Introduction

Introduction

Nicole Lavinia and Cristina Yazbeck

Glycogen Storage Disease 7 (GSD)

(Tarui Disease)

Inheritance	Autosomal recessive disorder
Symptoms	Exercise intolerance, cramps, myoglobinuria, mild hemolysis
	Musumeci et al. (2012)
Cause	Mutations in PFKM gene
	e.g. Missense Mutations in binding sites of PFKM
	Altered allosteric regulation of PFK leads to reduced enzyme activity
	Bioinformatics work — variants in P39, 57,180, 209, 309 are all within
	the human N-terminal catalytic PFK domain 1 (P2-390).

ΔPFK2 S. cerevisiae as a Model for Human GSD

S. cerevisiae PFK2 PDB Accession: 3080

Produces a potent allosteric modulator of PFK1 activity (F2,6-BP)

Human PFK (Muscle Isoform)
PDB Accession: 4OMT

Catalyses conversion of F6P to F1,6-BP

Can we effectively model human Glycogen Storage Disease 7 using an S. cerevisiae $\Delta PFK2$ model?

Inquiry Question

Hypotheses

- 1
- If PFK2 deletion creates a deficit in the glycolytic pathway, then we should observe increased flux towards the pentose phosphate pathway (PPP) to ensure stable ATP/NAPDH production.

2

If this expected metabolic reprogramming alters or prevents glucose-based signalling (e.g. via TORC1), then we should observe an increase in closely-associated cellular processes including fatty acid oxidation, lipid biosynthesis, and autophagy.

3

If we can correlate these cellular changes to an absence of PFK2, then we can assume a similar phenotype in GSD7; however, we expect that some physiological complexity will not be recapitulated by a yeast model.

Project Aims

Infer any **metabolic flux** reprogramming that occurs in *S. cerevisi*ae when glycolysis is impaired

Apply **network theory** to identify new gene/protein targets which report a high centrality relative to PFK2, and therefore, when PFK2 is removed (Collaboration with MATH3888)

Validate whether the PFK2 deletion is a comprehensive model system for human GSD

Pho85: Negative regulator of glycogen synthase and starvation-induced autophagy

Tkl1: Transketolase of the non-oxidative branch of the pentose-phosphate pathway

Revise current experimental approaches

Further Network Theory

- 1. Betweenness Centrality
- 2. Percolation Centrality

Cristina Yazbeck

Betweenness Centrality

$$g(v) = \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

Useful for identification of:

- Bottlenecks
- Biologically important participants

Where EPs are maintained in the network:

Gene	Distance from PFK2	Importance	Essential
ACT1	2	0.0515	Υ
YPT1	4	0.0329	Υ
CDC28	3	0.0250	Υ
RPS31	3	0.0232	Υ
UBI4	2	0.0201	N
HHT1	2	0.0192	Υ
RPS3	2	0.0154	Υ
PUF3	3	0.0150	Ν

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are maintained in the network:

Gene	Distance from PFK2	Importance	
ACT1	2	0.0515	Y
YPT1	4	0.0329	Υ
CDC28	3	0.0250	Y
RPS31	3	0.0232	Υ
UBI4	2	0.0201	N
HHT1	2	0.0192	Υ
RPS3	2	0.0154	Υ
PUF3	3	0.0150	Ν

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are maintained in the network:

Gene	Distance from PFK2	Importance	Essential
ACT1	2	0.0515	Υ
YPT1	4	0.0329	Υ
CDC28	3	0.0250	Y
RPS31	3	0.0232	Υ
UBI4	2	0.0201	N
HHT1	2	0.0192	Υ
RPS3	2	0.0154	Υ
PUF3	3	0.0150	Ν

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are maintained in the network:

Gene	Distance from PFK2	Importance	Essential
ACT1	2	0.0515	Υ
YPT1	4	0.0329	Υ
CDC28	3	0.0250	Υ
RPS31	3	0.0232	Y
UBI4	2	0.0201	N
HHT1	2	0.0192	Υ
RPS3	2	0.0154	Υ
PUF3	3	0.0150	Ν

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are maintained in the network:

Gene	Distance from PFK2	Importance	Essential
ACT1	2	0.0515	Υ
YPT1	4	0.0329	Υ
CDC28	3	0.0250	Υ
RPS31	3	0.0232	Υ
UBI4	2	0.0201	N
HHT1	2	0.0192	Υ
RPS3	2	0.0154	Y
PUF3	3	0.0150	N

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are removed from the network:

Gene	Distance from PFK2	Importance
UBI4	3	0.0456
HHT1	2	0.0428
TOR1	3	0.0262
BI4	4	0.0213
TRP5	3	0.0207
URA3	2	0.0201
GUA1	3	0.0200
RPL40A	3	0.0181

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are removed from the network:

Gene	Distance from PFK2	Importance
UBI4	3	0.0456
HHT1	2	0.0428
TOR1	3	0.0262
BI4	4	0.0213
TRP5	3	0.0207
URA3	2	0.0201
GUA1	3	0.0200
RPL40A	3	0.0181

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are removed from the network:

Gene	Distance from PFK2	Importance
UBI4	3	0.0456
HHT1	2	0.0428
TOR1	3	0.0262
BI4	4	0.0213
TRP5	3	0.0207
URA3	2	0.0201
GUA1	3	0.0200
RPL40A	3	0.0181

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Where EPs are removed from the network:

Non-essential;
Confers oxidative
stress resistance
(Consistent with
preliminary viability
assay results)

Gene	Distance from PFK2	Importance
UBI4	3	0.0456
HHT1	2	0.0428
TOR1	3	0.0262
BI4	4	0.0213
TRP5	3	0.0207
URA3	2	0.0201
GUA1	3	0.0200
RPL40A	3	0.0181

PFK2 may be linked to 'salvage pathways' at the genome level

^{*}EPs refer to 'Inviable Proteins' on the Saccharomyces Genome Database

Percolation Centrality

$$PC(v) = \frac{1}{N-2} \sum_{S \neq v \neq t} \frac{\sigma_{st(v)}}{\sigma_{st}} \frac{x_s}{[\sum_i x_i] - x_v}$$

All paths are important, but some paths are more important than others...

Percolation Centrality Shift

 Knocking out PFK2 from the network does not have a significant mathematical effect on the system

Percolation Centrality Shift

- Knocking out PFK2 from the network does not have a significant mathematical effect on the system
- Centrality of other nodes after PFK2
 is inactivated is biochemically useful

YHR174W Enolase II

YOL136C PFK27 (PFK2 alias)

YJR019C Peroxisomal acyl-CoA thioesterase

ΔPFK2 S. cerevisiae Network

EPs Maintained

EPs Removed

Gene	Distance from PFK2	% Change	Centrality	Gene	Distance from PFK2	% Change	Centrality
YPT1	4	+0.0157	0.0329	UBI4	3	+0.0154	0.0456
RPS31	3	+0.0145	0.0232	TOR1	3	+0.0180	0.0262
CDC28	4	+0.0125	0.0250	PUF3	3	+0.0161	0.0292
TDH3	1	-0.4172	0.0040	TRP5	3	+0.0205	0.0207
TDH2	1	-0.3220	0.0054	GCN4	3	+0.0224	0.0164
PGK1	1	-0.2309	0.0082	GLK1	1	-0.2568	0.0041
PYK2	1	-0.3908	0.0056	TDH1	1	-0.4656	0.0045
CDC19	1	-0.3647	0.0080	PYK2	1	-0.4049	0.0165

Mostly conserved from Betweenness Centrality analysis

ΔPFK2 S. cerevisiae Network

EPs Maintained

EPs Removed

Gene	Distance from PFK2	% Change	Centrality	Gene	Distance from PFK2	% Change	Centrality
YPT1	4	+0.0157	0.0329	UBI4	3	+0.0154	0.0456
RPS31	3	+0.0145	0.0232	TOR1	3	+0.0180	0.0262
CDC28	4	+0.0125	0.0250	PUF3	3	+0.0161	0.0292
TDH3	1	-0.4172	0.0040	TRP5	3	+0.0205	0.0207
TDH2	1	-0.3220	0.0054	GCN4	3	+0.0224	0.0164
PGK1	1	-0.2309	0.0082	GLK1	1	-0.2568	0.0041
PYK2	1	-0.3908	0.0056	TDH1	1	-0.4656	0.0045
CDC19	1	-0.3647	0.0080	PYK2	1	-0.4049	0.0165

Aligns with our initial hypotheses

Biochemical and Experimental Validation of New Targets: Lipid Biosynthesis

Nara Wu

Rationale for Target Confirmation

- Do we expect the proteins to interact **directly** (i.e. physically) or **indirectly** based on literature evidence/pathway analysis?
- Are the proteins localised in the same **subcellular** compartment?
- Are there specific **conditions** under which the proteins are expressed, or are they expressed **constitutively**?
- Can we correlate changes in the **transcription/expression** of these proteins to a **deletion** of PFK2?

Objective: Identification of downstream pathways which are perturbed by PFK2 deletion

By qPCR of YMR205C, we have observed that **PHO85** is:

- Downregulated under low glucose conditions
- Upregulated under high glucose conditions

Secondary Hypothesis:

YMR205C exhibits altered lipid biosynthesis, and this is dependent on cellular glucose levels

- Pahl regulates lipid synthesis by dephosphorylating phosphatides to diacyl- and triacylglycerol (DAG/TAG)
- Pho85 phosphorylates (inactivates) Pah1, sequestering it within the cytosol
- Spo7 dephosphorylates (activates) Pah1 in conjunction with Nem1 on the ER/nuclear membrane

Association between PFK2 deletion and altered lipid biosynthesis

PFK2 dysfunction indirectly influences lipid synthesis via Pho85-Nem1–Spo7–Pah1 signalling pathway

Khondker et al. Adv. Bio. Reg. **2022**, 84. Su et al. J. Biol. Chem. **2014**, 289 (50).

- Pah1 regulates lipid synthesis by dephosphorylating phosphatides to diacyl- and triacylglycerol (DAG/TAG)
- Pho85 phosphorylates (inactivates) Pah1, sequestering it within the cytosol
- Spo7 dephosphorylates (activates) Pah1 in conjunction with Nem1 on the ER/nuclear membrane

Pathway Conservation in Humans

- NEP1-R1 forms stabilizing complex with CTDNEP1 to activate Lipin-1 in a similar manner to Nem1-Spo7-Pah1 pathway in *S. cerevisae*
- Defects in CTDNEP1-NEP-R1-Lipin-1 pathway linked to disruption in lipid synthesis; Parallels $spo7\Delta$ and $pah1\Delta$ phenotypes

Yeast Protein	Human Homologue
Pah 1	Lipin-1
Spo7	NEP1-R1
Nem1	CTDNEP1

Existing literature

- Pho85 mutation affects phosphorylation, abundance, and localization of Pah1
- 62% increase in Pah1 associated with membranes (activated) in Δpho85

Existing literature

- *Pho85* mutation affects phosphorylation, abundance, and localization of Pah1
- 62% increase in Pah1 associated with membranes (activated) in Δpho85
- Pho85-phosphorylation site mutations in Pah1 revealed increased TAG content
- Confirms phosphorylation-deficient forms of Pah1 bypass the requirement of Nem1-Spo7 dephosphorylation for activation

In low glucose conditions with \downarrow Pho85, is Pah1 activated without Nem1-Spo7 dephosphorylation?

Experiments

Aim: Confirm whether $\Delta pfk2$ cells have altered lipid synthesis via Pho85-Nem1-Spo7-Pah1 activation axis

- Lipid Droplet Quantification via BODIPY Staining/Microscopy
- Determination of Pah1 Localisation (Indirect Immunofluorescence and Fixed Cell Analysis)
- Determination of Pah1 Phosphorylation (Phos-tagged SDS-PAGE)

Experiments

Aim: Confirm whether $\Delta pfk2$ cells have altered lipid synthesis via Pho85-Nem1-Spo7-Pah1 activation axis

- Lipid Droplet Quantification via BODIPY Staining/Microscopy
- Determination of Pah1 Localisation (Indirect Immunofluorescence and Fixed Cell Analysis)
- Determination of Pah1 Phosphorylation (Phos-tagged SDS-PAGE)

Expected Results

Condition	Pah1 Phosphorylation	Lipid Droplets	Pah1 Localization
wild-type low glucose	Basal Pho85 phosphorylation and Spo7 dephosphorylation	Control	Control
Δpfk2 low glucose	↓ Pho85 phosphorylation + Spo7 dephosphorylation	Highest lipid accumulation	Most Pah1 localized on membrane
Δpfk2 + Δspo7 low glucose	↓ Pho85 phosphorylation but no Spo7 dephosphorylation	High lipid accumulation (same as Δpfk2?)	Pah1 mainly localized on membrane

Experiments

Aim: Confirm whether $\Delta pfk2$ cells have altered lipid synthesis via Pho85-Nem1-Spo7-Pah1 activation axis

- Lipid Droplet Quantification via BODIPY Staining/Microscopy
- Determination of Pah1 Localisation (Indirect Immunofluorescence and Fixed Cell Analysis)
- Determination of Pah1 Phosphorylation (Phos-tagged SDS-PAGE)

Expected Results

wild-type low glucose			
	↓ Pho85 phosphorylation + Spo7 dephosphorylation		Most Pah1 localized on membrane
$\Delta pfk2 + \Delta spo7$ low gluc Similar out	\downarrow Pho85 phosphorylation but no comes between $\Delta pfk2$ and $\Delta pfk2$	High lipid +∆spo7cells validate	Pah1 mainly localized on membrane the hypothesis that $\Delta pfk2$ have

↑ lipid biosynthesis due to ↓ Pho85, allowing Pah1 activation with Spo7 under low glucose conditions

Biochemical and Experimental Validation of New Targets: Autophagy

Nicole Lavinia

Pairwise Shortest Paths in S. cerevisiae

Link between Autophagy and Glycogen metabolism:

Starvation → ↓ PHO85 → ↑ Autophagy and

↑ Glycogen synthesis

Secondary Hypothesis:

YMR205C exhibits increased
autophagy, in response to
impaired glucose utilisation and
low glucose levels

Wang et al., 2001

Autophagy in GSD

Previous Findings

- Autophagy induced after glucose depletion in S. cerevisiae
- Activation observed during ethanol-utilizing and ethanol depleted phases (glucose source removed)
- GFP-Atg8 cleavage and vacuolar localization confirmed autophagy activation
- Atg2-dependent process; confirms canonical machinery
- Carbon source limitation acts as key trigger for autophagy

GFP-Atg8 expressing strains

Autophagy in GSD

1st stage: Immunoblot and Fluorescence Microscopy

Measurements:

Autophagy initiation marker: p-Atg1

Fluorescence marker: GFP-Atg8

Aim: Confirm that even under normal glucose, YMR205C induces increased autophagy

- Determination of Atg1 Phosphorylation
- Fluorescent Microscopy of GFP-Atg8
 vacuolar localisation

Conditions	Immunoblot (p-Atg1)	Expected Band Intensity	Fluorescent Localisation (GFP-Atg8)
WT – Normal glucose	Low/basal phosphorylation	Faint band	Diffuse cytoplasmic distribution
WT – Low glucose (0.05%)	Moderate increase	Moderate band	Partial vacuolar localisation
KO – Normal glucose	Mild increase (↓ PHO85)	Slightly stronger band	Mild vacuolar puncta
KO – Low glucose	Strong phosphorylation	Intense distinct band	Prominent vacuolar accumulation

Autophagy in GSD

1st stage: Immunoblot and Fluorescence Microscopy

2nd stage: ATG1 Knockdown

Measurements:

Autophagy initiation marker: p-Atg1

Fluorescence marker: GFP-Atg8

Mechanistic Confirmation: Validate autophagy observed is canonical

Experimental Flow	Expected Results with ATG1 KD	
WT-No1. Generate ATG1 knockdown	Faint band	No band (absent or low p-Atg1)
3. Repeat Stage 1 readouts KO - Normal glucose Mild increase (LPHO85)	Moderate band —	No vacuolar puncta indicating canonical machinery
KO − Normal glucose Mild increase (↓ PHO85)		Mild Vacuolar puncta

Biochemical and Experimental Validation of New Targets: Beta-oxidation

Nicole Lavinia

Pairwise Shortest Paths in S. cerevisiae

Sensitive to nutrient signalling; Acts antagonistically **PHO85** to SNF1 under nutrient-rich conditions Activated under low glucose/stress; Stimulates SNF1 expression of glucose-repressed genes via Adrl p (downstream activation of peroxisomal FA-oxidation) Kinase sensitive to glucose; Glucose-dependent HXK2 transcriptional repressor that is Inhibited by SNF1 PPP (non-oxidative) enzyme, NADPH Production; TKL1 redirects carbon flux to the PPP—an alternative path supporting survival under metabolic stress

Pairwise Shortest Paths in S. cerevisiae

Since PHO85 and SNF1 work antagonistically, we could assume that, \downarrow PHO85 \rightarrow ↑ SNF1 \rightarrow ↑ Adr1p

Secondary Hypothesis:

YMR205C exhibits increased fatty acid oxidation via SNF1 activation under impaired glycolytic flux and low glucose levels

Simon et al., 1992

Beta-oxidation in GSD

Previous Findings

- Under low glucose (0.05%), SNF1 is phosphorylated at Thr210,
 indicating activation during metabolic stress (Orlova et al., 2008).
- SNF1 positively regulates Adr1p, stimulating expression of FOX1&2 and POT1 key peroxisomal enzymes for β-oxidation (Gurvitz et al., 2001).

Aims:

- Confirm activation of SNF1 pathway under low glucose and impaired glycolytic flux conditions (ΔPFK2)
- Determine whether the PFK2 deletion promotes Betaoxidation downstream of SNF1 activation

(Orlova, Barrett and Kuchin, 2008)

Free Fatty Acids

(Rajvanshi, Arya and Rajasekharan, 2017)

Beta-oxidation in GSD

Western blotting of SNF1

Protein Target:

SNF1 activation marker: Phosphorylated SNF1 (p-T210)

Control: Total SNF1 or ACT1 (loading control)

Gene Expression Analysis via qPCR

Genes of Interest: POT1, FOX1, FOX2

Reference gene: ACT1

Conditions	Western blot (p-T210)	Expected Band Intensity	Gene Expression of POT1, FOX1, FOX2
WT – Normal glucose	Low/basal phosphorylation	Faint band	Low baseline expression (glucose-repressed)
WT – Low glucose	Strong phosphorylation	Intense distinct band	Increased expression of genes
KO – Normal glucose	Mild SNF1 activation (due to altered flux)	Slightly stronger band than WT- normal	Mild upregulation of genes
KO – Low glucose	Strong SNF1 phosphorylation (synergistic)	Very intense band	High induction of gene expression indicating increased FA-oxidation

Towards a Suitable Model System for Glycogen Storage Disease 7

Cristina Yazbeck

Limitations of $\Delta PFK2$ S. cerevisiae

- S. cerevisiae relies primarily on intracellular Snf1/TORC1
 nutrient-sensing for glycogen metabolism
- Absence of human insulin signaling cascade in S.
 cerevisiae
 Lacks insulin-mediated kinase-phosphatase interactions
 (RTK and P13K/PTEN/Akt pathway) leading to GSK3
 inhibition → GS activation
- Unable to reproduce hormonal regulation and downstream multi-layered phosphorylation cascades controlling glycogen metabolism and synthesis in human tissues

Full Humanisation of Glycolysis in S. cerevisiae

- 43-66% identity at the protein level
- Minimised set of yeast glycolytic genes has been fully relocated to a single chromosomal locus
- Complementation of moonlighting functions of HXK, ALDO, and ENO,
 e.g. assembly of vacuolar ATPases, Crabtree effect
- V_{max} of glycolytic enzymes was same order of magnitude in humanised yeast and muscle cells
- Turnover rates of proteins were not substantially different

Challenge: No human homologue for *S.* cerevisiae HXK1/2, which have been identified as central by network analysis.

Future Directions: Validation

Yuanjun (Sam) Sun

Further Validation of $\Delta PFK2$ S. cerevisiae

- Excess purine degradation occurred in the exercising muscles of patients with GSD7¹
- Purine degradation produces fumarate fueling citric acid cycle²
 - AMP → IMP → Adenylosuccinate → AMP + Fumarate
- Purine degradation under low ATP:AMP leads to uric acid formation
 - $AMP \rightarrow IMP \rightarrow Inosine \rightarrow Hypoxanthine \rightarrow Xanthine \rightarrow Uric Acid$
- Yeast also possess purine catabolic pathway but lacks xanthine oxidoreductase³
 - AMP → IMP → Inosine → Hypoxanthine (excreted)

^{1.} Mineo et al. Journal of Clinical Investigation. 1985, 76 (2), 556–560.

^{2.} Garrett et al. Biochemistry, 2nd ed.; Chapter 27, Fort Worth: Saunders College Pub, 1999.

Further Validation of $\Delta PFK2$ S. cerevisiae

- Exactly how purine catabolism behaves in yeast is unknown
- Examine the purine catabolic pathway in KO yeast under extreme caloric restriction (model exercise in GSD7)
 - 1. Simulate high AMP:ATP ratio (inducible by 2-deoxyglucose (100 mM) followed by incubation (30 min)¹
 - Sample coupled to LC-MS/MS
 - Enrichment by hydrophilic interaction chromatography (HILIC)²
 - Orbitrap or QTOF mass spectroscopy
 - 3. Compare metabolite concentration (inosine and hypoxanthine) between WT and KO yeast
 - If inosine and hypoxanthine concentration increased in KO yeast → upregulated purine catabolism → increased confidence for ΔPFK2 yeast as GSD7 model
 - 5. Compare the magnitude of metabolite changes with healthy and GSD7 patient

Future Directions: Proteomics

Yuanjun (Sam) Sun

Identification of Novel Altered Pathways

- Many enzymes are functionally regulated by kinases/phosphatases
- Identify altered pathway in $\Delta PFK2$ yeast that were previously unknown
- Similar workflow in past literature to identify novel protein biomarkers in GSD51
- Identification of these novel pathway might enhance our understanding on GSD7
- Comparative phosphoproteomics:
 - Protein labelling (SILAC or TMT)
 - Enrichment through TiO₂ chromatography
 - LC MS/MS for quantitation and identification
 - Western blot to validate protein candidate

Future Directions: Metabolomics

Yuanjun (Sam) Sun

- Past research simulated caloric restriction by rapamycin to investigate how amino acid profile shifts¹
- Increase in valine and histidine abundance observed in low glucose WT
- Elevated threonine level doesn't align with past literature
- Elevated aspartate also observed in KO

- Past research simulated caloric restriction by rapamycin to investigate how amino acid profile shifts¹
- Increase in valine and histidine abundance observed in low glucose WT
- Elevated threonine level doesn't align with past literature
- Elevated aspartate also observed in KO

- Past research simulated caloric restriction by rapamycin to investigate how amino acid profile shifts¹
- Increase in valine and histidine abundance observed in low glucose WT
- Elevated aspartate also observed in KO
- Elevated threonine level doesn't align with past literature

- Past research simulated caloric restriction by rapamycin to investigate how amino acid profile shifts¹
- Increase in valine and histidine abundance observed in low glucose WT
- Elevated aspartate also observed in KO
- Elevated threonine level in WT doesn't align with past literature

Metabolomics Future Directions

- High [Aspartate] but low [Threonine] in KO
- High [Threonine] in WT
- Metabolomics investigating threonine biosynthesis pathway to identify rate limiting step

Metabolomics Future Directions

- All intermediates are polar
- Adopting very similar metabolomics procedure as previous
 - LC-MS/MS (HILIC and orbitrap MS)
- Metabolite concentration compared between KO and WT low glucose

Future Directions: Epigenetics

Original Hypothesis: Erroneous qPCR

- Simplified hypothesis = TORC induced transcription factors
- Unexpected qPCR results
- Epigenetic machinery also regulates transcription

Original Hypothesis: Erroneous qPCR

Figure 1: TKL1 and PHO85 gene expression level in KO yeast cultured in varying concentration of glucose, plotted using KO HG TKL 1·1

- Simplified hypothesis = TORC activation of transcription factors
- Unexpected qPCR results
- Epigenetic machinery also regulates transcription

Alternative Hypothesis: Epigenetic Modulation

Precedent: GSD1A and Starvation Induced Autophagy

GSD1A = G6Pase- α deficiency results in **IMPAIRED** autophagy

- Afflicted cells activate CREBp, PPAR-γ and PPAR-α, lipogenic transcription factors and regulators
- 2. Expression and activation SIRT1 deacetylase downregulated
- 3. Deacetylation of autophagy-related proteins inhibited

Figure 2: SIRT1 derived structure

Precedent: GSD1A and Starvation Induced Autophagy

H4K16 acetylation regulates long term autophagy

- Autophagy is activated by TIP60
- Autophagy is repressed by SIRT1 activation
- GSD7 creates metabolic stress conditions similar to GSD1A

Figure 2: SIRT1 derived structure

Precedent: Epigenetics of Glycogen Production

Glycogen production is also regulated by epigenetic machinery

- PRMT4 expressed abundantly in skeletal muscle cells
- Suppression of PRMT4 expression inhibited glycogen synthase 1 transcription
- PRMT4 positively regulated by AMPK nutrient sensing pathway

Figure 3: PRMT4 (CARM1) bound with a bicyclic compound

Human - Yeast Epigenetic Homology

Most relevant epigenetic machinery between humans and yeast have high homology

- Autophagic response TFs differ slightly between organisms (FOXO vs FKH1/2)
- PRMT4 has low homology but is very important for epigenetic regulation, different protein may perform methyl transferase activity

DiMelo-seq: Epigenetic Detection

GSD7 induced epigenetic activity can be investigated using a novel "DiMelo-seq" approach.

- 1. An antibody targets a protein or histone modification of interest (H4K16)
- 2. A protein fused to the antibody methylates DNA surrounding the antibody target
- 3. LRS identifies the mark during sequencing

Figure 4: Oxford Nanopore flow cell

Future Directions: Growth Condition Experiments

Matthew Wolfenden

Growth Conditions Goals

- Our Knockout Condition $\Delta pfk2$ reduces the efficiency of glycolysis
- Aim to explore KO vs WT cell growth differences from a topdown perspective
- We chose varied glucose levels to assess the pathway's behaviour in excess glucose and starvation environments
- We also explored some alternate carbon sources to identify alternate paths and potential treatments for our human homolog disease modelled off GSD V treatment

Which Conditions Did We Use?

- -2% Glucose
- -1% Glucose
- -4% Glucose
- -2% Pyruvate
- -2% Lactate

----- PCR Confirmation, Yeast Viability

----- qPCR, Metabolomics

----- Growth Plate, Glycogen Staining

Briefly, GSD V

- GSD V is **NOT** modelled by our KO yeast strain
- GSD V is a block in glycogenolysis, whereas GSD VII is a block in glycolysis
- Both cause an increase in glycogen but for different reasons. In both cases, glycolysis cannot be relied upon for fast, reliable energy supply, especially in skeletal muscle
- Enter LCKD

Fig. 1. Scheme of glycogen metabolism and glycolysis. Roman numerals refer to glycogen storage diseases resulting from deficiencies of the following enzymes: I, glucose-6-phosphotase; II, acid maltase; III, debrancher; IV, brancher; V, muscle phosphorylase; VI, liver phosphorylase; VII, phosphorylase b kinase; IX, phosphoglycerate kinase (PGK); X, phosphoglycerate mutase (PGAM); XI, lactate dehydrogenase (LDH).

(DiMauro, S. et Al, 2005, American Journal of Medical Genetics)

LCKD: Low Carbohydrate Ketone Diet

- Ketone bodies originate primarily from the liver and are produced as an alternate energy source under carbohydrate restrictions due to fasting or prolonged exercise
- They have been explored as a potential treatment for metabolic disorders including for GSD V and GSD VII but not extensively
- We aimed to simulate this with our yeast KO strain
 - We utilised lactate and pyruvate here as they were a simpler option because they directly bypass glycolysis
 - Ketone bodies do not map perfectly onto S. cerevisiae which is a limit of our use of it as a model

(Lucia, A. et Al, 2021, Neuromuscular Disorders; Similiä, A. et Al, 2020, Front. Neurol.; Løkken, N. et Al, 2020, Journal of Inherited Metabolic Disease)

Lactate and Pyruvate

- Both 3 C molecules brought into S.
 cerevisiae through Jen1 transporter
 - Lactate converted to pyruvate in cell
- Metabolites that slot in directly after glycolysis and are used in TCA Cycle
- Jen1 transporter analogous to MCT1,
 4 transporters in human cells but not homologous and expressed on cell membrane in low glucose conditions.
 MCT transporters are also responsible for the intake of ketone bodies

Edited from Turcotte, B. et al 2009, FEMS Yeast Research

Growth Plates

Matthew Wolfenden

Hypotheses vs Our Results

- Growth could be solely dependent on [G] for KO
 - There was very little difference between the glucose level growth conditions to support this
- Low [G] could benefit KO growth by encouraging low glucose cell response
 - The low glucose growth condition did slightly benefit the KO strain as it grew the fastest, even compared to WT strains
- High [G] could have a negative effect through conflict between high glucose cell response and low ATP, or glycogen over synthesis
 - There was no evidence for this in our data
- Lactate and Pyruvate would be adequate alternative energy sources
 - While cell growth was observed, it was at about 50% the rate of the equivalent w/v% of glucose
 - Likely due to TCA cycle being slower than Glycolysis
 - Further investigation to see how this aligns with ketone dieting

Limitations

- Glucose conditions all maxed out at A = 2
 - Likely limited by either absorbance measurement or by cell density, meaning [G] did not have as strong an influence
 - This was not consistent with the variations in OD observed in glucose cultures grown in flasks for our other experiments, which makes some of these results heavily contrast our expectations
- Lactate and pyruvate growth did not reach a stationary phase
- Very small volume used with better aeration in well plates
 - Not consistent with growth conditions of other experiments

Next Steps

- Expand concentrations tested to lower concentration of glucose and higher for alternate carbon sources
 - When does low glucose become a limiting growth factor
 - When do higher 3C energy sources reach comparable growth to the 2%
 Glucose standard YPD condition
- Because we did not have time to assess the cell environment with our lactate and pyruvate growth conditions due to time, expanding our qPCR and metabolomics to include them could allow for better understanding of the internal cell environment
 - This will help connect these results to our other investigations which focus more on specific proteins – converge top-down and bottom-up experimental approaches

Glycogen Staining

Matthew Wolfenden

Hypotheses vs Results

- Higher Glycogen in 4%G and in KO strains
 - Hard to determine using stain. Very little differentiation
- No glycogen in Pyruvate and Lactate growth conditions
 - Appeared to be true but hard to validate due to microscopy quality

Limitations and Improvements

- Our method was unreliable and qualitative
 - Stain method was old with an unclear methodology that we needed to test
 - We couldn't quantify the glycogen present in any way and it was hard to differentiate stain intensity due to microscopy resolution
- How we aim to improve
 - Use Periodic Acid Schiff (PAS) staining protocol instead
 - More complex and expensive than the Lugol's solution we used but have a more reliable "gold standard" method
 - Can be quantitatively measured at 555nm in a spectrometer

Portfolio Conclusions

Conclusions I

- We have predicted phenotypic discrepancies between GSD7 and other glycogen storage diseases.
- Our preliminary results and network analyses are consistent with our hypothesis that the PFK2 deletion induces metabolic reprogramming; however, the experiment aspect requires more rigorous validation.
- So far, our results do not capture the extent of human signaling pathways which mediate glucose metabolism and glycogen formation. These limitations will be addressed with our ongoing experimental plans, including, but not limited to:
 - Modelling P13K/PTEN/Akt pathway to mimic human hormonal (insulin) signaling.
 - Complementing the PFK2 deletion with additional gene knockdown experiments to isolate key contributors to the GSD7 phenotype.
 - Conducting large-scale omics studies to better understand pathways of interest from preliminary glycogen staining, growth curves assays, and metabolomics.

Conclusions II

- Further validation of yeast as model organism by looking at purine catabolism through metabolomics
- Comparative proteomics to identify novel pathobiology pathways
- Metabolomics focusing on threonine biosynthesis pathway
- Long Read Sequencing of KO and WT yeast conditions to investigate nutrient stress induced epigenetic acetylation/methylation
- Further analysis with alternate carbon source metabolism to expand limited understanding and
 bridge the gap to protein-protein interactions understanding in line with other research