CS 4400 Exam 2

Practice

ANSWER KEY

Completely fill in the box corresponding to your answer choice for each question.

1.	[A]	[B]	[C]	
2.	[]	[B]	[C]	[D]
3.	[A]	[B]	[C]	
4.	[A]	[B]	[C]	
5.	[A]	[B]	[C]	
6.	[A]		[C]	[D]
7.	[A]		[C]	[D]
		[D]		
8.	[A]	[B]	[C]	
9.	[A]		[C]	[D]
10.	[A]		[C]	[D]
11.	[A]	[B]		[D]
12.		[B]	[C]	[D]
13.	[A]	[B]		[D]
14.	[A]	[B]		[D]
15.	[A]	[B]		[D]
16.		[B]	[C]	[D]
17.	[A]		[C]	[D]
18.	[A]	[B]	[C]	
19.		[B]	[C]	[D]
20.	[A]	[B]		[D]
21.	[A]	[B]		[D]
22.	[A]		[C]	[D]
23.		[B]	[C]	[D]
24.	[A]		[C]	[D]
25.	[A]	[B]		[D]

Number missed: _____ Final Score: ____

Pubs Database Schema

 $author(\underline{author_id}, first_name, last_name)$

 $author_pub(\underline{author_id},pub_id,author_position)$

 $book(\underline{book_id}, book_title, month, year, editor)$

 $pub(pub_id, title, book_id)$

- author_id in author_pub is a foreign key referencing author
- $\bullet \ pub_id$ in $author_pub$ is a foreign key referencing pub
- $\bullet \ book_id$ in pub is a foreign key referencing book
- ullet editor in book is a foreign key referencing $author(author_id)$
- Primary keys are underlined

Pubs Database State

r(author)

author_id	$first_name$	$last_name$
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

 $r(author_pub)$

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

r(book) r(pub)

book_id	book_title	month	year	editor	pub_id	title	book_id
1	CACM	April	1960	8	1	LISP	1
2	CACM	July	1974	8	2	Unix	2
3	BST	July	1948	2	3	Info Theory	3
4	LMS	November	1936	7	4	Turing Machines	4
5	Mind	October	1950	NULL	5	Turing Test	5
6	AMS	Month	1941	NULL	6	Lambda Calculus	6
7	AAAI	July	2012	9			
8	NIPS	July	2012	9			

Figure 1: Relational Database Schema

Name:	_ GTAccount:	Section:
	_	

Scratch page

	Name:	GTAccount: Section:
[4]	A. B. C.	A domain for an attribute is a set of atomic values. Several attributes in one relation schema may have the same domain. A tuple in a relation consists of one value from each attribute domain of that relation. All of the above
[4]	A. B. C.	The following is the mathematical definition of a relation, $r(R)$, of degree n ? $r(R) \subseteq dom(A_1) \times dom(A_2) \times \times dom(A_n)$ $r(R) \subseteq dom(A_1) \cap dom(A_2) \cap \cap dom(A_n)$ $r(R) \subseteq dom(A_1) \cup dom(A_2) \cup \cup dom(A_n)$ none of the above
[4]	A. B. C.	Attribute values in tuples are indivisible. Facts not asserted explicitly are assumed to be false. Relations are sets. All of the above.
[4]	A. B. C.	There can be only one. The default superkey is always a minimal superkey. Every minimal superkey is a primary key. Every superkey contains a minimal superkey as a subset.
[4]	5. In a relation there? A. B. C. D.	3 6
[4]		3 6
[4]	Α.	ple in a relation have a NULL value for a foreign key attribute? Yes No
[4]	A.	ple in a relation have a NULL value for a primary key attribute? Yes No
[4]	A. B.	and of constraint cannot be specied in the relational model? referential integrity constraints semantic constraints, a.k.a., business rules entity integrity constraints
[4]	10. Meow!	
	Δ	True

Name: _		GTAccount:	Section:
[4] 11. What	to database schema in Figure 1 for is the degree of the <i>author</i> relation A. 2 B. 3		
[4] 12. The <i>au</i>	 C. 9 athor_pub relation has how many s A. 1 B. 2 C. 3 	superkeys?	
integri	ne tuple <6, 'Teen', 'Candles': ty violation? A. Yes B. No	> be inserted into the author relation	n without causing an
integri	ne tuple <10, NULL, 'Pointers': ty violation? A. Yes B. No	> be inserted into the author relation	n without causing an
integri	eletion of the second tuple in the ty violation for which relations? A. author_pub B. book C. pub D. A and B above.	author relation (<2, 'Dennis', 'R	itchie'>) causes an
how m	ading deletes is in effect for all rela any other tuples will be deleted fr A. 0 B. 2 C. 3	tions and the tuple <2, 'Dennis', 'I om the database?	Ritchie'> is deleted,
[4] 17. How m	any tuples will be returned by the	e following relational algebra query?	
		$\pi_{book_title}(book)$	
	A. 7		
	B. 5 C . 2		
	D. 1		

		Name:	GTAccount:	Section:
[4]	18.	What qu	uestion does the following expression answer?	
			$ \pi_{author_id}(author) - \pi_{editor}(book) $	
			. How many authors are book editors.	
			How many authors are not book editors.	
			What are the names of the authors who are book editors.	
		D.	O. What are the names of the authors who are not book editors.	
[4]	19.	Which o editors?	of the following relational algebra expressions returns the names of all authors who	o are book
			$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$	
			$\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$	
		С.	$S. \pi_{first_name,last_name}(author * author_pub)$	
[4]	20.	Which o book edi	of the following relational algebra expressions returns the names of all authors whiters?	no are not
		$\mathbf{A}.$	• $\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$	
			3. $\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$	
		С.	$S. \pi_{first_name,last_name}(author * author_pub)$	
[4]	21.		of the following relational algebra expressions returns the names of all authors when publication in the database?	no have at
		Α.	$\pi_{first_name,last_name}((\pi_{author_id}(author) - \pi_{editor}(book)) * author)$	
		В.	3. $\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$	
		С.	$\pi_{first_name,last_name}(author*author_pub)$	
[4]	22.	Which o	of the following relational algebra expressions returns books that were published b 2000 ?	efore 1960
		Α.	$\sigma_{year<1960}(book) \wedge \sigma_{year>2000}(book)$	
		В.	$. \ \sigma_{year<1960}(book) \cup \sigma_{year>2000}(book)$	
		С.	S. $\sigma_{year < 1960 \land year > 2000}(book)$	
[4]	23.	How ma	any tuples are returned by the following relational algebra expression?	
			$author \bowtie_{author_id=editor} book$	
			8	
			5. 11	
		С.	2. 13	
[4]	24.	What qu	uestion does the following relational algebra expression answer?	
			$author * (author_pub * (\sigma_{month='July'}(book) * pub))$	
			Which authors were born in July?	
			3. Which authors authored a pub that was published in July?	
			Which authors edited books that were published in July?	
[4]	25.		any tuples does the previous relational algebra expression return?	
			1	
			3. 2	
		$\mathbf{C}.$	J. 3	

D. 4