Se o termômetro for imerso em um banho, cuja temperatura muda linearmente a uma taxa de 10º/min, qual será o erro apresentado pelo termômetro?

B.5.2 Considere a resposta ao degrau unitário do sistema de controle com realimentação unitária cuja função de transferência de malha aberta seja:

$$G(s) = \frac{1}{s(s+1)}$$

Obtenha o tempo de subida, o tempo de pico, o máximo sobressinal e o tempo de acomodação.

B.5.3 Considere o sistema de malha fechada dado por:

$$\frac{C(s)}{R(s)} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

Determine os valores de ζ e de ω_n de modo que o sistema responda a uma entrada em degrau com aproximadamente 5% de sobressinal e com um tempo de acomodação de 2 segundos. (Utilize o critério de 2%.)

B.5.4 Considere o sistema mostrado na Figura 5.72. O sistema está inicialmente em repouso. Suponha que o carro seja posto em movimento por uma força impulsiva de valor unitário. O sistema pode ser parado por outra força impulsiva?

FIGURA 5.72

Sistema mecânico.

B.5.5 Obtenha a resposta ao impulso unitário e a resposta ao degrau unitário de um sistema com realimentação unitária cuja função de transferência de malha aberta seja:

$$G(s) = \frac{2s+1}{s^2}$$

B.5.6 Sabe-se que a função de transferência de um sistema oscilatório tem a seguinte forma:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n + \omega_n^2}$$

Suponha que haja um registro da oscilação com amortecimento, como mostra a Figura 5.73. Determine o coeficiente de amortecimento ζ do sistema a partir do gráfico.

FIGURA 5.73

Oscilação decrescente.

B.5.7 Considere o sistema mostrado na Figura 5.74(a). O coeficiente de amortecimento do sistema é 0,158 e a frequência natural não amortecida é 3,16 rad/s. Para melhorar a estabilidade relativa, utilizamos a realimentação tacométrica. A Figura 5.74(b) mostra esse sistema com o tacômetro no ramo de realimentação.

Determine o valor de K_h de modo que o coeficiente de amortecimento seja 0,5. Desenhe as curvas de resposta ao degrau unitário do sistema original e do sistema com realimentação tacométrica. Desenhe também as curvas de erro *versus* tempo para a resposta à rampa unitária de ambos os sistemas.

FIGURA 5.74

(a) Sistema de controle; (b) sistema de controle com realimentação tacométrica.

B.5.8 Considerando o sistema apresentado na Figura 5.75, determine os valores de K e k, de modo que o sistema tenha um coeficiente de amortecimento ζ igual a 0,7 e uma frequência natural não amortecida ω_n de 4 rad/s.

FIGURA 5.75

Sistema de malha fechada.

B.5.9 Considere o sistema mostrado na Figura 5.76. Determine o valor de k de modo que o coeficiente de amortecimento ζ seja 0,5. Então, obtenha o tempo de subida t_r , o tempo de pico t_p , o máximo sobressinal M_p e o tempo de acomodação t_s na resposta ao degrau unitário.

B.5.16 Considere o sistema de malha fechada definido por:

$$\frac{C(s)}{R(s)} = \frac{2\zeta s + 1}{s^2 + 2\zeta s + 1}$$

onde ζ = 0,2; 0,4; 0,6; 0,8 e 1,0. Utilizando o MATLAB, desenhe um gráfico bidimensional das curvas de resposta ao impulso unitário. Desenhe também um gráfico tridimensional dessas curvas de resposta.

B.5.17 Considere o sistema de segunda ordem definido por:

$$\frac{C(s)}{R(s)} = \frac{s+1}{s^2 + 2\zeta s + 1}$$

onde $\zeta = 0.2$; 0.4; 0.6; 0.8 e 1.0. Desenhe um gráfico tridimensional das curvas de resposta ao degrau unitário.

B.5.18 Obtenha a resposta à rampa unitária do sistema definido por:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

onde u é a entrada em rampa unitária. Utilize o comando Isim para obter a resposta.

B.5.19 Considere o sistema dado pela equação diferencial

$$\ddot{y} + 3\dot{y} + 2y = 0$$
, $y(0) = 0.1$, $\dot{y}(0) = 0.05$

Usando o MATLAB, obtenha a resposta y(t), sujeita à condição inicial indicada.

B.5.20 Determine o intervalo de valores de *K* para a estabilidade do sistema de controle com realimentação unitária cuja função de transferência de malha aberta seja:

$$G(s) = \frac{K}{s(s+1)(s+2)}$$

B.5.21 Considere a seguinte equação característica:

$$s^4 + 2s^3 + (4 + K)s^2 + 9s + 25 = 0$$

Utilizando o critério de estabilidade de Routh, determine o intervalo de K para a estabilidade.

B.5.22 Considere o sistema de malha fechada mostrado na Figura 5.79. Determine o intervalo de valores de K compatíveis com a estabilidade do sistema. Suponha que K > 0.

FIGURA 5.79

Sistema de malha fechada.

B.5.23 Considere o sistema de controle de posição de um satélite mostrado na Figura 5.80(a). A saída do sistema apresenta oscilações continuadas não desejáveis. Esse sistema pode ser estabilizado pelo uso de realimentação tacométrica, como mostra a Figura 5.80(b). Se K/J = 4, que valor de K_h resultará em um coeficiente de amortecimento igual a 0,6?

FIGURA 5.80

(a) Sistema instável de controle de atitude de um satélite;(b) sistema estabilizado.

B.5.24 Considere o servossistema com realimentação tacométrica mostrado na Figura 5.81. Determine os intervalos de valores de K e de K, que tornam o sistema estável. (Note que K, deve ser positivo.)

FIGURA 5.81

Servossistema com realimentação tacométrica.

B.5.25 Considere o sistema

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$$

onde a matriz A é dada por:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ -b_3 & 0 & 1 \\ 0 & -b_2 & -b_1 \end{bmatrix}$$

(**A** é chamada matriz de Schwarz.) Mostre que a primeira coluna da tabela de Routh da equação característica $|\mathbf{sI} - \mathbf{A}| = 0$ consiste em 1, b_1 , b_2 e b_1b_3 .

B.5.26 Considere um sistema de controle com realimentação unitária cuja função de transferência de malha fechada seja:

$$\frac{C(s)}{R(s)} = \frac{Ks + b}{s^2 + as + b}$$

Determine a função de transferência de malha aberta G(s). Mostre que o erro estacionário na resposta à rampa unitária é dado por:

$$e_{\rm ss} = \frac{1}{K_p} = \frac{a - K}{b}$$

B.5.27 Considere um sistema de controle com realimentação unitária cuja função de transferência de malha aberta seja:

$$G(s) = \frac{K}{s(Js+B)}$$

Discuta os efeitos que as variações de *K* e de *B* produzem sobre o erro estacionário da resposta à entrada em rampa unitária. Esboce curvas típicas de resposta à rampa unitária para valores pequenos, médios e elevados de *K*, supondo que *B* seja constante.

B.5.28 Se o ramo direto de um sistema de controle contiver pelo menos um integrador, então a saída continua variando enquanto o erro estiver presente. Ela deixa de variar somente quando o erro for precisamente zero. Se um distúrbio externo entra no sistema, é conveniente que haja um elemento integrador entre o elemento medidor de erro e o ponto de entrada do distúrbio, de modo que o efeito do distúrbio externo possa ser anulado em regime permanente.

Mostre que, se o distúrbio for uma função rampa, então o erro estacionário causado por esse distúrbio em rampa somente poderá ser eliminado se houver dois integradores antes do ponto de entrada do distúrbio.