ASE 389P-7 Final Exam

Posting Date: December 12, 2022

Exam Rules: Do problems on standard 8 1/2 by 11 inch paper. Hand in the completed exam by 9:30 A.M. on Tuesday, December 13 to Dr. Humphreys in his office. No collaboration or consultation is allowed with any other person besides Dr. Humphreys. You may use non-human outside sources (e.g., books, papers, websites). If you use such sources, please list them.

- 1. [15 points] Problem set 6 Number 1.
- 2. [15 points] Problem set 6 Number 2. Instead of generating your own simulated S_k time history in part (c), apply your estimation strategy to SkSim.mat. Note that the S_k time history in SkSim.mat goes from k=0 to k=N-1. Thus, it has N elements. Estimate ρ , f, and θ , each to one decimal place (e.g., $\hat{f}_{\rm ML}=10.5~{\rm Hz}$).
- 3. [10 points] Problem set 6 Number 7.
- 4. [40 points] Problem set 7 Number 2, but instead of dfDataHead.bin, use the data file

https://radionavlab.ae.utexas.edu/datastore/gnssSigProcCourse/rawintegersamples_fe.bin

Each byte in this data file corresponds to a sample, with four sample streams interleaved. Use the script loadRawSamples.m to read in the data from this file. Select stream = 1, which corresponds to the GPS L1 frequency for the receiver's primary antenna.

These data were captuerd by the "Radiolynx" front end, whose relevant characteristics are

Radiolynx Front-End Characteristics

Intermediate frequency: $f_{\rm IF} = 2.391428571429 \text{ MHz}$

Mixing: low-side mixed

Sampling frequency: $f_s = 9.6 \text{ MHz}$ Quantization: two level (single bit)

The rawintegersamples_fe.bin data recording is over 60 seconds long. Modify loadRawSamples.m as necessary to read data sequentially in manageable-sized chunks (e.g., 1-second).

There are nine GPS L1 C/A signals with $C/N_0 > 35$ dB-Hz present in the recording. These have Doppler frequencies approximately ranging from -4 kHz to 4 kHz.

- (a) [15 points] Acquire PRN 18, whose initial Doppler is around -680 Hz, and track it over 60 seconds.
- (b) [15 points] Acquire and track the next strongest six GPS L1 C/A signals, which all have C/N_0 above 40 dB-Hz.
- (c) [10 points] Acquire and track the weakest two signals, one of whose C/N_0 drops as low as 35 dB-Hz.

(d) [3 extra-credit points] Determine the GPS Week Number for the week in which the data were captured. For this, you'll need to lock onto the 50-Hz navigation data stream and decode the Week Number. See Section 6.2.4 in the GPS Interface Specification IS-GPS-200L. Also see Figure 20-1, where Week Number is abbreviated WN. As shown in Fig. 20-2, the first 8 bits of the TLM are a unique preamble that you can use to identify the beginning of each subframe, and bits 20-22 of the HOW will allow you to identify the subframe.

For each signal tracked, give (i) the PRN identifier, (ii) a plot of the Doppler time history in Hz, (iii) a plot of the S_k time history, with time on the horizontal axis, abs(real(Sk)) plotted in black (the abs operation eliminates the thrashing due to data bits), and imag(Sk) plotted in gray, and (iv) a plot of the estimated C/N_0 time history in dB-Hz as derived from your estimate of σ_{IQ}^2 (obtained, for example, during acquisition) and your estimate of $E[|S_k|^2]$ over the 60-second interval.

5. [20 points] Problem set 7 Number 4, except use the data given below.

PRN	tR (seconds)	tS (seconds)	
10	142874.031415926	142873.929	
18	142874.031415926	142873.930	
24	142874.031415926	142873.926	
32	142874.031415926	142873.928	
	for PRN 10:		
dtIono dtTrop	ef = -7771062.621964 b = 1.105596e-08 b = 1.031992e-08 = 0.000124682	-13392926.713787	21699866.518681
rSvEce dtIono dtTrop	for PRN 18: of = 4747181.126449 o = 1.206681e-08 o = 1.008367e-08 = 0.000324047	-25802711.537558	3938318.400306
rSvEce dtIono dtTrop	for PRN 24: ef = 14684443.702457 o = 1.582324e-08 o = 1.408656e-08 = -0.000394024	-15351446.405048	15470725.361304
rSvEce dtIono dtTrop	For PRN 32: ef = -15730896.676495 o = 1.226210e-08 o = 1.102516e-08 = -0.000018238	-20849558.582301	5362760.419279

Hint: The correct ECEF receiver location [x,y,z] (in meters) is one of the following possibilities:

(A)	-693606.128	????	2960669.097
(B)	-742080.456	-5462030.875	????
(C)	????	-5456322.852	3208395.305
(D)	-743774.390	-5460644.512	????
(E)	-751970.424	????	3193399.042
(F)	-755431.231	????	3191026.240