MATH 280 HW1

Hanzhang Yin

Aug/29/2024

Question 1

Proof. Define the function $h(x) = \frac{f(x)}{g(x)}$, by the def. of the derivative with limit process:

$$h'(a) = \lim_{x \to a} = \frac{h(x) - h(a)}{x - a}$$

Expanding h(x) and h(a):

$$h'(a) = \lim_{x \to a} = \frac{\frac{f(x)}{g(x)} - \frac{f(a)}{g(a)}}{x - a}$$
$$\Rightarrow h'(a) = \lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{g(x)g(a)(x - a)}$$

Applying $f(x) \approx f(a) + f'(a)(x-a) + E_f(x)$ and $g(x) \approx g(a) + g'(a)(x-a) + E_g(x)$, we can rearrange numerator as:

$$f(x)g(a) - f(a)g(x) \approx (f(a) + f'(a)(x - a) + E_f(x))g(a) + f(a)(g(a) + g'(a)(x - a) + E_g(x))$$

$$= f(a)g(a) + f'(a)g(a)(x - a) + E_f(x)g(a) - f(a)g(a) - f(a)g'(a)(x - a) - f(a)E_g(x)$$

$$= f'(a)g(a)(x - a) - f(a)g'(a)(x - a) + E_f(x)g(a) - f(a)E_g(x)$$

Applying the definition of $E_f(x)$ and $E_g(x)$:

$$\lim_{x \to a} \frac{E_f(x)g(a) - f(a)E_g(x)}{g(x)g(a)g(x-a)} = 0$$

we can get overall:

$$h'(a) = \lim_{x \to a} \frac{f'(a)g(a)(x-a) - f(a)g'(a)(x-a) + E_f(x)g(a) - f(a)E_g(x)}{g(x)g(a)g(x-a)}$$

Since $g(x) \approx g(a)$ when x = a:

$$\Rightarrow \left(\frac{f}{g}\right)' = h'(a) = \lim_{x \to a} \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}$$

Question 2

(a)

Given,

- $f(x) = 2 (x 3) + E_f(x)$, near x = 3, with $|E_f(x)| < 1$ one the interval [2, 4].
- $g(x) = x^3 2x^2 + 3$; g(2) = 8 4(2) + 3 = 3, g'(2) = 12 8 = 4.

Proof. From the initial assumptions, here is the approximation of f(x) near x = 3:

$$f(x) = 2 - (x - 3) + E_f(x)$$

Value of g at f(3):

$$f(3) = 2 - (x3 - 3) + E_f(3) = 2 + E_f(3)$$

Noticing that $|E_f(x)| < 1$, then

$$g(f(3)) = g(2 + E_f(3)) = g(2) = 3$$

Then, we can use the Taylor Expansion around f(3) = 2. The first order Taylor expansion for g(f(x)) around x = 3 would be:

$$g(f(x)) \approx g(2) + g'(2) \cdot (f(x) - 2)$$

Then we can sub f(x) in:

$$g(f(x)) \approx 3 + 4(2 + E_f(x) - (x - 3) - 2)$$

$$= 3 + 4(-x + 3 + E_f(x))$$

$$= 3 + 4(-x + 3) + 4E_f(x)$$

$$= 15 - 4x + 4E_f(x)$$

Given E(x) << (x-a) and considering the linearity of $g'(x): E_{f \circ g} = 4E_f(x)$. As $E_f(x)$ is much smaller (x-3), and given $|E_f(x)| < 1: |E_{f \circ g}| \le 4$.

(b)

Given h(x) is differentiable at x = 0 and h(0) = 3, WTS whether the bound the error of f(h(x)) near zero.