```
[1]: from itertools import permutations
     import numpy as np
     def hamiltonian_cycles(cities, symmetric = False):
         'returns a list of all possible hamiltonian cycles for a given list of cities'
         start = cities[0]
         cycles = []
         for permutation in permutations(cities[1:]):
             cycle = start + ''.join(permutation) + start
             if symmetric:
                 if cycle[::-1] not in cycles:
                     cycles.append(cycle)
             else:
                 cycles.append(cycle)
         return cycles
     def map_indices(cities, symmetric = False):
         'returns all the hamiltonian cycles and the indices'
         cycles = hamiltonian_cycles(cities, symmetric = symmetric)
         index_map = {cities[i]: str(range(len(cities))[i]) for i in range(len(cities))}
         indices_cycles = []
         for cycle in cycles:
             indices_city = ''
             for city in cycle[1:]:
                 indices_city += index_map[city]
             indices_cycles.append(indices_city)
         return cycles, indices_cycles
     def sort_indices(cycles, indices_cycles):
         'sorts the indices'
         results = []
         for cycle, index in zip(cycles, indices_cycles):
             pairs = list(zip(cycle, index))
             sorted_pairs = sorted(pairs, key = lambda pair: pair[0]) # sorts by city name
             sorted_index = ''.join([pair[1] for pair in sorted_pairs])
             results.append([cycle, index, sorted_index])
         return results
[2]: cities = ['A', 'B', 'C', 'D', 'E']
     cycles, indices_cycles = map_indices(cities, symmetric = True)
     cycles, indices_cycles
[2]: (['ABCDEA',
       'ABCEDA',
       'ABDCEA',
       'ABDECA',
       'ABECDA',
       'ABEDCA',
       'ACBDEA',
       'ACBEDA',
       'ACDBEA',
       'ACEBDA',
       'ADBCEA',
```

```
'ADCBEA'],
      ['12340',
       '12430',
       '13240',
       '13420',
       '14230',
       '14320',
       '21340'.
       '21430',
       '23140',
       '24130',
       '31240',
       '32140'])
[3]: table = sort_indices(cycles, indices_cycles)
     print("cycle, index, sorted_index")
     table
    cycle, index, sorted_index
[3]: [['ABCDEA', '12340', '12340'],
      ['ABCEDA', '12430', '12403'],
      ['ABDCEA', '13240', '13420'],
      ['ABDECA', '13420', '13042'],
      ['ABECDA', '14230', '14302'],
      ['ABEDCA', '14320', '14023'],
      ['ACBDEA', '21340', '23140'],
      ['ACBEDA', '21430', '24103'],
      ['ACDBEA', '23140', '24310'],
      ['ACEBDA', '24130', '23401'],
      ['ADBCEA', '31240', '32410'],
      ['ADCBEA', '32140', '34120']]
[4]: # Base 10 and 2 conversions
     table = np.array(table)
     indices = table[:,2]
     base_10 = np.array([int(indices[i], len(cities)) for i in range(len(indices))])
     base_2 = np.array(["{0:b}".format(base_10[i]) for i in range(len(base_10))])
     table = np.append(table, base_10.reshape(-1,1), axis=1)
     table = np.append(table, base_2.reshape(-1,1), axis=1)
     print("cycle, index, sorted_index, base 10, base 2 \n",table)
    cycle, index, sorted_index, base 10, base 2
     [['ABCDEA' '12340' '12340' '970' '1111001010']
     ['ABCEDA' '12430' '12403' '978' '1111010010']
     ['ABDCEA' '13240' '13420' '1110' '10001010110']
     ['ABDECA' '13420' '13042' '1022' '1111111110']
     ['ABECDA' '14230' '14302' '1202' '10010110010']
     ['ABEDCA' '14320' '14023' '1138' '10001110010']
     ['ACBDEA' '21340' '23140' '1670' '11010000110']
     ['ACBEDA' '21430' '24103' '1778' '11011110010']
     ['ACDBEA' '23140' '24310' '1830' '11100100110']
     ['ACEBDA' '24130' '23401' '1726' '11010111110']
     ['ADBCEA' '31240' '32410' '2230' '100010110110']
```