

Geostatistics

Homework 4a

Giorgos Raptakis 374030

Contents

Task 1	1
Task 2	
Task 3	
Task 4	
1d5K 4	0

Task 1

From the previous exercise we choose the specific values [ID, X, Y, chemical elements] of 1773 samples of our area.

FID	U_DN_PPM	POINT_X	POINT_Y
352	1,4	-77,7279	34,6942
353	4,1	-78,1468	34,7009
355	1,5	-77,687	34,7032
358	145,6	-78,3409	34,7058
361	1,8	-77,7365	34,7073
362	7,1	-78,6112	34,7074
363	18	-77,0187	34,7074

Task 2

After the installation of packages, we visualize the data using a 3D scatterplot.

```
rm(list=ls())
setwd("")
require(lattice)
require(sp)
require(gstat)
require(scatterplot3d)
# Load up the data
data= read.table("t", header = TRUE,dec=",")
head(data) #head(), tail() Return the First or Last Part of an Object
fix(data) #Fix an Object
attach(data)
coordinates(data) <- c("POINT_X", "POINT_Y")</pre>
class(data)
statistic=summary(data)
x<-data$POINT_X
y<-data$POINT_Y
```

U<-data\$U_DN_PPM

 $scatterplot3d(x,y,U,color="blue",highlight.3d=T,cex.axis=1.3,xlab="\lambda(degree)",ylab="\varphi(degree)",\\$ zlab="observed value",pch=15,box=T,cex.symbols=0.5,cex.lab=1)

We can see from the scatterplot and histogram that our values for Uranium are mostly around the 1 till 10.

Task 3

We have computed the default empirical variogram of the U values in the calibration dataset. Then we computed the fit.variogram ,which fit ranges and sills from a simple or nested variogram model to a sample variogram.

In the end we plotted the emprical variogram with the fitted variogram models of different classes superimposed, to visualise the effect of the automatic fit.

Variogram models

Code:

```
print(plot(v, plot.numbers=T, pch=20, col="blue", model=vm))
#fit.variogram:Fit ranges and/or sills from a simple or nested variogram model to a sample variogram
vmf <- fit.variogram(v, vm)</pre>
print(vm)
print(vmf)
vmf$range - vm$range #subtract of vmf-vm range and sill
vmf$psill - vm$psill
sum(vmf$psill) - sum(vm$psill)
### Plot the empirical variogram with the fitted model superimposed
print(plot(v, plot.numbers=T, pch=20, col="blue", model=vmf))
### What proportion of the total variance in Ur is explained by the fitted variogram model?
1-vmf$psill[1]/sum(vmf$psill)
### Plot emprical variogram with the fitted variogram models of
### different classes superimposed, to visualise the effect of the automatic fit.
plot(v$gamma ~ v$dist, xlim=c(0, max(v$dist)*1.05), ylim=c(0, max(v$gamma)*1.2),
  pch=20, col="blue", cex=1.2, xlab="Separation distance", ylab="Semivariance",
  main="Variogram models", sub="Red: estimated; Green: fitted")
text(v$dist, v$gamma, v$np, pos=4)
lines(variogramLine(vm, maxdist=max(v$dist)), col="red", lty=2)
lines(variogramLine(vmf, maxdist=max(v$dist)), col="green")
```

Task 4

Code: