Homework 8

With this homework, we will practice constructing Turing machines and also deepen our understanding of automata by solving a number of challenging problems. To make these problems more approachable, there are hints included at the bottom of the page.

- 1. Give transition state diagrams for Turing machines recognizing the following languages:
 - **a.** binary strings in which every 0 is immediately followed by a 1;
 - **b.** binary strings of the form $0^n 10^n$, where $n \ge 0$;
 - c. binary strings with equally many 0s and 1s.
- 2. Let $\Sigma = \{0,1,2,...,9\}$ be the decimal alphabet. For a fixed positive integer k, define $A_k \subseteq \Sigma^*$ to be the language of positive integer multiples of k. For example, $A_3 = \{3, 6, 9, 12, 15, 18, ...\}$ and $A_{11} = \{11, 22, 33, 44, 55, 66, ...\}$. Prove that A_k is regular for every k.
- 3. Let N be a given NFA over an alphabet Σ . Consider the following languages:

```
A = \{w \in \Sigma^*: \text{ at least one computation of } N \text{ on } w \text{ results in acceptance}\},

B = \{w \in \Sigma^*: \text{ every computation of } N \text{ on } w \text{ results in acceptance}\}.
```

In general, A and B need not be equal. We already know from lecture that A is regular. Prove that B is regular as well.

- **1.63 a.** Let *A* be an infinite regular language. Prove that *A* can be split into two infinite disjoint regular subsets.
 - **b.** Let B and D be two languages. Write $B \in D$ if $B \subseteq D$ and D contains infinitely many strings that are not in B. Show that if B and D are two regular languages where $B \in D$, then we can find a regular language C where $B \in C \in D$.
 - **1.64** Let N be an NFA with k states that recognizes some language A.
 - **a.** Show that if A is nonempty, A contains some string of length at most k.
 - **b.** Show, by giving an example, that part (a) is not necessarily true if you replace both A's by \overline{A} .
 - **c.** Show that if \overline{A} is nonempty, \overline{A} contains some string of length at most 2^k .

Hints

greater than k , show that we can obtain from w a shorter string that is still accepted by A . Obtain from A a DFA of size 2^k for the complementory language, and apply part (a).	(5)\$9.I
Derive part (b) from (a) by considering the language $A=D\setminus B$. Fix any string w accepted by A. If w has length at most k, we are done. If w has length	(d)£9.1 (a)4(a)
construct an infinite subset of strings in A.	
To get you started on (a), use the pumping mechanism of the pumping lemma to	(s) £ ∂ . 1
Prove regularity for \overline{B} and then invoke the closure properties.	ϵ
computations modulo k .	
need to! Since we are interested in divisibility by k, it's OK to reduce intermediate	
A finite automaton obviously can't memorize the entire integer, but luckily it doesn't	7