Лабораторная работа № 3

Тема. Управление проектами. Построение линейной диаграммы проекта

Трудоемкость работы: 2 недели

Задание

- 1. Повторить параграф 2.5 (лекция 2). (см. в Илиас «Лекция 2» и файл с материалами учебника: часть 2)
- 2. С учетом результатов выполнения предыдущих лабораторных работ составить и отладить программу на выбранном языке программирования, которая отвечает следующим требованиям:
 - выводит на экран монитора исходный список работ;
 - выводит на экран монитора упорядоченный список работ;
 - выводит на экран монитора диаграмму Ганта, построенную по этому списку;
- позволяет в режиме диалога вносить изменения в СГ, добавляя и удаляя работы и изменяя их веса на дугах графа с получением очередной диаграммы Ганта.

Форму выдачи диаграммы – спроектировать самостоятельно. При этом учесть идентификацию работ и их отображение с учетом моментов времени – по ранним срокам свершения событий.

3. Оформить отчет, внеся все необходимые комментарии в программу. Защитить работу.

Пусть i – индекс, соответствующий предшествующему событию,

ј – индекс, соответствующий последующему событию,

- $(i,\ j)$ работа, связанная с событиями i и j, начинающаяся событием i и завершающаяся событием j,
- $au(i,\ j)$ продолжительность выполнения работы $(i,\ j)$ в единицах измерения времени.

1. Параметры событий СГ

Алгоритм прямого хода определения параметров «Ранний срок свершения событий» $t_p(i)$ — при обходе вершин графа от начальной вершины к конечной с учетом слоев графа (то есть путем обхода графа в ширину):

для начального события
$$t_p (i = \textit{нач.}) := 0;$$
 для событий $j : t_p (j) = \max_i [t_p (i) + \tau(i, j)]$

Алгоритм обратного хода определения параметров «Поздний срок свершения событий» $t_n(j)$ и резерв времени свершения события R(i) — при обходе вершин графа от конечной вершины к начальной:

для конечного события
$$t_n(j = \kappa o h.) := t_p(j = \kappa o h.);$$
 для событий $i: t_n(i) = \min_{j} [t_n(j) - \tau(i,j)];$

для начального события должно получиться: t_n (i = hau.) = 0. Если это не так, то где-то ошибка в алгоритме.

$$R(i) = t_n(i) - t_p(i)$$

Длина критического пути: $T = t_n (j = \kappa o h.) := t_p (j = \kappa o h.)$

2. Параметры работ СГ. Основные формулы

Полный резерв времени работы:

$$R_n(i,j) = t_n(j) - t_p(i) - \tau(i,j)$$

Необходимое и достаточное условие принадлежности работ критическому пути СГ: если для всех работ (i,j) СГ, принадлежащих некоторому полному пути, $R_n(i,j)=0$, то данный путь является критическим.

Очевидно, таких путей в одном СГ может быть несколько.

Независимый резерв времени работы:

$$R_{H}(i,j) = t_{D}(j) - t_{D}(i) - \tau(i,j)$$

Если $R_H(i,j) > 0$, то с данной работой связан **подвижной состав ресурсов**, которые при оптимизации СГ можно: либо изъять, либо закрепить за работами критического пути.