Lenguajes Formales, Autómatas y Computabilidad

Lema de "Pumping" y más algoritmos de desición

Primer Cuatrimestre 2025

Bibliografía: Capítulo 4, *Introduction to Automata Theory, Languages and Computation*, J. Hopcroft, R. Motwani, J. Ullman, Second Edition, Addison Wesley, 2001.

Lema ("Pumping", Scott & Rabin 1959, Bar Hillel, Perles & Shamir 1961)

Sea L un lenguaje regular. Existe una longitud n tal que para toda $z \in L$ con $|z| \ge n$ existe $u, v, w \in \Sigma^*$ tales que

$$\begin{aligned} z &= uvw, \\ |uv| &\leq n, \\ |v| &\geq 1, \\ \forall i &> 0, \, uv^i w \in L. \end{aligned}$$

Ejemplo

$$L = \{a^k b^k : k \ge 0\}$$
 sobre $\Sigma = \{a, b\}$ no es regular.

Demostración.

Supongamos L es regular. Sea n la constante del Lema de Pumping. Sea $z=a^nb^n$. Por el Lema de Pumping, hay una descomposicion z=uvw con $|uv|\leq n$ y $|v|\geq 1$ tal que uv^iw en L, para $i\geq 0$.

Usando que $|uv| \le n$, concluimos que v consiste solamente de aes. Más aún, como $|v| \ge 1$, v contiene al menos una a.

Ahora bombeamos v y obtenemos uv^2w .

Por Lema de Pumping, uv^2w está en L.

Pero uv^2w tiene más aes que bs, entonces no está en L.

Llegamos a una contradicción que provino de asumir que L es regular. Por lo tanto, L no es regular.

Ejemplo

$$L = \{0^{k^2}: k \ge 1\}$$
 sobre $\Sigma = \{0\}$ no es regular.

Demostración.

Supongamos L es regular. Sea n la constante del Lema de Pumping. Sea $z=0^{n^2}$. Por el Lema de Pumping, hay una descomposición z=uvw con $|uv| \le n$ y $|v| \ge 1$ tal que uv^iw en L, para $i \ge 0$.

Entonces $v = 0^m$ para algun valor de m entre 1 y n. Por el Lema de Pumping. $uw = 0^{n^2 - m}$ está en L.

Dado que $1 \le m < n+1$, y asumiendo que $n \ge 2$

$$n^2 - m > n^2 - (n+1) \ge n^2 - (2n-1) = n^2 - 2n + 1 = (n-1)^2$$

Entonces n^2-m no es cuadrado perfecto y por lo tanto uw no está en ${\cal L}$

La contradicción que provino de asumir que L es regular.

Por lo tanto, L no es regular.

Ejemplo

 $L = \{w : w \text{ tiene la misma cantidad de } 0s \text{ que de } 1s \} \text{ no es regular.}$

Demostración.

Supongamos L es regular. Sea n la constante del Lema de Pumping.

Sea $z=0^n1^n$. Por el Lema de Pumping, hay una descomposición

z=uvw con $|uv|\leq n$ y $|v|\geq 1$ tal que uv^iw en L, para $i\geq 0$.

Entonces v tiene exclusivamente 0s.

Luego, uw tiene distinta cantidad de 0s que de 1s.

Por lo tanto, uw no está en L.

La contradicción que provino de asumir que ${\cal L}$ es regular.

Definición (Configuración instantánea de un AFD)

Sea $AFD\ M=(Q,\Sigma,\delta,q_0,F)$. Una configuración insantánea es un par (q,α) en $Q\times \Sigma^*$ donde q es el estado en el que está el autómata y α es la cadena de entrada aún no consumida.

Definición (Transición entre configuraciones instantáneas ⊢)

Llamamos transición a la siguiente relación sobre $Q \times \Sigma^*$:

$$(q, \alpha) \vdash (p, \beta) \text{ si } (\delta(q, a) = p \land \alpha = a\beta).$$

De lo anterior tenemos que $(q,\alpha\beta)\stackrel{*}{\vdash} (p,\beta)$ si y sólo si $\delta(q,\alpha)=p$ se puede pasar del estado q al estado p consumiendo la cadena α .

Lema

Sea el AFD
$$M=(Q,\Sigma,\delta,q_0,F)$$
 Para todo $q\in Q$ y $\alpha,\beta\in\Sigma^*$,

$$\textit{si } \left(q,\alpha\beta\right)\overset{*}{\vdash}\left(q,\beta\right) \textit{ entonces } \forall i\geq 0, \left(q,\alpha^i\beta\right)\overset{*}{\vdash}\left(q,\beta\right).$$

Demostración.

Fijemos $\alpha \in \Sigma^*$ y $q \in Q$ arbitrarias.

Demostración por inducción en i.

Caso base
$$(i=0)$$
. $(q,\alpha^0\beta) \stackrel{0}{\vdash} (q,\beta)$

Caso inductivo. Supongamos que vale para i, es decir,

(HI) si
$$(q, \alpha\beta) \stackrel{*}{\vdash} (q, \beta)$$
 entonces $(q, \alpha^i\beta) \stackrel{*}{\vdash} (q, \beta)$.

Donde dice β , podemos poner cualquier expresión. Pongamos $\alpha^i\beta$.

Nos queda

$$\begin{array}{l} \operatorname{si}(q,\alpha(\alpha^{i}\beta))\stackrel{*}{\vdash} (q,(\alpha^{i}\beta)), \text{ entonces } (q,\alpha^{i}\beta)\stackrel{*}{\vdash} (q,\beta)\,. \\ \operatorname{Por definición}, \ \left(q,\alpha^{i+1}\beta\right) = \left(q,\alpha\alpha^{i}\beta\right) \end{array}$$

Nos queda

si
$$(q, \alpha^{i+1}\beta) \stackrel{*}{\vdash} (q, (\alpha^{i}\beta))$$
, entonces $(q, \alpha^{i}\beta) \stackrel{*}{\vdash} (q, \beta)$.

Demostración del Lema de Pumping

Sea AFD M tal que $\mathcal{L}(M) = L$. Sea n su cantidad de estados. Sea z una cadena de longitud $m \geq n, z = a_1 \cdots a_m$.

Para aceptar z usamos m transiciones , por lo tanto m+1 estados. (estado inicial, estado luego de consumir el primer símbolo, estado luego de consumir el segundo símbolo, etc). Como m+1>n, para aceptar z el autómata pasa DOS ó más veces por un mismo estado.

Sea $q_{\ell_0}, q_{\ell_1}, \cdots, q_{\ell_m}$, con $q_{\ell_0} = q_0$ y q_{ℓ_m} un estado final, la sucesión de estados desde q_0 hasta aceptar z.

Existen existen j y k mínimos tales que $q_{\ell_j}=q_{\ell_k}$ con $0\leq j < k \leq n$. El máximo valor posible de k es n. porque M tiene n estados distintos, entonces al recorrerlo, antes de que se repita tenemos q_{ℓ_0} , q_{ℓ_1} ,... $q_{\ell_{n-1}}$, pero necesiariamente q_{ℓ_n} será repetido.

Esto determina z en tres cadenas u, v y w tales que

$$u = \begin{cases} a_1 \cdots a_j & \text{si } j > 0 \\ \lambda & \text{si } j = 0 \end{cases}$$

$$v = a_{j+1} \cdots a_k$$

$$w = \begin{cases} a_{k+1} \cdots a_m & \text{si } k < m \\ \lambda & \text{si } k = m. \end{cases}$$

Entonces,

$$|uv| \le n$$

$$|v| \ge 1$$

$$\mathsf{y} \qquad \qquad \left(q_0, uvw\right) \overset{*}{\vdash} \left(q_{\ell_j}, vw\right) \overset{*}{\vdash} \left(q_{\ell_k}, w\right) \overset{*}{\vdash} \left(q_{\ell_m}, \lambda\right).$$

Pero, como $q_{\ell_j} = q_{\ell_k}$,

$$\forall i \geq 0, \quad (q_{\ell_j}, v^i w) \stackrel{*}{\vdash} (q_{\ell_j}, w) = (q_{\ell_k}, w).$$

Por lo tanto, $uv^iw\in L$, $\forall i\geq 0$

 \Box .

Proposición

Sea AFD $M=< Q, \Sigma, \delta, q_0, F>$, con |Q|=n. $\mathcal{L}(M)$ es no vacío si y solo si existe w en Σ^* tal que $\widehat{\delta}(q_0,w)\in F$ y |w|< n.

Demostración.

Debemos ver que $\mathcal{L}(M)$ es no vacío si y solo si existe w en Σ^* tal que $\widehat{\delta}(q_0,w) \in F$ y |w| < n, donde n = |Q|.

 \Rightarrow). Supongamos $\mathcal{L}(M)$ es no vacío. Sabemos que es regular. Sea z en $\mathcal{L}(M)$ de longitud mayor o igual a n y supongamos que no hay ninguna más corta en $\mathcal{L}(M)$.

El Lema de Pumping garantiza que hay u,v,w apropiados tal que $|v|\geq 1$, z=uvw y $\forall i\geq 0$, uv^iw en $\mathcal{L}(M)$.

Entonces uw está en $\mathcal{L}(M)$. Pero uw es más corta que z, lo que contradice nuestra suposición de que z era la más corta. Concluimos que en $\mathcal{L}(M)$ hay cadenas más cortas que n.

 \Leftarrow). Es obvio que L es no vacío.

Proposición

 $\mathcal{L}(M)$ es infinito si y solo si existe w en Σ^* tal que $\widehat{\delta}(q_0,w) \in F$ y $n \leq |w| < 2n$.

Demostración

Debemos ver que $\mathcal{L}(M)$ es infinito si y solo si existe w en Σ^* tal que $\widehat{\delta}(q_0,w)\in F$ y $n\leq |w|<2n$, donde n=|Q|.

 \Rightarrow). Supongamos $\mathcal{L}(M)$ es infinito.

Supongamos que no hay ninguna cadena en $\mathcal{L}(M)$ de longitud entre n y 2n-1.

Sin pérdida de generalidad, sea z en $\mathcal{L}(M)$ de longitud 2n (ya que si la longitud de z es mayor, aplica el mismo argumento, usandolo tantas veces como haga falta hasta llegar a la contradicción buscada).

Por Lema de Pumping, hay u, v, w tal que z = uvw, con $|uv| \le n$, $|v| \ge 1$ y $\forall i \ge 0$ $uv^i w$ está en $\mathcal{L}(M)$. Entonces $uw \in \mathcal{L}(M)$.

Como |uvw|=2n y $1\leq |v|\leq n$ tenemos $n\leq |uw|\leq 2n-1$, contradiciendo que no había ninguna en $\mathcal{L}(M)$ de esta longitud.

 \Leftarrow). Supongamos z pertenece a $\mathcal{L}(M)$ y $n \leq |z| < 2n$.

Por el Lema de Pumping z=uvw y para todo $i\geq 0$, uv^iw esta en $\mathcal{L}(M)$. Luego $\mathcal{L}(M)$ es infinito.

Observación

Los lenguajes regulares no están clausurados por unión infinita.

Demostración.

Damos un contraejemplo.

Para cada $i \geq 1$ sea el lenguaje regular $L_i = \{a^i b^i\}$.

Si los lenguajes regulares estuvieran clausurados por unión infinita, $\bigcup_{i=1}^{\infty} L_i$ debería ser regular.

$$\bigcup_{i=1}^{\infty} L_i = \bigcup_{i=1}^{\infty} \left\{ a^i b^i \right\} = \left\{ a^k b^k : k \in \mathbb{N} \right\}$$

Usando el el Lema de Pumping se demuestra que no es regular.

Ejercicios

- 1. Demostrar que los siguientes lenguajes no son regulares $L=\{a^ib^j:i\neq j\}$ $L_a=\{xay:x\in\Sigma^*,y\in\Sigma^*,|x|=|y|\}\text{, donde }a\text{ es un elemento}$ prefijado de Σ .
- 2. Sea L un lenguaje regular, y sea n la constante del Lema de Pumping para L. Indicar Verdadero o Falso y justificar.
 - Para cada cadena z en L, con $|z| \ge n$, la descomposición de z en uvw, con $|v| \ge 1$ y $|uv| \le n$, es única.
- 3. Indicar Verdadero o Falso y justificar: Sean L_1 y L_2 lenguajes sobre el alfabeto Σ , tal que $L_1 \cup L_2$ es regular. Entonces, tanto L_1 como L_2 son regulares.
- 4. Dar un algoritmo de decisión que determine si el lenguaje aceptado por un autómata finito es cofinito.