In re: Gerald H. Negley Serial No. 10/811,752

Filed: March 29, 2004

Page 3

AMENDMENTS TO THE CLAIMS:

Please amend the claims as follows:

1. (original) An improved p-type gallium nitride-based semiconductor device comprising:

a device structure that includes at least one p-type Group III nitride layer that includes some gallium;

a first silicon dioxide layer on said p-type layer;

a layer of a Group II metal source composition on said first SiO₂layer; and

a second SiO₂ layer on said Group II metal source composition layer.

2. (original) A semiconductor device according to Claim 1 wherein said device structure comprises:

a conductive silicon carbide substrate;

a conductive buffer layer on said silicon carbide substrate for providing a crystal transition between said substrate and said Group III nitride portions of said device; and an n-type Group III nitride layer on said buffer layer.

- 3. (original) A device according to Claim 1 wherein said first silicon dioxide layer is thick enough to create vacancies to a depth in said p-type layer that encourages atoms of said Group II metal to diffuse thereinto while still permitting diffusion from said Group II metal source composition through said first SiO₂ layer and into said p-type layer.
 - 4. (original) A device according to Claim 1 wherein:

said first SiO₂ layer is about 1000 Å thick;

said Group II metal source composition layer is about 1000 Å thick; and said second SiO₂ layer is about 2500 Å thick.

In re: Gerald H. Negley Serial No. 10/811,752 Filed: March 29, 2004

Page 4

5. (original) A device according to Claim 1 wherein said Group III nitride comprises GaN and said source composition layer is selected from the group consisting of magnesium and zinc.

- 6. (withdrawn) A method of activating the p-type layers and passivating a Group III nitride device, the method comprising: thermally annealing the structure according to Claim 1.
- 7. (Currently amended)A device structure according to Claim $\frac{1}{2}$ wherein said substrate is n-type and has a carrier concentration of between about 1 X 10^{16} cm⁻³ and about 1 X 10^{19} cm⁻³.
- 8. (original) A device according to Claim 1 wherein said Group II metal source composition layer comprises a Group II metal-containing compound.
- 9. (original) A device according to Claim 8 wherein said compound is selected from the group consisting of magnesium nitride and zinc phosphide.
- 10. (Currently amended) A device according to Claim 1 wherein said p-type gallium nitride layer has the formula $Ga_xAl_yIn_{1-x-y}N$ where $0 < x \le 1$ and $0 \le y \le 1$.
- 11. (original) A device according to Claim 1 comprising a plurality of silicon dioxide portions on said p-type Group III nitride layer, with a respective portion of said source composition on each said silicon dioxide portion.
- 12. (original) A device according to Claim 11 wherein said second silicon dioxide layer is limited to said source composition portions.

In re: Gerald H. Negley Serial No. 10/811,752

Filed: March 29, 2004 Page 5

layer.

13. (original) A device according to Claim 11 wherein said second silicon dioxide portion covers said source composition portions and portions of said p-type Group III nitride

14. (original) An improved p-type gallium nitride-based device comprising:

a conductive silicon carbide substrate;

a conductive buffer layer on said silicon carbide substrate for providing a crystal transition between said substrate and said GaN portions of said device;

an n-type GaN layer on said buffer layer;

a p-type GaN layer on said n-type layer;

a first silicon dioxide layer on said p-type layer;

a magnesium layer on said first SiO_2 layer for supplying p-type dopant to said p-type layer; and

a second SiO₂layer on said Mg layer for passivating said device;

said first silicon dioxide layer being thick enough to create vacancies to a required depth in said p-GaN layer when said device is heated to temperatures between about 750° and 950° C while still permitting diffusion from the magnesium layer through said first SiO₂ layer and into the p-GaN layer at such temperatures.

- 15. (original) A device according to Claim 14 wherein said substrate is n-type.
- 16. (original) A device according to Claim 14 wherein said buffer is selected from the group consisting of: graded layers of Group III nitrides, homogeneous layers of Group III nitrides, heterogeneous layers of Group III nitrides and combinations thereof.
- 17. (original) A device according to Claim 14 wherein said n-type layer comprises $Al_xIn_yGa_{1-x-y}N$ where $0 \le x \le 1$ and $0 \le y \le 1$

In re: Gerald H. Negley Serial No. 10/811,752

Filed: March 29, 2004

Page 6

18. (original) A device according to Claim 14 wherein said p-type layer comprises $Ga_xAl_vIn_{1-x-y}$ where $0 < x \le 1$ and $0 \le y \le 1$.

19. (withdrawn) A method of activating the p-type layers and passivating a Group III nitride device, the method comprising thermally annealing a structure that includes at least the following elements:

at least one p-type Group III nitride layer that includes some gallium;

a first silicon dioxide layer on said p-type layer;

a layer of a Group II metal source composition on said first SiO₂ layer; and

a second SiO₂ layer on said source composition layer layer.

20. (withdrawn) A method according to Claim 19 comprising annealing the structure for a time sufficient for the structure to reach at temperature of between about 750° and 950° C.

- 21. (withdrawn) A method according to Claim 20 comprising annealing the structure to reach a temperature of between about 850° and 875° C.
- 22. (withdrawn) A method according to Claim 20 comprising annealing the structure for about 5 minutes.
- 23. (withdrawn) A method of increasing the activation of a p-type Group III nitride layer that includes some GaN, the method comprising:

forming a first layer of SiO₂ on the p-type layer;

forming a layer of a Group II metal source composition;

forming a second layer of SiO₂ on the metal layer; and

annealing the structure to diffuse the metal from the metal layer into the p-type gallium-containing layer and to activate metal atoms in the p-type layer.

In re: Gerald H. Negley Serial No. 10/811,752

Filed: March 29, 2004

Page 7

- 24. (withdrawn) A method according to Claim 23 wherein the step of forming the first SiO₂ layer comprises forming the SiO₂ layer to a thickness sufficient to create gallium vacancies to a required depth in said p-type layer during the annealing step while still permitting magnesium to diffuse from the metal layer through said first SiO₂ layer and into activated positions in the p-type layer.
- 25. (withdrawn) A method according to Claim 23 comprising annealing the structure at a temperature and for a time sufficient to provide an activated p-type layer of at least about 1E17.
- 26. (withdrawn) A method according to Claim 25 comprising forming the SiO_2 layer to a thickness of about 1000 Å and annealing the structure for a time sufficient for the structure to reach at temperature of between about 750° and 950° C.
- 27. (withdrawn) A method according to Claim 26 comprising annealing the structure to reach a temperature of between about 850° and 875° C.
- 28. (withdrawn) A method according to Claim 26 comprising annealing the structure for about 5 minutes.
- 29. (withdrawn) A method according to Claim 23 comprising increasing the activation of a p-type GaN layer.
- 30. (withdrawn) A method according to Claim 23 wherein the step of forming the source composition layer comprises forming a layer of a metal selected from the group consisting of magnesium and zinc on the first SiO₂ layer.

In re: Gerald H. Negley Serial No. 10/811,752 Filed: March 29, 2004

Page 8

- 31. (withdrawn) A method according to Claim 23 wherein the step of forming the source composition layer comprises forming a layer of a compound containing a Group II metal on the first SiO₂ layer.
- 32. (withdrawn) A method according to Claim 31 comprising forming a layer of selected from the group consisting of magnesium nitride and zinc phosphide.
 - 33. (withdrawn) A method according to Claim 23 and further comprising removing the first and second SiO₂ layers and the metal source composition layer and depositing a silicon nitride cap on the remaining structure.
- 34. (withdrawn) A method according to Claim 33 wherein the step of removing the layers comprises etching the layers.
- 35. (withdrawn) A method of creating a p-type layer from a nominally n-type GaN layer, the method comprising:

forming a first layer of SiO₂ on the nominally n-type layer;

forming a layer of magnesium on the first SiO₂ layer;

forming a second layer of SiO₂ on the magnesium layer; and

annealing the structure to diffuse magnesium from the magnesium layer into the nominally n-type GaN layer and to activate sufficient magnesium in the layer to produce p-type characteristics.

36. (withdrawn) A method according to Claim 35 comprising annealing the structure for a time sufficient for the structure to reach a temperature of between about 750° and 950° C.

In re: Gerald H. Negley

Serial No. 10/811,752

Filed: March 29, 2004

Page 9

37. (withdrawn) A method according to Claim 36 comprising annealing the structure

to reach a temperature of between about 850° and 875° C.

38. (withdrawn) A method according to Claim 36 comprising annealing the structure

for about 5 minutes.

39. (withdrawn) A method of creating a p-type layer from a nominal n-type GaN

layer, the method comprising:

annealing the GaN layer in the presence of an adjacent SiO₂ layer, a layer of a Group

II metal source composition on the adjacent SiO₂ layer and a second SiO₂ layer on the metal

layer;

until the GaN layer demonstrates p-type characteristics.

40. (withdrawn) A method according to Claim 39 comprising annealing a GaN layer

having a n-type carrier concentration of 5E16 or less

41. (withdrawn) A method according to Claim 39 comprising annealing the GaN

layer until the GaN layer demonstrates a p-type carrier concentration of at least about 1E17.

42. (withdrawn) A method according to Claim 39 comprising annealing the structure for

a time sufficient for the structure to reach a temperature of between about 750° and 950° C.

43. (withdrawn) A method according to Claim 42 comprising annealing the structure

to reach a temperature of between about 850° and 875° C.

44. (withdrawn) A method according to Claim 42 comprising annealing the structure

for about 5 minutes.