Group 1

Questions:

1. **Plot the Sales Data**: Upload the provided CSV file containing the Time for Year and Value for Sales columns. Visualize the trend of sales over the years.

- 2. Linear Trend Analysis: (Use first 25 records)
 - Perform a linear regression to fit a trend line to the sales data. (Include the plot also)
 - o Display the regression equation.


```
Call:
lm(formula = time_series ~ time_index)
Residuals:
   Min
        1Q Median 3Q
                                 Max
-121.89 -26.55 -10.86 27.79 130.03
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 6055.000 24.153 250.69 <2e-16 ***
time_index -158.557
                      1.625 -97.59 <2e-16 ***
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 ( , 1
Residual standard error: 58.58 on 23 degrees of freedom
Multiple R-squared: 0.9976, Adjusted R-squared: 0.9975
F-statistic: 9524 on 1 and 23 DF, p-value: < 2.2e-16
```

Y(t) = 6055 - 158.557t

Growth Trend Analysis:

 Perform a growth trend analysis assuming both annual and continuous compounding.

Annual Compounding

Continuous Compounding

o Display the growth model equations.

Annual Compounding: log(Y(t)) = 3.8191546 - 0.0182476t

$$Y(t) = 6594.085895 * 0.958860^{t}$$

Continuous Compounding: ln(Y(t)) = 8.793929 - 0.042017t

$$Y(t) = 6594.089523 * exp - 0.042017t$$

o Find the growth rate for each case.

Annual Compounding:

$$1+g = 0.958854$$

g = -0.041146

Continuous Compounding:

g = -0.042017

- 3. Forecast Future Sales: (Use last 5 records)
 - o Using the fitted linear trend model and growth trend model assuming both annual and continuous compounding forecast the sales for the next 5 years.

Actual	linear	Growth_annual_compounding	Growth_continuos_compounding
1950	1932.518	2211.66422	2211.634248
1859	1773.961	2120.663084	2120.633195
1594	1615.404	2033.406281	2033.376519
1323	1456.847	1949.739746	1949.710151
1262	1298.29	1869.515755	1869.486363

Discuss the goodness of the fitted model.

Linear Trend Model: R^2 =0.9975 which is almost 99%. The model fits the data well.

Growth model with Annual Compounding: $R^2 = 0.9755$ which is almost 97%. The model fits the data well.

Growth model with Continuous Compounding: $R^2 = 0.9755$ which is almost 97%. The model fits the data well.

 By looking at the forecasted values what do you think about the most suitable model? In Linear Trend Model: R2 =0.9975 which is almost 99% and also the forecasted values are very close to actual values compared to other models. Therefore Linear Trend Model is more suitable.

o Suggest a suitable exponential smoothing method.

Since only the trend is present in the data Holt's Two-Parameter Exponential Smoothing is the most suitable exponential smoothing method.

Group 2

Questions:

1. **Plot the Sales Data**: Upload the provided CSV file containing the Year and Sales columns. Visualize the trend of sales over the years.

2. Linear Trend Analysis:

o Perform a linear regression to fit a trend line to the sales data.

o Display the regression equation.

```
Call:
lm(formula = time_series ~ time_index)
Residuals:
   Min
           1Q Median
                           3Q
-128.79 -67.01 -21.18 91.33 139.25
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) -44.650 34.517 -1.294 0.209
time_index
            33.696
                      2.322 14.513 4.56e-13 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
Residual standard error: 83.72 on 23 degrees of freedom
Multiple R-squared: 0.9015, Adjusted R-squared: 0.8973
F-statistic: 210.6 on 1 and 23 DF, p-value: 4.561e-13
```

Y(t) = -44.650 + 33.696t

Growth Trend Analysis:

 Perform a growth trend analysis assuming both annual and continuous compounding.

Annual Compounding

Growth Trend Analysis Plot


```
Call:
lm(formula = log_ts ~ time_index)
Residuals:
     Min
           1Q Median
                                  3Q
                                           Max
-0.176342 -0.029525 -0.002208 0.038609 0.148445
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.969035 0.029521 66.70 < 2e-16 ***
time_index 0.040588 0.001986 20.44 3.01e-16 ***
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 0.0716 on 23 degrees of freedom
Multiple R-squared: 0.9478, Adjusted R-squared: 0.9455
F-statistic: 417.8 on 1 and 23 DF, p-value: 3.011e-16
```

Continuous Compounding

Growth Trend Analysis Plot


```
Call:
lm(formula = log_ts ~ time_index)
Residuals:
    Min
              1Q Median
                              3Q
                                       Max
-0.40604 -0.06798 -0.00508 0.08890 0.34181
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.533871   0.067976   66.70   < 2e-16 ***
time_index 0.093458 0.004573 20.44 3.01e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.1649 on 23 degrees of freedom
Multiple R-squared: 0.9478, Adjusted R-squared: 0.9455
F-statistic: 417.8 on 1 and 23 DF, p-value: 3.011e-16
```

Display the growth model equations.

```
Annual Compounding: log(Y(t)) = 1.969035 + 0.040588t

Y(t) = 93.11829169 * 1.097963745^t
```

Continuous Compounding: ln(Y(t)) = 4.533811 + 0.093458tY(t) = 93.11273841 * exp (0.093458t) o Find the growth rate for each case.

Annual Compounding:

1+g = 1.097963745

g = 0.097963745

Continuous Compounding:

g = 0.093458

3. Forecast Future Sales:

• Using the fitted linear trend model and growth trend model assuming both annual and continuous compounding forecast the sales for the next 5 years.

Actual	linear	growth_annual_compounding	growth_continuous_compounding
1083	831.446	1057.603784	1057.559316
1239	865.142	1161.210612	1161.162573
1340	898.838	1274.967152	1274.915269
1413	932.534	1399.867709	1399.811691
1539	966.23	1537.003992	1536.943526

o Discuss the goodness of the fitted model.

Linear Trend Model: R^2 =0.8973 which is almost 90%. The model fits the data well.

Growth model with Annual Compounding: $R^2 = 0.9455$ which is almost 95%. The model fits the data well.

Growth model with Continuous Compounding: $R^2 = 0.9455$ which is almost 95%. The model fits the data well.

Suggest a suitable exponential smoothing method.

Since both the trend and seasonality are present in the data Winters' Three-Parameter Exponential Smoothing is the most suitable exponential smoothing method.

Group 3:

Questions:

- 1. **Multiple Regression Analysis**: (Use first 25 records)
 - o Perform a multiple regression analysis with Regional_Demand as the dependent variable and Price_per_Case, Competitor_Price, Advertising, and Household Income as independent variables.

```
Call:
lm(formula = formula, data = df)
Residuals:
   Min 1Q Median 3Q Max
-44.360 -24.756 -9.339 29.788 61.259
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) 922.372304 173.352172 5.321 3.30e-05 ***
Price_per_Case -5.073803 0.512195 -9.906 3.71e-09 ***
Competitor Price 4.423604 1.105779 4.000 0.000703 ***
Advertising 0.263183 0.123456 2.132 0.045612 *
Household Income 0.008321 0.001297 6.416 2.94e-06 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 36.37 on 20 degrees of freedom
Multiple R-squared: 0.896, Adjusted R-squared: 0.8752
F-statistic: 43.09 on 4 and 20 DF, p-value: 1.471e-09
```

o Display the regression equation.

```
D(i) = 922.372304 - 5.073803P(i) + 4.423604C(i) + 0.263183A(i) + 0.008321H(i)
```

2. Interpret Coefficients:

o Interpret the coefficients of the regression model. Discuss the impact of each independent variable on regional demand.

If the price is increased by 1 unit the demand will be decreased by 5.073803 units when all the other independent variables remains unchanged.

If the Competitor price is increased by 1 unit the demand will be increased by 4.423604 units when all the other independent variables remains unchanged.

If the advertising is increased by 1 unit the demand will be increased by 0.263183 units when all the other independent variables remains unchanged.

If the household income is increased by 1 unit the demand will be increased by 0.008321 units when all the other independent variables remains unchanged.

3. Forecast Regional Demand: (Use last 5 records)

• Use the fitted regression model to predict the regional demand for new markets with given values of independent variables.

	Price_per_Case +	Competitor_Price +	Advertising $\mbox{$\phi$}$	Household_Income 🖣	Forecast_Value 🖣
1	138	97	929	46084	1279.23197039463
2	116	97	1000	52249	1460.83964262043
3	148	84	951	50855	1216.47585880182
4	134	88	848	54546	1308.80789580743
5	127	87	891	38085	1214.24837194392

o Discuss the goodness of the fitted model.

Model $R^2 = 0.8752$ which is almost 88%. The model fits the data well.