Correction TD no 11

Question 1. Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ une fonction.

(a) VRAI. Supposons que la droite d'équation y = ax + b (avec $a, b \in \mathbb{R}$) soit asymptote oblique de f en $+\infty$, c'est-à-dire,

$$\lim_{x \to +\infty} \left(f(x) - (ax + b) \right) = 0.$$

Pour tout x > 0, on a

$$\frac{f(x)}{x} - a = \frac{f(x) - ax}{x}.$$

Comme $\lim_{x\to +\infty} (f(x)-ax)=b$ et $\lim_{x\to +\infty} \frac{1}{x}=0$, il suit que

$$\lim_{x \to +\infty} \left(\frac{f(x)}{x} - a \right) = 0$$

et donc $\lim_{x\to+\infty} \frac{f(x)}{x} = a$.

- (b) FAUX. Supposons qu'il existe $a \in \mathbb{R}$ tel que $\lim_{x \to +\infty} \frac{f(x)}{x} = a$. L'asymptote oblique de f en $+\infty$ existe si et seulement s'il existe $b \in \mathbb{R}$ tel que $\lim_{x \to +\infty} \left(f(x) ax\right) = b$. Par exemple pour la fonction racine carrée $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ définie par $f(x) = \sqrt{x}$ vérifie $\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0$ mais n'admet pas d'asymptote oblique en $+\infty$.
- (c) FAUX. Pour f la fonction carrée, on a

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2}{x} = \lim_{x \to +\infty} x = +\infty$$

et donc f n'admet pas d'asymptote oblique en $+\infty$.

Question 2. Soit $f : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $f(x) = x^3 - x$. La fonction f étant une fonction polynomiale, on sait que f est deux fois dérivable sur \mathbb{R} , de dérivées successives

$$f': \mathbb{R} \longrightarrow \mathbb{R}$$
 et $f'': \mathbb{R} \longrightarrow \mathbb{R}$ $x \longmapsto 3x^2 - 1$

On étudie le signe de f'' sur $\mathbb R$:

x	$-\infty$		0		$+\infty$
f''(x)		_	0	+	

On en déduit que f est concave sur $]-\infty,0]$ et convexe sur $[0,+\infty[$. De plus, (0,0) est un point d'inflexion à la courbe de f.

Soit $g: \mathbb{R}^* \longrightarrow \mathbb{R}$ définie par $g(x) = \frac{1}{x}$. La fonction g étant une fonction fraction rationnelle, on sait que g est deux fois dérivable sur \mathbb{R}^* , de dérivées successives

$$g': \mathbb{R}^* \longrightarrow \mathbb{R}$$
 et $g'': \mathbb{R}^* \longrightarrow \mathbb{R}$ $x \longmapsto -\frac{1}{x^2}$

On étudie le signe de g'' sur \mathbb{R} :

x	$-\infty$	()	$+\infty$
g''(x)		_	+	

On en déduit que g est concave sur $]-\infty,0]$ et convexe sur $[0,+\infty[$. De plus, la courbe de g n'admet pas de point d'inflexion.

Exercice 1.

(a) Soit $f: x \longmapsto \frac{x}{(\sin(x)+1)^2}$. Le réel f(x) est définie pour tout $x \in \mathbb{R}$ tel que

$$(\sin(x) + 1)^2 \neq 0 \iff \sin(x) + 1 \neq 0 \iff \sin(x) \neq -1,$$

et on sait que $\{x \in \mathbb{R} \mid \sin(x) = -1\} = \{-\frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z}\}$. On en déduit que le domaine de définition de f est la partie \mathcal{D}_f de \mathbb{R} définie par

$$\mathcal{D}_f = \mathbb{R} \setminus \left\{ -\frac{\pi}{2} + 2k\pi \mid k \in \mathbb{Z} \right\}.$$

On peut écrire f comme étant une composée de fonctions dont on connait la dérivabilité. En effet,

$$f = \frac{f_1}{f_2 \circ f_3},$$

οù

$$f_1: \mathcal{D}_f \longrightarrow \mathbb{R}, \quad f_2: \mathbb{R} \longrightarrow \mathbb{R}, \quad f_3: \mathcal{D}_f \longrightarrow \mathbb{R}$$

 $x \longmapsto x \mapsto x \mapsto x^2, \quad x \longmapsto \sin(x) + 1$

Les fonctions f_1 et f_2 étant des fonctions polynomiales, on sait que f_1 est dérivable sur \mathcal{D}_f et f_2 est dérivable sur \mathbb{R} . La fonction f_3 est la somme de la fonction sinus avec une constante, elle est donc dérivable sur \mathcal{D}_f . Les fonctions dérivées sont alors

$$f_1': \mathcal{D}_f \longrightarrow \mathbb{R}, \quad f_2': \mathbb{R} \longrightarrow \mathbb{R}, \quad f_3': \mathcal{D}_f \longrightarrow \mathbb{R}$$

 $x \longmapsto 1 \qquad x \longmapsto 2x \qquad x \longmapsto \cos(x)$

Soit $x_0 \in \mathcal{D}_f$. On utilise les opérations sur les dérivées :

$$f_3$$
 dérivable en x_0
 f_2 dérivable en $f_3(x_0)$ $\Longrightarrow f_2 \circ f_3$ dérivable en x_0

et

$$\begin{cases}
f_1 \text{ dérivable en } x_0 \\
f_2 \circ f_3 \text{ dérivable en } x_0 \\
f_2 \circ f_3(x_0) \neq 0
\end{cases} \Longrightarrow \frac{f_1}{f_2 \circ f_3} \text{ dérivable en } x_0.$$

On a ainsi montré que le domaine de dérivabilité de f est \mathcal{D}_f tout entier. De plus, pour tout $x \in \mathcal{D}_f$, la dérivée de f en x est

$$f'(x) = \frac{f'_1(x) \times f_2 \circ f_3(x) - f_1(x) \times (f_2 \circ f_3)'(x)}{(f_2 \circ f_3(x))^2},$$

avec

$$(f_2 \circ f_3)'(x) = f_2' \circ f_3(x) \times f_3'(x) = 2(\sin(x) + 1) \times \cos(x) = 2\cos(x)(\sin(x) + 1).$$

On obtient donc

$$f'(x) = \frac{1 \times (\sin(x) + 1)^2 - x \times (2\cos(x)(\sin(x) + 1))}{(\sin(x) + 1)^4}$$
$$= \frac{1}{(\sin(x) + 1)^2} - \frac{2x\cos(x)}{(\sin(x) + 1)^3},$$

pour tout $x \in \mathcal{D}_f$.

(b) Soit $g: x \mapsto x|x|$. Le réel g(x) est défini pour tout $x \in \mathbb{R}$. On en déduit que le domaine de définition \mathcal{D}_g de g est \mathbb{R} tout entier. On peut écrire g comme le produit des fonctions g_1 et g_2 définies par

$$g_1: \mathbb{R} \longrightarrow \mathbb{R}, \quad g_2: \mathbb{R} \longrightarrow \mathbb{R}.$$
 $x \longmapsto x \quad x \longmapsto |x|$

La fonction g_1 est une fonction polynomiale, elle est donc dérivable sur \mathbb{R} et sa dérivée est

$$g_1': \mathbb{R} \longrightarrow \mathbb{R}.$$

$$x \longmapsto 1$$

La fonction g_2 est la fonction valeur absolue qui est continue sur \mathbb{R} et dérivable sur \mathbb{R}^* , de dérivée

$$g_2': \mathbb{R}^* \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{|x|}{x} = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$

Soit $x_0 \in \mathbb{R}^*$. On utilise les opérations sur les dérivées :

$$g_1$$
 dérivable en x_0 g_2 dérivable en x_0 $\Longrightarrow g_1g_2$ dérivable en x_0 .

On obtient ainsi que g est dérivable sur \mathbb{R}^* , de dérivée

$$g'(x) = g'_1(x)g_2(x) + g_1(x)g'_2(x) = 1 \times |x| + x \times \frac{|x|}{x} = 2|x|,$$

pour tout $x \in \mathbb{R}^*$.

Il reste maintenant à étudier la dérivabilité de g en x=0. Pour ce faire, nous déterminons si

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{g(x) - g(0)}{x - 0}$$

existe et est finie. Pour tout $x \neq 0$, on a

$$\frac{g(x) - g(0)}{x - 0} = \frac{x|x|}{x} = |x|.$$

Il suit que

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{g(x) - g(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x \neq 0}} |x| = 0$$

et donc g est dérivable en 0, de dérivée g'(0) = 0.

En résumé, le domaine de dérivabilité de g est $\mathbb R$ tout entier et sa dérivée peut s'écrire

$$g': \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto 2|x|$$

car elle correspond sur \mathbb{R}^* et en 0.

(c) Soit $h: x \mapsto x^{\frac{3}{5}}$. Le réel h(x) est définie pour tout $x \geqslant 0$ donc le domaine de définition \mathcal{D}_h de h est \mathbb{R}_+ . De plus, par définition, on a

$$h(x) = \begin{cases} 0 & \text{si } x = 0, \\ \exp(\frac{3}{5}\ln(x)) & \text{si } x > 0. \end{cases}$$

On commence par regarder sur \mathbb{R}_+^* , où la fonction h s'écrit comme la composée $h_1 \circ h_2$ des fonctions

$$h_1: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $h_2: \mathbb{R}^*_+ \longrightarrow \mathbb{R}$ $x \longmapsto \exp(x)$ $x \longmapsto \frac{3}{5}\ln(x)$

La fonction h_1 étant la fonction exponentielle, elle est dérivable sur \mathbb{R} de dérivée $h'_1 = h_1$. La fonction h_2 étant un multiple de la fonction logarithme népérien, elle est dérivable sur \mathbb{R}_+^* , de dérivée

$$h_2': \mathbb{R}_+^* \longrightarrow \mathbb{R} .$$
 $x \longmapsto \frac{3}{5x}$

Soit $x_0 \in \mathbb{R}_+^*$. On utilise les opérations sur les dérivées :

$$h_2$$
 dérivable en x_0
 h_1 dérivable en $h_2(x_0)$ $\Longrightarrow h_1 \circ h_2$ dérivable en x_0 .

On obtient ainsi que h est dérivable sur \mathbb{R}_{+}^{*} , de dérivée

$$h'(x) = h'_1 \circ h_2(x) \times h'_2(x) = \exp\left(\frac{3}{5}\ln(x)\right) \times \frac{3}{5x} = \frac{3x^{\frac{3}{5}}}{5x} = \frac{3}{5}x^{-\frac{2}{5}},$$

pour tout $x \in \mathbb{R}_+^*$.

Il reste maintenant à étudier la dérivabilité de h en x=0. Pour ce faire, nous déterminons si

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{h(x) - h(0)}{x - 0}$$

existe et est finie. Pour tout x > 0, on a

$$\frac{h(x) - h(0)}{x - 0} = \frac{x^{\frac{3}{5}}}{x} = x^{-\frac{2}{5}} = \frac{1}{x^{\frac{2}{5}}}.$$

Il suit que

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{h(x) - h(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x^{\frac{2}{5}}} = +\infty$$

et donc h n'est pas dérivable en 0.

En résumé, le domaine de dérivabilité de h est \mathbb{R}_+^* et sa dérivée peut s'écrire

$$h': \mathbb{R}_+^* \longrightarrow \mathbb{R} \\ x \longmapsto \frac{3}{5}x^{-\frac{2}{5}}.$$

(d) Soit $i: x \longmapsto \sqrt{x^3 + x^2}$. Le réel i(x) est défini pour tout $x \in \mathbb{R}$ tel que

$$x^3 + x^2 \geqslant 0 \iff x^2(x+1) \geqslant 0 \iff x+1 \geqslant 0.$$

On en déduit que le domaine de définition de i est la partie $\mathcal{D}_i = [-1, +\infty[$. La fonction i s'écrit comme la composée $i_1 \circ i_2$ des fonctions

$$i_1: \mathbb{R}_+ \longrightarrow \mathbb{R}$$
, $i_2: [-1, +\infty[\longrightarrow \mathbb{R}$.
 $x \longmapsto \sqrt{x}$.

La fonction i_1 étant la fonction racine carrée, on sait que i_1 est continue sur \mathbb{R}_+ et dérivable sur \mathbb{R}_+^* , de dérivée

$$i_1': \mathbb{R}_+^* \longrightarrow \mathbb{R} \ x \longmapsto \frac{1}{2\sqrt{x}}$$

La fonction i_2 étant une fonction polynomiale, on sait que i_2 est dérivable sur $[-1, +\infty[$, de dérivée

$$i_2': [-1, +\infty[\longrightarrow \mathbb{R}$$
 $x \longmapsto 3x^2 + 2x$

De plus,

$$i_2(x) = 0 \iff x^2(x+1) = 0 \iff x \in \{-1, 0\}.$$

Soit $x_0 \in \mathcal{D}_i \setminus \{-1,0\} =]-1,0[\ \cup\]0,+\infty[$. On utilise les opérations sur les dérivées :

$$i_2$$
 dérivable en x_0
 i_1 dérivable en $i_2(x_0)$ $\Longrightarrow i_1 \circ i_2$ dérivable en x_0 .

On obtient ainsi que i est dérivable sur $\mathcal{D}_i \setminus \{-1,0\}$, de dérivée

$$i'(x) = i'_1 \circ i_2(x) \times i'_2(x) = \frac{1}{2\sqrt{x^3 + x^2}} \times (3x^2 + 2x) = \frac{3x^2 + 2x}{2\sqrt{x^3 + x^2}},$$

pour tout $x \in \mathcal{D}_i \setminus \{-1, 0\}$.

Il reste maintenant à étudier la dérivabilité de i en $x_0 = -1$ et $x_0 = 0$. En $x_0 = -1$, nous déterminons si

$$\lim_{\substack{x \to -1 \\ x > -1}} \frac{i(x) - i(-1)}{x - (-1)}$$

existe et est finie. Pour tout x > -1, on a

$$\frac{i(x) - i(-1)}{x+1} = \frac{\sqrt{x^3 + x^2}}{x+1} = \frac{\sqrt{x^2(x+1)}}{x+1} = \frac{\sqrt{x^2}\sqrt{(x+1)}}{x+1} = \frac{|x|}{\sqrt{x+1}}.$$

Comme

$$\lim_{\substack{x \to -1 \\ x > -1}} |x| = |-1| = 1 \quad \text{et} \quad \lim_{\substack{x \to -1 \\ x > -1}} \frac{1}{\sqrt{x+1}} = +\infty,$$

Il suit que

$$\lim_{\substack{x \to -1 \\ x > -1}} \frac{i(x) - i(-1)}{x + 1} = +\infty$$

et donc i n'est pas dérivable en -1.

En $x_0 = 0$, nous déterminons si

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{i(x) - i(0)}{x - 0}$$

existe et est finie. Pour tout $x \in \mathcal{D}_i \setminus \{0\}$, on a

$$\frac{i(x) - i(0)}{x - 0} = \frac{\sqrt{x^3 + x^2}}{x} = \frac{\sqrt{x^2}\sqrt{x + 1}}{x} = \frac{|x|}{x}\sqrt{x + 1}.$$

Comme

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{i(x) - i(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x > 0}} \frac{|x|}{x} \sqrt{x + 1} = \lim_{\substack{x \to 0 \\ x > 0}} \sqrt{x + 1} = 1$$

 et

$$\lim_{\substack{x \to 0 \\ x < 0}} \frac{i(x) - i(0)}{x - 0} = \lim_{\substack{x \to 0 \\ x < 0}} \frac{|x|}{x} \sqrt{x + 1} = \lim_{\substack{x \to 0 \\ x < 0}} -\sqrt{x + 1} = -1,$$

on en déduit que

$$\lim_{\substack{x \to 0 \\ x \neq 0}} \frac{i(x) - i(0)}{x - 0}$$

n'existe pas et donc i n'est pas dérivable en 0.

En résumé, le domaine de dérivabilité de i est $]-1,0[\cup]0,+\infty[$ et sa dérivée peut s'écrire

$$i':]-1,0[\cup]0,+\infty[\longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{3x^2+2x}{2\sqrt{x^3+x^2}}.$$

Exercice 2.

(a) Considérons l'application

$$f: \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R}$$

$$x \longmapsto \frac{4x^2 - 3 + \cos(x)}{x - 2}.$$

Commençons avec les éventuelles asymptotes en $\pm \infty$. Pour tout $x \in \mathbb{R} \setminus \{0, 2\}$, on a

$$\frac{f(x)}{x} = \frac{4x^2 - 3 + \cos(x)}{x(x - 2)} = \frac{x^2 \left(4 - \frac{3}{x^2} + \frac{\cos(x)}{x^2}\right)}{x^2 \left(1 - \frac{2}{x}\right)} = \frac{4 - \frac{3}{x^2} + \frac{\cos(x)}{x^2}}{1 - \frac{2}{x}}.$$

 $En + \infty$: on a tout d'abord

$$\lim_{x \to +\infty} \frac{3}{x^2} = 0 \quad \text{et} \quad \lim_{x \to +\infty} \frac{2}{x} = 0.$$

De plus, comme $-1 \leqslant \cos(x) \leqslant 1$ pour tout $x \in \mathbb{R}$, on en déduit que

$$-\frac{1}{x^2} \leqslant \frac{\cos(x)}{x^2} \leqslant \frac{1}{x^2}$$

pour tout $x \in \mathbb{R}^*$. Par le théorème d'encadrement, comme $\lim_{x\to +\infty} \frac{1}{x^2} = 0$, on en déduit que

$$\lim_{x \to +\infty} \frac{\cos(x)}{x^2} = 0.$$

Il suit que

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \frac{4}{1} = 4.$$

Déterminons maintenant si $\lim_{x\to+\infty} (f(x)-4x)$ existe. Pour tout $x\in\mathbb{R}\setminus\{2\}$, on a

$$f(x) - 4x = \frac{4x^2 - 3 + \cos(x)}{x - 2} - 4x = \frac{4x^2 - 3 + \cos(x) - 4x(x - 2)}{x - 2}$$
$$= \frac{4x^2 - 3 + \cos(x) - 4x^2 + 8x}{x - 2} = \frac{8x - 3 + \cos(x)}{x - 2}$$
$$= \frac{x\left(8 - \frac{3}{x} + \frac{\cos(x)}{x}\right)}{x\left(1 - \frac{2}{x}\right)} = \frac{8 - \frac{3}{x} + \frac{\cos(x)}{x}}{1 - \frac{2}{x}}.$$

On en déduit que

$$\lim_{x \to +\infty} (f(x) - 4x) = \lim_{x \to +\infty} \frac{8 - \frac{3}{x} + \frac{\cos(x)}{x}}{1 - \frac{2}{x}} = \frac{8}{1} = 8.$$

Il suit que

$$\lim_{x \to +\infty} (f(x) - (4x + 8)) = 0$$

et donc la droite d'équation y = 4x + 8 est asymptote oblique à la courbe de f en $+\infty$. De plus, pour tout $x \in \mathbb{R} \setminus \{2\}$, on a

$$f(x) - (4x + 8) = \frac{4x^2 - 3 + \cos(x) - (4x + 8)(x - 2)}{x - 2} = \frac{13 + \cos(x)}{x - 2}.$$

Comme $13 + \cos(x) > 0$ pour tout $x \in \mathbb{R}$, on en déduit que f(x) > 4x + 8 pour tout x > 2 et donc la courbe de f est au dessus de sont asymptote oblique y = 4x + 8 en $+\infty$.

De même en $-\infty$:

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{4 - \frac{3}{x^2} + \frac{\cos(x)}{x^2}}{1 - \frac{2}{x}} = 4$$

et

$$\lim_{x \to -\infty} (f(x) - 4x) = \lim_{x \to -\infty} \frac{8 - \frac{3}{x} + \frac{\cos(x)}{x}}{1 - \frac{2}{x}} = 8.$$

La droite d'équation y = 4x + 8 est donc également asymptote oblique à la courbe de f en $-\infty$. De plus f(x) < 4x + 8 pour tout x < 2 et donc la courbe de f est en dessous de sont asymptote oblique y = 4x + 8 en $-\infty$.

Finalement, recherchons l'existence d'une asymptote verticale d'équation x=2. Comme

$$\lim_{x \to 2} (4x^2 - 3 + \cos(x)) = 4 \times 2^2 - 3 + \cos(2) = 13 + \cos(2) > 0$$

et

$$\lim_{\substack{x \to 2 \\ x \neq 2}} \frac{1}{|x - 2|} = +\infty,$$

on en déduit que

$$\lim_{\substack{x \to 2 \\ x \neq 2}} |f(x)| = +\infty$$

et donc la droite d'équation x=2 est une asymptote verticale à la courbe de f. Plus précisément, on a $\lim_{\substack{x\to 2\\x<2}}\frac{1}{x-2}=-\infty$ et $\lim_{\substack{x\to 2\\x>2}}\frac{1}{x-2}=+\infty$. Il suit que

$$\lim_{\substack{x \to 2 \\ x < 2}} f(x) = -\infty \quad \text{et} \quad \lim_{\substack{x \to 2 \\ x > 2}} f(x) = +\infty.$$

(b) Considérons l'application

$$g: \mathbb{R} \longrightarrow \mathbb{R}$$
 $x \longmapsto x + \exp(x)$

 $\operatorname{En} + \infty$:

$$\lim_{x \to +\infty} \frac{g(x)}{x} = \lim_{x \to +\infty} \frac{x + \exp(x)}{x} = \lim_{x \to +\infty} \left(1 + \frac{\exp(x)}{x} \right) = +\infty$$

donc la courbe de q n'admet pas d'asymptote oblique en $+\infty$.

 $\operatorname{En} -\infty$:

$$\lim_{x \to -\infty} \frac{g(x)}{x} = \lim_{x \to -\infty} \frac{x + \exp(x)}{x} = \lim_{x \to -\infty} \left(1 + \frac{\exp(x)}{x} \right) = 1$$

et

$$\lim_{x \to -\infty} (g(x) - x) = \lim_{x \to -\infty} \exp(x) = 0$$

donc la droite d'équation y=x est asymptote à la courbe de g en $-\infty$. Enfin la courbe de g est clairement au dessus de son asymptote car

$$g(x) = x + \exp(x) > x$$

pour tout $x \in \mathbb{R}$.

Exercice 3.

(1) f étant polynomial, f est définie et dérivable 2 fois sur \mathbb{R} . Il suffit d'étudier le signe de sa dérivée seconde pour étudier sa convexité. Pour tout $x \in \mathbb{R}$,

$$f'(x) = 4x^3 + 3x^2 - 6x + 4$$

$$f''(x) = 12x^2 + 6x - 6$$

 $f^{\prime\prime}$ est un polynôme de degré 2 avec coefficient dominant positif. Pour trouver son signe, il suffit de trouver ses racines. On remarque que -1 est racine évidente et on factorise f'' par (x+1):

$$f''(x) = (x+1)(12x-6)$$

- Donc les racine de f'' sont -1 et $\frac{1}{2}$. On a donc : f est convexe pour tout $x \in \mathbb{R}$ tel que $f''(x) \ge 0$, c'est à dire pour tout $x \in \mathbb{R}$ $]-\infty,-1]\cup [\frac{1}{2},+\infty[.$
- f est concave pour tout $x \in \mathbb{R}$ tel que $f''(x) \leq 0$, c'est à dire pour tout $x \in [-1, \frac{1}{2}]$.
- f''(x) = 0 pour x = -1 et $x = \frac{1}{2}$ et f'' change de signe en ces points donc -1 et $\frac{1}{2}$ sont des points d'inflexions de f.
- (2) L'équation de la tangente en a de f est donnée par :

$$y = f'(a)(x - a) + f(a)$$

En a = -1, on a f'(-1) = 11 et f(-1) = -6 et l'équation de la tangente en -1 est :

$$y = 11(x+1) - 6 = x+5$$

En $a = \frac{1}{2}$, on a $f'(\frac{1}{2}) = 4 \times \frac{1}{2^3} + 3 \times \frac{1}{2^2} - 6 \times \frac{1}{2} + 4 = \frac{9}{4}$ et $f(\frac{1}{2}) = \frac{1}{2^4} + \frac{1}{2^3} - 3\frac{1}{2^2} + 4\frac{1}{2} + 1 = \frac{39}{16}$ et l'équation de la tangente en -1 est :

$$y = \frac{9}{4}(x - \frac{1}{2}) + \frac{39}{16} = \frac{9}{4}x + \frac{21}{16}$$

Exercice 4.

(a) La fonction est un quotient de fonctions polynomial (qui sont définie et dérivable sur \mathbb{R}) et donc f est définie continue et dérivable partout où le dénominateur ne s'annule pas. Le dénominateur s'annule si et seulement si x + 2 = 0 c'est à dire x = -2. Donc f est définie, continue et dérivable sur $\mathbb{R} \setminus \{-2\}$. Pour tout $x \in \mathbb{R} \setminus \{-2\}$, on a :

$$f'(x) = \frac{2x(x+2) - (x^2+1) \times 1}{(x+2)^2} = \frac{x^2 + 4x - 1}{(x+2)^2}$$

(b) Pour dresser le tableau de variation, on étudie le signe de f'. Le signe de f' est le même que le signe de $x^2 + 4x - 1$ car $(x + 2)^2 \ge 0$. On cherche donc les racine de $x^2 + 4x - 1$. Son discriminant est :

$$\Delta = b^2 - 4ac = 4^2 - 4 \times 1 \times (-1) = 20$$

Les racines sont donc $r_1=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}$ et $r_2=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}$. On en déduit que

- f' est positive sur $]-\infty, r_1] \cup [r_2, +\infty[$
- f' est négative sur $[r_1, r_2] \setminus \{-2\}$.

On calcul les limites:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x^2 + 1}{x + 2} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{1}{x^2}\right)}{x \left(1 + \frac{2}{x}\right)} = \lim_{x \to +\infty} \frac{x \left(1 + \frac{1}{x^2}\right)}{1 + \frac{2}{x}} = +\infty$$

De même:

$$\lim_{x \to +\infty} f(x) = -\infty$$

De plus

$$\lim_{x \to -2^+} \frac{1}{x+2} = +\infty \qquad \text{et} \qquad \lim_{x \to -2^+} x^2 + 1 = 5$$

donc par quotient

$$\lim_{x \to -2^+} f(x) = +\infty$$

De même,

$$\lim_{x \to -2^{-}} f(x) = -\infty$$

On peut maintenant tracer le tableau de variations :

x	$-\infty$	$-2-\sqrt{5}$	-2	-	$-2+\sqrt{5}$	$+\infty$
f'(x)	+	0	- D	_	0	+
f(x)	$-\infty$	$f(r_1)$	$-\infty$	$+\infty$	$f(r_2)$	$+\infty$

(c) Pour étudier la convexité de f, on étudie le signe de sa dérivée seconde. En effet, f est bien dérivable 2 fois sur $\mathbb{R} \setminus \{-2\}$ et

$$f''(x) = \frac{(2x+4)(x+2)^2 - (x^2+4x-1) \times 2(x+2)}{(x+2)^4} = \frac{(2x+4)(x+2) - (x^2+4x-1) \times 2}{(x+2)^3}$$
$$= \frac{(2x^2+8x+8) - 2(x^2+4x-1)}{(x+2)^3} = \frac{10}{(x+2)^3}$$

f'' est positive si et seulement si $(x+2)^3 \ge 0$ ce qui est équivalent à $x+2 \ge 0$, ou encore $x \ge -2$. On a donc que

- f est convexe sur $]-2,+\infty[$.
- f est concave sur $]-\infty,-2[$.
- (d) Asymtptote en $+\infty$. On cherche une droite d'équation y = ax + b qui soit une asymptote de f en $+\infty$. On cherche d'abord à trouver a en calculant la limite de $\frac{f(x)}{x}$ en $+\infty$.

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 1}{x(x+2)} = \lim_{x \to +\infty} \frac{x^2 \left(1 + \frac{1}{x^2}\right)}{x^2 \left(1 + \frac{2}{x}\right)} = \lim_{x \to +\infty} \frac{\left(1 + \frac{1}{x^2}\right)}{\left(1 + \frac{2}{x}\right)} = 1$$

On aura donc a = 1 et pour trouver b, regarde la limite de f(x) - ax.

$$f(x) - ax = \frac{x^2 + 1}{x + 2} - x = \frac{x^2 + 1}{x + 2} - \frac{x(x + 2)}{x + 2} = \frac{-2x + 1}{x + 2}$$

$$\lim_{x \to +\infty} f(x) - x = \lim_{x \to +\infty} \frac{-2x + 1}{x + 2} = \lim_{x \to +\infty} \frac{x(-2 + \frac{1}{x})}{x(1 + \frac{2}{x})} = \lim_{x \to +\infty} \frac{(-2 + \frac{1}{x})}{(1 + \frac{2}{x})} = -2$$

Donc la droite d'équation y = x - 2 en une asymptote à f en $+\infty$.

En $-\infty$. On a comme avant que

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{x^2 + 1}{x(x+2)} = \lim_{x \to -\infty} \frac{x^2 (1 + \frac{1}{x^2})}{x^2 (1 + \frac{2}{x})} = 1$$

Et de même

$$\lim_{x \to -\infty} f(x) - x = \lim_{x \to -\infty} \frac{-2x + 1}{x + 2} = \lim_{x \to -\infty} \frac{x(-2 + \frac{1}{x})}{x(1 + \frac{2}{x})} = \lim_{x \to -\infty} \frac{(-2 + \frac{1}{x})}{(1 + \frac{2}{x})} = -2$$

Donc la droite d'équation y = x - 2 est également une asymptote à f en $-\infty$.

On cherche à trouver la position relative de la courbe par rapport à la droite d'équation y = x - 2. On cherche donc à étudier le signe de f(x) - (x - 2) = f(x) - x + 2.

$$f(x) - x + 2 = \frac{x^2 + 1}{x + 2} - (x - 2) = \frac{x^2 + 1}{x + 2} - \frac{(x - 2)(x + 2)}{x + 2} = \frac{x^2 + 1 - x^2 + 2^2}{x + 2} = \frac{5}{x + 2}$$

On en déduit que :

- f est au dessus de l'asymptote en $x \in \mathbb{R}$ si $f(x) x + 2 \ge 0$ c'est à dire $x + 2 \ge 0$. Donc f est au dessus de l'asymptote sur $]-2,+\infty[$.
- f est en dessous de l'asymptote en $x \in \mathbb{R}$ si $f(x) x + 2 \leq 0$ c'est à dire $x + 2 \leq 0$. Donc f est au dessous de l'asymptote sur $] - \infty, -2[$.

La graphe de la fonction est la courbe en bleu.

Exercice 5. Montrons d'abord que la fonction sin est concave sur $[0, \frac{\pi}{2}]$. sin est définie et dérivable deux fois sur cet intervalle. Sa dérivée seconde est $-\sin(x) \le 0$ pour tout $x \in [0, \frac{\pi}{2}]$. Donc sin est concave sur $[0, \frac{\pi}{2}]$.

Comme sin est concave, son graphe est en-dessous de toute ses tangentes. En particulier, la tangente en 0 de sin a pour equation :

$$y = \sin'(0)(x - 0) + \sin(0) = \cos(0)x = x$$

Donc pour tout $x \in [0, \frac{\pi}{2}]$, comme sin est en-dessous de sa tangente, on a

$$\sin(x) \leqslant x$$

La définition de la concavité nous donne que

$$\sin(ty + (1-t)y') \geqslant t\sin(y) + (1-t)\sin(y')$$

pour tout $y, y' \in [0, \frac{\pi}{2}]$ et $t \in [0, 1]$. Si on pose $t = \frac{2}{\pi}x$, $y = \frac{\pi}{2}$ et y' = 0, pour $x \in [0, \frac{\pi}{2}]$ (dans ce cas on a bien $t \in [0, 1]$, alors on obtient:

$$\sin(x) \geqslant \frac{2}{\pi}x\sin(\frac{\pi}{2}) + (1 - \frac{2}{\pi}x)\sin(0) = \frac{2}{\pi}x$$

et on trouve bien que pour tout $x \in [0, \frac{\pi}{2}]$:

$$\sin(x) \geqslant \frac{2}{\pi}x$$

Autre Méthode: On peut utiliser le fait que la corde du graphe de sin qui relie $\sin(0)$ et $\sin(\frac{\pi}{2})$ est en-dessous du graphe de sin. En effet cette corde part du point $(0, \sin(0)) = (0, 0)$ et arrive au point $(\frac{\pi}{2}, \sin(\frac{\pi}{2})) = (\frac{\pi}{2}, 1)$. L'équation de la droite coïncidant avec cette corde est donc $y = \frac{1-0}{\frac{\pi}{2}-0}x + 0 = \frac{2}{\pi}x$. Comme le graphe de sin est au-dessus de cette corde, ceci est une autre manière, plus géométrique, de montrer le résultat :

$$\sin(x) \geqslant \frac{2}{\pi}x$$

Exercice 6.

(a) Les fonctions $x \mapsto x+1$ et $x \mapsto x^2-1$ sont définies, continues et dérivables sur \mathbb{R} . Or $\sqrt{.}$ est définie et continue sur $\mathbb{R}+$, et dérivable sur \mathbb{R}^*+ , et

$$\forall x \in \mathbb{R}, \ x^2 - 1 > 0 \iff x^2 > 1$$

 $\Leftrightarrow x > 1 \text{ ou } x < -1$

De même on a $\forall x \in \mathbb{R}$, $x^2 - 1 = 0 \Leftrightarrow x = 1$ ou x = -1. Ainsi f est définie et continue sur $]-\infty, -1] \cup [1, +\infty[$ et dérivable sur $]-\infty, -1[\cup]1, +\infty[$.

$$\forall x \in]-\infty, -1[\cup]1, +\infty[, f'(x) = \sqrt{x^2 - 1} + \frac{(1+x)2x}{2\sqrt{x^2 - 1}}$$
$$= \sqrt{x^2 - 1} + \frac{x(1+x)}{\sqrt{x^2 - 1}}$$

Étudions la dérivabilité de f en 1. On a

$$\forall x \in]1, +\infty[, \frac{f(x) - f(1)}{x - 1} = \frac{1}{x - 1}((1 + x)\sqrt{x^2 - 1} - 0)$$
$$= \frac{(1 + x)^{3/2}}{\sqrt{x - 1}}$$

donc $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1} = +\infty$, donc f n'est pas dérivable en 1.

Étudions maintenant la dérivabilité de f en -1. On a

$$\forall x \in]-\infty, -1[, \frac{f(x) - f(-1)}{x - (-1)} = \frac{1}{x+1}((1+x)\sqrt{x^2 - 1} - 0)$$
$$= \sqrt{x^2 - 1}$$

donc $\lim_{x\to -1} \frac{f(x)-f(1)}{x-(-1)} = 0$, donc f est dérivable en -1 et f'(-1) = 0.

(b) Étudions le signe de f'. On a $\forall x \in]-\infty, -1[\cup]1, +\infty[$, $\sqrt{x^2-1}>0$. De plus $\forall x \in]1, +\infty[$, x>0 et 1+x>0, donc $\forall x \in]1, +\infty[$, f'(x)>0. De même, on a $\forall x \in]-\infty, -1[$, x<0 et 1+x<0 donc x(1+x)>0, et ainsi f'(x)>0. On a également f(-1)=f(1)=0, $\lim_{x\to -\infty} f(x)=-\infty$ et $\lim_{x\to +\infty} f(x)=+\infty$. On peut maintenant tracer le tableau de variations de f:

La fonction dérivée f' est dérivable sur $]-\infty,-1[\cup]1,+\infty[$, donc pour étudier la convexité de f, on peut étudier f''.

$$\forall x \in]-\infty, -1[\cup]1, +\infty[, f''(x)] = \frac{x}{\sqrt{x^2 - 1}} + \frac{(2x+1)\sqrt{x^2 - 1} - x(x+1)\frac{x}{\sqrt{x^2 - 1}}}{x^2 - 1}$$

$$= \frac{x(x^2 - 1) + (2x+1)(x^2 - 1) - x^3 - x^2}{(x^2 - 1)^{3/2}}$$

$$f''(x) = \frac{2x^3 - 3x - 1}{(x^2 - 1)^{3/2}}$$

Or -1 est racine évidente de $2x^3 - 3x - 1$, donc on peut factoriser par (x + 1) et on obtient

$$f''(x) = \frac{2(x+1)(x^2 - x - 1/2)}{(x^2 - 1)^{3/2}}.$$

Le discriminant de $x^2-x-1/2$ est $\Delta=1+4\times 1/2=3$, donc les racines sont $\frac{1-\sqrt{3}}{2}$ et $\frac{1+\sqrt{3}}{2}$. Ainsi on a

$$f''(x) = \frac{2(x+1)(x - \frac{1-\sqrt{3}}{2})(x - \frac{1+\sqrt{3}}{2})}{(x^2 - 1)^{3/2}}.$$

En étudiant le signe des différents termes du produit, on obtient que

$$\forall x \in]-\infty, -1[\cup]1, \frac{1+\sqrt{3}}{2}[, f''(x) < 0]$$
$$\forall x \in]\frac{1+\sqrt{3}}{2}, +\infty[, f''(x) > 0.$$

Ainsi f est concave sur $]-\infty,-1[\cup]1,\frac{1+\sqrt{3}}{2}[$ et convexe sur $]\frac{1+\sqrt{3}}{2},+\infty[$. On peut maintenant tracer le graphe de f:

(c) La fonction g est continue et strictement croissante sur l'intervalle $[1, +\infty[$, donc par le théorème de la bijection g réalise une bijection de $[1, +\infty[$ vers $f([1, +\infty[) = [f(1), \lim_{x \to +\infty} f(x)] = [0, +\infty[$.

La fonction g est dérivable sur $]1, +\infty[$ et $\forall x \in]1, +\infty[$, $g'(x) = f'(x) \neq 0$, donc g est dérivable sur $]0, +\infty[$.

On a g(1) = 0 donc $g^{-1}(0) = 1$. De même, $g(2) = (1+2)\sqrt{2^2-1} = 3\sqrt{3}$ donc $g^{-1}(3\sqrt{3}) = 2$. Enfin, on a

$$(g^{-1})'(3\sqrt{3}) = \frac{1}{g'(g^{-1}(3\sqrt{3}))} = \frac{1}{g'(2)} = \frac{\sqrt{3}}{9}.$$

Exercice 7. La fonction f est dérivable sur \mathbb{R} , donc la tangente à Γ_f au point d'abscisse a a pour équation $T_f(a): y = f'(a)(x-a) + f(a) = 2a(x-a) + a^2 = 2ax - a^2$.

Ainsi si $M \in \mathbb{R}^2$ est un point de coordonnées (x,y), alors il existe une tangente à Γ_f passant par M si et seulement si il existe $a \in \mathbb{R}$ tel que $y = 2ax - a^2$, c'est à dire $-a^2 + 2ax - y = 0$. Cela revient à chercher les racines réelles du polynôme en a de degré $2: -a^2 + 2xa - y$. On calcule le discriminant : $\Delta = (2x)^2 - 4(-1)(-y) = 4x^2 - 4y$. Ainsi ce polynôme admet des racines réelles si et seulement si $\Delta \geqslant 0$, c'est à dire $x^2 \geqslant y$. Ainsi il existe une tangente à Γ_f passant par M si et seulement si $x^2 \geqslant y$.

De plus, le polynôme $-a^2 + 2ax - y = 0$ admet une unique racine réelle si et seulement si $\Delta = 0$, c'est à dire $x^2 = y$, dit autrement si et seulement si $M \in \Gamma_f$. Ainsi l'ensemble des points par lesquels passe une et une seule tangente est Γ_f .

On peut comprendre ce qu'il se passe avec un dessin :

Exercice 8. Attention! Dans cet exercice, on ne suppose pas f dérivable. On ne peut donc pas faire appel aux résultats qui utilisent les dérivées première et seconde de f.

(1) Pour tout $x \in \mathbb{R}+$, on applique la convexité de f entre 0 et x et avec $t=\frac{1}{2}$. On obtient alors

$$\forall x \in \mathbb{R}^+, \ f((1 - \frac{1}{2}) \times 0 + \frac{1}{2}x) \leqslant (1 - \frac{1}{2})f(0) + \frac{1}{2}f(x)$$
$$\forall x \in \mathbb{R}^+, \ f(\frac{1}{2}x) \leqslant \frac{1}{2}f(0) + \frac{1}{2}f(x).$$

 $\text{Or} \lim_{x \to +\infty} \frac{1}{2}x = +\infty \text{ et} \lim_{y \to +\infty} f(y) = 2, \\ \text{donc} \lim_{x \to +\infty} f(\frac{1}{2}x) = 2. \text{ Ainsi on a } \lim_{x \to +\infty} f(\frac{1}{2}x) \leqslant \lim_{x \to +\infty} \left(\frac{1}{2}f(0) + \frac{1}{2}f(x)\right), \text{ c'est à dire } 2 \leqslant \frac{1}{2}f(0) + 1, \text{ d'où } f(0) \geqslant 2.$

(2) Supposons que f(0) = 2. Soit $x \in \mathbb{R}+$. Montrons que f(x) = 2. Par le même raisonnement que dans la question précédente, on a $f(x) \ge 2$.

Pour tout y > x, on applique la convexité de f entre 0 et y avec $t = \frac{x}{y}$ (on a bien $t \in [0,1]$). On obtient alors

$$\forall y > x, \ f((1-t) \times 0 + ty) \leqslant (1-t)f(0) + tf(y)$$
$$f(\frac{x}{y}y) \leqslant (1-\frac{x}{y}) \times 2 + \frac{x}{y}f(y)$$
$$f(x) \leqslant 2(1-\frac{x}{y}) + \frac{x}{y}f(y).$$

Or $\lim_{y\to +\infty}\frac{x}{y}=0$ et $\lim_{y\to +\infty}f(y)=2$, donc $\lim_{y\to +\infty}2(1-\frac{x}{y})=2$ et $\lim_{y\to +\infty}\frac{x}{y}f(y)=0$. Ainsi on a $f(x)\leqslant \lim_{y\to +\infty}(2(1-\frac{x}{y})+\frac{x}{y}f(y))$, c'est à dire $f(x)\leqslant 2$.

En conclusion, on a $\forall x \in \mathbb{R}^+$, f(x) = 2, donc f est constante égale à 2 sur \mathbb{R}^+ .

(3) Supposons que f(0) > 2. On a $\lim_{x \to +\infty} f(x) = 2$, donc il existe $x_0 > 0$ tel que $f(0) > f(x_0) \ge 2$. Pour tout y < 0, on applique la convexité de f entre y et x_0 avec $t = \frac{-y}{x_0 - y}$ (on a bien $t \in [0, 1]$, et $1 - t = \frac{x_0}{x_0 - y}$). On obtient alors

$$\forall y < 0, \ f((1-t)y + tx_0) \leqslant (1-t)f(y) + tf(x_0)$$

$$f(\frac{x_0y}{x_0 - y} + \frac{-yx_0}{x_0 - y}) \leqslant \frac{x_0}{x_0 - y}f(y) + \frac{-y}{x_0 - y}f(x_0)$$

$$(x_0 - y)f(0) \leqslant x_0f(y) - yf(x_0) \ (\operatorname{car} x_0 - y > 0)$$

$$x_0f(y) \geqslant x_0f(0) - yf(0) + yf(x_0)$$

$$f(y) \geqslant \frac{f(x_0) - f(0)}{x_0}y + f(0) \ (\operatorname{car} x_0 > 0).$$

Or $f(0) > f(x_0)$, donc $\frac{f(x_0) - f(0)}{x_0} < 0$, et donc $\lim_{x \to -\infty} \left(\frac{f(x_0) - f(0)}{x_0} y + f(0) \right) = +\infty$. Ainsi par encadrement, on a $\lim_{y \to -\infty} f(y) = +\infty$.