

NUMPY BASICS

NUMERICAL PYTHON

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Numpy

N-D Array

Descriptive Statistics Functions

Axis Parameter

NUMPY

NUMPY

NumPy, short for Numerical Python, is a foundational library for numerical computing in Python, providing support for efficient arrays, matrices, and mathematical operations. It serves as the backbone for many other scientific libraries, including pandas, scipy, and matplotlib.

https://numpy.org

N-D ARRAY

An <u>n-dimensional array</u> is a versatile and powerful data structure that allows you to work with multi-dimensional data efficiently.

Multi-dimensional:

- 0D array: Scalar
- 1D array: Vector
- 2D array: Matrix
- 3D array: Tensor
- General n-dimensional arrays

1-D ARRAY

Examples:

$$array_a = np.array([1,2,3)]$$

$$array_b = np.array([4,5,6)]$$

Syntax to create 1-D array:

2-D ARRAY

Example:

1	2	3
4	5	6

Transpose array

my_array.T

,	,
1	4
2	5
3	6

DESCRIPTIVE STATISTICS

```
np.mean(array)
np.median(array)
stats.mode(array) #from scipy import stats
np.min(array)
np.max(array)
np.percentile(array,25) #1st quartile
np.percentile(array,25) #2nd quartile
np.var(array)
np.std(array)
```


AXIS

The <u>axis</u> parameter defines the direction in which an operation (e.g., sum, mean, median) is performed.

For a 2-D array:

- axis = 0 refers to rows (vertical direction)
- axis = 1 refers to columns (horizontal direction)

Example:

1	4
2	5
3	6

```
np.sum(array,axis=0)
```

```
# output:[6, 15]
```

```
np.sum(array,axis=1)
```


LABORATORY

