Niveau: 1BSEF

Fonctions numériques

Matière : Mathématiques

Exercice 01

Déterminer D_f dans les cas suivants :

$$f(x) = 3x^{2} + 2x - 1 \quad ; f(x) = \sqrt{x - 1} \quad ; f(x) = \frac{2x - 5}{x - 3}$$

$$f(x) = \frac{1}{\sqrt{x + 3}} \quad ; f(x) = \sqrt{x^{2} - x - 2} \quad ; f(x) = \frac{3x + 4}{x^{2} - x - 2}$$

$$f(x) = \frac{\sqrt{x - 1}}{x^{2}} \quad ; f(x) = \frac{x - 3}{x^{2}} \quad ; f(x) = \frac{2x - 1}{x^{2} - x - 2}$$

$$f(x) = \frac{\sqrt{x-1}}{x-2}$$
; $f(x) = \frac{x-3}{x^2+1}$; $f(x) = \sqrt{\frac{2x-1}{x-2}}$

Etudier la parité de la fonction f dans les cas suivants

$$f(x) = x^2 - 2$$
 ; $f(x) = x + \frac{1}{x}$; $f(x) = x^3 + 2x^2 - 1$
 $f(x) = |x| - \frac{1}{x^2}$; $f(x) = \frac{x}{x^2 - 1}$; $f(x) = \sqrt{x} + 3$

Exercice 03

- 1) Soit f la fonction définie sur \mathbb{R}^* par : $f(x) = 1 \frac{1}{x}$ Montrer que f est majorée par 1 sur \mathbb{R}_+^*
- 2) Soit f la fonction définie sur \mathbb{R} par : $g(x) = -2 + \frac{1}{x^2 + 1}$ Montrer que g est minorée par -2 sur $\mathbb R$
- 3) Soit h la fonction définie par $h(x) = \frac{\sqrt{x-3}}{\sqrt{x+1}}$
- a) Déterminer D_h .
- b) Montrer que la fonction h est majorée par 1 et minorée par -3. Interpréter les résultats géométriquement.

Exercice 04

Soit f une fonction définie par $f(x) = x + \frac{4}{x}$

- 1) Déterminer D_f
- 2) Montrer que f(2) est une valeur minimale de la function f sur $I =]0; +\infty[$.
- 3) Montrer que f(-2) est une valeur maximale de la function $f \operatorname{sur} J =]-\infty;0[$.

Exercice 05

Soit f une fonction définie par $f(x) = \frac{3}{x} + \frac{x}{3}$

- 1) Etudier la parité de la fonction f
- 2) Montrer que pour tous a et b dans $]0;+\infty[$; on a $T = \frac{ab-9}{3ab}$

- 3)Déduire le sens de variations de la fonction f sur $[3;+\infty[$
- 4) Dresser le tableau de variations de $\,f\,$ sur $\,D_f\,$ en précisant sa valeur maximale et sa valeur minimale.

Exercice 06

- 1) Etudier l'égalité de f et g dans les cas suivants :

- $f(x) = \sqrt{(x+1)^2}$; g(x) = x+1
- $f(x) = \frac{x^2 1}{x + 1}$; g(x) = x 1.
- 2) Soient f et g deux fonctions définies sur $\mathbb R$ par $f(x) = x^2 - 2x + 1$ et $g(x) = -2x^2 + 4x + 1$
- a) Comparer f et g pour tout x dans ces intervalles suivants $]-\infty;0]$; $]2;+\infty[$ et [0;2]
- b) Déduire les positions relatives sur $]-\infty;0]$; $]2;+\infty[$ et |0;2|.

Exercice 07

1) Soient f et g deux fonctions définies sur $\mathbb R$ et (C_f) et (C_g) leurs représentations graphiques :

Résoudre graphiquement : f(x) = 0 g(x) = 2; $g(x) \le 2$;

$$f(x) \le g(x)$$
; $f(x) > g(x)$; $f(x) \ge 0$; $f(x) < 0$; $f(x) = g(x)$

Exercice 08

Soit f une fonction numérique dont le tableau de variations est le suivant :

Déterminer f([-2;4]); f([4;8[);f([-7;4]) et f([-7;8[).

Exercice 09

Soit une fonction définie sur l'intervalle I = [-3; 4] dont la courbe est la suivante

- 1)Dresser le tableau de variations de f sur I
- 2)Déterminer les extremums de la fonction, puis le nombre de solutions de l'équation f(x) = 1.
- 3) Déterminer graphiquement : f([-2;0]), f([-3;-2]), f([0;2]) et f([3;4]).

Exercice 10

Soient f,g et h trois fonctions numériques telles que $f(x) = \cos^2(x)$; $g(x) = \sin(2\pi x)$ et $h(x) = \tan(2x)$

Montrer que les fonctions f,g et h sont des fonctions périodiques et $\pi;1$; $\frac{\pi}{2}$ sont respectivement leurs périodes.

Exercice 11

Soit f une fonction définie par $f(x) = x^2 - 2x + 3$ et $\begin{pmatrix} C_f \end{pmatrix}$ sa courbe dans un repère orthonormé.

- 1) Déterminer D_f
- 2) Etudier la parité de la fonction f
- 3) Déterminer la nature de $\left(C_f\right)$ en précisant ses éléments caractéristiques.
- 4) Etudier les variations de la fonction $\,f\,$ puis dresser le tableau de variations sur $\,D_f\,$
- 5) Tracer (C_f) dans un repère orthonormé.

Exercice 12

Soit g une fonction définie par $g(x) = \frac{x+2}{x+3}$ et (C_g) sa courbe dans un repère orthonormé

- 1) Déterminer D_g
- 2) Etudier les variations de $\,g\,$ puis dresser le tableau de variations sur $\,D_g\,$.
- 3) Déterminer la nature de $\left(C_{g}\right)$ en précisant ses éléments caractéristiques.
- 4) Tracer $\left(C_{g}\right)$ dans un repère orthonormé.

Exercice 13

Soient f et g les fonctions définies par :

$$f(x) = x^2 + 1$$
 et $g(x) = \frac{3x}{x - 1}$

- 1) Déterminer l'ensemble de définition de chacune des fonctions f;g; gof et fog.
- 2) Déterminer l'expression de (gof)(x) pour tout $x \in D_{gof}$ et (fog)(x) pour tout $x \in D_{fog}$.
- 3) Écrire sous forme d'une composée de deux fonctions dans les cas suivants :

$$h: x \mapsto \frac{x^2}{x^2 + 8}$$
; $h: x \mapsto \frac{\sqrt{x} - 2}{2\sqrt{x} + 3}$; $h: x \mapsto \frac{x^2 + 1}{|x| + 3}$

4) Soient u et w deux fonctions telles que

$$v(x) = x - 1$$
 et $w(x) = 2x^2 + 3x - 1$

Déterminer la fonction u telle que w = uov

Exercice 14

On considère les fonctions suivantes :

$$f(x) = x^2 - 2x - 1$$
 et $g(x) = \frac{x - 2}{x + 2}$

- 1) Déterminer $D_{\scriptscriptstyle f}$ et $D_{\scriptscriptstyle g}$
- 2) Déterminer D_{gof} puis calculer gof(x)
- 3) Dresser le tableau de variations de f et g
- 4) Déduire le tableau de variations de gof

Exercice 15

- I) Soit h une fonction numérique définie par $h(x) = x + 4 2\sqrt{x+2}$
- 1) Déterminer D_h .
- 2) Montrer 1 est une valeur minimale de la fonction h sur D_h .
- II) Soient f et g deux fonctions numériques telle que $f(x) = x^2 2x + 2 \quad \text{et } g(x) = \sqrt{x+2}$
- 1) Déterminer D_f et D_g .
- 2) Déterminer la nature de $\left(C_{f}\right)$ en précisant ses éléments caractéristiques.
- 3) Etudier les variations de la fonction f sur $]-\infty;1]$ et $[1;+\infty[$; puis dresser le tableau de variations de la fonction f sur D_f .
- 4) Dresser le tableau de variations de la fonction g.
- 5) Construire $\left(C_{_f}
 ight)$ et $\left(C_{_g}
 ight)$ dans un repère orthonormé
- 6) Déterminer graphiquement g([-1;0]) et $g([1;+\infty[)$.
- 7) Vérifier que $(\forall x \in D_h); h(x) = (fog)(x)$.
- 8) Etudier la monotonie de f et g sur les intervalles $\left[-2;-1\right]$ et $\left[-1;+\infty\right[$ puis dresser le tableau de la fonction h variations sur D_h .