

Diskrete Mathematik und Lineare Algebra

Dr.-Ing. Miriam Hommel

Gliederung

1. Zahlentheorie

- 1.1 Teilbarkeit
- 1.2 Primzahlen
- 1.3 Kongruenzen
- 1.4 RSA Public-Key-Kryptosytem

2. Algebra

- 2.1 Algebraische Strukturen
- 2.2 Vektoren und Matrizen
- 2.3 Lineare Gleichungssysteme
- 2.4 Determinanten

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Teilbarkeitsrelation und Teilermenge

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit – Teilbarkeitsrelation

<u>Hinweis:</u> Die Grundmenge in diesem Abschnitt ist Z, die Menge der ganzen Zahlen.

Definition 1:

Für zwei Zahlen $m, n \in \mathbb{Z}$ mit m > 0 ist m ein Teiler von n, falls es ein $t \in \mathbb{Z}$ gibt, so dass

Kurzschreibweise:

lies:

Beispiele: • 2 6, da

• 2 7, da

1.1 Teilbarkeit – Teilbarkeitsrelation

Für jedes $n \in \mathbb{Z}$ gilt

Ist n > 0, dann gilt auch

Hinweis: Ist n < 0, dann gilt $n \nmid n$, da der Teiler laut Definition > 0 sein muss.

Spezialfall: n = 0:

Dann gilt $\forall m \in \mathbb{N} \setminus \{0\}$:

Teilbarkeit – Teilermenge

Definition 2:

Die Menge aller (positiven) Teiler von $n \in \mathbb{Z}$ ist

Beispiele: • $T_6 =$

- $T_7 =$
- $T_{20} =$
- \bullet $T_0 =$

1.1 Teilbarkeit – Teilbarkeitsrelation und Teilermengen

Kontrollfragen:

- 1. Was muss für m gelten, damit es ein Teiler von $n \in \mathbb{Z}$ ist?
- 2. Ist 3 ein Teiler von 45? Begründen Sie Ihre Antwort.
- 3. Ist -3 ein Teiler von -45? Begründen Sie Ihre Antwort.
- 4. Wie lautet die Definition der Teilermenge?
- 5. Bestimmen Sie T_{45} .
- 6. Bestimmen Sie T_{-45} .

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Division mit Rest

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit – Division mit Rest

Ist m kein Teiler von n, so bleibt bei der Division ein Rest.

Für $n, t, m, r \in \mathbb{Z}$ mit m, r > 0 können wir schreiben:

(1.1)

Dabei wählen wir t maximal, so dass $tm \le n$ ist, also $t = \left\lfloor \frac{n}{m} \right\rfloor$.

Zur Erinnerung:

Eulersche Ganzzahlfunktion:

 $[x] = max\{a \in \mathbb{Z} \mid a \le x\}$ wobei $x \in \mathbb{R}$, d.h. [x] ist die größte ganze Zahl y mit $y \le x$.

$n = t \cdot m + r \tag{1.1}$

1.1 Teilbarkeit – Division mit Rest

Eingesetzt in Gleichung (1.1) ergibt sich:

(1.2)

Da
$$\left\lfloor \frac{n}{m} \right\rfloor \cdot m \le n$$
, ist

Andererseits ist r < m, da $\left\lfloor \frac{n}{m} \right\rfloor$ der größte Faktor t ist, so dass $t \cdot m \leq n$. Folglich gilt

1.1 Teilbarkeit – Division mit Rest

Definition 3:

Die Menge der möglichen Reste, die sich bei der Division von n durch $m \in \mathbb{Z}, m > 0$ ergeben, lautet

Bei der ganzzahligen Division von n durch m bezeichnet man m als **Modul** und den **Rest** r als n **modulo** m.

Kurzschreibweise:

Der Rest r ist also der Abstand vom nächst kleineren Vielfachen von m.

1.1 Teilbarkeit – Division mit Rest

 $r = n \mod m = n - \left\lfloor \frac{n}{m} \right\rfloor \cdot m$

Beispiele: • m = 3, n = 5

•
$$m = 3$$
, $n = -5$

Teilbarkeit – Division mit Rest

Folgerung 1:

Für $n, m \in \mathbb{Z}$ mit m > 0 und $r = n \mod m$ gilt:

Beweis:

Beispiele von oben: • 5-2=3 und $\frac{3}{3}=1$

$$-2 = 3$$
 und $\frac{3}{3} =$

•
$$-5 - 1 = -6$$
 und $\frac{-6}{3} = -2$

1.1 Teilbarkeit – Division mit Rest

Eine Zahl n kann für feste m auf viele Arten in der Form $n = t \cdot m + r$ geschrieben werden.

Beispiel: n = 11, m = 3

Beschränkt man r auf den Bereich $\{0; 1; ...; m-1\}$, dann gibt es nur noch eine Darstellung $n = t \cdot m + r$.

1.1 Teilbarkeit – Division mit Rest

Theorem 1:

Für $m, n \in \mathbb{Z}$, m > 0 ist die Darstellung $n = t \cdot m + r$ mit $0 \le r < m$ eindeutig.

Beweis:

Angenommen es gäbe neben der Darstellung $n = t \cdot m + r$ noch eine weitere der Form $n = t' \cdot m + r'$:

$$n = t \cdot m + r = t' \cdot m + r'$$
 mit $0 \le r, r' < m$

(1.3)

1. Zahlentheorie

1.1 Teilbarkeit – Division mit Rest

Nach Gleichung (1.3) ist r - r' ein Vielfaches von m.

Da $0 \le r, r' < m$, liegt die Differenz r - r' im Bereich

Das einzige Vielfache von m in diesem Bereich ist 0.

D.h. die beiden Darstellungen von n sind gleich.

1.1 Teilbarkeit – Division mit Rest

Kontrollfragen:

- 1. Wie lautet die Menge der möglichen Reste, die sich bei der Division von $n \in \mathbb{Z}$ durch 5 ergeben?
- 2. Wie wird der Rest r bei der ganzzahligen Division von $n \in \mathbb{Z}$ durch $m \in \mathbb{Z}, m > 0$ bezeichnet?
- 3. Wie kann der Zusammenhang mathematisch dargestellt werden?
- 4. We shalb gilt für $n, m \in \mathbb{Z}$ mit m > 0 und $r = n \mod m$: $m \mid n r$?

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Gemeinsame Teiler, ggT, kgV

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit

Definition 4:

Für zwei Zahlen $m, n \in \mathbb{Z}$ ist $T_{m;n}$ die Menge der gemeinsamen Teiler von m und n. Es gilt:

Definition 5:

Für zwei Zahlen $m, n \in \mathbb{Z}$ mit $(m; n) \neq (0; 0)$ ist der größte gemeinsame Teiler, kurz ggT(m; n), die größte Zahl in $T_{m;n}$, also $\max T_{m;n}$:

1.1 Teilbarkeit

Definition 6:

Das <u>kleinste gemeinsame Vielfache</u> von $m, n \in \mathbb{Z}$ mit m, n > 0, kurz kgV(m; n), ist die kleinste Zahl, die von m und n geteilt wird:

Teilbarkeit

Beispiele: •
$$T_{12} =$$

$$T_{12} =$$

$$T_{18} =$$

$$T_{12;18} =$$

$$ggT(12; 18) =$$

$$kgV(12; 18) =$$

•
$$ggT(0; n) =$$

1.1 Teilbarkeit – gemeinsame Teiler, ggT, kgV

Kontrollfragen – Teil 1:

- 1. Welche Elemente enthält die Menge $T_{m:n}$ $(m, n \in \mathbb{Z})$?
- 2. Wie lautet die Definition des größten gemeinsamen Teilers zweier Zahlen $m, n \in \mathbb{Z}$ mit $(m; n) \neq (0; 0)$?
- 3. Wie lautet die Definition des kleinsten gemeinsamen Vielfachen zweier Zahlen $m,n \in \mathbb{Z}$ mit m,n > 0?

1.1 Teilbarkeit – gemeinsame Teiler, ggT, kgV

Kontrollfragen – Teil 2:

- 4. Bestimmen Sie:
 - T₁₅
 - T₃₅
 - *T*_{15;35}
 - ggT(15; 35)
 - kgV(15; 35)

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Eigenschaften der Teilermengen

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit

Ziel:

Möglichst effizientes Verfahren zur Berechnung des größten gemeinsamen Teilers zweier Zahlen.

Dazu zeigen wir zunächst einige Eigenschaften der Teilermengen.

1.1 Teilbarkeit

Lemma 1:

Für alle $a, b \in \mathbb{Z}$ ist

Beweis:

Sei $k \in T_{m;n}$ ein beliebiger Teiler von m und n.

Es gibt also $s, t \in \mathbb{Z}$, so dass

Dann gilt:

am + bn =

und folglich

D.h.

1.1 Teilbarkeit

Speziell gilt also für den ggT und für alle $a, b \in \mathbb{Z}$

Beispiel:
$$m = 12$$
, $n = 18$, $a = -1$, $b = 2$

$$am + bn =$$

$$T_{m;n} \subseteq T_{am+bn}$$

1.1 Teilbarkeit

 \Rightarrow Die Teilermenge T_{am+bn} enthält im Allgemeinen mehr Zahlen als $T_{m;n}$ (z.B. ist $4 \in T_{24}$, aber $4 \notin T_{12;18}$).

Für bestimmte Aufgaben wäre es also von Vorteil, mindestens eine der Zahlen m, n zu verkleinern, ohne $T_{m;n}$ zu verändern.

1.1 Teilbarkeit – Eigenschaften der Teilermengen

Kontrollfragen:

1. Zeigen Sie für m=15, n=21, a=2, b=-1, dass die Beziehung $T_{m;n}\subseteq T_{am+bn}$ erfüllt ist?

Diskrete Mathematik und Lineare Algebra

- 1. Zahlentheorie
- 1.1 Teilbarkeit Hinführung zum Euklidischer Algorithmus

Dr.-Ing. Miriam Hommel

1.1 Teilbarkeit

Folgerung 2:

Für alle $a \in \mathbb{Z}$ ist

<u>Beweis:</u> Idee: Zeige, dass $T_{m;n} \subseteq T_{m;n-am}$ und $T_{m;n} \supseteq T_{m;n-am}$ also $T_{m;n-am} \subseteq T_{m;n}$

$$\Rightarrow T_{m;n} \subseteq T_{m;n-am} = T_m \cap T_{n-am}$$

Zu zeigen: $T_{m,n}$ ist enthalten in T_m und in T_{n-am}

- $T_{m:n} \subseteq T_m$ gilt, da $T_{m:n} = T_m \cap T_n \subseteq T_m$
- $T_{m;n} \subseteq T_{n-am}$ folgt nach Lemma 1 ($T_{m;n} \subseteq T_{am+bn}$), wenn dort b durch 1 und a durch -a ersetzt wird.

1.1 Teilbarkeit

<u>Beweis:</u> Idee: Zeige, dass $T_{m;n} \subseteq T_{m;n-am}$ und $T_{m;n} \supseteq T_{m;n-am}$ also $T_{m;n-am} \subseteq T_{m;n}$

$$\leftarrow T_{m:n} \supseteq T_{m:n-am}$$
 also $T_{m:n-am} \subseteq T_{m:n} = T_m \cap T_n$

Zu zeigen: $T_{m:n-am}$ ist enthalten in T_m und in T_n

- $T_{m;n-am} \subseteq T_m$ gilt, da $T_{m;n-am} = T_m \cap T_{n-am} \subseteq T_m$
- $T_{m;n-am} \subseteq T_n$ folgt nach Lemma 1 ($T_{m;n} \subseteq T_{am+bn}$), da sich n wie folgt als Linear-kombination von m und n-am darstellen lässt:

Da sowohl $T_{m;n} \subseteq T_{m;n-am}$ als auch $T_{m;n} \supseteq T_{m;n-am}$ gilt, muss $T_{m;n} = T_{m;n-am}$ gelten.

1.1 Teilbarkeit

$$T_{m;n} = T_{m;n-am}$$

Wählt man in Folgerung 2 $a \ge 1$, so verkleinert sich das Zahlenpaar (m; n) zu (m; n - am).

Trotzdem bleiben die gemeinsamen Teiler die selben.

Je kleiner n-am wird, desto einfacher kann der ggT bestimmt werden.

Folglich wählen wir a maximal, so dass $n - am \ge 0$ ist.

Das gilt offensichtlich für $a = \left\lfloor \frac{n}{m} \right\rfloor$.

Dann haben wir:

1.1 Teilbarkeit

Folgerung 3:

Für alle m > 0 gilt

Spezialfall: $n \mod m = 0$

Dann erhalten wir $T_{m;0}$.

Da jede positive Zahl Teiler von 0 ist, gilt

und damit

1.1 Teilbarkeit

$$T_{m;n} = T_{m;n \bmod m}$$

Beispiel: Berechnung des ggT von 12 und 18:

$$ggT(12; 18) = max T_{12;18}$$

D.h. die gemeinsamen Teiler von 12 und 18 sind die Teiler von 6.

$$ggT(12; 18) = max T_{12;18} = max T_6 = 6$$

1.1 Teilbarkeit

Allgemein: Sei $0 \le m < n$:

$$ggT(m; n) = \max T_{m;n}$$

$$= \max T_{m;n \bmod m}$$

$$= \max T_{n \bmod m; m} \qquad \text{da} \quad n \bmod m < m$$

$$= ggT(n \bmod m; m)$$

 $T_{m;n} = T_{m;n \bmod m}$

$$T_{m;n} = T_{n;m}$$

⇒ effizienter Algorithmus zur Bestimmung des ggT:

Euklidischer Algorithmus

1.1 Teilbarkeit – Hinführung zum Euklidischen Algorithmus

Kontrollfragen:

- 1. Zeigen Sie, dass für m=12 und n=18 die Beziehung $T_{m;n}=T_{m;n \bmod m}$ erfüllt ist.
- 2. Bestimmen Sie den ggT(15; 35) mit Hilfe des Euklidischen Algorithmus.

- 1. Zahlentheorie
- 1.1 Teilbarkeit Euklidischer Algorithmus (rekursiv)

1.1 Teilbarkeit – Wiederholung

Allgemein: Sei $0 \le m < n$:

$$ggT(m; n) = \max T_{m;n}$$

$$= \max T_{m;n \bmod m}$$

$$= \max T_{n \bmod m; m} \qquad da \quad n \bmod m < m$$

$$= ggT(n \bmod m; m)$$

 $T_{m;n} = T_{m;n \bmod m}$

$$T_{m;n} = T_{n;m}$$

⇒ effizienter Algorithmus zur Bestimmung des ggT:

Euklidischer Algorithmus

1.1 Teilbarkeit – Rekursive Formulierung des Euklidischen Algorithmus

Die einfachste Formulierung des Euklidischen Algorithmus ist als rekursive Prozedur.

Sei $0 \le m < n$:

1.1 Teilbarkeit – Rekursive Formulierung des Euklidischen Algorithmus

Beispiel: EUKLID (15,10)

EUKLID(m, n)			
1	if $m=0$ then		
2	return n		
3	else		
4	return EUKLID $(n \mod m, m)$		

1.1 Teilbarkeit

- Ausgehend von m und n wird die größere der beiden Zahlen, also n, durch $r = n \mod m$ ersetzt.
- Wiederholung dieses Schrittes mit r und m.
- Nach Folgerung 3 bleibt die gemeinsame Teilermenge gleich.

$\mathbf{EUKLID}(m,n)$		
1	if $m=0$ then	
2	return n	
3	else	
4	return EUKLID $(n \mod m, m)$	

$$T_{m;n} = T_{m;n \bmod m}$$

- Prozess endet, wenn die Division ohne Rest aufgeht, d.h. eine der beiden Zahlen 0 ist.
- Da die Zahlen immer kleiner werden, ist dies spätestens dann der Fall, wenn eine der beiden Zahlen
 1 ist.
- Sind 0 und d die Zahlen im letzten Schritt, dann ist $T_{m;n} = T_d$ und insbesondere d = ggT(m;n).

1.1 Teilbarkeit

Folgerung 4:

Jeder gemeinsame Teiler von n und m teilt folglich ggT(m; n).

1.1 Teilbarkeit – Euklidischer Algorithmus (rekursiv)

Kontrollfragen:

- 1. Wie kann der euklidische Algorithmus als rekursive Prozedur formuliert werden?
- 2. Wann endet die Prozedur?
- 3. Wie oft muss die Prozedur durchlaufen werden, wenn Sie mit den Argumenten (15,12) aufgerufen wird? Welcher Wert wird dann zurückgegeben?

- 1. Zahlentheorie
- 1.1 Teilbarkeit Euklidischer Algorithmus (iterativ)

1.1 Teilbarkeit – Iterative Formulierung des Euklidischen Algorithmus

Der Euklidische Algorithmus lässt sich auch als iterativer Algorithmus formulieren (performantere Implementierung).

EUKLID-ITERATIV(m, n)

- 1 while m > 0 do
- $r \leftarrow n \mod m$
- $n \leftarrow m$
- $4 \qquad m \leftarrow r$
- 5 return n

1.1 Teilbarkeit – Iterative Formulierung des Euklidischen Algorithmus

Beispiel: **EUKLID-ITERATIV**(15,10)

Schritt	r	n	m

EUKLID-ITERATIV(m, n)			
1	while $m > 0$ do		
2	$r \leftarrow n \bmod m$		
3	$n \leftarrow m$		
4	$m \leftarrow r$		
5	return n		

1.1 Teilbarkeit – Euklidischer Algorithmus (iterativ)

Kontrollfragen:

- 1. Wie kann der euklidische Algorithmus als iterative Prozedur formuliert werden?
- 2. Wann endet die Prozedur?
- 3. Wie oft muss die Schleife der Prozedur durchlaufen werden, wenn die Prozedur mit den

Argumenten (15,12) aufgerufen wird? Welcher Wert wird dann zurückgegeben?

- 1. Zahlentheorie
- 1.1 Teilbarkeit ggT als Linearkombination

1.1 Teilbarkeit – ggT als Linearkombination

Der ggT(m; n) von m und n lässt sich als Linearkombination von m und n darstellen.

Theorem 2:

Es gibt $x, y \in \mathbb{Z}$, so dass

Beweis:

Mittels vollständiger Induktion über die Zahlenfolge des euklidischen Algorithmus und zwar vom Ende her kommend.

1.1 Teilbarkeit – ggT als Linearkombination

$$x \cdot m + y \cdot n = ggT(m; n)$$

Beweis: Vollständige Induktion

IA: Der Induktionsanfang ist der Rekursionsabbruch des euklidischen Algorithmus, d.h. es ist

$$n > m = 0$$
.

Für x = 0 und y = 1 gilt dann:

$$x \cdot m + y \cdot n =$$

IV: Für $r = n \mod m$ und m gibt es x' und $y' \in \mathbb{Z}$, so dass gilt:

1.1 Teilbarkeit – ggT als Linearkombination

 $x \cdot m + y \cdot n = ggT(m; n)$

Beweis: Vollständige Induktion

IV: $x' \cdot (n \mod m) + y' \cdot m = ggT(n \mod m; m)$

IS (zu zeigen: $ggT(m; n) = x \cdot m + y \cdot n$):

Nach Folgerung 3 gilt: $ggT(m; n) = ggT(n \mod m; m)$

$$n \mod m = n - \left| \frac{n}{m} \right| \cdot m$$

D.h. mit x =

und y =

gilt: $x \cdot m + y \cdot n = ggT(m; n)$

- 1. Zahlentheorie
- 1.1 Teilbarkeit Der erweiterte euklidische Algorithmus

1.1 Teilbarkeit – Erweiterter euklidischen Algorithmus

Der euklidische Algorithmus kann zum erweiterten euklidischen Algorithmus erweitert werden.

Dieser berechnet neben d = ggT(m; n) zusätzlich x und y mit xm + yn = ggT(m; n).

ERWEITER-EUKLID (m, n)		Rückgabewert: (d, x, y)
1	if $m = 0$ then	
2	return $(n, 0, 1)$	
3	else	
4	$(d, x', y') \leftarrow \text{ERWEITERTER-EUKLID}(n \mod m, m)$	
5	$x = y' - \left\lfloor \frac{n}{m} \right\rfloor \cdot x'$	
6	y = x'	
7	return (d, x, y)	

1.1 Teilbarkeit – Erweiterter euklidischen Algorithmus

Beispiel: **ERWEITERTER-EUKLID**(30,21)

m	n	d	$x = y' - \left\lfloor \frac{n}{m} \right\rfloor \cdot x'$	y = x'
30	21	3	$-2 - \left \frac{21}{30} \right \cdot 3 = -2$	3
$21 \mod 30 = 21$	30	3	$1 - \left \frac{30}{21} \right \cdot (-2) = 3$	-2
30 mod 21 = 9	21	3	$0 - \left \frac{21}{9} \right \cdot 1 = -2$	1
$21 \mod 9 = 3$	9	3	$1 - \left \frac{9}{3} \right \cdot 0 = 1$	0
$9 \mod 3 = 0$	3	3	0	1

ERWEITERTER-EUKLID(m, n)

- 1 if m = 0 then
- 2 **return** (n, 0, 1)
- 3 else
- 4 $(d, x', y') \leftarrow ERW-EUKL(n \mod m, m)$
- $5 x = y' \left| \frac{n}{m} \right| \cdot x'$
- 5 y = x'
- return (d, x, y)

1.1 Teilbarkeit – Erweiterter euklidischen Algorithmus

Anwendung: z.B. beim Kürzen von Brüchen

• Größter gemeinsamer Faktor in $\frac{a}{b}$ ist der ggT(a;b):

$$\frac{a}{b} =$$

Beispiel:

$$\frac{21}{30} =$$

1.1 Teilbarkeit – Erweiterter euklidischen Algorithmus

Kontrollfragen:

- 1. Wie kann der erweiterte euklidische Algorithmus als Prozedur formuliert werden?
- 2. Wann endet die Prozedur?
- 3. Welche Werte gibt die Prozedur zurück? Welche Bedeutung haben sie?
- 4. Warum werden für m = 0 die Werte (n, 0, 1) zurückgegeben?

Anwendungsbeispiel erweiterter euklidischer Algorithmus

Sie haben zwei Messlatten mit den Längen $\,l_1=48~{
m cm}\,$ und $\,l_2=27~{
m cm}.$

Wie können Sie mit diesen eine Strecke von 9 cm abmessen?

- 1. Zahlentheorie
- 1.1 Teilbarkeit Anwendung euklidischer Algorithmus

1.1 Teilbarkeit – Anwendung des euklidischen Algorithmus

<u>Aufgabe</u>: Kürzen Sie den Bruch $\frac{1029}{1071}$ so weit wie möglich.

- 1. Zahlentheorie
- 1.1 Teilbarkeit Anwendung euklidischer Algorithmus

1.1 Teilbarkeit – Anwendung des erweiterten euklidischen Algorithmus

Aufgabe: Wenden Sie den erweiterten euklidischen Algorithmus auf das Zahlenpaar (28; 42) an.