

WHAT IS CLAIMED IS:

1. A compound of the formula

5 or a pharmaceutically acceptable salt thereof, wherein g, h and j are each independently 0 or 1; provided when h is 0, then g is 0;

each Alk is independently a alkyl radical;

10

U represents amidino, guanidino, $-(\text{G-alkyl})_k-\text{NH-R}_1$, $-(\text{G-alkyl})_k-\text{NH-C(Q)-R}_1$, $-(\text{G-alkyl})_k-\text{C(Q)-N(R)-R}_1$, $-(\text{G-alkyl})_k-\text{NH-C(Q)-N(R)-R}_1$, $-(\text{G-alkyl})_k-\text{NH-C(Q)-O-R}_1$ or $-(\text{G-alkyl})_k-\text{O-C(Q)-N(R)-R}_1$ radical; or U represents a

15

hydroxyalkyl-G- radical which is optionally substituted by a cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

20

wherein k is 0 or 1;

G represents a bond, O, S or NH;

25

Q represents O, S, NH, N-CN or N-alkyl;

R is a radical of hydrogen or alkyl;

30

R₁ is a radical of alkyl, haloalkyl, R₂₁R₂₂N-alkyl, R₂₁O-alkyl, R₂₁S-alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

35

wherein R_{21} and R_{22} are each independently a radical of hydrogen, alkyl, haloalkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the

5 cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy, carboxy,

10 cyano, azido, amidino, guanidino, nitro, amino, alkylamino or dialkylamino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

15

V represents a radical of formula

5

5 wherein W_1 is O, S or N-R₃; wherein each R₃ is independently a hydrogen or alkyl radical; W₂ is N or C-R₄; W₈ is N or C-R₅;

W₉ is C(R₃)₂ and W₁₀ is W₁; or W₉ is CR₃R₅ and W₁₀ is C(R₃)₂;

10

each W₂, W₃, W₄ and W₅ are independently N or C-R₄; provided the total number of cycloalkyl, aryl, heteroaryl, heterocyclyl, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂ and -R₁₉ radicals in W₂, W₃, W₄ and W₅ is 0-2;

15 each W₆ is independently N or C-H; provided that not more than two of W₂, W₃, W₄, W₅ and W₆ represent N; and

20 each R₄ is independently a hydrogen, halo, alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy, hydroxy,

cyano, carboxy, $-C(O)-O-R_{19}$, $-C(O)-R_{19}$, $-C(O)-NH-R_{19}$,
 $-C(O)-N(R_{19})_2$, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-

alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or
heterocyclyl-alkyl radical, wherein the cycloalkyl,

- 5 aryl, heteroaryl and heterocyclyl radicals are
optionally substituted by 1-3 radicals of R_2 ; or two
adjacent R_4 radicals taken together with the carbon
atoms to which they are attached represent a fused-
phenyl or fused-heteroaryl of 5-6 ring members, wherein
10 the phenyl and heteroaryl radicals are optionally
substituted by 1-3 radicals of R_2 ;

R_5 , R_6 and R_7 are each independently a hydrogen, halo,
alkyl, alkoxy, alkylthio, haloalkyl, haloalkoxy,

- 15 hydroxy or cyano radical; or R_5 and R_6 or R_6 and R_7 taken
together with the carbon atoms to which they are
attached represent a fused-phenyl or fused-heteroaryl
of 6 ring members, wherein the phenyl and heteroaryl
radicals are optionally substituted by 1-3 radicals of
20 R_2 ; or R_3 and R_6 taken together with the carbon atoms to
which they are attached represent a fused-heteroaryl of
6 ring members optionally substituted by 1-3 radicals
of R_2 ;

- 25 A represents a radical of formula

5 wherein X_1 is N or C-H;

X_2 is C-H, C-alkyl, a spirocycloalkyl or spiroheterocyclyl radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally

10 substituted by an oxo or thioxo radical and 1-2 radicals of alkyl, haloalkyl, hydroxy, alkoxy or haloalkoxy;

Y_1 is $-C(O)-$, $-C(S)-$, $-S(O)-$ or $-S(O)_2-$;

15

Z_1 is O or $N-R_{12}$;

Z_2 is O, S or $N-R_{12}$;

n and m are each independently 0, 1 or 2, provided n + m = 1, 2, 3 or 4;

5 p and q are each independently 0, 1 or 2, provided p + q = 1, 2 or 3;

r is 1 or 2;

10 R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

wherein (a) R₁₅ is a hydrogen or alkyl radical; and R₁₇ is (1) an aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or

25 (b) R₁₇ is a hydrogen or alkyl radical; and R₁₅ is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, -NH-C(O)-R₁₉, -C(O)-NH-R₁₉, -NH-C(O)-NH-R₁₉, -O-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -S(O)₂-R₁₉, -NH-S(O)₂-R₁₉, -S(O)₂-NH-R₁₉ or -NH-S(O)₂-NH-R₁₉

30

R_{19} , $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$, radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

5

provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or $-C(O)-NH-R_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl, $-NH-C(O)-R_{19}$, $-C(O)-NH-R_{19}$, $-NH-C(O)-NH-R_{19}$, $-O-C(O)-NH-R_{19}$, $-NH-C(O)-O-R_{19}$, $-S(O)_2-R_{19}$, $-NH-S(O)_2-R_{19}$, $-S(O)_2-NH-R_{19}$ or $-NH-S(O)_2-NH-R_{19}$;

10

wherein R_{19} is a alkyl, cycloalkyl, cycloalkyl-alkyl, aryl, aryl-alkyl, heteroaryl, heteroaryl-alkyl, heterocyclyl or heterocyclyl-alkyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

20

R_{16} and R_{18} are each independently a hydrogen or alkyl radical; and

25

E is a radical of carboxy, amido, tetrazolyl, $-C(O)-O-R_{20}$, $-C(O)-NH-R_{20}$, $-C(O)-NH-S(O)-R_{20}$, $-C(O)-NH-S(O)_2-R_{20}$ or $-C(O)-NH-C(O)-R_{20}$;

30

wherein R_{20} is an alkyl, cycloalkyl, aryl, heteroaryl or heterocyclyl radical or an alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, cycloalkyl, aryl, heteroaryl or heterocyclyl, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ; and

35

provided that when U represents amidino, guanidino, -C(Q)-NH-R₁ or -NH-C(Q)-NH-R₁ radical, wherein Q represents NH, N-CN or N-alkyl, then at least one of g, h or j is 1.

5

2. The compound of Claim 1 or a pharmaceutically acceptable salt thereof, wherein

10 each Alk is independently a C₁-C₁₂ alkyl radical;

U represents amidino, guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-N(R)-R₁, -(G-15(C₁-C₈ alkyl))_k-NH-C(Q)-O-R₁ or -(G-(C₁-C₈ alkyl))_k-O-C(Q)-N(R)-R₁ radical; or U represents a hydroxy(C₁-C₁₂ alkyl)-G- radical which is optionally substituted by a C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the 20 cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

Q represents O, S, NH, N-CN or N-(C₁-C₈ alkyl);

25 R is a radical of hydrogen or C₁-C₈ alkyl;

R₁ is a radical of C₁-C₈ alkyl, halo(C₁-C₈ alkyl) of 1-7 halo radicals, R₂₁R₂₂N-(C₁-C₈ alkyl), R₂₁O-(C₁-C₈ alkyl), R₂₁S-(C₁-C₈ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₈ 30 alkyl), aryl, aryl(C₁-C₈ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₈ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₈ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are 35 optionally substituted by 1-3 radicals of R₂;

wherein R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₈ alkyl, halo(C₁-C₈ alkyl) of 1-7 halo radicals, C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₈ alkyl), aryl, aryl(C₁-C₈ alkyl), heteroaryl of 5-10 ring

- 5 members, heteroaryl(C₁-C₈ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₈ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

10

each R₂ is independently a halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5 halo radicals, halo(C₁-C₄ alkoxy) of 1-5 halo radicals,

- 15 hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₈ alkylamino or di(C₁-C₈ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

- 20 each R₃ is independently a hydrogen or C₁-C₆ alkyl radical;

each R₄ is independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄ alkyl) of 1-5

- 25 halo radicals, halo(C₁-C₄ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl)

- 30 of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; or two adjacent R₄ radicals taken 35 together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl

of 5-6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

- 5 R₅, R₆ and R₇ are each independently a hydrogen, halo, C₁-C₆ alkyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, halo(C₁-C₄) alkyl of 1-5 halo radicals, halo(C₁-C₄) alkoxy of 1-5 halo radicals, hydroxy or cyano radical; or R₅ and R₆ or R₆ and R₇ taken together with the carbon atoms to which they are attached represent a fused-phenyl or fused-heteroaryl of 6 ring members, wherein the phenyl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂; or R₃ and R₆ taken together with the carbon atoms to which they are attached represent a fused-heteroaryl of 6 ring members optionally substituted by 1-3 radicals of R₂;

- X₂ is C-H, C-(C₁-C₄ alkyl), a C₃-C₈ spirocycloalkyl or spiroheterocyclyl of 5-8 ring members radical; wherein the spirocycloalkyl and spiroheterocyclyl radicals are optionally substituted by an oxo or thioxo radical and 1-2 radicals of C₁-C₆ alkyl, halo(C₁-C₄) alkyl of 1-5 halo radicals, hydroxy, C₁-C₆ alkoxy or halo(C₁-C₄) alkoxy of 1-5 halo radicals;

- 25 R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or C₁-C₆ alkyl radical; or -CR₈R₉- represents a -C(O)-;

B represents a radical of formula

- 30 wherein (a) R₁₅ is a hydrogen or C₁-C₆ alkyl radical; and R₁₇ is (1) an aryl, heteroaryl of 5-10 ring members, -

NH-C(O)-R_{19} , $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-NH-R}_{19}$, $-\text{O-C(O)-NH-R}_{19}$,
 $-\text{NH-C(O)-O-R}_{19}$, $-\text{S(O)}_2\text{-R}_{19}$, $-\text{NH-S(O)}_2\text{-R}_{19}$, $-\text{S(O)}_2\text{-NH-R}_{19}$ or
 $-\text{NH-S(O)}_2\text{-NH-R}_{19}$ radical, or (2) an $\text{C}_1\text{-C}_6$ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10

5 ring members, $-\text{NH-C(O)-R}_{19}$, $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-NH-R}_{19}$,
 $-\text{O-C(O)-NH-R}_{19}$, $-\text{NH-C(O)-O-R}_{19}$, $-\text{S(O)}_2\text{-R}_{19}$, $-\text{NH-S(O)}_2\text{-R}_{19}$,
 $-\text{S(O)}_2\text{-NH-R}_{19}$ or $-\text{NH-S(O)}_2\text{-NH-R}_{19}$; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ; or

10

(b) R_{17} is a hydrogen or $\text{C}_1\text{-C}_6$ alkyl radical; and R_{15} is (1) an aryl, heteroaryl of 5-10 ring members, $\text{C}_3\text{-C}_8$

cycloalkyl, heterocyclyl of 5-8 ring members, $-\text{NH-C(O)-R}_{19}$, $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-NH-R}_{19}$, $-\text{O-C(O)-NH-R}_{19}$, $-\text{NH-}$

15 $-\text{C(O)-O-R}_{19}$, $-\text{S(O)}_2\text{-R}_{19}$, $-\text{NH-S(O)}_2\text{-R}_{19}$, $-\text{S(O)}_2\text{-NH-R}_{19}$ or $-\text{NH-S(O)}_2\text{-NH-R}_{19}$ radical, or (2) an $\text{C}_1\text{-C}_4$ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10

ring members, $\text{C}_3\text{-C}_8$ cycloalkyl, heterocyclyl of 5-8 ring members, $-\text{NH-C(O)-R}_{19}$, $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-NH-R}_{19}$, $-\text{O-}$

20 $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-O-R}_{19}$, $-\text{S(O)}_2\text{-R}_{19}$, $-\text{NH-S(O)}_2\text{-R}_{19}$, $-\text{S(O)}_2\text{-NH-R}_{19}$ or $-\text{NH-S(O)}_2\text{-NH-R}_{19}$ radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

25 provided that when a nitrogen atom is attached to the carbon atom to which R_{15} is attached, then R_{15} is (1) an aryl, heteroaryl, cycloalkyl, heterocyclyl or $-\text{C(O)-NH-R}_{19}$ radical, or (2) an alkyl radical substituted by a radical of aryl, heteroaryl, cycloalkyl, heterocyclyl,

30 $-\text{NH-C(O)-R}_{19}$, $-\text{C(O)-NH-R}_{19}$, $-\text{NH-C(O)-NH-R}_{19}$, $-\text{O-C(O)-NH-R}_{19}$, $-\text{NH-C(O)-O-R}_{19}$, $-\text{S(O)}_2\text{-R}_{19}$, $-\text{NH-S(O)}_2\text{-R}_{19}$, $-\text{S(O)}_2\text{-NH-R}_{19}$ or $-\text{NH-S(O)}_2\text{-NH-R}_{19}$;

35 wherein R_{19} is a $\text{C}_1\text{-C}_6$ alkyl, $\text{C}_3\text{-C}_8$ cycloalkyl, $\text{C}_3\text{-C}_8$ cycloalkyl($\text{C}_1\text{-C}_6$ alkyl), aryl, aryl($\text{C}_1\text{-C}_6$ alkyl), heteroaryl of 5-10 ring members, heteroaryl($\text{C}_1\text{-C}_6$ alkyl)

of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₆ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3

5 radicals of R₂;

R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₆ alkyl radical; and

10 R₂₀ is a C₁-C₆ alkyl, C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members radical or a C₁-C₆ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, C₃-C₈ cycloalkyl, aryl, heteroaryl of 5-10 ring members or
15 heterocyclyl of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.

20 3. The compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₈ alkyl radical;

25 V represents a radical of formula

A represents a radical of formula

Y₁ is -C(O)- or -C(S)-.

10 4. The compound of Claim 3 or a pharmaceutically acceptable salt thereof, wherein

each Alk is independently a C₁-C₆ alkyl radical;

15 V represents a radical of formula

X₂ is C-H or C-(methyl) radical;

Y₁ is -C(O)-; and

5 R₈, R₉, R₁₀, R₁₁ and R₁₂ are each independently a hydrogen or methyl radical; or -CR₈R₉- represents a -C(O)-.

5. The compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein

10

each Alk is independently a C₁-C₄ alkyl radical;

U represents amidino, guanidino, -(G-(C₁-C₈ alkyl))_k-NH-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-R₁, -(G-(C₁-C₈ alkyl))_k-C(Q)-N(R)-R₁, -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-N(R)-R₁ or -(G-(C₁-C₈ alkyl))_k-NH-C(Q)-O-R₁ radical;

G represents a bond, O or NH;

20 Q represents O, S, NH, N-CN or N-(C₁-C₄ alkyl);

R is a radical of hydrogen or C₁-C₄ alkyl;

25 R₁ is a radical of C₁-C₆ alkyl, halo(C₁-C₆ alkyl) of 1-5 halo radicals, R₂₁R₂₂N-(C₁-C₆ alkyl), R₂₁O-(C₁-C₆ alkyl), C₃-C₈ cycloalkyl, C₃-C₈ cycloalkyl(C₁-C₆ alkyl), aryl, aryl(C₁-C₆ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₆ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₆ alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;

35 R₂₁ and R₂₂ are each independently a radical of hydrogen, C₁-C₈ alkyl, aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members or heteroaryl(C₁-C₄ alkyl) of 5-10 ring

members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

- each R₂ is independently a halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C₁-C₄ alkylamino or di(C₁-C₄ alkyl)amino radical or two adjacent R₂ radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

each W₆ is C-H;

- each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy, cyano, carboxy, -C(O)-O-R₁₉, -C(O)-R₁₉, -C(O)-NH-R₁₉, -C(O)-N(R₁₉)₂, C₃-C₆ cycloalkyl, C₃-C₆ cycloalkyl(C₁-C₄ alkyl), aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members, heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C₁-C₄ alkyl) of 5-8 ring members radical, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂; and

- R₂₀ is a C₁-C₄ alkyl, aryl or heteroaryl of 5-10 ring members or a C₁-C₄ alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, amino, aryl, heteroaryl of 5-10 ring members or heterocyclyl of 5-8 ring members, wherein the aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂.

6. The compound of Claim 5 or a pharmaceutically acceptable salt thereof, wherein

U represents amidino, guanidino, $-(G-(C_1-C_8\text{ alkyl}))_k-NH-$

5 R_1 , $-NH-C(Q)-R_1$, $-(G-(C_1-C_8\text{ alkyl}))_k-C(Q)-N(R)-R_1$, $-NH-C(Q)-N(R)-R_1$ or $-NH-C(Q)-O-R_1$ radical;

Q represents O or NH;

10 R is a radical of hydrogen or C_1-C_2 alkyl;

R_1 is a radical of C_1-C_6 alkyl, halo(C_1-C_6 alkyl) of 1-5 halo radicals, $R_{21}R_{22}N-(C_1-C_4$ alkyl), $R_{21}O-(C_1-C_4$ alkyl),

C_3-C_8 cycloalkyl, C_3-C_8 cycloalkyl(C_1-C_4 alkyl), aryl,

15 aryl(C_1-C_4 alkyl), heteroaryl of 5-10 ring members, heteroaryl(C_1-C_4 alkyl) of 5-10 ring members, heterocyclyl of 5-8 ring members or heterocyclyl(C_1-C_4 alkyl) of 5-8 ring members, wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R_2 ;

20 R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_6 alkyl, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_2 is independently a halo, C_1-C_2 alkyl, C_1-C_2 alkoxy, C_1-C_2 alkylthio, CF_3- , CF_3O- , hydroxy, carboxy, cyano, azido, amidino, guanidino, nitro, amino, C_1-C_2 ,

30 alkylamino or di(C_1-C_2 alkyl)amino radical or two adjacent R_2 radicals on an aryl or heteroaryl radical represent a methylenedioxy, ethylenedioxy or propylenedioxy radical;

35 each W_2 , W_3 , W_4 and W_5 are independently $C-R_4$;

each R₄ is independently a hydrogen, halo, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, halo(C₁-C₂ alkyl) of 1-5 halo radicals, halo(C₁-C₂ alkoxy) of 1-5 halo radicals, hydroxy or cyano radical;

5

A represents a radical of formula

- 10 (a) R₁₅ is a hydrogen or C₁-C₂ alkyl radical; and R₁₇ is -NH-C(O)-R₁₉, -NH-C(O)-NH-R₁₉, -NH-C(O)-O-R₁₉, -NH-S(O)₂-R₁₉ or -NH-S(O)₂-NH-R₁₉ radical; or (b) R₁₇ is a hydrogen or C₁-C₂ alkyl radical; and R₁₅ is (1) an aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical, or (2) an C₁-C₂ alkyl radical substituted by a radical of aryl, heteroaryl of 5-10 ring members, C₃-C₈ cycloalkyl or heterocyclyl of 5-8 ring members radical; wherein the cycloalkyl, aryl, heteroaryl and heterocyclyl radicals are optionally substituted by 1-3 radicals of R₂;
- 15 20 R₁₉ is a C₁-C₄ alkyl, aryl, aryl(C₁-C₄ alkyl), heteroaryl of 5-10 ring members or heteroaryl(C₁-C₄ alkyl) of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;
- 25 R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₄ alkyl radical;
- 30 E is a radical of carboxy, amido, tetrazolyl or -C(O)-O-R₂₀; and

R_{20} is a C_1-C_2 alkyl, aryl or heteroaryl of 5-10 ring members or a C_1-C_2 alkyl radical substituted by 1-3 radicals of halo, hydroxy, carboxy, aryl or heteroaryl of 5-10 ring members, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 .

7. The compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein

Alk is independently a C_1-C_2 alkyl radical;

G represents a bond or NH;

R_{21} and R_{22} are each independently a radical of hydrogen, C_1-C_6 alkyl or aryl, wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R_2 ;

each R_4 is independently a hydrogen, halo, C_1-C_2 alkyl, C_1-C_2 alkoxy, C_1-C_2 alkylthio, CF_3- , CF_3O- , hydroxy or cyano radical;

A represents a radical of formula

(a) R_{15} is a hydrogen or C_1-C_2 alkyl radical; and R_{17} is $-NH-C(O)-O-R_{19}$, or $-NH-S(O)_2-R_{19}$ radical; or (b) R_{17} is a hydrogen or C_1-C_2 alkyl radical; and R_{15} is (1) an aryl or heteroaryl of 5-10 ring members, or (2) an C_1-C_2

alkyl radical substituted by a radical of aryl or heteroaryl of 5-10 ring members; wherein the aryl and heteroaryl radicals are optionally substituted by 1-3 radicals of R₂;

5

R₁₉ is a C₁-C₄ alkyl, aryl or aryl(C₁-C₄ alkyl), wherein the aryl radicals are optionally substituted by 1-3 radicals of R₂;

10 R₁₆ and R₁₈ are each independently a hydrogen or C₁-C₂ alkyl radical;

E is a radical of carboxy or -C(O)-O-R₂₀; and

15 R₂₀ is a C₁-C₂ alkyl, aryl or aryl(C₁-C₂ alkyl) radical, wherein the aryl radicals are optionally substituted by 1-3 radicals of R₂.

20 8. A pharmaceutical composition comprising a compound according to any of Claims 1 to 7 and a pharmaceutically acceptable carrier.

25 9. A method for the treatment of a disease or disorder modulated by an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.

30 10. The method of Claim 9 wherein the integrin receptor is vitronectin receptor α_vβ₃, α_vβ₅ or α_vβ₆.

35 11. A method for the treatment of a disease or disorder modulated by an integrin receptor comprising administering an effective amount of a composition of Claim 8.

12. The method of Claim 11 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

5 13. A method of antagonizing an integrin receptor comprising administering an effective amount of a compound according to any of Claims 1 to 7.

10 14. The method of Claim 13 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

15 15. A method of antagonizing an integrin receptor comprising administering an effective amount of a composition of Claim 8.

16 16. The method of Claim 15 wherein the an integrin receptor is vitronectin receptor $\alpha_v\beta_3$, $\alpha_v\beta_5$ or $\alpha_v\beta_6$.

17. A method for the treatment of
20 atherosclerosis, restenosis, inflammation, wound healing, cancer, metastasis, bone resorption related diseases, diabetic retinopathy, macular degeneration, angiogenesis or viral infections comprising administering an effective amount of a compound
25 according to any of Claims 1 to 7.

18. A method for the treatment of
20 atherosclerosis, restenosis, inflammation, wound healing, cancer, metastasis, bone resorption related diseases, diabetic retinopathy, macular degeneration, angiogenesis or viral infections comprising administering an effective amount of a composition of
30 Claim 8.