

FOM Hochschule für Ökonomie & Management

Hochschulzentrum Frankfurt am Main

Master Thesis

im Studiengang IT-Management

zur Erlangung des Grades eines

Master of Science (M.Sc.)

über das Thema

Architektonischer Entwurf und Modellierung einer Cloud Native Plattform für den Einsatz von containerisierten Microservices und Anwendungen

von

Dominik Otte

Betreuer: Dr. phil. Patrick Hedfeld

Matrikelnummer: 585039

Abgabedatum: 13. August 2023

Inhaltsverzeichnis

Abbildungsverzeichnis						
Tabellenverzeichnis						
Αŀ	Abkürzungsverzeichnis					
Symbolverzeichnis						
1	Einl	eitung	1			
	1.1	Ein Medienecho	1			
	1.2	Problemstellung und Zielsetzung der Thesis	1			
	1.3	Abgrenzung	3			
	1.4	Methodik und Vorgehensweise	4			
2	Soft	twarearchitektur	5			
	2.1	Begriffsdefinition	5			
	2.2	Architekturmodelle	5			
		2.2.1 3-Tier Architektur	5			
		2.2.2 Monolith	5			
		2.2.3 Microservices	5			
	2.3	Container	5			
	2.4	Automation und Orchestration	5			
3	Clo	ud Computing	6			
	3.1	Begriffsdefinition	6			
	3.2	Grundlagen der Cloud-Technologie	6			
	3.3	Cloud Native Plattform	6			
	3.4	Kubernetes	6			
4	Application Observability					
	4.1	Begriffsdefinition	7			
	4.2	Grundbausteine der Application Observability	7			
		4.2.1 Protokolle und Log-Dateien	7			
		4.2.2 Metriken und Performance Daten	7			
		4.2.3 Tracing	7			
	43	Herausforderungen in Cloud Native I Imgebungen	7			

5	Methodische Vorgehensweise			
	5.1	Auswahl Prototyping-Ansatz(Begründung Wahl der Methodik)	8	
	5.2	Identifizierung der Kernanforderungen an eine Cloud Native Plattform	8	
	5.3	Planung und Design	8	
6	Theoretischer Entwurf eines Modells			
	6.1	Ausprägungsmerkmale des Modells	9	
	6.2	Datenflussdiagramm	9	
7	Prototypentwicklung aus dem theoretischen Modell			
	7.1	Aufbau der Laborumgebung	10	
	7.2	Iterative Prototyping Schleife (Auswahl der Tools)	10	
	7.3	Validierung und Test	10	
8	Ergebnisse und Diskussion			
	8.1	Zusammenfassung der Ergebnisse	11	
	8.2	Handlungsempfehlung bei der Implementierung	11	
9	Kriti	ische Betrachtung	12	
	9.1	Limitation der angewandten Methodik	12	
	9.2	Limitation der Ergebnisse	12	
	9.3	Ausblick für künftige Forschungsarbeiten	12	
10 Fazit und Ausblick				
An	Anhang			
Lit	Literaturverzeichnis			

Abbildungsverzeichnis

Tabellenverzeichnis

Abkürzungsverzeichnis

Symbolverzeichnis

1 Einleitung

1.1 Ein Medienecho

https://www.computerwoche.de/a/was-gegen-cloud-native-spricht,3613754
https://www.datacenter-insider.de/podcastmitsebastiankistervomkubernetes-kompetenz-zentrumbeiaudi-a-6276da9a37b65eed7af33b32199ecdbd/
https://www.it-business.de/cloud-native-ist-im-channel-angekommen-a-ea90aa27d988c6c0c5815aaacc56d360/
https://www.security-insider.de/cloud-native-security-vier-herausforderungen-und-drei-tipps-a-51f23e225b38678ae8ec8b38e10941ed/

Pokemon Go Beispiel

1.2 Problemstellung und Zielsetzung der Thesis

Die rasante Entwicklung von Cloud-Technologien und die wachsende Nachfrage nach agilen und skalierbaren Anwendungen haben zu einer Revolution in der Art und Weise geführt, wie Unternehmen ihre Software entwickeln, bereitstellen und betreiben. Die traditionelle monolithische Architektur wird zunehmend von einer auf Microservices basierenden Architektur abgelöst, die es ermöglicht, Anwendungen in kleinere, eigenständige Komponenten zu zerlegen. Diese Komponenten, auch als containerisierte Microservices bezeichnet, können unabhängig voneinander entwickelt, bereitgestellt und skaliert werden. Die Cloud bietet eine ideale Umgebung für den Einsatz solcher Microservices, da sie elastische Ressourcen, automatische Skalierung und flexible Bereitstellungsmöglichkeiten bietet.

Der Einsatz von containerisierten Microservices in der Cloud bringt jedoch auch neue Herausforderungen mit sich. Eine entscheidende Frage ist die Auswahl geeigneter Technologien und Tools, um die Microservices effizient zu verwalten und zu orchestrieren. Container-Orchestrierungssysteme wie Kubernetes haben sich als Standard etabliert, bieten zudem eine Vielzahl von Möglichkeiten und Konfigurationen, die sorgfältig abgewogen werden müssen. Die Gewährleistung von Skalierbarkeit ist ein weiterer wichtiger Aspekt. Eine erfolgreiche Cloud-Native-Plattform muss in der Lage sein, die Anwendungen dynamisch zu skalieren, um eine hohe Auslastung zu bewältigen und gleichzeitig Ressourcenverschwendung zu vermeiden.

Darüber hinaus dürfen die Sicherheitsaspekte nicht vernachlässigt werden. Eine Cloud-Native-Plattform muss Mechanismen zur Isolation und Absicherung der einzelnen Microservices bereitstellen, um die Vertraulichkeit, Integrität und Verfügbarkeit der Daten zu gewährleisten. Ebenso spielt die effiziente Ressourcennutzung eine zentrale Rolle, da eine effektive Verwaltung und Auslastung der Ressourcen in der Cloud entscheidend für die Wirtschaftlichkeit und Leistungsfähigkeit der Plattform ist.

Vor diesem Hintergrund wird deutlich, dass der architektonische Entwurf und die Modellierung einer geeigneten Cloud-Native-Plattform von entscheidender Bedeutung sind. Eine fundierte und gut durchdachte Architektur legt den Grundstein für den erfolgreichen Einsatz von containerisierten Microservices und Anwendungen in der Cloud. Durch die Schaffung einer skalierbaren, sicheren und effizienten Plattform können Unternehmen die Vorteile der Cloud voll ausschöpfen und ihre Anwendungen mit Agilität und Skalierbarkeit entwickeln und betreiben.

Das Ziel dieser Arbeit ist es, einen umfassenden architektonischen Entwurf und eine beispielhafte Modellierung einer Cloud-Native-Plattform für den erfolgreichen Einsatz von containerisierten Microservices und Anwendungen zu entwickeln. Dabei sollen nicht nur die Anforderungen an Skalierbarkeit und effiziente Ressourcennutzung berücksichtigt werden, sondern auch weitere wichtige Aspekte, die für den reibungslosen Betrieb der Plattform von Bedeutung sind.

Ein zentraler Fokus liegt auf der Auswahl geeigneter Technologien, die eine nahtlose Integration und Interaktion der Microservices ermöglichen. Hierbei werden verschiedene Aspekte berücksichtigt, wie die Containerisierungstechnologie (z. B. Docker), die Orchestrierung (z. B. Kubernetes), das Service-Discovery-Management und die Konfigurationsverwaltung. Die Auswahl der richtigen Technologien spielt eine entscheidende Rolle bei der Gewährleistung von Skalierbarkeit, Flexibilität und Wartbarkeit der Plattform.

Des Weiteren wird die Integration von Monitoring-, Logging- und Tracing-Funktionalitäten in den architektonischen Entwurf und die Modellierung einbezogen. Dies ist von großer Bedeutung, um eine umfassende Überwachung und Analyse der Microservices und deren Kommunikation zu ermöglichen. Durch die Implementierung dieser Funktionen können Performance-Probleme, Engpässe und Fehler frühzeitig erkannt und behoben werden.

Darüber hinaus wird in der Arbeit auch der Sicherheitsaspekt berücksichtigt. Die Architektur und Modellierung der Cloud-Native-Plattform müssen Mechanismen zur Sicherung der Datenintegrität, zum Schutz vor unbefugtem Zugriff und zur Abwehr potenzieller Bedrohungen umfassen. Hierbei werden verschiedene Sicherheitsmaßnahmen wie Authentifizierung, Autorisierung und Verschlüsselung in den Entwurf integriert.

Durch den erarbeiteten architektonischen Entwurf und die Modellierung einer Cloud-Native-Plattform wird eine solide Grundlage geschaffen, auf der Unternehmen aufbauen können, um die Vorteile von containerisierten Microservices und Anwendungen in der Cloud optimal zu nutzen und ihre IT-Infrastruktur effektiv zu modernisieren. Die entwickelte Plattform ermöglicht eine effiziente Ressourcennutzung, Skalierbarkeit und Flexibilität und unterstützt Unternehmen dabei, ihre Anwendungen agil zu entwickeln, zu betreiben und auf zukünftige Anforderungen anzupassen.

[Zusammenfassung Problemstellung, Forschungsfrage, Zielsetzung der Thesis]

1.3 Abgrenzung

Die Festlegung der Abgrenzung der vorliegenden Thesis ist von entscheidender Bedeutung, um den Umfang der Arbeit klar zu definieren und den Fokus gezielt auf die Themenspezifischen Aspekte des architektonischen Entwurfs und der Modellierung einer Cloud-Native-Plattform für containerisierte Microservices und Anwendungen zu lenken. Durch die klare Definition des Umfangs werden die Grenzen der Untersuchung im weitreichenden Cloud-Native Themenkomplex abgesteckt und die Aufmerksamkeit auf die relevanten Themenbereiche gelenkt, die im Kontext dieser Arbeit von Interesse sind.

- Technologische Ausrichtung: Die Hausarbeit konzentriert sich auf Cloud-Native-Technologien und -Ansätze, insbesondere auf die Verwendung von Containern und Microservices. Andere Ansätze, wie beispielsweise virtuelle Maschinen oder herkömmliche monolithische Architekturen, werden nicht im Detail behandelt.
- Plattformfokus: Die Arbeit legt den Schwerpunkt auf die Entwicklung einer Cloud-Native-Plattform, die den spezifischen Anforderungen von containerisierten Microservices und Anwendungen gerecht wird. Dabei werden Aspekte wie Architekturdesign, Auswahl geeigneter Technologien und Integration von Monitoring-, Loggingund Tracing-Funktionalitäten berücksichtigt. Die Implementierung und konkrete Umsetzung der Plattform in einer bestimmten Cloud-Umgebung oder mit spezifischen Tools wird jedoch nicht im Detail behandelt.
- Anwendungsbereich: Die Hausarbeit fokussiert sich auf den generellen architektonischen Entwurf und die Modellierung einer Cloud-Native-Plattform für containerisierte Microservices und Anwendungen. Es werden keine spezifischen Anwendungsdomänen oder Industrien betrachtet. Die vorgeschlagene Architektur und Modellierung sollten jedoch auf verschiedene Anwendungsfälle und Branchen anwendbar sein.

 Zeitliche Betrachtung: Die Hausarbeit bezieht sich auf den aktuellen Stand der Technologie und Best Practices zum Zeitpunkt der Erstellung der Arbeit. Zukünftige Entwicklungen oder Trends im Bereich der Cloud-Native-Architektur und Containerisierung können nicht berücksichtigt werden.

[exkludiert sind Managed Services wie (AWS, GKE, etc.) Zusammenfassung der Abgrenzung]

1.4 Methodik und Vorgehensweise

Literaturrecherche, Modellentwicklung auf Basis der Literatur, Anforderungsanalyse, Prototyp Entwicklung in Form einer praxis Implementierung

2 Softwarearchitektur

- 2.1 Begriffsdefinition
- 2.2 Architekturmodelle
- 2.2.1 3-Tier Architektur
- 2.2.2 Monolith
- 2.2.3 Microservices
- 2.3 Container
- 2.4 Automation und Orchestration

3 Cloud Computing

- 3.1 Begriffsdefinition
- 3.2 Grundlagen der Cloud-Technologie
- 3.3 Cloud Native Plattform
- 3.4 Kubernetes

4 Application Observability

- 4.1 Begriffsdefinition
- 4.2 Grundbausteine der Application Observability
- 4.2.1 Protokolle und Log-Dateien
- 4.2.2 Metriken und Performance Daten
- 4.2.3 Tracing
- 4.3 Herausforderungen in Cloud Native Umgebungen

5 Methodische Vorgehensweise

- 5.1 Auswahl Prototyping-Ansatz(Begründung Wahl der Methodik)
- 5.2 Identifizierung der Kernanforderungen an eine Cloud Native Plattform
- **5.3 Planung und Design**

- **6 Theoretischer Entwurf eines Modells**
- 6.1 Ausprägungsmerkmale des Modells
- 6.2 Datenflussdiagramm

7 Prototypentwicklung aus dem theoretischen Modell

- 7.1 Aufbau der Laborumgebung
- 7.2 Iterative Prototyping Schleife (Auswahl der Tools)
- 7.3 Validierung und Test

- 8 Ergebnisse und Diskussion
- 8.1 Zusammenfassung der Ergebnisse
- 8.2 Handlungsempfehlung bei der Implementierung

9 Kritische Betrachtung

- 9.1 Limitation der angewandten Methodik
- 9.2 Limitation der Ergebnisse
- 9.3 Ausblick für künftige Forschungsarbeiten

10 Fazit und Ausblick

Anhang

Literaturverzeichnis

- Balzert, Helmut, Bendisch, Roman, Kern, Uwe et al. (Wissenschaftliches Arbeiten, 2008): Wissenschaftliches Arbeiten: Wissenschaft, Quellen, Artefakte, Organisation, Präsentation, Soft skills, Herdecke [u.a.]: W3L-Verl., 2008
- Balzert2, Helmut, Bendisch, Roman, Kern, Uwe, Schäfer, Christian, Schröder, Marion, Zeppenfeld, Klaus (XYZWissenschaftliches Arbeiten, 2008): Wissenschaftliches Arbeiten: Wissenschaft, Quellen, Artefakte, Organisation, Präsentation, Soft skills, Herdecke [u.a.]: W3L-Verl., 2008
- Beckert, André, Beckert, Sebastian, Escherich, Bernhard (Mobile Lösungen, 2012a): Mobile Lösungen mit SAP, 1. Aufl., Bonn: Galileo Press, 2012
- Beckert, André, Beckert, Sebastian, Escherich, Bernhard (Mobile Lösungen, 2012b): Mobile Lösungen mit SAP, 1. Aufl., Bonn: Galileo Press, 2012
- Beckert, André, Beckert, Sebastian, Escherich, Bernhard (Mobile Lösungen2, 2012): Mobile Lösungen mit SAP, 1. Aufl., Bonn: Galileo Press, 2012
- Decker, Frank (Koalitionsaussagen, 2009): Koalitionsaussagen der Parteien vor Wahlen. Eine Forschungsskizze im Kontext des deutschen Regierungssystems, in: Zeitschrift für Parlamentsfragen, 40 (2009), S. 431–453
- von Lucke, Jörn, Heuermann, Roland, Poder, Helmut et al. (Treiber, 2018): Treiber, Ratgeber, Meinungsmacher, in: Heuermann, Roland, Tomenendal, Matthias, Bressem, Christian (Hrsg.), Digitalisierung in Bund, Ländern und Gemeinden, Berlin: Springer Gabler, 2018, S. 153–213
- Tanenbaum, Andrew (Computernetzwerke, 2003): Computernetzwerke, 4. Aufl., München: Pearson Studium, 2003

Internetquellen

- Belastingdienst (Bürgerservicenummer, o. J.): Was ist eine Bürgerservicenummer (BSN)?, https://www.belastingdienst.nl/wps/wcm/connect/bldcontentde/belastingdienst/ privatpersonen / sonstige _ themen / buergerservicenummer / was _ ist _ eine _ buergerservicenummer_bsn> (keine Datumsangabe) [Zugriff: 2019-02-26]

 Brink, Sascha (AngularJS, 2018): AngularJS Was ist Angular?, https://angularjs.de/buch/was-ist-angularjs (2018-12-20) [Zugriff: 2019-01-02 23:30 Uhr]
- Hochschule für Oekonomie & Management (Onlinecampus, 2018): Onlinecampus, https://www.campus.bildungscentrum.de (2018) [Zugriff: 2018-11-01]

Ehrenwörtliche Erklärung

Hiermit versichere ich, dass die vorliegende Arbeit von mir selbstständig und ohne unerlaubte Hilfe angefertigt worden ist, insbesondere dass ich alle Stellen, die wörtlich oder annähernd wörtlich aus Veröffentlichungen entnommen sind, durch Zitate als solche gekennzeichnet habe. Ich versichere auch, dass die von mir eingereichte schriftliche Version mit der digitalen Version übereinstimmt. Weiterhin erkläre ich, dass die Arbeit in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde/Prüfungsstelle vorgelegen hat. Ich erkläre mich damit einverstanden, dass die Arbeit der Öffentlichkeit zugänglich gemacht wird. Ich erkläre mich damit einverstanden, dass die Digitalversion dieser Arbeit zwecks Plagiatsprüfung auf die Server externer Anbieter hochgeladen werden darf. Die Plagiatsprüfung stellt keine Zurverfügungstellung für die Öffentlichkeit dar.

Mörfelden-Walldorf, 13.8.2023

(Ort, Datum)

(Dominik Otte)