

Drowsy Driver Detection System Using Eye Blink Patterns and yawns

- Our drowsiness detection system utilizes computer vision and neural networks.
- ☐ It starts by detecting the driver's face using the Viola-Jones algorithm and then employs a neural network-based eye detector from the STASM library to locate the pupils.
- ☐ The system estimates face orientation based on the pupils' vertical positions and corrects it by rotating the frame.
- ☐ Finally, it extracts a normalized rectangular area from the eye's pupil region for further analysis, facilitating drowsiness detection.

- ☐ If the driver's eyes have not significantly changed, our model moves on to examining the lips.
- ☐ There will be a space between the driver's lips if they yawn.
- ☐ The algorithm detects this gap and forecasts whether the subject will yawn or not.
- If the user yawns, it will be obvious that they are sleepy.

It is calculated with below equations:

$$\begin{split} I(\mathbf{x},\mathbf{y}) &= \mathsf{pow} \left(\frac{I(\mathbf{x},\mathbf{y}) - \mathsf{low}_{\mathsf{in}}}{\mathsf{err}_{\mathsf{in}}}, \gamma \right) * \; \mathsf{err}_{\mathsf{out}} + \; \mathsf{low}_{\mathsf{out}} \\ &= \mathsf{err}_{\mathsf{in}} = \mathsf{high}_{in} - \; \mathsf{low}_{\mathsf{in}} \\ &= \mathsf{err}_{\mathsf{out}} = \mathsf{high}_{\mathsf{out}} - \; \mathsf{low}_{\mathsf{out}}. \end{split} \qquad \begin{aligned} &\mathbf{I}_{dif} = VF(Up(I')) - \; \mathsf{Low}(I'). \\ &\mathbf{I}_{sum} = \sum_{i=0,j=0}^{width,height} I_{dif}(i,j) \\ &\mathbf{I}_{sum} = \sum_{i=0,j=0}^{width,height} I_{dif}(i,j) \\ &\mathbf{I}_{state} = \left\{ \begin{aligned} Open & I_{sum} < T \\ Closed & I_{sum} \ge T \end{aligned} \right\} \end{aligned}$$

Data Preprocessing techniques used

- Prewitt operator (edge detection)
- yeo johnson transformation (normalization)
- Desaturation method (conversion of image to grayscale)
- Anisotropic diffusion (noise reduction)

Data post processing techniques used

- Histogram Equalization transformation
- T distributed stochastic neighbour embedding
- Semantic enrichment (metadata integration)

	precision	recall	f1-score	support	
yawn	0.90	0.83	0.86	63	
no_yawn	0.81	0.86	0.84	74	
Closed	0.99	0.68	0.81	215	
Open	0.76	0.98	0.85	226	
accuracy			0.84	578	
macro avg	0.86	0.84	0.84	578	
weighted avg	0.86	0.84	0.83	578	