

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

"МИРЭА - Российский технологический университет" РТУ МИРЭА

Институт кибернетики Кафедра общей информатики

ОТЧЕТ ПО ПРАКТИЧЕСКОЙ РАБОТЕ № 10 изучение работы триггеров по дисциплине «ИНФОРМАТИКА»

Выполнил студент группы ИК	БО-29-20	Хан А.А.
Принял доцент, к.т.н.		Норица В.М.
Практическая работа выполнена	« <u> </u>	<u>(подпись студента)</u>
«Зачтено»	« <u></u> »2020 г.	(подпись руководителя)

Содержание

1. Постановка задачи	3
2. Схемы триггеров и их таблицы истинности	4
2.1. Одноступенчатый асинхронный RS-триггер на элементах И-НЕ	4
2.2. Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ	5
2.3. Одноступенчатый синхронный RS-триггер на элементах И-НЕ	6
2.4. Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ	7
2.5. Одноступенчатый D-триггер, выполненный на элементах И-НЕ	8
2.6. Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ	9
2.7. Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ	10
2.8. Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера	11
2.9. ЈК-триггер	12
3. Вопросы, заданные преподавателем	13
ВЫВОДЫ	14
СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ	15

1. Постановка задачи

Изучить на практике работу триггеров.

2. Схемы триггеров и их таблицы истинности

2.1. Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

Рассмотрим одноступенчатый асинхронный RS-триггер на элементах И-НЕ. Таблица истинности триггера (таблица 1) и его функциональная схема (рис. 1).

Таблица 1

$\bar{\mathcal{S}}$	$ar{R}$	Q(t+1)	$\overline{Q(t+1)}$	Режим
0	0	1	1	Запрещенная комбинация
0	1	1	0	Установка 1
1	0	0	1	Установка 0
1	1	Q(t)	$\overline{Q(t)}$	Хранение

Рис. 1. Одноступенчатый асинхронный RS-триггер на элементах И-НЕ

2.2. Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

Рассмотрим одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ. Таблица истинности триггера (таблица 2) и его функциональная схема (рис. 2).

Таблица 2

S	R	Q(t+1)	$\overline{Q(t+1)}$	Режим
0	0	Q(t)	$\overline{Q(t)}$	Хранение
0	1	0	1	Установка 0
1	0	1	0	Установка 1
1	1	0	0	Запрещенная комбинация

Рис. 2. Одноступенчатый асинхронный RS-триггер на элементах ИЛИ-НЕ

2.3. Одноступенчатый синхронный RS-триггер на элементах И-НЕ

Рассмотрим одноступенчатый синхронный RS-триггер на элементах И-НЕ. Таблица истинности триггера (таблица 3) и его функциональная схема (рис. 3).

Таблица 3

С	S	R	Q(t+1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	0	0	Q(t)	$\overline{Q(t)}$	Хранение
1	0	1	0	1	Установка 0
1	1	0	1	0	Установка 1
1	1	1	1	1	Запрещенная комбинация

Рис. 3. Одноступенчатый синхронный RS-триггер на элементах И-НЕ

2.4. Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

Рассмотрим двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ. Таблица истинности триггера (таблица 4) и его функциональная схема (рис. 4).

Таблица 4

С	$\bar{\mathcal{S}}$	\bar{R}	S	R	Q(t+1)	$\overline{Q(t+1)}$	Режим
*	0	0	*	*	1	1	Запрещенная комбинация
*	0	1	*	*	1	0	Асинхронная 1
*	1	0	*	*	0	1	Асинхронный 0
0	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
7	1	1	0	1	0	1	Синхронная установка 0
_	1	1	1	0	1	0	Синхронная установка 1
7	1	1	1	1	1	1	Запрещенная комбинация

Рис. 4. Двухступенчатый синхронный RS-триггер с асинхронными входами предустановки, выполненный на элементах И-НЕ

2.5. Одноступенчатый D-триггер, выполненный на элементах И-НЕ

Рассмотрим одноступенчатый D-триггер, выполненный на элементах И-НЕ. Таблица истинности триггера (таблица 5) и его функциональная схема (рис. 5).

Таблица 5

С	D	Q(t + 1)	$\overline{Q(t+1)}$	Режим
0	*	Q(t)	$\overline{Q(t)}$	Хранение
1	0	0	1	Установка 0
1	1	1	0	Установка 1

Рис. 5. Одноступенчатый D-триггер, выполненный на элементах И-НЕ

2.6. Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

Рассмотрим динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ. Таблица истинности триггера (таблица 6) и его функциональная схема (рис. 6).

Таблица 6

С	Ī	R	Q(t+1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
5	0	0	0	0	Запрещенная комбинация
	0	1	1	0	Синхронная установка 1
5	1	0	0	1	Синхронная установка 0
*	1	1	Q(t)	$\overline{Q(t)}$	Хранение

Рис. 6. Динамический RS-триггер, работающий по переднему фронту, выполненный на элементах И-НЕ

2.7. Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ

Рассмотрим динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ. Таблица истинности триггера (таблица 7) и его функциональная схема (рис. 7).

Таблица 7

С	Ī	$ar{R}$	Q(t+1)	$\overline{Q(t+1)}$	Режим
0	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
닏	1	1	1	1	Запрещенная комбинация
ᅵ	0	1	1	0	Синхронная установка 1
ᅵ	1	0	0	1	Синхронная установка 0
*	0	0	Q(t)	$\overline{Q(t)}$	Хранение

Рис. 7. Динамический RS-триггер, работающий по заднему фронту, выполненный на элементах ИЛИ-НЕ

2.8. Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера

Рассмотрим Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера. Таблица истинности триггера (таблица 8) и его функциональная схема (рис. 8).

Таблица 8

T	$\bar{\mathcal{S}}$	$ar{R}$	Q(t+1)	$\overline{Q(t+1)}$	Режим
*	0	0	1	1	Запрещенная комбинация
*	0	1	1	0	Асинхронная 1
*	1	0	0	1	Асинхронный 0
0	1	1	Q(t)	$\overline{Q(t)}$	Хранение
1	1	1	Q(t)	$\overline{Q(t)}$	Хранение
_	1	1	$\overline{O(t)}$	O(t)	Переключение в
	1	1	Q(t)	Q(t)	противоположное состояние

Рис. 8. Т-триггер с асинхронными входами предустановки, выполненный на основе двухступенчатого RS-триггера

2.9. ЈК-триггер

Рассмотрим JK-триггер, выполненный по схеме без инвертора. Таблица истинности триггера (таблица 9) и его функциональная схема (рис. 9).

Таблица 9

							, , , , , , , , , , , , , , , , , , , ,
С	$\bar{\mathcal{S}}$	$ar{R}$	J	K	Q(t+1)	$\overline{Q(t+1)}$	Режим
*	0	0	*	*	1	1	Запрещенная комбинация
*	0	1	*	*	1	0	Асинхронная 1
*	1	0	*	*	0	1	Асинхронный 0
0	1	1	*	*	Q(t)	$\overline{Q(t)}$	Хранение
1	1	1	1	_	0	1	Подмена входов С и К ("Аномалия")
1	1	1	닏	1	1	1	Подмена входов С и R ("Аномалия")
٦	1	1	0	1	0	1	Синхронная установка 0
L	1	1	1	0	1	0	Синхронная установка
_	1	1	1	1	1	1	Режим Т-триггера

Рис. 9. ЈК-триггер, выполненный по схеме без инвертора

3.	Вопросы,	заданные п	реподавателем
-----------	----------	------------	---------------

выводы

В результате выполнения практической были изучены триггеры, а также были собраны их схемы в среде моделирования Logisim.

СПИСОК ИНФОРМАЦИОННЫХ ИСТОЧНИКОВ

- 1. Информатика: Методические указания по выполнению практических работ / С.С. Смирнов, Д.А. Карпов М., МИРЭА Российский технологический университет, 2020. –102с. (Дата обращения 20.11.2020)
 - 2. Лекционный материал Смирнова С.С. (Дата обращения 20.11.2020)
- 3. Справочная служба Logisim [Электронный ресурс]. Режим доступа http://www.cburch.com/logisim/ru/docs.html, свободный (Дата обращения 20.11.2020)
- 4. Программа построения и моделирования логических схем Logisim. http://www.cburch.com/logisim/ (Дата обращения 20.11.2020)