
Dimensiones: 550 filas, 12 columnas

Memoria usada: 0.20 MB

Tipo de datos: object: 6 int64: 4 float64: 2

valores duplicados: 2

Matriz de correlación

Columnas Numéricas:

1. mpg_ciudad: sin valores faltantes

2. mpg_combinado: sin valores faltantes

cilindros: 2 (0.36%)
 cilindrada: 2 (0.36%)

5. mpg_carretera: sin valores faltantes

6. ano: sin valores faltantes

Columnas Categóricas:

1. clase: sin valores faltantes

2. conduccion: sin valores faltantes

3. tipo_combustible: sin valores faltantes

4. marca: sin valores faltantes

5. modelo: sin valores faltantes

6. transmision: sin valores faltantes

Distribuciones de Variables Numéricas

Distribuciones de Variables Categóricas

☐ DISTRIBUCIONES DE VARIABLES CATEGÓRICAS

Datos Estadísticos

mpg_ciudad: Pearson=0.987, Spearman=0.989

mpg_ciudad: W=0.896, p=0.0000

Variable VIF
0 mpg_ciudad 6.979699
1 cilindros 8.886235
2 cilindrada 9.381547
3 mpg_carretera 6.724212
4 ano 1.069812

T-test requiere una variable categórica binaria.

Chi2 = 28.54, p = 0.0001

Resultados de Modelos entrenados

Modelo: RandomForest

MAE: 0.3050 RMSE: 0.6350 R²: 0.9841

Modelo: GradientBoosting

MAE: 0.3283 RMSE: 0.5425 R²: 0.9884

Modelo: DecisionTree

MAE: 0.2545 RMSE: 0.7508 R²: 0.9778

	RandomForest	GradientBoosting	DecisionTree	
RandomForest	DM =	L.1568, p = 0.2499 (noDsMogn⊨ifi	1.8451, p = 0.0677 (no signific	ativo)
GradientBoosting		DM = -	1.5639, p = 0.1207 (no signific	ativo)
DecisionTree				

Prueba ANOVA:

ANOVA F = 32.976, p = 0.0000 (significativo)

Distribución de errores (Gradient Boosting)

Distribución de errores (Random Forest)

Distribución de errores (residuales)

Distribución de errores (Decision Tree)

Distribución de errores (residuales)

