Connected Sets and Limits of Functions

Matthew Seguin

3.4.8

Recall $C = \bigcap_{n=1}^{\infty} C_n$.

A set E is totally disconnected if for all $x, y \in E$ you can find two separated sets, say A and B such that $x \in A$, $y \in B$ and $E = A \cup B$.

a. Let $x, y \in C$ where x < y. Let $\epsilon = y - x$.

Then x and y are in C_n for all $n \in \mathbb{N}$. Consider the length of any interval in C_n .

Since the length of all intervals in C_n approaches 0 we can find an $N \in \mathbb{N}$ such that the maximum length of any interval of C_N is less than ϵ .

Therefore since the length of any interval is less than ϵ it can not be that x and y are in any one interval otherwise the interval must have at least length ϵ .

b.

For arbitrary $x, y \in C$ where x < y there exists an $N \in \mathbb{N}$ such that x and y are in different intervals of C_N . From the way the Cantor set is constructed by removing the middle third in each iteration there must exists some

interval between x and y that is not contained in C.

Therefore the interval containing x and the interval containing y are separated.

Let A be the union of the interval containing x and all the intervals contained in C to the left of that.

And let B be the union of the interval containing y and all the intervals contained in C to the right of that.

Then since x < y we have that A and B are also separated.

Furthermore $x \in A$, $y \in B$ and $A \cup B = C$ by construction.

This was for arbitrary $x, y \in C$ so for all $x, y \in C$ where x < y this is the case and therefore C is totally disconnected.

4.2.3

Recall t(x) takes the value 1 if x = 0, the value $\frac{1}{n}$ when $x = \frac{m}{n}$ is in lowest terms, and the value 0 when $x \notin \mathbb{Q}$.

a. Let
$$(x_n) = (1 - \frac{1}{n})$$
, $(y_n) = (1 - \frac{1}{n^2})$, and $(z_n) = (1 - \frac{1}{n^3})$.

Then
$$(x_n) = (0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ...), (y_n) = (0, \frac{3}{4}, \frac{8}{9}, \frac{15}{16}, ...), \text{ and } (z_n) = (0, \frac{7}{8}, \frac{26}{27}, \frac{63}{64}).$$

Clearly all of these sequences are different.

As we have seen before $(\frac{1}{n}) \to 0$ and clearly $(0) \to 0$.

Since $0 < \frac{1}{n^3} < \frac{1}{n^2} < \frac{1}{n}$ for all $n \in \mathbb{N}$ we have by the squeeze theorem that $(\frac{1}{n^2}) \to 0$ and $(\frac{1}{n^3}) \to 0$.

Therefore by the algebraic limit theorem $(x_n) = (1 - \frac{1}{n}) \to 1$, $(y_n) = (1 - \frac{1}{n^2}) \to 1$, and $(z_n) = (1 - \frac{1}{n^3}) \to 1$.

All of these sequences do not contain the number 1 as a term so we have made three distinct sequences converging to 1 that do not contain 1.

b. Consider the sequences $(t(x_n))$, $(t(y_n))$, and $(t(z_n))$.

We have
$$(t(x_n)) = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots) = (\frac{1}{n}), (t(y_n)) = (0, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \dots) = (\frac{1}{n^2}), (t(z_n)) = (1, \frac{1}{8}, \frac{1}{27}, \frac{1}{64}, \dots) = (\frac{1}{n^3}).$$

This comes from the definition of t(x) and the fact that all terms of each sequence in part a were written in lowest terms.

As shown in part a each of these sequences converge to 0. So $\lim_{n \to \infty} t(x_n) = \lim_{n \to \infty} t(x_n) = \lim_{n \to \infty} t(x_n) = 0$.

C. I propose that $\lim_{x\to 1} t(x) = 0$ since t(x) = 0 for all $x \notin \mathbb{Q}$ and because of the limits above.

For a specified
$$\epsilon > 0$$
 let $S = \{x \in \mathbb{R} : t(x) > \epsilon\}.$

Then $S \subseteq \mathbb{Q}$ since all irrational values assume the value 0 under t(x) and therefore can not be in S.

Proving every point in S is isolated:

Assume for the sake of contradiction that not every point in S is isolated. That is say $x \in S$ is a limit point of S.

Then there must exist some sequence $(x_n) \subseteq S$ such that $x_n \neq x$ for all $n \in \mathbb{N}$ and $(x_n) \to x$.

Since $x \in S$ and $x_n \in S$ for all $n \in \mathbb{N}$ we have $x = \frac{p_0}{q_0}$ for some $p_0, q_0 \in \mathbb{Z}$ and $x_n = \frac{p_n}{q_n}$ for all $n \in \mathbb{N}$ and some $p_n, q_n \in \mathbb{Z}$. We can say that all of these p's and q's are in lowest terms without loss of generality.

Furthermore $t(x) = \frac{1}{q_0} \ge \epsilon > 0$ and $t(x_n) = \frac{1}{q_n} \ge \epsilon > 0$ for all $n \in \mathbb{N}$. So $0 < q_0 \le \frac{1}{\epsilon}$ and $0 < q_n \le \frac{1}{\epsilon}$ for all $n \in \mathbb{N}$.

Since ϵ is fixed we have that $(0, \frac{1}{\epsilon}]$ must have finite length, so there are only finitely many integers in $(0, \frac{1}{\epsilon}]$.

This means that one integer in $(0, \frac{1}{\epsilon}]$ is used infinitely many times as the denominator for terms of (x_n) , say q.

Consider the subsequence (x_{n_k}) of (x_n) where the denominator of x_{n_k} is q for all $k \in \mathbb{N}$.

Then
$$(x_{n_k}) = (\frac{p_{n_k}}{q}) \to x$$
 so by the algebraic limit theorem $(p_{n_k}) \to qx$.

Then (p_{n_k}) is a Cauchy sequence. This implies that there exists a $K \in \mathbb{N}$ such that for $k_1, k_2 \geq K$, $|p_{n_{k_1}} - p_{n_{k_2}}| < 1$.

Since $p_{n_k} \in \mathbb{Z}$ for all $k \in \mathbb{N}$ this means that there exists a $K \in \mathbb{N}$ such that for $k_1, k_2 \geq K$, $p_{n_{k_1}} = p_{n_{k_2}}$.

This means (p_{n_k}) contains infinitely many repeating terms, and as proved in a previous sample work these terms must

be equal to qx since $(p_{n_k}) \to qx$. (I will attach the proof of that below)

But this implies (x_{n_k}) contains infinitely many terms equal to $\frac{qx}{q} = x$, a contradiction since this implies (x_n) contains x.

So it must be that every point of S is an isolated point.

Proving
$$\lim_{x\to 1} t(x) = 0$$
:

If
$$0 < \epsilon \le 1$$
:

Then we know $t(1) = 1 \ge \epsilon$ so $1 \in S$, but it is also therefore an isolated point in S.

Therefore there must exist some $\delta > 0$ such that $V_{\delta}(1) \cap S = \{1\}$ by the definition of isolated points.

Therefore if $x \in V_{\delta}(1)$ then $x \notin S$, so $t(x) < \epsilon$. Since $t(y) \ge 0$ for all $y \in \mathbb{R}$ this implies $t(x) \in V_{\epsilon}(0)$.

If
$$\epsilon > 1$$
:

Simply choose any δ from the above process and you will again get that if $x \in V_{\delta}(1)$ then $t(x) \in V_{\epsilon}(0)$.

Therefore for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in V_{\delta}(1)$ then $t(x) \in V_{\epsilon}(0)$.

So
$$\lim_{x\to 1} t(x) = 0$$

Used proof from previous sample work:

Let (b_n) be a convergent series that has an infinite number of terms equal to c for some $c \in \mathbb{R}$.

Say $(b_n) \to b$ then for all $\epsilon > 0$ there exists an $N \in \mathbb{N}$ where if $n \in \mathbb{N}$ such that $n \geq N$ then $|b_n - b| < \epsilon$.

Since (b_n) contains an infinite number of terms c we know for any N there exists an c in the sequence beyond b_N .

So if $b \neq c$ then for any choice of N we have a term later in the sequence where |c - b| > 0.

So let $0 < \epsilon < |c - b|$ such an ϵ exists because of the density of \mathbb{R} .

Therefore if $b \neq c$ we have shown that there exists an $\epsilon > 0$ such that there does not exist an $N \in \mathbb{N}$ where if $n \geq N$ then $|b_n - b| < \epsilon$ due to the presence of infinitely many terms c, contradicting that $(b_n) \to b$.

Therefore a sequence that has infinitely many terms equal to c can not converge to a value that is not $c \square$

a. Let $f(x) = \frac{|x-2|}{x-2}$. Then $\lim_{x\to 2} f(x)$ does not exist.

Proof:

Let (x_n) be a strictly positive sequence such that $(x_n) \to 0$.

Then $(2+x_n) \to 2$ by the algebraic limit theorem and $2+x_n > 2$ for all $n \in \mathbb{N}$.

And $(2-x_n) \to 2$ by the algebraic limit theorem and $2-x_n < 2$ for all $n \in \mathbb{N}$.

Consider the sequences $(f(2+x_n))$ and $(f(2-x_n))$.

 $f(2+x_n)=\frac{|2+x_n-2|}{2+x_n-2}=\frac{|x_n|}{x_n}=\frac{x_n}{x_n}=1$ since $x_n>0$ for all $n\in\mathbb{N}$. This also exists since $x_n\neq 0$ for all $n\in\mathbb{N}$.

$$f(2-x_n) = \frac{|2-x_n-2|}{2-x_n-2} = \frac{|-x_n|}{-x_n} = \frac{x_n}{-x_n} = -1 \text{ since } x_n > 0 \text{ for all } n \in \mathbb{N}. \text{ This also exists since } x_n \neq 0 \text{ for all } n \in \mathbb{N}.$$

So
$$\lim_{n \to \infty} f(2+x_n) = 1$$
 and $\lim_{n \to \infty} f(2-x_n) = -1$ since $(f(2+x_n)) = (1)$ and $(f(2-x_n)) = (-1)$.

So we have found two different sequences $(2+x_n)$ and $(2-x_n)$ such that 2 is not in either sequence but both converge

to 2 where
$$\lim f(2+x_n) \neq \lim f(2-x_n)$$

Therefore $\lim_{x\to 2} f(x) = \lim_{x\to 2} \frac{|x-2|}{x-2}$ does not exist \square

b. Let $f(x) = \frac{|x-2|}{x-2}$. Then $\lim_{x \to \frac{7}{4}} f(x) = -1$.

Proof:

Let $\epsilon > 0$ and let $\delta = \frac{1}{4}$. Then if $x \in V_{\delta}(\frac{7}{4}) = (\frac{7}{4} - \frac{1}{4}, \frac{7}{4} + \frac{1}{4}) = (\frac{3}{2}, 2)$ we have that x < 2.

Therefore
$$x - 2 < 0$$
 so $|x - 2| = 2 - x = -(x - 2)$.

So $f(x) = \frac{|x-2|}{x-2} = \frac{-(x-2)}{x-2} = -1$ and this is defined since x-2 < 0 so $x-2 \neq 0$.

Therefore
$$f(x) \in V_{\epsilon}(-1)$$
 since $f(x) = -1$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So for all $\epsilon > 0$ we have found a $\delta > 0$ such that if $x \in V_{\delta}(\frac{7}{4})$ then $f(x) \in V_{\epsilon}(-1)$.

So
$$\lim_{x \to \frac{7}{4}} f(x) = \lim_{x \to \frac{7}{4}} \frac{|x-2|}{x-2} = -1$$

C. Let $f(x) = (-1)^{\frac{1}{x}}$ then $\lim_{x\to 0} f(x)$ does not exist.

Proof:

Let
$$(x_n) = (1, \frac{1}{3}, \frac{1}{5}, ...) = (\frac{1}{2n-1})$$
. Let $(y_n) = (\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, ...) = (\frac{1}{2n})$.

Clearly $(x_n) \to 0$ and $(y_n) \to 0$ and 0 is not in either sequence.

Consider the sequences $(f(x_n))$ and $(f(y_n))$.

 $f(x_n) = (-1)^{\frac{1}{1/2n-1}} = (-1)^{2n-1} = (-1)^{2n}(-1)^{-1} = -1$ for all $n \in \mathbb{N}$. This also exists since $\frac{1}{2n-1} \neq 0$ for all $n \in \mathbb{N}$.

$$f(y_n) = (-1)^{\frac{1}{1/2n}} = (-1)^{2n} = ((-1)^2)^n = (1)^n = 1$$
 for all $m \in \mathbb{N}$. This also exists since $\frac{1}{2n} \neq 0$ for all $n \in \mathbb{N}$.

So
$$\lim f(x_n) = -1$$
 and $\lim f(y_n) = 1$ since $(f(x_n)) = (-1)$ and $(f(y_n)) = (1)$.

So we have found two different sequences (x_n) and (y_n) such that 0 is not in either sequence but both converge to 0

where
$$\lim f(x_n) \neq \lim f(y_n)$$

Therefore $\lim_{x\to 0} f(x) = \lim_{x\to 0} (-1)^{\frac{1}{x}}$ does not exist \square

d. Let $f(x) = \sqrt[3]{x}(-1)^{\frac{1}{x}}$ then $\lim_{x\to 0} f(x) = 0$.

Proof:

Let
$$\epsilon > 0$$
 then let $\delta = \epsilon^3$.

If
$$|x-0| = |x| < \delta = \epsilon^3$$
 then $|f(x)-0| = |\sqrt[3]{x}(-1)^{\frac{1}{x}} - 0| = |\sqrt[3]{x}(-1)^{\frac{1}{x}}| = |\sqrt[3]{x}| = |x|^{\frac{1}{3}} = |x|^{\frac{1}{3}} < \sqrt[3]{\delta} = \epsilon$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

Therefore
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \sqrt[3]{x} (-1)^{\frac{1}{x}} = 0$$

Note however that this function is not continuous in the slightest. When I say if $|x| < \delta$ I mean those parts of the δ neighborhood where f(x) is defined.

4.2.10

a. Let $f: A \to \mathbb{R}$ be a function and let a be a limit point of A.

Starting with the left hand limit $\lim_{x\to a^-} f(x)$:

We say $\lim_{x\to a^-} f(x) = L$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < a - x < \delta$ then $|f(x) - L| < \epsilon$.

Now for the right hand limit $\lim_{x\to a^+} f(x)$:

We say $\lim_{x\to a^+} f(x) = L$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < x - a < \delta$ then $|f(x) - L| < \epsilon$.

b. Let $f:A\to\mathbb{R}$ be as before and a be a limit point of A. Let the left and right hand limits be defined as before.

• Showing if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$ then $\lim_{x\to a} f(x) = L$:

Assume $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$.

Then for all $\epsilon > 0$ there exists a δ_1 such that if $0 < a - x < \delta_1$ then $|f(x) - L| < \epsilon$, and there exists a δ_2 such that if $0 < x - a < \delta_2$ then $|f(x) - L| < \epsilon$.

For each $\epsilon > 0$ let $\delta = min\{\delta_1, \delta_2\}$. Then $0 < \delta \le \delta_1$ and $0 < \delta \le \delta_2$.

So if $0 < a - x < \delta$ it follows $|f(x) - L| < \epsilon$ and if $0 < x - a < \delta$ it follows that $|f(x) - L| < \epsilon$.

So if $|x - a| < \delta$ then $|f(x) - L| < \epsilon$. Such a δ was found for all $\epsilon > 0$.

Therefore for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - a| < \delta$ then it follows that $|f(x) - L| < \epsilon$.

So $\lim_{x\to a} f(x) = L$.

• Showing if $\lim_{x\to a} f(x) = L$ then $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$:

Assume $\lim_{x\to a} f(x) = L$. And let $\epsilon > 0$.

Then there exists a $\delta > 0$ such that if $|x - a| < \delta$ it follows that $|f(x) - L| < \epsilon$.

So if $0 < a - x < \delta$ then $|x - a| < \delta$ and therefore it follows that $|f(x) - L| < \epsilon$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < a - x < \delta$ it follows that $|f(x) - L| < \epsilon$.

Therefore $\lim_{x\to a^-} f(x) = L$.

Similarly if $0 < x - a < \delta$ then $|x - a| < \delta$ and therefore it follows that $|f(x) - L| < \epsilon$.

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $0 < x - a < \delta$ it follows that $|f(x) - L| < \epsilon$.

Therefore $\lim_{x\to a^+} f(x) = L$.

Therefore $\lim_{x\to a} f(x) = L$ if and only if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$

4.2.11

Let f, g, h be functions with a common domain A such that $f(x) \leq g(x) \leq h(x)$ for all $x \in A$.

Let c be a limit point of A and assume that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} h(x) = L$.

Let $\epsilon > 0$ and let $\alpha = \epsilon/3$ there exists a $\delta_1 > 0$ such that if $|x - c| < \delta_1$ it follows that $|f(x) - L| < \alpha$.

And there exists a $\delta_2 > 0$ such that if $|x - c| < \delta_2$ it follows that $|h(x) - L| < \alpha$.

Let $\delta = min\{\delta_1, \delta_2\}$. Then if $|x - c| < \delta$ it follows that $|f(x) - L| < \alpha$ and $|h(x) - L| < \alpha$.

Note that $f(x) - h(x) \le g(x) - h(x) \le 0$ so $|g(x) - h(x)| \le |f(x) - h(x)|$.

So if
$$|x-c| < \delta$$
 then $|g(x)-L| = |g(x)-h(x)+h(x)-L| \le |g(x)-h(x)| + |h(x)-L| \le |f(x)-h(x)| + |f(x)-L| = |f(x)-L| + |L-h(x)| + |f(x)-L| \le |f(x)-h(x)| + |f(x)-L| \le |f(x)-h(x)| + |f(x)-h(x)| +$

This was for arbitrary $\epsilon > 0$ and is therefore true for all $\epsilon > 0$.

So for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $|x - c| < \delta$ it follows that $|g(x) - L| < \epsilon$.

Therefore
$$\lim_{x\to c} g(x) = L \square$$