Optimization for Machine Learning Optimisation pour l'apprentissage automatique

Clément Royer

Université Paris-Dauphine

Master 2 IASD/ID Apprentissage

French touch

A warning

- This course will be given in English.
- The slides will be in English.
- The instructor is...French.

French touch

A warning

- This course will be given in English.
- The slides will be in English.
- The instructor is...French.

Why?

- It's in the syllabus!
- Latest advances in Machine Learning/Optimization are international;
- Both academic and industrial research are produced in English.

French touch

A warning

- This course will be given in English.
- The slides will be in English.
- The instructor is...French.

Why?

- It's in the syllabus!
- Latest advances in Machine Learning/Optimization are international;
- Both academic and industrial research are produced in English.

Aims of the course

- Present the main optimization tools used in ML;
- Motivate the use of these methods;
- Illustrate on typical ML problems.

Regarding this course

Lecturer : Clément Royer

- Maître de conférences at Dauphine since September 2019;
- From 2016 to 2019: University of Wisconsin-Madison (USA);
- Research: Continuous optimization.

Useful information

- clement.royer@dauphine.psl.eu.
- Link to these slides (updated as we go).

URL:

https://www.lamsade.dauphine.fr/croyer/docs/courseOptiML.pdf

Schedule

Three-hour slots

- Week 1: 09/25 (8.30am-11.45am), 09/27 (8.30am-11.45am);
- Week 2: 10/02 (1.45pm-5pm), 10/04 (8.30am-11.45am);
- Week 3: 10/07 (1.45pm-5pm), 10/10 (1.45pm-5pm);
- Week 4: 11/06 (1.45pm-5pm), 11/08 (1.45pm-5pm);
- Week 5: **Exam on 11/15**.

Lab sessions

- On 10/10 and 11/08 for ID (instructor: Clément Royer);
- On 10/10 and 11/07 for IASD (instructor: Laurent Meunier).

Schedule

Three-hour slots

- Week 1: 09/25 (8.30am-11.45am), 09/27 (8.30am-11.45am);
- Week 2: 10/02 (1.45pm-5pm), 10/04 (8.30am-11.45am);
- Week 3: 10/07 (1.45pm-5pm), 10/10 (1.45pm-5pm);
- Week 4: 11/06 (1.45pm-5pm), 11/08 (1.45pm-5pm);
- Week 5: **Exam on 11/15**.

Lab sessions

- On 10/10 and 11/08 for ID (instructor: Clément Royer);
- On 10/10 and 11/07 for IASD (instructor: Laurent Meunier).

l expect to...

- Start/finish on time;
- Be able to hear everyone;
- Get feedback from you

Content of the course

- Introduction
- ② Basics of optimization
- Unconstrained optimization
- Constrained optimization
- Stochastic optimization
- Nonsmooth optimization
- Advanced topics

Content of the course

- Introduction (Some examples)
- Basics of optimization (Gradients and convexity)
- Unconstrained optimization (Gradient descent)
- Constrained optimization (ADMM)
- Stochastic optimization (Stochastic gradient)
- Nonsmooth optimization (Proximal methods)
- Advanced topics (Second-order methods?)

Outline

- Introduction
 - Optimization and ML
 - An example: text classification via Support Vector Machine
- 2 Basics of optimization
- 3 Unconstrained optimization

Terminology

What you may have heard of/read about

- Data Analysis;
- Data Mining;
- Machine Learning (ML);
- Artificial Intelligence;
- Big Data;
- •

Terminology

What you may have heard of/read about

- Data Analysis;
- Data Mining;
- Machine Learning (ML);
- Artificial Intelligence;
- Big Data;
- •

What this course is about

- Optimization for ML...
- ...and for all of data science.
- We will focus on generic principles.

ML for us

Main goals

- Extract meaning/information from data:
 Statistics, main features and structures;
- Use this information to predict behavior of yet unseen data.

ML for us

Main goals

- Extract meaning/information from data:
 Statistics, main features and structures;
- Use this information to predict behavior of yet unseen data.

Components of ML

- Statistics;
- Computer Science (data management, parallel computing, etc);
- Optimization for modeling and algorithms.

A warning

Optimization Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra, PDEs, Statistics, etc.

A warning

Optimization Machine Learning

- Optimization is a mathematical tool;
- Used in many areas: Economics, Chemistry, Physics, Social sciences,...
- Appears in other branches of (applied) mathematics: Linear Algebra,
 PDEs, Statistics, etc.

Machine Learning ⊄ Optimization

- Optimization targets a certain problem;
- ML is not just about this problem;
- Other features of ML (data cleaning, hardware,...) will not appear in the optimization.

Optimization in Machine Learning

Source: https://blogs.sas.com/content/subconsciousmusings/2017/04/12/ machine-learning-algorithm-use/

At first there was optimization...

- The rise of optimization: 1970-1980;
- Many algorithms have proven effective in various fields;
- Standard practice for a physics-motivated problem: run an interior-point Newton-type method (developed in the 2000s).

...then came ML!

From an optimization point of view:

- ML problems have challenging characteristics;
- The usual solvers are not so efficient in ML problems;
- But other (old) methods have regained interest.

Ubiquitous practice in ML: Run Stochastic Gradient with Momentum (1950s + a 1983 theoretical paper).

What changed?

Big data setting

- Very expensive to compute full derivatives/look at the entire data set;
- First-order methods have proven very effective to reach low accuracies.

What changed?

Big data setting

- Very expensive to compute full derivatives/look at the entire data set;
- First-order methods have proven very effective to reach low accuracies.

Community has changed

- The optimization problem is not everything;
- Interest in statistical properties of the solutions;
- Different analyzes and theoretical results.

Outline

- Introduction
 - Optimization and ML
 - An example: text classification via Support Vector Machine
- 2 Basics of optimization
- Unconstrained optimization

Statistical machine learning approach

Given: A dataset $\{(x_1, y_1), ..., (x_n, y_n)\}.$

- x_i is a feature vector in \mathbb{R}^d ;
- y_i is a label.

Statistical machine learning approach

Given: A dataset $\{(x_1, y_1), ..., (x_n, y_n)\}.$

- x_i is a feature vector in \mathbb{R}^d ;
- y; is a label.

Example: text classification

Using d words for classification:

• x_i represents the words contained in a text document:

$$[x_i]_j = \begin{cases} 1 & \text{if word } j \text{ is in document } i, \\ 0 & \text{otherwise.} \end{cases}$$

• y_i is equal to +1 if the document addresses a certain topic of interest, to -1 otherwise.

Prediction and classification

Learning process

- Given $\{(x_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(x_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\mathbf{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \mathbf{w}), \ \mathbf{w} \in \mathbb{R}^{\hat{d}} \right\}$;

Prediction and classification

Learning process

- Given $\{(x_i, y_i)\}_i$, discover a function $h : \mathbb{R}^d \to \mathbb{R}$ such that $h(x_i) \approx y_i \ \forall i = 1, \dots, n$.
- Choose the predictor function h among a set \mathcal{H} parameterized by a vector $\mathbf{w} \in \mathbb{R}^d$: $\mathcal{H} = \left\{ h \mid h = h(\cdot; \mathbf{w}), \ \mathbf{w} \in \mathbb{R}^{\hat{d}} \right\}$;

Linear model for text classification

- We seek a hyperplane in \mathbb{R}^d separating the feature vectors associated with $y_i = +1$ and those associated with $y_i = -1$;
- This corresponds to a linear model $h(x) = x^{\mathrm{T}} u v$, and we want to choose w_1, w_0 such that:

$$\forall i = 1, \dots, n,$$

$$\begin{cases} \mathbf{x}_i^{\mathrm{T}} \mathbf{u} - \mathbf{v} \ge 1 & \text{if } y_i = +1 \\ \mathbf{x}_i^{\mathrm{T}} \mathbf{u} - \mathbf{v} \le -1 & \text{if } y_i = -1. \end{cases}$$

Objective of the problem

An objective to optimize over

- Our goal is to penalize values of $\mathbf{w} = (\mathbf{u}, \mathbf{v})$ for which $h(\mathbf{x}_i) \neq y_i$.
- One possibility: the hinge loss function

$$\forall (h,y) \in \mathbb{R}^2, \quad \ell(h,y) = \max \{1 - yh, 0\}.$$

About the hinge loss

- $hy > 1 \Rightarrow \ell(h, y) = 0$: no penalty (h and y are of the same sign, |h| > 1 so this is a good prediction);
- $hy < -1 \Rightarrow \ell(h, y) > 2$: large penalty (h and y are of opposite sign and |h| > 1, this is a bad prediction);
- $|hy| \le 1 \Rightarrow \ell(h, y) \in [0, 2]$: small penalty (h and y can be of the same sign, but the value of |h| makes the prediction less certain).

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\}$$

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\}$$

Minimize the sum of the losses for all examples;

Optimization formulation

An optimization problem

$$\min_{\boldsymbol{u},v} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - v), 0 \right\} + \frac{\lambda}{2} \|\boldsymbol{u}\|_2^2.$$

for $\lambda > 0$.

- Minimize the sum of the losses for all examples;
- A regularizing term is usually added (more on that later).

Different solutions

Source: B. Recht and S. J. Wright, Nonlinear Optimization for Machine Learning (forthcoming).

- Red/Blue dots: data points labeled +1/-1;
- Red/Blue clouds: distribution of the text documents;
- Two linear classifiers;
- Rightmost plot: maximal-margin solution.

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\} + \frac{\lambda}{2} \|\boldsymbol{u}\|_2^2$$

Reformulation

- Add variables to replace the max ⇒ Convex quadratic program;
- Use duality ⇒ Convex quadratic program:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{\alpha} - \boldsymbol{1}^{\mathrm{T}} \boldsymbol{\alpha} \quad \text{subject to} \quad 0 \leq \boldsymbol{\alpha} \leq \frac{1}{\lambda} \boldsymbol{1}, \ \boldsymbol{y}^{\mathrm{T}} \boldsymbol{\alpha} = 0$$

with
$$Q = [y_i y_j h(x_i) h(x_j)]_{ij}, \ y = [y_1 \dots y_n]^T, \ \mathbf{1} = [1 \dots 1]^T \in \mathbb{R}^n$$
.

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\} + \frac{\lambda}{2} \|\boldsymbol{u}\|_2^2$$

Reformulation

- Add variables to replace the max ⇒ Convex quadratic program;
- Use duality ⇒ Convex quadratic program:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{\alpha} - \boldsymbol{1}^{\mathrm{T}} \boldsymbol{\alpha} \quad \text{subject to} \quad 0 \leq \boldsymbol{\alpha} \leq \frac{1}{\lambda} \boldsymbol{1}, \ \boldsymbol{y}^{\mathrm{T}} \boldsymbol{\alpha} = 0$$

with
$$Q = [y_i y_j h(x_i) h(x_j)]_{ij}, \ y = [y_1 \dots y_n]^T, \ \mathbf{1} = [1 \dots 1]^T \in \mathbb{R}^n$$
.

$$\min_{\boldsymbol{u},\boldsymbol{v}} \frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\} + \frac{\lambda}{2} \|\boldsymbol{u}\|_2^2$$

Reformulation

- Add variables to replace the max ⇒ Convex quadratic program;
- Use duality ⇒ Convex quadratic program:

$$\min_{\boldsymbol{\alpha} \in \mathbb{R}^n} \frac{1}{2} \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{\alpha} - \boldsymbol{1}^{\mathrm{T}} \boldsymbol{\alpha} \quad \text{subject to} \quad 0 \leq \boldsymbol{\alpha} \leq \frac{1}{\lambda} \boldsymbol{1}, \ \boldsymbol{y}^{\mathrm{T}} \boldsymbol{\alpha} = 0$$

with
$$\mathbf{Q} = [y_i \, y_j \, h(x_i) \, h(x_j)]_{ij}, \ \mathbf{y} = [y_1 \dots y_n]^{\mathrm{T}}, \ \mathbf{1} = [1 \cdots 1]^{\mathrm{T}} \in \mathbb{R}^n$$
.

Optimizers know how to solve this efficiently.

From a data scientist's point of view

$$\min_{\boldsymbol{u},\boldsymbol{v}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\}}_{loss} + \underbrace{\frac{\lambda}{2} \|\boldsymbol{u}\|_2^2}_{regularizer}.$$

The key questions

- Are all solutions with "zero loss" equally good?
- We want to do good not only on our training set $\{(x_i, y_i)\}...$
- ...but also on yet unseen data (from a similar distribution)!
- In our example, we want our classifier to apply to new text documents.

From a data scientist's point of view

$$\min_{\boldsymbol{u},\boldsymbol{v}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \max \left\{ 1 - y_i(\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{u} - \boldsymbol{v}), 0 \right\}}_{loss} + \underbrace{\frac{\lambda}{2} \|\boldsymbol{u}\|_2^2}_{regularizer}.$$

The key questions

- Are all solutions with "zero loss" equally good?
- We want to do good not only on our training set $\{(x_i, y_i)\}...$
- ...but also on yet unseen data (from a similar distribution)!
- In our example, we want our classifier to apply to new text documents.

Optimizers may not be able to do that efficiently.

Takeaways from the example

- We formulate the optimization problem based on observed data;
- We want the solution to have properties with respect to unseen data;
- Optimization may help but is not the ultimate answer.

Takeaways from the example

- We formulate the optimization problem based on observed data;
- We want the solution to have properties with respect to unseen data;
- Optimization may help but is not the ultimate answer.

Other issues with ML problems

- What if the feature space is large (all French/English words)?
- What if the parameter space \mathbb{R}^n is huge (all Wikipedia articles)?
- What if linear models do not give good results?

Takeaways from the example

- We formulate the optimization problem based on observed data;
- We want the solution to have properties with respect to unseen data;
- Optimization may help but is not the ultimate answer.

Other issues with ML problems

- What if the feature space is large (all French/English words)? Reduce dimensionality, look for sparse solutions.
- What if the parameter space \mathbb{R}^n is huge (all Wikipedia articles)? Sampling/Batch/Stochastic methods.
- What if linear models do not give good results?
 Nonlinear optimization (kernel SVM).

In this course

- Methodologies to solve given optimization problems;
- Focus on common structures in ML: finite sum, regularization;
- Discussion on properties of various formulations.

Focus on the optimization side

- Main algorithms and characteristics;
- Some applications, but always from an optimization perspective;
- Plenty of other data science courses in these Master programs!

Outline

- Introduction
- 2 Basics of optimization
 - Notation and background
 - Optimization problem and optimality
 - Convexity
 - Optimization algorithms
- Unconstrained optimization

Outline

- Introduction
- Basics of optimization
 - Notation and background
 - Optimization problem and optimality
 - Convexity
 - Optimization algorithms
- Unconstrained optimization

Convention

For simplicity

- Optimization on real variables;
- Finite dimension;
- Canonical vector space structure.

I will use the following

- Scalars: a, b, c, \ldots
- Vectors: a, b, c, \ldots
- Matrices: **A**, **B**, **C**, . . .
- Sets: A, B, C, \dots

Linear algebra

- ullet \mathbb{R}^d : set of vectors with $d \geq 1$ real components;
- For any $\mathbf{w} \in \mathbb{R}^d$ and $i \in \{1, \dots, d\}$, $w_i \in \mathbb{R}$ is the i-component of \mathbf{w} : $\mathbf{w} = [w_i]_{1 \le i \le d}$;
- Any $m{w} \in \mathbb{R}^d$ will be represented columnwise: $m{w} = \left[egin{array}{c} w_1 \\ \vdots \\ w_d \end{array} \right];$
- We will use row vectors as "transposed" (from column to row) of their column vectors counterpart: $\mathbf{w}^{\mathrm{T}} := [w_1 \cdots w_d];$

Linear algebra

- ullet \mathbb{R}^d : set of vectors with $d \geq 1$ real components;
- For any $\mathbf{w} \in \mathbb{R}^d$ and $i \in \{1, \dots, d\}$, $w_i \in \mathbb{R}$ is the i-component of \mathbf{w} : $\mathbf{w} = [w_i]_{1 \le i \le d}$;
- Any $\mathbf{w} \in \mathbb{R}^d$ will be represented columnwise: $\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_d \end{bmatrix}$;
- We will use row vectors as "transposed" (from column to row) of their column vectors counterpart: $\mathbf{w}^{\mathrm{T}} := [w_1 \cdots w_d];$

Vector operations

- Addition in \mathbb{R}^d : $\mathbf{w} + \mathbf{z} := [\mathbf{w}_i + \mathbf{z}_i]_{1 \le i \le d}$;
- Multiply a vector in \mathbb{R}^d by a real number: $\lambda \mathbf{w} := [\lambda w_i]_{1 \leq i \leq d}$

Linear algebra (2)

Euclidean norm on \mathbb{R}^d

The Euclidean norm (or ℓ_2 norm) of a vector $\mathbf{w} \in \mathbb{R}^d$ is given by:

$$\|\boldsymbol{w}\| := \sqrt{\sum_{i=1}^d w_i^2}.$$

Scalar product on \mathbb{R}^d

The scalar product is defined for every $w, z \in \mathbb{R}^d$ by:

$$\boldsymbol{w}^{\mathrm{T}}\boldsymbol{z} := \sum_{i=1}^{d} w_i \, z_i.$$

One thus has $\mathbf{w}^{\mathrm{T}}z = z^{\mathrm{T}}\mathbf{w} = \|\mathbf{w}\|^2$.

Linear algebra (3)

Matrices

- $\mathbb{R}^{n \times d}$: set of *n*-by-*d* matrices;
- $\mathbb{R}^{d \times 1} \simeq \mathbb{R}^d$.

Transposed matrix

Let $\mathbf{A} = [\mathbf{A}_{ii}] \in \mathbb{R}^{n \times d}$ be a matrix with n rows and d columns.

The transposed matrix of A, denoted by A^{T} , is the matrix with n rows and m columns such that

$$\forall i = 1, \ldots, n, \ \forall j = 1, \ldots, d, \qquad \left[\mathbf{A}^{\mathrm{T}} \right]_{ii} = \mathbf{A}_{ji}.$$

Linear algebra (3)

Matrices

- $\mathbb{R}^{n \times d}$: set of *n*-by-*d* matrices;
- $\mathbb{R}^{d \times 1} \simeq \mathbb{R}^d$

Transposed matrix

Let $\mathbf{A} = [\mathbf{A}_{ii}] \in \mathbb{R}^{n \times d}$ be a matrix with n rows and d columns.

The transposed matrix of A, denoted by A^{T} , is the matrix with n rows and m columns such that

$$\forall i = 1, \ldots, n, \ \forall j = 1, \ldots, d, \qquad \left[\mathbf{A}^{\mathrm{T}} \right]_{ii} = \mathbf{A}_{ji}.$$

Squared matrix case

- $\mathbf{A}^{\mathrm{T}} \in \mathbb{R}^{d \times d}$:
- **A** is called a *symmetric matrix* if $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$.

Linear algebra (4)

Matrix inversion

A matrix $A \in \mathbb{R}^{d \times d}$ is *invertible* if it exists $B \in \mathbb{R}^{d \times d}$ such that $BA = AB = I_d$, where I_d is the identity matrix of $\mathbb{R}^{d \times d}$. In this case, B is the unique matrix with this property: B is called the *inverse matrix of* A, and is denoted by A^{-1} .

Positive (semi-)definiteness

A matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ is positive semidefinite if

$$\forall x \in \mathbb{R}^n, \quad x^{\mathrm{T}}Ax > 0.$$

It is called *positive definite* when $x^{T}Ax > 0$ for every nonzero vector x.

Linear algebra (5)

Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$. A real λ is called an *eigenvalue of* \mathbf{A} if

$$\exists \mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\| \neq 0, \qquad \mathbf{A}\mathbf{v} = \lambda \mathbf{v}.$$

The vector \mathbf{v} is then called an eigenvector of \mathbf{A} (associated to the eigenvalue λ .

Linear algebra (5)

Eigenvalues and eigenvectors

Let $\mathbf{A} \in \mathbb{R}^{d \times d}$. A real λ is called an *eigenvalue of* \mathbf{A} if

$$\exists \mathbf{v} \in \mathbb{R}^d, \|\mathbf{v}\| \neq 0, \qquad \mathbf{A}\mathbf{v} = \lambda \mathbf{v}.$$

The vector \mathbf{v} is then called an *eigenvector of* \mathbf{A} (associated to the eigenvalue λ .

Any symmetric matrix in $\mathbb{R}^{d\times d}$ possesses d real eigenvalues. Given two symmetric matrices $(A, B) \in \mathbb{R}^{d\times d}$, we introduce the following notations:

- $\lambda_{\min}(\mathbf{A})/\lambda_{\max}(\mathbf{A})$: smallest/largest eigenvalue of \mathbf{A} ;
- $\mathbf{A} \stackrel{"}{\succeq} \mathbf{B} \Leftrightarrow \lambda_{\min}(\mathbf{A}) \geq \lambda_{\max}(\mathbf{B});$
- $A \stackrel{n}{\succ} B \Leftrightarrow \lambda_{\min}(A) > \lambda_{\max}(B)$.

With these notations, \boldsymbol{A} is positive semi-definite (resp. positive definite) if and only if $\boldsymbol{A} \succeq 0$ (resp. $\boldsymbol{A} \succ 0$).

We consider a smooth function $f: \mathbb{R}^d \to \mathbb{R}$.

31

We consider a smooth function $f: \mathbb{R}^d \to \mathbb{R}$.

First-order derivative

If f is continuously differentiable on \mathbb{R}^d , one defines for any $\mathbf{w} \in \mathbb{R}^d$ the gradient of f at \mathbf{w} by

$$\nabla f(\mathbf{w}) := \left[\frac{\partial f}{\partial w_i}\right]_{1 \leq i \leq d} \in \mathbb{R}^d.$$

The set of continuously differentiable functions will be denoted by $C^1 \stackrel{n}{=} C^1(\mathbb{R}^d, \mathbb{R})$.

We consider a smooth function $f: \mathbb{R}^d \to \mathbb{R}$.

We consider a smooth function $f: \mathbb{R}^d \to \mathbb{R}$.

Second-order derivative

If f is twice continuously differentiable on \mathbb{R}^d , one defines for any $\mathbf{w} \in \mathbb{R}^d$ the Hessian of f at \mathbf{w} by

$$\nabla^2 f(\mathbf{w}) := \left[\frac{\partial^2 f}{\partial w_i \partial w_j} \right]_{1 \leq i,j \leq d} \in \mathbb{R}^{d \times d}.$$

This matrix is symmetric.

The set of twice continuously differentiable functions will be denoted by \mathcal{C}^2 .

First-order Taylor expansions

If
$$f \in \mathcal{C}^1$$
, for any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,
$$\begin{cases} f(\boldsymbol{w} + \boldsymbol{h}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w} + t\,h)^{\mathrm{T}}\boldsymbol{h} & \text{for some } t \in (0,1) \\ f(\boldsymbol{w} + \boldsymbol{h}) = f(\boldsymbol{w}) + \int_0^1 \nabla f(\boldsymbol{w} + t\,h)^{\mathrm{T}}\boldsymbol{h}\,dt. \end{cases}$$

First-order Taylor expansions

If
$$f \in \mathcal{C}^1$$
, for any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,
$$\begin{cases} f(\boldsymbol{w} + \boldsymbol{h}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w} + t\,\boldsymbol{h})^\mathrm{T}\boldsymbol{h} & \text{for some } t \in (0,1) \\ f(\boldsymbol{w} + \boldsymbol{h}) = f(\boldsymbol{w}) + \int_0^1 \nabla f(\boldsymbol{w} + t\,\boldsymbol{h})^\mathrm{T}\boldsymbol{h}\,dt. \end{cases}$$

Second-order Taylor expansions

If
$$f \in \mathcal{C}^2$$
, for any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$\left\{ \begin{array}{l} f(\boldsymbol{w}+\boldsymbol{h}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w})^{\mathrm{T}}\boldsymbol{h} + \frac{1}{2}\boldsymbol{h}^{\mathrm{T}}\nabla^{2}f(\boldsymbol{w}+t\,\boldsymbol{h})\boldsymbol{h} \\ \text{for some } t \in (0,1) \\ f(\boldsymbol{w}+\boldsymbol{h}) = f(\boldsymbol{w}) + \nabla f(\boldsymbol{w})^{\mathrm{T}}\boldsymbol{h} + \frac{1}{2}\int_{0}^{1}\boldsymbol{h}^{\mathrm{T}}\nabla^{2}f(\boldsymbol{w}+t\,\boldsymbol{h})\boldsymbol{h}\,\mathrm{d}t. \end{array} \right.$$

Lipschitz continuity

<u>De</u>finition

A function $g:\mathbb{R}^d o \mathbb{R}^m$ is $L ext{-Lipschitz}$ continuous if it exists L>0 such that

$$\forall (\boldsymbol{w}, \boldsymbol{z}) \in (\mathbb{R}^d)^2, \quad \|g(\boldsymbol{w}) - g(\boldsymbol{z})\| \leq L \|\boldsymbol{w} - \boldsymbol{z}\|.$$

The value L is called a Lipschitz constant for g.

- Ex) Any linear function is Lipschitz continuous;
- $C_L^{1,1}$: set continuously differentiable functions with *L*-Lipschitz continuous first-order derivative;
- $C_L^{2,2}$: set of twice continuously differentiable functions with *L*-Lipschitz continuous second-order derivative.

Lipschitz continuity and Taylor bounds

First-order Taylor bound

Let $f \in \mathcal{C}^{1,1}_I$. For any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

Lipschitz continuity and Taylor bounds

First-order Taylor bound

Let $f \in \mathcal{C}_L^{1,1}$. For any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

⇒ One of the two key inequalities in optimization.

Lipschitz continuity and Taylor bounds

First-order Taylor bound

Let $f \in \mathcal{C}^{1,1}_{L}$. For any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^{d}$,

$$f(\mathbf{w} + \mathbf{h}) \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{L}{2} ||\mathbf{h}||^{2}.$$

⇒ One of the two key inequalities in optimization.

Second-order Taylor bound

Let $f \in \mathcal{C}^{2,2}_L$. For any $\boldsymbol{w}, \boldsymbol{h} \in \mathbb{R}^d$,

$$f(\mathbf{w} + \mathbf{h}) \leq f(\mathbf{w}) + \nabla f(\mathbf{w})^{\mathrm{T}} \mathbf{h} + \frac{1}{2} \mathbf{h}^{\mathrm{T}} \nabla^2 f(\mathbf{w}) \mathbf{h} + \frac{L}{6} ||\mathbf{h}||^3,$$

Some references

- Plenty of lecture notes, courses freely available;
- Appendix material of many optimization (and some ML) textbooks!

Examples (subject to updates)

- In French: https://www.lpsm.paris/pageperso/bolley/poly-cdiff.pdf https://www.lpsm.paris/pageperso/bolley/poly-algebre3.pdf
- In English: http://vmls-book.stanford.edu/vmls.pdf (Chapters 1-3) https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf.

Outline

- Introduction
- 2 Basics of optimization
 - Notation and background
 - Optimization problem and optimality
 - Convexity
 - Optimization algorithms
- Unconstrained optimization

What's optimization?

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.

 \Rightarrow All of these can be considered as optimization.

What's optimization?

- Operations research;
- Decision-making;
- Decision sciences;
- Mathematical programming;
- Mathematical optimization.
- ⇒ All of these can be considered as optimization.

My definition

The purpose of optimization is to make the best decision out of a set of alternatives.

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w} \in \mathbb{R}^d} f(x)$$
 subject to $oldsymbol{w} \in \mathcal{F}$

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w}\in\mathbb{R}^d}f(x)$$
 subject to $oldsymbol{w}\in\mathcal{F}$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function;
- ullet ${\cal F}$ is the constraint/feasible set.

Formulation of an optimization problem

A minimization problem of d real parameters is written as follows:

$$\min_{oldsymbol{w}\in\mathbb{R}^d}f(x)$$
 subject to $oldsymbol{w}\in\mathcal{F}$

- w represents the optimization variable(s);
- d is the dimension of the problem (we will assume $d \ge 1$);
- $f(\cdot)$ is the objective/cost/loss function;
- ullet ${\cal F}$ is the constraint/feasible set.

Maximizing f is equivalent to minimizing -f.

Local and global solutions

$$\min_{oldsymbol{w}\in\mathbb{R}^d}f(oldsymbol{w})$$
 subject to $oldsymbol{w}\in\mathcal{F}$

Local minimum (also called minimizer)

- A point w^* is a local minimum of the problem if there exists a neighborhood $\mathcal N$ of w^* such that $f(w^*) \leq f(w) \ \forall w \in \mathcal N \cap \mathcal F$;
- A local minimum such that $f(\mathbf{w}^*) < f(\mathbf{w}) \ \forall \mathbf{w} \in \mathcal{N} \cap \mathcal{F}, \ \mathbf{w} \neq \mathbf{w}^*$ is called a strict local minimum.

Global minimum

A point w^* is a global minimum of the problem if $f(w^*) \le f(w) \ \forall w \in \mathcal{F}$.

Local and global solutions (2)

- In general, finding global solutions is hard;
- Local solutions can also be hard to find.

Local and global solutions (2)

- In general, finding global solutions is hard;
- Local solutions can also be hard to find.

Tractable cases

- When the objective function behaves nicely;
- Suitable properties of the constraint set (more on that in the constrained optimization lecture).

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

First-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

Optimality conditions for unconstrained optimization

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f continuously differentiable.

First-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0.$$

- This condition is only necessary;
- A point such that $\|\nabla f(\mathbf{w}^*)\| = 0$ can also be a local maximum or a saddle point.

Optimality conditions for unconstrained optimization (2)

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f twice continuously differentiable.

Optimality conditions for unconstrained optimization (2)

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, f twice continuously differentiable.

Second-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 and $\nabla^2 f(\mathbf{w}^*) \succeq 0$.

Optimality conditions for unconstrained optimization (2)

Unconstrained problem: $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$,

f twice continuously differentiable.

Second-order necessary condition

If w^* is a local minimum of the problem, then

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 and $\nabla^2 f(\mathbf{w}^*) \succeq 0$.

Second-order sufficient condition

If w^* is such that

$$\|\nabla f(\mathbf{w}^*)\| = 0$$
 and $\nabla^2 f(\mathbf{w}^*) \succ 0$,

then it is a local minimum of the problem.

Outline

- Introduction
- Basics of optimization
 - Notation and background
 - Optimization problem and optimality
 - Convexity
 - Optimization algorithms
- Unconstrained optimization

First definitions

Convex set

A set $C \in \mathbb{R}^d$ is called **convex** if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

First definitions

Convex set

A set $C \in \mathbb{R}^d$ is called **convex** if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in \mathcal{C}^2, \ \forall t \in [0, 1], \qquad t\boldsymbol{u} + (1 - t)\boldsymbol{v} \in \mathcal{C}.$$

Examples:

- ullet \mathbb{R}^d :
- Line segment: $\{t\boldsymbol{w}|t\in\mathbb{R}\}$ for some $\boldsymbol{w}\in\mathbb{R}^d$;
- Sphere: $\{ \boldsymbol{w} \in \mathbb{R}^d | \sum_i [\boldsymbol{w}_i]^2 \leq 1 \}$.

Convex function

Generic definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is **convex** if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t f(\boldsymbol{u}) + (1 - t) f(\boldsymbol{v}).$$

Convex function

Generic definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if

$$\forall (\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2, \ \forall t \in [0, 1], \qquad f(t\boldsymbol{u} + (1 - t)\boldsymbol{v}) \leq t \, f(\boldsymbol{u}) + (1 - t) \, f(\boldsymbol{v}).$$

Examples:

- Linear function: $f(\mathbf{w}) = \mathbf{a}^{\mathrm{T}}\mathbf{w} + b$;
- Squared Euclidean norm: $f(\mathbf{w}) = \|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w}$.

Smooth convex functions

Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d o \mathbb{R}$ is convex if and only if

$$\forall u, v \in \mathbb{R}^d$$
, $f(v) \geq f(u) + \nabla f(u)^{\mathrm{T}}(v - u)$.

Smooth convex functions

Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d o \mathbb{R}$ is convex if and only if

$$\forall u, v \in \mathbb{R}^d$$
, $f(v) \geq f(u) + \nabla f(u)^{\mathrm{T}}(v - u)$.

The other key inequality in optimization.

Smooth convex functions

Convexity and gradient

A continuously differentiable function $f:\mathbb{R}^d o \mathbb{R}$ is convex if and only if

$$\forall u, v \in \mathbb{R}^d$$
, $f(v) \geq f(u) + \nabla f(u)^{\mathrm{T}}(v - u)$.

The other key inequality in optimization.

Convexity and Hessian

A twice continuously differentiable function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if and only if for every $\mathbf{w} \in \mathbb{R}^d$, $\nabla^2 f(\mathbf{w}) \succeq 0$.

Convex optimization problem

$$\min_{\mathbf{w} \in \mathcal{X}} f(\mathbf{w}), f \text{ convex}, \ \mathcal{X} \subset \mathbb{R}^d \text{ closed+convex}.$$

Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathcal{X}} f(\boldsymbol{w}), f \text{ convex}, \ \mathcal{X} \subset \mathbb{R}^d \text{ closed+convex}.$$

Theorem

Every local minimum of a f is a global minimum.

Convex optimization problem

$$\min_{\boldsymbol{w} \in \mathcal{X}} f(\boldsymbol{w}), f \text{ convex, } \mathcal{X} \subset \mathbb{R}^d \text{ closed+convex.}$$

Theorem

Every local minimum of a f is a global minimum.

Corollary

If f is continuously differentiable, every point \mathbf{w}^* such that $\|\nabla f(\mathbf{w}^*)\| = 0$ is a global minimum.

Strong convexity

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ in \mathcal{C}^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

Strong convexity

Definition

A function $f: \mathbb{R}^d \to \mathbb{R}$ in \mathcal{C}^1 is μ -strongly convex (or strongly convex of modulus $\mu > 0$) if for all $(\boldsymbol{u}, \boldsymbol{v}) \in (\mathbb{R}^d)^2$ and $t \in [0, 1]$,

$$f(t\mathbf{u} + (1-t)\mathbf{v}) \leq t f(\mathbf{u}) + (1-t)f(\mathbf{v}) - \frac{\mu}{2}t(1-t)\|\mathbf{v} - \mathbf{u}\|^2.$$

Theorem

Any strongly convex function in \mathcal{C}^1 has a unique global minimizer.

Strong convexity (2)

Gradient and strong convexity

Let $f: \mathbb{R}^d \to \mathbb{R}, \ f \in \mathcal{C}^1$. Then,

$$\forall \boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}^d, \quad f(\boldsymbol{v}) \geq f(\boldsymbol{u}) + \nabla f(\boldsymbol{u})^{\mathrm{T}}(\boldsymbol{v} - \boldsymbol{u}) + \frac{\mu}{2} \|\boldsymbol{v} - \boldsymbol{u}\|^2.$$

Hessian and strong convexity

Let $f: \mathbb{R}^d \to \mathbb{R}, \ f \in \mathcal{C}^2$. Then,

f is μ -strongly convex $\iff \nabla^2 f(\mathbf{w}) \succeq \mu \mathbf{I} \ \forall \mathbf{w} \in \mathbb{R}^d$.

Examples of (strongly) convex problems

Minimize a convex quadratic

$$\min_{oldsymbol{w} \in \mathbb{R}^{oldsymbol{d}}} f(oldsymbol{w}) := rac{1}{2} oldsymbol{w}^{\mathrm{T}} oldsymbol{A} oldsymbol{w} + oldsymbol{b}^{\mathrm{T}} oldsymbol{w}, \quad oldsymbol{A} \succeq 0.$$

- $\nabla^2 f(\mathbf{w}) = \mathbf{A}$;
- Strongly convex if $A \succ 0$, with $\mu = \lambda_{\min}(A)$.

Examples of (strongly) convex problems

Minimize a convex quadratic

$$\min_{oldsymbol{w} \in \mathbb{R}^{oldsymbol{d}}} f(oldsymbol{w}) := rac{1}{2} oldsymbol{w}^{\mathrm{T}} oldsymbol{A} oldsymbol{w} + oldsymbol{b}^{\mathrm{T}} oldsymbol{w}, \quad oldsymbol{A} \succeq 0.$$

- $\nabla^2 f(\mathbf{w}) = \mathbf{A}$;
- Strongly convex if $A \succ 0$, with $\mu = \lambda_{\min}(A)$.

Projection onto a closed, convex set

$$\min_{\boldsymbol{w} \in \mathcal{X}} \frac{1}{2} \|\boldsymbol{w} - \boldsymbol{a}\|^2, \quad \mathcal{X} \text{ closed, convex.}$$

- The objective is 1-strongly convex ⇒ the problem has a unique solution;
- Generalization of the case $\mathcal{X} = \mathbb{R}^d$.

Outline

- Introduction
- 2 Basics of optimization
 - Notation and background
 - Optimization problem and optimality
 - Convexity
 - Optimization algorithms
- Unconstrained optimization

Three ways to study optimization problems

- Mathematical: Prove existence of solutions, well-posedness of a problem. Study complex optimization formulations.
- **Computational**: Write a piece of software to solve specific or generic optimization problems in practice.
- Algorithmic: Design algorithms, establish theoretical guarantees and validate their practical implementation.

Three ways to study optimization problems

- Mathematical: Prove existence of solutions, well-posedness of a problem. Study complex optimization formulations.
- **Computational**: Write a piece of software to solve specific or generic optimization problems in practice.
- Algorithmic: Design algorithms, establish theoretical guarantees and validate their practical implementation.

This course is about the third category.

How to solve an optimization problem?

The ideal approach

- Find the solutions of $\|\nabla f(\mathbf{w})\| = 0$;
- Choose the one with the lowest function value.

How to solve an optimization problem?

The ideal approach

- Find the solutions of $\|\nabla f(\mathbf{w})\| = 0$;
- Choose the one with the lowest function value.

What's wrong with that?

- Solving a nonlinear equation directly is hard;
- There can be infinitely many solutions;
- The procedure has to be implemented eventually.

How we shall proceed

Iterative procedures

- Driving principle: given the current solution, move towards a (potentially) better point;
- Requires a certain amount of calculation at every iteration.

Our goal in the rest of the course

- Propose several algorithms;
- Analyze their theoretical behavior and guarantees;
- Check their practical appeal (lab sessions).

What do we expect?

In order to solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, we hope to achieve one of the following:

- The iterates should get close to a solution;
- The function values should get close to the optimum;
- The optimality conditions should get close to be satisfied.

What do we expect?

In order to solve $\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w})$, we hope to achieve one of the following:

- The iterates should get close to a solution;
- The function values should get close to the optimum;
- The optimality conditions should get close to be satisfied.

Convergence of iterates

The method generates a sequence of points (iterates) $\{w_k\}_k$ such that

$$\|\boldsymbol{w}_k - \boldsymbol{w}^*\| \to 0$$
 when $k \to \infty$,

where ${m w}^*$ is an optimal value of the problem.

(Typical of (strongly) convex functions.)

What do we expect? ('ed)

Convergence in function value

$$f(\boldsymbol{w}_k) \to f^*$$
 when $k \to \infty$,

where f^* is the optimal value of the problem.

(Typical of (strongly) convex functions.)

What do we expect? ('ed)

Convergence in function value

$$f(\boldsymbol{w}_k) \to f^*$$
 when $k \to \infty$,

where f^* is the optimal value of the problem. (Typical of (strongly) convex functions.)

Convergence to a stationary point for differentiable f

$$\|\nabla f(\boldsymbol{w}_k)\| \to 0$$
 when $k \to \infty$.

More generic condition.

Why these conditions?

Unlike in theory, in practice:

- We do not know the optimal solution(s);
- We do not know the optimal value.

Why these conditions?

Unlike in theory, in practice:

- We do not know the optimal solution(s);
- We do not know the optimal value.

From an algorithmic standpoint,

- We can measure the behavior of the iterates;
- We can evaluate the objective and try to decrease it iteratively;
- We can evaluate/estimate the gradient norm and measure its decrease to zero.

Remark: Convergence and convergence rates

In optimization, classical results are asymptotic:

$$\|\nabla f(\boldsymbol{w}_k)\| \to 0$$
 when $k \to \infty$.

Remark: Convergence and convergence rates

• In optimization, classical results are asymptotic:

$$\|\nabla f(\mathbf{w}_k)\| \to 0$$
 when $k \to \infty$.

• Global convergence rates are now very popular:

$$\|\nabla f(\boldsymbol{w}_k)\| = \mathcal{O}\left(\frac{1}{k}\right) \quad \Leftrightarrow \quad \exists C > 0, \|\nabla f(\boldsymbol{w}_k)\| \leq \frac{C}{k} \ \forall k.$$

- Common in convex optimization;
- Standard in theoretical computer science/statistics.

On the computational side

Optimizers code in...

- C/C++/Fortran (high-performance computing)
- Matlab, Python (prototyping);
- Julia.

On the computational side

Optimizers code in...

- C/C++/Fortran (high-performance computing)
- Matlab, Python (prototyping);
- Julia.

Specific optimization modeling languages

- GAMS, AMPL, CVX are broad-spectrum languages;
- MATPOWER, PyTorch are domain-oriented;
- Can be interfaced with the languages above.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Important tools

- Derivatives and Taylor expansion;
- Convexity.

Conclusions: basics of optimization

Modeling framework

- Objective, constraints;
- Characterization of the solutions.

Important tools

- Derivatives and Taylor expansion;
- Convexity.

Algorithmic principle

- Iterative process: find a sequence of points that leads to a solution;
- Quantify how fast.

Outline

- Introduction
- 2 Basics of optimization
- Unconstrained optimization
 - Linear least squares
 - Gradient descent method

Introduction

Our problem today

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w}).$$

Assumptions

- f bounded below by f^* ;
- f smooth \Rightarrow derivatives can be used to solve this problem.

Two categories

Least squares

- Heavily relies on linear algebra;
- Can precisely characterize the solution(s);
- Application: Linear regression problems.

Generic smooth unconstrained problems

- One tool from analysis: the gradient;
- Goal: Converge iteratively towards a solution;
- Application(s): Logistic regression (among others).

Aims of this lecture

- Survey classical techniques;
- Illustrate how they may be used in ML problems.
- Highlight the role of the gradient and that of convexity;
- Show how convergence rates are obtained.

Outline

- Introduction
- 2 Basics of optimization
- Unconstrained optimization
 - Linear least squares
 - Gradient descent method

Context

Data

- Dataset with *n* elements (individuals, trials, samples, etc);
- Every element i is characterized by a vector $\mathbf{x}_i \in \mathbb{R}^d$ of features and a label $y_i \in \mathbb{R}$.

$$\Rightarrow$$
 Matrix $m{X} = egin{bmatrix} m{x}_1^{\mathrm{T}} \\ \vdots \\ m{x}_n^{\mathrm{T}} \end{bmatrix} \in \mathbb{R}^{n \times d} \text{ and vector } m{y} = egin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}.$

Context

Data

- Dataset with *n* elements (individuals, trials, samples, etc);
- Every element i is characterized by a vector $\mathbf{x}_i \in \mathbb{R}^d$ of features and a label $y_i \in \mathbb{R}$.

$$\Rightarrow \mathsf{Matrix}\; \boldsymbol{X} = \left[\begin{array}{c} \boldsymbol{x}_1^\mathrm{T} \\ \vdots \\ \boldsymbol{x}_n^\mathrm{T} \end{array} \right] \; \in \; \mathbb{R}^{n \times d} \; \mathsf{and} \; \mathsf{vector} \; \boldsymbol{y} = \left[\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right].$$

Goal

We seek a linear predictor function $h: x \mapsto x^T w$ that correctly predicts y_i from x_i .

- Linear models often provide a good first approximation;
- Relies on linear algebra, a rich area both theoretically and computationally.

From linear models to linear systems

Ideal predictor

- Would achieve $h(x_i) = x_i^T w = y_i$ for every i;
- These n equations can be written under the form of a linear system: X w = y.

From linear models to linear systems

Ideal predictor

- Would achieve $h(x_i) = x_i^T w = y_i$ for every i;
- These n equations can be written under the form of a linear system: $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{v}$.

Solving linear systems of equations

- A purely linear algebra problem;
- ullet The solution is completely characterized by the properties of $oldsymbol{X}$ and $oldsymbol{y}$.

Here's the catch

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n are distinct (typical of noisy measurements).

Here's the catch

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n are distinct (typical of noisy measurements).

Fitting a linear model

- We seek $\mathbf{w} = w \in \mathbb{R}$ such that $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = x_i w = y_i \ \forall i$;
- The corresponding linear system is:

$$\begin{cases}
w = y_1 \\
w = y_2 \\
\vdots \\
w = y_n
\end{cases}$$

Here's the catch

A dataset

- $x_1 = x_2 = \cdots = x_n = 1 \ (d = 1);$
- y_1, \ldots, y_n are distinct (typical of noisy measurements).

Fitting a linear model

- We seek $\mathbf{w} = w \in \mathbb{R}$ such that $\mathbf{x}_i^{\mathrm{T}} \mathbf{w} = x_i w = y_i \ \forall i$;
- The corresponding linear system is:

$$\begin{cases}
 w = y_1 \\
 w = y_2 \\
 \vdots \\
 w = y_n
\end{cases}$$

- This system does not have a solution!
- Yet it is possible to compute a solution to the "data fitting" problem.

Linear least squares

Problem formulation

Given a data set $\{(x_i,y_i)\}_{1\leq i\leq n}$ where $x_i\in\mathbb{R}^d$, compute $w^*\in\mathbb{R}^d$ as a solution of

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \| \boldsymbol{X} \boldsymbol{w} - \boldsymbol{y} \|^2 = \frac{1}{2} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})^{\mathrm{T}} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}),$$

where
$$m{X} = \left| egin{array}{c} m{x}_1^{\mathrm{T}} \\ \vdots \\ m{x}_n^{\mathrm{T}} \end{array} \right| \in \mathbb{R}^{n \times d} \; ext{and} \; m{y} = \left| egin{array}{c} m{y}_1 \\ \vdots \\ m{y}_n \end{array} \right| \in \mathbb{R}^n.$$

Linear least squares

Problem formulation

Given a data set $\{(x_i, y_i)\}_{1 \leq i \leq n}$ where $x_i \in \mathbb{R}^d$, compute $w^* \in \mathbb{R}^d$ as a solution of

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \| \boldsymbol{X} \boldsymbol{w} - \boldsymbol{y} \|^2 = \frac{1}{2} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y})^{\mathrm{T}} (\boldsymbol{X} \boldsymbol{w} - \boldsymbol{y}),$$

where
$$m{X} = \left[egin{array}{c} m{x}_1^{\mathrm{T}} \\ \vdots \\ m{x}_n^{\mathrm{T}} \end{array}
ight] \in \mathbb{R}^{n \times d} \; ext{and} \; m{y} = \left[egin{array}{c} m{y}_1 \\ \vdots \\ m{y}_n \end{array}
ight] \in \mathbb{R}^n.$$

Characteristics

- Unconstrained optimization problem;
- Nonnegative objective function (values bounded below by 0);
- Smooth: polynomial in the coefficients of \boldsymbol{w} .

How to solve linear least squares

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\frac{1}{2}\left\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\right\|^2.$$

How to solve linear least squares

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\frac{1}{2}\left\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\right\|^2.$$

• If w^* is a solution of the linear system Xw = y, then it is a solution of the least-squares problem!

How to solve linear least squares

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}\frac{1}{2}\left\|\boldsymbol{X}\boldsymbol{w}-\boldsymbol{y}\right\|^2.$$

- If w^* is a solution of the linear system Xw = y, then it is a solution of the least-squares problem!
- What happens when the system has no solution?

Solving a linear system: the nice case

Squared linear system

X w = y, avec $X \in \mathbb{R}^{n \times d}$ and n = d.

Case 1: X possesses an inverse

$$\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y} \Leftrightarrow \boldsymbol{w} = \boldsymbol{X}^{-1} \boldsymbol{y}.$$

The system possesses a unique solution $\mathbf{w}^* = \mathbf{X}^{-1}\mathbf{y}$, which is also the global minimum of the least-squares problem $\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$.

Example with d = n = 2

$$\begin{cases} w_1 + w_2 &= 0, \\ 3w_1 + 2w_2 &= 1. \end{cases}$$

The unique solution is $\mathbf{w} = [1-1]^{\mathrm{T}}$.

Solving a linear system: the other cases

Squared linear system

 $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{n} = \boldsymbol{d}$.

Case 2: X is not invertible

- There could be no solution;
- There could be infinitely many.

In both cases, we can compute a solution in the least-squares sense!

Solving a linear system: the other cases

Squared linear system

 $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$ and $\boldsymbol{n} = \boldsymbol{d}$.

Case 2: X is not invertible

- There could be no solution;
- There could be infinitely many.

In both cases, we can compute a solution in the least-squares sense!

Other cases

- $\boldsymbol{X} \boldsymbol{w} = \boldsymbol{y}$, avec $\boldsymbol{X} \in \mathbb{R}^{n \times d}$, $n \neq d$;
- Can have no solution, one or infinitely many!

Linear algebra to the rescue

What we want

- An analogous of the inverse;
- Provides a solution when there exists one (or infinitely many).

Linear algebra to the rescue

What we want

- An analogous of the inverse;
- Provides a solution when there exists one (or infinitely many).

Pseudo-inverse

Given a matrix $X \in \mathbb{R}^{n \times d}$, there exists a matrix $A \in \mathbb{R}^{d \times n}$ that satisfies the Moore-Penrose equations:

$$\begin{cases}
AXA &= A \\
XAX &= X
\end{cases}$$
 and
$$\begin{cases}
(AX)^{T} &= AX \\
(XA)^{T} &= XA
\end{cases}$$

This matrix is called the pseudo-inverse of \boldsymbol{X} , and we note $\boldsymbol{A} = \boldsymbol{X}^{\dagger}$. If \boldsymbol{X} is invertible, $\boldsymbol{X}^{\dagger} = \boldsymbol{X}^{-1}$.

Least-squares and pseudo-inverse

$$X \in \mathbb{R}^{n \times d}, \quad y \in \mathbb{R}^n.$$

Theorem

For any $oldsymbol{y} \in \mathbb{R}^n$, $oldsymbol{X}^\dagger oldsymbol{y}$ is the solution of the least-squares problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y}\|^2.$$

with minimal norm. That is, for any $\hat{\boldsymbol{w}}$ solution of the problem:

Least-squares and pseudo-inverse

$$X \in \mathbb{R}^{n \times d}, \quad y \in \mathbb{R}^n.$$

Theorem

For any $oldsymbol{y} \in \mathbb{R}^n$, $oldsymbol{X}^\dagger oldsymbol{y}$ is the solution of the least-squares problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{2} \|\boldsymbol{X} \, \boldsymbol{w} - \boldsymbol{y}\|^2.$$

with minimal norm. That is, for any $\hat{\boldsymbol{w}}$ solution of the problem:

- $f(\mathbf{X}^{\dagger}\mathbf{y}) = f(\hat{\mathbf{w}});$
- $\bullet \|X^{\dagger}y\| \leq \|\hat{w}\|;$
- $X^{\dagger}y$ can be represented using less information than \hat{w} .

Back to our example

$$m{X}m{w} = m{y}, \qquad m{X} = \left[egin{array}{c} 1 \ dots \ 1 \end{array}
ight], \ m{y} = \left[egin{array}{c} y_1 \ dots \ y_n \end{array}
ight].$$

Finding a solution

- The least-squares problem $\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \|\boldsymbol{X} \boldsymbol{w} \boldsymbol{y}\|^2$ has infinitely many solutions;
- Among them, $w^* = X^{\dagger}y$ is the one with minimal norm;
- This solution turns out to be the mean $\mathbf{w}^* = \frac{1}{n} \sum_{i=1}^n y_i!$

In practice

Key points

- Computing the pseudo-inverse;
- Or an approximation thereof!

What linear algebra solvers can do

- Put the data matrix X in a nicer form (QR, LU, SVD, etc) easier to (pseudo-)invert;
- Use iterative linear algebra routines (LSQR, LSLQ, etc) to compute an approximate solution, paying attention to round-off errors;
- Run in parallel/distributed environments.

Two applications among many more

Least-squares formulations

- Naturally arise in a plurality of fields that try to minimize the error between a model and some data
 Ex) weather forecasting, statistics, economy.
- Some problems can also be formulate or reformulated as linear least squares.

Two applications among many more

Least-squares formulations

- Naturally arise in a plurality of fields that try to minimize the error between a model and some data
 Ex) weather forecasting, statistics, economy.
- Some problems can also be formulate or reformulated as linear least squares.

Two illustrations

- Rewrite an optimization problem as a linear least-squares problem;
- 2 Form a linear least-squares formulation of a problem.

Illustration: Minimization of quadratic functions

Problem

Given a symmetric matrix $m{A} \in \mathbb{R}^{d \times d}$ and a vector $m{b} \in \mathbb{R}^d$, solve

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{w} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{w}.$$

Solving this problem

- No solution if A has negative eigenvalues! (In that case, the problem is unbounded);
- We will always assume that $A \succeq 0$.

Illustration: Minimization of quadratic functions

Problem

Given a symmetric matrix $oldsymbol{A} \in \mathbb{R}^{d imes d}$ and a vector $oldsymbol{b} \in \mathbb{R}^d$, solve

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{w} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{w}.$$

- Unconstrained problem;
- ullet Smooth: objective is a degree-2 polynomial in the components of $oldsymbol{w}$.

Solving this problem

- No solution if A has negative eigenvalues! (In that case, the problem is unbounded);
- We will always assume that $A \succeq 0$.

Illustration: Minimization of quadratic functions (2)

The matrix **B** is called the square root of **A**; we write $\mathbf{B} = \mathbf{A}^{1/2}$.

Square root of a matrix matrix

For any symmetric positive semidefinite matrix A, there exists a matrix B such that $B^2 = B \times B = A$.

Illustration: Minimization of quadratic functions (2)

Square root of a matrix matrix

For any symmetric positive semidefinite matrix \boldsymbol{A} , there exists a matrix \boldsymbol{B} such that $\boldsymbol{B}^2 = \boldsymbol{B} \times \boldsymbol{B} = \boldsymbol{A}$.

The matrix **B** is called the square root of **A**; we write $\mathbf{B} = \mathbf{A}^{1/2}$.

Reformulations

The problem $\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \boldsymbol{w}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{w} - \boldsymbol{b}^{\mathrm{T}} \boldsymbol{w}$ is equivalent to

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} \frac{1}{2} \left\| \boldsymbol{A}^{1/2} \boldsymbol{w} - \boldsymbol{c} \right\|^2,$$

where $\boldsymbol{b} = \boldsymbol{A}^{1/2} \boldsymbol{c}$ (\boldsymbol{c} may not be unique).

Illustration: Minimization of quadratic functions (3)

A useful example

$$\min_{\boldsymbol{z} \in \mathbb{R}^d} \varphi(\boldsymbol{z}) = \boldsymbol{g}^{\mathrm{T}} \boldsymbol{z} + \frac{m}{2} \|\boldsymbol{z} - \boldsymbol{w}\|^2 \quad \text{where } \boldsymbol{g} \in \mathbb{R}^d, m \geq 0.$$

81

Illustration: Minimization of quadratic functions (3)

A useful example

$$\min_{oldsymbol{z} \in \mathbb{R}^d} arphi(oldsymbol{z}) = oldsymbol{g}^{\mathrm{T}} oldsymbol{z} + rac{m}{2} \|oldsymbol{z} - oldsymbol{w}\|^2 \quad ext{where } oldsymbol{g} \in \mathbb{R}^d, m \geq 0.$$

Reformulation

Expand the least-squares formula:

$$\varphi(z) = \frac{1}{2} z^{\mathrm{T}} \underbrace{(m I_d)}_{\text{Identity matrix}} z + (g - mw)^{\mathrm{T}} z + \underbrace{\frac{m}{2} \|w\|^2}_{\text{Independent of } z}.$$

81

Illustration: Minimization of quadratic functions (3)

A useful example

$$\min_{oldsymbol{z} \in \mathbb{R}^d} arphi(oldsymbol{z}) = oldsymbol{g}^{\mathrm{T}} oldsymbol{z} + rac{m}{2} \|oldsymbol{z} - oldsymbol{w}\|^2 \quad ext{where } oldsymbol{g} \in \mathbb{R}^d, m \geq 0.$$

Reformulation

Expand the least-squares formula:

$$\varphi(z) = \frac{1}{2} z^{\mathrm{T}} \underbrace{(m I_d)}_{\text{Identity matrix}} z + (g - mw)^{\mathrm{T}} z + \underbrace{\frac{m}{2} \|w\|^2}_{\text{Independent of } z}.$$

Equivalent linear least-squares problem:

$$\min_{\mathbf{z}\in\mathbb{R}^d}\frac{1}{2}\left\|\mathbf{z}-\left(\mathbf{w}-\frac{1}{m}\mathbf{g}\right)\right\|^2.$$

Illustration: Minimization of quadratic functions (3)

A useful example

$$\min_{oldsymbol{z} \in \mathbb{R}^d} arphi(oldsymbol{z}) = oldsymbol{g}^{\mathrm{T}} oldsymbol{z} + rac{m}{2} \|oldsymbol{z} - oldsymbol{w}\|^2 \quad ext{where } oldsymbol{g} \in \mathbb{R}^d, m \geq 0.$$

Reformulation

Expand the least-squares formula:

$$\varphi(z) = \frac{1}{2} z^{\mathrm{T}} \underbrace{(m I_d)}_{\text{Identity matrix}} z + (g - mw)^{\mathrm{T}} z + \underbrace{\frac{m}{2} \|w\|^2}_{\text{Independent of } z}.$$

Equivalent linear least-squares problem:

$$\min_{\mathbf{z} \in \mathbb{R}^d} \frac{1}{2} \left\| \mathbf{z} - \left(\mathbf{w} - \frac{1}{m} \mathbf{g} \right) \right\|^2.$$

3 The global minimum of the problem is $z^* = w - \frac{1}{m}g$.

Illustration: Linear regression

- Data $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.
- Goal: compute a linear model $h(x) = w^T x$ such that $h(x_i) \approx y_i$ for $i = 1, \ldots, n$.
- Objective: Minimize the squares of the errors $|h(x_i) y_i|$.

Illustration: Linear regression

- Data $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \mathbb{R}$.
- Goal: compute a linear model $h(x) = \mathbf{w}^T x$ such that $h(x_i) \approx y_i$ for i = 1, ..., n.
- Objective: Minimize the squares of the errors $|h(x_i) y_i|$.

Linear regression

$$\min_{\mathbf{w} \in \mathbb{R}^d} \frac{1}{2n} \sum_{i=1}^n (h(x_i) - y_i)^2 = \frac{1}{2} \| \mathbf{X} \, \mathbf{w} - \mathbf{y} \|^2.$$

This is a linear least-squares problem!

Illustration: Linear regression (2)

Quality of the least-squares solution

- Best possible approximation in terms of errors;
- Fixed solution when $\{(x_i, y_i)\}_i$ are deterministic.

Illustration: Linear regression (2)

Quality of the least-squares solution

- Best possible approximation in terms of errors;
- Fixed solution when $\{(x_i, y_i)\}_i$ are deterministic.

In presence of random data

- True linear regression: consider the distribution of the data;
- Statistical interpretation of the least-squares solution: maximum likelihood estimator.

Illustration: Linear regression (2)

Quality of the least-squares solution

- Best possible approximation in terms of errors;
- Fixed solution when $\{(x_i, y_i)\}_i$ are deterministic.

In presence of random data

- True linear regression: consider the distribution of the data;
- Statistical interpretation of the least-squares solution: maximum likelihood estimator.

In short: linear least squares

Aims

- Find a linear relationship between features and labels in your data;
- Work even when an exact linear model does not exist!

Techniques

- Look for solutions of the associated linear system;
- In practice, can use direct linear algebra solvers (even better when you choose one matching your problem characteristics);
- If too costly, can think of iterative methods.

Outline

- Introduction
- 2 Basics of optimization
- Unconstrained optimization
 - Linear least squares
 - Gradient descent method

Back to the general problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d} f(\boldsymbol{w}).$$

Assumptions: *f* smooth, bounded below.

Back to the general problem

$$\min_{\boldsymbol{w}\in\mathbb{R}^d}f(\boldsymbol{w}).$$

Assumptions: f smooth, bounded below.

Key properties

- Smoothness: We will exploit the gradient of f;
- Convexity: Will allow for fast convergence (with the right method).

Example: Logistic regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$;
- Goal: Classification through a linear classifier $\mathbf{x} \mapsto \mathbf{w}^{\mathrm{T}} \mathbf{x}$;
- Difference with SVM: we want probabilities of belonging to a class!

Example: Logistic regression

Context

- Data set $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{-1, +1\}$;
- Goal: Classification through a linear classifier $x \mapsto w^{\mathrm{T}} x$;
- Difference with SVM: we want probabilities of belonging to a class!

A probabilistic measure

We define an odds-like function

$$p(x; w) = (1 + e^{x^{\mathrm{T}} w})^{-1} \in (0, 1).$$

ullet The parameters $oldsymbol{w}$ should be chosen such that

$$\begin{cases} p(\mathbf{x}_i; \mathbf{w}) \approx 1 & \text{if } y_i = +1; \\ p(\mathbf{x}_i; \mathbf{w}) \approx 0 & \text{if } y_i = -1. \end{cases}$$

Example: Logistic regression (2)

Towards an objective function

$$p(\mathbf{x};\mathbf{w}) = (1 + e^{\mathbf{x}^{\mathrm{T}}\mathbf{w}})^{-1},$$

- Penalize cases where
 - $y_i = +1$ and $p(x_i; w)$ is small;
 - $y_i = +1$ and $p(x_i; w)$ is close to 1;
- Use logarithm of the $p(x_i; w)$ in the cost function:
 - Motivation: Statistical interpretation (joint distribution);
 - Mathematical interest for gradient calculations.

Example: Logistic regression (2)

Towards an objective function

$$p(\mathbf{x};\mathbf{w})=(1+e^{\mathbf{x}^{\mathrm{T}}\mathbf{w}})^{-1},$$

- Penalize cases where
 - $y_i = +1$ and $p(x_i; w)$ is small;
 - $y_i = +1$ and $p(x_i; w)$ is close to 1;
- Use logarithm of the $p(x_i; w)$ in the cost function:
 - Motivation: Statistical interpretation (joint distribution);
 - Mathematical interest for gradient calculations.

Resulting function: logistic loss

$$f(\boldsymbol{w}) = \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{w}} \right) \right\}.$$

Ex: Logistic regression (3)

Logistic loss problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^n} \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \, \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \, \boldsymbol{w}} \right) \right\}$$

Ex: Logistic regression (3)

Logistic loss problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^n} \frac{1}{n} \left\{ \sum_{y_i = -1} \ln \left(1 + e^{-\boldsymbol{x}_i^{\mathrm{T}} \, \boldsymbol{w}} \right) + \sum_{y_i = +1} \ln \left(1 + e^{\boldsymbol{x}_i^{\mathrm{T}} \, \boldsymbol{w}} \right) \right\}$$

- The logistic loss is convex (but not strongly);
- To make it convex, possible to add a regularizing term $\frac{\mu}{2} || \mathbf{w} ||^2$ \Rightarrow The problem becomes μ -strongly convex!

Example: Nonlinear regression

Context

- Data set $\{(\boldsymbol{x}_i, y_i)\}_i$, $\boldsymbol{x}_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$;
- Goal: Classification through a linear classifier $x \mapsto w^{\mathrm{T}}x$.

Example: Nonlinear regression

Context

- Data set $\{(x_i, y_i)\}_i$, $x_i \in \mathbb{R}^d$, $y_i \in \{0, 1\}$;
- Goal: Classification through a linear classifier $x \mapsto w^{\mathrm{T}} x$.

A loss function

- ullet We use a sigmoid function: $\phi(oldsymbol{x}_i;oldsymbol{w}) = \left(1+e^{-oldsymbol{x}_i^{
 m T}oldsymbol{w}}
 ight)$;
- Our goal is now to penalize the squared error $(y_i \phi(x_i; w))^2$.

Example: Nonconvex loss function (2)

The optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \frac{1}{1 + e^{-x_i^{\mathrm{T}} \boldsymbol{w}}} \right)^2.$$

91

Example: Nonconvex loss function (2)

The optimization problem

$$\min_{\boldsymbol{w} \in \mathbb{R}^d} f(\boldsymbol{w}) = \frac{1}{n} \sum_{i=1}^n \left(y_i - \frac{1}{1 + e^{-x_i^{\mathrm{T}} \boldsymbol{w}}} \right)^2.$$

- Nonconvex problem;
- Nonlinear least-squares structure;
- Smooth: can apply gradient descent.