Практическое задание №2. Осень 2022

Введение

Регулярные выражения - мощный инструмент для обработки текстовых данных, включая тексты на естественных языках, однако использовать только их для решения различных NLP задач далеко не всегда целесообразно. В этом задании представлены задачи, идеальное решение которых с помощью регулярных выражений либо в принципе невозможно либо крайне затруднительно и неэффективно.

Постановка задачи

Требуется составить регулярные выражения, для решения следующих независимых подзадач:

- проверка корректности скобочного выражения;
- разбиение текста на предложения;
- поиск в тексте именованных сущностей типа PERSON;
- извлечение данных из HTML страницы;

1. Проверка корректности скобочного выражения

В рамках этой подзадачи требуется разработать регулярное выражение, которым возможно проверить, является ли входная строка (целиком) корректным скобочным выражением. Скобки могут быть трёх типов: (), {} и ∏.

Правильная скобочная последовательность формально определяется следующим образом:

- пустая строка правильная скобочная последовательность;
- правильная скобочная последовательность, взятая в скобки правильная скобочная последовательность;
- правильная скобочная последовательность, к которой приписана слева или справа правильная скобочная последовательность тоже правильная скобочная последовательность.

Примеры корректных выражений	Примеры некорректных выражений
() {[]} {[{[()]}]}) (}[] {{[{{]}}}((){{{

2. Разбиение текста на предложения

В рамках этой подзадачи требуется разработать регулярное выражение, которым возможно извлечь из текста предложения (разбить текст на предложения). В качестве источника текстов используются рецензии к фильмам на сайте кинопоиска. Примеры можно найти по ссылке: https://www.kinopoisk.ru/reviews/type/comment/period/month. Регулярное выражение должно представлять из себя именованную группу sentence: (?P<sentence>).

Пример 1:

Что сразу бросается в глаза, так это нестандартная рисовка и отсутствие эмоций на лицах, в первом сезоне "смешные" моменты были со вставками глупых лиц, как в аниме начала 2000х. Потом, видимо, поняли, что это уже не круто и от таких ходов отказались. Если не обращать внимание на картинку, а полностью окунуться в сюжет, в принципе очень даже смотрибельно. Интересно следить за развитием персонажа, как он сначала вершит правосудие над обидчиками своего отца, а потом глубоко погружается в овладение магией разного толка. Присутствует жестокость и почти нет фансервиса, что радует. Монстры от

сезона к сезону от топорных моделек переходят в состояние "неплохо", авторы исправляют свои ошибки, как и все, за что берётся копировать китайская нация. В общем вас ждет вырвиглазная рисовка с неплохим сюжетом и поиском приемлемой озвучки.

7 из 10

Особенности разбиения текстов со списками.

Для рецензий, содержащих списки, ожидается следующий алгоритм разбиения:

- если элементы списка состоят из нескольких предложений, то предложение перед списком завершается до списка, а каждый пункт списка разбивается на независимые предложения, причём первое предложение пункта включает в себя маркер списка;
- в противном случае (обычно пункты таких списков завершаются символом ; за исключением последнего пункта, завершающегося точкой) предложением является весь список и предшествующее ему предложение.

Пример 2:

Резюмируя можно сказать:

- 1. Герои объединяются под сомнительным предлогом;
- 2. Их отношения выглядят неестественно;
- 3. Карьерный рост Кэсси не прокатил бы даже в диснеевской сказке.

Несмотря на то, что оценка в общепринятом понимании относится к серой зоне, субъективно фильм оставляет приятное послевкусие.

Пример 3.

Кратко и по пунктам:

- 1. Начал смотреть, потому что новый сериал по подписке.
- 2. Сразу "проглотил" полторы серии, запнулся на отсылке к "лихим 90-м" и бандитам, не нравится мне такое. Решил не досматривать.
- 3. Через день всё-таки любопытство взяло верх. Сказал себе: если будет неожиданный поворот в банальном сюжете, досмотрю. Поворот случился, пришлось смотреть весь сериал.

Внимание: тексты рецензий не обязательно являются полностью корректными относительно правил русского языка. Следует учитывать это при составлении регулярных выражений.

3. Поиск в тексте именованных сущностей типа PERSON

Целью данной подзадачи является создание регулярного выражения, способного найти в тексте на русском языке именованные сущности типа <u>PERSON</u>. Под персонами следует понимать следующее определение: человек (реальный или вымышленный) со своими индивидуальными особенностями с социокультурной точки зрения. Регулярное выражение должно находить персон с помощью именованной группы person: (?P<person>).

Пример:

Нургалиев уволил начальника УВД Томской области.

Начальник УВД Томской области <mark>Виктор Гречман</mark> освобожден от занимаемой должности. Как сообщает "Интерфакс" со ссылкой на пресс-службу МВД, это решение принял глава ведомства Рашид Нургалиев по поручению президента РФ Дмитрия Медведева.

4. Извлечение данных из HTML страницы

Требуется разработать регулярное выражение, способное выделить из html кода страницы различные сведения о сериалах. В качестве источника используются страницы с эпизодами на Кинопоиске вида https://www.kinopoisk.ru/film/{id}/episodes/, где вместо {id} находится идентификатор сериала, состоящий из цифр.

Извлекаемые данные:

- **общая информация:** название сериала (name), общее количество эпизодов в сериале (episodes count);
- информация об эпизоде: номер (episode_number), название (episode_name), оригинальное название (episode original name), дата выхода (episode date);
- информация о сезоне: номер сезона (season), год (season_year), количество эпизодов (season_episodes).

В скобках указаны именованные группы, в которые необходимо заключить искомую информацию.

Пример:

Извлекаемая информация:

- "Чернобыль (1)" (name)
- "5" (episodes_count)
- "1" (season)
- "2019" (season_year)
- "5" (season episodes)
- "1" (episode_number)
- "1:23:45" (episode_name)
- "1:23:45" (episode_original_name)
- "6 мая 2019" (episode_date)
- "2" (episode_number)
- "Пожалуйста, сохраняйте спокойствие" (episode_name)
- "Please Remain Calm" (episode_original_name)
- "13 мая 2019" (episode_date)
- "3" (episode_number)
- "Да разверзнется земля!" (episode_name)
- "Open Wide, O Earth" (episode original name)
- "20 мая 2019" (episode_date)
- "4" (episode_number)
- "Счастье всего человечества" (episode name)
- "The Happiness of All Mankind" (episode original name)
- "27 мая 2019" (episode_date)
- "5" (episode_number)
- "Вечная память" (episode_name)
- "Vichnaya Pamyat" (episode_original_name)
- "3 июня 2019" (episode_date)

Общая информация

Для получения выделяемых регулярными выражениями данных следует использовать следующий код:

```
entities = set()
for match in regexp.finditer(html):
    for key, value in match.groupdict().items():
        if value is not None:
            start, end = match.span(key)
            entities.add((start, end, key))
```

Примеры входных данных для заданий 2 и 4 доступны по ссылке:

- в папке sentences представлены тексты рецензий, в которых каждое предложение выделено символами { и };
- в папке series представлены примеры html разметки страниц с информацией о сериалах.

Внимание: примеры данных даются исключительно в ознакомительных целях для выполнения данного задания. Использование их для других целей запрещено.

Решение задачи

Теоретические аспекты

- docs.python Документация на библиотеку регулярных выражений в Python3
- Habr Регулярные выражения в Python. От простого к сложному:
- <u>regex101 Тестирование и отладка регулярных выражений с возможностью выбора</u> языка программирования:
- towardsdatascience Применение регулярных выражений для NLP:

Тестирование

На личной странице (<u>2022.tpc.ispras.ru/submissions/regexp2</u>) находится статистика со всеми результатами в т.ч. результатами последнего тестирования (дата, метрики качества). На странице <u>2022.tpc.ispras.ru/results/regexp2</u> доступны результаты всех участников. Решения перезапускаются раз в неделю по средам в 00:00.

Загрузка решения

Загружаемый файл должен представлять собой zip архив с любым именем. Архив должен обязательно содержать:

- Решение в файле solution.py. В файле должны содержаться следующие строки, содержащие регулярные выражения:
 - 1. Регулярное выражение для проверки скобочного выражения на корректность (PARENTHESIS_REGEXP);
 - 2. Регулярное выражение для разбиения на предложения (SENTENCES_REGEXP);
 - 3. Регулярное выражение для поиска персон (PERSONS_REGEXP);
 - 4. Регулярное выражение для извлечения данных о сериалах (SERIES_REGEXP).
- Описание найденных регулярных выражений в файле description.txt. Пожалуйста, напишите подробное описание, как были найдены регулярные выражения. Это описание будет выложено вместе с решением после завершения курса.

Каждое регулярное выражение должно являться строкой, записанной по правилам python regexp. В противном случае система проверки выдаст ошибку.

Пример решения, возвращающего пустые результаты для всех подзадач:

```
PARENTHESIS_REGEXP = r''

SENTENCES_REGEXP = r''

PERSONS_REGEXP = r''

SERIES_REGEXP = r''
```

Ограничения

- Каждую неделю можно послать не более 10 решений.
- Внимание! Итоговое тестирование будет проводиться на последнем загруженном решении.
- Размер загружаемого архива не должен превышать 15Мб.
- Время тестирования каждого регулярного выражения не должно превышать 3 секунд на тексте из 5000 символов.
- На проверяющей машине доступно 16 Гб оперативной памяти.

Оценка качества

Для оценки задания используется усредненная F_1 мера по каждой из подзадач. Для подзадачи валидации используется F_1 мера для задачи бинарной классификации

$$P = \frac{tp}{tp + fp}, \qquad R = \frac{tp}{tp + fn}, \qquad F_1 = \frac{2PR}{P + R};$$

Для оценки остальных подзадач используется micro-averaged F_1 , мера точного совпадения границ искомых подстрок:

$$P = \frac{|correct|}{|predicted|}, \qquad R = \frac{|correct|}{|expected|}, \qquad F_1 = \frac{2PR}{P+R};$$

При проверке результатов валидации строки, в случае превышения ограничения по времени, считается, что ответ противоположен правильному.