Προχωρημένα Θέματα Βάσεων Δεδομένων

ΣΗΜΜΥ ΕΜΠ Εξάμηνο 9ο

Εξαμηνιαία Εργασία στο Spark

2022-2023

Νικήτας Τσίννας, el18187 Κυριάκος Τσαρτσαράκος, el18054

1. Εγκατάσταση του Hadoop και Spark & δημιουργία Dataframes και RDDs

Αφού έγινε το setup των εικονικών μηχανημάτων στον **okeanos** σύμφωνα με τις οδηγίες του εργαστηρίου δημιουργήθηκαν τα ακόλουθα 2 μηχανήματα master και slave όπως φαίνεται παρακάτω.

Έπειτα ακολουθήσαμε τις οδηγίες που βρίσκονται σε αυτήν την ιστοσελίδα https://sparkbyexamples.com/hadoop/apache-hadoop-installation/ για την εγκατάσταση και την εκκίνηση του hadoop και στα δύο μηχανήματα. Έγινε το format του hdfs δίσκου καθώς και η εκκίνηση του NameNode στο master και του DataNode στο slave. Η πρόσβαση στο Hadoop web UI του NameNode γίνεται πατώντας την διεύθυνση του master μηχανήματος μαζί με το port 9870 http://83.212.80.152:9870/.

Έπειτα ανεβάσαμε στο hdfs cluster τα αρχεία parquets των yellow-taxi-trips για τους μήνες Ιανουάριο έως Ιούνιο του 2022 όπως φαίνεται παρακάτω.

Έπειτα, ακολουθήσαμε τις οδηγίες που μας δόθηκαν από το υλικό του εργαστηρίου του μαθήματος για την εγκατάσταση του Spark. Ξεκινήσαμε τον master στο μηχάνημα master και δύο workers (ένα στον master και ένα στον slave). Τα ερωτήματα τα τρέξαμε στο spark cluster με δύο και έναν worker. Για την παύση του ενός worker εκτελούμε την εντολή ./stop-worker.sh spark://192.168.0.1:7077 στον sbin του spark home directory ενός μηχανήματος από τα δύο. Το Spark web UI μπορεί να γίνει προσβάσιμο μέσω του link http://83.212.80.152:8080/.

Για την δημιουργία των dataframes, αλλά και την εκτέλεση όλων των παρακάτω ερωτημάτων, δημιουργήσαμε ένα Python script. Χρησιμοποιήσαμε το PySpark API για να διαβάσουμε, πρώτα, τα αρχεία parquet από τον hdfs και έπειτα τα ενώσαμε σε ένα Dataframe.

Εδώ, πρέπει να σημειώσουμε πως παρατηρήσαμε μερικά dirty data και για αυτό εφαρμόσαμε φίλτρο για να κρατήσουμε δεδομένα που αφορούν τις ημερομηνίες που μας ενδιαφέρουν (Ιανουάριος - Ιούνιος 2022).

Για την δημιουργία των RDDs απλώς χρησιμοποιήσαμε την συνάρτηση rdd του Dataframe για να τα μετατρέψουμε σε rdds. Ο κώδικας που χρησιμοποιήθηκε μπορεί να βρεθεί στο GitHub repository του project https://github.com/WinRout/ntua_spark_project .

2. Εκτέλεση των Q1 και Q2

Τα αποτελέσματα του Q1:

Vendo rID	tpep_pickup _datetime	tpep_dropof f_datetime	passe nger_ count	trip_di stanc e	Ratec odelD	store_ and_f wd_fla g	PULo cation ID	DOLo cation ID	paym ent_ty pe	fare_a mount	extra	mta_t ax	tip_a mount	tolls_ amou nt	impro veme nt_sur charg e	total_ amou nt	conge stion_ surch arge	airpor t_fee
2	2022-03-17 12:27:47	2022-03-17 12:27:58	1	0	1	N	12	12	1	2.5	0	0.5	40	0	0.3	45.8	2.5	0

Τα αποτελέσματα του **Q2**:

Vendo rID	tpep_pickup _datetime	tpep_dropof f_datetime	passe nger_ count	trip_di stanc e	Ratec odeID	store_ and_f wd_fla g	PULo cation ID	DOLo cation ID	paym ent_ty pe	fare_a mount	extra	mta_t ax	tip_a mount	tolls_ amou nt	impro veme nt_sur charg e	total_ amou nt	conge stion_ surch arge	airpor t_fee
1	2022-01-22 11:39:07	2022-01-22 12:31:09	1	33.4	1	Υ	70	265	4	88	0	0.5	0	193.3	0.3	282.1	0	0
1	2022-02-18 02:33:30	2022-02-18 02:35:28	1	1.3	1	N	265	265	1	3	0.5	0.5	19.85	95	0.3	119.1 5	0	0
1	2022-03-11 20:08:32	2022-03-11 20:09:45	1	0	1	N	265	265	1	2.5	1	0.5	48	235.7	0.3	288	0	0
1	2022-04-29 04:31:21	2022-04-29 04:32:30	2	0	1	N	249	249	3	3	3	0.5	0	911.8 7	0.3	918.6 7	2.5	0
1	2022-05-21 16:47:48	2022-05-21 17:05:47	1	2.4	3	N	239	246	3	31.5	0	0	0	813.7 5	0.3	845.5 5	0	0
1	2022-06-12 16:51:46	2022-06-12 17:56:48	9	22	1	N	142	132	2	67.5	2.5	0.5	0	800.0 9	0.3	870.8 9	2.5	0

Σημείωση: Όλοι οι χρόνοι εκτέλεσης παρατίθενται σε έναν πίνακα στο τέλος της αναφοράς.

3. Εκτέλεση του Q3 με Dataframe API και RDD API

Τα αποτελέσματα του **Q3** με **Dataframe** API:

start	end	average amount	average distance		
2022-01-01 00:00:00	2022-01-16 00:00:00	19.903702637879	5.57641037785201		
2022-01-16 00:00:00	2022-01-31 00:00:00	19.0366079138949	4.80484047230941		
2022-01-31 00:00:00	2022-02-15 00:00:00	19.5538913279606	5.95048584492812		
2022-02-15 00:00:00	2022-03-02 00:00:00	20.1720780936583	6.1857672125677		
2022-03-02 00:00:00	2022-03-17 00:00:00	20.6923577131835	6.60698631990843		
2022-03-17 00:00:00	2022-04-01 01:00:00	21.1182873078897	5.52478804839661		

2022-04-01 01:00:00	2022-04-16 01:00:00	21.5132460928528	5.67922147578719
2022-04-16 01:00:00	2022-05-01 01:00:00	21.4310101744718	5.80009662403329
2022-05-01 01:00:00	2022-05-16 01:00:00	21.9293270019761	6.25531698997756
2022-05-16 01:00:00	2022-05-31 01:00:00	22.8084729445817	8.00062024615197
2022-05-31 01:00:00	2022-06-15 01:00:00	22.4443469769819	6.37273405170607
2022-06-15 01:00:00	2022-06-30 01:00:00	22.3524111322989	6.15420819002069
2022-06-30 01:00:00	2022-07-15 01:00:00	22.2426108408053	5.94605167380302

Τα αποτελέσματα **Q3** με **RDD** API:

fortnight of year	average amount	average distance
0	19.903702637879	5.57641037785201
1	19.0366079138949	4.80484047230941
2	19.5538913279606	5.95048584492812
3	20.1720780936583	6.1857672125677
4	20.6923577131835	6.60698631990843
5	21.1216594895824	5.53299925210139
6	21.5155590945836	5.6793230779383
7	21.4280883762328	5.80034470764598
8	21.9215703489091	6.24969785212724
9	22.8064990704604	7.99906322246912
10	22.4521108398723	6.37897119160897
11	22.3521676835216	6.15337012823947
12	22.1693839743656	5.81122097069594

Εδώ είναι σημαντικό να τονίσουμε πως τα αποτελέσματα των δύο ερωτημάτων έχουν μία μηδαμινή απόκλιση μετά το 5ο δεκαπενθήμερο του χρόνου η οποία οφείλεται στα ελαχίστως διαφορετικά χρονικά διαστήματα που έχουν οριστεί ως δεκαπενθήμερα.

Στην πρώτη περίπτωση χρησιμοποιήθηκε η συνάρτηση window της python που ορίζει ως δεκαπενθήμερο ακριβώς 15 24ωρα. Αυτό σημαίνει πως λαμβάνεται υπόψη η αλλαγή θερινής ώρας του Μαρτίου.

Στην δεύτερη περίπτωση (RDD) ωστόσο, χρησιμοποιούμε συνάρτηση που υπολογίζει τον αριθμό της ημέρας του χρόνου και παίρνουμε ως key την απόλυτη διαίρεση του με το 15.

4. Εκτέλεση των Q4 και Q5

Τα αποτελέσματα του **Q4**:

weekday	hour	passengers	hour_rank
1	0	1.52994565071886	1
1	1	1.5278385673752	2
1	2	1.50807261851912	3
2	0	1.46798877116726	1
2	1	1.44428679168105	2
2	2	1.42319939890515	3
3	0	1.42003138821515	1
3	1	1.41751247400066	2
3	2	1.4104520814694	3
4	1	1.40884802126563	1
4	0	1.40122918571763	2
4	2	1.40114896459586	3
5	23	1.40538231524989	1
5	1	1.40259072852004	2
5	0	1.40103825279883	3
6	23	1.47557691807373	1
6	22	1.44481397620567	2
6	2	1.42305811435244	3

7	23	1.52260676627721	1
7	22	1.50681761940114	2
7	0	1.49931542848985	3

Τα αποτελέσματα του **Q5**:

day	tip_percentange	day_rank		
2022-01-09	45.7867477548721	1		
2022-01-31	43.9356358077027	2		
2022-01-01	29.0780368613684	3		
2022-01-29	24.0595184543701	4		
2022-01-16	23.3772999182201	5		
2022-02-21	25.9816574527663	1		
2022-02-13	24.5720683894025	2		
2022-02-09	23.9045356434125	3		
2022-02-10	23.3396158993487	4		
2022-02-27	23.3006799515465	5		
2022-03-18	29.6713416126597	1		
2022-03-21	27.5799260249225	2		
2022-03-26	22.7088459537216	3		
2022-03-05	22.5554613724956	4		
2022-03-12	22.1008591108086	5		
2022-04-12	48.3688441045034	1		
2022-04-02	31.175092883999	2		
2022-04-21	30.4486125023628	3		
2022-04-03	24.4637277047539	4		
2022-04-30	21.9967696599467	5		
2022-05-12	32.402658973198	1		

2022-05-20	26.0340360903664	2
2022-05-16	23.65911078928	3
2022-05-15	22.0524452470095	4
2022-05-06	21.8320061618845	5
2022-06-13	38.4513699372461	1
2022-06-25	32.9130732926535	2
2022-06-10	27.3976378127807	3
2022-06-16	25.5349757578752	4
2022-06-20	24.2429145935191	5

5. Χρόνοι εκτέλεσης όλων των παραπάνω ερωτημάτων

Στο πάνω μέρος παρουσιάζονται οι χρόνοι εκτέλεσης με 1 worker, ενώ στο κάτω μέρος με 2 workers:

Query	Туре	Time
1	SQL	6.50005960464478
2	SQL	26.2903051376343
3	DF	1.40668287277222
3	RDD	284.630479240417
4	SQL	1.42117123603821
5	SQL	1.30236942768097
Query	Туре	Time
1	SQL	6.73260276317596
2	SQL	28.3596797943115
3	DF	1.52139577865601
3	RDD	287.312871599197
4	SQL	1.54345841407776

5 SQL 1.29263372421265

Να σημειωθεί σε αυτό το σημείο πως για μεγαλύτερη ακρίβεια χρησιμοποιήθηκε ο μέσος χρόνος 10 εκτελέσεων για κάθε ερώτημα.

Παρακάτω φαίνεται ένα screenshot από το ιστορικό των completed applications στο spark Web UI που επιβεβαιώνει τον αριθμό των πυρήνων που χρησιμοποιήθηκαν σε κάθε περίπτωση:

▼ Completed Applications (19)

Application ID	Name	Cores	Memory per Executor	Resources Per Executor	Submitted Time	User	State	Duration
app-20230202204517-0018	application.py	4	1024.0 MiB		2023/02/02 20:45:17	user	FINISHED	55 min
app-20230202194612-0017	application.py	2	1024.0 MiB		2023/02/02 19:46:12	user	FINISHED	54 min

Ακολουθεί γράφημα των χρόνων εκτέλεσης ερωτημάτων:

Παρατηρούμε πως δεν φαίνεται να υπάρχει μεγάλη διαφορά επίδοσης μεταξύ των δύο περιπτώσεων. Ωστόσο, παρατηρούμε πως υπάρχει μία μικρή υποβάθμιση στην επίδοση με 2 workers, ενώ θα περιμέναμε το αντίθετο εφόσον είναι διαθέσιμοι περισσότεροι πόροι προς πιο αποδοτική παραλληλοποίηση. Αυτό πιθανολογούμε πως οφείλεται στην ενδοεπικοινωνία μεταξύ των μηχανημάτων η οποία, επειδή γίνεται μέσω του δικτύου, αποτελεί bottleneck επίδοσης.

Επίσης είναι σημαντική η παρατήρηση πως το RDD API είναι σημαντικά πιο αργό από το Dataframe API. Αυτό, οφείλεται στο ότι τα Dataframes χρησιμοποιούν τον catalyst optimizer για βελτιστοποίηση της επίδοσης, ενώ τα RDDs δεν έχουν παρόμοιο

μηχανισμό. Αντιθέτως, η βελτιστοποίηση είναι ζήτημα των developers και του κώδικα που γράφουν. Επίσης, τα aggregation operations είναι σημαντικά γρηγορότερα στα Dataframes έναντι των RDDs.