Лекция 6. Системы уравнений II

1 Основные соображения по упрощению

Самый общий вопрос: при каких A общая система разрешима в радикалах. Первые мысли:

- Удобно рассматривать мономиальные замены переменных на комлексном торе \mathbb{C}^{*k} . $x^k = u^{Mk}$, где $M \in GL_k(\mathbb{Z})$.
- Случаи, которые можно свести к более простым:
 - A называется neg upo x denho u, если $\forall i \to A_i \ni 0 \in \mathbb{Z}^k, \left\langle igcup_{j=1}^k A_j \right\rangle_{\mathbb{Z}} = \mathbb{Z}^k$. Вырожденные сводятся к невырожденным. Если $\exists i: 0 \notin A_i.$ \mathbb{C}^{A_j} заменяется на $\mathbb{C}^{A_j-\{k_0\}}$. Если же $\left\langle igcup_{j=1}^k A_j \right\rangle_{\mathbb{Z}} \neq \mathbb{Z}^k$, то сведение делается (почти) мономиальной заменой $M: M^{-1}e_j = v_j \Rightarrow M^{-1} = (v_1 \dots v_k)$. Почти потому что замена может быть необратимой.
 - Пусть $\exists j_1 < \ldots < j_l : \dim \sum_{p=1}^l A_{j_p} \leqslant l < n$ (сумма Минковского). Тогда набор A_1, \ldots, A_n называется npuводимым. Рассмотрим набор векторов $\alpha_1, \ldots, \alpha_l \in \mathbb{Z}^n$, которые порождают $\mathbb{Z}^n \cap \left\langle \sum_{p=1}^l A_{j_p} \right\rangle$. Чтобы сделать замену нам хочется достроить этот набор до базиса \mathbb{Z}^n (это возможно не всегда, но можно достроить хотя бы просто до базиса подрешётки размерности n). Рассмотрим мономиальную замену $u^k = x^{Mk}$, где $M = (\alpha_1, \ldots, \alpha_n)$, переходя к системе $P'_{j_s}(u) = P_{j_s}(x)$ с носителем $A'_{j_s} = A(P'_{j_s}) = M^{-1}(A_{j_s})$. В частности $M^{-1}(\alpha_j) = e_j$. Значит $A'_{j_s} \subset \mathbb{Z}^l \subset \langle e_1, \ldots, e_l \rangle$. Тогда разрешимость системы сводится к двум вопросам: разрешимость системы l уравнений с носителями $A'_{j_s}, s = 1, \ldots, l$ (кроме некоторых случаев, если она неразрешима, то и большая тоже) и разрешимость системы с носителями $\{A'_{j_s}/\mathbb{Z}^l \mid s > l\}$.

Теперь можно сформулировать гипотезу.

Утверждение 1. Если система невырождена и неприводима, а ожидаемое количество решений больше 4, то она не разрешима в радикалах.

2 Смешанный объём Минковского

Нужно только уточнить, что понимается под «ожидаемым числом решений».

Теорема 1 (Бернштейн, Хованский). Для системы общего пололжения с носителями A_1, \ldots, A_n (невырожденной) количество решений в $(\mathbb{C}^*)^n$ совпадает со смещанным объёмом Минковского $MV_n(\langle A_1 \rangle, \ldots, \langle A_n \rangle)$.

Смешанный объём Минковского можно определить многими способами:

- Конструктивно. Пусть выпуклые тела $A_1, \ldots, A_n \subset \mathbb{R}^n$, $F_A : (\mathbb{R}_+)^n \to \mathbb{R}$, $F(\lambda_1, \ldots, \lambda_n) = V_n(\sum_{j=1}^n \lambda_j A_j)$. Можно показать, что F гладкая, что даёт нам право рассмотреть $\frac{\partial^n F_A}{\partial \lambda_1 \ldots \partial \lambda_n}(0)$ и объявить это смешанным объёмом Минковского $MV_n(A_1, \ldots, A_n)$.
- Некоторые свойства:

$$-MV(A,\ldots,A)=n!V_n(A).$$
 В самом деле $F_A=V_n((\sum \lambda_j)A)=V_n(A)(\sum \lambda_j)^n\Rightarrow \frac{\partial^n F_A}{\partial \lambda_1\ldots\partial \lambda_n}=n!.$

-MV — симметрична:

$$MV_n(A_1,\ldots,A_n)=MV(A_{\sigma(1)},\ldots,A_{\sigma(n)}), \sigma\in S_n.$$

-MV — полилинейна:

$$MV_n(\lambda_1 A_1' + \lambda_2 A_1'', A_2, \dots, A_n) = \lambda_1 MV_n(A_1', A_2, \dots, A_n) + \lambda_2 MV_n(A_1'', A_2, \dots, A_n).$$

• Предыдущих трёх свойств достаточно, чтобы определить функцию на множестве $(\Omega_n)^n$ $(\Omega_n$ — множество выпуклых тел в $\mathbb{R}^n)$ однозначно. В частности:

$$MV_2(A_1, A_2) = V(A_1 + A_2) - V(A_1) - V(A_2).$$

• Предыдущая формула ведёт нас к явному определению:

$$MV_n(A_1, ..., A_n) =$$

$$V_n\left(\sum A_j\right) - \sum_{k=1}^n V_n\left(\sum_{j \neq k} A_j\right) + ... + (-1)^{n-1} \sum_k V_n(A_k).$$

Пример. Найдем ожидаемое число решений системы $P_1(x,y) = ax^3 + bxy + c = P_2(x,y) = dx + ey^2 + f$. Выпуклые оболочки носителей — два треугольника, посчитав площадь суммы и суммы площадей, получаем 6.

3 Критерий разрешимости системы в радикалах

Теорема 2. Утверждение гипотезы верно для наборов A_1, \ldots, A_n , для которых $\exists j \exists k_1, k_2 \in A_j : [k_1; k_2] \not\subset \partial \langle A_j \rangle$.

Частный случай такого препятствия — линейные уравнения $(A_j$ — маленький симплекс, который мономиальной заменой приводится к стандартному), которые, казалось бы, отметаются ограничением на невырожденность и неприводимость, однако, оказываются, бывают более сложные примеры таких многогранников.