- 1. Define the functions "less than" and "greater than" of two numerical arguments.
- 1.1 less than:

m is less than n if (sub m n) is less than zero. Also, less than \equiv not(greater or equal to)

LT :=
$$\lambda a \lambda b$$
. NOT (GEQ b a)

Which

GEQ := λ ab. LEQ b a

LEQ := λ mn. ISZERO (SUB m n)

ISZERO := $\lambda n. n (\lambda x. FALSE) TRUE$

SUB := λ mn. n PRED m

PRED := $\lambda nfx. n (\lambda gh. h (g f)) (\lambda u. x) (\lambda u. u)$

1.2 greater than:

m is greater than n if (sub m n) is greater than zero. Also, greater than \equiv not(less than or equal to)

GT :=
$$\lambda a \lambda b$$
. NOT (LEQ a b)

Which LEQ is defined in 1.1

2. Define the positive and negative integers using pairs of natural numbers.

we define natural number as $(a, b) = -1^a * b$.

Positive integer = +n = (0, n)

Negative integer = -n = (1, n)

We define pair as

pair => λx . λy . λf . ((f x) y)

first => $\lambda p. (p (\lambda x. \lambda y. x))$

second => $\lambda p. (p (\lambda x. \lambda y. y))$

Thus,
$$+n = \lambda x$$
. pair 0 x
 $-n = \lambda x$. pair 1 x

3. Define addition and subtraction of integers

<u>addition</u>

m + n means add one to m, n times. For example, 5 + 3 means add one to five, three times. The step of adding one to the previous number is called successor which is defined as SUCC := $\lambda n.\lambda f.\lambda x.f$ (n f x)

Thus, addition can be defined as ADD := $\lambda m \lambda n$. n succ m

subtraction

m – n means take one off m, n times. For example, 5 -3 means take one off five, three times. The step of taking one of is called predecessor (PRED n = n – 1) which is defined in 1.1 as $\lambda n.\lambda f.\lambda x.n$ ($\lambda g.\lambda h.h$ (g f)) ($\lambda u.x$) ($\lambda u.u$)

Thus, subtraction can be defined as SUB := $\lambda m \lambda n$. n PRED m

4. Define the division of positive integers recursively

we define division as a pair (m,n) = m/n

DIV := Y ($\lambda g.\lambda q.\lambda a.\lambda b.$ LT a b (PAIR q a) (g (SUCC q) (SUB a b) b)) 0

Which

Y := λg . (λx . g (x x)) (λx . g (x x)) \equiv S (K (S I I)) (S (S (K S) K) (K (S I I))) LT, PAIR, SUCC and SUB are defined in the previous questions

- 5. Define the function n! = n. (n 1) ... 1 recursively $(\lambda x \cdot (\lambda y \cdot x \cdot (y \cdot y)) \cdot (\lambda y \cdot x \cdot (y \cdot y)) \cdot (\lambda f \cdot \lambda \cdot n \cdot (ISZERO \cdot n) \cdot 1 \cdot (MULT \cdot n \cdot (f \cdot (PRED \cdot n))))$
- 6. Define the rational numbers as pairs of integers We define the rational numbers as Q = pair (m,n) = m/n ; m \in Z, n \in Z Q = λ m. λ n. pair m n
- 7. Define functions for the addition, subtraction, multiplication and division of rationals. Let $\frac{a}{b}$ and $\frac{c}{d}$ are rational numbers

We define pair m n = (m,n) = m / n and define x and y as rational numbers which $x := \lambda a$. λb . Pair a b and $y := \lambda c$. λd . Pair c d

Addition is $\frac{a}{b} + \frac{c}{d} = \frac{ad+cb}{bd}$ so we can define the addition as a pair of ad+cb and bd ADD := λx . λy . (pair ad+cb bd) x y

Subtraction is $\frac{a}{b} - \frac{c}{d} = \frac{ad-cb}{bd}$ so we can define the addition as a pair of ad-cb and bd SUB := λx . λy . (pair ad-cb bd) x y

Multiplication is $\frac{a}{b}*\frac{c}{d}=\frac{ac}{bd}$ so we can define the addition as a pair of ac and bd MUL := λx . λy . (pair ac bd) x y

Division is $\frac{a}{b}/\frac{c}{d} = \frac{ad}{bc}$ so we can define the addition as a pair of ad and bc DIV := λx . λy . (pair ad bc) x y

8. Define a data structure to represent a list of numbers.

A list can be defined as a pair of head and the rest

empty list: NIL := λx. TRUE

LIST := λx . λy . pair x y

which x is head and y is the rest of the list

HEAD := $\lambda p. p TRUE$

REST := $\lambda p. p$ FALSE

9. Define a function which extracts the first element from a list. HEAD := λp . p TRUE

10. Define a recursive function which counts the number of elements in a list. LENGTH := Y (λg . λc . λx . NULL x c (g (SUCC c) (REST x))) 0