In [652]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

In [696]: a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\mace

	а														
Out[696]:		date	BEN	со	EBE	имнс	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
	0	2015- 10-01 01:00:00	NaN	0.8	NaN	NaN	90.0	82.0	NaN	NaN	NaN	10.0	NaN	NaN	28
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28
	2	2015- 10-01 01:00:00	3.1	NaN	1.8	NaN	29.0	97.0	NaN	NaN	NaN	NaN	NaN	7.1	28
	3	2015- 10-01 01:00:00	NaN	0.6	NaN	NaN	30.0	103.0	2.0	NaN	NaN	NaN	NaN	NaN	28
	4	2015- 10-01 01:00:00	NaN	NaN	NaN	NaN	95.0	96.0	2.0	NaN	NaN	9.0	NaN	NaN	28
	210091	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	11.0	33.0	53.0	NaN	NaN	NaN	NaN	NaN	28
	210092	2015- 08-01 00:00:00	NaN	0.2	NaN	NaN	1.0	5.0	NaN	26.0	NaN	10.0	NaN	NaN	28
	210093	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	7.0	74.0	NaN	NaN	NaN	NaN	NaN	28
	210094	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	3.0	7.0	65.0	NaN	NaN	NaN	NaN	NaN	28
	210095	2015- 08-01 00:00:00	NaN	NaN	NaN	NaN	1.0	9.0	54.0	29.0	NaN	NaN	NaN	NaN	28

210096 rows × 14 columns

```
In [697]: a.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 210096 entries, 0 to 210095

Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	date	210096 non-null	object
1	BEN	51039 non-null	float64
2	CO	86827 non-null	float64
3	EBE	50962 non-null	float64
4	NMHC	25756 non-null	float64
5	NO	208805 non-null	float64
6	NO_2	208805 non-null	float64
7	0_3	121574 non-null	float64
8	PM10	102745 non-null	float64
9	PM25	48798 non-null	float64
10	S0_2	86898 non-null	float64
11	TCH	25756 non-null	float64
12	TOL	50626 non-null	float64
13	station	210096 non-null	int64

dtypes: float64(12), int64(1), object(1)

memory usage: 22.4+ MB

In [698]: b=a.fillna(value=86)
b

Out[698]:

_		date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
-	0	2015- 10-01 01:00:00	86.0	0.8	86.0	86.00	90.0	82.0	86.0	86.0	86.0	10.0	86.00	86.0	2{
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	2{
	2	2015- 10-01 01:00:00	3.1	86.0	1.8	86.00	29.0	97.0	86.0	86.0	86.0	86.0	86.00	7.1	28
	3	2015- 10-01 01:00:00	86.0	0.6	86.0	86.00	30.0	103.0	2.0	86.0	86.0	86.0	86.00	86.0	28
	4	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	95.0	96.0	2.0	86.0	86.0	9.0	86.00	86.0	28
	210091	2015- 08-01 00:00:00	86.0	0.2	86.0	86.00	11.0	33.0	53.0	86.0	86.0	86.0	86.00	86.0	28
	210092	2015- 08-01 00:00:00	86.0	0.2	86.0	86.00	1.0	5.0	86.0	26.0	86.0	10.0	86.00	86.0	28
	210093	2015- 08-01 00:00:00	86.0	86.0	86.0	86.00	1.0	7.0	74.0	86.0	86.0	86.0	86.00	86.0	28
	210094	2015- 08-01 00:00:00	86.0	86.0	86.0	86.00	3.0	7.0	65.0	86.0	86.0	86.0	86.00	86.0	2{
	210095	2015- 08-01 00:00:00	86.0	86.0	86.0	86.00	1.0	9.0	54.0	29.0	86.0	86.0	86.00	86.0	28

210096 rows × 14 columns

```
In [699]: b.columns
Out[699]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM2
```

5', 'SO_2', 'TCH', 'TOL', 'station'], dtype='object') In [700]: c=b.head(30)
c

Out[700]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	sta
0	2015- 10-01 01:00:00	86.0	0.8	86.0	86.00	90.0	82.0	86.0	86.0	86.0	10.0	86.00	86.0	28079
1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	28079
2	2015- 10-01 01:00:00	3.1	86.0	1.8	86.00	29.0	97.0	86.0	86.0	86.0	86.0	86.00	7.1	2807!
3	2015- 10-01 01:00:00	86.0	0.6	86.0	86.00	30.0	103.0	2.0	86.0	86.0	86.0	86.00	86.0	28079
4	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	95.0	96.0	2.0	86.0	86.0	9.0	86.00	86.0	28079
5	2015- 10-01 01:00:00	0.7	0.4	0.3	86.00	35.0	104.0	1.0	26.0	86.0	3.0	86.00	3.3	28079
6	2015- 10-01 01:00:00	0.5	0.3	0.3	0.12	6.0	83.0	1.0	19.0	12.0	3.0	1.29	4.8	28079
7	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	54.0	94.0	1.0	86.0	86.0	86.0	86.00	86.0	28079
8	2015- 10-01 01:00:00	86.0	0.5	86.0	86.00	38.0	114.0	16.0	86.0	86.0	86.0	86.00	86.0	28079
9	2015- 10-01 01:00:00	86.0	0.7	86.0	86.00	64.0	97.0	86.0	34.0	86.0	6.0	86.00	86.0	28079
10	2015- 10-01 01:00:00	0.3	86.0	0.4	86.00	16.0	69.0	86.0	18.0	12.0	3.0	86.00	3.1	28079
11	2015- 10-01 01:00:00	86.0	0.6	86.0	86.00	59.0	99.0	7.0	86.0	86.0	86.0	86.00	86.0	28079
12	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	74.0	106.0	86.0	31.0	86.0	6.0	86.00	86.0	28079
13	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	77.0	97.0	86.0	23.0	15.0	86.0	86.00	86.0	28079
14	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	2.0	63.0	86.0	18.0	13.0	86.0	86.00	86.0	28079
15	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	2.0	70.0	15.0	86.0	86.0	86.0	86.00	86.0	28079
16	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	13.0	76.0	86.0	27.0	16.0	86.0	86.00	86.0	28079

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	sta
17	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	59.0	111.0	5.0	86.0	86.0	86.0	86.00	86.0	28079
18	2015- 10-01 01:00:00	0.6	86.0	1.9	0.42	94.0	106.0	86.0	31.0	86.0	86.0	1.89	5.8	28079
19	2015- 10-01 01:00:00	86.0	0.7	86.0	86.00	85.0	87.0	6.0	86.0	86.0	86.0	86.00	86.0	28079
20	2015- 10-01 01:00:00	86.0	0.5	86.0	86.00	20.0	79.0	86.0	21.0	86.0	11.0	86.00	86.0	28079
21	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	1.0	32.0	23.0	86.0	86.0	86.0	86.00	86.0	28079
22	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	64.0	71.0	8.0	86.0	86.0	86.0	86.00	86.0	28079
23	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	2.0	79.0	22.0	9.0	86.0	86.0	86.00	86.0	28079
24	2015- 10-01 02:00:00	86.0	0.8	86.0	86.00	102.0	76.0	86.0	86.0	86.0	10.0	86.00	86.0	28079
25	2015- 10-01 02:00:00	1.6	0.7	1.3	0.38	81.0	105.0	4.0	36.0	19.0	13.0	1.93	6.9	28079
26	2015- 10-01 02:00:00	3.6	86.0	4.2	86.00	75.0	111.0	86.0	86.0	86.0	86.0	86.00	86.0	2807!
27	2015- 10-01 02:00:00	86.0	0.5	86.0	86.00	42.0	102.0	2.0	86.0	86.0	86.0	86.00	86.0	28079
28	2015- 10-01 02:00:00	86.0	86.0	86.0	86.00	87.0	89.0	2.0	86.0	86.0	9.0	86.00	86.0	28079
29	2015- 10-01 02:00:00	0.8	0.5	0.4	86.00	70.0	97.0	1.0	23.0	86.0	4.0	86.00	5.5	28079

Out[701]:

	BEN	со	EBE	имнс	NO_2	O_3	PM10	SO_2	тсн	TOL	station
0	86.0	0.8	86.0	86.00	82.0	86.0	86.0	10.0	86.00	86.0	28079004
1	2.0	0.8	1.6	0.33	95.0	4.0	37.0	12.0	1.83	8.3	28079008
2	3.1	86.0	1.8	86.00	97.0	86.0	86.0	86.0	86.00	7.1	28079011
3	86.0	0.6	86.0	86.00	103.0	2.0	86.0	86.0	86.00	86.0	28079016
4	86.0	86.0	86.0	86.00	96.0	2.0	86.0	9.0	86.00	86.0	28079017
5	0.7	0.4	0.3	86.00	104.0	1.0	26.0	3.0	86.00	3.3	28079018
6	0.5	0.3	0.3	0.12	83.0	1.0	19.0	3.0	1.29	4.8	28079024
7	86.0	86.0	86.0	86.00	94.0	1.0	86.0	86.0	86.00	86.0	28079027
8	86.0	0.5	86.0	86.00	114.0	16.0	86.0	86.0	86.00	86.0	28079035
9	86.0	0.7	86.0	86.00	97.0	86.0	34.0	6.0	86.00	86.0	28079036
10	0.3	86.0	0.4	86.00	69.0	86.0	18.0	3.0	86.00	3.1	28079038
11	86.0	0.6	86.0	86.00	99.0	7.0	86.0	86.0	86.00	86.0	28079039
12	86.0	86.0	86.0	86.00	106.0	86.0	31.0	6.0	86.00	86.0	28079040
13	86.0	86.0	86.0	86.00	97.0	86.0	23.0	86.0	86.00	86.0	28079047
14	86.0	86.0	86.0	86.00	63.0	86.0	18.0	86.0	86.00	86.0	28079048
15	86.0	86.0	86.0	86.00	70.0	15.0	86.0	86.0	86.00	86.0	28079049
16	86.0	86.0	86.0	86.00	76.0	86.0	27.0	86.0	86.00	86.0	28079050
17	86.0	86.0	86.0	86.00	111.0	5.0	86.0	86.0	86.00	86.0	28079054
18	0.6	86.0	1.9	0.42	106.0	86.0	31.0	86.0	1.89	5.8	28079055
19	86.0	0.7	86.0	86.00	87.0	6.0	86.0	86.0	86.00	86.0	28079056
20	86.0	0.5	86.0	86.00	79.0	86.0	21.0	11.0	86.00	86.0	28079057
21	86.0	86.0	86.0	86.00	32.0	23.0	86.0	86.0	86.00	86.0	28079058
22	86.0	86.0	86.0	86.00	71.0	8.0	86.0	86.0	86.00	86.0	28079059
23	86.0	86.0	86.0	86.00	79.0	22.0	9.0	86.0	86.00	86.0	28079060
24	86.0	8.0	86.0	86.00	76.0	86.0	86.0	10.0	86.00	86.0	28079004
25	1.6	0.7	1.3	0.38	105.0	4.0	36.0	13.0	1.93	6.9	28079008
26	3.6	86.0	4.2	86.00	111.0	86.0	86.0	86.0	86.00	86.0	28079011
27	86.0	0.5	86.0	86.00	102.0	2.0	86.0	86.0	86.00	86.0	28079016
28	86.0	86.0	86.0	86.00	89.0	2.0	86.0	9.0	86.00	86.0	28079017
29	8.0	0.5	0.4	86.00	97.0	1.0	23.0	4.0	86.00	5.5	28079018

In [702]: sns.pairplot(d)

Out[702]: <seaborn.axisgrid.PairGrid at 0x1b72b021a90>


```
In [703]: | sns.distplot(a['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[703]: <AxesSubplot:xlabel='NO_2', ylabel='Density'>

In [704]: sns.heatmap(d.corr())

Out[704]: <AxesSubplot:>


```
In [705]: x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

```
In [706]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [707]:
          from sklearn.linear_model import LinearRegression
           lr=LinearRegression()
           lr.fit(x_train,y_train)
Out[707]: LinearRegression()
In [708]:
           print(lr.intercept_)
           1,495083223867809
In [709]:
           coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
           coeff
Out[709]:
                  Co-efficient
             BEN
                    0.012264
              CO
                    0.000011
             EBE
                    -0.012253
           NMHC
                    0.982583
            NO_2
                    0.000015
In [710]:
          prediction=lr.predict(x_test)
           plt.scatter(y_test,prediction)
Out[710]: <matplotlib.collections.PathCollection at 0x1b73e5bc580>
            80
            60
            40
            20
                         20
                                   40
                                             60
                                                       80
          print(lr.score(x_test,y_test))
In [711]:
           0.9999900592725229
In [712]:
          from sklearn.linear_model import Ridge,Lasso
In [713]:
          rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
Out[713]: Ridge(alpha=10)
```

In [714]: rr.score(x_test,y_test)

Out[714]: 0.9999865717116763

In [715]: la=Lasso(alpha=10)

la.fit(x_train,y_train)

Out[715]: Lasso(alpha=10)

In [716]: la.score(x_test,y_test)

Out[716]: 0.9996509829127287

In [717]: a1=b.head(7000)

a1

Out[717]:		date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	st
	0	2015- 10-01 01:00:00	86.0	0.8	86.0	86.00	90.0	82.0	86.0	86.0	86.0	10.0	86.00	86.0	2807
	1	2015- 10-01 01:00:00	2.0	0.8	1.6	0.33	40.0	95.0	4.0	37.0	24.0	12.0	1.83	8.3	2807
	2	2015- 10-01 01:00:00	3.1	86.0	1.8	86.00	29.0	97.0	86.0	86.0	86.0	86.0	86.00	7.1	280
	3	2015- 10-01 01:00:00	86.0	0.6	86.0	86.00	30.0	103.0	2.0	86.0	86.0	86.0	86.00	86.0	2807
	4	2015- 10-01 01:00:00	86.0	86.0	86.0	86.00	95.0	96.0	2.0	86.0	86.0	9.0	86.00	86.0	2807
	6995	2015- 10-13 04:00:00	86.0	0.3	86.0	86.00	32.0	44.0	7.0	86.0	86.0	86.0	86.00	86.0	2807
	6996	2015- 10-13 04:00:00	86.0	86.0	86.0	86.00	9.0	44.0	86.0	11.0	86.0	4.0	86.00	86.0	2807
	6997	2015- 10-13 04:00:00	86.0	86.0	86.0	86.00	30.0	27.0	86.0	28.0	23.0	86.0	86.00	86.0	2807
	6998	2015- 10-13 04:00:00	86.0	86.0	86.0	86.00	32.0	46.0	86.0	14.0	11.0	86.0	86.00	86.0	2807
	6999	2015- 10-13 04:00:00	86.0	86.0	86.0	86.00	44.0	37.0	2.0	86.0	86.0	86.0	86.00	86.0	2807

7000 rows × 14 columns

```
In [718]: e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
            'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
In [719]: f=e.iloc[:,0:14]
          g=e.iloc[:,-1]
In [720]: h=StandardScaler().fit_transform(f)
In [721]: logr=LogisticRegression(max_iter=10000)
          logr.fit(h,g)
Out[721]: LogisticRegression(max iter=10000)
In [722]: | from sklearn.model_selection import train_test_split
          h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [723]: i = [[10, 20, 30, 40, 50, 60, 15, 26, 37, 47, 58]]
In [724]:
          prediction=logr.predict(i)
          print(prediction)
           [28079059]
In [725]: logr.classes
Out[725]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                  28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                  28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                  28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
                dtype=int64)
In [726]: logr.predict proba(i)[0][0]
Out[726]: 0.0
In [727]: logr.predict_proba(i)[0][1]
Out[727]: 0.0
In [728]: |logr.score(h_test,g_test)
Out[728]: 0.9238095238095239
In [729]: from sklearn.linear model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[729]: ElasticNet()
```

```
In [730]: print(en.coef_)
          [ 4.15512330e-04 -0.00000000e+00 0.00000000e+00 9.80742749e-01
           -0.00000000e+00]
In [731]: |print(en.intercept_)
          1.6131355931421183
In [732]:
          prediction=en.predict(x_test)
          print(en.score(x_test,y_test))
          0.9999818078484011
In [733]: from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[733]: RandomForestClassifier()
In [734]:
          parameters={'max depth':[1,2,3,4,5],
           'min_samples_leaf':[5,10,15,20,25],
           'n estimators':[10,20,30,40,50]
           }
In [735]: from sklearn.model selection import GridSearchCV
          grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring="accl
          grid_search.fit(h_train,g_train)
Out[735]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min_samples_leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [736]: |grid_search.best_score_
Out[736]: 0.9904081632653061
In [737]: rfc_best=grid_search.best_estimator_
```

```
In [738]: from sklearn.tree import plot tree
                                    plt.figure(figsize=(80,50))
                                    plot_tree(rfc_best.estimators_[2],filled=True)
Out[738]: [Text(2612.4545454545455, 2491.5, 'X[10] <= 1.179\ngini = 0.958\nsamples =
                                     3099\nvalue = [196, 199, 213, 198, 195, 216, 228, 213, 203, 198\n212, 199,
                                    235, 208, 218, 178, 197, 214, 188, 173\n204, 182, 225, 208]'),
                                        Text(1369.636363636363635, 2038.5, 'X[3] <= -1.138 \setminus i = 0.954 \setminus
                                     2822\nvalue = [196, 199, 213, 198, 195, 216, 228, 213, 203, 198\n212, 199,
                                     235, 208, 218, 178, 197, 214, 188, 173\n204, 182, 0, 0]'),
                                       Text(405.8181818181818, 1585.5, 'X[10] <= -1.234\ngini = 0.664\nsamples =
                                     388\nvalue = [0, 199, 0, 0, 0, 0, 228, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 18
                                    4, 0, 0, 0, 0, 0]'),
                                        Text(202.90909090909, 1132.5, 'gini = 0.0\nsamples = 132\nvalue = [0, 19
                                    9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                        Text(608.72727272727, 1132.5, 'X[5] <= 0.893\ngini = 0.494\nsamples = 25
                                     6\nvalue = [0, 0, 0, 0, 0, 0, 228, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 184, 0,
                                    0, 0, 0, 0]'),
                                       Text(405.8181818181818, 679.5, 'gini = 0.0 \nsamples = 125 \nvalue = [0, 0, 0]
                                     0, 0, 0, 0, 206, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0, 0]'),
                                        Text(811.636363636363636, 679.5, 'X[7] \leftarrow -0.217 \cdot gini = 0.191 \cdot gini = 13
                                    1\nvalue = [0, 0, 0, 0, 0, 0, 22, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 184, 0,
                                     0, 0, 0, 0]'),
```

Conclusion: from this data set i observed that the elasticnet has the highest accuracy of 0.9999818078484011

In []: