Análisis numérico

Clase 2: Preliminares, algoritmos y computación

Joaquin Cavieres

Instituto de Estadística, Universidad de Valparaíso

Outline

Matrices

Definición

Una matriz de dimensión $m \times n$ es un arreglo (estructura) rectangular de números escalares:

$$\mathbf{X} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

La matriz \boldsymbol{X} tiene m filas y n columnas. Comúnmente se dice que " \boldsymbol{X} es una matriz de $m \times n$ " o que es una matriz " \boldsymbol{X} es de orden $m \times n$ ". También se puede escribir $\boldsymbol{X} = (x_{ij})$.

Ejemplo

$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

 \boldsymbol{X} es una matriz de 2×3 . Un vector columna es una matriz $n \times 1$ con una columna. Un vector fila es una matriz de dimensión $1 \times m$.

Carácteristicas básicas en matrices:

- La notación x_{ij} representan los componentes o los elementos de la matriz X.
- Una matriz se dice que es cuadrada si m=n, por ejemplo, que una matriz tenga el mismo número de filas y el mismo número de columnas.
- La transpuesta de una matriz $m \times n$ es entonces de dimensión $n \times m$ y se denota como X^T .

Carácteristicas básicas en matrices:

- Una matriz cuadrada $m{X}$ es simétrica si $m{X}^T = m{X}$.
- Dos matrices X y Y son iguales si ellas tienen el mismo orden y cada par de sus correspondientes elementos son iguales (por ejemplo, $x_{ij} = y_{ij}$), para un i = 1, ..., m y j = 1,, n.
- Una matriz cuadrada con todo los elementos fuera de la diagonal iguales a 0 es una matriz diagonal (por ejemplo, si $x_{ij}=0 \ \forall \ i\neq j$ (y $x_{ii}\neq 0$ para al menos un i)).

Carácteristicas básicas en matrices:

• Una matriz diagonal con todos los elementos en la diagonal iguales a 1 (y los demás fuera de la diagonal iguales a 0) es llamada I_n . Por ejemplo, si $x_{ii} = 1$, i = 1,, n y $x_{ij} = 0 \ \forall \ i \neq j$ para i, j = 1,, n, entonces $X = I_n$. Esta es conocida como la matriz identidad

$$I_n = \begin{bmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{bmatrix}$$

• Si X es una matriz cuadrada entonces la diagonal diag(X) es el vector columna con elementos en la diagonal.

Carácteristicas básicas en matrices:

• La traza de una matriz cuadrada es la suma de todos los elementos en la diagonal de la matriz. Por ejemplo, trace $(\boldsymbol{X}=\operatorname{tr}(x_{ij})=\sum_{i=1}^n x_{ii}.$ Observación: La tr $(\boldsymbol{I_n})=n.$

Operaciones básicas con matrices

La suma y resta en matrices del mismo orden son realizadas elemento por elemento (al igual que en los vectores):

$$X + Y = (x_{ij}) + (y_{ij}) = (x_{ij} + y_{ij})$$

No es posible sumar o restar matrices que no tengan la misma dimensión u orden.

Operaciones básicas con matrices

La multiplicación escalar de una matriz es realizada elemento por elemento:

$$\lambda \mathbf{X} = \lambda(x_{ij}) = (\lambda x_{ij})$$

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} = 2 \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$

Si A y B son matrices, entonces nosotros podemos multiplicar A y B sólo si el número de columnas de A son iguales al número de filas de B. Esto es, si A es una matriz de $m \times n$ y B es una matriz de $n \times p$, el producto AB puede ser definido (pero no el producto BA). El resultado debería ser una matriz $m \times p$ (el número de filas de la primera matriz (A) y el número de columnas de la segunda (B)).

El elemento (i, k) — esimo de AB se obtiene mediante la sumatoria de productos de los elementos de la i — esima fila de A con los elementos de la k — esima columna de B.

$$\mathbf{AB} = (\sum_{i=1}^n a_{ij} b_{jk})$$

- Si C es una martriz de orden $m \times n$ y D es de orden $p \times q$, entonces el producto CD puede ser solamente definido si n = p, en tal caso las matrices C y D son confortables. Si el producto CD no es definido, entonces las matrices son no confortables.
- Si \boldsymbol{x} y \boldsymbol{y} son vectores de orden m y n respectivamente ($m \times 1$ matriz para \boldsymbol{x} y $n \times 1$ matriz para \boldsymbol{y}), entonces \boldsymbol{x} e \boldsymbol{y}^T con confortables si el producto $\boldsymbol{x}\boldsymbol{y}^T$ esta definido y es una matriz $m \times n$ con (i,j) elementos x_iy_j , para i=1,...,m y j=1,...,n. Esto se denomina como producto exterior de \boldsymbol{x} y \boldsymbol{y} .

Ejemplo 1

Si $\boldsymbol{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ y $\boldsymbol{Z} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$, entonces \boldsymbol{W} es de orden 2×2 y \boldsymbol{Z} es de orden 2×2 . Esto significa que $\boldsymbol{W}\boldsymbol{Z}$ es $2 \times 2 \times 2 \times 2 \times \equiv 2 \times 2$ y $\boldsymbol{Z}\boldsymbol{W}$ es $2 \times 2 \times 2 \times 2 \times \equiv 2 \times 2$.

$$\textit{WZ} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1*5+2*7 & 1*6+2*8 \\ 3*5+4*7 & 3*6+4*8 \end{bmatrix} = \begin{bmatrix} 5+14 & 6+16 \\ 15+28 & 18+32 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

у

$$ZW = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5+18 & 10+24 \\ 7+24 & 14+32 \end{bmatrix} = \begin{bmatrix} 23 & 34 \\ 31 & 46 \end{bmatrix}$$

Por tanto $WZ \neq ZW$.

Ejemplo 2

Si
$$\mathbf{U} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
 y $\mathbf{V} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, entonces \mathbf{U} es de orden 2×3 y \mathbf{V} es de orden 3×2 . Esto significa que $\mathbf{U}\mathbf{V}$ es $2 \times 3 \times 3 \times 2 \times \mathbf{v} = 2 \times 2$ y $\mathbf{V}\mathbf{U}$ es

de orden 3×2 . Esto significa que UV es $2 \times 3 \times 3 \times 2 \times \equiv 2 \times 2$ y VU es $3 \times 2 \times 2 \times 3 \times \equiv 3 \times 3$.

$$UV = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1*1+2*3+3*5 & 1*2+2*4+3*6 \\ 4*1+5*3+6*5 & 4*2+5*4+6*6 \end{bmatrix} = \begin{bmatrix} 22 & 28 \\ 49 & 64 \end{bmatrix}$$

У

$$\mathbf{VU} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 1*1+2*4 & 1*2+2*5 & 1*3+2*6 \\ 3*1+4*4 & 3*2+4*5 & 3*3+4*6 \\ 5*1+6*4 & 5*2+6*5 & 5*3+6*6 \end{bmatrix} = \begin{bmatrix} 9 & 12 & 15 \\ 19 & 26 & 33 \\ 29 & 40 & 51 \end{bmatrix}$$

Por tanto $UV \neq VU$.

Ejemplo 3

Si
$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $\mathbf{V} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, entonces \mathbf{W} es de orden 2×2 y \mathbf{V} es de orden 3×2 .

• ¿Que pasa si hacemos **WV**?

Ejemplo 3

Si
$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $\mathbf{V} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, entonces \mathbf{W} es de orden 2×2 y \mathbf{V} es de orden 3×2 .

- ¿Que pasa si hacemos WV?
- ¿Que pasa si multiplicamos W con V^T ?

Ejemplo 3

Si
$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $\mathbf{V} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, entonces \mathbf{W} es de orden 2×2 y \mathbf{V} es de orden 3×2 .

- ¿Que pasa si hacemos WV?
- ¿Que pasa si multiplicamos W con V^T?

Solución

• No es posible ya que el número de columnas de ${m W}$ es distinto al número de filas de ${m V}$.

Ejemplo 3

Si
$$\mathbf{W} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 y $\mathbf{V} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$, entonces \mathbf{W} es de orden 2×2 y \mathbf{V} es de orden 3×2 .

- ¿Que pasa si hacemos WV?
- ¿Que pasa si multiplicamos W con V^T?

Solución

- No es posible ya que el número de columnas de W es distinto al número de filas de V.
- Esto significa que WV es $2 \times 2 \times 2 \times 3 \equiv 2 \times 3$. Es posible realizar la multiplicación

En general, para X e Y matrices, $XY \neq YX$ incluso si X e Y son mutuamente confortables (si lor productos estan definidos). Si X e Y estan definidas y XY = YX entonces X e Y son conmutativas.

Ejercicio en R

Crear matrices en R:

$$W = matrix(c(1, 2, 3, 4), 2, 2, byrow = T)$$

$$Z = matrix(c(5, 6, 7, 8), 2, 2, byrow = T)$$

$$A = matrix(c(2, 2, 3, 5), 2, 2, byrow = T)$$

$$U = matrix(c(1, 2, 3, 4, 5, 6), 2, 3, byrow = T)$$

$$V = matrix(c(1, 2, 3, 4, 5, 6), 3, 2, byrow = T)$$

Ejercicio en R

Ejercicio

- Cree dos matrices, una matriz $\boldsymbol{A}_{m\times n}$ y otra $\boldsymbol{B}_{p\times m}$, en donde m=3, n=3 y p=3. Invente los valores y proponga una expresión de multiplicación en R.
- Haga lo mismo pero ahora con p = 2, ¿Cual es el resultado?

Nos vemos la siguiente clase!...

Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.