Ensaio clínico randomizado: efeito da droga vegetal de *Eclipta prostrata* (L.) L. (Asteraceae) no ângulo de fase em adultos com obesidade grau I Análise de dados: questionários

Gustavo Santos Paiva Laender Moura

2025-06-12

Índice

1	WH	OQOL					
	1.1	Domínio Físico					
		1.1.0.1	Resumo dos modelos				
		1.1.0.2	Médias Marginais Estimadas				
		1.1.0.3	Resultado	1			
	1.2	Domínio Psicoló	gico	1			
		1.2.0.1	Resumo dos modelos	20			
		1.2.0.2	Médias Marginais Estimadas	2:			
		1.2.0.3	Resultado	2			
	1.3	Domínio Social		3			
		1.3.0.1	Resumo dos modelos	3.			
		1.3.0.2	Médias Marginais Estimadas	38			
		1.3.0.3	Resultado				
	1.4	Domínio Ambier	ntal	4			
		1.4.0.1	Resumo dos modelos	4			
		1.4.0.2	Médias Marginais Estimadas	5			
		1.4.0.3	Resultado	54			
2	Esco	Escore DASS					
_	2.1		Depressão				
		2.1.0.1	Resumo dos modelos	_			
		2.1.0.2	Médias Marginais Estimadas				
		2.1.0.3	Resultado				
	2.2		Ansiedade				
		2.2.0.1	Resumo dos modelos				
		2.2.0.2	Médias Marginais Estimadas				
		2.2.0.3	Resultado				
	2.3		Estresse				
	2.5	2.3.0.1	Resumo dos modelos				
		2.3.0.1	Médias Marginais Estimadas				
		2.3.0.2	Resultado				
•	E.C.						
3	ECA		D 1 11	9.			
		3.0.0.1	Resumo dos modelos				
		3.0.0.2	Médias Marginais Estimadas				
		3.0.0.3	Resultado	103			
4	Info	rmações da Sessã	io	100			

```
library(tidyverse)
library(readxl)
library(lubridate)
library(lme4)
library(lmerTest)
library(skimr)
library(performance)
library(gt)
library(patchwork)
library(emmeans)
library(knitr)
library(kableExtra)
data <- readRDS("local_files/Data_processed/data.rds")</pre>
data_model <- readRDS("local_files/Data_processed/data_model.rds") %>%
    mutate(
        visit = as.factor(visit),
        record_id = as.factor(record_id)
    )
data_model_V1V3 <- data_model %>%
    filter(!visit == "2")
sensitivity_check_lmer <- function(model, id_var = "record_id", top_n = 5) {</pre>
    require(influence.ME)
    require(dplyr)
    require(lme4)
    require(broom.mixed)
    # Compute influence measures
    infl <- influence(model, group = id_var)</pre>
    cooks <- cooks.distance(infl)</pre>
```

stop("Mismatch between ID list and Cook's distances. Check grouping variable.")

Extract IDs safely

}

id_list <- rownames(as.data.frame(cooks))</pre>

if (length(id_list) != length(cooks)) {

```
# Build dataframe
cooks_df <- tibble::tibble(</pre>
    record_id = id_list,
    cooks_distance = as.numeric(cooks)
)
# Rule-based threshold (4/n rule)
influential_ids_rule <- cooks_df %>%
    filter(cooks_distance > (4 / nrow(cooks_df))) %>%
    pull(record_id)
# Top N most influential
top_ids <- cooks_df %>%
    arrange(desc(cooks_distance)) %>%
    slice_head(n = top_n) %>%
    pull(record_id)
# Combine unique IDs
influential_ids <- unique(c(influential_ids_rule, top_ids))</pre>
# Refit model excluding influential IDs
model_sens <- update(</pre>
    model,
    subset = !(get(id_var) %in% influential_ids)
)
# Compare fixed effects
comparison <- bind_rows(</pre>
    broom.mixed::tidy(model) %>% mutate(Model = "Original"),
    broom.mixed::tidy(model_sens) %>% mutate(Model = "Sensitivity")
) %>%
    select(Model, term, estimate, std.error, statistic, p.value) %>%
    arrange(term, Model)
# Output
list(
    cooks_table = cooks_df,
```

```
influential_ids = influential_ids,
    model_original = model,
    model_sensitivity = model_sens,
    comparison_table = comparison
)
}
```

1 WHOQOL

```
whoqol <- data %>%
    select(record_id, event_name,
           whoqol_timestamp:whoqol_26_negativity) %>%
   filter(
        !is.na(whoqol_timestamp)
   ) %>%
   mutate(
        visit = case_when(
            event_name == "1visit_arm_1" ~ 1L,
            event_name == "3visit_arm_1" ~ 2L,
            TRUE ~ NA_integer_
        ),
        visit = as.factor(visit),
       record_id = as.factor(record_id)
    )
names(whoqol)
```

```
[1] "record_id"
                                  "event_name"
[3] "whoqol_timestamp"
                                  "whoqol_1_quality"
 [5] "whoqol_2_health"
                                  "whoqol_3_pain"
 [7] "whoqol_4_treatment"
                                  "whoqol_5_enjoyment"
 [9] "whoqol_6_meaning"
                                  "whoqol_7_concentration"
[11] "whoqol_8_security"
                                  "whoqol_9_environment"
[13] "whoqol_10_energy"
                                  "whoqol_11_appearance"
[15] "whoqol_12_finances"
                                  "whoqol_13_information"
[17] "whoqol_14_leisure"
                                  "whoqol_15_mobility"
[19] "whoqol_16_sleep"
                                  "whoqol_17_activities"
[21] "whoqol_18_work"
                                  "whoqol_19_selfesteem"
```

```
[23] "whoqol_20_relationships"
                                  "whogol 21 sexual"
[25] "whoqol_22_support"
                                  "whoqol_23_housing"
[27] "whoqol_24_health_services" "whoqol_25_transport"
                                  "visit"
[29] "whoqol_26_negativity"
# Reverse-score the 3 negatively phrased items: Q3, Q4, Q26
whoqol$whoqol_3_pain <- 6 - whoqol$whoqol_3_pain # Q3</pre>
whoqol$whoqol_4_treatment <- 6 - whoqol$whoqol_4_treatment # Q4</pre>
whoqol$whoqol_26_negativity <- 6 - whoqol$whoqol_26_negativity # Q26</pre>
# Helper function: compute row mean only if at least N non-NA values
mean_if_enough <- function(x, min_valid) {</pre>
  if (sum(!is.na(x)) >= min_valid) {
   return(mean(x, na.rm = TRUE))
  } else {
   return(NA_real_)
  }
}
# Physical domain: require at least 6 of 7
whogol$score_physical <- apply(whogol[, c(</pre>
  "whoqol_3_pain", "whoqol_4_treatment", "whoqol_10_energy",
  "whoqol_15_mobility", "whoqol_16_sleep", "whoqol_17_activities",
  "whoqol_18_work"
)], 1, mean if enough, min valid = 6) * 4
# Psychological domain: require at least 5 of 6
whoqol$score_psychological <- apply(whoqol[, c(</pre>
  "whogol_5_enjoyment", "whogol_6_meaning", "whogol_7_concentration",
  "whoqol_11_appearance", "whoqol_19_selfesteem", "whoqol_26_negativity"
)], 1, mean_if_enough, min_valid = 5) * 4
# Social domain: require at least 2 of 3
whoqol$score_social <- apply(whoqol[, c(</pre>
  "whoqol_20_relationships", "whoqol_21_sexual", "whoqol_22_support"
)], 1, mean if enough, min valid = 2) * 4
# Environment domain: require at least 6 of 8
whoqol$score_environment <- apply(whoqol[, c(</pre>
  "whogol_8_security", "whogol_9_environment", "whogol_12_finances",
```

1.1 Domínio Físico

Variável: score_physical

```
# Plot 1: Raw data
score_physical_hist_1 <- data_model_V1V3 %>%
   #filter(
        score_physical < 300</pre>
   #) %>%
   ggplot(aes(x = score_physical)) +
    geom_histogram(bins = 30, fill = "skyblue", color = "black")
# Plot 2: Log-transformed data
score_physical_hist_2 <- data_model_V1V3 %>%
   #filter(
        score_physical < 300
   #) %>%
   ggplot(aes(x = log1p(score_physical))) +
    geom_histogram(bins = 50, fill = "lightgreen", color = "black")
# Combine side by side
score_physical_hist_1 + score_physical_hist_2 # library(patchwork)
```

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).


```
# LMM
score_physical_model <- lmer(score_physical ~ allocation_group * visit +

(1 | record_id), data = data_model_V1V3)
check_collinearity(score_physical_model)</pre>
```

Check for Multicollinearity

Low Correlation

```
Term VIF VIF 95% CI Increased SE Tolerance allocation_group 1.23 [1.08, 1.66] 1.11 0.81 visit 1.94 [1.57, 2.57] 1.39 0.51 allocation_group:visit 2.16 [1.72, 2.86] 1.47 0.46 Tolerance 95% CI [0.60, 0.93] [0.39, 0.64] [0.35, 0.58]
```

```
# Sensitivity analysis
score_physical_model_check <- sensitivity_check_lmer(
    model = score_physical_model,
    id_var = "record_id",
    top_n = 5)</pre>
```

```
# LMM Sensitivity
score_physical_model_sens <- update(object = score_physical_model,</pre>
                             subset = !(record_id %in%
        score_physical_model_check$influential_ids))
# Influential IDS
score_physical_model_check$influential_ids
[1] "1" "15" "31" "52" "55"
1.1.0.1 Resumo dos modelos
summary(score_physical_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: score_physical ~ allocation_group * visit + (1 | record_id)
   Data: data_model_V1V3
REML criterion at convergence: 1002.4
Scaled residuals:
     Min
             1Q Median
                                3Q
                                        Max
-2.48070 -0.49060 0.07219 0.49257 2.24373
Random effects:
 Groups
                      Variance Std.Dev.
          Name
 record_id (Intercept) 123.7
                               11.12
                      111.7
                               10.57
Number of obs: 125, groups: record_id, 75
Fixed effects:
                              Estimate Std. Error
                                                       df t value Pr(>|t|)
                                            2.548 101.808 24.379 < 2e-16 ***
(Intercept)
                                62.114
allocation_groupGrupo B
                                -4.921
                                            3.579 101.784 -1.375 0.17218
                                 8.941
                                            2.816 55.939 3.176 0.00243 **
visit2
allocation_groupGrupo B:visit2 -4.680
                                            4.042 56.994 -1.158 0.25169
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Correlation of Fixed Effects:
            (Intr) all_GB visit2
allctn_grGB -0.712
visit2
          -0.442 0.315
allctn_GB:2 0.308 -0.433 -0.697
summary(score_physical_model_sens)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: score_physical ~ allocation_group * visit + (1 | record_id)
   Data: data_model_V1V3
 Subset: !(record_id %in% score_physical_model_check$influential_ids)
REML criterion at convergence: 894.7
Scaled residuals:
     Min
               1Q
                 Median
                                ЗQ
                                        Max
-1.54260 -0.53246 -0.03013 0.50900 1.68219
Random effects:
                      Variance Std.Dev.
 Groups
          Name
 record_id (Intercept) 103.69
                               10.183
 Residual
                       75.85
                                8.709
Number of obs: 116, groups: record_id, 70
Fixed effects:
                              Estimate Std. Error
                                                      df t value Pr(>|t|)
(Intercept)
                                61.239
                                            2.254 91.906 27.163 < 2e-16 ***
                                -3.843
                                            3.236 91.954 -1.187
                                                                    0.238
allocation_groupGrupo B
                                            2.374 51.290 4.321 7.13e-05 ***
visit2
                                10.258
allocation_groupGrupo B:visit2
                                -3.586
                                            3.493 52.314 -1.027
                                                                    0.309
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.697

visit2 -0.415 0.289

score_physical_model_check\$comparison_table

```
# A tibble: 12 x 6
  Model
               term
                                          estimate std.error statistic
                                                                          p.value
  <chr>
               <chr>>
                                              <dbl>
                                                        <dbl>
                                                                  <dbl>
                                                                            <dbl>
1 Original
                                             62.1
                                                         2.55
                                                                  24.4
                                                                         2.70e-44
               (Intercept)
2 Sensitivity (Intercept)
                                             61.2
                                                         2.25
                                                                  27.2
                                                                         1.07e-45
3 Original
               allocation_groupGrupo B
                                             -4.92
                                                         3.58
                                                                  -1.37 1.72e- 1
4 Sensitivity allocation_groupGrupo B
                                                         3.24
                                                                  -1.19 2.38e- 1
                                             -3.84
               allocation_groupGrupo B:v~
                                                                  -1.16 2.52e- 1
5 Original
                                             -4.68
                                                         4.04
6 Sensitivity allocation_groupGrupo B:v~
                                                                  -1.03 3.09e- 1
                                             -3.59
                                                         3.49
7 Original
               sd__(Intercept)
                                             11.1
                                                        NA
                                                                  NA
                                                                        NA
8 Sensitivity sd__(Intercept)
                                             10.2
                                                        NA
                                                                  NA
                                                                        NA
9 Original
               sd__Observation
                                              10.6
                                                        NA
                                                                  NA
                                                                        NA
10 Sensitivity sd__Observation
                                              8.71
                                                        NA
                                                                  NA
                                                                        NA
11 Original
                                              8.94
                                                         2.82
                                                                   3.18 2.43e- 3
               visit2
12 Sensitivity visit2
                                             10.3
                                                         2.37
                                                                   4.32 7.13e- 5
```

```
performance::compare_performance(
    score_physical_model,
    score_physical_model_sens)
```

When comparing models, please note that probably not all models were fit from same data.

Comparison of Model Performance Indices

Name	Model AIC (weights) AICc (weights)
_ • _	lmerModLmerTest 1029.2 (<.001 lmerModLmerTest 920.5 (>.999	
Name	BIC (weights) R2 (cond.) R	2 (marg.) ICC
score_physical_model score_physical_model_sens	1046.2 (<.001) 0.570 937.1 (>.999) 0.632	
Name	RMSE Sigma	
score_physical_model	8.176 10.569	

performance::check_model(score_physical_model)

performance::check_model(score_physical_model_sens)

Theoretical Quantiles

0 -20

1.1.0.2 Médias Marginais Estimadas

1.1.0.2.1 Todos os dados

```
# Get EMMs for each group at each visit
score_physical_raw_emm <- emmeans(
    score_physical_model,
    ~ allocation_group * visit
)</pre>
```

```
score_physical_raw_emm <- regrid(score_physical_raw_emm)</pre>
# Table of marginal means
# score_physical_raw_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_physical_raw_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                             SE df lower.CL upper.CL t.ratio p.value
                   estimate
 Grupo A - Grupo B
                      4.92 3.58 102
                                       -2.18
                                                12.0 1.375 0.1723
visit = 2:
                             SE df lower.CL upper.CL t.ratio p.value
 contrast
                   estimate
                      9.60 4.09 116
                                        1.50
                                                 17.7 2.348 0.0206
 Grupo A - Grupo B
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_physical_raw_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                estimate
                           SE df lower.CL upper.CL t.ratio p.value
 visit1 - visit2   -8.94 2.83 102   -14.5   -3.34   -3.164   0.0021
allocation_group = Grupo B:
                           SE df lower.CL upper.CL t.ratio p.value
 contrast
                estimate
 visit1 - visit2 -4.26 2.91 102
                                               1.52 -1.463 0.1466
                                     -10.0
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(score_physical_raw_emm, comparisons = TRUE)
```


1.1.0.2.2 Análise de sensibilidade

```
# Get EMMs for each group at each visit (Sensitivity Analysis)
score_physical_emm <- emmeans::emmeans(</pre>
    score_physical_model_sens,
    ~ allocation_group * visit
)
score_physical_emm <- regrid(score_physical_emm)</pre>
# Table of marginal means
# score_physical_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_physical_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                   estimate
                              SE
                                     df lower.CL upper.CL t.ratio p.value
 Grupo A - Grupo B
                       3.84 3.24 91.6 -2.586
                                                     10.3 1.187 0.2382
visit = 2:
 contrast
                              SE
                                     df lower.CL upper.CL t.ratio p.value
                   estimate
```

Grupo A - Grupo B 7.43 3.68 106.0 0.124 14.7 2.016 0.0463

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_physical_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
```

visit1 - visit2 -6.67 2.58 91.7

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

-11.8

```
# Plot of marginal means
plot(score_physical_emm, comparisons = TRUE)
```

-1.56 -2.591 0.0111

1.1.0.3 Resultado

No modelo ajustado para o domínio físico do WHOQOL-BREF, não houve diferença significativa entre os grupos na

visita 1 (estimativa = 4,92; IC 95%: -2,18 a 12,0). Na visita 2, o grupo placebo apresentou escores físicos em média 9,60 pontos superiores aos do grupo Eclipta (IC 95%: 1,50 a 17,7). Ao longo do tempo, o grupo placebo mostrou melhora significativa entre as visitas 1 e 2 (aumento médio de 8,94; IC 95%: 3,34 a 14,5), enquanto no grupo Eclipta essa mudança não foi significativa (aumento de 4,26; IC 95%: -1,52 a 10,0).

Em análise de sensibilidade, o achado entre grupos na visita 2 permaneceu (estimativa = 7,43; IC 95%: 0,12 a 14,7). Além disso, ambos os grupos exibiram melhora significativa ao longo do tempo: placebo (aumento médio de 10,26; IC 95%: 5,53 a 15,0) e Eclipta (aumento médio de 6,67; IC 95%: 1,56 a 11,8).

Tabela: Diferenças estimadas do escore físico do WHOQOL-BREF entre grupos (placebo vs Eclipta) e entre visitas dentro de cada grupo – Todos os dados {#tbl-score_physical}

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	4,92	[-2,18; 12,0]	0,172
Entre grupos	Visita 2	9,60	[1,50; 17,7]	0,021
Grupo Placebo	Visita 1 – Visita 2	-8,94	[-14,5; -3,34]	0,002
Grupo Eclipta	Visita 1 – Visita 2	-4,26	[-10,0; 1,52]	0,147

Tabela: Diferenças estimadas do escore físico do WHOQOL-BREF entre grupos (placebo vs Eclipta) e entre visitas dentro de cada grupo – Análise de sensibilidade {#tbl-score phys sens}

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	3,84	[-2,59; 10,3]	0,238
Entre grupos	Visita 2	7,43	[0,12; 14,7]	0,046
Grupo Placebo	Visita 1 – Visita 2	-10,26	[-15,0;-5,53]	< 0,001
Grupo Eclipta	Visita 1 – Visita 2	-6,67	[-11,8; -1,56]	0,011

```
se = TRUE,
linewidth = 1
) +
labs(title = "All data") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 64 rows containing missing values or values outside the scale range $(\text{geom_line}()^{\cdot})$.

Warning: Removed 64 rows containing missing values or values outside the scale range ('geom_point()').

All data


```
data_model_V1V3 %>%
    filter(
        !(record_id %in%
        score_physical_model_check$influential_ids)
) %>%
    ggplot(
        aes(
            x = as.factor(visit),
            y = score_physical,
            group = record_id,
        )
```

```
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "Sensitivity analysis") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 60 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 60 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 60 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

1.2 Domínio Psicológico

Variável: score_psychological

```
# Plot 1: Raw data
score_psychological_hist_1 <- data_model_V1V3 %>%
    #filter(
        score_psychological < 300</pre>
    #) %>%
    ggplot(aes(x = score_psychological)) +
    geom_histogram(bins = 30, fill = "skyblue", color = "black")
# Plot 2: Log-transformed data
score_psychological_hist_2 <- data_model_V1V3 %>%
    #filter(
         score_psychological < 300</pre>
    #) %>%
    ggplot(aes(x = log1p(score_psychological))) +
    geom_histogram(bins = 50, fill = "lightgreen", color = "black")
# Combine side by side
score_psychological_hist_1 + score_psychological_hist_2 # library(patchwork)
```

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_bin()`). Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).


```
# LMM
score_psychological_model <- lmer(score_psychological ~ allocation_group * visit +
(1 | record_id), data = data_model_V1V3)</pre>
```

```
# Check for Multicollinearity
Low Correlation
                   Term VIF VIF 95% CI Increased SE Tolerance
       allocation_group 1.17 [1.05, 1.63]
                                                 1.08
                                                            0.86
                  visit 1.94 [1.56, 2.56]
                                                 1.39
                                                             0.52
 allocation_group:visit 2.09 [1.67, 2.77]
                                          1.45
                                                            0.48
 Tolerance 95% CI
     [0.61, 0.96]
     [0.39, 0.64]
     [0.36, 0.60]
# Sensitivity analysis
score_psychological_model_check <- sensitivity_check_lmer(</pre>
   model = score_psychological_model,
   id_var = "record_id",
   top_n = 5
# LMM Sensitivity
score_psychological_model_sens <- update(object = score_psychological_model,</pre>
                              subset = !(record_id %in%
        score_psychological_model_check$influential_ids))
# Influential IDS
score_psychological_model_check$influential_ids
[1] "1" "9" "52" "69" "53"
1.2.0.1 Resumo dos modelos
summary(score_psychological_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: score_psychological ~ allocation_group * visit + (1 | record_id)
   Data: data_model_V1V3
REML criterion at convergence: 989.4
Scaled residuals:
```

check_collinearity(score_psychological_model)

```
Min 1Q Median 3Q Max -2.37743 -0.45545 0.08376 0.45603 2.25720
```

Random effects:

Groups Name Variance Std.Dev.
record_id (Intercept) 144.42 12.017
Residual 83.59 9.143
Number of obs: 125, groups: record_id, 75

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) 2.503 94.733 20.397 < 2e-16 *** (Intercept) 51.056 3.516 94.709 0.419 allocation_groupGrupo B 1.473 0.676 visit2 12.390 2.458 53.468 5.040 5.66e-06 *** allocation_groupGrupo B:visit2 -4.341 3.533 54.284 -1.229 0.225

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.712

visit2 -0.388 0.276

allctn GB:2 0.270 -0.380 -0.696

summary(score_psychological_model_sens)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest]

Formula: score_psychological ~ allocation_group * visit + (1 | record_id)

Data: data_model_V1V3

Subset: !(record_id %in% score_psychological_model_check\$influential_ids)

REML criterion at convergence: 875.4

Scaled residuals:

Min 1Q Median 3Q Max -1.7072 -0.4831 0.1226 0.5263 1.6771

Random effects:

Groups Variance Std.Dev. Name record_id (Intercept) 118.46 10.884 Residual 56.61 7.524 Number of obs: 115, groups: record_id, 70

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) 50.309 2.323 83.395 21.658 < 2e-16 *** (Intercept) allocation_groupGrupo B 2.405 3.194 83.299 0.753 0.453 visit2 12.076 2.198 45.501 5.493 1.7e-06 *** allocation_groupGrupo B:visit2 -2.7143.069 45.874 -0.884 0.381

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.727

visit2 -0.359 0.261

allctn_GB:2 0.257 -0.353 -0.716

score_psychological_model_check\$comparison_table

A tibble: 12 x 6 Model term estimate std.error statistic p.value <chr>> <chr>> <dbl> <dbl>

1 Original 2.50 20.4 1.98e-36 (Intercept) 51.1 2 Sensitivity (Intercept) 50.3 2.32 21.7 5.43e-36 3 Original allocation_groupGrupo B 1.47 3.52 0.419 6.76e- 1 4 Sensitivity allocation_groupGrupo B 2.41 0.753 4.53e- 1 3.19 allocation_groupGrupo B:v~ 3.53 2.25e- 1 5 Original -4.34 -1.23 -0.884 3.81e- 1 6 Sensitivity allocation_groupGrupo B:v~ -2.713.07 7 Original sd__(Intercept) 12.0 NANANA 8 Sensitivity sd__(Intercept) 10.9 NANANAsd__Observation 9.14 NA 9 Original NANA10 Sensitivity sd__Observation 7.52 NANANA2.46 11 Original visit2 12.4 5.04 5.66e- 6 12 Sensitivity visit2 12.1 2.20 5.49 1.70e- 6

performance::compare_performance(score_psychological_model,

<dbl>

<dbl>

score_psychological_model_sens)

When comparing models, please note that probably not all models were fit from same data.

Comparison of Model Performance Indices

performance::check_model(score_psychological_model)

```
Model | AIC (weights)
Name
score_psychological_model | lmerModLmerTest | 1015.7 (<.001)</pre>
score_psychological_model_sens | lmerModLmerTest | 900.7 (>.999)
Name
                             | AICc (weights) | BIC (weights) | R2 (cond.)
score_psychological_model | 1016.4 (<.001) | 1032.7 (<.001) |
                                                                   0.672
score_psychological_model_sens | 901.5 (>.999) | 917.2 (>.999) |
                                                                  0.722
                             | R2 (marg.) | ICC | RMSE | Sigma
Name
score_psychological_model
                           | 0.106 | 0.633 | 6.741 | 9.143
score_psychological_model_sens | 0.140 | 0.677 | 5.407 | 7.524
```


performance::check_model(score_psychological_model_sens)

1.2.0.2 Médias Marginais Estimadas

1.2.0.2.1 Todos os dados

```
# Get EMMs for each group at each visit
score_psychological_raw_emm <- emmeans::emmeans(
    score_psychological_model,
    ~ allocation_group * visit
)</pre>
```

```
score psychological raw emm <- regrid(score psychological raw emm)</pre>
# Table of marginal means
# score_psychological_raw_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_psychological_raw_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
contrast
                  estimate SE
                                   df lower.CL upper.CL t.ratio p.value
Grupo A - Grupo B -1.47 3.52 95.2 -8.45
                                                  5.51 -0.419 0.6762
visit = 2:
contrast
                  estimate
                             SE
                                   df lower.CL upper.CL t.ratio p.value
                      2.87 3.94 111.3
                                         -4.93 10.67 0.729 0.4678
Grupo A - Grupo B
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_psychological_raw_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
contrast
                estimate
                           SE df lower.CL upper.CL t.ratio p.value
visit1 - visit2 -12.39 2.47 95.2 -17.3 -7.49 -5.025 <.0001
allocation_group = Grupo B:
                           SE df lower.CL upper.CL t.ratio p.value
contrast
                estimate
visit1 - visit2 -8.05 2.55 95.2
                                      -13.1
                                              -2.99 -3.159 0.0021
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(score_psychological_raw_emm, comparisons = TRUE)
```

Warning: Comparison discrepancy in group "1", Grupo A visit1 - Grupo B visit2:

1.2.0.2.2 Análise de sensibilidade

```
# Get EMMs for each group at each visit (Sensitivity Analysis)
score_psychological_emm <- emmeans::emmeans(</pre>
    score_psychological_model_sens,
    ~ allocation_group * visit
)
score_psychological_emm <- regrid(score_psychological_emm)</pre>
# Table of marginal means
# score_psychological_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_psychological_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
                                     df lower.CL upper.CL t.ratio p.value
 contrast
                   estimate
                              SE
 Grupo A - Grupo B
                    -2.405 3.19 85.5
                                           -8.76
                                                     3.94 -0.753 0.4535
visit = 2:
```

```
contrast estimate SE df lower.CL upper.CL t.ratio p.value Grupo A - Grupo B 0.308 3.57 102.5 -6.78 7.39 0.086 0.9314
```

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_psychological_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
```

 $\mbox{visit1 - visit2} \quad \mbox{-12.08 2.21 85.7} \quad \mbox{-16.5} \quad \mbox{-7.69 -5.473} \quad \mbox{<.0001}$

allocation_group = Grupo B:

contrast estimate SE df lower.CL upper.CL t.ratio p.value visit1 - visit2 -9.36 2.15 85.5 -13.6 -5.09 -4.355 <.0001

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Plot of marginal means
plot(score_psychological_emm, comparisons = TRUE)
```


1.2.0.3 Resultado

No modelo ajustado para o domínio psicológico do WHOQOL-BREF, não foram observadas diferenças estatisticamente significativas entre os grupos em nenhum dos momentos avaliados (visita 1: estimativa = -1,47; IC 95%: -8,45 a 5,51; visita 2: estimativa = 2,87; IC 95%: -4,93 a 10,67). Ao longo do tempo, ambos os grupos apresentaram melhora significativa do escore psicológico entre a visita 1 e a visita 2: placebo (aumento médio de 12,39; IC 95%: 7,49 a 17,3) e Eclipta (aumento médio de 8,05; IC 95%: 2,99 a 13,1).

Na análise de sensibilidade, os achados principais se mantiveram: não houve diferença entre grupos nas visitas 1 e 2, e as melhorias ao longo do tempo continuaram significativas para placebo (aumento de 12,08; IC 95%: 7,69 a 16,5) e Eclipta (aumento de 9,36; IC 95%: 5,09 a 13,6).

As estimativas, intervalos de confiança de 95% e p-valores estão apresentados nas Tabela 3 e Tabela 4.

Tabela 3: Diferenças estimadas do escore psicológico do WHOQOL-BREF entre grupos (placebo vs Eclipta) e ao longo do tempo – Todos os dados

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	-1,47	[-8,45; 5,51]	0,676
Entre grupos	Visita 2	2,87	[-4,93; 10,67]	0,468
Grupo Placebo	Visita 1 – Visita 2	-12,39	[-17,3; -7,49]	< 0,001
Grupo Eclipta	Visita 1 – Visita 2	-8,05	[-13,1; -2,99]	0,002

Tabela 4: Diferenças estimadas do escore psicológico do WHOQOL-BREF entre grupos (placebo vs Eclipta) e ao longo do tempo – Análise de sensibilidade

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	-2,41	[-8,76; 3,94]	0,454
Entre grupos	Visita 2	0,31	[-6,78; 7,39]	0,931
Grupo Placebo	Visita 1 – Visita 2	-12,08	[-16,5; -7,69]	< 0,001
Grupo Eclipta	Visita 1 – Visita 2	-9,36	[-13,6; -5,09]	< 0,001

```
ggplot(
    data = data_model_V1V3,
    aes(
        x = as.factor(visit),
        y = score_psychological,
        group = record_id,
    )
) +
    geom_line(alpha = 0.5) +
    geom_point(alpha = 0.7) +
    geom_smooth(
```

```
aes(group = allocation_group),
method = "lm",
se = TRUE,
linewidth = 1
) +
labs(title = "All data") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 64 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 64 rows containing missing values or values outside the scale range (`geom_point()`).

All data


```
data_model_V1V3 %>%
    filter(
        !(record_id %in%
        score_psychological_model_check$influential_ids)
) %>%
    ggplot(
    aes(
        x = as.factor(visit),
        y = score_psychological,
```

```
group = record_id,
)
) +
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "Sensitivity analysis") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 59 rows containing non-finite outside the scale range (`stat_smooth()`) .

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

1.3 Domínio Social

Variável: score_social

```
# Plot 1: Raw data
score_social_hist_1 <- data_model_V1V3 %>%
    #filter(
        score_social < 300
    #) %>%
   ggplot(aes(x = score_social)) +
   geom_histogram(bins = 30, fill = "skyblue", color = "black")
# Plot 2: Log-transformed data
score_social_hist_2 <- data_model_V1V3 %>%
   #filter(
        score_social < 300
   #) %>%
    ggplot(aes(x = log1p(score_social))) +
    geom_histogram(bins = 50, fill = "lightgreen", color = "black")
# Combine side by side
score_social_hist_1 + score_social_hist_2 # library(patchwork)
```

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).


```
# LMM
score_social_model <- lmer(score_social ~ allocation_group * visit +
(1 | record_id), data = data_model_V1V3)</pre>
```

```
# Check for Multicollinearity
Low Correlation
                   Term VIF VIF 95% CI Increased SE Tolerance
       allocation_group 1.17 [1.05, 1.63]
                                                 1.08
                                                             0.85
                  visit 1.94 [1.56, 2.56]
                                                 1.39
                                                             0.52
 allocation_group:visit 2.10 [1.67, 2.78]
                                           1.45
                                                            0.48
 Tolerance 95% CI
     [0.61, 0.96]
     [0.39, 0.64]
     [0.36, 0.60]
# Sensitivity analysis
score_social_model_check <- sensitivity_check_lmer(</pre>
   model = score_social_model,
   id_var = "record_id",
   top_n = 5
# LMM Sensitivity
score_social_model_sens <- update(object = score_social_model,</pre>
                              subset = !(record_id %in%
        score_social_model_check$influential_ids))
# Influential IDS
score_social_model_check$influential_ids
[1] "9" "11" "17" "30" "47" "50"
1.3.0.1 Resumo dos modelos
summary(score_social_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: score_social ~ allocation_group * visit + (1 | record_id)
   Data: data_model_V1V3
REML criterion at convergence: 1053.1
Scaled residuals:
```

check_collinearity(score_social_model)

```
Min 1Q Median 3Q Max -2.21519 -0.40567 0.06381 0.51324 1.90828
```

Random effects:

Groups Name Variance Std.Dev. record_id (Intercept) 241.8 15.55
Residual 142.7 11.95

Number of obs: 125, groups: record_id, 75

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) (Intercept) 60.741 3.251 93.082 18.685 <2e-16 *** 4.566 93.057 -0.287 allocation_groupGrupo B -1.311 0.775 visit2 4.051 3.211 50.794 1.262 0.213 allocation_groupGrupo B:visit2 -4.898 4.615 51.610 -1.061 0.293

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.712

visit2 -0.390 0.278

allctn GB:2 0.272 -0.382 -0.696

summary(score_social_model_sens)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: score_social ~ allocation_group * visit + (1 | record_id)

Data: data_model_V1V3

Subset: !(record_id %in% score_social_model_check\$influential_ids)

REML criterion at convergence: 911.8

Scaled residuals:

Min 1Q Median 3Q Max -1.96832 -0.47214 0.02736 0.47240 1.53891

Random effects:

Groups Name Variance Std.Dev.
record_id (Intercept) 221.91 14.897
Residual 68.67 8.287
Number of obs: 114, groups: record_id, 69

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) 63.919 2.987 77.428 21.401 <2e-16 *** (Intercept) allocation_groupGrupo B -2.173 4.134 77.365 -0.526 0.6006 visit2 3.600 2.442 44.251 1.474 0.1474 allocation_groupGrupo B:visit2 -7.477 3.412 44.412 -2.191 0.0337 *

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.723

visit2 -0.306 0.221

allctn_GB:2 0.219 -0.303 -0.716

${\tt score_social_model_check\$comparison_table}$

A tibble: 12 x 6 Model term estimate std.error statistic p.value <chr> <chr>> <dbl> <dbl> <dbl> <dbl> 1 Original (Intercept) 60.7 3.25 18.7 2.94e-33 2 Sensitivity (Intercept) 2.99 3.00e-34 63.9 21.4 3 Original allocation_groupGrupo B -1.314.57 -0.287 7.75e- 1 4 Sensitivity allocation_groupGrupo B -2.17 4.13 -0.526 6.01e- 1 allocation_groupGrupo B:v~ 4.61 -1.06 2.93e- 1 5 Original -4.90 6 Sensitivity allocation_groupGrupo B:v~ -2.19 3.37e- 2 -7.483.41 7 Original sd__(Intercept) 15.5 NANANA 8 Sensitivity sd__(Intercept) 14.9 NANANA9 Original sd__Observation 11.9 NA NANA10 Sensitivity sd__Observation 8.29 NA NA NA 11 Original visit2 4.05 3.21 1.26 2.13e- 1 12 Sensitivity visit2 3.60 2.44 1.47 1.47e- 1

performance::compare_performance(

score_social_model,

score_social_model_sens)

When comparing models, please note that probably not all models were fit from same data.

Comparison of Model Performance Indices

performance::check_model(score_social_model)

```
Name
                      Model | AIC (weights) | AICc (weights)
                  | lmerModLmerTest | 1081.5 (<.001) | 1082.2 (<.001)
score_social_model
score_social_model_sens | lmerModLmerTest | 938.7 (>.999) | 939.4 (>.999)
                      | BIC (weights) | R2 (cond.) | R2 (marg.) | ICC
Name
score_social_model | 1098.5 (<.001) |
                                           0.634 |
                                                       0.013 | 0.629
                                            0.772 | 0.035 | 0.764
score_social_model_sens | 955.1 (>.999) |
Name
                      | RMSE | Sigma
score_social_model
                     | 8.826 | 11.947
score_social_model_sens | 5.726 | 8.287
```


performance::check_model(score_social_model_sens)

1.3.0.2 Médias Marginais Estimadas

1.3.0.2.1 Todos os dados

```
# Get EMMs for each group at each visit
score_social_raw_emm <- emmeans(
    score_social_model,
    ~ allocation_group * visit
)</pre>
```

```
score_social_raw_emm <- regrid(score_social_raw_emm)</pre>
# Table of marginal means
# score_social_raw_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_social_raw_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                   estimate SE
                                    df lower.CL upper.CL t.ratio p.value
 Grupo A - Grupo B
                       1.31 4.57 95.5
                                         -7.76
                                                    10.4 0.287 0.7747
visit = 2:
                                    df lower.CL upper.CL t.ratio p.value
 contrast
                   estimate
                             SE
                                         -3.93
                                                   16.3 1.213 0.2275
 Grupo A - Grupo B
                       6.21 5.12 111.5
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_social_raw_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                 estimate
                           SE df lower.CL upper.CL t.ratio p.value
 visit1 - visit2 -4.051 3.22 95.5 -10.45
                                                2.34 -1.258 0.2115
allocation_group = Grupo B:
                                 df lower.CL upper.CL t.ratio p.value
 contrast
                 estimate
                            SE
 visit1 - visit2  0.846 3.33 95.5
                                      -5.76
                                                7.45 0.254 0.7998
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(score_social_raw_emm, comparisons = TRUE)
```


1.3.0.2.2 Análise de sensibilidade

```
# Get EMMs for each group at each visit (Sensitivity Analysis)
score_social_emm <- emmeans::emmeans(</pre>
    score_social_model_sens,
    ~ allocation_group * visit
)
score_social_emm <- regrid(score_social_emm)</pre>
# Table of marginal means
# score_social_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_social_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                   estimate
                              SE
                                    df lower.CL upper.CL t.ratio p.value
 Grupo A - Grupo B
                       2.17 4.13 79.7
                                        -6.055
                                                    10.4 0.526 0.6006
visit = 2:
 contrast
                   estimate
                              SE
                                    df lower.CL upper.CL t.ratio p.value
```

Grupo A - Grupo B 9.65 4.50 95.7 0.719 18.6 2.145 0.0345

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_social_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
```

allocation_group = Grupo A:

contrast estimate SE df lower.CL upper.CL t.ratio p.value visit1 - visit2 -3.60 2.45 79.8 -8.474 1.27 -1.470 0.1454

allocation_group = Grupo B:

contrast estimate SE df lower.CL upper.CL t.ratio p.value visit1 - visit2 3.88 2.39 79.7 -0.882 8.64 1.621 0.1089

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Plot of marginal means
plot(score_social_emm, comparisons = TRUE)
```


1.3.0.3 Resultado

No modelo ajustado para o domínio social do WHOQOL-BREF, não foram observadas diferenças significativas entre os

grupos na visita 1 (estimativa = 1,31; IC 95%: -7,76 a 10,4) nem na visita 2 (estimativa = 6,21; IC 95%: -3,93 a 16,3). Também não houve mudanças significativas ao longo do tempo dentro de cada grupo (placebo: -4,05; IC 95%: -10,45 a 2,34; Eclipta: 0,85; IC 95%: -5,76 a 7,45).

Na análise de sensibilidade, surgiu diferença significativa entre os grupos na visita 2, com o grupo placebo apresentando escore social 9,65 pontos superior ao grupo Eclipta (IC 95%: 0,72 a 18,6). Não houve alterações significativas ao longo do tempo dentro de nenhum dos grupos na análise de sensibilidade.

As estimativas, intervalos de confiança de 95% e p-valores estão apresentados nas Tabelas Tabela 5 e Tabela 6.

Tabela 5: Diferenças estimadas do escore social do WHOQOL-BREF entre grupos e ao longo do tempo - Todos os dados

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	1,31	[-7,76; 10,4]	0,775
Entre grupos	Visita 2	6,21	[-3,93; 16,3]	0,228
Grupo Placebo	Visita 1 – Visita 2	-4,05	[-10,45; 2,34]	0,212
Grupo Eclipta	Visita 1 – Visita 2	0,85	[-5,76; 7,45]	0,800

Tabela 6: Diferenças estimadas do escore social do WHOQOL-BREF entre grupos e ao longo do tempo – Análise de sensibilidade

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor	
Entre grupos	Visita 1	2,17	[-6,06; 10,4]	0,601	
Entre grupos	Visita 2	9,65	[0,72; 18,6]	0,035	
Grupo Placebo	Visita 1 – Visita 2	-3,60	[-8,47; 1,27]	0,145	
Grupo Eclipta	Visita 1 – Visita 2	3,88	[-0,88; 8,64]	0,109	

```
linewidth = 1
) +
labs(title = "All data") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 64 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 64 rows containing missing values or values outside the scale range (`geom_point()`).

All data


```
data_model_V1V3 %>%
    filter(
        !(record_id %in%
        score_social_model_check$influential_ids)
) %>%
    ggplot(
        aes(
            x = as.factor(visit),
            y = score_social,
            group = record_id,
        )
) +
```

```
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "Sensitivity analysis") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 59 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

1.4 Domínio Ambiental

Variável: score_environment

```
# Plot 1: Raw data
score_environment_hist_1 <- data_model_V1V3 %>%
```

```
#filter(
# score_environment < 300
#) %>%
ggplot(aes(x = score_environment)) +
geom_histogram(bins = 30, fill = "skyblue", color = "black")

# Plot 2: Log-transformed data
score_environment_hist_2 <- data_model_V1V3 %>%
    #filter(
    # score_environment < 300
#) %>%
ggplot(aes(x = log1p(score_environment))) +
geom_histogram(bins = 50, fill = "lightgreen", color = "black")

# Combine side by side
score_environment_hist_1 + score_environment_hist_2 # library(patchwork)
```

Warning: Removed 64 rows containing non-finite outside the scale range (`stat_bin()`). Removed 64 rows containing non-finite outside the scale range (`stat_bin()`).


```
# LMM
score_environment_model <- lmer(score_environment ~ allocation_group * visit +

(1 | record_id), data = data_model_V1V3)
check_collinearity(score_environment_model)</pre>
```

Check for Multicollinearity

Low Correlation

```
allocation_group 1.11 [1.02, 1.70]
                                                 1.05
                                                             0.90
                  visit 1.93 [1.56, 2.56]
                                                 1.39
                                                             0.52
 allocation_group:visit 2.03 [1.63, 2.69]
                                                1.43
                                                             0.49
 Tolerance 95% CI
     [0.59, 0.98]
     [0.39, 0.64]
     [0.37, 0.61]
# Sensitivity analysis
score_environment_model_check <- sensitivity_check_lmer(</pre>
    model = score_environment_model,
   id_var = "record_id",
   top_n = 5
# LMM Sensitivity
score_environment_model_sens <- update(object = score_environment_model,</pre>
                              subset = !(record_id %in%
        score_environment_model_check$influential_ids))
# Influential IDS
score_environment_model_check$influential_ids
[1] "1" "17" "31" "34" "53"
1.4.0.1 Resumo dos modelos
summary(score_environment_model)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: score_environment ~ allocation_group * visit + (1 | record_id)
   Data: data_model_V1V3
REML criterion at convergence: 946
Scaled residuals:
    Min
             1Q Median
                                    Max
-2.3075 -0.4723 0.0543 0.4396 2.1422
```

Term VIF VIF 95% CI Increased SE Tolerance

Random effects:

Groups Name Variance Std.Dev.

record_id (Intercept) 134.76 11.609

Residual 45.25 6.727

Number of obs: 125, groups: record_id, 75

Fixed effects:

Estimate Std. Error df t value Pr(>|t|)

(Intercept) 59.539 2.219 88.875 26.829 <2e-16 ***

allocation_groupGrupo B -1.617 3.118 88.856 -0.519 0.605

visit2 2.395 1.826 53.295 1.311 0.195

allocation_groupGrupo B:visit2 -1.153 2.628 53.856 -0.439 0.663

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.712

visit2 -0.321 0.228

allctn_GB:2 0.223 -0.313 -0.695

summary(score_environment_model_sens)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [

lmerModLmerTest]

Formula: score_environment ~ allocation_group * visit + (1 | record_id)

Data: data_model_V1V3

Subset: !(record_id %in% score_environment_model_check\$influential_ids)

REML criterion at convergence: 829.3

Scaled residuals:

Min 1Q Median 3Q Max

-1.52911 -0.47356 -0.00552 0.47242 1.67386

Random effects:

Groups Name Variance Std.Dev.

record_id (Intercept) 95.97 9.79

Residual 30.84 5.554

Number of obs: 115, groups: record_id, 70

Fixed effects:

	${\tt Estimate \ Std.}$	Error	df	t value	Pr(> t)	
(Intercept)	58.639	1.944 80.4	495	30.166	<2e-16	***
allocation_groupGrupo B	-1.075	2.710 80.4	454	-0.397	0.693	
visit2	1.813	1.601 46.5	248	1.133	0.263	
allocation_groupGrupo B:visit2	0.311	2.284 46.0	692	0.136	0.892	

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit2

allctn_grGB -0.717

visit2 -0.312 0.224

allctn_GB:2 0.219 -0.305 -0.701

score_environment_model_check\$comparison_table

A tibble: 12 x 6

	Model	term		estimate	std.error	statistic	p.value
	<chr></chr>	<chr></chr>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Original	(Intercept)		59.5	2.22	26.8	2.17e-44
2	Sensitivity	(Intercept)		58.6	1.94	30.2	1.24e-45
3	Original	$\verb allocation_groupGrupo $	В	-1.62	3.12	-0.519	6.05e- 1
4	Sensitivity	allocation_groupGrupo	В	-1.08	2.71	-0.397	6.93e- 1
5	Original	allocation_groupGrupo	B: v~	-1.15	2.63	-0.439	6.63e- 1
6	Sensitivity	$\verb allocation_groupGrupo $	B: v~	0.311	2.28	0.136	8.92e- 1
7	Original	sd(Intercept)		11.6	NA	NA	NA
8	Sensitivity	sd(Intercept)		9.80	NA	NA	NA
9	Original	sdObservation		6.73	NA	NA	NA
10	Sensitivity	sdObservation		5.55	NA	NA	NA
11	Original	visit2		2.39	1.83	1.31	1.95e- 1
12	Sensitivity	visit2		1.81	1.60	1.13	2.63e- 1

```
performance::compare_performance(
    score_environment_model,
    score_environment_model_sens)
```

When comparing models, please note that probably not all models were fit

from same data.

Comparison of Model Performance Indices

performance::check_model(score_environment_model)

Name	 	Mode	1	AIC (weights)		AICc (weights)
score_environment_model	ı	lmerModLmerTes	t	970.7 (<.001)	I	971.4 (<.001)
score_environment_model_sens	I	lmerModLmerTes	t	852.9 (>.999)	I	853.7 (>.999)
Name	1	BIC (weights)	1	R2 (cond.) R2	(n	narg.) ICC
score_environment_model	ı	987.7 (<.001)	I	0.751		0.011 0.749
score_environment_model_sens	I	869.4 (>.999)	I	0.759		0.009 0.757
Name	 	RMSE Sigma				
score_environment_model	I	4.706 6.727				
score_environment_model_sens	1	3.842 5.554				

performance::check_model(score_environment_model_sens)

1.4.0.2 Médias Marginais Estimadas

1.4.0.2.1 Todos os dados

```
# Get EMMs for each group at each visit
score_environment_raw_emm <- emmeans::emmeans(
    score_environment_model,
    ~ allocation_group * visit
)</pre>
```

```
score_environment_raw_emm <- regrid(score_environment_raw_emm)</pre>
# Table of marginal means
# score_environment_raw_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_environment_raw_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
contrast
                             SE df lower.CL upper.CL t.ratio p.value
                  estimate
Grupo A - Grupo B
                      1.62 3.12 88
                                       -4.58 7.81 0.519 0.6053
visit = 2:
                             SE df lower.CL upper.CL t.ratio p.value
contrast
                  estimate
                      2.77 3.39 104
                                       -3.96
                                                 9.50 0.816 0.4162
Grupo A - Grupo B
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_environment_raw_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
contrast
                estimate
                           SE df lower.CL upper.CL t.ratio p.value
visit1 - visit2 -2.39 1.83 88 -6.03
                                            1.24 -1.308 0.1942
allocation_group = Grupo B:
                           SE df lower.CL upper.CL t.ratio p.value
contrast
                estimate
visit1 - visit2 -1.24 1.90 88
                                              2.53 -0.655 0.5143
                                    -5.01
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(score_environment_raw_emm, comparisons = TRUE)
```


1.4.0.2.2 Análise de sensibilidade

```
# Get EMMs for each group at each visit (Sensitivity Analysis)
score_environment_emm <- emmeans::emmeans(</pre>
    score_environment_model_sens,
    ~ allocation_group * visit
)
score_environment_emm <- regrid(score_environment_emm)</pre>
# Table of marginal means
# score_environment_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(score_environment_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                   estimate
                              SE
                                   df lower.CL upper.CL t.ratio p.value
 Grupo A - Grupo B
                      1.076 2.71 81.1
                                          -4.32
                                                    6.47 0.397 0.6925
visit = 2:
 contrast
                              SE
                                   df lower.CL upper.CL t.ratio p.value
                   estimate
```

```
Grupo A - Grupo B 0.765 2.97 96.8 -5.13 6.65 0.258 0.7972
```

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(score_environment_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
```

allocation_group = Grupo A:

contrast estimate SE df lower.CL upper.CL t.ratio p.value visit1 - visit2 -1.81 1.61 81.2 -5.01 1.38 -1.129 0.2621

allocation_group = Grupo B:

contrast estimate SE df lower.CL upper.CL t.ratio p.value visit1 - visit2 -2.12 1.63 81.1 -5.38 1.13 -1.300 0.1974

Degrees-of-freedom method: inherited from kenward-roger when re-gridding Confidence level used: 0.95

```
# Plot of marginal means
plot(score_environment_emm, comparisons = TRUE)
```


1.4.0.3 Resultado

No modelo ajustado para o domínio ambiente do WHOQOL-BREF, não foram observadas diferenças significativas entre

os grupos na visita 1 (estimativa = 1,62; IC 95%: -4,58 a 7,81) nem na visita 2 (estimativa = 2,77; IC 95%: -3,96 a 9,50). Também não houve alterações significativas ao longo do tempo dentro de cada grupo (placebo: -2,39; IC 95%: -6,03 a 1,24; Eclipta: -1,24; IC 95%: -5,01 a 2,53). A análise de sensibilidade manteve o mesmo padrão de resultados.

Tabela: Diferenças estimadas do escore ambiente do WHOQOL-BREF entre grupos (placebo vs Eclipta) e entre visitas dentro de cada grupo – Todos os dados {#tbl-score_environment}

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	1,62	[-4,58; 7,81]	0,605
Entre grupos	Visita 2	2,77	[-3,96; 9,50]	0,416
Grupo Placebo	Visita 1 – Visita 2	-2,39	[-6,03; 1,24]	0,194
Grupo Eclipta	Visita 1 – Visita 2	-1,24	[-5,01; 2,53]	0,514

```
ggplot(
    data = data_model_V1V3,
    aes(
        x = as.factor(visit),
        y = score_environment,
        group = record_id,
    )
) +
    geom_line(alpha = 0.5) +
    geom_point(alpha = 0.7) +
    geom_smooth(
        aes(group = allocation_group),
        method = "lm",
        se = TRUE,
        linewidth = 1
    ) +
    labs(title = "All data") +
    facet_wrap(~ allocation_group)
```

```
`geom_smooth()` using formula = 'y ~ x'
Warning: Removed 64 rows containing non-finite outside the scale range
(`stat_smooth()`).
Warning: Removed 64 rows containing missing values or values outside the scale range
(`geom_line()`).
Warning: Removed 64 rows containing missing values or values outside the scale range
(`geom_point()`).
```

All data Grupo A Grupo B 75 25 as.factor(visit)

```
data_model_V1V3 %>%
   filter(
        !(record_id %in%
        score_environment_model_check$influential_ids)
    ) %>%
    ggplot(
        aes(
            x = as.factor(visit),
            y = score_environment,
            group = record_id,
        )
    ) +
    geom_line(alpha = 0.5) +
    geom_point(alpha = 0.7) +
    geom_smooth(
        aes(group = allocation_group),
        method = "lm",
        se = TRUE,
        linewidth = 1
   labs(title = "Sensitivity analysis") +
    facet_wrap(~ allocation_group)
```

[`]geom_smooth()` using formula = 'y ~ x'

Warning: Removed 59 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 59 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

2 Escore DASS

2.1 Escore DASS - Depressão

Variável: dass_score_depression

```
# Plot 1: Raw data
dass_score_depression_hist_1 <- data_model_V1V3 %>%
    #filter(
    #    dass_score_depression < 300
    #) %>%
    ggplot(aes(x = dass_score_depression)) +
    geom_histogram(bins = 30, fill = "skyblue", color = "black")

# Plot 2: Log-transformed data
dass_score_depression_hist_2 <- data_model_V1V3 %>%
    #filter(
    #    dass_score_depression < 300</pre>
```

```
#) %>%
ggplot(aes(x = log1p(dass_score_depression))) +
geom_histogram(bins = 50, fill = "lightgreen", color = "black")

# Combine side by side
dass_score_depression_hist_1 + dass_score_depression_hist_2 # library(patchwork)
```

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).


```
# Fit a negative-binomial GLMM

dass_score_depression_nb_model <- glmmTMB::glmmTMB(
    formula = dass_score_depression ~ allocation_group * visit + (1 | record_id),
    family = glmmTMB::nbinom2(),
    data = data_model_V1V3
)

# Check collinearity
performance::check_collinearity(dass_score_depression_nb_model)</pre>
```

Check for Multicollinearity

Low Correlation

```
Term VIF VIF 95% CI Increased SE Tolerance allocation_group 1.22 [1.08, 1.65] 1.11 0.82
```

```
visit 1.94 [1.57, 2.55]
                                                  1.39
                                                              0.52
 allocation_group:visit 2.13 [1.70, 2.81]
                                                  1.46
                                                              0.47
 Tolerance 95% CI
     [0.61, 0.93]
     [0.39, 0.64]
     [0.36, 0.59]
# 3. Identify the 5 most "influential" clusters by magnitude of their random intercepts
re_nb <- glmmTMB::ranef(dass_score_depression_nb_model)$cond$record_id</pre>
re_nb_df <- data.frame(</pre>
  record_id = rownames(re_nb),
  intercept = re_nb[, 1],
  stringsAsFactors = FALSE
)
influential_ids_nb <- re_nb_df %>%
  dplyr::arrange(dplyr::desc(abs(intercept))) %>%
  dplyr::slice_head(n = 5) \%>\%
  dplyr::pull(record_id)
# 4. Re-fit the model excluding those top-5 clusters
dass_score_depression_nb_model_sens <- update(</pre>
  dass_score_depression_nb_model,
  data = dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)
)
# 5. Inspect which record_ids were most extreme
influential_ids_nb
[1] "15" "13" "44" "61" "19"
2.1.0.1 Resumo dos modelos
# Model summaries
summary(dass_score_depression_nb_model)
Family: nbinom2 (log)
Formula:
dass_score_depression ~ allocation_group * visit + (1 | record_id)
```

logLik -2*log(L) df.resid

Data: data_model_V1V3

BIC

AIC

882.6 899.6 -435.3 870.6 121

Random effects:

Conditional model:

Groups Name Variance Std.Dev.
record_id (Intercept) 0.7084 0.8417
Number of obs: 127, groups: record_id, 75

Dispersion parameter for nbinom2 family (): 2.12

Conditional model:

Estimate Std. Error z value Pr(>|z|)(Intercept) 2.2151 0.2063 10.739 <2e-16 *** allocation_groupGrupo B 0.1569 0.2717 0.578 0.563 -0.1800 visit3 0.2271 - 0.7930.428 0.3194 -0.714 allocation_groupGrupo B:visit3 -0.2280 0.475

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(dass_score_depression_nb_model_sens)

Family: nbinom2 (log)

Formula:

dass_score_depression ~ allocation_group * visit + (1 | record_id)

Data: dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)

AIC BIC logLik -2*log(L) df.resid 830.9 847.4 -409.4 818.9 111

Random effects:

Conditional model:

Groups Name Variance Std.Dev.
record_id (Intercept) 0.3703 0.6085
Number of obs: 117, groups: record_id, 70

Dispersion parameter for nbinom2 family (): 2.21

Conditional model:

Diagnostic checks

```
Estimate Std. Error z value Pr(>|z|)
                                      0.17649 13.743
(Intercept)
                            2.42552
                                                       <2e-16 ***
                            0.06835 0.23562 0.290 0.772
allocation_groupGrupo B
visit3
                            -0.15647 0.22055 -0.709 0.478
allocation_groupGrupo B:visit3 -0.22457 0.31152 -0.721 0.471
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compare performance
performance::compare_performance(
 dass_score_depression_nb_model,
 dass_score_depression_nb_model_sens
)
When comparing models, please note that probably not all models were fit
 from same data.
# Comparison of Model Performance Indices
                                    Model | AIC (weights) | AICc (weights)
Name
dass_score_depression_nb_model | glmmTMB | 882.6 (<.001) | 883.3 (<.001)
dass_score_depression_nb_model_sens | glmmTMB | 830.9 (>.999) | 831.6 (>.999)
                                | BIC (weights) | R2 (cond.) | R2 (marg.)
Name
______
dass_score_depression_nb_model | 899.6 (<.001) | 0.626 |
                                                                0.022
dass_score_depression_nb_model_sens | 847.4 (>.999) | 0.479 |
                                                               0.025
Name
                                    ICC | RMSE | Sigma | Score_log | Score_spherical
dass_score_depression_nb_model | 0.618 | 5.787 | 2.118 | -2.975 |
                                                                           0.064
dass_score_depression_nb_model_sens | 0.465 | 6.553 | 2.205 | -3.171 |
                                                                           0.076
```

performance::check_model(dass_score_depression_nb_model)

[`]check_outliers()` does not yet support models of class `glmmTMB`.

2.1.0.2 Médias Marginais Estimadas

2.1.0.2.1 Todos os dados

```
# Estimated marginal means on the response scale
dass_score_depression_nb_emm <- emmeans::emmeans(</pre>
  dass_score_depression_nb_model,
```

```
~ allocation_group * visit,
  type = "response"
)
# Pairwise contrasts by visit
emmeans::contrast(
  dass_score_depression_nb_emm,
 method = "pairwise",
 by = "visit",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
visit = 1:
                          SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                  ratio
 Grupo A / Grupo B 0.855 0.232 Inf
                                     0.502
                                                1.46
                                                       1 -0.578 0.5635
visit = 3:
                          SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
 Grupo A / Grupo B 1.074 0.343 Inf
                                  0.574
                                               2.01
                                                       1 0.223 0.8237
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
  dass_score_depression_nb_emm,
 method = "pairwise",
       = "allocation group",
 by
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
 0.767
                                              1.87
                                                     1 0.793 0.4279
allocation_group = Grupo B:
                      SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
               ratio
 visit1 / visit3 1.5 0.345 Inf
                                   0.959
                                              2.36
                                                   1 1.777 0.0756
```

Confidence level used: 0.95

Intervals are back-transformed from the log scale

Tests are performed on the log scale

```
# Plot marginal means
plot(dass_score_depression_nb_emm, comparisons = TRUE)
```


2.1.0.2.2 Análise de sensibilidade

ratio

contrast

```
# Estimated marginal means on the response scale

dass_score_depression_nb_emm_sens <- emmeans::emmeans(
    dass_score_depression_nb_model_sens,
    ~ allocation_group * visit,
    type = "response"
)

# Pairwise contrasts by visit
emmeans::contrast(
    dass_score_depression_nb_emm_sens,
    method = "pairwise",
    by = "visit",
    adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
visit = 1:
```

SE df asymp.LCL asymp.UCL null z.ratio p.value

```
Grupo A / Grupo B 0.934 0.220 Inf 0.589 1.48 1 -0.290 0.7718
visit = 3:
                           SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
                 ratio
Grupo A / Grupo B 1.169 0.335 Inf
                                                2.05 1 0.546 0.5853
                                      0.667
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
 dass_score_depression_nb_emm_sens,
 method = "pairwise",
       = "allocation_group",
 adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
visit1 / visit3 1.17 0.258 Inf
                                  0.759
                                              1.80
                                                      1 0.709 0.4780
allocation_group = Grupo B:
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
visit1 / visit3 1.46 0.325 Inf
                                   0.948
                                              2.26 1 1.717 0.0860
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Plot marginal means
plot(dass_score_depression_nb_emm_sens, comparisons = TRUE)
```


2.1.0.3 Resultado

No modelo de regressão para o escore de depressão (DASS), não foram observadas diferenças significativas entre os grupos em nenhum dos momentos avaliados. Na visita 1, a razão dos escores do Grupo A em relação ao Grupo B foi de 0,855 (IC 95%: 0,502-1,46; p=0,564) e, na visita 3, 1,074 (IC 95%: 0,574-2,01; p=0,824). Ao longo do tempo, também não houve mudança significativa dentro de cada grupo: Grupo Placebo (visita 1 vs visita 3, razão = 1,20; IC 95%: 0,767-1,87; p=0,428) e Grupo Eclipta (visita 1 vs visita 3, razão = 1,50; IC 95%: 0,959-2,36; p=0,076). A análise de sensibilidade apresentou padrão consistente, sem alterações relevantes nas conclusões.

Tabela: Razões dos escores de depressão (DASS) entre grupos e ao longo do tempo - Todos os dados {#tbl-dass depression}

Grupo de comparação	Comparação	Razão	IC 95%	p-valor
Entre grupos	Visita 1	0,855	[0,502; 1,46]	0,564
Entre grupos	Visita 3	1,074	[0,574; 2,01]	0,824
Grupo Placebo	Visita 1 – Visita 3	1,20	[0,767; 1,87]	0,428
Grupo Eclipta	Visita 1 – Visita 3	1,50	[0,959; 2,36]	0,076

```
ggplot(
  data = data_model_V1V3,
  aes(
    x = as.factor(visit),
    y = dass_score_depression,
    group = record_id,
```

```
)
) +

geom_line(alpha = 0.5) +

geom_point(alpha = 0.7) +

geom_smooth(

   aes(group = allocation_group),

   method = "lm",

   se = TRUE,

   linewidth = 1
) +

labs(title = "All data") +

facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 62 rows containing missing values or values outside the scale range (`geom_point()`).

All data


```
data_model_V1V3 %>%
    filter(
      !(record_id %in%
      influential_ids_nb)
```

```
) %>%
    ggplot(
        aes(
            x = as.factor(visit),
            y = dass_score_depression,
            group = record_id,
        )
    ) +
    geom_line(alpha = 0.5) +
    geom_point(alpha = 0.7) +
    geom_smooth(
        aes(group = allocation_group),
       method = "lm",
        se = TRUE,
       linewidth = 1
   ) +
   labs(title = "Sensitivity analysis") +
   facet_wrap(~ allocation_group)
`geom_smooth()` using formula = 'y ~ x'
Warning: Removed 57 rows containing non-finite outside the scale range
```

Warning: Removed 57 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 57 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

2.2 Escore DASS - Ansiedade

Variável: dass_score_anxiety

```
# Plot 1: Raw data
dass_score_anxiety_hist_1 <- data_model_V1V3 %>%
   #filter(
         dass_score_anxiety < 300
    #) %>%
   ggplot(aes(x = dass_score_anxiety)) +
    geom_histogram(bins = 30, fill = "skyblue", color = "black")
# Plot 2: Log-transformed data
dass_score_anxiety_hist_2 <- data_model_V1V3 %>%
   #filter(
         dass_score_anxiety < 300
   #) %>%
   ggplot(aes(x = log1p(dass_score_anxiety))) +
   geom_histogram(bins = 50, fill = "lightgreen", color = "black")
# Combine side by side
dass_score_anxiety_hist_1 + dass_score_anxiety_hist_2 # library(patchwork)
```

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).


```
# Fit a negative-binomial GLMM

dass_score_anxiety_nb_model <- glmmTMB::glmmTMB(
    formula = dass_score_anxiety ~ allocation_group * visit + (1 | record_id),
    family = glmmTMB::nbinom2(),
    data = data_model_V1V3
)

# Check collinearity
performance::check_collinearity(dass_score_anxiety_nb_model)</pre>
```

Check for Multicollinearity

Low Correlation

```
Term VIF VIF 95% CI Increased SE Tolerance allocation_group 1.26 [1.10, 1.67] 1.12 0.80 visit 1.78 [1.46, 2.33] 1.33 0.56 allocation_group:visit 1.96 [1.58, 2.58] 1.40 0.51 Tolerance 95% CI [0.60, 0.91] [0.43, 0.69] [0.39, 0.63]
```

```
# 3. Identify the 5 most "influential" clusters by magnitude of their random intercepts
re_nb <- glmmTMB::ranef(dass_score_anxiety_nb_model)$cond$record_id</pre>
re_nb_df <- data.frame(</pre>
  record_id = rownames(re_nb),
 intercept = re_nb[, 1],
  stringsAsFactors = FALSE
influential_ids_nb <- re_nb_df %>%
  dplyr::arrange(dplyr::desc(abs(intercept))) %>%
  dplyr::slice_head(n = 5) \%>\%
  dplyr::pull(record_id)
# 4. Re-fit the model excluding those top-5 clusters
dass_score_anxiety_nb_model_sens <- update(</pre>
  dass_score_anxiety_nb_model,
  data = dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)
# 5. Inspect which record_ids were most extreme
influential_ids_nb
[1] "5" "27" "44" "46" "61"
2.2.0.1 Resumo dos modelos
# Model summaries
summary(dass_score_anxiety_nb_model)
 Family: nbinom2 (log)
Formula:
dass_score_anxiety ~ allocation_group * visit + (1 | record_id)
Data: data_model_V1V3
      AIC
                BIC
                       logLik -2*log(L) df.resid
    779.3
              796.4
                       -383.7
                                 767.3
                                               121
Random effects:
Conditional model:
                       Variance Std.Dev.
 Groups
           Name
```

record_id (Intercept) 0.8548 0.9245

Number of obs: 127, groups: record_id, 75

Dispersion parameter for nbinom2 family (): 1.53

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.91708 0.29004 6.610 3.85e-11 ***

allocation_groupGrupo B -0.05521 0.31626 -0.175 0.861 visit3 -0.42772 0.28697 -1.490 0.136

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

summary(dass_score_anxiety_nb_model_sens)

Family: nbinom2 (log)

Formula:

dass_score_anxiety ~ allocation_group * visit + (1 | record_id)

Data: dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)

AIC BIC logLik -2*log(L) df.resid

725.7 742.3 -356.8 713.7 111

Random effects:

Conditional model:

Groups Name Variance Std.Dev.

record_id (Intercept) 0.1036 0.3219

Number of obs: 117, groups: record_id, 70

Dispersion parameter for nbinom2 family (): 1

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.30662 0.23808 9.689 <2e-16 ***

allocation_groupGrupo B -0.25752 0.27156 -0.948 0.3430

visit3 -0.59810 0.31116 -1.922 0.0546 .

allocation_groupGrupo B:visit3 0.07566 0.42503 0.178 0.8587

```
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

# Compare performance

performance::compare_performance(
   dass_score_anxiety_nb_model,
   dass_score_anxiety_nb_model_sens
)
```

When comparing models, please note that probably not all models were fit from same data.

Comparison of Model Performance Indices

```
Model | AIC (weights) | AICc (weights)
Name
dass_score_anxiety_nb_model | glmmTMB | 779.3 (<.001) | 780.0 (<.001)
dass_score_anxiety_nb_model_sens | glmmTMB | 725.7 (>.999) | 726.5 (>.999)
                               | BIC (weights) | R2 (cond.) | R2 (marg.)
Name
dass_score_anxiety_nb_model | 796.4 (<.001) | 0.614 |
                                                               0.033
                                                  0.203 |
dass_score_anxiety_nb_model_sens | 742.3 (>.999) |
                                                               0.093
                                   ICC | RMSE | Sigma | Score_log | Score_spherical
Name
dass_score_anxiety_nb_model | 0.601 | 4.631 | 1.530 | -2.568 |
                                                                            0.064
dass_score_anxiety_nb_model_sens | 0.121 | 6.709 | 1.003 | -3.016 |
                                                                            0.080
# Diagnostic checks
performance::check_model(dass_score_anxiety_nb_model)
```

[`]check_outliers()` does not yet support models of class `glmmTMB`.

2.2.0.2 Médias Marginais Estimadas

0.20

đ

Sample

2.2.0.2.1 Todos os dados

[₩]niformity of Residuals

to should fall along the line

0.25

0.50

Standard Uniform Distribution Quantiles

0.75

```
# Estimated marginal means on the response scale
dass_score_anxiety_nb_emm <- emmeans::emmeans(
    dass_score_anxiety_nb_model,</pre>
```

g

1.00

Mormality of Random Effects (record

Theoretical Quantiles

Bots should be plotted along the line

```
~ allocation_group * visit,
  type = "response"
)
# Pairwise contrasts by visit
emmeans::contrast(
  dass_score_anxiety_nb_emm,
 method = "pairwise",
 by = "visit",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
visit = 1:
                           SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                  ratio
 Grupo A / Grupo B 1.06 0.334 Inf
                                      0.569
                                                 1.96 1 0.175 0.8614
visit = 3:
                           SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                                      0.519
                                                 2.26
                                                         1 0.215 0.8296
 Grupo A / Grupo B 1.08 0.407 Inf
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
  dass_score_anxiety_nb_emm,
 method = "pairwise",
       = "allocation_group",
 by
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
 visit1 / visit3 1.53 0.440 Inf
                                    0.874
                                               2.69
                                                       1 1.490 0.1361
allocation_group = Grupo B:
                       SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                ratio
 visit1 / visit3 1.57 0.461 Inf
                                    0.886
                                               2.80
                                                      1 1.546 0.1222
```

Confidence level used: 0.95

Intervals are back-transformed from the log scale

Tests are performed on the log scale

```
# Plot marginal means
plot(dass_score_anxiety_nb_emm, comparisons = TRUE)
```


2.2.0.2.2 Análise de sensibilidade

ratio

contrast

```
# Estimated marginal means on the response scale

dass_score_anxiety_nb_emm_sens <- emmeans::emmeans(
    dass_score_anxiety_nb_model_sens,
    ~ allocation_group * visit,
    type = "response"
)

# Pairwise contrasts by visit
emmeans::contrast(
    dass_score_anxiety_nb_emm_sens,
    method = "pairwise",
    by = "visit",
    adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))

visit = 1:
```

SE df asymp.LCL asymp.UCL null z.ratio p.value

```
Grupo A / Grupo B 1.29 0.351 Inf 0.760
                                                2.20 1 0.948 0.3430
visit = 3:
                           SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
                 ratio
Grupo A / Grupo B 1.20 0.411 Inf
                                     0.613
                                                2.35 1 0.531 0.5955
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
 dass_score_anxiety_nb_emm_sens,
 method = "pairwise",
      = "allocation_group",
 adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
visit1 / visit3 1.82 0.566 Inf
                                  0.988
                                              3.35
                                                      1 1.922 0.0546
allocation_group = Grupo B:
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
contrast
visit1 / visit3 1.69 0.488 Inf
                                   0.956
                                              2.97 1 1.804 0.0712
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Plot marginal means
plot(dass_score_anxiety_nb_emm_sens, comparisons = TRUE)
```


2.2.0.3 Resultado

No modelo ajustado para o escore de ansiedade (DASS), não houve diferenças significativas entre os grupos em nenhum dos momentos avaliados (visita 1: razão = 1,06; IC 95%: 0,57–1,96; p = 0,861; visita 3: razão = 1,08; IC 95%: 0,52–2,26; p = 0,830). Também não houve alteração significativa ao longo do tempo dentro de cada grupo (placebo: visita 1 vs visita 3, razão = 1,53; IC 95%: 0,87–2,69; p = 0,136; Eclipta: razão = 1,57; IC 95%: 0,89–2,80; p = 0,122). A análise de sensibilidade manteve o mesmo padrão de resultados.

Tabela: Razões dos escores de ansiedade (DASS) entre grupos e ao longo do tempo – Todos os dados {#tbl-dass_anxiety}

Grupo de comparação	Comparação	Razão	IC 95%	p-valor
Entre grupos	Visita 1	1,06	[0,57; 1,96]	0,861
Entre grupos	Visita 3	1,08	[0,52; 2,26]	0,830
Grupo Placebo	Visita 1 – Visita 3	1,53	[0,87; 2,69]	0,136
Grupo Eclipta	Visita 1 – Visita 3	1,57	[0,89; 2,80]	0,122

```
ggplot(
   data = data_model_V1V3,
   aes(
        x = as.factor(visit),
        y = dass_score_anxiety,
        group = record_id,
   )
) +
```

```
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "All data") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 62 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 62 rows containing missing values or values outside the scale range (`geom_point()`).

All data


```
data_model_V1V3 %>%
  filter(
    !(record_id %in%
    influential_ids_nb)
) %>%
  ggplot(
```

```
aes(
        x = as.factor(visit),
        y = dass_score_anxiety,
        group = record_id,
    )
) +
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "Sensitivity analysis") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 57 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 57 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

2.3 Escore DASS - Estresse

Variável: dass_score_stress

```
# Plot 1: Raw data
dass_score_stress_hist_1 <- data_model_V1V3 %>%
    #filter(
         dass_score_stress < 300</pre>
    #) %>%
   ggplot(aes(x = dass_score_stress)) +
    geom_histogram(bins = 30, fill = "skyblue", color = "black")
# Plot 2: Log-transformed data
dass_score_stress_hist_2 <- data_model_V1V3 %>%
   #filter(
         dass_score_stress < 300
   #) %>%
    ggplot(aes(x = log1p(dass_score_stress))) +
    geom_histogram(bins = 50, fill = "lightgreen", color = "black")
# Combine side by side
dass_score_stress_hist_1 + dass_score_stress_hist_2 # library(patchwork)
```

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).


```
# Fit a negative-binomial GLMM
dass_score_stress_nb_model <- glmmTMB::glmmTMB(</pre>
  formula = dass_score_stress ~ allocation_group * visit + (1 | record_id),
 family = glmmTMB::nbinom2(),
       = data_model_V1V3
  data
# Check collinearity
performance::check_collinearity(dass_score_stress_nb_model)
# Check for Multicollinearity
Low Correlation
                   Term VIF VIF 95% CI Increased SE Tolerance
                                                 1.06
       allocation_group 1.13 [1.03, 1.64]
                                                             0.89
                  visit 1.92 [1.55, 2.52]
                                                 1.39
                                                             0.52
 allocation_group:visit 2.03 [1.63, 2.67]
                                                 1.42
                                                             0.49
 Tolerance 95% CI
     [0.61, 0.97]
     [0.40, 0.64]
     [0.37, 0.61]
# 3. Identify the 5 most "influential" clusters by magnitude of their random intercepts
re_nb <- glmmTMB::ranef(dass_score_stress_nb_model)$cond$record_id
re_nb_df <- data.frame(</pre>
 record_id = rownames(re_nb),
 intercept = re_nb[, 1],
  stringsAsFactors = FALSE
influential_ids_nb <- re_nb_df %>%
  dplyr::arrange(dplyr::desc(abs(intercept))) %>%
  dplyr::slice_head(n = 5) \%>\%
  dplyr::pull(record_id)
# 4. Re-fit the model excluding those top-5 clusters
dass_score_stress_nb_model_sens <- update(</pre>
  dass_score_stress_nb_model,
  data = dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)
```

```
)
# 5. Inspect which record_ids were most extreme
influential_ids_nb
[1] "15" "44" "53" "74" "13"
2.3.0.1 Resumo dos modelos
# Model summaries
summary(dass_score_stress_nb_model)
Family: nbinom2 (log)
Formula:
dass_score_stress ~ allocation_group * visit + (1 | record_id)
Data: data_model_V1V3
                      logLik -2*log(L) df.resid
      AIC
               BIC
    908.9
              926.0
                      -448.5
                                 896.9
                                             121
Random effects:
Conditional model:
 Groups
          Name
                      Variance Std.Dev.
 record_id (Intercept) 0.7258
                               0.852
Number of obs: 127, groups: record_id, 75
Dispersion parameter for nbinom2 family (): 4.77
Conditional model:
                              Estimate Std. Error z value Pr(>|z|)
(Intercept)
                               2.32017
                                          0.17349 13.373
                                                          <2e-16 ***
allocation_groupGrupo B
                               0.19497
                                          0.23866 0.817
                                                            0.414
visit3
                              -0.05252
                                          0.16119 -0.326
                                                           0.745
allocation_groupGrupo B:visit3 -0.36916
                                          0.22956 -1.608
                                                            0.108
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(dass_score_stress_nb_model_sens)
 Family: nbinom2 (log)
```

Formula:

```
dass_score_stress ~ allocation_group * visit + (1 | record_id)
Data: dplyr::filter(data_model_V1V3, !record_id %in% influential_ids_nb)
     AIC
               BIC
                      logLik -2*log(L) df.resid
                      -417.5
                                 835.0
    847.0
             863.6
                                             111
Random effects:
Conditional model:
Groups
          Name
                      Variance Std.Dev.
record id (Intercept) 0.3768
                               0.6138
Number of obs: 117, groups: record_id, 70
Dispersion parameter for nbinom2 family (): 4.68
Conditional model:
                              Estimate Std. Error z value Pr(>|z|)
                                          0.14591 17.398 <2e-16 ***
(Intercept)
                               2.53856
allocation_groupGrupo B
                               0.11420 0.19884 0.574
                                                           0.566
visit3
                              -0.08659 0.16281 -0.532 0.595
allocation_groupGrupo B:visit3 -0.32208
                                          0.22939 -1.404
                                                             0.160
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# Compare performance
performance::compare_performance(
 dass_score_stress_nb_model,
 dass_score_stress_nb_model_sens
)
When comparing models, please note that probably not all models were fit
  from same data.
# Comparison of Model Performance Indices
Name
                                   Model | AIC (weights) | AICc (weights)
```

dass_score_stress_nb_model_sens | glmmTMB | 847.0 (>.999) | 847.8 (>.999)

| glmmTMB | 908.9 (<.001) | 909.6 (<.001)

dass_score_stress_nb_model

```
| BIC (weights) | R2 (cond.) | R2 (marg.)
Name
dass_score_stress_nb_model
                                 | 926.0 (<.001) |
                                                         0.754 |
                                                                       0.022
dass_score_stress_nb_model_sens | 863.6 (>.999) |
                                                         0.617 |
                                                                       0.033
Name
                                     ICC | RMSE | Sigma | Score_log | Score_spherical
                                 | 0.749 | 4.356 | 4.774 |
dass score stress nb model
                                                               -3.082 |
                                                                                   0.061
dass_score_stress_nb_model_sens | 0.604 | 5.033 | 4.682 |
                                                               -3.263 |
                                                                                   0.075
# Diagnostic checks
performance::check_model(dass_score_stress_nb_model)
`check_outliers()` does not yet support models of class `glmmTMB`.
         Posterior Predictive Check
                                                Misspecified dispersion and zero-inf
         Model-predicted intervals should include ob becaute that spiding the variance (green) should to
```


performance::check_model(dass_score_stress_nb_model_sens)

[`]check_outliers()` does not yet support models of class `glmmTMB`.

2.3.0.2 Médias Marginais Estimadas

2.3.0.2.1 Todos os dados

```
# Estimated marginal means on the response scale
dass_score_stress_nb_emm <- emmeans::emmeans(</pre>
  dass_score_stress_nb_model,
  ~ allocation_group * visit,
  type = "response"
# Pairwise contrasts by visit
emmeans::contrast(
  dass_score_stress_nb_emm,
  method = "pairwise",
         = "visit",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
visit = 1:
                                 df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                   ratio
 Grupo A / Grupo B 0.823 0.196 Inf
                                        0.515
                                                   1.31
                                                            1 -0.817 0.4140
visit = 3:
```

```
SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                  ratio
 Grupo A / Grupo B 1.190 0.321 Inf
                                   0.701
                                                2.02
                                                        1 0.645 0.5187
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
  dass_score_stress_nb_emm,
 method = "pairwise",
 by
       = "allocation_group",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                ratio
                         SE df asymp.LCL asymp.UCL null z.ratio p.value
 visit1 / visit3 1.05 0.170 Inf
                                    0.768
                                               1.45
                                                      1 0.326 0.7445
allocation_group = Grupo B:
                       SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                ratio
 visit1 / visit3 1.52 0.253 Inf
                                    1.102
                                               2.11
                                                      1 2.544 0.0110
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Plot marginal means
plot(dass_score_stress_nb_emm, comparisons = TRUE)
```


2.3.0.2.2 Análise de sensibilidade

```
# Estimated marginal means on the response scale
dass_score_stress_nb_emm_sens <- emmeans::emmeans(</pre>
  dass_score_stress_nb_model_sens,
  ~ allocation_group * visit,
  type = "response"
# Pairwise contrasts by visit
emmeans::contrast(
  dass_score_stress_nb_emm_sens,
  method = "pairwise",
        = "visit",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
visit = 1:
 contrast
                   ratio
                            SE df asymp.LCL asymp.UCL null z.ratio p.value
 Grupo A / Grupo B 0.892 0.177 Inf
                                       0.604
                                                   1.32
                                                           1 -0.574 0.5658
visit = 3:
 contrast
                   ratio
                            SE df asymp.LCL asymp.UCL null z.ratio p.value
 Grupo A / Grupo B 1.231 0.290 Inf
                                       0.776
                                                   1.95
                                                             0.883 0.3771
```

```
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Pairwise contrasts over time within each group
emmeans::contrast(
  dass_score_stress_nb_emm_sens,
 method = "pairwise",
 by = "allocation_group",
  adjust = "bonferroni"
) %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
 contrast
                       SE df asymp.LCL asymp.UCL null z.ratio p.value
 visit1 / visit3 1.09 0.178 Inf
                                    0.793
                                              1.50 1 0.532 0.5948
allocation_group = Grupo B:
                       SE df asymp.LCL asymp.UCL null z.ratio p.value
 contrast
                                              2.08 1 2.481 0.0131
 visit1 / visit3 1.50 0.248 Inf 1.090
Confidence level used: 0.95
Intervals are back-transformed from the log scale
Tests are performed on the log scale
# Plot marginal means
plot(dass_score_stress_nb_emm_sens, comparisons = TRUE)
```

Confidence level used: 0.95

2.3.0.3 Resultado

No modelo ajustado para o escore de estresse (DASS), não houve diferenças significativas entre os grupos em nenhum dos momentos avaliados (visita 1: razão = 0,823; IC 95%: 0,515–1,31; p = 0,414; visita 3: razão = 1,190; IC 95%: 0,701–2,02; p = 0,519). Ao longo do tempo, o grupo Eclipta apresentou redução significativa do escore de estresse entre visita 1 e visita 3 (razão = 1,52; IC 95%: 1,102–2,11; p = 0,011), enquanto o grupo placebo não mostrou mudança significativa (razão = 1,05; IC 95%: 0,768–1,45; p = 0,745).

Tabela: Razões dos escores de estresse (DASS) entre grupos e ao longo do tempo – Todos os dados {#tbl-dass_stress}

Grupo de comparação	Comparação	Razão	IC 95%	p-valor
Entre grupos	Visita 1	0,823	[0,515; 1,31]	0,414
Entre grupos	Visita 3	1,190	[0,701; 2,02]	0,519
Grupo Placebo	Visita 1 – Visita 3	1,05	[0,768; 1,45]	0,745
Grupo Eclipta	Visita 1 – Visita 3	1,52	[1,102; 2,11]	0,011

```
ggplot(
   data = data_model_V1V3,
   aes(
        x = as.factor(visit),
        y = dass_score_stress,
        group = record_id,
   )
) +
```

```
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "All data") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 62 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 62 rows containing missing values or values outside the scale range (`geom_point()`).

All data


```
data_model_V1V3 %>%
  filter(
    !(record_id %in%
    influential_ids_nb)
) %>%
  ggplot(
```

```
aes(
        x = as.factor(visit),
        y = dass_score_stress,
        group = record_id,
    )
) +
geom_line(alpha = 0.5) +
geom_point(alpha = 0.7) +
geom_smooth(
    aes(group = allocation_group),
    method = "lm",
    se = TRUE,
    linewidth = 1
) +
labs(title = "Sensitivity analysis") +
facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 57 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 57 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

3 ECAP

Variável: ecap_score

```
# Plot 1: Raw data
ecap_score_hist_1 <- data_model_V1V3 %>%

#filter(
    # ecap_score < 300
    #) %>%

ggplot(aes(x = ecap_score)) +
    geom_histogram(bins = 50, fill = "skyblue", color = "black")

# Plot 2: Log-transformed data
ecap_score_hist_2 <- data_model_V1V3 %>%

#filter(
    # ecap_score < 300
    #) %>%
    ggplot(aes(x = log1p(ecap_score))) +
    geom_histogram(bins = 50, fill = "lightgreen", color = "black")

# Combine side by side
ecap_score_hist_1 + ecap_score_hist_2 # library(patchwork)
```

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).

Removed 62 rows containing non-finite outside the scale range (`stat_bin()`).


```
# LMM
ecap_score_model <- lmer(ecap_score ~ allocation_group * visit +</pre>
(1 | record_id), data = data_model_V1V3)
check_collinearity(ecap_score_model)
# Check for Multicollinearity
Low Correlation
                   Term VIF VIF 95% CI Increased SE Tolerance
       allocation_group 1.10 [1.01, 1.74]
                                                  1.05
                                                              0.91
                  visit 1.93 [1.56, 2.55]
                                                  1.39
                                                              0.52
 allocation_group:visit 2.02 [1.63, 2.67]
                                                 1.42
                                                              0.49
 Tolerance 95% CI
     [0.58, 0.99]
     [0.39, 0.64]
     [0.37, 0.62]
# Sensitivity analysis
ecap_score_model_check <- sensitivity_check_lmer(</pre>
    model = ecap_score_model,
   id_var = "record_id",
   top_n = 5
# LMM Sensitivity
ecap_score_model_sens <- update(object = ecap_score_model,</pre>
                               subset = !(record_id %in%
        ecap_score_model_check$influential_ids))
# Influential IDS
ecap_score_model_check$influential_ids
[1] "5" "17" "27" "75" "32"
```

3.0.0.1 Resumo dos modelos

```
# Model comparison
summary(ecap_score_model)

Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]

Formula: ecap_score ~ allocation_group * visit + (1 | record_id)

Data: data_model_V1V3
```

REML criterion at convergence: 835.7 Scaled residuals: 1Q Median Min 3Q Max -2.13439 -0.37025 0.02934 0.38576 2.28808 Random effects: Groups Name Variance Std.Dev. record_id (Intercept) 49.51 7.037 Residual 16.21 4.026 Number of obs: 127, groups: record_id, 75 Fixed effects: Estimate Std. Error df t value Pr(>|t|) (Intercept) 17.703 1.333 86.599 13.283 < 2e-16 *** -2.834 allocation_groupGrupo B 1.872 86.599 -1.514 0.134 -4.804 1.077 53.296 -4.460 4.27e-05 *** visit3 allocation_groupGrupo B:visit3 1.516 1.550 53.783 0.978 0.332 Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1 Correlation of Fixed Effects: (Intr) all_GB visit3 allctn_grGB -0.712 -0.305 0.217 visit3 allctn_GB:3 0.212 -0.298 -0.695 summary(ecap_score_model_sens) Linear mixed model fit by REML. t-tests use Satterthwaite's method [lmerModLmerTest] Formula: ecap_score ~ allocation_group * visit + (1 | record_id) Data: data_model_V1V3 Subset: !(record_id %in% ecap_score_model_check\$influential_ids) REML criterion at convergence: 730.2

Scaled residuals:

Min 1Q Median 3Q Max -1.98686 -0.33484 0.05521 0.40898 1.87592

Random effects:

Groups Name Variance Std.Dev. record_id (Intercept) 48.405 6.957
Residual 8.068 2.840

Number of obs: 117, groups: record_id, 70

Fixed effects:

Estimate Std. Error df t value Pr(>|t|) (Intercept) 1.3284 74.1376 12.468 < 2e-16 *** 16.5625 -1.6941 1.8030 74.1376 -0.940 allocation_groupGrupo B 0.350 visit3 -4.0284 0.8468 46.2841 -4.757 1.95e-05 *** allocation_groupGrupo B:visit3 1.0129 1.1605 46.3772 0.873 0.387

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) all_GB visit3

allctn_grGB -0.737

visit3 -0.224 0.165

allctn_GB:3 0.164 -0.222 -0.730

ecap_score_model_check\$comparison_table

A tibble: 12 x 6

	Model	term		estimate	std.error	statistic	p.value
	<chr></chr>	<chr></chr>		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1	Original	(Intercept)		17.7	1.33	13.3	1.33e-22
2	Sensitivity	(Intercept)		16.6	1.33	12.5	7.09e-20
3	Original	allocation_groupGrupo	В	-2.83	1.87	-1.51	1.34e- 1
4	Sensitivity	allocation_groupGrupo	В	-1.69	1.80	-0.940	3.50e- 1
5	Original	allocation_groupGrupo	B:v~	1.52	1.55	0.978	3.32e- 1
6	Sensitivity	allocation_groupGrupo	B:v~	1.01	1.16	0.873	3.87e- 1
7	Original	sd(Intercept)		7.04	NA	NA	NA
8	Sensitivity	sd(Intercept)		6.96	NA	NA	NA
9	Original	sdObservation		4.03	NA	NA	NA
10	Sensitivity	sdObservation		2.84	NA	NA	NA

```
11 Original visit3 -4.80 1.08 -4.46 4.27e- 5
12 Sensitivity visit3 -4.03 0.847 -4.76 1.95e- 5
```

```
performance::compare_performance(
    ecap_score_model,
    ecap_score_model_sens)
```

When comparing models, please note that probably not all models were fit from same data.

Comparison of Model Performance Indices

performance::check_model(ecap_score_model)

performance::check_model(ecap_score_model_sens)

3.0.0.2 Médias Marginais Estimadas

3.0.0.2.1 Todos os dados

```
# Get EMMs for each group at each visit
ecap_score_raw_emm <- emmeans::emmeans(
    ecap_score_model,
    ~ allocation_group * visit
)</pre>
```

```
ecap_score_raw_emm <- regrid(ecap_score_raw_emm)</pre>
# Table of marginal means
# ecap_score_raw_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(ecap_score_raw_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
contrast
                  estimate SE
                                   df lower.CL upper.CL t.ratio p.value
Grupo A - Grupo B
                      2.83 1.87 86.8 -0.887
                                                  6.56 1.514 0.1337
visit = 3:
                                   df lower.CL upper.CL t.ratio p.value
contrast
                  estimate
                             SE
                      1.32 2.05 104.1 -2.741
                                                  5.38 0.644 0.5210
Grupo A - Grupo B
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(ecap_score_raw_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
contrast
          estimate
                           SE
                              df lower.CL upper.CL t.ratio p.value
visit1 - visit3
                    4.80 1.08 86.8
                                       2.66
                                               6.95 4.451 <.0001
allocation_group = Grupo B:
                           SE df lower.CL upper.CL t.ratio p.value
contrast
                estimate
                                               5.51 2.943 0.0042
visit1 - visit3
                    3.29 1.12 86.8
                                       1.07
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(ecap_score_raw_emm, comparisons = TRUE)
```

Warning: Comparison discrepancy in group "1", Grupo B visit1 - Grupo A visit3:

3.0.0.2.2 Análise de sensibilidade

```
# Get EMMs for each group at each visit (Sensitivity Analysis)
ecap_score_emm <- emmeans::emmeans(</pre>
   ecap_score_model_sens,
    ~ allocation_group * visit
)
ecap_score_emm <- regrid(ecap_score_emm)</pre>
# Table of marginal means
# ecap_score_emm
# Pairwise comparisons: Between groups at each visit
emmeans::contrast(ecap_score_emm,
method = "pairwise", by = "visit",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
visit = 1:
                                   df lower.CL upper.CL t.ratio p.value
 contrast
                   estimate
                              SE
                    1.694 1.80 74.9
 Grupo A - Grupo B
                                          -1.90
                                                    5.29 0.940 0.3505
visit = 3:
```

```
-3.13
                                               4.49 0.355 0.7231
Grupo A - Grupo B
                     0.681 1.92 88.9
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Pairwise comparisons: Changes over time within each group
emmeans::contrast(ecap_score_emm,
method = "pairwise", by = "allocation_group",
adjust = "bonferroni") %>% summary(infer = c(TRUE, TRUE))
allocation_group = Grupo A:
contrast
                                df lower.CL upper.CL t.ratio p.value
                estimate
                            SE
                                        2.34
                                               5.72 4.750 <.0001
visit1 - visit3
                    4.03 0.848 74.9
allocation_group = Grupo B:
contrast
                estimate
                            SE df lower.CL upper.CL t.ratio p.value
visit1 - visit3
                    3.02 0.795 74.9
                                        1.43
                                                 4.60 3.794 0.0003
Degrees-of-freedom method: inherited from kenward-roger when re-gridding
Confidence level used: 0.95
# Plot of marginal means
plot(ecap_score_emm, comparisons = TRUE)
Warning: Comparison discrepancy in group "1", Grupo A visit1 - Grupo B visit3:
    Target overlap = 0.0362, overlap on graph = -0.0243
Warning: Comparison discrepancy in group "1", Grupo B visit1 - Grupo A visit3:
    Target overlap = 0.5228, overlap on graph = -0.5748
```

estimate SE df lower.CL upper.CL t.ratio p.value

contrast

3.0.0.3 Resultado

No modelo ajustado para o escore de compulsão alimentar periódica (ECAP), não foram observadas diferenças significativas entre os grupos em nenhuma das visitas (visita 1: estimativa = 2,83; IC 95%: [-0,89; 6,56]; p = 0,134; visita 3: estimativa = 1,32; IC 95%: [-2,74; 5,38]; p = 0,521). Ao longo do tempo, ambos os grupos apresentaram redução significativa do escore de compulsão alimentar entre a visita 1 e a visita 3: Grupo Placebo (aumento médio de 4,80; IC 95%: [2,66; 6,95]; p < 0,001) e Grupo Eclipta (aumento médio de 3,29; IC 95%: [1,07; 5,51]; p = 0,004). A análise de sensibilidade confirmou esses achados sem alterações relevantes.

Tabela: Diferenças estimadas do escore de compulsão alimentar periódica (ECAP) entre grupos e ao longo do tempo – Todos os dados {#tbl-ecap score}

Grupo de comparação	Comparação	Estimativa	IC 95%	p-valor
Entre grupos	Visita 1	2,83	[-0,89; 6,56]	0,134
Entre grupos	Visita 3	1,32	[-2,74; 5,38]	0,521
Grupo Placebo	Visita 1 – Visita 3	4,80	[2,66; 6,95]	< 0,001
Grupo Eclipta	Visita 1 – Visita 3	3,29	[1,07; 5,51]	0,004

```
ggplot(
    data = data_model_V1V3,
    aes(
        x = as.factor(visit),
        y = ecap_score,
        group = record_id,
```

```
)
) +

geom_line(alpha = 0.5) +

geom_point(alpha = 0.7) +

geom_smooth(

aes(group = allocation_group),

method = "lm",

se = TRUE,

linewidth = 1
) +

labs(title = "All data") +

facet_wrap(~ allocation_group)
```

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 62 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 62 rows containing missing values or values outside the scale range ('geom_point()').

All data


```
data_model_V1V3 %>%
    filter(
        !(record_id %in%
        ecap_score_model_check$influential_ids)
```

```
) %>%
   ggplot(
       aes(
           x = as.factor(visit),
           y = ecap_score,
           group = record_id,
       )
   ) +
   geom_line(alpha = 0.5) +
   geom_point(alpha = 0.7) +
   geom_smooth(
       aes(group = allocation_group),
       method = "lm",
       se = TRUE,
       linewidth = 1
   ) +
   labs(title = "Sensitivity analysis") +
   facet_wrap(~ allocation_group)
`geom_smooth()` using formula = 'y ~ x'
```

Warning: Removed 57 rows containing non-finite outside the scale range (`stat_smooth()`).

Warning: Removed 10 rows containing missing values or values outside the scale range (`geom_line()`).

Warning: Removed 57 rows containing missing values or values outside the scale range (`geom_point()`).

Sensitivity analysis

4 Informações da Sessão

sessionInfo()

R version 4.4.1 (2024-06-14)

Platform: aarch64-apple-darwin20

Running under: macOS 15.5

Matrix products: default

BLAS: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRblas.0.dylib

LAPACK: /Library/Frameworks/R.framework/Versions/4.4-arm64/Resources/lib/libRlapack.dylib; LAPACK version

locale:

[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/Sao_Paulo

tzcode source: internal

attached base packages:

[1] stats graphics grDevices utils datasets methods base

other attached packages:

[1] broom.mixed_0.2.9.6 influence.ME_0.9-9 kableExtra_1.4.0.12

[4]	knitr_1.50	emmeans_1.11.1	patchwork_1.3.0
[7]	gt_1.0.0	performance_0.13.0	skimr_2.1.5
[10]	<pre>lmerTest_3.1-3</pre>	lme4_1.1-37	Matrix_1.7-0
[13]	readxl_1.4.3	<pre>lubridate_1.9.4</pre>	forcats_1.0.0
[16]	stringr_1.5.1	dplyr_1.1.4.9000	purrr_1.0.4
[19]	readr_2.1.5	tidyr_1.3.1	tibble_3.2.1
[22]	ggplot2_3.5.1	tidyverse_2.0.0	
loade	ed via a namespace (a	and not attached):	
[1]	tidyselect_1.2.1	DHARMa_0.4.7	<pre>viridisLite_0.4.2</pre>
[4]	glmmTMB_1.1.11	farver_2.1.2	fastmap_1.2.0
[7]	TH.data_1.1-3	bayestestR_0.15.3	digest_0.6.37
[10]	estimability_1.5.1	timechange_0.3.0	lifecycle_1.0.4
[13]	survival_3.7-0	magrittr_2.0.3	compiler_4.4.1
[16]	rlang_1.1.6	tools_4.4.1	utf8_1.2.4
[19]	yaml_2.3.10	labeling_0.4.3	xm12_1.3.8
[22]	repr_1.1.7	multcomp_1.4-28	withr_3.0.2
[25]	numDeriv_2016.8-1.1	datawizard_1.1.0	grid_4.4.1
[28]	future_1.34.0	xtable_1.8-4	colorspace_2.1-1
[31]	globals_0.16.3	scales_1.3.0	MASS_7.3-61
[34]	insight_1.2.0	cli_3.6.5	mvtnorm_1.3-3
[37]	rmarkdown_2.29	reformulas_0.4.1	generics_0.1.3
[40]	rstudioapi_0.17.1	tzdb_0.4.0	minqa_1.2.8
[43]	splines_4.4.1	parallel_4.4.1	cellranger_1.1.0
[46]	base64enc_0.1-3	vctrs_0.6.5	boot_1.3-31
[49]	sandwich_3.1-1	jsonlite_2.0.0	hms_1.1.3
[52]	pbkrtest_0.5.4	ggrepel_0.9.6	listenv_0.9.1
[55]	systemfonts_1.2.3	see_0.11.0	parallelly_1.44.0
[58]	glue_1.8.0	nloptr_2.2.1	codetools_0.2-20
[61]	stringi_1.8.7	gtable_0.3.6	munsell_0.5.1
[64]	furrr_0.3.1	pillar_1.10.2	htmltools_0.5.8.1
[67]	TMB_1.9.17	R6_2.6.1	textshaping_0.4.0
[70]	Rdpack_2.6.4	evaluate_1.0.3	lattice_0.22-6
[73]	backports_1.5.0	rbibutils_2.3	broom_1.0.7
[76]	Rcpp_1.0.14	svglite_2.2.1	coda_0.19-4.1
[79]	nlme_3.1-166	mgcv_1.9-1	xfun_0.52
[82]	zoo_1.8-14	pkgconfig_2.0.3	