Differential Equations and $\exp(At)$

Consider
$$\frac{du}{dt} = Au$$

$$A = \begin{bmatrix} -1 & 1\\ 1 & -2 \end{bmatrix}$$

$$\lambda = 0, -3$$

so for certain eigenvectors the equation becomes $\frac{du}{dt} = 0u$ and $\frac{du}{dt} = -3u$. The 0 solution is the steady state, the -3 one dies out.

$$u(t) = c_1 e^{\lambda_1 t} x_1 + c_2 e^{\lambda_2 t}$$

compare to the formula for difference equations

1 Cases

Stability, $u(\infty) = 0$ when all $Re\lambda < 0$ Steady state, $\lambda_1 = 0$ and other eigenvectors have $Re\lambda < 0$ Blowup if any $Re\lambda > 0$

2 Special case

For 2×2 matrix:

$$a+d=\lambda_1+\lambda_2<0\ det>0$$

positive determinant, negative trace.

3 S

Let's write the solution down in terms of S and Λ . Eigenvalues uncouple them.

$$\frac{du}{dt} = Au$$

$$\text{set } u = Av$$

$$S\frac{dv}{dt} = ASv$$

$$\frac{dv}{dt} = \Lambda v$$

no coupling! Just a diagonal matrix. $v(t) = e^{\Lambda t v(0)}$

$$u(t) = Se^{\Lambda t}S^{-1}u(0) = e^{At}u(0)$$

what do the matrix exponentials mean?

4 Power series

$$\begin{array}{l} e^{At} = I + At + \frac{(At)^2}{2!} + \dots \\ (I - At)^{-1} = I + At + (At)^2 + \dots \end{array}$$

the exponential always converges but if A is too big (eigenvalue $\[\zeta \]$ 1) the second series will blow up. now just write $A = S\Lambda S^{-1}$, we get $e^{At} = Se^{\Lambda t}S^{-1}$

5 Exponential of a diagonal matrix

$$e^{\Lambda t} = \begin{bmatrix} e^{\lambda_1 t} & & \\ & e^{\lambda_2 t} & \\ & & \dots \end{bmatrix}$$

this goes to zero when all $Re\lambda < 0$

stability for differential equation: λ in left half plane. Powers of the matrix go to zero if λ is contained in the unit disc.

6 Cheapskate trick

$$y'' + by' + ky = 0$$
 $u = [y'y], u' = \begin{bmatrix} -b & -k \\ 1 & 0 \end{bmatrix} u$