US Home Prices Modeling Project Report (2000–2025)

Project Objective

To model and analyze the key economic, demographic, and housing-related factors influencing US home prices over the past two decades using publicly available data and machine learning techniques.

Data Collection & Preprocessing

- Data Sources (Public & Official):
 - S&P Case-Shiller Home Price Index (FRED)
 - 30-Year Fixed Rate Mortgage Average (FRED)
 - Unemployment Rate (FRED)
 - Median Household Income (US Census Bureau)
 - Housing Starts (FRED)
 - Consumer Price Index (FRED)
 - o Population Estimates (US Census Bureau)

Datasets Used:

- S&P Case-Shiller Home Price Index (Target)
- Mortgage Rates
- Unemployment Rate
- Median Household Income
- Housing Starts
- Consumer Price Index (CPI)
- Population Estimates (2000–2025)

Key Data Decisions:

- o Chose S&P Case-Shiller HPI as the target due to its reliability and coverage.
- Used monthly granularity across all datasets for uniformity.
- o Handled missing values using forward-fill/backward-fill techniques.
- ROI analysis was not performed due to the absence of cost or revenue data in the dataset.

Preprocessing Steps:

- o Converted all date columns to a unified datetime format.
- Merged datasets chronologically on a monthly basis.

Created a unified dataframe master_df1 with 243 rows and 13 features.

Visualization Tools:

I prioritized more statistically rigorous visualizations using Python (Seaborn/Matplotlib) to ensure interpretability and precision. Tableau was explored, but Python visuals were found more suitable for this modeling-based analysis.

M Exploratory Data Analysis (EDA)

• Key Findings:

- Strong positive correlation between CPI and Home Prices.
- Unemployment and Mortgage Rates showed weaker correlation.
- HPI demonstrated an upward trend, impacted by events like the 2008 recession and COVID-19.
- Seasonal patterns in Housing Starts; CPI and Unemployment showed economic cycles.

Visualization Techniques:

- Correlation heatmap
- Trend analysis with line plots
- Distribution check with histograms and boxplots
- Applied rolling averages for smoothing volatility

Feature Engineering

New Features Created:

- HPI_rolling: 12-month moving average of HPI
- Post COVID: Binary feature marking post-March 2020 period
- Log_Unemployment: Log transformation to handle skewness in unemployment rate
- o CPI_Growth: Monthly % change in CPI
- o Mortgage_Rate_Level: Categorized mortgage rates into Low, Medium, High

Encoding:

Mortgage_Rate_Level transformed using OrdinalEncoder

Modeling

• Train-Test Split:

- Time-based chronological split (80% train, 20% test) to preserve temporal patterns
- Avoided random split to maintain causality and avoid data leakage

Models Trained:

- Linear Regression: baseline model
- o Random Forest Regressor: ensemble model chosen for robustness

• Performance Metrics:

Model	R ² Score	RMSE
Linear Regression	0.9992	0.0102
Random Forest	0.9998	0.0023

Residual Analysis

- Linear Regression:
 - Slight funnel shape in residuals → mild heteroscedasticity
 - Histogram slightly skewed but still bell-shaped
- Random Forest:
 - Residuals tightly centered around zero with no visible pattern
 - Histogram appears normally distributed

Conclusion: Random Forest outperformed Linear Regression in terms of error structure and fit.

***** Feature Importance

• Top Predictors from Random Forest:

Feature	Importance	
Home_Price_Index	0.347	
HPI_rolling	0.270	
CPI	0.206	
Population_Monthly	0.120	

- These four features accounted for over 90% of model predictive power.
- Negligible Features:
 - Mortgage_Rate, Housing_Starts, Month, CPI_Growth, Mortgage_Rate_Level
 - o Low importance attributed to high collinearity or minimal monthly variation

Re-training with Top Features

- Why: To simplify the model without compromising accuracy
- Action: Re-trained Random Forest using top 4 features only
- Outcome:

R² Score: 0.9997
RMSE: 0.0042

P Decision Justification: Acceptable performance drop; model stays reliable while being easier to understand

Model Exporting

- Final model exported as: final_random_forest_model.pkl
- Format: joblib or pickle
- Reusable in production pipelines or Flask-based apps

Deliverables

- Jupyter Notebook: Includes EDA, modeling, and evaluation
- Final Report: This document
- Model File: final_random_forest_model.pkl

Final Thoughts & Takeaways

- The project highlighted major economic patterns that influenced US housing prices.
- Historical pricing, CPI, and population growth were key influencers.
- Creating new features like rolling averages and transformations made the model perform noticeably better.
- Using a time-based split was essential to keep the evaluation realistic and prevent data leakage.
- Random Forest gave the most accurate results and helped explain which features mattered most.