Contrôle Intermédiaire

<u>Durée 2 heures</u> Tout document interdit

Exercice 1 (5 points)

Simplifier les ensembles Δ et Γ ci-dessous, en utilisant **exclusivement** les règles de simplification vues en cours et en indiquant à chaque étape la règle utilisée. En déduire pour chacun des deux ensembles une valuation qui le satisfait si elle existe.

$$\Delta = \{ \neg P \lor \neg Q, \neg S \lor R, \neg P \lor \neg S, Q \lor S, P \lor S, \neg P \}$$

$$\Gamma = \{ \neg A \lor B \lor P, \neg A \lor \neg B \lor R, \neg B \lor P, \neg B \lor \neg A, B \lor \neg A, A \lor \neg B, A \lor B, A \lor P \lor \neg R, B \lor P, P \}$$

Exercice 2 (8-2-1)

Le conseil de direction (CD) d'une entreprise se réunit tous les six mois. Des règles ont été définies pour la participation aux réunions des trois responsables les plus importants (R₁, R₂, R₃). Ces règles sont les suivantes :

- $R \grave{e} gle 1$: Si \mathbf{R}_1 y participe, alors \mathbf{R}_2 y participe ou \mathbf{R}_3 y participe mais pas les deux en même temps.
- *Règle 2* : Si \mathbb{R}_2 y participe, alors \mathbb{R}_3 y participe et \mathbb{R}_1 n'y participe pas.
- *Règle 3*: Si \mathbb{R}_3 y participe, alors \mathbb{R}_1 et \mathbb{R}_2 y participent tous les deux ou ils n'y participent pas tous les deux.
- Règle 4 : Deux des trois responsables au moins y participent.

Question 1. Montrer, en utilisant la résolution que l'ensemble des règles qui régissent la participation des trois responsables au CD pose problème.

Question 2. Montrer, en utilisant un arbre sémantique que l'ensemble des règles qui régissent la participation des trois responsables au CD pose problème.

Question 3. On dit d'un ensemble Γ : $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ non satisfiable qu'il est minimal si Γ - $\{\alpha_i\}$ $(1 \le i \le n)$ est satisfiable. Déduire de la question 1 un ensemble minimal non satisfiable de clauses. Ne pas justifier que l'ensemble est minimal.

Exercice 3 (2 - 2)

On considère un ensemble fini Γ : { $\alpha_0, \alpha_1, \ldots, \alpha_n$ } non satisfiable de formules.

Question 1. A quel ensemble correspond l'ensemble Γ_n obtenu en appliquant de façon itérée la règle suivante :

$$\Gamma_{0} = \Gamma$$

$$\Gamma_{i+1} = \begin{cases} \Gamma_{i} - \{ \alpha_{i} \} \text{ si } \Gamma_{i} - \{ \alpha_{i} \} \text{ non satisfiable} \\ \Gamma_{i} \text{ sinon} \end{cases}$$

$$(i \leq n-1)$$

Question 2. L'ensemble Γ_n est-il le même que celui obtenu dans la 1^{ière} question si l'on modifie l'ordre dans lequel on traite les formules ? Justifiez.

N.B. Ne pas remettre de feuille(s) intercalaires ou de feuilles de brouillons

CORRECTION

Barême: (2, 3) - {(4, 2, 2), (1.5, 0.5), 1} - (2, 2)

Exercice 1 (2-3)

Simplifier les ensembles Δ et Γ ci-dessous, en utilisant **exclusivement** les règles de simplification vues en cours et en indiquant à chaque étape la règle utilisée. En déduire pour chacun des deux ensembles une valuation qui le satisfait si elle existe.

$$\Delta = \{ \neg P \lor \neg Q, \neg S \lor R, \neg P \lor \neg S, Q \lor S, P \lor S, \neg P \}$$

$$\Gamma = \{ \neg A \lor B \lor P, \neg A \lor \neg B \lor R, \neg B \lor P, \neg B \lor \neg A, B \lor \neg A, A \lor \neg B, A \lor B, A \lor P \lor \neg R, B \lor P, P \}$$

$$v_0 = \{ \}$$

$$\Delta_0 = \{ \neg P \lor \neg Q, \neg S \lor R, \neg P \lor \neg S, Q \lor S, P \lor S, \neg P \}$$

Etape 1. Suppression de la clause unitaire $\neg P$, de toutes les clauses contenant $\neg P$ et de tous les littéraux complémentaires P. On ajoute $\neg P$ à la valuation v.

$$\Delta_1 = \{ \neg S \lor R, Q \lor S, S \}$$
$$v_1 = \{ \neg P \}$$

Etape 2. Suppression de la clause unitaire S, de toutes les clauses contenant S et de \neg S. On ajoute S à ν .

$$\Delta_2 = \{ R \}$$

$$v_2 = \{ \neg P, S \}$$

Etape 2. Suppression de la clause unitaire R. On ajoute R à v.

$$\Delta_3 = \{ \}$$

 $v_3 = \{ \neg P, S, R \}$

La valuation v_3 satisfait Δ .

$$\Gamma_0 = \{ \neg A \lor B \lor P, \neg A \lor \neg B \lor R, \neg B \lor P, \neg B \lor \neg A, B \lor \neg A, A \lor \neg B, A \lor B, A \lor P \lor \neg R, B \lor P, P \}$$
$$\nu_0 = \{ \}$$

Etape 1. Ici, P est un littéral pur. On supprime donc toutes les clauses contenant P et on ajoute P à la valuation v.

$$\Gamma_1 = \{ \neg A \lor \neg B \lor R, \neg B \lor \neg A, B \lor \neg A, A \lor \neg B, A \lor B \}$$

$$\nu_1 = \{ P \}$$

Etape 2. R est un littéral pur. On supprime donc toutes les clauses contenant R et on ajoute R à la valuation v.

$$\Gamma_2 = \{ \neg B \lor \neg A, B \lor \neg A, A \lor \neg B, A \lor B \}$$

$$\nu_2 = \{ P, R \}$$

L'ensemble simplifié est Γ_2 . On vérifie aisément qu'il n'est pas satisfiable.

Exercice 2 (8-2-1)

Le conseil de direction (CD) d'une entreprise se réunit tous les six mois. Des règles ont été définies pour la participation aux réunions des trois responsables les plus importants $(R_1,\,R_2,\,R_3)$. Ces règles sont les suivantes :

 $R \grave{e} gle 1$: Si \mathbf{R}_1 y participe, alors \mathbf{R}_2 y participe ou \mathbf{R}_3 y participe mais pas les deux en même temps.

- $R \grave{e} gle 2$: Si \mathbf{R}_2 y participe, alors \mathbf{R}_3 y participe et \mathbf{R}_1 n'y participe pas.
- $R\grave{e}gle\ 3$: Si \mathbf{R}_3 y participe, alors R_1 et R_2 y participent tous les deux ou ils n'y participent pas tous les deux.

Règle 4 : Deux des trois responsables au moins y participent.

Question 1 (8 points). Montrer, en utilisant la résolution que l'ensemble des règles qui régissent la participation des trois responsables au CD pose problème.

Etape 1. Ecriture des quatre règles dans le langage des propositions. (4 points)

Règle 1:
$$\mathbf{R}_1 \rightarrow (\mathbf{R}_2 \vee \mathbf{R}_3) \wedge (\neg \mathbf{R}_2 \vee \neg \mathbf{R}_3)$$

$$R\grave{e}gle\ 2: \mathbf{R}_2 \rightarrow \mathbf{R}_3 \land \neg \mathbf{R}_1$$

$$R\grave{e}gle\ 3: \mathbf{R}_3 \rightarrow (\mathbf{R}_1 \wedge \mathbf{R}_2) \vee (\neg \mathbf{R}_1 \wedge \neg \mathbf{R}_2)$$

$$R\grave{e}gle\ 4: (\neg R_1 \rightarrow (R_2 \land R_3)) \land (\neg R_2 \rightarrow (R_1 \land R_3)) \land (\neg R_3 \rightarrow (R_1 \land R_2))$$

Etape 2. Mise sous forme clausale.

(2 points)

$$R\grave{e}gle\ 1: (\neg R_1 \lor ((R_2 \lor R_3) \land (\neg R_2 \lor \neg R_3))) \qquad \equiv (\neg R_1 \lor R_2 \lor R_3) \land (\neg R_1 \lor \neg R_2 \lor \neg R_3)$$

$$R\grave{e}gle\ 2: R_2 \rightarrow R_3 \land \neg R_1 \equiv \neg R_2 \lor (R_3 \land \neg R_1) \qquad \equiv (\neg R_2 \lor R_3) \land (\neg R_2 \lor \neg R_1)$$

$$\label{eq:Regle3} \textit{R\`egle3}: \neg R_3 \lor (R_1 \land R_2) \lor (\neg R_1 \land \neg R_2) \\ \qquad \equiv \neg R_3 \lor ((R_1 \land R_2) \lor \neg R_1) \land ((R_1 \land R_2) \lor \neg R_2) \\$$

$$\equiv (\neg R_3 \lor R_1) \land (\neg R_3 \lor R_2) \lor (\neg R_1 \land \neg R_2)$$

$$\equiv ((\neg R_3 \lor R_1) \land (\neg R_3 \lor R_2) \lor \neg R_1) \land ((\neg R_3 \lor R_1) \land (\neg R_3 \lor R_2) \lor \neg R_2)$$

$$\equiv ((\neg R_3 \lor R_1 \lor \neg R_1) \land (\neg R_3 \lor R_2 \lor \neg R_1) \land ((\neg R_3 \lor R_1 \lor \neg R_2) \land (\neg R_3 \lor R_2 \lor \neg R_2))$$

 $R_1 \lor \neg R_1$ et $R_2 \lor \neg R_2$ sont des tautologies. Nous pouvons donc supprimer les clauses où elles apparaissent.

$$(\neg R_3 \lor R_2 \lor \neg R_1) \land (\neg R_3 \lor R_1 \lor \neg R_2)$$

$$\begin{aligned} \textit{R\`egle 4}: (\neg R_1 \rightarrow (R_2 \land R_3)) \land (\neg R_2 \rightarrow (R_1 \land R_3)) \land (\neg R_3 \rightarrow (R_1 \land R_2)) \\ & \equiv \\ (\neg R_1 \lor (R_2 \land R_3)) \land (\neg R_2 \lor (R_1 \land R_3)) \land (\neg R_3 \lor (R_1 \land R_2)) \\ & \equiv \end{aligned}$$

$$(R_1 \lor R_2) \land (R_1 \lor R_3) \land (R_2 \lor R_1) \land (R_2 \lor R_3) \land (R_3 \lor R_1) \land (R_3 \lor R_2)$$

Les clauses $(R_2 \lor R_1)$, $(R_3 \lor R_1)$, $(R_3 \lor R_2)$ sont redondantes.

$$(\mathbf{R}_1 \vee \mathbf{R}_2) \wedge (\mathbf{R}_1 \vee \mathbf{R}_3) \wedge (\mathbf{R}_2 \vee \mathbf{R}_3)$$

L'ensemble S des clauses que nous obtenons est le suivant :

S: {
$$\neg R_1 \lor R_2 \lor R_3$$
, $\neg R_1 \lor \neg R_2 \lor \neg R_3$, $\neg R_2 \lor R_3$, $\neg R_2 \lor \neg R_1$, $\neg R_3 \lor R_2 \lor \neg R_1$, $\neg R_3 \lor R_1 \lor \neg R_2$, $R_1 \lor R_2$, $R_1 \lor R_3$, $R_2 \lor R_3$ }

La résolution

(2 points)

c1.
$$\neg R_1 \lor R_2 \lor R_3$$

c2.
$$\neg R_1 \lor \neg R_2 \lor \neg R_3$$

c3.
$$\neg R_2 \lor R_3$$

c4.
$$\neg R_2 \lor \neg R_1$$

c5.
$$\neg R_3 \lor R_2 \lor \neg R_1$$

c6.
$$\neg R_3 \lor R_1 \lor \neg R_2$$

c7.
$$R_1 \vee R_2$$

c8.
$$R_1 \vee R_3$$

c9.
$$R_2 \vee R_3$$

```
\begin{array}{cccc} c10. \ R_3 & Res(3,9) \\ c11. \ R_2 \vee \neg R_1 & Res(5,10) \\ c12. \ R_2 & Res(7,11) \\ c13. \ R_1 \vee \neg R_2 & Res(6,10) \\ c14. \ \neg R_2 & Res(4,13) \\ c15. \ \Box & Res(12,14) \\ \end{array}
```

 $S \vdash \Box \Rightarrow S$ est inconsistant \Rightarrow l'ensemble des règles est inconsistant. Le règlement du CD est par conséquent incohérent.

Question 2. Montrer, en utilisant un arbre sémantique que l'ensemble des règles qui régissent la participation des trois responsables au CD pose problème.

Réponse 2. Arbre sémantique obtenu à partir de l'ensemble S des clauses issues de l'ensemble des règles du CD. **1.5 point.**

Cet arbre sémantique est clos. S est donc non satisfiable. Le règlement du CD pose par conséquent problème. **0.5 point**

Question 3. On dit d'un ensemble Γ : $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ non satisfiable qu'il est minimal si Γ - $\{\alpha_t\}$ $(1 \le i \le n)$ est satisfiable. Déduire de la question 1 un ensemble minimal non satisfiable de clauses. Ne pas justifier que l'ensemble est minimal. 1 point

Réponse 3. C'est l'ensemble formé des clauses de S utilisées dans le processus de déduction. E : {C3, C4, C5, C6, C7, C9}

Exercice 3 (2 - 2)

On considère un ensemble fini Γ : { $\alpha_0, \alpha_1, \ldots, \alpha_n$ } non satisfiable de formules.

Question 1. A quel ensemble correspond l'ensemble Γ_n obtenu en appliquant de façon itérée la règle suivante :

$$\Gamma_{0} = \Gamma$$

$$\Gamma_{i+1} = \begin{cases} \Gamma_{i} - \{ \alpha_{i} \} \text{ si } \Gamma_{i} - \{ \alpha_{i} \} \text{ non satisfiable} \\ \Gamma_{i} \text{ sinon} \end{cases}$$

$$(i \leq n-1)$$

Réponse 1. Γ_n correspond à un sous-ensemble minimal non satisfiable de Γ . 2 points

Question 2. L'ensemble Γ_n est-il le même que celui obtenu dans la 1^{ière} question si l'on modifie l'ordre dans lequel on traite les formules ? Justifiez. **2 points**

Réponse 2. Γ_n n'est pas le même lorsque Γ contient deux ou plus sous-ensembles non satisfiables. *Exemple*

$$\Gamma_0: \{P, R \land Q, S \rightarrow (\neg R \land Q), R \rightarrow (Q \rightarrow P), \neg P\}$$

$$\Gamma_1 = \Gamma_0 - \{P\} = \{ R \land Q, S \rightarrow (\neg R \land Q), R \rightarrow (Q \rightarrow P), \neg P \}$$
 qui est non satisfiable

 $\Gamma_2 = \Gamma_1$ car si on supprime $R \wedge Q$ on obtient $\{S \rightarrow (\neg R \wedge Q), R \rightarrow (Q \rightarrow P), \neg P\}$ qui est satisfiable

$$\Gamma_3 = \Gamma_0 - \{ S \rightarrow (\neg R \land Q) \} = \{ R \land Q, R \rightarrow (Q \rightarrow P), \neg P \}$$
 qui est non satisfiable $\Gamma_4 = \Gamma_3$ car si on supprime $R \land Q$ l'ensemble devient satisfiable.

Si nous modifions l'ordre des formules :

$$\Gamma'_0: \{ R \land Q, P, S \rightarrow (\neg R \land Q), R \rightarrow (Q \rightarrow P), \neg P \}$$

$$\Gamma'_1: \{ P, S \rightarrow (\neg R \land Q), R \rightarrow (Q \rightarrow P), \neg P \}$$
 non satisfiable

 $\Gamma'_2 = \Gamma'_1 = \{ P, S \rightarrow (\neg R \land Q), R \rightarrow (Q \rightarrow P), \neg P \}$ car si on supprime P l'ensemble devient satisfiable.

$$\Gamma'_3 = \{ P, R \rightarrow (Q \rightarrow P), \neg P \}$$
 non satisfiable

$$\Gamma'_4 = \{ P, \neg P \}$$
 non satisfiable

Dans le 1^{ier} cas, le sous-ensemble minimal obtenu est $\{R \land Q, R \rightarrow (Q \rightarrow P), \neg P\}$ alors que dans le 2^{ième} cas nous obtenons $\{P, \neg P\}$.