This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

update | conference

Exhibit "K" attached to Declaration of John C. Rockett. Ph.D.

)T Vol. 7, No. 15 August 2002

Macroresults through Microarrays

John C. Rockett, Reproductive Toxicology Division (MD-72), National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, 2525 East Highway 54, Durham, NC 27711, USA; tel: +1 919 541 2071, fax: +1 919 541 4017, e-mail: rockett.john@epa.gov

The third enactment of Cambridge Healthtech Institute's Macroresults through Microarrays meeting was held in Boston (MA, USA) from 29 April-1 May 2002. The subtheme of this year's meeting was 'advancing drug discovery', a widely touted application for array technology.

The evolution of microarrays

If you were asked 'Who first conceived of the idea of microarrays', who would come to mind? Mark Schena perhaps, first author of the seminal 1995 paper on cDNA arrays [1]? Maybe Pat Brown, Schena's then supervisor? Or perhaps Stephen Fodor, the primary driver behind Affymetrix's (http://www. affymetrix.com) oligonucleotide-based platform [2]. Brits might even chant the name of Ed Southern [3]. Well, according to Roger Ekins (University College London Medical School; http://www. ucl.ac.uk/medicine/) all these answers would be wrong. It was in fact Ekins and his colleagues who first conceivedof and patented 'a new generation of ultrasensitive, miniaturized assays for protein and DNA-RNA measurement based on the use of microarrays' in the mid 1980s [4]. The concept and potential of array technology was more fully described in a later publication, in which Ekins et al. [5] concluded that antibody microspots of -50 μm² could be achieved, and that as many as 2 million different immunoassays could, in principle, be accommodated on a surface area of 1 cm².

Technological innovation

In practice, it took a different biological molecule (DNA), a different research

group, and a leap into microfabrication technology to even begin approaching these kinds of densities [Affymetrix patent 6045996 talks of one million spots cm-2]. Of course, advancing technology is one of the driving engines behind the genomics juggernaut, and we are already seeing '4th generation' machines for fabricating DNA chips. If the company representatives at this meeting are to be believed (and their cases seemed strong), spotting is out, and in situ fabrication of oligonucleotide-based 'iterative custom arrays' is in. Whether you go with the Combimatrix's (http:// www.combimatrix.com) electrochemically directed synthesis and detection system, febit's (http://www.febit.com) Geniom® technology, or Nimblegen's (http://www.nimblegen.com) Maskless Array Synthesizer technology is a matter of personal choice. However, each of these machines provides the flexibility to design variable length oligonucleotide probes from sequences inputted by the user, and then perform in situ synthesis of an array. Each system also boasts unique advantages. For example, Combimatrix's biological array processor is a semiconductor coated with a 3D layer of porous material in which DNA, RNA, peptides or small molecules can be synthesized or immobilized within discrete test sites, while febit's Geniom One® is a fully integrated gene-expression analysis system with minimal user hands-on time - the probe sequences are programmed, the RNA samples inserted, and the gene expression data is pumped out a few hours later.

Cell- and tissue-based arrays

Array technology is in most people's minds firmly linked with gene-expression profiling. Fewer are aware that cell- and tissue-based arrays have been developed, and how they can provide a vital extra dimension to research. In support of this, Barry Bochner gave an update on the cell-based array system that Biolog (http://www.biolog.com) has produced for simultaneously measuring the effects of one gene in the cell under thousands of growth conditions (see [6] for further details). David Walt (Tufts University; http://www.tufts. edu/) is developing single live cell arrays using optical imaging fiber (OIF) technology. An array of microwells is fabricated on the face of an OIF at densities of up to 10 million wells cm-2. Cells are then added to the wells and disperse at an average of one cell per well. Physiological and genetic responses of each cell are measured via fluorescence produced by reporter genes (e.g. lacZ, gfp. Assays performed so far include yeast live or dead cell assay, microenvironment pH and O₂ measurements, promotor responses using the lacZ and phoA reporter genes, and protein-protein interactions using the yeast two-hybrid system. The main advantage of this system is that the cells remain alive during the assay, which means a real-time timecourse can be performed and/or the array passed from sample to sample. This would be useful in, for example, the scanning of a combinatorial drug library for specific physiological effects.

Tissue arrays are a useful complementary technology to DNA arrays because they can be used to help validate and

understand the biological and medical significance of gene changes discovered using standard DNA arrays. For example, an array of tumor tissues can be screened for the protein (using immunohistochemistry), message (using in situ hybridization) and copy number (using comparative genomic hybridization) of a gene of interest, to determine if expression of the gene (or lack thereof) is related in any way to survival. They can also be used to predict the probability of clinical failure of lead compounds as a result of toxicity by evaluating the distribution of the drug targets in normal tissue. Spyro Mousses and his co-workers at the National Human Genome Research Institute (http://www.nhgri.nih.gov/index.html) have built such arrays, including a multi-tumor array (-5000 specimens, and sections from 36 normal and 800 metastatic tissues) and a normal tissue array (76 tissue and 332 cell types).

The problem with proteins

It has been said that genomics tells us what might happen, transcriptomics indicates what should happen, and proteomics shows what is happening. The impact of functional proteomics on pharmaceutical R&D is rapidly increasing, and protein arrays are being used increasingly in both basic and applied research. Their use lies not only in comparative protein expression and interaction profiling, but also in diagnostics and drug discovery. However, an increasing number of researchers have found that protein arrays, like their cousins the DNA arrays, present several practical obstacles relating to their production and use. For example, in using Escherichia coli to produce recombinant eukaryotic proteins from a single expression vector, multiple protein products are often produced, suggesting mixes of truncated or otherwise altered proteins. There is also the obvious concern that the proteins might not be modified in a similar manner to

eukaryotic systems. Also, an optimal method for depositing and binding proteins to the selected substrate is yet to be determined, as is the best way to ensure that they are bound in a correctly folded, active conformation.

Several companies have been addressing these problems. Prolinx (http:// www.prolinxinc.com) is one such company, and Karin Hughes described their Versalinx™ chemistry for producing protein, peptide and small-molecule arrays. Versalinx™ uses solution-phase conjugation followed by immobilization, resulting in functional orientation of proteins and peptides on the substrate surface. It also offers the valuable additional benefit of exhibiting low non-specific binding. Sense Proteomic (http://www.senseproteomic.com) is also among those addressing these problems to develop robust protein arrays for drug discovery and clinical applications and has developed functional protein array formats based on specific disease tissues. Subtractive hybridization is used to identify genes with altered expression in breast tumor and cystic fibrosis compared to normal tissue. A high throughput cloning strategy (COVET™) is then used to produce libraries of genes that are tagged, cloned, expressed, purified and finally immobilized on glass slides. Initial validation studies have shown that the vast majority of the immobilized proteins do indeed retain biological function.

Stefan Schmidt and his company (GPC Biotech; http://www.gpcbiotech.de) have moved past the platform development stage and, with their focus firmly on drug discovery, are currently developing kinase-profiling arrays. Kinases are important targets for pharmaceutical drug discovery and therapy, and GPC's aim is to simultaneously detect multiple kinases, obtain activity profiles for different cell types, or analyze the ability of drug candidates to inhibit kinase activity. To do this, recombinant kinase substrates are immobilized on

membranes, incubated with purified kinase, and the substrates measured for the degree of phosphorylation.

Summary · ·

Meetings like this, packed with exciting discoveries and intriguing and interesting innovation, heavily emphasize the pace at which biotechnology is advancing, to the extent that the number of options for genomic and proteomic researchers can become overwhelming. Although data analysis is perhaps the greatest current concern for array users, an increasing challenge will be to determine the approaches and technology that really work, and to do it in a timely manner.

References

- Schena, M. et al. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470
- 2 Fodor, S.P. et al. (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251, 767–773
- 3 Southern, E.M. et al. (1992) Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics 13, 1008–1017
- 4 Ekins, R.P. (1987) US Patent Application 8 803 000
- 5 Ekins, R. et al. (1989) High specific activity chemiluminescent and fluorescent markers: their potential application to high sensitivity and 'multi-analyte' immunoassays. J. Biolum. Chemilum. 4, 59-78
- 6 Rockett, J.C. (2002) Chip, chip, array! Three chips for post-genomic research. *Drug Discov. Today* 7, 458–459

Acknowledgements

I would like to thank Mary Ann Brown (Cambridge Healthtech Institute) and David Dix (US EPA) for critical review of this manuscript prior to submission. This document has been reviewed in accordance with US Environmental Protection Agency policy and approved for publication. Mention of companies, trade names or products does not signify endorsement of such by the EPA.

N. Leigh Anderson Ricardo Esquer-Blasco Jean-Paul Hofmann Norman G. Anderson

Large Scale Biology Corporation, Rockville, MD

Lal et al., 09/002,485, filed December 31, 1997 (PF-0459)

Exhibit "L" attached to Declaration of John C. Rockett, Ph.D.

A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies

A standard two-dimensional (2-D) protein map of Fischer 344 rat liver (F344MST3) is presented, with a tabular listing of more than 1200 protein species. Sodium dodecyl sulfate (SDS) molecular mass and isoelectric point have been established, based on positions of numerous internal standards. This map has been used to connect and compare hundreds of 2-D gels of rat liver samples from a variety of studies, and forms the nucleus of an expanding database describing rat liver proteins and their regulation by various drugs and toxic agents. An example of such a study, involving regulation of cholesterol synthesis by cholesterol-lowering drugs and a high-cholesterol diet, is presented. Since the map has been obtained with a widely used and highly reproducible 2-D gel system (the Iso-Dalt® system), it can be directly related to an expanding body of work in other laboratories.

Contents

1		907
2	Material and methods	908
-	2.1 Sample preparation	908
	2.2 Two-dimensional electrophoresis	909
	2.3 Staining	909
	2.4 Positional standardization	909
	2.5 Computer analysis	909
	2.6 Graphical data output	910
	2.7 Experiment LSBC04	910
2	Results and discussion	910
د	3.1 The rat liver protein 2-D map	910
	3.2 Carbamylated charge standards computed prs	7.0
	and molecular mass standardization	911
	3.3 An example of rat liver gene regulation: Chol-	/11
	esterol metabolism	911
	3.3.1 MSN 413 (putative cytosolic HMG-CoA	711
	synthase) and sets of spots regulated co-	
	ordinately or inversely	911
	3.3.2 MSN 235 and corregulated spots	912
	3.3.3 An example of an anti-synergistic effect	912
	3.3.4 Complexity of the cholesterol synthesis	712
	3.3.4 Complexity of the cholesterol synthesis	912
_	pathway	912
4		912
5	References	914
_	Addendum 1: Figures 1-13	923
7	Addendum 2: Tables 1-4	
	Table 1. Master table of proteins in rat liver data-	
	base	923
	Table 2. Table of some identified proteins	928
	Table 3. Computed pl's of two sets of carbamylated	
	protein standards: rabbit muscle CPK and	
	human Hb	929
	Table 4. Computed pl's of some known proteins re-	
	lated to measured CPK n/s	930

Correspondence: Dr. N. Leigh Anderson, Large Scale Biology Corporation, 9620 Medical Center Drive, Rockville, MD 20850, USA

Abbreviations: CBB, Coomassie Brilliant Blue; CPK, creatine phosphokinase; 2-D, two-dimensional; 1EF, isoelectric focusing; MSN, master spot number; NP-40, Nonidet P-40, SDS, sodium dodecyl sulfate

1 Introduction

High-resolution two-dimensional electrophoresis of proteins, introduced in 1975 by O'Farrell and others [1-4], has been used over the ensuing 16 years to examine a wide variety of biological systems, the results appearing in more than 5000 published papers. With the advent of computerized systems for analyzing two-dimensional (2-D) gel images and constructing spot databases, it is also possible to plan and assemble integrated bodies of information describing the appearance and regulation of thousands of protein gene products [5, 6]. Creating such databases involves amassing and organizing quantitative data from thousands of 2-D gels, and requires a substantial commitment in technology and resources.

Given the long-term effort required to develop a protein database, the choice of a biological system takes on considerable importance. While in vitro systems are ideal for answering many experimental questions, especially in cancer research and genetics, our experience with cell cultures and tissue samples suggests that some in vivo approaches could have major advantages. In particular, we have noticed that liver tissue samples from rats and mice appear to show greater quantitative reproducibility (in terms of individual protein expression) than replicate cell cultures. This is perhaps a natural result of the homeostasis maintained in a complete animal vs. the well-known variability of cell cultures, the latter due principally to differences in reagents (e.g., fetal bovine serum), conditions (e.g., pH) and genetic "evolution" of cell lines while in culture. It is also more difficult to generate adequate amounts of protein from cell culture systems (particularly with attached cells), forcing the investigator to resort to radioisotope-based or silver-based staindetection methods. While these methods are more sensitive (sometimes much more sensitive) than the Coomassie Brilliant Blue (CBB) stain typically used for protein detection in "large" protein samples, they are generally more variable, more labor-intensive and, in the case of radiographic methods, may generate highly "noisy" images, due to the properties of the films used. By contrast, large protein samples can easily be prepared from liver using urea/Nonidet P-40 (NP-40) solubilization and stained with CBB, which has the advantage of being easily reproducible [8]. Finally, there remains the question of the "truthfulness" of many in vitro systems as compared to their in vivo analogs; how great are the changes caused by the introduction into a culture and the associated shift to strong selection for growth, and how do these affect experimental outcomes? Hence the apparent advantages of in vitro systems, in terms of experimental manipulation, may be counterbalanced by other factors relating to 2-D data quality.

There is a second important class of reasons for exploring the use of an in vivo biological system such as the liver. Historically, there have been two broad approaches to the mechanistic dissection of biochemical processes in intact cellular systems: genetics (a search for informative mutants) and the use of chemical agents (drugs and chemical toxins). Both approaches help us to understand complex systems by disrupting some specific functional element and showing us the result. With the development of techniques for genetic manipulation and cloning, the genetic approach can be effectively applied either in vitro or in vivo, although the in vitro route is usually quicker. The chemical approach can also be applied to either sort of biological system; here, however, the bulk of consistently acquired information is in experimental animals (rats and mice). While most biologists know a short list of compounds having specific, experimentally useful effects (e.g., inhibitors of protein synthesis, ionophores, polymerase inhibitors, channel blockers, nucleotide analogs, and compounds affecting polymerization of cytoskeletal proteins), there is a much larger number of interesting chemically-induced effects, most of them characterized by toxicologists and pharmacologists in rodent systems. Just as a thorough genetic analysis would involve saturating a genome with mutations, it is possible to imagine a saturating number of drugs, the analysis of whose actions would reveal the complete biochemistry of the cell. While organized drug discovery efforts usually target specific desired effects, the nature of the process, with its dependence on screening large numbers of compounds, necessarily produces many unanticipated effects. It is therefore reasonable to suppose that the required broad range of compounds necessary to achieve "biochemical saturation" may be forthcoming; in fact, it may already exist among the hundreds of thousands of compounds that failed to qualify as drugs.

Among organs, the liver is an obvious choice for the study of chemical effects because of its well-known plasticity and responsiveness. The brain appears to be quite plastic (e.g. [7]), but it is a complicated mixture of cell types requiring skillful dissection for most experiments. The kidney, while quite responsive, also presents a potentially confounding mixture of cell types. The liver, by contrast, is made up of one predominant cell type which is easy to solubilize: the hepatocyte, representing more than 95% of its mass. Most importantly, the liver performs many homeostatic functions that require rapid modulation of gene expression. It appears that most chemical agents tested affect gene expression in the liver at some dosage (N. Leigh Anderson, unpublished observations), an interesting contrast to our earlier work with lymphocytes, for example, which seem to be much less responsive. Such results conform to the expectation that cells with a homeostatic, physiological role should be more plastic than cells differentiated for a purpose dependent on the action of a limited number of specific genes.

The liver also allows the parallels between in vitro and in vivo systems to be examined in detail. Significant progress

has been made in the development of mouse, rat and human hepatocyte culture systems, as well as in precision-cut tissue slices. Using such an array of techniques, it is possible to assemble a matrix of mammalian systems including mouse and rat in vivo on one level and mouse, rat and human in vitro on a second level, and to compare effects between species and between systems. This approach allows us to draw informed conclusions regarding the biochemical "universality" of biological responses among the mammals, and to offer some insight into the validity of in vitro approaches for toxicological screening. We believe this data will be necessary if in vitro alternatives are to achieve wide usage in government-mandated safety testing of drugs, consumer products and industrial and agricultural chemicals.

A number of interesting studies have been published using 2-D mapping to examine effects in the rodent liver. A number of investigarors have made use of the technique to screen for existing genetic variants [8–11] or induced mutations [12–14], mainly in the mouse. This work builds on the wealth of genetic information available on the mouse and its established position as a mammalian mutation-detection system. While some studies of chemical effects have been undertaken in the mouse [15–17], most have used the rat [18–23]. The examination of the cytochrome p-450 system, in particular, has been carried out almost exclusively on the rat [24, 25].

These considerations lead us to conclude that rodent liver offers the best opportunity to systematically examine an array of gene regulation systems, and ultimately to build a predictive model of large-scale mammalian gene control. The basic underlying foundation of such a project is a reliable, reproducible master 2-D pattern of liver, to which ongoing experimental results can be referred. In this paper, we report such a master pattern for the acidic and neutral proteins of rat liver (pattern F344MST3). In future, this master will be supplemented by maps of basic proteins, and analogous maps of mouse and human liver.

2 Materials and methods

2.1 Sample preparation

Liver is an ideal sample material for most biochemical studies, including 2-D analysis. A sample is taken of approximately 0.5 g of tissue from the apical end of the left lobe of the liver. Solubilization is effected as rapidly as practical; a delay of 5-15 min appears to cause no major alteration in liver protein composition if the liver pieces are kept cold (e.g., on ice) in the interim. In the solubilization process, the liver sample is weighed, placed in a glass homogenizer (e.g., 15 mL Wheaton); 8 volumes of solubilizing solution.

The solubilizing solution is composed of 2% NP-40 (Sigma), 9 M urea (analytical grade, e.g., BDH or Bio-Rad), 0.5% dithiothreitol (DTT; Sigma) and 2% carrier ampholytes (pH 9-11 LKB: these come as a 20% stock solution, so 2% final concentration is achieved by making the final solution 10% 9-11 Ampholine by volume). A large batch of solubilizer (several hundred mL) is made and stored frozen at -80°C in aliquots sufficient to provide enough for one day's estimated sample preparation requirement. The solution is never allowed to become warmer than room temperature at any stage during preparation or thawing for use, since heating of concentrated urea solutions can produce contaminants that covalently modify proteins producing artifactual charge shifts. Once thawed, any unused solubilizer is discarded.

is added (i.e., 4 mL per 0.5 g tissue) and the mixture is homogenized using first the loose- and then then the tight-fitting glass pestle. This takes approximately 5 strokes with each pestle and is carried out at room temperature because urea would crystallize out in the cold. Once the liver sample is thoroughly homogenized in the solubilizer, it is assumed that all the proteins are denatured (by the chaotropic effect of the urea and NP-40 detergent) and the enzymes inactivated by the high pH (-9.5). Therefore these samples may be kept at room temperature until they can be centrifuged or frozen as a group (within several hours of preparation). The samples are centrifuged for 6×10^6 g min (e.g., 500 000 × g for 12 min using a Beckman TL-100 centrifuge). The centrifuge rotor is maintained at just below room temperature (e.g., 15-20°C), but not too cold, so as to prevent the precipitation of urea. The centrifuge of choice is a Beckman TL-100 because of the sample tube sizes available, but any ultracentrifuge accepting smallish tubes will suffice. When an appropriate centrifuge is not available near the site of sample preparation, samples can be frozen at -80°C and thawed prior to centrifugation and collection of supernatants. Each supernatant is carefully removed following centrifugation and aliquoted into at least 4 clean tubes for storage. This is done by transferring all the supernatant to one clean tube, mixing this gently (to assure homogeneous composition) and then dividing it into 4 aliquots. The aliquots are frozen immediately at -80°C. These multiple aliquots can provide insurance against a failed run or a freezer breakdown.

2.2 Two-dimensional electrophoresis

Sample proteins are resolved by 2-D electrophoresis using the 20 × 25 cm Iso-Dalt® 2-D gel system ([26-29]; produced by LSB and by Hoefer Scientific Instruments, San Francisco) operating with 20 gels per batch. All first-dimensional isoelectric focusing (IEF) gels are prepared using the same single standardized batch of carrier ampholytes (BDH 4-8A in the present case, selected by LSB's batchtesting program for rat and mouse database work**). A 10 μL sample of solubilized liver protein is applied to each gel, and the gels are run for 33 000 to 34 500 volt-hours using a progressively increasing voltage protocol implemented by a programmable high-voltage power supply. An Angelique" computer-controlled gradient-casting system (produced by LSB) is used to prepare second-dimensional sodium dodecyl sulfate (SDS) polyacrylamide gradient slab gels in which the top 5% of the gel is 11%T acrylamide, and the lower 95% of the gel varies linearly from 11% to 18%T.

This system has recently been modified so as to employ a commercially available 30.8%T acrylamide/N,N'-methylenebisacrylamide prepared solution (thus avoiding the handling of the solid acrylamide monomer) and three additional stock solutions: buffer (made from Sigma pre-set Tris), persulfate and N,N,N',N'-tetramethylethylenediamine (TEMED). Each gel is identified by a computer-printed filter paper label polymerized into the lower left corner of the gel. First-dimensional IEF tube gels are loaded

directly (as extruded) onto the slab gels without equilibration, and held in place by polyester fabric wedges (Wedgies", produced by LSB) to avoid the use of hot agarose. Second-dimensional slab gels are run overnight, in groups of 20, in cooled DALT tanks (10°C) with buffer circulation. All run parameters, reagent source and lot information, and notations of deviation from expected results are entered by the technician responsible on a detailed, multi-page record of the experiment.

2.3 Staining

Following SDS-electrophoresis, slab gels are stained for protein using a colloidal Coomassie Blue G-250 procedure in covered plastic boxes, with 10 gels (totalling approximately 1 L of gel) per box. This procedure (based on the work of Neuhoff [30, 31]) involves fixation in 1.5 L of 50% ethanol and 2% phosphoric acid for 2h, three 30 min washes. each in 2L of cold tap water, and transfer to 1.5L of 34% methanol, 17% ammonium sulfate and 2% phosphoric acid for 1 h. followed by the addition of a gram of powdered Coomassie Blue G-250 stain. Staining requires approximately 4 days to reach equilibrium intensity, whereupon gels are transferred to cool tap water and their surfaces rinsed to remove any particulate stain prior to scanning. Gels may be kept for several months in water with added sodium azide. The water washes remove ethanol that would dissolve the stain (and render the system noncolloidal, with high backgrounds). The concentrated ammonium sulfate and methanol solution is diluted by equilibration with the water volume of the gels to automatically achieve the correct final concentrations for colloidal staining. Practical advantages of this staining approach can be summarized as follows: (i) the low, flat background makes computer evaluation of small spots (max OD < 0.02) possible, especially when using laser densitometry; (ii) up to 1500 spots can be reliably detected on many gels (e.g., rat liver) at loadings low enough to preserve excellent resolution; and (iii) reproducibility appears to be very good: at least several hundred spots have coefficients of reproducibility less than 15%. This value is at least as good as previous CBB methods, and significantly better than many silver stain systems.

2.4 Positional standardization

The carbamylated rabbit muscle creatine phosphokinase (CPK) standards [32] are purchased from Pharmacia and BDH. Amino acid compositions, and numbers of residues present in proteins used for internal standardization, are taken from the Protein Identification Resource (PIR) sequence database [33].

2.5 Computer analysis

Stained slab gels are digitized in red light at 134 micron resolution, using either a Molecular Dynamics laser scanner (with pixel sampling) or an Eikonix 78/99 CCD scanner. Raw digitized gel images are archived on high-density DAT tape (or equivalent storage media) and a greyscale videoprint prepared from the raw digital image as hard-copy backup of the gel image. Gels are processed using the Kepler® software system (produced by LSB), a commercially available workstation-based software package built on

^{**} This material (succeeding certified batches of which are available from Hoefer Scientific Instruments) has the most linear pH gradient produced by any ampholyte tested except for the Pharmacia wide range (which has an unacceptable tendency to bind high-molecular weight acidic proteins, causing them to streak).

some of the principles of the earlier TYCHO system [34–41]. Procedure PROC008 is used to yield a spotlist giving position, shape and density information for each detected spot. This procedure makes use of digital filtering, mathematical morphology techniques and digital masking to remove the background, and uses full 2-D least-squares optimization to refine the parameters of a 2-D Gaussian shape for each spot. Processing parameters and file locations are stored in a relational database, while various log files detailing operation of the automatic analysis software are archived with the reduced data. The computed resolution and level of Gaussian convergence of each gel are inspected and archived for quality control purposes.

Experiment packages are constructed using the Kepler experiment definition database to assemble groups of 2-D patterns corresponding to the experimental groups (e.g., treated and control animals). Each 2-D pattern is matched to the appropriate "master" 2-D pattern (pattern F344MST3 in the case of Fischer 344 rat liver), thereby providing linkage to the existing rodent protein 2-D databases. The software allows experiments containing hundreds of gels to be constructed and analyzed as a unit, with up to 100 gels displayed on the screen at one time for comparative purposes and multiple pages to accommodate experiments of > 1000 gels. For each treatment, proteins showing significant quantitative differences vs. appropriate controls are selected using group-wise statistical parameters (e.g., Student's t-test, Kepler procedure STUDENT). Proteins satisfying various quantitative criteria (such as P <0.001 difference from appropriate controls) are represented as highlighted spots onscreen or on computer-plotted protein maps and stored as spot populations (i.e., logical vectors) in a liver protein database. Quantitative data (spot parameters, statistical or other computed values) are stored as real-valued vectors in the database. Analysis of coregulation is performed using a Pierson product-moment correlation (Kepler procedure CORREL) to determine whether groups of proteins are coordinately regulated by any of the treatments. Such groups can be presented graphically on a protein map, and reported together with the statistical criteria used to assess the level of coregulation. Multivariate statistical analysis (e.g., principal components' analysis) is performed on data exported to SAS (SAS Institute).

2.6 Graphical data output

Graphical results are prepared in GKS and translated within Kepler® into output for any of a variety of devices. Linedrawing output is typically prepared as Postscript and printed on an Apple Laserwriter. Detailed maps presented here have been generated using an ultra-high-resolution Postscript-compatible Linotronic output device. Greyscale graphics are reproduced from the workstation screen using a Seikosha videoprinter. Patterns are shown in the standard orientation, with high molecular mass at the top and acidic proteins to the left.

2.7 Experiment LSBC04

In the study described here 12-week-old Charles River male F344 rats were used. Diets were prepared at LSB, based on a Purina 5755M Basal Purified Diet. Lovastatin and cholestyramine were obtained as prescription pharma-

ceuticals, ground and mixed with the diet at concentrations of 0.075% and 1%, respectively. The high cholesterol diet was Purina 5801M-A (5% cholesterol plus 1% sodium cholate in the control diet). Animal work was carried out by Microbiological Associates (Bethesda, MD). Animals were acclimatized for one week on the control diet, fed test or control diets for one week, and sacrificed on day 8. Average daily doses of lovastatin and cholestyramine in appropriate groups were 37 mg/kg/day and 5 g/kg/day, respectively, based on the weight of the food consumed. Liver samples were collected and prepared for 2-D electrophoresis according to the standard liver protocol (homogenization in 8 volumes of 9 M urea, 2% NP-40, 0.5% dithiothreitol, 2% LKB pH 9-11 carrier ampholytes, followed by centrifugation for 30 min at 80 000 × g). Kidney, brain and plasma samples were frozen. Gels were run as described above, and the data was analyzed using the Kepler system. Gels were scaled, to remove the effect of differences in protein loading, by setting the summed abundances of a large number of matched spots equal for each gel (linear scaling).

3 Results and discussion

3.1 The rat liver protein 2-D map

F344MST3 is a standard 2-D pattern of rat liver proteins, based on the Fischer 344 strain. This pattern was initiated from a single 2-D gel and extensively edited in an experiment comparing it to a range of protein loads, so as to include both small spots and well-resolved representations of high-abundance spots. More than 700 rat liver 2-D patterns have been matched to F344MST3 in a series of drug effects and protein characterization experiments, and numerous new spots (induced by specific drugs, for instance) have been added as a result. A modified version including additional spots present in the Sprague-Dawley outbred rat has also been developed (data not shown). Figure 1 shows a greyscale representation and Fig. 2 a schematic plot of the master pattern. More than 1200 spots are included, most of which are visible on typical gels loaded with 10 µL of solubilized liver protein prepared by the standard method and stained with colloidal Coomassie Blue. Master spot numbers (MSN's) have been assigned to all proteins, and appear in the following figures, each showing one quadrant of the pattern. Figure 3 shows the upper left (acidic, high molecular mass) quadrant, Fig. 4 the upper right (basic, high molecular mass) quadrant, Fig. 5 the lower left (acidic, low molecular mass) quadrant, and Fig. 6 the lower right (basic, low molecular mass) quadrant. The quadrants overlap as an aid to moving between them. The gel position (in 100 micron units), isoelectric point (relative to the CPK internal pI standards) and SDS molecular mass (from the calibration curve in Fig. 8) are listed for each spot (Table 1). Because of the precision of the CPK-pl values, these parameters can be used to relate spot locations between gel systems more reliably than using pl measurements expressed as pH. A major objective of current studies is the identification of all major spots corresponding to known liver proteins, as well as rigorous definitions of subcellular organelle contents. Of particular interest to us is the parallel development of identifications in the rat and mouse liver maps, allowing detailed comparisons of gene expression effects in the two systems. The results of these studies will be presented systematically in a later edition of this database, but we include here a useful series of 22 orienting identifications as an aid to other users of the rat liver pattern (Table 2).

3.2 Carbamylated charge standards, computed pls and molecular mass standardization

We have previously shown that the use of a system of closely-spaced internal pI markers (made by carbamylating a basic protein) offers an accurate and workable solution to the problem of assigning positions in the pI dimension [32]. The same system, based on 36 protein species made by carbamylating rabbit muscle CPK, has been used here to assign pI's to most rat liver acidic and neutral proteins. The standards were coelectrophoresed with total liver proteins, and the standard spots added to a special version of the master pattern F344MST3. The gel X-coordinates of all liver protein spots lying within the CPK charge train were then transformed into CPK pI positions by interpolation between the positions of immediately adjacent standards (Table 1) using a Kepler® vector procedure.

It has proven possible to compute fairly accurate pl values for many proteins from the amino acid composition [42]. We have attempted here to test a further elaboration of this approach, in which we computed pls for the CPK standards themselves, based on our knowledge of the rabbit muscle CPK sequence and the fact that adjacent members of the charge train typically differ by blockage of one additional lysine residue (Table 3). We compared these values to similar computed pl's for an additional set of carbamylated standards made from human hemoglobin beta chains and a series of rat liver and human plasma proteins of known position and sequence (Fig. 7, Table 4). The result demonstrates good concordance between these systems. Two proteins show significant deviations: liver fatty-acid binding protein (FABP; #1 in Table 4) and protein disulphide isomerase (#20 in the table). The FABP spot present on F344MST3 may represent a charge-modified version of a more basic parent spot closer to the expected pl, not resolved in the IEF/SDS gel. Of particular importance is the fact that, by comparing computed prs of sequenced but unlocated proteins with the CPK pls, we can assign a probable gel location without making any assumptions regarding the actual gel pH gradient. This offers a useful shortcut, given the vagaries of pH measurement on small diameter IEF gels. We have used this approach to compute the CPK pl's of all rat and mouse proteins in the PIR sequence database, as an aid to protein identification (data not shown).

In order to standardize SDS molecular weight (SDS-MW), we have used a standard curve fitted to a series of identified proteins (Fig. 8). Rather than using molecular mass per se, we have elected to use the number of amino acids in the polypeptide chain, as perhaps a better indication of the length of the SDS-coated rod that is sieved by the second dimension slab. The resulting values were multiplied by 112 (the weighted average mass of amino acids in sequenced proteins) to give predicted molecular masses. Because we use gradient slabs, we have not constrained the fitted curve to conform to any predetermined model; rather we tried many equations and selected the best using the program "Tablecurve" on a PC. The equation chosen was y = a + bx + c/x', where y is the number of residues, x is the gel

Y coordinate, a is 511.83, b is -0.2731 and c is 33183801. The resulting fit appears to be fairly good over a broad range of molecular mass.

3.3 An example of rat liver gene regulation: Cholesterol metabolism

Experiment LSBC04 was designed as a small-scale test of the regulation of cholesterol metabolism in vivo by three agents included in the diet: lovastatin (Mevacor®, an inhibitor of HMG-CoA reductase); cholestyramine (a bile acid sequestrant that has the effect of removing cholesterol from the gut-liver recirculation); and cholesterol itself. The first two agents should lower available cholesterol and the third should raise it, allowing manipulation of relevant gene expression control systems in both directions. Such an experiment offers an interesting test of the 2-D mapping system since most of the pathway enzymes are present in low abundance, many are membrane-bound and difficult to solubilize, and the pathway itself is complex. Approximately 1000 proteins were separated and detected in liver homogenates. Twenty-one proteins were found to be affected by at least one treatment, and these could be divided into several coregulated groups.

3.3.1 MSN 413 (putative cytosolic HMG-CoA synthase) and sets of spots regulated coordinately or inversely

One group of spots (including a spot assigned to the cytosolic HMG-CoA synthase, MSN 413) showed the expected increase in abundance with lovastatin or cholestyramine, the synergistic further increase with lovastatin and cholestyramine, and a dramatic decrease with the high cholesterol diet. Spot number 413 is the most strongly regulated protein in the present experiment, showing a 5- to 10-fold induction after a 1 week treatment with 0.075 % lovastatin and 1% cholestyramine in the diet (Figs. 9 and 10). Its expression follows precisely the expectation for an enzyme whose abundance is controlled by the cholesterol level; it is progressively increased from the control levels by cholestyramine, lovastatin and lovastatin plus cholestyramine, and it sinks below the threshold of detection in animals fed the high cholesterol diet. This spot has been tentatively identified as the cytosolic HMG-CoA synthase, based on a reaction with an antiserum to that protein provided by Dr. Michael Greenspan at Merck Sharp & Dohme Research Laboratories. This enzyme lies immediately before HMG-CoA reductase in the liver cholesterol biosynthesis pathway, and is known to be co-regulated with it. Spot 413 has an SDS molecular weight of about 54 000 and a CPK pl of -11.4, in reasonably close agreement with a molecular weight of 57300 and a CPK pl of -15.7 computed from the known sequence of the hamster enzyme [43].

Using a classical product-moment correlation test (Kepler procedure CORREL), a series of five additional spots was found to be coregulated with 413. The level of correlation was exceedingly high (> 95%). Two of these, 1250 and 933, are at similar molecular weights and approximately one charge more acidic than 413 (Fig. 9), indicating that they may be covalently modified forms of the 413 polypeptide. This suspicion is strengthened by the observation that both spots are also stained by the antibody to cytosolic HMG-CoA synthase. The remaining three correlated spots appear

to comprise an additional related pair (1253 and 1001) of around 40 kDa and a single spot (1119) of around 28 kDa. Because these two presumed proteins are present at substantially lower abundances than 413, and because the cytosolic HMG-CoA synthase is reported to consist of only one type of polypeptide, they are likely to represent other, very tightly coregulated enzymes. A second group of six spots was selected based on a regulatory pattern close to the inverse of that for spot 413 (MSN's 34, 79, 178, 182, 204, 347; data not shown). For these proteins, the lowest level of expression occurs with exposure to lovastatin plus cholestyramine and the highest level upon exposure to the high-cholesterol diet. Spots 182 and 79 are highly correlated and lie about one charge apart at the same molecular weight; they may thus be isoforms of a single protein. The other four spots probably represent additional enzymes or subunits.

3.3.2 MSN 235 and coregulated spots

A third group of five spots, mainly comprised of mitochondrial proteins including putative mitochondrial HMG-CoA synthase spots, showed a modest induction by lovastatin alone, but little or no effect with any of the other treatments (including the combination of lovastatin and cholestyramine; Fig. 12). This result is intriguing because lovastatin was expected to affect only the regulation of enzymes of cholesterol synthesis, which is entirely extra-mitochondrial. Three of the spots (235, 134, 144) form a closelypacked triad at approximately 30 kDa, and are likely to represent isoforms of one protein. All three spots are stained by an antibody to the mitochondrial form of HMG-CoA synthase obtained from Dr. Greenspan. Subcellular fractionation indicates a mitochondrial location. The other two spots (633 at about 38 kDa and 724 at about 69 kDa) are each present at lower abundance than the members of the triad.

3.3.3 An example of an anti-synergistic effect

A sixth spot (367) shows strong induction by lovastatin (two- to threefold), and about half as much induction with lovastatin plus cholestyramine, but without sharing the animal-animal heterogeneity pattern of the 235-set (Fig. 13). This protein is also mitochondrial, and represents the clearest example of an anti-synergistic effect of lovastatin and cholestyramine. The existence of such an effect demonstrates that lovastatin and cholestyramine do not act exclusively through the same regulatory pathway.

3.3.4 Complexity of the cholesterol synthesis pathway

Taken together, these results suggest that treatment with lovastatin alone can affect both cytosolic and mitochondrial pathways using HMG-CoA, while cholestyramine, on the other hand, either alone or in combination with lovastatin, produces a strong effect on the putative cytosolic pathway, but little or no effect on the putative mitochondrial pathway. An explanation for this difference may lie in lovastatin's effect on levels of HMG-CoA and related precursor compounds that are exchanged between the cytosol and the mitochondrion, whereas cholestyramine should affect only the cytosolic pathways directly controlled by cholesterol and bile acid levels. It remains to be explained why some

proteins of the putative mitochondrial pathway are so much more variable in their expression in all groups. An examination of all the coregulated groups suggests that quantitative statistical techniques can extract a wealth of interesting information from large sets of reproducible gels. The abundance of spots in the 413 coregulation group, for example, shows an amazing level of concordance in their relative expression among the five individuals of the lovastatin and cholestyramine treatment group. This effect is not due to differences in total protein loading, since they have already been removed by scaling, and since proteins with quite different regulation patterns can be demonstrated (e.g., Fig. 13). Such effects raise the possibility that many gene coregulation sets may be revealed through the study of a sufficiently large population of control animals (i.e., without any experimental manipulation). This approach, exploiting natural biological variation in protein expression instead of drug effects, offers an important incentive for the construction of a large library of control animal patterns.

4 Conclusions

Because of the widespread use of rat liver in both basic biochemistry and in toxicology, there is a long-term need for a comprehensive database of liver proteins. The rat liver master pattern presented here has proven to be an accurate representation of this system, having been matched to more than 700 gels to date. As the number of proteins identified and the number of compounds tested for gene expression effects grows, we expect this database to contribute valuable insights into gene regulation. Its practical utility in several areas of mechanistic toxicology is already being demonstrated.

Received September 11, 1991

5 References

- [1] O'Farrell, P., J. Biol. Chem. 1975, 250, 4007-4021.
- [2] Klose, J., Humangenetik 1975, 26, 231-243.
- [3] Scheele, G. A., J. Biol. Chem. 1975, 250, 5375-5385.
- [4] Iborra, G. and Buhler, J. M., Anal. Biochem. 1976, 74, 503-511.
- [5] Anderson, N. G. and Anderson, N. L., Behring. Inst. Mitt. 1979, 63, 169-210.
- [6] Anderson, N. G. and Anderson, N. L., Clin. Chem. 1982, 28, 739-748.
- [7] Heydorn, W. E., Creed, G. J. and Jacobowitz, D. M., J. Pharmacol. Exp. Therap. 1984, 229, 622-628.
- [8] Anderson, N.L., Nance, S.L., Tollaksen, S.L., Giere, F.A. and Anderson, N. G., Electrophoresis 1985, 6, 592-599.
- [9] Racine, R. R. and Langley, C. H., Biochem. Genet. 1980, 18, 185-197.
- [10] Klose, J., Mol. Evol. 1982, 18, 315-328.
- [11] Neel, J. V., Baier, L., Hanash, S. and Erickson, R. P., J. Hered. 1985, 76, 314-320.
- [12] Marshall, R. R., Raj, A. S., Grant, F. J. and Heddle, J. A., Can. J. Genet. Cytol. 1983, 25, 457-446.
- [13] Taylor, J., Anderson, N. L., Anderson, N. G., Gemmell, A., Giometti, C.S., Nance, S.L. and Tollaksen, S.L., in: Dunn, M.J. (Ed.), Electrophoresis '86, Verlag Chemie, Weinheim 1986, pp. 583-587.
- [14] Giometti, C. S., Gemmell, M. A., Nance, S. L., Tollaksen, S. L. and Taylor, J., J. Biol. Chem. 1987, 262, 12764-12767.
- [15] Anderson, N. L., Giere, F. A., Nance, S. L., Gemmell, M. A., Tollaksen, S. L. and Anderson, N. G., in: Galteau, M.-M. and Siest, G. (Eds.), Progrès Recents en Electrophorèse Bidimensionelle, Presses Universitaires de Nancy, Nancy 1986, pp. 253-260.
- [16] Anderson, N. L., Swanson, M., Giere, F. A., Tollaksen, S., Gemmell, A., Nance, S. L. and Anderson, N. G., Electrophoresis 1986, 7, 44-48.

- [17] Anderson, N. L., Giere, F. A., Nance, S. L., Gemmell, M. A., Tollaksen, S. L. and Anderson, N. G., Fundam. Appl. Toxicol. 1987, 8, 39-50.
- [18] Anderson, N. L., in: New Horizons in Toxicology, Eli Lilly Symposium, 1991, in press.
- [19] Antoine, B., Rahimi-Pour, A., Siest, G., Magdalou, J. and Galteau, M. M., Cell. Biochem. Funct. 1987, 5, 217-231.
- [20] Elliott, B. M., Ramasamy, R., Stonard, M. D. and Spragg, S. P. Biochim. Biophys. Acia 1986, 870, 135-140.
- [21] Huber, B. E., Heilman, C. A., Wirth, P. J., Miller, M. J. and Thorgeirsson, S. S., Hepatology 1986, 6, 209-219.
- [22] Wirth, P. J. and Vesterberg, O., Electrophoresis 1988, 9, 47-53.
- [23] Witzmann, F. A. and Parker, D. N., Toxicol. Lett. 1991, 57, 29-36.
- [24] Rampersaud, A., Waxman, D. J., Ryan, D. E., Levin, W. and Walz, F. G., Jr., Arch. Biochem. Biophys. 1985, 243, 174-183.
- [25] Vlasuk, G. P. and Walz, F. G., Jr., Anal. Biochem. 1980, 105, 112-120.
- [26] Anderson, N. G. and Anderson, N. L., Anal. Biochem. 1978, 85, 331-
- [27] Anderson, N. L. and Anderson, N. G., Anal. Biochem. 1978, 85, 341-354.
- [28] Anderson, L., Hofmann, J.-P., Anderson, E., Walker, B. and Anderson, N. G., in: Endler, A. T. and Hanash, S. (Eds.), Two-Dimensional Electrophoresis, VCH Verlagsgesellschaft, Weinheim 1989, pp. 288-207.
- [29] Anderson, L., Two-Dimensional Electrophoresis: Operation of the ISO-DALT[®] System. Large Scale Biology Press, Washington, DC 1988, ISBN 0-945532-00-8, 170pp.
- [30] Neuhoff, V., Stamm, R. and Eibl, H., Electrophoresis 1985, 6, 427-448.

- [31] Neuhoff, V., Arold, N., Taube, D. and Ehrhardt, W., Electrophoresis 1988, 9, 255-262.
- [32] Anderson, N. L. and Hickman, B. J., Anal. Biochem. 1979, 93, 312-320.
- [33] Sidman, K. E., George, D. E., Barker, W. C. and Hunt, L. T., Nucl. Acids Res. 1988, 16, 1869-1871.
- [34] Taylor, J., Anderson, N. L., Coulter, B. P., Scandora, A. E. and Anderson, N. G., in: Radola, B. J. (Ed.), Electrophoresis '79, de Gruyter, Berlin 1980, pp. 329-339.
- [35] Taylor, J., Anderson, N. L. and Anderson, N. G., in: Allen, R. C. and Arnaud, P. (Eds.), Electrophoresis '81, de Gruyter, Berlin 1981, pp. 383-400.
- [36] Anderson, N. L., Taylor, J., Scancora, A. E., Coulter, B. P. and Anderson, N. G., Clin. Chem. 1981, 27, 1807-1820.
- [37] Taylor, J., Anderson, N. L., Scandora, A. E., Jr., Willard, K. E. and Anderson, N. G., Clin. Chem. 1982, 28, 861–866.
- [38] Taylor, J., Anderson, N. L. and Anderson, N. G., Electrophoresis 1983, 4, 338-345.
- [39] Anderson, N. L. and Taylor, J., in: Proceedings of the Fourth Annual Conference and Exposition of the National Computer Graphics Association, Chicago, June 26–30, 1983, pp. 69–76.
- [40] Anderson, N. L., Hofmann, J.-P., Gemmell, A. and Taylor, J., Clin. Chem. 1984, 30, 2031-2036.
- [41] Anderson, L., in: Schafer-Nielsen, C. (Ed.), Electrophoresis '88, VCH Verlagsgesellschaft, Weinheim 1988, pp. 313-321.
- [42] Neidhardt, F. C., Appleby, D. A., Sankar, P., Hutton, M. E. and Phillips, T. A., Electrophoresis 1989, 10, 116-121.
- [43] Gil, G., Goldstein, J. L., Slaughter, C. A. and Brown, M. S., J. Biol. Chem. 1986, 261, 3710-3716.

6 Addendum 1: Figures 1-13

Figure 1. Synthetic representation of the standard rat liver 2-D master pattern, rendered as a greyscale image using a videoprinter.

Figure 2. Schematic representation of the master pattern (the same as Fig. 1), useful as an aid in relating specific areas of Fig. 1 and the following detailed quadrants.

Figure 3. Upper left (high molecular weight, acidic) quadrant (#1) of the rat liver map, showing spot numbers.

Figure 4. Upper right (high molecular weight, basic) quadrant (#2) of the rat liver map, showing spot numbers.

Figure 5. Lower left (low molecular weight, acidic) quadrant (#3) of the rat liver map, showing spot numbers.

Figure 6. Lower right (low molecular weight, basic) quadrant (#4) of the rat liver map, showing spot numbers.

1250

two sets of carbamylated standard proteins (rabbit muscle CPK [+] and human hemoglobin \$ chain, filled diamonds) and several other proteins (shaded squares). (b) The identities of the various proteins represented by the squares are indicated by the numbers in corresponding positions on (a); these refer to Table 4.

-10

Figure 9. Montage showing effects in the region of MSN:413. The montage shows a small window into one portion of the 2-D pattern, one row of windows for each experimental group, and one panel for each gel in the experiment. The left-most pattern in each row is a group-specific copy of the master pattern followed by the patterns for the five individual rats in the group. The highlighted protein spots (filled circles) are spot 413 (on the right of each panel; identified as cytosolic HMG-CoA synthase) and two modified forms of it (1250 and 933). From the top, the rows (experimental groups) are: high cholesterol, controls, cholestyramine, lovastatin, and lovastatin plus cholestyramine.

Regulation of Rat Liver 413

(Putetive Cytosolic HMG-CoA Synthase, 53kd)
Test Compounds in Diet

Figure 10. Bargraph showing the quantitative effects of various treatments on the abundance of MSN:413 (cytosolic HMG-COA synthase) in the gels of Fig. 9.

Figure 11. Bargraphs of a series of six coregulated spots including MSN:413. In the bargraphs, the abundances of the appropriate spot (master spot number shown at the top of the panel) in each animal are shown. The five five-animal groups are in the order (left to right): high cholesterol, controls, cholestyramine, lovastatin, and lovastatin plus cholestyramine. Each bar within a group represents one experimental animal liver (one 2-D gel). Note the correlated expression of the 6 spots, especially in the two far right (most strongly induced) groups.

Figure 12. Data on a second coregulated group of spots, presented as in Fig. 11. The fourth experimental group (lovastatin) shows a modest induction, while the fifth group (lovastatin plus cholestyramine) does not.

Figure 13. Data on spot MSN:367, presented as in Fig. 11. This protein shows unambiguously the anti-synergistic effect of lovastatin and cholestyramine (fifth group) as compared to lovastatin (fourth group). This response contrasts strongly with the regulation pattern seen in Fig. 11.

Table 1. Master table of proteins in the rat liver database^{a)}

Table 1.	Master	table of	proteins	in the rat liver										
MSN	X	Y	CPKol	SDSMW	MSN	X	Y	СРКО	SDSMW	MSN	X	Y	CPKol	SDSMW
3	311	434	<-35.0	63,800	95	1119	536	-9.9	53,800	174	1364	183	-6.7	162,900
5	568	263	-24.3	102,900	96	1731	756	-2.0	40,700	175	825	393	-15.7	69,300
8	812	426 268	-16.0 -25.2	64,800 101,000	97 98	1033 1406	566 565	-11.4 -6.1	51,600 51,700	177 178	1582 1321	553 710	-3.6 -7.2	52,600 43,000
11 15	549 845	520	-15.3	55,200	99	578	1149	-23.8	25,000	179	1089	615	-10.4	48,300
17	629	589	-21.6	50,000	100	2004	538	>0.0	53,700	180	1866	567	-0.5	51,600
18	906	414	-14.0	66,300	101	1106	623	-10.1	47,900	181 182	411 804	295 730	-32.1	91,200
19	755 649	298 403	-17.5 -20.9	90,200 67,900	102 103	482 665	455 830	-28.5 -20.2	61,300 37,300	184	1860	896	-16.2 -0.6	42,000 34,500
20 21	1204	448	-8.7	62,100	104	773	1182	-17.0	23,800	185	1997	1017	>0.0	29,800
22	332	434	<-35.0	63,800	105	312	1117	<-35.0	26,100	186	279	1113	<-35.0	26,300
23	787	424	-16.6	65,000	106	1769	509	-1.5	56,100	187 188	773 1538	296 807	-17.0 -4.2	90,800 38,400
24 25	313 807	417 516	<-35.0 -16.1	66,000 55,500	107 108	1585 1692	720 807	-3.6 -2.4	42,500 38,300	191	1560	674	-3.9	. 44,900
25 27	1184	524	-9.0	54,900	109	1482	593	-4.8	49,700	192	1818	687	-0.9	44,200
28	1263	446	-8.0	62,400	110	778	516	-16.9	55,500	193	1469	555	-5.0	52,400
29	743	605	-17.8 -17.2	49,000 348,600	111 113	1728 1191	700 680	-2.0 -8.9	43,500 44,500	194 195	1380 784	266 632	-6.4 -16.7	101,600 47,300
30 32	768 1216	112 417	-17.2 -8.6	66,000	114	1298	185	-7.5	160,800	196	1227	1185	-8.4	23,700
-33	1145	445	-9.5	62,500	115	682	907	-19.6	34,100	197	667	553	-20.1	52,600
34	1037	555	-11.3	52,400	116	1146	610	-9 .5	48,700	198	2006	681	>0.0	44,500
35 36	863 712	412 606	-14.9 -18.7	66,600 48,900	117 118	1548 1050	849 577	-4.1 -11.1	36,500 50,800	199 200	1711 872	674 424	-2.2 -14.7	44,900 65,000
36 38	712 763	694	-17.3	43,800	120	1530	828	-4.3	37,400	201	292	435	<-35.0	63,700
39	304	470	<-35.0	59,800	121	838	423	-15.4	65,200	202	736	253	-18.0	107,800
41	1165	569	-9.2	51,400 48,800	122 123	1572 23	712 1433	-3.8 <-35.0	42,900 15,300	203 204	786 1224	829 589	-16.7 -8.5	37,400 50,000
42 43	684 1318	607 589	-19.6 -7.3	50,000	124	621	1474	-21.9	13,900	205	439	983	-30.9	31,100
44	1924	362	-0.1	74,600	125	1298	862	-7.5	36,000	206	1994	571	>0.0	51,300
46	1203	586	-8.7	50,200	126	872	921	-14.7	33,500	207	1895	687	-0.3	44,200
47 48	1391 309	447 454	-6.3 <-35.0	62,300 61,500	127 128	1000 1229	717 311	-12.0 -8.4	42,600 86,100	208 210	240 1700	1418 499	<-35.0 -2.3	15,800 57,000
49	605	587	-22.5	50,100	129	1422	832	-5.8	37,3 0 C	211	902	517	-14.1	55,400
50	621	535	-21.8	53,900	130	1776	499	-1.4	57,000	213	1087	684	-10.4	44,400
51	1113	522 499	-10.0 -0.9	55,000 57,000	131 132	1930 660	757 537	-0.1 -20.4	40,700 53,800	214 215	1340 1591	668 495	-7.0 -3.5	45,200 57,300
52 53	1820 725	177	-18.3	170,800	133	666	1019	-20.2	29,700	216	1585	755	-3.6	40,700
54	2001	500	>0.0	56,900	134	1271	862	-7.9	36,000	217	1159	393	-9.3	69,300
55	722	830	-18.4 -19.8	37,300 54,100	135 136	1161 453	1389 1063	-9.3 -29.7	16,800 28,100	218 219	931 713	572 177	-13.5 -18.7	51,200 170,500
56 57	678 1682	533 302	-19.6	89,000	137	1858	823	-0.6	37,700	220	1479	911	-4.9	33,900
58	1091	580	-10.3	50,600	138	1504	697	-4.6	43,700	221	965	927	-12.8	33,300
59	1171	585	-9.2	50,300	139	1488 1689	707 756	-4.8	43,200 40,700	223 225	934 1812	716 1045	-13.5 -1.0	42,700 28,800
60 61	1400 1853	624 508	-6.2 -0.6	47,800 56,200	140 141	311	1417	-2.4 <-35.0	15,800	226	821	411	-15.8	66,800
62	1888	567	-0.4	51,500	142	1366	915	-6.7	33,800	227	1586	1483	-3.6	13,600
65	735	297	-18.1	90,500	143	1429	346	-5.7	77,900	228	1065	567	-10.8	51,600
66	1263	312 407	-8.0 -8.1	85,900 67,300	144 145	615 2006	1017 566	-22.1 >0.0	29,800 51,600	229 230	1577 1458	890 496	-3.7 -5.2	34,800 57,300
67 68	1252 779	692	-16.8	43,900	146	2006	518	>0.0	55,300	232	1440	849	-5.5	36,500
69	1064	296	-10.8	90,800	147	1070	1108	-10.7	26,500	234	1692	489	-2.4	57,900
71	656	589	-20.6	50,000	148 149	1347 541	578 1481	-6.9 -25.7	50,800 13,700	235 236	618 920	1004 1138	-22.0 -13.7	30,300 25,400
72 73	638 1582	545 583	-21.2 -3.6	53,100 50,400	150	1645	760	-25.7 -2.8	40,500	237	952	1008	-13.1	30,200
73 74	1570	556	-3.8	52,300	151	1269	236	-7.9	117,000	238	1611	541	-3.2	53,500
75	1264	621	-8.0	48,000	152	1507	911	4.5	33,900	239	1489 501	720	-4.8 -27.7	42,500
76	1338 1833	564 363	-7.0 -0.8	51,800 74,400	153 154	1722 932	448 503	-2.1 -13.5	62,100 56,600	240 241	1820	448 569	-27.7 -0.9	62,100 51,400
77 78	1767	565	-1.5	51,700	155	1031	294	-11.4	91,400	242	1357	658	-6.8	45,800
79	925	738	-13.6	41,600	156	1970	684	>0.0	44,400	243	711	1182	-18.7	23,800
80	534	698	-26.1 -1.0	43,600 74,500	157 158	1258 1275	183 417	-8.1 -7.8	162,400 65,900	244 245	1855 1189	621 474	-0.6 -8.9	48,000 59,300
81 82	1811 1412	363 681	-1.0 -6.0	74,500 44,500	159	1663	820	-7.6 -2.6	37, 800	245 246	551	459	-25.1	61,000
83	1471	347	-5.0	77,500	160	1034	527	-11.4	54,600	247	1348	604	-6.9	49,100
84	1662	563	-2.7	51,800	161	1953	771	>0.0	40,000	248	460 1733	448 451	-29.3	62,100
85	1596	479	-3.4 -0.9	58,900 89,100	162 164	1020 1566	1482 806	-11.6 -3.8	13,700 38,400	249 250	1733 1974	451 788	-1.9 >0.0	61,800 39,200
86 87	1817 516	301 1371	-0.9 -27.0	17,400	166	1905	565	-0.2	51,700	251	808	392	-16.1	69,500
88	1589	698	-3.5	43,600	167	1340	181	-7.0	164,900	252	874	553	-14.6	52,500
89	1706	719	-2.2	42,500	168	1506	583	-4.6	50,400	253	753 995	848 450	-17.6	36,500
90	651	329	-20.8 -6.0	81,700 43,000	169 170	1338 1969	678 541	, -7.0 >0.0	44,700 53,500	254 255	1690	450 679	-12.1 -2.4	61,900 44,600
91 92	1415 1773	710 545	-6.0 -1.4	53,200	171	800	378	-16.3	71,800	256	994	1006	-12.1	30,200
93	1338	446	-7.0	62,300 43,700	172 173	476	958	-28.7	32,100	257 258	508 1517	464 820		60,400 37,800
		696	-2.2			919	1314	-13.7	19,300			922		

Master table of proteins in the rat liver database, showing spot master number, gel position (x and y), isoelectric point relative to CPK standards, and predicted molecular mass (from the standard curve of Fig. 8).

The state of the s

									<u> </u>					
MSN	×	Y	CPKol	SDSMW	MSN	X	Y	CPKpl	SDSMW	MSN	X	Y	CPKol	SDSMW
				24.000	245	1006	578	-11.9	50,800	426	1296	704	-7. 6	43,300
259	1796	961	-1.1	31,900 17,700	345 346	1006 1095	640	-10.3	46,800	427	810	843	-16.0	36,800
260	661	1361 679	-20.4 -2.0	44,600	347	625	728	-21.7	42,000	428	1565	303	-3.9	88,700
261 262	1725 496	1127	-28.0	25,800	348	361	983	-35.3	31,100	429 430	1259 1253	847 562	-8.0 -8.1	36, 600 51, 900
263	1063	172	-10.9	177,400	349	110	1343	<-35.0 -26.7	18,300 25,700	430 431	734	1426	-18.1	15,500
265	1390	673	-6.3	45,000 63,400	350 351	521 912	1130 619	-20.7 -13.9	48,100	432	483	433	-28.5	63,900
266	510	437	-27.3 -20.4	29,000	352	1574	530	-3.7	54,300	434	518	1041	-26.9	28,900
267 268	660 430	1038 961	-31.0	31,900	353	961	912	-12.9	33,900	435	1020	1170	-11.6	24,300
269		606	<i>-</i> 11.2	48,900	354	706	762	-18.9	40, 400 37,300	436 437	1122 1870	196 673	-9.8 -0.5	147,600 45,000
270		853	>0.0	36,300	355 356	1450 1374	830 1152	-5.3 -6.5	24,900	438	435	1102	-31.0	26,700
271	857	422	-15.0 -14.2	65,200 31,700	357	474	997	-28.7	30,600	439	86	847	<-35.0	36,600
272		968 712	-7.6	42,900	358	798	346	-16.3	77,800	440	1740	544	-1.8	53,200
274 275		590	-6.9	49,900	359	764	338	-17.3	79,400	441 443	599 743	1571 335	-22.8 -17.8	10,800 80,100
276		1089	-2.6	27,100	360	1384 -1713	1068 769	-6.4 -2.1	27,900 40,100	446	801	668	-16.2	45,200
277		538	-19.4 -13.0	53,700 42,600	361 362	1161	859	-9.3	36,100	447	1050	926	-11.1	33,300
278 279		718 570	-14.5	51,300	363	914	1156	-13.8	24,800	448	1245	1298	-8.2	19,800
261	_	1084	-0.7	27,300	364	412	435	-32.0	63,700	449 450	1576 1818	1516 1021	-3.7 -0.9	12,600 29,600
282	1505	525	4.6	54,800	365	741 878	486 1503	-17.9 -14.6	58,200 13,000	450 451	1094	440	-10.3	63,100
283		1147	-7.3 -7.3	25,100 37,400	366 367	1560	935	-3.9	33,000	452	1945	802	>0.0	38,600
284 285		829 408	-7.1	67,200	368	983	520	-12.4	55,200	453	1652	894	-2.8	34,600
286		652	-7.8	46,100	369	434	441	-31.0	63,000	454 456	1403 1394	500 718	-6.1 -6.3	56,900 42,600
288	1391	824	-6.3	37,600 50,700	370 371	639 1587	610 860	-21.2 -3.6	48,700 36,100	457	905	436	-14.0	63,500
289		579 511	-9.5 -13.6	50,7 00 55,900	372	1875	762	-0.5	40,400	459	1038	581	-11.3	50,500
290 291		1476	-16.6	13,900	373	1351	1059	-6.8	28,300	460	1598	294	-3.4	91,400
292		818	-5.1	37,800	374	1506	715	-4.6	42,700	461 462	1528 1098	863 1137	-4.3 -10.2	35,900 25,400
293		449	-26.3	62,000 43,600	375 376	1823 254	532 417	-0.9 -35.0	54,200 65,900	463	849	1125	-15.2	25,800
294		698 609	-14.9 -9.3	48,700	377	1409	583	-6.1	50,400	464	1814	1072	-0.9	27,800
299 290		814	<-35.0	38,000	378	621	494	-21.8	57,500	465	1388	481	-6.3	58,700
29		979	-6.5	31,300	379	1017	595	-11.7	49,600 49,400	466 468	1194 577	1084 467	-8.9 -23.9	27,300 60,100
29		1523	-13.9 >0.0	12,400 45,300	381 382	953 856	598 674	-13.1 -15.0	44,900	469	1140	888	-9.6	34,900
30		667 178	-19.0	169,200	383	1252	258	-8.1	105,300	470	1797	524	-1.1	54,800
30° 30°		1280	-28.1	20,400	384	1699	1518	-2.3	12,500	471	1293	1133 655	-7.6 -21.9	25,500 46,000
30		1008	-32.6	30,100	385	1042	493	-11.2 -4.7	57,500 50,400	472 473	618 2009	299	>0.0	89,900
30		1585	-0.7 -11.1	10,300 49,800	386 387	1490 1554	583 603	-4.0	49,100	474	1205	215	-8.7	131,300
30: 30:		593 989	-3.3	30,900	388	1193	404	-8.9	67,700	475	1035	788	-11.4	39,200
30		916	-8.5	33,700	389	1374	902	-6.5	34,300	476 477	160 469	155 1370	<-35.0 -28.9	207,600 17,400
30	1627	755	-3.0	40,700	390	1456 718	969 690	-5.2 -18.5	31,700 44,000	478	599	662		45,600
30		892	-4.4 -1.5	34,700 29,400	391 392	1799	732	-1.1	41,900	479	1009	540	-11.8	53,500
31 31		1028 1451	-3.3	14,700	393	1482	758	-4.8	40,600	480	1216	235		117,400
31	`		<-35.0	16,100	394	1227	1461	-8.4	14,400	482 483	816 693	346 673		77,800 44,900
31	3 1902	1365		17,600	395	1530 1410	577 755	-4.3 -6.0	50,800 40,800	485		1013		30,000
31		1395 523		16,600 54,900	396 397		256		106,400	486	478	599	-28.6	49,300
31 ~ 31				28,500	399	1465	1063	-5.0	28,100	487		607		48,800
32			-4.9	14,400	400		450		61,900	488 489		1186 301		23,700 89,200
32				49,100	401 403	1029 1516	1140 754		25,300 40,800	490		1289		20,100
32				13,300 47,7 0 0	404		554		52,500	491		178		169,300
32 32				420,500	405		1092		27,100	492		964		31,800
32			-4.4	44,800	406		252		108,000	493 494		776 247		39,700 110,700
32				44,700	409		663 478		45,500 59,000	494				21,200
32				67,000 20,100	410 411		1057		28,300	496		1436		15,200
32 33				40,900	412		1120		26,000	497				36,400
33		_		43,700	413		538		53,700	499				53,100 27,800
33	2 531	471	-26.3	59,600	415		425		64,900 48,900	500 501				27,800 45,700
33		_		24,700 67,300	416 417				57,300	502				
33 33				88,500	418			.2.3	58,600	503	1246	113	4 -8.2	25,500
33				49,400	419	725			40,000	504				
33	-	1004	-0.6	30,300	420		1041		28,900	50: 50:				
33	9 1265			34,900 50,300	421 422		912 162		33,900 193,700	50				
34		_		28,700	423					50	B 979	55	2 -12.5	52,600
34 34				102,200	424	739	625	-17.9	47,700	50				
34	-			52.800	425		965	4.7	31.800	51	0 1730	100	6 -2.0	30,200
_														

				5501811				0014-1	CDCIAN	MSN	x	Y	CPKol	SDSMW
MSN	X	Y	CPKol	SDSMW	MSN 	X	<u> </u>	CPKpI	SDSMW			т	CPRDI	SUSMW
511	809	484	-16.0	58,400	596	619	269	-21.9	100,500	674	1661	448	-27	62,100
512	1099	533	-10.2	54,100	597	1176	461	-9.1	60,700	675	1523	562	-4.4	51,900
513	1696	1034	-2.3	29,200	598	1465	1044	-5.0	28,800	676 677	708 919	642 615	-18.8 -13.7	46,700 48,300
514	948	636	-13.2 -28.5	47,100 53,400	599 600	741 907	1188 402	-17.9 -14.0	23, 600 68, 000	678	1085	551	-13.7 -10.5	48,300 52,700
515 516	481 1334	543 1044	-7.1	26,800	601	567 587	658	-19.5	45,800	679	600	923	-22.7	33,400
517	888	1021	-14.8	29,700	602	712	1138	-18.7	25,400	680	1237	1004	-8.3	30,300
518	798	779	-16.3	39,600	603	898	181	-14.1	165,200	681	1103	283	-10.1	95,100
519	822	670	-15.7	45,100	604	783	1461	-16.7	14,400	682	1406	477	-6.1	59,100
520	632	165 830	-21.5 -7.1	189,000 37, 300	605 606	736 629	223 273	-18.0 -21.6	125,300 98,700	683 684	1596 555	249 699	-3.4 -24.8	109,800 43,500
521 522	1332 603	1104	-22.6	26,600	607	1064	286	-10.8	94,000	685	1167	1313	-9.2	19,300
523	1190	309	-8.9	86,800	608	883	503	-14.5	56,700	686	1932	790	0.0	39,100
524	479	1226	-28.6	22,300	609	2012	610	>0.0	48,700	687	1545	619	-4.1	48,100
525	768	1066	-17.2	28,000	610	1255	903	-8.1	34,200	688	1456	764 953	-5.2	40,300 32,300
526	747	1016 231	-17.7 -9.2	29,800 119,600	612 613	1103 778	391 265	-10.1 -16.9	69,600 102,000	689 690	1011 1995	270	-11.8 >0.0	100,200
527 528	1170 1502	542	-4.6	53,400	614	.824	518	-15.7	55,400	691	812	888	-16.0	34,900
530	1728	620	-2.0	48,000	615	1095	195	-10.3	149,100	692	1154	1461	-9.4	14,400
532	507	1011	-27.4	30,000	616	1759	478	-1.6	59,000	693	1993	819	>0.0	37,800
533	870	489	14.7	57, 900	617	994	372	-12.1	72,900	694	1628	656	-3.0	45,900
534	1347	1085 346	-6.9 -4.5	27,300 77,800	618 619	751 1429	374 518	-17.6 -5.7	72,400 55,300	695 696	928 18 5 4	254 715	-13.6 -0.6	107,000 42,700
535 536	1513 308	654	<-35.0	46,000	620	1050	520	-11.1	55,200	697	1997	345	>0.0	78,000
538	1851	689	-0.7	44,100	621	923	1105	-13.7	26,600	698	957	563	-13.0	51,800
539	1463	982	-5.1	31,100	622	1462	622	-5.1	47,900	699	1540	730	4.2	42,000
540	909	561	-13.9	52,000	623 624	759 758	225 1038	-17.4 -17.4	124,000 29,000	702 703	577 1610	900 562	-23.8 -3.2	34,400 51,900
541 542	625 1164	289 198	-21.7 -9.2	93,1 00 146, 200	625	1438	606	-17.4 -5.5	48,900	705	1278	571	-3.2 -7.8	51,200
542 543	803	655	-16.2	45,900	626	1096	1089	-10.2	27,200	706	1841	704	-0.7	43,300
544	1259	1143	-8.0	25,200	627	942	548	-13.3	53,000	707	1018	1386	-11.7	16,900
545	856	1526	-15.0	12,200	628	809	621	-16.0	48, 000 31,300	709	1074	1145	-10.7 <-35.0	25,100 34,800
546	803	1071 274	-16.2 -9.3	27,800 98,400	629 630	899 1135	979 1321	-14.1 -9.6	19,100	710 712	293 720	889 412	-18.5	66,600
547 548	1162 128	1321	<-35.0	19,000	631	979	615	-12.5	48,300	713	1386	841	-6.4	36,800
549	1355	1122	-6.8	25,900	632	1542	1076	-4.1	27,600	714	1328	263	-7.1	103,100
550	595	866	-23.0	35,800	633	1345	814	-6.9	38,000	715	698	433	-19.1	63, 900
552	1369	494 405	-6.6 -12.2	57,500 67,600	634 635	409 1165	950 704	-32.2 -9.2	32, 400 43,300	716 717	701 1875	481 699	-19.0 -0.5	58,700 43,600
553 555	992 1125	410	-9.8	66,900	636	774	604	-17.0	49,000	718	575	702	-23.9	43,400
556	705	975	-18.9	31,400	637	1263	524	-8.0	54,800	719	1216	204	-8.6	140,400
557	1477	1030	-4.9	29,300	638	952	411	-13.1	66,700	721	1069	464	-10.8	60,400
558	980	583	-12.5	50,400 26,400	639 640	1717 · 994	575 292	-2.1 -12.1	51,000 92,000	722 723	1272 958	506 822	-7.9 -13.0	56,400 37,700
559 550	700 1028	1109 621	-19.1 -11.5	48,000	641	165	1224	<-35.0	22,400	724	763	395	-17.3	69,100
560 562	898	794	-14.1	38,900	642	803	251	-16.2	108,900	725	720	916	-18.5	33,700
564	.789	1446	-16.6	14,900	643	719	296	-18.5	90,700	726	1476	415	4.9	66,200
565	777	766	-16.9	40,200	644	1100	294	-10.2	91,400	727 728	1846 510	473 783	-0.7 -27.3	59,400 39,400
566	980	328 611	-12.5 -4.4	81,900 48,600	645 646	534 1153	1263 1038	-26.1 -9.4	21,000 29,000	729	1217	1126	-8.6	25,800
567 569	1519 1212	661	-8.6	45,600	648	1246	204	-8.2	140,000	730	1858	724	-0.6	42,300
570	760	594	-17.4	49,700	649	14	1406	<-35.0	16,200	731	665	765	-20.2	40,300
571	618	956	-21.9	32,100	650	1713	1049	-2.1	28,600	733	1321	312	-7.2	85,900 64,600
573	1142	771	-9.6 ~~ ^	40, 000	651 652	1986 1378	1183 816	>0.0 -6.5	23,800 38,000	734 735	719 1101	427 473	-18.5 -10.2	64,600 59,500
574 576	532 771	787 250	-26.2 -17.1	39,300 109,200	653	1442	1165	-5.5	24,400	736	1359	569	-6.7	51,400
575 576	1068	534	-10.8	54,100	654	650	806	-20.8	38,400	738	696	220	-19.2	127,600
577	822	734	-15.7	41,800	655	1111	551	-10.0	52,700	739	687	409	-19.5	67,000
578	914	754	-13.8	40,800	656	1095	861	-10.3	36,000	740	1205 995	256 563	-8.7	106,200
579	1064	794	-10.8	38,900 42,800	657 658	1524 1777	540 860	-4.4 -1.4	53,600 36,000	741 742	898	596	-12.1 -14.1	51,900 49,500
580	1524 1392	714 783	-4.4 -6.3	39,400	659	391	584	-33.4	50,400	743	881	181	-14.5	165,900
581 582	982	686	-12.4	44,200	660	977	565	-12.5	51,700	744	1951	686	>0.0	44,200
584	1487	672	-4.8	45,000	661	658	166	-20.5	187,500	745	726	168		183,600
585	758	731	-17.4	41,900	662	732	312	-18.1	. 86,100 51,500	746 748	9 99 182	643 1503		46,600 13,000
586	687	1152	-19.5 -13.5	24,900 55,000	663 664	1787 888	567 268	-1.2 -14.4	51,500 100,900	749	2005	649		46,300
587 588	930 1888	523 774	-13.5 -0.4	39,900	665	889	775	-14.3	39,800	. 750	1448	575		51,000
589	642	485	-21.1	58,300	666	715	221	-18.6	126,300	751	792	266		101,900
590	1317	519	-7.3	55,300	667	781	227	-16.8	122,400	752	469	296		90,600
591	65	1548	<-35.0	11,500	668	646	165	-21.0	189,100 76,300	754 755	664 1195	254 184		107,000 161,000
592	1014	614 176	-11.7 -18.1	48,400 172,300	669 670	1116 1382	353 643	-9.9 -6.4	76,300 46,600	756	1821	1113		26,300
593 594	732 1627	478	-3.0	59,000	671	547	789	-25.3	39,200	757	909	246	-13.9	111,000
595	1009	1426	-11.8	15.500	673	984	746	-12.4	41.200	760	790	133	-16.5	264,900

MSN	×	Y	CPKol	SDSMW	MSN	х	Y	СРКоІ	SDSMW	MSN	X	Y	CPKol	SDSMW
					648	1863	271	-0.6	99,500	939	1197	827	-8.8	37,500
761	1399	733 1085	-6.2 -5.9	41,800 27,300	849	1166	523	-9.2	54,900	941	1765	885	-1.5 	35,000
763 764	1416 2020	569	>0.0	51,400	850	1535	1024	4.2	29,600 37, 500	942 943	602 312	472 498	-22.7 <-35.0	59,600 57,100
765	651	475	-20.8	59,300	851 852	1035 834	826 542	-11.4 -15.5	53,400	944	993	491	-12.1	57,700
766	1052	1149	-11.1 >0.0	25,000 59,900	855	499	220	-27.B	127,100	945	1300	269	·7.5	100,300
76 7 768	1968 1330	468 685	·7.1	44,300	856	1063	194	-10.9	150,500	946 947	630 187	423 736	-21.6 <-35.0	65,100 41,600
769	1970	613	>0.0	48,500	857 858	887 1448	890 639	-14.4 -5.4	34,800 46,900	948	1380	344	-6.5	78,200
770	857	617	-15.0 -7.0	48,200 31,500	859	706	311	-18.9	86,200	949	1766	665	-1.5	45,400
771 773	1337 1576	974 502	-3.7	56,700	860	1070	1066	-10.7	28,000	950 951	1038 860	193 152	-11.3 -14.9	151,000 213,000
775	969	824	-12.8	37,600	861 862	472 674	347 480	-28. 8 -19.9	77,600 58,800	952	957	701	-13.0	43,400
776	1438	708 458	-5.5 -4.2	43,100 61,000	864	1307	499	-7.4	57,000	954	503	547	-27.6	53,000
777 778	1539 850	434	-15.1	63,800	865	645	887	-21.0	34,900	955 957	1938 1010	712 816	>0.0 -11.8	42,900 37,900
779	700	411	-19.1	66,800	866 868	827 685	1004 494	-15.6 -19.5	30,300 57,400	959	768	174	-17.2	174,900
780	1052	1136 529	-11.1 -6.0	25,500 54,400	869	1807	402	-1.0	68,000	960	596	419	-23.0	65,700
784 785	1413 1364	885	-6.7	35,000	670	1323	783	-7.2	39,400	961 962	557 887	409 320	-24.8 -14.4	67,100 83,900
786	1822	835	-0.9	37,100	871	1228 1904	1031 346	-8.4 -0.3	29,300 77,7 0 0	963	564	334	-24.5	80,500
787	893	-392 882	-14.3 -22.0	69,500 35,100	872 873	556	647	-24.8	46,400	964	969	1155	-12.8	24,800
790 791	61 6 451	1429	-29.8	15,400	874	1540	756	-4.2	40,700	965	671	255 798	-20.0 -8.7	106,600 38,700
792	777	377	-16.9	72,000	875	1566	777	-3.8 -8.8	39,700 76,800	966 967	1204 910	154	-13.9	210,300
793	1536	1543	-4.2 -5.1	11,700 38,300	876 877	1198 1076	351 720	-0.6 -10.6	42,500	968	609	1048	-22.3	28,700
794 796	1461 388	807 546	-33.6	53,100	878	1161	1111	-9.3	26,400	969	1285	206	-7.7 15.0	138,900 119,300
797	1126	212	-9.8	133,700	879	647	757	-20.9	40,700 49,700	970 971	822 976	232 437	-15.8 -12.6	63,400
798	933	437	-13.5	63,400 49,800	880 881	1756 1543	594 278	-1.6 -4.1	97,100	972	403	567	-32.6	51,600
799 800	1420 1759	593 279		96,500	883	1432	890	-5.7	34,800	974	279	495		57,400
801	624	865	-21.7	35,800	884	922	689	-13.7	44,100 66,400	975 976	844 1124	981 295	-15.3 -9.8	31,200 91,100
802	898	547		53,000 14,200	885 686	1103 1501	414 607	-10.1 -4.6	48,900	977	994	664	-12.1	45,400
803 804	1775 573	1468 196		148,400	887	798	1103	-16.3	26,600	978	1612	642		45,700
805	203	494		57,400	888	636	634	-21.3	47,200 40,600	979 980	749 1064	1141 642		25,300 46,700
806	980	1039		29,000 87,200	889 890	951 717	759 548	-13.1 -18.6	52,900	981	1197	911		33,900
807 808	902 625	308 827		37,500	891	1123	229	-9.8	121,200	983		1508		12,800
809	1851	1015	-0.7	29,900	892		413	-14.3	66,400 117,800	984 985		317 1105		84,700 26,600
810		573		51,100 109,700	894 895	1245 1962	234 346	-8.2 >0.0	77,700	987		1159	-17.9	24,600
811 812	1358 851	249 393		69,400	896		626	-7.2	47,700	988		555		52,400 74,900
813		1246	-17.8	21,600	897		570	-31.4	51,300 64,500	990 991		361 317		84,500
814	2028	810		38,200 46,500	898 899		428 243	-20.3 -15.3	113,000	992		928		33,300
815 816		645 313		85,700	900		703	-21.7	43,400	993		701		43,400 38,200
817		1177	-6.5	24,000	901		1094	-13.5	27,000 121,000	994 995		811 461		60,700
818		790		39,100 103,100	903 904		229 520		55,200	990		84	7 -14.4	36,600
819 820		263 362		74,600	905		889	-17.0	34,800	99				
821			-2.2		907		824		37,600 19,700	994 999				
822				139,200 46,000	908 910		1303 1544		11,700	100	968	29	0 -12.8	92,700
823 824					911	1544	301	-4.1	89,100	100		_		
825	1240	513	8.3	55,800	913				70,400 44,100	100 100				·
826					914 910					100	6 822	48	7 -15.8	58,100
827 828				•	917	7 1260	367	7 -8.0	73,700	100				
830	1342	75	6 -7.0	40,700	919			_		100 101				
831					92 92					101	1 459	54	1 -29.4	53,500
833 833					92		242	2 -15.6	113,200	101				
834	-		1 -27.8	50,500	92					101 101				
83	7 751	74			92 92					101			-3.0	30,700
831		_			92				23,500	101	6 131			
83! 84!	_			89,300	92	8 1082				101 101				
84	1 1585	108			92 93					102				7 22,500
84					93 93					102	21 78	1 4	B4 -16.	8 58,400
84: 84:					93	3 965	5 52	0 -12.8	55,100	102 102			B3 -9. 17 -15.	
84	5 630	67	9 -21.5	44,600	93 93					102			46 -16.	7 62,400
84					93	-				10			39 -7.	
84	7 673	120	· -15.5				- -							

MSN	×	Y	CPKol	SDSMW	MSN	х	Y	CPKpl	SDSMW	MSN	×	Y	CPKol	SDSMW
1026	405	532	-32.5	52,600	1153	921	1158	-13.7	24,700	1246	547	577	-25.3	50,800
1027	1298	848	-7.5	36,500	1154	1594	864	-3.5	35, 900	1247 1249	530 516	576 572	-26.3 -27.0	50,9 00 51,2 00
1028	856	547	-15.0 -7.7	53, 000 123, 200	1161 1162	637 623	400 397	-21.3 -21.8	68,400 68,800	1250	973	536	·12.7	53,900
1030	1284 986	226 822	-12.3	37,700	1163	665	397	-20.2	68,700	1251	607	532	-22.4	54,200
1031 1032	1547	403	-4.1	67,900	1168	564	528	-24.4	54,500	1252	665	529	-20.2	54,400
1033	1381	551	-6.4	52,700	1170	552	529	-25.0	54,500	1253	899	766	-14.1 7.4	40,200 41,200
1034	1525	496	-4.3	57,200 46,500	1171 1172	538 545	524 514	-25.9 -25.5	54,800 55,700	1254 1255	1311 1300	746 761	-7.4 -7.5	40,400
1035	1128	645 274	-9.7 -8.5	98,300	1174	1099	522	-10.2	55,000	1257	1938	712	0.0	42,900
1036 1039	1226 1761	262	-1.6	103,600	1176	1304	586	-7.5	50,200	1258	1806	718	-1.0	42,600
1040	541	839	-25.7	36,900	1177	1366	539	-6.6	53,700	1259	1727	715	-2.0	42,700
1041	818	910	-15.8	34,000	1178	1608	702	-3.3	43,400	1260 1261	1629 1555	713 717	-3.0 -4.0	42,800 42,600
1044	1036	485	-11.3 -5.5	58,300 67,300	1179 1180	1485 1459	224 224	-4.8 -5.2	124,900 124,900	1262	1468	717	-5.0	42,600
1045	1439 1540	407 250	-4.2	109,200	1181	1431	223	-5.7	125,100	1263	1413	722	-6.0	42,400
1047 1048	1576	635	-3.7	47,100	1182	1407	223	-6.1	125,200	1264	1340	717	-7.0	42,600
1049	1089	411	-10.4	66,700	1183	1383	224	-6.4	124,700	1265	1263	717	-8.0	42,600
1050	949	1040	-13.2	28,900 37,800	1184 1185	1454 1422	182 183	-5.3 -5.8	164,400 162,600	1266 1267	1182 1110	720 717	-9.0 -10.0	42,500 42,600
1051	426	818 1385	-31.1 -3.6	16,900	1186	1394	182	-5.8 -6.3	164,300	1268	1055	717	-11.0	42,600
1052 1053	1583 779	1092	-16.8	27,000	1189	1171	214	-9.2	131,800	1269	999	717	-12.0	42,600
1054	1613	620	-3.2	48,000	1190	1457	286	-5.2	94,200	1270	959	715	-13.0	42,700
1055	1380	377	-6.5	72,000	1191	686	1114	-19.5	26,200	1271	905	712	-14.0 -15.0	42,900 42,800
1056	284	663	<-35.0	45,500 41,200	1192 1193	265 403	893 1 <i>2</i> 92	<-35.0 -32.6	34,700 20,000	1272 1273	857 810	714 705	-15.0	43,300
1058	1261 393	746 605	-8.0 -33.3	49,000	1194	344	1275	<-35.0	20,600	1274	774	711	-17.0	42,900
1060 1061	1817	645	-0.9	46,600	1195	505	1311	-27.6	19,400	1277	737	708	-18.0	43,100
1062	1245	746	-8.2	41,200	1196	572	1293	-24.1	20,000	1278	702	711	-19.0	42,900
1064	1258	792	-8.1	39,000	1197	639	1502	-21.2	13,000	1279 1280	671 645	710 710	-20.0 -21.0	43,000 43,000
1065	705	934	-18.9 -9.0	33,000 41,800	1198 1199	637 614	1402 1407	-21.3 -22.1	16,300 16,200	1281	617	707	-22.0	43,100
1066 1067	1181 529	734 658	-26.3	45,800	1200	637	1431	-21.3	15,400	1282	595	704	-23.0	43,300
1068	508	696	-27.4	43,700	1201	1095	1394	-10.3	16,600	1283	573	700	-24.0	43,500
1069	1898	604	-0.3	49,100	1202	1719	1545	-2.1	11,600	1284	552 536	695	-25.0 -26.0	43,700 43,800
1071	873	609	-14.7 -1.5	48,700 25,800	1203 1204	791 964	668 1021	-16.5 -12.9	45,200 29,700	1285 1286	536 515	694 687	-20.0	44,200
1073 1075	1768 836	1128 773	-15.4	39,900	1205	313	195	<-35.0	148,700	1287	496	683	-28.0	44,400
1076	1863	861	-0.6	36,000	1208	306	194	<-35.0	149,800	1288	467	669	-29.0	45,200
1078	826	566	-15.7	51,600	1209	320	197	<-35.0	147,400	1289 1290	447 427	667 655	-30.9 -31.0	45,300 45,900
1081	971	483	-12.7 -2.3	58,500 142,300	1210 1211	326 394	197 294	<-35.0 -33.2	146,600 91,400	1291	412	655		45,900
1083 1085	1697 1157	202 794	-2.3 -9.4	38,900	1212	402	294	-32.7	91,200	1292	397	652		46,100
1090	620	910	-21.9	34,000	1214	386	294	-33.7	91,400	1293	381	654	-34.0	46,000
1092	1867	597	-0.5	49,500	1215	641	329	-21.2	81,600	1294	365 348	653 653	-35.0 <-35.0	46,100
1093	2019	894	>0.0	34,600	1216	660 914	329 266	-20.4 -13.8	81,600 101,800	1295	346	655	₹-35.0	46.100
1094 1095	1546	538 477	-4.1 -4.1	53,700 59,100	1217 1218	873	245	-14.7	112,000	_				
1098	1545 61	935	<-35.0	33,000	1219	970	372	-12.7	72,900					
1099	1954	237	>0.0	116,000	1220	1021	298	-11.6	90,100					
1101	588	1048	23.3	28,600	1221	1392	205	-6.3 -6.8	139,500 141,800					
1102	1050	667 797	-11.1 -29.5	45,200 38,800	1222 1223	1354 1362	203 205	-6.7	139,500					
1103 1105	457 1884	532	-0.4	54,200	1224	673	540	-19.9	53,600					•
1106	1714	649	-2.1	46,300	1225	614	542	-22.1	53,400					
1107	1717	546	-2.1	53,100	1226	603	539	-22.6	53,600 47,800					
1108	1976	722	>0.0	42,400 28,000	1227 1228	. 696 . 707	623 628	-19.2 -18.9	47,500 47,500					
1111	547 1348	1066 621	-25.3 -6.9	48,000	1229	475	447	-28.7	62,300					
1115	1385	762	-6.4	40,400	1230	466	1282	-29.0	20,400					
1116	1078	816	-10.6	38,000	1231	759	1461	-17.4	14,400					
1117	975	787	-12.6	39,300	1232	1324	1170	-7.2 -3.6	24,200 30,300					
1118	1202	933	-8.7 -11.6	33,100 27,600	1233 1234	1583 1865	1005 809	-3.6 -0.6	38,200					
1119 1120	1022 1905	1076 616	-11.6 -0.3	48,300	1235	1812	817	-1.0	37,900					
1121	1512	1301	-4.5	19,700	1236	1411	703	-6.0	43,400					
1122	1114	677	-9.9	44,700	1237	1392	682		44,500					
1123	1464	452	-5.1	61,700	1238	794	410		66,900 67,300					
1125	1048	857	-11.1	36,200 38,600	1239	769 740	407 406		67,300 67,500					
1126	1122	802 892	-9.8 -2.1	38,600 34,700	1240 1241	743	511	-17.9	55,900					
1128 1133	1722 1098	825	-10.2	37,500	1242	713	510		56,000					
1139	1830	569	-0.8	51,400	1243	682	509	-19.6	56,100					
1147	764	1182	-17.3	23,800	1244	663	504		56,500 50,500					
1148	1968	724	>0.0	42,300	1245	565	582	-24.4	50,500					

POP name	Protein name	MSN's	Basis for identification
IDS:3_ALPHA_HDDH	3-a-hydroxysteroid-dihydrodiol- dehydrogenase, an enzyme of	137, 159	Pure protein and antibody provided by Dr. T.M. Penning, Department of Pharmacology, School
IDS:ACTIN_BETA	steroid metabolism β cellular actin, a cytoskeletal protein	38	of Madicine, University of Pennsylvania. Homologoup position with respect to other mammalian
IDS:ACTIN_GAMMA	γ cellular actin, a cytoskeletal protein	68	Homologous position with respect to other mammaltan
IDS:ALBUMIN IDS:APO A-I	Serum albumin, mature form. Apo A-I plasma lipoprotein, mature form	21, 28, 33 236, 463	Systems Predominanci nrat plasma Presence in rat plasma, regulation by some lipid-
IDS:CALMODULIN	(fentative). Calmodulin, an acidic cytosolic calcium-	123, 649	lowering drugs Homologous position with respect to other mammallan
IDS:CATALASE	binding protein Catalase (peroxisomal)	54, 61, 106	systems Presence in purified peroxisomes, similarity in position
IDS:CPKSPOTS	Spots contributed by the CPK charge	1257 - 1295	io mouse catalase
IDS:CPS	standards (not rat liver proteins) Carbamoyl phosphate synthase	114, 157, 167, 174, 1184, 1185, 1186, 1222	Pure protein provided by Dr. Margaret Marshall, Department of Pharmacology, Medical School,
IDS:CYTOCHROME_B5	Cytochrame b5	87, 477	University of Wisconsin - Madison, Pure protein provided by Dr. Andrew Parkinson, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical
IDS:FABP-L	Liver fatty-acid binding protein	227	Center Pure protein provided by Dr. Nathan Bass, Department of Medicine, University of California School of Madicine, San Francisco.
IDS:HMG-COA_SYNTHASE	Cytosolic HMG-CoA Synthase	133, 144, 235, 413	Antibody provided by Dr. Michael Greenspan, Merck Sharp & Dohme Research Laboratories, Rahway NJ
IDS:LAMIN_B	Lamin B, a nuclear protein	415, 734	Homologous position with respect to other mammallan systems
IDS:MITCON:1	Milcon:1 (F1 ATPase ß subunit), a	17, 49, 71, 340, 1245, 1246, 1247, 1249	Homologous position with respect to other mammalian
IDS:MITCON:2	mitochondrial inner membrane Mitcon:2, a mitochondrial matrix stress	15, 25, 110, 1241, 1242, 1243, 1244	Homologous position with respect to other mammallan
IDS:MITCON:3	protein equivalent to E. Mitcon:3, a mitochondrial matrix stress	18, 35, 226, 600, 1238, 1239, 1240	Homologous position with respect to other mammalian systems, presence in mitochondria
IDS:NADPH_P450_RED	protein, likely analog of NADPH cytochrome P-450 reductase, frequently co-induced with P-450's	175, 251, 812	Pure profein provided by Dr. Andrew Parkinson, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical
IDS:PDI	Protein disulphide isomerase 1	168, 1170, 1171, 1172	Center Sequence Information obtained by R.M. Van Frank, Lilly Research Laboratories, Indianapolis
IDS:PLASMA_PROTEINS	Rat plasma proteins observed in liver	21, 28, 33, 44, 72, 102, 115, 197, 236, 246, 248, 257, 293, 332, 347, 364, 369, 419, 432, 463, 181, 562, 605, 623, 666, 667, 725, 250, 256, 256, 256, 256, 256, 256, 256, 256	Plasma coelectrophoresis studies
IDS:PRO-ALBUMIN	Serum albumin precursor	47, 93	Relative position to mature albumin, presence in microsomes
IDS:PYRCARBOX IDS:SOD	Pyruvate carboxylase Superoxide dismutase	179, 1180, 1181, 1182, 1183 135	Paviica, R.J., et al., BBA (1990) <i>1022</i> 115-125. Sequence information obtained by R.M. Van Frank, Lily Research Laboratories, Indianapolis
IDS:TUBULIN_ALPHA	a tubulin, a cytoskeletał protein	56, 132, 1224, 1252	Homologous position with respect to other mammalian systems
IDS:TUBULIN_BETA	ß tubulin, a cytoskeletat protein	. 50, 1225, 1226, 1251	Homologous position with respect to other mammallan systems

The state of the s

Table 3. Computed p/s of two sets of carbamylated protein standards: Rabbit muscle CPK and human hemoglobin (Hb)

	Protein Name	PIR Name	#ASP 3.9	#GLU 4.1	#HIS 6.0	#LYS 10.8	#ARG 12.5	NH2- 7.0	Calc pl	Real CPK
			3.5							
0	Rabbit muscle CPK	KIRBCM	28	27	17	34	18	1	6.84	0.0
-1	•		28	27	17	33	18	1	6.67	-1
-2			28	27	17	32	18	. 1	6.54	-2
-3			28	27	17	31	18	1	6.42	-3 -4
-4			28	27	17	30	18	1	6.31	- 4 -5
-5			28	27	17	29	18	-	6.21	-5 -6
-6			28	27	17	28	18	1	6.12 6.03	-6 -7
-7			28 28	27 27	17 17	27 26	18 18	1	5.94	-, -8
-8			28	27	17	25 25	18	1	5.85	-0 -9
-9 10			28	27	17	24	18		5.76	-10
-10			28	27	17	23	18	i	5.67	-11
-11			28	27	17	22	18	i	5.58	-12
-12 -13			28	27	17	21	18	1	5.48	-13
-13 -14			28	27	17	20	18	1	5.39	-14
-15			28	27	17	19	18	i	5.29	-15
-16			28	27	17	18	18	1	5.20	-16
-17			28	27	17	17	18	1	5.12	-17
-18			28	27	17	16	18	1	5.04	-18
-19			28	27	17	15	18	1	4.96	-19
-20			28	27	-17	14	18	1	4.89	-20
-21			28	27	- 17	13	18	1	4.83	-21
-22			28	27	17	12	18	1	4.77	-22
-23			28	27	17	11	· 18	1	4.71	-23
-24		-	28	27	17	10	18	1	4.66	-24
-25			28	27	17	9	18	1	4.61	-25
-26			28	27	17	8		1	4.56	-26
-27			28	27	17	7		1	4.52	-27
-28			28 28	27 27	17 17	6 5		1	4.48 4.44	-28 -29
-29			28	27	17	4		1	4.40	-29
-30			28	27	17	3		1	4.36	-31
-31			28	27	17	2		1	4.32	-32
-32			28	27	17	1		i	4.29	-33
-33 -34			28	27	17	Ö		i	4.25	-34
-35			28	27	17	ō		Ò	4.22	-35
0	Hb-beta, human	нвни	7	8	9	11	3	1	7.18	
-1	. In worth training		7	8	9	10	3	1	6.79	
-2			.7	8	9	9		1	6.53	-1.8
-3			7	8	9	8	3	1	6.32	-3.2
-4			7	8	9	7	3	1	6.13	-5.3
-5	•		7	8	9	6	3	1	5.96	-7.2
-6			7 7	8	9	5	3	1	5.78	-10.0
-7 .	•		7	8	9	4		1	5.59	-12.3
-8 ·			7	8	9	3		1	5.37	-15.5
-9			7	8	9	2		1	5.14	-18.0
-10			7	8	9	1		1	4.91	-21.0
-11			7	8	9	0		1	4.71	-25.5
-12			7	8	9	0	3	0	4.54	-27.2

Table 4. Computed prs of some known proteins related to measured CPK prs

able 4.	Protein Name	PIR Name	#ASP 3.9	#GLU 4.1	#HIS 6.0	#LYS 10.8	#ARG 12.5	Calc	Real CPK
		KIRBCM	28	27	17	34	18	6.84	0.0
0	Creatine phospho kinase (CPK), rabbit muscle	FZRTL	5	13	2	16	2	7.83	-3.0
1	Fatty acid-binding protein, rat hepatic	MGHUB2	7	8	4	8	5	6.09	-5.0
2	b2-microglobulin, human	SYRTCA	72	96	28	95	56	5.97	-5.5
3	Carbamoyl-phosphate synthase, rat	ABRTS	32		15	53	27	5.98	-6.2
4	Proalbumin (serum albumin precursor), rat	ABRTS	32		15	53	24	5.71	-9.0
5	Serum albumin, rat	A26810	8		10		4	5.91	-9.2
6	Superoxid dismutase (Cu-Zn, SOD), rat	A28807	34		9	49	21	5.92	-9.2
7	Phospholipase C, phophoinositide-specific (?), rat	ABHUS	36		16		24	5.70	-11.9
8	Albumin, human	A24700	18				12	5.32	-13.7
9	Apo A-I lipoprotein, rat	LPHUA1	16	_			17	5.35	-14.3
10	proApo A-I lipoprotein, human	RDRTO4			-	_	36	5.07	-15.6
11	NADPH cytochrome P-450 reductase, rat	VAHU	18					5.04	-16.9
12	Retinol binding protein, human	ATRTC	23					5.06	-17.2
13	Actin beta, rat	ATRTC	20						-16.8
14	Actin gamma, rat	LPHUA1	16						-17.5
15	Apo A-I lipoprotein, human								-19.7
16	Apo A-IV lipoprotein, human	LPHUA4	27						
17	Tubulin alpha, rat	UBRTA				22			
18	F1ATPase beta, bovine	PWBOB							
19	Tubulin beta, pig	UBPGB							
20	Protein disulphide isomerase (PDI), rat hepatic	ISRTSS	10	-		6 10			
21	Cytochrome b5, rat	CBRT5				0 (-		
22	Apo C-II lipoprotein, human	LPHUC2	'	-	,	•	,		23.0
	Amino acid pl assumed in calulation:		3.	9 4.	1 6.	0 10.	8 12.5	5	

PROTEIN DATABLES

到的人主义的

ELCROPHORESIS

Indexed in: BIOSIS Current Contents, MEDLARS ISSN 0173-083 ELCTDN 12 (11) 763–996 (1991

An International Journal

TWO-DIMENSIONAL GEL PROTEIN DATABASES Editor: J. E. Celis

Editorial

J. E. Celis, H. Leffers, H. H. Rasmussen, P. Madsen, B. Honoré, B. Gesser, K. Dejgaard, E. Olsen, G. P. Ratz, J. B. Lauridsen, B. Basse, A. H. Andersen, E. Walbum, B. Brandstrup, A. Celis, M. Puype, J. Van Damme and J. Vandekerckhove	765	The master two-dimensional gel database of human AMA cell proteins: Towards linking protein and genome sequence and mapping information (Update 1991)
J. E. Celis, P. Madsen, H. H. Rasmussen, H. Leffers, B. Honore, B. Gesser, K. Dejgaard,	802	A comprehensive two-dimensional gel protein database of noncultured unfractionated normal human epidermal keratinocytes: Towards an integrated approach to the study of cell proliferation, differentiation and skin diseases
E. Olsen, N. Magnusson, J. Kill, A. Celis, J. B. Lauridsen, B. Basse, G. P. Ratz, A. H. Andersen, E. Walbum, B. Brandstrup,		
P. S. Pedersen, N. J. Brandt, M. Puype, J. Van Damme and J. Vandekerckhove		in the second se
H. H. Rasmussen, J. Van Damme, M. Puype, B. Gesser, J. E. Celis and J. Vandekerckhove	873	Microsequencing of proteins recorded in human two-dimensional gel protein databases
N. L. Anderson and N. G. Anderson	883	A two-dimensional gel database of human plasma proteins
N. L. Anderson, R. Esquer-Blasco, JP. Hofmann and N. G. Anderson	907	A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies
P. J. Wirth, Ldi Luo, Y. Fujimoto, H. C. Bisgaard and A. D. Olson	931	The rat liver epithelial (RLE) cell protein database
R. A. VanBogelen and F. C. Neidhardt	955	The gene-protein database of Escherichia coli: Edition 4
	995	Miscellaneous