Insper

Ciência dos Dados

Aula 21

Modelo de regressão linear

Um particular problema arquivo ipynb

Renda per capita (usado PIB per capita como proxy de renda per capita) tem alguma relação com a emissão de CO₂ produzido por um país?

Os slides a seguir descrevem as características e cuidados com uma Análise de Regressão

Pesquise alguma referência bibliográfica para mais detalhes!!

Objetivo de uma Análise de Regressão

A presença ou ausência de **relação linear** pode ser investigada sob dois pontos de vista:

- a) Quantificando a força dessa relação: correlação.
- b) Explicitando a forma dessa relação: <u>regressão</u>.

Graficamente, a relação entre duas variáveis quantitativas pode ser feita via **Gráfico de Dispersão.**Inshe

Análise de regressão

"A coleção de ferramentas estatísticas que são usadas para modelar e explorar relações entre variáveis que estão relacionadas de maneira não determinística é chamada de análise de regressão."

Montgomery, D.C. e Runger, G.C. **Estatística aplicada e probabilidade para engenheiros.** 6ª. Edição. Rio de Janeiro: LTC, 2016.

Análise de regressão

- Objetivo: Explicar como uma ou mais variáveis se comportam em função de outra.
- Variável dependente (resposta) y: variável de interesse, cujo comportamento se deseja explicar.
- Variável independente (explicativa) x:
 variável ou variáveis que são utilizadas para
 explicar a variável dependente.
- Modelo de regressão: equação (reta) que associa y e um ou vários x.

Insper Instituto de Ensino e Pesquisa

Modelo de regressão simples

Teoria

Modelo de Regressão Linear Simples

Método dos Mínimos Quadrados

Os valores populacionais de β_0 e β_1 são desconhecidos.

Para estimá-los, é necessário minimizar o resíduo que é dado pela diferença entre o valor verdadeiro de y e seu valor estimado \hat{y} , ou seja,

$$\hat{\varepsilon}_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

O método utilizado na estimação desses parâmetros é o método dos mínimos quadrados.

Logo, o método dos mínimos quadrados requer que consideremos a soma dos n resíduos quadrados, denotado por SQRes:

$$SQRes = \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} (Y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2$$

Inferência em Análise de Regressão

Usualmente, uma das hipóteses em análise de regressão é avaliar a significância da regressão.

Ou seja,

$$H_0$$
: $\beta_1 = 0 \rightarrow n$ ão há relação entre $x \in Y$

$$H_1$$
: $\beta_1 \neq 0$ \rightarrow há relação entre $x \in Y$

Para realizar esse teste de hipóteses, será necessário atribuir distribuição aos erros ε_i , além de outras suposições ao modelo.

Suposições do modelo linear simples

 Os erros têm distribuição normal com média e variância constante, ou seja,

$$\varepsilon_i \sim N(0,\sigma^2)$$
.

Os erros são independentes entre si, ou seja,

$$Corr(\varepsilon_i, \varepsilon_i)=0$$

- Modelo é linear nos parâmetros.
- Homocedasticidade: $Var(\varepsilon_i) = \sigma^2$ para qualquer i = 1, ..., n.

Análise de Resíduos

Interpretação das estimativas dos coeficientes de um modelo de regressão

Modelos lineares nos coeficientes e nas variáveis

Modelo de regressão linear simples – Lin-Lin

Reta estimada:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Interpretação do coeficiente linear estimado:

O intercepto é o valor previsto (esperado ou médio) para y quando x=0.

Quando não fizer sentido zerar a variável x, o valor $\hat{\beta}_0$, por si só, não será muito interessante. E nem terá inferência.

Interpretação do coeficiente angular estimado:

De maneira geral, a cada variação Δx na variável explicativa x, $\hat{\beta}_1$ é a variação prevista (esperada ou média) na variável resposta.

$$\hat{\beta}_1 = \frac{\Delta \hat{y}}{\Delta x}$$

Modelo de regressão linear simples – Lin-Lin

Reta estimada:

$$\widehat{Salario} = -0.90 + 0.54 Educ$$

Interpretação do coeficiente angular estimado:

A cada um ano a mais de educação formal, a variação média no salário é de 0,54 dólar/hora.

Wooldridge, J. M. Introdução à econometria. São Paulo: Pioneira Thomson Learning, 2006.

Qualidade do ajuste

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2 + \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$R^{2} = \frac{\text{SQReg}}{\text{SQT}}$$

$$= \frac{\text{SQT-SQRes}}{\text{SQT}}$$

$$= 1 - \frac{\text{SQRes}}{\text{SOT}}$$

$$0 \le R^{2} \le 1$$

Interpretação do Coeficiente de determinação: mede a fração da variação total de Y explicada pela regressão.

ATENÇÃO: Associação não é causalidade

Suponha que encontremos alta correlação entre duas variáveis A e B. Podem existir diversas explicações do porque elas variam conjuntamente, incluindo:

- Mudanças em outras variáveis causam mudanças tanto em A quanto em B.
- Mudanças em A causam mudanças em B.
- Mudanças em B causam mudanças em A.
- A relação observada é somente uma coincidência (correlação espúria). CUIDADO!!