The Weil conjecture for curves via Jacobian varieties

Kai Fabio Neugebauer

February 9, 2023

Abstract

The most straightforward way to prove the Weil conjectures for a curve C over a finite field k is via intersection theory on the surface $C \times C$ as in [8, V Exerc. 1.10].

We present a different approach, which is historically in the spirit of Weil's original proof. The idea is to associate to C an abelian variety J, called the Jacobian of C. To obtain the Weil conjectures we relate the fixed points of the Frobenius endomorphism of C to the trace of the induced endomorphism of J.

In the following, we will first develop a basic theory of Abelian and Jacobian varieties, enabling us to prove the Weil conjectures for curves via the above strategy.

Contents

1	Abe	elian varieties	1
	1.1	A summary on the picard functor	5
		1.1.1 The case when $X(k) \neq \emptyset$	7
		1.1.2 The dual abelian variety	7
	1.2	Endomorphisms of abelian varieties	Ś
2	The	2 Jacobian variety	11
	2.1	The canonical map from C to its Jacobian	12
	2.2	Symmetric powers of a curve	13
	2.3	The Jacobian as Albanese variety	
	2.4	Autoduality	18
	2.5	The Rosati involution	20
	2.6	The Lefschetz trace formula and positivity of the Rosati involution	21
	2.7	The map induced on the Jacobian by an endomorphism of C	
3	The	e Weil conjectures for curves	2 4

1 Abelian varieties

For this section k will be a field, \overline{k} an algebraic closure of k and k_s the separable algebraic closure of k in \overline{k} .

A variety X will be a scheme, which is geometrically integral, separated and of finite type over k. Note that products of varieties will be varieties again. If dim X = 1 we call X a curve.

Since we assume the variety X to be geometrically integral its smooth locus is nonempty and therefore the set of closed points in X with residue field a separable algebraic field extension of k is dense in X (see details at [1, Tag 04QM]).

We will use the notations $\mathcal{O}_X(D) = \mathcal{O}(D)$ for the sheaf associated to an effective Cartier divisor D on X, i.e. $\mathcal{O}(D) = I_D^{-1}$. $\mathcal{L}_X(D) = \mathcal{L}(D)$ will denote the invertible sheaf associated to a Weil-Divisor D on X.

The following lemma is due to Mumford.

Lemma 1.1 (Rigidity lemma). Let X, Y and Z be varieties. Suppose that X is proper. If $f: X \times Y \to Z$ is a morphism with the property that, for some $y \in Y(k)$, the fibre $X \times \{y\}$ is mapped to a point $z \in Z(k)$ then f factors through the projection $\operatorname{pr}_Y: X \times Y \to Y$.

Proof. Suppose the theorem is true for the separable algebraic closure k_s of k. Then there exists $g: Y_{k_s} \to Z_{k_s}$ such that $f_{k_s} = g \circ \operatorname{pr}_{Y_{k_s}}$. Let $\sigma \in \operatorname{Aut}_k(k_s)$. Then

$$(1 \times \sigma^{-1}) \circ g \circ (1 \times \sigma) \circ \operatorname{pr}_{Y_{k,s}} = (1 \times \sigma) \circ f_{k_s} \times (1 \times \sigma^{-1}) = f_{k_s} = g \circ \operatorname{pr}_{y_{k_s}}.$$

 $\operatorname{pr}_{Y_{k_s}}$ is an epimorphism because it can be obtained by base change from a faithfully flat morphism. Therefore g is Galois invariant and by Galois descent [2, Prop. 16.9] there exists a unique morphism $G: Y \to Z$ such that $G_{k_s} = g$. Therefore $f_{k_s} = (g \circ \operatorname{pr}_Y)_{k_s}$ and by faithfully flat descent $f = g \circ \operatorname{pr}_Y$.

By the above paragraph we can assume $k = k_s$. Choose a point $x_0 \in X(k)$, and we define $g: Y \to Z$ by $f \circ (x_0, \mathrm{id}_Y)$. The goal is to show $f = g \circ \mathrm{pr}_Y$.

Let U be an affine open neighborhood of z. Since X is proper over k, the projection $\operatorname{pr}_Y: X \times Y \to Y$ is a closed map, so that $V := \operatorname{pr}_Y(f^{-1}(Z \setminus U))$ is closed in Y (set theoretic preimage). Let $P \notin V$ be a k valued point of Y. Then $f(X \times \{P\}) \subseteq U$ by construction of V.

Every morphism from an irreducible proper variety X to a affine variety is constant: The scheme-theoretic-image of the morphism is a closed subscheme of an affine variety and therefore an affine variety, say W. Now X is proper, $X \to W$ is surjective and W is separated of finite type over k, hence W is also a proper variety. Using Grothendiecks finiteness result on proper maps the global sections of W form a finite dimensional k-vector space. Hence W is zero-dimensional and by irreducibility W must be a point.

Applying the previous paragraph to $f|_{X\times\{P\}}$ (note: $X\cong X\times\{P\}$) we conclude that $f(X\times\{P\})=g(P)$.

We have shown that the set of points where $f = g \circ \operatorname{pr}_Y$ contains $\bigcup_{P \in (X \setminus V)(k)} X \times \{P\}$. Because $k = k_s$ the latter set is dense in $X \times Y$ and we are done by [3, Sect. 10.2.A].

Recall that a group variety $(X, m_X, 0 = e_X, (-1)_X)$ is called abelian if it is proper. We denote its group operation additive.

Corollary 1.2. Let X and Y be abelian varieties and let $f: X \to Y$ be a morphism. Then f is the composition $f = t_{f(0)} \circ h$ of a homomorphism $h: X \to Y$ and a translation $t_{f(0)}$ by f(0) on Y.

Proof. Let $y = -f(e_X)$ and let $h = t_y \circ f$. Define $g: X \times X \to Y$ to be the map that one points is given by g(x, x') = h(x + x') - h(x) - h(x'), i.e. $g = m_Y \circ (h \circ m_X, m_Y \circ (((-1)_Y \circ h) \times ((-1)_Y \circ h)))$. Then

$$q(\{e_X\} \times X) = q(X \times \{e_X\}) = -h(e_X) = \{e_Y\}$$

and by the Rigidity lemma this implies that g factors both through the first and the second projection $X \times X \to X$. Hence g equals the constant map with value e_Y and h must be a homomorphism. \square

Remark 1.3. The above Lemma 1.2 applied to $(-1)_X$ shows that the group law on an abelian variety X is indeed commutative.

An application of Lemma 1.2 to the identity morphism $X \to X$ shows that there is at most one structure of an abelian variety on X such that $e \in X(k)$ is the identity element.

We define the kernel of a homomorphism $f: X \to Y$ of abelian varieties to be the fiber of f over $e_Y \in Y$.

Theorem 1.4 (Isogenies). For a homomorphism $f: X \to Y$ of abelian varieties the following are equivalent

- a) f is surjective and has finite kernel.
- b) $\dim X = \dim Y$ and f is surjective.
- c) $\dim X = \dim Y$ and f has finite kernel.

d) f is finite and surjective.

If one of the above conditions is satisfied, we call f an isogeny. Moreover, any isogeny f is flat and the following formula holds for all $q \in Y$

$$\deg f = \dim_{k(q)} H^0(f^{-1}(q), \mathcal{O}_{f^{-1}(q)}). \tag{1}$$

Proof. All nonempty fibers of f have the same dimension: Choose a point $p \in f^{-1}(q)(\overline{k})$. Then $(\ker f)_{\overline{k}} \xrightarrow{t_p \times_{\overline{k}} t_q} f^{-1}(q)_{\overline{k}}$ defines an isomorphism, where t_p is the translation of $X_{\overline{k}}$ by p and t_q is defined by mapping $\{e_y\}_{\overline{k}} \to \{q\}_{\overline{k}}$.

Assume that f is surjective. By [3, Thm. 11.4.1] there exists a nonempty open subset $U \subseteq Y$ such that for all $q \in U$ the fiber over q has pure dimension $\dim X - \dim Y$. By the above, $\dim \ker f = \dim X - \dim Y$. This proves a) \Longrightarrow b) \Longrightarrow c).

Note this dimension formula always holds if we replace Y by the scheme-theoretic image of f. Hence, if f has finite kernel, dim $X = \dim Y$ implies that the scheme-theoretic image of f equals Y. Since f is closed, this proves $c) \Longrightarrow a$.

Because quasi-finite, proper morphisms are finite, a) implies d). The converse follows because quasi-finite morphisms are finite.

Both X and Y have a nonempty smooth locus. By translations we see that X and Y are smooth over k. By c) and [3, thm. 26.2.11] any isogeny is flat.

Now let f be an isogeny. Because finitely generated, flat modules over Noetherian rings are locally free of finite rank, $f_*\mathcal{O}_X$ is a locally free quasi-coherent \mathcal{O}_Y module of finite rank. Since Y is connected this rank is constant, say $d \in \mathbb{N}$.

For any $q \in Y$ there is an affine open neighborhood $U = \operatorname{Spec} R$ such that $(f_*\mathcal{O}_X)|_U \cong \mathcal{O}_Y^d|_U$. f is finite and therefore affine, so $f^{-1}U = \operatorname{Spec}(R')$ for some ring R'. Then $f_U^\# : R \to R'$ makes R' a free R module of rank d and $f^{-1}(q) \cong \operatorname{Spec}(R' \otimes_R k(q))$ proves that

$$\dim_{k(q)} H^0(f^{-1}(q), \mathcal{O}_{f^{-1}(q)}) = d.$$
(2)

For $q = \eta_Y$ the generic points, we have $f^{-1}(q) \cong \operatorname{Spec}(R' \otimes_R \operatorname{Quot}(R))$, and $R' \otimes_R \operatorname{Quot}(R)$ is a finite $\operatorname{Quot}(R)$ algebra and moreover an integral domain since X is assumed to be geometrically integral. Hence $R' \otimes_R \operatorname{Quot}(R)$ is a field that contains R' and is contained in $\operatorname{Quot}(R')$. Now, by the universal property of the residue field of R we have $R' \otimes_R \operatorname{Quot}(R) = \operatorname{Quot}(R')$. Applying (2) to η_Y therefore completes the prove of (1).

Theorem 1.5 (Theorem of the cube and the square). Let X, Y be abelian varieties.

1. For $f, g, h: X \to Y$ morphisms

$$(f+g+h)^*\mathcal{L} \cong (f+g)^*\mathcal{L} \otimes (g+h)^*\mathcal{L} \otimes (f+h)^*\mathcal{L} \otimes f^*\mathcal{L}^{-1} \otimes g^*\mathcal{L}^{-1} \otimes h^*\mathcal{L}^{-1}$$
(3)

2. (theorem of the square)

For an invertible sheaf \mathcal{L} on X, a k scheme T and $\operatorname{pr}_X, \operatorname{pr}_T$ the projections of X_T , the map

$$\varphi_{\mathcal{L}}: X(T) \to \operatorname{Pic}(X_T): x \mapsto (m(1_X \times x))^* \mathcal{L} \otimes \operatorname{pr}_X^* \mathcal{L}^{-1} \otimes \operatorname{pr}_T^* x^* \mathcal{L}^{-1}$$
 (4)

is a homomorphism. Note that $\varphi_{\mathcal{L}}(x) = t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$ for all $x \in X(k)$ $(t_x$ the translation by x).

Proof. Both parts of the theorem can be seen as corollaries of the theorem of the cube, which is a theorem on proper varieties. References are $[4, \text{Chp. II } \S 1]$ or [5, Chp. II.6].

Remark 1.6. The theorem of the square can be used to prove that all abelian varities are projective. References are for example [6, thm. 7.1] or [7, sect. 9.6].

For an abelian variety X and $n \in \mathbb{Z}$ we define $n_X : X \to X$ to be the homomorphism that one points is given by $x \mapsto nx$ and define $X[n] := \ker n_X \subseteq X$. Say we have dim X = g.

Proposition 1.7 (Torsion Points of Abelian Varieties). For $n \neq 0$ the morphism n_X is an isogeny of degree deg $n_X = n^{2g}$. If $\operatorname{char}(k) \nmid n$ then n_X is étale and $X[n](k_s) = X[n](\overline{k}) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$.

To prove the proposition we need the following lemma.

Lemma 1.8. For any line bundle \mathcal{L} on an abelian variety X and $n \in \mathbb{Z}$

$$n_X^* \mathcal{L} \cong \mathcal{L}^{n(n+1)/2} \otimes (-1)^* \mathcal{L}^{n(n-1)/2}$$
.

In particular, if \mathcal{L} is symmetric, i.e. $\mathcal{L} \cong (-1)^* \mathcal{L}$, then $n_X^* \mathcal{L} \cong \mathcal{L}^{n^2}$.

Proof. Apply equation 3 from theorem 1.5 for f = n, g = 1 and h = -1 to obtain

$$n^*\mathcal{L} \cong (n+1)^*\mathcal{L} \otimes (n-1)^*\mathcal{L} \otimes n^*\mathcal{L}^{-1} \otimes (-1)^*\mathcal{L}^{-1} \otimes \mathcal{L}^{-1}$$

and therefore

$$(n+1)^*\mathcal{L}\otimes(n-1)^*\mathcal{L}\cong n^*\mathcal{L}^2\otimes(-1)^*\mathcal{L}\otimes\mathcal{L}.$$

The assertion now follows from induction, by first checking the cases n = -1, 0, 1 by hand.

Proof of proposition 1.7. By remark 1.6 there exists a ample line bundle \mathcal{L} on X. We can assume \mathcal{L} to be symmetric, i.e. $(-1)^*\mathcal{L} \cong \mathcal{L}$, because when \mathcal{L} is ample then also $(-1)^*\mathcal{L} \otimes \mathcal{L}$ will be ample by [8, II Ex. 7.5 (c)]. By lemma 1.8 $n_X^*\mathcal{L} \cong \mathcal{L}^{n^2}$, so $n_X^*\mathcal{L}$ is an ample line bundle provided that $n^2 > 0$. Its pullback $\iota^*\mathfrak{n}_X^*\mathcal{L}$ along the closed immersion $\iota: X[n] \to X$ will also be an ample line bundle. But $n_X \circ \iota$ factors through the zero map and therefore $\iota^*n_X^*\mathcal{L}$ is trivial.

We proceed to prove that a proper variety admitting a trivial ample line bundle is finite:

By [1, Tag 01QE] X[n] is quasi-affine. Hence the canonical map $X[n] \to \operatorname{Spec}(\Gamma(X[n], \mathcal{O}_{X[n]}))$ is an open immersion. But X[n] is proper over k, so this open immersion is moreover proper and therefore a closed immersion. This proves that X[n] is a proper and affine variety, and therefore finite as asserted. By theorem 1.4 c) n_X is an isogeny.

Let D be an divisor such that $\mathcal{L} \cong \mathcal{L}(D)$, then n_X^*D is linearly equivalent to n^2D . We now invoke intersection theory on the smooth projective variety X to conclude

$$n^{2d}(D)^g = (n^2 D)^g = (n_X^* D)^g = \deg(n_X) \cdot (D)^g,$$

where we used [6, Lem. 8.3] for the last equality. Since D is ample, its self-intersection number is positive by the Nakai-Moishezon criterion, and we can conclude $n^{2d} = \deg(n_X)$.

Now assume $\operatorname{char}(k) \nmid n$. To prove that n_X is étale, we may assume that $k = k_s$. The locus U, where n_X is étale, is open in X, so, if we prove that its complement doesn't contain any k valued point, we win. A k-valued point P is in U provided that the induced map on the tangent space at P is an isomorphism. Since $n_X \circ t_p = t_{nP} \circ n_X$, by the chain rule $\operatorname{d}_p n_X \circ \operatorname{d}_0 t_p = \operatorname{d}_0 t_{np} \circ \operatorname{d}_0 n_X$. Because translations give isomorphisms on tangent spaces, it suffices to prove that $\operatorname{d}_0 n_X$ is bijective to conclude that n_X induces bijections on all tangent spaces, which will then imply that n_X is étale.

Recall that we can identify $T_{(0,0)}(X \times X)$ with $T_0(X) \oplus T_0(X)$, when we set for $f: Y \to X \times X$ that $d_y f = d_y(\operatorname{pr}_1 \circ f) \oplus d_y(\operatorname{pr}_2 \circ f)$. We claim that for $x, x' \in T_0(X)$ the equality $d_{(0,0)}m(x, x') = x + x'$ holds. Let $a: X \cong \{0\} \times X \to X \times X$ be the inclusion of the slice $\{0\} \times X$ into $X \times X$. Then

$$d_{(0,0)}m \circ (\mathrm{id}_{T_0X} \oplus 0) = d_{(0,0)}m \circ d_0a = d_0(m \circ a) = \mathrm{id}_{T_0X}$$

yields that $d_{(0,0)}m$ restricted to the first factor is the identity. By symmetry and linearity we obtain our claim. Hence, for $f, g: X \to X$ homomorphisms we have

$$d_0(f+g) = d_0(m \circ (f,g)) = d_0(m) \circ (d_0(\operatorname{pr}_1 \circ (f,g)) \oplus d_0(\operatorname{pr}_1 \circ (f,g))) = d_0f + d_0g.$$

So, by induction $d_0n_X(x) = nx$ for all $x \in T_0X$, which defines an isomorphism since $n \in k^*$.

By equation (1) and n_X being unramified it directly follows that $G := X[n](k_s) = X[n](k)$ is an abelian group of order n^{2g} , which is killed by n. Further, for every divisor d of n the subgroup of elements that is killed by d is $X[d](k_s)$ and has order d^{2g} . An application of the structure theorem of finitely generated abelian groups shows $X[d](k_s) \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$.

Note that, since n_X is surjective, $X(\overline{k})$ is a divisible group.

Proposition 1.9. If $f: X \to Y$ is an isogeny of degree d then there exists a unique isogeny $g: Y \to X$ such that $g \circ f = d_X$ and $f \circ g = d_Y$.

Proof. If $f: X \to Y$ is an isogeny of degree d, then ker f is a finite group scheme which is contained in the kernel of d_X by [4][Exerc.4.4]. Since X is quasi-projective, we can take the quotient $X/\ker f$ to get a factorization of d_X as $X \to X/\ker f \xrightarrow{g} X$. By [5, Sect. 12 Cor. 1] we can identify $X \to X/\ker f$ with $X \xrightarrow{f} Y$, so that we get $d_X = g \circ f$. By theorem 1.4 b) g is an isogeny. Then $g \circ d_Y = d_X \circ g = g \circ (f \circ g)$. Hence $h = d_y - (f \circ g)$ maps into the finite k-scheme ker g. The scheme-theoretic image of h is a closed irreducible subscheme of ker g, so h is constant and $d_Y = f \circ g$ follows.

An non-zero abelian variety X is called *simple* if X has no other abelian subvarieties other than $\{e_X\}$ and X. Note that abelian subvarieties will be closed subschemes.

For any homomorphism of abelian varities $f: X \to Y$ its scheme-theoretic image is an abelian subvariety of Y. Further by [4, 5.31] the reduced underlying scheme (ker f)^{red}₀ of the identity component of ker f is an abelian subvariety of X.

Hence a non-constant homomorphism $f: X \to Y$ of simple abelian varieties is surjective and the identity component of $\ker f$ is $\{e_X\}$. All connected components of a \overline{k} -group scheme are isomorphic as \overline{k} -schemes by translating back and forth. In particular, all components of $\ker f$ have the same dimension and we see by theorem 1.4a) that f is an isogeny. It follows by Proposition 1.9 that for a simple abelian variety X

$$\operatorname{End}_k^0(X) := \operatorname{End}_k(X) \otimes_{\mathbb{Z}} \mathbb{Q}$$

is an associative division algebra over \mathbb{Q} . Our goal is to compose an arbitrary abelian variety into simple factors.

Theorem 1.10 (Poincaré Splitting Theorem). Let Y be an abelian subvariety of X, then there exists an abelian subvariety $Z \subseteq X$ such that the homomorphism $Y \times Z \to X$ given by $(y, z) \mapsto y + z$ is an isogeny.

For a finite dimensional vector space V admitting an inner product $V \to V^{\vee}, v \mapsto \langle \cdot, v \rangle$ and a subspace $W \subseteq V$ the subspace $\ker(V \to V^{\vee} \xrightarrow{\operatorname{res}} W^{\vee})$ constitutes a complement of W in V.

To mimic this prove we need the existence of a dual abelian variety and an isomorphism $X \to X^{\vee}$. This can be accomplished using results of the following subsection.

1.1 A summary on the picard functor

Given a smooth projective variety $X \to k$ over a field.

Note that the contravariant functor $\mathrm{Sch}/k \to \mathrm{Ab}, T \mapsto \mathrm{Pic}(X_T)$ is not a Zariski sheaf:

We will denote $\operatorname{pr}_T: X_T \to T$ to be the projection. Given $\mathcal{L} \in \operatorname{Pic}(T)$ such that $\operatorname{pr}_T^* \mathcal{L}$ is not trivial. Let $(U_i)_{i \in I}$ an open cover of T that trivializes \mathcal{L} . Then (X_{U_i}) constitutes an open cover of X_T and the pullback of $\operatorname{pr}_T^* \mathcal{L}$ to X_{U_i} is trivial. Therefore \mathcal{L} is in the kernel of the map

$$\operatorname{Pic}(X_T) \mapsto \prod_{i \in I} \operatorname{Pic}(X_{U_i}),$$

while not being trivial.

In hope to get a representable functor we define the (relative) Picard functor of $X \to k$ by

$$T \mapsto \operatorname{Pic}(X_T)/\operatorname{pr}_T^*\operatorname{Pic}(T).$$
 (5)

It turns out that our assumptions on $X \to k$ suffice and that the picard functor is indeed representable by a separated scheme $\operatorname{Pic}_{X/k}$ locally of finite type over k. Further, every closed subscheme $Z \hookrightarrow \operatorname{Pic}_{X/k}$ which is of finite type over k is proper (in fact projective) over k. A proof is given in [9, Chapt. 8, thm. 3].

Let us denote the connected component of the identity in $\operatorname{Pic}_{X/k}^0$ by $\operatorname{Pic}_{X/k}^0$. Exploiting the properties of group schemes over fields as in [1, Tag 047J] it can be proven that $\operatorname{Pic}_{X/k}^0 \hookrightarrow \operatorname{Pic}_{X/k}^0$ is a flat closed immersion, $\operatorname{Pic}_{X/k}^0$ is geometrically irreducible and quasi-compact over k.

Combining the last two paragraphs, we conclude that $\operatorname{Pic}_{X/k}^0$ is a proper and geometrically irreducible group scheme over k.

 $\operatorname{Pic}_{X/k}^0$ need not necessarily be reduced, let alone geometrically reduced. The latter happens if and only if $\operatorname{Pic}_{X/k}^0$ is smooth: If $\operatorname{Pic}_{X/k}^0$ is geometrically reduced it is a variety and will have non-empty smooth-locus. Using the translation morphism of its group structure we see that it is smooth. Conversely, if $\operatorname{Pic}_{X/k}^0$ is smooth then its base change to the algebraic closure will be regular. Any regular local ring is a domain and hence $\operatorname{Pic}_{X/k}^0$ must be geometrically reduced.

Luckily, there is a criterion for when $\operatorname{Pic}_{X/k}^0$ is smooth.

Theorem 1.11. The tangent space of $\operatorname{Pic}_{X/S}$ at the identity element is isomorphic to $H^1(X, \mathcal{O}_X)$. Further, $\operatorname{Pic}_{X/k}^0$ is smooth over k if and only if $\dim \operatorname{Pic}_{X/k}^0 = \dim H^1(X, \mathcal{O}_X)$.

Proof. Let $S := \operatorname{Spec}(k[\varepsilon])$ where $k[\varepsilon]$ is the ring of the dual numbers over k. For any k algebra A every element in $A \otimes_k k[\varepsilon]$ can be written as an product of element in A and a unit. Therefore the map $A \to A \otimes k[\varepsilon]$ induces a homeomorphism onto its image when passing to spectra. The map $A \to A \otimes k[\varepsilon]$ is also finite and injective, so it will actually induce a homeomorphism. Looking at affine patches as above, we can identify the topological spaces X and X_S .

On this space we have a short exact sequence of sheaves

$$0 \to \mathcal{O}_X \xrightarrow{h} \mathcal{O}_{X_S}^* \xrightarrow{\operatorname{res}} \mathcal{O}_X^* \to 1 \tag{6}$$

where h is given on sections by $f \mapsto 1 + \varepsilon f$ and res by $a + \varepsilon b \mapsto a$. Since this sequence also yields an exact sequence on global sections, we get an exact sequence on the first cohomology groups

$$0 \to H^1(X, \mathcal{O}_X) \to \operatorname{Pic}(X_s) \xrightarrow{\operatorname{res}} \operatorname{Pic}(X). \tag{7}$$

(Cohomology in the category of sheaves of abelian groups on X.)

Let $s: \operatorname{Spec}(k) \to S$ be the canonical morphism. Then $\operatorname{Pic}(X_S) \xrightarrow{\operatorname{res}} \operatorname{Pic}(X)$ can be identified with the pull back along $X \xrightarrow{(1_X,s)} X_s$.

Since $\operatorname{Pic}(S)$ and $\operatorname{Pic}(k)$ are trivial, we have $\operatorname{Pic}_{X/k}(k) = \operatorname{Pic}(X)$ and $\operatorname{Pic}_{X/k}(S) = \operatorname{Pic}(X_S)$. Further, the pullback along $(1_X, s)$ is by definition of the contra-variant functor $\operatorname{Pic}_{X/k}$ the induced map $\operatorname{Pic}_{X/k}(S) \to \operatorname{Pic}_{X/k}(k)$. Its kernel T consists of $f: S \to \operatorname{Pic}_{X/k}$ such that $f \circ s = 0$, where 0 is the identity of the group scheme $\operatorname{Pic}_{X/k}$. In [1, Tag 0B28] T is identified with the tangent space of $\operatorname{Pic}_{X/k}$ at 0, where the k action on T is induced by $k[\varepsilon] \to k[\varepsilon], \varepsilon \mapsto \lambda \varepsilon$. Therefore the sequence (7) identifies the underlying abelian group of the tangent space of $\operatorname{Pic}_{X/S}$ at zero with the abelian group $H^1(X, \mathcal{O}_X)$. The k-vector space structure on $H^1(X, \mathcal{O}_X)$ is given by $\lambda \cdot \{f_{\alpha\beta} \in \mathcal{O}_X(U_\alpha \cap U_\beta)\} = \{\lambda f_{\alpha\beta} \in \mathcal{O}_X(U_\alpha \cap U_\beta)\}$ for any Čech 1-cocycle given a covering (U_α) .

The first map in the sequence (7), sends such a Čech 1-cocycle $\{f_{\alpha\beta} \in \mathcal{O}_X(U_\alpha \cap U_\beta)\}$ to a line bundle on X_S that trivializes on the U_α and has transition functions $1 + \varepsilon f_{\alpha\beta}$. Hence the k-vector space structure on T as tangent space exactly matches the k-action we obtain when identifying T via sequence (7) with the vector space $H^1(X, \mathcal{O}_X)$. This proves that $H^1(X, \mathcal{O}_X) \cong T_0(\operatorname{Pic}_{X/k})$ as k-vector spaces.

The only if part of the second statement of the theorem follows from $H^1(X, \mathcal{O}_X) \cong T_0(\operatorname{Pic}_{X/k}^0)$. Conversely, assuming $\dim \operatorname{Pic}_{X/k}^0 = \dim H^1(X, \mathcal{O}_X)$ we conclude that $\dim \operatorname{Pic}_{X/k}^0 = \dim T_0(\operatorname{Pic}_{X/k}^0)$. Hence, the stalk of $\Omega^1_{\operatorname{Pic}_{X/k}^0}$ at 0 is generated by $\dim(\operatorname{Pic}_{X/k}^0)$ elements. Therefore $\operatorname{Pic}_{X/k}^0$ is smooth over k at 0 of relative dimension $\dim(\operatorname{Pic}_{X/k}^0)$. The locus of smoothness of fixed relative dimension is open and by translating it on $\operatorname{Pic}_{X/k}^0$ we win.

1.1.1 The case when $X(k) \neq \emptyset$

We assume there is $\varepsilon: k \to X$ a section to $X \to k$. Then for any k-scheme T the projection $\operatorname{pr}_T: X \times T \to T$ admits a section $\varepsilon_T: T \cong k \times T \xrightarrow{\varepsilon \times 1} X \times T$.

Hence $\operatorname{pr}_T^* : \operatorname{Pic}(T) \to \operatorname{Pic}(X_T)$ is a section to the pullback $\varepsilon_T^* : \operatorname{Pic}(X_T) \to \operatorname{Pic}(T)$ along ε_T , and therefore the maps

$$\ker(\varepsilon_T^*) \hookrightarrow \operatorname{Pic}(X_T) \twoheadrightarrow \operatorname{Pic}(X_T)/\operatorname{pr}_T^*\operatorname{Pic}(T)$$
 (8)

compose to an isomorphism with inverse $\mathcal{L} \mapsto \mathcal{L} \otimes \operatorname{pr}_T^* \varepsilon_T^* \mathcal{L}^{-1}$. If we consider both left and right hand side of (8) as contravariant functors in T then (8) defines a natural isomorphism between those and we obtain that $\operatorname{Pic}_{X/k}$ also represents the functor

$$T \mapsto \{ \mathcal{L} \in \operatorname{Pic}(X_T) : \varepsilon_T^* \mathcal{L} \text{ is trivial} \}.$$
 (9)

Proposition 1.12 (The Poincaré Bundle). There is an isomorphism class of line bundles \mathcal{P} on $X \times_k \operatorname{Pic}_{X/k}$ such that $\varepsilon_{\operatorname{Pic}_{X/k}}^* \mathcal{P}$ is trivial, that satisfies the following universal property: For any $\mathcal{L} \in \operatorname{Pic}(X_T)$ with $\varepsilon_T^* \mathcal{L}$ trivial, there exists a unique $g: T \to \operatorname{Pic}_{X/k}$ such that $(1_X \times g)^* \mathcal{P} = \mathcal{L}$. Moreover, $\mathcal{P}|_{X \times 0}$ is trivial for $0 \in \operatorname{Pic}_{X/k}(k)$ representing the identity in $\operatorname{Pic}(X)$.

Proof. This is the contravariant Yoneda Lemma applied to (9). See the diagram below. The last assertion is clear from the first statement by taking $\mathcal{L} = \mathcal{O}_X \in \text{Pic}(X)$.

We will call $\mathcal{P}_X := \mathcal{P}$ from Proposition (1.12) the *Poincaré bundle*.

1.1.2 The dual abelian variety

In the case that X is an abelian variety, we will always take ε to be the inclusion of the identity, which we denote 0, into X. Let \mathcal{L} be a line bundle on X. On $X \times X$ we define the *Mumford line bundle* $\Lambda(\mathcal{L})$ by

$$\Lambda(\mathcal{L}) := m^* \mathcal{L} \otimes \operatorname{pr}_1^* \mathcal{L}^{-1} \otimes \operatorname{pr}_2^* \mathcal{L}^{-1}.$$

Then $\varepsilon_X^* \Lambda(\mathcal{L})$ is trivial and by proposition (1.12) there is a unique $\varphi_{\mathcal{L}} : X \to \operatorname{Pic}_{X/k}$ such that $(1 \times \varphi_{\mathcal{L}})^* \mathcal{P} = \Lambda(\mathcal{L})$.

On T valued-points this map is given by mapping $x: T \to X$ to $\varphi_{\mathcal{L}} \circ x$ and diagram (10) tells us that this point represents $(1 \times \varphi_{\mathcal{L}} \circ x)^* \mathcal{P} \in \text{Pic}(X_T)$. Moreover, since

$$(1 \times \varphi_{\mathcal{L}} \circ x)^* \mathcal{P} = (1 \times x)^* \Lambda(\mathcal{L}) = (m \circ (1 \times x))^* \mathcal{L} \otimes \operatorname{pr}_X^* \mathcal{L}^{-1} \otimes \operatorname{pr}_T^* x^* \mathcal{L}^{-1}$$
(11)

we can identify $\varphi_{\mathcal{L}}$ on T-valued points with the map from the theorem of the square (1.5). Now theorem (1.5) part b) proves that $\varphi_{\mathcal{L}}$ is a homomorphism. In particular, $\varphi_{\mathcal{L}}(0) = 0$ and because X is connected $\varphi_{\mathcal{L}}$ factors through $\operatorname{Pic}^0_{X/k}$.

Lemma 1.13. Let us denote the kernel of $\varphi_L: X \to \operatorname{Pic}_{X/k}^0$ by $K(\mathcal{L})$.

- (i) We have $\Lambda(\mathcal{L})|_{X\times K(\mathcal{L})}\cong \mathcal{O}_{X\times K(\mathcal{L})}$,
- (ii) If \mathcal{L} is ample, then $K(\mathcal{L})$ is finite. Conversely, if \mathcal{L} has a non-zero global section and $K(\mathcal{L})$ is finite, then \mathcal{L} is ample.

Proof. Let $T = K(\mathcal{L})$ and $x : K(\mathcal{L}) \to X$ be the inclusion. Then $\Lambda(\mathcal{L})|_{X \times K(\mathcal{L})} = (1 \times x)^* \Lambda(\mathcal{L})$ represents $\varphi_{\mathcal{L}} \circ x$, which is trivial by definition of $K(\mathcal{L})$.

For (ii) let \mathcal{L} be an ample line bundle on X. Then its pullback \mathcal{L}' to $K(\mathcal{L})$ is ample because $x:K(L)\to X$ is a closed immersion. By (i) the bundle $(1\times x)^*\Lambda(\mathcal{L})$ is trivial on $X\times K(\mathcal{L})$. Hence also $(x,(-1))^*(1\times x)^*\Lambda(\mathcal{L})\cong \mathcal{L}'^{-1}\otimes (-1)^*\mathcal{L}'^{-1}$ is trivial on $K(\mathcal{L})$. So, $\mathcal{L}'\otimes (-1)^*\mathcal{L}'$ is an ample and trivial sheaf on the closed subscheme $K(\mathcal{L})$ of the proper scheme X.

In the first paragraph of the proof of proposition (1.7) we showed that if the structure sheaf of a proper scheme over k is ample, then the scheme is finite over k. This proves the first assertion of statement (ii). The converse statement is proposition 2.2 in [4].

Theorem 1.14. For an abelian variety X over k the dual abelian variety $X^{\vee} := \operatorname{Pic}_{X/k}^{0}$ is an abelian variety over k. If $\mathcal{L} \in \operatorname{Pic}(X)$ is ample, then $\varphi_{\mathcal{L}} : X \to X^{\vee}$ is an isogeny and, further, $\dim X = \dim_k H^1(X, \mathcal{O}_X) = \dim X^{\vee}$. In particular, if X is a curve, it's a curve of genus one.

Proof. Choose an ample line bundle $\mathcal{L} \in \operatorname{Pic}(X)$, which exists by (1.6). Then the map $\varphi_{\mathcal{L}} : X \to \operatorname{Pic}_{X/k}^{0}$ has finite fiber over 0 by (1.13) and we conclude $\dim X \leq \dim \operatorname{Pic}_{X/k}^{0}$.

It can be shown that for any group variety over a field dim $H^1(X, \mathcal{O}_X) \leq \dim X$, see [4, Cor. 6.15] and therefore

$$\dim X \leq \dim \operatorname{Pic}_{X/k}^0 \leq \dim T_0(\operatorname{Pic}_{X/k}^0) \stackrel{1.11}{=} \dim_k H^1(X, \mathcal{O}_X) \leq \dim X.$$

Hence $\operatorname{Pic}_{X/k}$ is an abelian variety by (1.11) and the discussion above (1.11). $\varphi_{\mathcal{L}}$ will be an isogeny by theorem (1.4) using that its kernel is finite by lemma 1.13 (ii).

Consider two line bundles $\mathcal{L}, \mathcal{L}'$ on X. If $\mathcal{L} \cong \mathcal{L}'$, then $\Lambda(\mathcal{L}) \cong \Lambda(\mathcal{L}')$ and therefore $\varphi_{\mathcal{L}} = \varphi_{\mathcal{L}'}$. Hence we obtain a morphism

$$\varphi: \operatorname{Pic}(X) \to \operatorname{Hom}_k(X, X^{\vee}), \ \mathcal{L} \mapsto \varphi_{\mathcal{L}}.$$
 (12)

Further $\Lambda(\mathcal{L} \otimes \mathcal{L}') \cong \Lambda(\mathcal{L}) \otimes \Lambda(\mathcal{L}')$ and therefore $\varphi_{\mathcal{L} \otimes \mathcal{L}'} = \varphi_{\mathcal{L}} + \varphi_{\mathcal{L}'}$, i.e. φ is a homomorphism. An isogeny $\lambda : X \to X^{\vee}$ will be called *polarization*, if there exists some invertible ample sheaf \mathcal{L} on $X_{\overline{k}}$ such that $\lambda_{\overline{k}} = \varphi_{\mathcal{L}}$. By theorem (1.14) and remark (1.6) there always exists at least one polarization.

If $f: X \to Y$ is a homomorphism of abelian varieties over k then $(f \times 1)^* \mathcal{P}_Y$ is trivial when pulled back to $\{0\} \times Y^{\vee}$. Therefore, by proposition (1.12) there exists a unique $f^{\vee}: Y^{\vee} \to X^{\vee}$ such that

$$(1 \times f^{\vee})^* \mathcal{P}_X \cong (f \times 1)^* \mathcal{P}_Y. \tag{13}$$

Note that $f \mapsto f^{\vee}$ is a contravariant functor. Moreover, it can be shown that $(f+g)^{\vee} = f^{\vee} + g^{\vee}$ for $f, g: X \to Y$ homomorphisms, see [4, Chap. 7]. In particular, $n_X^{\vee} = n_{x^{\vee}}$ and proposition (1.9) shows that the dual of an isogeny of degree d is again an isogeny of degree d. The existence of such dual homomorphisms justifies the name dual abelian variety.

For $x \in Y^{\vee}(T)$ represented by $\mathcal{L} \in \operatorname{Pic}(Y_T)$ we obtain from proposition 1.12 that $f^{\vee}(x)$ is represented by

$$(1 \times f^{\vee} \circ x)^* \mathcal{P}_X = (1 \times x)^* (f \times 1)^* \mathcal{P}_Y = (f \times 1)^* (1 \times x)^* \mathcal{P}_Y = (f \times 1)^* \mathcal{L}. \tag{14}$$

1.2 Endomorphisms of abelian varieties

In this chapter X and Y will be abelian varieties over the field k, X will have dimension g and l will be a prime number not equal to char(k). We give a proof of the Poincaré Splitting Theorem (1.10).

Proof. Let $\iota: Y \to X$ be the inclusion and $\lambda: X \to X^{\vee}$ a polarization.

For $K := \ker(X \xrightarrow{\lambda} X^{\vee} \xrightarrow{\iota^{\vee}} Y^{\vee})$ define Z to be the connected components of K with its reduced subscheme structure. Then Z is an abelian variety of dimension $\dim X - \dim Y$. By [4, Exerc. 11.1] $\iota^{\vee} \circ \lambda \circ \iota$ is a polarization of Y. In particular, $Z \cap Y$ is finite. Now the kernel of the homomorphism $Y \times Z \to X$ in consideration is contained in $(Y \cap Z) \times (Y \cap Z)$ and therefore finite. The proposition follows from theorem (1.4) part c).

Corollary 1.15. There exist simple abelian varieties Y_1, \ldots, Y_n , non two of which are k-isogenous, and there are positive integers m_1, \ldots, m_n such that X is isogenous to $Y_1^{m_1} \times Y_2^{m_2} \times \cdots \times Y_n^{m_n}$. The factors are unique up to k-isogeny and permutation.

Proof. This follows form the Poincare Splitting Theorem (1.10) and the fact that any homomorphism of simple abelian varieties is constant or an isogeny.

Definition 1.16 (The Tate module). We define the *Tate module* of X by

$$T_lX := \lim \left(\{0\} \stackrel{\cdot l}{\leftarrow} X[l](k_s) \stackrel{\cdot l}{\leftarrow} X[l^2](k_s) \stackrel{\cdot l}{\leftarrow} \dots \right).$$

It follows from theorem (1.4) that T_lX is (non-canonically) isomorphic to \mathbb{Z}_l^{2g} and we introduce the 2g dimensional \mathbb{Q}_l vector space $V_l(X) := T_l(X) \otimes_{\mathbb{Z}_l} \mathbb{Q}_l = T_l(X) \otimes_{\mathbb{Z}_l} (\mathbb{Z}_l \otimes_{\mathbb{Z}} \mathbb{Q}) = T_l(X) \otimes_{\mathbb{Z}} \mathbb{Q}$.

A homomorphism of abelian varieties $f: X \to Y$ induces a homomorphism $T_l f: T_l X \to T_l Y$. It sends a point $(0, x_1, x_2, \dots) \in T_l X$ to $(0, f(x_1), f(x_2), \dots) \in T_l Y$. It follows from the definition that this is functorial. In particular, $\operatorname{End}_k(X) \to \operatorname{End}_{\mathbb{Z}_l}(T_l X), f \mapsto T_l f$, as well as,

$$V_l : \operatorname{End}_k(X) \otimes_{\mathbb{Z}} \mathbb{Q} \to \operatorname{End}_{\mathbb{Q}_l}(V_l X), f \otimes c \mapsto c \cdot (T_l(f) \otimes_{\mathbb{Z}_l} \operatorname{id}_{\mathbb{Q}_l})$$
 (15)

are algebra homomorphisms.

Remark 1.17. $\mathbb{Q}_l/\mathbb{Z}_l$ is the union of its subgroups $l^{-n}\mathbb{Z}_l/\mathbb{Z}_l$, which we identify with $\mathbb{Z}/l^n\mathbb{Z}$. Therefore as rings $\mathbb{Q}_l/\mathbb{Z}_l = \operatorname{colim}(\mathbb{Z}/l^n\mathbb{Z})$, where the colimit is taken over the homomorphisms $\mathbb{Z}/l^n\mathbb{Z} \hookrightarrow \mathbb{Z}/l^{n+1}\mathbb{Z}$ given by $(1 \mod l^n) \mapsto (l \mod l^{n+1})$ and we see that $T_lX = \operatorname{Hom}(\mathbb{Q}_l/\mathbb{Z}_l, X(k_s))$. Using this characterization of the Tate module and the long exact sequence of $\operatorname{Ext}_{\mathbb{Z}}(\mathbb{Q}_l/\mathbb{Z}_l, \cdot)$ modules it can be shown that for any isogeny $f: X \to Y$ the induced map $T_lf: T_lX \to T_lY$ is injective with cokernel isomorphic to the l-Sylow group of $(\ker f)(k_s)$ and further that $V_lf: V_lX \to V_lY$ is an isomorphism, see [4, Cor. 10.7].

Lemma 1.18. Let $f: X \to Y$ be a homomorphism. If $T_l f \in \operatorname{Hom}_{\mathbb{Z}_l}(T_l X, T_l Y)$ is divisible by l^n then f is divible by l^n in $\operatorname{Hom}(X,Y)$.

Proof. The divisibility of $T_l(f)$ means that f vanishes on $X[l^n](k_s)$. $X[l^n]$ is étale over k and therefore f vanishes on $X[l^n]$. By [5, Sect. 12 Cor. 1] the isogeny $l_X^n: X \to X$ gives X the structure of the quotient $X/X[l^n]$. Therefore f factors through l_X^n and hence is divisible by l_Y^n .

If $f \in \operatorname{Hom}_k(X,Y)$ and $n \in \mathbb{Z} \setminus \{0\}$ then $n \cdot f = 0 \implies n_Y \circ f = f \circ n_X = 0$, but $[n_X]$ is surjective, so f = 0. Hence, $\operatorname{Hom}_k(X,Y)$ is a torsion-free abelian group. In particular, the canonical map $\operatorname{End}(X) \to \operatorname{End}^0(X)$ is injective.

For $f \in \operatorname{End}(X)$ we define $\deg f$ to be the degree of f if f is an isogeny and zero otherwise. Because the degree is multiplicative we can extend this to $\deg : \operatorname{End}^0(X) \to \mathbb{Q}$ via $\deg(\frac{f}{n}) := n^{-2g} \deg f$.

Theorem 1.19. The map deg : $\operatorname{End}_k^0(X) \to \mathbb{Q}$ is a homogeneous polynomial mapping of degree 2g, i.e. if e_1, \ldots, e_n are independent elements of $\operatorname{End}_k^0(X)$ then there is a homogeneous polynomial $P \in \mathbb{Q}[x_1, \ldots, x_n]$ of degree 2g such that $\deg(x_1e_1+\cdots+x_ne_n)=P(x_1,\ldots,x_n)$ for all $x_1,\ldots,x_n \in \mathbb{Q}$.

Proof. By corollary 1.15 and proposition 1.9 we may assume that X is simple. Note that $\deg(nf)$ $n^{2g} \deg(f)$ for all $n \in \mathbb{Q}$ and all f. So, if P is a polynomial mapping, it must be homogeneous of degree 2g. [6, Lem. 12.3] shows via an induction argument that it suffices to proof that for all $f,g \in \operatorname{End}_k^0(X)$ there exists $P \in \mathbb{Q}[x]$ of degree $\leq 2g$ such that $\deg(nf+g) = P(n)$ for all $n \in \mathbb{Q}$. By multiplying with a big enough integer and using that $deg(nf) = n^{2g} deg(f)$ we may assume that $f,g \in \text{End}(X)$ and that $n \in \mathbb{Z}$.

Let D be a very ample divisor on X and let $D_n := (nf + g)^*D$. Then by [6, Lem. 8.3] $\deg(nf+g)(D)^g=(D_n^g)$, since nf+g is either an isogeny or the zero map. Hence, it suffices to prove that (D_n^g) is a polynomial in n of degree $\leq 2g$.

Theorem 1.5 part a) applied to the maps $nf + g, f, f : X \to X$ and $\mathcal{L} = \mathcal{L}(D)$ shows that $D_{n+2} - 2D_{n+1} + D_n$ is linearly equivalent to $D' := (2f)^*D - 2(f^*D)$. So by induction D_n is linearly equivalent to $\frac{n(n-1)}{2}D' + nD_1 - (n-1)D_0$. By the multi-linearity of the g-fold intersection number we conclude that $(D_n)^g = \left(\frac{n(n-1)}{2}\right)^g (D')^g + \dots$ is a polynomial in n.

Theorem 1.20. The \mathbb{Z}_l -linear map $\operatorname{Hom}_k(X,Y)\otimes\mathbb{Z}_l\to \operatorname{Hom}_{\mathbb{Z}_l}(T_lX,T_lY)$ given by $f\otimes c\mapsto c\cdot T_l(f)$ is injective.

Proof. Claim: If X is simple, then the map $\operatorname{End}(X) \otimes \mathbb{Z}_l \to \operatorname{End}(T_l A)$ is injective:

Suppose the map is not injective. Then there exist $f_1, \ldots, f_n \in \text{End}(X)$ and l-adic integers c_1, \ldots, c_n such that $c_1 T_l f_1 + c_2 T_l f_2 + \cdots + c_n T_l f_n = 0$.

Let M be the \mathbb{Z} submodule of $\operatorname{End}^0(X)$ generated by the $\{f_1,\ldots,f_n\}$. By theorem 1.19 the map $\deg: \mathbb{Q}M := \mathbb{Q} \otimes M \to \mathbb{Q}$ is continuous for the real topology and so $U := \{v \in \mathbb{Q}M \mid \deg(v) < 1\}$ is an open neighborhood of 0. Since X is simple, every nonzero endomorphism of X has degree a positive integer and therefore $(\mathbb{Q}M \cap \operatorname{End}(X)) \cap U = \{0\}$ and we see that $\mathbb{Q}M \cap \operatorname{End}(X)$ is discrete in $\mathbb{Q}M$. By [10, Prop. 4.15] this equivalent to $\mathbb{Q}M \cap \text{End}(X)$ being a finitely generated \mathbb{Z} -module. Since $\operatorname{End}(X)$ is torsion-free there is r > 0 such that $\mathbb{Q}M \cap \operatorname{End}(X) = e_1 \mathbb{Z} \oplus \cdots \oplus e_r \mathbb{Z}$ for certain $e_i \in \text{End}(X)$. Moreover, there are $a_1, \ldots, a_r \in \mathbb{Z}_l$ such that $\sum_{i=1}^r a_i T_l(e_i) = 0$ by rewriting the relation for the $T_l f_i$.

Since the integers are dense in the l-adic integers, for any $m \in \mathbb{N}$ there exists $n_1(m), \ldots, n_r(m) \in$ \mathbb{Z} such that for all $i=1,\ldots,r$ we have $n_i(m)-a_i$ is divisible through l^m . Then also

$$T_l\left(\sum_{i=1}^r n_i(K)e_i\right) = \sum_{i=1}^r n_i(K)T_l(e_i) = \sum_{i=1}^r (n_i - a_i)T_l(e_i)$$

is divisible trough l^m and by lemma 1.18 $\sum_{i=1}^r n_i(m)e_i \in \text{End}(X)$ is divisible by l^m in End(X) and therefore in $\mathbb{Q}M \cap \text{End}(X)$ by definition of $\mathbb{Q}M$. On the other hand, since $|n_i(m) - a_i|_l \leq l^{-m}$ there exist $M_i, K_i \in \mathbb{Z}$ such that $v_l(n_i(m)) = K_i$ for all $m \geq M_i$. Let $M = \max M_i$ and $K = \max K_i$. Then $\sum_{i=1}^r n_i(m)e_i$ is not divisible by a power of l higher than K for all $m \geq M$ in $\mathbb{Q}M \cap \mathrm{End}(X)$ since the e_1, \ldots, e_r form a free generating system. This contradicts the earlier statement.

Now we prove the general case. Note that since 'limits commute' $T_l(X \times Y) = T_l(X) \times T_l(Y)$. There exists isogenies $X \to \prod_{i=1}^r X_i$ and $Y \to \prod_{j=1}^n Y_j$, where the X_i, Y_j are simple abelian varieties. Proposition 1.9 lets us map $\operatorname{Hom}(X,Y)$ into $\operatorname{Hom}(\prod_{i=1}^r X_i^{m_i}, \prod_{i=1}^r Y_i^{n_i})$ and since n_X is an epimorphism for all $n \in \mathbb{Z}$ this is injective. Since every nonzero homomorphisms of simple abelian varieties is an isogeny, $\operatorname{Hom}(\prod_{i=1}^r X_i^{m_i}, \prod_{i=1}^r Y_i^{n_i}) = \prod_{i,j} \operatorname{Hom}(X_i, Y_j)$ and if X_i and Y_i are isogenous then $\operatorname{Hom}(X_i, Y_i)$ embeds into $\operatorname{End}(X_i)$, else $\operatorname{Hom}(X_i, Y_i) = 0$. So, the theorem follows from the special case proven above.

Corollary 1.21. $\operatorname{Hom}^0(X,Y) := \operatorname{Hom}_k(X,Y) \otimes \mathbb{Q}$ has \mathbb{Q} dimension $\leq 4(\dim X)(\dim Y)$.

Proof. For an abelian variety X the \mathbb{Z}_l -module T_lX is free of rank 2·dim X and therefore $\operatorname{Hom}_{\mathbb{Z}_l}(T_lX, T_lY)$ is free of rank $4(\dim X)(\dim Y)$. Since \mathbb{Z}_l is a principal ideal domain we can conclude from theorem 1.20 that $\mathbb{Z}_l \otimes \operatorname{Hom}(X,Y)$ is a free \mathbb{Z}_l module of rank $\leq 4(\dim X)(\dim Y)$. This bounds the rank of the torsion free abelian group $\operatorname{Hom}(X,Y)$ by $4\dim X\dim Y$.

Given $f \in \operatorname{End}_k^0(X)$ there is a necessarily unique polynomial $P_f \in \mathbb{Q}[x]$ of degree 2d such that $P_f(n) = \deg(n_X - f)$ for all $n \in \mathbb{N}$ by theorem 1.19. The next theorem justifies that we will refer to P_f as the characteristic polynomial of f.

Theorem 1.22. For $f \in \text{End}^0(X)$ let $P_{f,l} \in \mathbb{Q}_l[x]$ be the characteristic polynomial of $V_l f \in \mathbb{Q}_l[x]$ $\operatorname{End}_{\mathbb{Q}_l}(V_lX)$. Then $P_{f,l}=P_f$ is independent of l and has integer coefficients whenever $f\in\operatorname{End}(X)$.

Proof. We only give a sketch, whereas a detailed proof can be found in [6, Chapt. 12] or [4, thm. 12.8]. It can be assumed that $f \in \text{End}(X)$ and, further, using corollary 1.15 that X is simple.

Set q = id. We start with the notation of the proof of theorem 1.19 for a chosen ample symmetric divisor D and interchange the roles of f and g. Lemma 1.8 shows that $D' \sim -2D$ and we conclude from the last equation in the proof of theorem 1.19 that P_f has integer coefficients and leading

Let $P_f = \prod_{i=1}^{2g} (x - a_i)$ and let $P_{f,l} = \prod_{i=1}^{2g} (x - b_i)$. Let $F \in \mathbb{Z}[t]$. Using the properties of the determinant it can be proven that $\det V_l(F(f)) = \pm \prod_{i=1}^{2g} F(b_i)$ and similarly using the multiplicativity of the degree it can be shown that $\deg(F(f)) = \pm \prod_{i=1}^{2g} F(a_i)$.

Let $\alpha := F(f)$. Using the Smith-Normal form on $T_l\alpha$ to assume it in diagonal form, we can see that $\frac{1}{\#(\operatorname{coker}(T_l\alpha))} = |\det(T_l\alpha)|_l$. Further by remark 1.17 $\operatorname{coker}(T_l\alpha)$ is isomorphic to the *l*-Sylowgroup N_l of $(\ker \alpha)(k_s)$. N_l is an étale group scheme over k by [4, Cor. 4.48] provided that l is relatively prime to $\operatorname{char}(p)$ and hence $\#N_l = |\operatorname{deg}(\alpha)|_l^{-1}$ by equation (1). Summarized we have,

$$\left| \prod_{i=1}^{2g} F(a_i) \right|_l = \left| \deg(\alpha) \right|_l = \frac{1}{\# N_l} = \frac{1}{\# (\operatorname{coker}(T_l \alpha))} = \left| \det(T_l \alpha) \right|_l = \left| \prod_{i=1}^{2g} F(b_i) \right|_l$$

for all $F \in \mathbb{Z}[t]$. By lemma 1 in [11, lem. VII 1.], this implies that $P_{f,l} = P_f$ as elements of $\mathbb{Q}_l[x]$. (The proof of the cited lemma relies on the denseness of the integers in the l-adic integers and the continuity of the given polynomials with respect to the *l*-adic topology).

We define the trace of $f \in \text{End}^0(X)$ via the following equation $P_f(x) = x^{2g} - \text{tr}(f)x^{2g-1} + \cdots + \text{deg}(f)$.

2 The Jacobian variety

In this section C shall be a non-singular proper curve of genus g over a field k. Curves are assumed to be geometrically integral one-dimensional schemes, which are of finite type and separated over k.

Proposition 2.1. $Pic_{C/k}$ is smooth over k.

Proof. We already know that $Pic_{C/k}$ is locally of finite type over k and therefore it suffices to proof that $\operatorname{Pic}_{C/k}$ is formally smooth. To show this let Z be an affine scheme over k and $i: \mathbb{Z}_0 \hookrightarrow \mathbb{Z}$ a closed subscheme cut out by an ideal $I \subseteq \mathcal{O}_Z$ that satisfies $I^2 = 0$. Passing to the functor that the scheme $\text{Pic}_{C/k}$ represents we have to proof the following: The pullback along $(1 \times i)$ induces a surjection $\operatorname{Pic}(C \times Z)/\operatorname{pr}_Z^*\operatorname{Pic}(Z) \to \operatorname{Pic}(C \times Z_0)/\operatorname{pr}_{Z_0}^*\operatorname{Pic}(Z_0)$.

Note that $b+I\in\mathcal{O}_{Z_0}(Z_0)$ is invertible if and only if $b\in\mathcal{O}_Z(Z)^{\times}$: If b=1+c for $c\in I$ then $b^{-1} = (1 - c)$. Hence we obtain an exact sequence of sheaves of abelian groups on the topological space $|Z| = |Z_0|$ given by $0 \to I \to \mathcal{O}_Z^{\times} \xrightarrow{i^{\#}} \mathcal{O}_{Z_0} \to 1$, where the first map sends s to 1 + s. This gives the following short exact sequence on the topological space $|C \times Z| = |C \times Z_0|$

$$0 \to \operatorname{pr}_Z^* I = \mathcal{O}_C \otimes_k I \xrightarrow{n \mapsto 1+n} \mathcal{O}_{C \times Z}^{\times} \xrightarrow{(1 \times i)^{\#}} \mathcal{O}_{C \times Z_0}^{\times} \to 1.$$

We apply the pushforward along pr_Z to obtain a long exact sequence

$$0 \to R^{0}(\operatorname{pr}_{Z})_{*}(\mathcal{O}_{C} \otimes_{k} I) \to R^{0}(\operatorname{pr}_{Z})_{*}\mathcal{O}_{C \times Z}^{\times} \to R^{0}(\operatorname{pr}_{Z})_{*}\mathcal{O}_{C \times Z_{0}}^{\times}$$

$$\to R^{1}(\operatorname{pr}_{Z})_{*}(\mathcal{O}_{C} \otimes_{k} I) \to R^{1}(\operatorname{pr}_{Z})_{*}\mathcal{O}_{C \times Z}^{\times} \to R^{1}(\operatorname{pr}_{Z})_{*}\mathcal{O}_{C \times Z_{0}}^{\times} \to \cdots$$

The map $(\operatorname{pr}_Z)_*\mathcal{O}_{C\times Z}^{\times} \to (\operatorname{pr}_Z)_*\mathcal{O}_{C\times Z_0}^{\times}$ is a surjective map of sheaves on Z and therefore $R^1(\operatorname{pr}_Z)_*(\mathcal{O}_C\otimes_k I) \to R^1(\operatorname{pr}_Z)_*\mathcal{O}_{C\times Z}^{\times}$ is injective. Further, $R^2(\operatorname{pr}_Z)_*(\mathcal{O}_C\otimes_k I)$ vanishes because pr_Z is proper, I is quasi-coherent and $H^2(C,\mathcal{O}_C)=0$, see [12, 7.7.10 and 7.7.5 (II)]. Therefore we obtain an exact sequence

$$0 \to R^1(\operatorname{pr}_Z)_*(\mathcal{O}_C \otimes_k I) \to R^1(\operatorname{pr}_Z)_*\mathcal{O}_{C \times Z}^{\times} \to R^1(\operatorname{pr}_Z)_*\mathcal{O}_{C \times Z_0}^{\times} \to 1.$$

We apply the global section functor $H^0(Z,\cdot)$ to see that the obstruction for

$$\operatorname{Pic}_{X/k}(Z) = H^0(Z, R^1(\operatorname{pr}_Z)_* \mathscr{O}_{C \times Z}^{\times}) \to H^0(Z_0, R^1((\operatorname{pr}_Z))_{\times} \mathscr{O}_{C \times Z_0}^{*}) = \operatorname{Pic}_{C/k}(Z_0)$$

being surjective is $H^1(Z, R^1(\operatorname{pr}_Z)_*(\mathcal{O}_C \otimes_k I))$, which vanishes because Z is affine and $(\operatorname{pr}_Z)_*(\mathcal{O}_C \otimes_k I)$ is quasi-coherent by properness of pr_Z .

The given proof that $\operatorname{Pic}_{C/k}$ is formally smooth can be found in [9, Prop. 8.4.2] and relies on $H^2(C, \mathcal{O}_C)$ vanishing. So, our assumption that C is a curve plays a crucial role in this proof of smoothness of $\operatorname{Pic}_{C/k}$.

A regular local ring is reduced and therefore $\operatorname{Pic}_{C/k}^0$ is geometrically reduced over k. Moreover, we have seen in section 1.1 that $\operatorname{Pic}_{C/k}^0$ is also proper and geometrically irreducible, i.e. $\operatorname{Pic}_{C/k}^0$ is an abelian variety. We will refer to $J := \operatorname{Pic}_{C/k}^0$ as $Jacobian\ variety$ or short $Jacobian\ of\ C$. By theorem 1.11 J has dimension g and its tangent space at the zero is isomorphic to $H^1(C, \mathcal{O}_C)$. In particular, if g = 0 then $J = \operatorname{Spec}(k)$.

2.1 The canonical map from C to its Jacobian

In this subsection we assume C to have a k-rational point $P \in C(k)$ corresponding to a k-morphism $\varepsilon : k \to C$. By [1, Tag 0C6U], if g = 0 then $C \cong \mathbb{P}^1_k$ and we will assume in the following subsection that g > 0.

Further, we will denote the canonical line bundle on $C \times J$ from Proposition 1.12 by \mathcal{M}^P . Since $C \times C$ is regular, we can associate an invertible sheaf \mathcal{L}^P to the Weil-Divisor

$$\Delta - C \times \{P\} - \{P\} \times C \tag{16}$$

on $C \times C$. Then $\varepsilon_C^* \mathcal{L}^P \cong \mathcal{L}(P) \otimes \mathcal{L}(P)^{-1} \otimes \varepsilon_C^* ((\varepsilon_C)_* \mathcal{O}_C)^{-1}$ is trivial, since ε_C is a closed immersion. By proposition 1.12 there exists a unique map $f: C \to \operatorname{Pic}_{C/k}$ such that $(1 \times f)^* \mathcal{M}^P = \mathcal{L}^P$. For K/k a field extension and $Q \in C(K) \setminus P$ with corresponding map $x: K \to C$ we have $(1 \times x)^* \mathcal{L}^P = \mathcal{L}_{C_K}(Q) \otimes \mathcal{L}_{C_K}(P)^{-1}$.

Consulting diagram 10 we deduce that f is given on K-valued by

$$f(Q) = \mathcal{L}_{C_K}(Q) \otimes \mathcal{L}_{C_K}(P)^{-1}. \tag{17}$$

Since C is connected and $f(P) = \mathcal{O}_X$ the map f factors through $\operatorname{Pic}_{X/k}^0 = J$.

The canonical map $h_J: \Gamma(J, \Omega_J^1) \to \Omega_{J,0}^1 = (T_0J)^\vee$ is an isomorphism for any group variety over a field, see [9, 4.2 Prop. 2]. Serre-duality gives a canonical isomorphism ser: $\Gamma(C, \Omega_C^1) \to H^1(C, \mathcal{O}_C)^\vee$. These isomorphisms are related via the pullback along f. This is encoded in the next proposition, whose proof can be found in [4, Thm. 14.4].

Proposition 2.2. For $\nu: H^1(C, \mathcal{O}_C) \to T_0J$ the isomorphism from theorem 1.11 and $f^*: \Gamma(J, \Omega_J^1) \to \Gamma(C, \Omega_C^1)$ the canonical map the diagram

$$\Gamma(J, \Omega_J^1) \xrightarrow{f^*} \Gamma(C, \Omega_C^1)$$

$$\downarrow_{h_J} \qquad \text{ser} \downarrow$$

$$T_0(J)^{\vee} \xrightarrow{\nu^{\vee}} H^1(C, \mathcal{O}_C)^{\vee}$$

commutes. In particular, $f^*:\Gamma(J,\Omega^1_J)\to\Gamma(C,\Omega^1_C)$ is an isomorphism.

Theorem 2.3. $f: C \to J$ is a closed immersion. If C has genus g=1 then f is an isomorphism.

Proof. Whether a morphism is a closed immersion, can be checked after faithfully flat base change, so we may assume $k = \overline{k}$. Since f is a morphism of smooth, projective k-varieties, it is a closed immersion if it separates points and tangent vectors. (The proof is the same as the "if" part of [8, II 7.3]). To see that f separates points, assume that $Q_1, Q_2 \in C(k)$ have the same image under f. Then $\mathcal{L}(Q_1) \otimes \mathcal{L}(Q_2)^{-1}$ is trivial, i.e. $Q_1 - Q_2$ is the divisor of a function f. But then f defines an isomorphism $C \to \mathbb{P}^1_C$, contradicting our assumption g > 0.

We will only sketch the proof of f separating tangent vectors. To see that $(df_Q): T_QC \to T_{fQ}J$ is injective, we may assume that Q = P. It can be shown that the dual map of df_P is $\Gamma(J,\Omega^1_J) \xrightarrow{f^*} \Gamma(C,\Omega^1_C) \xrightarrow{\operatorname{can}} (T_pC)^\vee$. We have seen in Proposition 2.2 that the first of these maps is an isomorphism. Therefore it suffices to proof that $\Gamma(C,\Omega^1_C) \xrightarrow{\operatorname{can}} (T_pC)^\vee$ is surjective. The kernel of this map can be identified with $\{\omega \in \Gamma(C,\Omega^1_C) \mid \omega(P) = 0\}$ and by Serre duality the letter is dual to $H^1(C,\mathcal{L}(P))$. Since T_pC is one-dimensional, we now only have to proof that $\dim H^1(C,\mathcal{L}(P)) < \dim \Gamma(C,\Omega^1_C)$. Moreover, we know that $\dim \Gamma(C,\Omega^1_C) = g$ by Serre duality and $h^1(C,\mathcal{L}(P)) = h^0(C,\mathcal{L}(P)) + g - 2$ by the Riemann-Roch theorem. Because we assumed g > 0, there exist no meromorphic functions on C that only have one simple pole and are regular elsewhere, as such define an isomorphism $C \to \mathbb{P}^1_k$. We conclude that $H^0(C,\mathcal{L}(P)) = H^0(C,\mathcal{O}_C) \cong k$ and hence $h^1(C,\mathcal{L}(P)) = g - 1 < g = \dim \Gamma(C,\Omega^1_C)$. In summary, we have shown that f also separates tangent vectors and hence must be a closed immersion.

In the case g = 1 both J and C are proper, regular curves and hence f must be an isomorphism.

Remark 2.4 (*Elliptic Curves*). Due to theorem 1.14 abelian varieties of dimension one have genus one. By the last theorem 2.3, a nonsingular, proper curves of genus one, which admits a k-valued point, is isomorphic to its own Jacobian variety. We conclude that these notions coincide and refer to abelian varieties of dimension one as *elliptic curves*. Let C be an elliptic curve and $Q_1, Q_2 \in C(\overline{k})$. Then we can read from f's action on closed points, that there exists a unique $Q_3 \in C(\overline{k})$ such that $\mathcal{L}(Q_1 + Q_2 - 2P) \cong \mathcal{L}(Q_3 - P)$. Further, $(Q_1, Q_2) \mapsto Q_3$ defines the unique group law on C such that f is a homomorphism of abelian varieties.

2.2 Symmetric powers of a curve

In this subsection we assume there exists $P \in C(k)$ and that g > 0. We will write f for the canonical closed immersion $C \to J$ from theorem 2.3.

For n > 0 let S_n be the symmetric group on n letters. S_n acts on C^n by permuting the factors. A morphism $\varphi : C^n \to T$ is said to be symmetric if $\varphi \circ \sigma = \varphi$ for all $\sigma \in S_n$.

Since quasi-projective schemes admit quotients by finite groups, see [5, p. 66], there exists a variety $C^{(n)}$ and a symmetric morphism $\pi: C^n \to C^{(n)}$, such that

- 1. as topological space $(C^{(n)}, \pi)$ is the quotient of $C^{(n)}$ by S_n .
- 2. for any open affine subset U of C, $U^{(n)}$ is an open affine subset of $C^{(n)}$ and $\mathcal{O}_{C^{(n)}}(U^{(n)})$ is the subring $\mathcal{O}_{C^n}(U^n)^{S_n}$ of $\mathcal{O}_{C^n}(U^n)$ given by elements fixed by the action of S_n .

The pair $(C^{(n)}, \pi)$ has the following universal property: every symmetric k-morphism $\varphi: C^n \to T$ factors uniquely through π . Moreover, the map π is finite and surjective. Since C^n is proper this implies that $C^{(n)}$ is proper over k.

For $m_1, \ldots, m_k \in \mathbb{N}_0$ a partition $n = m_1 + \cdots + m_r$ the natural isomorphism $C^{m_1} \times \cdots \times C^{m_r} \to C^n$ induces a natural morphism $s = s_{m_1, \ldots, m_r} : C^{(m_1)} \times \cdots \times C^{(m_r)} \to C^{(n)}$ that we will refer to the sum map.

Proposition 2.5. Suppose given a partition $n = m_1 + \cdots + m_r$ and points $P_1, \ldots, P_r \in C(k)$ with $P_i \neq P_j$ if $i \neq j$. Write $m_i P_i \in C^{(m_i)}(k)$ for the image of the point $(P_i, \ldots, P_i) \in C^{m_i}$ under the quotient map $C^{m_i} \to C^{(m_i)}$.

(i) Then the sum morphism $C^{(m_1)} \times \cdots \times C^{(m_r)} \to C^{(n)}$ is étale at the point $(m_1 P_1, \dots, m_r P_r)$.

(ii) The symmetric power $C^{(n)}$ of a non-singular curve is regular of dimension n for any n > 0. In particular, $\pi: C^n \to C^{(n)}$ is finite and flat of degree n!.

Proof. We won't give a proof of part (i) here, a proof can be found in [4, Lem. 14.7].

For the proof of part (ii) we may assume that k is algebraically closed. It suffices to check that for all k-valued points Q of $C^{(n)}$ the stalks at Q is regular. By part (i) we only have to check this on points of the form Q:=np for given $p\in C(k)$. Let us denote $P:=(p,\ldots,p)\in C^n(k)$. Note that the formation of the fixed ring under the action of S_n is a finite categorical limit. Finite limits commute with filtered colimits, e.g. localization, as well as, all categorical limits. In particular, $\mathcal{O}_{C^{(n)},Q}=(\mathcal{O}_{C^n,P})^{S_n}$. The ideal \mathfrak{m} cutting out the closed point P in $\mathcal{O}_{C^n,P}$ is invariant under the action of S_n and equals the ideal cutting out the closed point Q in $\mathcal{O}_{C^{(n)},P}$. Therefore

$$(\widehat{\mathcal{O}_{C^n,P}})^{S_n} = (\lim_m \mathcal{O}_{C^n,P}/\mathfrak{m}^m)^{S_n} = \lim_m (\mathcal{O}_{C^n,P}/\mathfrak{m}^m)^{S_n} = \lim_m (\mathcal{O}_{C^n,P})^{S_n}/\mathfrak{m}^m$$
$$= \lim_m \mathcal{O}_{C^{(n)},Q}/\mathfrak{m}^m = \widehat{\mathcal{O}_{C^{(n)},Q}}.$$

Since C^n is regular, $\widehat{\mathcal{O}_{C^n,P}} \cong k[[x_1,\ldots,x_n]]$, where S_n acts on $\widehat{\mathcal{O}_{C^n,P}}$ by permuting the variables. By the fundamental theorem on symmetric polynomials $k[[x_1,\ldots,x_n]] \to k[[x_1,\ldots,x_n]]^{S_n}, x_i \to \sigma_i$, for σ_i being the *i*-th symmetric polynomial in n variables, is an isomorphism. Since a local Noetherian ring is regular if and only if its completion is regular, we have proven that $C^{(n)}$ is regular at Q.

For the last assertion note that a quasi-finite morphism of regular varieties is flat by [3, 26.2.11.]. As in the proof of theorem 1.4, we can compute the degree of π as the dimension of the k-vector space of global sections of any fiber. Choosing a fiber containing a point (P_1, \ldots, P_n) with $P_i \neq P_j$ for all $i \neq j$, we see by (i) that the fiber is étale over k. So, deg π equals the number of closed points of this fiber, which is the cardinality of the S_n orbit of (P_1, \ldots, P_n) in C^n . Hence, deg $\pi = n!$.

Recall that for $C \to T$ a morphism of k-schemes a relative effective Cartier divisor D on $C_T := C \times T$ over T is a closed subscheme $D \subseteq C_T$, which is flat over T and such that the ideal sheaf $I_D \subseteq \mathcal{O}_{C_T}$ is an invertible \mathcal{O}_{C_T} module.

When we tensor the inclusion $\mathcal{I}_D \hookrightarrow \mathcal{O}_{C_T}$ with $\mathcal{L}(D)$ we obtain an inclusion $\mathcal{O}_{C_T} \hookrightarrow \mathcal{L}(D)$ and hence a canonical global section s_D of $\mathcal{L}(D)$. The map $D \mapsto (\mathcal{L}(D), s_D)$ defines a bijection between relative effective divisors on C_T over T and isomorphism classes of pairs (\mathcal{L}, s) where \mathcal{L} is an invertible sheaf on C_T and $s \in \Gamma(C_T, \mathcal{L})$ is such that

$$\mathcal{L}/s\mathcal{O}_{C_T} := \operatorname{Coker}(\mathcal{O}_{C_T} \xrightarrow{s} \mathcal{L})$$

is flat over T. Here two pairs (\mathcal{L}, s) and (\mathcal{L}', s') are considered to be isomorphic if there is an isomorphism of \mathcal{O}_{C_T} -modules $h: \mathcal{L} \to \mathcal{L}'$ with h(s) = s'. The inverse of the above bijection associates to (\mathcal{L}, s) the zero scheme $D = Z(s) \subseteq C_T$ of the section s.

Relative effective Cartier divisors on C_T over T can be added. If D corresponds to the pair (\mathcal{L}, s) and D' to the pair (\mathcal{L}', s') then D + D' is cut out by $I_D \cdot I_{D'}$ and corresponds to $(\mathcal{L} \otimes \mathcal{L}', s \otimes s')$. To see that D + D' is again flat over D consult [1, Tag 0B8U].

While the pullback of an effective Cartier divisor might not be effective, the charm of relative effective Cartier divisors is that they behave nicely with respect to base-changes:

If $D \subseteq C_T$ is an relative effective Cartier divisor over T and $h: T' \to T$ is a morphism of k-schemes then we can pull D back to an relative effective Cartier divisor $D_{T'} = h^*D \subseteq C_{T'}$ on $C_{T'}$ over T'. A proof of this property can be found at [1, Tag 056Q].

Consider an relative effective Cartier divisor D on C_T over T. Then for any $t \in T$ the pullback D_t of D along $t \to T$ is a Cartier Divisor on the curve $C_{k(t)}$ and therefore finite. We conclude that $D \to T$ is quasi-finite. As C is proper over k, D is proper over T too, and quasi-finite + proper implies finite. So, D is finite and flat over T and hence \mathcal{O}_D is finite locally free as an \mathcal{O}_T module. The rank of \mathcal{O}_D as an \mathcal{O}_T module (which is a locally constant function on T) is called the degree of D and denoted deg D. It is straightforward to check that, if D has constant degree n over T then the same holds for $D_{T'}$ over T' for any $h: T' \to T$. It is proven in [13, Lem. 1.2.6] that for two relative

effective Cartier divisors D_1, D_2 on C_T over T their sum $D_1 + D_2$ has degree $\deg(D_1) + \deg(D_2)$ over T.

We obtain a contravariant functor $\mathrm{Div}^{\mathrm{eff},n}_{C/k}: \mathrm{Sch}_{/k} \to \mathrm{Sets}$ with

$$\operatorname{Div}_{C/k}^{\operatorname{eff},n}(T) = \{ \text{relative effective Cartier divisors } D \subseteq C_T \text{ of constant degree } n \text{ over } T \}.$$
 (18)

If $P \in C(T)$ is a T-valued point of C then this gives a section $T \to C_T$ of the structural morphism, whose image is a relative effective Cartier divisor $P \subseteq C_T$ of constant degree 1 over T by [13, Lem. 1.2.2]. More generally, for $P_1, \ldots, P_n \in C(T)$ we get an relative effective Cartier divisor $P_1 + \cdots + P_n$ on C_T of constant degree n over T. In this way we obtain a morphism $C^n \to \operatorname{Div}_{C/k}^{\operatorname{eff},n}$. Since this morphism is S_n invariant, it factors through a morphism $h: C^{(n)} \to \operatorname{Div}_{C/k}^{\operatorname{eff},n}$. Checking on closed points motivates that h defines an isomorphism. This is proven in [6, Thm. 3.13].

Remark 2.6. We will henceforth identify $C^{(n)}$ with $\operatorname{Div}_{C/k}^{\operatorname{eff},n}$ via the above isomorphism h.

Let f^n be the map $C^n \to J$ sending (P_1, \ldots, P_n) to $f(P_1) + \cdots + f(P_n)$. Here f is the canonical closed immersion from theorem 2.3. On k-valued points f^n is given by $(P_1, \ldots, P_n) \mapsto \mathcal{L}(P_1) \otimes \cdots \otimes \mathcal{L}(P_n) \otimes \mathcal{L}(P)^{-n}$. Since f^n is symmetric, it induces a map $f^{(n)}: C^{(n)} \to J$.

Given a k-scheme T. We can pull back $P \to C$ along $C_T \to C$ to obtain a relative effective divisor on C_T of degree 1 over T.

We claim that, in terms of Cartier divisors $f^{(n)}$ sends a relative effective Cartier divisor D on C_T of degree n over T to the class in J(T) represented by $\mathcal{O}_{C_T}(D) \otimes \mathcal{O}_{C_T}(P_T)^{-n}$, in short

$$f^{(n)}(D) = \mathcal{O}_{C_T}(D) \otimes \mathcal{O}_{C_T}(P_T)^{-n} \quad \text{for all } D \in C^{(n)}(T).$$
(19)

To see this, note that (19) defines a natural transformation between the functors represented by $C^{(n)}$ and $\operatorname{Pic}_{C/k}$. Thus, there exists a morphism $\widetilde{f^{(n)}}:C^{(n)}\to\operatorname{Pic}_{C/k}$ that on T-valued points is given by (19). Since $C^{(n)}$ is connected and $\widetilde{f^{(n)}}$ sends $nP\in C^{(n)}(k)$ to zero, we can consider $\widetilde{f^n}$ as a map to $J=\operatorname{Pic}_{C/k}^0$. It remains to be proven that $\widetilde{f^{(n)}}=f^{(n)}$ We know by proposition 2.5 that $C^{(n)}$ is reduced, so looking at the locus where $\widetilde{f^n}$ and $f^{(n)}$ agree, as in [3, 10.2. A], it suffices to proof that they induce the same map on \overline{k} valued points. But this readily follows from equation (17).

Via the description of $f^{(n)}$ in (19) in the case that T=k, we see that the k-valued points of the fiber of $f^{(n)}$ containing $D \in C^{(n)}(k)$ will correspond to the complete linear system |D|. The set |D| is in natural bijection with $(\Gamma(X, \mathcal{O}(D)) \setminus \{0\})/k^{\times}$ via $D + (f) \mapsto \{\lambda f \mid \lambda \in k^{\times}\}$. This observation on k-valued points has a scheme-theoretic reformulation.

Theorem 2.7 (Abel's theorem). Let \mathcal{L} be a line bundle of degree n on C. Then the scheme-theoretic fiber of $f^{(n)}: C^{(n)} \to J$ over the point $p \in J(k)$ represented by $\mathcal{L} \otimes \mathcal{L}(P)^{-n} \in \text{Pic}^0(C)$ is

$$f^{(n)^{-1}}(p) = \mathbb{P}(H^0(C,\mathcal{L})) := \operatorname{Proj}(\operatorname{Sym}(H^0(C,\mathcal{L}))) \cong \mathbb{P}_k^m,$$

for $m = h^0(C, \mathcal{L}) - 1$.

Proof. Write $\Phi \subseteq C^{(n)}$ for the scheme-theoretic fibre of $f^{(n)}$ over p and let $\mathbb{P} := \mathbb{P}(H^0(C, \mathcal{L}))$. Let $g: T \to \operatorname{Spec}(k)$ be a k-scheme and consider the cartesian diagram

$$C_T \xrightarrow{\operatorname{pr}_C} C$$

$$\downarrow^{\operatorname{pr}_T} \qquad \downarrow^h$$

$$T \xrightarrow{g} \operatorname{Spec}(k)$$

Considering the functors represented by J and $C^{(n)}$ we get natural isomorphisms

$$\Phi(T) \cong \{ D \subseteq C_T \text{ rel. eff. divisor of degree } n \text{ over } T \text{ with } \mathcal{O}_{C_T}(D) \cong \operatorname{pr}_C^* \mathcal{L} \mod pr_T^* \operatorname{Pic}(T) \} \\
\cong \left\{ \begin{array}{c} \text{isomorphism classes } (\mathcal{L}', s) \text{ with } s \in H^0(C_T, \mathcal{L}') \text{ such that} \\
\mathcal{L}'/s\mathcal{O}_{C_T} \text{ is flat over } \mathcal{O}_T \text{ and } \exists M \in \operatorname{Pic}(T) \text{ with } \mathcal{L}' = \operatorname{pr}_C^* \mathcal{L} \otimes \operatorname{pr}_T^* M \end{array} \right\}$$
(20)

By definition, $\mathbb{P} = \operatorname{Proj}(\operatorname{Sym}((h_*\mathcal{L})))$, which is isomorphic to \mathbb{P}_k^m . T-valued points of such a projective space can be described as follows:

A map $T \to \mathbb{P}$ is given by a line bundle M on T together with a surjective homomorphism of \mathcal{O}_T modules $t: g^*((h_*\mathcal{L})) \to M$, where two such pairs (M,t) and (M,t') are considered equivalent if there exists an isomorphism $\alpha: M \xrightarrow{\sim} M'$ with $\alpha \circ t = t'$.

Such a map t determines and is determined by an element $t \in H^0(T, (g^*h_*\mathcal{L}) \otimes M)$ such that $t(x) \neq 0$ for all $x \in T$:

 $g^*(h_*\mathcal{L})$ is non-canonically isomorphic to $\mathcal{O}_T^{\oplus (m+1)}$, therefore $(g^*h_*\mathcal{L})\otimes M$ is isomorphic to $M^{\oplus (m+1)}$. Since M is a line bundle, a homomorphism $\mathcal{O}_T^{\oplus (m+1)}$ is determined by (m+1) sections in M and the map being surjective translates to the non-vanishing condition via Nakayama's Lemma.

By flat base change along g we have a canoncial isomorphism $g^*h_*\mathcal{L} \cong \operatorname{pr}_{T_*}\operatorname{pr}_C^*\mathcal{L}$.

By the projection formula the canonical map $\operatorname{pr}_{T_*}(pr_C^*\mathcal{L}\otimes\operatorname{pr}_T^*M)\to (\operatorname{pr}_{T_*}\operatorname{pr}_C^*\mathcal{L})\otimes M$ is an isomorphism.

We get the following isomorphism that is natural in T:

$$H^{0}(T, (g^{*}h_{*}\mathcal{L}) \otimes M) \cong H^{0}(T, (\operatorname{pr}_{T_{*}}\operatorname{pr}_{C}^{*}\mathcal{L}) \otimes M) \cong H^{0}(T, \operatorname{pr}_{T_{*}}(pr_{C}^{*}\mathcal{L} \otimes \operatorname{pr}_{T}^{*}M))$$

$$= H^{0}(C_{T}, \operatorname{pr}_{C}^{*}\mathcal{L} \otimes \operatorname{pr}_{T}^{*}M)$$

$$(21)$$

And we conclude

$$\mathbb{P}(T) \cong \left\{ \begin{array}{l} \text{isomorphism classes } (M, \operatorname{pr}_{T,*} s) \text{ with } s \in H^0(C_T, \operatorname{pr}_C^* \mathcal{L} \otimes \operatorname{pr}_T^* M) \\ \text{and } (\operatorname{pr}_{T,*} s)(x) \neq 0 \text{ for all } x \in T \end{array} \right\}$$
 (22)

It can be checked that the isomorphism in (21) lets the notion of isomorphism classes of pairs in (20) and (22) coincide, if one identifies the appearing sets $\mathbb{P}(T)$ and $\Phi(T)$ in the canonical way. We omit the proof that the notion of flatness in (20) matches up with the notion of non vanishing in (22).

We have proved that $\Phi(T)$ and $\mathbb{P}(T)$ are isomorphic, naturally in T, and conclude $\Phi \cong \mathbb{P}$ by the Yoneda-Lemma.

Theorem 2.8 (Jacobi's inversion theorem). For $0 \le n \le g$ the morphism $f^{(n)}: C^{(n)} \to J$ is birational onto its scheme-theoretic image, denoted W^n , which is irreducible. For $n \ge g$ the morphism $f^{(n)}$ is surjective. In particular, $f^{(g)}: C^{(g)} \to J$ is a birational equivalence.

Proof. Note that since $f^{(n)}$ is proper the scheme theoretic image agrees with the set-theoretic image on the level of sets, so the assertion for the case n=g follows from the other two statements. Further, W^n is irreducible as image of the irreducible topological space $C^{(n)}$ under the continuous map $f^{(n)}$.

Whether a morphism is surjective or birational can be detected after quasi-compact, faithfully flat base change, see [14, B.2]. $(C^{(n)})_{\overline{k}}$ represents the functor $\operatorname{Div}_{C_{\overline{k}}/\overline{k}}^{eff,n}$ and $J_{\overline{k}}$ represents the functor $\operatorname{Pic}_{C_{\overline{k}}/\overline{k}}^0$ and moreover the formation of $f^{(n)}$ commutes with base change to \overline{k} . This is can be seen by checking the given definitions of these functors. Hence, we may assume that k is algebraically closed.

For proving surjectivity, it suffices to show that the map is surjective on k valued points. Let $n \geq g$. Using that for $\mathcal{L} \in \operatorname{Pic}(C \times T)$ the degree function $T \ni t \mapsto \deg(\mathcal{L}|_{C \times \{t\}})$ is locally constant, it can be shown that J(k) can be identified with $\operatorname{Pic}^0(C)$, the degree 0 line bundles on C, see [4, 14.1]. For any $x \in J(k)$ represented by $\mathcal{L} \in \operatorname{Pic}^0(C)$ the Riemann-Roch theorem implies that $\mathcal{L} \otimes \mathcal{L}(P)^n$ is effective, and therefore x is in the image of $f^{(n)}$.

Now assume $0 \le n \le g$. We try to find a non-empty open set $U \subseteq C^{(n)}$ where the fibers of $f^{(n)}$ are zero-dimensional. Since the dimension of the fibers change in an upper-semicontinous manner on the domain, it suffices by Abel's theorem 2.7 to find an effective divisor D of degree n on C such that $h^0(C, \mathcal{O}_C(D)) = 1$. We proceed by induction on $n \le g$. For n = 1 the assertion follows, because $h^0(C, \mathcal{L}(P)) = 1$ using that g > 0 and a meromorphic function with exactly one zero would define an isomorphism $C \to \mathbb{P}^1_k$. Suppose then that $2 \le n \le g$ and that we have an effective divisor

E of degree n-1 with $h^0(E)=1$. Let $K=\Omega^1_C$ be the canonical divisor on C. By Serre duality $h^1(K-E)=1$ and so by the Riemann-Roch theorem

$$h^{0}(K-E) - 1 = 1 - g + \deg(K-E) = 1 - g + (2g - 2) - (n - 1) = g - n \ge 0.$$
 (23)

Thus [K-E] is effective. Choose a point $Q \in C(k)$ which is not a base point of the linear system |K-E|. Then $h^0(K-E-Q) = h^0(K-E) - 1 \stackrel{23}{=} g - n$, where the first equality follows from [K-E] being effective and because there is no meromorphic function $f \in K(C)$, whose only pole is Q, since else f would define an isomorphism $C \to \mathbb{P}^1$.

Thus, by the Riemann-Roch theorem and then Serre duality

$$h^{0}(E+Q) = 1 - g + n + h^{1}(E+Q) = 1 - g + n + h^{0}(K-E-Q) = 1.$$

This proves there exists $\emptyset \neq U \subseteq C^{(n)}$ such that $f^{(n)}|_U : U \to J$ has only zero-dimensional fibers. By Abel's theorem 2.7 the non-empty fibers of $f^{(n)}|_U$ over k-valued points are isomorphic to $\mathbb{P}^0_k \cong \operatorname{Spec}(k)$.

By [3, 10.1.P] a morphism of finite type schemes over an algebraically closed field k is universally injective if and only if the induced map on k valued points is injective. We conclude from the above paragraph that that $f|_U: U' \to W^n$ is indeed universally injective. In particular, the field extension $k(C^{(n)})/k(W^n) = k(U)/k(W^n)$ is purely inseparable, see [1, Tag 01S2].

The morphism $f^{(n)}: C^{(n)} \to W^n$ is surjective and closed. Hence $\dim C^{(n)} \ge \dim W^n$. But on the other hand, taking $p \in U$ and $q = f^{(n)}(p)$, we see that $\dim C^{(n)} \le \dim W^{(n)} + \dim(f^{(n)})^{-1}(Q) = \dim W^{(n)}$.

So, dim $W^n = \dim C^{(n)}$, and the residue field extension $k(C^{(n)})/k(W^n)$ is algebraic.

Since W^n is reduced and K algebraically closed, the field extension $k(W^n)/k$ is separable. Similarly, the field extension $k(C^{(n)})/k$ is separable. But then $k(C^{(n)})/k(W^n)$ must be separable, too:

To see this take K a purely transcendental extension K/k such that $K \subseteq k(W^n)$ and $k(W^n)/K$ is separable algebraic. Then also $k(C^{(n)})/K$ is separable, since $k(C^{(n)})/k$ is. Hence

$$\begin{aligned} [k(C^{(n)}):k(W^n)]_s[k(W^n):K]_s &= [k(C^{(n)}):K]_s = [k(C^{(n)}):K] = [k(C^{(n)}):k(W^n)][k(W^n):K] \\ &= [k(C^{(n)}):k(W^n)][k(W^n):K]_s, \end{aligned}$$

therefore $k(C^{(n)})/k(W^n)$ is separable and algebraic. We have already proven that this field extension is purely inseparable and the only way to not obtain a contradiction is $[k(C^{(n)}):k(W^n)]=1$, i.e. $f^{(n)}:C^{(n)}\to W^n$ is birational.

We define the theta divisor by $\Theta := W^{g-1} \subseteq J$. By theorem 2.8 Θ is indeed a divisor on J.

2.3 The Jacobian as Albanese variety

Throughout this section C will again be a proper nonsigular curve of genus g > 0 over a field k, J will be its Jacobian variety and $P \in C(k)$ will be a k-rational point. We will continue with all notations from the previous section. In particular, the definition of f from (2.1).

Proposition 2.9 (Universal property of the canonical map $f: C \to J$). For any map $g: C \to X$ from C into an abelian variety X sending P to 0, there is a unique homomorphism $h: J \to X$ such that $g = h \circ f$.

Proof. Consider the map $g^g: C^g \to X$ that on points is given by $(P_1, \ldots, P_g) \mapsto \sum_{i=1}^n g(P_i)$. Since this is symmetric, it factors as $g^{(g)} \circ \pi = g^g$ for $g^{(g)}: C^{(g)} \to X$ and $\pi: C^g \to C^{(g)}$ the canonical morphism. Now by Jacobi's inversion theorem 2.8 we obtain a rational map $h: J \to X$ such that $h \circ f^{(g)} = g^{(g)}$, where this expression is defined. But a rational map from a smooth variety J to an abelian variety X is defined on the whole of J, by [6, Thm. 3.1], so $h: J \to X$ is a morphism of schemes, satisfying $h \circ f^{(g)} = g^{(g)}$. Let $\varphi: C \to C^{(g)}$ on closed points be given by

17

 $Q \mapsto \pi(Q, P, \dots, P)$. Then $f = f^{(g)} \circ \varphi$ and therefore $h \circ f = h \circ f^{(g)} \circ \varphi = g^{(g)} \circ \varphi = g$. In particular, h sends 0 to 0, and corollary 1.2 shows it is a homomorphism.

If h' is another such homomorphism, then $h' \circ f^g = h \circ f^g$. Since X is separated, J is reduced and f^g is surjective by theorem 2.8, we must have h = h'. (This is because the "coincidence scheme" of h and h', as in [7, 7.4 ex. 3], equals J.)

Corollary 2.10. Let C_1 and C_2 be nonsingular, proper curves over $k, P_1 \in C_1(k)$ and $P_2 \in C_2(k)$ be their Jacobians. Let $f^{P_i}: C_i \to J_i$ be the canonical maps from section 2.1. The map

 $\operatorname{Hom}_k(J_1, J_2) \to \{\mathcal{L} \in \operatorname{Pic}(C_2 \times C_1) : \mathcal{L}|_{C_2 \times \{P_1\}} \text{ and } \mathcal{L}|_{\{P_2\} \times C_1} \text{ are trivial}\}, \ h \mapsto (1_{C_2} \times (h \circ f^{P_1}))^* \mathcal{M}^{P_2}$ is an isomorphism.

Proof. The map is well-defined because $\mathcal{M}^{P_2}|_{\{P_2\}\times C_2}$ and $\mathcal{M}^{P_2}|_{C_2\times\{0\}}$ is trivial by definition of \mathcal{M}^{P_2} in section 2.1, (also see proposition 1.12).

Now given $\mathcal{L} \in \operatorname{Pic}(C_2 \times C_1)$ such that both $\mathcal{L}|_{C_2 \times \{P_1\}}$ and $\mathcal{L}|_{\{P_2\} \times C_1}$ are trivial. Since \mathcal{M}^{P_2} is the universal bundle on $C_2 \times J_2$ from proposition 1.12, there is a unique map $g: C_1 \to J_2$ such that $(1_{C_2} \times g)^* \mathcal{M}^{P_2} \cong \mathcal{L}$. It follows from diagram 10 that $g(P_1)$ is represented by $\mathcal{L}|_{C_2 \times P_1}$ which is trivial. Hence g sends P_1 to 0 and by proposition 2.9 there exists a unique homomorphism $h: J_1 \to J_2$ such that $g = h \circ f^{P_1}$.

2.4 Autoduality

Let \mathcal{P} denote the Poincaré bundle on $J \times J^{\vee}$.

Consider the Mumford line bundle $\Lambda(\mathcal{L}(\Theta)) = m^* \mathcal{L}(\Theta) \otimes \operatorname{pr}_1^* \mathcal{L}(\Theta)^{-1} \otimes \operatorname{pr}_2^* \mathcal{L}(\Theta)^{-1}$ on $J \times J$ from section 1.1.2. We obtain a k-morphism $\varphi_{\mathcal{L}(\Theta)} : J \to J^{\vee}$ with $(1 \times \varphi_{\mathcal{L}(\Theta)})^* \mathcal{P} \cong \Lambda(\mathcal{L}(\Theta))$.

Write Θ^- for the pullback of Θ along $(-1)_J: J \to J$ and Θ_a for $t^*_{-a}\Theta = \Theta + a$, $a \in J(k)$.

Remark 2.11. It is shown in [4, 14.22 and 14.28 (ii)] that Θ , Θ^- and Θ_a are numerically equivalent and this implies that $\varphi_{\mathcal{L}(\Theta)} = \varphi_{\mathcal{L}(\Theta_a)} = \varphi_{\mathcal{L}(\Theta_a)}$ for all $a \in J(k)$ by [4, 7.26].

In particular, by lemma 1.8 the divisors $n^*\Theta$ and $n^2\Theta$ are numerically equivalent for all $n \in \mathbb{Z}$.

We abbreviate $(\Theta^-)_a$ as Θ_a^- .

Consider the invertible sheaf $(f \times 1)^* \mathcal{P}$ on $C \times J^{\vee}$. Its restriction to $\{P\} \times J^{\vee}$ is trivial because f(P) = 0 and \mathcal{P} restricted to $\{0\} \times J^{\vee}$ is trivial. Applying proposition 1.12 to the universal bundle \mathcal{M}^P on $C \times J$ we obtain a unique morphism $f^{\vee} : J^{\vee} \to J$ such that $(f \times 1)^* \mathcal{P} \cong (1 \times f^{\vee})^* \mathcal{M}^P$.

Theorem 2.12. The maps $-f^{\vee}: J^{\vee} \to J$ and $\varphi_{\mathcal{L}(\Theta)}: J \to J^{\vee}$ are inverses.

Proof. $(J^{\vee})_{\overline{k}}$ represents $(J_{\overline{k}})^{\vee}$ and $J_{\overline{k}}$ represents $\operatorname{Pic}_{C_{\overline{k}}/\overline{k}}^{0}$, moreover the formation of f and therefore also the formation of Θ , $\varphi_{\mathcal{L}(\Theta)}$ and f^{\vee} commutes with base change to \overline{k} . Whether a morphism is an isomorphism can be detected after faithfully flat, quasi-compact base change by [14, B.2].

Therefore we may assume that k is algebraically closed.

Let U be the largest open subset of J such that:

- (i) the fiber of $f^{(g)}: C^{(g)} \to J$ at any point of U has dimension zero; and
- (ii) if $a \in U(K)$ and D(a) is the, by Abel's theorem, necessarily unique element of $C^{(g)}(k)$ mapping to a; then D(a) is a sum of g distinct points of C(k).

Note that U can be obtained in two steps: First, by removing the subset over which the fibers have dimension > 0, which is closed because the fiber dimension changes upper-semi-continuously on the target. (Note that $f^{(g)}$ is proper and see [3, 11.4.2]). Secondly, by removing images of certain closed sets of the form $\Delta_C \times C^{g-2}$ under the proper map f^g . The first step yields a nonempty open set by (the proof of) Jacobi's inversion theorem 2.8. In the second step a proper closed subset of J gets removed, so, by irreducibility of J the set U is a nonempty open dense subset of J.

Claim:
$$f^{-1}(\Theta_a^-) = D(a)$$
 for all $a \in U(k)$ (24)

Let $a \in U(k)$ and let $D(a) = \sum_{i=1}^g P_i$ with $P_i \neq P_j$ for all $i \neq j$. A point Q_1 maps to Θ_a^- if and only if there exists a divisor $\sum_{i=2}^g Q_i$ on C such that $f(Q_1) = -\sum_{i=2}^g Q_i + a$. This equality implies $\sum_{i=1}^g Q_i \sim D$, and the fact that |D| has dimension 0 by Abel's theorem 2.7 implies that $\sum_{i=1}^g Q_i = D$. It follows that the support of $f^{-1}(\Theta_a^-)$ is $\{P_1, \ldots, P_g\}$, and it remains to show that $f^{-1}(\Theta_a^-)$ has degree $\leq g$ for all $g \in U(k)$.

Consider the map $\Psi: C \times \Theta \to J$ sending (Q,b) to f(Q)+b. By Jacobi's inversion theorem 2.8 and proposition 2.5, the maps $f^{g-1}: C^{g-1} \to \Theta$ and $f^g: C^g \to J$ have degree (g-1)! and g! respectively. As, Ψ composed with $1 \times f^{g-1}: C \times C^{g-1} \to C \times \Theta$ is f^g , we conclude that Ψ has degree g. Also, Ψ is proper as $C \times \Theta$ is a proper variety and therefore $\Psi':=\Psi|_{\Psi^{-1}(U)}$ is proper, too. As quasi-finite Ψ' is moreover quasi-finite, Ψ' is finite. Further, Ψ' is flat by [3, 26.2.11] using that $C \times \Theta$ and J are regular of dimension g. It follows as in the proof of theorem 1.4 that all fibers of Ψ' have global sections a g dimensional k vector space. In particular, all fibers have less then g points. But for $g \in U$ the $g \in U$ the

Claim: (i) Let
$$a \in J(k)$$
, and let $f^{(g)}(D) = a$; then $f^*\mathcal{L}(\Theta_a^-) \cong \mathcal{L}(D)$. (25)

(ii) The sheaves
$$(f \times (-1)_J)^* \Lambda(\mathcal{L}(\Theta^-))$$
 and \mathcal{M}^P on $C \times J$ are isomorphic. (26)

Note that the map

$$C \xrightarrow{Q \mapsto (Q,a)} C \times \{a\} \xrightarrow{f \times (-1)} J \times J \xrightarrow{m} J$$

equals $t_{-a} \circ f$, where t_{-a} is the translation on J by a. Therefore

$$(f \times (-1))^* m^* \mathcal{L}(\Theta^-)|_{C \times \{a\}} \cong (t_{-a} \circ f)^* \mathcal{L}(\Theta^{-1}) \cong f^* \mathcal{L}(\Theta_a^-)$$

On the other hand, \mathcal{M}^P is an invertible sheaf on $C \times J$ such that

- a) $\mathcal{M}^P|_{C\times\{a\}}\cong\mathcal{L}(D-gP)$ if D is an effective divisor of degree g on C such that $f^{(g)}(D)=a$ (see the definition of f).
- b) $\mathcal{M}^P|_{\{P\}\times J}$ is trivial (see the definition of \mathcal{M}^P).

Hence, $M^P \otimes \operatorname{pr}_1^*\mathcal{L}(gP)|_{C \times \{a\}}$ is isomorphic to $\mathcal{L}(D)$, whenever $f^{(g)}(D) = a$ for $D \in C^{(g)}(k)$ an effective divisor of degree g on C. Hence (i) is equivalent to $(f \times (-1))^*m^*\mathcal{L}(\Theta^-)|_{C \times \{a\}}$ being isomorphic to $M^P \otimes \operatorname{pr}_1^*\mathcal{L}(gP)|_{C \times \{a\}}$ for all $a \in J(k)$. By claim 24 we know that (i) holds on a nonempty dense open and therefore

$$\mathcal{N} := ((f \times (-1))^* m^* \mathcal{L}(\Theta^-)) \otimes (M^P \otimes \operatorname{pr}_1^* \mathcal{L}(gP))^{-1}$$

is trivial, when restricted to sets of the form $C \times \{a\}$ for all a in a dense open subset of J.

The set of all $a \in J$ such that \mathcal{N} restricted to $C \times \{a\}$ is trivial is closed in J, by [6, 5.3]. (This is because on the proper variety C an invertible sheaf is trivial if and only if \mathcal{N} and its dual \mathcal{N}^{-1} have nonzero global sections; but the dimensions of global sections of $\mathcal{N}|_{C \times \{a\}}$ and $\mathcal{N}^{-1}|_{C \times \{a\}}$ vary in an upper-semicontinuous manner on J by [3, 28.1.1].) Because a closed set in J that contains a dense set is equal to J, we obtain that claim (i) holds.

Taking a = 0 we obtain $f^*\mathcal{L}(\Theta^-) \cong \mathcal{L}(gP)$ and therefore

$$(f \times (-1))^* \operatorname{pr}_1^* \mathcal{L}(\Theta^-) \cong (f \circ \operatorname{pr}_1)^* \mathcal{L}(\Theta^-) \cong \operatorname{pr}_1^* \mathcal{L}(gP).$$

Now for all $a \in J(k)$ the sheaves

$$(f \times (-1))^* \left(m^* \mathcal{L}(\Theta^-) \otimes \left(\operatorname{pr}_1^* \mathcal{L}(\Theta^-) \right)^{-1} \right) |_{C \times \{a\}}$$

and $\mathcal{M}^P|_{C\times\{a\}}$ are isomorphic on C. By the so-called Seesaw principle [6, 5.1], which is a theorem on proper varieties, there exists an invertible sheaf \mathcal{F} on J such that

$$(f \times (-1))^* \left(m^* \mathcal{L}(\Theta^-) \otimes \left(\operatorname{pr}_1^* \mathcal{L}(\Theta^-) \right)^{-1} \right) \cong \mathcal{M}^P \otimes \operatorname{pr}_2^* \mathcal{F}$$

On computing the restriction to $\{P\} \times J$ of the above equation, we obtain

$$\mathcal{F} \cong (f \times (-1))^* \left(m^* \mathcal{L}(\Theta^-) \otimes \left(\operatorname{pr}_1^* \mathcal{L}(\Theta^-) \right)^{-1} \right) |_{\{P\} \times J} \cong (-1)^* \mathcal{L}(\Theta^-).$$

and therefore

$$\mathcal{M}^P \cong (f \times (-1))^* \left(m^* \mathcal{L}(\Theta^-) \otimes \operatorname{pr}_1^* \mathcal{L}(\Theta^-)^{-1} \right) \otimes \operatorname{pr}_2^* (-1)^* \mathcal{L}(\Theta^-)^{-1}$$

But $(f \times (-1))^* \operatorname{pr}_2^* \mathcal{L}(\Theta^-)^{-1} \cong \operatorname{pr}_2^* (-1)^* \mathcal{L}(\Theta^-)^{-1}$ and therefore claim (ii) in equation 26 follows from the definition of $\Lambda(\Theta^-)$

Now we are ready to proof the theorem: We have $\varphi_{\mathcal{L}(\Theta)} = \varphi_{\mathcal{L}(\Theta^-)}$ and

$$(1 \times -\varphi_{\mathcal{L}}(\Theta))^* (1 \times f^{\vee})^* \mathcal{M}^P \cong (1 \times -\varphi_{\mathcal{L}}(\Theta))^* (f \times 1)^* \mathcal{P} \cong (f \times (-1))^* (1 \times \varphi_{\mathcal{L}(\Theta^-)})^* \mathcal{P}$$
$$\cong (f \times (-1)^*) \Lambda (\mathcal{L}(\Theta^-))$$

and therefore by the claim in (26) we have $(1 \times (-\varphi_{\mathcal{L}(\Theta)} \circ f^{\vee}))^* \mathcal{M}^P \cong \mathcal{M}^P$. Hence $-\varphi_{\mathcal{L}(\Theta)} \circ f^{\vee} = \mathrm{id}_{J^{\vee}}$. This is by definition of \mathcal{M}^P as the universal line bundle on $C \times J$ and the uniqueness assertion in proposition 1.12. By theorem 1.4 both $\varphi_{\mathcal{L}(\Theta)}$ and f^{\vee} are isogenies. Now their degree must be equal to one and the theorem follows from proposition 1.9.

Corollary 2.13. a)
$$(f \times (-1)_J)^* \Lambda(\mathcal{L}(\Theta)) \cong (f \times 1_J)^* \Lambda(\mathcal{L}(\Theta)^{-1}) \cong \mathcal{M}^P$$
 on $C \times J$.

- b) For \mathcal{L}^P the sheaf on $C \times C$ from equation (16) we have an isomorphism $\mathcal{L}^P \cong (f \times f)^* \Lambda(\mathcal{L}(\Theta)^{-1})$.
- c) The divisor Θ on J is ample and has self-intersection number $(\Theta)^g = g!$. Moreover, $H^0(J, \mathcal{L}(\Theta)) =$ k and $H^{i}(J, \mathcal{L}(\Theta)) = 0$ for $i \geq 1$.

Proof. We have

$$(f \times (-1)_J)^* \Lambda(\mathcal{L}(\Theta)) \cong (f \times (-1)_J)^* (1_J \times \varphi_{\mathcal{L}(\Theta)})^* \mathcal{P} \cong (1_J \times -\varphi_{\mathcal{L}(\Theta)})^* (f \times 1_J)^* \mathcal{P}$$
$$\cong (1_J \times -\varphi_{\mathcal{L}(\Theta)})^* (1 \times f^{\vee})^* \mathcal{M}^P \cong (1_J \times (f^{\vee} \circ (-\varphi_{\mathcal{L}(\Theta)}))^* \mathcal{M}^P \stackrel{2.12}{=} \mathcal{M}^P$$

Since $\mathcal{L} \to \varphi_{\mathcal{L}}$, as in equation (12), is a homomorphism, we have $\varphi_{\mathcal{L}(\Theta)^{-1}} = -\varphi_{\mathcal{L}(\Theta)}$ and so

$$\mathcal{M}^P \cong (f \times 1_J)^* (1_J \times -\varphi_{\mathcal{L}(\Theta)}) \mathcal{P} = (f \times 1_J)^* (1_J \times \varphi_{\mathcal{L}(\Theta)^{-1}})^* \mathcal{P} \cong (f \times 1_J)^* \Lambda (\mathcal{L}(\Theta)^{-1}).$$

Now b) follows from a) because $(f \times f)^* \Lambda(\mathcal{L}(\Theta)^{-1}) \cong (1_C \times f)^* \mathcal{M}^P \cong \mathcal{L}^P$ by definition of f.

 Θ is ample by lemma 1.13. By the vanishing theorem for line bundles on abelian varieties from [4, prop. 9.14] we have $H^i(J,\Theta) \neq 0$ only for i=0. By the Riemann-Roch theorem for abelian varieties as in [4, thm. 9.11] $\chi(\mathcal{L}(\Theta))^2 = \deg(\varphi_{\mathcal{L}(\Theta)}) = 1$ and $(\Theta)^g = g! \cdot \chi(\mathcal{L}(\Theta)) = g!$, so c) follows.

2.5 The Rosati involution

Definition 2.14. The Rosati involution corresponding to $\varphi_{\mathcal{L}(\Theta)}$ is defined as the involution on $\operatorname{End}^0(J)$ given by

$$h\mapsto h^\dagger:=\varphi_{\mathcal{L}(\Theta)}^{-1}\circ h^\vee\circ\varphi_{\mathcal{L}(\Theta)}=f^\vee\circ h^\vee\circ\varphi_{\mathcal{L}(\Theta)^{-1}}.$$

Let $g, h \in \text{End}^0(J)$. It is clear form the definition that $(hg)^{\dagger} = g^{\dagger}h^{\dagger}$ and because $(h+g)^{\vee} = g^{\dagger}h^{\dagger}$ $h^{\vee} + g^{\vee}$ also $(h+g)^{\dagger} = h^{\dagger} + g^{\dagger}$. Moreover, $g^{\dagger} = g$ if $g \in \mathbb{Q}$.

Let $\sigma: C \times C \to C \times C$ be the k morphism that switches the factors of $C \times C$. Then σ acts on

$$F := \{ \mathcal{L} \in \text{Pic}(C \times C) : \mathcal{L}|_{C \times \{P\}} \text{ and } \mathcal{L}|_{\{P\} \times C} \text{ is trivial } \}$$

by pullback. By corollary 2.10 this corresponds to an action on End(J).

Lemma 2.15. The action on F by σ agrees with the Rosati involution when F is identified with $\operatorname{End}(J)$ via the isomorphism in corollary 2.10.

Proof. Let $h \in \text{End}(J)$. Since

$$(1_{C} \times (h^{\dagger} \circ f))^{*} \mathcal{M}^{P} = (1_{C} \times (f^{\vee} \circ h^{\vee} \circ \varphi_{\mathcal{L}(\Theta)^{-1}} \circ f))^{*} \mathcal{M}^{P} \cong (1 \times h^{\vee} \circ \varphi_{\mathcal{L}(\Theta)^{-1}} \circ f)^{*} (1 \times f^{\vee})^{*} \mathcal{M}^{P}$$

$$\cong (1 \times h^{\vee} \circ \varphi_{\mathcal{L}(\Theta)^{-1}} \circ f)^{*} (f \times 1)^{*} \mathcal{P} \cong (f \times 1)^{*} (1 \times \varphi_{\mathcal{L}(\Theta)^{-1}} \circ f)^{*} (1 \times h^{\vee})^{*} \mathcal{P}$$

$$\cong (f \times 1)^{*} (1 \times \varphi_{\mathcal{L}(\Theta)^{-1}} \circ f)^{*} (h \times 1)^{*} \mathcal{P}$$

$$\cong ((h \circ f) \times 1)^{*} (1 \times f)^{*} (1 \times \varphi_{\mathcal{L}(\Theta)^{-1}})^{*} \mathcal{P} \cong ((h \circ f) \times 1)^{*} (1 \times f)^{*} \Lambda (\mathcal{L}(\Theta)^{-1})$$

$$\stackrel{2.13}{\cong} ((h \circ f) \times 1)^{*} \mathcal{M}^{P} \cong \sigma^{*} (1_{C} \times (h \circ f))^{*} \mathcal{M}^{P},$$

the assertions follows from corollary 2.10.

Since $\sigma^2 = \text{id}$ we conclude from the previous lemma 2.15 that $(h^{\dagger})^{\dagger} = h$ for all $h \in \text{End}(J)$. Since $g^{\dagger} = g$ for all $g \in \mathbb{Q}$, this result extends to $\text{End}^0(J)$.

2.6 The Lefschetz trace formula and positivity of the Rosati involution

We invoke intersection theory on the surface $C \times C$. Notation will be as in Hartshorne [8, chap. V.1] but we won't assume that k is necessarily algebraically closed. For effective divisors D, C on $C \times C$ we define their intersection number $C.D := \deg_C \mathcal{L}_{C \times C}(D)|_C$ and extend this definition to a symmetric, bilinear map $\mathrm{Div}(C \times C) \times \mathrm{Div}(C \times C) \to \mathbb{Z}$ that only depends on the linear equivalence class of the inputs. To see that there exists a unique such pairing consult [8, V1, Thm. 1.1].

Theorem 2.16 (Lefschetz trace formula). Let $h \in \text{End}(J)$ and let X be a divisor on $C \times C$ such that $\mathcal{L}(X) \cong (1_C \times (h \circ f))^* \mathcal{M}^P$. Then the negative intersection number of the diagonal divisor $\Delta_C \subseteq C \times C$ with X equals tr(h), i.e. $-\Delta_C X = \text{tr}(h)$.

Before we can proof the theorem we need the following relation between trace and intersection theory on J.

Lemma 2.17. Let $h \in \text{End}(J)$. Let $D_{\Theta}(h) := (h+1)^*\Theta - h^*\Theta - \Theta$. Then

$$\operatorname{tr}(h) = \frac{g}{(\Theta^g)}(\Theta^{g-1} \cdot D_{\Theta}(h)) = \frac{1}{(g-1)!}(\Theta^{g-1} \cdot D_{\Theta}(h)) = (f(C) \cdot D_{\Theta}(h)) = \operatorname{deg} f^* \mathcal{L}(D_{\Theta}(h)).$$

Sketch of a proof. In the last paragraph of theorem 1.19 we computed, that for all $n \in \mathbb{N}$ we have $\deg(h+n) = \frac{(D_n)^g}{(D)^g}$, where we can choose

$$D = \Theta$$
, $D' = 2^*D - 2D$, $D_n = (n+h)^*D = \frac{n(n-1)}{2}D' + n(h+1)^*D - (n-1)h^*D$.

By remark 2.11 D' is numerically equivalent to 2D and, so, D_n is numerically equivalent to $n^2D + nD_{\Theta}(h) + h^*D$.

Since by definition $P_h(-n) = \deg(h+n) = \frac{(D_n)^g}{(D)}$ for all $n \in \mathbb{N}$ we have that $\operatorname{tr}(h)$ is the coefficient in front of n^{2g-1} in the expression $\frac{(D_n)^g}{(D)}$, which we can identify with $\frac{g}{(D)^g}(D^{g-1} \cdot D_{\Theta}(h))$ by using the linearity of the intersection number.

We have proven the first equality of the assertion and the second follows from corollary 2.13.

To show that $(\Theta^{g-1} \cdot D_{\Theta}(h)) = (g-1)!(f(C) \cdot D_{\Theta}(h))$ one proceeds as in [11, IV §3 Thm 5] to relate intersection numbers with taking sums of divisors via the addition of J. For this one considers the so-called Pontrjagin product * on the Chow ring of J; its definition can be found in [11, p. 8]. It is shown in [11, II §3 prop. 4] that for the r-fold Pontrjagin product of f(C) one has $f(C)^{*r} = r!W^r$.

Further one shows that taking images (in the sense of intersection theory) under endomorphisms $h: J \to J$ induces a endomorphism of the group of cycles of J with the Pontrjagin product. Whereas taking inverses images under h induces an endomorphism of the chow ring with the intersection

product. These two operations are adjoint to each other: $(h(\xi) \cdot \nu) = (\xi \cdot h^{-1}(\nu))$. (This is [11, IV §3 Thm 5]).

Using the above two properties is can be computed that $(\Theta^{g-1} \cdot D_{\Theta}(h)) = (g-1)!(W^1 \cdot D_{\Theta}(h))$. This is done here [11, p.112].

Now it only remains to justify $(f(C) \cdot D_{\Theta}(h)) = \deg f^* \mathcal{L}(D_{\Theta}(h))$. This is [15, Exmp. 7.1.17]. \square

Proof of theorem 2.16. By Corollary 2.13 we have that

$$\Delta_C^* \mathcal{L}(X) \cong \Delta_C^* (1_C \times (h \circ f)^*) \mathcal{M}^P \cong \Delta^* (1_C \times (h \circ f))^* (f \times 1_J)^* \Lambda (\mathcal{L}(\Theta)^{-1})$$

$$\cong ((1_J \times h) \circ (f \times f) \circ \Delta_C)^* \Lambda (\mathcal{L}(\Theta)^{-1}) \cong f^* (1_J, h)^* \Lambda (\mathcal{L}(\Theta)^{-1})$$

$$= f^* (1_J, h)^* (m^* \mathcal{L}(\Theta)^{-1} \otimes \operatorname{pr}_1^* \mathcal{L}(\Theta) \circ \operatorname{pr}_2^* \mathcal{L}(\Theta)) = f^* D_{\Theta}(h)^{-1}$$

So, by the previous lemma 2.17, $\operatorname{tr}(h) = \operatorname{deg} f^* D_{\Theta}(h) = \operatorname{deg} \Delta_C^* \mathcal{L}(X)^{-1} = \Delta_C \cdot (-X) = -\Delta_C \cdot X$. \square

Corollary 2.18 (Positivity of the Rosati involution). Let $h, g \in \text{End}(J)$ then

$$\operatorname{tr}(h^{\dagger} \circ g) = \operatorname{deg}((h \circ f, g \circ f)^* \Lambda(\mathcal{L}(\Theta))) \text{ and } \operatorname{tr}(h^{\dagger} \circ h) = 2 \operatorname{deg}((h \circ f)^* \mathcal{L}(\Theta)) = 2((h \circ f)(C) \cdot \Theta).$$

The trace form

$$\operatorname{End}^{0}(J) \times \operatorname{End}^{0}(J) \to \mathbb{Q}, \ (g,h) \mapsto \operatorname{tr}(g \circ h^{\dagger})$$

is bilinear, symmetric and positive definite.

Proof. It can be read of the proof of lemma 2.19 that $(1_C \times h^{\dagger})^* \mathcal{M}^p \cong ((h \circ f) \times 1)^* \Lambda(\mathcal{L}(\Theta)^{-1})$. So, by the Lefschetz trace formula 2.16,

$$\operatorname{tr}(h^{\dagger} \circ g) = -\operatorname{deg} \Delta_{C}^{*}(1_{C} \times (h^{\dagger} \circ g \circ f)) = -\operatorname{deg} \Delta_{C}^{*}((h \circ f) \times (g \circ f))^{*}\Lambda(\mathcal{L}(\Theta)^{-1})$$
$$= \operatorname{deg}((h \circ f, g \circ f)^{*}\Lambda(\mathcal{L}(\Theta))).$$

In particular, $\operatorname{tr}(h^{\dagger}, h) = \operatorname{deg}((h \circ f, h \circ f)^* \Lambda(\mathcal{L}(\Theta)))$. We compute

$$(h \circ f, h \circ f)^* \Lambda(\mathcal{L}(\Theta)) = (h \circ f, h \circ f)^* (m^* \mathcal{L}(\Theta) \otimes \operatorname{pr}_1^* \mathcal{L}(\Theta)^{-1} \otimes \operatorname{pr}_2^* \mathcal{L}(\Theta)^{-1})$$

$$\cong (h \circ f)^* (2_J)^* \mathcal{L}(\Theta) - (h \circ f)^* \mathcal{L}(\Theta)^2$$

and, since after taking degree only the numerical equivalence class of Θ matters, we obtain

$$\deg((h \circ f, h \circ f)^* \Lambda(\mathcal{L}(\Theta)))) = 2^2 \deg((h \circ f)^* \mathcal{L}(\Theta)) - 2 \deg((h \circ f)^* \mathcal{L}(\Theta))$$

by remark 2.11. So, $\operatorname{tr}(h^{\dagger} \circ h) = 2 \operatorname{deg}((h \circ f)^* \mathcal{L}(\Theta)) = 2((h \circ f)(C) \cdot \Theta)$, where the last equality is by [15, Exmp. 7.1.17].

By lemma 2.15 and theorem 2.16 $\operatorname{tr}(h^{\dagger}) = -\Delta_C.\sigma^*X = -\Delta_C.X = \operatorname{tr}(h)$. In particular, the trace form is symmetric. Bilinearity follows from linearity of the Rosati involution and the properties of the trace.

If $h \neq 0$, then $Y := (h \circ f)(C)$ is a nontrivial integral closed subscheme of dimension 1 on J. By the Nakai-Moishezon criterion for ampleness, the intersection number $(Y \cdot \Theta)$ is positive. In other words, $\operatorname{tr}(h^{\dagger} \circ h) > 0$.

2.7 The map induced on the Jacobian by an endomorphism of C

Throughout this section C will again be a proper non-singular curve of genus g > 0 over a field k, J will be its Jacobian variety and $P \in C(k)$ will be a k-rational point. f will be defined as in section 2.1.

Let $\alpha: C \to C$ be a non-constant k-morphism. Note that α will necessarily be finite and flat. There are two approaches to obtain a homomorphism $J \to J$ induced by α .

a) Let $t_{-f(\alpha(P))}$ be the translation on J by $-f(\alpha(P))$. Then $t_{-f(\alpha(P))} \circ f \circ \alpha : C \to J$ maps P to 0 and by proposition 2.9 there is a unique homomorphism $\alpha' : J \to J$ such that

$$t_{-f(\alpha(P))} \circ f \circ \alpha = \alpha' \circ f.$$

b) For a given k-scheme T and $\mathcal{L} \in \text{Pic}(C \times T)$ the map $\mathcal{L} \mapsto (\alpha \times 1_T)^* \mathcal{L}$ is natural in T and therefore defines a map $\operatorname{Pic}_{C/k} \to \operatorname{Pic}_{C/k}$. Since the trivial line bundle in $\operatorname{Pic}_{C/k}(k)$ is send to itself, this defines a homomorphism $\alpha^*: J \to J$.

Using that for $\mathcal{L} \in \text{Pic}(C \times T)$ the degree function $T \ni t \mapsto \deg(\mathcal{L}|_{C \times \{t\}})$ is locally constant, it can be shown that J(k) can be identified with $Pic^{0}(C)$, the degree 0 line bundles on C, see [4, 14.1]. So, α^* is on k-valued points literally given by the pullback of degree 0 line bundles along α .

The following lemma says that the Rosati involution translates one approach into the other. In particular, α' is independent of the choice of P.

Lemma 2.19. We have $(\alpha')^{\dagger} = \alpha^*$ as k-morphisms $J \to J$ and

$$(1 \times (\alpha' \circ f))^* \mathcal{M}^P \cong \sigma^* \mathcal{L}(\Gamma_\alpha - C \times \{\alpha(P)\} - \alpha^{-1}(P) \times C),$$

for $\sigma: C \times C \to C \times C$ the morphism that switches the factors of $C \times C$.

Proof. The sheaf $\mathcal{C} = \mathcal{L}(\Gamma_{\alpha} - C \times \{\alpha(P)\} - \alpha^{-1}(P) \times C)$ on $C \times C$ is trivial, when restricted to

 $C \times \{P\}$, as well as, when restricted to $\{P\} \times C$. By proposition 1.12 applied to \mathcal{M}^P we obtain a unique k-morphism $g: C \to J$ such that $(1_C \times g)^* \mathcal{M}^P \cong \mathcal{C}$. Let K be a field extension of k. By diagram 10, for a K-valued point R of C with inclusion $R \xrightarrow{x} C$ we have that g(R) is represented by $(1 \times x)^* \mathcal{C} \cong \mathcal{L}_{C_K}(\alpha^{-1}(R)) \otimes \mathcal{L}_{C_K}(\alpha^{-1}(P))^{-1} \cong \alpha^* \mathcal{L}_{C_k}(R-P)$. Since g(P)=0 there is a homomorphism $h: J \to J$ such that $g=h \circ f$. Now f(R)is represented by $\mathcal{L}_{C_K}(R-P)^{-1}$ by equation (17). We conclude that $h \circ f^g$ and $\alpha^* \circ f^g$ agree on K valued points. It follows as in the last paragraph of the proof of proposition 2.9 that $h = \alpha^*$. By corollary 2.10 it therefore suffices to proof that $(1_C \times (\alpha' \circ f))^* \mathcal{M}^P \cong \sigma^* \mathcal{C}$, we win by direct computation:

$$(1_{C} \times (\alpha' \circ f))^{*}\mathcal{M}^{P} = (1_{C} \times (t_{-f(\alpha(P))} \circ f \circ \alpha)^{*}\mathcal{M}^{P} \cong (1_{C} \times \alpha)^{*}(1 \times (t_{-f(\alpha(P))} \circ f))^{*}\mathcal{M}^{P}$$

$$\cong (1_{C} \times \alpha)^{*}\mathcal{L}(\Delta - \{\alpha(P)\} \times C - C \times \{P\})$$

$$\cong \mathcal{L}(\sigma^{-1}\Gamma_{\alpha} - \{\alpha(P)\} \times C - C \times \alpha^{-1}(P))$$

$$\cong \sigma^{*}\mathcal{L}(\Gamma_{\alpha} - C \times \{\alpha(P)\} - \alpha^{-1}(P) \times C),$$

where $(t_{-f(\alpha(P))} \circ f))^* \mathcal{M}^P \cong \mathcal{L}(\Delta - \{\alpha(P)\} \times C - C \times \{P\})$ because the unique map $\varphi : C \to J$ such that $(1 \times \varphi)^* \mathcal{M}^P \cong \mathcal{L}(\Delta - \{\alpha(P)\} \times C - C \times \{P\})$ agrees with $t_{-f(\alpha(P))} \circ f$. Note that this can be checked on \overline{k} -valued points and φ can be computed on these points via diagram 10.

We know try to relate $tr(\alpha') = tr(\alpha^*)$ with the fixed points of α .

Theorem 2.20 (Lefschetz fixed point formula). We have $\Delta_C.\Gamma_\alpha = 1 - \operatorname{tr}(\alpha^*) + \operatorname{deg}(\alpha)$.

Proof. By lemma 2.19 we have $(1 \times (\alpha^* \circ f))^* \mathcal{M}^P \cong \mathcal{L}(\Gamma_\alpha - C \times \{\alpha(P)\} - \alpha^{-1}(P) \times C)$ and so by the Lefschetz trace formula 2.16

$$\operatorname{tr}(\alpha^*) = -\Delta_C \cdot (\Gamma_\alpha - C \times \{\alpha(P)\} - \alpha^{-1}(P) \times C) = -\Delta_C \cdot \Gamma_\alpha + 1 + \Delta_C \cdot (C \times \alpha^{-1}(P)).$$

Since Δ_C and $C \times \alpha^{-1}(P)$ have no components in common and have scheme-theoretic intersection $\alpha^{-1}(P)$ we conclude $\Delta_C(C \times \alpha^{-1}(P)) = h^0(\alpha^{-1}(P), \mathcal{O}_{\alpha^{-1}(P)})$. Because α is flat and finite, deg $\alpha =$ $h^0(\alpha^{-1}(P), \mathcal{O}_{\alpha^{-1}(P)})$ by exactly the same proof as in theorem 1.4.

Example 2.21. Applying the Lefschetz fixed point formula to id_C yields $\Delta_C^2 = 1 - 2g - 1$.

The interpretation of theorem 2.20 as fixed point formula is justified by the following proposition.

Proposition 2.22. Assume k to be algebraically closed. Let $\alpha: C \to C$ be non-constant such that

- a) $\alpha(x) = x$ for only finitely many $x \in C(k)$ and
- b) $d_x \alpha \neq id_{T_x C}$ for all $x \in C(k)$ with $\alpha(x) = x$,

then $\Gamma_{\alpha}.\Delta_C = \#\{x \in C(k) : \alpha(x) = x\}.$

Proof. Condition a) implies $(\Delta_C \times_{C \times C} \Gamma_\alpha)(k) = \{x \in C(k) : \alpha(x) = x\} < \infty$.

So, $\Gamma_{\alpha} \cap \Delta_{C} := \Gamma_{\alpha} \times_{C \times C} \Delta_{C}$ is finite and Γ_{α} and Δ_{C} have no components in common. Hence $\Gamma_{\alpha}.\Delta_{C} = \dim_{k} \Gamma(\Gamma_{\alpha} \cap \Delta_{C}, \mathcal{O}_{\Gamma_{\alpha} \cap \Delta_{C}})$.

Let $i: \Delta_C \to C$ and $j: \Gamma_\alpha \to C$ be the inclusion. Then for $P \in (\Gamma_\alpha \cap \Delta_C)(k)$ we have $\operatorname{im}(\operatorname{d} i)_P = \operatorname{span}(\pi, \pi)$ and $\operatorname{im}(\operatorname{d} j)_P = \operatorname{span}(\pi, \operatorname{d} \alpha_P(\pi))$, where π is a generator of $T_p(C)$ and we identify $T_P(C \times C)$ as $T_P(C) \oplus T_P(C)$. Hence by assumption b) $T_P(C \times C) = \operatorname{im}(\operatorname{d} i)_P + \operatorname{im}(\operatorname{d} j)_P$.

Let f be the local equation for Δ_C in $C \times C$ at P and g the local equation for Γ_α in $C \times C$ at P. Then $T_P(C \times C) = \operatorname{im}(\operatorname{d} i)_P + \operatorname{im}(\operatorname{d} j)_P$ shows that f and g generate m_P at $\mathcal{O}_{C \times C, P}$. Hence $\mathcal{O}_{\Gamma_\alpha \cap \Delta_C, P} = \mathcal{O}_{C \times C, P}/(f, g) = k$ and therefore

$$\Gamma_{\alpha}.\Delta_{C} = \dim_{k} \Gamma(\Gamma_{\alpha} \cap \Delta_{C}, \mathcal{O}_{\Gamma_{\alpha} \cap \Delta_{C}}) = \#(\Gamma_{\alpha} \cap \Delta_{C})(k) = \{x \in C(k) : \alpha(x) = x\}.$$

3 The Weil conjectures for curves

Let C be a proper non-singular curve of genus g over a finite field \mathbb{F}_q with q elements. Let k be an algebraic closure of \mathbb{F}_q and denote $C_k := C \times_{\mathbb{F}_q} k$. Let $F_C : C \to C$ be the absolute Frobenius morphism of C, which is the identity on the underlying topological space and acts as the q-th power map on \mathcal{O}_C . Let $F_{C,k} := F_C \times_{\mathbb{F}_q} 1_k$ be the k linear Frobenius morphism of C_k .

Let J be the Jacobian variety of C over \mathbb{F}_q . Then the base change of J to k, denoted by J_k , is the Jacobian variety of C_k . Further, the induces map on J_k by $F_{C,k}$ as in section 2.7 a) is $\operatorname{Fr} := F_J \times 1_k$, where F_J is the absolute Frobenius of J. This follows from the naturality of the absolute Frobenius.

Theorem 3.1 (Weil conjectures for curves).

Let $P \in \mathbb{Z}[x]$ be the characteristic polynomial of $\operatorname{Fr} \in \operatorname{End}(J_k)$ and $\alpha_1, \ldots, \alpha_{2g} \in \mathbb{C}$ its roots. The Weil conjectures for curves state:

1. (Rationality of the zeta function)

$$\exp\left(\sum_{n=1}^{\infty} \#C(\mathbb{F}_{q_n}) \frac{x^n}{n}\right) = \frac{\prod_{i=1}^{2g} (1 - \alpha_i x)}{(1 - x)(1 - qx)}$$

and
$$\prod_{i=1}^{2g} (1 - \alpha_i x) = x^{2g} P(\frac{1}{x}) \in \mathbb{Z}[x].$$

- 2. (Riemann hypothesis) $|\alpha_i| = q^{\frac{1}{2}}$ for all $i = 1, \ldots, 2g$.
- 3. (Hesse-Weil bound)

$$\#C(\mathbb{F}_{q^n}) = 1 - \sum_{i=1}^{2g} \alpha_i^n + q^n$$

and in particular $|\#C(\mathbb{F}_{q^n}) - (q^n + 1)| \le 2gq^{\frac{n}{2}}$.

Moreover, whenever C has an \mathbb{F}_{q^n} valued point

$$\#\operatorname{Pic}^{0}(C_{\mathbb{F}_{q^{n}}}) = \prod_{i=1}^{2g} (1 - \alpha_{i}^{n}), \tag{27}$$

where $\operatorname{Pic}^0(C_{\mathbb{F}_{q^n}})$ denotes the group of isomorphism classes of degree zero line bundles on the curve $C_{\mathbb{F}_{q^n}} := C \times_{\mathbb{F}_q} \mathbb{F}_{q^n}$ over \mathbb{F}_{q^n} .

Proof. Let $F_k : \operatorname{Spec}(k) \to \operatorname{Spec}(k)$ denote the absolute Frobenius of k. The Lefschetz fixed point formula 2.20 applied to $F_{C,k}^n$ yields

$$\Delta_C.\Gamma_{F_{C,k}^n} = 1 - \operatorname{tr}(\operatorname{Fr}^n) + \operatorname{deg}(F_{C,k}^n).$$

Using theorem 1.22 we have $\operatorname{tr}(\operatorname{Fr}^n) = \sum_{i=1}^{2g} \alpha_i^n$. Further, $\deg(F_{C,k}^n) = \deg(F_{C,k})^n$. Claim 1: $\deg(F_{C,k}) = q$. By [7, 8.5 Prop. 13] there is a nonempty open neighborhood $U \subseteq C_k$ and an étale k- morphism $g:U\to \mathbb{A}^1_k$. It suffices to prove that $F_{C,k}|_U:U\to U$ has degree q. Now $g\circ F_{C,k}=(F_{\mathbb{A}^1_{\mathbb{F}_q}}\times 1_k)\circ g$. By the multiplicativity of the degree it is enough to prove that $\deg(F_{\mathbb{A}^1_{\mathbb{F}_q}} \times 1_k) = q$ (Note that g induces a finite residue field extension). To see this, observe that $F_{\mathbb{A}^1_{\mathbb{R}}}$ fixes coefficients and maps coordinates to their q-th power. The induced residue field extension is $\hat{\mathbb{F}_q}(x) \hookrightarrow \mathbb{F}_q(x)[t]/(t^q-x)$, which has degree q.

So, we obtain

$$\Delta_C.\Gamma_{F_{C,k}^n} = 1 - \sum_{i=1}^{2g} \alpha_i^n + q^n.$$
 (28)

For the k-variety C_k we have a bijection between the k-valued points of C_k and the k-valued points of the \mathbb{F}_q variety C given by

$$C_k(k) \to C(k), \ (x:k \to C_k) \mapsto (k \xrightarrow{x} C_k \xrightarrow{\operatorname{pr}_C} .C)$$
 (29)

- a) C(k) has an action given by pre-composition with F_k .
- b) $C_k(k)$ has an action given by post-composition with $F_{C,k}$.

Claim 2: The bijection in (29) identifies both actions a) and b):

Let $x \in C_k(k)$. Then $\operatorname{pr}_C \circ F_{C,k} \circ x = F_C \circ \operatorname{pr}_C \circ x = F_S \circ \operatorname{pr}_C \circ x$, where we used the naturality of the absolute Frobenius in the last equation.

Let $C(k)^{F_k^n}$ denote the elements of C(k) fixed by pre-composition with F_k^n .

Claim 3: $C(\mathbb{F}_{q^n}) \to C(k)^{F_k^n}, (x : \operatorname{Spec}(\mathbb{F}_{q^n}) \to C) \mapsto (\operatorname{Spec}(k) \to \operatorname{Spec}(\mathbb{F}_{q^n}) \xrightarrow{x} C)$ is a bijection.

The map is injective, because $\operatorname{Spec}(k) \to \operatorname{Spec}(\mathbb{F}_{q_n})$ is faithfully flat and therefore an epimorphism. Next we show surjectivity. Say, $y \in C(k)^{F_k^n}$. Take any $\operatorname{Spec}(R) = U \subseteq C$ open affine such that y factors as $k \to U \hookrightarrow C$. Then $k \to U$ corresponds to a \mathbb{F}_q algebra homomorphism $\varphi : R \to k$ such that $\mathfrak{f} \circ \varphi = \varphi$, for $\mathfrak{f}(r) = r^{q^n}$. This implies that φ factors through $\mathbb{F}^{q^n} \hookrightarrow k$. Hence, y factors as $\operatorname{Spec}(k) \to \mathbb{F}_{q^n} \to U \hookrightarrow C$.

If we denote elements of $C_k(k)$ fixed by post-composition with $F_{C,k}^n$ with $C_k(k)^{F_{C,k}^n}$, then applying claim 3 and then claim 2 shows that

$$\#C(\mathbb{F}_{q^n}) = \#C(k)^{F_k^n} = \#C_k(k)^{F_{C,k}^n} = \#\{x \in C_k(k) : F_{C,k}^n(x) = x\}. \tag{30}$$

Next we want to apply proposition 2.22 to $F_{C,k}^n: C_k \to C_k$. For part a) of proposition 2.22 note that $\#C(\mathbb{F}_{q^n}) < \infty$ because C admits a closed immersion into \mathbb{P}_k^m for m big enough and $\mathbb{P}_k^m(\mathbb{F}_{q^n}) = ((q^n)^{m+1} - 1)/(q^n - 1) < \infty$. So, by equation (30) $F_{C,k}^n(x) = x$ for only finitely many $x \in C_k(x)$.

For part b) of proposition 2.22 observe that for $x \in C_k(k)$ we have $d_x F_{C,k} = 0$, because $q^n = 0$ in k. This can be proven very explicitly by using an étale morphisms as in the proof of claim 1. Then $d_x F_{C,k} = 0$ follows because the endomorphism of \mathbb{A}_{F_q} that fixes the coefficients and raises the coordinates to their q^n power induces the zero map on tangent spaces.

All in all, we can apply proposition 2.22 to obtain

$$#C(\mathbb{F}_{q^n}) \stackrel{(30)}{=} #\{x \in C_k(k) : F_{C,k}^n(x) = x\} \stackrel{2.22}{=} \Delta_C.\Gamma_{F_{C,k}^n} \stackrel{(28)}{=} 1 - \sum_{i=1}^{2g} \alpha_i^n + q^n.$$
 (31)

For showing the Riemann hypothesis for the curve C we start with the following claim.

Claim 4: $\operatorname{Fr}^{\dagger} \circ \operatorname{Fr} = q_J$, or in other words $\operatorname{Fr}^{\vee} \circ \varphi_{\mathcal{L}(\Theta)} \circ \operatorname{Fr} = q_J \cdot \varphi_{\mathcal{L}(\Theta)}$.

Let $P \in J$ and let g be a local equation cutting out Θ on the neighborhood U of P. Note that, since Θ can be defined over \mathbb{F}_q , we have $\operatorname{Fr}_U^\#(g) = g^q$ and this is a local equation cutting out $\operatorname{Fr}^*\mathcal{L}(\Theta)$ at P. But $\operatorname{div}(g^q) = q \cdot \operatorname{div}(g)$ and thus $\operatorname{Fr}^* \mathcal{L}(\Theta) \cong \mathcal{L}(q\Theta) \cong \mathcal{L}(\Theta)^q$.

Now given a k-valued point $x \in J_k(k)$ we can compute via equation (14) and (4) that $\operatorname{Fr}^{\vee} \circ$ $\varphi_{\mathcal{L}(\Theta)} \circ \operatorname{Fr}(x)$ is represented by the line bundle

$$\operatorname{Fr}^*(t_{\operatorname{Fr}(x)}^*\mathcal{L}(\Theta)\otimes\mathcal{L}^{-1}(\Theta))\cong t_x^*\operatorname{Fr}^*\mathcal{L}(\Theta)\otimes(\operatorname{Fr}^*\mathcal{L}(\Theta))^{-1}\cong t_x^*\mathcal{L}(\Theta)^q\otimes(\mathcal{L}(\Theta)^q)^{-1}=\varphi_{\mathcal{L}(\Theta)^q}(x).$$

But $\varphi_{\mathcal{L}(\Theta)^q} = q\varphi_{\mathcal{L}(\Theta)}$ because $\mathcal{L}' \mapsto \varphi_{\mathcal{L}'}$ is a homomorphism, see equation (12). So, $\operatorname{Fr}^{\vee} \circ \varphi_{\mathcal{L}(\Theta)} \circ \operatorname{Fr}$ and $q_J \cdot \varphi_{\mathcal{L}(\Theta)}$ agree on k-valued points. Since k is algebraically closed, claim 4 follows.

Claim 5: Every complex root α of P has absolute value $|\alpha| = \sqrt{q}$.

Note that $\mathbb{Q}[Fr] \subseteq \operatorname{End}^0(J_k)$ is a commutative ring. Further $\operatorname{End}^0(J_k)$ is finite dimensional as \mathbb{Q} -vector space by corollary 1.21 and therefore $\mathbb{Q}[Fr]$ is a finite commutative \mathbb{Q} -algebra.

By the relation $\operatorname{Fr}^{-1} = \operatorname{Fr}^{\dagger}/q$ from claim 4 we see that Fr is not a zero divisor in $\operatorname{End}(J_k)^0$. Hence the \mathbb{Q} linear endomorphism of $\mathbb{Q}[Fr]$ given by multiplication by Fr is injective. Because $\mathbb{Q}[Fr]$ is finite dimensional the endomorphism is also surjective and therefore $Fr^{-1} \in \mathbb{Q}[Fr]$. Again by the relation in claim 4 we obtain $Fr^{\dagger} \in \mathbb{Q}[Fr]$. So, by the properties of the Rosati involution from section $2.5 (\cdot)^{\dagger} : \mathbb{Q}[Fr] \to \text{End}^{0}(J_{k}) \text{ maps into } \mathbb{Q}[Fr].$

Let $0 \neq a \in \mathbb{Q}[Fr]$. Define $b := a^{\dagger} \cdot a$. By the positivity of the Rosati involution 2.18 $\operatorname{tr}(b) =$ $\operatorname{tr}(a^{\dagger} \cdot a) > 0$. So, $b \neq 0$. As $b^{\dagger} = b$ also $\operatorname{tr}(b^2) = \operatorname{tr}(b^{\dagger}b) > 0$, again by the positivity of the Rosati involution 2.18, and hence $b^2 \neq 0$. Similarly, $b^4 \neq 0$ and by induction $b^{2m} \neq 0$ for all $m \geq 0$. Hence b is not nilpotent. Because $\mathbb{Q}[Fr]$ is commutative, if a was nilpotent, then also b would be nilpotent. We conclude that $\mathbb{Q}[Fr]$ is reduced.

Since Q[Fr] is a finite commutative Q-algebra, i.e. Artinian, it has a finite number of prime ideals $\mathfrak{m}_1, \ldots, \mathfrak{m}_j$ each of which is maximal. Since $\mathbb{Q}[Fr]$ is reduced, we see that $\bigcap_{i=1}^{j} \mathfrak{m}_i = 0$. So, by the chinese reminder theorem $\mathbb{Q}[Fr] \cong \prod_{i=1}^j K_i$ for $K_i := \mathbb{Q}[Fr]/\mathfrak{m}_i$ a field. Any automorphism τ of $\mathbb{Q}[Fr]$ maps a maximal ideal to a maximal ideal, i.e. there is a permutation $\sigma \in S_i$, for S_i the symmetric group in j-letters, and isomorphisms $\tau_i: K_i \to K_{\sigma(i)}$ such that $\tau(a_1, \ldots, a_j) = (b_1, \ldots, b_j)$ for $b_{\sigma(i)} = \tau_i(a_i)$ and $a_i, b_i \in K_i$. The Rosati involution is an automorphism of $\mathbb{Q}[Fr]$ as we have seen that it restricts to a map $\mathbb{Q}[Fr] \to \mathbb{Q}[Fr]$, is linear and its own inverse. Further, $(\cdot)^{\dagger}$ is multiplicative because $\mathbb{Q}[Fr]$ is commutative. For $\tau = \dagger$ the permutation σ from above must be trivial: Else, for $\sigma(i) \neq i$ and $\alpha := (0, \dots, 0, 1, 0 \dots 0) \in \mathbb{Q}[Fr], 1$ in the i-th spot, $\operatorname{tr}(\alpha^{\dagger} \cdot \alpha) = 0$, which contradicts corollary 2.18.

Hence \dagger preserves the factors of $\mathbb{Q}[Fr]$ and is a positive-definite involution on each of them. The involution extends by linearity (equivalently by continuity) to a positive-definite involution of $\mathbb{Q}[\mathrm{Fr}] \otimes \mathbb{R}$, i.e. $(\cdot)^{\dagger} : \mathbb{Q}[\mathrm{Fr}] \otimes \mathbb{R} \to \mathbb{Q}[\mathrm{Fr}] \otimes \mathbb{R}$ is an \mathbb{R} -automorphism that is its own inverse and there exists $\operatorname{tr}: \mathbb{Q}[\operatorname{Fr}] \otimes \mathbb{R} \to \mathbb{R}$, which is \mathbb{R} -linear such that $\operatorname{tr}(a^{\dagger} \circ a) > 0$ for all $a \in \mathbb{Q}[\operatorname{Fr}] \otimes \mathbb{R}$.

The above remarks also apply to $\mathbb{Q}[Fr] \otimes \mathbb{R}$: it is a finite \mathbb{R} algebra and a product of fields, where $\dagger: \mathbb{Q}[\operatorname{Fr}] \otimes \mathbb{R} \to \mathbb{Q}[\operatorname{Fr}] \otimes \mathbb{R}$ is a positive-definite involution that preserves each factor of $\mathbb{Q}[\operatorname{Fr}] \otimes \mathbb{R}$.

Since any finite field extension of \mathbb{R} is either \mathbb{R} itself or isomorphic to \mathbb{C} , each factor of $\mathbb{Q}[\mathrm{Fr}] \otimes \mathbb{R}$ is either \mathbb{R} or \mathbb{C} .

The field \mathbb{R} has no nontrivial automorphisms at all, and so $(\cdot)^{\dagger}$ must act on a real factor of $\mathbb{Q}[Fr] \otimes \mathbb{R}$ as the identity map.

The field \mathbb{C} has only two automorphisms of finite order: the identity map and complex conjugation. The identity on \mathbb{C} is not positive definite, else $0 < \operatorname{tr}(i \cdot i) = \operatorname{tr}(-1) = -1 \operatorname{tr}(1)$, which contradicts that $tr(1) = tr(1 \cdot 1) > 0$. Hence, $(\cdot)^{\dagger}$ must act on the complex factors as conjugation.

Now given any homomorphism of commutative \mathbb{Q} -algebras $\rho: \mathbb{Q}[Fr] \to \mathbb{C}$.

Then $\rho \otimes 1 : \mathbb{Q}[Fr] \otimes \mathbb{R} \to \mathbb{C} \otimes_{\mathbb{Q}} \mathbb{R}$ is \mathbb{R} linear, so for any $a \in \mathbb{Q}[Fr]$

$$\rho(a^{\dagger}) \otimes 1 = (\rho \otimes 1)(a^{\dagger} \otimes 1) = (\rho \otimes 1)((a \otimes 1)^{\dagger}) = (\rho \otimes 1)(\overline{a \otimes 1})$$
$$= \overline{(\rho \otimes 1)(a \otimes 1)} = \overline{\rho(a) \otimes 1} = \overline{\rho(a)} \otimes 1$$

where $\overline{a \otimes 1}$ denote complex conjugation in every coordinate of $a \otimes 1 = (a_1, \dots, a_j) \in \mathbb{Q}[Fr] \otimes \mathbb{R}$. So, by flatness of the \mathbb{Q} module $\mathbb{Q}[Fr]$ we have $\rho(a^{\dagger}) = \overline{\rho(a)}$.

Let $\mu \in \mathbb{Q}[x]$ be the unique polynomial with leading coefficient 1 that generators the kernel of $\mathbb{Q}[x] \to \mathbb{Q}[\mathrm{Fr}], x \mapsto \mathrm{Fr}$. Then the map $\mathbb{Q}[x]/(\mu) \to \mathbb{Q}[\mathrm{Fr}], x + (\mu) \mapsto \mathrm{Fr}$ is an isomorpism.

Let $\alpha \in \mathbb{C}$ be a root of μ . The ring-homomorphism $\psi : \mathbb{Q}[x] \to \mathbb{C}$, $f \mapsto f(\alpha)$ factors as $\mathbb{Q}[x] \to \mathbb{Q}[x]/(\mu) \xrightarrow{x+(\mu)\mapsto \alpha} \mathbb{C}$. So, we obtain a ring-homomorphism $\rho : \mathbb{Q}[\mathrm{Fr}] \to \mathbb{C}$ sending Fr to α . This yields $|\alpha|^2 = \overline{\alpha} \cdot \alpha = \overline{\rho(\mathrm{Fr})}\rho(\mathrm{Fr}) = \rho(\mathrm{Fr}^\dagger)\rho(\mathrm{Fr}) = \rho(\mathrm{Fr}^\dagger) \circ \mathrm{Fr} \stackrel{\mathrm{Claim}}{=} {}^4\rho(q) = q$. Now let l be a prime $l \neq \mathrm{char}(k)$. Then the minimal polynomial $\tilde{\mu}$ of $V_l(\mathrm{Fr}) \in \mathrm{End}_{\mathbb{Q}}(V_l(J_k))$

Now let l be a prime $l \neq \operatorname{char}(k)$. Then the minimal polynomial $\tilde{\mu}$ of $V_l(\operatorname{Fr}) \in \operatorname{End}_{\mathbb{Q}}(V_l(J_k))$ divides μ , because $\mu(V_l(\operatorname{Fr})) \stackrel{(15)}{=} V_l(\mu(\operatorname{Fr})) = V_l(0) = 0$. Hence, all roots of $\tilde{\mu}$ are roots of μ and therefore have absolute value \sqrt{q} . But the characteristic polynomial of $V_l(\operatorname{Fr})$ has the same roots as $\tilde{\mu}$, so claim 5 follows by theorem 1.22.

Equation (31) in conjunction with the Riemann hypothesis give the Hesse-Weil bound:

$$|\#C(\mathbb{F}_{q^n} - (q^n + 1))| = \left| \sum_{i=1}^{2g} \alpha_i^n \right| \le \sum_{i=1}^{2g} |\alpha_i|^n = 2g(\sqrt{q})^n.$$

The identity $\ln(1-t) = -\sum_{n=1}^{\infty} \frac{t^n}{n}$ implies that

$$\ln\left(\frac{\prod_{i=1}^{2g}(1-\alpha_{i}x)}{(1-x)(1-qx)}\right) = -\ln(1-x) + \sum_{i=1}^{2g}\ln(1-x\alpha_{i}) - \ln(1-qx)$$

$$= \sum_{n=1}^{\infty} \left(\frac{x^{n}}{n}\right) - \sum_{i=1}^{2g} \left(\sum_{n=1}^{\infty} \frac{x^{n}\alpha_{i}^{n}}{n}\right) + \sum_{n=1}^{\infty} \left(\frac{(qx)^{n}}{n}\right)$$

$$= \sum_{n=1}^{\infty} \left(\left(1-\sum_{i=1}^{2g}\alpha_{i}^{n}+q^{n}\right)\frac{x^{n}}{n}\right) = \sum_{n=1}^{\infty} \left(\#C(\mathbb{F}_{q^{n}})\frac{x^{n}}{n}\right),$$

where we used equation (31) for the last equality. This proves the rationality of the zeta function. Moreover, $\prod_{i=1}^{2g} (1 - \alpha_i x) = x^{2g} \prod_{i=1}^{2g} (\frac{1}{x} - \alpha_i) = x^{2g} P(\frac{1}{x})$ has integer coefficients, because $P \in \mathbb{Z}[x]$ by theorem 1.22.

Claim 6: The map $1 - \operatorname{Fr}^n : J_k \to J_k$ is an étale morphism: Since k is algebraically closed it suffices to proof that $1 - \operatorname{Fr}^n$ induces an isomorphism on tangent spaces for all k-valued points. But we have already seen that Fr^n induces the zero map on tangent spaces, hence $1 - \operatorname{Fr}^n$ is the identity on tangent spaces and claim 6 follows.

In particular, $1-\operatorname{Fr}^n$ is an isogeny by theorem 1.4 and by equation (1) $h^0(\ker(1-\operatorname{Fr}^n), \mathcal{O}_{\ker(1-\operatorname{Fr}^n)}) = \deg(1-\operatorname{Fr}^n)$. Now by claim 6 the fiber $\ker(1-\operatorname{Fr}^n)$ is reduced and finite over the algebraically closed field k, so $\# \ker(1-\operatorname{Fr}^n)(k) = h^0(\ker(1-\operatorname{Fr}^n), \mathcal{O}_{\ker(1-\operatorname{Fr}^n)})$. All in all, we obtain

$$\#\{x \in J_k(k) : \operatorname{Fr}^n(x) = x\} = \# \ker(1 - \operatorname{Fr}^n)(k) = h^0(\ker(1 - \operatorname{Fr}^n), \mathcal{O}_{\ker(1 - \operatorname{Fr}^n)}) = \deg(1 - \operatorname{Fr}^n).$$

Note that claim 2 and claim 3 can be analogously be proven for the absolute Frobenius $F_J: J \to J$ and its base change $\operatorname{Fr} = F_J \times 1_k: J_k = J \times_{\mathbb{F}_q} k \to J_k$. So, applying equation (30) to the variety $J_k = J \times_{\mathbb{F}_q} k$ shows that $\#J(\mathbb{F}_{q^n}) = \#\{x \in J_k(k): \operatorname{Fr}^n(x) = x\}$.

Now $\#J(\mathbb{F}_{q^n}) = \#J_{\mathbb{F}_{q^n}}(\mathbb{F}_{q^n})$ and the latter equals $\#\operatorname{Pic}^0(C_{\mathbb{F}_{q^n}})$ whenever $C_{\mathbb{F}_{q^n}}$ has an \mathbb{F}_{q^n} -valued point by equation (7) and the discussion in section 2.7 b). This uses that $J_{\mathbb{F}_{q^n}} = J \times_{\mathbb{F}_q} \mathbb{F}_{q^n}$ is the Jacobian variety of the curve $C_{\mathbb{F}_{q^n}}$ over \mathbb{F}_{q^n} .

Let P_{Fr^n} be the characteristic polynomial of Fr^n . By theorem 1.22 the roots of P_{Fr^n} are $\alpha_1^n, \ldots, \alpha_{2g}^n$. Further, by definition of P_{Fr^n} we have $P_{\operatorname{Fr}^n}(1) = \deg(1 - \operatorname{Fr}^n)$.

All in all, for n big enough, i.e. such that $C(\mathbb{F}_{q^n}) \neq \emptyset$,

$$\#\operatorname{Pic}^{0}(C_{\mathbb{F}_{q^{n}}}) = \#J_{\mathbb{F}_{q^{n}}}(\mathbb{F}_{q^{n}}) = \#\{x \in J_{k}(k) : \operatorname{Fr}^{n}(x) = x\} = \operatorname{deg}(1 - \operatorname{Fr}^{n}) = P_{\operatorname{Fr}^{n}}(1) = \prod_{i=1}^{2g} (1 - \alpha_{i}^{n}).$$

This prove equation (27) and therefore completes the proof.

Example 3.2 (Elliptic Curves). Suppose the genus of C is equal to one. Then the Hesse-Weil bound gives us that $\#C(\mathbb{F}_q) = 1 - (\alpha_1 + \alpha_2) + q$ and by the Riemann-Hypothesis $|\alpha_1 + \alpha_2| \leq 2\sqrt{q}$. Therefore, $\#C(\mathbb{F}_q) \geq 1 - 2\sqrt{q} + q = (\sqrt{q} - 1)^2$. Hence C will admit an \mathbb{F}_q valued point, i.e. C is an elliptic curve, see remark 2.4.

References

- [1] T. Stacks project authors, "The stacks project." https://stacks.math.columbia.edu, 2023.
- [2] J. S. Milne, Algebraic geometry. Allied Publishers, 2012.
- [3] R. Vakil, "The rising sea: Foundations of algebraic geometry," preprint, 2017.
- [4] G. van der Geer and B. Moonen, "Abelian varieties," Book in preparation, 2007.
- [5] D. Mumford, C. P. Ramanujam, and J. I. Manin, Abelian varieties, vol. 5. Oxford university press Oxford, 1974.
- [6] J. S. Milne, "Abelian varieties," Arithmetic geometry, pp. 103–150, 1986.
- [7] S. Bosch, Algebraic geometry and commutative algebra. Springer, 2013.
- [8] R. Hartshorne, Algebraic geometry, vol. 52. Springer Science & Business Media, 2013.
- [9] S. Bosch, W. Lütkebohmert, and M. Raynaud, *Néron models*, vol. 21. Springer Science & Business Media, 2012.
- [10] J. S. Milne, Algebraic number theory. JS Milne, 2008.
- [11] S. Lang, Abelian varieties. Dover Publications, 2019.
- [12] A. Grothendieck, "Éléments de géométrie algébrique: Iii. étude cohomologique des faisceaux cohérents, première partie," Publications Mathématiques de l'IHÉS, vol. 11, pp. 5–167, 1961.
- [13] N. M. Katz and B. Mazur, "Arithmetic moduli of elliptic curves.(am-108), volume 108," in *Arithmetic Moduli of Elliptic Curves.(AM-108), Volume 108*, Princeton University Press, 2016.
- [14] A. Grothendieck, "Technique de descente et théorèmes d'existence en géométrie algébrique. i. généralités. descente par morphismes fidèlement plats," Séminaire Bourbaki, vol. 5, pp. 299–327, 1959.
- [15] W. Fulton, Intersection theory, vol. 2. Springer Science & Business Media, 2013.