

REPORTE DE PRÁCTICA

Universidad Autonoma Del Estado De Hidalgo Instituto de Ciencias Basicas e Ingenieria Area Academica de Computacion y Electronica Licenciatura en Ciencias Computacionales Automatas y Compiladores PRACTICA 0. "LENGUAJES FORMALES"

Dr. Eduardo Cornejo Velázquez Jessica Ceron Perez Sexto Sementre, Grupo 3

CONCEPTOS

Alfabeto

Conjunto finito de simbolos.

Ejemplo:

- 1. Sigma espa \tilde{n} ol = a,b,c,d,e,f,g,h,i,j,k,l,m,n, \tilde{n} ,o,p,q,r,s,t,u,v,w,x,y,z
- 2. Sigma binario = 0.1

Cadena o plabra

Secuencia finita y ordenada de simbolos de un alfabeto.

Ejemplo:

- 1. Sigma español: automatas
- 2. Si sigma = a,b entonces la cadena seria "abba"

Longitud de cadena

Número de símbolos en una cadena.

Ejemplo:

- 1. La longitud de la cadena "automatas" es 9.
- 2. La longitud de la cadena "abba" es 4.

Lenguaje vacio

Lenguaje que no contiene ninguna cadena.

Ejemplo:

1. L = 0

Clausula de Klenne

Es una operación que genera todas las posibles concatenaciones de símbolos de un conjunto, incluyendo la cadena vacía.

Ejemplo:

- 1. Si sigma es igual a entonces la estrella de klenne incluye: a,aa,aaa,aaa,... incluyendo la cadena vacia
- 2. Si sigma es igual a 0,1 entonces la estrella de klenne incluye: 0,1,00,01,10,11,000,... incluyendo la cadena vacia

Concatenacion de palabras

Operación que une dos cadenas.

Ejemplo:

- 1. Si s1= ab y s2= ba entonces s1s2= abba
- 2. Si a1= hola y a2= mundo entonces a1a2= holamundo

Potencia de una cadena

Repeticion de una cadena n veces

Ejemplo:

- 1. a elevado a la 2= aa
- 2. h elevado a la 5= hhhhh

Cierre positivo

Conjunto de todas las posibles cadenas generadas por un alfabeto, excluyendo la cadena vacía.

Ejemplo:

- 1. Si sigma es igual a el cierre positivo inluye: a,aa,aaa,aaa,... no incluye la cadena vacia
- 2. Si sigma es igual a 0,1 el cierre positivo incluye: 0,1,00,01,10,11,000,... no incluyendo la cadena vacia

Automata Finito Determinista

AFD es un modelo matemático que reconoce lenguajes regulares con estados definidos.

Ejemplo:

1. Un AFD que acepta solo cadenas que terminan en "a".

Automata No Finito Determinista

Modelo donde se permiten múltiples transiciones para un símbolo.

Ejemplo:

1. Un ANFD que acepta cadenas que contienen al menos una "b".

Lenguaje libre de contexto

Lenguaje que puede ser generado por una gramática libre de contexto.

Lenguaje dependiente del contexto

Lenguaje donde las producciones pueden depender de los símbolos alrededor.

Gramatica libre del contexto

Gramática donde el lado izquierdo de cada producción es un único símbolo no terminal.

Evidencias fotograficas

Referencias Bibliográficas

References

- [1] Codemath (2023, 28 noviembre). Lenguajes Formales desde CERO Palabra, Alfabeto y Clausura de Kleene [Vídeo]. YouTube. https://www.youtube.com/watch?v= $_UdVL-84rXc$
- $[2]\,$ Andreu, G. S. (1998). Compiladores e interpretes. Madrid.
- [3] Balcells, J. (2009). Autómatas programables. Alfaomega.
- [4] Enrique Mandado Pérez. (2009). Autómatas programables y sistemas de automatización. Alfaomega.