

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΗΜΑΤΩΝ, ΕΛΕΓΧΟΥ ΚΑΙ ΡΟΜΠΟΤΙΚΗΣ

Μάθημα: "Ρομποτική Ι: Ανάλυση, Έλεγχος, Εργαστήριο" (Ακαδημαϊκό Έτος 2020-21)

2^{η} ΣΕΙΡΑ ΑΝΑΛΥΤΙΚΩΝ ΑΣΚΗΣΕΩΝ (Course Assignment #2)

Άσκηση 2.1 (Διαφορική κινηματική ανάλυση – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται από τον ακόλουθο πίνακα παραμέτρων D-H (όπου l_1, l_2, l_3 : σταθερά μήκη συνδέσμων):

i	$d_{ m i}$	$ heta_{ m i}$	a_{i}	$lpha_{ m i}$
1	l_1	q_1	0	- π/2
2	0	q_2	l_2	0
3	0	q_3	l_3	$\pi/2$

- α) Να προσδιοριστεί η Ιακωβιανή μήτρα $J(q_1,q_2,q_3)$ του διαφορικού κινηματικού μοντέλου του ρομποτικού βραχίονα.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάξεις* ως προς τη *γραμμική ταχύτητα* του τελικού στοιχείου δράσης, και να δοθεί γεωμετρική ερμηνεία των διατάξεων αυτών.

Άσκηση 2.2 (Διαφορική κινηματική ανάλυση – Υπολογισμός Ιακωβιανής μήτρας – Ιδιόμορφες διατάξεις)

Έστω ρομποτική κινηματική αλυσίδα τριών βαθμών ελευθερίας (q_1, q_2, q_3) της οποίας η κινηματική δομή περιγράφεται μέσω των ακόλουθων μητρώων μετασχηματισμού συντεταγμένων:

$$A_{\mathbf{l}}^{0}(q_{\mathbf{l}}) = \begin{bmatrix} 1 & 0 & 0 & l_{\mathbf{l}} \\ 0 & c_{\mathbf{l}} & -s_{\mathbf{l}} & l_{\mathbf{0}} \\ 0 & s_{\mathbf{l}} & c_{\mathbf{l}} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad A_{\mathbf{l}}^{\mathbf{l}}(q_{2}) = \begin{bmatrix} c_{2} & 0 & s_{2} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{2} & 0 & c_{2} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ \kappa\alpha\mathbf{l} \quad A_{\mathbf{l}}^{2}(q_{3}) = \begin{bmatrix} 1 & 0 & 0 & l_{\mathbf{l}} \\ 0 & c_{3} & -s_{3} & 0 \\ 0 & s_{3} & c_{3} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \\ (\text{όπου } c_{\mathbf{i}} = \cos(q_{\mathbf{i}}), s_{\mathbf{i}} = \sin(q_{\mathbf{i}}), s_{\mathbf{i}}$$

- α) Να προσδιοριστεί (με εφαρμογή της γεωμετρικής μεθόδου) η I aκωβiανi μiτpα J (q_1,q_2,q_3) του δiαφορiκού κινηματικού μοντέλου του ρομποτικού αυτού μηχανισμού.
- β) Να εξετασθεί πότε ο μηχανισμός εμφανίζει *ιδιόμορφες διατάξεις* ως προς τη *γωνιακή ταχύτητα* του τελικού στοιχείου δράσης. Να δοθεί γεωμετρική ερμηνεία των ανωτέρω ιδιόμορφων διατάξεων του μηχανισμού.

Άσκηση 2.3 (Δυναμικό μοντέλο)

Έστω ρομποτικός μηχανισμός δύο βαθμών ελευθερίας, που εικονίζεται στο ακόλουθο Σχήμα 1, με l_1 και l_2 σταθερά μήκη συνδέσμων και (q_1, q_2) μεταβλητές μετατοπίσεως στις αρθρώσεις. Υποθέτουμε την ύπαρξη σημειακής μάζας m στο σημείο Ε (όπως εικονίζεται στο Σγήμα 1) και θεωρούμε τους συνδέσμους κατά τα λοιπά αβαρείς. Υποθέτουμε επίσης ότι ασκείται στο τελικό εργαλείο δράσης σταθερή εξωτερική δύναμη F_x (κατά τη δ/νση του x_0 , όπως εικονίζεται στο σχήμα), καθώς και ότι η διεύθυνση επίδρασης της βαρύτητας ${m g}$ είναι αυτή που σημειώνεται στο σχήμα. Να γραφούν οι δυναμικές εξισώσεις κίνησης του ρομποτικού μηγανισμού, γρησιμοποιώντας μεθοδολογία Lagrange.

Σχήμα 1: Επίπεδος βραχίονας 2 β.ε. (1P-1R)