DATA605 Project

Predict National Policy Changes based on Case Data

Group Members:

Chao Cao David Haft Miao Zhang Yibo Zhang

Introduction

COVID-19 is an ongoing, multi-year event. Public health policies change over time, as do infection rates.

This leads to the questions:

- Is there any way we can visualize the case data and policy data at the same time?
- Can we predict policy changes based on the case data?

Data Source (1)

Policy data

Oxford Covid-19 Government Response Tracker (OxCGRT)

The Oxford Covid-19 Government Response Tracker (OxCGRT) collects systematic information on which governments have taken which measures, and when. This can help decision-makers and citizens understand governmental responses in a consistent way, aiding efforts to fight the pandemic. The OxCGRT systematically collects information on several different common policy responses governments have taken, records these policies on a scale to reflect the extent of government action, and aggregates these scores into a suite of policy indices.

This is a project from the Blavatnik School of Government. More information on the OxCGRT is available on the school's website: https://www.bsg.ox.ac.uk/covidtracker. This README contains information about using the database.

Policy data

```
Index(['CountryName', 'CountryCode', 'RegionName', 'RegionCode',
       'Jurisdiction', 'Date', 'C1_School closing', 'C1_Flag', 'C1_Notes',
       'C2 Workplace closing', 'C2 Flag', 'C2 Notes',
       'C3_Cancel public events', 'C3_Flag', 'C3_Notes',
       'C4 Restrictions on gatherings', 'C4 Flag', 'C4 Notes',
       'C5_Close public transport', 'C5_Flag', 'C5_Notes',
       'C6 Stay at home requirements', 'C6 Flag', 'C6 Notes',
       'C7_Restrictions on internal movement', 'C7_Flag', 'C7_Notes',
       'C8 International travel controls', 'C8 Notes', 'E1 Income support',
       'E1_Flag', 'E1_Notes', 'E2_Debt/contract relief', 'E2_Notes',
       'E3_Fiscal measures', 'E3_Notes', 'E4_International support',
       'E4_Notes', 'H1_Public information campaigns', 'H1_Flag', 'H1_Notes',
       'H2_Testing policy', 'H2_Notes', 'H3_Contact tracing', 'H3_Notes',
       'H4 Emergency investment in healthcare', 'H4 Notes',
       'H5_Investment in vaccines', 'H5_Notes', 'H6_Facial Coverings',
       'H6_Flag', 'H6_Notes', 'H7_Vaccination policy', 'H7_Flag', 'H7_Notes',
       'H8_Protection of elderly people', 'H8_Flag', 'H8_Notes', 'M1_Wildcard',
       'M1 Notes', 'V1 Vaccine Prioritisation (summary)', 'V1 Notes',
       'V2A_Vaccine Availability (summary)', 'V2_Notes',
       'V2B Vaccine age eligibility/availability age floor (general population summary)',
       'V2C_Vaccine age eligibility/availability age floor (at risk summary)',
       'V2D Medically/ clinically vulnerable (Non-elderly)', 'V2E Education',
       'V2F_Frontline workers (non healthcare)',
       'V2G Frontline workers (healthcare)',
       'V3_Vaccine Financial Support (summary)', 'V3_Notes',
       'V4_Mandatory Vaccination (summary)', 'V4_Notes', 'ConfirmedCases',
       'ConfirmedDeaths', 'StringencyIndex', 'StringencyIndexForDisplay',
       'StringencyLegacyIndex', 'StringencyLegacyIndexForDisplay',
       'GovernmentResponseIndex', 'GovernmentResponseIndexForDisplay',
       'ContainmentHealthIndex', 'ContainmentHealthIndexForDisplay',
       'EconomicSupportIndex', 'EconomicSupportIndexForDisplay'],
      dtvpe='object')
```

Policy data

	Unnamed: 0	CountryName	CountryCode	RegionName	RegionCode	Jurisdiction	Date	C1_School closing	C1_Flag	C1_Notes		StringencyIndex	Stringency
0	30784	United States	USA	NaN	NaN	NAT_TOTAL	2022- 01-01	2.0	0.0	NaN		53.24	
1	30785	United States	USA	NaN	NaN	NAT_TOTAL	2022- 01-02	2.0	0.0	NaN		53.24	
2	30786	United States	USA	NaN	NaN	NAT_TOTAL	2022- 01-03	2.0	0.0	NaN		53.24	
3	30787	United States	USA	NaN	NaN	NAT_TOTAL	2022- 01-04	2.0	0.0	Several school districts across the country ar	200	53.24	
4	30788	United States	USA	NaN	NaN	NAT_TOTAL	2022- 01-05	2.0	0.0	NaN	***	53.24	
		(277	225	3***	(811					555		***	
5403	36187	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 04-10	NaN	NaN	NaN		NaN	
5404	36188	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 04-11	NaN	NaN	NaN		NaN	
5405	36189	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 04-12	NaN	NaN	NaN		NaN	
5406	36190	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 04-13	NaN	NaN	NaN		NaN	
5407	36191	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 04-14	NaN	NaN	NaN	111	NaN	

Data Source (2)

Case data

United States COVID-19 Cases and Deaths by State

- CDC reports aggregate counts of COVID-19 cases and death numbers daily online.
- However, because many municipalities do batch-reporting, in order to keep the data smooth, we
 use a 10-day window, not the daily numbers

Data.CDC.gov

Home Data Catalog Developers Video Guides 60 Y D 0 Sign In BETA Introducing our new data shaping and exploration experience: Filter, group, aggregate, and more! Try it now Learn more × United States COVID-19 Cases and Deaths by State... ### ||-#00 ||-G Find in this Dataset CDC reports aggregate counts of COVID-19 cases and death numbers daily online. Data More Views Filter Visualize Export Discuss Embed About

submissi :	state :	tot_cases :	conf_ca	prob_ca	new_case :	pnew_c :	tot_death :	conf_de	prob_de	new_de	pnew_d
03/11/2021	KS	297,229	241,035	56,194	0	0	4,851			0	
02/12/2021	UT	359,641	359,641	0	1,060	0	1,785	1,729	56	11	
02/04/2020	AR	0			0		0			0	
07/23/2020	TX	361,125			9,507	0	7,981			281	
11/12/2020	FL	851,095			6,750	1,452	18,485			57	
01/01/2022	UT	636,992	636,992	0	0	0	3,787	3,635	152	0	
05/22/2021	MA	704,796	659,246	45,550	451	46	17,818	17,458	360	5	
10/28/2020	PR	35,112	34,791	321	619	1	805	624	181	3	
08/01/2021	GA	1,187,107	937,515	249,592	3,829	1,144	21,690	18,725	2,965	7	
04/04/2020	AS	0			0		0			0	
09/14/2021	AS	0			0	0	0			0	
03/14/2020	TX	22			0	0	0			0	

```
df.head()
  submission_date state tot_cases conf_cases prob_cases new_case pnew_case tot_death conf_death prob_death new_d
                    ND
                          163565
                                                                                    1907
                                                                                               NaN
                                                                                                           NaN
0 12/01/2021
                                     135705.0
                                                 27860.0
                                                              589
                                                                         220.0
                                                                                                                       9
1 09/01/2021
                    ND
                          118491
                                     107475.0
                                                 11016.0
                                                              536
                                                                         66.0
                                                                                    1562
                                                                                               NaN
                                                                                                           NaN
2 05/12/2022
                    CT
                          777064
                                     696528.0
                                                 80536.0
                                                              1963
                                                                         173.0
                                                                                     10883
                                                                                               8906.0
                                                                                                           1977.0
                                                                                                                       0
3 10/04/2020
                    MD
                          127290
                                     NaN
                                                 NaN
                                                              471
                                                                        0.0
                                                                                    4092
                                                                                               3933.0
                                                                                                           159.0
                                                                                                                       3
```

924

0.0

8549

8345.0

204.0

19

NaN

In [15]: df.columns

4 03/11/2021

In [14]:

df = pd.read_csv('../data/db.csv')

MD

390490

NaN

4Vs

Volume	Variety
The size of all datasets is ~500MB	pandas dataframe spark dataframe
Velocity	Veracity

Step1: Exploring Policy Data

1. Separate national policy and state policy

In [3]: # National Policies dfP[dfP['Jurisdiction']=='NAT_TOTAL'] Unnamed: CountryName CountryCode RegionName RegionCode Jurisdiction Date C1_School closing C1_Flag C1_Notes ... 41144 United States 0.0 NaN 41145 NaN 0.0 41146 United States NaN NaN Several school 41147 United States NaN NaN 0.0 districts across the country ar ... United States NaN NaN 0.0 134 41278 United States 135 41279 NaN United States 136 41280 United States 137 41281 United States 138 41282 United States NaN NaN NaN NaN

139 rows × 87 columns

In [4]: # State Policies
 dfP[dfP['Jurisdiction']=='STATE_TOTAL']

	Unnamed: 0	CountryName	CountryCode	RegionName	RegionCode	Jurisdiction	Date	C1_School closing	C1_Flag	C1_Notes	
139	41283	United States	USA	Alaska	US_AK	STATE_TOTAL	2022- 01-01	1.0	0.0	NaN	
140	41284	United States	USA	Alaska	US_AK	STATE_TOTAL	2022- 01-02	1.0	0.0	NaN	
141	41285	United States	USA	Alaska	US_AK	STATE_TOTAL	2022- 01-03	1.0	0.0	NaN	
142	41286	United States	USA	Alaska	US_AK	STATE_TOTAL	2022- 01-04	1.0	0.0	NaN	
143	41287	United States	USA	Alaska	US_AK	STATE_TOTAL	2022- 01-05	1.0	0.0	NaN	
		***	***	***	***	***				***	
7223	48367	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 05-15	0.0	NaN	NaN	
7224	48368	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 05-16	0.0	NaN	NaN	
7225	48369	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 05-17	0.0	NaN	NaN	
7226	48370	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 05-18	NaN	NaN	NaN	
7227	48371	United States	USA	Wyoming	US_WY	STATE_TOTAL	2022- 05-19	NaN	NaN	NaN	

Step1: Exploring Policy Data

2. focus on instereted policy Sort by date

	Date	C1_School closing	C2_Workplace closing	C3_Cancel public events	C4_Restrictions on gatherings	C5_Close public transport	H2_Testing policy
0	2022- 01-01	2.0	2.0	1.0	4.0	1.0	3.0
1	2022- 01-02	2.0	2.0	1.0	4.0	1.0	3.0
2	2022- 01-03	2.0	2.0	1.0	4.0	1.0	3.0
3	2022- 01-04	2.0	2.0	1.0	4.0	1.0	3.0
4	2022- 01-05	2.0	2.0	1.0	4.0	1.0	3.0
134	2022- 05-15	NaN	NaN	NaN	NaN	NaN	NaN
135	2022- 05-16	NaN	NaN	NaN	NaN	NaN	NaN
136	2022- 05-17	NaN	NaN	NaN	NaN	NaN	NaN
137	2022- 05-18	NaN	NaN	NaN	NaN	NaN	NaN
138	2022- 05-19	NaN	NaN	NaN	NaN	NaN	NaN

139 rows × 7 columns

Step1: Exploring Policy Data

3. Calculate the difference to know when the policies change

Step2: Exploring Case Data

1. Visualization of cases

```
dfC_proc.plot(y='new_case')
```

<AxesSubplot:xlabel='submission_date'>

Step2: Exploring Case Data

2. Make it flatter and smoother by calculating the average number of each 20 days

	new_case	new_death	new_case_MA20	new_death_MA20
submission_date				
2020-02-10	0	0	0.60	0.00
2020-02-11	0	0	0.60	0.00
2020-02-12	1	0	0.60	0.00
2020-02-13	1	0	0.60	0.00
2020-02-14	0	0	0.60	0.00
2022-05-12	101200	253	70014.55	292.65
2022-05-13	116893	429	74490.90	311.00
2022-05-14	21733	46	74320.85	310.55
2022-05-15	45491	40	73985.40	302.90
2022-05-16	127814	231	77109.50	296.75

Step3: Fusion

- 1. reset 0 in specfic columns
- 2. get the value and datelist
- 3. Plot

DATELIST

```
[{'policy_name': 'C1_School closing',
  'dates_of_change': [Timestamp('2020-03-05 00:00:00'),
    Timestamp('2021-02-03 00:00:00'),
    Timestamp('2021-05-09 00:00:00'),
    Timestamp('2021-05-23 00:00:00'),
    'value': [3.0, -1.0, -1.0, 1.0]},
    'policy_name': 'C6_Stay at home requirements',
    'dates_of_change': [Timestamp('2020-03-15 00:00:00'),
    Timestamp('2020-07-20 00:00:00'),
    Timestamp('2020-10-13 00:00:00'),
    Timestamp('2020-10-26 00:00:00'),
    Timestamp('2020-11-16 00:00:00'),
    Timestamp('2021-03-04 00:00:00')],
    'value': [2.0, -1.0, 1.0, -1.0, 1.0, -1.0]},
```

Techenology

- 1. AWS
- 2. Spark

COVID-19 Cases and Public Policy, United States

COVID-19 Cases and Public Policy, Maryland

Conclusion

- 1. Responses tend to have a one-month lag time
- 2. Last peak was caused by the Omicron variant.
- 3. No policy changes made this year with regard to school closure.
- 4. Following the existing pattern, we expect to see additional policy changes in June following from recent COVID numbers.

Challenges

Compatibility

- Java 8/11 works for spark (version conflicts)
- Environment Variables / Paths
- Mac/ Windows/ Colab

Challenges

Data

- Evaluation (Sources (backup))
- Cleaning
- Visualization
- Missing data / facts?

Future work

- 1. Docker or other deployment technologies
- 2. Study relationships between differerent policies
- 3. Study specfic states (Using current cases)
- 4. Apply recommendation system algorithms

Github Repository

https://github.com/HenryVarro666/policy-changes-prediction

Thank you!