Übungen zur Vorlesung

Analysis für Informatiker und Lehramt

Abgabe: Mi. 21.10.2015 (direkt im Anschluss an die Vorlesung

oder bis 8:40 Uhr, Zimmer A 514, Postfach Radl)

Mathematisches Institut Universität Leipzig Agnes Radl

Blatt 1

Aufgabe 1

Seien A und B mathematische Aussagen. Vervollständigen Sie nachstehende Wahrheitstafel

A	B	$\neg(A \land B)$	$\neg (A \lor B)$	$\neg A \land \neg B$	$\neg A \lor \neg B$
w	w				
w	f				
f	w				
f	f				

Was fällt auf?

Aufgabe 2

Betrachten Sie die Menge $M := \{3, 6, 9\}.$

Sei A(x) der Ausdruck: "x ist ungerade und x ist durch 3 teilbar."

Formulieren Sie

$$\forall x \in M : A(x) \tag{*}$$

und

$$\exists x \in M : A(x) \tag{**}$$

in Worten.

Formulieren Sie die Negation von (*) und (**) in Symbolen und in Worten. Welche dieser Aussagen sind wahr?

Aufgabe 3

(a) Betrachten Sie die Mengen $X := \{1, 2, 3, 4\}, Y := \{3, 4, 5\}$ und $Z := \{1, 3\}$. Geben Sie folgende Mengen an:

$$X \cap Y$$
, $Z \setminus X$, $\mathbb{P}(Y)$, $X \times Z$.

(b) Seien A, B und C Mengen. Veranschaulichen Sie die Mengen

$$(A \cap B) \cup C$$
, $(A \cup B) \cap C$, $(A \cup C) \cap (B \cup C)$, $(A \cap C) \cup (B \cap C)$

durch Venn-Diagramme. Was fällt auf?

Bitte wenden!

Aufgabe 4

Entscheiden sie jeweils, welche Aussagen zutreffen.

- (a) Die Negation der Aussage A: "Alle natürlichen Zahlen sind gerade." ist:
 - (i) $\neg A :$ "Alle natürlichen Zahlen sind ungerade."
 - (ii) $\neg A$: "Es gibt eine natürliche Zahl, die ungerade ist."
 - (iii) $\neg A$: "Es gibt gerade und ungerade natürliche Zahlen."
- (b) Ist $M := \{1, 2, 3\}$, so gilt:
 - (i) $1 \in M$.
 - (ii) $\{1\} \in M$.
 - (iii) $1 \subseteq M$.
 - (iv) $\{1\} \subseteq M$.
- (c) Ist $M := \{1, 2\}$, so gilt:
 - (i) $2 \in \mathbb{P}(M)$.
 - (ii) $2 \subseteq \mathbb{P}(M)$.
 - (iii) $\{2\} \in \mathbb{P}(M)$.
 - (iv) $\{2\} \subseteq \mathbb{P}(M)$.
- (d) Ist $M := \{1, 2\}$ und $\tilde{M} := \{3, 4\}$, so gilt:
 - (i) $\mathbb{P}(M) \cap \mathbb{P}(\tilde{M}) = \emptyset$.
 - (ii) $\mathbb{P}(M) \cap \mathbb{P}(\tilde{M}) = \{\emptyset\}.$