INFO 7374 MACHINE LEARNING IN FINANCE

ASSIGNMENT II

- 1. In making non-parametric kernel density estimation, you found that the estimated kernel density has a lot of zigzags, what could you do with it?
 - A. change a kernel function
 - B. decrease bandwidth
 - C. increase bandwidth
 - D. change the design base
- 2. Given an Ornstein-Uhlenbeck process, i.e. AR (1): $y_t = \alpha y_{t-1} + u_t$, when $\alpha \to 1$, the OLS estimates would follow distribution that is asymptotically
 - A. skewed to the right
 - B. normal
 - C. students-t
 - D. skewed to the left
- 3. Which of the following tests could help you test whether a time series has a unit root?
 - A. Granger Test
 - B. Dicky-Fuller Test
 - C. Hausman Test
 - D. Durbin-Watson Test
- 4. An analyst at an investment firm has estimated a regression of the firm's fixed income portfolio using a 3-factor model. The results are shown below.

Regression Statistics	
R Square	0.98
Adjusted R Square	0.97
Standard Error	1.02
Observations	600

Regression Output	Coefficients	Standard Error	t Stat	P-value
Intercept	0.56	1.01	0.51	0.31
Factor 1	2.53	2.29	0.50	0.12
Factor 2	2.05	2.60	0.79	0.21
Factor 3	1.78	3.69	0.44	0.33

Correlation Matrix	Portfolio Returns	Factor 1	Factor 2	Factor 3
Portfolio Returns	1.0000	0.9312	0.9136	0.9629
Factor 1	0.9312	1.0000	0.7605	0.8863
Factor 2	0.9136	0.7605	1.0000	0.9144
Factor 3	0.9629	0.8863	0.9144	1.0000

Based on the regression results, what problem(s) does the factor model have?

- A. Heteroskedasticity
- B. Multicollinearity
- C. Autocorrelation
- D. Endogeneity
- 5. Which of the following statement correctly defines Cointegration?
 - A. If X and Y are I(1) processes, then there exists a variable U that is a linear combination of X and Y, but also an I(0) process.
 - B. If X and Y are I(0) processes, then there exists a variable U that is a linear combination of X and Y, but also an I(1) process.
 - C. If X and Y are I(1) processes, then there exists a variable U that is a linear combination of X and Y, but also an I(1) process.
 - D. If X and Y are I(0) processes, then there exists a variable U that is a linear combination of X and Y, but also an I(0) process.
- 6. Which of the following statement about pairs trading is incorrect?
 - A. We select trading pairs by comparing their β s from the CAPM regression.
 - B. A candidate pair has their β s as close as possible.
 - C. A candidate pair has their β s as disperse as possible.
 - D. We test whether the two stocks are cointegrated or not.
- 7. What could you infer about the kurtosis of the autoregressive conditional heteroskedasticity (ARCH) process

$$r_t = \mu + \sigma_t \varepsilon_t$$

$$\sigma_t^2 = \omega + \alpha (r_{t-1} - \mu)^2$$

$$\sigma_1^2 = \omega / (1 - \alpha)$$

where ε_t is iid standard normal

- A. Kurtosis > 12
- B. Kurtosis > 6
- C. Kurtosis > 4
- D. Kurtosis > 3
- 8. When you are working on fitting a curve using a piece-wise spline function (fitting a curve with small pieces of straight lines), which of the following method would you consider using?
 - A. Non-parametric kernel density
 - B. Support Vector Vehicle
 - C. Random Forest
 - D. Least Angle Regression

- 9. When you measure the predictive accuracy of a point forecast you made for the midprice in a high frequency trading algorithm, which of the following tests would you use?
 - A. Dicky-Fully Test
 - B. Kolmogorov-Smirnov Test
 - C. Amisano-Giacomini Test
 - D. Diebold-Mariano Test
- 10. When we say that an estimator is a BLUE estimator, we mean that the following statements except?
 - A. $\hat{\beta}$ is linear.
 - B. $\hat{\beta}$ is unbiased.
 - C. $\hat{\beta}$ is the most efficient estimator when compared with other estimators.
 - D. $\hat{\beta}$ is normally distributed.