# 数据清洗

## pretrain

## • 预训练数据

| 数据集             | 发布者                                 | 规模                           | 特点              | 支撑的语言模型                                              |
|-----------------|-------------------------------------|------------------------------|-----------------|------------------------------------------------------|
| BooksCorpus     | Zhu et al. (2015),<br>Shawn Presser | book1: 2.2GB;<br>book3: 37GB | 英文小说集           | GPT 系列、OPT、OPT-IML                                   |
| Wikipedia       | 维基媒体基金会                             | 21.23 GB                     | 多语言高质量<br>百科全书  | GPT 系列、OPT、OPT-IML                                   |
| Common Crawl    | Common Crawl 团队                     | 超过 PB                        | 网页数据,<br>规模巨大   | GPT 系列、T5、UL2、Flan-T5                                |
| ROOT            | BigScience                          | 1.6TB                        | 包含 69 种语言       | BLOOM, BLOOMZ, mT0                                   |
| The Pile        | Gao et al.(2020)                    | 825GB                        | 数据来源广泛,<br>多样性佳 | GLM-130B、GPT-J、GPT-NeoX-20B、<br>OPT、OPT-IML、GLM-130B |
| 悟道              | 北京智源人工<br>智能研究院                     | 3TB                          | 中文数据集           | GLM-130B                                             |
| CLUECorpus 2020 | GLUE 开源社区                           | 100GB                        | 中文数据集           |                                                      |
| MNBVC MNBVC     | 里屋社区                                | 2.18TB                       | 中文数据集           |                                                      |

## • 清洗预训练数据流程

0

。 清洗一般步骤: 质量过滤-去重-隐私删除-Tokenization



### ■ 质量过滤

- □ 基于分类器
  - 。 训练一个二分类器, 判断高质量与低质量文本
- □ 基于启发式
  - 。 基于语言过滤(去除不相关的语言)
  - 。 基于指标过滤,例如困惑度等
  - 基于统计过滤,使用标点分布、符号词比、句子长度等过滤低质量
  - 。 基于关键词过滤: 过滤包含关键词的文本、例如链接、引用等

# ■ 去除重复文本

- □ 句子级别、文件级别、词集级别
- Deduplicating Training Data Makes Language Models Better
  - o paper: https://arxiv.org/pdf/2107.06499v1.pdf
  - o Deduplicating Training Data Mitigates Privacy Risks in Language Models
    - paper: http://proceedings.mlr.press/v162/kandpal22a/kandpal22a.pdf
  - 。 结论: 去重可以加快模型训练速度、不易受到隐私攻击
- 去除文本中的隐私信息
  - □ 住址、电话等
- Tokenization

- SentencePiece
- BPE
- https://zhuanlan.zhihu.com/p/630696264
- When Less is More: Investigating Data Pruning for Pretraining LLMs at Scale
  - paper: https://arxiv.org/pdf/2309.04564.pdf
  - 步骤:语言识别(剔除无关数据)-规则方法-轻量级模型过滤-数据去重
    - □ 语言识别,删除与目标语言无关的数据
    - □ 规则方法:
      - 。 丢弃perplexity高的文本数据(过滤掉不自然的文本)
      - 。 删除标点/符号过多、过长/过短的句子
      - 。 删除具有某些特定词汇 (如链接、脏话、敏感词) 的句子
    - □ 通过轻量级模型进行过滤,例如KenLM,避免噪音
      - KenLM
        - code:https://github.com/kpu/kenlm
        - 使用: https://www.zhihu.com/tardis/bd/art/399494766
    - 数据去除重复/相似的信息,在文档层面进行模糊重复数据删除,例如通过 minHash来删除相似文档
      - 。 包含大量重复词汇或短语的句子可以删除
      - 。 重复率(词/n-grams共现)过高的段落删除
      - 。 删除训练集中与测试集相关度过高的内容
  - 结论:
    - □ 基于困惑度对50%/30%的数据集剪枝比使用错误L2范数效果好
    - 删除简单实例可以提高模型性能,简单实例比如困惑度低的底层样本,错误L2范数指标低的底层样本、使用记忆话指标的顶部样本
  - 开源工具:
    - FastText: https://github.com/topics/fasttext?o=asc&s=forks
    - CC-Net: https://github.com/facebookresearch/cc\_net
    - MinHashLSH: https://github.com/topics/minhash-lsh-algorithm

| 算法<br>步骤 | KSentence                            | KShingle                | MinHash                                                                | SimHash                                                                                                    |
|----------|--------------------------------------|-------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
|          | 去掉部分标点和特殊字符,保留逗号、句号、<br>冒号、换行等语句分隔标点 | 去掉标点,空格,特殊字符等           | 去掉标点,空格,特殊字符等                                                          | 去掉标点,空格,特殊字符等                                                                                              |
| 分割词组     | 无                                    | 指定长度的滑动窗口提取Shingle作为词组  | 指定长度的滑动會口提取Shingle作为词组                                                 | 分词结果作为词组                                                                                                   |
| 分割语句     | 根据语句分隔标点提取文本语句                       | 无                       | 无                                                                      | 无                                                                                                          |
| 生成词库     | 无                                    | 所有文本的互异词组的集合构成词库        | 所有文本的互异词组的集合构成词库                                                       | 无                                                                                                          |
| 提取指纹     | 计算语句的长度,提取K个最长的语句,拼接<br>文本后计算MDS作为指纹 | 基于词库计算文本的one-hot编码向量作为文 | 基于词库计算文本的one-hot编码,再对文本的one-hot编码向量婚机排列,取首个非零元素的下桥,重复N次,得到的N维向量作为文本打触效 | 统计文本中各词组的词题,将各词组哈希为指<br>定长度的01向量,将0次为-1,按位与对应词<br>缴相骤。再将所有词组的相顾结果按位相加,<br>大于0缺射力1,否则映射为0,得到的01向量<br>作为文本指纹 |
| 建立索引     | 以指纹为索引,指向具有该指纹的文本ID                  | 以指纹为索引,指向具有该指纹的文本ID     | 将文本指纹分段,以各段指纹为索引,指向具<br>有该指纹的文本ID                                      | 将文本指纹分段,以各段指纹为索引,指向具<br>有该指纹的文本ID                                                                          |
| 生成候选     | 具有同一指纹的文本对                           | 具有同一指纹的文本对              | 至少具有同一段相同指纹的文本对作为候选                                                    | 至小具有同一段相同指纹的文本对作为候选                                                                                        |
| 计算距离     | 无需计算,默认所有候选文本对都是重复文本<br>对            |                         | 计算候选文本对的同位元素相等概率,大于阈<br>值则认为是重复文本对                                     | 计算候选文本对的Hamming距离,小于阈值<br>则认为是重复文本对                                                                        |

■ 案例: CulturaX数据集清洗

paper: https://arxiv.org/pdf/2309.09400.pdf

code: https://huggingface.co/datasets/uonlp/CulturaX

- 评估预训练数据质量
  - 。 困惑度
  - 。 错误L2范数
  - 。 记忆化

#### • 构造数据

- 《SELF-INSTRUCT: Aligning Language Models with Self-Generated Instructions》
  - paper: https://arxiv.org/pdf/2212.10560.pdf
  - code: https://github.com/yizhongw/self-instruct
  - 步骤:指令生成-实例生成-过滤&后处理
    - □ 指令生成
      - 每次从任务池中抽取8条数据(一个任务=一条指令+一条实例),注意任务/场景粒度是有限的
    - □ 实例生成
      - 。 将指令给LLM生成对应的数据
    - □ 过滤&后处理
      - 。 衡量新数据与旧数据的相似度,只有当ROUGE-L相似度小于0.7的时候才可

#### • 清洗数据

- 。 数据污染问题
  - 输入与输出污染
    - 预训练数据中存在与下游任务标签相同的数据,模型倾向于复制文本,而非学习真正的解题模式
  - 输入污染
    - 评估样本中并未包含标签情况,导致下游任务的性能高估。在做零样本和少样本评估的时候,如果预训练数据集中存在与热门基准任务重叠的数据,我们必须重视数据去污染。
- 。 消除错误&不一致
- 。项目
  - https://github.com/gururise/AlpacaDataCleaned
    - □ 清洗代码: https://github.com/gururise/AlpacaDataCleaned/tree/main/tools
      - 。 检查数据集的input是否存在潜在问题
      - 。 询问LLM给定的指令与输入是否正确、对应
      - 。 检查数据集中是否有合并的指令
      - 检查output是否有问题,是否有截断现象、输出是否符合字典格式等

# • 筛选数据

- From Quantity to Quality: Boosting LLM Performance with Self-Guided Data
  Selection for Instruction Tuning
  - paper:https://arxiv.org/abs/2308.12032
  - code:https://github.com/tianyi-lab/Cherry\_LLM
  - 核心:提出一个指令跟随难度指标IFD,通过该指标来筛选具有增强LLM指令调优潜力的数据样例
  - IFD计算公式:

$$_{\square} \quad CAS = s_{ heta}(A|Q) = rac{1}{N} \sum_{i=1}^{N} \log p(w_i^A|Q, \ldots, w_{i-1}^A; heta)$$

。 CAS表示条件回答分数,用于表示模型对指令Q生成答案A的难易程度

$$_{\square} \hspace{0.5cm} DAS = s_{ heta}(A) = rac{1}{N} \sum_{i=1}^{N} \log P(w_1^A, \ldots, w_{i-1}^A; heta)$$

。 DAS表示直接答案分数,是answer部分的损失

$$_{\square}$$
  $IFD=r_{ heta}(Q,A)=rac{s_{ heta}(A|Q)}{s_{ heta}(A)}$ 

- 。 指令跟随难度,数值越大对模型越有利
- 步骤:少量数据微调&使用聚类来保证数据多样性-微调模型计算IFD-重新训练
  - □ 先少量数据1k用于模型sft微调,训练出v1版模型,需要保证数据多样性
  - □ 使用该微调模型计算所有数据的IFD, 筛选数据
  - □ 使用筛选的数据重新训练模型
- 结论:模型仅仅使用5%-10%的数据就可以达到全量数据的效果,甚至有提升
- 启发: 可以通过计算数据的IFD,自动筛选top k的数据用于微调,另外可以借鉴基于 困惑度+聚类的思想来保证数据的多样性
- o LIMA: Less Is More for Alignment
  - paper: https://arxiv.org/pdf/2305.11206.pdf
  - 假设:模型在预训练见过所有数据,sft只是学习交互方式和风格
  - 描述: 65B的微调LLM, 没有使用rlhf
  - 核心实验:
    - □ 单论对话:使用1k的高质量sft数据,人工手写250条+社区问答750,并且在prompt中加加入一步一步思考(Let's think step by step)
    - □ 多轮对话: 30个高质量对话样本
  - 结论: 少量高质量的数据可以大幅提升模型对应的能力
- Exploring the Impact of Instruction Data Scaling on Large Language Models: An Empirical Study on Real-World Use Cases
  - paper:https://arxiv.org/pdf/2303.14742.pdf
  - code:https://github.com/LianjiaTech/BELLE
  - 结论:
    - □ 对于翻译、改写、头脑风暴任务,200w甚至更少的数据可以使得模型效果更好
    - □ 对于提取、分类、封闭式QA和总结摘要任务,效果随着数据量的提升而提升
    - □ 模型在数学、代码、CoT上表现差,可以尝试在数据质量、模型规模、训练策略上 进行改进
- o Duxiaoman-DI
  - code:https://github.com/Duxiaoman-DI/XuanYuan
  - 核心:基于Bloom176B,使用混合微调缓解灾难性遗忘
  - 混合数据微调步骤
    - □ 从网上爬取预训练数据+清洗过滤
    - □ 使用self-instruction收集通用数据,构造为结构化和非结构化数据
    - □ 按照一定比例进行混合一般指令数据: 金融数据



- DoReMi: Optimizing Data Mixtures Speeds Up Language Model Pretraining
  - paper: https://arxiv.org/pdf/2305.10429v2.pdf
  - code: https://github.com/sangmichaelxie/doremi
  - 核心:提出基于域权重的算法,使用域上的组分布鲁棒优化训练一个小型代理模型,用于生成域权重,然后根据域权重新训练一个更大的模型



- Instruction Mining: High–Quality Instruction Data Selection for Large Language
  Models
  - paper: https://arxiv.org/pdf/2307.06290v1.pdf
  - 核心:一种线性质量规则和评估指标
    - 已有的指标: length/rewardscore/perplexity/MTLD/KNN-i/unieval-naturalness/coherence/understandability
  - 结论:
    - □ PPL、MTLD、Nat、Und与预期评估损失呈现正相关,越低越好
    - □ rewardscore、coh与评估损失呈现负相关,越高越好

# 工具

- 去除重复数据工具
  - deduplicate-text-datasets
    - code: https://github.com/google-research/deduplicate-text-datasets
  - o datasketch
    - code: https://github.com/ekzhu/datasketch
  - data-juicer
    - paper:Data-Juicer: A One-Stop Data Processing System for Large Language Models (arxiv.org)

- code:https://github.com/modelscope/data-juicer/releases/tag/v0.2.0
- 服务器代

码: /mnt/pfs/jinfeng\_team/SFT/qinxiuyuan/workplace/dataprocess/data-juicer

- 环境: conda activate dataJuicer
- 三种去重模式
  - □ md5
  - MinHash
    - tokenizer
    - 。 窗口级别的向量计算Jaccard系数
  - SimHash
    - 。 分词-Hash-加权-合并-降维
      - 分词(启发式、jieba分词等)
      - Hash, 利用hash函数计算每个特征向量的hash值
      - 加权:将所有分词得到的hash值与其对应的权重进行加权求和
      - 降维:将原先的数值降低到只使用0-1表示
- 。 清洗污染数据工具
  - Im-eval harness
    - code: https://github.com/EleutherAl/Im-evaluation-harness
    - □ 用法: https://zhuanlan.zhihu.com/p/671235487
- 。 微调数据处理工具
  - code: https://github.com/modelscope/data-juicer/releases/tag/v0.2.0
- Dataverse: Open-Source ETL (Extract, Transform, Load) Pipeline for Large Language Models
  - paper: https://arxiv.org/pdf/2403.19340.pdf
  - code: https://github.com/UpstageAl/dataverse
  - 。 支持数据去重、数据清洗、PII个人身份信息移除、数据质量提升、消除偏见、去除毒性数据等功能

## 参考资料

- CSDN博客
  - sft和pretrain数据处理和筛选方法: https://blog.csdn.net/qq\_35812205/article/deta ils/134104120
  - minHash计算: https://blog.csdn.net/zfhsfdhdfajhsr/article/details/128529402
- 知乎
  - 数据中心: https://zhuanlan.zhihu.com/p/617057227
  - «A survey of Large Language Models»: https://zhuanlan.zhihu.com/p/63106599
- Github
  - instructionZoo:https://github.com/FreedomIntelligence/InstructionZoo
  - data-centric-AI: https://github.com/daochenzha/data-centric-AI
- 其他:
  - o SimHash计算: https://blog.51cto.com/u\_16099328/9147103
  - LLM数据处理: https://wandb.ai/wandb\_gen/llm-data-processing/reports/Processing-Data-for-Large-Language-Models--VmlldzozMDg4MTM2