Inference on random changepoint models: application to pre-dementia cognitive decline

Corentin Segalas¹, Hélène Jacqmin-Gadda²

¹Medical Statistics Department, London School of Hygiene & Tropical Medicine

²Biostatistics Team, Bordeaux Population Health, Inserm U1219

Journées Statistiques & Santé 2020, October 2020

Introduction

Context: pre-dementia cognitive decline

- Very long and progressive pre-diagnosis phase
- Heterogeneous and non-linear decline trajectories
- Subject-specific acceleration of cognitive decline

Introduction

Figure: Estimated cognitive trajectories for cases (red) and matched controls (blue) for high educational subjects from French cohort PAQUID (Amieva et al., 2014).

Objective: Testing the existence of a random changepoint in a mixed model

Segalas C, Amieva H, Jacqmin-Gadda H. A hypothesis testing procedure for random changepoint mixed models. Statistics in Medicine, 2019. https://doi.org/10.1002/sim.8195

Project 2

The random changepoint mixed model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- $\beta_{ki} = \beta_k + b_{ki}$ for k = 0, 1 with $b_i = (b_{0i}, b_{1i}) \sim \mathcal{N}(0, B)$
- $\tau_i = \mu_{\tau} + \sigma_{\tau} \tilde{\tau}_i$ with $\tilde{\tau}_i \sim \mathcal{N}(0,1)$ and $\tilde{\tau}_i \perp b_i$
- $\sqrt{.+\gamma}$ a smooth transition function
- $\varepsilon_{ii} \sim \mathcal{N}(0, \sigma)$ residual error \perp of the random effects

At this stage β_2 is assumed non random

A score test approach

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

• Objective: H_0 : $\beta_2 = 0$ vs. H_1 : $\beta_2 \neq 0$

A score test approach

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \beta_2\sqrt{(t_{ij} - \tau_i)^2 + \gamma} + \varepsilon_{ij}$$

- Objective: H_0 : $\beta_2 = 0$ vs. H_1 : $\beta_2 \neq 0$
- Nuisance parameters: $\underline{\beta_0, \beta_1, \sigma, \sigma_0, \sigma_1, \sigma_{01}}, \underline{\mu_{\tau}, \sigma_{\tau}}$
- Classic score test statistics depends upon $\hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}$

$$S_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0) = \frac{U_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0)^2}{Var(U_n(0; \hat{\mu}_{\tau 0}, \hat{\sigma}_{\tau 0}, \hat{\theta}_0))}$$

with

$$U_n(0, \mu_{\tau}, \sigma_{\tau}, \theta) = \left. \frac{\partial \ell_n(Y; \beta_2, \mu_{\tau}, \sigma_{\tau}, \theta)}{\partial \beta_2} \right|_{\beta_2 = 0} \text{ and } U_n = \sum_{i=1}^n u_i$$

Test statistic:

$$T_n = \sup_{(\mu_{\tau}, \sigma_{\tau})} S_n(0; \mu_{\tau}, \sigma_{\tau}, \hat{\theta}_0)$$

with $\hat{\theta}_0$ MLE of identifiable nuisance parameters under H_0

The supremum score test (Hansen, 1996)

• Test statistic:

$$T_n = \sup_{(\mu_{\tau}, \sigma_{\tau})} S_n(0; \mu_{\tau}, \sigma_{\tau}, \hat{\theta}_0)$$

with $\hat{ heta}_0$ MLE of identifiable nuisance parameters under H_0

• Empirical distribution of T_n under H_0 : perturbation algorithm (van der Vaart et al., 1996). For $k=1,\ldots,K$, we generate n r.v. $\xi_i^{(k)} \sim \mathcal{N}(0,1)$ and compute

$$T_n^{(k)} = \sup_{(\mu_\tau, \sigma_\tau)} \frac{\left(\sum_{i=1}^n u_i(0; \mu_\tau, \sigma_\tau, \hat{\theta}_0) \xi_i^{(k)}\right)^2}{\sum_{i=1}^n u_i(0; \mu_\tau, \sigma_\tau, \hat{\theta}_0)^2}$$

• Empirical p-value $p_K = \frac{1}{K} \sum_{k=1}^{K} \mathbf{1}_{T_n^{(k)} > T_n^{(obs)}}$

Heterogeneity in β_2 ?

• Is β_2 subject specific (i.e. random)?

$$H_0$$
: $B = \begin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, vs. H_1 : B unstructured

- ⇒ corrected test for variance components (Stram and Lee, 1994)
- Does β₂ depend on covariate?
 - \Rightarrow Wald test

Heterogeneity in β_2 ?

• Is β_2 subject specific (i.e. random)?

$$H_0$$
: $B = \begin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, vs. H_1 : B unstructured

- ⇒ corrected test for variance components (Stram and Lee, 1994)
- Does β₂ depend on covariate?
 - \Rightarrow Wald test

Heterogeneity in τ_i ?

- Does τ_i depend on covariate?
 - ⇒ Wald test

- cohort of 3777 elderly subjects (\geq 65yo) from the French departments of Gironde and Dordogne, 25 years follow-up
- 901 incident cases of dementia between year 1 and 25
- Isaac 15s score (verbal fluency)
- Stratified analysis on the educational level

Application: results

	obs. statistic test	<i>p</i> —value
High education	143.7	< 0.001
Low education	56.9	< 0.001

Table: Score test results with K = 500

 \Rightarrow We clearly reject H_0 : $\beta_2 = 0$ for both group

	obs. statistic test	<i>p</i> —value
High education	143.7	< 0.001
Low education	56.9	< 0.001

Table: Score test results with K = 500

 \Rightarrow We clearly reject H_0 : $\beta_2 = 0$ for both group

$$\beta_{2i} = \beta_2 + \alpha_{2i}$$
 with $\alpha_i = (\alpha_{0i}, \alpha_{1i}, \alpha_{2i}) \sim \mathcal{N}(0, B)$

$$(H_0): \mathsf{B} = egin{pmatrix} \sigma_0^2 & \sigma_{01} & 0 \\ \sigma_{01} & \sigma_1^2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, vs. $(H_1): B$ unstructured

 \Rightarrow We reject H_0 : $\sigma_2 = 0$ for both group (p < 0.001)

- Valid test with good power
- testRCPM function in rcpm package
- Assumption of a fixed β_2 (test with random β_{2i} robust)
- Relaxing the assumption of a Gaussian distribution for $\tilde{\tau}_i$

Project 2

•000000000

Objective: Compare mean CP date between markers

Segalas C, Helmer C, Jacqmin-Gadda H. A curvilinear bivariate random changepoint model to assess temporal order of markers. Statistical Methods in Medical Research, 2020. https://doi.org/10.1177/0962280219898719

The bivariate random changepoint mixed model

Project 2

000000000

$$Y^{\ell}(t_{ij}^{\ell}) = \beta_{0i}^{\ell} + \beta_{1i}^{\ell}(t_{ij}^{\ell} - \tau_i^{\ell}) + \beta_{2i}^{\ell}\sqrt{(t_{ij}^{\ell} - \tau_i^{\ell})^2 + \gamma} + \varepsilon_{ij}^{\ell} \quad \ell = 1, 2$$

- $\beta_{ki}^{\ell} = \beta_{k}^{\ell} + b_{ki}^{\ell}$ with $b_{i}^{\ell} = (b_{0i}^{\ell}, b_{1i}^{\ell}, b_{2i}^{\ell}) \sim \mathcal{N}(0, B^{\ell})$
- $\tau_i^\ell = \mu_\tau^\ell + \sigma_\tau^\ell \tilde{\tau}_i^\ell$ with $\tilde{\tau}_i^\ell \sim \mathcal{N}(0,1)$ and $\tilde{\tau}_i^\ell \perp b_i$
- $\sqrt{.+\gamma}$ a smooth transition function
- $\varepsilon_{ii}^{\ell} \sim \mathcal{N}(0, \sigma^{\ell})$ residual error \perp of the random effects

$$+ corr(b_i^1, b_i^2) = B^{12}$$
 and $corr(\tilde{\tau}_i^1, \tilde{\tau}_i^2) = \rho_{\tau}^{12} \Rightarrow \text{bivariate model}$

Project 2

000000000

Figure: Estimated link function between crude score and the underlying latent process (Proust Lima et., 2006)

Curvilinearity

Project 2

000000000

I-spline transformation of both crude markers Y^{ℓ} :

$$\tilde{Y}_{ij}^{\ell} = g^{\ell}(Y_{ij}^{\ell}, \eta^{\ell}) = \eta_0^{\ell} + \sum_{k=1}^{5} \eta_k^{\ell 2} I_k^{\ell}(Y_{ij}^{\ell}) \quad \ell = 1, 2$$

- I-splines of degree 2 with 2 internal knots at the quantiles
- $\tilde{Y} = (\tilde{Y}^1, \tilde{Y}^2)$ follows bivariate random changepoint model
- Identifiability constraints on the model: $\beta_0^{\ell} = 0$ and $\sigma_{\epsilon}^{\ell} = 1$

Project 2

0000000000

• Log-likelihood $\tilde{\tau}_i = (\tilde{\tau}_i^{\ 1}, \tilde{\tau}_i^{\ 2})$:

$$\ell(heta) = \sum_{i=1}^n \log \int f(\tilde{Y}_i| ilde{ au}_i) f(ilde{ au}_i) \mathrm{d} ilde{ au}_i + n \log |J_g^1| |J_g^2|$$

where $\tilde{Y}_i | \tilde{\tau}_i$ is a multivariate Gaussian.

- Optimization: Levenberg-Marquardt algorithm and pseudo adaptive Gaussian quadrature
- Test: H_0 : $\mu_{\tau}^1 \mu_{\tau}^2 = 0$ vs. H_1 : $\mu_{\tau}^1 \mu_{\tau}^2 \neq 0$: a Wald test

Application: the Three City (3C) cohort

- cohort of 2104 elderly subjects (≥ 65yo)
- 401 incident cases from Bordeaux center
- Grober and Bushke (GB) immediate vs. free recall

Application: the Three City (3C) cohort

- cohort of 2104 elderly subjects (≥ 65yo)
- 401 incident cases from Bordeaux center
- Grober and Bushke (GB) immediate vs. free recall

Table: Results of the preliminary tests on the 3C sample.

	$\beta_2 = 0$ vs. $\beta_2 \neq 0$	$\sigma_2 = 0$ vs. $\sigma_2 \neq 0$
GB immediate recall	< 0.001	< 0.001
GB free recall	< 0.001	< 0.001

Application: results

Project 2

0000000000

Table: Results of the bivariate estimation on the 3C sample.

	GB immediate recall		GB free recall		Wa	Wald test	
	\hat{eta}	$\widehat{se}(\hat{eta})$	\hat{eta}	$\widehat{se}(\hat{eta})$	stat.	p-value	
β_1	-0.286	0.023	-0.262	0.037	0.589	0.443	
β_2	-0.230	0.022	-0.229	0.029	0.024	0.877	
$\mu_{ au}$	-3.177	0.347	-5.820	0.579	3.937	0.047	

se: standard error

⇒ difference between GB immediate and free recall

Application: marginal estimation

$$E(\tilde{Y}^\ell(t),\hat{\theta}^\ell) = \int E(\tilde{Y}^\ell(t)|\tau_i^\ell,\hat{\theta}^\ell) f(\tau_i^\ell|\hat{\theta}^\ell) \mathrm{d}\tau_i^\ell$$

Figure: All individual GB immediate and free recall trajectories on the transformed scale compared to the estimated marginal trajectory $E(\tilde{Y}^\ell(t))$

Application: fit of the model

Project 2

0000000000

Figure: Upper panes: true transformed observation vs. predicted observations; Lower panes: individual observations (dots) vs. their predicted trajectories (solid line).

Discussion

Project 2

000000000

- Valid estimation procedure and valid test
- bircpme function in rcpm package
- Identification of a late acceleration of cognitive decline
 - ⇒ modelling cases and controls together?

Time of differenciation versus late accelerated decline

A semi-latent class random changepoint model

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + \frac{c_i}{\beta_{2i}}f(t_{ij} - \tau_i, \eta) + \varepsilon_{ij}$$

$$Y(t_{ij}) = \beta_{0i} + \beta_{1i}t_{ij} + c_i\beta_{2i}f(t_{ij} - \tau_i, \eta) + \varepsilon_{ij}$$

with a class membership model

$$\pi_i = \mathbb{P}(c_i = 1 | X_i, \delta_i) = \left(rac{\mathsf{exp}(\eta^ op X_i)}{1 + \mathsf{exp}(\eta^ op X_i)}
ight)^{1 - \delta_i}$$

- δ_i case indicator (1 for cases, 0 for controls)
- ⇒ all cases have a changepoint
- ⇒ some controls have a changepoint

- Selection bias: a joint model approach
 - the longitudinal marker $Y(t_{ii}) = \tilde{Y}(t_{ii}) + \varepsilon_{ii}$
 - the time to dementia: $\lambda(t_{ii}) = \lambda_0(t_{ii}) \exp(\nu^\top Z_i + \gamma \tilde{Y}(t_{ii}))$
 - ⇒ possible to test for the existence of the random CP
- The timescale issue: age or delay?
- Random changepoint model vs. flexible nonlinear model

Thank you for your attention!

- Amieva H. et al. "Compensatory mechanisms in higher-educated subjects with Alzheimer's disease: a study of 20 years of cognitive decline." Brain: A Journal of Neurology (2014)
- Hansen B.E. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis." Econometrica (1996)
- Stram D.O. and Lee J.W. "Variance Components Testing in the Longitudinal Mixed Effects Model." Biometrics (1994)
- Marquardt D.W. "An Algorithm for Least-Squares Estimation of Nonlinear Parameters." Journal of the Society for Industrial and Applied Mathematics (1963)
- Grober E. and Buschke H. "Genuine Memory Deficits in Dementia." Developmental Neuropsychology (1987)
- van der Vaart A.W. and Wellner J.A. "Weak Convergence and Empirical Processes." Chapter 2.9, Springer Series in Statistics
- Proust-Lima C. et al. "Sensitivity of Four Psychometric Tests to Measure Cognitive Changes in Brain Aging-Population-based Studies. American Journal of Epidemiology (2006)

https://github.com/crsgls