Lecture 6. Wavelets and Multiresolution

Spectral Wavelets

Juno Kim

Department of Mathematics & Statistics Seoul National University

Manifold Learning, Spring 2022

Table of Contents

- 1 Classical Wavelets

- 4 Diffusion Wavelets

Classical Wavelets

000000

Spectral Wavelets

Figure: Wavelets at different scales.

■ Wavelet theory is an analogue of Fourier theory using wavelet functions which are localized in time/space, generated from a single wavelet ψ by translations and dilations.

Classical Wavelets

- For any signal $f \in L^2(\mathbb{R})$, define the wavelet coefficients
 - $W[f](s,a) := \langle f, \psi_{s,a} \rangle, \quad \psi_{s,a}(t) := \frac{1}{s} \psi\left(\frac{t-a}{s}\right)$

Spectral Wavelets

 \blacksquare If ψ satisfies the admissibility condition

$$\int_0^\infty \frac{|\hat{\psi}(\omega)|^2}{\omega}d\omega = c_\psi < \infty$$

we can retrieve f from its transform via the inversion law:

$$f(t) = \frac{1}{c_{sh}} \int_{0}^{\infty} \int_{-\infty}^{\infty} W[f](s, a) \psi_{s, a}(t) \frac{da \, ds}{s}$$

■ In this case $\hat{\psi}(0) = \int \psi = 0$ and $\int f = 0$

- Assume ψ is real & even
- Define the *continuous* wavelet transform (CWT) operator:

$$T_s f(a) := W[f](s,a)$$

■ Then $T_s f = \psi_{s,0} * f$, $\psi_{s,a} = T_s \delta_a$ and

$$T_{s}f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{\psi}(s\omega) \hat{f}(\omega) d\omega$$

- T_s acts on the Fourier transform by multiplying the scaled band-pass filter $\hat{\psi}(s\omega)$. In this expression, the scale factor only appears in the frequency domain.
- The discrete WT is given by convolution with the family $\psi_{i,k}(t) = \alpha^{-j/2} \psi \left(\alpha^{-j} t - \beta k \right), j, k \in \mathbb{Z}$

Exercise. Show the formal inversion law and verify the above properties.

Examples

Classical Wavelets

000000

- Haar wavelet: $\psi(t) = 1_{[0,1/2)}(t) 1_{[1/2,1)}(t)$
- sinc wavelet: $\psi(t) = (\sin(2\pi t) \sin(\pi t))/\pi t$
- 2D Mexican hat: $\psi(t) = \frac{1}{\pi \sigma^4} \left(1 \frac{x^2 + y^2}{2\sigma^2} \right) e^{-\frac{x^2 + y^2}{2\sigma^2}}$
- Daubechies family: continuous, orthogonal, compact support

Classical Wavelets

Spectral Wavelets

Figure: Comparison of Fourier and wavelet bases.

- While Fourier modes are globally distributed, wavelets are localized (translation a) in time/space (decay of ψ) and frequency (decay of $\hat{\psi}$).
- Wavelets allow more efficient representations of signals whose primary information lies in localized singularities, such as edges in images or step discontinuities in time series.

- 2 Multiresolution
- 4 Diffusion Wavelets

FFT

Recall the 2-point Fast Fourier Transform. The discrete transform of size N input x_n is computed in $O(N \log N)$ time as:

$$DFT[N; x_n](k) := \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}nk}$$

$$= \sum_{n=0}^{N/2-1} x_{2n} e^{-\frac{2\pi i}{N/2}nk} + e^{-\frac{2\pi i}{N}k} \sum_{n=0}^{N/2-1} x_{2n+1} e^{-\frac{2\pi i}{N/2}nk}$$

$$= DFT[N/2; x_{2n}]_k + e^{-\frac{2\pi i}{N}k} DFT[N/2; x_{2n+1}]_k \quad k < N/2$$

$$= (") - e^{-\frac{2\pi i}{N}k} (") \quad k \ge N/2$$

The DFT is recursively derived from the even/odd DFTs of half length – the information at half resolution (sampling) is reused.

■ The analogous Fast Wavelet Transform is intimately related to multiresolution analysis – a decomposition of the signal space into wavelet spaces of discretized scale

Spectral Wavelets

- An MRA of $L^2(\mathbb{R})$ is an increasing sequence of closed linear subspaces V_i $(j \in \mathbb{Z})$ such that:
- 1. $v(x) \in V_i \Leftrightarrow v(2x) \in V_{i+1}$
- 2. $v(x) \in V_i \Leftrightarrow v(x+1) \in V_i$
- 3. $\overline{\cup V_i} = L^2(\mathbb{R}), \ \cap V_i = 0$
- 4. $\exists \phi \in V_0$ (father wavelet) s.t. $\{\phi(x-k) : k \in \mathbb{Z}\}$ is a frame for V_0 and $\hat{\phi}(0) = 1$

A frame/Riesz basis is a generalization of orthonormal basis: a spanning set e_k of V satisfying $m ||x||^2 < \sum |\langle x, e_k \rangle|^2 < M ||x||^2 \ \forall x \in V$.

- The projection operator $\Pi[V_i]$ provides approximations at resolution 2^j so that $\lim_{i\to\infty} \Pi[V_i]f=f$
- Let:

Classical Wavelets

$$V_{j+1} = V_j \bigoplus^{\perp} W_j$$

Spectral Wavelets

The detail space W_i contains the information required to move to higher resolutions, $\bigoplus_{i}^{\perp} W_{i} = L^{2}(\mathbb{R})$

- ψ is a mother wavelet corresponding to ϕ if $\{\psi(x-k):$ $k \in \mathbb{Z}$ is a frame for W_0
- Wavelet frames: $V_i = \langle \phi_{i,k}(t) := 2^{j/2} \phi(2^j t k) : k \in \mathbb{Z} \rangle$ and $W_i = \langle \psi_{i,k} : k \in \mathbb{Z} \rangle$
- The Haar wavelet has father $1_{[0,1]}(t)$

Classical Wavelets

Figure: (1) The sine function at different resolutions of the Haar basis. (2) Mother-father pairs for the Daubechies family.

- Some wavelets do not admit a $\phi \psi$ pair and has no MRA
- Orthonormality of $\phi_{i,k}$ and $\psi_{i,k}$ is generally too strict and biorthogonal wavelets in dual MRA sequences are used

Prop.

- refinement equation: $\phi(x) = \sum_{k} 2h_k \phi(2x k)$ for a normalized 'scaling filter' h
- In the spectral domain, $\hat{\phi}(\omega) = DtFT[h](\omega/2) \cdot \hat{\phi}(\omega/2)$
- $V_i = \langle \phi_{i,k}(t) := 2^{j/2} \phi(2^j t k) | k \in \mathbb{Z} \rangle$
- $\phi_{i,\ell} = \sum_{k} \sqrt{2} h_k \phi_{i+1,k+2\ell}$

Similarly,
$$\psi(x) = \sum_k 2g_k \phi(2x - k)$$
 and $\psi_{j,\ell} = \sum_k \sqrt{2}g_k \phi_{j+1,k+2\ell}$.

These structural equations form the basis of fast information extraction (halving resolution) and reconstruction (doubling resolution) without the need to evaluate integrals at every step.

$$\begin{split} &\Pi[V_{j+1}]f = \sum_{k} \lambda_{j+1,k} \phi_{j+1,k} \\ &= \Pi[V_j]f + \Pi[W_j]f = \sum_{k} \lambda_{j,k} \phi_{j,k} + \sum_{k} \gamma_{j,k} \psi_{j,k} \end{split}$$

Using the structure equations, we derive:

Theorem (Fast Wavelet Transform)

The DWT $\gamma_{i,k}$ at resolution j can be retrieved from j+1 via the recursive relations

$$\lambda_{j,\ell} = \langle \Pi[V_j]f, \phi_{j,\ell} \rangle = \sum_k \sqrt{2}h_k\lambda_{j+1,k+2\ell}$$
 and $\gamma_{j,\ell} = \langle \Pi[W_j]f, \psi_{j,\ell} \rangle = \sum_k \sqrt{2}g_k\lambda_{j+1,k+2\ell}$

Exercise. Verity the Proposition and FWT. Derive the Inverse FWT.

Table of Contents

- 3 Spectral Wavelets

- Let \mathcal{M}^t be a compact oriented Riemannian manifold with Laplace-Beltrami operator $\Delta_{\mathcal{M}}$
- Suppose $K_s(\cdot, \cdot)$ is a smooth kernel in $C^{\infty}(\mathbb{R}^+ \times \mathcal{M} \times \mathcal{M})$ with associated $L^2(\mathcal{M})$ operator

$$T_s f(x) = \int_{\mathcal{M}} K_s(x, y) f(y) \operatorname{vol}_{\mathcal{M}}(y)$$

• K_s is a manifold wavelet if $T_s 1 = T_s^* 1 = 0$ and

$$\int_0^\infty \|T_s f\|^2 \frac{ds}{s} = c_K \|(I - \Pi_1)f\|^2 \quad \forall f \in L^2(\mathcal{M})$$

where Π_1 is the projection onto the constant functions and $c_{\kappa} > 0$.

Define the Schwartz space (algebra)

$$\mathcal{S}(\mathbb{R}^n) := \{ g \in C^{\infty}(\mathbb{R}^n, \mathbb{C}) : |||x|^{\alpha} D^{\beta} g||_{\infty} < \infty \ \forall \alpha, \beta \in \mathbb{N}^n \}$$

Spectral Wavelets

- $S(\mathbb{R}^n)$ consists of functions of rapid decay e.g. $|x|^{\alpha}e^{-c||x||^2}$
- lacksquare $C_{0}^{\infty} \subset \mathcal{S} \stackrel{dense}{\subset} L^{p} \ (p < \infty)$

Lemma

Let T be a positive self-adjoint operator on Hilbert space H. For $g \in s \cdot \mathcal{S}(\mathbb{R}^+)$ and $c = \int_0^\infty |g(s)|^2 ds/s$,

$$\lim_{\epsilon \to 0^+, N \to \infty} \int_{\epsilon}^{N} |g(sT)|^2 \frac{ds}{s} = c(I_H - \Pi)$$

in the strong operator topology, where Π is projection onto ker T.

$\mathsf{Theorem}$

For $g \in s \cdot S(\mathbb{R}^+)$, let K_s be the kernel (spectral wavelet) associated to $T_s = g(-s^2\Delta_M)$. Then K_s is a manifold wavelet.

Proof

■ Denote the harmonics by (λ_k, u_k) , $\lambda_0 = 0$, $u_0 = \text{vol}(\mathcal{M})^{-1/2}$

Spectral Wavelets

- u_k are orthogonal w.r.t. $\langle f, g \rangle_{\mathcal{M}} = \int fg \operatorname{vol}_{\mathcal{M}}$
- Writing $K_{\sqrt{s}}(x,y) = \sum_{k \in A} a_{k\ell} u_k(x) u_{\ell}(y)$,

$$g(-s\Delta_{\mathcal{M}})u_j = \int_{\mathcal{M}} K_{\sqrt{s}}(\cdot,y)u_j(y)\operatorname{vol}_{\mathcal{M}}(y) = \sum_{k,\ell} a_{k\ell}u_k\delta_{j\ell}$$

yields
$$a_{k\ell} = \delta_{k\ell} g(s\lambda_k)$$

- from $\langle u_k, 1 \rangle = 0$ (k > 1) and g(0) = 0
- The 2nd condition follows from

$$\int_0^\infty \|g(-s\Delta_{\mathcal{M}})f\|^2 \frac{ds}{s} = \Big\langle \int_0^\infty |g|^2 (-s\Delta_{\mathcal{M}})f\frac{ds}{s}, f \Big\rangle_{\mathcal{M}},$$

applying the Lemma and substituting s^2 .

■ In the language of distributions, $K_s(x, y) = T_s \delta_v(x) =$ $g(-s^2\Delta_M)\delta_V(x)$

■ Analogously on \mathbb{R} , the wavelet $\psi \stackrel{t}{=} g(-d^2/dx^2)\delta$ defined as the inverse CFT of $g(\omega^2)$ is admissible

Spectral Wavelets

 Spectral wavelets implement scaling in the spectral domain, same as $\widehat{T_s f}(\omega) = \widehat{\psi}(s\omega)\widehat{f}(\omega)$ on \mathbb{R} :

Proposition

Let the manifold FT of $f \in L^2(\mathbb{R})$ be $\hat{f}(k) = \langle f, u_k \rangle$. Then:

$$\widehat{T_s f}(k) = g(s^2 \lambda_k) \widehat{f}(k) \quad \forall s > 0, \ k = 0, 1, \cdots$$

Theorem (Inverse manifold WT)

Any $f \in (I - P_1)L^2(\mathcal{M})$ may be reconstructed from $T_s f$ via

$$\int_0^\infty T_s^* T_s f \frac{ds}{s} = c_K f$$

Spectral Wavelets

Proof

- Define $\mathcal{H} = (I P_1)L^2(\mathcal{M})$ and $\mathcal{K} = L^2(\mathbb{R}^+, \mathcal{H}, dt/t)$
- Let the bounded operator $U: \mathcal{H} \to \mathcal{K}$ be $Uf := (T_s f)_{s>0}$
- Check $U^*: \mathcal{K} \to \mathcal{H}$ is $U^*(h_s)(x) = \int_0^\infty T_s^* h_s(x) dt/t$
- $\|Uf\|_{\mathcal{K}} = c_K \|f\|_{\mathcal{H}}^2$ and U is a scaled isometry
- Thus $\langle U^*Uf, h \rangle_{\mathcal{H}} = \langle Uf, Uh \rangle_{\mathcal{K}} = c_{\mathcal{K}} \langle f, h \rangle_{\mathcal{H}}$ by polarization and $U^*U=c_K$.

Schwartz wavelets

g only needs moderate decay to yield the L^2 theory. However, imposing Schwartz-type conditions gives wavelets adapted to the study of other function spaces.

Spectral Wavelets

A manifold wavelet K_s on \mathcal{M}^t is a Schwartz (S-) wavelet if for any $X, Y \in \mathsf{PDO}(\mathcal{M}, \mathbb{R})$ with degree j, k resp. and $N \in \mathbb{N}_{\geq 0}$ there exists $C_{N,X,Y}$ such that:

$$s^{t+j+k}\left|\left(\frac{d^{\mathcal{M}}(x,y)}{s}\right)^{N}XY[K_{s}(x,y)]\right|\leq C_{N,X,Y}$$

for all s > 0, $x, y \in \mathcal{M}$.

$\mathsf{Theorem}$

1. The classical wavelet $K_s(x,y) = \frac{1}{s^n} \psi(\frac{x-y}{s})$ associated to $g(-s^2\Delta)$ on \mathbb{R}^n where $\hat{\psi}(\xi) = g(\|\xi\|^2)$ is an S-wavelet.

Spectral Wavelets

2. Spectral wavelets on compact manifolds are S-wavelets.

The following facilitates wavelet analysis of Hölder spaces.

Proposition

Let K_s be a S-wavelet on \mathcal{M} and let $f \in L^2(\mathcal{M})$. Then f is α -Hölder continuous iff:

$$\sup_{\mathcal{M}} |T_s f| \leq C s^{\alpha} \quad \forall s > 0$$

Exercise. Prove (1) of the Theorem.

Table of Contents

- 4 Diffusion Wavelets

Diffusion Operators

- Let $(\mathcal{M}, d^{\mathcal{M}})$ be a complete Riemannian manifold
- Let L be a nonnegative essentially self-adjoint C^{∞} (sub)elliptic order 2 PDO on \mathcal{M} with spectral decomposition $\int \lambda dE_{\lambda}$
- Its diffusion semigroup $(P_s)_{s>0}$ on $L^2(\mathcal{M})$ is:

$$P_s := e^{-sL} = \int_{-\infty}^{\infty} e^{-s\lambda} dE_{\lambda}$$

- Diffusion equation: $\frac{d}{ds} \circ P_s = LP_s$ (in the strong sense)
- Assume P_s is compact for s > 0, so $P = P_1$ has eigenfunctions $(\lambda_k, \xi_k)_{k>0}$

Lemma

- (semigroup) $P_0 = I$ and $P_s P_t = P_{s+t}$
- (contraction) $||P_s||_{L^2(\mathcal{M})} \leq 1$
- (strong continuity) For $f \in L^2(\mathcal{M})$, $s \mapsto P_s f$ is continuous

Spectral Wavelets

• (self-adjointness) $\int_{\mathcal{M}} (P_s f) g \operatorname{vol}_{\mathcal{M}} = \int_{\mathcal{M}} f(P_s g) \operatorname{vol}_{\mathcal{M}}$

$\mathsf{Theorem}$

The diffusion semigroup $(P_s)_{s>0}$ has an associated symmetric heat kernel $(H_s)_{s>0}$ which satisfies the Chapman-Kolmogorov equation:

$$H_{t+s}(x,y) = \int_{\mathcal{M}} H_t(x,w) H_s(w,y) \operatorname{vol}_{\mathcal{M}}(w)$$

Exercise. Show the Lemma. Verify that $K_s(x,y) = \sum_k \lambda_k^s \xi_k(x) \xi_k(y)$.

Classical Wavelets

Spectral Wavelets

Figure: Brownian motion with positive drift and diffusion coefficient.

- Heat diffusion governed by the Laplacian
- Random walks induced by symmetric Markov chains
- \blacksquare p.d.f. of Brownian motion B_t , solutions of the SDE $dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$
- Time evolution of the quantum wavefunction via the Schrödinger equation

Eigenmap

■ The diffusion metric in Lec. 3 has the more general form

$$D_s(x,y)^2 = \sum_k \lambda_k^s (\xi_k(x) - \xi_k(y))^2 = \|P_{s/2}\delta_x - P_{s/2}\delta_y\|_{L^2(\mathcal{M})}^2$$

Spectral Wavelets

i.e. it measures the L^2 -embedded distance between diffused point sources.

■ By defining a high-pass filter $H^{\epsilon} = \{k : \lambda_k \geq \epsilon\}$, the Eigenmap algorithm produces the approximate isometry

$$\Gamma_{s}^{\epsilon}: (\mathcal{M}, D_{s}) \to (\mathbb{R}^{|H^{\epsilon}|}, \|\cdot\|_{euc})$$

$$x \mapsto (\lambda_{k}^{s/2} \xi_{k}(x) : k \in H^{\epsilon})$$

Diffusion MRA

Classical Wavelets

Figure: Localized wavelets on the dumbell manifold.

The classical MRA structure of wavelet pairs does not exist on manifolds. Coifman, Maggioni (2006) construct an MRA of $L^2(\mathcal{M})$ based on the time scaling inherent in diffusion processes.

ldea

■ In MRA, $V_i = \langle \phi_{i,k} \rangle_{k \in \mathbb{Z}}$ was constructed from the base frame $V_0 = \langle \phi(t-k) \rangle_{k \in \mathbb{Z}}$ by applying the scaling semigroup R_s : $\nu(x) \mapsto s^{-1/2} \cdot \nu(s^{-1}x)$ at discrete $s_i = 2^{-j}$

Spectral Wavelets

- \blacksquare Similarly, we start with a frame Φ of local bump functions on 'dyadic cubes' at the finest level V_0
- The diffused family $P_{s_i}\Phi$ should form an approximate basis for a coarser (downsampled) space V_i
- Construct V_i by discarding eigenfunctions $\|P_{s_i}\xi_k\| = \lambda_k^{s_i} < \epsilon$ and taking only harmonics with high frequency content

Components

- precision $0 < \epsilon < 1$, discretized scales $(s_i)_{i>0} \nearrow \infty$
- bump function family Φ constructed on dyadic cubes
- compact diffusion semigroup $(P_s)_{s>0}$, eigenstates $(\lambda_k, \xi_k)_{k>0}$

Spectral Wavelets

■ high-pass band filters $H_i^{\epsilon} = \{k : \lambda_k^{s_j} \ge \epsilon\}$

Algorithm

- DMRA: $L^2(\mathcal{M}) = V_{-1} \supset V_0^{\epsilon} \supset V_1^{\epsilon} \supset \cdots$
- approximation spaces $V_i^{\epsilon} = \langle \xi_k : k \in H_i^{\epsilon} \rangle$
- detail spaces $V_i^{\epsilon} = V_{i+1}^{\epsilon} \bigoplus^{\perp} W_i^{\epsilon}$
- V_i is a compressed ϵ -approximation of $P_{s_i}\Phi$ or im P_{s_i}
- apply ϵ -variants of Gram-Schmidt Orthogonalization to $P_{s_i}\Phi$ and $(P_{s_{i+1}} - P_{s_i})\Phi$ to obtain localized wavelets for V_i^{ϵ} , W_i^{ϵ}