ΠΡΟΓΡΑΜΜΑ

по дисциплине: Теория вероятностей

по направлению

подготовки: <u>03.03.01 «Прикладные математика и физика»</u>,

27.03.03 «Системный анализ и управление»,

38.03.01 «Экономика»

физтех-школа: ФБВТ

кафедра: **высшей математики**

 $\begin{array}{c} \text{курс:} & \underline{2} \\ \text{семестр:} & \underline{3} \end{array}$

лекции — 30 часов 9кзамен — 3 семестр

практические (семинарские)

занятия — 30 часов

лабораторные занятия — нет

ВСЕГО АУДИТОРНЫХ ЧАСОВ — 60 Самостоятельная работа:

<u>теор.</u> курс - 45 часов

Программу составил

к. ф.-м. н., доцент В. Ю. Дубинская

Программа принята на заседании кафедры высшей математики 11 апреля 2023 г.

Заведующий кафедрой д. ф.-м. н., профессор

ф.-м. н., профессор Г. Е. Иванов

- 1. Теоретико-множественная модель событий. Понятие вероятности. Элементы комбинаторики. Классическое определение вероятности. Геометрическая вероятность. Алгебры множеств и разбиения. Простейшие свойства вероятности на конечной алгебре событий.
- 2. Теорема сложения. Условная вероятность. Теорема умножения, формула полной вероятности, формула Байеса. Определения независимости событий и классов событий. Теорема о независимости алгебр, порожденных разбиениями.
- 3. Последовательности независимых испытаний. Схема Бернулли и полиномиальная схема. Предельные теоремы Пуассона и Муавра-Лапласа в схеме Бернулли.
- 4. Случайные величины. Функция распределения и её свойства.
- 5. Дискретные случайные величины. Индикаторы событий и их свойства. Законы распределения дискретных случайных величин. Математическое ожидание и дисперсия дискретных случайных величин. Основные распределения (Бернулли, биномиальное, Пуассона, геометрическое). Целочисленные случайные величины и производящие функции.
- 6. Абсолютно непрерывные случайные величины. Плотность распределения. Математическое ожидание и дисперсия абсолютно непрерывных случайных величин. Основные распределения (равномерное, показательное, нормальное, Лапласа).
- 7. Совместное распределение и независимость случайных величин. Свойства математического ожидания и дисперсии, связанные с понятием независимости. Ковариация и коэффициент корреляции, ковариационная матрица. Многомерное нормальное распределение.
- 8. Неравенство Маркова. Неравенство Чебышева. Закон больших чисел в форме Бернулли и форме Чебышева.
- 9. Определение и свойства характеристических функций. Характеристические функции некоторых распределений. Формула обращения и теорема сходимости.
- 10. Виды сходимости последовательностей случайных величин. Центральная предельная теорема. Закон больших чисел в форме Хинчина.

Литература

Основная

- 1. Чистяков В. П. Курс теории вероятностей. 6-е изд. Санкт-Петербург : Лань, 2003.-272 с.
- 2. Севастьянов Б. А. Курс теории вероятностей и математической статистики. 2-е изд. Москва : Ижевск: Институт компьютерных исследований, 2004.-272 с.

- 3. Ширяев А. Н. Вероятность 1. В 2-х кн. 3-е изд. Москва : МЦНМО, 2004. 520 с.
- 4. Тутубалип В. Н. Теория вероятностей и случайных процессов. Москва : Изд-во МГУ, 1992. 400 с.
- 5. *Розапов Ю. А.* Теория вероятностей, случайные процессы и математическая статистика. 2-е изд. Москва: Наука, 1989. 320 с.
- 6. Феллер В. М. Введение в теорию вероятностей и её приложения. В 2-х томах / пер. с англ. Т. 1. Москва : Мир, 1984.-528 с.
- 7. *Боровков А. А.* Теория вероятностей. 3-е изд. Москва : Эдиториал УРСС, 1999. 472 с.

ПЕРВОЕ ЗАДАНИЕ

(срок сдачи 3-9 ноября)

- Комбинация событий. Вероятностное пространство.
 Классическое определение вероятности. Геометрическая вероятность
- 1. Среди студентов, пришедших на лекцию, наудачу выбирают одного. Пусть события $A,\ B$ и C состоят соответственно в том, что выбранный человек:
 - а) юноша, б) не курит,
- б) не курит, в) живет в общежитии.
 - а) Описать событие $A \cap B \cap \overline{C}$.
 - б) При каком условии $A \cap B \cap C = A$?
 - в) Когда $\overline{C} \subseteq B$?
- **2.** Пусть A, B и C произвольные события. Найти выражения для событий, состоящих в том, что:
 - а) произошли события А и С, но событие В не произошло;
 - б) произошло хотя бы одно из этих событий;
 - в) произошло два и только два события;
 - г) ни одно событие не произошло;
 - д) произошло не более одного события.
- 3. Электрическая цепь составлена по схеме, приведенной на рисунке:

Событие A_i состоит в том, что вышел из строя участок a_i . Записать выражение для события C, заключающегося в том, что цепь разомкнута.

- 4. Упростить:
 - a) $(A \cup B) \cap (A \cup \overline{B});$
 - b) $(A \cup B) \cap (B \cup C)$;
 - c) $(A \cup B) \cap (\overline{A} \cup \overline{B}) \cap (A \cup \overline{B})$.
- **5.** Сколькими способами 12 монет можно разложить по пяти различным пакетам, если ни один из пакетов не должен остаться пустым?
- **6.** Сколькими способами можно собрать бригаду из 3 маляров и 4 штукатуров, если можно выбирать из 6 маляров и 8 штукатуров?
- **7.** а) Доказать, что число всевозможных подмножеств конечного множества, содержащего n элементов, равно 2^n .
 - б) В множестве из n элементов выбираются подмножества A и B так, что $A \subset B$ и $A \neq B$. Доказать, что количество таких пар (A,B) равно 3^n-2^n .
- 8. Ребенок играет с десятью буквами разрезной азбуки: A, A, A, E, И, K, M, M, T, T. Какова вероятность того, что он случайно составит слово МАТЕМАТИКА?
- **9.** Найти вероятность того, что дни рождения 12 человек приходятся на разные месяцы года.
- **10.** Что вероятнее, выиграть у равносильного противника 3 партии из 4-х или 5 из 8-ми?
- **11.** На полке в случайном порядке расставлено 40 книг, среди которых находится трехтомник А.С. Пушкина. Найти вероятность того, что эти тома стоят в порядке возрастания слева направо (не обязательно рядом).
- **12.** В n конвертов разложено по одному письму n адресатам. На каждом конверте наудачу написан один из n адресов. Найти p_n вероятность того, что хотя бы одно письмо дойдет до своего адресата. Найти $\lim_{n\to\infty} p_n$.
- 13. Стержень длины l разломан в двух наудачу выбранных точках. Чему равна вероятность того, что из полученных кусков можно составить треугольник?
- **14.** (Парадокс Бертрана). В круге наудачу выбирается хорда. Найти вероятность того, что её длина больше длины стороны правильного вписанного треугольника.

Рассмотреть следующие варианты случайного выбора хорды:

- а) в круге наудачу выбирается середина хорды;
- б) задано направление хорды, и на диаметре, перпендикулярном этому направлению, наудачу выбирается середина хорды;
- в) один конец хорды закреплён, а другой наудачу выбирается на окружности.

II. Условная вероятность. Формула умножения. Формула полной вероятности. Формула Байеса. Независимость событий

- 15. В первом ящике 2 белых и 4 черных шара, а во втором 3 белых и 1 черный шар. Из первого ящика переложили во второй два шара. Найти вероятность того, что шар, вынутый из второго ящика после перекладывания, окажется белым.
- 16. Подводная лодка последовательно выпускает n торпед, каждая из которых независимо от других с вероятностью p попадает в атакуемый корабль. При попадании с вероятностью $\frac{1}{N}$ затопляется один из N отсеков корабля. Найти вероятность гибели корабля, если для этого необходимо затопление не менее двух отсеков.
- 17. При рентгеновском обследовании вероятность обнаружить заболевание туберкулезом у больного туберкулезом равна $1-\beta$. Вероятность принять здорового человека за больного равна α . Пусть доля больных туберкулезом по отношению ко всему населению равна γ .
 - а) Найти условную вероятность того, что человек здоров, если он признан больным при обследовании;
 - б) Найти условную вероятность того, что человек болен, если он признан при обследовании здоровым;
 - в) Вычислить найденные в первых двух пунктах условные вероятности при следующих числовых значениях: $\alpha = 0.01, \beta = 0.1, \gamma = 0.001.$
- 18. По каналу связи с вероятностью, равной соответственно 0.3, 0.4 или 0.3, может быть передана одна из трех последовательностей букв: AAAA, BBBB, CCCC. В результате шумов каждая буква принимается правильно с вероятностью 0.6, а с вероятностями 0.2 и 0.2 вместо нее принимаются две другие. Предполагается, что буквы искажаются независимо друг от друга. Найти вероятность того, что передано AAAA, если на приемном устройстве получено ABCA.

ВТОРОЕ ЗАДАНИЕ

(срок сдачи 8–14 декабря)

І. Случайные величины и их характеристики

- 1. Из ящика, содержащего m белых и n черных шаров, извлекают с возвращением шары до первого появления белого шара. Найти математическое ожидание и дисперсию числа вынутых шаров.
- **2.** Случайная величина ξ принимает значения -1, 0 и 1 с вероятностями 1/3, 1/6 и 1/2 соответственно. Найти:
 - а) распределение, математическое ожидание и дисперсию случайной величины $n=\xi^2$:
 - b) совместное распределение и ковариацию случайных величин η и ξ .
- **3.** Двумерное распределение случайных величин ξ и η задается с помощью таблины

$\eta \setminus \xi$	-1	0	2
-1	1/5	0	1/5
1	0	1/5	1/5
2	1/10	1/10	0

Выяснить, зависимы или нет случайные величины ξ и η . Найти:

- а) $E\xi, E\eta, D\xi, D\eta, \text{cov}(\xi, \eta)$, коэффициент корреляции и ковариационную матрицу;
- б) закон распределения и функцию распределения произведения $\xi \eta$.
- **4.** Пусть случайные величины ξ и η независимы и имеют геометрическое распределение с параметром p. Найти:

a)
$$P(\xi = \eta);$$
 б) $P(\xi > \eta);$ в) $P(\xi + \eta = k);$ г) $P(\xi = l | \xi + \eta = k);$

- д) $P(\xi = k | \xi = \eta)$.
- 5. Пусть ξ_k , k=1,2,- независимые случайные величины с распределение ем Пуассона. Найти распределение их суммы и условное распределение ξ_1 , если известна сумма $\xi_1+\xi_2$.
- **6.** Случайная величина ξ принимает только целые неотрицательные значения. Доказать, что

$$\mathsf{E}\xi = \sum_{k=1}^{\infty} \mathsf{P}(\xi \ge k).$$

7. Длина круга равномерно распределена на отрезке [0,1]. Найти математическое ожидание и дисперсию площади круга.

- Координаты двух случайных точек на прямой независимы и равномерно распределены на отрезке [0,1]. Найти математическое ожидание и дисперсию расстояния между точками.
- **9.** Случайные величины ξ и η независимы; ξ имеет плотность распределения $f_{\xi}(x)$, а $\mathsf{P}(\eta=0)=\mathsf{P}(\eta=1)=\mathsf{P}(\eta=-1)=\frac{1}{3}$. Найти закон распределения случайной величины $\xi+\eta$.
- **10.** Плотность совместного распределения p(x,y) величин ξ и η определяется равенствами p(x,y)=c(x+y) при $0\leq x\leq 1$ и $0\leq y\leq 1$ и p(x,y)=0 в остальных случаях. Найти:
 - а) постоянную c;
 - б) плотности распределения ξ и η ;
 - в) $E\xi, E\eta, D\xi, D\eta, \text{cov}(\xi, \eta)$, коэффициент корреляции и ковариационную матрицу.
- **11.** Случайные величины ξ_1 , ξ_2 принимают значения -1, 0, 1. Совместное распределение ξ_1 , ξ_2 определяется условиями $P\{\xi_1\xi_2=0\}=1$, $P\{\xi_i=1\}=P\{\xi_i=-1\}=\frac{1}{4},\ i=1,\ 2$. Найти $E\xi_1$, $E\xi_2$, $D\xi_1$, $D\xi_2$, $\mathrm{cov}(\xi_1,\xi_2)$.
- **12.** Пусть F(x) функция распределения случайной величины ξ , и она является непрерывной и строго возрастающей. Найти распределение и математическое ожидание случайной величины $\eta = F(\xi)$.

Неравенство Чебышева. Предельные теоремы. Характеристические функции

13. Случайная величина ξ имеет распределение, которое определяется плотностью

$$f_{\xi}(x) = \frac{1}{2}e^{-|x|}, \quad -\infty < x < \infty.$$

Сравнить точное значение вероятности $\mathsf{P}(|\xi| \geq 4)$ с её оценкой, полученной по неравенству Чебышёва.

14. Пусть ξ_n — случайная величина, равная сумме очков, появившихся при n бросаниях симметричной игральной кости. Используя неравенство Чебышева, оценить сверху

$$P\left(\left|\frac{\xi_n}{n} - \frac{7}{2}\right| > \epsilon\right), \quad \epsilon > 0.$$

15. Пусть ξ_n — случайная величина, равная сумме очков, появившихся при n бросаниях симметричной игральной кости. Используя центральную предельную теорему, выбрать n так, чтобы

$$\mathsf{P}\left(\left|\frac{\xi_n}{n} - \frac{7}{2}\right| \geqslant 0, 1\right) \leqslant 0, 1.$$

- 16. Пусть в книге из 500 страниц содержится 10 опечаток. Используя биномиальный закон распределения и его наилучшее в данном случае приближение, оценить вероятность того, что на случайно выбранной странице будет не менее 2 опечаток.
- 17. Найти вероятность того, что среди 10~000 новорожденных будет не менее половины мальчиков, если вероятность рождения мальчика равна 0.515.
- 18. Найти характеристические функции:
 - а) равномерного распределения на [0, a];
 - b) распределения Пуассона $p(n) = \frac{\dot{\lambda}^n}{n!} e^{-\lambda}, \ n = 0, 1, 2, 3, ...$
- **19.** Найти распределение случайной величины, имеющей характеристическую функцию:
 - a) $\chi(t) = e^{it} \cos t$;
 - b) $\chi(t) = \frac{1}{2 e^{it}}$.
- **20.** Найти математическое ожидание и дисперсию случайной величины, имеющей характеристическую функцию:
 - a) $\chi(t) = 4t^{-2}\cos t \sin^2(t/2);$
 - b) $\chi(t) = (1 it)^{-p} (1 + it)^{-q}$ p, q > 0.
- **21.** Пусть $\xi_{m,n}(m=1,2,...,n)$ независимые случайные величины с функциями распределения

$$F_n(x) = P(\xi_{m,n} \le x) = \begin{cases} 1 - \exp(-\alpha_n x), & x \ge 0, \\ 0, & x < 0, \end{cases} \quad \alpha_n = \lambda n, \ \lambda > 0.$$

Найти предельное распределение при $n \to +\infty$ случайной величины $\xi_n = \xi_{1,n} + \xi_{2,n} + ... + \xi_{n,n}.$