The WACC Language Specification

Second Year Computing Laboratory
Department of Computing
Imperial College London

1 What is WACC?

WACC (pronounced "whack") is a simple variant on the While family of languages encountered in many program reasoning/verification courses (in particular in the Models of Computation course taught to our 2nd year undergraduates). It features all of the common language constructs you would expect of a While-like language, such as program variables, simple expressions, conditional branching, looping and no-ops. It also features a rich set of extra constructs, such as simple types, functions, arrays and basic tuple creation on the heap.

The WACC language is intended to help unify the material taught in our more theoretical courses (such as Models of Computation) with the material taught in our more practical courses (such as Compilers). The core of the language should be simple enough to reason about and the extensions should pose some interesting challenges and design choices for anyone implementing it.

2 WACC Language Syntax

We give the syntax of the WACC language in Backus-Naur Form (BNF) extended with some basic regular expression notation that simplifies the presentation:

- (x-y) stands for 'range', meaning any value from x to y inclusive;
- (x)? stands for 'optional', meaning that x can occur zero or one times;
- (x)+ stands for 'repeatable', meaning that x can occur one or more times;
- $(x)^*$ stands for 'optional and repeatable', meaning that x can occur zero or more times.

2.1 BNF

```
::= 'begin' \langle func \rangle^* \langle stat \rangle 'end'
\langle program \rangle
                                       ::= \langle type \rangle \langle ident \rangle '(' \langle param-list \rangle? ')' 'is' \langle stat \rangle 'end'
\langle func \rangle
                                       ::= \langle param \rangle \ (`, `\langle param \rangle)^*
\langle param-list \rangle
\langle param \rangle
                                       ::= \langle type \rangle \langle ident \rangle
\langle stat \rangle
                                       ::= 'skip'
                                                \langle type \rangle \langle ident \rangle '=' \langle assign-rhs \rangle
                                                \langle assign-lhs \rangle '=' \langle assign-rhs \rangle
                                                'read' \langle assign-lhs \rangle
                                                'free' \langle expr \rangle
                                                'return' \langle expr \rangle
                                                'exit' \langle expr \rangle
                                                'print' \langle expr \rangle
                                                'println' \langle expr \rangle
```

```
'if' \langle expr \rangle 'then' \langle stat \rangle 'else' \langle stat \rangle 'fi'
                                                'while' \langle expr \rangle 'do' \langle stat \rangle 'done'
                                                'begin' \langle stat \rangle 'end'
                                                \langle stat \rangle ';' \langle stat \rangle
\langle assign-lhs \rangle
                                       ::= \langle ident \rangle
                                                \langle array\text{-}elem \rangle
                                                \langle pair\text{-}elem \rangle
\langle assign-rhs \rangle
                                      ::= \langle expr \rangle
                                               \langle array\text{-}liter \rangle
                                                'newpair' '(' \langle expr \rangle ', ' \langle expr \rangle ')'
                                                \langle pair\text{-}elem \rangle
                                                'call' \langle ident \rangle '(' \langle arg\text{-}list \rangle? ')'
                                      ::= \langle expr \rangle \ (`, `\langle expr \rangle)^*
\langle arg\text{-}list \rangle
\langle \textit{pair-elem} \rangle
                                      ::= 'fst' \langle expr \rangle
                                        | 'snd' \langle expr \rangle
\langle type \rangle
                                       ::= \langle base-type \rangle
                                                \langle array-type \rangle
                                                \langle pair-type \rangle
                                       ::= 'int'
\langle base-type \rangle
                                               'bool'
                                                'char'
                                                'string'
                                      ::= \langle type \rangle '[' ']'
\langle array-type \rangle
                                      ::= 'pair' '(' \langle pair-elem-type \rangle ',' \langle pair-elem-type \rangle ')'
\langle pair-type \rangle
\langle pair-elem-type \rangle
                                      ::= \langle base-type \rangle
                                                \langle array\text{-}type \rangle
                                                'pair'
\langle expr \rangle
                                       ::= \langle int\text{-}liter \rangle
                                                \langle bool\text{-}liter \rangle
                                                \langle char	ext{-}liter \rangle
                                                \langle str\text{-}liter \rangle
                                                \langle pair-liter \rangle
                                                \langle ident \rangle
                                                \langle array\text{-}elem \rangle
                                                \langle unary\text{-}oper\rangle\ \langle expr\rangle
                                                \langle expr \rangle \langle binary-oper \rangle \langle expr \rangle
                                                "(' \langle expr \rangle ")"
\langle unary\text{-}oper \rangle
                                      ::= '!' | '-' | 'len' | 'ord' | 'chr'
                                      ::= \ `*' \mid `/' \mid `\%' \mid `+' \mid `-' \mid `>' \mid `>=' \mid `<' \mid `<=' \mid `==' \mid `!=' \mid `\&\&' \mid `| \mid `
\langle binary-oper \rangle
                                      ::= ( \ `\_' \ | \ `a'-`z' \ | \ `A'-`Z' \ ) \ ( \ `\_' \ | \ `a'-`z' \ | \ `A'-`Z' \ | \ `0'-`9' \ )*
\langle ident \rangle
                                      ::= \langle ident \rangle (`[' \langle expr \rangle `]') +
\langle array\text{-}elem \rangle
```

```
\langle int\text{-}liter \rangle
                              := \langle int\text{-}sign \rangle ? \langle digit \rangle +
                              ::= ('0'-'9')
\langle digit \rangle
                              ::= '+' | '-'
\langle int\text{-}sign \rangle
                              ::= 'true' | 'false'
\langle bool\text{-}liter \rangle
                              ::= ``, `\langle character \rangle ``, `
\langle char\text{-}liter \rangle
                              ::= '"' \langle character \rangle^* '"'
\langle str\text{-}liter \rangle
                              ::= any-ASCII-character-except-'\',-',',-'"'
\langle character \rangle
                                | ``` (escaped-char)
                              ::= '0' | 'b' | 't' | 'n' | 'f' | 'r' | '"' | ',' | '\'
\langle escaped-char \rangle
                              ::= '[' ( \langle expr \rangle (', '\langle expr \rangle)* )? ']'
\langle array\text{-}liter \rangle
                               ::= 'null'
\langle pair-liter \rangle
\langle comment \rangle
                               := '#' (any-character-except-EOL)* \langle EOL \rangle
```

NB: There is an additional constraint on the syntax of function definitions, that every execution path through the body of the function must end with either a 'return' statement or an 'exit' statement.

3 WACC Language Semantics

We now go through each of the language components and explain their behaviour and purpose in more detail.

3.1 Types

With the exception of nested pairs (see below), the WACC language is both statically and strongly typed.

- Static, in that, once declared, the type of a variable is fixed for the duration of the program.
- Strong, in that the compiler should not coerce between types.

There is also no explicit typecasting.

Basic Types: The basic types in the WACC language are:

- int: The Integer type. Integers in the WACC language can take any value from -2^{31} to $2^{31} 1$ inclusive.
- bool: The Boolean type (true or false).
- char: The Character type. The WACC language supports only the ASCII characters.
- string: The String type.

We write 'T' to denote an arbitrary type.

Arrays: As well as the basic types given above, the WACC language also supports the array type. We write 'T[]' to denote an array whose elements are of type 'T'. Note that 'T' can be of any type, including another array type, which allows for nested arrays. In the WACC language, arrays of characters can be treated like strings, but strings are not treated as arrays. Arrays are allocated on the heap. As well as their elements, each array also tracks its length, which is set when it is created.

Pairs: Pairs are allocated on the heap and contain two elements that can be of any type. We write 'pair(T_1 , T_2)' to donate a pair whose first element is of type ' T_1 ' and second element is of type ' T_2 ' (these need not be the same). Note that if either ' T_1 ' or ' T_2 ' is a pair type, we do not write the type of the sub-elements. For example, a pair whose first element is an integer and whose second element is a pair of characters is written as 'pair(int, pair)' and not as 'pair(int, pair(char, char))'. It is obvious that we lose some typing information in this way. Moreover, due to the loss of type information for nested pairs, it is possible to subtly coerce between types.

3.2 Program Scopes

The WACC language includes explicit scoping. Various statements introduce new program scopes, which have an effect on the visibility of program variables.

Whenever a new variable is declared it is added to the current program scope. When a program scope is exited, every variable created within that scope is destroyed. This means that variables are not accessible by statements outside the scope of their creation, although they are accessible in child scopes.

The main, or global scope is created at the start of a WACC program and is exited at the end of the program. Functions can only be created at the beginning of this global scope, but they may be called from within any child scope.

We will see that several other program constructs, including functions, while loops and conditional branches, introduce new program scopes during their execution.

3.3 Programs

A WACC program $\langle program \rangle$ consists of zero or more function definitions followed by the body of the main function. The whole program is written between the 'begin' and 'end' tokens, denoting the main or global program scope. A WACC file (extension .wacc) only ever contains a single WACC program.

3.4 Function Definitions

A function definition $\langle func \rangle$ consists of a return type, a function name and zero or more typed parameters followed by the function's body. A function's body, which is denoted by the 'is' and 'end' tokens, is executed in its own scope containing only the parameters passed into the function. As mentioned above, any execution path through the body of the function must end with either a 'return' statement, whose expression type must match the function's return type, or an 'exit' statement.

Functions can only be defined at the beginning of the global scope, before the body of the main function. Functions may, however, be both recursive and mutually recursive.

3.5 Statements

A statement $\langle stat \rangle$ consists of: a no-op, a variable definition, an assignment, an input read, a memory free, a function return, an exit call, a print command, a conditional branch, a while loop, a scope introduction or the sequential composition of two statements.

We discuss each of these in more detail below.

No-op Statements: A no-op statement 'skip' does not do anything. It is used where a statement is expected but we do not want to do anything. For example, in an if statement where we want to have an empty else clause.

Variable Declaration Statements: A variable declaration statement creates a new program variable in the current scope setting its static type and initial value. The statement must be given a valid WACC type $\langle type \rangle$, a variable name $\langle ident \rangle$ and an initial assignment value $\langle assign-rhs \rangle$.

Variable names must not clash with previously declared variable names and keywords within its scope. They can consist of any letter or underscore followed by any letters, underscores, or numbers.

The initial assignment to a variable follows all of the assignment restrictions discussed in detail in the assignment statement section below.

A variable must be declared before it is accessed.

Any attempt to access an undeclared variable results in semantic error.

Additionally, every use of a variable must match the type assigned to that variable when it was declared.

A variable can only be accessed within the scope of its declaration (or any child scope) and it is destroyed when exiting this scope. Variables must be unique within their scope, so a variable cannot be redefined within the same scope. Variables can, however, be redefined within a child scope. In this case the variable name may be assigned to a new type and value.

Once the child scope is exited we have two cases. If the variable has been defined in the parent scope, accessed and reassigned in the child scope, then it will maintain the new value upon exiting the child scope. However, if the variable has been redefined in the child scope, the previous value and type (before redefinition) will be mantained when exiting it.

Assignment Statements: An assignment statement updates its target (the left-hand side of the '=') with a new value (the right-hand side of the '='). The target of an assignment can be either a program variable, an array element or a pair element. The assignment value can be one of five possible types: an expression, an array literal, a function call, a pair constructor or a pair element.

- If the assignment value is an expression $\langle expr \rangle$ then the target and the expression must have the same type. The expression is then evaluated and the resulting value is copied into the target.
- If the assignment value is an array literal $\langle array\text{-liter}\rangle$ then the target and value arrays must have the same element type, but the length can be different. The value array is then allocated on the heap with each element initialised to the given value. After that, the reference of the value array is copied to the reference of the target array. For more details on array literals, see the expressions section.
- If the assignment value is a function call 'call' then the target and function return value must have the same type. The number and types of the function's arguments must also match the function's definition. A function is called by its name and its arguments are passed by value (for int, bool and char types) or by reference (for strings, arrays and pairs). When called, the function's body is executed in a new scope, not related to the current scope. The only declared variables are the function's parameters, whose types are set by the function definition and whose values are set by the function call's arguments. When the execution of the function body terminates, the function's return value is then copied into the assignment target.
- If the assignment value is pair constructor 'newpair' then the target must be of type 'pair(T₁, T₂)'. The pair constructor is passed two expressions that must match T₁ and T₂ respectively. A 'newpair' assignment allocates enough memory on the heap to store the pair structure and its elements. It then initialises each element of the pair using the evaluation of the first expression for the first element and the evaluation of the second expression for the second element. Pairs, in the WACC language, are always used by reference, so a reference to the pair is copied into the target, rather than the actual content of the pair.
- If the assignment value is a pair element $\langle pair\text{-}elem \rangle$ then the expression passed to the pair element must be of type 'pair', must not be a 'null' pair literal and the target must have the same type as the first (or second) element of the pair when using 'fst' (or 'snd') keyword. The pair expression is evaluated to obtain a reference to a pair and this is dereferenced to find the corresponding pair element, which is then copied into the target. Any attempt to dereference a 'null' reference should generate a runtime error.

Read Statements: A read statement 'read' is a special assignment statement that takes its value from the standard input and writes it to its argument. Just like a general assignment statement, a read statement can target a program variable, an array element or a pair element. However, the read statement can only handle character or integer input.

Expression	Behaviour	Example	Example
Type		Expression	Output
int	Output the integer converted to a decimal	10	"10"
	string.		
bool	Output "true" if the boolean is true and	false	"false"
	"false" otherwise.		
char	Output a single-character string.	'c'	"c"
string or	Output the characters of the array right after	"foo" or ['f','o','o']	"foo"
char[]	each other.		
Other Array	Output the memory address of the array in	[0, 1, 2, 3, 4, 5, 6,	0x22150
Types	the heap.	[7, 8, 9]	
pair	Output the memory address of the pair in	newpair $(10, 3)^1$	0x22150
	the heap.		

Table 1: The behaviour of the print statements for each type of expression.

The read statement determines how it will interpret the value from the standard input based on the type of the target. For example, if the target is a variable of type 'int' then it will convert the input string into an integer.

Memory Free Statements: A memory free statement 'free' is used to free the heap memory allocated for a pair or array and its immediate content. The statement is given an expression that must be of type 'pair(T_1 , T_2)' or 'T[]' (for some T, T_1 , T_2). The expression must evaluate to a valid reference to a pair or array, otherwise a segmentation fault will occur at runtime.

If the reference is valid, then the memory for each element of the pair/array is freed, so long as the element is not a reference to another pair or another array (i.e. free is not recursive). Then the memory that stores the pair/array itself is also freed.

Function Return Statements: A return statement can only be present in the body of a non-main function and is used to return a value from that function. The type of the expression given to the return statement must match the return type of the function. Once the return statement is executed, the function is immediately exited.

Exit Statements: An exit statement 'exit' takes one argument, an int. In case of compilation error, semantic errors generate the exit code 200 and syntactic errors generate exit code 100. For arguments x the generated exit code is x mod 256. For successful executions the exit code is 0 unless it is specified otherwise.

Print Statements: There are two types of print command in the WACC language. The 'print' command takes an expression and prints the result of its evaluation to the standard output. The 'println' command is similar, but additionally prints out a new line afterwards.

The output representation of each expression evaluation depends on the type of the expression. The behaviour of the print statements for each type of expression is shown in Table 1, along with some example cases.

Gap 3. Fill in Table 1 (3 marks)

¹This is not exactly an expression because it can only appear on the right hand side of an assignment. However, it gives the best example here.

Conditional Branch Statements: A conditional branch statement 'if' evaluates an expression and determines which program path to follow. The statement is given a condition expression, that must be of type 'bool', and two body statements, one for the 'then' branch and one for the 'else' branch.

If the condition evaluates to 'true', then the 'then' body statement is executed. Otherwise, the 'else' body statement is executed. Each of the program branches is executed in its own scope, which are denoted by the 'then' and 'else' tokens and the 'else' and 'fi' tokens, respectively.

While Loop Statements: A while loop statement has the following structure: 'while' $\langle expr \rangle$ 'do' $\langle stat \rangle$ 'done'. The expression represents the condition and the body is defined in between 'do' and 'done', indented right of the 'while' by one tab. The condition is checked repeatedly before every execution of the body. If it is evaluated to be 'true' the body statement is executed and the whole process is repeated again. If it is evaluated to be 'false' it does not execute the body and exits the statement.

Scoping Statements: A scoping statement introduces a new program scope, which is denoted by the 'begin' and 'end' tokens.

Sequential Composition: Sequential composition means that statements are executed in order, sequentially. A token ';' is needed to delimit the statements: After each statement, an ';' is added at the end, except for the last one in the sequence. Each statement is fully executed before the next one begins. The state is updated after each statement execution; therefore each statement uses the most recent values and variables.

3.6 Expressions

An expression $\langle expr \rangle$ consists of a literal (integer, boolean, character, string or pair), a variable, an array element, a unary expression, a binary expression or an expression enclosed by parenthesis.

We discuss the meaning of each of these expressions in more detail below.

The expressions of the WACC language have been chosen to be side-effect free. This means that the expression does not modify any pre-existing variable values in the state.

```
Gap 6. Define side-effect free expressions (1 mark)
```

Integer Literals: An integer literal $\langle int\text{-}liter \rangle$ consists of a sequence of decimal digits. Optionally, the sequence can be preceded by a '+' or a '-' symbol.

Boolean Literals: A boolean literal (bool-liter) is either 'true' or 'false'.

Character Literals: A character literal $\langle char\text{-}liter \rangle$ is a single ASCII character between two ''' symbols. A '\' can be used to escape the character that immediately follows the '\'. The meaning of each escaped character is shown in Table 2.

String Literals: A string literal $\langle str\text{-}liter \rangle$ is a sequence of characters between two '"' symbols. Each character in the string literal can be escaped in the same way as in character literal.

Pair Literals: The only pair literal $\langle pair-liter \rangle$ is 'null' which represents a reference that does not point to any pair. The 'null' pair literal can match the type of any pair. To see how pairs are created, read the 'newpair' case of the assignment statement.

Representation	ASCII Value	Description	Symbol
\0	0x00	null terminator	NUL
\ b	80x0	$\frac{\text{backspace}}{\text{backspace}}$	\mathbf{BS}
\t	0x09	tab	$\overline{\mathrm{HT}}$
\n	0x0a	new line	$\overline{\mathbf{LF}}$
\f	0x0c	$\overline{\text{form feed}}$	$\overline{\mathbf{FF}}$
\r	0 x 0 d	carriage return	$\overline{\mathrm{CR}}$
\"	0x 22	double quote	"
\',	0x 27	single quote	,
\\	0x5c	backslash	\

Table 2: The escaped-characters available in the WACC language.

Operator	Argument Type	Return Type	Meaning
'!'	bool	bool	Logical Not
·_,	int	int	Negation
'len'	T[]	int	Array Length
'ord'	$\overline{\mathrm{char}}$	$\overline{\mathrm{int}}$	ASCII Order
'chr'	$\overline{ ext{int}}$	$\overline{\mathrm{char}}$	Character of ASCII Value

Table 3: The unary operators of the WACC language with their types and meanings.

Array Literals: Array literals cannot occur directly in expressions, but they do occur in the WACC language as assignment values. An array literal starts with a '[' token and ends with a ']' token. The elements of the array (zero or more) are given between these brackets and are separated by ',' tokens. All elements of an array must be of the same type, so the type of any non-empty array literal can be statically determined. If, however, an array literal is empty, we allow it to be of any array type. For example, the array '[]' can be of type 'int[]', 'bool[]', 'char[]', etc... depending on the context, but the array '[1]' must be of type 'int[]'.

Variables: When a variable expression $\langle ident \rangle$ is evaluated it returns the value of that variable. If the variable is of type 'T' then the return type of the expression is also 'T'.

Array Elements: An array element expression evaluates to return an element from an array. The expression consists of two sub-expressions, the first of which must be of type 'T[]' and the second of which must be of type 'int'. The return type of the overall expression is 'T'.

The first expression is evaluated to find an array 'a' and the second is evaluated to find an index 'i'. The overall expression returns the element at the index 'i' of array 'a', that is, 'a[i]'.

If the array has length l then the index 'i' must be between 0 and (l-1), otherwise the expression will generate a runtime error.

Unary Operators: A unary operator $\langle unary\text{-}oper \rangle$ has a single sub-expression. The unary operators available in the WACC language are shown in Table 3. All unary operators have the same precedence, they are evaluated from right to left.

Gap 8. Fill in Table
$$\beta$$
 (2 marks)

- The '!' operator performs a logical Not operation on the result of evaluating its sub-expression, returning 'true' if the sub-expression evaluates to 'false' and vice-versa.
- The '-' operator inverts the sign of the evaluation of its sub-expression.
- The 'len' operator returns the length of the array referenced by the evaluation of its sub-expression.
- The 'ord' operator returns the char's ASCII value as an int.

Opera-	Prece-	Argument 1	Argument 2 Type	Return	Meaning
tor	dence	Type		Type	
·*'	1	int	int	int	Multiply
'/'	1	int	int	int	Divide
·%'	1	int	int	int	Modulus
·+'	2	int	int	int	Plus
,	2	int	int	int	Minus
'>'	3	char, int	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Greater Than
			$\overline{ ext{Type}}$		
'>='	3	char, int	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Greater Than or
			$\overline{ ext{Type}}$		Equal
·<'	3	char, int	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Less Than
			$\overline{ ext{Type}}$		
·<= [,]	3	char, int	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Less Than or Equal
			$\overline{ ext{Type}}$		
'=='	4	$\frac{\text{any}}{\text{any}}$	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Equality
			$\overline{ ext{Type}}$		
'!='	4	any	same as Argument 1	$\frac{\mathbf{bool}}{\mathbf{c}}$	Inequality
			$\overline{ ext{Type}}$		
'&&'	5	bool	bool	bool	Logical And
"11"	6	bool	bool	bool	Logical Or

Table 4: The binary operators of the WACC language, with their types and meanings.

• The 'chr' operator returns the character with the same ASCII value as the int in the sub-expression.

Binary Operators: A binary operator is used in in-fix style between two sub-expressions. The binary operators available in the WACC language are shown in Table 4. The operators have different precedences, as illustrated in the table, with 1 being the highest and 6 being the lowest.

- The '*', '/', '%', '+' and '-' operators all have their standard mathematical behaviour, where integer underflow/overflow results in a runtime error. If the divisor of a division ('/') or modulus ('%') operator is evaluated to '0', then this also results in a runtime error. The result of a division operation is positive if both its dividend and divisor have the same sign, and negative otherwise. The result of a modulus operation has the same sign as its dividend.
- The '>', '>=', '<' and '<=' operators perform a comparison test on the evaluations of their sub expressions. They accept expressions of type 'int' or 'char', but both expressions must have the same type. The result is 'true' if the comparison of the evaluated expressions is true. Otherwise, the result it 'false'.
- The '==' operator performs an equality test on the evaluations of its sub-expressions. It accepts any two expressions of the same type. When applied to expressions of type 'int', 'bool' or 'char', the result is 'true' iff the content of the two arguments are the same. When applied to expressions of type 'T[]' or 'pair', the result is 'true' iff the two references point to the same object of the same type. Otherwise, the result is 'false'.
- The '!=' operator returns the opposite result to the '==' operator.

- The '&&' operator performs a logical And operation on the result of evaluating its sub-expressions, returning 'true' if both sub-expressions evaluate to 'true' and 'false' otherwise.
- The '||' operator performs a logical Or operation on the result of evaluating its sub-expressions, returning 'true' if either sub-expression evaluates to 'true' and 'false' otherwise.

Parenthesis: We can introduce a pair of parenthesis around an expression to control its evaluation. The expression in a parenthesis is always evaluated first, regardless of the operator precedence.

3.7 Whitespace and Comments

Whitespace is used in the WACC language to delimit keywords and variables. For example, 'if a == 13' denotes the start of an 'if' statement with boolean condition 'a == 13', whereas 'ifa == 13' denotes a boolean expression comparing the variable 'ifa' with the value '13'. Any other type of occurrence of whitespace is ignored by the compiler. Note, in particular, that the code indentation in the example programs has no meaning, it simply aids readability. Also note that whitespace inside a string or character literal is preserved by the compiler.

Comments can be written in new lines and in-lines by starting with a # character. It does not require a closing character, the comments are always single-line comments.

Gap 12. Define/describe comments (3 marks)