

SEQUENCE LISTING

<110> Ruan, Yijun
Patrick, Ng
Chialin, Wei

<120> Method for Gene Identification Signature (GIS) Analysis

<130> 3240-105

<140> 10/664,234

<141> 2003-09-17

<160> 29

<170> PatentIn version 3.3

<210> 1

<211> 33

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide primer with homology to bacterial cloning vector

<220>

<221> misc_feature

<222> (1)..(33)

<223> n is a,c,g, or t

<220>

<221> misc_feature

<222> (1)..(33)

<223> v is a,c,g

<400> 1
gagctccttc tggagttttt ttttttttt tvn

33

<210> 2

<211> 30

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide primer with homology to bacterial cloning vector

<220>

<221> misc_feature

<222> (1)..(30)

<223> n is a,t,c or g

<400> 2

aattcgcggc cgcttggatc cgacnnnnnn

30

<210> 3
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 3
gtcggatcca agcggccgcg

20

<210> 4
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>
<221> misc_feature
<222> (1)..(30)
<223> n is a,t,c or g

<400> 4
aattcgcggc cgcttggatc cgacgnnnnn

30

<210> 5
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 5
tcgaccagg atccaaactt

19

<210> 6
<211> 13
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<220>

```

<221> misc_feature
<222> (1)..(1)
<223> phosphorylation

<400> 6
gttggatcct ggg                                13

<210> 7
<211> 17
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 7
gtaaaaacgac ggccagt                            17

<210> 8
<211> 19
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 8
ggaaaacagct atgaccatg                           19

<210> 9
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 9
taatacgact cactataggg                          20

<210> 10
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 10
gatgtgctgc aaggcgatta ag                      22

```

```
<210> 11
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide primer with homology to bacterial cloning vector

<400> 11
agcggataac aatttcacac agg 23

<210> 12
<211> 48
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide with homolgy to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(48)
<223> n is a,t,c or g

<400> 12
gatccgacnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnaagttg 48

<210> 13
<211> 48
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide with homolgy to a bacteria cloning vector

<220>
<221> misc_feature
<222> (1)..(48)
<223> n is a,t,c or g

<400> 13
gatccaactt nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnngtcg 48

<210> 14
<211> 29
<212> DNA
<213> Artificial

<220>
```

<223> Oligonucleotide primer with homolgy to a bacteria cloning vector
<400> 14
cgctctc~~c~~tg taccgaccct gccgcttac 29

<210> 15
<211> 29
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide primer with homolgy to a bacteria cloning vector
<400> 15
aactatcgtc ttgagaccaa cccggtaag 29

<210> 16
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide adapter with homolgy to a bacteria cloning vector
<400> 16
aattctcgag cggccgcgat atcg 24

<210> 17
<211> 24
<212> DNA
<213> Artificial

<220>
<223> Oligonucleotide adapter with homolgy to a bacteria cloning vector
<400> 17
gagctcgccg gcgctatagc ttaa 24

<210> 18
<211> 3404
<212> DNA
<213> Artificial

<220>
<223> bacterial cloning vector
<400> 18
gggcgaattc tcgagcggcc gcggatccga cgagagcgcc tgctacggc tcgcccgg 60

ggctggcgct acttcggagg agcccgacgc ggcgcggtcg ttttataca ttcccgcg 120
gaggcaacgg aaggcgcccc cgccctcgta ttaggcccgag gaggtcacag gctctgtt 180
catgaaggtg aaaattaaat gttggaatgg tgtggccact tggctctggg tagccaatga 240
tgagaactgc ggcatctgca ggatggcggt taatggctgc tgtccagact gtaaggtgcc 300
tggtgatgac tgccccctcg tgtgggaca gtgctcccac tgcttccaca tgcaactgcat 360
cctcaagtgg ctgaatgcgc agcaggtgca gcagcactgc cccatgtgtc gccaggagtg 420
gaagttcaaa gagtgaagcc cgtccgtgc cacttccctc tcctgtgctg tgccaggctc 480
agcccttcc ctccctcccc tccccagat acagcacccc aagtcccctc cacacagcac 540
agtggtgccc agagatctcg gtctgtgccg gggacaagga tgctttctgt ttggctggga 600
caaggttgaa aggagcttg ctgactgttt tgtttccca tcacattgac actttattca 660
ataagtaaaa ctcattacag ttccaagtcg gatcctgggt cgacctgcag gcatgcaagc 720
ttgagtattc tatagtgtca cctaaatagc ttggcgtaat catggtcata gctgtttcct 780
gtgtgaaatt gttatccgct cacaattcca cacaacatac gagccggaag cataaagtgt 840
aaagcctggg gtgcctaattg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc 900
gctttccagt cggaaacct gtcgtgccag ctgcattaaat gaatcgcca acgcgcgggg 960
agaggcgggtt tgcgtattgg gcgctttcc gcttcctcg tcactgactc gctgcgctcg 1020
gtcgttcggc tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca 1080
gaatcagggg ataacgcagg aaagaacatg tgagcaaaag gccagcaaaa ggccaggaac 1140
cgtaaaaaagg ccgcgttgct gggttttc gataggctcc gccccctga cgagcatcac 1200
aaaaatcgac gctcaagtca gaggtggcga aaccgcacag gactataaag ataccaggcg 1260
tttccccctg gaagctccct cgtcgctct cctgtaccga ccctgccgct taccggatac 1320
ctgtccgcct ttctcccttc ggaaagcgtg gcgctttctc atagctcacg ctgttaggtat 1380
ctcagttcgg ttaggtcgt tcgctccaag ctggctgtg tgcacgaacc ccccgttcag 1440
cccgaccgct ggccttatac cggtaactat cgtcttgaga ccaaccgggt aagacacgcac 1500
ttatcgccac tggcagcagc cactggtaac aggattagca gagcgaggta ttaggcgg 1560
gctacagagt tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt 1620
atctgcgctc tgctgaagcc agttacccctc ggaaaaagag ttggtagctc ttgatccggc 1680
aaacaaacca ccqctggtaq cggtgggttt tttgtttqca agcagcagat tacgcgcaga 1740

aaaaaaaggat	ctcaagaaga	tcctttgatc	tttctacgg	ggtctgacgc	tcagtggAAC	1800
gaaaactcac	gttaaggat	tttggtcatg	agattatcaa	aaaggatctt	cacctagatc	1860
ctttaaatt	aaaaatgaag	ttttaaatca	atctaaagta	tatatgagta	aacttggtct	1920
gacagttacc	aatgcttaat	cagtgaggca	cctatctcg	cgatctgtct	atttcgTTCA	1980
tccatagttg	cctgactccc	cgtcgtag	ataactacga	tacgggaggg	cttaccatct	2040
ggccccagtg	ctgcaatgat	accgcgagac	ccacgctcac	cggctccaga	tttatcagca	2100
ataaaaccagc	cagccggaag	ggccgagcgc	agaagtggc	ctgcaacttt	atccgcctcc	2160
atccagtcTA	ttaattgttg	ccgggaagct	agagtaagta	gttcGCCAGT	taatagttg	2220
cgcaacgttg	ttggcattgc	tacaggcatc	gtgggtcac	gctcgTCGTT	tggtatggct	2280
tcattcagct	ccggTTCCCA	acgatcaagg	cgagttacat	gatccccat	gttgtgcaAA	2340
aaagcggta	gctcCTTcgg	tcctccgatc	gttgtcagaa	gtaagttggc	cgcAGTgtta	2400
tcactcatgg	ttatggcagc	actgcataat	tctttactg	tcatGCCATC	cgtaagatgc	2460
ttttctgtga	ctggtgagta	ctcaaccaag	tcattctgag	aatagtgtat	gcggcgaccg	2520
agttgctctt	gcccgGCgtc	aatacggat	aataccgcgc	cacatagcag	aactttaaaa	2580
gtgctcatca	ttggAAAACG	ttcttcgggg	cgaaaactct	caaggatctt	accgctgttg	2640
agatccagtt	cgatgtAAC	cactcgTgcA	cccaactgat	cttcagcatc	ttttactttc	2700
accagcgTTT	ctgggtgagc	aaaaacagga	aggcaaaatg	ccgcaaaaaaa	ggaaataagg	2760
gcgacacgga	aatgttGAAT	actcataactc	ttcTTTTc	aatattattg	aagcatttat	2820
cagggTTATT	gtctcatgag	cgatACATA	tttGAATGTA	tttagaaaaa	taaacaAAATA	2880
ggggTTCCGC	gcacATTCC	ccgaaaAGTG	ccacCTGACG	tctaAGAAAC	cattattatc	2940
atgacattaa	cctataaaaaa	taggcgtatc	acgaggccct	ttcgtctcgc	gcgtttcggt	3000
gatgacggtg	aaaacctctg	acacatgcag	ctcccggaga	cggcacAGC	ttgtctgtAA	3060
gcggatGCCG	ggagcagaca	agcccgtcag	ggcgcgtcag	cgggtgttgg	cgggtgtcgg	3120
ggctggctta	actatgcggc	atcagagcag	attgtactga	gagtgcacca	tatgcggTGT	3180
gaaataccgc	acagatgcgt	aaggagaaaa	tacCGCATCA	ggcgccattc	gccattcagg	3240
ctgcgcaact	gttgggaagg	gcgatcggtg	cgggccttt	cgctattacg	ccagctggcg	3300
aaagggggat	gtgctgcaag	gcgatTAAGT	tggtaacgc	cagggtttc	ccagtcacga	3360

cgttgtaaaa cgacggccag tgaattgtaa tacgactcac tata

3404

<210> 19

<211> 10

<212> DNA

<213> Artificial

<220>

<223> mammalian p53 consensus sequence

<220>

<221> misc_feature

<223> r is a purine (A or G)

<220>

<221> misc_feature

<223> w is A or T

<220>

<221> misc_feature

<223> y is a pyrimidine (C or T)

<400> 19

rrrcwwgYYYY

10

<210> 20

<211> 20

<212> DNA

<213> Artificial

<220>

<223> mammalian p53 consensus sequence

<400> 20

gaacatgtcc caacatgttg

20

<210> 21

<211> 20

<212> DNA

<213> Artificial

<220>

<223> mammalian p53 consensus sequence

<400> 21

agacaaggccc gggcaaggcc

20

<210> 22

<211> 2770

<212> DNA

<213> Artificial

<220>

<223> Bacterial Cloning Vector

<400> 22

ggcgaaattc	gatatcgccgg	ccgcgaggag	tatggatccg	actcgagtcg	gatcctggct	60
cctcggtcgac	ctgcaggcat	gcaagcttga	gtattctata	gtgtcaccta	aatagcttgg	120
cgtaatcatg	gtcatagctg	tttcctgtgt	gaaattgtta	tccgctcaca	attccacaca	180
acatacggc	cggaaggcata	aagtgtaaag	cctggggtgc	ctaattgagt	agctaactca	240
cattaattgc	gttgcgctca	ctgcccgtt	tccagtcggg	aaacctgtcg	tgccagctgc	300
attaatgaat	cggccaacgc	gcggggagag	gcggtttgcg	tattgggcgc	tcttcggcctt	360
cctcgctcac	tgactcgctg	cgctcggtcg	ttcggctgcg	gcgagcggta	ttagctcact	420
caaaggcgt	aatacggta	tccacagaat	cagggataa	cgcaggaaag	aacatgtgag	480
caaaaggcca	gcaaaaggcc	aggaaccgta	aaaaggccgc	gttgctggcg	tttttcgata	540
ggctccgccc	ccctgacgag	catcacaaaa	atcgacgctc	aagttagagg	tggcgaaacc	600
cgacaggact	ataaaagatac	caggcgttt	cccctggaag	ctccctcg	cgctctcctg	660
taccgaccct	gccgcttacc	ggataacctgt	ccgcctttct	cccttcggga	agcgtggcgc	720
tttctcatag	ctcacgctgt	aggtatctca	gttcggtgta	ggtcgttcgc	tccaaagctgg	780
gctgtgtgca	cgaaccccccc	gttcagcccg	accgctgcgc	cttatccgt	aactatcg	840
ttgagaccaa	cccggttaaga	cacgacttat	cgccactggc	agcagccact	ggtaacagga	900
ttagcagagc	gaggtatgt	ggcggtgcta	cagagttctt	gaagtggtgg	cctaactacg	960
gctacactag	aaggacagta	tttggtatct	gctgtctgct	gaagccagtt	acccggaa	1020
aaagagttgg	tagcttttga	tccggcaa	aaaccaccgc	tggtagcggt	gttttttttg	1080
tttgcagca	gcagattacg	cgcagaaaaaa	aaggatctca	agaagatcct	ttgatcttt	1140
ctacgggtc	tgacgctcag	tggaacgaaa	actcacgtt	aggatttg	gtcatgagat	1200
tatcaaaaaag	gatcttcacc	tagatcctt	taaattaaaa	atgaagttt	aaatcaatct	1260
aaagtatata	ttagttaact	tggctgaca	gttaccaatg	cttaatcagt	gaggcaccta	1320
tctcagcgat	ctgtctattt	cgttcatcca	tagttgcctg	actccccgtc	gtgttagataa	1380
ctacgatacg	ggagggctta	ccatctggcc	ccagtgcgc	aatgataccg	cgagacccac	1440
gctcaccggc	tccagattt	tcagcaataa	accagccagc	cggaagggcc	gagcgcagaa	1500

gtggtcctgc	aactttatcc	gcctccatcc	agtctattaa	ttgttgccgg	gaagctagag	1560
taagtagttc	gccagttaat	agtttgcgca	acgttgttgg	cattgctaca	ggcatcggtgg	1620
tgtcacgctc	gtcggttgg	atggcttcat	tcagctccgg	ttcccaacga	tcaaggcgag	1680
ttacatgatc	ccccatgttg	tgcaaaaaag	cggtagctc	cttcggtcct	ccgatcggttg	1740
tcagaagtaa	gttggccgca	gtgttatcac	tcatggttat	ggcagcactg	cataattctc	1800
ttactgtcat	gccatccgta	agatgctttt	ctgtgactgg	ttagtactca	accaagtcat	1860
tctgagaata	gtgtatgcgg	cgaccgagtt	gctttgccc	ggcgtcaata	cgggataata	1920
ccgcgccaca	tagcagaact	ttaaaaagtgc	tcatcattgg	aaaacgttct	tcggggcgaa	1980
aactctcaag	gatcttaccg	ctgtttagat	ccagttcgat	gtaacccact	cgtgcaccca	2040
actgatcttc	agcatctttt	actttcacca	gcgtttctgg	gtgagcaaaa	acaggaaggc	2100
aaaatgccgc	aaaaaaaggga	ataagggcga	cacggaaatg	ttgaataactc	atactttcc	2160
tttttcaata	ttattgaagc	atttatcagg	gttattgtct	catgagcgga	tacatatttg	2220
aatgtattta	aaaaaataaa	caaataagggg	ttccgcgcac	atttccccga	aaagtgccac	2280
ctgacgtcta	agaaaccatt	attatcatga	cattaaccta	aaaaatagg	cgtatcacga	2340
ggccctttcg	tctcgcggt	ttcgggtatg	acggtaaaaa	cctctgacac	atgcagctcc	2400
cgagacggt	cacagcttgt	ctgttaagcgg	atgccgggag	cagacaagcc	cgtcagggcg	2460
cgtcagcggt	tgttggcggt	tgtcggttgc	ggcttaacta	tgcggcatca	gagcagattg	2520
tactgagagt	gcaccatatg	cggtgtgaaa	tacccacag	atgcgttaagg	agaaaatacc	2580
gcatcaggcg	ccattcgcca	ttcaggctgc	gcaactgttg	ggaagggcga	tcgggtcggt	2640
cctcttcgct	attacgccag	ctggcgaaag	ggggatgtgc	tgcaaggcga	ttaagttggg	2700
taacgccagg	gttttccag	tcacgacgtt	gtaaaacgac	ggccagtgaa	ttgttaatacg	2760
actcactata						2770

<210> 23
 <211> 54
 <212> DNA
 <213> Artificial

<220>
 <223> oligonucleotide with homology to bacterial cloning vector
 <400> 23

gcggccgcga ggagtatgga tccgactcga gtcggatcct ggctcctcggt cgac	54
<210> 24	
<211> 26	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 24	
gcggccgcga ggagtatgga tccgac	26
<210> 25	
<211> 24	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 25	
gtcggatcct ggctcctcggt cgac	24
<210> 26	
<211> 10	
<212> DNA	
<213> mammalian	
<220>	
<221> polyA_site	
<222> (1)..(10)	
<400> 26	
aaaaaaaaaaaa	10
<210> 27	
<211> 54	
<212> DNA	
<213> Artificial	
<220>	
<223> oligonucleotide with homology to bacterial cloning vector	
<400> 27	
gcgcggcgct cctcataacct aggctgagct cagcctagga ccgaggagca gctg	54
<210> 28	
<211> 26	

<212> DNA
<213> Artificial

<220>
<223> oligonucleotide with homology to bacterial cloning vector

<400> 28
cgccggcgct cctcataacct aggctg

26

<210> 29
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide with homology to bacterial cloning vector

<400> 29
cagcctagga ccgaggagca gctg

24