BLUETOOTH LOW ENERGY (BLE)

Planning

Physical Layer

Power consumption

MAC Layer

Security

2.4 GHz PHY Channel Assignment Bluetooth® Low Energy vs. IEEE 802.11 (United States)

https://microchipdeveloper.com/wireless:ble-phy-layer

Frequency Hopping Spread Spectrum (FHSS)

$$f_{n+1} = (f_n + hop) \pmod{37}$$

(e.g : hop = 11)

 $(140 \text{ kHz} \le \Delta f \le 175 \text{ kHz})$

But...

Link Layer

FUNCTIONS

- 6 Definition of interaction between devices
- 5 Exchange of data between applications
- 4 Generation & exchange of security keys
- 3 Client/server protocol based on shared attributes
- 2 Transport of data
- 1 Addressing + communication

Connection

GATT

Connectable? Scannable? Directed?

GATT SERVER

GAP

L2CAP

Link Layer

Peripherical/Broadcaster

SLAVE

C8:6E:1D:1E:96:2E

MASTER XX:XX:XX:XX

Central/Observer

Passive scan?

Scanner scan interval = 50 ms Scanner scan window = 25 ms No synchronisation

Advertising on 37, 38 and 39 Advertiser Advertising Interval = 20 ms

Generic Attributes Protocol

rvice	Declaration	0x8000	SERVICE (0x2800)	0x180D	READ
Characteristic	Declaration	0x8001	CHAR (0x2803)	NOT[0x8002]HRM	READ
"Heart Rate Measurement"	Value	0x8002	HRM (0x2A37)	bpm	NONE
	Descriptor	0x8003	CCCD (0x2902)	0x0001	READ/WRITE
Characteristic	Declaration	0x8004	CHAR (0x2803)	RD 0x8005 BSL	READ
"Body Sensor Location"	Value	0x8005	BSL (0x2A38)	0x02 (Wrist)	READ
Characteristic	Declaration	0x8006	CHAR (0×2803)	WR 0x8007 HRC	READ
"Heart Rate Control Point"	Value	0x8007	HRC (0x2A39)	0xXX	WRITE

BLE Consumption

It's not straightforward to predict the exact BLE power consumption due to the several parameter depending on. BLE consumption depends on:

- Chipset/radio
- BLE Stack + version
- BLE parameters
- Firmware efficiency

<u>Current Consumption Draw during a cycle</u>

Awaking Mode Consumption

We can define the overall energy consumption during an awaking mode as the sum of each different energy consumption state: E_awake= E_wake-up+ E_rx+ E_tx+ E_processing+ E_IFS

- Wake-up energy
- RX energy (mainly depends on the data number to receive)
- IFS energy
- TX energy (mainly depends on the data to send and the transmit power used)
- Post-processing energy (mainly depends on the application running)

Phase	Power draw $(V_{DD} = 3V)$	Duration
1. wakeup & pre-processing	$P_{wu} = 15 \text{mW}$	$D_{wu} = 1$ ms
2. RX	$P_{rx} = 66 \text{mW}$	$D_{rx} = 8\mu \text{s/B}$
3. IFS	$P_{ifs} = 45 \text{mW}$	$D_{ifs} = 150\mu s$
4. TX	$P_{tx} = 84 \text{mW}$	$D_{tx} = 8\mu \text{s/B}$
5. post-processing	$P_{mcu} = 24\text{mW}$	$D_{mcu} = 1.4$ ms

Sleeping Mode Consumption

*))

Sleeping mode is useful for saving energy when the BLE device didn't send any data. In order to save energy, consumption is very low (2 μ W) in this mode, an engineer which is looking to increase a BLE device autonomy, will handle to reduce the duty cycle.

Overall BLE consumption in cycling mode: E_ble = E_awake + E_Sleep

Mean current consumption related to the duty cycle

BLE modele de securité

Pairing: 1

Processus de création de clés partagées / sécurité temporaire / connexion cryptée .

Bonding: 2

Stockage de la clé créée lors du couplage pour une utilisation ultérieure.

Responder Established LL connection (Optional) Security_Request Pairing Request Phase 1 Pairing Response Pairing over SMP: Phase 2 Legacy pairing or Secure Connections Establishment of encrypted connection with key generated in phase 2 **Key Distribution Key Distribution** Phase 3 **Key Distribution**

1-Concevoir l'authentification:

Vérification des clés stockées .

2-Confidentialité:

Les données ne sont pas lisibles par d'autres utilisateurs .

3-Intégrité : Protection contre l'altération des données .

Activer Windows
Accédez aux paramètres pou

Sécurité Manager

Sécurité Manager est un module de l'achitecture BLE :

- Protocole et algorithme.
- Génération et échange clés .
- ❖128 Bit de de crypte selon

Standard Avancé de criptage (AES)

- Maitre initialise la sécurité.
- Esclave peut demander la sécurité

- Garantissez la confiance, l'intégrité, la confidentialité et le cryptage des données.
- Responsable de la sécurité
- *Responsable de:
- -Pairing
- -Distribution des clés.
- -Générer des clés à court terme.

