We claim:

- 1. A single acentric, rhombohedral lanthanide borate crystal comprising the formula LnBO₃, wherein Ln is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, and having a dimension of at least 1 mm in at least one direction.
- 2. The lanthanide borate crystal set forth in claim 1 wherein the crystal exhibits non-linear optical properties.
- 3. An acentric, rhombohedral lanthanide borate crystal comprising the formula $Ln_yLn_xBO_3$, wherein Ln_x is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y and wherein Ln_y is selected from the group consisting of La, Ce, Pr, Nd, Y, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Cr and mixtures thereof, wherein Ln_x and Ln_y are differing ions and wherein the molar ratio of $Ln_y:Ln_x$ is from about 1:99 to about 20:80.
- 4. The lanthanide borate crystal set forth in claim 3 comprising an active gain medium for a laser.
- 5. The lanthanide borate crystal set forth in claim 4 wherein the lasing crystal comprises a self-frequency doubler.

6. A method for growing a single rhombohedral lanthanide borate crystal comprising:

reacting B₂O₃ and Ln₂O₃, wherein Ln is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, in an aqueous solution at a temperature of from about 350°C to about 600°C and at a pressure of from about 8 kpsi to about 30 kpsi.

- 7. The method set forth in claim 6 wherein the step of reacting B₂O₃ and Ln₂O₃ comprises reacting B₂O₃, (Ln_x)₂O₃, and (Ln_y)₂O₃ wherein Ln_x is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y and wherein Ln_y is selected from the group consisting of La, Ce, Pr, Nd, Y, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Cr and mixtures thereof, wherein Ln_x and Ln_y are differing ions and wherein the molar ratio of (Ln_x)-2O₃ and (Ln_y)₂O₃ to B₂O₃ is 1:1 and wherein the molar ratio of (Ln_x)₂O₃ to (Ln_y)₂O₃ is from about 99:1 to about 80:20.
- 8. A single acentric, rhombohedral lanthanide borate crystal comprising the formula LnBO₃, wherein Ln is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, made by the method comprising: reacting B₂O₃ and Ln₂O₃, wherein Ln is selected from the group consisting of Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y, in an aqueous solution at a temperature of

from about 350°C to about 600°C and at a pressure of from about 8 kpsi to about 30 kpsi.

9. The lanthanide borate crystal set forth in claim 8 comprising a dimension of at least 1 mm in at least one direction.