

University of Engineering & Management, Kolkata Department of Computer Science B.Tech (CSE) 2021 - 2025 Batch 6th Semester Structured Syllabus

Sr. No Course Code		Course Title	
		Course Title	Credits
1	PCCCSE601	Compiler Design	3
2	PCCCSE691	Compiler Design Laboratory	2
3	PCCCSE602	Computer Networks	3
4	PCCCSE692	Computer Networks Laboratory	2
5	PECCSE601A	Professional Elective - II : Soft Computing	3
6	PECCSE602A	Professional Elective - III : Data Analytics	3
7	OECCSE601A	Open Elective - I : Finance & Accounting	3
8	HSMC(CS)602	Essential Studies for Professionals - VI	2
9	HSMC682	Skill Development for Professionals - VI	1
10	MC681	Mandatory Additional Requirements (MAR)	1
11	PROJCSE681	Project - I	3
12	MOOC 6	Massive Open Online Courses (Mandatory for B.Tech(Honours))	3
	Total Credit	Points of Semester [for B.Tech]	26
	Total Credit Poi	nts of Semester [for B.Tech (Hons.)]	29

Subject Name: Compiler Design

Subject Code: PCCCSE601

Credit: 3

Module number	Topic	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignment		
1	Introduction to Compiling and Lexical Analysis	Compilers, Analysis-synthesis model, The phases of the compiler, Cousins of the compiler. The role of the lexical analyzer, Tokens, Patterns, Lexemes, Input buffering, Specifications of a token, Recognition of tokens, Finite automata, From a regular expression to an NFA, From a regular expression to NFA, From a regular expression to DFA, Design of a lexical analyzer generator (Lex).	International Academia: (https://web.stanford.edu/class/cs143/sylla bus.html) AICTE-prescribed syllabus: (https://www.aicte- india.org/sites/defaul t/files/Model_Curric ulum/Updated- AICTE%20- %20UG%20CSE.pd f) Industry Mapping: Ubuntu, GCC, Dev C++, Flex	8	 Implementation of Symbol Table Develop a lexical analyzer to recognize a few patterns in C. (Ex. identifiers, constants, comments, operators etc.) Implementation of Lexical Analyzer using Lex Tool Installation of Flex 		
2	Syntax Analysis and Syntax directed translation	The role of a parser, Context free grammars, Writing a grammar, Top down Parsing, Non-recursive Predictive parsing (LL), Bottom up parsing, Handles, Viable prefixes, Operator precedence parsing, LR	International Academia: (https://web.stanford.edu/class/cs143/syllabus.html) AICTE-prescribed syllabus: (https://www.aicte-india.org/sites/defaul	10	 Generate YACC specification for a few syntactic categories. Implementation of Calculator using LEX and YACC 		

3	Type checking and Run time environments	Parser generators (YACC). Error Recovery strategies for different parsing techniques. Syntax directed definitions, Construction of syntax trees, Bottom-up evaluation of S attributed definitions, L attributed definitions, Bottom-up evaluation of inherited attributes. Type systems, Specification of a simple type checker, Equivalence of type expressions, Type conversions Source language issues (Activation trees, Control stack, scope of declaration, Binding of names), Storage organization (Subdivision of run- time memory, Activation records), Storage allocation strategies, Parameter passing (call by value, call by reference, copy restore, call by name), Symbol tables, dynamic storage	ulum/Updated- AICTE%20- %20UG%20CSE.pd f) Industry Mapping: YAAC, Bison International Standards : (https://web.stanford .edu/class/cs143/syll abus.html) AICTE prescribed syllabus: (https://www.aicte- india.org/sites/defaul t/files/Model_Curric ulum/Updated- AICTE%20- %20UG%20CSE.pd f) Industry Mapping: GCC, Dev C++	10	3. Installation of YACC and Bison 4. Convert the BNF rules into Yacc form and write code to generate Abstract Syntax Tree. 1. Implement type checking 2. Implement control flow analysis and Data flow Analysis 3. Implement any one storage allocation strategy. (Heap, Stack, Static)
	Intermediate code generation, Code optimization and Code generations	Intermediate languages, Graphical representation, Three- address code, Implementation of three address statements (Quadruples, Triples, Indirect triples). Introduction, Basic blocks & flow graphs, Transformation of basic blocks, Dag representation of basic blocks, The principle sources of optimization, Loops in	International Standards: (https://web.stanford.edu/class/cs143/syllabus.html) AICTE prescribed syllabus: (https://www.aicte-india.org/sites/default/files/Model_Curriculum/Updated-AICTE%20-%20UG%20CSE.pdf) Industry Mapping: GCC, Dev C++	8	1.Construction of DAG 2. Implement the back end of the compiler which takes the three address code and produces the 8086 assembly language instructions that can be assembled and run using a 8086 assembler. The target assembly instructions can be simple move, add, sub, jump. Also simple

flow graph, Peephole	addressing modes are
optimization.	used.
Issues in the design of	
code generator, a	
simple code generator,	
Register allocation &	
assignment.	

Subject Name: Computer Networks

Subject Code: PCCCSE602

Credit: 3

Module No.	Topic	Sub-topic	Mapping with Industry and International	Lectu re Hours	Hands-On Experiment (Laboratory)
			Academia		
1	Overview of Data Communicatio n and Networking and Physical level.	Introduction; Data communications: components, data representation (ASCII,ISO etc.), direction of data flow (simplex, half duplex, full duplex); network criteria, physical structure (type of connection, topology), categories of network (LAN, MAN,WAN); Internet: brief history, Protocols and standards; Reference models: OSI reference model, TCP/IP reference model, their comparative study. Overview of data(analog & digital), transmission (analog & digital) & transmission media (guided & unguided); Circuit switching: time division & space division switch, TDM bus; Telephone Network;	International Academia: https://www.scs.stanford.ed u/10au-cs144/sched/ AICTE prescribed syllabus: https://www.aicte- india.org/sites/default/files/ Model Curriculum/Update d-AICTE%20- %20UG%20CSE.pdf Industry mapping: Wieshark, CISCO, DLINK,	10	1. Use Linux tools like ifconfig, dig, ethtool, route, netstat, nslookup, and ip to understand the networking configuration of the computer that the student is working on. 2. Use Wireshark to capture packets when browsing the Internet. Examine the structure of packets: the various layers, protocols, headers, payload.
2	Data link Layer and Medium Access sub layer.	Types of errors, framing(character and bit stuffing), error detection & correction methods; Flow control; Protocols: Stop & wait ARQ, Go-Back- N ARQ, Selective repeat ARQ, HDLC; Point to Point Protocol, LCP, NCP, Token Ring; Reservation, Polling, Multiple access protocols: Pure ALOHA, Slotted ALOHA, CSMA, CSMA/CD,	International Academia: https://www.scs.stanford.ed u/10au-cs144/sched/ AICTE prescribed syllabus: https://www.aicte- india.org/sites/default/files/ Model_Curriculum/Update d-AICTE%20- %20UG%20CSE.pdf Industry mapping: NS2/NS3, Java, Python	8	Use Linux network tools like ethtool to observe and analyze link layer packet statistics and errors. Use NS2/NS-3 to simulate medium access protocols. Observe contention, collisions and packet loss in

		CSMA/CA Traditional Ethernet, fast Ethernet(in brief);			medium access protocols. Observe the working of error detection/recovery mechanisms.
3	Network layer and Transport Layer.	Internetworking & devices: Repeaters, Hubs, Bridges, Switches, Router, Gateway; Addressing: IP addressing, subnetting; Routing: techniques, static vs. dynamic routing, Unicast Routing Protocols: RIP, OSPF, BGP; Other Protocols: ARP, IP, ICMP, IPV6; Process to Process delivery; UDP; TCP; Congestion Control: Open Loop, Closed Loop choke packets; Quality of service: techniques to improve QoS: Leaky bucket algorithm, Token bucket algorithm.	International Academia: https://www.scs.stanford.ed u/10au-cs144/sched/ AICTE prescribed syllabus: https://www.aicte- india.org/sites/default/files/ Model_Curriculum/Update d-AICTE%20- %20UG%20CSE.pdf Industry mapping: CISCO Packet Tracer, Java, Python. https://www.netacad.com/c ourses/packet-tracer	10	1. Use tools like ping and traceroute to explore various Internet paths to popular servers. 2. Measure TCP throughput between two hosts in a network using tools like iperf. Modify TCP configuration parameters. Use the tc Linux utility or similar to control bandwidth, delay, loss. Observe impact on measured throughput.
4	Application Layer and Modern topics.	Introduction to DNS, SMTP, SNMP, FTP, HTTP & WWW; Security: Cryptography (Public, Private Key based), Digital Signature, Firewalls. ISDN services & ATM, DSL technology, Cable Modem: Architecture & Operation in brief Wireless LAN: IEEE 802.11, Introduction to blue-tooth.	International Academia: https://www.scs.stanford.ed u/10au-cs144/sched/ AICTE prescribed syllabus: https://www.aicte- india.org/sites/default/files/ Model Curriculum/Update d-AICTE%20- %20UG%20CSE.pdf Industry mapping: CISCO Packet Tracer, NS2/NS3, Wireshark. https://www.netacad.com/c ourses/packet-tracer	8	1. Install and configure some network applications, e.g. Apache, Bind (DNS), etc. 2. Understand various header fields and their usage in different application layer protocols using Wireshark packet capture. 3. Simulate transport protocols optimized for data centers in NS-2/NS-3.

Subject Name: Professional Elective - II: Soft Computing

Subject Code: PECCSE601A

Credit: 3

Module number	Topic	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignment
1	Introdu ction	Introduction to soft computing	International Academia: (https://openlearninglibra ry.mit.edu/courses/cours e- v1:MITx+6.036+1T2019 /course/)	6	1. Write a program to implement the McCulloch-Pitts Model by MATLAB Program.
		Introductio n to fuzzy sets and fuzzy logic systems;	(https://plato.stanford.edu/ Archives/win2010/Entries /logic-fuzzy)		2.Generate ANDNOT function using McCulloch-Pitts neural net by MATLAB Program.
		Introduction to biological and artificial neural networks	AICTE-prescribed syllabus: (https://www.aicte- india.org/sites/default/fil es/Model_Curriculum/C S%20(AI&ML.pdf) Software: MATLAB		3.Generate XOR function using McCulloch-Pitts neural net by MATLAB program.
		Introductio n to Genetic Algorithms			

2	Fuzzy	-Classical	International Standards	10	4. Write a program to
	sets and	Sets and		10	implement fuzzy set
	Fuzzy	Fuzzy Sets	:(https://plato.stanford.edu		operations.
	logic	and Fuzzy	/Archives/win2010/Entrie		
	systems	relations:	s/logic-fuzzy)		
		Operations			
		on Classical			
		sets,	(<u>https://www.utoledo.edu/</u>		5. Write a program to
		properties of	engineering/electrical- engineering-computer-		implement fuzzy
		classical sets,	science/current-		relational operations.
		Fuzzy set	students/syllabi/eecs-		
		operations,	4120-intro-to-fuzzy-		
		properties of	systems-and-		
		fuzzy sets,	applications.html)		6. Write a program to
		cardinality,			design and implement
		operations,			fuzzy temperature
		and			controller
		properties of	AICTE managed ad		
		fuzzy relations.	AICTE prescribed syllabus:		
		relations.	(https://www.aicte-		
			india.org/sites/default/fil		
		-Membership	es/Model_Curriculum/C		
		functions:	<u>S%20(AI&ML).pdf</u>)		7. Write a program to
		Features of			write and illustrate the
		membership			concept of Fuzzy C –
		functions,	Industry Mapping:		means Clustering
		standard	Robotics and		
		forms and	Automation Software,Decision		
		boundaries,	Support		
		different	Systems,SCADA		
		fuzzification	(Supervisory Control		
		methods.	and Data		
			Acquisition) Systems		
		-Fuzzy to	software:		
		Crisp	sonware.		
		conversions:	MATLAB(fuzzy		
		Lambda Cuts	toolbox),LabVIEW,P		
		for fuzzy	ython		
		sets, fuzzy			
		Relations,			
		Defuzzificati on methods.			
		on methods.			
		-Classical			
		Logic and			
		Fuzzy Logic:			
		Classical			
	L				l

		predicate logic, Fuzzy Logic, Approximate reasoning and Fuzzy Implication Fuzzy Rule based Systems: Linguistic Hedges, Fuzzy Rule based system - Aggregation of fuzzy Rules.			
3	Neural Network	Introduction to Neural Networks: Advent of Modern Neuroscienc e, Classical AI and Neural Networks, Biological Neurons and	International Standards : (https://openlearninglibra ry.mit.edu/courses/cours e- v1:MITx+6.036+1T2019 /course) AICTE prescribed syllabus:	10	8. Write programs to test the learning rules of Hebb, Perceptron, Delta, and Widrow Hoff
		Artificial neural network; model of artificial neuron. Learning Methods:	(https://www.aicte- india.org/sites/default/fil es/Model_Curriculum/C S%20(AI&ML).pdf) Industry Mapping:		9. Write a program for learning rule to implement the Back-propagation algorithm.
		Hebbian, competitive, Boltzman etc.	Manufacturing and Industry 4.0		10. Write a program to write and test a program for the
		-Neural Network models: Perceptron, Adaline and	Software(framework) PyTorch,Tensorflow		linear separability of the input domain

4	Genetic Algorith ms	Madaline networks; -single layer network -Back- propagation and multi- layer networks Competitive learning networks: Kohonen self organizing networks, Hebbian learning; Hopfield NetworksSimple GA, crossover and mutation, -Multi- objective Genetic Algorithm (MOGA) Applications	International Standards: (https://ocw.mit.edu/cou rses/6-034-artificial- intelligence-fall- 2010/resources/lecture- 13-learning-genetic- algorithms) AICTE prescribed syllabus: (https://www.aicte- india.org/sites/default/fil	8	11. Write a MATLAB program to plot a few activation functions that are being used in Genetic Algorithm. 12. Illustrate different types of generalized bell membership functions using the Matlab program.
		- Applications of Genetic Algorithms: genetic algorithms in search and	syllabus: (https://www.aicte- india.org/sites/default/fil es/Model Curriculum/C S%20(AI&ML).pdf)		using the Matlab program.
		optimization	Industry Mapping: Optimize the location of		
	i .	i l	Opumize the location of	1	1
		-GA operators: Encoding, Crossover, Selection,	resources and minimize production costs. Software:		

		Mutation, etc. -Solving single-objective optimization problems using Gas	R-Libraries(GA (genalg),Python libraries(DEAP (Distributed Evolutionary Algorithms in Python)),Matlab.		
5	Introduct ion to Machine Learning	-Supervised learning: Primitive algorithms, Generative algorithms, -Support Vector Machine, Ensemble methods. - Unsupervise d learning: K-means, Principal component analysis, Independent component analysis.	International Standards: (https://ocw.mit.edu/cou rses/6-0002- introduction-to- computational-thinking- and-data-science-fall- 2016/resources/lecture- 11-introduction-to- machine-learning/) AICTE prescribed syllabus: (https://www.aicte- india.org/sites/default/fil es/Model Curriculum/C S%20(AI&ML).pdf) Industry Mapping:	6	13. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file. 14. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. 15.Other Real time case studies.
		- Reinforceme	AI applications,IOT.		
	I .	TOTALIOTOCIAL			

nt learning and control.	softwares:		
	Scikit- learn(python),TensorFl ow(python),Keras(pytho n),Microsoft Azure Machine Learning(python),PyTor ch		

Subject Name: Professional Elective - III: Data Analytics

Subject Code: PECCSE602A

Credit: 3

Module number	Topic	Sub-topics	Mapping with Industry and International Academia	Lecture Hours	Corresponding Lab Assignment
1	Descriptive Statistics	Types of Descriptive Statistics: Distribution (Also Called Frequency Distribution); Measures of Central Tendency: Mean, Median, and Mode; Variability (Also Called Dispersion): Range, Variance, and Standard Deviation, Standards of relative position (describe the location of a specific value within the dataset, such as percentiles), Graphical methods (charts, histograms, and other visual representations to display data) Univariate Descriptive Statistics, Bivariate Descriptive Statistics	International Academia: (https://statistics.stanford.ed u/graduate- programs/statistics- ms/statistics-data-science- curriculum) AICTE-prescribed syllabus: (https://www.aicte- india.org/sites/default/files/ Model_Curriculum/AICTE %20-%20UG%20CSE.pdf, https://www.aicte- india.org/sites/default/files/ Model_Curriculum/CS%20(AIDS).pdf) Industry Mapping: Python, R Language	5	Not included as lab paper. Mathematical operations can be practised in R and python.
2	Inferential Statistics	Probability Distribution, Parameter Estimation, Confidence Intervals, Regression Analysis,	International Academia: (https://statistics.stanford.ed u/graduate-	5	Not included as lab paper. Mathematical operations can be

		Hypothesis Test, Z-Test, T-	programs/statistics-		practised in R and
		Test, Chi-Square Test,	ms/statistics-data-science-		python.
		ANOVA	curriculum)		
			AICTE-prescribed syllabus:		
			(https://www.aicte-		
			india.org/sites/default/files/		
			Model_Curriculum/AICTE		
			%20-%20UG%20CSE.pdf,		
			https://www.aicte-		
			india.org/sites/default/files/		
			Model_Curriculum/CS%20(
			AIDS).pdf)		
			Industry Mapping: Python,		
			R Language		
		Machine learning and its			Not included as lab
	types	types; Applications of	International Academia: pap	paper. Mathematical	
		machine learning; Issues in	(https://statistics.stanford.ed		operations can be
		machine learning.	u/graduate-		practised in R and
		The Machine Learning	programs/statistics-		python.
		process flow: Define Project	ms/statistics-data-science-		
		Objective, Acquire & Explore	<u>curriculum</u>)		
			AICTE-prescribed syllabus:		
	Introduction	Model Building. Model	(https://www.aicte-		
3	to Machine	validation, Interpret &	india.org/sites/default/files/	5	
	Learning	Communicate, Data	Model Curriculum/AICTE		
		Visualization, Implement,	%20-%20UG%20CSE.pdf,		
		Document & Maintain.	https://www.aicte-		
		Types and Algorithms of	india.org/sites/default/files/		
		Machine Learning:	Model Curriculum/CS%20(
		Regression, Classification,	AIDS).pdf)		
		and Clustering.	<u>, 1100).pur)</u>		
		mid Ciustellig.	Industry Mapping: Python,		
		Regression : Linear (Ordinary	R Language		
		Least Squares), Logistic,			

		Regularized (Ridge			
		Regression, Lasso			
		Regression),			
		Co-occurrence Matrix			
			International Academia:		Not included as lab
		Linear Regression	(https://statistics.stanford.ed u/graduate-		paper. Mathematical operations can be
		Logistic Regression	programs/statistics-		practised in R and
		Decision Trees	ms/statistics-data-science-		python.
		K-Nearest Neighbours	<u>curriculum</u>)		
		Naive Bayes	AICTE-prescribed syllabus:		
4	Learning (Classificati	Support Vector Machines	(https://www.aicte- india.org/sites/default/files/	5	
	on)	Ensemble Learning	Model_Curriculum/AICTE		
		Techniques: Random Forest,	%20-%20UG%20CSE.pdf,		
		Neural Network, Deep	https://www.aicte-		
		Learning	india.org/sites/default/files/		
		Confusion Matrix	Model_Curriculum/CS%20(
			AIDS).pdf)		
		Active Learning	Industry Mapping: Python,		
			R Language		
			International Academia:		Not included as lab
			(https://statistics.stanford.ed		paper. Mathematical
		K-means Clustering,	<u>u/graduate-</u>		operations can be practised in R and
		Agglomerative (Hierarchical)	programs/statistics-		python.
		clustering, Spectral Clustering	ms/statistics-data-science-		python.
5	u Learning	(DBSCAN), Association	<u>curriculum</u>)	5	
	(Clustering)	Analysis, Principal	AICTE-prescribed syllabus:		
		Component Analysis.	(https://www.aicte-		
			india.org/sites/default/files/		
			Model Curriculum/AICTE		
			~20-%20UG%20CSE.pdf,		
		l	l		

6	Reinforceme nt Learning	Q-Learning, State-Action- Reward-State-Action (SARSA), Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG).	https://www.aicte- india.org/sites/default/files/ Model_Curriculum/CS%20(AIDS).pdf) Industry Mapping: Python, R Language International Academia: (https://statistics.stanford.ed u/graduate- programs/statistics- ms/statistics-data-science- curriculum) AICTE-prescribed syllabus: (https://www.aicte- india.org/sites/default/files/ Model_Curriculum/AICTE %20-%20UG%20CSE.pdf, https://www.aicte- india.org/sites/default/files/ Model_Curriculum/CS%20(AIDS).pdf) Industry Mapping: Python, R Language	3	Not included as lab paper. Mathematical operations can be practised in R and python.
7	Data Mining	Types of Data Mining: Association Rule Mining (Market Basket Analysis, Apriori Algorithm, Improving the Efficiency of Apriori, Frequent Pattern-Growth Algorithm, Mining Closed and	curriculum) AICTE-prescribed syllabus:	8	Not included as lab paper. Mathematical operations can be practised in R and python.

rules, Measuring the Quality	Model_Curriculum/AICTE	
of Association Rules	%20-%20UG%20CSE.pdf,	
Pattern Evaluation Methods, Clustering, Classification, Anomaly Detection, Regression, Sequential pattern mining, Time Series Analysis,	https://www.aicte- india.org/sites/default/files/ Model_Curriculum/CS%20(AIDS).pdf) Industry Mapping: Python, R Language	

Subject Name: Open Elective - I: Finance & Accounting

Subject Code: OECCSE601A

Credit: 3

Module number	Topic	Sub-topics	Mapping with Industry and International	Lecture Hours	Corresponding Lab Assignment
			Academia		
1	Introdu	The principles of	International Academia:	8	1.Easy Tally.
	ction to	financial and	(Accounting, Finance &		2. Preparation of Basic
	Finance	cost accounting	Valuation Course I		financial and accounting
	and		Stanford Online)		statements
	Account	Financial			
	ing	Management,	AICTE-prescribed syllabus:		
		Financial Planning	(Microsoft Word -		
		and Capitalization-	Information Technology Sy		
		definitions,	llabus.doc (makautwb.ac.in)		
		objectives, changing)		
		roles and functions,	Industry Mapping:		
		Financial Decision.	Designing an accounting		
		Basic accounting	system		
		concepts, important	_		
		definitions, uses,			
		limitations,			
		advantages; types of			
		Accounting,			
		Financial statements,			
		introduction to			
		Journal Accounting;			
		double entry			
		bookkeeping,			
		different types			
		of transactions			
		related to			
		Financial Accounting			
2	Capital	Managerial	International Standards	6	Mapping and
	Budgeting	_	:(Accounting, Finance &		Techniques using
	0 0	practices	Valuation Course I		Excel and Tally
		Nature of	Stanford Online)		
		Investment decision,			
		Importance of	AICTE prescribed syllabus:		
		Capital Budgeting,	(Microsoft Word -		
		The Capital.	Information Technology Sy		
		Budgeting Process -	llabus.doc (makautwb.ac.in)		
		Investment			
		Criterion, Pay-back			
		period, Accounting,			

		ROR (Rate of Return) Method, Discounting Cash flow method, Net – present value method, IRR (Internal Rate of Return) method, The benefit-Cost Ratio method.	Industry Mapping: Financial long term forecasting	
3	Managem ent of Working Capital	Various concepts, Elements, Classification, Financing and importance of working capital, Investment analysis, Cash flow determination, cost of capital, capital budgeting methods.	International Standards: (Accounting, Finance & Valuation Course I Stanford Online) AICTE prescribed syllabus: (Microsoft Word = Information Technology Syllabus.doc (makautwb.ac.in) Industry Mapping: Financial daily or short term fund planning and management	Mapping Techniques using Tally and Excel
4	Cost – Volume – Profit Analysis	Analysis of Costing and Classification of costs, Allocation, apportionment and absorption, Cost centers, different costing systems, Cost analysis for managerial decisions, Meaning of Linear CVP analysis, Objectives, Assumptions, Break – Even analysis, determining the Break-Even point profit, Volume graph profit, Volume ratios margin of Safety.	International Standards: (Accounting, Finance & Valuation Course I Stanford Online) AICTE prescribed syllabus: (Microsoft Word Information Technology S yllabus.doc (makautwb.ac.in) Industry Mapping: Analysis of sales and cost dependency on profit margin using cost analysis methods.	Mapping and solving Techniques using Tally and Excel

5	Financial	Posting of Ledgers	AICTE prescribed	6	
	Control	and preparation of	syllabus:		
		Trial Balance;	(Microsoft Word -		
		preparation of	Information Technology S		
		Balance Sheet and	yllabus.doc		
		Profit and Loss	(makautwb.ac.in)		
		Accounts;			
		Controlling other			
		departments by	Industry Mapping:		
		Financial	Design and analysis of		
		Accounting (A	company health using		
		practical Approach).	Balance sheet using		
			available tools and		
			techniques		

Subject Name: Essential Studies for Professionals - VI

Subject Code: HSMC(CS)602

Credit: 2

GATE exam Syllabus

**

Subject Name: Skill Developments for Professionals - VI

Subject Code: HSMC682

Credit: 1

Quantitative Aptitude