Examples of Hypothesis Testing

MH1820 1 / 16

Procedue for Hypothesis Testing:

- Given are observations x_1, \ldots, x_n .
- Formulate **null hypothesis** H_0 describing the population distribution from which observations were drawn.
- Choose significance level α (often $\alpha = 0.05$)
- Choose test statistic $T(X_1, \ldots, X_n)$ that contains information on the parameters involved in H_0 and whose distribution is known under H_0 .
- Assuming H_0 , compute probability (p-value) to observe $t = T(x_1, ..., x_n)$ or something "at least as extreme as t" (in the direction of rejection of (H_0) . Lepands on Alternative Hypothesis.

 • If the p-value is smaller than α , reject null hypothesis.

p-value

- p-value is the probability to observe t or something "at least as extreme as t" assuming H_0 is true.
- If p-value is small, it means that chances of observing what we have observed (assuming H_0 is true) is small.
 - \implies the smaller the *p*-value, the less we should believe in H_0 .
- The significance level α is the minimum value of this probability that we are willing to accept before perfoming the test.

$$\Longrightarrow \left\{ \begin{array}{ll} \text{Reject } H_0 & \text{if } p\text{-value} < \alpha \\ \text{Do not reject } H_0 & \text{otherwise.} \end{array} \right.$$

10110111111111

Example 1

A manufacturer of sports equipment has developed a new synthetic fishing line that the company claims has a mean breaking strength of 8 kilograms with a standard deviation of 0.5 kilograms.

Test the hypothesis that $\mu = 8$ kilograms against the alternative hypothesis that $\mu \neq 8$ kilograms if a sample of 50 lines is jested and found to have a mean breaking strength of 7.8 kilograms.

evel of significance.

The Setup:

MH1820 7 / 16

Compute *p*-value based on data:

$$P-value = |P(|T-E[f]| \ge |t-E[f]|)$$

$$= |P(|T| \ge |t|) \le |T|$$

$$t = \frac{\overline{x} - \mu}{5/5\pi} = \frac{7.8 - 8}{0.5/50} = -2.83$$

MH1820 8 / 16

$$P-value = P(|T| \ge |-2.83|)$$

$$= P(|T| \ge 2.83).$$

$$= P(|T| \ge 2.83) \text{ or } T \le -2.83)$$

$$= P(|T| \ge 2.83) = 2(|-\frac{\pi}{2}(1-0.9673)) = 0.4046$$

MH1820 9 / 16

Decision:

MH1820 10 / 16

Example 2

Suppose that the distribution of X is Bernoulli(p). We shall test the null hypothesis $H_0: p = 0.5$ against the alternative hypothesis $H_1: p \neq 0.5$.

Suppose a random sample of n = 100 observations yielded $\sum_{i=1}^{100} x_i = 65$. Define a test statistic, calculate the p-value and state your conclusion using a significance level of $\alpha = 0.05$.

4□▶ 4□▶ 4□▶ 4□▶ 4□ 900

MH1820 11 / 1

The Setup:

MH1820

12 / 1

(assurg Ho true)

Compute p-value based on data:

p-value =
$$P(|T-E[T]| \ge |t-E[T]|)$$

= $P(|T-101(0.5)| \ge |t-110(0.5)|)$
= $P(|T-50| \ge |t-50|)$
= $P(|T-50| \ge |65-50|)$
= $P(|T-50| \ge |5|)$
= $P(|T-50| \ge |5|)$
= $P(|T-50| \ge |5|)$

MH1820

$$= P(T) 65 \text{ or } T \leq 35$$

$$= P\left(\frac{T}{100} - P\right) > \frac{65}{100} - P \text{ or } \frac{T}{100} - P$$

$$= P\left(\frac{T}{100} - P\right) > \frac{65}{100} - P \text{ or } \frac{T}{100} - P$$

$$= P\left(\frac{T}{100} > \frac{0.65 - 0.5}{10.5(1-0.5)}\right) = P\left(\frac{T}{100} > \frac{0.35 - 0.5}{10.5(1-0.5)}\right)$$

$$= P\left(\frac{T}{100} > \frac{0.65 - 0.5}{10.5(1-0.5)}\right) = P\left(\frac{T}{100} > \frac{T}{100} > \frac{T}{100} > \frac{T}{100}\right)$$

MH1820 14 / 16

$$\rho$$
-value = $2 \times \Phi(-3)$
= $2 \times (1 - \Phi(3))$
= $2 \times (1 - 0.9187)$
= $2 \times (0.0013 = 0.0026)$

MH1820 15 / 16

Decision:

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

MH1820 17 / 16