Вариант 1.		ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение линейного ОД	ЦУ <i>п</i> -го порядка.	(1 балл)
2.	Сформулировать и доказать теорему о струк нородного ОДУ n -го порядка.	туре общего решения лине	ейного неод- (3 балла)
 Ва	 риант 2.	mi ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	$\underline{n} = 2, \ \underline{max} = 4$ 2, PK2 (теория)
1.	Сформулировать определение определителя Вронского системы функций. (1 балл		хций. (1 балл)
2.	Вывести формулу для общего решения линейного однородного ОДУ 2-го порядка с постоянными коэффициентами в случае простых действительных корней характеристического уравнения. (3 балла $\min = 2$, $\max = 4$		
Ba		ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	
1.	Сформулировать определение общего решен	ия ОДУ <i>п</i> -го порядка.	(1 балл)
2.	Описать метод Лагранжа вариации произвол нородного ОДУ 2-го порядка и вывести сиспеременных.		
			$\underline{\underline{n} = 2}, \ \underline{\underline{max} = 4}$
Ba	риант 4.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение линейного ОД	ЦУ <i>п</i> -го порядка.	(1 балл)
2.	Вывести формулу для общего решения лине с постоянными коэффициентами в случае в ского уравнения.		
		<u>m</u> i	$\underline{n} = \underline{2}, \ \underline{max} = \underline{4}$
Ba	риант 5.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение линейной завсистемы функций на промежутке.	висимости и линейной нез	ависимости (1 балл)
2.	Сформулировать и доказать теорему о налоний линейного неоднородного ОДУ.	жении (суперпозиции) час	тных реше- (<i>3 балла</i>)
			$\underline{\underline{n}} = \underline{2}, \ \underline{\underline{max}} = \underline{4}$
Ba	риант 6.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение задачи Коши	для ОДУ <i>п</i> -го порядка.	(1 балл)
2.	Вывести формулу для общего решения лине с постоянными коэффициентами в случае и уравнения.		
		mi	n = 2, $max = 4$

Вариант 7.		ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1.	Сформулировать определение фундамен нородного ОДУ.	тальной системы решений линейного од (<i>1 балл</i>	
2.	Сформулировать и доказать свойства ч ОДУ.	астных решений линейного однородного (<i>3 балла</i>	
		$\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{$	
Bap	риант 8.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория	
1.	Сформулировать определение характеристического уравнения линейного ОДУ с стоянными коэффициентами. (1 ба.		
2.	Вывести формулу Остроградского - Лиуг	вилля для линейного ОДУ 2-го порядка. (<i>3 балла</i>)	
		$\underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} \underline{\qquad} $	
Bap	риант 9.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория	
1.	Сформулировать определение общего рег	пения ОДУ <i>п</i> -го порядка. (1 балл)	
2.	Сформулировать и доказать теорему о сурешений линейного однородного ОДУ n -	<u> </u>	
Вар	 риант 10.	$\min = 2, \ \max = 4$ ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория	
1.	Сформулировать определение задачи Ко	ши для ОДУ <i>п</i> -го порядка. (1 балл)	
2.	Сформулировать и доказать теорему о с нородного ОДУ n -го порядка.	труктуре общего решения линейного од (<i>3 балла</i>)	
Вар	 риант 11.	$\min = 2, \ \max = 4$ ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория	
1.	Сформулировать определение линейной системы функций на промежутке.	зависимости и линейной независимости (1 балл)	
2.	Вывести формулу для общего решения л с постоянными коэффициентами в случуравнения.		
- Bar	– – – – – – – – – – – – – – – – – – –	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория	
1.	Сформулировать определение определит	еля Вронского системы функций. (1 балл)	
2.	Вывести формулу для общего решения л с постоянными коэффициентами в случского уравнения.		

 Ba	риант 13. ИУ-РЛ-БМТ, 2020, ИиДУ, моду.	ль 2, РК2 (теория)
1.	Сформулировать определение фундаментальной системы решений л нородного ОДУ.	инейного од- (1 балл)
2.	Вывести формулу для общего решения линейного однородного ОДУ с постоянными коэффициентами в случае простых действительных к теристического уравнения.	
Ba	риант 14. ИУ-РЛ-БМТ, 2020, ИиДУ, модул	ль 2, PK2 (теория)
1.	Сформулировать определение задачи Коши для ОДУ n -го порядка.	(1 балл)
2.	Сформулировать и доказать теорему о наложении (суперпозиции) ча ний линейного неоднородного ОДУ.	астных реше- (<i>3 балла</i>)
		$\underline{\min} = \underline{2}, \ \underline{\max} = \underline{4}$
Ba	риант 15. ИУ-РЛ-БМТ, 2020, ИиДУ, модул	ль 2, РК2 (теория)
1.	Сформулировать определение линейного ОДУ n -го порядка.	(1 балл)
2.	Сформулировать и доказать теорему о вронскиане системы линейно частных решений линейного однородного ОДУ.	независимых (<i>3 балла</i>)
	MV DE EMT 2020 Mu DV 1000	$\underline{\min} = \underline{2}, \ \underline{\max} = \underline{4}$
Ва	риант 16.	ль 2, РК2 (теория)
Ва 1.	риант 16. Сформулировать определение определителя Вронского системы фун	
_	риант 10.	нкций. (1 балл)
1.	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>n</i> -го порядка.	нкций. $ (1 \textit{балл}) $ нейного неод- $ (3 \textit{баллa}) $ $ \underline{\min} = 2, \underline{\max} = 4 $
1. 2.	Риант 10. Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>n</i> -го порядка.	нкций. $ (1 \textit{балл}) $ нейного неод- $ (3 \textit{баллa}) $ $ \underline{\min} = 2, \underline{\max} = 4 $
1. 2.	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>n</i> -го порядка.	нкций. $ (1 \; \textit{балл}) $ нейного неод- $ (3 \; \textit{баллa}) $ $ \underline{\min} = 2, \; \underline{\max} = 4 $ ль 2, PK2 (теория)
1. 2. Ba	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>n</i> -го порядка. ———————————————————————————————————	нкций. (1 балл) нейного неод- (3 балла) min = 2, max = 4 ль 2, PK2 (теория) ного ОДУ с по- (1 балл)
1. 2. Ba 1.	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>п</i> -го порядка. ———————————————————————————————————	нкций. (1 балл) нейного неод- (3 балла) min = 2, max = 4 ль 2, PK2 (теория) пого ОДУ с по (1 балл) -го порядка.
1. 2. Ba 1.	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>п</i> -го порядка. ———————————————————————————————————	нкций. $ (1 \ балл) $ нейного неод- $ (3 \ балла) $ min = 2, max = 4 пь 2, PK2 (теория) ного ОДУ с по- $ (1 \ балл) $ -го порядка. $ (3 \ балла) $ min = 2, max = 4
1. 2. Ba 1.	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>n</i> -го порядка. ———————————————————————————————————	нкций. $ (1 \ балл) $ нейного неод- $ (3 \ балла) $ min = 2, max = 4 пь 2, PK2 (теория) ного ОДУ с по- $ (1 \ балл) $ -го порядка. $ (3 \ балла) $ min = 2, max = 4
1. 2. Ba 1. 2. Ba	Сформулировать определение определителя Вронского системы фун Сформулировать и доказать теорему о структуре общего решения лин нородного ОДУ <i>п</i> -го порядка. риант 17. Сформулировать определение характеристического уравнения линейн стоянными коэффициентами. Вывести формулу Остроградского - Лиувилля для линейного ОДУ 2 риант 18. ИУ-РЛ-БМТ, 2020, ИмДУ, модул	нкций.

Ba	риант 19.	— — — — — — — — — — — — — — — — — — —	2, PK2 (теория)
1.	Сформулировать определение характерист стоянными коэффициентами.	ического уравнения линейно	ого ОДУ с по (<i>1 балл</i>)
2.	Сформулировать и доказать теорему о в функций.	ронскиане системы линейно	зависимых (3 балла)
		<u>mi</u> ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	n = 2, max = 4 2, PK2 (теория)
ва	риант 20.		,
1.	Сформулировать определение фундаментальной системы решений линейного од нородного ОДУ. (1 балл		нейного од- (<i>1 балл</i>)
2.	Сформулировать и доказать теорему о супрешений линейного однородного ОДУ n -ге	- ·	ой системы (<i>3 балла</i>)
			$\underline{n} = \underline{2}, \ \underline{max} = \underline{4}$
Ba	риант 21.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	. 2, PK2 (теория <i>)</i>
1.	Сформулировать определение линейной з системы функций на промежутке.	ависимости и линейной нез	ависимости (1 балл)
2.	Сформулировать и доказать теорему о ст нородного ОДУ n -го порядка.	руктуре общего решения ли	нейного од- (<i>3 балла</i>)
			$\underline{n=2}, \underline{\max=4}$
Ba	риант 22.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение общего реш	ения ОДУ <i>п</i> -го порядка.	(1 балл)
2.	Описать метод Лагранжа вариации произв нородного ОДУ 2-го порядка и вывести о переменных.	• •	
		mi	$\underline{n} = 2$, $\underline{max} = 4$
Ba	риант 23.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение задачи Коп	и для ОДУ <i>п</i> -го порядка.	(1 балл)
2.	Вывести формулу для общего решения ли с постоянными коэффициентами в случас уравнения.	е кратных корней характері	истического (3 балла)
		mi	$\underline{n} = \underline{2}, \ \underline{max} = \underline{4}$
Ba	риант 24.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль	2, РК2 (теория)
1.	Сформулировать определение линейного (ЭДУ <i>п</i> -го порядка.	(1 балл)
2.	Сформулировать и доказать теорему о врематных решений линейного однородного		езависимых (<i>3 балла</i>)

Вариант 25.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение хараг стоянными коэффициентами.	ктеристического уравнения линейного ОДУ с по (1 балл)	
2. Вывести формулу Остроградского	- Лиувилля для линейного ОДУ 2-го порядка. $(\textit{3 балла})$	
	$\min = 2, \max = 4$	
Вариант 26.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение лине	ейного ОДУ <i>п</i> -го порядка. (1 балл)	
	ения линейного однородного ОДУ 2-го порядка в случае комплексных корней характеристиче- (3 балла)	
	$\min = 2, \max = 4$	
Вариант 27.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение опре	. Сформулировать определение определителя Вронского системы функций. (1 балл	
2. Сформулировать и доказать теорем нородного ОДУ n -го порядка.	лу о структуре общего решения линейного неод- (<i>3 балла</i>)	
	$\min = 2, \max = 4$	
Вариант 28.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение фун- нородного ОДУ.	даментальной системы решений линейного од- (1 балл)	
2. Вывести формулу для общего решения линейного однородного ОДУ 2-го поря с постоянными коэффициентами в случае простых действительных корней ха теристического уравнения. (3 ба		
	$\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{\underline{$	
Вариант 29.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение обще	его решения ОДУ n -го порядка. (1 балл)	
2. Сформулировать и доказать свойс ОДУ.	ства частных решений линейного однородного (3 балла)	
	$\underline{\underline{\underline{min}} = 2, \underline{\underline{max}} = 4}$	
Вариант 30.	ИУ-РЛ-БМТ, 2020, ИиДУ, модуль 2, РК2 (теория)	
1. Сформулировать определение зада	чи Коши для ОДУ <i>п</i> -го порядка. (1 балл)	
2. Сформулировать и доказать теорег нородного ОДУ <i>n</i> -го порядка.	му о структуре общего решения линейного од- (<i>3 балла</i>)	
	$\min=2, \max=4$	