zestaw zadań nr 7 Cel: analiza regresji – regresja prosta i wieloraka

Przebieg regresji liniowej:

- 1. Znaleźć funkcję y=f(x) (dopasowanie modelu)
- 2. Sprawdzić:
 - a) Wsp. determinacji R²
 - b) Test istotności dla wsp. Kierunkowego b

c) analiza wariancji

H: nie istnieje zależnośc miedzy X i Y

d) czy resety mają rozkład normalny

MODELE

Wykładniczy:

$$Y = e^{a+bx} + \varepsilon$$

$$Y = e^{a+bx} + \varepsilon / log$$

 $log Y = a + bx + log \varepsilon$

$$Y' = a + bx + \varepsilon'$$

$$lny = log(y)$$

$$model = lm(lny\sim x)$$

Odwrotnościowy (względem Y)

$$Y = \frac{1}{a + bx} \rightarrow \frac{1}{y} = a + bx$$

$$Y' = a + bx$$

$$oy = 1/y$$
 $model = lm(oy \sim x)$

Odwrotnościowy (względem X)

$$Y=a+\frac{b}{x}+\varepsilon$$

$$x' = \frac{1}{x}$$

$$Y=a+bx'+\varepsilon$$

$$ox = 1/x$$

 $model = lm(y \sim ox)$

model multiplikatywny(potęgowy)

$$Y = aX^b \varepsilon - > \ln Y =$$

$$\ln a + b \ln X + \ln \varepsilon - >$$

$$Y' = a' + b' + \varepsilon'$$

$$lnx = log(x)$$

$$lny = log(y)$$

 $model = lm(lny\sim lnx)$

Zadanie 1

W zamieszczonej poniżej tabeli podano wysokość rocznego dochodu i wartość posiadanego domu dziewięciu rodzin wybranych w sposób losowy spośród mieszkańców pewnego okręgu:

Roczny dochód (\$ 1000)	36	64	49	21	28	47	58	19	32
Wartość domu (\$ 1000)	129	310	260	92	126	242	288	81	134

a) Wyznaczyć prostą regresji wartości domu względem dochodu.

dochod= c(36,64,49,21,28,47,58,19,32) dom = c(129, 310, 260, 92, 126, 242, 288, 81, 134)

#Sprawdzam na oko czy da sie poprowadzić prostą

plot(dochod,dom)

model = lm(dom ~ dochod) # dopasowanie modelu linniowego (linnear model, szacuje metoda najmniejszych kwadratow)

abline(model,col="red") # rysowanie linni

I linia powinna w miarę przechodzić przez punkty, to będzie ok.

summary(model)

 $D\widehat{o}m = -30.344 + 5.466 * dochod$

b) Przeanalizować dopasowanie modelu.

summary(model)

Wsp. determinacji R²

Multiple R-squared: 0.9612 96,12 % obserwacji jest "wyjaśnionych" przez regresje. W takim stopniu model wyjaśnia zmienność Y

> Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(dochod) nie jest istotny)

> > $K: \neg H$

p-valu (Pr(>|t|) dla dochod) < ALFA -> odrzucamy H, dochód jest istotny

Test Anovy

H: nie istnieje zależnośc miedzy X i Y $K: \neg H$

F-statistic: 173.5 on 1 and 7 DF, p-value: 3.394e-06

p-vale < ALFA -> istnieje zależność

czy reszty mają rozkład normalny

 $H: reszty mają rozkłady normalne <math>K: \neg H$

shapiro.test(resid(model))

p-value > ALFA -> reszty mają rozkład normalny

Wszystkie Hipotezy OK., R^2 duże -> model OK

- c) Oszacować wartość domu rodziny, której roczny dochód wynosi \$40000.
- d) Wyznaczyć 95% przedział ufności dla szacowanej wartości domu tej rodziny.

```
nowe=data.frame(dochod=40)
predict(model,nowe,interval='conf', level=0.95)
```

fit – oszacowanie lwr, upr – przedział ufności

Zadanie 3

W poniższej tabeli podano liczbę ludności USA (w mln) w latach 1890-2007:

Rok	1890	1900	1910	1920	1930	1940	1950	1960	1970
Ludność	62.947	75.994	91.972	105.710	122.775	131.669	150.697	179.323	203.235
Rok	1980	1990	2000	2007	2008	2009			
Ludność	226.542	248.718	281.422	301.140	305.529	309.237			

 a) Przyjmując wykładniczy model wzrostu populacji, oszacować parametry tego modelu i zweryfikować jego dopasowanie.

$$Y = e^{a + bx} + \varepsilon$$

R ma tylko lm wiec tarza przekształcić

$$Y = e^{a+bx} + \varepsilon / \log \log Y = a + bx + \log \varepsilon$$
$$Y' = a + bx + \varepsilon'$$

Y'-log lud

Y-lud

x-rok

rok=scan()

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2007 2008 2009

lud=scan()

62.947 75.994 91.972 105.710 122.775 131.669 150.697 179.323 203.235 226.542 248.718 281.422 301.140 305.529 309.237

loglud = log(lud)

plot(rok,loglud) # widac, że jest całkiem OK model=lm(loglud~rok)

abline(model) ## jak widac model jest ok

model

summary(model)

$$\hat{Y}' = -20.03761 + 0.01284 x$$

$$\hat{Y} = e^{-20.03761 + 0.01284 x}$$

Wsp. determinacji R²

R-squared: 0.9936

Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(rok) nie jest istotny) K: ¬H

p-val< ALFA -> odrzucamy

Test Anovy H: nie istnieje zależnośc miedzy X i Y $K: \neg H$

F-statistic: 2024 on 1 and 13 DF, p-value: 1.175e-15

p-val < ALFA -> odrzucamy H

czy reszty mają rozkład normalny H : reszty mają rozkłady normalne K : ¬ H

shapiro.test(resid(model))

p-val > ALFA -> przyjmujemy H -> reszty mają rozkład normalny

plot(fitted(model),resid(model)) ## można sobie popatrzec abline(h=0)

model OK

b) Oszacować przewidywaną wielkość populacji USA w 2015 i w 2020 roku.

nowe=data.frame(rok=c(2015,2020))
predict(model,nowe,interval='conf') ## ale jako, że to wartosci zlogarytmowane to
exp(predict(model,nowe,interval='conf'))

Zadanie 4

Niech X oznacza przeciętną liczbę samochodów poruszających się autostradą w ciągu dnia, natomiast Y liczbę wypadków samochodowych, która ma miejsce w ciągu miesiąca na autostradzie. Na podstawie danych zamieszczonych w poniższej tabeli wyznaczyć następujący model regresji

$$\sqrt{Y} = a + bX$$
,

opisujący zależność liczby wypadków od natężenia ruchu na autostradzie. Oszacować liczbę wypadków, jakiej można się spodziewać przy natężeniu ruchu odpowiadającemu 3500 samochodom poruszającym się autostradą w ciągu dnia.

X	2000	2300	2500	2600	2800	3000	3100	3400	3700	3800	4000	4600	4800
Y	15	27	20	21	31	26	22	23	32	39	27	43	53

x=scan() 2000 2300 2500 2600 2800 3000 3100 3400 3700 3800 4000 4600 4800 y=scan() 15 27 20 21 31 26 22 23 32 39 27 43 53

$$\sqrt{Y} = a + bX + \varepsilon$$

Y'= a + bX +
$$\varepsilon$$

Y' = $\sqrt{Y} \rightarrow \widehat{Y} = (\widehat{Y}')^2$

py = sqrt(y)

 $model = lm(py\sim x)$ summary(model)

R-squared: 0.7206,~> taki sobie, anova i istotność b OK.

$$\hat{Y}' = 2.3250882 + 0.0009152 x$$

shapiro.test(resid(model)) ## test normalnosci dla reszt

p-val > *ALFA* -> reszty maja rozkład normalny

MODEL w miarę ok., lipa trochę to R^2

nowe=data.frame(x=3500) (predict(model,nowe,interval='conf'))^2 ## kwadrat bo taki model

Lepiej patrzeć na przedział, bo słabe R²

Zadanie 5

Dokonano osiem niezależnych pomiarów wielkości drgań pionowych gruntu powstałych w wyniku trzęsienia ziemi w różnej odległości od epicentrum trzęsienia. Otrzymano następujące wyniki:

Odległość od epicentrum (km)	20	30	40	50	80	140	200	250
Wielkość drgań pionowych (cm)	4.8	3.2	2.5	2.5	1.5	1.8	1.2	0.8

a) Wyznaczyć funkcję regresji wielkości drgań gruntu względem odległości od epicentrum.

Y=a+b/x +
$$\varepsilon$$

x' = 1/x
Y=a+bx' + ε
y~x'
odl=scan()
20 30 40 50 80 140 200 250
wielk=scan()
1: 4.8 3.2 2.5 2.5 1.5 1.8 1.2 0.8
oodl=1/odl
model =lm(wielk~oodl)
 \hat{Y} = 0.7552 +78.0908 x' + ε

b) Zweryfikować dopasowanie modelu.

plot(oodl,wielk)
abline(model)

Wsp. determinacji R²

R-squared: 0.9577

Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(oodl) nie jest istotny) K: ¬H

p-val< ALFA -> odrzucamy

Test Anovy

H: nie istnieje zależnośc miedzy X i Y $K: \neg H$

F-statistic: 135.7 on 1 and 6 DF, p-value: 2.411e-05

p-val < ALFA -> odrzucamy H

czy reszty mają rozkład normalny H : reszty mają rozkłady normalne

```
shapiro.test(resid(model))

p-val > ALFA -> przyjmujemy H -> reszty mają rozkład normalny

plot(fitted(model),resid(model)) ## można sobie popatrzec
abline(h=0)
```

c) Oszacować wielkość drgań w odległości 100 km od epicentrum.

```
nowe=data.frame(oodl=c(1/100))
predict(model,nowe,interval='conf')
```

Zadanie 7

W pewnej firmie postanowiono zbadać zależność między wielkością tygodniowej sprzedaży produktów chemicznych tej firmy, a wydatkami poniesionymi na reklamę radiowo-telewizyjną oraz wydatkami poniesionymi na pokazy w sklepach. Oto dane (w tyś. \$) pochodzące z 10 tygodni:

Wartość tygodniowej sprzedaży	72	76	78	70	68	80	82	65	62	90
Wydatki na reklamę radiowo-telewizyjną	12	11	15	10	11	16	14	8	8	18
Wydatki na pokazy w sklepach	5	8	6	5	3	9	12	4	3	10

a) Wyznaczyć liniową funkcję regresji opisującą badaną zależność.

$$Y = a_0 + a_1x_1 + a_2x_2 + \varepsilon$$

 $sprzed - Y$
 $rtv - x_1$
 $pok - x_2$
 $sprzed = scan()$
 $72 \ 76 \ 78 \ 70 \ 68 \ 80 \ 82 \ 65 \ 62 \ 90$
 $rtv = scan()$
 $12 \ 11 \ 15 \ 10 \ 11 \ 16 \ 14 \ 8 \ 8 \ 18$
 $pok = scan()$
 $5 \ 8 \ 6 \ 5 \ 3 \ 9 \ 12 \ 4 \ 3 \ 10$
 $model = lm(sprzed \sim rtv + pok)$
 $model$
 $summary(model)$
 $\hat{Y} = 47.165 + 1.599 \ x_1 + 1.149 \ x_2$

test istotności dla wyrazu wolnego

$$H: a_0=0$$

 $K: a_0=/=0$

Pv <ALFA, odrzucamy H

b) Zweryfikować dopasowanie modelu.

H: a1=a2=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 $K \rightarrow H$ (czyli przynajmniej 1 zmienna jest istotna)

jeśli nie odrzucimy tej hipotezy, to znaczy ze obie zmienne sa nie istotne i niema co robić zadania

pval < *ALFA* -> *odrzucamy*

 $\overline{R^2} = R^2 \ adj = 0.9499$ testy istotności dla wsp kierunkowych H1: a_1 =0 K1: a_1 =/=0

pv1 0.000742 odrzucamy H1 (Pr(>|t|)na prawo od zmiennej

H2: $a_2=0$ *K2:* $a_2=/=0$

pv2 0.007044 odrzucamy H2

czy reszty mają rozkład normalny H : reszty mają rozkłady normalne K : ¬ H

shapiro.test(resid(model))

p-value >ALFA -> przyjmujemy H

plot(fitted(model), resid(model)) ~##~ można~ popatrzec~ abline(h=0)

Model OK.

c) Wykorzystać uzyskane równanie regresji do prognozy wielkości sprzedaży, gdy wydatki na reklamę radiowo telewizyjną wyniosą 8000\$, natomiast wydatki na pokazy w sklepach 12000\$.

```
nowe=data.frame(rtv=8,pok=12)
predict(model,nowe,interval="conf")
```

Zadanie 8

Pośrednik w handlu nieruchomościami jest zainteresowany oszacowaniem wpływu powierzchni budynku i jego odległości od centrum miasta na wartość budynku. Poniższa tabela zawiera informacje o dziewięciu losowo wybranych budynkach.

Wartość budynku (tys.\$)	345	320	452	422	328	375	660	466	290
Powierzchnia (m ₂)	150	180	200	160	175	180	300	170	135
Odległość Od centrum (km)	5.6	1.2	2.4	7.2	2.9	2.5	5.5	4.8	1.6

a) Wyznaczyć liniową funkcję regresji opisującą zależność, którą interesuje się ów pośrednik.

$$Y = a_0 + a_1x_1 + a_2x_2 + \varepsilon$$
 $Wart - Y$
 $pow - x_1$
 $odl - x_2$
 $wart = scan()$
 $345\ 320\ 452\ 422\ 328\ 375\ 660\ 466\ 290$
 $pow = scan()$
 $150\ 180\ 200\ 160\ 175\ 180\ 300\ 170\ 135$

```
odl=scan()
5.6 1.2 2.4 7.2 2.9 2.5 5.5 4.8 1.6
```

 $model = lm (wart\sim pow + odl)$ summary(model)

 $\hat{Y} = -19.873 + 1.929 x_1 + 19.405 x_2$

test istotności dla wyrazu wolnego

 $H: a_0 = 0$ $K: a_0 = /= 0$

Pv >ALFA, przyjmujemy H

wiec tworzymy nowy model

model2 = lm (wart~pow+odl-1) #-1 czyli bez wyrazu wolnego summary(model2)

 $\hat{Y} = 1.839 x_1 + 18.776 x_2$

b) Zweryfikować dopasowanie modelu.

H: a1=a2=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 $K \rightarrow H$ (czyli przynajmniej 1 zmienna jest istotna)

jeśli nie odrzucimy tej hipotezy, to znaczy ze obie zmienne sa nie istotne i niema co robić zadania pval < ALFA -> odrzucamy

$$\overline{R^2} = R^2 \ adj = 0.9915$$

testy istotności dla wsp kierunkowych $H1: a_1=0$ $K1: a_1 = /= 0$

pv1 4.29e-06 odrzucamy H1 (Pr(>|t|)na prawo od zmiennej

 $H2: a_2=0$ $K2: a_2 = /= 0$

pv2 0.0227 odrzucamy H2

czy reszty mają rozkład normalny H: reszty mają rozkłady normalne

 $K: \neg H$

shapiro.test(resid(model2))

p-value >ALFA -> przyjmujemy H

plot(fitted(model2),resid(model2)) ## można popatrzec abline(h=0)

c) Podać przewidywaną wartość domu o powierzchni 160 m², położonego w odległości 3 km od centrum miasta.

nowe = data.frame(odl=3,pow=160)predict(model2,nowe,interval="conf")

KOLOWIUM

Grupa A

Zadanie 2

Badano zależność wzrostu niemowląt (w cm) od kilku czynników: wieku(w dniach), wzrostu w chwili urodzenia (w cm), oraz wagi w chwili urodzenia(w kg). Otrzymano następujące dane:

Wzrost	57.5	52.8	61.3	67	53.5	62.7	56.2	68.5	69.2
Wiek	78	69	77	88	67	80	74	94	102
Wzrost w chwili urodzenia	42.8	45.5	46.3	49	43	48	48	53	58
Waga w chwili urodzenia	2.75	2.15	4.41	5.52	3.21	4.32	2.31	4.30	3.71

a) Wyznaczyć liniową funkcję regresji opisującą zależność wzrostu niemowląt od wymienionych czynników

$$Y = a_0 + a_1x_1 + a_2x_2 + a_3x_3 + \varepsilon$$

wzrost - Y

wiek - x_1

wzrost_ur- x_2

waga- x_3

wzrost=scan()

57.5 52.8 61.3 67 53.5 62.7 56.2 68.5 69.2

wiek=scan()

78 69 77 88 67 80 74 94 102

wzrost_ur=scan()

42.8 45.5 46.3 49 43 48 48 53 58

waga=scan()

2.75 2.15 4.41 5.52 3.21 4.32 2.31 4.30 3.71

model=lm(wzrost~wiek+ wzrost_ur +waga)

summary(model)

 $Y = 18.1472 + 0.3661 x_1 + 0.1137 x_2 + 2.1168 x_3$

Ale ponieważ p-value x_2 (wzrost_ur) > alfa -> czyli jest nie istotny

więc

model2=lm(wzrost~wiek+waga)

summary(model2)

 $Y = 20.1085 + 0.4136 x_1 + 2.0253 x_3$

b) Przeanalizować dopasowanie modelu

$$\overline{R^2} = R^2 \ adj = 0.9843$$

H: a1=a3=0(test F czyli anova) ## bo sa 2 zmienne a nie 1 $K \rightarrow H$ (czyli przynajmniej 1 zmienna jest istotna

p-val< *ALFA*

testy istotności dla wsp kierunkowych H1: a_1 =0 K1: a_1 =/=0

pv1 < ALFA odrzucamy H1 (Pr(>|t|)na prawo od zmiennej

$$H2: a_3=0$$

 $K2: a_3=/=0$

pv2 <ALFA odrzucamy H2

czy reszty mają rozkład normalny H: reszty mają rozkłady normalne $K: \neg H$

shapiro.test(resid(model2))

p-value >ALFA -> przyjmujemy H

plot(fitted(model2),resid(model2)) ## można popatrzec abline(h=0)

c) Oszacować wzrost niemowlęcia mającego 90 dni, jeśli wiadomo, ze w chwili urodzenia miało 50 cm i ważyło 4,2 kg

nowe=data.frame(wiek=90, waga=4,2) predict(model2,nowe,interval="conf")

Grupa B

Badano zależność czasu działania akumulatora od czasu eksploatacji tego urządzenia. Otrzymano następujące wyniki:

Czas działania – Y	3.9	4	4.3	4.5	6	7.5	10	18.3	30.5
Czas eksploatacji – X	60	55	50	45	40	35	30	20	15

A) przyjmując model odwrotnościowy (względem Y) model regresyjny oszacować parametry tego modelu i zweryfikować jego dopasowanie.

$$Y = \frac{1}{a + bx} \to \frac{1}{y} = a + bx$$
$$Y' = a + bx$$

odzialanie = 1/dzialanie $model = lm(odzialanie \sim ekspl)$

plot(ekspl,odzialanie) abline(model)

$$Y' = -0.052032 + 0.005477x$$
$$Y = \frac{1}{-0.052032 + 0.005477x}$$

$$Y = \frac{1}{-0.052032 + 0.005477x}$$

Wsp. determinacji R²

Test istotności dla wsp. Kierunkowego b H: B=0 (czyli ze x(czas eksploatacji) nie jest istotny) K: $\neg H$ p-valu (Pr(>|t|) dla ekspl) < ALFA -> odrzucamy H, czas eksploatacji jest istotny

Test Anovy
H: nie istnieje zależnośc miedzy X i Y $K: \neg H$

F-statistic: 264.1 on 1 and 7 DF, p-value: 8.13e-07

p-vale < ALFA -> istnieje zależność

czy reszty mają rozkład normalny

H: reszty mają rozkłady normalne K: $\neg H$

shapiro.test(resid(model))

p-value > ALFA -> reszty mają rozkład normalny

plot(fitted(model), resid(model)) ## można sobie popatrzec abline(h=0)

widać, że może być zależność funkcyjna to minus

Wszystkie Hipotezy OK., R^2 duże -> model OK

B) Oszacować czas działania akumulatora po 25 mies. eksploatacji.

nowe=data.frame(ekspl=25)
predict(model,nowe,interval="conf")