HAlg Note

1 Basic Knowledge

```
Def of Group (G, *): A set G with a operator * is a group if: Closure: \forall g, h \in G, g * h \in G; Associativity: \forall g, h, k \in G, (g * h) * k = g * (h * k); Identity: \exists e \in G, \forall g \in G, e * g = g * e = g; Inverse: \forall g \in G, \exists g^{-1} \in G, g * g^{-1} = g^{-1} * g = e. G, H groups, then G \times H also. Subgroup: H \subseteq G is a subgroup if: \forall h_1, h_2 \in H I: H \neq \emptyset; II: h_1 * h_2 \in H; III: h_1^{-1} \in H.

Field (F): A set F is a field with two operators: (addition)+: F \times F \to F; (\lambda, \mu) \to \lambda + \mu (multiplication)·: F \times F \to F; (\lambda, \mu) \to \lambda \mu if: (F, +) and (F \setminus \{0_F\}, \cdot) are abelian groups with identity 0_F, 1_F. and \lambda(\mu + \nu) = \lambda \mu + \lambda \nu e.g.Fields : \mathbb{R}, \mathbb{C}, \mathbb{Q}, \mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p

F-Vector Space (V): A set V over a field F is a vector space if: V is an abelian group V = (V, \dot{+}) and \forall \vec{v}, \vec{w} \in V \lambda, \mu \in F e.g. P oly: \mathbb{R}[x]_{\leq n} P map P \times V \to V : (\lambda, \vec{v}) \to \lambda \vec{v} satisfies: I: \lambda(\vec{v} + \vec{w}) = (\lambda \vec{v}) + (\lambda \vec{w}) II: (\lambda + \mu)\vec{v} = (\lambda \vec{v}) + (\mu \vec{v}) III: \lambda(\mu \vec{v}) = (\lambda \mu)\vec{v} IV: 1_F \vec{v} = \vec{v}

Vector Subspaces Criterion: U \subseteq V is a subspace of V if: I. \vec{0} \in U II. \forall \vec{u}, \vec{v} \in U, \forall \lambda \in F: \vec{u} + \vec{v} \in U and \lambda \vec{u} \in U (or: \lambda \vec{u} + \mu \vec{v} \in U)

• property: If U, W are subspaces of V, then U \cap W and U + W are also subspaces of V. ps: U + W := \{\vec{u} + \vec{w} : \vec{u} \in U, \vec{w} \in W\}

Complement-wise Operations: \phi : V_1 \times V_2 \to V_1 \oplus V_2 by \mathbf{E}(\vec{v}_1, \vec{u}_1) + (\vec{v}_2, \vec{u}_2) := (\vec{v}_1 + \vec{v}_1, \vec{u}_1 + \vec{u}_2), \lambda(\vec{v}, \vec{u}) := (\lambda \vec{v}, \lambda \vec{u}) (ps: V_1, V_2 \oplus V_3) and V_3 \oplus V_4 \oplus V_4 or V_4 \oplus V_4 \oplus V_4.
```

Projections: $pr_i: X_1 \times \cdots \times X_n \to X_i$ by $(x_1, ..., x_n) \mapsto x_i$ **Canonical Injections**: $in_i: X_i \to X_1 \times \cdots \times X_n$ by $x \mapsto (0, ..., 0, x, 0, ..., 0)$

2 Vector Spaces/Subspaces | Generating Set | Linear Independent | Basis

Generating (subspaces) $\langle T \rangle$: $\langle T \rangle := \{ \alpha_1 \vec{v_1} + \dots + \alpha_n \vec{v_n} : \alpha_i \in F, \vec{v_i} \in T, r \in \mathbb{N} \}$ $\langle \emptyset \rangle := \{ \vec{0} \}$ If T is subspace $\Rightarrow \langle T \rangle = T$.

- 1. **Proposition**: $\langle T \rangle$ is the smallest subspace containing T. (i.e. $\langle T \rangle$ is the intersection of all subspaces containing T)
- 2. **Generating Set**: *V* is vector space, $T \subseteq V$. *T* is generating set of *V* if $\langle T \rangle = V$. **Finitely Generated**: \exists finite set T, $\langle T \rangle = V$
- 3. **External Direct Sum**: 一个" 代数结构", 定义为 set 是 $V_1 \oplus \cdots \oplus V_n := V_1 \times \cdots \times V_n$ 且有一组运算法则 component-wise operations
- 4. **Connect to Matrix**: Let $E = \{\vec{v_1}, ..., \vec{v_n}\}$, E is GS of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{b} \in V$, $\exists \vec{x} = (x_1, ..., x_n)^T$ s.t. $A\vec{x} = \vec{b}$ (i.e. linear map: $\phi : \vec{x} \mapsto A\vec{x}$ is surjective)
- **Linearly Independent**: $L = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_r}\}$ is linearly independent if: $\forall c_1, ..., c_r \in F, c_1\vec{v_1} + \cdots + c_r\vec{v_r} = \vec{0} \Rightarrow c_1 = \cdots = c_r = 0$. • **Connect to Matrix**: Let $L = \{\vec{v_1}, ..., \vec{v_n}\}$, L is LI of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{x} \in F^n$, $A\vec{x} = 0$ (or $\vec{0}$) $\Rightarrow \vec{x} = 0$ (or $\vec{0}$) (i.e. linear map $\phi: \vec{x} \mapsto A\vec{x}$ is injective)

Basis & Dimension: If *V* is finitely generated. $\Rightarrow \exists$ subset $B \subseteq V$ which is both LI and GS. (*B* is basis) **Dim**: dim V := |B|

• Connect to Matrix: Let $B = \{\vec{v_1}, ..., \vec{v_n}\}$ is basis of V. Let $A = [\vec{v_1}, ..., \vec{v_n}] \Rightarrow \forall \vec{x} = (x_1, ..., x_n)^T$ s.t. $\phi : \vec{x} \mapsto A\vec{x}$ is 1-1 & onto (Bijection)

Relation [GS,LI,Basis,dim: Let V be vector space. L is linearly independent set, E is generating set, B is basis set.

- 1. **GS**|**LI**: $|L| \le |E|$ (can get: dim unique) **LI** \to **Basis**: If V finite generate $\Rightarrow \forall L$ can extend to a basis. If $L = \emptyset$, prove $\exists B$ $kerf \cap imf = \{0\}$
- 2. **Basis**|max,min: $B \Leftrightarrow B$ is minimal GS $(E) \Leftrightarrow B$ is maximal LI (L). **Uniqueness**|Basis: 每个元素都可以由 basis 唯一表示.
- 3. **Proper Subspaces**: If $U \subset V$ is proper subspace, then $\dim U < \dim V$. \Rightarrow If $U \subseteq V$ is subspace and $\dim U = \dim V$, then U = V.
- 4. **Dimension Theorem**: If $U, W \subseteq V$ are subspaces of V, then $\dim(U+W) = \dim U + \dim W \dim(U\cap W)$

Complementary: $U, W \subseteq V, U, V$ subspaces are complementary $(V = U \oplus W)$ if: $\exists \phi : U \times W \to V$ by $(\vec{u}, \vec{w}) \mapsto \vec{u} + \vec{w}$ i.e. $\forall \vec{v} \in V$, we have unique $\vec{u} \in U, \vec{w} \in W$ s.t. $\vec{v} = \vec{u} + \vec{w}$. ps: It's a linear map.

3 Linear Mapping | Rank-Nullity | Matrices | Change of Basis ps: 默认 V, W F-Vector Space

3.1 Linear Mapping | Rank-Nullity

Linear Mapping/Homomorphism(Hom): $f: V \to W$ is linear map if: $\forall \vec{v}_1, \vec{v}_2 \in V, \forall \lambda \in F.$ $f(\vec{v}_1 + \vec{v}_2) = f(\vec{v}_1) + f(\vec{v}_2)$ and $f(\lambda \vec{v}_1) = \lambda f(\vec{v}_1)$

· Isomorphism: = LM & Bij. Endomorphism(End): = LM & V = W. Automorphism(Aut): = LM & V = W Monomorphism: = LM & 1-1. Epimorphism: = LM & onto.

 $\textbf{Kernel}: \ker f := \{\vec{v} \in V : f(\vec{v}) = \vec{0}\} \\ (\text{It's subspace}) \quad \textbf{Image}: Imf := \{f(\vec{v}) : \vec{v} \in V\} \\ (\text{It's subspace}) \quad \textbf{Rank} := \dim(Imf) \quad \textbf{Nullity} := \dim(\ker f) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f : X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f := \{x \in X : f(x) = x\} \\ (\text{It's Subspace}) \quad \textbf{Fixed Point } X^f := \{x \in X : f(x)$

Property of Linear Map: Let $f, g \in Hom$: $\mathbf{a}. f(\vec{0}) = \vec{0}$ $\mathbf{b}. f$ is 1-1 iff $\ker f = \{\vec{0}\}$ $\mathbf{c}. f \circ g$ is linear map.

- 1. **Determined**: f is determined by $f(\vec{b_i})$, $\vec{b_i} \in \mathcal{B}_{basis}$ (* i.e. $f(\sum_i \lambda_i \vec{v_i}) := \sum_i \lambda_i f(\vec{v_i})$)
- 2. **Classification of Vector Spaces**: dim $V = n \Leftrightarrow f : F^n \xrightarrow{\sim} V$ by $f(\lambda_1, ..., \lambda_n) \mapsto \sum_{i=1}^n \lambda_i \vec{v_i}$ is isomorphism.
- 3. **Left/Right Inverse**: f is 1-1 \Rightarrow \exists left inverse g s.t. $g \circ f = id$ 考虑 direct sum f is onto \Rightarrow \exists right inverse g s.t. $f \circ g = id$
- 4. $^{\Theta}$ More of Left/Right Inverse: $f \circ g = id \Rightarrow g$ is 1-1 and f is onto. 使用 kernel=0 来证明

Rank-Nullity Theorem: For linear map $f: V \to W$, dim $V = \dim(\ker f) + \dim(Imf)$ Following are properties:

- 1. **Injection**: f is $1-1 \Rightarrow \dim V \le \dim W$ **Surjection**: f is onto $\Rightarrow \dim V \ge \dim W$ Moreover, $\dim W = \dim imf$ iff f is onto.
- 2. **Same Dimension**: f is isomorphism \Rightarrow dim $V = \dim W$ **Matrix**: $\forall M$, column rank $c(M) = \operatorname{row} \operatorname{rank} r(M)$.
- 3. **Relation**: If V, W finite generate, and dim $V = \dim W$, Then: f is isomorphism $\Leftrightarrow f$ is $1-1 \Leftrightarrow f$ is onto.

3.2 Matrices | Change of Basis | Similar Matrices | Trace

- 2. If $\vec{v} \in V$, then $_{\mathcal{A}}[\vec{v}] := \mathbf{b}$ (vector) where $\vec{v} = \sum_{i \in \mathcal{A}} \mathbf{b}_i \vec{v}_i$
- 3. Theorems: $[f \circ g] = [f] \circ [g]$ $_{\mathcal{C}}[f \circ g]_{\mathcal{A}} =_{\mathcal{C}} [f]_{\mathcal{B}} \circ_{\mathcal{B}} [g]_{\mathcal{A}}$ $_{\mathcal{B}}[f(\vec{v})] =_{\mathcal{B}} [f]_{\mathcal{A}} \circ_{\mathcal{A}} [\vec{v}]$ $_{\mathcal{A}}[f]_{\mathcal{A}} = I \Leftrightarrow f = id$
- 4. **Change of Basis**: Define Change of Basis Matrix:= $_{\mathcal{A}}[id_V]_{\mathcal{B}}$ $_{\mathcal{B}'}[f]_{\mathcal{A}'} =_{\mathcal{B}'}[id_W]_{\mathcal{B}} \circ_{\mathcal{B}}[f]_{\mathcal{A}} \circ_{\mathcal{A}}[id_V]_{\mathcal{A}'}$ $_{\mathcal{A}'}[f]_{\mathcal{A}'} =_{\mathcal{A}}[id_V]_{\mathcal{A}'}^{-1} \circ_{\mathcal{A}}[f]_{\mathcal{A}} \circ_{\mathcal{A}}[id_V]_{\mathcal{A}'}$

- **Similar Matrices**: $N = T^{-1}MT \Leftrightarrow M, N$ are similar. Special Case: If $N =_{\mathcal{B}} [f]_{\mathcal{B}}, M =_{\mathcal{A}} [f]_{\mathcal{A}}$, then $N = T^{-1}MT$. where $T =_{\mathcal{A}} [id_V]_{\mathcal{B}}$ 1. If $A \sim B$ iff A is similar to B, then \sim is an equivalence relation. $A' [f]_{\mathcal{A}'} \sim_{\mathcal{A}} [f]_{\mathcal{A}}$
- 2. If $\mathcal{B} = \{p(\vec{v_1}), ..., p(\vec{v_n})\}$ and $\mathcal{A} = \{\vec{v_1}, ..., \vec{v_n}\}$ where $p: V \xrightarrow{\sim} V$. Then $\mathcal{A}[id_V]_{\mathcal{B}} =_{\mathcal{A}} [p]_{\mathcal{A}}$
- 3. If *V* is a vector space over *F*, [*A*, *B* are *similar* matrices. $\Leftrightarrow A =_{\mathcal{A}} [f]_{\mathcal{A}}, B =_{\mathcal{B}} [f]_{\mathcal{B}}$ for some basis $\mathcal{A}, \mathcal{B}; f : V \to V$]
- 4. Set of Endomorphism is in a bijection correspondence with the equivalence class of matrices under \sim . 一个自同态 End 就对应一个相似矩阵的等价类 **Trace**: $tr(A) := \sum_i a_{ii}$ and $tr(f) := tr(_{\mathcal{A}}[f]_{\mathcal{A}}) \mid tr(AB) = tr(BA) \quad tr(\lambda A + \mu B) = \lambda tr(A) + \mu tr(B) \quad tr(N) = tr(M)$ if M, N similar.

4 Rings | Polynomials | Ideals | Subrings

4.1 Rings | Polynomial Rings

Ring $(R, +, \cdot)$: A set R with two operators $+, \cdot$ is a ring if:

- 1. (R, +) is an abelian group with identity 0_R . Commutative Ring: add: $\forall a, b \in R, ab = ba$.
- 2. (R, \cdot) is a **monoid** with identity 1_R . i.e. **Associativity**: $\forall a, b, c \in R, (a \cdot b) \cdot c = a \cdot (b \cdot c)$. **Identity**: $\forall a \in R, 1_R \cdot a = a \cdot 1_R = a$.
- 3. **Distributive**: $\forall a, b, c \in R$: $a \cdot (b+c) = a \cdot b + a \cdot c$ and $(b+c) \cdot a = b \cdot a + c \cdot a$. ps: 默认 monoid 是 closure 的
- · If R is ring \Rightarrow $[1_R = 0_R \Leftrightarrow R = \{0\}]$ i.e. For any non-zero ring, $1_R \neq 0_R$ Field: Commutative ring + multiplicative inverse = Field.

Properties of Ring: $\forall a, b \in R$. I.0 · $a = a \cdot 0 = 0$ II. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$ III. $(-a) \cdot (-b) = a \cdot b$

Unit: $a \in R$ is unit if it's *Invertible*. i.e. $\exists a^{-1} \in R$ s.t. $aa^{-1} = a^{-1}a = 1_R$ **Group of Unit** $(R^{\times}, \cdot) := \{a \in R : a \text{ is unit}\}$

Zero-divisors: $a \in R$ is zero-divisor if $\exists b \in R, b \neq 0$ s.t. ab = 0 or ba = 0 Field has no zero-divisors. • e.g. $\mathbb{Z}^{\times} = \{-1, 1\}$; 1_R is a unit. **Integral Domain**: A commutative ring R is an integral domain if it has no zero-divisors. • e.g. $\mathbb{Z}/p\mathbb{Z}$, \mathbb{R} , \mathbb{Q} , \mathbb{Z} , ...

Properties of Integral Domain: $\forall a, b \in R$. **I.** $ab = 0 \Rightarrow a = 0$ or b = 0 **II.** $a, b \neq 0 \Rightarrow ab \neq 0$ **III.** $ac = bc, a \neq 0 \Rightarrow b = c$

· Field is Integral Domain Every finite integral domain is a field $\mathbb{Z}/p\mathbb{Z}$ is field iff p is prime. e.g.(integral domain) \mathbb{Z} ; $\mathbb{Z}/p\mathbb{Z}$

Polynomial Ring $R[X]: R[X] := \{a_n X^n + \dots + a_1 X + a_0 : a_i \in R, n \in \mathbb{N}\}$ where X is **indeterminate** $\Leftarrow X \notin R$ and $\forall x \in R, Xa = aX$

- 1. **Degree**: $\deg(P) := \max\{n \in \mathbb{N} : a_n \neq 0\}$ **Leading Coefficient**: a_n **Monic**: $a_n = 1$ ps: Polynomial NOT a function
- 2. **Lemma**: 1R integral domain/no zero-divisors $\Rightarrow R[X]$ also. 2R integral domain or no zero-divisor $\Rightarrow \deg(PQ) = \deg(P) + \deg(P)$
- 3. **Division and Remainder**: If R is integral domain and P, $Q \in R[X]$, Q monic $\exists ! A, B \in R[X]$ s.t. P = AQ + B and $\deg(B) < \deg(Q)$
- 4. **Function** | **Factorize**: If R is *commutative ring* \Rightarrow $^1R[X] \rightarrow Maps(R,R)$ (可以视作函数) $^2\lambda \in R$ is root of $P \Leftrightarrow (X \lambda) \mid P(X)$
- 5. **Roots**: If R is *Integral domain*: P has at most deg(P) roots.

Algebraically Closed: R = F field is *algebraically closed* if every non-constant polynomial has a root in F. e.g. \mathbb{C}

• **Decomposes**: If *F* field is *algebraically closed* \Rightarrow *P* decomposes into: $P(X) = a(X - \lambda_1) \cdots (X - \lambda_n)$, $a \in F^{\times}$ i.e. $a \neq 0$

4.2 Homomorphism | Ideals | Subrings

Ideal $(I \subseteq R)$: A subset $I \subseteq R$ (ring) is an ideal if: **I.** $I \neq \emptyset$ **II.** $\forall a, b \in I, a - b \in I$ **III.** $\forall i \in I, \forall r \in R, ri, ir \in I$

- 1. **Generated Ideal** $_R\langle T\rangle$: $T\subseteq R$ (ring), where R is *commutative ring*. We define $_R\langle T\rangle:=\{\sum_{i=1}^n r_it_i:n\in\mathbb{N},r_i\in R,t_i\in T\}$
 - · Lemma: $_R\langle T\rangle$ is the smallest ideal containing T. Principal Ideal: $_R\langle a\rangle$ Proper Ideal: $I\neq R$ ps: $_R$ 一定是 commutative ring
- 2. If I, J are ideals of R. Then I + J; $I \cap J$ are also ideals.

Subring Test: $R' \subseteq R$ (ring) is a subring if: **I**. $1_R \in R'$ **II**. $\forall a, b \in R'$, $a - b \in R'$ **III**. $\forall a, b \in R'$, $ab \in R'$

· If $f: R \to S$ is ring homomorphism, and R' is subring of R. $\Rightarrow f(R')$ is subring of S.

Ring Homomorphism: R, S are rings, $f: R \to S$ is ring homomorphism if: I. f(a+b) = f(a) + f(b) II. f(ab) = f(a)f(b) $f(1_R) = 1_S$ is NOT need

- 1. **Second Def**: f is ring homomorphism if: $f:(R,+) \to (S,+)$ is group homomorphism and f(xy) = f(x)f(y).
- 2. I. $f(0_R) = 0_S$ II. f(-a) = -f(a) III. $f(a^n) = (f(a))^n$ IV. f(x y) = f(x) f(y) V. f(mx) = mf(x)
- 3. **Kernel**: $\ker f := \{a \in R : f(a) = 0_S\}$ is an *ideal* **Image**: $Imf := \{f(a) : a \in R\}$ is a *subring*. **1-1**: f is 1-1 \Leftrightarrow $\ker f = \{0_R\}$

4.3 Equivalence Relation

5 Inner Product Spaces | Orthogonal Complement / Proj | Adjoints and Self-Adjoint

6 Jordan Normal Form | Spectral Theorem