Finding the Kalman gain matrix

- KF step 2a: Estimator (Kalman) gain matrix $L_k = \Sigma_{\tilde{x}\tilde{y},k}^- \Sigma_{\tilde{y},k}^{-1}$
 - \Box To compute the Kalman gain, we must first compute several covariance matrices: we first find $\Sigma_{\tilde{v},k}$

$$\tilde{y}_{k} = y_{k} - \hat{y}_{k} = C_{k}x_{k} + D_{k}u_{k} + v_{k} - C_{k}\hat{x}_{k}^{-} - D_{k}u_{k} = C_{k}\tilde{x}_{k}^{-} + v_{k}
\Sigma_{\tilde{y},k} = \mathbb{E}[(C_{k}\tilde{x}_{k}^{-} + v_{k})(C_{k}\tilde{x}_{k}^{-} + v_{k})^{T}]
= \mathbb{E}[C_{k}\tilde{x}_{k}^{-}(\tilde{x}_{k}^{-})^{T}C_{k}^{T} + v_{k}(\tilde{x}_{k}^{-})^{T}C_{k}^{T} + C_{k}\tilde{x}_{k}^{-}v_{k}^{T} + v_{k}v_{k}^{T}]
= C_{k}\Sigma_{\tilde{x},k}^{-}C_{k}^{T} + \Sigma_{\tilde{v}}.$$

 $\ \square$ Cross terms are zero since v_k is zero mean and is uncorrelated with $ilde{x}_k^-$

Dr. Gregory I. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

1 of 8

3.2.5: Deriving the three Kalman-filter correction steps

Finding the Kalman gain matrix

■ We now find $\Sigma_{\tilde{x}\tilde{y}_k}^-$:

$$\mathbb{E}[\tilde{x}_k^- \tilde{y}_k^T] = \mathbb{E}[\tilde{x}_k^- (C_k \tilde{x}_k^- + v_k)^T] = \mathbb{E}[\tilde{x}_k^- (\tilde{x}_k^-)^T C_k^T + \tilde{x}_k^- v_k^T]$$
$$= \Sigma_{\tilde{x},k}^- C_k^T$$

 $\blacksquare \ \text{Combining} \ \Sigma_{\tilde{y},k} \ \text{and} \ \Sigma_{\tilde{x}\tilde{y},k}^- \ \text{in} \ L_k = \Sigma_{\tilde{x}\tilde{y},k}^- \Sigma_{\tilde{y},k}^{-1}.$

$$L_k = \Sigma_{\tilde{x},k}^- C_k^T [C_k \Sigma_{\tilde{x},k}^- C_k^T + \Sigma_{\tilde{v}}]^{-1}$$

- **INTUITION**: Note that the computation of L_k is the most critical aspect of Kalman filtering that distinguishes it from a number of other estimation methods
 - $\hfill\Box$ The whole reason for calculating covariance matrices is to be able to update L_k
 - $\ \square$ L_k is time-varying: It adapts to give the best update to the state estimate based on present conditions

Dr. Gregory L. Plett

Iniversity of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

2 of 8

3.2.5: Deriving the three Kalman-filter correction steps

Finding the Kalman gain matrix

- INTUITION (continued): Recall that we use L_k in the equation $\hat{x}_k^+ = \hat{x}_k^- + L_k(y_k \hat{y}_k)$
 - The first component to L_k , $\Sigma_{\tilde{x}\tilde{y},k}^-$, indicates relative need for correction to \hat{x}_k and how well individual states within \hat{x}_k are coupled to the measurements
 - \Box We see this clearly in $\Sigma_{\tilde{x}\tilde{v},k}^- = \Sigma_{\tilde{x},k}^- C_k^T$
 - $\ \Box \ \Sigma_{\tilde{x},k}^-$ tells us about state uncertainty at the present time, which we hope to reduce as much as possible
 - A large entry in $\Sigma_{\tilde{x},k}^-$ means that the corresponding state is very uncertain and therefore would benefit from a large update
 - A small entry in $\Sigma_{\tilde{x},k}^-$ means that the corresponding state is very well known already and does not need as large an update

Finding the Kalman gain matrix

- INTUITION (continued): Continuing to look at $\Sigma^-_{\tilde{x}\tilde{y},k} = \Sigma^-_{\tilde{x},k}C_k^T$
 - $\hfill\Box$ The $C_k^{\,T}$ term gives the coupling between state and output
 - Entries that are zero indicate that a particular state has no direct influence on a particular output and therefore an output prediction error should not directly update that state
 - Entries that are large indicate that a particular state is highly coupled to an output so has a large contribution to any measured output prediction error; therefore, that state would benefit from a large update

Dr. Gregory I. Plett

University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

4 of 8

3.2.5: Deriving the three Kalman-filter correction steps

Finding the Kalman gain matrix

- INTUITION (continued): Still looking at $L_k = \sum_{\tilde{x}\tilde{y},k}^- \sum_{\tilde{y},k}^{-1}$,
 - $\ \square \ \Sigma_{\tilde{y}}$ tells us how certain we are that measurement is reliable
 - If $\Sigma_{\tilde{y}}$ is "large," we want small, slow updates
 - If $\Sigma_{\tilde{y}}$ is "small," we want big updates
 - This explains why we divide the Kalman gain matrix by $\Sigma_{\tilde{y}}$
 - $\ \square$ The form of $\Sigma_{\widetilde{y}} = [C_k \Sigma_{\widetilde{x},k}^- C_k^T + \Sigma_{\widetilde{v}}]$ can also be explained
 - $C_k \Sigma_{\tilde{x}}^- C_k^T$ indicates how error in state contributes to error in output estimate
 - $\Sigma_{\tilde{v}}$ term indicates uncertainty in sensor reading due to sensor noise
 - Since sensor noise is assumed independent of the state, uncertainty in $\tilde{y}_k = y_k \hat{y}_k$ adds the uncertainty in y_k to the uncertainty in \hat{y}_k

Dr. Gregory L. Plett

University of Colorado Colorado Spring

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator

5 of 8

2.0 E. Davisina the three Kalman filter correction stand

Finding the Kalman gain matrix

- KF step 2b: State estimate measurement update
 - \Box Computes a posteriori state estimate by updating a priori estimate using estimator gain and output prediction error $y_k \hat{y}_k$

$$\hat{x}_{k}^{+} = \hat{x}_{k}^{-} + L_{k}(y_{k} - \hat{y}_{k})$$

- INTUITION: \hat{y}_k is predicted measurement, based on present state prediction
 - $\hfill\Box$ Therefore, $y_k \hat{y}_k$ is what is unexpected or new in the measurement
 - □ We call this term the <u>innovation</u>. The innovation can be due to a bad system model, state error, or sensor noise
 - So, we want to use this new information to update the state, but must be careful to weight it according to the value of the information it contains
 - \Box L_k is the optimal blending factor, as we have already discussed

Finding the Kalman gain matrix

- KF step 2c: Error covariance measurement update
 - □ Finally, we update error covariance matrix

$$\Sigma_{\tilde{x},k}^{+} = \Sigma_{\tilde{x},k}^{-} - L_k \Sigma_{\tilde{y},k} L_k^T = \Sigma_{\tilde{x},k}^{-} - L_k \Sigma_{\tilde{y},k} \Sigma_{\tilde{y},k}^{-T} \left(\Sigma_{\tilde{x}\tilde{y},k}^{-} \right)^T$$

$$= \Sigma_{\tilde{x},k}^{-} - L_k C_k \Sigma_{\tilde{x},k}^{-}$$

$$= (I - L_k C_k) \Sigma_{\tilde{x},k}^{-}$$

- INTUITION: A covariance matrix is positive semi-definite, and $L_k \Sigma_{\tilde{y},k} L_k^T$ is also a positive-semi-definite form, and we are subtracting this from the predicted-state covariance matrix; therefore, the resulting covariance is "lower" than the pre-measurement covariance
 - Measurement update has decreased our uncertainty in state estimate

Summary

- Have now derived the entire Kalman filter algorithm
- Next week, you will learn how to implement and visualize KF
- KEY POINT: Repeating from before, recall that the estimator output comprises the state estimate \hat{x}_k^+ and error covariance estimate $\Sigma_{\tilde{x},k}^+$
 - \Box That is, we have high confidence that the truth lies within $\hat{x}_k^+ \pm 3\sqrt{\mathrm{diag}(\Sigma_{\tilde{x}.k}^+)}$
- COMMENT: If a measurement is missed for some reason, then skip steps 2a—c for that iteration. That is, set $L_k=0$ and $\hat{x}_k^+=\hat{x}_k^-$ and $\Sigma_{\tilde{x},k}^+=\Sigma_{\tilde{x},k}^-$

Dr. Gregory L. Plett University of Colorado Colorado Springs

Battery State-of-Charge (SOC) Estimation | Introducing the linear Kalman filter as a state estimator