多元迭代分析笔记(Ver 0.1)

Fiddie

2022年1月4日

Contents

1	典型	Ę				
	1.1	两点边	边值问题			
	1.2	椭圆型	型边值问题			. 6
	1.3	积分方	方程			. 7
	1.4	极小化	七问题			. 7
2	线性	代数复	· 习			8
	2.1		- · 基础理论复习			. {
	2.2		in			
	2.3		~ · 车			
	2.4					
		2.4.1	基本定义			
		2.4.2	简单的性质			
		2.4.3	注记			. 15
3	分析	学回顾	ā			17
Ū	3.1		、 生			
	0.1	3.1.1	Gateaux导数			
		3.1.2	Fréchet导数			
		3.1.3	其他性质			
		3.1.4	注记			
	3.2	中值定	· · · · · · · · · · · · · · · · · · ·			
		3.2.1	多元实值函数			. 21
		3.2.2	微积分基本公式			. 22
		3.2.3	拟微分中值定理			. 25
		3.2.4	注记			. 25
	3.3	二阶导	导数			. 26
	3.4	凸函数	数			. 28
		3.4.1	基本定义			. 28
		3.4.2	凸函数的不等式刻画			. 29
		3.4.3	凸函数与二阶导数的关系			. 30
		3.4.4	注记			. 30
4	梯度	映射与	5最小化			32
	4.1		直点、驻点、梯度映射			
	4.2		-			
			基本概念			

		.2.2 唯一性定理	34		
		.2.3 注记	35		
	4.3	字在性定理	35		
5	收缩	(3) 5)C3HIL	37		
	5.1	文缩映射			
		5.1.1 压缩映象原理			
		5.1.2 简单应用			
		5.1.3 局部同胚	39		
		5.1.4 注记	39		
	5.2	反函数定理与隐函数定理	40		
		.2.1 反函数定理	40		
		5.2.2 隐函数定理	41		
	5.3	近拓性质	43		
		.3.1 延拓性质	43		
		5.3.2 函数拥有延拓性质的充分条件	44		
		6.3.3 注记	46		
	5.4	单调算子	47		
6	迭代算法				
	6.1	单步算法基本结果	49		
		5.1.1 吸收点			
		5.1.2 Newton迭代算法	50		
		5.1.3 注记	51		
	6.2	正拓算法	52		
		5.2.1 不动点迭代	53		
		5.2.2 Newton迭代	55		
		5.2.3 Euler方法	57		
	6.3	E缩映象定理的一些推广结论	58		
		5.3.1 注记	60		
	6.4	近似收缩序列	61		
		5.4.1 基本结果	61		
		5.4.2 一些推论	65		
		.4.3 注记	65		
	6.5	。			
	-	5.5.1 迭代收缩映射			
		N.D.1 (本) 【N.Y.X.2加中(大)】			
			70		
		5.5.2 一些推广结论	70 71		

By Fiddie CONTENTS

基本符号

符号	含义
$\dot{\Omega}$	集合Ω的边界
$\operatorname{int}(S)$	集合S的内部
\overline{S}	集合S的闭包
$\overline{S(x,r)}$	闭球 $\{y \in \mathbb{R}^n y - x \le r\}$
S(x,r)	开球 $\{y \in \mathbb{R}^n y - x < r\}$
L(X,Y)	线性空间 X 到线性空间 Y 的线性算子全体(这里不一定有界)
L(X)	线性空间X到X的线性算子全体(这里不一定有界)
$x \le y$	偏序 $x_i \leq y_i, i = 1:n.$
$\langle x,y \rangle$	集合 $\{z \in \mathbb{R}^n x \le z \le y\}.$
[x, y]	集合 $\{z \in \mathbb{R}^n z = tx + (1-t)y, t \in [0,1]\}.$
x	绝对值向量 (x_1 , x_2 ,\cdots, x_n).
$\operatorname{tridiag}(a,b,c)$	三对角阵 $\begin{pmatrix} b & c & & \\ a & b & \ddots & \\ & \ddots & \ddots & c \\ & & a & b \end{pmatrix}$
$\operatorname{diag}(a_1,\cdots,a_n)$	对角阵, 对角线元素为 a_1, \cdots, a_n
$ ho(m{A})$	矩阵 4 的谱半径
$F:D\subset\mathbb{R}^n\to\mathbb{R}^m$	一个映射, 定义域为 D , 其中 $D \subset \mathbb{R}^n$, 值域包含于 \mathbb{R}^m .
F(D)或 FD	集合 $\{y \in \mathbb{R}^m y = Fx, x \in D\}.$

第1章 典型问题

§ 1.1 两点边值问题

考虑

$$u'' = f(t, u), 0 \le t \le 1, u(0) = \alpha, u(1) = \beta.$$
(1.1)

其中f在集合 $S = \{(t,y)|0 \le t \le 1, -\infty < y < +\infty\}$,中二阶可微, 其中且

$$f_y(t,y) \ge \eta > -\pi^2, \forall (t,y) \in S.$$

则可以证明(1.1)有唯一的二阶连续可微解.

解析解是非常优美的, 但是计算解析解通常是非常难的, 所以用数值方法来求(1.1)的近似解. 令

$$t_j = jh, h = \frac{1}{n+1}, j = 0, \dots, n+1$$

是区间[0,1]的等距分划,且每个点 $t_j(j=1,2,\cdots,n)$ 处都用二阶中心差商来逼近 $u''(t_i)$:

$$u''(t_j) \triangleq \frac{1}{h^2} [u(t_{j+1}) - 2u(t_j) + u(t_{j-1})], j = 1, \dots, n.$$

把这些近似用在(1.1)中, 就得到解u满足

$$\frac{1}{h^2}[u(t_{j+1})-2u(t_j)+u(t_{j-1})]=f(t_j,u(t_j))+r(t_j,h), j=1,\cdots,n.$$

其中 $r(t_j,h)$ 是截断误差,可以证明当u有一定的可微性时, $\lim_{h\to 0} r(t_j,h) = 0$.

把误差项去掉并定义 x_1, \dots, x_n 满足下面的条件:

$$x_{j+1} - 2x_j + x_{j-1} = h^2 f(t_j, x_j), j = 1, \dots, n, x_0 = \alpha, x_{n+1} = \beta,$$
 (1.2)

引入 $n \times n$ 矩阵

$$\mathbf{A} = \operatorname{tridiag}(-1, 2, -1)$$

并定义映射 $\phi: \mathbb{R}^n \to \mathbb{R}^n$ 为

$$\phi x = h^{2} \begin{pmatrix} f(t_{1}, x_{1}) - \frac{\alpha}{h^{2}} \\ f(t_{2}, x_{2}) \\ \vdots \\ f(t_{n-1}, x_{n-1}) \\ f(t_{n}, x_{n}) - \frac{\beta}{h^{2}} \end{pmatrix}$$

则(1.2)满足

$$\mathbf{A}x + \phi x = 0. \tag{1.3}$$

这种形式是接下来课程中最简单的一类方程.

定义 1.1.1 线性映射 $\phi: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 是对角的(diagonal), 如果对 $i=1,\cdots,n, \phi$ 的第i个分量 φ_i 是一个只依赖于 x_i 的函数.

映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是**几乎线性的**(almost linear), 如果F可以写成 $F=\mathbf{A}+\phi$, 其中 \mathbf{A} 是 $n\times n$ 矩阵, ϕ 是对角的.

类似的离散化可以用于更一般的方程, 比如问题

$$u'' = f(t, u, u'), 0 \le t \le 1, u(0) = \alpha, u(1) = \beta, \tag{1.4}$$

其中一阶导数u'必须逼近得足够好. 类似前面, 可以得到下面的逼近方程:

$$x_{j+1} - 2x_j + x_{j-1} = h^2 f(t_j, x_j, (2h)^{-1} [x_{j+1} - x_{j-1}]), j = 1, \dots, n,$$

其中 $x_0 = \alpha, x_{n+1} = \beta$. 这样得到的方程组不再是几乎线性的.

$\S 1.2$ 椭圆型边值问题

考虑二阶边值问题

$$\Delta u \equiv u_{ss} + u_{tt} = f(s, t, u), (s, t) \in \Omega, u(s, t) = \varphi(s, t), (s, t) \in \dot{\Omega}. \tag{1.5}$$

其中 ω 是平面中的单连通开区域, φ 是定义在 $\dot{\Omega}$ 上的函数. 可以证明, 如果 $f: \Omega \times \mathbb{R}^1 \to \mathbb{R}^1$ 连续可微, 且满足

$$f_u(s, t, u) \ge 0, \forall (s, t) \in \Omega, u \in \mathbb{R}^1,$$

则给 Ω , φ 添加一点条件就可以使得问题(1.5)有唯一解.

下面为了离散(1.5), 考虑正方形区域(0,1)×(0,1), 并用等距正方形网格

$$P_{ij} = (ih, jh), h = \frac{1}{m+1}, i, j = 0, \dots, m+1.$$

在每个网格内点 P_{ij} , $i, j = 1, \dots, m$, 偏导数 u_{ss} , u_{tt} 都用中心差商近似:

$$u_{ss}(P_{ij}) = h^{-2}[u(P_{i+1,j}) - 2u(P_{ij}) + u(P_{i-1,j})], i, j = 1, \dots, m.$$

$$u_{tt}(P_{ij}) = h^{-2}[u(P_{i,j+1}) - 2u(P_{ij}) + u(P_{i,j-1})],$$

记 $x_{ij} = u(P_{ij}), i, j = 0, \cdots, m+1,$ 并用差商来代替导数,可得

$$4x_{ij} - x_{i-1,j} - x_{i+1,j} - x_{i,j+1} - x_{i,j-1} + h^2 f(ih, jh, x_{ij}) = 0, i, j = 1, \dots, m.$$

$$(1.6)$$

在边界处 x_{ij} 的值可以由边界条件给出:

$$x_{0,j} = \varphi(P_{0j}), x_{m+1,j} = \varphi(P_{m+1,j}), x_{j,0} = \varphi(P_{m0}), x_{j,m+1}) = \varphi(P_{j,m+1}), j = 0, \dots, m+1.$$

于是(1.6)可以构成包含 $n = m^2$ 个方程和n个未知数 x_{ij} 的方程组.

为了把(1.6)写成矩阵, 定义向量 $x \in \mathbb{R}^n$ 为

$$x_1 = x_{11}, \dots, x_m = x_{m1}, x_{m+1} = x_{12}, \dots, x_n = x_{mm},$$

并定义块三角阵

$$A = \text{tridiag}(-I, B, -I),$$

其中I是m阶单位矩阵, B = tridiag(-1, 4, -1)是m阶三对角阵, 则(1.6)可以写成

$$Ax + \phi x = b,$$

其中非线性算子 ϕ 的第 φ_i 个分量是

$$\varphi_i(x) = h^2 f(kh, lh, x_i), i = lm + k.$$

且 $\mathbf{b} = (b_1, \dots, b_n)^T$ 是包含边界条件的向量.

§1.3 积分方程

考虑

$$u(s) = \psi(s) + \int_0^1 K(s, t, u(s), u(t)) dt,$$
(1.7)

其中 ψ , K是给定的函数. 为了离散(1.7), 用数值积分公式

$$\int_0^1 f(t)dt = \sum_{j=1}^n \gamma_j f(t_j) + r,$$

其中 $0 \le t_1 < t_2 < \dots < t_n \le 1$ 是数值积分公式中的点, $\gamma_1, \dots, \gamma_n$ 是权重, r是余项. 把求积公式用于(1.7), 得到

$$x_i = \psi(t_i) + \sum_{i=1}^{n} \gamma_j K(t_i, t_j, x_i, x_j), i = 1, cdots, n,$$

这是n个未知数 x_1, \dots, x_n 的n个方程.

§1.4 极小化问题

有许多问题, 我们需要找一个**极小值点** x^* , 它是一个函数 $g: \mathbb{R}^n \to \mathbb{R}^1$ 的极小值:

$$g(x^*) = \min\{g(x)|x \in \mathbb{R}^n\}.$$

如果g是可微的,则g在x*各个方向偏导数都是0,即x*是下面方程组的解:

$$f_i(x) = \frac{\partial}{\partial x_i} g(x) = 0, i = 1, 2, \cdots, n.$$

第2章 线性代数复习

§ 2.1 矩阵基础理论复习

设 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, $b \in \mathbb{R}^m$, 则映射 $H : \mathbb{R}^n \to \mathbb{R}^m$, $Hx = Ax + b, x \in \mathbb{R}^n$, 叫 \mathbb{R}^n 到 \mathbb{R}^m 的**仿射映射(affine mapping)**.

特征值、特征向量、半正定、正定、Jordan块、Jordan标准型的定义(略).

定理 2.1.1 如果A是实对称矩阵 $(A = A^T)$,则A的所有特征值都是实数,且满足不等式

$$\lambda_1 x^T x \le x^T \mathbf{A} x \le \lambda_n x^T x, \forall x \in \mathbb{R}^n.$$

其中 $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$ 是**A**的所有特征值.

如果A是Hermite矩阵 $(A = A^H)$,则上式把 x^T 换为 x^H 以后,对所有 $x \in \mathbb{C}^n$ 成立.

§ 2.2 范数复习

下面的定义的 \mathbb{R}^n 可改为 \mathbb{C}^n .

定义 2.2.1 (向量范数) 设 $x \in \mathbb{R}^n$ 若在 \mathbb{R}^n 上定义了个实值函数 $\|x\|$,满足下面三个条件:

- (1) 非 负 性: ||x|| > 0, $\forall x \in \mathbb{R}^n$, $x \neq 0$;
- (2)齐次性: $\|\lambda x\| = |\lambda| \|x\|, \forall x \in \mathbb{R}^n, \lambda \in \mathbb{R}$.
- (3)三角不等式: $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$,

则称||x||为x的一种**范数** (norm), 并说 \mathbb{R}^n 是赋以范数||x||的**赋范线性空间**.

记 $f_p(x) = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$,根据民科夫斯基(Minkowski)不等式可知 $f_p(x)$ 是 \mathbb{R}^n 的一种范数.

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{1/p},$$

定义 2.2.2 $(l_p$ 范数) 把上述 $f_p(x)$ 称为向量x的 l_p 范数, 记作

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, p \ge 1.$$

可以证明 $||x||_{\infty} = \lim_{p \to \infty} ||x||_p = \max_{1 \le i \le n} |x_i|.$

在 \mathbb{R}^n 中的内积记作 $(x,y)=y^Tx$. 通常把 $\|x\|_2=\sqrt{(x,x)}$ 称为**Euclid范数(Euclid长度)**. 同样在 \mathbb{C}^n 中的内积记作 $(x,y)=y^Hx$, 用Euclid范数可以推出Cauchy-Schwarz不等式:

$$|(x,y)| \le ||x||_2 ||y||_2, \forall x, y \in \mathbb{R}^n$$

当且仅当x,y线性相关时等号成立.

定理 2.2.1 (范数等价定理) 设 $\|\cdot\|,\|\cdot\|'$ 是 \mathbb{R}^n 上的两个范数,则存在 $c_2 \geq c_1 > 0$ 使得

$$c_1 ||x|| \le ||x||' \le c_2 ||x||, \forall x \in \mathbb{R}^n.$$

证明: 只需证任一种范数 $\|x\|$ 与 $\|x\|_2$ 等价. 由Cauchy-Schwarz不等式, $\|x\| \leq \sum_{i=1}^n |x_i| \|e_i\|_\alpha \leq M \|x\|_2$, 则 $\|x\| - \|y\| \leq \|x - y\|_\alpha \leq M \|x - y\|_2$. 所以范数 $\|x\|$ 关于 l_2 范数是x的连续函数.

由于 \mathbb{R}^n 中单位球面 $S=\{x|\|x\|_2=1,x\in\mathbb{R}^n\}$ 是有界闭集,则 $\|x\|$ 可在S上达到最大值 C_2 与最小值 C_1 ,对任意的 $x\in\mathbb{R}^n$,令 $y=\frac{x}{\|x\|_2}$,则 $\|x\|=\|x\|_2\|y\|$.因为 $\|y\|_2=1$,所以 $C_1\leq\|y\|\leq C_2$,所以 $C_1\|x\|_2\leq\|x\|\leq C_2\|x\|_2$.

定义 2.2.3 (算子范数) 给定 $\|\cdot\|,\|\cdot\|'$ 分别是 $\mathbb{R}^n,\mathbb{R}^m$ 上的范数,且 $\mathbf{A}\in L(\mathbb{R}^n,\mathbb{R}^m)$,则 \mathbf{A} 的 (算子)范数定义为

$$\|A\| = \sup_{\|x\|=1} \|Ax\|'.$$

定理 2.2.2 算子 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ 的1-范数、2-范数、无穷范数有关结论:

$$\|\boldsymbol{A}\|_1 = \max_{1 \leq j \leq n} \sum_{i=1}^m |a_{ij}|,$$
 $\|\boldsymbol{A}\|_{\infty} = \max_{1 \leq j \leq m} \sum_{j=1}^n |a_{ij}|,$ $\|\boldsymbol{A}\|_2 = \sqrt{\lambda},$ 其中 λ 是 A^TA 的最大特征值.

注: 张强老师记法: "1" 是竖着的, 所以是列和的 \max ; " ∞ " 是横着的, 所以是行和的 \max .

证明: (1)对于1范数,记 $A=(a_1,\cdots,a_n), a_j=(a_{1j},\cdots,a_{mj})^T, j=1,\cdots,n$. 则 $\max_{1\leq j\leq n}\sum_{i=1}^n|a_{ij}|=\max_{1\leq j\leq n}\|a_j\|_1$. 对任意的 $x\in\mathbb{R}^n$,有

$$||Ax||_1 = ||x_1a_1 + x_2a_2 + \dots + x_na_n||_1$$

$$\leq |x_1|||a_1||_1 + \dots + |x_n|||a_n||_1$$

$$\leq (|x_1| + \dots + |x_n|) \max_{1 \leq j \leq n} ||a_j||_1$$

$$= ||x||_1 \max_{1 \leq j \leq n} ||a_j||_1,$$

当 $\|x\|_1 = 1$ 时,有 $\|Ax\|_1 \le \max_{1 \le j \le n} \|a_j\|_1 \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$

另一方面, 下面我们要让上式的等号成立, 设k是列和最大时的列数, 即 $\max_{1 \le j \le n} \|a_j\|_1 = \|a_k\|_1$. 取 $x = e_k$,

$$\mathbb{M}\|e_k\|_1 = 1, \ \mathbb{E}\|Ae_k\|_1 = \|a_k\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|, \ \text{ix}\|A\|_1 = \max_{\|x\|_1 = 1} \|Ax\|_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}|.$$

(2)对于2范数, 由于矩阵 A^TA 是实对称正定或半正定的, 特征值皆为实数且非负, 因此 A^TA 的最大特征值 λ_1 存在. 由于

$$||Ax||_2 = \sqrt{(Ax, Ax)} = \sqrt{(Ax)^T (Ax)} = \sqrt{x^T A^T Ax},$$

根据实二次型的极性, $\max_{\|x\|_2=1} x^T A^T A x = \lambda_1$, 便得到 $\|A\|_2 = \max_{\|x\|_2=1} \|Ax\|_2 = \sqrt{\lambda_1}$.

(3)对于 ∞ 范数, 类似(1), 容易证明 $\max_{\|x\|_{\infty}=1} \|Ax\|_{\infty} \leq \max_{1\leq i\leq m} \sum_{j=1}^{n} |a_{ij}|$, 再证等号成立, 要构造一个可以使得它取最大值的项. 记k为行和最大时的行数注意 $a_{kj} = |a_{kj}| \operatorname{sgn}(a_{kj})$, 取

$$x_0 = (x_1^{(0)}, x_2^{(0)}, \cdots, x_n^{(0)})^T, \, \sharp \, r x_j^{(0)} = \begin{cases} 1, & a_{kj} \ge 0, \\ -1, & a_{kj} < 0. \end{cases}$$

则 $||x_0||_{\infty} = 1$. 以下步骤省略(证等号成立).

 $注: ||A||_1 = ||A^T||_{\infty}.$

定理 2.2.3 设 $P \in L(\mathbb{R}^n)$ 是正交矩阵, $\alpha \neq 0$ 是任意实数, $H = \alpha P$, 则

$$||H||_2||H^{-1}||_2 = 1.$$

证明: $H^T H = \alpha^2 I$, $(H^{-1})^T H^{-1} = \alpha^{-2} I$, 由算子的2-范数性质可得.

定义 2.2.4 (谱半径) 设 $A \in \mathbb{C}^{n \times n}$, 把A的所有特征值的最大模称为A的谱半径 $(spectral\ radius)$, 记作

$$\rho(\boldsymbol{A}) = \max_{1 \le i \le n} |\lambda_i|$$

其中 λ_i 是A的特征值.

注: 谱半径的引入可以把特征值转化为求范数. 回顾矩阵2范数的定义, 可知 $\rho(\mathbf{A}^T\mathbf{A}) = \|\mathbf{A}\|_2^2$. 下面为了证明谱半径的性质, 需要用到如下的引理:

引理 2.2.4 设 $\|\cdot\|$ 是 \mathbb{R}^n (或 \mathbb{C}^n)上的任意范数, $P \in L(\mathbb{R}^n)$, 定义 $\|x\|' = \|Px\|$, $x \in \mathbb{R}^n$, 则 $\|\cdot\|'$ 是 \mathbb{R}^n (或 \mathbb{C}^n)上的范数, 如果 $A \in L(\mathbb{R}^n)$, 则

$$||A||' = ||PAP^{-1}||.$$

引理 2.2.5 设 $\|\cdot\|$ 是 \mathbb{R}^n 上的任意范数,则存在常数 η ,使得

$$\|\boldsymbol{A}\| \leq \eta_1 \max_{1 \leq i, j \leq n} |a_{ij}|, \forall A \in L(\mathbb{R}^n).$$

类似, 存在常数η2使得

$$\|\boldsymbol{A}\| \le \eta_2 \sum_{i=1}^n \|a^i\|, \forall \boldsymbol{A} \in L(\mathbb{R}^n).$$

其中 a^1, \dots, a^n 是A的各列.

引理 2.2.6 设 $A \in \mathbb{R}^{n \times n}$. 则 $\|A\|_M = n \max_{1 \le i,j \le n} |a_{ij}|$ 是矩阵范数.

定理 2.2.7 设 $\|\cdot\|_{\alpha}$, $\|\cdot\|_{\beta}$ 是两个算子范数,则存在正常数 $c_1, c_2 \in \mathbb{R}$ 使得 $c_1\|A\|_{\beta} \leq \|A\|_{\alpha} \leq c_2\|A\|_{\beta}$, $\forall A \in \mathbb{R}^{n \times n}$.

证明: 只需证明任意一种算子范数 $\|\cdot\|_{\alpha}$, 存在正常数 $d_1, d_2 \in \mathbb{R}$, 使得

$$d_1 \|\mathbf{A}\|_M < \|\mathbf{A}\|_{\alpha} < d_2 \|\mathbf{A}\|_M$$
.

其中 $\|\cdot\|_{M}$ 的定义如前一引理. 证明过程类似于向量范数的等价性.

定理 2.2.8 对于 $\mathbb{C}^{n\times n}$ 中任何算子范数 $\|\cdot\|$, 恒有 $\rho(A) < \|A\|$.

证明:由前面的定理,存在向量范数 $\|\cdot\|_{\alpha}$ 使得 $\|Ax\|_{\alpha} \leq \|A\|\|x\|_{\alpha}$,对任意 $A \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^n$ 成立.设 λ 是A的特征值, x_{λ} 是对应的特征向量,则

$$\|\mathbf{A}x_{\lambda}\|_{\alpha} = |\lambda| \|x_{\lambda}\|_{\alpha}.$$

因此有

 $|\lambda| \leq ||A||, \forall \lambda \in A$ 的特征值.

所以
$$\rho(A) \leq ||A||$$
.

定理 2.2.9 设 $A \in \mathbb{C}^{n \times n}$, 对于任意给定正数 $\varepsilon > 0$, 在 $\mathbb{C}^{n \times n}$ 中至少存在一种算子范数 $\|\cdot\|$ 使得

$$\|\boldsymbol{A}\| \le \rho(\boldsymbol{A}) + \varepsilon.$$

证明: $\mathbf{A} \in \mathbb{C}^{n \times n}$ 相似于Jordan标准型 \mathbf{J} , 即存在可逆矩阵 \mathbf{P} 使得 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = \mathbf{J}$. 令 $\mathbf{D} = \mathrm{diag}(1, \varepsilon, \cdots, \varepsilon^{n-1})$, 并设 $\tilde{\mathbf{J}} = \mathbf{D}^{-1}\mathbf{J}\mathbf{D}$, 则 $\tilde{\mathbf{J}}$ 相当于把非对角元素1换成 ε . 所以

$$\tilde{J} = Q^{-1}AQ, Q = PD.$$

由于

$$\|\boldsymbol{Q}^{-1}\boldsymbol{A}\boldsymbol{Q}\|_1 = \|\tilde{\boldsymbol{J}}\|_1 \le \rho(\boldsymbol{A}) + \varepsilon,$$

 $|\mathbf{L}||\mathbf{A}|| = ||\mathbf{Q}^{-1}\mathbf{A}\mathbf{Q}||_1$ 构成算子范数,则欲证不等式成立.

定理 2.2.10 设 $\mathbf{A} \in L(\mathbb{C}^n)$, 则 $\lim_{k \to \infty} \mathbf{A}^k = 0$ 当且仅当 $\rho(\mathbf{A}) < 1$.

证明: 若 $\rho(A) < 1$, 则存在范数 $\|\cdot\|$ 使得 $\|A\| < 1$. 故 $\|A^k\| \le \|A\|^k \to 0 (k \to \infty)$. 另一方面, 若A有一个特征值 λ 满足 $|\lambda| \ge 1$, 对应特征向量 $x \ne 0$, 则 $A^k x = \lambda^k x$, 从而 $A^k x$ 不趋于0.

§ 2.3 逆矩阵

定理 2.3.1 (Neumann引理) 设 $B \in L(\mathbb{R}^n)$, $\rho(B) < 1$, 则 $(I - B)^{-1}$ 存在且

$$(\boldsymbol{I} - \boldsymbol{B})^{-1} = \lim_{k \to \infty} \sum_{i=0}^{k} \boldsymbol{B}^{i}.$$

证明:由于 $\rho(B)<1$,则I-B所有特征值非零,从而是可逆的.注意到 $(I-B)(I+B+\cdots+B^{k-1})=I-B^k$,所以

$$I + B + \cdots + B^{k-1} = (I - B)^{-1} - (I - B)^{-1}B^{k}$$
.

由定理2.2.10, 当 $k \to \infty$ 时右边趋于 $(\mathbf{I} - \mathbf{B})^{-1}$.

定理 2.3.2 (扰动引理) 设 $A,C\in L(\mathbb{R}^n)$ 且A可逆, $\|A^{-1}\|\leq \alpha$. 若 $\|A-C\|\leq \beta$ 且 $\beta\alpha<1$,则C也是可逆的,且

$$||C^{-1}|| \le \alpha(1 - \alpha\beta).$$

证明: 由于 $||I - A^{-1}C|| = ||A^{-1}(A - C)|| \le \alpha\beta < 1$,且 $A^{-1}C = I - (I - A^{-1}C)$,由Neumann引理, $A^{-1}C$ 可逆,则C可逆,此外,

$$||C^{-1}|| = ||[I - (I - A^{-1}C)]^{-1}A^{-1}|| \le ||A^{-1}|| \cdot \sum_{i=0}^{\infty} ||A^{-1}(A - C)||^{i}$$
$$\le \alpha \sum_{i=0}^{\infty} (\alpha \beta)^{i} = \alpha (1 - \alpha \beta).$$

定理 2.3.3 设映射 $A:D\subset\mathbb{R}^{m}\to L(\mathbb{R}^{n})$ 在 $x^{0}\in D$ 处连续, $A(x^{0})$ 可逆.则存在 $\delta>0$ 与 $\gamma>0$ 使得 当 $x\in D\cap\overline{S(x^{0},\delta)}$ 时,A(x)可逆且 $\|A(x)^{-1}\|\leq\gamma$.此外, $A(x)^{-1}$ 在 x^{0} 处连续.

证明: 设 $\alpha=\|A(x^0)^{-1}\|$, 对 $\beta<\alpha^{-1}$, 取 δ 使得当 $x\in D\cap\overline{S(x^0,\delta)}$ 时, $\|A(x^0)-A(x)\|\leq \beta$. 由扰动引理, A(x)可逆且 $\|A(x)^{-1}\|\leq \gamma$, 其中 $\gamma=\frac{\alpha}{1-\beta\alpha}$. 因此

$$||A(x^0)^{-1} - A(x)^{-1}|| = ||A(x^0)^{-1}[A(x) - A(x^0)]A(x)^{-1}|| \le \alpha \gamma ||A(x^0) - A(x)||.$$

定义 2.3.1 (可约) $n \times n$ 实 (复)矩阵A称为**可约的**(reducible),若存在置换矩阵 $P(满足<math>PP^T = I)$,使得

$$\boldsymbol{P}\boldsymbol{A}\boldsymbol{P}^T = \begin{pmatrix} \boldsymbol{B}_{11} & \boldsymbol{B}_{12} \\ 0 & \boldsymbol{B}_{22} \end{pmatrix}$$

其中 B_{11} , B_{22} 是方阵. 如果A不是可约的, 则称为**不可约的**(irreducible).

定理 2.3.4 矩阵 $A \in L(\mathbb{C}^n)$ 是不可约的当且仅当对任意两个指标 $1 \leq i,j \leq n$,存在A的非零元素序列形如 $\{a_{i,i_1},a_{i_1,i_2},\cdots,a_{i_mj}\}$.

例 2.3.1 下面的两个矩阵A是不可约的:

$$A = \text{tridiag}(-1, 2, -1),$$
 $A = \text{tridiag}(-I, B, -I), 其中B = \text{tridiag}(-1, 4, -1).$

定义 2.3.2 (对角占优) $n \times n$ 实(或复)矩阵 $A = (a_{ij})$ 是**对角占优的**(diagonally dominant), 若

$$\sum_{i=1, i \neq i}^{n} |a_{ij}| \le |a_{ii}|, i = 1 : n.$$

如果不等号对任意i严格成立,则A叫**严格对角占优的**(strictly diagonally dominant). 如果A不可约、对角占优,且对至少一个i不等号严格成立,则称A是**不可约对角占优的**(irreducibly diagonally dominant).

定理 2.3.5 (对角占优定理) 设 $A \in L(\mathbb{C}^n)$ 是严格对角占优的或者不可约对角占优的,则A是可逆的.

证明: (反证)若不然, det $\mathbf{A} = 0$, 则线性方程组 $\mathbf{A}x = 0$ 有非零解 $(x_1, x_2, \dots, x_n)^T$, 设

$$|x_k| = \max\{|x_1|, |x_2|, \cdots, |x_n|\} > 0,$$

则根据
$$\sum_{j=1}^{n} a_{kj} x_{j} = 0$$
,可知 $\left| \sum_{j \neq k} a_{kj} x_{j} \right| = \left| -a_{kk} x_{k} \right| = \left| a_{kk} \right| \left| x_{k} \right| > \left| \sum_{j \neq k} a_{kj} \right| \left| x_{k} \right| > \sum_{j \neq k} \left| a_{kj} x_{j} \right|$,矛盾. 因此**A**是可逆的.

定理 2.3.6 (Gerschgorin圆定理) 设 $\mathbf{A} \in L(\mathbb{C}^n)$,集合 $S = \bigcup_{i=1}^n \left\{ z : |a_{ii} - z| \le \sum_{j \ne i} |a_{ij}| \right\}$,则 \mathbf{A} 的任意特征值都在S中.

证明: 设某个特征值 $\lambda \notin S$, 则

$$|a_{ii} - \lambda| > \sum_{j \neq i} |a_{ij}|, i = 1 : n.$$

则 $A - \lambda I$ 严格对角占优,由前一定理,矛盾.

定理 2.3.7 如果 $A \in L(\mathbb{R}^n)$ 是对称、不可约对角占优的, 且对角元为正, 则A是正定矩阵.

证明: 由于**A**的特征值 λ_i 都是实数,由Gerschgorin圆定理, $\lambda_i \geq 0, i = 1:n$. 由对角占优定理,**A**是可逆的,从而 $\lambda_i > 0$ 对任意i都成立.

注: 特别地, 例2.3.1的两个矩阵都是正定的.

定理 2.3.8 (Sherman-Morrison-Woodbury) 设 $A \in L(\mathbb{R}^n)$ 可逆, $U, V \in L(\mathbb{R}^m, \mathbb{R}^n), m \leq n, 则<math>A+UV^T$ 可逆当且仅当 $I+V^TA^{-1}U$ 可逆. 且

$$(A + UV^{T})^{-1} = A^{-1} - A^{-1}U(I + V^{T}A^{-1}U)^{-1}V^{T}A^{-1}.$$

注: 如果m=1, 则U,V变成向量 $u,v\in\mathbb{R}^n$, 此时有**Sherman-Morrison**公式:

$$(\mathbf{A} + uv^T)^{-1} = \mathbf{A}^{-1} - [1/(1 + v^T \mathbf{A}^{-1} u)] \mathbf{A}^{-1} uv^T \mathbf{A}^{-1}.$$

§ 2.4 偏序和非负矩阵

2.4.1 基本定义

定义 \mathbb{R}^n 上的偏序 \leq 为: 对于 $x, y \in \mathbb{R}^n, x \leq y$ 指 $x_i \leq y_i, i = 1 : n$. 如果 $x, y \in \mathbb{R}^n$ 满足 $x \leq y$ 或 $y \leq x$,称x, y是**可比较的**(comparable).

命题 2.4.1 如上定义的偏序<满足如下性质:

- $(1)x \le x, \forall x \in \mathbb{R}^n;$
- (2) 若 $x \le y$ 且 $y \le x$,则x = y;
- (3)若 $x \le y$ 且 $y \le z$,则 $x \le z$;
- (4) 若 $x \le y$, 则当 $\alpha \ge 0$ 时有 $\alpha x \le \alpha y$;
- (5)若 $x \le y$, 则对任意 $z \in \mathbb{R}^n$ 有 $x + z \le y + z$.

如果 $x \in \mathbb{R}^n$ 满足 $x \geq 0$,称x是**非负的(nonnegative)**,在许多情况下会考虑绝对值向量,定义为

$$|x| = (|x_1|, \cdots, |x_n|)^T, x \in \mathbb{R}^n.$$

命题 2.4.2 绝对值向量满足下面的性质:

- (1)对任意 $x \in \mathbb{R}^n$,有 $|x| \ge 0$,且|x| = 0当且仅当x = 0;
- (2)对 $x \in \mathbb{R}^n, \alpha \in \mathbb{R}, \ \hbar |\alpha x| = |\alpha||x|;$
- (3)对任意 $x, y \in \mathbb{R}^n$, 有 $|x + y| \le |x| + |y|$.

 \mathbb{R}^n 上的范数||·||称为**单调的(monotonic)**, 若对任意 $x, y \in \mathbb{R}^n$, 有

$$|x| \le |y| \Rightarrow ||x|| \le ||y||. \tag{2.1}$$

可以证明(2.1)等价于

$$||x|| = ||x||, \forall x \in \mathbb{R}^n. \tag{2.2}$$

(见命题2.4.10). 特别地, $l_p(1 \le p \le \infty)$ 范数满足(2.2), 所以都是单调的范数.

定义 2.4.1 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在 D_0 是**保序的**(isotone), 若

$$F(x) \leq F(y), \forall x, y \in D_0$$
满足 $x \leq y$.

类似可以定义**反序(antitone)**, 把 $F(x) \leq F(y)$ 改为 $F(x) \geq F(y)$.

下面来引入矩阵上的偏序. $an \times m$ 矩阵上定义偏序 \leq 如下: 对 $an \times an$ $an \times an$

定义绝对值矩阵为: $|\mathbf{A}| = (|a_{ij}|)$, 其中 $\mathbf{A} \in L(\mathbb{R}^n, \mathbb{R}^m)$.

显然, 前面所述的向量偏序的性质对矩阵也成立.

矩阵 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$ 称为**非负的**(nonnegative), 若A > O.

容易证明A是非负的当且仅当A是保序映射,当且仅当x > 0可推出Ax > 0.

2.4.2 简单的性质

定理 2.4.3 设 $B \in L(\mathbb{R}^n)$, $B \geq O$, 则 $(I - B)^{-1}$ 存在且非负 $\Leftrightarrow \rho(B) < 1$.

证明: " \Leftarrow ":若 $\rho(B)$ < 1,则由Neumann引理, $(I - B)^{-1} = \sum_{i=0}^{\infty} B^i$. 由于B是非负的,故 $(I - B)^{-1}$ 也是非负的.

"⇒": 设 λ 是**B**的一个特征值, 对应特征向量为 $x \neq 0$, 则 $|\lambda||x| \leq \mathbf{B}|x|$, 所以 $(\mathbf{I} - \mathbf{B})|x| \leq (1 - |\lambda|)|x|$. 所以 $|x| \leq (1 - |\lambda|)(\mathbf{I} - \mathbf{B})^{-1}|x|$. 由于 $(\mathbf{I} - \mathbf{B})^{-1} \geq \mathbf{O}$, 故必有 $|\lambda| < 1$.

推论 2.4.4 若 $D, L \in L(\mathbb{R}^n)$ 都是非负矩阵, D是对角阵且可逆, L是严格下三角阵(对角元都为0的下三角阵), 则 $(D-L)^{-1} \geq 0$.

定义 2.4.2 如果矩阵 $A \in L(\mathbb{R}^n)$ 可逆, $A^{-1} \geq O$, 且 $a_{ij} \leq 0 (i, j = 1 : n, i \neq j)$, 把A称为M-矩阵. 对称的M-矩阵叫Stieltjes矩阵.

下面定理给出了M-矩阵的刻画:

定理 2.4.5 设 $A \in L(\mathbb{R}^n)$, $a_{ij} \leq 0 (i \neq j)$. 则 $A \in M$ -矩阵当且仅当下列条件满足:

- (1)A的对角元都是正数;
- (2)矩阵 $B = I D^{-1}A$ 满足 $\rho(B) < 1$, 其中 $D = \text{diag}(a_{11}, \dots, a_{nn})$.

证明: " \leftarrow ": $\partial \rho(\mathbf{B}) < 1$, 由于 $\mathbf{B} \ge 0$, 由定理2.4.3, $(\mathbf{I} - \mathbf{B})^{-1} = (\mathbf{D}^{-1}\mathbf{A})^{-1} \ge \mathbf{O}$, 所以 \mathbf{A}^{-1} 存在. 由于 $\mathbf{D} \ge \mathbf{O}$, 则 $\mathbf{A}^{-1} \ge \mathbf{O}$.

"⇒": 先证明**A**的对角元都是正数. 若不然, 存在i使得 $a_{ii} \leq 0$, 从而**A**的第i列 a^i 都是非正的, 从而向量 $e^i = \mathbf{A}^{-1}a^i \leq 0$, 但是 $e^i = (0, \dots, 0, 1, 0, \dots, 0)$ (第i个分量为1, 注意 $\mathbf{I} = \mathbf{A}^{-1}\mathbf{A}$), 产生矛盾.

由于 $D \ge O$ 且D不可逆,则 $B = I - D^{-1}A \ge O$,且 $(I - B)^{-1} = A^{-1}D \ge O$.由定理2.4.3, $\rho(B) < 1$.

下面介绍几个结论可以用来表示M-矩阵之间的关系.

引理 2.4.6 (比较定理) 设 $\mathbf{B} \in L(\mathbb{R}^n)$, $\mathbf{C} \in L(\mathbb{C}^n)$. 若 $|\mathbf{C}| \leq \mathbf{B}$, 则 $\rho(\mathbf{C}) \leq \rho(\mathbf{B})$.

证明:设 $\sigma = \rho(\mathbf{B})$,任取 $\varepsilon > 0$,考虑 $\mathbf{B}_1 = (\sigma + \varepsilon)^{-1}\mathbf{B}$, $\mathbf{C}_1 = (\sigma + \varepsilon)^{-1}\mathbf{C}$.则 $\rho(\mathbf{B}_1) < 1$,且

$$|\boldsymbol{C}_1|^k \leq \boldsymbol{B}_1^k, k = 1, 2, \cdots.$$

由定理2.2.10, $\lim_{k\to\infty} \boldsymbol{B}_1^k = 0$, 从而 $\lim_{k\to\infty} \boldsymbol{C}^k = 0$. 再由定理2.2.10, $\rho(\boldsymbol{C}_1) < 1$,所以 $\rho(\boldsymbol{C}) < \sigma + \varepsilon$. 由 ε 的任意性, $\rho(\boldsymbol{C}) \leq \sigma$.

由注记里面的例2.4.2, 两个M-矩阵的和通常不是M-矩阵, 但是有如下结论:

命题 **2.4.7** 设 $A_1 \in L(\mathbb{R}^n)$ 是M-矩阵,对角部分为 D_1 ,非对角部分为 $-B_1 = A_1 - D_1$,若 $D_2 \in L(\mathbb{R}^n)$ 是非负对角矩阵, $B_2 \in L(\mathbb{R}^n)$ 是对角元为0的非负矩阵,满足 $B_2 \leq B_1$,则

$$A = D_1 + D_2 - (B_1 - B_2)$$

是M-矩阵, 且 $A^{-1} \leq A_1^{-1}$.

证明: 设 $D = D_1 + D_2$, $B = B_1 - B_2$, $H = D^{-1}B$, $H_1 = D_1^{-1}B_1$, 则由 $D \ge D_1$ 可知 $D^{-1} \le D_1^{-1}$, 显然 $O \le B \le B_1$, 则 $O \le H \le H_1$, 由前一引理, $\rho(H) \le \rho(H_1) < 1$, 由定理2.4.5, A是M-矩阵. 由于 $A \ge A_1$, 两边乘 A^{-1} 与 A_1^{-1} 可得 $A^{-1} \le A_1^{-1}$.

推论 2.4.8 若 $A \in L(\mathbb{R}^n)$ 是M-矩阵, $D \in L(\mathbb{R}^n)$ 是非负对角阵, 则A + D是M-矩阵且 $(A + D)^{-1} \leq A^{-1}$.

推论 2.4.9 若 $A \in L(\mathbb{R}^n)$ 是Stieltjes矩阵,则A是正定矩阵.

证明: 若A有非正的特征值 $\lambda \le 0$,则由推论2.4.8, $A - \lambda I$ 是M-矩阵,但这与M-矩阵定义中 $A - \lambda I$ 不可 逆矛盾.

2.4.3 注记

命题 2.4.10 对 \mathbb{R}^n 赋予范数 $\|\cdot\|$. 下面两个叙述等价:

- (1)对任意 $x, y \in \mathbb{R}^n$,若 $|x| \le |y|$,则 $|x| \le |y|$;
- (2)对任意 $x \in \mathbb{R}^n$,有||x||| = ||x||.

证明: "(1) \Rightarrow (2)": 显然, 取y = |x|即可.

"(2) \Rightarrow (1)":(反证)若 $|x| \le |y|$ 但|x| > |y|, 取 $\lambda > 1$ 使得 $|x| = ||\lambda y||$, 记 $\lambda y = z = (z_1, z_2, \dots, z_n)$, 显然|x| < |z|.

不妨设||x|| = 1. 则 $x, \lambda y \in \partial B$, 其中 $B = \{a \in \mathbb{R}^n | ||a|| < 1\}$, 考虑

$$D = \{(\varepsilon_1 z_1, \varepsilon_2 z_2, \cdots, \varepsilon_n z_n) | \varepsilon_i \in \{-1, 1\}, i = 1 : n\}$$

则 $\operatorname{conv} D = \prod_{i=1}^n [-|z_i|, |z_i|],$ 由条件(2)可知 $D \subset B$, 从而 $\operatorname{conv} D \subset \operatorname{conv} B = B$.

由于|x| < |z|, 则 $x \in \operatorname{int}(\operatorname{conv} D) \subset \operatorname{int}(B)$, 这与 $x \in \partial B$ 矛盾.

注: (1)如果 $A \subset C$, 则 $int(A) \subset int(C)$.

- (2)如果 $A \subset C$, 则凸包满足 $conv(A) \subset conv(C)$.
- (3)对单位闭球B, $conv(B) \subset B$, 证明如下: 记

$$x = \lambda_1 a_1 + \lambda_2 a_2 + \dots + \lambda_n a_n, \not\exists + \lambda_i \ge 0, \sum_{i=1}^n \lambda_i = 1, a_i \in B,$$

所以
$$||x|| \le \sum_{i=1}^{n} \lambda_i ||a_i|| \le \sum_{i=1}^{n} \lambda_i = 1.$$

命题 2.4.11 设 $A \in L(\mathbb{R}^n)$,则 $A^{-1} \ge 0$ 当且仅当存在 $B \in L(\mathbb{R}^n)$,使得C = A + B满足下列三个条件:

- $(1)C^{-1} \geq O;$
- $(2)C^{-1}B > 0$;
- $(3)\rho(C^{-1}B) < 1.$

证明: " \Rightarrow ": 取B = O即可.

" \leftarrow ":由于 $\boldsymbol{C} = \boldsymbol{A} + \boldsymbol{B} \Rightarrow \boldsymbol{A} = \boldsymbol{C} - \boldsymbol{B} = \boldsymbol{C} (I - \boldsymbol{C}^{-1} \boldsymbol{B})$. 由定理2.4.3与条件(2)(3), $(\boldsymbol{I} - \boldsymbol{C}^{-1} \boldsymbol{B})^{-1}$ 存在且非负, 因此 \boldsymbol{A}^{-1} 存在,且 $\boldsymbol{A}^{-1} = (I - \boldsymbol{C}^{-1} \boldsymbol{B})^{-1} \boldsymbol{C}^{-1}$. 由条件(1), $\boldsymbol{A}^{-1} \geq \boldsymbol{O}$.

例 2.4.1 举出M-矩阵不可约或者不对角占优的例子.

考虑 $\mathbf{A} = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, 其中a < 0, 则 $\mathbf{B} = \mathbf{I} - \mathbf{D}^{-1}\mathbf{A} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix}$ 满足 $\rho(\mathbf{B}) = 0$, 由定理2.4.5, \mathbf{A} 是M-矩阵. 当a < -1时, \mathbf{A} 不是对角占优. 显然 \mathbf{A} 不可约.

例 2.4.2 两个M-矩阵的和不一定是M-矩阵.

考虑
$$M = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$$
, 其中 $a < 0$, 则 M , M' 是M-矩阵. 再考虑 $A = M + M^T = \begin{pmatrix} 2 & a \\ a & 2 \end{pmatrix}$, 而 $B = I - D^{-1}A = \begin{pmatrix} 0 & -\frac{a}{2} \\ -\frac{a}{2} & 0 \end{pmatrix}$ 满足 $\rho(B) = -\frac{a}{2}$. 当 $a < -2$ 时,由定理 $2.4.5$, A 不是M-矩阵.

第3章 分析学回顾

§3.1 可微性

3.1.1 Gateaux导数

一元实值函数f在x处可微指存在实数a = f'(x)使得

$$\lim_{t \to 0} \frac{1}{t} [f(x+t) - f(x) - at] = 0.$$

我们把它推广到n维的情况:

定义 3.1.1 (Gateaux可微) 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在内点 $x \in D$ 处 Gateaux可微 (G-可微),若存在线性算子 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$,使得对任意 $h \in \mathbb{R}^n$,有

$$\lim_{t \to 0} \frac{1}{t} \|F(x+th) - F(x) - t\mathbf{A}h\| = 0.$$
(3.1)

把A记为F'(x), 叫做F在x处的Gateaux导数(G-导数).

注: (1)由范数等价定理, 定义中的范数可以是任意的范数.

(2)定义中的 \mathbf{A} 是唯一的. 若 \mathbf{A}_1 , \mathbf{A}_2 都满足(3.1)式, 则对任意 $h \in \mathbb{R}^n$ 与充分小的t > 0, 有

$$\|(\mathbf{A}_1 - \mathbf{A}_2)h\| \le t^{-1} \|F(x+th) - F(x) - t\mathbf{A}_1h\| + t^{-1} \|F(x+th) - F(x) - t\mathbf{A}_2h\|.$$

上式右边令 $t \to 0$, 则右边趋于0, 所以必有 $\|(A_1 - A_2)h\| = 0$, 从而 $A_1 = A_2$.

(3)如果F在 $D_0 \subset D$ 中的每个点都是G-可微,则对每个 $x_0 \in D_0$, F'(x)都是线性算子,即F'是 D_0 到 $L(\mathbb{R}^n,\mathbb{R}^m)$ 的映射. 特别地,对于 $x \in D_0$,如果

$$\lim_{\|h\| \to 0} \|F'(x+h) - F'(x)\| = 0,$$

则称F'在x处连续.

(4)下面看F'(x)的具体表达式,如果 $F = (f_1, f_2, \dots, f_m)$,我们希望用它们表示F'. 记 $\mathbf{A} = (a_{ij})$,且h取为第j个单位向量 $e^j = (0, \dots, 0, 1, 0, \dots, 0)^T$,则由定义,

$$\lim_{t \to 0} \frac{1}{t} |f_i(x + te^j) - f_i(x) - ta_{ij}| = 0.$$

所以 f_i 在x处的偏导数存在,且

$$\partial_j f_i(x) \triangleq \frac{\partial f_i(x)}{\partial x_j} = a_{ij}, i, j = 1 : n.$$

所以F'(x)的矩阵表达式就是Jacobi**矩阵**(Jacobian matrix):

$$F'(x) = \begin{pmatrix} \partial_1 f_1(x) & \cdots & \partial_n f_1(x) \\ \vdots & & \vdots \\ \partial_1 f_m(x) & \cdots & \partial_n f_m(x) \end{pmatrix}$$

特别地, 对于实值函数 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$, 那么g'(x)就是行向量

$$g'(x) = (\partial_1 g(x), \cdots, \partial_n g(x)).$$

而 $g'(x)^T$ 叫做g在x处的**梯度(gradient)**.

- (5)Jacobi矩阵的存在性(即偏导数存在性)不能推出F是G-可微的,见例3.1.1.
- (6)极限 $\lim_{t\to 0} \frac{1}{t} [F(x+th) F(x)]$ 的存在性也不能推出F在x处是G-可微的, 见例3.1.2.

F的G-导数在x处的存在性不能推出F在x处连续,见例3.1.3,但是我们可以定义半连续的概念:

定义 3.1.2 (半连续) 映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 称为在 $x\in D$ 处**半连续**(hemicontinuous)的, 若对任意 $h\in\mathbb{R}^n$ 与 $\varepsilon>0$, 存在 $\delta=\delta(\varepsilon,h)$, 使得当 $|t|<\delta$ 且 $x+th\in D$ 时, $\|F(x+th)-F(x)\|<\varepsilon$.

命题 3.1.1 如果 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在 $x \in D$ 处G-可微,则F在x处半连续.

证明: 对任意固定的 $h \in \mathbb{R}^n$, 定义映射G(t) = F(x+th), 其中t满足 $x+th \in D$, 则G(t)在0处可微, 且

$$G'(0) = \lim_{t \to 0} \frac{1}{t} [G(t) - G(0)] = F'(x)h.$$

所以G在0处连续, F在0处半连续.

3.1.2 Fréchet导数

G-导数的性质不够好, 我们考虑下面这种更强的可微性.

定义 3.1.3 (Fréchet可微) 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在 $x \in \operatorname{int}(D)$ 处Fréchet可微(F-可微)的,若存在 $A \in L(\mathbb{R}^n, \mathbb{R}^m)$,使得

$$\lim_{h \to 0} \frac{1}{\|h\|} \|F(x+h) - F(x) - \mathbf{A}h\| = 0.$$

这里的线性映射A依然记为F'(x), 叫做F在x处的F-导数.

容易看出,如果映射F在x处是F-可微的,则它在x处也是G-可微的,从而F-可微函数满足所有G-可微也满足的性质.

F-导数是唯一的, 且它的具体表达式也是Jacobi矩阵. 我们用F'(x)同时表示G-导数和F-导数. 但是可以构造出映射使得它有G-导数但没有F-导数.

映射F的G-导数存在的必要条件是F为半连续的. 平行于这个结论, 我们可以推出F的F-导数存在的必要条件是F为连续的.

命题 **3.1.2** 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在x处是F-可微的,则F在x处连续. 此外,存在 $\delta>0$ 与 $c\geq0$,使得 $\overline{S(x,\delta)}\subset D$,且当 $\|h\|\leq\delta$ 时,

$$||F(x+h) - F(x)|| \le c||h||.$$

证明: 由于 $x \in \text{int}(D)$,则存在 $\delta_1 > 0$ 使得当 $||h|| < \delta_1$ 时, $x + h \in D$. 给定 $\varepsilon > 0$,由F-导数定义,存在 $0 < \delta \le \delta_1$,使得当 $||h|| \le \delta$ 时,

$$||F(x+h) - F(x) - F'(x)h|| < \varepsilon ||h||.$$

因此取 $c = \varepsilon + ||F'(x)||$ 即可满足题目的条件.

定理 3.1.3 (链式法则) 如果 $F: D_F \subset \mathbb{R}^n \to \mathbb{R}^m$ 在x处有G-导数, $G: D_G \subset \mathbb{R}^m \to \mathbb{R}^n$ 在F(x)处有F-导数, 则复合函数 $H = G \circ F$ 在x处有G-导数, 且

$$H'(x) = G'(F(x))F'(x).$$

更进一步,如果F'(x)是F-导数,则H'(x)也是F-导数.

证明: 固定 $h \in \mathbb{R}^n$. 由定义, $x \in \text{int}(D_F)$, $Fx \in \text{int}(D_G)$. 由于F在x处是半连续的, 即存在 $\delta > 0$ 使得 当 $|t| < \delta$ 时, $x + th \in D_F$ 且 $F(x + th) \in D_G$. 因此, 对于 $0 < |t| < \delta$, 有

$$\frac{1}{|t|} ||H(x+th) - H(x) - tG'(Fx)F'(x)h||$$

$$\leq \frac{1}{|t|} ||G(F(x+th)) - G(F(x)) - G'(F(x))[F(x+th) - F(x)]||$$

$$+ \frac{1}{|t|} ||G'(F(x))[F(x+th) - F(x) - tF'(x)h]||.$$

由于F是G-可微的,所以当 $t\to 0$ 时上式的第二项趋于0. 对于 $0<|t|<\delta$ 满足 $\|F(x+th)-F(x)\|\neq 0$,上式的第一项的分子分母同乘 $\|F(x+th)-F(x)\|$,再让 $\|F(x+th)-F(x)\|\to 0$,利用F在x处半连续可知 $\frac{1}{|t|}\|F(x+th)-F(x)\|$ 有界,再利用G是F-可微可知上式的第一项趋于0. 所以G'(F(x))F'(x)是H在x处的G-导数.

更进一步, 若F'(x)是个F-导数, 证明是类似的.

注: 如果G在x处只有G-导数而没有F-导数,则H在x处可能不是G-可微的,见例3.1.5.

3.1.3 其他性质

定义 3.1.4 映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 称为由D到F(D)的**同胚**(homeomorphism), 若F是D上的单射, 且 F,F^{-1} 分别在D,F(D)上连续.

定义 3.1.5 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 称为在 $D_0 \subset D$ 上是 $H\ddot{o}lder$ 连续的, 若存在常数 $c \geq 0$ 与 $p \in (0,1]$, 使得对任意 $x, y \in D$, 有

$$||F(y) - F(x)|| \le c||y - x||^p$$
.

注: 由命题3.1.2, 如果F在x处的F-导数F'(x)存在, 则F'(x)是Lipschitz连续的.

3.1.4 注记

例 3.1.1 定义 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 如下:

$$f(x_1, x_2) = \begin{cases} x_1, & x_2 = 0, \\ x_2, & x_1 = 0, \\ 1, & \sharp \, \text{\sharp \ensuremath{\pi}$} \, \text{$\sharp$} \, \text{$\sharp$$$

则 $\partial_1 f(0)$ 与 $\partial_2 f(0)$ 存在,但是f在0处没有G-导数.

证明:
$$\partial_1 f(0) = \lim_{t \to 0} \frac{f(t,0) - f(0,0)}{t} = 1$$
, $\partial_2 f(0) = \lim_{t \to 0} \frac{f(0,t) - f(0,0)}{t} = 1$.
但是取 $h = (1,1)$, 则 $\frac{f(th) - f(0)}{t} = \frac{1}{t} \to \infty (t \to 0)$, 所以不存在G-导数.

例 3.1.2 定义 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 如下:

$$f(x_1, x_2) = \operatorname{sgn}(x_2) \min(|x_1|, |x_2|),$$

证明: 对任意 $h \in \mathbb{R}^2$, 有

$$V(0,h) \triangleq \lim_{t \to 0} \frac{1}{t} [f(th) - f(0)] = f(h),$$

但是f在0处没有G-导数.

证明: V(0,h)=f(h)的证明是容易的. 如果f在0处的G-导数为A, 则由 $\lim_{t\to 0}\frac{1}{t}[f(th)-f(0)-tf(h)]=0$, 可知Ah=f(h). f(1,0)=f(0,1)=0, 但是 $f(1,1)=1\neq f(1,0)+f(0,1)$, 所以A不是线性映射.

例 3.1.3 定义 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 如下:

$$f(x_1, x_2) = \begin{cases} 0, & x_1 = 0, \\ \frac{2x_2 \exp(-\frac{1}{x_1^2})}{x_2^2 + \exp(-\frac{2}{x_1^2})}, & x_1 \neq 0, \end{cases}$$

证明: f在0处有G-导数, 但是f在0处不连续.

证明: 容易证明 $\lim_{t\to 0} \frac{1}{t} [f(th) - f(0)] = 0$,所以f在0处的G-导数恰好为零矩阵. 但是,固定 x_1 , $\lim_{x_2\to 0} f(x_1, x_2) = \infty$,所以f在0处不连续.

例 3.1.4 定义 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 如下:

$$f(x_1, x_2) = \begin{cases} 0, & x = 0, \\ \frac{x_2(x_1^2 + x_2^2)^{3/2}}{(x_1^2 + x_2^2)^2 + x_2^2}, & x \neq 0, \end{cases}$$
(3.2)

证明: f在0处有G-导数, 但是G-导数不是F-导数. 此外, f在0处的G-导数在0处半连续.

证明:由于

$$\frac{1}{t}[f(th) - f(0)] = \frac{1}{t} \cdot \frac{t^4 h_2 (h_1^2 + h_2^2)^{3/2}}{t^4 (h_1^2 + h_2^2)^2 + t^2 h_2^2} < \frac{t \cdot h_2 (h_1^2 + h_2^2)^{3/2}}{h_2^2} \to 0 (t \to 0)$$

所以f的G-导数为0. 如果f的F-导数存在, 则f的F-导数也为0. 但是, 取 $h = (t, t^2)$, 则

$$\frac{1}{\|h\|}|f(h)-f(0)| = \frac{1}{\sqrt{1+t^2}t} \frac{t^2(t^2+t^4)^{3/2}}{(t^2+t^4)^2+t^4} = \frac{1}{\sqrt{1+t^2}} \frac{(1+t^2)^{3/2}}{(1+t^2)^2+1} \to \frac{1}{2}(t\to 0)$$

所以在0处不是F-可微.

例 3.1.5 定义 $f: \mathbb{R}^2 \to \mathbb{R}^1$ 如(3.2)式, $G: \mathbb{R}^2 \to \mathbb{R}^2$ 定义为 $G(x) = (x_1, x_2^2)^T$. 则复合映射 $f \circ G$ 在0处没有G-导数.

证明: 记 $H = f \circ G$, 则

$$H(x_1, x_2) = \begin{cases} \frac{x_2^2 (x_1^2 + x_2^4)^{3/2}}{(x_1^2 + x_2^4)^2 + x_2^4}, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

于是对 $h \in \mathbb{R}^2$,

$$\frac{1}{t}(H(th)-H(0)) = \frac{h_2^2(h_1^2+t^2h_2^4)^{3/2}}{(h_1^2+t^2h_2^4)^2+h_2^4} \to \frac{h_2^2h_1^3}{h_1^4+h_2^4}(t\to 0).$$

如果H的G-导数A存在,则 $Ah = \frac{h_2^2 h_1^3}{h_1^4 + h_2^4}$,显然A不是线性映射,故H不存在G-导数.

§ 3.2 中值定理

3.2.1 多元实值函数

我们记 $[x,y], x,y \in \mathbb{R}^n$ 表示闭区间:

$$[x, y] = \{z | z = tx + (1 - t)y, 0 \le t \le 1\}.$$

先复习数学分析中的结论:

定理 3.2.1 (微分中值定理) 若 $\varphi:[a,b]\subset\mathbb{R}\to\mathbb{R}$ 在[a,b]连续,在(a,b)可微,则存在 $t\in(a,b)$ 使得

$$\varphi(b) - \varphi(a) = \varphi'(t)(b - a).$$

下面我们证明Gateaux可微的多元实值函数版本的中值定理:

定理 3.2.2 设 $f:D\subset\mathbb{R}^n\to\mathbb{R}$ 在凸集 $D_0\subset D$ 中的每个点都是G-可微的,则对任意两个点 $x,y\in D_0$,存在 $t\in(0,1)$,使得

$$f(y) - f(x) = f'(x + t(y - x))(y - x).$$

证明: 给定 $x, y \in D_0$, 函数 $\varphi(s) = f(x + s(y - x))$ 是可微的, 从而 φ 在[0,1]上是连续的, 由链式法则,

$$\varphi'(s) = f'(x + s(y - x))(y - x), \forall s \in [0, 1].$$

由微分中值定理,

$$f(y) - f(x) = \varphi(1) - \varphi(0) = f'(x + t(y - x))(y - x).$$

对某个 $t \in (0,1)$ 成立.

注: 上述结论一般来说对多元向量值函数 $F: \mathbb{R}^n \to \mathbb{R}^m, m > 1$ 不成立,见例3.2.1.为了把前面多元实值函数推广到多元向量值函数,我们需要添加一定的条件.

第一个推广是把定理3.2.2应用在F的每个分量上,于是我们得到

命题 3.2.3 如果 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸开集 $D_0 \subset D$ 上是G-可微的, 且 $x, y \in D_0$, 则

$$F(y) - F(x) = K(x, y)(y - x),$$

其中 $K(x,y)\in L(\mathbb{R}^n,\mathbb{R}^m)$ 由 $F=(f_1,\cdots,f_m)^T$,利用定理3.2.2给出,即存在 $t_1,\cdots,t_m\in(0,1)$,使得

$$K(x,y) = \begin{pmatrix} f_1'(x + t_1(y - x)) \\ \vdots \\ f_m'(x + t_m(y - x)) \end{pmatrix}$$

一般来说 t_i 都是不同的, 从而K(x,y)不是G-导数.

3.2.2 微积分基本公式

第二个推广是把微分版本的中值定理变成积分版本. 回顾微积分基本定理:

定理 3.2.4 (微积分基本定理) 若 $f:[a,b]\subset\mathbb{R}\to\mathbb{R}$ 在[a,b]连续, f'存在且在(a,b)上Riemann可积, 则

$$\int_{a}^{b} f'(t)dt = f(b) - f(a).$$

对于映射 $G: [a,b] \subset \mathbb{R} \to \mathbb{R}^m$, 我们定义 $G = (g_1, \dots, g_m)$ 的积分为

$$\int_{a}^{b} G(t) dt = \begin{pmatrix} \int_{a}^{b} g_{1}(t) dt \\ \vdots \\ \int_{a}^{b} g_{m}(t) dt \end{pmatrix}$$

如果每个 g_i 都是Riemann可积, 我们称G是Riemann可积的.

如果 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在区间 $[x,y] \subset D$ 上的每个点都有G-导数,则由命题3.1.1,每个分量 $f_i(x+t(y-x))$ 关于 $t \in [0,1]$ 都连续.因此,如果导数 $f_i'(x+t(y-x))(y-x)$ 关于 $t \in [0,1]$ 都是Riemann可积的,则由微积分基本定理,

$$f_i(y) - f_i(x) = \int_0^1 f_i'(x + t(y - x))(y - x) dt, i = 1 : n.$$

所以我们得到

$$F(y) - F(x) = \int_0^1 F'(x + t(y - x))(y - x) dt.$$
 (3.3)

这个等式非常有用.

f'在[a,b]可积的充分条件是f'在[a,b]连续. 所以(3.3)式满足的一个充分条件是F'(x+t(y-x))关于t在[0,1]上连续. 注意半连续的定义中也可以应用于映射 $F': \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m)$, 我们有:

命题 3.2.5 若 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在凸集 $D_0\subset D$ 上的每个点都有G-导数,且F'在 D_0 中是半连续的,则对任意 $x,y\in D_0$,(3.3)式成立.

下面我们考虑一个重要的推论. 先证明一个引理.

引理 3.2.6 若 $G: [a,b] \subset \mathbb{R}^n \to \mathbb{R}^m$ 在[a,b]连续,则

$$\left\| \int_a^b G(t) dt \right\| \le \int_a^b \|G(t)\| dt.$$

证明: 由于范数是连续函数, $||G(\cdot)||$ 是Riemann可积的, 且对任意 $\varepsilon > 0$, 存在分割 $a < t_0 < \cdots < t_p < b$, 使得下面两式同时成立:

$$\left\| \int_{a}^{b} G(t) dt - \sum_{i=1}^{p} G(t_{i})(t_{i} - t_{i-1}) \right\| \leq \varepsilon,$$

$$\left| \int_{a}^{b} \|G(t)\| dt - \sum_{i=1}^{p} \|G(t_{i})\|(t_{i} - t_{i-1}) \right| \leq \varepsilon,$$

因此

$$\left\| \int_{a}^{b} G(t) dt \right\| \leq \left\| \sum_{i=1}^{p} G(t_{i})(t_{i} - t_{i-1}) \right\| \leq \sum_{i=1}^{p} \|G(t_{i})\|(t_{i} - t_{i-1}) + \varepsilon \right\| \leq \int_{a}^{b} \|G(t)\| dt + 2\varepsilon.$$

由 ε 任意性, 欲证不等式成立.

定理 3.2.7 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在凸集 $D_0\subset D$ 连续可微, 且存在 $\alpha\geq 0$ 与 $p\geq 0$ 使得

$$||F'(u) - F'(v)|| \le \alpha ||u - v||^p, \forall u, v \in D_0,$$

则对任意 $x, y \in D_0$,有

$$||F(y) - F(x) - F'(x)(y - x)|| \le \frac{\alpha}{p+1} ||y - x||^{p+1}.$$

证明: 由命题3.2.5与引理3.2.6, 可得

$$||F(y) - F(x) - F'(x)(y - x)|| = \left\| \int_0^1 [F'(x + t(y - x)) - F'(x)](y - x) dt \right\|$$

$$\leq \int_0^1 ||F'(x + t(y - x)) - F'(x)|| ||y - x|| dt$$

$$\leq \alpha ||y - x||^{p+1} \int_0^1 t^p dt.$$

注: 当p = 1时, $||F(y) - F(x) - F'(x)(y - x)|| \le \frac{\alpha}{2} ||y - x||^2$. 这是个常用的结论. 利用这个结论可以证明Newton法的二阶收敛性(见命题6.1.5).

3.2.3 拟微分中值定理

第三个推广是考虑上界.

定理 3.2.8 (拟微分中值定理) 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在凸集 $D_0\subset D$ 上是G-可微的,则对任意 $x,y\in D_0$,有

$$||F(y) - F(x)|| \le \sup_{0 \le t \le 1} ||F'(x + t(y - x))|| \cdot ||x - y||.$$

证明: 设 $M = \sup_{0 \le t \le 1} \|F'(x + t(y - x))\| < \infty$, 给定 $\varepsilon > 0$, 记

$$\Gamma = \{ t \in [0,1] | || F(x + t(y - x)) - F(x)|| \le Mt || y - x|| + \varepsilon t || y - x|| \}.$$

显然 $0 \in \Gamma$, 所以 Γ 非空, 故可以定义 $\gamma = \sup_{t \in \Gamma} t$. 由命题3.1.1, F(x + t(y - x))关于t连续, 所以

$$||F(x + \gamma(y - x)) - F(x)|| \le M\gamma ||y - x|| + \varepsilon \gamma ||y - x||.$$

由 ε 的任意性, 我们下面只需证 $\gamma = 1$.

若 $\gamma < 1$, 则F'在 $x + \gamma(y - x)$ 存在, 从而由Gateaux导数定义, 存在 $\beta \in (\gamma, 1)$ 使得

$$||F(x+\beta(y-x)) - F(x+\gamma(y-x)) - F'(x+\gamma(y-x))(\beta-\gamma)(y-x)|| \le \varepsilon(\beta-\gamma)||y-x||.$$

 $(取G-导数定义中的<math>\varepsilon$ 为 $\varepsilon ||y-x||)$. 所以

$$||F(x+\beta(y-x)) - F(x+\gamma(y-x))|| \le M(\beta-\gamma)||y-x|| + \varepsilon(\beta-\gamma)||y-x||.$$

所以

$$||F(x+\beta(y-x)) - F(x)|| \le (M+\varepsilon)\gamma||y-x|| + (M+\varepsilon)(\beta-\gamma)||y-x|| = (M+\varepsilon)\beta||y-x||,$$

故 $\beta \in \Gamma$, 与 γ 是上确界矛盾.

下面引入几个简单推论.

推论 3.2.9 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在凸集 $D_0\subset D$ 中的每个点都有G-导数,且对任意 $x\in D_0$,都满足F'(x)=0.则F在 D_0 上是常数.

推论 3.2.10 若 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸集 $D_0 \subset D$ 中是G-可微的,则对任意 $x, y, z \in D_0$,有

$$||F(y) - F(z) - F'(x)(y - z)|| \le \sup_{0 \le t \le 1} ||F'(z + t(y - z)) - F'(x)|| \cdot ||y - z||.$$

证明: 固定 $x \in D_0$, 定义映射G(w) = F(w) - F'(x)w, 则拟微分中值定理(定理3.2.8)的条件对映射G满足, 且G'(w) = F'(w) - F'(x), 所以

$$||G(y) - G(z)|| \le \sup_{0 \le t \le 1} ||G'(z + t(y - z))|| ||y - z||,$$

这就是欲证结论.

下面的结论表明G-导数添加一定条件可以变成F-导数.

命题 3.2.11 若 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在点x的开邻域中的每个点处都是G-可微的,且F'在x处连续,则F在x处是F-可微的.

证明: 给定 $\varepsilon > 0$, 存在 $\delta > 0$ 使得当 $||h|| \le \delta$ 时, $||F'(x+h) - F'(x)|| \le \varepsilon$. 由拟微分中值定理(定理3.2.8), 可得

$$||F(x+h) - F(x) - F'(x)h|| \le \sup_{0 \le t \le 1} ||F'(x+th) - F'(x)|| ||h|| \le \varepsilon ||h||.$$

所以F在x处是F-可微的.

注: 对于 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$, 取开集 $D_0 \subset D$. 如果F在 D_0 有连续的G-导数(从而有连续的F-导数),则F在 D_0 连续可微.

对于F-导数, 我们引入如下定义.

定义 3.2.1 映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在 $x^0\in D$ 处的F-导数称为**强的**(strong), 若任意给定 $\varepsilon>0$, 存在 $\delta>0$ 使得 $\overline{S(x^0,D)}\subset D$, 且

$$||F(y) - F(x) - F'(x^0)(y - x)|| \le \varepsilon ||y - x||, \forall x, y \in \overline{S(x^0, \delta)}.$$

注: " $F'(x_0)$ " 是与F-导数定义不同的地方.

定理 3.2.12 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在 $x\in D$ 的开邻域上每个点都有F-导数,则F'在x处是强F-导数当且仅当F'在x处连续.

证明: " \leftarrow ": 设F'在x处连续. 对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得 $\overline{S(x,\delta)} \subset D$ 且当 $\|h\| \le \delta$ 时 $\|F'(x+h) - F'(x)\| \le \varepsilon$. 因此对 $y,z \in \overline{S(x,\delta)}$ 与 $t \in [0,1]$,有

$$||z + t(y - z) - x|| = ||t(y - x) + (1 - t)(z - x)|| \le t\delta + (1 - t)\delta = \delta.$$

所以利用定理3.2.10可得

$$||F(y) - F(z) - F'(x)(y - z)|| \le \sup_{0 \le t \le 1} ||F'(z + t(y - z)) - F'(x)|| ||y - z||$$

$$\le \varepsilon ||y - z||.$$

所以F'在x处是强的.

"⇒": 若F'(x)是强的,对任意 $\varepsilon > 0$, 取 $\delta > 0$ 使得当 $w \in \overline{S(x,\delta/2)}$ 时,F'(w)存在,且满足

$$||F(y) - F(w) - F'(x)(y - w)|| \le \varepsilon ||y - w||, \forall y \in \overline{S(x, \delta)}.$$

由于F在x的邻域有F-导数,故对任意 $w \in \overline{S(x,\delta/2)}$,取 $h \in \mathbb{R}^n$ 使得 $\|h\| \leq \delta/2$ 且

$$||F(w+h) - F(w) - F'(w)h|| \le \varepsilon ||h||.$$

注意 $||w + h - x|| \le ||w - x|| + ||h|| \le \delta$, 则

$$||[F'(w) - F'(x)]h|| \le ||F(w+h) - F(w) - F'(x)h|| + ||F(w+h) - F(w) - F'(w)(h)||$$

$$< 2\varepsilon ||h||.$$

由算子范数的定义,
$$\|F'(w) - F'(x)\| = \sup_{h \neq 0} \frac{\|[F'(w) - F'(x)]h\|}{\|h\|} \le 2\varepsilon$$
. 因此 F' 是连续的.

3.2.4 注记

例 3.2.1 考虑 $F: \mathbb{R}^2 \to \mathbb{R}^2$,其中 $f_1(x) = x_1^3, f_2(x) = x_2^2$. 令 $x = 0, y = (1, 1)^T$,则不存在 $z \in [x, y]$ 使得

$$F(y) - F(x) = F'(z)(y - x).$$

证明: 注意
$$F'(z) = \begin{pmatrix} 3z_1^2 & 0 \\ 0 & 2z_2 \end{pmatrix}, y-x = (1,1)^T, F(y)-F(x) = (1,1)^T.$$
 如果 $F(y)-F(x) = F'(z)(y-x),$ 则解得 $z_1 = \pm \frac{1}{\sqrt{3}}, z_2 = \frac{1}{2}$. 点 (z_1, z_2) 不在 $[x, y]$ 上.

§3.3 二阶导数

如果 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在集合 $D_0 \subset D$ 上每一点都有G-导数, 则 $F': D_0 \subset \mathbb{R}^n \to L(\mathbb{R}^n, \mathbb{R}^m)$. 由于空间 $L(\mathbb{R}^n, \mathbb{R}^m)$ 是mn维线性空间, 所以可以定义F'的可微性, 从而得到二阶可微.

定义 3.3.1 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在开集 $D_0\subset D$ 中的每个点都有G-导数. 若映射 $F':D_0\subset\mathbb{R}^n\to L(\mathbb{R}^n,\mathbb{R}^m)$ 在 $x\in D_0$ 有G-导数,则(F')'(x)记为F''(x),叫做F在x处的**二阶G-导数**. 如果F'在x处有F-导数,则F''(x)叫F在x处的**二阶F-**导数.

注: 注意F的二阶F-导数是在F的一阶G-导数上定义的. 但是利用定理3.1.2, 如果F''(x)是F-导数,则F'在x处连续,由定理3.2.11, F'是F-导数. 所以F在x处有二阶F-导数的必要条件是F在x处有一阶F-导数.由定理3.2.11,可以证明:

命题 **3.3.1** 如果 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在 $x\in D$ 的开邻域的所有点都有二阶G-导数,且F''在x处连续,则F''(x)也是F的二阶F-导数.

下面几个结论都是把中值定理用于F'得到的结论.

命题 3.3.2 若 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸集 $D_0 \subset D$ 中的每个点都有二阶G-导数,则对任意 $x, y \in D_0$,有

$$||F'(y) - F'(x)|| \le \sup_{0 \le t \le 1} ||F''(x + t(y - x))|| \cdot ||y - x||.$$

证明: 利用定理3.2.8可得.

命题 3.3.3 如果 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在凸集 $D_0 \subset D$ 中的每个点都有二阶G-导数,则对任意 $x, y \in D_0$,有

$$||F(y) - F(x) - F'(x)(y - x)|| \le \sup_{0 \le t \le 1} ||F''(x + t(y - x))|| \cdot ||y - x||^2.$$

证明:注意

$$||F(y) - F(x) - F'(x)(y - x)|| \le \sup_{0 \le t \le 1} ||F'(x + t(y - x)) - F'(x)|| ||y - x|| \qquad (\text{推论}3.2.10)$$

$$\le ||y - x|| \sup_{0 \le t \le 1} \left(\sup_{0 \le s \le 1} ||F''(x + st(y - x))|| ||t(y - x)|| \right) \qquad (\text{定理}3.3.2)$$

以及

$$\sup_{0 \le t \le 1} \sup_{0 \le s \le 1} ||F''(x + st(y - x))|| = \sup_{0 \le t \le 1} ||F''(x + t(y - x))||.$$

即可得到结论.

半连续性的定义也可以应用于F''. 对F'利用命题3.2.5, 可以得到

命题 3.3.4 若 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在凸集 $D_0\subset D$ 上的每个点有半连续的二阶G-导数,则对任意 $x,y\in D_0$,

$$F'(y) - F'(x) = \int_0^1 F''(x + t(y - x))(y - x) dt.$$

下面是一元函数的Taylor公式(展开到二阶), 我们来复习一下.

命题 3.3.5 若 φ : $[0,1] \subset \mathbb{R} \to \mathbb{R}$ 在(0,1)二阶可微, φ 与 φ' 在[0,1]连续, 则存在 $t \in (0,1)$ 使得

$$\varphi(1) - \varphi(0) - \varphi'(0) = \frac{1}{2}\varphi''(t),$$

类似定理3.2.2, 我们有如下结论:

命题 3.3.6 设 $f: D \subset \mathbb{R}^n \to \mathbb{R}$, f在凸集 $D_0 \subset D$ 上的每一点都有二阶G-导数, 则对任意 $x, y \in D_0$, 存在 $t \in (0,1)$, 使得

$$f(y) - f(x) - f'(x)(y - x) = \frac{1}{2}f''(x + t(y - x))(y - x)(y - x).$$

证明: 给定 $x, y \in D_0$, 存在 $\delta > 0$ 使得当 $t \in J \triangleq (-\delta, 1+\delta)$ 时 $x + t(y-x) \in D_0$. 定义映射 $\varphi : J \to \mathbb{R}$ 定义为 $\varphi(t) = f(x + t(y-x))$, 则 φ 在J上可微, $\varphi'(t) = f'(x + t(y-x))(y-x)$. 对任意 $t \in J$, $\varphi''(t)$ 存在, 且

$$\varphi''(t) = \lim_{s \to 0} \frac{1}{s} [f'(x + (s+t)(y-x))(y-x) - f'(x+t(y-x))(y-x)]$$

= $f''(x + t(y-x))(y-x)(y-x).$

所以 φ' 在[0,1]上连续. 对 φ 利用命题3.3.5, 得

$$f(y) - f(x) - f'(x)(y - x) = \varphi(1) - \varphi(0) - \varphi'(0) = \frac{1}{2}f''(x + t(y - x))(y - x)(y - x), \exists t \in (0, 1).$$

下面的定理类似于命题3.3.3.

定理 3.3.7 设 $F: D \subset \mathbb{R}^n \to \mathbb{R}^m$ 在 $x \in D$ 有二阶G-导数,则

$$\lim_{t \to 0} \frac{1}{t^2} [F(x+th) - F(x) - F'(x)(th) - \frac{1}{2}F''(x)(th)(th)] = 0, \forall h \in \mathbb{R}^n.$$

进一步, 若F''(x)是F-导数, 则

$$\lim_{h \to 0} \frac{1}{\|h\|^2} [F(x+h) - F(x) - F'(x)h - \frac{1}{2}F''(x)hh] = 0.$$

证明: 给定 $h \in \mathbb{R}^n$, 令

$$G(t) = F(x+th) - F(x) - F'(x)(th) - \frac{1}{2}F''(x)(th)(th).$$

由于F''(x)存在,则G定义良好且当t充分小的时候是可微的,

$$G'(t) = F'(x+th)h - F'(x)h - tF''(x)hh.$$

由二阶G-导数的定义, 给定 $\varepsilon > 0$, 存在 $\delta > 0$ 使得当 $|t| < \delta$ 时, $||G'(t)|| \le \varepsilon |t|$, 因此利用定理3.2.8,

$$||G(t)|| = ||G(t) - G(0)|| \le \sup_{0 \le \theta \le 1} ||G'(\theta t)|| |t| \le \varepsilon |t|^2, \forall |t| < \delta.$$

若F''(x)是F-导数, 定义

$$R(h) = F(x+h) - F(x) - F'(x)h - \frac{1}{2}F''(x)hh.$$

则R定义良好且在x的邻域上是G-可微的, 给定 $\varepsilon > 0$, 存在 $\delta > 0$ 使得当 $||h|| < \delta$ 时,

$$||R'(h)|| = ||F'(x+h) - F'(x) - F''(x)h|| \le \varepsilon ||h||.$$

由定理3.2.8, 当 $||h|| < \delta$ 时

$$||R(h)|| = ||R(h) - R(0)|| \le \sup_{0 \le t \le 1} ||R'(th)|| ||h|| \le \varepsilon ||h||^2.$$

§3.4 凸函数

3.4.1 基本定义

定义 3.4.1 函数 $g: \subset \mathbb{R}^n \to \mathbb{R}$ 称为凸集 $D_0 \subset D$ 上的**凸函数**(convex), 如果对任意 $x, y \in D_0$ 与 $0 < \alpha < 1$, 有

$$g(\alpha x + (1 - \alpha)y) \le \alpha g(x) + (1 - \alpha)g(y).$$

称g在 D_0 上是**严格凸的**(strictly convex), 如果上述不等式当 $x \neq y$ 时严格成立. 称g在 D_0 上是**一致凸的**(uniformly convex), 如果存在常数c > 0使得当 $x, y \in D_0$ 且 $0 < \alpha < 1$ 时, 有

$$\alpha g(x) + (1 - \alpha)g(y) - g(\alpha x + (1 - \alpha)y) \ge c\alpha(1 - \alpha)||x - y||^2,$$

注:严格凸不一定能推出一致凸,见例3.4.2.

例 3.4.1 设 $\mathbf{A} \in L(\mathbb{R}^n)$, 函数 $f: \mathbb{R}^n \to \mathbb{R}$ 定义为 $f(x) = x^T \mathbf{A} x$,

(2)记 $F = \alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y)$. 则

(1)计算f'(x).

(2)设A是对称阵.证明: f是凸函数当且仅当A半正定, f同时是一致凸且严格凸当且仅当A正定.

证明: (1)把二次型f(x)的表达式展开为 $\sum_{i,j} a_{ij}x_ix_j$ 然后计算即可,得到

$$f'(x) = (\boldsymbol{A} + \boldsymbol{A}^T)x.$$

$$F = \alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y)$$

$$= \alpha x^{T} \mathbf{A}x + (1 - \alpha)y^{T} \mathbf{A}y - (\alpha x + (1 - \alpha)y)^{T} \mathbf{A}(\alpha x + (1 - \alpha)y)$$

$$= \alpha x^{T} \mathbf{A}x + (1 - \alpha)y^{T} \mathbf{A}y - (\alpha^{2} x^{T} \mathbf{A}x + 2\alpha(1 - \alpha)x^{T} \mathbf{A}y + (1 - \alpha)^{2}y^{T} \mathbf{A}y)$$

$$= \alpha(1 - \alpha) \cdot (x^{T} \mathbf{A}x - 2x^{T} \mathbf{A}y + y^{T} \mathbf{A}y)$$

$$= \alpha(1 - \alpha) \cdot (x - y)^{T} \mathbf{A}(x - y) \qquad (*)$$

则 f 是凸函数 $\Leftrightarrow F > 0 \Leftrightarrow \mathbf{A}$ 半正定.

记A特征值为 $\lambda_1 \ge \cdot \ge \lambda_n$. 利用范数等价定理, 我们只需要考虑 $\|\cdot\|_2$. 若A正定, 则 $\lambda_n > 0$. 由Rayleigh商的极性,

$$\min_{x \neq 0} \frac{x^T \mathbf{A} x}{x^T x} = \lambda_n,$$

所以对任意 $x \in \mathbb{R}^n$, 有

$$\lambda_n ||x||_2^2 \le x^T \mathbf{A} x, \forall x \in \mathbb{R}^n.$$

所以 $x^T \mathbf{A} x = 0$ 当且仅当||x|| = 0,故f是严格凸的. 再结合(*)式可得f是一致凸的.

若f同时是严格凸且一致凸,则(*)式与一致凸性表明存在c > 0使得

$$x^T \mathbf{A} x > c \|x\|^2, \forall x \in \mathbb{R}^n.$$

由Rayleigh商的极性,

$$\lambda_n = \min_{x \neq 0} \frac{x^T \mathbf{A} x}{x^T x} \ge c > 0,$$

故A正定.

引理 3.4.1 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}$ 在凸集 $D_0 \subset D$ 上是凸函数, x^0, \dots, x^m 是 D_0 中的任意点, 则对任意非负的 $\alpha_0, \dots, \alpha_m$, 使得 $\sum_{i=0}^m \alpha_i = 1$, 都有

$$g\Big(\sum_{i=0}^{m} \alpha_i x^i\Big) \le \sum_{i=0}^{m} \alpha_i g(x^i).$$

证明:对加归纳即可,略.

注: 函数 $g: D \subset \mathbb{R}^n \to \mathbb{R}$ 在凸集 $D_0 \subset D$ 上是**中点凸(midpoint convex)**的, 若

$$g\left(\frac{x+y}{2}\right) \le \frac{1}{2}g(x) + \frac{1}{2}g(y), \forall x, y \in D_0.$$

然而中点凸的函数q不一定是凸的,除非q是连续的(证明见3.4.6).

利用引理,可以证明凸函数都是连续的:

定理 3.4.2 设 $q:D\subset\mathbb{R}^n\to\mathbb{R}$ 在凸开集 $D_0\subset D$ 上为凸函数,则q在 D_0 连续.

注: 通常如果凸函数的区域不是开集, 那么这个凸函数不连续, 如 $g:(0,1] \to \mathbb{R}$ 定义为 $g(t) = 0, t \in (0,1),$ g(1) = 1.

3.4.2 凸函数的不等式刻画

定理 3.4.3 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}$ 在凸集 $D_0 \subset D$ 上有G-导数,则:

 $(1)q在D_0$ 上是凸函数当且仅当

$$g(y) - g(x) \ge g'(x)(y - x), \forall x, y \in D_0.$$

- $(3)q在D_0$ 上是一致凸的当且仅当存在常数c > 0使得

$$g(y) - g(x) \ge g'(x)(y - x) + c||y - x||^2, \forall x, y \in D_0.$$

注:这个定理的几何意义是: 凸函数位于任意一点的切平面的上方.

定理 3.4.4 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}$ 在凸集 $D_0 \subset D$ 上有G-导数,则 (1)g是 D_0 上的凸函数当且仅当

$$[g'(y) - g'(x)](y - x) \ge 0, \forall x, y \in D_0.$$

- (2)g在 D_0 上是严格凸的当且仅当上面的不等式在 $x \neq y$ 时严格成立;
- (3)g在 D_0 上是一致凸的当且仅当存在常数c > 0使得

$$[g'(y) - g'(x)](y - x) \ge c||y - x||^2, \forall x, y \in D_0.$$

3.4.3 凸函数与二阶导数的关系

称g的二阶导数为在x处**正定(positive definite)**, 若

$$g''(x)hh > 0, \forall h \in \mathbb{R}^n, h \neq 0.$$

称g的二阶导数为在x处**半正定**(positive semidefinite), 若

$$g''(x)hh \ge 0, \forall h \in \mathbb{R}^n.$$

称g的二阶导数为在集合 D_0 中**一致正定(uniformly positive definite)**, 若存在c > 0使得

$$g''(x)hh \ge c||h||^2, \forall h \in \mathbb{R}^n, \forall x \in D_0.$$

定理 3.4.5 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}$ 在凸集 $D_0\subset D$ 上的每个点有二阶G-导数,则

- (1)g在 D_0 上是凸函数当且仅当对任意 $x \in D_0$, g''(x)半正定.
- (2) g 在 D_0 上是严格 D_0 的当且仅当对任意 $x \in D_0$, g''(x) 正定 .
- (3)g在 D_0 上是一致凸的当且仅当g"在 D_0 上一致正定.

3.4.4 注记

例 3.4.2 函数
$$g(t) = \frac{1}{(1+t^2)^{1/2}}, t \in \mathbb{R}$$
是严格凸但不是一致凸的.

证明: 利用定理3.4.5, 研究g(t)的二阶导数即可.

命题 **3.4.6** 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在凸集 $D_0 \subset D$ 上是连续的, 且满足

$$\frac{1}{2}g(x) + \frac{1}{2}g(y) - g\left(\frac{x+y}{2}\right) \ge \gamma ||x-y||^2, \forall x, y \in D_0.$$

证明: $\dot{a} = 0$, 则 $g = D_0$ 上是凸的. $\dot{a} = 0$, 则 $g = D_0$ 上是一致凸的.

证明: 只证明 $\gamma > 0$ 的情形.

(1) 先用归纳法证明: 对任意正整数m, k, 满足 $0 < m \le 2^k$, 都有

$$m \cdot 2^{-k} g(x) + (1 - m \cdot 2^{-k}) g(y) - g(m \cdot 2^{-k} x + (1 - m \cdot 2^{-k}) y)$$

$$\geq 4\gamma m \cdot 2^{-k} (1 - m \cdot 2^{-k}) ||x - y||^2,$$
(3.4)

当k = 1时结论显然成立. 假如k的情况下3.4式成立, 下面证明把k换成k + 1也成立. 由条件,

$$\frac{1}{2}g(y) + \frac{1}{2}g(m \cdot 2^{-k}x + (1 - m \cdot 2^{-k})y) - g\left(\underbrace{\frac{1}{2}(m \cdot 2^{-k}x + (2 - m \cdot 2^{-k})y)}_{=m \cdot 2^{-k-1}x + (1 - m \cdot 2^{-k-1})y}\right)$$

$$> \gamma(m \cdot 2^{-k})^2 ||x - y||^2.$$

把(3.4)式的 $\frac{1}{2}$ 倍与上式相加,得到

$$\begin{split} m \cdot 2^{-k-1} g(x) + & (1 - m \cdot 2^{-k-1}) g(y) - g \Big(m \cdot 2^{-k-1} x + (1 - m \cdot 2^{-k-1}) y \Big) \\ & \geq \left[2m \cdot 2^{-k} (1 - m \cdot 2^{-k}) + (m \cdot 2^{-k})^2 \right] \gamma \|x - y\|^2 \\ & = 4 \gamma m \cdot 2^{-k-1} (1 - m \cdot 2^{-k-1}) \|x - y\|^2. \end{split}$$

其中 $0 < m \le 2^k$. 但是把x, y对调即可得到 $2^k \le m < 2^{k+1}$ 的情形也成立, 因此我们证明了(3.4)式.

(2)任意无理数都可以用有理数进行逼近,由连续函数的Heine定理,把 $m\cdot 2^{-k}$ 换成无理数也成立,故g在 D_0 上是一致凸的.

第4章 梯度映射与最小化

§4.1 最小值点、驻点、梯度映射

定义 **4.1.1** 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$, 点 $x^* \in D$ 称作g的**局部极小值点**(local minimizer), 若存在 x^* 的开邻域S使得对 $x \in S \cap D$ 有

$$g(x) \ge g(x^*). \tag{4.1}$$

称 x^* 是g的真(proper)局部极小值点,若(4.2)的不等号对 $x \neq x^*$ 严格成立.若(4.2)的不等号对所有 $x \in D_0 \subset D$ 成立,其中 $x^* \in D_0$,则称 x^* 是g在 D_0 的全局极小值点 $(global\ minimizer)$.

定义 4.1.2 点 $x^* \in \text{int}(D)$ 称为 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 的**驻点(critical point)**,若g在 x^* 处有G-导数 且 $g'(x^*) = 0$.

极小值点与驻点的关系为:

定理 4.1.1 设 $x^* \in \text{int}(D)$ 是 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 的局部极小值点, 若g在 x^* 处有G-导数, 则 $g'(x^*) = 0$.

证明: 由于 $x^* \in \text{int}(D)$, x^* 是局部极小值点, 则对任意 $h \in \mathbb{R}^n$ 与充分小的t, 有 $g(x^* + th) - g(x^*) \ge 0$, 所以

$$g'(x^*)h = \lim_{t\to 0^+} \frac{1}{t} [g(x^* + th) - g(x^*)] \ge 0,$$

由h的任意性, $g'(x^*) = 0$.

注: 如果没有可微性, 那么极小值点可能不是驻点, 例如g(x) = |x|在x = 0处. 而驻点不一定是极小值点, 例如 $g(x) = x^3$ 在x = 0处.

定理 **4.1.2** 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$, 且 $g \in \mathcal{L}^* \in \operatorname{int}(D)$ 的二阶导存在.

- (1) 若 x^* 是g的驻点, $g''(x^*)$ 正定, 则 x^* 是g的真局部极小值点.
- (2)若 x^* 是局部极小值点,则 $g''(x^*)$ 半正定.

证明: (1)设 x^* 是驻点, $g''(x^*)$ 正定. 则对任意固定的 $h \in \mathbb{R}^n, h \neq 0$, 有

$$\lim_{t \to 0} \frac{1}{t^2} [g(x^* + th) - g(x^*)] = \frac{1}{2} g''(x^*) hh. \tag{4.2}$$

因此对充分小的t有 $g(x^* + th) - g(x^*) > 0$. 由于h是任意的, 因此 x^* 是真局部极小值点.

(2)(反证)设 x^* 是局部极小值点, $g''(x^*)$ 不是半正定,则存在h使得 $g''(x^*)hh < 0$,因此对充分小的t,由(4.2)式可得 $g(x^* + th) - g(x^*) < 0$,矛盾.

注: 如果 x^* 是局部极小值点,则 $g''(x^*)$ 不一定是正定的,例如 $g(x) = x^4$ 在x = 0处.如果 $g''(x^*)$ 半正定, x^* 不一定是极小值点,例如 $g(x) = x^3$ 在x = 0处.

定义 4.1.3 (梯度映射) 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为在 $D_0 \subset D$ 的**梯度映射**(gradient mapping), 若存在G-可微的函数 $g: D_0 \subset \mathbb{R}^n \to \mathbb{R}^1$ 使得

$$F(x) = g'(x)^T, \forall x \in D_0.$$

4.1.1 注记

1. 梯度映射的刻画

为了求一个函数的驻点, 我们只需要解方程组F(x) = 0, 其中 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 定义为 $F(x) = g'(x)^T, x \in D$, 反过来, 如果F是某个函数g的导数(F是梯度映射), 那么求解方程组F(x) = 0等价于求g的极小值点. 问题在于: 什么情况下可以用这样的方法求解? 事实上有如下的对称原理(证明见教材的第95页).

命题 **4.1.3** (对称原理) 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在凸开集 $D_0\subset D$ 上连续可微,则F是 D_0 上的梯度映射当且仅当对任意 $x\in D_0$, F'(x)都是对称的.

2. 梯度映射的例子

例 4.1.1 设 $F: \mathbb{R}^2 = \mathbb{R}^2$ 定义为 $F(x) = (2x_1x_2, x_1^2)^T$,定义 $g: \mathbb{R}^2 \to \mathbb{R}^1$,则函数 $g(x_1, x_2) = x_1^2x_2$ 满足 $F(x) = g'(x)^T, \forall x \in \mathbb{R}^2$.

4.2.1 基本概念

定义 4.2.1 (水平集) 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$, 定义

$$L(\gamma) = \{x \in D | g(x) \le \gamma\}, \gamma \in \mathbb{R}^1,$$

如果 $L(\gamma)$ 非空, 称 $L(\gamma)$ 为g的**水平集**(level set).

命题 **4.2.1** 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 连续且有紧的水平集,则存在 $x^* \in D$ 使得对任意 $x \in D$ 有 $g(x^*) \leq g(x)$.

注: 如果D不是闭集, 结论不成立, 考虑 $g(x) = x, x \in (0,1)$. 如果D不是有界集, 结论不成立, 考虑 $g(x) = e^x, x \in \mathbb{R}$.

关于全局最优解的唯一性问题非常依赖于水平集的连通性,下面先引入如下概念:

定义 **4.2.2** 称函数 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在 $D_0 \subset D$ 中**连通(connected)**, 若对任意 $x, y \in D_0$, 存在连续函数 $p: [0,1] \to D_0$, 使得p(0) = x, p(1) = y, 且

$$g(p(t)) \le \max\{g(x), g(y)\}, \forall t \in (0, 1).$$

称函数g是**严格连通的**(strictly connected), 若对 $x \neq y, x, y \in D_0$, 上述不等式严格成立.

定义 4.2.3 称集合 $S \subset \mathbb{R}^n$ **道路连通**(path-connected), 若对任意 $x, y \in S$, 存在连续映射 $p: [0,1] \to S$ 使得p(0) = x, p(1) = y.

根据上面的定义, 我们可以得到两个概念之间的关系:

命题 **4.2.2** 函数g: $\subset \mathbb{R}^n \to \mathbb{R}^1$ 在D中连通当且仅当g的每个水平集都是道路连通的.

证明: " \leftarrow ": 设g的每个水平集是道路连通的,则对任意 $x,y \in D$,设 $\gamma = \max\{g(x),g(y)\}$,则存在连续的 $p:[0,1] \to L(\gamma)$,使得p(0)=x,p(1)=y.由 $p(t) \in L(\gamma)$,则对任意 $t \in (0,1)$ 有 $g(p(t)) \leq \gamma$.

"⇒":设g是连通的,对任意水平集 $L(\gamma)$,取 $x,y\in L(\gamma)$,则存在连续的 $p:[0,1]\to D$ 使得 $g(p(t))\le \max\{g(x),g(y)\}\le \gamma$,所以对任意 $t\in (0,1)$ 有 $p(t)\in L(\gamma)$,故 $L(\gamma)$ 是道路连通的.

注: 如果 $D \subset \mathbb{R}^n$ 凸,函数 $g: D \to \mathbb{R}^1$ 是凸函数,则g是连通函数.这是因为,对g的任意水平集 $L(\gamma)$, 取 $x,y \in L(\gamma)$,则对任意 $t \in (0,1)$,有

$$g(tx + (1-t)y) \le tg(x) + (1-t)g(y) \le t\gamma + (1-t)\gamma = \gamma.$$

所以 $L(\gamma)$ 是凸的, 所以是道路连通的. 更一般地, 水平集是凸集的函数都是连通的. 受此启发, 我们定义如下的拟凸概念:

定义 4.2.4 (拟凸) 称函数 $g: \mathbb{R}^n \to \mathbb{R}^1$ 在凸集 $D_0 \subset D$ 上**拟凸**(quasiconvex), 若对任意 $x, y \in D_0$, 有

$$g(tx + (1 - t)y) \le \max\{g(x), g(y)\}, \forall t \in (0, 1).$$

称函数g是**严格拟凸**(strictly quasiconvex), 若上式不等式对 $x \neq y$ 严格成立.

显然, 如果一个函数是定义在凸集上的凸函数, 则它也是拟凸的.

由前面的证明, 函数 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$ 在D上是拟凸的当且仅当g的任意水平集都是凸集. (证明见注记的命题4.2.7.)

4.2.2 唯一性定理

定理 **4.2.3** 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$.

- (1)若g在D上连通. 则g有至多一个真局部极小值点 x^* , 且对 $x \in D, x \neq x^*$, 有 $g(x^*) < g(x)$.
- (2)若g在D上严格连通,则g有至多一个局部极小值点 x^* ,且对 $x \in D, x \neq x^*$,有 $g(x^*) < g(x)$.

由于全局极小值点是一个局部极小值点, 因此每个局部极小值点都是全局极小值点.

证明: (1)(反证)设 x^* 是一个真局部极小值点,且存在 $y \neq x^*$ 使得 $g(y) \leq g(x^*) = \gamma$.由于g是连通的,则g的任意水平集道路连通,即存在一个连续的 $p:[0,1] \to L(\gamma)$ 使得 $p(0) = x^*$ 且p(1) = y.由p连续,故对 x^* 的任意开邻域S,存在t使得 $p(t) \in S \cap D$, $p(t) \neq x^*$,且 $g(p(t)) \leq \gamma$.这与 x^* 是真局部极小值点矛盾(我们在 x^* 的邻域内找到了比 $g(x^*)$ 更小的g(p(t))).所以对任意 $x \in D$,有 $g(x^*) < g(x)$,从而最多只有一个真局部极小值点.

(2)设g严格连通,且 $x^* \neq y^*$ 是两个局部极小值点. 不妨设 $g(x^*) \leq g(y^*) = \gamma$. 由于g严格连通,则存在连续的 $p:[0,1] \to L(\gamma)$ 使得对任意 $t \in (0,1)$,有 $g(p(t)) < \gamma$,且 $p(0) = x^*$, $p(1) = y^*$. 所以对 y^* 的任意开邻域S,存在 $t \in (0,1)$ 使得 $p(t) \in S \cap D$,于是 $g(p(t)) < g(y^*)$,这与 y^* 是局部极小值点矛盾,从而最多只有一个局部极小值点.

由于全局极小值点也是一个局部极小值点,因此至多有一个全局极小值点.

显然,任意严格拟凸的函数都是严格连通的,所以有如下推论:

推论 4.2.4 若 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在凸集 $D_0 \subset D$ 上是严格拟凸的(特别地, 严格凸的), 则g在 D_0 中有至多一个局部极小值点, 且 D_0 中的每个局部极小值点都是 D_0 中的全局最小值点.

命题 4.2.5 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$ 是凸函数,且在凸集 $D_0\subset D$ 上G-可微.则 $x^*\in D_0$ 是g的驻点当且仅当 x^* 是 D_0 中的全局极小值点.

进一步, 若g在 D_0 严格凸, 则g在 D_0 至多有一个驻点.

证明: (1)设 $x^* \in D_0$ 是驻点, $g'(x^*) = 0$. 由于g凸, 则

$$g(x) \ge g(x^*) + g'(x^*)(x - x^*) = g(x^*), \forall x \in D_0.$$

反之, 设 $x^* \in D_0$ 是全局极小值点, 则它也是局部极小值点, 由于 D_0 开, 故定理4.1.1表明 x^* 是驻点.

(2) 若g在 D_0 严格凸,则由定理3.4.4,有不等式[g'(x) - g'(y)](x - y) > 0,所以不可能有两个驻点. 利用定理3.4.5与这个命题,可得如下有用的推论:

推论 4.2.6 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在凸开集 $D_0 \subset D$ 上的每点都有正定的二阶G-导数,则g在 D_0 有至多一个驻点(或者局部/全局极小值点).

4.2.3 注记

1. 关于拟凸的更多性质.

命题 4.2.7 函数 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在D上是拟凸的当且仅当g的任意水平集都是凸集.

证明: " \Leftarrow ": 设g的每个水平集 $L(\gamma)$ 都是凸集,则对任意 $x,y \in D$,取 $\gamma = \max\{g(x),g(y)\}$,则 $x,y \in L(\gamma)$,由 $L(\gamma)$ 是凸集,故对 $t \in (0,1)$,有 $g(tx+(1-t)y) \in L(\gamma)$,即 $g(tx+(1-t)y) \leq \max\{g(x),g(y)\}$,所以g在D上是拟凸的.

"⇒":设g在D上是拟凸的. 对任意水平集 $L(\gamma)$,取 $x,y \in L(\gamma)$,则 $g(tx+(1-t)y) \le \max\{g(x),g(y)\} \le \gamma$,所以对任意 $t \in (0,1)$ 有 $tx+(1-t)y \in L(\gamma)$,故 $L(\gamma)$ 是凸的.

§ **4.3** 存在性定理

在前一节我们证明了如果g有紧的水平集,则g有全局最小值点. 在这一节我们要考虑什么情况下g会有紧的水平集. 首先注意如果D是闭集,g在D中连续,则每个水平集都是闭的,此时问题化简为考虑水平集的有界性. 通常很难给出g的条件来保证某些水平集是有界的,这是因为极小元的存在性很难确定.

命题 **4.3.1** 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$ 在闭集D上连续,则g存在一个有界的水平集当且仅当g的全局极小值点构成的集合是非空且有界的.

证明: "⇒":若g存在有界的水平集 $L(\gamma)$,则由g的连续性与D是闭集, $L(\gamma)$ 是紧的. 由命题4.2.1,g的全局极小值点构成的集合是非空且有界的. (非空由命题4.2.1保证, 而有界是因为 $L(\gamma)$ 是有界闭集)

" \leftarrow ":设 x^* 是全局极小值点,则水平集 $L(g(x^*))$ 恰好就是全局极小值点构成的集合,当然是有界的. 口下面考虑**所有**水平集有界的一些充分条件和必要条件. 显然如果D本身有界,则所有水平集有界,所以我们设D是无界的.

定理 4.3.2 设 $g:D\subset\mathbb{R}^n\to\mathbb{R}^1$, D无界. 则下面命题等价:

- (1)q的所有水平集有界;
- (2)对 $\{x^k\}\subset D$, 如果 $\lim_{k\to\infty}\|x^k\|=\infty$, 则 $\lim_{k\to\infty}g(x^k)=+\infty$.

证明: "(1) \Rightarrow (2)": 设g的所有水平集有界,则存在序列 $\{x^k\}\subset D$,满足 $\lim_{k\to\infty}\|x^k\|=\infty$. 如果 $g(x^k)\leq\gamma<+\infty$,那么 $\{x^k\}\subset L(\gamma)$,此时 $L(\gamma)$ 是无界的,矛盾.因此必有 $\lim_{k\to\infty}g(x^k)=+\infty$.

"(2) \Rightarrow (1)":假设(2)成立,如果存在一个水平集 $L(\gamma)$ 无界,则存在序列 $\{x^k\} \subset L(\gamma)$ 满足 $\lim_{k \to \infty} \|x^k\| = +\infty$,且 $g(x^k) \le \gamma$,与条件(2)矛盾.

推论 4.3.3 设 $g: D \subset \mathbb{R}^n \to \mathbb{R}^1$ 在闭集 $D_0 \subset D$ 上连续, 而且满足前一定理的条件(2). 则g有全局极小值点 $x^* \in D_0$.

进一步,如果g在 D_0 严格连通,则 x^* 也有一个唯一的局部极小值点,而且对任意 $x\in D_0, x\neq x^*$,有 $g(x^*)< g(x)$.

证明: 由前一定理, g的所有水平集有界. 由于 D_0 是闭的, 所以g在 D_0 中的水平集也是闭集, 由命题4.2.1, g存在全局极小值点 x^* . 进一步, 如果g严格连通, 由定理4.2.3, g至多只有一个局部极小值点, 即 x^* 也是g在 D_0 中唯一的局部极小值点.

定义在开集上的凸函数是连续的, 所以根据推论4.2.4与推论4.3.3, 我们有如下推论:

推论 4.3.4 设 $g:\mathbb{R}^n\to\mathbb{R}$ 严格凸(或者连续且严格拟凸),且当 $\lim_{k\to\infty}\|x^k\|=\infty$ 时,有 $\lim_{k\to\infty}g(x^k)=+\infty$,则g有唯一的全局极小值点 x^* .

下面的结论非常有用, 最好背下来.

定理 **4.3.5** 设 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$. 如果存在 $\gamma > 0$, 使得

$$||Fx - Fy|| \ge \gamma ||x - y||, \forall x, y \in D,$$

则 F^{-1} 在F(D)中存在,且

$$||F^{-1}u - F^{-1}v|| \le \gamma^{-1}||u - v||, \forall u, v \in F(D).$$

证明: 显然, F是一一映射, 所以 F^{-1} 在F(D)中存在. 对任意 $u,v\in F(D)$, 存在 $x,y\in D$ 使得Fx=u,Fy=v, 于是

$$||F^{-1}u - F^{-1}v|| = ||x - y|| \le \gamma^{-1}||Fx - Fy|| = \gamma^{-1}||u - v||.$$

第5章 收缩映射与延拓性

§ 5.1 收缩映射

5.1.1 压缩映象原理

若A是 \mathbb{R}^n 到 \mathbb{R}^n 的线性算子, $\|A\| < 1$,则方程x = Ax有唯一解.对于非线性算子,我们有压缩映象原理(contraction mapping theorem).

定义 5.1.1 映射 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为在集合 $D_0 \subset D$ 非扩张(nonexpansive), 若

$$||Gx - Gy|| \le ||x - y||, \forall x, y \in D_0.$$

如果上述不等式对 $x \neq y$ 严格成立,则称为**严格非扩张**(strictly nonexpansive).

任意非扩张映射都是Lipschitz连续的, 而且线性算子 $\mathbf{A} \in L(\mathbb{R}^n)$ 非扩张当且仅当 $\|\mathbf{A}\| \leq 1$.

下面我们考虑形如x - Gx = 0的方程, 这个方程的解 x^* , 即满足 $x^* = Gx^*$ 的 x^* 称为G的**不动点**.

注意如果 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 在 D_0 严格非扩张, $x^*, y^* \in D_0$ 是两个不同的不动点, 则

$$||x^* - y^*|| = ||Gx^* - Gy^*|| < ||x^* - y^*||$$

导出矛盾, 因此必有 $x^* = y^*$, 即严格非扩张的映射至多只有一个不动点. 然而严格非扩张性并不能保证不动点的存在性, 考虑

$$Gx = \begin{cases} x + e^{-\frac{x}{2}}, & x \ge 0, \\ e^{\frac{x}{2}}, & x \le 0, \end{cases}$$

所以我们要加强前面的定义.

定义 5.1.2 称映射 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 在 $D_0 \subset D$ 上是**收缩的**(contractive), 如果存在 $\alpha < 1$ 使得对任意 $x, y \in D_0$ 有 $\|Gx - Gy\| \le \alpha \|x - y\|$.

显然线性算子 $\mathbf{A} \in L(\mathbb{R}^n)$ 是收缩映射当且仅当 $\|\mathbf{A}\| < 1$. 注意收缩映射的定义是依赖于具体范数的, 也就是说一个映射可能关于某个范数是收缩, 但关于另一个范数不是收缩映射. (见例5.1.1)

定理 5.1.1 (压缩映象原理) 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 在闭集 $D_0 \subset D$ 中是收缩映射, $GD_0 \subset D_0$, 则G在 D_0 有唯一的不动点.

证明: 任取 $x^0 \in D_0$, 并且定义序列 $x^k = Gx^{k-1}, k = 1, 2, \cdots$. 由于 $GD_0 \subset D_0$, 所以 $\{x^k\}$ 良好定义, 且均位于 D_0 中, 且

$$||x^{k+1} - x^k|| = ||Gx^k - Gx^{k-1}|| \le \alpha ||x^k - x^{k-1}||,$$

所以

$$||x^{k+p} - x^k|| \le \sum_{i=1}^p ||x^{k+i} - x^{k+i-1}|| \le (\alpha^{p-1} + \dots + 1)||x^{k+1} - x^k||$$
$$\le \frac{\alpha^k}{1 - \alpha} ||x^1 - x^0||.$$

所以 $\{x^k\}$ 是Cauchy序列,从而在 D_0 有极限 $x^* = \lim_{k \to \infty} x^k$. 由G的连续性, $x^* = \lim_{k \to \infty} x^{k+1} = \lim_{k \to \infty} Gx^k = Gx^*$,所以 x^* 是不动点.

5.1.2 简单应用

对于非扩张映射, 有如下结论:

定理 5.1.2 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 在闭凸集 $D_0 \subset D$ 中是非扩张映射, $GD_0 \subset D_0$. 则G在 D_0 有不动点当且仅当序列 $x^{k+1} = Gx^k, k = 0, 1, \cdots$ 对至少一个 $x^0 \in D_0$ 有界.

证明:参见教材的第121页.

下面的结论可以看作Neumann引理的非线性版本:

定理 5.1.3 设F = I - G, $G: \mathbb{R}^n \to \mathbb{R}^n$, $I \not \in \mathbb{R}^n$ 中的恒等映射, 若G在 \mathbb{R}^n 为收缩映射, 则 $F \not \in \mathbb{R}^n$ 到 \mathbb{R}^n 的同胚映射.

证明: 定义映射 G_y 为 $G_y = Gx + y$. 由压缩映象原理, 对任意 $y \in \mathbb{R}^n$, 映射 G_y 在 \mathbb{R}^n 中有唯一的不动点. 即对任意 $y \in \mathbb{R}^n$, 方程Fx = y有唯一解, 所以F是一一映射. 显然, F是连续的, 而且

$$||Fx - Fy|| = ||(x - y) - (Gx - Gy)|| \ge (1 - \alpha)||x - y||.$$

由定理4.3.5, F^{-1} 也是连续的. 因此F是同胚.

下面我们来推广这个结论. 第一是把恒等映射换为非奇异的线性映射, 第二是把收缩映射的条件由全空间改为小范围.

定理 5.1.4 设 $A \in L(\mathbb{R}^n)$ 是非奇异的, 映射 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$, 在闭球 $S_0 = \overline{S(x^0, \delta)} \subset D$ 中, 有

$$||Gx - Gy|| \le \alpha ||x - y||, \forall x, y \in S_0,$$

其中 $\beta = \|A^{-1}\|, 0 < \alpha < \beta^{-1},$ 定义映射 $F: S_0 \to \mathbb{R}^n$ 为F = A - G, 则F是从 S_0 到 $F(S_0)$ 的同胚映射.

进一步, 对任意 $y \in S_1 = S(Fx^0, \sigma)$, 其中 $\sigma = (\beta^{-1} - \alpha)\delta$, 方程Fx = y在 S_0 中有唯一解. 特别地, $S_1 \subset F(S_0)$.

证明: 我们要证明F是单射,即证方程Fx = y有唯一解,即 $x = A^{-1}(Gx + y)$ 有唯一解.固定 $y \in S_1$,定义映射 $H: S_0 \to \mathbb{R}^n$ 为 $Hx = A^{-1}(Gx + y) = x - A^{-1}(Fx - y)$,方程Fx = y在 S_0 中有唯一解当且仅当H有唯一的不动点.

对任意 $x, y \in S_0$,

$$||Hx - Hz|| = ||A^{-1}(Gx - Gz)|| \le \beta \alpha ||x - z||,$$

因此H在 S_0 中是收缩映射. 下面验证 $HS_0 \subset S_0$. 对任意 $x \in S_0$,

$$||Hx - x^{0}|| \le ||Hx - Hx^{0}|| + ||Hx^{0} - x^{0}||$$

$$< \beta \alpha ||x - x^{0}|| + \beta ||Fx - y|| < \beta \alpha \delta + \beta \sigma = \delta.$$

所以 $HS_0 \subset S_0$, 由压缩映象原理, H有唯一的不动点.

下面验证F是同胚. 显然F连续, 注意对任意 $x, y \in S_0$,

$$||x - y|| = ||A^{-1}(Gx - Gy) + A^{-1}(Fx - Fy)||$$

$$\leq \alpha\beta||x - y|| + \beta||Fx - Fy||,$$

所以

$$||Fx - Fy|| \ge (\beta^{-1} - \alpha)||x - y||. \tag{5.1}$$

由定理4.3.5, F^{-1} 连续. 所以F是 S_0 到 $F(S_0)$ 的同胚映射.

注: 如果A = I, 那么这个结论就是定理5.1.3的局部版本. 注意如果G仅仅在 \mathbb{R}^n 的子集上是收缩映射, 那么G可能没有不动点(考虑 $f(x) = \frac{1}{2}x + 2, x \in [0,1]$). 然而这个定理保证了如果y充分接近于 $x^0 - Gx^0$, 那么方程x - Gx = y有唯一解.

如果把定理5.1.4的 S_0 改为 \mathbb{R}^n , 那么有

定理 5.1.5 如果 $A \in L(\mathbb{R}^n)$ 非奇异, $G: \mathbb{R}^n \to \mathbb{R}^n$ 满足

$$||Gx - Gy|| \le \alpha ||x - y||, \forall x, y \in \mathbb{R}^n,$$

其中 $\alpha < \|A^{-1}\|^{-1}$, 则 $A - G \in \mathbb{R}^n$ 到 \mathbb{R}^n 的同胚映射.

5.1.3 局部同胚

令 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$, 假设方程Fx = y 存在解 x^* . 则有如下三个问题:

- $(1)x^*$ 是否为孤立解(isolated solution), 即是否存在 x^* 的邻域, 使得这个邻域不包含方程Fx=y的其他解?
- (2)如果y作小扰动变成 $y + \Delta y$,那么方程 $Fx = y + \Delta y$ 是否还有解? (当然如果F(D)包含了y的开邻域, 这个结论是对的)
 - (3)对y作连续扰动, 那么方程的解是否也是连续变化?

如果F是"局部同胚"的, 那么上述结论是正确的. 回顾: F在U上的限制 F_U 定义为 $F_{UX} = F_X, x \in U$.

定义 5.1.3 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为在 $x \in \text{int}(D)$ 处**局部同胚**(local homeomorphism)的,若分别存在x与Fx的开邻域U,V,使得 F_U 是U到V的同胚映射.

定理5.1.4有相应的局部同胚版本的叙述. 我们已经证明了F是 S_0 到 $F(S_0)$ 的同胚, 而且 $F(S_0)$ 包含了开球 $V = S(Fx^0\sigma)$, 因此如果设 $U = F^{-1}(V)$, 那么U也是开的, 而且 F_U 是U到V的同胚映射. 我们有如下定理:

命题 **5.1.6** 设 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$. 如果对某个 $x^0 \in D$, 存在非奇异的 $A \in L(\mathbb{R}^n)$ 与 $\delta > 0$, 使得

$$||Fx - Fy - A(x - y)|| \le \alpha ||x - y||, \forall x, y \in \overline{S(x^0, \delta)} \subset D,$$

其中 $\alpha < \|A^{-1}\|^{-1}$,则 $F \neq x_0$ 处的局部同胚.

5.1.4 注记

1. 一个映射可能关于某个范数是收缩, 但关于另一个范数不是收缩映射.

例 5.1.1 考虑线性映射
$$m{A} = \begin{pmatrix} rac{1}{2} & 1 \\ 0 & rac{1}{2} \end{pmatrix}$$
,则 $\|m{A}\|_2 = rac{1}{2} < 1$, $\|m{A}\|_{\infty} = rac{3}{2} > 1$.

₹5.2 反函数定理与隐函数定理

5.2.1 反函数定理

我们需要考虑什么时候局部同胚可以用导数来刻画,事实上我们可以用反函数定理(inverse function theorem). 回顾强导数的定义:

定义 5.2.1 映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^m$ 在 $x^0\in D$ 处的F-导数称为**强的**(strong), 若任意给定 $\varepsilon>0$, 存在 $\delta>0$ 使得 $\overline{S(x^0,D)}\subset D$, 且

$$||F(y) - F(x) - F'(x^0)(y - x)|| \le \varepsilon ||y - x||, \forall x, y \in \overline{S(x^0, \delta)}.$$

定理 5.2.1 (反函数定理) 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在 $x^0\in\mathrm{int}(D)$ 有强F-导数,(或者F在 x^0 的邻域有F-导数,且F-导数在 x^0 附近连续),而且 $F'(x^0)$ 非奇异,则F在 x^0 处是局部同胚的.

进一步, 若对 x^0 的任意开邻域U, F_U 都是一一映射, 则 F_U^{-1} 在 Fx^0 处也有强F-导数, 且

$$(F_U^{-1})'(Fx^0) = [F'(x^0)]^{-1}. (5.2)$$

另外, 如果F'在 x^0 的某个开邻域U存在且连续, 则 $(F_U^{-1})'$ 在 Fx^0 的某个开邻域存在且连续.

证明: (1)记 $A = F'(x^0)$,并取 α 满足 $0 < \alpha < \beta^{-1}$, $\beta = \|A^{-1}\|$. 由于 $F'(x^0)$ 是强导数,则存在 $\delta > 0$ 使得 $S_0 = \overline{S(x^0, \delta)} \subset D$,且

$$||Fx - Fy - A(x - y)|| \le \alpha ||x - y||, \forall x, y \in S_0.$$

因此, 由命题5.1.6, F在 x^0 是局部同胚. (如果F'在 x^0 的邻域存在且连续, 则由定理3.2.12, 结果依然成立.)

(2)下面取定 $\varepsilon > 0$, 并取 $U = x^0$ 的开邻域,且 $F_U = -\psi$,则存在 $\delta' > 0$ 使得 $S' = S(x^0, \delta') \subset U$,

$$||Fx - Fy - A(x - y)|| < \varepsilon ||x - y||, \forall x, y \in S'.$$

并且V = F(S')是 Fx^0 的开邻域. 因此对任意 $u, v \in V$, 存在 $x, y \in S'$ 使得Fx = u, Fy = v, 于是

$$||F_U^{-1}u - F_U^{-1}v - F'(x^0)^{-1}(u - v)|| \le ||A^{-1}|| ||A(x - y) - [Fx - Fy]||$$

$$\le \varepsilon \beta ||x - y|| \le \varepsilon \frac{\beta}{\beta^{-1} - \alpha} ||u - v||.$$

其中最后一个不等号就是式(5.1). 因此(5.2)式满足, 而且 $(F_{U}^{-1})'(Fx^{0})$ 是强的.

(3)若F'存在且在 x^0 的邻域连续,则由扰动引理(引理2.3.2),存在开球 $S_1 = S(x^0, \delta_1)$ 使得对于 $x \in S_1$,F'(x)非奇异,而且 $F'(x)^{-1}$ 在 $x \in S_1$ 连续.而定理3.2.12表明对 $x \in S_1$,F'(x)都是强导数.结合前面的证明可得

$$(F_U^{-1})'(Fx) = F'(x)^{-1}.$$

5.2.2 隐函数定理

下面考虑更一般的情况, F是关于两个向量的函数, 并且给定 y^0 , 方程 $F(x,y^0) = 0$ 有解 x^0 . 我们的问题是如果 y^0 扰动为y, 那么 x^0 会怎么表现?

首先引入一些记号.

定义 5.2.2 设 \mathbb{R}^n 是乘积空间 $\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_p}$,其中 $n_1 + \cdots + n_p = n$,并且记 \mathbb{R}^n 中的元素为 $x = (x^1, \cdots, x^p)$, $x^i \in \mathbb{R}^{n_i}$, $i = 1, \cdots, p$. 令 $F : D \subset \mathbb{R}^n \to \mathbb{R}^m$,并且对于 $x = (x^1, \cdots, x^p) \in D$,记

$$D_i = \{ y \in \mathbb{R}^{n_i} | (x^1, \dots, x^{i-1}, y, x^{i+1}, \dots, x^p) \in D \}.$$

定义 $F_i: D_i \to \mathbb{R}^m$ 为 $F_i y = F(x^1, \cdots, y, \cdots, x^p), y \in D_i$. 称F在x处有关于 \mathbb{R}^{n_i} 的**偏F-导数** $\partial_i F(x) \equiv F_i'(x^i),$ 如果 $x^i \in \mathrm{int}(D_i)$ 且 F_i 在 x^i 处有F-导数. 另外, $\partial_i F$ 称为在x处**强的**, 如果给定 $\varepsilon > 0$, 存在 $\delta > 0$ 使得对 $\|x - y\| \leq \delta$, $\|h^i\| \leq \delta$, $\|k^i\| \leq \delta$, 都有

$$||F(y^1, \dots, y^{i-1}, y^i + h^i, y^{i+1}, \dots, y^p) - F(y^1, \dots, y^{i-1}, y^i + k^i, y^{i+1}, \dots, y^p) - \partial_i F(x)(h^i - k^i)|| \le \varepsilon ||h^i - k^i||,$$

注: 如果 $m=1, n_1=\cdots=n_p=1,$ 那么这个定义就是通常的偏导数.

在某点处偏F-导数的连续性可以推出在该点处的偏导数是强的. 下面我们仅对p=2的情形给出证明:

引理 5.2.2 设 $F: D \subset \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^m$. 如果 $\partial_i F$, i = 1或2, 在 (x^0, y^0) 的包含于D的开邻域中存在, 且在 (x^0, y^0) 连续, 则 $\partial_i F(x^0, y^0)$ 是强的.

证明: 只证明i=1的情形. 给定 $\varepsilon>0$, 存在 $\delta_1,\delta_2>0$, 使得对任意 $x\in S_1=S(x^0,\delta_1),y\in S_2=S(y^0,\delta_2)$, 偏导数 $\partial_1 F(x,y)$ 都存在, 于是

$$\|\partial_1 F(x,y) - \partial_1 F(x^0,y^0)\| \le \varepsilon, \forall x \in S_1, y \in S_2.$$

对给定的 $y \in S_2$, 定义 $G: S_1 \to \mathbb{R}^m$ 为 $Gx = F(x,y) - \partial_1 F(x^0,y^0)x$, 则

$$||G'(x)|| = ||\partial_1 F(x, y) - \partial_1 F(x^0, y^0)|| \le \varepsilon, \forall x \in S_1.$$

因此对任意 $x, z \in S_1$, 由中值定理的推论3.2.10, 有

$$||F(x,y) - F(z,y) - \partial_1 F(x^0, y^0)(x-z)|| = ||Gx - Gz||$$

$$\leq \sup_{0 \leq t \leq 1} ||G'(x + t(z-x))|| ||x - z|| \leq \varepsilon ||x - z||.$$

因此 $\partial_i F(x^0, y^0)$ 是强的.

定理 5.2.3 (隐函数定理) 设 $F:D\subset\mathbb{R}^n\times\mathbb{R}^p\to\mathbb{R}^n$ 在 (x^0,y^0) 的开邻域 $D_0\subset D$ 连续,而且 $F(x^0,y^0)=0$. 假设 ∂_1F 在 (x^0,y^0) 存在且是强的,且 $\partial_1F(x^0,y^0)$ 非奇异,则分别存在 x^0 与 y^0 的开邻域 $S_1\subset\mathbb{R}^n$ 与 $S_2\subset\mathbb{R}^p$,使得对任意 $y\in\overline{S_2}$,方程F(x,y)=0有唯一解 $x=Hy\in\overline{S_1}$,而且映射 $H:S_2\to\mathbb{R}^n$ 是连续的.

进一步, 若 $\partial_2 F a(x^0, y^0)$ 存在, 则 $H a y^0$ 处是F-可微的, 而且

$$H'(y_0) = -[\partial_1 F(x^0, y^0)]^{-1} \partial_2 F(x^0, y^0).$$
(5.3)

证明: 设 $A = \partial_1 F(x^0, y^0), \beta = ||A^{-1}||, 并令0 < \alpha < \beta^{-1}.$ 由于 $\partial_1 F$ 在 (x^0, y^0) 处是强导数, 我们可以取 $\delta_1, \delta_2 > 0$, 使得

$$||F(x,y) - F(z,y) - A(x-z)|| \le \alpha ||x-z||,$$

$$\forall x, z \in \overline{S_1} = \overline{S(x^0, \delta_1)}, \forall y \in \overline{S_2} = \overline{S(y^0, \delta_2)}, \overline{S_1} \times \overline{S_2} \subset D_0.$$
(5.4)

对固定的 $y \in \overline{S_2}$, 定义映射 $G_y : \overline{S_1} \to \mathbb{R}^n$ 为

$$G_y x = Ax - F(x, y) - F(x^0, y), \forall x \in \overline{S_1},$$

则(5.4)式可以化为

$$||G_y x - G_y z|| \le \alpha ||x - z||, \forall x, z \in \overline{S_1}.$$

由F在 (x^0, y^0) 处的连续性, 我们可以让 δ_2 充分小, 使得

$$||F(x^0, y)|| = ||F(x^0, y) - F(x^0, y^0)|| < \sigma \equiv (\beta^{-1} - \alpha)\delta_1.$$

由定理5.1.4, 方程 $Ax - G_y x = F(x^0, y)$ 在 $\overline{S_1}$ 中有唯一解, 即对任意 $y \in \overline{S_2}$, 方程F(x, y) = 0在 $\overline{S_1}$ 中有唯一解. 我们把这个解记为Hy, 下面证明 $H: S_2 \to \mathbb{R}^n$ 是连续的.

取 $y, z \in S_2$. 由H的定义, F(Hy, y) = F(Hz, z) = 0, 由(5.4)式,

$$||Hy - Hz|| \le ||A^{-1}(F(Hy, y) - F(Hz, y) - A(Hy - Hz))|| + ||A^{-1}(F(Hz, y) - F(Hz, z))||$$

$$\le \beta\alpha ||Hy - Hz|| + \beta ||F(Hz, y) - F(Hz, z)||.$$

由于 $\beta\alpha$ < 1, 所以我们有

$$||Hy - Hz|| \le \frac{\beta}{1 - \beta \alpha} ||F(Hz, y) - F(Hz, z)||.$$
 (5.5)

所以F的连续性可以推出H的连续性.

最后设 $\partial_2 F(x^0, y^0)$ 存在,则对给定的 $\varepsilon > 0$,可以取 $\delta > 0$,使得(5.5)式变为

$$||Hy - Hy^0|| \le \gamma ||y - y^0||, \forall y \in S(y^0, \delta), \gamma = \frac{\beta}{1 - \alpha\beta} (||\partial_2 F(x^0, y^0)|| + \varepsilon).$$

因此,

$$||Hy - Hy^{0} + [\partial_{1}F(x^{0}, y^{0})]^{-1}\partial_{2}F(x^{0}, y^{0})(y - y^{0})||$$

$$\leq \beta||\partial_{1}F(x^{0}, y^{0})(Hy - Hy^{0}) + \partial_{2}F(x^{0}, y^{0})(y - y^{0})||$$

$$\leq \beta||F(Hy, y) - F(Hy^{0}, y) - \partial_{1}F(x^{0}, y^{0})(Hy - Hy^{0})||$$

$$+ \beta||F(Hy^{0}, y) - F(x^{0}, y^{0}) - \partial_{2}F(x^{0}, y^{0})(y - y^{0})||$$

$$\leq \beta\varepsilon||Hy - Hy^{0}|| + \beta\varepsilon||y - y^{0}||$$

$$\leq (\beta\gamma + \beta)\varepsilon||y - y^{0}||.$$

故H在y⁰处F-可微, 且(5.3)式成立.

注: 反函数定理的重要假设是 $F'(x^0)$ 非奇异,于是我们必须设F从 \mathbb{R}^n 映往自身,此时F'(x)才是个n阶方阵.对于非方阵的情形,即F从 \mathbb{R}^n 到 \mathbb{R}^m ,方程Fx=y包含的方程与未知数个数不相等.当m < n时,这就是隐函数定理.

§ **5.3** 延拓性质

设 $F:\mathbb{R}^n\to\mathbb{R}^n$ 在每一点 $x\in\mathbb{R}^n$ 都是局部同胚,在这一节我们研究添加哪些条件可以使得局部同胚加强为全局同胚.

首先要注意到添加条件是必须的,例如函数 e^x 在每一点的导数都是非零的,所以它是局部同胚,然而 e^x 的 值域不是 \mathbb{R} . 更多的例子见注记.

在一维的情况下,由中值定理,F是一一映射当且仅当 $F'(x) \neq 0, \forall x$. 然而在高维情况这个性质不成立.

5.3.1 延拓性质

定义 5.3.1 对于给定的连续函数 $q:[0,1]\subset\mathbb{R}^1\to\mathbb{R}^n$, 称映射 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 关于函数q具有**延拓性** 质(continuation property), 若满足下面条件: 当存在 $p:[0,a)\to D, a\in(0,1]$ 使得 $Fp(t)=q(t), \forall t\in[0,a),$ 可以推出极限 $\lim_{t\to a^-}p(t)=p(a)$ 存在, 且 $p(a)\in D$, Fp(a)=q(a).

下面的引理是后面几个命题的重要基础.

引理 5.3.1 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在开集D的每一点有局部同胚,连续函数 $q:[0,1]\to\mathbb{R}^n$ 满足 $Fx^0=q(0)$,其中 $x^0\in D$.如果F关于q有延拓性质,那么存在唯一的连续函数 $p:[0,1]\to D$,满足 $p(0)=x^0$ 且 $Fp(t)=q(t), \forall t\in[0,1]$.

证明: 设U,V分别是 x^0 和 Fx^0 的开邻域,使得 F_U 是U到V的同胚映射.则存在 $t_1 \in (0,1]$,使得对 $t \in [0,t_1)$,有 $q(t) \in V$.于是我们可以定义一个连续函数 $p:[0,t_1) \to U \subset D$ 为 $p(t) = F_U^{-1}q(t), t \in [0,t_1)$.由延拓性质, $p(t_1) = \lim_{t \to t_1^{-}} p(t)$ 存在且 $Fp(t_1) = q(t_1)$.若 $t_1 < 1$,我们可以重复这个过程,并把p延拓到点 $t_2 < t_3 < \cdots \leq 1$.

下面令 $\hat{t} = \sup t_i \le 1$,即这个延拓过程可以让p定义域达到的最大点.于是,要么存在N使得 $\hat{t} = t_N$,使得 $Fp(t) = q(t), \forall t \in [0,\hat{t}]$;要么 $Fp(t) = q(t), \forall t \in [0,\hat{t})$,于是由延拓性质, $Fp(\hat{t}) = q(\hat{t})$.由于 $p(\hat{t}) \in D$ 且D是开集,所以我们可以进一步延拓p使得定义域超过了 \hat{t} ,但这样会与 \hat{t} 的定义矛盾,于是不可能有 $\hat{t} < 1$,必有 $\hat{t} = 1$.

下面证明p的唯一性. 假设 $r:[0,1]\subset\mathbb{R}^1\to D$ 是另一个连续映射, 使得 $r(0)=x^0=p(0), Fr(t)=q(t), t\in[0,1]$. 则集合

$$J_0 = \{ t \in [0, 1] | p(s) = r(s), \forall s \in [0, t] \}$$

满足 $J_0 \neq \emptyset$, 因此 $\bar{t} = \sup\{t | t \in J_0\}$ 定义良好. 由r, p的连续性, $\bar{t} \in J_0$. 如果 $\bar{t} < 1$, 则存在上方逼近 \bar{t} 的点列 $t_k \in (\bar{t}, 1]$, 使得 $\lim_{k \to \infty} t_k = \bar{t} \perp p(t_k) \neq r(t_k)$, 但是有

$$\lim_{k \to \infty} p(t_k) = p(\bar{t}) = r(\bar{t}) = \lim_{k \to \infty} r(t_k),$$

这与F在p(t)处是局部同胚矛盾(在p(t)的小邻域内,可以找到充分大的k使得 $p(t_k)$, $r(t_k)$ 在这个小邻域内,但是 $Fp(t_k) = Fr(t_k)$ 但 $p(t_k) \neq r(t_k)$,于是F在这个小邻域内不是单射).

如果连续函数q是线性的(或者叫仿射的), 那么可以得到下面的重要结论:

命题 5.3.2 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在开集D的每一点都有局部同胚,如果F关于所有线性函数 $q(t)=(1-t)y^0+ty^1$ (其中 $t\in[0,1],y^0,y^1\in\mathbb{R}^n$)都有延拓性质,则 $F(D)=\mathbb{R}^n$.

证明: 任取 $x^0 \in D, y \in \mathbb{R}^n$,则F对线性函数 $q(t) = (1-t)Fx^0 + ty(t \in [0,1])$ 有延拓性质. 由引理5.3.1,存在映射 $p:[0,1] \to D$ 使得 $Fp(t) = q(t), \forall t \in [0,1]$. 特别地, Fp(1) = y, 因此 $F(D) = \mathbb{R}^n$.

下面我们要问什么时候F是一一映射(全局同胚), 先证明一个引理.

引理 5.3.3 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在开集D上的每一点都是局部同胚,令 $q:[0,1]\times[0,1]\subset\mathbb{R}^2\to\mathbb{R}^n$, $r:[0,1]\subset\mathbb{R}^1\to D$ 是连续函数,使得Fr(s)=q(s,0)对任意 $s\in[0,1]$. 若对每个固定的 $s\in[0,1]$,F关于函数 $q_s(t)=q(s,t)$, $t\in[0,1]$ 有延拓性质,则存在唯一的连续映射 $p:[0,1]\times[0,1]\to D$ 使得p(s,0)=r(s)且Fp(s,t)=q(s,t), $\forall s,t\in[0,1]$.

进一步,若 $q(s,1) = q(0,t) = q(1,t) = y, \forall s,t \in [0,1], \ Mr(0) = r(1).$

证明: 设J = [0,1], 对每个 $s \in J$, 由引理5.3.1, 存在唯一的连续映射 $p_s : J \to D$, 使得 $p_s(0) = r(s)$ 且 $Fp_s(t) = q(s,t)$, $\forall t \in J$. 因此, 对任意 $s, t \in J$, 定义 $p(s,t) = p_s(t)$, 我们只需要证明p是连续的.

假设p在 $(s_0,t_1) \in J \times J$ 不连续,设 $t_0 = \inf\{t|p$ 在 (s_0,t) 不连续 $\}$,U,V分别是 $p(s_0,t_0)$ 与 $q(s_0,t_0)$ 的开邻域, F_U 是U到V的同胚.显然 $t_0 \neq 0$ (这是因为r的连续性与 p_s 的唯一性, $p(s,t) = F_U^{-1}q(s,t), \forall q(s,t) \in V$,则当 $p(s,t) \in U$ 时,p是连续的.)设 $t_0 > 0$,记 $J(s_0)$, $J(t_0)$ 分别是 s_0 , t_0 的邻域,使得当 $(s,t) \in J(s_0) \times J(t_0)$ 时, $q(s,t) \in V$,(由q的连续性,这样的区间是存在的).由于 p_{s_0} 连续,取 $t' < t_0$ 使得 $t' \in J(t_0)$ 且 $p(s_0,t') \in U$.由于p关于 (s_0,t') 这两个变量都连续,所以存在子区间 $J'(s_0) \subset J(s_0)$ 使得对任意 $s \in J'(s_0)$ 都有 $p(s,t') \in U$.然而此时 $p_s(t) = p(s,t) = F_U^{-1}q(s,t), \forall (s,t) \in J'(s_0) \times J(t_0)$,所以p在 (s_0,t_0) 的邻域连续,这与 t_0 的定义矛盾.

对于第二部分的证明, 首先注意Fp(0,t)=q(0,t)=y, 由p的连续性, p(0,t)=r(0), $\forall t\in[0,1]$. 否则存在任意接近r(0)的点x使得Fx=y, 这与F是局部同胚矛盾. 类似, 由q(1,t)=y可得p(1,t)=r(1), $\forall t\in[0,1]$. 于是, p(s,1)是关于s的连续函数, Fp(s,1)=q(s,1)=y, $\forall s\in[0,1]$, 且p(0,1)=r(0), p(1,1)=r(1). 如果 $r(0)\neq r(1)$, 则存在点p(s,1)充分靠近r(0), 使得Fp(s,1)=y, 这与F是局部同胚矛盾. 因此r(0)=r(1). □

注: 连续映射 $q:[0,1] \to \mathbb{R}^n$ 称为在 \mathbb{R}^n 中连接端点q(0)与q(1)的**路径(path)**, 连续映射 $q:[0,1] \times [0,1] \to \mathbb{R}^n$ 由路径 $q(0,\cdot)$ 到路径 $q(1,\cdot)$ 的连续变形, 或者叫**同伦(homotopy)**. 引理5.3.1表明, 给定 \mathbb{R}^n 中带有一个端点的路径 $q(0,\cdot)$ 的路径 $q(0,\cdot)$ 和路径 $q(0,\cdot)$ 和

下面回顾道路连通: 集合D称为道路连通集合, 如果对任意 $x,y\in D$, 存在连续映射 $p:[0,1]\to D$ 使得p(0)=x,p(1)=y.

定理 5.3.4 设 $D\subset\mathbb{R}^n$ 是开的连通集, $F:D\to\mathbb{R}^n$ 在D中的每一点都是局部同胚. 则F是D到 \mathbb{R}^n 的同胚(全局同胚)当且仅当F关于所有连续函数 $q:[0,1]\subset\mathbb{R}\to\mathbb{R}^n$ 都有延拓性质.

证明: "⇒": 设F是D到ℝⁿ的同胚, $p:[0,1)\to D, q:[0,1]\to \mathbb{R}^n$ 是连续映射, $Fp(t)=q(t), t\in[0,1)$. 记 $p(1)=F^{-1}q(1)$, 则 $p(1)\in D$. 由 F^{-1} 的连续性, $\lim_{t\to 1^-}p(t)=\lim_{t\to 1^-}F^{-1}q(t)=p(1)$. 因此F对所有连续函数 $q:[0,1]\to\mathbb{R}^n$ 都有延拓性质.

" \leftarrow ":设F对所有连续函数 $q:[0,1] \subset \mathbb{R}^1 \to \mathbb{R}^n$ 有延拓性质, 由命题5.3.2, $F(D) = \mathbb{R}^n$. 由F在D上每一点都有局部同胚, 故F与 F^{-1} 是连续的, 所以只需要证明F是单射.

假设 $Fx^0 = Fx^1 = y$, 其中 $x^0, x^1 \in D$. 记 $r: [0,1] \subset \mathbb{R}^1 \to D$ 是连续映射, 满足 $r(0) = x^0, r(1) = x^1$, 定义 $q: [0,1] \times [0,1] \subset \mathbb{R}^2 \to \mathbb{R}^n$ 为q(s,t) = ty + (1-t)Fr(s). 显然q连续且满足 $q(0,t) = q(1,t) = q(s,1) = y, \forall s, t \in [0,1]$. 因此由引理5.3.3, $x^0 = r(0) = r(1) = x^1$.

5.3.2 函数拥有延拓性质的充分条件

由于延拓性质比较难验证, 所以我们要考虑哪些条件能推出延拓性质.

定义 5.3.2 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为在开集 $D_0 \subset D$ **范数强制**(norm-coercive), 若对任意 $\gamma > 0$, 存在有界闭集 $D_\gamma \subset D_0$, 使得 $\|Fx\| > \gamma, \forall x \in D_0 \setminus D_\gamma$.

注: $E_0 = \mathbb{R}^n$,则 $F E \mathbb{R}^n$ 范数强制当且仅当 $\lim_{\|x\| \to \infty} \|Fx\| = \infty$.

下面我们要证明定理5.3.4中的延拓性质可以替换为范数强制.

引理 5.3.5 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在D中每一点都是局部同胚, $p:[0,a)\subset[0,1]\to D$ 是连续函数. 若极限 $\lim_{t\to a^-}Fp(t)=y$ 存在, 且存在序列 $\{t_k\}\subset[0,a)$ 满足 $\lim_{k\to\infty}t_k=a$, 使得 $\lim_{k\to\infty}p(t_k)=x\in D$, 则 $\lim_{t\to a^-}p(t)=x$.

证明: 由F连续可知Fx = y. 设U,V分别是x,y的开邻域,使得 F_U 是U到V的同胚. 显然存在t' < a使得 $p(t_k) \in U, \forall t_k \in (t',a)$,且 $Fp(t) \in V, \forall t \in (t',a)$. 因此函数 $\hat{p}(t) = F_U^{-1}Fp(t), t \in (t',a)$ 满足 $\hat{p}(t_k) = p(t_k), \forall t_k \in (t',a)$. 由引理5.3.1的唯一性证明, $\hat{p}(t) = p(t), \forall t \in (t',a)$. 由 F_U^{-1} 的连续性, $\lim_{t \to a^-} p(t) = \lim_{t \to a^-} F_U^{-1}(Fp(t)) = x$.

定理 5.3.6 (范数强制定理) 设D是开的道路连通集, $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在D中每一点都是局部同胚,则F是D到 \mathbb{R}^n 的(全局)同胚当且仅当F在D上是范数强制的.

证明: "⇒": 设F是D到 \mathbb{R}^n 的同胚, 给定 $\gamma > 0$, 记 $S = \overline{S(0,\gamma)}$. 由于 F^{-1} 连续, 则 $D_{\gamma} = F^{-1}S$ 是有界闭集. 若 $x \in D \setminus D_{\gamma}$, 则 $Fx \notin S$, 即 $\|Fx\| > \gamma$.

" \leftarrow ":设F在D上范数强制,由定理5.3.4,只需要证明F关于所有连续映射 $q:[0,1] \to \mathbb{R}^n$ 有延拓性质. 给定q,假设存在连续函数 $p:[0,a) \subset [0,1] \to D$,使得对 $t \in [0,a)$ 都有Fp(t) = q(t),取

$$\gamma = \max\{\|q(t)\||t \in [0, a]\},\$$

由F的范数强制性,存在紧集 $D_{\gamma}\subset D$ 使得对任意 $x\in D\setminus D_{\gamma}$ 都有 $\|Fx\|>\gamma$. 所以对任意 $t\in [0,a)$ 都有 $p(t)\in D_{\gamma}$. 由D是紧集,则存在序列 $\{t_k\}\subset [0,a)$ 使得 $\lim_{k\to\infty}t_k=a$,且 $\lim_{k\to\infty}p(t_k)=\hat{x}\in D$. 由引理5.3.5, $\lim_{k\to\infty}p(t)=\hat{x}$. 由F的连续性, $F\hat{x}=q(a)$.

推论 5.3.7 设 $F:\mathbb{R}^n\to\mathbb{R}^n$ 是连续可微的, 对任意 $x\in\mathbb{R}^n$, F'(x)非奇异. 则F是 \mathbb{R}^n 到 \mathbb{R}^n 的同胚当且仅当 $\lim_{\|x\|\to\infty}\|Fx\|=\infty$.

证明: 根据范数强制定理以及反函数定理立得.

定理 5.3.8 (Hadamard) 设 $F: \mathbb{R}^n \to \mathbb{R}^n$ 是 \mathbb{R}^n 上的连续可微函数, $\|F'(x)^{-1}\| \leq \gamma < +\infty, \forall x \in \mathbb{R}^n$.则F是 \mathbb{R}^n 到 \mathbb{R}^n 的同胚.

证明: 由反函数定理, F在每个 $x \in \mathbb{R}^n$ 都是局部同胚. 只需要证明F关于所有线性函数

$$q(t) = (1-t)y^0 + ty^1, t \in [0,1], y^0, y^1 \in \mathbb{R}^n$$

都有延拓性质. 假设存在某个连续函数 $p:[0,a)\subset[0,1]\to\mathbb{R}^n$ 使得 $Fp(t)=q(t),t\in[0,a)$. 对固定的 $t\in[0,a)$,设U,V分别是p(t),q(t)的开邻域,使得 F_U 是U到V的同胚. 由反函数定理, F_U^{-1} 在q(t)的邻域连续可微,且

$$(F_U^{-1})'(Fx) = F'(x)^{-1}, \forall x \in U.$$

根据链式法则,

$$p'(t) = F'(p(t))^{-1}q'(t).$$

所以p在[0,a)中连续可微. 下设 $\{t_k\} \subset [0,a)$ 是单调递增序列, $\lim_{t \to \infty} t_k = a$, 则对任意k < j, 有

$$||p(t_j) - p(t_k)|| = \left\| \int_{t_k}^{t_j} p'(t) dt \right\| = \left\| \int_{t_k}^{t_j} F'(p(t))^{-1} q'(t) dt \right\|$$

$$\leq \gamma ||y^1 - y^0|| |t_k - t_j|.$$

所以 $\{p(t_k)\}$ 是Cauchy列, 从而是收敛的. 记 $\lim_{k\to\infty}p(t_k)=x$, 由引理5.3.5, $\lim_{t\to a^-}p(t)=x$, 由F连续可知Fx=q(a). 所以F关于所有线性函数都有延拓性质, 由命题5.3.2, $F(\mathbb{R}^n)=\mathbb{R}^n$.

下面证明F是单射. 设 $Fx^0 = Fx^1 = y$, 记

$$q(s,t) = ty + (1-t)F((1-s)x^{0} + sx^{1}), s, t \in [0,1].$$

对固定的 $s \in [0,1], q_s = q(s,\cdot)$ 都是线性的,所以F关于所有 q_s 都有延拓性质. 进一步, $q(s,1) = q(0,t) = q(1,t) = y, \forall s,t \in [0,1]$,由引理5.3.3, $x^0 = x^1$.

下面的定理可以看作Hadamard定理的局部版本.

定理 5.3.9 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是D上的连续可微函数, 存在开球 $S=S(x^0,r)\subset D$, 使得

$$||F'(x)^{-1}|| \le \gamma, \forall x \in S, r > \gamma ||Fx^{0}||.$$

则方程Fx = 0在S中有解.

证明: 证明类似于Hadamard定理的证明. 由反函数定理, F关于所有 $x \in S$ 都是局部同胚. 我们证明F关于函数

$$q(t) = (1-t)y^0, t \in [0,1], y^0 = F(x^0)$$

有延拓性质. 假设存在连续函数 $p:[0,a)\subset [0,1]\to S$ 使得 $Fp(t)=q(t),t\in [0,a),\ p(0)=x^0,$ 由Hadamard定理的证明, p在[0,a)连续可微, 且 $p'(t)=F'(p(t))^{-1}q'(t)$. 因此如果 $\{t_k\}\subset [0,a)$ 是单调递增序列收敛于a, 那么 $\{p(t_k)\}$ 是Cauchy列, 所以 $\lim_{k\to\infty}p(t_k)=x$ 存在. 根据

$$||p(t_k) - x^0|| = \int_0^{t_k} ||p'(t)|| dt \le a\gamma ||Fx^0|| < ar, \forall k \ge 0,$$

令 $k \to \infty$, 我们有 $\|x - x^0\| < ar$, 即 $x \in S(x^0, ar) \subset S$. 由引理5.3.5, $\lim_{t \to a^-} p(t) = x$, 由F的连续性, Fx = q(a). 所以F关于q有延拓性质, 即p可以延拓到t = 1, 使得 $p(1) \in S$ 且Fp(1) = q(1) = 0.

5.3.3 注记

1. 局部同胚但不是全局同胚的例子.

例 5.3.1 设 $F: \mathbb{R}^2 \to \mathbb{R}^2 \to f_1(x) = e^{x_1} \sin x_2$, $f_2(x) = e^{x_1} \cos x_2$, 则F'(x)是非奇异的, 然而F不是单射.

例 5.3.2 设 $F: \mathbb{R}^2 \to \mathbb{R}^2 \to f_1(x) = e^{2x_1} - x_2^2 + 3$, $f_2(x) = 4x_2e^{2x_1} - x_2^3$, 则对任意 $x \in \mathbb{R}^2$, F'(x)的所有顺序主子式都大于0, 但是F不是单射.

例 5.3.3 设 $F: \mathbb{R}^2 \to \mathbb{R}^2 \to f_1(x) = \arctan x_1, f_2(x) = (1+x_1^2)x_2, \text{ 则det } F'(x) = 1$ 但是F不是满射.

2. Hadamard定理的加强

Hadamard定理的证明可以推广到更一般的结论(Meyer): 如果把Hadamard定理的 $||F'(x)^{-1}||$ 一致有界的条件换成

$$||F'(x)^{-1}|| \le \alpha ||x|| + \beta, \forall x \in \mathbb{R}^n,$$

结论依然正确, 证明如下: 记

$$\gamma = \alpha \mu + \beta, \mu = \sup_{0 < t < a} ||p(s)||.$$

如果 $\mu < \infty$, 取 $\eta = ||y^1 - y^0||$, 则

$$||p(t) - p(0)|| \le \eta \int_0^1 [\alpha ||p(s)|| + \beta] ds \le c_1 + c_2 \int_0^t ||p(s) - p(0)|| ds.$$

其中 $c_1 = \eta[\alpha||p(0)|| + \beta], c_2 = \eta\alpha$. 由Gronwall不等式,

$$||p(t) - p(0)|| \le c_1 e^{\int_0^t c_2 dt} \le c_1 e^{c_2}, \forall t \in [0, a) \subset [0, 1].$$

§ **5.4** 单调算子

回顾M-矩阵的定义:

定义 5.4.1 如果矩阵 $A \in L(\mathbb{R}^n)$ 可逆, $A^{-1} \geq O$,且 $a_{ij} \leq 0 (i, j = 1 : n, i \neq j)$,把A称为M-矩阵. 对称的M-矩阵叫Stieltjes矩阵.

命题 **5.4.1** 设 $A \in L(\mathbb{R}^n)$ 是M-矩阵, $\phi: \mathbb{R}^n \to \mathbb{R}^n$ 是连续可微函数, $\phi'(x)$ 非负且为对角阵. 定义映射 $F: \mathbb{R}^n \to \mathbb{R}^n$ 为 $Fx = Ax + \phi x$, 则F是 \mathbb{R}^n 到 \mathbb{R}^n 的(全局)同胚.

证明: 显然F连续可微, $F'(x) = A + \phi'(x)$. 由推论2.4.8,

$$0 \le F'(x)^{-1} \le \mathbf{A}^{-1}, \forall x \in \mathbb{R}^n,$$

所以 $||F'(x)^{-1}||$ 一致有界. 利用Hadamard定理可得结论.

定义 5.4.2 映射 $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为在 $D_0 \subset D$ 上**单调**(monotone), 若

$$(Fx - Fy)^T(x - y) \ge 0, \forall x, y \in D_0.$$

称 FaD_0 上**严格单调**(strictly monotone), 若上述不等式对 $x \neq y$ 严格成立; 称 FaD_0 上**一致单调**(uniformly monotone), 若存在 $\gamma > 0$, 使得

$$(Fx - Fy)^T(x - y) \ge \gamma (x - y)^T(x - y), \forall x, y \in D_0.$$

根据这个定义, 我们可以得到类似于定理3.4.5的结论:

命题 5.4.2 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在凸开集 $D_0\subset D$ 连续可微,则

- (1)F在 D_0 上单调, 当且仅当对任意 $x \in D_0$, F'(x)是半正定的.
- (2)如果对任意 $x \in D_0$, F'(x)是正定的, 则F在 D_0 严格单调.
- (3)F在 D_0 上一致单调当且仅当存在 $\gamma > 0$ 使得

$$h^T F'(x) h \ge \gamma h^T h, \forall x \in D_0, h \in \mathbb{R}^n.$$

注意到严格单调的函数F是单射, 所以有

推论 5.4.3 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在凸开集 $D_0\subset D$ 连续可微, 如果对任意 $x\in D_0$, F'(x)是正定的,则F是单射.

上述条件只能说明方程解的唯一性,不能保证存在性. 为了保证存在性,需要一致单调:

定理 5.4.4 若 $F: \mathbb{R}^n \to \mathbb{R}^n$ 是连续可微, 且在 \mathbb{R}^n 一致单调, 则F是 \mathbb{R}^n 到 \mathbb{R}^n 的同胚.

证明: 若 $A \in L(\mathbb{R}^n)$ 满足 $h^TAh \ge \gamma h^Th$, $\forall h \in \mathbb{R}^n$, 其中 $\gamma > 0$, 则A是可逆的, 由Cauchy-Schwarz不等式, $\|Ah\|_2 \ge \gamma \|h\|_2$. 因此由定理4.3.5, $\|A^{-1}\|_2 \le \gamma^{-1}$. 由命题5.4.2(3),

$$||F'(x)^{-1}||_2 \le \frac{1}{\gamma}, \forall x \in \mathbb{R}^n.$$

利用Hadamard定理可得结论.

第6章 迭代算法

单步算法基本结果 **§ 6.1**

6.1.1吸收点

下面考虑如下形式的迭代算法:

$$x^{k+1} = Gx^k, k = 0, 1, \cdots, \tag{6.1}$$

其中 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$. 我们要分析它的局部收敛性质以及收敛率. 这个迭代格式包括Newton算法、 m-步Newton-SOR算法、m-步SOR-Newton算法等等.

定义 6.1.1 (吸收点) 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$. 把 x^* 称为迭代格式(6.1)的**吸收点**(point of attraction), 若存在 x^* 的开邻域S使得 $S \subset D$, 且对任意 $x^0 \in S$, 由(6.1)定义的迭代格式都位于D中, 且收敛于 x^* .

命题 **6.1.1** 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$, 并假设存在球 $S = S(x^*, \delta) \subset D$ 与常数 $\alpha < 1$, 使得

$$||Gx - x^*|| \le \alpha ||x - x^*||, \forall x \in S,$$
(6.2)

则对任意 $x^0 \in S$, 由(6.1)定义的迭代格式都位于S中且收敛到 x^* . 因此 x^* 是迭代格式(6.1)的吸收点.

证明: 对 $x^0 \in S$. 有

$$||x^1 - x^*|| = ||Gx^0 - x^*|| \le \alpha ||x^0 - x^*||.$$

所以 $x^1 \in S$, 归纳可得 $x^k \in S(\forall k)$, 且

$$||x^k - x^*|| < \alpha^k ||x^0 - x^*||.$$

因此 $\lim_{k\to\infty}x^k=x^*$,从而 x^* 是迭代格式(6.1)的吸收点. 为了保证(6.2)式成立,我们只需要让 $G'(x^*)$ 存在且有充分小的特征值.

定理 6.1.2 (Ostrowski) 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 有不动点 $x^* \in \operatorname{int}(D)$, 且在 $x^* \not\in F$ -可微的. 若 $\rho(G'(x^*)) =$ $\sigma < 1$,则 x^* 是迭代格式(6.1)的吸收点.

证明: 对任意 $\varepsilon > 0$, 存在 \mathbb{R}^n 中的范数使得

$$||G'(x^*)|| \le \sigma + \varepsilon.$$

由G在x*处F-可微,则存在 $\delta > 0$ 使得 $S = S(x^*, \delta) \subset D$ 且

$$||Gx - Gx^* - G'(x^*)(x - x^*)|| \le \varepsilon ||x - x^*||, \forall x \in S.$$

因此,

$$||Gx - x^*|| \le ||Gx - Gx^* - G'(x^*)(x - x^*)|| + ||G'(x^*)|| ||x - x^*||$$

$$\le (\sigma + 2\varepsilon)||x - x^*||, \quad \forall x \in S.$$

由于 $\sigma < 1$, 我们取 ε 充分小使得 $\sigma + 2\varepsilon < 1$, 利用命题6.1.1可得结论.

6.1.2 Newton迭代算法

称一个迭代格式是p阶收敛的, 若存在非零常数C, 使得

$$\limsup_{k \to \infty} \frac{\|x^{k+1} - x^*\|}{\|x^k - x^*\|^p} = C,$$

下面考虑形如

$$x^{k+1} = x^k - A(x^k)^{-1} F(x^k), k = 0, 1, \dots$$
(6.3)

的迭代算法, 其中 $A: \mathbb{R}^n \to L(\mathbb{R}^n)$. 最特殊的情形就是A(x) = F'(x)的情形, 此时就是Newton迭代算法.

引理 6.1.3 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在 $x^*\in\mathrm{int}(D)$ 是F-可微的,其中 $F(x^*)=0$.并让 $A:S_0\to L(\mathbb{R}^n)$ 定义在 x^* 的开邻域 $S_0\subset D$,且在 x^* 处连续, $A(x^*)$ 非奇异.则存在球 $S=\overline{S(x^*,\delta)}\subset S_0,\delta>0$,使得映射

$$G: S \to \mathbb{R}^n$$
, $Gx = x - A(x)^{-1}Fx, \forall x \in S$,

是良好定义的. 进一步, G在x*处F-可微, 且

$$G'(x^*) = I - A(x^*)^{-1}F'(x^*).$$

证明: 设 $\beta = ||A(x^*)^{-1}||, \varepsilon \in (0, (2\beta)^{-1}), \ \mathbb{R}\delta > 0$ 使得 $S = \overline{S(x^*, \delta)} \subset S_0$ 且

$$||A(x) - A(x^*)|| \le \varepsilon, \forall x \in S.$$

由扰动引理, $A(x)^{-1}$ 对任意 $x \in S$ 存在且

$$||A(x)^{-1}|| \le \frac{\beta}{1 - \beta \varepsilon} < 2\beta, \forall x \in S$$

所以映射G在S上良好定义.

由于F在x*处F-可微, 我们可以取 δ 充分小使得下式也成立:

$$||F(x) - F(x^*) - F'(x^*)(x - x^*)|| \le \varepsilon ||x - x^*||, \forall x \in S,$$

显然 $x^* = Gx^*$. 所以

$$||Gx - Gx^* - [I - A(x^*)^{-1}F'(x^*)](x - x^*)||$$

$$= ||A(x^*)^{-1}F'(x^*)(x - x^*) - A(x)^{-1}F(x)||$$

$$\leq ||-A(x)^{-1}[F(x) - F(x^*) - F'(x^*)(x - x^*)]||$$

$$+ ||A(x)^{-1}[A(x^*) - A(x)]A(x^*)^{-1}F'(x^*)(x - x^*)||$$

$$\leq [2\beta\varepsilon + 2\beta^2\varepsilon ||F'(x^*)||]||x - x^*||, \forall x \in S.$$

所以G在x*处F-可微,且 $G'(x^*) = I - A(x^*)^{-1}F'(x^*)$.

证明: 利用Ostrowski定理与上述引理立得.

命题 6.1.5 考虑Newton选代格式

$$x^{k+1} = x^k - F'(x^k)^{-1}F(x^k), k = 0, 1, \dots$$
(6.4)

其中 x^0 适当选取, $F: D \subset \mathbb{R}^n \to \mathbb{R}^n$, $F(x^*) = 0$, 且F在 x^* 处非奇异. 则

- (1)存在球 $S = S(x^*, \delta) \subset D$, 使得F在S内的每一点F-可微, 且 x^* 是迭代格式(6.4)的吸收点;
- (2)进一步,如果存在 $\alpha < +\infty$ 与 $p \in (0,1]$,使得

$$||F'(x) - F'(y)|| \le \alpha ||x - y||^p, \forall x, y \in S,$$

则迭代序列为p+1阶收敛的.

证明: (1)设 $\|F'(x^*)\| = \beta$, $\varepsilon \in (0, (4\beta)^{-1})$, 取 $\delta > 0$ 使得 $S = \overline{S(x^*, \delta)} \subset S_0$ 且 $\|F'(x) - F'(x^*)\| \le \varepsilon$, $\forall x \in S$. 由扰动引理, 对任意 $x \in S$, $F'(x)^{-1}$ 存在且

$$||F'(x)^{-1}|| \le \frac{\beta}{1 - \beta\varepsilon} < 2\beta, \forall x \in S$$

所以F在S内的每一点F-可微. 注意推论3.2.10, 我们有

$$||x^{k+1} - x^*|| = ||x^k - F'(x^k)^{-1}F(x^k) - x^*||$$

$$\leq ||F'(x^k)^{-1}|| ||F(x^*) - F(x^k) - F'(x^k)(x^* - x^k)||$$

$$\leq 2\beta \sup_{0 \leq t \leq 1} ||F'(x^k + t(x^* - x^k)) - F'(x^k)|| ||x^* - x^k||$$

$$\leq 4\beta \varepsilon ||x^k - x^*|| < ||x^k - x^*||.$$

所以 $\{x^k\}$ 都位于S中,从而 x^* 是迭代格式(6.4)的吸收点.

(2)由定理3.2.7,

$$||x^{k+1} - x^*|| \le ||F'(x^k)^{-1}|| ||F(x^*) - F(x^k) - F'(x^k)(x^* - x^k)||$$

$$\le 2\beta \frac{\alpha}{p+1} ||x^k - x^*||^{p+1},$$

所以迭代格式(6.4)是p+1阶收敛的.

6.1.3 注记

1. Ostrowski定理的应用.

例 6.1.1 考虑 $G: \mathbb{R}^2 \to \mathbb{R}^2$, $g_1(x) = x_1^2 - x_2$, $g_2(x) = x_2^2$, 则 $x^* = 0$ 是迭代格式(6.1)的吸收点.

证明:
$$G'(x) = \begin{pmatrix} 2x_1 & -1 \\ 0 & 2x_2 \end{pmatrix}$$
, 在0处 $G'(x)$ 的特征值都是0, 满足Ostrowski定理, 从而是吸收点.

例 6.1.2 考虑
$$G:\mathbb{R}^1\to\mathbb{R}^1,\ G(x)=$$

$$\begin{cases} \lambda x-\frac{x}{\ln|x|},\ x\neq 0,\\ 0,\ x=0. \end{cases}$$
 其中 $\lambda\in(0,1),\ \mathbb{M}x^*=0$ 是迭代格式 (6.1) 的吸收点.

证明: $G'(0) = \lambda$, 满足Ostrowski定理, 所以 $x^* = 0$ 是迭代格式(6.1)的吸收点.

2. Ostrowski定理中, 谱半径小于1仅仅是吸收点的充分条件.

例 6.1.3 考虑 $G: \mathbb{R} \to \mathbb{R}$, $Gx = x - x^3$, 则 $x^* = 0$ 是迭代格式(6.1)的吸收点,即使 $G'(x^*) = 1$. 然而,对于 $Gx = x + x^3$,此时0不是吸收点.

3. Ostrowski定理成立的一个充分条件

例 6.1.4 设 $F:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在点 $x^*\in \mathrm{int}(D)$ 处F-可微, $F(x^*)=0$. 定义 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 为 $Gx=x-\omega Fx$, 其中 ω 是一个实数, 设 $F'(x^*)$ 的特征值为 $\lambda_1,\cdots,\lambda_n$. 则:

 $(1)\rho(G'(x^*)) < 1$ 当且仅当下面条件之一满足:

$$(i)\operatorname{Re}(\lambda_i) > 0, i = 1:n, \ \mathbb{L}0 < \omega < \frac{2\operatorname{Re}(\lambda_i)}{|\lambda_i|^2}, i = 1:n.$$

$$(ii)\operatorname{Re}(\lambda_i) < 0, i = 1:n, \ \mathbb{E}\frac{2\operatorname{Re}(\lambda_i)}{|\lambda_i|^2} < \omega < 0, i = 1:n.$$

$$(2)$$
若 $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$,则 $\rho(G'(x^*))$ 作为 ω 的函数,在 $\omega = \frac{2}{\lambda_1 + \lambda_n}$ 处取得最小值.

§ **6.2** 延拓算法

对于求解方程Fx = 0, 我们考虑的算法通常都是要求初值充分接近 x^* . 这一节要考虑的延拓算法是希望能把初值的选取拓宽, 使得算法依然是收敛的, 或者通过某种方法找到充分接近 x^* 的初值点.

在实际问题中,一个问题可能会依赖于某个参数t,而且当这个参数取为特定的值时,例如取t=1,那么就会得到映射F;而当t=0时,对应的方程 $F_0x=0$ 对应一个已知解 x^0 .更一般地,我们考虑一系列的问题 $H:D\times[0,1]\subset\mathbb{R}^{n+1}\to\mathbb{R}^n$,使得

$$H(x,0) = F_0(x), H(x,1) = F(x), \forall x \in D.$$

其中方程H(x,0)的解 x^0 是已知的, 而方程H(x,1) = 0是待解的.

就算F不是自然依赖于某个时间t,我们也可以用几种方法来定义H,例如可以设

$$H(x,t) = tF(x) + (1-t)F_0(x), \qquad x \in D, t \in [0,1].$$
 (6.5)

其中 F_0 是给定的映射, 且方程 $F_0x = 0$ 的解 x^0 已知. 或者我们也可以设

$$H(x,t) = F(x) + (t-1)F(x^0), \qquad x \in D, t \in [0,1].$$
 (6.6)

其中 x^0 是固定的. 注意(6.6)与(6.5)这两种定义方式之间的关系是 $F_0(x) = F(x) - F(x^0)$.

不管H怎么定义, 我们考虑方程

$$H(x,t) = 0, t \in [0,1].$$

并且假设对于每个 $t \in [0,1]$,都有解x = x(t),且这个解是连续依赖于t的. 换言之我们假设存在连续映 射 $x \in [0,1] \to D$ 使得

$$H(x(t),t) = 0, \qquad \forall t \in [0,1]. \tag{6.7}$$

于是x对应了 \mathbb{R}^n 空间中的曲线,一个端点是给定的 x^0 ,另一个端点是方程Fx = H(x,1) = 0的解 $x^* = x(1)$.

为了说明连续曲线x(t)存在的充分条件,我们考虑范数强制定理或者Hadamard定理. 注意映射 $F: \mathbb{R}^n \to \mathbb{R}^n$ 是范数强制的,若 $\lim_{\|x\| \to \infty} \|F(x)\| = \infty$.

定理 6.2.1 设 $F: \mathbb{R}^n \to \mathbb{R}^n$ 是 \mathbb{R}^n 中的连续可微映射, 且对任意 $x \in \mathbb{R}^n$, F'(x)非奇异. 如果F是范数强制的或者 $\|F'(x)^{-1}\| \leq \beta$, $\forall x \in \mathbb{R}^n$, 则对任意固定的 $x^0 \in \mathbb{R}^n$, 存在唯一的映射 $x: [0,1] \to \mathbb{R}^n$ 使得对(6.6)式定义的H, (6.7)都成立. 而且, x是连续可微的, 且

$$x'(t) = -F'(x(t))^{-1}F(x^0), \qquad \forall t \in [0, 1], x(0) = x^0.$$
(6.8)

证明: 显然方程H(x,t) = 0等价于

$$F(x) = (1 - t)F(x^{0}), t \in [0, 1]. (6.9)$$

利用范数强制定理或者Hadamard定理, $F \in \mathbb{R}^n$ 到 \mathbb{R}^n 的同胚映射, 因此对每个 $t \in [0,1]$, 方程(6.9)有唯一解

$$x(t) = F^{-1}((1-t)F(x^0)), t \in [0,1].$$

由反函数定理, F^{-1} 也是 \mathbb{R}^n 上的连续可微函数, 因此x(t)也是连续可微的. 利用链式法则, (6.8)式成立. 因此, 我们假设 $H: D \times [0,1] \subset \mathbb{R}^{n+1} \to \mathbb{R}^n$ 是一个给定的同伦, 即一个连续映射满足存在连续曲线 $x: [0,1] \to D$ 使得(6.7)式对某个 x^0 成立. 为了得到x = x(1), 我把[0,1]作如下分划

$$0 = t_0 < t_1 < \dots < t_N = 1, \tag{6.10}$$

并用某种迭代算法解决下面的问题

$$H(x,t_i) = 0, i = 1:N,$$
 (6.11)

其中第i-1个问题的解 x^{i-1} 用作第i个问题的初值. 若 $t_{i+1}-t_i$ 充分小, 那么 x^{i-1} 有可能会非常靠近 x^i , 于是就可以得到收敛的序列. 我们只能用有限步迭代得到第i个问题的解, 设第i个问题需要用 $m_i \geq 1$ 步.

6.2.1 不动点迭代

考虑

$$H(x,t) = x - G(x,t) = 0, \quad t \in [0,1],$$
 (6.12)

其中 $G: D \times [0,1] \subset \mathbb{R}^{n+1} \to \mathbb{R}^n$,并设存在连续曲线 $x: [0,1] \to \mathbb{R}^n$,使得(6.7)式成立. 如果初值 $x^0 = x(0)$ 给定,并且对[0,1]作划分(6.10),那么我们有如下的迭代算法:

算法 1 不动点迭代的延拓算法

- 1: $x^{1,0} := x^0$
- 2: **for** $i = 1, 2, \dots, N-1$ **do**
- 3: **for** $k = 0, 1, \dots, m_i 1$ **do**
- 4: $x^{i,k+1} := G(x^{i,k}, t_i);$
- 5: end for
- 6: $x^{i+1,0} := x^{i,m_i}$
- 7: end for
- 8: **for** $k = 0, 1, \dots$ **do**
- 9: $x^{N,k+1} := G(x^{N,k}, 1)$ (不动点迭代)
- 10: end for

下面给出 $\lim_{k\to\infty} x^{N,k} = x(1)$ 的一个充分条件.

定理 6.2.2 假设 $G: D \times [0,1] \subset \mathbb{R}^n \times \mathbb{R}^1 \to \mathbb{R}^n$ 关于第一个分量是F-可微的,并且 $\partial_1 G$ 在 $D \times [0,1]$ 连续. 再设方程(6.12)有连续解 $x: [0,1] \to \mathrm{int}(D)$,其中初始点 $x^0 = x(0)$ 已知,并且

$$\sigma_t = \rho(\partial_1 G(x(t), t)) < 1, \quad \forall t \in [0, 1].$$

则存在[0,1]的分划(6.10)与正整数 m_1, \cdots, m_{N-1} ,使得由算法1定义的序列 $\{x^{i,k}\}$ 都在D中,且 $\lim_{k\to\infty} x^{N,k}=x(1)$.

证明:由于 $C = \{x \in \mathbb{R}^n | x = x(t), t \in [0,1]\} \subset \operatorname{int}(D)$ 是紧集,故存在D的紧子集 D_0 使得 $C \subset \operatorname{int}(D_0)$. 另外对每个 $t \in [0,1]$,取 ε 使得 $0 < \sigma_t + 3\varepsilon < 1$,则存在范数 $\|\cdot\|_t$,使得 $\|\partial_1 G(x(t),t)\| \le \sigma_t + \varepsilon$.由于 $\partial_1 G$ 在 $D_0 \times [0,1]$ 关于一切范数都连续,于是我们可以取 $\delta_1 = \delta_1(t) > 0$,使得当 $x,y \in D_0$ 满足 $\|x-y\|_t \le \delta_1 \operatorname{Lt}_1, t_2 \in [0,1]$ 满足 $|t_1-t_2| < \delta_1$ 时,

$$\|\partial_1 G(x,t_1) - \partial G(y,t_2)\|_t \le \varepsilon.$$

由x(t)的一致连续性,存在 $\delta_2 = \delta_2(t) > 0$,使得当 $t_1, t_2 \in [0, 1]$ 满足 $|t_1 - t_2| < \delta_1$ 时,

$$||x(t_1) - x(t_2)||_t \le \delta_1.$$

取 $\delta' \leq \min(\delta_1, \delta_2)$,并取 $x \in D_0$ 满足存在 $s \in [0, 1]$ 使得 $\|x - x(s)\|_t \leq \delta'$. 于是

$$\|\partial_1 G(x(s), s)\|_t \le \|\partial_1 G(x(t), t)\| + \|\partial_1 G(x(s), s) - \partial_1 G(x(t), t)\|$$

$$\le \sigma_t + 2\varepsilon, \qquad \forall s \in [0, 1] \cap [t - \delta', t + \delta'].$$

由中值定理, 对任意 $s \in [0,1] \cap [t-\delta',t+\delta']$ 与 $x \in \{x|||x-x(s)||_t \leq \delta'\}$, 有

$$\begin{aligned} \|G(x,s) - x(s)\|_{t} &= \|G(x,s) - G(x(s),s)\|_{t} \\ &\leq \left\{ (\sigma_{t} + 2\varepsilon) + \sup_{0 \leq \theta \leq 1} \|\partial_{1}G(x(s),s) - \partial_{1}G(x(s) + \theta(x - x(s)),s)\|_{t} \right\} \|x - x(s)\|_{t} \\ &\leq (\sigma_{t} + 3\varepsilon)\|x - x(s)\|_{t}. \end{aligned}$$

由命题6.1.1, 对任意 $s \in [0,1] \cap [t-\delta',t+\delta']$, 当初值 x^0 满足 $\|x^0-x(s)\|_t \le \delta'$ 时, 迭代序列

$$x^{k+1} = G(x^k, s), \qquad k = 0, 1, \dots,$$
 (6.13)

都位于 D_0 中并且收敛到x(s). 由范数等价定理, 对任意固定的范数(与t无关), 都存在 $\delta = \delta(t) > 0$ 使得上述迭代序列(6.13)仍在 D_0 中, 并且对任意 $s \in [0,1] \cap [t-\delta',t+\delta']$, 当初值 x^0 满足 $\|x^0-x(s)\|_t \le \delta'$ 时, 上述迭代序列(6.13)收敛于x(s).

由于这个结果对任意 $t \in [0,1]$ 都成立,而[0,1]是紧集,于是存在[0,1]的有限覆盖 $\{t||t-\bar{t}_j| \leq \delta(\bar{t}_j)\}, j = 1, \dots, M$,使得若 $\delta_0 = \min_j \delta(\bar{t}_j)$,迭代序列(6.13)仍位于 D_0 ,且对任意 $s \in [0,1] \cap [t-\delta',t+\delta']$,当初值 x^0 满足 $\|x^0-x(s)\|_t \leq \delta'$ 时,迭代序列(6.13)收敛于x(s).

下面选定一个分划(6.10)使得

$$\max_{0 \le i \le N-1} \|x(t_{i+1}) - x(t_i)\| \le \delta_0' < \delta_0,$$

并假设我们已经取定 $x^{i,0}$ 使得

$$||x^{i,0} - x(t_{i-1})|| \le \delta_0 - \delta_0'.$$

由于 $x^{1,0} = x^0 = x(0)$, 故上式对i = 1成立. 于是根据

$$||x^{i,0} - x(t_i)|| \le ||x^{i,0} - x(t_{i-1})|| + ||x(t_{i-1}) - x(t_i)|| \le \delta_0,$$

算法1中的迭代序列 $x^{i,k+1} = G(x^{i,k}, t_i)$ 位于 D_0 且收敛到 $x(t_i)$. 于是我们可以取正整数 m_i 使得 $\|x^{i+1,0} - x(t_i)\| \le \delta_0 - \delta'_0$,其中 $x^{i+1,0} = x^{i,m_i}$. 因此算法1的迭代可以进行到i = N,每个 $x^{i,k} \in D_0$,并且迭代序列 $\{x^{N,k}\}$ 收敛于x(1).

6.2.2 Newton迭代

如果用Newton迭代求解第i个问题(6.11),于是我们的算法可以写成如下.其中, ∂_1 表示关于x的偏导数.

算法 2 Newton迭代的延拓算法

- 1: $x^{1,0} := x^0$
- 2: **for** $i = 1, 2, \dots, N-1$ **do**
- 3: **for** $k = 0, 1, \dots, m_i 1$ **do**
- 4: $x^{i,k+1} := x^{i,k} \partial_1 H(x^{i,k}, t_i)^{-1} H(x^{i,k}, t_i);$
- 5: end for
- 6: $x^{i+1,0} := x^{i,m_i}$
- 7: end for
- 8: **for** $k = 0, 1, \cdots$ **do**
- 9: $x^{N,k+1} := x^{N,k} \partial_1 H(x^{N,k}, 1)^{-1} H(x^{N,k}, 1)$. (经典Newton迭代)
- 10: **end for**

我们后面会证明, 如果H满足一定条件, 即[0,1]的划分以及正整数 m_1, \cdots, m_N 可以恰当选取, 使得整个序列 $x^{i,k}$ 良好定义, 并且序列 $\{x^k\}$ 收敛于x(1).

定理 6.2.3 假设 $H:D\times[0,1]\subset\mathbb{R}^n\times\mathbb{R}^1\to\mathbb{R}^n$ 关于第一个分量是F-可微的, ∂_1H 在 $D\times[0,1]$ 上连续, 且方程

$$H(x,t) = 0, \quad t \in [0,1]$$

存在连续解, 对任意 $t \in [0,1]$, $\partial_1 H(x(t),t)$ 非奇异. 则存在[0,1]的划分(6.10) 以及正整数 m_1, \cdots, m_{N-1} 使得由算法2定义的序列 $\{x^{i,k}\}$ 都位于D中,并且 $\lim_{k \to \infty} x^{N,k} = x(1)$.

证明: 由扰动引理, $\partial_1 H(x(t),t)^{-1}$ 关于 $t \in [0,1]$ 连续. 由于[0,1]紧, 于是存在 $\beta < +\infty$, 使得

$$\|\partial_1 H(x(t), t)^{-1}\| \le \beta, \quad \forall t \in [0, 1].$$

与定理6.2.2一样, 我们定义

$$C = \{x \in \mathbb{R}^n | x = x(t), t \in [0, 1]\} \subset \text{int}(D)$$

设 $D_0 \subset D$ 是任意紧集使得 $C \subset \operatorname{int}(D_0)$,于是 $\partial_1 H$ 在 $D_0 \times [0,1]$ 一致连续. 因此对 $\varepsilon \in (0,\beta/2)$,存在 $\delta > 0$ 使得 当 $t \in [0,1]$ 时, $\overline{S(x(t),\delta)} \subset D_0$,并且当 $x,y \in D_0$ 满足 $\|x-y\| \le \delta$ 时, $\|\partial_1 H(x,t) - \partial_1 H(y,t)\| \le \varepsilon$.

由扰动引理, $\partial_1 H(x,t)^{-1}$ 对每个 $t \in [0,1]$ 与 $x \in \overline{S(x(t),\delta)}$ 存在, 并且

$$\|\partial_1 H(x,t)^{-1}\| \le \frac{\beta}{1-\beta\varepsilon}, \quad \forall x \in \overline{S(x(t),\delta)}, t \in [0,1].$$

对任意固定的 $t \in [0,1]$,下面考虑Newton迭代

$$x^{k+1} = x^k - \partial_1 H(x^k, t)^{-1} H(x^k, t), \qquad k = 0, 1, \dots,$$
(6.14)

其中 $x^0 \in \overline{S(x(t),\delta)}$. 我们断言

$$||x^k - x(t)|| \le \alpha^k \delta, \qquad k = 0, 1, \dots, \quad \alpha = \frac{\beta \varepsilon}{1 - \beta \varepsilon} < 1.$$
 (6.15)

事实上, (6.15)式对k=0成立. 而且如果它对某个 $k\geq 0$ 成立, 则 $x^k\in \overline{S(x(t),\delta)}$. 根据定理3.2.7,

$$||x^{k+1} - x(t)|| = ||x^k - x(t) - \partial_1 H(x^k, t)^{-1} H(x^k, t)||$$

$$\leq ||\partial_1 H(x^k, t)^{-1}|| ||H(x(t), t) - H(x^k, t) - \partial_1 H(x^k, t)(x(t) - x^k)||$$

$$\leq \frac{\beta}{1 - \beta \varepsilon} \varepsilon ||x(t) - x^k|| \leq \alpha^{k+1} \delta.$$

于是Newton迭代序列(6.14)都位于 $\overline{S(x(t),\delta)}$ 中, 并且收敛到x(t).

下面取[0,1]的划分(6.10)满足

$$||x(t_{i+1}) - x(t_i)|| \le \delta' < \delta, \qquad i = 0, 1, \dots, N - 1.$$

并取 $m_i \equiv m \geq 1, i = 1: N - 1$ 使得 $\alpha^m \leq 1 - \frac{\delta'}{\delta}$. 假设 $x^{i,0} \in S(x(t_{i-1}), \delta - \delta')$, 其中对i = 1显然正确; 则

$$||x^{i,0} - x(t_i)|| \le ||x^{i,0} - x(t_{i-1})|| + ||x(t_{i-1}) - x(t_i)|| \le \delta.$$

由(6.15)式,

$$||x^{i+1,0} - x(t_i)|| = ||x^{i,m} - x(t_i)|| \le \alpha^m \delta = \delta - \delta'.$$

因此算法2可以进行到i = N, 并且所有 $x^{i,k} \in D_0$, $\lim_{k \to \infty} x^{N,k} = x(1)$.

注: 如果我们只取 $m_i = 1 (i = 1, 2, \dots, N)$, 并且把H定义为(6.6), 那么迭代格式可以简化为

算法 3 Newton迭代的延拓算法 $(m_i = 1)$

- 1: $x^{1,0} := x^0$
- 2: **for** $k = 0, 1, \dots, N-1$ **do**
- 3: $x^{k+1} := x^k F'(x^k)^{-1}[Fx^k + (t_k 1)Fx^0]$
- 4: end for
- 5: **for** $k = N, N + 1, \cdots$ **do**
- 6: $x^{k+1} := x^k \partial_1 H(x^k, 1)^{-1} H(x^k, 1)$. (经典Newton迭代)
- 7: end for

6.2.3 Euler方法

我们下面考虑另外一种方法. 假设映射 $x:[0,1]\to D$ 满足(6.7)且连续可微, H关于x,t有连续偏导数. 定义

$$\phi(t) = H(x(t), t), \quad \forall t \in [0, 1],$$

则φ在[0,1]上连续可微而且

$$\phi'(t) = \partial_1 H(x(t), t) x'(t) + \partial_2 H(x(t), t), \qquad \forall t \in [0, 1],$$

由于x = x(t)恒满足(6.7), 则必有 $\phi'(t) = 0, \forall t$, 于是x(t)满足下面微分方程:

$$\partial_1 H(x(t), t) x'(t) = -\partial_2 H(x(t), t), \qquad \forall t \in [0, 1]. \tag{6.16}$$

反之, $\exists x \in [0,1] \to \mathbb{R}^n$ 是微分方程(6.16)的连续可微解, 并且满足初值条件H(x(0),0) = 0, 则由微分中值定理,

$$||H(x(t),t)|| = ||\phi(t) - \phi(0)|| \le \sup_{0 \le s \le t} ||\phi'(s)|| = 0,$$

所以 $H(x(t),t) \equiv 0$. 所以微分方程(6.16)在初值H(x(0),0) = 0下的解可以给出问题H(x,t) = 0的解.

下面设 $\partial_1 H$ 对任意x, t都非奇异, 于是我们可以把(6.16)改写成

$$x'(t) = -\partial_1 H(x, t)^{-1} \partial_2 H(x, t), \qquad \forall t \in [0, 1], H(x(0), 0) = 0, \tag{6.17}$$

注意如果我们把H定义为(6.6), 那么(6.17)等价于(6.8), 在定理6.2.1的条件下, 对任意固定的 x^0 方程都有唯一解.

如果用Euler方法来求解微分方程,那么就可以得到如下的算法

算法 4 Euler方法用于延拓算法

- 1: **for** $k = 0, 1, \dots, N 1$ **do**
- 2: $x^{k+1} := x^k (t_{k+1} t_k)\partial_1 H(x^k, t_k)^{-1}\partial_2 H(x^k, t_k).$
- 3: end for
- 4: **for** $k = N, N + 1, \cdots$ **do**
- 5: $x^{k+1} := x^k \partial_1 H(x^k, 1)^{-1} H(x^k, 1)$. (经典Newton迭代)
- 6: end for

如果代入(6.6)式, 此时迭代格式为

算法 5 Euler方法用于延拓算法

- 1: **for** $k = 0, 1, \dots, N-1$ **do**
- 2: $x^{k+1} = x^k (t_{k+1} t_k)F'(x^k)^{-1}Fx^0$.
- 3: end for
- 4: **for** $k = N, N + 1, \cdots$ **do**
- 5: $x^{k+1} := x^k \partial_1 H(x^k, 1)^{-1} H(x^k, 1)$. (经典Newton迭代)
- 6: end for

在定理6.2.1的条件下, 方程(6.8)存在连续解曲线x=x(t). 如果 $t_{k+1}-t_k$ 充分小, 那么由算法5定义的 x^k 应该可以逼近这条曲线, 即 x^N 应该可以充分接近 $x^*=x(1)$, 于是对 x^N 作为初值用Newton迭代将会趋于 x^* .

注意算法5与Newton算法高度相似. 如果令 $t=1-e^{-\tau}, \tau \in [0,+\infty)$, 则(6.6)式变成

$$H(x,\tau) = F(x) - e^{-\tau}F(x^0), \qquad \tau \in [0,\infty).$$

微分方程变成

$$x' = -F'(x)^{-1}e^{-\tau}F(x^0) = -F'(x^0)^{-1}F(x), \qquad \tau \in [0, +\infty), x(0) = x^0.$$

如果对上式用Euler方法求解, 并且步长取为 $h_k := t_{k+1} - t_k = 1$, 于是就得到

$$x^{k+1} = x^k - F'(x^k)^{-1}F(x^k), \qquad k = 0, 1, \dots.$$

这就是Newton方法.

注: 关于算法3与算法4的收敛性分析, 详见教材.

§6.3 压缩映象定理的一些推广结论

记 G^p 表示算子G的p次幂, $G^0 = I$, $G^p x = G(G^{p-1}x)$, $p \ge 1$.

定理 6.3.1 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 满足 $G(D_0) \subset D_0$, 其中 D_0 是闭集, 且存在正整数p使得

$$||G^{kp}x - G^{kp}y|| \le \alpha_k ||x - y||, \quad \forall x, y \in D_0, \quad k = 1, 2, \cdots.$$

且 $\beta = \sum_{k=1}^{\infty} \alpha_k < +\infty$. 则G有唯一不动点 $x^* \in D_0$, 且对任意 $x^0 \in D_0$, 迭代序列

$$x^{k+1} = Gx^k, k = 0, 1, \dots {(6.18)}$$

收敛到 x^* . 另外有如下的误差估计式:

$$||x^k - x^*|| < \beta ||x^k - x^{k-p}||, \quad k = 1, 2, \dots$$

证明: (i)唯一性: 设 $z^* \in D_0$ 是 G^q 的不动点, $q \ge 1$. 则

$$G^{kq}z^* = G^{(k-1)q}z^* = \dots = G^qz^* = z^*, \quad \forall k > 1.$$

因此如果 $x^*, y^* \in D_0$ 是 G^p 的两个不动点, 则

$$||x^* - y^*|| = ||G^{kp}x^* - G^{kp}y^*|| \le \alpha_k ||x^* - y^*||, \quad k = 1, 2, \dots$$

$$(6.19)$$

$$||x^* - Gx^*|| = ||G^{kp}x^* - G^{kp}(Gx^*)|| < \alpha_k ||x^* - Gx^*||, \quad k = 1, 2, \dots$$
(6.20)

对(6.19)(6.20)令 $k \to \infty$, 并注意 $\lim_{k \to \infty} \alpha_k = 0$, 可得 $x^* = y^*$ 且 $x^* = Gx^*$. 因此 G^p 与G有相同的唯一不动点.

(ii)存在性: 注意到由于 $G(D_0) \subset D_0$, 则当 $x^0 \in D_0$ 时, 序列(6.18)良好定义且包含于 D_0 . 固定 $0 \le i \le i$

p-1, 考虑子序列 $y^k := y^{i,k} = x^{i+kp}, k = 0, 1, \dots,$ 则 $y^{k+1} = G^p y^k, k \ge 0$, 因此

$$||y^{k+j} - y^{k+j-1}|| = ||G^{jp}y^k - G^{jp}y^{k-1}|| \le \alpha_j ||y^k - y^{k-1}||, \quad \forall j \ge 1.$$

所以

$$||y^{k+m} - y^k|| \le \sum_{j=1}^m ||y^{k+j} - y^{k+j-1}|| \le \left(\sum_{j=1}^m \alpha_j\right) ||y^k - y^{k-1}||$$

$$\le \beta ||y^k - y^{k-1}|| \le \beta \alpha_{k-1} ||y^1 - y^0||, \quad \forall k, m \ge 1.$$
(6.21)

由于 $\lim_{k\to\infty}\alpha_k=0$,故 $\{y^{i,k}\}$ 是Cauchy列. 由 D_0 是闭集,故这个序列收敛于 $\bar{y}^i\in D_0$. 再根据

$$\|\bar{y}^i - G^p \bar{y}^i\| \le \|\bar{y}^i - y^{i,k+1}\| + \|G^p y^{i,k} - G^p \bar{y}^i\|$$

$$\le \|\bar{y}^i - y^{i,k+1}\| + \alpha_1 \|y^{i,k} - \bar{y}^i\|, \quad k \ge 0.$$

让 $k \to \infty$,可得 $\bar{y}^i = G^p \bar{y}^i, i = 0, 1, \cdots, p-1$. 在第一部分我们证明了 G^p 不动点的唯一性,因此 $\bar{y}^0 = \cdots = \bar{y}^{p-1} = x^*$,且 $x^* = Gx^*$. 所以 $\lim_{k \to \infty} y^{i,k} = x^*, i = 0, \cdots, p-1$. 再注意所有子列 $\{y^{i,k}\}_{i=0:p-1}$ 并在一起恰为 $\{x^k\}$,因此 $\lim_{k \to \infty} x^k = x^*$.

(iii)最后证明误差估计, 完全类似(6.21)式, 我们有

$$||x^{k} - x^{k+mp}|| \le \sum_{j=1}^{m} ||x^{k+jp} - x^{k+(j-1)p}|| = \sum_{j=1}^{m} ||G^{jp}(x^{k} - x^{k-p})||$$
$$\le \sum_{j=1}^{m} \alpha_{j} ||x^{k} - x^{k-p}|| \le \beta ||x^{k} - x^{k-p}||.$$

令 $m \to \infty$, 可得 $\|x^k - x^*\| \le \beta \|x^k - x^{k-p}\|$.

作为定理6.3.1的推论, 我们有

定理 6.3.2 (压缩映象原理) 假设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 满足 $G(D_0) \subset D_0$, 其中 $D_0 \subset D$ 是闭集, 且

$$||Gx - Gy|| \le \alpha ||x - y||, \quad \forall x, y \in D_0.$$

其中 $\alpha < 1$. 则对任意 $x^0 \in D_0$, 序列

$$x^{k+1} = Gx^k, k = 0, 1, \dots {(6.22)}$$

收敛于 $Gap(D_0)$ 中的唯一不动点 x^* ,并且有误差估计式

$$||x^k - x^*|| \le \frac{\alpha}{1 - \alpha} ||x^k - x^{k-1}||, \quad k = 1, 2, \dots$$

证明: 我们重新证明一下.

(i)唯一性: 设 x^*, y^* 都是G的不动点, 则 $\|x^* - y^*\| = \|Gx^* - Gy^*\| \le \alpha \|x^* - y^*\|$, 所以必有 $x^* = y^*$.

(ii)存在性: 由条件, $\{x^k\} \subset D_0$. 注意

$$||x^{k+m} - x^{k}|| \leq \sum_{j=1}^{m} ||x^{k+j} - x^{k+j-1}|| = \sum_{j=1}^{m} ||G^{j}(x^{k} - x^{k-1})||$$

$$\leq \sum_{j=1}^{m} \alpha^{j} ||x^{k} - x^{k-1}|| \leq \frac{\alpha}{1 - \alpha} ||x^{k} - x^{k-1}||$$

$$\leq \frac{\alpha^{k}}{1 - \alpha} ||x^{1} - x^{0}||.$$
(6.23)

因此 $\{x^k\}$ 是Cauchy列, 由于 D_0 是闭集, 从而收敛于 \overline{x} . 由于

$$\|\overline{x} - G\overline{x}\| \le \|\overline{x} - x^{k+1}\| + \|Gx^k - G\overline{x}\| \le \|\overline{x} - x^{k+1}\| + \alpha \|x^k - \overline{x}\| \to 0,$$

因此x是G的唯一不动点. 最后, 注意(6.23)式就是误差估计式.

注: 这个定理提供了一个误差估计, 在迭代终止条件可以取 $\|x^k - x^{k-1}\| \le \delta$.

下面举定理6.3.2的一个应用例子.

命题 6.3.3 设 $\mathbf{A} \in L(\mathbb{R}^n)$ 是对称正定, $\phi : \mathbb{R}^n \to \mathbb{R}^n$ 连续可微, 对任意 $x \in \mathbb{R}^n$, $\phi'(x)$ 对称半正定, 且存在 $\beta < +\infty$ 使得

$$\|\phi'(x)\|_2 \le \beta, \quad \forall x \in \mathbb{R}^n.$$

则方程 $Ax + \phi(x) = 0$ 有唯一解 x^* ,并且对任意 $x^0 \in \mathbb{R}^n$,由Picard选代定义的序列:

$$(\mathbf{A} + \gamma \mathbf{I})x^{k+1} = \gamma x^k - \phi x^k, \quad k = 0, 1, \dots, \gamma = \beta/2,$$

收敛到 x^* .

证明: 定义 $G: \mathbb{R}^n \to \mathbb{R}^n$ 为

$$G(x) = (\mathbf{A} + \gamma \mathbf{I})^{-1} (\gamma x - \phi(x)), \quad \forall x \in \mathbb{R}^n.$$

则G良好定义, 并且G有不动点 x^* 当且仅当 $Ax^* + \phi(x^*) = 0$. 另外, G在 \mathbb{R}^n 上连续可微. 由于 $\gamma = \beta/2$, 则

$$||G'(x)||_2 = ||(\boldsymbol{A} + \gamma \boldsymbol{I})^{-1}(\gamma I - \phi'(x))||_2 \le \frac{\gamma}{\gamma + \lambda} < 1, \quad \forall x \in \mathbb{R}^n.$$

其中 $\gamma > 0$ 是**A**的最小特征值. 由中值定理, G是 \mathbb{R}^n 上的收缩映射, 利用定理6.3.2即可得到结论.

 \dot{x} : 这个命题的条件 $\|\phi'(x)\|_2 \leq \beta$ 是个比较强的条件, 通常比较难满足, 所以全局收缩映射比较难达到.

6.3.1 注记

1. 定理6.3.1的一些简单推论.

如果对某个p > 1, G^p 满足

$$||G^p x - G^p y|| \le \alpha ||x - y||, \quad x, y \in D_0, \alpha < 1,$$
 (6.24)

则定理6.3.1的条件对 $\alpha_k = \alpha^k, \beta = \frac{\alpha}{1-\alpha}$ 依然成立.

如果G是Lipschitz连续,即

$$||Gx - Gy|| \le \gamma ||x - y||, \quad x, y \in D_0,$$

此时定理6.3.1结论对p = 1成立.

2. 定理6.3.1中,即使G不连续,(6.24)式也可能满足.

例 6.3.1 考虑 $g:[0,2]\subset\mathbb{R}^1\to[0,2],$ 定义为 $g(x)=\begin{cases}0,x\in[0,1]\\1,x\in(1,2]\end{cases}$. 则g(g(x))=0, 所以(6.24)式对p=2成立.

3. 仿射变换是收缩映射的一些等价条件.

命题 6.3.4 设 $G: \mathbb{R}^n \to \mathbb{R}^n$ 满足Gx = Hx + b, 其中 $H \in L(\mathbb{R}^n)$, $b \in \mathbb{R}^n$. 证明下面几个条件等价:

- (a)G关于某个范数是收缩映射;
- (b)对某个正整数m > 1, G^m 关于某个范数是收缩映射;
- $(c)\rho(H) < 1.$

证明: " $(a) \Rightarrow (b)$ " 是简单的: 假设G关于范数||·||是收缩映射, 则

$$||Gx - Gy|| \le \alpha ||x - y||, \quad \forall x, y \in \mathbb{R}^n, \alpha < 1.$$

则对任意m > 1,都有

$$||G^m x - G^m y|| \le \alpha^m ||x - y||, \quad \forall x, y \in \mathbb{R}^n.$$

所以 G^m 都是收缩映射.

"(c) ⇒ (a)": 由于 $\sigma := \rho(H) < 1$, 所以对 $\varepsilon \in (0, (1 - \sigma)/2)$, 存在某个范数||·||使得

$$||H|| \le \rho(H) + \varepsilon = \frac{1+\sigma}{2} < 1.$$

于是

$$||Gx - Gy|| = ||Hx - Hy|| \le ||H|| ||x - y|| \le \frac{1 + \sigma}{2} ||x - y||,$$

从而G是收缩映射.

" $(b) \Rightarrow (c)$ ": 设 G^m 关于范数 $\|\cdot\|$ 是收缩映射, 则

$$||H^m(x)|| = ||G^m(x) - G^m(0)|| < ||x||, \quad \forall x \in \mathbb{R}^n.$$

则 $\|H^m\| = \sup_{x \neq 0} \frac{H^m(x)}{\|x\|} < 1$. 对H的任意特征值 λ 与非零特征向量x, 满足 $\lambda x = Hx$. 于是 $H^m x = \lambda^m x$, 从而 $\|\lambda\|^m \|x\| = \|H^m x\| \le \|H^m\| \|x\| < \|x\|$, 于是 $\|\lambda\|^m < 1$, 即 $\|\lambda\| < 1$, 故 $\rho(H) < 1$.

$\S 6.4$ 近似收缩序列

6.4.1 基本结果

我们在前一节考虑了迭代序列

$$x^{k+1} = Gx^k, \quad k = 0, 1, \cdots$$
 (6.25)

其中G满足某些条件. 由于G的计算会有一定的舍入误差或离散误差, 我们会得到一个近似序列 $\{y^k\}$, 而并不能得到精确序列 $\{x^k\}$. 所以问题是如果我们知道了 $\{x^k\}$ 收敛, 那么 $\{y^k\}$ 的表现如何? 我们需要考虑下面的不固定迭代

$$y^{k+1} = G_k y^k, \quad k = 0, 1, \cdots$$
 (6.26)

其中 G_k 都是收缩映射.

引理 6.4.1 (Toeplitz) 若序列 $\{\alpha_k\}\subset\mathbb{R}^1$ 收敛到0,并且定义 $\gamma_{ik}\in\mathbb{R}^1,i=0,1,\cdots,k=0,1,\cdots,i$,满足 $\lim_{i\to\infty}\gamma_{ik}=0, \forall k$,并且 $\sum_{k=0}^i|\gamma_{ik}|\leq c, \forall i=0,1,\cdots$.则序列 $\beta_i=\sum_{k=0}^i\gamma_{ik}\alpha_k$ 收敛于0.

证明: 由条件, 对任意 $\varepsilon > 0$, 存在 k_0 , 当 $k > k_0$ 时, $|\alpha_k| < \frac{\varepsilon}{2c}$. 对每个 $j = 0, 1, \dots, k_0$, 分别存在 i_0, i_1, \dots, i_{k_0} , 当 $i > i_j$ 时, $|\gamma_{ij}| < \varepsilon \cdot \left(2\sum_{k=0}^{k_0} |\alpha_k|\right)^{-1}$. 因此当 $i > \max\{i_0, i_1, \dots, i_{k_0}\}$ 时,

$$|\beta_i| \le \sum_{k=0}^{k_0} |\gamma_{ik}| |\alpha_k| + \sum_{k=k_0+1}^i |\gamma_{ik}| |\alpha_k| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

所以{ β_i }收敛于0.

下面的定理是 $\{y^k\}$ 与 $\{x^k\}$ 的关系.

定理 6.4.2 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是 $D_1\subset D$ 上的收缩映射,Lipschitz常数为 α ,且 $D_0\subset D_1$ 是闭集满足 $G(D_0)\subset D_0$. (则由定理6.3.2,序列(6.25)对任意 $x^0\in D_0$ 都收敛到G在 D_0 中的唯一不动点 x^* .)令 $\{y^k\}\subset D_1$ 是任意序列,并设

$$\varepsilon_k = ||Gy^k - y^{k+1}||, \quad k = 0, 1, \cdots,$$

则

$$\|y^{k+1} - x^*\| \le \frac{1}{1-\alpha} (\alpha \|y^{k+1} - y^k\| + \varepsilon_k), \quad k = 0, 1, \cdots.$$
 (6.27)

$$||y^{k+1} - x^*|| \le ||x^{k+1} - x^*|| + \sum_{j=0}^k \alpha^{k-j} \varepsilon_j + \alpha^{k+1} ||x^0 - y^0||, \quad k = 0, 1, \dots$$
 (6.28)

并且

$$\lim_{k\to\infty} y^k = x^*$$
 当且仅当 $\lim_{k\to\infty} \varepsilon_k = 0.$

证明: (6.27)式可以如下得到:

$$||y^{k+1} - x^*|| \le ||y^{k+1} - Gy^k|| + ||Gy^k - Gy^{k+1}|| + ||Gy^{k+1} - Gx^*||$$

$$\le \varepsilon_k + \alpha ||y^k - y^{k+1}|| + \alpha ||y^{k+1} - x^*||,$$

注意

$$||x^{k+1} - y^{k+1}|| \le ||Gx^k - Gy^k|| + ||Gy^k - Gy^{k+1}||$$

$$\le \alpha ||x^k - y^k|| + \varepsilon_k \le \dots \le \sum_{j=0}^k \alpha^{k-j} \varepsilon_j + \alpha^{k+1} ||x^0 - y^0||,$$

所以(6.28)式可以如下得到:

$$||y^{k+1} - x^*|| \le ||y^{k+1} - x^{k+1} + ||x^{k+1} - x^*||$$

对第二部分的证明,首先设 $\lim_{k\to\infty} \varepsilon_k = 0$,由Toeplitz引理, $\sum_{j=0}^k \alpha^{k-j} \varepsilon_j \to 0 (k \to \infty)$,再根据 $\alpha < 1$ 以及(6.28), $\|y^k - x^*\| \to 0 (k \to \infty)$.

反之, 若
$$\lim_{k \to \infty} y^k = x^*$$
, 则

$$0 \le \varepsilon_k = \|Gy^k - y^{k+1}\| \le \|Gy^k - Gx^*\| + \|x^* - y^{k+1}\|$$

$$\le \alpha \|y^k - x^*\| + \|x^* - y^{k+1}\|,$$

所以 $\lim_{k\to\infty} \varepsilon_k = 0$.

注: 我们并没有对 $\{y^k\}$ 添加过多条件,除了序列一定要位于 D_1 中,且G是收缩映射.注意到如果 $x^k=y^k$,那么估计(6.27)就是压缩映象定理6.3.2.

定理 6.4.3 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在闭集 $D_0\subset D$ 上是收缩映射, $G(D_0)\subset D_0$, 并设 $G_k:D_0\subset\mathbb{R}^n\to\mathbb{R}^n, k=0,1,\cdots$ 是任意映射满足 $G_k(D_0)\subset D_0, \forall k$, 并且

$$\lim_{k \to \infty} \sup_{x \in D_0} \|G_k x - Gx\| = 0.$$

于是由(6.26)式定义的序列 $\{y^k\}$ 收敛到G在 D_0 的唯一不动点.

证明: 由条件, $\varepsilon_k := \|G_k y^k - G y^k\|$ 收敛到0, 则

$$||y^{k+1} - x^*|| = ||G_k y^k - Gx^*|| \le ||G_k y^k - Gy^k|| + ||Gy^k - Gx^*||$$
$$\le \varepsilon_k + \alpha ||y^k - x^*|| \le \dots \le \sum_{i=0}^k \alpha^{k-j} \varepsilon_j + \alpha^{k+1} ||y^0 - x^0||.$$

由Toeplitz引理, 以及 $\alpha < 1$, 可得 $||y^{k+1} - x^*|| \to 0 (k \to \infty)$.

注: 上述一致收敛条件不能换成逐点收敛. 考虑 \mathbb{R}^1 的情况:

$$G(x) = 0, G_k(x) = \frac{e^x}{k+1}, k = 0, 1, \dots$$

于是对每个 $x \in \mathbb{R}$, $G_k(x) \to 0 = G(x)$, 然而如果取 $y^k = \ln k$, 那么 $G_k(y^k)$ 并不收敛于0. 我们下面加强 G_k 的条件, 结论也相应得到加强.

引理 **6.4.4** 假设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 满足

$$||Gx - Gy|| \le \alpha ||x - y|| + \gamma, \quad \forall x, y \in D,$$

其中 $\alpha < 1, \gamma \ge 0$. 如果存在两个点 $y^0, y^1 \in D$ 使得 $D_0 = \overline{S(y^1, \delta)} \subset D$,

$$\delta = \frac{1}{1 - \alpha} (\alpha ||y^1 - y^0|| + ||Gy^0 - y^1|| + \gamma),$$

则 $G(D_0) \subset D_0$.

证明: 若 $x \in D_0, 则$

$$||Gx - y^{1}|| \le ||Gx - Gy^{0}|| + ||Gy^{0} - y^{1}||$$

$$\le \alpha ||x - y^{0}|| + \gamma + ||Gy^{0} - y^{1}||$$

$$\le \alpha ||x - y^{1}|| + [\alpha ||y^{1} - y^{0}|| + ||Gy^{0} - Gy^{1}|| + \gamma]$$

$$\le \alpha \delta + (1 - \alpha)\delta = \delta. \quad \Box$$

注: 注意如果 $x^0 = y^0 = y^1, \gamma = 0$,则当 $\overline{S}(x^0, (1-\alpha)^{-1} || Gx^0 - x^0 ||) \subset D$ 时, $G(D_0) \subset D_0$.

定理 6.4.5 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是D上的收缩映射,Lipschitz常数为 α ,并设存在 $\gamma\geq0$ 与 $G_k:D\subset\mathbb{R}^n\to\mathbb{R}^n,k=0,1,\cdots$,满足

$$||G_k x - G_k y|| \le \alpha ||x - y|| + \gamma, \quad \forall x, y \in D.$$

再假设存在 $y^0 \in D$ 使得 $S = \overline{S(G_0y^0, r)} \subset D$, 其中 $r = \frac{1}{1-\alpha} [\alpha \|G_0y^0 - y^0\| + \delta + \gamma]$, 且

$$||G_k y^0 - G_0 y^0|| \le \delta, \quad \forall k \ge 0, \qquad ||Gy^0 - G_0 y^0|| \le \gamma + \delta,$$
 (6.29)

则对初值 $x^0=y^0$,由(6.4.2)(6.4.3)定义的序列 $\{x^k\}$, $\{y^k\}$ 都位于S中, x^k 收敛到G在S中的唯一不动点 x^* ,并且误差估计式(6.27)与(6.28)对 $\varepsilon_k=\|G_ky^k-Gy^k\|$ 成立.

另外, 如果 $\gamma = 0$, 且每个 G_k 在S中有唯一不动点 z^k , 则下面四个命题等价:

(a)
$$\lim_{k \to \infty} y^k = x^*$$
; (b) $\lim_{k \to \infty} z^k = x^*$; (c) $\lim_{k \to \infty} \varepsilon_k = 0$; (d) $\lim_{k \to \infty} ||G_k x^* - G x^*|| = 0$.

证明: (1)由(6.29)与引理6.4.4, $G(S) \subset S$ 且 $G_k(S) \subset S$, $k \geq 0$. 所以 $\{x^k\}$, $\{y^k\} \subset S$, 由定理6.4.3, 不动点 x^* 存在且 $\{x^k\}$ 收敛于 x^* . 所以误差估计式(6.27)与(6.28)对 $\varepsilon_k = \|G_k y^k - G y^k\|$ 成立.

(2)若 $\gamma = 0$, 则每个 G_k 都是收缩映射. 由 $G_k(S) \subset S$, 由定理6.4.3, G_k 存在唯一的不动点 z^k . 注意到

$$||y^{k+1} - x^*|| \le ||G_k y^k - G_k x^*|| + ||G_k x^* - G x^*||$$

$$\le \alpha ||y^k - x^*|| + ||G_k x^* - G x^*||$$

$$\le \dots \le \sum_{j=0}^k \alpha^{k-j} ||G_k x^* - x^*|| + \alpha^{k+1} ||y^0 - x^*||.$$

由Toeplitz引理, " $(d) \Rightarrow (a)$ "成立. 再由

$$||z^k - x^*|| \le ||G_k z^k - G_k x^*|| + ||G_k x^* - G_k y^k|| + ||G_k y^k - G x^*||,$$

所以

$$||z^k - x^*|| \le \frac{1}{1 - \alpha} (\alpha ||x^* - y^*|| + ||y^{k+1} - x^*||),$$

于是" $(a) \Rightarrow (b)$ "成立. 再由

$$||G_k x^* - x^*|| \le ||G_k x^* - G_k z^k|| + ||G_k z^k - G x^*||, \le \alpha ||x^* - z^k|| + ||z^k - x^*||,$$

所以"(b) \Rightarrow (d)"成立. 最后由定理6.4.2, (a)与(c)等价.

By Fiddie

6.4.2 一些推论

命题 6.4.6 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是D上的收缩映射, Lipschitz常数是 α , 且 $\tilde{G}:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是另一个映射满足

$$\|\tilde{G}x - Gx\| \le \varepsilon, \quad \forall x \in D.$$

假设存在 $y^0 \in D, S = \overline{S(\tilde{G}y^0, r)} \subset D$, 其中

$$r = \frac{1}{1 - \alpha} [\alpha \|\tilde{G}y^0 - y^0\| + 2\varepsilon],$$

则序列 $y^{k+1} = \tilde{G}y^k, k = 0, 1, \cdots$ 都在S中, 并且

$$||y^{k+1} - x^*|| \le \frac{1}{1 - \alpha} [\alpha ||y^k - y^{k+1}|| + \varepsilon].$$

其中 x^* 是G在S中的唯一不动点.

进一步, 若 $\{x^k\}$ 是由(6.25)定义的序列, $x^0 = y^0$, 则

$$||y^{k+1} - x^*|| \le ||x^{k+1} - x^*|| + \frac{\varepsilon}{1 - \alpha}.$$

证明: 注意到

$$\|\tilde{G}x - \tilde{G}y\| \le \|\tilde{G}x - Gx\| + \|\tilde{G}y - Gy\| + \|Gx - Gy\|$$

$$\le \alpha \|x - y\| + 2\varepsilon, \qquad \forall x \in D.$$

所以由定理6.4.5立得结论.

命题 **6.4.7** 设 $G_k: D \subset \mathbb{R}^n \to \mathbb{R}^n (k=0,1,\cdots)$ 是D上的收缩映射,且有一致的Lipschitz常数 α .再设存在 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 使得

$$\lim_{k \to \infty} G_k x = Gx, \forall x \in D. \tag{6.30}$$

$$r = \frac{1}{1 - \alpha} [\alpha \|G_0 y^0 - y^0\| + \delta], \qquad \|G_0 y^0 - G_k y^0\| \le \delta, \quad k = 0, 1, \cdots,$$

则由(6.25)(6.26)式定义的序列 $\{x^k\}$, $\{y^k\}$ 都在S中,并且收敛到G在S中的唯一不动点 x^* . 进一步,误差估计式(6.27)与(6.28)对 $\varepsilon_k = ||G_k y^k - G y^k||$ 成立.

证明:根据

$$||Gx - Gy|| \le ||Gx - G_k x|| + ||G_k x - G_k y|| + ||G_k y - Gy||$$

$$\le ||Gx - G_k x|| + \alpha ||x - y|| + ||G_k y - Gy||,$$

以及(6.30)式,对上式令 $k \to \infty$ 可得G是D到自身的收缩映射,常数为 α . 因此利用定理6.4.5可知 $\{x^k\}$, $\{y^k\}$ 都 在S中并且收敛到 x^* . 进一步,误差估计式(6.27)与(6.28)也成立. 由(6.30)式,定理6.4.5的(d)成立,因此 $\lim_{k\to\infty}y^k=x^*$.

6.4.3 注记

书上一些习题的解答:

命题 6.4.8 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是 $D_0\subset D$ 上的收缩映射, Lipschitz常数为 α . 对任意 $x^0\in D_0$,若 x^0 满足 $\overline{S(Gx^0,r)}\subset D_0$,其中 $r=\frac{\alpha}{1-\alpha}\|Gx^0-x^0\|$,则序列 $\{G^kx^0\}$ 位于 D_0 中并且收敛到G在 D_0 中的唯一不动点 x^* .

证明: 设 $x^k = G^k x^0$, 于是 $x^1 = G x^0$. 则

$$||x^{k+1} - x^{1}|| = ||Gx^{k} - Gx^{0}|| \le \alpha(||x^{k} - x^{1}|| + ||x^{1} - x^{0}||)$$

$$\le \alpha^{2}||x^{k-1} - x^{1}|| + (\alpha^{2} + \alpha)||x^{1} - x^{0}||$$

$$\le \dots \le \frac{\alpha}{1 - \alpha}||x^{1} - x^{0}||.$$

所以序列 $\{G^k x^0\}$ 位于 D_0 中. 再由压缩映象原理, $G \in D_0$ 中的唯一不动点 x^* , 且

$$||x^k - x^*|| \le \frac{\alpha}{1 - \alpha} ||x^k - x^{k-1}|| \le \dots \le \frac{\alpha^k}{1 - \alpha} ||x^1 - x^0||,$$

让k → ∞可得 x^k 收敛于 x^* .

命题 **6.4.9** 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是D上的收缩映射,Lipschitz常数为 $\alpha<1$. 再设所有 $G_k:D\subset\mathbb{R}^n\to\mathbb{R}^n, k=0,1,\cdots$,把D映往自身. 进一步设 $S=\overline{S(G_0y^0,r)}\subset D$,其中

$$r = \frac{1}{1 - \alpha} (\alpha \|G_0 x^0 - x^0\| + \|G y^0 - G_0 y^0\|),$$

则G在S中的唯一不动点 x^* ,并且由(6.26)定义的序列满足(6.27)(6.28).

证明: 若 $x \in S,$ 则 $\|x - G_0 y^0\| \le r,$ 因此

$$||Gx - G_0y^0|| \le ||Gx - Gy^0|| + ||Gy^0 - G_0y^0|| \le \alpha ||x - y^0|| + ||Gy^0 - G_0y^0||$$

$$\le \alpha (||x - G_0y^0|| + ||G_0y^0 - y^0||) + ||Gy^0 - G_0y^0||$$

$$< \alpha r + (1 - \alpha)r = r.$$

故G是S中的收缩映射且 $G(S) \subset S$, 由压缩映象原理, G在S中有唯一不动点 x^* , 再由定理6.4.3, 结论成立. \square

命题 **6.4.10** 设 $G_k: D \subset \mathbb{R}^n \to \mathbb{R}^n, k = 0, 1, \cdots$ 是D中的收缩映射,且有一致的Lipschitz常数 $\alpha < 1$,并且有唯一的不动点 $y^k \in D$.设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 满足

$$||(Gx - Gy) - (G_kx - G_ky)|| \le \beta ||x - y||, \quad \forall x, y \in D,$$

其中 $\beta < 1 - \alpha$. 并设 $S = \overline{S(y^1, r)} \subset D$ 满足

$$r = \frac{1}{1 - \alpha} (\beta ||y^1 - y^0|| + ||G_1 y^0 - G y^0||),$$

则G在S中有唯一的不动点 x^* ,并且

$$||y^{k+1} - x^*|| \le \frac{1}{1 - \alpha} (\beta ||y^k - x^*|| + ||G_{k+1}y^k - Gy^k||), \qquad k = 0, 1, \dots.$$

$$(6.31)$$

证明: (1)设 $x \in S$, 即 $||x - y^1|| \le r$, 则

$$||Gx - y^{1}|| \le ||(Gx - Gy^{0}) - (G_{1}x - G_{1}y^{0})|| + ||G_{1}y^{0} - Gy^{0}|| + ||G_{1}x - G_{1}y^{1}||$$

$$\le \beta ||x - y^{0}|| + ||G_{1}y^{0} - Gy^{0}|| + \alpha ||x - y^{1}||$$

$$\le (1 - \alpha)r + \alpha r = r.$$

所以 $G(S) \subset S$. 根据

$$||Gx - Gy|| \le ||(Gx - Gy) - (G_kx - G_ky)|| + ||G_kx - G_ky|| \le (\alpha + \beta)||x - y||,$$

故G在S上是收缩映射, 常数为 $\alpha + \beta$. 由压缩映象原理, G在S中有唯一不动点 x^* . 再由

$$\begin{aligned} \|y^{k+1} - x^*\| &= \|G_{k+1}y^{k+1} - Gx^*\| \\ &\leq \|(Gx^* - Gy^k) - (G_{k+1}x^* - G_{k+1}y^k)\| + \|Gy^k - G_{k+1}y^k\| + \|G_{k+1}x^* - G_{k+1}y^{k+1}\| \\ &\leq \beta \|x^* - y^k\| + \|Gy^k - G_{k+1}y^k\| + \alpha \|x^* - y^{k+1}\|. \end{aligned}$$

整理可得

$$||y^{k+1} - x^*|| \le \frac{1}{1 - \alpha} (\beta ||x^* - y^k|| + ||Gy^k - G_{k+1}y^k||)$$

(2)记
$$\delta_k = \frac{1}{1-\alpha} \|Gy^k - G_{k+1}y^k\|$$
, 于是由(6.31),

$$||y^{k+1} - x^*|| \le \frac{\beta}{1-\alpha} ||x^* - y^k|| + \delta_k$$

$$\le \dots \le \left(\frac{\beta}{1-\alpha}\right)^{k+1} ||x^* - y^0|| + \sum_{j=0}^k \left(\frac{\beta}{1-\alpha}\right)^{k-j} \delta_j.$$
(6.32)

注意 $\frac{\beta}{1-\alpha}$ < 1. 由Toeplitz引理, "(b) \Rightarrow (c)"成立. 根据

$$||G_k x^* - Gx^*|| \le ||G_k x^* - G_k y^k|| + ||y^k - x^*|| \le (1 + \alpha)||y^k - x^*||,$$

因此 " $(c) \Rightarrow (d)$ "成立. 根据上式可得

$$||y^{k+1} - Gy^k|| \le ||G^{k+1}y^{k+1} - G^{k+1}x^*|| + ||G^{k+1}x^* - Gx^*|| + ||Gx^* - Gy^k||$$

$$\le \alpha ||y^{k+1} - x^*|| + (1+\alpha)||y^{k+1} - x^*|| + (\alpha+\beta)||x^* - y^k||.$$

因此 " $(c) \Rightarrow (a)$ "成立. 根据

$$||y^k - x^*|| \le ||G_k y^k - G_k x^*|| + ||G_k x^* - G x^*|| \le \alpha ||y^k - x^*|| + ||G_k x^* - G x^*||,$$

整理得 $\|y^k - x^*\| \le \frac{1}{1-\alpha} \|G_k x^* - Gx^*\|$, 所以" $(d) \Rightarrow (c)$ "成立.

"
$$(a) \Rightarrow (b)$$
": 没想好.

§6.5 迭代收缩映射与非扩张映射

6.5.1 迭代收缩映射

定义 6.5.1 (迭代收缩映射) 映射 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 称为集合 $D_0 \subset D$ 上的**迭代收缩映射**(iterated contraction), 若存在 $\alpha < 1$, 使得当 $x, Gx \in D_0$ 时,

$$||G(Gx) - Gx|| \le \alpha ||Gx - x||.$$

若G是 D_0 上的收缩映射,则它也是迭代收缩映射,但反之不一定正确.

定理 6.5.1 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 是闭集 $D_0\subset D$ 上的迭代收缩映射, 且对某个 $x^0\in D_0$, 序列

$$x^{k+1} = Gx^k, \quad k = 0, 1, \dots$$

位于 D_0 中. 则 $\lim_{k\to\infty} x^k = x^* \in D_0$, 且有估计

$$||x^k - x^*|| \le \frac{\alpha}{1 - \alpha} ||x^k - x^{k-1}||, \quad k = 0, 1, \cdots.$$
 (6.33)

进一步, 若G在x*处连续, 则x* = Gx*.

证明: 由于 $||x^{k+1} - x^k|| \le \alpha ||x^k - x^{k-1}||$, 故

$$||x^{k+m} - x^k|| \le \sum_{i=0}^{m-1} ||x^{k+i+1} - x^{k+i}|| \le \sum_{i=0}^{m-1} \alpha^{i+1} ||x^k - x^{k-1}||$$
$$\le \frac{\alpha}{1-\alpha} ||x^k - x^{k-1}|| \le \frac{\alpha^k}{1-\alpha} ||x^1 - x^0||.$$

所以 $\{x^k\}$ 是Cauchy列, 从而收敛到某个 x^* . 由于 D_0 是闭集, 故 $x^* \in D_0$. 对上式令 $m \to \infty$, 可得欲证估计式. 若G在 x^* 处连续, 则由 $x^k \to x^*$ 可得 $x^{k+1} = Gx^k \to Gx^*$, 由极限的唯一性, $x^* = Gx^*$.

定理 6.5.2 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在D上F-可微, 且

$$||F'(x) - F'(y)|| \le \gamma, \quad \forall x, y \in D.$$

假设映射 $A:D\subset\mathbb{R}^n\to L(\mathbb{R}^n)$ 满足

$$||A(x)^{-1}|| \le \beta, \qquad ||F'(x) - A(x)|| \le \delta, \quad \forall x \in D,$$

其中 $\alpha = \beta(\gamma + \delta) < 1$, 且存在 $x^0 \in D$ 使得 $S = \overline{S(x^0, r)} \subset D$, 其中 $r \ge \frac{\beta \|Fx^0\|}{1 - \alpha}$, 则迭代序列

$$x^{k+1} = x^k - A(x^k)^{-1}F(x^k), \qquad k = 0, 1, \dots$$

位于S中并且收敛到方程F(x) = 0在S中的唯一解 x^* . 进一步, 有误差估计式(6.33).

证明: 记 $Gx = x - A(x)^{-1}F(x)$, 则对任意 $x \in S$, 若 $G(x) \in S$, 则由定理3.2.10,

$$||G(Gx) - Gx|| = ||A(Gx)^{-1}F(Gx)|| \le \beta ||F(Gx) - Fx - A(x)(Gx - x)||$$

$$\le \beta ||F(Gx) - Fx - F'(x)(Gx - x)|| + \beta ||F'(x) - A(x)|| ||Gx - x||$$

$$\le \beta (\gamma + \delta) ||Gx - x|| = \alpha ||Gx - x||.$$

所以G是S上的迭代收缩映射. 若 $x^0, \dots, x^k \in S$, 则

$$||x^{k+1} - x^{0}|| \le \sum_{j=0}^{k} ||x^{j+1} - x^{j}|| \le \sum_{j=0}^{k} \alpha^{j} ||x^{1} - x^{0}||$$

$$\le \frac{1}{1-\alpha} ||A(x^{0})^{-1} F x^{0}|| \le \frac{\beta ||F x^{0}||}{1-\alpha} \le r.$$
(6.34)

故 $x^{k+1} \in S$. 由归纳法, $\{x^k\} \subset S$. 根据定理6.5.1, x^k 收敛到某个 $x^* \in S$, 并且有误差估计式(6.33). 由于

$$||A(x)|| \le ||A(x) - F'(x)|| + ||F'(x) - F'(x^*)|| + ||F'(x^*)|| \le \delta + \gamma + ||F'(x^*)||,$$

所以

$$||Fx^k|| = ||A(x^k)(x^{k+1} - x^k)|| \le \eta ||x^{k+1} - x^k||, \qquad k = 0, 1, \dots,$$

其中 $\eta=\delta+\gamma+\|F'(x^*)\|$. 因此 $\lim_{k\to\infty}Fx^k=0$. 由于F在 x^* 处F-可微,则F在 x^* 处连续(定理3.1.2),所以 $Fx^*=0$.

下面证明唯一性. 设 $Fy^* = 0$, 根据定理3.2.10,

$$||x^* - y^*|| \le \beta ||A(x^*)(x^* - y^*)||$$

$$\le \beta ||F'(x^*)(x^* - y^*) - Fx^* - Fy^*|| + \beta ||F'(x^*) - A(x^*)|| ||x^* - y^*||$$

$$\le \beta (\gamma + \delta) ||x^* - y^*|| = \alpha ||x^* - y^*||.$$

由 $\alpha < 1$ 可得 $x^* = y^*$.

定理 6.5.3 设定理6.5.2的条件满足,则对任意序列 $\{z^k\}\subset S$,如下定义的迭代 $\{x^k\}$:

$$x^{k+1} = x^k - A(z^k)^{-1}Fx^k, \qquad k = 0, 1, \dots,$$

位于S中, 并且收敛到 x^* . 进一步有误差估计式(6.33).

$$||x^{k+1} - x^k|| = ||A(z^k)^{-1} F x^k|| \le \beta ||F x^k - F x^{k-1} - A(z^{k-1})(x^k - x^{k-1})||$$

$$\le \beta \Big(||F x^k - F x^{k-1} - F'(z^{k-1})(x^k - x^{k-1})|| + ||F'(z^{k-1}) - A(z^{k-1})|| ||x^k - x^{k-1}|| \Big)$$

$$\le \beta (\gamma + \delta) ||x^k - x^{k-1}|| \le \dots \le \alpha^k ||x^1 - x^0||.$$

类似(6.34)式, 我们证明了 $x^{k+1} \in S$. 归纳可得 $\{x^k\} \subset S$. 由于

$$||x^{k+p} - x^k|| \le \sum_{j=k}^{k+p-1} ||x^{j+1} - x^j|| \le \frac{\alpha}{1-\alpha} ||x^k - x^{k-1}|| \le \frac{\alpha^k}{1-\alpha} ||x^1 - x^0||.$$
 (6.35)

所以 $\{x^k\}$ 是Cauchy列. 注意

$$||Fx^k|| \le \eta ||x^{k+1} - x^k|| \to 0 (k \to \infty),$$

所以 $Fx^k \to 0$. 由于 x^* 是方程Fx = 0的唯一解, 由F的连续性可得 $x^k \to x^*$, 再对(6.35)式令 $p \to \infty$ 可得误差 估计式(6.33).

注: 在实际应用中, z^k 通常会由前一步的迭代选定, 比如对某几步取为常数. 对于F'(x) = A(x)的情形, 前面两个定理就是Newton方法的收敛结果.

6.5.2 一些推广结论

定理 6.5.4 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 把 $D_0 \subset D$ 映往自身, $G(D_0)$ 紧, 且

$$||G(Gx) - Gx|| < ||Gx - x||, \quad \forall x \in D_0, x \neq Gx,$$

再设G在D₀上连续,且在D₀有至多一个不动点,则不动点x*存在,并且对任意x⁰ $\in D$ ₀,序列

$$x^{k+1} = Gx^k, \qquad k = 0, 1, \cdots$$
 (6.36)

收敛于 x^* .

证明: 对任意 $x^0 \in D_0$, 序列 $\{x^k\}$ 良好定义, 且 $x^k \in G(D_0)$, $\forall k \geq 1$. 由于 $G(D_0)$ 是紧集, 故 $\{x^k\}$ 在 $G(D_0)$ 中 有极限点. 假设 $x^* \in G(D_0)$ 是该极限点, 且收敛子列为 $\lim_{i \to \infty} x^{k_i} = x^*$. 若 $x^* \neq Gx^*$, 则映射

$$r(x) = \frac{\|G(Gx) - Gx\|}{\|Gx - x\|}$$

良好定义且在 x^* 的某个邻域内连续. 由条件可知r(x) < 1, 故对 $\alpha \in (r(x^*), 1)$, 存在 $\delta > 0$ 使得 $r(x) \le \alpha, \forall x \in \{0\}$ $S(x^*,\delta) \cap D_0$. 因此存在 $j=j(\delta)$ 使得当 $i \geq j$ 时, $r(x^{k_i}) \leq \alpha$, 即

$$||Gx^{k_i+1} - Gx^{k_i}|| \le \alpha ||x^{k_i+1} - x^{k_i}||, \quad i \ge j.$$

注意到

$$||x^{k_{i+1}+1} - x^{k_{i+1}}|| < ||x^{k_{i+1}} - x^{k_{i+1}} - 1|| < \dots < ||Gx^{k_i+1} - Gx^{k_i}||$$

$$\leq \alpha ||x^{k_i+1} - x^{k_i}|| \leq \dots \leq \alpha^{i-j+1} ||x^{k_j+1} - x^{k_j}||.$$

所以 $\lim_{i \to \infty} ||x^{k_{i+1}+1} - x^{k_{i+1}}|| = 0$. 由G的连续性,

$$||Gx^* - x^*|| \le ||Gx^* - Gx^{k_i}|| + ||x^{k_i+1} - x^{k_i}|| + ||x^{k_i} - x^*|| \to 0 (i \to \infty),$$

所以 $x^* = Gx^*$, 产生矛盾. 故 $\{x^k\}$ 在G的每个极限点都是不动点. 由于G在 D_0 有至多一个不动点, 因此序 列 $\{x^k\}$ 必定收敛.

如果G的条件改为严格非扩张,那么马上能得到如下推论:

推论 6.5.5 (Edelstein) 设 $G: D \subset \mathbb{R}^n \to \mathbb{R}^n$ 把 $D_0 \subset D$ 映往自身, $G(D_0)$ 紧, 且G在 D_0 严格非扩张, 则 对任意 $x^0 \in D_0$, 序列(6.36) 收敛到 $G \in D_0$ 中的唯一不动点.

考虑迭代序列由G与恒等映射的凸组合构成, 那么我们可以证明如下的收敛结论:

定理 6.5.6 设 $G:D\subset\mathbb{R}^n\to\mathbb{R}^n$ 在闭凸集 $D_0\subset D$ 上关于Euclid范数非扩张, 且 $G(D_0)\subset D_0$, D_0 包含G的一个不动点. 则对任意 $\omega\in(0,1)$ 与 $x^0\in D_0$, 迭代序列

$$x^{k+1} = \omega x^k + (1 - \omega)Gx^k, \qquad k = 0, 1, \dots$$

收敛到G在D0中的一个不动点.

证明: 由于 D_0 凸, 则迭代序列 $\{x^k\}$ 良好定义且位于 D_0 . 若 $x^* \in D_0$ 是G的一个不动点, 则

$$||x^{k+1} - x^*||_2^2 = \omega^2 ||x^k - x^*||_2^2 + (1 - \omega)^2 ||Gx^k - x^*||_2^2 + 2\omega(1 - \omega)(Gx^k - x^*)^T (x^k - x^*).$$

而且

$$||x^k - Gx^k||_2^2 = ||x^k - x^*||_2^2 + ||Gx^k - x^*||_2^2 - 2(Gx^k - x^*)^T(x^k - x^*).$$

两式叠加可得

$$||x^{k+1} - x^*||_2^2 + \omega(1 - \omega)||x^k - Gx^k||_2^2$$

$$= \omega ||x^k - x^*||_2^2 + (1 - \omega)||Gx^k - Gx^*||_2^2 \le ||x^k - x^*||_2^2.$$

故对任意 $m \geq 0$,

$$\omega(1-\omega)\sum_{k=0}^{m} \|x^k - Gx^k\|_2^2 \le \sum_{k=0}^{m} (\|x^k - x^*\|_2^2 - \|x^{k+1} - x^*\|_2^2)$$
$$= \|x^0 - x^*\|_2^2 - \|x^{m+1} - x^*\|_2^2 \le \|x^0 - x^*\|_2^2.$$

故对 $m \to \infty$, 上式左边的级数收敛, 特别地, $||x^k - Gx^k|| \to 0$.

由于

$$||x^{k+1} - x^*|| = ||\omega(x^k - x^*) + (1 - \omega)(Gx^k - Gx^*)||$$

$$\leq ||x^k - x^*|| \leq ||x^j - x^*|| \leq ||x^0 - x^*||, \quad \forall k \geq 0, j \leq k,$$

$$(6.37)$$

所以序列 $\{x^k\}$ 有界, 从而有收敛子列 $\{x^{k_i}\}$, 根据 D_0 是闭集可知它收敛于 $y^* \in D_0$. 由条件,

$$\lim_{i \to \infty} (x^{k_i + 1} - y^*) = \lim_{i \to \infty} (x^{k_i} - y^*) + \lim_{i \to \infty} (Gx^{k_i} - x^{k_i}) = 0.$$

由G的连续性, $y^* = Gy^*$. 因此(6.37)式把 x^* 换成 y^* 后仍成立. 所以 $\{x^k\}$ 必定收敛于不动点 y^* .

注: 若 D_0 是有界的,则由定理5.1.2,不动点存在.

注: 注意在这个定理中, 算子 $\hat{G} = \omega I + (1 - \omega)G$ 不一定是收缩映射, 考虑Gx = x于 \mathbb{R}^1 .

6.5.3 注记

1. 迭代收缩映射不一定是收缩映射.

收缩映射一定是连续的, 但是迭代收缩映射不一定连续.

例 6.5.1 考虑函数
$$g:[0,1]\subset\mathbb{R}\to\mathbb{R},\ g(x)=\left\{egin{align*} 0, & x\in\left[0,rac{1}{2}
ight), \\ 1, & x\in\left[rac{1}{2},1
ight], \end{matrix}\right.$$
,则 $g(g(x))-g(x)=0.$