Graph Theory Set 3

11. A **coalescence** of the graphs G_1 and G_2 is a graph created by merging a vertex in G_1 with a vertex in G_2 . For example, a coalescence of K_5 and C_4 is

- **a.** Let G be a coalescence of G_1 and G_2 . Explain why $P_G(x) = P_{G_1}(x)P_{G_2}(x)/x$.
- **b.** Find the chromatic polynomial for the following graph.

- **12.** The **join** of the graphs G and H, denoted $G \vee H$, is the graph created by connecting every vertex in G to every vertex of H.
 - **a.** Show that $\chi(G \vee H) = \chi(G) + \chi(H)$.
 - **b.** Show that $P_{K_n \vee G}(x) = x(x-1) \cdots (x-n+1) P_G(x-n)$.
 - **c.** The **wheel graph** W_n is $K_1 \vee C_{n-1}$. Here is W_{13} : Find $P_{W_n}(x)$.
- **13.** A graph G is k-critical if the chromatic number $\chi(G) = k$ and $\chi(G v) = k 1$ for any vertex v in G. The graph G is **critical** if it is k-critical for some k.
 - **a.** Why must every graph with $\chi(G) = k$ have a k-critical subgraph?
 - **b.** Show that the join $G \vee H$ is critical if and only if both G and H are critical.
 - **c.** Show that the odd cycles are the only 3-critical graphs.
 - **d.** Show that the even wheel graphs W_{2n} are 4-critical. (Open problem: Find a good characterization of all 4-critical graphs.)
 - **e.** Suppose G is k-critical. Why does every vertex have degree at least k-1?
 - **f.** Suppose $\chi(G) = k$. Why must G have at least k vertices with degree $\geq k 1$?