Roteiro do experimento 2 de Sistemas Digitais Experimental

Introdução

Neste segundo experimento serão abordados assuntos relacionados a funções booleanas e portas lógicas, bem como sua utilização na construção de decodificadores.

Objetivos

Este experimento tem como objetivos consolidar os conhecimentos relacionados a funções booleanas e portas lógicas além de abordar de forma prática decodificadores e números na forma binária.

Fundamentação

Para este experimento é necessário entender o funcionamento dos decodificadores. Decodificadores são circuitos lógicos combinacionais com n entradas e até 2ⁿ saídas, onde apenas uma das saídas é ativada de cada vez. A saída selecionada é determinada pela combinação dos valores das entradas.

A Figura a seguir apresenta um decodificador de duas entradas e quatro saídas.

Decodificador de 2 entradas e 4 saídas

Para este decodificador apenas uma das saídas Y pode assumir o valor 1 enquanto as outras três saídas devem permanecer em 0. A saída selecionada para receber 1 é determinada pela combinação dos valores das entradas X. A Tabela a seguir apresenta a tabela verdade para este circuito.

Entr	adas	Saídas					
X1	X0	Y0	Y1	Y2	Y3		
0	0	1	0	0	0		
0	1	0	1	0	0		
1	0	0	0	1	0		
1	1	0	0	0	1		

Tabela verdade para o decodificador de 2 para 4.

Como podemos observar cada combinação da entrada seleciona uma e apenas uma das saídas. Como os decodificadores são circuitos lógicos combinacionais eles podem ser construídos utilizando portas lógicas. A Figura a seguir apresenta o circuito digital correspondente ao decodificador de 2 para 4.

Circuito do decodificador de 2 para 4.

Parte experimental

Projeto e construção de um decodificador de 3 entradas e 8 saídas

O objetivo deste experimento é construir um decodificador de 3 entradas e 8 saídas. A figura a seguir apresenta o circuito proposto.

Decodificador de 3 para 8.

O comportamento do circuito deve seguir a tabela verdade apresentada a seguir.

Entradas		Saídas								
X2	X1	X0	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Χ	Χ	Χ	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Tabela verdade para o circuito do experimento

Para as entradas serão utilizados 3 botões, e para as saídas 8 LEDs.

Uma observação importante, para a implementação do circuito devem ser utilizadas apenas portas inversoras 7404 e portas "E" de duas entradas 7408.

É interessante utilizar simuladores de computador para verificar o funcionamento do circuito projetado, facilitando assim a detecção de falhas no projeto.

Comprovado o funcionamento do circuito prático, um relatório deve ser elaborado e enviado para o professor via sistema SIGAA. O modelo do relatório está disponível na página da disciplina.