프로젝트 기반 빅데이터 서비스 솔루션 개발 전문 과정

교과목명: 머신러닝응용

평가일: 03.13성명: 이재우점수: 75

문제 : LMEMBERS의 상품구매데이터를 이용하여 개인맞춤 상품 추천솔루션을 구축 후 다양한 활용 방안을 시현하세요.

In [1]:

```
import cx_Oracle
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import font_manager, rc
font_path = "C:/Windows/Fonts/NGULIM.TTF"
font = font_manager.FontProperties(fname=font_path).get_name()
rc('font', family=font)
con = cx_Oracle.connect('LM_PDB/LM@localhost:1521/xepdb1')
cursor = con.cursor()
```

In [2]:

```
1 cursor.execute("select 소분류코드, 중분류명, 소분류명 from prodcl")
2 x = cursor.fetchall()
3 df1 = pd.DataFrame(x,columns = ['소분류코드','중분류명','소분류명'])
4 df1
```

Out[2]:

	소분류코드	중분류명	소분류명
0	A060143	스포츠	레드페이스
1	A060144	스포츠	에코로바
2	A060145	스포츠	웨스트우드
3	A060146	스포츠	투스카로라
4	A060147	스포츠	아크테릭스
4381	A060249	골프용품	골프존마켓
4382	A060252	골프용품	해리토리 상품군
4383	A060107	스포츠	스포츠용품
4384	B710204	등산	등산소품
4385	B360102	롤러보드	스케이트보드

4386 rows × 3 columns

In [3]:

```
1 cursor.execute("select 고객번호, 소분류코드, count(*) from purprod group by 고객번호, 소분류코드
2 x = cursor.fetchall()
3 df2 = pd.DataFrame(x,columns = ['고객번호','소분류코드','구매횟수'])
4 df2
```

Out[3]:

	고객번호	소분류코드	구매횟수
0	00001	A010101	5
1	00001	A010103	3
2	00001	A010104	1
3	00001	A010106	3
4	00001	A010201	2
6527915	19383	D080203	5
6527916	19383	D080204	4
6527917	19383	D080205	1
6527918	19383	D080302	2

In [4]:

1 df2_matrix = df2.pivot_table('구매횟수',index = '고객번호', columns = '소분류코드') 2 df2_matrix

Out [4]:

소분 류코 드	A010101	A010102	A010103	A010104	A010105	A010106	A010201	A010202	A010203	A010204	
고객 번호											
00001	5.0	NaN	3.0	1.0	NaN	3.0	2.0	5.0	NaN	NaN	
00002	29.0	NaN	12.0	18.0	NaN	2.0	10.0	3.0	NaN	NaN	
00003	NaN										
00004	15.0	NaN	8.0	2.0	NaN	NaN	7.0	NaN	NaN	NaN	
00005	18.0	NaN	10.0	5.0	NaN	4.0	1.0	6.0	NaN	NaN	
•••											
19379	NaN	NaN	4.0	NaN							
4											•

In [20]:

```
1 prod_df.소분류명.value_counts()
```

Out [20]:

어묵 23453 종량제봉투 22716 고추 22322 일반스낵 21877 양파 21128 장류세트 온라인기능헤어케어 규격고등어선물세트 기타세트 1 기타한방약재 1

Name: 소분류명, Length: 3520, dtype: int64

In [23]:

```
prod_df = pd.merge(df2,df1,on='소분류코드')
prod_matrix = prod_df.pivot_table('구매횟수',index = '고객번호', columns = '소분류명',aggfunc=
prod_matrix = prod_matrix.fillna(0)
prod_matrix
```

Out[23]:

소분 류명 고객 번호	14K	2 단 우 산	3 단 우 산	3 분 요 리 류	4대 B/D	5 ON THE GO	ACC Bloom (1F)	ACC Bloom (3F)	AK 골 프	ANDZ	 휴 대 폰 기 타 용 품	휴 모 니 아	휴 지 류	휴 지 통	흑 미	흑 미 류	흰 다 리 새 우	히 터	₹ E ;
00001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
00002	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
00003	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
00004	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
10005	^ ^	0.0	^ ^	0.0	^ ^	0.0	0.0	0.0	00	0.0	0.0	0.0	^ ^	0.0	0.0	^ ^	00	^ ^	•

In [24]:

prod_matrix_T = prod_matrix.transpose()
prod_matrix_T

Out[24]:

고 객 번 호	00001	00002	00003	00004	00005	00006	00007	00008	00009	00010	 19374	1937
소 분 류 명												
14K	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.
2단 우 산	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.
3단 우 산	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.
3분 요 리 류	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 2.0	0.
4대 B/D	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	 0.0	0.
흑 미 류	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	1.
흰 다 리 새 우	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	 0.0	1.
히 터	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.
히 터 기	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.
힐 앤 토	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	 0.0	0.

3520 rows × 19383 columns

In [26]:

```
1
    def predict_prod_topsim(prod_arr,item_sim_arr,n=20):
        pred = np.zeros(prod_arr.shape)
 2
 3
 4
         for col in range(prod arr.shape[1]):
 5
             top_n_times = [np.argsort(item_sim_arr[:,col])[:-n-1:-1]]
 6
 7
             for row in range(prod_arr.shape[0]):
 8
 9
                 pred[row,col] = item_sim_arr[col,:][top_n_times].dot(prod_arr[row,:][top_n_times].T
                 pred[row,col] /= np.sum(np.abs(item_sim_arr[col,:][top_n_times]))
 10
 11
 12
        return pred
 13
 14
    prod_pred = predict_prod_topsim(prod_matrix.values,item_sim_df.values,n=20)
 15
 16
    prod_pred_matrix = pd.DataFrame(data = prod_pred, index = prod_matrix.index, columns = prod_mat
 17
 18
    prod_pred_matrix
C:\Users\Master\AppData\Local\Temp\ipykernel_21256\1731475551.py:9: Future\Userning:
```

C:\Users\Master\AppData\Local\Temp\Upkernel_21256\Upsilon 1731475551.py:9: Future\Upkerning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[t uple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

pred[row,col] = item_sim_arr[col,:][top_n_times].dot(prod_arr[row,:][top_n_times].T)

C:\Users\Master\AppData\Local\Temp\ipykernel_21256\U1731475551.py:10: Future\Uarnin g: Using a non-tuple sequence for multidimensional indexing is deprecated; use `ar r[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.

pred[row,col] /= np.sum(np.abs(item_sim_arr[col,:][top_n_times]))

In [28]:

```
def get zero prod(prod matrix.userId):
2
       user_prod = prod_matrix.loc[userId,:]
3
       already_buy = user_prod[user_prod > 0].index.tolist()
4
5
6
       prod_list = prod_matrix.columns.tolist()
7
8
       unbuy_list = [prod for prod in prod_list if prod not in already_buy]
9
10
       return unbuy_list
11
   def recomm prod by userid(pred_df, userId, unbuy_list, top_n=10):
12
13
14
       recomm_prod = pred_df.loc[userId,unbuy_list].sort_values(ascending=False)[:top_n]
15
16
       return recomm_prod
```

In [64]:

```
user_prod_id = prod_matrix.loc['00005',:]
user_prod_id[user_prod_id>0].sort_values(ascending=False)[:10]
```

Out [64]:

소분류명 유제품 160.0 채소 88.0 농산가공 75.0 밥류 47.0 일반가공식품 41.0 청과 33.0 수입식품 25.0 주류 24.0 일식델리 19.0 서양델리 18.0 Name: 00005, dtype: float64

In [65]:

```
unbuy_list = get_zero_prod(prod_matrix,'00005')

recomm_prod = recomm_prod_by_userid(prod_pred_matrix,'00005',unbuy_list,top_n=10)

recomm_prod_df = pd.DataFrame(data=recomm_prod.values,index=recomm_prod.index,columns=['pred_scomm_prod_df']

recomm_prod_df
```

Out [65]:

pred_score

소분류명	
계육	26.095324
가공행사	25.823045
건과	25.094209
멸치류	25.036357
전문베이커리	24.723370
수입육	23.952036
건생선	23.916558
떡	23.831161
규격김치	23.702259
선식(가루류)	23.282230

In []:

```
1 # 활용방안
2 # 1.
```