

This is a digital copy of a book that was preserved for generations on library shelves before it was carefully scanned by Google as part of a project to make the world's books discoverable online.

It has survived long enough for the copyright to expire and the book to enter the public domain. A public domain book is one that was never subject to copyright or whose legal copyright term has expired. Whether a book is in the public domain may vary country to country. Public domain books are our gateways to the past, representing a wealth of history, culture and knowledge that's often difficult to discover.

Marks, notations and other marginalia present in the original volume will appear in this file - a reminder of this book's long journey from the publisher to a library and finally to you.

Usage guidelines

Google is proud to partner with libraries to digitize public domain materials and make them widely accessible. Public domain books belong to the public and we are merely their custodians. Nevertheless, this work is expensive, so in order to keep providing this resource, we have taken steps to prevent abuse by commercial parties, including placing technical restrictions on automated querying.

We also ask that you:

- + *Make non-commercial use of the files* We designed Google Book Search for use by individuals, and we request that you use these files for personal, non-commercial purposes.
- + Refrain from automated querying Do not send automated queries of any sort to Google's system: If you are conducting research on machine translation, optical character recognition or other areas where access to a large amount of text is helpful, please contact us. We encourage the use of public domain materials for these purposes and may be able to help.
- + *Maintain attribution* The Google "watermark" you see on each file is essential for informing people about this project and helping them find additional materials through Google Book Search. Please do not remove it.
- + *Keep it legal* Whatever your use, remember that you are responsible for ensuring that what you are doing is legal. Do not assume that just because we believe a book is in the public domain for users in the United States, that the work is also in the public domain for users in other countries. Whether a book is still in copyright varies from country to country, and we can't offer guidance on whether any specific use of any specific book is allowed. Please do not assume that a book's appearance in Google Book Search means it can be used in any manner anywhere in the world. Copyright infringement liability can be quite severe.

About Google Book Search

Google's mission is to organize the world's information and to make it universally accessible and useful. Google Book Search helps readers discover the world's books while helping authors and publishers reach new audiences. You can search through the full text of this book on the web at http://books.google.com/

A MANUAL FOR

Architects, Engineers and Contractors

RELATING TO THE USE OF

Structural Steel

SEVENTH EDITION 1916

Jones & Laughlin Steel Company

AMBRICAN IRON AND STEEL WORKS

Pittsburgh

THE NEW YORK PUBLIC LIBRARY 64500A

ASTOR. LENOX AND FILDEN FOUNDATIONS R 1922 L

Copyright 1916

Jones & Laughlin Steel Company

Preface

Seventh Edition

In order that Standard Steel Construction may present the latest development in the manufacture of steel shapes and their use in such constructional work as buildings, bridges, cars, ships and barges, the text has been completely rewritten for this edition.

The diagrams and tables include only the sections best suited for these types of steel construction. A complete list of all the sections that we roll, with diagrams and weight tables, is shown in our Shape Book.

Much new data in the way of general information useful to architects, engineers and contractors has been added.

In determining the arrangement and classification of data the natural sequence has been followed as nearly as practicable without losing sight of convenience in locating the subject sought. For this reason the several specifications for material and fabrication are placed at the end of the book.

Offices

General Offices Pittsburgh

Branch Office and Warehouse Chicago

District Sales Offices

Boston
131 State Street

Buffalo White Building

Cincinnati
Union Trust Company Building

Cleveland Rockefeller Building

Detroit Penobscot Building

> New York 165 Broadway

Philadelphia
Commercial Trust Building

Pittsburgh
Jones & Laughlin Building

San Francisco Crocker Building

St. Louis
Pierce Building

Plants

Eliza Furnaces and Coke Ovens

South Side Works

Soho Furnace and Works

Keystone Works

Aliquippa Works

J & L Products

Billets Blooms Slabs Skelp Sheet Bars

Beams Channels Angles
Tees Zees Plates
Sheet Piling

Rounds Squares Flats Hexagons Ovals Hoops Bands

Special Shapes
Agricultural Shapes
Tie Plates

Bars for Concrete Reinforcement Light Rails and Connections Steel Mine Ties

STRUCTURAL WORK

Columns Girders Trusses
Plate Work
Steel Barges

J&L Products

Wire Wire Nails Wire Products

Tin Plate Black Sheets (Tin Mill Sizes)

Railroad Spikes Rivets Boat Spikes
Chain

Power Transmission Machinery

COLD ROLLED

Shafting Axles Shapes
Finger Bars

COLD DRAWN

Hexagons Flats
Squares Rounds

FORGINGS

Suggestions in Reference to Ordering Material

In the Standard specifications of the American Society for Testing Materials will be noted what are termed the permissible variations in the rolling of plates, shapes and bars, and provision should be made in the design to care for such variations. A design which does not permit of this variation is frequently the cause of serious difficulties. Ample clearances tend toward ease and economy in fabrication and greater facility in the erection of any structure.

All the profiles and tables of sections in this book give the theoretical dimensions, to which we endeavor to work, but, owing to wear of rolls and other contingencies, we cannot guarantee that these profiles will be exactly reproduced in the sections. Wherever a profile applies to more than one weight of a section the dimensions given are for the minimum weight only.

All weights, with the exception of rails, are given in pounds per lineal foot. The weights of rails are given in pounds per lineal yard. Where but one weight is specified for a section that weight only can be rolled.

Beams, channels, sheet piling, tees and zees should be ordered to weight per lineal foot. Angles should be ordered either to weight per foot or to thickness, but never both. For universal mill plates, there should be specified the width and the thickness, both in inches, the length being given in feet and inches. Sheared plates, on the other hand, should have all dimensions specified in inches. For round and square rods, also bars, the width and the thickness should be specified in inches, the length in feet and inches. For the sizes of rails that we make, it is sufficient to specify weight per yard. For miscellaneous sections always specify the section number.

The association of American Steel Manufacturers recommend that certain sections of angles be considered as standard for general building construction, ship, car and bridge work. These angles have been indicated by printing their index numbers in bold-faced type in the tables on the profile pages and it is generally to the advantage of the customer to specify these standard sizes wherever possible.

In ordering material to specified lengths, the usual allowances for over or under length vary from ½" to ½" either way, and this should not be lost sight of in determining the lengths to order. When more exact cutting is required special arrangements are necessary.

Method of Increasing Sectional Areas

The above figures show the method of increasing the sectional areas and weights of structural shapes. Cross hatched portions represent the minimum sections and the blank portions the added areas.

In the case of Channels and I-Beams, the enlargement of the section adds an equal amount to the thickness of the web and the width of the flanges. In the case of Angles and Zees, the effect of spreading the rolls is slightly to increase the length of the legs. Many of the sizes, however, are rolled in finishing passes whereby the exact dimensions are maintained for different thicknesses.

Inasmuch, however, as these passes are modified in the wear of the rolls, it is impracticable to state what the exact dimensions will be, except in the case of the minimum weight sections. Designers and detailers of structural work should, therefore, arrange for ample clearances.

Common Dimensions of Beams and Channels

STRUCTURAL BEAMS

n = minimum web = t R = minimum web + 0.10 $r = \frac{6}{15} minimum web$ Slope of Flange, $1.6 = 16\frac{2}{3}\% = 9^{\circ} 27' 42''$

STRUCTURAL CHANNELS

 $\begin{array}{c} n = \text{minimum web} = t \\ R = \text{minimum web} + 0.10 \\ r = \frac{1}{10} \text{minimum web}^{2} \\ \text{Slope of Flange, } 1:6 = 16\%\% = 9^{\circ} 27' 42'' \end{array}$

All dimensions are in inches and apply only to the minimum weight Beams or Channels.

Dimensions given for Structural Beams are those adopted in 1896 by the Association of American Steel Manufacturers and apply to all Beam Sections shown on the pages which follow, except Beam Sections B0 to B7, B12 to B16, and B20 to B26.

Dimensions shown for structural Channels are those adopted by the Association of American Steel Manufacturers and apply to all Structural Channel Sections except C12 to C19.

B-0 to B-2 115, 110 and 105 lbs.

B-3 to B-7 100, 95, 90, 85 and 80 lbs.

Section Index Depth of Beam, Inches		Weight per Foot,			WEB TE	Maximum Length,	
	Pounds	Decimal	Fractional	Decimal	Fractional	Feet	
B-0 B-1 B-2	24	115.0 110.0 105.0	8.000 7.938 7.875	8 7 ¹⁵ 7 ⁷ / ₈	0.750 0.688 0.625	3/4 11 16 5/8	47 49 52
B-3 B-4 B-5 B-6 B-7	24	100.0 95.0 90.0 85.0 80.0	7.254 7.193 7.131 7.070 7.000	7½ 7½ 7½ 7½ 7±6 7	0.754 0.693 0.631 0.570 0.500	3/4 116 5/8 16 1/2	54 57 60 64 60

Structural Beams

Continued

Section of Poss	Depth of Beam.			WIDTH,	WEB TE	Maximum Length,	
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Feet
B-12 B-13 B-14 B-15 B-16	20	100.0 95.0 90.0 85.0 80.0	7.284 7.210 7.137 7.063 7.000	$7\frac{9}{32} \\ 7\frac{13}{64} \\ 7\frac{9}{64} \\ 7\frac{1}{16} \\ 7$	0.884 0.810 0.737 0.663 0.600	57 64 136 467 641 2319 319 319	46 49 52 55 57
B-20 B-21 B-22	20	75.0 70.0 65.0	6.399 6.325 6.250	$\begin{array}{c} 6\frac{13}{32} \\ 6\frac{21}{64} \\ 6\frac{1}{4} \end{array}$	0.649 0.575 0.500	21 32 37 64 1/2	61 66 72

Structural Beams Continued

*B-23 to B-26 90, 85, 80 and 75 lbs.

Section	Depth of Beam,			Flange Width, Inches		WEB THICKNESS, INCHES		
Index Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Length, Feet		
*B-23 *B-24 *B-25 *B-26	18	90.0 85.0 80.0 75.0	7.245 7.163 7.082 7.000	7½ 7½ 7½ 75 764 7	0.807 0.725 0.644 0.562	13 16 23 32 41 64 9	51 54 57 61	
B-27 B-28 B-29 B-30	18	70.0 65.0 60.0 55.0	6.259 6.177 6.095 6.000	6 11 6 11 63 63 6	0.719 0.637 0.555 0.460	23 32 41 64 9 16	66 71 77 85	

Proposed Sections-Inserted for reference only.

B-44-B-47 75, 70, 65 and 60 lbs.

B-52-B-55 55, 50, 45 and 42 lbs.

Section	Depth of Beam,	Weight per Foot.		FLANGE WIDTH, INCHES		WEB THICKNESS, INCHES		
Index	Index Inches		Decimal	Fractional	Decimal	Fractional	Length, Feet	
B-44 B-45 B-46 B-47	15	75.0 70.0 65.0 60.0	6.292 6.194 6.096 6.000	$\begin{array}{c} 6\frac{19}{64} \\ 6\frac{3}{16} \\ 6\frac{3}{32} \\ 6 \end{array}$	0.882 0.784 0.686 0.590	7/88 25/321 116 19 32	55 59 63 69	
B-52 B-53 <i>B-54</i> <i>B-55</i>	15	55.0 50.0 45.0 42.0	5.746 5.648 5.550 5.500	53/4 541 535 51/2	0.656 0.558 0.460 0.410	21 32 9 16 29 64 13 32	76 84 93 95	

Section	Tadam of Beam, per			Flangs Width, Inches		Web Thickness, Inches	
Index		Pounds	Decimal	Fractional	Decimal	Fractional	Length, Feet
B-60 B-61 B-62 B-63	12	55.0 50.0 45.0 40.0	5.611 5.489 5.366 5.250	5 31 5 31 5 23 514	0.821 0.699 0.576 0.460	53 645 647 679 64	54 60 64 73
B-68 B-69	12	35.0 31.5	5.086 5.000	5 3 5 5 5	0.436 0.350	ŢŢ	84 94

FLANGE WIDTH, WEB THICKNESS, Depth of Beam, Inches Weight per Foot, Pounds Maximum INCHES Section Index Length, Feet Decimal Fractional Decimal Fractional B-74 0.749 40.0 5.099 80 B-75 35.0 4.952 0.602 90 10 B-76 30.0 4.805 0.455100 B-77 25.0 4.660 0.310 100 B-82 35.0 4.772 0.73290 B-83 30.0 4,609 0.569 100 9 25.0 B-84 0.406 4.446 100 B-85 21.0 4.315 0.275 100 45

Structural Beams

Continued

B-90-B-93 25.5, 23, 20.5 and 18 lbs.

B-98-B-100 20, 17.5 and 15 lbs.

B-105-B-107 17.25, 14.75 and 12.25 lbs.

Section	Depth of Beam,	Weight per Foot,	FLANGE WIDTH, INCHES		WEB TH	Maximum Length,	
Ander	Inches Pounds	Pounds	Decimal	Fractional	Decimal	Fractional	Feet
B-90 B-91 B-92 B-93	8	25.5 23.0 20.5 18.0	4,271 4,179 4,087 4,000	$\begin{array}{c} 4\frac{17}{64} \\ 4\frac{11}{64} \\ 4\frac{3}{32} \\ 4 \end{array}$	0.541 0.449 0.357 0.270	35 64 29 64 23 64 17 64	90 100 100 100
B-98 B-99 B-100	7	20 17.5 15.0	3.868 3.763 3.660	37/8 349 349 321 332	0.458 0.353 0.250	29 64 23 64 1/4	90 100 100
B-105 B-106 B-107		17.25 14.75 12.25	3.575 3.452 3.330	$\begin{array}{c} 3\frac{37}{64} \\ 3\frac{29}{64} \\ 3\frac{21}{64} \end{array}$	0.475 0.352 0.230		900

B-112-B-114 14.75, 12.25 and 9.75 lbs.

B-119-B-122 10.5, 9.5, 8.5 and 7.5 lbs.

B-127-B-129 7.5, 6.5 and 5.5 lbs.

Section	Depth of Beam.			FLANGE WIDTH, INCHES		WEB THICKNESS, INCHES		
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Length, Feet	
B-112 B-113 B-114	5	14.75 12.25 9.75	3.294 3.147 3.000	3 6 4 3 6 4 3 6 4 3	0.504 0.357 0.210	1/2 23 64 13 64	90 100 100	
B-119 B-120 B-121 B-122	4	10.5 9.5 8.5 7.5	2.880 2.807 2.733 2.660	$\begin{array}{c} 27/8 \\ 2\frac{13}{16} \\ 2\frac{47}{64} \\ 2\frac{21}{32} \end{array}$	0.410 0.337 0.263 0.190	13 32 32 17 64 3 16	50 55 65 65	
B-127 B-128 B-129	3	7.5 6.5 5.5	2.521 2.423 2.330	$\begin{array}{c} 2\frac{33}{64} \\ 2\frac{27}{64} \\ 2\frac{21}{64} \end{array}$	0.361 0.263 0.170	23 64 17 64 11 64	33 38 45	

Structural Channels

C-3-C-8 55, 50, 45, 40, 35 and 33 lbs.

C-12-C-19 52.5, 50, 45, 40, 37.5, 35, 32 and 31.5 lbs.

Section	Depth	Weight per Foot,		FLANGE WIDTH, INCHES		ICKNESS, HES	Maximum Length,
Index	Index Channel, Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Feet
C-3 C-4 C-5 C-6 C-7 C-8	15	55.0 50.0 45.0 40.0 35.0 33.0	3.818 3.720 3.622 3.524 3.426 3.400	316 316 3232 355 357 377 376 44 376 432 376 432	0.818 0.720 0.622 0.524 0.426 0.400	3637/87/4432 17355/13346132	75 84 95 95 95 95
C-12 C-13 C-14 C-15 C-16 C-17 C-18 C-19	13	52.5 50.0 45.0 40.0 37.5 35.0 32.0 31.5	4.473 4.416 4.303 4.190 4.134 4.077 4.009 3.997	415 427 427 4264 416 436 436 436 436 436 436 436 436 436 43	0.848 0.791 0.678 0.565 0.509 0.452 0.384 0.372	7-101-14-014-0 Grade of 40 of 10 o	61 64 72 80 86 93 95

Structural Channels

Section	Depth	Weight per Foot,	FLANGE WIDTH, INCHES		WEB THICKNESS, INCHES		Maximum Length,
Index Channel, Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Feet	
C-23 C-24 C-25 C-26 C-27	12	40.0 35.0 30.0 25.0 20.5	3.418 3.296 3.173 3.050 2.940	$\begin{array}{c} 3\frac{27}{644} \\ 3\frac{19}{64} \\ 3\frac{3}{64} \\ 3\frac{3}{644} \\ 2\frac{15}{16} \end{array}$	0.758 0.636 0.513 0.390 0.280	9 64 1 6 3 6 4 5 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	80 89 95 95 95
C-32 C-33 C-34 C-35 C-36	10	35.0 30.0 25.0 20.0 15.0	3.183 3.036 2.889 2.742 2.600	$\begin{array}{c} 3\frac{3}{16} \\ 3\frac{1}{32} \\ 2\frac{57}{64} \\ 2\frac{47}{67} \\ 2\frac{19}{32} \end{array}$	0.823 0.676 0.529 0.382 0.240	5344 643 647 132 20 156	75 85 100 100 100
C-41 C-42 -43 44	9	25.0 20.0 15.0 13.25	2.815 2.652 2.488 2.430	$\begin{array}{c} 2\frac{13}{16} \\ 2\frac{21}{32} \\ 2\frac{31}{64} \\ 2\frac{7}{16} \end{array}$	0.615 0.452 0.288 0.230		75 85 100 100

Structural Channels

C-49-C-53 21.25, 18.75, 16.25, 13.75 and 11.25 lbs.

C-58-C-62 19.75, 17.25, 14.75, 12.25 and 9.75 lbs.

C-67-C-70 15.5, 13, 10.5 and 8 lbs.

Section			Weight FLANGE WII				
Index	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Length, Feet
C-49 C-50 C-51 C-52 C-53	8	21.25 18.75 16.25 13.75 11.25	2.622 2.530 2.439 2.347 2.260	$\begin{array}{c} 25/8 \\ 2\frac{17}{32} \\ 2\frac{7}{16} \\ 2\frac{1}{32} \\ 2\frac{17}{64} \end{array}$	0.582 0.490 0.399 0.307 0.220	37 64 31 64 13 32 5 16 7 32	90 100 100 100 100
C-58 C-59 C-60 C-61 C-62	7	19.75 17.25 14.75 12.25 9.75	2.513 2.408 2.303 2.198 2.090	$\begin{array}{c} 2\frac{33}{64} \\ 2\frac{13}{32} \\ 2\frac{13}{64} \\ 2\frac{13}{64} \\ 2\frac{13}{32} \\ \end{array}$	0.633 0.528 0.423 0.318 0.210	644 647 327 764 5 103	100 100 100 100 100
C-67 C-68 C-69 C-70	6	15.5 13.0 10.5 8.0	2.283 2.160 2.038 1.920	$\begin{array}{c} 2\frac{9}{32} \\ 2\frac{5}{32} \\ 2\frac{1}{32} \\ 1\frac{59}{64} \end{array}$	0.563 0.440 0.319 0.20	8/ 16	90 100 100 100

Structural Channels

Continued

C-89-C-91 6,5 and 4 lbs.

Section of	Depth of Channel,	Weight per Foot,	Flange Inc	WIDTH, HES	WEB TH		Maximum Length.
	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Feet
C-75 C-76 C-77	5	11.5 9.0 6.5	2.037 1.890 1.750	$\begin{array}{c} 2\frac{1}{32} \\ 1\frac{57}{64} \\ 1\frac{3}{4} \end{array}$	0.477 0.330 0.190	31 64 21 64 3 16	65 65 65
C-82 C-83 C-84	4	7.25 6.25 5.25	1.725 1.652 1.580	$1\frac{23}{32} \\ 1\frac{21}{32} \\ 1\frac{37}{64}$	0.325 0.252 0.180	21 64 1/4 3 16	65 65 65
C-89 C-90 -91	3	6.0 5.0 4.0	1.602 1.504 1.410	$\begin{array}{c} 1\frac{39}{64} \\ 1\frac{1}{2} \\ 1\frac{13}{32} \end{array}$	0.362 0.264 0.170	23 64 17 64 11 64	42 50 50

Ship Building Channels

Section	Depth of Weight Channel, per Foot,			Flange Width, Inches		WEB THICKNESS, INCHES		
	Inches	Pounds	Decimal	Fractional	Decimal	Fractional	Feet	
C-101 C-102	10	27.2 25.0	3.500 3.437	3½ 3¼	0.500 0.437	1/2 16	95 95	
C-105	10	21.8	3.375	33/8	0.375	3/8	95	
*C-107 *C-108 *C-109	9	34.7 31.7 28.6	4.000 3.900 3.800	4 3 11 3 11	0.650 0.550 0.450	## ##	85 85 85	

^{*}Proposed Sections—Inserted for reference only.

Ship Building Channels

Continued

C-114 to C-116 26.5, 25.2 and 23.8 lbs.

C-117 to C-119 24.2, 22.8 and 21.4 lbs.

C-121 to C-123 22.1, 20 and 18 lbs.

Section Index	Depth of Channel, Inches	Weight per Foot, Pounds	FLANGE WIDTH, INCHES		WEB THICKNESS, INCHES		Maximum Length.
			Decimal	Fractional	Decimal	Fractional	Feet
C-114 C-115 C-116	8	26.5 25.2 23.8	3.600 3.550 3.500	$3\frac{19}{32}$ $3\frac{35}{64}$ $3\frac{1}{2}$	0.600 0.550 0.500	19 32 35 64 1/2	85 85 90
C-117 C-118 C-119	8	24.2 22.8 21.4	3.600 3.550 3.500	$\frac{3\frac{10}{32}}{3\frac{35}{64}}$ $\frac{31}{2}$	0.500 0.450 0.400	1/2 26 64 13 32	90 95 100
C-121 C-122 -123	7	22.1 20.0 18.0	3.500 3.412 3.328	$\frac{3\frac{1}{2}}{3\frac{13}{32}}$ $\frac{3\frac{13}{32}}{3\frac{21}{64}}$	0.500 0.412 0.328	1/2 13 3/2 21 84	75 85 95

Ship Building Channels

Continued

C-128 to C-132 18.1, 16.8, 15.6, 14.3 and 13.0 lbs.

ction ndex C	Depth	Weight per Foot, Pounds	Flange Width, Inches		Web Thickness, Inches		Maximum Length,
	Channel, Inches		Decimal	Fractional	Decimal	Fractional	Feet
-128 -129 -130 -131 -132	6	18.1 16.8 15.6 14.3 13.0	3.063 3.000 2.936 2.874 2.813	3 16 3 2 15 2 7/8 2 13	0.563 0.500 0.437 0.375 0.313	16 12 16 38 5 16	30 30 35 35 40
-137	6	15.0	3.500	31/2	0.350	##_	aor /

Angles With Equal Legs

. A-17 to A-27 37.4 to 14.9 lbs.

A-47 to A-56 19.9 to 6.6 lbs.

Angles With Equal Legs

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	Maximum Length, Feet
A- 3	8 x 8	11/8	56.9	78
A- 4	8 x 8	116	54.0	83
A- 5	8 x 8	1	51.0	87
A- 6	8 x 8	15	48.1	95
A- 7	8 x 8	1/8	45.0	95
A-8	8 x 8	16	42.0	95
A- 9	8 x 8	24	38.9	95
A-10	8 x 8	16	35.8	95
A-11 A-12	8 x 8 8 x 8	/8	32.7 29.6	95 95
A-12 A-13	8 x 8 8 x 8	10	29.6	95
77	400 5000	72		1000000
A-17	6 x 6	1,5	37.4	100
A-18	6 x 6	16	35.3 33.1	100
A-19 A-20	6 x 6 6 x 6	18	33.1	100 100
A-20 A-21	6 x 6	16	28.7	100
A-21 A-22	6 x 6	11	26.5	100
A-23	6 x 6	56	24.2	100
A-24	6 x 6	28	21.9	100
A-25	6x6	16	19.6	100
A-26	6 x 6	7	17.2	100
A-27	6 x 6	3/6	14.9	100
A-33	5 x 5	15	28.9	100
A-34	5 x 5	76	27.2	100
A-35	5 x 5	13	25.4	100
A-36	5 x 5	3/4	23.6	100
A-37	5 x 5	11	21.8	100
A-38	5 x 5	5/8	20.0	100
A-39	5 x 5	36	18.1	100
A-40	5 x 5	1/2	16.2	100
A-41	5 x 5	7 16	14.3	100
A-42	5 x 5	3/8	12.3	100
A-47	4 x 4	13	19.9	50
A-48	4 x 4	3/4	18.5	52
A-49	4 x 4	11	17.1	56
A-50	4 x 4	5/8	15.7	61
A-51	4 x 4	16	14.3	65
A-52	4 x 4	1/2	12.8	65
A-53	4 x 4	16	11.3	65
A-54	4 x 4	3/8	9.8	65
A-55	4 x 4	16	8.2	65
A-56	4 x 4	1/4	0.8	65

Sections appearing in bold-face type adopted as standard by the Association section. Steel Manufacturers for bridge, car, ship and general building ction.

Angles With Equal Legs

Continued

3½" B.

A-62 to A-70 16.0 to 5.8 lbs.

A-75 3.64 lbs.

A-98 to A-105 11.5 to 3.71 lbs.

A-110 2.50 lbs.

A-130 to 135 7.7 to 3.07 lbs.

A-140 2.08 lbs.

A-160 to A-165 6.0 to 2.44 lbs.

A-170 1.65 lbs.

A-189 to A-192 3.35 to 1.80 Jbs.

A-197 1.23 lbs.

A-224 to A-226 1.49 to 0.80 lbs.

Angles With Equal Legs

Continued

Index	Inches	Inches	Weight per Foot, Pounds	Maximum Length, Feet
A- 62 A- 63 A- 64 A- 65 A- 66 A- 67 A- 68 A- 69 A- 70 A- 75	3½ x 3½ 3½ x 3½	3/4/16 20/20/20/20/20/20/20/20/20/20/20/20/20/2	16.0 14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8 3.64	50 54 60 65 65 65 65 65 65 65 45
A- 98 A- 99 A-100 A-101 A-102 A-103 A-104 A-105 A-110	3 x3 3 x3 3 x3 3 x3 3 x3 3 x3 3 x3 3 x3	5/8 9 6 1/2 7 6 8 9 6 1/4 9 6 1/8	11.5 10.4 9.4 8.3 7.2 6.1 4.9 3.71 2.50	50 55 60 65 65 65 65 45
A-130 A-131 A-132 A-133 A-134 A-135 A-140	2½ x 2½ 2½ x 2½	1/2 7 13/8 5 16 1/4 3 6 1/8	7.7 6.8 5.9 5.0 4.1 3.07 2.08	31 35 40 50 50 50
A-160 A-161 A-162 A-163 A-164 A-165 A-170	2 x2 2 x2 2 x2 2 x2 2 x2 2 x2 2 x2 2 x2	1/2 16 3/8 8 16 1/4 316 1/8	6.0 5.3 4.7 3.92 3.19 2.44 1.65	45 45 45 50 50 50
A-189 A-190 A-191 A-192 A-197 A-224 A-225	1½ x 1½ 1½ x 1½ 1½ x 1½ 1½ x 1½ 1½ x 1½ 1½ x 1½ 1½ x 1½	3/8 3/8 5/6 1/4 1/8 1/8	3.35 2.86 2.34 1.80 1.23 1.49 1.16	35 35 35 35 35 35 45

Angles With Unequal Legs

A-244 to A-252 28.7 to 13.0 lbs.

A-233 to A-248 49.3 to 23.0 lbs. A-650 20.2 lbs.

A-258 to A-265 25.4 to 12.3 lbs.

A-274 to A-280 22.4 to 11.7 lbs.

Angles With Unequal Legs

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	Maximum Length, Feet
A-233 A-234 A-235 A-236 A-237 A-238 A-239 A-240 A-241 A-242 A-243 A-650	8 x 6 8 x 6	11/8 11/6 1 1 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8	49.3 46.8 44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2	80 85 90 95 95 95 95 95 95 95
A-244 A-245 A-246 A-247 A-248 A-249 A-250 A-251 A-252	7 x 3½ 7 x 3½	7/8 36 /4 16 /6 916 /2 7 16 /8	28.7 26.8 24.9 23.0 21.0 19.1 17.0 15.0 13.0	79 86 95 95 95 95 95 95 95
A-258 A-259 A-260 A-261 A-262 A-263 A-264 A-265	6 x 4 6 x 4	136 3/4 116/3 916 17/2 716 3/8	25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	90 100 100 100 100 100 100 100
A-274 A-275 A-276 A-277 A-278 A-279 A-280	6 x 3½ 6 x 3½	8/4 116/5 11	22.4 20.6 18.9 17.1 15.3 13.5 11.7	95 100 100 100 100 100 100

Sections appearing in bold-face type adopted as standard by the Association of American Steel Manufacturers, for bridge, car, ship and general building construction.

Angles With Unequal Legs

-300 to A-307 19.8 to 8.7 lbs.

17.1 to 8.2 lbs.

748-A of 688-A 18.5 to 7.7 1bs.

Angles With Unequal Legs

Continued

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	Maximum Length, Feet
A-286 A-287 A-288 A-289 A-290 A-291 A-292 A-293	5 x4 5 x4 5 x4 5 x4 5 x4 5 x4 5 x4 5 x4	36/4 116/8 916/2 776/8	22.7 21.1 19.5 17.8 16.2 14.5 12.8 11.0	68 75 82 90 100 100 100 100
A-300 A-301 A-302 A-303 A-304 A-305 A-306 A-307	5 x3½ 5 x3½ 5 x3½ 5 x3½ 5 x3½ 5 x3½ 5 x3½ 5 x3½ 5 x3½	3/4 116 5/8 96 116 116 116 116 116 116 116 116 116	19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7	80 87 90 100 100 100 100
A-315 A-316 A-317 A-318 A-319 A-320 A-321	5 x3 5 x3 5 x3 5 x3 5 x3 5 x3 5 x3	116 5/8 916 1/2 76 8 516	17.1 15.7 14.3 12.8 11.3 9.8 8.2	90 97 100 100 100 100 100
A-328 A-329 A-330 A-331 A-332 A-333 A-334	4½ x 3 4½ x 3	16 5/8 16 1/2 16 3/8 16	16.0 14.7 13.3 11.9 10.6 9.1 7.7	50 54 60 65 65 65 65
A-339 A-340 A-341 A-342 'A-343 A-344 A-345 A-346 A-347	4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½	136 2416 216 216 27-16 26 5-16	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1	44 46 50 54 60 65 65 65

Angles With Unequal Legs Continued

A-365 to A-372

18.6 to 5.4 lbs.

A-379 to A-384

A-405 to A-410 9.5 to 4.5 lbs.

A-415 to A-420 7.7 to 3.07 lbs.

A-425 to A-431 6.8 to 1.86 lbs.

Angles With Unequal Legs

Section Index	Size, Inches	Thickness, Inches	Weight per Foot, Pounds	Maximum Length, Feet
A-354	4 x 3	++	14.8	54
A-355	4 x 3	5/8	13.6	60
A-356	4 x 3	18	12.4	65
A-357	4 x 3	1/2	11.1	65
A-358	4 x3	17	9.8	65
A-359	4 x 3	¾	8.5	65
A-360	4 x 3	18	7.2	65
A-361	4 x 3	16 % FE 1/2 FE 1/4	5.8	65
A-365	3½ x 3	12 16 8 6 6 1 1 4	13.6	40
A-366	$3\frac{1}{2} \times 3$	5 ∕8	12.5	44
A-367	$3\frac{1}{2} \times 3$	16	11.4	48
A-36 8	$3\frac{1}{2} \times 3$	1/2	10.2	50
A-369	$3\frac{1}{2} \times 3$	16	9.1	55
A-370	$3\frac{1}{2} \times 3$	3/8	7.9	60
A-371	$3\frac{1}{2} \times 3$	16	6.6	65
A-372	$3\frac{1}{2} \times 3$	1/4	5.4	65
A-379	$3\frac{1}{2} \times 2\frac{1}{2}$	16 1/2 16 18 18	10.4	50
A-380	$3\frac{1}{2} \times 2\frac{1}{2}$	1/2	9.4	54
A-381	3½ x 2½ 3½ x 2½	16 ·	8.3	65
A-382	3½ x 2½	3 ⁄8	7.2	65
A-383	$3\frac{1}{2} \times 2\frac{1}{2}$	16	6.1	65
A-384	$3\frac{1}{2}\times2\frac{1}{2}$	14	4.9	65
A-405	3 x 2½	• • • • • • • • • • • • • • • • • • •	9.5	55
A-406	$3 \times 2\frac{1}{2}$	1/2	8.5	65
A-407	$3 \times 2\frac{1}{2}$	16.	7.6	65
A-408	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	¾ 8	6.6	65
A-409	$3 \times 2\frac{1}{2}$	ाँ हैं	5.6	65
A-410	$3 \times 2\frac{1}{2}$	74	4.5	65
A-415	3 x 2	1/2	7.7	31
A-416	3 x2 3 x2 3 x2 3 x2 3 x2	16	6.8	35
A-417	3 x 2	3/8	5.9	40
A-418	3 x 2	18	5.0	50
A-419	3 x 2	1/4	4.1	50
A-420	3 x 2	IÎ	3.07	50
A-425	2½ x 2	1/2-1e/8-9e/4-1e 1/2-1e/8-9e/4-1e/8	6.8	35
A-426	$2\frac{1}{2} \times 2$	12	6.1	45
A-427 A-428	$21\frac{1}{2} \times 2$	 % 8	5.3	45 50
A-428 <i>A-429</i>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,0	4.5	/ 50
A-430	272 X Z	/ 4	3.62	\
A-431	$\begin{pmatrix} 2\frac{1}{2} \times 2 \\ 2\frac{1}{2} \times 2 \end{pmatrix}$	1,6	\ 2.75	\ -
-4 101	/ 2½ x 2	/ 8	/ 1.89	<u> </u>

Tees With Equal Legs

Section	Size, Inches		THICKN METAL,	Inches	Weight per Foot.	Maximum Length,
Index	Flange	Stem	Flange	Stem	Pounds	Feet
T- 3 T- 4 T- 8 T- 9 T-10	4 4 3½ 3½ 3½ 3½	4 4 3½ 3½ 3½ 3½	½ to % 16	1/2 to 1/6 1/6 to 1/2 1/2 to 1/6 1/6 to 1/2 1/6 to 1/2 3/8 to 1/6	13.5 12.1 11.9 10.5 9.2	40 40 40 40 40

Tees With Equal Legs

Section	Size, I	NCHES		NESS OF	Weight per Foot, Pounds	Maximum Length,
Index	Flange	Stem	Flange	Stem		Feet
T-15 T-16 T-17 T-22 T-23 T-24	3 3 21/2 21/2 21/2	3 3 21/2 21/2 21/2	3/8 to 1/6 5/6 to 3/8 1/4 to 5/6 3/8 to 1/6 5/6 to 3/8 1/4 to 5/6	3/8 to 1/6 5/6 to 3/8 1/4 to 5/6 3/8 to 1/6 5/6 to 3/8	7.8 6.7 5.5 6.4 5.5 4.8	40 40 40 40 45 50

Tees With Equal Legs

Section	Size, Inches			THICKNESS OF METAL, INCHES		Maximum
Index	Flange	Stem	Flange	Stem	Pounds	Length, Feet
T-28 T-29 T-33 T-34 T-39 T-40	2½ 2½ 2 1¾ 1¾ 1¾	21/4 21/4 2 2 13/4 13/4	5 to 32 14 to 32 14 to 32 14 to 32 14 to 32 14 to 32 14 to 32 36 to 32	5 to 11 16 to 12 14 to 32 5 to 11 16 to 12 14 to 12 14 to 12 14 to 12 16 to 12	4.7 3.83 4.1 3.38 2.93 2.28	50 50 50 50 40 40

Tees With Equal Legs Continued

2.47 lbs.

1.94 lbs.

T-51 2.02 lbs.

1.25 lbs. 0.89 lbs.

Section	Size, Inches			ESS OF INCHES	Weight per Foot,	Maximum Length,
Index	Flange	Stem	Flange	Stem	Pounds	Feet
T-45 T-46 T-51 T-52 T-57 T-58	1½ 1½ 1¼ 1¼ 1¼ 1	1½ 1½ 1½ 1¼ 1¼ 1	1/4 to \$2 1/6 to \$2 1/4 to \$2 1/4 to \$2 1/6 to \$2 1/6 to \$2 1/8 to \$2 1/8 to \$2	14 to 9 32 36 to 32 14 to 92 14 to 92 36 to 32 36 to 32 18 to 52 18 to 52 18 to 52	2.47 1.94 2.02 1.59 1.25	40 40 45 45 45 45

Tees With Unequal Legs

Section	Size, I	NCH ES	THICK! METAL,	ess of Inches	Weight per Foot,	Maximum Length.
Index	Flange	Stem	Flange	Stem	Pounds	Feet
*T-69 *T-74 T-79 <i>T-80</i>	5 4½ 4 4	2½ 3 2 2	3/8 to 7/6 5 to 3/8 3/8 to 7/6 5 to 3/8	7 to 21 16 to 38 5 to 38 38 to 76 5 to 38	10.9 8.4 7.8 6.7	40 40 40 40

^{*}Made only by special arrangement.

Tees With Unequal Legs

ction	Size, I	Size, Inches Flange Stem 3½ 4 3½ 4	THICK! METAL,	TESE OF INCHES	Weight per Foot.	Maximum Length,
ıdex	Flange	Stem	Flange	Stem	Pounds	Feet
-85 -86 -91 -92	$ \begin{array}{c c} 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \\ 3\frac{1}{2} \end{array} $		½ to 16 3/8 to 16 16 to ½ 3/8 to 16	1/2 to 1/6 3/8 to 1/6 1/6 to 1/2 3/8 to 1/6	12.6 9.8 9.7 8.5	40 40 40 40

Tees With Unequal Legs

Section	Size, Inches			ness of Inches	Weight per Foot.	Maximum Length,
Index	Flange	Stem	Flange	Stem	Pounds	Feet
T- 96 T- 97 T- 98 T-103 T-108 T-112	3 3 2 ¹ / ₂ 2 ¹ / ₂ 2 ¹ / ₂	3½ 3½ 3½ 3½ 2 1¾ 2¼	½ to % 16 16 16 to ½ 3% to 16 6 to 3½ 1/4 to \$31 73 to 3½	½ to % 16 16 16 16 16 16 16 16 16 16 16 16 16	10.8 9.7 8.5 4.7 3.60 3.65	40 40 40 50 50 50

Section		Size, Inches	6	Thickness of Metal.	Weight per Foot,	Maximum Length,
Index	Flange	Web	Flange	Inches	Pounds	Feet
Z-70 Z-71 Z-72 Z-73 Z-74 Z-75 Z-76 Z-77 Z-78	3%8 3-14 3-14 3-14 3-14 3-14 3-14 3-14 3-14	5½8 5½8 5½8 5½8 5½8 5½8 5½8	33/8 31/4 33/8 31/4 33/8 31/4 33/8 31/4 33/8 31/4	SIGNATION OF IT AND OF IT	28.4 26.0 23.7 22.6 20.2 17.9 16.4 14.0	

Zees Continued

Section		SIZE, INCHE	8	Thickness of Metal,	Weight per Foot.	Maximum Length.
Index	Flange	Web	Flange	Inches	Pounds	Feet
Z-80 Z-81	3 1 8 3 1/8	4½ 4½ 4½	$\frac{3\frac{3}{16}}{3\frac{1}{8}}$	3/4 11	23.0 20.9	38 42
Z-82 Z-83	$\frac{3\frac{1}{16}}{3\frac{3}{16}}$	4 41/8	$3\frac{1}{16}$ $3\frac{3}{16}$	5/8 9 16	18.9 18.0	46 48
Z-84 Z-85	3½ 3½	4 16	$\frac{3\frac{1}{8}}{3\frac{1}{16}}$	1/2 1/6	15.9 13.8	55 62
Z-86 Z-87 Z-88	318	4½ 4½ 4½	31/8	3/8 3/8 5 16	12.5 10.3 8.2	65 65 65

Zees Continued

Section Index Flange		Size, Inches	3	Thickness of Metal,	Weight per Foot,	Maximum Length,
	Web	Flange	Inches	Pounds	Feet	
Z-3 Z-4 Z-7 Z-8	$2\frac{3}{4}$ $2\frac{11}{16}$ $2\frac{3}{4}$ $2\frac{11}{16}$	$\frac{3\frac{1}{16}}{3}$ $\frac{3\frac{1}{16}}{3}$	2 ³ / ₄ 2 ¹¹ / ₁₆ 2 ³ / ₄ 2 ¹¹ / ₁₆	9 16 1/2 7 16 3/8	14.3 12.6 11.5 9.8	56 64 65 65
Z-11 Z-12 Z-18	$2\frac{3}{4}$ $2\frac{11}{16}$ $1\frac{1}{2}$	3 16 3 3	$\begin{array}{c} 2\frac{3}{4} \\ 2\frac{11}{16} \\ 1\frac{1}{2} \end{array}$	16 14 3 16	8.5 6.7 3.59	65 65

Areas of Angles Square Inches

1 000	13	00	1				1		-			1	1	1	1				1					-	
11/8	16.					3	8	8	8		3	8	8	8		8	8	8	8	8		9	8	1	
							-	-													_			-	
11.6	87		-		3	3	3				8	2	8	Ð	8	2		2	ı			9	3	9	
-	15	13	1			8	8		8	8	8	8	8			8	8	2	8	8			9	9	
	8		1	0													=	量	9	晉		-		÷	
-				0.																		:	-	1	6
	15		i	37 11	-			-							-								•	1	
15	12	25	3	37	:	,	50	:				,			3		1	10	3			:	;	:	: ;
	14		1	10			00	:								1						:	:	*	
	83						6					-			-							•			
100					:		7.99	:			3				1		- 3				16		:	-	: :
	13	5	00	0	:	-	1	:				:			:					1			1	2	
min	34	12	87	60	47		47	65	1			84	43						-	1	1	:	:	*	2017
113	12						7		1:				5		:	1	-	1	1			:	:	:	:
		-	_	-	_	_	- 1			-		+	9		6	-			-						. :
13/4	4.												.06		69	1	-					:			
101	11	6	1	00	9	9	9	9	5		:	5	30	1:	4	-	-		:	1		:	:	:	2 :
	53	15	15	28	9	90	9	7	37	33	38	33	38	34	34	2			:					:	2 :
110	0.																							1	
		_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	-	,						
200	61	3	17	Ξ	86	55	86	23	92	61	30	61	30	86	86	67		36		-				-	
101	00	ò	6	1	20	5	5	5	4	4	4	4	4	8	3	3	1	33	-					•	
	88	9	6	3	=	3	H	2	1	00	0	00	9	22	22	7	90	90	00						
16	8.6																							•	
	200		37		37																		:	:	
12/2	75	(2)	8	75	75	50	75	25	8	75	50	75	50	25	25	8	75	75	50	25	25	18	34	3	: :
4	10	9	5	5	4	4	4	4	4	3	00	8	3	3	3	33	2	Si	2	2	2	0	i -	i	
	10	4	0	9	00	1	00	10	3	-	60	=	6	7	1	10	3	8	E.	0	0	OX	200	5	
16				-								-	-							-	-				: :
	-:1										3			37		-		-							: :
500	-	-	81	36	61	42	19	23	05	98	67	98	67	48	48	30	=	11	92	73	73	AC.	36	30	3
1/00	4										2			-			-				100				
	4			+		-	1.4	-	9	0	25	0	2	6	6	63	00	00	2	7	7	-	1 10	0 -	
10	-	-	-			:																			. :
- 170		:	:	5		:	:		2	2	CI	2													:
	*	:	:	*	*	:	*	:		*	:	94	*	69	69	99	44	44	31	61	19	90	24	60	3
74	1				-			:	:	*		1.		1:				1.4				1000			0.7
	-			*	*		*	-		*		-	4			-	-		2.0				- 6		
10			:			6			-	100		12		les	5	-		1.09	1						34
1									-	-				Plot	-	:		1		0	0	0	0	0	0
					1+1	*	,	+		*	*	*	19	-		*	- ×	13	-		61		05	28	23
100	1	*	:	*	*	:	*	*	:		*				-	,	*	0.73	*		9.0		**		0.2
1001		-	:	-	-		:	:	:	:			-	-		- 4		_			9		-	-	0
, ee,	x8	0	33	9	4	31	2	4	33	3	3	4	31	3	32	3	23	3	23	57	23	2	0	17	-
Size, Inches	× 000	×	×	×	×	X	X	X	X	X	1X	X	X	X	N S	1X	3X	×	X	X	X	***	×	4	×
- 1	00 0	01		9	9	9	D	13	3	D	4	4	4	4	3	3	3	3	3	60	2	0	0	-	-

Rounds

\bigcirc	$\frac{1}{16}$ " to 1" advancing by 64ths. $1\frac{1}{12}$ " to 2" advancing by 32nds. $2\frac{1}{16}$ " to 7½" advancing by 16ths.	\bigcirc

We have grooves for rolling a large variety of bolt and rivet sizes to decimal diameters.

Sizes 3/4" and under can be furnished in coils.

Squares

$\frac{3}{16}$ " to 2" advancing by 64ths.	
$2\frac{1}{16}$ " to 5" advancing by 16ths.	

All intermediate sizes can be rolled by special arrangement.

Maximum Length of Rounds

Diameter, Inches	Length, Feet
14 to 78 11 to 21 21/8 to 41/2	40
15 to 2+	60
216 to 416	48
4.9 to 51/2	46
5 9.	44 4
91 1	44
0%	43 42
<u>514</u>	42
584	41
5 18	40
5½ to 5 1\$	39
2½ to 4½ 4½ to 5½ 5½ to 5½ 5½ 5½ 5½ 5½ 5½ 5½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½ 6½	38
61/6	37
ñ.å.	36
612	35
6.5 and 68/	34
off and 0%	97
OLE .	33
07/2	32
618 and 6%	31
	30
6 11 and 67/8	29
$6\frac{14}{14}$ and 7	28
$7\frac{1}{16}$ and $7\frac{1}{8}$	27
$7\frac{13}{16}$ to $7\frac{5}{16}$	26
7 16 to 73%	26
$7\frac{16}{16}$ to $7\frac{1}{2}$	25
118 10 172	<u> </u>

For rounds in coils, see our Shape Book.

Maximum Length of Squares

Sise, Inches	Length, Feet
½ to 118 ¾ to 2 218 to 418	40 60 48
5	45

mger lengths can be rolled only by special arrangement.

Weights and Areas

Square and Round Bars and Circumferences of Round Bars One Cubic Foot of Steel Weighing 489.6 lbs.

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of O Bar Inches
16 564 3 332 7 64 1/8	.013 .021 .030 .041 .053	.010 .016 .023 .032 .042	.0039 .0061 .0088 .0120 .0156	.0031 .0048 .0069 .0094 .0123	.1964 .2454 .2945 .3436 .3927
9 64 5 32 11 64 2 16	.067 .083 .100 .120	.053 .065 .079 .094	.0198 .0244 .0295 .0352	.0155 .0192 .0232 .0276	.4418 .4908 .5400 .5891
13 64 7 32 15 64 1/4	.140 .163 .187 .212	.110 .128 .147 .167	.0413 .0479 .0549 .0625	.0324 .0376 .0431 .0491	.6381 .6872 .7363 .7854
17 64 9 51 19 64 5	.240 .269 .300 .332	.188 .211 .235 .261	.0706 .0791 .0881 .0977	.0554 .0621 .0692 .0767	.8345 .8836 .9327 .9818
21 64 11 22 23 64 3/8	.366 .402 .439 .478	.288 .316 .345 .376	.1077 .1182 .1292 .1406	.0846 .0928 .1014 .1104	1.0308 1.0799 1.1290 1.1781
25 64 13 32 27 64 7	.519 .561 .605 .651	.407 .441 .475 .511	.1526 .1650 .1780 .1914	.1198 .1296 .1398 .1503	1.2272 1.2763 1.3254 1.3745
29 64 15 22 31 64 1/2	.698 .747 .798 .850	.548 .587 .627 .668	.2053 .2197 .2346 .2500	.1613 .1726 .1843 .1963	1.4235 1.4726 1.5217 1.5708
33 64 17 32 35 64 9	.904 .960 1.017 1.076	.710 .754 .799 .845	.2659 .2822 .2991 .3164	.2088 .2217 .2349 .2485	1.6199 1.6690 1.781 1.7871

Weights and Areas
Square and Round Bars and Circumferences of Round Bars
Continued

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of Bar Inches
37 169 239 64 5/8	1.136 1.199 1.263 1.328	.893 .941 .992 1.043	.3342 .3525 .3713 .3906	.2625 .2769 .2916 .3068	1.8162 1.8653 1.9144 1.9635
41 64 21 32 43 64 11	1.395 1.464 1.535 1.607	1.096 1.150 1.205 1.262	.4104 .4307 .4514 .4727	.3223 .3382 .3545 .3712	2.0126 2.0617 2.1108 2.1598
45 643 337 464 8/4	1.681 1.756 1.834 1.913	1.320 1.379 1.440 1.502	.4944 .5166 .5393 .5625	.3883 .4057 .4236 .4418	2.2089 2.2580 2.3071 2.3562
49 64 25 331 64 16	1.993 2.075 2.159 2.245	1,565 1,630 1,696 1,763	.5862 .6103 .6350 .6602	.4604 .4794 .4987 .5185	2.4053 2.4544 2.5035 2.5525
53 647 235 647 235 647 8	2.332 2.420 2.511 2.603	1.831 1.901 1.972 2.044	.6858 .7119 .7385 .7656	.5386 .5591 .5800 .6013	2.6016 2.6507 2.6998 2.7489
57 649 229 359 645 16	2.697 2.792 2.889 2.988	2.118 2.193 2.270 2.347	.7932 .8213 .8498 .8789	.6230 .6450 .6675 .6903	2.7980 2.8471 2.8962 2.9453
61 64 31 32 63 64	3.089 3.191 3.294 3.400	2.426 2.506 2.587 2.670	.9084 .9385 .9689 1.0000	.7135 .7371 .7610 .7854	2.9943 3.0434 3.0925 3.1416
131 16 33 1/8	3.616 3.838 4.067 4.303	2.840 3.014 3.194 3.379	1.0635 1.1289 1.1963 1.2656	.8353 .8866 .9396 .9940	3.2398 3.3379 3.4361 3.5343

Weights and Areas
Square and Round Bars and Circumferences of Round Bars
Continued

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of O Bar Inches
1 5 2	4.545	3.570	1.3369	1.0500	3.6325
1,6	4.795	3.766	1.4102	1.1075	3.7306
16 32 1/4	5.050 5.312	3.966 4.173	1.4853	1.1666 1.2272	3.8288 3.9270
74	0.512	4.175	1.5625	1.2212	5.9210
9 77	5.581	4.384	1.6416	1.2893	4.0252
5 16	5.857	4.600	1.7227	1.3530	4.1233
9 32 5 16 11 32 38	6.139	4.822	1.8056	1.4182	4.2215
3/8	6.428	5.049	1.8906	1.4849	4.3197
13	6.724	5.281	1.9775	1.5532	4.4179
13 22 16 15 32 12	7.026	5.518	2.0664	1.6230	4.5160
15	7.334	5.761	2.1572	1.6943	4.6142
1/2	7.650	6.008	2.2500	1.7671	4.7124
17	7.972	6.261	2.3447	1.8415	4.8106
17 32 16 19 32 5/8	8.301	6.520	2.4414	1.9175	4.9087
32	8.636	6.783	2.5400	1.9949	5.0069
5/8	8.978	7.051	2.6406	2.0739	5.1051
21	9.327	7.325	2.7431	2.1545	5.2033
11	9.682	7.604	2.8477	2.2365	5.3014
21 32 11 16 23 22 34	10.05	7.889	2.9541	2.3202	5.3996
3/4	10.41	8.178	3.0625	2.4053	5.4978
25 32	10.79	8.473	3.1728	2.4920	5.5960
257 3136 1167 2727 2877	11.17	8.773	3.2852	2.5802	5.6941
32	11.56	9.078	3.3994	2.6699	5.7923
1/8	11.95	9.388	3.5156	2.7612	5.8905
29 32	12.36	9.704	3.6337	2.8540	5.9887
29 22 15 16 31 32	12.76	10.02	3.7539	2.9483	6.0868
32	13.18	10.35	3.8760	3.0442	6.1850
2	13.60	10.68	4.0000	3.1416	6.2832
16	14.46	11.36	4.2539	3.3410	6.4795
1/8	15.35	12.06	4.5156	3.5466	6.6759
16	16.27	12.78	4.7852	3.7583	\$258.8
1/4 /	17.22	13.52	5.0625	3.976	1 7.0685

Weights and Areas
Square and Round Bars and Circumferences of Round Bars
Gontinued

		-	II .		
Side or	Weight	Weight	Area	Area	Circumference
Diameter, Inches	of Bar per Foot	of O Bar per Foot	of Bar Square Inches	of O Bar Square Inches	of O Bar Inches
-	-			and the same of	
$2\frac{5}{16}$ $\frac{3}{8}$ $\frac{7}{16}$ $\frac{1}{2}$	18.19	14.28	5.3477	4.2000	7.2649
3/8	19.18	15.07	5.6406	4.4301	7.4613
16	20.20	15.86	5.9414	4.6664	7.6576
1/2	21.25	16.69	6.2500	4.9087	7.8540
9	22.33	17.53	6.5664	5.1572	8.0503
5/8	23,43	18.40	6.8906	5.4119	8.2467
11	24.56	19.29	7.2227	5.6727	8,4430
9 16 5/8 11 16 3/4	25.71	20.20	7.5625	5.9396	8.6394
13	26.90	21,12	7.9102	6.2126	8.8357
76	28.10	22.07	8.2656	6.4918	9.0321
15	29.34	23.04	8.6289	6.7771	9.2284
13 16 7/8 15 16 3	30.60	24.03	9.0000	7.0686	9.4248
12.1	31.89	25.04	9.3789	7.3662	9.6211
16	33.20	26.08	9.7656	7.6699	9.8175
38	34.55	27.13	10.160	7.9798	10.014
16 1/8 16 14	35.92	28.20	10.563	8.2958	10.210
5_5_	37.31	29.30	10.973	8.6179	10.407
16	38.73	30.42	11.391	8.9462	10.603
78	40.18	31.56	11.816	9.2806	10.799
5 16 8/8 7 16 1/2	41.65	32.71	12.250	9.6211	10.996
9	43.14	33.90	12.691	9.9678	11.192
9 16 5/8 11 16 3/4	44.68	35.09	13.141	10.321	11.388
11	46.24	36.31	13.598	10.680	11.585
16	47.82	37.56	14.063	11.045	11.781
1000000	41.04	37.30	14.003	11.049	11.701
13	49.42	38.81	14.535	11.416	11.977
7/8	51.05	40.10	15.016	11.793	12.174
15	52.71	41.40	15.504	12.177	12.370
13 16 7/8 15 16 4	54.40	42.73	16.000	12.566	12.566
	56.11	44.07	16.504	12.962	12.763
1/8	57.85	45.44	17.016	13.364	12.959
16 1/8 16 14	59.62	46.83	17.535	13.772	13.155
1/4	61.41	48.24	18.063	14.186	13.352

Weights and Areas

Square and Round Bars and Circumferences of Round Bars

Continued

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of O Bar Inches
4 16 3/8 7 16 1/2	63.23 65.08 66.95 68.85	49.66 51.11 52.58 54.07	18.598 19.141 19.691 20.250	14.607 15.033 15.466 15.904	13.548 13.744 13.941 14.137
9 16 5/8 11 16 3/4	70.78 72.73 74.70 76.71	55.59 57.12 58.67 60.25	20.816 21.391 21.973 22.563	16.349 16.800 17.257 17.721	14.334 14.530 14.726 14.923
15 7/8 15 16 5	78.74 80.81 82.89 85.00	61.84 63.46 65.10 66.76	23.160 23.766 24.379 25.000	18.190 18.665 19.147 19.635	15.119 15.315 15.512 15.708
16 1/8 16 1/4	87.14 89.30 91.49 93.72	68.44 70.14 71.86 73.60	25.629 26.266 26.910 27.563	20.129 20.629 21.135 21.648	15.904 16.101 16.297 16.493
5 16 3/8 7 16 1/2	95.96 98.23 100.5 102.8	75.37 77.15 78.93 80.77	28.223 28.891 29.566 30.250	22.166 22.691 23.221 23.758	16.690 16.886 17.082 17.279
9 16 5/8 11 16 3/4	105.2 107.6 110.0 112.4	82.62 84.49 86.38 88.29	30.941 31.641 32.348 33.063	24.301 24.850 25.406 25.967	17.475 17.671 17.868 18.064
13 7/8 13 15 6	114.9 117.4 119.9 122.4	90.22 92.17 94.14 96.14	33.785 34.516 35.254 36.000	26.535 27.109 27.688 28.274	18.261 18.457 18.653 18.850
16 1/8 3 16 1/4	125.0 127.6 130.2 132.8	98.14 100.2 102.2 104.3	36.754 37.516 38.285 39.063	28.866 29.465 30.069 30.680	19.046 19.242 19.439 19.635

Weights and Areas
Square and Round Bars and Circumferences of Round Bars
Continued

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of O Bar Inches
6 5 3 8 7 16 1/2	135.5 138.2 140.9	106.4 108.5 110.7	39.848 40.641 41.441	31.296 31.919 32.548	19.831 20.028 20.224
72 16 5/8 116 3/4	143.6 146.5 149.2 152.1	112.8 114.9 117.2 119.4	42,250 43,066 43,891 44,723	33.183 33.824 34.472 35.125	20.420 20.617 20.813 21.009
34 13 16 16 7	154.9 157.8 160.8 163.6	121.7 123.9 126.2 128.5	45.563 46.410 47.266 48.129	35.785 36.450 37.122 37.800	21.206 21.402 21.598 21.795
7	166.6 169.6 172.6 175.6	130.9 133.2 135.6 137.9	49.000 49.879 50.766 51.660	38.485 39.175 39.871 40.574	21.991 22.187 22.384 22.580
\$4 \$5 \$8 \$16 \$1/2	178.7 181.8 184.9 188.1	140.4 142.8 145.3 147.7	52.563 53.473 54.391 55.316	41.282 41.997 42.718 43.445	22.777 22.973 23.169 23.366
	191.3 194.4 197.7	150.2 152.7 155.2	56.250 57.191 58.141	44.179 44.918 45.664	23.562 23.758 23.955
9 16 5/8 116 3/4 13 16 3/4	200.9 204.2 207.6	157.8 160.3 163.0	59.098 60.063 61.035	46.415 47.173 47.937	24.151 24.347 24.544
13 16 7/8 15 16 8	210.8 214.2 217.6	165.6 168.2 171.0	62.016 63.004 64.000	48.707 49.483 50.265	24.740 24.936 25.133

Areas of Bars and Plates Square Inches

Weights and Areas
Square and Round Bars and Circumferences of Round Bars
Continued

Side or Diameter, Inches	Weight of Bar per Foot	Weight of O Bar per Foot	Area of Bar Square Inches	Area of O Bar Square Inches	Circumference of O Bar Inches
6 ⁵ / ₁₆ 3/8 7 16 1/2	135.5	106.4	39.848	31.296	19.831
	138.2	108.5	40.641	31.919	20.028
	140.9	110.7	41.441	32.548	20.224
	143.6	112.8	42.250	33.183	20.420
9 16 5/8 11 16 3/4	146.5 149.2 152.1 154.9	114.9 117.2 119.4 121.7	43.066 43.891 44.723 45.563	33.824 34.472 35.125 35.785	20.617 20.813 21.009 21.206
13	157.8	123.9	46.410	36.450	21.402
7/8	160.8	126.2	47.266	37.122	21.598
15	163.6	128.5	48.129	37.800	21.795
7	166.6	130.9	49.000	38.485	21.991
16 1/8	169.6	133.2	49.879	39.175	22.187
	172.6	135.6	50.766	39.871	22.384
	175.6	137.9	51.660	40.574	22.580
	178.7	140.4	52.563	41.282	22.777
5 8 8 16 1/2	181.8	142.8	53.473	41.997	22.973
	184.9	145.3	54.391	42.718	23.169
	188.1	147.7	55.316	43.445	23.366
	191.3	150.2	56.250	44.179	23.562
5/8 116 3/4	194.4 197.7 200.9 204.2	152.7 155.2 157.8 160.3	57.191 58.141 59.098 60.063	44.918 45.664 46.415 47.173	23.758 23.955 24.151 24.347
13	207.6	163.0	61.035	47.937	24.544
17/8	210.8	165.6	62.016	48.707	24.740
16	214.2	168.2	63.004	49.483	24.936
8	217.6	171.0	64.000	50.265	25.133

Areas of Bars and Plates Square Inches

Sec. of							THICKNESS.	VESS. IN	INCHES								
nches	무	3/8	1.6	1/4	16	18/8	14	3/2	16	100	11	34	13	1%	16		1
1/2	.031	.063	.094		.156	·	.219	.25		.31			.41	4.	-	47	20
1	.063	.125	.188	.250	.313	.375	.438	.50	. 56	.63	69.	.75	.81	8.	00	94	0.1
2	.125	.250	.375	-	.625		.875	1.00	-	1.25	-	-	1.63	1.7	5 1	88	2.0
3	.188	.375	.563		.938	-	1.313	1.50	1.69		2	2	2.44	2.6	3 2	81	3.0
4	.250	.500	.750	-	1.250	1.500	1.750	8	2.25		2.75	3.00	3.25	3.50	0 3	75	4.0
2	.313	.625	.938	-	1.563	1.875	2.188	50	81	3.13	3.44	3.75	4.06	4.3	8 4	69	5.0
9	.375	.750	1.125	-	1.875	2.250	2.625	8	38	3.75	4.13	4.50	4.88	5.2	5 5	63	8.0
7	.438	875	1.313	1.750		2.625	3.063	3.50	94	4.38	4.81	5.25	5.69	6.1	3 6	99	7.0
8	.500	1.000	1.500	2.000		00	3	4.00	50	5.00	5.50	6.00	6.50	7.00	0 7	50	8.0
6	.563	1.125	1.688	2.250	2.813	3.375	3	4.50	90	5.63	6.19	6.75	7.31	7.8	8	44	9.6
10	.625	1.250	1.875	2.50		3.75	4	5.00	63	6.25	6.88	7.50	8.13	8.7		-	0.01
11	.688	1.375	2.063	2.75	-	4.13	4	5.50	19	6.88	7.56	8.25	8.94	•	10		1.0
12	.750	1.500	2.250	3.00	3.75	4.50	5.25	6.00	6.75	7.50	8.25	9.00	9.75	10.50	11	25 1	2.0
13	.813	1.625	2.438			4.88	5	6.50	31		_		-		12	1913	3.6
14	.875	1.750	2.625		11.7	5.25	9	7.00	88		6		-	-	13.	131	1.0
15	.938	1.875	2.813	3.75	-	5.63	9	7.50	44	9.38	-	11.25	-		14	06 1	5.6
16	1.000	2.000	3.000	4.00	-	6.00	1	8.00	8		=	-	_	_	15.	0010	6.0
17	1.063	2.125	3.188	4.25		6.38	1	8.50	56		11		-	14.8	15.	9417	7.6
18	1.125	2.250	3.375	4.50		6.75	1	9.00	13		12.		<u> </u>	15.7	16.	88 18	8.6
19	1.188	2.375	3.563	4.75	000	7.13	00	9.50	69		13.		-	16.6	17	81 19	9.6
20	1.250	2.500	3.750	5.00	170	7.50	00	10.00	25		13	•	-	17.50	18	75 20	0.0
21	1.313	2.625	3.938	5.25		7.88	6	10.50	81		14.	15.75	17.06	18.38	19.	692	1.6
22	1.375	2.750	4.125	5.50		8.25	6	11.00	38		-	_	17.88	19.2	20.	63 2	2.0
23	1.438	2.875	4.313	5.75		8.63	10	11.50	94		15.		18.69	20.13	21.	562	3.0
10	*	0000	-	400		NA COLUMN	Į,	THE PERSON NAMED IN	ļ		1411	No.	1111			Š	-

Areas of Bars and Plates Square Inches

	-	0	-	-	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	-	-	-	-	-	-
	-	00	0.	0.	0			-							-	8	-			-	8	0	0.	Ö.	0
1				27																	4	45	46	47	48
	1.6	4	38	31	25	19	13	9	8	94	88	81	.75	69	.63	.56	50	4	38	31	25	.19	.13	8	8
	-11-	23	24	25	26	27	28	29	30	30	31	32	33	34	35	36	37	38	39	40	4	42		4	45
	188	88	75	63	50	38	25	13	8	88	75	63	50	38	25	13	8	88	75	63	50	38	25	13	8
	4	21	22	23.	24.	25	26.	27	28	28	29	30	31	32	33	34	35	35	36	37	38	39	40	41	42
ľ	min		13	94	75	56	38	19	8	81	63	44	25	90	88	69	20	31	13	94	75	56	38	19	00
	202	100		21.	- 14						- 4			- *		- 4			- 4			- 4		38	39
1	1000	75	000	25	8	75	50	25	8	75	000	25	00	15	00	25	8	15	90	25	8	75	00	25	8
	84			20.										- *											36.0
1				562												812			883				633		03
	16		-		-		TA.			-											-	12.0			3.0
-	-			818																				83	03
	100			88.															3.25				-	.3	0.0
	-	315	316	916	517	118	318	116	020	320	321	121	22	23	323	124	25	32	326	32	22	28	328	129	8
EB	100			.19																			8	4.	0
INCHES	1	14		15																			25		27
H A	12	50		50																	8	50	8	50	8
EBE	-	12	13	13	14	14	15	15	16	16	17	17	18	18	19	19	20	20	21	21	22	22	23	23	24
HEN	-	94	38	81	25	69	13	56	8	44	88	31	75	19	63	90	50	94	38	81	25	69	13	56	8
THICKNESS,	16	10	=	=	12	12.	13.	13.	14	14	14	15.	15.	16.	16.	17.	17	17	18.	18	19	19.	20	20	21.
-	-	00	20	13	0	00	20	3	0	00	10	33	0	00	10	63	0	38	NO.	13	0	88	20	83	00
	38				-	~		м.	×.		-				60				-	200			23	M.	1
	647	-		10		_	-			-			13		7				15	1	H	7	1	17	18
	-			4							63	94	25	56	88	19	50	81	13	4	75	90	38	69	8
	16	1	00	00	00	6	6	6	10	10.	10	10	11	11	=	12	12	12	13.	13	13.	14.	14.	14	15.
1	-	10	0	75	0	20	0	20	0	10	0	10	0	10	0	20	0	20	0	2	0	20	0	10	0
	14			6.7																-		.2	.5		0.7
		-	-	-			-		00		00	-	0,	0,	0.	0,	1	H	H	10	=	=	=	=	12
		88	75	63	50	38	625	13	00	188	75	63	50	38	25	313	8	88	875	63	50	38	625	813	8
	16	4.6	8.4	5.0	5.2	5.4		-	6.0							7.3	0 .		7.8	-		-			0.6
				70	30	10	0																		0
	18	125	25	37	50	62	75	875	00	125	25	375	500	62	75	875	8	125	250	375	50	62	750	87	8
	7	00	3	3	3	3	00	3	4	4	4	4	4	4	4	4	2	5	20	5	10	10	20	10	6.
1		63	25	88	20	13	875	938	00	63	25	88	250	313	375	138	00	563	625	889	50	13	875	938	90
	16	5	9.	9.	7.	00	00	6	2.0	2.0	=				7.	2.4	3.5	4	- 4		7.	1.4		-	8.0
1									04	04	24	24	-4	24	-4	64	44	64	64	24	04	24	24	0.4	6.0

Weights of Flat Rolled Steel Per Lineal Foot

Thick-				Win	тн, Іменя	18			
ness, Inches	1 32	16	3 3 2	1/8	5 32	3	7 32	1/4	1
16 5 64 3 32 7 64	.007 .008 .010	.013 .017 .020	.020 .025 .030	.027 .033 .040	.033 .042 .050	.040 .050 .060	.046 .058 .070	.053 .066 .080	.213 .266 .319
1/8 64	.012	.023	.035	.046	.058	.070	.081	.093 .106 .120	.372 .425 .478
37 11 64	.017	.033	.050	.066	.083	.100	.116	.133	.531
3 16 13 64 7 32 15 64	.020 .022 .023 .025	.040 .043 .046 .050	.060 .065 .070 .075	.080 .086 .093 .100	.100 .108 .116 .125	.120 .130 .140 .149	.139 .151 .163 .174	.159 .173 .186 .199	.638 .691 .744 .797
1/4 17 64 32 19 64	.027 .028 .030 .032	.053 .056 .060 .063	.080 .085 .090 .095	.106 .113 .120 .126	.133 .141 .149 .158	.159 .169 .179 .189	.186 .198 .209 .221	.213 .226 .239 .252	.850 .903 .956 1.01
5 61 44 12464 132464	.033 .035 .037 .038	.067 .070 .073 .076	.100 .105 .110 .115	.133 .139 .146 .153	.166 .174 .182 .191	.199 .209 .219 .229	.232 .244 .256 .267	.266 .279 .292 .305	1.06 1.12 1.17 1.22
3/85 43 217 4 3/8 67 32 7 4	.040 .042 .043 .045	.080 .083 .086 .090	.120 .125 .129 .134	.160 .166 .172 .179	.200 .208 .216 .224	,239 ,249 ,259 ,269	.279 .291 .302 .314	.319 .332 .345 .359	1.28 1.33 1.38 1.43
769453314	.046 .048 .050 .051	.093 .096 .100 .103	.139 .144 .149 .154	.186 .193 .200 .206	.232 .241 .249 .257	.279 .289 .299 .309	.325 .337 .349 .360	.372 .385 .398 .412	1.49 1.54 1.59 1.65
1/2/3 304 647 335 64 94 16	.053 .055 .056 .058 .060	.106 .110 .113 .116 .120	.159 .164 .169 .174 .179	.213 .219 .226 .232 .239	.266 .274 .282 .290 .299	,319 ,329 ,339 ,349 ,359	.372 .383 .395 .407 .418	.425 .438 .452 .465 .47	

Weights of Flat Rolled Steel Per Lineal Foot Continued

Thick-				Win	тн, Іменя	88			
ness, Inches	32	<u>5</u>	11 32	3/8	13 32	7 16	15 32	1/2	1
1 16 5 64	.060	.066	.073	.080	.086	.093	.100	.106	.213
3 3 3	.090	.100	.110	.120	.129	.139	.149	.159	.319
3 32 7 64	.105	.116	.128	.139	.151	.163	.174	.186	.372
1/8 8 84	.120	.133	.146	.159	.173	.186	.199	.212	.425
64	.134	.149	.164	.179	.194	.209	.224	.239	.478
5 32 11 64	.149	.166	.183	.199	.216	.232	.249	.266	.531 .584
3	.179	.199	.219	.239	.259	.279	.299	.319	.638
3 16 13 64	.194	.216	.237	.259	.281	.302	.324	.345	.691
7 32 15 64	.209	.232	.256	.279	.302	.325	.349	.372	.744
200	.224	.249	.274	.299	.324	.349	.374	.398	.191
1/4 17 64	.239	.266	.292	.319	.345	.372	.398	.425	.850
64	.254	.282	.310	.339	.367	.395	.423	.452	.903
9 32 19 64	.284	.315	.347	.379	.410	.442	.473	.505	1.01
5 16	.299	.332	.365	.398	.432	.465	.498	.531	1.06
21 64	.314	,349	.383	.418	.453	.488	.523	.558	1.12
5 161 44 12234	.329	.365	.402	.438	.475	.511	.548	.584	1.17
-						The same of	anna l		-
25	.359	.398	.438	.478	.518	.558	.598	.638	1.28
3/8/648	.388	.432	.475	.518	.561	.604	.647	.691	1.38
64	.403	.448	.493	.538	.583	.628	.672	.717	1.43
7 16	.418	.465	.511	.558	.604	.651	.697	.744	1.49
64 15	.433	.481	.530	.578	.626	.674	.722	.770	1.54
7 169 64 152 331 64	.448	.498	.548	.598	.647	.697	.747 .772	.823	1.59 1.65
1/6	.478	.531	.584	.638	.691	.744	.797	.850	1.70
33	.493	.548	.603	.657	.712	.767	.822	.877	1.75
1/2 33 64 17 35 64	.508	.564	.621	.677	.734	.790	.847	.903	1.81
35 64 16	.523	.581	.639	.697	.755	.813	.872	.930	1.86
16 /	1000	.000	.007	.111	-111	100.	000	000	1.91

Weights of Flat Rolled Steel

Per Lineal Foot

Continued

Thick-				Wı	DTH, INCI	IES			
ness, Inches	13 16	7/8	15 16	1	11/8	11/4	13/8	11/2	
16 64 33 37 64	.173 .216 .259 .302	.232	.249		.239 .299 .358 .418	.266 .332 .398 .465	.292 .365 .438 .511	.319 .398 .478 .558	00000
1/8 9 64 82 11 64	.345 .388 .432 .475	.372 .418 .465 .511	.498		.478 .538 .598 .657	.531 .598 .664 .730	.584 .657 .730 .803	.717 .797	5
3 16 13 64 7 7 32 15 64	.518 .561 .604 .647	,558 ,604 ,651 ,697		.638 .691 .744 .797	.717 .777 .837 .896	.797 .863 .930 .996	.877 .950 1.02 1.10	.956 1.04 1.12 1.20	7889
1/4 17 64 9 32 19 64	.691 .734 .777 .820	.744 .790 .837 .883	.847 .896	.850 .903 .956 1.01	.956 1.02 1.08 1.14	1.06 1.13 1.20 1.26	1.17 1.24 1.31 1.39	1.35	10 10 11 12
5 16 16 16 16 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	.863 .906 .949 .993	1.02		1.06 1.12 1.17 1.22	1.20 1.25 1.31 1.37	1.33 1.39 1.46 1.53	1.46 1.53 1.61 1.68	1.67 1.75	12 13 14 14
3/80 256 644 133 327 64	1.04 1.08 1.12 1.16	1.12 1.16 1.21 1.25	1.20 1.25 1.29 1.34	1.28 1.33 1.38 1.43	1.43 1.49 1.55 1.61	1.59 1.66 1.72 1.79	1.75 1.83 1.90 1.97	1.91 1.99 2.07 2.15	15 15 16 17
7 16 29 64 15 32 31 64	1.21 1.25 1.29 1.34	1.30 1.35 1.39 1.44	1.39 1.44 1.49 1.54	1.49 1.54 1.59 1.65	1.67 1.73 1.79 1.85	1.86 1.93 1.99 2.06	2.05 2.12 2.19 2.26	2.23 2.31 2.39 2.47	17 18 19 19
		1.49 1.53 1.58 1.63 1.67	1.59 1.64 1.69 1.74 1.79	1.70 1.75 1.81 1.86 1.91	1.91 1.97 2.03 2.09 2.15	2.13 2.19 2.26 2.32 2.39	$ \begin{array}{c c} 2.34 \\ 2.41 \\ 2.48 \\ 2.56 \\ 2.65 \end{array} $		

Weights of Flat Rolled Steel Per Lineal Foot

Continued

Thick-	1			W	IDTH, INC	HES			200
ness, Inches	3	31/4	31/2	33/4	4	41/4	41/2	43/4	12
16 14	1.91 2.55	2.07 2.76	2.23 2.98	2.39 3.19			2.87 3.83	3.03 4.04	
5 16 3/8 76 1/2	3.19 3.83 4.46 5.10	4.15 4.83	3.72 4.47 5.20 5.95	3.99 4.78 5.58 6.38	5.10 5.95	5.42 6.32	4.78 5.74 6.70 7.65	5.05 6.06 7.07 8.08	15.30 17.85
9 16 5/8 11 16 3/4	5.74 6.38 7.02 7.65	7.60	6.70 7.44 8.18 8.93	7.17 7.97 8.76 9.57	7.65 8.50 9.35 10.20	9.03 9.93	8.61 9.57 10.52 11.48	9.09 10.10 11.11 12.12	25.50 28.05
13 16 7/8 15 16 1	8.29 8.93 9.57 10.20	8.98 9.67 10.36 11.05	9.67 10.41 11.16 11.90	10.36 11.16 11.95 12.75	$\frac{11.90}{12.75}$	12.65 13.55	12.43 13.39 14.34 15.30		35.70 38.25
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.84 11.48 12.12 12.75	11.74 12.43 13.12 13.81	12.65 13.39 14.13 14.87	13.55 14.34 15.14 15.94	15.30 16.15	16.26 17.16	16.26 17.22 18.17 19.13	17.16 18.17 19.18 20.19	43.35 45.90 48.45 51.00
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	13.39 14.03 14.66 15.30	14.50 15.20 15.88 16.58	15.62 16.36 17.10 17.85	16.74 17.53 18.33 19.13	18.70 19.55	19.87 20.77	20.08 21.04 21.99 22.95	21.20 22.21 23.22 24.23	53.55 56.10 58.65 61.20
$1\frac{9}{16}$ $1\frac{5}{8}$ $1\frac{11}{16}$ $1\frac{3}{4}$	15.94 16.58 17.22 17.85	17.27 17.96 18.65 19.34	18.60 19.34 20.08 20.83	19.92 20.72 21.51 22.32	21.25 22.10 22.95 23.80	23.48 24.38	23.91 24.87 25.82 26.78	25.24 26.25 27.26 28.27	63.75 66.30 68.85 71.40
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	18.49 19.13 19.77 20.40	20.03 20.72 21.41 22.10	21.57 22.31 23.06 23.80			$\frac{27.10}{28.00}$	27.73 28.69 29.64 30.60	29.27 30.28 31.29 32.30	73.95 76.50 79.05 81.60

Weights of Flat Rolled Steel

Per Lineal Foot

=		_	-						_
Thick-				Wn	DTH, INCH	ES			
ness, Inches	5	51/4	51/2	53/4	6	61/4	61/2	63/4	12
16 1/4	3.19 4.25	3.35 4.46	3.51 4.67	3.67 4.89	3.83 5.10	3.99 5.31	4.14 5.53		7.65 10.20
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5.31 6.38 7.44 8.50	5.58 6.69 7.81 8.93	5.84 7.02 8.18 9.35	8.56	6.38 7.65 8.93 10.20	6.64 7.97 9.29 10.63	6.90 8.29 9.67 11.05	8.61 10.04	
96 8 16 84 16 84	9.57 10.63 11.69 12.75	10.04 11.16 12.27 13.39	10.53 11.69 12.85 14.03	$12.22 \\ 13.44$	12.75	13.28		14.34 15.78	25.50
13 16 18 16 16 16	13.81 14.87 15.94 17.00	14.50 15.62 16.74 17.85	15.19 16.36 17.53 18.70	17.10 18.33	17.85 19.13	18.60 19.92	17.95 19.34 20.72 22.10	20.08 21.51	
11/8 11/8 11/8 11/4	18.06 19.13 20.19 21.25	18.96 20.08 21.20 22.32	19.87 21.04 22.21 23.38	20.77 21.99 23.22 24.44	21.68 22.95 24.23 25.50	22.58 23.91 25.23 26.56	23.48 24.87 26.24 27.62	24.39 25.82 27.25 28.69	
$1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$	22.32 23.38 24.44 25.50	23.43 24.54 25.66 26.78	24.54 25.71 26.88 28.05	25.66 26.88 28.10 29.33		27.90 29.22 30.55 31.88	29.01 30.39 31.77 33.15	30.12 31.56 32.99 34.43	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	26.57 27.63 28.69 29.75	27.89 29.01 30.12 31.24	29.22 30.39 31.55 32.73	30.55 31.77 32.99 34.22	31.88 33.15 34.43 35.70	33.20 34.53 35.86 37.19	34.53 35.91 37.30 38.68	37.29	63.75 66.30 68.85 71.40
112 178 115 116 2	30.81 31.87 32.94 34.00	32.35 33.47 34.59 35.70	33.89 35.06 36.23 37.40	35.43 36.65 37.88 39.10	38.25 39.53	38.52 39.85 41.17 42.50	40.05 41.44 42.82 44.20	41.60 43.03 44.46 45.90	

Weights of Flat Rolled Steel

Per Lineal Foot

Continued

Thick-				Wr	отн, Імен	nes			
ness, Inches	7	71/4	71/2	73/4	8	81/4	81/2	83/4	12
16	4.46 5.95	4.62 6.16	4.78 6.36	4.94 6.58	5.10 6.80	5.26 7.01	5.42 7.22	5.58 7.43	7.65 10.20
5 16 3/8 7 16 1/2	7.44 8.93 10.41 11.90	7.70 9.25 10.78 12.32	7.97 9.57 11.16 12.75	8.23 9.88 11.53 13.18	8.50 10.20 11.90 13.60	$10.52 \\ 12.27$	9.03 10.84 12.64 14.44	$\frac{11.16}{13.02}$	12.75 15.30 17.85 20.40
9 16 5/8 116 3/4	13.39 14.87 16.36 17.85	13.86 15.40 16.94 18.49	15.94 17.53	14,82 16,47 18,12 19,77	15.30 17.00 18.70 20.40	17.53 19.28	16.26 18.06 19.86 21.68	18.59 20.45	22.95 25.50 28.05 30.60
13 7/8 15 16 1	19.34 20.83 22.32 23.80	20.03 21.57 23.11 24.65	20.72 22.32 23.91 25.50	21.41 23.05 24.70 26.35		$24.55 \\ 26.30$		26.04 27.89	
$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	25.29 26.78 28.26 29.75		27.10 28.68 30.28 31.88	28.00 29.64 31.29 32.94		33.31	30.70 32.52 34.32 36.12	33.47 35.33	43.35 45.90 48.45 51.00
$1_{\overline{16}}^{5} \\ 1_{\overline{16}}^{3/8} \\ 1_{\overline{16}}^{7} \\ 1_{\overline{12}}^{1/2}$	31.23 32.72 34.21 35.70	32,35 33,89 35,44 36,98	36.66	34.59 36.23 37.88 39.53		40.32	37.93 39.74 41.54 43.35	40.91 42.77	53.55 56.10 58.65 61.20
$1\frac{9}{16} \\ 1\frac{5}{8} \\ 1\frac{11}{16} \\ 1\frac{3}{4}$	37.19 38.67 40.16 41.65	40.05 41.59	43.03		42.50 44.20 45.90 47.60	45.58 47.33	46.96 48.76	48.34 50.20	66.30
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	43.14 44.63 46.12 47.60	46.22 47.76	47.82 49.41	47.76 49.40 51.05 52.70	51.00 52.70	52.60 54.35	54.20 56.00	55.79 57.60	76.50 79.05

Weights of Flat Rolled Steel Per Lineal Foot

Continued

Thick-				Wi	DTH, INCH	IES			
Inches	9	91/4	91/2	93/4	10	101/4	101/2	103/4	12
3 16 1/4	5.74 7.65	5.90 7.86	6.06 8.08	6.22 8.29	6.38 8.50	6.54 8.71	6.70 8.92	6.86 9.14	7.65 10.20
16 3/8 7- 16 1/2	9.56 11.48 13.40 15.30	9.83 11.80 13.76 15.73	10.10 12.12 14.14 16.16		10.62 12.75 14.88 17.00	10.89 13.07 15.25 17.42	11.16 13.39 15.62 17.85	11.42 13.71 15.99 18.28	12.75 15.30 17.85 20.40
16 5/8 116 3/4	17.22 19.13 21.04 22.96	17.69 19.65 21.62 23.59	18.18 20.19 22.21 24.23	18.65 20.72 22.79 24.86				20.56 22.85 25.13 27.42	
116 7/8 15 16	24.86 26.78 28.69 30.60	25.55 27.52 29.49 31.45	26.24 28.26 30.28 32.30	31.08	29.75 31.88	32.67	29.00 31.24 33.48 35.70	$\frac{31.98}{34.28}$	35.70 38.25
1 1/6 11/8 1 1/6 11/4	32.52 34.43 36.34 38.26	33.41 35.38 37.35 39.31	34.32 36.34 38.36 40.37	35.22 37.29 39.37 41.44	36.12 38.25 40.38 42.50	39.21 41.39	$\frac{40.17}{42.40}$		45.90 48.45
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	40.16 42.08 44.00 45.90	41.28 43.25 45.22 47.18	42.40 44.41 46.44 48.45	43.52 45.58 47.66 49.73	44.64 46.75 48.88 51.00	45.75 47.92 50.10 52.28	46.86 49.08 51.32 53.55	47.97 50.25 52.54 54.83	58.65
1% 1% 111 111 134	47.82 49.73 51.64 53.56	49.14 51.10 53.07 55.04	50.48 52.49 54.51 56.53	51.80 53.87 55.94 58.01	53.14 55.25 57.38 59.50	54.46 56.63 58.81 60.99	55.78 58.02 60.24 62.48	57.11 59.40 61.68 63.97	66.30
113 178 115 2	55.46 57.38 59.29 61.20	57.00 58.97 60.94 62.90	58.54 60.56 62.58 64.60	60.09 62.16 64.23 66.30	61.62 63.75 65.88 68.00	65.35 67.52	64.70 66.94 69.18 71.40	66.24 68.53 70.83 73.10	76.50 79.05

Weights of Flat Rolled Steel Per Lineal Foot Continued

Thick-				Width	, Inches			
ness, Inches	11	111/4	111/2	113/4	12	121/4	121/2	123/4
16 14	7.02 9.34	7.17 9.57	7.32 9.78	7.49 10.00	7.65 10.20	7.82 10.42	7.98 10.63	8.13 10.84
5 16 3/8 7 16 1/2	11.68 14.03 16.36 18.70	14.35 16.74	12.22 14.68 17.12 19.55	12.49 14.99 17.49 19.97	12.75 15.30 17.85 20.40	13.01 15.62 18.23 20.82	13.28 15.94 18.60 21.25	13.55 16.26 18.97 21.67
9 16 5/8 116 8/4	21.02 23.38 25.70 28.05	$\frac{23.91}{26.30}$	22.00 24.44 26.88 29.33	22.48 24.97 27.47 29.97	22.95 25.50 28.05 30.60	23.43 26.03 28.64 31.25	23.90 26.56 29.22 31.88	24.39 27.09 29.80 32.52
13 16 7/8 15 16	30.40 32.72 35.06 37.40	31.08 33.47 35.86 38.25	31.76 34.21 36.66 39.10	32.46 34.95 37.46 39.95	33.15 35.70 38.25 40.80	33.83 36.44 39.05 41.65	34.53 37.19 39.84 42.50	35.22 37.93 40.64 43.35
$1\frac{1}{16}$ $1\frac{1}{8}$ $1\frac{3}{16}$ $1\frac{1}{4}$	39.74 42.08 44.42 46.76		41.54 44.00 46.44 48.88	42.45 44.94 47.45 49.94	43.35 45.90 48.45 51.00	44.25 46.86 49.46 52.06	45.16 47.82 50.46 53.12	46.06 48.77 51.48 54.19
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	49.08 51.42 53.76 56.10	50.20 52.59 54.99 57.37	51.32 53.76 56.21 58.65	52.44 54.93 57.43 59.93	53.55 56.10 58.65 61.20	54.67 57.27 59.87 62.48	55.78 58.44 61.10 63.75	56.90 59.60 62.32 65.03
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	58.42 60.78 63.10 65.45	59.76 62.16 64.55 66.93		62.43 64.92 67.42 69.92	63.75 66.30 68.85 71.40	65.08 67.68 70.29 72.90	66.40 69.06 71.72 74.38	67.74 70.44 73.15 75.87
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	67.80 70.12 72.46 74.80	$71.72 \\ 74.11$	70.86 73.31 75.76 78.20	72.41 74.90 77.41 79.90	73.95 76.50 79.05 81.60	75.48 78.09 80.70 83.30	77.03 79.69 82.34 85.00	78.57 81.28 83.99 86.70

Weights of Flat Rolled Steel Per Lineal Foot Continued

Thick-				Wn	DTH, INCH	res			
ness, Inches	13	14	15	16	17	18	19	20	21
15	8.28 11.06							12.76 17.00	
5 16 3/8 7 16 1/2	13.81 16.58 19.34 22.10	20.82	19.14 22.32		21.68 25.28	$\frac{22.96}{26.79}$	24.24 28.28	25.50 29.75	26.78 31.24
9 16 5/8 11 16 3/4	24.86 27.62 30.39 33.16	$\frac{29.74}{32.72}$	31.88 35.06	34.00 37.40	36.12 39.72	38.25 42.08	40.37 44.42	42.50 46.74	44.64 49.08
116 7/8 16 16 16 16 1	35.91 38.68 41.44 44.20	41.65 44.63	47.82	47.60 51.00	50.60 54.20	53.56 57.38	56.52 60.57	59.50 63.76	62.49 66.96
11/8 11/8 13/6 11/4	46.96 49.72 52.48 55.25	53.55 56.52	57.37 60.56	61.20 64.60	65.04 68.64		72.68 76.72	76.50 80.75	80.33 84.79
$1\frac{5}{16}$ $1\frac{3}{8}$ $1\frac{7}{16}$ $1\frac{1}{2}$	58.02 60.77 63.54 66.30	65.45 68.42	$70.12 \\ 73.32$	74.80 78.20	79.48 83.08		88.83 92.88	93.50 97.75	
1 16 15/8 1 116 1 13/4	69.06 71.83 74.59 77.35	77.35 80.33	82.88 86.06	88.40 91.80	93.93 97.54	95.63 99.45 103.28 107.10	104.98 109.01	110.50 114.75	116.03 120.49
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	80.11 82.88 85.64 88.40	89.25 92.23	95.63 98.81	102.00 105.40	108.38 111.99	110.93 114.75 118.58 122.40	121.13 125.16	127.50 131.75	133.88 138.34

Weights of Flat Rolled Steel

Per Lineal Foot

Thick-				Wr	DTH, INCH	IE3			
ness, Inches	22	23	24	25	26	27	28	29	30
14	14.04 18.69		15.32 20.40	15.96 21.26				18.48 24.64	19.12 25.50
5 16 3/8 7 16 1/2	23.36 28.06 32.72 37.40	29.33 34.24	30.60 35.72	31.88 37.20	33.16 38.68	34.44 40.17	35.72 41.65	37.00 43.14	38.28 44.64
9 16 5/8 11 16 3/4	42.04 46.76 51.40 56.10	44.00 48.88 53.76	45.92 51.00 56.12	47.80 53.12 58.44	49.73	51.64 57.37 63.11	53.56 59.49 65.44	55.48 61.60 67.77	
13 7/8 15 1	60.79 65.44 70.13 74.80	63.53 68.43 73.32	66.29 71.40 76.50	69.06 74.38 79.68	71.82 77.36 82.88	74.58 80.33 86.07	77.34 83.30 89.26	80.10 86.29 92.44	82.86
1 1/8 11/8 1 1/8 1 1/4	79.48 84.16 88.83 93.52	88.00 92.88	91.80	95.64 100.92	99.44 104.96	103.26 109.01	101.14 107.10 113.05 119.00	110.92 117.09	114.74 121.13
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	102.84 107.52	102.64 107.52 112.42 117.30	$\frac{112.20}{117.30}$	116.88 122.20	121.54 127.08	126.22 131.96	130.90 136.84	135.58 141.76	140.24 146.64
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	121.55 126.23	122.19 127.08 131.96 136.85	132.60 137.70	138.13 143.44	143.65 149.18	149.18 154.91	154.70 160.65	160.23 166.39	165.75 172.13
1 ¹⁸ / ₁₆ 1 ⁷ / ₈ 1 ¹⁵ / ₁₆ 2	140.25 144.93	141.74 146.63 151.51 156.40	153.00 158.10	159.38 164.69	165.75 171.28	172.13 177.86	178.50 184.45	184.88 191.04	191.25 197.63

Weights of Flat Rolled Steel Per Lineal Foot

Thick-				Wn	тн, Імен	TES .			
ness, Inches	31	32	33	34	35	36	38	40	42
16 1/4	19.75 26.36			21.68 28.88					
\$ 16 3/8 76 1/2	32.94 39.54 46.12	40.80	42.08	43.36	44.64	45.92	48.48	51.00	53.56
1/2	52.70								
9 16 5/8 11 16 3/4	59.32 65.88 72.48 79.08	68.00 74.80	70.13 77.12	72.24 79.44	74.36 81.79	76.50 84.15	80.74 88.84	76.54 85.00 93.48 102.00	89.28 98.16
13 16 7/8 15 16 1	98.82	88.39 95.20 102.00 108.80	98.20 105.20	101.20 108.40	111.59	107.12 114.76	113.04 121.14	119.00 127.52	124.98 133.92
11/8 11/8 11/8 11/4	118.56 125.16	115.59 122.40 129.21 136.00	126.24 133.24	130.08 137.28	$133.90 \\ 141.32$	137.70 145.36	145.36 153.44	153.00 161.50	160.66 169.58
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	144.92 151.52	142.81 149.60 156.40 163.20	154.28 161.28	158.96 166.16	163.62 171.08	168.30 176.00	177.66 185.75	187.00 195.50	196.34 205.29
1 ⁹ / ₁₆ 1 ⁵ / ₈ 1 ¹ / ₁₆ 1 ³ / ₄	171.28 177.86	170.00 176.80 183.60 190.40	182.33 189.34	187.85 195.08	193.38 200.81	198.90 206.55	209.95 218.03	221.00 229.50	232.05 240.98
$\begin{array}{c} 1\frac{13}{16} \\ 1\frac{7}{8} \\ 1\frac{15}{16} \\ 2 \end{array}$	197.63 204.21	197.20 204.00 210.80 217.60	210.38 217.39	216.75 223.98	223.13 230.56	229.50 237.15	242.25 250.33	255.00 263.50	267.75 276.68

Weights of Flat Rolled Steel Per Lineal Foot

Thick-				W	IDTH, INC	HES			
ness, Inches	44	46	48	50	52	54	56	58	60
16	28.08 37.38						35.68 47.60	36.96 49.28	38.24 51.00
\$ 16 \$/8 10 1/2	46.72 56.12 65.44	58.65 68.47	61.20 71.44	63.76 74.40	66.32 77.37	68.88 80.34	71.44 83.30	61.60 74.00 86.28	76.56 89.28
		88.00	91.84	95.60	99.46	103.28	107.12		114.80
F6/8116/4	102.81	97.76 107.53 117.31	112.24	116.88	121.56	126.22	130.88	135.54	140.26
13 7/8 15 16	130.89 140.27	127.06 136.86 146.64 156.40	142.80 153.00	148.76 159.36	154.72 165.76	160.66 172.15	166.60 178.52	172.58 184.88	178.48 191.28
11/8 11/8 11/4	168.32 177.66	166.16 175.99 185.76 195.52	183.60 193.84	191.28 201.84	198.88 209.92	206.52 218.02	214.20 226.10	221.84 234.18	229.48 242.26
$\begin{array}{c} 1\frac{5}{16} \\ 1\frac{3}{8} \\ 1\frac{7}{16} \\ 1\frac{1}{2} \end{array}$	205.68 215.04	205.28 215.04 224.84 234.60	224.40 234.60	233.76 244.40	243.08 254.16	252.44 263.92	261.80 273.68	271.16 283.52	280.48 293.28
19 15/8 111 13/4	243.10 252.45	244.38 254.15 263.93 273.70	265.20 275.40	276.25 286.88	287.30 298.35	298.35 309.83	309.40 321.30	320.45 332.78	331.50
113 178 178 115	271.15 280.50 289.85	283.48 293.25 303.03	295.80 306.00 316.20	308.13 318.75 329.38	320.45 331.50 342.55	332.78 344.25 355.73	345.10 357.00 368.90	357.43 369.75 382.08	1000

Universal Mill Plates
Sizes, with Maximum Lengths in Feet

Thickness, Inches 14 14 14 15 16 14 14 11 11/6 11/4 11/6 11/6 11/6		Wı	ртн, Інсива		
	14-17 Inclusive	18-21 Inclusive	22	23	24-36 Inclusive
1/4	85	85	85	85	85
14	85	85	85	85	85
3 ∕8	85	85	85	85	85
18	85	85	85	85	85
3⁄2	85	85	85	85	85
16	85	85	85	85	85
5∕8	85	85	85	85	85
11	85	85	85	85	85
¾	85	85	85	85	85
11	85	85	85	85	85
⅓	85	85	85	85	85
#	85	85	85	85	85
1	85	85	85	85	83
	85	85	85	85	78
11/4	85	85	85	85	70
13/8	85	85	83	78	64
11/2	80	80	76	71	58
15/8	73	73	70	68	53
13/4	68	68	65	61	48
11/8	64	64	61	56	46
2	60	60	56	53	43

For intermediate widths not shown in above table, use length of next greater width.

Sheared Plates
Lengths of Rectangular Plates Rolled on 108-inch Mill

Thickness,		-			WIDTH	, INCHI	ES			
Inches	102	98	94	90	88	84	80	76	72	68
1/4				192	192	216	228	240	252	264
5		192	240	252	264	264	276	282	300	340
3/8	180	192	240	252	264	300	360	360	360	360
7 16	180	192	240	252	264	300	360	360	360	360
1/2	180	216	240	276	300	300	360	360	360	360
9 16	180	216	240	276	300	360	360	360	360	360
5/8	180	216	240	276	300	360	360	360	360	36
11	180	216	240	276	300	360	360	360	360	36
3/4	180	216	240	252	300	360	360	360	360	36
13	180	216	240	252	300	300	336	340	360	36
3/8	180	216	240	240	300	300	336	340	360	36
1	180	216	240	240	300	300	300	324	360	36
11/4	156	180	192	216	276	276	276	276	300	30
13/8	132	132	180	192	240	240	252	252	252	27
11/2	132	132	180	192	240	240	192	192	192	24
15/8	120	120	120	132	132	192	192	192	192	193
13/4	108	108	108	120	120	180	180	180	180	18
17/8			108	120	120	144	144	144	144	14
2			96	108	120	120	126	132	144	14
21/4			96	108	120	126	132	132	144	14
21/2			96	108	120	126	132	132	144	144

Plates of greater dimensions than shown in this table may be submitted for special consideration.

Sheared Plates Lengths of Rectangular Plates Rolled on 108-inch Mill

Plates of greater dimensions than shown in this table may be submitted i special consideration.

Sheared Plates
Lengths of Rectangular Plates Rolled on 78-inch Mill

Tercentese.			1	Wints,	INCHES			
With Decimal Equivalent	72	70	68	66	65	60	56	52
*No. 11 Gauge125"						144	168	180
†No. 10 Gauge 134"				120	132	168	180	192
†No. 9 Gauge148"				120	144	168	180	192
†No. 8 Gauge165"			120	144	156	168	180	192
18-inch	132	144	156	168	180	192	204	216
1 and 1/4-inch {.219* .250*	120	120	132	144	180	192	204	216
5-inch					108	144	156	168
3/6-inch					96	120	144	156

Tencususs,			Wi	DTB, IN	CHES	-	B.
With Decimal Equivalent	48	44	40	36	32	28	24
*No. 11 Gauge	192	204	216	228	240	252	264
†No. 10 Gauge	204	216	228	240	252	264	276
†No. 9 Gauge	204	216	228	240	252	264	276
†No. 8 Gauge	216	228	240	252	264	276	288
18-inch	228	240	264	288	300	300	300
1 and 14-inch {.219"	228	240	252	264	276	288	300
%-inch	180	192	204	216	264	300	300
3%-inch	180	192	216	240	252	264	276

^{*}U. S. Standard.

[†]Birmingham.

Plates of greater dimensions than shown in this table may be submitted for recial consideration.

W our plates are accurately straightened by the most improved methods,

Sketch Plates

Sketch plates, as known in the trade, are sheared plates having other than a rectangular outline. This is modified, in practice, to except straight taper plates varying not more than four inches in width at the ends and having a width at the narrowest end of not less than thirty inches.

It is also customary to except complete circles, circular plates being classified by themselves.

Dimensions of Circular Plates

Thickness, Inches	Maximum Diameter, Inches	Thickness, Inches	Maximum Diameter, Inches
3%	65	16	103
*	72	5/8	103
¼	90	11	103
#	100	%)	
3/8	103	up to	103
16	103	11/2	
1/2	103		

Diameter.					THIC	ENESS 1	Inches				
Inches	1/8	3 16	3/4	5 16	3/8	7 16	1/2	9 16	5/8	11 16	3/4
16	7	11	14	18	21	25	28	32	36	39	42
17	8	12	16	20	24	28	32	36	40	44	48
18	9	14	18	23	27	32	36	41	46	50	54
19	10	15	20	25	30	35	40	45	50	55	60
20	11	17	22	28	33	39	45	50	56	61	67
21	12	19	25	31	37	43	50	55	61	68	74
22	14	20	27	34	40	47	54	61	67	74	81
23	15	22	30	37	44	52	59	66	74	81	88
24	16	24	32	40	48	56	64	72	80	88	96
25	18	26	35	44	52	61	70	78	87	96	104
26	19	28	38	47	57	66	75	85	94	103	113
27	20	31	41	51	61	71	81	91	101	112	122
28	22	33	44	55	66	76	87	98	109	120	13
29	24	35	47	59	70	82	94	105	117	129	140
30	25	38	50	63	75	88	100	113	125	138	150
31	27	40	54	67	80	94	107	120	134	147	160
32	29	43	57	71	86	100	114	128	142	157	17
33	31	46	61	76	91	106	121	136	152	167	182
34	32	48	64	81	97	113	129	145	161	177	193
35	34	51	68	85	102	119	136	153	170	187	204
36	36	54	72	90	108	126	144	162	180	198	216
37	38	57	76	95	114	133	152	171	190	210	229
38	40	60	80	100	121	141	161	181	201	221	241
39	42	64	85	106	127	148	169	190	212	233	254
40	45	67	89	111	134	156	178	200	223	245	267

Diameter,					THICK	ness, I	NCHES				
Inches	1/8	3 16	34	5 16	3/8	7 16	1/2	9 16	5/8	11 16	3/4
41	47	70	94	117	140	164	187	210	234	257	281
42	49	74	98	123	147	172	196	221	245	270	294
43	52	77	103	129	154	180	206	232	257	283	309
44	54	81	108	135	162	189	215	242	269	296	323
45	56	85	113	141	169	197	225	254	282	310	338
46	59	88	118	147	167	206	236	265	294	324	353
47	62	92	123	154	184	215	246	277	307	338	369
48	64	96	128	160	192	224	256	288	320	353	385
49	67	100	134	167	200	234	267	301	334	367	401
50	70	104	139	174	209	243	278	313	348	383	417
51	73	109	145	181	217	253	289	326	362	398	434
52	75	113	150	188	226	263	301	339	376	414	451
53	78	117	156	195	234	274	313	352	391	430	469
54	81	122	162	203	243	284	325	365	406	446	487
55	84	126	168	210	252	295	337	379	421	463	505
56	88	131	175	218	262	305	349	393	436	480	524
57	91	136	181	226	271	317	362	407	452	497	542
58	94	141	187	234	281	328	375	421	468	515	562
59	97	145	194	242	291	339	388	436	484	533	581
60	101	150	201	251	301	351	401	451	501	551	601
61	104	155	207	259	311	363	414	466	518	570	621
62	107	160	214	268	321	375	428	482	535	588	642
63	111	166	221	276	332	387	442	497	552	608	663
64	114	171	228	285	342	399	456	513	570	627	684
65	118	176	235	294	353	412	470	529	588	647	705

Diameter,					THIC	KNESS I	Inches				
Inches	1/8	3 16	1/4	5 16	3/8	7 16	1/2	9 16	5/8	11 16	3/4
16	7	11	14	18	21	25	28	32	36	39	42
17	8	12	16	20	24	28	32	36	40	44	48
18	9	14	18	23	27	32	36	41	46	50	54
19	10	15	20	25	30	35	40	45	50	55	60
20	11	17	22	28	33	39	45	50	56	61	67
21	12	19	25	31	37	43	50	55	61	68	74
22	14	20	27	34	40	47	54	61	67	74	81
23	15	22	30	37	44	52	59	66	74	81	88
24	16	24	32	40	48	56	64	72	80	88	96
25	18	26	35	44	52	61	70	78	87	96	104
26	19	28	38	47	57	66	75	85	94	103	113
27	20	31	41	51	61	71	81	91	101	112	122
28	22	33	44	55	66	76	87	98	109	120	131
29	24	35	47	59	70	82	94	105	117	129	140
30	25	38	50	63	75	88	100	113	125	138	150
31	27	40	54	67	80	94	107	120	134	147	160
32	29	43	57	71	86	100	114	128	142	157	171
33	31	46	61	76	91	106	121	136	152	167	182
34	32	48	64	81	97	113	129	145	161	177	193
35	34	51	68	85	102	119	136	153	170	187	204
36	36	54	72	90	108	126	144	162	180	198	216
37	38	57	76	95	114	133	152	171	190	210	229
38	40	60	80	100	121	141	161	181	201	221	241
39	42	64	85	106	127	148	169	190	212	233	254
40	45	67	89	111	134	156	178	200	223	245	267

Diameter,		THICKNESS, INCHES											
Inches	1/8	3 16	34	5 16	3/8	7 16	1/2	16	5/8	11 16	3/4		
41	47	70	94	117	140	164	187	210	234	257	281		
42	49	74	98	123	147	172	196	221	245	270	294		
43	52	77	103	129	154	180	206	232	257	283	309		
44	54	81	108	135	162	189	215	242	269	296	323		
45	56	85	113	141	169	197	225	254	282	310	338		
46	59	88	118	147	167	206	236	265	294	324	353		
47	62	92	123	154	184	215	246	277	307	338	369		
48	64	96	128	160	192	224	256	288	320	353	385		
49	67	100	134	167	200	234	267	301	334	367	401		
50	70	104	139	174	209	243	278	313	348	383	417		
51	73	109	145	181	217	253	289	326	362	398	434		
52	75	113	150	188	226	263	301	339	376	414	451		
53	78	117	156	195	234	274	313	352	391	430	469		
54	81	122	162	203	243	284	325	365	406	446	487		
55	84	126	168	210	252	295	337	379	421	463	505		
56	88	131	175	218	262	305	349	393	436	480	524		
57	91	136	181	226	271	317	362	407	452	497	542		
58	94	141	187	234	281	328	375	421	468	515	562		
59	97	145	194	242	291	339	388	436	484	533	581		
60	101	150	201	251	301	351	401	451	501	551	601		
61	104	155	207	259	311	363	414	466	518	570	621		
62	107	160	214	268	321	375	428	482	535	588	642		
63	111	166	221	276	332	387	442	497	552	608	663		
64	114	171	228	285	342	399	456	513	570	627	684		
65	118	176	235	294	353	412	470	529	588	647	705		

Diameter,						THE	ENESS	, INCH	ES				
Inches	1/4	5 16	3/8	7 16	1/2	9 16	5/8	11	3/4	13	7/8	15 16	1
66	243	303	364	424	485	546	606	667	727	757	848	909	970
67	250	312	375	437	500	562	625	687	750	812	874	937	1000
68	258	322	386	450	515	579	643	708	772	786	900	965	1030
69	265	331	398	464	530	596	662	729	795	866	928	994	1060
70	273	341	409	477	546	614	682	750	818	886	954	1023	1092
71	281	351	421	491	561	631	702	772	842	912	982	1052	1122
72	289	361	433	505	577	649	721	794	866	938	1010	1082	1154
73	297	371	445	519	593	667	741	816	890	964	1038	1112	1186
74	305	381	457	533	610	686	762	838	914	990	1066	1143	1220
75	313	391	470	548	626	705	783	861	939	1018	1096	1172	1252
76	322	402	482	563	643	723	804	884	964	1045	1125	1205	1286
77	330	413	495	578	660	743	825	907	990	1072	1155	1237	1320
78	339	423	508	593	677	762	847	931	1016	1100	1185	1270	1354
79	348	434	521	608	695	782	868	955	1042	1129	1216	1302	1389
80	356	445	534	623	712	802	891	980	1069	1158	1247	1336	1425
81	365	457	548	639	730	822	913	1004	1095	1187	1278	1369	1460
82	374	468	561	655	748	842	936	1029	1123	1216	1310	1403	1497
83	384	479	575	671	767	863	960	1054	1150	1246	1342	1438	1533
84	393	491	589	687	785	884	982	1080	1178	1276	1374	1472	1571
85	402	503	603	704	804	905	1005	1106	1206	1307	1407	1509	1608
86	412	515	618	720	823	926	1029	1132	1235	1338	1441	1543	1646
87	421	527	632	737	843	948	1053	1158	1264	1369	1474	1580	1685
88	431	539	647	754	862	970	1077	1185	1293	1400	1508	1616	1724
89	441	551	662	772	882	992	1102	1212	1323	1433	1543	1653	1763
90	451	564	676	789	902	1014	1127	1240	1352	1465	1577	1690	1803

Weights of Circular Plates

Continued

Diameter.					Тн	ICKNES	s, Ince	IES .				
Inches	5 16	3/8	7	1/2	9	5/8	11 16	3/4	13	1/8	15 16	1
91	576	691	807	922	1037	1152	1267	1382	1498	1613	1728	1843
92	589	707	824	942	1060	1178	1295	1413	1531	1648	1766	1884
93	602	722	842	963	1083	1203	1324	1444	1564	1684	1805	1925
94	615	738	861	984	1106	1224	1352	1475	1598	1721	1844	1967
95	628	754	879	1005	1130	1256	1381	1507	1632	1758	1883	2009
96	641	769	897	1025	1154	1282	1410	1538	1666	1795	1923	2051
97	654	785	916	1047	1178	1309	1440	1570	1701	1832	1963	2094
98	668	801	935	1069	1202	1336	1469	1603	1737	1870	2004	2137
99	682	818	954	1091	1227	1363	1500	1636	1772	1908	2045	2181
100	695	835	974	1113	1252	1391	1530	1669	1808	1947	2086	2225
101	709	851	993	1135	1277	1419	1561	1703	1844	1986	2128	2270
102	724	868	1013	1158	1302	1447	1592	1736	1881	2026	2171	2315
103	738	885	1033	1180	1328	1476	1623	1771	1918	2066	2213	2361
104	752	903	1053	1203	1354	1504	1655	1805	1956	2106	2257	2407
105	767	920	1073	1227	1380	1533	1687	1840	1993	2147	2300	2453
106	781	938	1094	1250	1407	1563	1719	1875	2032	2188	2344	2500
107	796	955	1115	1274	1433	1592	1752	1911	2070	2229	2389	2548
108	811	973	1136	1298	1460	1622	1785	1947	2109	2271	2433	2596
109	826	992	1157	1322	1487	1652	1818	1983	2148	2313	2479	2644
110	841	1010	1178	1346	1515	1683	1851	2020	2188	2356	2524	2693
111	857	1028	1200	1371	1542	1714	1885	2056	2228	2400	2570	2742
112	872	1047	1221	1396	1570	1745	1919	2094	2268	2443	2617	2791
113	888	1065	1243	1420	1598	1776	1953	2131	2308	2486	2663	2841
114	904	1085	1266	1446	1627	1808	1989	2170	2350	2531	2712	2893
115	920	1104	1288	1471	1656	1839	2024	2208	2392	2575	2759	2943

Our limit for rolling is 103° diameter (100° for \$\frac{1}{2}\$" thickness). Larger sizes are for reference only. Plates up to 1 ½" thick are rolled. To obtain weights add weight of fractional thickness to that given above for 1° thickness.

Bars for Concrete Reinforcement Cold Twisted Square Bar

Size, Inches	Area, Square Inches	Weight per Foot, Pounds	Maximum Length, Feet
1/4	.0625	.212	40
5	.0977	.332	40
3/8	.1406	.478	40
7	.1914	.651	40
1/2	.2500	.850	40
9 16	.3164	1.076	40
5/8	.3906	1.328	40
11	.4727	1.607	40
3/4	.5625	1.913	60
13	.6602	2.245	60
7/8	.7656	2.603	60
15 16	.8789	2.988	60
1	1.0000	3.400	60
11/8	1.2656	4.303	60
11/4	1.5625	5.312	60
13/8	1.8906	6.428	60
11/2	2.2500	7.650	60

Unless otherwise specified, cold twisted bars are made from low carbon Steel, and after twisting have an elastic limit ranging from 55,000 pounds per square inch for 1½" bars to 75,000 pounds per square inch for ½" bars.

All intermediate sizes can be furnished.

Weights and Areas of Twisted Bars are equal to plain square bars of like denominations.

Longer lengths furnished only by special arrangement.

Circular mailed upon application.

Bars for Concrete Reinforcement Diamond Bar

Size, Inches	Area, Square Inches	Weight per Foot, Pounds	Maximum Length, Feet
3/8	.1406	.478	40
7	.1914	.651	40
1/2	.2500	.850	40
5/8	.3906	1.328	40
3/4	.5625	1.913	60
3/8	.7656	2.603	60
1	1.0000	3.400	60
11/8	1.2656	4.303	60
11/4	1.5625	5.312	60
11/2	2.2500	7.650	60

Weights and areas of Diamond Bars are equal to plain Square Bars of like denominations.

Longer lengths furnished only by special arrangement.

Circular mailed upon application.

J & L Sheet Piling

Under Patent Dated October 13, 1908

Weights and Dimensions

Section Index	Size, Inches	Weight Per Sq. Ft., Pounds	A	В	c	D	E	F	G	н
000	12 x 41/4	32.00	12	2.90	41/4	0.335	0.35	0.75	0.21	0.56
00	12 x 41/4	33.50	12	2.94	41/4	0.375	0.35	0.75	0.21	0.56
0	12 x 41/4	35.00	12	2.94	41/4	0.415	0.35	0.75	0.21	0.56
1	12 x 5	35.00	12	3.94	5	0.34	0.35	0.65	0.21	0.44
2	12 x 5	36.25	12	3.94	5	0.38	0.35	0.65	0.21	0.44
3	15 x 6	37.20	15	4.75	6	0.38	0.37	0.74	0.23	0.49
4	15 x 6	39.75	15	4.75	6	0.44	0.37	0.74	0.23	0.49
5	15 x 6	42.25	15	4.75	6	0.50	0.37	0.74	0.23	0.49

From the above table and cuts and those on following pages, it will be seen that J & L SHEET PILING has been designed from an economical and efficient basis. There are eight sections available, embracing economy in weight, high section modulus, free driving qualities, etc.

The metal is so distributed as to form a rigid section, which means efficiency inasmuch as the blows from the hammer are all effective and the energy is not lost in overcoming excessive friction and distortion.

The joints are practically watertight as driven, which is important, especially in cofferdam work or in "cut-off" walls,

We attach a locking bar to one flange of each piling beam at the mill before shipment and these are shipped, handled and driven as a unit.

The piling beams have a maximum salvage value, as, when no longer required as piling, the sections (being 12" and 15" beams) are available for other uses.

For information regarding the strength of the interlock see page 86.

Illustrated Catalogue mailed upon application.

J & L Sheet Piling Standard Corner Pieces and Special Connections

Section Employed to Straighten Wall when Toe of Sec-

tion has been Thrown Forward or Back from a Vertical Line.

Special Fabricated Corner and Connection. ½ Section attached to Web of Another Section by Means of Angles and Rivets.

Special Corner and Connection. Flange of One I-Beam Riveted Direct to Web of Another Section.

Standard Corner with Web Bent 90° with a 2 inch Radius

Special Section for Cross Wall Connection

The above are corner pieces and special connections which are ordinarily used but if unusual conditions or special designs require other details, this piling careadily be adapted to meet such situations.

J & L Sheet Piling

Properties of Sheet Piling Beams

_			***	perti	00 01	Direct	1 ming	Deumo			_
Section Index	Depth of Beam, Inches	Weight per Linear Foot, Pounds	Area of Section, Square Inches	Thickness of Web, Inches	Width of Flange, Inches	Moment of Inertia Neutral Axis Perpen- dicular to Web at Center	Moment of Inertia Neutral Axis Coin- cident with Center Line of Web	Radius of Gyration Neutral Axis Perpen- dicular to Web at Center	Radius of Gyration Neutral Axis Coinci- dent with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Section Factor Neutral Axis Coincident with Center Line of Web
B-315	12	23.26	6.84	0.34	2.90	140.50	1.92	4.53	0.53	23.42	1.32
B-314	12	24,90	7.32	0.38	2.94	146,27	2.01	4.47	0.52	24.38	1.37
B-313	12	26.37	7.76	0.42	2.94	150.47	2.04	4.40	0.51	25.08	1.38
B-310	12	26.30	7.72	0.34	3.94	167.76	4.43	4.67	0.76	27.96	2.25
B-309	12	27.60	8.10	0.38	3.94	172.10	4.56	4.61	0.75	28.68	2.30
B-302	15	35.75	10.50	0.38	4.75	358.16	8.52	5.84	0.90	47.75	3.59
B-301	15	39.00	11.44	0.44	4.75	375.03	8.91	5.71	0.88	50.00	3.70
B-300	15	42.25	12.37	0.50	4.75	391.92	9.31	5.62	0.87	52.25	3.82

Properties of Locking Bars

Section Index	Depth of Locking Bar, Inches	Weight per Linear Foot, Pounds	Area of Sections, Square Inches	Thickness of Web, Inches	Moment of Inertia Neutral Axis Perpen- dicular to Web at Center	Moment of Inertia Neutral Axis Coinci- dent with Center Line of Web	Radius of Gyration Neutral Axis Perpen- dicular to Web at Center	Radius of Gyration Neutral Axis Coinci- dent with Center Line of Web	Section Factor Neutral Axis Perpendicular to Web at Center	Section Factor Neutral Axis Coincident with Center Line of Web
B-322	434	10.3	3.00	0.21	7.50	0.87	1.58	0.54	3.53	0.54
B-321	5	9.75	2.87	0.21	10.50	0.64	1.91	0.47	4,20	0.64
B-316	6	12.25	3.61	0.23	18.42	1.11	2.26	0.55	6.14	1.03

J & L Sheet Piling

Properties of Combined Sections Joints Considered as a Unit

Sec- tion Index	Size, Inches	Weight per Square Ft. of Assembled Area, Pounds	Total Sectional Area Assembled Section, Sq. Inches	Width of Joint Over All, Inches		Radius of Gyration Neutral Axis Coincident with Center Line of Web	Section Factor Neutral Axis Coincident with Center Line of Web
000	12x4½	32.0	9.84	41/4	9.42	0.99	4.85
00	12x41⁄4	33.5	10.32	41/4	9.52	0.96	4.90
0	12x41⁄4	35.0	10.76	41/4	9.54	0.94	4.91
1	12x5	35.0	10.59	5	14.93	1.19	6.45
2	12x5	36.25	10.97	5	15.06	1.17	6.50
3	15x6	37.20	14.11	5	26.94	1.38	9.73
4	15x6	39.75	15.05	5	27.33	1.35	9.84
5	15x6	42.25	15.98	5	27.73	1.31	9.96

J & L Sheet Piling Unlocking Tests

The following table shows the result of a series of tests made on J & L Sheet Piling to determine the strength of the interlock.

Pieces of the proper length were locked together, placed in the grips of a 200,000 pound Riehle Testing Machine and a pull exerted which would tend to "unlock" the beams and locking bars. This table shows actual results from tests on nine different sets of beams and locking bars.

12-inch Piling Beams—4¼-inch Locking Bars Medium Grade Open Hearth Steel

Set No.	Section Index	Weight per Square Foot	Resistance per Linear Inch of Section
1	000	32 pounds	13,010 pounds
2	000	32 pounds	13,360 pounds
3	000	32 pounds	13,420 pounds
4	0	35 pounds	12,650 pounds
5	0	35 pounds	13,040 pounds
6	0	35 pounds	12,450 pounds
7	0	35 pounds	12,500 pounds
8	0	35 pounds	12,350 pounds
9	0	35 pounds	13,240 pounds

The strength of an interlock or grip at a joint is important, especially where there is a tension in a wall of piling tending to "unlock" the sections at the joints. Such tension usually exists in double wall dams, or in any enclosure where the pressure is exerted outwardly, usually caused by an earthen or concrete filling. The joints in a wall of piling, used as a retaining wall, are also very often subjected to pressures, causing heavy tension.

The table above will show, at a glance, that J & L Sheet Piling has been designed to take care of these conditions. The strength of interlock is in excess of any sheet piling now on the market.

J & L Sheet Piling

Plan and Sectional View of Cofferdam showing Typical Timber Bracing

Steel Piling for Retaining Earth

$$\alpha$$
 = Angle of repose of soil. (See following tables.)

$$\beta$$
 = Angle of slope of earth retained (if any).

Then
$$P = \frac{WH^2}{2} \times \frac{1 - \sin \alpha}{1 + \sin \alpha}$$
 when $\beta = 0$

$$P = \frac{WH^2 \cos \alpha}{2} \text{ when } \beta = \alpha$$

$$P = \cos \beta \frac{\cos \beta - \sqrt{\cos^2 \beta - \cos^2 \alpha}}{\cos \beta + \sqrt{\cos^2 \beta - \cos^2 \alpha}} \times \frac{WH^2}{2} \text{ for any other slope.}$$

In the following examples let

Ground

Level

$$W = 100$$
 lbs. per cubic foot

$$H = 30$$
 feet
 $\alpha = 36^{\circ} 53'$ for soil

1. Then, when
$$\beta = o$$

$$P = \frac{WH^2}{2} \times \frac{1 - \sin 36^{\circ} 53'}{1 + \sin 36^{\circ} 53'} = \frac{100 \times 900}{2} \times \frac{1 - .6}{1 + .6}$$

$$= 45,000 \times .25 = 11,250 \text{ lbs. or } 5.63 \text{ tons.}$$

2. When
$$\beta = \text{say } 20^{\circ}$$

$$P = \frac{WH^{2}}{2} \cos 20^{\circ} \frac{\cos 20^{\circ} - \sqrt{\cos^{2} 20^{\circ} - \cos^{2} 36^{\circ} 53'}}{\cos 20^{\circ} + \sqrt{\cos^{2} 20^{\circ} - \cos^{2} 36^{\circ} 53'}}$$

$$= \frac{100 \times 900}{2} \times .939 \times \frac{.939 - .493}{.939 + .493}$$

$$= 45,000 \times .293 = 13,185 \text{ lbs. or } 6.6 \text{ tons.}$$

3. When
$$\beta = 36^{\circ} 53' = \alpha$$

$$P = \frac{WH^2}{2} \cos 36^{\circ} 53'$$

$$= \frac{100 \times 900}{2} \times .8 = 36,000 \text{ lbs. or } 18 \text{ tons.}$$

Steel Piling for Retaining Earth

Slope of Repose and Weights for Loose Earth

ż

b

KIND OF EARTH	Slope of Repose	Angle of Repose	Weight, Pounds per Cubic Foot
Sand, clean	1.5 to 1	33° 41′	100
Sand and Clay	1.33 to 1	36° 53′	100
Clay, dry	1.33 to 1	36° 53′	100
Clay, damp, plastic	2.00 to 1	26° 34′	100
Gravel, clean	1.33 to 1	36° 53′	100
Gravel and Clay	1.33 to 1	36° 53′	100
Gravel, Sand and Clay	1.33 to 1	36° 53′	100
Soil	1.33 to 1	36° 53′	100
Soft Rotten Rock	1.33 to 1	36° 53′	110
Hard Rock	1 to 1	45° 0′	100
Bituminous Cinders	1 to 1	45° 0′	50
Anthracite Ashes	1 to 1	45° 0′	30

Material Excavated by a Wet or Dry Process and dumped into Water, as at the Back of a Sea-Wall, has Weights and Slopes approximately as follows

KIND OF MATERIAL	Slope of Repose	Angle of Repose	Weight, Pounds per Cubic Foot
Sand, clean	2 to 1	26° 34′	60
	3 to 1	18° 26′	65
ClayGravel, clean	$3\frac{1}{2}$ to 1	15° 57′ 26° 34′	80 60
Gravel and Clay	3 to 1	18° 26′	65
	3 to 1	18° 26′	65
SoilSoft Rotten Rock	3½ to 1	15° 57′	70
	1 to 1	45° 0′	65
Hard Rock		45° 0′ 0° 0′	65 90

Chain

Straight-Link Coil Chain

Size of Chain, Inches	Length of Link, Inches	Width of Link, Inches	Weight of Chain, per Foot	Proof Test for BB Chain	Proof Test for BBB Chain	Proof Test for Dredge Chain
t	1	w	Pounds	Tons	Tons	Tons
16	13/8	18	.50	.39	.45	.50
1/4	11/2	1	.75	.66	.75	.80
1	13/4	1 16	1.10	1.37	1.60	1.70
3/8	2	13/8	1.55	1.92	2.21	2.36
16	21/4	116	2.00	2.64	3.05	3. 33
3⁄2	21/2	13/4	2.65	3.41	3.92	4.42
16	27/8	118	3.25	4.29	4.93	5.53
5 ⁄8	31/4	21/8	4.20	5.28	6.07	6.67
#	31/2	$2\frac{5}{16}$	5.00	6.32	7.28	8.02
¾	33/4	21/2	5.90	7.59	8.74	9.24
#	4	211	7.00	8.91	10.3	10.7
3/8	41/4	3	8.00	10.3	11.9	12.1
Ħ	41/2	31/4	9.00	11.8	13.6	14.5
1	43/4	31/2	10.0	13.5	15.6	16.3
11/8	51/2	37⁄8	12.5	16.2	18.6	19.6
11/4	6	41/4	16.0	20.1	23.1	24.0
13/8	61/2	43/4	19.0	24.2	27.8	28.7
11/2	71/4	51/4	21.0	28.9	33.2	34.6
15/8	71/8	53/4	25.0	34.9	39.0	41.0

Sale working leads of chain are one-half of proof test leads. Twist Coil Chain is made in all sizes from $+^*$ to $4/^*$ inclusive. Conveyor or Sprocket Wheel Chain is made to any dimensions required, and in ordering give dimensions of links wanted, or preferably a sketch of same.

Chain

Standard Stud-Link Cable Chain

Size of Chain, Inches	Length of Link, Inches	Width of Link, Inches	Weight of Chain, per Foot	Proof Tes
t	1	W	Pounds	Tons
3/4	43/8	23/4	5.5	10.1
13	43/4	3	6.3	12.0
3/8	5	31/4	8.2	13.7
15 16	53/8	31/2	9.2	15.7
1	57/8	33/4	10.2	18.0
116	61/4	37/8	11.5	20.3
11/8	61/2	41/8	12.3	22.8
$1\frac{3}{16}$	63/4	41/4	13.5	25.5
11/4	71/8	41/2	15.0	28.1
15/16	73/8	45/8	16.2	31.0
13/8	73/4	47/8	18.3	34.0
17/16	81/8	51/8	18.8	37.2
11/2	81/2	53/8	21.2	40.5
1 9 16	87/8	55/8	23.8	44.0
15/8	91/4	57/8	25.0	47.5
111	95/8	6	26.2	51.2
13/4	10	61/4	28.8	55.2
17/8	101/2	63/4	33.8	63.3
115	103/4	7	35.8	67.5
2	111/8	71/4	38.8	72.0
216	111/2	7½	42.3	76.5
21/8	12	73/4	46.0	81.2
$2\frac{3}{16}$	121/2	8	48.3	86.1
21/4	13	81/4	0.00	0.10

Sale working loads of chain are one-half of proof test loads.

Standard Close-Link Cable Chain

Sise of Chain, Inches	Length of Link, Inches	Width of Link, Inches	Weight of Chain, per Foot	Proof Test
t	1	W	Pounds	Tons
1	45/8	3½	10.3	12.0
110	5	35/8	11.8	12.5
11/8	53/8	37⁄8	12.7	15.1
1 5 1 5	51/2	41/8	13.7	16.9
11/4	53/4	41/4	15.2	18.7
1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5	6	41/2	16.5	20.6
13/8	61/4	43/4	18.8	22.6
1 7 6	65/8	5	19.7	24.7
11/2	67/8	51/4	21.7	27.0
136	71/4	51/2	23.0	29.2
15/8	71/2	53/4	25.3	31.6

Safe working loads of chain are one-half of proof test loads.

Properties of Sections

Definitions and Mathematical Expressions Used in Structural Designing

A = AREA OF SECTION, given in square inches.

- I = MOMENT OF INERTIA. For any cross-section, the moment of inertia is the sum of the products obtained by multiplying the area of each particle in the cross-section by the square of its distance from the neutral axis.
- 7 = RADIUS OF GYRATION. This may be defined as the distance from the neutral axis to the point at which, if all the area were concentrated, the moment of inertia would be the same.

The radius of gyration is used for ascertaining the safe load any section or shape will sustain when used in compression as a strut or column. The unbraced length of the section in inches, divided by the radius of gyration in inches is the working basis of all column formulae, commonly written $\frac{1}{x}$

The value of the radius of gyration of any section is determined by the formulae, $r = \frac{I}{A}$

NEUTRAL AXIS = Axis of moments through center of gravity of sections.

x-x and y-y = The neutral axis through center of gravity of unsymmetrical sections.

x and y = The distance from neutral axis x-x and y-y to the back or working line of this section.

S = SECTION MODULUS

The moment of inertia divided by the distance from axis to extreme fiber = $\frac{I}{*}$

The section modulus is used to determine the stress in the extreme fiber of a shape subject to bending, by dividing the bending moment by the section modulus, both expressed in like units of measurement.

In an unsymmetrical section there are two section moduli for each axis, the least of which determines the safe unit stress.

The properties of steel sections are based upon the theoretical dimensions given in pages 11 to 45 inclusive. No account has been taken of fillets or rounded corners, neither have any approximations entered into any of the calculations.

Values of Moments of Inertia

Various Sections

I =Moment of Inertia S =Section Factor

Sections	1	S
X X X	For axis X-X = $\frac{b h^3}{12}$ For axis Y-Y = $\frac{b h^3}{3}$	b h2 6
Ax x	$\frac{b \ (h^3 - h_1^3)}{12}$	$\frac{b (h^3 - h_1^3)}{6 h}$
-b-x	$\frac{b h^3 - b_1 h_1^3}{12}$	$\frac{b h^3 - b_1 h_1^3}{6 h}$
X	For axis X-X = $\frac{b h^3}{36}$ For axis Y-Y = $\frac{b h^3}{12}$	$Min. = \frac{b h^2}{24}$
X X	$\frac{\pi d^4}{64}$	$\frac{\pi d^3}{32}$
x Oxi	$\frac{\pi \ (d^4 - d_1^4)}{64}$	$\frac{\pi \left(d^4-d_1^4\right)}{32\ d}$
T N	$\frac{\pi \ b \ h^3}{64}$	$\frac{\pi \ b \ h^2}{32}$
	$\frac{b \ h^3 - (b - b_1) \ h_1^3}{12}$	$\frac{2I}{h}$

Values of Moments of Inertia Rolled Steel Sections

$$A = td + 2s (b - t) + \frac{(b - t)^2}{12}$$

I, Axis 1-1 =
$$\frac{bd^2}{12} - \frac{h^4 - l^4}{8}$$

I', Axis 2-2 =
$$\frac{b^2s}{6} + \frac{ll^2}{12} + \frac{b^4 - l^4}{288}$$

Slope of flange
$$k = d - 2s = g = \frac{h - l}{b - t} = \frac{1}{6}$$
 for standard sections $l = h - g$ $(b - t)$

$$A = td + 2s (b-t) + \frac{(b-t)^2}{6}$$

$$X = \left[b^2s + \frac{ht^2}{2} + \frac{(b-t)^2(b+2t)}{18}\right] \div A$$

I, Axis 1—1 =
$$\frac{bd^3}{12}$$
— $\frac{h^4-l^4}{16}$

I', Axis 2—2 =
$$\frac{1}{3} \left[2sb^3 + l t^3 + \frac{b^4 - t^4}{12} \right] - AX^3$$

Slope of flange
$$k = d - 2s = g = \frac{h - l}{2(b - l)} = \frac{1}{6}$$
 for standard sections.

$$A = t (2a - t)$$

$$X = \frac{a^2 + a \ t - t^2}{2 \ (2a - t)}$$

I, Axis 1—1 =
$$\frac{t (a-x)^3 + ax^3 - (a-t) (x-t)^3}{3}$$

1°, Axis 2-2 =
$$\frac{2x^4-2(x-t)^4+t\left[a-(2x-\frac{t}{2})\right]^3}{3}$$

Values of Moments of Inertia

Rolled Steel Sections

$$X = \frac{t (2a' + b) + a'^{2}}{2 (a' + b)} \quad X' = \frac{t (2b' + a) + b'^{2}}{2 (b' + a)}$$

$$Tan 2a = -$$

$$[(2x-t)b(b-2x') + (2x'-t)(a-t)(a+t-2x)]t$$

$$2 (l'-t)$$

$$I, \text{ Axis } 1-1 =$$

$$t (a-x)^{3} + bx^{3} - (b-t) (x-t)^{3}$$

$$3$$

$$I', \text{ Axis } 2-2 =$$

$$t (b-x')^{3} + ax'^{3} - (a-t) (x'-t)^{3}$$

$$3$$

$$I'', \text{ Axis, } 3-3 = \frac{I \cos^{2} a - I' \sin^{2} a}{\cos 2a}$$

$$A = [b + 2 (a - t)] t$$

$$Tan 2a = -\frac{(bt - t^2) (a^2 - at)}{I - I'}$$

$$I, \text{ Axis } 1 - 1 = \frac{ab^3 - a' (b - 2t)^3}{12}$$

$$I', \text{ Axis } 2 - 2 = \frac{b (a + a')^3 - 2a'^3 b' - 6a' a^2 b'}{12}$$

$$I'' \text{ Minimum, Axis } 3 - 3 \frac{I' \cos^2 a - I \sin^2 a}{\cos 2a}$$

$$A \frac{l(t+t')}{2} + n t' + b' (s+n)$$

$$X = \frac{3s^{2}(b-t') + 2b's'(s'+3s) + 3t'd^{2} - l(t'-t)(3d-t)}{6A}$$

$$I, Axis 1 - 1 = \frac{l^{3}(3t+t') + 4bn^{3} - 2b's'^{3}}{12} - A(x-n)^{2}$$

$$I', Axis 2 - 2 = \frac{sb^{3} + s't'^{3} + lt^{3}}{12} + \frac{s'b' [2b'^{2} + (2b' + 3t')^{2}]}{5} + \frac{l(t'-t)[(t'-t)^{2} + 2(t' + 2t)^{2}]}{144}$$

Compound Sections

Method of Finding Moments of Inertia, Radii of Gyration and Section Moduli

The moment of inertia I of a compound section about its neutral axis is equal to the sum of the moments of inertia I', of its component parts about axes through their own centers of gravity and parallel to the neutral axis of the compound section, plus areas A' of the component parts multiplied by the squares of the distances d, of their own centers of gravity from the neutral axis of the compound section.

Moment of inertia
$$I = I' + A'd^3$$

Radius of gyration $\tau = \sqrt{\frac{I}{A}}$

Section modulus
$$S = \frac{I}{n}$$

Where n = distance of extreme fiber from neutral axis of compound section.

Example 1. Find the moments of inertia and radii of gyration about the axes X-X and Y-Y of a column section composed of

2 channels $15'' \times 33$ lbs. per ft. 2 cover plates $16 \times \frac{1}{2}$

considering the gross area of section.

The properties of the component sections will be found tabulated in other parts of the book. Calculate the distances d from the neutral axes of the component sections

to the neutral axes X-X and Y-Y in accordance with dimensions given in sketch.

Axis X-X

Ix-x of 2-15" channels 33 lbs. = 2×312.6 = 625.20 inches⁴

Ix-x of 2-16 \times ½" plates = $2 \times \frac{16 \times 0.5^3}{12}$ = .33 inches

Ad² of 2–16 \times ½" plates = 2 \times 8 \times 7.75² = 961.00 inches⁴

Moment of inertia—gross section = 1586.53 inches⁴

Radius of gyration—gross section $\sqrt{\frac{1586.53}{35.8}}$ = 6.66 inches

Compound Sections

Continued

Axis Y-Y

Iy-y of 2–15" channels 33 lbs. = 2×8.2 = 16.40 inches⁴ Ad^2 of 2–15" channels 33 lbs. = $2 \times 9.9 \times 5.265^2$ = 548.86 inches⁴

Iy-y of 2-16
$$\times$$
 ½ plates = 2 $\times \frac{0.5 \times 16^3}{12}$ = 341.33 inches

Moment of inertia-gross section

= 906.59 inches

Radius of gyration—gross section $\sqrt{\frac{906.59}{35.8}}$

5.03 inches

Example 2. Find the moments of inertia and section moduli about the axes X-X and Y-Y of a girder section composed of

1 web plate 42" × 3/8"

4 flange angles 6 × 4 × ½"

2 flange plates 14 × 1/2"

considering the gross area of section.

Calculate the distances d from the neutral axes of the component sections to the neutral axes X-X and Y-Y.

Axis X-X

Ix-x of $4-6 \times 4 \times \frac{1}{2}$ angles = 4×6.3 = 25.20 inches⁴ Ad^2 of $4-6 \times 4 \times \frac{1}{2}$ angles = $4 \times 4.75 \times 20.26^2$ = 7798.88 inches⁴

Ix-x of $1-42 \times \frac{3}{8}$ plate = $1 \times \frac{0.375 \times 42^3}{12} = 2315.25$ inches

 $Ix-x \text{ of } 2-14 \times \frac{1}{2} \text{ plates} = 2 \times \frac{14 \times 0.5^3}{12} = .29 \text{ inches}^4$

 Ad^2 of 2-14 $\times \frac{1}{2}$ plates = 2 \times 7 \times 21.52 = 6471.50 inches4

Moment of inertia—gross section =16611.12 inches

Section modulus—gross section $\frac{16611.2}{21.75}$ = 763.72 inches

Compound Sections

Continued

Axis Y-Y

 $Iy-y \text{ of } 4-6 \times 4 \times \frac{1}{2} \text{ angles} = 4 \times 17.4 = 69.60 \text{ inches}^4$

$$Ad^2$$
 of $4-6 \times 4 \times \frac{1}{2}$ angles = $4 \times 4.75 \times 2.1775^2 = 90.09$ inches

Iy-y of
$$1-42 \times \frac{3}{8}$$
 plate = $1 \times \frac{42 \times 0.375^3}{12}$ = .49 inches

Iy-y of 2-14
$$\times$$
 ½ plates = 2 $\times \frac{0.5 \times 14^3}{12}$ = 228.67 inches⁴

Moment of inertia-gross section

= 388.85 inches

55.55 inches

To find the moment of inertia of the net section calculate the moments of inertia of the areas of the rivet holes about the neutral axis of the compound section and deduct their sum from the moment of inertia of the gross section as determined above.

Example 3. Find the radii of gyration about axes X-X and Y-Y of a latticed column composed of

 $4-4 \times 3 \times \frac{5}{16}$ angles with $\frac{3}{8}$ lattice bars considering gross section of angles, no allowance being made for lattice bars. Calculate the distance d from the neutral axis of the angles to the neutral axis X-X.

Axis X-X

Ix-x of $4-4 \times 3 \times \frac{5}{16}$ angles = 4×1.7 = 6.8 inches Ad^2 of $4-4 \times 3 \times \frac{5}{16}$ angles = $4 \times 2.09 \times 4.24^2 = 150.29$ inches

Moment of inertia-gross section

= 157.09 inches4

Radius of gyration-gross section-

4.34 inches

Axis Y-Y

Iy-y of $4-4 \times 3 \times \frac{1}{16}$ angles = 1.93. See tables of radii of gyration for 2 angles placed back to back (page 209).

Moments of Inertia of Rectangles

-				WIDTH OF	OF RECTANGLE, INCHES	INCHES			
Inches	7%	100	8%	16	1/2	16	8/8	3/4	1
	2.60			4.56	5.21				10.42
	4.50			7.88	00.6				
	7.15			12.51	14.29				
	10.67			18.67	21.33				
	15.19	18.98		26.58	30.38				
	20.83	26.04		36.46	41.67				
	27.73			48.53	55.46				
	36.00			63.00	72.00				
	45.77			80.10	91.54				
				100.04	114.33				
				123.05	140.63				
				149.33	170.67				
				179.12	204.71				
				212.63	243.00				
				250.07	285.79				
	166.67	208.33	250.00	291.67	333.33	375.00	416.67	500.00	.999
				337.64	385.88				
				388.21	443.67				
				443.59	506.96				
				EOA OO	878 00				

Moments of Inertia of Rectangles

noth.				WIDTH OF	RECTANGLE, INCHES	INCHES			
Inches	×	16	3%	16	1/2	16	8%	3%	1
25			- 4			100			
26						-			
28	457.33	571.67	60.619	800.33	914.67	1029.00	1143 33	1372 00	1820 33
29									
30						- 4			
31				- 10				-	
32							-	-	-
33	748.69	935.86	1123.03	1310.20	1497.38	1684.55	1871.72	2246.07	2994.76
2.0	4.1					18.1			
35		1 14	10.8	14		*	*	10.0	
36	972.00	1215.00	1458.00	1701.00	1944.00	2187.00	2430.00	2916.00	3888.00
37		/3 ×.	- *						
38		- 4		-				10	
89		- 4		-		-			

Moments of Inertia of Rectangles

Neutral

						The state of the s	The second second		
Depth, Inches	74	16	8%	1.6	3/2	18	%	8%	1
40	1 3	1111	100					-	5333.33
41		1794.82	2153.78	2512.75	2871.71	3230.69	3589.64	4307.56	
42						30	- 4		6174.
43			- 2						6625.
44	1774.67				100				7098.
45		100	100			-			100
46	2027.83	2534.79	3041.75	3548.71	4055.67	4562.63	5069.58	6083.50	8111.
47	100					0	. *		8651.92
48				1000					-

Properties of Structural Beams

Sec-	Depth		Area	Width	Thick- ness of	Axi	s X—X	x	A	xis Y-	-Y
Index	Beam, In.	Foot, Lbs.	Sec- tion, Sq. In.	Flange, In.	Web, In.	I	r In.	8	1	In.	8
B-0 B-1 B-2	24	115.0 110.0 105.0	33.98 32.48 30.98	7.938	0.750 0.688 0.625	2955.5 2883.5 2811.5	9.42	246.3 240.3 234.3	83.2 81.0 78.9	1.57 1.58 1.60	20.8 20.4 20.0
B-3 B-4 B-5 B-6 B-7	24	100.0 95.0 90.0 85.0 80.0	29.41 27.94 26.47 25.00 23.32	7.254 7.193 7.131 7.070 7.000	0.754 0.693 0.631 0.570 0.500	2379.6 2309.0 2238.4 2167.8 2087.2	9.09 9.20 9.31	198.3 192.4 186.5 180.7 173.9	48.6 47.1 45.7 44.4 42.9	1.28 1.30 1.31 1.33 1.36	13.4 13.1 12.8 12.6 12.3
B-12 B-13 B-14 B-15 B-16	20	100.0 95.0 90.0 85.0 80.0	29.41 27.94 26.47 25.00 23.73	7.284 7.210 7.137 7.063 7.000	0.884 0.810 0.737 0.663 0.600	1655.6 1606.6 1557.6 1508.5 1466.3	7.58 7.67 7.77	165.6 160.7 155.8 150.9 146.6	52.7 50.8 49.0 47.3 45.8	1.34 1.35 1.36 1.37 1.39	14.5 14.1 13.7 13.4 13.1
B-20 B-21 B-22	20	75.0 70.0 65.0	22.06 20.59 19.08	6.399 6.325 6.250	0.649 0.575 0.500	1268.8 1219.8 1169.5		126.9 122.0 117.0	30.3 29.0 27.9	1.17 1.19 1.21	9.5 9.2 8.9
*B-23 *B-24 *B-25 *B-26	18	90.0 85.0 80.0 75.0	26.47 25.00 23.53 22.05	7.245 7.163 7.082 7.000	0.807 0.725 0.644 0.562	1260.4 1220.7 1181.0 1141.3	6.90 6.99 7.09 7.19	140.0 135.6 131.2 126.8	52.0 50.0 48.1 46.2	1.40 1.42 1.43 1.45	14.4 14.0 13.6 13.2
B-27 B-28 B-29 B-30	18	70.0 65.0 60.0 55.0	20.59 19.12 17.65 15.93	6.259 6.177 6.095 6.000	0.719 0.637 0.555 0.460	921.2 881.5 841.8 795.6	6.69 6.79 6.91 7.07	102.4 97.9 93.5 88.4	24.6 23.5 22.4 21.2	1.09 1.11 1.13 1.15	7.9 7.6 7.3 7.1
B-44 B-45 B-46 B-47	15	75.0 70.0 65.0 60.0	22.06 20.59 19.12 17.67	6.292 6.194 6.096 6.000	0.882 0.784 0.686 0.590	691.2 663.7 636.1 609.0	5.60 5.68 5.77 5.87	92.2 88.5 84.8 81.2	30.7 29.0 27.4 26.0	1.18 1.19 1.20 1.21	9.8 9.4 9.0 8.7
B-52 B-53 B-54 B-55	15	55.0 50.0 45.0 42.0	16.18 14.71 13.24 12.48	5.746 5.648 5.550 5.500	0.656 0.558 0.460 0.410	511.0 483.4 455.9 441.8	5.62 5.73 5.87 5.95	68.1 64.5 60.8 58.9	17.1 16.0 15.1 14.6	1.02 1.04 1.07 1.08	5.9 5.7 5.4 5.3

^{*}Proposed Sections-Inserted for reference only.

Properties of Structural Beams

Continued

Sec-	Depth	Weight	Area	Width	Thick- ness of	Axı	s X—2		Ax	is Y—	Y
Index	Beam, In.	Foot, Lbs.	Sec- tion, Sq. In.	Flange, In.	Web, In.	ı	r In.	S	I	r In.	8
B-60	12	55.0	16.18	5.611	0.821	321.0	4.45	53.5	17.5	1.04	6.2
B-61		50.0	14.71	5.489	0.699	303.4	4.54	50.6	16.1	1.05	5.9
B-62		45.0	13.24	5.366	0.576	285.7	4.65	47.6	14.9	1.06	5.6
B-63		40.0	11.84	5.250	0.460	269.0	4.77	44.8	13.8	1.08	5.3
B-68 B-69	12	35.0 31.5	10.29 9.26	5.086 5.000	0.436 0.350	228.3 215.8	4.71 4.83	38.0 36.0	10.1	0.99	4.0
B-74	10	40.0	11.76	5.099	0.749	158.7	3.67	31.7	9.5	0.90	3.7
B-75		35.0	10.29	4.952	0.602	146.4	3.77	29.3	8.5	0.91	3.4
B-76		30.0	8.82	4.805	0.455	134.2	3.90	26.8	7.7	0.93	3.2
B-77		25.0	7.37	4.660	0.310	122.1	4.07	24.4	6.9	0.97	3.0
B-82	9	35.0	10.29	4.772	0.732	111.8	3.29	24.8	7.3	0.84	3.1
B-83		30.0	8.82	4.609	0.569	101.9	3.40	22.6	6.4	0.85	2.8
B-84		25.0	7.35	4.446	0.406	91.9	3.54	20.4	5.7	0.88	2.5
B-85		21.0	6.18	4.315	0.275	84.0	3.68	18.7	5.2	0.90	2.4
B-90	8	25.5	7.50	4.271	0.541	68.4	3.02	17.1	4.8	0.80	2.2
B-91		23.0	6.76	4.179	0.449	64.5	3.09	16.1	4.4	0.81	2.1
B-92		20.5	6.03	4.087	0.357	60.6	3.17	15.2	4.1	0.82	2.0
B-93		18.0	5.33	4.000	0.270	56.9	3.27	14.2	3.8	0.84	1.9
B-98	7	20.0	5.88	3.868	0.458	42.2	2.68	12.1	3.2	0.74	1.7
B-99		17.5	5.15	3.763	0.353	39.2	2.76	11.2	2.9	0.76	1.6
B-100		15.0	4.42	3.660	0.250	36.2	2.86	10.4	2.7	0.78	1.5
B-105		17.25	5.07	3.575	0.475	26.2	2.27	8.7	2.4	0.68	1.3
B-106		14.75	4.34	3.452	0.352	24.0	2.35	8.0	2.1	0.69	1.2
B-107		12.25	3.61	3.330	0.230	21.8	2.46	7.3	1.9	0.72	1.1
B-112	5	14.75	4.34	3.294	0.504	15.2	1.87	6.1	1.7	0.63	1.0
B-113		12.25	3.60	3.147	0.357	13.6	1.94	5.5	1.5	0.63	0.92
B-114		9.75	2.87	3.000	0.210	12.1	2.05	4.8	1.2	0.65	0.82
B-119 B-120 B-121 B-122	4	10.5 9.5 8.5 7.5	3.09 2.79 2.50 2.21	2.880 2.807 2.733 2.660	0.410 0.337 0.263 0.190	7.1 6.8 6.4 6.0	1.52 1.55 1.59 1.64	3.6 3.4 3.2 3.0	1.0 0.93 0.85 0.77	0.58	0.70 0.66 0.62 0.58
B-127 B-128 B-129	3	7.5 6.5 5.5	2.21 1.91 1.63	2.521 2.423 2.330	0.361 0.263 0.170	2.9 2.7 2.5	1.15 1.19 1.23	1.9 1.8 1.7	0.53	0.52 0.52 0.53	0.48 0.44 0.40

Properties of Structural Channels

Sec- tion Index	Depth of Chan- nel,	per Foot,	Area of Sec- tion,	Width of Flange,	Thick- ness of Web,		xis X-	-x	Ax	ıs Y—	Y	n
Amuex	In.	Lbs.	Sq. In.	In	In.	I	In.	8	I	In.	S	In.
C-3 C-4 C-5 C-6 C-7 C-8	15	45.0	16.18 14.71 13.24 11.76 10.29 9.90	3.818 3.720 3.622 3.524 3.426 3.400	0.720 0.622 0.524 0.426	430.2 402.7 375.1 347.5 319.9 312.6	5.16 5.23 5.32 5.43 5.58 5.62	57.4 53.7 50.0 46.3 42.7 41.7	12.2 11.2 10.3 9.4 8.5 8.2	0.87 0.87 0.88 0.89 0.91 0.91	4.1 3.8 3.6 3.4 3.2 3.2	0.82 0.80 0.79 0.78 0.79 0.79
C-23 C-24 C-25 C-26 C-27	12	40.0 35.0 30.0 25.0 20.5	11.76 10.29 8.82 7.35 6.03	3.418 3.296 3.173 3.050 2.940	0.636	196.9 179.3 161.7 144.0 128.1	4.09 4.17 4.28 4.43 4.61	32.8 29.9 26.9 24.0 21.4	6.6 5.9 5.2 4.5 3.9	0.75 0.76 0.77 0.79 0.81	2.5 2.3 2.1 1.9 1.7	0.72 0.69 0.68 0.68 0.70
C-32 C-33 C-34 C-35 C-36	10	35.0 30.0 25.0 20.0 15.0	10.29 8.82 7.35 5.88 4.46	3.183 3.036 2.889 2.742 2.600	0.676		3.35 3.42 3.52 3.66 3.87	23.1 20.7 18.2 15.7 13.4	4.7 4.0 3.4 2.9 2.3	0.67 0.67 0.68 0.70 0.72	1.9 1.7 1.5 1.3 1.2	0.70 0.65 0.62 0.61 0.64
C-41 C-42 C-43 C-44	9	25.0 20.0 15.0 13.25	7.35 5.88 4.41 3.89	2.815 2.652 2.488 2.430	0.615 0.452 0.288 0.230	60.8 50.9	3.10 3.21 3.40 3.49	15.7 13.5 11.3 10.5	3.0 2.5 2.0 1.8	0.64 0.65 0.67 0.67	1.4 1.2 1.0 0.97	0.62 0.59 0.59 0.61
C-49 C-50 C-51 C-52 C-53	8	21.25 18.75 16.25 13.75 11.25	5.51 4.78 4.04	2.622 2.530 2.439 2.347 2.260	0.582 0.490 0.399 0.307 0.220	43.8 39.9 36.0	2.77 2.82 2.89 2.98 3.11	11.9 11.0 10.0 9.0 8.1	2.3 2.0 1.8 1.6 1.3	0.60 0.60 0.61 0.62 0.63	1.1 1.0 0.95 0.87 0.79	0 59 0.57 0.56 0.56 0.58
C-58 C-59 C-60 C-61 C-62	7	19.75 17.25 14.75 12.25 9.75	5.07 4.34 3.60	2.513 2,408 2.303 2.198 2,090	0.633 0.528 0.423 0.318 0.210	30.2 27.2 24.2	2.39 2.44 2.50 2.59 2.72	9.5 8.6 7.8 6.9 6.0	1.9 1.6 1.4 1.2 0.98	0.56 0.57 0.57 0.58 0.59	0.96 0.87 0.79 0.71 0.63	0.58 0.56 0.54 0.53 0.55
C-67 C-68 C-69 C-70	6	15.5 13.0 10.5 8.0	4.56 3.82 3.09 2.38	2.283 2.160 2.038 1.920	0.563 0.440 0.318 0.200	17.3 15.1	2.07 2.13 2.21 2.34	6.5 5.8 5.0 4.3	1.3 1.1 0.88 0.70	0.53 0.53 0.53 0.54	0.74 0.65 0.57 0.50	0.55 0.52 0.50 0.52
C-75 C-76 C-77	5	11.5 9.0 6.5	3.38 2.65 1,95	2.037 1.890 1.750	0.477 0.330 0.190	8.9	1.75 1.83 1.95	4.2 3.6 3.0	0.82 0.64 0.48	0.49 0.49 0.50	0.54 0.45 0.38	0.51 0.48 0.49
C-82 C-83 C-84	4	7.25 6.25 5.25	1.84	1.725 1.652 1.580	0.325 0.252 0.180	4.2	1.46 1.51 1.56	2.3 2.1 1.9	0.44 0.38 0.32	0.46 0.45 0.45	0.35 0.32 0.29	0.46 0.46 0.46
C-80 C-90 C-91	3	6.0 5.0 4.0	1.76 1.47 1.19	1.602 1.504 1.410	0.362 0.264 0.17	1 1.8		1 1.	2 0.31	5/0.4	1 0.8	24 0.44

Properties of Ship Channels

				_		_		_	
Section Index Depth of Channel,	Weight per foot, Pounds Area of Section,	Square Inches Thickness of Webb,	Width of Flange, Inches	Moment of Inertia Neutral Axis Perpendicular to Web at Center	Moment of Inertia Neutral Axis Parallel with Center Line of Web	Radius of Gyration Neutral Axis Perpendicular to Web at Center	Radius of Gyration Neutral Axis Parallel with Center Line of Web	Section Factor Neutral Axis 22 Perpendicular to Web at Center	Distance of Center of Grav- ity from Outside of Web
C-109 C-114 C-115 C-116 C-117 C-118 C-119 C-121 C-122 C-123 C-128 C-129	37.511. 35. 10. 32. 9. 31.5 9. 25.0 7. 21.8 6. 34.710. 9 31.7 9. 28.6 8. 26.5 7. 23.8 7. 24.2 7. 8 22.8 6. 21.4 6. 22.1 6. 7 20.0 5. 18.0 5. 18.1 5. 18.0 5. 18.1 5.	71	4.473 4.416 4.303 4.190 4.134 4.077 3.500 3.497 3.375 4.002 3.902 3.800 3.552 3.500 3.600 3.552 3.500	324.2 313.8 293.1 272.3 262.1 251.6 239.2 237.0 109.4 104.1 91.3 115.5 109.5 103.4 67.8 65.7 63.6 65.9 41.1 25.4 43.5 41.1 25.4 24.3 23.2 22.0 20.9	16.7 15.3 13.9 13.4 12.5 7.8 7.3 6.2 13.6 11.4 8.2 7.8 7.4 8.1 7.2 7.1 16.4	4.62 4.71 4.81 4.87 4.95 5.04 5.06 3.70 3.76 3.78 3.36	1.07 1.08 1.09 1.10 1.11 1.12 0.99 0.99 0.99 1.16 1.16 1.03 1.03 1.03 1.03 1.05 1.07	48.3 45.1 44.0 3 38.7 36.8 36.5 9 20.8 18.3 25.7 24.3 25.7 15.2 12.4 15.9 16.3 7 17.7 7 15.2 12.4 7 17.7 7 7 7 7 7 7 7 7 7 9	0.98 0.97 0.97 0.98 0.99 1.01 1.01 0.89 0.89 0.87 1.16

Properties of Angles Equal Legs Continued

_		_							
Section Index	Dimensions, Inches	et Thickness, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Back of Leg, Inches	Moment of Inertia, Axis Y—Y	Section Factor, Axis Y—Y	Radius of Gyra- tion, Axis Y—Y, Inches	Least Radius of Gyra- tion, Axis X—X
A-130 A-131 A-132 A-133 A-134 A-135 A-140	2½x2½ 2½x2½ 2½x2½ 2½x2½ 2½x2½ 2½x2½ 2½x2½ 2½x2½ 2½x2½	1/2 7 16 3/8 5 16 1/4 1/8	7.7 6.8 5.9 5.0 4.1 3.07 2.08	2.25 2.00 1.73 1.47 1.19 0.90 0.61	0.81 0.78 0.76 0.74 0.72 0.69 0.67	1.2 1.1 0.98 0.85 0.70 0.55 0.38	0.73 0.65 0.57 0.48 0.39 0.30 0.20	0.74 0.75 0.75 0.76 0.77 0.78 0.79	0.47 0.48 0.48 0.49 0.49 0.49 0.50
A-160 A-161 A-162 A-163 A-164 A-165 A-170	2x2 2x2 2x2 2x2 2x2 2x2 2x2 2x2	1/2 7 16 3/8 5 16 1/4 3 16 1/8	6.0 5.3 4.7 3.92 3.19 2.44 1.65	1.75 1.56 1.36 1.15 0.94 0.71 0.48	0.68 0.66 0.64 0.61 0.59 0.57 0.55	0.59 0.54 0.48 0.42 0.35 0.27 0.19	0.45 0.40 0.35 0.30 0.25 0.19 0.13	0.58 0.59 0.59 0.60 0.61 0.62 0.63	0.39 0.39 0.39 0.39 0.40 0.40 0.39
A-189 A-190 A-191 A-192 A-197	1½x1½ 1½x1½ 1½x1½ 1½x1½ 1½x1½ 1½x1½	3/8 5 16 1/4 3 16 1/8	3.35 2.86 2.34 1.80 1.23	0.98 0.84 0.69 0.53 0.36	0.51 0.49 0.47 0.44 0.42	0.19 0.16 0.14 0.11 0.08	0.19 0.16 0.13 0.10 0.07	0.44 0.44 0.45 0.46 0.46	0.29 0.29 0.29 0.29 0.30
A-224 A-225 A-226	1x1 1x1 1x1	1/4 3 16 1/8	1.49 1.16 0.80	$0.44 \\ 0.34 \\ 0.23$	0.34 0.32 0.30	0.04 0.03 0.02	0.06 0.04 0.03	$0.29 \\ 0.30 \\ 0.31$	0.19 0.19 0.19

Properties of Angles Unequal Legs

Section Index	Dimensions, Inches	Thickness, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Back of Longer Leg, Inches	Moment of Inertia, Axis Y—Y
A-233 A-234 A-235 A-236 A-237 A-238 A-238 A-240 A-241 A-242 A-243 A-650	8 x 6 8 x 6	11/6 11/6 1 1 16 1 16 1 16 1 16 1 16 1 1	49.3 46.8 44.2 41.7 39.1 36.5 33.8 31.2 28.5 25.7 23.0 20.2	14.50 13.77 13.00 12.25 11.48 10.72 9.94 9.15 8.36 7.56 6.75 5.94	1.70 1.68 1.65 1.63 1.61 1.59 1.56 1.54 1.52 1.50 1.47	42.4 40.7 38.8 36.8 34.9 32.8 30.7 28.6 26.3 24.0 21.7 19.4
A-244 A-245 A-246 A-247 A-248 A-249 A-250 A-251 A-252	7 x 3½ 7 x 3½	7/836/4416/80/6/276/8	28.7 26.8 24.9 23.0 21.0 19.1 17.0 15.0 13.0	8.42 7.87 7.31 6.75 6.17 5.59 5.00 4.40 3.81	0.91 0.89 0.87 0.85 0.82 0.80 0.78 0.75	6.8 6.5 6.1 5.7 5.3 4.9 4.4 4.0 3.6
A-258 A-259 A-260 A-261 A-262 A-263 A-264 A-265	6 x 4 6 x 4 6 x 4 6 x 4 6 x 4 6 x 4 6 x 4	136 8/4 116 8/8 916 1/2 108 8/8	25.4 23.6 21.8 20.0 18.1 16.2 14.3 12.3	7.47 6.94 6.40 5.86 5.31 4.75 4.18 3.61	1.10 1.08 1.06 1.03 1.01 0.99 0.96 0.94	9.2 8.7 8.1 7.5 6.9 6.3 5.6 4.9

Section Factor Axis Y—Y	Radius of Gyration Axis Y—Y, Inches	Distance of Center of Gravity from Back of Shorter Leg, Inches n'	Moment of Inertia Axis Z—Z	Section Factor Axis Z—Z	Radius of Gyration Axis Z—Z	Least Radius of Gyration Axis X—X, Inches	Section Index
9.9 9.4 8.9 8.4 7.9 7.4 6.9 6.4 5.9 5.3 4.3	1.71 1.72 1.73 1.73 1.74 1.75 1.76 1.77 1.77 1.78 1.79	2.70 2.68 2.65 2.63 2.61 2.59 2.56 2.54 2.52 2.50 2.47 2.45	88.8 84.9 80.8 76.6 72.3 67.9 63.4 58.8 54.1 49.3 44.3 39.4	16.7 15.9 15.1 14.3 13.4 12.5 11.7 10.8 9.9 8.9 8.0 7.1	2.47 2.48 2.49 2.50 2.51 2.52 2.53 2.54 2.54 2.55 2.56 2.57	1.27 1.27 1.28 1.28 1.28 1.29 1.29 1.30 1.30 1.31	A-233 A-234 A-235 A-236 A-237 A-238 A-239 A-240 A-241 A-241 A-242 A-243 A-650
2.6 2.5 2.3 2.1 2.0 1.8 1.6 1.4	0.90 0.91 0.91 0.92 0.93 0.93 0.94 0.95 0.96	2.66 2.64 2.62 2.60 2.57 2.55 2.53 2.50 2.48	40.8 38.4 36.0 33.5 30.9 28.2 25.4 22.6 19.8	9.4 8.8 8.2 7.6 7.0 6.3 5.7 5.0 4.3	2.20 2.21 2.22 2.23 2.24 2.25 2.25 2.26 2.26	0.74 0.74 0.74 0.74 0.75 0.75 0.75 0.76 0.77	A-244 A-245 A-246 A-247 A-248 A-249 A-250 A-251 A-252
3.2 3.0 2.8 2.5 2.3 2.1 1.9 1.6	1.11 1.12 1.13 1.13 1.14 1.15 1.16 1.17	2.10 2.08 2.06 2.03 2.01 1.99 1.96 1.94	26.1 24.5 22.8 21.1 19.3 17.4 15.5 13.5	6.7 6.2 5.8 5.3 4.8 4.3 3.8 3.3	1.87 1.88 1.89 1.90 1.90 1.91 1.92 1.93	0.86 0.86 0.86 0.86 0.87 0.87 0.87 0.88	A-258 A-259 A-260 A-261 A-262 A-263 A-264 A-265

Properties of Angles

Unequal Legs

Continued

Section Index	Dimensions, Inches	Thickness, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Back of Longer Leg, Inches	Moment of Inertia, Axis Y—Y
A-274 A-275 A-276 A-277 A-278 A-279 A-280	6 x 3½ 6 x 3½ 6 x 3½ 6 x 3½ 6 x 3½ 6 x 3½ 6 x 3½	3/416/8 45/2-16/8	22.4 20.6 18.9 17.1 15.3 13.5 11.7	6.56 6.06 5.55 5.03 4.50 3.97 3.42	0.93 0.90 0.88 0.86 0.83 0.81 0.78	5.8 5.5 5.1 4.7 4.3 3.8 3.8
A-286 A-287 A-288 A-289 A-290 A-291 A-292 A-293	5 x 4 5 x 4 5 x 4 5 x 4 5 x 4 5 x 4 5 x 4	136 3/4 116 5/8 16 1/2 76 3/8	22.7 21.1 19.5 17.8 16.2 14.5 12.8 11.0	6.65 6.19 5.72 5.23 4.75 4.25 3.75 3.23	1.18 1.16 1.14 1.12 1.10 1.07 1.05 1.03	8.7 8.2 7.7 7.1 6.6 6.0 5.3 4.7
A-300 A-301 A-302 A-303 A-304 A-305 A-306 A-307	5 x 3½ 5 x 3½	8/4 116 8/8 916 1/2 716 8/8 516	19.8 18.3 16.8 15.2 13.6 12.0 10.4 8.7	5.81 5.37 4.92 4.47 4.00 3.53 3.05 2.56	1.00 0.97 0.95 0.93 0.91 0.88 0.86 0.84	5.6 5.2 4.8 4.4 4.0 3.6 3.2 2.7
A-315 A-316 A-317 A-318 A-319 A-320 A-321	5 x 3 5 x 3 5 x 3 5 x 3 5 x 3 5 x 3 5 x 3	116 5/8 916 1/2 716 3/8 516	17.1 15.7 14.3 12.8 11.3 9.8 8.2	5.03 4.61 4.18 3.75 3.31 2.86 2.40	0.82 0.80 0.77 0.75 0.73 0.70 0.68	3.3 3.1 2.8 2.6 2.3 2.0 1.8

Section Factor Axis Y—Y	Radius of Gyration Axis Y—Y, Inches	Distance of Center of Gravity from Back of Shorter Leg, Inches n'	Moment of Inertia Axis Z—Z I'	Section Factor Axis Z—Z	Radius of Gyration Axis Z—Z r'	Least Radius of Gyration Axis X—X, Inches r"	Section Index
2.3	0.94	2.18	23.3	6.1	1.89	0.75	A-274
2.1	0.95	2.15	21.7	5.6	1.89	0.75	A-275
1.9	0.96	2.13	20.1	5.2	1.90	0.75	A-276
1.8	0.96	2.11	18.4	4.7	1.91	0.75	A-277
1.6	0.97	2.08	16.6	4.2	1.92	0.76	A-278
1.4	0.98	2.06	14.8	3.7	1.93	0.76	A-279
1.2	0.99	2.04	12.9	3.3	1.94	0.77	A-280
3.1 2.9 2.7 2.5 2.3 2.0 1.8 1.6	1.15 1.15 1.16 1.17 1.18 1.18 1.19 1.20	1.68 1.66 1.64 1.62 1.60 1.57 1.55 1.53	15.5 14.6 13.6 12.6 11.6 10.5 9.3 8.1	4.7 4.4 4.1 3.7 3.4 3.1 2.7 2.3	1.53 1.54 1.54 1.55 1.56 1.57 1.58 1.59	0.84 0.84 0.84 0.85 0.85 0.85 0.85	A-286 A-287 A-288 A-289 A-290 A-291 A-292 A-293
2.2	0.98	1.75	13.9	4.3	1.55	0.75	A-300
2.1	0.98	1.72	13.0	4.0	1.56	0.75	A-301
1.9	0.99	1.70	12.0	3.7	1.56	0.75	A-302
1.7	1.00	1.68	11.0	3.3	1.57	0.75	A-303
1.6	1.01	1.66	10.0	3.0	1.58	0.75	A-304
1.4	1.01	1.63	8.9	2.6	1.59	0.76	A-305
1.2	1.02	1.61	7.8	2.3	1.60	0.76	A-306
1.0	1.03	1.59	6.6	1.9	1.61	0.76	A-307
1.5	0.81	1.82	12.3	3.9	1.56	0.64	A-315
1.4	0.81	1.80	11.4	3.5	1.57	0.65	A-316
1.3	0.82	1.77	10.4	3.2	1.58	0.65	A-317
1.1	0.83	1.75	9.5	2.9	1.59	0.65	A-318
1.0	0.84	1.73	8.4	2.6	1.60	0.65	A-319
0.89	0.84	1.70	7.4	2.2	1.61	0.65	A-320
0.75	0.85	1.68	6.3	1.9	1.61	0.65	A-321

Properties of Angles

Unequal Legs

Continued

Section Index	Dimensions, Inches	Thickness, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Back of Longer Leg, Inches	Moment of Inertia, Axis Y—Y
A-328 A-329 A-330 A-331 A-332 A-333 A-334	4½x 3 4½x 3 4½x 3 4½x 3 4½x 3 4½x 3 4½x 3 4½x 3 4½x 3	116 /8 916 /2 16 8 16	16.0 14.7 13.3 11.9 10.6 9.1 7.7	4.68 4.30 3.90 3.50 3.09 2.67 2.25	0.85 0.83 0.81 0.79 0.76 0.74 0.72	3.2 3.0 2.8 2.5 2.3 2.0 1.7
A-339 A-340 A-341 A-342 A-343 A-344 A-345 A-346 A-347	4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½ 4 x3½	#187/4+187/8 9-187/51 187/8 18	18.5 17.3 16.0 14.7 13.3 11.9 10.6 9.1 7.7	5.43 5.06 4.68 4.30 3.90 3.50 3.09 2.67 2.25	1.11 1.09 1.07 1.04 1.02 1.00 0.98 0.96 0.93	5.5 5.2 4.9 4.5 4.2 3.8 3.4 3.0 2.6
A-354 A-355 A-356 A-357 A-358 A-359 A-360 A-361	4 x 3 4 x 3	116 /8 16 /8 16 /8 16 /8 14 /4	14.8 13.6 12.4 11.1 9.8 8.5 7.2 5.8	4.34 3.98 3.62 3.25 2.87 2.48 2.09 1.69	0.89 0.87 0.85 0.83 0.80 0.78 0.76 0.74	3.1 2.9 2.7 2.4 2.2 1.9 1.7 1.4
A-365 A-366 A-367 A-368 A-369 A-370 A-371 A-372	3½x 3 3½x 3 3½x 3 3½x 3 3½x 3 3½x 3 3½x 3 3½x 3	116 5/8 16 1/2 16 3/8 5/8 16 1/4	13.6 12.5 11.4 10.2 9.1 7.9 6.6 5.4	4.00 3.67 3.34 3.00 2.65 2.30 1.93 1.56	0.94 0.92 0.90 0.88 0.85 0.83 0.81 0.79	3.0 2.8 2.5 2.3 2.1 1.8 1.6 1.3

ion tor is -Y	Radius of Gyration Axis Y—Y, Inches	Distance of Center of Gravity from Back of Shorter Leg. Inches n'	Moment of Inertia Axis Z—Z	Section Factor Axis Z—Z	Radius of Gyration Axis Z—Z	Least Radius of Gyration Axis X—X, Inches	Section Index
5 4 3 1 0 88 75	0.83 0.83 0.85 0.85 0.85 0.86 0.87	1.60 1.58 1.56 1.54 1.51 1.49 1.47	9.1 8.4 7.8 7.0 6.3 5.5 4.7	3.1 2.9 2.6 2.4 2.1 1.8 1.5	1.39 1.40 1.41 1.42 1.43 1.44 1.44	0.64 0.64 0.65 0.65 0.66 0.66	A-328 A-329 A-330 A-331 A-332 A-333 A-334
310375320	1.01 1.01 1.02 1.03 1.03 1.04 1.05 1.06 1.07	1.36 1.34 1.32 1.29 1.27 1.25 1.23 1.21 1.18	7.8 7.3 6.9 6.4 5.9 5.3 4.8 4.2 3.6	2.9 2.8 2.6 2.4 2.1 1.9 1.7 1.5	1.19 1.20 1.21 1.22 1.23 1.23 1.24 1.25 1.26	0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.73 0.73	A-339 A-340 A-341 A-342 A-343 A-344 A-345 A-346 A-347
5 4 2 1 0 37 74 50	0.84 0.85 0.86 0.86 0.87 0.88 0.89 0.89	1.39 1.37 1.35 1.33 1.30 1.28 1.26 1.24	6.5 6.0 5.6 5.0 4.5 4.0 3.4 2.8	2.5 2.3 2.1 1.9 1.7 1.5 1.2	1.22 1.23 1.24 1.25 1.25 1.26 1.27 1.28	0.64 0.64 0.64 0.64 0.64 0.65 0.65	A-354 A-355 A-356 A-357 A-358 A-359 A-360 A-361
4 3 2 1 98 85 72 8	0.86 0.87 0.87 0.88 0.89 0.90 0.90 0.91	1.19 1.17 1.15 1.13 1.10 1.08 1.06 1.04	4.4 4.1 3.8 3.5 3.1 2.7 2.3 1.9	1.9 1.8 1.6 1.5 1.3 1.1 0.96 0.78	1.05 1.06 1.07 1.07 1.08 1.09 1.10 1.11	0.62 0.62 0.62 0.62 0.62 0.62 0.63 0.63	A-365 A-366 A-367 A-368 A-369 A-370 A-371 A-371

Properties of Angles

Unequal Legs

Continued

Section Index	Dimensions, Inches	Thickness, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Back of Longer Leg, Inches	Moment of Inertia, Axis Y—Y
A-379 A-380 A-381 A-382 A-383 A-384	3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½ 3½x2½	9 16 1/2 7 16 3/8 5 16 1/4	10.4 9.4 8.3 7.2 6.1 4.9	3.06 2.75 2.43 2.11 1.78 1.44	0.73 0.70 0.68 0.66 0.64 0.61	1.5 1.4 1.2 1.1 0.94 0.78
A-405 A-406 A-407 A-408 A-409 A-410	3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½ 3 x2½	9 16 1/2 7 16 3/8 5 16 1/4	9.5 8.5 7.6 6.6 5.6 4.5	2.78 2.50 2.21 1.92 1.62 1.31	0.77 0.75 0.73 0.71 0.68 0.66	1.4 1.3 1.2 1.0 0.90 0.74
A-415 A-416 A-417 A-418 A-419 A-420	3 x 2 3 x 2 3 x 2 3 x 2 3 x 2 3 x 2	1/2 1/6 3/8 1/6 1/4 3/16	7.7 6.8 5.9 5.0 4.1 3.07	2.25 2.00 1.73 1.47 1.19 0.91	0.58 0.56 0.54 0.52 0.49 0.47	0.67 0.61 0.54 0.47 0.39 0.31
A-425 A-426 A-427 A-428 A-429 A-430	2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2 2½x 2	1/2 76 3/8 16 16 1/4 3/8	6.8 6.1 5.3 4.5 3.62 2.75	2.00 1.78 1.55 1.31 1.06 0.81	0.63 0.60 0.58 0.56 0.54 0.51	0.64 0.58 0.51 0.45 0.37 0.29

Section Factor Axis Y—Y	Radius of Gyration Axis Y—Y, Inches	Distance of Center of Gravity from Back of Shorter Leg, Inches n'	Moment of Inertia Axis Z—Z I'	Section Factor Axis Z—Z	Radius of Gyration Axis Z—Z	Least Radius of Gyration Axis X—X, Inches T"	Section Index
0.84	0.70	1.23	3.6	1.6	1.08	0.53	A-379
0.76	0.70	1.20	3.2	1.4	1.09	0.53	A-380
0.68	0.71	1.18	2.9	1.3	1.09	0.54	A-381
0.59	0.72	1.16	2.6	1.1	1.10	0.54	A-382
0.50	0.73	1.14	2.2	0.93	1.11	0.54	A-383
0.41	0.74	1.11	1.8	0.75	1.12	0.54	A-384
0.82	0.72	1.02	2.3	1.2	0.91	0.52	A-405
0.74	0.72	1.00	2.1	1.0	0.91	0.52	A-406
0.66	0.73	0.98	1.9	0.93	0.92	0.52	A-407
0.58	0.74	0.96	1.7	0.81	0.93	0.52	A-408
0.49	0.74	0.93	1.4	0.69	0.94	0.53	A-409
0.40	0.75	0.91	1.2	0.56	0.95	0.53	A-410
0.47	0.55	1.08	1.9	1.00	0.92	0.43	A-415
0.42	0.55	1.06	1.7	0.89	0.93	0.43	A-416
0.37	0.56	1.04	1.5	0.78	0.94	0.43	A-417
0.32	0.57	1.02	1.3	0.66	0.95	0.43	A-418
0.25	0.57	0.99	1.1	0.54	0.95	0.43	A-419
0.20	0.58	0.97	0.84	0.41	0.96	0.44	A-420
0.46	0.56	0.88	1.1	0.70	0.75	0.42	A-425
0.41	0.57	0.85	1.0	0.62	0.76	0.42	A-426
0.36	0.58	0.83	0.91	0.55	0.77	0.42	A-427
0.31	0.58	0.81	0.79	0.47	0.78	0.42	A-428
0.25	0.59	0.79	0.65	0.38	0.78	0.42	A-429
0.20	0.60	0.76	0.51	0.29	0.79	0.43	A-430

Properties of Tees

Section	Size Flange by Stem, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Outside of Flange, Inches	Moment of Inertia Neutral Axis through Center of Gravity Parallel to Flange	Least Section Factor Neutral Axis through Center of Gravity Parallel to Flange	Radius of Gyration, Neutral Axis through Center of Gravity Parallel to Flange	Moment of Inertia, Neutral Axis through Center of Gravity Coincident with Center With Center Film of Stem	Section Factor, Neutral Ausa through Center of Gravity Coincident with Center Vinne of Stem St	Radius of Gyration, Neutral Axis through Center Coincident vith Center Line of Stem
I-3	4 x 4 4 x 4	13.5	3.56	1.178	5.715	2.025	1.2	2.8066	1.4033	.831
T-9 T-10	3½x 3½ 3½x 3½ 3½x 3½	10.5	3.09	1.022	3.376	1.362	1.045	1.6540	.945	.731
T-15 T-16 T-17	0000 0000	6.7	2.29 1.97 1.61	.847 .847 .824	1.838 1.609 1.325	.864 .743 .609	.893 .905	.8918 .7520 .6066	.599	.625 .617 .611
-22	2½x 2½ 2½x 2½	6.4	1.88	.756	1.022	.585	.737	.5243	.419	.528
T-28 T-29	2½x 2¼ 2½x 2¼	3.83	1.38	.650	.519	.324	.671	.3109	.2211	.474
T-33	2 x 2 2 x 2 2 x 2 2	3.38	1.20	.613	.4247	.306	.593	.2194	.2194	.426

Properties of Tees

Section	Sise Flange by Stem, Inches	Weight Per Foot, Pounds	Area of Section, Square Inches	Distance of Center of Gravity from Outside of Flange, Inches	Moment of Inertia Neutral Axis through Center of Gravity Parallel to Flange	Least Section Factor, Neutral Axis through Center of Gravity Parallel to Flange	Radius of Gyration, Neutral Axis through Center of Gravity Parallel to Flange	Moment of Inertia, Neutral Axis through Center of Gravity Coincident with Center Line of Stem	Section Factor, Neutral Axis through Center of Gravity Coincident with Center Line of Stem S'	Radius of Gyration, Neutral Axis through Center of Gravity Coincident with Center Line of Stem
T-39 T-40	134x 134 134x 134	2.93	.86	.526	.2315	.189	.526	.1181	.1349	.370
T-45 T-46	1½x 1½ 1½x 1½ 1½x 1½	2.47	.57	.44	115	11.	.45	89.	.10	.32
T-51 T-52	1½x 1¼ 1½x 1¼	2.02	.47	9.88	80.	.10	.37	88.	.05	22.
T-57 T-58	1 x 1 x 1	1.25	.37	.32	03	.03	.30	.02	90.	.22
T-69	5 x 21/2	10.9	3.2	.63	1.5	.78	89.	4.1	1.6	1.14
T-74	41/5x 3	8.4	2.47	.71	1.8	.78	.85	2.5	1.1	1.01
T-79 T-80	4 4 X X 2 Z X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	7.8	2.29	84.	.60	34	.52	2.1	1.1	96.

*Made only by special arrangement.

Properties of Tees

Size Flange Weight Area of of Center of Service by Stem, per Servico, from Foot, Square Ouiside Pounds Inches Original Inches Inches Inches
12.6 3.70 1.24 9.8 2.88 1.19
9.7 2.85 .845 8.5 2.50 .83
10.8 3.17 1.12 9.7 2.85 1.10 8.5 2.50 1.07
4.7 1.38 .554
3.6 1.06 .4529
3.65 1.07 .6507

Properties of Zees

						Moments	Moments of Inertia	Section Factors	Factors	Rad	Radii of Gyration	
						1	r	S	'n		,	e_
Section	Depth of Web, Inches	Width of Flange, Inches	Thick- ness of Metal, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Neutral Axis through Center of Gravity Perpen- dicular to Web	Axis Axis throu Center Gravi Coin den	Axis Through of Center of Gravity chapter to Web	Neutral Axis Through Center of Gravity Coincident	Neutral Axia Through Center of Gravity Perpendicular	Neutral Axis Through Center of Gravity Coincident	Least Radius Neutral Axis Diagonal
Z-70 Z-71 Z-72	515	8 6 6 6 % 1 6 74	100 TH	28.4 26.0 23.7	8.33 7.64 6.96	28.2	14.4 12.8 11.4	11.2 10.3 9.5	8.4.8 8.9	1.86 1.85 1.84	1.30 1.30 1.28	0.76 0.74 0.73
Z-73 Z-74 Z-75	5128	80 80 80 80 81 14	700 p/2	22.6 20.2 17.9	6.64 5.94 5.25	24.5 21.8 19.2	12.1 10.5 9.1	9.6 8.6 7.7	3.5	1.92 1.91 1.91	1.35 1.33 1.31	0.76 0.75 0.74
2-76	5128	88 88 88 88 88 88 88 88 88 88 88 88 88	H=0000	16.4 14.0 11.6	4.81 4.10 3.40	19.1 16.2 13.4	9.2	7.4 6.4 5.3	25.5	1.99 1.99 1.98	1.38 1.37 1.35	0.77 0.76 0.75
Z-80 Z-81 Z-82	14.4 %-41.4	318	24-10/20 4-10/20	23.0 20.9 18.9	6.75 6.14 5.55	15.0 13.5 12.1	11.2 10.0 8.7	7.3 6.7 6.1	3.6 3.6 3.2	1.49 1.48 1.48	1.29 1.27 1.25	0.68 0.67 0.66
2-83	41.4 41.4	316	9 2 2 2	18.0 15.9 13.8	5.27 4.66 4.05	12.7 11.2 9.7	9.3 8.0 6.7	6.75 6.75 8.	200	1.55	1.33 1.39	0.68 0.67 0.66

Properties of Zees

1		V				Momenta of Inertia	of Inertia	Section Factors	Factors	Radi	Radii of Gyration	
						1	ı,	8	184		1	12
Section	Depth of Web, Inches	Width of Flange, Inches	Thick- ness of Metal, Inches	Weight per Foot, Pounds	Area of Section, Square Inches	Neutral Axis through Center of Gravity Perpen- dicular to Web	Neutral Axis through Center of Gravity Coince- dent with Web	Neutral Axia Through Cantor of Gravity Perpendicular to Web	Neutral Axia Through Center of Gravity Colneident with Web	Neutral Axia Through Center of Gravity Perpendicular to Web	Neutral Axia Through Center of Gravity Coincident with Web	Least Radius Neutral Axis
Z-86 Z-87 Z-88	41/8 41/5 41/5	37.6	%4X	12.5 10.3 8.2	3.66	9.6	8.2.4	2.0	23.11	1.62	1.36	0.69
Z-3	316	23%	- c/cs	14.3	4.18	5.3	4.9	3.4	2.3	1.12	1.17	0.54
2-Z	3 I 6	234 215	-10/20 -10/20	9.8	3.36	3.9	3.9	3.0	1.9	1.17	1.19	0.55
Z-11 Z-12	316 3	23% 215	青江	8.5	2.48	3.6	2.8	2.4	1.4	1.21	1.21	0.56
Z-18	3	11/2	10	3.59	1.06	1.396	.35	.933	.248	1.149	.574	.358

Properties of A. S. C. E. and Light Rails

	Weight	Area				Dimi	ENSIG	NB				Axu	1-1	
Sec- tion	per Yard	of Sec-	а	b	e	d	e	f	g	h	r	r	s	x
Index	Pounds	Sq. In.	In.	In.	In.	In.	In.	In.	In.	In.	1	In.	8	In.
	110	10.80	61/8	61/8	23/8	133	311	1	11	241	55.2	2.26	17.2	2.92
	100	9.84	53/4	53/4	23/4	145	34	31	16	2,65	44.0	2.11	14.6	2.73
	95	9.28	5 16	518	$2\frac{11}{15}$	141	241	18	16	2,55	38.8	2.05	13.3	2.65
	90	8.83	53/8	53/8	25/8	113	255	52	16	245	34.4	1.97	12.2	2.55
	85	8.33	516	516	216	185	23/4	Ħ	16	217	30.1	1.90	11.1	2.47
	80	7.86	5	5	21/2	11/2	25/8	1/8	11	216	26.4	1.83	10.1	2.38
	75	7.33	413	413	215	137	214	31	17	2,15	22.9	1.77	9.1	2.30
	70	6.81	45/8	45%	$2\frac{\tau}{16}$	111	215	11	11	24	19.7	1.70	8.2	2.22
	65	6.33	$4\frac{7}{16}$	47	211	133	23/8	35	36	133	16.9	1.63	7.4	2.14
	60	5.93	41/4	41/4	23/8	$1\frac{7}{32}$	217	45	11	1115	14.6	1.57	6.6	2.05
	55	5.38	416	$4\frac{1}{16}$	21/4	111	211	33	35	1123	12.0	1.50	5.7	1.97
	50	4.87	37/8	33%	21/8	11/8	216	11	7	133	9.9	1.43	5.0	1.88
	45	4.40	311	311	2	$1\frac{1}{16}$	111	33	#1	141	8.1	1.36	4.3	1.78
R-40	40	3.94	31/2	31/2	17/8	14	188	5/8	35	1,74	6.6	1.29	3.6	1.68
R-35	35	3.44	35	35	134	81	133	8I	21	111	5.2	1.23	3.0	1.60
R-30	30	3.00	31/8	31/8	111	7/8	133	11	11	134	4.1	1.16	2.5	1.52
R-25	25	2.39	23/4	234	11/2	24	131	11	12	1,29	2.5	1.02	1.8	1.33
R-20	20	2.00	25/8	25/8	$1\frac{11}{32}$	33	115	16	1/4	111	1.9	0.99	1.4	1.27
R-16	16	1.55	23/8	23/8	111	41	123	3/8	1/2	1,78	1.2	0.89	1.0	1.15
	14	1.34	216	210	116	5/8	14	11	1/4	41	0.76	0.75	0.73	1.02
R-12	12	1.18	2	2	1	76	137	11	18	11	0.66	0.75	0.63	0.96
	10	0.96	13/4	13/4	15	81	15	19	16	42	0.40	0.65	0.46	0.87
R-8	8	0.77	1,0	10	13	11	10	*	32	11	0.26	0.58	0,32	0.75

Only sections carrying Index Numbers made by Jones & Laughlin Steel Company.

Beam and Channel Connections All Rivets 34" Diameter

24" 2-4" x 4" x 1/2" Angles-1'-51/2" 20'-18" 2-4" x 4"x 1/2" Angles-1'-21/2"

15" 2-4"x 4"x 16" Angles-0'-111/2"

12" 2-4" x 4 " x 76" Angles'-0-81/2"

10'-9'-8'

Location of Connection Angles For Different Depths of Beams Framing Opposite Bottoms or Tops Being Flush

Location of Connection Angles For Different Depths of Beams Framing Opposite Bottoms or Tops Being Flush

Limiting Values of Beam Connections

- 2		Value	Value	s of Outstand	ling L	egs of Conne	ction Angles	1
1.	Beams	of Web Connection	Fi	eld Rivets		F	ield Bolts	
Depth, Inches	Weight per Foot, Pounds	Shop Rivets in Enclosed Bearing, Pounds	3/4" Rivets or Turned Bolts, Single Shear, Pounds	Minimum Allowable Span, Uniform Load, Feet	í. Ín.	34" Rough Bolts, Single Shear, Pounds	Minimum Allowable Span, Uniform Load, Feet	t, In
24 20 18 15 12 10 9 8 7 6	80 65 55 42 31½ 25 21 18 15 12¼ 93¼	67,500 56,200 51,800 36,900 23,600 27,900 26,100 24,300 11,300 10,400 9,500	53,000 44,200 44,200 35,300 26,500 17,700 17,700 17,700 8,800 8,800 8,800	17.5 14.2 10.7 8.9 7.1 7.4 5.7 4.3 6.2 4.4 2.9	5,5,5,5,5,6,5,5,5,5,5,5	42,400 35,300 35,300 28,300 21,200 14,100 14,100 7,100 7,100 7,100	21.9 17.6 13.4 11.2 9.0 9.2 7.1 5.4 7.8 5.5 3.6	5,5,5,5,5,5,5,5,5,5,5,5

Allowable Unit Stress in Pounds per Square Inch

Single Shear	Bearing
Rivets	Rivets—enclosedShop 30,000 Rivets—one sideShop 24,000 Rivets and Turned Bolts.Field 20,000 Rough BoltsField 16,000

t—Web Thickness, in bearing to develop maximum allowable reactions, when beams frame opposite.

Connections are figured for bearing and shear (no moment considered).

The above values agree with tests made on beams under ordinary conditions of use.

Special connections should be used when any of the limiting conditions given above are exceeded such as end reactions from loaded beam being greater than value of connection; shorter span with beam fully loaded; or a less thickness of web when maximum allowable reactions are used.

Cast Separators for Beams

Separators with Two Bolts

	Add to Separator for Each Inch Additional Spread of Beans, Pounds	440,000,000
WEIGHTS	Separator, Pounds	28 28 28 28 28 11 11 11 11 11 11 11 11 11 11 11 11 11
WEI	Add to Bolts for Each Inch Additional Spread of Beams,	888888888
	Bolts and Nuts, Pounds	20000000000000000000000000000000000000
	Length for Minimum Width Separator, Inches	222222222
Bolits	Spacing, Inches	22100err 22200err 222
	Size, Inches	% % % % % % % % % % % % % % % % % % %
NOES	Center to Center of Beams, Inches	% 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
DISTANCES	Out to Out of Beam Flanges, Inches	844883331110 55444444444
KATION	Weight, Pounds	105 88 88 88 88 88 88 88 88 88 88 88 88 88
DESIGNATION OF BEAM	Depth, Inches	4488855555

Separators for 18", 20" and 24" beams are made of \$8" metal. Separators for 6" to 15" beams are made of \$1" metal. Minimum widths given. Separators can be made wider.

Cast Separators for Beams Separators with One Bolt

DESIG OF I	DESIGNATION OF BEAM	DISTA	DISTANCES		Bolins			WEI	Weights	
Depth, Inches	Weight, Founds	Out to Out of Beam Flanges, Inches	Center to Center of Beams, Inches	Size, Inches	Spacing, Inches	Length for Minimum Width Separator, Inches	Bolts and Nuts, Pounds	Add to Bolts for Each Inch Additional Spread of Beams,	Separator, Pounds	Add to Separator Separator Inch Additional Spread of Beams, Pounds
2200000000	048222222222222222222222222222222222222	11001 12001	0000044800000	"		257 2000 444 24 4 4 42	7277874747	00000000000000000000000000000000000000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	727474 949749674

ars for 5" beams and under are made of 76" metal widths given. Separators can be made wider ors for 6" to 15" beams are made of 14" metal.

131

Standard Bearing Plates

For Beams and Channels Resting on Good Brick Work Laid in Cement Mortar or High Class Concrete

Depth of Beam or Channel, Inches	Bearing on Wall, Inches	Size of Bearing Plates, Inches	Weight of Bearing Plate, Pounds	Safe Load on Bearing Plates, Tons
6 and less	6	6x 6x 3/8	4	3.6
7 and 8	8	8x 8x ½	9	6.4
9 and 10	8	8 x 12 x ½	20	9.6
12	12	12 x 12 x 3/4	31	14.4
15	12	12 x 16 x 3/4	41	19.2
18	16	16 x 16 x 1	73	25.6
20	16	16 x 16 x 1	73	25.6
-24	16	16 x 16 x 1	73	25.6

Bearing plates are used under the ends of steel beams and channels resting on walls to distribute the pressure on the latter, and must be of sufficient size so that the allowable safe pressure on the wall will not be exceeded.

Beams and girders having greater end reactions than the safe loads given in the above table will require plates of increased size. In such cases the sizes of bearing plates must be determined by the kind of masonry upon which the beams rest; the thickness to be obtained by the following formula:

$$t = \frac{1}{2} (w-b) \sqrt{\frac{3 p}{s}}$$
, in which

t =thickness of plate, in inches.

w =width of plate perpendicular to beam, in inches.

b = width of flange of beam or channel, in inches.

p = allowable pressure on wall, in pounds per square inch.

s = allowable fiber stress in plate, in pounds per square inch.

The maximum allowable pressure on the different kinds of masonry is as follows:

Loads on Beams

The determination of the proper size of a rolled beam to use at some given point in a structure is probably the most common task of the designer of structural steel. To determine this it is necessary to know, first, the amount of the loads to which the beam will be subject; second, the character of the loads; and third, the ability of the metal in the beams to resist such loads.

In addition to the above, there will frequently arise a fourth factor to influence the decision, and that is the deformation of the beam under the loading, and the conditions of use, for no beam is or can be perfectly rigid, and the deflection or distortion of the beam under stress can readily be so great as to make the use of a given section inadvisable.

In order to produce static equilibrium, it is necessary in every case that the load on any beam be resisted by corresponding forces acting at the points of support known as the reactions. In the case of a simple beam, uniformly loaded and supported at the ends, the reaction at each end of the beam would be equal to one-half of the load. Where the load is not uniformly distributed then the reactions will vary directly as the intensity of the loading, but in all cases the sum of the reactions will equal the total load to be carried.

As a result of the loads and the accompanying reactions on the beam, there are created forces in the beam tending to shear or cut the beam across in a direction at right angles to its axis. These stresses are known as shearing stresses, and the shear at either support is always equal to the reaction at that support; the shear at any intermediate point in a beam between the supports is always equal to the reaction at the support minus the total load coming on the beam between that support and the point at which it is desired to ascertain the shear.

In the case of the above mentioned simple beam, resting on two supports and carrying a uniform load, the shear or reaction at each support is equal to one-half of the total load on the beam, and the shear decreases uniformly to zero at the center of the span. In the case of a beam loaded with a concentrated load at the center of the span, the reaction at the points of support will also be one-half of the total load. The shear, however, will not decrease towards the center but will remain uniform throughout the entire length of the beam, and would amount to one-half of the total load.

Another effect in the beam, due to the loading and its supporting reaction, is the creation of certain bending stresses in the beam. Taking any point in the length of the beam there will be found.

Loads on Beams

Continued

certain moments due to the loading, and certain counter moments due to the reactions; and the difference between these moments will be the measure of the strength that will have to be supplied by the beam in order that the structure may be in static equilibrium.

This bending moment varies for different points in the length of the beam, and attains a maximum value at that point where the shear mentioned above either becomes zero or changes its sign from

positive to negative or from negative to positive.

In the case of a uniformly loaded beam, the point of maximum moment will be at the center of the span, as is also the case of a beam carrying a concentrated load at the center. Where loads are concentrated at several points, the maximum bending moment will always be found at the point of application of one of the loads, the particular load being that which is so located that the sum of all the loads coming on the beam between one of the supports up to and including that load is equal to or greater than the reaction of that support.

The stress in a beam caused by these bending moments, produces flexure in the beam, and the deflection, or the amount of departure of the beam from its unloaded position, is the measure of the deformation which the beam has undergone in its resistance to the bending stresses. This deformation should always be considered as it can readily be a sufficient amount to cause serious difficulties with other materials or other parts of the structure that are dependent on the beam under consideration for their support.

In calculations made for determining the sizes of beams, the loads are usually expressed in pounds, the length of the span and the distance between loads in feet and tenths of a foot, and the resulting bending moments in terms of foot pounds. This promotes convenience in handling figures, although it is necessary to convert these foot pounds into inch pounds before consulting tables of

properties for the selection of the desired section.

The section modulus of the desired section is readily obtained by dividing the maximum bending moment, expressed in inch pounds, by the maximum allowed stress in the extreme fiber of the section, as expressed in pounds per square inch. Care should always be taken, however, in such cases to see that the neutral axis of the section is perpendicular to the line of action of the load. Should this not be the case careful investigation should be made so that due provision for the eccentricity of the loading can be made.

The tables on pages 147 to 166 give the safe loads of beams, channels, angles, tees, and zees when used under a uniformly distributed transverse load. These loads are expressed in thousands of pounds for the more usual spans and are based upon the customary fiber stress of 16,000 pounds per square inch used in building construction.

These tables also give the length of span at which the safe load, based on 16,000 pounds per square inch extreme fiber stress, will result in a deflection amounting to 1/360 of the length of the span in feet. The loads given in all cases include the weight of the beam itself, which weight should be deducted from the gross capacity of the beam to determine the net load, should the accuracy of the calculation require such refinement.

It has been assumed in all cases in these tables that the loads are applied perpendicular to the beam and in the plane of their webs.

Should the conditions under which the loads are applied to the beam involve the necessity of resisting forces outside of this assumption, it will not be safe to use these tabular loads, and the required section would then have to be obtained by the application of the general theory of flexure.

For angles and zees and other unsymmetrical sections, it will be necessary to see that the section is so secured as to prevent any twisting, as otherwise, on account of the shape of the section, failure would occur with a much lower load.

In building construction, where beams carry ceilings having a plastered finish, experience has indicated that vertical deflection of the beams should be limited to not more than 1/360 of the span in length, or as it is sometimes expressed, 1/30 of an inch for each foot of span.

This limit is indicated in the tables by the lower zigzag line and beams should not be used for a greater span than is thus indicated unless the tabular safe loads exceed the actual load to be carried on the beam.

Continued

For the purpose of readily determining the deflection there will be found in these tables coefficients of deflection based on the loads given. These coefficients correspond to extreme fiber stresses of 16,000 pounds per square inch and are constant for all depths of beams. The deflection can readily be found for any span at the tabular load by dividing this coefficient by the depth of the beam in inches. To find the deflection under tabular load of sections unsymmetrical to the neutral axis such as angles and tees, divide the corresponding coefficient by twice the distance from neutral axis to extreme fiber. This distance can readily be obtained from the tables of properties of sections.

To find the deflection under any other fiber stress than of the 16,000 pounds per square inch used in the tables, it will be necessary to multiply the tabular coefficient of deflection for the span in question by the proposed fiber stress and divide the product by 16,000. This will give a new coefficient from which the desired deflection can be obtained.

The safe loads given in these tables are further based on the assumption that the compression flanges of the section will be secured against lateral deflection. The better class of construction specifications usually provide that no beam shall be used in which the compression flange is without lateral support for a distance exceeding forty times its width, and that the unit stress should be reduced whenever the unsupported width exceeds ten times the flange width. Placed in tabular form this reduction should be as follows:

10 times flange width Full tabular load

15 times flange width 90% tabular load 20 times flange width 81% tabular load

25 times flange width 71% tabular load

30 times flange width 62% tabular load

35 times flange width 53% tabular load

40 times flange width 43% tabular load

The expert designer will readily recognize the danger arising from the use of a long narrow beam without lateral support, and while

Continued

there may be conditions under which the use of such a beam would be justified, for all ordinary cases the specification limit of forty times the flange width for the unsupported length should be adhered to. Particularly as, in addition to the tendency to lateral deflection due to vertical loading, there is always the possibility of developing other lateral influences through the action of floor arches, wind stresses or other incidental loadings that are frequently neglected or lost sight of in designing.

It is further assumed that all loads are static: Where moving loads are to be cared for, it will be necessary to reduce the stress in the material, either by reducing the allowable unit stresses used in designing or else by increasing the theoretical loads. Where loads are suddenly applied, the resulting stresses are greater than would be due to the same load carried as a static load. These stresses increase as the time of application of the load is decreased. When the load is applied instantaneously, the stresses due to that load are double the stress due to a quiescent load of the same amount.

Where the loading is such as to produce impact or percussion, the stresses resulting therefrom are dynamic and are to be measured by the laws governing the energy of bodies in motion. There are certain empirical formulae that may be used in determining the approximate fiber stress, also the deflection due to a load applied with impact at the center of a beam supported at both ends. These are as follows:

$$fd = f(1 + \sqrt{\frac{2mh}{D}} + 1)$$
 and $Dd = D + \sqrt{2mhD + D^2}$

in which formulae the following symbols are used:

W = Weight of load, in pounds.

 W_1 = Weight of beam, in pounds.

h = Height of fall, in inches.

 $f = \text{Extreme fiber stress due to static load}, W+W_1$, in pounds per square inch.

fd = Extreme fiber stress due to dynamic load, W, in pounds per square inch.

Continued

D = Deflection due to static load, $W + W_1$, in inches.

Dd = Deflection due to dynamic load, W, in inches.

$$m = \frac{35 W}{35 W + 17 W_1}$$

On account of the excess metal required in the webs of beams and channels to satisfy rolling conditions, the safe loads for beams and channels are computed almost solely with reference to the stresses due to flexure, and, under uniformly distributed loads, the spans given will not produce a shearing stress in the webs greater than 10,000 pounds per square inch, which is within that allowed by the majority of good construction specifications. Conditions can arise, however, for instance with beams subjected to heavy loads that are concentrated near the supports, or when beams with short spans are loaded with a uniformly distributed load, that would absorb their full carrying capacity as regards flexure. It can be readily seen that under these conditions bending moments developed may be small as compared with the reactions at the supports. so that while the beam may be amply strong to resist bending it may be in a precarious condition as regards shearing stresses, or may buckle the webs as a result of vertical stresses in the webs.

For such conditions the safe carrying capacity of the beam is limited by the capacity to resist shearing or buckling of the web rather than by the ability of the flanges to resist bending.

In the consideration of the loading of beams, there remains one other point to be considered, and that is the possibility of the buckling or crippling of the webs, either at points of concentrated loading or under the influence of the reactions from the supports.

The resistance of a beam to such crippling is largely a question of web thickness and the safe end reaction may be expressed by the

formula $R = fb \times l (a + \frac{d}{4})$ and the crippling under an inter-

JONES & LAUGHLIN STEEL COMPANY

Explanation of Tables of Structural Sections Used as Beams

Continued

mediate concentrated load may be expressed by the formula $W=2\,fb\times t$ $(a'+\frac{d}{4})$. In which formulae R represents the end

reaction, W the intermediate concentrated load, t the thickness of web, d the depth of the beam, a' half the distance over which the concentrated load is distributed, a the distance which the end of the beam rests upon the supports, and fb the safe carrying capacity of the web against buckling, for which the usual column formulae of

 $16,000 - 70 - \frac{l}{r}$ can be used, modifying it, however, so that in place of l there is used one-half the depth of the beam.

Continued on next page.

Explanation of Tables of Structural Sections Used as Beams

Continued

Placed in tabular form the capacity of beams to resist shear buckling and end reaction is as follows:

Depth of Beam, Inches	Weight per Foot, Pounds	Thickness of Web, Inches	Total Allowable Web Shear at 10,000 Pounds per Square Inch, Pounds	Allowable Buckling Stress (fb), Pounds per Square Inch	Maximum End Reaction, Assuming 3½" Bearing. Pounds
24	115.0	.750	180,000	12,120	86,360
24	80.0	.500	120,000	10,180	48,360
20	100.0	.884	176,800	13,260	99,640
20	65.0		100,000	11,150	47,390
18	90.0	.807	145,260	13,300	85,870
18	55.0	.460	82,800	11,260	41,420
15	75.0	.882	132,300	13,940	89,140
15	42.0	.410	61,500	11,570	34,390
12	55.0	.821	98,520	14,230	75,940
12	31.5	.350	42,000	11,840	26,940
10	40.0	.749	74,900	14,380	64,620
10	25.0	.310	31,000	12,090	22,490
9	35.0	.732	65,880	14,510	61,070
	21.0	.275	24,750	12,080	19,100
8	25.5	.541	43,280	14,210	42,280
	18.0	.270	21,600	12,410	18,430
7 7	20.0	.458	32,060	14,150	34,020
	15.0	.250	17,500	12,600	16,540
6	17.25	.475	28,500	14,470	34,370
	12.25	.230	13,800	12,840	14,770
5	14.75	.504	25,200	14,800	35,430
5	9.75	.210	10,500	13,110	13,080
4 4	10.5	.410	16,400	14,820	27,340
	7.5	.190	7,600	13,460	11,510
3 /	7.5 5.5	.361 .170	10,830 5,100	15,000 13,860	23,020

Various Systems of Loading Notation in Formulae

A = Area of section, in square inches.

n = Distance from center line of gravity to extreme fiber, in inches.

I = Moment of inertia about center line of gravity, in inches.

Ms = Static moment, in inches.

S = Section modulus = I/n, in inches.

 $r = \text{Radius of gyration} = \sqrt{I/A}$, in inches.

f = Bending stress in extreme fiber, in pounds per square inch.

fb = Resistance of web, in pounds per square inch.

E = Modulus of elasticity, in pounds per square inch, about 29,000,000.

L =Length of section, in feet.

l =Length of section, in inches.

d =Depth of section, in inches.

b =Width of section, in inches.

t = Thickness of section, in inches.

W, W1, W2 = Superimposed loads supported by beam, in pounds.

w = Superimposed load, in pounds per unit length of area.

W max = Maximum safe load at point given, in pounds.

R, R1 =Reactions at points of support, in pounds.

V = Vertical shear, in pounds.

M, M1, M2 = Bending moments at points given, in inch pounds.

M max = Maximum bending moment, in inch pounds.

Mr = Maximum resisting moment, in inch pounds = f I/n = f S.

D, D1 = Deflections at points given, in inches.

D max = Maximum deflection at point given, in inches.

Various Systems of Loading

Continued

1. Beam supported at both ends and uniformly loaded.

Max. shear
$$= \frac{1}{2}$$
M max. at center
$$= \frac{Wl}{8}$$
W max.
$$= \frac{8fs}{l}$$
W l^{3}

78.6 E I

48 E I

D max.

2. Beam supported at both ends with load concentrated at the middle.

Max. shear
$$= \frac{Wl}{2}$$
M max., at point of
$$= \frac{Wl}{4}$$
W max.
$$= \frac{4fs}{l}$$
D max.
$$= \frac{Wl^3}{l}$$

3. Beam fixed at one end, unsupported at the other and uniformly loaded. Max. shear = W

$$M$$
 max., at point of $=\frac{Wl}{2}$

support
$$W \text{ max.} = \frac{2}{l}$$

$$D \text{ max.} = \frac{W l^3}{8 E I}$$

JONES & LAUGHLIN STEEL COMPANY

Bending Moments and Deflections of Beams Various Systems of Loading

Continued

4. Beam fixed at one end, unsupported at the other, with load concentrated at the free end.

Max. shear
$$M \text{ max.}$$
, at point of support
 $W \text{ max.}$
 $= \frac{f s}{l}$
 $= \frac{W l^3}{3 E I}$

5. Beam supported at both ends with load concentrated at any point.

W b

Max. shear if b is greater than a

Max. shear if a is greater
$$=\frac{W a}{l}$$

Max. shear if a is greater $=\frac{W a b}{l}$

M max., at point of load $=\frac{W a b}{l}$

W max. $=\frac{f s l}{a b}$
 $=\frac{W a b (a + 2 b) \sqrt{3} a (a + 2 b)}{l}$

6. Beam supported at both ends with two symmetrical loads.

D max.

Max. shear
$$= \frac{-2}{2}$$
M max. at and between
$$= \frac{W a}{2}$$
W max.
$$= \frac{2 f s}{a}$$

$$D \max = \frac{W a}{48 E I} (3 t^2 - 4 a^2)$$

27 E I I

Various Systems of Loading Continued

7. Beam supported at both ends with loads concentrated at various points.

$$R = \frac{W b + W_1 b_1 + W_2 b_2}{l}$$

$$R_1 = \frac{W a + W_1 a_1 + W_2 a_2}{l}$$

$$M \text{ at } W = R a$$

$$Max. \text{ if } W = \text{ or is greater than } R$$

$$M \text{ at } W_1 = R a_1 - W (a_1 - a)$$

$$M \text{ max. if } W_1 + W = R \text{ or is greater than } R$$

$$M \text{ max. if } W_1 + W_2 = R_1 \text{ or is greater than } R_1$$

$$M \text{ at } W_2 = R a_2 - W (a_2 - a) - W_1 (a_2 - a_1)$$

$$M \text{ max. if } W_2 = R_1 \text{ or is greater than } R_1$$

8. Beam fixed at both ends and uniformly loaded.

from supports WI Max, bending mom, at points of support 12 WlBending mom. at middle of beam 24 WMax. shear at points of support W 13 D max. 384 E I

Distance of points of extra flexure

 $= .2113 \times l$

Various Systems of Loading

9. Beam fixed at both ends with load concentrated at the middle.

Distance of points of contra-flexure

from supports
$$= \frac{1}{4} l$$
Max. bending mom. at points
$$= \frac{P l}{8}$$
Bending mom. at middle of beam

Max. shear at points of support
$$= \frac{P l}{2}$$
Max. deflection
$$= \frac{P l^{3}}{2}$$

10. Beam supported at both ends with two unsymmetrical loads concentrated at various points.

$$R_1$$
 max. shear if $a = \frac{W}{2l}(l-a+c)$ is less than c

192 E I

$$R_2 = \frac{W}{2l}(l+a-c)$$

M max. distance c (when c is less
than a) =
$$R_1 C = \frac{W c}{2 l} (l+a-c)$$

$$W$$
 max. (when c is $=\frac{2 lf s}{c (l+a-c)}$

Various Systems of Loading

Continued

11. Beam supported at both ends with a uniform load partially distributed.

$$M$$
 max. dist. $a + \frac{1}{W}$

W max.

$$R_1$$
 max. shear if a = $\frac{W(2c+b)}{2l}$
 R_2 = $\frac{W(2a+b)}{2l}$

$$= \frac{W(2c+b)[4al+b(2c+b)]}{}$$

(2c+b)[4al+b(2c+b)]

12. Beam supported at both ends with a uniform load partially discontinued.

$$R_1 \text{ max. shear if } W_1 = \frac{W_1 (2 l - a) + W_1 c}{2 l}$$
is greater than $W_2 = \frac{W_1 (2 l - a) + W_1 c}{2 l}$

is greater than W₂
$$2 l$$

$$R_2 = \frac{W_2 (2 l - c) + W a}{2 l}$$

$$M$$
 max. dist. $\times \frac{2 W_1 a l - W_1 a^2 + W_2 c a}{2 W_1 l}$

W max. when W_1 a is greater than W_2 c

$$= \frac{R^2 \ a}{2 \ W}$$

R2 a

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Beam

Chan			DEPTH	AND WEIG	HT OF SE	CTIONS			Co- efficient
Span				24-I	nch				of
Feet	115 lbs.	110 lbs.	105 lbs.	100 lbs.	95 lbs.	90 lbs.	85 lbs.	80 lbs.	Deflec- tion
6		1		361.9	332.6	302.9		1	0.60
6 7 8 9	360.0	330.2	1 and	302.2	293.2	284.2	273.6	240.0	0.81
8	328.4	320.4	300.0	264.4	256.6	248.7	240.9	231.9	1.06
	291.9	284.8	277.7	235.0	228.0	221.1	214.1	206.1	1.34
10	262.7	256.3	249.9	211.5	205.2	199.0	192.7	185.5	1.66
12	238.8 218.9	233.0 213.6	227.2 208.3	192.3	186.6 171.0	180.9 165.8	175.2 160.6	168.7 154.6	2.00 2.38
13	202.1	197.2	102 2	176.3 162.7	157.9	153.1	148 2	142.7	2.80
14	187.7	183.1	192.2 178.5	151.1	146.6	142 1	148.2 137.6	132.5	3.24
15	175.1	170.9	166.6	141.0	136.8	142.1 132.6	128.5	123.7	3.72
-16	164.2	160.2	166.6 156.2	132.2	128.3	124.4	120.4	116.0	4.24
17	154.5	150.8	147.0 138.8 131.5	124.4	120.7	117.0 110.5	113.4 107.1	109.1	4.78
18	146.0	142.4	138.8	117.5	114.0	110.5	107.1	103.1	5.36
19	138.3	134.9	131.5	111.3	108.0	104.7	101.4	97.6	5.98
20 21	131.4	128.2	125.0	105.8	102.6	99.5	96.3 91.8	92.8 88.3	6.62 7.30
22	125.1 119.4	122.1 116.5	119.0 113.6	100.7 96.1	97.7 93.3	94.7 90.4	87.6	84.3	8.01
23	114.2	111.4	108.7	92.0	89.2	86.5	83.8	80.7	8.76
24	109.5	106.8	104.1	88.1	85.5	82.9	80.3	77.3	9.53
25	105.1	102.5	100.0	84.6	82.1	79.6	77.1	74.2	10.35
26	101.0	98.6	96.1	81.4	78.9	76.5	74.1	71.4	11,19
27	97.3	94.9	92.6	78.3	76.0	73.7	71.4	68.7	12.07
28	93.8	91.5	89.3	75.5	73.3	71.1	68.8	66.3	12.98
29	90.6	88.4	86.2	72.9	70.8	68.6	66.4	64.0	13,92
30	87.6 84.7	85.4 82.7	83.3	70.5 68.2	68.4 66.2	66.3 64.2	64.2 62.2	61.8 59.8	14.90 15.91
32	82.1	80.1	78.1	66.1	64.1	62.2	60.2	58.0	16.95
33	79.6	77.7	75 7	64.1	62.2	60.3	58.4	56.2	18.03
34	77.3	75.4	75.7 73.5	62.2	60.4	58.5	56.7	54.6	19.13
35	75.1	73.2	71.4	60.4	58.6	56.8	55.1	53.0	20.28
36	73.0	71.2	69.4	58.8	57.0	55.3	53.5	51.5	21.45
37	71.0	69.3	67.5	57.2	55,5	53.8	52.1	50.1	22.66
38	69.1	67.5 65.7	65.8 64.1	55.7	54.0	52.4	50.7	48.8	23.90
39 40	67.4	64.1	62.5	54.2 52.9	52.6 51.3	51.0 49.7	49.4 48.2	47.6 46.4	25.18 26.48
41	64.1	62.5	61.0	51.6	50.1	48.5	47.0	45.3	27.82
42	62.6	61.0	59.5	50.4	48 0	47.4	45.9	44.2	29.20
43	61.1	59.6	58.1	49.2	48.9 47.7 46.6	46.3	44.8	43.1	30.60
44	59.7	58.3	56.8	48.1	46.6	45.2	43.8	42.2	32,04
45	58.4	57.0	55.5	47.0	45.6	44.2	42.8	41.2	33.52
46	57.1	55.7	54.3	46.0	44.6 43.7	43.3	41.9	40.3	35.02
47	55.9	54.1	53.2	45.0	43.7	42.3	41.0	39.5	36.56
48	54.7	53.4	52.1	44.1	42.8	41.5	40.1	38.7	38,14
49 50	53.6 52.5	52.3 51.3	51.0 50.0	43.2 42.3	41.9 41.0	40.6	39.3 38.5	37.9 37.1	39.74

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Beam

				DEP	TH AN	o WEI	GHT OF	SECT	IONS				Co-
Span				20-	Inch					18-1	Inch		efficient
Feet	100	95	90	85	80	75	70	65	90	85	80	75	Deflec-
	lbs.	lbs.	Ibs.	lbs.	Ibs.	lbs.	Ibs.	lbs.	lbs.	lbs.	lbs.	lbs.	tion
5	353.6 353.2												0.41
			294.8		100		230.0			261.0			0.41
6 7 8 9	294.3	285.6	276.9	265.2	240.0	225.6	216.8	200.0	249.0	241.1	231.8	202.3	0.60
8	202.3	214.8	207.7	201.1	195.5	189.3	162 6	178.2	213.4 186.7	180.8	175 0	169 1	0.81
9	196,2	190.4	184.6	178.8	173.8	150.4	144.6	138.6	166.0	160.7	155.5	150.3	1.34
10	176.6	171.4	166.1	160.9	156.4	135.3	130.1	124.7	149.4	144.7	140.0	135.3	1.66
11	160.5	155.8	151.0	146.3	142.2	123.0	118.3	113.4	135.8	131.5	127.2	123.0	2.00
12	147,2	142.8	138.5	134.1	130.3	112.8	108.4	104.0	124.5	120.6	116.6	112.7	2.38
13	135.8 126.1	131.8	127.8	123.8	120.3	104.1	100.1	96.0	114.9	111.3	107.7	104.1	2,80 3,24
14 15	117.7	114.2	110.8	107.3	104.3	90.2	86.7	83.2	99.6	96.4	93.3	90.2	3.72
	110.4									90.4			4.24
17	103.9	100.8	97.7	94.1			76.5	73.4		85.1			4.78
18 19	98.1	95.2 90.2	92.3 87.4			76.3	72.3 68.5					75.1 71.2	5.36 5.98
20	88.3		83.1		78.2	71.2 67.7	65.1			72.3	70.0		6.62
21	84.1					64.4		59.4					7.30
22 23	80.3					61.5	59.1	56.7	67.9	65.8	63.6		8.01
24	76.8			70.0 67.0		56.4	56.6 54.2	52.0		62.9			8.76 9.53
25	70.6				62.6				59.8	57.9	56.0		10.35
26 27	67.9			61.9	60.2	52.1		48.0		55.6			11.19
27 28	65.4						48.2	46.2 44.6	55.3	53.6	51.8		12.07
29	63.1			55.5	55.9 53.9	46.7	44.9			51.7 49.9	50.0 48.3		12.98 13.92
30	58.9			53.6			43.4		49.8	48.2	46.7		14.90
31	57.0			51.9						46.7			15.91
32	55.2		51.9	50.3	48.9		40.7						16.95
33 34	53.5			48.8	47.4 46.0		39.4		45.3 43.9			41.0 39.8	18.03 19.13
35	50.5			46.0			37.2						20.28
36	49.1			100000			(20.00)	34.7			38.9		21.45
37	47.7			43.5	42.3	36.6	35.2	33.7		39.1	37.8		22.66
38	46.5			42.3			34.2	32.8	39.3	38.1	36.8	35.6	23.90 25.18
40	44.1	42.8			39.1	33.8		31.2	-		1		26.48
41	43.1		40.5						1				27.82
42 //	42.0	20.8	39.6	38.3	37.2	32.2	31.0	28.0		22		-	29.20

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Beam

				DEP	TH ANI	WEI	GHT O	SECT	TIONS				Co-
Span		18	Inch					15 I	nch				efficient
Feet	70 lbs.	65 lbs.	60 lbs.	55 lbs.	75 lbs.	70 lbs.	65 lbs.	60 lbs.	55 lbs.	50 lbs.	45 lbs.	42 lbs.	Deflec- tion
4 5 6	182.0	229.3 208.9 174.1	199.5 166.3	$\frac{165.6}{157.1}$	196.6 163.8	188.8	150.8	173.2	121.1	137.5	129.7	123.0 104.8	0.27 0.41 0.60
7 8 9 10	156.0 136.5 121.3 109.2	130.6 116.1 104.5	124.7 110.9 99.8	117.9 104.8 94.3	122.9 109.2 98.3	118.0 104.9 94.4	113.1 100.5 90.5	108.3 96.2 86.6	90.8 80.8 72.7	85.9 76.4	81.0 72.0	69.8	0.81 1.06 1.34 1.66
11 12 13 14 15	99.3 91.0 84.0 78.0 72.8	87.1 80.4 74.6	83.1 76.7 71.3	78.6 72.5 67.3	81.9 75.6 70.2	78.7 72.6 67.4	75.4 69.6 64.6	72.2 66.6 61.9	60.6 55.9 51.9	57.3 52.9 49.1	54.0 49.9	52.4 48.3 44.9	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	68.2 64.2 60.7 57.5 54.6	61.5 58.0	58.7 55.4 52.5	55.5 52.4 49.6	57.8 54.6 51.7	55.5 52.4 49.7	56.5 53.2 50.3 47.6 45.2	50.9 48.1 45.6	42.8	38.2	38.1 36.0 34.1	37.0 34.9 33.1	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	52.0 49.6 47.5 45.5 43.7	47.5 45.4 43.5	45.3 43.4 41.6	42.9 41.0 39.3	44.7 42.7 41.0	39.3	41.1 39.3 37.7	39.4 37.7 36.1	33.0 31.6 30.3	28.6	29.5 28.2 27.0	28.6 27.3 26.2	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	42.0 40.4 39.0 37.6 36.4	38.7 37.3 36.0	37.0 35.6 34.4	34.9 33.7 32.5	36.4 35.1 33.9	35.0 33.7 32.5	33.5 32.3 31.2	32.1	26.9 26.0 25.1	25.5 24.6 23.7	24.0 23.2 22.4	23.3 22.4 21.7	11.19 12.07 12.98 13.92 14.90
31 32 33 34 35	35.2 34.1 33.1 32.1 31.2	32.6 31.7 30.7	31.2 30.2 29.3	29.5 28.6 27.7	30.7	30.4 29.5	29.2 28.3					20.3	15.91 16.95 18.03 19.13 20.28
36 37 38	30.3 29.5 28.7	28.2	100000	25.5									21.45 22.66 23.90

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Beam

			D	EPTH A	ND WEI	GHT OF	SECTIO	N8			Co-
Span			12	Inch				10	Inch		efficien
Feet	55 Ibs.	50 lbs.	45 lbs.	40 lbs.	35 lbs.	31½ lbs.	40 lbs.	35 lbs.	30 lbs.	25 lbs.	Deflection
3 4 5	197.0 190.2 142.7 114.1	167.8 134.8 107.9	138.2 127.0 101.6	110.4 95.6	104.6 101.5 81.2	84.0	149.8 112.8 84.6 67.7	120.4 104.1 78.1 62.5	91.0 71.6 57.2	62.0 52.1	0.15 0.27 0.41
6 7 8 9	95.1 81.5 71.3 63.4 57.1	89.9 77.0 67.4 59.9 53.9	84.7 72.6 63.5 56.4 50.8	79.7 68.3 59.8 53.1 47.8	67.6 58.0 50.7 45.1 40.6	63.9 54.8 48.0 42.6 38.4	56.4 48.4 42.3 37.6 33.9	52.1 44.6 39.0 34.7 31.2	47.7 40.9 35.8 31.8 28.6	43.4 37.2 32.6 28.9 26.0	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	51.9 47.6 43.9 40.8 38.0	49.0 44.9 41.5 38.5 36.0	46.2 42.3 39.1 36.3 33.9	43.5 39.8 36.8 34.2 31.9	36.9 33.8 31.2 29.0 27.1	34.9 32.0 29.5 27.4 25.6	30.8 28.2 26.0 24.2 22.6	28.4 26.0 24.0 22.3 20.8	26.0 23.9 22.0 20.4 19.1	23.7 21.7 20.0 18.6 17.4	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	35.7 33.6 31.7 30.0 28.5	33.7 31.7 30.0 28.4 27.0	31.7 29.9 28.2 26.7 25.4	29.9 28.1 26.6 25.2 23.9	25.4 23.9 22.5 21.4 20.3	24.0 22.6 21.3 20.2 19.2	21.2 19.9 18.8 17.8 16.9	19.5 18.4 17.4 16.4 15.6	17.9 16.8 15.9 15.1 14.3	16.3 15.3 14.5 13.7 13.0	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	27.2 25.9 24.8 23.8 22.8	25.7 24.5 23.4 22.5 21.6	24.2 23.1 22.1 21.2 20.3	22.8 21.7 20.8 19.9 19.1	19.3 18.4 17.6 16.9	18.3 17.4 16.7 16.0	16.1 15.4	14.9 14.2	13.6 13.0	12.4 11.8	7.30 8.01 8.76 9.53 10.35
26 27 28 29 30	21.9	20.7	19.5	18.4	15.6	14.8					11.19 12.07 12.98 13.92 14.90
31 32											15.91 16.95

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Beam

Depth and Weight of Sections

8 Inch

Span

9 Inch

Coeffi-

cient

7 Inch

		-					-		_				of
35 lbs.	30 lbs.	25 lbs.	21 lbs.			23 lbs.				20 lbs.	17½ lbs.	15 lbs.	Deflec- tion
88.3 66.2 53.0 44.2 37.9 33.1 29.4 26.8 24.1 20.4 18.9 17.7 16.6 14.7	8 80.6 2 60.4 48.3 2 40.2 2 40.3 34.5 1 30.2 4 26.8 2 24.1 1 20.1 1 4 18.6 0 17.2 7 16.1 1 5 14.2	72.6 54.5 43.6 36.3 31.1 27.2 24.2 24.2 21.8 19.8 19.8 15.6 14.5 12.8 12.8 12.1	49.5 39.9 33.2 28.5 24.9 22.2 19.9 18.1 16.6 15.3 14.2 13.3 12.5 11.7 11.1	6 4 3 3 3 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1	0.8 5.6 6.5 0.4 6.1 2.8 0.3 8.2 6.6 5.2 4.0 3.0 2.2 1.4	71.8 57.3 43.0 34.4 28.7 24.6 21.5 19.1 17.2 15.6 14.3 13.2 12.3 11.5 10.8 10.1 9.6	53 40 32 26 23 20 18 16 14 13 12 11 10 10	.9 .4 .3 .9 .1 .2 .0 .2 .7 .5 .4 .5	43.2 37.9 30.3 25.3 21.7 19.0 16.9 15.2 13.8 12.6 11.7 10.8	42.9 32.1 25.7 21.4 18.4 16.1 14.3 12.9 11.7 10.7 9.9 9.2	39.8 29.9 23.9 19.9 17.1 14.9 13.3 11.9 10.9 10.0 9.2 8.5	27.6 22.1 18.4 15.8 13.8 12.3 11.0 10.0 9.2 8.5 7.9	1.66 2.00 2.38 2.80
	6 Inch	1		-	WEIGH	HT OF		-			3 Inc	h	Coeffi-
17¼ lbs.	143/4 lbs.	12½ lbs.	143/4 lbs.	1234			934	81/2	7½ lbs.	71/2	61/2	53/2	of Deflec- tion
57.0 46.6 31.0 23.3 18.6 15.5 13.3 11.6 10.3 9.3 8.5 7.8	42.2 28.4 21.3 17.1 14.2 12.2 10.7 9.5 8.5 7.8 7.1 6.6 6.1	27.6 25.8 19.4 15.5 12.9 11.1 9.7 8.6 7.7 7.0 6.5	32.3 21.5 16.2 12.9 10.8 9.2 8.1 7.2 6.5	29.1 19.4 14.5 11.6 9.7 8.3 7.3 6.5 5.8	17.2 12.9 10.3 8.6 7.4 6.4 5.7 5.2 4.7	19.0 12.7 9.5 7.6 6.3 5.4 4.8 4.2 3.8	18.0 12.0 9.0 7.2 6.0 5.1 4.5	16.9 11.3 8.5 6.8 5.6 4.8 4.2	15.2 10.6 8.0 6.4 5.3 4.5 4.0	20.7 10.4 6.9 5.2 4.1 3.5	15.8 9.6 6.4 4.8 3.8 3.2	8.8 5.9 4.4 3.5 2.9	0.07 0.15 0.27 0.41 0.60 0.81
	lbs.	lbs. lbs.	lbs. lbs.	131.8 102.4 73.1 88.3 80.5 72.6 66.2 60.4 54.5 49.5 53.0 48.3 43.6 39.5 33.1 30.2 27.2 24.3 33.1 30.2 27.2 24.2 26.5 24.1 21.8 19.5 22.1 22.0 19.8 18.1 22.1 22.0 19.8 18.1 22.1 22.1 18.2 16.6 17.7 16.1 14.5 13.3 16.6 15.1 13.6 12.5 15.6 14.2 12.8 11.7 17.7 16.1 14.5 13.3 17.2 15.6 14.2 17.3 12.7 11.5 13.3 12.1 10.9 10.6 17.4 1434 1234 13.6 12.5 13.3 12.1 10.9 10.6 17.1 15.5 12.9 13.3 12.1 10.9 10.6 17.1 15.5 12.9 13.3 12.1 10.9 10.6 17.1 15.5 12.9 13.3 12.2 11.5 15.5 14.2 12.9 10.3 9.5 8.6 9.3 8.5 7.7 10.3 9.5 8.6 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 7.2 6.6 6.5 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.2 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.3 1.3 1.		18.		18.		Decoration Dec		Description Description	Decoration Dec

Structural Beams Allowable Uniform Loads in Pounds per Foot

Safe Loads Include Weight of Beam

801	Inch	7	02	18
oog spt	ber 1	88 98 98 98 98 98 98 98 98 98 98 98 98 9	98888888	55 65 72 885 885 885 885 885 885 885 885 885 88
	10	26270 25630 24990 21150 20520 19900 19270 18550	17660 17140 16610 16690 15640 13530 13010 12480	14940 14470 14000 13530 10920 10450 9980 9430
1	11	21710 21180 20650 17480 16960 16440 15930 15930	14590 14160 13730 12930 11180 10750 10310	12350 11960 11570 11180 9020 8630 8250 7790
1	12	18240 17800 17800 14690 14250 133820 13380 12880	12260 11900 11540 11170 10860 9400 9640 8660	10370 10050 9720 9390 7260 6930 6550
	13	15550 14790 12520 12150 11770 11400 10980	10450 10140 9830 9520 9260 8010 7700 7380	8840 8560 8280 8000 6460 6180 5900
	14	13400 13080 12750 10790 10150 9830 9470	9010 8740 8480 8210 7980 6910 6640 6370	7620 7380 7140 6900 5570 5330 5090 4810
	15	11680 111390 11110 9400 9120 8840 8560 8250	7850 7620 7380 7150 6950 6020 6780 5780	6640 6430 6230 6010 4850 4430 4190
	16	10260 10010 9760 8260 8020 7770 7530 7250	6900 6690 6490 6290 6110 5290 5080	5840 5650 5470 5280 4260 4080 3900 3680
-	17	8870 8870 7320 7100 6880 6670 6420	6110 5930 5750 5570 5410 4680 4500 4320	5170 5010 4840 4680 3780 3450 3260
DEAN	18	8110 7910 7710 6530 6340 6140 5730	5450 5230 5130 4970 4830 4020 3850	4470 4320 4180 3370 3380 2910
5	19	7280 7100 6920 5860 5510 5510 5140	4890 44600 44600 44600 4460 3750 3460	4130 4010 33880 3750 3750 2890 2610
LEEF	20	6570 6410 6250 5290 5290 4970 4640	4420 4420 4150 4020 3330 3320 3120	3730 3620 33620 3380 2730 2810 2810
1	21	5960 5810 5670 4800 4510 4210	4000 3880 3770 3650 3070 2850 2830	3390 3280 3170 3070 2280 2280
	22	5430 5300 5160 4370 4240 4110 3880	3650 3740 3740 3730 3730 2800 2800 2800 2800	22890 22890 22890 22890 22890 22890 22890 22890 22890 23890
-	23	4970 44720 44720 44720 3880 3880 3840 3640	3340 3340 3140 3140 2260 2260 2360	2820 2740 2650 2650 2560 2560 1970 11890
1	24	1560 1450 1450 14340 13450 1350 1350 1350 1350	22500 22500 22720 22720 22250 2170	2590 2510 2430 2430 2350 1900 1730 1640
1	25	1200 1100 1100 1100 1100 1100 1100 1100	2830 2660 2660 2570 2500 2170 2000	2390 2240 2240 2160 1750 1600 1510
	26	3890 3790 3790 3130 2940 2850 2750	2610 2460 2380 2310 2000 1920 1850	2210 2140 2070 2070 2000 1620 1480
1	27	3600 3430 3430 2930 2730 2640 2640	2420 2350 22350 22210 22210 1790 1710	2050 1980 1980 1860 1430 1370
1	28	3350 3350 3190 2700 2540 2370	2250 2120 2120 2020 2000 2000 1590 1590	1730 1730 1730 1270 1270
1	30	2920 2850 2350 2350 2210 22140 2060	1960 1850 1740 1740 1390 1390	1660 1560 1560 1500 1110 1050

Structural Beams Allowable Uniform Loads in Pounds per Foot Continued Safe Loads Include Weight of Beam

	36	1450 11400 11340 1020 1020 950 930	840 750 710 600 570		liw "
	25	1570 1510 1450 1390 1100 1100 1040	860 860 770 650 610		Loads below dotted lines will produce excessive deflection.
	24	1710 1640 1570 1500 1130 1090	990 670 670 670 670		dotted ve defi
	23	1860 1710 1710 1710 1730 1230 11300	1020 1020 170 130		rcessi
	22	2030 1950 1790 1790 1500 1340 1300	1110 1050 1050 840 790	700 650 590 540	pads b
	21	2230 2140 2050 1960 1650 1470 1430	1220 1120 1150 1080 920 870	770 710 650 590	Loprod
	20	2460 2360 2260 2170 11820 11620 1570	1430 1270 1200 1020 960	850 780 650	660
	19	2720 2610 2510 2400 2400 1910 1800 1740	1490 1410 1120 1120 1060	940 790 720	730 670 560
	18	3030 2910 2790 2670 2670 2240 2120 2000 1940	1760 1660 1570 1480 1250 1180	1040 960 880 800	820 750 670 620
FRET	17	3400 3270 3130 3000 2520 2380 2240 2170	1980 1760 1650 1400 1330	1170 1080 990 900	920 750 700
N	16	3840 3530 3530 3380 2840 2840 2530 2530 2450	2230 2110 1980 1870 1580 1500	1320 1220 1120 1020	1040 940 850 790
SPAN	15	4370 4200 4020 3850 3230 3060 2880 2880	2540 2400 2260 2130 1800 1710	1500 1390 1270 1160	1180 1070 970 900
	14	5020 4820 4420 3710 3310 3210	2910 2750 2590 2440 2070 1960	1730 1590 1460 1330	1350 1230 1110 1030
	13	5820 5590 5350 4300 4300 4300 3720	3380 3190 3010 2830 2400 2270	2000 1850 1690 1540	1570 1430 1290 1190
	12	6830 6550 6280 6010 5050 4780 4500 4360	3960 3750 3530 2820 2660 2660	2350 2170 1990 1810	1840 1680 1510 1400
	==	\$120 7800 7480 7160 6010 5680 5360 5190	4720 4460 4200 3950 3350 3170	2800 2580 2370 2150	2190 2000 1800 1660
	10	9830 9440 9050 8660 7270 6880 6480 6280	5710 5390 5080 4060 3840	3390 3120 2860 2610	2420 2420 2180 2010
	6	12140 11150 11170 10690 8970 8490 8000 7760	7050 6660 6270 5900 5010 4740	4180 3860 3530 3220	3270 2980 2690 2490
	00	15360 14750 14750 13530 11360 10740 10130 9820	8920 8430 7470 6340 6000	5290 4880 4470 4070	4140 3770 3410 3150
	7	20060 19260 17680 17680 14830 14030 12820	11650 11010 10370 9760 8280 7830	6910 6380 5840 5320	5410 4930 4450 4110
	9	27310 26220 26220 24060 20190 19100 17450	15850 14980 14110 13280 11270 10660	9400 8680 7950 7240	7360 6710 6050 5590
300°	ber l	1258888844	55 50 45 45 35 31.5	28888	2223
ppes btp*	Ind	15	12	10	

Allowable Uniform Loads in Pounds per Foot Continued Safe Loads Include Weight of Beam

	1	1	1	-	1	1	-	1	-	SPAN I	IN FEET	-	-	1	1	1	1	1	-	1	
	64	23.5	63	33%	4	41/2	10	51/2	9	675	2	00	6	10	11	12	13	11	15	16	14
	43280	29200	20280	14900	11410	9010	7300	6030	5070	4320	3720	2850	2250	1830	1510	1270	1080	930	1000		8
	35920	27520	19110	14040	10750	8490	0889	2690	4780	4070	3510	2690	2120	1720	1420	1190	1020		760	920	900
	28560	22840	17950	13190	10100	7980	6460	5340	4490	3820	3300	2520	1990	1620	1340	1120	096	820			3 3
	21000	17280	14400	12340	9480	7490	0209	2010	4210	3590	3100	2370	1870	1520	1250	1020	000				8
	32060	20570	14280	10490	8040	6350	5140	4250	3570	3040	2620	2010	1590	1290	1060	890	760	-		000	
	24710	19100	13270	9750	7460	2900			3320	2830	2440	1870	1470	1190	066	830	710		530	470	
	17500	14000	11700	9010	0000	5450	4420	3650	3070	2610	2250	1730	1360	1100	910	270	650	560	-	130	
	23280	14900	10350	7600	5820	4600	3720	3080	2590	2200	1900	1450	1150	930	770	650	550			-	
	21120	13650	9470	0969	5330	4210	3410	2820	2370	2020	1740	1330	1050	850	200	590;	200			-	
	13800	11040	8610	6320	4840	3830	3100	2560	2150	1830	1580	1210	096	780	640	540	460			-	
	16160	10340	7180	5280	4040	3190	2590	2140	1800	1530	1320	1010	800	650	530	450				-	
12.25	14530	9300	6460	4740	3630	2870	2320	1920	1610	1380	1190	910	720	580	480	400				-	
	10500	8250	5730	4210	3220	2550	2060	1710	1430	1220	1050	810	640	520	430	360				-	
	9520	0609	4230	3110	2380	1880	1520	1260	1060	900	780	590	470	380					-	-	
	0006	5760	4000	2940	2250	1780	1440	1190	1000	850	730	260	440	360						-	
	8470	5420	3770	2770	2120	1670	1360	1120	940	800	069	530;	420	340							
	7600	2000	3530	2600	1990	1570	1270	1020	880	750	650	200	390	320					-	-	
	5180	3310	2300	1690	1290	1020	830	089	580	490	420			Ī				-	-	-	
	4780	3060	2130	1560	1200	940	770	630	530	450	390										
	4410	2820	1960	1440	1100	870	710	580	490	420	260									-	ī

Loads within heavy lines will produce excessive shear in webs. Loads below dotted lines will produce excessive deflections.

Structural Channels

Allowable Uniform Loads in Thousands of Pounds
Extreme Fiber Stress, 16,000 Pounds per Square Inch
Safe Loads Include Weight of Channel

	V.	DEPT	H AND WEIG	HT OF SECT	rions		
Span		James	15 I	nch			Coefficient
Feet	55 lbs.	50 lbs.	45 lbs.	40 lbs.	35 lbs.	33 lbs.	Deflection
	245.4	216.0	186.6	157.2	127.8	120.0	0.15
3 4 5	153.0 122.4	143.2 114.5	177.8 133.4 106.7	123.6 98.9	113.8	111.1 88.9	0.15 0.27 0.41
6	102.0	95.4	88.9	82.4	75.8	74.1	0.60
7	87.4	81.8	76.2	70.6	65.0	63.5	0.81
8	76.5	71.6	66.7	61.8	56.9	55.6	1.06
9	68.0	63.6	59.3	54.9	50.6	49.4	1.34
10	61.2	57.3	53.3	49.4	45.5	44.5	1.66
11	55.6	52.1	48.5	44.9	41.4	40.4	2.00
12	51.0	47.7	44.5	41.2	37.9	37.0	2.38
13	47.1	44.1	41.0	38.0	35.0	34.2	2.80
14	43.7	40.9	38.1	35.3	32.5	31.8	3.24
15	40.8	38.2	35.6	33.0	30.3	29.6	3.72
16	38.2	35.8	33.3	30.9	28.4	27.8	4,24
17	36.0	33.7	31.4	29.1	26.8	26.1	4,78
18	34.0	31.8	29.6	27.5	25.3	24.7	5,36
19	32.2	30.1	28.1	26.0	23.9	23.4	5,98
20	30.6	28.6	26.7	24.7	22.8	22.3	6,62
21	29.1	27.3	25.4	23.5	21.7	21.2	7.30
22	27.8	26.0	24.3	22.5	20.7	20.2	8.01
23	26.6	24.9	23.2	21.5	19.8	19.3	8.76
24	25.5	23.9	22.2	20.6	19.0	18.5	9.53
25	24.5	22.9	21.3	19.8	18.2	17.8	10.35
26	23.5	22.0	20.5	19.0	17.5	17.1	11.19
27	22.7	21.2	19.8	18.3	16.9	16.5	12.07
28	21.9	20.5	19.1	17.7	16.3	15.9	12.98
29	21.1	19.7	18.4	17.0	15.7	15.3	13.92
30	20.4	19.1	17.8	16.5	15.2	14.8	14.90
31	19.7	18.5	17.2	15.9	14.7	14.3	15.91
32		17.9	16.7	15.4	14.2	13.9	16.95

Loads above horizontal lines will produce maximum allowable shear in webs. Loads below dotted lines will produce excessive deflections.

Structural Channels

Allowable Uniform Loads in Thousands of Pounds Continued

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Channel

			D	EPTH A	ND WE	IGHT OF	SECTION	ONS			Co-
Span		1	2 Inch				10	0 Inch			efficient of
Feet	40 lbs.	35 lbs.	30 Ibs.	25 lbs.	20½ lbs.	35 lbs.	30 lbs.	25 lbs.	20 lbs.	15 lbs.	Deflec- tion
2 3 4 5	181.9 175.1 116.7 87.5 70.0	106.2 79.7	123.1 95.8 71.8 57.5	93.6 85.3 64.0 51.2	67.2 56.9 45.5	123.2 82.1 61.6	73.4 55.1	97.0 64.7 48.5 38.8	76.4 56.0 42.0 33.6	48.0 47.6 35.7 28.5	0.15
6 7 8 9	58.4 50.0 43.8 38.9 35.0		47.9 41.1 35.9 31.9 28.7	42.7 36.6 32.0 28.4 25.6	28.5 25.3	41.1 35.2 30.8 27.4 24.6	36.7 31.5 27.5 24.5 22.0	32.3 27.7 24.3 21.6 19.4	28.0 24.0 21.0 18.7 16.8	23.8 20.4 17.8 15.9 14.3	0.60 0.81 1.06 1.34 1.66
11 12 13 14 15	31.8 29.2 26.9 25.0 23.3	26.6 24.5 22.8	26.1 23.9 22.1 20.5 19.2	23.3 21.3 19.7 18.3 17.1	19.0 17.5 16.3	22.4 20.5 19.0 17.6 16.4	16.9 15.7	17.6 16.2 14.9 13.9 12.9	15.3 14.0 12.9 12.0 11.2	13.0 11.9 11.0 10.2 9.5	2.00 2.38 2.80 3.24 3.72
16 17 18 19 20	21.9 20.6 19.5 18.4 17.5		18.0 16.9 16.0 15.1 14.4		13.4 12.7	15.4 14.5 13.7 13.0 12.3	13.8 13.0 12.2 11.6 11.0	12.1 11.4 10.8 10.2 9.7	10.5 9.9 9.3 8.8 8.4	8.9 8.4 7.9 7.5 7.1	4.24 4.78 5.36 5.98 6.62
21 22 23 24 25	16.7 15.9 15.2 14.6	13.3	12.5 12.0	12.2 11.6 11.1 10.7	10.8 10.4 9.9 9.5	11.7 11.2	10.5 10.0	9.2 8.8	8.0 7.6	6.8	
26	13.5		-	9.8	8.8	1					11.19

Loads above horizontal lines will produce maximum allowable shear in webs.

Loads below dotted lines will produce excessive deflections,

Structural Channels

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Channel

DEPTH AND WEIGHT OF SECTIONS

Coeffi-

3,24

in	1	9 Inc	h		8	Inch				7	Inch			of
Feet	25 lbs.	20 lbs.	15 lbs. lb	21¼ s. lbs.	183/4 lbs.	16½ lbs.	13% lbs.	13/4 lbs.	193/4 lbs.	17½ lbs.	43/4 lbs.	12½ lbs.	93/4 lbs.	Deflec- tion
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	55.9 41.9 33.5 27.9 20.9 20.9 18.6 16.8 15.2 14.0 12.0 11.2 10.8 9.3	72.0 48.0 36.0 28.8 24.0 20.6 18.0 14.4 13.1 12.0 11.1 10.3 9.6 9.0 8.5 8.0 7.6	40.2 37 30.1 28 24.1 22 20.1 18 17.2 16 15.1 14 13.4 12 12.1 11 11.0 10 10.1 9 9.3 8 8.6 8 8.0 7 7.5 7 7.1 6	4 63.7 4 42.5 0 31.8 4 25.5 1 21.2 0 18.2 0 18.2 0 18.9 5 14.2 2 12.7 2 11.6 3 10.6 6 9.8 0 9.1 5 8.5 0 8.0 7.5 2 7.1	39.0 29.2 23.4 19.5 16.7 14.6 13.0 11.7 10.6 9.7 9.0 8.4 7.8 7.3	53.2 35.5 26.6 21.3 17.7 15.2 13.3 11.8 10.6 9.7 8.9 8.2 7.6 7.1 6.7	48.0 32.0 24.0 19.2 16.0 13.7 12.0 10.7 9.6 8.7 8.0 7.4 6.9 6.4 6.0	35,2 38,7 21,5 17,2 14,4 12,3 10,8 10,8 7,8 7,8 7,8 6,6 6,2 5,7 5,4	50.6 33.7 25.3 20.2 16.9 14.4 12.6 11.2 10.1 9.2 8.4 7.8 7.2 6.7	30.72 23.02 18.41 15.31 13.11 11.51 10.2 9.2 8.4 7.7 7.1 6.6 6.1	11.4 27.6 20.7 16.6 13.8 11.8 10.4 9.2 8.3 7.5 6.9 6.4 5.9	36.8 24.6 18.4 14.7 12.3 10.5 9.2 8.2 7.4 6.7 6.1 5.3	21.4 16.1 12.9 10.7 9.2 8.0 7.1 6.4 5.8 5.4 4.9 4.6	0.07 0.15 0.27 0.41 0.60 1.34 1.66 2.00 2.38 2.80 3.24 3.72 4.24 4.78 5.36 5.98
Span	0.4			DEPTE	AND	WE	IGHT	of S	BCTIC	ONS				Coeffi-
in		61	nch		1	5 Inc	h	1	4 Inc	h		3 In	ich	of
Feet	15½ lbs.	13 lbs.	10½ lbs.	8 lbs.	11½ lbs.		6½ lbs.	71/4 lbs.		51/4 lbs.	6 lbs			
1 2 3 4 5	67.6 34.7 23.2	52.8 30.8 20.8	26.9	23.1 15.4	22.2	33.0 18.9 12.6	15.8	12.2	20.: 11. 7.	1 10.1	14.	4 6	1 10 6 5. 4 3.	8 0.07

Loads above horizontal lines will produce maximum allowable shear in webs. Loads below dotted lines will produce excessive deflections.

14

5.0

3.8 3.3

Structural Channels Allowable Uniform Loads in Pounds per Foot Safe Loads Include Weight of Channel

	26	910 730 670 670 660	388 450		s will ns.
	25	980 920 730 710	560 510 410 360		Loads below dotted lines will produce excessive deflections.
	24	1060 860 770 770	610 550 500 440 400		dotte
	23	1160 1010 930 860 840	666 666 666 666 666 666 666 666 666 66		elow
	22	1260 11180 1100 1020 940 920	720 660 530 470	510 460 350 290	ads b
	21	1300 1210 1010 1010	720 650 580 520	560 560 380 320	Lo
1	20	1530 1240 1140 1110	8880 720 840 570	620 8420 360 360	300 300 280 280
	10	1690 11590 11370 1230	880 710 630 630	680 610 640 470 400	330 310 310
	18	1890 1770 1650 1530 1400 1370	980 890 790 790	520 680 680 680 680 680 680 680 680 680 68	\$20 370 350
FRET	17	2120 1980 1710 1710 1540	1210 1100 1000 890 780	850 760 670 580 490	580 500 390 390
N	16	2390 2240 2080 11930 1740	1370 1250 1000 1000 890	960 760 560 560	650 470 440
SPAN	15	2720 2550 2370 2200 2020 1980	1560 1420 11280 11140 1010	1100 980 750 630	750 640 540 500
	14	3120 2720 2720 2520 2520 2270	1790 1630 1470 1310 1160	11260 1120 990 860 730	860 740 620 570
	13	3620 33390 3160 2830 2630	2070 1890 1700 1520 1350	1460 1300 1150 840	990 710 660
	12	4250 3700 3430 3430 3090	2430 2210 2000 1780 1580	1710 1530 1350 1170 990	1160 1000 840 780
	=	5060 4410 4080 3760 3670	2890 2630 2380 2120 1880	2040 1820 1600 1390 1180	1390 11190 1000 930
1	10	6120 5730 5330 4940 4450	3500 3190 2870 2560 2280	2460 2200 1940 1680 1430	1680 1440 1210 1120
1	0	7550 6590 6100 5490	4320 3940 3550 3160 2810	3040 2720 2400 2070 1760	2070 1780 1490 1380
	00	9560 8340 77720 71110 6950	5470 4980 4490 4000 3560	3850 3440 3030 2620 2230	2620 2250 1880 1750
	-	12490 10090 10090 9290 9070	7150 6500 5860 5220 4650	5030 4490 3960 3430 2910	3420 2940 2460 2290
	0	17000 15910 14820 13730 12840 2350	9730 8850 7110 6330	6840 6120 5390 4670 3960	4660 4000 3350 3120
	ber]	555 550 11 14 13 13 13 13 13 13 13 13 13 13 13 13 13	40 33 30 25 20.5	1202303	25 20 15 13.25
1831	Inch	15	123	10	6

Structural Channels Ilowable Uniform Loads in Pounds per Foot Gontinued Gontinued

1	18	2300 330		-		pro-	-oud
	17	3300000	To be	1		Mill	Mill
	16	340 340 340 340	2500000			lines web.	8 .
	15	520 520 4430 380	450 370 330 290	11-		2.9	tion ti
	14	6550 6550 440 440	520 470 380 330	350		hear	dotte
	13	570 630 570 510	880 380 380	320 320 370		ithin ive	low
	12	880 740 670 600 670	510 510 510 510	480 370 320	310 260 220	Loads within heavy	Loads below dotted lines duce excessive deflections,
	==	1050 970 880 790 710	840 760 680 610 530	570 510 440 380	370	Log	Log
	10	1270 1170 1060 960 860	1010 920 830 740 640	690 620 540 460	380	2200	
	6	1570 1440 1310 1190 1060	1250 1140 1020 910 790	860 760 660 570	550 470 390	280	
FEET	00	1990 1830 1660 1500 1350	1580 1440 11290 1150 1000	1090 960 840 720	690 590 490	320	
8	7	2600 2390 2170 1960 1760	2060 1880 1690 1500 1310	1420 1260 1100 940	910	500	240
SPAN	5/19	3010 2770 2520 2270 2040	2390 2180 1960 1740 1520	1640 1460 1270 1090	1050	580	350 310 280
	9	3540 3250 2960 2670 2390	2810 2550 2300 2050 1790	1930 1710 1490 1280	1230 1050 880	680	370
	5/3	4210 3860 3520 3170 2850	3340 3040 2740 2430 2120	2300 2040 1780 1530	1470 1250 1050	810 740 670	430
	5	5090 4580 4260 3840 3450	4040 3680 3310 2950 2570	2780 2460 2150 1850	1780 1510 1270	980 890 810	530 470
	41/2	6290 5770 5260 4740 4250	4540 4090 3640 3170	3430 3040 2650 2280	2190 1870 1560	1200	730
	4	7310 6650 6000 5380	6320 5750 5180 4600 4020	4340 3850 3360 2890	2770 2370 1980	1520 1390 1260	920 820 730
F	31/2	10400 9540 8690 7840 7030	8250 7510 6760 6010 5250	5030 4390 3770	3620 3090 2580	1990 1820 1650	1200 1070 950
	00	14150 12990 111830 10670 9570	11230 10220 9200 8180 7140	7720 6840 5970 5130	4930 4210 3520	2710 2480 2250	1630 1460 1290
	21/2	20380 18710 17030 15360 13780	16180 14710 13250 11780 10280	9860 8600 7390	7100 6060 5060	3900 3570 3240	2350 2100 1860
	2	31840 29230 26610 24000 17600	25280 22990 20700 18410 14700	17360 15400 13440 11550	11100 9460 7910	6090 5570 5060	3680 3290 2910
goog goog	Pour	21.25 18.75 16.25 13.75 11.25	19.75 17.25 12.25 9.75	13.0	9.0	6.25	6.0
th,	Dep	00	-	9	10	4	65

Angles with Equal Legs

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Angle Neutral Axis Through Center of Gravity Parallel to One Leg

Size of Angle,		SPAN IN FERT									
Inches	1	2	3	4	5	6	7	8	9	10	
8 x8 x11/8 8 x8 x3/2	186.98 89.28	93.48 44.64	62.32 29.76	46.74 22.32	37.40 17.86			23.38 11.16	20.78 9.92	18.70 8.92	
6 x6 x1	91.41	45.71	30.47	22.85	18.28	15.26	13.06	11.43	10.16		
6 x6 x3/s	37.65	18.83	12.55	9.41	7.53	6.28	5.38	4.71	4.18		
5 x5 x 15 5 x 5 x 5 x 5 x 5 x 5 x 5 x 5	58.56	29.28	19.52	14.64	11.71	9.76	8.36	7.32	6.51	5.86	
	25.81	12.90	8.60	6.45	5.16	4.30	3.69	3.23	2.87	2.58	
4 x4 x 11	32.12	16.06	10.71	8.03	6.42		4.59	4.02	3.57	3.21	
4 x4 x 14	11.20	5.60	3.73	2.80	2.24		1.60	1.40	1.24	1.12	
3½ x 3½ x ¾	22.51	11.26	7.50	5.63	4.50		3.22	2.81	2.50	2.25	
3½ x 3½ x ¼	8.43	4.22	2.81	2.11	1.68		1.20	1.05	0.94	0.84	
3 x3 x ½	13.87	6.94	4.62	3.47	2.77	2.31	1.98	1.73	1.54	1.39	
3 x3 x ½	6.18	3.09	2.06	1.54	1.24	1.03	0.88	0.77	0.69	0.62	
2½ x 2½ x ½	7.78	3.88	2.60	1.94	1.56	1.30	1.12		0.86	0.78	
2½ x 2½ x ½	2.13	1.07	0.71	0.53	0.43	0.36	0.30		0.24	0.21	
2 x2 x½	4.80	2.40	1.60	1.20	0.96		0.69	0.60	0.53	0.48	
2 x2 x½	1.60	0.80	0.54	0.40	0.32		0.22	0.20	0.18	0.16	
1½x1½x¾	2.06	1.04	0.68	0.52		0.34	0.30	0.26	0.22	0.20	
1½x1½x½	0.82	0.42	0.28	0.20		0.14	0.12	0.10	0.10	0.08	
1 x1 x14	0.60	0.30	0.20	0.15	0.12	0.10	0.086	0.075	0.067	0.06	
1 x1 x18	0.34		0.114	0.084	0.068	0.056	0.048	0.042	0.038	0.034	

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceiling.

Angles with Unequal Legs

Long Leg Vertical

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress 16,000 Pounds per Square Inch Safe Loads Include Weight of Angle Neutral Axis Through Center of Gravity Parallel to Short Leg

Size of Angle,	Span in Feet									
Inches	1 2	3	4	5	6	7	8	9	10	
8 x6 x11/6 8 x6 x1/2	179.32 89. 85.55 42.	6 59.77 7 28.52	44.83 21.39	35.86 17.11	29.89 14.26	25.62 12.22	22.42 10.69	19.92 9.50	17.93 8.56	
7 x3½x⅓ 7 x3½x⅓	100.48 50.5 53.44 26.5	24 33.49 2 17.81	25.12 13.36		16.75 8.91			11.16 5.94		
6 x4 x 11 6 x4 x 3/8	71.52 35.1 35.42 17.1					10.22 5.06	8.94 4.42	7.95 3.92	7.15 3.54	
6 x 3½ x 34 6 x 3½ x 3/8	65.17 32.4 34.66 17.3			13.03 6.94		9.31 4.96	8.15 4.34	7.24 3.84	6.52	
5 x4 x 12 5 x4 x 3%	49.93 24.9 25.06 12.8					7.13 3.58	6.24 3.13	5.54 2.78	4.99 2.51	
5 x3½x¾ 5 x3½x¾	45.69 22.8 20.69 10.3			9.14 4.14		6.53 2.96	5.71 2.59	5.08 2.30	4.57	
5 x3 x 15 5 x3 x 15	41.19 20.6 20.16 10.0					5.88 2.88	5,15 2.52	4.58 2.24	4.12 2.02	
4½x3 x 16 4½x3 x 16	33.47 16.7 16.42 8.2			6.69		4.78 2.34	4.18 2.06	3.72 1.82	3.35 1.64	
4 x3½x11 4 x3½x11 4 x3½x11 1	29.12 14.3 13.44 6.3					4.16 1.92	3.66 1.68	3.22 1.49	2.90 1.34	
4 x3 x 11 4 x3 x 1/4	26.52 13.5 10.67 5.3					3.79 1.52	3.32 1.33	2.95 1.19	2.65 1.07	
3½x3 x¼ 3½x3 x¼	20.37 10.1 8.32 4.1				3.40 1.39	2.91 1.19	2.55 1.04	2.26 0.92	2.04 0.83	
3½ x 2½ x % 3½ x 2½ x ½	16.68 8.3 8.00 4.0			3.34 1.60	2.78 1.33	2.38 1.14	2.09 1.00	1.85 0.89	1.67	
3 x 21/2 x 16 3 x 21/2 x 14	12.28 6.1 5.98 2.9			2.46 1.20		1.75 0.86	1.54 0.76	1.36 0.66	1.23 0.58	
3 x2 x½ 3 x2 x¾	10.66 5.3 3.50 1.7			2.14 0.70		1.52 0.50	1.34 0.44	1.18 0.38	1.06 0.34	
2½x2 x½ 2½x2 x¾	7.58 3.7 3.10 1.5		1.90 0.78	1.52		1.08	0.94	0.84	0.76	

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceilings.

Angles With Unequal Legs Short Leg Vertical

Allowable Uniform Loads in Thousands of Pounds
Extreme Fiber Stress, 16,000 Pounds per Square Inch
Safe Loads Include Weight of Angle
Neutral Axis Through Center of
Gravity Parallel to Long Leg

Size of Angle, Inches					SPAN	IN FE	ET			
Inches	1	2	3	4	5	6	7	8	9	10
8 x 6 x1½ 8 x 6 x½	105.61 51.09				21.12 10.22	17.60 8.51	15.09 7.30	13.20 6.38	11.73 5.68	10.56 5.11
7 x 31/4x7/6 7 x 31/4x7/6	28.16 15.36	14.08 7.68								2.82 1.54
6 x 4 x 11 6 x 4 x 1/8	33.95 17.06			8.49 4.26						3.39 1.70
6 x 3½x¾ 6 x 3½x¾	24.24 13.12	12.12 6.56		6.06 3.28	4.85 2.62					2.42 1.32
5 x 4 x 12 5 x 4 x 3/8	33.06 16.74	16.53 8.38		8.26 4.18		5.51 2.80	4.72 2.40	4.13 2.10	3.67 1.86	3.31 1.68
5 x 3½x¾ 5 x 3½x¾	23.68 10.88	11.84 5.44		5.92 2.72						2.37
5 x 3 x 1 5 5 x 3 x 1 5	16.10 8.00			4.02 2.00		2.68 1.33				1.61 0.80
41/2 x 3 x 10 41/2 x 3 x 10	15.83 8.10		5.28 2.70	3.96 2.02			2.26 1.16			1.58 0.82
4 x 3½x¼ 4 x 3½x¼	22.72 10.67			5.68 2.67	4.54 2.13				2.54 1.12	2.28 1.06
4 x3 x11 4 x3 x14	15.57 6.40	7.79 3.20	5.19 2.13	3.89 1.60		2.58 1.07				1.56 0.64
3½ x 3 x 14 3½ x 3 x 1/4	15.36 6.19		5.12 2.06	3.84 1.54		2.56 1.03		1.92 0.77		1.53 0.62
3½ x 2½x 4 3½ x 2½x¼	8.98 4.38			2.25 1.10	1.80 0.88					0.90 0.44
3 x 21/2x 1/4 3 x 21/2x 1/4	8.76 4.26			2.19 1.06						0.88 0.42
3 x 2 x ½ 3 x 2 x ½	5.02 2.14	2.50 1.06		1.26 0.54				0.64 0.26		0.50 0.22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.98 2.02									0.50 0.20

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceilings.

Tees With Equal Legs

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch

Safe Loads Include Weight of Tee

Sec- tion	Size Flange				S	PAN IN	FEET				
Index	by Stem, Inches	1	2	3	4	5	6	7	8	9	10
T- 3 T- 4	4 x4 4 x4	23.34 20.56	11.66 10.30	7.78 6.86	5.84 5.14	4.66 4.10	3.90 3.44	3.34 2.94	2.90 2.56	2.58 2.30	2.34 2.06
T- 9 T-10	3½ x 3½ 3½ x 3½	14.74 12.78		4.90 4.26	3.68 3.20	2.96 2.56	2.46 2.14	2.10 1.84	1.84	1.62 1.42	1.48 1.28
T-15 T-16 T-17	3 x3 3 x3 3 x3	9.54 8.22 6.60	4.78 4.10 3.30	3.18 2.74 2.20	2.40 2.06 1.64	1.92 1.66 1.32	1.60 1.36 1.10	1.36 1.18 0.94	1.20 1.02 0.82	1.06 0.90 0.74	0.96 0.82 0.66
T-22 T-23	2½ x 2½ 2½ x 2½	6.50 5.58		2.16 1.86	1.62 1.38	1.30 1.12	1.10 0.94	0.94	0.80	0.72 0.62	0.64 0.56
T-28 T-29	2¼ x 2¼ 2¼ x 2¼	4.26 3.50		1.42 1.18	1.06 0.88	0.86	0.72 0.58	0.62	0.54 0.42	0.48	0.42
T-33 T-34	2 x 2 2 x 2	3.16 2.72		1.05	0.79	0.63 0.54	0.52 0.46	0.45	0.40	0.35	0.32 0.28
T-39 T-40	13/4 x 13/4 13/4 x 13/4	2.06 1.36		0.70 0.46	0.52 0.34	0.40 0.26	0.34	0.30 0.18	0.26 0.16	0.24	0.20
T-45 T-46	1½ x 1½ 1½ x 1½	1.46 1.22	0.74 0.62	0.48	0.38	0.30 0.24	0.24	0.22	0.18	0.16 0.14	0.14 0.12
T-51 T-52	1½ x 1½ 1½ x 1½	1.04		0.34	0.26	0.22	0.18	0.16	0.14	0.12	0.10
T-57 T-58	1 x 1 1 x 1	0.50 0.38	0.26 0.18	0.16 0.12	0.14 0.10	0.10 0.08	0.08	0.08	0.06	0.06 0.04	0.06 0.04

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceilings,

Tees With Unequal Legs

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Tee

Sec-	Size Flange	Span in Feet										
Index	by Stem, Inches	1	2	3	4	5	6	7	8	9	10	
*T-69	5 x 2½	9.18	4.58	3.06	2.30	1.84	1.52	1.32	1.14	1.02	0.92	
*T-74	414×3	8.64	4.32	2.88	2.16	1.72	1.44	1.24	1.08	0.96	0.86	
T-79 T-80	4 x2 4 x2	4.27 3.63	2.14	1.42 1.21	1.07	0.86 0.73	0.71	0.61 0.52	0.53 0.45		0.43	
T-85 T-86	3½ x 4 3½ x 4	21.12 16.54		7.04 5.52	5.28 4.14	4.22	3.52 2.74	3.02 2.38	2.64 2.08		2.10 1.66	
T-91 T-92	3½ x 3 3½ x 3	10.90 9.44		3.62 3.14	2.72 2.36	2.18 1.90	1.82 1.58	1.54 1.36	1.36 1.18	1.20 1.04	1.10	
T-96 T-97 T-98	3 x 3½ 3 x 3½ 3 x 3½	15.89 14.38 12.46	7.95 7.18 6.22	5.30 4.80 4.16	3.97 3.60 3.12	3.18 2.88 2.48	2.65 2.40 2.08	2.29 2.06 1.78	1.98 1.78 1.56	1.76 1.60 1.38		
T-103	2½ x 2	3.38	1.70	1.12	0.84	0.66	0.56	0.48	0.42	0.38	0.34	
T-108	236 x 134	2.06	1.04	0.70	0,52	0.40	0.34	0.30	0.26	0.24	0.20	
T-112	21 x 21/4	3.00	1.50	1.00	0.75	0.60	0.50	0.43	0.38	0.33	0.30	

For safe loads to the right of heavy line the deflection will be greater than allowable for plastered ceilings.

^{*}Made only by special arrangement.

Zees

Allowable Uniform Loads in Thousands of Pounds Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Zee

Section	Size	Size	Weight										
Index	Depth, Inches	Flange, Inches	Pounds	4	5	6	7	8	9	10	12	14	16
Z-70 Z-71 Z-72	51/8 51/6 5	33/8 31/6 31/4	28.4 26.0 23.7	27.57	22.06	18.38	17.07 15.76 14.43	13.78	12.25	11.03	9.19	7.87	6.89
Z-73 Z-74 Z-75	51/8 516 5	33/8 3 1/6 3 1/4	22.6 20.2 17.9	22.99	18.39	15.32	14.58 13.13 11.70	11.49	10.21	9.20	7.66	6.56	5.74
Z-76 Z-77 Z-78	51/8 516 5	33/8 3 1/4 3 1/4	16.4 14.0 11.6	17.04	13.63	11.36	11.33 9.73 8.13	8.52	7.57	6.81	5.68	4.86	4.26
Z-80 Z-81 Z-82	41/8 41/6 4	316 318 316	23.0 20.9 18.9	17.73	14.18	11.82	11.06 10.13 9.22	8.86	7.88	7.09	5.91	5.06	4.43
Z-83 Z-84 Z-85	41/8 416 4	31/8 31/8 31/6	18.0 15.9 13.8	14.66		9.78		7.33	6.52	6.59 5.86 5.15	4.89	4.19	3.66
Z-86 Z-87 Z-88	4½ 416 4	316 318 316	12.5 10.3 8.2	12.45 10.43 8.37	8.34	6.94	5.96	5.21	5.53 4.63 3.72		3.47	2.98	2.60
Z-3 Z-4	316	23/4 211	14.3 12.6	9.15 8.16			5.22 4.66			3.66 3.26			
Z-7 Z-8	316	23/4 211	11.5 9.8	7.95 6.85						3.18			
Z-11 Z-12	316	23/4 211 211	8.5 6.7	6.35 5.12				3.17		2.54 2.05			
Z-18	3	11/2	3.59	2.72	2.18	1.81	1.55	1.36	1.21	1.09	0.91	0.78	0.68

Zees

Allowable Uniform Loads in Thousands of Pounds

Extreme Fiber Stress, 16,000 Pounds per Square Inch Safe Loads Include Weight of Zee Neutral Axis Parallel to Flanges

	Sme		Weight	1 FOOT SPAN	MAXIMUM SPAN 360 x DEFLECTION		
Depth,	Flanges,	Thickness,	per Foot,	Safe	Safe	Length	
Inches	Inches	Inches	Pounds	Load	Load	Feet	
51/8	38/8	10	28.4	119.47	1.16	10.3	
5/16	3 18	8/4	26.0	110.29	1.08	10.2	
5	3 1/4	110	23.7	101.01	1.00	10.1	
51/8	3%	5/8	22.6	102.08	0.99	10.3	
51/6	3%	116	20.2	91.95	0.90	10.2	
5	31%	1/2	17.9	81.92	0.81	10.1	
5½	3%	76	16.4	79.36	0.77	10.3	
5½	3%	5/8	14.0	68.16	0.67	10.2	
5	3¼	5/8	11.6	56.96	0.57	10.1	
41/8	315	\$/4	23.0	77.44	0.93	8.3	
41/4	318	118	20.9	70.93	0.87	8.2	
4	316	5/8	18.9	64.53	0.80	8.1	
4½	31/5	1.0	18.0	65.92	0.79	8.3	
4†6	31/5	1.2	15.9	58.67	0.72	8.2	
4	31/5	1.4	13.8	51.52	0.64	8.1	
41/8	31/8	3/8	12.5	49.81	0.60	8.3	
41/4	31/8	10	10.3	41.71	0.51	8.2	
4	31/8	14	8.2	33.49	0.41	8.1	
316	23/4 211	12	14.3 12.6	36.59 32.64	0.59 0.54	6.2 6.1	
316	23/4	16	11.5	31.79	0.51	6.2	
	211	3/8	9.8	27.41	0.45	6.1	
316	23/4 211	15	8.5 6.7	25.39 20.48	0.41 0.34	6.2	
3 2 13/6	11/2 11/2 11/2	15 3/88/8	3.59 3.80 4.2	10.89 11.60 12.73	0.18 0.20 0.21	2.7 3.0 3.2	

Beam Box Girders

Allowable Uniform Loads in Thousands of Pounds

The values below are based on extreme fiber stress of 16,000 pounds per square inch, $\frac{12}{3}$ rivet holes deducted. Weights correspond to length, center to center of bearings.

ings,			4.5	N'H		
Center of Bear	25	2-10" Beams Pounds per F		I	2-12" x ½" Steel Plates	
Distance, Center to Center of Bearings, Feet	Safe Load, includ- ing Weight of Girder	Weight of Girder, Pounds	Add to Safe Load for 5 Pounds In- crease in Weight of Beam	Add to Safe Load for re Increase in Thickness of Plates	Add to Weight of Girder for 5 Pounds Increase in Weight of Beam	Add to Weight of Girder for the Increase in Thickness of Plates
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	80.0 73.8 68.6 64.0 60.0 56.4 53.4 50.6 48.0 45.6 41.8 40.0 38.4 37.0 35.6 34.2 33.0 32.0 31.0 30.0 29.0 28.2 27.4 26.6	1,114 1,206 1,299 1,392 1,485 1,578 1,670 1,763 1,856 1,949 2,042 2,134 2,227 2,320 2,413 2,506 2,598 2,691 2,784 2,877 2,877 2,877 3,062 3,155 3,248 3,341	3.84 3.54 3.28 3.08 2.88 2.70 2.56 2.40 2.28 2.18 2.00 1.92 1.84 1.68 1.64 1.58 1.64 1.58 1.42 1.40 1.36 1.30 1.28	5.78 5.34 4.96 2.62 2.32 2.08 3.64 3.46 3.28 3.14 3.02 2.88 2.78 2.66 2.56 2.48 2.38 2.32 2.24 2.16 2.08 2.08	120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360	61 66 71 77 82 87 92 97 102 107 112 117 122 128 133 148 143 148 153 158 163 168 173 179 184
37 38	26.0 25.2	3,434 3,526	1.24 1.20	1.86 1.72	370 380	189 194

Beam Box Girders

Allowable Uniform Loads in Thousands of Pounds

The values below are based on extreme fiber stress of 16,000 pounds per square inch, $\frac{1}{16}$ rivet holes deducted. Weights correspond to lengths, center to center of bearings.

12 325.2 2,712 13.36 302.6 2,352 7.84 13.36 82 13.30.2 2,938 12.34 279.4 2,548 7.24 12.34 88 14 278.8 3,164 11.46 259.4 2,744 6.72 11.46 95 15 260.2 3,390 10.70 242.2 2,940 6.28 10.70 102 17 229.6 3,842 9.44 213.6 3,332 5.54 9.44 116 18 216.8 4,068 8.90 201.8 3,528 5.22 8.90 201.8 3,528	Center to Center of Bearings,	2-18" Beams 70 Pounds per Foot	h724	2-16" x 34. Steel Plates	2-18" Beams 55 Pounds per Foot	- esti-	2-16" x 34" Steel Plates	d for 14" Increase in Plates	Girder for 15' Increase of Plates
13 300.2 2,938 12.34 279.4 2,548 7.24 12.34 88 14 278.8 3,164 11.46 259.4 2,744 6.72 11.46 95 15 260.2 3,390 10.70 242.2 2,940 6.28 10.70 102 16 243.8 3,616 10.02 227.0 3,136 5.88 10.02 109 17 229.6 3,842 9.44 213.6 3,332 5.54 9.44 116 18 216.8 4,068 8.90 201.8 3,528 5.22 8.90 122 19 205.4 4,294 8.44 191.2 3,724 4.94 8.44 129 20 195.0 4,520 8.02 181.6 3,920 4.70 8.02 136 21 185.8 4,746 7.64 173.0 4,116 4.48 7.64 143 22 177.4 4,972 7.28 163.4 4,312 4.28 7.28 150 23		Safe Load, including Weight of	Weight of Girder, Pounds	Add to Safe Load for As Increase in Thickness of Plates	Safe Load, including Weight of		3 o.g	to Safe Thicknes	Add to Weight of in Thickness
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35	300.2 278.8 260.2 243.8 229.6 216.8 205.4 195.4 169.6 162.6 156.0 144.4 139.4 139.4 139.4 139.4 134.8 111.4	2,938 3,164 3,390 3,616 3,842 4,068 4,294 4,520 4,746 4,972 5,198 5,424 5,650 6,328 6,554 6,780 7,006 7,232 7,458 7,684 7,910	12.34 11.46 10.70 10.02 9.44 8.90 8.44 7.28 6.98 6.68 6.42 6.16 5.94 5.72 5.52 5.34 5.16 5.00 4.86 4.72 4.58	279.4 259.4 242.2 227.0 213.6 201.8 191.2 181.6 173.0 163.4 157.8 151.4 145.2 139.6 134.4 129.6 125.2 121.0 117.2 113.4 109.8 100.8	2,548 2,744 2,940 3,136 3,332 3,528 3,724 4,116 4,312 4,508 4,704 4,900 5,292 5,488 5,684 6,076 6,272 6,468 6,860	7.24 6.72 6.28 5.88 5.54 5.22 4.94 4.70 4.28 4.08 3.92 3.76 3.48 3.36 3.24 3.14 3.04 2.94 2.84 2.68	12.34 11.46 10.70 9.44 8.90 8.40 7.28 6.98 6.42 6.16 5.94 5.72 5.52 4.86 4.72 4.58	88 95 109 116 122 129 136 143 150 156 163 170 177 184 190 197 204 211 218 224 231 238

Beam Box Girders

Allowable Uniform Loads in Thousands of Pounds

The values below are based on extreme fiber stress of 16,000 pounds per square inch, 1% rivet holes deducted. Weights correspond to lengths, center to center of bearings.

Center to Center of Bearings,	2-20" Steel Beams 65 Pounds per Foot	0	0	2-16" x %. Steel Plates	2-24" Steel Beams 80 Pounds per Foot			Steel Plates	irder for is Increase	
Distance, Center t	Safe Load, including Weight of	Weight of Girder, Pounds	Add to Safe Load for 5 Pounds In- crease in Weight of Beam	Add to Safe Load for J. Increase in Thickness of Plates	Safe Load, including Weight of	Weight of Girder, Pounds	Add to Safe Load for 5 Pounds In- grease in Weight of Beam	Add to Safe Load for A. Increase in Thickness of Plates	Add to Weight of Girder for in Thickness of Plates	
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33	366.0 337.6 313.6 292.8 274.4 258.4 244.0 231.0	2,777 2,990 3,204 3,418 3,631 3,845 4,058 4,272 4,486 4,913 5,126 5,547 5,767 5,981 6,408 6,622 6,835	8.72 8.04 7.48 6.96 6.52 6.04 5.80 5.52 5.24 5.00 4.76 4.36 4.16 4.00 3.84 2.3.60 3.48 3.36 3.24 3.16	16.00 14.76 13.70 12.80 12.00 11.28 10.60 9.60 9.12 8.72 8.34 7.38 7.38 7.38 7.38 6.66 6.62 6.40 6.18 6.00 5.82	384.8 362.2 342.0 324.2 307.8 293.2 279.8 266.6 246.2 236.8 228.0 219.8 212.2 205.2 198.6 192.4	2,923 3,167 3,410 3,654 3,898 4,141 4,385 4,628 4,628 5,516 5,359 5,603 6,334 6,577 6,821 7,064 7,308	10.46 9.66 8.96 8.36 7.84 7.40 6.98 5.98 5.70 5.46 5.52 4.82 4.48 4.32 4.18 4.04 3.92 3.80	19.16 17.68 16.42 15.32 14.36 13.52 12.78 12.10 10.94 10.09 9.58 9.20 8.84 8.50 7.92 7.66 7.42 7.18 6.96	82 88 95 102 109 116 122 129 136 143 150 156 163 170 177 184 190 197 204 211 218 224	
34 35 36 37	129.2 125.4 122.0 118.6 115.4	7,262 7,476 7,690 7,903	3.04 2.92 2.80 2.76 2.72	5.64 5.48 5.32 5.18 5.04	181.0 176.0 171.0 166.	8,282 8,526 8,770 4,9,01 .0,9,2	$\begin{vmatrix} 3.70 \\ 3.58 \\ 3.48 \\ 3 & 3.48 \end{vmatrix}$	6.76	18/ 245	1 225

Plate Box Girders

Allowable Uniform Loads in Thousands of Pounds

The values below are founded on the moments of inertia of the sections using an extreme fiber stress of 16,000 pounds per square inch for steel; \(\frac{1}{4}\)\sigma^* rivet holes in both flanges deducted. Weight of girders correspond to lengths, center to center of bearings and include rivet heads, stiffeners and fillers.

ater of Bearings, Feet	30" x 35" Web Plates 16" x 36" Flango Plates 352" x 352" x 52" Angles				33" x ½" Web Plates 20" x ½" Flange Plates 3½" x 3½" x ½" Angles			
Distance, Center to Center of Bearings, Feet	Safe Load, including Weight of Girder	Weight of Girder, Pounds	Increase in Safe Load for 18" Increase in Thickness of Flange Plates	Girder for 15 Increase in Thickness of Flange Plates	Safe Load, including Weight of Girder	Weight of Girder, Pounds	Increase in Safe Load for A' Increase in Thickness of Flange Plates In Weight of Girder for A' Increase in Thickness of Flange Plates	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	240.00 228.56 218.18 208.68 200.00 192.00 184.60 177.76 171.42 165.52 160.00 154.84 150.00 145.44 141.18 137.14 133.32 129.72 126.32	4.26 4.46 4.64 4.90 5.08 5.28 5.48 5.66 6.12 6.32 6.50 6.700 7.08 7.28 7.52 7.72 7.90 8.10	14.08 13,40 12.24 11.72 11.26 10.82 10.06 9.70 9.38 9.08 8.80 8.52 8.28 8.04 7.82 7.60 7.40	.07 .07 .08 .08 .08 .09 .09 .09 .10 .10 .10 .11 .11 .12 .12 .12 .13 .13	320.4 315.2 291.2 2278.6 267.0 256.4 246.4 237.4 228.8 221.0 213.6 206.6 200.2 194.2 188.4 183.0 178.0 178.0 178.0 178.0	4.88 5.10 5.32 5.60 5.82 6.06 6.28 6.50 7.22 7.44 7.66 7.90 8.12 8.34 8.62 8.82 9.06 9.30	19.08 .09 18.16 .09 17.34 .09 16.58 .10 15.90 .10 15.26 .11 14.68 .11 14.14 .12 13.64 .12 13.16 .12 12.72 .13 12.30 .13 11.92 .14 11.56 .14 11.20 .14 10.88 .15 10.58 .15 10.28 .16 10.02 .16 9.76 .17 9.54 .37	

Plate Box Girders

Allowable Uniform Loads in Thousands of Pounds

The values below are founded on the moments of inertia of the sections using an extreme fiber stress of 16,000 pounds per square inch for steel; $\frac{1}{14}$ rivet holes in both flanges deducted. Weights of girders correspond to lengths, center to center of bearings and include rivet heads, stiffeners and fillers.

iter of Bearings, Feet	36" x ½" Web Plates 24" x ¼" Flange Plates 4" x 3½" x ½" Angles				42" x ½" Web Plates 30" x ¼" Flange Plates 5" x 4" x ½" Angles			
Distance, Center to Center of Bearings, Feet	Safe Load, including Weight of Girder	Weight of Girder, Pounds	Increase in Safe Load for 1s Increase in Thickness of Flange Plates	Increase in Weight of Girder for 1st In- crease in Thickness of Flange Plates	Safe Load, including Weight of Girder	Weight of Girder, Pounds	Increase in Safe Load for 4s Increase in Thickness of Flange Plates	Increase in Weight of Girder for 1st In- crease in Thickness of Flange Plates
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	455.0 433.4 413.8 395.8 379.2 364.0 350.0 325.2 313.8 303.4 293.6 284.4 275.8 267.6 260.0 239.4 246.0 239.4 233.4 227.6	5.84 6.12 6.38 6.72 6.98 7.26 7.78 8.06 8.30 8.66 8.90 9.20 9.48 9.74 10.08 10.34 10.62	21.52 20.66 19.88 19.14 18.44 17.82	.12 .12 .13	710.0 676.2 645.6 617.4 592.0 568.0 546.2 526.0 507.2 489.6 473.4 458.0 443.8 430.4 417.6 405.8 394.4 383.6 364.2	7.56 7.90 8.26 8.68 9.04 9.38 9.74 10.08 10.42 11.56 11.22 11.56 11.90 12.24 12.58 13.38 13.72 13.88 14.47	37.00 35.32 33.78 32.38 31.08 29.88 28.78 27.76 26.80 25.00 25.06 24.28 23.54 22.20 21.58 21.08	.13 .14 .15 .15 .16 .17 .17 .18 .19 .20 .20 .21 .22 .22 .22 .23 .24 .24

Columns and Struts

Members in a structure subject to compression are termed—Columns, Posts or Struts. Theory offers no exact formulae from which the strength of these members, under various conditions of loading may be figured. Empirical formulae, based on the assumption that the members under stress may fail by direct compression, by combined compression and bending, or bending alone, practically agree with results obtained by experiment on full sized members. These experiments show that steel columns of ordinary sizes and lengths fail at nearly a constant stress which corresponds to the yield point of that material, and that the load which will cause the column to fail decreases in the ratio of its length to its least radius of gyration.

Strength of Columns

Columns are dependent upon their area and shape of cross section for their strength. Long columns will fail by bending under less load than will short columns. Of two columns having the same sectional area, the one having the material in the section distributed farthest from the central axis of the column will be stronger than the one having the bulk of material located near the center. If all the material composing the cross section of a column could be located at a distance from the center equal to the radius of gyration, the column would possess the same strength to resist flexure as though the material was distributed over the cross section. Therefore, in formulae for calculating the strength of columns, both the radius of gyration and the length must be taken into consideration.

Design of Columns

Hollow round columns are the most economical in material, and single web columns are the most accessible for painting and inspection. Columns should be so designed as to facilitate connecting floor beams or girders on all sides. Connections to columns should be carefully designed and provided with sufficient rivets, to avoid failure of the connections by shearing of the rivets. It is the common practice to space rivets not more than 3 inches, center to center, at the ends of columns for a distance equal to twice the width of the column. The distance between rivets from center to center, in a direction parallel with the line of strain, should not exceed 16 times the least thickness of the thinnest outside plate; and the distance from center to center between the rivets at right angles to the line of strain, should not exceed 32 times the least thickness of metal.

Tabulated Column Sections

On pages 182 to 203 will be found the safe loads in thousands of pounds for column sections, not exceeding lengths of 150 radii, which are typical of present day use.

Columns

Continued

Formulae for Safe Loads

Columns subject to eccentric loading may be figured for safe carrying capacity by the following formulae:

$$A = \frac{W}{P} + \frac{w \, d \, e}{P \, r^2}$$

P = Working unit stress (pounds square inch)

A =Area of column (square inches)

W = Total direct and eccentric loads (pounds)

w =Eccentric load (pounds)

d = Eccentricity of w (inches)r = Radius of gyration in direction of eccentricity (inches)

 e = Distance from center of column to outer fiber in direction of eccentricity (inches)

EXAMPLE:

Required the sectional area of a 12" plate and angle column 18' 0" long necessary to sustain safely a direct load of 100,000 pounds, and an eccentric load of 20,000 pounds located at a distance of 12" from center of column in the direction of web.

From the column tables on page 188, we find the safe working unit stress for a 12" column 18' 0" long to be about 10,000 pounds,

The trial radius of gyration may be taken as 5, which corresponds to the radius about the y-y axis for one of the 12" columns.

The required area of the cross section of column may be computed as follows:

$$A = \frac{100,000 + 20,000}{10,000} + \frac{20,000 \times 12 \times 6\cancel{4}}{10,000 \times 25}$$
$$= 12^{\square "} + 6^{\square "}$$
$$= 18^{\square "}$$

And the following column section may be used:

Continued

In designing and detailing mill and office buildings, it is desirable to have the loads transmitted from the trusses, girders and beams directly to the columns and eliminate bending or secondary stresses.

For the most economical construction, simplicity in details is very essential, and the number of connecting pieces, rivets or bolts should be reduced to a minimum.

The typical column details shown on these pages cover a few examples of the most modern practice in structural work, as met with in the ordinary mill and office building construction.

When columns rest on masonry, gusset plates may be required to distribute the load. Where they rest on steel slabs or cast iron bases, the loads are transmitted directly into the footing, and base angles only are required to fasten columns to slabs or bases.

Column should be milled to accurately bear at splices and base, to have splice plates of sufficient size with the necessary rivets to hold the section in line and to resist the stresses due to bending.

Beams should be framed to columns with plenty of clearance especially when framing into webs, and sufficient rivets countersunk so as to make the erection as simple as possible.

Continued

Typical Built Sections

Dotted lines indicate lattice

Continued

Lattice Bars and Tie Plates

Table giving minimum sizes of lattice bars and tie plates used for channel struts.

	Back to	Section	Thick-		Length		Rivet Spa	acing "c	l"
Depth	Back of Channel	of Lattice	ness of Tie	Size	of Tie Plates	Max	imum	Min	imum
Channel, Inches	"a," "Inches	Bars, Inches	Plates, Inches	Rivet, Inches	Inches	Feet	Inches	Feet	Inches
6	4	1½x¼	1/4	1/2	71/2	0	111/2	0	65/8
7 8	43/4 51/6	$\frac{13/4}{2} \frac{x^{1/4}}{x^{\frac{5}{16}}}$	1/4	5/8 3/4	10	1	11/2	0	75/8
9	6	$2 \times \frac{5}{16}$	16 16	3/4	12	1	41/2	0	91/2
10 12	81/4	2 x3/8 21/4x3/8	3/8	3/4	12 15	1	101/2	0	1016
15	101/4	2½x3/8	3/8	3/4	15	2	21/2	1	35

Sketches showing finished ends of lattice bars and clearance between same when cut from long bars.

c = distance center to center of rivet holes.

f = c + 2 distances as per sketch above. f = f + h.

In struts and columns carrying calculated stresses, the tie plates should be placed as near the ends as practicable, and at intermediate points where the lattice bars are not continuous. The end tie plates should have a length at least equal to the distance between lines of rivets connecting them to the flanges. These lattice bars should be capable of resisting a shearing stress equal to 2 per cent, of the direct stress. The thickness of lattice bars for single lattice should be at least 2½ per cent, of the distance between end rivets.

Rule for Latticing of Channels and Angles $d = \frac{\tau L}{R}$ $d = \frac{\pi L}{R}$ d

Columns

Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii. 16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Depth	Weight	Area,	Least Radius of	LEN	GTH IN FI	CHT
of Beam, Inches	per Foot, Pounds	Square Inches	Gyration, Inches	3	4	5
24	100	29.41	1.28		393.4	374.1
24	80	23.32	1.36		315.5	301.1
20	100	29.41	1.34		396.8	- 378.4
20	80	23.73	1.39		322.3	308.0
20	65	19.08	1.21		252.3	239.1
18	70	20.59	1.09	281.8	266.0	250.1
18	55	15.93	1.15	220.0	208.3	196.7
15	60	17.67	1.21	170.6	233.7	221.4
15	42	12.48	1.08		160.9	151.1
12	55	16.18	1.04	219.7	206.6	193.5
12	40	11.84	1.08	161.8	152.6	143.4
12	31½	9.26	1.01	125.1	117.4	109.7
10	40	11.76	0.90	155.2	144.3	133.3
10	25	7.37	0.97	98.8	92.4	86.0
9	35	10.29	0.84	133.8	123.5	113.2
	21	6.18	0.90	81.6	75.9	70.1
8 8	25½	7.50	0.80	96.4	88.5	80.6
	18	5.33	0.84	69.3	64.0	58.6
7 7	20	5.88	0.74	74.1	67.4	60.7
	15	4.42	0.78	56.4	51.7	46.9
6 6	171/4	5.07	0.68	62.3	56.1	49.8
	121/4	3.61	0.72	45.1	40.9	36.7
5 5	14%	4,34	0.63	52.1	46.3	40.5
	9%	2.87	0.65	34.8	31.1	27.4
4 4	10½	3.09	0.57	35.8	31.2	26.7
	7½	2.21	0.59	25.9	22.8	19.6
3 3	71/2	2.21	0.52	24.7	21.1	17.5
	51/2	1.63	0.53	18.3	15.7	13.2

Safe Loads in Thousands of Pounds For Single Beam Columns, Square Ends

			LENGTH	IN FEET			
6	7	8	9	10	12	14 /	16
354.8 286.7	335.5 272.3	316.2 257.9	296.9 243.5	277.6 229.1	239.0 200.3	200.4 171.5	161.8 142.7
359.9 293.6 225.8	341.5 279.3 212.6	323.1 264.9 199.3	304.6 250.6 186.1	286.2 236.3 172.8	249.3 207.6 146.3	212.5 178.9 119.8	175.6 150.2
234.2 185.1	218.4 173.4	202.5 161.8	186.6 150.2	170.8 138.5	139.0 115.3	92.0	
209.1 141.4	196.9 131.7	184.6 122.0	172.3 112.3	160.1 102.6	135.5 83.2	111.0	
180.5 134.2 102.0	167.4 125.0 94.3	154.3 115.8 86.6	141.3 106.6 78.9	128.2 97.4 71.1	102.1 78.9 55.7		
122.3 79.6	111.3 73.2	100.4 66.9	89.4 60.5	78.4 54.1	41.3		
102.9 64.3	92.6 58.5	82.3 52.8	72.0 47.0	61.7 41.3			
72.8 53.3	64.9 48.0	57.0 42.6	49.1 37.3	41.3 32.0			
54.0 42.2	47.4 37.4	40.7 32.6	34.0 27.9				
43.5 32.5	37.3 28.3	31.0 24.1	19.9				•••••
34.7 23.7	28.9 20.0	16.2					
22.1 16.5	17.6 13.3						
13.9 10.6							

Safe Loads in Thousands of Pounds for Plate and Angle Columns, Square Ends Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii.

16,000-70 - for lengths between 30 radii and 150 radii.

Short legs of angles riveted to web plates. Column weights do not include rivets.

Size	Size	Size	Area of	Weight	Least			LE	NOTH I	LENGTH IN FEET			
Angles, Inches	Web Plates, Inches	Plates, Inches	Square	of Column, Pounds	Gyration, Inches	*	10	9	7	00	6	10	12
Second Se	оооо хихи хехе		6.74 8.36 9.93 11.47	23.1 28.8 34.1 39.3	1.24 1.27 1.33	89.6 111.6 133.2 154.5	85.0 106.1 147.3	80.4 120.4 140.1	75.9 95.1 114.0 132.8	71.3 89.5 107.6 125.6	66.7 84.0 101.1 118.3	62.2 78.5 111.1	
	及		10.86 12.92 14.98 17.00 18.98	64.3 58.0 64.3 64.3	1.70			141.0 168.4 196.0 223.3 250.2	135.5 162.0 188.8 215.2 241.3	200000000000000000000000000000000000000	124.6 149.3 174.2 199.0 223.5	142.9 166.9 190.9 214.6	108 152 174 196
SOCIONIA SOCIALISTA SO	222222 *******************************		25.95 23.00 25.95	4404040	25.55.55.55.55.55.55.55.55.55.55.55.55.5			181.5 216.9 252.2 287.0 322.1 356.0	244.9 278.8 278.8 313.0 346.2	204.2 237.6 270.7 336.4	197.8 230.3 262.5 295.0 326.6	159.9 223.0 254.3 286.0 316.8	149.1 178.6 208.5 288.0 268.0 297.1
				104.7		******		424.2	412.9		390.4	379.1	356.

Sine	Size	Size	Area of	Weight	Least			LE	NGTH I	LENGTH IN FRET			
Angles, Inches	Web Plates, Inches	Plates, Inches	Square	of Column, Pounds	Gyration, Inches	14	16	18	20	22	24	26	28
8 219 x 34	6 x 36 x 35 x 35 x 35 x 35 x 35 x 35 x 3	***************************************	8.36	23.1	1.24	44.0							11
N H H	e e e		11.47	39.3	1.30	82.1	67.6	11	11				11
NH			10.86	37.3	1.67	97.3	104.6	75.4	36				
HH	W W		14.98	58.0	1.73	137.9			109.2				
**		***************************************	18.98	64.9	1.79	179.0			125	107.7			
, 2	10 x 01		13.37	45.4	3.08	138.3	127.5			-		200	:
× 212 × 3	10 x 55	***************************************	18.50	62.9	2.13	193.9	179.3	164.7	150.1	135.5	120.9	106.3	
24.4	10 x 00		21.00	70.4	97.16	950.6	205.3					123	

Columns

Safe Load in Thousands of Pounds for Plate and Angle Columns, Square Ends Continued

16,000—70 — for lengths between 30 radii and 150 radii. 14,000 pounds for lengths less than 30 radii.

Allowed stresses per square inch.

Short legs of angles riveted to web plates. Column weights do not include rivets.

	24	338 338 424 467 510 510 553 598 640 683 683 683 683 1048 1105 1105 11105 11105 11213 1329
	22	355.3 4465.0 4465.0 4465.0 5585.0 624.0 669.7 7714.4 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0 669.7 7789.0
	30	372.4466.0 4466.0 5559.4 655.3 659.2 745.4 10008.4 1007.9 11.86.3 11.8
12	18	389.6 438.6 438.6 486.9 5535.3 5535.3 5535.3 680.1 776.5 7728.7 776.5 1105.9 105.9
LENGTH IN FEET	16	406.8 455.8
LENGTE	14	4476.59 4476.59 5528.77 735.8 664.2 664.2 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 664.2 735.8 755.8 755.8 755.8 755.8 755.8 755.8 755.8 755.8 755.8 755.8 755.8
	112	441.1 445.5.1 6603.4 6603.4 6657.3 7711.0 763.7 7711.0 763.7 7711.0 8817.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	10	458 514 6 626 1 626 1 737 2 737 2 73
	6	466 8 524 2 524 2 531 0 637 5 637 5 750 4 916 2 916 2
Least Radius of	Gyration, Inches	888844814748888888888888888888888888888
Weight Per Foot	of Column, Pounds	115 6 1129 6 1159 6 1159 6 1157 2 1170 9 1170 9 117
Area of Column.	Square	28.00 28.25 28.25 28.25 28.25 29.25 20.25
Size of Cover	Plates, Inches	**************************************
Size of Web	Plates, Inches	大きなななななななななななななななななななななななななななななななななななな
Size	Angles, Inches	

Size of	Size of Cover	Area of	Weight Per Foot	Least Radius of				LENG	LENGTH IN FEET	EET			
Plates, Inches	Plates, Inches	Square	of Column, Pounds	Gyration, Inches	26	88	30	32	34	36	38	40	
H	***************************************	34.00	115.6	1.5	321.0	303	286.7	269.5	252.4	235.2	1000	200.9	
14 x 16		38.12	129.6	30.36	362.1	343.0	324.0	340.9	285.9	266.8	247.7	228.7	
4 14		46.23	157.2		444.5	421	399.0	376.3	353.6	330.9		285.5	
H		50.26	170.9		486.0	461	437.1	412.6	388.1	363.7	-	314.7	14.46
MI		54.26	184.5		527.7	501	475.3	449.1	452.9	396.7	-	344.3	
4 14		62.13	211.2		610.8	581	551.8	522.3	492.8	463.3	•	404.4	
H		66.00	224.4		652.3	621	590.2	559.1	528.0	497.0	•	434.9	
M		69.76	237.2		729.5	669	670,1	640,3	610,6	580.8	551	521.4	
M	18 x 3/2	77.92	264.9		813.7	780	747.1	713.8	680.5	647.1	-	580.5	
		86.00	292.4	ī	898.1	861.	824.5	787.8	751.0	714.3	677	640.7	1111
		90.50	307.7	Ī	953.9		877.9	830.8	801.8	763.8	725.	887.8	****
		95.00	323.0		1008.9		930.3	891.0	851.7	812.4	773	733.7	
		99.50	338.3		1064.6		983.4	942.9	902.3	861.7	-	780.6	
	×	104.00	353.6		1119.3	1077.4	1035.5	993.6	951.8	6.606		826.1	*****
	×	108.50	368.9		1174.5	1131.3	1088.1	1044.9	1001	958.5	м	872.1	
		113.00	384.2		1228.7	1184.1	1139.5	10095.0	050.4	1005.9	ю	916.7	
	×	117.50	399.5		1283 2	1237 3	1191 4	1145.5	8 660	1053 7	1007 8	961.9	

Safe Load in Thousands of Pounds for Plate and Angle Columns, Square Ends Continued

14,000 pounds for lengths less than 30 radii. Allowed stresses per square inch.

16,000-70 - for lengths between 30 radii and 150 radii.

Short legs of angles riveted to web plates. Column weights do not include rivets.

	24	338.	424	467	553	596.	640.3	683	759	847.	934	991	1048	1105	1161.	1217	1273	1329.
	22	355.3	445.0	489.9	580.0	624.5	669.7	714.4	789.0	880.3	971.6	1029.9	1087.6	1145.7	1203.1	1260.9	1317.8	1375.0
	20	372.5	466.0	512.6	606.2	652.3	699.2	745.4	818.7	913.6	1008.4	6. 2901	1126.9	1186.3	1245.0	1304.1	1362.4	1420.9
TEL	18	389.6	486.9	535.3	632.4	680.1	728.7	776.5	848.5	946.9	1045.1	102.9	1166.2	1226.9	1286.9	1347.3	6.9041	1466.9
IN FR	- 91	406.8	507.8	558.0	658.6	708.0	758.2	807.5	878.2	980.2	6.180	143.9	205.5	267.4	328.8	390.5	451.5	512.8
LENGTH IN FEET	14	423.9	528.7	580.7	684.8	735.8	787.7	838.6	908.0	013.6	118.7	181.91	244.8	308.01	370.7	433.61	496.1	558.7
	12	441.1	549.6	603.4	711.0	763.7	817.2	869.7	937.7	046.91	155.41	219.91	284.11	348.61	412.61	476.81	540.61	604.61
	10		D NO	-10	000	20	7	7	4	091	23	0	44					
	6	466.8		637.5					*****	*****			*****				*****	
Least Radius of	Gyration, Inches	3.33																4.30
Weight Per Foot	of Column, Pounds	115.6		157.2														
Area of Column.	Square	34.00	42.19	46.23	54.26	58.17	62.13	66.00	92.69	77.92	86.00	90.50	95.00	99.50	104.00	108.50	113.00	117.50
Size of Cover	Plates, Inches						************	***	18 x ½	H	H	H	M	и	M			
Size of	Plates, Inches	14 x 1/2	14 x 5%	14 x H	14 x 44	14 x 1/4	14 x H	14 x J	16 x 34	16 x 78	16 x 1	16 x 1	16 x 1	16 x 1	16 x 1	16 x 1	16 x 1	16 x 1
Size	Angles, Inches		00	Sx 6x H	N N	E N	x 6	x 6	M 6	9 ×	x e	9 x	9 x	x 6	a 6	w 6	x 6	a 6

	9
-2/	
+00	
* .	
	H

Size	Size of	Size of	Area of	Weight Per Poot	Least Radius of				LENG	LENGTH IN FEET	FEBT			
Angles	Plates, Inches	Plates, Inches	Square	of Column, Pounds	Gyration, Inches	26	38	30	32	34	36	380	40	1
M	M		34.00	115.6	3.33	0	303.8	286.7	269.5		235.2	218.1	200.9	3
x ex lie	14 x 16	***************************************	38.12	129.6	3.36	362.1	343.0	324.0	304.9	285.9	266.8	247.7	228.7	
	KH		46.23	157.2	3.42	3 10	421.7	399.0			330.9	308 2	285 5	:
×	H		50.26	170.9	3.45	0	461.5	437.1			363.7	339.2	314.7	
9	×		54.26	184.5	3.48	1	501.5	475.3			396.7	370.5	344.3	
	M		58.17	197.8	3,51	90	540.9	513.1			420.6	401.7	373.9	
9	×	***************************************	62.13	211.2	3.54	00	581.3	551.8			463.3	433.9	404.4	
8	×		66.00	224.4	3.57	¢9	621.2	590.2		528.	497.0	465.9	434.9	
9		×	69.76	237.2	3.94	IO.	8.669	670.1		610.	580.8	551.1	521.4	:
9		18 x 3/2	77.92	264.9	3.93	7	780.4	747.1			647.1	613.8	580.5	3
9		M	86.00	203.4	3.93	H	861.3	824.5		751.	714.3	677.5	640.7	
8		×	90.50	307.7	4.00	6	915.9	877.9		801.	763.8	725.8	687.8	
9		×	95.00	323.0	4.06	6	9.696	930.3		851.	812.4	773.1	733.7	
9		M	99.50	338.3	4.12	9	1024.0	983.4	942.9	902	861.7	821.1	780 6	
9		×	104.00	353.6	4.17	23	1077.4	1035.5	993.6	951.	900.9	868.0	826.1	
			108.50	368.9	4.22	NO.	1131.3	1088.1	1044.9	1001.7	958.5	915.3	872.1	-
		H	113.00	384.2	4.26	7	1184.1	1139.5	1095.0	1050.4	1005.9	961.3	916.7	
		H	117.50	399.5	4.30	1283 2	1237 3	1191 4	1145.5	1000 6	1053 7	1007 8	961 9	

252525052525

Columns

Safe Loads in Thousands of Pounds for Plate and Angle Columns, Square Ends Continued

Short legs of angles riveted to web plates.

Column weights do not include rivets.

Allowed stresses per square inch.

14,000 pounds for lengths less than 30 radii,

16,000-70 1 for lengths between 30 radii and 150 radii.

	C.	152 152 163 163 163 163 163 163 163 163 163 163
	22	1518.7 1676.7 1683.5 11690.5 11747.8 1860.0 1860.0 1974.3 2030.9 2030.9
	30	1568 7 1687 2 1687 2 1894 2 1891 3 1919 3 2086 3 2094, 3 2094, 3
THE	18	1620.7 1681.3 1740.9 1800.6 1800.6 1919.5 1919.5 1978.6 1978.6 1978.6 2038.9 2098.3 2098.3 2015.7 2217.2 2275.5 2008.3
ENGTH IN FEET	16	1733 6 1733 6 1734 5 11794 5 11855 7 1917 0 1977 3 1977 3 2099 5 2221 0 2221 0
LENG	14	1722.8 1785.9 1848.2 1910.7 1973.2 2035.2 2097.1 22222.2 22346.7 2346.7 2408.1
	12	1773.8 1838.2 1901.9 2029.7 2093.0 2156.4 2220.6 2284.2 2471.5 2474.3
	10	
	6	
Least Radius of	Gyration, Inches	**************************************
Weight Per Foot	of Column, Pounds	442.0 457.2 457.2 503.3 549.1 559.4 559.0 650.0 650.0
Area of Column,	Square	130 00 134 50 148 00 148 05 152 50 170 50 170 50 170 50 170 50
Size of Cover	Plates, Inches	**************************************
Size of Web	Plates, Inches	2222222222222 222222222222222222222222
Sire	Angles, Inches	00000000000000000000000000000000000000

This table continued below.

	9	1059.4 11106.0 11106.0 11195.1 11240.4 11283.3 11372.8 11416.6 11460.9 11504.4 11504.4
	38	1110.4 1158.3 1204.1 1250.2 1296.8 1341.1 1433.2 1473.9 1659.7 1612.7
FEET	.36	1161.4 1257.7 1305.2 1309.0 1445.1 1493.8 164.4 167.0 1679.0
BNGTH IN FEET	34	1212.2 1262.2 1311.4 1360.3 1450.6 1450.6 1150.4 1160.7 1160.7 1160.7 1174.1
LEN	32	661263 81365.1 81415.5 81415.5 81415.6 81664.6 81614.6 81811.6
	30	6 1314. 5 1418. 5 1418. 7 1522. 7 1522. 7 1522. 7 1523. 8 1777. 6 1929.
	28	61365. 11419. 11419. 11578. 11578. 11630. 11630. 11630. 11630. 11640. 11641. 11641.
-	. 26	1416. 1472. 1526. 1580. 16850. 1850. 1904. 1958. 2010.
Least Radius o	Gyration	**************************************
Weight Per Foot	of Column, Pounds	442.0 457.3 487.3 538.5 548.1 548.1 548.1 548.1 548.1 548.1 568.0 610.5 610.5
Area of Column,	Square	130.00 134.50 134.50 148.00 148.00 152.50 152.50 166.00 170.50 170.50 170.50 170.50
Size of Cover	Plates, Inches	**************************************
Size of Web	Plates, Inches	22222222222 222222222222 2222222222222
Size	Angles, Inches	00000000000000000000000000000000000000

Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii.

16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

		Area,	Weight	Least Radius		LENG	TH IN	FEET	
Size of Channels	Size of Plates	Square Inches	Linear Foot, Pounds	of Gyration, Inches	8	9	10	12	14
2-8"—11½ lbs.	Lattice 2-10x/4 2-10x/8 2-10x/8 2-10x/1 2-10x/2 2-10x/8 2-10x/8	6.70 11.70 12.95 14.20 15.45 16.70 17.95 19.20	29.5 39.5 43.8 48.0 52.3 56.5 60.8 65.0	3.11 3.05 3.04 3.02 3.01 3.00 2.99 2.99	92.7 161.4 178.6 195.6 212.7 229.8 246.9 264.1	90.9 158.2 175.0 191.7 208.4 225.2 241.8 258.7	89.1 154.9 171.4 187.7 204.1 220.5 236.8 253.3	226.7	81.9 142.1 157.1 171.9 186.8 201.8 216.6 231.7
2-8'—13¾ lbs.	Lattice 2-10x ³ / ₄ 2-10x ² / ₆ 2-10x ³ / ₈ 2-10x ³ / ₆ 2-10x ³ / ₆ 2-10x ³ / ₈ 2-10x ³ / ₈	8.08 13.08 14.33 15.58 16.83 18.08 19.33 20.58	34.5 44.5 48.8 53.0 57.3 61.5 65.8 70.0	2.98 3.00 2.99 2.98 2.97 2.97 2.96 2.96	111.1 180.0 197.1 214.2 231.2 248.4 265.4 282.6	193.0 209.8 226.4 243.3 259.9	172.7 189.0 205.4 221.7 238.1	102.0 165.3 181.0 196.6 212.2 227.9 243.5 259.2	232.5
2-8"—1614 lbs.	Lattice 2-10x3/8 2-10x1/4 2-10x1/2 2-10x9/6 2-10x8/8 2-10x1/4 2-10x3/4	9.56 17.06 18.31 19.56 20.81 22.06 23.31 24.56	39.5 58.0 62.3 66.5 70.8 75.0 79.3 83.5	2.89 2.93 2.93 2.93 2.93 2.92 2.92 2.92	130.7 233.8 251.0 268.1 285.2 302.2 319.3 336.4	245.7 262.5 279.3 295.9 312.6	224.1 240.5 256.9 273.3 289.5 305.9	276.8 292.5	204.5 219.5 234.5 249.4 264.7 279.7
2-8"—18¾ lbs.	Lattice 2-10x3/8 2-10x3/2 2-10x5/8 2-10x3/4	11.02 18.52 21.02 23.52 26.02	44.5 63.0 71.5 80.0 88.5	2.82 2.89 2.89 2.89 2.89	150.1 253.3 287.4 321.6 355.8	281.3 314.8	242.5 275.2 308.0	231.7 263.0	221.0 250.8 280.6
2-8"—21¼ lbs.	Lattice 2-10x ³ / ₈ 2-10x ¹ / ₂ 2-10x ⁵ / ₈ 2-10x ³ / ₄ 2-10x ⁷ / ₈	12.50 20.00 22.50 25.00 27.50 30.00	49.5 68.0 76.5 85.0 93.5 102.0	2.77 2.84 2.84 2.85 2.85 2.85 2.86	169.7 272.7 306.8 341.1 375.2 409.5	266.8 300.1 333.7	260.8 293.5 326.3 359.0	249.0 280.1 311.6 342.8	237.2 266.8 296.9

Safe Loads in Thousands of Pounds For 2-8" Channel Columns, Square Ends

Section 2-8" Channels laced with 1 ½"x ¼" Bars or 2-8"
Channels and 2-10" Plates. Holes ¾"; Rivets ¾" diameter.
Column weights do not include Rivets.

	-				LENG	TH IN	FEET					
16	18	20	22	24	26	28	30	32	34	36	38	40
78.2 135.6 150.0 164.0 178.2 192.4 206.5 220.9	156.1 169.6 183.1 196.4	71.0 122.7 135.6 148.2 161.0 173.7 186.3 199.3	67.4 116.3 128.5 140.3 152.3 164.4 176.3 188.5	132.4 143.7 155.0 166.2	60.2 103.4 114.2 124.5 135.1 145.6 156.1 167.0	56.5 96.9 107.0 116.6 126.5 136.3 146.0 156.2	52.9 90.5 99.9 108.7 117.9 127.0 135.9 145.4		45.7 77.6 85.5 92.9 100.6 108.3 115.7 123.8	98.9 105.7	64.7 71.2	
92.8 150.7 164.9 179.0 193.1 207.5 221.5 235.8	143.4 156.8 170.2 183.6 197.2 210.5	83.7 136.0 148.8 161.5 174.1 187.0 199.6 212.5	79.2 128.7 140.7 152.7 164.6 176.8 188.6 200.8	166.6 177.6	114.1 124.6 135.1	65.5 106.7 116.6 126.3 136.0 146.1 155.7 165.8	61.0 99.4 108.5 117.5 126.5 135.9 144.7 154.1	92.1 100.5	51.8 84.8 92.4 100.0 107.4 115.4 122.8 130.7	77.4 84.4 91.2 97.9 105.2 111.8		
108.5 194.7 209.0 223.2 237.5 251.4 265.7 279.9	102.9 184.9 198.5 212.0 225.6 238.7 252.3 265.8	97.4 175.1 188.0 200.8 213.6 226.0 238.9 251.7	91.8 165.4 177.5 189.6 201.7 213.4 225.4 237.5	178.4 189.8 200.7 212.0	80.7 145.8 156.5 167.2 177.8 188.0 198.6 209.3	75.2 136.0 146.0 155.9 165.9 175.3 185.2 195.1	69.6 126.2 135.5 144.7 154.0 162.6 171.8 181.0	116.5 125.0 133.5 142.0 150.0 158.4	58.5 106.7 114.5 122.3 130.1 137.2 145.0 152.8	96.9 104.0 111.1 118.2 124.5 131.6		
123.8 210.2 238.6 266.9 295.3	199.4 226.3 253.3	110.7 188.7 214.1 239.6 265.1	104.1 177.9 201.9 225.9 249.9	97.5 167.1 189.7 212.2 234.8	91.0 156.4 177.5 198.6 219.7	84.4 145.6 165.3 184.9 204.6	77.8 134.8 153.0 171.2 189.4	71.3 124.1 140.8 157.6 174.3	64.7 113.3 128.6 143.9 159.2	102.5 116.4 130.2	******	
139.4 225.4 253.5 282.1 310.3 339.0	213.5 240.2 267.4 294.1	124.2 201.7 226.9 252.7 277.9 303.8		178.0 200.3 223.2 245.5	166.2 187.0 208.4 229.3	93.9 154.4 173.7 193.7 213.1 233.3	86.3 142.5 160.4 179.0 196.9 215.7	78.7 130.7 147.0 164.2 180.6 198.1	118.9 133.7 149.5 164.4			

Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii.

16,000-70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Size of	Size of	Area,	Weight	Least Radius		LENG	TH IN	FEET	
Channels	Plates	Square Inches	Linear Foot, Pounds	of Gyration, Inches	8	9	10	12	14
2-9*—13¼ lbs.	Lattice 2-11x1/4 2-11x1/4 2-11x1/6 2-11x1/6 2-11x1/6 2-11x1/6 2-11x1/6 2-11x1/6	7.78 13.28 14.66 16.03 17.41 18.78 20.16 21.53	34.3 45.2 49.9 54.6 59.2 63.9 68.6 73.3	3,49 3,41 3,39 3,37 3,35 3,34 3,33 3,32		107.6 183.0 201.9 220.5 239.3 258.0 276.8 295.5	179.7 198.2 216.5 234.9 253.3 271.7	173.2 191.0 208.5 226.2 243.8 261.5	98.3 166.7 183.7 200.5 217.4 234.4 251.4 268.2
2-9"—15 lbs.	Lattice 2-11x ¹ / ₄ 2-11x ² / ₆ 2-11x ² / ₆	8.82 14.32 15.70 17.07 18.45 19.82 21.20 22.57	37.8 48.7 53.4 58.1 62.7 67.4 72.1 76.8	3.40 3.37 3.36 3.34 3.33 3.32 3.31 3.30		121.5 197.0 215.9 234.5 253.3 272.0 290.8 309.4	193.4 212.0 230.2 248.7 267.0 285.4	186.3 204.1 221.6 239.4 256.9	110.6 179.2 196.3 213.0 230.0 246.9 263.9 280.7
2-9*—20 lbs.	Lattice 2-11x & 2-11x &	11.76 18.64 20.01 21.39 22.76 24.14 25.51 26.89 28.26	47.8 63.4 68.1 72.7 77.4 82.1 86.8 91.4 96.1	3.21 3.27 3.26 3.26 3.25 3.25 3.24 3.24 3.24		160.5 255.2 273.8 292.6 311.2 330.1 348.6 367.5 386.2	250.4 268.6 287.1 305.3 323.8 342.0 360.5	240.8 258.3 276.1 293.6 311.4 328.8 346.6	145.1 231.2 248.0 265.1 281.8 298.9 315.6 332.6 349.6
2-9"—25 lbs.	Lattice 2-11x36 2-11x46 2-11x46 2-11x46 2-11x46 2-11x36 2-11x46 2-11x46 2-11x46 2-11x46 2-11x46	14.70 22.95 24.33 25.70 27.08 28.45 29.83 31.20 32.58 33.95 35.33	57.8 78.1 82.7 87.4 92.1 96.8 101.4 106.1 110.8 115.5 120.1	3.10 3.18 3.18 3.18 3.18 3.18 3.18 3.18 3.18		312.6 331.4 350.1 368.9 387.6 406.4 425.0 443.8 462.5	306.6 325.0 343.3 361.7 380.1 398.5 416.8	294.5 312.2 329.7 347.4 365.0 382.7 400.3 418.0 435.6	179.4 282.3 299.3 316.2 333.1 350.0 367.0 383.8 400.8 417.6 434.6

Safe Loads in Thousands of Pounds For 9" Channel Columns, Square Ends

Section 2-9" Channels laced with 2"x 15" Bars or 2-9" Channels and 2-11" Plates. Holes 13"; Rivets 34" diameter. Column weights do not include Rivets.

-					LENG	TH IN	FEET					
16	18	20	22	24	26	28	30	32	34	36	38	40
94.5 160.1 176.4 192.6 208.7 224.9 241.2	184.6 200.0 215.5 231.0	161.9 176.6 191.3 206.0 220.9	154.6 168.6 182.5 196.6 210.7	147.4 160.6 173.8 187.1 200.5	127.4 140.1 152.6 165.1 177.7 190.3	132.8 144.6 156.3 168.2 180.2	125.6 136.6 147.6 158.8 170.0	107.8 118.3 128.6 138.9 149.3 159.8	101.3 111.1 120.6 130.1 139.9 149.7	57.1 94.7 103.8 112.6 121.4 130.5 139.5	53.3 88.2 96.5 104.7 112.7 121.0 129.3	49.6 81.6 89.3 96.7 103.9 111.6 119.1
257.3 106.3 172.0 188.4 204.4 220.8 236.9 253.1	101.9 164.9 180.6 195.9 211.4 226.9 242.4	97.5 157.7 172.7 187.3 202.1 216.8 231.6	93.2 150.6 164.9 178.7 192.8 206.8 220.8	88.8 143.5 157.0 170.1 183.5 196.8 210.1	84.5 136.3 149.2 161.5 174.2 186.7 199.3	80.1 129.2 141.3 152.9 164.9 176.7 188.6	75.8 122.0 133.5 144.3 155.6 166.7 177.8	71.4 114.9 125.6 135.7 146.3 156.7 167.0	67.0 107.8 117.8 127.2 137.0 146.6 156.3		58.3 93.5 102.1 110.0 118.4 126.6 134.8	54.0 86.3 94.2 101.4 109.0 116.5 124.0
269.2 138.9 221.6 237.7 254.1 270.0 286.4 302.3 318.7	132.8 212.1 227.4 243.0 258.3 273.9 289.1 304.8	202,5 217,1 232,0 246,5 261,5 275,9 290,8	249.0 262.7 276.9	183.3 196.4 210.0 223.0 236.5 249.4 262.9	108.2 173.8 186.1 199.0 211.2 224.0 236.2 249.0	102.0 164.2 175.8 187.9 199.5 211.5 223.0 235.0	176.9 187.7 199.1 209.8 221.1	89.7 145.0 155.2 165.9 175.9 186.6 196.5 207.2	83.5 135.5 144.9 154.9 164.2 174.1 183.3 193.2	143.8 152.4 161.6 170.1 179.3	71.2 116.3 124.2 132.8 140.6 149.2 156.9 165.3	131.3 65.1 106.7 113.9 121.8 128.9 136.7 143.6 151.4
334.9 171.5 270.2 286.4 302.6 318.8 335.0 351.2 367.3 383.6 399.7	163.5 258.1 273.6 289.0 304.5 319.9 335.4 350.8	155.5 246.0 260.7 275.4 290.2 304.9 319.7 334.4 349.2	147.6 233.8 247.9	276.3 139.6 221.7 235.0 248.3 261.6 274.8 288.2 301.4 314.7 328.0	131.6 209.6 222.2 234.7 247.3 259.8 272.4 284.9 297.5	197.5 209.3 221.1 233.0 244.8 256.6 268.4 280.3	232.4 115.7 185.3 196.5 207.5 218.7 229.7 240.9 251.9 263.1 274.2	217.7 107.7 173.2 183.6 194.0 204.4 214.7 225.1 235.5 245.9 256.2	99.8 161.1 170.8 180.4 190.1 199.7 209.4 219.0 228.7	91.8 149.0 157.9 166.8 175.8 184.6 193.6 202.5	173.8 83.8 136.8 145.1 153.2 161.4 169.6 177.8 186.0 194.2 202.4	

Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii.

16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

		Area,	Weight	Least Radius		LENGTH	IN FE	ET	
Size of Channels	Size of Plates	Square Inches	Linear Foot, Pounds	of Gyration, Inches	9	10	12	14	16
2-10"—15 lbs.	Lattice 2-12x)4 2-12x4x 2-12x5x 2-12x5x 2-12x5x 2-12x5x 2-12x5x 2-12x6x 2-12x6x	8.92 14.92 16.42 17.92 19.42 20.92 22.42 23.92	37.8 50.4 55.5 60.6 65.7 70.8 75.9 81.0	3.87 3.77 3.74 3.72 3.70 3.68 3.67 3.66		123.4 205.5 225.8 246.3 266.6 287.0 307.4 327.8	238.2 257.8 277.4 297.2	115.6 192.2 211.1 230.1 249.0 267.9 286.9 305.9	185.5 203.7 222.0 240.2 258.3 276.6
2-10"—20 lbs.	Lattice 2-12x ³ / ₈ 2-12x ⁴ / ₄ 2-12x ³ / ₂ 2-12x ³ / ₈ 2-12x ³ / ₈ 2-12x ⁴ / ₄ 2-12x ³ / ₄	11.76 20.76 22.26 23.76 25.26 26.76 28.26 29.76	47.8 60.6 75.7 80.8 85.9 91.0 96.1 101.2	3.66 3.65 3.64 3.63 3.62 3.61 3.60 3.60		161.2 284.4 304.8 325.2 345.6 365.9 386.2 406.7	274.8 294.5 314.2 333.8	265.3 284.2	145.0 255.7 274.0 292.2 310.4 328.5 346.7 365.1
2-10*—25 lbs.	Lattice 2-12x ¹ ⁄ ₂ 2-12x ² ⁄ ₃ 2-12x ² ⁄ ₃ 2-12x ¹ ⁄ ₄ 2-12x ¹ ⁄ ₄ 2-12x ¹ ⁄ ₄ 2-12x ¹ ⁄ ₃	14.70 26.70 28.20 29.70 31.20 32.70 34.20 35.70	57.8 90.8 95.9 101.0 106.1 111.2 116.3 121.4	3.52 3.57 3.57 3.56 3.56 3.55 3.55 3.55	203.6 370.7 391.5 412.1 433.0 453.6 474.4 494.9	364.4 384.8 405.1 425.6 445.8 466.3	430.4 450.1	358.3 377.1 396.2 414.9 434.0	399.4 417.7
2-10*—30 lbs.	Lattice 2-12x3/6 2-12x3/4 2-12x3/8 2-12x1	17.64 32.64 35.64 38.64 41.64	67.8 111.0 121.2 131.4 141.6	3.42 3.50 3.50 3.50 3.49	243.2 451.7 493.3 534.8 576.0	525.5	230.2 428.2 467.6 507.0 546.0		396.9 433.4
2-10"—35 lbs.	Lattice 2-12x54 2-12x34 2-12x36 2-12x1 2-12x1	20.58 35.58 38.58 41.58 44.58 47.58	77.8 121.0 131.2 141.4 151.6 161.8	3,35 3,45 3,45 3,45 3,45 3,45 3,45	282.8 491.3 532.7 574.2 615.6 657.0	482.6 523.3 564.0 604.7	465.3 504.6 543.8 583.0	448.0 485.8 523.6 561.3	430.7 467.0 503.3

Safe Loads in Thousands of Pounds For 10" Channel Columns, Square Ends

Section 2-10" Channels laced with 2"x 1 gr Bars or 2-10" Channels and 2-12" Plates. Holes 1 gr Rivets 4" diameter. Column weights do not include Rivets.

					LENG	TH IN	FEET					
18	20	22	24	26	28	30	32	34	36	38	40	
107.9	104.0		96.3	92.4	88.5	84.6	80.8	76.9	73.0		65.3	
178.9	172.2	165.6	158.9	152.3		139.0	132.3	125.7	119.0		105.7	
196.3 213.9	189.0 205.8	181.6 197.7	174.2 189.6	166.8 181.5		152.1 165.3	144.7 157.2	137.3 149.1	130.0 141.1		115.2	
231.4	222.5	213.7	204.9	196.1		178.5	169.6	160.8		143.2	134.4	
248.8	239.2	229.7	220.1	210.6	201.0	191.5	181.9	172.4	162.8	153.3	143.7	
266.4	256.1	245.8	235.6	225.3		204.8	194.5	184.3			153.5	
283.9	272.9	262.0	251.0	240.0	229.0	218.0	207.1	196.1	185.1	174.1	163.1	
139.6	134.2	128.8	123.4	118.0	112.6	107.2	101.8	96.4	91.0	85.6	80.2	
246.2	236.6	227.1	217.5	207.9		188.8	179.3	169.7		150.6	141.1	
263.7	253.4	243.1	232.9	222.6		202.1	191.8	181.5			150.7	
281.2 298.7	270.2 286.9	259.2 275.2	248.2 263.5	237.2 251.8		215.2 228.3	204.2 216.6	193.2 204.9			169.7	
316.1	303.6	291.2	278.7	266.3	253.8	241.4	228.9	216.5	204.0		179.1	
333.5	320.3		293.9	280.7		254.3		228.0			188.4	
351.2	337.3	323.4	309.5	295.6	281.7	267.8	254.0	240.1	226.2	212.3	198.4	
172.1	165.0	158.0	151.0	144.0	137.0	130.0	122.9	115.9	108.9	101.9	94.9	
314.1	301.6	289.0	276.4	263.9		238.7	226.2	213.6	201.0	188.5	175.9	
331.8	318.5	305.2	292.0	278.7	265.4	252.1	238.9	225.6	212.3	199.1	185.8	
349.1	335.1	321.1	307.0	293.0		265.0	251.0		223.0		194.9	
366.7	352.0		322.6	307.8		278.4	263.7	249.0	234.2	219.5	204.8	
383.9 401.5	368.5 385.4		337.5	322.0	306.6 320.6	291.1 304.4	275.6 288.3	260.1 272.1	244.7 255.9	229.2 239.7	213.7	
418.7	401.8		367.9	350.0		317.1	300.1	283.2	266.2		232.3	
	1	1000			1	THE R				240		
204.2	195.6		178.2	169.6		152.2	143.5	134.9	126.2		108.9	
381.2 416.3	365.6		334.2 365.0	318.6 347.8		287.2 313.6	271.6 296.5	255.9 279.4			208.9	
451.3	432.8		395.7	377.1		340.0			284.4		247.3	
485.8	465.8		425.7	405.7					305.4		265.4	
236.4	226.1	215.8	205.4	195.1	184.8	174.5	164.1	153.8	143.5	133.2	199 0	
413.3	396.0		361.4	344.0		309.4		274.7	257.4		122.9	*
448.2	429.4			373.1	354.3	335.5	316.7	297.9	279.1		241.5	
483.1	462.8	442.6	422.3	402.1	381.8	361.6	341.3	321.1	300.8	280.6	260.3	
517.9 552.8	496.2 529.6				409.4	387.7	365.9		322.5		279.1	

Continued

Allowed stresses per square inch.

14,000 pounds for lengths less than 30 radii.

16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

		Area.	Weight	Least Radius	L	ENGTH	IN FEE	T
Size of Channels	Size of Plates	Square Inches	Linear Foot, Pounds	of Gyration, Inches	12	14	16	18
2-12*—20½ lbs.	Lattice 2-14x % 2-14x % 2-14x % 2-14x % 2-14x % 2-14x % 2-14x % 2-14x % 2-14x %	12.06 20.81 22.56 24.31 26.06 27.81 29.56 31.31 33.06	48.8 70.8 76.7 82.7 88.6 94.6 100.5 106.5 112.4	4.61 4.39 4.36 4.34 4.32 4.30 4.29 4.28 4.26	166.6 285.2 308.8 332.5 356.2 379.8 403.5 427.2 450.7	323.1 346.0 368.9	269.3 291.4 313.7 335.9 358.0 380.4 402.6	261.3 282.7 304.3 325.8 347.2 368.8 390.3
2-12*—25 lbs.	Lattice 2-14x ³ / ₈ 2-14x ³ / ₈	14.70 25.20 26.95 28.70 30.45 32.20 33.95 35.70 37.45 39.20	57.8 85.7 91.7 97.6 103.6 109.5 115.5 121.4 127.4 133.3	4.43 4.30 4.29 4.27 4.26 4.25 4.24 4.23 4.22 4.21	201.8 344.1 367.9 391.5 415.2 438.8 462.5 486.1 509.7 533.3	334.3 357.3 380.2 403.1 426.1	324.4 346.8 368.9 391.1 413.4 435.6 457.8	357.6 379.1 400.6 422.1 443.6
2-12*—30 lbs.	Lattice 2-14x \(\frac{1}{2} \) 2-14x \(\frac{1}{2} \) 2-14x \(\frac{1}{2} \) 2-14x \(\frac{1}{2} \)	17.64 31.64 35.14 38.64 42.14 45.64	67.8 107.6 119.5 131.4 143.3 155.2	4.28 4.22 4.20 4.19 4.18 4.17	240.7 430.7 477.9 525.3 572.6 619.9	233.8 418.1 463.8 509.8 555.7 601.5	405.5 449.8 494.3 538.7	435.7
2-12"—35 lbs.	Lattice 2-14x5/8 2-14x3/4 2-14x7/8 2-14x1	20,58 38,08 41,58 45,08 48,58	77.8 129.5 141.4 153.3 165.2	4.17 4.16 4.15 4.14 4.13	279.5 517.0 564.3 611.5 658.7	271.2 501.6 547.5 593.2 639.0	486.3 530.6 574.9	254.7 470.9 513.8 556.6 599.4
2-12"—40 lbs.	Lattice 2-14x ³ / ₄ 2-14x ¹ / ₈ 2-14x1 2-14x1 ¹ / ₈ 2-14x1 ¹ / ₄	23.52 44.52 48.02 51.52 55.02 58.52	87.8 151.4 163.3 175.2 187.1 199.0	4.09 4.10 4.10 4.10 4.00 4.09	318.4 602.9 650.3 697.7 744.7 \$\mathbf{V}\$792.1	308.7 584.6 630.6 676.5 722.1 768.1	610.9 655.4 609.5	

Continued

Allowed stresses per square inch.

14,000 pounds for lengths less than 30 radii.

16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Size of	Size of	Area, Square	Weight per Linear	Least Radius of	L	ENGTH	IN FEE	т
Channels	Plates	Inches	Foot, Pounds	Gyration, Inches	12	14	16	18
2-15*—33 lbs.	Lattice 2-16x36 2-16x12 2-16x12 2-16x26 2-16x26 2-16x34 2-16x34 2-16x36 2-16x36 2-16x36	19.80 31.80 33.80 35.80 37.80 39.80 41.80 43.80 47.80 51.80	76.0 106.8 113.6 120.4 127.2 134.0 140.8 147.6 154.4 161.2 174.8	5.35 5.08 5.06 5.03 5.01 4.99 4.98 4.96 4.95 4.93 4.91		516.1 543.1 570.0 597.0	424.7 451.0 477.1 503.4 529.6 556.0 582.1 608.5 634.5	439.8 465.2 499.7 516.2 541.9 567.3 592.9 618.2
2-15"—35 lbs.	Lattice 2-16x3/6 2-16x1/2 2-16x5/6 2-16x3/4 2-16x7/6 2-16x1	20.58 32.58 36.58 40.58 44.58 48.58 52.58	80.0 110.8 124.4 138.0 151.6 165.2 178.8	5.32 5.07 5.02 4.98 4.95 4.93 4.90		499.6 553.4	434.9 487.3 539.8 592.3 644.8	424.1 475.1 526.1 577.1 628.2
2-15"—40 lbs.	Lattice 2-16x1/4 2-16x3/4 2-16x1 2-16x1/4 2-16x1/2	23.52 39.52 47.52 55.52 63.52 71.52	90.0 134.4 161.6 188.8 216.0 243.2	5.21 4.98 4.92 4.88 4.85 4.85		538.9	525.7 630.5 735.4 840.3	512.4 614.3 716.3 818.3
2-15"—45 lbs.	Lattice 2-16x1/2 2-16x3/4 2-16x1 2-16x1/4 2-16x1/2	26.48 42.48 50.48 58.48 66.48 74.48	100.0 144.4 171.6 198.8 226.0 253.2	5.12 4.94 4.89 4.85 4.82 4.80	1035.2	362.9 578.5 686.3 793.8 901.5 1009.2	564.1 668.9 773.6	549.7 651.6 753.3 855.1
2-15″—50 lbs.	Lattice 2-16x ³ / ₄ 2-16x1 2-16x1/ ₄ 2-16x1/ ₂	29.42 53.42 61.42 69.42 77.42	110.0 181.6 208.8 236.0 263.2	5.03 4.85 4.82 4.80 4.78	965.0 1075.5	401.9 725.2 832.9 940.7 1048.3	706.7 811.5	688.2 790.1 892.0
2-15″—55 lbs.	Lattice 2-16x3/4 2-16x1 2-16x11/4 2-16x11/2	32.36 56.36 64.36 72.36 80.36	120.0 191.6 218.8 246.0 273.2	4.96 4.82 4.80 4.78 4.76	1005.2	872.0 979.7	744.6 849.5 954.3	724.9

Safe Loads in Thousands of Pounds For 15" Channel Columns, Square Ends

Section 2-15" Channels laced with 2 ½"x¾" Bars or 2-15" Channels and 2-16" Plates. Holes \(\frac{14}{3}\)"; Rivets \(\frac{1}{3}\)" diameter. Column weights do not include rivets.

LENGTH IN FEET

20	22	24	26	28	30	32	34	36	38	40
254.6	248.4		236.0	229.8	223.5	217.4	211.1	204.9	198.6	192.5
403.6 428.6	393.1 417.4	382.6 406.1	372.0 394.9	361.6 383.7	351.0 372.5	340.5 361.2	330.0 350.0	319.5 338.8	309.0 327.6	298.5 316.4
453.2	441.3		417.4	405.4	393.4	381.5	369.5	357.6	345.6	333.7
478.0	465.4	452.7	440.0	427.3	414.7	402.0	389.3	376.6	364.0	351.3
502.8	489.4		462.6	449.2	435.8	422.4	409.0	395.6	382.2	368.7
527.8 552.4	513.7 537.6	499.6 522.8	485.5 507.9	471.4 493.1	457.3 478.3	443.0 463.4	428,9 448,6	415.0 433.8	400.9 418.9	386.7 404.1
577.4	561.8		530.7	515.2	499.7	484.1	468.6	453.0	437.5	421.9
601.9	585.6	569.4	553.1	536.8	520.5	504.2	487.9	471.6	455.3	439.0
651.6	633.8	616.1	598.4	580.7	562.9	545.2	527.5	509.8	492.1	474.3
264.3	257.8	251.3	244.8	238.3	231.8	225.3	218.8	212.3	205.8	199.3
413.3	402.5	391.7 438.4	380.9 426.1	370.1 413.9	359.3 401.7	348.6 389.4	337.8 377.1	327.0 364.9	316.2 352.7	305.3
512.4	498.7	485.0	471.3	457.6	443.9	430.3	416.6	402.9	389.2	375.4
562.0	546.9	531.7	516.6	501.5	486.4	471.2	456.1	441.0	425.8	410.7
611.7	595.1	578.6	562.0	545.5	528.9	512.4	495.8	479.3	462.7	446.2
661.1	643.1	625.0	607.0	588.9	570.9	552.9	534.9	516.8	498.8	480.6
300.5	292.9	285.3	277.7	270.1	262.6	254.9	247.4	239.8	232.2	224.7
499.0	485.7	472.3	459.0	445.7	432.3	419.0	405.7 484.5	392.3 468.3	379.0 452.1	365.6 435.8
598.1	581.9 678.1	565.6 659.0	549.4 639.8	533.2 620.7	517.0 601.6	500.8 582.5	563.4	544.3	525.2	506.0
796.3	774.3	752.3	730.3	708.3	686.3	664.3	642.3	620.3	598.3	576.3
895.0	870.1	845.2	820.2	795.3	770.4	745.5	720.5	695.6	670.7	645.8
336.8	328.1	319.4	310.7	302.0	293.4	284.7	276.0	267.3	258.6	250.0
535.2	520.8	506.3	491.9	477.4	463.0	448.5	434.1	419.6	405.2 478.2	390.7 460.9
634.2	616.9 712.8	599.6	582.2	564.9 652.1	547.5 631.8	530.2 611.6	512.8 591.3	495.5 571.0	550.8	530.5
831.9	808.8	785.6	762.4	739.3	716.1	693.0	669.8	646.6	623.4	600.3
031.0	904.9	878.9	852.8	826.7	800.7	774.6	748.5	722.5	696.4	670.3
372.5	362.6	352.8	343.0	333.2	323.3	313.5	303.7	293.8	284.0	274.2
669.7	651.2	632.7	614.1	595.6	577.1	558.6	540.1	521.6	503.1	484.6
768.7	747.3 843.5	725.9 819.2	704.5	683.1 770.6	661.7	640.3 722.0	618.9	597.5 673.4	576.0 649.1	554.6 624.8
966.6	939.4	912.2	885.0	857.8	830.6	803.3	776.1	748.9	721.7	694.5
108.2	397.2	386.2	375.3	364.3	353.4	342.4	331.4	320.5	309.5	298.6
705.3	685.7	666.0	646.4	626.7	607.1	587.4	567.8	548.2	528.5	508.9
304.5	782.0	759.4	736.9	714.4	691.9	669,3	646.8	624.3	601.8	579.2
003.4	878.0 973.8	852.6 945.4	827.1	801.7	776.3 860.4	750,8 832,0	725.4 803.6	700.0	674.5	649.1 718.6

Continued

)ia- nches	s of nches			LEN	GTH OF	COLUM	IN IN F	EET			Area, nebes	er Foot gth of Lbs.
Outside Dia- meter, Inches	Thickness of Metal, Inches	8	10	12	14	16	18	20	22	24	Sectional Area,	Weight per Foot of Length of Column, Lbs.
6 6 6 6	1/2 3/4 1/8 1 11/8	52.4 75.0 85.4 95.2 104.4	46.0 66.0 75.2 83.8 92.0	40.2 57.6 65.6 73.0 80.2	35.0 50.0 59.0 63.6 69.6	30.4 43.4 49.4 55.2 60.4	26.4 37.8 43.0 48.0 52.6				8.6 12.4 14.1 15.7 17.2	38.59 43.96 49.01
7 7 7 7	3/4 1 11/8	95.4 122.2 134.4	86.2 110.4 121.6	77.0 98.6 108.6	68.6 87.6 96.6	60.8 77.8 85.6	53.8 68.8 75.8	47.8 61.2 67.4	54.2	48.4	18.9	58.90
8 8 8	3/4 1 11/4	115.8 149.2 179.8	106.6 137.4 165.6	97.2 125.0 151.0	88.2 113.4 136.8	79.4 102.2 123.4	71.6 92.0 111.0	82.8	74.6	67.2	17.1 22.0 26.5	68.64
9 9 9	34 1 114 114 114 134	136.2 176.0 213.2 247.6 279.2	127.2 164.6 199.2 231.4 261.0	117.8 152.4 184.4 214.2 241.6	108.4 140.0 169.6 197.0 222.2	99.2 128.2 155.2 180.2 203.2	90.4 116.8 141.6 164.4 185.4	106.4 128.8 149.6	96.8 117.4 136.2	88.2 106.8 124.0	25.1 30.4 35.3	
10 10 10 10	1 11/4 11/2 13/4	202.8 246.6 287.4 325.4	191.8 233.0 271.6 307.6	179.6 218.2 254.6 288.2	167.2 203.2 237.0 268.2	154.8 188.2 219.4 248.4	143.0 173.6 202.4 229.2	159.8 186.4	146.8 170.0	135.0	34.4 40.1	88.23 107.23 124.99 141.65
11 11 11 11 11	1 11/4 11/2 13/4 2	229.6 279.8 327.0 371.4 413.2	218.8 266.6 311.8 354.2 393.8	207.0 252.2 295.0 335.0 372.6	194.6 237.2 277.2 315.0 350.2	182.0 221.8 257.4 294.6 327.6	169.6 206.6 241.6 274.4 305.2	195.6 228.6	178.8 208.2 236.6	165.0 192.8 219.0	38.3 44.8 50.9	98.03 119.46 139.68 158.68 176.44

The above table is based on the Gordon Formula $P = \frac{8000}{1 + \frac{1^2}{800d^2}}$

in which P = Allowable pressure per square inch of cross section.

I = Length of Column in inches.

d =Outside diameter in inches.

Safe Loads in Thousands of Pounds Hollow Cylindrical Cast Iron Columns

Dia- Inches	s of nches			Len	OTH OF	COLUM	n in F	ENT			Area, nches	er Foot gth of Lbs.
Outside I	Thickness of Metal, Inches	8	10	12	14	16	18	20	22	24	Sectional Area, Square Inches	Weight per Fo of Length Column, Lbs.
12 12 12 12 12 12	1 11/4 11/2 13/4 2	256.0 312.8 366.6 417.4 465.4	300.2 351.8 400.8	234.4 286.2 335.4 382.0 426.0	271.4 318.0 362.2	255.8 299.8 341.4	240.4 281.8 320.8	225.2 264.0 300.6	210.4 246.6 281.0	196,4 230,2 262,2	42.2 49.5 56.4	107.51 131.41 154.10 175.53 195.75
13 13 13 13 13	1 11/4 11/2 13/4 2	282.4 345.6 406.0 463.2 517.8	391.8 447.2	320.0 375.8 429.0	249.4 305.4 358.6 409.4 457.4	290.0 340.6 388.8	274.4	258.8 304.0 347.0	243.6 286.2 326.6	228.8 268.6 306.6	46.1 54.2 61.9	117.53 143.86 168.98 192.88 215.56
14 14 14 14 14	1 11/4 11/4 11/4 13/4 2	308.6 378.4 445.2 508.8 569.6	493.4	416.2 475.8	277.0 339.4 399.4 456.6 511.2	264.6 324.4 381.6 436.2 488.4	308.8	293.0	277.2	213.6 262.0 308.2 352.4 394.4	50.1 58.9 67.4	127.60 156.31 183.67 210.00 235.12
15 15 15 15 15 15	1 11/4 11/2 13/4 2	334.8 411.0 484.2 554.4 621.6	400.0 471.4	387.4			279.4 343.0 404.2 462.8 519.0		311.4	295.8	54.0 63.6 72.9	137.28 168.48 198.74 227.45 254.90

The above table is based on the Gordon Formula $P = \frac{8000}{1 + \frac{1^2}{8000}}$

in which P = Allowable pressure per square inch of cross section.

1=Length of Column in inches.

d = Outside diameter in inches.

Struts

Safe Strength of Steel Struts

For different proportions of length in inches = 1 To least radius of gyration in inches = r

Safe strength in pounds per square inch = $16000-70\frac{1}{2}$

1 r	Safe Strength per Square Inch, Pounds	1 r	Safe Strength per Square Inch, Pounds	$\frac{1}{r}$	Safe Strength per SquareInch, Pounds	1 r	Safe Strength per SquareInch, Pounds
30	13900	60	11800	90	9700	120	7600
31	13830	61	11730	91	9630	121	7530
32	13760	62	11660	92	9560	122	7460
33	13690	63	11590	93	9490	123	7390
34	13620	64	11520	94	9420	124	7320
35	13550	65	11450	95	9350	125	7250
36	13480	66	11380	96	9280	126	7180
37	13410	67	11310	97	9210	127	7110
38	13340	68	11240	98	9140	128	7040
39	13270	69	11170	99	9070	129	6970
40	13200	70	11100	100	9000	130	6900
41	13130	71	11030	101	8930	131	6830
42	13060	72	10960	102	8860	132	6760
43	12990	73	10890	103	8790	133	6690
44	12920	74	10820	104	8720	134	6620
45	12850	75	10750	105	8650	135	6550
46	12780	76	10680	106	8580	136	6480
47	12710	77	10610	107	8510	137	6410
48	12640	78	10540	108	8440	138	6340
49	12570	79	10470	109	8370	139	6270
50	12500	80	10400	110	8300	140	6200
51	12430	81	10330	111	8230	141	6130
52	12360	82	10260	112	8160	142	6060
53	12290	83	10190	113	8090	143	5990
54	12220	84	10120	114	8020	144	5920
55	12150	85	10050	115	7950	145	5850
56	12080	86	9980	116	7880	146	5780
57	12010	87	9910	117	7810	147	5710
58	11940	88	9840	118	7740	148	5640
09	11870	89	9770	110	7670	149	5570

Radii of Gyration

For Two Unequal Legged Angles, Placed with Shorter Legs Back to Back

Size of Angles,	Weight per Foot of	Area	I	RADII OF GYRATION					
Inches	Single Angle, Pounds	Two Angles, Square Inches	r ₀	r ₁	r ₂	r ₃			
8 x6 x11/8 8 x6 x1/9	49.3	29.00	1.71	3.66	3.85	3.95			
	23.0	13.50	1.79	3.56	3.74	3.83			
7 $x3\frac{1}{2}x\frac{7}{8}$ 7 $x3\frac{1}{2}x\frac{7}{16}$	28.7 15.0	16.84 8.80	0.90	3.45	3.65	3.75			
6 x4 x 13	25.4	14.94	1.11	2.81	3.00	3.10			
6 x4 x 3/8	12.3	7.22	1.17	2.74	2.92	3.01			
6 x3½x¾	22.4	13.12	0.94	2.88	3.08	3.18			
6 x3½x3/8	11.7	6.84	0.99	2.81	3.00	3.10			
5 x4 x 13	22.7	13.30	1.15	2.27	2.46	2.56			
5 x4 x3/8	11.0	6.46	1.20	2.20	2.38	2.48			
5 x 31/2 x 3/4	19.8	11.62	0.98	2.34	2.53	2.63			
5 x 3½ x 5 16	8.7	5.12	1.03	2.26	2.44	2.54			
5 x3 x 11 16	17.1	10.06	0.81	2.40	2.59	2.69			
5 x3 x 16	8.2	4.80	0.85	2.33	2.51	2.61			
4½x3 x 116	16.0	9.36	0.83	2.12	2.32	2.42			
4½x3 x 5	7.7	4.50	0.88	2.06	2.25	2.34			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18.5 7.7	10.86 4.50	1.01	1.81	2.01	2.11 2.00			
4 x3 x 116	14.8	8.68	0.84	1.85	2.05	2.15			
4 x3 x 16	7.2	4.18	0.89	1.79	1.97	2.07			
3½x3 x11	13.6	8.00	0.86	1.59	1.78	1.88			
31/2 x 3 x 1/4	5.4	3.12	0.91	1.52	1.70	1.79			
31/2 x 21/2 x 3/16	10.4	6.12	0.70	1.63	1.83	1.93			
31/2 x 21/2 x 1/4	4.9	2.88	0.74	1.58	1.76	1.86			
3 x 21/2 x 9	9.5	5.56	0.72	1.36	1.56	1.66			
3 x21/2x1/4	4.5	2.62	0.75	1.31	1.50	1.59			
3 x2 x1/2	7.7	4.50	0.55	1.42	1.62	1.72			
3 x2 x 3	3.07	1.82	0.58	1.37	1.55	1.65			
2½x2 x½	6.8	4.00	0.56	1.15					
$2\frac{1}{2} \times 2 \times \frac{3}{16}$	2.75	1.62	10.60	1 / 7 - 7	0 1 1.	014			

Radii of Gyration

For Two Unequal Legged Angles, Placed with Longer Legs Back to Back

S	ize of Angles.	Weight per Foot of	Area		RADII OF GYRATION					
	Inches	Single Angle, Pounds	Two Angles, Square Inches	ro	rı	r ₂	r ₃			
88	x6 x11/8 x6 x1/2	49.3 23.0	29.00 13.50	2.47 2.56	2.41 2.32	2.59 2.48	2.69			
	x3½x 1/8	28.7	16.84	2.20	1.28	1.47	1.57			
77	x 31/2 x 7	15.0	8.80	2.26	1.21	1.38	1.47			
6	x4 x 13	25.4	14.94	1.87	1.56	1.75	1.88			
6	x4 x3/8	12.3	7.22	1.93	1.50	1.67	1.76			
6	x 31/2 x 3/4	22.4	13.12	1.89	1.32	1.51	1.61			
6	x 3½ x 3/8	11.7	6.84	1.94	1.26	1.43	1.5			
5	x4 x 13 16	22.7	13.30	1.53	1.64	1.83	1.93			
5	x4 x3/8	11.0	6.46	1.59	1.58	1.75	1.8			
5 5	$x \frac{31}{2} x \frac{34}{4}$ $x \frac{31}{2} x \frac{5}{16}$	19.8 8.7	11.62 5.12	1.55	1.40	1.59	1.69			
5	x3 x 11	17.1	10.06	1.56	1.15	1.34	1.4			
5	x3 x 5 16	8.2	4.80	1.61	1.09	1.26	1.3			
41	2 x 3 x 11 16	16.0	9.36	1.39	1.19	1.38	1.48			
	2 x 3 x 3 16	7.7	4.50	1.44	1.13	1.30	1.4			
4	x 31/2 x 13	18.5	10.86	1.19	1.50	1.69	1.79			
4	x 3½ x 5 16	7.7	4.50	1.26	1.42	1.60	1.69			
4	x3 x 116	14.8	8.68	1.22	1.23	1.42	1.5			
4	x3 x 16	7.2	4.18	1.27	1.17	1.35	1.4			
	2 x 3 x 116 2 x 3 x 14	13.6 5.4	8.00 3.12	1.05	1.28	1.48	1.5			
	$2 \times 3 \times 74$ $2 \times 2\frac{1}{2} \times \frac{9}{16}$	10.4	6.12	1.08	1.01	1.20	1.3			
31	2 x 21/2 x 16 2 x 21/2 x 1/4	4.9	2.88	1.12	0.96	1.13	1.2			
3	x 21/2 x 9/16	9.5	5.56	0.91	1.05	1.25	1.3			
3	x 21/2 x 1/4	4.5	2.62	0.95	1.00	1.18	1.28			
3	x2 x1/2	7.7	4.50	0.92	0.80	1.00	1.10			
3	x^{2} $x^{\frac{3}{16}}$	3.07	1.82	0.97	0.75	0.93	1.03			
	x2 x1/2	6.8	4.00	0.75	0.84	1.04	1.15			
1/2	$x^2 x^{\frac{3}{16}}$	2.75	1.62	0.79	0.79	0.97	1.07			

Radii of Gyration

For Two Equal Legged Angles, Placed Back to Back

Si	ize of A	ngles.	Weight per Foot of	Area	RADII OF GYRATION					
	Inche	25	Single Angle, Pounds	Two Angles, Square Inches	ro	r ₁	r ₂	r3		
8	x8 x8	x 11/8 x 1/2	56.9 26.4	33.46 15.50	2.42 2.51	3.42 3.33	3.60 3.50	3.69 3.59		
6	x 6 x 6	x1 x3/8	37.4 14.9	22.00 8.72	1.80 1.88	2.59 2.49	2.77 2.67	2.87 2.76		
5	x 5 x 5	x 15 x 3/8	28.9 12.3	17.00 7.22	1.48 1.56	2.17 2.09	2.36 2.26	2.46 2.35		
44	x4 x4	x 13 x 14	19.9 6.6	11.68 3.88	1.18 1.25	1.75 1.66	1.94 1.84	2.04 1.93		
	2 x 31/2 x 31/2		16.0 5.8	9.38 3.38	1.03	1.54 1.46	1.74 1.64	1.84		
3	x3 x3	x 5/8 x 1/4	11.5 4.9	6.72 2.88	0.88 0.93	1.32 1.25	1.51 1.43	1.62		
	2 x 21/ 2 x 21/	2 x ½ 2 x 3 6	7.7 3.07	4.50 1.80	0.74 0.78	1.10 1.04	1.29 1.22	1.40		
2 2	x2 x2	x½ x3/6	6.0	3.50 1.42	0.58	0.89	1.09	1.20		

Struts

Continued

Allowed stresses per square inch.

14,000 pounds for lengths less than 30 radii.

16,000-70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Size of	Area 2	Least Radius	Axis of Least		3	LENGTE	IN FE	ET	
Angles, Inches	Angles, Square Inches	of Gyration, Inches	Radius of Gyration	2	3	4	5	6	7
8 x 6 x 11/8 8 x 6 x 1	29.00 26.00	2.47 2.49	X-X X-X (X-X)						395.0 354.6
8 x 6 x 34 8 x 6 x 34 8 x 6 x 36 8 x 6 x 32	22.96 19.88 16.72 13.50	2.51 2.48 2.46 2.44	\ \left\{ \begin{array}{c} X-X \ Y-Y						313.6 270.9 227.6 183.5
7 x 3½ x ½ 7 x 3½ x 3¼ 7 x 3½ x 3¼ 7 x 3½ x ½ 7 x 3½ x ½ 7 x 3½ x ½	16.84 14.62 12.34 10.00 8.80	1.42 1.40 1.37 1.35 1.33	Y-Y Y-Y Y-Y Y-Y Y-Y			229.6 198.8 167.2 135.1 118.6	190.1 159.6 128.9	152.0	199.7 172.5 144.5 116.4 101.9
6 x 4 x 18 6 x 4 x 34 6 x 4 x 56 6 x 4 x 12 6 x 4 x 38	14.94 13.88 11.72 9.50 7.22	1.70 1.69 1.67 1.64 1.62	Y-Y Y-Y Y-Y Y-Y Y-Y				202.1 187.6 158.1 127.7 96.8	180.7 152.1 122.8	187.4 173.8 146.3 117.9 89.3
6 x 316 x 34 6 x 316 x 56 6 x 316 x 16 6 x 316 x 36	13.12 11.10 9.00 6.84	1.46 1.43 1.41 1.39	Y-Y Y-Y Y-Y Y-Y			179.7 151.5 122.6 92.9	145.0 117.2	138.5 111.8	157.1 132.0 106.5 80.5
5 x 4 x 14 5 x 4 x 56 5 x 4 x 56 5 x 4 x 12 5 x 4 x 38	13.30 12.38 10.46 8.50 6.46	1.53 1.54 1.55 1.57 1.59	X-X X-X X-X X-X X-X			183.6 171.1 144.7 117.8 89.7	164.3 139.0	157.6 133.3 108.7	161.7 150.8 127.7 104.1 79.5
5 x 31/2 x 3/4 5 x 31/2 x 5/8 5 x 31/2 x 1/2 5 x 31/2 x 3/8 5 x 31/2 x 1/8	11.62 9.84 8.00 6.10 5.12	1.54 1.51 1.49 1.46 1.45	Y-Y Y-Y Y-Y Y-Y Y-Y			160.6 135.5 110.0 83.6 70.1	130.1 105.4 80.1	124.6 100.9 76.5	141.6 119.1 96.4 73.0 61.2
5 x 3 x 16 5 x 3 x 16 5 x 3 x 16 5 x 3 x 38 5 x 3 x 16	10.06 9.22 7.50 5.72 4.80	1.29 1.28 1.25 1.23 1.22	Y-Y Y-Y Y-Y Y-Y Y-Y			134.8 123.3 99.8 75.9 63.6	117.3 94.8 72.0	111.2 89.8 68.1	105.2 84.7 64.2

Safe Loads in Thousands of Pounds For Struts Composed of Two Angles with Unequal Legs

Long legs parallel and % inches apart.

	LENGTH IN FRET											
8	9	10	12	14	16	18	20	22	24	26	28	30
385.1 345.8	375.2 337.1	365.4 328.3	345.7 310.7	325.9 293.2	306.2 275.7	286.5 258.1	266.8 240.6	247.0 223.0		207.6 188.0		168.1 152.9
305.9	298.2	290.5	275.2	259.8	244.4	229.1	213.7	198.3	183.0	167.6	152.2	136.9
264.2 221.8 178.8	216.1	250.7 210.4 169.5	237.3 199.0 160.2	223.8 187.7 150.9	210.3 176.2 141.6	164.8		141.9		143.0 119.1 95.2	129.5 107.7 85.9	116.1 96.2 76.6
189.7 163.7 136.9 110.2 96.3	179.8 155.0 129.3 104.0 90.8	169.8 146.2 121.8 97.8 85.2	149.9 128.7 106.6 85.3 74.1	130.0 111.1 91.5 72.9 63.0	110.1 93.6 76.4 60.4 51.9							
180.0 166.9 140.4 113.1 85.6	172.6 160.0 134.5 108.2 81.8	165.2 153.1 128.6 103.3 78.1	150.5 139.3 116.8 93.6 70.6	135.7 125.5 105.0 83.8 63.1	120.9 111.7 93.2 74.1 55.6	106.2 97.9 81.4 64.3 48.1	84.1 69.6 54.6					
149.5 125.4 101.1 76.4	142.0 118.9 95.7 72.2	134.4 112.4 90.4 68.1	119.3 99.4 79.7 59.8	104.2 86.3 68.9 51.6	89.2 73.3 58.2 43.3							
154.4 144.1 122.0 99.6 76.0	147.1 137.3 116.3 95.0 72.6	139.8 130.6 110.7 90.5 69.2	125.2 117.0 99.3 81.4 62.4	110.6 103.5 88.0 72.3 55.5	96.0 90.0 76.6 63.1 48.7	76.5 65.3 54.0						
135.2 113.7 91.9 69.5 58.2	128.9 108.2 87.4 66.0 55.2	122.5 102.7 82.9 62.5 52.3	109.9 91.8 73.9 55.5 46.3	91.2 80.8 64.9 48.5 40.4	84.5 69.9 55.8 41.5 34.5	59.0 46.8 34.4						
108.6 99.1 79.7 60.3 50.4	102.0 93.1 74.6 56.4 47.0	95.5 87.0 69.6 52.5 43.7	82.4 74.9 50.5 44.6 37.1	36.8	50.7							

Struts

Continued

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii. 16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Size of	Area 2	Least Radius	Axis of Least		0	LENGTH	IN FE	ET	
Angles, Inches	Angles, Square Inches	of Gyration, Inches	Radius	2	3	4	5	6	7
416 x 3 x 118 416 x 3 x 56 416 x 3 x 36 416 x 3 x 36 416 x 3 x 36 416 x 3 x 36	9.36 8.60 7.00 5.34 4.50	1,33 1,31 1,29 1,27 1,26	Y-Y Y-Y Y-Y Y-Y Y-Y			126.1 115.5 93.8 .71.3 60.0	110.0 89.2 67.8		108.4 99.0 80.1 60.7 51.0
4 x 316 x 18 4 x 316 x 36 4 x 316 x 36 4 x 316 x 16 4 x 316 x 16 4 x 316 x 16	10.86 10.12 8.60 7.00 5.34 4.50	1.19 1.20 1.22 1.23 1.25 1.26	X-X X-X X-X X-X X-X X-X		150.8	143.1 133.6 113.9 92.9 71.1 60.0	126.5 108.0 88.1 67.5	119.4 102.1 83.3 63.9	120.1 112.3 96.2 78.5 60.3 51.0
4 x 3 x 14 4 x 3 x 56 4 x 3 x 56 4 x 3 x 36 4 x 3 x 36 4 x 3 x 36	8.68 7.96 6.50 4.96 4.18	1.22 1.23 1.25 1.26 1.27	X-X X-X X-X X-X X-X			115.0 105.6 86.5 66.1 55.8	109.0 100.1 82.2 62.8 53.1	103.0 94.7 77.8 59.5 50.3	97.0 89.3 73.4 56.2 47.5
31/2 x 3 x 11/2 31/2 x 3 x 3/2 31/2 x 3 x 3/2 31/2 x 3 x 3/4 31/2 x 3 x 3/4	8.00 7.34 6.00 4.60 3.12	1.05 1.06 1.07 1.09 1.11	X-X X-X X-X X-X X-X		108.8 100.0 81.9 63.0 42.8	94.2 77.2 59.4	96.0 88.4 72.4 55.9 38.1	89.6 82.5 67.7 52.3 35.8	83.2 76.7 63.0 48.8 33.4
31/2 x 21/2 x /k 31/2 x 21/3 x 1/2 31/2 x 21/3 x 3/6 31/2 x 21/2 x 3/6	6.12 5.50 4.22 2.88	1.08 1.09 1.10 1.09	X-X X-X X-X Y-Y		83.6 75.3 57.9 39.4	71.0 54.6	66.8 51.4	69.4 62.6 48.2 32.8	64.6 58.3 45.0 30.5
3 x 21/2 x 16 3 x 21/2 x 1/2 3 x 21/2 x 3/8 3 x 21/2 x 3/8	5.56 5.00 3.84 2.62	.91 .91 .93 .95	X-X X-X X-X X-X		73.6 66.2 51.0 35.0	61.5 47.6	63.3 56.9 44.1 30.3	58.2 52.3 40.6 28.0	53.0 47.7 37.2 25.7
3 x 2 x ½ 3 x 2 x ¾ 3 x 2 x ¼ 3 x 2 x ¼	4.50 3.46 2.38 1.82	.92 .92 .89 .88	X-X Y-Y Y-Y Y-Y		59.7 45.9 31.3 23.9	29.1	51.5 39.6 26.9 20.4	47.3 36.4 24.6 18.7	43.2 33.2 22.4 17.0
2½ x 2 x ½ 2½ x 2 x ¾ 2½ x 2 x ¼ 2½ x 2 x ¼ 2½ x 2 x ¼	4.00 3.10 2.12 1.62	.75 .77 .78 .79	X-X X-X X-X X-X	55.0 42.8 29.4 22.5	39.5 27.1	36.1 24.8	41.6 32.7 22.5 17.3	29.3 20.2	32.6 25.9 17.9 13.9

Safe Loads in Thousands of Pounds For Struts Composed of Two Angles with Unequal Legs

Long legs parallel and 3/4 inches apart.

LENGTH IN FRET												
8	9	10	12	14	16	18	20	22	24	26	28	30
102.5 93.5 75.5 57.2 48.0	96.6 88.0 71.0 53.6 45.0	90.6 82.5 66.4 50.1 42.0	78.8 71.4 57.3 43.0 36.0	67.0 60.4 48.2 36.0 30.0	49.4 39.1							
112.4 105.2 90.2 73.8 56.7 48.0	104.8 98.2 84.3 69.0 53.1 45.0	97.1 91.1 78.4 64.2 49.6 42.0	81.8 76.9 66.5 54.6 42.4 36.0	66.4 62.7 54.7 45.1 35.2 30.0								
91.1 83.9 69.1 52.9 44.8	85.1 78.4 64.7 49.6 42.0	79.1 73.0 60.3 46.3 39.2	67.2 62.1 51.6 39.7 33.7	42.8								
76.8 70.9 58.3 45.2 31.0	70.4 65.1 53.6 41.7 28.7	64.0 59.3 48.9 38.2 26.3	47.6 39.5 31.1									
59.8 54.1 41.7 28.3	55.1 49.9 38.5 26.1	50.3 45.6 35.3 23.9	37.1 28.9									
47.9 43.1 33.7 23.4	42.8 38.5 30.2 21.1	37.6 33.8 26.8 18.8										
39.1 30.1 20.1 15.2	35.0 26.9 17.9 13.5	30.9 23.8 15.6 11.7	*****								*****	
28.2 22.5 15.7 12.1	19.2 13.4		******	*****						*****		

Struts

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii. 16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

Size of	Area 2 Angles.	Least Radius of	Axis of Least		ET.				
Angles, Inches	Square Inches	Gyration, Inches		2	3	4	5	6	7
8 x 8 x 1/6 8 x 8 x 1 8 x 8 x 7/6 8 x 8 x 7/6 8 x 8 x 7/6 8 x 8 x 7/6 8 x 8 x 7/6	33.46 30.00 26.46 22.88 19.22 15.50	2.42 2.44 2.45 2.47 2.49 2.50	X-X X-X X-X X-X X-X X-X				-1-1		454.1 407.7 359.9 311.5 262.1 211.6
6 x 6 x 1 6 x 6 x 7/4 6 x 6 x 3/4 6 x 6 x 3/4 6 x 6 x 3/4	22.00 19.46 16.88 14.22 11.50 8.72	1.80 1.81 1.83 1.84 1.86 1.88	X-X X-X X-X X-X X-X X-X				300.7 266.2 231.3 195.1 158.0 120.0	223.6 188.6 152.8	280.1 248.2 215.8 182.1 147.6 112.2
5 x 5 x 3 x 5 x 5 x 5 x 5 x 5 x 5 x 5 x	17.00 15.96 13.88 11.72 9.50 7.22	1.48 1.49 1.51 1.52 1.54 1.56	X-X X-X X-X X-X X-X X-X		+= - 4 - 4	233.4 219.4 191.2 161.6 131.3 100.0	223.8 210.4 183.5 155.1 126.1	214.1 201.4	204.5 192.4 168.0 142.2 115.7 88.3
4 x 4 x 34 4 x 4 x 34 4 x 4 x 34 4 x 4 x 34 4 x 4 x 34	11.68 10.88 9.22 7.50 5.72 3.88	1.18 1.19 1.20 1.22 1.23 1.25	X-X X-X X-X X-X X-X X-X		161.9 151.0 128.2	153.6 143.4	145.3 135.7 115.3 97.2 72.0	137,0 128.0 108.8 89.0	128.7 120.3 102.3 83.8 64.2 43.8
314 x 314 x 34 314 x 314 x 56 314 x 314 x 14 315 x 315 x 14 315 x 315 x 36 315 x 315 x 36	9.38 7.96 6.50 4.96 3.38	1.03 1.04 1.06 1.07 1.09	X-X X-X X-X X-X X-X		127.1 108.1 88.5 67.7 46.3	119.5 101.6 83.4 63.8 43.7	111.8 95.2 78.2 59.9 41.1	104.2 88.8 73.1 56.0 38.4	96.5 82.4 67.9 52.1 35.8
3 x 3 x ⁵ / ₈ 3 x 3 x ¹ / ₂ 3 x 3 x ³ / ₈ 3 x 3 x ¹ / ₄	6.72 5.50 4.22 2.88	0.88 0.90 0.91 0.93	X-X X-X X-X		88.3 72.6 55.8 38.3	51.9 35.7	62.3 48.0 33.1	44.1 30.5	62.6 52.1 40.3 27.9
214 x 214 x 14 215 x 215 x 38 215 x 215 x 38 215 x 215 x 4 215 x 215 x 14 215 x 215 x 14	4.50 3.46 2.94 2.38 1.80	0.74 0.75 0.76 0.77 0.78	X-X X-X X-X X-X X-X	61.8 47.6 40.5 32.9 24.9	43.7 37.3 30.3 23.0		36.0 30.8 25.1 19.1	32.1 27.5 22.5 17.2	36.2 28.2 24.3 19.9 15.2
2 x 2 x ½ 2 x 2 x ½ 2 x 2 x ½ 2 x 2 x 14 2 x 2 x 14	3.50 2.72 2.30 1.88 1.42	0.58 0.59 0.60 0.61 0.62	X-X X-X X-X X-X X-X	45.9 35.8 30.4 24.9 18.9	31.9 27.1 22.3	35.7 28.0 23.9 19.7 15.0	20.7 17.1	17.5 14.5	20.5 16.4 14.3 12.0 9.3

Safe Loads in Thousands of Pounds

For Struts Composed of Two Angles with Equal Legs

Parallel legs 3/8 inches apart.

LENGTH IN FRET												
8	9	10	12	14	16	18	20	22	24	26	28	30
442.4	430.8	419.2	396.0	372.8	349.5	326.3	303.1	279.9	256.6	233.4		186.9
397.4 350.8	387.0 341.7	376.7 332.6	356.1 314.5	335.4 296.4	314.7 278.2	294.1 260.1	273.4 241.9	252.8 223.8	232.1 205.7	211.4 187.5	190.8 169.4	170.1 151.2
303.7	296.0	288.3	272.7	257.1	241.6	226.0	210.5		179.3	163.8		132.6
255.6	249.2	242.7	229.7	216.7	203.8	190.8	177.8	164.9	151.9	138.9	125.9	113.0
206.3	201.1	195.9	185.5	175.1	164.7	154.3	143.8	Annual Control	1		The same of	91.8
269.9 239.1	259.6 230.1	249.3 221.1	228.8 203.0	208.3 184.9	187.8 166.9	167.2 148.8	146.7 130.8	126.2 112.7				
208.1	200.3	192.6	177.1	161.6	146.1	130.6	115.1	99.6				
175.6	169.1	162.6	149.6	136.6	123.6	110.6	97.7	84.7				
142.4 108.4	137.3 104.5	132.1 100.6	121.7 92.8	111.3 85.0	100.9	90.5 69.4	80.1 61.6	69.7 53.8	*****		*****	
194.8	185.2	175.5	156.2	136.9	117.6	98.3		-				
183.4	174.4	165.4	147.4	129.4	111.4	93.4						
160.3 135.7	152.6 129.2	144.9	129.4 109.8	114.0 96.9	98.6 83.9	83.1						
110.5	105.4	100.2	89.8	79.5	69.1	58.7						
84.4	80.5	76.6	68.9	61.1	53.3			CONTRACTOR OF THE PARTY OF THE				
120.4	112.1	103.7	87.1	70.5								
112.6 95.9	105.0 89.4	97.3 83.0	81.9 70.1	66.6				0.000000			*****	
78.7	73.5	68.4	58.0	47.7				2000000				
60.3	56.4	52.5	44.6	36.8				0.000000				
41.2	38.6	36.0	30.8			100000	00000000					
88.9 75.9	81.2 69.5	73.6 63.1	58.3 50.2	22.2		DOM: 24.0		200000	000000			catene.
62.8	57.6	52.5	42.2									
48.2	44.3	40.4										
33.2	30.6	28.0	22.8					10000000	********			
56.2 46.9	49.8	43.4 36.7				400000000000000000000000000000000000000		******				
36.4	32.5	28.6						S. C. LOS S. S.				
25.3	22.7	20.1										
31.1	26.0 20.5											
21.0	2500											
17.3	14.7											
13.3	11.4					*****			*****			
*****			DOMESTIC OF	0.000.000								

*****												*****
*****											6 x x 2 4 4	

Struts

Allowed stresses per square inch. 14,000 pounds for lengths less than 30 radii. 16,000—70 $\frac{1}{r}$ for lengths between 30 radii and 150 radii.

	Radius of	LENGTH IN FEET					
Square Inches	Gyration, Inches	2	3	4	5		
16.73	1.55			231.4	222.3		
	1.56	*******			199.6		
	1.56	*******			176.1		
	1.57	44,,,,,,			152.4		
7.75			*******		128.2 103.5		
			450 4	0.000	200000		
		*******			136.2		
	1.10	******			120.5 104.7		
					88.2		
5.75	1.18	1000000			71.6		
4.36					54.4		
8.50			100 00		98.8		
7.98					92.8		
6.94					81.0		
5.86	.97	******	78.5	73.5	68.4		
4.75			63.8	59.7	55.6		
			48.6	45.5	42.4		
	.77	80.7	74.3	68.0	61.6		
	.77		69.2		57.4		
	.77				48.6		
					39.8		
	.79				30.5		
		100000000000000000000000000000000000000	The second second		20.7		
					45.7		
					39.1		
					24.4		
					16.8		
-	1000				29.4		
					24.1		
				21.5	18.5		
					12.8		
1.09	.60	14.4	12.9	11.3	9.8		
2.25	48	28.1	24.2	20.3	16.3		
1.73	.48	21.6	18.6	15.6	12.5		
1.47	.49	18.5	16.0	13.4	10.9		
1.19	.49	15.0	12.9	10.9	8.8		
	.49				6.7		
1.75	.38	20.3	16.4	12.5			
				10.0			

	16.73 15.00 13.23 11.44 9.61 7.75 11.00 9.73 8.44 7.11 5.75 4.36 8.50 7.98 6.94 5.86 4.75 3.61 5.84 4.61 3.75 2.86 1.94 4.69 3.98 3.25 2.48 1.69 3.36 2.75 2.11 1.47 1.19 2.25 1.47 1.90	16.73	16.73	16.73 1.55 15.00 1.56 13.23 1.56 11.44 1.57 9.61 1.58 7.75 1.59 11.00 1.16 152.1 9.73 1.16 134.5 8.44 1.17 116.9 7.11 1.17 98.4 5.75 1.18 79.7 4.36 1.19 60.5 8.50 .96 113.7 7.98 .96 106.7 8.94 .97 .93.0 5.86 .97 .93.0 5.86 .97 .93.0 4.75 .98 63.8 3.61 .99 5.84 .77 76.2 69.2 4.61 .77 63.7 58.7 3.75 .78 51.9 47.9 2.86 .79 39.7 36.6 <t< td=""><td>16.73 1.55 </td></t<>	16.73 1.55		

Safe Loads in Thousands of Pounds For Equal Leg Single Angle Struts

	LENGTH IN FEBT											
6	7	8	9	10	12	14	16	18				
213.3 191.5 168.9 146.3 123.1	204.2 183.5 161.8 140.2 118.0 95.3	195.1 175.4 154.7 134.1 112.9 91.3	186.1 167.3 147.6 128.0 107.8 87.2	177.0 159.2 140.4 121.8 102.7 83.1	158.9 143.1 126.2 109.6 92.5 74.9	140.8 126.9 111.9 97.4 82.2 66.7	122.6 110.8 97.7 85.1 72.0 58.5	104.5 94.6 83.5 72.9 61.8 50.3				
128.2 113.4 98.7 83.1 67.5 51.3	120.2 106.4 92.6 78.0 63.4 48.2	112.3 99.3 86.6 72.9 59.3 45.1	104.3 92.3 80.5 67.8 55.2 42.1	96.3 85.2 74.4 62.7 51.1 39.0	80.4 71.1 62.3 52.5 42.9 32.8	64.5 57.0 50.2 42.3 34.7 26.7						
91.4 85.8 75.0 63.3 51.6	83.9 78.8 69.0 58.2 47.5 36.3	76.5 71.8 63.0 53.2 43.4 83.3	69.1 64.8 57.0 48.1 39.4 30.2	61.6 57.9 50.9 43.0 35.3 27.1	46.8 43.9 38.9 32.9 27.1 21.0	20.1						
55.2 51.4 43.6 35.8 27.5	48.8 45.5 38.6 31.7 24.5 16.6	42.5 39.6 33.5 27.7 21.4 14.5	36.1 33.6 28.5 23.7 18.4 12.5									
39.8 34.2 27.9 21.3 14.7	33.9 29.3 23.9 18.2 12.6	28.0 24.4 19.9 15.2 10.6										
24.6 20.1 15.4 10.7 8.3	19.7 16.1 12.4 8.7 6.8											
12.4 9.5 8.4 6.8 5.1												
••••••												

As a means of avoiding large masses of masonry and deep excavations, it has become the practice to use in foundation work, grillages composed of beams imbedded in concrete. These grillages are constructed of one, two or three layers of beams, depending on the load to be carried and the capacity of the earth to resist pressure. Such beams should be spaced at least 2½" or 3" apart in the clear between flanges, so as to enable the concrete to be readily placed and tamped.

The top tier of beams in all cases should be held in position and alignment by bolting the beams together by tie rods with separators made of gas pipe. Where more than one tier of beams is used, it is not the custom to use separators and tie rods on the lower tiers. Pipe separators are preferable to the usual cast iron separators as they interfere less with the continuity of the concrete.

In the design of grillages, it is customary to assume that the load supported by each beam in a tier is equal to the total load on the foundation, divided by the number of beams in that tier; also, that such loading is uniformly distributed over that portion of the top flange to which it is applied, and that the beam is supported with a uniform pressure from below over its entire length.

Under these conditions, the maximum bending moment occurs at the center of the length of the beam, and is given by the formula $\frac{W(L-N)}{8}$ in which W equals the load supported by each beam in

pounds, L equals the length of beam in feet, and N the length in feet in which load is applied. This formula, it will be noted, is the same as that for a beam supported at each end and uniformly loaded, the length of which corresponds with the dimension of L-N in the above formula. By the use of this length of L-N as a span, it is possible to pick the size of grillage beams direct from the tables of safe loads for beams, as published in this book. It should be noted, however, that if the dimension of L-N is less than the span given in these tables that there is great danger of the shear in the beam being in excess of the capacity of the beam webs to resist such shear.

Where beams are thoroughly imbedded in concrete and the webs evented from buckling, the grillage beam would ordinarily be idered safe in shear, if such shear did not exceed in intensity

Continued

12,000 pounds per square inch of web area, this web area being the depth of the beam, multiplied by its web thickness.

To transmit the load from the columns to the top tier of grillage beams, it is usually economical to use a rolled steel slab in place of either riveted bases on the columns or of separate cast iron bases.

The size of the slab is usually determined by the outside dimensions of the column and the width of the top tier of grillage beams. In figuring the thickness of the slabs, the assumption of uniform distribution of load made in the case of the grillage beams cannot hold except as to the reaction on the underside of the slab.

The maximum moment in the slab will be along a line practically coincident with the outside lines of the column section.

Slabs

As a direct means of determining the thickness of the distribution slabs, the following formulae may be used.

 $t = \sqrt{\frac{3w (B - b)^2}{64,000 AB}}$ for an extreme fiber stress of 16,000 pounds per square inch, in the slab, or

 $t = \sqrt{\frac{3w (B - b)^2}{80,000 AB}}$ for an extreme fiber stress of 20,000 pounds per square inch.

In these formulae-

W = Total length of column in pounds.

A =Width of slab in inches.

B =Length of slab in inches.

t = Thickness of slab in inches.

a = Outside dimension of column in inches.

b = Inside dimension of column in inches.

As a typical example of the above type of foundation, a column load of 1,080,000 pounds may be assumed with an allowable ground pressure of 7,500 pounds per square foot.

 $1,080,000 \div 7,500 = 144$ square feet, so that a foundation 12 ft.

× 12 ft. would give the required area.

Assuming the slab to be 36 inches square and the size of the column at the bottom to be 20" × 14", and inserting to

values in the above formulae for thickness of slab, the result is $\sqrt{\frac{3 \times 1,080,000 \times 22^2}{80,000 \times 36 \times 36}} = 3.70$ ", or say 3¾" for thickness of slab.

Grillage Beams

For the top tier of beams, the length of the beams would be 11 ft. The width would correspond to the size of the slab as figured above, or 3 ft. The section modulus required, using formula, $\frac{3W(L-n)}{32,000}$ would be $\frac{3\times1,080,000\times8}{32,000}=810$.

By referring to the tables of beam properties, it will be seen that four 24", 105 lb. beams, the section modulus of each being 234.3, would more than equal this requirement, the total section modulus for the four beams being 937.2.

To check these sizes of beams for shear in the web, it is necessary to get the shear in their webs at the edges of the slab. This would be $\frac{1,080,000}{11} \times \frac{11-3}{2} = 392,720 \pi$.

To resist this shear, there are four beam webs, $24" \times .625"$, or 60 square inches.

 $\frac{392,720}{60} = 6,045 \text{ pounds per square inch.}$

For security against buckling of the webs under their direct load, there would be $\frac{1,080,000}{4 \times 36 \times .625} = 12,000$ pounds per square inch.

From the table on page 140, it will be noted that the safe buckling load for a 24", 105 lb. beam is 12,350 lbs. per square inch, so the use of these beams may be considered safe.

For the bottom tier of beams, the required section modulus would be, $\frac{3 \times 1,080,000 \times (11-3)}{32,000} = 810$. This requirement would be met by the use of thirteen 15", 50 lb. beams having a section modulus each of 64.5 or 838.5 for the entire number.

Typical Single Foundations

END VIEW

Checking for shear and buckling in this lower tier is hardly necessary, as the net areas are manifestly in excess of the theoretical requirements.

Where columns are to be supported close to party lines it is frequently desirable to use cantilever foundations, by which two or more foundations are combined. In the following example, the lower grillage and slabs are designed in the same manner as for the isolated footing previously mentioned. The cantilever girder would be designed as follows:

Maximum moments are over center of reaction from lower grillage and are equal to column load \times distance center of column to center of grillage. In this case the wall column would cause a moment of $600,000 \times 24 = 14,400,000$ inch pounds. The interior column would cause a moment of $900,000 \times 16 = 14,400,000$ pounds, or the same as for the wall column.

Section modulus required for this cantilever girder would be 14,400,000

= 900, for which four 24" 105 lb. beams, having a total 16,000 modulus of 937.2, can be used.

Typical Double Foundations

END VIEW

Plate Girders

Plate girders are used to carry heavy loads, or for long spans where beams or rolled sections are inadequate. A plate girder consists of one or more vertical plates called web plates to which are riveted the top and bottom flanges. The function of the flanges is to take the compressive and tensile stresses developed in the outer fibers, while the web is considered to take the shearing stress. A plate girder is sometimes figured by the moment of inertia of its component parts but more frequently by considering the flange stresses as concentrated at the center of gravity of the flanges.

Proportioning Webs

In order to avoid excessive deflection, the width of the web plate is preferably made not less than 1/15 the clear span. The thickness of web plate depends upon the shear which is greatest at the supports. This thickness must be such that the resistance to shear, computed by multiplying the area of cross-section of web by the safe unit shearing stress, shall be equal to the maximum shear on the girder.

Stiffeners shear over

The distribution of the shear over the web causes compression forces which are assumed to act at angles of 45 degrees with the axis of the girder in the manner indicated by figure on page 224. The web under these compression stresses is subject to failure laterally and the allowable shearing stress must, therefore, be reduced by a column formula. Either the web must be made thick enough not to exceed this allowable stress on a length of $1.414 \times ab$, which is the length on a 45 degree line between the adjacent edges of flange angles, or this unsupported length must be reduced by using stiffeners so spaced as to cut this 45 degree length down to limits which will conform to the allowable shearing stress given by the formula and to the thickness of web which it is desired to use.

A convenient diagram for determining spacing of stiffeners is

shown on following page.

EXAMPLE: A plate girder composed of four $6 \times 6 \times 3$ angles and one $42' \times 3$ web plate has a shear of 90,000 pounds near the end support. Required the spacing of stiffener angles necessary to avoid crippling of the web plate.

The area of web plate = 15.75 square inches.

Shearing stress per square inch = $\frac{90,000}{15.75}$ = 5,714 pounds.

The distance between adjacent edges of flange angles = 30.5 inches. Referring to the diagram, we locate the horizontal line representing the unit shear of 5,700 pounds, and trace same to its intersection with curve line marked ¾8" and follow down along a vertical line from this point of intersection to the bottom line, where the required spacing distance of 21¼" is read.

Plate Girders

Diagram for Spacing Stiffeners

When D=DI, no stiffeners are required.

Terra Cotta Arches For Floor Loads of 150 Pounds per Square Foot

		Depth	Depth	Depth			PPRO				
	n of beam	of Beam, Inches	of Arch, Inches	of Floor, Inches	Limiting Span, Feet	Steel	Terra	Concrete	Flooring	Ceiling	Total
FLAT ARCH	Typical Construction Bottom of arch below bottom	6 7 8 7 8 9 8 9 10 9 10 12 10 12 12 15 15	6 6 6 7 7 7 8 8 8 9 9 9 10 10 12 12 15	11 12 13 12 13 14 13 14 15 14 15 17 17 17 20 20	514 514 514 6 6 6 612 712 712 8 912 11	6 7 8 8 8 8 8 8 8 8 9 9 9 9 10 10 12	22 22 24 24 24 27 27 27 27 29 29 29 31 31 35 35	30 38 45 30 38 45 30 38 45 30 38 53 30 45 30	444444444444444444444444444444444444444	555555555555555	67 76 84 71 79 86 74 82 89 76 85 110 79 94 84 107 83
GMENTAL FLOOR ARCHES	Typical Construction	6 7 8 9 8 9 10 12 10 12 12 15 12 15 15 15 15	4 4 4 6 6 6 6 8 8 8 8 10 10 10	Rise of Arch about 34" per ft.	47/2 55/2 65/2 61/2 57/2 61/2 77/2 aised ske	7 7 7 8 8 8 9 9 9 10 10 10 11 11 12	20 20 20 26 26 26 26 31 31 31 31 34 34 34	27 28 29 30 27 28 29 30 27 28 29 30 27 28 29 30 27 28 29 30	44444444444444444444444444444444444444	555555555555555555555555555555555555555	63 64 65 67 70 71 73 74 76 77 79 80 80 82 83 85

For flat arches on raised skews, where the top of the arch is level with top of floor beams, deduct about 7 pounds per inch of difference between the height of the floor beam and the arch.

Terra Cotta Partition, Ceiling, Roofing and Furring Blocks

Thickness, Inches	Аррио	XIMATE WEIGHT, P	OUNDS PER SQUAR	E FOOT
I DIGKHESS, I DCHES	Partition	Ceiling	Roofing	Furring
11½ 2 3	12-14 15-17	12 20	20	9 10
4 5	13-19 20-22		20 22	
6 8	24-26 28-33	***************************************		

For tile partitions plastered on both sides, add about 10 pounds per square toot

Anchors and Tie Rods

Government Anchors

1 Bolt Anchor

Two 6" × 4" × 3/8" Angles 0' 3" Wt. 7 lbs.

2 Bolt Anchor

Two 6" × 4" × 3/8" Angles 0' 5" Wt. 12 lbs. Weights include bolts

Anchor Bolts in Foundations

K----Length

Wedge Bolts

3/4" Bolt 0' 6" lg. Appr. Wt. 1.2 lbs.

3/4" Bolt 0' 9" lg. Appr. Wt. 1.6 lbs.

7/8" Bolt 0' 9" lg. Appr. Wt. 2.4 lbs.

78" Bolt 1' 0" lg. Appr. Wt. 2.9 lbs.

Weights include nuts and wedges.

Tie Rods

Roof Design

The character of the roof to be used on a building is a necessary corollary of the type of structure which is to be covered. On rare occasions, it will pay to put a temporary roof on a permanent structure but it would never pay to put a permanent roof on a temporary structure. A building in which the fire hazard has been reduced by a fire-resisting type of construction should have a roof equally fire-resistant from the inside and from the outside.

For a permanent building a roof should be used, the maintenance cost of which will be low, and which will compare in durability with the building itself. The durability of a roof is measured by its resistance to the effects of wind and weather. A roof for a mill or factory should also be able to resist the gases and moisture frequently produced from operations carried on beneath it. Ample provision should also be made for drainage and it is generally preferable to drain a roof to the outside rather than to drain it to interior points.

The loads to be assumed in designing roofs very properly vary with the location. In regions of heavy snows, and with roofs whose slopes are so flat that snow would be retained, a minimum load per horizontal square foot would probably be about 25 pounds. This should hold for all slopes up to approximately 20 degrees.

For steeper slopes than this, the load maybe reduced in the ratio of about one pound for each degree that the slope is increased up to 45 degrees. For roofs of steeper pitch than this, it is hardly necessary to consider snow load as little snow will rest on a roof of this pitch.

Wind loads, on the other hand, should be assumed as increasing with the pitch of the roof, in place of decreasing, as would be the case with snow loads, and a provision for horizontal wind force of 40 pounds per square foot of vertical surface in exposed locations would in most cases be ample.

For inclined surfaces, it is only necessary to take the component of this wind pressure that is normal to the surface being considered, for which the formula Pn = P (sin a) 1.84 cos a - l; in which P equals direct horizontal pressure, Pn equals the pressure normal to

Roof Design

the sloping surface and a the angle of the sloping surface with the horizontal. On an assumption of 30 pounds per square foot, this formula works out to give a normal pressure as per the following table.

Slope	Pressure, Pn, per Square Foot, Pounds						
5	3.9	20	13.8	35	22.6	50	28.6
10	7.2	25	17.0	40	25.0	55	29.6
15	10.7	30	19.9	45	27.0	60	30.0

It will be noted that for slopes making an angle of over 60 degrees with the horizontal, the pressure normal to the slope is that of a vertical surface.

For climates corresponding to that of our northern states, and where the local building laws do not fix the roof loads to be used, good practice indicates that for roofs where the clear span is not over 100 feet, provision for a total load about as follows is right.

Roof Covering	Roof Load per Square Foot, Pounds
Gravel or on boards, flat slope, 1 to 6 or less. Composition on boards, steep slope, more than 1 to 6. Roofing on 3 inch flat tile or cinder concrete. Corrugated sheeting on boards or purlins. Slate on boards or purlins. On 3 inch flat tile or cinder concrete. Tile on steel purlins. Glass	60 40 50 65 55

In more southern latitudes where snow is not likely to occur, these loads can be safely reduced about 10 pounds per square foot.

For protection against weather the use of tin, gravel, asphalt or similar composition roofing is good for flat roofs, as is slate, tin and tile for steeper pitched roofs. Mill and factory buildings have for years been satisfactorily covered with corrugated sheets.

Roof Design

The first mentioned above require sheathing to properly support them on rafters or purlins. Corrugated sheets are sometimes placed on sheathing but more frequently are directly attached to the roof purlins.

The weights of these various weather-proofing materials run approximately as follows:

ROOPING MATERIAL	Weight per Square Foot, Pounds
Copper, No. 22 B. W. G. Corrugated galvanized iron, No. 20 B. W. G. Corrugated galvanized iron, No. 26 B. W. G. Felt, 2 layers. Felt and asphalt or coal-tar. Glass, ½ inch thick. Lath and plaster ceiling. Lead, ½ inch thick. Mackite, 1 inch thick, with plaster Sheathing, hemlock, 1 inch thick. Sheathing, hemlock, 1 inch thick. Sheathing, white pine, spruce, 1 inch thick. Sheathing, white pine, spruce, 1 inch thick. Sheathing, white pine, spruce, 1 inch thick. Shingles, 6x18 inches, 6 inches to weather. Skylight, glass ¼ to ½ inch, including frame. Slag roof, 4-ply, with eement and sand. Slate, ¼ inch thick, 3 inch double lap. Slate, ¼ inch thick, 3 inch double lap. Terneplate, IC. Terneplate, IC. Terneplate, IX. Tiles (plain), 10½x0½x½ inches, 5¼ inches to weather. Tiles (Spanish), 14½x10½ inches, 7¼ inches to weather. Tiles (Spanish), 14½x10½ inches, 7¼ inches to weather. Zinc, No. 20 B. W. G.	114 214 114 12 2 134 6-8 6-7 10 2 2 214-212 312 2 4-10 412 634 412 634 18 88 18

Where flat roofs are used on spans up to 45 feet, it is frequently economical to carry the roof on beams. This is not possible where the spans exceed this limit and it then becomes necessary to use trusses, the total load on the roof being usually considered as uniformly distributed, although, with steep pitched roofs, it will be necessary to make a special analysis of the stresses due to the unequal loading of the trusses from wind pressure.

In placing purlins on roof trusses, it is always advisable to place them on the panel points of the truss, as this obviates local stresses in the chords due to bending, which will always occur when purlins are placed other than at panel points.

Roof Design

The maximum spacing of purlins will depend on the strength of the sheathing or corrugated sheets used for the direct support of the roof. With corrugated sheets the usual spacing is about 5 feet, while with 2" sheathing it is frequently possible to get 8 to 10 feet spacing of purlins.

The approximate weight of roof trusses which it is frequently convenient to know for purposes of preliminary design, can be determined by the formula $\frac{L}{20} + \frac{12}{l} =$ weight of truss in pounds per horizontal square foot. In this formula, L equals the span, and l equals the distance center to center of trusses.

This is based on 40 pounds per square foot total load and where loads exceed this amount, the weight of the truss can be increased in direct proportion as the load exceeds this amount.

Trusses
Formulae for Stresses and Coefficients

$$n = \frac{8}{H} = 2 \cot s$$

PRATT TRUSS-4 Panels

Member	Stress	Length
AB, BD AC CE BC CD	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	½ S sec a ½ S ½ S ½ H ½ √ S ¹ + 16 H ²

PRATT TRUSS-6 Panels

Member	Stress	Length
AB, BD DF AC CE EG BC DE CD EF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	% S sec a % S sec a % S % S % S % S % H % H % $\sqrt{S^{2} + 16 H^{2}}$ % $\sqrt{S^{2} + 36 H^{2}}$

Trusses

Continued

Formulae for Stresses and Coefficients

$$n = \frac{S}{H} = 2 \cot a$$

PRATT TRUSS-8 Panels

Member	Stress	Length
AB, BD	$+7/4\sqrt{n^2+4}\times W$	⅓ S sec a
DF	$+3/2 \sqrt{n^2+4} \times W$	3/8 S sec a
FH	$+5/4\sqrt{n^2+4}\times W$	3/8 S sec a
AC	$-7/4n \times W$	1/4 S
CE	$-3/2 n \times W$	16 S
EG	$-5/4 n \times W$	38 S
GI	- n × W	14 S
BC	+1 × W	1/4 H
FH AC CE EG GI BC DE FG	13/4 OW	34 H
	$-\frac{1}{2}\sqrt{\sqrt{n^2+16}\times W}$	
CD	79 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$\sqrt{S^2 + 16 H^2}$
EF GH	$-\frac{14}{4}\sqrt{\frac{n^2+36}{1}}\times W$ $-\frac{14}{4}\sqrt{\frac{n^2+64}{1}}\times W$	$\frac{1}{8} \sqrt{S^2 + 36 H^2}$ $\frac{1}{8} \sqrt{S^2 + 64 H^2}$

PRATT TRUSS-10 Panels

Member	Stress	Length
AB, BD	$+9/4\sqrt{n^2+4}\times W$	1/10 S sec a
DF FH	$+2 \sqrt{n^2+4} \times W + 7/4 \sqrt{n^2+4} \times W$	1/10 S sec a 1/10 S sec a
	$+3/2 \sqrt{n^2+4} \times W$	1/10 S sec a
AC CE	$-\frac{9/4}{2}\frac{n}{n}$ $\times W$	1/10 S 1/10 S
EG	$\begin{array}{ccc} -7/4 & n & \times W \\ -3/2 & n & \times W \end{array}$	1/10 S 1/10 S
HJ AC CE EG GI IK BC DE	$-5/4 n \times W$	1/5 S
DE	+1 +3/2 × W	1/5 H 2/5 H
FG HI	+2 +5/2 × W	3/5 H 4/5 H
CD	$- \frac{34}{\sqrt{n^2 + 16}} \times W$	$1/10 \sqrt{S^2 + 16 H^2}$
EF GH	$-\frac{14}{14}\sqrt{\frac{n^2+32}{n^2+64}}\times W$	$1/10 \sqrt{S^2 + 36 H^2}$ $1/10 \sqrt{S^2 + 64 H^2}$
IJ	$-\frac{1}{24}\sqrt{\frac{n^2+64}{n^2+100}}\times W$	$\frac{1/10 \sqrt{S^2 + 64 H^2}}{1/10 \sqrt{S^2 + 100 H^2}}$

		9	- Span -	Span + Height = 2 cot a	5 Sot	æ				9	- Span	Span + Height = 2 cot a	. = 2 00	et B	
Мамвив	8	21 ~	2 cot	4	21 2	10	9	Меквев	89	% ~	30° t	4	% S	ю	9
AB, BD	2.70	$\frac{2.98}{2.57}$	3.00	3.35 3.00	3.90 3.80	4.04	4.74	$\frac{AB,BD}{DF}$	4.51 3.61	3.97	5.00 4.00	5.59 4.47	6.50 5.20	6.73	7.91 6.32
ECE BCE				જાં –નં		2.1 2.8	જાં –ાં	AC		4. 8. 8. 8.	4 0	ب 4		6 8 8	6.0
CD		1.32		Η.	1.56	1.68	-	EG		2.57	2	က		3.75	4.5
								BC		9:	_	—		8.	-
								DF	33	2.50	-	- i	1.50	32	<u>.</u>
								C)	1.25	1.32	_	- i	1.56	9.	
			_				-	EF	1.68	1.73	_	_	1.92	1 95	2

Trusses
Continued
Coefficients of Stresses

		= 0	Span	+ Height	: = 2 cot	a				" "	= Span	+ Height	t = 2 cot	of th		
Мямвев	60	24	2 cot	4	24	2	9	Мемвен	89	7 24	2 cot	4	27 0	10		9
AB, BD				7.83	9.10					-	*	-	14	12.		
DF				6.71							3.8		-	000		
AC	5.25	6.00	90.9	7.00	8.00	8.75	10.50	H.I	5.41	5.95	90.9	6.71	7.80	000	08 9	49
CE			-	6.00	0.00						7.79			11		
EG					00.9	6.25				1001	6.93	_	-	10		
GI			-	4.00	4.80	5.00		_		6.00	90.9	7.00		ò		
BC			1.00	1.00	1.00	1.00		_		-	5.20	6.00	7.20	7		
DE		1.50	1.50	1.50	1.50	1.50	1.50	_		-	4.33	5.00	6.00	6		
FG		2.00	2.00	2.00	2.00	2.00	2.00	_		1.00	1.00	1.00	1.00	-	0 1	0
CD		1.32	1.32	1.41	1.56	1.60	1.80	_		1.50	1.50	1.50	1.50	1.5	0 1	5
EF		1.73	1.73	1.80	1.92	1.95	2.12	_		2.00	2.00	2.00	2.00	2.0	0 2	0
CH		2.18	2.18	2.24	2.33	2.36	2.50	_		2.50	2.50	2.50	2.50	2.5	0 2	5
								CD		1.32	1.32	1.41	1.56	1.6	0 1	8.
								EF		1.73	1.73	1.80	1.92	1.9	5 2	-
								CH		2.18	2.18	2.24	2.33	2.3	6 2	.50
								II		P 64	9 65	9 60	77 6	0 6	0	0

Trusses Continued

Formulae for Stresses and Lengths

$$\mathbf{n} = \frac{8}{\pi} = 2 \cot \mathbf{s}$$

SIMPLE FINK TRUSS

Member	Stress		Length
AB	$+ \frac{3}{4} \sqrt{n^2 + 4}$	$\times W$	1/4 L sec a
BD	$+\frac{1}{\sqrt{2}}(3/n^2+1)$	$\times W$	1/4 L sec a
AC CE	$ \begin{array}{c} \sqrt{n^2+4} \\ -\frac{34}{4}n \\ -\frac{34}{2}n \end{array} $	$\stackrel{\times}{\times}\stackrel{W}{W}$	¼ L sec² a L (1 — ½ sec² a)
BC	+	$\times w$	1/4 L sec a tan a
CD	$- \stackrel{\sqrt{n^2+4}}{\cancel{4}} $	$\times W$	1/4 L sec * a

SIMPLE FAN TRUSS

Member	Stress	Length
AB	$+ \frac{1}{\sqrt{n^2+4}} (5/4 n^2+5) \times W$	36 L sec a
BD	$+\frac{1}{2\sqrt{n^2+4}}$ 13/6 $(n^2+6)\times W$	⅓ L sec a
DE	$+\frac{1}{\sqrt{n^2+1}} (5/4 n^2 + 1) \times W$	1/6 L sec a
AC CF		½ L sec² a L (1 — ½ sec² a)
BC, CD	$+ n \sqrt{n^4 + 40 n^2 + 144} \times W$	$+ \frac{1}{4}L \sqrt{\frac{\sec^2 a + \sec^2 a \tan^2 a}{9}}$
CE	_ ½ n × W	1/4 L sec 2 a

Trusses
Continued

Formulae for Stresses and Lengths

$$n = \frac{S}{H} = 2 \cot a$$

COMPOUND FINK TRUSS

Marshan	S4	Londo
Member	Stress	Length
AB	$+7/4\sqrt{n^2+4}$ $\times W$	⅓ L sec a
BD	$+\frac{1}{\sqrt{n^2+4}}(7/4 n^2+5) \times W$	⅓ L sec a
DF	$+\frac{1}{\sqrt{n^2+4}}(7/4 n^2+3) \times W$	⅓ L sec a
FH	$+\frac{1}{\sqrt{n^2+4}}(7/4 n^2+1) \times W$	⅓ L sec a
AC CE EI	$ \begin{array}{cccc} & & & & & & & & & & & & \\ & & & & & &$	⅓ L sec¹ a ⅙ L sec¹ a L (1 — ⅙ sec¹ a)
BC, FG	$+\frac{n}{\sqrt{n^2+4}}$ $\times W$	⅓ L sec a tan a
DE	$+\frac{2n}{\sqrt{n^2+4}} \times W$	1/4 L sec a tan a
CD, DG EG GH	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/4 L sec 2 a 1/4 L sec 2 a 1/4 L sec 2 a

Trasses

Continued

Foundactor Stresses and Lengths

COMPOUND FAN TRUSS

Member	Stress	Length
AB	$+\frac{1}{\sqrt{\pi^2+4}}(11/4\pi^2+11)\times W$	1,12 L sec e
BD	$+\frac{1}{\sqrt{\pi^2+4}}$ (31/12 π^2+9) \times W	1,12 L sec e
DE	$+\frac{1}{\sqrt{\pi^2+4}}(11/4\pi^2+7)\times W$	1/12 L sec e
EH	$+\frac{1}{\sqrt{\pi^2+4}}(11/4\pi^2+5) \times W$	1/12 L sec e
н	$+\frac{1}{\sqrt{\pi^2+4}}$ (31/12 π^2+3) $\times W$	1/12 L sec e
IJ	$+\frac{1}{(11/4 \pi^2 + 1)} \times W$	1/12 L sec e
AC CF FK	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/4 L sect a 1/4 L sect a L (1 — 1/4 sect a)
BC, CD GH, GI	$+\frac{n\sqrt{n^2+40}}{6(n^2+4)} \times W$	$36L\sqrt{\frac{\sec^2 e}{9} + \sec^2 e \tan^2 e}$
EF	+ × W	¾ L sec ∉ tan ∉
CE, EG FG GI	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1/4 L sec* a 1/4 L sec* a 1/4 L sec* a

Trusses Continued

Continued from pages 236 and 237

Values of n		24/7	24/7 2 cot 30°	4	24/5	5	9
Values of a	33°41′24″ 30°15′23″	30•15′23″	30°	26°33′54″	26.33′54" 22.37′12" 21. 48′ 5" 18. 26′ 6"	21° 48′ 5″	18° 26′ 6″
Sec a	1.2018	1.2018 1.1577 1.1547	1.1547	1.1180	1.0833	1.0770	1.0541
Sec* a	1.4444	1.3403	1.3333	1.2500	1.1736	1.1600	1.1111
Sec a tan a.	0.8012	0.6753	0.6667	0.5590	0.4514	0.4308	0.3514
$\sqrt{\frac{\sec^2 a}{9} + \sec^2 a \tan^2 a}$	0.8958	0.7778	0.7698	0.6718	0.6718 0.5781	0.5608	0.4969

Compression Formulae

Comparison of Allowable Unit Stresses in Pounds per Square

1	A.R.E. Assn. Chicago Used by J. & L. S. Co.	Gordon	New York	Philadelphia	Boston	Pitt
r	16000-70-r	12500	15200-58—	16250	16000 12	1900
	14000 Max.	1+36000 r ²	ı	1+11000 r ²	20000 r ²	1300
0	14000	12500	15200	16250	16000	13
5	14000	12490	14910	16215	15980	13
10	14000	12460	14620	16100	15920	13
15	14000	12420	14330	15925	15820	13
20	14000	12365	14040	15680	15690	13
25	14000	12285	13750	15375	15515	13
30	13900	12195	13460	15020	15310	13
35	13550	12090	13170	14620	15075	13
40	13200	11970	12880	14185	14815	13
45	12850	11835	12590	13725	14530	13
50	12500	11690	12300	13240	14220	13
55	12150	11530	12010	12745	13900	13
60	11800	11365	11720	12240	13560	13
65	11450	11185	11430	11740	13210	12
70	11100	11000	11140	11240	12850	19
75	10750	10810	10850	10750	12490	11
80	10400	10615	10560	10275	12120	11
85	10050	10410	10270	9810	11755	10
90	9700	10205	9980	9360	11390	10
95	9350	9995	9690	8930	11025	6
100	9000	9785	9400	8510	10670	6
105	8650	9570	9110	8115	10315	8877
110	8300	9355	8820	7740	9970	8
115	7950	9140	8530	7380	9630	7
120	7600	8930	8240	7035	9300	7
125	7250	8715		6715		- 6

EXPLANATION OF HEADINGS

J. & L. S. Co.—Jones & Laughlin Steel Company. A. R. E. Assn.—American Railway Engineering Association. Cities—Building Laws. Unit stresses given below heavy line are not found by formula given.

Continued on next page.

Compression Formulae

Continued

Comparison of Allowable Unit Stresses in Pounds Per Square Inch

1	A.R.E. Assn. Chicago Used by J. & L. S. Co.	Gordon	New York	Philadelphia	Boston	Pittsburgh
-	16000-70-r 14000 Max.	$12500 \\ \hline 1^2 \\ 1 + \\ \hline 36000 r^2$	15200-58 -	$16250 \\ 1 + \\ 11000 r^2$	$ \begin{array}{r} $	19000-100-r 13000 Max.
130 135 140 145 150	6900 6550 6200 5850 5500	8510 8300 8095 7890 7690		6405 6115 5840		6500 6250 6000 5750 5500
155 160 165 170 175	*********	7495 7305 7120 6935 6755				
180 185 190 195 200		6580 6410 6240 6080 5920			***********	

EXPLANATION OF HEADINGS

J. & L. S. Co.—Jones & Laughlin Steel Company. A. R. E. Assn.—American Railway Engineering Association. Cities—Building Laws. Unit stresses given below heavy line are not found by formula given.

Floors and Roofs

Minimum Live Loads, Pounds per Square Foot

By Building Laws of Various Cities

Kind of Building	Boston, 1912	New York, 1906	Philadelphia, 1913	Baltimore, 1908	Pittsburgh, 1913	Cleveland, 1911	Chicago, 1911	St. Louis, 1910	San Francisco, 1910
Apartments. Public Rooms* and Halls. Assembly Halls. Fixed Seat Auditoriums. Movable Seat Auditoriums Churches. Dance Halls. Drill Rooms. Riding Schools. Theaters.	50 100 125 200 200 200	90	70	75 125 75 75	125 125 125 150 150 150 125	50 80 100 80 100	100 100 100 100 100	100	60 125 75 125 125 125
Dwellings Public Rooms* Hotels First Floors Corridors Office Floors Public Rooms* Manufacturing Light Factories Mercantile	100 50 100 100 100 125	60 60 120 120	70 70 120 150	60	70 125 125	80 80 80	50	60 100	60
Heavy Storehouses Retail Stores Warehouses Offices First Floor Corridors Schools (Class Rooms) Assembly Rooms—Halls Sidewalks	125 250 100 100 100 125	150 75 150 75 150 75 90 300	150 120 150 100	250 125 75 150 75	200 125 200 70 70 70	200 125 60 100 60 80 200	100 100 50 40 75	150 150 70 150 100	250 125 250 60 150 75 125 150
Stables—Carriage Houses. Area less than 500 sq. ft. Stairways and Landings. Fire Escapes. Roofs—Flatt. Horizontal Projection Steep Roofs. Superficial Surface. Wind Pressure.	70 70 40	75 50 30	30	100 40 20	\$50 \$50 \$50 \$50 25	80 80 80 40 40 130	100 40 100 25 25 25	40	75 30 20 20

^{*}Area greater than 500 square feet.

[†]First floors 200.

[†]Slopes less than 20 degrees.

[§]Dead and live, except for one story steel frame buildings, corrugated iron roofs, 35 pounds.

 $^{\|} High \ buildings, \ built up districts, 35 pounds; 14 stories or over, 25 pounds at tenth story, 2 ½ pounds less each story below.$

Figures for manufacturing establishments do not include machinery.

Details for I Beam Bridges

		Do	Double						TRIPLE		
Sise, In.	Separators, Inches	18,	Bearing Plates, In.	Bearing Wedge and Plates, In. Anchors, In.	Washers, Inches	Sise, In.	Separate	irs,	Bearing Plates, In.	Size, Separators, Bearing Wedge and Inches Plates, In. Anchors, In.	Washers, Inches
22	24 20 I 65 Iba. 18 100 105 105 33	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18x3/4x32	7/sx12	2)gx23gx3gx3	24	10 I 25 lb	s. 18	18x34x32	3/8x12	2)-5x2)-5x3-5x3
20	20 20 I 65 lbs, 15 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	***************************************	12x3/4x30	7/sx12	2½x2½x½½x¾ 20 10 I 25 lbs. 15 12x¾x32	30	10 I 25 lb	s. 15	12x3/x32	7/sx12	2)-5x2)-5x3-5x3-
15	15 15 1 42 lbs, 11	.01	12x3/4x24	7/sx12	2½x2½x½x¼ 15 10 I 25 lbs. 11 12x¾x30	15	10 I 25 lb	s. 11	12x3/x30	7/sx12	29/5x23/5x3/5x3
12	12 12 1311/5 lbs. 9	No.	12x3/{x21	34x10	2x3/5x3/4x21/5						
	10 I 25 Ibs. 7	WEI 12%	12x3/x18	%x10	2x34x34x234		_				

Conventional Signs for Riveting

Maximum height of heads marked $a=\frac{1}{3}$ "	
" " " $b = \frac{1}{4}$ " " " $c = \frac{3}{4}$ " Two full heads + or	p Field
Countersunk and chipped other side (or side not visible)) (
Countersunk and chipped this side (or side visible)	
Countersunk and chipped both sides Other side This (Not Visible) (Visible)	
Countersunk but not chipped limit 1/4 high	2 0
Flattened head %" high and countersunk	5 0
"attened head %" high and not countersunk	y Of

Stresses in Rivets and Pins

Rivets

It is common practice to disregard the friction between plates in a riveted joint caused by the clamping effect of the rivets. A riveted joint may fail by the shearing of the rivets or by the crippling or crushing of the metal in the members around the rivet holes. The bearing value of the plates or rolled sections in addition to the shearing value of the rivets must, therefore, be considered in designing riveted joints. If the shearing value exceeds the bearing value, the latter will determine the number of rivets required.

Pins

Pins are subject to shearing, bending and bearing stresses, but their size is mostly governed by one of the latter stresses. The following bending formula applies to pins:

$$M = \frac{f \pi d^3}{32} = \frac{f A d}{8}$$
, in which

M = moment of forces for any section

f =extreme fiber stress at that section

A = area of section

d = diameter of pin

 $\pi = 3.14159$

The forces are assumed as acting in a plane through the axis of the pin.

EXAMPLE 1.

A bolster or end shoe of a bridge carries a load of 100,000 pounds; assume the distance between points (i. e.) centers of support of bolster plates and center of post plates $2\frac{1}{2}$ ". Bending moment = $50,000 \times 2\frac{1}{2}$ " = 125,000 inch pounds; therefore, for f = 20,000;

$$d = \sqrt[3]{\frac{125,000 \times 32}{20,000 \times 3.14}} = 3.994''$$
 or 4 inch pin.

EXAMPLE 2.

Required the bearing in shoe for a 4" pin, transmitting a load of 100,000 pounds at 20,000 pounds pressure per square inch. The bearing value of a 4 inch pin for 1 inch thickness is $= 4 \times 20,000 = 80,000$ pounds. Therefore, the thickness of metal required $= \frac{100,000}{20,000} = 1\frac{1}{4}$ inches, or each web of the shoe must be $\frac{1}{4}$ inch

including pin plates.

10
Angles e Hole
and A
2
Plates, Bars Be Deducted
lates Dec
Riveted Area To

				THICKNESS	OF PLATE, BAR	AR OR ANGLE			
se of Hole	1/8	16	74	16	8%	176	1/2	16	100
6 2	70.	.11	.14	.18	.21	.25	.28	.32	.35
200	80.	.12	.16	.20	.23	.27	.31	.35	.39
111	60.	.13	.17	.21	.26	.30	.34	.39	.43
34	.10	.14	61.	.23	.28	.33	.38	.42	.47
13	.10	.15	.20	.25	.30	.36	.41	.46	.51
18/1	.11	.16	.22	.27	.33	.38	44.	.49	.55
100	.12	.18	. 23	.29	.35	.41	.47	.53	.59
	.13	.19	.25	.31	.38	.44	.50	99.	.63
116	.14	.20	.27	.33	.40	.46	.53	09.	99.
1/8	.15	.21	.28	.35	.42	64.	.56	.63	.70
				THICKNESS	NESS OF PLATE,	BAR OR	ANGLE	No.	
Size of Hole	Iole	111	34	113	3/8	15	1	178	11/8
6		.39	.42	.46	.49	.53	.56	09.	.63
200		.43	747	.51	.55	.59	.63	99.	.70
#		.47	.52	.56	09.	.64	69.	.73	77.
100		.52	.56	.61	99.	.70	.75	08.	.84
191		.56	.61	99.	17.	92.	18.	98.	16.
18		09.	99.	17.	11.	.82	88.	.93	86.
16		.64	.70	92.	.82	88.	.94	1.00	1.05
1		69.	.75	.81	88.	.94	1.00	1.06	1.13
115		.73	8.8	95.5	86.	1.00	1.06	1.13	1.20

Standard Spacing and Dimensions of Rivet and Bolt Holes

Through Flanges of Beams, Channels, Connection Angles

*	## <u>₹</u> <u>*</u>	
---	----------------------	--

	STEEL	BEAMS			STEEL	CHANNEL	s		Angles	
Depth in Inches	Weight per Foot, Pounds	Diameter of Bolt or Rivet, In.	Inches, A	Depth in Inches	Weight per Foot, Pounds	Diameter of Bolt or Rivet, In.	Inches, A	Depth of Leg, Inches	Maximum Diameter of Bolt or Rivet, Inches	Inches, B
24 20 20 18 15	05. 80. 80. 65. 55. 60. 42. 40. 31.5 25. 21. 12.25 9.75 7.5	3/3/4/4/4/4/4/4/4/8/8/8/2/2/8/8	4½ 4 3½ 3¼ 3¼ 3 2¾ 2½ 2¼ 2¼ 2¼ 1¼ 1½ 1½ 1½	15 15 12 12 10 10 9 9 8 8 7 7 6 6 6 5 5 4 3	45. 33. 30. 20.5 25. 15. 20. 13.25 16.25 17.25 9.75 13. 8. 9. 6.5 5.25 4.	3/3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	21/4 17/8 2 18/4 2 11/2 11/4 11/4 11/4 11/4 11/4 11/4	8 7 6 5 4 ¹ / ₂ 4 3 ¹ / ₂ 3 2 ¹ / ₂	1 1 1 1 1 1 1 1 78	3½ 2¾ 2½ 2¼ 2¼ 2 1¾ 1%
-						CHANNELS		2	5/8	11/8
				13	31.5	3/4	21/4	11/2	1/2	13
				10 9 8 8 7 6 6	21.8 28.6 23.8 21.4 18. 13.3 15.	3/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4/4	21/4 21/4 21/4 21/4 21/4 21/4 13/4	1	3/8	9 16

Minimum Rivet Spacing

				VAL	UES	OF "	'X'' 1	FOR 1	VARY	ING	VAL	UES	OF A	ANI	B	
		s a						VA	LUES	OF	A					
		Values of B	1/8	1	11	11/4	18	11/2	15	134	17/8	2	21/8	21	28	$2\frac{1}{2}$
		118	17/16	$1\frac{1}{2}$	10	111	$1\frac{3}{4}$	17/8	2	216	$2\frac{3}{16}$	$2\frac{5}{16}$	23	21/2	25	24
	% Rivete.	114	1 9 16	15	111	13	178	115	$2\frac{1}{16}$	218	21	23	27	2 9	211	213
		138	158	111	13	17	115	2	21/8	23	25	27	21	25	23	27
7	*C	11/2	12	113	17/8	115	2	21	$2\frac{3}{16}$	25	23/8	21/2	25	211	213	215
	Rivets.	15	17	178	2	21	21	23	25	22	21/2	20	211	24	27	3
"	2	12	115	2	21/16	218	23	25	23	27/16	29	25	23	27	215	316
Ī	vets	178	21/6	21/8	23	21	25	238	21/2	29	25	23	213	215	3	31
	B's Rivets	2	$2\frac{3}{16}$	21/4	25	23	27	21/2	20	25	23	213	215	3	31	33
1		218	25/16	25	23	27/16	21/2	25/8	211	23	213	215	3	316	3 3 16	314
	Rivets	21	27/16	$2\frac{7}{16}$	21/2	29	25	211	23	27	215	3	316	33	31	38
	1.74	28	21/2	29	25	211	24	213	27	215	3	31	3 3 16	31	38	37
k-B-x	Z'RIV.	21/2	25	211	23/4	213	27	215	3	31	31	3 3	31	33	3 7	3 9
			es Be	low or	to R	light	of Zig	zag		"C"	are L	arge	Enoug	-	1% R	ivets
	- O A	"			"	"		**		.,D.,	**	"	"	"	%"	"
10	1	24			**				**			**		**	36"	

"A" must not be less than ¼"+½ H

Inches	В	В
11	11/2	13
13/16	17	15/16
11	13	14
15	15/16	13/16
13	114	116
17/16	12	1
$1\frac{1}{2}$	11	7/8
1 9 16	116	13
15	15 16	13 5/8
111	18	1/2
13	11 16	0

C %Riv. KRiv.

Minimum Rivet Spacing, Etc.

Clearance for Web Riveting

Rivets in Crimped Angles

Minimum Rivet Spacing

	(D)
1	2222
1	0-0-0-0-3
3	0-0-0-3

1	,D*
m	0 0 2

Diam, of Rivets Inches	D-Min- Inches
34	1
3/8	11
1/2	134
5/8	2
3/4	21
3/8	25
1	3

-

Distance Y should be 1½"+thickness of chord angles, but not less than 2"

Standard Rivet Dies

Diameter D=2" for 5g" Rivets
" =2¼" "3¼" "
" =2½" 3%" "

Glearance for Cover Plate Riveting Dimensions in Inches

I	1	3/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51	6
	Ъ	21/2	25	24	24	27	27	3	31/8	31	31	31	31
I	g	0	1/2	1	11/2	2	21/2						
Γ	b	21	24	21	2	11/2	0						

Staggering of Rivets to Maintain Net Section

Diameter of Hole taken out, ¾" greater than nominal diameter of rivet

S	%Riv.	⅓Riv.	S	34Riv.	KRiv.
9	p	P	0	p	P
1	15%	1%	5	314	34
13/2	13%	2	534	334	334
2	21	21/4	6	33/8	356
234	234	216	63/2	31/2	3%
8	218	29%	7	35/8	33/8
31/2	2,4	213	73/6	33/4	4
4	211	3	8	31/6	41/6
41/2	211	3/4	81/2	4	41/4

Rivets Length for Variant Grips

0		DIAMET	ER IN I	NCHES		0		DIAME	TER IN	INCHES	
GRIP IN INCHES	1/2	5/8	3/4	3/8	1	GRIP IN INCHES	1/2	5/8	3/4	7/8	,1
INCHES		Lengt	th in In	ches		INCHES		Leng	th in In	ches	
1/6 5/8 3/4 7/8	15/8 13/4 13/6 2	13% 2 21% 21%	2 21/8 21/4 23/8	2½ 2¼ 2¾ 2¾ 2½ 2½	21/4 23/8 21/2 25/8	1/2 5/8 3/4 3/8	13/4 13/8 13/5 15/8	13/8 11/2 15/8 13/4	13/8 11/2 15/8 13/4	13/2 15/8 13/4 17/8	11/2 15/8 13/4 17/8
1 134 134 135 137 136 134 138	21/8 21/4 23/8 21/2 23/4 21/8 3 31/8	23/8 21/2 25/8 23/4 3 31/8 33/8	21/2 25/8 23/4 27/8 31/8 31/8 31/2	25/8 23/4 27/8 3 31/4 33/8 31/2 35/8	284 278 3 318 338 312 358 314	1 11/4 13/4 13/8 13/4 13/4 17/8	134 178 2 214 234 234 214 238 214 258	17/8 2 21/8 21/4 23/8 21/2 25/8 28/4	17/8 2 21/8 21/4 21/2 25/8 23/4 27/8	2 21/8 21/4 23/8 21/2 25/8 23/4 27/8	2 21/8 21/4 23/8 25/8 25/8 23/4 21/8
2 21/4 21/4 21/2 25/8 21/2 25/8 23/4 23/8	31/4 38/8 31/4 35/8 35/8 37/8 4 41/8	31/2 35/8 33/4 37/8 4 41/8 41/4 43/8	35/8 33/4 37/8 4 41/4 43/8 41/4	334 378 4 418 414 438 415 458	378 4 418 414 438 458 458 434	2 21/6 21/4 23/6 21/2 25/8 23/4 27/8	28/4 23/8 3 31/8 31/4 33/8 31/2 35/8	27/8 3 31/8 31/4 38/8 31/2 35/8 33/4	3 1/8 31/4 33/8 31/4 33/8 33/4 37/8	3 31/8 31/4 33/8 31/2 35/8 33/4 37/8	31/8 31/4 33/8 31/6 35/8 33/4 33/8 4
3 31/4 31/4 33/4 31/2 35/8 33/4 37/8	43/8 41/2 45/8 43/4 47/8 51/8 51/4	45/8 43/4 47/8 5 51/8 51/4 53/8 51/2	434, 478 5 514, 53,8 515,8 515,8	47/8 5 51/8 51/4 53/8 51/8 55/8 55/8	5 51/8 51/4 53/8 51/2 55/8 55/8 57/8	3 31/8 31/4 33/8 31/2 35/8 33/4 37/8	37/8 4 41/8 41/4 43/8 41/9 45/8 43/4	37/8 4 41/4 43/8 41/2 45/8 43/4 47/8	4 41/8 41/4 43/8 41/4 45/8 43/4 47/8	41/8 41/4 43/8 41/2 45/8 43/4 47/8 5	43/4 43/8 43/8 43/8 43/8 43/8 53/8
4 41/4 41/4 41/4 41/4 41/4 41/4 41/4	53/8 51/9 55/8 58/4 61/8 61/8 63/8	55/8 55/4 57/8 6 61/4 63/8 63/8	534 578 6 638 638 634	57/8 6 61/4 61/4 61/4 61/4 63/4 63/4	6 614 634 658 634 678 7	4 41/8 41/4 43/8 41/2 45/8 43/4	47/8 5 51/8 51/4	5 51/8 51/4 53/8	51/8 51/4 53/8 51/2	51/8 51/4 53/8 51/2 55/8 57/8 6	514 518 518 518 518 618
5 51/8 51/4 53/8	63.6 65.8 63.6 63.8	634 638 7 718	67/8 7 71/6 71/4	7 71/8 71/4 79/8	71/8 71/4 78/8 71/2	5 51/8 51/4 53/8				61/8 61/4 63/8	634

Rivets
Continued
Continued
Shearing and Bearing Value for Quiescent Loads as Used in Buildings

Diameter of Rivet in In.	ter of in In.	Area	Shear Shear at 12,000		Be	Bearing Value for Different Thicknesses of Plate at 24,000 lbs, per square inch (= Diameter of Rivet \times Thickness of Plate \times 24,000 lbs.)	le for Diff Diameter	erent Thio	knesses of X Thickn	Plate at	24,000 lbs. te X 24,00	per squar 0 lbs.)	re inch	
Fraction	Decimal	_	lbs. per sq. inch	14 Inch	if Inch	3% Inch	75 Inch	1/2 Inch	% Inch	% Inch	14 Inch	34 Inch	H Inch	7/8 Inch
16-8%	.4375	.1104	1320	2250	2810 3280	3940			******					
16-27	.5625	.1963	2360	3000	3750 4220	4500	5250 9510	6000	-		:::	::		!!
100 mm	.625	.3068	3680	3750 4125	4690 5160	5630	6560	7500	8440 9280	9380				
%*************************************	.75	.4418	5300	4500	5630 6090	6750	7880	9000	10130	11250	13410			
7000lp	.9375	.6903	7220	5250	6560	7880 8440	9190	10500	11810	13130	14430 15470	16880		
1 114	1.0625	.8866	9420	6000	7500	9000	10500	12000	13500	15000	16500	18000	19500	22300
11/8	1.125	1.1075	11930	6750	8440 8910	10125	11810	13500	15190	16875	19600	20250	23160	23626

Rivets
Continued
Shearing and Bearing Value for Moving Loads as Used in Bridges, Craneways, Etc.

	1/8 Inch							15590
re inch	18 Inch	:::				::	12950	13710
Bearing Value for Different Thicknesses of Plate at 15,000 lbs. per square inch (= Diameter of Rivet X Thickness of Plate X 15,000 lbs.)	34 Inch						11250	12660
15,000 lbe X 15,000	14 Inch			11		0296	10310	11600
f Plate at s of Plate	% Inch			***	7620	8200 8790	9380	10550
knesses of Thicknes	1º Inch			::	6330	7380	8440 8960	9490
erent Thie	1/2 Inch			5160	5630	6560	7500	8440 8910
le for Diff	Le Inch		3690	4100 4510	4920 5330	5740 6150	6560	7380
aring Valt	3/8 Inch		2810	3520	4220	4920 5270	5620 5980	6830
Be	ie Inch	2050	2340 2640	2930	3520	4100	4690 4980	5270 5570
	14 Inch	1410 1640	1880 2110	2340	2810	3280 3520	3750 3980	4220 4450
Single Shear at 7500 lbs.	per sq. inch	828 1130	1470 1860	2300	3310	4510 5180	5890	7460
Area of River.	Square	.1104	.1963	.3068	.4418	.6903	.7854	1.1075
1	Decimal	.4375	.5625	.625	.75	.9375	1.0625	1.125
Diameter of Rivet in Inches	Fraction	%.H2	72.013	1118	% est.	20000	11.4	11/8

Rivets
Continued
Average Weight of 100 Round Head Rivets

LENGTH,	1		D	IAMETER	IN INCHES			
Inches	3/8	1/2	5/8	3/4	1/8	1	11/8.	11/4
11/4 11/2 13/4 2	5.5 6.3	12.9 14.2	21.9 24.2	29.3 32.4	44.0 48.2	72.1	93.3 100.4	135.7
2 2	7.0	15.6 16.9	26.3 28.4	35.6 38.7	52.4 56.7	77.7 83.2	107.1 114.2	144.8 153.0
21/4	8.7 9.4	18.4 19.8	30.6 32.8	41.8 45.0	61.0 64.3	88.8 94.4	121.4 128.5	162.2 170.3
21/4 21/2 23/4 3	10.2	21.1 22.5	35.0 37.1	48.0 51.2	69.5 73.7	100.0	135.7 142.8	179.5 187.7
3½ 3½	11.7 12.5	24.0 25.3	39.4 41.5	54.4 57.5	78.0 82.3	111.2 116.3	149.9 157.1	196.9 205.0
33/4	13.4 14.1	26.7 28.1	43.7 45.9	60.6 63.8	86.5 90.8	122.4	164.2 170.3	214.2 222.4
41/4	14.9 15.7	29.5 30.9	48.0 50.2	66.9 70.0	95.1 99.3	133.6 138.7	177.5 184.6	231.5 240.7
41/2 43/4 5	16.5 17.2	32.2 33.7	52.4 54.6	73.1 76.3	104.0 108.1		191.8 198.9	248.9
51/4 51/2	18.1	35.1 36.4	56.7 58.9	79.4 82.5	112.2 116.3	156.1 161.2	206.0 213.2	266.2 275.4
53/4	19.6 20.4	37.8 39.3	61.1	85.7 88.7	120.4 124.4	166.3	220.3 227.5	283.6
61/2	21.9 23.5	42.0 44.8	67.6 71.9	95.1 101.3	133.6 141.8		240.7 255.0	310.1 327.4
6½ 7 7½ 8	25.1 26.6	47.5 50.4	76.3 80.6	108.1 114.2	149.9	206.0	269.3 283.6	344.8
81/2	28.2 29.8	53.1 55.9	85.0 89.4	120.3 126.5		227.5 238.7	297.8 312.1	379.4 396.8
91/2	31.3 32.8	58.8 61.5	93.6 98.0	132.6 138.7		249.9	325.4 339.7	
Heads	1.8	5.8	11.1	13.7	22.6	38.8	58.1	83.6

In the above table the length is from under the head.

JONES & LAUGHLIN STEEL COMPANY

Standard Shouldered Pins

Eight threads per inch.

	DIMENSIONS IN INCHES P S D F H					DIMEN	SIONS IN	NCHES	
P	S	D	F	H	P	S	D	F	н
14812181411112 18141812181418181818	3/4 3/4 1 1 11/4 11/2 11/2 11/2 11/2 11/2 11/2 11/2	27/8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8/8	21/2/2/4 21/2/2/4 21/2/2/4 3 3 31/2/2/2/4 3 3 31/2/2/2/4 4 41/4/2/2/2/4 4 41/4/2/2/2/4 4 41/4/2/2/2/4 4 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	5½ 5½ 5½ 5½ 6½ 6½ 6½ 6½ 6½ 6¾ 6½ 6¾ 6½ 6¾ 6½ 6¾ 6½ 6¾ 6½ 6¾ 6½ 6¾ 1½ 1½ 10¼ 10¼ 10¼ 10¼ 11¼ 11¼ 11¼ 11¼	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	734 734 818 818 838 838 858 858 858 9 9 978 978 1034 1158 1158 1158 11218 11314 11314 11314 11434 11434 11434 11434 11434	7/8/8/4/4/8/8 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	634 634 7 7 7 7 7 7 7 7 7 7 8 8 8 9 4 9 10 10 10 10 10 10 11 11 11 11 11 12 12 13 12 13 12 13 12 13 12 13 13 14 14 15 16 16 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17

JONES & LAUGHLIN STEEL COMPANY

Bridge Pins, Nuts and Pilot Nuts

A 11	The	phone	QE	Ine 1	mah

Pin Nut

	Pins			PIN NUTS	- 1	
Nominal Diameter, Inches	Turned Diameter D, Inches	Diameter Thread F, Inches	Short Diameter A, Inches	Long Diameter G, Inches	Weight, Pounds	Diameter of Holes in Eye Bars
1½ 1¾	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1½ 1½	2 2½	$\frac{2\frac{5}{16}}{2\frac{7}{8}}$.79 1.29	D+100 D+100
2 21/4 21/2 23/4	$\begin{array}{c} 1\frac{15}{16} \\ 2\frac{3}{16} \\ 2\frac{7}{16} \\ 2\frac{11}{16} \end{array}$	1½ 1½ 2 2	2½ 3 3 3½	27/8 31/2 31/2 416	1.29 2.12 1.75 2.63	$\begin{array}{c} D + r_{00}^{\dagger} \\ D + r_{00}^{\dagger} \\ D + r_{00}^{\dagger} \\ D + r_{00}^{\dagger} \end{array}$
3 3½ 3½ 3¾ 3¾	$\begin{array}{c} 2\frac{15}{16} \\ 3\frac{3}{16} \\ 3\frac{7}{16} \\ 3\frac{11}{16} \end{array}$	2 2½ 2½ 2½ 2¾ 2¾	3½ 4 4 4 4½	$\begin{array}{c} 4\frac{1}{16} \\ 4\frac{11}{16} \\ 4\frac{11}{16} \\ 5\frac{3}{16} \end{array}$	2.63 3.17 3.17 4.12	$\begin{array}{c} D + \frac{1}{100} \\ D + \frac{1}{100} \\ D + \frac{1}{100} \\ D + \frac{1}{100} \end{array}$
4 4 ¹ / ₄ 4 ¹ / ₂ 4 ³ / ₄	$\begin{array}{c} 3\frac{15}{16} \\ 4\frac{3}{16} \\ 4\frac{7}{16} \\ 4\frac{11}{16} \end{array}$	3 3½ 3½ 4	4½ 5 5 5½	$5\frac{3}{16}$ $5\frac{13}{16}$ $5\frac{13}{16}$ $6\frac{3}{8}$	3.75 4.25 4.25 4.84	D+180 D+180 D+180 D+180 D+180
5 5½ 5½ 584	$\begin{array}{c} 4\frac{15}{16} \\ 5\frac{3}{16} \\ 5\frac{7}{16} \\ 5\frac{11}{16} \end{array}$	4 4 4 4	5½ 6 6 6½	$\begin{array}{c} 6\frac{3}{8} \\ 6\frac{15}{16} \\ 6\frac{15}{16} \\ 7\frac{1}{2} \end{array}$	4.84 6.67 6.67 8.49	D+180 D+180 D+180 D+180 D+180
$\begin{array}{c} 6 \\ 6 \frac{1}{4} \\ 6 \frac{1}{2} \\ 6 \frac{3}{4} \end{array}$	$\begin{array}{c} 5\frac{15}{16} \\ 6\frac{3}{16} \\ 6\frac{7}{16} \\ 6\frac{11}{16} \end{array}$	4 4 4 4	6½ 7 7 7½	7½ 8½ 8½ 8½ 8½ 8½	8.49 10.64 10.64 12.85	D+180 D+180 D+180 D+180 D+180
7	615	4	71/2	811	12.85	D+180

Cold Rolled Steel Cotter Pins

All Dimensions in Inches

Diameter of Pin	D	1	11/4	11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	33/4	4
Diam. of Reduced Pt.	P	7/8	11/8	11/4	11/2	13/4	2	21/4	$2\frac{1}{2}$	23/4	3	31/4	31/2	33/4
Lengths of Ends	E	5 16	5 16	1/2	1/2	1/2	1/2	1/2	1/2	7/8	7/8	7/8	7/8	7/8
Diameter of Cotter	C	5 16	5 16	5 16	5 16	3/8	3/8	3/8	3/8	1/2	1/2	1/2	1/2	1/2

Diameter of pin hole 16" greater than diameter of pin.

All Dimensions in Inches

			Сот	TER		
Rough Diameter of Pin	Diameter of Pin Hole	Finished Diameter of Pin	Reduced Point	Diameter of Thread	Diameter	Length
H	N	D	P	F	C	L
11/2 13/4 2 21/4 21/2 23/4 3 31/4 31/2 33/4 4	11/4 11/2 13/4 2 21/4 22/2 23/4 3 31/4 31/4 33/4	17222222222222222222222222222222222222	1 11/4 11/4 11/4 11/4 2 12/4 22/4 23/4 33/4 33/4	1 11/4 11/2 11/2 11/2 2 2 2 2 21/2 21/4 21/4	0.150.150.150.150.150.150.150.150.150.15	2 21/2 23/4 3 31/4 5 5 6 6

$$D = H - \frac{5}{16}''$$
 $P = N - \frac{1}{4}''$

$$P = N - \frac{1}{4}$$

Pins

Bending Moments in Inch Pounds

Bending Moment = (Diameter of Pin) $^3 \times 0.098175 \times Stress$ per Square Inch.

1	Pin		FIBER	STRESS IN	Pounds P	ER SQUAR	E INCH	
Diameter, Inches	Area, Square Inches	15000	18000	20000	22000	22500	24000	25000
1	.785	1500	1800	2000	2200	2200	2400	250
11/4 11/2 13/4	1.227	2900	3500	3800	4200	4300	4600	480
11/2	1.767	5000	6000	6600	7300	7500	8000	830
2 2	2.405	7900	9500	10500 15700	11600 17300	11800 17700	12600 18800	1320 1960
216	3.142 3.976	11800 16800	14100 20100	22400	24600	25200	26800	2800
216	4.909	23000	27600	30700	33700	34500	36800	3830
21/4 21/2 23/4	5.940	30600	36800	40800	44900	45900	49000	5100
3	7.069	39800	47700	53000	58300	59600	63600	6630
31/4	8.296	50600	60700	67400	74100	75800	80900	8430
31/4 31/2 33/4	9.621	63100	75800	84200	92600	94700	101000	10520
33/4	11.045	77700	93200	103500	113900	116500	124300	12940
417	12.566	94200	113100	125700	138200	141400	150800	15710
412	14.186 15.904	113000 134200	135700 161000	150700 178900	165800 196800	169600 201300	180900 214700	22370
41/4 41/2 43/4	17.721	157800	189400	210400	231500	236700	252500	26300
5	19.635	184100	220900	245400	270000	276100	294500	30680
51/4	21.648	213100	255700	284100	312500	319600	340900	35520
51/4 51/2 53/4	23.758	245000	294000	326700	359300	367500	392000	40830
53/4	25.967	280000	336000	373300	410600	419900	447900	46660
6	28.274	318100	381700	424100	466500	477100	508900	53010
61/4	30.680	359500	431400	479400	527300	539300	575200	59920
63/2	33.183 35.785	404400 452900	485300 543500	539200 603900	593100 646300	606600 679400	647100 724600	67400 75480
7	38.485	505100	606100	673500	740800	757700	808200	84180
734 734 734	41.282	561200	673400	748200	823100	841800	897900	93530
73/2	44.179	621300	745500	828400	911200	931900	994000	103540
73/4	47.173	685500	822600	914000	1005400	1028200	1096800	114250
8	50,265	754000	904800	1005300	1105800	1131000	1206400	125660
81/4	53.456	826900	992300	1102500	1212800	1240400	1323000	137820
814 812 834	56.745 60.132	904400 986500	1085300 1183900	1205800 1315400	1326400 1446900	1356600 1479800	1447000 1578500	150730 164420
9	63.617	1073500	1288300	1431400	1574500	1610300	1717700	178920
91/4	67.201	1165500	1398600	1554000	1709400	1748300	1864800	194250
91/2	70.882	1262600	1515100	1683500	1851800	1893900	2020100	210430
93/4	74.662	1364900	1637900	1819900	2001900	2047400	2183900	227490
10	78.540	1472600	1767100	1963500	2159800	2208900	2356200	245440
1014	82.516	1585900	1903000	2114500	2325900	2378800	2537400	264310
101/2	86.590 90.763	1704700 1829400	2045700 2195300	2273000 2439200	2500300 2683200	2557100 2744100	2727600 2927100	284120 304910
11	95,033	1960100	2352100	2613400	2874800	2941000	3136100	326680
111/4	99.402	2096800	2516100	2795700	3075200	3145100	3354800	349460
111/4	103.869	2239700	2687600	2986200	3284900	3359500	3583500	373280
1134	108.434	2388900	2866700	3185300	3503800	3583400	3822300	398160
12	113.097	2544700	3053600	3392900	3732200	3817000	4071500	424120

Pin Plates

Bearing Values in Pounds on Metal One Inch Thick

Bearing Value = Diameter of Pin × Bearing Stress per Square Inch

1	Pin	В	EARING STRESS	es in Pounds	PER SQUARE I	NCH
Diam- eter, Inches	Area, Square Inches	12000	15000	20000	22000	24000
1	.785	12000	15000	20000	22000	24000
114	1.227	15000	18800	25000	27500	30000
11/2	1.767	18000	22500	30000	33000	36000
13/4	2.405	21000	26300	35000	38500	42000
2	3.142	24000	30000	40000	44000	48000
21/4	3.976	27000	33800	45000	49500	54000
21/2	4.909	30000	37500	50000	55000	60000
28/4	5.940	33000	41300	55000	60500	66000
3	7.069	36000	45000	60000	66000	72000
31/4	8.296	39000	48800	65000	71500	78000
31/2	9.621	42000	52500	70000	77000	84000
33/4	11.045	45000	56300	75000	82500	90000
4	12.566	48000	60000	80000	88000	96000
41/4	14.186	51000	63800	85000	93500	102000
41/5	15.904	54000	67500	90000	99000	108000
43/4	17.721	57000	71300	95000	104500	114000
5	19.635	60000	75000	100000	110000	120000
51/4	21.648	63000	78800	105000	115500	126000
51/2	23.758	66000	82500	110000	121000	132000
53/4	25.967	69000	86300	115000	126500	138000
6	28,274	72000	90000	120000	132000	144000
61/4	30,680	75000	93800	125000	137500	150000
61/2	33,183	78000	97500	130000	143000	156000
63/4	35,785	81000	101300	135000	148500	162000
7	38.485	84000	105000	140000	154000	168000
71/4	41.282	87000	108800	145000	159500	174000
71/2	44.179	90000	112500	150000	165000	180000
73/4	47.173	93000	116300	155000	170500	186000
8	50.265	96000	120000	160000	176000	192000
81/4	53.456	99000	123800	165000	181500	198000
81/2	56.745	102000	127500	170000	187000	204000
83/4	60.132	105000	131300	175000	192500	210000
9	63.617	108000	135000	180000	198000	216000
914	67.201	111000	138800	185000	203500	222000
934	70.882	114000	142500	190000	209000	228000
934	74.662	117000	146300	195000	214500	234000
10	78.540	120000	150000	200000	220000	240000
1014	82.516	123000	153800	205000	225500	246000
1016	86.590	126000	157500	210000	231000	252000
1034	90.763	129000	161300	215000	236500	258000
11 1134 1134 1134 12	95.033 99.402 103.869 108.434 113.097	132000 135000 138000 141000	165000 168800 172500 176300	220000 225000 230000 235000	242000 247500 253000 258500	264000 270000 276000 282000

Standard Screw Threads, Nuts and Bolt Heads

Recommended by Franklin Institute, December 15, 1864, and adopted by Navy Department of the United States, by the R. R. Master Mechanics' and Master Car-Builders' Association and by the Jones & Laughlin Steel Company.

Angle of thread 60°. Flat at top and bottom 1/8 of pitch.

Diameter	Threads	Diameter at	Diameter	Threads	Diameter at
of Screw,	per	Root of Thread,	of Screw,	per	Root of Thread,
Inches	Inch	Inches	Inches	Inch	Inches
1/4 5 16 8/8	20 18 16	.185 .240 .294	2 2 ¹ / ₄ 2 ¹ / ₂	4½ 4½ 4 4	1.712 1.962 2.176
7 16 1/2 9 16 5/6	14 13 12 11	.344 .400 .454 .507	23/4 3 31/4 31/6	4 3½ 3½ 3½ 3¼	2.426 2.629 2.879 3.100
3/4	10	.620	33/4	3 3 27/8	3.317
7/8	9	.731	4		3.567
1	8	.837	41/4		3.798
1½ 1¼ 1¾ 1½ 1½	7 7 6 6	1.065 1.160 1.284	4½ 4¾ 5 5½	2 ³ / ₄ 2 ⁵ / ₈ 2 ¹ / ₂ 2 ¹ / ₂	4.028 4.256 4.480 4.730
15/8	5½	1.389	5½	23/8	4.953
13/4	5	1.491	5¾	23/8	5.203
17/8	5	1.616	6	21/4	5.423

Nuts and bolt heads are determined by the following rules, which apply to both square and hexagon nuts:

Short diameter of rough nut = 11/2 X diameter of bolt + 1/8-inch.

Short diameter of finished nut = $1\frac{1}{2}$ × diameter of bolt + $\frac{1}{16}$ -inch.

Thickness of rough nut = diameter of bolt.

Thickness of finished nut = diameter of bolt - 13-inch.

Short diameter of rough head = 1 1/4 × diameter of bolt + 1/8-inch.

Short diameter of finished head = $1\frac{1}{16}$ × diameter of bolt + $\frac{1}{16}$ -inch.

Thickness of rough head = 1/2 short diameter of head.

Thickness of finished head = diameter of bolt $-\frac{1}{18}$ -inch.

The long diameter of a hexagon nut may be obtained by multiplying the "rort diameter by 1.155 and the long diameter of a square nut by multiplying bort diameter by 1.414.

Square Head Machine Bolts Average Weight of 100 Bolts

Length.				DIAN	ETER, IN	CHES			
Inches	34	10	3/8	16	3/2	5/8	34	3/8	1
114	4.0	6.8	10.6	15.0	23.9	40.5	70.0		1
13/4	4.4	7.3	11.3	16.1	25.1	42.7	73.1		
2	4.7	7.8	12.0	17.2	26.3	44.8	76.2		
21/	5.1	8.4	12.6	18.2	27.7	47.0	79.3		1000000
21/4 21/2 23/4	5.4	8.9	13.3	19.2	29.0	49.2	82.4	120.5	100
23/	5.8	9.5	14.0	20.2	30.4	51.4	85.5	124.7	
3	6.1	10.0	14.7	21.2	31.8	53.5	88.7	128.9	185.0
31/2	6.8	11.1	16.0	23.2	34.7	57.9	95.0	137.4	196.0
4	7.5	12.2	17.4	25.2	37.5	62.3	101.2	145.8	207.0
416	8.2	13.2	18.7	27.2	40.2	66.7	107.5	159.2	218.0
5	8.9	14.3	20.0	29.1	43.0	71.0	113.7	167.7	229.0
51/4	9.6	15.4	21.4	31.2	45.7	75.4	120.0	176.1	240.0
6	10.3	16.5	22.8	33.1	48.4	79.8	126.2	184.6	251.0
614	11.0	17.6	24.1	35.1	51.2	84.1	132.5	193.0	262.0
7	11.7	18.6	25.9	37.1	54.0	88.5	138.7	201.4	273.0
73/2	12.4	19.7	27.7	39.1	56.7	92.9	145.0	209.9	284.
8	13.1	20.8	29.5	41.0	59.4	97.2	151.2	218.3	295.
9	*******	*******	33.1	45.0	64.8	106:0	163.7	240.2	317.
10	*******		36.7	49.0	70.3	114.7	176.2	257.1	339.
11			40.4	53.0	75.8	123.5	188.7	273.9	360.
12			44.0	57.0	81.3	132.2	201.0	290.0	382.
13		******			86.7	140.7	213.4	307.7	404.
14	******				92.2	149.2	225.9	324.5	426.
15					97.7	157.6	238.3	341,4	448.
16					103.1	166.1	250.8	358.3	470.
17				*******	108.6	174.6	263.2	375.2	492.
18	* sintaliza	*******	*******	*******	114.1	183.1	275.6	392.0	514.
19		*******	*******		119.5	191.5	288.1	408.9	536.
20					125.0	200.0	300.5	425.8	558.
Per		700	VIII O		1				100
neh ddi-	1.4	2.2	3.6	4.0	5.5	8.5	12.4	16.9	22.0

Nuts and Bolt Heads Approximate Weight in Pounds

Diameter of Bolt, Inches	1/4	16	3/8	10	3/2	5/8	3/4
Weight of Hexagon Nut and Head Weight of Square Nut and Head	.017	.042	.057	.109	.128	.267	.43 .55
Diameter of Bolt, Inches	3/8	1	11/4	11/2	13/4	2	236
Weight of Hexagon Nut and Head	.73 .88	1.10	2.14 2.56	3.78 4.42	5.6	8.75	17.0

Hot Pressed Hexagon Nuts Sizes and Weights—United States Standard

DIME	NSIONS	Thick- ness,	Stan	of Hole	Size of Bolt.	Weight of 100	Number of Nuts
a	ь	Inches		OF ILONE	Inches	Nuts	in 100 Pounds
1/2 19 32 11 16 25 32	.58 .68 .79 .90	1/4 5/16 3/8 7/16	0.185 0.240 0.294 0.344	3 scant 14 scant 19 scant 11 scant 11 32	1/4 5 16 8/8 7 16	1.3 1.9 3.3 5.0	7615 5200 3000 2000
$\frac{7/8}{\frac{31}{32}}$ $1\frac{1}{16}$ $1\frac{1}{4}$	1.01 1.12 1.23 1.44	1/2 9 16 5/8 3/4	0.400 0.454 0.507 0.620	13 scant 29 64 1/2 full 5/8 scant	1/2 9 16 5/8 3/4	7.0 9.1 13.5 22.2	1430 1100 740 450
$1\frac{7}{16}$ $1\frac{5}{8}$ $1\frac{13}{16}$ 2	1.66 1.88 2.09 2.31	7/8 1 11/8 11/4	0.731 0.837 0.940 1.065	47 scant 27 scant 15 full 116 full	7/8 1 11/8 11/4	32.4 46.3 67.6 90.1	309 216 148 111
$2\frac{3}{16}$ $2\frac{3}{8}$ $2\frac{9}{16}$ $2\frac{3}{4}$	2.53 2.74 2.96 3.18	13/8 11/2 15/8 13/4	1.160 1.284 1.389 1.491	$1\frac{5}{32}$ full $1\frac{9}{32}$ full $1\frac{25}{64}$ scant $1\frac{1}{2}$ scant	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	117.5 147.1 178.6 250.0	85 68 56 40
$\begin{array}{c} 2\frac{15}{16} \\ 3\frac{1}{8} \\ 3\frac{5}{16} \\ 3\frac{1}{2} \end{array}$	3.39 3.61 3.82 4.04	17/8 2 21/8 21/4	1.616 1.712 1.836 1.962	$1\frac{5}{8}$ scant $1\frac{23}{32}$ scant $1\frac{27}{32}$ scant $1\frac{27}{31}$ scant $1\frac{31}{32}$ scant	17/8 2 21/8 21/4	285.7 344.8 384.6 434.8	35 29 26 23

Both weights and sizes are for unfinished nuts.

Hot Pressed Square Nuts Sizes and Weights—United States Standard

DIMES	NSIONS	Thick- ness,	Sizu	of Hole	Size of Bolt,	Weight of 100	Number of Nuts
a	ь	Inches			Inches	Nuts	in 100 Pounds
1/2 19 332 11 16 25 32	.71 .84 .97 1.11	1/4 5 16 3/8 7 16	0.185 0.240 0.294 0.344	3 scant 14 scant 19 scant 19 scant 13 scant	1/4 5 16 3/8 7 16	1.4 2.2 4.3 6.1	7270 4700 2350 1630
$\frac{\frac{7}{8}}{\frac{31}{32}}$ $1\frac{1}{16}$ $1\frac{1}{4}$	1.24 1.37 1.50 1.77	1/2 16 5/8 3/4	0.400 0.454 0.507 0.620	13 scant 29 64 12 full 58 scant	1/2 9 16 5/8 3/4	9.0 11.2 15.6 26.3	1120 890 640 380
$1_{\frac{16}{16}}^{\frac{7}{16}}$ $1_{\frac{13}{16}}^{\frac{13}{16}}$	2.03 2.30 2.56 2.83	7/8 1 11/8 11/4	0.731 0.837 0.940 1.065	$\frac{\frac{47}{64}}{\frac{27}{64}}$ scant $\frac{27}{32}$ scant $\frac{15}{16}$ full $1\frac{1}{16}$ full	7/8 1 11/8 11/4	35.7 58.8 76.9 104.2	280 170 130 96
$\begin{array}{c} 2\frac{3}{16} \\ 2\frac{3}{8} \\ 2\frac{9}{16} \\ 2\frac{3}{4} \end{array}$	3.09 3.36 3.62 3.89	$1\frac{3}{8}$ $1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$	1.160 1.284 1.389 1.491	$1\frac{5}{32}$ full $1\frac{9}{32}$ full $1\frac{25}{64}$ scant $1\frac{1}{2}$ scant	13/8 11/2 15/8 13/4	142.8 172.4 227.3 294.1	70 58 44 34
$\begin{array}{c} 2\frac{15}{16} \\ 3\frac{1}{8} \\ 3\frac{5}{16} \\ 3\frac{1}{2} \end{array}$	4.15 4.42 4.68 4.95	17/8 2 21/8 21/4	1.616 1.712 1.836 1.962	$1\frac{5}{8}$ scant $1\frac{23}{32}$ scant $1\frac{27}{32}$ scant $1\frac{31}{32}$ scant	17/8 2 21/8 21/4	370.4 416.7 500.0 588.2	27 24 20 17

Both weights and sizes are for unfinished nuts.

Upset Screw Ends For Square Bars

	Bony	OF BAR				UPSET	ENDS		
Side of Square d, Inches	Area, Square Inches	Weight per Foot, Pounds	Add for Upset, Inches	Diameter of Screw a, Inches	Length of Upset 1, Inches	Area at Root of Thread, Square Inches	Diameter at Root of Thread b, Inches		Excess of Area at Root of Thread over that of Body of Bar,%
1/2/8/3/4 7/8 11/3/4 11/3/8 10/3/8 10	3.516 4.000 4.516 5.063 5.641 6.250 6.891 7.563 8.266	.851 1.329 1.914 2.605 3.402 4.306 5.316 6.432 7.655 8.984 10.419 11.961 13.610 15.360 17.220 19.190 21.260 23.440 25.73 28.12 28.12 30.62	41/4	3/4 1 11/8 13/8 11/2 15/8 17/8 2 21/8 23/8 21/2 25/8 33/8 33/8 33/8 33/8 4 41/8	41/4 41/2 43/4 5 51/2 51/2 51/2 51/2 51/2 6 6 6 6 6 6 7 7 7 1/4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.302 .550 .694 1.057 1.295 1.515 2.048 2.302 2.650 3.419 3.715 5.108 5.428 5.957 7.087 7.548 8.171 9.303 9.993 10.706	.837 .939 1.160 1.284 1.389 1.615 1.712 1.837 2.175 2.300 2.629 2.754 3.004 3.100 3.225 3.442 3.567	5 41/2 41/2 4 4 4 31/2 31/2 31/4 31/4 31/4 31/4 31/4 31/4	of Bar,% 21 41 23 38 29 20 31 22 18 30 21 18 28 20 18 26 21 19 23 21 19
31/8 31/4 33/8 31/2 35/8 33/4 37/8		33.23 35.94 38.75 41.68 44.71 47.84 51.09	51/4 5 5 51/2 51/4 5 43/4 51/4	43/8 41/2 45/8 47/8 5 51/4	8 8 81/4 81/2 81/2 83/4 83/4 9	12.087 12.743 13.544 15.068 15.763 16.658 17.572 19.267	3.923 4.028 4.153 4.380 4.480	27/8 28/4 23/4 25/8 21/2	24 21 19 23 20 18 17 20

JONES & LAUGHLIN STEEL COMPANY

Upset Screw Ends For Round Bars

	Body	OF BAR				UPSET	ENDS		
Diameter d, Inches	Area, Square Inches	Weight per Foot, Pounds	Add for Upset, Inches	Diameter of Screw a, Inches	Length of Upset 1, Inches	Area at Root of Thread, Square Inches	Diameter at Root of Thread b, Inches	Number of Threads per Inch	Excess of Area at Root of Thread over that of Body of Bar,%
1/2 5/8 3/4 7/8	.196 .307 .442 .601	1.044	5½ 4½	3/4 7/8 1 11/4	4½ 4½ 4½ 4½ 4¾	.302 .420 .55 .893	.731 .837	9 8	54 37 25 48
1 1½8 1¼ 1¾ 1¾8	.785 .994 1.227 1.485	$\frac{3.382}{4.175}$	5½ 4¾ 4½ 4 4	13/8 11/2 15/8 13/4	5 5 51/4 51/4	1.057 1.295 1.515 1.744	1.389	6 51/2	35 30 23 18
$1\frac{1}{2}$ $1\frac{5}{8}$ $1\frac{3}{4}$ $1\frac{7}{8}$	1.767 2.074 2.405 2.761	7.056	51/4 5 43/4 41/2	2 2½ 2½ 2¼ 2¾ 2¾	5½ 5¾ 5¾ 6	2.302 2.650 3.023 3.419		4½ 4½ 4½ 4½ 4½	30 28 26 24
2 2½ 2½ 2¼ 2¾ 2¾	3.142 3.547 3.976 4.430	12.06 13.52	4½ 4 5¼ 4 ³ ⁄ ₄	2½ 25/8 27/8 3	6 6½ 6½ 6½ 6½	3.715 4.155 5.108 5.428		4 4	18 17 28 23
$2\frac{1}{2}$ $2\frac{5}{8}$ $2\frac{3}{4}$ $2\frac{7}{8}$	4.909 5.412 5.940 6.492	18.41 20.21	43/4 41/2 41/2 51/4	31/8 31/4 33/8 35/8	63/4 63/4 7 71/4	5.957 6.510 7.087 8.171	2.754 2.879 3.004 3.225	3½ 3½ 3½ 3½ 3½	21 20 19 26
3 3½ 3¼ 3¾ 3¾	7.069 7.670 8.296 8.946	26.10 28.23	5 5½ 4¾ 4¾ 4¾	33/4 37/8 4 41/8	71/4 71/2 71/2 71/2 73/4	8.641 9.305 9.993 10.706	3.567	3 3 3 3	22 21 20 20
33/4	9.621 10.321 11.045 11.793	35.12 37.57	4½ 5¼ 5¼ 5¼ 5	41/4 41/2 45/8 43/4	8 8 81/4 81/2	11.329 12.743 13.544 14.220	3.798 4.028 4.153 4.255	27/8 28/4 28/4 25/8	18 23 23

Standard Sleeve Nuts Dimensions and Weights

Size, Inches	D	L	A	В	C	Size, Inches	D	L	A	В	C
3/4 1/8 11/8 11/4 13/8 11/2 15/8 13/4 11/8	3/4 7/8 1 11/8 11/4 13/8 11/2 15/8 13/4 17/8	8888888888	1 1½ 1¾ 1¾ 1¾ 1½ 1½ 1½ 1½ 1½ 1½ 2 2½ 2½	6 5 ³ / ₄ 5 ¹ / ₂ 5 ¹ / ₄ 5 4 ³ / ₄ 4 ¹ / ₂ 4 ¹ / ₄ 4 3 ³ / ₄	1/4/4 5 16 5 16 5 16 8 8 8 7 16 7 16 7 16 7 16 7 16 7 16	2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 3	2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 3	10 10 10 10 10 10 10 10 10	21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4	5½ 5¼ 5 4¾ 4½ 4¼ 4 3¾ 4 3¾ 4 3¾ 4 3¾ 4	1/1/2 16 9 16 /8 5/8 116 ···

JONES & LAUGHLIN STEEL COMPANY

Standard Clevis Nuts Dimensions and Weights

Diameter of Head for Various Given Sizes of Pins

Used with Steel Rods 68,000 lbs. per sq. in.

						Size	S OF	PIN					
D	A B	1 1	14 11/2	13/4	2	21/4	21/2	23/4	3	31/4	31/2	33/4	4
1/8 11/8 11/4 13/8 11/2 15/8	$\begin{array}{cccc} 0 & 3\frac{1}{2} \\ 0 & 3\frac{3}{4} \\ 0 & 4 \\ 2 & 4\frac{1}{4} \\ 2 & 4\frac{1}{4} \end{array}$	234 2 234 2 234 2 234 2 234 2	334 234 334 3 334 3 34 3 314 3 314 3 314 3 334 3 334 3 334 3	3 3 31/4 31/2 33/4 4 4 43/8	3½3½3½3½4 443/843/455¼4 55¼4	3344 3344 438 438 434 514 514 514 534 634	43/8/44/4/55/4/55/4/55/4/66/3/4/8 66/3/4/8	5534634634634888888888888888888888888888	634634634888888888888888888888888888888	634 8 8 8 8 8 8 8	8888889	8899	8 8 9 9

All Clevis Nuts with Diameter I—8 in, or larger Dimension A will be 12 in.

Dimension E, F, G for Various Diameters I

								WEIGHTS OF	CLEVISES
1	Е	F	G	1	E	F	G	Diameter D, Inches	Weight, Pounds
2 ³ / ₄ 3 3 ¹ / ₄ 3 ¹ / ₂ 3 ³ / ₄ 4 4 ³ / ₈	77 237 237 239 237 239 237 237 237 237 237 237 237 237 237 237	1/2 1/2 1/6 15/8 5/8 116	1½ 15/8 13/4 17/8 2 21/8 21/4	43/4 51/4 53/4 63/4 8 9	25 32 7/8 15 16 114 11/2	23 22 13 16 27 27 23 15 16 16 16 15 16	2½ 2¾ 3 3¼ 4 4½	34 to 1½ 158 to 2 2½ to 2½ 258 to 3	5 to 8 9 to 15 20 to 25 30 to 40

Dimension J to suit requirements.

Standard Turnbuckles

All Dimensions Given in Inches

D Clear Distance		C Length Buckle	Clear Width Inside	F	cnese	H Long Diameter	Length	Weight of Buckle, Pounds	Weight of Buckle & Stub Ends, Pounds
D	A B	C	E	F	G	п	L	RM	15 tip
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	71/8 71/8 71/8 81/8 85/8 9 93/8 93/8 101/2 107/8 111/4 111/8 12 123/8 131/8 131/8 131/8 141/4 145/8 153/4 161/2 171/4 18 211/2 221/2	Verel		12/8/8/8/4/8 11/1/1/8/8/4/8 11/1/1/8/8/4/8 11/1/1/8/8/4/8 11/1/1/8/8/4/8 11/1/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/4/8 11/1/8/8/8/4/8 11/1/8/8/8/4/8 11/1/8/8/8 11/1/8/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8/8 11/1/8 1/1/8 1/	113/8 113/8 1196 1196 221/4 221/4 221/4 221/4 33/4 33/7 34/4 45/8 61/8 66/8 66/8	22 22 22 22 22 23 24 25 25 26 27 27 28 28 29 29 30 31 32 32 33 33 34 36 37 39	1 1 1 1 1 1 1 1 2 2 3 4 5 6 7 8 10 11 12 14 17 20 22 25 30 33 36 40 65 65	11/2 13/4 2 21/2 3 4 6 8 11 13 16 19 23 26 30 35 41 47 53 61 70 78 86 96 120 150

Dimensions E, F, G, H depend upon the specification of the bars with which the turnbuckles are to be used.

Corrugated Sheets

Note-Allowing a lap of one and one-half corrugations, one sheet will cover 24 inches.

			11	eight	in Pour	nda		Waight	per s	onne.	of 100		f+ of
ange			ts of S Black	heets		hts of a		Corr laid,	ugated allowi 314 in	Sheet ng 6-in	s (Blanch lap	ack)	when
oy U. S. lard Gauge	mess in	lq. Ft.	3q. Ft.	in. Ft.	Sq. Ft.	Sq. Ft.	Lin.Ft.		idth of				
No. by	Thickness Inches=t	Per S Flat	Per B Per B Corri of Sh			Per Sq.	Per I of Sh	5'	6'	7'	8'	9	10'
16	.0625	2.55	.55 2.836.48			3.21	7.34	360	353	349	346	343	341
18	.05	2.04	2.27	5.19	2.38	2.64	6.05	288	283	280	277	275	273
20	.0375	1.53	1.70	3.89	1.87	2.07	4.75	216	212	210		206	
22	.03125								177	175		171	District Co.
24		1.02							142	140		137	
26	.01875	0.765	0.85	1.94	1.11	1.22	2.80	108	106	105	104	103	102

For weight of sheets painted, add 5 to 10 pounds per square of 100 square feet.

For weight of sheets galvanized, add 42 to 46 pounds per square of 100 square feet.

For weight of Clips and Rivets, add 3 per cent of weight of corrugated iron.

For weight per square laid with two laps, add to above 5 per cent.

Sheets are 30 ½ inches wide before, and 27 to 27 ½ inches wide after corrugating. Sheets can be corrugated any length not exceeding 10 feet.

It is not advisable to use over 6'0" clear spans on roofs.

L = Unsupported length of sheet in inches.

t = Thickness of sheet in inches.

b = Width of sheet in inches.

d = Depth of corrugations in inches.

W = Safe load distributed in pounds.

 $W = \frac{25000 \text{ t b d}}{L}$

Standard Steam, Gas and Water Pipe

Inches	Ori	DINARY P	IPE	X	Strong P	IPE	xx	STRONG :	Pipe
Nominal Size, Inches	Inside Diameter	Actual Outside Diameter	Weight per Foot, Pounds	Inside Diameter	Actual Outside Diameter	Weight per Foot, Pounds	Inside	Actual Outside Diameter	Weight ner Foot.
1/8 1/4 3/8 1/2	.27 .364 .494 .623	.405 .540 .675 .84	.24 .42 .56 .84	.205 .294 .421 .542	.405 .540 .675 .84	.29 .54 .74 1.09	.244	.84	i
3/4 1 11/4 11/2	.824 1.048 1.38 1.611	1.05 1.315 1.66 1.90	1.12 1.67 2.24 2.68	.736 .951 1.272 1.494	1.05 1.315 1.66 1.90	1.39 2.17 3.00 3.63	.422 .587 .885 1.088		2 3 5 6
2 2½ 3 3½	2.067 2.468 3.067 3.548	2.375 2.875 3.50 4.00	3.61 5.74 7.54 9.00	2.315	2.875 3.50	5.02 7.67 10.25 12.47	1.491 1.755 2.284 2.716	$\frac{2.875}{3.50}$	
4 4½ 5 6	4.026 4.508 5.045 6.065		10.66 12.49 14.50 18.76	4.28 4.813	5.00	14.97 18.22 20.54 28.58	3.136 3.564 4.063 4.875	5.00	27 32 38 53
7 8 9 10	7.023 7.982 8.937 10.019	7.625 8.625 9.625 10.75		6.625 7.625	7.625 8.625	43.00	5.875 6.875		71

Wooden Beams

The following tables of safe loads for wooden beams are based upon the unit stresses recommended by the American Railway Engineering Association, and are founded upon a unit having a rectangular section one inch thick, the uniformly distributed safe load for which is given in the tables. This is the most convenient arrangement as the safe load for a beam of any width can readily be found by multiplying the tabular value given for the beam one inch wide by the width of the beam for which the safe load is desired.

These loads, as given, include the weights of the beams themselves and it is assumed that the beams will be so braced as to secure them against lateral or side deflection.

There will also be found in these tables the maximum and minimum spans on which these beams should be used and the co-efficients of deflection.

The maximum load that it has been considered safe to put on these beams is that load which is indicated by the maximum allowable shearing stress along the horizontal axis of the beam. This is given by the formula—maximum safe load equals four times area of section divided by three times safe unit stress for longitudinal shear.

These limits which are indicated by horizontal lines in the tables, should not be exceeded. This will avoid the failure of the beam in a direction parallel to the grain of the wood. Usually this is in the horizontal.

The deflection under a uniformly distributed load at the center of the span is obtained by dividing the coefficient of deflection by the depth of the beam in inches. This deflection considers loads that are permanently applied only and will approximate the actual deflection, but owing to the modulus of elasticity of the material varying with the amount of moisture contained, it cannot be considered as more than approximate. It is usually considered well to limit the deflection to 1/360 of the span where plastered ceilings are involved. This limit will also be found indicated in the tables.

For concentrated loads at center of span one-half of the tabular values should be used and four-fifths of the deflection coefficient.

Working Stresses per Square Inch for Structural Timber

The stresses per square inch, as given in this table, are based upon the stresses recommended by the American Railway Engineering Association for railroad structures.

For highway structures the stresses can be safely increased about one-fourth, while for buildings and similar structures, where the timber is protected from the effects of the weather and where the load is can safely be increased by one-half. practically steady, these unit stresses

for long continued periods only fifty per cent of the corresponding modulus of elasticity need be used in computing the deflection Where beams remain under load

Unit Stresses in Pounds Per Square Inch

= 1	1		10	1	10	101
	Working Stresses for Columns	Length bxd1 15v0	$\frac{1}{1200}(1-\frac{600}{1})$	1300 (1-60d)	1100 (1 - 600	1000 (1 - 600
	M	Length under 15xd	006	975	825	150
COMPRESSION	lel in	Working	1200	1300	1100	1000
COM	Parallel to the Grain	Average Ultimate	3600	3800	3400	3000
	licular he in	Working	310	260	170	150
	Perpendicular to the Grain	Elastic Limit	630	520	340	290
	Longitudinal Shear in Beams	Working Stress	110	120	130	01
DNG	Longituding Shear in Beams	Average Ultimate	270	300	330	180
SHEARING	llel in	Working Stress	170	180	170	100
100	Parallel to the Grain	Average	069	720	710	400
Di	Modulus of Elasticity	Average	1510000	1610000	1480000	1130000
BENDING	eme er sss	Working sents	1200	1300	1100	900
	Extreme Fiber Stress	Average Ultimate	6100	6500	2600	4400
	Krvo	Thasin	Douglas Fir	Longleaf Pine.	Shortleaf Pine	White Pine

Unit Stresses in Pounds per Square Inch-Continued

		BENDING	DA.		SHEARING	RING	-			1	COMPRESSION	SSION	
Krw	Extra File Stre	Extreme Fiber Stress	Modulus of Elasticity	Parallel to the Grain	llel he in	Longitudin Shear in Beams	Longitudinal Shear in Beams	Perpendicular to the Grain	pendicular to the Grain	Para to t Gre	Parallel to the Grain		Working Stresses for Columns
Тивен	Average	Working Stress	эжизэлү	Average	Working	Average	Working Stress	Electic Limit	Working	Average otamit[U	Working Stress	Length under 15zd	Length bxčl 19vo
Spruce	4800	1000	1310000	009	150	170	20	370	180	3200	1100	825	$\frac{1}{1100}(1-\frac{1}{600})$
Norway Pine	4200	800	1190000	200*	130	250	100	:	150	2600*	800	009	800 (1 — 60d)
Tamarack	4600	006	1220000	029	170	260	100	:	220	3200*	1000	750	1000 (1 - 60d)
Western Hemlock	5800	1100	1480000	630	160	270*	100	440	220	3500	1200	006	1200 (1-60d)
Redwood	2000	900	800000	300	80	-	:	400	150	3300	900	675	(pog (1 — 60d)
Bald Cypress	4800	006	1150000	200	120	*****		340	170	3900	1100	825	1100 (1 — 60d)
Red Cedar	4200	800	800000				*****	470	230	2800	006	675	(pop -1) 006
White Oak	5700		1100 1150000	840	210	270	110	920	450	3500	1300	975	1300 (1-60d)

sartially air dry timbers. In the formulae given for columns, 1 = length of column, in inches, and d = least side or diameter, in inches.

Wooden Beams

Examples of Use of Tables

Example 1.—Required the thickness and the approximate deflection of a beam of white pine, 16 inches deep, supporting a uniformly distributed and permanent dead and live load of 13000 pounds over a span of 20 feet.

The tabular value for a beam one inch thick and for a span of 20 feet is 1280 pounds; the required thickness is therefore $13000 \div 1280 = 10$ inches, and the deflection is $19.09 \div 16 = 1.19$ inches.

Example 2.—Required the safe load of a beam of white oak 10 inches deep and 8 inches thick, without exceeding the longitudinal shearing stress.

The table gives for a corresponding beam 1 inch thick a safe load of 1467 pounds; the total safe load is therefore $8 \times 1467 = 11736$ pounds, or the safe load which can be safely supported over a span of 8.3 feet.

Example 3.—Required the safe load, concentrated in the center of a span 25 feet long and the deflection of a beam of spruce 20 inches deep and 16 inches thick.

The table gives for a corresponding beam 1 inch thick a uniformly distributed safe load of 1422 pounds, or for a load in center of span 1778 \div 2 = 889 pounds; for a beam 16 inches wide the safe load is therefore 889 \times 16 = 14224 pounds, and the deflection is approximately $4/5 \times 28.63 \div 20 = 1.15$ inches.

Rectangular Wooden Beams—One Inch Thick Greatest Safe Loads and Span Limits

of	Wi	nite ak	Long			tleaf ne		nite ne	Dou	ıglas ir	Wes		Spri	uce
Depth Beam,		Min. Span, Ft.	Max. Load, Lbs.								Max. Load, Lbs.			
2 4 6	293 587 880	1.7 3.3 5.0	320 640 960	1.8 3.6 5.4	693	1.5 3.1 4.6	373	2.1 4.3 6.4	587	1.8 3.6 5.5	533	1.8 3.7 5.5	187 373 560	2.4 4.8 7.1
8 10 12	1173 1467 1760	6.7 8.3 10.0	1280 1600 1920	7.2 9.0 10.8	1387 1733 2080	6.2 7.7 9.2	747	8.6 10.7 12.9	1173 1467	7.3 9.1 10.9	1067 1333	7.3 9.2 11.0	747 933 1120	9.5 11.9 14.3
14 16 18	2053 2347 2640	11.7 13.3 15.0	2240 2560 2880	12.6 14.4 16.3		10.8 12.3 13.8	1307 1493	15.0 17.1 19.3	2053 2347	12.7 14.5 16.4	1867 2133	12.8 14.7 16.5	1307 1493	16.7 19.0 21.4
20 22 24	2933 3227 3520	16.7 18.3 20.0	3200 3520	18.1 19.9 21.7	3467 3813 4160	15.4 16.9 18.5	1867 2053	21.4 23.6 25.7	2933	18.2 20.0 21.8	2667	18.3 20.2 22.0	1867 2053	.23.8 26.2 28.6

Coefficients of Deflection for Constant Loading

Span in Feet	White Oak	Long- leaf Pine	Short- leaf Pine, West- ern Hem- lock	White Pine,	Spruce	Span in Feet	White Oak	Long- leaf Pine	Short- leaf Pine, West- ern Hem- lock	White Pine,	Spruce
1 2	0.06	0.19	0.05 0.18	0.05	0.05 0.18		25.31 27.78	21.37 23.44	19.67 21.59	21.05 23.10	20.20 22.17
3	0.52	0.44	0.40	0.43	0.41	23	30.37	25.63	23.59	25.25	24.23
4	0.92	0.78	0.71	0.76	0.73	24	33.06	27.91	25.69	27.49	26.38
5	1.44	1.21	1.12	1.19	1.15	25	35.88	30.28	27.88	29.83	28.63
5 6 7 8 9	2.07 2.81	1.74 2.37	1.61 2.19	1.72 2.34	1.65 2.24	26 27	38.80 41.85	32.75 35.32	30.15 32.51	32,27 34,80	30.96
9 10	3.67 4.65 5.74	3.10 3.92 4.85	2.85 3.61 4.46	3.06 3.87 4.77	2.93 3.71 4.58	28 29 30	45.00 48.27 51.66	37.99 40.75 43.61	34.97 37.51 40.14	37.42 40.14 42.96	
11	6.95	5.86	5.40	5.78	5.54	31	55.16	46.56	42.86	45.87	44.01
12	8.27	6.98	6.42	6.87	6.60	32	58.78	49.61	45.67	48.88	46.90
13	9.70	8.19	7.54	8.07	7.74	33	62.51	52.76	51.56	51.98	49.88
14	11.25	9.50	8.74	9.36	8,98	34	66.35	56.01		55.18	52.95
15	12.92	10.90	10.04	10.74	10.31	35	70.32	59.35		58.47	56.11
16	14.69	12.40	11.42	12.22	11.73	36	74.39	62.79	57.80	61.86	59.36
17	16.59	14.00	12.89	13.79	13.24	37	78.58	66.33	61.06	65.34	62.70
18	18.60	15.70	14.45	15.47	14.84	38	82.89	69.96	64.40	68.92	66.14
19	20.72	17.49	16.10	17.23	16.53	39	87.31	73.69	67.84	72.60	69.66
20	22.96	19.38	17.84	19.09	18.32	40	91.84	77.52	71.36	76.37	73.28

Greatest Span in Feet for Constant Loading

Species of Timber	Depth of Beam in Inches											
openie of Timori	2	4	6	8	10	12	14	16	18	20	22	24
White Oak Longleaf Pine Shortleaf Pine Western Hemlock White Pine, Douglas Fir. Spruce	2.8 3.0 3.0 2.8	4.7 5.5 6.0 6.0 5.6 5.8	8.3 9.0 9.0 8.4	11.0 12.0 12.0 11.2	13.8 15.0 15.0 14.0	16.5 17.9 17.9 16.7	19.3 20.9 20.9 19.5	22.0 23.9 23.9 22.3	24.8 26.9 26.9 25.1	27.6 29.9 29.9 27.9	30.3 32.9 32.9 30.7	33. 35. 35.

Rectangular Wooden Beams-One Inch Thick

Douglas Fir

Allowable uniform loads in pounds. Extreme fibre stress, 1200 pounds per square inch.

Feet 2	Span					DEPTH	OF BEA	M IN IN	CHES				
The color of the	Feet	2	4	6	8	10	12	14	16	18	20	22	24
178						10 18							
4 133 533			***	******		*****			200200				*****
5 107 427 880				*****		*****	*****		*****	*****		*****	
6 89 356 800				*****	******	*****	*****	******	*****		*****	******	
6 89 356 880 1173				880									
8 67 267 600 1067 9 237 533 948 1467 1467 10 213 480 853 1333 1333 133 11 194 436 776 1212 1745 1745 12 1745 1745 1745 1745 1745 184 184 340 711 1111 1600 2053 184 343 610 952 1371 1867 3347 185 184 186 1742 2276 185 2320 569 889 1280 1742 2276 186 183 2474 1111 1607 1452 1896 2440 2933 177 185 2502 784 1129 1537 2008 2541 184 474 744 11067 1452 1896 2440 2933 181 199 449 702 1011 1375 1796 2274 2807 3227 220 427 667	6	89	356						arriver.				Local
9		76	305	686	1173								
10		67		600	1067			******					
111 194 436 776 1212 1745 </th <td></td> <td>*****</td> <td></td> <td>97.00</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		*****		97.00									
11 194 436 776 1212 1745 <td>10</td> <td></td> <td>213</td> <td>480</td> <td>853</td> <td>1333</td> <td>*****</td> <td>*****</td> <td>*****</td> <td></td> <td>*****</td> <td></td> <td></td>	10		213	480	853	1333	*****	*****	*****		*****		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	1000		1								100
13		*****											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		200000000000000000000000000000000000000	178						*****				*****
15 320 569 889 1280 1742 2276 </th <td></td> <td>*****</td> <td></td> <td>*****</td>											*****		*****
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		100 V 2 V V	1000000							*****			
17	10	*****	*****	320	909	889	1280	1742	2270	*****	*****	*****	+3-6-54
17	16		Marrie VI	300	522	833	1200	1633	2123	0040	407.22	25334	
188 474 741 1067 1452 1896 2400 2933				1							100000		
19				100000000000000000000000000000000000000								TO A 1000	******
20 427 667 960 1307 1707 2160 2667 3227 21 635 914 1244 1625 2057 2540 3073 3590 22 606 873 1188 1552 1964 2424 2933 3491 23 580 835 1136 1484 1878 2319 280 3339 24 556 800 1089 1422 1800 2222 2689 3200 25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 2984 27 711 968 1264 1600 1975 2390 2844 28 686 933 1219 1543 1905 2345 2954 30 871 1138 1440 1778 2151 256 31 843 </th <td></td> <td>PC 0000</td> <td></td> <td>1</td> <td>77.17</td> <td>0.000</td> <td></td> <td>1000000</td> <td>100000000000000000000000000000000000000</td> <td>Market Market 1971</td> <td></td> <td></td> <td>The same</td>		PC 0000		1	77.17	0.000		1000000	100000000000000000000000000000000000000	Market Market 1971			The same
21 635 914 1244 1625 2057 2540 3073 3500 22 606 873 1188 1552 1944 2424 2933 3491 23 580 835 1136 1484 1878 2319 2806 3339 24 556 800 1089 1422 1800 2222 2689 3200 25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 2984 27 711 968 1264 1600 1975 230 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 139				720000	7000								
22 606 873 1188 1552 1964 2424 2933 3491 23 580 835 1136 1484 1878 2319 2806 3339 24 556 800 1089 1422 1800 2222 2689 3200 25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 2954 27 711 968 1294 1600 1975 2300 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1344 1720 202 2477 32 817 1067 1350 1667 20					-	001	000	1001	2101	2200	2001	000	
23 580 835 1136 1484 1878 2319 2806 3339 24 556 800 1089 1422 1800 222 2689 3200 25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 2954 27 711 968 1204 1600 1975 2300 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 2480 33 1034 1309 1616 1956 2327 34 1007 1350 1667 2017 2400 33 1034						635	914	1244	1625	2057	2540	3073	3520
24 556 800 1089 1422 1800 2222 2689 3200 25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 261 2482 2051 2482 284 400 1975 2300 2844 288 686 933 1219 1543 1905 2305 2743 299 901 1177 1490 1839 2225 2648 30 871 1138 1440 1770 2082 2477 32 236 344 101 1394 1720 2082 2477 32 817 1067 1350 1667 2017 2400 33 1034 1309 1616 1956 2327 34 1034 1309 1616 1956 2327 34 1034 1271 1509 1898 2259 35 35 975 1234 1						606	873	1188	1552	1964	2424	2933	3491
25 768 1045 1365 1728 2133 2581 3072 26 738 1005 1313 1662 2051 2482 2954 27 711 968 1264 1600 1975 230 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 2470 32 817 1067 1350 1667 2017 2400 33 1034 1309 1616 1956 2327 34 1004 1271 1569 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 <													
26 738 1005 1313 1662 2051 2482 2954 27 711 968 1204 1600 1975 2390 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 2477 32 817 1067 1350 1667 2017 2400 33 1034 1399 1616 1956 2237 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1108 1441 1744 2076 38 1137 1404 </th <td></td> <td></td> <td></td> <td></td> <td></td> <td>556</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						556							
27 711 968 1264 1000 1975 2300 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2925 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 240 33 1034 1309 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1698 2021	25		*****				768	1045	1365	1728	2133	2581	3072
27 711 968 1264 1000 1975 2300 2844 28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2925 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 240 33 1034 1309 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1698 2021	28	1			1000		790	1005	1010	1669	9051	9499	9054
28 686 933 1219 1543 1905 2305 2743 29 901 1177 1490 1839 2225 2648 30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 2477 32 817 1067 1350 1667 2017 2400 33 1034 1309 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1988 2021 38 1137 1404 1998 2021 39 1108 1368 1655 1999			141111	4	******								
30 871 1138 1440 1778 2151 2560 31 843 1101 1394 1720 2082 2477 32 817 1067 1350 1667 2017 2400 33 1034 1309 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1969 39 1108 1368 1655 1969	28												
31 843 1101 1394 1720 2082 2477 32 817 1067 1350 1667 2017 2400 33 1034 1309 1616 1956 2327 34 1004 1271 1590 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1969			+++==+	++++++				901	1177	1490		2225	2648
32 817 1067 1350 1667 2017 2400 33 1034 1399 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1999 39 1108 1368 1655 1999	30							871	1138	1440	1778	2151	2560
32 817 1067 1350 1667 2017 2400 33 1034 1399 1616 1956 2327 34 1004 1271 1599 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1999 39 1108 1368 1655 1999	01	1		- 1				040	1101	1004	1000	0000	NAME
33 1034 1309 1616 1956 2327 34 1004 1271 1569 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1969		*****	*****	ALC: NO.	100000000000000000000000000000000000000								
34 1004 1271 1569 1898 2259 35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1969		*****	****	MC3000	33100			911					
35 975 1234 1524 1844 2194 36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1698 2021 39 1108 1368 1655 1969		1000000		100000000000000000000000000000000000000	1000	2000	100000						
36 948 1200 1481 1793 2133 37 1168 1441 1744 2076 38 1137 1404 1608 2021 39 1108 1368 1655 1969 39 1969 1968 1655 1969													
37	1	1		10 0				1	100	(Second)	Carlot I	Sour	
38			11.1955			249644	FIEVE	1508.6	948				
39 1108 1368 1655 1969					1400	*****		15.5.0					
10 1000 1000 1000 1000									100000				
	40	The same of						280808	19.30.53	1080	1333	1613	1909
40 1080 1868 1613 1920	30		*****				*****	20.000	242200	1000	1000	1013	1020

Horizontal lines indicate the limit for shear in the direction of the grain.

Rectangular Wooden Beams-One Inch Thick

Longleaf Pine

Allowable uniform loads in pounds. Extreme fibre stress, 1300 pounds per square inch.

Span												
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
-	320											
2	289	*****										
3	193	640							*****			****
4	144	578										
5	116	462	*****			+++++			*****			
121	132		960									
6	96	385	867									
7	83	330	743	1280	*****							
8	72	289	650	1156			*****	*****				ires.
9		257	578	1027	1600			*****				
10		231	520	924	1444							
201		1		-		1920		1	1333		10000	
11		210	473	840	1313	1891			*****			
12		193	433	770	1204	1733	2240		Canada.			
13			400	711	11111	1600	2178					
14			371	660	1032	1486	2022	2560				
15		(cools	347	616	963	1387	1887	2465				
20	72223		200	330		2001	2001	-				
16			325	578	903	1300	1769	2311	2880			
17	000000			544	850	1224	1665	2175	2753			
18				514	802	1156	1573	2054	2600	3200		*****
19	15000	10000		487	760	1095	1490	1946	2463	3041	1000000000	
20	1			462	722	1040	1416	1849	2340	2889	3520	
20				402	122	1040	1410	1049	2040	2009	3496	*****
21					688	991	1348	1761	2229	2751	3329	3840
22					657	945	1287	1681	2127	2626	3178	3782
23	4 2 2 2 2 2 2 2				628	904	1231	1608	2035	2512	3040	3617
24	000000	******		******	602	867	1180	1541	1950	2407	2913	3467
25						832	1132	1479	1872	2311	2796	3328
F-9-1						COM	****	22110	2012	2011	2100	0020
26						800	1089	1422	1800	2222	2689	3200
27					100 0.5000	770	1049	1370	1733	2140	2589	3082
28						743	1011	1321	1671	2064	2497	2971
29							976	1275	1614	1992	2411	2869
30					242444		944	1233	1560	1926	2330	2773
1	1	1			10.10.51	7	600		0000			
31							913	1193	1510	1864	2255	2684
32							885	1156	1463	1806	2185	2600
33								1121	1418	1751	2119	2521
34		*****				*****		1088	1377	1699	2056	2447
35	****	*****						1057	1337	1651	1998	2377
0.0		1 1						1000		4636	44.00	260
36						+6====		1027	1300	1605	1942	2311
37	*****							*****	1265	1562	1890	2249
38	*****	+34+44			*****				1232	1521	1840	2189
39	*****								1200	1482	1793	2133
40								*****	1170	1444	1748	2080

Horizontal lines indicate the limit for shear in the direction of the grain

Rectangular Wooden Beams—One Inch Thick

Shortleaf Pine, Western Hemlock and White Oak

Allowable uniform loads in pounds. Extreme fibre stress, 1100 pounds per square inch.

Span				-	DEPTH	H OF BE	AM IN I	INCHES				-
Feet	2	4	6	8	10	12	14	16	18	20	22	24
2 3	347 245	693										
4	163	652 489		*****								
5	122 98	391	880	*****								*****
	80	991	000	1387	******	*****		*****	*****			
6	82	326	733	1304								
7	70	279	629	1117	1733							
8	61	245	550	978	1528	2080						
9		217	489	869	1358	1956	2427					
10		196	440	782	1222	1760	2396					*****
11	10000	178	400		1111	1600	2178					
12	*****	200	ACCURATE AND ADDRESS OF	711	1000000	00000	1996	2778				
975	******	163	367	652	1019	1467		2607	3120			*****
13	*****	*****	338	602	940	1354	1843	2407	3046	*****		>**
14	*****		314	559	873	1257	1711	2235	2829	3467		
15			293	522	816	1173	1597	2086	2640	3259	*****	*****
16		Janes	275	489	764	1100	1497	1956	2475	3055	3697	4160
17		100000	1.000	460	719	1035	1409	1841	2329	2876	3480	4141
18				435	679	978	1331	1738	2200	2716	3287	3911
19				412	643	926	1261	1647	2084	2573	3113	3705
20	10000			391	611	880	1198	1564	1980	2444	2958	3520
21				1 1000	583	838	1141	1490	1886	2328	2817	3352
22				1	556	800	1089	1422	1800	2222	2689	3200
23		******	+++++		531	765	1042	1361	1722	2126	2572	3061
24 25					509	733	998	1304	1650	2037	2465	2933
				115000		704	958	1252	1584	1956	2366	2816
26		VAR-11	912.00			677	921	1203	1523	1880	2275	2708
27 28			1.1000000000			652	887 856	11159	1467	1811 1746	2191	2608 2514
29	*****					029	826	1079	1366	1686	2040	2428
30					*****		799	1043	1320	1630	1973	2348
31					10000		773	1009	1278	1577	1908	2271
32				10.000	2.2		749	978	1238	1528	1849	2200
33		*****						948	1200	1482	1793	2133
34 35		*****	14.42.	*****			*****	920 894	1165 1131	1438 1397	1740 1690	2071 2011
36	1		1					869	1100	1358	1643	1956
37		2.11500	1000000					000	1070	1321	1599	1903
38		*****							1042	1287	1557	1853
39	******			200000	200000		*****	*****	1015	1254 1222	1517	1805 1760
90			and I		_	tal lin	_	_	990		1479	in the

Upper, middle and lower horizontal lines indicate the limits for shear in the ection of the grain of Shortleaf Pine, White Oak and Hemlock respectively.

Rectangular Wooden Beams—One Inch Thick Gontinued White Pine

Allowable uniform loads in pounds. Extreme fibre stress, 900 pounds per square inch.

Span	-			D	EPTH OF	P BEAM	IN INC	HES				
in Feet	2	4	6	8	10	12	14	16	18	20	22	24
2	187											
3	133		700000									1000
4	100	373						110111				
5	80	320	100000						10.000	THE STATE OF	103181	
100	-	0.00		1								
6	67	267	560									
7	57	229	514							++1.000		
8	50	200	450	747								
9		178	400	711								
10		160	360	640								
22		202	1	2000	933			1				
11	*****	145	327	582	909							
12		133	300	533	833	1120						
13	*****	*****	277	492	769	1108						con.
14			257	457	714	1029	1307					
15			240	427	667	960	1307					
16		*****	225	400	625	900	1225	*****		+ + + + + +	200000000000000000000000000000000000000	
17				377	588	847	1153	1493	*****	****	*****	****
18	*****	*****		356	556	800	1089	1422				
19	*****	*****	+++++	337	526	758	1032	1347	1680	*****		
20			*****	320	500	720	980	1280	1620	*****		****
21			*****		476	686	933	1219	1543	1867		
22					455	655	891	1164	1473	1818	******	trees
23					435	626	852	1113	1409	1739	2053	
24				*****	417	600	817	1067	1350	1667	2017	
25						576	784	1024	1296	1600	1936	
26						554	754	985	1246	1538	1862	221
27		2000		111111	******	533	726	948	1200	1481	1793	213
28		20000000	F			514	700	914	1157	1429	1729	205
29			110001	0000000	100000		676	883	1117	1379	1669	198
30							653	853	1080	1333	1613	192
100						-	-					
31	*****	*****		*****			632	826	1045	1290	1561	185
32	******					*****	613	800	1013	1250	1513	180
33		*****	*****					776	982	1212	1467	174
34	******			200000				753	953	1176	1424	169
50		*****				24++4		731	926	1143	1383	164
36								711	900	1111	1344	160
37									876	1081	1308	155
38									853	1053	1274	151
39									831	1026	1241	147
40						250000			810	1000	1210	1440

Horizontal lines indicate the limit for shear in the direction of the

Rectangular Wooden Beams-One Inch Thick

Spruce

Allowable uniform loads in pounds. Extreme fibre stress, 1000 pounds per square inch.

Span	DEPTH OF BEAM IN INCHES											
Feet	2	4	6	8	10	12	14	16	18	20	22	24
2	187											
3	148											10000
4	111	373										
5	89	356										
6	~	000			3	7		0				
7	74 63	296 254	560								CASTAN	*****
8	56	222	500		10000						.,	*****
9	30	198	444	747				*****	******		******	
10		178	400	711								
-		****					200111			-		
11		162	364	646	933				******			
12		148	333	593	926							
13			308	547	855					*****		
14	*****		286	508	794	1120					++++++	
15			267	474	741	1067	*****	*****	*****		*****	*****
16			250	444	694	1000	1307	- 435			Land	
17				418	654	941	1281		100000	A BOB OF		10000
18				395	617	889	1210	10000	100000			
19			1000000	374	585	842	1146	1493				
20	200000			356	556	800	1089	1422				
	-			-		1	-	Contract Con			10000	100000
21					529	762	1037	1354	1680			
22					505	727	990	1293	1636			
23					483	696	947	1237	1565	1867	*****	
24					463	667	907	1185	1500	1852		
25		*****	*****			640	871	1138	1440	1778		
26					10000	615	838	1094	1385	1709	-	1.70
27					*****	593	807	1053	1333	1646	2053 1992	*****
28						571	778	1016	1286	1587	1921	2240
29		10000000		*****		011	751	981	1241	1533	1854	2207
30		*****	******		*****		726	948	1200	1481	1793	2133
							1000	-			-	2000
31							703	918	1161	1434	1735	2065
32		*****			*****		681	889	1125	1389	1681	2000
33				*****	*****	*****	*****	862	1091	1347	1630	1939
34 35						*****		837 813	1059 1029	1307 1270	1582 1537	1882 1829
00		******		*****		*****	*****	019	1029	1270	1991	1029
36			incom		· corri			790	1000	1235	1494	1778
37									973	1201	1453	1730
38									947	1169	1415	1684
39			*****						923	1140	1379	1641
40		*****		*****	*****	*****			900	1111	1344	1600

forizontal lines indicate the limit for shear in the direction of the grain.

Wooden Posts

The following tables of safe loads for wooden posts are based on the working stresses per square inch recommended by the American Railway Engineering Association, and give the recommended direct compressive load for both round and square posts.

For rectangular posts other than square, the safe loads may be found from the tables giving safe loads for the square posts by increasing the tabular load in direct proportion to the areas of the respective posts. The square post used for purposes of comparison should of course be the square whose side is equal to the least side of the rectangular section that it is proposed to use.

The table below gives the safe load in pounds per square inch of sectional area for posts having ratio of length to least side, or diameter ranging between 15 and 30.

Example—Required the allowable load for a post of white pine 6"x8", 10 ft. long. The safe load as per table for the white pine post 6"x6", 10 ft. long, is given as 18900 pounds. The load for the 6"x8" section would therefore be 8/6 of this or 25200 pounds.

Working Stresses in Pounds Per Square Inch

1	Longleaf Pine, White Oak	Douglas Fir, Western Hemlock	Shortleaf Pine, Spruce, Bald Cypress	White Pine, Tamarack	Red Cedar, Redwood	Norway Pine
d	$1300(1-\frac{1}{60d})$	$1200(1-\frac{1}{60d})$	$1100(1-\frac{1}{60d})$	$1000(1-\frac{1}{60d})$	900(1-1 60d)	800(1-1
15 16	975 953	900 880	825 807	750 733	675 660	600 587
17	931 910	860 840	788 770	717 700	645 630	573 560
18 19 20	888 867	820 800	752 733	683 667	615	547
21	845	780	715	650	585	533 520
22 23 24	823 802	760 740	697 678	633 617	570 555	507 493
24	780 758	720 700	660 642	600 583	540 525	480
25 26	737	680	623	567	510	467 453
27 28	715 693	660 640	605 587	550 533	495 480	440
29	672 650	620 600	568 550	517 500	465	418

Square Wooden Posts

Safe Loads in Thousands of Pounds

American Railway Engineering Association Formulae.

	th,		Side of Square, Inches									
	Length, Feet	4	6	8	10	12	14	16	18	20		
LONGLEAF PINE WHITE OAK 1 1300 (1 - 1 60d	5 6 7 8 9 10 11 12 14 16 18 20	15.6 15.6 14.6 13.5 12.5 11.4 10.4	35.1 34.3 32.8 31.2 29.6 28.1 25.0	62.4 62.4 60.3 58.2 54.1 49.9 45.8 41.6	97.5 93.6 88.4 83.2 78.0	140.4 137.3 131.0 124.8	191.1 189.3 182.0	249.6 249.6	315.9	390.0		
DOUGLAS FIR WESTERN HEMLOCK 1200 (1 - 1) 60d	5 6 7 8 9 10 11 12 14 16 18 20	14.4 14.4 13.4 12.5 11.5 10.6 9.6	32.4 31.7 30.2 28.8 27.4 25.9 23.0	57.8 57.6 55.7 53.8 49.9 46.1 42.2 38.4	90.0 86.4 81.6 76.8 72.0	129.6 126.7 121.0 115.2	176.4 174.7 168.0	230.4 230.4	291.6	360.0		
SHORTLEAF PINE SPRUCE 1100 (1 - 1) 60d	5 6 7 8 9 10 11 12 14 16 18 20	13.2 13.2 12.3 11.4 10.6 9.7 8.8	29.7 29.0 27.7 26.4 25.1 23.8 21.1	52.8 52.8 51.0 49.3 45.8 42.2 38.7 35.2	82.5 79.2 74.8 70.4 66.0	118.8 116.2 110.9 105.6	161.7 160.2 154.0	211.2	267.3	330.0		
WHITE PINE TAMARACK 1000 (1 — 1 60d	5 6 7 8 9 10 11 12 14 16 18 20	12.0 12.0 11.2 10.4 9.6 8.8 8.0	27.0 26.4 25.2 24.0 22.8 21.6 19.2	48.0 48.0 46.4 44.8 41.6 38.4 35.2 32.0	75.0 72.0 68.0 64.0 60.0	108.0 105.6 100.8 96.0	147.0	192.0	243.0	300.0		

Figures above horizontal lines indicate greatest permissible loading.

Round Wooden Posts

Safe Loads in Thousands of Pounds

American Railway Engineering Association Formulae.

	4		DIAMETER, INCHES									
	Length, Feet	4	6	8	10	12	14	16	18	20		
LONGLEAF PINE WHITE OAK 1300 (1 — 1)	5 6 7 8 9 10 11 12 14 16 18 20	12.3 12.3 11.4 10.6 9.8 9.0 8.2	27.6 27.0 25.7 24.5 23.3 22.1 19.6	49.0 49.0 47.4 45.7 42.5 39.2 35.9 32.7	76.6 73.5 69.4 65.3 61.3	110.3 107.8 102.9 98.0	150.1 148.7 142.9	196.0	248.1	306.3		
WESTERN HEMLOCK	5 6 7 8 9 10 11 12 14 16 18 20	11.3 11.3 10.6 9.8 9.1 8.3 7.5	25.4 24.9 23.7 22.6 21.5 20.4 18.1	45.2 45.2 43.7 42.2 39.2 36.2 33.2 30.2	70.7 67.9 64.1 60.3 56.5	101.8 99.5 95.0 90.5	138.5 137.2 132.0	181.0	229.0	282.7		
SHORTLEAF PINE SPRUCE 1100 (1 — 100	5 6 7 8 9 10 11 12 14 16 18 20	10.4 10.4 9.7 9.0 8.3 7.6 6.9	23.3 22.8 21.8 20.7 19.7 18.7 16.6	41.5 41.5 40.1 38.7 35.9 33.2 30.4 27.6	64.8 62.2 58.7 55.3 51.8	93.3 91.2 87.1 82.9	127.0 125.8 121.0	165,9	209.9	259.2		
WHITE PINE TAMARACK 1000 (1 —)	5 6 7 8 9 10 11 12 14 16 18 20	9.4 9.4 8.8 8.2 7.5 6.9 6.3	21.2 20.7 19.8 18.9 17.9 17.0 15.1	37.7 37.7 36.4 35.2 32.7 30.2 27.6 25.1	58.9 56.5 53.4 50.3 47.1	84.8 82.9 79.2 75.4	115.5 114.4 110.0	150.8	190.5			

Figures above horizontal lines indicate greatest permissible loading.

Weights of Various Materials and Loads for Storage Warehouses

Material Stored	Weights per Cubic Foot of Space, Pounds	Height of Pile, Feet	Weighta per Square Foot of Floor, Pounds	Recom- mended Live Loads Pounds per Square Foot
Groceries, Wines, Liquors, Etc.				
Beans, in bags	40	8	320)
Canned Goods, in cases	58	6	348	
Coffee, Roasted, in bags.	33	8	264	
Coffee, Green, in bags	39	8	312	
Dates, in cases	55	6	330	
Figs, in cases	74	6 5 5 6 5 5 8 6 5 6	370	
Flour, in barrels	40	5	200	
Molasses, in barrels	48	5	240	250 to
Rice, in bags	58	6	348	300
Sal Soda, in barrels	46	5	230	000
Salt, in bags	70	5	350	
Soap Powder, in cases	38	8	304	
Starch, in barrels	25	6	150	
Sugar, in barrels	43	5	215	
Sugar, in cases	51	6	306	
Tea, in chests	25	8	200	
Wines and Liquors, in			1000	
barrels	38	6	228)
Dry Goods, Cotton, Wool, Etc.				
Burlap, in bales	43	6	258	1
Coir Yarn, in bales	33	8	264	
Cotton, in bales, com-	0 000		1	
nressed	18	8	144	
Cotton Bleached Goods,	1000			
in cases	28	8	224	
Cotton Flannel, in cases.	12	8 8 8 8	96	000 4
Cotton Sheeting, in cases	23	8	184	200 to
Cotton Yarn, in cases	25	8	200	250
Excelsior, compressed	19	8	152	
Hemp, Italian, com-				
pressed	22	8	176	
Hemp, Manila, com-			1 200	
pressed	30	8	240	
Tute, compressed	41	8	328	

Continued on next page.

Weights of Various Materials and Loads for Storage Warehouses

Continued

Material Stored	Weights per Cubic Foot of Space, Pounds	Height of Pile, Feet	Weights per Square Foot of Floor, Pounds	Recom- mended Live Loads, Pounds per Square Foot
y Goods, Cotton, Wool, Etc.				
Continued				
1 Damask, in cases 1 Goods, in cases 1 Towels, in cases compressed , in bales, com- ssed , in bales, not com-	50 30 40 21 29	5 8 6 8 8	250 240 240 168 232	200 to 250
, Worsteds, in cases	13 27	8 8	104 216)
uilding Materials	·			
ent, Naturalent, Portland	59 73 53	6 6 5	354 438 265	300 to 400
Hardware, Etc.				
checks	74	2 5 4½	556 425 315 333	300 to 400
, Magnet, on spools.		6 2	450	<u> </u>

ntinued on next page.

JONES & LAUGHLIN STEEL COMPANY

Weights of Various Materials and Loads for Storage Warehouses

Continued

Material Stored	Weights per Cubic Foot of Space, Pounds	Height of Pile, Feet	Weights per Square Foot of Floor, Pounds	Recom- mended Live Loads, Pounds per Square Foot
Drugs, Paints, Oil, Etc.				
Alum, Pearl, in barrels	33	6	198	1
Bleaching Powder, in	-60	500	5000	
hogsheads	31	3½ 5	102	
Blue Vitriol, in barrels	45	5	226	1
Glycerine, in cases	52	6	312	10
Linseed Oil, in barrels	36	6	216	
Linseed Oil, in iron drums Logwood Extract, in	45	4	180	
boxes	70	5	350	
Rosin, in barrels	48	6	288	200 to
Shellac, Gum	38	6	228	300
Soda Ash, in hogsheads	62	23/4	167	
Soda, Caustic, in iron	200		200	
drums	- 88	31/3	294	
Soda, Silicate, in barrels.	53	6	318	
Sulphuric Acid	60	12/3	100	
White Lead Paste, in cans	174	31/2	610	
White Lead, dry	86	43/4	408	
Red Lead and Litharge,			-	
dry	132	33/4	495)
Miscellaneous	/			
Glass and Chinaware, in				
crates	40	8	320	
Hides and Leather, in	20		020	
bales	20	8	160	
Hides, Buffalo, in bundles	37	8	296	
Paper, Newspaper, and	1	-	000	1
Strawboards	35	6	210	000
Paper, Writing and Cal-			1200	300
endered	60	6	360	
Rope, in coils	32	6	192	

Expansion of Bodies by Heat

The linear coefficient of expansion of a body is the rate at which the unit of length changes, under constant pressure, with an increase of unit or one degree of temperature. The square surface coefficient of expansion is, approximately, two times and the cubical or volumetric coefficient three times the linear coefficient of expansion. A bar, if not fixed, undergoes a change in length = ltn, where l is the length of the bar in inches, t the number of degrees and n the corresponding linear coefficient. If fixed at both ends, the internal stress per unit of area = tnE, pounds per square inch, where E is the modulus of elasticity, and the total temperature stress = AlnE, pounds, where A is the cross section of the bar in square inches.

To find the increase of a bar due to an increase in temperature, from the following table, multiply the number of degrees by the

coefficient given for 100 degrees and divide by 100.

Co-efficients of Expansion for 100 Degrees = 100n

	Linear Expansion			Linear Expansion	
Substance	Centi- Fahren- grade heit		Substance	Centi- grade	Fahren- heit
Metals and Alloys			Stone and Masonry		
Aluminum, wrought	.00231	.00128	Ashlar masonry	.00063	.00035
Brass	.00188	.00104	Brick masonry	.00055	.00031
" wire		.00107	Cement, Portland	.00107	.00059
Bronze		.00101	Concrete		.00079
Copper		.00093	" masonry		.00067
German Silver	.00183	.00102	Granite	.00084	.00047
Gold	.00150	.00083	Limestone	.00080	.00044
Iron, cast, gray	.00106	.00059	Marble	.00100	.00056
" wrought		.00067	Plaster	.00166	00092
4 wire	.00124	.00069	Rubble masonry	.00063	.00035
Lead	.00286	.00159	Sandstone	.00110	.00061
Nickel	.00126	.00070	Slate	.00104	,00058
Platinum	.00090	.00050	Timber		200
Platinum - Iridium, 15%	24.000	2000	Fir 1	.00037	.00021
Ir	.00081	.00045	Manta	.00064	.00021
Silver	.00192	.00107	Oak parallel to fiber	.00049	.00030
Steel, cast	,00110	.00061	Pine Pine	.00048	.00027
" hard	.00132	.00073	Fir	.0058	.0032
" medium	.00120	.00067		.0048	.0027
" soft		.00061	Maple perpendicular Oak to fiber	.0054	.0030
Tin	.00210	.00117		.0034	.0019
Zine, rolled	.00311	.00173	Pine J	-	1 100000
	190000	120000	Liquid Substances	Volumetric	
Miscellaneous Solids		TALL AND THE STREET		nsion	
Glass	.00085	.00047	Alcohol	.104	.058
Graphite	.00079	.00044	Acid, nitrie	.110	.061
Gutta-percha	.05980	.03322	" sulphuric		.035
Paraffin	.02785	.01547	Mercury	.018	.010
Porcelain	.00036	.00020	Oil, turpentine	.090	.050

Expansion of Water, Maximum Density = 1.

Co	Volume	Co	Volume	Co	Volume	C°	Volume	Co	Volume	Co	Volume
0	1.000126	10 20	1.000257 1.001732	30 40	1.004234	50 60	1.011877 1.016954	70	1.022384	90	1

Weight and Specific Gravity

Various Materials

Water at 39.2° F.

Substance	Specific Gravity	Weight per Cu.Ft. Lbs. Substance		Specific Gravity	Weight per Cu.Ft. Lbs.	
Iron, east, pig	2.55-2.75 7.7 8.4-8.7 7.4-8.9 8.8-9.0 4.1-4.3 19.25-19.35 7.2 7.6-7.9 7.8-7.9 7.5 6.7-7.3	450 485 490 468 437 325	Various Solids Continued Leather. Paper. Potatoes, piled. Rubber, caoutehoue. Rubber goods. Salt, granulated, piled. Saltpeter. Starch. Sulphur. Wool.	0.86-1.02 0.70-1.15 0.92-0.96 1.0-2.0 7.7 1.07 1.53 1.93-2.07 1.32	59 58 42 59 94 48 67 96 125 82	
" " limonite " slag Lead " ore, Galena Manganese " ore, pyrolusite. Mercury Nickel." monel metal. Platinum, cast-hammered. Silver, cast-hammered. Tin, cast-hammered. " ore, cast-trite. Zinc, cast-rolled " ore, blende	3.6-4.0 4.9-5.2 2.5-3.0 11.37 7.3-7.6 7.2-8.0 3.7-4.6 13.6 8.9-9.2 8.8-9.0 21.1-21.5 10.4-10.6 7.2-7.5 6.4-7.0 6.9-7.2 3.9-4.2	237 315 172 710 465 475 259 849 565 556 1330 656 459 418 440 253	Ash, white-red. Cedar, white-red. Cedar, white-red. Chestnut. Cypress. Fir, Douglas spruce. eastern. Elm, white. Hemlock. Hickory. Locust. Maple, hard. white. Oak, chestnut. it ve. red, black. white.	0.62-0.65 0.32-0.38 0.66 0.48 0.51 0.40 0.72 0.42-0.52 0.74-0.84 0.73 0.68 0.53 0.86 0.95 0.65	40 22 41 30 32 25 45 29 46 43 33 54 59 41	
Various Solids Cereals, oats, bulk " barley, bulk " corn, rye, bulk " wheat, bulk Hay and Straw, bales. Cotton, Flax, Hemp Fats Flour, loose " pressed Glass, common " plate or crown " crystal	1.47-1.50 0.90-0.97 0.40-0.50 0.70-0.80	32 39 48 48 20 93 58 28 47 156 161 184	Pine, Oregon " red. " white. " yellow, longleaf. " shortleaf Poplar. Redwood, California. Spruce, white, black. Walnut, black. " white. MOISTURE CONTENTS: Seasoned timber 15 to 20% Green timber up	0.51 0.48 0.41 0.70 0.61 0.42 0.42-0.46 0.61 0.41	32 30 26 44 38 30 26 27 38 26	

mtinued on next page.

Weight and Specific Gravity

Various Materials Continued Water at 39.2° F.

Substance	Specific Gravity	Weight per Cu. Ft. Lbs.	Substance	Specific Gravity	Weight per Cu. Ft., Lbs.
Various Liquids	-		Brick Masonry		
Alcohol, 100%	0.79 1.20 1.50 1.80 1.70	49 75 94 112 106	Pressed brick	2.2-2.3 1.8-2.0 1.5-1.7	140 120 100
Oils, vegetable	0.91-0.94 0.90-0.93 1.0	58 57 62,428	Concrete Masonry		
" ice." snow, fresh fallen sea water	0.9584 0.88-0.92 .125 1.02-1.03	59,830 56 8 64	Cement, stone, sand slag, etc cinder, etc	2.2-2.4 1.9-2.3 1.5-1.7	144 130 100
Gases, Air=1			Various Building		
Air, 0°C, 760 mm Ammonia Carbon dioxide	1.0 0.5920 1.5291	1/773	Material Ashes, cinders Cement, Portland,		40-45
Carbon monoxide Gas, illuminating " natural Hydrogen	0.9673 0.35-0.45 0.47-0.48 0.0693 0.9714		Cement, Portland, set. Lime, gypsum, loose Mortar, set.	1.4-1.9	90 183 53-64 103
NitrogenOxygen	1.1056		Slags, bank slag bank screenings machine slag slag sand	*******	67-72 98-117 96 49-55
Granite, syenite, gneiss Limestone, marble Sandstone, bluestone	2.3-3.0 2.3-2.8 2.1-2.4	165 160 140	Excavated Earth,		
Mortar Rubble Masonry			Clay, dry		63 110 100 76
Granite, syenite, gneiss Limestone, marble Sandstone, bluestone	2,2-2,8 2,2-2,6 2,0-2,2	155 150 130	" dry, packed " moist, loose " moist, packed " mud, flowing " mud, packed		95 78 96 108 115
Dry Rubble Masonry			Riprap,limestone		80-85 90
Granite, syenite, gneiss Limestone, marble Sandstone, bluestone	1.9-2.3 1.9-2.1 1.8-1.9	130 125 110	Sand, gravel, dry, loose packed wet		105 90-105 100-120 118-120

Continued on next page.

Weight and Specific Gravity

Various Materials Continued

Water at 39.2° F.

Substance	Specific Gravity	Weight, per Cu. Ft. Lbs.	Substance .	Specific Gravity	Weight per Cu. Ft. Lbs.
Excavations in Water Sand or gravel Sand or gravel and clay Clay River mud Soil Stone riprap		60 65 80 90 70 65	Stone, Quarried, Piled Basalt, granite gneiss. Limestone, marble, quarts. Sandstone. Shale. Greenstone, horn- blende. Bituminous		96 95 82 92 107
Minerals Asbestos Barytes Basalt Bauxite Borax Chalk Clay, marl Dolomite Feldspar, orthoclase Gneiss, serpentine Granite, syenite Greenstone, trap Gypsum, alabaster Hornblende Limestone, marble	2.1-2.8 4.50 2.7-3.2 2.55 1.7-1.8 1.8-2.6 2.9 2.5-2.8 2.4-2.7 2.5-3.1 2.8-3.2 2.3-2.8 3.0 2.5-2.8	153 281 184 159 109 137 137 181 159 159 175 187 165	Substances Asphaltum Coal, anthracite bituminous lignite peat, turf, dry coke coke Graphite Paraffine Petroleum benzine	1.9-2.3 0.87-0.91 0.87 0.79-0.82 0.73-0.75 0.66-0.69 1.07-1.15	81 97 84 78 47 23 33 75 131 56 46 46 42 69 75
Magnesite Phosphate rock apatite Phosphyry Porphyry Pumice, natural Quartz, fiint Sandstone, bluestone Shale, slate Soapstone, talc.	2.6-2.9 0.37-0.90 2.5-2.8 2.2-2.5 2.7-2.9	187 200 172 40 165 147 175 169	Coal and Coke, Piled Coal, anthracite bituminous, lignite peat, turf charcoal coke		47-58 40-54 20-26 10-14 23-32

Strength of Materials Stresses Per Square Inch

		STRESS USA NDS			DS S		ů,
METALS AND ALLOYS	Tension, Ultimate	Elastic	Compression, Ultimate	Bending, Ultimate	Shearing, Ultimate	Modulus of Elasticity, Pounds	Elongatio
Aluminum, cast	15	6.5	12		12	11,000,000	
bars, sheetswire, hard	24-28 30-65	12-14		****		*********	
" wire, annealed	20-35	14					
Bronze, 5% to 7½% Alumin.	75	40	120				
Copper, cast. " 10% Aluminum	85-100 25	60	40	22	30	10,000,000	*****
plates, rods, bolts	32-35	10	32				
wire, hard	55-65 36	10				18,000,000	
Brass, 17% Zinc	32.6	8.2		23.2		10,000,000	26.7
23%		7.6		22.3			35.8
30% 4	28.1 41.1	8.6 17.4		26.9 39		********	20.7
50%	31	17.9	117	33.5			5.0
" cast, common	18-24 80	6	30	20	36	9,000,000	
" wire, annealed	50	16				14,000,000	
Bronze 8% Tin	28.5	19	42	43.7		10,000,000	5.5
# 0007 #	29.4	20	53 78	34.5 56.7			3.3 0.04
24% "	22	22	114	32			0.
" 30% "	5.6	5.6		12.1		10 000 000	0.
" gun metal, 9 Copper, 1 Tin " Manganese, cast 110% Tin	25-55 60	10 30	125	52		10,000,000	******
Manganese, cast \ 10% Tin rolled \ 2% Mn Phosphorus, cast \ 9% Tin	100	80					
Phosphorus, cast 9% Tin wire 1% Phos	50 100	24					
" Silicon, east, 3% Silicon	55					*********	
Silicon, east, 3% Silicon 5% Silicon	75						
" Wire 38% Zinc	108 66						
"Tobin, east 38% Zinc 114% Tin cold rolled 4,% Lead	80	40				4,500,000	
Delta Metal cost) 55-60% Connection	100 45						
plates 38—40% Zinc	68		Contract of				
Delta Metal, cast 55-60% Copper " plates 38-40% Zinc " bars 2-4% Iron " wire 1-2% Tin. German Silver, 25% Zinc, 20% Nickel	85						
German Silver, 25% Zinc, 20% Nickel	100		200				
Gold, cast.	20	4				8,000,000	
" copper, 5 gold, 1 copper	30 50				****	********	
Lead, cast	1.8						
* pipe, wire	2.2-2.5		COLUMN 2				******
Platinum, wire, unannealed	3.3 53					720,000	******
Silver, east	32						
Silver, cast	40 3.5-4.6	15-18	6	4		4,000,000	
antimony, 10 tin, 1 antimony	11	14144					
Zine, cast	4-6	4	18	7		13,000,000	
" rolled sheets	7-16		1	1	Jacob		

Strength of Materials Continued Stresses in Pounds per Square Inch

	Aver	STRESSES	MATE	Modulus	SAFE WORKING STRESSES					
BUILDING MATERIALS	Com- press.	Tension	Bending	of Elasticity	Com- press.	Bearing	Shearing			
Stone Bluestone. Granite, gneiss. Linestone, marble. Sandstone. Slate.	12,000 12,000 8,000 5,000 10,000	1,200 1,200 800 150 3,000	2,500 1,600 1,500 1,200 5,000	7,000,000 7,000,000 7,000,000 3,000,000 14,000,000	1,200 1,200 800 500 1,000	1,200 1,200 800 500 1,000	200 200 150 150 175			
Brick Common, good "medium burned "hard burned Pressed and paving Cement, Portland	10,000 11,000 15,000 6,000	200	600							
Neat, 28 days " 90 days 1:3 sand, 28 days " 90 days	7,040 7,350 1,290 1,490	740 740 320 340			*******					
Concrete, P. C. 1:1½:3, hard stone soft stone cinders 1:2:4, hard stone oft stone cinders 1:2½:5, hard stone oft stone oft stone oft stone cinders 1:3:6, hard stone soft stone cinders	2,650 1,800 700 2,100 1,500 600 1,700 1,200 500 1,350 1,000 400	Reinforced Concrete—Safe Working Stresses Elastic Modulus (2,000,000 if ult. compression is up to 2,200. 3,000,000 if ult. compression is over 2,200. 22.5% of ult. compression on piers or pression columns of lengths not exceeding 12 dia. 32.5% of ult. compression on surfaces of at least twice the loaded area. 2.0% of ult. compression, horizontal bars. Shearing (3.0% for reinforcement with bent-up bars. 6.0% for thoroughly reinforced webs. Bond 2% for drawn wire.								
Limestone, bluestone. Sandstone. Rubble. " coursed Concrete, P.C., 1:2:4.					420 350 280 140 168 350 280 168 210	600 500 400 250 250 600 500 300 300				
Miscellaneous Glass, common. flooring Plaster Terra cotta. Ropes, cast steel hoist. Ropes, standing, der k Ropes, Manila. Belts, sol. woven, cot'n Belts, solid woven flax	10,000 700 5,000	3,000 3,000 70 80,000 70,000 8,000 7,300 9,900								

For ultimate and working stresses of Structural Timber, see page 272.

United States Standard Gauge For Sheet and Plate Iron and Steel

Gauge Number	Thickness in Fractions of an Inch	Thickness in Decimals of an Inch	Approximate Thickness in Millimeters	Weight per Square Foot, in Pounds, Iron	Weight per Square Foot, in Pounds, Steel	Weight per Square Meter in Kilograms, Steel
0000000	3/2	.5	12.70	20.	20.4	99,601
000000	3/3	.46875	11.91	18.75	19.125	93,376
00000	1/6	.4375	11.11	17.50	17.85	87,151
0000	\$2	.40625	10.32	16.25	16.575	80.926
000	9/8	.375	9.53	15.	15.3	74.701
00	\$1	.34375	8.73	13.75	14.025	68.476
0	16	.3125	7.94	12.50	12.75	62.251
1 2 3 4	327 617 617 44 44	.28125 .265625 .25 .234375	7.14 6.75 6.35 5.95	11.25 10.625 10. 9.375	11.475 10.8375 10.2 9.5625	56.026 52.913 49.800 46.688
5 6 7 8	7 114 64 161 164	.21875 .203125 .1875 .171875	5.56 5.16 4.76 4.37	8.75 8.125 7.5 6.875	8.925 8.2875 7.65 7.0125	43.575 40.463 37.350 34.238
9	\$2	.15625	3.97	6.25	6.375	31.125
10	84	.140625	3.57	5.625	5.7375	28.013
11	1/8	.125	3.18	5.	5.1	24.900
12	84	.109375	2.78	4.375	4.4625	21.788
13	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.09375	2.38	3.75	3.825	18.675
14		.078125	1.98	3.125	3.1875	15.563
15		.0703125	1.79	2.8125	2.86875	14.006
16		.0625	1.59	2.5	2.55	12.450
17	180	.05625	1.43	2.25	2.295	11.205
18	20	.05	1.27	2.	2.04	9.960
19	180	.04375	1.11	1.75	1.785	8.715
20	20	.0375	0.953	1.50	1.53	7.470
21 22 23 24	110 120 120 120 20	.034375 .03125 .028125 .025	0.873 0.794 0.714 0.635	1.375 1.25 1.125 1.	1.4025 1.275 1.1475 1.02	6.848 6.225 5.603 4.980
25	520	.021875	0.556	.875	.8925	4.358
26	180	.01875	0.476	.75	.765	3.735
27	840	.0171875	0.437	.6875	.70125	3.424
28	84	.015625	0.397	.625	.6375	3.113
29	840	.0140625	0.357	.5625	.57375	2.801
30	870	.0125	0.318	.5	.51	2.490
31	840	.0109375	0.278	.4375	.44625	2.179
32	7280	.01015625	0.258	.40625	.414375	2.023
33	1280	.009375	0.238	.375	.3825	1.868
34	1280	.00859375	0.218	.34375	.350625	1.712
35	1280	.0078125	0.198	.3125	.31875	1.556
36	1280	.00703125	0.179	.28125	.286875	1.401
37	2560	.006640625	0.169	.265625	.2709378	1.323
38	760	.00625	0.159	.25	.255	

The United States Standard Gauge was legalized by Act of Congress March 3, 1893, as a standard gauge for sheet and plate iron and steel.

Since the use of numbers to express thickness or size leads to confusion, decimal parts of an inch should be employed when fractions can not be used conveniently.

Birmingham Wire Gauge

Equivalents in Inches

Corresponding Weights of Flat Rolled Steel

Gauge	Thickness.	Pounds	THICKNES	s, Inches	Pounds
Number	Inches	Square Foot	Fractional	Decimal	Square Foot
0000	.454	18.5232 17.34	3/2 107 107 107 107 107	.5 .46875 .4375 .40625	20.4 19.125 17.85 16.575
00	.380	15.504 13.872	110	.375 .34375	15.3 14.025
1 2 3	.300 .284 .259	12.24 11.5872 10.5672	Signal State of State	.3125 .296875 .28125 .265625 .25 .234375	12.75 12.1125 11.475 10.8375 10.2 9.5625
5 6 7 8	.220 .203 .180 .165	8.976 8.2824 7.344 6.732	P	.21875 .203125 .1875 .171875	8.925 8.2875 7.65 7.0125
9 10 11 12	.148 .134 .120 .109	6.0384 5.4672 4.896 4.4472	1/8 1/8 1/8	.15625 .140625 .125 .109375	6.375 5.7375 5.1 4.4625
13 14 15 16	.095 .083 .072 .065	3.876 3.3864 2.9376 2.651	*	.09375 .078125 .0625	3.825 3.1875 2.55
17 18 19 20	.058 .049 .042 .035	2.3664 1.9992 1.7136 1.428	* ::	.046875	1.9125
21 22 23 24	.032 .028 .025 .022	1.3056 1.1424 1.02 0.8976	*	.03125	1.275
25 26 27 28	.020 .018 .016 .014	0.816 0.7344 0.6528 0.5712		.015625	0.6375
29 30 31 32	.013 .012 .010 .009	0.5304 0.4896 0.408 0.3672	:		
33 34 35 36	.008 .007 .005 .004	0.3264 0.2856 0.2040 0.1632	rås 	.0078125	0.31875

Comparison of Gauges In Decimal Parts of an Inch

Gauge Number	J & L Gauge	Birmingham Wire(B.W.G.) also known as Stube Iron Wire	American Wire or Browne & Sharpe	British Imperial Standard Wire (S. W. G.)	Standard Birmingham Sheet and Hoop (B. G.)	United States Standard for Sheet and Plate Iron and Steel
0000000	.4900			.500		.500
000000	.4615		.580000	.464		.46875
00000	.4305	.500	.516500	.432	*********	.4375
0000	.3625	.454 .425	.460000 .409642	.400	.5000	.40625
000	.3310	380	.364796	.348	.4452	.34375
00	.3065	.340	.324861	.324	3964	.3125
1	.2830	300	289297	.300	.3532	28125
2	2625	.284	257627	.276	.3147	.265625
3	.2437	.259	.229423	.252	.2804	.25
4	. 2253	.238	.204307	.232	.2500	234375
5	.2070	.220	.181940	.212	.2225	.21875
6	.1920	.203	.162023	.192	.1981	.203125
7 8	.1770	.180	.144285	.176	.1764	.1875
8	.1620	.165	.128490	.160	.1570	.171875
9	.1483	.148	.114423	.144	.1398	.15625
10	.1350	.134	.101897	.128	.1250	.140625
11	.1205	.120	.090742	.116	.1113	.125
12	.1055	.109	.080808	.104	.0991	.109375
13	.0915	.095	.071962	.092	.0882	.09375
14	.0800	.083	.064084	.080	.0785	.078125
16	.0625	.065	.050821	.064	.0625	.0625
17	.0540	.058	.045257	.056	.0556	.05625
18	.0475	.049	.040303	.048	,0495	.05
19	.0410	.042	.035890	.040	.0440	.04375
20	.0348	.035	.031961	.036	.0392	.0375
21	.03175	.032	.028462	.032	.0349	.034375
22	.0286	.028	.025346	.028	.03125	.03125
23	.0258	.025	.022572	.024	.02782	.028125
24	.0230	.022	.020101	.022	.02476	.025
25	.0204	.020	.017900	.020	.02204	.021875
26	.0181	.018	.015941	.018	.01961	.01875
27	.0173	.016	.014195	.0164	.01745	.0171875
28	.0162	.014	.012641	.0148	.015625	.015625
29	.0150	.013	.011257	.0136	-0139	.0140625
30	.0140	.012	,010025	.0124	.0123	.0125
32		.010	.008928	.0108	.0098	.0109375
33	.0128	.009	.007950	.0108	.0098	.01015025
34	.0104	.007	.006305	.0092	.0077	.00859375
35	.0095	.005	.005615	.0084	.0069	.0078125
36	.0090	.004	.005000	.0076	.0061	.00703125
37	.0085		.004453	.0068	.0054	.006640625
38	.0080		.003965	.0060	.0048	.00625
39	.0075		.003531	.0052		
40	.0070		.003144	.0048		

Birmingham Wire Gauge is used for No. 8, No. 9 and No. 10 sheared plates

also bands and hoops.

United States Standard Gauge is used for No. 11 sheared plates also for Black Plates (Tin mill sizes). Tin Plate is rolled to weight per base box.

J & L Gauge, which corresponds to Washburn & Moen Gauge, is used for all common wire products, unless otherwise specified.

Since the use of numbers to express thickness or size leads to confusion, desirate of an inch should be arredowed when fractions can not be used converse.

parts of an inch should be employed when fractions can not be used conveni

Comparison of Inches and Fractions

With Decimals of a Foot

Inch	0,	1*	2"	3"	4"	5"	6*	7"	8"	9*	10"	11"
0	.0	.0833	.1667	.2500	.3333	.4167	.5000	.5833	. 6667	.7500	.8333	.9167
1	.0013	.0846	.1680 .1693	.2513 .2526	.3346	.4180 .4193	.5013	.5846	.6680 .6693	.7513 .7526	.8346 .8359	.9180
古古古古	0039	.0872	.1706	.2539	.3372	4206	5039	.5872	6706	.7539 .7552	.8372	.9206
7.7	.0065	.0898	.1732	.2565	.3398	.4232	,5065	.5898	. 6732	.7565	.8398	.9232
在在有分	.0078	.0911	.1745	.2578	.3411	.4245	.5078	.5911	.6745 .6758	.7578 .7591	.8411	.9245
羽	.0104	.0937	.1771	.2604	.3437	.4271	.5104	.5937	.6771	.7604	.8437	.9271
34	.0117	.0951	.1784	.2617	.3451	.4284	.5117	.5951	6784	.7617 .7630	.8451 .8464	.9284
かない	.0143	.0977	.1810	.2643 .2656	.3477	.4310 .4323	.5143	.5977 .5990	.6810	.7643 .7656	.8477 .8490	.9310
12	.0169	. 1003	.1836	.2669	.3503	.4336	.5169	.6003	.6836	.7669	.8503	.9336
最高	.0182	.1016	.1849	.2682	.3516 .3529	.4349 .4362	.5182	.6016	.6849 .6862	.7682 .7695	.8516 .8529	.9349
	,0208	.1042	-1875	.2708	.3542	.4375	,5208	.6042	. 6875	.7708	.8542	.9375
芸	.0221	.1055	.1888	.2721	.3555 .3568	.4388	.5221	.6055	.6888	.7721	.8555	.9388
ななない	.0247 .0260	.1081	-1914 -1927	.2747 .2760	.3581	.4414 .4427	.5247 .5260	.6081 .6094	.6914 .6927	.7747 .7760	.8581 .8594	.9414
33	.0273	.1107	. 1940	.2773	.3607	.4440	,5273	.6107	.6940	.7773	.8607	.9440
社社社派	.0286	.1120	.1953	.2786	.3620	.4453	.5286	.6120	.6953	.7786 .7799	.8620	.9453
3/8	.0312	.1146	.1979	.2812	.3646	.4479	.5312	.6146	6979	.7812	.8646	.9479
34	.0326	.1159	1992	.2826	.3659	.4492	.5326	-6159	.6992	.7826	.8659	.9492
大学は	.0339	.1172	.2005	.2839	.3672	.4505 .4518	.5339	.6172	.7005 .7018	.7839 .7852	.8672	.9505
16	.0365	.1198	.2031	.2865	.3698	4531	.5365	.6198	.7031	.7865	.8698	.9531
24	.0378	.1211	.2044	.2878	.3711	4544	.5378	6211	.7044	.7878	.8711 .8724	.9544
200 mm	.0391	.1237	.2057	.2891	.3724	.4557 .4570	.5391	6237	.7057	.7891 .7904	.8737	.9557
36	.0517	.1250	.2083	.2917	.3750	.4583	.5417	,6250	.7083	.7917	.8750	.9583

Continued on next page,

Comparison of Inches and Fractions With Decimals of a Foot

Continued

neh	0"	1"	2*	3"	4"	5"	6"	7"	8"	9*	10*	11"
いた	.0430	.1263	.2096	.2930	.3763	.4596	.5430	.6263	.7096	.7930	.8763	.959
	.0443	.1276	.2109	.2943	.3776	.4609	.5443	.6276	.7109	.7943	.8776	.960
	.0456	.1289	.2122	.2956	.3789	.4622	.5456	.6289	.7122	.7956	.8789	.962
	.0469	.1302	.2135	.2969	.3802	.4635	.5469	.6302	.7135	.7969	.8802	.963
社社社	.0482 .0495 .0508 .0521	.1315 .1328 .1341 .1354	.2148 .2161 .2174 .2188	.2982 .2995 .3008 .3021	.3815 .3828 .3841 .3854	.4648 .4661 .4674 .4688	.5482 .5495 .5508 .5521	.6315 .6328 .6341 .6354	.7148 .7161 .7174 .7188	.7982 .7995 .8008 .8021	.8815 .8828 .8841 .8854	.964 .966 .967
**********	.0534	.1367	.2201	.3034	.3867	.4701	.5534	.6367	.7201	.8034	.8867	.970
	.0547	.1380	.2214	.3047	.3880	.4714	.5547	.6380	.7214	.8047	.8880	.971
	.0560	.1393	.2227	.3060	.3893	.4727	.5560	.6393	.7227	.8060	.8893	.972
	.0573	.1406	.2240	.3073	.3906	.4740	.5573	.6406	.7240	.8073	.8906	.974
杜子村	.0586	.1419	.2253	.3086	.3919	.4753	.5586	.6419	.7253	.8086	.8919	.975
	.0599	.1432	.2266	.3099	.3932	.4766	.5599	.6432	.7266	.8099	.8932	.976
	.0612	.1445	.2279	.3112	.3955	.4779	.5612	.6445	.7279	.8112	.8945	.977
	.0625	.1458	.2292	.3125	.3958	.4792	.5625	.6458	.7292	.8125	.8958	.979
	.0638	.1471	.2305	.3138	.3971	.4805	.5638	.6471	.7305	.8138	.8971	.980
	.0651	.1484	.2318	.3151	.3984	.4818	.5651	.6484	.7318	.8151	.8984	.981
	.0664	.1497	.2331	.3164	.3997	.4831	.5664	.6497	.7331	.8164	.8997	.983
	.0677	.1510	.2344	.3177	.4010	.4844	.5677	.6510	.7344	.8177	.9010	.984
発音数%	.0690	.1523	.2357	.3190	.4023	.4857	.5690	.6523	.7357	.8190	.9023	.985
	.0703	.1536	.2370	.3203	.4036	.4870	.5703	.6536	.7370	.8203	.9036	.987
	.0716	.1549	.2383	.3216	.4049	.4883	.5716	.6549	.7383	.8216	.9049	.988
	.0729	.1562	.2396	.3229	.4062	.4896	.5729	.6562	.7396	.8229	.9062	.989
A Transport	.0742	.1576	.2409	.3242	.4076	.4909	.5742	.6576	.7409	.8242	.9076	.990
	.0755	.1589	.2422	.3255	.4089	.4922	.5755	.6589	.7422	.8255	.9089	.992
	.0768	.1602	.2435	.3268	.4102	.4935	.5768	.6602	.7435	.8268	.9102	.993
	.0781	.1615	.2448	.3281	.4115	.4948	.5781	.6615	.7448	.8281	.9115	.994
11 11 11 11 11 11 11 11 11 11 11 11 11	.0794 .0807 .0820	.1628 .1641 .1654	.2461 .2474 .2487	.3294 .3307 .3320	.4128 .4141 .4154	.4961 .4974 .4987	.5794 .5807 .5820	.6628 .6641 .6654	.7461 .7474 .7487	.8294 .8307 .8320	.9128 .9141 .9154	.996 .997 .998 1.000

Comparison of Fractions With Decimals of an Inch

	FRAC	TIONS		DECIMALS		FRAC	TIONS		P
64tha	32nds	16ths	8ths	DECIMALS	64ths	32nds	16ths	Sths	DECIMALS
-	*	*		.015625 .03125 .046875 .0625	#	***	**		.515625 .53125 .546875 .5625
*	12			.078125 .09375 .109375 .125	87 84	19		3/6	.578125 .59375 .609375 .625
#	*	*		.140625 .15625 .171875 .1875	## ##	35			.640625 .65625 .671875 .6875
11 11	2,2			.203125 .21875 .234375 .25	85 85	33		34	.703125 .71875 .734375 .75
##	*	18		.265625 .28125 .296875 .3125	#2 #2	39	18	The second second	.765625 .78125 .796875 .8125
21 21	11		3/8	.328125 .34375 .359375 .375	#2 #2	#			.828125 .84375 .859375 .875
21 21	11	*****		.390625 .40625 .421875 .4375	82	30			.890625 .90625 .921875 .9375
## ##	11			.453125 .46875 .484375	82	11			.953125 .96875 .984375 1.00

Inches² to Centimeters² -1 in.² = 6.451625 cm².

There		Units											
TENS	0	1	2	3	4	5	6	7	8	9			
0		6.452	12.903	19.355	25.807	32.258	38.710	45.161	51.613	58.065			
10	64.516	70.968	77,420	83.871	90.323	96.774	103.226	109.678	116.129	122.581			
20								174.194					
30	193.549	200,000	206.452	212.904	219.355	225.807	232.259	238.710	245.162	251.613			
40	258.065	264.517	270.968	277.420	283.872	290.323	296.775	303.226	309.678	316.130			
50	322.581	329.033	335.485	341,936	348.388	354.839	361.291	367.743	374.194	380.646			
60	387.098	393.549	400,001	406.452	412.904	419.356	425.807	432.259	438.711	445, 162			
70	451.614	458.065	464.517	470.969	477.420	483.872	490.324	496.775	503.227	509.678			
80	516.130	522.582	529.033	535.485	541.937	548.388	554.840	561.291	567.743	574.195			
90	580.646	587.098	593.550	600.001	606.453	612,904	619.356	625.808	632.259	638.711			

Centimeters² to Inches² — $1 \text{ cm}^2 = 0.15499969 \text{ in.}^2$.

m			- /-		Unit	87		100		-
TENS	0	1	2	3	4	5	6	7	8	9
0		0.1550		0.4650		0.7750		1.0850		1.3950
10	1.5500	1.7050	1.8600	2.0150	2.1700			2.6350	2.7900	2.9450
20	3.1000			3.5650	3.7200	3.8750				4.4950
30	4.6500									6.0450
40	6.2000									
50	7.7500	7.9050						8.8350		
60	9.3000							10.3850		
70								11.9350		
80								13.4850		
90	13,9500	14.1050	14.2600	14,4150	14.5700	14.7250	14,8800	15.0350	15.1900	15.3450

Inches³ to Centimeters³ - 1 in.³ = 16.38716 cm³.

TENS		Units											
LENS	0	1	2	3	4	5	6	7	8	9			
0		16.39	32.77	49.16				114.71	131.10	147.48			
10	163.87	180.26	196.65	213.03	229.42	245.81	262.19	278.58	294.97	311.36			
20	327.74		360.52	376.90	393.29	409.68		442.45	458.84	475.23			
30	491.61	508.00 671.87	524.39 688.26		557.16 721.04	573.55 737.42		606.32 770.20	622.71				
40 50	655.49 819.36	835.75				901.29			786.58 950.46				
60	983.23				1048.78								
70					1212.65								
	1310.97												
90	1474.84	1491.23	1507.62	1524.01	1540.39	1556.78	1573.17	1589.55	1605.94	1622.33			

Centimeters³ to Inches³ - 1 cm³ = 0.0610234 in.³.

There					Uni	rs				
TENS	0	1	2	3	4	5	6	7	8	9
0		0.06102	0.12205	0.18307	0.24409	0.30512	0.36614	0.42716	0.48819	0.54921
10	0.61023	0.67126	0.73288	0.79330	0.85433	0.91535	0.97637	1.03740	1.09842	1.15944
20	1.22047	1.28149	1.34251	1.40354	1.46456	1.52559	1.58661	1.64763	1.70866	1.76968
30	1.83070	1.89173	1.95275	2.01377	2.07480	2.13582	2.19684	2.25787	2.31889	2.37991
40			2,56298							
50	3.05117	3.11219	3.17322	3.23424	3.29526	3.35629	3.41731	3.47833	3.53936	3.60038
60	3.66140									
70	4.27164									
80										5.43108
90	5.49211	5.55313	5.61415	5.67518	5.73620	5.79722	5.85825	5.91927	5.98039	40.01

Metric Conversion Table Continued

-	wind white	A-mc	h to Kg	, per -	q. CIII	4.40	of are	-0.010	3007 K	g/cm-,
TENS					U	NITS			-	_
	0	1	2	3	4	5	6	7	8	9
0		0.07031	0.14061	0.21092	0.28123	0.35153	0.42184	0.49215	0.56245	0.63276
10	0.70307	0.77337	0.84368	0.91399	0.98429	1.05460	1.12491	1.19521	1.26552	1.33583
20 30	2 10020	9 17051	9 94081	2 22012	2 30043	1.75767	2 52104	2 60125	1.96859	2.03889
40	2.81227	2.88257	2.95288	3.02319	3 09349	3 16380	3 23411	3 30441	2.07100	3 44503
50	3.51534	3.58564	3.65595	3.72626	3.79656	2.46073 3.16380 3.86687 4.56994	3.93718	4.00748	4.07779	4.14810
60 70	4.21840	4.28871	4.35902	4.42932	4.49963	4.56994	4.64024	4.71055	4.78086	4.85116
70	4.92147	14.99178	5.06208	5.13239	5 20270	15.27300	5.34331	5.41362	5.48392	15 55493
80 90	6 32760	6 20701	8 A6899	6 53059	8 60992	5.97607 6.67914	6 74944	6 81075	6.18699	6.25730
		_				h—1 k				
		73301500				NITS	0/			01/ 111/
TENS	0	1	2	3	4	5	6	7	8	9
0		14.22	28.45	42.67	56.89	71.12	85.34	99.56	113.79	128.01
10	142.23	156.46	170.68	184.90	199.13	213.35	227.57	241.80	256.02	270.24
20	284.47	298.69	312.91	327.14	341.36	355.59	369.81	384.03	398.26	412.48
30	426.70		455.15 597.38	469.37	483.60	497.82	512.04	526.27	540.49	554.71
40 50	568.94 711.17	583.16 725.39	739.62	611.61 753.84	625.83 768.06	640.05 782.29	654.28 796.51	668.50 810.73	682.72 824.96	696.95
60	853.40		881.85	896.07	910.30	924.52	938.74	952.97	967.19	839.18 981.41
60 70	995.64	1009.86	1024.08	1038.31	1052.53	1066.76	1080.98	1095.20	1109.43	1123 65
80	1137.87	1152.10	1166.32	1180.54	1194.77	1208.99	1223 21	1237.44	1251.66	1265 88
/90						1351.22				
Kilog	rams p	er Me	ter to	Pound	s per l	Foot—	-1 kg/1	m=0.	67197	Ib./ft.
Tens					U	NITS				
A BUND	0	1	2	3	4	5	6	7	8	9
0		0.6720	1.3439	2.0159	2.6879	3.3599	4.0318	4.7038	5.3758	6.0477
10	6.7197	7.3917	8.0636	8.7356	9.4076	10.0796	10.7515	11.4235	12 0955	12.7674
20	13.4394								20.0000	
30	90 1501	14.1114	21 5020	10.4000	10.1270	16.7993	17.4712	18.1432	18.8152	19 4871
	20.1591	20.8311	21.5030	22.1750	22.8470	23.5190	24.1909	24.8629	18.8152 25.5349	19.4871
50	20,1591 26,8788 33,5985	20.8311 27.5508 34.2705	21.5030 28.2227 34.9424	22,1750 28,8947 35,6144	22.8470 29.5667 36.2864	23,5190 30,2387 36,9584	24.1909 30.9106 37.6303	24.8629 31.5826 38.3022	18.8152 25.5349 32.2546 38.9743	19.4871 26.2068 32.9265 39.6462
50 60	20,1591 26,8788 33,5985 40,3182	20.8311 27.5508 34.2705 40.9902	21.5030 28.2227 34.9424 41.6621	22.1750 28.8947 35.6144 42.3341	22.8470 29.5667 36.2864 43.0061	23,5190 30,2387 36,9584 43,6781	24.1909 30.9106 37.6303 44.3500	24.8629 31.5826 38.3022 45.0220	18.8152 25.5349 32.2546 38.9743 45.6940	19.4871 26.2068 32.9265 39.6462 46.3659
50 60	20,1591 26,8788 33,5985 40,3182	20.8311 27.5508 34.2705 40.9902	21.5030 28.2227 34.9424 41.6621	22.1750 28.8947 35.6144 42.3341	22.8470 29.5667 36.2864 43.0061	23,5190 30,2387 36,9584 43,6781	24.1909 30.9106 37.6303 44.3500	24.8629 31.5826 38.3022 45.0220	18.8152 25.5349 32.2546 38.9743 45.6940	19.4871 26.2068 32.9265 39.6462 46.3659
50 60 70 80	20,1591 26,8788 33,5985 40,3182 47,0379 53,7576	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015	22,1750 28,8947 35,6144 42,3341 49,0538 55,7735	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334	19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053
50 60 70 80 90	20,1591 26,8788 33,5985 40,3182 47,0379 53,7576 60,4773	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212	22,1750 28,8947 35,6144 42,3341 49,0538 55,7735 62,4932	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531	19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053 66.5250
50 60 70 80 90 Pound	20,1591 26,8788 33,5985 40,3182 47,0379 53,7576 60,4773	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212	22,1750 28,8947 35,6144 42,3341 49,0538 55,7735 62,4932	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531	19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053 66.5250
50 60 70 80 90	20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212	22,1750 28,8947 35,6144 42,3341 49,0538 55,7735 62,4932	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 Ieter—	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816	19.4871 26.2068 32.9265 39.6462 46.3659 59.8053 66.5250 kg/m.
50 60 70 80 90 Pound	20,1591 26,8788 33,5985 40,3182 47,0379 53,7576 60,4773	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot to	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212 0 Kilo	22, 1750 28, 8947 35, 6144 42, 3341 49, 0538 55, 7735 62, 4932 grams	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 leter— NITS	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816	19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053 66.5250 kg/m.
50 60 70 80 90 Pound TENS	20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot to	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212 0 Kilo	22, 1750 28, 8947 35, 6144 42, 3341 49, 0538 55, 7735 62, 4932 grams 3 4, 464 19, 346	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per IV U	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 Ieter— NITS 5 7,441 22,322	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816	19.4871 26.2068 32.9265 39.6462 46.3659 53.0856 59.8053 66.5250 kg/m.
50 60 70 80 90 Pound TENS	20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per	20.8311 27.5505 40.9902 47.7099 54.4296 61.1493 Foot to	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212 0 Kilo 2 2.976 17.858 32.740	22, 1750 28, 8947 35, 6144 42, 3341 49, 0538 55, 7735 62, 4932 grams 3 4, 464 19, 346 34, 228	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M 4 5.953 20.834 35.716	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 leter— NITS 5 7,441 22,322 37,204	24.1909 30.9106 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./:	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816 8 11.905 26.787 41.669	19. 4871 26. 2068 39. 6462 46. 3659 53. 0856 59. 8053 66. 5250 kg/m. 9 13. 393 28. 275 43. 157
70 80 90 Pound TENS 0 10 20 30	20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot to 1.488 16.370 31.251 46.133	21.5030 28.2227 34.9424 41.6621 48.3818 55.1015 61.8212 0 Kilo 2 2.976 17.858 32.740 47.621	221.750 228.8947 35.6144 42.3341 49.0538 55.7735 62.4932 grams 3 4.464 19.346 34.228 49.109	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M. U 4 5.953 20.834 35.716 50.597	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 leter— NITS 5 7,441 22,322 37,204 52,086	24. 1909 30. 9106 37. 6303 44. 3500 51. 0697 57. 7894 64. 5091 -1 Ib./ 6 8. 929 23. 811 38. 692 53. 574	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816 8 11.905 26.787 41.669 56.550	19. 4871 26. 2068 32. 9265 39. 6462 46. 3659 55. 9853 66. 5250 kg/m.
50 60 70 80 90 Pound Tens 0 10 20 30 40	20.1591 20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per 0 14.882 29.763 44.645 59.526	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot t	21,5030 28,2227 34,9424 41,6621 48,3818 55,1015 61,8212 0 Kilo 2 2,976 17,858 32,740 47,621 62,503	22,1750 228,8947 35,6144 42,3341 49,0538 55,7735 62,4932 grams 3 4,464 19,346 34,228 49,109 63,991	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M U 4 5.953 20.834 35.716 50.597 65.479	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 Teter— NITS 5 7,441 22,322 37,204 52,086 66,967	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./	24.8629 31.5826 38.3022 45.0220 51.7417 54.614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816 8 11.905 26.787 41.660 56.550 71.432	19. 4871 26. 2068 32. 9265 39. 6462 46. 3659 53. 0856 59. 8053 66. 5250 kg/m.
70 80 90 Pound Tuns 0 10 20 30 40 50	20.1591 20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per 0 	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot t	21,50307 28,2227 34,9424 41,6621 48,3818 55,1015 61,8212 0 Kilo 2 2,976 17,858 32,740 47,621 62,503 77,384	22,1750 22,1750 28,8947 35,6144 42,3341 49,0538 55,7735 62,4932 grams 3 4,464 19,346 34,228 49,109 63,991 78,873	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M 4 5.953 20.834 35.716 50.597 65.479 80.361	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 Ieter— NITS 5 7,441 22,322 37,204 52,086 66,967 81,849	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./ 6 8.929 23.811 38.692 53.574 68.455 83.337	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 56.8531 48816 8 11.905 26.787 41.669 56.550 71.432 86.313	19. 4871 26. 2065 32. 9265 39. 6462 46. 3659 55. 8053 66. 5250 kg/m. 9 13. 393 28. 275 43. 157 58. 038 72. 920 87. 802
TENS TENS 0 10 20 30 40 50 60 70	20.1591 20.1591 26.8788 33.5985 40.3182 47.0379 53.7576 60.4773 ds per 14.882 29.763 44.645 59.526 74.408 89.290 104.171	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot t	21.5030 228.2227 34.0424 41.6621 48.3818 55.1015 61.8212 0 Kilo 2 2.976 17.858 32.740 47.621 62.503 77.384 92.266	22.175 28.8947 35.6144 42.3341 42.3341 42.3341 42.4932 grams 3 4.464 19.346 34.208 49.109 63.991 78.873 93.754	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per IV. 4 5.953 20.834 35.716 50.597 65.479 80.361 95.242	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 Ieter— NITS 5 7,441 22,322 37,204 52,086 66,967 81,849 96,730 111,612	24.1909 30.9106 37.6303 44.35907 57.7894 64.5091 -1 lb./ 6 8.929 23.811 38.692 53.574 68.455 83.337 98.219	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1.	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816 8 11.905 26.787 41.669 56.550 71.432 86.313 101.195	19. 4871 26. 2068 32. 9265 39. 6462 46. 3659 53. 0856 65. 5250 kg/m 9 13. 393 28. 275 43. 157 58. 038 72. 920 87. 802 102. 683 117. 568
Tens O 10 20 30 40 50 60 70 80 90	20.1591 20.1591 26.8788 33.5985 40.3182 47.0379 57.0379 57.0379 60.4773 ds per 14.882 29.763 44.645 59.526 59.526 74.408 89.290 141.053	20.8311 27.5508 34.2705 40.9902 47.7099 54.4296 61.1493 Foot t	21.5030 228.2227 34.0424 41.6621 48.3818 55.1015 61.8212 0 Kilo 2 2.976 17.858 32.740 47.621 62.503 77.384 92.266 107.148 122.029	22.1750 22.1750 228.8947 35.6144 42.3341 49.0535 55.7735 62.4932 grams 3 4.464 19.346 34.228 49.109 63.991 78.873 93.754 103.636	22.8470 29.5667 36.2864 43.0061 49.7258 56.4455 63.1652 per M 4 4 5.953 20.834 35.716 50.597 65.479 80.361 95.242 110.124 125.006	23,5190 30,2387 36,9584 43,6781 50,3978 57,1175 63,8372 leter— NITS 5 7,441 22,322 37,204 52,086 66,967 81,849 96,730	24.1909 30.9106 37.6303 44.3500 51.0697 57.7894 64.5091 -1 lb./ 6 8.929 23.811 38.692 53.574 68.455 83.337 98.219 113.100	24.8629 31.5826 38.3022 45.0220 51.7417 58.4614 65.1811 ft. = 1. 7 10.417 25.299 40.180 55.062 69.944 84.825 99.707 114.588	18.8152 25.5349 32.2546 38.9743 45.6940 52.4137 59.1334 65.8531 48816 8 11.905 20.787 41.609 56.550 71.432 86.313 101.195 116.077	19. 4871 26. 2063 32. 9265 39. 6462 46. 3655 59. 8053 66. 5250 kg/m. 9 13. 393 28. 275 43. 157 58. 038 72. 920 87. 802 102. 683 117. 565

Inches to Centimeters — 1 in. = 2.540005 cm.

TENS					U	NITS				
LAMB	0	1	2	3	4	5	6	7	8	9
0		2.540	5.080	7,620	10.160	12,700	15.240	17.780	20.320	22.860
10	25.400	27.940	30.480	33.020	35,560	38.100	40.640	43.180	45.720	48.260
20	50.800	53,340	55,880	58.420	60.960	63.500	66.040	68.580	71.120	73.660
30	76,200	78.740	81.280	83.820	86.360	88.900	91,440	93.980	96.520	99.060
40	101.600	104.140	106.680	109.220	111.760	114.300	116.840	119.380	121.920	124.460
50	127.000	129.540	132.080	134.620	137.160	139.700	142,240	144.780	147.320	149.860
60	152,400	154.940	157.480	160.020	162.560	165,100	167.640	170.180	172.720	175.260
70	177.800	180.340	182.880	185.420	187.960	190.500	193.040	195.580	198,120	200,660
80	203.200	205.740	208.280	210.820	213.360	215.900	218.440	220.980	223.520	226.060
90	228.600	231.140	233.680	236.220	238.760	241.300	243.840	246.380	248.920	251.460

Centimeters to Inches -1 cm = 0.3937 in.

TENS					U	NITS				
LENS	0	1	2	3	4	5	6	7	8	9
0		0.3937	0.7874	1.1811	1.5748	1.9685	2.3622	2.7559	3.1496	
10	3.9370	4.3307	4.7244	5.1181	5.5118	5.9055	6.2992	6.6929	7.0866	7.4803
20	7.8740						10.2362			
30							14.1732			
40							18.1102			
50							22.0472			
60							25,9842			
70							29.9212			
80							33.8582			
90	35.4330	35.8267	36.2204	36.6141	37.0078	37.4015	37.7952	38.1889	38.5826	38.9763

Feet to Meters — 1 ft. = 0.3048006 m.

m.	1		-		U	NITS				
Tens	0	1	2	3	4	5	6	7	8	9
0		0.3048	0.6096	0.9144	1.2192	1.5240	1.8288	2.1336	2.4384	2.7432
10	3.0480	3.3528	3.6576	3.9624	4.2672	4.5720	4.8768	5.1816	5.4864	5.7912
20	6.0960	6.4008					7.9248			
30	9.1440						10.9728			
40	12,1920	12.4968	12.8016	13.1064	13.4112	13.7160	14.0208	14.3256	14.6304	14.9352
50	15.2400	15.5448	15.8496	16.1544	16.4592	16.7640	17.0688	17.3736	17.6784	17.9832
60							20.1168			
70	21.3360									
80	24.3840									
90	27.4321	27.7369	28.0417	28.3465	28.6513	28.9561	29.2609	29.5657	29.8705	30.1753

Meters to Feet -1 m = 3.2808333 ft.

m					U	TITS				
Tens	0	1	2	3	4	5	6	7	8	9
- 0.		3.281	6.562	9.843	13.123	16.404	19.685	22.966	26.247	29.528
10	32.808	36.089	39.370	42.651	45.932	49.213	52.493	55.774	59.055	62.336
20	65.617	68.898	72.178	75.459	78.740	82.021	85,302	88,583	91.863	95.144
30	98.425	101.706	104.987	108.268	111.548	114.829	118.110	121.391	124,672	127.953
40							150.918			
50							183.727			
60							216.535			
70							249.343			
80							282.152			
90	295.275	298.556	301.837	305.118	308.398	311.679	314.960	318.241	321.522	324.803

Inches to Millimeters
39.37 inches, U. S. Standard = 1 meter = 100 centimeters = 1000 millimeters.

Inches	0	16	36	10	14	16	3%	76
0	0.00	1.59	3.18	4.76	6.35	7.94	9.53	11.11
1	25.40	26.99	28.58	30.16	31.75	33.34	34.93	36.51
2	50.80	52.39	53.98	55.56	57.15	58.74	60.33	61.91
2 3 4 5 6 7 8	76.20	77.79	79.38	80.96	82.55	84.14	85.73	87.31
4	101.60	103.19	104.78	106.36	107.95	109.54	111.13	112.71
5	127.00	128.59	130.18	131.76	133.35	134.94	136.53	138.11
6	152.40 177.80	153.99	155.58	157.16 182.56	158.75	160.34	161.93 187.33	163.51
7	177.80	179.39	180.98	182.56	184.15	185.74		188.91
8	203.20	204.79	206.38	207.96	209.55	211.14	212.73	214.31
9	228.60	230.19	231.78	233.36	234.95	236.54	238.13	239.71
10	254.00	255.59	257.18	258.76	260.35	261.94	263.53	265.11
11	279.40	280.99	282.58	284.16	285.75	287.34	288.93	290.51
12	304.80	306.39	307.98	309.56	311.15	312.74	314.33	315.91
13 14	330.20	331.79	333.38	334.96	336.55	338.14	339.73	341.31
15	355.60 381.00	357.19	358.78 384.18	360.36	361.95	363.54 388.94	365.13	366.71
16	406.40	382.59 407.99	409.58	385.76 411.16	387.35 412.75	414.34	390.53 415.93	392.11 417.51
17	431.80	433.39	434.98	436.56	438.15	439.74	441.33	442.91
18	457.20	458.79	460.38	461.96	463.55	465.14	466.73	468.31
19	482.60	484.19	485.78	487.36	488.95	490.54	492.13	493.71
20	508.00	509.59	511.18	512.76	514.35	515.94	517.53	519.11
21	533.40	534.99	536.58	538.16	539.75	541.34	542.93	544.51
22	558.80	560.39	561.98	563.56	565.15	566.74	568,33	569.91
22 23	584.20	585.79	587.38	588,96	590.55	592.14	593.73	595.31
24 25 26 27 28	609.60	611.19	612.78	614.36	615.95	617.54	619.13	620.71
25	635.00	636.59	638.18	639.76	641.35	642.94	644.53	646.11
26	660.40	661.99	663.58	665.16	666.75	668.34	669.93	671.51
27	685.80	687.39	688.98	690.56	692.15	693.74	695.33	696.91
28	711.20	712.79	714.38	715.96	717.55	719.14	720.73	722.31
29	736,60	738.19	739.78	741.36	742.95	744.54	746.13	747.71 773.11
30	762.00	763.59	765.18	766.76	768.35	769.94	771.53	773.11
31	787.40	788.99	790.58	792.16	793.75	795.34	796,93	798.51
32	812.80	814.39	815.98	817.56	819.15	.820.74	822.33	823.91
33 34	838.20	839.79	841.38	842.96	844.55	846.14	847.73	849.31
35	863.60 889.00	865.19 890.59	866.78 892.18	868.36 893.76	869.95	871.54	873.13 898.53	874.71
36	914.40	915.99	917.58	919.16	895.35 920.75	896.94	923.93	900.11
27	939.80	941.39	942.98	944.56	946.15	922.34 947.74	949.33	925.51 950.91
37 38	965.20	966.79	968.38	969.96	971.55	973.14	974.73	976.31
39	990.60	992.19	993.78	995.36	996.95	998.54	1000.13	1001.71
40	1016.00	1017.59	1019.18	1020.76	1022.35	1023.94	1025.53	1027.11
41	1041.40	1042,99	1044.58	1046.16	1047.75	1049.34	1050.93	1052.51
42	1066.80	1068.39	1069.98	1071.56	1073.15	1074.74	1076.33	1077.91
43	1092,20	1093.79	1095.38	1096.96	1098.55	1100.14	1101.73	1103.31
44	1117.60	1119.19	1120.78	1122.36	1123.95	1125.54	1127.13	1128.71
45	1143.00	1144.59	1146.18	1147.76 1173.16	1149.35	1150.94	1152.53	1154.11
46	1168.40	1169.99	1171.58		1174.75	1176.34	1177.93	1179.51
47	1193.80	1195.39	1196.98	1198.56	1200.15	1201.74	1203.33	1204.91
48	1219.20	1220.79	1222.38	1223.96	1225.55	1227.14	1228.73	1230.31
50	1244,60	1246.19	1247.78	1249.36 1274.76	1250.95 1276.35	1252.54 1277.94	1254.13	1255.71
4367 1	1270.00	1271.59	1273.18	TE(4. /01	12/0.00	1411.94	1279.53	1281.11

Continued on next page.

Inches to Millimeters

39.37 inches, U. S. Standard = 1 meter = 100 centimeters = 1000 millimeters.

_				IXIIIIII	receis.			
Inches	3/2	26	3/8	11 18	36	118	3/6	++
0	12.70	14.29	15.88	17.46	19.05	20.64	22.23	23.81
	38.10	39.69	41.28	42.86	44.45	46.04	47.63	49,21
2	63.50	65.09	66.68	68.26	69.85	71.44	73.03	74.61
3	88.90	90.49	92.08	93.66	95.25	96.84	98.43	100.01
1 2 3 4 5 6 7 8 9	114.30	115.89	117.48	119.06	120.65	122.24	123,83	125,41
5	139.70	141.29	142.88	144.46	146.05	147.64	149.23	150.81
6	165.10	166.69	168.28	169.86	171.45	173.04	174.63	176.21
7	190.50	192.09	193.68	195.26	196.85	198.44	200.03	201.61
8	215,90	217.49 242.89	219.08	220.66	222.25 247.65	223.84	225.43	227,01
10	241.30 266.70	268.29	244.48 269.88	246.06 271.46	273.05	249.24 274.64	250,83 276,23	252.41 277.81
11	292.10	293.69	295.28	296,86	298.45	300.04	301.63	303.21
12	317.50	319.09	320.68	322.26	323.85	325.44	327.03	328.61
13	342.90	344.49	346.08	347.66	349.25	350.84	352.43	354.01
14	368.30	369.89	371.48	373.06	374.65	376.24	377,83	379.41
15	393.70	395.29	396.88	398.46	400.05	401.64	403.23	404.81
16	419.10	420.69	422.28	423,86	425.45	427.04	428.63	430.21
17	444.50	446.09	447.68	449.26	450.85 476.25	452.44	454.03	455.61
18	469,90	471.49 496.89	473.08 498.48	474.66 500.06	501.65	477.84 503,24	479.43 504.83	481.01 506.41
20	520.70	522.29	523.88	525.46	527.05	528.64	530.23	531.81
21	546.10	547.69	549.28	550.86	552.45	554.04	555.63	557.21
22	571.50	573.09	574.68	576,26	577,85	579.44	581.03	582.61
21 22 23	596.90	598.49	600.08	601.66	603.25	604.84	606,43	608.01
24 25 26	622.30	623.89	625.48	627.06	628.65	630.24	631.83	633.41
25	647.70	649.29	650.88	652.46	654.05	655.64	657.23	658,81
26	673.10	674.69	676.28	677.86	679.45	681.04	682.63	684.21
27 28	698.50	700.09	701.68	703.26	704.85	706.44	708.03	709.61
28	723.90 749.30	725.49 750.89	727.08	728.66 754.06	730.25	731.84	733,43	735.01
30	774.70	776.29	752.48 777.88	779.46	755.65 781.05	757.24 782.64	758.83 784.23	760.41 785.81
31	800.10	801.69	803,28	804.86	806.45	808.04	809.63	811.21
32	825.50	827.09	828.68	830.26	831.85	833.44	835.03	836.61
33	850.90	852.49	854.08	855.66	857,25	858.84	860,43	862.01
34	876.30	877.89	879.48	881.06	882.65	884.24	885.83	887,41
35	901.70	903,29	904.88	906.46	908.05	909,64	911,23	912.81
36	927.10	928.69	930.28	931.86	933.45	935,04	936.63	938.21
37	952.50	954.09	955.68	957.26	958.85	960.44	962.03	963.61
38	977.90	979.49	981.08	982.66	984.25	985.84	987.43	989.01
40	1003.30 1028.70	1004.89	1006.48	1008.06	1009.65	1011.24	1012.83	1014.41
-		1030.29	1031.88	1033.46	1035,05	1036.64	1038.23	1039.81
41	1054.10 1079.50	1055.69 1081.09	1057.28 1082.68	1058.86 1084.26	1060,45 1085,85	1062.04	1003.63	1065.21
43	1104.90	1106,49	1108.08	1109.66	1111.25	1087,44 1112,84	1089.03 1114.43	1000.61
44	1130.30	1131.89	1133.48	1135.06	1136,65	1138,24	1139,83	1116.01
45	1155.70	1157.29	1158.88	1160.46	1162.05	1163.64	1165.23	1141,41 1166,81
46	1181.10	1182.69	1184.28	1185.86	1187.45	1189,04	1190 63	1192.21
47	1206.50	1208.09	1209.68	1211.26	1212.85	1214,44	1216.03	1217.61
48	1231.90	1233.49	1235.08	1236.66	1238.25	1239 84	1941 43	1243 01
49 50	1257.30 1282.70	1258.89 1284.29	1260.48	1262.06	1263.65	1265	1	1200 41
			1285.88	1287.46	1289.05	1200		1208 8

Pounds Avoirdupois to Kilograms

1 Pound = 0.45359 Kilograms

Lbs.	0	1	2	3	4	5	6	7	8	9
0	4.54	0.45	0.91	1.36	1.81	2.27	2.72	3.18	3.63	4.08
2	9.07	4.99 9.53	5.44 9.98	5.90 10.43	6.35	6.80	7.26	7.71	8.16 12.70	8.62 13.15
23456789	13.61	14.06	14.51	14.97	15.42	15.88	16.33	16.78	17.24	17.69
4	18.14 22.68	18.60	19.05	19.50	19.96	20.41	20.87	21.32	21.77	22.23 26.76
8	27.22	23.13 27.67	23.59 28.12	24.04 28.58	24.49 29.03	24.95 29.48	25.40 29.94	25.85 30.39	26.31 30.84	31.30
7	27.22 31.75	32.21	32.66	33.11	33.57	34.02	34.47	34.93	35.38	35.83
8	36.29	36.74	37.19 41.73	37.65	38.10	38.56	39.01	39.45	39.92	40.37
10	40.82 45.36	41.28 45.81	46.27	42.18 46.72	42.64 47.17	43.09 47.63	43.54 48.08	44.00 48.53	44.45 48.99	44.91 49.44
11	49.90	50.35	50.80	51.26	51.71	52.16	52.62	53.07	53.52	53.98
12	54.43	54.88	55.34	55.79	56.25	56.70	57.15	57.61	58.06	58.51
13 14	58.97 63.50	59.42 63.96	59.87 64.41	64.86	60.78 65.32	61.23 65.77	61.69	62.14 66.68	62.60 67.13	63.05
15	68.04	68.49	68.95	69.40 73.94	69.85	70.31	66.22 70.76	71,21	71.67	72.12
16	72.57	73.03	73.48	73.94	74.39	74.84	75.30	75.75	76.20	76.66
17 18	77.11 81.65	77.56 82.10	78.02 82.55	78.47 83.01	78.93 83.46	79.38 83.91	79.83 84.37	80.29 84.82	80.74 85.28	81,19 85,73
19	86.18	86.64	87.09	87.54	88.00	88.45	88.90	89.36	89.81	90.26
20	90.72	91.17	91.63	92.08	92.53	92.99	93.44	93.89	94.35	94.80
21 22 23	95.25	95.71	96.16	96.62	97.07	97.52	97.98	98.43	98.88	99.34
22	99.79	100.24	100.70	101.15 105.69	101.60 106.14	102.06 106.59	102.51 107.05	102.97 107.50	103.42 107.96	103.87 108.41
24	108.86	109.32	105.23 109.77	110.22	110.68	111.13	111.58	112.04	112.49	112.94
25	113.40	113.85	114.31	114.76	115,21	115.67	116.12	116.57	112.49 117.03	117,48
26 27 28	117.93	118.39 122.92	118.84 123.38	119.29 123.83	119.75 124.28	120.20 124.74	120.66 125.19	121.11 125.65	121.56 126.10	122.02 126.55
28	122.47 127.01	127.46	127.91	128.37	128.82	129.27	129.73	130.18	130.63	131.09
29	131.54	132.00	132.45	132.90	133.36	133.81	134.26	134.72	135.17	135.62
30	136.08	136.53	136.98	137.44	137.89	138.35	138.80	139.25	139.71	140.16
31 32	140.61 145.15	141.07 145.60	141.52 146.06	141.97 146.51	142.43 146.96	142.88 147.42	143.34 147.87	143.79 148.32	144.24 148.78	144.70 149.23
33	149.69	150.14	150.59	151.05	151.50	151.95	152.41	152.86	153.31	153.77
34	154.22	154.68	155.13	155.58	156.04	156.49	156.94	157.40	157.85	158.30
35 36	158.76 163.29	159.21 163.75	159.66 164.20	160.12 164.65	160.57 165.11	161.03 165.56	161.48 166.01	161.93 166.47	162.39 166.92	162.84 167.38
37	167.83	168.28	168.74	169.19	169.64	170.10	170.55	171.00	171.46	171.91
38	172.37 176.90	172.82	173.27 177.81	173.73 178.26	174.18	174.63	170.55 175.09 179.62	171.00 175.54	171.46 175.99	176.45
39 40	176.90 181.44	177.35 181.89	177.81 182.34	178.26 182.80	178.72 183.25	179.17 183.70	179.62 184.16	180.08 184.61	180.53 185.07	180.98 185.52
	2777		The same of		1000	Control of the last of the las	100000	ALC: NO	1000	
41	185.97 190.51	186.43 190.96	186.88 191.42	187.33 191.87	187.79 192.32	188.24 192.78	188.69 193.23	189.15 193.68	189.60 194.14	190.06
43	195,04	195.50	195.95	196.41	196.86	197.31	197.77	198.22	198.67	199.13
44	199.58	200.03	200.49	200.94	201.40	201.85	202.30	202.76	203.21	203.66
45 46	204.12 208.65	204.57 209.11	205.02 209.56	205.48 210.01	205.93 210.47	206.38 210.92	206.84 211.37	207.29 211.83	207.75 212.28	208.20 212.73
47	213.19	213.64	214.10	214.55	215.00	215.46	215.91	216.36	216.82	217.27
48	217.72	218.18	218.63	219.09	219.54	219.99	220.45	220.90	221.35	221.81
49 1	222.26	222.71	223.17	223.62	224.07	224.53	224.98	225.44	225.89	226.34

Continued on next page.

Pounds Avoirdupois to Kilograms

1 Pound = 0.45359 Kilograms

Lbs.	0	1	2	3	4	5	6	7	8	9
50	226.80	227.25	227.70	228.16	228.61	229.06	229.52	229.97	230.42	230.88
51	231.33	231.79	232.24	232.69	233.15	233.60	234.05	234.51	234.96	235.41
52	235.87	236.32	236.78	237.23	237.68	238.14	238.59	239.04	239.50	239.95
53 54	240.40	240.86	241.31	241.76	242.22	242.67	243.13	243.58	244.03	244.49
54	244.94	245.39	245.85	246.30	246.75	247.21	247.66	248.12	248.57	249.02
55	249.48	249.93	250.38	250.84	251.29	251.74	252.20	252.65	253.10	253.56
56	254.01	254.47	254.92	255.37	255.83	256.28 260.82	256.73	257.19	257.64 262.18	258.09
57 58	258.55 263.08	259.00 263.54	259.45 263.99	259.91 264.44	260.36 264.90	265.35	261.27 265.81	261.72 266.26	266.71	262.63 267.17
59	267.62	268.07	268.53	268.98	269.43	269.89	270.34	270.79	271.25	271.70
60	272.16	272.61	273.06	273.52	273.97	274.42	274.88	275.33	275.78	276.24
61	276.69	277.14	277.60	278.05	278.51	278.96	279.41	279.87	280.32	280.77
62	281.23	281.68	282.13	282.59	283.04	283.50	283.95	284.40	284.86	285.31
63	285.76	286.22	286.67	287.12	287.58	288.03	288.48	288.94	289.39	289.85
64	290.30	290.75	291.21	291.66	292.11	292.57	293.02	293.47	293.93	294.38
65 66	294.84	295.29	295.74	296.20	296.65 301.19	297.10 301.64	297.56 302.09	298.01 302.55	298.46 303.00	298.92 303.45
67	299,37 303,91	299.82 304.36	300.28 304.81	300.73 305.27	305.72	306.17	306.53	307.08	307.54	307.99
68	308.44	308.90	309.35	309.80	310.26	310.71	311.16	311.62	312.07	312.53
69	312.98	313.43	313.89	314.34	314.79	315.25	315.70	316.15	316.61	317.06
70	317.51	317.97	318.42	318.88	319.33	319.78	320.24	320.69	321.14	321.60
71 72	322.05	322.50	322.96	323.41	323.86	324.32	324.77	325.23	325.68	326.13
72	326.59	327.04	327.49	327.95	328.40	328.85	329.31	329.76	330,22	330.67
73	331.12	331.58	332.03	332.48	332.94	333.39	333.84	334.30	334.75	335.20
74	335.66	336.11	336.57	337.02	337.47	337.93	338.38	338.83	339.29	339.74
75	340.19 344.73	340.65 345.18	341.10	341.56 346.09	342.01 346.54	342.46 347.00	342.92 347.45	343.37 347.91	343.82 348.36	344.28 348.81
76 77	349.27	349.72	345.64 350.17	350.63	351.08	351.53	351.99	352.44	352.89	353.35
78	353.80	354.26	354.71	355.16	355.62	356.07	356.52	356.98	357.43	357.88
79	358.34	358.79	359.25	359.70	360.15	360.61	361.06	361.51	361.97	362.42
80	362.87	363.33	363.78	364.23	364.69	365.14	365.60	366.05	366.50	366.96
81	367.41	367.86	368.32	368.77	369.22	369.68	370.13	370.59	371.04	371.49
82	371.95	372.40	372.85	373.31	373.76	374.21	374.67	375.12	375.57	376.03
83	376.48	376.94	377.39	377.84	378.30	378.75	379.20	379.66	380.11	380.56
83 84 85	381.02	381.47	381.92	382.33	382.83 387.37	383.29 387.82	383.74 388.28	384.19 388.73	384.65 389.18	385.10 389.64
88	385.55 390.09	386.01 390.54	386.46 391.00	386.91 391.45	391.90	392.36	392.81	393.26	393.72	394.17
86 87	394.63	395.08	395.53	395.99	396.44	396.89	397.35	397.80	398.25	398.7
88	399.16		400.07	400.52	400.98	401.43	401.88	402.34	402.79	403.24
89	403.78	404.15	404.60	405.06	405.51	405.97	406.42	406.87	407.33	407.78
90	408.23	408.69	409.14	409.59	410.05	410.50	410.95	411.41	411.86	412.32
91	412.77	413.22	413.68		414.58		415.49	415.94	416.40	416.85
92	417.31	417.76	418.21	418.67	419.12	419.57	420.03	420.48	420.93	421.39
93	421.84	422.29	422.75	423.20	423,66	424.11	424.56	425.02	425.47 430.01	425.93
94	426.38	426.83	427.28 431.82	427.74	428.19 432.73	428.64 433.18	429.10 433.63	429.55 434.09	434.54	435.00
95 96	430.91	431.37	431.82	436.81	437.26	437.72	438.17	434.09	439.08	400.00
97	439.98		440.89	441.35	441.80		442.71	443.16	443.61	
98	444.52		445.43	445.88	446.33	446.79	447.24	447.70	448.18	
99	449.06						451.78			

Properties of the Circle

Circumference of Circle of Diameter $1 = \pi = 3.14159265$

Circumference of Circle = $2 \pi \tau$

Diameter of Circle = Circumference × 0.31831

Diameter of Circle of equal periphery as

square = side \times 1.27324

Side of Square of equal periphery as circle = diameter × 0.78540 Diameter of Circle circumscribed about square = side × 1.41421

Side of Square inscribed in circle = diameter × 0.70711

Arc,
$$a = \frac{\pi r A^{\circ}}{180} = 0.017453 r A^{\circ}$$

Angle,
$$A = \frac{180^{\circ} a}{\pi r} = 57.29578 \frac{a}{r}$$

Radius,
$$r = \frac{4b^2 + c^2}{8b}$$
 Diameter, $d = \frac{4b^2 + c^2}{4b}$

Chord,
$$c = 2\sqrt{2 b \tau - b^2} = 2 \tau \sin \frac{A^{\circ}}{2}$$

Rise,
$$b = r - \frac{1}{2}\sqrt{4 r^2 - c^2} = \frac{c}{2} \tan \frac{A^{\circ}}{4} = 2 r \sin^2 \frac{A}{4}$$

Rise,
$$b = r + y - \sqrt{r^2 - x^2}$$
, $y = b - r + \sqrt{r^2 - x^2}$

$$x = \sqrt{r^2 - (r + y - b)^2}$$

$$\pi = 3.14159265$$
, $\log = 0.4971499$

$$\frac{1}{\pi} = 0.3183099$$
, $\log = \overline{1.5028501}$

$$\pi^2 = 9.8696044$$
, $\log = 0.9942997$

$$\frac{1}{\pi^2} = 0.1013212$$
, $\log = \overline{1.0057003}$

$$\sqrt{\pi} = 1.7724539$$
, $\log = 0.2485749$

$$\sqrt{\frac{1}{\pi}} = 0.5641896$$
, $\log = \overline{1.7514251}$

$$\frac{\pi}{180} = 0.0174533$$
, $\log = 2.2418774$

$$\frac{180}{\pi}$$
 = 57.2957795, $\log = 1.7581226$

Areas of Circular Sections

Circular Sector, n c p o

Area = $\frac{1}{2}$ (length of arc, $n \circ p \times \text{radius } r$)

- =Area of circle $\times \frac{\text{Arc, } n \circ p, \text{ in degrees}}{360}$
- =0.0087266 \times square of radius, $r^2 \times$ angle of arc, $n \circ p$, in degrees.

Circular Segment, n o p, less than half circle.

Area = Area of sector, n c p o, — area of triangle, n c p

= (length of arc, $n \circ p$, \times radius, τ) —

 $\frac{(\text{radius}, r, -\text{rise}, b) \times \text{chord}, d}{2}$

Circular Segment, n s p, greater than half circle.

Area = Area of circle — area of segment, n p o

Area = Product of rise and chord, $c \times d$, multiplied by the coefficient given opposite the quotient of $\frac{c}{r}$:

Intermediate coefficients for values of $\frac{c}{d}$ not given in tables are obtained by interpolation.

Example—Given: Rise = 3.00 and chord = 10.39

$$\frac{c}{d} = \frac{3.00}{10.39} = 0.2887$$
. Coefficient = 0.7092

Area = $c \times d \times \text{coeff.} = 3.00 \times 0.7092 = 22.10576$

Areas of Circular Sections

Continued

Circular Segment

Given: Rise, c, and diameter, d = 2rArea = Square of diameter, d^2 , multiplied by the coefficient given opposite the

Intermediate coefficients for values of $\frac{c}{d}$ not given in tables are obtained by interpolation.

Example—Given: Rise = 3.78 and diameter = 8.25

$$\frac{c}{d} = 3.78 \div 8.25 = 0.458181$$

Coefficient by interpolation = 0.350929Area = $d^2 \times$ coeff. = $8.25 \times 8.25 \times 0.350929$ = 23.8851

Circular Zone, stvn

Area = Area of circle — (area of segment, sol+ area of segment, nmv)

Circular Lune, u o p q

Area = Segment, $u \circ p$ — segment $u \neq p$

Areas of Plane Figures

Triangle: Base × ½ perpendicular height

 $\sqrt{s(s-a)(s-b)(s-c)}$,

 $s = \frac{1}{2}$ sum of the three sides, a, b and c

Trapezium: Sum of area of the two triangles

Trapezoid: ½ sum of parallel sides × perpendicular height

Parallelogram: Base × perpendicular height
Regular Polygon: ½ sum of sides × inside radius

Circle: $\pi r^2 = 0.78540 \times \text{diameter}^2 = 0.07958 \times \text{cir-}$

cumference²

Sector of Circle: $\frac{\pi r^2 A^{\circ}}{360} = 0.0087266 r^2 A^{\circ} = \text{arc} \times \frac{1}{2} \text{ radius}$

Segment of Circle $\frac{r^2}{2} \left(\frac{\pi A^{\circ}}{180} - \sin A^{\circ} \right)$

Circle of same area as square: diameter = side × 1.12838 Square of same area as circle: side = diameter × 0.88623 Ellipse: Long diameter × short diameter × 0.78540

Parabola: Base × ½ perpendicular height

Irregular Plane Surface

Divide any plane surface A, B, C, D, along a line a-b into an even number, n, of parallel and sufficiently small strips, d, whose ordinates are h_1 , h_2 , h_3 , h_4 , h_5 , ..., h_{n-1} , h_n , h_{n+1} , and considering contours between three ordinates as parabolic curves, then for section ABCD,

Area =
$$\frac{d}{3} \begin{bmatrix} h_1 + h_n + 1 + 4 (h_2 + h_4 + h_6 ... + h_n) + 2 (h_3 + h_6 + 1) \\ h_7 ... + h_{n-1} \end{bmatrix}$$

or, approximately, Area = Sum of ordinates X w

Surface and Volume of Solids

S = Lateral or Convex Surface V = Volume

Sphere

$$S = 4 \pi r^2 = \pi d^2 = 3.14159265 d^2$$

 $V = \frac{4}{5} \pi r^3 = \frac{1}{6} \pi d^3 = 0.52359878 d^3$

Spherical Sector

$$S = \frac{1}{2} \pi \tau (4c + d)$$

 $V = \frac{2}{3} \pi \tau^2 c$

$$S = 2 \pi rc = \frac{1}{4} \pi (4c^2 + d^2)$$

$$V = \frac{1}{3} \pi c^2 (3r - c) = \frac{1}{24} \pi c (3 d^2 + 4 c^2)$$

$$S = 2 \pi r c$$

$$V = \frac{1}{24} \pi c (3b^2 + 3d^2 + 4c^2)$$

Circular Ring

$$S = 4 \pi^2 Rr$$

$$V = 2 \pi^2 Rr^2$$

Ungula of Right, Regular Cylinder

Base = Segment c b c $S = (2 + n - f \times arc, cbc) + Base = Half Cir V = (\frac{9}{6} n^3 - f \times \text{area}, c b c) \frac{h}{\tau - f} \quad S = 2 \tau h$

Base = Segment d b d

$$S = (2\tau D + q \times \text{arc}, dbd) \frac{h}{\tau + q} \quad \text{Base} = \text{Circle}$$

$$V = (\% D^3 + q \times \text{area}, dbd) \frac{h}{\tau + q} \quad S = \tau \pi h$$

$$V = (\% D^3 + q \times \text{area}, dbd) \frac{h}{\tau + q} \quad V = \frac{1}{2} \int_{\tau^2}^{\tau} \pi h$$

Ellipsoid

$$V = \frac{1}{3}\pi rbc$$

Paraboloid

$$V = \frac{1}{2}\pi r^2 h$$

Ratio of corresponding volumes of a cone, paraboloid sphere, and cylinder of equal height: 1/3:1/4:1/3:1.

Surface and Volume of Solids

Continued

S=Lateral or Convex Surface V=Volume

Parallelopiped

= Area of any face $a \times perpendicular distance h to$ the opposite face.

= Area of cross section E (perpendicular to the sides)

X actual length m.

Prism, Right or Oblique, Regular or Irregular

= Area of one end x perpendicular distance h to the other end. rea of cross section E (perpendicular to the sides)

× actual length m.

Cylinder, Right or Oblique, Circular or Elliptic

S = Circumference (perpendicular to sides) as at F, or E, \times actual length h or m. $V = \text{Area of one end } \times \text{perpendicular distance } h$ to

other end.

Area of cross section (perpendicular to sides) as at F, or $E \times$ actual length h or m.

Frustum of any Prism or Cylinder

V = Area of base X perpendicular distance h from base to center of gravity of other end.

For Cylinder

V =Area of cross section E (perpendicular to sides) \times ½ (m + n).

Pyramid or Cone, Right or Regular

V =Area of base $\times \frac{1}{2}$ perpendicular height h. S =Perimeter of base $\times \frac{1}{2}$ slant height m.

Pyramid or Cone, Right or Oblique, Regular or Irregular

 V = Area of base × ¾ perpendicular height h.
 V = ¾ volume of prism or cylinder having same area of base and same perpendicular height.
 V = ¾ volume of hemisphere of same base and same perpendicular height.

Frustum of Pyramid or Cone Right and Regular Parallel

 $S = Sum of perimeter of base and top <math>\times \%$ slant height m.

V = 1/3 × perpendicular height × (area of top + area of base + v area of top x area of base).

Frustum of any Pyramid or Cone, Parallel Ends $= \frac{1}{2} \times \text{perpendicular height } h \times \text{(area of top } +$ area of base + \squarea area of top \times area of base).

Wedge, Parallelogram Face

'= ½ (sum of three edges c, d, c × perpendicular height h × perpendicular width ε).

Trigonometrical Formulae

Radius, 1=sin²A+cos²A =sin A cosec A= cos A sec A= tan A cot A

Sine
$$A = \frac{\cos A}{\cot A} = \frac{1}{\cosh A} = \cos A \tan A = \sqrt{1 - \cos^2 A}$$

Cosine $A = \frac{\sin A}{\tan A} = \frac{r}{\sec A} = \sin A \cot A = \sqrt{1 - \sin^2 A}$

Tangent
$$A = \frac{\sin A}{\cos A} = \frac{1}{\cot A} = \sin A \sec A$$

Cotangent
$$A = \frac{\cos A}{\sin A} = \frac{1}{\tan A} = \cos A$$
 cosec A

Secant
$$A = \frac{\tan A}{\sin A} = \frac{1}{\cos A}$$

Cosecant
$$A = \frac{\cot A}{\cos A} = \frac{1}{\sin A}$$

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$
 $\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 + \tan A \tan B}$

$$\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$$
 $\cot (A + B) = \frac{\cot A \cot B \mp 1}{\cot B \pm \cot A}$

$$\sin A + \sin B = 2 \sin \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B) \quad \tan A + \tan B = \frac{\sin (A + B)}{\cos A \cos B}$$

$$\sin A - \sin B = 2\cos \frac{1}{2}(A + B)\sin \frac{1}{2}(A - B) \quad \tan A - \tan B = \frac{\sin (A - B)}{\cos A \cos B}$$

$$\cos A + \cos B = 2 \cos \frac{1}{2} (A + B) \cos \frac{1}{2} (A - B)$$
 $\cot A + \cot B = \frac{\sin (B + A)}{\sin A \sin B}$

$$\cos B - \cos A = 2 \sin \frac{1}{2} (A + B) \sin \frac{1}{2} (A - B) \quad \cot A - \cot B = \frac{\sin (B - A)}{\sin A \sin B}$$

$$\sin 2 A$$
 = $2 \sin A \cos A$ $\tan 2 A$ = $\frac{2 \tan A}{1 - \tan^2 A}$

$$\cos 2 \Lambda \qquad = \cos^2 \Lambda - \sin^2 \Lambda \qquad \qquad \cot 2 \Lambda \qquad = \frac{\cot^2 \Lambda - 1}{2 \cot \Lambda}$$

$$\sin \frac{1}{2}A = \sqrt{\frac{1-\cos A}{2}}\cos \frac{1}{2}A = \sqrt{\frac{1+\cos A}{2}} + \tan \frac{1}{2}A = \frac{\sin A}{1+\cos A} + \cot \frac{1}{2}A = \frac{\sin A}{1-\cos A}$$

$$\sin^2 A = \frac{1-\cos 2\,A}{2} \qquad \cos^2 A = \frac{1+\cos 2\,A}{2} \qquad \tan^2 A \ = \frac{1-\cos 2A}{1+\cos 2A} \quad \cot^2 A \ = \frac{1+\cos 2A}{1-\cos 2A}$$

$$\sin^2 A - \sin^2 B = \sin (A + B) \sin (A - B)$$
 $\cos^2 A - \sin^2 B = \cos (A + B) \cos (A - B)$

$$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \frac{1}{2} (A + B)$$

$$\frac{\sin A + \sin B}{\cos B - \cos A} = \cot \frac{1}{2} (A + B)$$

Trigonometrical Solution of Triangles

Given Sought

RIGHT-ANGLED TRIANGLES

Formulae

a, c
$$A, B, b$$
 $\sin A = \frac{a}{c}$, $\cos B = \frac{a}{c}$, $b = \sqrt{c^2 - a^3}$

Area $= \frac{a}{c} \sqrt{c^2 - a^3}$

a, b
$$A$$
, B, c $\tan A = \frac{a}{b}$, $\tan B = \frac{b}{a}$, $c = \sqrt{a^2 + b}$

Area $A = \frac{a \cdot b}{a}$

Area Area =
$$\frac{\mathbf{s}^2 \cot \mathbf{A}}{2}$$

$$a = b \tan A$$
, $c = \frac{b}{\cos A}$

Area
$$=\frac{b^2 \tan A}{2}$$

A, c B, a, b
$$B = 90^{\circ}$$
—A, $a = c \sin A$, $b = c \cos A$

Area
$$=$$
 $\frac{c^2 \sin A \cos A}{2}$ or $\frac{c^2 \sin 2 A}{4}$

OBLIQUE-ANGLED TRIANGLES

Continued on next page

Trigonometrical Solution of Triangles

Given	Sought	Formulae
		OBLIQUE-ANGLED TRIANGLES
a, A, b	b, c	$b = \frac{a \sin B}{\sin A} \qquad c = \frac{a \sin C}{\sin A} = \frac{a \sin (A + B)}{\sin A}$
	Area	Area = $\frac{1}{2}$ a b sin C = $\frac{a^2 \sin B \sin C}{2 \sin A}$
a, b, A	В	$\sin B = \frac{b \sin A}{a}$
	c	$c = \frac{a \sin C}{\sin A} = \frac{b \sin C}{\sin B} = \sqrt{a^2 + b^2 - 2 ab \cos C}$
	Area	Area = ½ a b sin C
a, b, C	A	$\tan A = \frac{a \sin C}{b - a \cos C}, \qquad \tan \frac{1}{2} (A - B) = \frac{a - b}{a + b} \cot \frac{1}{2} C$
	С	$c = \sqrt{a^2 + b^2 - 2 \text{ ab cos } C} = \frac{a \sin^{-}C}{\sin A}$
	Area	Area = ½ ab sin C

 $a^2 = b^2 + c^2 - 2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos Bc^2 = a^2 + b^2 - 2ab \cos C$

Comparison of Standard Linear Units

	- V-	Our.	000	One		_		1	Out .	1	-		. 0	-
A	Millim.	Centim.	Inch	Decim.	Foot	Yard	Meter	Rod	Chain	Heet'm.	Furione	Kilom.	Mile	Knot
	Equals	Equals	Equals	Equals		_		Equals	Equals	Equals	Equals		Equals	Equals
Millimeters	1	10	25.4	100	304.8	914.4	1000	5029.2	20116.8	100,000	201,168	1,000,000	1,609,344	
Centimeters	1/10	1	2.54	10	30.48	91.44	100	502.9	2011.68	-	10,000 20,116.8	100,000	160,934	185,325
Inches	0.03937	0.3937	1	3,937	12	36	39.37	198	792	3937	7920	39,370	63,360	72,963
Decimeters	1/100	1/10	0.254	1	3.048	9.144	10	50.29	201.17	1000	2011.7	10,000	16,093	18,532.5
Feet	0,00328	0.03281	0.08333	0,32808	1	60	3.2808	16.5	99	328.08	099	3280.8	5280	6080.2
Yards	0.00109	1/100	0.0278	0.109360.	0.33333	1	1.0936	10.10	22	109.36	220	1093.6	1760	2026.7
Meters	1/1000	1/100	0.0254	1/10	3/10	9/10	1	5.0292	20.116	100	201.17		1609.3	1853.3
Rods	1/5000	0.00199	0.00505	-	1/50 2/33	0.18182	0.18182 0.19884	1	4	19.884		100	320	368.5
Chains	1/20,000	1/2000	1/800	0.00497	0.00497 0.01515	0.045450.	0.04971	1/4 0.25	1	4.971	10	49.71	80	92.12
Hectometers	1/100.000	1/10,000	1/4000	1/1000	3/1000	0.00305 0.009114	1/100	0.050290.	0.20117	1	2.0117	10	16.093	18.53
Furlongs	1/200,000	1/20.000	0.00013		0.0005 0.00152		0.00455 0.00497	0.025	1/10	0.4971		4.971	8	9.212
Kilometers	1/1,000,000	1/100,000	1/40,000	100	0,0001 0,00031	0,00091	1/1000	0.005030	0.02012	1/10	0.20117	1	1.6093	1.863
-			1/63,000		1/5280	0.00057 0.00062 0.00313	0,00062	0,00313	0.01250.	0.06214	0,125	0.62137	1	1.152
S.S.			1/73,000		3/20000	1/2000 1/1850 1/370 1/92	1/1850	1/370	1/92	1/19	1/19 1/11	7/13	7/8	

NOTE:—At the point where any vertical column crosses any horizontal column will be found the value of the unit named at head of the vertical column expressed in terms of the unit named under A opposite the horizontal column. Thus, I Meter = 1.0868 Yards; I Foot = 0.3048 Meter.

Natural Tangents and Cotangents

REE	TANGENTS									
DEGREE	0'	10'	20'	30'	40'	50'	60'	COTAN-		
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01455	0.01746	89		
1 2	0.01746	0.02036	0.02328	0.02619	0.02910	0.03201	0.03492	88		
2	0.03492	0.03783	0.04075	0.04366	0.04658	0.04949	0.05241	87		
3 4	0.05241	0.05533	0.05824 0.07578	0.06116 0.07870	0.06408 0.08163	0.06700 0.08456	0.06993	89 88 87 86 85		
2	0.00000	0,07200	0.07978	0.01810	0.08108	0.08400	0.08749	80		
5	0.08749	0.09042	0.09335	0.09629	0.09923	0.10216	0.10510	84		
6	0.10510	0.10805	0,11099	0.11394	0.11688	0.11983	0.12278	84 83 82		
6 7 8	0,12278	0.12574	0.12869	0.13165	0.13461	0.13758	0.14054	82		
9	0.14054	0.14351 0.16137	0.14648	0.14945 0.16734	0.15243	0.15540 0.17333	0.15838 0.17633	81		
	0,10000	0.10101	0.10200	0.10104	0.17000	0.11000	0.11000	00		
10	0.17633	0.17933	0.18233	0.18534	0.18835	0.19136	0.19438	79		
11 12	0.19438	0.19740	0.20042	0.20345	0.20648	0.20952	0.21256	78		
13	0.21256 0.23087	0.21560 0.23393	0.21864 0.23700	0.22169 0.24008	0.22475 0.24316	0.22781 0.24624	0.21256 0.23087 0.24933	79 78 77 76		
14	0.24933	0.25242	0.25552	0.24008	0.24316	0.24624	0.24933	76		
			-	10700000	V-1			10		
15	0.26795	0.27107	0.27419	0.27732	0.28046	0.28360	0.28675	74		
16 17	0.28675	0.28990	0.29305	0.29621 0.31530	0.29938 0.31850	0.30255 0.32171	0.30573 0.32492	73		
18	0.32492	0.32814	0.33136	0.33460	0.33783	0.32171	0.32492	73 72 71		
19	0.34433	0.34758	0.35085	0.35412	0.35740	0.36068	0.36397	70		
20	0.36397	0.0000	0.00000	0 00000	0 00000	0.00000	0 00000	-		
21	0.38386	0.36727	0.37057	0.37388 0.39391	0.37720 0.39727	0.38053 0.40065	0.38386	68		
22	0.40403	0.40741	0.41081	0.41421	0.41763	0.42105	0.42447	67		
22 23	0.42447	0.42791	0.43136	0.43481	0.43828	0.44175	0.44523	66		
24	0.44523	0.44872	0.45222	0.45573	0.45924	0.46277	0.46631	65		
25	0.46631	0.46985	0.47341	0.47698	0.48055	0.48414	0.48773	64		
26	0.48773	0.49134	0.49495	0.49858	0.50222	0.50587	0.50953	63		
27	0.50953	0.51320	0.51688	0.52057	0.52427	0.52798	0.53171	62		
28 29	0.53171	0.53545 0.55812	0.53920 0.56194	0.54296 0.56577	0.54674 0.56962	0.55051 0.57348	0.55431	61		
20	0.00451	0.00012	0.50194	0.30377	0.50902	0.01040	0.57755	00		
30	0.57735	0.58124	0.58513	0.58905	0.59297	0.59691	0.60086	59		
31	0.60086	0.60483	0.60881	0.61280	0.61681	0.62083	0.62487	58		
32	0.62487	0.62892	0.63299 0.65771	0.63707 0.66189	0.64117	0.64528 0.67028	0.64941 0.67451	57 56		
34	0.67451	0.67875	0.68301	0.68728	0.69157	0.69588	0.70021	55		
0.5	0 70004	0.7045			10000000		100000	100		
35	0.70021	0.70455	0.70891 0.73547	0.71329 0.73996	0.71769 0.74447	0.72211	0.72654 0.75355	54 53		
37	0.75355	0.75812	0.76272	0.76733	0.77196	0.77661	0.78330	52		
38	0.78129	0.78598	0.79070	0.79544	0.80020	0.80498	0.80978	51		
39	0.80978	0.81461	0.81946	0.82434	0.82923	0.83415	0.83910	50		
40	0.83910	0.84407	0.84906	0.85408	0.85912	0.86419	0.86929	49		
41	0.86929	0.87441	0.87955	0.88473	0.88992	0.89515	0.90040	48		
42	0.90040	0.90569	0.91099	0.91633	0.92170	0.92709	0.93252	47		
43	0.93252	0.93797	0.94345	0.94896	0.95451	0.96008	0.96569	46		
44	0.96569	0.97133	0.97700	0.98270	0.98843	0.99420	1.00000	45		
E E	60'	50'	40'	30'	20'	10'	0'	DEGREES		
TAN-	-			COTANGE	string.			EGD		
3	1			COTANGE	MIS			P		

Natural Tangents and Cotangents

DEGREES	COTANGENTS									
DEG	0'	10'	20'	30'	40'	50'	60'	TAN-		
0 1 2 3	œ	343.77371	171.88540	114.58865	85.93979	68.75009	57.28996	89		
1	57.28996	49.10388	42.96408	38.18846	34.36777	31.24158	28.63625	88 87		
2		26.43160	24.54176	22.90377	21.47040	20.20555	19.08114	86		
4		18.07498 13.72674	17.16934 13.19688	16.34986 12.70621	15.60478 12.25051	14.92442 11.82617	14,30067 11,43005	85		
5	11.43005		10.71191	10.38540	10.07803	9.78817	9.51436	84 83		
7	9.51436 8.14435	9.25530 7.95302	9.00983 7.77035	8.77689 7.59575	8.55555 7.42871	8.34496 7.26873	8.14435 7.11537	82		
6 7 8	7.11537	6.96823	6.82694	6.69116	6.56055	6.43484	6.31375	81		
9	6.31375		6.08444	5.97576	5.87080	5.76937	5.67128	80		
10	5.67128	5.57638	5.48451	5.39552	5.30928	5.22566 4.77286	5.14455	79 78		
11 12	5.14455 4.70463	5.06584 4.63825	4.98940 4.57363	4,91516 4,51071	4.84300	4.38969	4.70463 4.33148	77		
13	4.33148	4.27471	4.21933	4.16530	4.11256	4.06107	4.01078	76		
14	4.01078	3.96165	3.91364	3.86671	3.82083	3.77595	3.73205	75		
15	3.73205		3.64705	3.60588	3.56557	3.52609	3.48741	74		
16 17	3.48741 3.27085	3.44951 3.23714	3.41236 3.20406	3.37594 3.17159	3.34023 3.13972	3.30521	3,27085 3,07768	73 72		
18	3.07768	3.04749	3.20406	2.98869	2.96004	2.93189	2.90421	71		
19	2.90421	2.87700	2.85023	2.82391	2.79802	2.77254	2.74748	70		
20	2.74748	2.72281	2.69853	2.67462	2.65109	2.62791	2.60509	69		
21 22	2.60509 2.47509	2.58261 2.45451	2.56046 2.43422	2.53865 2.41421	2.51715 2.39449	2.49597 2.37504	2.47509 2.35585	68		
23	2.35585		2.31826	2,29984	2.28167	2.26374	2.24604	66		
24	2.24604	2.22857	2.21132	2.19430	2.17749	2.16090	2,14451	65		
25 26	2.14451 2.05030	2.12832 2.03526	2.11233	2,09654	2.08094 1.99116	2.06553 1.97680	2.05030 1.96261	64 63		
26	1.96261	1.94858	2.02039 1.93470	2,00569 1,92098	1.99116	1.89400	1.88073	62		
28	1.88073	1.86760	1.85462	1.84177	1.82907	1.81649	1.80405	61		
29	1.80405	1.79174	1.77955	1.76749	1.75556	1.74375	1.73205	60		
30 31	1.73205 1.66428	1.72047 1.65337	1.70901	1.69766	1.68643 1.62125	1.67530 1.61074	1,66428 1,60033	59 58		
32	1.60033	1.59002	1.64256 1.57981	1.63185 1.56969	1.55966	1.54972	1.53987	57		
33	1.53987	1.53010	1,52043	1,51084	1.50133	1.49190	1.48256	56		
34	1.48256		1.46411	1.45501	1.44598	1.43703	1,42815	55		
35 36	1.42815 1.37638	1.41934 1.36800	1.41061 1.35968	1.40195 1.35142	1.39336 1.34323	1.38484	1.37638 1.32704	54 53		
37	1.32704	1.31904	1,35908	1.30323	1.29541	1.28764	1,27994	52		
38	1.27994	1.27230	1.26471	1.25717	1.24969	1.24227	1.23490	51		
39	1.23490	1.22758	1,22031	1,21310	1.20593	1.19882	1,19175	50		
40 41	1.19175	1.18474 1.14363	1.17777 1.13694	1.17085 1.13029	1.16398 1.12369	1.15715	1.15037 1.11061	49 48		
42	1.11061	1.10414	1.09770	1.09131	1.08496	1.07864	1.07237	47		
43	1.07237	1.06613	1.05994	1.05378	1.04766	1.04158	1.03553	46		
44	1.03553	1.02952	1.02355	1.01761	1.01170	1.00583	1.00000	45		
COTAN-	60'	50'	40'	30'	20'	10'	0'	GREEKS		
DE NO				TANGENT				1 3		

Natural Sines and Cosines

REE	Sines									
DEGREES	0'	10'	20'	30'	40'	50'	60'	COSINES		
0	0.00000	0.00291	0.00582	0.00873	0.01164	0.01454	0.01745	89 88 87		
1	0.01745	0.02036	0.02327	0.02618	0.02908	0.03199	0.03490	88		
2 3	0.03490	0.03781	0.04071	0.04362	0.04653	0.04943	0.05234	87		
4	0.05234 0.06976	0.05524 0.07266	0.05814 0.07556	0.06105 0.07846	0.06395 0.08136	0.06685 0.08426	0.06976 0.08716	86 85		
5	0.08716	0.09005	0.09295	0.09585	0.09874	0.10164	0.10453	84 83 82		
6	0.10453	0.10742	0.11031 0.12764	0.11320 0.13053	0.11609	0.11898 0.13629	0.12187 0.13917	83		
6789	0.13917	0.14205	0.14493	0.13033	0.15069	0.15356	0.15643	81		
9	0.15643		0.16218	0.16505	0.16792	0.17078	0.17365	80		
10	0.17365	0.17651	0.17937	0.18224	0.18509	0.18795	0.19081	79 78 77 76		
11 12	0.19081	0.19366 0.21076	0.19652 0.21360	0.19937 0.21644	0.20222 0.21928	0.20507	0.20791 0.22495	78		
13	0.22495	0.22778	0.23062	0.23345	0.23627	0.23910	0.24192	76		
14	0.24192	0.24474	0.24756	0.25038	0.25320	0.25601	0.25882	75		
15	0.25882	0.26163	0.26443	0.26724	0.27004	0.27284	0.27564	74 73 72 71 70		
16 17	0.27564 0.29237	0.27843	0.28123 0.29793	0.28402 0.30071	0.28680 0.30348	0.28959 0.30625	0.29237 0.30902	73		
18	0.30902	0.31178	0.31454	0.30071	0.32006	0.30023	0.32557	71		
19	0.32557	0.32832	0.33106	0.33381	0.33655	0.33929	0.34202	70		
20	0.34202	0.34475	0.34748	0.35021	0.35293	0.35565	0.35837	69		
21	0.35837	0.36108 0.37730	0.36379 0.37999	0.36650 0.38268	0.36921 0.38537	0.37191 0.38805	0.37461 0.39073	68 67		
23	0.39073	0.39341	0.39608	0.38208	0.40142	0.40408	0.40674	66		
22 23 24	0.40674	0.40939	0.41204	0.41469	0.41734	0.41998	0.42262	65		
25 26	0.42262 0.43837	0.42525	0.42788	0.43051	0.43313	0.43575	0.43837 0.45399	64		
27	0.45399	0.45658	0.44359 0.45917	0.44620 0.46175	0.44880	0.45140	0.45599	62		
28	0.46947	0.47204	0.47460	0.47716	0.47971	0.48226	0.48481	61		
29	0.48481	0.48735	0.48989	0.49242	0.49495	0.49748	0.50000	60		
30 31	0.50000		0.50503	0.50754	0.51004	0.51254	0.51504	59 58		
32	0.51504		0.53484	0.52250 0.53730	0.52498 0.53975	0.52745 0.54220	0.52992 0.54464	57		
33	0.54464		0.54951	0.55194	0.55436	0.55678	0.55919	56		
34	0.55919		0.56401	0.56641	0.56880	0.57119	0.57358	55		
35 36	0.57358 0.58779	0.57596 0.59014	0.57833 0.59248	0.58070	0.58307	0.58543	0.58779	54 53		
37	0.60182	0.60414	0.60645	0.59482 0.60876	0.59716 0.61107	0.61337	0.60182	52		
38	0.61566	0.61795	0.62024	0.62251	0.62479	0.62706	0.62932	51		
39	0.62932	0.63158	0.63383	0.63608	0.63832	0.64056	0.64279	50		
40	0.64279	0.64501	0.64723	0.64945	0.65166	0.65386	0.65606	49		
41	0.65606	0.65825 0.67129	0.66044	0.66262 0.67559	0.66480	0.66697	0.66913	48		
43	0.68200	0.68412	0.68624	0.68835	0.69046	0.69256	0.69466	46		
44	0.69466		0.69883	0.70091	0.70298	0.70505	0.70711	46 45		
OLNES	60'	50'	40'	30'	20'	10'	0'	DEGREES		
NIO /				COSINES	-			Day.		

Natural Sines and Cosines

DEGREES	Cosines									
DEG	0'	10'	20'	30'	40'	50'	60'	SINES		
0	1.00000	1.00000	0.99998	0.99996	0.99993	0.99989	0.99985	89		
1 2	0.99985	0.99979	0.99973 0.99917	0.99966 0.99905	0.99958 0.99892	0.99949 0.99878	0.99939 0.99863	88 87		
1 2 3	0.99863	0.99929	0.99831	0.99903	0.99795	0.99776	0.99756	86		
4	0.99756		0.99714	0.99692	0.99668	0.99644	0.99619	85		
5 6 7 8	0.99619	0.99594	0.99567	0.99540	0.99511 0.99324	0.99482	0.99452 0.99255	84 83		
7	0.99255	0.99421	0.99390	0.99357 0.99144	0.99324	0.99290	0.99255	82		
8	0.99027	0.98986	0.98944	0.98902	0.98858	0.98814	0.98769	81		
9	0.98769	0.98723	0.98676	0.98629	0.98580	0.98531	0.98481	80		
10	0.98481	0.98430	0.98378	0.98325	0.98272	0.98218	0.98163	79 78		
11 12	0.98163 0.97815	0.98107 0.97754	0.98050 0.97692	0.97992 0.97630	0.97934 0.97566	0.97875 0.97502	0.97815 0.97437	77		
13	0.97437	0.97371	0.97304	0.97237	0.97169	0.97100	0.97030	77 76		
14	0.97030	0.96959	0.96887	0.96815	0.96742	0.96667	0.96593	75		
15	0.96593	0.96517	0.96440	0.96363	0.96285	0.96206	0.96126	74		
16	0.96126	0.96046	0.95964	0.95882	0.95799	0.95715	0.95630	73		
17 18	0.95630	0.95545 0.95015	0.95459 0.94924	0.95372 0.94832	0.95284 0.94740	0.95195 0.94646	0.95106 0.94552	72 71		
19	0.94552	0.94457	0.94361	0.94264	0.94167	0.94068	0.93969	70		
20	0.93969	0.93869	0.93769	0.93667	0.93565	0.93462	0.93358	69		
21	0.93358	0.93253	0.93148	0.93042	0.92935	0.92827	0.92718	68		
22 23	0.92718	0.92609	0.92499 0.91822	0.92388 0.91706	0.92276 0.91590	0.92164 0.91472	0.92050 0.91355	67 66		
24	0.91355	0.91236	0.91116	0.90996	0.90875	0.90753	0.90631	65		
25	0.90631	0.90507	0.90383	0.90259	0.90133	0.90007	0.89879	64		
26 27	0.89879	0.89752	0.89623 0.88835	0.89493 0.88701	0.89363 0.88566	0.89232 0.88431	0.89101 0.88295	63 62		
28 29	0.88295	0.88158	0.88020	0.87882	0.87743	0.87603	0.87462	61		
29	0.87462	0.87321	0.87178	0.87036	0.86892	0.86748	0.86603	60		
30	0.86603	0.86457	0.86310	0.86163	0.86015	0.85866	0.85717	59		
31 32	0.85717 0.84805	0.85567 0.84650	0.85416 0.84495	0.85264 0.84339	0.85112 0.84182	0.84959 0.84025	0.84805 0.83867	58 57		
33	0.83867	0.83708	0.83549	0.83389	0.83228	0.83066	0.82904	56		
34	0.82904	0.82741	0.82577	0.82413	0.82248	0.82082	0.81915	55		
35	0.81915	0.81748	0.81580	0.81412	0.81242	0.81072	0.80902	54 53		
36 37	0.80902	0.80730	0.80558 0.79512	0.80386 0.79335	0.80212 0.79158	0.80038 0.78980	0.79864	52		
38	0.78801	0.78622	0.78442	0.78261	0.78079	0.77897	0.78801 0.77715	51		
39	0.77715	0.77531	0.77347	0.77162	0.76977	0.76791	0.76604	50		
40 41	0.76604	0.76417 0.75280	0.76229 0.75088	0.76041 0.74896	0.75851 0.74703	0.75661 0.74509	0.75471 0.74314	49 48		
42	0.74314	0.75280	0.73924	0.73728	0.74703	0.73333	0.73135	47		
43	0.73135	0.72937	0.73924 0.72737	0.72537	0.72337	0.72136	0.71934 0.70711	46		
44	0.71934	0.71732	0.71529	0.71325	0.71121	0.70916	0.70711	45		
COSINES	60'	50'	40'	30'	20'	10'	0'	GREES		
90				SINES	-			Ba		

Natural Secants and Cosecants

REE	SECANTS									
DROBEES	0,	10'	20'	30'	40°	50'	60'	Co-		
0	1.00000	1.00000	1.00002	1.00004	1.00007	1.00011	1.00015	89		
1	1.00015	1.00021	1.00027	1.00034	1.00042	1.00051	1.00061	88 87 86		
2 3	1.00061	1.00072	1.00083	1.00095	1.00108	1.00122	1.00137	87		
3	1.00137	1.00153	1,00169	1.00187	1.00205	1.00224	1.00244	86		
4	1.00244	1.00265	1.00287	1.00309	1.00333	1.00357	1.00382	85		
5	1.00382	1.00408	1.00435	1.00463	1.00491	1.00521	1.00551	84 83 82 81		
6	1.00551	1.00582	1.00614	1.00647	1.00681	1.00715	1.00751	83		
6	1.00751	1.00787	1.00825	1.00863	1.00902	1.00942	1.00983	82		
56789	1.01247	1.01294	1.01342	1.01391	1.01440	1.01491	1.01543	80		
10	1.01543	1.01595	1.01649	1.01703	1.01758	1.01815	1,01872	79		
II	1.01872	1.01930	1.01989	1.02049	1.02110	1.02171	1.02234	78		
12	1.02234	1.02298	1.02362 1.02770	1.02428	1.02494	1.02562	1.02630	79 78 77 76		
13	1.02630	1.02700	1.02770	1.02842	1.02914	1.02987	1,03061	76		
14	1.03061	1.03137	1.03213	1,03290	1.03368	1.03447	1.03528	75		
15	1.03528	1.03609	1.03691	1.03774	1.03858	1.03944	1.04030	74		
16	1.04030	1.04117	1.04206 1.04757	1.04295 1.04853	1.04385	1.04477 1.05047	1.04569 1.05146	73		
18	1.05146	1.04663	1.05347	1.05449	1.04930	1.05657	1.05762	72 71		
19	1.05762	1.05869	1.05976	1.06085	1.06195	1.06306	1.06418	70		
20	1.06418	1.06531	1.06645	1,06761	1.06878	1.06995	1.07115	69		
21	1.07115	1.07235	1.07356	1.07479	1.07602	1.07727	1.07853	68		
22	1.07853	1.07981	1.08109	1.08239	1.08370	1.08503	1.08636	67		
23	1.08636	1.08771	1.08907	1.09044	1.09183	1.09323	1.09464	66		
24	1.09464	1.09606	1.09750	1.09895	1.10041	1.10189	1.10338	65		
25 26 27	1.10338	1.10488	1.10640	1.10793	1.10947	1.11103	1.11260	64 63		
26	1.11260	1.11419	1.11579	1.11740	1.11903	1.12067	1.12233	63		
27	1.12233	1.12400	1.12568	1.12738	1.12910	1.13083	1.13257	62 61		
28	1.13257 1.14335	1.13433	1.13610 1.14707	1.13789	1.13970 1.15085	1.14152 1.15277	1.14335	60		
30	1.15470	1,15665	1.15861	1.16059	1.16259	1.16460	1.16663	59		
31	1.16663	1.16868	1.17075	1.17283	1,17493	1.17704	1.17918	58		
32	1.17918	1.18133	1.18350	1.18569	1.18790	1.19012	1.19236	57		
33	1.19236	1,19463	1.19691	1.19920	1.20152	1.20386	1.20622	56		
34	1,20622	1.20859	1.21099	1.21341	1.21584	1.21830	1.22077	55		
35	1.22077	1.22327	1.22579	1.22833	1.23089	1.23347	1.23607	54		
36 37	1.23607	1.23869	1.24134	1.24400	1,24669 1,26330	1.24940	1.25214	53 52		
38	1.25214	1.25489	1.25767 1.27483	1.26047 1.27778	1.28075	1.28374	1.28676	51		
39	1.28676	1.28980	1.29287	1.29597	1.29909	1.30223	1.30541	50		
40	1.30541	1.30861	1.31183	1.31509	1.31837	1.32168	1.32501	49		
41	1.32501	1.32838	1.33177	1.33519	1.33864	1.34212	1.34563	48		
42	1.34563	1.34917	1.35274	1.35634	1.35997	1.36363	1.36733	47		
43	1.36733	1.37105	1.37481	1.37860	1.38242	1.38628	1.39016	46		
44	1.39016	1.39409	1.39804	1.40203	1.40606	1.41012	1.41421	45		
WANTS /	60"	50'	40'	30'	20'	10'	0'	DEGREES		
3 /				0	-			100		
-				COSECAN	TS ST			0		

Natural Secants and Cosecants

CC 343.77516 171.88831 114.59301 85.94561 68.75736 57.29869 8 2 28.65371 26.45051 24.55212 22.9559 21.4938 20.32028 29.05371 8 19.10732 18.10262 17.19843 16.33041 15.63679 14.96788 14.33559 13.76312 13.23472 12.74550 12.29125 11.86837 11.47371 11.0455 10.75849 10.43343 10.12752 9.83912 9.56677 9.30917 9.05515 8.83367 8.61379 8.40466 8.20551 8 7.8530 7.39902 6.89979 6.76547 6.6533 6.51208 6.39245 6.27719 6.16607 6.05856 5.95536 5.55539 5.75877 8 6.30245 6.27719 6.16607 6.05856 5.95536 5.55539 5.75877 8 14.43357 4.08591 4.03938 3.99393 3.04052 3.90613 3.86370 7.18331 7.18330 7.18331 7.1833	SEE	COSECANTS									
1 57,29869 49, 11406 42,97571 32,88,20155 21,49368 20,23028 19,10732 83 19,10732 18,10262 17,19843 16,38041 15,63679 14,95788 14,33559 84 14,33559 13,76312 13,23472 12,74550 12,29125 11,86837 11,47371 85 11,47371 11,10455 11,47371 9,06515 8,83367 8,61379 8,40466 8,20551 87,82051 8,01565 7,83443 7,766130 7,49571 7,33719 7,18530 89 6,39245 6,27719 6,16607 6,05886 5,95536 5,85539 5,75877 89 6,39245 6,27719 6,16607 6,05886 5,95536 5,85539 5,75877 89 6,39245 6,27719 6,16607 6,05886 5,95536 5,85539 5,75877 89 11,47371 11,4737	DEG	0'	10'	20'	30'	40'	50'	60'	SECANTS		
1 57, 2986 49, 11406 1, 2, 97571 2, 38, 20155 2, 48, 38322 31, 25758 28, 65371 28, 20551 24, 56212 22, 29559 21, 49368 20, 23028 19, 10732 8, 31, 10732 18, 10262 17, 19843 16, 33041 15, 633679 14, 95788 14, 33559 8, 11, 47371 11, 10455 10, 75849 12, 12, 74550 12, 29125 11, 86837 11, 47371 8, 11, 10455 10, 11, 10455 10, 12752 12, 29125 11, 86837 11, 47371 8, 10457 11, 10455 10, 10451 11, 10455 10, 10451 11, 10455 10, 10451 11, 10455 10, 10451 11, 10455 10, 10451 11, 10455 10, 10451 11, 10451 11, 10455 10, 10451 11, 10451	0	oc	343.77516	171.88831	114.59301	85.94561	68.75736		89		
4 14,33559 13,76312 13,23472 12,74550 12,29125 11,86837 11,47371 8 5 11,47371 11,10455 10,75849 10,43343 10,12752 9,83912 9,56677 8,20551 8,01565 7,83443 7,66130 7,49571 7,33719 7,18530 8 7,18530 7,03962 6,89979 6,76547 6,63633 6,51208 6,39245 8,77179 6,16607 6,05886 5,95536 5,85539 5,75877 8 8,718530 7,03962 6,89979 6,76547 6,63633 6,51208 6,39245 8,37179 6,16607 6,05886 5,95536 5,85539 5,75877 8 10 5,75877 5,66533 5,57493 5,48740 5,40263 5,32049 5,24084 7,1224 7,2234 7,2	1								88		
4 14,33559 13,76312 13,23472 12,74550 12,29125 11,86837 11,47371 8 5 11,47371 11,0455 10,75849 10,43343 10,12752 9,83912 9,56677 8,20551 8,01565 7,83443 7,66130 7,49571 7,33719 7,18530 8 7,18530 7,03962 6,89979 6,76547 6,63633 6,51208 6,39245 6,27719 6,16607 6,05856 5,95536 5,85539 5,75877 8 8,718530 7,03962 6,89979 6,76547 6,3663 6,3623 5,52587 8 10 5,75877 5,66533 5,7493 5,48740 5,40263 5,32049 5,24084 7 11 5,24084 5,16359 5,08863 5,01585 4,94517 4,87649 4,80973 7 12 4,8973 4,74862 4,88167 4,20233 4,56041 4,50216 4,44541 4,3012 4,33622 4,23366 4,23239 4,18238 4,13357 7 13 4,44541 4,30012 4,33622 4,23366 4,23239 4,18238 4,13357 7 14 4,13357 4,08591 4,03938 3,99393 3,9952 3,90613 3,86370 7 3,62796 3,59154 3,55587 3,52004 3,48671 3,45317 3,42030 7 3,62796 3,59154 3,55587 3,52004 3,48671 3,45317 3,42030 7 3,23607 3,20737 3,17920 3,15155 3,29412 3,26531 3,23607 7 3,23607 3,20737 3,17920 3,15155 3,29412 3,26531 3,23607 7 3,23607 2,90632 2,78851 2,85545 2,83422 2,81175 2,70433 2,92380 7 2,92380 2,90663 2,8785 2,85545 2,83422 2,81175 2,70433 2,92380 7 2,92380 2,90663 2,8785 2,85545 2,83422 2,81175 2,70433 2,92380 7 2,20699 2,20606 2,2474 2,50784 2,4019 2,47477 2,45859 6 2,266947 2,66040 2,63162 2,61313 2,59491 2,57698 2,55300 6 2,28177 2,26766 2,25432 2,24116 2	2			24.56212							
6 9.56677 9.30917 9.06515 8.83367 8.61370 8.40466 8.20551 8.20551 8.01565 7.83443 7.66130 7.49571 7.33719 7.18530 8 9 6.3245 6.27719 6.16607 6.05886 5.9536 5.8539 5.75877 8 10 5.75877 5.66533 5.67493 5.48740 6.40263 5.32049 5.24084 5.16359 5.08863 5.01555 4.94517 4.87444 4.80973 7.12 4.80973 4.74482 4.68167 4.62023 4.94517 4.87644 4.80973 7.13357 4.08514 4.33022 4.23306 4.23239 4.18238 4.13357 7.14544 4.33022 4.23306 4.23239 4.18238 4.13357 7.15 3.62796 3.59154 3.55587 3.52094 3.48671 3.45317 3.42300 7.37193 3.15155 3.24440 3.09774 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 2.90632 2.87785 <t< td=""><td>4</td><td>19.10732</td><td>18.10202</td><td>17.19843</td><td></td><td></td><td></td><td></td><td>85</td></t<>	4	19.10732	18.10202	17.19843					85		
7 8 20551 8 07,18530 7,03962 6,89079 6,76547 6,63633 6,51208 6,32245 6,27719 6,16607 6,03836 5,9536 5,8539 5,75877 8 10 5,75877 5,66533 5,57493 5,48740 5,40263 5,32049 5,24084 7,18539 7,24824 8,8167 4,6203 4,94517 4,87649 4,80973 7,14541 1,487649 4,80973 7,18539 8,6876 4,6203 4,94517 4,87649 4,80973 7,18539 8,68761 4,6203 4,56641 5,5216 4,44541 7,18337 7,18337 7,18337 7,18337 7,18337 7,18337 7,18371 7,18371 7,18371 7,18371 7,18371 7,18371 7,18371 7,18461	5		11.10455						84 83		
10 5.75877 5.66533 5.57493 5.48740 5.40263 5.32049 5.24084 7 11 5.24084 5.16359 5.08863 5.01585 4.94517 4.87649 4.80973 7 12 4.80973 4.74482 4.86167 4.62023 4.50041 4.50216 4.48541 13 4.44541 4.3012 4.33622 4.28366 4.23239 4.18238 4.13357 7 14 4.13357 4.08591 4.03938 3.99393 3.94952 3.90013 3.86370 7 15 3.86370 3.82223 3.78166 3.74198 3.70315 3.66515 3.62796 7 17 3.42030 3.38808 3.35649 3.2551 3.29512 3.26531 3.28007 7 18 3.23607 3.20737 3.17920 3.15155 3.12440 3.09774 3.07155 7 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 20 2.92380 2.90063 2.87785 2.85545 2.83342 2.81175 2.70043 6 21 2.79043 2.76045 2.74881 2.72850 2.70851 2.68884 2.66947 6.22 2.65040 2.63162 2.61313 2.59491 2.57698 2.55930 6.24102 2.52474 2.50784 2.49119 2.47477 2.45859 6.2424 2.45859 2.44264 2.42692 2.41142 2.30614 2.38107 2.36620 6.22 2.28117 2.26766 2.25482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.23817 2.206067 2.0519 2.04128 2.03077 2.03039 2.01014 2.00000 6.20000 1.98998 1.98088 1.97029 1.96062 1.95106 1.94160 5.2266 1.92302 1.1847 2.05458 1.9838 1.78604 1.78829 1.78062 1.77303 1.76552 1.75808 1.75073 1.74345 5.2266 1.64804 1.65266 1.64804 1.64268 1.63648 1.63035 1.62427 5.61646 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61646 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.6468 1.64684 1.65526 1.64804 1.64268 1.	6								82		
10 5.75877 5.66533 5.57493 5.48740 5.40263 5.32049 5.24084 7 11 5.24084 5.16359 5.08863 5.01585 4.94517 4.87649 4.80973 7 12 4.80973 4.74482 4.86167 4.62023 4.50041 4.50216 4.48541 13 4.44541 4.3012 4.33622 4.28366 4.23239 4.18238 4.13357 7 14 4.13357 4.08591 4.03938 3.99393 3.94952 3.90013 3.86370 7 15 3.86370 3.82223 3.78166 3.74198 3.70315 3.66515 3.62796 7 17 3.42030 3.38808 3.35649 3.2551 3.29512 3.26531 3.28007 7 18 3.23607 3.20737 3.17920 3.15155 3.12440 3.09774 3.07155 7 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 20 2.92380 2.90063 2.87785 2.85545 2.83342 2.81175 2.70043 6 21 2.79043 2.76045 2.74881 2.72850 2.70851 2.68884 2.66947 6.22 2.65040 2.63162 2.61313 2.59491 2.57698 2.55930 6.24102 2.52474 2.50784 2.49119 2.47477 2.45859 6.2424 2.45859 2.44264 2.42692 2.41142 2.30614 2.38107 2.36620 6.22 2.28117 2.26766 2.25482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21535 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.24116 2.22817 2.21635 2.20269 6.225482 2.23817 2.206067 2.0519 2.04128 2.03077 2.03039 2.01014 2.00000 6.20000 1.98998 1.98088 1.97029 1.96062 1.95106 1.94160 5.2266 1.92302 1.1847 2.05458 1.9838 1.78604 1.78829 1.78062 1.77303 1.76552 1.75808 1.75073 1.74345 5.2266 1.64804 1.65266 1.64804 1.64268 1.63648 1.63035 1.62427 5.61646 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61646 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.61648 1.65526 1.64804 1.64268 1.63648 1.63035 1.62427 5.6468 1.64684 1.65526 1.64804 1.64268 1.	8	7.18530		6.89979	6.76547				81		
11 5 24084 5 16359 5 0.0863 5 0.01855 4 94517 4 87649 4 80973 4 74482 4 68167 4 62023 4 15041 4 450216 4 44541 7 14 4 13357 4 0.0838 3 99393 3 94962 3 90613 3 86370 7 15 3 68370 3 82223 3 3 3 0613 3 86370 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 6 3 3 6 3 3 6 3 3 6 3 3 6 3 3 2607 3 3 3 3 3 3 3 3 3 3 3 3 3 3<	9								80		
12 4, 80973 4, 74482 4, 68167 4, 62023 4, 56041 4, 50216 4, 44541 7, 30212 4, 33622 4, 28366 4, 23239 4, 18238 4, 13357 7 14 4, 13357 4, 08591 4, 03338 3, 99933 3, 94952 3, 9013 3, 88370 7 15 3, 86370 3, 82223 3, 78166 3, 74198 3, 70315 3, 66515 3, 62796 7 17 3, 42303 3, 88808 3, 55587 3, 52004 3, 48871 3, 45317 3, 42030 7 18 3, 23607 3, 20737 3, 17920 3, 15155 3, 12440 3, 09774 3, 07155 7 19 3, 07155 3, 04584 3, 02057 2, 99574 2, 97135 2, 94737 2, 92380 7 20 2, 93380 2, 76945 2, 78851 2, 79845 2, 85455 2, 83342 2, 81175 2, 70043 2, 76945 2, 74881 2, 72850 2, 70851 2, 68884 2, 66947 6 2, 24162 2, 24592 2, 61313 2, 59491 2, 57698 2, 55930 6 2, 24817									79		
13 4,4541 4,39012 4,33622 4,23366 4,23239 4,18238 4,13357 7 14 4,13357 4,08591 4,03938 3,99393 3,94952 3,90613 3,86370 7 15 3,86370 3,8223 3,78166 3,70315 3,66513 3,62796 3,69154 3,55587 3,52094 3,48671 3,46317 3,42030 7 18 3,23607 3,20737 3,17920 3,15155 3,12440 3,00774 3,07155 7 19 3,07155 3,04584 3,02057 2,99574 2,97135 2,94737 2,92380 7 20 2,92380 2,9063 2,87785 2,85545 2,83342 2,81175 2,70043 2,76945 2,74881 2,72850 2,70851 2,6884 2,60947 2,65040 2,63162 2,63162 2,63182 2,81175 2,70943 2,74871 2,72831 2,76944 2,45891 2,76944 2,45891 2,57669 2,55830 2,41476 2,66267			4 74482		4 62023				77		
14 4.13357 4.08591 4.03938 3.99393 3.94952 3.90013 3.86370 7 15 3.86370 3.82223 3.78166 3.74108 3.70315 3.66515 3.62796 7 17 3.42030 3.88808 3.35649 3.2551 3.29512 3.28531 3.23607 7 18 3.23607 3.20737 3.17920 3.15155 3.12440 3.09774 3.07155 7 3.07155 3.04584 3.02057 2.99374 2.97135 2.94737 2.92380 7 7 3.07155 3.04584 3.02057 2.997135 2.94737 2.92380 7 7 3.07155 3.04584 3.02067 2.997135 2.94737 2.92380 7 7 3.07155 2.94737 2.92380 7 7 7 3.07155 2.94737 2.92380 7 7 7 3.07155 2.94737 2.92380 7 7 7 3.07155 2.94737 2.92380 7 7 7	13		4.39012	4.33622					76		
16 3. 62796 3. 59154 3. 55587 3. 52004 3. 48871 3. 45307 3. 42030 3. 38808 3. 35649 3. 32551 3. 29512 3. 26531 3. 23607 7. 17 19 3. 07155 3. 04584 3. 02057 2. 99574 2. 97135 2. 94737 2. 92380 7. 20 20 2. 92305 2. 80785 2. 85545 2. 83142 2. 81175 2. 79043 2. 76045 2. 4881 2. 72850 2. 70851 2. 68884 2. 66947 6. 6040 2. 63162 2. 61313 2. 59491 2. 57088 2. 55930 2. 65040 2. 63162 2. 61313 2. 59491 2. 57088 2. 55930 2. 64264 2. 42602 2. 41142 2. 30614 2. 35170 2. 45859 2. 44264 2. 42602 2. 41142 2. 30614 2. 35170 2. 45859 2. 42662 2. 24116 2. 22817 2. 21535 2. 20269 2. 19019 2. 17786 2. 16568 2. 15386 2. 14178 2. 13006 2. 22817 2. 21535 2. 20269 2. 20269 2. 06267 2. 05191<	14	4.13357	4.08591	4.03938	3.99393	3.94952	3.90613	3.86370	75		
17 3,42030 3,38804 3,325649 3,32551 3,29512 3,25531 3,23607 3,20737 3,17920 3,15155 3,12440 3,09774 3,07155 7,2155 7,2155 7,2155 7,2135 2,24737 2,92380 7,2063 2,87785 2,85545 2,83342 2,81175 2,7043 2,6945 2,74881 2,72880 2,70851 2,6884 2,6047 6,6047 2,66040 2,63162 2,61313 2,50491 2,57893 2,6041 2,6766 2,74811 2,27880 2,70851 2,85590 2,6884 2,6047 6,6047 2,6604 2,63162 2,61142 2,30614 2,38107 2,4859 2,44264 2,42692 2,41142 2,30614 2,38107 2,36620 6 2,2,36154 2,23708 2,23817 2,226766 2,25432 2,24116 2,22817 2,21535 2,20269 2,18147 2,10744 2,09574 2,08488 2,07355 2,20269 2,20269 2,06267 2,00267 2,00267 2,00267 2,00267 2,0		3.86370		3.78166	3.74198				74		
18 3.23607 3.20737 3.17920 3.15155 3.12440 3.09774 3.07155 7 19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 20 2.92380 2.90063 2.87785 2.85854 2.83342 2.81175 2.96647 2.6040 2.61313 2.94737 2.96884 2.60447 6 22 2.66047 2.63162 2.61313 2.50491 2.57698 2.55830 6 23 2.55302 2.54190 2.52474 2.50784 2.49119 2.47477 2.45859 6 24 2.46859 2.44264 2.42692 2.41142 2.30614 2.33107 2.36620 6 25 2.36620 2.35154 2.33708 2.32282 2.30875 2.29487 2.28117 2.26666 2.25432 2.24116 2.22317 2.21535 2.20269 2.21019 2.17704 2.99574 2.08362 2.03636 2.24178 2.21535 2.2026									73		
19 3.07155 3.04584 3.02057 2.99574 2.97135 2.94737 2.92380 7 20 2.92380 2.90063 2.87785 2.85545 2.83342 2.81175 2.79043 6 21 2.79043 2.76845 2.78851 2.8284 2.80842 2.68648 2.69047 6 22 2.69047 2.69040 2.63162 2.61313 2.594641 2.58848 2.6930 6 23 2.55930 2.54190 2.52474 2.50784 2.49119 2.47477 2.45859 6 24 2.45850 2.44264 2.42692 2.41142 2.30614 2.38107 2.36620 6 2.8117 2.26766 2.25432 2.24116 2.23817 2.21535 2.20269 2.17986 2.24116 2.22817 2.21535 2.20269 2.20667 2.05191 2.04128 2.03077 2.02039 2.01014 2.00066 3.20067 2.04128 2.03077 2.02039 2.01014 2.00000 6<	17				3.32551				71		
21 2.79043 2.76845 2.74881 2.27885 2.70851 2.68884 2.69047 6 22 2.69047 2.65040 2.63182 2.70851 2.58884 2.69047 6 23 2.55930 2.54190 2.52474 2.50784 2.49119 2.47477 2.48559 6 24 2.48599 2.44264 2.42692 2.41142 2.30614 2.38107 2.36620 6 25 2.36560 2.35154 2.3708 2.32282 2.29817 2.2087 2.8117 6 26 2.28117 2.26766 2.25432 2.24116 2.23817 2.21305 2.20269 6 27 2.20269 2.10719 2.17786 2.16568 2.15366 2.14178 2.13005 6 29 2.06267 2.05191 2.04128 2.03077 2.02039 2.01014 2.00000 6 30 2.00000 1.98998 1.9808 1.97029 1.96062 1.95106 1.94160	19			3.02057	2.99574				70		
22 2.66047 2.65040 2.63162 2.61313 2.50491 2.57698 2.55300 6.55474 2.50784 2.49119 2.47477 2.45859 6.422464 2.42692 2.41142 2.30614 2.38107 2.36620 6 25 2.36620 2.35154 2.33708 2.32282 2.30875 2.29487 2.28117 2.26766 2.25432 2.24116 2.22317 2.21535 2.20269 6 27 2.20269 2.19019 2.17786 2.16568 2.15366 2.14178 2.13005 6 28 2.13005 2.11847 2.10704 2.99574 2.03037 2.02039 2.01014 2.00006 6 29 2.06267 2.05191 2.04128 2.03077 2.02039 2.01014 2.00000 6 30 2.00001 1.98908 1.97029 1.96062 1.95106 1.94160 6 1.94160 1.93226 1.93302 1.91388 1.90485 1.89591 1.88709 5 32 1.87	20		2.90063						69		
23 2,55830 2,54190 2,52474 2,50784 2,49119 2,47477 2,45859 6 24 2,4589 2,44264 2,42692 2,41142 2,39614 2,38107 2,36620 6 25 2,36620 2,35154 2,23432 2,24116 2,22817 2,21535 2,20269 6 27 2,20269 2,19019 2,17786 2,16568 2,15355 2,20269 6 28 2,13005 2,11847 2,10704 2,99574 2,08485 2,07355 2,26267 6 29 2,06267 2,05191 2,04128 2,03077 2,02039 2,01014 2,00000 6 30 2,00000 1,98998 1,98008 1,97029 1,96062 1,95106 1,94160 5 31 1,94160 1,93236 1,91388 1,90485 1,88799 1,88709 1,86164 1,88799 1,8819 1,88709 1,86164 1,88271 1,84435 1,83608 1,78062 1,77808 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>68 67</td></td<>									68 67		
25 2,36620 2,35154 2,33708 2,32282 2,30875 2,29487 2,28117 6 26 2,28117 2,26766 2,25432 2,24116 2,22817 2,21535 2,20269 6 27 2,20269 2,19019 2,1786 2,16568 2,15366 2,14178 2,13060 2,14178 2,20267 6 28 2,13005 2,11847 2,10704 2,9674 2,08458 2,07356 2,06267 6 2 29 2,06267 2,05191 2,04128 2,03077 2,02039 2,01014 2,00000 6 30 2,00000 1,9898 1,9808 1,97029 1,96062 1,95106 1,94160 5 31 1,94160 1,93226 1,29302 1,91388 1,90082 1,89511 1,88708 1,89511 1,88708 5 32 1,88708 1,87834 1,86070 1,8181 1,8180 1,80388 1,79044 1,78829 1,88608 5	22								66		
26 2.28117 2.26766 2.25432 2.24116 2.22817 2.21335 2.20209 6 27 2.20209 2.19019 2.1786 2.16568 2.13365 2.14178 2.13005 2.11847 2.10704 2.99574 2.08458 2.07355 2.06267 6 6 29 2.06267 2.05191 2.04128 2.03077 2.02039 2.01014 2.00000 6 30 2.00000 1.98998 1.98008 1.97029 1.96062 1.95106 1.94160 5 31 1.94160 1.93226 1.92302 1.91388 1.90485 1.89591 1.87804 1.88708 1.8	24						2.38107		65		
27 2. 20269 2. 19199 2. 17786 2. 16568 2. 15366 2. 14178 2. 13005 6. 1847 2. 10704 2. 09574 2. 08458 2. 07355 2. 06267 6. 667 6. 29 2. 06267 2. 05191 2. 04128 2. 03077 2. 02039 2. 01014 2. 00000 6 30 2. 00000 1. 98998 1. 98008 1. 97029 1. 96062 1. 95106 1. 94160 5 31 1. 94160 1. 93262 1. 91388 1. 90485 1. 88791 1. 88709 1. 78829 1. 78829 1. 78829	25						2.29487		64		
28 2.13005 2.11847 2.10704 2.09574 2.08458 2.07356 2.06267 6.0267 2.05191 2.04128 2.03077 2.02039 2.01014 2.00000 6 30 2.00000 1.98908 1.98008 1.97029 1.96062 1.95106 1.94160 5 31 1.94160 1.93226 1.92302 1.91388 1.90485 1.88591 1.88709 5 32 1.88708 1.87834 1.86970 1.86116 1.85271 1.84435 1.83608 1.78829 1.78002 1.77303 1.76552 1.75808 1.76073 1.78829 5 34 1.78829 1.78002 1.77303 1.76552 1.75808 1.76073 1.74345 1.73624 1.72911 1.72205 1.71506 1.70815 1.70130 5 36 1.74345 1.68782 1.68117 1.67460 1.66809 1.66164 5 36 1.68782 1.68117 1.67460 1.66809 1.66164 5 31 1.624									63 62		
30 2.00000 1.98998 1.98008 1.97029 1.96062 1.95106 1.94160 5 31 1.94160 1.9326 1.92302 1.91388 1.90485 1.85961 1.88709 1.88708 1.88708 1.887834 1.86970 1.86116 1.85271 1.84435 1.83608 5 33 1.83608 1.82700 1.81811 1.81180 1.80388 1.70004 1.78829 5 34 1.78829 1.78002 1.77303 1.76552 1.75808 1.76073 1.74345 5 35 1.74345 1.78621 1.86726 1.76062 1.77205 1.71506 1.70815 1.70130 1.69452 1.68782 1.68117 1.67460 1.68690 1.66164 5 37 1.66164 1.65266 1.64894 1.64268 1.63484 1.63035 1.62427 5 38 1.62427 1.61825 1.67771 1.67213 1.56661 1.56114 1.55572 5 40 1.55572 1.55036 <td>27</td> <td></td> <td></td> <td>2.17786</td> <td></td> <td></td> <td></td> <td></td> <td>61</td>	27			2.17786					61		
31 1.94160 1.93226 1.92302 1.91388 1.90485 1.89591 1.88709 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88708 1.88608 1.88708 1.88608 1.88708 1.88608 1.88709 3.888 1.79004 1.78829 1.88709 3.888 1.79004 1.78829 1.88709 3.888 1.79004 1.78829 5.8872 1.881180 1.89388 1.79004 1.78829 5.8972 1.78508 1.76073 1.74346 5 35 1.764345 1.78622 1.88782 1.68117 1.72056 1.75080 1.76073 1.74346 5 36 1.76130 1.69452 1.68782 1.68117 1.67460 1.6809 1.66164 5 37 1.66164 1.63035 1.62427 5 38 1.62427 1.61825 1.60639 1.60639 1.60643 1.59405 1.55572 5 38 1.	29								60		
32 1.88708 1.87834 1.86970 1.86116 1.88271 1.84435 1.83608 5.83608 1.82700 1.81810 1.80388 1.79604 1.78829 5 34 1.78829 1.78002 1.77303 1.76552 1.75808 1.796073 1.74345 5 35 1.74345 1.73624 1.72911 1.72205 1.71506 1.70815 1.70130 5 36 1.70130 1.66452 1.68782 1.68117 1.67460 1.66809 1.66164 5 37 1.66164 1.65526 1.64894 1.42468 1.63048 1.63035 1.62427 5 38 1.62427 1.61825 1.61229 1.60639 1.66044 5 1.6902 1.59476 1.58902 5 39 1.58902 1.58333 1.57771 1.57213 1.56661 1.56114 1.55572 5 40 1.55572 1.55036 1.54504 1.53977 1.53455 1.52938 1.52425 4 </td <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>59</td>	30								59		
33 1,83608 1,82790 1,81981 1,81180 1,80388 1,79004 1,78829 1,78062 1,78062 1,78062 1,76552 1,75808 1,7573 1,74345 5 35 1,74345 1,78624 1,72911 1,72205 1,71506 1,70130 1,04645 1,6872 1,68117 1,67460 1,68809 1,66164 5 37 1,66164 1,65526 1,64894 1,64268 1,63468 1,63035 1,62427 5 38 1,62427 1,61825 1,61293 1,60639 1,66064 1,58002 1,58333 1,57771 1,57213 1,56661 1,56114 1,55572 5 40 1,55572 1,55036 1,54504 1,53977 1,53455 1,52938 1,52425 4 41 1,52425 1,51918 1,51415 1,50916 1,50422 1,49933 1,49448 4 42 1,49448 1,48967 1,48491 1,48019 1,47551 1,47087 1,46628 4									58 57		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1.83608	1.82790			1.80388	1.79604	1.78829	56		
36 1.70130 1.69452 1.68782 1.68117 1.67460 1.68809 1.66164 5 37 1.66164 1.65526 1.64894 1.64268 1.63045 1.62427 1.6168 38 1.62427 1.61825 1.61229 1.60639 1.63045 1.59475 1.58002 1.58002 1.58333 1.57771 1.57213 1.56661 1.56114 1.55572 5 40 1.55572 1.55036 1.54504 1.53977 1.53455 1.52938 1.52425 4 41 1.52425 1.51918 1.5415 1.50916 1.50422 1.49933 1.4948 4.4948 4.48967 1.48491 1.48019 1.47551 1.47087 1.46628 4 43 1.46628 1.46173 1.45721 1.45274 1.44831 1.44391 1.43956 4 44 1.43956 1.43524 1.43096 1.42672 1.42251 1.41835 1.41421 4	34	1.78829	1.78062				1.75073	1.74345	55		
37 1.68164 1.63526 1.64864 1.64268 1.63648 1.63035 1.62427 5.61825 1.60639 1.60034 1.59475 1.58902 5 39 1.58902 1.58333 1.57771 1.67213 1.50661 1.50114 1.55572 5 40 1.55572 1.55036 1.54504 1.53977 1.53455 1.52938 1.52425 4 41 1.52425 1.51415 1.50916 1.50422 1.49933 1.49448 4 42 1.49448 1.48967 1.48491 1.48019 1.47551 1.47087 1.46628 4 43 1.46628 1.46173 1.45721 1.45274 1.44831 1.44391 1.43956 4 44 1.43956 1.43524 1.43096 1.42072 1.42251 1.41835 1.41421 4	35	1.74345					1,70815		54		
38 1.62427 1.61825 1.61229 1.60639 1.60054 1.59475 1.58902 5 39 1.58902 1.58333 1.57771 1.57213 1.56661 1.56114 1.55572 5 40 1.55572 1.55036 1.54504 1.53977 1.50425 1.51918 1.51415 1.50916 1.50422 1.49933 1.49448 4 42 1.49448 1.48967 1.48491 1.48019 1.47551 1.47087 1.46628 4 43 1.46628 1.46173 1.45721 1.45274 1.44831 1.44391 1.43956 4 44 1.43956 1.43524 1.43096 1.42672 1.42251 1.41835 1.41421 4									53 52		
40 1,55572 1,55036 1,54504 1,53977 1,53455 1,52938 1,52425 4 41 1,52425 1,51918 1,51415 1,50916 1,50422 1,49933 1,49448 4 42 1,49448 1,48967 1,48491 1,48019 1,47551 1,47087 1,46628 4 43 1,46628 1,46173 1,45721 1,45274 1,44831 1,4391 1,43956 4 44 1,43956 1,43524 1,43096 1,42672 1,42251 1,41835 1,41421 4	38	1.62427		1.61229		1.60054			51		
41 1,52425 1,51918 1,51415 1,50016 1,50422 1,49933 1,49448 4 42 1,49448 1,48967 1,48491 1,48019 1,47551 1,47087 1,46628 4 43 1,46628 1,46173 1,45721 1,45274 1,44831 1,44391 1,43956 4 44 1,43956 1,43524 1,43096 1,42672 1,42251 1,41835 1,41421 4	39								50		
42 1,49448 1,48967 1,48491 1,48019 1,47551 1,47087 1,46628 4 43 1,46628 1,46173 1,45721 1,45274 1,44831 1,4391 1,43956 4 44 1,43956 1,43524 1,43096 1,42672 1,42251 1,41835 1,41421 4									49 48		
43 1.46628 1.46173 1.45721 1.45274 1.44831 1.44991 1.43956 4 44 1.43956 1.43524 1.43096 1.42072 1.42251 1.41835 1.41421 4									47		
44 1.43956 1.43524 1.43096 1.42672 1.42251 1.41835 1.41421 4			1.46173		1.45274	1.44831	1.44391	1.43956	46		
60' 50' 40' 30' 20' 10' 0'							1,41835	1.41421	45		
08	1 SER	60'	50'	40'	30'	20'	10'	0'	REES		
SECANTS	60		_	_	0				1 8		

Functions of Numbers, 1 to 49

			Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
1	1	1	1.0000	1.0000	0.00000	1000,000	3.142	0.785
1 2 3 4 5 6 7 8	4	8	1.4142	1.2599	0.30103	500.000	6,283	3.141
3	9	27	1.7321	1.4422	0.47712	333.333	9.425	7.068
4	16	64	2.0000	1.5874	0.60206	250.000	12.566	12.566
5	25	125	2,2361	1.7100	0.69897	200.000	15.708	19.635
6	36	216	2.4495	1.8171	0.77815	166.667	18,850	28.274
0	49 64	343 512	2.6458 2.8284	1.9129	0.84510	142.857 125.000	21.991 25.133	38.484 50.265
9	81	729	3.0000	2.0000 2.0801	0.95424	111.111	28,274	63.617
10	100	1000	3.1623	2.1544	1.00000	100.000	31,416	78.539
11	121	1331	3.3166	2,2240	1.04139	90.9091	34.558	95.033
12	144	1728	3.4641	2,2894	1.07918	83.3333	37,699	113.0
13 14	169 196	2197 2744	3.6056 3.7417	2,3513 2,4101	1.11394	76.9231 71.4286	40.841	132.73 153.93
15	225	3375	3.8730	2,4662	1.17609	66,6667	47.124	176.71
16	256	4096	4.0000	2.5198	1.20412	62.5000	50,265	201.0
17	289	4913	4.1231	2.5713	1.23045	58.8235	53,407	226.9
18	324	5832	4.2426	2.6207	1.25527	55.5556	56.549	254.4
19	361	6859	4.3589	2.6684	1.27875	52.6316	59,690	283.5
20	400	8000	4.4721	2.7144	1,30103	50,0000	62,832	314.18
21 22	441 484	9261 10648	4.5826 4.6904	2.7589 2.8020	1.32222 1.34242	47.6190 45.4545	65.973 69.115	346.3
23	529	12167	4.7958	2,8439	1.36173	43,4783	72.257	415.4
24	576	13824	4.8990	2.8845	1.38021	41.6667	75.398	452.3
	625	15625	5.0000	2,9240	1.39794	40,0000	78.540	490.8
25 26	676	17576	5.0990	2,9625	1,41497	38.4615	81.681	530.95
27	729	19683	5.1962	3,0000	1.43136	37.0370 35.7143	84.823	572.58 615.78
28	784	21952	5.2915	3.0366	1.44716	35.7143	87.965	
29 30	900	24389 27000	5.3852 5.4772	3,0723 3,1072	1.46240	34.4828 33.3333	91.106 94.248	660.55 706.8
31	961	29791	5.5678	3.1414	1.49136	32.2581	97.389	754.70
32	1024	32768	5.6569	3.1748	1.50515	31,2500	100.531	804.2
33	1089	35937	5.7446	3.2075	1.51851	30.3030	103.673	855.2
34	1156	39304	5.8310	3.2396	1.53148	29.4118	106.814	907.9
35	1225	42875	5.9161	3,2711	1.54407	28.5714	109.956	962.1
36	1296 1369	46656 50653	6,0000 6,0828	3.3019 3.3322	1.55630	27.7778 27.0270	113.097 116.239	1017.88
38	1444	54872	6.1644	3.3620	1.57978	26.3158	119.381	
39	1521	59319	6.2450	3.3912	1.59106	25,6410		1194.59
40	1600	64000	6.3246	3,4200	1.60206	25.0000		1256.64
41 42	1681 1764	68921 74088	6.4031 6.4807	3.4482 3.4760	1.61278 1.62325	24.3902 23.8095	128.81 131.95	1320.25
43	1849	79507	6,5574	3,5034	1.62325	23.8095		1385,44 1452,20
44	1936	85184	6.6332	3.5303	1.64345	22.7273	138.23	1520.53
45	2025	91125	6.7082	3.5569	1.65321	22.2222	141.37	1590.43
46	2116	97336	6.7823	3.5830	1.66276	21.7391	144.51	1661.90
47	2209	103823	6.8557	3.6088	1.67210	21.2766	147.65	1734.94
48	2304	110592	6.9282	3.6342	1.68124	. 20.8333	150.80	1809.50
49	2401	117649	7.0000	3.6593	1.69020	20,4082	153.94	1885.74

Functions of Numbers, 50 to 99

1			Square	Cube		1000	No.=Di	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
50	2500	125000	7.0711	3.6840	1.69897	20,0000	157.08	1963.5
51	2601	132651	7.1414	3,7084	1,70757	19,6078	160.22	2042.8
52	2704	140608	7.2111	3.7325	1.71600	19.2308	163.36	2123.7
53	2809	148877	7.2801	3.7563	1.72428	18.8679	166.50	2206.1
54	2916	157464	7.3485	3.7798	1.73239	18.5185	169.65	2290.2
55	3025	166375	7.4162	3.8030	1.74036	18.1818	172.79 175.93	2375.8
56	3136	175616	7.4833	3.8259	1.74819	17.8571	175.93	2463.0
57	3249	185193	7.5498	3.8485	1.75587	17.5439 17.2414	179.07	2551.7
58	3364	195112	7.6158	3.8709	1.76343		182.21	2642.0
59	3481	205379	7.6811	3.8930	1.77085	16.9492	185,35	2733.9
60	3600	216000	7.7460	3.9149	1.77815	16.6667	188.50	2827.4
61	3721	226981	7.8102	3.9365	1.78533	16.3934	191.64	2922,4
62 63	3844	238328	7.8740	3.9579	1.79239	16.1290 15.8730	194.78 197.92	3019.0
64	4096	250047 262144	7.9373 8.0000	3.9791 4.0000	1.79934 1.80618	15.6250	201.06	3216.9
65	4225	274625	8.0623	4.0207	1.81291	15.3846	204,20	3318.3
66	4356	287496	8.1240	4.0412	1.81954	15.1515	207.35	3421.1
67	4489	300763	8.1854	4.0615	1.82607	14.9254	210.49	3525.6
68	4624	314432	8.2462	4.0817	1,83251	14.7059	213.63	3631.6
69	4761	328509	8.3066	4.1016	1.83885	14.4928	216.77	3739.2
70	4900	343000	8,3666	4.1213	1.84510	14.2857	219.91	3848.4
71	5041	357911	8.4261	4.1408	1.85126	14.0845	223.05	3959.1
72	5184	373248	8.4853	4.1602	1.85733	13.8889	226.19	4071.5
73	5329	389017	8.5440	4.1793	1.86332	13.6986	229.34	4185.3
74	5476	405224	8.6023	4.1983	1.86923	13.5135	232.48	4300.8
75 76	5625 5776	421875 438976	8.6603	4.2172 4.2358	1.87506 1.88081	13.3333 13.1579	235.62 238.76	4417.8
77	5929	456533	8.7178 8.7750	4.2543	1.88649	12.9870	241.90	4656.6
78	6084	474552	8,8318	4.2727	1.89209	12.8205	245.04	4778.3
79	6241	493039	8.8882	4.2908	1.89763	12.6582	248.19	4901.6
80	6400	512000	8.9443	4.3089	1.90309	12.5000	251.33	5026.5
81	6561	531441	9.0000	4.3267	1.90849	12.3457	254,47	5153.0
82	6724	551368	9.0554	4.3445	1.91381	12.1951	257.61	5281.0
83	6889	571787	9.1104	4.3621	1.91908	12,0482	260.75	5410.6
84 85	7056 7225	592704	9.1652	4.3795	1.92428	11.9048	263.89 267.04	5541.7
86	7396	614125 636056	9,2195 9,2736	4.3968	1.92942	11.7647 11.6279	270.18	5808.8
87	7569	658503	9.3274	4.4140	1.93450 1.93952	11.4943	273.32	5944.6
88	7744	681472	9.3808	4.4480	1.94448	11.3636	276.46	6082.1
89	7921	704969	9.4340	4,4647	1.94939	11.2360	279.60	6221.1
90	8100	729000	9,4868	4.4814	1.95424	11.1111	282.74	6361.7
91	8281	753571	9.5394	4.4979	1.95904	10,9890	285.88	6503.8
92	8464	778688	9.5917	4.5144	1.96379	10.8696	289.03	6647.6
93	8649	804357	9.6437	4.5307	1.96848	10.7527	292.17	6792.9
94	8836	830584	9.6954	4.5468	1,97313	10.6383	295.31	6939.7
95	9025	857375	9.7468	4.5629	1.97772	10.5263	298.45	7088.2
96	9216	884736	9.7980	4.5789	1.98227	10.4167	301.59	7238.2
97	9409	912673 941192	9.8489	4.5947	1.98677 1.99123	10.3093	304.73 307.88	7389.8
99	9801	970299	9.9499	4.6261	1,99564	10.1010	211 00	7042.1

Functions of Numbers, 100 to 149

.		-	Square Cube		1000	No.= Diameter		
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
100	10000	1000000	10,0000	4.6416	2,00000	10,0000	314.16	7853.98
101	10201	1030301	10.0499	4.6570	2.00432	9.90099	317.30	8011.85
102	10404	1061208	10.0995	4.6723	2.00860	9.80392	320.44	8171.28
103	10609	1092727	10.1489	4.6875	2.01284	9.70874	323.58	8332.29
104	10816	1124864	10.1980	4.7027	2.01703	9.61538	326.73	8494.87
105	11025	1157625	10.2470	4.7177	2.02119	9.52381	329,87	8659.01
106	11236	1191016	10.2956	4.7326	2.02531	9.43396	333.01	8824.73
107	11449	1225043	10.3441	4.7475	2.02938	9.34579	336.15	8992.02
108 109	11664 11881	1259712 1295029	10.3923 10.4403	4.7622 4.7769	2.03342 2.03743	9.25926 9.17431	339.29 342.43	9160.88 9331.32
110	12100	1331000	10.4881	4.7914	2.04139	9.09091	345.58	9503.32
111	12321	1367631	10.5357	4.8059	2.04532	9,00901	348.72	9676.89
112	12544	1404928	10.5830	4.8203	2.04922	8,92857	351.86	9852.03
113	12769	1442897	10.6301	4.8346	2.05308	8.84956	355.00	10028.7
114	12996	1481544	10.6771	4.8488	2.05690	8.77193	358.14	10207.0
115	13225	1520875	10.6771 10.7238	4.8629	2.06070	8.69565	361.28	10386.9
116	13456	1560896	10.7703	4.8770	2.06446	8.62069	364.42	10568.3
117	13689	1601613	10.8167	4.8910	2.06819	8.54701	367.57 370.71	10751.3
118	13924	1643032	10.8628	4,9049	2.07188	8.47458		10935.9
119	14161	1685159	10,9087	4.9187	2.07555	8,40336	373.85	11122.0
120	14400	1728000	10.9545	4.9324	2.07918	8.33333	376.99	11309.7
121	14641	1771561	11,0000	4.9461	2.08279	8.26446	380.13 383.27	11499.0
122	14884	1815848	11.0454 11.0905	4.9597 4.9732	2.08636 2.08991	8.19672 8.13008	386.42	11689.9 11882.3
124	15129 15376	1860867 1906624	11.1355	4.9866	2.08991	8.06452	389.56	12076.3
125	15625	1953125	11.1803	5.0000	2.09691	8.00000	302.70	12271.8
126	15876	2000376	11.2250	5.0133	2.10037	7.93651	392.70 395.84	12469.0
127	16129	2048383	11.2694	5.0265	2.10380	7.87402	398.98	12667.7
128	16384	2097152	11.3137	5.0397	2,10721	7.81250	402.12	12868.0
129	16641	2146689	11.3578	5.0528	2.11059	7.75194	405.27	13069.8
130	16900	2197000	11.4018	5.0658	2.11394	7.69231	408.41	13273.2
131	17161	2248091	11.4455	5.0788	2.11727	7.63359	411.55	13478.2
132	17424	2299968	11.4891	5.0916	2.12057	7.57576	414.69	13684.8
133	17689	2352637	11.5326	5.1045	2.12385	7.51880	417.83	13892.9
134	17956	2406104	11.5758	5.1172	2.12710	7.46269	420.97 424.12	14102.6
135 136	18225 18496	2460375 2515456	11.6190 11.6619	5.1299 5.1426	2.13033 2.13354	7.35294	427.26	14313.9
137	18769	2571353	11.7047	5.1551	2.13672	7.29927	430,40	14741.1
138	19044	2628072	11.7473	5.1676	2.13988	7.24638	433.54	14957.1
139	19321	2685619	11.7898	5.1801	2.14301	7.19424	436.68	15174.7
140	19600	2744000	11.8322	5.1925	2.14613	7.14286	439.82	15393.8
141	19881	2803221	11.8743	5,2048	2.14922	7.09220	442.96	15614.5
142	20164	2863288	11.9164	5.2171	2.15229	7.04225	446.11	15836.8
143	20449	2924207	11.9583	5.2293	2.15534	6.99301	449.25	16060.6
144	20736	2985984	12.0000	5.2415	2.15836	6.94444	452.39	16286.0
145	21025	3048625	12.0416	5.2536	2.16137	6.89655	455.53	16513.0
146	21316	3112136	12.0830	5.2656	2.16435	6.84932	458.67	16741.5
147	21609 21904	3176523 3241792	12.1244 12.1655	5,2776 5,2896	2.16732 2.17026	6.80272	461.81	16971.7 17203.4
148								

Functions of Numbers, 150 to 199

			Consiste	0.1.		1000	No.=D	iameter
No.	Square	Cube	Square Root	Cube	Logarithm	Reciprocal	Circum.	Area
150	22500	3375000	12.2474	5.3133	2.17609	6.66667	471.24	17671.5
151	22801	3442951	12.2882	5.3251	2.17898	6.62252	474.38	17907.9
152	23104	3511808	12.3288	5.3368	2.18184	6.57895	477.52	18145.8
153	23409	3581577	12.3693	5.3485	2.18469	6.53595	480.66 483.81	18385.4
154 155	23716 24025	3652264 3723875	12.4097 12.4499	5.3601 5.3717	2.18752 2.19033	6.49351 6.45161	486.95	18626.5 18869.2
156	24025	3796416	12.4999	5.3832	2.19033	6.41026	490.09	19113.4
157	24649	3869893	12.5300	5.3947	2.19590	6.36943	493.23	19359.3
158	24964	3944312	12.5698	5.4061	2.19866	6.32911	496.37	19606.7
159	25281	4019679	12.6095	5.4175	2.20140	6.28931	499.51	19855.7
160	25600	4096000	12.6491	5.4288	2.20412	6.25000	502.65	20106.2
161	25921	4173281	12.6886	5.4401	2.20683	6.21118	505.80	20358.3
162	26244	4251528	12.7279	5.4514	2.20952	6.17284	508.94	20612.0
163	26569	4330747	12.7671	5.4626	2.21219	6.13497	512.08 515.22	20867,2 21124,1
164 165	26896 27225	4410944 4492125	12.8062 12.8452	5.4737 5.4848	2.21484 2.21748	6.09756 6.06061	518.36	21382.5
166	27556	4574296	12.8841	5.4959	2.22011	6.02410	521.50	21642.4
167	27889	4657463	12.9228	5.5069	2.22272	5.98802	524.65	21904.0
168	28224	4741632	12.9615	5.5178	2.22531	5.95238	527.79	22167.1
169	28561	4826809	13.0000	5.5288	2.22789	5.91716	530.93	22431.8
170	28900	4913000	13.0384	5.5397	2.23045	5.88235	534.07	22698.0
171	29241	5000211	13.0767	5,5505	2.23300	5.84795	537.21	22965.8
172	29584	5088448	13.1149	5.5613	2.23553	5.81395	540.35	23235.2
173	29929 30276	5177717	13.1529	5.5721	2.23805 2.24055	5.78035 5.74713	543.50 546.64	23506.2 23778.7
174 175	30625	5268024 5359375	13.1909 13.2288	5,5828 5,5934	2.24000	5.71429	549.78	24052.8
176	30976	5451776	13.2665	5.6041	2.24551	5.68182	552.92	24328.5
177	31329	5545233	13.3041	5.6147	2.24797	5.64972	556.06	24605.7
178	31684	5639752	13.3417	5.6252	2.25042	5.61798	559.20	24884.6
179	32041	5735339	13.3791	5.6357	2.25285	5.58659	562.35	25164.9
180	32400	5832000	13.4164	5.6462	2.25527	5.55556	565.49	25446.9
181	32761	5929741	13.4536	5.6567	2.25768	5.52486	568.63	25730.4
182	33124	6028568	13.4907	5.6671	2.26007 2.26245	5.49451	571.77 574.91	26015.5 26302.2
183 184	33489 33856	6128487 6229504	13.5277 13.5647	5.6774 5.6877	2.26245	5.46448 5.43478	578.05	26590.4
185	34225	6331625	13.6015	5,6980	2.26717	5.40541	581.19	26880.3
186	34596	6434856	13.6382	5.7083	2.26951	5.37634	584.34	27171.6
187	34969	6539203	13.6748	5.7185	2.27184	5.34759	587.48	27464.6
188	35344	6644672	13.7113	5.7287	2.27416	5.31915	590.62	27759.1
189	35721	6751269	13.7477	5.7388	2.27646	5.29101	593.76	28055.2
190	36100	6859000	13.7840	5.7489	2.27875	5.26316	596.90	28352.9
191	36481	6967871	13.8203	5.7590	2.28103	5.23560	600.04 603.19	28652.1 28952.9
192	36864	7077888 7189057	13.8564 13.8924	5.7690 5.7790	2.28330 2.28556	5.20833 5.18135	606.33	29255.3
193 194	37249 37636	7301384	13.8924	5.7890	2.28556	5.15464	609.47	292559.2
195	38025	7414875	13.9642	5.7989	2.29003	5.12821	612.61	29864.8
196	38416	7529536	14.0000	5.8088	2.29226	5.10204	615.75	30171.9
197	38809	7645373	14.0357	5.8186	2.29447	5.07614	618.89	30480.5
198	39204	7762392	14.0712	5.8285	2,29667	5.05051	622.04	30790.7
199	39601	7880599	14.1067	5.8383	2.29885	5.02513	625.18	31102.6

Functions of Numbers, 250 to 299

200	1			Cal.		1000	No.=D	iameter
No.	Square	Cube	Square Root	Cube Root	Logarithm	Reciprocal	Circum.	Area
250	62500	15625000	15.8114	6,2996	2.39794	4.00000	785.40	49087.4
251 252	63001 63504	15813251 16003008	15.8430 15.8745	6.3080 6.3164	2.39967 2.40140	3.98406 3.96825	788.54 791.68	49480.9 49875.9
253	64009	16194277	15.9060	6.3247	2.40312	3.95257	794.82	50272.6
254 255	64516 65025	16387064 16581375	15.9374 15.9687	6.3330 6.3413	2.40483 2.40654	3.93701 3.92157	797.96 801.11	50670.7 51070.5
256	65536	16777216	16.0000	6.3496	2.40824	3.90625	804.25	51471.9
257 258	66049	16974593 17173512	16.0312 16.0624	6.3579 6.3661	2.40993 2.41162	3,89105 3,87597	807.39 810.53	51874.8 52279.2
259	67081	17373979	16.0935	6.3743	2.41330	3.86100	813.67	52685.3
260	67600	17576000	16.1245	6.3825	2.41497	3.84615	816.81	53092.9
261 262	68121 68644	17779581 17984728	16.1555 16.1864	6.3907 6.3988	2.41664 2.41830	3.83142 3.81679	819.96 823.10	53502.1 53912.9
263	69169	18191447	16.2173	6.4070	2.41996	3.80228	826.24	54325.2
264 265	69696 70225	18399744 18609625	16.2481 16.2788	6.4151 6.4232	2.42160 2.42325	3.78788 3.77358	829.38 832.52	54739.1 55154.6
266	70756	18821096	16.3095	6.4312	2.42488	3.75940	835.66	55571.6
267 268	71289 71824	19034163 19248832	16.3401 16.3707	6.4393	2.42651 2.42813	3.74532 3.73134	838.81 841.95	55990.2 56410.4
269	72361	19465109	16.4012	6.4553	2.42975	3.71747	845.09	56832.2
270	72900	19683000	16.4317	6.4633	2.43136 2.43297	3.70370	848.23 851.37	57255.5 57880.4
271 272	73441 73984	19902511 20123648	16.4621 16.4924	6.4713 6.4792	2.43457	3.69004 3.67647	854.51	58106.9
273	74529	20346417	16.5227	6.4872	2.43616 2.43775	3.66300	857.65 860.80	58534.9 58964.6
274 275	75076 75625	20570824 20796875	16.5529 16.5831	6.4951 6.5030	2.43933	3.64964 3.63636	863.94	59395.7
276	76176	21024576	16.6132	6.5108	2.44091	3.62319	867.08	59828.5
277 278	76729 77284	21253933 21484952	16.6433 16.6733	6.5187 6.5265	2.44248	3.61011 3.59712	870.22 873.36	60262.8 60698.7
279	77841	21717639	16.7033	6.5343	2.44560	3.58423	876.50	61136.2
280 281	78400 78961	21952000 22188041	16.7332 16.7631	6.5421 6.5499	2.44716 2.44871	3.57143 3.55872	879.65 882.79	61575.2 62015.8
282	79524	22425768	16.7929	6.5577	2,45025	3.54610	885.93	62458.0
283	80089	22665187	16.8226	6.5654	2.45179	3.53357	889.07 892.21	62901.8
284 285	80656 81225	22906304 23149125	16.8523 16.8819	6.5731 6.5808	2.45332 2.45484	3.52113 3.50877	895.35	63347.1 63794.0
286	81796	23393656	16.9115	6.5885	2.45637	3.49650	898.50	64242.4
287 288	82369 82944	23639903 23887872	16.9411 16.9706	6.5962 6.6039	2.45788 2.45939	3.48432 3.47222	901.64 904.78	64692.5 65144.1
289	83521	24137569	17.0000	6.6115	2.46090	3,46021	907.92	65597.2
290	84100	24389000	17.0294	6.6191	2.46240 2.46389	3.44828	911.06	66052.0
291 292	84681 85264	24642171 24897088	17.0587 17.0880	6.6267 6.6343	2.46538	3.43643 3.42466	914.20 917.35	66508.3 66966.2
293	85849	25153757	17.1172	6.6419 6.6494	2.46687	3.41297	920.49	67425.6
294 295	86436 87025	25412184 25672375	17.1464 17.1756	6.6569	2.46835 2.46982	3.40136 3.38983	923.63 926.77	67886.7 68349.3
296	87616	25934336	17.2047	6.6644	2.47129	3.37838	929.91	68813.4
297 298	88209 88804	26198073 26463592	17,2337 17,2627	6,6719 6,6794	2.47276 2.47422	3.36700 3.35570	933.05 936.19	69279.2 69746.5
299	89401		17.2916	6.6869	2.47567	3.34448	939.34	70215.4

Functions of Numbers, 200 to 249

			Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
200	40000	8000000	14.1421	5.8480	2.30103	5.00000	628.32	31415.9
201	40401	8120601	14.1774	5.8578	2.30320	4.97512	631.46	31730.9
202	40804	8242408	14.2127	5.8675	2.30535	4.95050	634.60	32047.4
203	41209	8365427	14.2478	5.8771	2.30750	4.92611	637.74	32365.5
204	41616	8489664	14.2829	5.8868	2.30963	4.90196	640.88	32685.1
205	42025	8615125	14.3178	5.8964	2.31175	4.87805	644.03	33006.4
206 207	42436 42849	8741816 8869743	14.3527 14.3875	5.9059 5.9155	2.31387 2.31597	4.85437 4.83092	647.17 650.31	33329.2 33653.5
208	43264	8998912	14.4222	5.9250	2.31806	4.80769	653.45	33979.5
209	43681	9129329	14.4568	5.9345	2.32015	4.78469	656.59	34307,0
210	44100	9261000	14.4914	5.9439	2.32222	4.76190	659.73	34636.1
211	44521	9393931	14.5258	5.9533	2.32428	4.73934	662.88	34966.7
212	44944	9528128	14.5602	5.9627	2.32634	4.71698	666.02	35298.9
213	45369	9663597	14.5945	5.9721	2.32838	4.69484	669.16	35632.7
214 215	45796 46225	9800344 9938375	14.6287 14.6629	5.9814 5.9907	2.33041 2.33244	4.67290 4.65116	672.30 675.44	35968.1 36305.0
216	46656	10077696	14.6969	6.0000	2.33445	4.62963	678.58	36643.5
217	47089	10218313	14.7309	6.0092	2.33646	4.60829	681.73	36983.6
218	47524	10360232	14.7648	6.0185	2,33846	4.58716	684.87	37325.3
219	47961	10503459	14.7986	6.0277	2.34044	4.56621	688,01	37668.5
220	48400	10648000	14.8324	6.0368	2.34242	4.54545	691.15	38013.3
221	48841	10793861	14.8661	6.0459	2.34439	4.52489	694.29	38359.6
222	49284 49729	10941048 11089567	14.8997 14.9332	6.0550 6.0641	2.34635 2.34830	4.50450 4.48430	697.43 700.58	38707.6 39057.1
224	50176	11239424	14.9666	6.0732	2.35025	4.46429	703.72	39408.1
225	50625	11390625	15,0000	6.0822	2.35218	4.44444	706.86	39760.8
226	51076	11543176	15.0333	6.0912	2.35411	4.42478	710.00	40115.0
227	51529	11697083	15.0665	6.1002	2.35603	4.40529	713.14	40470.8
228	51984	11852352	15.0997	6.1091	2.35793	4.38596	716.28	40828.1
229	52441	12008989	15.1327	6.1180	2.35984	4.36681	719.42	41187.1
230 231	52900 53361	12167000 12326391	15.1658 15.1987	6.1269 6.1358	2.36173 2.36361	4.34783 4.32900	722.57 725.71	41547.6 41909.6
232	53824	12487168	15.2315	6.1446	2.36549	4.31034	728.85	42273.3
233	54289	12649337	15.2643	6.1534	2.36736	4.29185	731.99	42638.5
234	54756	12812904	15.2971	6.1622	2.36922	4.27350	735.13	43005.3
235	55225	12977875	15,3297	6.1710	2.37107	4.25532	738.27	43373.6
236	55696	13144256	15.3623	6.1797	2.37291	4.23729	741.42	43743.5
237	56169	13312053	15.3948	6.1885	2.37475	4.21941	744.56	44115.0
238	56644 57121	13481272 13651919	15,4272 15,4596	6.1972 6.2058	2.37658 2.37840	4.20168 4.18410	747.70 750.84	44488.1 44862.7
240	57600		15.4919	6.2145	2.38021	- 27070		45238.9
241	58081	13824000 13997521	15.4919	6.2231	2.38021	4.16667 4.14938	753.98 757.12	45616.7
242	58564	14172488	15.5563	6.2317	2.38382	4.13223	760.27	45996.1
243	59049	14348907	15.5885	6.2403	2,38561	4.11523	763.41	46377.0
244	59536	14526784	15.6205	6.2488	2.38739	4.09836	766.55	46759.5
245	60025	14706125	15.6525	6.2573	2.38917	4.08163	769.69	47143.5
246	60516	14886936	15.6844	6,2658	2.39094	4.06504	772.83	47529.2
247	61009 61504	15069223	15.7162 15.7480	6.2743	2,39270 2,39445	4.04858	775.97 779.12	47916,4 48305,1
248		15252992		6.2828				

Functions of Numbers, 250 to 299

-			Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
250	62500	15625000	15.8114	6,2996	2.39794	4,00000	785.40	49087.4
251	63001	15813251	15.8430	6.3080	2.39967	3.98406	788.54	49480.9
252	63504	16003008	15.8745	6.3164	2.40140	3.96825	791.68	49875.9
253	64009	16194277	15.9060	6.3247	2.40312	3.95257	794.82	50272.6
254	64516	16387064	15.9374	6.3330	2.40483	3.93701	797.96	50670.7
255 256	65025	16581375	15.9687	6.3413	2.40654	3.92157	801.11	51070.5
257	65536 66049	16777216 16974593	16.0000 16.0312	6.3496 6.3579	2.40824 2.40993	3.90625 3.89105	804.25 807.39	51471.9 51874.8
258	66564	17173512	16.0624	6.3661	2.41162	3.87597	810.53	52279.2
259	67081	17373979	16.0935	6.3743	2.41330	3.86100	813.67	52685.3
260	67600	17576000	16.1245	6.3825	2.41497	3.84615	816.81	53092.9
261	68121	17779581	16.1555	6.3907	2.41664	3.83142	819.96	53502.1
262	68644	17984728	16.1864	6.3988	2.41830	3.81679	823.10	53912.9
263 264	69169	18191447 18399744	16.2173 16.2481	6.4070 6.4151	2.41996 2.42160	3.80228 3.78788	826.24 829.38	54325.2 54739.1
265	70225	18609625	16.2788	6.4232	2.42100	3.77358	832.52	55154.6
266	70756	18821096	16.3095	6.4312	2.42488	3.75940	835.66	55571.6
267	71289	19034163	16.3401	6.4393	2.42651	3.74532	838.81	55990.2
268	71824	19248832	16.3707	6.4473	2.42813	3.73134	841.95	56410.4
269	72361	19465109	16.4012	6.4553	2.42975	3.71747	845.09	56832.2
270	72900	19683000	16.4317	6.4633	2.43136	3.70370	848.23	57255.5
271	73441	19902511	16.4621	6.4713	2.43297	3.69004	851.37	57680.4
272 273	73984 74529	20123648	16.4924	6.4792	2.43457	3.67647	854.51 857.65	58106.9
274	75076	20346417 20570824	16.5227 16.5529	6.4872 6.4951	2.43616 2.43775	3.66300 3.64964	860.80	58534.9 58964.6
275	75625	20796875	16.5831	6,5030	2.43933	3.63636	863.94	59395.7
276	76176	21024576	16.6132	6.5108	2,44091	3.62319	867.08	59828.5
277	76729	21253933	16,6433	6.5187	2.44248	3,61011	870.22	60262.8
278	77284	21484952	16.6733	6.5265	2.44404	3.59712	873.36	60698.7
279	77841	21717639	16.7033	6.5343	2.44560	3.58423	876.50	61136.2
280 281	78400 78961	21952000 22188041	16.7332	6.5421 6.5499	2.44716	3.57143 3.55872	879.65 882.79	61575.2 62015.8
281	79524	22188041	16,7631 16,7929	6.5577	2.44871 2.45025	3.54610	885.93	62458.0
283	80089	22665187	16.8226	6.5654	2.45179	3.53357	889.07	62901.8
284	80656	22906304	16.8523	6.5731	2.45332	3.52113	892.21	63347.1
285	81225	23149125	16.8819	6.5808	2.45484	3.50877	895.35	63794.0
286	81796	23393656	16.9115	6.5885	2.45637	3.49650	898.50	64242.4
287	82369	23639903	16.9411	6.5962	2.45788	3.48432	901.64	64692.5
288	82944	23887872	16.9706	6.6039	2.45939	3.47222	904.78	65144.1
289	83521	24137569	17.0000	6.6115	2.46090	3.46021	907.92	65597.2
290 291	84100 84681	24389000 24642171	17.0294 17.0587	6.6191	2.46240 2.46389	3.44828 3.43643	911.06 914.20	66052.0 66508.3
292	85264	24897088	17.0880	6.6343	2.46538	3.42466	917.35	66966.2
293	85849	25153757	17.1172	6.6419	2.46687	3.41297	920.49	67425.6
294	86436	25412184	17.1464	6.6494	2.46835	3.40136	923.63	67886.7
295	87025	25672375	17.1756	6.6569	2.46982	3.38983	926.77	68349.3
296	87616	25934336	17.2047	6.6644	2.47129	3.37838	929.91	68813.4
297	88209	26198073	17.2337	6.6719	2.47276	3.36700	933.05	69279.2
298 299	88804	26463592 26730899	17.2627 17.2916	6.6794	2.47422	3.35570 3.34448	936.19 939.34	69746.5 70215.4

Functions of Numbers, 300 to 349

			Square	Cube	-	1000	No.=Di	ameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
300	90000	27000000	17.3205	6.6943	2,47712	3,33333	942.48	70685.8
301	90601	27270901	17.3494	6.7018	2.47857	3.32226	945.62	71157.9
302	91204	27543608	17.3781	6.7092	2,48001	3.31126	948.76	71631.5
303	91809	27818127	17.4069	6.7166	2.48144	3.30033	951.90	72106.6
304	92416	28094464	17.4356	6.7240	2.48287	3.28947	955.04	72583.4
305	93025	28372625	17.4642	6.7313	2.48430	3.27869	958.19	73061.7
306	93636	28652616	17.4929 17.5214	6.7387	2.48572	3.26797	961.33	73541.5
307	94249	28934443		6.7460	2.48714	3.25733	964.47	74023.0
308	94864	29218112	17.5499	6.7533	2.48855	3.24675	967.61	74506.0
309	95481	29503629	17.5784	6.7606	2.48996	3.23625	970.75	74990.6
310	96100	29791000	17.6068	6.7679	2.49136	3.22581	973.89	75476.8
311	96721	30080231	17.6352	6.7752	2.49276	3.21543	977.04	75964.5
312	97344	30371328	17.6635	6.7824	2.49415	3.20513	980.18	76453.8
313	97969	30664297	17.6918	6.7897	2.49554	3.19489	983.32	70944.7
314	98596 99225	30959144 31255875	17.7200 17.7482	6.7969	2.49693	3.18471	986.46	77437.1
316	99225	31554496	17 7784	6.8041 6.8113	2.49831 2.49969	3.17460	989.60 992.74	77931.1
317	100489	31855013	17.7764 17.8045	6.8185	2.50106	3.16456 3.15457	995.88	78426.7 78923.9
318	101124	32157432	17.8326	6.8256	2,50243	3.14465	999.03	79422.6
319	101761	32461759	17.8606	6.8328	2.50379	3.13480	1002.2	79922.9
320	102400	32768000	17.8885	6.8399	2.50515	3.12500	1005.3	80424.8
321	103041	33076161	17.9165	6.8470	2.50651	3.11526	1008.5	80928.2
322	103684	33386248	17.9444	6.8541	2.50786	3.10559	1011.6	81433.2
323	104329	33698267	17.9722	6.8612	2,50920	3.09598	1014.7	81939.8
324	104976	34012224	18,0000	6.8683	2.51055	3.08642	1017.9	82448.0
325	105625	34328125	18.0278	6.8753	2.51188	3.07692	1021.0	82957.7
326	106276	34645976	18.0555	6.8824	2.51322	3.06749	1024.2	83469.0
327	106929	34965783	18.0831	6.8894	2.51455	3.05810	1027.3	83981.8
328	107584	35287552	18.1108	6.8964	2,51587	3.04878	1030.4	84496.3
329	108241	35611289	18.1384	6.9034	2.51720	3.03951	1033.6	85012.3
330	108900	35937000	18.1659	6.9104	2.51851	3.03030	1036.7	85529.9
331	109561	36264691	18.1934	6.9174	2.51983	3.02115	1039.9	86049.0
332	110224	36594368	18.2209	6.9244	2.52114	3.01205	1043.0	86569.7
333	110889	36926037	18.2483	6.9313	2.52244	3.00300	1046.2	87092.0
334	111556	37259704	18.2757	6.9382	2.52375	2.99401	1049.3	87615.9
335	112225	37595375	18.3030	6.9451	2.52504	2.98507	1052.4	88141.3
336	112896	37933056	18.3303	6.9521	2.52634	2.97619	1055.6	88668.3
337	113569	38272753	18.3576	6.9589	2.52763	2.96736	1058.7	89196.9
338	114244 114921	38614472	18.3848	6.9658	2.52892	2.95858	1061.9	89727.0
998	114921	38958219	18.4120	6.9727	2,53020	2.94985	1065.0	90258.7
340	115600	39304000	18.4391	6.9795	2.53148	2.94118	1068.1	90792.0
341	116281 116964	39651821 40001688	18.4662 18.4932	6.9864 6.9932	2.53275 2.53403	2.93255 2.92398	1071.3 1074.4	91326.9
343				7.0000				91863.3
344	117649 118336	40353607 40707584	18.5203 18.5472	7.0068	2.53529 2.53656	2.91545 2.90698	1077.6 1080.7	92401.3 92940.9
345	119025	41063625	18.5742	7.0008	2,53782	2.89855	1080.7	93482.0
346	119716	41421736	18.6011	7.0203	2.53908	2.89017	1087.0	94024.7
347	120409	41781923	18,6279	7.0203	2.54033	2.88184	1090.1	94569.0
348	121104	42144192	18.6548	7.0338	2.54158	2.87356	1093.3	95114.9
349	121801		18.6815	7.0406	2.54283		1096.4	95662.3

Functions of Numbers, 350 to 399

3			Square	Cube		1000	No.=Di	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
350	122500	42875000	18.7083	7.0473	2.54407	2.85714	1099.6	96211.3
351	123201	43243551	18.7350	7.0540	2.54531	2.84900	1102.7	96761.8
352	123904	43614208	18.7617	7.0607	2.54654	2.84091	1105.8	97314.0
353	124609	43986977	18.7883	7.0674	2.54777	2.83286	1109.0	97867.7
354	125316	44361864	18.8149	7.0740	2.54900	2.82486	1112.1	98423.0
355	126025	44738875	18.8414	7.0807	2,55023	2.81690	1115.3	98979.8
356	126736	45118016	18.8680	7.0873	2.55145	2.80899	1118.4	99538.2
357	127449	45499293	18.8944	7.0940	2.55267	2.80112	1121.5	100098
358	128164	45882712	18.9209	7.1006	2.55388	2.79330	1124.7	100660
359	128881	46268279	18.9473	7.1072	2.55509	2.78552	1127.8	101223
360	129600	46656000	18.9737	7.1138	2.55630	2.77778	1131.0	101788
361	130321	47045881	19.0000	7.1204	2.55751	2.77008	1134.1	102354
362	131044	47437928	19.0263	7.1269	2.55871	2.76243	1137.3	102922
363	131769	47832147	19.0526	7.1335	2.55991	2.75482	1140.4	103491
364	132496	48228544	19.0788	7.1400	2.56110	2.74725	1143.5	104062
365	133225	48627125	19.1050	7.1466	2.56229	2.73973	1146.7	104635
366	133956	49027896	19.1311	7.1531	2.56348	2.73224	1149.8	105209
367	134689	49430863	19.1572	7.1596	2.56467	2.72480	1153.0	105785
368	135424	49836032	19.1833	7.1661	2.56585	2.71739	1156.1	106362
369	136161	50243409	19.2094	7.1726	2.56703	2.71003	1159.2	106941
370	136900 137641	50653000 51064811	19.2354 19.2614	7.1791 7.1855	2.56820 2.56937	2.70270 2.69542	1162.4 1165.5	107521 108103
372	138384	51478848		7.1920	2.57054	2.68817	1168.7	108687
373	139129	51895117	19.2873 19.3132	7.1984	2.57171	2,68097	1171.8	109272
374	139876	52313624	19.3391	7.2048	2.57287	2.67380	1175.0	109272
375	140625	52734375	19.3649	7.2112	2.57403	2.66667	1178.1	110447
376	141376	53157376	19.3907	7.2177	2.57519	2.65957	1181.2	111036
377	142129	53582633	19.4165	7.2240	2.57634	2.65252	1184.4	111628
378	142884	54010152	19,4422	7.2304	2.57749	2,64550	1187.5	112221
379	143641	54439939	19.4679	7.2368	2.57864	2.63852	1190.7	112815
380	144400	54872000	19.4936	7.2432	2.57978	2.63158	1193.8	113411
381	145161	55306341	19.5192	7.2495	2.58093	2.62467	1196.9	114009
382	145924	55742968	19.5448	7.2558	2.58206	2.61780	1200.1	114608
383	146689	56181887	19.5704	7.2622	2.58320	2.61097	1203.2	115209
384	147456	56623104	19.5959	7.2685	2.58433	2,60417	1206.4	115812
385	148225	57066625	19.6214	7.2748	2.58540	2.59740	1209.5	116416
386	148996	57512456	19.6469	7.2811	2.58659	2.59067	1212.7	117021
387	149769	57960603	19.6723	7.2874	2.58771	2.58398	1215.8	117628
388	150544	58411072	19.6977	7.2936	2.58883	2.57732	1218.9	118237
389	151321	58863869	19.7231	7.2999	2.58995	2,57069	1222.1	118847
390	152100	59319000	19.7484	7.3061	2.59106	2.56410	1225.2	119459
391	152881	59776471	19.7737	7.3124	2.59218	2.55754	1228.4	120072
392	153664	60236288	19.7990	7.3186	2.59329	2.55102	1231.5	120687
393	154449	60698457	19.8242	7.3248	2.59439	2.54453	1234.6	121304
394	155236	61162984	19.8494 19.8746	7.3310	2.59550	2.53807	1237.8	121922 122542
395	156025 156816	61629875 62099136	19.8746	7.3372 7.3434	2.59660 2.59770	2.53165 2.52525	1240.9 1244.1	122042
397	157609	62570773	19.8997			2,52525	1244.1	123786
398	158404	63044792	19.9499	7.3496 7.3558	2.59879 2.59988	2.51256	1250.4	124410
	159201		EGEN, GT	1.0000	A. 00000	2.50627	1253.5	125036

Functions of Numbers, 400 to 449

			Square	Cube	1	1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
400	160000	64000000	20,0000	7.3681	2,60206	2,50000	1256.6	125664
401	160801	64481201	20,0250	7.3742	2,60314	2.49377	1259.8	126293
402	161604	64964808	20.0499	7.3803	2.60423	2.48756	1262.9	126923
403	162409	65450827	20.0749	7.3864	2.60531	2.48139	1266.I	127556
404	163216	65939264	20,0998	7.3925	2.60638	2.47525	1269.2	128190
405	164025	66430125	20.1246	7.3986	2.60746	2.46914	1272.3	128825
406	164836	66923416	20.1494	7.4047	2.60853	2.46305	1275.5	129462
407	165649	67419143	20.1742	7.4108	2.60959	2.45700	1278.6	130100
408	166464	67917312	20,1990	7.4169	2.61066	2.45098	1281.8	130741
409	167281	68417929	20,2237	7.4229	2.61172	2.44499	1284.9	131382
410	168100	68921000	20.2485	7.4290	2.61278	2.43902	1288.1	132025
411	168921	69426531	20.2731 20.2978	7.4350	2.61384	2.43309	1291.2 1294.3	132670 133317
412 413	169744 170569	69934528 70444997	20,2978	7.4410 7.4470	2.61490 2.61595	2.42718 2.42131	1294.5	133965
414	171396	70957944	20.3470	7.4530	2.61700	2.41546	1300.6	134614
415	172225	71473375	20.3715	7.4590	2.61805	2.40964	1303.8	135265
416	173056	71991296	20.3961	7.4650	2.61909	2.40385	1306.9	135918
417	173889	72511713	20,4206	7.4710	2.62014	2.39808	1310.0	136572
418	174724	73034632	20.4450	7.4770	2.62118	2.39234	1313.2	137228
419	175561	73560059	20.4695	7.4829	2.62221	2.38663	1316.3	137885
420	176400	74088000	20,4939	7.4889	2.62325	2.38095	1319.5	138544
421	177241	74618461	20.5183	7.4948	2.62428	2.37530	1322.6	139205
422	178084	75151448	20.5426	7.5007	2.62531	2.36967	1325.8	139867
423	178929	75686967	20.5670	7.5067	2.62634	2.36407	1328.9	140531
424	179776	76225024	20.5913	7.5126	2.62737	2.35849	1332.0	141196
425	180625	76765625	20.6155	7.5185	2.62839	2.35294	1335.2	141863
426 427	181476	77308776	20.6398 20.6640	7.5244	2.62941	2.34742 2.34192	1338.3 1341.5	142531 143201
428	182329 183184	77854483 78402752	20.6882	7.5302 7.5361	2.63043	2.33645	1344.6	143872
429	184041	78953589	20.0882	7.5420	2.63246	2.33100	1347.7	144545
430	184900	79507000	20,7364	7.5478	2.63347	2.32558	1350.9	145220
431	185761	80062991	20.7605	7.5537	2,63448	2,32019	1354.0	145896
432	186624	80621568	20.7846	7.5595	2.63548	2.31481	1357.2	146574
433	187489	81182737	20.8087	7.5654	2.63649	2.30947	1360.3	147254
434	188356	81746504	20.8327	7.5712	2.63749	2.30415	1363.5	147934
435	189225	82312875	20.8567	7.5770	2.63849	2.29885	1366.6	148617
436	190096	82881856	20.8806	7.5828	2.63949	2.29358	1369.7	149301
437	190969	83453453	20.9045	7.5886	2.64048	2.28833	1372.9	149987
438	191844	84027672	20.9284	7.5944	2.64147	2.28311	1376.0	150674
439	192721	84604519	20,9523	7.6001	2.64246	2.27790	1379.2	151363
440 441	193600 194481	85184000 85766121	20.9762 21.0000	7.6059 7.6117	2.64345 2.64444	2.27273 2.26757	1382.3 1385.4	152053 152745
442	195364	86350888	21.0000	7.6174	2.64542	2.26244	1388.6	153439
443	196249	86938307	21.0208	7.6232	2.64640	2.25734	1391.7	154134
444	197136	87528384	21.0713	7.6289	2.64738	2.25225	1394.9	154830
445	198025	88121125	21.0950	7.6346	2.64836	2.24719	1398.0	155528
446	198916	88716536	21.1187	7.6403	2.64933	2.24215	1401.2	156228
447	199809	89314623	21.1424	7.6460	2,65031	2.23714	1404.3	156930
448	200704	89915392	21.1660	7.6517	2.65128	2.23214	1407.4	157633
449	201601	90518849	21.1896	7.6574	2.65225	2.22717	1410.6	158337

Functions of Numbers, 450 to 499

		1	Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
450	202500	91125000	21,2132	7,6631	2.65321	2.22222	1413.7	159043
451	203401	91733851	21.2368	7.6688	2.65418	2.21729	1416.9	159751
452	204304	92345408	21,2603	7.6744	2.65514	2.21239	1420.0	160460
453	205209	92959677	21.2838	7.6801	2.65610	2.20751	1423.1	161171
454	206116	93576664	21.3073	7.6857	2.65706	2,20264	1426.3	161883
455	207025	94196375	21.3307	7.6914	2.65801	2.19780	1429.4	162597
456	207936	94818816	21.3542	7.6970	2.65896	2.19298	1432.6	163313
457	208849	95443993	21.3776	7.7026	2.65992	2.18818	1435.7	164030
458 459	209764 210681	96071912 96702579	21.4009 21.4243	7.7082 7.7138	2.66087 2.66181	2.18341 2.17865	1438.8 1442.0	164748 165468
460	211600	97336000	21.4476	7.7194	2,66276	2,17391	1445.1	166190
461	212521	97972181	21.4709	7.7250	2.66370	2.16920	1448.3	166914
462	213444	98611128	21.4942	7.7306	2,66464	2.16450	1451.4	167639
463	214369	99252847	21.5174	7.7362	2.66558	2.15983	1454.6	168365
464	215296	99897344	21.5407	7.7418	2,66652	2.15517	1457.7	169093
465		100544625	21.5639	7.7473	2.66745	2.15054	1460.8	169823
466		101194696 101847563	21.5870	7.7529	2.66839	2.14592	1464.0	170554
468		101847503	21.6102 21.6333	7.7584 7.7639	2.66932 2.67025	2.14133 2.13675	1467.1 1470.3	171287 172021
469		103161709	21.6564	7.7695	2.67117	2.13220	1473.4	172757
470	220900	103823000	21,6795	7.7750	2.67210	2.12766	1476.5	173494
471		104487111	21.7025	7.7805	2.67302	2.12314	1479.7	174234
472	222784	105154048	21,7256	7.7860	2.67394	2.11864	1482.8	174974
473		105823817	21.7486	7.7915	2.67486	2.11416	1486.0	175716
474		106496424	21.7715	7.7970	2.67578	2.10970	1489.1	176460
475		107171875	21.7945 21.8174	7.8025	2.67669	2.10526	1492.3	177205
476		107850176 108521333	21.8403	7.8079 7.8134	2,67761 2,67852	2.10084 2.09644	1495.4 1498.5	177952 178701
478		109215352	21.8632	7.8188	2.67943	2.09205	1501.7	179451
479		109902239	21.8861	7.8243	2.68034	2.08768	1504.8	180203
480	230400	110592000	21.9089	7.8297	2.68124	2.08333	1508.0	180956
481		111284641	21.9317	7.8352	2.68215	2.07900	1511.1	181711
482		111980168	21.9545	7.8406	2.68305	2.07469	1514.2	182467
483	233289	112678587	21.9773	7.8460	2,68395	2.07039	1517.4	183225
484		113379904	22.0000	7.8514	2.68485	2.06612	1520.5	183984
485		114084125 114791256	22.0227 22.0454	7.8568 7.8622	2.68574 2.68664	2.06186 2.05761	1523.7 1526.8	184748 185508
486		115501303	22.0454	7.8676	2.68753	2.05761	1530.0	186272
488		116214272	22,0907	7.8730	2.68842	2.04918	1533.1	187038
489		116930169	22.1133	7.8784	2.68931	2.04499	1536.2	187808
490		117649000	22.1359	7.8837	2.69020	2.04082	1539.4	188574
491		118370771	22.1585	7.8891	2.69108	2.03666	1542.5	189345
492		119095488	22.1811	7.8944	2.69197	2.03252	1545.7	190117
493		119823157	22.2036	7.8998	2.69285	2.02840	1548.8	190890
494	244036	120553784	22.2261	7.9051 7.9105	2.69373 2.69461	2.02429 2.02020	1551.9 1555.1	191668
495		121287375 122023936	22.2486 22.2711	7_9105 7_9158	2.69548	2.02020	1558.2	193221
497		122763473	22.2935	7.9211	2.69636	2.01207	1561.4	194000
498		123505992	22,3159	7.9264	2.69723	2.00803	1564.5	194782
499		124251499	22.3383	7.9317	2.69810	2.00401	1567.7	195568

Functions of Numbers, 500 to 549

37-		a.	Square	Cube	T	1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
500	250000	125000000	22,3607	7.9370	2.69897	2.00000	1570.8	196350
501		125751501	22.3830	7.9423	2,69984	1.99601	1573.0	197136
502	252004	126506008	22,4054	7.9476	2,70070	1.99203	1577.1	197923
503		127263527	22.4277	7.9528	2.70157	1.98807	1580.2	198713
504		128024064	22,4499	7.9581	2,70243	1.98413	1583.4	199504
505		128787625	22,4722	7,9634	2,70329	1.98020	1586.5	200296
506		129554216	22,4944	7.9686	2.70415	1.97628	1589.6	201090
507	257049	130323843	22.5167	7.9739	2,70501	1.97239	1592.8 1595.9	201886
508	258064	131096512	22,5389	7.9791	2.70586	1.96850	1595.9	202683
509	259081	131872229	22,5610	7.9843	2.70672	1.96464	1599.1	203482
510		132651000	22.5832	7.9896	2.70757	1.96078	1602.2	204282
511		133432831	22.6053	7.9948	2.70842	1.95695	1605.4	205084
512		134217728	22,6274	8.0000	2.70927	1.95312	1608.5	205887
513		135005697	22,6495	8.0052	2.71012	1.94932	1611.6	206692
514		135796744	22.6716	8.0104	2.71096	1.94553	1614.8	207499
515 516	200220	136590875 137388096	22.6936	8.0156	2.71181	1.94175 1.93798	1617.9 1621.1	208307
517		138188413	22.7156 22.7376	8.0208 8.0260	2.71265 2.71349	1.93424	1624.2	209117
518		138991832	22.7596	8.0311	2.71433	1.93050	1627.3	209928 210741
519		139798359	22.7816	8.0363	2.71517	1.92678	1630.5	211556
520	270400	140608000	22,8035	8.0415	2,71800	1,92308	1633.6	212372
521		141420761	22.8254	8.0466	2.71684	1.91939	1636.8	213189
522	272484	142236648	22.8473	8.0517	2.71767	1.91571	1639.9	214008
523	273529	143055667	22,8692	8.0569	2.71850	1.91205	1643.1	214829
524	274576	143877824	22.8910	8.0620	2.71933	1.90840	1646,2	215651
525		144703125	22.9129	8.0671	2.72016	1.90476	1649.3	216475
526		145531576	22.9347	8.0723	2.72099	1,90114	1652.5	217301
527		146363183	22.9565	8.0774	2.72181	1.89753	1655.6	218128
528		147197952	22.9783	8.0825	2.72263	1.89394	1658.8	218956
529	279841	148035889	23,0000	8.0876	2.72346	1.89036	1661.9	219787
530 531		148877000 149721291	23.0217 23.0434	8.0927 8.0978	2.72428 2.72509	1.88679 1.88324	1665.0 1668.2	220618 221452
532		150568768	23.0434	8.1028	2.72591	1.88324	1671.3	222287
533		151419437	23.0868	8.1028	2.72591	1.87970	1674.5	222287
534		152273304	23.1084	8.1130	2.72754	1.87266	1677.6	223123
535	286225	153130375	23.1301	8.1180	2.72835	1.86916	1680.8	224801
536	287296	153990656	23.1517	8.1231	2.72916	1.86567	1683.9	225642
537	288369	154854153	23.1733	8.1281	2.72997	1.86220	1687.0	226484
538	289444	155720872	23.1948	8,1332	2.73078	1.85874	1690.2	227329
539		156590819	23.2164	8.1382	2.73159	1.85529	1693.3	228175
540		157464000	23.2379	8.1433	2.73239	1.85185	1696.5	229022
541		158340421	23.2594	8.1483	2.73320	1.84843	1699.6	229871
542		159220088	23.2809	8.1533	2.73400	1.84502	1702.7	230722
543		160103007	23.3024	8.1583	2.73480	1.84162	1705.9	231574
544		160989184	23.3238	8.1633	2.73560	1.83824	1709.0	232428
545		161878625	23.3452	8.1683	2.73640	1.83486	1712.2	233283
546 547		162771336	23.3666 23.3880	8.1733	2.73719	1.83150	1715.3	234140
548		163667323 164566592	23,4094	8.1783	2.73799	1.82815	1718.5	234998
B.EQ.	PUDUUGUT	165469149	23.4307	8.1833 8.1882	2.73878 2.73957	1.82482	1721.6 1724.7	235858 236720

Functions of Numbers, 550 to 599

			Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
550	302500	166375000	23.4521	8.1932	2.74036	1.81818	1727.9	237583
551	303601	167284151	23.4734	8.1982	2.74115	1.81488	1731.0	238448
552	304704	168196608	23.4947	8.2031	2.74194	1.81159	1734.2	239314
553	305809	169112377	23.5160	8.2081	2.74273	1.80832	1737.3	240182
554	306916	170031464	23.5372	8.2130	2.74351	1.80505	1740.4	241051
555	308025	170953875	23.5584	8.2180	2.74429	1.80180	1743.6	241922
556 557	309136 310249	171879616 172808693	23.5797 23.6008	8.2229 8.2278	2.74507 2.74586	1.79856 1.79533	1746.7	242795
558	311364	173741112	23.6220	8.2327	2.74663	1.79211	1749.9 1753.0	243669 244545
559	312481	174676879	23.6432	8.2377	2.74741	1.78891	1756.2	245422
560	313600	175616000	23.6643	8.2426	2.74819	1.78571	1759.3	246301
561	314721	176558481	23.6854	8.2475	2.74896	1.78253	1762.4	247181
562	315844	177504328	23.7065	8.2524	2.74974	1.77936	1765.6	248063
563	316969	178453547	23.7276	8.2573	2.75051	1.77620	1768.7	248947
564	318096	179406144	23.7487	8.2621	2.75128	1,77305	1771.9	249832
565	319225	180362125	23.7697	8.2670	2.75205	1.76991	1775.0	250719
566	320356	181321496	23.7908	8.2719	2.75282	1.76678	1778.1	251607
567 568	321489 322624	182284263 183250432	23.8118 23.8328	8.2768 8.2816	2.75358 2.75435	1.76367 1.76056	1781.3 1784.4	252497 253388
569	323761	184220009	23.8537	8.2865	2.75511	1.75747	1787.6	254281
570	324900	185193000	23.8747	8.2913	2.75587	1.75439	1790.7	255176
571	326041	186169411	23.8956	8.2962	2.75664	1.75131	1793.8	256072
572	327184	187149248	23.9165	8.3010	2.75740	1.74825	1797.0	256970
573	328329	188132517	23.9374	8.3059	2.75815	1.74520	1800.1	257869
574	329476	189119224	23.9583	8.3107	2.75891	1.74216	1803.3	258770
575	330625	190109375	23.9792	8.3155	2.75967	1.73913	1806.4	259672
576 577	331776 332929	191102976 192100033	24.0000 24.0208	8.3203 8.3251	2.76042 2.76118	1.73611 1.73310	1809.6 1812.7	260576 261482
578	334084	1921000552	24.0208	8.3300	2.76193	1.73010	1815.8	262389
579	335241	194104539	24.0624	8.3348	2.76268	1.72712	1819.0	263298
580	336400	195112000	24.0832	8.3396	2.76343	1.72414	1822.1	264208
581	337561	196122941	24.1039	8.3443	2.76418	1.72117	1825.3	265120
582	338724	197137368	24.1247	8.3491	2.76492	1.71821	1828.4	266033
583	339889	198155287	24.1454	8.3539	2.76567	1.71527	1831.6	266948
584	341056 342225	199176704 200201625	24.1661	8.3587	2.76641	1.71233	1834.7	267865
585 586	342225	200201625	24.1868 24.2074	8.3634 8.3682	2.76716 2.76790	1.70940 1.70648	1837.8 1841.0	268783 269703
587	344569	201230056	24.2074	8.3730	2.76864	1.70358	1844.1	270624
588	345744	203297472	24.2487	8.3777	2.76938	1.70068	1847.3	271547
589	346921	204336469	24.2693	8.3825	2.77012	1.69779	1850.4	272471
590	348100	205379000	24.2899	8.3872	2.77085	1.69492	1853.5	273397
591	349281	206425071	24.3105	8.3919	2.77159	1.69205	1856.7	274325
592	350464	207474688	24.3311	8.3967	2.77232	1.68919	1859.8	275254
593	351649 352836	208527857	24.3516	8.4014	2.77305 2.77379	1.68634 1.68350	1863.0	276184
594 595	354025	209584584 210644875	24.3721 24.3926	8.4061 8.4108	2.77452	1.68067	1866.1 1869.2	277117 278051
596	355216	211708736	24.4131	8.4155	2.77525	1.67785	1872.4	278986
597	356409	212776173	24.4336	8.4202	2.77597	1.67504	1875.5	279923
598	357604	213847192	24.4540	8.4249	2.77670	1.67224	1878.7	280862
599	358801	214921799	24.4745	8,4296	2.77743	1.66945	1881.8	281802,

Functions of Numbers, 600 to 649

No.	Square	Cube	Square	Cube	Logarithm	1000	No.=
140.	Equate	Cube	Root	Root	Dogarrenio	Reciprocal	Circur
600	360000	216000000	24,4949	8.4343	2.77815	1,66667	1885.
601	361201	217081801	24.5153	8,4390	2.77887	1.66389	1888.
602	362404	218167208	24.5357	8,4437	2,77960	1,66113	1891.
603	363609	219256227	24,5561	8.4484	2,78032	1.65837	1894
604	364816	220348864	24.5764	8.4530	2.78104	1.65563	1897.
605	366025	221445125	24.5967	8.4577	2.78176	1.65289	1900.
606	367236	222545016	24.6171	8.4623	2.78247	1.65017	1903.
607	368449	223648543	24.6374	8.4670	2,78319	1.64745	1906.
608	369664	224755712	24.6577	8.4716	2.78390	1.64474	1910.
609	370881	225866529	24.6779	8.4763	2,78462	1.64204	1913.
610	372100	226981000	24.6982	8.4809	2.78533	1.63934	1916.
611	373321	228099131	24.7184	8.4856	2.78604	1.63666	1919.
612	374544 375769	229220928 230346397	24,7386 24,7588	8.4902 8.4948	2.78675 2.78746	1.63399 1.63132	1922.1 1925.8
614	376996	231475544	24,7790	8.4994	2.78740	1,62866	1928.9
615	378225	232608375	24.7992	8.5040	2.78888	1.62602	1932
616	379456	233744896	24.8193	8,5086	2.78958	1.62338	1935
617	380689	234885113	24,8395	8.5132	2.79029	1,62075	1938
618	381924	236029032	24.8596	8.5178	2.79099	1.61812	1941 .
619	383161	237176659	24.8797	8.5224	2.79169	1.61551	1944.6
620	384400	238328000	24.8998	8.5270	2,79239	1.61290	1947.8
621	385641	239483061	24.9199	8,5316	2.79309	1,61031	1950.0
622	386884	240641848	24.9399	8.5362	2.79379	1.60772	1954.1
623	388129	241804367	24.9600	8.5408	2.79449	1.60514	1957.2
624	389376	242970624	24.9800	8.5453	2.79518	1.60256	1960.4
625	390625	244140625	25.0000	8.5499	2.79588	1.60000	1963.5
626	391876	245314376	25.0200	8.5544	2.79657	1.59744	1966.6
627	393129	246491883	25.0400	8.5590	2.79727	1.59490	1969.8
628	394384	247673152	25.0599	8.5635	2.79796	1.59236	1972.5
629	395641	248858189	25.0799	8.5681	2.79865	1.58983	1976.1
630	396900	250047000	25.0998	8.5726	2.79934	1.58730	1979.5
631	398161	251239591	25.1197	8.5772	2.80003 2.80072	1.58479	1982.3 1985.5
632	399424 400689	252435968 253636137	25.1396 25.1595	8.5817 8.5862	2.80072	1.58228	1985.0
634	400689	254840104	25.1794	8.5907	2.80209	1.57729	1991.8
635	403225	256047875	25.1992	8.5952	2.80277	1.57480	1994.9
636	404496	257259456	25.2190	8.5997	2.80346	1,57233	1998.1
637	405769	258474853	25.2389	8.6043	2.80414	1.56986	2001.2
638	407044	259694072	25.2587	8.6088	2.80482	1.56740	2004.3
639	408321	260917119	25.2784	8.6132	2.80550	1.56495	2007.5
640	409600	262144000	25.2982	8.6177	2.80618	1.56250	2010.6
641	410881	263374721	25.3180	8.6222	2.80686	1.56006	2013.8
642	412164	264609288	25.3377	8.6267	2.80754	1.55763	2016.9
643	413449	265847707	25.3574	8.6312	2.80821	1.55521	2020.0
644	414736	267089984	25.3772	8.6357	2.80889	1.55280	2023.2
645	416025	268336125	25.3969	8.6401	2.80956	1.55039	2026.3
646	417316	269586136	25.4165	8.6446	2.81023	1.54799	2029.5
648	418609 419904	270840023 272097792	25.4362 25.4558	8,6490 8,6535	2.81090 2.81158	1.54560 1.54321	2032.6

Functions of Numbers, 650 to 699

		20	Square	Cube	1	1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
650	422500	274625000	25.4951	8.6624	2.81291	1.53846	2042.0	331831
651	423801	275894451	25.5147	8.6668	2.81358	1.53610	2045.2	332853
652	425104	277167808	25.5343	8.6713	2.81425	1.53374	2048.3	333876
653	426409	278445077	25.5539	8.6757	2.81491	1.53139	2051.5	334901
654	427716	279726264	25.5734	8.6801	2.81558	1.52905	2054.6	335927
655	429025	281011375	25.5930	8.6845	2.81624	1.52672	2057.7	336955
656	430336	282300416	25.6125	8.6890	2.81690	1.52439	2060.9	337985
657	431649	283593393	25,6320	8.6934	2.81757	1.52207	2064.0	339016
658	432964	284890312	25.6515	8.6978	2.81823	1.51976	2067.2	340049
659	434281	286191179	25.6710	8.7022	2.81889	1.51745	2070.3	341084
660	435600	287496000	25.6905	8.7066	2.81954	1.51515	2073.5	342119
661	436921	288804781	25.7099	8.7110	2.82020	1.51286	2076.6	343157
662	438244	290117528	25.7294	8.7154	2.82086	1.51057	2079.7	344196
663	439569	291434247	25.7488	8.7198	2.82151	1.50830	2082.9	345237
664	440896	292754944	25.7682	8.7241	2.82217	1.50602	2086.0	346279
665	442225	294079625	25.7876	8.7285	2.82282	1.50376	2089.2	347323
667	443556	295408296 296740963	25.8070 25.8263	8.7329	2.82347	1.50150	2092.3 2095.4	348368 349415
668	446224	298077632	25.8457	8.7373 8.7416	2,82413 2,82478	1.49925 1.49701	2098.6	350464
	447561	299418309	25.8650	8.7460	2.82543	1.49477	2101.7	351514
200			7					
670	448900	300763000	25.8844	8.7503	2.82607	1.49254	2104.9	352565
	450241	302111711	25.9037	8.7547	2.82672	1.49031	2108.0	353618
	451584	303464448	25.9230	8.7590	2.82737	1.48810	2111.2	354673
673 674	452929 454276	304821217	25.9422	8.7634	2.82082	1.48588	2114.3 2117.4	355730 356788
	455625	306182024 307546875	25,9615 25,9808	8.7677	2.82866	1.48368	2120.6	357847
	456976	308915776	26.0000	8.7721 8.7764	2.82930 2.82995	1.48148 1.47929	2123.7	358908
	458329	310288733	26.0192	8.7807	2.83059	1.47710	2126.9	359971
	459684	311665752	26.0384	8.7850	2.83123	1.47493	2130.0	361035
	461041	313046839	26.0576	8.7893	2.83187	1.47275	2133.1	362101
680	462400	314432000	26.0768	8.7937	2.83251	1.47059	2136.3	363168
	463761	315821241	26.0960	8.7980	2.83315	1.46843	2139.4	364237
	465124	317214568	26.1151	8.8023	2.83378	1,46628	2142.6	365308
	456489	318611987	26.1342	8.3066	2.83442	1.46413	2145.7	366380
	467856	320013504	26.1534	8.8109	2.83506	1.46199	2148.8	367453
	469225	321419125	26.1725	8.8152	2.83569	1.45985	2152.0	368528
	470596	322828856	26,1916	8,8194	2.83632	1.45773	2155.1	369605
	471969	324242703	26.2107	8.8237	2.83696	1.45560	2158.3	370684
	473344 474721	325660672 327082769	26,2298 26,2488	8.8280 8.8323	2.83759 2.83822	1.45349 1.45138	2161.4 2164.6	371764 372845
099	4/4/21	341084109	20.2488	0.0020	2.03022	1.40105	2104.0	012040
	476100	328509000	26.2679	8.8366	2.83885	1.44928	2167.7 2170.8	373928
	477481	329939371 331373888	26.2869 26.3059	8.8408 8.8451	2.83948 2.84011	1.44718	2170.8	375013 376099
	478864 480249		26.3249	8.8493	2.84011	1.44300	2174.0	377187
	480249	332812557 334255384	26.3439	8.8493	2.84073	1.44300	2180.3	378276
	483025	335702375	26.3629	8.8578	2.84198	1.43885	2183.4	379367
	484416	337153536	26.3818	8.8621	2.84261	1.43678	2186.5	380459
	485809	338608873	26,4008	8.8663	2.84323	1.43472	2189.7	381553
	487204	340068392	26.4197	8.8706	2.84386	1.43266	2192.8	382649
	488601	341532099	26.4386	8.8748	2.84448	1.43062	2196.0	383746

Functions of Numbers, 700 to 749

			Square	Cube		1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
700	490000	343000000	26,4575	8.8790	2.84510	1.42857	2199.1	384845
701	491401	344472101	26.4764	8.8833	2.84572	1.42653	2202.3	385945
702	492804	345948408	26.4953	8.8875	2.84634	1.42450	2205.4	387047
703	494209	347428927	26.5141	8.8917	2.84696	1.42248	2208.5	388151
704	495616	348913664	26.5330	8.8959	2.84757	1.42045	2211.7	389256
705	497025	350402625	26.5518	8.9001	2.84819	1.41844	2214.8	390363
706	498436 499849	351895816 353393243	26.5707 26.5895	8.9043 8.9085	2.84880 2.84942	1.41643	2218.0 2221.1	391471
707	501264	354894912	26,6083	8.9127	2.84942	1.41243	2224.2	392580
709	502681	356400829	26.6271	8.9169	2.85065	1.41044	2227.4	394805
710	504100	357911000	26.6458	8.9211	2.85126	1.40845	2230.5	395919
711	505521	359425431	26.6646	8.9253	2.85187	1.40647	2233.7	397035
712	506944	360944128	26,6833	8,9295	2.85248	1.40449	2236.8	398153
713	508369	362467097	26.7021	8.9337	2.85309	1.40252	2240.0 2243.1	399272 400393
714 715	509796 511225	363994344 365525875	26.7208 26.7395	8,9378 8,9420	2.85370 2.85431	1.40056 1.39860	2246.2	401515
716	512656	367061696	26.7582	8,9462	2.85491	1.39665	2249.4	402639
717	514089	368601813	26.7769	8,9503	2.85552	1.39470	2252 5	403765
718	515524	370146232	26.7955	8,9545	2,85612	1.39276	2255.7	404892
719	516961	371694959	26.8142	8.9587	2.85673	1.39082	2258.8	406020
720	518400	373248000	26.8328	8.9628	2.85733	1,38889	2261.9	407150
721 722	519841	374805361	26.8514	8.9670	2.85794	1.38696	2265.1	408282
722	521284	376367048	26.8701	8.9711	2.85854	1.38504	2268.2	409415
723 724	522729 524176	377933067 379503424	26.8887 26.9072	8.9752 8.9794	2.85914	1,38313 1,38122	2271.4 2274.5	411687
725	525625	381078125	26.9258	8.9835	2.86034	1.37931	2277.7	412825
726	527076	382657176	26.9444	8.9876	2.86094	1.37741	2280.8	413965
727	528529	384240583	26,9629	8.9918	2.86153	1.37552	2283.9	415106
728 729	529984	385828352	26.9815	8.9959	2.86213	1.37363	2287.1	416248
729	531441	387420489	27.0000	9.0000	2.86273	1.37174	2290.2	417393
730	532900	389017000	27.0185	9.0041	2.86332	1.36986	2293.4	418539
731 732	534361 535824	390617891 392223168	27.0370 27.0555	9.0082 9.0123	2.86392 2.86451	1.36799	2296.5 2299.6	419686
733	537289	393832837	27.0740	9.0164	2.86510	1.36426	2302.8	420833
734	538756	395446904	27.0924	9.0205	2.86570	1.36240	2305.9	423138
735	540225	397065375	27.1109	9.0246	2.86629	1.36054	2309.1	424292
736	541696	398688256	27.1293	9.0287	2.86688	1.35870	2312.2	42544
737	543169	400315553	27.1477	9.0328	2.86747	1.35685	2315.4	426604
738	544644	401947272	27.1662	9.0369	2.86806	1.35501	2318.5	427762
739	546121	403583419	27.1846	9.0410	2.86864	1,35318	2321.6	428922
740 741	547600 549081	405224000 406869021	27.2029 27.2213	9.0450 9.0491	2.86923 2.86982	1.35135 1.34953	2324.8 2327.9	430084 431247
742	550564	408518488	27.2397	9.0532	2.87040	1.34771	2327.9	432419
743	552049	410172407	27.2580	9.0572	2.87099	1.34590	2334.2	433578
744	553536	411830784	27,2764	9.0613	2.87157	1.34409	2337.3	434746
745	555025	413493625	27,2947	9.0654	2.87216	1.34228	2340.5	43591
746	556516	415160936	27.3130	9.0694	2.87274	1,34048	2343.6	437087
747	558009	416832723	27.3313	9.0735	2.87332	1.33869	2346.8	438259
748	559504	418508992	27.3496	9.0775	2.87390	1.33690	2349.9	439433
749	1561001	420189749	27.3679	9.0816	2.87448	1.33511	2353.1	440609

Functions of Numbers, 750 to 799

		The same	Comme	Cube		1000	No.=Di	iameter
No.	Square	Cube	Square Root	Root	Logarithm	Reciprocal	Circum.	Area
750	562500	421875000	27.3861	9.0856	2.87506	1.33333	2356.2	441780
751	564001	423564751	27,4044	9.0896	2.87564	1.33156	2359.3	44296
752	565504	425259008	27,4226	9.0937	2.87622	1.32979	2362.5	44414
753	567009	426957777	27.4408	9.0977	2,87680	1.32802	2365.6	44532
754	568516	428661064	27.4591	9.1017	2.87737	1.32626	2368.8	44651
755	570025	430368875	27.4773	9.1057	2.87795	1.32450	2371.9	44769
756	571536	432081216	27.4955	9,1098	2.87852	1.32275	2375.0	44888
757	573049	433798093	27.5136	9.1138	2.87910	1.32100	2378.2	450073
758	574564	435519512	27.5318	9.1178	2.87967	1.31926	2381.3	45126
759	576081	437245479	27.5500	9.1218	2.88024	1.31752	2384.5	45245
760	577600	438976000	27.5681	9.1258	2.88081	1.31579	2387.6	45364
761	579121	440711081	27.5862	9.1298	2.88138	1.31406	2390.8	45484
762	580644	442450728	27.6043	9.1338	2.88196	1.31234	2393.9	45603
763 764	582169 583696	444194947 445943744	27.6225	9.1378	2.88252 2.88309	1.31062 1.30890	2397.0 2400.2	45723 45843
765	585225	447697125	27.6405 27.6586	9.1418 9.1458	2.88366	1.30719	2403.3	45963
766	586756	449455096	27.6767	9.1498	2.88423	1.30548	2406.5	46083
767	588289	451217663	27.6948	9.1537	2.88480	1.30378	2409.6	46204
768	589824	452984832	27.7128	9.1577	2.88536	1.30208	2412.7	46324
769	591361	454756609	27.7308	9.1617	2.88593	1.30039	2415.9	46445
770	592900	456533000	27,7489	9.1657	2.88649	1.29870	2419.0	46566
771	594441	458314011	27.7669	9,1696	2.88705	1.29702	2422.2	46687
772	595984	460099648	27.7849	9.1736	2.88762	1.29534	2425.3	46808
773	597529	461889917	27.8029	9.1775	2.88818	1.29366	2428.5	46929
774	599076	463684824	27.8209	9.1815	2.88874	1.29199	2431.6	47051
775	600625	465484375	27.8388	9.1855	2.88930	1.29032	2434.7	47173
776	602176	467288576	27.8568	9.1894	2.88986	1.28866	2437.9	47294
777	603729	469097433	27.8747	9.1933	2.89042	1.28700	2441.0	47416
778	605284	470910952	27.8927	9.1973	2.89098	1.28535	2444.2	47538
779	606841	472729139	27.9106	9,2012	2.89154	1.28370	2447.3	47661
780 781	608400 609961	474552000 476379541	27.9285 27.9464	9.2052 9.2091	2.89209 2.89265	1.28205	2450.4 2453.6	47783 47906
782	611524	478211768		9.2130	2.89321	1.27877	2456.7	48029
783	613089	480048687	27.9643 27.9821	9.2170	2.89376	1.27714	2459.9	48151
784	614656	481890304	28.0000	9.2209	2.89432	1.27551	2463.0	48275
785	616225	483736625	28.0179	9,2248	2.89487	1.27389	2466.2	48398
786	617796	485587656	28.0357	9.2287	2.89542	1.27226	2469.3	48521
787	619369	487443403	28.0535	9.2326	2.89597	1.27065	2472.4	48645
788	620944	489303872	28.0713	9.2365	2.89653	1.26904	2475.6	48768
789	622521	491169069	28.0891	9.2404	2.89708	1.26743	2478.7	48892
790	624100	493039000	28.1069	9.2443	2.89763	1.26582	2481.9	49016
791	625681	494913671	28.1247	9.2482	2.89818	1.26422	2485.0	49140
792	627264	496793088	28.1425	9.2521	2.89873	1.26263	2488.1	49265
793	628849	498677257	28.1603	9.2560	2,89927	1.26103	2491.3	49389
794	630436	500566184	28.1780	9.2599	2.89982	1.25945	2494.4	49514
795	632025	502459875	28.1957	9.2638	2,90037	1.25786	2497.6	49639
796	633616	504358336	28.2135	9.2677	2.90091	1.25628	2500.7	49764
797	635209	506261573	23.2312	9.2716	2,90146 2,90200	1,25471	2503.8	49889
798	636804	508169592 510082399	28.2489 28.2666	9.2754 9.2793	2.90200	1.25313 1.25156	2507.0 2510.1	50014

Functions of Numbers, 800 to 849

		10.2	Square	Cube	1	1000	No.=D	iam
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	A
800	640000	512000000	28.2843	9.2832	2.90309	1.25000	2513.3	50
801	641601	513922401	28.3019	9.2870	2,90363	1.24844	2516.4	50
802	643204	515849608	28,3196	9,2909	2,90417	1.24688	2519.6	50
803	644809	517781627	28.3373	9.2948	2.90472	1.24533	2522.7	50
804	646416	519718464	28.3549	9.2986	2.90526	1.24378	2525.8	50
805	648205	521660125	28.3725	9.3025	2.90580	1.24224	2529.0	50
806	649636	523606616	28.3901	9,3063	2.90634	1.24069	2532.1	51
807	651249	525557943	28.4077	9.3102	2,90687	1.23916	2535.3	51
808	652864	527514112	28.4253	9.3140	2,90741	1.23762	2538.4	51:
809	654481	529475129	28.4429	9.3179	2,90795	1.23609	2541.5	51
810	656100	531441000	28.4605	9.3217	2.90849	1.23457	2544.7	51
811	657721	533411731	28,4781	9.3255	2.90902	1.23305	2547.8	51
812	659344	535387328	28.4956	9.3294	2.90956	1.23153	2551.0	51
813	660969	537367797	28.5132	9.3332	2.91009	1.23001 1.22850	2554.1	51
814	662596	539353144	28.5307	9.3370	2.91062	1.22850	2557.3	52
815	664225	541343375	28.5482	9.3408	2.91116	1.22699	2560.4	52
816	665856	543338496	28.5657	9.3447	2.91169	1.22549	2563.5	52
817	667489	545338513	28.5832	9.3485	2.91222	1,22399	2566.7	52
818	669124	547343432	28.6007	9.3523	2.91275	1.22249	2569.8	52
819	670761	549353259	28.6182	9.3561	2.91328	1.22100	2573.0	52
820 821	672400 674041	551368000	28.6356 28.6531	9.3599 9.3637	2.91381	1.21951 1.21803	2576.1 2579.2	52
822	675684	553387661 555412248	28.6705	9.3675	2.91434 2.91487	1.21655	2582.4	53
823	677329	557441767	28,6880		2.91540	1.21507	2585.5	53
020	678976	559476224	28.7054	9.3713 9.3751	2.91593	1,21359	2588.7	53
824 825	680625	561515625	28,7228	9.3789	2.91645	1.21212	2591.8	53
826	682276	563559976	28.7402	9.3827	2.91698	1.21065	2595.0	53
827	683929	565609283	28.7576	9.3865	2.91751	1.20919	2598.1	53
828	685584	567663552	28.7750	9.3902	2.91803	1.20773	2601.2	53
829	687241	569722789	28.7924	9.3940	2.91855	1.20627	2604.4	53
830	688900	571787000	28.8097	9.3978	2.91908	1.20482	2607.5	54
831	690561	573856191	28.8271	9.4016	2.91960	1.20337	2610.7	54
832	692224	575930368	28.8444	9.4053	2.92012	1.20192	2613.8	54
833	693889	578009537	28.8617	9.4091	2.92065	1.20048	2616.9	54
834	695556	580093704	28.8791	9.4129	2.92117	1.19904	2620.1	54
835	697225	582182875	28.8964	9.4166	2.92169	1.19760	2623.2	54
836	698896	584277056	28.9137	9.4204	2.92221	1.19617	2626.4	54
837	700569	586376253	28.9310	9.4241	2.92273	1.19474	2629.5	55
838	702244	588480472	28.9482	9.4279	2.92324	1,19332	2632.7	55
839	703921	590589719	28.9655	9.4316	2.92376	1.19190	2635.8	55.
840	705600	592704000	28.9828	9.4354	2,92428	1.19048	2638.9	55
841 842	707281 708964	594823321 596947688	29.0000	9.4391	2.92480	1.18906	2642.1	55
843	710649		29.0172	9.4429	2,92531	1.18765	2645.2	55
		599077107	29.0345 29.0517	9.4466	2.92583	1.18624	2648.4	55
844	712336 714025	601211584 603351125		9.4503	2.92634	1.18483	2651.5	55
846	714025	605495736	29.0689 29.0861	9.4541 9.4578	2.92686	1.18343	2654.6 2657.8	56
847	717409	607645423	29.0801		2.92737 2.92788	1.18203	2660.9	56
848	719104	609800192	29.1204	9.4615 9.4652	2.92840	1.17925	2664.1	56
849	720801	611960049	29.1376	9.4690	2.92891	1.17786	2667.2	56
	TOOUT	OTTROUGHA	29.10/0	0.4090	4,92091	1.1/100	2007.2	200

Functions of Numbers, 850 to 899

		11	0	Cuba		1000	No.=D	iameter
No.	Square	Cube	Square Root	Cube	Logarithm	Reciprocal	Circum.	Area
850	722500	614125000	29,1548	9,4727	2.92942	1.17647	2670.4	567450
851	724201	616295051	29,1719	9.4764	2.92993	1.17509	2673.5	568786
852	725904	618470208	29.1890	9.4801	2.93044	1.17371	2676.6	570124
853	727609	620650477	29,2062	9.4838	2.93095	1.17233	2679.8	571463
854	729316	622835864	29.2233	9.4875	2.93146	1.17096	2682.9	572803
855	731025	625026375	29.2404	9.4912	2.93197	1.16959	2686.1	574146
856 857	732736	627222016 629422793	29,2575 29,2746	9.4949	2.93247	1.16822	2689.2	575490 576835
858	734449 736164	631628712	29.2746	9.4986 9.5023	2.93298 2.93349	1.16686 1.16550	2692.3 2695.5	578182
859	737881	633839779	29.3087	9.5060	2.93399	1.16414	2698.6	579530
860	739600	636056000	29.3258	9.5097	2.93450	1,16279	2701.8	580880
861	741321	638277381	29.3428	9.5134	2.93500	1.16144	2704.9	582232
862	743044	640503928	29.3598	9.5171	2.93551	1.16009	2708.1	583588
863	744769	642735647	29.3769	9.5207	2.93601	1.15875	2711.2	584940
864	746496	644972544	29.3939	9.5244	2.93651	1.15741	2714.3	586297
865 866	748225 749956	647214625 649461896	29.4109 29.4279	9.5281 9.5317	2.93702 2.93752	1.15607	2717.5 2720.6	587658 589014
867	751689	651714363	29.4279	9.5354	2.93802	1.15340	2723.8	59037
868	753424	653972032	29,4618	9.5391	2.93852	1.15207	2726.9	591738
869	755161	656234909	29.4788	9.5427	2.93902	1.15075	2730.0	59310
870	756900	658503000	29.4958	9.5464	2.93952	1.14943	2733.2	59446
871	758641	660776311	29.5127	9.5501	2.94002	1.14811	2736.3	59583
872	760384	663054848	29.5296	9.5537	2.94052	1.14679	2739.5	59720
873	762129	665338617	29.5466	9.5574	2.94101 2.94151	1.14548	2742.6 2745.8	59857
874 875	763876 765625	667627624 669921875	29.5635 29.5804	9.5610 9.5647	2.94201	1.14286	2748.9	60132
876	767376	672221376	29.5973	9.5683	2.94250	1.14155	2752.0	60269
877	769129	674526133	29,6142	9.5719	2.94300	1.14025	2755.2	60407
878	770884	676836152	29,6311	9.5756	2.94349	1.13895	2758.3	60545
879	772641	679151439	29.6479	9.5792	2.94399	1.13766	2761.5	60683
880	774400	681472000	29.6648	9.5828	2.94448	1.13636	2764.6	60821
881 882	776161 777924	683797841 686128968	29.6816 29.6985	9.5865 9.5901	2.94498 2.94547	1.13507	2767.7 2770.9	60959
883	779689	688465387	29.0985	9.5937	2.94596	1.13250	2774.0	61236
884	781456	690807104	29.7321	9.5973	2.94645	1.13122	2777.2	61375
885	783225	693154125	29.7489	9,6010	2,94694	1.12994	2780.3	61514
886	784996	695506456	29.7658	9.6046	2.94743	1.12867	2783.5	61653
887	786769	697864103	29.7825	9.6082	2.94792	1.12740	2786.6	61792
888	788544	700227072	29.7993	9.6118	2.94841	1.12613	2789.7	61932
889	790321	702595369	29.8161	9.6154	2.94890	1.12486	2792.9	62071
890 891	792100 793881	704969000 707347971	29,8329 29,8496	9.6190 9.6226	2.94939 2.94988	1.12360 1.12233	2796.0 2799.2	62211
892	793881	707347971	29.8496	9.6226	2.94988	1.12108	2802.3	62491
893	797449	712121957	29.8831	9.6298	2.95085	1.11982	2805.4	62631
894	799236	714516984	29.8998	9.6334	2.95134	1.11857	2808.6	62771
895	801025	716917375	29.9166	9.6370	2.95182	1.11732	2811.7	62912
896	802816	719323136	29.9333	9.6406	2.95231	1.11607	2814.9	63053
897	804609	721734273	29.9500	9.6442	2.95279	1.11483	2818.0	63193
898	806404	724150792	29.9666	9.6477	2.95328	1.11359	2821.2	63334
899	808201	726572699	29.9833	9.6513	2.95376	1.11235	2824.3	63476

Functions of Numbers, 900 to 949

			0	Cube	0.700	1000	No.=D	iameter
No.	Square	Cube	Square Root	Root	Logarithm	Reciprocal	Circum.	Area
900	810000	729000000	30,0000	9.6549	2.95424	1.11111	2827.4	63617
901	811801	731432701	30,0167	9.6585	2.95472	1.10988	2830.6	63758
902	813604	733870808	30.0333	9.6620	2.95521	1.10865	2833.7	63900
903	815409	736314327	30.0500	9.6656	2.95569	1,10742	2836.9	64042
904	817216	738763264	30.0666	9.6692	2.95617	1.10619	2840.0	64184
905	819025	741217625	30.0832	9.6727	2.95665	1.10497	2843.1	64326
906	820836	743677416	30.0998	9.6763	2.95713	1.10375	2846.3	64468
907	822649	746142643	30.1164	9.6799	2.95761	1.10254	2849.4	64610
908	824464	748613312	30.1330	9.6834	2.95809	1.10132	2852.6	64753
909	826281	751089429	30.1496	9.6870	2.95856	1.10011	2855.7	64896
910	828100	753571000	30.1662	9.6905	2.95904	1.09890	2858.8	65038
911	829921	756058031	30.1828	9.6941	2.95952	1.09769	2862.0	65181
912	831744	758550528	30.1993	9.6976	2.95999	1.09649	2865.1	65325
913	833569	761048497	30,2159	9.7012	2.96047	1.09529	2868.3 2871.4	65468
914 915	835396 837225	763551944	30.2324 30.2490	9.7047	2.96095 2.96142	1.09409	2874.6	65755
916	837225	766060875 768575296	30.2490	9.7082 9.7118	2.96142	1.09290	2874.0	65899
917	840889	771095213	30.2820	9.7153	2.96237	1.09051	2880.8	66043
918	842724	773620632	30,2985	9.7188	2.96284	1.08932	2884.0	66187
919	844561	776151559	30.3150	9.7224	2.96332	1.08814	2887.1	66331
920	846400	778688000	30.3315	9.7259	2.96379	1.08696	2890.3	66476
921	848241	781229961	30.3480	9.7294	2.96426	1.08578	2893.4	66620
922	850084	783777448	30.3645	9.7329	2.96473	1.08460	2896.5	66765
923	851929	786330467	30.3809	9.7364	2.96520	1.08342	2899.7	66910
924	853776	788889024	30,3974	9.7400	2.96567	1.08225	2902.8	67055
925	855625	791453125	30.4138	9.7435	2.96614	1.08108	2906.0	67200
926	857476	794022776	30.4302	9.7470	2.96661	1.07991	2909.1	67346
927	859329	796597983	30.4467	9.7505	2.96708	1.07875	2912.3	67491
928 929	861184 863041	799178752 801765089	30.4631	9.7540 9.7575	2.96755 2.96802	1.07759 1.07643	2915.4 2918.5	67637
930	864900	804357000	30,4959	9.7610	2.96848	1.07527	2921.7	67929
931	866761	806954491	30.5123	9.7645	2.96895	1.07411	2924.8	68075
932	868624	809557568	30.5287	9.7680	2.96942	1.07296	2928.0	68221
933	870489	812166237	30.5450	9.7715	2.96988	1.07181	2931.1	68368
934	872356	814780504	30.5614	9.7750	2.97035	1.07066	2934.2	68514
935	874225	817400375	30.5778	9.7785	2.97081	1.06952	2937.4	68661
936	876096	820025856	30.5941	9.7819	2.97128	1.06838	2940.5	68808
937	877969	822656953	30.6105	9.7854	2.97174	1.06724	2943.7	68955
938	879844	825293672	30.6268	9.7889	2.97220	1.06610	2946.8	69102
939	881721	827936019	30.6431	9.7924	2.97267	1.06496	2950.0	69250
940	883600	830584000	30.6594	9.7959	2.97313	1.06383	2953.1	69397
941	885481 887364	833237621 835896888	30.6757 30.6920	9.7993 9.8028	2.97359 2.97405	1.06270	2956.7 2959.4	69545
943	889249	838561807	30.7083	9.8028	2.97403	1.06045	2962.5	69841
944	891136	841232384	30.7246	9.8097	2.97497	1.05932	2965.7	699897
945	893025	843908625	30.7409	9.8132	2.97543	1.05820	2968.8	70138
946	894916	846590536	30.7571	9.8167	2.97589	1.05708	2971.9	70286
947	896809	849278123	30.7734	9.8201	2.97635	1.05597	2975.1	70435
948	898704	851971392	30.7896	9.8236	2.97681	1.05485	2978.2	705840
949	900601		30.8058	9.8270	2.97727	1.05374	2981.4	707330

Functions of Numbers, 950 to 999

		1301	Square	Cube	Constant of the last	1000	No.=D	iameter
No.	Square	Cube	Root	Root	Logarithm	Reciprocal	Circum.	Area
950	902500	857375000	30.8221	9,8305	2,97772	1.05263	2984.5	708822
951	904401	860085351	30.8383	9.8339	2.97818	1.05152	2987.7	710315
952	906304	862801408	30.8545	9.8374	2.97864	1.05042	2990.8	711809
953	908209	865523177	30.8707	9.8408	2.97909	1.04932	2993.9	713306
954	910116	868250664	30.8869	9.8443	2.97955	1.04822	2997.1	714803
955	912025	870983875	30.9031	9.8477	2.98000	1.04712	3000.2	716303
956	913936	873722816	30.9192	9.8511	2.98046	1.04603	3003.4	717804
957	915849	876467493	30.9354	9.8546	2.98091	1.04493	3006.5	719306
958	917764	879217912	30.9516	9.8580	2.98137	1.04384	3009.6	720810
959	919681	881974079	30.9677	9.8614	2.98182	1.04275	3012.8	722316
960	921600	884736000	30.9839	9.8648	2.98227	1.04167	3015.9	723823
961	923521	887503681	31.0000	9.8683	2.98272	1.04058	3019.1	725332
962 963	925444 927369	890277128 893056347	31.0161 31.0322	9.8717	2.98318 2.98363	1.03950	3022.2	726842 728354
964	927309	895841344	31.0483	9.8751	2.98408	1.03842 1.03734	3025.4 3028.5	729867
965	931225	898632125	31.0644	9.8785 9.8819	2.98453	1.03627	3031.6	731382
966	933156	901428696	31.0805	9.8854	2.98498	1.03520	3034.8	732899
967	935089	904231063	31.0966	9.8888	2.98543	1.03413	3037.9	734417
968	937024	907039232	31.1127	9.8922	2.98588	1.03306	3041.1	735937
969	938961	909853209	31.1288	9.8956	2.98632	1.03199	3044.2	737458
970	940900	912673000	31.1448	9,8990	2.98677	1.03093	3047.3	738981
971	942841	915498611	31.1609	9.9024	2.98722	1.02987	3050.5	740506
972	944784	918330048	31.1769	9.9058	2.98767	1.02881	3053.6	742032
973	946729	921167317	31.1929	9.9092	2.98811	1.02775	3056.8	743559
974	948676	924010424	31.2090	9.9126	2.98856	1.02669	3059.9	745088
975	950625	926859375	31.2250	9.9160	2.98900	1.02564	3063.1	746619
976	952576	929714176	31.2410	9.9194	2.98945	1.02459	3066.2	748151
977	954529	932574833	31.2570	9.9227	2.98989	1.02354	3069.3	749685
978 979	956484 958441	935441352 938313739	31.2730 31.2890	9,9261 9,9295	2.99034 2.99078	1.02249 1.02145	3072.5 3075.6	751221 752758
980	960400	941192000	31,3050	9,9329	2.99123	1.02041	3078.8	754296
981	962361	944076141	31.3209	9,9363	2.99167	1.01937	3081.9	755837
982	964324	946966168	31.3369	9.9396	2.99211	1.01833	3085.0	757378
983	966289	949862087	31,3528	9.9430	2.99255	1.01729	3088.2	758922
984	968256	952763904	31.3688	9.9464	2.99300	1.01626	3091.3	760466
985	970225	955671625	31.3847	9.9497	2.99344	1.01523	3094.5	762013
986	972196	958585256	31.4006	9.9531	2.99388	1.01420	3097.6	763561
987	974169	961504803	31.4166	9.9565	2.99432	1.01317	3100.8	765111
988 989	976144 978121	964430272 967361669	31.4325	9.9598 9.9632	2.99476 2.99520	1.01215	3103.9 3107.0	766662 768214
990	980100	970299000	31.4643	9.9666	2.99564	1.01010	3110.2	769769
991	982081	970299000	31.4802	9.9699	2.99607	1.00908	3113.3	771325
992	984064	976191488	31.4960	9.9733	2.99651	1.00806	3116.5	772882
993	986049	979146657	31.5119	9.9766	2.99695	1.00705	3119.6	774441
994	988036	982107784	31.5278	9.9800	2.99739	1.00604	3122.7	776002
995	990025	985074875	31.5436	9.9833	2.99782	1.00503	3125.9	777564
996	992016	988047936	31.5595	9.9866	2.99826	1.00402	3129.0	779128
997	994009	991026973	31.5753	9.9900	2.99870	1.00301	3132.2	780693
998	996004	994011992	31,5911	9.9933	2.99913	1.00200	3135.3	782260
999	998001	997002999	31.6070	9.9967	2.99957	1.00100	3138.5	783828

AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

Standard Specifications for Structural Steel for Buildings Serial Designation: A9—14

Adopted, 1901; Revised, 1909, 1913, 1914

I. MANUFACTURE

- PROCESS—(a) Structural steel, except as noted in Paragraph (b), may be made by the Bessemer or the open-hearth process.
- (b) Rivet steel, and steel for plates or angles over ¾ inch in thickness which are to be punched, shall be made by the openhearth process.

II. CHEMICAL PROPERTIES AND TESTS

2. CHEMICAL COMPOSITION—The steel shall conform to the following requirements as to chemical composition:

Phosphorus Bessemer ... not over 0.10 per cent. Open-hearth ... not over 0.06 per cent. not over 0.06 per cent. Sulphur ... not over 0.045 per cent.

- 3. LADLE ANALYSES—An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 2.
- 4. CHECK ANALYSES—Analyses may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent above the requirements specified in Section 2 all be allowed.

III. PHYSICAL PROPERTIES AND TESTS

5. TENSION TESTS—(a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Structural Steel	Rivet Steel
Tensile strength, lbs. per sq. in	55,000-65,000	46,000-56,000
Yield point, min., lbs. per sq. in Elongation in 8 in., min., per cent Elongation in 2 in., min., per cent	0.5 tens. str. 1,400,000a Tens. str. 22	0.5 tens. str. 1,400,000 Tens. str.

a See Section 6

(b) The yield point shall be determined by the drop of the beam of the testing machine.

6. Modifications in Elongation—(a) For structural steel over ¼ inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in Section 5(a) shall be made for each increase of ½ inch in thickness above ¾ inch, to a minimum of 18 per cent.

(b) For structural steel under $\frac{8}{16}$ inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in Section 5 (a) shall be made for each decrease of $\frac{1}{16}$ inch in thickness below $\frac{5}{16}$ inch.

7. BEND TESTS—(a) The test specimen for plates, shapes and bars, except as specified in Paragraphs (b) and (c), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material ¾ inch or under in thickness, flat on itself; for material over ¾ inch to and including 1¼ inches in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1¼ inches in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

(b) The test specimen for pins, rollers and other bars, when prepared as specified in Section 8 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion.

- (c) The test specimen for rivet steel shall bend cold throu 180 degrees flat on itself without cracking on the outside of t bent portion.
- 8. Test Specimens—(a) Tension and bend test specime shall be taken from rolled steel in the condition in which it confrom the rolls, except as specified in Paragraph (b).
- (b) Tension and bend test specimens for pins and roll shall be taken from the finished bars, after annealing when anne ing is specified.

- (c) Tension and bend test specimens for plates, shap and bars, except as specified in Paragraphs (d), (e) and (f), sh be of the full thickness of material as rolled; and may be machin to the form and dimensions shown in Fig. 1, or with both edge parallel.
- (d) Tension and bend test specimens for plates over 1 inches in thickness or diameter may be machined to a thickness diameter of at least ¾ inch for a length of at least 9 inches.
- (e) Tension test specimens for pins, rollers and bars of 1½ inches in thickness or diameter may be of the form and dime sions shown in Fig. 2. Bend test specimens may be 1 by ½ in in section. The axis of the specimens shall be located at a point midway between the center and surface and shall be paral to the axis of the bar.
- (f) Tension and bend test specimens for rivet steel sh be of the full-size section of bars as rolled.
 - 9. NUMBER OF TESTS—(a) One tension and one bend to 11 be made from each melt; except that if material from one m

differs % inch or more in thickness, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.

- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension test specimen is less than that specified in Section 5 (a) and any part of the fracture is more than 34 inch from the center of the gauge length of a 2-inch specimen or is outside the middle third of the gauge

length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAUGE

- 10. PERMISSIBLE VARIATIONS—The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent. from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:
- (a) When Ordered to Weight-For plates 121/2 pounds per square foot or over:

Under 100 inches in width, 2.5 per cent. above or below the specified weight:

100 inches in width or over, 5 per cent. above or below the specified weight.

For plates under 121/2 pounds per square foot:

Under 75 inches in width, 2.5 per cent. above or below the specified weight; 75 to 100 inches, exclusive, in width, 5 per cent. above or 3 per cent. below the specified weight;

100 inches in width or over, 10 per cent. above or 3 per cent. below the specified weight.

(b) When Ordered to Gauge—The thickness of each plate shall not vary more than 0.01 inch under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound.

Thickness Ordered.	Nominal Weight,	Allowable Excess (Expressed as Percentage of Nominal Weight) For Width of Plate as follows:							
Inches	Pounds per Square Foot	Under 50 in.	50 to 70 in., excl.	70 in. or over.	Under 75 in.	75 to 100 in., excl.	100 to 115 in., excl.	115 in. or over.	
	5.10 to 6.37 6.37 to 7.65 7.65 to 10.20	8.5	15 12.5 10	20 17 15			******		
1/4	10.20 12.75 15.30				10 8 7	14 12 10	18 16 13	17	
3/8 7-16 1/2 9-16 5/8	17.85 20.40			0.000.000	6 5	8 7	10 9	13 12	
0ver 5/8	22.95 25.50	0.4.500			4.5 4 3.5	6	8.5 8 6.5	11 10 9	

V. FINISH

 The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

13. Inspection—The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

14. REJECTION—(a) Unless otherwise specified, any rejection based on tests made in accordance with Section 4 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.

15. Rehearing—Samples tested in accordance with Section 4, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

Standard Specifications for Structural Steel for Bridges Serial Designation: A7-15

Adopted, 1901; Revised, 1905, 1909, 1913, 1914, 1915

1. STEEL CASTINGS—The Standard Specifications for Steel Castings adopted by the American Society for Testing Materials shall govern the purchase of steel castings for bridges. Unless otherwise specified, Class B castings, medium grade, shall be used.

I. MANUFACTURE

PROCESS—The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

CHEMICAL COMPOSITION—The steel shall conform to the following requirements as to chemical composition:

Phosphorus Acid. STRUCTURAL STEEL RIVET STEEL
Phosphorus Basic. not over 0.04 per cent.
Sulphur. not over 0.05 not over 0.04 per cent.
not over 0.05 not over 0.04 per cent.

- 4. Ladle Analyses—An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 3.
- CHECK ANALYSES—Analyses may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent. above the requirements specified in Section 3 1 be allowed.

Continued

III. PHYSICAL PROPERTIES AND TESTS

6. TENSION TESTS—(a) The material shall conform to the following requirements as to tensile properties:

Properties Considered	Structural Steel	Rivet Steel
Tensile strength, lbs. per sq. in	55,000-65,000a	46,000-56,000
Yield point, min., lbs. per sq. in Elongation in 8 in., min., per cent Elongation in 2 in., min., per cent	0.5 tens. str. 1,500,000 _b Tens. str. 22	0.5 tens. str. 1,500,000 Tens. str.

a See Paragraph (b).
b See Section 7.

- (b) In order to meet the required minimum tensile strength of full-size annealed eye bars, the purchaser may determine the tensile strength to be obtained in specimen tests; the range shall not exceed 14,000 pounds per square inch, and the maximum shall not exceed 74,000 pounds per square inch. The material shall conform to the requirements as to physical properties other than that of tensile strength, specified in Sections 6, 7 and 8 (b).
- (c) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation—(a) For structural steel over ¾ inch in thickness, a deduction of 1 from the percentage of elongation in 8 inches specified in Section 6 (a) shall be made for each increase of ⅓ inch in thickness above ¾ inch, to a minimum of 18 per cent.
- (b) For structural steel under $\frac{1}{16}$ inch in thickness, a deduction of 2.5 from the percentage of elongation in 8 inches specified in Section 6 (a) shall be made for each decrease of $\frac{1}{16}$ inch in thickness below $\frac{5}{16}$ inch.
- 8. BEND TESTS—(a) The test specimen for plates, shapes and bars, except as specified in paragraphs (b), (c) and (d), shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material 3/4 inch or under in thickness, flat on itself; for material over 3/4 inch to and

Continued

including 1¼ inches in thickness, around a pin the diameter of which is equal to the thickness of the specimen; and for material over 1¼ inches in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.

(b) The test specimen for eye-bar flats shall bend cold through 180 degrees without cracking on the outside of the bent portion as follows: For material ¾ inch or under in thickness, around a pin the diameter of which is equal to the thickness of the

specimen; for material over ¾ inch to and including 1¾ inches in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen; and for material over 1¾ inches in thickness, around a pin the diameter of which is equal to three times the thickness of the specimen.

- (c) The test specimen for pins, rollers and other bars, when prepared as specified in Section 9 (e), shall bend cold through 180 degrees around a 1-inch pin without cracking on the outside of the bent portion.
- (d) The test specimen for rivet steel shall bend cold through 180 degrees flat on itself without cracking on the outside of the bent portion.
- 9. Test Specimens—(a) Tension and bend test specimens shall be taken from rolled steel in the condition in which it comes from the rolls, except as specified in Paragraph (b).
- (b) Tension and bend test specimens for pins and rollers shall be taken from the finished bars, after annealing when annealing is specified.
- (c) Tension and bend test specimens for plates, shapes and bars except as specified in Paragraphs (d), (e) and (f), shall be of

Continued

the full thickness of material as rolled. They may be machined to the form and dimensions shown in Fig. 1, or with both edges parallel; except that bend test specimens for eye-bar flats may have three rolled sides.

(d) Tension and bend test specimens for plates, and tension test specimens for eye-bar flats, over 1½ inches in thickness may be machined to a thickness or diameter of at least ¾ inch for a length of at least 9 inches.

- (e) Tension test specimens for pins, rollers and bars (except eye-bar flats) over 1½ inches in thickness or diameter may be of the form and dimensions shown in Fig. 2. Bend test specimens may be 1 by ½ inch in section. The axis of the specimen shall be located at any point midway between the center and surface and shall be parallel to the axis of the bar.
- (f) Tension and bend test specimens for rivet steel shall be of the full-size section of bars as rolled.
- 10. NUMBER OF TESTS—(a) One tension and one bend test shall be made from each melt; except that if material from one melt differs 3/8 inch or more in thickness, one tension and one bend test shall be made from both the thickness and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension test specimen is less than that specified in Section 6 (a) and any part of the fracture is more than 34 inch from the center of the gauge length of a 2-inch specimen or is outside the middle third of the gauge length of an 8-inch specimen, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

Continued

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAUGE

11. PERMISSIBLE VARIATIONS—The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent. from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:

(a) When Ordered to Weight-For plates 121/2 pounds per

square foot or over:

Under 100 inches in width, 2.5 per cent. above or below the specified weight:

100 inches in width or over, 5 per cent. above or below the specified weight.

For plates under 12½ pounds per square foot:

Under 75 inches in width, 2.5 per cent. above or below the specified weight;
75 to 100 inches, exclusive, in width, 5 per cent. above or 3 per cent. below the specified weight;

100 inches in width or over, 10 per cent. above or 3 per cent. below the

specified weight.

(b) When Ordered to Gauge—The thickness of each plate shall not vary more than 0.01 inch under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound.

Thickness Ordered,	Nominal Weight,	ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WHIGHT) For Width of Plate as follows:							
Inches	Pounds per Square Foot	Under 50 in.	50 to 70 in., excl.	70 in. or over.	Under 75 in.	75 to 100 in., excl.	100 to 115 in., excl.	115 in. or over.	
	5.10 to 6.37 6.37 to 7.65 7.65 to 10.20 10.20 12.75 15.30 17.85 20.40 22.95 25.50	8.5	15 12.5 10	15	10 8 7 6 5 4.5 4 3.5	14 12 10 8 7 6.5 6	18 16 13 10 9	17 13 12 11 10 9	

Continued

V. FINISH

12. FINISH—The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

13. MARKING—The name or brand of the manufacturer and the melt number shall be legibly stamped or rolled on all finished material, except that rivet and lattice bars and other small sections shall, when loaded for shipment, be properly separated and marked for identification. The identification marks shall be legibly stamped on the end of each pin and roller. The melt number shall be legibly marked, by stamping if practicable, on each test specimen.

VII. INSPECTION AND REJECTION

- 14. INSPECTION—The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 15. REJECTION—(a) Unless otherwise specified, any rejection based on tests made in accordance with Section 5 shall be reported within five working days from the receipt of samples.
- (b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the manufacturer shall be notified.
- 16. REHEARING—Samples tested in accordance with Section 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

Standard Specifications for

Steel Castings

Serial Designation: A27-14

Adopted, 1901; Revised, 1905, 1912, 1913, 1914

 CLASSES—These specifications cover two classes of castings, namely:

Class A, ordinary castings for which no physical requirements are specified;

Class B, castings for which physical requirements are specified. These are of three grades: hard, medium and soft.

2. PATTERNS—(a) Patterns shall be made so that sufficient finish is allowed to provide for all variations in shrinkage.

(b) Patterns shall be painted three colors to represent metal, cores and finished surfaces. It is recommended that core prints shall be painted black and finished surfaces red.

3. Basis of Purchase—The purchaser shall indicate his intention to substitute the test to destruction specified in Section 11 for the tension and bend tests, and shall designate the patterns from which castings for this test shall be made.

I. MANUFACTURE

 PROCESS—The steel may be made by the open-hearth, crucible, or any other process approved by the purchaser.

5. HEAT TREATMENT—(a) Class A castings need not be

annealed unless so specified.

(b) Class B castings shall be allowed to become cold. They shall then be uniformly reheated to the proper temperature to ine the grain (a group thus reheated being known as an "annealing

charge"), and allowed to cool uniformly and slowly. If, in the opinion of the purchaser or his representative, a casting is not properly annealed, he may at his option require the casting to be re-annealed.

II. CHEMICAL PROPERTIES AND TESTS

6. CHEMICAL COMPOSITION—The castings shall conform to the following requirements as to chemical composition:

	CLASS A	CLASS B
Carbon	not over 0.30 per cent.	*****
Phosphorus	not over 0.06 per cent.	not over 0.05 per cent.
Sulphur		not over 0.05 per cent.

- 7. LADLE ANALYSES—An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 6. Drillings for analysis shall be taken not less than 1/4 inch beneath the surface of the test ingot.
- 8. CHECK ANALYSES—(a) Analyses of Class A castings may be made by the purchaser, in which case an excess of 20 per cent. above the requirement as to phosphorus specified in Section 6 shall be allowed. Drillings for analysis shall be taken not less than 1/4 inch beneath the surface.
- (b) Analyses of Class B castings may be made by the purchaser from a broken tension or bend test specimen, in which case an excess of 20 per cent. above the requirements as to phosphorus and sulphur specified in Section 6 shall be allowed. Drillings for analysis shall be taken not less than 1/4 inch beneath the surface.

III. PHYSICAL PROPERTIES AND TESTS

(FOR CLASS B CASTINGS ONLY)

9. TENSION TESTS—(a) The castings shall conform to the following minimum requirements as to tensile properties:

	HARD	MEDIUM	SOFT
Tensile strength, lbs. per sq. in	80,000	70,000	60,000
Yield point, lbs. per sq. in	36,000	31,500	27,000
Elongation in 2 in., per cent	15	18	22
Reduction of area, per cent	20	25	30

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 10. BEND TESTS—(a) The test specimen for soft castings shall bend cold through 120 degrees, and for medium castings through 90 degrees, around a 1-inch pin, without cracking on the outside of the bent portion.
- (b) Hard castings shall not be subject to bend test requirements.

- 11. ALTERNATIVE TESTS TO DESTRUCTION—In the case of small or unimportant castings, a test to destruction on three castings from a lot may be substituted for the tension and bend tests. This test shall show the material to be ductile, free from injurious defects, and suitable for the purpose intended. A lot shall consist of all castings from one melt, in the same annealing charge.
- 12. Test Specimens—(a) Sufficient test bars, from which the test specimens required in Section 13 (a) may be selected, shall be attached to castings weighing 500 pounds or over, when the design of the castings will permit. If the castings weigh less than 500 pounds, or are of such a design that test bars cannot be attached, two test bars shall be cast to represent each melt; or the quality of the castings shall be determined by tests to destruction as specified

Section 11. All test bars shall be annealed with the castings represent.

Continued

(b) The manufacturer and purchaser shall agree whether test bars can be attached to castings, on the location of the bars on the castings, on the castings to which bars are to be attached, and on the method of casting unattached bars.

(c) Tension test specimens shall be of the form and dimensions shown in Fig. 1. Bend test specimens shall be machined to 1 by ½ inch in section with corners rounded to a radius not over

1 inch.

- 13. NUMBER OF TESTS—(a) One tension and one bend test shall be made from each annealing charge. If more than one melt is represented in an annealing charge, one tension and one bend test shall be made from each melt.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded; in which case the manufacturer and the purchaser or his representative shall agree upon the selection of another specimen in its stead.
- (c) If the percentage of elongation of any tension test specimen is less than that specified in Section 9 (a) and any part of the fracture is more than ¾ inch from the center of the gauge length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. WORKMANSHIP AND FINISH

- 14. WORKMANSHIP—The castings shall substantially conform to the sizes and shapes of the patterns, and shall be made in a workmanlike manner.
- 15. FINISH—(a) The castings shall be free from injurious defects.
- (b) Minor defects which do not impair the strength of the castings may, with the approval of the purchaser or his representative, be welded by an approved process. The defects shall first be cleaned out to solid metal; and after welding, the castings shall be annealed, if specified by the purchaser or his representative.
- (c) The castings offered for inspection shall not be painted or covered with any substance that will hide defects, nor rusted to such an extent as to hide defects.

V. INSPECTION AND REJECTION

16. Inspection—The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the castings ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the castings are being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

17. REJECTION—(a) Unless otherwise specified, any rejection based on tests made in accordance with Section 8 shall be reported within five working days from the receipt of samples.

(b) Castings which show injurious defects subsequent to their acceptance at the manufacturer's works will be rejected, and

the manufacturer shall be notified.

18. Rehearing—Samples tested in accordance with Section 8, which represent rejected castings, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

VI. SPECIAL REQUIREMENTS FOR CASTINGS FOR SHIPS

19. Castings for ships, when so specified, shall conform to the following requirements:

20. HEAT TREATMENT—All castings shall be annealed.

- 21. NUMBER OF TESTS—(a) One tension and one bend test shall be made from each of the following castings: stern frames, stern posts, twin screw spectacle frames, propeller shaft brackets, rudders, steering quadrants, tillers, stems, anchors, and other castings when specified.
 - (b) When a casting is made from more than one melt, four and four bend tests shall be made from each casting.

Specifications for Steel Castings

- 22. Percussion Tests—(a) A percussion test shall be made a each of the following castings: stern frames, stern posts, twin scresspectacle frames, propellor shaft brackets, rudders, steering quarants, tillers, stems, anchors, and other castings when specified.
- (b) For this test, the casting shall be suspended by chair and hammered all over with a hammer of a weight approved the purchaser or his representative. If cracks, flaws, defects, weakness appear after such treatment, the casting will be rejects

VII. SPECIAL REQUIREMENTS FOR CASTINGS FOR RAILWAY ROLLING STOCK

23. CASTINGS FOR RAILWAY ROLLING STOCK—Castings 1 railway rolling stock, when so specified, shall conform to the requirements for Class B castings, Sections 1 to 18, inclusive, except the check analyses made in accordance with Section 8 (b) shall confort to the requirements as to phosphorus and sulphur specified Section 6.

AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

Standard Specifications for Boiler and Firebox Steel Serial Designation: A30-14

Adopted, 1901; Revised, 1909, 1912, 1913, 1914

 GRADES—These specifications cover two grades of steel for boilers, namely: Flange and Firebox.

I. MANUFACTURE

PROCESS—The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

3. CHEMICAL COMPOSITION—The steel shall conform to the following requirements as to chemical composition:

	FLANGE	FIREBOX
Carbon		0.12 - 0.25 per cent.
Manganese	0.30 - 0.60	0.30 - 0.50 per cent.
Acidnc	t over 0.05	not over 0.04 per cent.
Phosphorus Acidno	t over 0.04	not over 0.035 per cent.
Sulphurno	t over 0.05	not over 0.04 per cent.
Copper		not over 0.05 per cent.

- 4. Ladle Analyses—An analysis shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 3.
- CHECK ANALYSES—Analyses may be made by the purchaser from a broken tension test specimen representing each plate as l, which shall conform to the requirements specified in Section 3.

Continued

III. PHYSICAL PROPERTIES AND TESTS

6. TENSION TESTS—(a) The material shall conform to the following requirements as to tensile properties:

	FLANGE	FIREBOX
Tensile strength, lbs. per sq. in	55,000 - 65,000	52,000 - 62,000
Yield point, min., lbs. per sq. in	0.5 tens. str.	0.5 tens. str.
Elongation in 8 in., min., per cent	1,500,000	1,500,000
(See Section 7)	Tens. str.	Tens. str.

- (b) The yield point shall be determined by the drop of the beam of the testing machine.
- 7. Modifications in Elongation—(a) For material over ¾ inch in thickness, a deduction of 0.5 from the percentages of elongation specified in Section 6 (a) shall be made for each increase of ¾ inch in thickness above ¾ inch.
- (b) For material ¼ inch or under in thickness, the elongation shall be measured on a gauge length of 24 times the thickness of the specimen.
- 8. BEND TESTS—(a) Cold-bend Tests—The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material 1 inch or under in thickness, flat on itself; and for material over 1 inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen.
- (b) Quench-bend Tests—The test specimen, when heated to a light cherry red as seen in the dark (not less than 1200 degrees Fahrenheit), and quenched at once in water the temperature of which is between 80 degrees and 90 degrees Fahrenheit, shall bend through 180 degrees without cracking on the outside of the bent portion, as follows: For material 1 inch or under in thickness, flat on itself; and for material over 1 inch in thickness, around a pin the diameter of which is equal to the thickness of the specimen.
- 9. Homogeneity Tests—For firebox steel, a sample taken from a broken tension test specimen shall not show any single seam or cavity more than 1/4 inch long, in either of the three fractures obtained in the test for homogeneity, which shall be made as follows:

The specimen shall be either nicked with a chisel or grooved on a machine, transversely, about 16 inch deep, in three pl 2 inches apart. The first groove shall be made 2 inc

square end; each succeeding groove shall be made on the opposite side from the preceding one. The specimen shall then be firmly held in a vise, with the first groove about ¼ inch above the jaws, and the projecting end broken off by light blows of a hammer, the bending being away from the groove. The specimen shall be broken at the other two grooves in the same manner. The object of this test is to open and render visible to the eye any seams due to failure to weld up or to interposed foreign matter, or any cavities

due to gas bubbles in the ingot. One side of each fracture shall be examined and the lengths of the seams and cavities determined, a pocket lens being used if necessary.

- 10. TEST SPECIMENS—Tension and bend test specimens shall be taken from the finished rolled material. They shall be of the full thickness of material as rolled, and shall be machined to the form and dimensions shown in Fig. 1; except that bend test specimens may be machined with both edges parallel.
- 11. NUMBER OF TESTS—(a) One tension, one cold-bend, and one quench-bend test shall be made from each plate as rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension test specimen is less than that specified in Section 6 (a) and any part of the fracture is outside the middle third of the gauge length, as indicated by scribe scratches marked on the specimen before testing,

test shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAUGE

 PERMISSIBLE VARIATIONS—When Ordered to Gauge—The thickness of each plate shall not vary more than 0.01 inch under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than that shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound:

Thickness Ordered,	Nominal Weight,			OF N	8 (EXPRES OMINAL W h of Plate	ецант)	-	
Inches	Pounds per Square Foot	Under 50 in.	50 to 70 in., excl.	70 in. or over.	Under 75 in.	75 to 100 in., exel.	100 to 115 in., excl.	115 in. or over.
40		8.5	15 12.5 10		10 8	14 12	18 16	
1/4 56 3/8 716 11/2 916 5/8	15.30 17.85 20.40 22.95				7 6 5 4.5	10 8 7 6.5	13 10 9 8.5	17 13 12 11
5/8 Over 5/8	25.50				3.5	6 5	8 6.5	10

V. FINISH

 FINISH—The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

14. MARKING—The name or brand of the manufacturer, melt or slab number, grade, and lowest tensile strength for its grade specified in Section 6 (a), shall be legibly stamped on each melt or slab number shall be legibly stamped on each

Continued

VII. INSPECTION AND REJECTION

15. INSPECTION—The inspector representing the purchaser shall have free entry at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.

16. REJECTION—(a) Unless otherwise specified, any rejection based on tests made in accordance with Section 5 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the

manufacturer shall be notified.

17. Rehearing—Samples tested in accordance with Section 5, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

AMERICAN SOCIETY FOR TESTING MATERIALS PHILADELPHIA, PA., U. S. A.

AFFILIATED WITH THE

INTERNATIONAL ASSOCIATION FOR TESTING MATERIALS

Standard Specifications for Structural Steel for Ships Serial Description: A12-14

Adopted, 1901; Revised, 1909, 1913, 1914

I. MANUFACTURE

 PROCESS—The steel shall be made by the open-hearth process.

II. CHEMICAL PROPERTIES AND TESTS

CHEMICAL COMPOSITION—The steel shall conform to the following requirements as to chemical composition:

Phosphorus Acid not Basic not	over 0.08	per cent.
Phosphorus Basic no	t over 0.04	per cent.
Sulphurno	tover 0.05	per cent.

- 3. Ladle Analyses—An analysis to determine the percentages of carbon, manganese, phosphorus and sulphur shall be made by the manufacturer from a test ingot taken during the pouring of each melt, a copy of which shall be given to the purchaser or his representative. This analysis shall conform to the requirements specified in Section 2.
- 4. CHECK ANALYSES—Analyses may be made by the purchaser from finished material representing each melt, in which case an excess of 25 per cent. above the requirements specified in Section 2 shall be allowed.

III. PHYSICAL PROPERTIES AND TESTS

5. TENSION TESTS—(a) The material shall conform to the following requirements as to tensile properties:

Note—The requirements for castings for ships have been especially provided for in the Standard Specifications for Steel Castings, adopted by the Society for Testing Materials attached thereto.

Tensile strength, lbs. per sq. in	8,000 - 68,000
Yield point, min., lbs. per sq. in	
Elongation in 8 in., min., per cent	1,500,000
(See Section 6.)	Tens, str.

(b) The yield point shall be determined by the drop of the beam of the testing machine.

6. Modifications in Elongation—(a) For material over ¾ inch in thickness, a deduction of 1 from the percentage of elongation specified in Section 5 (a) shall be made for each increase of ¾ inch in thickness above ¾ inch, to a minimum of 18 per cent.

(b) For material ¼ inch or under in thickness, the elongation shall be measured on a gauge length of 24 times the thickness

of the specimen.

- 7. BEND TESTS—The test specimen shall bend cold through 180 degrees without cracking on the outside of the bent portion, as follows: For material ¼ inch or under in thickness, around a pin the diameter of which is equal to the thickness of the specimen; for material over ¾ inch to and including 1¼ inches in thickness, around a pin the diameter of which is equal to 1½ times the thickness of the specimen; and for material over 1¼ inches in thickness, around a pin the diameter of which is equal to twice the thickness of the specimen.
- 8. Test Specimens—(a) Tension and bend test specimens shall be taken from the finished rolled material, and shall not be annealed or otherwise treated, except as specified in Paragraph (b).
- (b) Tension and bend test specimens for material which is to be annealed or otherwise treated before use, shall be cut from properly annealed or similarly treated short lengths of the full on of the piece.

- (c) Tension and bend test specimens, except as specified in Paragraph (d), shall be of the full thickness of material as rolled; and may be machined to the form and dimensions shown in Fig. 1, or with both edges parallel.
- (d) Tension and bend test specimens for plates and bars over 1½ inches in thickness or diameter may be machined to a thickness or diameter of at least ¾ inch for a length of at least 9 inches.
- 9. Number of Tests—(a) One tension and one bend test shall be made from each melt; except that if material from one melt differs 3/8 inch or more in thickness, one tension and one bend test shall be made from both the thickest and the thinnest material rolled.
- (b) If any test specimen shows defective machining or develops flaws, it may be discarded and another specimen substituted.
- (c) If the percentage of elongation of any tension test specimen is less than that specified in Section 5 (a) and any part of the fracture is outside the middle third of the gauge length, as indicated by scribe scratches marked on the specimen before testing, a retest shall be allowed.

IV. PERMISSIBLE VARIATIONS IN WEIGHT AND GAUGE

- 10. PERMISSIBLE VARIATIONS—The cross-section or weight of each piece of steel shall not vary more than 2.5 per cent. from that specified; except in the case of sheared plates, which shall be covered by the following permissible variations to apply to single plates:
- (a) When Ordered to Weight—For plates 12½ pounds per square foot or over:

Under 100 inches in width, 2.5 per cent. above or below the specified weight;

100 inches in width or over, 5 per cent. above or below the specified weight.

For plates under 121/2 pounds per square foot:

Under 75 inches in width, 2.5 per cent. above or below the specified weight; 75 to 100 inches, exclusive, in width, 5 per cent. above or 3 per cent. below the specified weight;

100 inches in width or over, 10 per cent, above or 3 per cent, below the specified weight.

(b) When Ordered to Gauge—The thickness of each plate shall not vary more than 0.01 inch under that ordered.

An excess over the nominal weight corresponding to the dimensions on the order shall be allowed for each plate, if not more than shown in the following table, one cubic inch of rolled steel being assumed to weigh 0.2833 pound.

Thickness	Nominal Weight,	ALLOWABLE EXCESS (EXPRESSED AS PERCENTAGE OF NOMINAL WRIGHT) For Width of Plate as follows:						
Ordered, Inches	Pounds per Square Foot	Under 50 in.	50 to 70 in., exel.	70 in. or over.	Under 75 in.	75 to 100 in., excl.	100 to 115 in., exel.	115 in. or over.
1/8 to \$2 \$2 to 16 \$2 to 14 \$1 to 1/4 \$1 \$2 \$1 \$2 \$1 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$2 \$	5.10 to 6.37 6.37 to 7.65 7.65 to 10.20 10.20 12.75 15.30 17.85 20.40 22.95 25.50	8.5	15 12.5 10	15	10 8 7 6 5 4.5 4 3.5	6	18 16 13 10 9 8.5 8 6.5	10

V. FINISH

11. FINISH—The finished material shall be free from injurious defects and shall have a workmanlike finish.

VI. MARKING

12. Marking—The name or brand of the manufacturer and the melt number shall be legibly rolled or stamped on all finished material. The melt number shall be legibly stamped on each test timen.

VII. INSPECTION AND REJECTION

- 13. Inspection—The inspector representing the purchaser shall have free entry, at all times while work on the contract of the purchaser is being performed, to all parts of the manufacturer's works which concern the manufacture of the material ordered. The manufacturer shall afford the inspector, free of cost, all reasonable facilities to satisfy him that the material is being furnished in accordance with these specifications. All tests (except check analyses) and inspection shall be made at the place of manufacture prior to shipment, unless otherwise specified, and shall be so conducted as not to interfere unnecessarily with the operation of the works.
- 14. REJECTION—(a) Unless otherwise specified, any rejection based on tests made in accordance with Section 4 shall be reported within five working days from the receipt of samples.

(b) Material which shows injurious defects subsequent to its acceptance at the manufacturer's works will be rejected, and the

manufacturer shall be notified. ___

15. Rehearing—Samples tested in accordance with Section 4, which represent rejected material, shall be preserved for two weeks from the date of the test report. In case of dissatisfaction with the results of the tests, the manufacturer may make claim for a rehearing within that time.

Standard Specifications for Fabricated Steel Building Construction

Adopted 1915

DESIGN

LOADING:

1st—All steel used for building construction shall be so designed as to safely resist all stresses coming from both dead and live loads. The dead load shall consist of the weight of the structure itself, together with all permanent fixtures and attachments, such as walls, roofs, floors, partitions, elevators, vaults and other permanent fixtures. The live load shall consist of the super-imposed loads on floors and roofs, also the exterior loads due to wind pressure, etc.

2nd—Where moving loads are to be provided for, such as cranes or car traffic of any kind, 25% shall be added to the stresses due to such moving loads to care for the impact and vibrations accompanying such loading.

3rd—Unless local conditions indicate other values as being probable, a wind pressure of twenty pounds per square foot on the vertical projection of all structures shall be provided for.

4th—All parts of the structure shall be of such sizes that the dead load or live load or the sum of the dead and live loads, plus impact allowances, if necessary, shall not exceed the following amounts in pounds per square inch:

Tension, net section rolled steel	16,000
Direct compression rolled steel	16,000
Direct compression, steel castings	16,000
Direct compression, steer castings	
Direct compression, iron castings	12,000
Stresses in extreme fibers of rolled steel shapes, built sections.	
girders and steel castings when subject to flexure	16,000
Bending in extreme fibers of steel pins and steel slabs under	
columns	24,000
Shear on steel shop rivets and pins	12,000
Shear on turned bolts and field rivets	
Shear on turned boits and field fivets	10,000
Shear on rough bolts	8,000
Shear in webs of steel plate girders and rolled beams	10,000
Bearing on steel shop rivets and pins	24,000
Bearing on turned bolts and field rivets	20,000
Bearing on rough bolts.	16,000
Dearing on rough boits.	10,000
Compression along longitudinal axis of rolled steel columns,	
per square inch, $16,000 \times 70 \frac{L}{R}$, with a maximum of pounds.	14,000
Compression along longitudinal axis of cast iron columns per	
square inch	8,000
aquate men	-
	$1 \times L^2$
	1000
	8004

Standard Specifications for Fabricated Steel Building Construction

Continued

In the foregoing formula L equals length of member in inches between points of support; R equals radius of gyration; D equals outside diameter.

The maximum length of any rolled steel section used in compression shall not exceed 150 times the least radius of gyration.

Where expansion rollers are used to provide for the expansion and contraction of a structure, due to changes in temperature, the maximum pressure per linear inch on such rollers shall not exceed 600 times the diameter of the rollers in inches.

For wind bracing, also for members subject to combined stresses due to wind and either dead or live loads or both, the permissible stresses per square inch, as mentioned above, may be increased 25%, provided that the section as determined under this paragraph be not less than that required for dead and live loads alone.

ECCENTRIC LOADING:

In determining sizes for compression members, full consideration shall be given the stresses due to eccentric loading. In determining areas for tension members, net sections only shall be considered, and, in deduction of rivet holes, the hole shall be assumed to be inch greater in diameter than the nominal diameter of the rivets. Such members of the structure as are subject to both direct loading and transverse loading shall be so proportioned that the maximum fiber stress in the member shall not exceed the limits given above.

In members subject to both tension and compression, the greater stress shall be increased by 50% of the lesser, and the member shall then be designed for the stress requiring the larger section.

Connections for such members subject to such reversal of stress shall be proportioned for the sum of the two stresses.

Rolled beams and channels, also built up members used as girders or beams, shall be proportioned by the moment of inertia of their net section.

Webs of plate girders shall have a thickness of not less than 6 of 1% of the unsupported distance of such webs between

Standard Specifications for Fabricated Steel Building Construction Continued

flange angles. Webs shall also be provided with stiffeners in pairs over bearings and at points of concentrated loading. Also when web thickness is less than $1_{10}^{6}\%$ of the unsupported distance between flange angles, stiffeners shall be provided spaced not farther apart than the depth of the web plate. This spacing, however shall not exceed a maximum limit of six feet.

Where beams and girders are without lateral support for a distance exceeding ten times the width of a compression flange, then the stress per square inch in said compression flange shall not be permitted to exceed 19,000 minus 300 $\frac{L}{B}$, in which L equals unsupported length of the compression flange and B equals width of the compression flange, and providing further that no beam or girder shall be used in which the unsupported length of a compression flange exceeds forty times the width of said flange.

MINIMUM SECTIONS:

Except where used for ornamental purposes, or for fillers, or for smoke stacks, no steel is to be used less than ¼ inch thick, nor shall any lateral rods, sag rods or similar ties or braces be used having a less section than $\frac{2}{10}$ of one square inch at the smallest point.

GENERAL:

As a rule all adjustable members in any part of a structure are to be avoided and all built sections shall preferably be made symmetrical. With the exception of lattice bars and the intersections of diagonal bracing, ceiling hangers, etc., no connection shall have less than two rivets. In the construction of trusses, preference is to be given to riveted connections and only under exceptional circumstances shall pin connections be used. All abutting joints and compression members are to be accurately machine finished, so as to secure as uniform a bearing with the abutting member as can be obtained by such means. Further, such joints shall have splice plates with sufficient rivets to hold connecting members curately in place. Where compression members are not properly

Standard Specifications for Fabricated Steel Building Construction

Continued

machine finished, they shall be fully spliced. All tension members shall be fully spliced. Stiff bracing is also to be preferred for all wind bracing, sway bracing and lateral bracing. Adjustable rods for this purpose are not to be used without special sanction.

BEAM GIRDERS:

Where girders are composed of two or more rolled beams or rolled channels, they shall be connected at intervals of not more than five feet by bolts passing through their webs with cast iron or wrought steel separators or distance pieces to maintain them in their proper position. In lieu of such separators and separator bolts, it will be permissible to keep such beams or channels in position by using cover plates on either top flange or bottom flange. or both top and bottom flanges, or by the use of batten plates riveted to the flanges. Should such batten plates be used, they shall contain not less than two rivets in each plate for connection to each flange and shall be spaced at intervals not exceeding five feet. Where flange plates are used on girders, they shall be so limited in width as to not extend a greater distance beyond the outer line of rivets connecting them to the flanges or angles than 6 inches, or sixteen times the thickness of the thinnest flange plate used, unless special provision is made for holding the flanges in their nominal relation to the web of the girder.

STIFFENERS:

Web stiffeners on plate girders shall be used in pairs and shall fit closely against the flange angles. Stiffeners that are used over end bearings, or under points of concentrated load, or for forming connections between columns and girders, shall have a tight bearing against the flange angles. Where web plates of girders are not furnished in one piece, they shall be spliced by a plate on each side of the web with sufficient rivets to properly transmit the maximum shear coming at point of splicing.

RIVETS:

The minimum distance center to center of rivets shall preferably be not less than three inches for 1/4 inch diameter rivets.

Standard Specifications for Fabricated Steel Building Construction Continued

2½ inches for ¾ inch diameter rivets or two inches for ¾ inch diameter rivets. In no case, however, shall it be less than three times the diameter of rivets used.

The maximum distance center to center of rivets in the line of stress, where built members composed of plates and shapes are used, shall be six inches or sixteen times the thinnest outside plate. For angles having two gauge lines with rivets staggered, the greatest pitch in each line shall be twice the above allowance.

Where two or more plates are in contact, they shall be held together with stitch rivets spaced not more than 12 inches apart, center to center in both directions.

The minimum distance from the center of any rivet hole to a sheared edge shall be $1\frac{1}{2}$ inches for $\frac{1}{2}$ inches for $\frac{1}{2}$ inches for $\frac{1}{2}$ inch diameter rivets, $\frac{1}{2}$ inches for $\frac{1}{2}$ inch diameter rivets, and the corresponding distance to a rolled edge shall be $\frac{1}{2}$ inches, $\frac{1}{2}$ inches and $\frac{1}{2}$ inches expectively.

The maximum distance from the center of any plate to the center of the nearest rivet shall not exceed eight times the thickness of the plate. For built members subject to compression, the pitch of the rivets at the ends of same shall not exceed four diameters of the rivets used for a length equal to 1½ times the width of said members.

LATTICING:

Where compression members are used that are composed of two or more pieces not connected by web plates or cover plates, they shall have their open sides connected by lattice bars, and be further provided with tie plates at each end, also at such intermediate points as it shall be necessary to interrupt the continuity of the lattice. Such end tie plates shall have a length not less than the distance between rows of rivets connecting them to the flanges of the member, and intermediate tie plates shall have a length of not less than one-half of this distance. The thickness of both end and intermediate tie plates shall not be less than two per cent. of his distance.

Standard Specifications for

Fabricated Steel Building Construction

All latticing used on compression members shall be of such sizes and shall have sufficient rivets to enable the latticing to resist a transverse shearing stress of not less than two per cent. of the total amount of the direct stress. Where a single system of latticing is used, the thickness of the lattice bars shall be not less than $2\frac{1}{10}$ %, or where a double system of latticing is used, not less than $1\frac{1}{10}$ % of the distance between the end rivets connecting the lattice bars to the main members. Nor shall their width be less than $2\frac{1}{10}$ inches for sections composed of 15-inch channels, or for built sections using $3\frac{1}{10}$ -inch channels or for built sections using $3\frac{1}{10}$ -inch channels or for built sections using $3\frac{1}{10}$ -inch angles; or $3\frac{1}{10}$ -inch so sections composed of 6 and 5-inch channels, or for built sections using $2\frac{1}{10}$ -inch channels,

Lattice bars in no case shall be used with an inclination to the axis of the main member that is less than 45 degrees where double latticing is used, or 60 degrees where single latticing is used, and double latticing shall be used in all cases where the distance between rivet lines and the flanges of the main member is more than 15 inches. Care shall also be taken that the ratio of length to the radius of gyration of parts of the member that are connected by lattice bars is less than the ratio of total length of the member to the radius of gyration of the member as a whole.

PINS:

All pin holes shall be reinforced by pin plates wherever such reinforcement is necessary to keep the pressure of the pins on the surface of the pin hole within the limits of this specification. Where such pin plates are used, at least one plate shall be as wide as the projecting flanges will allow, and such pin plate shall contain sufficient rivets to properly distribute their proportion of pin pressure to the full cross section of the main member. All pins shall be long enough to insure a full bearing on all parts connecting with the turned body of the pin, and members connecting on the pin shall be properly held against lateral movement.

Standard Specifications for Fabricated Steel Building Construction Continued

All beams, channels and girders that derive their support from walls or piers shall be properly anchored to same, and shall further be provided with wall plates of such thickness and such area as to properly distribute the load coming from said beams, channels or girders on the wall or piers.

Where beams, channels, girders and other members act as skew-backs for floor arches, such beams, channels, girders and other members shall be duly designed to resist the lateral thrust coming from such arches, in addition to all other loads that they may be called upon to sustain.

Tie rods shall be placed as near to the spring of the arches as is practicable and shall be of such size as to enable them to properly resist the stresses coming upon them.

WORKMANSHIP

SHEARING:

The workmanship shall be equal to the best practice in fully equipped structural shops. All shearing must be done accurately and all portions of the work present a neat and workmanlike finish.

PUNCHING:

The diameter of the punch shall not be more than $\frac{1}{16}$ inch larger than the nominal diameter of the rivet, nor shall the diameter of the die be more than $\frac{1}{16}$ inch larger than the nominal diameter of the rivet. All punching must be done accurately. An occasional slight inaccuracy in the matching of holes may be corrected by reaming. Drifting for such purposes will not be allowed under any circumstances.

RIVETING:

Pressure tools shall be used wherever possible for the driving of rivets, and pneumatic hammers shall be used where the use of such pressure tools is not possible. Hand riveting will be allowed only under exceptional circumstances. All rivet heads shall be tered on the shank and shall be neat, full and of equal size and

grip the assembled pieces closely.

Standard Specifications for

Fabricated Steel Building Construction

ASSEMBLING:

All riveted members shall be well pinned up and firmly bolted together before riveting is begun. All surfaces coming in contact shall be painted before assembling. All the abutting joints shall be accurately cut so as to make a snug fit, and when finished all riveted pieces shall be free from twists, bends and open joints. Where steel has been partially heated in the fabrication the entire piece shall be annealed when finished. All steel castings shall also be annealed before using. Welds in steel will not be allowed under any circumstances.

PAINTING:

Except where members are to be embedded in concrete all steel shall be thoroughly cleaned with wire brushes and be given one thorough coat of an approved paint, well worked into all joints and seams before leaving the fabricating shop. No castings of any kind, however, shall be painted until after inspection and acceptance by the inspector.

EYE BARS:

Where eye bars are used they shall be straight and true to size, free from twists, folds or seams in neck or head. Heads shall be made by upsetting or forging as welded heads will not be allowed. Pin holes shall be on the center line of the bar and in the center of the heads. The boring of pin holes shall be done with such accuracy that when bars of same length are placed together a pin $\frac{1}{32}$ inch smaller in diameter than the pin holes can be passed through the holes at both ends of the bars at the same time.

PINS:

Pins and rollers shall be accurately turned to gauge and are to be straight, smooth and free from flaws. Pin holes shall be bored true to gauge, smooth and straight and at right angles to the axis of the member through which they pass. Such boring to be done after the member is riveted up.

INSPECTION:

Full facilities shall be furnished by the manufacturer for inspecting and testing the quality of the material, the workmanship and the weights, including the use of a suitable testing machine. Inspector shall also have free access to all parts of the works where material embraced in this contract is being manufactured.

		PAGE
Allowable Uniform Loads for	Angles	160-162
1	Beams	147-154
	Channels	155-159
	Girders	167-175
1	Γees	163-164
1	Wooden Beams	276-280
	Zees	
American Society for Testing	Materials, Specifications	342-369
Anchors and Tie Rods	+	226
Angles, Allowable Uniform Los		
Area Deducted for Ho	le	247
Areas of		46
Diagrams, Sizes and W	Veights	26-35
	g	
Properties of	***************************************	109-119
Angle and Plate Columns, Safe	e Loads	184-193
Arches, Terra Cotta		225
Area Deducted for Hole in Pla	tes, Bars and Angles	247
Areas and Circumferences		
Areas, Method of Increasing S	ectional	9

Bars and Plates		55-56

Square and Round B	ars	49-54
Bars, Area Deducted for Hole.	***************************************	247
Areas of		55-56
Circumferences of Round	1	49-54
Concrete		80-81
Diamond		81
	***************************************	The second secon
	s of Square and Round	
AND THE RESERVE OF THE PERSON		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAM
	18	
The second secon		

	PAGE
Beam Box Girders, Allowable Uniform Loads	167-171
Beam Bridges, Details for I	244
Beam Columns, Safe Loads for Single	
Beam Connections, Limiting Values of	129
Beams, Allowable Uniform Loads	
Bearing Plates for	
Bending Moments and Deflection of	
Capacity of	
Cast Separators for	
Common Dimensions of	
Diagrams Sizes and Weights of	
Loads on	133-134
Properties of	
Structural Sections Used as	
Wooden	271-280
Bearing and Shearing Values of Rivets	
Bearing Plates, Standard	
Bearing Values for Pin Plates	
Bending Moments and Deflection of Beams	
for Pins	258
Boiler Steel, Standard Specifications for	360-364
Bolt Heads, Standard	260
Weight of	
Bolt Holes, Spacing and Dimensions	
Bolts, Allowable Unit Stress	129
Anchor and Wedge	226
Machine	261
Box Girders, Allowable Uniform Loads	167-173
Bridge Pins.	256
Bridge, Details for, I-Beam	244
Standard Specifications of Steel for	
Building Construction, Specifications for Fabricated Steel	
Building Laws as to Floor and Roof Loads	
Materials, Weights, etc.	
Standard Specifications of Steel for	
Castings, Standard Specifications for Steel	
Castings, Standard Specifications for Steel	

	PAGE
Cast Iron Columns, Safe Loads	204-205
Cast Separators for Beams.	130-131
Chain	90-94
Channel and Beam Connections	126
Channel Columns, Safe Loads for	194-203
Channels, Allowable Uniform Loads for	155-159
Bearing Plates for	132
Common Dimensions of	10
Diagrams, Sizes and Weights	19-25
Properties of	107-108
Circles, Properties of	306
Circular Plates, Sizes and Weights	75-79
Circular Sections, Areas of	
Circumferences of Round Bars.	49-54
Circumferences and Areas	322-341
Clevis Nuts	
Columns	176-205
Bases.	
Formula for Safe Loads	177
Details of Splices for	
Lattice Bars and Tie Plates	181
Safe Loads for	
Typical Built Sections	
Typical Details of	178
Common Dimensions of Beams and Channels	10
Comparison of Gauges	
Fractions with Decimals of an Inch	298
Inches and Fractions with Decimals of a Foo	t 296-297
Standard Linear Units	315
Compound Sections.	99-101
Compression Formulae	241-242
Concrete Bars	
Connecting Angles, Location of	
Connections, Beam and Channel	
for I-Beams, Details	
Limiting Values of Beam	129

	PAGE
Conventional Signs for Riveting.	
Conversion Tables, Metric	
Corrugated Sheets	
Cosecants, Natural	320-321
Cosines, Natural	
Cotangents, Natural	316-317
Cotter Pins.	
Cube Roots of Numbers	322-341
Cubes of Numbers	322-341
Decimals of a Foot, Comparison of Inches and Fractions	
an Inch, Comparison with Fractions	
Definitions of Expressions used in Structural Designing	
Deflection and Bending Moments of Beams	
Design of Roof	
Details of I-Beam Bridges	244
Diagrams of Angles	26-35
Beams	11-18
Channels	19-25
Tees	36-42
Zees	
Diamond Bar	
Dimensions of Beams and Channels, Common	
Circular Plates	
Clevis Nuts	
Rivet and Bolt Holes	
Sheet Piling	
Sleeve Nuts	
Turnbuckles	
Earth, Slope of Repose and Weights	
Expansion of Bodies by Heat	287
Water	287
Expressions Used in Structural Designing	95
Fire Box Steel, Standard Specifications for	
Flat Rolled Steel, Sizes and Weights	
Floors, Loads for	
Floors, Loads for	

		PAUL
Formulae, Compression		241-242
	Columns	
	of Trusses	
Foundation Grillages		
Functions of Numbers		
Gauges, Birmingham Wire		294
Comparison of	*********************************	295
United States Standa	rd for Plate Iron and Steel	293
Girders, Allowable Uniform L	oads for	167-175
Plate		.223-224
Grillages, Foundation		
Inch, Comparison, with Decin		
	Compared	
Metric Conversion, Tab	les for299,	301-303
Inertia, Moments of, Definition		
	pound Sections	
	les	
	£	
J & L Offices		THE STREET
J & L OHICES		
Dlants		
		5
Products		5
ProductsLateral Pins		5 6-7 257
Products Lateral Pins Lattice Bars and Tie Plates		5 6-7 257
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers		5 257 181 322-341
Products Lateral Pins Lattice Bars and Tie Plates	r Angles	
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers	Angles	
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers	r Angles	
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers	r Angles Beams Channels Girders	5
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers	r Angles Beams Channels Girders. Tees	
Products	r Angles Beams Channels Girders Tees Zees	5
Products	r Angles	5
Products	r Angles. Beams. Channels. Girders. Tees. Zees.	5
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers Loads, Allowable Uniform, for for Floors and Roofs on Beams Safe, for Columns	r Angles	5
Products	r Angles. Beams. Channels. Girders. Tees. Zees.	5
Products Lateral Pins Lattice Bars and Tie Plates Logarithms of Numbers Loads, Allowable Uniform, for for Floors and Roofs on Beams Safe, for Columns Struts for Storage Warehouse Wooden Beams	r Angles Beams Channels Girders Tees. Zees	5

	PAGE
Machine Bolts	261
Material, Suggestions for Ordering	8
Strength of	291-292
Materials, Specific Gravity of Various	288-290
Weights of Various	284-286
Measure, Comparison of Linear	
Metals and Alloys, Strength, etc	
Method of Increasing Sectional Areas	9
Metric Conversion Tables	299-305
Linear Units, Comparison with Standard	315
Minimum Rivet Spacing	249-250
Moments of Inertia, Definition	95
Method of Finding, for Compound	
Sections	
of Rectangles	
Values of	96-98
Natural Secants and Cosecants	320-321
Sines and Cosines	318-319
Tangents and Cotangents	316-317
Neutral Axis, Definition	
Numbers, Functions of	
Nuts, Pin and Pilot	_
Clevis	
Standard	
Sizes and Weights	
Sleeve	
Weight of Bolt Heads and	
Offices, J & L	
Ordering Material, Suggestions for	8
Piling, Sheet	82-89
Pilot Nuts	256
Pin Plates, Bearing Values for	
Pins, Bending Moments.	
Bridge	
Cotter	
Lateral	
Standard Shouldered	
Stresses in	246

AND THE PROPERTY OF THE PARTY O	11101	
Pipe, Weights and Sizes		
Plane Figures, Areas of		
Plants, J & L.		
Plate and Angle Columns, Safe Loads		
Plate Girders.	223-224	
Allowable Uniform Loads		
Steel, U. S. Standard Gauge for		
Plates, Areas of		
Bearing		
Circular, Dimensions and Weights		
Pin, Bearing Values for		
Riveted, Area Deducted for One Hole		
Sizes of Universal.		
Sheared	Manage of the last	
Sketch		
Posts, Wooden	281-283	
Products, J & L	6-7	
Properties of Angles	109-119	
Beams	105-106	
Channels	107-108	
Circles		
Rails	Marie Control of the	
Sections.		
Sheet Piling		
Tees		
Zees	AND DESCRIPTION OF THE PARTY OF	
	Mark Cont. Service Cont.	
Radii of Gyration of Angles.		
Radius of Gyration, Definition		
Method of Finding for Compound Sections., 99		
Rails, Properties of		
Reciprocals of Numbers		
Rectangles, Moments of Inertia of	102-104	
Reinforcement Bars	80-81	
Reinforced Concrete Stresses	292	
istance of Beams		

	21102
Rivet Holes, Spacing and Dimensions	
Spacing, Minimum	
Riveted Plates, Bars and Angles, Area Deducted for Hole	
Riveting, Signs for	
Rivets, Allowable Unit Stress	
Length for Variant Grips	
Shearing and Bearing Values	
Stresses in	246
Weight of Round Head	
Roof Coverings, Weights and Loads	
Design	
Trusses	
Roofs, Safe Loads	
Round Bars, Sizes	
Weights, Areas and Circumferences	
Safe Loads for Columns	
Formulae for	
Struts	210-217
Wooden Beams	275
Wooden Posts	281-283
Safe Strength of Struts	206
Screw Ends, Upset	264-265
Threads	260
Secants, Natural	320-321
Sectional Areas, Method of Increasing	9
Section Modulus, Definition	
Method of Finding for Compound Section	
Sections, Compound	
Properties of	
Used as Beams	
Separators, Cast for Beams	
Sheared Plates	
Shearing and Bearing Values of Rivets	
Sheet Piling	
Steel, U. S. Standard Gauge for	293

	PAGE
Sheets, Corrugated	
Shouldered Pins.	255
Ship Channels, Properties of	108
Sizes and Weights	23-25
Ships, Specifications for Steel for	365-369
Signs for Riveting	245
Sines, Natural	
Sizes of Angles	
Bars	
Beams	
Chain	
Channels	
Flat Rolled Steel	
Plates	
Tees.	36-42
Zees	43-45
Sketch Plates	75
Sleeve Nuts	266
Solids, Surface and Volume of	.310-311
Spacing Rivet and Bolt Holes.	
Minimum Rivet	
Specifications for Boiler and Fire Box Steel	
Fabricated Steel Building Construction	
Steel for Bridges	
Buildings	
Castings	
Ships	
Specific Gravity of Various Materials	
Splices, Column, Details of	
Square Bars, Sizes, Weights and Areas	47-54
Square Roots	322-341
Squares of Numbers	
Steel, Specifications for Boiler and Firebox	360-364
Bridges.	
Buildings	
The state of the s	
Castings	354-359
Castings Eabricated Building Construction	
Fabricated Building Construction	.370-377

-

•	PAGE
Stiffeners for Plate Girders	223-224
Strength of Materials	
Stress, Unit for Comparison of	241-242
Rivets and Bolts	129
Stresses in Rivets and Pins	246
for Trusses	
Various Materials	291-292
Wooden Beams	272-273
Posts	281
Structural Sections Used as Beams	135-140
Struts	176
Radii of Gyration of	207-209
Safe Loads	210-217
Safe Strength	
Surface of Solids	310-311
Tangents, Natural	316-317
Tees, Allowable Uniform Loads	
Diagrams, Sizes and Weights	36-42
Properties of	120-122
Terra Cotta Arches, Partitions, etc	225
Threads, Standard Screw	260
Tie Plates	181
Tie Rods	226
Triangles, Trigonometrical Solution	313-314
Trigonometrical Formulae	312
Solution of Triangles	313-314
Trusses	231-240
Turnbuckles, Standard	268
United States Standard Gauge for Sheet and Plate Iro	n and
Steel	293
Universal Mill Plates	
Upset Screw Ends	
Values of Moments of Inertia	
Rivets	
Volume of Solids	310 - 311
Warehouses, Weights for	

		PAGE
Water, Expans	ion of	287
Weights of Ang	rles	26-35
Bar	S	49-54
Bea	ms	11-18
Bolt	ts	261
Cha	in	91-94
Cha	nnels	19-25
Circ	cular Plates	76-79
Cle	vis Nuts	267
Flat	t Rolled Steel	57-70
Nut	s and Bolt Heads	261
Nut	:S	262-263
Pipe	e	270
Riv	ets	254
Roo	of Covering and Material	228-229
	et Piling	
	ve Nuts	
Tee	s	36-42
Vari	ious Materials	284-286
Zees	3	43-45
and	Specific Gravity of Various Materials	288-290
Wooden Beams		271-280
	Uniform Loads	
	, Sizes and Weights	
	of	

THE NEW YORK PUBLIC LIBRARY REFERENCE DEPARTMENT

This book is under no circumstances to be taken from the Building

	ASSESSMENT OF THE PARTY OF THE	
-	1.	
	S. M. J.	1 See
	1 10	- 100 4
1		11 1
-	1	2
	(6)	
	23000	
	1017	R. P.
	T.	14
		1
		1
form 410		

