

This Page Is Inserted by IFW Operations  
and is not a part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

**IMAGES ARE BEST AVAILABLE COPY.**

**As rescanning documents *will not* correct images,  
please do not report the images to the  
Image Problem Mailbox.**

Sequence Listing

<110> Genentech, Inc.  
Ashkenazi, Avi J.  
Fong, Sherman  
Goddard, Audrey  
Gurney, Austin L.  
Napier, Mary A.  
Tumas, Daniel  
Wood, William I.

<120> COMPOUNDS, COMPOSITIONS AND METHODS FOR THE TREATMENT  
OF DISEASES CHARACTERIZED BY A33- RELATED ANTIGENS

<130> P1216R1PCT

<140> US 09/254,465  
<141> 1999-03-05

<150> PCT/US98/24855  
<151> 1998-11-20

<150> US 60/066,364  
<151> 1997-11-21

<150> US 60/078,936  
<151> 1998-03-20

<150> PCT/US98/19437  
<151> 1998-09-17

<160> 30

<210> 1  
<211> 299  
<212> PRT  
<213> Homo sapiens

<400> 1  
Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe  
1 5 10 15  
Ile Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr  
20 25 30  
Val His Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro  
35 40 45  
Val Lys Leu Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val  
50 55 60  
Glu Trp Lys Phe Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr  
65 70 75  
Asn Asn Lys Ile Thr Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu  
80 85 90  
Pro Thr Gly Ile Thr Phe Lys Ser Val Thr Arg Glu Asp Thr Gly  
95 100 105  
Thr Tyr Thr Cys Met Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly  
110 115 120

Glu Val Lys Val Lys Leu Ile Val Leu Val Pro Pro Ser Lys Pro  
 125 130 135  
 Thr Val Asn Ile Pro Ser Ser Ala Thr Ile Gly Asn Arg Ala Val  
 140 145 150  
 Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr  
 155 160 165  
 Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn Pro Lys Ser Thr  
 170 175 180  
 Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly  
 185 190 195  
 Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr  
 200 205 210  
 Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn  
 215 220 225  
 Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val  
 230 235 240  
 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Ile Leu Val Phe  
 245 250 255  
 Gly Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys  
 260 265 270  
 Lys Gly Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala  
 275 280 285  
 Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val  
 290 295  
 <210> 2  
 <211> 321  
 <212> PRT  
 <213> Homo sapiens  
 <400> 2  
 Met Gly Ile Leu Leu Gly Leu Leu Leu Leu Gly His Leu Thr Val  
 1 5 10 15  
 Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr  
 20 25 30  
 Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro  
 35 40 45  
 Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg  
 50 55 60  
 Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp  
 65 70 75  
 His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His  
 80 85 90  
 Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met  
 95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro  
 110 115 120  
 Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val  
 125 130 135  
 Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly  
 140 145 150  
 Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys  
 155 160 165  
 Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln  
 170 175 180  
 Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr  
 185 190 195  
 Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe  
 200 205 210  
 Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile  
 215 220 225  
 Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys  
 230 235 240  
 Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser  
 245 250 255  
 Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr  
 260 265 270  
 Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe  
 275 280 285  
 Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr  
 290 295 300  
 Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His  
 305 310 315  
 Val Tyr Glu Ala Ala Arg  
 320

<210> 3  
 <211> 390  
 <212> DNA  
 <213> artificial

<220>  
 <221> artificial sequence  
 <222> 1-390  
 <223> artificial sequence

<400> 3  
 cttcttgcca actggtatca cttcaagtc cgtgacacgg gaagacactg 50  
 ggacatacac ttgtatggtc tctgaggaag gccgcaacag ctatgggag 100  
 gtcaagggtca agctcatcgt gcttgcct ccatccaagc ctacagttaa 150  
 catccccccc tctgccacca ttggaaaccg ggcaagtgcgt acatgctcag 200

aacaagatgg ttccccacct tctgaataca cctggttcaa agatggata 250  
gtgatgccta cgaatccaa aagcaccgt gccttcagca actcttccta 300  
tgtcctgaat cccacaacag gagagctggt ctttgatccc ctgtcagcct 350  
ctgatactgg agaatacagc tgtgaggcac ggaatgggta 390

<210> 4  
<211> 726  
<212> DNA  
<213> artificial

<220>  
<221> artificial sequence  
<222> 1-726  
<223> artificial sequence

<400> 4  
tctcagtccc ctcgtgtag tcgcggagct gtgttctgtt tcccaggagt 50  
ccttcggcgg ctgttgtgt caggtgcgcc tgatcgcat ggggacaaag 100  
gcgcaagctc gagagggaaac tgggtgtgcct cttcatattt gcgatccgt 150  
tgtgctccct ggcattgggc agtgttacag ttgcactctt ctgaacctga 200  
agtcagaatt cctgagaata atcctgtgaa gttgtcctgt gcctactcgg 250  
gcttttcttc tccccgtgtg gagtggaagt ttgaccaagg agacaccacc 300  
agactcggtt gctataataa caagatcaca gtttcctatg aggacccgggt 350  
gactttcttg ccaactggta tcaccttcaa gtccgtgaca cgggaagaca 400  
ctgggacata cacttgtatg gtctctgagg aaggcggcaa cagctatggg 450  
gaggtcaagg tcaagctcat cgtgcttgcgt cctccatcca agcctacagt 500  
taacatcccc tcctctgcca ccattggaa ccgggcagtg ctgacatgct 550  
cagaacaaga tggttccccca cttctgaat acacctgggtt caaagatggg 600  
atagtgtatgc ctacgaatcc caaaagcacc cgtgccttca gcaacttcc 650  
ctatgtcctg aatcccacaa caggagagct ggtctttgat cccctgtcag 700  
cctctgatac tggagaatac agctgt 726

<210> 5  
<211> 1503  
<212> DNA  
<213> artificial

<220>  
<221> artificial sequence  
<222> 1-1503  
<223> artificial sequence

<400> 5  
gcaggcaaaat taccagggcc gcctgcgtt gagccacaag gttccaggag 50  
atgtatccctt ccaattgagc accctggaga tggatgaccg gagccactac 100

acgtgtgaag tcacctggca gactcctgat ggcaaccaag tcgtgagaga 150  
taagattact gagctccgtg tccagaaact ctctgtctcc aagcccacag 200  
tgacaactgg cagcggttat ggcttcacgg tgccccaggg aatgaggatt 250  
agccttcaat gccagggttc ggggttctcc tcccatcagt tatatttgg 300  
ataagcaaca gactaataac cagggAACCC atcaaagttag caaccctaag 350  
taccttactc ttcaaggctg cggtgatagc cgactcaggg tcctatttct 400  
gcactgccaa gggccaggtt ggctctgagc agcacagcga cattgtgaag 450  
tttgggtca aagactcctc aaagctactc aagaccaaga ctgaggcacc 500  
tacaaccatg acataaccct tgaaagcaac atctacagtg aagcagtct 550  
gggactggac cactgacatg gatggctacc ttggagagac cagtgctgg 600  
ccagggaaaga gcctgcctgt ctttgcctatc atcctcatca ttccttgc 650  
ctgtatggtg gttttacca tggctatat catgctctgt cggaagacat 700  
cccaacaaga gcatgtctac gaagcagcca gggcacatgc cagagaggcc 750  
aacgactctg gagaaaccat gagggtggcc atcttcgcaa gtggctgctc 800  
cagtgatgag ccaacttccc agaatctggg gcaacaacta ctctgatgag 850  
ccctgcatac gacaggagta ccagatcattc gcccagatca atggcaacta 900  
cgccgcctg ctggacacag ttccctctgga ttatgagttt ctggccactg 950  
aggccaaaag tgtctgttaa aaatgccccca ttaggccagg atctgctgac 1000  
ataattgcct agtcaagtctc tgccttcgc atggccttct tccctgctac 1050  
ctctcttcct ggatagccca aagtgtccgc ctaccaacac tggagccgct 1100  
gggagtcact ggcttgccc tggaaatttgc cagatgcattc tcaagtaagc 1150  
cagctgctgg atttggctct gggcccttct agtatctctg ccgggggctt 1200  
ctggtaactcc tctctaaata ccagagggaa gatgcccata gcactaggac 1250  
ttggtcatac tgcctacaga cactattcaa ctggcattc ttgccaccag 1300  
aagacccgag gggaggctca gctctgccag ctcagaggac cagctatactc 1350  
caggatcatt tctctttctt cagggccaga cagctttaa ttgaaattgt 1400  
tatttcacag gccagggttc agttctgctc ctccactata agtctaattgt 1450  
tctgactctc tcctgggtct caataaatat ctaatcataa cagcaaaaaa 1500  
aaa 1503

<210> 6  
<211> 319  
<212> PRT  
<213> Homo sapiens

<400> 6

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Met | Val | Gly | Lys | Met | Trp | Pro | Val | Leu | Trp | Thr | Leu | Cys | Ala | Val |
| 1   |     |     |     | 5   |     |     |     |     | 10  |     |     |     |     | 15  |
| Arg | Val | Thr | Val | Asp | Ala | Ile | Ser | Val | Glu | Thr | Pro | Gln | Asp | Val |
|     | 20  |     |     |     |     |     |     | 25  |     |     |     |     | 30  |     |
| Leu | Arg | Ala | Ser | Gln | Gly | Lys | Ser | Val | Thr | Leu | Pro | Cys | Thr | Tyr |
|     | 35  |     |     |     |     |     |     | 40  |     |     |     |     | 45  |     |
| His | Thr | Ser | Thr | Ser | Ser | Arg | Glu | Gly | Leu | Ile | Gln | Trp | Asp | Lys |
|     | 50  |     |     |     |     |     |     | 55  |     |     |     |     | 60  |     |
| Leu | Leu | Leu | Thr | His | Thr | Glu | Arg | Val | Val | Ile | Trp | Pro | Phe | Ser |
|     | 65  |     |     |     |     |     |     | 70  |     |     |     |     | 75  |     |
| Asn | Lys | Asn | Tyr | Ile | His | Gly | Glu | Leu | Tyr | Lys | Asn | Arg | Val | Ser |
|     | 80  |     |     |     |     |     |     | 85  |     |     |     |     | 90  |     |
| Ile | Ser | Asn | Asn | Ala | Glu | Gln | Ser | Asp | Ala | Ser | Ile | Thr | Ile | Asp |
|     | 95  |     |     |     |     |     |     | 100 |     |     |     |     | 105 |     |
| Gln | Leu | Thr | Met | Ala | Asp | Asn | Gly | Thr | Tyr | Glu | Cys | Ser | Val | Ser |
|     | 110 |     |     |     |     |     |     | 115 |     |     |     |     | 120 |     |
| Leu | Met | Ser | Asp | Leu | Glu | Gly | Asn | Thr | Lys | Ser | Arg | Val | Arg | Leu |
|     | 125 |     |     |     |     |     |     | 130 |     |     |     |     | 135 |     |
| Leu | Val | Leu | Val | Pro | Pro | Ser | Lys | Pro | Glu | Cys | Gly | Ile | Glu | Gly |
|     | 140 |     |     |     |     |     |     | 145 |     |     |     |     | 150 |     |
| Glu | Thr | Ile | Ile | Gly | Asn | Asn | Ile | Gln | Leu | Thr | Cys | Gln | Ser | Lys |
|     | 155 |     |     |     |     |     |     | 160 |     |     |     |     | 165 |     |
| Glu | Gly | Ser | Pro | Thr | Pro | Gln | Tyr | Ser | Trp | Lys | Arg | Tyr | Asn | Ile |
|     | 170 |     |     |     |     |     |     | 175 |     |     |     |     | 180 |     |
| Leu | Asn | Gln | Glu | Gln | Pro | Leu | Ala | Gln | Pro | Ala | Ser | Gly | Gln | Pro |
|     | 185 |     |     |     |     |     |     | 190 |     |     |     |     | 195 |     |
| Val | Ser | Leu | Lys | Asn | Ile | Ser | Thr | Asp | Thr | Ser | Gly | Tyr | Tyr | Ile |
|     | 200 |     |     |     |     |     |     | 205 |     |     |     |     | 210 |     |
| Cys | Thr | Ser | Ser | Asn | Glu | Glu | Gly | Thr | Gln | Phe | Cys | Asn | Ile | Thr |
|     | 215 |     |     |     |     |     |     | 220 |     |     |     |     | 225 |     |
| Val | Ala | Val | Arg | Ser | Pro | Ser | Met | Asn | Val | Ala | Leu | Tyr | Val | Gly |
|     | 230 |     |     |     |     |     |     | 235 |     |     |     |     | 240 |     |
| Ile | Ala | Val | Gly | Val | Val | Ala | Ala | Leu | Ile | Ile | Ile | Gly | Ile | Ile |
|     | 245 |     |     |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Ile | Tyr | Cys | Cys | Cys | Cys | Arg | Gly | Lys | Asp | Asp | Asn | Thr | Glu | Asp |
|     | 260 |     |     |     |     |     |     | 265 |     |     |     |     | 270 |     |
| Lys | Glu | Asp | Ala | Arg | Pro | Asn | Arg | Glu | Ala | Tyr | Glu | Glu | Pro | Pro |
|     | 275 |     |     |     |     |     |     | 280 |     |     |     |     | 285 |     |
| Glu | Gln | Leu | Arg | Glu | Leu | Ser | Arg | Glu | Arg | Glu | Glu | Asp | Asp |     |
|     | 290 |     |     |     |     |     |     | 295 |     |     |     |     | 300 |     |
| Tyr | Arg | Gln | Glu | Glu | Gln | Arg | Ser | Thr | Gly | Arg | Glu | Ser | Pro | Asp |
|     | 305 |     |     |     |     |     |     | 310 |     |     |     |     | 315 |     |

His Leu Asp Gln

<210> 7  
<211> 2181  
<212> DNA  
<213> Homo sapiens  
  
<400> 7  
cccacgcgtc cgccccacgacg tccgcccacg ggtccggccca cgcgtccggg 50  
ccaccagaag tttgagcctc tttggtagca ggaggctgga agaaaggaca 100  
gaagtagctc tggctgtat gggatctta ctgggcctgc tactcctggg 150  
gcacctaaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200  
gtgtAACAGG accttggaaa gggatgtga atcttcctg cacctatgac 250  
cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300  
ctcagaccct gtcaccatct ttctacgtga ctcttctgga gaccatatcc 350  
agcaggcaaa gtaccaggc cgcctgcatt tgagccacaa gttccagga 400  
gatgtatccc tccaatttagag caccctggag atggatgacc ggagccacta 450  
cacgtgtgaa gtcacacctggc agactcctga tggcaaccaa gtcgtgagag 500  
ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550  
gtgacaactg gcagcggtta tggcttacag gtgcggcagg gaatgaggat 600  
tagccttcaa tgccaggctc ggggttctcc tcctcatagt tatatttgg 650  
ataagcaaca gactaataac caggaaccca tcaaagttagc aaccctaagt 700  
accttactct tcaagcctgc ggtgatagcc gactcaggct cctatttctg 750  
caactgccaag ggccagggttg gctctgagca gcacagcgac attgtgaagt 800  
ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850  
acaaccatga cataccctt gaaagcaaca tctacagtga agcagtccctg 900  
ggactggacc actgacatgg atggctacct tggagagacc agtgcgtggc 950  
cagggaaagag cctgcctgtc tttgccatca tcctcatcat tccttgtgc 1000  
tgtatggtgg ttttaccat ggcctatatac atgctctgtc ggaagacatc 1050  
ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctcctctt 1100  
ccatTTTGA ccccgccctt gccctcaatt ttgattactg gcagggaaatg 1150  
tggaggaagg ggggtgtggc acagacccaa tcctaaaggcc ggaggccttc 1200  
agggtcagga catagctgcc ttccctctct cagggcacctt ctgaggttgt 1250  
tttggccctc tgaacacaaa ggataattta gatccatctg cttctgctt 1300  
ccagaatccc tgggtggtag gatcctgata attaattggc aagaatttag 1350

gcagaagggt gggaaaccag gaccacagcc ccaagtccct tcttatgggt 1400  
ggtgggctct tgggccatag ggcacatgcc agagaggcca acgactctgg 1450  
agaaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500  
caacttccccaa gaatctggc aacaactact ctgatgagcc ctgcatacg 1550  
caggagttacc agatcatcgccagatcaat ggcaactacg cccgcctgct 1600  
ggacacagtt cctctggatt atgagttct ggccactgag ggcaaaagtg 1650  
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700  
tcagtccttg cttctgcat ggccttcttc cctgctacacct ctcttcctgg 1750  
atagccaaaa gtgtccgcct accaacactg gagccgctgg gagtcactgg 1800  
ctttgccttg gaatttgcca gatgcatctc aagtaagcca gctgctggat 1850  
ttggctctgg gcccttcttag tatctctgccc gggggcttct ggtactcctc 1900  
tctaaatacc agagggaaga tgcccatagc actaggactt ggtcatcatg 1950  
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000  
aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050  
ctttcttcag ggccagacag ctttaatttgg aaattgttat ttcacaggcc 2100  
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150  
tqqtqctcaa taaatatcta atcataacaa c 2181

```
<210> 8  
<211> 1295  
<212> DNA  
<213> Homo sapiens
```

<400> 8  
cccagaagtt caagggcccc cggcctcctg cgctcctgcc gccgggaccc 50  
tcgacacct cagagcagcc ggctgccgcc ccggaaagat ggcgaggagg 100  
agccgccacc gcctcctcct gctgctgctg cgctacctgg tggtcgcacc 150  
gggctatcat aaggcctatg gttttctgc cccaaaagac caacaagttag 200  
tcacagcagt agagtaccaa gaggctattt tagcctgcaa aaccccaaag 250  
aagactgttt cctccagatt agagtggaaag aaactgggtc ggagtgtctc 300  
ctttgtctac tatcaacaga ctcttcaagg tgattttaaa aatcgagctg 350  
agatgataga tttaaatatc cggatcaaaa atgtgacaag aagtgtatgcg 400  
gggaaatatac gttgtgaagt tagtgcccca tctgagcaag gccaaaacct 450  
ggaagaggat acagtcactc tggaaagtatt agtggctcca gcagttccat 500  
catgtgaagt accctcttct gctctgagtg gaactgtggt agagctacga 550  
tgtcaagaca aaaaqqqaa tccagctcct qaatacacat qqttaaqqa 600

tggcatccgt ttgctagaaa atcccagact tggctcccaa agcaccaaca 650  
gctcatacac aatgaataca aaaactggaa ctctgcaatt taatactgtt 700  
tccaaactgg acactggaga atattcctgt gaagcccgca attctgttgg 750  
atatcgcagg tgtcctggga aacgaatgca agtagatgtat ctcacataa 800  
gtggcatcat agcagccgta gtagttgtgg ccttagtgat ttccgttgt 850  
ggccttggtg tatgctatgc tcagaggaaa ggctactttt caaaagaaac 900  
ctccttccag aagagtaatt cttcatctaa agccacgaca atgagtgaaa 950  
atgtgcagt gctcacgcct gtaatcccag cactttggaa ggccgcggcg 1000  
ggcggatcac gaggtcagga gttctagacc agtctggcca atatggtcaa 1050  
accccatctc tactaaaata caaaaattag ctggcatgg tggcatgtgc 1100  
ctgcagttcc agctgcttgg gagacaggag aatcaatttgaa acccgggagg 1150  
cggaggttgc agttagtga gatcacgcca ctgcagtcca gcctggtaa 1200  
cagagcaaga ttccatctca aaaaataaaaaa taaataaaata aataaataact 1250  
ggtttttacc tgtagaattc ttacaataaa tatagcttga tattc 1295

<210> 9  
<211> 312  
<212> PRT  
<213> Homo sapiens

<400> 9  
Met Ala Arg Arg Ser Arg His Arg Leu Leu Leu Leu Leu Arg  
1 5 10 15  
Tyr Leu Val Val Ala Leu Gly Tyr His Lys Ala Tyr Gly Phe Ser  
20 25 30  
Ala Pro Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu  
35 40 45  
Ala Ile Leu Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg  
50 55 60  
Leu Glu Trp Lys Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr  
65 70 75  
Gln Gln Thr Leu Gln Gly Asp Phe Lys Asn Arg Ala Glu Met Ile  
80 85 90  
Asp Phe Asn Ile Arg Ile Lys Asn Val Thr Arg Ser Asp Ala Gly  
95 100 105  
Lys Tyr Arg Cys Glu Val Ser Ala Pro Ser Glu Gln Gly Gln Asn  
110 115 120  
Leu Glu Glu Asp Thr Val Thr Leu Glu Val Leu Val Ala Pro Ala  
125 130 135  
Val Pro Ser Cys Glu Val Pro Ser Ser Ala Leu Ser Gly Thr Val  
140 145 150

Val Glu Leu Arg Cys Gln Asp Lys Glu Gly Asn Pro Ala Pro Glu  
 155 160 165  
 Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu Glu Asn Pro Arg  
 170 175 180  
 Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met Asn Thr Lys  
 185 190 195  
 Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp Thr Gly  
 200 205 210  
 Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg Cys  
 215 220 225  
 Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile  
 230 235 240  
 Ile Ala Ala Val Val Val Ala Leu Val Ile Ser Val Cys Gly  
 245 250 255  
 Leu Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu  
 260 265 270  
 Thr Ser Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met  
 275 280 285  
 Ser Glu Asn Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp  
 290 295 300  
 Lys Ala Ala Ala Gly Gly Ser Arg Gly Gln Glu Phe  
 305 310  
  
 <210> 10  
 <211> 300  
 <212> PRT  
 <213> Mus musculus  
  
 <400> 10  
 Met Gly Thr Glu Gly Lys Ala Gly Arg Lys Leu Leu Phe Leu Phe  
 1 5 10 15  
  
 Thr Ser Met Ile Leu Gly Ser Leu Val Gln Gly Lys Gly Ser Val  
 20 25 30  
  
 Tyr Thr Ala Gln Ser Asp Val Gln Val Pro Glu Asn Glu Ser Ile  
 35 40 45  
  
 Lys Leu Thr Cys Thr Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu  
 50 55 60  
  
 Trp Lys Phe Val Gln Gly Ser Thr Thr Ala Leu Val Cys Tyr Asn  
 65 70 75  
  
 Ser Gln Ile Thr Ala Pro Tyr Ala Asp Arg Val Thr Phe Ser Ser  
 80 85 90  
  
 Ser Gly Ile Thr Phe Ser Ser Val Thr Arg Lys Asp Asn Gly Glu  
 95 100 105  
  
 Tyr Thr Cys Met Val Ser Glu Glu Gly Gln Asn Tyr Gly Glu  
 110 115 120

Val Ser Ile His Leu Thr Val Leu Val Pro Pro Ser Lys Pro Thr  
 125 130 135  
 Ile Ser Val Pro Ser Ser Val Thr Ile Gly Asn Arg Ala Val Leu  
 140 145 150  
 Thr Cys Ser Glu His Asp Gly Ser Pro Pro Ser Glu Tyr Ser Trp  
 155 160 165  
 Phe Lys Asp Gly Ile Ser Met Leu Thr Ala Asp Ala Lys Lys Thr  
 170 175 180  
 Arg Ala Phe Met Asn Ser Ser Phe Thr Ile Asp Pro Lys Ser Gly  
 185 190 195  
 Asp Leu Ile Phe Asp Pro Val Thr Ala Phe Asp Ser Gly Glu Tyr  
 200 205 210  
 Tyr Cys Gln Ala Gln Asn Gly Tyr Gly Thr Ala Met Arg Ser Glu  
 215 220 225  
 Ala Ala His Met Asp Ala Val Glu Leu Asn Val Gly Gly Ile Val  
 230 235 240  
 Ala Ala Val Leu Val Thr Leu Ile Leu Leu Gly Leu Leu Ile Phe  
 245 250 255  
 Gly Val Trp Phe Ala Tyr Ser Arg Gly Tyr Phe Glu Thr Thr Lys  
 260 265 270  
 Lys Gly Thr Ala Pro Gly Lys Lys Val Ile Tyr Ser Gln Pro Ser  
 275 280 285  
 Thr Arg Ser Glu Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val  
 290 295 300

<210> 11  
 <211> 2181  
 <212> DNA  
 <213> Homo sapiens

<400> 11  
 cccacgcgtc cgccccacgctg tccgcccacg ggtccggccca cgcgccgggg 50  
 ccaccagaag tttgagcctc tttggtagca ggaggctgaa agaaaaggaca 100  
 gaagtagctc tggctgtat gggatctta ctgggcctgc tactcctggg 150  
 gcacctaaca gtggacactt atggccgtcc catcctggaa gtgccagaga 200  
 gtgtaacagg accttggaaa gggatgtga atcttccctg cacctatgac 250  
 cccctgcaag gctacaccca agtcttggtg aagtggctgg tacaacgtgg 300  
 ctcagaccct gtcaccatct ttctacgtga ctcttctgaa gaccatatcc 350  
 agcaggcaaa gtaccaggc cgcctgcatt tgagccacaa ggttccagga 400  
 gatgtatccc tccaatttag caccctggag atggatgacc ggagccacta 450  
 cacgtgtgaa gtcacctggc agactcctga tggcaaccaa gtcgtgagag 500  
 ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550

gtgacaactg gcagcggtta tggcttcacg gtgc(cccagg gaatgaggat 600  
tagccttcaa tgccaggctc ggggttctcc tcccatcagt tatatttgt 650  
ataagcaaca gactaataac caggaaccca tcaaagttagc aaccctaagt 700  
accttactct tcaagcctgc ggtgatagcc gactcaggct cctattctg 750  
caactgccaag ggccaggttg gctctgagca gcacagcgac attgtgaagt 800  
ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850  
acaaccatga cataccctt gaaagcaaca tctacagtga agcagtccctg 900  
ggactggacc actgacatgg atggctacct tggagagacc agtgctggc 950  
cagggaaagag cctgcctgtc tttgccatca tcctcatcat ctccctgtgc 1000  
tgtatggtgg ttttaccat ggcctataatc atgctctgtc ggaagacatc 1050  
ccaacaagag catgtctacg aagcagccag gtaagaaagt ctctccctt 1100  
ccatTTTGA ccccgtccct gccctcaatt ttgattactg gcagggaaatg 1150  
tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200  
agggtcagga catagctgcc ttccctctc caggcacctt ctgaggttgt 1250  
tttggccctc tgaacacaaa ggataattta gatccatctg cttctgttt 1300  
ccagaatccc tgggtggtag gatcctgata attaattggc aagaatttag 1350  
gcagaagggt gggaaaccag gaccacagcc ccaagtcctt tcttatgggt 1400  
ggtggctct tggccatag ggcacatgcc agagaggcca acgactctgg 1450  
agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgatgagc 1500  
caactccca gaatctggc aacaactact ctgatgagcc ctgcataagga 1550  
caggagtacc agatcatcgc ccagatcaat ggcaactacg cccgcctgt 1600  
ggacacagtt cctctggatt atgagttct ggcactgag ggcaaaagt 1650  
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700  
tcagtccttgc cttctgtcat ggccttcttc cctgctaccc ctcttcctgg 1750  
atagccccaaa gtgtccgect accaacactg gagccgctgg gagtcactgg 1800  
cttgccttg gaatttgcca gatcctgtc aagtaagcca gctgctggat 1850  
ttggctctgg gcccttcttag tatctctgtcc gggggcttct ggtactcctc 1900  
tctaaatacc agagggaaga tgcccatagc actaggactt ggtcatcatg 1950  
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000  
aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050  
ctttcttcag ggccagacag ctttaattt aattgttat ttcacaggcc 2100  
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150

tggtgctcaa taaatatcta atcataacag c 2181

<210> 12  
<211> 24  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 12  
tcgcggagct gtgttctgtt tccc 24

<210> 13  
<211> 50  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 13  
tgatcgcat ggggacaaaag gcgcaagctc gagaggaaac tgttgtgcct 50

<210> 14  
<211> 20  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 14  
acacctggtt caaagatggg 20

<210> 15  
<211> 24  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 15  
taggaagagt tgctgaaggc acgg 24

<210> 16  
<211> 20  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 16  
ttgccttact caggtgctac 20

<210> 17  
<211> 20  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 17  
actcagcagt ggttaggaaag 20

<210> 18  
<211> 24  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 18  
tatccctcca attgaggacc ctgg 24

<210> 19  
<211> 21  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 19  
gtcggaagac atcccaacaa g 21

<210> 20  
<211> 24  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 20  
cttcacaatg tcgctgtgct gctc 24

<210> 21  
<211> 24  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 21  
agccaaatcc agcagctggc ttac 24

<210> 22  
<211> 50  
<212> DNA  
<213> artificial sequence

<220>

<223> artificial sequence

<400> 22  
tggatgaccc gagccactac acgtgtgaag tcacctggca gactcctgat 50

<210> 23  
<211> 260  
<212> PRT

<213> Homo sapiens

<400> 23

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Leu | Ala | Leu | Gly | Ser | Val | Thr | Val | His | Ser | Ser | Glu | Pro | Glu | Val |
| 1   |     | 5   |     |     | 10  |     |     | 15  |     |     |     |     |     |     |
| Arg | Ile | Pro | Glu | Asn | Asn | Pro | Val | Lys | Leu | Ser | Cys | Ala | Tyr | Ser |
|     | 20  |     |     |     |     | 25  |     |     |     |     |     |     | 30  |     |
| Gly | Phe | Ser | Ser | Pro | Arg | Val | Glu | Trp | Lys | Phe | Asp | Gln | Gly | Asp |
|     | 35  |     |     |     |     |     | 40  |     |     |     |     |     | 45  |     |
| Thr | Thr | Arg | Leu | Val | Cys | Tyr | Asn | Asn | Lys | Ile | Thr | Ala | Ser | Tyr |
|     | 50  |     |     |     |     |     | 55  |     |     |     |     |     | 60  |     |
| Glu | Asp | Arg | Val | Thr | Phe | Leu | Pro | Thr | Gly | Ile | Thr | Phe | Lys | Ser |
|     | 65  |     |     |     |     | 70  |     |     |     |     |     |     | 75  |     |
| Val | Thr | Arg | Glu | Asp | Thr | Gly | Thr | Tyr | Thr | Cys | Met | Val | Ser | Glu |
|     | 80  |     |     |     |     |     | 85  |     |     |     |     |     | 90  |     |
| Glu | Gly | Gly | Asn | Ser | Tyr | Gly | Glu | Val | Lys | Val | Lys | Leu | Ile | Val |
|     | 95  |     |     |     |     |     |     | 100 |     |     |     |     | 105 |     |
| Leu | Val | Pro | Pro | Ser | Lys | Pro | Thr | Val | Asn | Ile | Pro | Ser | Ser | Ala |
|     | 110 |     |     |     |     |     |     | 115 |     |     |     |     | 120 |     |
| Thr | Ile | Gly | Asn | Arg | Ala | Val | Leu | Thr | Cys | Ser | Glu | Gln | Asp | Gly |
|     | 125 |     |     |     |     |     |     | 130 |     |     |     |     | 135 |     |
| Ser | Pro | Pro | Ser | Glu | Tyr | Thr | Trp | Phe | Lys | Asp | Gly | Ile | Val | Met |
|     | 140 |     |     |     |     |     |     | 145 |     |     |     |     | 150 |     |
| Pro | Thr | Asn | Pro | Lys | Ser | Thr | Arg | Ala | Phe | Ser | Asn | Ser | Ser | Tyr |
|     | 155 |     |     |     |     |     |     | 160 |     |     |     |     | 165 |     |
| Val | Leu | Asn | Pro | Thr | Thr | Gly | Glu | Leu | Val | Phe | Asp | Pro | Leu | Ser |
|     | 170 |     |     |     |     |     |     | 175 |     |     |     |     | 180 |     |
| Ala | Ser | Asp | Thr | Gly | Glu | Tyr | Ser | Cys | Glu | Ala | Arg | Asn | Gly | Tyr |
|     | 185 |     |     |     |     |     |     | 190 |     |     |     |     | 195 |     |
| Gly | Thr | Pro | Met | Thr | Ser | Asn | Ala | Val | Arg | Met | Glu | Ala | Val | Glu |
|     | 200 |     |     |     |     |     |     | 205 |     |     |     |     | 210 |     |
| Arg | Asn | Val | Gly | Val | Ile | Val | Ala | Ala | Val | Leu | Val | Thr | Leu | Ile |
|     | 215 |     |     |     |     |     |     | 220 |     |     |     |     | 225 |     |
| Leu | Leu | Gly | Ile | Leu | Val | Phe | Gly | Ile | Trp | Phe | Ala | Tyr | Ser | Arg |
|     | 230 |     |     |     |     |     |     | 235 |     |     |     |     | 240 |     |
| Gly | His | Phe | Asp | Arg | Thr | Lys | Lys | Gly | Thr | Ser | Ser | Lys | Lys | Val |
|     | 245 |     |     |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Ile | Tyr | Ser | Gln | Pro |     |     |     |     |     |     |     |     |     |     |
|     | 260 |     |     |     |     |     |     |     |     |     |     |     |     |     |

<210> 24

<211> 270

<212> PRT

<213> Homo sapiens

<400> 24

|       |              |     |     |     |     |     |     |     |     |     |     |     |     |     |
|-------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Val   | Arg          | Val | Thr | Val | Asp | Ala | Ile | Ser | Val | Glu | Thr | Pro | Gln | Asp |
| 1     |              |     |     | 5   |     |     |     |     | 10  |     |     |     | 15  |     |
| Val   | Leu          | Arg | Ala | Ser | Gln | Gly | Lys | Ser | Val | Thr | Leu | Pro | Cys | Thr |
|       | 20           |     |     |     |     |     |     | 25  |     |     |     |     | 30  |     |
| Tyr   | His          | Thr | Ser | Thr | Ser | Ser | Arg | Glu | Gly | Leu | Ile | Gln | Trp | Asp |
|       | 35           |     |     |     |     |     |     | 40  |     |     |     |     | 45  |     |
| Lys   | Leu          | Leu | Leu | Thr | His | Thr | Glu | Arg | Val | Val | Ile | Trp | Pro | Phe |
|       | 50           |     |     |     |     |     |     | 55  |     |     |     |     | 60  |     |
| Ser   | Asn          | Lys | Asn | Tyr | Ile | His | Gly | Glu | Leu | Tyr | Lys | Asn | Arg | Val |
|       | 65           |     |     |     |     |     |     | 70  |     |     |     |     | 75  |     |
| Ser   | Ile          | Ser | Asn | Asn | Ala | Glu | Gln | Ser | Asp | Ala | Ser | Ile | Thr | Ile |
|       | 80           |     |     |     |     |     |     | 85  |     |     |     |     | 90  |     |
| Asp   | Gln          | Leu | Thr | Met | Ala | Asp | Asn | Gly | Thr | Tyr | Glu | Cys | Ser | Val |
|       | 95           |     |     |     |     |     |     | 100 |     |     |     |     | 105 |     |
| Ser   | Leu          | Met | Ser | Asp | Leu | Glu | Gly | Asn | Thr | Lys | Ser | Arg | Val | Arg |
|       | 110          |     |     |     |     |     |     | 115 |     |     |     |     | 120 |     |
| Leu   | Leu          | Val | Leu | Val | Pro | Pro | Ser | Lys | Pro | Glu | Cys | Gly | Ile | Glu |
|       | 125          |     |     |     |     |     |     | 130 |     |     |     |     | 135 |     |
| Gly   | Glu          | Thr | Ile | Ile | Gly | Asn | Asn | Ile | Gln | Leu | Thr | Cys | Gln | Ser |
|       | 140          |     |     |     |     |     |     | 145 |     |     |     |     | 150 |     |
| Lys   | Glu          | Gly | Ser | Pro | Thr | Pro | Gln | Tyr | Ser | Trp | Lys | Arg | Tyr | Asn |
|       | 155          |     |     |     |     |     |     | 160 |     |     |     |     | 165 |     |
| Ile   | Leu          | Asn | Gln | Glu | Gln | Pro | Leu | Ala | Gln | Pro | Ala | Ser | Gly | Gln |
|       | 170          |     |     |     |     |     |     | 175 |     |     |     |     | 180 |     |
| Pro   | Val          | Ser | Leu | Lys | Asn | Ile | Ser | Thr | Asp | Thr | Ser | Gly | Tyr | Tyr |
|       | 185          |     |     |     |     |     |     | 190 |     |     |     |     | 195 |     |
| Ile   | Cys          | Thr | Ser | Ser | Asn | Glu | Gly | Thr | Gln | Phe | Cys | Asn | Ile |     |
|       | 200          |     |     |     |     |     |     | 205 |     |     |     |     | 210 |     |
| Thr   | Val          | Ala | Val | Arg | Ser | Pro | Ser | Met | Asn | Val | Ala | Leu | Tyr | Val |
|       | 215          |     |     |     |     |     |     | 220 |     |     |     |     | 225 |     |
| Gly   | Ile          | Ala | Val | Gly | Val | Val | Ala | Ala | Leu | Ile | Ile | Ile | Gly | Ile |
|       | 230          |     |     |     |     |     |     | 235 |     |     |     |     | 240 |     |
| Ile   | Ile          | Tyr | Cys | Cys | Cys | Cys | Arg | Gly | Lys | Asp | Asp | Asn | Thr | Glu |
|       | 245          |     |     |     |     |     |     | 250 |     |     |     |     | 255 |     |
| Asp   | Lys          | Glu | Asp | Ala | Arg | Pro | Asn | Arg | Glu | Ala | Tyr | Glu | Glu | Pro |
|       | 260          |     |     |     |     |     |     | 265 |     |     |     |     | 270 |     |
| <210> | 25           |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <211> | 263          |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <212> | PRT          |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <213> | Homo sapiens |     |     |     |     |     |     |     |     |     |     |     |     |     |
| <400> | 25           |     |     |     |     |     |     |     |     |     |     |     |     |     |
| Leu   | Cys          | Ser | Leu | Ala | Leu | Gly | Ser | Val | Thr | Val | His | Ser | Ser | Glu |
| 1     |              |     |     |     | 5   |     |     |     | 10  |     |     |     | 15  |     |

Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu Ser Cys  
                   20                  25                  30  
 Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe Asp  
                   35                  40                  45  
 Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr  
                   50                  55                  60  
 Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr  
                   65                  70                  75  
 Phe Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met  
                   80                  85                  90  
 Val Ser Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys  
                   95                  100                105  
 Leu Ile Val Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro  
                   110                115                120  
 Ser Ser Ala Thr Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu  
                   125                130                135  
 Gln Asp Gly Ser Pro Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly  
                   140                145                150  
 Ile Val Met Pro Thr Asn Pro Lys Ser Thr Arg Ala Phe Ser Asn  
                   155                160                165  
 Ser Ser Tyr Val Leu Asn Pro Thr Thr Gly Glu Leu Val Phe Asp  
                   170                175                180  
 Pro Leu Ser Ala Ser Asp Thr Gly Glu Tyr Ser Cys Glu Ala Arg  
                   185                190                195  
 Asn Gly Tyr Gly Thr Pro Met Thr Ser Asn Ala Val Arg Met Glu  
                   200                205                210  
 Ala Val Glu Arg Asn Val Gly Val Ile Val Ala Ala Val Leu Val  
                   215                220                225  
 Thr Leu Ile Leu Leu Gly Ile Leu Val Phe Gly Ile Trp Phe Ala  
                   230                235                240  
 Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly Thr Ser Ser  
                   245                250                255  
 Lys Lys Val Ile Tyr Ser Gln Pro  
                   260  
<210> 26  
<211> 273  
<212> PRT  
<213> Homo sapiens  
  
<400> 26  
Leu Cys Ala Val Arg Val Thr Val Asp Ala Ile Ser Val Glu Thr  
   1              5                  10                  15  
Pro Gln Asp Val Leu Arg Ala Ser Gln Gly Lys Ser Val Thr Leu  
   20              25                  30

Pro Cys Thr Tyr His Thr Ser Thr Ser Ser Arg Glu Gly Leu Ile  
                  35                        40                        45  
 Gln Trp Asp Lys Leu Leu Leu Thr His Thr Glu Arg Val Val Ile  
                  50                        55                        60  
 Trp Pro Phe Ser Asn Lys Asn Tyr Ile His Gly Glu Leu Tyr Lys  
                  65                        70                        75  
 Asn Arg Val Ser Ile Ser Asn Asn Ala Glu Gln Ser Asp Ala Ser  
                  80                        85                        90  
 Ile Thr Ile Asp Gln Leu Thr Met Ala Asp Asn Gly Thr Tyr Glu  
                  95                        100                     105  
 Cys Ser Val Ser Leu Met Ser Asp Leu Glu Gly Asn Thr Lys Ser  
                  110                        115                     120  
 Arg Val Arg Leu Leu Val Leu Val Pro Pro Ser Lys Pro Glu Cys  
                  125                        130                     135  
 Gly Ile Glu Gly Glu Thr Ile Ile Gly Asn Asn Ile Gln Leu Thr  
                  140                        145                     150  
 Cys Gln Ser Lys Glu Gly Ser Pro Thr Pro Gln Tyr Ser Trp Lys  
                  155                        160                     165  
 Arg Tyr Asn Ile Leu Asn Gln Glu Gln Pro Leu Ala Gln Pro Ala  
                  170                        175                     180  
 Ser Gly Gln Pro Val Ser Leu Lys Asn Ile Ser Thr Asp Thr Ser  
                  185                        190                     195  
 Gly Tyr Tyr Ile Cys Thr Ser Ser Asn Glu Glu Gly Thr Gln Phe  
                  200                        205                     210  
 Cys Asn Ile Thr Val Ala Val Arg Ser Pro Ser Met Asn Val Ala  
                  215                        220                     225  
 Leu Tyr Val Gly Ile Ala Val Gly Val Val Ala Ala Leu Ile Ile  
                  230                        235                     240  
 Ile Gly Ile Ile Ile Tyr Cys Cys Cys Cys Arg Gly Lys Asp Asp  
                  245                        250                     255  
 Asn Thr Glu Asp Lys Glu Asp Ala Arg Pro Asn Arg Glu Ala Tyr  
                  260                        265                     270

Glu Glu Pro

<210> 27  
 <211> 413  
 <212> DNA  
 <213> artificial sequence

<220>  
 <223> artificial sequence

<400> 27  
 ctcgagccgc tcgagccgtg cggggaaaata tcgttgtcaa gtttagtgc 50  
 catctgagca aggccaaaac ctggaagagg atacagtcac tctgaaagta 100

ttagtggctc cagcagttcc atcatgtgaa gtacccttct ctgctctgag 150  
tggaactgtg gtagagctac gatgtcaaga caaagaaggg aatccagctc 200  
ctgaatacac atggtttaag gatggcatcc gtttgctaga aaatcccaga 250  
cttggctccc aaagcaccaa cagctcatac acaatgaata caaaaactgg 300  
aactctgcaa tttaatactg tttccaaact ggacactgga gaatattcct 350  
gtgaagcccc caattctgtt ggatatcgca ggtgtcctgg ggaaacgaat 400  
gcaagttagat gat 413

<210> 28  
<211> 22  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 28  
atcggttgta agtttagtgcc cc 22

<210> 29  
<211> 23  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 29  
acctgcgata tccaaacagaa ttg 23

<210> 30  
<211> 48  
<212> DNA  
<213> artificial sequence

<220>  
<223> artificial sequence

<400> 30  
ggaagaggat acagtcactc tggaagtatt agtggctcca gcagttcc 48