Composition du 2^{ém} Trimestre

Epreuve de Mathématiques

Exercice 1: (6 Points)

- 1) **a.** Vérifier que : $x^3 + y^3 = (x + y)(x^2 xy + y^2)$
 - **b.** Déterminer les couples (x, y) vérifiant : $\begin{cases} x^3 + y^3 = 98 \\ x + y = 2 \end{cases}$

2) x_1 et x_2 sont les racines du polynôme : $P(x) = x^2 - x - 6$ Former une équation du second degré admettant :

$$\begin{cases} y_1 = \frac{x_1^2 + x_2}{x_2} \\ y_2 = \frac{x_1 + x_2^2}{x_2} \end{cases}$$
 Comme solutions.

3) Soit a et b des réels strictement positifs et distincts. Montrer que?

Exercice 2: (6 Points)

- 1) On considère un segment [AB] de milieu I. Prouver que :
 - $bar\{(A; -1), (B; \frac{1}{2})\} = bar\{(A; 2), (I, -1)\}$
- 2) On considère un triangle quelconque ABC avec Ne milieu du segment [BC], on définit G_1 et G_2 par $G_1 = bar\{(A; -2), (B; 5), (C; 5)\}\ et G_2 = bar\{(A; 5), (B; -2), (C; 2)\}.$
- **a.** Prouver que les points A, I et G_1 sont alignés.
- **b.** Prouver que les droites (AG_2) et (BC) sont parallèles.

Exercice 3: (8 Points)

- 1) Ecrire les sommes vectorielles suivantes à l'aide d'un seul vecteur :
 - a. $\overrightarrow{MA} + 3\overrightarrow{MB}$
- **b.** $4\overrightarrow{AM} 4\overrightarrow{BM}$
- 2) Soit ABC un triangle. Lest le milieu de [AB]. J et L sont les points définis par $\overrightarrow{AJ} = \frac{1}{r} \overrightarrow{AB}$ et $\overrightarrow{AL} = \frac{4}{3} \overrightarrow{AC}$. La parallèle à (AC) passant par J coupe la droite (BC) en K.
- a. Exprimer I comme barycentre des points A et B; et L comme barycentre des points A et C.
- **b.** Exprimer K comme barycentre des points B et C.
- **C.** Démontrer que les points I, K et L sont alignés et déterminer le réel \propto tel que $\overrightarrow{IK} = \propto \overrightarrow{IL}$.

Lycée de garçons 2

Classes: $5C_{1+2}$ 11/03/2014

Composition du 2^{ém} Trimestre Epreuve de Mathématiques

Exercice 1: (6 Points)

- Exercice 1: (6 Points)

 1) **a.** Vérifier que : $x^3 + y^3 = (x + y)(x^2 xy + y^2)$ **b.** Déterminer les couples (x, y) vérifiant : $\begin{cases} x^3 + y^3 = 98 \\ x + y = 2 \end{cases}$
- 2) x_1 et x_2 sont les racines du polynôme : $P(x) = x^2 x 6$ Former une équation du second degré admettant :

$$\begin{cases} y_1 = \frac{x_1^2 + x_2}{x_2} \\ y_2 = \frac{x_1 + x_2^2}{x_1} \end{cases}$$
 Comme solutions.

3) Soit a et b des réels strictement positifs et distincts. Montrer que

Exercice 2: (6 Points)

- 1) On considère un segment [AB] de milieu I. Prouver que : $bar\{(A; -1), (B; \frac{1}{3})\} = bar\{(A; 2), (I, -1)\}$
- 2) On considère un triangle quelconque ABC avec Ne milieu du segment [BC], on définit G_1 et G_2 par $G_1 = bar\{(A; -2), (B; 5), (C; 5)\}\ et G_2 = bar\{(A; 5), (B; -2), (C; 2)\}.$
- **a.** Prouver que les points A, I et G_1 sont alignés.
- **b.** Prouver que les droites (AG_2) et (BC) sont parallèles.

Exercice 3: (8 Points)

- 1) Ecrire les sommes vectorielles suivantes à l'aide d'un seul vecteur :
 - a. $\overrightarrow{MA} + 3\overrightarrow{MB}$
- **b.** $4\overrightarrow{AM} 4\overrightarrow{BM}$
- c. $2\overrightarrow{AM} \overrightarrow{MB} + \overrightarrow{MC}$
- 2) Soit ABC un triangle. Lest le milieu de [AB]. J et L sont les points définis par $\overrightarrow{AJ} = \frac{1}{7} \overrightarrow{AB}$ et $\overrightarrow{AL} = \frac{4}{3} \overrightarrow{AC}$. La parallèle à (AC) passant par J coupe la droite (BC) en K.
- a. Exprimer I comme barycentre des points A et B; et L comme barycentre des points A et C.
- **b.** Exprimer K comme barycentre des points B et C.
- **C.** Démontrer que les points I, K et L sont alignés et déterminer le réel \propto tel que $\overrightarrow{IK} = \propto \overrightarrow{IL}$.

