Al Meets Query Optimization

Luming Sun @ DW&BI

2022/9/19

Query Optimization Query optimizer is at the heart of the database systems

Query Optimization

```
SELECT rel users exams.user_username AS rel users exams_user_username,
         rel users exams.exam id AS rel users exams exam id,
         rel users exams.started at AS rel users exams started at,
         rel users exams finished at AS rel users exams finished at,
         answer 1.id AS answer 1 id,
         answer 1.text AS answer 1 text,
         answer 1.correct AS answer 1 correct.
         answer 1.fraction AS answer 1 fraction.
         answer_1.question_id AS answer_1_question_id,
         question_1.id AS question_1_id,
         question_1.title AS question_1_title,
         question_1.text AS question_1_text,
         question 1.file AS question 1 file,
         question_1.type AS question_1_type,
         question_1.source AS question_1_source,
         question 1.exam id AS question 1 exam id,
         exam_1.id AS exam_1_id,
         exam_1.title AS exam_1_title,
         exam_1.date_from AS exam_1_date_from,
         exam_1.date_to AS exam_1_date_to,
         exam 1.created AS exam 1 created,
         exam_1.created_by_ AS exam_1_created_by_,
         exam_1.duration AS exam_1_duration,
         exam_1.success_threshold AS exam_1_success_threshold,
         exam_1.published AS exam_1_published
FROM rel_users_exams LEFT OUTER
JOIN exam AS exam_1
    ON exam 1.id = rel users exams.exam id LEFT OUTER
JOIN question AS question_1
    ON exam_1.id = question_1.exam_id LEFT OUTER
JOIN answer AS answer_1
    ON question 1.id = answer 1.question id
WHERE rel_users_exams.user_username = %(param_1)s
        AND rel users exams.exam id = %(param 2)s
ORDER BY question_1.id;
```


Cost-based optimizer

• A cost-based optimizer introduces a plan enumeration algorithm to find a (sub)plan, and then uses a <u>cost model</u> to obtain the cost of that plan, and selects the plan with the lowest cost.

• In the cost model, cardinality, the number of tuples through an operator, plays a crucial role.

Why learning-based methods can help?

- Machine Learning can be used in:
 - Modeling data distribution & data correlation
 - Optimize function parameter
 - Markov decision process

Cardinality/Selectivity Estimation

What is Cardinality/Selectivity

```
: SELECT *
FROM WHERE > 15
AND = 'Male';
```

Card(Q) = 4
Sel(Q) = Card(Q) / #row
=
$$4/9 = 0.444$$

age	gender	GPA
21	Female	3.42
20	Male	2.58
18	Female	2.79
20	Female	3.98
24	Female	3.71
20	Male	3.50
21	Male	4.0
23	Female	3.66
22	Male	3.12

How Learned Selectivity Estimators Work

- Methodology 1: Query-driven
 - Key Idea: Model as a Regression problem

- Methodology 2: Data-driven
 - Key Idea: Model as a Joint Distribution Estimation problem

A_1	A ₂	•••	A _n	
				P(A ₁ , A ₁ ,, A _n)

Methodology 1: Query-Driven

Methodology 1: Query-Driven

Single table:

- LW-XGB [Dutt, A et all. VLDB 19]

 XGBoost+ Heuristic statistics
- LW-NN [Dutt, A et all. VLDB 19]

 NN+ Heuristic statistics
- QuickSel [Yongjoo, P et all. SIGMOD 20]
 Mixture Model

Methodology 1: Query-Driven

Multiple tables:

- LW-XGB [Dutt, A et all. VLDB 20] XGBoost + incremental data gen
- MSCN [Kipf, A et all. CIDR 19]
 Neural Network + Sampling

Query-Driven Shortcomings:

- Require large amount of training data
- Violate basic rule of selectivity estimation
 - - Monotonicity: $sel(1 < x < 2) \le sel(1 < x < 3)$
 - - Validity: sel(1 < x < 0) = 0
 - - Consistency: $sel(1 < x \le 2) + sel(2 < x < 3)$
 - = sel(1 < x < 3)

How Learned Selectivity Estimators Work

- Methodology 1: Query-driven
 - Key Idea: Model as a Regression problem

- Methodology 2: Data-driven
 - Key Idea: Model as a Joint Distribution Estimation problem

A_1	A ₂	 A _n	
			P(A ₁ , A ₁ ,, A _n)

Methodology 2: Data-Driven

Methodology 2: Data-Driven

- Naru [Yang, Z et all. VLDB 20] Auto-regressive Model
- **DeepDB** [Hilprecht, B et all. VLDB 20]

 Sum Product Network

 (Graphical Model)
- FACE [Wang, J et all. VLDB 2022]

 Normalizing Flow

Training gender **GPA** 3.42 21 Female 2.58 Male 18 2.79 Female 3.98 Female 24 3.71 Female 3.50 Male 4.0 Male 23 Female 3.66 22 3.12 Male Train P(age gender, GPA) Joint Distribution Estimation Model

Data-Driven Methods

Naru: Auto-regressive model

FACE: Normalizing flow

c_id	c_age	c_region
1 2 3 4	80 70 60 20	EUROPE EUROPE ASIA EUROPE
998 998 999 1000	20 20 25 30 70	ASIA EUROPE ASIA ASIA

(a) Example Table

P(c _{region} , c _{age})
0.3 (+) 0.7
(x) (x)
EUASIA 20 100 EUASIA 20 100

(c) Resulting SPN

c_age	c_region
80	EUROPE
70	EUROPE
60	ASIA
20	EUROPE
•••	
20	ASIA
25	EUROPE
30	ASIA
70	ASIA

(b) Learning with Row/Column Clustering

(d) Probability of European Customers younger than 30

DeepDB: Sum-product network

Shortcomings

- Heavy costs on model training and inference
- Violate basic rule of selectivity estimation
 - - Monotonicity: $sel(1 < x < 2) \le sel(1 < x < 3)$
 - - Validity: sel(1 < x < 0) = 0
 - - Consistency: $sel(1 < x \le 2) + sel(2 < x < 3)$
 - = sel(1 < x < 3)
 - - Stability: sel(1 < x < 2) = sel(1 < x < 2)

MOSE: A Monotonic Selectivity Estimator Using Learned CDF

Aim

Reliable, accurate and efficient learned selectivity estimator

Problem Settings

Multi-dimensional predicates on single table

Methodology

Query-based

Key observation

The joint cumulative distribution function (CDF) of the data in a table can be used to compute the selectivity for query range predicates

CDF to Selectivity

Multi-dimensional CDF:

Random variable $X = (X_1, X_2, \dots, X_d)$,

CDF:
$$F_X(x) = \Pr(X_1 \le x_1, X_2 \le x_2, \dots, X_d \le x_d)$$

CDF to selectivity

$$sel(p) = \sum_{\forall x_i \in \{l_i - 1, u_i\}} \left\{ \left(\prod_{i=1}^d s(i) \right) F_X(x) \right\}$$

$$sel(p) = F_X([u_1, u_2]) - F_X([u_1, l_2 - 1])$$
$$- F_X([l_1 - 1, u_2]) + F_X([l_1 - 1, l_2 - 1])$$

CDF Learner

Monotonic Lattice Regression Model

C: Lattice Node

Theta: Lattice Parameter

$$\hat{y} = F_X(x) = \sum_{j=1}^m \phi(x)_j \theta_j, \quad \sum_{j=1}^m \phi(x)_j C_j = x, \quad \sum_{j=1}^m \phi(x)_j = 1.$$

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2$$

=
$$\arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n \left(\left(\sum_{j=1}^m \phi(x)_{ij} \theta_j \right) - y_i \right)^2.$$

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2, s.t. A\theta^T \le 0.$$

Monotonic Constrain

C: Lattice Node

Theta: Lattice Parameter

$$\theta = \arg\min_{\theta \in \mathbb{R}^m} \sum_{i=1}^n (\hat{y}_i - y_i)^2, s.t. A\theta^T \le 0.$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \\ \theta_5 \\ \theta_6 \\ \theta_7 \\ \theta_8 \\ \theta_9 \end{bmatrix}$$

Attribute-Aware Calibration

$$\theta, \alpha = \arg\min_{\theta, \alpha} \sum_{i=1}^{n} \left(\left(\sum_{j=1}^{m} \phi(g(x, \alpha))_{ij} \theta_{j} \right) - y_{i} \right)^{2} + \lambda R(\theta)$$

$$s.t. \ A\theta^{T} \leq 0 \ and \ B\alpha^{T} \leq 0 \ ,$$

Cell-Wise Regularizer

Graph Laplacian:

flatter function

Penalizes:

$$(A-C)^2 + (A-B)^2 + (C-D)^2 + (B-D)^2$$

= $\Delta_{AC}^2 + \Delta_{AB}^2 + \Delta_{CD}^2 + \Delta_{BD}^2$

$$R(\theta) = \sum_{i=1}^{d} \sum_{\substack{C_r, C_s \text{ such that } \\ C_r \text{ and } C_s \text{ adjacent on dimension } i}} H_i(C_r, C_s)(\theta_r - \theta_s)^2$$

Lattice Ensemble

ACTIVE DATA GENERATOR

- Challenges:
 - Infinite query space (NOT pool based active learning)
 - Regression problem (NO model uncertainty)
- Solution
 - Picking the lattice cells that are most valuable or necessary to optimize
 - Two factors: (1) cell accuracy; (2) cell density
 - Weighted lattice sampling

Weighted Lattice Sampling

Algorithm 2: Active Data Generator

```
input : X_L is the initial labeled data,
             \theta is model weight of CDF learner,
             \mathcal{T} is the cost threshold of data collection,
             \epsilon is the cost function to label a data instance.
             B is the number of data selected in one batch,
             \mathcal{P} is a function to calculate cell sampling weight
   output: X is the labeled training data
1 X \leftarrow X_L // total training set
2 t \leftarrow 0 // initialize total cost
3 while t < \mathcal{T} do
        \theta \leftarrow \text{TrainModelWith}(X)
        Error \leftarrow \text{Evaluate}(\theta, X)
        P_{TopError} \leftarrow \text{Top}(X, Error, K)
       \mathcal{P}_c \leftarrow X, P_{TopError}
        cells \leftarrow WeightedSampling(\mathcal{P}_c, B)
        X_A \leftarrow \texttt{RandomPointGenerate}(cells)
        X_{AL} \leftarrow \text{ExecuteQuery}(X_A)
        t = t + \epsilon(X_A)
        X = X \cup X_{AL}
13 return X
```

$$\mathcal{P}_c = \frac{1 + \omega k_c}{1 + M_c} \;,$$

 M_c : points in cell C

 k_c : k points of C are in the TOP-K worst estimation

Accuracy

TABLE 2: Selectivity estimation accuracy on DMV

Estimator	Training data size					
Estiliator	200	400	600	800	1000	
LWM	0.03474	0.02576	0.01817	0.01758	0.01607	
NN	0.04787	0.03082	0.02153	0.01803	0.01577	
QuickSel	0.02151	0.01421	0.01296	0.01125	0.01027	
MOSE	0.00674	0.00543	0.00463	0.00429	0.00393	

TABLE 3: Selectivity estimation accuracy on Forest

Estimator	Range predicates dimension				
Estillator	2D	4D	6D	8D	10D
AVI	0.23020	0.06069	0.01060	0.00240	0.000582
Sampling	0.00642	0.01164	0.00452	0.00946	0.000718
Naru	0.20113	0.59320	0.56103	0.10131	0.308497
LWM	0.03125	0.01573	0.00729	0.00229	0.000574
NN	0.00638	0.01226	0.00943	0.00240	0.000582
QuickSel	0.00470	0.00773	0.00382	0.83949	0.000590
MOSE	0.00419	0.00544	0.00274	0.00223	0.000555

Ablation Experiments

TABLE 4: Combination of calibration and regularizer

Combination method	RMSE
Laplacian regularizer + Uniform calibration	0.00713
Laplacian regularizer + A-A calibration	0.00540
C-W regularizer + Uniform calibration	0.00530
C-W regularizer + A-A calibration	0.00393

Active Learning

Model Size

Takeaways

- Learning-based methods can be accurate, efficient, lightweight
- But
 - Have longer-training time
 - May fail to catch up fast data change
 - Hard to trust
 - Are not practical in production

Cost Estimation

Learning-Based Cost Estimation

Cost model in PostgreSQL

- 1. $seq_page_cost(c_s)$: the cost of a sequential disk page fetch
- 2. $random_page_cost$ (c_r): the cost of fetching a disk page randomly
- 3. cpu_tuple_cost (c_t): the cost of processing a tuple
- 4. $cpu_index_tuple_cost(c_i)$: the cost of processing an index entry during an index scan
- 5. $cpu_operator_cost(c_o)$: the cost of performing an operation

The cost of an operator, C_o is calculated as [8]:

$$C_o = n_s.c_s + n_r.c_r + n_t.c_t + n_i.c_i + n_o.c_o (2.1)$$

where

 n_s : number of disk pages fetched sequentially

 n_r : number of disk pages fetched randomly

 n_t : number of tuples processed

 n_i : number of index entries processed during an index scan

 n_o : number of operations performed

Plan-structured cost learner

Figure 3: A neural network for a simple join query

Plan-Structured Deep Neural Network Models for Query Performance Prediction (VLDB 2019)

Plan-structured cost learner

Figure 2: Architecture of learning-based cost estimator

An End-to-End Learning-based Cost Estimator (VLDB 2019)

Neo: A Learned Query Optimizer (VLDB 2019)

Takeaways

- Learning-based cost estimation are accurate but not so efficient.
- Some learning-based cost estimation methods are used for scheduling not query optimization.
- Learning-based cost estimation (especially tree-structured) are not so practical in traditional cost-based query optimization.

Plan enumeration

Query Plan Optimization

Query Plan Optimization

Figure 2: The ReJOIN Framework

Figure 4: Learning from demonstration

Figure 5: Cost Model Bootstrapping

- Krishnan, Sanjay, et al. "Learning to optimize join gueries with deep reinforcement learning." arXiv preprint arXiv:1808.03196 (2018).
- Marcus, Ryan, and Olga Papaemmanouil. "Deep reinforcement learning for join order enumeration." Proceedings of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management (2018): 3.
- Ortiz, Jennifer, et al. "Learning state representations for query optimization with deep reinforcement learning." arXiv preprint arXiv:1803.08604 (2018).
- Marcus, Ryan and Olga Papaemmanouil. "Towards a hands-free guery optimizer through deep learning." (CIDR 2019).
- Marcus, Ryan, et al. "Neo: A learned guery optimizer." (VLDB 2019).

Shortcomings

- Long training time
- Inability to adjust to data and workload changes
- Tail catastrophe
- Black-box decisions
- Integration cost

Bao: Making Learned query Optimization Practical (SIGMOD 2021 Best Paper)


```
enable_hashjoin = false;
enable_mergejoin = false;
enable_nestloop = false;
enable_indexscan = false;
enable_seqscan = false;
enable_indexonlyscan = false;
```


Bao: Making Learned query Optimization Practical (SIGMOD 2021 Best Paper)

Figure 4: Vectorized query plan tree (vector tree)

Figure 5: Bao prediction model architecture

	PG	Bao worst	Bao best
Q			
q1	275.415884	12.206382	6.005776
q2	71.049927	198.310226	9.242487
q3	10.982070	290.048801	10.805816
q4	26.890862	26.966064	1.527303
q5	9.692364	9.354480	1.350012
q6	21.741243	19.851484	7.341236
q7	51.935738	51.321676	7.288905
q8	28.725613	15.981973	5.995388
q9	15.645138	16.394102	7.327004
q10	11.720967	9.688347	7.373339
q11	15.163100	7.686548	5.853226
q12	12.934380	9.379889	4.565600
q13	18.687008	11.803825	3.417922
q14	11.100027	14.864732	7.060695
q15	9.641760	8.258874	4.153027
q16	5.312640	7.992982	1.221813
q17	6.404161	17.702658	5.868285
q18	11.912653	20.336241	6.772051
q19	9.943220	33.939818	10.330661
q20	0.143906	0.679753	0.344254
q21	1.022706	1.292618	0.921263
q22	16.113360	51.231996	8.196555

Luming Sun, Tao Ji, Cuiping Li, Hong Chen SIGMOD 2022 Demo Track

System Architecture

Cost Learner Intervals

Contributions

- Practical
 - DeepO is integrated with real DBMS (PostgreSQL).
- Novel
 - DeepO adopts BNN-based Tree-LSTM network.
 - DeepO offers fine-grained query optimization.
- User-friendly
 - DeepO has a web UI for interactive operation.
- Effective
 - DeepO can optimize queries.

Takeaways

- Reinforcement learning is suitable for the task.
- Join order optimization (query plan optimization) is a very difficult task.
- Challenges and opportunities coexist, as do hardships and hopes.

Thanks!