Тема 1. Элементы теории графов. Задача об оповещении

Под графом G = (V, X) понимается пара, состоящая из конечного непустого множества $V = \{v_1, ..., v_n\}$, элементы которого называются вершинами графа, и конечного множества пар вершин $X = \{x_1, ..., x_m\}$. Если пары в X являются неупорядоченными, то граф G называется неориентированным графом (или, просто, графом). Если пары в X являются упорядоченными, то граф называется ориентированным, кратко, орграфом.

Элементы множества X называются pe6pamu, если G — неориентированный граф, и dyzamu, если G — орграф. Ребра неориентированного графа обозначаются в виде двухэлементных множеств $\{v,w\}$, где $v,w \in V$. При этом $\{v,w\} = \{w,v\}$. Дуги орграфа обозначаются в виде упорядоченных пар вида (v,w) (или < v,w >), где $v,w \in V$.

Иногда в множестве X допускается существование нескольких одинаковых пар. В этом случае граф называется мультиграфом. Иногда также допускаются пары с одинаковыми элементами, которые называются nemлями. В последнем случае граф называется nceedorpaфom. Одинаковые пары в X называются kpamhokmu (или napannenhhmu). Количество одинаковых ребер (дуг) называется kpamhokmu этого ребра (этой дуги).

Неориентированные графы будем обозначать буквой G или G с индексами (например, G_0, G_1, \ldots), а ориентированные — буквой D или D с индексами (например, D_0, D_1, \ldots). Кроме того, договоримся обозначать вершины буквами v, w, u (без индексов или с индексами), а ребра и дуги — буквами x, y, z (без индексов или с индексами).

Для графа G = (V, X) в случае $v \in V$ ($x \in X$) будем иногда кратко писать $v \in G$ ($x \in G$). Аналогично будем поступать и для орграфов.

Графы принято изображать на плоскости в виде множества точек (маленьких кружков), соответствующих вершинам, и множества линий, соединяющих некоторые пары вершин, соответствующих ребрам. В случае орграфа на линиях, соответствующих дугам, указываются стрелки, указывающие направления дуг (от первой вершины пары до второй). На рис. 1.1 приведено изображение неориентированного графа, а на рис. 1.2 – ориентированного.

Рис. 1.1

Рис. 1.2

Замечание 1.1. Для упрощения изображения графов вместо указания вершины около кружка, соответствующего этой вершине, будем иногда указывать номер этой вершины в центре этого кружка (см., например, рис. 1.8). Кроме того, будем иногда вместо изображений вида

использовать изображение

Если $x = \{v, w\}$ – ребро неориентированного графа, то говорят, что (а) вершины v, w - cмежные; (б) вершины v, w - kонцы ребра x; (в) ребро x соединяет вершины v, w; (г) ребро x инцидентно вершинам v, w; (д) вершины v, w инцидентны ребру x.

Если x = (v, w) – дуга орграфа, то говорят, что (а) вершина v – начало дуги x, w – конец дуги x; (б) дуга x исходит из вершины v и заходит в вершину w; (в) дуга x инцидентна вершинам v, w; (г) вершины v, w инцидентны дуге x.

Степень вершины. Степенью вершины v графа G называется число $\delta(v)$ ребер графа G, инцидентных вершине v. Вершина графа, имеющая степень 0, называется изолированной, а имеющая степень 1-висячей. В случае псевдографа вклад петли $\{v,v\}$ в $\delta(v)$ равен 2.

Полустепенью исхода (захода) вершины v орграфа D называется число $\delta^+(v)$ ($\delta^-(v)$) дуг орграфа D, исходящих из вершины v (заходящих в вершину v). В случае ориентированного псевдографа вклад петли (v,v) в $\delta^+(v)$ и в $\delta^-(v)$ равен 1.

Пример 1.1.(а) Для графа, изображенного на рис. 1.1, $\delta(v_1) = 5$, $\delta(v_4) = 2$, $\delta(v_5) = 1$, $\delta(v_6) = 0$; (б) для орграфа, изображенного на рис. 1.2, $\delta^+(v_2) = 2$, $\delta^-(v_2) = 5$.

Будем количества вершин и ребер в графе G обозначать через n(G), m(G), соответственно, а количества вершин и дуг в орграфе D — через n(D), m(D), соответственно.

Утверждение 1.1. Для любого псевдографа G = (V, X) выполняется равенство $\sum_{v \in V} \delta(v) = 2m(G). \tag{1.1}$

Доказательство. Равенство (1.1) является очевидным следствием того, что каждое ребро дает вклад, равный двум, в сумму из левой части равенства (1.1).

Приведем также соответствующее утверждение для орграфов.

Утверждение 1.2. Для любого ориентированного псевдографа D = (V, X) выполняется

$$\sum_{v \in V} \delta^{+}(v) = \sum_{v \in V} \delta^{-}(v) = m(D).$$
 (1.2)

Маршруты, пути. Последовательность

$$v_1 x_1 v_2 x_2 \dots v_k x_k v_{k+1},$$
 (1.3)

где $v_i \in V$, $x_i = \{v_i, v_{i+1}\} \in X$, называется *маршрутом*, соединяющим вершины v_1, v_{k+1} в графе G = (V, X). Аналогично определяется путь в орграфе D = (V, X). Последовательность (1.3), где $v_i \in V$, $x_i = (v_i, v_{i+1}) \in X$, называется *путем* из v_1 в v_{k+1} в орграфе D = (V, X). Вершина v_1 называется *начальной*, а v_{k+1} – конечной вершиной

орграфе D = (V, X). Вершина V_1 называется начальной, а $V_{k+1} - \kappa$ онечной вершиной маршрута (пути), а остальные вершины — внутренними. Длиной маршрута (пути) называется количество ребер (дуг) в нем. Маршрут называется замкнутым, если его начальная вершина совпадает с конечной. Незамкнутый маршрут (путь), в котором ребра (дуги) попарно различны, называется цепью. Цепь, в которой все вершины попарно различны, называется простой. Замкнутый маршрут (путь), в котором все ребра (дуги) попарно различны, называется циклом (контуром). Цикл (контур), в котором все вершины попарно различны, называется простым.

Если ребро (дуга) x входит в некоторый маршрут (путь) η , то будем кратко писать $x \in \eta$.

Замечание 1.1. Последовательность (1.3) можно однозначно восстановить по последовательности $x_1x_2...x_k$, а следовательно, ее можно использовать как сокращенную форму записи маршрута или пути. Отметим далее, что в случае, когда в последовательности (1.3) $x_1,...,x_k$ имеют кратности, равные 1, ее можно однозначно восстановить по последовательности вершин $v_1v_2...v_{k+1}$, а следовательно, вместо (1.3) можно использовать и эту более короткую запись.

Говорят, что вершина w орграфа D (графа G) достижима из вершины v, если либо v = w, либо существует путь из v в w (маршрут, соединяющий v, w).

Подграфом графа G называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G. Подграф называется собственным, если он отличен от самого графа. Подграфом графа G=(V,X), порожденным множеством вершин $V_1\subseteq V$, называется граф $G_1=(V_1,X_1)$, где $X_1=X\cap V_1^2$ (т.е. содержащий множество вершин V_1 и множество всех ребер графа G, соединяющих вершины из V_1). Приведенные определения распространяются и на орграфы. Граф называется связным, если для любых двух его различных вершин существует маршрут, соединяющий их. Орграф называется сильно связным, если для любых двух его различных вершин v,w существует путь из v в w. Компонентной связности графа G называется его связный подграф, не являющийся собственным подграфом никакого другого связного подграфа графа G. Компонентной сильной связности орграфа D называется его сильно связный подграф, не являющийся собственным подграфом никакого другого сильно связного подграфа орграфа D. У графа, изображенного на рис. 1.3, три компоненты связности. У орграфа, изображенного на рис. 1.4, три компоненты сильной связности: D_1,D_2,D_3 , изображенные на рис. 1.5 и выделенные пунктирными линиями на рис. 1.4.

Рис. 1.3

Рис. 1.4

Орграф конденсации. Орграфом конденсации орграфа D=(V,X) называется орграф $D_0=(V_0,X_0)$, множеством вершин которого является совокупность компонент сильной связности орграфа D с множеством дуг X_0 таких, что $x_0=(v_0,w_0)\in X_0 \Leftrightarrow$ в компонентах сильной связности v_0,w_0 существуют вершины $v\in v_0,w\in w_0$ такие, что $(v,w)\in X$.

Пример 1.2. Орграфом конденсации орграфа, изображенного на рис. 1.4, является орграф, изображенный на рис. 1.6.

Рис. 1.6

Образ, прообраз вершины, множества вершин. Пусть D = (V, X) – орграф, $v \in V, \ V_1 \subseteq V.$ Обозначим $D(v) = \{w \in V \mid (v, w) \in X\}$ – образ вершины $v, \ D^{-1}(v) = \{w \in V \mid (w, v) \in X\}$ – прообраз вершины v (см. рис. 1.7), $D(V_1) = \bigcup_{v \in V_1} D(v)$ – образ множества вершин $V_1, \ D^{-1}(V_1) = \bigcup_{v \in V_1} D^{-1}(v)$ – прообраз множества вершин V_1 .

Задача об оптимальном оповещении членов организации. Пусть в орграфе $D=(V,X),\ V$ — множество членов организации, X — множество дуг таких, что $x=(v,w)\in X$ тогда и только тогда, когда v может передать информацию w. Рассмотрим следующую задачу. Требуется выделить подмножество U множества V с минимальным количеством элементов такое, что через оповещение некоторой информацией членов из U можно добиться оповещения этой информацией всех членов из V. Для решения этой задачи достаточно перейти от орграфа D к орграфу конденсации $D_0=(V_0,X_0)$ и выделить множество $W_0=\{v_0\in V_0\,|\,D_0^{-1}(v_0)=\varnothing\}$. Тогда искомым множеством $U\subseteq V$ является множество вершин таких, что каждая вершина $u\in U$ является вершиной («представителем») одной и только одной компоненты связности орграфа D, принадлежащей множеству W_0 .

Пример 1.3. Решением указанной задачи для орграфа D, изображенного на рис. 1.4, является множество $U = \{v_1\}$ (или $U = \{v_2\}$ или $U = \{v_3\}$). Действительно, v_1 передает информацию v_2 (кратко, $v_1 \mapsto v_2$), а затем $v_2 \mapsto v_3$, $v_2 \mapsto v_4$, $v_2 \mapsto v_5$.

Разбор типового варианта. Пусть схема взаимного оповещения членов организации задана орграфом D, изображенным на рис. 1.8 (см. замечание 1.1). Выделить подмножество U множества V с минимальным количеством элементов такое, что через оповещение некоторой информацией членов из U можно добиться оповещения этой информацией всех членов из V. Указать общую схему такого оповещения.

Рис. 1.8

Решение. Выделим компоненты сильной связности орграфа $D: D_1, ..., D_7$, (на рис. 1.8 они обведены замкнутыми пунктирными линиями). Исходя из определения орграфа конденсации, построим по орграфу D его орграф конденсации D_0 (см. изображение D_0 на рис. 1.9). Условию $D_0^{-1}(.) = \emptyset$ удовлетворяют D_1, D_2, D_3 . Возможными представителями этих орграфов являются вершины v_1, v_2, v_4 . Тогда можно положить $U = \{v_1, v_2, v_4\}$ и согласно рис. 1.8, одной из возможных схем оповещения является:

первоначально оповещаем v_1 , v_2 , v_4 ; далее: $v_1 \mapsto v_9 \mapsto v_{10} \mapsto v_{11}$; $v_9 \mapsto v_{12}$; $v_2 \mapsto v_3$; $v_4 \mapsto v_5 \mapsto v_6 \mapsto v_8 \mapsto v_7$.

