Lineare Algebra II: Übungsstunde 2

Florian Frauenfelder

https://florian-frauenfelder.ch/ta/linalg/

03.03.2025

1 Quiz 15: Lösungsvorschlag

1.1 Aufgabe 15.1

Einige der einfachsten Beispiele:

$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} \in \mathbb{C}^{2 \times 2}$$
 (1)

1.2 Aufgabe 15.2

Berechne das charakteristische Polynom für die algebraische Vielfachheit und erhalte:

$$\chi_A(x) = (\lambda - x)^3 \implies \boxed{a_\lambda = 3}.$$
(2)

Für die geometrische Vielfachheit berechne die Eigenvektoren $(v_1, v_2, v_3)^{\top}$:

$$\lambda v_1 + v_2 = \lambda v_1 \tag{3}$$

$$\lambda v_2 + v_3 = \lambda v_2 \tag{4}$$

$$\lambda v_3 = \lambda v_3 \tag{5}$$

$$\implies v_3 = v_2 = 0 \tag{6}$$

$$\implies v_1 \in K,$$
 (7)

womit wir direkt die Dimension des Eigenraums von λ erhalten:

$$\dim E_{\lambda} = \boxed{g_{\lambda} = 1}.$$
 (8)

Alternativ: Man sieht direkt, dass die Matrix ein Jordanblock der Grösse 3 mit Eigenwert λ ist: $A=J_3(\lambda)$, und leitet direkt ab, dass die algebraische Vielfachheit die Länge des Blocks $a_{\lambda}=3$ und die geometrische die Anzahl der Blöcke $g_{\lambda}=1$ ist.

2 Feedback Serie 14

- 1. Achtung: Linearität in den Spalten und den Zeilen ist nicht dasselbe (Ausnahme: det)!
- 4. Vorsicht Spezialfälle: Was passiert für det A = 0? Dies muss separiert betrachtet werden, da im sonstigen Beweis durch det A geteilt wird!
- 7. Da $\mathbb{F}_2 = (\{0,1\},+,\cdot)$ kein Element -1 enthält, sollte auch die Lösung einer Polynomdivision ohne Subtraktion geschrieben werden: $-1 \equiv 1$.

3 Theorie-Recap letzte Woche

Behandelte Themen: Eigenräume, Vielfachheiten, Einführung minimales Polynom.

3.1 Zusätzliches Material

Notation (Ordnung einer Nullstelle). Sei $p(x) \in K[x]$ mit einer Nullstelle bei $x = \lambda$ der Ordnung k (also $p^{(j)}(\lambda) = 0, \forall j < k$), dann schreiben wir:

$$\operatorname{ord}_{\lambda} p := k \tag{9}$$

für die Ordnung der Nullstelle bei $x = \lambda$ in p.

4 Aufgaben

Aufgaben mit HSxx oder FSxx sind aus der Prüfungssammlung des VMP entnommen: https://exams.vmp.ethz.ch/category/LineareAlgebraIII Besprochene Aufgaben:

• HS00: 2

• HS02: 3 (Definitheit)

Weitere Aufgaben:

• FS01: 2

• HS01: 6 (schwierig)

• FS04: 2b

• HS05: 2ac

• HS06: 4ab, 7a

Tipps zur Serie 15 auf der nächsten Seite!

5 Tipps zur Serie 15

- 1. keine
- 2. $AA^{-1} = A^{-1}A = \mathbf{1}_n$
- 3. Benutze die elementweise Definition der Matrixmultiplikation.
- 4. Wenn $Av = \lambda v$ gilt, was passiert für A^2v ?
- 5. Benutze die Endlich-Dimensionalität für Berechnungen von dim $\ker G \circ F$.
- 6. Schwierig: Konstruiere eine Vandermonde-Matrix V mit den x_i und betrachte $V^{-1}y$.
- 7. Schwierig:
 - a) f ist invariant auf V_i heisst: $f(V_i) \subseteq V_i$. Definiere geordnete Basen von V_i und setze sie zusammen zu einer Basis von V, um eine nützliche Form von f zu finden.
 - b) Benutze die Rückrichtung von Lemma 10.3.7 (ohne Beweis).
 - c) \implies : Benutze dieselbe Basis aus Eigenvektoren und die Linearität von f und g.

 \iff : Benutze a) und b) um die Basis zu konstruieren.