Candidates' Name:	•••••	•••••	•••••	•••••	•••••	•••••	•••••	
Signature:	Random No.				Per	Personal No.		

(Do not write your school / Center name or Number anywhere on this booklet)

545/3

CHEMISTRY (PRACTICAL) Paper 3 July/Aug. 2023 2 hours

Uganda Certificate of Education CHEMISTRY PRACTICAL

Paper 3

2 hours

INSTRUCTIONS TO CANDIDATES

Attempt all questions.

All answers must be written in the spaces provided in the booklet.

You are **not** allowed to use any reference books i.e., text books or handouts on qualitative analysis etc.

All working must be clearly shown.

Mathematical tables, slide rules and silent non-programmable calculators may be used.

For Examiner's use only			
Q.1	Q.2	Total	

1. You are provided with the following.

BA1 which is a solution containing 6.32g of a hydrated acid compound X of formular A.nH₂O, in 500cm³ of solution.

BA2 which is a 0.2M alkaline solution Y

You are required to determine the value of A in the hydrated acid compound. (1 mole of the acid reacts with 2 moles of the hydroxide ions in alkaline solution Y. Procedure

- i. Pipette 25.0(0r 20.0) cm³ of BA2 into a clean plastic beaker. Measure and record its initial temperature.
- ii. Fill the burette with BA1, and then run 10cm³ of BA1 from the burette into the beaker containing BA2.
- iii. Carefully stir the solution using a thermometer, and record the maximum temperature attained the mixture.
- iv. Repeat procedure (i) and (ii) above using volumes of BA1 15, 20, 25 and 30cm³
- v. Record your results in the table below.

Results

Initial temperature of BA2 :			cm	3	$(\frac{1}{2} Mark)$
Volume of pipette used:	•••••	•••••	c	m^3	$(\frac{1}{2}$ mark)
Volume of BA1 added (cm ³)	10	15	20	25	30
Maximum temperature attained (°c)					
Temperature change (°c)					

(5marks)

Questions

a)

i. Plot a graph of temperature change (along vertical axis) against volume of BA1 added (along vertical axis). (5\frac{1}{2}marks)

(USE A GRAPH PAPER, INSERT IT IN THE BOOKLET AND STAPLE IT)

of BA2. (1	l mark)
Calculate the;	
number of moles of hydroxide ions in BA2 that reacted. $(2\frac{1}{2})$	mark)
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • •
number of moles of hydrated acid compound in BA1 that reacted with the hydrons. $(1\frac{1}{2})^{\frac{1}{2}}$	droxide mark)
	• • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • •
	• • • • • •
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
number of moles the hydrated acid compound in 1000cm ³ of the solution. (2r	marks)
	• • • • • • •
	• • • • • • •

IV.	the mass of one mole of the acid compound. (n=10, H=1, O=16).	$(2\frac{1}{2} \operatorname{mark})$
		•••••
c)	Determine the value of A in the acid compound.	(2 marks)
2.	You are provided with substance J , which contains two cations and one	e anion. You
	are required to carry out tests below on ${\bf J}$ and identify the cations and an	nion in J .
	Identify any gas (es) evolved. Record your observations and deductions	in the table

TEST	OBSERVATION	DEDUCTION
a. Heat two spatula end-fuls of J		
in dry test tube until there is no		
further change.		

below.

(25 marks)

b. To about 7cm3 of distilled	
water, add 2 spatula end-fuls of J	
and shake well. To the solution,	
add sodium hydroxide dropwise	
until excess. Filter, keep both	
filtrate and residue.	
c. To the filtrate, add dilute nitric	
acid drop wise until the solution	
is just acidic. Divide the solution	
into six portions	
i. To the first portion, add sodium	
hydroxide solution dropwise	
until excess.	
ii. To the second portion, add 3	
drops of dilute sulphuric acid.	
iii. To the third portion, add	
ammonia solution drop wise until	
excess	
iv. To fourth portion 3 drops of	
potassium iodide solution.	
m d col	
v. To the fifth portion, add lead	
(II) nitrate solution and warm.	

vi. Use the sixth portion to carry		
out a test of your own choice to		
confirm the anion in J.		
TEST:		
d. Wash the residue from (c) with		
water and dissolve it in dilute		
sulphuric acid. Divide the		
resultant solution into two		
portions.		
i. To the first portion, add sodium		
hydroxide solution drop wise		
until excess.		
ii. To the second portion, add		
ammonia solution dropwise until		
excess.		
		<u> </u>
i. Cations in J:		
	and	
ii. Anion in J:		