Homework #2 - CS6823 - Network Security

- 1. [16 pts] What's the difference between:
 - a. Plaintext vs. Ciphertext

Plain text:

- Plain text is data in unencrypted, human readable format
- Plain text can be compromised by anyone in possession and knowing the language the message is made up of.

Cipher text:

- Cipher text is data or message in encrypted form usually with some method and a key, it is unreadable text, it maybe human readable format but is in meaning less state
- It is **meaning less without the key**, hence message can't be compromised with possession unless the key is obtained.

b. Encryption vs. Decryption

Encryption:

- It is the process of converting a plain text to a cipher text or encrypted text or meaning less state with the help of a key and any method
- It helps to protect the message (Both Confidentiality and Integrity)
- It inputs plain text and outputs an encrypted or unreadable form of the same message (hiding it with a key)

Decryption:

- It is the process of converting a cipher text or encrypted text or meaning less state messages into human readable messages.
- It helps in **obtaining the human readable** message from the encrypted or meaning less form.
- It inputs encrypted or cipher text and outputs plain text or human readable form of message

c. Symmetric Key Cryptography vs. Asymmetric Key Cryptography Symmetric Key Cryptography:

- The Same Key is used to Encrypt and Decrypt the message
- The process involves only one Key
- The communication is **compromised if the key** is known
- Both the Sender and Receiver should possess the key which makes it difficult to share the key

Asymmetric Key Cryptography:

- Two different keys are used to Encrypt and Decrypt the message
- The process involves 2 different keys A public and private key
- The connection is not compromised unless the private key is known. One of the key called public key is shared which cannot be used to compromise the communication
- Sharing the public key is an easy way as only the unshared private key can be used to decrypt the message

Srinivas Piskala Ganesh Babu - spg349 and N13138339

- d. Encryption Algorithm vs. Encryption Key Encryption Algorithm:
 - Algorithm is a method used to perform the encryption with a key
 - An algorithm elaborates steps needed to be done with the key and message to encrypt it or decrypt it
 - For an algorithm selected, it is required to stick to the rules and steps of the algorithm only

Encryption Key:

- Is the Entity that is used to perform an encryption based on any algorithm
- A Key is required to provide the output, encrypt and decrypt the plaintext and cipher text respectively
- A Key is mandatory to perform encryption and decryption of any message.
- There can be a number of keys for any selected algorithm.
- 2. [6 pts] Describe Cipher-text only attack, Known-plaintext attack, and Chosen-plaintext attack. *Cipher text Only Attack:
 - **Identify the structure of cipher and guess the Key** that may be used. (Number of Bits of cipher, Length)
 - Use the Guessed Keys and try to decrypt the cipher text with various keys unless a meaningful plain text is obtained

Cipher Text + (Random or Guessed Keys) -> Unless a Meaning full text is obtained

*Known- Plain Text Attack:

- The Cipher Text and Plain Text is obtained
- Information regarding the **Key and the Algorithm** is obtained by brute forcing various values of keys and methods.

Cipher Text + Plain Text -> Key or Algorithm Data matches the encrypt and decrypt

*Chosen-Plaintext Attack:

- Cipher text is obtained
- Randomly chosen or guessed plain text are used to encrypt with a chosen key and algorithm unless the cipher text matches the plain text

Chosen Plain Text + Encrypt (Algo + Key) => Unless it matches the Cipher text

- 3. [6 pts] Why is block ciphers "mode of operations" required for block ciphers such as AES

 *The block cipher mode of operations is required so that repeated messages don't produce the same cipher text.
 - *The **blocks that are same don't produce the same cipher text** rather than a different one to protect the cipher text from being analyzed to be repetition of any message
 - * To perform a mixture in the blocks of message leading to more ambiguity and encryption standards (Like shuffling a deck of cards)
- 4. [6 pts] Encrypt "NYU" with a Julius Caesar's Cipher of key -4 (negative 4).

Plain Text: M N O P Q R S T U V W X Y Z A B and Key = -4

Cipher Txt: I J K L M N O P Q R S T U V W X Y Z

Srinivas Piskala Ganesh Babu – spg349 and N13138339

5. [6 pts] Decrypt your result from the previous question to obtain the plaintext message. Show work.

Cipher Text: I J K L M N O P Q R S T U V W X Y Z Key = +4

Plain Text : M N O P Q R S T U V W X Y Z A B C D

JUQ == NYU

6. [6 pts] Encrypt "cyber"

Plaintext: abcdefghijklmnopqrstuvwxyz Ciphertext: mnbvcxzasdfghjklpoiuytrewq

Cyber == bwnco

7. [6 pts] Decrypt "jcuicb"

Plaintext: abcdefghijklmnopqrstuvwxyz Ciphertext: mnbvcxzasdfghjklpoiuytrewq

Jcuicb === netsec

8. [10 pts] Using the Vigenère Cipher with the key "NYU", encrypt "BLUE". Note: on an exam, you may be asked to perform this without being given the table.

| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z AABCDEFGHIJKLMNOPQRSTUVWXYZ B B C D E F G H I J K L M NOP Q R S T U V W X Y Z A CCDEFGHIJKLMNOPQRSTUVWXYZAB D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E GGHIJKLMNOPQRSTUVWXYZABCDEF H H I I K L M N O P Q R S T U V W X Y Z A B C D E F G IIIKLMNOPORSTUVWXYZABCDEFGH J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I K K L M N O P Q R S T U V W X Y Z A B C D E F G H I I LLMNOPQRSTUVWXYZABCDEFGHIJK M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N PPQRSTUVWXYZABCDEFGHIJKLMNO Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P RRSTUVWXYZABCDEFGHIJKLMNOPQ TTUVWXYZABCDEFGHIJKLMNOPQRS UUVWXYZABCDEFGHIJKLMNOPQRST VVWXYZABCDEFGHIJKLMNOPQRSTU WWXYZABCDEFGHIJKLMNOPQRSTUV XXYZABCDEFGHIJKLMNOPQRSTUVW YYZABCDEFGHIJKLMNOPQRSTUVWX Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

BLUE + NYU === OJOR

Srinivas Piskala Ganesh Babu - spg349 and N13138339

9. [10 pts] Using the Vigenère Cipher, decrypt "TPYRL" using the key "NYU".

```
| A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
AABCDEFGHIJKLMNOPQRSTUVWXYZ
BBCDEFGHIJKLMNOPQRSTUVWXYZA
CCDEFGHIJKLMNOPQRSTUVWXYZAB
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
GGHIJKLMNOPQRSDUVWXYZABCDEF
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
IIJKLMNOPQRSTUVWXYZABCDEFGH
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
LLMNOPQRSTUVWXYZABCDEFGHIJK
M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
NNOPORSTUVWXYZABCDEFGHIJKEM
O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P P Q R S T U V W X Y Z A B C D E F G H I I K L M N O
OORSTUVWXYZABCDEFGHIIKLMNOP
RRSTUVWXYZABCDEFGHIJKLMNOPQ
SSTUVWXYZABCDEFGHIJKLMNOPQR
TTUVWXYZABCDEFGHIJKLMNOPQRS
U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
XXYZABCDEFGHIJKLMNOPQRSTUVW
Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y
```

TPYRL + NYU = GREEN

10. [10 pts] Compute 77⁷ mod 15 without a calculator. Write out your calculations.

77⁷ mod 15 = 8

- 77^1 mod 15 = 2
- 77^2 mod 15 = (77^1 mod 15 * 77^1 mod 15) mod 15 = 4 mod 15 = 4
- 77^3 mod 15 = (77^1 mod 15 * 77^2 mod 15) mod 15 = 8 mod 15 = 8
- 77^4 mod 15 = 4*4 mod 15 = 1
- 77^7 mod 15 = (77^3 mod 15 * 77^4 mod 15) mod 15 = 8*1 mod 15 = 8

Use the following block cipher scheme for rest of the questions.

Input	Outpu
000	111
001	110
010	100
011	101
100	011
101	000
110	001
111	010

Srinivas Piskala Ganesh Babu – spg349 and N13138339

11. [6 pts] Without using Cipher Block Chaining (CBC), what's the Ciphertext for 011110001100?

```
011 - 101
110 - 001
001 - 110
100 - 011
```

The Cipher Text is 101001110011

12. [6 pts] Using CBC and an IV=101, what's the Ciphertext for 011110001100?

```
 \begin{array}{lll} \text{CT1} = \text{E(IV XOR PT1)} = & \text{E(101 xor 011)} = \text{E(110)} = 001 \\ \text{CT2} = & \text{E(CT1 XOR PT2)} = & \text{E(001 xor 110)} = & \text{E(111)} = 010 \\ \text{CT3} = & \text{E(CT2 XOR PT3)} = & \text{E(010 xor 001)} = & \text{E(011)} = 101 \\ \text{CT4} = & \text{E(CT3 XOR PT4)} = & \text{E(101 xor 100)} = & \text{E(001)} = 110 \\ \end{array}
```

⇒ 001010101110

13. [6 pts] Decrypt your answer in the previous question. Show work.

```
PT1 = D(CT1) XOR IV = D(001) XOR 101 = 110 XOR 101 = 011

PT2 = CT1 XOR D(CT2) = 001 XOR D(010) = 001 XOR 111 = 110

PT3 = CT2 XOR D(CT3) = 010 XOR D(101) = 010 XOR 011 = 001

PT4 = CT3 XOR D(CT4) = 101 XOR D(110) = 101 XOR 001 = 100
```

⇒ 011110001100