Beta distribution

 $B(x|a,b) = \tfrac{1}{B(a,b)} x^{a-1} (1-x)^{b-1}$ this is a normalization constant, that is expressed in terms of the gamma function (factorial!)

Statistics

$$B(x|a,b) = \frac{1}{B(a,b)}x^{a-1}(1-x)^{b-1}$$

$$\mathbb{E}x = \frac{a}{a+b}$$

$$\operatorname{Mode}[x] = \frac{a-1}{a+b-2}$$

$$\operatorname{Var}[x] = \frac{ab}{(a+b)^2(a+b-1)}$$

Example ТЕХНИЧЕСКИЙ СЛАЙД

Suppose we have a website that ranks movies from 0 to 1.

Movie rank is 0.8 ± 0.1

- 1 best movie
- 0 Batman & Robin

Example

Movie rank is 0.8 ± 0.1

$$\mathbb{E}x = \frac{a}{a+b} = 0.8$$

$$\operatorname{Var}[x] = \frac{ab}{(a+b)^2(a+b-1)} = 0.1^2$$

$$\Rightarrow a = 12, b = 3$$

Example: Bernoulli

We study the bernoulli variables because the beta distribution is conjugate to the bernoulli likelihood.

Beta prior

Recall that the likelihood is the probability that this theta paramaeter fits the values X.

For each X that is 1, we use probability theta.

$$p(X|\theta) = \theta^{N_1} (1-\theta)^{N_0} \stackrel{\text{<- This here bernoulli likelihood.}}{\sim}$$

We have datapoints that can either be 0 or 1s.

N1 is the number of 1's appeared in X. N0 = the number of 0's appeared in X.

$$p(\theta) = B(\theta|a,b) \propto \theta^{a-1} (1-\theta)^{b-1}$$

Now, try to prove that p(theta | X) is proportional to the likelihood x prior.

$$p(\theta|X) \propto p(X|\theta)p(\theta)$$

$$p(\theta|X) \propto \theta^{N_1} (1-\theta)^{N_0} \cdot \theta^{a-1} (1-\theta)^{b-1}$$

$$p(\theta|X) \propto \theta^{N_1+a-1} (1-\theta)^{N_0+b-1}$$

$$p(\theta|X) = B(N_1 + a, N_0 + b)$$

It is! the posterior is the beta distribution again!

Essentially, we want to compute the posterior.

$$\frac{P(\theta|X)}{P(X)} = \frac{P(X|\theta)P(\theta)}{P(X)}$$

But, in order to do this, we have to compute all the possible values of X and their probabilities P(X). This is really infeasible.

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

So if we have a p(theta) (prior) that is conjugate to the likelihood, then the posterior will be proportional to the prior, and we can skip p(X) since this will just be a 'constant'.

$$P(\theta|X) = \frac{P(X|\theta)P(\theta)}{P(X)}$$

Pros and cons

Pros:

- Exact posterior
- Easy for on-line learning

E.g.
$$p(\theta|X) = B(N_1 + a, N_0 + b)$$

Cons:

Conjugate prior may be inadequate

Why inadequate?

