Algebraic representations of the circle

Harrison Chen

August 15, 2024

- 0.0.1. We are interested in the following examples of groups and their representation theory.
 - $G \subset GL_n$ a classical affine algebraic group scheme,
 - G a coaffine group stack, such as $G = B\mathbb{G}_a$,
 - G an animated group, such as $G = S^1$,
 - G an abelian variety such as G = E an elliptic curve.
- 0.0.2. Very roughly speaking, representation theory cannot see non-affineness of groups, but higher representation theory can. We will explain the following table.¹

	G 0-affine? affinization?	BG 0-affine?	G 1-affine?	BG 1-affine?
G affine sch.	yes	yes if G unipotent no otherwise	yes	yes
G coaffine st.	yes	yes	yes	yes
G animated	$\begin{array}{c} \text{no} \\ \operatorname{Spec} \mathcal{O}(G) \text{ coaffine} \end{array}$	no	yes	no
G abelian var.	$\begin{array}{c} \text{no} \\ \text{Spec}\mathcal{O}(G) \text{ coaffine} \end{array}$	no	yes	???
$G = B\mathbb{G}_a$	yes	yes	yes	yes
$G = S^1$	$\operatorname{Spec} \mathcal{O}(G) = B\mathbb{G}_a$	no	yes	no
G = E	$ \begin{array}{c} \text{no} \\ \text{Spec } \mathcal{O}(G) = B\mathbb{G}_a \end{array} $	no	yes	???
	Rep(G) only knows $Aff(G)$	"Koszul duality"	$2\operatorname{Rep}(G)$ only knows $1\operatorname{Aff}(G)$	"equiv'n corresp."

0.0.3. The notion of 1-affineness was initially studied by Gaitsgory.

1 0-categorical

1.0.1. We define the category of representations in the usual way.

Definition 1.0.2. Let G be a group algebra in prestacks over k. Then, $\mathcal{O}(G)$ is a coalgebra object in \mathbf{Vect}_k and we define

$$\operatorname{Rep}(G) := \operatorname{Mod}_{\mathbf{Vect}_k}(\mathcal{O}(G)).$$

It is a general fact that

$$Rep(G) \simeq QCoh(BG).$$

Often, up to renormalization. E.g. $B^4\mathbb{G}_a$ is not 1-affine, but I suspect this is just a renormalization issue?

1.0.3. Our first observation is that Rep(G) cannot distinguish between G and its (0-)affinization $Spec \mathcal{O}(G)$. So the study of Rep(G) is the same as the study of Aff(G).

1.0.4. Our next observation is that sometimes, the category $\operatorname{Rep}(G)$ is "affine." Let k denote the trivial representation, and note that $\operatorname{End}_G(k,k) \simeq \mathcal{O}(BG)$. We have commuting adjoint functors

$$\operatorname{Rep}(G) \xrightarrow{\simeq} \operatorname{QCoh}(BG)$$

$$\parallel \xrightarrow{-\otimes_{\mathcal{O}(BG)}k} \operatorname{Comod}(\mathcal{O}(G)) \xrightarrow{(-)^G := \operatorname{Hom}_G(k, -)} \operatorname{Mod}(\mathcal{O}(BG))$$

We say a group G has a 0-equivariantization correspondence if the adjunction above defines inverse equivalences, possibly up to renormalization.² This is closely related to the (0-)affineness of BG.

- 1.0.5. Let us check this in examples.
 - If G is a reductive affine algebraic group, then obviously $(-)^G : \operatorname{Rep}(G) \to \operatorname{Mod}(k)$ is not an equivalence. If G is unipotent, say $G = B\mathbb{G}_a$, then $\operatorname{Rep}(G)$ is generated by the trivial representation, and $\operatorname{End}_{\mathbb{G}_a}(k,k) \simeq k[\eta]$ where $\eta \in \operatorname{Ext}^1_{\mathbb{G}_a}(k,k)$, so we have equivalences

$$\operatorname{Rep}(\mathbb{G}_a) \xrightarrow[-\otimes_{k[\eta]} ^{\mathbb{G}_a} \operatorname{Mod}(k[\eta])$$

Note that the augmentation module $k \in \text{Mod}(k[\eta])$ is non-compact and goes to the infinite-dimensional cofree \mathbb{G}_a -representation.

• If G is coaffine, then it is affine by definition.³ For example, for $G = B\mathbb{G}_a$ we have the usual Koszul duality, first identifying $\text{Rep}(B\mathbb{G}_a)$ with comodules for $\mathcal{O}(B\mathbb{G}_a)$, then with modules for its k-linear dual $\mathcal{O}(B\mathbb{G}_a)^* \simeq k[\lambda]$:

$$\operatorname{Rep}(B\mathbb{G}_a) \simeq \operatorname{Mod}(k[\lambda]) \xrightarrow[-\otimes_{k[u]}]{(-)^{B\mathbb{G}_a}} \operatorname{Mod}(k[u])$$

where $k[u] \simeq \mathcal{O}(B^2\mathbb{G}_a)$. Note the above isn't quite right, we have to renormalize.

- If $G = S^1$, obviously this is not affine. Its affinization is $B\mathbb{G}_a$.
- If G = E, it also not affine, and its affinization is again $B\mathbb{G}_a$. Indeed, if V is a representation of E, then the action map must have proper image, therefore 0-dimensional image. But it must also be connected, so it is the identity.

2 1-categorical

2.0.1. We now discuss higher representations and sheaves.

Definition 2.0.2. For any group object G, the category QCoh(G) is a comonoidal category. We define the 2-category of 2-representations:

$$2\operatorname{Rep}(G) := \operatorname{\mathbf{Comod}}_{\operatorname{\mathbf{dgCat}}_h}(\operatorname{QCoh}(G)).$$

We also define for any prestack X the 2-category of 2-quasicoherent sheaves on X to be the category of sheaves of categories on X.

$$2QCoh(X) := ShCat(X).$$

²This isn't precisely defined, of course. We leave it open to interpretation.

³We allow ourselves some flexibility with what this means, e.g. the Spec vs. cSpec.

We say that X is 1-affine if $2\operatorname{QCoh}(X) \simeq \operatorname{\mathbf{Mod}}(\operatorname{QCoh}(X))$. The 1-affinization⁴ $1\operatorname{Aff}(X)$ of X is a 1-affine Y with a map $X \to Y$ defining an equivalence $2\operatorname{QCoh}(X) \simeq \operatorname{\mathbf{Mod}}(\operatorname{QCoh}(Y))$.

2.0.3. Assuming that G is 1-affine,⁵ we have

$$2\text{Rep}(G) \simeq 2\text{QCoh}(BG).$$

Assuming that BG is 1-affine, we then have an equivariantization correspondence:

$$2\operatorname{Rep}(G) \simeq \mathbf{Mod}(\operatorname{QCoh}(BG)).$$

2.0.4. Examples.

1. For G affine algebraic, the correspondence is well-known. For example, one can recover via descent that

$$\operatorname{QCoh}(X/G) \otimes_{\operatorname{QCoh}(BG)} \operatorname{Vect}_k \simeq \operatorname{QCoh}(X)$$

with the usual QCoh(G)-action.

- 2. As discussed earlier, $B^2\mathbb{G}_a$ is 0-affine, so it is 1-affine, so it $B\mathbb{G}_a$ satisfies 1-equivariantization.
- 3. On the other hand, S^1 satisfied 0-equivariantization for the dumb reason that $\operatorname{Rep}(S^1)$ is basically $\operatorname{Rep}(B\mathbb{G}_a)$, even though BS^1 was not 0-affine. However, S^1 does not satisfy 1-equivariantization. For example, consider the regular representation $\operatorname{QCoh}(S^1) \simeq \operatorname{QCoh}(\mathbb{G}_m)$. We have

$$(\operatorname{QCoh}(S^1)^{\operatorname{QCoh}(S^1)} \otimes_{\operatorname{QCoh}(BS^1)} \mathbf{Vect}_k \simeq \mathbf{Vect}_k \otimes_{\operatorname{QCoh}(BS^1)} \mathbf{Vect}_k \simeq \mathbf{Vect}_k \otimes_{\operatorname{QCoh}(B^2\mathbb{G}_a)} \mathbf{Vect}_k \simeq \operatorname{QCoh}(B\mathbb{G}_a).$$

This is the full subcategory of $QCoh(S^1)$ where the automorphism is unipotent.

4. I have nothing intelligent to say about the elliptic situation.

3 Examples for S^1 and $B\mathbb{G}_a$ actions

3.0.1. Let's try to see the phenomenon in these examples. First, Cartier duality.

Theorem 3.0.2. There is an equivalence of monoidal categories

$$(\operatorname{QCoh}(S^1), \circ) \simeq (\operatorname{QCoh}(\mathbb{G}_m), \otimes).$$

$$(\operatorname{QCoh}(B\mathbb{G}_a), \circ) \simeq (\operatorname{QCoh}(\widehat{\mathbb{G}}_a), \otimes).$$

Invariants is identified with the !-fiber at 1, and coinvariants with the *-fiber.

3.0.3. So, a category with an S^1 -action sheafifies over \mathbb{G}_m , and a category with a $B\mathbb{G}_a$ -action is one supported at $1 \in \mathbb{G}_m$.

3.0.4. But we can do even more. Let us take the following general set-up. Let **X** be an integer lattice, T = B**X** the corresponding topological torus, $\check{T} = \operatorname{Spec} k$ **X** the dual algebraic torus, $\mathfrak{t} = \mathbf{X} \otimes_{\mathbb{Z}} k$ the Lie algebra, and $\check{\mathfrak{t}}$ its dual. In fact, a category with an S^1 -action, or a category over \check{T} , naturally sheafifies over "2-shifted" version of $\mathbb{T}_{\mathfrak{D}}^*$, namely $\check{T} \times \mathfrak{t}[2]$, and with a $B\mathfrak{t}$ -action sheafifies over $\mathfrak{t}[2]$.

⁴I am not sure about existence nor uniqueness.

⁵I think this can be relaxed, but I'm not entirely sure how.

3.0.5. An important example: We can define an S^1 -action on Coh(X) by a map $X \to \mathbb{G}_m$. Then, Coh(X) is a sheaf of categories over $\mathbb{G}_m \times \mathbb{A}^1[2]$. Given a $t \in \mathbb{G}_m$, we have:

$$\begin{aligned} & \mathrm{Coh}(X)|_{\{z\} \times \mathbb{A}^{1}[2]} = \mathrm{Coh}(f^{-1}(z)) \\ & \mathrm{Coh}(X)|_{\{z\} \times \mathbb{G}_{m}[2]} = \mathrm{MF}(X, f - 1) \\ & \mathrm{Coh}(X)|_{\{z\} \times \widehat{\{0\}}} = \mathrm{Perf}(f^{-1}(z)) \\ & \mathrm{Coh}(X)|_{\widehat{\{z\} \times \{0\}}} = \mathrm{Coh}_{f^{-1}(z)}(X) \end{aligned}$$

Let's justify some of these, assuming X is smooth for simplicity. The first one is "obvious", i.e. $Coh(X) \otimes_{Perf(\mathbb{G}_m)} Perf(\{z\}) = Coh(f^{-1}(z))$. There is a k[u]-module structure on this category. The u-torions are just the perfect complexes, and that tells us the second and third. For the fourth, we want to set u = 0, and you get the orthogonal Lagrangian.

3.0.6. Not every S^1 -action on $\operatorname{Coh}(X)$ comes from viewing X over \mathbb{G}_m when X is a stack or derived scheme. For example, there is an S^1 -action on $\operatorname{Coh}(\mathcal{L}X)$. When X is a scheme, this is the de Rham differential (in fact, $\operatorname{Coh}(\mathcal{L}X)$ lives over $\{1\}$, i.e. gets a $B\mathbb{G}_a$ -action). When X = BG, it is the tautological automorphism on adjoint-equivariant bundles on G.

3.0.7. Question: what is $Coh(\mathcal{L}(BG)) \otimes_{\mathcal{O}(\mathbb{G}_m)} \{1\}$? Is it $Coh(\widehat{\mathcal{L}}(BG))$?

4 Elliptic curves E

4.0.1. I know basically nothing about this. See recent work of Sibilla-Tomasini, which mentions work of Grojnowski.