

WHAT IS CLAIMED IS:

1. A compound of the formula

5 or a pharmaceutically acceptable salt thereof, wherein
g, h and j are each independently 0 or 1; provided when
h is 0, then g is 0;

para a 2
each Alk is independently a alkyl radical;

10 U represents amidino, guanidino, $-(G\text{-alkyl})_k\text{-NH-R}_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-R}_1$, $-(G\text{-alkyl})_k\text{-C(Q)-N(R)-R}_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-N(R)-R}_1$, $-(G\text{-alkyl})_k\text{-NH-C(Q)-O-R}_1$ or $-(G\text{-alkyl})_k\text{-O-C(Q)-N(R)-R}_1$ radical; or U represents a

15 hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl,
wherein the cycloalkyl, aryl, heteroaryl and
heterocyclyl radicals are optionally substituted by 1-3
radicals of R₂;

20 wherein k is 0 or 1;

G represents a bond, O, S or NH;

25 Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

30 R₁ is a radical of alkyl, haloalkyl, R₂₁R₂₂N-alkyl, R₂₁O-alkyl, R₂₁S-alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

35

R₂
cont

wherein R₂₁ and R₂₂ are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

each R₂ is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

V represents a radical of formula

- 5 wherein W_1 is O, S or $N-R_3$; wherein each R_3 is independently a hydrogen or alkyl radical; W_2 is N or $C-R_7$; W_8 is N or $C-R_5$;
- 10 W_9 is $C(R_3)_2$ and W_{10} is W_1 ; or W_9 is CR_3R_5 and W_{10} is $C(R_3)_2$;
- each W_2 , W_3 , W_4 and W_5 are independently N or $C-R_4$;
provided the total number of cycloalkyl, aryl,
heteroaryl, heterocyclyl, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$,
 $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$ and $-R_{19}$ radicals in W_2 ,
- 15 W_3 , W_4 and W_5 is 0-2;
- each W_6 is independently N or C-H; provided that not more than two of W_2 , W_3 , W_4 , W_5 and W_6 represent N; and
- 20 each R_4 is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy,

- A²*
cont
- cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$,
 $-C(O)-N(R_{19})_2$, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-
alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or
heterocyclyl-alkyl radical, wherein the cycloalkyl,
5 aryl, heteroaryl and heterocyclyl radicals are
optionally substituted by 1-3 radicals of R_2 ; or two
adjacent R_2 radicals taken together with the carbon
atoms to which they are attached represent a fused-
phenyl or fused-heteroaryl of 5-6 ring members, wherein
10 the phenyl and heteroaryl radicals are optionally
substituted by 1-3 radicals of R_2 ;
- RECORDED AND INDEXED*
- R_5 , R_6 and R_7 are each independently a hydrogen, halo,
alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy,
15 hydroxy or cyano radical; or R_5 and R_6 or R_6 and R_7 taken
together with the carbon atoms to which they are
attached represent a fused-phenyl or fused-heteroaryl
of 6 ring members, wherein the phenyl and heteroaryl
radicals are optionally substituted by 1-3 radicals of
20 R_2 ; or R_3 and R_6 taken together with the carbon atoms to
which they are attached represent a fused-heteroaryl of
6 ring members optionally substituted by 1-3 radicals
of R_2 ;
- 25 A represents a radical of formula

A-648

174

5 wherein X₁ is N or C-H;

X₂ is C-H, C-alkyl, a spirocycloalkyl or spiroheterocyclyl radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally

10 substituted by an oxo or thioxo radical and 1-2 radicals of alkyl, haloalkyl, hydroxy, alkoxy or haloalkoxy;

Y₁ is -C(O)-, -C(S)-, -S(O)- or -S(O)₂-;

15

Z₁ is O or N-R₁₂;

Z₂ is O, S or N-R₁₂;

R₂
cont

n and m are each independently 0, 1 or 2, provided n + m = 1, 2, 3 or 4;

5 p and q are each independently 0, 1 or 2, provided p + q = 1, 2 or 3;

r is 1 or 2;

10 R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R₁₅ is a hydrogen or alkyl radical; and R₁₇, 15 is (1) an aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉, radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉; 20 wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or

25 (b) R₁₇ is a hydrogen or alkyl radical; and R₁₅ is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉, radical, or (2) an alkyl radical 30 substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-

Q²
cont

R_{19} , $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$, radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

5

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or $-C(O)-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a

10 radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

15 wherein R_{19} is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

20

R_{16} and R_{18} are each independently a hydrogen or alkyl radical; and

25 E is a radical of carboxy, amido, tetrazolyl, $-C(O)-O-R_{20}$, $-C(O)-NH-R_{20}$, $-C(O)-NH-S(O)-R_{20}$, $-C(O)-NH-S(O)_2-R_{20}$ or $-C(O)-NH-C(O)-R_{20}$;

wherein R_{20} is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

35

2
cont

provided that when U represents amidino, guanidino, -C(Q)-NH-R₁ or -NH-C(Q)-NH-R₁ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

5

2. The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

10 each Alk is independently a C₁-C₁₂ alkyl radical;

Sub
B2
U represents amidino, guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-N(R)-R₁, -(G-

15 (C₁-C₈ alkyl))_k-NH-C(Q)-O-R₁ or -(G-(C₁-C₈ alkyl))_k-O-C(Q)-N(R)-R₁ radical; or U represents a hydroxy(C₁-C₁₂ alkyl)-G- radical which is optionally substituted by a C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the 20 cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

Q represents O, S, NH, N-CN or N-(C₁-C₈ alkyl);

25 R is a radical of hydrogen or C₁-C₈ alkyl;

R₁ is a radical of C₁-C₈ alkyl, halo(C₁-C₈ alkyl) of 1-7 halo radicals, R₂₁R₂₂N-(C₁-C₈ alkyl), R₂₁O-(C₁-C₈ alkyl), R₂₁S-(C₁-C₈ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₈ alkyl), aryl, aryl(C₁-C₈ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₈ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₈ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are 35 optionally substituted by 1-3 radicals of R₂;

- wherein R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_8 alkyl, halo(C_1-C_8 alkyl) of 1-7 halo radicals, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_8 alkyl), aryl, aryl(C_1-C_8 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_8 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_8 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;
- each R_2 is independently a halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, halo(C_1-C_4 alkyl) of 1-5 halo radicals, halo(C_1-C_4 alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1-C_8 alkylamino or di(C_1-C_8 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;
- each R_3 is independently a hydrogen or C_1-C_6 alkyl radical;
- each R_4 is independently a hydrogen, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, halo(C_1-C_4 alkyl) of 1-5 halo radicals, halo(C_1-C_4 alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-C(O)-N(R_{19})_2$, C_3-C_6 cycloalkyl, C_3-C_6 cycloalkyl(C_1-C_4 alkyl), aryl, aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_4 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_4 alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; or two adjacent R_4 radicals taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl

of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

- 5 R₅, R₆ and R₇ are each independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5 halo radicals, halo(C₁-C₄ alkoxy) of 1-5 halo radicals, hydroxy or cyano radical; or R₅ and R₆ or R₆ and R₇ taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

- X₂ is C-H, C-(C₁-C₄ alkyl), a C₃-C₈ spirocycloalkyl or spiroheterocyclyl of 5-8 ring members radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thioxo radical and 1-2 radicals of C₁-C₆ alkyl, halo(C₁-C₄ alkyl) of 1-5 halo radicals, hydroxy, C₁-C₆ alkoxy or halo(C₁-C₄ alkoxy) of 1-5 halo radicals;

- 25 R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or C₁-C₆ alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

- 30 wherein (a) R₁₅ is a hydrogen or C₁-C₆ alkyl radical; and R₁₇ is (1) an aryl, heteroaryl of 5-10 ring members, -

- SUB
B2*
- ~~NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉,~~
~~-NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or~~
~~-NH-S(O)₂-NH-R₁₉ radical, or (2) an C₁-C₆ alkyl radical~~
~~substituted by a radical of aryl, heteroaryl of 5-10~~
5 ~~ring members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉,~~
~~-O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉,~~
~~-S(O)₂-NH-R₁₉, or -NH-S(O)₂-NH-R₁₉; wherein the aryl and~~
~~heteroaryl radicals are optionally substituted by 1-3~~
~~radicals of R₂; or~~
10
~~(b) R₁₇ is a hydrogen or C₁-C₆ alkyl radical; and R₁₅ is~~
~~(1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈~~
~~cycloalkyl, heterocyclyl of 5-8 ring members, -NH-C(O)-~~
~~R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-~~
15 ~~C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-~~
~~S(O)₂-NH-R₁₉ radical, or (2) an C₁-C₄ alkyl radical~~
~~substituted by a radical of aryl, heteroaryl of 5-10~~
~~ring members, C₃-C₈ cycloalkyl, heterocyclyl of 5-8 ring~~
~~members, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-~~
20 ~~C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉,~~
~~-S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; wherein the~~
~~cycloalkyl, aryl, heteroaryl and heterocyclyl radicals~~
~~are optionally substituted by 1-3 radicals of R₂;~~
25 provided that when a nitrogen atom is attached to the
carbon atom to which R₁₅ is attached, then R₁₅ is (1) an
aryl, heteroaryl, cycloalkyl, heterocyclyl or -C(O)-NH-
R₁₉ radical, or (2) an alkyl radical substituted by a
radical of aryl, heteroaryl, cycloalkyl, heterocyclyl,
30 -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-
R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉,
or -NH-S(O)₂-NH-R₁₉;

wherein R₁₉ is a C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₃-C₈
35 cycloalkyl(C₁-C₆ alkyl), aryl, aryl(C₁-C₆ alkyl),
heteroaryl of 5-10 ring members, heteroaryl(C₁-C₆ alkyl)

of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₆ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

*Sub
B2*

R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₆ alkyl radical; and

- 10 R₂₀ is a C₁-C₆ alkyl, C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members radical or a C₁-C₆ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.

- 20 3. The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₈ alkyl radical;

- 25 V represents a radical of formula

A represents a radical of formula

Y₁ is -C(O)- or -C(S)-.

10 4. The compound of Claim 3 or a pharmaceutically acceptable salt thereof, wherein

para
3 each Alk is independently a C₁-C₆ alkyl radical;

15 V represents a radical of formula

X₂ is C-H or C-(methyl) radical;

Q 3
cont

Y_1 is $-C(O)-$; and

5 R_8 , R_9 , R_{10} , R_{11} and R_{12} are each independently a hydrogen or methyl radical; or $-CR_8R_9-$ represents a $-C(O)-$.

10 5. The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C_1-C_4 alkyl radical;

15 U represents amidino, guanidino, $-(G-(C_1-C_8\text{ alkyl}))_k-NH-$
 R_1 , $-(G-(C_1-C_8\text{ alkyl}))_k-NH-C(Q)-R_1$, $-(G-(C_1-C_8\text{ alkyl}))_k-$

20 $C(Q)-N(R)-R_1$, $-(G-(C_1-C_8\text{ alkyl}))_k-NH-C(Q)-N(R)-R_1$ or $-(G-(C_1-C_8\text{ alkyl}))_k-NH-C(Q)-O-R_1$ radical;

G represents a bond, O or NH;

25 Q represents O, S, NH, N-CN or $N-(C_1-C_4\text{ alkyl})$;

R is a radical of hydrogen or C_1-C_4 alkyl;

30 R_1 is a radical of C_1-C_6 alkyl, halo(C_1-C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N-(C_1-C_6\text{ alkyl})$, $R_{21}O-(C_1-C_6\text{ alkyl})$, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl($C_1-C_6\text{ alkyl}$), aryl, aryl($C_1-C_6\text{ alkyl}$), heteroaryl of 5-10 ring members, heteroaryl($C_1-C_6\text{ alkyl}$) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl($C_1-C_6\text{ alkyl}$) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

35 R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_8 alkyl, aryl, aryl($C_1-C_4\text{ alkyl}$), heteroaryl of 5-10 ring members or heteroaryl($C_1-C_4\text{ alkyl}$) of 5-10 ring

a3
Cont

members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

- each R₂ is independently a halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₄ alkylamino or di(C₁-C₄ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;
- each W₆ is C-H;
- each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and
- R₂₀ is a C₁-C₄ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₄ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.

6. The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein

U represents amidino, guanidino, $-(G-(C_1-C_8\text{ alkyl}))_k-NH-$
5 R_1 , $-NH-C(Q)-R_1$, $-(G-(C_1-C_8\text{ alkyl}))_k-C(Q)-N(R)-R_1$, $-NH-$
 $C(Q)-N(R)-R_1$ or $-NH-C(Q)-O-R_1$ radical;

Q represents O or NH;

10 R is a radical of hydrogen or C_1-C_2 alkyl;

Sub
B4
R₁ is a radical of C_1-C_6 alkyl, halo(C_1-C_6 alkyl) of 1-5
halo radicals, $R_{21}R_{22}N-(C_1-C_4$ alkyl), $R_{21}O-(C_1-C_4$ alkyl),
15 C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_4 alkyl), aryl,
aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members,
heteroaryl(C_1-C_4 alkyl) of 5-10 ring members,
heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_4
alkyl) of 5-8 ring members, wherein the cycloalkyl,
aryl, heteroaryl and heterocyclyl radicals are
20 optionally substituted by 1-3 radicals of R_2 ;

25 R_{21} and R_{22} are each independently a radical of hydrogen,
 C_1-C_6 alkyl, aryl or heteroaryl of 5-10 ring members,
wherein the aryl and heteroaryl radicals are optionally
substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1-C_2 alkyl, C_1-C_2
alkoxy, C_1-C_2 alkylthio, CF_3- , CF_3O- , hydroxy, carboxy,
cyano, azido, amidino, guanidino, nitro, amino, C_1-C_2
30 alkylamino or di(C_1-C_2 alkyl)amino radical or two
adjacent R_2 radicals on an aryl or heteroaryl radical
represent a methylenedioxy, ethylenedioxy or
propylenedioxy radical;

35 each W_2 , W_3 , W_4 and W_5 are independently $C-R_4$;

each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy or cyano radical;

5

A represents a radical of formula

- (a) R₁₅ is a hydrogen or C₁-C₂ alkyl radical; and R₁₇ is -NH-C(O)-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -NH-S(O)₂-R₁₉, or -NH-S(O)₂-NH-R₁₉, radical; or (b) R₁₇ is a hydrogen or C₁-C₂ alkyl radical; and R₁₅ is (1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical, or (2) an C₁-C₂ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;
- R₁₉ is a C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members or heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;
- R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₄ alkyl radical;
- E is a radical of carboxy, amido, tetrazolyl or -C(O)-O-R₂₀; and

*Sub
By*

~~R₂₀ is a C₁-C₂ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₂ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂.~~

7. The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

10 Alk is independently a C₁-C₂ alkyl radical;

15 G represents a bond or NH;

20 R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₆ alkyl or aryl, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

25 each R₄ is independently a hydrogen, halo, C₁-C₂ alkyl, C₁-C₂ alkoxy, C₁-C₂ alkylthio, CF₃-, CF₃O-, hydroxy or cyano radical;

30 A represents a radical of formula

(a) R₁₅ is a hydrogen or C₁-C₂ alkyl radical; and R₁₇ is -NH-C(O)-O-R₁₉, or -NH-S(O)₂-R₁₉ radical; or (b) R₁₇ is a hydrogen or C₁-C₂ alkyl radical; and R₁₅ is (1) an aryl or heteroaryl of 5-10 ring members, or (2) an C₁-C₂

00000000000000000000000000000000

alkyl radical substituted by a radical of aryl or heteroaryl of 5-10 ring members; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

5

R₁₉ is a C₁-C₄ alkyl, aryl or aryl(C₁-C₄ alkyl), wherein the aryl radicals are optionally substituted by 1-3 radicals of R₂;

10 R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₂ alkyl radical;

E is a radical of carboxy or -C(O)-O-R₂₀; and

15 R₂₀ is a C₁-C₂ alkyl, aryl or aryl(C₁-C₂ alkyl) radical, wherein the aryl radicals are optionally substituted by 1-3 radicals of R₂.

20 8. A pharmaceutical composition comprising a compound according to any of Claims 1 to 7 and a pharmaceutically acceptable carrier.

25 9. A method for the treatment of a disease or disorder modulated by an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.

30 10. The method of Claim 9 wherein the integrin receptor is vitronectin receptor α_vβ₃, α_vβ₅ or α_vβ₆.

35 11. A method for the treatment of a disease or disorder modulated by an integrin receptor comprising administering an effective amount of a composition of Claim 8.

12. The method of Claim 11 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

5 13. A method of antagonizing an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.

10 14. The method of Claim 13 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

15 15. A method of antagonizing an integrin receptor comprising administering an effective amount of a composition of Claim 8.

15 16. The method of Claim 15 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

20 17. A method for the treatment of atherosclerosis, restenosis, inflammation, wound healing, cancer, metastasis, bone resorption related diseases, diabetic retinopathy, macular degeneration, angiogenesis or viral infections comprising administering an effective amount of a compound according to any of Claims 1 to 7.

30 18. A method for the treatment of atherosclerosis, restenosis, inflammation, wound healing, cancer, metastasis, bone resorption related diseases, diabetic retinopathy, macular degeneration, angiogenesis or viral infections comprising administering an effective amount of a composition of Claim 8.