



# Cryptographic Hash Functions **Introduction**



In information security, hash methods are used to generate "fingerprints" for documents, which characterize a possibly large document as unambiguously as possible by means of a short string with a fixed number of characters

## **Objectives:**

- "Compression" of a document to a fixed length string of e.g. 256 bits, which is "practically" irreversible (computation need centuries) → "one-way hash function"
- It should be very difficult to find a second document with exactly the same hash value → "collision resistance"

# Cryptographic Hash Functions **Basic Idea**



Hash functions transform every input into an output of fixed length, e.g. 256 bit

- Complex cryptographic procedures (e.g. digital signature) need not be applied to the (long) document, but only to its (short) hash value
- In order to ensure one-way properties, special types of hash function are required, so-called cryptographic hash functions

Example for applying hash-functions to sign a document:



# Cryptographic Hash Functions



#### Some Definitions:

#### **Hash-function h** is



- Collision free for a message M, if it is practically impossible to construct a message M' different from M with h(M') = h(M)
- Collision-free, if it is practically impossible to find two different messages M and M' with h(M') = h(M)
- One-way function, if it is practically impossible to find a message M for a given hash value z with z = h(M)

**Cryptographic hash functions** are collision-free hash functions

# Length of Hash Values



The Length of the hash values plays an important role:

## **Birthday paradox:**

In a group of k = 23 randomly selected people, there is a probability >1/2 that the birthday of at least 2 people has the same date in a year (n = 365)

#### **Application:**

Hash value length **40-bit**:

■ With probability >1/2 there is a collision with "only" k = 2<sup>20</sup> (about 1 million) random values - hash value is thus quite uncertain

Hash value length **256-bit** recommended length:

■ With probability >1/2 there is a collision at  $k = 2^{128}$  random values

# Attacks on Cryptographic Hash Functions



### Target of the attacks:

Here no keys are searched for but rather collisions

- Finding two different messages with the same hash value
- Finding a new message with a given hash value

## **Attention:** Birthday Attack

- When modifying messages to create messages with the same hash value,  $2^{n/2}$  attempts are sufficient
- Protection: Longer hash values, e.g. 192 bit or 256 bit



# Popular Hash Functions **SHA - Secure Hash Algorithm** (1/2)



## SHA - Secure Hash Algorithm - was developed by NSA in 1993

 SHA-1 (1995 revision of SHA) generates hash values of length 160 bit

#### Theoretical weaknesses of SHA-1:

- February 2005: Chinese team finds (theoretical) approach to crack SHA-1 by (2<sup>69</sup> attempts)
- August 2005: Another successful attack (2<sup>63</sup> attempts)
- February 2017: First published collision of SHA-1 (2 different PDF documents with same checksum)
- Current difficulty: 2<sup>57.5</sup> attempts

Hence: Cracking an SHA-1 hash value costs less than \$50.000 today when renting computing power from a cloud provider

# Popular Hash Functions

#### HPI Hasso Plattner Institut

# **SHA - Secure Hash Algorithm** (2/2)

**SHA-2** - (family of) successor(s) to SHA-1 from 2002

- SHA-2 family includes SHA-224, SHA-256, SHA-384, SHA-512
- SHA-256 is one of the most common cryptographic hash functions and was standardized in 2002
- SHA-256 processes 512-bit blocks (last block may need to be filled up) and generates 256-bit hash values for each

## **Example**:

**SHA-256**("Franz chases in a completely neglected taxi across Bavaria") =

d32b568cd1b96d459e7291ebf4b25d007f275c9f13149beeb782fac0716613f8

# Other Common Cryptographic Hash Functions



#### MD4 and MD5

Lack of collision safety

#### RIPE-MD

- Different variants (128, 160, 256, 320 length of the hash)
- Collision attacks possible in original RIPE-MD

#### Jacuzzi

- 512-bit hash value
- AES variant for encryption

## SHA-3 (Keccak)

- Standardized in October 2012
- Alternative algorithm to SHA-2