Computation of Kronecker's Canonical Form in a Computer Algebra System

Giacomo Trapani

Università di Pisa

7/10/2022

Contenuti

- 1 Forma canonica di Jordan: definizione, proprietà.
- 2 Calcolo simbolico, esempio.
- 3 Equazioni differenziali lineari algebriche a coefficienti costanti.
- 4 Forma canonica di Kronecker: definizione.
- Pencil regolari di matrici: polinomi invarianti, divisori elementari, forma canonica di Kronecker per pencil regolari.
- 6 Pencil singolari di matrici: determinare polinomi nel kernel di un pencil singolare, indice minimo per le colonne, indice minimo per le righe, teorema di riduzione.

Per il codice sorgente e un'analisi approfondita, si rimanda a https://github.com/liviusi/kronecker-canonical-form

Forma canonica di Jordan

Definizione

Una matrice J diagonale a blocchi viene detta matrice di Jordan se e solo se ogni blocco lungo la diagonale è quadrato ed è del tipo

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{bmatrix}.$$

Ogni matrice è simile a una matrice di Jordan.

Forma canonica di Jordan

Definizione

Una matrice J diagonale a blocchi viene detta matrice di Jordan se e solo se ogni blocco lungo la diagonale è quadrato ed è del tipo

$$\begin{bmatrix} \lambda & 1 & 0 & \cdots & 0 \\ 0 & \lambda & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \lambda & 1 \\ 0 & 0 & 0 & 0 & \lambda \end{bmatrix}.$$

Ogni matrice è simile a una matrice di Jordan.

Calcolo simbolico

- Il calcolo simbolico (o computer algebra) utilizzando sia variabili sia valori numerici - permette il calcolo esatto di espressioni matematiche.
- Il sistema per il calcolo simbolico scelto è *SageMath*.

Calcolo simbolico

- Il calcolo simbolico (o computer algebra) utilizzando sia variabili sia valori numerici permette il calcolo esatto di espressioni matematiche.
- Il sistema per il calcolo simbolico scelto è SageMath.

Calcolo simbolico

Esempio: calcolo del determinante di una matrice

Calcoliamo il determinante della matrice A, con

$$A = \begin{bmatrix} \sqrt{3} & 1 \\ 3 & \sqrt{3} \end{bmatrix}.$$

```
sage: A = matrix(SR, [[sqrt(3), 1], [3, sqrt(3)]])
sage: A.det().is_zero()
True
sage: A.change_ring(CDF).det().is_zero()
```

False

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t).$$

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t).$$

Consideriamo le equazioni differenziali del tipo

$$\dot{x}(t) + Ax(t) = f(t), \qquad A \in \mathbb{C}^{m \times n}.$$

- Le soluzioni sono caratterizzate dalla forma canonica di Jordan della matrice A.
- Generalizziamo. Introduciamo una matrice $B \in \mathbb{C}^{m \times n}$. Dunque, consideriamo le equazioni del tipo

$$B\dot{x}(t) + Ax(t) = f(t).$$

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice — B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (*A*, *B*) (detta anche *linear pencil* o, per brevità, *pencil*).

- B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice – B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla forma canonica di Kronecker della coppia di matrici (A, B) (detta anche linear pencil o, per brevità, pencil).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice – B⁻¹A.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (*A*, *B*) (detta anche *linear pencil* o, per brevità, *pencil*).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice $-B^{-1}A$.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla *forma canonica di Kronecker* della coppia di matrici (A, B) (detta anche *linear pencil* o, per brevità, *pencil*).

- 1 B non è singolare.
 - Le soluzioni sono caratterizzate dalla forma di Jordan della matrice $-B^{-1}A$.
- 2 B è singolare.
 - Essendo B una matrice singolare, alcune equazioni nel sistema lineare potrebbero essere algebriche o, in altre parole, non contenere derivate.
 - Le soluzioni sono caratterizzate dalla forma canonica di Kronecker della coppia di matrici (A, B) (detta anche linear pencil o, per brevità, pencil).

Forma canonica di Kronecker

Teorema (Forma canonica di Kronecker)

Sia $\Gamma(\lambda) = A + \lambda B$ un pencil di matrici arbitrarie con A, B di dimensione $m \times n$. Esistono P, Q matrici quadrate costanti invertibili delle dimensioni appropriate tali che

 h, g sono il numero massimo di soluzioni costanti e indipendenti delle equazioni

$$(A + \lambda B)\mathbf{x} = 0,$$
 $(A^T + \lambda B^T)\mathbf{y} = 0.$

■ I blocchi sono del tipo:

$$L = \begin{bmatrix} L_{\epsilon_{h+1}} & & & & \\ & L_{\epsilon_{h+2}} & & & \\ & & \ddots & \\ & & & L_{\epsilon_p} \end{bmatrix}, \qquad L_i^{(i,i+1)} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & & \vdots & \vdots \\ \vdots & \vdots & \ddots & & \\ \end{bmatrix}$$

 h, g sono il numero massimo di soluzioni costanti e indipendenti delle equazioni

$$(A + \lambda B)\mathbf{x} = 0,$$
 $(A^T + \lambda B^T)\mathbf{y} = 0.$

■ I blocchi sono del tipo:

$$L = \begin{bmatrix} L_{\epsilon_{h+1}} & & & \\ & L_{\epsilon_{h+2}} & & \\ & & \ddots & \\ & & & L_{\epsilon_p} \end{bmatrix}, \quad L_i^{(i,i+1)} = \begin{bmatrix} \lambda & 1 & 0 & \dots & 0 & 0 \\ 0 & \lambda & 1 & & \vdots & \vdots \\ \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & & \lambda & 1 \end{bmatrix}$$

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{\sigma}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{5})} \end{bmatrix}$$

■ I blocchi N^u sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{d}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{s})} \end{bmatrix}$$

■ I blocchi N^u sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

$$L^{T} = \begin{bmatrix} L_{\eta_{h+1}}^{T} & & & \\ & L_{\eta_{h+2}}^{T} & & \\ & & \ddots & \\ & & & L_{\eta_{q}^{T}} \end{bmatrix}, \qquad N = \begin{bmatrix} N^{(u_{1})} & & & \\ & N^{(u_{2})} & & \\ & & \ddots & \\ & & & N^{(u_{s})} \end{bmatrix}$$

■ I blocchi *N^u* sono del tipo

$$N^{(u)} = I^{(u)} + \lambda H^{(u)}.$$

■ *G* è una matrice di Jordan.

Pencil di matrici

Distinguiamo due tipi di pencil di matrici:

Definizione (Pencil lineare regolare)

Un pencil di matrici (A, B) viene definito *regolare* se e solo se A e B sono matrici quadrate della stessa dimensione e il determinante $det(A + \lambda B)$ non è identicamente zero.

Definizione (Pencil lineare singolare)

Un pencil di matrici non regolare viene definito singolare.

Polinomi invarianti

Assumiamo che il pencil $\Gamma(\lambda)=A+\lambda B$ abbia rango r. Sia $D_j(\lambda)$ il massimo comun divisore dei minori di ordine j di $\Gamma(\lambda)$ (con j=1,...,r). Assumiamo senza perdita di generalità $D_r(\lambda)$ abbia coefficiente 1 e $D_0(\lambda)=1$. Definiamo polinomi invarianti del pencil $\Gamma(\lambda)$ le frazioni

$$i_1(\lambda) = \frac{D_r(\lambda)}{D_{r-1}(\lambda)}, \ i_2(\lambda) = \frac{D_{r-1}(\lambda)}{D_{r-2}(\lambda)}, \ ..., \ i_r(\lambda) = D_1(\lambda).$$

Siano p_i polinomi irriducibili. Possiamo scrivere l'espansione dei polinomi invarianti in fattori irriducibili come

$$i_1(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{1,i}}, \ i_2(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{2,i}}, \ \dots$$
$$i_r(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{r,i}}.$$

Assumiamo che il pencil $\Gamma(\lambda)=A+\lambda B$ abbia rango r. Sia $D_j(\lambda)$ il massimo comun divisore dei minori di ordine j di $\Gamma(\lambda)$ (con j=1,...,r). Assumiamo senza perdita di generalità $D_r(\lambda)$ abbia coefficiente 1 e $D_0(\lambda)=1$. Definiamo polinomi invarianti del pencil $\Gamma(\lambda)$ le frazioni

$$i_1(\lambda) = \frac{D_r(\lambda)}{D_{r-1}(\lambda)}, \ i_2(\lambda) = \frac{D_{r-1}(\lambda)}{D_{r-2}(\lambda)}, \ ..., \ i_r(\lambda) = D_1(\lambda).$$

Siano p_i polinomi irriducibili. Possiamo scrivere l'espansione dei polinomi invarianti in fattori irriducibili come

$$i_1(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{1,i}}, \ i_2(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{2,i}}, \ \dots$$
$$i_r(\lambda) = \prod_{i=1}^k p_i(\lambda)^{\alpha_{r,i}}.$$

Pencil regolari

Divisori elementari finiti, divisori elementari infiniti

Definizione (Divisori elementari finiti)

Definiamo divisori elementari finiti di $\Gamma(\lambda)$ tutti i polinomi $p_i(\lambda)$ diversi da 1.

Definizione (Divisori elementari infiniti)

Definiamo divisori elementari infiniti di $\Gamma(\lambda)$ i divisori elementari finiti del pencil $\lambda A + B$.

Teorema (Forma canonica di Kronecker - pencil regolari)

Sia $\Gamma(\lambda)=A+\lambda B$ un pencil regolare. Esistono P, Q matrici quadrate costanti invertibili tali che

I blocchi $N^{(u)}$ sono unicamente determinati dai divisori elementari infiniti del pencil, l'ultimo blocco dai divisori elementari finiti.

Teorema (Forma canonica di Kronecker - pencil regolari)

Sia $\Gamma(\lambda)=A+\lambda B$ un pencil regolare. Esistono P, Q matrici quadrate costanti invertibili tali che

I blocchi $N^{(u)}$ sono unicamente determinati dai divisori elementari infiniti del pencil, l'ultimo blocco dai divisori elementari finiti.

Pencil singolari

Determinare un polinomio di grado minimo nel kernel destro

Sia $\Gamma(\lambda)=A+\lambda B$ un pencil singolare di matrici. Iterando sul valore di k=0 con passo 1, consideriamo la famiglia di matrici $M_k^{(A,B)}$ di dimensione $(k+2)\times(k+1)$

$$M_0^{(A,B)} = \begin{bmatrix} A \\ B \end{bmatrix}, \quad M_1^{(A,B)} = \begin{bmatrix} A & 0 \\ B & A \\ 0 & B \end{bmatrix}, \quad M_k^{(A,B)} = \begin{bmatrix} A & 0 & \dots & 0 \\ B & A & \vdots \\ 0 & B & \ddots & \vdots \\ \vdots & \vdots & \ddots & A \\ 0 & 0 & \dots & B \end{bmatrix}.$$

La matrice di base del kernel destro di M_k , divisa in blocchi di dimensione k+1, identifica un polinomio di grado k nel kerne destro di $\Gamma(\lambda)$.

Pencil singolari

Determinare un polinomio di grado minimo nel kernel destro

Sia $\Gamma(\lambda)=A+\lambda B$ un pencil singolare di matrici. Iterando sul valore di k=0 con passo 1, consideriamo la famiglia di matrici $M_k^{(A,B)}$ di dimensione $(k+2)\times(k+1)$

$$M_0^{(A,B)} = \begin{bmatrix} A \\ B \end{bmatrix}, \quad M_1^{(A,B)} = \begin{bmatrix} A & 0 \\ B & A \\ 0 & B \end{bmatrix}, \quad M_k^{(A,B)} = \begin{bmatrix} A & 0 & \dots & 0 \\ B & A & \vdots \\ 0 & B & \ddots & \vdots \\ \vdots & \vdots & \ddots & A \\ 0 & 0 & \dots & B \end{bmatrix}.$$

La matrice di base del kernel destro di M_k , divisa in blocchi di dimensione k+1, identifica un polinomio di grado k nel kernel destro di $\Gamma(\lambda)$.

Assumiamo che il suo rango r sia minore del numero di colonne n. Allora, esistono soluzioni non banali $\mathbf{x_1}(\lambda), ..., \mathbf{x_r}(\lambda)$ dell'equazione

$$(A + \lambda B)\mathbf{x} = 0.$$

Il numero massimo di soluzioni linearmente indipendenti è n-r. Scegliamo sempre il polinomio di grado minimo e, iterando, otteniamo la sequenza

$$\epsilon_1 \leq \epsilon_2 \leq ... \leq \epsilon_p$$
.

Definiamo i termini ϵ_i indici minimi per le colonne.

Assumiamo che il suo rango r sia minore del numero di colonne n. Allora, esistono soluzioni non banali $\mathbf{x_1}(\lambda), ..., \mathbf{x_r}(\lambda)$ dell'equazione

$$(A + \lambda B)\mathbf{x} = 0.$$

Il numero massimo di soluzioni linearmente indipendenti è n-r. Scegliamo sempre il polinomio di grado minimo e, iterando, otteniamo la sequenza

$$\epsilon_1 \leq \epsilon_2 \leq ... \leq \epsilon_p$$
.

Definiamo i termini ϵ_i indici minimi per le colonne.

Teorema (Teorema di riduzione)

Se il polinomio di grado minimo nel kernel destro ha grado $\epsilon>0$, allora esistono $P,\ Q$ matrici quadrate costanti invertibili tali che

$$P\Gamma(\lambda)Q = \begin{bmatrix} L_{\epsilon} & 0 \\ 0 & \widehat{A} + \lambda \widehat{B} \end{bmatrix}.$$

Il pencil ottenuto $\widehat{\Gamma}(\lambda)=\widehat{A}+\lambda\widehat{B}$ non ha polinomi di grado inferiore a ϵ nel proprio kernel destro.

Teorema (Teorema di riduzione)

Se il polinomio di grado minimo nel kernel destro ha grado $\epsilon>0$, allora esistono $P,\ Q$ matrici quadrate costanti invertibili tali che

$$P\Gamma(\lambda)Q = \begin{bmatrix} L_{\epsilon} & 0 \\ 0 & \widehat{A} + \lambda \widehat{B} \end{bmatrix}.$$

Il pencil ottenuto $\widehat{\Gamma}(\lambda) = \widehat{A} + \lambda \widehat{B}$ non ha polinomi di grado inferiore a ϵ nel proprio kernel destro.

