MAT224 Linear Algebra

Definitions, Lemmas, Theorems, Corollaries and their related proofs

Tingfeng Xia

Winter 2019

© Copyright by Tingfeng Xia

Materials in this booklet are based heavily on Prof. Nicolas Hoell's lectures as well as A COURSE IN LINEAR ALGEBRA by David B. Damiano and John B. Little

The course website could be found here:

http://www.math.toronto.edu/nhoell/MAT224/

Contents

1	1 Vector Spaces		5
	1.1	(Real) Vector Space	5
	1.2	Sub-spaces	6
	1.3	Linear Combinations	7

4 CONTENTS

Chapter 1

Vector Spaces

1.1 (Real) Vector Space

- 1.1.1. **Definition of real vector space:** A real vector space is a set V together with scalar
 - (a) Closure under vector addition: an operation called vector addition, which for each pair of vectors $\vec{x}, \vec{y} \in V$ produces another vector in V denoted $\vec{x} + \vec{y}$, (i.e. $\forall \vec{x}, \vec{y} \in V, \vec{x} + \vec{y} \in V$) and
 - (b) Closure under scalar multiplication: an operation called multiplication by a scalar (a real number), which for each vector $\vec{x} \in V$, an each scalar $c \in \mathbb{R}$ produces another vector in V denoted $c\vec{x}$. (i.e. $\forall \vec{x} \in V, \forall c \in \mathbb{R}, c\vec{x} \in V$)

Furthermore, the two operations must satisfy the following axioms: (important)

- (a) $\forall \vec{x}, \vec{y}, \vec{z} \in V, (\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
- (b) $\forall \vec{v}, \vec{y} \in V, \vec{x} + \vec{y} = \vec{y} + \vec{x}$
- (c) $\exists \vec{0} \in Vs.t. \forall \vec{x} \in V, \vec{x} + \vec{0} = \vec{x}$ (Note that this property is a.k.a existence of additive identity)
- (d) $\forall \vec{x} \in V, \exists (-\vec{x}) \in V \ s.t. \ \vec{x} + (-\vec{x}) = \vec{0}$ (Note that this property is a.k.a existence of additive inverse)
- (e) $\forall \vec{x}, \vec{y} \in V, c \in \mathbb{R}, c(\vec{x} + \vec{y}) = c\vec{x} + c\vec{y}$
- (f) $\forall \vec{x} \in V, c, d \in \mathbb{R}, (c+d)\vec{x} = c\vec{x} + d\vec{x}$

- (g) $\forall \vec{x} \in V, c, d \in \mathbb{R}, (cd)\vec{x} = c(d\vec{x})$
- (h) $\forall \vec{x} \in V, 1\vec{x} = \vec{x}$
- 1.1.6. Propositions for a R-v.s. Let V be a vector space. Then
 - (a) The zero vector is unique. Note that it might not necessarily be actually the zero vector in \mathbb{R}^n that we are somewhat used to use.
 - (b) $\forall \vec{x} \in V, 0\vec{x} = 0$
 - (c) $\forall \vec{x} \in V$, the additive inverse is unique. Note that it might not necessarily be actually just (-1) times the vector in \mathbb{R}^n that we are somewhat used to use.
 - (d) $\forall \vec{x} \in V, \ \forall c \in \mathbb{R}, \ (-c)\vec{x} = -(c\vec{x})$

1.2 Sub-spaces

- 1.2.4. Usual definition of subspace applied to functions in $C^0(\mathbb{R})$. Note that by $C^n(\cdot)$ we mean the function in this set are all of Class n. Let $f, g \in C^0(\mathbb{R}), let c \in \mathbb{R}$. Then,
 - (a) $f + g \in C^0(\mathbb{R})$, and
 - (b) $cf \in C(\mathbb{R})$

The proof of this lemma relies on limit theorems of calculus.

- 1.2.6. (Intuitive) definition of (vector) subspace Let V be a vector space and let $W \subseteq V$ be a subset. Then W is a (vector) subspace if W is a vector subspace itself under the operations of vector sum and scalar multiplication from V.
- 1.2.8. Quick check rule for a subspace. Let V be a vector subspace, and let W be a **non empty** subset of V. Then W is a subspace of V if and only if $\forall \vec{x}, \vec{y} \in W$, $\forall c \in \mathbb{R}$, we have $c\vec{x} + \vec{y} \in W$.
- 1.2.9. Remark on the necessary condition of non-emptiness of subspace. According to the definition of vector space that we gave in 1.1.1, a vector space must contain an additive identity element, hence it is necessary that we ensure $W \subseteq V(\text{from 1.2.6})$ is not an empty set.

- 1.2.13. **Theorem: Intersection of sub-spaces is a subspace.** Let V be a vector space. Then the intersection of any collection of sub-spaces of V is a subspace of V.
- 1.2.14. Corollary: Hyper planes in \mathbb{R}^n are sub-spaces of \mathbb{R}^n . Let $a_{ij} (1 \le i \le m)$, let $W_i = \{(x_1, ..., x_n) \in \mathbb{R}^n | a_{i1}x_1 + ... + a_{in}x_n = 0, \ \forall 1 \le i \le m\}$. Then W is a subspace of \mathbb{R}^n .

1.3 Linear Combinations

- 1.3.1. **Definitions regarding L.C. and derived spans.** Let S be a subset of a vector space V, that is $S \subseteq V$.
 - (a) a linear combination of vectors in S is any sum $a_1\vec{x}_1 + ... + a_n\vec{x}_n$, where the $a_i \in \mathbb{R}$, and the $x_i \in S$.
 - (b) we define the Span of a set of vectors as follows to consider the special case of $S \stackrel{?}{=} \emptyset \in V$. Case1: $S \neq \emptyset$. In this case, we define Span(S) to be all possible linear combinations using vectors in S. Case2: $S = \emptyset$. In this case, we define $Span(S = \emptyset) = \{\vec{0}\}$
 - (c) If W = Span(S), we say S spans(or generates) W.
- 1.3.4. Span of a subset of a vector space is a subspace. Let V be a vector space and let S be any subset of V. Then Span(S) is a subspace of V.
- 1.3.5. Sum of sets(with application to subs-paces). Let $W_1 \wedge W_2$ be subspaces of a vector space V. The sum of W_1 and W_2 is the set

$$W_1 + W_2 := \{\vec{x} \in V | \vec{x} = \vec{x_1} + \vec{x_2}, \text{ for some } \vec{x_1} \in W_1, \vec{x_2} \in W_2\}$$

We think of the sum of the two sub-spaces (the two sets) as the set of vectors that can be built up from the vectors in W_1 and W_2 by linear combinations. Conversely, the vectors in the set $W_1 + W_2$ are precisely the vectors that can be broken down into the sum of a vector in W_1 and a vector in W_2 . One may find it helpful to view this as a analogue to a Cartesian product of the two set with a new constraint on the result.

- 1.3.6. **Example.** If $W_1 = \{(a_1, a_2) \in \mathbb{R}^2 | a_2 = 0\}$ and $W_2\{(a_1, a_2) \in \mathbb{R}^2 | a_1 = 0\}$, then $W_1 + W_2 = \mathbb{R}^2$, since every vector in \mathbb{R}^2 can be written as the sum of vector in W_1 and a vector in W_2 . For instance, we have (5, -6) = (0, 5) + (0, -6), and $(5, 0) \in W_1 \land (0, -6) \in W_2$
- 1.3.8. Proposition: The sum of spans of sets is the span of the union of the sets. Let $W_1 = Span(S_1)$ and $W_2 = Span(S_2)$ be sub-spaces of a (the same) vector space V. Then $W_1 + W_2 = Span(S_1 \cup S_2)$. Notice that the proof of this gave the important idea of mutual inclusion in proving sets are equal to each other.
- 1.3.9. The sum of sub-spaces is also a subspace. Let W_1 and W_2 be sub-spaces of a vector space V. Then $W_1 + W_2$ is also a subspace of V. *Proof:*

It is clear that W_1+W_2 is non-empty, since neither W_1 nor W_2 is empty. Let \vec{X}, \vec{y} be two vectors in W_1+W_2 , let $c \in \mathbb{R}$. By our choice of \vec{x} and \vec{y} , we have

$$c\vec{x} + \vec{y} = c(\vec{x}_1 + \vec{x}_2) + (\vec{y}_1 + \vec{y}_2)$$

= $(c\vec{x}_1 + \vec{y}_1) + (c\vec{x}_2 + \vec{y}_2) \in W_1 + W_2$

Since W_1 and W_2 are sub-spaces of V, we have $(c\vec{x}_1 + \vec{y}_1) \in W_1 \wedge (c\vec{x}_2 + \vec{y}_2) \in W_2$. Then by (1.2.8), we see that indeed $W_1 + W_2$ is a subspace of V. $Q.\mathcal{E}.\mathcal{D}$.

- 1.3.10. **Remark.** In general =, if W_1 and W_2 are subspaces of V, then $W_1 \cup W_2$ will not be a subspace of V. For example, consider the two sub-spaces of \mathbb{R}^2 given in example (1.3.6). In that case $W_1 \cup W_2$ is the union of two lines through the origin in \mathbb{R}^2 .
- 1.3.11. **Proposition.** Let W_1 and W_2 be sub-spaces of vector space V and let W be a subspace of V such that $W \supseteq W_1 \cup W_2$, then $W \supseteq W_1 + W_2$