Зміст

1.	Лек	ція 1.	
	1.1.	Поява. Передмова	
	1.2.	Комплексна форма ряду Фур'є	
	1.3.	Випадок дійснозначної функції	
	1.4.	He 2π -періодичні функції	
2.	Лекція 2.		
	2.1.	Аналіз збіжності ряду.	
	2.2.	Збіжність часткових сум	
3.	Лек	ція 3.	
	3.1.	Рівномірна збіжність ряду Фур'є	
	3.2.	Середні по Чезаре	

Ряд Фур'є

1. Лекція 1.

1.1. Поява. Передмова.

Нехай g(z) – аналітична в кільці $K = \left\{z \mid 1 - \varepsilon_1 < |z| < 1 + \varepsilon_2\right\}; \left\{z \mid |z| = 1\right\} \subset K.$ Розкладаємо g(z) в ряд Лорана за степенями z в цьому кільці:

$$g(z) = \sum_{n = -\infty}^{\infty} C_n \cdot z^n , \text{ де } C_n = \frac{1}{2\pi i} \int_{|z| = 1} \frac{g(z)}{z^{n+1}} dz$$

$$z : |z| = 1 \implies z = e^{ix} \implies x \in [0, 2\pi] \implies g(z) = g(e^{ix}) = f(x)$$

$$C_n = \frac{1}{2\pi i} \int_{|z| = 1} \frac{g(z)}{z^{n+1}} dz = \begin{vmatrix} z = e^{ix} \\ dz = ie^{ix} dx \\ x \in [0, 2\pi] \end{vmatrix} = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

Отримали комплексну форму ряду Фур'е:

$$f(x) = \sum_{n = -\infty}^{\infty} C_n \cdot e^{inx}, \ C_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

1.2. Комплексна форма ряду Фур'є.

 $f \in D[0, 2\pi]$ – періодична, інтегрова на $[0, 2\pi]$. За функцією f(x) будуємо ряд Фур'є:

$$S(x) = \sum_{n=-\infty}^{\infty} C_n \cdot e^{inx}, \ C_n = \frac{1}{2\pi} \int_{0}^{2\pi} f(x)e^{-inx} dx$$

Питання:

- 1) Збіжність ряду.
- 2) Якщо збігається, то зв'язок між S(x) та f(x).

1.3. Випадок дійснозначної функції.

Розглянемо ряд Фур'є:

$$\sum_{n=-\infty}^{-1} C_n \cdot e^{inx} + C_0 + \sum_{n=1}^{\infty} C_n e^{inx} = \begin{vmatrix} B & I & \text{cymi:} \\ n & = -k \end{vmatrix} = \sum_{k=1}^{\infty} C_{-k} \cdot e^{-ikx} + C_0 + \sum_{n=1}^{\infty} C_n e^{inx} \iff 0 = \sum_{n=1}^{\infty} C_n e^{inx} = \sum_{n=1}^$$

Окремо розглянемо $C_{-k}e^{-ikx}$: $C_{-k}e^{-ikx} = \overline{C_k e^{ikx}}$:

$$C_n = \frac{1}{2\pi} \int_0^{2\pi} f(x)e^{-inx} dx = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot (\cos(nx) - i\sin(nx)) dx =$$
$$= \frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \cos(nx) dx - i\frac{1}{2\pi} \int_0^{2\pi} f(x) \cdot \sin(nx) dx$$

$$\Re C_n e^{inx} = \Re \left[\frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(nx) dx - i \frac{1}{2\pi} \int_0^{2\pi} f(x) \sin(nx) dx \right] \cdot (\cos(nx) + i \sin(nx)) =$$

$$= \frac{1}{2\pi} \cos(nx) \int_{0}^{2\pi} f(x) \cdot \cos(nx) dx + \frac{1}{2\pi} \sin(nx) \int_{0}^{2\pi} f(x) \cdot \sin(nx) dx$$

$$C_0 = rac{1}{2\pi} \int\limits_0^{2\pi} f(x) dx$$
 Отримали дійсну форму ряда Фур'є.

$$f(x) \mapsto \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx),$$

де
$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx, n \in \mathbb{N} \cup \{0\}; \ b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx, n \in \mathbb{N} \cup \{0\}.$$

1.4. Не 2π -періодичні функції.

f-2l періодична, або задана на [0,2l], інтегрована. Розглянемо відображення:

$$[0, 2\pi] \leftarrow [0, 2l]$$
 $x \in [0, 2\pi]$ $x = \frac{t}{l}\pi$ $t \in [0, 2\pi]$

Тоді $f(x)=f(\frac{t}{l}\pi)=g(t).$ g(t) - задана на [0,2l].

$$a_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \cos(nx) dx = \frac{1}{l} \int_0^{2l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(x) \sin(nx) dx = \frac{1}{l} \int_0^{2l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

$$g(t) = f(x) \mapsto \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi nt}{l} + b_n \sin\left(\frac{\pi nt}{l}\right)\right)$$

$$a_n = \frac{1}{l} \int_0^{2l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt \qquad b_n = \frac{1}{l} \int_0^{2l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$$

Частіше всього, зручно обчислювати коефіцієнти ряду інакше:

$$a_n = \frac{1}{l} \int_{-l}^{l} g(t) \cos\left(\frac{\pi nt}{l}\right) dt$$
 $b_n = \frac{1}{l} \int_{-l}^{l} g(t) \sin\left(\frac{\pi nt}{l}\right) dt$

2. Лекція 2.

2.1. Аналіз збіжності ряду.

Лема (Рімана). f – інтегрована на [a, b] навіть в невласному сенсі.

Тобто $\int_a^b f(x) dx$ – збігається. Тоді:

1)
$$\int_{a}^{b} f(x) \cos(\lambda x) dx \xrightarrow{\lambda \to \infty} 0$$

2)
$$\int_{a}^{b} f(x) \sin(\lambda x) dx \xrightarrow{\lambda \to \infty} 0$$

Надалі розглядаємо:

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos(nx) + b_n \sin(nx)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos(nt) dt$$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(nt) dt$

Теорема 2.1. $f(x) - 2\pi$ -періодична, інтегрована. Тоді:

$$S_k(x) = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos(nx) + b_n \sin(nx)$$

Часткова сума ряду Фур'є дорівнює:

$$S_k(t) = \frac{1}{\pi} \int_{0}^{\pi} \left[f(x+u) + f(x-u) \right] \cdot \frac{\sin \frac{2k+1}{2} u}{2 \sin \frac{u}{2}} du$$

Підінтегральний множник $\frac{\sin\frac{2k+1}{2}u}{2\sin\frac{u}{2}}=D_k(u)$ називається ядром Діріхле.

Властивості ядра Діріхле:

- 1) $D_k(u)$ парна, 2π період функції;
- $2) \int_{-\pi}^{\pi} D_k(u) \mathrm{d}u = 1;$

2.2. Збіжність часткових сум.

Розглядаємо:

$$S_k(x) - C = \frac{1}{\pi} \int_0^{\pi} [f(x+u) + f(x-u)] \cdot D_k(u) du - C \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} D_k(u) du =$$

$$= \frac{1}{\pi} \int_0^{\pi} [f(x+u) + f(x-u) - 2C] \cdot D_k(u) du$$

Позначимо: $f(x+u) + f(x-u) - 2C = g_{C,x}(u)$. Отже:

$$S_k(x) - C = \frac{1}{\pi} \int_{0}^{\pi} g_{C,x}(u) D_k(u) du$$

Теорема 2.2 (Ознака Діні для рядів Фур'є). $f(x) - 2\pi$ -періодична, інтегрована.

Якщо
$$\exists \delta > 0 : \int_{0}^{\delta} \frac{|g_{C,x}(u)|}{u} du$$
 – збігається, то: $S_{\delta}(x) \xrightarrow[k \to \infty]{} C$.

Наслідок. f(x) – диференційована в т. x_0 , тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} f(x_0) \iff f(x_0) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx_0) + b_n \sin(nx_0)$$

Наслідок. $f(x) - 2\pi$ -періодична, інтегрована. x_0 — точка розриву 1го роду ("стрибок"). f(x) має в т. x_0 ліву та праву похідні. Тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} \frac{1}{2} (f(x_0+) + f(x_0-))$$

Означення. f(x) задовольняє умові Ліпшиця в околі т. x_0 , якщо:

$$\forall x_1, x_2 \in (x_0 - \delta, x_0 + \delta) | f(x_1) - f(x_2) | \le L |x_1 - x_2|$$

Наслідок. $f(x) - 2\pi$ -період., інтегрована та задов. ум. Ліпшиця в околі т. x_0 . Тоді:

$$S_k(x_0) \xrightarrow[k \to \infty]{} f(x_0)$$

3. Лекція 3.

3.1. Рівномірна збіжність ряду Фур'є.

Теорема 3.1. $f(x) - 2\pi$ -періодична та кусково-неперервно диференційована. Тоді ряд Фур'є функції f(x) рівномірно збігається.

Доведення – дивіться в конспекті:)

3.2. Середні по Чезаре

Означення. $f(x) - 2\pi$ -періодична, інтегрована.

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nx) + b_n \sin(nx)$$
 – ряд Фур'є для $f(x)$;

$$S_k = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos{(nx)} + b_n \sin{(nx)}$$
 – часткові суми;

$$\mathcal{G}_n(x) = \frac{1}{n}(S_1(x), S_2(x), \dots, S_{n-1}(x))$$
 — середні по Чезаре.

Отримаємо інтегральний вид середніх по Чезаре. Отримали:)

Лема. $f(x) - 2\pi$ -періодична, інтегрована.

$$S_k = \frac{a_0}{2} + \sum_{n=1}^k a_n \cos(nx) + b_n \sin(nx)$$
 – часткові суми;

$$G_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} S_k(x)$$
 — середні по Чезаре;

Тоді $\mathcal{G}_n(x)$ має інтегральний вигляд:

$$G_n(x) = \int_{0}^{\frac{\pi}{2}} \frac{f(x+2v) + f(x-2v)}{2} F_n(v) dv,$$

, де
$$F_n(v) = rac{\sin^2(nv)}{\pi n \sin^2 v} -$$
ядро Фейера.

Властивості ядра Фейера:

1)
$$F_n(-v) = F_n(v)$$
;

2)
$$F_n(v) - \pi$$
-періодична;

3)
$$\int_{0}^{2\pi} F_n(v) dv = \frac{1}{2}$$
.

Властивості коефіцієнтів ряда Фур'є.

1) f(x) – непарна, задана на (-l;l). Тоді:

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx = 0;$$

2) f(x) – парна, задана на (-l;l). Тоді:

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx = 0.$$

3) f(x) – парна, з періодом 2l. Якщо функція неперервна на (-l,l), то вона неперервна на \mathbb{R} .

 $4) \ f(x)$ – непарна. Тоді:

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \sin\left(\frac{\pi nx}{l}\right) dx$$

5) f(x) – парна. Тоді:

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx = \frac{2}{l} \int_{0}^{l} f(x) \cos\left(\frac{\pi nx}{l}\right) dx$$