TIMESNET:时间二维变化建模用于一般时间序列分析

Haixu Wu , Tengge Hu , Yongju , Hang Zhou, Jianmin Wang, Mingsheng Long School of Software, BNRist, Tsinghua University, Beijing 100084, China {whx20,liuyong21,htg21,h-zhou18} @mails.tsinghua.edu.cn {jimwang,mingsheng}@tsinghua.edu.cn

抽象的

时间序列分析在天气预报、异常检测和动作识别等广泛应用中具有极其重要的意义。本文重点介绍时间变化建模,这是广泛分析任务的常见关键问题。以前的方法试图直接从一维时间序列中实现这一点,但由于时间模式复杂,这极具挑战性。

基于对时间序列多周期性的观察,我们将复杂的时间变化分解为多个周期内和周期间的变化。

为了解决一维时间序列在表示能力方面的局限性,我们将时间变化的分析扩展到二维空间,将一维时间序列转换为一组基于多个周期的二维张量。这种转换可以将周期内和周期间变化分别嵌入到二维张量的列和行中,使得二维变化很容易被二维核建模。从技术上讲,我们提出了以TimesBlock为任务通用的主干的TimesNet,用于时间序列分析。TimesBlock可以自适应地发现多周期性,并通过参数高效的inception块从转换后的二维张量中提取复杂的时间变化。我们提出的TimesNet在五个主流时间序列分析任务中取得了一致的最佳成绩,包括短期和长期预测、归因、分类和异常检测。

代码可在此存储库中找到: https://github.com/thuml/TimesNet。

1引言

时间序列分析广泛应用于现实世界的各种应用中,例如天气预报中的气象因素预测(Wu et al.,2021)、数据挖掘中的缺失数据填补(Friedman,1962)、工业维护中的监测数据异常检测(Xu et al., 2021)和动作识别中的轨迹分类(Franceschi et al.,2019)。由于其巨大的实用价值,时间序列分析引起了人们的极大兴趣(Lim & Zohren,2021)。

与语言或视频等其他类型的序列数据不同,时间序列是连续记录的,每个时间点仅保存一些标量。由于单个时间点通常无法提供足够的语义信息进行分析,因此许多工作侧重于时间变化,时间变化更具信息量,可以反映时间序列的固有属性,例如连续性、周期性、趋势性等。然而,现实世界时间序列的变化总是涉及复杂的时间模式,其中多种变化(例如上升、下降、波动等)相互混合和重叠,使得时间变化建模极具挑战性。

尤其是在深度学习社区中,得益于深度模型强大的非线性建模能力,已经提出了许多工作来捕捉现实世界时间序列中复杂的时间变化。一类方法采用循环神经网络 (RNN) 基于马尔可夫假设对连续时间点进行建模 (Hochreiter & Schmidhuber, 1997; Lai et al., 2018; Shen et al., 2020)。然而,这些方法通常无法捕捉长期依赖关系,而且它们的效率受到顺序计算范式的影响。另一类方法利用时间维度上的卷积神经网络 (TCN)

1	[李贡献]
Ť	计节贝彻

图 1:时间序列的多周期性和时间二维变化。每个周期都涉及周期内变化和周期间变化。我们将原始的一维时间序列转换为一组基于多个周期的二维张量,这可以统一周期内和周期间的变化。

来提取变化信息(Franceschi et al., 2019; He & Zhao, 2019)。此外,由于一维卷积核的局部性,它们只能对相邻时间点之间的变化进行建模,因此在长期依赖性方面仍然失败。最近,具有注意机制的 Transformer 已广泛应用于序列建模(Brown et al., 2020; Dosovitskiy et al., 2021; Liu et al., 2021b)。在时间序列分析中,许多基于 Transformer 的模型采用注意机制或其变体来捕获时间点之间的成对时间依赖关系(Li et al., 2019; Kitaev et al., 2020; Zhou et al., 2021; 2022)。但是注意力机制很难直接从分散的时间点找出可靠的依赖关系,因为时间依赖关系可能会在复杂的时间模式中被深深掩盖(Wu et al., 2021)。

在本文中,为了解决复杂的时间变化问题,我们从多周期性这一新维度分析了时间序列。首先,我们观察到现实世界的时间序列通常呈现多周期性,例如天气观测的每日和年度变化,电力消耗的每周和每季度变化。这些多个周期相互重叠和相互作用,使得变化建模变得难以处理。其次,对于每个时期,我们发现每个时间点的变化不仅受其相邻区域的时间模式影响,而且与其相邻时期的变化高度相关。为清楚起见,我们分别将这两种类型的时间变化称为期内变化和期间变化。前者表示一个时期内的短期时间模式。后者可以反映连续不同时期的长期趋势。请注意,对于没有明显周期性的时间序列,变化将以期内变化为主,相当于周期长度无限的时间序列。

由于不同时期会导致不同的期内和期间变化,多周期性可以自然地衍生出一种模块化的时间变化建模架构,我们可以在一个模块中捕捉某一时期产生的变化。此外,这种设计使复杂的时间模式解开了,有利于时间变化建模。然而,值得注意的是,一维时间序列很难同时明确呈现两种不同类型的变化。为了解决这个障碍,我们将时间变化的分析扩展到二维空间。具体来说,如图 1 所示,我们可以将一维时间序列重塑为二维张量,其中每列包含一个周期内的时间点,每行涉及不同周期中同一阶段的时间点。因此,通过将一维时间序列转换为一组二维张量,我们可以突破原始一维空间中表示能力的瓶颈,并成功地将周期内和周期间的变化统一到二维空间中,从而获得时间的二维变化。

从技术上讲,基于上述动机,我们超越了以前的骨干模型,并提出了TimesNet作为时间序列分析的新任务通用模型。在TimesBlock的支持下,TimesNet可以发现时间序列的多周期性,并在模块化架构中捕获相应的时间变化。具体来说,TimesBlock可以根据学习到的周期自适应地将一维时间序列转换为一组二维张量,并通过参数高效的初始块进一步捕获二维空间中的周期内和周期间变化。在实验中,TimesNet在五个主流分析任务中实现了一致的最佳表现,包括短期和长期预测、归纳、分类和异常检测。我们的贡献总结为三个方面:

·受多周期性和周期内及周期间复杂相互作用的启发,我们找到了一种模块化的时间变化建模方法。 通过将一维时间序列转换为二维空间,我们可以同时呈现周期内和周期间的变化。 ·我们提出了 TimesNet 和 TimesBlock,以发现多个周期并通过参数高效的初始块从转换后的二维张量中捕获时间二维变化。 ·作为任务通用的基础模型,TimesNet 在五个主流时间序列分析任务中实现了一致的最佳表现。 其中包括详细而富有洞察力的可视化效果。

2相关工作

时间变化建模作为时间序列分析的关键问题已经得到充分探索。

许多经典方法假设时间变化遵循预定义的模式,例如ARIMA(Anderson & Kendall,1976)、Holt-Winter(Hyndman & Athanasopoulos,2018)和 Prophet (Taylor & Letham,2018)。然而,现实世界时间序列的变化通常过于复杂,无法被预定义的模式所覆盖,从而限制了这些经典方法的实际适用性。

近年来,许多深度模型已被提出用于时间建模,例如 MLP、TCN、基于 RNN 的模型(Hochreiter & Schmidhuber,1997;Lai et al.,2018;Franceschi et al.,2019)。

从技术上讲,基于 MLP 的方法(Oreshkin 等人,2019 年;Challu 等人,2022 年;Zeng 等人,2023 年;Zhang等人,2022 年)沿时间维度采用 MLP,并将时间依赖性编码到 MLP 层的固定参数中。基于 TCN(2019 年)的方法通过沿时间维度滑动的卷积核捕获时间变化。基于 RNN 的方法(Hochreiter & Schmidhuber,1997 年;Lai 等人,2018 年;Gu 等人,2022 年)利用递归结构,通过时间步骤之间的状态转换隐式捕获时间变化。请注意,这些方法均未考虑本文提出的由周期性得出的时间二维变化。

此外,Transformers 在时间序列预测方面表现出色(Zhou et al.,2021;Liu et al.,2021a;Wu et al.,2021;Zhou et al.,

此外,Transformers 在时间序列预测方面表现出色(Zhou et al.,2021;Liu et al.,2021a;Wu et al.,2021;Zhou et al.,2022)。借助注意力机制,他们可以发现时间点之间的时间依赖关系。特别是,Wu 等人提出了具有自相关机制的 Autoformer,以根据学习到的周期捕获序列时间依赖关系。

此外,为了处理复杂的时间模式,Autoformer还提出了一种深度分解架构,以获取输入序列的季节性和趋势部分。随后,FEDformer(Zhou等人,2022年)采用混合专家设计来增强季节性趋势分解,并在频域内呈现稀疏注意力。与以前的方法不同,我们通过探索时间序列的多周期性来解开复杂的时间模式,并首次通过公认的计算机视觉主干捕捉二维空间中的时间二维变化。

还值得注意的是,与以前的方法不同,我们不再局限于特定的分析任务,而是尝试提出一个用于时间序列分析的任务通用基础模型。

3时代网

如上所述,基于时间序列的多周期性,我们提出了具有模块化架构的 TimesNet,以捕获来自不同时期的时间模式。对于每个时期,为了捕获相应的周期内和周期间变化,我们在TimesNet中设计了一个 TimesBlock,它可以将一维时间序列转换为二维空间,并通过参数高效的初始块同时对两种类型的变化进行建模。

3.1将一维变化转化为二维变化

如图1所示,每个时间点同时涉及两种与其相邻区域且不同时期之间同相的时间变化,即期内变化和期间变化。然而,这种原始的一维时间序列结构只能呈现相邻时间点之间的变化。为了突破这一限制,我们探索了时间变化的二维结构,它可以明确地呈现期内和期间的变化,从而在表征能力上更具优势,有利于后续的表征学习。

具体来说,对于长度为 T且记录变量为C 的时间序列,原始一维组织为 $X1D \in R$ 。为了表示周期间变化,我们需要首先发现周期。从技术上诉,我们通过快速傅里叶变换 (FFT) 在频域中分析时间序列,如下所示:

图 2:单变量示例,用于说明时间序列中的二维结构。通过发现周期性,我们可以将原始的一维时间序列转换为结构化的二维张量,然后可以通过二维核。通过对所有时间序列变量进行相同的重塑操作,我们可以将上述过程扩展到多元时间序列。

其中,FFT(·)和Amp(·)表示FFT和幅度值的计算。A∈R表示每个频率的计算振幅,它是C维度的平均值

 $Avg(\cdot)$ 。注意,第 j 个值Aj表示频率 j周期基函数的强度,

对应于周期长度j。考虑到频域的稀疏性,为了避免

无意义的高频带来的噪音(Chatfield,1981;Zhou et al.,2022),我们只

选择前 k 个振幅值并获取最重要的频率 $\{f1, \dots, fk\}$,其中

非归一化振幅{Af1,,Afk},其中k是超参数。这些选定的

频率也对应于k个周期长度 $\{p1, \cdots, pk\}$ 。由于频率的共轭性

域中,我们只考虑[1,・・・

, [¯¯]]。我们将公式1总结如下: A, {f1, · · · , fk}, {p1, · · · , pk} = 周期(X1D)。

根据选定的频率 $\{f1,\cdots$ 可以重塑一维时间序列X1D \in R ,fk}和相应的周期长度 $\{p1,\cdots$, $pk\}$,我们 通家 通过以下方程分解成多个二维张量:

习 = = Reshapepi,fi (Padding(X1D)), i \in {1, · · · , k},其中Padding(·) (3)

是将时间序列沿时间维度用零扩展,以使其与Reshapepi,fi(·)兼容,其中pi和fi表示变换后的行数和列数

 $_{-_{ ext{drig}}, ext{i} ext{ pi} imes ext{fi} imes ext{C表示基于以下公式的第 i 个重塑时间序列}$

频率 fi ,其列和行代表周期内变化和周期间变化

分别在相应的周期长度pi下进行。最终如图 2 所示,基于

选定频率和估计周期,我们得到一组二维张量(X1

表示由不同周期得出的 k 个不同的时间 2D 变化。

_{二维,} , Xk 2D},其中

(2)

值得注意的是,这种变换给变换后的二维张量带来了两种类型的局部性,即相邻时间点(列、期内变化)和相邻周期之间的局部性

(行,周期间变化)。因此,时间二维变化可以轻松地通过二维核来处理。

3.2时间块

如图 3 所示,我们以残差方式组织 TimesBlock(He et al., 2016)。具体来说,

对于长度为 T的1D输入时间序列X1D ∈ R

※※※,我们将原始输入投射到深度特征中

X0 1D ∈ R T×dmodel 通过嵌入层X0 1D = Embed(X1D)。对于第l 个

TimesNet 层,输入为XI-1 $_{1D}$ \in R T \times dmodel ,该过程可以形式化为:

西 $_{1D}$ = TimesBlock XL-1 $_{1D}$ + Xl-1 $_{D}$ (4)

如图3所示,对于第I个TimesBlock,整个过程涉及两个连续的部分:

捕捉时间的二维变化并自适应地聚合不同时期的表示。

捕捉时间二维变化与公式1类似,我们可以估算深

特征XI-1 1D 通过Period(·)。根据估计的周期长度,我们可以将一维时间序列

二维视觉主干网络中的通用性得益于将一维时间序列转换为

时间二维变化,我们可以选择各种计算机视觉主干来代替 Inception

用于表征学习的模块,例如广泛使用的 ResNet (He et al.,2016)和 ResNeXt

(Xie et al.,2017)、高级 ConvNeXt (Liu et al.,2022b)和基于注意力机制的模型 (Liu et al.,

2021b)。因此,我们的时间二维变化设计也将一维时间序列与蓬勃发展的二维

视觉骨干,使时间序列分析利用计算机的发展

视觉社区。一般来说,更强大的 2D 主干表示学习将带来

更好的性能。考虑到性能和效率(图 4 右),我们进行

主要实验基于参数高效的 Inception 块,如公式 5 所示。

4实验

为了验证 TimesNet 的通用性,我们在五个主流分析任务上进行了广泛的实验,包括短期和长期预测、归纳、分类和异常检测。

实施表 1 是基准测试的摘要。有关数据集、实验的更多详细信息 实现和模型配置可以在附录A中找到。

表 1:实验基准摘要。

任务	基准	指标	系列长度
预测	长期: ETT(4个子集)、电力、 交通、天气、外汇、ILI	硕士、硕士	96 720 (或:24 60)
-	短期: M4(6 个子集)	SMAPE\MASE\OWA	6 48
归责	ETT(4 个子集)、电力、天气	硕士、硕士	96
 分类	│ UEA(10 个子集)	准确性	29 1751
异常检测 SMD、MSL	SMAP,SWaT,PSM	准确率、召回率、F1-Socre	100

基线由于我们试图提出一个时间序列分析的基础模型,我们广泛

比较所有五个任务中公认的先进模型,包括基于 RNN 的模型:LSTM (1997)、LSTNet (2018) 和 LSSL (2022);基于 CNN 的模型:TCN (2019);基于 MLP 的

模型:LightTS(2022)和 DLinear(2023);基于 Transformer 的模型:Reformer(2020)、Informer(2021)、Pyraformer(2021a)、Autoformer(2021)、FEDformer(2022)、非固定变压器(2022a)和 ETSformer(2022)。此外,我们还比较了每个模型的最新进展特定任务,例如用于短期预测的 N-HiTS (2022) 和 N-BEATS (2019)、异常

Transformer (2021) 用于异常检测, Rocket (2020) 和 Flowformer (2022) 用于分类 等等。总体而言, 涵盖了超过 15 条基线以供进行全面比较。

图 4:模型性能比较(左)和不同视觉主干中的通用性(右)。

4.1主要结果

作为基础模型,TimesNet在五个主流分析任务与其他定制模型的比较(图4左)。完整的效率比较附录表11中给出了。此外,通过用更强大的视觉骨干,我们可以进一步提升TimesNet的性能(图4右),证实我们的设计可以使时间序列分析利用蓬勃发展的视觉主干。

4.2短期和长期预测

设置时间序列预测对于天气预报、交通和能源消耗至关重要规划。为了全面评估模型的预测性能,我们采用了两种类型的基准,包括长期和短期预测。特别是对于长期预测,我们遵循Autoformer (2021) 中使用的基准,包括 ETT (Zhou et al., 2021)、电力 (UCI)、交通(PeMS)、天气(Wetterstation)、Exchange(Lai et al.,2018)和 ILI(CDC),涵盖五个现实世界应用。对于短期数据集,我们采用 M4(Spyros Makridakis,2018),其中包含每年、每季度和每月收集的单变量营销数据。请注意,长期设置仅包含一个连续时间序列,我们通过滑动获取样本窗口,而M4涉及以不同频率收集的100,000个不同的时间序列。

表 2:长期预测任务。ILI 的过去序列长度设置为 36, 其他。所有结果均取自 4 个不同的预测长度的平均值,即ILI 的预测长度为{24, 36, 48, 60} 其余为 {96, 192, 336, 720}。完整结果请参阅附录中的表 13。

楷模	TimesNet ETS (我们的)	Sformer Light ⁻ (2022)	FS DLinear FEDformer Stat (2022) (2022a)((200231))	ionary Autoformer Pyr (2022)	aformer Informer Log (2021)	Trans Reformer (2021a)	(2019年)	(2020)
公制MSE M	IAE MSE MAE M	SE MAE MSE M	AE MSE MAE MSE MAE MSE	MAE MSE MAE MSE MA	AE MSE MAE MSE MAE	MSE MAE MSE MAE		
ETTm1 0.4	<mark>4</mark> 00 0.406 0.429	0.425 0.435 0.	437 <mark>0.403 0.40<mark>7</mark> <u>0.448</u> <u>0.452</u></mark>	<u>2 d</u> .481 0.456 0.588 0.51	17 0.691 0.607 0.961 0	734 0.929 0.72 5 0.799 0.67	1	
平均蒸发量	2 0.291 0.333 0	293 0.342 0.40	9 0.436 0.350 p.401 0.305 (0.349 0.306 0.34 0.327	0.371 1 498 0.869 1.4	0 0.810 1.535 p.900 1.479	0.915	
ETTh1 0.4	458 <mark>0.450</mark> 0.542	0.510 0.491 0.4	79 0.456 0.45 <mark>2 0.440</mark> 0.460	0,570 0.537 0.496 0.48	7 0.827 þ.703 1.040 0.	95 1.072 0.83 1.029 0.80	5	
ETTh2 0.4	4 4 0.427 0.439	0.452 0.602 0.5	43 0.559 0.51\$ 0.437 0.449	0.526 0.516 0.450 0.45	9 0.826 p.703 4.431 1.	29 2.686 1.494 6.736 2.19	1	
色力0.192 0.	. <mark>295</mark> 0.208 0.32	0.229 0.329 0	212 0.300 0.2 4 0.327 0.19	3 0.296 0.227 0.338 0.3	79 0.445 0.311 0.397 (272 0.370 0.338 0.422	1 1	
交通0.620	0 <mark>0.336</mark> 0.621 0.3	96 0.622 0.392	0.625 0.383 <mark>0</mark> .610 0.376 0.	624 0.340 0.628 0.379 0	0. <u>878 0.</u> 469 0.764 0.41	0.705 0.395 0 741 0.422	Î	
天气0.259	0.287 0.271 0.3	34 0.261 0.312	0.265 0.317 0.309 0.360 0.2	88 0.314 0.338 0.382 0	.946 0.7 7 0.634 0.548	0.696 0.602 0.803 0.656		
交易所 0.41	6 0.443 0.410 0	427 0.3 <u>85 0.44</u>	7 0.354 0.414 0.519 0.500 0	.461 0.454 0.613 0.539	1.913 1.159 1.550 0.99	8 1.402 0.968 1.280 0.932		
或2.139	0.931 2.497 1.004	7.382 2.003 2.6	16 1.090 2.847 1.144 <mark>2.077</mark> 0.9	3.006 1.161 7.635 2.05	50 5.137 1.544 4.839 1.48	5 4 ,724 1,445	İ	

表 3:M4 上的短期预测任务。预测长度见[6,48],结果如下 对不同采样间隔下的多个数据集进行加权平均。完整结果见表 14。

楷模	TimesNet N-H	HITS N-BEATS ETSform	er LightTS [DLinear Fl	Dformer	Stationary Au	oformer Pyrat	former Infor	mer LogTra	ans Reforr	mer	
	(我们的)	(2022) (2019)	(2022)	(2022)	(2023)	(2022)	(2022a)	(2021)	(2021a)	(2021)	(2019)	(2020)
平均平均收	益率11.829 11.	.927 11.851	14.718 13	.525 13.63	39 12.840	12.780		12.909	16.987	14.086 16	.018 18.200	1
质量1,585 1	1,613	1.599	2.408 2.1	11 2.095		1.701	1.756	1.771	3.265	2.71	8 3.01	.0 4.223
失水0.85	0.861	0.855	1.172	1.051 1	.051	0.918	0.930	0.939	1.480	1.23	0 1.378	1.775

结果TimesNet 在长期和短期设置中均表现出色(表 2-3)。 具体来说,TimesNet 在长期预测中 80%以上的案例中都达到了最佳水平 (表 13)。对于 M4 数据集,由于时间序列是从不同来源收集的,因此时间 变化可能非常多样,使得预测更加困难。我们的模型仍然有效 在这个任务中表现最佳,超越了大量先进的基于 MLP 和基于 Transformer 的模型。

4.3归因

设置现实世界的系统总是连续工作,并受到自动观察的监控设备。然而,由于故障,收集的时间序列可能会部分缺失,使得下游分析变得困难。因此,插补在实际应用中被广泛使用。在这种情况下在本文中,我们选取电力和天气场景的数据集作为基准,包括ETT(Zhou等人,2021年)、电力(UCI)和天气(Wetterstation),其中数据缺失问题很常见。为了比较不同比例的缺失值下的模型容量数据,我们按照{12.5%,25%,37.5%,50%}的比例随机屏蔽时间点。

结果由于缺少时间点,插补任务需要模型从不规则和部分观察到的时间序列中发现潜在的时间模式。如表 4 所示,我们的

提出的 TimesNet 仍然在这项艰巨的任务中取得了一致的最佳成绩,验证了模型捕捉极其复杂的时间序列中时间变化的能力。

4.4分类

设置时间序列分类可用于识别和医学诊断(Moody等,

2011)。我们采用序列级分类来验证模型在高级表示学习中的能力。具体来说,我们从 UEA 时间序列分类中选择了 10 个多变量数据集

档案(Bagnall等人,2018年),涵盖手势、动作和音频识别、医疗诊断

通过心跳监测和其他实际任务。然后,我们按照

(Zerveas et al., 2021) 中的描述,其中不同的子集具有不同的序列长度。

表 4:插补任务。我们在长度为 96 的时间序列中随机屏蔽 {12.5%、25%、37.5%、50%} 的时间点。结果是 4 种不同屏蔽率的平均值。完整结果请参见表 16。

楷模	TimesNet ETS	Sformer LightT	S DLinear FED	former Statio	nary Autoform	er Pyraformer	Informer Log1	rans Reform	er (2022) (2022a	a) (2021)	
	(我们的)	(2022)		(2023)	(2022)		(2021)	(2021a)		(2019年)	(2020)
掩码比率 MS	E MAE MSE MAE	MSE MAE MSE	MAE MSE MAE	MSE MAE MSE	MAE MSE MAE	MSE MAE MSI	MAE MSE MA	MSE MAE M	SE MAE		
ETTm1 0.0	0 <mark>2</mark> 7 0.107 0.120 ф	.253 0.104 0.2	18 0.093 0.206	0.062 0.177 0.	036 0.126 <mark>0.05</mark>	0.150 0.717 0	.570 0.071 0.1	8 0.050 0.15	4 0.055 0.166		20
ETTm2 0.0	022 0.088 0.208	.327 0.046 0.1	51 0.096 0.208	0.101 0.215 0.	026 0.099 0.02	0.105 0.465 0	.508 0.156 0.2	2 0.119 0.24	6 p.157 0.280	1	
ETTh1 0.0	0 <mark>78 0.187</mark> 0.202 0	.329 0.284 0.3	3 0.201 0.306	0.117 0.246 0.0	94 <mark>0.201</mark> 0.103	0.214 0.842 0	682 0.161 0.2	9 0.219 0.332	ø.122 0.245		
ETTh2 0.0	04 <mark>9 0.146</mark> 0.367 0	.436 0.119 0.2	0 0.142 0.259	0.163 0.279 0.0)53 0.152 0.05 <u>5</u>	0.156 1.079 0	792 0.337 0.45	2 0.186 0.318	o.234 0.352		
电力0.092 0	. <mark>2</mark> 10 0.214 0.339	0.131 0.262 0.	32 0.260 0.13p	0.259 0.100 0	218 0.101 0.22	5 0.297 0.382	0.222 0.328 0.1	75 0.303 0.20	0.313	1 1	
天气0.030	0 <mark>.054</mark> 0.076 0.17	1 0.055 0.117 þ	.052 0.110 0.0	9 0.203 0.032	0.059 0.031 0.	057 0.152 0.23	0.045 0.104 0	039 0.076 0.0	38 0.087		

结果如图5所示,TimesNet以73.6%的平均准确率取得了最优性能,超过了之前最先进的经典方法Rocket(72.5%)和深度模型Flowformer(73.0%)。不难发现基于MLP的模型DLinear在这个分类任务中失败了(67.5%),而它在一些时间序列预测数据集上表现良好。这是因为DLinear在时间维度上只采用了单层MLP模型,这可能适合一些具有固定时间依赖性的自回归任务,但在学习高级表示时会退化很多。相反,

TimesNet将时间的二维变化统一在二维空间中,便于通过二维核学习信息表示,从而有利于需要分层表示的分类任务。

图 5:分类模型比较。Transformers中的 ""表示 former 的名称。结果是从UEA 的 10 个子集取平均值。完整结果请参阅附录中的表 17。

4.5异常检测

设置从监测数据中检测异常对于工业维护至关重要。由于异常通常隐藏在大规模数据中,使得数据标记变得困难,因此我们专注于无监督时间序列异常检测,即检测异常时间点。我们在五个广泛使用的异常检测基准上比较了模型:SMD(Su等人,2019年)、MSL(Hundman等人,2018年)、SMAP(Hundman等人,2018年)、SWaT(Mathur & Tippenhauer,2016年)、PSM(Abdulaal等人,2021年),涵盖服务监控、太空和地球探索以及水处理应用。

遵循 Anomaly Transformer (2021) 中的预处理方法,我们通过滑动窗口将数据集拆分为连续的不重叠段。在以前的工作中,重建是无监督逐点表示学习的经典任务,其中重建误差是自然的异常标准。为了公平比较,我们仅更改重建的基础模型,并使用经典的重建误差作为所有实验的共享异常标准。

结果表 5 表明 TimesNet 在异常检测方面仍然取得了最佳性能,优于基于 Transformer 的高级模型 FEDformer (2022) 和 Autoformer (2021)。标准 Transformer 在这个任务上的表现较差(平均 F1 分数为 76.88%)。这可能是因为异常检测需要模型找出罕见的异常时间模式(Lai et al., 2021),而普通注意力机制计算每对时间点之间的相似性,这可能会被占主导地位的正常时间点分散注意力。此外,通过考虑周期性,TimesNet、FEDformer 和 Autoformer 都取得了很好的性能。因此,这些结果也证明了周期性分析的重要性,它可以隐式地突出显示违反周期性的变化,进一步有利于异常检测。

频率 1=15

表 5:异常检测任务。我们计算每个数据集的 F1 分数(以%)。*. 表示*前者。F1 分数越高,表示性能越好。完整结果见表 15。

-1.0

Ĭ.0

模型	"imesNet ETS。 所身 。LightTS DLinear 稳态自动。Py n) (2022) (2022) (2022) (2023) (2022a) (2021) (2		2019) (2017)	回复 LogTrar	s Trans。 频率 2=13	۰	
贴片85.81 最低标准85.15	85.12 83.13 85.08 82.53 77.10 84.18 85.49 #38.57 78.95 84.88		85.49 81.65 75 <u>.32 76</u> .21		9	1	,频率 3。。。
斯玛普 71.5 2	70.85 69.50 70.76 69.21 69.26 71.09 71 12 7 92.10 84.51 93.19 93.33 87.52 79.88 92 74 9	1.09	71.18 69.9	2 70.40 69.97 69.70	5		
特警 91.74 太平洋标准时间 97.47	95.21 91.96 97.23 97.110 95.95 200 2560		³⁵⁰ 79.40 77.	3 82.80 \$ 0.52 80. \$ 7 10 73. 62476.5 74 76.07	16x13 _	ú	10x36
平均 F1 <mark>86 34</mark>	85.49 82.87 84.97 84.23 82.46 (a)—4	惟时间序列 08 84.26 82.57	80.50 78.8	3 77.31 76.60 76.88	(b)时间二维变化		

为了进行公平比较,我们用重建误差取代了 Anomaly Transformer (2021) 中的联合标准。

4.6模型分析

表征分析我们尝试从表征学习的角度来解释模型性能。从图 6 中可以看出,在预测和异常方面,模型的性能更好。

检测对应于更高的 CKA 相似度(2019),这与插补相反,并且

分类任务。注意,较低的 CKA 相似度意味着表示在不同的层之间是不同的,即分层表示。因此,这些结果也表明 120 140 160 180

每个任务都需要表征的属性。如图 6 所示,TimesNet 可以学习

为不同的任务提供适当的表示,例如用于预测的低级表示和

异常检测中的重建以及用于归纳和分类的分层表示。

相比之下,FEDformer(2022)在预测和异常检测任务中表现良好,但在

学习分层表示,导致插补和分类性能不佳。

这些结果也验证了我们提出的 TimesNet 作为基础模型的任务通用性。

图 6:四项任务中的表征分析。对于每个模型,我们计算中心核第一层和最后一层的表示之间的对齐(CKA)相似性(2019)。

CKA 相似度越高,表示表示越相似。TimesNet 以红色星号标记。

时间二维变化我们提供了一个案例研究 图 7 中的时间二维变化。我们可以发现 TimesNet 可以精确捕捉多周期性。此外,转换后的二 维张量具有很高的 结构清晰、信息丰富,其中的列和 行可以反映时间点之间的位置 和句号,支持我们的动机 采用二维内核进行表示学习。 更多可视化效果请参见附录 D。

5结论和未来工作

本文介绍了 TimesNet 作为时间序列分析任务通用的基础模型。受多周期性的启发,TimesNet 可以通过模块化

架构并通过参数高效的

inception block。实验中,TimesNet 在五个主流分析任务中表现出很好的通用性和性能。未来我们将及时进一步探索大规模预训练方法

系列利用 TimesNet 作为主干,通常可以使广泛的下游任务受益。

致谢

该工作得到了国家重点研发计划(2020AAA0109201)、国家自然科学基金(62022050和62021002)、民用飞机科研项目(MZJ3-2N21)、 北京市新星计划(Z201100006820041)和CCF-蚂蚁集团绿色计算基金的支持。

参考

Ahmed Abdulaal、Zhuanghua Liu 和 Tomer Lancewicki。异步多变量时间序列异常检测和定位的实用方法。KDD,2021年。

O. Anderson 和 M. Kendall。时间序列。第二版。JR Stat. Soc. (D 系列),1976年。

Anthony J. Bagnall、Hoang Anh Dau、Jason Lines、Michael Flynn、James Large、Aaron George Bostrom、Paul Southam 和 Eamonn J. Keogh。UEA 多元时间序列分类档案,2018年。arXiv 预印本 arXiv:1811.00075,2018年。

Donald J. Berndt 和 James Clifford。使用动态时间扭曲来查找时间序列中的模式。在KDD 研讨会上,1994年。

Tom Brown、Benjamin Mann、Nick Ryder、Melanie Subbiah、Jared D Kaplan、Prafulla Dhariwal、Arvind Neelakantan、Pranav Shyam、Girish Sastry、Amanda Askell、Sandhini Agarwal、Ariel Herbert-Voss、Gretchen Krueger、Tom Henighan、Rewon Child、Aditya Ramesh、Daniel Ziegler、 Jeffrey Wu、Clemens Winter、Chris Hesse、Mark Chen、Eric Sigler、Mateusz Litwin、 Scott Gray、 Benjamin Chess、Jack Clark、Christopher Berner、Sam McCandlish、Alec Radford、Ilya Sutskever和 Dario Amodei。语言模型是少样本学习器。在 NeurIPS,2020年。

CDC。疾病。https://gis.cdc.gov/grasp/fluview/fluportaldashboard。 HTML。

Cristian Challu、Kin G Olivares、Boris N Oreshkin、Federico Garza、Max Mergenthaler 和 Artur Dubrawski。N-hits:用于时间序列预测的神经分层插值。arXiv 预印本arXiv:2201.12886,2022 年。

克里斯·查特菲尔德。时间序列分析:导论。1981年。

Tianqi Chen 和 Carlos Guestrin。Xgboost:可扩展的树提升系统。KDD,2016年。

Angus Dempster、Franccois Petitjean 和 Geoffrey I. Webb。Rocket:使用随机卷积核实现异常快速准确的时间序列分类。数据挖掘知识发现,2020年。

Alexey Dosovitskiy、Lucas Beyer、Alexander Kolesnikov、Dirk Weissenborn、翟晓华、Thomas Unterthiner、Mostafa Dehghani、Matthias Minderer、Georg Heigold、Sylvain Gelly、Jakob Uszkoreit 和Neil Houlsby。一张图像相当于 16x16 个单词:用于大规模图像识别的 Transformer。在 ICLR,2021 年。

Jean-Yves Franceschi-Aymeric Dieuleveut 和 Martin Jaggi。无监督可扩展表示 多元时间序列的学习。NeurIPS,2019 年。

米尔顿·弗里德曼。通过相关序列对时间序列进行插值。J. Amer. Statist. Assoc,1962年。

Albert Gu、Karan Goel 和 Christopher Re。使用结构化状态空间高效建模长序列。在 ICLR,2022 年。

Kaiming He.X. Zhang、Shaoqing Ren 和 Jian Sun。用于图像识别的深度残差学习。 CVPR, 2016.

Yangdong He 和 Jiabao Zhao。时间卷积网络用于时间序列中的异常检测。J. Phys. Conf. Ser,2019。

S. Hochreiter 和 J. Schmidhuber。长短期记忆。神经计算,1997年。

.. 关于。

Kyle Hundman、Valentino Constantinou、Christopher Laporte、Ian Colwell 和 Tom Soderstr 使用 lstms 和非参数动态阈值检测航天器异常。KDD,2018 年。

Rob J Hyndman 和 George Athanasopoulos。预测:原则与实践。OTexts,2018年。

Diederik P. Kingma 和 Jimmy Ba。《Adam:一种随机优化方法》。载于 ICLR,2015 年。 网址http://arxiv.org/abs/1412.6980。

Nikita Kitaev、Lukasz Kaiser 和 Anselm Levskaya。Reformer:高效的变压器。在 ICLR 中,
2020 年。

Simon Kornblith、Mohammad Norouzi、Honglak Lee 和 Geoffrey E. Hinton。神经网络的相似性网络表示法再探。在 ICML,2019 年。

Guokun Lai、Wei-Cheng Chang、Yiming Yang 和 Hanxiao Liu。使用深度神经网络对长期和短期时间模式进行建模。SIGIR,2018年。

Kwei-Herng Lai、D. Zha、Junjie Xu 和 Yue Zhao。重新审视时间序列异常值检测:定义和基准。在 NeurIPS 数据集和基准轨道中,2021年。

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In NeurIPS, 2019.

Bryan Lim 和 Stefan Zohren。《利用深度学习进行时间序列预测:一项调查》。Philos。译。 皇家学会 A,2021 年。

刘诗展、余航、廖聪、李建国、林伟耀、刘亚历克斯和 Schahram Dust-dar。Pyraformer:用于长期时间序列建模和预测的低复杂度金字塔注意力机制。在 ICLR,2021a。

Yong Liu、Haixu Wu、Jianmin Wang 和 Mingsheng Long。非平稳变换器:重新思考时间序列预测中的平稳性。在 NeurIPS,2022a。

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin transformer:使用移位窗口的分层视觉转换器。在 ICCV,2021b 年。

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. 面向 2020 年代的卷积网络。CVPR,2022b。

Aditya P. Mathur 和 Nils Ole Tippenhauer。Swat:用于研究和培训的水处理试验台关于 ICS 安全。载于 CySWATER,2016年。

George B. Moody、Roger G. Mark 和 Ary L. Goldberger。Physionet:生理信号、时间序列和相关开源软件,用于基础、临床和应用研究。EMBC,2011年。

Boris N Oreshkin、Dmitri Carpov、Nicolas Chapados 和 Yoshua Bengio。N-BEATS:用于可解释时间序列预测的神经基础扩展分析。ICLR,2019 年。

Adam Paszke、S. Gross、Francisco Massa、A. Lerer、James Bradbury、Gregory Chanan、Trevor Killeen、 Z. Lin、N. Gimelshein、L. Antiga、Alban Desmaison、Andreas Kopf、Edward Yang、Zach DeVito、 Martin Raison、Alykhan Tejani、Sasank Chilamkurthy、 Benoit Steiner、Lu Fang、Junjie Bai 和 Soumith Chintala。Pytorch:命令式、高性能深度学习库。NeurIPS,2019 年。

PeMS。交通。http://pems.dot.ca.gov/。

Lifeng Shen、Zhuocong Li 和 James T. Kwok。使用时间序列异常检测分层单类网络。在 NeurIPS,2020年。

Spyros Makridakis。M4 数据集,2018 年。URL https://github.com/M4Competition/M4-methods/tree/master/Dataset。

Ya Su, Y. Zhao, Chenhao Niu, Rong Liu, W. Sun, and Dan Pei. Robust anomaly detection for 通过随机循环神经网络实现多元时间序列。KDD,2019 年。 Christian Szegedy、Wei Liu、Yangqing Jia、Pierre Sermanet、Scott E. Reed、Dragomir Anguelov、 D. Erhan、Vincent Vanhoucke 和 Andrew Rabinovich。深入了解卷积。CVPR, 2015 年。

Sean J Taylor 和 Benjamin Letham。大规模预测。Am. Stat.,2018年。

UCI。 电。 https://archive.ics.uci.edu/ml/datasets/ 电力负荷图20112014。

Ashish Vaswani、Noam Shazeer、Niki Parmar、Jakob Uszkoreit、Llion Jones、Aidan N Gomez、Lukasz Kaiser 和 Illia Polosukhin。注意力就是你所需要的一切。在 NeurIPS,2017年。

气象站。天气。 https://www.bgc-jena.mpg.de/wetter/。

Gerald Woo、Chenghao Liu、Doyen Sahoo、Akshat Kumar 和 Steven CH Hoi。Etsformer:用于时间序列预测的指数平滑变换器。arXiv 预印本arXiv:2202.01381,2022年。

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers 利用自相关函数进行长期序列预测。在 NeurIPS,2021 年。

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing 具有保护流的变压器。在 ICML,2022 年。

Saining Xie、Ross B. Girshick、Piotr Dollar、Zhuowen Tu 和 Kaiming He。汇总残差深度神经网络的变换。CVPR,2017年。

徐杰辉、吴海旭、王建民、龙明生。异常变换器:具有关联差异的时间序列异常检测。在 ICLR,2021年。

Ailing Zeng、Muxi Chen、Lei Zhang 和 Qiang Xu。Transformer 对时间序列有效吗? 预测? 2023 年。

- G. Zerveas、Srideepika Jayaraman、Dhaval Patel、Anuradha Bhamidipaty 和 Carsten Eickhoff。基于 Transformer 的多元时间序列表示学习框架。KDD,2021 年。
- T. Zhang、Yizhuo Zhang、Wei Cao、J. Bian、Xiaohan Yi、Shun Zheng 和 Jian Li。少即是多:使用轻采样导向 mlp 结构进行快速多元时间 序列预测。arXiv 预印本arXiv:2207.01186,2022 年。

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer:超越高效变压器,用于长序列时间序列预测。在 AAAI,2021 年。

Tian Zhou、Ziqing Ma、Qingsong Wen、Xue Wang、Liang Sun 和 Rong Jin。FEDformer:用于长期序列预测的频率增强分解变压器。在 ICML,2022 年。

实施细节

我们在表 6 和表 7 中提供了数据集描述和实验配置。所有实验重复三次,在 PyTorch(Paszke 等人,2019)中实现,并在单个 NVIDIA TITAN RTX 24GB GPU 上进行。为了使模型能够处理来自不同数据集的输入序列的各种维度,我们根据输入序列维度C通过min{max{2 log C, dmin}, dmax}选择dmodel (有关dmin和dmax的详细信息,请参阅表 7)。该协议可以使模型足够强大,可以处理多个变量,同时保持模型大小紧凑。

我们复现的所有基线都是基于原始论文或官方代码的配置实现的。同样值得注意的是,之前的方法都没有针对一般时间序列分析提出。为了公平比较,我们在不同的基础模型中保持输入嵌入和最终投影层相同,并且仅评估基础模型的能力。特别是对于预测任务,我们在时间维度上使用 MLP 来获得预测未来的初始化。

由于我们专注于时间变化建模,我们还采用非平稳 Transformer的串联平稳化(Liu et al.,2022a)来消除分布偏移的影响。

对于指标,我们采用均方误差 (MSE) 和平均绝对误差 (MAE) 进行长期预测和估算。对于异常检测,我们采用 F1 分数,即准确率和召回率的调和平均值。对于短期预测,我们遵循 N-BEATS(Oreshkin et al.,2019),采用对称平均绝对百分比误差 (SMAPE)、平均绝对缩放误差 (MASE) 和总体加权平均值 (OWA) 作为指标,其中 OWA 是 M4 竞赛中使用的特殊指标。这些指标可以按如下方式计算:

其中,m为数据的周期。X,X∈R为具有H个时间点和C维度的未^{氢碳} 是基本事实和预测结果来。Xi表示第i个未来时间点。

B超参数敏感性

我们在公式 1 中引入了一个超参数来选择最重要的频率。我们在图 8 中提供了这两个超参数的敏感性分析。我们可以发现,我们提出的 TimesNet 在所有四个任务中都可以在不同 k 选择下呈现稳定的性能。

图 8:插补和异常检测任务中超参数k的敏感性分析。

特别地,我们选择37.5%的掩码比例进行超参数实验;对于分类,我们选择两个最大的子集:SpokenArobicDigits和FaceDetection进行评估;对于短期预测,我们采用加权平均进行敏感性分析。

此外,从图8中我们还可以发现以下观察结果:

·对于预测、异常检测等低级建模任务,k的选择对最终性能的影响更大。这可能是因为k会直接影响深度表示中的信息量。

表 6:数据集描述。数据集大小按(训练、验证、测试)进行组织。

任务	数据集	暗淡系	列长度	数据集大小	信息(频率)
	ETTm1,ETTm2 7 {96,19	2,336,7	20} (34465,11521,1152	21)	电力(15分钟)
	ETTh1、ETTh2	7 {96	, 192, 336, 720}	(8545, 2881, 2881)	电力(15分钟)
预测电力		321 {9	6, 192, 336, 720} 862	(18317, 2633, 5261)	电费 (每小时)
(长期)交通		{96, 19	2, 336, 720}	(12185, 1757, 3509)	交通 (每小时)
	天气	21 {9	5, 192, 336, 720}	(36792, 5271, 10540)	天气 (10 分钟)
		8 {96	, 192, 336, 720}	(5120, 665, 1422)	汇率(毎日)
	或者	7	{24, 36, 48, 60}	(617, 74, 170)	疾病(毎周)
	M4-每年	1	6	(23000,0,23000)	人口统计
	M4-季刊	1	8	(24000,0,24000)	金融
预测 M4-每月		1	18	(48000, 0, 48000)	
(短期)M4-弱		1	+≡	(359,0,359)	宏
	M4-每日	1	14	(4227, 0, 4227)	_ 微
	M4-每小时	1	四十八	(414,0,414)	_
	气管插管 1、气管插管 2	7	96	(34465, 11521, 11521)	电力 (15 分钟)
.l⊐ ≠	ETTh1、ETTh2	7	96	(8545, 2881, 2881)	电力 (15 分钟)
归责	电	321	96	(18317, 2633, 5261)	电力 (15 分钟)
	天气	21	96	(36792, 5271, 10540)	天气 (10 分钟)
	乙醇浓度3		1751	(261,0,263)	酒精工业
	人脸检测	144	62	(5890, 0, 3524)	面部(250Hz)
	手写	3	152	(150, 0, 850)	手写
	心跳	61	405	(204, 0, 205)	心跳
分类日语元音		12	=+h	(270, 0, 370)	嗓音
(阿联酋)	聚醚砜	963	144	(267, 0, 173)	交通 (毎日)
	自我调节SCP1	6	896	(268, 0, 293)	健康(256Hz)
	自我调节SCP2	7	1152	(200,0,180)	健康(256Hz)
	口语阿拉伯语数字	+≡	93	(6599, 0, 2199)	语音(11025Hz)
	UWaveGestureLibrary \$		315	(120, 0, 320)	手势
	贴片	三十八	100	(566724, 141681, 708420)	服务器
异常 MSL		55	100	(44653, 11664, 73729)	宇宙飞船
检测SMAP		二十五	100	(108146, 27037, 427617)	宇宙飞船
	 	51	100	(396000, 99000, 449919)	基础设施
	脉冲调制	二十五	100	(105984, 26497, 87841)	服务器

表 7:TimesNet 的实验配置。所有实验均使用 ADAM(2015)优化器 其中(β 1, β 2)的默认超参数配置为(0.9, 0.999)。

1										
任务/配置		模型	超参数	Ż.				训练过程		
	k (:	公式 1) 层	dmin	† dm	ax † LR	\$12 10-4		损失	批次大小时期	
长期预测		5	1	2	=+=			微分方程	= + =	10
短期预测		5		2	16	64 10 + 3	平均正刻	极光	16	10
归责		3	1	2	64	128 10	3	微分方程	16	10
 分类		3	1	2	=+=	64 10 + 3	交叉熵 :	128 10-4	16	Ξ+
异常检测		3	1	3	=+=			微分方程	128	10

[†] dmodel = 最小{最大{2 LR表示初始学习率。

[,]dmin},dmax},其中 C 是输入序列维度。

·对于分类和归纳等高级建模任务,模型性能对k的选择将更加稳健,因为这些任务的关键是提取

层次化表示。

兼顾效率和性能,我们设置k=3用于插补、分类和异常检测,以及短期预测的k=5。

C消融研究

为了详细说明我们提出的 TimesNet 的特性,我们对二维空间中的表示倾向、模型架构和自适应聚合进行了详细的阐述

2D 空间如表 8 所示,用更强大的块替换 Inception 块将带来 进一步的性能提升,例如 ResNeXt (Xie et al.,2017)、Swin Transformer (Liu et al., 2021b) 和 ConvNeXt (Liu et al.,2022b)。同样值得注意的是,使用独立参数 也会带来提升,但这会导致模型大小与超参数k的选择有关。考虑到效率和模型性能,我们选择参数高效的

inception 块作为我们的最终解决方案。这些结果还验证了我们的设计跨越了 1D 时间使用二维计算机视觉主干进行系列分析。

表 8:二维空间中表征倾斜的消融,其中我们用参数高效的 与其他公认的视觉主干相比,Inception的效率更高。效率比较见图 4。

数据集	贴片	麦斯劳	表面活性剂	扑打	脉冲调制	关闭 F1
指标	PR F1 PR F1 PR F1	PR F1 PR F1 (%)				Ī
残差网络	87.64 80.33 83.82 83.99	85.42 84.70 92.09 57.90 7	1.10 86.59 95.81 90.97 98	24 89.12 93.45 84.81		
雷克斯	88.66 83.14 85.81 83.92	86.42 85.15 92.52 58.29 7	1.52 86.76 97.32 91.74 98	.19 96.76 <mark>97.47</mark> 86.34		
斯温变压器 88.51 82.22 8	5.25 87.36 86.93 87.14 92	.12 57.60 70.88 89.02 95.	81 92.29 98.45 91.80 95.0	1 86.11		
卷积	87.89 84.67 86.25 87.31	86.93 87.12 92.42 59.19 <mark>7</mark>	<mark>2.16</mark> 89.05 95.81 92.31 97	99 95.28 96.62 <mark>86.89</mark>		
初始(Ind) 87.54 8	.04 84.17 87.44 86.93 87.	18 91.92 57.69 70.89 88.9	8 96.00 <mark>92.36</mark> 98.11 89.13	93.41 85.60		1
初始(共享) 87.76 82.	63 85.12 82.97 85.42 84.1	8 91.50 57.80 70.85 88.31	96.24 92.10 98.22 92.21 9	5.21 85.49		

在本文中,我们采用一种参数高效设计,对k个不同的变换使用相同的参数 2D 张量,即共享。为了进行比较,我们还与使用不同不同变换的二维张量的参数,即 Ind。

模型架构我们还对不同的架构进行了实验。令人惊讶的是,如图所示在表9中,我们发现,结合Autoformer中的深度分解架构(Wu et al.,2021)不能带来进一步的提升。这些结果可能来自于在输入系列已经呈现出明显的周期性,我们的设计可以有效地捕捉二维变化。至于如果没有明显的周期性,模型将学习最重要的频率1,其中时间序列的趋势被期内变化模型所覆盖。这些结果也验证我们提出的TimesNet是否可以处理没有明显周期性的时间序列的分析。

此外,在本文中,为了利用深度表示的优势,我们将变换从每个 TimesBlock 中的 1D 变体到 2D 变体。在这里,我们将我们的设计与仅对原始输入序列进行变换的情况。从表 9 中我们可以发现 Transform 原始数据的性能下降很多(平均 F1 分数:85.49% \rightarrow 84.85%),这表明我们的设计的优点。

表 9:模型架构的消融。+分解是将深度分解结合起来 Autoformer(Wu et al.,2021)提出的 TimesNet 架构。转换原始数据是指

对原始时间序列进行转换,而不是深度特征。

数据集	贴片	麦斯劳	表面活性剂	扑打	脉冲调制	关闭 F1
指标	PR F1 PR F1 PR F1	PR F1 PR F1 (%)				Ĺ
时代网	87.76 82.63 <mark>85.12</mark> 82.97	85.42 84.18 91.50 57.80 7	0.85 88.31 96.24 92.10 98	22 92.21 95.21 85.49		
+分解 87.44 78.49 82.72	83.48 86.47 84.95 91.64	57.34 70.54 89.68 95.60 9	2.54 <mark>98.42</mark> 93.12 <mark>95.69</mark> 85	29		
转换原始数据 86.83 79.17	82.82 85.23 86.47 <mark>85.84</mark> 9	1.92 57.60 70.82 87.68 95	.81 91.57 97.64 89.14 93.	20 84.85		

自适应聚合如公式 6 所示,遵循 Autoformer (2021) 中的设计, 我们采用Softmax函数后的振幅作为处理后的张量的聚合权重

证明我们的自适应聚合设计表现最佳。

表 10:自适应聚合的消融。

数据集	贴片	麦斯劳	表面活性剂	扑打	PSM平均 F1	
指标	PR F1 PR F1 PR F1	PR F1 PR F1 (%)				Ĭ
时代网	87.76 82.63 85.12 82.97	85.42 84.18 91.50 57.80	70.85 88.31 96.24 92.10	98.22 92.21 95.21 <mark>85.4</mark> 9		Î
直接求和	87.10 78.93 82.81 85.81	85.42 85.62 91.35 57.58	70.64 87.28 96.00 91.43	98.13 87.22 92.35 84.57	•	
删除-Softmax 87.27 79.3	31 83.10 83.91 86.47 85.1	7 91.93 58.57 71.55 87.	3 95.81 91.27 98.00 92.	48 95.16 85.25		

D更多表征分析

为了直观地理解二维变化,我们在图中可视化了变换后的二维张量

9. 从可视化结果中,我们可以得出以下观察结果:

跨期变化可以呈现时间序列的长期趋势。例如,在 第一种情况是,每行的值从左到右递减,表示 原始序列的下降趋势。对于 ETTh1 数据集,每行的值都相似 相互影响,反映了原始序列的全局稳定变化。

图 9:更多时间二维变化的展示。

E时间序列的多周期性

如图 10 所示,我们计算了不同数据集中各个周期长度的密度。我们可以发现现实世界的时间序列在一定程度上呈现出多周期性。例如,电力数据集包含长度为 12 和长度为 24 的周期。

图 10:实验数据集中周期长度的统计。我们对原始数据进行 FFT,并为每个长度为 96 的片段选择前 6 个显著频率。然后,我们记录相应的周期长度并绘制每个周期长度的归一化密度。

F展示柜

为了清晰地比较不同的模型,我们提供了回归任务的展示,包括估算(图 11)、长期预测(图 12)和短期预测(图 13)。特别是在插补任务中,基于 MLP 的模型退化了很多。这是因为输入序列已被随机屏蔽。然而,基于 MLP 的模型采用固定模型参数来模拟时间点之间的时间依赖关系,从而无法完成这项任务。

图 11: 50%掩码率下模型给出的 ETTm1 插补结果可视化设置。黑线代表基本事实,橙线代表预测值。

G模型效率分析

为了总结模型的性能和效率,我们计算了相对性能排名 用于比较基线。排名是根据五大领域使用的常见模型进行比较的 任务:LSTM (1997) 和 LSSL (2022);TCN (2019);LightTS (2022) 和 DLinear (2023);Reformer (2020)、Informer (2021)、Pyraformer (2021a)、Autoformer (2021)、FEDformer (2022)、非平稳 Transformer (2022a)、ETSformer (2022)以及我们提出的TimesNet,共13个模型。

图 12:输入-96-预测-336条件下不同模型对 ETTm2 预测的可视化设置。黑线代表基本事实,橙线代表预测值。

图 13:不同模型对 M4 预测的可视化。黑线代表地面真实值,橙色线代表预测值。

如表 11 所示,我们提出的 TimesNet 在所有五项任务中都取得了最佳表现。其中在前三个模型中,TimesNet 的效率最高。与基于 MLP 的模型相比,我们提出的 TimesNet 在性能上表现出了显著的优势。并且得益于利用二维核和参数高效设计,当输入系列变化。与基于 Transformer 的模型相比,TimesNet 在 GPU 上具有很高的效率记忆对于长序列建模至关重要。

表 11:五项任务中的模型效率比较及排名。效率测量在 ETTh1 数据集的插补任务中记录了这些结果。排名按以下顺序排列: 长期和短期预测、归纳、分类和异常检测。"/"表示内存不足的情况。排名越小,性能越好。

楷模	参数 GPU 内存 i	运行时间		排行	
系列长度	(MB)	(MB)	(秒/伊特)	五项任务	平均排名
	0.067	1245	0.024		Ì
TimesNet(我	0.067	1585	0.040	(1.0
们的)	0.067	2491	0.045	(1,1,1,1,1)	1.0
	384768153630070257	2353	0.073		
	384 1.884	2321	0.046	ĺ	1
非平稳 768	1.910	4927 / /	0.118	(2.2.2.2.0)	3.4
变压器 1536 3072	1.961 /		/	(3,2,2,2,8)	3.4
			/		
	1.848	2101	0.070		Ì
自动成型机	1.848	3209	0.071	(7 4 2 5 2)	4.4
D-33/-32=1/1	1.848	5395	0.129	(7,4,3,5,3)	
	3847681536310.78248	10043	0.255		
	2.901	5977	0.807		
粗体形式	2.901	7111	1.055	(4.2.6.0.2)	4.8
但件///工	2.901	9173 /	1.482	(4,3,6,9,2)	4.0
	38476815363209201		/		
	0.163	1055	0.009		
+7 E /E	0.614	1077	0.013	(6.5.4.10.4)	5.8
轻量级	2.403	1127	0.015	(6,5,4,10,4)	3.6
	3847681536390324	1311	0.030		
	0.296	1057	0.006	1	1
线性	1.181	1093	0.006	(0.05.10.7)	6.4
线压	4.722	1159	0.007	(2,6,5,12,7)	0.4
	384768 1 536 3873 81	1433	0.026		
	1.123	1831	0.042		1
ETS 表格	1.123	2565	0.047	(F 0 0 C F)	6.8
L13 1X1E	1.123	4081	0.072	(5,9,9,6,5)	0.8
	384768153630.71223	7065	0.143		
	1.903	1577	0.044		1
告密者	1.903	2125	0.047	(10.0.0.2.0)	7.6
	1.903	3153	0.088	(10,8,8,3,9)	
	384768 1 5363 0.792 03	5194	0.165		
	1.157	1681	0.030		
改革者	1.157	2301	0.046	(11,11,7,4,11)	8.8
	1.157	5793 /	0.102	(11,11,1,+,11)	
	384768 1 5363 0.712 57		/		1
	1.308	2047	0.046		
金字塔成型机	1.996	6077 / /	0.119	(9,10,12,8,6)	9.0
亚丁石风土机	3.372 / 384768 1 5363072		/	(5(10(12(0(0)	
				7	1
	0.121	1135	0.010		
劳氏	0.220	1139	0.011	(8,12,10,7,13)	10.0
	0.417	1147	0.013		
	3847681536300822	1197	0.032	1	<u> </u>
	0.372	1195	0.020		
中枢神经网络	0.372	1333	0.020	(12,7,11,11,12)	10.6
	0.372	1533	0.025	\	
	38476815363007822	1983	0.061		
	0.268	1201	0.064		
长短期记忆 (LSTM)	0.268	1323	0.122	(13,13,13,13,10)	12.4
	0.268	1539	0.229	(10,10,10,10,10)	
	384768 1 536 300.28 8	2017	0.452		

H模型在混合数据集中的表现

为了验证模型在大规模预训练中的能力,我们评估了以下情况下的模型性能:它是从混合数据集中训练出来的。具体来说,我们混合了每小时收集的 ETTh1、ETTh2 和 15 分钟收集的 ETTm1、ETTm2 作为混合数据集。请注意,此混合数据集包含不同数据实例中存在不同的时间模式和周期,从而实现统一的训练具有挑战性。从表 12 中,我们可以发现 TimesNet 可以很好地处理这种混合数据集,并且通常会在四个独立的子集中提升模型性能。

此外,我们还可以发现,除了 TimesNet 之外,对于其他基线,混合训练可能会降低一些子集的模型性能,表明其他基线无法处理复杂的混合数据集中的周期性。这些结果也验证了 TimesNet 在执行作为时间序列大规模预训练的通用主干。

表 12:统一训练与独立训练的插补任务比较。

	数据集	ETTM1	气管插管	促甲状腺激素1	ETTh2
	遮罩比例	12.5% 25% 37.5% 50% 12.5% 25	% 37.5% 50% 12.5% 25% 37.5% 50	% 12.5% 25% 37.5% 50%	
	统一	均方误差 0.034 0.048 0.060 0.078 0.023 0.0 平均误差 0.122 0.146 0.163 0.185 0.091 0.1			
1 独	立MAE 0.124	均方根误差 0.034 0.046 0.057 0.067 0.023 0.144 0.161 0.174 0.092 0.101 0.108 0.119 0.			
	统一	均方误差 0.041 0.057 0.073 0.099 0.060 0.0 平均误差 0.143 0.169 0.192 0.224 0.166 0.2			
報 独	立MAE 0.135	均方误差 0.035 0.052 0.069 0.089 0.056 0.0 0.166 0.191 0.218 0.159 0.195 0.231 0.276 0.			
	统一	均方根误差0.019 0.023 0.028 0.037 0.018 0 0.091 0 099 0.109 0.123 0.075 0.081 0.086			
* 独	立MAE 0.092	均方根误差0.019 0 <u>.023 0</u> .029 0.037 0.018 0 0.101 0.1 1 <u>0.124</u> 0 <u>.080 0.</u> 08 <u>5 0.09</u> 1 <u>0.098 0</u> .			

我完整的结果

由于正文篇幅限制,我们将所有实验的完整结果放在以下:长期预测见表 13,短期预测见表 14,估算见表 16、表17中的分类和表15中的异常检测。

表 13:长期预测任务的完整结果。我们比较了广泛的竞争模型在不同预测长度下。ILI数据集的输入序列长度设置为 36,而 96对于其他的。Avg是所有四个预测长度的平均值。

特	2 96 39	.3 ¹³ 87 <mark>85.975</mark> 5 (2021 13298 9)	J.\$195109.35661 61.4308193.410	.7374 01.400°0 0.40607.407 (.345969992769. 0.380 0.389 0	5975910941 9 459 .426 707.4 410	\$8606!3598669 .45 38:34 44 0	5050.4750. .553 0.496 0	5 43 5 0:5156 6. .55 70:53 70.	8720.5794.8 .79526.669 0.	700 0.546 0.5 837 0.70 0 0.	38 0.528 0.4 .658 0.592 0.	50 0.477 0.8 469 0.481 1	.113 0.776
北			01.485/05 £ 201/											
1	720 (.478 0.450	0.499 0.462 (.527 0.502 0	474 0.453 0	543 0.490 0	585 0.516 0.	671 0.561 0.	908 0.724 1.	166 0.823 1.	153 0.82 0 1.	102 0.841 0.	632 0.596 1.	324 0.858
	亚坎	400 0 406	- 0.429 0.425	1 435 0 437	403 0 407 (1448 N 452	0 481 O 456	0 588 0 517	0 691 0 607	0 961 0 734	n 929 n 725	n 799 n 671	n 533 n 532	1 142 0 7
Ē	96 0 192		0.253 0.319											
i			0.253 0.319 0 0.314 0.357 0											
1			0.414 0.413 (
1														
	平均(.291 0.333	0 <u>.293</u> 0 <u>.342</u>	0.409 0.436 (0.350 0.401 (0.305 0.349	0.306 0.347	0.327 0.371	1.498 0.869	1.410 0.810	1.535 0.900	1.479 0.915	0.735 0.598	2.395 1.1
			494 0. 479 0											
ļ	-		0.538 0.504											
			0 <u>.574 0.521 (</u>											
	720 (.521 0.500	0.562 0.535 (1.547 0.533 0	519 0.516 0	.506 0.507 0	643 0.616 0.	.514 0.512 0.	963 0.782 1.	181 0.865 1.	135 0.85 2 1.	257 0.889 0.	721 0.659 1.	271 0.838
	平均	0.458 <mark>0.450</mark>	0.542 0.510	0.491 0.479	0.456 <u>0.452</u>	0.440 0.460	0.570 0.537	0.496 0.487	0.827 0.703	1.040 0.795	1.072 0.837	1.029 0.805	0.777 0.664	1.198 0.8
	96 n	340 0.374 (340 0.391 0	397 0.437 n] . 333 0 .387 0	 358 0,3 97 0	476 0.458 0 :	 346 0.388 0 6	45 0.597 3	 755 1.525 2 1	16 1.197 2 6	26 1.317 1 6	16 1.036 2 5	22 1,278
			0.430 0.439											
1	336 (.452 0.452	d.485 <mark>0.479</mark> (.626 0.559 0	594 0.541 0	496 0.487 0	552 0.551 0	482 0.486 0.	907 0.747 4.	721 1.835 1.	124 1.60 4 9.	323 2.769 2.	970 1.439 3.	291 1.388
i	720 (.462 0.468	0.500 0.497 (.863 0.672 0	831 0.657 0	463 0.474 <mark>0</mark>	<mark>562</mark> 0.560 0.	515 0.511 0.	963 0.783 3.	647 1.625 3.	188 1.54 0 3.	874 1.697 2.	576 1.363 3.	257 1.357
	亚坎	414 0 427	- 0.439 0.452	1 602 0 543 (1 559 N 515 (1 437 N 449	0 526 0 516	0 450 0 459	0 826 0 703	4 431 1 729	2 686 1 494	6 736 2 191	2 311 1 259	3 095 1 3
1			0.199 0.315											
i			0.199 0.315											
			4.212 0.329 (
	720 (0.220 0.320	0.233 0.345 (0.265 0.360 0	.245 0.333 0	.246 0.355 0	.222 0.321 0.	254 0.361 0.	376 0.445 0.	373 0.439 0.	283 0.37 6 0.	340 0.420 0.	338 0.417 0.	980 0.814
	720 ().220 0.320 	0.233 0.345 (0.265 0.360 0	.245 0.333 0	246 0.355 0		254 0.361 0.	376 0.445 0.	373 0.439 0.:	283 0.37 6 0.	340 0.420 0.	338 0.417 0.	980 0.814
	720 (0.233 0.345 (0.265 0.360 0		246 0.355 0		254 0.361 0.	376 0.445 0.	373 0.439 0.	283 0.37 6 0.	340 0.420 0.	338 0.417 0.	980 0.814
			1											
			0.233 0.345 (
	平均(960		0.621 0.396 9.197 0.281 0	0.622 0.392 0.182 0.242 0.	0.625 0.383 (196 0.255 0.).610 0.376 (217 0.296 0.	0.624 0.340 1).628 0.379 266 0.336 0.0	0.878 0.469 322 0.556 0.3	0.764 0.416	0.705 0.395 58 0.490 0.6	0.741 0.422 89 0.596 0.1	0.832 0.471 74 0.252 0.3	1.011 0.5
	平均(96 0 192 (.620 0.336 .172 0. 220 (0.621 0.396 0.197 0.281 0 0.237 0.312	0.622 0.392 0.182 0.242 0.227 0.287 0	0.625 0.383 (196 0.255 0.	0.610 0.376 (217 0.296 0. 276 0.336 0	0.624 0 <u>.340 1</u> 173 0.223 0.245 0.285 0	0.628 0.379 266 0.336 0.0 307 0.367 0	0.878 0.469 322 0.556 0.3 739 0.624 0	0.764 0.416 0 300 0.384 0.4 598 0.544 0.	0.705 0.395 58 0.490 0.6 658 0.58 9 0.	0.741 0.422 89 0.596 0.1 752 0.638 0.	0.832 0.471 74 0.252 0.3 238 0.313 0	1.011 0.5 69 0.406 416 0.43
1	平均(96 0 192 (336 (0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353	0.622 0.392 0 182 0.242 0 1.227 0.287 0 1.282 0.334 0	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0	0.610 0.376 0 217 0.296 0. 276 0.336 0 339 0.380 0	0.624 0 <u>.340 0</u> 173 0.223 0.: 245 0 .285 0 321 0.338 0	0.628 0.379 266 0.336 0.0 307 0.367 0 359 0.395 1.	0.878 0.469 322 0.556 0.3 739 0.624 0. 004 0.753 0.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0.	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0.	1.011 0.5 69 0.406 416 0.43! 455 0.454
1	平均(96 0 192 (336 (0.621 0.396 0.197 0.281 0 0.237 0.312	0.622 0.392 0 182 0.242 0 1.227 0.287 0 1.282 0.334 0	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0	0.610 0.376 0 217 0.296 0. 276 0.336 0 339 0.380 0	0.624 0 <u>.340 0</u> 173 0.223 0.: 245 0 .285 0 321 0.338 0	0.628 0.379 266 0.336 0.0 307 0.367 0 359 0.395 1.	0.878 0.469 322 0.556 0.3 739 0.624 0. 004 0.753 0.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0.	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0.	1.011 0.5 69 0.406 416 0.43! 455 0.454
1	平均(96 0 192 (336 (720 (0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353	0.622 0.392 0 182 0.242 0 2.27 0.287 0 2.282 0.334 0 352 0.386 0	0.625 0.383 0 196 0.255 0. 237 0.296 0 283 0.335 0	0.610 0.376 0 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0	0.624 0.340 0. 173 0.223 0. 245 0. 285 0 321 0.338 0. 414 0.410 0.	0.628 0.379 266 0.336 0. 307 0.367 0 359 0.395 1. 419 0.428 1.	0.878 0.469 522 0.556 0.3 739 0.624 0. 004 0.753 0. 420 0.934 1.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.3	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 869 0.67 5 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0.	1.011 0.5 69 0.406 416 0.43! 455 0.454 535 0.520
	平均(96 0 192 336 (720 (平均(.620 0.336 172 0. 220 0 2219 0.261 1.280 0.306 0.365 0.359 1.259 0.287	0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334	0,622 0.392 0 182 0.242 0 1,227 0.287 0 1,282 0.334 0 1,352 0.386 0 1,261 0,312 0	0.625 0.383 (196 0.255 0. .237 0.296 0 283 0.335 0 .345 0.381 0	0.610 0.376 0 217 0.296 0. 276 0.336 0 339 0.380 0 ,403 0.428 0	0.624 0 <u>.340 0</u> 173 0.223 0. 2245 0 <u>.285 0</u> 321 0.338 0 414 0.410 0 0.288 0.314 0	0.628 0.379 0.628 0.379 0.66 0.336 0.0 307 0.367 0. 359 0.395 1. 419 0.428 1. 0.338 0.382	0.878 0.469 322 0.556 0.3 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717	0.764 0.416 0 0.00 0.384 0.4 598 0.544 0.578 0.523 0.059 0.741 0.3 0.634 0.548 0.634 0.548	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0.	1.011 0.5 69 0.406 416 0.43; 455 0.45- 535 0.52(0.444 0.4
	平均(96 0 192 (336 (720 (平均(96 0	.620 0.336 .172 0. 220 (.219 0.261 .280 0.306 .365 0.359 .259 0.287	0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0 0.352 0.288 0	0.622 0.392 (182 0.242 0. 1,227 0.287 (1,282 0.334 (1,352 0.386 0 1,261 0.312 (1,160.262 0	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 345 0.381 0 0.265 0.317 (0.88 0.218 0.	0.610 0.376 1 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 1 148 0.278 0.	0.624 0.340 (173 0.223 0.245 0.285 0.338 0.414 0.410 0.0288 0.314 (111 0.237 0.	0.628 0.379 266 0.336 0.4 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382	0.878 0.469 322 0.556 0.3 739 0.624 0. b04 0.753 0. 420 0.934 1. 0.946 0.717	0.764 0.416 (300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.0 0.634 0.548 (947 0.752 0.9	0.705 0.395 58 0.490 0.6 558 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334	1.011 0.5 69 0.406 416 0.43; 455 0.454 535 0.520 0.444 0.4
	平均(96 0 192 (336 (720 (平均(96 0 192 (0.621 0.396 9.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0 0.271 0.334	0.622 0.392 0.182 0.287 0.287 0.287 0.334 0.3352 0.386 0.261 0.312 0.116 0.262 0.215 0.359 0.215	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 345 0.381 0 0.265 0.317 (088 0.218 0.	0.610 0.376 0 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 0 148 0.278 0. 271 0.380 0	0.624 0.340 1 173 0.223 0.: 245 0.285 0 321 0.338 0 414 0.410 0 0.288 0.314 1 111 0.237 0. 219 0.335 0	0.628 0.379 266 0.336 0.4 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1	0.878 0.469 522 0.556 0.3 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717 48 1.105 0.8	0.764 0.416 (300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0. 0.634 0.548 (347 0.752 0.9 204 0.895 1.	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1.	1.011 0.5 69 0.406 416 0.43 455 0.45 535 0.520 0.444 0.4 53 1.049 846 1.17
	平均(96 0 192 (720 (平均(96 0 192 (336 (.620 0.336 .172 0. 220 0 .219 0.261 .280 0.306 .365 0.359 .259 0.287 .107 0.234 (0.621 0.396 9.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.3031	0,622 0,392 0 182 0,242 0 227 0,287 0 282 0,334 0 352 0,386 0 9,261 0,312 0 116 0,262 0 2,377 0,466 0	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 345 0.381 0 0.265 0.317 (088 0.218 0. 176 0.315 0	0.610 0.376 0 217 0.296 0. .276 0.336 0 339 0.380 0 .403 0.428 0 0.309 0.360 0 148 0.278 0. .271 0.380 0	0.624 0.340 u 173 0.223 0. 245 0.285 0 321 0.338 0 414 0.410 0 0.288 0.314 u 111 0.237 0. 219 0.335 0 421 0.476 0	0.628 0.379 266 0.336 0.1 307 0.367 0 359 0.395 1 419 0.428 1 0.338 0.382 197 0.323 1.1 300 0.369 1 509 0.524 1.	0.878 0.469 322 0.556 0.3 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717 48 1.105 0.8 874 1.151 1.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.0 0.634 0.548 0 447 0.752 0.9 204 0.895 1. 672 1.036 1.	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2.	1.011 0.5 69 0.406 416 0.43 455 0.45 535 0.520 0.444 0.4 53 1.049 846 1.17 136 1.23
	平均(96 0 192 (720 (平均(96 0 192 (336 (.620 0.336 .172 0. 220 0 .219 0.261 .280 0.306 .365 0.359 .259 0.287 .107 0.234 (0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428	0,622 0,392 0 182 0,242 0 227 0,287 0 282 0,334 0 352 0,386 0 9,261 0,312 0 116 0,262 0 2,377 0,466 0	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 345 0.381 0 0.265 0.317 (088 0.218 0. 176 0.315 0	0.610 0.376 0 217 0.296 0. .276 0.336 0 339 0.380 0 .403 0.428 0 0.309 0.360 0 148 0.278 0. .271 0.380 0	0.624 0.340 u 173 0.223 0. 245 0.285 0 321 0.338 0 414 0.410 0 0.288 0.314 u 111 0.237 0. 219 0.335 0 421 0.476 0	0.628 0.379 266 0.336 0.1 307 0.367 0 359 0.395 1 419 0.428 1 0.338 0.382 197 0.323 1.1 300 0.369 1 509 0.524 1.	0.878 0.469 322 0.556 0.3 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717 48 1.105 0.8 874 1.151 1.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.0 0.634 0.548 0 447 0.752 0.9 204 0.895 1. 672 1.036 1.	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2.	1.011 0.5 69 0.406 416 0.43 455 0.45 535 0.520 0.444 0.4 53 1.049 846 1.17 136 1.23
	平均(96 0 192 1 336 (720 (96 0 192 1 336 (720 (0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428 1.025 0.774	0,622 0.392 0 1820.242 0 1,227 0.287 0 1,282 0.334 0 1,352 0.386 0 1,261 0,312 0 1,1160.262 0 1,217 0,466 0 1,377 0,466 0 1,831 0.699 0	0.625 0.383 (196 0.255 0. 2.237 0.296 0 283 0.335 0 .345 0.381 0 0.265 0.317 (088 0.218 0. 1.76 0. 315 0 313 0.427 0 .839 0.695 1	0.610 0.376 / 217 0.296 0. 2276 0.336 0 339 0.380 0 403 0.428 0 3.309 0.360 / 148 0.278 0. 271 0.380 0 460 0.500 0	0.624 0.340 1 173 0.223 0. 245 0.285 0 321 0.338 0. 414 0.410 0. 0.288 0.314 1 111 0.237 0. 219 0.335 0 421 0.476 0. 092 0.769 1.	0.628 0.379 266 0.336 0.0 307 0.367 0.359 1.419 0.428 1. 0.338 0.382 197 0.323 1.300 0.369 1. 509 0.524 1. 447 0.941 2.	0.878 0.469 22 0.556 0.3739 0.624 0.904 0.753 0.420 0.934 1. 0.946 0.717 48 1.105 0.874 1.151 1. 943 1.172 1. 085 1.206 2.	0.764 0.416 0 0.00 0.384 0.4 598 0.544 0.5 578 0.523 0.0 059 0.741 0.3 0.634 0.548 0.3 47 0.752 0.9 204 0.895 1.6 672 1.036 1.4 478 1.310 1.3	0.705 0.395 58 0.490 0.6 558 0.58 9.0 797 0.65 2 0. 869 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2. 283 1.222 2.	1.011 0.5 69 0.406 416 0.43; 455 0.454 535 0.520 0.444 0.4 53 1.049 846 1.17; 136 1.23; 984 1.427
	平均(96 0 192 (720 (平均(96 0 192 (336 (720 (0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428 0.352 0.774 0	0,622 0.392 (1820,287 (2) 287 (2) 287 (2) 282 0.334 (2) 252 0.386 (2) 261 0.312 (160,262 0) 215 0.359 (2) 377 0.466 (2) 3313 2.144 2	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 0.265 0.317 (088 0.218 0. 176 0.315 0 313 0.427 0 839 0.695 1	0.610 0.3766 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 148 0.278 0. 271 0.380 0 460 0.500 0 195 0.841 1	0.624 0.340 0.173 0.223 0.245 0.285 0.338 0.414 0.410 0.0288 0.314 0.111 0.237 0.219 0.335 0.421 0.476 0.092 0.769 1.	0.628 0.379 1266 0.336 0.4 1307 0.367 0 1359 0.395 1. 419 0.428 1. 1300 0.369 1 1509 0.524 1. 447 0.941 2. 483 1.287 7.	0.878 0.469 9.22 0.556 0.3 739 0.624 0.904 0.753 0.420 0.934 1.0 0.946 0.717 748 1.105 0.8 874 1.151 1.943 1.172 1.085 1.206 2.	0.764 0.416 0 300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.3 0.634 0.548 947 0.752 0.9 204 0.895 1. 572 1.036 1.4 478 1.310 1.3	0.705 0.395 58 0.490 0.6 658 0.58 9.0 797 0.65 2 0. 869 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.12 7 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1. 510 1.016 2.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 1029 0.797 2. 283 1.222 2.	1.011 0.5 69 0.406 416 0.43; 455 0.454 535 0.520 0.444 0.4 53 1.049 846 1.17; 136 1.23; 984 1.427
	平均(96 0 192 (336 (720 (平均(720 (720 (24 2 36 1		0.621 0.396 9.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428 1.025 0.774 0.2527 1.020 8 2.615 1.007 6	0.622 0.392 (182 0.242 0.327 0.287 (128 0.334 0.352 0.386 0.352 0.386 0.261 0.312 (116 0.262 0.215 0.359 (128 0.313 1.32 1.44 2.631 1.902 1.902	0.625 0.383 (196 0.255 0. 237 0.296 0 283 0.335 0 0.265 0.317 (088 0.218 0. 0.176 0.315 0 313 0.427 0 339 0.695 1	0.610 0.3761 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 148 0.278 0. 271 0.380 0 460 0.500 0 195 0.841 1	0.624 0.340.4 173 0.223 0.245 0.285 0 321 0.338 0 414 0.410 0. 0.288 0.314 (111 0.237 0.219 0.335 0 421 0.476 0 0.92 0.769 1.	0.628 0.379 266 0.336 0.4 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1 509 0.524 1 447 0.941 2. 483 1.287 7. 103 1.148 7. 103 1.148 7. 103 1.148 7. 104 1.380 0.379 1 105 1.380 0.379 1 107 1.380 0.379 1 108 1.380 0.370 0.37	0.878 0.469 322 0.556 0.3 739 0.624 0. b04 0.753 0. 420 0.934 1. 0.946 0.717 748 1.105 0.8 874 1.151 1. b43 1.172 1. p85 1.206 2.	0.764 0.416 (300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.3 0.634 0.548 (347 0.752 0.9 204 0.895 1. 672 1.036 1.4 478 1.310 1.3	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.12 7 1.	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1. 510 1.016 2.	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2. 283 1.222 2.	1.011 0.5 69 0.406 416 0.43; 455 0.454 535 0.520 0.444 0.4 53 1.049 846 1.17; 136 1.23; 984 1.427
	平均(96 0 192 1 336 (720 (平均(720 (720 (24 2 36 1 48 2		0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0 0.352 0.288 0 0.271 0.334 0.085 0.204 0 0.182 0.303 0 0.348 0.428 0 1.025 0.774 0 2.527 1.020 8 2.615 1.007 6 2.359 0.972 7	0.622 0.392 0 182 0.242 0 1.227 0.287 0 1.282 0.334 0 1.352 0.386 0 1.261 0.312 0 1.16 0.262 0 1.377 0.466 0 1.831 0.699 0 1.313 2.144 2 1.631 1.902 2 1.299 1.982 2	0.625 0.383 (196 0.255 0. 0.237 0.296 0 283 0.335 0 0.265 0.317 (0.88 0.218 0. 0.176 0.315 0 313 0.427 0 0.839 0.695 1 398 1.040 3. 646 1.088 2. 614 1.086 2.	0.610 0.376 1 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 1 148 0.278 0. 271 0.380 0 460 0.500 0 1195 0.841 1 228 1.260 2. 679 1.080 1. 622 1.078 2.	0.624 0.340 1 173 0.223 0.: 245 0.285 0 321 0.338 0 414 0.410 0. 0.288 0.314 1 111 0.237 0. 219 0.335 0 421 0.476 0. 0.92 0.769 1 294 0.945 3. 825 0.848 3.	0.628 0.379 266 0.336 0.4 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1. 509 0.524 1. 447 0.941 2. 483 1.287 7. 103 1.148 7.	0.878 0.469 \$22 0.556 0.3 \$739 0.624 0.0 \$04 0.753 0.0 \$20 0.934 1.0 0.946 0.717 \$48 1.105 0.8 \$74 1.151 1.0 \$43 1.172 1.0 \$55 1.206 2.0 \$55 1.2031 4.3 \$62 2.057 4.3	0.764 0.416 (300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.3 0.634 0.548 (347 0.752 0.9 204 0.895 1. 672 1.036 1. 478 1.310 1.3	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.12 7 1.	0.741 0.422 89 0.596 0.1 752 0.638 0.639 0.596 0.1 30 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1. 510 1.016 2. 00 1.382 4.3 83 1.448 4.4	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 1029 0.797 2. 283 1.222 2. 81 1.425 5.9 42 1.416 6.6 59 1.443 6.7	1.011 0.5 69 0.406 416 0.43! 455 0.455 535 0.520 0.444 0.4 53 1.049 846 1.17! 136 1.23! 984 1.427
	平均(96 0 192 1 336 (720 (平均(720 (720 (24 2 36 1 48 2		0.621 0.396 9.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428 1.025 0.774 0.2527 1.020 8 2.615 1.007 6	0.622 0.392 0 182 0.242 0 1.227 0.287 0 1.282 0.334 0 1.352 0.386 0 1.261 0.312 0 1.16 0.262 0 1.377 0.466 0 1.831 0.699 0 1.313 2.144 2 1.631 1.902 2 1.299 1.982 2	0.625 0.383 (196 0.255 0. 0.237 0.296 0 283 0.335 0 0.265 0.317 (0.88 0.218 0. 0.176 0.315 0 313 0.427 0 0.839 0.695 1 398 1.040 3. 646 1.088 2. 614 1.086 2.	0.610 0.376 1 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 0.309 0.360 1 148 0.278 0. 271 0.380 0 460 0.500 0 1195 0.841 1 228 1.260 2. 679 1.080 1. 622 1.078 2.	0.624 0.340 1 173 0.223 0.: 245 0.285 0 321 0.338 0 414 0.410 0. 0.288 0.314 1 111 0.237 0. 219 0.335 0 421 0.476 0. 0.92 0.769 1 294 0.945 3. 825 0.848 3.	0.628 0.379 266 0.336 0.4 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1. 509 0.524 1. 447 0.941 2. 483 1.287 7. 103 1.148 7.	0.878 0.469 \$22 0.556 0.3 \$739 0.624 0.0 \$04 0.753 0.0 \$20 0.934 1.0 0.946 0.717 \$48 1.105 0.8 \$74 1.151 1.0 \$43 1.172 1.0 \$55 1.206 2.0 \$55 1.2031 4.3 \$62 2.057 4.3	0.764 0.416 (300 0.384 0.4 598 0.544 0. 578 0.523 0. 059 0.741 0.3 0.634 0.548 (347 0.752 0.9 204 0.895 1. 672 1.036 1. 478 1.310 1.3	0.705 0.395 58 0.490 0.6 658 0.58 9 0. 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.12 7 1.	0.741 0.422 89 0.596 0.1 752 0.638 0.639 0.596 0.1 30 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.976 1. 510 1.016 2. 00 1.382 4.3 83 1.448 4.4	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 1029 0.797 2. 283 1.222 2. 81 1.425 5.9 42 1.416 6.6 59 1.443 6.7	1.011 0.5 69 0.406 416 0.43. 455 0.45- 535 0.520 0.444 0.4 53 1.049 846 1.17: 136 1.23: 984 1.42 14 1.734 31 1.845 36 1.857
	平均(96 0 192 1 336 (720 (平均(96 0 192 1 336 (720 (24 2 36 1 48 2 60 2		0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0 0.352 0.288 0 0.271 0.334 0.085 0.204 0 0.182 0.303 0 0.348 0.428 0 1.025 0.774 0 2.527 1.020 8 2.615 1.007 6 2.359 0.972 7	0,622 0.392 \(\) 182 \(0.392 \) 182 \(0.227 \) 282 \(0.334 \) 261 \(0.312 \) 160 \(0.322 \) 261 \(0.312 \) 160 \(0.359 \) 277 \(0.466 \) 313 \(2.144 \) 631 \(1.902 \) 299 \(1.982 \) 283 \(1.985 \)	0.625 0.383 (196 0.255 0. 2.237 0.296 0 283 0.335 0 .345 0.381 0 0.265 0.317 (088 0.218 0. 1.176 0.315 0 1.313 0.427 0 1.313 0.427 0 1.313 0.427 0 1.313 0.427 0 1.314 0.427 0 1.315 0.427 0 1.316 0 1	0.610 0.376 / 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 3.309 0.360 / 148 0.278 0. 271 0.380 0 460 0.500 0 195 0.841 1 228 1.260 2 679 1.080 1 622 1.078 2. 857 1.157 2	0.624 0.340 1 173 0.223 0. 245 0.285 0 321 0.338 0. 414 0.410 0. 2288 0.314 1 111 0.237 0. 219 0.335 0 421 0.476 0. 092 0.769 1. 294 0.945 3. 825 0.848 3. 910 0.900 2.	0.628 0.379 266 0.336 0.0 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1 509 0.524 1. 447 0.941 2. 483 1.287 7. 03 1.148 7. 69 1.085 7. 770 1.125 7.	0.878 0.469 0.878 0.469 0.22 0.556 0.1 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717 48 1.105 0.8 874 1.151 1. 943 1.172 1. 085 1.206 2. 394 2.012 5. 451 2.031 4. 462 2.057 4. 331 2.100 5.	0.764 0.416 0 0.764 0.416 0 509 0.384 0.4 578 0.523 0. 059 0.741 0.3 0.634 0.548 0 947 0.752 0.9 204 0.895 1. 672 1.036 1. 478 1.310 1.3 764 1.677 4.4 755 1.467 4.7 763 1.469 4.8 264 1.564 5.2	0.705 0.395 58 0.490 0.6 558 0.58 9.0 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.127 1. 80 1.444 4.4 99 1.467 4.7 (00 1.468 4.8 78 1.560 4.8	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.776 1. 510 1.016 2. 00 1.382 4.3 83 1.448 4.4 32 1.465 4.5	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2. 283 1.222 2. 81 1.425 5.9 42 1.416 6.6 59 1.443 6.7	1.011 0.5 69 0.406 416 0.43; 455 0.45- 535 0.520 0.444 0.4 53 1.049 846 1.17; 136 1.23; 984 1.42; 14 1.734 31 1.845; 36 1.857; 70 1.879
	平均(96 0 192 1 336 (720 (平均(96 0 192 1 336 (720 (24 2 36 1 48 2 60 2		0.621 0.396 0.197 0.281 0 0.237 0.312 0.298 0.353 0.352 0.288 0.271 0.334 0.085 0.204 0 0.182 0.303 0.348 0.428 0.348 0.428 0.25 0.774 0.25 0.774 0.25 0.774 0.25 0.972 7 0.2487 1.016 7	0,622 0.392 \(\) 182 \(0.392 \) 182 \(0.227 \) 282 \(0.334 \) 261 \(0.312 \) 160 \(0.322 \) 261 \(0.312 \) 160 \(0.359 \) 277 \(0.466 \) 313 \(2.144 \) 631 \(1.902 \) 299 \(1.982 \) 283 \(1.985 \)	0.625 0.383 (196 0.255 0. 2.237 0.296 0 283 0.335 0 .345 0.381 0 0.265 0.317 (088 0.218 0. 1.176 0.315 0 1.313 0.427 0 1.313 0.427 0 1.313 0.427 0 1.313 0.427 0 1.314 0.427 0 1.315 0.427 0 1.316 0 1	0.610 0.376 / 217 0.296 0. 276 0.336 0 339 0.380 0 403 0.428 0 3.309 0.360 / 148 0.278 0. 271 0.380 0 460 0.500 0 195 0.841 1 228 1.260 2 679 1.080 1 622 1.078 2. 857 1.157 2	0.624 0.340 1 173 0.223 0. 245 0.285 0 321 0.338 0. 414 0.410 0. 2288 0.314 1 111 0.237 0. 219 0.335 0 421 0.476 0. 092 0.769 1. 294 0.945 3. 825 0.848 3. 910 0.900 2.	0.628 0.379 266 0.336 0.0 307 0.367 0 359 0.395 1. 419 0.428 1. 0.338 0.382 197 0.323 1. 300 0.369 1 509 0.524 1. 447 0.941 2. 483 1.287 7. 03 1.148 7. 69 1.085 7. 770 1.125 7.	0.878 0.469 0.878 0.469 0.22 0.556 0.1 739 0.624 0. 004 0.753 0. 420 0.934 1. 0.946 0.717 48 1.105 0.8 874 1.151 1. 943 1.172 1. 085 1.206 2. 394 2.012 5. 451 2.031 4. 462 2.057 4. 331 2.100 5.	0.764 0.416 0 0.764 0.416 0 509 0.384 0.4 578 0.523 0. 059 0.741 0.3 0.634 0.548 0 947 0.752 0.9 204 0.895 1. 672 1.036 1. 478 1.310 1.3 764 1.677 4.4 755 1.467 4.7 763 1.469 4.8 264 1.564 5.2	0.705 0.395 58 0.490 0.6 558 0.58 9.0 797 0.65 2 0. 369 0.67 5 1. 0.696 0.602 68 0.812 1.0 040 0.85 1 1. 559 1.08 1 1. 941 1.127 1. 80 1.444 4.4 99 1.467 4.7 (00 1.468 4.8 78 1.560 4.8	0.741 0.422 89 0.596 0.1 752 0.638 0. 639 0.596 0. 130 0.792 0. 0.803 0.656 65 0.829 0.3 188 0.906 0. 357 0.776 1. 510 1.016 2. 00 1.382 4.3 83 1.448 4.4 32 1.465 4.5	0.832 0.471 74 0.252 0.3 238 0.313 0. 287 0.355 0. 384 0.415 0. 0.271 0.334 95 0.474 1.4 776 0.698 1. 029 0.797 2. 283 1.222 2. 81 1.425 5.9 42 1.416 6.6 59 1.443 6.7	1.011 0.5 69 0.406 416 0.431 455 0.454 535 0.520 0.444 0.4 53 1.049 846 1.175 136 1.231 984 1.427 14 1.734 31 1.845 36 1.857

表示我们的输入输出设置与他们的论文存在一些不匹配。我们采用他们的官方代码,并且只改变输入和输出序列的长度以进行公平的比较。

楷模

表 14:M4 数据集中短期预测任务的完整结果。 .在 Transformers 中表示 former的名称。Stationary表示非固定变压器。

	TimesNet N-HiTS N-BEATS ETS.LightTS DLinear FED.固定自动。Pyra。 (我们的) (2022) (2019) (2022) (2022) (2023) (2022) (2022) (2022) (2021) (2021) (2021) (2021) (2021) (2021) (2020)	输入。LogTrans Re。LSTM TCN LSSL 2022)
#	平均平均收益率13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 17.107 16.169 176.040 14.920 6 质量2,996 8,045 3,043 4,487 3,109 4,283 3,048 3,078 3,134 3,711 3,418 4,177 3,800 31,033 3,364 19,953 失水0.788 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 1.049 0.973 9.290 0.880 4.397	il.675
***	平均平均收益率10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.207 13.313 172.808 11.122 6	55.999
轍	平均平均收益率1.2.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 16.149 20.128 143.237 15.626 6 质量0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 1.660 2.614 16.551 1.274 16.245 失水0.876 0.899 0.880 1.149 0.981 0.9 <u>56 1.012</u> 0.998 1.002 1.511 1.024 1.340 1.927 12.747 1.141 9.879	54.664
	平均平均收益率4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 23.236 32.491 186.282 7.186 121.844 质量3,302 3,216 3,391 5,240 11,434 4,953 3,264 4,064 3,865 18,581 20,960 16,288 33,355 119,294 4,677 91,650 海外华人 办会1.035	
核	平均平均收益率11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 16.018 18.200 160.031 13.961 6 质量1,585	57.156

表 15:异常检测任务的完整结果。P、R 和 F1 代表准确率、召回率和 F1-score (%)。F1-score 是准确率和召回率的调和平均值。较高的值P、R和F1的提高表明性能更佳。

数据集	贴片	麦斯劳	表面活性剂	扑打	脉冲调制	关闭 F1
指标	公关 F1 公关 F1		PRF1PRF1PRF1(%)			
нямые (1997) 78.52	65.47 71.41 78.04 86.22	81.93 91.06 57.49 70.48	78.06 91.72 84.34 69.24	99.53 81.67 77.97		
变压器(2017年) 83.58 76.13 79	.56 71.57 87.37 78.68 8	9.37 57.12 69.70 68.84 9	.53 80.37 62.75 96.56 76	.07 76.88		
LogTrans (2019) 83.46 70.13 7	6.21 73.05 87.37 79.57	9.15 57.59 69.97 68.67	7.32 80.52 63.06 98.00 7	6.74 76.60		
TCN (2019) 84.06 79.07 81.49 7	75.11 82.44 78.60 86.90	59.23 70.45 76.59 95.71	85.09 54.59 99.77 70.57	77.24		
改革者 (2020) 82.58	69.24 75.32 85.51 83.31	84.40 90.91 57.44 70.40	72.50 96.53 82.80 59.93	95.38 73.61 77.31		
告密者异常 (2021) 86.60	77.23 81.65 81.77 86.48	84.06 90.11 57.13 69.92	70.29 96.75 81.43 64.27	96.33 77.10 78.83		
Anomaly2 T 213188f01	nanena的原始论文37	(XLBetal5,2021) II	門时间关联和重构误	产作为联合异常标准	。为了公平比较,我们	在这里
金字塔及使用重构误差5.6180.	.61 83.04 83.81 85.93 84	.86 92.54 57.71 71.09 87	.92 96.00 91.78 71.67 96	.02 82.08 82.57		
自动成型机 (2021) 88.06 82.35 85.	.11 77.27 80.92 79.05 90	.40 58.62 71.12 89.85 95	.81 92.74 99.08 88.15 93	29 84.26		
低收入国家学生学费(2022) 78.5	51 65.32 71.31 77.55 88.	18 82.53 89.43 53.43 66.	90 79.05 93.72 85.76 66.0	02 92.93 77.20 76.74		
固定 (2022a) 88.33 81.21 84.62 68	8.55 89.14 77.50 89.37 5	9.02 71.09 68.03 96.75 7	9.88 97.82 96.76 <mark>97.29</mark> 8	2.08		
DLinear (2023年) 83.62 71.52 7	77.10 84.34 85.42 <mark>84.88</mark>	92.32 55.41 69.2 <u>6 80.91</u>	95.30 87.52 98.28 89.26	93.55 82.46		
ETS 表格 (2022) 87.44 79.23 83.13	3 85.13 84.93 85.03 92.2	5 55.75 69.50 90.02 80.3	6 84.91 99.31 85.28 91.7	6 82.87		
轻型 TS (2022) 87.10 78.42 82.53	82.40 75.78 78.95 92.58	55.27 69.21 91.98 94.72	93.33 <mark>98.37</mark> 95.97 97.15	84.23		
粗体形状 (2022) 87.95 82.39 85.08	8 77.14 80.07 78.57 90.4	7 58.10 70.76 90.17 96.4	2 93.19 97.31 <mark>97.16</mark> 97.2	3 84.97		
TimesNet (初始阶段) 87.76 82.	.63 85.12 82.97 85.42 84	.18 91.50 57.80 70.85 88	.31 96.24 92.10 98.22 92	.21 95.21 85.49		
TimesNet (ResNeXt) 88.66 83.	.14 <mark>85.81</mark> 83.92 86.42 85	3.15 92.52 58.29 71.52 86	.76 97.32 91.74 98.19 96	.76 97.47 86.34		

表 16:插补任务的完整结果。我们随机屏蔽了 12.5%、25%、37.5% 和 50% 的时间点来比较不同缺失程度下的模型性能。 .在 Transformers 中表示 former 的名称。

楷模	Ę	TimesNet ET (我们的)	S _o LightTS (2022)	DLinear (2022)	(2023)	FED. 固定式 (2022a) (2022)	汽车。 (2021)	火 (2021a)	在。 (2021)	LogTrans (2019)	关于。 (2020)	LSTM 隧道 (1997年)	网络 (2019年)	劳氏 (2022)
掩码比	本 MSE I	MAE MSE MAE	MSE MAE M	SE MAE MSE MAE	MISE MAE MSE M	AE MSE MAE MSE MAE MSE	E MAE MSE MAE M	ISE MAE MSE N	MAE MSE MAE M	\$E MAE MSE MA	E MSE MAE		I — I	-
0413	25% <mark>0.0</mark> 37.5% <mark>0.</mark> 0	23 0.101 0.096 029 0.111 0.13	0.229 0.093 3 0.271 0.11	0.206 0.080 0.19 3 0.231 0.103 0.2	3 0.052 0.166 0.0 19 0.069 0.191 0.	026 0.107 0.034 0.124 0.676 32 0.119 0.046 0.144 0.689 039 0.131 0.05 0.161 0.737 47 0.145 0.067 0.174 0.770	0.553 0.063 0.180 7 0.581 0.079 0.20	0.044 0.14 4 0	0.042 0.146 1.03 0.063 0.182 0.9	2 0.807 0.518 0 9 0.792 0.516 0	500 0.106 0.235 .499 0.116 0.24	i 6		
	平均0.02	7 0.107 0.120	φ.253 0.104	0.248 0.093 0.20	6 0 .062 0.177 0.0	86 0.126 0.051 <u>0.150 0</u> . <u>717 (</u>	<u>0.5</u> 70 0.071 0.188	þ.050 0.154 0.	055 0.166 0.989	0.786 0.516 0.4	97 0.113 0.254			
-	25% <mark>0.0</mark> 37.5% 0. 0	20 0.085 0.164 023 0.091 0.23	0.294 0.042 7 0.356 0.05	0.143 0.085 0.19 1 0.159 0.106 0.2	6 0.080 0.195 0.0 22 0.110 0.231 0.	021 0.088 0.023 0.092 0.394 24 0.096 0.026 0.101 0.421 027 0.103 0.030 0.108 0.478 30 0.108 0.035 0.119 0.568	0.482 0.135 0.272 3 0.521 0.155 0.29	2 0.120 0.24 8 0 3 0.138 0. 260	0.136 0.262 1.03 0.175 0.300 0.9	9 0.814 0.263 0. 17 0.744 0.250 0	402 0.159 0.300 .396 0.180 0.32	1		
1	平均0.02	22 0.088 0.208	φ.327 0.046	0.151 0.096 0.208	0.101 0.215 0.0	26 0.099 0.029 <u>0.105 0</u> . <u>465</u> (0.508 0.156 0.292	b.119 0.246 0.	157 0.280 1.027	0.800 0.266 0.4	07 0.175 0.324			
-	25% <mark>0.0</mark> 37.5% <mark>0.</mark> 0	69 0.178 0.169 084 0.196 0.22	0.304 0.265 0 0.347 0.29	6 0.364 0.180 0.29 6 0.382 0.215 0.3	2 0.106 0.236 <mark>0.0</mark> 18 0.124 0.258 0.	060 0.165 0.07	0.672 0.140 0.262 0 0.675 0.174 0.29	2 0.207 0.32 3 0 3 0.210 0. 328	0.102 0.227 1.26 0.135 0.261 1.2	2 0.883 0.610 0. 00 0.867 0.628 0	567 0.412 0.456 .577 0.421 0.46	; 1		
	平均0.0	8 0.187 0.202	o.329 0.284	0.3 0.201 0.30	6 0.117 0.246 0.0	94 0.201 0.103 <u>0.214 0</u> . <u>842 </u>	0.6 <mark>82</mark> 0.161 0.279	þ.219 0.332 0.	122 0.245 1.225	0.873 0.621 0.5	71 0.424 0.481			
ems :	25% <mark>0.0</mark> 37.5% 0. 0	46 0.141 0.279 052 0.151 0.40	0.390 0.115 0 0.465 0.12	6 0.246 0.127 0.24 6 0.257 0.158 0.2	7 0.137 0.258 0.0 76 0.187 0.304 0.	042 0.133 0.044 0.138 0.976 49 0.147 0.050 0.149 1.037 056 0.158 0.060 0.163 1.107 65 0.170 0.068 0.173 1.193	0.774 0.322 0.444 7 0.800 0.353 0.46	4 0.175 0.31 0 0 2 0.185 0. 315	0.206 0.331 2.00 0.252 0.370 2.0	7 1.105 0.419 0. 33 1.111 0.429 0	490 0.487 0.535 .498 0.487 0.52	9		
Ī	平均0.04	9 0.146 0.367	¢.436 0.119	0.250 0.142 0.259	0.163 0.279 0.0	53 0.152 <mark>0.055 0.156 1</mark> .079 (0.792 0.337 0.452	b.186 0.318 0.	234 0.352 2.039	1.114 0.431 0.5	03 0.495 0.475			
₽	25% <mark>0.0</mark> 37.5% <mark>0.</mark> 0	89 0.206 0.207 094 0.213 0.21	0.332 0.121 9 0.344 0.14	. 0.252 0.118 0.24 1 0.273 0.144 0.2	7 0.120 0.251 0.0 76 0.136 0.266 0.	093 0.210 0.089 0.210 0.29 97 0.214 0.096 0.220 0.294 102 0.220 0.104 0.229 0.296 08 0.228 0.113 0.239 0.299	0.380 0.219 0.326 5 0.381 0.222 0.32	0.169 0.29 9 0 8 0.178 0. 305	0.197 0.312 0.28 0.203 0.315 0.2	1 0.369 0.559 0. 75 0.364 0.567 0	585 0.219 0.34: .588 0.223 0.34	3		
Î	平均0.09	2 0.210 0.214	¢.339 0.131	0.262 0.132 0.260	0.130 0.259 0.1	00 0.218 0.101 0.225 0.297	0.382 0.222 0.328	b.175 0.303 0.	200 0.313 0.277	0.365 0.582 0.5	97 0.222 0.293			
₩ :	12.5% 0. 25% 0.0 37.5% 0.0	025 0.045 0.05 29 0.052 0.065 031 0.057 0.08	7 0.141 0.04 0.155 0.052 1 0.180 0.05	7 0.101 0.039 0.0 0.111 0.048 0.10 8 0.121 0.057 0.1	84 0.041 0.107 0. 3 0.064 0.163 0.0 17 0.107 0.229 0.	027 0.051 0.026 0.047 0.140 29 0.056 0.030 0.054 0.147 033 0.062 0.032 0.060 0.156 37 0.068 0.037 0.067 0.164	0.0220 0.037 0.09 0.229 0.042 0.100 5 0.240 0.049 0.11	0.038 0.074 0	0.031 0.076 0.2 0.035 0.082 0.32 0.040 0.091 0.4	96 0.379 0.176 0 7 0.409 0.187 0 06 0.463 0.172 0	.287 0.036 0.09 293 0.042 0.10 .281 0.047 0.11	2		7
1	平均0.0	8 <mark>0 0.054</mark> 0.076	ø.171 0.055	0.1 7 0.052 0.110	0.099 0.203 0.0	2 0.059 0.031 0.057 0.152	0.285 0.045 0.104	p.039 0.076 0.	038 0.087 0.365	0.434 0.183 0.2	91 0.045 0.108			
1 3	数数	B+A	0	0	0	0 0	0	0	0	0	0	0	0	0

表 17:分类任务的完整结果。Transformers中的 .表示 former 的名称。 我们将分类准确率(%)作为结果报告。标准差在 0.1% 以内。

	经典方法 RNN TCN 变圧器							
数据集/模型	DTWXGBoost Rocket LSTM LSTNet LSSL TCN Trans. Re. In. Pyra. Auto.Station.FED. ETS. Flow.DLinearLightTS.TimesNet (1994 #) (2015 #) (2020 #) (1997 #) (2018 #) (2022 #) (2019 #) (2019 #) (2017 #) (2020 #) (2021 #) (2021 #) (2022 #) (2022 #) (2022 #) (2022 #) (2022 #) (2023 #) (2021 #)							
乙醇浓度32.3 43.7 45.2	2.3 39.9 31.1 28.9 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7	35.7						
人脸检测	52.9 63.3 64.7 57.7 65.7 66.7 52.8 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5	68.6						
手写	28.6 15.8 58.8 15.2 25.8 24.6 53.3 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1	32.1						
心跳	71.7 73.2 75.6 72.2 77.1 72.7 75.6 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1	78.0						
日语元音94.9 86.5 96	279.798.198.498.998.797.898.998.496.299.298.495.998.996.296.271.198.375.139.986.786.168.882.182.781.583.282.7	98.4						
聚醚砜	87.3 80.9 86.0 83.8 75.1 88.4	89.6						
自我调节能力 SCP1 77.7	84.690.868.984.090.884.692.290.490.188.184.089.488.789.692.587.389.8自我调节能力 SCP253.948.953.346.652.852.255.6	91.8						
53.9 56.7 53.3 53.3 50. 100.0 99.0	57.2 54.4 55.0 56.1 50.5 51.1口语阿拉伯数字96.3 69.6 71.2 31.9 100.0 100.0 95.6 98.4 97.0 100.0 99.6 100.0 100.0 100.0100.0 98.8 81.4	57.2						
WaveGestureLibrary 9	0.3 75.9 94.4 41.2 87.8 85.9 88.4 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3	85.3						
	.5 48.6 71.8 70.9 70.3 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4	73.6						