

Algorithm Analysis 02

Computer Science Department Eastern Washington University Yun Tian (Tony) Ph.D.

Recall Last Lecture

- Two approaches to analyze the algorithm
- Better to use theoretical analysis
- Seven functions
- Growth Rate Function(GRF)
 - Measures how much(quickly) an algorithm
 becomes slower when we increase the input size.

Today Class

- Big-Oh Notation and Why use it
- Rules about Big-Oh notation
- Analysis Case Study

Counting Primitive Operations

```
public String toString() {
                                                  N+1
        String result = ""; (1) + (1)
        Node cur;(1)
        for( cur = this.head.next; cur!= this.head; cur = cur.next) {
                results += cur.data + "\n"; //(2N)
        return result; //(1)
}//if the size of this list is N
```

Total 4N + 6. Here, f(n) = 4N + 6 is the growth rate function.

Estimating Running Time

- Algorithm toString() executes 4n + 6 primitive operations in the worst case. Define:
 - a =Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- Let T(n) be worst-case time of *toString*. Then $a (4n + 6) \le T(n) \le b(4n + 6)$
- Hence, the running time T(n) is bounded by two linear functions

Estimating Running Time

- Changing the hardware/ software environment
 - Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm to String.
- In other words, even though you move your toString() from a slow computer to a fast computer, the growth rate function is still a straight line.

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n ²	~ c n ² + 2c n	4c n ²	16c n ²
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples when problem size doubles

CSCD 300-01 Data Structures

Why Growth Rate Matters

insertion sort is

 $n^2/4$

merge sort is

2 n lg n

sort a million items?

insertion sort takes

roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Growth Rate Function

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n₀ such that

$$f(n) \le cg(n)$$
 for $n \ge n_0$

- Example: 2n + 10 is O(n)
 - $-2n+10 \le cn$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Notation

- Example: the function
 n² is not O(n)
 - $n^2 \le cn$
 - $-n \leq c$
 - The above inequality cannot be satisfied since c must be a constant.

More Big-Oh Examples

• 7n - 2

```
7n-2 is O(n)
need c > 0 and n_0 \ge 1 such that 7n-2 \le c \cdot n for n \ge n_0
this is true for c = 7 and n_0 = 1
```

• $3n^3 + 20n^2 + 5$

```
3n^3 + 20n^2 + 5 is O(n^3)
need c > 0 and n_0 \ge 1 such that 3n^3 + 20n^2 + 5 \le c \cdot n^3 for n \ge n_0
this is true for c = 4 and n_0 = 21
```


More Big-Oh Examples

• 3 log n + 5

```
3 \log n + 5 is O(\log n)
need c > 0 and n_0 \ge 1 such that 3 \log n + 5 \le c \cdot \log n for n \ge n_0
this is true for c = 8 and n_0 = 2
```

 The big-Oh notation allows us to say that a function f(n) is "less than or equal to" another function g(n) up to a constant factor and in the asymptotic sense as n grows towards infinity.

Big-Oh and Growth Rate

• The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n).

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - 1. Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of O(2n) OR $O(n^2)$
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big-Oh notation.
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size.
 - –We express this function with big-Oh notation.

Counting Primitive Operations

```
public String toString() {
                                                  N+1
        String result = ""; (1) + (1)
        Node cur;(1)
        for( cur = this.head.next; cur!= this.head; cur = cur.next) {
                results += cur.data + "\n"; //(2N)
        return result; //(1)
}//if the size of this list is N
```

Total 4N + 6. Here, f(n) = 4N + 6 is the growth rate function.

Asymptotic Algorithm Analysis

Example

- We determine that algorithm toString() executes at most 4n + 6 primitive operations
- -f(n) = 4n + 6 and g(n) = n, because f(n) < c*g(n) when c = 5 and n > 6.
- We say that algorithm toString() "runs in O(n) time".
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations sometimes.

Math you need to Review

- Summations, 1+2+3+...+n=n(1+n)/2;
- Geometric Sums:

$$1 + a + a^2 + a^3 + ... + a^n = (a^{n+1} - 1) / (a-1)$$

Logarithms and Exponents

$$log_b a = log_x a / log_x b$$

properties of exponentials:

properties of logarithms:

 $log_b(xy) = log_bx + log_by$

$$a^{(b+c)} = a^b a^c$$

 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Proof techniques

Take Home Summary

- Big-Oh notation
- Rules of Big-Oh notation
- Growth Rate Function(GRF) with Big-Oh

Next Class

- Asymptotic Algorithm Analysis using Big-Ohnotation
 - Analysis Case Studies