

# Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технический университет имени Н.Э. Баумана» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

#### Лабораторная работа №4

Дисциплина Моделирование

Тема Моделирование системы.

Студент Степанов Александр

Группа ИУ7-73Б

Оценка (баллы)

Преподаватель Рудаков И.В.

#### 1 Условие

#### 2 Теория

Необходимо промоделировать систему, состоящую из генератора, памяти и обслуживающего аппарата.

Генератор выдает сообщение распределенные по равномерному закону, они приходят в память и обрабатываются по нормальному закону, параметры задаются.

Необходимо определить оптимальную длину очереди, при которой не будет потерянных сообщений. Используя принципы  $\Delta t$  и событий.

Как только определили выходной поток сообщений, задаваемую часть сообщений A снова подаем в очередь.

#### 2.1 Событийный принцип

Характерное свойство моделируемых систем – состояние отдельных устройств изменяется в дискретные моменты времени, которые совпадают с моментами поступления сообщений в систему, моментами окончания решения задач, моментами возникающих аварийных сигналов и т.д. Поэтому, моделирование и продвижение текущего времени в системе удобно проводить использую событийный принцип, при котором состояние всех блоков системы анализируется лишь в момент наступления какого-либо события. Момент наступления следующего события определяется минимальным значением из списка будущих событий, представляющих собой совокупность моментов ближайшего изменения состояний каждого из блоков системы.

## 2.2 $\Delta t$ принцип

Принцип  $\Delta t$  заключается в последовательном анализе состояний всех блоков в момент  $t+\Delta t$  по заданному состоянию блоков в момент t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действующих случайных факторов, задаваемых распределениями вероятности. В результате такого анализа принимается решение о том, какие общесистемные со-

бытия должны имитироваться программной моделью на данный момент времени.

Основной недостаток этого принципа: значительные затраты машинного времени на реализацию моделирования системы. А при недостаточно малом  $\Delta t$  появляется опасность пропуска отдельных событий в системе, что исключает возможность получения адекватных результатов при моделировании.

Достоинство: равномерная протяжка времени.

#### 3 Результаты

Ниже приведены результаты работы программы для обоих алгоритмов при разных значениях вероятности повторной заявки (p).



Рис. 1: Событийный метод, p = 0



Рис. 2:  $\Delta t$  метод, p = 0

| a                                           | 1             |
|---------------------------------------------|---------------|
| b                                           | 10            |
| $\mu$                                       | 0             |
| σ                                           | 5             |
| Количество заявок                           | 1000          |
| Вероятность повторной обработки заявки      | 0.2           |
| Метод моделирования                         | Событийный 🗸  |
| метод моделирования                         | ОООВПИИНВИИ Т |
| $\Delta t$                                  | 1             |
| • • • • •                                   | 1             |
| Δt                                          | 1<br>1271     |
| Δt<br>Отправить                             | 1271          |
| Δt Отправить Количество обработанных заявок | 1271          |

Рис. 3: Событийный метод, p = 0.2

| a                                           | 1                   |
|---------------------------------------------|---------------------|
| b                                           | 10                  |
| μ                                           | 0                   |
| σ                                           | 5                   |
| Количество заявок                           | 1000                |
| Вероятность повторной обработки заявки      | 0.2                 |
| Метод моделирования                         | <b>Δ</b> t <b>∨</b> |
| $\Delta t$                                  | 1                   |
| Отправить                                   |                     |
| Количество обработанных заявок              | 1260                |
| Количество повторно обработанных заявок 260 |                     |
| Максимальная длина очереди                  | 6                   |
| Время работы                                | 5531.0              |

Рис. 4:  $\Delta t$  метод, p = 0.2

| a                                            | 1            |
|----------------------------------------------|--------------|
| b                                            | 10           |
| $\mu$                                        | 0            |
| σ                                            | 5            |
| Количество заявок                            | 1000         |
| Вероятность повторной обработки заявки       | 0.5          |
| Метод моделирования                          | Событийный 🗸 |
| $\Delta t$                                   | 1            |
| Отправить                                    |              |
| Количество обработанных заявок               | 2063         |
| Количество повторно обработанных заявок 1063 |              |
| Максимальная длина очереди                   | 9            |
| Время работы                                 | 5510.862     |

Рис. 5: Событийный метод, p = 0.5

| a                                            | 1      |
|----------------------------------------------|--------|
| b                                            | 10     |
| μ                                            | 0      |
| σ                                            | 5      |
| Количество заявок                            | 1000   |
| Вероятность повторной обработки заявки       | 0.5    |
| Метод моделирования                          | Δt     |
| $\Delta t$                                   | 1      |
| Отправить                                    |        |
| Количество обработанных заявок               | 2041   |
| Количество повторно обработанных заявок 1041 |        |
| Максимальная длина очереди                   | 8      |
| Время работы                                 | 5480.0 |

Рис. 6:  $\Delta t$  метод, p = 0.5

| a                                        | 1            |
|------------------------------------------|--------------|
| b                                        | 10           |
| $\mu$                                    | 0            |
| σ                                        | 5            |
| Количество заявок                        | 1000         |
| Вероятность повторной обработки заявки   | 0.8          |
| Метод моделирования                      | Событийный 🗸 |
| $\Delta t$                               | 1            |
| _,                                       | <u>'</u>     |
| Отправить                                |              |
|                                          | 5012         |
| Отправить                                |              |
| Отправить Количество обработанных заявок |              |

Рис. 7: Событийный метод, p = 0.8

| a                                            | 1                   |
|----------------------------------------------|---------------------|
| b                                            | 10                  |
| $\mu$                                        | 0                   |
| σ                                            | 5                   |
| Количество заявок                            | 1000                |
| Вероятность повторной обработки заявки       | 0.8                 |
| Метод моделирования                          | <b>Δ</b> t <b>∨</b> |
| $\Delta t$                                   | 1                   |
| Отправить                                    |                     |
| Количество обработанных заявок               | 5147                |
| Количество повторно обработанных заявок 4147 |                     |
| Максимальная длина очереди                   | 20                  |
| Время работы                                 | 5400.0              |
|                                              |                     |

Рис. 8:  $\Delta t$  метод, p = 0.8

| a                                      | 1            |
|----------------------------------------|--------------|
| b                                      | 10           |
| $\mu$                                  | 0            |
| σ                                      | 5            |
| Количество заявок                      | 1000         |
| Вероятность повторной обработки заявки | 0.99         |
| Метод моделирования                    | Событийный 🗸 |
| $\Delta t$                             | 1            |
| Отправить                              |              |
| Количество обработанных заявок         | 99182        |
| Количество повторно обработанных заяво | к 98182      |
| Максимальная длина очереди             | 135          |
| Время работы                           | 5314.261     |
|                                        |              |

Рис. 9: Событийный метод, p = 0.99

| a                                             | 1                   |
|-----------------------------------------------|---------------------|
| b                                             | 10                  |
| $\mu$                                         | 0                   |
| σ                                             | 5                   |
| Количество заявок                             | 1000                |
| Вероятность повторной обработки заявки        | 0.99                |
| Метод моделирования                           | <b>Δ</b> t <b>∨</b> |
| $\Delta t$                                    | 1                   |
| Отправить                                     |                     |
| Количество обработанных заявок                | 98694               |
| Количество повторно обработанных заявок 97694 |                     |
| Максимальная длина очереди                    | 16976               |
| Время работы                                  | 98711.0             |
|                                               |                     |

Рис. 10:  $\Delta t$  метод, p = 0.99

## 4 Вывод

Была смоделирована система, состоящая из генератора, памяти и обслуживающего аппарата.

На выходе была получена оптимальная длина очереди, число обработанных и повторно обработанных заявок, время обработки.