[2019–2020] группа: Г**еОМ-10** 19 мая 2020 г.

Серия 26. Движение точек и однородные координаты

Заведём на плоскости с декартовыми координатами (X,Y) однородные координаты (x:y:z) так, чтобы $X=\frac{x}{z},Y=\frac{y}{z}$.

Определение. Будем говорить, что подвижная точка P_t имеет степень зависимости k (от времени $t \in \mathbb{R}P$), если существуют такие многочлены $P_x(t), P_y(t), P_z(t)$ степени не выше k, что однородные координаты точки P_t равны $(P_x(t):P_y(t):P_z(t))$. Аналогично, подвижная прямая ℓ_t имеет степень зависимости k, если существуют такие многочлены $L_A(t), L_B(t), L_C(t)$ степени не выше k, что прямая ℓ_t в однородных координатах задаётся уравнением $L_A(t)x + L_B(t)y + L_C(t)z = 0$.

Лемма 1 (о сложении степеней).

- Прямая, соединяющая две точки степеней зависимости k и l, имеет степень зависимости k+l.
- Точка пересечения двух прямых со степенями зависимости k и l имеет степень зависимости k+l.

Лемма 2.

- Предположим, что точка $P_t \in \mathbb{R}P^2$ движется по некоторой прямой с сохранением двойных отношений. Тогда её однородные координаты линейные функции от t.
- Пусть прямая $\ell_t \subset \mathbb{R}P^2$ вращается вокруг некоторой точки с сохранением двойных отношений. Тогда коэффициенты её уравнения в однородных координатах линейные функции от t.

Лемма 3.

- Предположим, что точка $P_t \in \mathbb{R}P^2$ движется по некоторой конике с сохранением двойных отношений. Тогда её однородные координаты квадратичные функции от t.
- Пусть прямая $\ell_t \subset \mathbb{R}P^2$ вращается вокруг некоторой коники с сохранением двойных отношений. Тогда коэффициенты её уравнения в однородных координатах квадратичные функции от t.

Идеи доказательств. Лемма 1 следует из формулы для коэффициентов уравнения Ax + By + Cz = 0 прямой через пару точек с однородными координатами $(x_1 : y_1 : z_1)$ и $(x_2 : y_2 : z_2)$:

$$(A : B : C) = (y_1z_2 - z_1y_2 : z_1x_2 - x_1z_2 : x_1y_2 - y_1x_2).$$

Лемма 2-1 доказывается тем, что обе декартовы координаты точки P_t — дробно-линейные функции от t с одинаковыми знаменателями. Если прямую ℓ_t из леммы 2-2 пересекать об неподвижную прямую ℓ , лемма 2-2 будет следовать из лемм 1 и 2-1. Леммы 3-1 и 3-2 при помощи леммы 1 сводятся к леммам 2-2 и 2-1 соответственно; достаточно рассмотреть две неподвижные точки на конике или две неподвижные касательные к конике.

- **0.** (*Разбираем сразу*) Вневписанная окружность треугольника *ABC* имеет центр I_A , касается отрезка *BC* в точке A_1 и касается прямых *AB*, *AC* в точках C_1 , B_1 соответственно. На прямой I_AC_1 выбрана точка P так, что $AP \perp BI_A$. На прямой I_AB_1 выбрана точка Q так, что $AQ \perp CI_A$. Докажите, что точки P, Q, A_1 лежат на одной прямой.
- **1.** Выпуклый шестиугольник *ABCDEF* вписан в окружность. Треугольники *ACE* и *BDF* в пересечении образуют шестиугольник. Докажите, что главные диагонали этого шестиугольника пересекаются в одной точке.
- 2. Вписанная и A-вневписанная окружности треугольника ABC обозначены через ω и ω_A соответственно. На прямой BC отмечены точки P и Q, симметричные относительно середины стороны BC. Из точки P проведена вторая касательная PS к окружности ω (S точка касания). Из точки Q проведена вторая касательная QT к окружности ω_A (T точка касания). Прямые AT и AS пересекают отрезок BC в точках X и Y. Докажите, что точки X и Y симметричны относительно середины отрезка BC.
- **3.** На описанной окружности треугольника ABC отмечены точки P и Q. Точка A' на стороне BC такова, что прямые PA' и QA' симметричны относительно прямой BC. Аналогично определяются точки B', C'. Докажите, что точки A', B', C' коллинеарны.
- **4.** В треугольнике ABC отмечены ортоцентр H и центр I вписанной окружности. Вписанная окружность касается его сторон BC, CA, AB в точках A_1 , B_1 , C_1 . В треугольнике $A_1B_1C_1$ проведены высоты A_1H_A , B_1H_B , C_1H_C . Докажите, что точки I и H изогонально сопряжены относительно треугольника $H_AH_BH_C$.
- **5.** Вписанная окружность треугольника ABC касается его сторон CA и AB в точках E и F соответственно. Прямые BE и CF пересекаются в точке Жергонна G, точка M середина отрезка EF. Отражения точек F и E относительно центров B и C соответственно обозначены через U и V. Докажите, что $GM \perp UV$.
- **6.** Четырёхугольник ABCD вписан в окружность. Лучи BA и CD пересекаются в точке P. Прямая, проходящая через P и параллельная касательной к окружности в точке D, пересекает в точках U и V касательные, проведённые к окружности в точках A и B. Докажите, что окружности (CUV) и (ABCD) касаются.