大数据计算及应用(八)

Dimensionality Reduction: SVD

Agenda

High dim. data

Locality sensitive hashing

Clustering

Dimensiona lity reduction

Graph data

PageRank, SimRank

Community Detection

Spam Detection

Infinite data

Filtering data streams

Web advertising

Queries on streams

Machine learning

SVM

Decision Trees

Perceptron, kNN

Apps

Recommen der systems

Association Rules

Duplicate document detection

Dimensionality Reduction

- ☐ Assumption: Data lies on or near a low *d*-dimensional subspace
- ☐ Axes of this subspace are effective representation of the data

Dimensionality Reduction

- □ Compress / reduce dimensionality:
 - 10⁶ rows; 10³ columns; no updates
 - Random access to any cell(s); small error: OK

day	We	Th	Fr	\mathbf{Sa}	Su
customer	7/10/96	7/11/96	7/12/96	7/13/96	7/14/96
ABC Inc.	1	1	1	0	0
DEF Ltd.	2	2	2	0	0
GHI Inc.	1	1	1	0	0
KLM Co.	5	5	5	0	0
\mathbf{Smith}	0	0	0	2	2
Johnson	0	0	0	3	3
Thompson	0	0	0	1	1

The above matrix is really "2-dimensional." All rows can be reconstructed by scaling [1 1 1 0 0] or [0 0 0 1 1]

Rank of a Matrix

- Q: What is rank of a matrix A?
- □ A: Number of linearly independent rows (columns)of A
- ☐ For example:
 - Matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix}$ has rank $\mathbf{r} = \mathbf{2}$
 - Why? The first two rows are linearly independent, so the rank is at least 2, but all three rows are linearly dependent (the first is equal to the sum of the second and third) so the rank must be less than 3.
- Why do we care about low rank?
 - We can write **A** as two "basis" vectors: [-2 -3 1] [3 5 0]
 - And new coordinates of : [1 1] [1 0] [0 1]

Rank is "Dimensionality"

- ☐ Cloud of points 3D space: [►]
 - Think of point positions as a matrix: Γ 1 2 17 A

1 row per point: $\begin{vmatrix} 1 & 2 & 1 & A \\ -2 & -3 & 1 & B \\ 3 & 5 & 0 & C \end{vmatrix}$

- We can rewrite coordinates more efficiently!
 - Old basis vectors: [1 0 0] [0 1 0] [0 0 1]
 - New basis vectors: [-2 -3 1] [3 5 0]
 - Then A has new coordinates: [1 1]. B: [1 0], C: [0 1]
 - Notice: We reduced the number of coordinates!

Dimensionality Reduction

☐ Goal of dimensionality reduction is to discover the axis of data!

Rather than representing every point with 2 coordinates we represent each point with 1 coordinate (corresponding to the position of the point on the red line).

By doing this we incur a bit of error as the points do not exactly lie on the line

Why Reduce Dimensions?

Why reduce dimensions?

- □ Discover hidden correlations/topics
 - Words that occur commonly together
- □ Remove redundant and noisy features
 - Not all words are useful
- □ Interpretation and visualization
- □ Easier storage and processing of the data

Singular Value Decomposition (SVD)

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \boldsymbol{\Sigma}_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

- ☐ A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- □ U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- \square Σ : Singular values
 - r x r diagonal matrix (strength of each 'concept') (r: rank of the matrix A)
- □ V: Right singular vectors
 - \blacksquare $n \times r$ matrix (n terms, r concepts)

SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i^{\mathsf{T}}$$

SVD

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i$$
"

 σ_i ... scalar u_i ... vector v_i ... vector

SVD - Properties

It is **always** possible to decompose a real matrix \boldsymbol{A} into $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$, where

- \square *U*, Σ , *V*: unique
- □ *U*, *V*: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- \square Σ : diagonal
 - Entries (singular values) are positive, and sorted in decreasing order (σ₁ ≥ σ₂ ≥ ... ≥ 0)

Nice proof of uniqueness: http://www.mpi-inf.mpg.de/~bast/ir-seminar-ws04/lecture2.pdf

$\square A = \bigcup \Sigma V^T$ - example: Users to Movies

$\square A = \bigcup \Sigma V^T$ - example: Users to Movies

 0.56
 0.59
 0.56
 0.09
 0.09

 0.12
 -0.02
 0.12
 -0.69
 -0.69

 0.40
 -0.80
 0.40
 0.09
 0.09

X

$\square A = \bigcup \Sigma V^T$ - example: Users to Movies

0.40 -0.80 0.40 0.09

0.40 -0.80 0.40 0.09

$\square A = \bigcup \Sigma V^{\mathsf{T}}$ - example:

0.12 -0.02 0.12 -0.69 -0.69

0.40 -0.80 0.40 0.09

$\square A = \bigcup \Sigma V^{\mathsf{T}}$ - example:

- 'movies', 'users' and 'concepts':
- ☐ *U*: user-to-concept similarity matrix
- ☐ **V**: movie-to-concept similarity matrix
- Σ: its diagonal elements: 'strength' of each concept

Dimensionality Reduction with SVD

SVD – Dimensionality Reduction

Movie 1 rating

- \square Instead of using two coordinates (x, y) to describe point locations, let's use only one coordinate (z)
- \square Point's position is its location along vector $oldsymbol{v_1}$
- \square How to choose v_1 ? Minimize reconstruction error

SVD – Dimensionality Reduction

☐ Goal: Minimize the sum of reconstruction errors:

$$\sum_{i=1}^{N} \sum_{j=1}^{D} ||x_{ij} - z_{ij}||^{2}$$

- \square where x_{ij} are the "old" and z_{ij} are the "new" coordinates
- Movie 1 rating

- ☐ SVD gives 'best' axis to project on:
 - 'best' = minimizing the reconstruction errors
- In other words, minimum reconstruction error

$\square A = \bigcup \Sigma V^{\mathsf{T}}$ - example:

- **V**: "movie-to-concept" matrix
- U: "user-to-concept" matrix

$A = U \Sigma V^{T}$ - example:

U Σ: Gives the coordinates
 of the points in the
 projection axis

1	1	1	0	0
3	3	3	0	0
4	4	4	0	0
5	5	5	0	0
0	2	0	4	4
0	0	0	5	5
0	1	0	2	2

Projection of users on the "Sci-Fi" axis (U Σ) T:

 1.61
 0.19
 -0.01

 5.08
 0.66
 -0.03

 6.82
 0.85
 -0.05

 8.43
 1.04
 -0.06

 1.86
 -5.60
 0.84

 0.86
 -6.93
 -0.87

 0.86
 -2.75
 0.41

More details

☐ Q: How exactly is dim. reduction done?

```
      1
      1
      1
      0
      0
      0.13
      0.02
      -0.01

      3
      3
      0
      0
      0.41
      0.07
      -0.03

      4
      4
      4
      0
      0
      0.55
      0.09
      -0.04

      5
      5
      5
      0
      0
      0.68
      0.11
      -0.05

      0
      0
      0
      0.15
      -0.59
      0.65

      0
      0
      0
      0.07
      -0.73
      -0.67

      0
      0
      0
      0.07
      -0.29
      0.32
```

More details

- ☐ Q: How exactly is dim. reduction done?
- □ A: Set smallest singular values to zero

12.4 0 0 0 9.5 0 0 0 1/3

More details

- ☐ Q: How exactly is dim. reduction done?
- □ A: Set smallest singular values to zero

```
      1
      1
      1
      0
      0.13
      0.02
      -0.01

      3
      3
      0
      0
      0.41
      0.07
      -0.03

      4
      4
      0
      0
      0.55
      0.09
      -0.04

      5
      5
      5
      0
      0
      0.68
      0.11
      -0.05

      0
      2
      0
      4
      4
      0.15
      -0.59
      0.65

      0
      0
      5
      5
      0.07
      -0.73
      -0.67

      0
      1
      0
      2
      2
      0.07
      -0.29
      0.32
```


More details

- ☐ Q: How exactly is dim. reduction done?
- □ A: Set smallest singular values to zero

```
      1
      1
      1
      0
      0

      3
      3
      3
      0
      0

      4
      4
      4
      0
      0

      5
      5
      5
      0
      0

      0
      2
      0
      4
      4

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0
      0
      0

      0
      0
      0</td
```

More details

- □ Q: How exactly is dim. reduction done?
- □ A: Set smallest singular values to zero

```
0.13 0.02
3 3 0 0
             0.41 0.07
                                 12.4 0
4 4 0 0
             0.55 0.09
                                   9.5
 5 0 0 |
             0.68 0.11
  0 4 4
             0.15 -0.59
0 0 5 5
             0.07 -0.73
                                0.56 0.59 0.56 0.09
             0.07 -0.29
                                 0.12 -0.02 0.12 -0.69 -0.69
```

More details

- Q: How exactly is dim. reduction done?
- □ A: Set smallest singular values to zero

```
1 1 1 0 0
3 3 3 0 0
4 4 4 0 0
5 5 5 0 0
0 2 0 4 4
0 0 0 5 5
0 1 0 2 2
```


0.92 0.95	0.92	0.01	0.01
2.91 3.01	2.91	-0.01	-0.01
3.90 4.04	3.90	0.01	0.01
4.82 5.00	4.82	0.03	0.03
0.70 0.53	0.70	4.11	4.11
-0.69 1.34	-0.69	4.78	4.78
0.32 0.23	0.32	2.01	2.01

Frobenius norm:

$$\|\mathbf{M}\|_{\mathsf{F}} = \sqrt{\Sigma_{\mathsf{i}\mathsf{j}} \, \mathbf{M}_{\mathsf{i}\mathsf{j}}^2}$$

$$||A-B||_F = \sqrt{\Sigma_{ij} (A_{ij}-B_{ij})^2}$$
is "small"

SVD – Best Low Rank Approx.

SVD – Best Low Rank Approx.

☐ <u>Theorem:</u>

Let $A = U \sum V^T$ and $B = U \sum V^T$ where $S = \text{diagonal } r_{x}r \text{ matrix with } s_i = \sigma_i \ (i = 1...k) \text{ else } s_i = 0$ then B is a **best** rank(B)=k approx. to A

What do we mean by "best":

B is a solution to min_B $||A-B||_F$ where rank(B)=k

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & & \\ \vdots & \vdots & \ddots & & \\ x_{m1} & & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & & \\ \vdots & \ddots & & \\ u_{m1} & & u \\ & & & & \end{pmatrix} \begin{pmatrix} \sigma_{11} & \sigma_{11} & \cdots & \sigma_{1n} \\ \vdots & \ddots & & & \\ & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ &$$

$$||A - B||_F = \sqrt{\sum_{ij} (A_{ij} - B_{ij})^2}$$

SVD – Best Low Rank Approx.

- □ Theorem: Let $A = U \Sigma V^T$ ($\sigma_1 \ge \sigma_2 \ge ...$, rank(A)=r)
 then $B = U S V^T$
 - **S** = **diagonal** $r_{x}r$ **matrix** where $s_{i}=\sigma_{i}$ (i=1...k) else $s_{i}=0$ is a best rank-k approximation to A:
 - B is a solution to min_B $||A-B||_F$ where rank(B)=k

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & \\ \vdots & \vdots & \ddots & \\ x_{m1} & & x_{mn} \end{pmatrix} = \begin{pmatrix} u_{11} & \dots & \\ \vdots & \ddots & \\ u_{m1} & & v_{m} \end{pmatrix} \begin{pmatrix} \sigma_{11} & \sigma_{11} & \dots & \sigma_{1n} \\ \vdots & \ddots & & \\ \vdots & \ddots & & \\ \vdots & \ddots & & \\ r \times r \end{pmatrix} \begin{pmatrix} v_{11} & \dots & v_{1n} \\ \vdots & \ddots & & \\ r \times r \end{pmatrix}$$

- We will need:

Details!

SVD – Best Low Rank Approx.

- \square $\mathbf{A} = \mathbf{U} \Sigma \mathbf{V}^{\mathsf{T}}$, $\mathbf{B} = \mathbf{U} S \mathbf{V}^{\mathsf{T}}$ $(\sigma_1 \ge \sigma_2 \ge ... \ge 0$, rank $(\mathbf{A}) = \mathbf{r}$)
 - **S** = diagonal $n \times n$ matrix where $s_i = \sigma_i$ (i = 1...k) else $s_i = 0$

then B is solution to $\min_{B} ||A-B||_{F}$, rank(B)=k

Why?

$$\min_{B, rank(B)=k} ||A - B||_F = \min ||\Sigma - S||_F = \min_{s_i} \sum_{i=1}^{r} (\sigma_i - s_i)^2$$

We used: $U \Sigma V^T - U S V^T = U (\Sigma - S) V^T$

- \square We want to choose s_i to minimize $\sum_i (\sigma_i s_i)^2$
- \square Solution is to set $s_i = \sigma_i$ (i = 1...k) and other $s_i = 0$

$$= \min_{s_i} \sum_{i=1}^k (\sigma_i - s_i)^2 + \sum_{i=k+1}^r \sigma_i^2 = \sum_{i=k+1}^r \sigma_i^2$$

Equivalent:

'spectral decomposition' of the matrix:

SVD - Interpretation #2

Equivalent:

'spectral decomposition' of the matrix

Why is setting small σ_i to 0 the right thing to do? Vectors u_i and v_i are unit length, so σ_i scales them.

So, zeroing small σ_i introduces less error.

SVD - Interpretation #2

Q: How many σ_s to keep?

A: Rule-of-a thumb:

keep 80-90% of 'energy' =
$$\sum_i \sigma_i^2$$

Relation to Eigen-decomposition

- ☐ SVD gives us:
 - \blacksquare $A = U \Sigma V^T$
- ☐ Eigen-decomposition:
 - $M = X L X^T$
 - ☐ M is symmetric
 - \square U, V, X are orthonormal ($\mathbf{U}^{\mathsf{T}}\mathbf{U}=\mathbf{I}$),
 - \square **L,** Σ are diagonal
- Now let's calculate:
 - \blacksquare $AA^{\top}=$

Relation to Eigen-decomposition

- ☐ SVD gives us:
 - \blacksquare $A = U \Sigma V^T$
- ☐ Eigen-decomposition:
 - $M = X L X^T$
 - M is symmetric
 - \square U, V, X are orthonormal ($\mathbf{U}^{\mathsf{T}}\mathbf{U}=\mathbf{I}$),
 - \square **L,** Σ are diagonal
- Now let's calculate:
 - $\blacksquare \quad \mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{U}\mathbf{\Sigma} \ \mathbf{V}^{\mathsf{T}}(\mathbf{U}\mathbf{\Sigma} \ \mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{U}\mathbf{\Sigma} \ \mathbf{V}^{\mathsf{T}}(\mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}) = \mathbf{U}\mathbf{\Sigma}\mathbf{\Sigma}^{\mathsf{T}} \ \mathbf{U}^{\mathsf{T}}$

Shows how to compute SVD using eigenvalue decomposition!

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A = U \Sigma V$$

$$A A^{T} = X L X^{T} = U \Sigma^{2} U^{T}$$

$$A^{T} A = Y L Y^{T} = V \Sigma^{2} V^{T}$$

$$A A^{\mathsf{T}} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Set $AA^T = M$, let λ be the eigenvalue of M, then we have

M X=
$$\lambda$$
 X \Longrightarrow (λ I – M) X =0 \Longrightarrow | λ I – M| = 0
I: identity matrix

$$\begin{vmatrix} \lambda - 2 & \mathbf{1} & -\mathbf{1} \\ \mathbf{1} & \lambda - 1 & \mathbf{0} \\ -\mathbf{1} & \mathbf{0} & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 3) = 0$$

$$\lambda_1$$
=3, λ_2 =1, λ_3 =0

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \quad A A^T = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \quad A A^T = X L X^T = U \Sigma^2 U^T$$

$$\lambda_1$$
=3, λ_2 =1, λ_3 =0

When
$$\lambda_1$$
=3, we have **M** X= λ X

$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 3 \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix} = U_1$$

$$\lambda_{1}=3,\ U_{1}=\begin{bmatrix}\frac{2}{\sqrt{6}}\\\frac{-1}{\sqrt{6}}\\\frac{1}{\sqrt{6}}\end{bmatrix}\qquad \lambda_{2}=1,\ U_{2}=\begin{bmatrix}\frac{0}{1}\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\end{bmatrix}\qquad \lambda_{3}=0,\ U_{3}=\begin{bmatrix}\frac{1}{\sqrt{3}}\\\frac{1}{\sqrt{3}}\\\frac{-1}{\sqrt{3}}\end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A = U \Sigma V$$

$$A A^{T} = X L X^{T} = U \Sigma^{2} U^{T}$$

$$A^{T} A = Y L Y^{T} = V \Sigma^{2} V^{T}$$

$$\mathsf{A}^\mathsf{T}\,\mathsf{A} = \begin{bmatrix} \mathbf{2} & -\mathbf{1} \\ -\mathbf{1} & \mathbf{2} \end{bmatrix}$$

$$\lambda_1$$
=3, λ_2 =1

$$\lambda_1 = 3, \ V_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -1 \\ \overline{\sqrt{2}} \end{bmatrix} \qquad \lambda_2 = 1, \ V_2 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\lambda_2$$
=1, V_2 =
$$\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$A = U \Sigma V$$

$$A A^{T} = X L X^{T} = U \Sigma^{2} U^{T}$$

$$A^{T} A = Y L Y^{T} = V \Sigma^{2} V^{T}$$

$$A = U \Sigma V$$

$$\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \overline{\sqrt{6}} & 0 \\ -1 & 1 \\ \overline{\sqrt{6}} & \overline{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{bmatrix} \sqrt{3} & 0 \\ 0 & 1 \end{bmatrix} \quad \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

SVD - Complexity

- ☐ To compute SVD:
 - O(nm²) or O(n²m) (whichever is less)
- ☐ But:
 - Less work, if we just want singular values
 - or if we want first k singular vectors
 - or if the matrix is sparse
- ☐ Implemented in linear algebra packages like
 - LINPACK, Matlab, SPlus, Mathematica ...

SVD - Conclusions so far

- \square SVD: A= U Σ V^T: unique
 - **U**: user-to-concept similarities
 - V: movie-to-concept similarities
 - lacksquare Σ : strength of each concept

□ Dimensionality reduction:

- keep the few largest singular values (80-90% of 'energy')
- SVD: picks up linear correlations

Example of SVD & Conclusion

- □ Q: Find users that like 'Matrix'
- □ A: Map query into a 'concept space' how?

```
Alien
Serenity
                      0.13 0.02 -0.01
u1
                      0.41 0.07 -0.03
u2
                0
                                               12.4 0
                      0.55 0.09 -0.04
u3
                                                    9.5 0
                      0.68 0.11 -0.05
u4
                0
                      0.15 -0.59 0.65
u5
                      0.07 -0.73 -0.67
u6
                      0.07 -0.29 0.32 0.56 0.59 0.56 0.09
```

0.12 -0.02 0.12 -0.69 -0.69 0.40 -0.80 0.40 0.09

- □ Q: Find users that like 'Matrix'
- □ A: Map query into a 'concept space' how?

Project into concept space: Inner product with each 'concept' vector v_i

- ☐ Q: Find users that like 'Matrix'
- □ A: Map query into a 'concept space' how?

Project into concept space: Inner product with each 'concept' vector v_i

Compactly, we have:

$$q_{concept} = q V$$

 ☐ How would the user d that rated ('Serenity') be handled?
 d_{concept} = d V

Observation: User d that rated ('Serenity') will be similar to user q that rated ('Matrix'), although d and q have zero ratings in common!

$$d = \begin{bmatrix} 0 & 0 & 4 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2.24 & 0.48 \end{bmatrix}$$

$$q = \begin{bmatrix} 5 & 0 & 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 2.8 & 0.6 \end{bmatrix}$$
Zero ratings in common

Case study: Image compression

Case study: Image compression

Space cost=25*15=375

white color=1, black color=0

Case study: Image compression

SVD:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i$$

$$\sigma$$
1=14.72, σ 2=5.22, σ 3=3.31

Space cost=25*3+15*3+3=123

Space cost=25*15=375

Case study: Noise reduction

SVD:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T = \sum_i \sigma_i \mathbf{u}_i \circ \mathbf{v}_i$$

$$\sigma$$
1=14.15, σ 2=4.67, σ 3=3.00, σ 4=0.21, σ 5=0.19,, σ 15=0.05

$$\mathbf{A} \approx \ \mathbf{u}_1 \mathbf{\sigma}_1 \ \mathbf{v}_1^\mathsf{T} + \mathbf{u}_2 \mathbf{\sigma}_2 \ \mathbf{v}_2^\mathsf{T} + \mathbf{u}_3 \mathbf{\sigma}_3 \ \mathbf{v}_3^\mathsf{T}$$

Case study: Noise reduction

SVD with low rank approximation

Acknowledgement

- ☐ Slides are adapted from:
 - Prof. Jeffrey D. Ullman
 - Dr. Anand Rajaraman
 - Dr. Jure Leskovec