TD 2 : Calcul d'intégrales

Exercice 1 - Primitives

Pour chacune des fonctions suivantes, donner une primitive.

1.1
$$f_1(x) = \frac{\ln x}{x}$$

1.3
$$f_3(x) = \frac{1}{x \ln x}$$

1.3
$$f_3(x) = \frac{1}{x \ln x}$$
 1.5 $f_5(x) = \frac{1}{2\sqrt{x}(\sqrt{x} - 1)}$
1.4 $f_4(x) = \sin^2 x \cos x$ 1.6 $f_6(x) = x \exp(-x^2)$

1.2
$$f_2(x) = \tan x$$

1.4
$$f_4(x) = \sin^2 x \cos x$$

1.6
$$f_6(x) = x \exp(-x^2)$$

Exercice 2 - Intégration par parties

Calculer les valeurs des intégrales suivantes en utilisant la technique d'intégration par parties.

$$2.1 \quad \int_0^\pi 3x \, \sin(x) \, \mathrm{d}x$$

2.3
$$\int_0^1 x^2 e^{1-x} \, \mathrm{d}x.$$

$$2.2 \quad \int_1^e x \ln(x) \, \mathrm{d}x$$

2.4
$$\int_0^{\frac{1}{2}} \arcsin(x) \, \mathrm{d}x$$

Exercice 3 - Intégration d'un élément (pas si) simple

Le but de cet exercice est de calculer $I_2 = \int_{-1}^{1} \frac{\mathrm{d}t}{(1+t^2)^2}$.

- **3.1** Calculer d'abord la valeur de $I_1 = \int_{-1}^1 \frac{\mathrm{d}t}{1+t^2}$.
- **3.2** Appliquer la technique d'intégration par parties à I_1 , en prenant $u(t) = \frac{1}{1+t^2}$ et v'(t) = 1. note : On se contentera juste d'appliquer la méthode et de calculer la partie entre crochets.
- **3.3** En déduire que $I_1 = 1 + 2(I_1 I_2)$.
- **3.4** En déduire la valeur de I_2 .

Exercice 4 - Changement de variable

4.1 En posant
$$y = x^3 + 1$$
, calculer $\int_0^1 \frac{x^2 dx}{\sqrt{x^3 + 1}}$.

4.2 En posant
$$y = \sqrt{1+x}$$
, calculer $\int_0^1 \frac{x \, dx}{1+\sqrt{1+x}}$.

4.3 En posant
$$x = 2 \tan t$$
, calcular $\int_0^{+\infty} \frac{x^4}{(x^2 + 4)^3} dx$.

4.4 En posant
$$y = \exp(x)$$
, calculer $\int_0^{\ln \ln 2} \exp(x) \exp(\exp(x)) dx$.

4.5 En posant
$$x = 3 \tan t$$
, calculer $\int_0^3 \frac{8 \, dx}{(x^2 + 9)^2}$.