & v_n - w_n \end{bmatrix}$$

Kombinasi Linear

Vektor \vec{w} dikatakan kombinasi linear dari vektor-vektor v_1, v_2, \cdots, v_n yang dapat di notasikan:

$$\vec{w} = k_1 v_1 + k_2 v_2 + \dots + k_n v_n$$

di mana k_1, k_2, \dots, k_n adalah skalar. Skalar-skalar ini disebut koefisien dari kombinasi linear tersebut.

1 Ruang Vaktor pada \mathbb{R}^2 , \mathbb{R}^3 dan \mathbb{R}^n

4 Daftar Pustaka

- **2** Norm, Dot Product dan Jarak \mathbb{R}^n
- Ortogonalitas

Norm Vektor

Theorem 3.2.1

If \mathbf{v} is a vector in \mathbb{R}^n , and if k is any scalar, then:

- (a) $\|\mathbf{v}\| \ge 0$
- (b) $\|\mathbf{v}\| = 0$ if and only if $\mathbf{v} = \mathbf{0}$
- (c) $||k\mathbf{v}|| = |k|||\mathbf{v}||$

Jika $v = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$ adalah vektor \mathbb{R}^n , dan panjang dari vektor (**norm**) dari vektor **v** di notasikan sebagai ||v||, maka **norm** dari vektor adalah:

$$||v|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Contoh:

Jika vektor $\vec{v}=(2,-1,3,-5)$ adalah vektor \mathbb{R}^4 , maka:

(a) Non-negativity $\| \vec{v} \| \geq 0$

$$\|v\| = \sqrt{2^2 + (-1)^2 + 3^2 + (-5)^2} = \sqrt{39}$$

Jika vektor adalah zero vector $\vec{v} = (0, 0, 0, 0)$

(b) Zero vector $\|\vec{v}\| = 0 \iff v = 0$

$$||v|| = \sqrt{0^2 + (0)^2 + 0^2 + (0)^2} = 0$$

Jika vektor $\vec{v}=(2,-1,3,-5)$ adalah vektor \mathbb{R}^4 dan k=2, maka:

(c) Multiplikasi skalar $\|\vec{kv}\| = |k| \|\vec{v}\|$

$$||2v|| = \sqrt{4^2 + (-2)^2 + 6^2 + (-10)^2} = 2\sqrt{39}$$

Vektor Unit

Vektor unit adalah vektor yang memiliki norm bernilai 1. Vektor ini dipakai ketika arah vektor lebih penting daripada panjangnya, misalnya dalam navigasi atau fisika. $\hat{\mathbf{v}} = \frac{1}{\|\mathbf{v}\|} \mathbf{v}$

Contoh:

Suatu drone bergerak dari titik $\vec{x_0} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}^T$ ke $\vec{x_1} = \begin{bmatrix} 2.5 & 2.5 \end{bmatrix}^T$, apabila drone bergerak denagn kecepatan

$$\widetilde{\mathbb{B}} \quad \overrightarrow{v} = \overrightarrow{x_1} - \overrightarrow{x_0} = \begin{bmatrix} 2.5 & 2.5 & 2.5 \end{bmatrix}^T \\
\widehat{v} = \frac{1}{\|\overrightarrow{v}\|} \overrightarrow{v} = \frac{1}{\sqrt{(2.5 - 0)^2 + (2.5 - 0)^2 + (2.5 - 0)^2}} \begin{bmatrix} 2.5 \\ 2.5 \\ 2.5 \end{bmatrix} \\
= \frac{1}{2.5\sqrt{3}} \begin{bmatrix} 2.5 \\ 2.5 \\ 2.5 \end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

Jika drone bergerak pada kecepatan v = 5m/s, maka:

$$\vec{v} = 5\hat{v} = \begin{bmatrix} 2.886 & 2.886 & 2.886 \end{bmatrix}^T$$

Mengindikasikan drone bergerak 2.886 m/s pada x-axis, 2.886 m/s pada v-axis, 2.886 m/s pada z-axis.

Standard Vektor Unit

Pada koordinat cartesian \mathbb{R}^2 dan \mathbb{R}^3 , **Vektor Unit** di representasikan sebagai arah positif pada koordinat axis yang disebut sebagai **Standard Vektor Unit**. Pada ruang 2 dimensi \mathbb{R}^2 , standard vektor unit tersebut di representasikan:

$$i = (1,0,0), j = (0,1,0) \text{ dan } k = (0,0,1)$$

Pada ruang vektor-n \mathbb{R}^n , standard vektor unit di representasikan:

$$e_1 = (1, 0, \dots, 0), e_2 = (0, 1, \dots, 0), \dots, e_n = (0, 0, \dots, 1)$$

Sehingga vektor \vec{v} dapat di representasikan:

$$v = (v_1, v_2, \dots, v_n) = v_1 e_1 + v_2 e_2 + \dots + v_n e_n$$

Contoh:

$$(7,2,3,4) = 7e_1 + 2e_2 + 3e_3 + 4e_4$$

$$||PQ||^{2} = ||u||^{2} + ||v||^{2} - 2||u|||v|| \cos \theta$$

$$||v - u||^{2} = ||u||^{2} + ||v||^{2} - 2||u|||v|| \cos \theta$$

$$||u|||v|| \cos \theta = \frac{1}{2} (||u||^{2} + ||v||^{2} - ||v - u||^{2}) \rightarrow \underbrace{||u \cdot v|| + ||u|||v|| \cos \theta}$$

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} (||u||^{2} + ||v||^{2} - ||v - u||^{2}) \rightarrow \underbrace{||u||^{2} = u_{1}^{2} + u_{2}^{2} + u_{3}^{2}}_{||v||^{2} = v_{1}^{2} + v_{2}^{2} + v_{3}^{2}}_{||v - u||^{2} = (v_{1} - u_{1})^{2} + (v_{2} - u_{2})^{2} + (v_{3} - u_{3})^{2}}$$

$$\mathbf{u} \cdot \mathbf{v} = \frac{1}{2} (2(u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3}))$$

$$\mathbf{u} \cdot \mathbf{v} = u_{1}v_{1} + u_{2}v_{2} + u_{3}v_{3}$$

Contoh:

$$\begin{array}{l} \textbf{u} = (-1, 3, 5, 7) \\ \textbf{v} = (-3, -4, 1, 0) \\ \textbf{u} \cdot \textbf{v} = (-1)(-3) + (3)(-4) + (5)(1) + (7)(0) = -4 \end{array}$$

Dot Product-2

Aliabar pada Dot Product

Theorem 3.2.2

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

(a) $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$

[Symmetry property]

(b) $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$

[Distributive property]

(c) $k(\mathbf{u} \cdot \mathbf{v}) = (k\mathbf{u}) \cdot \mathbf{v}$

[Homogeneity property]

(d) $\mathbf{v} \cdot \mathbf{v} \ge 0$ and $\mathbf{v} \cdot \mathbf{v} = 0$ if and only if $\mathbf{v} = \mathbf{0}$ [Positivity property]

Theorem 3.2.3

If \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n , and if k is a scalar, then:

- (a) $\mathbf{0} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{0} = 0$
- (b) $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}$
- (c) $\mathbf{u} \cdot (\mathbf{v} \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} \mathbf{u} \cdot \mathbf{w}$
- (d) $(\mathbf{u} \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} \mathbf{v} \cdot \mathbf{w}$
- (e) $k(\mathbf{u} \cdot \mathbf{v}) = \mathbf{u} \cdot (k\mathbf{v})$

$$\mathbf{v} \cdot \mathbf{v} = \|\mathbf{v}\| \|\mathbf{v}\| \cos \theta \quad \rightarrow \theta = 0, \ \cos 0 = 1$$

$$v \cdot v = ||v|| ||v||$$

$$v \cdot v = ||v||^2$$

$$||v|| = \sqrt{v \cdot v}$$

Contoh:

$$(u-2v)\cdot(3u+4v) = u\cdot(3u+4v)-2v\cdot(3u+4v)$$

$$= 3(u \cdot u) + 4(u \cdot v) - 6(v \cdot u) - 8(v \cdot v)$$

$$=3||u||^2-2(u\cdot v)-8||v||^2.$$

Cauchy-Schwarz Inequality:

$$u \cdot v = ||u|| ||v|| \cos \theta$$

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|} \longrightarrow$$

$$\cos \theta = \frac{u \cdot v}{\|u\| \|v\|} \longrightarrow \boxed{-1 \le \frac{u \cdot v}{\|u\| \|v\|} \le 1}$$

Pertidaksamaan Cauchy-Schwarz

 $u \cdot v = \frac{1}{4} (\|u + v\|^2 - \|u - v\|^2)$

Ruang Vaktor pada \mathbb{R}^2 , \mathbb{R}^3 dan \mathbb{R}^n

$$\begin{split} |u \cdot v| &\leq \|u\| \|v\| \\ \|u + v\|^2 &= (u + v) \cdot (u + v) = (u \cdot u) + 2(u \cdot v) + (v \cdot v) \\ &= \|u\|^2 + 2(u \cdot v) + \|v\|^2 \\ &\leq \|u\|^2 + 2|u \cdot v| + \|v\|^2 \qquad \text{(property of absolute value)} \\ &\leq \|u\|^2 + 2\|u\| \|v\| + \|v\|^2 \qquad \text{(Cauchy-Schwarz inequality)} \\ &= (\|u\| + \|v\|)^2. \\ \|u + v\|^2 + \|u - v\|^2 = (u + v) \cdot (u + v) + (u - v) \cdot (u - v) \\ &= 2(u \cdot u) + 2(v \cdot v) \\ &= 2(\|u\|^2 + \|v\|^2). \end{split}$$

Dot product dpat digunakan untuk multiplikasi matriks. Namun, multiplikasi metriks perlu memperhatikan jenis dari matriks yang dikalikan, apakah matriks baris atau matriks kolom.

a. $\vec{u}, \vec{v} \rightarrow$ column matrix

$$\vec{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}, \quad u \cdot v = u^T v = v^T u \text{ dan } u^T v = -7$$

b. $\vec{u}, \vec{v} \rightarrow \text{row matrix}$

$$\vec{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}, \quad uv = uv^T = vu^T = -7$$

c. $\vec{u} \rightarrow \text{row matrix}$, $\vec{v} \rightarrow \text{column matrix}$

$$\vec{u} = \begin{bmatrix} 1 & -3 & 5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 \\ 4 \\ 0 \end{bmatrix}, \quad uv = uv = v^T u^T = -7$$

d. $\vec{u} \rightarrow$ column matrix, $\vec{v} \rightarrow$ row matrix

$$\vec{u} = \begin{bmatrix} 1 \\ -3 \\ 5 \end{bmatrix}, \vec{v} = \begin{bmatrix} 5 & 4 & 0 \end{bmatrix}, \quad uv = vu = u^T v^T = -7$$

Jika matriks A adalah matriks berukuran $(n \times n)$, dan matriks vektor u dan v adalah matriks berukuran $(n \times 1)$, maka **dot product** dapat di bentuk ke dalam multiplikasi matriks:

$$u \cdot v = u^T v = v^T u$$

$$\underbrace{A}_{n \times n} \underbrace{u}_{n \times 1} \underbrace{v}_{n \times 1} = \underbrace{(Au)^{T}}_{1 \times n} \underbrace{v}_{n \times 1} = \underbrace{u^{T} A^{T}}_{1 \times n} \underbrace{v}_{n \times 1} = \underbrace{u^{T}}_{1 \times n} \underbrace{(v^{T} A)^{T}}_{n \times 1}$$

$$= \underbrace{v^{T}}_{1 \times n} \underbrace{Au}_{n \times 1} = \underbrace{(v^{T} A)}_{1 \times n} \underbrace{u}_{n \times 1} = \underbrace{(A^{T} v)^{T}}_{1 \times n} \underbrace{u}_{n \times 1}$$

$$= u \cdot (A^{T} v)$$

$$u \cdot A \quad v = u^{T} Av = (A^{T} u)^{T} \quad v = (A^{T} u) \cdot v$$

$$\underbrace{u}_{n\times 1} \cdot \underbrace{A}_{n\times n} \underbrace{v}_{n\times 1} = \underbrace{u^{T}}_{1\times n} \underbrace{Av}_{n\times 1} = \underbrace{(A^{T}u)^{T}}_{1\times n} \underbrace{v}_{n\times 1} = \underbrace{(A^{T}u)^{T}}_{1\times n} \underbrace{v}_{n\times 1}$$
$$= \underbrace{(Av)^{T}}_{1\times n} \underbrace{u}_{n\times 1} = \underbrace{v^{T}A^{T}}_{1\times n} \underbrace{u}_{n\times 1} = \underbrace{v^{T}}_{1\times n} \underbrace{(u^{T}A)^{T}}_{n\times 1}$$

1 Ruang Vaktor pada \mathbb{R}^2 , \mathbb{R}^3 dan \mathbb{R}^n

4 Daftar Pustaka

- Norm, Dot Product dan Jarak \mathbb{R}^n
- Ortogonalitas

Vektor Ortogonalitas

Dua **nonzero vektor** pada dimensi \mathbb{R}^n dikatakan **Ortogonal** atau **Tegak Lurus**, apabila memenuhi syarat berikut:

$$u \cdot v = 0$$
, $\theta(u, v) = 90^{\circ}$

Contoh:

$$ec{u} = egin{bmatrix} -2 \ 3 \ 1 \ 4 \end{bmatrix}, \quad ec{v} = egin{bmatrix} 1 \ 2 \ 0 \ -1 \end{bmatrix}$$
, pada \mathbb{R}^4

$$\vec{u} \cdot \vec{v} = -2(1) + 3(2) + 1(0) + 4(-1) = 0$$

Garis dan Bidang — Bentuk Point Normal

Jika vektor $\overrightarrow{P_0P}$ tegak lurus terhadap vektor normal \vec{n} dari sebuah garis atau bidang $(\overrightarrow{P_0P} \perp \vec{n})$, maka dot product kedua vektor tersebut nol:

$$\vec{n}\cdot\overrightarrow{P_0P}=0, \qquad \vec{n}\neq\mathbf{0}.$$

Untuk \mathbb{R}^2 : jika $\vec{n} = (a, b), P_0 = (x_0, y_0)$ dan P = (x, y), maka

$$a(x-x_0)+b(y-y_0)=0$$

Untuk \mathbb{R}^3 : jika $\vec{n} = (a, b, c)$, $P_0 = (x_0, y_0, z_0)$ dan P = (x, y, z), maka

$$a(x-x_0)+b(y-y_0)+c(z-z_0)=0$$

Secara umum di \mathbb{R}^n : dengan $\vec{n}=(a_1,\ldots,a_n),\ P_0=(x_{1,0},\ldots,x_{n,0})$ dan $P=(x_1,\ldots,x_n),$

$$\sum_{i=1}^{n} a_i(x_i - x_{i,0}) = 0$$

Projeksi Ortogonal

Jika \vec{u} dan \vec{a} terletak \mathbb{R}^n , dan $\vec{a} \neq 0$, dan \vec{u} dapat dinyatakan dengan $\vec{u} = \vec{w_1} + \vec{w_2}$, di mana $\vec{w_1} = k\vec{a}$ dan $\vec{w_2}$ ortogonal terhadap \vec{a} $(\vec{a} \perp \vec{w_2}).$

$$ec{u} = ec{w_1} + ec{w_2} \ ec{u} = kec{s} + ec{w_2}$$

Maka dot product:

$$u \cdot a = (ka + w_2) \cdot a = ka \cdot a + w_2 \cdot a$$
$$= ka \cdot a + w_2 \cdot a = k||a||^2 \leftarrow \boxed{w_2 \cdot a = 0,}$$

$$k = \frac{u \cdot a}{\|a\|^2}$$

Sehingga:

$$\operatorname{proj}_{ec{a}} ec{u} = rac{ec{u} \cdot ec{a}}{\|ec{a}\|^2} ec{a} = ec{w}_1$$

$$\operatorname{proj}_{\vec{a}} \vec{u} = \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a} = \vec{w}_1 \qquad | \qquad \vec{w}_2 = \vec{u} - \operatorname{proj}_{\vec{a}} \vec{u} = \vec{u} - \frac{\vec{u} \cdot \vec{a}}{\|\vec{a}\|^2} \vec{a}$$

Norm dari Projeksi Ortogonal

Dalam mengukur panjang dari projeksi orthogonal ($\|\operatorname{proj}_{\mathbf{a}}\mathbf{u}\|$), dapat dirumuskan sebagai:

$$\mathsf{proj}_{\mathbf{a}}\,\mathbf{u} = rac{\mathbf{u}\cdot\mathbf{a}}{\|\mathbf{a}\|^2}\,\mathbf{a}.$$

Maka nilai norm adalah:

$$\begin{aligned} \left\| \operatorname{proj}_{\mathbf{a}} \mathbf{u} \right\| &= \left\| \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \mathbf{a} \right\| = \left| \frac{\mathbf{u} \cdot \mathbf{a}}{\|\mathbf{a}\|^2} \right| \|\mathbf{a}\| \\ &= \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|^2} \|\mathbf{a}\| = \frac{|\mathbf{u} \cdot \mathbf{a}|}{\|\mathbf{a}\|} \\ &= \|u\| \|\cos\theta\| \to \boxed{u \cdot a = \|u\| \|a\| \cos\theta} \end{aligned}$$

Jarak Ortogonal terhadap Garis atau Bidang

Pengukuran jarak ortogonal dari suatu titik terhadap suatu Garis atau Bidang yang di representasikan oleh (D), dapat dihitung dengan:

$$D = \|\operatorname{proj}_{\mathbf{a}} \overrightarrow{QP_0}\| = \frac{\left| \overrightarrow{QP_0} \cdot \mathbf{n} \right|}{\|\mathbf{n}\|}.$$

$$\overrightarrow{QP_0} = (x_0 - x_1, y_0 - y_1, z_0 - z_1),$$

$$\overrightarrow{QP_0} \cdot \mathbf{a} = a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1), \qquad \|\mathbf{a}\| = \sqrt{a^2 + b^2 + c^2}.$$

$$D = \frac{\left| a(x_0 - x_1) + b(y_0 - y_1) + c(z_0 - z_1) \right|}{\sqrt{a^2 + b^2 + c^2}}.$$

Daftar Pustaka

1 Ruang Vaktor pada \mathbb{R}^2 , \mathbb{R}^3 dan \mathbb{R}^n

Daftar Pustaka

- Norm, Dot Product dan Jarak \mathbb{R}^n
- Ortogonalitas