GYMNASIUM OTTOBRUNN

Oberstufenjahrgang 2017/19

Seminarfach Softwareentwicklung

Seminararbeit

Verfasser:	Jonas Fritsch
Seminarleiter:	StD Peter Brichzin
Bewertung:	Punkte
Unterschrift des Seminarleiters:	

INHALTSVERZEICHNIS

1	EIN	NLEITUNG	4												
2	AU	FGABE 1 - "Die Kunst der Fuge"	5												
	2.1	Aufgabenstellung	5												
	2.2	Auslegung der Aufgabe	5												
	2.3	Lösungsidee	6												
		2.3.1 Verstehen des Problems	6												
		2.3.2 Der Algorithmus	13												
	2.4	2.4 Implementierung													
	2.5	Optimierungsmöglichkeiten	26												
	2.6	Beispiele	26												
3	AU	FGABE 3 - "Quo vadis, Quax?"	27												
	3.1	Aufgabenstellung	27												
	3.2	Lösungsidee	27												
	3.3	Teilaufgabe (a)	27												
	3.4	Teilaufgabe (b)	27												
	3.5	Teilaufgabe (c)	27												
		3.5.1 Implementierung	27												
		3.5.2 Optimierungsmöglichkeiten	27												
		3.5.3 Beispiele	27												
	3.6	Teilaufgabe (d)	27												
4	FAZ	ZIT	28												
5	AB	BILDUNGSVERZEICHNIS	29												
6	LIT	TERATURVERZEICHNIS	30												
7	CD	-VERZEICHNIS	31												
8	AN	HANG	32												
	8.1	Aufgabe 1	32												
		8.1.1 Quelltext	32												
		8.1.2 Dokumentationen	32												

9	9 ERKLÄRUNG DES VERFASSERS							
		8.2.2	Installationshinweise	32				
		8.2.1	Quelltext	32				
	8.2	Aufgal	be 3	32				
		8.1.3	Installationshinweise	32				

1 EINLEITUNG

Der aus drei Runden bestehende Bundeswettbewerb Informatik (BwInf) ist einer von vier Bundesweiten Informatikwettbewerben. Mit dem 36. BwInf wurde für die erste Runde mit 1463 Teilnehmern eine so hohe Teilnahme wie seit 1993 nicht mehr geschafft [1]. Von den ursprünglich 1463 Teilnehmern der ersten Runde, haben es 828 Teilnehmende geschafft sich für die zweite Runde zu qualifizieren [2]. Von diesen haben jedoch nur noch 154 Teilnehmer der zweiten Runde Lösungen für zwei Aufgaben ihrer Wahl eingereicht. Dies liegt nicht zuletzt an der stark steigenden Komplexität der Aufgaben gegenüber der ersten Runde. Zu der letzten, dritten Runde des Bundeswettbewerbs Informatik werden schlussendlich nur noch 25 Teilnehmer eingeladen. Das sind im Falle des BwInfs von 2017 nur rund 1,7% der ursprünglichen Teilnehmer.

Im Folgenden wird eine eingereichte Lösung zu der ersten und dritten Aufgabe der zweiten Runde des 36. Bundeswettbewerbs Informatik erläutert.

2 AUFGABE 1 - "Die Kunst der Fuge"

2.1 Aufgabenstellung

Ilona besitzt einen riesigen Haufen Holzklötzchen: Diese haben alle dieselbe Höhe und Tiefe, aber verschiedene Längen.

Ilona möchte eine Mauer bauen. Jede Reihe der Mauer soll aus n Klötzchen bestehen, die die Längen 1 bis n haben und lückenlos aneinander liegen. Die Stellen zwischen den Klötzchen heißen Fugen. Ilona möchte, dass in der fertigen Mauer niemals zwei Fugen übereinander liegen, selbst wenn sich mehrere Reihen dazwischen befinden. Außerdem soll ihre Mauer möglichst hoch sein.

Für n = 4 gelingt es ihr recht schnell, eine Mauer mit drei Reihen zu bauen:

Aufgabe

Hilf Ilona, indem du ein Programm schreibst, das nach Eingabe von n eine nach ihren Vorgaben konstruierte, möglichst hohe Mauer ausgibt. Für n=10 sollte dein Programm eine Mauer der Höhe 6 ausgeben können. Wie hoch werden die Mauern deines Programms für größere n?

2.2 Auslegung der Aufgabe

Die grundlegende Aufgabe ist, eine Mauer mit möglichst vielen Reihen, die aus verschieden länglichen Klötzchen bestehen, zu bauen.

Die Längen der Klötzchen in einer Reihe sind durch eine Variable n definiert. Die Variable n $(n \in \mathbb{N} \setminus \{0\})$ definiert dabei die Längen und auch die Gesamtanzahl der Klötzchen pro Reihe. Gesamtanzahl heißt, dass bei zum Beispiel n=5 jede Reihe aus 5 einzelnen Klötzchen besteht. Jede Reihe setzt sich dann aus einem 1er, einem 2er, einem 3er, einem 4er und einem 5er Klotz zusammen.

Der Trick bei der Aufgabe ist nun, dass niemals zwei Fugen übereinanderliegen

dürfen. Eine Fuge ist die Lücke zwischen zwei Klötzchen (siehe Abbildung 1).

Abbildung 1: Darstellung der 3 Fugen einer Reihe mit 4 Klötzchen

Als Hilfestellung wurde außerdem erwähnt, dass eine Mauer für n=10 eine maximale Höhe von 6 hat.

2.3 Lösungsidee

2.3.1 Verstehen des Problems

Um die Problemstellung der Aufgabe genauer zu verstehen, bietet es sich erstmal an, Mauern für kleinere n auf Papier zu zeichnen. Beginnt man mit n=1, fällt auf, dass ganz gleich wie viele Reihen übereinanderliegen, es nie zu einer Fugenüberlappung kommen kann, da eine Reihe mit einem einzelnen Klötzchen keine Fuge besitzt. Für n=1 kann also theoretisch eine **unendlich** hohe Mauer gebaut werden.

Für n=2 ist es auch noch recht einfach, eine Mauer zu bauen. Denn es gibt pro Reihe nur 2 mögliche Reihenfolgen von Klötzchen. Entweder kommt zuerst der 1er oder der 2er Klotz. Eine der zwei möglichen Lösungen ist in Abbildung 2 zu sehen. Es gibt keine Möglichkeit, noch ein Klötzchen in einer neuen dritten Reihe zu platzieren, ohne eine Fuge doppelt zu besetzen.

Abbildung 2: Eine der zwei möglichen Lösungen für n = 2. Die roten Striche zeigen an, dass die jeweilige Fuge bereits besetzt ist.

Auch für n=3 gibt es eine Mauer mit einer maximalen Höhe von 2 (siehe Abbildung 3). Hier wird es jedoch schon komplexer, da es nun für eine Reihe nicht mehr $2!=2\times 1=2$, sondern $3!=3\times 2\times 1=6$ mögliche Klötzchen-Reihenfolgen gibt. Außerdem tritt bei N=3 das erste Mal auf, dass eine **mögliche Fugenstelle** nicht besetzt wird.

Abbildung 3: Eine mögliche Lösung für n=3. Zu beachten ist, dass in der Mauer eine **mögliche** Fugenstelle, dort wo es eine größere Lücke zwischen den zwei letzten besetzten Fugenstellen gibt, **unbesetzt bleibt.**

Geht man noch weiter und bildet eine Mauer für n=4 (4!=24 mögliche Klötzchen Anordnungen pro Reihe), so kann man erstmals eine Mauer der Höhe 3 bilden (siehe Abbildung 4). Hier ist auch wieder jede einzelne Fugenstelle besetzt.

Abbildung 4: Eine mögliche Lösung für n=4

Die Komplexität der Aufgabe steigt mit höheren n stark an. Während man bei n=2 2! Möglichkeiten pro Reihe und 2 Reihen hatte $(2! \times 2 = 4 \text{ unterschiedliche Mauern})$, gibt es bei n=4 bereits $4! \times 3 = 72$ verschiedene Mauern. Allgemein gibt es also für eine Mauer $n! \times h$ Lösungen, wobei h die Anzahl der übereinanderliegenden Reihen ist.

Es ist logisch, dass zwischen der Anzahl der maximal möglichen Reihen h und der Anzahl der Klötzchen pro Reihe n eine Abhängigkeit existiert.

Allgemein kann man sagen, dass die maximale Mauerhöhe dann erreicht ist, wenn nicht mehr genug Fugenstellen in der Mauer frei sind, um eine weitere Reihe zu bilden.

Somit lässt sich die Formel

$$h = \frac{f_{Mauer}}{f_{Reihe}}$$

ableiten, wobei f_{Mauer} die maximale Anzahl an Fugen in der Mauer und f_{Reihe} die Anzahl der Fugen, die eine Reihe besetzt, beschreibt.

Um nun auf f_{Mauer} schließen zu können, braucht man nur die Länge der Mauer. Da jede Reihe der Mauer gleich lang ist, ist die Länge der Mauer gleich der Länge einer Reihe. Die Länge einer Reihe definiert sich wiederum durch die Menge und Breite ihrer Klötzchen. Das heißt also, die Länge einer Reihe/der Mauer ist nach der Gaußschen Summenformel

$$1 + 2... + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

Um nun aber von der Länge der Mauer auf f_{Mauer} zu kommen, muss man noch 1 von der Länge der Mauer abziehen. Dies wird offensichtlich, wenn man zu einer Mauer eine Reihe aus lauter 1er Klötzchen bildet (siehe Abbildung 5). Da das Ende des letzten Klötzchens nicht als Fuge gilt, wird von der Länge der Reihe noch 1 abgezogen.

Abbildung 5: Eine Mauer der Länge 6 besitzt 5 mögliche Fugenstellen.

Ähnlich lässt sich auch f_{Reihe} berechnen. Um wissen zu wollen, wie viele freie Fugen eine Reihe mit n Klötzchen besetzen wird, zieht man einfach wieder 1 von der Anzahl der Klötzchen pro Reihe (n) ab (siehe Abbildung 6).

Abbildung 6: Eine Reihe bei n = 3 besetzt n - 1 = 2 freie Fugen.

Daraus ergibt sich die fertige Formel für die Anzahl der Reihen h in einer maximal hohen Mauer in Abhängigkeit von n.

$$h = \frac{\frac{n \times (n+1)}{2} - 1}{n-1} = \frac{n}{2} + 1$$

Der Graph der daraus folgenden Funktion $h(n) = \frac{n}{2} + 1$ verläuft dabei linear (siehe Abbildung 7).

Abbildung 7: Graph der linearen Funktion $h(n) = \frac{n}{2} + 1$

Setzt man nun für n=10 ein, kommt der Funktionswert 6 raus der mit der in der Aufgabenstellung angegebenen Höhe für eine Mauer von n=10 übereinstimmt. Testet man allerdings die maximale Mauerhöhe für zum Beispiel n=3, so kommt als Wert ungefähr 2,5 raus. Dies macht allerdings keinen Sinn, da die fertige Mauer nur aus vollen Reihen bestehen muss und keine halbfertige Mauer besitzen kann.

Diese Komma-Werte kommen bei allen ungeraden n vor. Der Zusammenhang ist dabei, das wie beim vorherigen Beispiel n=3 (siehe Abbildung 3) eine Fuge unbesetzt bleibt. Diese Fuge kann zwar mit einem weiteren Klotz besetzt werden, die Reihe könnte aber nicht mehr vollständig gebaut werden. Da unsere Mauerhöhe also eine Natürliche Zahl sein muss, umgeben wir den Funktionsterm noch mit Abrundungsklammern:

$$h(n) = \lfloor \frac{n}{2} + 1 \rfloor$$

Der daraus resultierende Graph ist in Abbildung 8 zu sehen.

Abbildung 8: Graph der Funktion $h(n) = \lfloor \frac{n}{2} + 1 \rfloor$

Somit gibt uns die Funktion h(n) mit der Definitionsmenge $\mathbb{D}_h = \mathbb{N} \setminus \{0; 1\}$ und der Wertemenge $\mathbb{W}_h = \mathbb{N} \setminus \{0\}$ die jeweilige maximale Mauerhöhe (h) in Abhängigkeit von n an. Wobei in der Definitionsmenge auch 1 ausgeschlossen ist, weil für n = 1 aus logischer Sicht eine unendlich hohe Mauer und nicht nur eine Mauer der Höhe 1 gebildet werden kann.

Die naivste Lösung für die Aufgabe wäre per Brute-Force so lange Klötzchen aneinanderzureihen und Reihen aufeinanderzustapeln, bis man eine fertige Mauer der maximalen Höhe erreicht hat.

Für die in der Aufgabenstellung festgelegte Mindestanforderung n=10, gäbe es bereits

$$f(10) = 10!^6 \approx 2,28e+39$$

unterschiedliche Mauerkombinationen bei der maximalen Mauerhöhe von 6. Der Graph der allgemeinen Formel

$$f(n) = n!^{\lfloor \frac{n}{2} + 1 \rfloor}$$

ist in Abbildung 9 zu sehen.

Abbildung 9: Der grüne Graph zeigt die extreme Steigung der Funktion $f(n) = n!^{\lfloor \frac{n}{2} + 1 \rfloor}$. Zum Vergleich der orangen-farbige Graph der Funktion $g(x) = 100^x$.

Die Anzahl der verschiedenen möglichen Mauern für n steigt somit mehr als **exponentiell**.

Nun ist hierbei zwar zu beachten, dass es durchaus mehrere mögliche unterschiedliche Lösungen geben kann und das bei der Gesamtmenge unterschiedlicher Mauern auch auf die Reihenfolge von Reihen geachtet wird (siehe Abbildung 10), welche für die Aufgabenstellung keinen Unterschied macht.

2	2		3		1		
1	2	2		3			

1	2	2	3					
2	2		3		1			

Abbildung 10: Obwohl beide Mauern aus den selben zwei Reihen bestehen, werden sie als unterschiedliche Mauern angesehen.

Weiterhin ist zu beachten, dass es für Mauern mit ungeradem n mehr unterschiedliche Lösungen gibt, als für die wieder darauffolgende Mauer mit geradem n.

Dies liegt eben daran, dass bei ungeraden n immer mindestens eine Fugenstelle frei bleibt, was wiederum zu mehr richtigen Mauervariationen führt.

Trotzdem würde das Finden einer Lösung für n=10, selbst wenn ein Computer nur 1 Millisekunde für die Permutation einer gesamten Mauer benötigen würde, die maximal erwartete Algorithmuslaufzeit einer BwInf-Lösung bei weitem überschreiten.

Damit ist eine naive Brute-Force Methode als Lösung ausgeschlossen und es muss nach einem effizienteren Algorithmus gesucht werden.

2.3.2 Der Algorithmus

Grundlegend gibt es zwei unterschiedliche Wege eine Mauer, wie in der Aufgabenstellung zu bauen.

Der offensichtlichere ist die Bauart 'von unten nach oben'. Bei dieser Bauart setzt man zuerst die Klötzchen zu einer Reihe zusammen. Hat man eine Reihe fertig, beginnt man mit der zweiten Reihe und so weiter (siehe Abbildung 11). Man setzt Reihe auf Reihe (von unten nach oben) bis man die Maximalhöhe erreicht hat.

Abbildung 11: Der Bau einer Mauer nach der 'von unten nach oben' Methode. Es wird Reihe nach Reihe gebaut (1-5), bis die maximale Höhe erreicht wurde (6).

Eine andere Möglichkeit ist, wenn man die Anzahl der Reihen (h) für eine Mauer der maximalen Höhe bereits weiß, die Mauer 'von links nach rechts' aufzubauen. Man kann die Aufgabe auch so formulieren, dass das Ziel ist, möglichst alle Fugenposition in der Mauer zu füllen. Nun bietet es sich an, anstatt wie bei 'von unten nach oben' immer einen Klotz zu setzen und dann zu gucken, ob die jeweilige Fugenposition noch frei ist, von den Fugenpositionen auszugehen und diese jeweils zu versuchen mit einem Klotz zu füllen (siehe Abbildung 12).

Abbildung 12: Der Bau einer Mauer nach der 'von links nach rechts' Methode. Es wird jeweils immer die nächste freie Fuge angeschaut und überprüft, welcher Klotz in welcher Reihe diese Fuge füllen kann. Dieser Klotz wird dann gesetzt (1-5). Dies wiederholt sich solange, bis die letzte Fuge erreicht wurde und die Mauer fertig ist (6).

Diese "Von links nach rechts"-Bauart ist dadurch möglich geworden, dass man schon im vornherein die Anzahl an Reihen weiß, die für eine maximale Mauer benötigt wird.

Aber auch bei dieser Bauart bleibt die Frage, was passiert, wenn mehr als ein Klotz die nächste Fuge füllen kann. Dies passiert nämlich bei fast jeder Fuge (siehe Abbildung 13).

Abbildung 13: Zum Besetzen der dritten Fuge (orange markiert) bei n=4 kann entweder ein 3er Klötzchen in einer neuen Reihe, oder ein 2er Klötzchen in der untersten Reihe platziert werden.

Wählt man ein zufälliges Klötzchen aus, so kann es schnell dazu kommen, dass eine Reihe soweit in 'Rückstand' gerät, dass kein möglicher Klotz mehr lang genug wäre, um die Reihe fortzuführen (siehe Abbildung 14).

Abbildung 14: In der dargestellten Mauer für n=4, gibt es für die unterste Reihe keine Möglichkeit mehr ein Klötzchen zu platzieren. Da die obereren Reihen alle Fugen schon besetzt haben und die nächste freie Fuge 6 Längen von der untersten Reihe entfernt ist, würde diese Reihe ein 6er Klötzchen benötigen. Bei n=4 gibt es jedoch maximal 4er Klötzchen.

Es ist also wichtig immer darauf zu achten, dass die kürzeste Reihe nicht den Anschluss verliert.

Die Lösung für dieses Problem ist bei dem Fall, dass wenn verschiedene Klötzchen mehrerer Reihen eine Fuge befüllen können, immer die kürzeste Reihe zu bevor-

zugen.

Mit diesem Algorithmus kommt man bis zu n = 8. Dort tritt ein weiteres Problem auf (siehe Abbildung 15).

	<u> </u>			6		3		7				2			
4			5		6					7		2	2		
3		5			4		6	6		7	7				
2		5		(6			4		3		7			
1	5			4		6		3		}	7				2
•			•		•			•		•					

Abbildung 15: Bei n=8 tritt das Problem auf, dass die **29 Fuge** (rot markiert), durch **kein einziges, mögliches Klötzchen besetzt werden kann**. Da n jedoch eine **gerade Zahl** ist, wissen wir, dass für eine Mauer der maximalen Höhe **alle Fugen besetzt werden müssen**. Das untere Bild zeigt nochmal den hinteren Ausschnitt der Mauer mit allen noch möglichen Klötzchen für jede Reihe an. Keines davon würde die nächste Lücke füllen.

Um dennoch eine Lösung zu bekommen, wird **Backtracking** verwendet. Backtracking erlaubt es, **zur letzten Entscheidung zurückzugehen** und eben **eine** andere zu treffen. Mit Entscheidungïst die Wahl eines Klötzchens um eine freie Fuge zu besetzen, wenn es mehrere Möglichkeiten gäbe gemeint (siehe Abbildung 16).

Abbildung 16: Bei einer Mauer von n=4 tritt das vorher schon besprochene Problem auf, dass es zwei mögliche Klötzchen gibt, die die **3 Fuge** besetzen können. Der Baum auf der linken Seite veranschaulicht die möglichen Klötzchen pro Fuge. Die **Tiefe des Baumes** entspricht dabei einer **jeweiligen Fugenposition** und die **Knoten dieser Tiefe** stehen für die **möglichen Klötzchen**.

Wählen wir nun das Klötzchen der kürzesten Reihe (das 3er Klötzchen in der obersten, neuen Reihe) und gehen davon aus, dass die 4te Fuge nun nicht mehr gefüllt werden kann (siehe Abbildung 17),

Abbildung 17: Angenommen nach der Entscheidung vom einsetzen des 3er Klötzchens, kann die 4te freie Fuge nicht besetzt werden. Theoretisch könnte in der untersten Reihe ein 3er Klotz die 4te Fuge füllen. Zur Vereinfachung der Darstellung wird dies jedoch außer Acht gelassen.

so gehen wir einen Schritt zurück, zu unserer letzten Entscheidung und wählen dort das andere Klötzchen (siehe Abbildung 18).

Abbildung 18: Nach dem "Trial and error"Prinzip wird beim Backtracking zur letzten Entscheidung zurückgegangen (oberes Bild) und ein anderes Klötzchen ausgewählt (unteres Bild). Dann wird mit dem Algorithmus fortgefahren.

Damit ist der grundlegende Algorithmus vollständig.

2.4 Implementierung

Das Programm wurde in der Sprache C# als Konsolen Applikation mit dem .NET Framework 4.7.1 geschrieben. Das am Ende des Kapitels in Abbildung 21 gezeigte Klassendiagramm zeigt die Grundstruktur des Programms.

Im Folgenden soll nur die Implementierung der für den Algorithmus wichtigsten Methode erklärt werden. Auf der beigelegten CD befindet sich zusätzlich eine vollständige Dokumentation aller Methoden und Attribute einmal in Form eines PDFs und einer HTML-Website.

Die Klasse WallBuilder ist für den Algorithmus die wichtigste Klasse. Sie baut die Mauer. Die für diesen Vorgang verantwortliche Methode ist FillNextGap (siehe Abbildung 20), die als Eingabeparameter einen Integer nextGap, ein Wall Objekt curWall und einen weiteren Integer freeGaps erwartet und ein Objekt der Klasse Wall zurückgibt.

Die Methode ist **direkt Rekursiv** und teilt somit die Problemstellung, eine komplette Mauer zu bauen in mehrere kleinere Probleme auf. Diese sind für die jeweils nächste Fuge einen Klotz zu finden, der sie besetzt.

Als erstes wird mit der Abbruchbedingung in Zeile 4 kontrolliert, ob die Mauer vollständig gebaut ist. Durch das Programmiermodell **LINQ** wird überprüft ob die Summe aller platzierten Klötzchen jedes Row Objekts der übergebenen Wall Instanz curWall, mit der Länge einer vollständigen Mauer übereinstimmt. Ist die Abbruchbedingung true, so kommt es zu einem Rekursionsende und das fertige Wall Objekt wird zurückgegeben.

Ansonsten wird das übergebene Wall Objekt 'kopiert', denn es ist sehr wichtig, dass am übergebenen curWall Objekt nichts geändert wird. Objekte der Klassen Wall und Row sind nämlich sogenannte Referenz Typen (engl. Reference Types). Anders als bei Werte Typen (engl. Value Types), bei denen bei einer erneuten Zuweisung der gespeicherte Wert kopiert und die Variable dann auf diesen kopierten Wert verweist, wird bei einer erneuten Zuweisung eines Referenz Typs nur der Verweis (engl. Pointer) kopiert. Die Variable greift jedoch auf das gleiche Objekt im Systemspeicher zu wie die vorherige Variable.

Dies hätte zu Folge, dass wenn wir an dem übergebenen Wall Objekt zu späterem Zeitpunkt irgendwelche Änderungen vornehmen, sich auch das Wall Objekt der Aufrufer-Methode ändert. Dies würde das Backtracking erheblich erschweren, da wir nicht mehr auf den vorherigen Zustand der Mauer vor einer Klötzchen Entscheidung zurückgreifen könnten.

In Zeile 10 bis 14 wird dann die, für den aktuellen Schritt, zu befüllende Fugenposition gewählt. Der Parameter nextGap beschreibt also die zuletzt gefüllte Fuge. Es wird überprüft, ob es nach nextGap überhaupt noch eine Fuge gibt. Ist dem so wird die Variable nextGapPos mit dem Wert nextGap + 1, also der Position der nächsten Fuge, initialisiert. Es kann jedoch auch sein, dass die Mauer schon am Ende angelangt ist und im letzten Schritt bereits die letzte 'Fugenposition' und damit ist hierbei das Ende der Mauer gemeint, gefüllt wurde (siehe Abbildung 19). Wichtig hierbei ist, dass dies nicht direkt heißt, dass die Mauer fertig ist. Es muss nämlich jede andere Reihe auch noch die letzte 'Fuge' erreichen.

Abbildung 19: Bei dieser Mauer von n=4 hat die unterste Reihe die letzte 'Fugen-position' bereits gefüllt. Diese End-'Fuge' darf und muss jedoch mehrmals besetzt werden, um jede Reihe abzuschließen.

Deshalb wird in diesem Fall die Variable nextGapPos mit dem gleichen Wert wie nextGap initialisiert.

Im nächsten Ausdruck, der sich von Zeile 17 bis 19 erstreckt, werden wieder mittels LINQ alle Row Objekte der aktuellen Wall Instanz, die durch ein noch verfügbares Klötzchen die gewünschte Fugenposition befüllen können, in einem Array gesammelt.

Von Zeile 22 bis 34 wird nun geprüft, ob es keine einzige Reihe gibt, die die nächste Fuge besetzen kann. Hier wird auf den Sonderfall geschaut, dass der Parameter freeGaps größer als 0 ist. Dies kann nämlich der Fall sein, wenn n ungerade ist. Bei ungeraden n kann es ja zu vollständigen Mauern kommen, ohne, dass alle Fugen besetzt sind. In der Tat kann man auch relativ einfach ausrechnen, wie viele Fugen für ein ungerades n frei bleiben können (siehe Methode CalculateWallProperties der Klasse WallBuilder. Somit kann es passieren, dass wenn kein Klötzchen in keiner Reihe zum Besetzen einer freien Fuge gefunden wurde und der 'freie Fugen Puffer' der aktuellen Mauer noch größer als 0 ist, dass diese freie Fuge nicht besetzt und einfach übersprungen werden kann. Deshalb findet in Zeile 26, wenn freeGaps noch größere als 0 ist, einfach der rekursive Aufruf statt mit dem freeGaps Parameter um 1 verringert. Der Rückgabewert dieses rekursiven Aufrufs wird in der Variable result gespeichert. Ist result ein Wall Objekt, wird dieses weiter zurückgegeben, ansonsten wird der restliche Code bis zum Rekursionsende in Zeile 51 ausgeführt. Tritt der Sonderfall freeGaps > 0 nicht ein wird null zurückgegeben.

In Zeile 37 wird das Array der Row Objekte, die die nächste Fuge füllen können nach ihrer RowSum sortiert. Mit RowSum ist hierbei einfach die Summe aller in der Reihe platzierten Klötzchen gemeint. Nach dem Sortieren, ist das erste Objekt des possibleRows Arrays also die kürzeste Reihe und das letzte Objekt die bereits längste Reihe.

In der For-Schleife von Zeile 40 bis 48 werden nun die Row Objekte des possibleRows Array einzeln iteriert. Zuerst wird in Zeile 42 das Klötzchen platziert, dass die gesuchte Fuge füllt. (Das Klötzchen wurde in der vorher aufgerufenen Methode ContainsPossibleRowSum der Klasse WallBuilder herausgefiltert.)

Danach kommt ein rekursive Aufruf, dessen Rückgabewert in der lokalen Variabel result gespeichert wird. In der Abbruchbedingung von Zeile 44 wird wieder überprüft, ob result ein Wall Objekt ist. Ist dies der Fall, wird es weiter zurückgegeben.

Ist im Gegensatz dazu **result** gleich **null**, heißt das, dass mit dieser Klötzchen-Entscheidung keine fertige Mauer gebaut werden konnte und deshalb bis zu dieser Entscheidung zurückgegangen wurde, um dort ein anderes Klötzchen zu wählen (**Backtracking**). Deshalb wird das zuvor platzierte Klötzchen des aktuellen Row Objekts in Zeile 47 wieder entfernt.

Gibt es danach noch weitere Row Objekte im possibleRows Array, wird die Schleife mit dem nächsten Row Objekt durchlaufen.

Als letzte Anweisung der Methode wird mit einem Rekursionsende null zurückgegeben.

```
public Wall FillNextGap(int nextGap, Wall curWall, int freeGaps)
 1
 2
 3
          // Check if wall is finished
         if (curWall.Rows.All(r => r.RowSum == WallLength))
 4
              return curWall;
 6
         var wall = curWall.Clone();
8
9
         // Check if there is a next gap
10
         int nextGapPos;
          if (nextGap < GapCount + 1)</pre>
11
12
              nextGapPos = nextGap + 1;
         else
13
14
             nextGapPos = nextGap;
15
         // Get all rows that can reach the next gap
         var possibleRows = wall.Rows
17
              .Where(r => r.NextPossibleRowSums.Any(nrs => ContainsPossibleRowSum(
18
19
                 r, nrs, nextGapPos))).ToArray();
20
          // If no row can reach next gap and FreeGaps > 0 continue to next gap
21
         if (possibleRows.Length == 0)
22
23
              if (freeGaps > 0)
25
                  var result = FillNextGap(nextGapPos, wall, freeGaps - 1);
26
27
                 if (result != null) return result;
28
29
             else
30
                 // track back
31
32
                  return null;
33
              }
34
35
36
         // Get row with lowest row sum and call FillNextGap()
37
         Array.Sort(possibleRows);
38
         // Backtracking
39
40
         for (var i = 0; i < possibleRows.Length; i++)</pre>
42
             possibleRows[i].PlaceNextBrick();
43
             var result = FillNextGap(nextGapPos, wall, freeGaps);
             if (result != null) return result;
44
45
              // remove wrong placed brick and try next branch
46
              possibleRows[i].RemoveLastBrick();
47
48
49
         // track back
51
         return null;
52
     }
```

Abbildung 20: Quellcode der Methode FillNextGap der Klasse WallBuilder.

public int WallHeight
public int BricksPerRow
public int WallLength
public int GapCount
public int UsedGapCount
public int FreeGaps
public Stopwatch AlgorithmStopwatch

public void BuildWall(int n)
public Wall FillNextGap(int nextGap, Wall curWall, int freeGaps)
private bool ContainsPossibleRowSum(Row row, NextPossibleRowSum nprs, int nextGapPos)
public void CalculateWallProperties()
private void PrintWall(Wall wall)
private void PrintAlgorithmTime()

Abbildung 21: Erweitertes Klassendigramm des Programms. Die wichtigsten zwei Methoden des Algorithmus wurden in der Klasse WallBuilder hervorgehoben.

- ${\bf 2.5}\quad {\bf Optimierung sm\"{o}glichkeiten}$
- 2.6 Beispiele

- 3 AUFGABE 3 "Quo vadis, Quax?"
- 3.1 Aufgabenstellung
- 3.2 Lösungsidee
- 3.3 Teilaufgabe (a)
- 3.4 Teilaufgabe (b)
- 3.5 Teilaufgabe (c)
- 3.5.1 Implementierung
- 3.5.2 Optimierungsmöglichkeiten
- 3.5.3 Beispiele
- 3.6 Teilaufgabe (d)

4 FAZIT

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed tempus consectetur lorem, imperdiet dignissim est auctor a. Vivamus convallis, leo et iaculis egestas, nunc massa porttitor tellus, id faucibus urna justo eget massa. Praesent quis feugiat odio. Nullam quis mattis enim. Fusce volutpat odio in enim sodales venenatis. Mauris consequat.

5 ABBILDUNGSVERZEICHNIS

Alle enthaltenen Abbildungen wurden mithilfe von folgenden Tools selbstständig erstellt:

- Microsoft PowerPoint
- \bullet Grafikrechner Geo Gebra
- UMLet
- Adobe Photoshop CC 2018

6 LITERATURVERZEICHNIS

Buchquellen:

- [1] Leslie Lamport, *PTEX*: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.
- [2] Leslie Lamport, \(\mathbb{L}T_EX: \) a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.
- [3] Leslie Lamport, \(\mathbb{L}T_EX: \) a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.

PDF-Scans:

- [1] Leslie Lamport, *Lambort TeX: a document preparation system*, Addison Wesley, Massachusetts, 2nd edition, 1994.
- [2] Leslie Lamport, \(\mathbb{L}T_EX: \) a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.

Internetquellen:

- [1] Leslie Lamport, \(\mathbb{L}T_EX: \) a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.
- [2] Leslie Lamport, pmatering TEX: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.
- [3] Leslie Lamport, \(\mathbb{L}T_EX: \) a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.

7 CD-VERZEICHNIS

8 ANHANG

- 8.1 Aufgabe 1
- 8.1.1 Quelltext
- 8.1.2 Dokumentationen
- 8.1.3 Installationshinweise
- 8.2 Aufgabe 3
- 8.2.1 Quelltext
- 8.2.2 Installationshinweise

9 ERKLÄRUNG DES VERFASSERS

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed tempus consectetur lorem, imperdiet dignissim est auctor a. Vivamus convallis, leo et iaculis egestas, nunc massa porttitor tellus, id faucibus urna justo eget massa. Praesent quis feugiat odio. Nullam quis mattis enim. Fusce volutpat odio in enim sodales venenatis. Mauris consequat.

Ich erkläre hiermit, dass ich die Seminararbeit ohne fremde Hilfe angefertigt und nur die im Literaturverzeichnis angeführten Quellen und Hilfsmittel benützt habe.						
, den						
Ort	Datum					
Unterschrift des Verfassers						