Archish S me20b032 Batch 7

1. Download and use RollList.csv for this question. Assume that the hostel fee of freshers is incremented by 10 percent of the previous year's fees each year. This fee you pay as a fresher continues to be paid every semester after that without increment. E.g., fees for students who joined in 2018 will be lower than those who joined in 2019, but the 2019 batch will pay the same fees every semester and so on. The students who joined in the year 2017 had to pay INR 20,000 as hostel fees.

The solution includes a script to calculate, and the output of total fees received this semester by the hostel administration from the students on the Roll List. [2 Marks]

Hint: You can use a shell script or awk script to achieve this.

Application: Minor numerical operations on a regular dataset in a CSV file are typical in data analysis.

Link to the GitHub repository for this question: GitHub

This awk script takes in the RollList.csv and preprocesses each line, keeping count of number of students from each year.

```
#!/usr/bin/gawk -f
1.
2.
   BEGIN{
      FS = ",";
3.
      sum = 0;
5.
   };
6.
7.
   {
8.
      # Saving the roll number in the variable roll
9.
      roll = $1;
10.
11.
      # Stripping the 3rd and 4th characters of the roll number
      year = int(substr(roll, 3, 2));
12.
13.
14.
      # Incrementing the number of students belonging to that year
15.
      num[year]++;
16.
17. };
18.
19. END{
20.
      for (year in num){
21.
                # Calculating the rate first then the sum - doing in one step gave scientific representation
22.
23.
                rate = (1.1)**(year-17)*num[year];
                sum+= 20000*rate;
24.
25.
      };
26.
                print sum;
27. };
```

This bash script calls the fess.awk wrapper to find the fees paid by the students listed in RollList.csv

```
1. #!/bin/bash
2.
3. ./fees.awk < RollList.csv
4.
```

MM2090

Assignment 1 – Question 1

Archish S me20b032 Batch 7

TERMINAL:

OUTPUT:

1859000

Archish S me20b032 Batch 7

2. As part of data file submission to a platform, the administrator needs to create a set of initial passwords for the students. The password creation is done in the following way. The first part of the password is department code in capital letters followed by the numeric part of the roll number (the last 3 characters of the roll number) followed by the length of the string in their name (this will also count the spaces). Followed by the program in which the student is enrolled in small letter.

For example, if the roll number is **ME18B009** and the name is **Bharath Chandar** then the password will be **ME00915b**. Use the RollList.csv file available from the above question and write a script to generate the password for all the students.

The solution includes the script and the password list. [2 Marks]

Hint: You can use a shell script or awk script to achieve this.

Application: Applications may need to generate clear text passwords according to certain rules to be given to first time users.

Link to the GitHub repository for this question: GitHub

This awk script takes in the RollList.csv and preprocesses each line and outputs the password in the correct format.

```
#!/usr/bin/gawk -f
   BEGIN{
2.
      FS = ",";
3.
4.
      # Printing the header
6.
      printf("Roll, Name, Password\n");
7.
   };
8.
9.
      # Saving the roll number in the variable roll
10.
      roll = $1;
11.
12.
      # Saving the name in the variable name
13.
      name = $2;
14.
      # Stripping the 1st and 2nd characters of the roll number
15.
16.
      depart = substr(roll, 1, 2);
      # Stripping the last three characters of the roll number
17.
18.
      id = substr(roll, 6, 3);
      # Stripping the 5th characrer of the roll number and storing its lower case
19.
20.
      group = tolower(substr(roll, 5, 1));
21.
      # Finding the length of name
22.
      len_name = length(name);
23.
24.
      printf("%s,%s,%s%s%s%s\n", roll, name, depart, id, len_name, group);
25.
26.
27. };
28.
29. END{
30. };
31.
```

This bash scripts calls the password awk wrapper to get the passwords of the students in the RollList.csv

```
1. #!/bin/bash
2.
3. ./password.awk < RollList.csv > Password.csv
4.
```

Using this command will display only the passwords which can be piped to a file accordingly.

```
1. cat Password.csv | cut -d ',' -f 3
```

Archish S me20b032 Batch 7

TERMINAL:

PS: Commands.txt was another approach that I was trying.

Archish S me20b032 Batch 7

OUTPUT:

Roll	Name	Password
CE19B089	Sruthi Sreeram	CE08914b
ME18B009	Bharath Chandar	ME00915b
ME18B020	Aravindh P	ME02010b
ME18B027	Rajasundaram M	ME02714b
ME18B033	Suganth NN	ME03310b
ME18B046	Deepak G	ME0468b
ME18B086	Arvind Raghav V	ME08615b
ME18B089	Sriharan BS	ME08911b
ME18B145	Ashwin Kumar KS	ME14515b
ME18B146	Vikas Mahendar K	ME14616b
ME18B152	Manoj S	ME1527b
ME18B156	Mukesh V	ME1568b
ME18B157	Mukund Varma T	ME15714b
ME19B001	Abhigyan Chattopadhyay	ME00122b
ME19B003	Akshay Sunil	ME00312b
ME19B003	Akshay Sunil	ME00312b
ME19B012	Dhananjay B	ME01211b
ME19B013	Dhruv Bhatia	ME01312b
ME19B023	Krishna Somasundaram RM	ME02323b
ME19B035	Shreyas S. Paranjape	ME03520b
ME19B036	Parth Lathi	ME03611b
ME19B048	Shyam Sundar PB	ME04815b
ME19B052	Tadeparti Sidharth	ME05218b
ME19B057	Vasudeva Tushar Nilker	ME05722b
ME19B060	Vishalroshan A	ME06014b
ME19B061	Pavithra Mohan	ME06114b
ME19B063	Aditi Kumar	ME06311b
ME19B076	Alphin Davis Pomy	ME07617b
ME19B079	Ananthalakshmi N	ME07916b
ME19B082	Arvind Car	ME08210b
ME19B085	Ashwin Upamanyu Dev	ME08519b
ME19B091	Aswin Raj CR	ME09112b
ME19B095	Krishnathejus D	ME09515b
ME19B098	Abhishek Dhalpe	ME09815b
ME19B105	Gautham Raghav S	ME10516b
ME19B106	Gowrishankar Manu	ME10617b
ME19B107	Gunda Mahathi	ME10713b
ME19B108	Harsh Gupta	ME10811b
ME19B114	Jay Pratik Sanghavi	ME11419b
ME19B121	Kalisytharth SK	ME12115b
ME19B123	Karthik Karumanchi	ME12318b
ME19B128	Srividya L	ME12810b
ME19B131	Manasa Madela	ME13113b
ME19B135	Neelanjana Pramod	ME13517b

ME19B149	Prasanth S	ME14910b
ME19B150	Prathamesh A Jain	ME15017b
ME19B152	Preetha Devi A	ME15214b
ME19B155	Rohan H Rao	ME15511b
ME19B159	Sachin Sagar	ME15912b
ME19B163	Saroopa G	ME1639b
ME19B167	Shreyas Madhav Kulkarni	ME16723b
ME19B175	Srinidhi N	ME17510b
ME19B176	Subham Khan	ME17611b
ME19B177	Suraj Rathi	ME17711b
ME19B179	Tejas Rao M	ME17911b
ME19B185	Vedant Limaye	ME18513b
MM18B034	Shrutasom Das	MM03413b
MM19B002	Akshat Joshi	MM00212b
MM19B005	Bipin V	MM0057b
MM19B009	Kanishkan MS	MM00912b
MM19B012	Pragalbh Vashishtha	MM01219b
MM19B014	Vishnupriyan R	MM01414b
MM19B015	Jai Santhoshi S	MM01515b
MM19B016	Aakhyat Singh	MM01613b
MM19B018	Aditya Raj	MM01810b
MM19B021	Ayesha Ulde	MM02111b
MM19B027	Bhuvanesh P	MM02711b
MM19B029	Chirantandip Mahanta	MM02920b
MM19B031	Gayathri Shrushti V	MM03119b
MM19B033	Hrishabh Srivastava	MM03319b
MM19B038	Mahesh R	MM0388b
MM19B040	Nagappan N	MM04010b
MM19B043	Hardhik Pinjala	MM04315b
MM19B044	Pranav Choudhari	MM04416b
MM19B045	Aswanth R	MM0459b
MM19B046	Rishaab Karthik R	MM04617b
MM19B049	Rohan Korale	MM04912b
MM19B054	Shreya Smitha	MM05413b

Archish S me20b032 Batch 7

3. Download the file screenshots.tar.gz from course page on the moodle site. The screenshots contain images of the terminal window with few commands that expose the hardware / configuration details of my laptop I use for this course instruction. You need to make a clean pdf that contains two terminal images per page. This involves trimming of the images. Your script should take the pixel values for trimming as a user input and then do the task automatically for all the images in the directory and generate the pdf.

The solution includes the script and one sample page the output pdf. [2 Marks]

Hint: Install imagemagick with 'sudo apt install imagemagick' and check man page of 'convert' command.

Application: You may need to trim a large set of images from an experiment and use them for image analysis, to create a video sequence and to extract events. High speed imaging of experiments is an important scientific technique.

Link to the GitHub repository for this question: GitHub

The bash script takes parameters – width, height and strides and outputs the pdf of the cropped images.

```
#!/bin/bash
2.
   # Unzipping the screenshots
tar -xvzf screenshots.tar.gz
5. mkdir cropped
6.
7. # Renaming the files for ease of access
8. cd screenshots/
9. for f in *\ *; do mv "$f" "${f// /_}"; done
10. i=0;
11. for files in `ls`;
12. do
     mv $files $(basename $i).png;
13.
     i=$(( $i+1 ));
15. done;
16.
17. # size: 1450x865+1475+40
18. cd ..
19.
20. # Cropping the images
21. for files in `ls screenshots/`;
22. do
      if [ -z "$1" ]; then
                width=`identify -ping -format '%w' screenshots/$files`
24.
25.
                height=`identify -ping -format '%h' screenshots/$files`
26.
                x=0
                y=0
27.
28.
      else
29.
                width=$1
30.
                height=$2
31.
                x=$3
                y=$4
32.
33.
      convert screenshots/$files -crop $width\x$height+$x+$y cropped/$(basename $files .png).png
34.
35. done;
36.
37. rm -r screenshots/
38. mkdir combined
40. # Combining two images into one by appending them vertically
41. for j in (seq 0 ((i/2-1)));
42. do
43.
      convert -append cropped/\{(s_{2}), p_{3}\} cropped/\{(s_{2}), p_{3}\} cropped/\{(s_{2}), p_{3}\} cropped/\{(s_{2}), p_{3}\}
    combined/$(basename $j).png
44. done;
45.
46. rm -r cropped/
47.
48. # Joining the combined images into a pdf
49. convert -page A4 -resize 3508x2480 combined/*.png Screenshots.pdf
50.
51.
```

MM2090

Assignment 1 – Question 3

Archish S me20b032 Batch 7

```
| 52. rm -r combined/
| 53.
```

TERMINAL:

OUTPUT:

top - 10:30:35 up 4 days, 1:55, 1 user, load average: 0.13, 0.31, 0.55 stopped, Tasks: **287** total, 1 running, 286 sleeping, g zombie 0.0 wa, %Cpu(s): 0.8 us, 0.2 sy, 0.0 ni, 99.0 id, 0.0 hi, 0.0 si, MiB Mem : **15875.5** total, 1724.0 free, **1449.1** used, **12702.5** buff/cache MiB Swap: **32491.0** total, 32465.4 free, **25.6** used. **13704.5** avail Mem SHR S %CPU PID USER PR **VIRT RES** %MEM TIME+ COMMAND NI 3940 S 20 10468 6988 0.7 0.0 1:07.10 dbus-d+ 1237 message+ 0 0 0.7 0:00.24 kworke+ 145387 root 20 0 I 0 0 0.0 11 root 20 0 0 0 0 I 0.3 0.0 3:00.01 rcu sc+ 0.3 533 root -51 0 0 0 0 S 0.0 11:51.45 irg/13+ 20 0 338180 21692 16956 S 0.3 2:19.48 Networ+ 1238 root 0.114180 8300 S 9424 1263 root 20 0 0.3 0.10:05.66 wpa su+ 1918 gdm 20 4744216 213884 100724 0.3 1.3 1:35.81 gnome-+ 0 142247 gphani 20 0 888480 105284 77280 0.3 0.6 1:05.26 Xorg 142400 gphani 20 0 4387944 287096 117032 0.3 1:15.57 gnome-+ 1.8 465768 142555 gphani 20 0 10660 9016 0.3 0.10:00.46 gsd-sh+ 1:11.71 chrome 20 0.3 142718 gphani 0 32.5g 254404 157452 1.6 143115 gphani 20 0 36.5g 321376 130908 0.3 2.0 5:18.60 chrome 144894 gphani 20 0 964344 53032 41112 0.3 0.3 0:13.50 gnome-+ 0 12888 4192 3456 R 145545 gphani 20 0.3 0.0 0:00.03 top 20 0 168836 12216 8364 S 0.0 0.1 2:37.35 systemd 1 root 2 root 20 0 0.0 0:00.18 kthrea+ 0 0 0 S 0.0 Q = - - 8 gphani@gphanilaptop: ~ gphani@gphanilaptop:~\$ df -h | grep sda 883G 54% / /dev/sda3 452G 387G

gphani@gphanilaptop: ~

Q = _ 0 🗴

/dev/sda1 556M 7% /boot/efi 596M 41M gphani@gphanilaptop:~\$

Archish S me20b032 Batch 7

4. Discuss within your group and pick one hardware item type that is different from the rest of the group. The groupings are listed in the roll list in the folder for the course on google drive. Look up the internet to identify at least 3 latest entries of that hardware item and put down their specs. Comment what kind of gadgets / workstations / servers / clusters from OEMs include such a hardware item. Give the source of your information.
(a) CPU (b) GPU (c) DRAM (d) SATA hard disc (e) Network switches for cluster (f) Network card.

The solution includes a tabular listing of specs along with source of information as a reference below. [2 Marks] Hint: Start with leading OEMs for these items using Wikipedia and then look up latest releases.

Application: One should know hardware limitations for program execution as part of scientific computing in real life.

Graphics Processing Unit

A **graphics processing unit (GPU)** is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the creation of images in a frame buffer intended for output to a display device. GPUs are used in embedded systems, mobile phones, personal computers, workstations, and game consoles. Modern GPUs are very efficient at manipulating computer graphics and image processing.

History² (Decade)

1970-1980

<u>Arcade system boards</u> have been using specialized graphics circuits since the 1970s. In early video game hardware, the <u>RAM</u> for frame buffers was expensive, so video chips composited data together as the display was being scanned out on the monitor.

1980-1990

The NEC µPD7220 was the first implementation of a PC graphics display processor as a single Large Scale Integration (LSI) integrated circuit chip, enabling the design of low-cost, high-performance video graphics cards such as those from Number Nine Visual Technology.

1990-2000

All major PC graphics chip makers had added <u>2D</u> acceleration support to their chips. <u>Real-time</u> 3D graphics were becoming increasingly common in arcade, computer and console games, which led to an increasing public demand for <u>hardware-accelerated 3D graphics</u>.

Software implementations of OpenGL were common during this time, although the influence of OpenGL eventually led to widespread hardware support.

2000-2010

Nvidia was first to produce a chip capable of programmable <u>shading</u>. The introduction of the <u>ATI Radeon 9700</u>, the world's first <u>Direct3D</u> 9.0 accelerator, pixel and vertex shaders could implement <u>looping</u> and lengthy <u>floating point</u> math, and were quickly becoming as flexible as CPUs, yet orders of magnitude faster for image-array operations.

Nvidia's <u>CUDA</u> platform, first introduced in 2007, was the earliest widely adopted programming model for GPU computing.

2010-Present

Nvidia launched the RTX 20 series GPUs that add ray-tracing cores to GPUs, improving their performance on lighting effects.

¹ Source: Wikipedia

² Source: Wikipedia

Archish S me20b032 Batch 7

AMD released the successor to their <u>Graphics Core Next</u> (GCN) microarchitecture/instruction set. Dubbed as RDNA, the first product line up featuring the first generation of RDNA was the <u>Radeon RX 5000 series</u> of video cards

Types of GPUs³

Dedicated Graphics Cards

The GPUs of the most powerful class typically interface with the <u>motherboard</u> by means of an <u>expansion</u> <u>slot</u> such as <u>PCI Express</u> (PCIe). The term "dedicated" refers to the fact that dedicated graphics cards have <u>RAM</u> that is dedicated to the card's use. This RAM is usually specially selected for the expected serial workload of the graphics card (see <u>GDDR</u>).

Technologies such as <u>SLI</u> and <u>NVLink</u> by Nvidia and <u>CrossFire</u> by AMD allow multiple GPUs to draw images simultaneously for a single screen, increasing the processing power available for graphics.

Integrated Graphics Cards

Integrated graphics processors (IGPs) utilize a portion of a computer's system RAM rather than dedicated graphics memory. IGPs can be integrated onto the motherboard as part of the (northbridge) chipset, or on the same die (integrated circuit) with the CPU (like AMD APU or Intel HD Graphics).

Applications⁴

Most GPUs are designed for a specific usage, real-time 3D graphics or other mass calculations:

Gaming

- GeForce GTX, RTX
- Nvidia Titan
- Radeon HD, R5, R7, R9, RX, Vega and Navi series
- Radeon VII

Cloud Gaming

- Nvidia GRID
- Radeon Sky

Workstation

- Nvidia Quadro
- AMD FirePro
- > AMD Radeon Pro

Cloud Workstation

- Nvidia Tesla
- AMD FireStream

Artificial Intelligence training and Cloud

- Nvidia Tesla
- AMD Radeon Instinct

Automated/Driverless car

Nvidia Drive PX

Major Manufacturers ⁵

Nvidia

³ Source: Wikipedia

⁴ Source: Wikipedia

⁵ Source

MM2090

Assignment 1 – Question 4

Archish S me20b032 Batch 7

- AMD
- Asus
- <u>Intel</u>
- EVGA
- Gigabyte

Latest Entries⁶

Manufacturer and	Launch	Specifications	
Model	Date		
Nvidia GeForce RTX 3060 Ti	February 25, 2021	 Architecture: Ampere Stream Processors: 4,864 Core Clock: 1.41 GHz (1.67 GHz boost) Memory: 8 GB GDDR6 Memory Clock: 14Gbps Outputs: HDMI 2.1, 3x DisplayPort 1.4a Power Connectors: 1x PCle 8-pin 	
Nvidia GeForce RTX 3090	September 24, 2020	Required Power: 600W Architecture: Ampere Stream Processors: 10,496 Core Clock: 1.40 GHz (1,70 GHz boost) Memory: 24 GB GDDR6X Memory Clock: 19.5Gbps Outputs: HDMI 2.1, 3x DisplayPort 1.4a	
		 Power Connectors: 2x PCIe 8-pin Required Power: 750W Architecture: RDnA2 	
AMD Radeon RX 6700	March 21, 2021	Stream Processors: 2,560Core Clock: 2.32 GHz (2.58 GHz boost)	
AMD Radeon RX 6900 XT	December 8, 2020	 Architecture: RDnA2 Stream Processors: 5,210 Core Clock: 1.82 GHz (2.25 GHz boost) Memory: 16GB GDDR6 Memory Clock: 16Gbps Power Connectors: 2 x 8 pin Outputs: DisplayPort 1.4 with DSC, HDMI 2.1 VRR and FRL Required Power: 300W 	

3 | Page

⁶ Source

Archish S me20b032

Batch 7

5. Download the transcripts of text chat from the google drive folder for this course into a folder. Create a script that can calculate your attendance as a percentage by looking for your roll number in each of the files.

The solution includes the script, total number of transcript files considered, lecture numbers missed and attendance percentage. [2 Marks]

Hint: Use the features of grep and wc for the task.

Application: When you run a large FEM program, you receive a log output in which certain warnings will be listed about change of algorithm or convergence failure etc., Looking for their occurrence and analysis is a part of engineering simulation work.

Link to the GitHub repository for this question: GitHub

This bash automatically processes the contents of the zip file and gives the attendance report.

The bash script can also take one parameter – the roll number and give the report of that person.

```
1. #!/bin/bash
# Unzipping the chats
4. tar -xvzf mm2090-apr2021-attendance.tar.gz
5. mv mm2090-apr2021-attendance/ transcripts/
7. # Grepping the name and roll number of students
8. mkdir registered
9. lectures=0;
10. for files in `ls transcripts/`;
11. do
            lectures=$(( $lectures+1 ));
12.
             cat transcripts/files \mid grep - oe '^(.*\)..[[:digit:]][[:digit:]][[:alpha:]]...:' >
        registered/$(basename $files .sbv).txt
15. rm -r transcripts/
16.
17. # Pre-processing
18. for files in `ls registered/`;
19. do
                          cat registered/files \mid sed - e 's/(.*) /(.*):/2,/1/g' > registered/<math>files \mid sed - e 's/(.*)
         .txt).csv
21. done;
22. rm registered/*.txt
23.
24.
25. mkdir cache
26. for files in `ls registered/`;
27. do
28. cat registered/$files | sed -e 's/ /_/g' > cache/$(basename $files .csv).csv
29. done;
30. rm -r registered/
32. # Removing multiple instances for each lecture
33. mkdir attendance
34. for files in `ls cache/`;
35. do
           cat cache/$files | awk -F, '{name[$1]=$2;}END{for (id in name){printf("%s,%s\n", id, name[id]);}}' |
        sort -k1 -n > attendance/$(basename $files .csv).csv
37. done;
38. rm -r cache/
40. # Finding the total registerants
41. tail -n+1 -q attendance/*.csv | awk -F, '{name[$1]=$2;}END{for (id in name){printf("%s,%s\n", id,
        name[id]);}}' | sort -k1 -n > registered.csv
42.
43. # Finding the percentage of attendance
44. tail -n+1 -q attendance/*.csv | awk -F, -v total=$lectures '{data[$1]=$0;name[$1]++;}END{for (id in
        \label{localization} $$ \operatorname{name}("s, .2f\n", data[id], name[id]/total*100);}' \mid sort -k1 -n > attendance.csv = (some simple of the context o
46. # Finding absentees in every lecture
```

Archish S me20b032 Batch 7

```
47. mkdir absent
48. for files in `ls attendance/`
49. do
             diff attendance/files registered.csv | egrep '....b...' | sed 's/> \(.*\)/\1/g' | awk -v
         lecture=$(basename $files .csv) '{printf("%s,%s\n", $0, lecture)}' > absent/$(basename $files .csv).csv;
52. rm registered.csv
53. rm -r attendance/
54.
55. # Processing the absentee list
56. tail -n+1 -q absent/*.csv | awk -F, '{name[$1]=$2;absent[$1]=absent[$1]$3;}END{for (id in
       name){printf("%s,%s,%s\n", id, name[id], absent[id]);}}' | sort -k1 -n > absent.csv
57. rm -r absent/
58.
59. # Combining the data
60. awk -F, \N\bar{R}==FNR {absent[$1]=$3; next}{printf("%s,%s\n", $0, absent[$1]);}' absent.csv attendance.csv > 10. absent.csv > 10. absent.cs
         cache.csv
61. rm absent.csv
62. rm attendance.csv
64. cat cache.csv | sed 's/_/ /g' | sed 's/_L/ _L/g' _> final.csv
65. rm cache.csv
66.
67. # Adding header
68. awk -F, 'BEGIN{printf("Roll,Name,Percentage,Missed Lectures\n");}{print $0;}' < final.csv >
         Attendance.csv
69. rm final.csv
71. echo
72.
73. echo "Total number of Lecutres = $lectures"
75. if [ -z "$1" ]; then
76. echo
77. else
        cat Attendance.csv | grep $1 | gawk -F, '{print "Name: ", $2; print "Roll Number: ", $1; print
         "Attendance Percentage: ", $3; print "Lectures Missed: ", $4;}'
79. fi
```

Archish S me20b032 Batch 7

TERMINAL:

OUTPUT:

Total number of Lectures = 22

Name: Archish S

Roll Number: me20b032

Attendance Percentage: 100%

Lectures Missed:

Archish S me20b032 Batch 7

OUTPUT:

Roll	Name	Percentage	Missed Lectures
me20b001	Aahan Bhargava	77.27%	L15 L16 L18 L21 L22
me20b004	Abhaumika Bijudith	22.73%	L01 L02 L05 L07 L08 L09 L10 L11 L12 L13 L14 L16 L17 L18 L19 L21 L22
	Abheshek Paramanand		
me20b005	Kamble	86.36%	L06 L17 L19
me20b008	Abhishek Yadav	81.82%	L04 L06 L17 L22
me20b014	Aditya Kishore Dhoke	77.27%	L02 L04 L13 L17 L19
me20b017	Akhil Koshy Rajesh	81.82%	L10 L15 L19 L21
me20b020	Akshat Rakesh Garhwal	86.36%	L08 L09 L21
me20b021	Alpha P Jose	72.73%	L01 L03 L04 L10 L14 L19
me20b022	Amar Muhammed	9.09%	L01 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L21 L22
me20b024	Ankit Kumar	86.36%	L02 L03 L04
me20b024	Anshid K	31.82%	L06 L07 L08 L09 L11 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22
me20b027	Anushka Asit Vadhavkar	100.00%	100 107 108 109 111 113 114 113 110 117 118 119 120 121 122
me20b028	Anushka S	86.36%	L01 L15 L22
me20b023	Archish S	100.00%	101 113 122
me20b032	Arun Palaniappan	95.45%	L03
me20b050	Cecil Jacob Thomas	95.45%	L04
1116200030	Chinmayee Tushar	33.4376	104
me20b053	Kolhe	86.36%	L05 L08 L13
me20b055	Chris Joy Beck	40.91%	L01 L06 L08 L10 L12 L13 L15 L16 L17 L18 L19 L20 L21
me20b088	Jay Harish Shah	100.00%	
me20b112	Monisha C	90.91%	L03 L16
me20b132	Prabhat Bedida	86.36%	L04 L16 L22
me20b150	Rithwin K Ashraf	54.55%	L03 L05 L07 L10 L14 L15 L16 L18 L19 L21
me20b162	Shrid Suresh	27.27%	L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L16 L18 L19 L20 L21 L22
me20b163	Shriya Shukla	100.00%	
20h1CC	Siddhagavali Shital	00.010/	105.147
me20b166	Bhiku	90.91%	L05 L17
me20b178	Sukeerth Ramkumar	100.00%	
me20b183	Swapnil Paresh Mehta	100.00% 50.00%	104106100144142142145147140124122
mm20b005	Albin George Bankar Niranjan	50.00%	L04 L06 L09 L11 L12 L13 L15 L17 L18 L21 L22 L02 L03 L04 L05 L06 L07 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L18
mm20b009	Janardan	4.55%	L19 L20 L21 L22
mm20b011	Bhagat Singh S	27.27%	L04 L05 L08 L09 L10 L11 L12 L13 L14 L15 L16 L17 L19 L20 L21 L22
mm20b017	Divya Jyothi D	86.36%	L01 L08 L16
201 215	Gatkal Siddhesh	A=	107
mm20b019	Sarjerao	95.45%	L07
mm20b020	Gokul C	81.82%	L04 L16 L18 L22
mm20b042	Nayanatara Deepak	81.82%	L01 L04 L13 L17
mm20b043	Nedunchezhiyan K	59.09%	L01 L02 L05 L07 L09 L10 L15 L19 L20
mm20b049	Prithviraj Pratap Bhosle	77.27%	L06 L09 L10 L13 L22
mm20b057	Shreya Rajesh Sumanth Manjunath	81.82%	L01 L02 L04 L17
mm20b059	Hegde	77.27%	L06 L08 L10 L16 L21

Archish S me20b032 Batch 7

6. In the following URLs, the atomic radii are given as a list that you can readily copy paste into a csv file: <u>Link 1</u> or <u>Link 2</u>, skip empty rows as needed. Pick an element that has the atomic number ending with the same digit as your roll number and list all elements whose atomic radii are within a certain percentage. Choose this percentage to be 10% to start with and increase if needed to be able to list at least 3 elements that are of comparable size.

The solution includes your script, the element chosen, its radius in picometers, criterion for closeness in size and the list of elements that are close in size. [3 Marks]

Hint: First create a csv file for input data and try a mix of shell and awk scripts.

Application: Analysis of data available in the open domain in not so readily usable form is part of scientific computing research. Webpage scraping, scripts to atomate it and storing historical data is part of research.

Link to the GitHub repository for this question: GitHub

This awk script takes in the Atomic Radii data and outputs the elements whose radii is close to the selected element.

```
    #!/usr/bin/gawk -f

2. BEGIN{
     FS = "\t";
3.
4.
      criterion = criterion/100;
      # Printing the header
5.
      printf("Atomic Number, Element, Atomic Radii, Deviation\n")
      printf("%d,%s,%.2f,0\%\n", atomic, element, key);
7.
8. };
9.
10. {
11.
      # Getting the absolute difference in atomic radii between the chosen element and iterated
      diff = $3-kev:
12.
      if (diff<0) diff = -1*diff;</pre>
13.
14.
      # Checking if the deviation is <10% and outputting if True
15.
     if (diff<=key*criterion && 1!=32) printf("%d,%s,%.2f,%.2f\%\n", $1, $2, $3,diff/key*100);
16.
17. };
18.
19. END{
20. };
21.
```

This bash takes the element of interest and the criterion as input and calls the radius.awk wrapper to get the elements with similar atomic radii.

```
1. #!/bin/bash
2.
3. atomic=$1
4. element=`cat AtomicRadii.csv | sed 's/\t/,/g' | awk -v atomic=$atomic -F, '{if($1==atomic) print $2;}'`
5. key=`cat AtomicRadii.csv | sed 's/\t/,/g' | awk -v atomic=$atomic -F, '{if($1==atomic) print $3;}'`
6.
7. echo "Choosing Element $element with Atomic Number $atomic and Radius $key"
8. echo "Criterion is $2% deviation in Atomic Radius from the chosen element"
9. awk -v atomic=$atomic -v element=$element -v key=$key -v criterion=$2 -f radius.awk < AtomicRadii.csv > Similar.csv
10.
```

Element Chosen is Germanium (Atomic Number 32).

Archish S me20b032 Batch 7

TERMINAL:

OUTPUT:

Choosing Element Ge with Atomic Number 32 and Radius 1.25 Criterion is 10% deviation in Atomic Radius from the chosen element

Atomic		Atomic	
Number	Element	Radii	Deviation
32	Ge	1.25	0%
13	Al	1.18	5.60%
31	Ga	1.36	8.80%
33	As	1.14	8.80%
51	Sb	1.33	6.40%
52	Те	1.23	1.60%
53	1	1.15	8.00%
84	Ро	1.35	8.00%
85	At	1.27	1.60%
86	Rn	1.2	4.00%

INPUT (tab separated):

1 H 0.53 0.25 0.37 1.20 0.10
2 He 0.31 0.31 0.32 1.40
3 Li 1.67 1.45 1.34 1.82 0.90
4 Be 1.12 1.05 0.90 0.41
5 B 0.87 0.85 0.82 0.25
6 C 0.67 0.70 0.77 1.70 0.29
7 N 0.56 0.65 0.75 1.55 0.30
8 0 0.48 0.60 0.73 1.52 1.21
9 F 0.42 0.50 0.71 1.47 1.19
10 Ne 0.38 0.38 0.69 1.54
11 Na 1.90 1.80 1.54 2.27
1.16
12 Mg 1.45 1.50 1.30 1.73
0.86
13 Al 1.18 1.25 1.18 0.53
14 Si 1.11 1.10 1.11 2.10
0.40
15 P 0.98 1.00 1.06 1.80
0.31
16 S 0.88 1.00 1.02 1.80 0.43
17 Cl 0.79 1.00 0.99 1.75
1.67
18 Ar 0.71 0.71 0.97 1.88
19 K 2.43 2.20 1.96 2.75
1.52
20 Ca 1.94 1.80 1.74 1.14
21 Sc 1.84 1.60 1.44 0.89
22 Ti 1.76 1.40 1.36 0.75
23 V 1.71 1.35 1.25 0.68
24 Cr 1.66 1.40 1.27 0.76
25 Mn 1.61 1.40 1.39 0.81
26 Fe 1.56 1.40 1.25 0.69
27 Co 1.52 1.35 1.26 0.54
28 Ni 1.49 1.35 1.21 1.63
0.70
29 Cu 1.45 1.35 1.38 1.40
0.71
30 Zn 1.42 1.35 1.31 1.39
0.74
31 Ga 1.36 1.30 1.26 1.87
0.76
32 Ge 1.25 1.25 1.22 0.53
33 As 1.14 1.15 1.19 1.85
0.72

34 Se 1.03 1.15 1.16 1.90
0.56
35 Br 0.94 1.15 1.14 1.85
1.82
36 Kr 0.88 0.88 1.10 2.02
37 Rb 2.65 2.35 2.11 1.66
38 Sr 2.19 2.00 1.92 1.32
39 Y 2.12 1.85 1.62 1.04
40 Zr 2.06 1.55 1.48 0.86
41 Nb 1.98 1.45 1.37 0.78
42 Mo 1.90 1.45 1.45 0.79
43 Tc 1.83 1.35 1.56 0.79
44 Ru 1.78 1.30 1.26 0.82
45 Rh 1.73 1.35 1.35 0.81
46 Pd 1.69 1.40 1.31 1.63
0.78
47 Ag 1.65 1.60 1.53 1.72
1.29
48 Cd 1.61 1.55 1.48 1.58
0.92
49 ln 1.56 1.55 1.44 1.93
0.94 50 Sn 1.45 1.45 1.41 2.17
0.69
51 Sb 1.33 1.45 1.38 0.90
52 Te 1.23 1.40 1.35 2.06
1.11
53 1.15 1.40 1.33 1.98 2.06
54 Xe 1.08 1.08 1.30 2.16
0.62
55 Cs 2.98 2.60 2.25 1.81
56 Ba 2.53 2.15 1.98 1.49
57 La 1.95 1.95 1.69 1.36
58 Ce 1.85 1.85 1.15
59 Pr 2.47 1.85 1.32
60 Nd 2.06 1.85 1.30
61 Pm 2.05 1.85 1.28
62 Sm 2.38 1.85 1.10
63 Eu 2.31 1.85 1.31
64 Gd 2.33 1.80 1.08
65 Tb 2.25 1.75 1.18
66 Dy 2.28 1.75 1.05
67 Ho 2.26 1.75 1.04
68 Er 2.26 1.75 1.03

69 Tm 2.22 1.75 1.02
70 Yb 2.22 1.75 1.13
71 Lu 2.17 1.75 1.60 1.00
72 Hf 2.08 1.55 1.50 0.85
73 Ta 2.00 1.45 1.38 0.78
74 W 1.93 1.35 1.46 0.74
75 Re 1.88 1.35 1.59 0.77
76 Os 1.85 1.30 1.28 0.77
77 Ir 1.80 1.35 1.37 0.77
78 Pt 1.77 1.35 1.28 1.75
0.74
79 Au 1.74 1.35 1.44 1.66
1.51
80 Hg 1.71 1.50 1.49 1.55
0.83
81 Tl 1.56 1.90 1.48 1.96
1.03 82 Pb 1.54 1.80 1.47 2.02
1.49
83 Bi 1.43 1.60 1.46 1.17
84 Po 1.35 1.90 1.08
85 At 1.27 1.27 0.76
86 Rn 1.20 1.20 1.45
87 Fr 1.94
88 Ra 2.15 1.62
89 Ac 1.95 1.95 1.26
90 Th 1.80 1.80 1.19
91 Pa 1.80 1.80 1.09
92 U 1.75 1.75 1.86 0.87
93 Np 1.75 1.75
94 Pu 1.75 1.75 1.00
95 Am 1.75 1.75 1.12
96 Cm 1.11