Universidade Federal do Maranhão Centro de Ciências Exatas e Tecnologias Engenharia da Computação

Thales L. A. Valente

Disciplina: Linguagens Formais e Autômatos **Código:** EECP0020

7 de novembro de 2024

Conteúdo programático

- Elementos de matemática discreta
- Conceitos básicos de linguagens
- Linguagens regulares e autômatos finitos
- Linguagens livres de contexto e autômatos de pilha
- Linguagens sensíveis ao contexto e Máquinas de Turing com fita limitada
- Linguagens recursivas e Máquinas de Turing com finta infinita
- Linguagens recursivamente enumeráveis

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

- Um conjunto pode ser considerado como uma coleção de objetos, chamados de elementos ou membros do conjunto. Por exemplo, são conjuntos:
 - As vogais *a*, *e*, *i*, *o*, *u*.
 - Os dígitos 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - Os dias da semana.
 - Os estudantes da UFMA.
 - Os números ímpares 1, 3, 5, 7, ...

- Para denotar conjuntos, utilizam-se letras maiúsculas. Por exemplo:
 - O conjunto V de vogais.
 - O conjunto *D* de dias.
 - O conjunto N dos números naturais.
- Para denotar elementos, utilizam-se letras minúsculas. Por exemplo:
 - x é um elemento de V.
 - y é um elemento de D.
 - z é um elemento de N.
- Para relacionar elementos e conjuntos, utilizam-se as operações de pertinência.
 - $x \in V$ quer dizer que o elemento x pertence ao conjunto V.
 - $x \notin V$ quer dizer que o elemento x não pertence ao conjunto V.

- A ordem dos elementos e a repetição dos mesmo é indiferente para a definição de conjuntos. Por exemplo, os seguintes conjuntos são todos iguais.
 - As vogais a, e, i, o, u.
 - As vogais *u*, *o*, *i*, *e*, *a*.
 - As vogais *a*, *i*, *e*, *i*, *o*, *o*, *u*.
 - As vogais u, u, u, u, o, i, e, a.
- Princípio da extensão: dois conjuntos A e B são iguais se, e somente se, possuírem os mesmo elementos.

Descrição

- Há duas formas de se descrever um conjunto textualmente:
 - Listagem de todos os seus elementos.
 - $V = \{a, e, i, o, u\}$ denota o conjunto V cujos elementos são as letras a, e, i, o, u.
 - Os elementos são separados por vírgula e se encontram entre chaves.
 - Enunciação das propriedades que caracterizam seus elementos.
 - $B = \{x : x \text{ e um numero par}, x > 10\}$
 - Os elementos encontram-se entre chaves. Dois pontos significa "tal que". Vírgula significa "e".
 - Lê-se: "B é o conjunto dos x tal que x é um número inteiro par e x é maior do que 10."

Conjunto Universo e conjunto Vazio

- ullet O conjunto **Universo** U refere-se àquele ao qual pertencem todos os elementos de uma dada aplicação. Por exemplo:
 - Em geometria plana, o conjunto U representa todos os pontos do plano.
 - Em estudos de populações humanas, o conjunto U representa todas as pessoas.
- O conjunto Vazio Ø refere-se àquele que n\u00e3o cont\u00e9m elemento algum.
 Por exemplo:
 - $S = \{x : x \text{ e um inteiro positivo}, x^2 = 3\}$

Conjuntos finitos

- **Conjunto finito** é aquele que contém exatamente *m* elementos distintos, onde *m* denota algum inteiro não negativo. Por exemplo:
 - O conjunto vazio Ø é finito.
 - O conjunto das letras é finito.
 - O conjunto dos números pares é infinito.
- n(A) denota a quantidade de elementos de A.
 - Significa o mesmo que #(A), $\lceil A \rceil$ ou card(A).

Subconjuntos

- Se todo elemento de um conjunto A é também elemento de um conjunto B, diz-se que A é um subconjunto de B. Esse fato é representado por A ⊆ B.
- Se A não é subconjunto de B, tem-se que $A \not\subseteq B$.
- Por exemplo:
 - Considere os conjuntos $A = \{1, 3, 4, 5, 8, 9\}$, $B = \{1, 2, 3, 5, 7\}$ e $C = \{1, 5\}$. Então, tem-se que $C \subseteq A$, $C \subseteq B$ e $B \not\subseteq A$.
 - $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$
 - Considere os conjuntos $E = \{2,4,6\}$ e $F = \{6,2,4\}$. Então, tem-se que $E \subseteq F$ e $F \subseteq E$.

Subconjuntos

- Para todo conjunto A, tem-se que $\varnothing \subseteq A \subseteq U$.
- Para todo conjunto A, tem-se que $A \subseteq A$.
- Se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.
- Se $A \subseteq B$ e $B \subseteq A$, então A = B.

Subconjuntos próprios

- Um conjunto A é **subconjunto próprio** de B se $A \subseteq B$ mas $A \neq B$. Denota-se este fato por $A \subset B$. Por exemplo:
 - Suponha os conjuntos $A = \{1, 3\}, B = \{1, 2, 3\}$ e $C = \{1, 3, 2\}.$
 - Então $A \subset C$ e $B \subseteq C$, pois B = C e $A \neq C$.

Conjunto potência

- O conjunto potência de S, ou as **partes do conjunto** S, refere-se à coleção de todos os subconjuntos de S, denotada por 2^S , ou Partes(S). Note que a $n(2^S)$ é $2^{n(S)}$. Por exemplo, supondo o conjunto $S = \{1,2,3\}$, tem-se que:
 - $2^{S} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$

Diagramas de Venn

- Um diagrama de Venn¹ é uma representação gráfica na qual os conjuntos são ilustrados por figuras geométricas no plano.
 - ullet Retângulo: representa o conjunto universo U.
 - ullet Círculo: representa qualquer conjunto dentro de U.
- Considerando os conjuntos A e B, tem-se três situações:

(a) $A \subseteq B$

(b) A e B não tem elementos em comum

(c) A e B tem elementos em comum

Figura: Diagramas de Venn

¹Diagramas de Venn online: https://www.meta-chart.com/venn.

Operação de União

- A união entre os conjuntos A e B é o conjunto $A \cup B$ de todos os elementos de A e de B. Ou seja, $A \cup B = \{x : x \in A \text{ ou } x \in B\}$.
 - Suponha os conjuntos $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7\}$ e $C = \{2, 3, 5, 7\}$.
 - Então $A \cup B = \{1, 2, 3, 4, 5, 6, 7\}$ e $A \cup C = \{1, 2, 3, 4, 5, 7\}$.

Figura: Diagrama de Venn de $A \cup B$

• Generalização: $A_1 \cup A_2 \cup ... \cup A_m = \bigcup_{i=1}^m A_i = \{x : x \in A_i \text{ para algum } A_i\}$

Operação de Intersecção

- A Intersecção entre os conjuntos $A \in B$ é o conjunto $A \cap B$ dos elementos que pertencem simultaneamente a A e a B. Ou seja, $A \cap B = \{x : x \in A \ e \ x \in B\}$.
 - Suponha os conjuntos $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7\}$ e $C = \{2, 3, 5, 7\}$.
 - Então $A \cap B = \{3,4\}$ e $A \cap C = \{2,3\}$.

Figura: Diagrama de Venn de $A \cap B$

• Generalização: $A_1 \cap A_2 \cap ... \cap A_m = \bigcap_{i=1}^m A_i = \{x : x \in A_i \text{ para todo } A_i\}$

Operações de Complementares

- O complementar absoluto, ou simplesmente complementar, de um conjunto A, denotado por A^c , é o conjunto dos elementos que pertencem a U mas não a A. Ou seja, $A^c = \{x : x \in U, x \notin A\}$.
- O complementar relativo de um conjunto B em relação a A, ou simplesmente a diferença entre A e B, denotado por A\B, é o conjunto dos elementos que pertencem a A mas não pertencem a B. Ou seja, A\B = {x : x ∈ A, x ∉ B}.

(a) A^c está sombreado

(b) $A \setminus B$ está sombreado

Figura: Diagramas de Venn dos complementares

Operação de Diferença simétrica

- A diferença simétrica dos conjuntos A e B, denotada por $A \oplus B$, consiste em todos os elementos que pertencem a A ou a B, mas não a ambos. Ou seja, $A \oplus B = (A \cup B) \setminus (A \cap B)$.
 - Suponha os conjuntos $A = \{1, 2, 3, 4, 5, 6\}$ e $B = \{4, 5, 6, 7, 8, 9\}$.
 - Então $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$, $A \cap B = \{4, 5, 6\}$ e $A \oplus B = \{1, 2, 3, 7, 8, 9\}$.

Figura: Diagrama de Venn de $A \oplus B$

Operação de Produto cartesiano

- O **produto cartesiano** dos conjuntos A e B, denotado por $A \times B$, consiste do conjunto de todos os pares ordenados (a, b) com primeira componente em A e segunda componente em B. Ou seja, $A \times B = \{(x, y) : x \in A \ e \ y \in B\}$.
- Por exemplo, sejam $A = \{1, 2\}$ e $B = \{3, 4\}$, então:
 - $A \times B = \{(1,3), (1,4), (2,3), (2,4)\}$
 - $B \times A = \{(3,1), (3,2), (4,1), (4,2)\}$
 - $A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}$

Álgebra de conjuntos

Tabela: Leis da álgebra de conjuntos

Leis de idempotência	$\begin{array}{l} \text{(1a) } A \cup A = A \\ \text{(1b) } A \cap A = A \end{array}$
Leis de associatividade	$(2a) (A \cup B) \cup C = A \cup (B \cup C)$ $(2b) (A \cap B) \cap C = A \cap (B \cap C)$
Leis de comutatividade	$(3a) A \cup B = B \cup A$ $(3b) A \cap B = B \cap A$
Leis de distributividade	$(4a) A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $(4b) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Leis de identidade	(5a) $A \cup \varnothing = A$ (5b) $A \cap U = A$ (6a) $A \cup U = U$ (6b) $A \cap \varnothing = \varnothing$
Leis de involução	$(7) (A^c)^c = A$
Leis dos complementares	(8a) $A \cup A^c = U$ (8b) $A \cap A^c = \emptyset$ (9a) $U^c = \emptyset$ (9b) $\emptyset^c = U$
Leis de DeMorgan	(10a) $(A \cup B)^c = A^c \cap B^c$ (10b) $(A \cap B)^c = A^c \cup B^c$

Álgebra de conjuntos

- Para realizar provas de identidades, recorre-se a duas abordagens:
 - Inclusão em cada direção.
 - Diagrama de Venn.
- Por exemplo, a prova da Lei de DeMorgan $(A \cup B)^c = A^c \cap B^c$:
 - Primeiramente, mostra-se que $(A \cup B)^c \subseteq A^c \cap B^c$.
 - Se $x \in (A \cup B)^c$, então $x \notin (A \cup B)$.
 - Logo, $x \notin A$ e $x \notin B$. Portanto, $x \in A^c$ e $x \in B^c$.
 - Assim, $x \in A^c \cap B^c$.
 - Em seguida, mostra-se $A^c \cap B^c \subseteq (A \cup B)^c$.

Figura: Diagramas de Venn da prova

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

- Sejam A e B conjuntos. Uma **relação binária** R ou, simplesmente, **relação** R de A para B é um subconjunto de $A \times B$. Portanto, R é o conjunto de pares ordenados onde cada primeiro elemento $a \in A$ e cada segundo elemento $b \in B$. Neste conjunto, cada par (a,b) satisfaz exatamente uma das afirmações seguintes:
 - (a, b) ∈ R, quando dize-se que a é R-relacionado a b, denotado por aRb.
 - $(a, b) \notin R$, quando dize-se que a não é R-relacionado a b, denotado por aRb.
- Por exemplo, sejam os conjuntos $A = \{1,2,3\}$, $B = \{x,y,z\}$ e $R = \{(1,y),(1,z),(3,y)\}$. Diz-se que R é uma relação de A para B, pois R é um subconjunto de $A \times B$.

- Seja R uma relação de um conjunto A para si mesmo, ou seja, R é um subconjunto de $A^2 = A \times A$. Então diz-se que R é uma relação em A.
- O domínio de uma relação R é o conjunto de todos os primeiros elementos dos pares ordenados de R.
- A imagem de uma relação R é o conjunto de todos os segundos elementos dos pares ordenados de R.
- A **inversa** de uma relação R de A para B consiste na relação R^{-1} , cujos pares ordenados, quando invertidos, pertencem a R. Assim, temse que:

$$R^{-1} = \{(b, a) : (a, b) \in R\}$$

- Por exemplo, sejam os conjuntos $A = \{1, 2, 3\}$, $B = \{x, y, z\}$ e $R = \{(1, y), (1, z), (3, y)\}$. Tem-se:
 - O domínio de *R* é {1,3}.
 - A imagem de $R \in \{y, z\}$.
 - A inversa de $R \in \{(y,1),(z,1),(y,3)\}.$

- Dado um conjunto A, alguns tipos básicos de relação podem ser definidos em A, a saber:
 - Reflexivas
 - Simétricas
 - Transitivas

- Uma relação R em um conjunto A é **reflexiva** se aRa acontece para todo $a \in A$, isto é, se $(a, a) \in R$ para todo $a \in A$.
- Por exemplo, quais dos itens abaixo representam relações reflexivas?
 - Relação \leq (menor que) no conjunto \mathbb{Z} .
 - ② Inclusão de conjuntos ⊆ em uma coleção C de conjuntos.
 - 3 Relação \perp (perpendicularidade) em um conjunto L de retas no plano.
 - **1** Relação \parallel (paralelismo) em um conjunto L de retas no plano.
 - Relação | de divisibilidade no conjunto N.

- Uma relação R em um conjunto A é **simétrica** se aRb implica bRa, isto é, se $(a, b) \in R$ implica $(b, a) \in R$.
- Por exemplo, quais dos itens abaixo representam relações simétricas?

 - $R_3 = \{(1,3),(2,1)\};$
 - $R_4 = \emptyset$, a relação vazia;
 - **5** $R_5 = A \times A$, a relação universal.

- Uma relação R em um conjunto A é **transitiva** se aRb e bRc implica aRc, isto é, se (a,b) e $(b,c) \in R$, então $(a,c) \in R$.
- Por exemplo, quais dos itens abaixo representam relações transitivas?

 - $R_2 = \{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\};$
 - $R_3 = \{(1,3),(2,1)\};$

 - **5** $R_5 = A \times A$, a relação universal.

Relações de equivalência

- Uma relação R em um conjunto não vazio S é uma relação de equivalência se R é reflexiva, simétrica e transitiva. Isto é, R é uma relação de equivalência em S se possui as seguintes propriedades:
 - Para todo $a \in A$, aRa.
 - Se aRb, então bRa.
 - Se aRb e bRc, então aRc.
- Por exemplo, são relações de equivalência:
 - A classificação de animais em espécies, isto é, a relação "é da mesma espécie que", definida no conjunto de animais.
 - A relação $\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$, definida no conjunto $\{1,2,3\}$.
 - A relação "x + y é par", definida no conjunto \mathbb{N} .
 - A relação " $x = y^2$ ", definida no conjunto $\{0, 1\}$.

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

- Uma função f de um conjunto A em um conjunto B é definida como a coleção de associações entre cada elemento de A e um único elemento de B. Simbolicamente, tem-se:
 - $f: A \rightarrow B$, lido como "f é uma função de A em B".
 - A é dito o **domínio** de f.
 - B é dito o contradomínio de f.
 - Se a ∈ A, então f(a) é chamada de imagem de a por f. Ao conjunto de todos os f(a) dá-se o nome de imagem de f. Em termos simples, a imagem é o conjunto de todos os resultados possíveis da função f.
- No exemplo $f(x) = x^2$, sendo o domínio de f = (x)

- Por exemplo, tem-se as seguintes funções:
 - $f(x) = x^2$ é a função que associa a cada número real o seu quadrado.
 - f é a função que associa a cada país do mundo sua capital.
 - 1_A é a função Identidade, que associa cada elemento do domínio A a si mesmo.
 - f de $A = \{a, b, c, d\}$ em $B = \{r, s, t, u\}$, como definida pela figura abaixo.

Figura: Função $f: A \rightarrow B$

• De um outro ponto de vista, uma função $f:A\to B$ é uma **relação** de A para B (ou seja, um subconjunto de $A\times B$) tal que cada $a\in A$ pertence à primeira posição de um único par ordenado (a,b) em f. Assim, tem-se que o **gráfico** de f pode ser definido por

Gráfico de
$$f = \{(a, b) : a \in A, b = f(a)\}$$

- Por exemplo, dadas as relações abaixo, pode-se verificar quais são funções no conjunto $A = \{1, 2, 3\}$.
 - $f = \{(1,3),(2,3),(3,1)\}$ é função de A em A, pois cada elemento de A aparece uma única vez como primeiro elemento de um par ordenado em f.
 - $g = \{(1,2), (3,1)\}$ não é função pois $2 \in A$ não aparece em um par ordenado em f.
 - $h = \{(1,3),(2,1),(1,2),(3,1)\}$ não é função pois $1 \in A$ aparece como primeiro elemento em mais de um par ordenado em f.

Injetividade, sobrejetividade e bijetividade

- Uma função $f:A\to B$ é dita **injetora** se elementos diferentes do domínio A tem imagens distintas, ou seja, f é injetora se f(a)=f(a') implica a=a'.
- Uma função f: A → B é dita sobrejetora se cada elemento de B é a imagem de algum elemento de A, ou seja, f é sobrejetora se a imagem de f é todo contradomínio B de f.
- Uma função $f:A\to B$ é dita **bijetora** se ela for simultaneamente injetora e sobrejetora.

Injetividade, sobrejetividade e bijetividade

• Por exemplo, considere as funções $f_1: A \to B$, $f_2: B \to C$, $f_3: C \to D$ e $f_4: D \to E$ ilustradas pelos diagramas abaixo:

Figura: Função $f: A \rightarrow B$

- As funções possuem as seguintes características:
 - f_1 é injetora mas não sobrejetora.
 - f_2 é injetora e sobrejetora.
 - f₃ não é injetora mas é sobrejetora.
 - f₄ não é injetora nem sobrejetora.

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

Tipos de demonstrações

- Linguagens Formais e Autômatos são sistemas matemáticos formais.
 Como tais, possuem inúmeras propriedades que necessitam ser provadas.
- As propriedades geralmente formuladas como teoremas. Um teorema é uma afirmação que pode ser demonstrada verdadeira através de operações e argumentos matemáticos.
- A demonstração de um teorema exige a prova formal de que uma certa propriedade é satisfeita por todos os membros de um conjunto. Dentre as técnicas utilizadas para tanto, destacam-se as seguinte:
 - Demonstrações por indução matemática.
 - Provas por contradição.

 Imagine que você esteja subindo uma escada infinitamente alta. Perguntase: como você sabe se será capaz de chegar a um degrau arbitrariamente alto?

- Pode-se fazer as seguintes hipóteses sobre sua capacidade de subida de escada:
 - Você consegue alcançar o primeiro degrau.
 - Uma vez chegando a um degrau, você é sempre capaz de chegar ao próximo.
- Se ambas as hipóteses forem verdadeiras, pode-se subir tão alto quanto se queira.
- Esta forma de raciocínio que leva à conclusão de um certo caso com base na observação da regularidade de uma ocorrência é chamada de indução.

- Primeiro princípio de indução matemática: Seja P uma propriedade definida nos inteiros positivos $\mathbb{N} = \{1, 2, 3, ...\}$, i.e., P(k) é verdadeiro ou falso para cada k em \mathbb{N} . Suponha que P tenha as seguintes propriedades:

 - 2 P(k+1) é verdadeiro sempre que P(k) for verdadeiro.

Então, P é verdade para todo inteiro positivo.

- Neste caso, tem-se as seguintes denominações:
 - base da indução: P(1).
 - hipótese da indução: P(k).
 - passo da indução: P(k) implica em P(k+1).

- Exemplo 1: prove que a equação $1 + 3 + 5 + ... + (2n 1) = n^2$ é verdadeira para qualquer inteiro positivo n.
 - Etapas da prova indutiva:
 - **1** Prove a base da indução P(1). $1 = 1^2$ é verdade.
 - 2 Suponha P(k). $1+3+5+...+(2k-1)=k^2$
 - **3** Prove P(k+1). $1+3+5+...+[2(k+1)-1] \stackrel{?}{=} (k+1)^2$

$$1+3+5+...+[2(k+1)-1]$$
= 1+3+5+...+(2k-1)+[2(k+1)-1]
= k²+[2(k+1)-1]
= k²+[2k+2-1]
= k²+2k+1
= (k+1)²

- Exemplo 2: prove que, para qualquer inteiro positivo n a equação $1+2+3+...+n=\frac{n(n+1)}{2}$ é verdadeira.
 - Etapas da prova indutiva:
 - **1** Prove a base da indução. $1 = \frac{1(1+1)}{2} = 1$
 - **2** Suponha P(k).

$$1+2+3+...+k=\frac{k(k+1)}{2}$$

3 Prove P(k+1).

$$1+2+3+...+k+1 \stackrel{?}{=} \frac{(k+1)(k+1+1)}{2} = 1+2+3+...+k+k+1$$

$$= \frac{k(k+1)}{2} + k + 1$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k(k+1)+2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

Prova por contradição

 A prova por contradição ou redução ao absurdo consiste em adotar como base da demonstração a negação da hipótese formulada e, através de manipulações lógicas, mostrar que q negação dessa hipótese conduz a uma contradição.

Prova por contradição

- **Exemplo 1**: prove, por contradição, que $\sqrt{2}$ é um número irracional.
 - Inicialmente, suponha a negação da hipótese, ou seja, que √2 é um número racional.
 Sobre suposição de racionalidade a √2 pade ser supresso some √2 − P.
 - Sob a suposição de racionalidade, $\sqrt{2}$ pode ser expresso como $\sqrt{2} = \frac{p}{q}$, com p e q números inteiros sem fatores comuns.
 - Manipulando $\sqrt{2}=\frac{p}{q}$, tem-se $p^2=2q^2$. Assim, p^2 e, consequentemente, p são números pares.
 - Sendo par, p pode ser escrito como p=2m. Substituindo na equação acima, tem-se $q^2=2m^2$. Portanto, q^2 e q também são pares.
 - Se p e q são pares, então eles possuem 2 como fator comum. Mas isso contradiz a suposição inicial de que não haveria fatores comuns entre p e q. Conclui-se, portanto, que a suposição inicial está errada e que $\sqrt{2}$ tem que ser um número irracional.

Prova por contradição

- **Exemplo 2**: prove, por contradição, que 0 é o único elemento neutro da adição em ℕ.
 - Inicialmente, suponha a negação da hipótese, ou seja, que 0 não é o único elemento neutro da adição em N.
 - Sob essa suposição, deve existe um número $e \in \mathbb{N}$, tal que $e \neq 0$.
 - Como 0 é elemento neutro, tem-se, para qualquer número $n \in \mathbb{N}$, que n = n + 0. Em particular, para n = e, tem-se que e = e + 0.
 - Como e é elemento neutro, tem-se, para qualquer número $n \in \mathbb{N}$, que n = e + n. Em particular, para n = 0, tem-se que 0 = e + 0.
 - Como e=e+0 e 0=e+0, então e=0. Mas isso contradiz a suposição inicial de que $e\neq 0$. Conlui-se, portanto, que a suposição inicial está errada e que 0 tem de ser o único elemento neutro da adição em \mathbb{N} .

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

- Um grafo é um par ordenado (V, A), em que V denota o conjunto de vértices (ou nós) do grafo e A denota a relação binária sobre V, através do qual são especificados os arcos do grafo.
 - Dois vértices $v_i, v_j \in V$ tais que $(v_i, v_j) \in A$ são ditos adjacentes.
- Abaixo, tem-se o grafo G_1 , representando textualmente e graficamente.

$$G_1 = (V_1, A_1)$$

$$V_1 = \{0, 1, 2, 3\}$$

$$A_1 = \{(0, 1), (0, 2), (0, 3), (1, 3), (2, 3)\}$$

Figura: Grafo G₁

- Um grafo **orientado** é aquele em que há uma relação de ordem entre os elementos que formam os pares $(v_i, v_j) \in A$. Caso contrário, o grafo é dito **não-orientado**.
 - No caso de $(v_i, v_j) \in A$, diz-se que v_i é o predecessor de v_j e v_j é o sucessor de v_i .
- Abaixo, tem-se o grafo orientado G_2 .

$$G_2 = (V_2, A_2)$$

$$V_2 = \{0, 1, 2, 3\}$$

$$A_2 = \{(0, 1), (0, 2), (0, 3), (1, 3), (2, 3)\}$$

Figura: Grafo G₂

- Um grafo é dito ordenado quando houver uma relação de ordem préconvencionada sobre todos os arcos que emergem dos diversos vértices do grafo.
- Por exemplo, abaixo tem-se o grafo G_3 :

$$G_3 = (V_3, A_3)$$

$$V_3 = \{a, b, c, d\}$$

$$A_3 = \{(a, b), (b, a), (a, c), (a, d), (c, b), (d, c), (c, d)\}$$

Suponha que exista uma relação de ordem implícita entre os pares ordenados de A_3 de tal forma que (a,b)<(b,a)<(a,c)<(a,d)<(c,b)<(d,c)<(c,d). Então, tem-se que:

Vértice
$$a:(a,b),(a,c),(a,d)$$

Vértice $b:(b,a)$
Vértice $c:(c,b),(c,d)$
Vértice $d:(d,c)$

Figura: Grafo G_3

- Os seguinte conceitos valem para grafos orientados:
 - Ramificação de saída (N_S): quantidade de arcos que partem de um dado vértice.
 - Ramificação de entrada (N_E): quantidade de arcos que chegam a um dado vértice.
 - **Vértices-base ou vértices-raiz**: vértices com $N_E = 0$.
 - **Vértices-folha**: vértices com $N_S = 0$.
- Por exemplo, tem-se, para o grafo G_3 definido anteriormente:

$$N_S(a) = 3, N_E(a) = 1$$

 $N_S(b) = 1, N_E(b) = 2$
 $N_S(c) = 2, N_E(c) = 2$
 $N_S(d) = 1, N_E(d) = 2$

Figura: Grafo G₃

- Os seguintes conceitos valem para grafos:
 - O caminho entre dois vértices inicial e final é a sequência ordenada de arcos tal que predecessor do primeiro arco é o vértice inicial, o sucessor do último arco é o vértice final e cada arco intermediário tem como predecessor o sucessor do arco anterior.
 - Um ciclo é um caminho cujo predecessor do primeiro arco e o sucessor do último arco coincidem. Grafos que apresentam ao menos um ciclo são ditos cíclicos. Grafos sem ciclos são acíclicos.
 - O comprimento do caminho é o número de arcos que o formam.
- Por exemplo, tem-se que, para o grafo G_3 definido anteriormente:
 - A seqüência (a, c)(c, b) constitui um caminho de comprimento 2.
 - A seqüência (a, d)(c, d)(d, c) não constitui um caminho.
 - O grafo G₃ é do tipo cíclico.

- Um grafo rotulado é aquele que, associado a seus vértices ou a seus arcos, há rótulos que representam informação adicional.
 - Uma rotulação de vértices (de arcos)é uma função f_V (uma função f_A) que associa os elementos de V (de A) a elementos de um conjunto R_V (de um conjunto R_A), chamado de alfabeto de rotuação de vértices (de arcos).
- Por exemplo, seja o grafo G_4 abaixo:

$$G_4 = (V_4, A_4)$$

 $V_4 = \{0, 1, 2\}$
 $A_4 = \{(0, 1), (1, 2), (0, 2)\}$

Uma rotulação possível seria:

$$\begin{array}{ll} \textit{f}_{\textit{V}} &= \{(0,\phi),(1,\gamma),(2,\psi)\}, & \text{com} \\ \textit{R}_{\textit{V}} &= \{\phi,\gamma,\psi\} \\ \textit{f}_{\textit{A}} &= \{((0,1),\Phi),((1,2),\Gamma),((0,2),\psi)\}, & \text{com} \\ \textit{R}_{\textit{A}} &= \{\Phi,\Gamma,\Psi\} \end{array}$$

Figura: Grafo G₃

Sumário

- Conjuntos
- Relações
- Funções
- Teoremas e demonstrações
- Grafos
- Árvores

- Um árvore é um grafo acíclico orientado e ordenado que possui as seguintes características adicionais:
 - Há apenas um vértice r tal que $N_E(r) = 0$. Ele é chamado de raiz.
 - Todos os demais vértices possuem $N_E = 1$.
 - Para cada vértice, há sempre um único caminho que o liga à raiz da árvore.

Figura: Árvore

- Os seguintes conceitos valem para árvores:
 - Para vértices a e b que fazem parte de um mesmo caminho em uma árvore, diz-se que a é ancestral de b se for possível atingir b a partir de a. Nesse caso, b é dito descendente de a.
 - Quando entre a e b não houver nenhum vértice intermediário, diz-se que a e b são **adjacentes**.
 - Quando a é ancestral direto de b, diz-se a é **pai** de b e b é **filho** de a.
 - Vértices sem filhos são chamandos de folhas e os demais vértices internos.
 - A profundidade de um nó é o comprimento do caminho entre a raiz e esse nó

 Por exemplo, considerando a árvore abaixo, são verdadeiras as afirmações que seguem:

Figura: Árvore

- V_1 é pai de V_{11} e V_{11} é filho de V_1 .
- Raiz é ancestral de V_{00} .
- V₀₁ é descendente de Raiz.
- V_{00} e V_{11} são folhas da árvore.
- V_0 e V_1 são nós internos da árvore.
- V_{01} e V_{10} possuem profundidade 2.

Bibliografia

- RAMOS, Marcus V. M. Linguagens formais: teoria, modelagem e implementação. 1ª ed. Porto Alegre: Bookman, 2009.
 - Capítulo 1.

Dúvidas?

