

S4 - Option Propulsion

Combustion Fondamentale et application à l'aéronautique (HT41)

Djamel Karmed djamel.karmed@isae-ensma.fr

Avril 2018

Fluide-Thermique-Combustion
CNRS • Université de Poitiers • ENSMA •
UPR 3346
ENCMA • Téléport 2

Année 2017-2018

ENSMA • Téléport 2 1, avenue Clément Ader • BP40109 F86961 FUTUROSCOPE

Contenu du cours:

- Introduction de la combustion
- Généralités sur les écoulements réactifs à petit nombre de Mach
 - Grandeurs et systèmes thermodynamiques, mélange de gaz
 - Descriptions des phénomènes de combustion, flammes
 - Bilans de masse et d'énergie
- Introduction à la cinétique chimique de la combustion
 - Evaluation des taux de production chimique des espèces
 - Réactions globales et réactions en chaine, schémas cinétiques
 - Cinétique de combustion d'un mélange hydrogène-air
 - Cinétique de combustion d'un mélange méthane-air
 - Réactions globales pour la combustion des mélanges kérosène-air
- · Structure d'une flamme de diffusion
- Structure d'une flamme plane de prémélange
- Foyer de turboréacteurs

Introduction à La combustion :

Fait partie de l'Energétique

- Centrales thermiques (classiques) de production d'électricité
- Moteurs, propulseurs, turbines à gaz
- Procédés industriels (Chimie, pétrole, ciments, verre, papier ...)
- Chauffage domestique, industriel
- Incendie et sécurité

2000 : 70-80% de l'énergie mondiale

2050 : >50%

→ Science multidisciplinaire : combinée de sciences fondamentales

- Mécanique des fluides, Aérodynamique
- Thermodynamique, Thermique
- Chimie, Cinétique chimique

SPI

Caractérisation des phénomènes de combustion

5

Qu'est ce que la combustion?

La combustion résulte d'une interaction entre réactions chimiques **exothermiques**, **phénomènes de transports moléculaires** (diffusion, conduction thermique et viscosité), et **convection** dans la partie fluide du système (liquide ou gaz).

L'existence de réactions chimiques nécessite la présence simultanée (<u>mélange</u>) d'un <u>combustible</u> et d'un <u>oxydant</u>.

air pour un moteur d'avion, oxygène pur ${\it O}_2$ dans un moteur fusée

Hydrocarbures C_nH_m (kérosène pour les moteurs d'avions), hydrogène pour les moteurs fusées

Rappel: 1 mole d'air = (1 mole d'oxygène + 3.76 moles d'azote)/4.76 (29g)

La combustion se traduit par l'évolution d'un mélange d'espèces chimiques :

Exemple mettant en jeu 5 espèces:

- Avant combustion: air (O₂+N₂) + combustible
- Après combustion: produits de combustions: CO₂ +H₂O +
 O₂ +N₂+...

Cette évolution correspond à une transformation chimique que l'on peut représenter par une réaction globale:

 $air + v \times combustible \rightarrow produits + chaleur$

-

Combustion en milieu monophasique:

- Combustion des mélanges de gaz
- Dans de nombreux cas le combustible injecté sous forme de gouttes dans la chambre de combustion est **vaporisé avant** la combustion. Celle-ci concerne donc un mélange de gaz.

Exemples:

• Aéronautique : Turboréacteurs, statoréacteurs

· Automobile : Moteurs à allumage commandé

Combustion en milieu **diphasique** : combustion des liquides et des solides

Le combustible est solide ou liquide avant combustion, mais les produits de combustions sont gazeux

Exemples dans le domaine des systèmes propulsifs :

- Moteurs diésels : combustion d'un nuage de gouttes de combustible (brouillard) dans de l'air
- Boosters de fusée : combustion d'un mélange solide combustible + oxydant (prémélange solide) Propergols

dans les deux cas les produits de combustion (principalement eau et di-oxyde de carbone CO_2) sont à l'état gazeux.

Rappel sur les systèmes thermodynamiques (système V_c comprenant N espèces chimiques de masse totale m, d'énergie totale E)

Système isolé:

pas d'échange avec l'extérieur

Système fermé

Échange de chaleur seulement

Flux d'énergie (chaleur) dans la direction \overrightarrow{dS} :

 \vec{J}_q

E = constante $m = \sum_{1}^{N} m_{\alpha} = constante$

 $m_a = cst$: pas de réaction chimique $m_{\alpha} \neq cst$: réaction chimique

Flux de chaleur à travers (S) :

$$I_q = \iint \vec{J}_q \, \overrightarrow{dS}$$

m = constante

Rappel sur les systèmes thermodynamiques : Système ouvert

Système ouvert:

Échanges de chaleur, de masse et de quantité de mouvement avec l'extérieur de V_c

 $\Delta E, \Delta m, \Delta \overrightarrow{mV}$

Flux dans la direction \overrightarrow{dS} :

Energie: \vec{j}_q

Masse de l'espèce $\alpha: \vec{j}_{\alpha}$

Quantité de mouvement : $\bar{\bar{\tau}}$

Flux à travers (S) $\vec{l}_{q} = \iint \vec{j}_{q} \, d\vec{s}$ $\vec{l}_{\varphi} = \iint \vec{\tau} \, d\vec{s}$

Flux de la composante i du champ de vitesse dans la direction j

Caractéristiques d'un système réactif (1) (mélange constitué de N espèces)

Espèces chimiques

$$Y_{\alpha} = \frac{m_{\alpha}}{m}$$
 fraction massique de l'espèce α

$$C_{\alpha} = \frac{n_{\alpha}}{v_{c}} = \rho \frac{Y_{\alpha}}{M\alpha}$$
 concentration

$$ho_{lpha} = rac{m_{lpha}}{v_c}$$
 masse volumique de l'espèce $lpha$ (partielle)

masse volumique d'un
$$\underline{\text{m\'elange}}$$
 : $\rho = \sum_{\alpha=1}^{N} \rho_{\alpha} = \frac{m}{V_{c}}$

13

Caractéristiques d'un système réactif (2)

• Quantité de mouvement d'un mélange gazeux

$${\sf m} {ec V}({\it M},t) = \sum_{lpha} m_{lpha} {ec V}_{lpha}$$

 $\vec{V}(M,t)$: champ de vitesse au point M, de composantes $\{u_i\}$ $x_i = x, y, z$

$$\overrightarrow{V}(M,t) = \sum_{\alpha} Y_{\alpha} \overrightarrow{V}_{\alpha}_{14}$$

Caractéristiques d'un système réactif (3)

- Energie
- Enthalpie du mélange par unité de masse

$$h = \sum_{\alpha} h_{\alpha} Y_{\alpha}$$

$$(=\frac{H}{m})$$

 $h_{\alpha} = \int C_{P\alpha} dT + Q_{\alpha}{}^{0}$

(mélange de gaz parfaits)

 \mathcal{C}_{Plpha} : chaleur massique de l'espèce $\, lpha \,$ à pression constante Q_{lpha}^{0}: chaleur de formation de l'espèce lpha à la température T_0

$$\longrightarrow \boxed{h = \int \bar{C}_P dT + \sum_{\alpha} Q_{\alpha} Y_{\alpha}}$$

 $ar{\mathcal{C}}_{P} = \sum_{\pmb{lpha}} \mathcal{C}_{P \pmb{lpha}} Y_{\pmb{lpha}} \,\,$ est la chaleur massique du mélange

Enthalpie totale :
$$h_t = h + \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V}$$

Energie interne du mélange

$$e = \sum_{\alpha} e_{\alpha} Y_{\alpha} \quad (= \frac{E}{m}) = h - \frac{p}{\alpha}$$

(mélange de gaz parfaits)

 $\mathcal{C}_{V\alpha}$: chaleur massique de l'espèce α à volume constant $Q_{\alpha,V}^{0}$: chaleur de formation de l'espèce α à la température T_{0} et volume constant

$$e_{\alpha} = \int C_{V\alpha} dT + Q_{\alpha,V}^{0}$$

 $\bar{\mathcal{C}}_{V} = \sum_{\alpha} \mathcal{C}_{V\alpha} Y_{\alpha}$ est la chaleur massique du mélange à volume

Energie totale:

$$e_t = e + \frac{1}{2} \overrightarrow{V} \cdot \overrightarrow{V}$$

Notions de thermodynamique

Mélange réactif carburant-air

$$C_n H_m + z_{st} (0.21O_2 + 0.79N_2) \rightarrow nCO_2 + \frac{m}{2} H_2 O + iN_2$$
 à la stechiométrie

$$C_n H_m + z(0.21O_2 + 0.79N_2) \rightarrow xCO_2 + yH_2O + \dots$$
 Mélange quelconque

$$z_{st} = \frac{\left(n + \frac{m}{4}\right)}{0.21}$$

On appelle rapport dilution le rapport : $D = \frac{m_{air}}{D} = \frac{m_{air}}{D}$

$$D = \frac{m_{air}}{m_{a}} = \frac{Y_{air}}{Y_{a}}$$

Si l'écoulement est stationnaire :

$$D = \dot{m}_{air} / \dot{m}_c = Y_{air} / Y_c$$

$$D_{st} = \left(\dot{m}_{air} / \dot{m}_c\right)_{st} = \left(Y_{air} / Y_c\right)_{st}$$

On appelle richesse d'un mélange le rapport : $\varphi = \frac{D_{st}}{D} = \frac{Z_{st}}{Z_{st}}$

- Mélange pauvre en carburant (fuel lean φ < 1 mixture), excès d'oxygène CO2, H_2O , N_2 , O_2
- $\varphi = 1$ Mélange strict ou stœchiométrique CO2, H2O, N2
- Mélange riche en carburant (fuel rich mixture) $\varphi > 1$ CO2, H2O, N2, CO, H2

$$z_{st} = (n+m/4)/0.21 = (3+8/4)/0.21 = 5/0.21 = 23.8$$

$$D_{st} = 23.8 * 28.84 / 44 = 15.6$$

15.6 kg d'air pour brûler totalement 1 kg de propane

Conclusion: la flamme de prémélange a une dynamique propre, caractérisée par une vitesse de propagation:

la <u>vitesse de flamme (S_f)</u>.

L'existence de cette vitesse permet la <u>stabilisation</u> de la flamme dans un écoulement.

- $1 S_f$ dépend de la nature du mélange.
- 2 le positionnement de la flame dépend de l'écoulement.

Bilan de masse pour un **milieu gazeux** multi-composants

(mélange de N espèces chimique $\alpha, \beta, ...$)

Bilan de masse pour l'espèce α dans le volume V_c

• Taux de production chimique ω_{α} $(\alpha=1,N)$

pour un mélange de N espèces chimiques

ω_{lpha} est le <u>taux de production chimique</u> de l'espèce lpha :

soit la masse de l'espèce α crée ou détruite par unité de temps et de masse totale, par les réactions chimiques

 $\omega_{\alpha} > 0$ \rightarrow création $\omega_{\alpha} < 0$ \rightarrow destruction

Transport convectif et moléculaire. Expression des flux \vec{j}_{α} ($\alpha = 1, N$)

35

Loi de Fick pour un mélange binaire

$$\rho(\vec{V}_{\alpha} - \vec{V})Y_{\alpha} \approx -\rho D_{\alpha} \vec{\nabla} Y_{\alpha}$$

 D_{α} : coefficient de diffusion de l'espèce α dans le reste du mélange

(mélange des N-1 espèces restantes)

Exemple: Pour un mélange K + air (pauvre): L'air est l'espèce majoritaire $D_K \approx coefficient de diffusion de K dans l'air <math>D_{02} \approx coefficient de diffusion de O2 dans l'air$

D_{CO2} ≈ coefficient de diffusion de K dans l'air

etc..

Bilan de masse pour l'espèce α : équation locale

$$\iint_S \overrightarrow{J_lpha} dS = \iiint_{V_c} div \overrightarrow{J}_lpha dV$$
 (théorème de Green)

Bilan sur le volume V_c :

$$\frac{d}{dt} \iiint\limits_{V_c} \rho Y_\alpha dV_c + \iiint\limits_{V_c} div(\rho \vec{V} Y_\alpha + \vec{J}_\alpha) dV_c = \iiint\limits_{V_c} \rho \omega_\alpha dV_c$$

Equation locale (valide en un point M quelconque) :

$$\frac{\partial}{\partial t}(\rho Y_{\alpha}) + div(\rho \vec{V} Y_{\alpha} - \rho D_{\alpha} \vec{\nabla} Y_{\alpha}) = \rho \omega_{\alpha}, \quad \alpha = 1, N$$

Bilan de la masse totale

$$\sum_{\alpha} Y_{\alpha} = 1 \qquad \sum_{\alpha} \omega_{\alpha} = 0$$

$$\rho \vec{V}(M,t) = \sum_{\alpha} Y_{\alpha} \vec{V}_{\alpha} \qquad \sum_{\alpha} \vec{J}_{\alpha} = 0$$

$$\sum_{\alpha} \left\{ \frac{\partial}{\partial t} (\rho Y_{\alpha}) + div (\rho \vec{V} Y_{\alpha}) + div (\vec{J}_{\alpha}) \right\} = \sum_{\alpha} \rho \omega_{\alpha} = 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$\frac{\partial \rho}{\partial t} + div \rho \vec{V} = 0 \qquad (Équation de continuité)$$

$$\frac{\partial \rho}{\partial t} + div \rho \vec{V} = 0$$

- · Bilan d'énergie
- On suppose que l'élévation de la température du mélange est due uniquement aux réactions chimiques (globalement exothermiques).
- On suppose de plus qu'il n'y a pas de pertes thermiques (système **adiabatique**). On montre alors que, pour un système **isobare et stationnaire**, l'enthalpie est solution de l'équation de bilan suivante:

$$div[
ho \vec{V}h + rac{\lambda}{ar{C}_P} \vec{V}h] = 0$$

λ : coefficient de conductivité thermique du mélange

39

• Bilan d'énergie dans un système prémélangé stationnaire

Tenant compte de la conservation de la masse

$$div\rho \vec{V} = 0$$

$$\rho_1 V_1 A_1 = \rho_2 V_2 A_2$$

L'intégration de l'équation précédente entre les sections (1) et (2) conduit à :

$$h=h_1=h_2$$

Equation d'état du mélange de gaz

nombre de môles du mélange par unité de masse : $rac{n}{m} = \sum_{lpha} rac{Y_{lpha}}{M_{lpha}}$

$$p(\vec{x},t) = \rho RT \sum_{\alpha} \frac{Y_{\alpha}}{M_{\alpha}}$$

Approximation isobare $(M_a \ll 1)$:

$$\Longrightarrow$$

$$\rho RT \sum_{\alpha} \frac{Y_{\alpha}}{M_{\alpha}} = p_0 = Cst$$

41

Formulation générale de la température adiabatique de combustion T_{ad}

La température adiabatique est la température des produits de combustion d'un système réactif prémélangé évoluant à **enthalpie constante**. Elle dépend de la composition (richesse) et de la température du mélange frais)

$$\int_{T_0}^{T_r} \bar{C}_p dT + \sum_{\alpha} Q_{\alpha} Y_{\alpha r} = \int_{T_0}^{T_{ad}} \bar{C}_p dT + \sum_{\alpha} Q_{\alpha} Y_{\alpha b}$$

$$\int_{T_r}^{T_{ad}} \bar{C}_p dT = \sum_{\alpha} Q_{\alpha} (Y_{\alpha r} - Y_{\alpha b})$$

 $Y_{lpha r}$: composition du mélange frais

 Y_{ab} : composition des produits de combustion

Composition des gaz brûlés: cas d'une réaction globale

mélange
$$C_nH_m+air$$

$$K$$
réaction: $C_nH_m+\nu(O_2+3.76N_2)\to \frac{m}{2}H_2O+nCO_2+\nu\times 3.76N_2$

$$\nu=\frac{m}{2}+2n$$

nombre de môles de H2O formées/nombre de môles de combustible initiales = $\frac{m}{2}$ nombre de môles de CO2 formées/nombre de môles de combustible initiales = n

$$Y_{H2O,b} = \frac{m}{2} \frac{M_{H2O}}{M_K} Y_{K,0}$$

$$Y_{CO2,b} = n \frac{M_{CO2}}{M_K} Y_{K,0}$$

43

Température adiabatique de combustion Tad

Remarque: $T_{ad} \equiv T_{eq}$

eq : équilibre chimique correspondant à l'état final du processus réactionnel

- Pour une réaction globale irréversible, la composition des produits brûlés
 (à l'équilibre) se déduit immédiatement de l'état final , en mélange riche ou pauvre.
- S'il y a de nombreuses réactions chimiques réversibles, il faut des équations supplémentaires pour déterminer la **composition** à l'équilibre.

Exemples de calcul de température adiabatique de combustion, utilisant un schéma cinétique détaillé (Cf. le chapitre suivant)

richesse

Cinétique chimique de la combustion

- Expressions des taux de production chimiques ω_{α}
- Mécanismes réactionnels moléculaires

4

Evaluation des taux de production chimique ω_{α}

 $\rho\omega_{\alpha}$: masse de l'espèce α créée ou détruite par unité de temps et de volume, par l'ensemble des réactions chimiques en présence dans le milieu

On décrit la cinétique chimique comme constituée de R réactions **moléculaires** de la forme générale:

$$\nu_A'A + \nu_B'B \stackrel{+}{\longleftarrow} \nu_C''C + \nu_D''D \qquad r=1,R$$

+ : sens direct- : sens inverse

 v_{α}' coefficients stoechiométriques à gauche v_{α}'' coefficients stoechiométriques à droite

Evaluation des taux de production chimique ω_{α}

Par la réaction (r):

$$\rho\omega_{\alpha}=\,M_{\alpha}(\nu_{\alpha r}{''}-\nu_{\alpha r}{'})W_{r}\qquad\alpha=A,B,C,D$$

Par l'ensemble des réactions (r=1,R):

$$\rho\omega_{\alpha} = \sum_{r=1}^{R} M_{\alpha} (\nu_{\alpha r}^{"} - \nu_{\alpha r}^{"}) W_{r} \qquad \alpha = A, B, C, D$$

Expression du taux de réaction W, donné par la Loi d'Arrhénius:

$$W_r = k^+ C_A^{\nu'A} C_B^{\nu'B} \exp(-\frac{E^+}{RT}) - k^- C_C^{\nu''C} C_D^{\nu''D} \exp(-\frac{E^-}{RT})$$

 $egin{array}{ll} E^\pm &:& ext{\'e}nergies d'activation, sens direct et inverse \ k^\pm &:& ext{\it facteurs pr\'e-exponentiels, sens direct et inverse} \end{array}$

47

Exemple de schéma réactionnel : H_2 -air

En 1º approximation l'azote de l'air est considéré comme un quz inerte

- 1- Schéma global (évolution entre un état initial et un état final): $H_2+O_2 \longrightarrow H_2O$ + chaleur
- 2- Schéma réel (cinétique détaillée) espèces principales: H_2 , O_2 , H_2 O espèces radicalaires : O_2 H, OH

$$H_2 + O_2 \Longleftrightarrow 20H$$

$$H + O_2 \Longleftrightarrow 0 + 0H$$

$$0 + H_2 \Longleftrightarrow H + 0H$$

$$0H + H_2 \Longleftrightarrow H + H_2O$$

$$H + H + M \Longleftrightarrow H_2 + M$$

$$H + 0H + M \Longleftrightarrow H_2O + M$$

réactions **bi-moléculaires**

réactions **tri-moléculaires**

Taux de réaction pour le schéma réactionnel : H2-air

- Réactions bi-moléculaires :

$$W_{1} = k_{1}^{+}C_{H2}C_{O2}\exp(-\frac{E_{1}^{+}}{RT}) - k_{1}^{-}C_{OH}C_{OH}\exp(-\frac{E_{1}^{-}}{RT})$$

$$W_{2} = k_{2}^{+}C_{H}C_{O2}\exp(-\frac{E_{2}^{+}}{RT}) - k_{2}^{-}C_{O}C_{OH}\exp(-\frac{E_{2}^{-}}{RT})$$

$$W_{3} = k_{3}^{+}C_{H2}C_{O}\exp(-\frac{E_{3}^{+}}{RT}) - k_{3}^{-}C_{H}C_{OH}\exp(-\frac{E_{3}^{-}}{RT})$$

$$W_{4} = k_{4}^{+}C_{OH}C_{H2}\exp(-\frac{E_{4}^{+}}{RT}) - k_{4}^{-}C_{H}C_{H2O}\exp(-\frac{E_{4}^{-}}{RT})$$

- Réactions tri-moléculaires :

$$W_{5} = k_{5}^{+} C_{H} C_{H} C_{M} \exp\left(-\frac{E_{5}^{+}}{RT}\right) - k_{5}^{-} C_{H2} C_{M} \exp\left(-\frac{E_{5}^{-}}{RT}\right)$$

$$W_{6} = k_{6}^{+} C_{H} C_{OH} C_{M} \exp\left(-\frac{E_{6}^{+}}{RT}\right) - k_{6}^{-} C_{H2O} C_{M} \exp\left(-\frac{E_{6}^{-}}{RT}\right)$$

49

Exemple de données pour les constantes cinétiques :

Mécanisme de Jachimowski pour la combustion d'un mélange H₂-air

Mécanisme cinétique à 7 réactions et 6 espèces réactives

Espèces réactives :

H₂, O₂, H₂O, OH, H et O

Constantes de la loi d'Arrhénius :

Ré	actions
Ho	$+ O_2 \rightarrow 2 OH$
H2	$+$ OH \rightarrow H ₂ O $+$ H
OF	$I + H + M \rightarrow H_2O + M$
2 ($OH \leftarrow H_2O + O$
21	$1 + M \rightarrow H_2 + M$
H2	$+$ O \rightarrow OH $+$ H
00	$+ H \rightarrow OH + O$

Sens Direct						
Coeff. (A)	Exp. (b)	T° Act. (T_{α})				
1,70E+07	0	2,4248E+04				
3,16E+01	1.8	1,5259E+03				
2,21E+10	-2	0				
5,50E+08	0	1,5107E+03				
6,53E+05	-1	0				
2,07E+08	0	$6,9242E \pm 03$				
1,42E+08	0	8,2587E+03				

Coeff.	Exp.	T° Act.		
(A)	(b)	(T_n)		
2,7842E+04	0,3607	1,4629E+04		
8,9534E+02	1,5723	$9,3467E \pm 03$		
4,7292E+04	1,3131	5,0912E+04		
2,7972E+10	-0.2004	1,0486E+04		
6,1603E+04	0,9647	4,7207E+04		
1,1531E+08	-0,0273	5,7695E+03		
4,1703E+05	0,3905	-2,0517E+02		

Schéma réactionnel (réactions en chaîne)

Ensemble des réactions chimiques élémentaires, bi ou tri-moléculaires <u>réversibles</u> dont le mélange gazeux est le siège.

On peut caractériser 3 étapes principales dans la chaîne :

1- initiation de chaîne

Ces réactions cassent les molécules de combustible et air pour former des radicaux

Exemples:

$$\begin{array}{ccc} H_2 + O_2 & \Longleftrightarrow & 20H \\ CH_4 + OH & \Longleftrightarrow & CH_3 + H_2O \end{array}$$

2- branchement-propagation de chaîne

Caractérisées par de **grandes énergies d'activation** *E* (produisent et propagent les radicaux)

Exemples:

$$\begin{array}{ccc} H_2 + 0 & \Longrightarrow & OH + H \\ H_2 + OH & \Longrightarrow & H + H_2 O \end{array}$$

51

3- dissociation – recombinaison

-Réactions à faibles énergies d'activation

En général réactions tri-moléculaires faisant intervenir un « 3^e corps » *M*-Réactions **exothermiques** dans le sens de la recombinaison et **endothermiques** dans le sens de la dissociation (sens +)

Le phénomène de dissociation se produit donc principalement à haute température

Exemples:
$$H_2 + M \iff H + H + M$$

 $H_2O + M \iff H + OH + M$

M correspond à l'ensemble des espèces du mélange qui favorisent la réaction par *chocs élastiques* .

Exemple de schéma réactionnel pour l'hydrocarbure le plus simple: le **méthane (1)**

- Cas d'un mélange pauvre CH₄-air sans dissociation de l'azote de l'air:
 - soit 14 espèces:

$$CH_4$$
, CH_3 , CO_2 , CO , H_2CO , HCO , CO_2 , H_2 , O_2 , H_2O , HO_2 , OH , H_2O_2 , H , N_2

- 24 réactions chimiques bi et tri-moléculaires de la forme (r):

$$\nu_A'A+\nu_B'B \iff \nu_C''C+\nu_D''D \qquad r=1.R$$

$$W_r = A_{rf} C_A^{v''A} C_B^{v''B} T^{Bf} \exp(-\frac{E_f}{RT}) - A_{rb} C_C^{v''C} C_D^{v''D} T^{Bb} \exp(-\frac{E_b}{RT})$$

	culated by the authors using the forv	vard rate cons	tant give	en in the literatu	re cited and	the equilibrium	rate co	reactions marked onstant K_{je} tabul	ated in JAN.	AF tables. Stul	l et al. (1965)				
,	Reaction	Ajr	Bir	Eit	Temp (°K)†	Aja	B_{ib}	E_{ib}	Temp (°K)†	Source (Ref.)	Phase				
ı	$CH_4 + OH \rightleftharpoons CH_3 + H_2O$	5.0 × 10 ¹⁴	0	-9.9×10^{3}	300-2500	8.52 × 10 ¹³	0	-2.696×10^4	300-2500	Frist. & West.					
11	CH ₄ + H ≠ CH ₃ + H ₂	5.0 × 10 ¹⁴	0	-1.35×10^4	300-2500	1.8×10^{13}	0	-1.538 × 104	300-2500	Frist. & West.					
111*	CH ₄ + O ⇒ CH ₃ + OH	1.0 × 10 ¹³	0	-8.06×10^{3}	-	1.546 × 10 ¹¹	0	-8.067×10^3		Sawyer et al.	Phase (i) CH ₄ Dis- appearance				
ıv•	CH ₄ ≠ CH ₃ + H	1.0 × 1013	0	-8.5×10^{4}	1090-1720	1.026 × 1011	0	+1.698 × 104	1090-1720	Palmer et al.					
v*	$CH_4 + O_2 \rightleftharpoons CH_3 + HO_2$	1.0 × 10 ¹⁴	0	-5.5×10^4		1.479 × 1012	0	$+2.687 \times 10^{2}$		Frist. & West.					
vi•	$CH_4 + HO_2 \rightleftharpoons CH_3 + H_2O_2$	1.0 × 1010	0	ó	-	8.569 × 10 ⁸	0	+1.3 × 104		Sawyer et al.					
VII•	CH ₃ + O ⇌ H ₂ CO + H	1.9 × 1013	0	0	1203-1900	2.326 × 1014	0	-6.701 × 101	1200-1900	Sawyer et al.					
VIII*	CH ₂ + O ₂ ≠ H ₂ CO + OH	1.0 × 10 ¹¹	0	0	112	8.453 × 1010	0	-5.055×10^4	-	Frist. & West.	Phase (ii) CO				
ıx	H ₂ CO + OH ⇌ HCO + H ₂ O	2.4 × 10 ¹¹	0	-1.0×10^{3}	300-2500	9.3 × 10 ¹⁰	0	-4.422 × 10 ⁴	1000-2500	Frist. & West.	Production				
x*	HCO + OH ⇌ CO + H ₂ O	5.39 × 10 ¹²	-0.5	-5.04×10^{2}		1.174 × 1014	-0.5	-9.139×10^4	-	Sawyer et al.					
XI	CO + OH ⇒ CO ₁ + H	7.1 × 10 ¹²	0	-7.7×10^{3}		8.6 × 10 ¹⁴	0	-2.983 × 10 ⁴	1000-2500	Frist. & West.	Phase (iii) CO Destruction				
XII	$H_1 + OH \rightleftharpoons H_2O + H$	2.19 × 1013	0	-5.15×10^3	300-3000	8.41 × 10 ¹³	0	-2.01×10^4	300-3000	Baulch/2					
XIII	$H + O_2 \rightleftharpoons O + OH$	2.24 × 1014	0	-1.68 × 104	300-3000	1.3 × 10 ¹³	0	0	300-1500	Baulch/3	Branching mainly during phase (ii)				
XIV	$H_2 + O \Rightarrow H + OH$	1.74 × 10 ¹³	0	-9.45×16^{3}	400-3000	7.33 × 10 ¹²	U	-7.3×10^{3}	400-3000	Baulch/2					
xv	H ₂ O + O ⇌ OH + OH	5.75 × 10 ¹³	0	-1.8×10^{4}	300-3000	5.75 × 1012	0	-7.8×10^{2}	300-3000	Baulch/2					
xvi	$H + H + M \rightleftharpoons H_2 + M$	5.8 × 1018	-1.15	0	1330-1560	3.7 × 1014	0	-9.736 × 101	1330-1560	Jenkins et al.	143				
XVII	$O + O + M \rightleftharpoons O_2 + M$	4.7 × 1015	-0.28	0	1330-1560	5.1 × 1015	0	-1.15 × 10 ⁵	1330-1560	Jenkins et al.	Padical r				
XVIII	$O + H + M \rightleftharpoons OH + M$	5.3 × 1015	0	$+2.78 \times 10^{3}$	1330-1560	3.6 × 1015	0	-9.637×10^4	1330-1560	Jenkins et al.	Radical re- combination mainly during phase (iii)				
XIX	$H + OH + M \Rightarrow H_2O + M$	1.2 × 10 ¹⁷	0	$+5.0 \times 10^{2}$	1330-1560	9.2 × 10 ¹⁷	0	-1.177 × 10 ⁵	1330-1560	Jenkins et al.					
xx	$H + O_2 + M \rightleftharpoons HO_2 + M$	1.59 × 1015	0	$+1.0 \times 10^{3}$	300-2000	2.4 × 1015	0	-4.59 × 10 ⁴	300-2000	Baulch/3					
XXI	$H_2O_2 + M \rightleftharpoons OH + OH + M$	3.2 × 1016	0	-4.3 × 10 ⁴	950-1450	6.5 × 10 ¹¹	0	$+4.9 \times 10^{3}$	500-1000	Meyer et al.					
XXII*	$HO_2 + HO_2 \rightleftharpoons H_2O_2 + O_2$	4.57 × 1014	0	-1.345×10^4	300-1500	2.45 × 1015	0	-5.564 × 104	300-1500	Watson	Branching				
XXIII	$H_2O_2 + H \rightleftharpoons H_2O + OH$	3.18 × 1014	0	-9.0×10^{3}	500-1000	5.6 × 10 ¹³	0	-7.79 × 101	500-1000	Baulch/3	mainly during phase				
XXIV	$O_a + H_a \Rightarrow OH + OH$	8.0 × 1014	0	-4.5 × 10 ⁴	1330-1560	2.0 × 10 ¹³	0	-2.5 × 10 ⁴	1330-1560	Jenkins et al.					

Schémas cinétiques globaux pour les hydrocarbures lourds

$$K + nOx \rightarrow Produits$$

$$W = kC_K^a C_{Ox}^b T^a \exp(-\frac{E}{RT}) \qquad [moles - cm^{-3} - s^{-1}]$$

Exemple du **kérozène**: $C_{10}H_{22} + \frac{31}{2}O_2 \rightarrow 10CO_2 + 11H_2O$ $k=3.8\ 10^{11}$ $E=30\ kcal/môle$ a=0.25 b=1.5

- 2 réactions irréversibles

$$C_{n}H_{m} + (\frac{n}{2} + \frac{m}{4})O_{2} \rightarrow nCO + \frac{m}{2}H_{2}O \quad (1)$$

$$CO + \frac{1}{2}O_{2} \rightarrow CO_{2} \qquad (2)$$

$$W_{1} = k_{1}C_{K}^{\alpha 1}C_{02}^{b1} \exp(-\frac{E_{1}}{RT}) \qquad W_{2} = k_{2}C_{CO}^{\alpha 2}C_{02}^{b2}C_{H2O}^{c2} \exp(-\frac{E_{2}}{RT})$$

$$W_1 = k_1 C_K^{a1} C_{O2}^{b1} \exp(-\frac{E_1}{RT})$$
 $W_2 = k_2 C_{C0}^{a2} C_{O2}^{b2} C_{H20}^{c2} \exp(-\frac{E_2}{RT})$

Exemple du kérozène:
$$C_{10}H_{22}$$
 k_1 =4.7 10^{11} E_1 = 30 kcal/môle a_1 =0.25 b_1 =1.5 k_2 =14.6 E_2 = 40 kcal/môle a_2 =1.0 a_2 =0.25 c_2 =0.5

$$\frac{\partial \rho Y_{\alpha}}{\partial t} + \frac{\partial \rho u_{j} Y_{\alpha}}{\partial x_{j}} = \frac{\partial}{\partial x_{j}} \left(\rho D_{\alpha} \frac{\partial Y_{\alpha}}{\partial x_{j}} \right) + \omega_{\alpha}$$

$$\tau_{\rm ch} = [A(T) \exp(-E/RT)]^{-1}$$

$$\rho D \frac{\partial^2 Y}{\partial x^2} \sim \frac{\rho Y}{\tau_{ch}}$$

 ρ : masse volumique

$$\frac{D}{t^2} \sim \frac{1}{\pi}$$

D : coefficient de diffusion

 λ : conductivité thermique

Y: fraction massique

c_p: chaleur spécifique à pression constante

$$\frac{D}{l_{ch}^2} \sim \frac{1}{\tau_{ch}} \qquad \begin{array}{c} \lambda : \text{con} \\ Y : \text{frac} \\ c_p : \text{cha} \\ constan \\ l_{ch} \sim \sqrt{D\tau_{ch}} \sim \sqrt{\nu\tau_{ch}} \sim \sqrt{\frac{\lambda}{\rho c_p} \tau_{ch}} \text{ chimie} \\ \tau_{\text{ch}} : \text{ten} \end{array}$$

 l_{ch} : longueur caractéristique de la

 τ_{ch} : temps caractéristique de la chimie v: viscosité cinématique : $v = \mu / \rho$

Hypothèse de Burke-Schumann Chimie infiniment rapide (flamme infiniment mince)

$$au_{mec} \gg au_{ch}$$

Flamme laminaire de diffusion

Cinétique de combustion : une seule réaction globale irréversible

$$\sum \nu_{\alpha} K_{\alpha} \longrightarrow 0 + Q^{\nearrow}$$

$$\nu_c C + \nu_o O + \nu_p P \longrightarrow 0 + Q^{\nearrow}$$

 $\sum \nu_{\alpha}K_{\alpha} \longrightarrow 0 + Q^{\nearrow}$ $\nu_{c}V_{O2}, \nu_{D} : \text{coefficients}$ $V_{C}, \nu_{O2}, \nu_{D} : \text{coefficients}$ Steechiométriques molaires

$$V_r = \frac{1}{
u_{lpha}} \frac{dC_{lpha}}{dt} = A(T)e^{(-E/RT)}C_O^{n_O}C_C^{n_C}$$

Vitesse de la réaction en mole/m³/s

A(T) : facteur pré-exponentiel

E : l'énergie d'activation.

 C_O et C_C : concentrations de l'oxydant et du carburant

 $n_{\rm O}$ et $n_{\rm C}~$: les ordres partiels de la réaction par rapport à l'oxydant et au carburant.

$$PV = NRT$$
 $P_{\alpha}V = x_{\alpha}RT$ $\Rightarrow P_{\alpha} = X_{\alpha}P$

$$C_{\alpha} = \frac{x_{\alpha}}{V}$$
 $P_{\alpha} = C_{\alpha}RT$ $C_{\alpha} = X_{\alpha}\frac{P}{RT}$

$$Y_{\alpha} = X_{\alpha} \frac{\mathcal{M}_{\alpha}}{\mathcal{M}}$$

$$C_{\alpha} = \frac{Y_{\alpha} \mathcal{M} P}{\mathcal{M}_{\alpha} RT} = \frac{\rho Y_{\alpha}}{\mathcal{M}_{\alpha}}$$

61

$$\omega_\alpha = \mathcal{M}_\alpha \frac{dC_\alpha}{dt} = \nu_\alpha V_r \mathcal{M}_\alpha \quad \text{ Taux de production chimique d'une espèce α en kg/m3/s}$$

$$V_r = \frac{\omega_o}{\nu_o \mathcal{M}_0} = \frac{\omega_c}{\nu_c \mathcal{M}_c} = \frac{\omega_p}{\nu_p \mathcal{M}_p}$$

$$V_r = A(T)e^{(-E/RT)} \left(\frac{\rho Y_O}{M_O}\right)^{n_O} \left(\frac{\rho Y_C}{M_C}\right)^{n_C}$$

$$\omega_{\alpha} = \nu_{\alpha} \mathcal{M}_{\alpha} A(T) \left(\frac{\rho Y_O}{\mathcal{M}_O} \right)^{n_O} \left(\frac{\rho Y_C}{\mathcal{M}_C} \right)^{n_C} e^{(-E/RT)}$$

Hypothèses:

- $M \ll 1$ (vitesse de l'écoulement \ll célérité du son),
- l'écoulement est laminaire,
- $c_{p_{\alpha}} = c_p$ indépendant de la température,
- $\bullet\,$ un nombre de Lewis égal à l'unité ($\,\,{\cal L}_e = \frac{\lambda}{\rho c_p D} = 1)$

Dans ce qui suit on fait l'hypothèse d'un régime permanent $\frac{\partial g}{\partial t}=0$

63

Continuité

$$\frac{\partial \rho u_j}{\partial x_j} = 0$$

Quantité de mouvement

$$\frac{\partial \rho u_j u_i}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_i} - \frac{\partial p}{\partial x_i}$$

Fraction massique d'une espèce α

$$\frac{\partial \rho u_j Y_{\alpha}}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D_{\alpha} \frac{\partial Y_{\alpha}}{\partial x_j} \right) + \omega_{\alpha} \qquad \alpha = O, C, P$$

Enthalpie

$$\frac{\partial \rho u_j h}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial h}{\partial x_j} \right)$$

$$h = \int_{T^*}^T c_p dT + \sum_{\alpha=1}^N Y_\alpha h_{\alpha,F}^* \; ; \; cp = \sum_{\alpha=1}^N cp_\alpha Y_\alpha$$

$$h = c_p (T - T^*) + \sum_{\alpha=1}^N Y_\alpha h_{\alpha,F}^*$$

65

$$V_r = \frac{\omega_o}{\nu_o \mathcal{M}_0} = \frac{\omega_c}{\nu_c \mathcal{M}_c} = \frac{\omega_p}{\nu_p \mathcal{M}_p}$$

Soit l'opérateur

$$\mathcal{L}(\bullet) = \frac{\partial}{\partial x_j} \left(\rho u_j \bullet - \rho D \frac{\partial \bullet}{\partial x_j} \right)$$

$$\mathcal{L}(Y_o) = \omega_o = \nu_o \mathcal{M}_o V_r$$

$$\mathcal{L}(Y_c) = \omega_c = \nu_c \mathcal{M}_c V_r$$

$$\mathcal{L}\left(\frac{Y_c\nu_o\mathcal{M}_o}{\nu_c\mathcal{M}_c}\right) = \nu_o\mathcal{M}_oV_r$$

$$\phi = Y_o - sY_c$$

Variable de Schvab-Zeldovitch

$$s = \frac{\nu_o \mathcal{M}_o}{\nu_c \mathcal{M}_c}$$

 $s = \frac{\nu_o \mathcal{M}_o}{\nu_c \mathcal{M}_c}$ Coefficient stæchiométrique massique

$$\mathcal{L}\left(\phi\right)=0$$

$$\phi_{o,\infty} = Y_{o,\infty}$$
 Oxydant pur

$$\phi_{c,0} = -sY_{c,0}$$
 Carburant pur

67

Fraction de mélange Z – Grandeurs instantanées

$$Z = \frac{\phi - \phi_{o,\infty}}{\phi_{c,0} - \phi_{o,\infty}} = \frac{sY_c - Y_o + Y_{o,\infty}}{sY_{c,0} + Y_{o,\infty}}$$

à la stœchiométrie $Y_o \equiv Y_c \equiv 0$ $\Longrightarrow \phi = 0$

$$Z_{st} = -\frac{\phi_{o,\infty}}{\phi_{c,0} - \phi_{o,\infty}} = \frac{Y_{o,\infty}}{sY_{c,0} + Y_{o,\infty}}$$
$$Z = Z_{st} + \frac{\phi}{\phi_{c,0} - \phi_{o,\infty}}$$

$$Z = Z_{st} + \frac{\phi}{\phi_{c,0} - \phi_{o,\infty}}$$

$$\phi = (Z - Z_{st})(\phi_{c,0} - \phi_{o,\infty})$$

$$-\phi_{o,\infty} = Z_{st}(\phi_{c,0} - \phi_{o,\infty}) \qquad \phi_{c,0} - \phi_{o,\infty} = -\frac{\phi_{o,\infty}}{Z_{st}}$$

$$\phi = -\frac{\phi_{o,\infty}}{Z_{st}}(Z - Z_{st}) = \phi_{o,\infty}\left(1 - \frac{Z}{Z_{st}}\right) \qquad \text{en fonction de ϕ côté Oxydant pur}$$

$$\phi_{c,0} = \phi_{o,\infty} - \frac{\phi_{o,\infty}}{Z_{st}} = \frac{-\phi_{o,\infty}}{Z_{st}} (1 - Z_{st}) \qquad -\frac{\phi_{o,\infty}}{Z_{st}} = \frac{\phi_{c,0}}{1 - Z_{st}}$$

$$\phi = -rac{\phi_{o,\infty}}{Z_{st}}(Z-Z_{st}) = \phi_{c,0}rac{Z-Z_{st}}{1-Z_{st}}$$
 en fonction de ϕ côté Carburant pur

$$\phi = \phi_{o,\infty} \left(1 - \frac{Z}{Z_{st}} \right) = \phi_{c,0} \frac{Z - Z_{st}}{1 - Z_{st}}$$

Fraction massique

donc si :
$$Z \leq Z_{st} \implies Y_c = 0 \implies \phi = Y_o = \phi_{o,\infty} \left(1 - \frac{Z}{Z_{st}} \right) = Y_{o,\infty} \left(1 - \frac{Z}{Z_{st}} \right)$$

$$Z > Z_{st} \implies Y_o = 0 \implies \phi = -sY_c = \phi_{c,0} \frac{Z - Z_{st}}{1 - Z_{st}} = -sY_{c,0} \frac{Z - Z_{st}}{1 - Z_{st}}$$

$$Z \le Z_{st} \begin{cases} Y_C = 0 \\ Y_O = Y_{O,\infty} \left(1 - \frac{Z}{Z_{st}} \right) \end{cases}$$
$$Z > Z_{st} \begin{cases} Y_C = Y_{C,0} \frac{Z - Z_{st}}{1 - Z_{st}} \\ Y_O = 0 \end{cases}$$

$$Z > Z_{st} \left\{ \begin{array}{l} Y_C = Y_{C,0} \frac{Z - Z_{st}}{1 - Z_{st}} \\ Y_O = 0 \end{array} \right.$$

Température

(à partir de l'équation de l'enthalpie)

$$\frac{\partial \rho u_j c_p T}{\partial x_j} + \frac{\partial \rho u_j \sum Y_{\alpha} h_{\alpha,F}^*}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial c_p T}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial \sum Y_{\alpha} h_{\alpha,F}^*}{\partial x_j} \right)$$

$$\frac{\partial \rho u_j \sum Y_{\alpha} h_{\alpha,F}^*}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial \sum Y_{\alpha} h_{\alpha,F}^*}{\partial x_j} \right) + \sum h_{\alpha,F}^* \omega_{\alpha}$$

$$\frac{\partial \rho u_j c_p T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial c_p T}{\partial x_j} \right) - \sum h_{\alpha, F}^* \omega_{\alpha}$$

$$\frac{\partial \rho u_j T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\rho D \frac{\partial T}{\partial x_j} \right) - \frac{\sum h_{\alpha, F}^* \omega_{\alpha}}{c_p}$$

Q(J, cal) chaleur de la réaction écrite =enthalpie de formation des réactifs - enthalpie de formation des produits

$$Q = -\Delta_r H_F^*$$

 $\mathcal{L}\left(T\right) = \frac{V_r Q}{c_p} \qquad \mathcal{L}\left(Y_\alpha\right) = V_r \nu_\alpha \mathcal{M}_\alpha \qquad \mathcal{L}\left(\frac{Q}{c_p \nu_\alpha \mathcal{M}_\alpha} Y_\alpha\right) = \frac{V_r Q}{c_p}$ $\mathcal{L}\left(T - \frac{Q}{c_p \nu_\alpha \mathcal{M}_\alpha} Y_\alpha\right) = 0 \qquad \text{On définit une variable du côté carburant:}$ $\phi_1 = T - \frac{Q}{c_p \nu_c \mathcal{M}_c} Y_c \quad \mathcal{L}\left(\phi_1\right) = 0 \qquad Z_1 = \frac{\phi_1 - \phi_{1o,\infty}}{\phi_{1c,0} - \phi_{1o,\infty}}$ $\phi_{1o,\infty} = T_{o,\infty} - \frac{QY_{c,\infty}}{c_p \nu_c \mathcal{M}_c} = T_{o,\infty} \qquad Y_{c,\infty} = 0 \qquad \phi_{1c,0} = T_{c,0} - \frac{QY_{c,0}}{c_p \nu_c \mathcal{M}_c}$ $\text{si} \qquad T_{o,\infty} = T_{c,0} = T_f \Rightarrow \qquad T = T_f - \frac{QY_{c,0}}{c_p \nu_c \mathcal{M}_c} Z_1 + \frac{Q}{c_p \nu_c \mathcal{M}_c} Y_c$ $\text{Du côté oxydant} \qquad (Y_c \equiv 0) \qquad T = T_f - \frac{QY_{c,0}}{c_p \nu_c \mathcal{M}_c} Z_1$

$$\mathcal{L}\left(\phi_{2}\right)=0$$

$$\phi_2 = T - \frac{Q}{c_p \nu_0 \mathcal{M}_0} Y_0$$

$$Z_2 = \frac{\phi_2 - \phi_{2o,\infty}}{\phi_{2c,0} - \phi_{2o,\infty}}$$

$$\phi_{2o,\infty} = T_{o,\infty} - \frac{QY_{o,\infty}}{c_p \nu_o \mathcal{M}_o}$$

$$\phi_{2} = T - \frac{Q}{c_{p}\nu_{o}\mathcal{M}_{o}}Y_{o} \qquad Z_{2} = \frac{\phi_{2} - \phi_{2o,\infty}}{\phi_{2c,0} - \phi_{2o,\infty}}$$

$$\phi_{2o,\infty} = T_{o,\infty} - \frac{QY_{o,\infty}}{c_{p}\nu_{o}\mathcal{M}_{o}} \qquad \phi_{2c,0} = T_{c,0} - \frac{QY_{o,0}}{c_{p}\nu_{o}\mathcal{M}_{o}} = T_{c,0}$$

$$T = T_f - \frac{QY_{o,\infty}}{c_p \nu_o \mathcal{M}_o} (1 - Z_2) + \frac{Q}{c_p \nu_o \mathcal{M}_o} Y_o$$

La température du côté carburant $(Y_o \equiv 0)$ est calculée par:

si
$$T_{o,\infty} = T_{c,0} = T_f =$$

si
$$T_{o,\infty} = T_{c,0} = T_f \Rightarrow T_f = T_f - \frac{QY_{o,\infty}}{c_p \nu_o \mathcal{M}_o} (1 - Z_2)$$

$$Z \leq Z_{st} \begin{cases} Y_C \equiv 0 \\ Y_O = Y_{O,\infty} \left(1 - \frac{Z}{Z_{st}}\right) \\ T = T_f - \frac{QY_{C,0}}{c_p \nu c \mathcal{M}_e} Z \end{cases}$$
 Si Z, Z_1, Z_2 ont les mêmes conditions aux limites, alors pour un écoulement permanent $Z = Z_1 = Z_2$
$$Z > Z_{st} \begin{cases} Y_O \equiv 0 \\ Y_C = Y_{C,0} \frac{Z - Z_{st}}{1 - Z_{st}} \\ T = T_f - \frac{QY_{o,\infty}}{c_p \nu_o \mathcal{M}_o} (1 - Z) \end{cases}$$

$$Z > Z_{st} \begin{cases} Y_O \equiv 0 \\ Y_C = Y_{C,0} \frac{Z - Z_{st}}{1 - Z_{st}} \\ T = T_f - \frac{QY_{o,\infty}}{c_p \nu_o \mathcal{M}_o} (1 - Z) \end{cases}$$

$$\mathcal{L}(Y_{N_2})=0$$

$$Z = \frac{Y_{N_2} - Y_{N_2,\infty}}{Y_{N_2,o} - Y_{N_2,\infty}}$$

$$\mathcal{L}(Y_{N_2}) = 0$$

$$Z = \frac{Y_{N_2} - Y_{N_2,\infty}}{Y_{N_2,o} - Y_{N_2,\infty}}$$

$$Y_{N_2} = (Y_{N_2,o} - Y_{N_2,\infty}) Z + Y_{N_2,\infty}$$

$$Y_p = 1 - Y_c - Y_o - Y_{N_2}$$

$$Y_p = 1 - Y_c - Y_o - Y_{N_2}$$

Cas d'une chimie complexe :

Mêmes hypothèses mais avec plusieurs réactions élémentaires réversibles. Chimie infiniment rapide mais limitée par l'équilibre chimique. Les fractions massiques sont calculées à l'équilibre chimiques .

T, P, richesse fixée : pour N espèces, M équations de bilan \Rightarrow N-M équations Calcul d'équilibre chimique (Gaseq)

On montre la relation suivante entre la richesse et la fraction de mélange :

$$\varphi = \frac{Z(1 - Z_{st})}{Z_{st}(1 - Z)}$$

$$Y_{\alpha} = Y_{\alpha}^{eq}(Z)$$

Flamme de diffusion en présence de parois

Si la flamme se développe près d'une paroi solide non adiabatique (par exemple une paroi à température fixée), la température et la fraction massique n'ont plus les mêmes conditions aux limites : $\left(\frac{\partial Y_{\alpha}}{\partial n}\right)_{paroi} = 0$ mais $\left(\frac{\partial T}{\partial n}\right)_{paroi} \neq 0$. Dans ce cas, une variable supplémen-

taire, par exemple l'enthalpie réduite ($Z_2=\frac{h-h_{o,\infty}}{h_{c,0}-h_{o,\infty}}$) doit être introduite pour fermer le système.

$$R \to P + Q^{\uparrow}$$

$$\frac{\partial \rho u}{\partial x} = 0$$

$$\frac{\partial \rho u u}{\partial x} = \frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x} \right) - \frac{\partial p}{\partial x}$$

$$\frac{\partial \rho u Y_p}{\partial x} = \frac{\partial}{\partial x} \left(\rho D \frac{\partial Y_p}{\partial x} \right) + \omega_p$$

$$\frac{\partial \rho u c_p T}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + q \omega_p$$

Echelle de vitesse

$$\omega_p = \rho Y_p A e^{-E_a/RT} \quad {}_{(kg/m^3/s)} \qquad \qquad \text{temps chimique} \\ \tau_c = \left(A e^{-E_a/RT}\right)^{-1} \\ \omega_p = \frac{\rho Y_p}{\tau_c}$$

Continuité: $\rho u = cte$

Dans la zone de préchauffage des gaz frais (pas de combustion) : équilibre convection-diffusion

Flamme laminaire plane stationnaire: $S_L = u_f$

quantité de mouvement

$$\rho u \frac{\partial u}{\partial x} \sim \mu \frac{\partial^2 u}{\partial x^2} \Longrightarrow \rho S_L \frac{S_L}{\delta_L} \sim \mu \frac{S_L}{\delta_L^2} \qquad \delta_L \sim \frac{\mu}{\rho S_L} = \frac{\nu}{S_L}$$

$$\delta_L \sim \frac{\mu}{\rho S_L} = \frac{\nu}{S_L}$$

fraction massique des produits

$$\rho u \frac{\partial Y_p}{\partial x} \sim \rho D \frac{\partial^2 Y_p}{\partial x^2} \Longrightarrow \rho \frac{S_L}{\delta_L} \sim \frac{\rho D}{\delta_L^2} \qquad \qquad \delta_L \sim \frac{D}{S_L}$$

$$\delta_L \sim \frac{D}{S_L}$$

température

$$\rho u c_p \frac{\partial T}{\partial x} \sim \lambda \frac{\partial^2 T}{\partial x^2} \Longrightarrow \rho S_L c_p \frac{\Delta T}{\delta_L} \sim \lambda \frac{\Delta T}{\delta_L^2} \qquad \delta_L \sim \frac{\lambda}{\rho c_p S_L}$$

$$\delta_L \sim \frac{\lambda}{\rho c_p S_L} \sim \frac{D}{S_L} \sim \frac{\nu}{S_L}$$

$$\mathcal{L}e = \frac{S_c}{P_r}$$

$$\mathcal{L}e = \frac{\lambda}{\rho c_p D} = 1, \quad P_r = \frac{\mu c_p}{\lambda} = 1, \quad S_c = \frac{\mu}{\rho D} = 1$$

Dans la zone de combustion (voir TD combustion) : équilibre diffusion – production chimique

 $\begin{array}{ll} \text{fraction massique} \\ \text{des produits}: & \rho D \frac{\partial^2 Y_p}{\partial r^2} \sim \omega_p \sim \frac{\rho Y_p}{\tau_c} \Longrightarrow \rho D \frac{Y_p}{\delta_L^2} \sim \frac{\rho Y_p}{\tau_c} \end{array}$

$$\frac{D}{\delta_L^2} \sim \frac{1}{\tau_c} \Longrightarrow \frac{\delta_L^2}{\tau_c} \sim D$$

Equation de la température :

$$\lambda \frac{\partial^2 T}{\partial x^2} \sim q \omega_p \sim \frac{\rho Y_p}{\tau_c} q \Longrightarrow \lambda \frac{\Delta T}{\delta_L^2} \sim \frac{\rho c_p \Delta T}{\tau_c}$$
$$\frac{\lambda}{\delta_L^2} \sim \frac{\rho c_p}{\tau_c} \Longrightarrow \frac{\delta_L^2}{\tau_c} \sim \frac{\lambda}{\rho c_p}$$

$$\frac{\lambda}{\rho c_p} \sim D \Longrightarrow \mathcal{L}e = \frac{\lambda}{\rho c_p D} \sim 1$$

comme dans la zone thermique : $\delta_L \sim \frac{\lambda}{
ho c_p S_L}$

$$\delta_L \sim \frac{\lambda}{\rho c_p S_L}$$

$$\Longrightarrow \frac{\lambda}{\delta_L^2} \sim \lambda (\frac{\rho c_p S_L}{\lambda})^2 = \frac{(\rho c_p S_L)^2}{\lambda}$$

Avec: $\frac{\lambda}{\delta_L^2} \sim \frac{\rho c_p}{\tau_c} \implies \frac{1}{\tau_c} \sim \frac{\rho c_p S_L^2}{\lambda}$ $S_L^2 \sim \frac{\lambda}{\rho c_p \tau_c} \sim \frac{\lambda}{\rho c_p} \tau_c^{-1}$

$$S_L \sim \sqrt{\frac{\lambda}{\rho c_p} A e^{-E_a/RT}} \sim \sqrt{DA e^{-E_a/RT}} \sim \sqrt{\nu A e^{-E_a/RT}}$$

Echelle de vitesse S_L

Vitesse fondamentale en fonction de T et P

Flamme de prémélange caractérisée pour une richesse ϕ par :

une épaisseur : $\delta_L \sim \frac{\lambda}{\rho c_p S_L}$ $\lambda : \text{ conductivité thermique } c_p : \text{chaleur spécifique des gaz frais } \rho : \text{masse volumique des gaz frais}$

vitesse fondamentale : $S_L = S_{L,0} \left(\frac{T_f}{T_0} \right)^{\alpha} \left(\frac{p_f}{p_0} \right)^{\beta}$

 $S_{L,0}, \, \alpha$ et β dépendent de la nature du carburant et de la richesse du mélange

 $T_{\rm f}$, $p_{\rm f}$: température et pression dans les gaz frais

 T_0 , p_0 : température et pression de référence

S_{L,0} : vitesse fondamentale dans les conditions de référence

$$S_T = S_L f\left(\frac{k^{1/2}}{S_L}\right)$$

87

Variable d'avancement:

$$R \to P + Q^{\nearrow}$$

- M<<1
- Combustion adiabatique
- isobare
- Cp constant
- Le = 1

Equations de bilans de T et Y_P identiques Variable d'avancement :

$$c = Y_p = \frac{T - T_r}{T_p - T_r}$$

Taux d'expansion thermique :

$$\tau = \frac{T_p - T_r}{T_r}$$

Combustion dans l' air (5~7 selon richesse, carburant), T_r

Foyer homogène

Définition et conditions d'existence

Hypothèse : le mélange entre gaz frais (flux entrant) et gaz brûlés produits dans le réacteur est suffisamment intense pour que le fluide soit ${\bf homogène}$ dans le volume ${\it V}$

 A_1 : section d'entrée (mélange K + Ox) $(Y_{\alpha 1}, T_1)$

 A_2 : section de sortie (Gaz brûlés P) $(Y_{\alpha 2}, T_2)$ $m = \rho u A_1$: débit

Equations du réacteur homogène

- écoulement stationnaire
- Pas de pertes de chaleur à travers les parois du réacteur
- $M_a \ll 1$; $Le_\alpha \approx 1 \ \forall \alpha$

$$div(\rho \vec{U}Y_{\alpha}) + div\vec{J}_{\alpha} = \rho \omega_{\alpha}$$
$$div(\rho \vec{U}) = 0$$
$$h = \int \bar{C}_{p} dT + \sum_{\alpha} Q_{\alpha}Y_{\alpha} = cst$$

Une intégration sur le volume V conduit à:

$$\iint_{A_{2}} \rho \overrightarrow{U} Y_{\alpha} \overrightarrow{dA} - \iint_{A_{1}} \rho \overrightarrow{U} Y_{\alpha} \overrightarrow{dA} = \iiint_{V} \rho \omega_{\alpha} dV$$

$$\iint_{A_{2}} \rho \overrightarrow{U} \overrightarrow{dA} - \iint_{A_{1}} \rho \overrightarrow{U} \overrightarrow{dA} = 0$$

$$h_{2} = h_{1}$$

Equations du réacteur homogène (2)

$$\rho_{1}u_{1}A_{1} = \rho_{2}u_{2}A_{2} = m$$

$$m(Y_{\alpha 2} - Y_{\alpha 1}) = \rho_{2}V\omega_{\alpha}(p_{2}, T_{2}, Y_{\alpha 2})$$

$$T_{2} - T_{1} = -\frac{1}{\bar{C}_{p}}\sum_{\alpha}Q_{\alpha}(Y_{\alpha 2} - Y_{\alpha 1})$$

$$\oplus$$
 équation d'état $ho T \sum_{lpha} rac{Y_{lpha}}{M_{lpha}} =
ho_1 T_1 \sum_{lpha} rac{Y_{lpha 1}}{M_{lpha}} =
ho_2 T_2 \sum_{lpha} rac{Y_{lpha 2}}{M_{lpha}} = p_2$

 $m, Y_{\alpha 1}$ et T_1 sont les données d'entrée du réacteur

$$Y_{\alpha 2} - Y_{\alpha 1} = t_s \omega_{\alpha} = t_s \sum_{r=1}^{R} M_{\alpha} (v_{\alpha r}^{"} - v_{\alpha r}^{"}) \frac{W_{\tau,2}}{\rho_2}$$

$$T_2 - T_1 = -\frac{t_s}{\bar{C}_p} \sum_{\alpha} Q_{\alpha} \sum_{r=1}^R M_{\alpha} (v_{\alpha r}^{"} - v_{\alpha r}^{"}) \frac{W_{r,2}}{\rho_2}$$

Chaleur de réaction associée
$$\Delta Q_r = \sum_{\alpha} Q_{\alpha} M_{\alpha} (v_{\alpha r}'' - v_{\alpha r}')$$
 À la réaction r :

$$T_2 - T_1 = -\frac{t_s}{\bar{C}_p} \sum_{r=1}^R \Delta Q_r \frac{W_{r,2}}{\rho_2}$$

$$Y_{\alpha 2} - Y_{\alpha 1} = t_s \sum_{r=1}^R M_{\alpha} (v_{\alpha r}'' - v_{\alpha r}') \frac{W_{r,2}}{\rho_2}$$

$$W_{r,2} \equiv W_r (p_2, T_2, Y_{\alpha 2})$$

Ce système constitue un système d'équations algébrique non linéaires Pour déterminer la composition $Y_{\alpha 2}$ et la température T_2 dans le réacteur

10

Cas d'une réaction globale unique

Soit un mélange <u>pauvre</u> combustible $CH_4 + oir$ réagissant suivant une réaction **globale** unique (l'azote N_2 est considéré comme un <u>gaz inerte</u> $Y_{N,2} = cst$):

$$CH_4 + 2(O_2 + 3.76N_2) \rightarrow P$$
 (r)
 $P \equiv CO_2 + 2H_2O + 7.52N_2$

Le taux de production associé à la réaction (r) est :

$$W_T = kT^n C_{O2} C_{CH4} \exp(-\frac{T_a}{T})$$

 $T_a = E_a/R$ température d'activation

Équations pour la composition dans le réacteur $Y_{\alpha 2}$:

$$Y_{K2} - Y_{K1} = -t_s M_K \frac{W_{r,2}}{\rho_2}$$

$$Y_{O2,2} - Y_{O2,1} = -2t_s M_{O2} \frac{W_{r,2}}{\rho_2}$$

$$Y_{P} = 1 - Y_{CH4,2} - Y_{O2,2} - Y_{N2}$$

Équations pour la température dans le réacteur T_2 :

$$T_2 - T_1 = -\frac{t_s}{\bar{C}_p} \Delta Q_r \frac{W_{r,2}}{\rho_2}$$

Solutions du système :

$$x = t_s \frac{W_{r,2}}{\rho_2} \longrightarrow$$

$$\begin{cases} Y_{K2} - Y_{K1} = -M_K x \\ Y_{O2,2} - Y_{O2,1} = -2M_{O2} x \\ T_2 - T_1 = -\frac{1}{\bar{C}_p} \Delta Q_r x \end{cases}$$

Equation pour x : $x/t_s p_2 = k' T_2^{n-1} Y_{CH4,2} Y_{O2,2} \exp(-T_a/T_2) \equiv g(x)$

Point de fonctionnement du réacteur homogène :

- $t_s < t_{sc}$ pas de solution (le débit est trop fort ou le volume trop petit)
- $t_s = t_{sc}$ solution limite (le débit est le débit critique pour V donné)
- $t_s > t_{sc}$ 3 une solution stable au point de fonctionnement $x = x_f$

Remarque: si la pression p varie, g(x) reste invariant; il existe donc une limite de fonctionnement dépendant de la pression (via x/t_sp)

