Algorithmique 2

L3 RI

Table des matières

1	NP-Complétude	1
	1.1 Définitions	
	1.2 Satisfiabilité d'une formule	
	1.3 Graphes	2
2	Algorithmes d'approximation	3
3	Algorithmes probabilistes	3
4	Géométrie algorithmique	3
5	Algorithmes distribués	3

1 NP-Complétude

1.1 Définitions

Réduction Soient L_1 , L_2 des langages. Une réduction polynomiale de L_1 à L_2 est une fonction f calculable en temps polynomial telle que :

$$f(x) \in L_2 \iff x \in L_1$$

On note $L_1 \leq L_2$ (L_1 plus facile que L_2 = Si on sait résoudre L_2 , on sait résoudre L_1)

FIGURE 1 – Schéma de réduction de L_1 à L_2

Classe NP Soit L un langage. L est dit dans la classe NP s'il existe une machine de Turing non-déterministe en temps polynomial par rapport à la taille de l'entrée qui décide L.

NP-Complétude Soit L un langage. L est dit NP-dur si pour tout $L' \in \text{NP}$, $L' \leq L$. L est dit NP-complet si $L \in \text{NP}$ et L est NP-dur.

Remarques Si un problème NP-complet est dans P, alors P = NP. Pour montrer que L' est NP-dur, il suffit de montrer qu'il existe L NP-dur tel que $L \le L'$.

1.2 Satisfiabilité d'une formule

Problème de décision : SAT

Entrée φ formule de la logique propositionnelle

Sortie Oui si φ est satisfiable, c'est-à-dire s'il existe une valuation v des variables qui rend φ vraie

Théorème de Cook SAT est NP-complet. (Réduction de L à SAT pour $L \in NP$ en considérant une machine de Turing M non-déterministe qui décide L. On construit une formule qui traduit une exécution de M.)

Problème de décision : i-SAT

Restriction de SAT à des formules en forme normale conjonctive (CNF) tel que chaque clause contient au plus i littéraux

Théorème 3-SAT est NP-complet. (*Réduction de SAT à 3-SAT*.)

Théorème 2-SAT est dans P. (Réduction de 2-SAT à la détermination des CFC d'un graphe.)

Problème de décision : MAX-2-SAT

Entrée φ formule en 2-forme normale conjonctive et $k \in \mathbb{N}$

Sortie Oui s'il existe une valuation qui satisfait au moins k clauses de φ

Théorème MAX-2-SAT est NP-complet. (*Réduction de 3-SAT à MAX-2-SAT*.)

1.3 Graphes

Problème de décision : ENS_INDEP

Entrée G = (V, E) un graphe non-orienté et $k \in \mathbb{N}$

Sortie Oui s'il existe $V' \subseteq V$ tel que |V'| = k et $(V' \times V') \cap E = \emptyset$

Théorème ENS_INDEP est NP-complet. (Réduction de 3-SAT à ENS_INDEP.)

Problème de décision : MAX_CUT

Entrée G = (V, E) un graphe non-orienté et $k \in \mathbb{N}$

Sortie Oui s'il existe S_1 et S_2 , $S=S_1 \uplus S_2$ et $\#\{(u,v) \in E \mid u \in S_1 \text{ et } v \in S_2\} \geq k$

Théorème MAX CUT est NP-complet. (Réduction de MAX-2-SAT à MAX CUT.)

- 2 Algorithmes d'approximation
- 3 Algorithmes probabilistes
- 4 Géométrie algorithmique
- 5 Algorithmes distribués