Enhancing DGEMO with Bayesian Optimization Properties: Towards DGEBO

DGEBO Summary

- Utilize the posterior variance Σ from $F \sim N(\mu, \Sigma)$.
- ullet Define the diversity region A_j as the dist. $A_j \sim N(x_j, C_j)$.
- Directly sample the batch X_B from A_j :
 - i. For each performance buffer (diversity region):
 - a. Sample candidates from $A_j \sim N(x_j, C_j)$.
 - b. Evaluate the candidates using the utility function $U(x) = \mathrm{HVI}(P_f, x) \lambda_{\mathrm{div}} \cdot (\mathrm{Diversity\ Discount})$
 - c. Choose the one with the highest utility.
 - ii. Add the batch to the dataset and update the posterior.

DGEMO Review

Methodology:

- 1. Partition the performance space into buffers B(j) using Latin Hypercube Sampling (LHS).
- 2. For each B(j), obtain K-best candidate points \mathbf{x}_{jk} by repeating:
 - i. Perform stochastic sampling in B(j) to obtain \mathbf{x}_{j} .
 - ii. Locally optimize \mathbf{x}_j to get \mathbf{x}_o .
 - iii. Maintain the K-best \mathbf{x}_o s.
- 3. Compute an affine subspace A_{jk} for each candidate \mathbf{x}_{jk} .
- 4. Use a Graph-cut algorithm to select A_j^* for each B(j).
- 5. Sample X_B from each A_j^st using HVI optimization.

DGEMO's Limitations

- 1. The posterior variance Σ_i is not used in the first-order approximation.
 - $\tilde{F} \triangleq [\mu_1, \cdots, \mu_d]$ where $f_j \sim N(\mu_j, \sigma_j)$ represents the posterior distribution.
- 2. Stochastic sampling is arbitrary and not aligned with the philosophy of BO.
 - $ullet \mathbf{x}_s = \mathbf{x}^j + rac{1}{2^{\delta_p}} \mathbf{d}_p$: random sampling
- 3. The objective function F is stochastic, but local opt. uses the L_2 norm.
 - $ullet \mathbf{x}_o = rg\min_{\mathbf{x} \in \mathcal{X}} \|F(\mathbf{x}) \mathbf{z}(\mathbf{x_s})\|^2$, where $F \sim N(\mu, \Sigma)$

Idea: DGEBO

Concepts I will retain from DGEMO:

- 1. Latin Hypercube Sampling (LHS)
- 2. The concept of performance buffers (diversity regions)
- 3. GP as a surrogate model, using the posterior $F \sim N(\mu, \Sigma)$
- 4. Diversity conditions such as continuity and neighboring buffers
- 5. HVI optimization within each diversity region

Concepts I want to revise:

- 1. Define the diversity region as a probability distribution $A_j \sim \mathcal{N}(\mathbf{x}_j, C_j)$ where:
 - $[\mathbf{x}_1, \dots, \mathbf{x}_B]$ are the LHS anchor point of each diversity region $B(1), \dots, B(B)$.
 - $C_j = C_j^{
 m local} + lpha \cdot C_j^{
 m diverse}$, where: $\circ C_j^{
 m local} = \lambda_1 \underbrace{J_\mu(x_j)J_\mu(x_j)^ op}_{
 m exploitation\ using\ mean} + \lambda_2 \underbrace{J_\Sigma(x_j)J_\Sigma(x_j)^ op}_{
 m exploration\ using\ variance}$
 - $\circ \ C_j^{ ext{diverse}} = \sum_{k \in ext{Neighbor}(j)} w_{jk}(v_{jk}v_{jk}^ op)$
 - $w_{jk} = rac{1}{\|\mathbf{x}_j \mathbf{x}_k\|^{eta}} \in \mathbb{R}$: distance-based weighting
 - $v_{jk} = rac{\mathbf{x}_j \mathbf{x}_k}{\|\mathbf{x}_j \mathbf{x}_k\|} \in \mathbb{R}^d$: direction from \mathbf{x}_j to \mathbf{x}_k
 - \circ α : a hyperparameter controlling the diversity level

2. A new Diversity Region-Based Batch Sampling Strategy

- For each diversity region (performance buffer) B(j):
 - \circ Directly sample K points $[\mathbf{x}_{j1},\cdots,\mathbf{x}_{jK}]$ using $A_j \sim \mathcal{N}(\mathbf{x}_j,C_j)$
 - $lacksquare X_K^j riangleq [\mathbf{x}_{j1}, \cdots, \mathbf{x}_{jK}]$
 - \circ Compute $U(\mathbf{x}_{jk}, \mathcal{D}) \triangleq \mathrm{HVI}(\mathbf{x}_{jk}, \mathcal{D}) \lambda_{\mathrm{div}} \cdot (\mathrm{Diversity\ Discount})$
 - $lacksymbol{lack}$ where (Diversity Discount) $=\sum_{j'
 eq j} \exp\left(-rac{\|x_j x_{j'}\|^2}{2\ell^2}
 ight)$
 - $\circ \; \mathsf{Select} rg \max_{\mathbf{x}_{jk}} U(\mathbf{x}_{jk}, \mathcal{D})$
- Update $\mathcal{D} \leftarrow \mathcal{D} \cup \{\mathbf{x}_1^*, \cdots, \mathbf{x}_B^*\}$

DGEBO Procedure

- 1. From data \mathcal{D} , use GP as a surrogate model to get the posterior of $F \sim N(\mu, \Sigma)$.
- 2. Sample $[\mathbf{x}_1, \dots, \mathbf{x}_B]$ using Latin Hypercube Sampling (LHS).
- 3. For each diversity region B(j) for $j=1,\cdots,B$
 - i. Calculate $J_{\mu}(\mathbf{x}_i)$ and $J_{\Sigma}(\mathbf{x}_i)$ using autograd.
 - ii. Sample K candidates using $A_j \sim N(\mathbf{x}_j, C_j)$ where $C_j = C_j^{\mathrm{local}} + lpha C_j^{\mathrm{diverse}}$.
 - iii. Calculate utilities of K candidates using $U(\mathbf{x}, \mathcal{D})$.
 - iv. Let \mathbf{x}_{i}^{*} be the candidate with the highest utility.
- 4. Update $\mathcal{D} \leftarrow \mathcal{D} \cup \{\mathbf{x}_1^*, \cdots, \mathbf{x}_B^*\}$

Visualized Comparison: DGEMO vs DGEBO

