信息论

- 1. 熵和互信息量的基本概念
- 2. 熵和互信息量的基本性质
- 3. 信源的无失真编码
- 4. 信道容量——代价函数
- 5. 最佳接收和错误概率的估计
- 6. 信道编码定理
- 7. 信源的率失真函数和限失真信源编码
- 8. 非离散信源和信道

3.信源的无失真编码

目录

- 引言
- 无失真信源编码定理
- 非等长信源编码
- · 一种实用编码方法:LZ编码

3.1 引 言

- 〉信源分类
- 〉信源编码模型
- > 无失真信源编码

3.1.1 信源分类

❖根据信源输出在时间上是否连续,以及取值是否连续,可分为:

离散信源 非离散信源

*按信源的记忆特性,离散信源又分为:

离散无记忆信源

离散有记忆信源

3.1.2 信源编码模型

例: 五个不同的信源符号可表示为:

{000, 001, 011, 110, 101} → 等长编码 {01, 011, 0111, 011111} → 非等长编码

3.1.3 无失真信源编码

❖唯一可译码

- □每个信源符号、符号串都至少有一个码字与之对应
- □不同的信源符号、符号串对应不同的码字
- □非等长编码能自动识别一个码字的结束
- ❖唯一可译码在无扰信道中传输时, 其译码错误概率 为0, 故称为无失真编码

目录

- 引言
- 无失真信源编码定理
- 非等长信源编码
- ·一种实用编码方法:LZ编码

- ▶ 引理3.1: Chebyshev Inequality
- ▶引理3.2: 离散无记忆信源的渐近均衡性
- ▶定理3.1: 无失真信源编码定理

3.2.1 Chebyshev Inequality

• 引理3.1: (a) 随机变量x,均值m,方差 σ^2 ,

则
$$P_r\{|x-m|>\varepsilon\} \le \frac{\sigma^2}{\varepsilon^2}$$

其中 ε > 0.

3.2.1 Chebyshev Inequality

证明:
$$\sigma^{2} = \int_{-\infty}^{+\infty} (x - m)^{2} p(x) dx$$

$$\geq \int_{-\infty}^{m-\varepsilon} (x - m)^{2} p(x) dx + \int_{m+\varepsilon}^{+\infty} (x - m)^{2} p(x) dx$$

$$\geq \int_{-\infty}^{m-\varepsilon} \varepsilon^{2} p(x) dx + \int_{m+\varepsilon}^{+\infty} \varepsilon^{2} p(x) dx$$

$$= \varepsilon^{2} P_{r} \{|x - m| > \varepsilon\}$$

因此
$$P_{r} \{|x - m| > \varepsilon\} \leq \frac{\sigma^{2}}{\varepsilon^{2}}$$

3.2.1 Chebyshev Inequality

• 引理3.1: (b) 设 $z_1, z_2, ..., z_N$ 是独立同分布随机变量 (i.i.d-independent and identically distributed), 有均值 \overline{Z} , 方差 σ^2 .

对于 \forall ε>0,有

$$P_r\left\{\left|\frac{1}{N}\sum_{n=1}^N z_n - \overline{z}\right| > \varepsilon\right\} \le \frac{\sigma^2}{N\varepsilon^2}$$

(可证明 $\frac{1}{N}\sum_{r=1}^{N}z_{r}$ 的均值为 \overline{Z} ,方差为 $\frac{\sigma^{2}}{N}$)

- ▶ 引理3.1: Chebyshev Inequality
- >引理3.2: 离散无记忆信源的渐近均衡性
- ▶定理3.1: 无失真信源编码定理

引理3.2: 设离散无记忆信源每个符号的熵为H(u).

给定 ∀ε>0,

考虑信源输出的长度为N的符号串的子集:

$$S(N,\varepsilon) = \{\mathbf{u} \colon 2^{-N[H(\mathbf{u})+\varepsilon]} \le p(\mathbf{u}) \le 2^{-N[H(\mathbf{u})-\varepsilon]}\}$$

则这个子集中的每个符号串可以用长度为LN

的二进制序列无失真地表示, L_N满足:

$$N [H(u) + \varepsilon] \le L_N < N [H(u) + \varepsilon] + 1$$
 (1)

$$\mathbb{E}\left[P_r\left[\mathbf{u} \notin S(N,\varepsilon)\right] \le \frac{\sigma^2}{N\varepsilon^2}\right] \tag{2}$$

其中
$$\sigma^2 = \sum_{u} \left[\log \frac{1}{p(u)} - H(u) \right]^2 p(u)$$

证明: (1) S(N,ε)是长度为N的符号串的子集, 有

$$1 = \sum_{\mathbf{u}} p(\mathbf{u}) \ge \sum_{\mathbf{u} \in S(N,\varepsilon)} p(\mathbf{u}) \ge \sum_{\mathbf{u} \in S(N,\varepsilon)} 2^{-N[H(u)+\varepsilon]}$$
$$= 2^{-N[H(u)+\varepsilon]} \cdot |S(N,\varepsilon)|$$

因此 $|S(N,\varepsilon)| \leq 2^{N[H(u)+\varepsilon]}$

子集S(N,ε)中 符号串的数量

为了实现对 $S(N,\epsilon)$ 中符号串的无失真二进制编码,码长为 L_N 的码字个数应满足:

$$2^{L_N} \ge |S(N,\varepsilon)|$$

证明: (1) (cont.)可取L_N满足:

$$L_N \ge N[H(u) + \varepsilon],$$

$$L_N$$
-1 \epsilon].

因此所有 $S(N,\epsilon)$ 中的符号串可以用长为 L_N 的

二进制序列无失真地表示:

$$N [H(u) + \varepsilon] \le L_N < N [H(u) + \varepsilon] + 1.$$

证明: (2)定义
$$F_N = P_r\{\mathbf{u} \notin S(N, \varepsilon)\}$$

根据定义知:

$$S(N,\varepsilon) = \{\mathbf{u} : 2^{-N[H(\mathbf{u})+\varepsilon]} \le p(\mathbf{u}) \le 2^{-N[H(\mathbf{u})-\varepsilon]} \}.$$

$$= \{\mathbf{u} : -N[H(u)+\varepsilon] \le \log p(\mathbf{u}) \le -N[H(u)-\varepsilon] \}$$

$$= \{\mathbf{u} : -N\varepsilon \le \log p(\mathbf{u}) + NH(u) \le N\varepsilon \}$$

$$= \{\mathbf{u} : \left| \log \frac{1}{p(\mathbf{u})} - NH(u) \right| \le N\varepsilon \}$$

$$= \left\{ \mathbf{u} : \left| \frac{1}{N} \log \frac{1}{p(\mathbf{u})} - H(u) \right| \le \varepsilon \right\}$$

$$= 2020/4$$

证明: (2) (cont.)

$$\overline{S(N,\varepsilon)} = \left\{ \mathbf{u} : \left| \frac{1}{N} \log \frac{1}{p(\mathbf{u})} - H(u) \right| > \varepsilon \right\}$$

$$= \left\{ \mathbf{u} : \left| \frac{1}{N} \sum_{n=1}^{N} \log \frac{1}{p(u_n)} - H(u) \right| > \varepsilon \right\}$$
定义 $z_n = \log \frac{1}{p(u_n)}$
离散无记忆信源

则:
$$E[z_n] = H(u)$$

$$Var[z_n] = \sigma^2 = \sum_{u} \left[\log \frac{1}{p(u)} - H(u) \right]^2 p(u)$$

证明: (2) (cont.) 由引理3.1可得

$$P_r\left[\left|\frac{1}{N}\sum z_n - \overline{z}\right| > \varepsilon\right] \le \frac{\sigma^2}{N\varepsilon^2}$$

因此
$$F_N = P_r \left| \frac{1}{N} \sum_{n=1}^N \log \frac{1}{p(u_n)} - H(u) \right| > \varepsilon \left| \le \frac{\sigma^2}{N\varepsilon^2} \right|$$

可见, 当 $N \rightarrow \infty$ 时, $F_N \rightarrow 0$.

说明1: 定义
$$S(N,\varepsilon) = \left\{ \mathbf{u} : \left| \frac{1}{N} \log \frac{1}{p(\mathbf{u})} - H(u) \right| \le \varepsilon \right\} = \left\{ \mathbf{u} : \log \frac{1}{p(\mathbf{u})} \approx NH(u) \right\}$$

$$\overline{S(N,\varepsilon)} = \left\{ \mathbf{u} : \left| \frac{1}{N} \log \frac{1}{p(\mathbf{u})} - H(u) \right| > \varepsilon \right\}$$

特点: (1) S(N,ε)中的典型序列近似等概

(2)
$$N \to \infty$$
 $\exists r$, $P_r \{ u \in S(N, \epsilon) \} \to 1$, $P_r \{ u \in \overline{S(N, \epsilon)} \} \to 0$

- (3) S(N,ε)中序列数目所占比例不大
- (4) 对 $S(N,\epsilon)$ 中序列等长编码时, $L_N \approx N H(u)$

说明2:

离散无记忆信源的渐进均衡性(AEP-Asymptotic Equipartition Property)与弱大数定理 (the weak law of large numbers)等价

例: 拋硬币正面出现(用0表示)的概率为p, 如果试验次数N足够大,由弱大数定理可知

$$P_r \left\{ \left| \frac{N(0)}{N} - p \right| > \varepsilon \right\} \le \delta$$

其中δ随着N的增大可变得任意小, 而ε是任意小的正数.

例(续):序列u出现的概率为

$$p(\mathbf{u}) = p^{N(0)} (1-p)^{N-N(0)}$$

平均每个符号的自信息量为:

$$\frac{1}{N}\log\frac{1}{p(\mathbf{u})} = -\frac{N(0)}{N}\log p - \left\lfloor 1 - \frac{N(0)}{N} \right\rfloor \log(1-p)$$

当N足够大时, $N(0)/N \rightarrow p$, 上式 $\rightarrow H(u)$

$$P_r \left\{ \left| \frac{1}{N} \log \frac{1}{p(\mathbf{u})} - H(u) \right| > \varepsilon \right\} \le \delta$$

例: 可以认为典型序列是长度为N的序列中,出现正/反(续) 面的比例为p和1-p的序列

若p=0.25, 则H(u)=0.81,

取ε=
$$0.05$$
, N= 100

$$\frac{\left|S(N,\varepsilon)\right|}{2^N} \le \frac{2^{N[H(u)+\varepsilon]}}{2^N} \approx 6.1 \times 10^{-5}$$

可见S(N,ε)中序列数目所占比例并不大,

但是随着 $N \to \infty$,

$$P_r\{\mathbf{u} \in S(N,\varepsilon)\} \to 1, \quad P_r\{\mathbf{u} \in \overline{S(N,\varepsilon)}\} \to 0$$

注意个别非典型序列出现的概率可能高于典型序列!

- ▶ 引理3.1: Chebyshev Inequality
- >引理3.2: 离散无记忆信源的渐近均衡性
- ▶定理3.1: 无失真信源编码定理

定理3.1: 给定离散无记忆信源, 它的符号取值于集合U, 信源熵是H(u). 对于长度为N的信源符号串(N=1,2,...), 存在唯一可译的二进制码, 它的平均码长 $\langle L_N \rangle = \sum p_N(\mathbf{u}) \cdot l_N(\mathbf{u})$ 〈L_N〉满足以下不等式: $NH(u) \le \langle L_N \rangle < N[H(u) + O(N)]$ (当 $N \rightarrow \infty$ 时 $, 0(N) \rightarrow 0)$

证明: 这里只证明 $\langle L_N \rangle \leq N[H(u) + O(N)]$

利用信源渐进均衡性引理的结论.

(1) 对于 $\mathbf{u} \in S(N,\varepsilon)$

用长为 L_N (L_N 与 $NH(u)+N\epsilon$))的二进制码来表示,它是唯一可译的二进制码

码前冠以"0"代表其后的 L_N 位码表示的 $u \in S(N, \epsilon)$,

总码长为 L_N+1

则 $L_N+1 < N[H(u)+\epsilon]+2$

证明: (2) 对于 $\mathbf{u} \in S(N, \varepsilon)$ 用长为 $\mathbf{L'}_{N}(\mathbf{L'}_{N} < \log_{2}(\mathbf{r}^{N}))$ 的二进制码表示 这里规定每个信源符号有r种可能的取值 它是唯一可译的二进制码 码前冠以"1"表示其后的 $\mathbf{L'}_{N}$ 位码表示 $\mathbf{u} \in \overline{S(N, \varepsilon)}$ 总码长为 $\mathbf{L'}_{N}$ +1 则 $\mathbf{L'}_{N}$ +1 < $\mathbf{N} \log \mathbf{r}$ +1

2020/4/30

证明: (cont.)因此,对于信源输出的长为N的每个符号串, 都可以用一个唯一可译二进制码表示,并且 $\langle L_N \rangle = (L_N + 1)P_r \{ \mathbf{u} \in S(N, \varepsilon) \} + (L'_N + 1)P_r \{ \mathbf{u} \in \overline{S(N, \varepsilon)} \}$ $< [N(H(u) + \varepsilon) + 2] \cdot 1 + [N \log r + 1] \cdot \frac{\sigma^2}{N c^2}$ $= N \left| H(u) + \varepsilon + \frac{2}{N} + \left(\log r + \frac{1}{N} \right) \cdot \frac{\sigma^2}{N\varepsilon^2} \right|$

证明:
$$取 \varepsilon = N^{-\frac{1}{3}}$$

$$\langle L_N \rangle < N \left\{ H(u) + \frac{2}{N} + \left[\left(\log r + \frac{1}{N} \right) \sigma^2 + 1 \right] \frac{1}{N^{\frac{1}{3}}} \right\}$$
$$= N \left[H(u) + O(N) \right]$$

即
$$\langle L_N \rangle < N[H(u) + O(N)]$$

• The strong converse source coding theorem:

As long as we require probability of error strictly less than 1, asymptotically, we cannot encode at rates below the entropy.

• The weak converse source coding theorem:

Error probability cannot vanish if the compression rate is below the entropy.

显录

- 引言
- 无失真信源编码定理
- 非等长信源编码
- ·一种实用编码方法:LZ编码

3.3 非等长信源编码

- >基本概念
- ➤ McMillan不等式
- ➤ Kraft不等式
- > 非等长信源编码的平均码长
- > 几种非等长信源编码方案

3.3.1 基本概念

❖例: 信源符号集Au={0, 1, 2, 3}

相应概率分布 \mathbf{p} ={1/2, 1/4,1/8, 1/8}

则 $H(U)=H_2(1/2, 1/4, 1/8, 1/8)=1.75$ bits

Au	р	编码	编码	编码	编码
		Α	В	С	D
0	1/2	0	0	0	0
1	1/4	0	1	01	10
2	1/8	1	00	011	110
3	1/8	10	11	0111	111
平均码长(bits)		1.125	1.25	1.875	1.75

编码D的平均码长:

 $\langle L \rangle = 1.75 bits$

效率: η=100%

3.3.1 基本概念

- ❖编码准则:
 - 出现概率大的信源符号对应短码
 - 出现概率小的信源符号对应长码

例: Morse电报码, e对应最短码

- *编码效率: $\eta = H_s(U)/\langle L_s \rangle$
- ❖与等长信源编码比较:
 - ■优点:编码效率高
 - ■缺点:译码复杂

3.3.1 基本概念

- 异前缀码
 - □任何一个码字不允许是另一个码字的 前缀
 - □满足唯一可译码要求

3.3 非等长信源编码

- >基本概念
- ➤ McMillan不等式
- ➤ Kraft不等式
- > 非等长信源编码的平均码长
- > 几种非等长信源编码方案

3.3.2 唯一可译码的约束不等式____ McMillan不等式

定理3.2: 如果
$$C=\{\sigma_0, \sigma_1, ..., \sigma_{r-1}\}$$
是S进制的唯一可译码,其中 σ_i 表示第i个码字, $n_i = |\sigma_i|$ 是它的长度,则 $\sum_{i=0}^{r-1} s^{-n_i} \leq 1$

3.3.2 唯一可译码的约束不等式____ McMillan不等式

码树:

满树: s进制N节码树的所有枝都被使用时, 共有sN个码字

3.3.2 唯一可译码的约束不等式 McMillan不等式

- 利用码树说明异前缀码满足McMillan不等式:
 - 设n_i中最大的值为N
 - 长度为n_i的异前缀码在N节满树上占用一个n_i节端节点
 - 从该端节点开始,到第N节上有s^{N-ni}个枝不能再用,否则 就不是异前缀码
 - 总共不用的枝数为 $\sum_{i=0}^{r-1} s^{N-ni}$
 - 而N节满树的第N节上的总枝数为s^N

3.3 非等长信源编码

- >基本概念
- ➤ McMillan不等式
- ➤ Kraft不等式
- > 非等长信源编码的平均码长
- > 几种非等长信源编码方案

• 定理3.3: 如果 $\sum_{i=0}^{r-1} s^{-n_i} \le 1$, 则**存在**一个唯一可

译码,相应的码长是ni

• 证明: 假设 $\mathbf{n}_0 \le \mathbf{n}_1 \le \mathbf{n}_2 \le \dots \le \mathbf{n}_{r-1}$. $定义r \land S$ 进制小数 \mathbf{w}_j : $\mathbf{w}_0 = 0 \qquad (\mathbf{n}_0 \textcircled{d}),$ $\mathbf{w}_j = \sum_{i=0}^{j-1} s^{-n_i} \quad (\mathbf{n}_j \textcircled{d}) \qquad 1 \le j \le r-1.$

则构造了一个S进制<mark>异前缀码 w_j </mark>,i = 0, 1, ..., r-1

• 例题: s=3, {n_i}={1, 1, 2, 2, 3, 3, 4, 4, 4}

满足
$$\sum_{i=0}^{r-1} s^{-n_i} \le 1$$

$$w_0 = O(n_0 \langle \dot{\Sigma} \rangle)$$

$$w_j = \sum_{i=0}^{j-1} s^{-n_i} (n_i / \underline{)})$$

$$1 \le j \le r-1$$

$n_0 = 1$	$w_0 = 0$	0
n ₁ =1	$w_1 = 1/3$	1
n ₂ =2	$w_2 = 2/3$	20
n ₃ =2	$w_3 = 2/3 + 1/9$	21
n ₄ =3	$w_4 = 2/3 + 2/9$	220
n ₅ =3	$w_5 = 2/3 + 2/9 + 1/27$	221
n ₆ =4	$w_6 = 2/3 + 2/9 + 2/27$	2220
n ₇ =4	$w_7 = 2/3 + 2/9 + 2/27 + 1/81$	2221
n ₈ =4	$w_8 = 2/3 + 2/9 + 2/27 + 2/81$	2222

•证明(续):此码具有下面的性质, 当k>j时,

$$(w_k - w_j) \cdot s^{n_j} = \left(\sum_{i=0}^{k-1} s^{-n_i} - \sum_{i=0}^{j-1} s^{-n_i}\right) \cdot s^{n_j} = s^{n_j} \cdot \sum_{i=j}^{k-1} s^{-n_i} \ge 1$$

反证法:如果不是S进制异前缀码

假设当k>j时, w_i是w_k的前缀

有
$$(w_k - w_j) \cdot s^{n_j} < 1$$

与前面的性质矛盾, 假设不成立

异前缀码是一种唯一可译码, 因此得证.

3.3 非等长信源编码

- >基本概念
- ➤ McMillan不等式
- ➤ Kraft不等式
- > 非等长信源编码的平均码长
- > 几种非等长信源编码方案

3.3.4 非等长信源编码的平均码长

• 定理3.4: 如果C是唯一可译码, 它的S进制编码的平均长度一定大于等于信源的S进制的熵. 即

$$\overline{n} \ge H_s(\mathbf{p}) = \sum_{i=0}^{r-1} p_i \log_s \frac{1}{p_i}$$

3.3.4 非等长信源编码的平均码长

• 证明:

$$H_s(\mathbf{p}) - \overline{n} = \sum_{i=0}^{r-1} p_i \left[\log_s \frac{1}{p_i} - n_i \right]$$

$$= \sum_{i=0}^{r-1} p_i \left[\log_s \frac{1}{p_i} - \log_s s^{n_i} \right] = \sum_{i=0}^{r-1} p_i \left[\log_s \frac{s^{-n_i}}{p_i} \right]$$

$$\leq \log_s \left[\sum_{i=0}^{r-1} p_i \frac{s^{-n_i}}{p_i} \right]$$

$$=\log_s \left[\sum_{i=0}^{r-1} s^{-n_i}\right] \leq \log_s 1 = 0$$

3.3 非等长信源编码

- >基本概念
- ➤ McMillan不等式
- ➤ Kraft不等式
- > 非等长信源编码的平均码长
- > 几种非等长信源编码方案

美剧 Silicon Valley

51

3.3.5 几种非等长信源编码方案

- •非等长信源编码方案主要有:
 - ■Shannon编码
 - □Fano编码
 - ■Shannon-Fano-Elias编码
 - ■Huffman编码

3.3.5几种非等长信源编码方案 Shannon编码

- 证明Kraft不等式时引入的编码方法被称为 Shannon编码
- Shannon编码选择每个码字长度n_i为:

$$n_i = \lceil \log_s p_i^{-1} \rceil$$
 (i=1, 2, ..., r-1)

- 平均码长 $\overline{n} \leq H_s(\mathbf{p}) + 1$
- 出一般情况下, Shannon编码的平均码长并不是 最短的

• 证明: $取n_i = \lceil \log_s p_i^{-1} \rceil$ 即 $\log_s p_i^{-1} \le n_i < \log_s p_i^{-1} + 1$, i=1, 2, ..., r-1. 由 $\log_s p_i^{-1} \le n_i$ 有 $s^{-ni} \le p_i$, $\sum_{i=1}^{r-1} s^{-n_i} \le \sum_{i=1}^{r-1} p_i = 1$

故存在唯一可译码,它的长度是n;

有
$$\sum_{i=0}^{r-1} p_i n_i \le \sum_{i=0}^{r-1} p_i \log \frac{1}{p_i} + \sum_{i=0}^{r-1} p_i$$

$$\overline{n} \leq H_{s}(\mathbf{p}) + 1$$

3.3.5 几种非等长信源编码方案

- •非等长信源编码方案主要有:
 - ■Shannon编码
 - □<u>Fano编码</u>
 - ■Shannon-Fano-Elias编码
 - ■Huffman编码

3.3.5几种非等长信源编码方案 Fano编码

- 方法(以二进制编码为例):
 - □将信源符号以概率递减的次序排列
 - □将排好的信源符号划分为两组,使每组概率和近于相等,并分别编码为"0"和"1"
 - □进一步将每组中的信源符号再分为两组,使 其概率和近于相等,并分别编码为"0"和"1"
 - □依次下去...
 - □直至每组只剩一个信源符号为止

3.3.5几种非等长信源编码方案 Fano编码

• 例题:

58

信源符号	概率p _i		编 码	码字	码长 n _i		
a_1	0.32	0	0			00	2
a ₂	0.22	0	1			01	2
a ₃	0.18		0			10	2
a ₄	0.16	1		0		110	3
a ₅	0.08		1	1	0	1110	4
a ₆	0.04			1	1	1111	4

2020/4/30

3.3.5几种非等长信源编码方案 Fano编码

- Fano编码实际上是构造码树的一种方法
- 它需要考虑信源的统计特性
- 这种编码方法的结果不一定是唯一的
- 有可能没有充分利用短码,从而增加了平均码长
- Fano编码的平均码长:

$$\overline{n} \leq H_s(\mathbf{p}) + 2$$

3.3.5 几种非等长信源编码方案

- •非等长信源编码方案主要有:
 - ■Shannon编码
 - □Fano编码
 - ■Shannon-Fano-Elias编码
 - ■Huffman编码

3.3.5几种非等长信源编码方案 Shannon-Fano-Elias编码

- 根据信源符号的累积分布函数来确定码字
- 定义累积分布函数:

 $F(a_i) \neq F(a_k)$

 $\overline{F}(a_i) \neq \overline{F}(a_k)$

$$F(a_k) = \sum_{i=1}^k p(a_i) \ a_i, a_k$$
为信源符号
定义修正的累积分布函数:
 $\overline{F}(a_k) = \sum_{i=1}^{k-1} p(a_i) + \frac{1}{2} p(a_k) \ a_i, a_k$ 为信源符号
当j≠k时

3.3.5几种非等长信源编码方案 Shannon-Fano-Elias编码

- 因此可以利用 $\overline{F}(a_k)$ 的数值作为符号 a_k 的码字
- 取 $\mathbf{n}_{k} = \lceil \log \mathbf{p}_{k}^{-1} \rceil + 1$,将表示 $\overline{F}(a_{k})$ 的二进制数截短为 \mathbf{n}_{k} 位,则得到 \mathbf{a}_{k} 的码字
- 这种编码方法的平均码长:

$$H_s(\mathbf{p}) + 1 \le \overline{n} < H_s(\mathbf{p}) + 2$$

• 优点:不要求信源符号按概率大小次序排列

3.3.5几种非等长信源编码方案 Shannon-Fano-Elias编码

• 例题

信源符号	概率 p i	累积分布 函数 F(s_i)	$\overline{F}(s_i)$	$\overline{F}(s_i)$ 的二进制数	码长 n _i	码字
a1	0.25	0.25	0.125	0.001	3	001
a2	0.5	0.75	0.5	0.10	2	10
a3	0.125	0.875	0.8125	0.1101	4	1101
a4	0.125	1.0	0.9375	0.1111	4	1111

3.3.5几种非等长信源编码方案 Shannon-Fano-Elias编码

• 例题(续):

平均码长 $\bar{n} = 2.75bits$

信源的熵 H(S)=1.75bits

而Shannon编码和Fano编码,以及将要介绍的 Huffman编码都能达到该信源的熵

• Shannon-Fano-Elias编码虽然不是最佳的,但是由它发展而来的算术编码方法,目前广泛应用于image和video的数据压缩

3.3.5 几种非等长信源编码方案

- •非等长信源编码方案主要有:
 - ■Shannon编码
 - □Fano编码
 - ■Shannon-Fano-Elias编码
 - ■Huffman编码

- □ D. Huffman在1952年提出
- □最佳非等长信源编码方法
- □在不同领域得到广泛应用
 - ▶例1-国际数字传真编码标准所采用的MH码是一种改进的Huffman编码
 - ➤例2-美国HDTV

• 例3.2: 设信源符号有8种字母,相应概率如下, 试进行二进制和三进制 Huffman编码.

X	P(x)			
A	0.20			
В	0.19			
С	0.18			
D	0.17			
Е	0.15			
F	0.10			
G	0.005			
Н	0.005			

• 二进制Huffman编码:

A	0.20	10		0.20	10		0.20	10	1	0.26	01	0.35	00	1	0.39	1	1	0.61	0	
В	0.19	11		0.19	11		0.19	11		0.20	10	0.26	01		0.35	00		0.39	1	
C	0.18	000		0.18	000		0.18	000		0.19	11	0.20	10		0.26	01				
D	0.17	001		0.17	001		0.17	001		0.18	000	0.19	11				1			
E	0.15	010		0.15	010		0.15	010		0.17	001									
F	0.10	0110		0.10	0110	7	0.11	011												
G	0.005	01110	7	0.01	0111															
Н	0.005	01111				ı														

• 三进制Huffman编码:

(错误!)

最短码"2"没被采用!

• 三进制Huffman编码: (正确!)

- 编码要求:
 - (1) 信源符号出现的概率越大, 编码后的码字越短信源符号出现的概率越小, 编码后的码字越长
 - (2)S进制编码, **第一次合并**的符号数s'={2, 3, ...,s} s'= r mod (s-1)
 - (3) 概率最小的s'个码字, 区别仅在于最后一位

- 问题:
 - (1)要求了解信源的统计分布
 - (2)算法复杂度随着信源符号串长度的增加而迅速增长

显录

- 引言
- 无失真信源编码定理
- 非等长信源编码
- •一种实用编码方法:LZ编码

- 由A. Lempel和J. Ziv在1976-1978年期间提出
- 一种通用信源编码方法(Universal Source Coding)
 - □不需要了解信源的统计特性
- 属于变长→定长的信源编码方法
- 广泛应用于计算机文件的数据压缩

- [1] J. Ziv and A. Lempel, ``A Universal Algorithm for Sequential Data Compression," *IEEE Transactions on Information Theory*, Vol. 23, pp. 337--342, 1977.
- [2] J. Ziv and A. Lempel, "Compression of Individual Sequences Via Variable-Rate Coding," *IEEE Transactions on Information Theory*, Vol. 24, pp. 530--536, 1978.

• 方法:

- □将离散信源的输出序列分解成长度可变的分组,称为码 段(phrases)
- □每当信源输出字符组在最后位置加上一个字符后与前面 已有码段都不相同时,把它作为一种新的码段引入...

【例】

信源输出序列:

10101101001001110101000011001110101100011011...

分解为码段:

1,0,10,11,01,00,100,111,010,1000,011,001,110,101,10001,1011,...

- 方法:
 - □这些码段列入一个位置字典,用于记载已有码段的位置
 - □在对一个新的码段编码时,只要指出字典中现有码段的 位置,把新字符附在后面
 - □该码的信源解码器在通信系统的接收端构造一个完全相同的表,对接收序列作相应的解码

	字典位置	字典内容	码字
1	0001	1	00001
2	0010	0	00000
3	0011	10	00010
4	0100	11	00011
5	0101	01	00101
6	0110	00	00100
7	0111	100	00110
8	1000	111	01001
9	1001	010	01010
10	1010	1000	01110
11	1011	011	01011
12	1100	001	01101
13	1101	110	01000
14	1110	101	00111
15	1111	10001	10101
16		1011	11101

- □如何选择码表的总长度?
 - □一般而言,无论表有多大,总会溢出......
 - □为此,信源编解码器必须达成一致,将无用的码段从各 自的字典中删去,在它们留下的位置上换上新的码段

The following table compares an adaptive version of the Huffman code (implemented in the Unix `compact" program) and an implementation of the Lempel-Ziv algorithm (Unix "compress" program).

	Adaptive Huffman	Lempel-Ziv
LaTeX file	66%	44%
Speech file	65%	64%
Image file	94%	88%

Size of compressed file as percentage of the original file

练习

1. (15分)信源输出符号A1, A2, ..., A10的概率分别为1/8, 1/8, 1/8, 1/8, 1/10, 1/10, 1/10, 1/10, 1/20, 1/20. 试给出三进制Huffman编码,并计算平均码长和编码效率.

(注:要求计算出结果,保留三位有效数字.

参考数据: lg2≈0.301, lg3≈0.477, lg5≈0.699)

作业: 习题3.1, 3.2, 3.3