

Architecture Réseaux Entreprises (ARES) VPN et sécurité des communications

Brice - Ekane (brice.ekane@univ-rennes.fr)

ISTIC Rennes - France 2025-2026

 $git\ clone\ https://github.com/bekane/ares-2025.git$

Plan du module

- Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Objectifs pédagogiques

- Comprendre les enjeux de sécurité et performance des VPN
- Maîtriser le déploiement de WireGuard
- ▶ Justifier un choix de protocole en fonction des besoins

Problématique

Réseaux publics

Internet est un environnement hostile : interception, modification, usurpation.

Solution

Les VPN assurent confidentialité, intégrité, authentification.

4 / 55

Plan du module

- Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Apperçu de la section 1

- Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

<u>Définition</u>

VPN = Réseau Privé Virtuel Permet de transporter du trafic privé sur un réseau public via un tunnel chiffré.

Cas d'usage

- Accès distant sécurisé
- ► Interconnexion de sites
- Contournement de restrictions géographiques

8 / 55

Menaces sur Internet

- ► Écoute (eavesdropping)
- ► Altération de données
- ► Injection / usurpation

Objectifs d'un VPN

- Confidentialité
- Intégrité
- Authentification

Encapsulation

En-tête IP extérieur En-tête protocole VPN

(IP interne + payload)

11 / 55

Apperçu de la section 2

- 1 Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

IPsec

- ► Standard industriel
- ► Avantages : intégré au noyau, interopérabilité
- ► Inconvénients : configuration complexe

13 / 55

OpenVPN

- ▶ Basé sur TLS
- ► Avantages : flexible, traverse NAT (Ex. tunnel sur 443)
- ► Inconvénients : performances inférieures

PPTP et L2TP

- Anciennes solutions
- ► ☐ Faible (MPPE 128 bits)
- Failles connues -> obsolètes

 (https://nvd.nist.gov/vuln/search#/nvd/home?keyword=PPTP&resultType=records)

Critères de choix

- Sécurité
- Performances
- ► Simplicité de déploiement

16 / 55

Limites des VPN classiques

Lenteur

Source: Osswald, Haeberle & Menth (2020).

► Maintenance complexe

Maintenance des VPN

IPsec vs OpenVPN vs WireGuard			
Aspect	IPsec	OpenVPN	WireGuard
Configuration	Très complexe (IKEv1/v2, AH/ESP, transport/tunnel, suites variées)	Plus simple mais riche (UDP/TCP, TUN/- TAP, TLS)	Très simple : pairs/- clefs, AllowedIPs, pas de nego ciphers
Clés/Certs	PKI lourde (généra- tion, révocation, ro- tation)	Cycle TLS (certs, CR- $L/OCSP$)	Clés statiques, pas de PKI native (rotation à orchestrer)
Interopérabilité	Différences construc- teurs	Homogène, multi- plateforme	Bon clients, faible support legacy
Débogage	Logs cryptiques	Logs verbeux	État minimaliste (wg show, handshakes, compteurs)
Évolutivité	Politiques par sous- réseaux ingérables	Bon multi-utilisateurs (LB)	Orchestration néces- saire à grande échelle
Évolution protocole	Suites évolutives \Rightarrow reconfigurations	Dépend TL- S/OpenSSL	Primitives modernes fixées
Performance	Excellente (noyau/of-fload)	Plus faible (user-space)	Très élevée (noyau Linux)
Fonctions réseau	L3, EAP/RADIUS	TUN/TAP, UD- P/TCP	UDP seul, TUN (L3), NAT-T intégré

Apperçu de la section 3

- Concepts de base des VPN
- 2 Panorama des protocoles
- Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Origine et philosophie

- ► Créé par Jason A. Donenfeld
- ► Code minimaliste

Positionnement dans la pile réseau

Objectifs de design

- ▶ Simplicité
- Sécurité moderne
- Performance

Comparatif des VPN : IPsec, OpenVPN,

WireGuard

Synthèse des critères

Critère	IPsec	OpenVPN	WireGuard
Code source	Complexe, volumineux	Volumineux	Minimal (<4k lignes)
Performance	Bonne (kernel)	Moyenne (user space)	Excellente (kernel)
Simplicité config	Faible	Moyenne	Élevée
Interopérabilité	Large	Large	En croissance
Cryptographie	Variable	TLS (OpenSSL)	Moderne (Noise, ChaCha20)

Adoption

- ► Intégré Linux 5.6+
- ► Ports BSD, Windows, macOS

Apperçu de la section 4

- 1) Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Protocole Noise IK

► Échange de clés Curve25519

Pour aller loins: https://noiseprotocol.org/noise.pdf

Noise IK – Handshake étape par étape

Initiator (I)	Responder (R)			
Clés pré-partagées (WireGuard)				
s_i (statique), connaît s_r	s_r (statique), connaît s_i			
Échange				
\rightarrow				
envoie <i>e_i</i> (éphémère)	reçoit <i>e_i</i>			
envoie <i>s_i</i> (encrypté)	déchiffre s _i			
reçoit <i>e</i> ,	\leftarrow			
	envoie <i>e_r</i> (éphémère)			
Calculs Diffie-Hellman				
$I: DH(e_r, s_i), DH(e_r, e_i)$	$R: DH(e_i, s_r), DH(s_i, s_r)$			
Clés de session dérivées (KDF)				
HKDF-SHA256(<i>DH</i> _1 <i>DH</i> _2)				
$ o \mathcal{K}_{I o R}$: clé sym. pour I $ o$ R (ChaCha20-Poly1305)				
$ o K_{R o I}$: clé sym. pour R $ o$ I (ChaCha20-Poly1305)				

Propriétés: authentification mutuelle, forward secrecy, 1.5 RTT Brice - Ekane (brice.ekane@univ-rennes.fr)

Interface wg0

- ► Capture des paquets vers AllowedIPs
- ► Chiffrement + encapsulation UDP

Structure d'un paquet WireGuard encapsulé

En-tête IP extérieur \bigcap (IP interne + payload)

ChaCha20-Poly1305

- Chiffrement rapide et sûr
- Authentification intégrée

Pour aller-loins:

- ► https://www.rfc-editor.org/rfc/rfc8439
- ► https://andrea.corbellini.name/2023/03/09/authenticated-encryption/

Flux d'un paquet à travers WireGuard

Apperçu de la section 5

- 1) Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Exemple serveur

Installer wireguard:

```
sudo apt install wireguard-tools
```

```
[Interface]
        ey = 4CRi/+PmdSnFrkS1p1GY+mJikMG8wYkobZfcCmnfj1k=
Address = 10.0.0.2/32
[Peer]
PublicKey = BB+W6g8D4P1sVC55i+rKRoGAFgddxqIQfP+Lk0H8iFI=
AllowedIPs = 10.0.0.1/32
Endpoint = 192.168.121.53:51821
```

Exemple client

```
[Interface]
PrivateKey = oEBCwSUJ90Vc2XxqlqJQXxrRq9Ux4hacZTlvgog1sWE=
Address = 10.0.0.1/32
ListenPort = 51821

[Peer]
PublicKey = 0x8RS3rCq0ugpaeqLHVwsHxHXygTqATT3QxVFc+DgVk=
Endpoint = 192.168.121.202:51822
AllowedIPs = 10.0.0.2/32
```

AllowedIPs

AllowedIPs = routes + ACLs

- ► routage : "quels paquets envoyer dans le tunnel vers ce peer"
- ▶ filtrage : "quelles adresses IP on accepte de ce peer"

Filtrage et routage conditionnel des flux chiffrés

Routage des flux chiffrés

- ► AllowedIPs : définit les préfixes autorisés pour un pair et agit comme table de routage privée.
- ► Full tunnel : 0.0.0.0/0, ::/0 \Rightarrow tout le trafic passe dans le VPN.
- ► Split tunnel : seuls certains sous-réseaux passent dans le tunnel.

Exemple WireGuard

```
[Peer]
PublicKey = a<u>bc...</u>
```

AllowedIPs = 10.0.0.0/24, 192.168.1.10/32

→ Trafic pour 10.0.0.0/24 et 192.168.1.10 via le tunnel

Filtrage et routage conditionnel des flux chiffrés

Filtrage côté VPN

- ► Utiliser iptables/nftables pour limiter l'accès via wg0.
 - ► Empêcher les injections de routes non autorisées par les pairs.

Exemple iptables

```
iptables -A INPUT -i wg0 -p tcp --dport 22 -j ACCEPT iptables -A INPUT -i wg0 -p tcp --dport 80 -j ACCEPT iptables -A INPUT -i wg0 -j DROP
```

 \rightarrow Seuls SSH et HTTP sont autorisés via le VPN.

Filtrage et routage conditionnel des flux chiffrés

Routage conditionnel avancé

- ► **Policy routing** : appliquer des règles selon source, port, protocole.
- ► Associer des paquets marqués à une table de routage spécifique.

Exemple HTTPS uniquement via VPN

```
iptables -t mangle -A PREROUTING -p tcp --dport 443 \
-j MARK --set-mark 1
```

ip rule add fwmark 1 lookup 100
ip route add default dev wg0 table 100

 \rightarrow Seul le trafic HTTPS passe par le tunnel.

Endpoints dynamiques

- ightharpoonup Le client peut changer d'IP (Wi-Fi ightarrow 4G).
- ▶ Dès qu'il envoie un paquet valide, le serveur met à jour son endpoint.
- ► Pas besoin de reconfigurer : l'identité repose sur la clé publique, pas sur l'IP.

Keepalive

- ► Envoie de petits paquets vides
- ► Empêche le NAT d'effacer la session
- ► Très léger, seulement si nécessaire

Commandes

- ► wg
- ► wg-quick

Apperçu de la section 6

- Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4) Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Surface d'attaque

4k lignes de code -> audit facile

Pas de réponse aux paquets invalides

► Difficile à détecter pour un attaquant

Gestion des clés

- ▶ Rotation régulière : nouvelles clés dérivées automatiquement.
- ► Stockage sécurisé : clé privée jamais transmise, clés de session effacées.

Pare-feu et WireGuard

- ► WireGuard crée une interface réseau normale ('wg0').
- ► **Nftables** filtre le trafic entrant/sortant sur 'wg0'.
- ► Intégration simple : mêmes règles que pour pour une interface physique.

Audit et logs

Outil	Usage
wg show	État du tunnel, derniers handshakes, volume échangé
tcpdump / tshark	Capture et analyse du trafic UDP WireGuard
nftables	Compter, logguer et filtrer les paquets sur wg0
journalctl / dmesg	Logs système et éventuelles erreurs du module

- ► Monitoring trafic : suivre activité et volume sur wg0.
- ▶ **Détection anomalies** : repérer scans, absence de handshake, trafic inhabituel.

Apperçu de la section 7

- Concepts de base des VPN
- 2 Panorama des protocoles
- 3 Introduction à WireGuard
- 4 Fonctionnement de WireGuard
- 5 Configuration et déploiement
- 6 Sécurité et bonnes pratiques
- 7 Applications et cas pratiques

Point to Point

Point to Point avec firewall

Hub and Spoke

Hub and Spoke avec firewall

VPN + DMZ

VPN + DMZ

VPN + DMZ

Synthèse

- ► WireGuard = sécurité + performance via simplicité
- ► Adoption croissante

Ressources

- ▶ https://www.wireguard.com
- ▶ Jason A. Donenfeld. WireGuard: Next Generation Kernel Network Tunnel. 2017. Whitepaper fondateur de WireGuard. Disponible en ligne: https://www.wireguard.com/papers/wireguard.pdf
- ligne: https://www.wireguard.com/papers/wireguard.pdf
 Stephen Kent, Karen Seo. Security Architecture for the Internet Protocol. RFC 4301, IETF, 2005. Disponible en ligne:

https://datatracker.ietf.org/doc/html/rfc4301

- ➤ OpenVPN Project. OpenVPN 2.5 Reference Manual. 2021.

 Disponible en ligne: https://openvpn.net/
 community-resources/reference-manual-for-openvpn-2-5/
- ▶ Janik Dreier et al. A Comparative Study on Virtual Private Networks. Karlsruhe Institute of Technology, 2022. Disponible en ligne:

https://publikationen.bibliothek.kit.edu/1000162550

Brice - Ekane (brice.ekane@univ-rennes.fr)