trainUkrainian (UKR)

Іграшковий поїзд

Арезу та її брат Борзу - близнюки. Вони отримали на день народження чудову іграшкову залізницю і використали її щоб побудувати систему з n станцій та m однонаправлених колій. Станції пронумеровані від 0 до n-1. Кожна колія починається на одній станції та закінчується на тій самій або іншій станції. З кожної станції виходить хоча б одна колія.

Деякі станції - cmanції підзарядки. Коли поїзд прибуває на станцію підзарядки, він заряджається повністю. Повністю заряджений поїзд має достатньо енергії на поїздку по n послідовних коліях. У поїзда вичерпується енергія коли він потрапляє на (n+1)-шу колію після останньої підзарядки.

На кожній станції є перемикач, який можна переключити на будь-яку колію, яка починається на цій станції. Поїзд залишає станцію, використовуючи колію, на яку вказує перемикач на цій станції.

Близнюки збираються пограти з поїздом. Вони вже поділили всі станції між собою: кожна станція належить або Арезу або Борзу. Є один поїзд. На початку гри поїзд знаходиться на станції s і він повністю заряджений. Щоб розпочати гру власник станції s переводить перемикач на станції s на одну з колій, яка починається на станції s. Потім вони вмикають поїзд і він розпочинає рух по коліям.

Коли поїзд прибуває на станцію вперше, власник цієї станції встановлює перемикач на цій станції. Коли перемикач встановлено в певну позицію, він залишається в цій позиції до кінця гри. Якщо поїзд прибуває на станцію, на якій він вже був, він залишає її по тій самій колії, що і раніше.

Оскільки кількість станцій скінчена, у якийсь момент поїзд почне рухатись по *циклу*. Цикл є послідовністю *різних* станцій $c[0], c[1], \cdots, c[k-1]$, таких що поїзд залишає станцію c[i] (для $0 \leq i < k-1$) по колії, що йде до станції c[i+1], і залишає станцію c[k-1] по колії, що йде до станції c[0]. Зазначте, що цикл може складатися з однієї станції (тобто мати k=1) якщо поїзд залишає станцію c[0] по колії, що веде назад до станції c[0].

Арезу може виграти гру, якщо поїзд продовжує рухатись нескінченно, а Борзу - якщо у поїзда закінчується енергія. Іншими словами, якщо є хоча б одна станція підзарядки між $c[0], c[1], \cdots, c[k-1]$, то поїзд може підзарядитись і рухатись по циклу нескінченно, і Арезу перемагає. В іншому випадку, якщо у поїзда закінчується енергія (як приклад - можливо після проїзду по циклу декілька разів) - перемагає Борзу.

Вам надано опис системи станцій та колій. Арезу і Борзу збираються зіграти n ігор. У s-ій грі (для $0 \le s \le n-1$) поїзд буде починати шлях зі станції s. Ваше завдання знайти для кожної

гри, чи їснує стратегія гри Арезу, що гарантує їй виграш незалежно від того, як грає Борзу.

Деталі реалізації

Ви повинні реалізувати наступну процедуру:

```
int[] who_wins(int[] a, int[] r, int[] u, int[] v)
```

- a: масив довжини n. Якщо Арезу є власником станції $i,\ a[i]=1$. В іншому випадку станція i належить Борзу та a[i]=0.
- ullet r: масив довжини n. Якщо станція i є станцією підзарядки, r[i]=1. В іншому випадку r[i]=0.
- ullet u та v: масиви довжини m. Для всіх $0 \leq i \leq m-1$, є однонаправлена колія від станції u[i] до станції v[i].
- Ця процедура повинна повертати масив w довжини n. Для кожного $0 \le i \le n-1$, значення w[i] має бути 1 якщо Арезу може виграти гру, яка розпочинається зі станції i, не залежно від того, як грає Борзу. В іншому випадку w[i] має дорівнювати 0.

Приклад

who_wins([0, 1], [1, 0], [0, 0, 1, 1], [0, 1, 0, 1])

- Є 2 станції. Борзу належить станція 0, яка є станцією підзарядки. Арезу належить станція 1, яка не є станцією підзарядки.
- Є 4 колії (0,0),(0,1),(1,0), та (1,1), де (i,j) означає однонаправлену колію від станції i до станції j.
- Розглянемо гру, у якій поїзд розміщено на станції 0. Якщо Борзу встановлює перемикач на станції 0 на колію (0,0), поїзд буде нескінченно рухатись по цій колії (врахуйте, що станція 0 є станцією підзарядки). У цьому випадку Арезу виграє гру. В іншому випадку, якщо Борзу вмикає перемикач на станції 0 на колію (0,1), Арезу може перемикнути перемикач на станції 1 на колію (1,0). Якщо це станеться, поїзд буде рухатись по циклу через обидві станції. Знову виграє Арезу, оскільки станція 0 є станцією підзарядки і поїзд не зупиниться. Отже, Арезу може виграти гру незалежно від дій Борзу.
- Розмірковуючи аналогічно, Арезу може також виграти у грі, яка починається на станції 1 незалежно від дій Борзу. Таким чином, процедура має повернути [1,1].

Обмеження

- $1 \le n \le 5000$.
- $n \le m \le 20\,000$.
- Є як мінімум одна станція підзарядки.
- На кожній станції є як мінімум одна колія, що починається з неї.
- Можуть бути колії, які починаються і закінчуються на тій самій станції (тобто, u[i] = v[i]).
- ullet Усі колії відрізняються. Іншими словами, немає двох таких індексів i та j ($0 \le i < j \le m-1$), що u[i] = u[j] та v[i] = v[j].
- ullet $0 \leq u[i], v[i] \leq n-1$ (для всіх $0 \leq i \leq m-1$).

Підзадачі

- 1. (5 балів) Для всіх $0 \leq i \leq m-1$, або v[i]=u[i] або v[i]=u[i]+1.
- 2. (10 балів) $n \leq 15$.
- 3. (11 балів) Арезу належать усі станції.
- 4. (11 балів) Борзу належать усі станції.
- 5. (12 балів) Є тільки одна станція підзарядки.
- 6. (51 бал) Без додаткових обмежень.

Приклад модуля перевірки

Модуль перевірки читає вхідні дані у наступному форматі:

- рядок 1: n m
- ullet рядок 2: a[0] a[1] . . . a[n-1]
- ullet рядок 3: r[0] r[1] ... r[n-1]
- ullet рядок 4+i (для $0 \leq i \leq m-1$): u[i] v[i]

Модуль перевірки друкує отриманий з who_wins результат у такому форматі:

ullet рядок 1: w[0] w[1] ... w[n-1]