

AD-A156 427

NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS
LOWER MOUNTAIN LAKE (U) CORPS OF ENGINEERS WALTHAM
MA NEW ENGLAND DIV MAR 79

1/2

UNCLASSIFIED

F/G 13/13

NL

P E D I C T

MICROFILM RESOLUTION TEST CHART
NATIONAL MICROFILM CORPORATION

CONNECTICUT RIVER BASIN
HAVERHILL, NEW HAMPSHIRE

AD-A156 427

LOWER MOUNTAIN LAKE
N.H. 00195

PHASE I INSPECTION REPORT
NATIONAL DAM INSPECTION PROGRAM

DEPARTMENT OF THE ARMY
NEW ENGLAND DIVISION, CORPS OF ENGINEERS
WALTHAM, MASS. 02454

MARCH 1966

85 06 14 025

FILE COPY

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE When Data Entered

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER NR-00195	2. GOVT ACCESSION NO. VIA 1158127	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) Lower Mountain Lake	5. TYPE OF REPORT & PERIOD COVERED INSPECTION REPORT	
NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS	6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s) U.S. ARMY CORPS OF ENGINEERS NEW ENGLAND DIVISION	8. CONTRACT OR GRANT NUMBER(s)	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
DEPT. OF THE ARMY, CORPS OF ENGINEERS NEW ENGLAND DIVISION, NEDED 424 TRAPELO ROAD, WALTHAM, MA. 02254	12. REPORT DATE March 1974	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES 53	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
	16a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) APPROVAL FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Cover program reads: Phase I Inspection Report, National Dam Inspection Program; however, the official title of the program is: National Program for Inspection of Non-Federal Dams; use cover date for date of report.		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) DAMS, INSPECTION, DAM SAFETY, Connecticut River Basin Haverhill, New Hampshire Western Brook		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The dam is an earth embankment structure with a maximum height of 100 feet and a length of nearly 1000 feet. It is 100 feet wide at the top and 100 feet wide at the base. The dam is located in a valley and has a steep slope on the left bank. The dam is observed to be in good condition. The dam is located in a rural area.		

DEPARTMENT OF THE ARMY

ARMED FORCES ENGINEERING SCHOOL
404 TRAFEL ROAD
FORT MONMOUTH, NEW JERSEY

General, New Hampshire

Dear Governor Gallen:

Enclosed is a copy of the Lower Mountain Lake Phase I Inspection Report, which was prepared at my direction for inspection of Non-federal dams. This report is presented for your use and is based upon a visual inspection, a review of the past performance and a brief hydrological study of the dam. A brief assessment is included at the beginning of the report. I have approved the report and support the findings and recommendations described in Section 7 and ask that you keep me informed of the actions taken to implement them. This follow-up action is a vitally important part of this program.

A copy of this report has been forwarded to the Water Resources Board, the cooperating agency for the State of New Hampshire. In addition, a copy of the report has also been furnished the owner, Town & Country Homes, Inc., Haverhill, New Hampshire.

Copies of this report will be made available to the public, upon request, by this office under the Freedom of Information Act. In the case of this report the release date will be thirty days from the date of this letter.

I wish to take this opportunity to thank you and the Water Resources Board for your cooperation in carrying out this program.

Sincerely,

MAX B. SCHEIDER
Colonel, Corps of Engineers
Division Engineer

Incl
As stated

LOWER MOUNTAIN LAKE

NH00195

HAVERHILL, NEW HAMPSHIRE

Accession For	
NHD - CRA&I	
DRAFT TAB	
Enclosed	
Justification	
By	
Distribution/	
Availability Codes	
Available/or	
DIST	Special

PHASE I INSPECTION REPORT

NATIONAL DAM INSPECTION PROGRAM

NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT

Identification No: NH00195
Name of Dam: Lower Mountain Lake
Town: Haverhill
County and State: Grafton County, New Hampshire
Stream: Waterman Brook
Date of Inspection: November 20, 1978

BRIEF ASSESSMENT

The Lower Mountain Lake Dam is an earth embankment structure with a continuous impervious earth core and cutoff trench. The dam is 960 feet long with a maximum height of 32.5 feet. Each face of the core wall is sloped at 1H:1V while the pervious upstream shell slopes at 3H:1V. The crest is 13 feet wide and the downstream face slopes at 2H:1V. There are three outlets including an 84-inch overflow pipe spillway, a 24-inch diameter low-level outlet conduit and an emergency spillway.

The dam was designed by the former engineering firm of Rollins, King and McKone Inc., of Manchester, New Hampshire; constructed in 1967 by Moulton Construction of Lebanon, New Hampshire.

Based on the small size and low hazard classification and in accordance with Corps guidelines, the test flood is the 100-year flood. The test flood inflow of 1,580 CFS (420 CSM) produces a routed test flood outflow of 1,242 CFS which overtops the emergency spillway by 2.2 feet. With water level at the top of the dam, the spillways will pass 1,765 CFS (469 CSM) which is 142 percent of the test flood.

The dam is in fair condition. Seepage was observed in five specific locations along the downstream toe of the dam. The following items require attention:

1. Riprap should be replaced where previously removed from the left side of the emergency spillway.
2. The in-place soil characteristics of the emergency spillway should be evaluated by a qualified engineer in order that erosion protection measures can be recommended if necessary.
3. The method of operating the low-level discharge conduit is dangerous and undependable. A service pier should be constructed and the chain operated shear gate should be replaced by a stem operated gate valve.

4. The existing service bridge to the outlet spillway needs painting and the grating on the outlet riser pipe needs replacing.
5. A program of annual inspection should be implemented.
6. Flow characteristics and quantity should be measured and recorded in the area of the downstream low-level outlet conduit.

Walter A. Henry

This Phase I Inspection Report on Lower Mountain Lake Dam
has been reviewed by the undersigned Review Board members. In our
opinion, the reported findings, conclusions, and recommendations are
consistent with the Recommended Guidelines for Safety Inspection of
Dams, and with good engineering judgment and practice, and is hereby
submitted for approval.

RICHARD DIBUONO, MEMBER
Water Control Branch
Engineering Division

ARAMAST MAHESIAN, MEMBER
Geotechnical Engineering Branch
Engineering Division

CARNEY M. TERZIAN, CHAIRMAN
Design Branch
Engineering Division

APPROVAL RECOMMENDED:

JOE B. FRYAR
Chief, Engineering Division

PREFACE

This report is prepared under guidance contained in the Recommended Guidelines for Safety Inspection of Dams, for Phase I Investigations. Copies of these guidelines may be obtained from the Office of Chief of Engineers, Washington, D.C. 20314. The purpose of a Phase I Investigation is to identify expeditiously those dams which may pose hazards to human life or property. The assessment of the general condition of the dam is based upon available data and visual inspections. Detailed investigation, and analyses involving topographic mapping, subsurface investigations, testing and detailed computational evaluations are beyond the scope of a Phase I Investigation; however, the investigation is intended to identify any need for such studies.

In reviewing this report, it should be realized that the reported condition of the dam is based on observations of field conditions at the time of inspection along with data available to the inspection team. In cases where the reservoir was lowered or drained prior to inspection, such action, while improving the stability and safety of the dam, removes the normal load on the structure and may obscure certain conditions which might otherwise be detectable if inspected under the normal operating environment of the structure.

It is important to note that the condition of a dam depends on numerous and constantly changing internal and external conditions, and is evolutionary in nature. It would be incorrect to assume that the present condition of the dam will continue to represent the condition of the dam at some point in the future. Only through continued care and inspection can there be any chance that unsafe conditions be detected.

Phase I inspections are not intended to provide detailed hydrologic and hydraulic analyses. In accordance with the established Guidelines, the Spillway Test Flood is based on the estimated "Probable Maximum Flood" for the region (greatest reasonably possible storm runoff), or fractions thereof. Because of the magnitude and rarity of such a storm event, a finding that a spillway will not pass the test flood should not be interpreted as necessarily posing a highly inadequate condition. The test flood provides a measure of relative spillway capacity and serves as an aid in determining the need for more detailed hydrologic and hydraulic studies, considering the size of the dam, its general condition and the downstream damage potential.

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
Letter of Transmittal	
Brief Assessment	
Review Board Page	
Preface	
Table of Contents	ii-iv
Overview Photo	v
Location Map	vi

REPORT

1. PROJECT INFORMATION

1.1 General	1-1
a. Authority	1-1
b. Purpose	1-1
1-2 Description of Project	1-1
a. Location	1-1
b. Description of Dam & Appurtenances	1-1
c. Size Classification	1-2
d. Hazard Classification	1-2
e. Ownership	1-2
f. Operator	1-2
g. Purpose	1-3
h. Design & Construction History	1-3
i. Normal Operating Procedures	1-3
1-3 Pertinent Data	1-3
a. Drainage Area	1-3
b. Discharge at Dam Site	1-3
c. Elevations	1-4
d. Reservoir	1-5
e. Storage	1-5
f. Reservoir Surface	1-6
g. Dam	1-6
h. Diversion and Regulating Tunnel	1-7
i. Spillway	1-7
j. Regulating Outlets	1-8

<u>Section</u>	<u>Page</u>
2. ENGINEERING DATA	
2.1 Design	2-1
2.2 Construction	2-2
2.3 Operation	2-2
2.4 Evaluation	2-3
a. Availability	2-3
b. Adequacy	2-3
c. Validity	2-3
3. VISUAL INSPECTION	
3.1 Findings	3-1
a. General	3-1
b. Dam	3-1
c. Appurtenant Structures	3-2
d. Reservoir Area	3-3
e. Downstream Channel	3-3
3.2 Evaluation	3-3
4. OPERATIONAL PROCEDURES	
4.1 Procedures	4-1
4.2 Maintenance of Dam	4-1
4.3 Maintenance of Operating Facilities	4-1
4.4 Description of Warning System in Effect	4-1
4.5 Evaluation	4-1
5. HYDRAULIC AND HYDROLOGIC EVALUATION	
5.1 Evaluation of Features	5-1
a. General	5-1
b. Design Data	5-1
c. Experience Data	5-1
d. Visual Observations	5-1
e. Test Flood Analysis	5-1
f. Dam Failure Analysis	5-2

<u>Section</u>	<u>Page</u>
6. STRUCTURAL STABILITY	
6.1 Evaluation of Structural Stability	6-1
a. Visual Observation	6-1
b. Design and Construction Data	6-1
c. Operating Records	6-1
d. Post-Construction Changes	6-1
e. Seismic Stability	6-1
7. ASSESSMENT, RECOMMENDATIONS AND REMEDIAL MEASURES	
7.1 Dam Assessment	7-1
a. Condition	7-1
b. Adequacy of Information	7-1
c. Urgency	7-1
d. Need for Additional Investigation	7-1
7.2 Recommendations	7-1
7.3 Remedial Measures	7-2
a. Operation and Maintenance Procedures	7-2
7.4 Alternatives	7-2

APPENDICES

APPENDIX A - VISUAL INSPECTION CHECK LIST	A-1
APPENDIX B - PROJECT RECORDS AND PLANS	B-1
APPENDIX C - PHOTOGRAPHS	C-1
APPENDIX D - HYDROLOGIC & HYDRAULIC COMPUTATIONS	D-1
APPENDIX E - INFORMATION AS CONTAINED IN THE NATIONAL INVENTORY OF DAMS	E-1

OVERVIEW OF
MOUNTAIN LAKE DAM
HAVERHILL, NEW HAMPSHIRE

SOURCE:
USGS QUADRANGLES
LISBON, N.H. 1967
EAST HAVERHILL, N.H. 1967
1:24,000

DUFRESNE-HENRY ENGINEERING CORP. 10 HANOVER ST., KENNEBUNK, ME 04045	U.S. ARMY ENGINEER DIV. NEW ENGLAND CAMP DODGE, ENCL. 2 WALTHAM, MA
NATIONAL PROGRAM OF INSPECTION OF NON-FED DAMS	
LOCATION MAP LOWER MOUNTAIN LAKE DAM	
EAST MONTPELIER	
CLIENT NO. ENCL.	04-0080 DATA
Scale 1" = 2000' DATE 10-1984	
VERMONT	

NATIONAL DAM INSPECTION PROGRAM
PHASE I INSPECTION REPORT
NAME OF DAM: LOWER MOUNTAIN LAKE

SECTION 1 - PROJECT INFORMATION

1.1 General

a. Authority

Public Law 92-367, August 8, 1972, authorized the Secretary of the Army through the Corps of Engineers, to initiate a National Program of Dam Inspection throughout the United States. The New England Division of the Corps of Engineers has been assigned the responsibility of supervising the inspection of dams within the New England Region. Dufresne-Henry Engineering Corporation has been retained by the New England Division to inspect and report on selected dams in the State of New Hampshire. Authorization and notice to proceed were issued to Dufresne-Henry Engineering Corporation under a letter of November 20, 1978 from Max B. Scheider, Colonel, Corps of Engineers. Contract No. DACW33-79-C-0010 has been assigned by the Corps of Engineers for this work.

b. Purpose

- (1) Perform technical inspection and evaluation of nonfederal dams to identify conditions which threaten the public safety and thus permit correction in a timely manner by nonfederal interests.
- (2) Encourage and prepare the states to initiate quickly effective dam safety programs for nonfederal dams.
- (3) To update, verify and complete the National Inventory of Dams.

1.2 Description of Project

c. Location

Lower Mountain Lake Dam is located in the Town of Haverhill, Grafton County, New Hampshire at $44^{\circ} 07.1'$ north latitude and $71^{\circ} 57.4'$ west longitude. The site is located on the Waterman Brook, a tributary of the Wild Ammonoosuc River, which drains into the Connecticut River. The dam is located approximately 3,600 feet upstream from the confluence of Waterman Brook and the Wild Ammonoosuc River.

b. Description of Dam and Appurtenances

The Lower Mountain Lake Dam is an earth embankment structure which, according to available drawings, has an impervious core and a cutoff trench (see Figure 1, Appendix B). The overall length of the dam is 960 feet with a maximum height of 32.5 feet.

The emergency spillway (elevation 775.0) is 100 feet wide and is constructed on existing soil. The water surface was lowered during 1978 by constructing a trench in the emergency spillway for the purpose of bypassing the existing streambed so an infiltration gallery could be constructed.

There are two outlet conduits at Lower Mountain Lake. The normal outlet pipe is a 60-inch diameter corrugated metal pipe (invert elevation 755.7 MSL). This outlet is controlled by an 84-inch diameter riser at an overflow elevation of 774.0 feet MSL. The other outlet is a low-level outlet conduit at invert elevation 745.5 feet MSL. This conduit is controlled by a chain operated shear gate as shown in Figure 2, Appendix B.

The outlet channel is 35 feet wide with riprap protection. The surface level of the tailwater is held at a minimum elevation of 757 feet MSL by a gravel cofferdam. A system of infiltration galleries draws water from under the discharge channel as a public source of potable water.

Immediately upstream of this dam is the Upper Mountain Lake. The dam for this lake forms the upstream limits of the Lower Mountain Lake as shown in the Overview Photo.

c. Size Classification

The Lower Mountain Lake Dam has a size classification of small. The dam impounds about 44,000,000 cubic feet (1000 acre-feet) with a water surface at the dam crest elevation of 778.0. A dam with a maximum storage volume of 1000 acre-feet or less, or a height greater than 25 feet but less than 40 feet is classified as small. In this case, both criteria apply.

d. Hazard Classification

The potential for hazard in the event of failure of this dam is low. There are no homes in the areas affected by the flood wave.

e. Ownership

The dam is owned by the Town and Country Homes, Inc., a private entity. This dam is an integral part of a housing development in Haverhill, New Hampshire (see Photo 1, Appendix C).

f. Operator

Lower Mountain Lake Dam has no one individual responsible for the day-to-day operation of the dam. Mr. Robert Messini of Haverhill, New Hampshire (telephone 603-747-2606) handles the annual cleaning procedure and maintains impoundment levels.

g. Purpose of the Dam

The dam serves to impound water for recreation purposes such as fishing, boating and swimming. Also the impoundment provides stored water to increase yield for the public water supply immediately downstream of the dam.

h. Design and Construction History

The dam was designed by D. G. Blanchard, P.E. of the former Rollins, King & McKone, Inc., Manchester, New Hampshire. This design was reviewed and approved by the New Hampshire Water Resources Board. The two design drawings are contained in Appendix B, Figures 1 and 2. This information is in general agreement with observations made during the visual inspection.

The dam was constructed in 1967 by Moulton Construction of Lebanon, New Hampshire. Records of soils information taken during construction are included in Appendix B. As-built drawings are not available; however, based on visual inspection the dam doesn't seem to differ from the design drawings in Appendix B, Figures 1 and 2.

i. Normal Operational Procedures

Debris is annually removed from the pipe spillway and dam crest. The 6-inch diameter cold water outlet valve is operated during the summer months. Otherwise the dam, for all intents and purposes, is not operated.

1.3 Pertinent Data

a. Drainage Area

There is 3.76 square miles of drainage area at the Lower Mountain Lake Dam. The flow at this site is regulated by the Upper Mountain Lake Dam located immediately upstream of the dam. The drainage area is "long and narrow" (see Page vi) with moderate slopes of Class C forested soils. The Waterman Brook is the primary stream above the dam.

b. Discharge at Dam Site

(1) Outlet Works

The pipe spillway is designed for continuous overtopping and thus provides the major outlet at Lower Mountain Lake

Dam. The top of the controlling riser (84-inch diameter) is at elevation 774 feet MSL. The actual outlet is a 60-inch corrugated pipe at an invert elevation of 755.7.

The low-level outlet conduit is a 24-inch corrugated pipe at an invert elevation of 745.5 feet MSL.

The emergency spillway is 100 feet wide located in existing soil near the right side of the dam at elevation 775.0 feet MSL. The slope of the spillway is 0.5 percent in the flow direction.

(2) Maximum Known Flood at Dam Site

There are no records available regarding major flooding at the dam site. Mr. Messini, Operator, informed us that neither the emergency spillway nor the low-level outlet conduit have ever been utilized (except when the trench was cut into the emergency spillway).

(3) Ungated Spillway Capacity at Top of Dam

1325 CFS at 778.0 elevation.

(4) Ungated Spillway Capacity at Test Flood Elevation

835 CFS at 777.2 elevation.

(5) Gated Spillway Capacity at Normal Pool Elevation

Not applicable.

(6) Gated Spillway Capacity at Test Flood Elevation

Not applicable.

(7) Total Spillway Capacity at Test Flood Elevation

835 CFS at 777.2 elevation.

(8) Total Project Discharge at Test Flood Elevation

1242 CFS at 777.2 elevation.

c. Elevation Data

(1) Streambed at Centerline of Dam

744.0 feet above MSL.

(2) Maximum Tailwater

Not applicable.

(3) Upstream Portal Invert Diversion Tunnel

Not applicable.

(4) Recreation Pool (Normal)

774.0 feet above MSL.

(5) Full Flood Control Pool

Not applicable.

(6) Spillway Crest

775.0 feet above MSL.

(7) Design Surcharge (Original Design)

Unknown.

(8) Top Dam

778.0 feet above MSL.

(9) Test Flood Design Surcharge

777.2 feet above MSL.

d. Reservoir

(1) Length of Maximum Pool

5000 feet.

(2) Length of Recreation Pool

5000 feet.

(3) Length of Flood Control Pool

Not applicable.

e. Storage

(1) Recreation Pool (Normal Pool)

760 acre-feet.

(2) Flood Control Pool

Not applicable.

(3) Spillway Crest Pool

820 acre-feet.

(4) Top of Dam

1000 acre-feet.

(5) Test Flood Pool

952 acre-feet.

f. Reservoir Surface (Including Upper Mountain Lake)

(1) Recreation Pool (Normal Pool)

60 acres.

(2) Flood Control Pool

Not applicable.

(3) Spillway Crest

120 acres.

(4) Test Flood Pool

252 acres.

(5) Top Dam

300 acres.

g. Dam

(1) Type

Earth embankment.

(2) Length

960 feet.

(3) Height

Maximum height is 32.5 feet.

(4) Top Width

The top width is 12 feet.

(5) Side Slopes

Upstream - 3H:1V.

Downstream - 2H:1V.

(6) Zoning

Central core of "impervious fill," upstream and downstream shells.

(7) Impervious Core

Impervious earth core (Figure 2, Appendix B).

(8) Cutoff

Impervious earth trench (Figure 2, Appendix B).

(9) Grout Curtain

Not applicable.

(10) Other

Not applicable.

h. Diversion and Regulating Tunnel

Not applicable.

i. Spillway

Service Spillway

Emergency Spillway

(1) Type

84-inch overflow pipe riser.

(1) Type

Trapezoidal open channel.

(2) Length of Weir

22 feet.

(2) Length of Weir

100 feet.

(3) Crest Elevation

774.0 feet above MSL.

(3) Crest Elevation

775.0 feet above MSL.

(4) Gates

None

(5) Upstream Channel

Not applicable.

(6) Downstream Channel

Not applicable.

(7) General

Visual inspection indicates the spillway is functioning as designed.

j. Regulating Outlets

There are two regulating outlets at Lower Mountain Lake Dam. One outlet is a 6-inch diameter cast-iron gate valve at invert elevation 766. This outlet discharges into the 84-inch riser pipe spillway.

The other regulating outlet is a 24-inch diameter low-level discharge conduit at invert elevation 745.5. This conduit is a bituminous coated corrugated galvanized metal pipe controlled by a shear gate as shown in Figure 2, Appendix B.

SECTION 2 - ENGINEERING DATA

2.1 Design Data

The lower Mountain Lake Dam was designed in 1967 by Rollins, King and McKone, Inc., a former engineering firm of Manchester, New Hampshire. The design engineer for the dam, Donald G. Blanchard, P.E., can be contacted at New England College in Henniker, New Hampshire.

Copies of design drawings, approved by the New Hampshire Water Resources Board are contained in Appendix B, Figures 1 and 2.

The design drawings indicate the dam is an earth fill dam with an impervious earthen core and cutoff trench. The cutoff trench was designed to extend five feet into the natural impervious material underneath the entire dam. Downstream embankment slopes were designed at slope of 2H:1V and upstream slopes designed at 3H:1V.

The downstream porous shell was designed to be from 10 feet wide at the top to 40 feet wide at the base. In addition a 3-foot rock coarse gravel blanket was designed under the downstream shell along the entire dam. The core extends to elevation 776 or two feet above the natural pond level of 774. The core is 4 feet wide at the top and slopes down on both sides at 1H:1V.

The dam crest was designed to be 12 feet wide and to pitch down at a slope of 0.003 feet/foot toward both faces.

The emergency spillway was designed to be 100 feet long at the right abutment. The top of the spillway, at elevation 775.0 feet MSL, is designed into the natural soil, cut to an elevation of 774.5 feet MSL. Six inches of loam, seeded and mulched over the entire spillway, was placed on top of the natural ground. Riprap protection was designed along the downstream toe of the dam to limit erosion in the event of use of the emergency spillway.

There were two outlet conduits designed into the dam. An 84-inch diameter bituminous coated corrugated metal culvert (BCCMP) set 18 inches into a concrete pad forms a riser serving as outlet protection. The actual outlet conduit is a 60-inch BCCMP passing through the dam from the riser to a concrete headwall at the downstream toe of the dam. Also built into the riser is a cold water outlet conduit. The conduit is a 6-inch cast-iron pipe controlled by a gate valve set inside the riser. This outlet was required by the New Hampshire Fish and Game Department to supply a flow of cold water for the fish in the downstream channel.

The other outlet conduit was designed in the pre-dam stream channel (invert elevation 745.5 feet MSL). This low-level outlet pipe is a 24-inch diameter BCCMP passing through the dam. The downstream end of the culvert has some riprap protection.

Design calculations regarding the spillway and drainage basin hydraulics are available in Appendix B.

2.2 Construction Data

The dam was constructed between the months of May and July during 1968 by Moulton Construction of Lebanon, New Hampshire. The completed dam was inspected by the New Hampshire Water Resources Board in December 1968. The following items were noted as construction discrepancies from the design drawings and are repeated verbatim below:

1. Channel from principal spillway is 32 feet wide and not 40 feet wide as shown on the plan. However, as it carries only discharge from 60-inch culvert, it probably will cause no trouble.
2. Emergency spillway is 100 feet wide but the hillside edge of spillway is not on 100-foot radius but runs straight from pond. This may be a slight improvement.
3. Principal spillway discharge pipe is laid substantially to straight alignment.
4. There are many stumps in the pool area located several feet below normal full pond. These will undoubtedly cause problems around the principal spillway. However, they have an outer baffle two feet away from the principal spillway (ARMCO corrugated steel pipe - 7 feet in diameter). This baffle is 40 inches wide and extends about 12 inches below top of principal spillway and is ARMCO corrugated steel 11 feet in diameter. There are two 8-inch by 9-inch openings near the top of the baffle in one quadrant. From the top of the spillway to the top of baffle, there is quarter inch hardware cloth screening. No such screening covers the top of the spillway. At present there are about three 4-feet x 6-feet concrete form panels on top of the principal spillway.

Otherwise the dam appears to be constructed as designed.

Other construction information includes soils information tested during construction by Albert Goldberg and Associates, Inc. of Manchester, New Hampshire. This information is included in Appendix B.

2.3 Operation Data

The dam is basically not operated. The only operation which takes place is opening of the 6-inch cold water conduit valve. This valve allows continuous feed water to the infiltration galleries located in the downstream discharge channel. Other operational procedures are annual debris removal from the crest.

2.4 Evaluation of Data

a. Availability

The original design drawings and calculations are available for review from the New Hampshire Water Resources Board in Concord, New Hampshire.

b. Adequacy

The available engineering data are sufficient for the Phase I inspection.

c. Validity

The available engineering data are considered valid on the basis of the visual inspection with exceptions noted in 2.2.

SECTION 3 - VISUAL INSPECTION

3.1 Findings

a. General

Lower Mountain Lake Dam is in fair condition. Constructed in 1968, the dam has weathered eleven years with little evidence of deterioration.

b. Dam

The dam is an earth embankment dam with an earthen impervious core and cutoff trench. There is a pervious shell on the upstream (sloped at 3H:1V) and downstream (sloped at 2H:1V) sides.

The crest, shown in Photo 3, is about 12 feet wide and serves as an unrestricted travel way for vehicles. Generally the crest is in good condition, although there is some minor erosion in the vehicle tracks. The upstream face, shown in Photo 2, of the dam has riprap protection with 100-500 pound stones. The riprap on the upper 2 feet of the slope is partially covered with soil which appears to have been pushed down from the crest (see Photos 2 and 4).

The downstream slope, shown in Photo 9, has no visible discontinuities. There are some small pine trees 2 to 3 feet tall which are beginning to grow on the downstream face. Minor erosion has occurred in some areas and there are some vehicle tracks and footpaths across the slope.

Riprap protection with 500-100 pound stone is provided on the right side of the dam toe in order to prevent erosion from use of the low-level outlet conduit.

Some wet and seepage areas were observed in the vicinity of the downstream toe at the following locations beginning at the left abutment:

1. Fifteen feet to the left of the left end of the outlet structure wall. Some erosion was observed, but no water flow was apparent (see Photo 12).
2. At the right end of the outlet wall, water was observed dripping into the discharge channel (Photo 13).
3. Five feet to the right and 14 feet downstream of the right end of the outlet wall there was a minor seep.

4. A seepage area exists 150 feet to the right of the right end of the outlet structure wall and 30 feet downstream of the toe of the slope. The seepage zone begins at the location of the person shown in Photo 14 and extends downstream to the downstream channel. Iron staining and an oil-like water surface were evident.
5. Seepage was observed at the exit point of a 24-inch diameter pipe, approximately 210 feet right of the outlet-structure (Photos 15 and 16). Large stones up to 4 feet diameter existed around the pipe. As shown in Photo 17, some erosion was evident around the stones. Water was pooled around and downstream of the pipe and some flow was evident. Water has iron staining and oil-like surface appearance. The sound of dripping water was heard coming from inside the pipe.

At the downstream left side of the dam, there is an extensive wet area below the gravel road to the pump station (area is shown in Figure 1, Appendix C). This area appears saturated and cattails and dead hemlocks were noted. This inspection was not sufficient to determine whether the water originated in the reservoir or from the hillside directly above the area.

c. Appurtenant Structures

The outlet structure consists of an 84-inch diameter BCCMP embedded 18 inches into a 10-foot square concrete pad 36 inches deep. This vertical conduit forms a riser which protects the actual outlet pipe from debris. A steel screen fabricated over the top of the riser seems to be structurally unsafe due to corrosion. A 6-inch diameter cast-iron pipe passes through the vertical riser and functions as a cold water outlet pipe controlled by a gate valve. The actual outlet pipe consists of a 5-foot diameter BCCMP laid at a downstream slope of 1 percent. Two 10-foot by 10-foot steel diaphragms are imbedded into the impervious core to prevent flow outside the conduit. A concrete headwall is on the downstream end of the pipe.

Another outlet, the low-level outlet conduit, has been constructed in the predam stream channel. This pipe is a 24-inch BCCMP controlled by a shear gate at the upstream end of the conduit. The downstream end of the 24-inch pipe has been protected from wash with 500-1000 pound riprap. On the day of inspection the outlet conduit was discharging 5-7 GPM of rusty colored water which may be leaking past the shear gate.

The service bridge is embedded directly into the dam crest and extends to the top of the 84-inch riser as shown in Figures 4 and 5. Two 6-inch steel I-beams form the longitudinal

members and the decking is constructed with steel grating. Steel angles (2-inch by 2-inch) form railings. The entire structure is in need of painting.

The emergency spillway at Lower Mountain Lake has been constructed into natural material on the right end of the dam. The spillway appeared to have passed some flow prior to our inspection as shown in Photo 8. However, after discussions with Robert Messini, dam operator, it appears that the dam was lowered by constructing a trench in the spillway channel. The channel was then reworked to the condition shown in the photo. Also, as part of this work the riprap lining the left side of the spillway channel was removed. This riprap should be replaced.

d. Reservoir Area

The reservoir area of Lower Mountain Lake consists of 30 acres with the water level at elevation 774.0 feet MSL (top of riser). The combined reservoir area of Upper and Lower Mountain Lake is 60 acres at normal pool elevation.

e. Downstream Channel

The downstream channel consists of a natural streambed and is in good condition. There is no debris or overhanging vegetation in or near the channel. Directly below the dam, located in the discharge channel, is a system of infiltration galleries. This system withdraws water from under the discharge channel. A pump station to the right of the channel, directly below the dam, is used to transfer the water into a public water system. An adequate water level is maintained in the channel using a cofferdam as shown in Photo 7.

Further downstream the stream passes under the Lane Road and State Route 112 prior to joining the Wild Ammonoosuc River. There are no structures near the discharge channel prior to the confluence with the Wild Ammonoosuc.

3.2 Evaluation

Based on visual inspection, the dam appears to be in fair condition. Significant findings are as follows:

1. The small trees on the downstream slope could create a future seepage problem if they are allowed to grow without limit.
2. Trespassing on the slopes and the crest of the dam has produced minor local erosion.

3. Minor seepage was observed exiting downstream of the dam at several points. No evidence of soil transport was observed. The largest seep was next to a 24-inch pipe referred to in the drawings as "drain pipe" and which is a low-level outlet. This outlet is at the lowest point of the valley and thus the observed flow probably is due to the fact that this area corresponds also to the natural outlet for the blanket drain shown in the drawings.
4. The outlet structure appears to be functioning as designed. There was no debris near the outlet on the day of inspection.
5. Serious operating difficulties could be encountered in attempting to use the shear gate on the 24-inch drain pipe. The operator in attendance was not aware of the valve's existence or its operation. In addition to being easily forgotten should the dam change ownership, the valve could probably be closed only after the impoundment had been completely dewatered should this valve ever have to be opened.

SECTION 4 - OPERATIONAL PROCEDURES

4.1 Procedures

The dam is not operated on a regular basis. No operational records exist.

4.2 Maintenance of the Dam

Little or no maintenance has been done on the dam or the appurtenant structures since construction. The grates over the 84-inch diameter riser should be replaced. The service bridge needs painting. Small trees growing on the slope should be cut.

4.3 Maintenance of the Operating Facilities

There is no maintenance provided.

4.4 Description of Any Warning System in Effect

There is no warning system in effect.

4.5 Evaluation

Semiannual cleaning of floatable debris in the impoundment should continue. The wet area below the 24-inch diameter low-level conduit should be checked periodically and flows recorded.

SECTION 5 - HYDRAULIC/HYDROLOGIC

5.1 Evaluation of Features

a. General

The Lower Mountain Lake Dam is an earth embankment structure with a continuous impervious core wall and cutoff trench. The normal outlet structure is an 84-inch diameter pipe spillway; however, a 6-inch gate valve and/or a 24-inch low-level discharge conduit may be used to carry discharge as well as the emergency spillway.

b. Design Data

The spillway design flows were computed by the State of New Hampshire using the Kinnison-Colby formula. Their design computations for a 100-year flood had 222 CFS flowing through the riser and 678 CFS flowing over the emergency spillway for a total flood outflow of 900 CFS. Their computations are included in Appendix B.

c. Experience Data

There is no written record of overtopping at Lower Mountain Lake Dam. Mr. Robert Messini indicated the pipe spillway had handled all high flows since construction in 1968 without activating the emergency spillway. This indicates the Lake level has not risen above elevation 775.0.

d. Visual Observations

There was no evidence of overtopping at the Lower Mountain Lake Dam. The eroded area in the emergency spillway was described by Mr. Messini to have been disturbed by construction and not by high water levels.

e. Test Flood Analysis

Based on the U. S. Army Corps of Engineers criteria for a small, low-hazard dam, the 100-year frequency flood was selected as the test flood. Using the Soil Conservation Service engineering field manuals, the 100-year flood inflow is 1580 CFS (420 CSF). When routed through the Lower Mountain Lake Dam this results in a routed test flood outflow of 1242 CFS. At this flow the emergency spillway would be overtopped by 2.2 feet of water, but the water level would still be approximately .8 feet lower than the top of the dam.

f. Dam Failure Analysis

Upon dam failure under normal conditions with the water at elevation 774.0, a flow of approximately 13,000 CFS would result. However, under maximum water conditions with the level of water at elevation 778.0 a discharge of approximately 16,000 CFS would be released.

Either of these discharges pose no threat to human life as there are no homes near the channel downstream of the dam. Approximately .6 mile downstream the channel joins the Wild Ammonoosuc River, which would minimize the effects of a dam failure. The Wild Ammonoosuc River near Swiftwater, New Hampshire has a drainage of 57 square miles. The 100-year flood on this river would be approximately 20,000 CFS; hence the dam failure at Lower Mountain Lake would effectively create an event slightly less than a 100-year flood. There is little risk of damaging homes along the Wild Ammonoosuc as there is only one before this river reaches the Ammonoosuc. This home is judged to be about 30 feet above the river and is consequently safe from damage.

The only damage which may occur would be some erosion to New Hampshire State Route 112 as the flood wave could be two to three feet over the road in some low-lying locations.

SECTION 6 - STRUCTURAL STABILITY

6.1 Evaluation of Structural Stability

a. Visual Observations

The visual inspection did not disclose any findings which would indicate instability of the foundation of the dam.

b. Design and Construction Data

Design Drawings Nos. 1 and 2 by Rollins, King and McKone, Inc., dated July 10, 1967, and revised May 5, 1968, (see Appendix B, Figures 1 and 2) were reviewed. The plans indicate that the dam was designed to have an impervious core, a cutoff trench extending down to impervious foundation material, and a horizontal coarse gravel drain blanket under the downstream shell of the dam. According to the plans, there is no exit pipe from the coarse gravel drain. Visual verification of these design features was not possible.

The left dike wall of the emergency spillway was constructed extending downstream perpendicular to the axis of the dam rather than curved, as shown on the design drawings. The left wall is also longer than as shown in the plans. Thus the emergency spillway discharge occurs farther downstream of the dam and consequently the riprap along the downstream toe of the dam was not placed.

c. Operating Records

There are no operating records.

d. Post-Construction Changes

There have been some past alterations performed at the emergency spillway which may warrant some additional study. A trench was dug into the emergency spillway in order to lower the dam below the outlet conduit. In addition, the riprap was removed from the left side of the spillway channel at the dam crest interface. If sufficient flows necessitated use of the spillway, these disturbed areas may erode.

e. Seismic Stability

The dam is in Seismic Zone 2 and in accordance with recommended Phase I guidelines does not warrant seismic analysis.

SECTION 7 - ASSESSMENT, RECOMMENDATIONS/ REMEDIAL MEASURES

7.1 Dam Assessment

a. Condition

Lower Mountain Lake Dam is considered to be in fair condition. Visual inspection indicates the dam appears to be basically constructed as shown in the design drawings (Appendix B, Figures 1 and 2).

There were several seepage areas located on the downstream face of the dam. The upstream face appears adequately protected with riprap. The normal outlet structure appears to be in acceptable condition with minor repairs as described in Section 7.2.

b. Adequacy of Information

The data available were sufficient to adequately assess the dam and appurtenant structures for a Phase I Investigation. Visual inspection substantiates that the available information is indicative of actual conditions.

c. Urgency

The recommendations given in Section 7.2 should be carried out within one year after receipt of this report.

d. Need for Additional Investigation

As this dam is a small low-hazard dam in fair condition, additional investigations would not be recommended.

7.2 Recommendations

A professional engineer qualified in the design of dams should be engaged to assess the following items:

1. The method of operation of the low-level outlet conduit is not suitable. If the shear gate were ever activated, it may not reseat until the water level dropped the entire 29 feet to allow a manual reseating of the gate. With a public water source immediately downstream, it becomes particularly important to provide a better means of level control.
 - a. The shear gate should be replaced with 24-inch cast-iron gate valves.

- b. A service bridge or pier should be constructed to provide safe access to the gate valve.
- 2. The soils on the emergency spillway should be evaluated with respect to susceptibility to erode. This area has been disturbed by construction as described in Section 5.1.d. Based on this evaluation, specific protection recommendations could be formulated, if necessary.

7.3 Remedial Measures

a. Operation and Maintenance Procedures

The following items are recommended:

- 1. The small trees growing on the downstream face of the dam should be cut. This area as well as the dam crest should be kept free of such growth in the future.
- 2. The riprap which was removed from the left side of the emergency spillway should be replaced.
- 3. The flow exiting next to the 24-inch diameter low-level outlet conduit should be monitored and recorded on a bi-monthly basis.
- 4. A good grass cover should be maintained on the surface of the emergency spillway.
- 5. The dam and appurtenances should be inspected on an annual basis.
- 6. The existing service bridge to the outlet spillway needs painting and the grating on the outlet riser pipe needs replacing.

7.4 Alternatives

Not applicable.

APPENDIX A

VISUAL INSPECTION CHECK LIST

VISUAL INSPECTION CHECK LIST
PARTY ORGANIZATION

PROJECT LOWER MOUNTAIN LAKE DAM

DATE November 20, 1978

TIME 10:00 AM

WEATHER cold, clear

W.S. ELEV. U.S. D.N.S.

PARTY:

- | | | | |
|------------------------------------|------------|--------------------------|------------|
| 1. <u>Robert E. Dufresne</u> | <u>D-H</u> | 6. <u>Steve McEntee</u> | <u>GFI</u> |
| 2. <u>James H. Maynes</u> | <u>D-H</u> | 7. <u>Gonzalo Lister</u> | <u>GFI</u> |
| 3. <u>Morris J. Root</u> | <u>D-H</u> | 8. _____ | |
| 4. <u>Ken Stern, New Hampshire</u> | | 9. _____ | |
| <u>Water Resources</u> | | 10. _____ | |
| 5. _____ | | | |

PROJECT FEATURE	INSPECTED BY	REMARKS
1. _____		
2. _____		
3. _____		
4. _____		
5. _____		
6. _____		
7. _____		
8. _____		
9. _____		
10. _____		

PERIODIC INSPECTION CHECK LIST

PROJECT LOWER MOUNTAIN LAKE DAM

DATE November 20, 1973

PROJECT FEATURE _____

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
DAM EMBANKMENT	
Crest Elevation	
Current Pool Elevation	
Maximum Impoundment to Date	Approximately one foot below level of emergency overflow elevation.
Surface Cracks	Not observed.
Pavement Condition	Not applicable.
Movement or Settlement of Crest	Not observed.
Lateral Movement	Not observed.
Vertical Alignment	Apparently some low spots along crest (< 5').
Horizontal Alignment	Too irregular to judge
Condition at Abutment and at Concrete Structures	Erosion of soil at headwall on culvert downstream.
Indications of Movement of Structural Items on Slopes	Not applicable.
Trespassing on Slopes	Equipment tracks, bike paths observed.
Sloughing or Erosion of Slopes or Abutments	Minor downstream slope.
Rock Slope Protection - Riprap Failures	Riprap in good condition.
Unusual Movement or Cracking at or Near Toes	None observed.
Embankment or Downstream Seepage	Several locations described in text and located on plan (see Figure 1).
Piping or Boils	None observed.
Foundation Drainage Features	None known.
Toe Drains	Operating - apparently.
Instrumentation System	None.
Vegetation	Young pine trees growing.

PERIODIC INSPECTION CHECK LIST

PROJECT LOWELL MOUNTAIN LAKE DAMDATE November 1, 1971

PROJECT FEATURE _____

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - CONTROL TOWER</u>	
a. Structural	
General Condition	Good - CMP riser.
Condition of Joints	Not applicable.
Spalling	Not applicable.
Visible Reinforcing	Not applicable.
Rusting or Staining of Concrete	Not applicable.
Any Seepage or Efflorescence	Not applicable.
Joint Alignment	Not applicable.
Seepage or Leaks in Gate Chamber	Gate valve port open - not seated.
Cracks	Not applicable.
Rusting or Corrosion of Steel	Not applicable.
b. Mechanical and Electrical	
Air Vents	None.
Float Wells	None.
Crane Hoist	None.
Elevator	None.
Hydraulic System	None.
Service Gates	6" Gate valve - handle removed.
Emergency Gates	None.
Lightning Protection System	None.
Emergency Power System	None.
Wiring and Lighting System in Gate Chamber	None.

PERIODIC INSPECTION CHECK LIST

PROJECT LITTLE MOUNTAIN LAKE DAM DATE November 20, 1979

PROJECT FEATURE _____ NAME _____

DISCIPLINE _____ NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - TRANSITION AND CONDUIT</u>	
General Condition of Concrete	Headwall good.
Rust or Staining on Concrete	None.
Spalling	None.
Erosion or Cavitation	None.
Cracking	None.
Alignment of Monoliths	Not applicable.
Alignment of Joints	Not applicable.
Numbering of Monoliths	Not applicable.

PERIODIC INSPECTION CHECK LIST

PROJECT LOWER MOUNTAIN LAKE DAM

DATE November 20, 1978

PROJECT FEATURE _____

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - OUTLET STRUCTURE AND OUTLET CHANNEL</u>	
General Condition of Concrete	Very good.
Rust or Staining	None.
Spalling	None.
Erosion or Cavitation	None.
Visible Reinforcing	None - tie rods forming.
Any Seepage or Efflorescence	Not applicable.
Condition at Joints	Not applicable.
Drain Holes	None.
Channel	
Loose Rock or Trees Overhanging Channel	Some trees overhang channel.
Condition of Discharge Channel	Small gravel dam downstream with approx- imately 2 feet of water standing in impoundment which forms infiltration gallery to a municipal water supply.

PERIODIC INSPECTION CHECK LIST

PROJECT UPPER MOUNTAIN LAKE DAMDATE November 20, 1978

PROJECT FEATURE _____

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
EMERGENCY SPILLWAY - SPILLWAY WEIR APPROACH AND DISCHARGE CHANNELS	
a. Approach Channel	Pond/lake (Upper Mountain Lake).
General Condition	
Loose Rock Overhanging Channel	
Trees Overhanging Channel	
Floor of Approach Channel	
b. Weir and Training Walls	None.
General Condition of Concrete	None.
Rust or Staining	None.
Spalling	None.
Any Visible Reinforcing	None.
Any Seepage or Efflorescence	None.
Drain Holes	None.
c. Discharge Channel	
General Condition	Apparent regrading on left side, removal of wall (riprap) to permit traffic on emergency spillway.
Loose Rock Overhanging Channel	None.
Trees Overhanging Channel	None.
Floor of Channel	Natural ground - disturbed by construction.
Other Obstructions	Relatively free of brush.

PERIODIC INSPECTION CHECK LIST

PROJECT LITTLE MOUNTAIN LAKE DAMDATE September 11, 1975

PROJECT FEATURE _____

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - INTAKE CHANNEL AND INTAKE STRUCTURE</u>	
a. Approach Channel	None
Slope Conditions	
Bottom Conditions	
Rock Slides or Falls	
Log Boom	
Debris	
Condition of Concrete Lining	
Drains or Weep Holes	
b. Intake Structure	5.0-foot diameter corrugated galvanized plate culvert set vertically, centered over outlet pipe.
Condition of Concrete	Top of culvert is fitted with steel grating. Entire structure was free of debris and in good condition
Stop Logs and Slots	

PERIODIC INSPECTION CHECK LIST

PROJECT LOWER MOUNTAIN LAKE DAMDATE November 20, 1979

PROJECT FEATURE

NAME _____

DISCIPLINE _____

NAME _____

AREA EVALUATED	CONDITION
<u>OUTLET WORKS - SERVICE BRIDGE</u>	
a. Super Structure	
Bearings	Not applicable.
Anchor Bolts	Not applicable.
Bridge Seat	Resting on corrugated culvert.
Longitudinal Members	6" I-beam paint is chipped.
Under Side of Deck	Steel grate.
Secondary Bracing	Not applicable.
Deck	Steel grate (18-inch catwalk) is serviceable.
Drainage System	Not applicable.
Railings	Angles 1-1/2" x 1-1/2" belted into longitudinal members.
Expansion Joints	Not applicable.
Paint	Should be painted.
b. Abutments and Piers	
General Condition of Concrete	Anchored into soil in dam crest.
Alignment of Abutment	Not applicable.
Approach to Bridge	Not applicable.
Condition of Seat and Backwall	Dam crest.
	Not applicable.

PERIODIC INSPECTION CHECK LIST

PROJECT LEVER MOUNTAIN DAM DATE November 20, 1979

PROJECT FEATURE _____ NAME _____

DISCIPLINE _____ NAME _____

AREA EVALUATED	CONDITION
RESERVOIR	
Stability of Shoreline	Good. Riprap protection is adequate.
Sedimentation	Not apparent.
Changes in Watershed Runoff Potential	Minor development potential.
Upstream Hazards	1 House on upstream side of dam.
Downstream Hazards	Local road and state highway.
Alert Facilities	None.
Hydrometeorological Gages	None.
Operational and Maintenance Regulations	No written policy. a. Open valve when need water to maintain downstream flow for riparian owners.

APPENDIX F
PROJECT RECORDS AND PLANS

THE APPROXIMATE EXPENSE

L 276
L 277. 86 34
L 278. 86 34
L 279. 86 34
L 280. 86 34
L 281. 86 34

SECTION
CENTRAL LAKE
SIXTY-THREE

1847-1850

DETAIL: DOUBLE FRAMING

RECORDED BY
RICHARD DUNN

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000

PLATE
F-445
1948-1949
S.C.S. 196

6-12-87

2000' 2000' 2000' 2000' 2000' 2000' 2000' 2000' 2000' 2000'

الله
بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ
الْحُكْمُ لِلَّهِ
وَالرَّحْمَةُ مَعَهُ
إِنَّا نَعْلَمُ مَا تَعْمَلُونَ

THE COTTONWOOD CREEK GULWAY
TOWN OF SALT LAKE CITY

ANTI-FRONTIERS TO BE
SOLD BY SOUTHERN CALIFORNIA
LET'S BE SENSIBLE AT LAST.

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

1000
1000

王國維著《宋詞二集序》說：「詞之為物，雖非足與詩文並列，然亦詩文之絕響。」

10. The following table shows the number of hours worked by 1000 employees in a company. Calculate the mean, median, mode and range.

For more information about the study, please contact Dr. Michael J. Koenig at (314) 747-2146 or via email at koenig@dfci.harvard.edu.

Digitized by srujanika@gmail.com

For more information about the study, please contact Dr. Michael J. Hwang at (319) 356-4000 or via email at mhwang@uiowa.edu.

19. *Urtica dioica* L. (Nettle) (Fig. 19)

1. *What is the primary purpose of the study?*

3. 2018-19

10. *What is the best way to increase the number of people who use a particular service?*

10. The following table shows the number of hours worked by each employee in a company.

1. *What is the relationship between the two concepts?*

卷之三

1. The following table summarizes the results of the study. The first column lists the variables, the second column lists the descriptive statistics, and the third column lists the regression coefficients.

11
c.
d.

• [View Details](#)

INTERVIEW WITH VICTIM BY POLICE

BAN

name: James

age: 21

date: 1968

place: home

time: 10 PM

date: 1968

time: 10 PM

place: home

name: James

（三）在本行的存单上，由经办人和会计部门负责人签章，同时盖上本行的业务公章。

This is a high-contrast, black-and-white photograph of a person from the chest up. The person has short, light-colored hair and is wearing a dark, possibly black, V-neck t-shirt. The lighting is extremely harsh, with the background being almost entirely washed out by light, creating a stark contrast with the subject's dark clothing. The person's features are partially visible but lack detail due to the lighting. There are some dark, horizontal marks or scratches across the upper portion of the image, which could be artifacts from the original source or damage to the print.

and the *lungs* were *normal*. The *liver* was *normal*. The *kidneys* were *normal*. The *bladder* contained *no* *urine*.

But when we got to the station, we found that the train had gone. So we had to wait for another train. We waited for about an hour. Finally, a train came. We got on the train and started our journey again. The train was slow, so it took us a long time to get to our destination. When we finally arrived, we were very tired. But we were happy because we had seen so many interesting things along the way.

He has been to the city
and to the country.
He has seen many things.
He has learned much.
He has traveled far.

March 8, 1967

Mr. Donald Blanchard
Foster Hill Road
Lionniker, New Hampshire

Dear Don:

In reference to our conversation on March 6, 1967, I am enclosing the following data you requested on your Mountain Lake project:

1. Pond area (Proposed)
2. Drainage Area
3. 15-year Frequency Storm
4. 100-year Frequency Storm

30 Acres
3.74 sq. mi.
310 cfs.
900 cfs.

Due to the shape of this drainage area; long and narrow, the 15-year storm is not as large as I anticipated, usually 50% of the 100-year storm.

If you have any other questions regarding these flows, please let me know.

Very truly yours,

Vernon A. Knowlton
Civil Engineer

vak:c

SECTION
ACCT NO.

COMPUTER CHECKERED FROM ACC. ON ACC. DATE 3/1

Boring Bar 3.74 Sq ft / sec = 48
Road Area 80 ft width at 3 ft use 5 ft $\therefore 160 \times 48 = 7680$
Approximate (3000) 5720' = 5
Average Depth 0.5 + 4.25 = 4.75
 $4.75 \times 160 = 760$
1 Sft X 7.5 4.50
1 Sft X 3.5 3.50
.87 X 2.25 1.96
.87 X .75 .65
3.74 10.61
 $\frac{10.61}{3.74} = 2.84$ miles = 2

$$15\% = (0.000006 \times 2.84^2 + 18.4) \frac{01.95}{0.7} = 3501$$

$$(3501 \times 1.975 \times 5^2 + 18.4) = 2501$$

$$\frac{12.4}{71} \times 1.067 \times 2.076 = 2.215$$

$$195 \times 2501 = 58774 \div 2.215 = 308 - Cfs = 308 Cfs$$

$$100\% = (0.374 \times 5^2 + 20) \frac{01.95}{2.5} =$$

$$(13.74 \times 5^2 + 86.07) \div 2.5 = 200 \frac{86.07}{2.5} = 1.821$$

296

290

$$296 \times 1.821 = 904 \text{ Cfs}$$

WATER

$$\text{Limit } \frac{S}{L} < \frac{1100}{1500}$$

Reaches 100

$$\frac{325}{2.5} < \frac{1100}{1500} = 21'$$

COMPUTER PC 87 CHECKED 12/23/63 CONT. FROM ACC. CONT. ON ACC. SUMMARY ON ACC. DATE 12/23/63

Principal Spillway - 1/2 screens

6 ft 6 in 12 ft 3 in

$$3(20.53 - 2.78 - 3) \cdot 3\sqrt{3} = G = 222 \text{ cfs}$$

$$9(4.15)^2 \cdot 3$$

$$\frac{222}{6\frac{6}{12}} = \frac{222}{37.3} = 5.9 \frac{\text{ft}}{\text{sec}} \text{ on vertical shaft}$$

"V" or horiz. pipe

$$\frac{222}{6\frac{6}{12}} = \frac{222}{17.65} = 12.5 \frac{\text{ft}}{\text{sec}} \text{ av.}$$

Using $N = 0.021$, $4/18.8'$ head on 6.8' pipe - flow = 235 cfs

Emergency Spillway: Need 678 cfs flow

Width = 100'

End height = 75'

friction slope = 0.30

Friction " = 0.055

Gravel = 2"

Revised fact 1.67 E 5-120

$$R_p = 1.815 \cdot 0.300 = 2.12'$$

$$\text{Av. Velocity} = \frac{678}{2.12} = 321 \frac{\text{ft}}{\text{sec}}$$

If the 1" x 2" mesh is used at principal spillway, the width of emergency spillway must be increased from 100' to 140'. Moreover, it will mean this spillway may be operated nearly annually for considerable periods, indeed at short times once in about 3 to 4 years.

At 1' head on princ. spillway, no flow on emergency spillway, the flow would be 50 cfs or 13 1/2 cfs/ft.

3.116.35

State of New Hampshire

WATER RESOURCES BOARD

37 Pleasant St.
Concord 03301

December 19, 1975

Town & Country Homes, Inc.
Mountain Lake
Neverhill, N.H.

Gentlemen:

Under the provisions of RSA-Chapter 482, Sections 8 through 15, the New Hampshire Water Resources Board is authorized to inspect all dams in the state which by reason of their physical condition, height, and location may be a menace to the public safety.

The dam structure (Dam # 112.12) located on your property in Neverhill, N.H. was inspected on 7-25-74

and as a result of this inspection no discrepancies were found at the time of the inspection which would require any corrective measures.

This letter is provided for your information only. If you have any questions, please feel free to call or write.

Sincerely,

George M. McGee, Sr.
Chairman

GMM/SCB:L

cc: Board of Selectmen
Neverhill, N.H.

N. H. WATER RESOURCES BOARD
Concord, N. H. 03301

DAM SAFETY INSPECTION REPORT FORM

Loc.: Hassell Hill

Dam Number: 112-12

Inspected by: SCB

Date: 3-5 July 1974

Local name of dam or water body:

Owner: Town & Cemetery Address:

Owner was/was not interviewed during inspection.

Drainage Area: _____ sq. mi. Stream: _____

Pond Area: 50.1 Acre, Storage _____ Ac-Ft. Max. Head _____ Ft.

Foundation: Type Earth, Seepage present at toe - Yes/No,

Roadway: Type Paved, Freeboard over perm. crest: _____,

Width 10' 10", Flashboard height _____,

Max. Capacity _____ c.f.s.

Bankment: Type Earth, Cover Sand Width 2.0,

Upstream slope 3 to 1; Downstream slope 2 to 1

Buildings: Type _____, Condition: Good, Fair, Poor

Drives or Pond Drain: Size 12" Capacity _____ Type Pipe

Lifting apparatus _____ Operational condition OK

Changes since construction or last inspection:

c. stream development: Hassell Dam stream

This dam would not be a menace if it failed.

Estimated reinspection date:

Remarks: Good Shape

DATE: July 25, 1969
FROM: Robert W. Livingston
Water Resources Engineer
SUBJECT: Mountain Lake Dam #112.12 - Haverhill
TO: Vernon A. Knowlton
Chief Water Resources Engineer

Received a call from Charlie Barry, Fish and Game Conservation Officer of N. Haverhill (787-6212) that persons downstream of said dam were complaining that only a trickle of water was flowing.

Contacted Mr. MacDonald who operates dam for Town and Country. He said he would be in contact with Barry.

RWL/jb

Phone complaint 7/30/69 Walter Moran

7/12/69

REAL ESTATE RESEARCH CORPORATION

July 66

Residential - Recreation Facility Complexes

1. Name of Development Mountain Lake
2. Location (community or nearest one and state) Bath, N. H.
3. Nearest Major Roadways (intersection) U.S. Rt. #302 at N.H. Rt. # 112
4 miles
4. Name, Address and Telephone Number of Developer Town & Country Homes,
Inc., N. H. Highway Hotel, Concord, N. H. 224-7757
5. Size of Development 300 acres: 300 lots
6. Size of Lake: 35 acres
7. Other facilities (golf course, marina, shops, etc.)
Community Center and Bath House
8. Year of Initial Sales 1966
9. Number of Lots and Homes Sold:
0 lots: 0 HOMES
10. Are lots still being sold in the developments? yes, no X

Source:

Name Town & Country Homes, Inc. office

Address _____

*Please use a separate sheet for each project

DATE December 19, 1968
FROM Francis C. Moore FCM
SUBJECT Inspection of Mountain Pond, Haverhill (#112.12)
TO Vernon A. Knowlton

51

On December 17, 1968, I inspected the completed Mountain Pond Dam, Constructed by Coulton Construction Co. of Lebanon for Town and Country Homes, Inc. The following report is made based upon observations with 18" snow on the ground:

- (1) Channel from principal spillway is 32' wide and not 40' wide as shown on the plan. However, as it carries only discharge from 60" culvert, it probably will cause no trouble.
- (2) Emergency spillway is 100' wide but the hillside edge of spillway is not on 100' radius but runs straight from pond. This may be a slight improvement.
- (3) Principal spillway discharge pipe is laid substantially to straight alignment.
- (4) There are many stumps in the pool area located several feet below normal full pond. These will undoubtedly cause problems around the principal spillway. However, they have an outer baffle two feet away from the principal spillway (ARMCO corrugated steel pipe - 7' in diameter). This baffle is 40" wide and extends about 12" below top of principal spillway and is ARMCO corrugated steel 11' in diameter. There are two 8" X 8" openings near the top of baffle in one quadrant. From the top of spillway to top of baffle, there is quarter inch hardware cloth screening. No such screening covers the top of spillway. At present there are about three 4' X 6' concrete form panels on top of principal spillway.

Based upon ground conditions, it appears that this dam has been constructed essentially according to submitted specifications and with proper operation will create no menace.

FCM/jb

December 20, 1967

Town and Country Homes, Inc.
Highway Hotel
Concord, New Hampshire

Dear Sir:

We are in recent receipt of soil analysis information on your proposed dam across Waterman Brook in Haverhill, New Hampshire.

Examination of the information submitted leads us to conclude that if this material is properly placed it should produce satisfactory results.

The conditions referred to in our August 18, 1967 letter of approval having now been met, you many commence construction on this structure at your convenience.

Very truly yours,

George M. McGee, Sr.
Chairman

GMC/G/WK:pm

RAVE, Rollins, King & McKone

Sheet Number 1 of 1

JOB NO.: 26712 JOB NAME: Mountain Lake Dam

DATE: Sept. 2

**LIQUID AND PLASTIC LIMIT
DETERMINATIONS
DATA AND COMPUTATION SHEET**

LL = LIQUID LIMIT TEST - %
PL = PLASTIC LIMIT TEST - %
PI = PLASTICITY INDEX - %
FI = FLOP INDEX - %
TI = TOUGHNESS INDEX - %

LIQUID LIMIT TEST

	1	2	3	4	5	6
Soil Number	#7	#7	#7			
Sample Number						
Container Number	K-14	K-6	S-14			
Number of Blows	8	12	15			
g. Sample + Tare Wet	55.57	55.49	55.13			
g. Sample + Tare Dry	50.71	50.61	45.13			
g. of Water	4.86	4.67	3.00			
Tare	30.87	30.77	30.81			
g. of Dry Soil	19.84	20.04	14.32			
Water Content	24.5%	22.9%	20.9%			
Liquid Limit						

PLASTIC LIMIT TEST

	1	2	3
Soil Number			
Sample Number			
Container Number	NOT OBTAINABLE		
g. Sample + Tare Wet			
g. Sample + Tare Dry			
g. of Water			
Tare			
g. of Dry Soil			
Water Content			
Plastic Limit			

FLOW CURVE**RESULTS**

	1	2	3
LL	21.8%		
PL	---		
PI	----		
FI			
TI			

Remarks

CARTA SIZE DISTRIBUTION GRAPH - AGGREGATE GRADING CHART

LAW, CULTURE AND HUMANITIES

Sample no. 7

卷之三

1

SOIL ANALYSIS

DATA AND CLASSIFICATION SHEET

WT OF SAMPLE + TARE 2075.3 GM.

BOREHOLE NO.

SAMPLE NO. "7"

WT OF TARE 372.5 GM. (TARE NO. 2032)

DEPTH

WT OF SAMPLE 2075.3 GM.

LOCATION

U. S. SIEVE OF STANDARDS		WEIGHT RETAINED IN GRAMS	PERCENT RETAINED	CUMULATIVE PERCENT FINER	REMARKS
SIZE IN INCHES	MILLI- METERS				
1.0000	25.400				
0.7500	19.100				
0.5000	12.700				
0.3750	9.520	126.2	32.5%	32.5%	
0.2500	6.350	3			
0.1875	4.700	4	5.0%	37.5%	
0.1250	3.350	6			
0.0937	2.370	8			
0.0625	1.600	10	6.25	75.3%	
0.0438	1.150	12			
0.0313	0.840	16			
0.0238	0.640	20			
0.0175	0.480	30	100.0	9.8%	75.3%
0.0125	0.340	40			
0.0093	0.250	50	100.0	10.0%	65.0%
0.0070	0.180	60			
0.0053	0.130	70			
0.0041	0.0940	72.5	7.25	14.25%	
0.0032	0.0700	100.0	10.0	15.25%	
0.0024	0.0500	62.5	6.25	12.50%	
0.0018	0.0340	270	27.0	44.50%	
	TOTAL	212.0	21.2%		
LOSSED	MESH SIEVE				
100.0		100.0	100.0		

4. ASSOCIATES, INC.
COTON, MAINE

MADE BY D. L. J. T.
TESTED BY
OCT. 26, 1967

SUBJECT: MUD RIVER LAKE SH. 1

JOB NO.

DATE

SHRIFT NO. 7

TESTS

SOIL COMPACTED IN MOLD @ 100% STANDARD
PROCTER

DRY DENSITY = 120.6 lb/ft^3
WATER CONTENT = 8.25%

MOLD

DIAM = 10.16 cm HEAD LOSS = 76.2 cm
AREA = 31.1 cm^2
HEIGHT = 16.63 cm

PERMEABILITY

TEST	TIME	QUANTITY	LE
1	70 MIN.	30.4 cc.	1.06×10^{-5}
2	75 MIN.	27.8 cc.	1.11×10^{-5}
3	150 MIN.	53.0 cc.	1.09×10^{-5}

Name: Mountain Lake Date Sample Identification: Sample No. 3

Date: Aug 1949 Sheet Number: 121

STANDARD COMPACTION

25 blows on each of 3 layers with 5,0 -lb hammer, 12-in drop.

Cylinder diameter (in.)		Initial wt. of soil, w_0 (lbs.)	
" height (in.)		" water content, w_0	
" volume, V (in. ³)		" wt. of solids, w_{so} (lbs.)	
" constant, $C = \frac{1}{V}$	1/20	" " " water, w_{wo} (lbs.)	
Specific gravity of solids, S			

DATA FOR CURVES

Sample No.	1	2	3	4	5	6
Desired water content (%)						
Desired wt. of water (lbs.)						
Vol. of water added (c.c.)						
Wt. of cyl + soil, w_0 (lbs.)	120.12	120.57	120.20	120.41	120.37	120.61
" " " , w_c (lbs.)	6.47	6.35	6.45	6.45	6.45	6.45
" " soil, w_s (lbs.)	113.97	114.95	114.85	114.29	114.92	114.16
Average water content, w (%)	2.37	3.61	6.21	9.27	12.20	16.23
Point density, γ_p (lbs./cu.ft.)	119.1	122.5	127.5	131.7	122.6	124.6
Dry density, γ_d (dry) (lbs./ft. ³)	115.1	117.3	119.3	120.1	117.6	120.9
Void ratio, e						
Per cent of saturation, G (%)						
Sat. density, γ_s (sat.) (lbs./ft. ³)						
" water content, w (sat.) (%)						

WATER CONTENTS

Sample No.	1	2	3	4	5	6
Container No.	2-13	2-24	2-13	2-14	2-16	2-10
Tare + wet soil (grams)	87.43	73.38	76.01	92.40	68.62	92.7
" + dry "	85.23	71.50	73.39	86.00	72.44	83.7
Wt. of water (grams)	2.20	1.88	2.75	6.40	6.15	7.4
Tare	32.58	20.31	20.27	20.71	20.91	20.9
Wt. of dry soil (grams)	55.95	52.09	55.72	71.70	51.65	72.61
Water content, w (%)	2.34	3.60	6.23	10.00	11.95	13.6
Container No.	2-15	2-20	2-10	2-15	2-16	2-7
Tare + wet soil (grams)	77.27	63.12	61.69	75.17	60.9	70.6
" + dry "	74.13	59.29	75.50	77.23	61.79	74.2
Wt. of water (grams)	3.14	3.82	6.19	7.97	9.97	13.6
Tare	30.63	21.60	20.20	21.71	21.91	21.7
Wt. of dry soil (grams)	46.64	41.50	45.71	53.46	49.00	52.1

NAME: D. E. D. & W. C. Nichols, P. Eng.

Sheet Number 1

JOB NO.: S-712 JOB NAME: Mountain Lake Dam

DATE: Sept 19

LIQUID AND PLASTIC LIMIT

DETERMINATIONS

DATA AND COMPUTATION SHEET

LL = LIQUID LIMIT TEST
 PL = PLASTIC LIMIT TEST
 PI = PLASTICITY INDEX
 FI = FLOW INDEX = 7
 TI = TOUGHNESS INDEX

LIQUID LIMIT TEST

Boring Number

	1	2	3	4	5	6
Sample Number	#3	#3	#3			
Container Number	K-20	S-12	P-13			
Number of Boxes	9	32	13			
Wt. Sample + Container	53.93	67.32	51.42			
Wt. Sample + Fine Dry	49.31	67.31	47.53			
Wt. of Water	4.12	3.12	3.45			
Tare	31.03	30.69	31.00			
Wt. of Dry Soil	13.73	17.12	16.93			
Water Content	21.9%	19.9%	20.3%			
Liquid Limit						

PLASTIC LIMIT TEST

Boring No. 1

	1	2	3
Sample Number			
Container Number			
Wt. Sample + Container			
Wt. Sample + Fine Dry			
Wt. of Water			
Tare			
Wt. of Dry Soil			
Water Content			
Plastic Limit			

FLOW CURVE

RESULTS

	1	2	3
LL	20.1%		
PL	—		
PI	—		
FI	71		
TI			

Remarks

NAME

DATE Sept. 26, 1957 JOB NO. 86712

STEVE ANTHONIS
 DATA AND COMPUTATION SHEET
 WT OF SAMPLE + TARE 1319.0 GM.

BOREING NO.

SAMPLE NO. #3

WT OF TARE 371.5 GM. (TARE NO D-13) DEPTH

WT OF SAMPLE 947.5 GM. LOCATION

U. S. BUREAU OF STANDARDS		SIEVE MESH	WEIGHT RETAINED IN GRAMS	PERCENT RETAINED	CUMULATIVE PERCENT FINER	REMARKS
INCHES	MILLI-METERS					
1.0000	25.400					
0.7500	19.100					
0.5000	12.700					
0.3750	9.520		207.5	21.9%	73.1%	
0.2500	6.350	3				
0.1875	4.760	4	53.0	5.6%	72.5%	
0.1250	3.350	6				
0.0937	2.380	8				
0.0625	2.000	10	62.0	6.5%	66.0%	
0.0469	1.560	12				
0.0331	1.150	15				
0.0232	0.850	20				
0.0165	0.420	40				
0.0110	0.217	50	85.0	9.0%	15.2%	
0.0075	0.130	60				
0.0053	0.080	70				
0.0037	0.050	100	61.0	6.1%	23.8%	
0.0025	0.035	120	49.5	5.6%	33.4%	
0.0018	0.024	150	55.0	5.6%	27.7%	
0.0013	0.016	270				
		END	262.0	11.7%		
PASSED	MESH SIEVE					
10-71						

CASE SIZE DISTRIBUTION CHART - ACQUAINTED CROOKS

卷之三

卷之三

卷之三

ELIOT GOLDBERG AND ASSOCIATES, INC.
BOSTON • MANCHESTER, N.H. 03102 • (603) 622-4411

CONSULTING ENGINEER

SUMMARY OF TEST RESULTS

Test	Sample Number 3	Sample Number 7
Sieve	Passing 200 27.7%	Passing 200 42.0%
Liquid Limit	20.1%	21.8%
Plastic limit	NONE	NONE
Maximum Dry Density at	120.6 #/ft ³	Not obtained
Optimum Water Content	8.25%	
Permeability	Average of three tests ~ 1.09×10^{-5}	

APPENDIX C

PHOTOGRAPHS

1. Identification Sign at Lake Site.
2. Dam Crest. Note Upstream Riprap and Right Dam Abutment.
3. Dam Crest. Note Access Road and Left Abutment.
4. Outlet Structure, Trash Guard and Service Bridge.
5. Service bridge and Iron Guard.
6. Outlet Conduit Headwall.
7. Dam Outlet and Infiltration Area. Note Infiltration Lines.
8. Emergency Spillway Area. Note Washed Area.
9. View of Downstream Slope of Dam. Note Initial Stages of Forestation.
10. Seep Noted on Downstream Toe Location Described in Figure 1.
11. Pump Station Located Downstream of the Dam.
12. Seepage Zone 15 Feet Left of Left Outlet Structure Wall.
13. Seepage Zone at End of Right Outlet Structure Wall.
14. High Natural Ground and Seepage Zone 30 Feet Downstream of Downstream Toe (Seepage Area is Near Person.)
15. Seepage Around and From 24-Inch Low-Level Outlet. Note Iron Staining and Oil-Like Surface.
16. Seepage Around and From 24-Inch Diameter Pipe.
17. Close-up of Erosion Around Large Stones Placed Around Exit Pipe.

43. DAM ON THE RIVER IN THE MOUNTAINS
ARIZONA

44. THE RIVER IN THE MOUNTAINS
ARIZONA

Fig. 1. - A small boat with a large cross on its deck.

Fig. 2. - A dark object, possibly a boat or a rock formation.

1000
STYLING
LTD

Fig. 1. A typical sample of the mineralization from the
Bogoslof Island deposit.

APPENDIX D
HYDROLOGIC AND HYDRAULIC COMPUTATIONS

DUFRESNE-HENRY ENGINEERING CORPORATION

BY *J. J. Dufresne* SUBJECT *1/10/72*
DATE *1/10/72* SHEET NO. *1* OF *1*
JOB NO. *270-1012*

1/10/72 *36-1012*

1/10/72 *36-1012*

1/10/72 *36-1012*

1/10/72 *36-1012*
1/10/72 *36-1012*

36-1012

36-1012

DUFRESNE-HENRY ENGINEERING CORPORATION

BY J. J. Dufresne
DATE 10/12/1972

SUBJECT 100' x 100' Foundation
100' x 100' Foundation

SHEET NO. 1 OF 1
JOB NO. 100' x 100'

FRONT ELEVATION DRAWING SHOWS IMPACT TO FOUNDATION AREA TYPE "A" IS
INDICATED. BASED ON THE CLASS "A" IMPACT, THE SOIL IS STABILIZED.

LAND USE: INDUSTRIAL

SOIL TESTS: NOT AVAILABLE

SOIL TESTS: FROM AERIAL SURVEY REPORT, COUNCIL NO. 73

TYPE "A" SOILS, FOUNDATION 1

100' x 100' - 24-HOUR SOIL TESTS AT 6.0"

TESTS FOR: SOIL TEST NO. 10 SOIL TEST NO. 10
8.70 (GROSS) - 5.10 (NET)

100' x 100' - 24-HOUR SOIL TESTS

TESTS FOR: SOIL TEST NO. 10 SOIL TEST NO. 10
8.70 (GROSS) - 5.10 (NET)

DUFRESNE-HENRY ENGINEERING CORPORATION

BY W.H. LEONARD

SUBJECT: HANNAH LAKE (HAVERHILL)
STAGED SCHAFER CAUSE

DATE 3-13-72

SHEET NO. 3 OF 6
JOB NO. 09-0030

TOP OF DAM 778.0

ELEVATION ELEV. 778.0

TOP OF RISER 774.0

84" DIAMETER PIPE

Elev = elev³
3.33 L.C. Q = 0.007 + 22.0

NOTE: FLOW INTO 84" PIPE (WEIR FLOW)
CONTROLS UP TO ELEV. 777.1

Elev	$h(724)$	Q into 84"	h (above 755.7)	Q into 60"	h/A over spillway	Q over
774	0	0	0	0	—	0
775	1	73.3	19.3	390	1	73.3
776	2	207	20.3	410	2	459
777	3	381	21.3	430	3	1098
778	4	586	22.3	440	4	1765

DUFRESNE-HEAVY ENGINEERING CORPORATION

BY W.H. Dufresne
DATE 10-10-72SUBJECT Water Main Breakdown
12" Main - 100' - 1000 ft. headSHEET NO. 1 OF 1
JOB NO. 1000

TYPICAL DATA SHEET

STATION ELEVATION 772.0
TYPICAL ELEVATION 774.0

90° T-junction 100'

1.000 ft.
 2.000 ft. 100 ft. elevation drop.
 3.000 ft.
 4.000 ft.

NOTE: Flow into 90° pipe (weir flow)
 continues up to elev. 777.1

1	1	1.000	1.000	1.000	1.000	1.000	1.000
2	2	2.000	2.000	2.000	2.000	2.000	2.000
3	3	2.000	2.000	2.000	2.000	2.000	2.000
4	4	2.000	2.000	2.000	2.000	2.000	2.000

1000 ft. head
 100 ft. drop

DUFRESNE-HENRY ENGINEERING CORPORATION

BY J. H. Dufresne
DATE 10/12/62SHEET NO. 6 OF
STRUCTURAL DESIGNSHEET NO. 6 OF
JOB NO. 51-1

THIS DRAWING IS FOR USE IN THE WORKS CODE ACI 7718.

C.P. = 1000 lb/in²C.F. = 1000 lb/in² (Assumed) $\sigma_u = 12,500 \text{ psi}$

2.000 ft. max. span over concrete foundation.

C.P. = 1000 lb/in²C.F. = 1000 lb/in² $\sigma_u = 12,500 \text{ psi}$ Assume $d_m = 10'$ $\sigma_y = 35,000 \text{ psi}$ by approximatecritical depth $\sqrt{f_y d_m}$ Assume $d_m = 10'$ $V = 15 \text{ kips}$ $\sigma_y = 35,000 \text{ psi} \approx 13,500 \text{ psi}$ Assume $d_m = 10'$ from above $\rightarrow 16 \text{ in. dia.}$ Assume $d_m = 10'$ from above $\rightarrow 16 \text{ in. dia.}$ Assume $d_m = 10'$ from above $\rightarrow 16 \text{ in. dia.}$

DURRILL & HALL ENGINEERING CORPORATION

BY [Signature]

SUBJECT

SHEET NO.

DATE

OF

JOB NO.

An account of the following work is being performed by the contractor:

ITEM	DESCRIPTION	QUANTITY	UNIT
1	1/2" x 1/2" x 1/8" plate	0	ft
2	1/2" x 1/2" x 1/8" plate	25.65	ft
3	1/2" x 1/2" x 1/8" plate	1.50	ft
4	1/2" x 1/2" x 1/8" plate	11.25	ft
5	1/2" x 1/2" x 1/8" plate	170.57	ft

RECEIVED
RECORDEDDate 8/16/72
Page 1 of 1

The above quantities are subject to change due to changes in design or other factors.

Durrill & Hall

An account of the following work is being performed by the contractor:

SHEET NO.

OF

JOB NO.

KCP - 1000 - 1000 - 1000 - 1000 - 1000 - 1000

THE JOURNAL OF CLIMATE

卷之三

卷之三

• 100 •

--

3.5% - 2.2% = 1.3% = 1.3/100

PEAK	CHARGE	WAVELENGTH	INT.	RELATIVE INT.
1	0.72	400.0	100	1.00
2	1.06	390.0	100	1.00
3	3.52	380.0	100	1.00

STATISTICS 1

TABLE VI.—CLASSIC AND SUBCLASSIC FLUORESCENCE

AD-A156 427 NATIONAL PROGRAM FOR INSPECTION OF NON-FEDERAL DAMS
LOWER MOUNTAIN LAKE (..(U) CORPS OF ENGINEERS WALTHAM
MA NEW ENGLAND DIV MAR 79

2/2

UNCLASSIFIED

F/G 13/13

NL

MICROCHART RESOLUTION TEST CHART
MICROCHART CORPORATION • 2400 PARK AVENUE • CLEVELAND 13, OHIO

HYDROGRAPH ROUTING

RESERVOIR ROUTING FOR MOUNTAIN LAKE
1STAO 1CLUPP 1ECON 1TAFC 1PLT 1SPRT 1NAME
1 1 0 0 0 0 1

ROUTING DATA
CLOSS CLOSS AVG ELES ISAME
0.0 0.0 0.0 1 0

NSTPS NSTPL LAG AMSKR X ISK STCKA
1 0 0 0.0 0.0 0.0 -1.

AGE^a 700. 320. 850. 940. 1000. 0. 0. 0. 0. 0.
LINE 0. 71. 474. 1125. 1705. 0. 0. 0. 0. 0.

TIME EUP STAK AVG IN ELP OUT

1 0 10	701.	1.	1.
1 0 20	701.	1.	1.
1 0 30	701.	1.	1.
1 0 40	701.	1.	1.
1 0 50	701.	1.	1.
1 0 60	701.	1.	1.
1 1 10	701.	1.	1.
1 1 20	701.	1.	1.
1 1 30	701.	1.	1.
1 1 40	701.	1.	1.
1 1 50	701.	1.	1.
1 1 60	701.	1.	1.
1 2 10	701.	1.	1.
1 2 20	701.	1.	1.
1 2 30	701.	1.	1.
1 2 40	701.	1.	1.
1 2 50	701.	1.	1.
1 2 60	701.	1.	1.
1 3 10	701.	0.	1.
1 3 20	701.	0.	1.
1 3 30	701.	0.	1.
1 3 40	701.	0.	1.
1 3 50	701.	0.	1.
1 3 60	701.	0.	1.
1 4 10	701.	0.	1.
1 4 20	701.	0.	1.
1 4 30	701.	0.	1.
1 4 40	701.	0.	1.
1 4 50	701.	0.	1.
1 4 60	701.	0.	1.
1 5 10	701.	0.	1.
1 5 20	701.	0.	1.
1 5 30	701.	0.	1.
1 5 40	701.	0.	1.
1 5 50	701.	0.	1.
1 5 60	701.	0.	1.
1 6 10	701.	0.	1.
1 6 20	701.	1.	1.
1 6 30	701.	2.	1.
1 6 40	701.	5.	1.
1 6 50	701.	4.	1.
1 6 60	701.	12.	1.
1 7 10	701.	17.	1.
1 7 20	701.	23.	2.
1 7 30	702.	29.	2.
1 7 40	702.	36.	3.
1 7 50	703.	42.	4.
1 7 60	703.	47.	4.
1 8 10	704.	52.	5.
1 8 20	705.	55.	6.
1 8 30	705.	59.	7.
1 8 40	706.	51.	8.
1 8 50	707.	53.	9.
1 8 60	705.	55.	10.
1 9 10	705.	67.	11.
1 9 20	704.	63.	12.
1 9 30	705.	64.	13.
1 9 40	701.	70.	14.
1 9 50	702.	71.	15.
1 9 60	702.	72.	16.
1 10 10	703.	72.	17.
1 10 20	704.	73.	18.
1 10 30	705.	73.	19.
1 10 40	705.	73.	20.
1 10 50	705.	73.	21.
1 10 60	705.	74.	22.
1 11 10	705.	74.	23.
1 11 20	705.	74.	24.
1 11 30	705.	74.	25.
1 11 40	705.	74.	26.
1 11 50	705.	74.	27.

1 9 50.
1 9 60.
1 10 10.
1 10 20.
1 10 30.
1 10 40.
1 10 50.
1 10 60.
1 11 10.
1 11 20.
1 11 30.
1 11 40.
1 11 50.
1 11 60.
1 12 10.
1 12 20.
1 12 30.
1 12 40.
1 12 50.
1 12 60.
1 13 10.
1 13 20.
1 13 30.
1 13 40.
1 13 50.
1 13 60.
1 14 10.
1 14 20.
1 14 30.
1 14 40.
1 14 50.
1 14 60.
1 15 10.
1 15 20.
1 15 30.
1 15 40.
1 15 50.
1 15 60.
1 16 10.
1 16 20.
1 16 30.
1 16 40.
1 16 50.
1 16 60.
1 17 10.
1 17 20.
1 17 30.
1 17 40.
1 17 50.
1 17 60.
1 18 10.
1 18 20.
1 18 30.
1 18 40.
1 18 50.
1 19 10.
1 19 20.
1 19 30.
1 19 40.
1 19 50.
1 19 60.
1 20 10.
1 20 20.
1 20 30.
1 20 40.
1 20 50.
1 20 60.
1 21 10.
1 21 20.
1 21 30.
1 21 40.
1 21 50.
1 21 60.
1 22 10.
1 22 20.
1 22 30.
1 22 40.
1 22 50.
1 22 60.
1 23 10.
1 23 20.
1 23 30.
1 23 40.
1 23 50.
1 23 60.

FUNDIFF MULTIPLIES OF 0.14									
1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
1.	1.	1.	1.	1.	1.	1.	1.	1.	1.
2.	0.	0.	0.	0.	0.	0.	0.	0.	0.
3.	0.	0.	0.	0.	0.	0.	0.	0.	0.
4.	14.	20.	26.	32.	38.	44.	49.	54.	57.
5.	62.	64.	65.	66.	69.	70.	71.	71.	72.
6.	73.	73.	73.	74.	74.	74.	74.	74.	74.
7.	74.	75.	76.	77.	78.	79.	80.	80.	80.
8.	35.	40.	42.	44.	46.	48.	50.	51.	52.
9.	57.	59.	60.	60.	61.	62.	63.	64.	65.
10.	155.	156.	157.	158.	159.	160.	161.	162.	163.
11.	612.	747.	720.	641.	503.	405.	410.	351.	240.
12.	210.	176.	152.	149.	143.	137.	132.	127.	122.
13.	112.	108.	103.	99.	95.	92.	88.	84.	81.
14.	75.	72.	69.						

	PEAK	6-HJUR	24-HJUR	72-HJUR	TOTAL VOLUME
CFS	1564.	400.	200.	200.	4124.
INCHES	203	203	203	203	203
AC-FT	406.	567.	567.	567.	567.

• 1048 •

STATION 1

INFLUENCE OF INFLUENCE AND OBSERVED FLUXES.
 4000. 5000. 6000. 10000. 12000.

1 12 20	702.	790.	29.
1 12 30	730.	510.	31.
1 12 40	750.	130.	31.
1 12 50	750.	127.	33.
1 12 60	737.	129.	35.
1 13 10	759.	195.	36.
1 13 20	772.	237.	37.
1 13 30	795.	203.	46.
1 13 40	793.	331.	51.
1 13 50	805.	371.	57.
1 13 60	809.	424.	64.
1 14 10	814.	495.	71.
1 14 20	820.	504.	79.
1 14 30	825.	540.	119.
1 14 40	830.	570.	156.
1 14 50	833.	610.	140.
1 14 60	844.	644.	250.
1 15 10	850.	678.	275.
1 15 20	856.	720.	313.
1 15 30	862.	776.	354.
1 15 40	865.	848.	397.
1 15 50	875.	938.	444.
1 15 60	883.	1044.	500.
1 16 10	892.	1102.	600.
1 16 20	900.	1283.	699.
1 16 30	907.	1508.	731.
1 16 40	915.	1476.	980.
1 16 50	920.	1538.	970.
1 16 60	930.	1561.	1033.
1 17 10	940.	1551.	1120.
1 17 20	949.	1609.	1179.
1 17 30	945.	1446.	1210.
1 17 40	953.	1457.	1230.
1 17 50	951.	1282.	1242.
1 17 60	950.	1199.	1250.
1 18 10	949.	1123.	1221.
1 18 20	947.	1051.	1146.
1 18 30	944.	981.	1156.
1 18 40	941.	909.	1132.
1 18 50	937.	834.	1091.
1 18 60	933.	758.	1045.
1 19 10	926.	680.	994.
1 19 20	923.	602.	940.
1 19 30	916.	525.	862.
1 19 40	912.	452.	822.
1 19 50	905.	394.	761.
1 19 60	901.	323.	700.
1 20 10	895.	272.	641.
1 20 20	873.	230.	584.
1 20 30	855.	194.	529.
1 20 40	850.	167.	479.
1 20 50	870.	122.	449.
1 20 60	872.	140.	422.
1 21 10	868.	140.	348.
1 21 20	865.	115.	375.
1 21 30	862.	129.	394.
1 21 40	854.	124.	334.
1 21 50	856.	119.	315.
1 21 60	853.	114.	298.
1 22 10	851.	110.	281.
1 22 20	848.	136.	266.
1 22 30	840.	101.	252.
1 22 40	844.	97.	238.
1 22 50	842.	93.	226.
1 22 60	841.	90.	214.
1 23 10	837.	86.	203.
1 23 20	837.	83.	192.
1 23 30	830.	79.	183.
1 23 40	834.	76.	173.
1 23 50	833.	73.	165.
1 23 60	832.	70.	157.

SUM

36007.

PEAK	6-HOUR	24-HOUR	72-HOUR	TOTAL VOLUME
CFS	1242.	621.	250.	30037.
INCHES		2.05	2.97	2.47
Avg		410.	450.	436.

卷之三

INCLUDES: DUTELMANN AND UNSERVED FLINGS

200. 400. 600. 800. 1000. 1200. 1400. 1600. 0. 0. 0.

0
0 101
0 201
0 301
0 .01
0 501
0 601
1 101
1 201
1 301
1 401
1 501
1 601
1 701
1 801
1 901
2 101
2 201
2 301
2 401
2 501
2 601
2 701
2 801
2 901
3 101
3 201
3 301
3 401
3 501
3 601
3 701
3 801
3 901
4 101
4 201
4 301
4 401
4 501
4 601
4 701
4 801
4 901
5 101
5 201
5 301
5 401
5 501
5 601
5 701
5 801
5 901
6 101
6 201
6 301
6 401
6 501
6 601
6 701
6 801
6 901
7 101
7 201
7 301
7 401
7 501
7 601
7 701
7 801
7 901
8 101
8 201
8 301
8 401
8 501
8 601
8 701
8 801
8 901
9 101
9 201
9 301
9 401
9 501
9 601
9 701
9 801
9 901
10 101
10 201
10 301
10 401
10 501
10 601
10 701
10 801
10 901
11 101
11 201
11 301
11 401
11 501
11 601
11 701
11 801
11 901
12 101
12 201
12 301
12 401
12 501
12 601
12 701
12 801
12 901
13 101
13 201
13 301
13 401
13 501
13 601
13 701
13 801
13 901
14 101
14 201
14 301
14 401
14 501
14 601
14 701
14 801
14 901

18 00.
18 00.
15 10.
15 20.
15 30.
15 40.
15 50.
15 60.
16 10.
16 20.
16 30.
16 40.
16 50.
16 60.
17 10.
17 20.
17 30.
17 40.
17 50.
17 60.
18 10.
18 20.
18 30.
18 40.
18 50.
18 60.
19 10.
19 20.
19 30.
19 40.
19 50.
19 60.
20 10.
20 20.
20 30.
20 40.
21 50.
21 10.
21 20.
21 30.
21 40.
21 50.
21 60.
22 10.
22 20.
22 30.
22 40.
22 50.
22 60.
23 10.
23 20.
23 30.
23 40.
23 50.
23 60.

REPORT SUMMARY: AVERAGE FIELD

| | | PEAK | 6-HOUR | 24-HOUR | 72-HOUR | AREA |
|--------------|---|-------|--------|---------|---------|------|
| MAXIMUM AREA | 1 | 12640 | 5470 | 4770 | 2500 | 3070 |

APPENDIX E

Information as Contained in the National Inventory of Dams

THE HISTORY OF DAIRY IN THE UNITED STATES

END

FILED

8-85

DTIC

