Parametric Families of Discrete Distributions

Moment Generating Function = $\mathcal{E}[e^{tX}]$	$\sum_{j=0}^{n} \frac{1}{n+1} e^{jt} = \frac{1 - e^{(n+1)t}}{(n+1)(1-e^t)}$	$(1-p)+p^{i}$	$[(1-p)+pe^t]^n$	not useful	$\exp[\lambda(e^t-1)]$	$\frac{1-(1-p)e^t}{1-(1-p)}$ for $t<-\ell n\ (1-p)$	$\frac{pe'}{1-(1-p)e^T}$ for $t<-\ell n\;(1-p)$	$ [\frac{p}{1-(1-p)e^t}]^r $ for $t<-\ell n\ (1-p)$	$\left[\frac{pe^{t}}{1-(1-p)e^{t}}\right]^{r}$ for $t<-\ell n\ (1-p)$	not useful	$\frac{\ln\left(1-(1-p)e^t\right]}{\ln p}$ for $t<-\ln\left(1-p\right)$		does not exist	
Variance	n(n+2)/12	p(1-p)	np(1-p)	$n\frac{K}{M}(1-\frac{K}{M})\frac{M-n}{M-1}$	۲	$(1-p)/p^2$	$(1-p)/p^2$	$r(1-p)/p^2$	$r(1-p)/p^2$	$\frac{nab(n+a+b)}{(a+b)^2(a+b+1)}$	$\frac{(1-p)(1-p+\ln p)}{-(p\ln p)^2}$	23.62		
Mean	n/2	d	du	$n \frac{K}{M}$	Υ	(1 - p)/p	d/1	r(1-p)/p	r/p	na a+b	$\frac{(1-p)}{(q n)}$	$\sum_{i=1}^{\infty} (1/j)^{\gamma}$	$\sum_{1}^{\infty} (1/j)^{\gamma+1}$	for $\gamma > 1$
Parameter Space	$n=1,2,\dots$	$0 \le p \le 1$	$0 \le p \le 1;$ $n = 1, 2, \dots$	$M = 1, 2, \dots$ $K = 0, \dots, M$ $n = 1, \dots, M$	λ>0	0	0 < p < 1	0 and $r > 0$	0 and $r > 0$	$a > 0, b > 0,$ $n = 1, 2, \dots$	0 < p < 1		$\gamma > 0$	- 10 - N. S. W. S. W. S.
$pmf = p_{\mathbf{x}}(\mathbf{x})$	$\frac{1}{n+1}I_{\{0,1,,n\}}(x)$	$p^{x}(1-p)^{1-x}I_{\{0,1\}}(x)$	$\binom{n}{x} p^x (1-p)^{n-x} I_{\{0,\dots,n\}}(x)$	$egin{pmatrix} K \ x \ x \end{pmatrix} igg(egin{pmatrix} M-K \ n-x \ \end{pmatrix} I_{\{0,\dots,n\}}(x) \ \end{pmatrix}$	$\frac{e^{-\lambda}\lambda^x}{x!}I_{\{0,1,\dots\}}(x)$	$p(1-p)^x I_{\{0,1,\}}(x)$	$p(1-p)^{x-1}I_{\{1,2,\}}(x)$	$\binom{r+x-1}{x} p^r (1-p)^x I_{\{0,1,\ldots\}}(x)$	$\left(\begin{array}{c} x-1 \\ r-1 \end{array} \right) p^{r} (1-p)^{x-r} I_{\{r,r+1,\ldots\}}(x)$	$\begin{pmatrix} n \\ x \end{pmatrix} \frac{B(x+a,n-x+b)}{B(a,b)} I_{\{0,\dots,n\}}(x)$	$\frac{(1-p)^x}{(-x \ell np)}I_{\{1,2,\}}(x)$	$(1/x^{\gamma+1})$, $(1/x^{\gamma+1})$	$\sum_{j=1}^{\infty} (1/j^{\gamma+1})$	
Name	Discrete	Remoulli	Binomial	Hyper- geometric	Poisson	Geometric	Geometric	Negative Binomial	Negative Binomial	Beta-	Logarithmic		Discrete Pareto	

Parametric Families of Continuous Distributions

does not exist $\mathcal{E}[X^k] = \exp[k\mu + \frac{1}{2}k^2\sigma^2]$	$\exp[2\mu + 2\sigma^2]$ $-\exp[2\mu + \sigma^2]$	$\exp[\mu + \frac{1}{2}\sigma^2]$	$-\infty < \mu < \infty$ and $\sigma > 0$	$F(x) = \Phi(\frac{\ln x - \mu}{\sigma}) I_{(0,\infty)}(x)$	Log normal
$e^{\alpha t} \Gamma(1 - \beta t)$ for $t < 1/\beta$	$\beta^2\pi^2/6$	$\alpha + \beta \gamma$ where $\gamma \approx .577216$	$-\infty < \alpha < \infty$ and $\beta > 0$	$F(x) = \exp\left[-e^{-\left(\frac{x-\alpha}{\beta}\right)}\right]$	Gumbel or Extreme-value
$e^{\alpha t} \beta \pi t \csc (\beta \pi t)$	$\beta^2\pi^2/3$	Q	$-\infty < \alpha < \infty$ and $\beta > 0$	$F(x) = [1 + e^{-(\frac{x-a_0}{p})}]^{-1}$	Logistic
does not exist	does not exist	does not exist	$-\infty < \alpha < \infty$ and $\beta > 0$	$f(x) = \frac{1}{\beta \pi} \frac{1}{1 + (\frac{x - \alpha}{\beta})^2}$	Cauchy
does not exist	$\frac{\gamma/[(\gamma-2)(\gamma-1)^2]}{\text{for } \gamma > 2}$	$1/(\gamma - 1)$ for $\gamma > 1$	$\gamma > 0$	$f(x) = \frac{\gamma}{(1+x)^{\gamma+1}} I_{(0,\infty)}(x)$	Pareto
not useful; $\mathcal{E}[X^k] = \frac{\mathcal{B}(a+k,b)}{\mathcal{B}(a,b)}$	$\frac{ab}{(a+b)^2(a+b+1)}$	$\frac{a}{a+b}$	a > 0 and $b > 0$	$f(x) = \frac{1}{B(a,b)} x^{a-1} (1-x)^{b-1} I_{(0,1)}(x)$	Beta
not useful; $\mathcal{E}\left[(X-\alpha)^k\right] = \beta^k \Gamma(1+\frac{k}{\gamma})$	$\beta^2 \left[\Gamma \left(1 + \frac{2}{\gamma} \right) \right. \\ \left \Gamma^2 \left(1 + \frac{1}{\gamma} \right) \right]$	$\alpha + \beta \Gamma (1 + \frac{1}{4})$	$-\infty < \alpha < \infty$ and $\beta > 0$ and $\gamma > 0$	$f(x) = \frac{\gamma}{\beta} \left(\frac{x - \alpha}{\beta} \right)^{\gamma - 1} e^{-\left(\frac{x - \alpha}{\beta} \right)^{\gamma}} I_{(\alpha, \infty)}(x)$	Weibull
$\left[\frac{1/\beta}{(1/\beta)-t}\right]'$ for $t<\frac{1}{\beta}$	$r \beta^2$	$r\beta$	$r > 0$ and $\beta > 0$	$f(x) = \frac{1}{\Gamma(r)} \frac{1}{\beta} \left(\frac{x}{\beta}\right)^{r-1} e^{-(x/\beta)} I_{(0,\infty)}(x)$	Gamma
$e^{t\alpha}/(1-\beta^2t^2)$ for $ t <\frac{1}{\theta}$	$2\beta^2$	α	$-\infty < \alpha < \infty$ and $\beta > 0$	$f(x) = \frac{1}{2\beta} e^{- x-\alpha /\beta}$	Bilateral exponential
$\frac{\binom{1/\beta}{1/\beta-1}}{t<1/\beta}$	β^2	β	$\beta > 0$	$f(x) = \frac{1}{\beta} e^{-(x/\beta)} I_{(0,\infty)}(x)$	Exponential
$\exp\left[\mu t + \frac{1}{2}\sigma^2 t^2\right]$	σ^2	μ	and $\sigma > 0$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$	Normal
$\frac{e^{(\alpha+\beta)t}-e^{\alpha t}}{\beta t}$	$\beta^2/12$	$\alpha + \frac{\beta}{2}$	$-\infty < \alpha < \infty$ and $\beta > 0$	$f(x) = \frac{1}{\beta} I_{(\alpha, \alpha + \beta)}(x)$	Uniform or rectangular
Function = $\mathcal{E}[e^{tX}]$	Variance	Mean	Parameter Space		Name
Mamont Concepting				Π	