MLHEP 2017

day 5.1

Unsupervised learning

Supervised vs Unsupervised

Supervised learning

- Take (x,y) pairs

- Take x alone

Supervised vs Unsupervised

Supervised learning

- Take (x,y) pairs
- Learn mapping x → y

Unsupervised learning

- Take unlabeled x
- Learn hidden structure behind the data

Why bother?

Unsupervised learning:

- Dimensionality reduction
- Find great features
- Explore high-dim data
- Generate new samples

Autoencoders 101

Main idea:

- Take data in some original (high-dimensional) space;
- Project data into a new space from which it can then be accurately restored;
- Encoder = data to hidden
- Decoder = hidden to data
- Decoder(Encoder(x)) ~ x

Why do we ever need that?

- Dimensionality reduction
 - |code| << |data|</p>

<to be continued>

Matrix decompositions

Example: matrix factorization (PCA, SVD)

$$X = U X V^{T}$$

Minimizing reconstruction error

$$||X - U \cdot V^T|| \rightarrow \min_{U, V}$$

Matrix decomposition

A different perspective

(kinda) Deep autoencoder

Stack more layers!

Quiz: What if data is an image?

Convolutional autoencoders

Fully-convolutional

Why do we ever need that?

- Dimensionality reduction
 - |code| << |data|</p>
- Learn some great features!
 - Before feeding data to your XGBoost

Expanding autoencoder

Bigger/richer representation

Expanding autoencoder

Bigger/richer representation

Something's wrong with this guy. Ideas?

Expanding autoencoder

- Naive approach will learn identity function!
- Gotta regularize!

$$L = ||X - Dec(Enc(X))||$$

Sparse autoencoder

- Naive approach will learn identity function!
- Idea 1: L1 on activations, sparse code

$$L = ||X - Dec(Enc(X))|| + \sum_{i} |Enc_{i}(X)|$$

Redundant autoencoder

- Naive approach will learn identity function!
- Idea 2: noize/dropout, redundant code

$$L = ||X - Enc(Noize(Dec(X)))||$$

Denoising autoencoder

- Naive approach will learn identity function!
- Idea 3: distort input, learn to undo distortion

$$L = ||X - Enc(Dec(Noize(X)))||$$

Sparse Vs Denoising

Filter weights, 12x12 patches

Sparse AE

Denoizing AE

Actually meaningless:)

Why do we ever need that?

- Dimensionality reduction
 - |code| << |data|</p>
- Learn some great features!
 - Before feeding data to your XGBoost
- Unsupervised pretraining
 - Exploit unlabeled data to improve classifier

Unsupervised pre-training

Step 1: train autoencoder

Unsupervised pre-training

Use autoencoder as initialization

Why do we ever need that?

- Dimensionality reduction
 - |code| << |data|</p>
- Learn some great features!
 - Before feeding data to your XGBoost
- Unsupervised pretraining
 - Exploit unlabeled data to improve classifier
- Visualizing data structure

Exploratory analysis

Visualize data in hidden space

Exploratory analysis

Visualize data in hidden space

Image: https://razi.xyz/vgg2vec/picasso

Why do we ever need that?

- Dimensionality reduction
 - |code| << |data|</p>
- Learn some great features!
 - Before feeding data to your XGBoost
- Unsupervised pretraining
 - Exploit unlabeled data to improve classifier
- Visualizing data structure
- Generating new data
 - Your trainable monte-carlo

Generating images

Step 1: train autoencoder

Generating images

Step 2: use decoder to generate data

Disclaimer: this isn't the state of the art approach

Generating images

Step 2: use decoder to generate data

Img: decoded trajectories from hidden space

Image morphing with AE

Idea:

- If Enc(image1) = c1Enc(image2) = c2
- Than maybe (c1+c2)/2 is a semantic average of the two images

Image morphing with AE

Idea:

- Look for a common direction vector for "add mustache" or "add age" changes.
- Apply to new images

+ ODD =

FEMALE+ MALE =

Image morphing with AE

Brace yourselves

