Contrôle continu 3

Exercice 1 Soit (X_n) une suite de variables aléatoires réelles indépendantes centrées. On suppose que les variables X_n sont à valeurs dans $\{-2^n, -1, 1, 2^n\}$ et vérifient

$$\mathbb{P}[X_n = -1] = \mathbb{P}[X_n = 1] = \frac{1}{2} \left(1 - \frac{1}{2^n} \right) \text{ et } \mathbb{P}[X_n = -2^n] = \mathbb{P}[X_n = 2^n] = \frac{1}{2^{n+1}}.$$

Puis on considère la moyenne des variables X_n :

$$M_n = \frac{X_1 + \ldots + X_n}{n}, \ \forall n \geqslant 1.$$

Le but de cet exercice est de montrer que $(M_n)_n$ converge presque sûrement vers 0.

1. On ne peut pas appliquer la loi des grands nombres pour trouver la limite de (M_n) . Expliquez pourquoi.

On considère les variables Y_n définies par $Y_n = X_n \mathbf{1}_{|X_n| \leq 1}$.

- 2. Déterminer la loi de Y_n , puis sa moyenne et sa variance.
- 3. Montrer que $\sum_{n=1}^{+\infty} \frac{\mathbb{V}(Y_n)}{n^2} < +\infty$, puis que la série de terme général $n^{-1}Y_n$ converge presque sûrement dans \mathbb{R} et en déduire que la suite $\left(\frac{1}{n}\sum_{i=1}^n Y_i\right)_n$ converge presque sûrement vers 0.
- 4. Montrer que $\mathbb{P}\left[\liminf\{X_n = Y_n\}\right] = 1$.
- 5. Déduire des questions précédentes que (M_n) converge presque sûrement vers 0.

Exercice 2

Rappel: X suit la loi de Poisson de paramètre $\lambda > 0$ si $\forall k \in \mathbb{N}, \ \mathbb{P}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!}$. On a alors : $\mathbb{E}[X] = \lambda, \ \mathbb{V}[X] = \lambda$ et $\forall t, \ \varphi(t) = e^{\lambda(e^{it} - 1)}$.

Soit $(X_n)_n$ une suite de variables aléatoires indépendantes identiquement distribuées de loi de Poisson de paramètre 1.

- 1. Quelle convergence donne le théorème limite central appliqué à la suite (X_n) ?
- 2. Quelle est la loi de $X_1 + \ldots + X_n$?
- 3. En utilisant les fonctions de répartition, montrer que

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \xrightarrow[n \to +\infty]{} \frac{1}{2}.$$