3.3 Slope

Definition 3.3.1 (Slope)

- \bullet describes the steepness of the line
- defined as $m = \frac{\delta y}{\delta x} = \frac{\text{rise}}{\text{run}} = \frac{y_2 y_1}{x_2 x_1}$
- describes how quickly one variable changes with respect to another variable

Example 3.3.1

Find the slope of the line containing the points (-3,4) and (-4,-2).

Example 3.3.2

Find the slope of the line containing the points (4, -2) and (-1, 5).

Horizontal & Vertical Lines

Example 3.3.3

Find the slope of the line containing the points (5,4) and (3,4).

Example 3.3.4

Find the slope of the line containing the points (2,5) and (2,1).

Math 0097 Page 1 of 3

Visualizing Slope

Parallel & Perpendicular Lines

Definition 3.3.2 (Parallel Lines)

Two lines that never intersect are said to be parallel. Two parallel lines have the same slope; that is, $m_1 = m_2$.

Example 3.3.5

Show that the line passing through (4,2) and (6,6) is parallel to the line containing the points (0,-2) and (1,0).

Math 0097 Page 2 of 3

Definition 3.3.3 (Perpendicular Lines)

If two lines intersect and form a 90 deg angle, they are said to be perpendicular. If two lines are perpendicular, then the product of their slopes is -1.

$$m_1 \cdot m_2 = -1$$

We say that their slopes are negative reciprocals.

Example 3.3.6

Show that the line containing the points (-1,4) and (3,2) is perpendicular to the line containing (-2,-1) and (2,7).

Example 3.3.7

In 2000, 11.2 million men lived alone.

In 2013, 15 million men lived alone.

Find the average rate of change and describe what it means.

Math 0097 Page 3 of 3