



**Universidade do Minho** Escola de Ciências

## Licenciatura em Ciências da Computação

|            | mento de Matemática e Aplicações  Teste 1 :: 9 de nove                                                                                                                                  | mbro de 2       | 2018                     |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------|--|
| Non        |                                                                                                                                                                                         |                 |                          |  |
|            | As respostas aos grupos I a V são dadas na folha do enunciado.<br>Nas perguntas de verdadeiro/falso cada resposta certa vale 0,75 valo<br>e cada resposta errada desconta 0,25 valores. | ores            |                          |  |
|            | I .                                                                                                                                                                                     |                 |                          |  |
| [2 va      | lores] Considere o conjunto $X = \{x \in \mathbb{Q} : 0 < x \le 1 \lor x = 2\}.$                                                                                                        |                 |                          |  |
| a)         | Apresente, caso existam, o supremo, o máximo, o ínfimo e o mínimo de $X.$                                                                                                               |                 |                          |  |
| b)         | Determine o interior, a aderência, o derivado e a fronteira de $\boldsymbol{X}$ .                                                                                                       |                 |                          |  |
|            | II                                                                                                                                                                                      |                 |                          |  |
|            | [3 valores] Considere a sucessão de termo geral $a_n=rac{2n-1}{n+1}$ . Em cada uma das que indique se a afirmação é verdadeira ou falsa.                                               |                 | estões seguintes,<br>V F |  |
| a)         | $rac{40}{21}$ é termo da sucessão $(a_n)_n$ .                                                                                                                                          | $\circ$         | $\bigcirc$               |  |
| <i>b</i> ) | $(a_n)_n$ é uma sucessão monótona crescente.                                                                                                                                            | $\circ$         | $\circ$                  |  |
| c)         | $\forall n \in \mathbb{N}, a_n \ge \frac{1}{2}.$                                                                                                                                        | $\bigcirc$      | $\bigcirc$               |  |
| d)         | $(a_n)_n$ é uma sucessão divergente.                                                                                                                                                    | $\bigcirc$      | $\bigcirc$               |  |
|            | III                                                                                                                                                                                     |                 |                          |  |
| [3 va      | lores] Em cada uma das questões seguintes, indique se a afirmação é verdadeir                                                                                                           | a ou falsa<br>V | a.<br>F                  |  |
| a)         | Se uma sucessão é convergente, qualquer sua subsucessão é convergente.                                                                                                                  | $\bigcirc$      | $\bigcirc$               |  |
| b)         | Seja $\sum_{n\in\mathbb{N}}a_n$ uma série convergente. A série gerada por qualquer subsucessão de                                                                                       | $(a_n)_n$ é     | uma                      |  |
|            | série convergente.                                                                                                                                                                      | $\bigcirc$      | $\bigcirc$               |  |
| c)         | Se $\sum_{n\in\mathbb{N}}a_n=1$ então $\sum_{n\in\mathbb{N}}(1+a_n)=2.$                                                                                                                 | $\circ$         | 0                        |  |
| d)         | Se $f$ é uma função bijetiva e contínua então $f^{-1}$ é também contínua.                                                                                                               | $\bigcirc$      | $\bigcirc$               |  |

[4 valores] Em cada uma das alíneas seguintes apresente um exemplo ou justifique porque não existe um tal exemplo.

- a) Um subconjunto não vazio de  $\mathbb{R}$ , finito
- b) Um conjunto X tal que  $X'=\{1\}.$
- c) Uma função  $f:\mathbb{R}\to\mathbb{R}$  tal que  $f(\mathbb{R})=\mathbb{Q}$ . d) Uma função  $f:[0,1]\to ]0,1]$  bijetiva.

٧

[4 valores] Considere a função  $f:[-1,5]\longrightarrow \mathbb{R}$  cujo gráfico se apresenta na figura anexa.

- a) Indique o contradomínio de f.
- b) Indique os pontos de mínimo local de f, mencionando os respetivos mínimos locais.



- c) Indique os pontos onde f é descontínua.
- d) Escolha o maior valor positivo para  $\delta$  de modo a que seja verdadeira a implicação seguinte:

$$0 < |x - 3| < \delta \Rightarrow |f(x) - 4| < 2.$$

VI

[4 valores] Todas as respostas deste grupo devem ser convenientemente justificadas.

- Questão 1. Calcule  $\lim_{x\to 0} \frac{\operatorname{tg}(2x)}{x\cos x}$ .
- Questão 2. Estude a natureza da série  $\sum_{n\in\mathbb{N}} \frac{(n+1)^n}{3^n n!}.$