Problem Set 4

Zong-Hong, Cheng

October, 2021

Answer 1.

Since a continuous preference relation has a continuous representation, say u. Notice that [0,1] is compact, so it attains its maximum. Let the maximum be x^* .

Suppose that $a < b \le x^*$, we have $x^* \succsim a$ by assumption on u and so $b \succ a$ by strong convexity. The other side is similar.

Answer 2.

Denote \succeq be the preference on the space. Let $S = \{s > 0 | (0, s) \succeq (1, 0)\}$. We discuss the problem by the behavior of S.

1. $S = \emptyset$:

We have that $\forall s \in \mathbb{R}^+$, $(0, s) \prec (1, 0)$. Let \succsim_1 be the preference with respect to the first commodity and \succsim_2 be the preference with respect to the second commodity. We claim that the preference for this case is the lexicographic preference \succsim' induced by \succsim_1 and \succsim_2 .

Let $(x_1, y_1), (x_2, y_2)$ be two different bundle. W.L.O.G, we suppose that $(x_1, y_1) \succ' (x_2, y_2)$. It suffices to prove that $(x_1, y_1) \succ (x_2, y_2)$

(1)
$$x_1 > x_2$$
:

By quasi-linearity on the first commodity, $(x_1, y_1) \succ (x_2, y_2)$ iff $(x_1 - x_2, y_1) \succ (0, y_2)$. Next, by homotheticity, $(x_1 - x_2, y_1) \succ (0, y_2)$ iff $(1, \frac{y_1}{x_1 - x_2}) \succ (0, \frac{y_2}{x_1 - x_2})$. Moreover, $(1, \frac{y_1}{x_1 - x_2}) \succ (0, \frac{y_2}{x_1 - x_2})$.

 $(1,0) \succ (0,\frac{y_2}{x_1-x_2})$ is known by strict monotonicity and assumption that $S=\emptyset$.

(2)
$$x_1 = x_2, y_1 > y_2 ::$$

By quasi-linearity on the first and the second commodity, $(x_1, y_1) \succ (x_2, y_2)$ iff $(0, y_1 - y_2) \succ (0, 0)$, which is straightforward by strict monotonicity.

2.
$$S = (0, \infty)$$
:

We have that $\forall s > 0, (0, s) \succ (0, \frac{s}{2}) \succsim (1, 0)$. Hence $\forall s > 0, (\frac{1}{s}, 0) \prec (0, 1)$.

Thus, $\forall t \in \mathbb{R}^+, (0,1) \succ (t,0)$. With a similar argument in $S = \emptyset$, we know that $\succeq = \succeq'$, where \succeq' is the lexicographic preference induced by \succeq_2 and \succeq_1 .

Notice that by strict monotonicity, if $S \neq \emptyset$, $(0, \infty)$, then $S = (m, \infty)$ or $[m, \infty)$ for some m > 0.

3.
$$S = (m, \infty)$$
:

We know that $(0,m) \prec (1,0)$ and for every $\epsilon > 0$, $(0,m+\epsilon) \succ (0,m+\frac{\epsilon}{2}) \succsim (1,0)$.

Rewrite tuple (x, y) as triple $(x, y, x + \frac{y}{m})$.

Let \succeq_3 be the preference represented by the utility function $u(x,y) = x + \frac{y}{m}$. We claim that \succeq is the lexicographic preference induced by \succeq_3 and \succeq_1 . Notice that the lexicographic preference satisfies strict monotonicity, quasi-linearity and homothecity.

By quasi-linearity on two commodities, it suffices to check the relation between (a, b), (0, 0), where $(a, b) \neq (0, 0)$ and (a, 0), (0, b), where $a, b \neq 0$. The first case is trivial.

For the second case, by homothecity, it suffices to check (1,0) and (0,t). One is easy to check the lexicographic preference meets \succeq .

4.
$$S = [m, \infty)$$
 and $(0, m) \succ (1, 0)$:

We have $(0, n) \prec (1, 0)$ if n < m. Hence we have $(0, 1) \succ (\frac{1}{m}, 0)$ and $(0.1) \prec (t, 0)$ if $t > \frac{1}{m}$. Notice that it just interchange the first and the second entry on the case $S = (m, \infty)$

Therefore, the preference is the lexicographic preference induced by \succsim_3 and \succsim_1 .

5.
$$S = [m, \infty)$$
 and $(0, m) \sim (1, 0)$:

We claim that \succeq_3 is the preference \succeq . To see this, notice that \succeq_3 is homothetic, strictly monotone and quasi-linear on two commodities.

With the same trick in 3., it suffices for us to check (0,t) and (1,0). Done!

Answer 3 One needs more benefit to give up same quantity of some commodity when one has less such commodity.

$$(1 \Longrightarrow 4)$$
 Let $(x_1, x_2) \sim (x_1 - \epsilon, x_2 + \delta_1) \sim (x_1 - 2\epsilon, x_2 + \delta_1 + \delta_2)$.

We have, by 1,
$$(x_1 - \epsilon, x_2 + \frac{\delta_1 + \delta_2}{2}) \gtrsim (x_1 - 2\epsilon, x_2 + \delta_1 + \delta_2).$$

By strong monotonicity, $\frac{\delta_1 + \delta_2^2}{2} \ge \delta_1 \Rightarrow \delta_2 \ge \delta_1$.

 $(4 \Longrightarrow 1)$ Suppose 4, by continuity, it suffices for us to prove that $x \succsim y \Rightarrow \lambda x + (1 - \lambda)y \succsim y$ for all $\lambda \in \mathbb{Q}$.

Let $\lambda = \frac{p}{q}$ and $(x_1, x_2) \succsim (y_1, y_2)$ be different bundles. We want to show that $\lambda(x_1, x_2) + (1 - \lambda)(y_1, y_2) \succsim (y_1, y_2)$

- (1) $x_1 \geq y_1, x_2, \geq y_2$: Staightforward by monotonicity.
- (2) $x_1 > y_1, x_2 < y_2$: For simplicity, write $x = (x_1, x_2)$ and y in similar manner. For $\theta \in [0, 1]$, there exists $\theta x \sim y$. For each $n = 1, \dots, q-1$, there exists α_n such that $(\frac{q-n}{q}\theta x_1 + \frac{n}{q}y_1, \alpha_n) \sim \theta x \sim y$

since
$$(\frac{q-n}{q}\theta x_1 + \frac{n}{q}y_1, 0) \lesssim y$$
 and $(\frac{q-n}{q}\theta x_1 + \frac{n}{q}y_1, y_2) \gtrsim x$. Notice that

$$\alpha_1 - \theta x_2 \le \alpha_2 - \alpha_1 \le \alpha_3 - \alpha_2 \le \dots \le y_2 - \alpha_{q-1} \Rightarrow \alpha_n \le \frac{q-n}{q}(\theta x_2) + \frac{n}{q}y_2$$

Therefore,
$$\lambda x + (1 - \lambda)y \gtrsim \lambda \theta x + (1 - \lambda)y \gtrsim (\frac{q - n}{q}\theta x_1 + \frac{n}{q}y_1, \alpha_n) \sim y$$
.
(3) $x_1 < y_1, x_2 > y_2$: Similar to (2).

Answer 4

Notice that $(0, \dots, 0, x_i, 0, \dots, 0) \sim (\alpha_i x_i, 0, \dots, 0)$ by reducing the problem to K = 2 with commodity 1 and commodity k. We have

$$(0, x_2, 0, \dots, 0) \sim (\alpha_2 x_2, 0, \dots, 0) \Rightarrow (x_1.x_2, \dots, x_K) \sim (x_1 + \alpha_2 x_2, 0, x_3, \dots, x_k)$$

for some $\alpha_i > 0$ by quasi-linearity on all commodities. Similarly,

$$(x_1.x_2, \dots, x_K) \sim (x_1 + \alpha_2 x_2, 0, x_3, \dots, x_k)$$

 $\sim (x_1 + \alpha_2 x_2 + \alpha_3 x_3, 0, 0, x_4, \dots, x_K) \sim \dots$
 $\sim (x_1 + \alpha_2 x_2 + \alpha_3 x_3 + \dots + \alpha_K x_k, 0, \dots, 0)$

By strong monotonicity, the preference can be represented by $\sum_{k=1}^{K} \alpha_k x_k$, where $\alpha_1 = 1$.

Answer 5

Let $T = \{t_2 + \dots + t_K | (0, t_2, \dots, t_K) \succ (s, 0, \dots, 0), \forall s > 0\}$. Suppose that $T \neq \emptyset$, let $m = \inf T$. Depending on whether $m \in T$, we discuss it in two parts.

 $1 \quad m \subset T$

Let $m = \sum_{k=2}^{K} m_k$ and $(0, m_2, \dots, m_K) \succ (s, 0, \dots, 0) \forall s > 0$. Notice that $(1, 0, 0, \dots, 0) \prec (0, m_2, \dots, m_K) \prec (1, m_2, \dots, m_K)$. So there exists some $\lambda \in (0, 1)$ such that $(1, \lambda m_2, \dots, \lambda m_K) \sim (0, m_2, \dots, m_K)$ by continuity.

Since $\sum_{k=2}^{K} \lambda m_k = \lambda m < m = \inf T$, there exists some $s^* > 0$ such that $(s^*, 0, \dots, 0) \succeq (0, \lambda m_2, \dots, \lambda m_K)$. Hence $(s^* + 1, 0, \dots, 0) \succ (0, \lambda m_2, \dots, \lambda m_K)$ by strict monotonicity in commodity 1 and

$$(s^* + 2, 0, \dots, 0) \succ (1, \lambda m_2, \dots, \lambda m_K) \sim (0, m_2, \dots, m_K)$$

by quasi-linearity in commodity 1. It leads to a contradiction.

2. $m \notin T$:

For all
$$n \in \mathbb{N}$$
, we have $y_n = (0, t_{n2}, \dots, t_{nK})$ with $\sum_{k=2}^K t_{nk} < m + \frac{1}{n}$ and $y_n \succ (s, 0, \dots, 0)$ for all

s > 0.

Notice that $y_n \in [0, m+1]^K$ for all n. Hence, there exists a converge subsequence. W.L.O.G, let y_n converges to L. Let $L = (L_1, L_2, \dots, L_K)$. Easy to see that $L_1 = 0$ and $L_2 + L_3 + \dots + L_K = m$. We have some $(s^*, 0, \dots, 0) \succeq L$ and so $(s^* + 1, 0, \dots, 0) \succ L$. By continuity, there exists an neighborhood B of L such that $y \in B \Rightarrow y \prec (s^* + 1, 0, \dots, 0)$, which contradicts to $y_n \to L$.

Conbining the two argument, we know that $T = \emptyset$, and there exists some $v((0, x_2, \dots, x_K))$ for x_2, \dots, x_K such that

$$(0, x_2, \cdots, x_K) \sim (v((0, x_2, \cdots, x_K)), 0, \cdots, 0)$$

by continuity. Moreover, let $v((x_1, x_2, \dots, x_K)) = x_1 + v((0, x_2, \dots, x_K))$, then the statement is proven by quasilinearity in commodity 1.

Answer 6

a.

$$(a_J, c_{-J}) \succ (b_J, c_{-J}) \iff \sum_{i \in J} v_i(a_i) + \sum_{k \notin J} v_k(c_k) \ge \sum_{i \in J} v_i(b_i) + \sum_{k \notin J} v_k(c_k)$$

$$\iff \sum_{i \in J} v_i(a_i) \ge \sum_{i \in J} v_i(b_i)$$

$$\iff \sum_{i \in J} v_i(a_i) + \sum_{k \notin J} v_k(d_k) \ge \sum_{i \in J} v_i(b_i) + \sum_{k \notin J} v_k(d_k)$$

$$\iff (a_J, d_{-J}) \succ (b_J, d_{-J})$$

b. We have $v_1(a) + v_2(b) \ge v_1(c) + v_2(d)$ and $v_1(c) + v_2(e) \ge v_1(f) + v_2(b)$. Adding these two, we have

$$v_1(a) + v_2(b) + v_1(c) + v_2(e) \ge v_1(c) + v_2(d) + v_1(f) + v_2(b)$$

Hence, $v_1(a) + v_2(e) \ge v_1(f) + v_2(d)$ and thus, $(a, e) \succeq (f, d)$.

c. Consider the preference relation represented by $u(x,y) = x + xy^2 + y$. It satisfies condition S clearly since it only has two variables. However, it is not separated. This can be see by $(5,2) \succeq (0,27), (0,7) \succeq (1,2)$ but $(5,7) \prec (1,27)$, contradicting Hexagon-condition.

Answer 7

- a. It is not differentiable since the improvement direction is not open, but it should be if it is differentiable.
- b. The indifference curves are straight lines.

To see this, pick any bundle x and pick y which y-x is perpendicular to v(x). Notice that $y \lesssim x$ since $y \notin D_{\gtrsim}(x)$. If $\delta \dot{v}(x) > 0$, then $((y-x)+\delta)\dot{v}(x) = \delta \dot{v}(x) > 0 \Rightarrow y+\delta \succsim x \succsim y \Rightarrow v(y) = v(x)$. Hence, by symmetry $y \succsim x$, which proves that the indifference curve is a straight line and moreover, perpendicular to v(x) for x on the curve.

c. \subseteq : If not, say there exists some $d \in D(x)$ such that $x - d \succeq x$. Notice that, by convexity, $x - \lambda d \succeq x$ for $\lambda \in (0,1)$. Since $-d\dot{v}(x) < 0$, there exists δ with $\delta_k > (-d)_k$ on every entry k but $\delta \dot{v}(x) < 0$. We have $x + \lambda \delta \succ x - \lambda d \succeq x$, so δ is an improvement direction, which contradicts to differentiability.

For the rest of the problem, consider the preference represented by u(x, y) = xy, the direction that perpendicular to v is in E but not in -D.

d. It is not continuous since $(\frac{1}{n}, \frac{3}{2}) \sim (\frac{1}{2} + \frac{1}{n}, \frac{1}{2})$ but $(0, \frac{3}{2}) \succ (\frac{1}{2}, \frac{1}{2})$. However, it is differentiable. It suffices to check the case that $x_1 + x_2 = 1$ and not hard to see that

However, it is differentiable. It suffices to check the case that $x_1 + x_2 = 1$ and not hard to see that $\delta_1 + \delta_2 > 0$ iff $x + \delta > x$. Hence $v(x_1, x_2) = \frac{1}{\sqrt{2}}(1, 1)$, done!