Chapter 12

度量空间

定义 12.1 度量和度量空间: 对集合 M, 映射 $d(,): M \times M \to \mathbb{R}$ 满足:

正定: $d(u,v) \ge 0$, 且 $d(u,v) = 0 \iff u = v$.

- (2) 对称: d(u,v) = d(v,u).
- (3) 三角不等式: $d(u, v) \le d(u, v) + d(u, v)$.

则称 d 为 M 上的一个度量, 称 (M,d) 为度量空间.

对任一集合均可定义度量, 如 $d(u,v) = \begin{cases} 1, & u \neq v, \\ 0, & u = v, \end{cases}$ 且度量不唯一.

定义 12.2 子度量空间: 度量空间的非空子集.

12.1 开集和闭集

对度量空间 $(M, d), x_0 \in M, r > 0$, 可定义:

定义 12.3 开球: $B(x_0, r) \equiv \{ y \in M \mid d(y, x_0) < r \}.$

定义 12.4 闭球: $\bar{B}(x_0,r) \equiv \{y \in M \mid d(y,x_0) \leq r\}.$

定义 12.5 球面: $S(x_0, r) \equiv \{y \in M \mid d(y, x_0) = r\}.$

定义 12.6 开集: $S \subseteq M$, $\forall x_0 \in S$, $\exists r > 0$, s.t. $B(x_0, r) \subseteq S$, 则称 S 为开集.

12. 度量空间 12.1. 开集和闭集

定义 12.7 闭集: $T \subseteq M$, $T^c = M \setminus T$ 是开集, 则 T 为闭集.

定义 12.8 开邻域: 包含 x_0 的任何开集称 x_0 的开邻域.

例 12.1: 设 \mathbb{R} 上的度量 d(r,t) = |r-t|, 对点 x_0 ,

 $B(x_0, r) = \{ y \in \mathbb{R} \mid |y - x_0| < r \} = (x_0 - r, x_0 + r),$

 $\bar{B}(x_0,r) = [x_0 - r, x_0 + r],$

 $S(x_0, r) = \{x_0 - r, x_0 + r\}.$

开区间 (a,b) 为开集.

证: $\forall x \in (a, b)$, 取 $r = \frac{1}{2} \min\{|x_0 - a|, |x_0 - b|\} > 0$,

$$B(x_0, r) = (x_0 - r, x_0 + r) \subseteq (a, b).$$

闭区间 [a,b] 为闭集.

(a, b) 既非开集也非闭集.

定理 12.1 (课本定理12.1): $O = \{M \text{ 上的开集}\}, 则$

- (1) $\emptyset, M \in \mathcal{O}$.
- (2) 有限个开集的并仍为开集: $S, T \in \mathcal{O}$, 则 $S \cap T \in \mathcal{O}$.
- (3) $S_i \in \mathcal{O}$, 则 $\cup_{i \in K} S_i \in \mathcal{O}$ (S_i 可以是无限个).

证: (1) 显然.

- $(2) \ x_0 \in S \cap T \Longleftrightarrow x_0 \in S, x_0 \in T,$
 - :: S 为开集, $:: \exists r_1 > 0$, s.t. $B(x_0, r) \subseteq S$,
 - T 为开集, $\exists r_2 > 0$, s.t. $B(x_0, r) \subseteq T$.

 $\diamondsuit r = \min\{r_1, r_2\}, \ \emptyset \ B(x_0, r) \subseteq S \ \bot \ B(x_0, r) \subseteq T \Longrightarrow B(x_0, r) \subseteq S \cap T \Longrightarrow S \cap T \ \not \exists \ \ \beta \cap T \in \mathcal{O}.$

(3) $x_0 \in \bigcup_i S_i \iff \exists i, \text{ s.t. } x_0 \in S_i,$

 $:: S_i$ 为开集, $:: \exists r > 0$, s.t. $B(x_0, r) \subseteq S_i \subseteq \cup_i S_i \Longrightarrow \cup_i S_i$ 开, 即 $\cup_i S_i \in \mathcal{O}$.

例 12.2 无穷多个开集的交未必开: $S_i = (-\frac{1}{n}, \frac{1}{n})$.

$$\bigcap_i S_i = \lim_{n \to \infty} S_n = \{0\} \ \ [3].$$

单点集为闭集.

证: 单点集 $S = \{a\}$, 补集 $S^c = M \setminus \{a\}$.

 $\forall x \in S^c, \ \mathbb{M} \ x \neq a, \ d(x, a) > 0, \ \mathbb{R} \ r = \frac{1}{2}d(x, a).$

取
$$r = \frac{1}{2}d(x, a), a \neq B(x, r) \Longrightarrow B(x, r) \subseteq S^c \Longrightarrow S^c$$
 开, 故 S 闭.

有限点集为闭集.

证: 有限点集 $S = \{a_1, \dots, a_n\}$, 补集 $S^c = M \setminus \{a_1, \dots, a_n\}$.

 $\forall x \in S^c, \ \mathbb{M} \ x \neq a_1, \cdots, a_n \Longrightarrow \forall i, \ d(x, a_i) > 0.$

取
$$r = \frac{1}{2} \min_i \{d(x, a_i)\}, \ \mathbb{M} \ \forall a_i, \ a_i \neq B(x, r) \Longrightarrow S^c \ \mathcal{H}, \ \text{故 } S \ \mathcal{H}.$$

12. 度量空间 12.2. 度量空间的收敛性

定义 12.9 <u>拓扑和拓扑空间</u>: 集合 $X \neq \emptyset$, \mathcal{O} 是 X 的一些子集构成的簇^a, 若 $\emptyset X \in \mathcal{O}$,

- (2) $S, T \in \mathcal{O}$, $\bigcup S \cap T \in \mathcal{O}$,
- (3) { $S_i \in \mathcal{O} \mid i \in K$ }, 则 $\cup_{i \in K} S_i \in \mathcal{O}$,

则称 \mathcal{O} 是 X 上的一个**拓扑**, 称 (X,\mathcal{O}) 为**拓扑空间**, 称 \mathcal{O} 中的集合为 X 上的**开集**.

^a可理解为"集合的集合", 此处为避免逻辑循环, 故名之

故确定开集 ⇔ 确定拓扑.

12.2 度量空间的收敛性

定义 12.10 <u>收敛和极限:</u> 集合 M 中序列 (x_n) , $x \in M$, 若 $\lim_{n\to\infty} d(x_n,x) = 0$, 则称序列 (x_n) 收敛于 x, 记作 $x_n \to x$, 称 x 为序列 (x_n) 的极限.

例 12.3: (r_n) 为 \mathbb{R} 上的序列, $\lim_{n\to\infty} r_n = 0$, 即 $x_n \to x$, 即 $\forall \epsilon > 0$, $\exists N > 0$, 当 n > N 时, $d(x_n, x) < \epsilon \Longleftrightarrow x_n \in B(x, \epsilon)$.

收敛的性质:

- (1) $\forall r > 0$, B(x,r) 中包含 (x_n) 中无穷个元素.
- (2) 有限点列非序列, 无需考虑极限.
- (3) 常序列收敛, $(x_n = x_0) \to x_0$.
- (4) 对给定序列, 若∃极限,则极限唯一.

定理 12.2 (课本定理12.2): 闭集关于收敛封闭. S 闭 \iff S 中序列 $(x_n) \rightarrow x \in M$, 则 $x \in S$.

证: " \Longrightarrow ": 取 S 中序列 (x_n) 且 $(x_n) \to x \in M$.

假设 $x \notin S$, 则 $x \in S^c = M \backslash S$.

 $:: S \ \exists R, :: S^c \ \exists R \Longrightarrow \exists r > 0, \text{ s.t. } B(x,r) \subseteq S^c, \text{ 即 } B(x,r) \cap S = \emptyset, \text{ 故 } S \text{ 中序列 } (x_n) \notin B(x,r).$

又 $:: x_n \to x, :: \exists N_r > 0$, s.t. 当 $n > N_r$ 时, $x_n \in B(x,r)$, 矛盾, 故假设错误, $x \in S$.

" $\iff \exists x_0 \in S^c, \text{ s.t. } \forall r > 0, B(x_0, r) \not\subseteq S^c.$

特别地, 令 r=1, 则 $\exists x_1 \in B(x,r) \Longrightarrow x_1 \notin S^c$, 即 $x \in S$,

• • • .

 $\Leftrightarrow r = \frac{1}{n}, \ \mathbb{M} \ \exists x_n \in B(x_0, r), \ x_n \notin S^c, \ \mathbb{D} \ x_n \in S,$

 $\cdots \Longrightarrow x_n \to x$.

但 $(x_n) \in S$, :: 由题设, $x \in S$, 矛盾, 故假设错误, S 闭.

综上, 得证.

12.3 集合的闭包

12. 度量空间 12.3. 集合的闭包

定义 12.11 闭包: $S \subseteq M$, 称包含 S 的最小闭集或包含 S 的所有闭集的交为 S 的闭包, 记作 $\operatorname{cl}(S)$.

给定 S, 闭包必 \exists .

定义 12.12 <u>极限点(/聚点)</u>: $\emptyset \neq S \subseteq M, x \in M,$ 若 $\forall r > 0, B(x,r) \cap S$ 包含异于 x 的点, 则称 x 为 S 的极限点或聚点, S 对应的极限点的集合记作 l(S).

例 12.4: $(a,b) \subseteq \mathbb{R}$, 则 l((a,b)) = [a,b]. $c \notin [a,b]$, $S = (a,b) \cup \{c\}$, 则 l(S) = [a,b].

- (2) S 闭 \iff $l(S) \subseteq S$.
- (3) $\operatorname{cl}(S) = S \cup \operatorname{l}(S)$.
- 证: (1) "⇒": $x \in l(S)$, $x_n \neq x$, s.t. $x_n \in B\left(x, \frac{1}{n}\right) \cap S$ ⇒ $d(x_n, x) < \frac{1}{n}$, 故 $\exists (x_n) \in S$, s.t. $\forall n, x_n \neq x, x_n \to x$. "⇐": 设 $(x_n) \to x$ 且 $x \neq x_n \in S$.

 $\forall r > 0, \exists N, \text{ s.t. } \stackrel{\text{def}}{=} n > N \text{ inf}, x_n \in B(x,r), \text{ inf} \exists x \neq x_n, \text{ s.t. } x_n \in B(x,r) \cap S.$

综上, 得证.

(2) "⇒": 设 $x \in l(S)$, 则由 (1) 得, $\exists (x_n) \in S$, s.t. $\forall n, x_n \neq x$ 且 $x_n \to x$.

又:: S 闭, $:: x \in S \Longrightarrow l(S) \subseteq S$.

" \Leftrightarrow ": $\forall S$ 中序列 $(x_n) \to x$, $\exists n$, s.t. $x_n = x$, 则 $x = x_n \in S$,

或 $\forall n, x_n \neq x$, 由 (1) 得 $x \in l(S) \subseteq S$, 故 S 闭.

综上, 得证.

(3) 显然 $S \subseteq S \cup l(S) \equiv T$.

设 $x \in I(T)$, 则由 (1) 得, \exists 序列 $(x_n) \in T$, s.t. $x_n \neq x$ 且 $x_n \to x$.

假设 $x \notin S$ 且 $x \notin l(S)$, 则 $\therefore x \notin l(S)$, $\therefore \exists r > 0$, $B(x,r) \cap S = \emptyset$.

 $X :: x_n \in T \equiv S \cap l(S), :: x_n \in l(S).$

取 x_n , s.t. $d(x_n, x) < r$, 则 $B\left(x_n, \frac{r - d(x_n, x)}{2}\right) \subseteq B(x, r)$,

且 $:: x_n \in l(S), :: \exists y \in S \cap B\left(x_n, \frac{r - d(x_n - x)}{2}\right) \subseteq S \cap B(x, r), \ \exists B(x, r) \cap S = \emptyset$ 矛盾,故假设错误, $x \in S$ 或 $x \in l(S)$,即 $x \in T \equiv S \cup l(S) \Longrightarrow T$ 闭.

 $\mathbb{Z} : S \subseteq T, : \operatorname{cl}(S) \subseteq T.$

另一方面, 由闭包定义, $S \in cl(S)$.

假设 $l(S) \nsubseteq cl(S)$, 即 $\exists x \in l(S)$ 且 $x \notin cl(S)$, 则 $\forall r > 0$, $B(x,r) \cap S \neq \emptyset$,

且 \exists 闭集 S', s.t. $x \notin S'$ 即 $x \in (S')^c$,

:: S' 闭 $\Longrightarrow (S')^c$ 开, $:: \exists r > 0$, s.t. $B(x,r) \subseteq (S')^c$, 与 $B(x,r) \cap S \neq \emptyset$ 矛盾, 故假设错误, $l(S) \subseteq cl(S) \Longrightarrow T \equiv S \cup l(S) \subseteq cl(S)$.

综上, 得证.

12. 度量空间 12.4. 稠密子集

12.4 稠密子集

定义 12.13 稠密子集: $S \subseteq M$, 若 cl(S) = M, 则称 S 为 M 的稠密子集.

若 S 为 M 的稠密子集, 则 $M = \operatorname{cl}(S) = S \cup \operatorname{l}(S)$, 这意味着 M 中任一点均可由 S 中的某一序列逼近.

例 12.5: $\mathbb{R} = \mathbb{Q} \cup$ 无理数. \forall 无理数 r, \exists 有理数序列 $(r_n) \to r$, $\therefore \mathbb{Q}$ 为 R 的稠密子集.

同理, 无理数也为 ℝ 的稠密子集.

实际上, \mathbb{Q} 在 [0,1] 上的测度 = 0, 即无理数远多于有理数.

12.5 连续

定义 12.14 <u>连续和不连续</u>: 度量空间 (M,d) 和 (M',d'), 映射 $f: M \to M'$, $x_0 \in M$, 若 $\forall \epsilon > 0$, $\exists \delta > 0$, s.t. $f(B(x_0,\delta)) \subseteq B(f(x_0),\epsilon)$, 即 $d(x,x_0) < \delta \Longrightarrow d'(f(x),f(x_0)) < 0$, 则称 f 在 x_0 处连续, 若 $\exists 0, \forall \epsilon > 0$, $f(B(x_0,\delta)) \nsubseteq B(f(x_0),\epsilon)$, 则称 f 在 x_0 处不连续.

定理 12.4 <u>连续的判定(课本定理12.4)</u>: $f: M \to M'$ 连续 \iff 若 M 中序列 (x_n) 收敛于 x, 则 $(f(x_n)) \to f(x)$ (即 f 保持收敛性不变).

证: " \Longrightarrow ": :: f 连续, $:: \forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } f(B(x,\delta)) \subseteq B(f(x),\epsilon).$

- $(x_n) \to x$, $\forall \delta > 0$, $\exists N > 0$, $\stackrel{\text{def}}{=} n > N$ III, $d(x_n, x) < \delta$
- $\implies d(f(x_n), f(x)) < \epsilon, \text{ if } (f(x_n)) \to f(x).$

" \leftarrow ": 假设 f 在 $x \in M$ 处不连续, 则 $\exists \epsilon > 0$, s.t. $\forall \epsilon, f(B(x, \delta)) \not\subseteq B(f(x), \delta)$.

 $\mathbb{R} \delta = 1, f(B(x,\delta)) \not\subseteq B(f(x),\epsilon),$

. . .

 \mathbb{R} $\delta = \frac{1}{2}, \exists x_n \in B(x, \frac{1}{n}), \text{ s.t. } f(x_n) \notin B(f(x), \epsilon),$

- \dots , 则序列 $(x_n) \to x$, 但 $d(f(x_n), f(x)) > \delta$
- $\implies f(x)$ 不收敛至 f(x), 与题设矛盾, 故假设错误, f 在 x_0 处连续. 综上, 得证.

定理 12.5 (课本定理12.5): 若 $(x_n) \to x$, $(y_n) \to y$, 则 $(d(x_n, y_n)) \to d(x, y)$.

证: $\forall \epsilon, : (x_n) \to x, : \exists N_1 > 0, \text{ s.t. } \stackrel{\text{def}}{=} n > N_1 \text{ bl}, d(x_n, x) < \frac{\epsilon}{2},$

- $\therefore (y_n) \to y, \therefore \exists N_2 > 0$, s.t. $\stackrel{\text{def}}{=} n > N_2 \text{ iff}, d(y_n, y) < \frac{\epsilon}{2}$,
- $\implies \exists N = \max\{N_1, N_2\}, \text{ s.t. } \stackrel{\text{def}}{=} n > N \text{ B}, |d(x_n, y_n) d(x, y)| = |d(x_n, y_n) d(x, y_n) + d(x, y_n) d(x, y)| \le |d(x_n, y_n) d(x, y_n)| + |d(x, y_n) d(x, y)| \le |d(x_n, y_n) d(x, y_n)| + |d(x, y_n) d(x, y)| \le |d(x_n, y_n) d(x, y_n)| + |d(x, y_n) d(x, y_n)| \le |d(x_n, y_n) d(x, y_n)| + |d(x, y_n) d(x, y_n)| \le |d(x_n, y_n) d(x, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) d(x_n, y_n)| \le |d(x_n, y_n) d(x_n, y_n)| + |d(x_n, y_n) |d(x_$

推论: $(d(x_n, y)) \to d(x_0, y)$, 即 $d(y): M \to \mathbb{R}, x \mapsto d(x, y)$ 为 M 到 \mathbb{R} 的连续映射.

同理, $d(,): M \times M \to \mathbb{R}$, $(x,y) \mapsto d(x,y)$ 亦为连续映射.

定义 12.15 <u>柯西序列</u>: (x_n) 为 M 中序列, 若 $\forall \epsilon > 0$, $\exists N > 0$, $\exists n, m > N$ 时, $d(x_n, x_m) < \epsilon$, 则称 (x_n) 为柯西序列.

12. 度量空间 12.6. 完备

收敛 ⇒ 柯西, 反之不真.

证: 设 $(x_n) \to x$, 则 $\forall \epsilon > 0$, $\exists N_1 > 0$, s.t. 当 n > N 时, $d(x_n, x) < \frac{\epsilon}{2}$, $\exists N_2 > 0$, s.t. 当 $m > N_2$ 时, $d(x_m, x) < \frac{\epsilon}{2}$ $\Longrightarrow \exists N = \max\{N_1, N_2\}$, s.t. 当 n, m > N 时, $d(x_n, x_m) \le d(x_n, x) + d(x_m, x) < \epsilon$, 故 x_n 柯西.

例 12.6 不收敛的柯西序列(课本例12.12): $C[0,1] \equiv \{[0,1] \boxtimes \emptyset \}$.

 $f(x), g(x) \in C[0,1], \not \in \mathbb{E} d(f(x), g(x)) = \int_0^1 |f(x) - g(x)| dx.$

令
$$f_n(x) = \begin{cases} 0, & 0 \le x < \frac{1}{2}, \\ n(x - \frac{1}{2}), & \frac{1}{2} \le x \le \frac{1}{2} + \frac{1}{n}, \\ 1, & \frac{1}{2} + \frac{1}{n} < x \le 1, \end{cases}$$
 则 $(f_n(x)) \to \begin{cases} 0, & 0 \le x < \frac{1}{2}, \\ 1, & \frac{1}{2} < x < 1 \end{cases}$ 不连续,故 $(f_n(x))$ 柯西但在 $C[0, 1]$ 上不收敛 (极限在 $C[0, 1]$ 外).

12.6 完备

定义 12.16 完备: 称柯西序列均收敛的空间为完备的.

定义 12.17 完备子集: S 为度量空间 M 的子集, 若 S 完备, 若 S 完备, 则称 S 为 M 的完备子群.

定理 12.6 (课本定理12.6): 对度量空间 M,

任一完备子集闭.

- (2) 若 M 完备, $S \subseteq M$, 则 S 闭 $\iff S$ 完备.
- 证: (1) 取完备子集 $S \subset M$, 取 S 中任意序列 $(x_n) \to x \in M \Longrightarrow (x_n)$ 柯西.

又:S为完备子集 $:(x_n) \to y \in S$.

又 : 极限唯一, : $x = y \in S \Longrightarrow S$ 闭.

(2) "⇐": 己由 (1) 证.

"⇒": \forall 柯西序列 $(x_n) \in S$, $\therefore S \subseteq M$, $\therefore (x_n)$ 为 M 中的柯西列.

又:M 完备, $:(x_n)$ 收敛,设 $(x_n) \to x$.

又:S 闭,:x \in S, 故 S 完备.

综上, 得证.

例 12.7: 在欧氏度量 $d(u,v) = \sqrt{\sum_i |u_i - v_i|^2}$ 下, \mathbb{R} , \mathbb{C} , \mathbb{R}^n , \mathbb{C}^n 完备.

例 12.8 (课本例12.11): C[a,b] 上度量 $d(f,g) = \sup_{x \in [a,b]} \{|f(x) - g(x)|\}, (C[a,b],d)$ 完备.

证: 在 (C[a,b],d) 上, $d(f,g) = \sup\{|f(x) - g(x)|\} < \epsilon \iff |f(x) - g(x)| < \epsilon, \forall x \in [a,b].$

设 (f_n) 柯西, 则 $\forall \epsilon > 0$, $\exists N$, s.t. 当 m, n > N 时, $|f_n(x) - f_m(x)| < \epsilon$, $\forall x \in [a, b]$,

即给定 $\forall x \in [a,b], (f_n(x))$ 为 \mathbb{R} 或 \mathbb{C} 上的柯西序列.

又 \mathbb{R} 和 \mathbb{C} 完备, \mathbb{R} ($f_n(x)$) 收敛.

设 $f(x) = \lim_{n \to \infty} (x)$, 则取 $m \to \infty$ 得当 n > N 时, $|f_n(x) - f(x)| < \epsilon$, $\forall x \in [a, b]$

 $\Longrightarrow (f_n) \to f$, & C[a,b] 完备.

12. 度量空间 12.7. 等距

12.7 等距

定义 12.18 <u>等距</u>: (M,d) 和 (M',d') 为度量空间, 若映射 $f: M \to M'$ 满足 d'(f(x),f(y)) = d(x,y), 则称 f 等距.

定理 12.7 等距的性质(课本定理12.7): $f:(M,d)\to (M',d')$ 等距,则

- (1) f 单射.
- (2) f 连续.
- (3) 若 f 可逆, 则 f^{-1} 等距.
- 证: (1) (此处的 M 和 M 仅为集合, 没有定义额外的运算, 故 0 (加法单位元) 不一定存在, 必须从定义证明单射.) 设 f(x) = f(y), 则 d(f(x), f(y)) = 0.

又 :: f 等距, :: $d(x,y) = d(f(x), f(y)) = 0 \Longrightarrow x = y$, 故得证.

- (2) $\forall M$ 的收敛序列 $(x_n) \to x, \forall \epsilon > 0, \exists N > 0, \text{ s.t. } \exists n > N \text{ 时}, d(x_n, x) < \epsilon.$
 - f 等距, $d(f(x_n), f(x)) = d(x_n, x) < \epsilon \Longrightarrow (f(x_n)) \to f(x)$.
 - :: f 保持收敛, :. f 连续.
- (3) 若 f 可逆, 则 $f^{-1}(f(x)) = x \Longrightarrow f^{-1}f = 1_M$.
 - f 等距, $d(f(x), f(y)) = d(x, y) = f(f^{-1}(f(x)), f^{-1}(f(y))) \Longrightarrow f^{-1}$ 等距.

12.8 度量空间的完备化

定理 12.8 完备化定理(课本定理12.8): 对度量空间 (M,d), \exists 完备度量空间 (M',d') 及等距 $\tau: M \to M'$, s.t. $\tau(M)$ 在 M 中稠密.

具体如何完备化?

取 $V = \{M \text{ 中所有柯西序列}\},$ 定义等价关系 $(x_n) \sim (y_n) \iff \lim_{n \to \infty} d(x_n, y_n) = 0$, 则等价类 $\frac{V}{\alpha}$ 即 M'.

7 / 7