Прикладные модели оптимизации

Доцент, к.ф.-м.н., доцент кафедры № 43 *Фаттахова Мария Владимировна mvfa@yandex.ru*

Тема 5. Принятие решений в условиях неопределённости и риска

Лекция 13

Теория принятия решений

— часть теории управления, изучающая способы
 анализа, выработки образа действий в зависимости от
 целевой установки и условий, в которых
 осуществляется деятельность, располагаемых
 ресурсов, состава исполнителей.

Теория принятия решений

- область исследования, вовлекающая понятия и методы математики, статистики, менеджмента и психологии;
- изучает закономерности выбора людьми путей решения разного рода задач;
- исследует способы поиска наиболее выгодных из возможных решений.

Классификация процесса принятия решений

- Принятие решений в условиях определенности (*ЗЛП*, *ЦЧП*, *ЗНЛП*)
- Принятие решений в условиях риска (исходные данные могут быть описаны с помощью вероятностных распределений)
- Принятие решений в условиях неопределенности
- Принятие решений в условиях конфликта (теория игр)

Задачи принятия решений в условиях риска (УР)

 это задачи принятия решений, в которых исходные данные (стоимости альтернатив) могут быть описаны с помощью вероятностных распределений

Решения ЛПР	Состояния среды			
	s_1	s_2	• • •	S_n
d_1				
d_2				
• • •				
d_m				

Исходные данные в задаче принятия решений в условиях риска

Решения ЛПР	Состояния среды			
	s_1	s_2	• • •	S_n
d_1	$h(d_1, s_1)$	$h(d_1, s_2)$	•••	$h(d_1,s_n)$
d_2	$h(d_2, s_1)$	$h(d_2, s_2)$	• • •	$h(d_2, s_n)$
•••	• • •	• • •	• • •	• • •
d_m	$h(d_m, s_1)$	$h(d_m, s_2)$	• • •	$h(d_m, s_n)$

 $h(d_i, s_j)$ – полезность принятого решения d_i , $i=1, \dots, m$, при реализации состояния s_i , $j=1, \dots, n$.

Исходные данные в задаче принятия решений в УР

Решения ЛПР	Состояния среды			
гешения ЛПР	s_1	s_2	• • •	S_n
d_1	$h(d_1, s_1)$	$h(d_1,s_2)$	• • •	$h(d_1,s_n)$
d_2	$h(d_2, s_1)$	$h(d_2, s_2)$	• • •	$h(d_2, s_n)$
•••	• • •	• • •		• • •
d_m	$h(d_m, s_1)$	$h(d_m, s_2)$	•••	$h(d_m, s_n)$
Вероятности	$p(s_1)$	$p(s_2)$	• • •	$p(s_n)$

 $p(s_j)$ – вероятность реализации состояния s_j , $j=1,\ldots,n$.

Задачи принятия решений в условиях риска (УР). Пример 1

Брать зонт?

	Состояния среды		
Решения ЛПР	Идёт дождь	Нет дождя	
Взять зонт	10	-5	
Не брать зонт	-10	5	
Прогноз погоды	0,3	0,7	

Полезность и риск принятого решения

$$h(d_i, s_j)$$
 – полезность $ucxo\partial a \left(d_i, s_j\right)$, $i=1, \ldots, m; j=1, \ldots, n$.

Математическое ожидание полезности решения d_i

(в случае дискретной s):

$$H(d_i) = \sum_{j=1}^{n} h(d_i, s_j) p(s_j), i = 1, ..., m$$

Ожидаемая полезность

Дисперсия решения d_i (в случае дискретной s):

Риск

$$D(d_i) = \sum_{i=1}^{n} (h(d_i, s_j) - H(d_i))^2 p(s_j), i = 1, ..., m$$

Задача принятия решений в УР – постановка 1

$$H(d_i) = \sum_{j=1}^{n} h(d_i, s_j) p(s_j) \to \max$$

$$D(d_i) = \sum_{j=1}^{n} \left(h(d_i, s_j) - H(d_i) \right)^2 p(s_j) \rightarrow \min$$

Двухкритериальная задача (если ЛПР **учитывает** риск)

Задача принятия решений в УР – постановка 2

$$H(d_i) = \sum_{j=1}^n h(d_i, s_j) p(s_j) \to \max$$

Однокритериальная задача (ЗЛП или ЗНЛП) (если ЛПР **не учитывает** риск)

Задача принятия решения в условиях риска – это задача максимизации ожидаемой полезности принятого решения.

Задачи принятия решений в УР. Пример 1

 $H(d_i) = \sum_{j=1}^n h(d_i, s_j) p(s_j) \to \max$

Брать зонт?

Решения ЛПР	Состояния среды		
гешения лиг	Идёт дождь	Нет дождя	
Взять зонт	10	-5	
Не брать зонт	-10	5	
Прогноз погоды	0,3	0,7	

$$H(d_1) = 10 \cdot 0, 3 + (-5) \cdot 0, 7 = -0, 5$$

 $H(d_2) = -10 \cdot 0, 3 + 5 \cdot 0, 7 = 0, 5$

Оптимальное решение:

 d_2 – «не брать зонт»

Пример 2

$$H(d_i) = \sum_{j=1}^n h(d_i, s_j) p(s_j) \to \max$$

Альтернативы	Состояни S ₁	че среды S ₂	Ожидаемая полезность	
d_1	\$500	-\$200	\$290	
d_2	-\$150	\$1000	\$195	
d_3	\$O	\$0	\$0	
Вероятности состояния среды	0,7	0,3		

$$H(d_1) = 500 \cdot 0, 7 + (-200) \cdot 0, 3 = 290$$

$$H(d_2) = (-150) \cdot 0,7 + 1000 \cdot 0,3 = 195$$

$$H(d_3) = 0.0, 7 + 0.0, 3 = 0$$

Оптимальное решение:

 d_1 – «урна I типа»

Пример 1
$$D(d_i) = \sum_{i=1}^{n} (h(d_i, s_j) - H(d_i))^2 p(s_j) \to \min$$

A	Состояние среды		Риск
Альтернативы	\mathbf{s}_1	\mathbf{s}_2	(дисперсия)
d_1	\$500	-\$200	102900
d_2	-\$150	\$1000	277725
d_3	\$O	\$O	0
Вероятности состояния среды	0,7	0,3	

$$D(d_1) = (500 - 290)^2 \cdot 0,7 + (-200 - 290)^2 \cdot 0,3 = 102900$$

$$D(d_2) = (-150 - 195)^2 \cdot 0,7 + (1000 - 195)^2 \cdot 0,3 = 277725$$

Оптимальное решение:

 d_3 – «отказ от игры»

Дерево решений

- Дерево решений это ориентированный граф, исходящий из одной вершины (основание дерева), соответствующий исходной точке процесса принятия решения.
- Граф это математический объект, определяемый двумя множествами: множеством узлов $N = \{x\}, |N| = n$, и множеством рёбер $G = N \times N = \{(x,y)|x \in N, y \in N\}$.
- Граф называется **ориентированным**, если все его рёбра имеют направление (ориентированы).

Вершины дерева принятия решений

• *Терминальные* (*концевые*) *вершины:* никакие рёбра не выходят; количественные оценки ________\$100 варианта решения.

• *Вершины принятия решения:* выходят рёбра, соответствующие возможным альтернативам.

• *Случайные вершины:* выходят вероятностные рёбра, соответствующие исходам случайных событий; указываются вероятности данных исходов.

Этапы решения (1)

- 1. Выписывается дерево решений **слева направо** (в направлении *принятия решения*). При этом на граф наносятся все известные числовые характеристики.
- 2. Оценивается дерево решений последовательно по шагам в **обратном направлении**, т.е., начиная с *терминальных вершин*.
- Для случайных вершин последовательно вычисляются математические ожидания выигрышей.
- Для вершин принятия решения последовательно вычисляются оценки лучших альтернатив.

Этапы решения (2)

3. Последний этап – это определение оптимального решения. Для нахождения оптимального решения дерево еще раз просматривается в **прямом направлении**, отмечая наилучшие альтернативы в точках принятия решения.

Метод тройной прогонки

Дерево решений 1

Теорема 1. (Формула полной вероятности)

Пусть случайные события $A_1, A_2, ..., A_n$ образуют полную группу событий и пусть известны $P(A_i)$ и $P(B/A_i)$, i=1,...,n, а с.с. B происходит вместе с одним из с.с. A_i .

Тогда вероятность случайного события B можно вычислить по формуле:

$$P(B) = \sum_{i=1}^{n} P(A_i) P(B/A_i)$$

= $P(A_1) P(B/A_1) + ... + P(A_n) P(B/A_n)$

называемой формулой полной вероятности.

 $P(A_i)$ – априорные вероятности

Теорема 2. (Формула Байеса)

Пусть случайное событие A_m , m=1,...,n - это некоторая фиксированная гипотеза и пусть выполняются все условия теоремы 1, т.е. $A_1,A_2,...,A_n$ образуют полную группу событий и известны $P(A_i)$ и $P(B/A_i)$, i=1,...,n.

Тогда вероятность гипотезы A_m , при условии, что с.с. B произошло, находится по формуле :

$$P(A_m/B) = \frac{P(A_m) P(B/A_m)}{\sum_{i=1}^{n} P(A_i) P(B/A_i)} = \frac{P(A_m) P(B/A_m)}{P(B)}$$

называемой формулой Байеса.

 $P(A_m/B)$ – апостериорные вероятности

Вероятности для Дерева 2. Вершина 2

W = «достали белый шар» B = «достали чёрный шар»

$$P(W/s_1) = 0,5$$

$$P(W/s_2) = 0,2$$

$$P(B/s_1) = 0,5$$

$$P(B/s_2) = 0.8$$

$$P(W) = P(W/s_1) \cdot P(s_1) + P(W/s_2) \cdot P(s_2) = 0,5 \cdot 0,7 + 0,2 \cdot 0,3 = 0,41$$

$$P(B) = P(B/s_1) \cdot P(s_1) + P(B/s_2) \cdot P(s_2) = 0,5 \cdot 0,7 + 0,8 \cdot 0,3 = 0,59$$

Вероятности для Дерева 2. Вершины 9, 10

W = «достали белый шар» B = «достали чёрный шар»

$$P(W/s_1) = 0,5$$

$$P(W/s_2) = 0,2$$

$$P(B/s_1) = 0,5$$

$$P(B/s_2) = 0.8$$

$$P(W) = 0.41$$

$$P(B) = 0.59$$

$$P(s_1/W) = \frac{P(W/s_1) \cdot P(s_1)}{P(W)} = \frac{0.5 \cdot 0.7}{0.41} = 0.854$$

$$P(s_2/W) = \frac{P(W/s_2) \cdot P(s_2)}{P(W)} = \frac{0.2 \cdot 0.3}{0.41} = 0.146$$

Вероятности для Дерева 2. Вершины 12, 13

W = «достали белый шар» B = «достали чёрный шар»

$$P(W/s_1) = 0,5$$

$$P(W/s_2) = 0,2$$

$$P(B/s_1) = 0,5$$

$$P(B/s_2) = 0.8$$

$$P(W) = 0,41$$

$$P(B) = 0.59$$

$$P(s_1 / B) = \frac{P(B / s_1) \cdot P(s_1)}{P(B)} = \frac{0.5 \cdot 0.7}{0.59} = 0.593$$

$$P(s_2/B) = \frac{P(B/s_2) \cdot P(s_2)}{P(B)} = \frac{0.8 \cdot 0.3}{0.59} = 0.407$$

Выигрыши для Дерева 2. Терминальные вершины

19: \$500 - \$50 = \$450

20: -\$200 - \$50 = -\$250

21: -\$150 - \$50 = -\$200

22: \$1000 - \$50 = \$950

23: \$500 - \$50 = \$450

24: -\$200 - \$50 = -\$250

25: -\$150 - \$50 = -\$200

26: \$1000 - \$50 = \$950

Оценка Дерева 2

9: $$450 \cdot 0,854 + (-$250) \cdot 0,146 = $347,8$

10: $-\$200 \cdot 0,854 + \$950 \cdot 0,146 = -\$32,1$

12: $$450 \cdot 0,593 + (-$250) \cdot 0,407 = $165,1$

13: $-\$200 \cdot 0,593 + \$950 \cdot 0,407 = \$268,05$

2: $\$347, 8 \cdot 0, 41 + \$268, 05 \cdot 0, 59 = \$300, 75$

Оптимальное решение. Пример 3

- 1. В узле 1 игрок должен выбрать альтернативу **«Эксперимент»**.
- 2. Если игрок достал **белый шар**, то он выбирает альтернативу **«урна I типа»**.

Если игрок достал **чёрный шар**, то он выбирает альтернативу **«урна типа II»**.

Математическое ожидание выигрыша составит \$300,75

Дополнительное задание 3 (2 балла)

Постройте дерево и найдите оптимальное решение в задаче «Игра с шарами», допустив возможность для игрока по желанию доставать из урны *второй пробный* шар, который тоже стоит \$50.

CPOK: 01.12.2021

Лабораторная работа № 4

Решите задачу с помощью дерева решений. (Таблицу строить НЕ надо!)

• СРОК СДАЧИ без потери баллов:

Группа 4931: 08.12.2021

Группа 4932: 08.12.2021

Группа 4933: 10.12.2021

Группа 4936: 10.12.2021

• РЕШЕНИЕ!