Step-1

Addition rule: let T, W are linear transformations from \mathbb{R}^n to \mathbb{R}^n

We define
$$(T+W): \mathbb{R}^n \to \mathbb{R}^n$$

By
$$(T+W)(x) = T(x) + W(x)$$
, for all $x \in \mathbb{R}^n$ and c is a scalar in \mathbb{R} ,

$$cT: \mathbb{R}^n \to \mathbb{R}^n$$

By
$$(cT)(x) = c(T(x))$$
 for all $x \in \mathbb{R}^n$

Thus the set of all $S = \{T/T : \mathbb{R}^n \to \mathbb{R}^n \text{ is a linear transformation}\}$ is a vector space over the field \mathbb{R} dim $S = n^2$

Step-2

Basis for this $S = \{T_{ij} / T_{ij} : \mathbb{R}^n \to \mathbb{R}^n, 1 \le i, j \le n\}$

When
$$T_{ij}(\alpha_k) = \begin{cases} 0 & \text{if } k \neq j \\ \alpha_k & \text{if } k = j \end{cases}$$

Hence $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is a basis for \mathbb{R}^n