1. Закон распределения дискретной случайной величины задан таблицей:

X_i	-2	0	2	7
P_i	0.1	0.5		0.2

Найти математическое ожидание E(X) и дисперсию D(X). Найти вероятность $P(|X - E(X)| \le \sigma_X)$.

	Α	В	С	D	Е	
1	X_i	-2	0	2	7	
2	P_i	0,1	0,5	0,2	0,2	D2=1-CYMM(C2;B2;E2)

$$E_x = -2*0.1 + 0.5*0 + 2*0.2 + 7*0.2 = 1.6$$

$$D_x = E_{x^2} - (E_x)^2 = 4*0,1 + 4*0,2 + 49*0,2-1,6 = 8,44$$

$$\sigma_{\rm x} = \sqrt{D_{\rm x}} = \sqrt{8.44}$$

$$x \le -2 == 0$$

 $-2 < x \le 0 == 0.1$
 $0 < x \le 2 == 0.6$
 $2 < x \le 7 == 0.7$
 $x > 7 == 1$

$$E_x$$
- σ = -1,305168 E_x + σ = 4,505168

$$P(|X-E_x| \le \sigma_x) = P(E_x-\sigma_x \le x \le E_x + \sigma_x) = (E_x + \sigma_x) - (E_x-\sigma_x) = 0.7$$

2. Дана функция распределения вероятностей случайной величины Х:

$$F(x) = \begin{cases} 0, & ecnu & x < 1, \\ \frac{2x^2 - 3x + 1}{10}, & ecnu & 1 \le x \le 3, \\ 1, & ecnu & x > 3. \end{cases}$$

Найти плотность распределения вероятностей, математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины X. Найти вероятность попадания X в интервал (-2; 2).

$$F(x) = \int_{1}^{x} \frac{2x^{2}-3x+1}{10} D_{x} = \frac{4x-3}{10}$$

$$\frac{2x^2 - 3x + 1}{10}' = \left(-3 * \frac{x}{10}\right)' + \left(\frac{x^2}{5}\right)' + \frac{1}{10}' = \frac{2x}{5} - \frac{3}{10}$$

$$E_x = \int_1^3 \frac{2x}{5} - \frac{3}{10} = \frac{34}{15} = 2,266667$$

$$D_x = \int_1^3 \frac{2x}{5} - \frac{3}{10} - E_x = 0,26222222...$$

$$\sigma_{\rm x} = \sqrt{D_{\rm x}} = \sqrt{0.26222222} = 0.5120764$$

$$P(-2 < x < 2) = P(-2 < x \le 2) + P(2) = F(2) - F(-2) - 1 = \frac{3}{10}$$

3. Для случайных величин X, Y даны их математические ожидания и дисперсии E(X) = E(Y) = 3, D(X) = D(Y) = 10, а также коэффициент корреляции 0, 6. Найдите математическое ожидание $E[(X + Y)^2]$.

$$E[(X + Y)^{2}] = D(X + Y) + E^{2}(X + Y) = 2cov(X, Y) + D(X) + D(Y) + (E(X) + E(Y))^{2}$$

$$E[(X + Y)^{2}] = 2*10*10*0,6 + 10 + 10 + (3 + 3)^{2} = 176$$

4. Случайные величины X_1, \ldots, X_{15} распределены по геометрическому закону с одинаковым математическим ожиданием, равным 3. Найдите математическое ожидание $E(X_1^2 + \ldots + X_{15}^2)$.

$$p = \frac{1}{3}$$

$$E_x = \frac{1}{p} = 3$$

$$D_x = \frac{q}{p^2} = \frac{\frac{2}{3}}{\frac{1}{9}} = 6$$

$$E(x_1^2 + x_2^2 + ... + x_{15}^2) = 15E(x^2) = 15(D_x + E_x^2) = 225$$

5. Математические ожидания и дисперсии независимых нормальных случайных величин X, Y, Z, U равны 1. Найдите вероятность P(X + Y + Z - U < 0).

$$X + Y + Z - U = W$$

$$E_W = E_X + E_Y + E_Z - E_U = 1 + 1 + 1 - 1 = 2$$

$$D_W = D_x + D_v + D_z + D_u = 1 + 1 + 1 + 1 = 4$$

$$F_{0.1}(-1) = 1$$
; $F_{0.1}(1) = 0.8413$

$$P_{(W < 0)} = F_{0.1}(-1) = 1 - 0.8413 = 0.1587$$

Вариант

<mark>Номер задачи</mark>	Ответы
Задача_1	$E_x = 1.6$ $D_x = 8.44$ $P(X-E_x \le \sigma_x) = 0.7$
Задача_2	$F(x) = \frac{4x-3}{10}$ $E_x = 2,266667$ $D_x = 0,26222222$ $\sigma_x = 0,5120764$ $P(-2 < x < 2) = \frac{3}{10}$
Задача_3	$E[(X+Y)^2] = 176$
Задача_4	$E(x_1^2 + x_2^2 + \dots + x_{15}^2) = 225$
Задача_5	$E_W = 2$ $D_W = 4$ $P = 0,1587$