

Universdad Nacional Autónoma de México

Lenguajes de Programacion Examen Parcial IV

- Edgar Montiel Ledesma 317317794
- Carlos Daniel Cortes Jimenez 420004846
- 1. Considera el siguiente programa en el lenguaje While:

```
new z = 0;

while (y \mid x + 1) do

(z := z + 1;

x := x - y)

end
```

- a) Ejecuta el programa en el estado en el que $\sigma(x) = 17$ y $\sigma(y) = 5$ ¿Cual es el estado resultante de la evaluación?
- b) Da un estado σ tal que si se evalua el programa anterior con dicho estado la evaluación se ciclaria infinitamente.
- 2. Extiende el lenguaje While con el operador:

for
$$x := a1$$
 to $a2$ do c

esto es:

- a) Modifica la estructura de la maquina W (agregando marcos, estados o transiciones) para evaluar la expresion for.
- b) Da las reglas de semantica estatica para verificacion de tipos para el nuevo operador for.
- c) ¿Es posible definir el operador for como azucar sintactica dentro del lenguaje While? justifica tu respuesta.
- 3. Decimos que dos programas en el lenguaje While son equivalentes (c1 \equiv w c2) si y solo si la ejecucion de ambos programas resulta en el mismo estado, es decir, si para todo estado de las variables σ , \blacklozenge \succ \langle c1, σ \rangle \rightarrow * W \blacklozenge \prec σ' y \blacklozenge \succ \langle c2, σ \rangle \longrightarrow *W \blacklozenge \prec σ' entonces c1 \equiv w c2.

Con la definicion de equivalencia anterior, demuestra o da un contraejemplo de lo siguiente:

- a) ≡w realmente es una relacion de equivalencia. Esto es, demuestra que la relacion ≡w es transitiva, reflexiva y simetrica.
- \overline{b}) $c; \overline{skip} \equiv w c$
- c) c1; c2 \equiv w c2; c1
- d) c1; (c2; c3) \equiv w (c1; c2); c3