Newtons Method Step

Denoting f'(x) as the first derivative of continuous function f(x), solving the problem of finding the extrema (i.e. roots) of f(x) is equivalent to solving the nonlinear equation

$$f'(x) = 0$$

If we have a current guess of x_n , we can approximate f'(x) near x_n using a first order Taylor expansion

$$f'(x) \approx f'(x_n) + f''(x_n)(x - x_n)$$

This linear approximation is just the tangent line to f'(x) at x_n . Using this representation, instead of solving for f'(x) = 0 directly, instead we solve for the root of the tangent line

$$0 = f'(x_n) + f''(x_n)(x_{n+1} - x_n)$$

which, rearranging, gives the Newton iteration formula

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x)}$$

Newtons Method Algorithm

Starting at some initial guess x_0 , calculate $F(x_0)$ and $H(x_0)$, then use these to determine the step

$$\delta x_1 = -\frac{1}{H(x_0)} F(x_0)$$

Adding this step to the x_0 , the next test point is found

$$x_1 = x_0 + \delta x_1$$

This process is repeated iteratively

$$x_{k+1} = x_k + \delta x_{k+1}$$

until $F(x_k)$ becomes sufficiently small or the step δx_{k+1} is sufficiently small.

$$|F(x_k)| < e_F$$
 or $|\delta x_{k+1}| < e_x$

This represents convergence upon a local minima (or maxima) or that the algorithm is stuck in a saddle point.

Backtracking

Becuase the basic Newton's method is not very successful in practical applications (unless we have a priori information of our solution location), the algorithm is altered to be more robust. Instead of unconditionally

accepting the full Newton's step, given we have no guaruntee that $f(x_{k+1}) < f(x_k)$, we iteratively backtrack the full step size searching until $f(x_{k+1}) < f(x_k)$ is satisfied. One implementation of this methodology is as follows

$$x_{k+1} = x_k + \left(\frac{1}{2}\right)^n \delta x_{k+1}$$

Starting at n = 0, we iteratively check if f has been decreased. If not, n is increased and the process is repeated a finite number of times to avoid termination.

Other techniques for controlling Newton's step size include scaling by a constant or performing an exact line search. These two extremes trade off number of iterations for complexity in terms of computational cost.

