Corso di Laurea in Fisica Laboratorio di Meccanica e Termodinamica – prova scritta

27 gennaio 2022

Tempo per lo svolgimento: 90 minuti

Problema 1 (8 punti)

Misuriamo la velocità (costante) di un punto materiale misurando direttamente la distanza percorsa, data da $d/\cos(\theta)$, e il tempo di percorrenza t_0 . Le misure forniscono $d=(200\pm1)$ cm e $\theta=30^{\circ}\pm1^{\circ}$. Il tempo $t_0=1.70$ s è la media di un campione di 200 misure, la cui deviazione standard è $s_t=0.04$ s. Poichè Δd e $\Delta \theta$ sono incertezze massime, all'incertezza su t_0 si applica un fattore di copertura k=3. A quale velocità si muove il punto materiale?

Problema 2 (8 punti)

Un vaso cilindrico contiene N=8000 sfere micrometriche in sospensione liquida. Il contenitore è diviso idealmente in due parti (A= alto e B= basso) di volumi uguali. Il numero n_B di sferette contenute nella parte B è una variabile casuale binomiale. Sappiamo che la variabile casuale $n=n_B-n_A$ ($n_A=N-n_B$) ha media $\overline{n}=800$ e varianza $\sigma_n^2=7920$. Qual è la probabilità di trovare una sferetta nella parte B?

Problema 3 (8 punti)

Un modello teorico predice che due grandezze x e y siano legate dalla relazione $y = A + Bx + Cx^2$ con parametri A = 10 m, B = 2 m/s e C = 0.5 m/s². Si fanno delle misure di x (in secondi) e di y (in metri), riassunte in tabella:

Х	У				
2	15,8				
4	25,6				
6	40,4				
8	58,6				
10	80,2				

con incertezza trascurabile sulle x e pari a $\sigma_y = 20$ cm sulle y. Con un test del χ^2 verificare che i parametri del modello non sono in accordo con i dati. Ripetendo il test con i tre parametri stimati a partire dai dati (con la massima verosimiglianza) si ottiene $\chi^2 = 7.31$. In questo caso, si può affermare che la discrepanza tra i dati e la dipendenza quadratica ipotizzata è significativa oppure altamente significativa?

Problems 1

$$V = \frac{d}{t_0 \cos \theta} = \frac{2}{1.7 \cos (30^\circ)} = 1.358 \text{ m/s}$$

$$\frac{\Delta V}{V} = \frac{\Delta d}{d} + \frac{\Delta t_o}{t_o} + \frac{\Delta \cos \theta}{\cos \theta}$$

$$= \frac{\Delta d}{d} + \frac{\Delta t_o}{t_o} + \frac{1}{(\cos \theta)} \frac{|\partial \cos \theta|}{|\partial \theta|} \Delta \theta$$

$$= \frac{\Delta d}{d} + \frac{\Delta t_o}{t_o} + \frac{1}{100} \frac{\partial \Delta \theta}{\partial \theta}$$

$$= \frac{1}{200} + \frac{3 \cdot 0.04}{\sqrt{200} \cdot 1.7} + \frac{1}{130} (30^\circ) \cdot 1 \cdot \frac{\pi}{130}$$

$$= 0.005 + 0.005 + 0.010 = 0.02$$

$$\Delta V = 0.02 \cdot 1.358 = 0.027 \text{ m/s}$$

$$V = (1.358 \pm 0.027) \text{ m/s}$$

$$v = (1.36 \pm 0.03) \text{ m/s}$$

$$V = (1.36 \pm 0.03) \text{ m/s}$$

$$\begin{aligned}
N &= N_{B} - N_{A} = N_{B} - N + N_{B} = 2 n_{B} - N \\
\bar{N} &= 2 \bar{n}_{B} - N \\
\sigma_{n}^{2} &= \left(\frac{dn}{dn_{B}}\right)^{2} \sigma_{n_{B}}^{2} = 4 \sigma_{n_{B}}^{2} \\
\bar{N}_{B} &= N_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\begin{aligned}
N_{B} &= N_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\begin{aligned}
N_{B} &= V_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\begin{aligned}
N_{B} &= V_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\begin{aligned}
N_{B} &= V_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\end{aligned}$$

$$\begin{aligned}
N_{B} &= V_{B} \\
\sigma_{n_{B}}^{2} &= N_{B} (1 - p_{B})
\end{aligned}$$

$$\end{aligned}$$

= 1 - 0.45 ≥ 0.55

Problema 3

$$\sigma_y = 0.2 \text{ m}$$
 $A = 10 \text{ m}$
 $B = 2 \text{ m/s}$
 $C = 0.5 \text{ m/s}$

	x (3)	y(m)	f(x) (in)	χ^2
-	2	15,8	16	1
	4	25,6	26	4
	6	40,4	40	4
	8	58,6	58	9
	10	80,2	80	1
				19

$$V = 5$$

 $\hat{\chi}_{p}^{2} = \frac{19}{5} = 3.8$

 $P(\widetilde{X}^2 > 3.8)$ pn $\nu = 5$ $\tilde{\epsilon} < 1\%$ (la discrepanta $\tilde{\epsilon}$ altamente significativa)

$$100 \, \int_{\tilde\chi_0^2}^\infty f_\nu \left(\tilde\chi^2\right) \, \mathrm{d}\tilde\chi^2 = 100 \, \mathcal{P}\left[\tilde\chi^2 > \tilde\chi_0^2\right] \ .$$

$\tilde{\chi}_0^2 \rightarrow$	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	8.0	10.0
$\nu=1$						-		Market Street, or other Persons			The same of the sa	-		-	
$\nu=2$	100	61	37	22	14	8.2	5.0	3.0	1.8	1.1	0.7	0.4	0.2		9.2
$\nu=3$	100	68	39	21	11	5.8	2.9	1.5	0.7	0.4	0.2	0.1			
$\nu=4$															
$\nu=5$	100	78	42	19	7.5	2.9	1.0	0.4	0.1						

Se i dre peremetri sono ottenuti a partire dei deli $\nu = 5-3=2$

$$\tilde{\chi}_{o}^{L} = \frac{7.31}{2} = 3.66$$

 $P(\tilde{\chi}^2 > 3.66)$ pn v = 2 e compreso tra 1.8% e 3% (le discrepente e significativa ma non alternate significativa)