Table of Contents

Pre	eface	. ix
1.	Overview of Machine Learning Systems	. 1
	When to Use Machine Learning	3
	Machine Learning Use Cases	9
	Understanding Machine Learning Systems	12
	Machine Learning in Research Versus in Production	12
	Machine Learning Systems Versus Traditional Software	22
	Summary	23
2.	Introduction to Machine Learning Systems Design	25
	Business and ML Objectives	26
	Requirements for ML Systems	29
	Reliability	29
	Scalability	30
	Maintainability	31
	Adaptability	31
	Iterative Process	32
	Framing ML Problems	35
	Types of ML Tasks	36
	Objective Functions	40
	Mind Versus Data	43
	Summary	46
3.	Data Engineering Fundamentals	. 49
	Data Sources	50
	Data Formats	53
	JSON	54

	Row-Major Versus Column-Major Format	54
	Text Versus Binary Format	57
	Data Models	58
	Relational Model	59
	NoSQL	63
	Structured Versus Unstructured Data	66
	Data Storage Engines and Processing	67
	Transactional and Analytical Processing	67
	ETL: Extract, Transform, and Load	70
	Modes of Dataflow	72
	Data Passing Through Databases	72
	Data Passing Through Services	73
	Data Passing Through Real-Time Transport	74
	Batch Processing Versus Stream Processing	78
	Summary	79
4.	Training Data	81
	Sampling	82
	Nonprobability Sampling	83
	Simple Random Sampling	84
	Stratified Sampling	84
	Weighted Sampling	85
	Reservoir Sampling	86
	Importance Sampling	87
	Labeling	88
	Hand Labels	88
	Natural Labels	91
	Handling the Lack of Labels	94
	Class Imbalance	102
	Challenges of Class Imbalance	103
	Handling Class Imbalance	105
	Data Augmentation	113
	Simple Label-Preserving Transformations	114
	Perturbation	114
	Data Synthesis	116
	Summary	118
5.	Feature Engineering	119
	Learned Features Versus Engineered Features	120
	Common Feature Engineering Operations	123
	Handling Missing Values	123
	Scaling	126

	Discretization	128
	Encoding Categorical Features	129
	Feature Crossing	132
	Discrete and Continuous Positional Embeddings	133
	Data Leakage	135
	Common Causes for Data Leakage	137
	Detecting Data Leakage	140
	Engineering Good Features	141
	Feature Importance	142
	Feature Generalization	144
	Summary	146
6.	Model Development and Offline Evaluation	149
	Model Development and Training	150
	Evaluating ML Models	150
	Ensembles	156
	Experiment Tracking and Versioning	162
	Distributed Training	168
	AutoML	172
	Model Offline Evaluation	178
	Baselines	179
	Evaluation Methods	181
	Summary	188
7.	Model Deployment and Prediction Service	191
	Machine Learning Deployment Myths	194
	Myth 1: You Only Deploy One or Two ML Models at a Time	194
	Myth 2: If We Don't Do Anything, Model Performance Remains the Same	195
	Myth 3: You Won't Need to Update Your Models as Much	196
	Myth 4: Most ML Engineers Don't Need to Worry About Scale	196
	Batch Prediction Versus Online Prediction	197
	From Batch Prediction to Online Prediction	201
	Unifying Batch Pipeline and Streaming Pipeline	203
	Model Compression	206
	Low-Rank Factorization	206
	Knowledge Distillation	208
	Pruning	208
	Quantization	209
	ML on the Cloud and on the Edge	212
	Compiling and Optimizing Models for Edge Devices	214
	ML in Browsers	222
	Summary	223

8.	Data Distribution Shifts and Monitoring	225
	Causes of ML System Failures	226
	Software System Failures	227
	ML-Specific Failures	229
	Data Distribution Shifts	237
	Types of Data Distribution Shifts	237
	General Data Distribution Shifts	241
	Detecting Data Distribution Shifts	242
	Addressing Data Distribution Shifts	248
	Monitoring and Observability	250
	ML-Specific Metrics	251
	Monitoring Toolbox	256
	Observability	259
	Summary	261
9.	Continual Learning and Test in Production	263
	Continual Learning	264
	Stateless Retraining Versus Stateful Training	265
	Why Continual Learning?	268
	Continual Learning Challenges	270
	Four Stages of Continual Learning	274
	How Often to Update Your Models	279
	Test in Production	281
	Shadow Deployment	282
	A/B Testing	283
	Canary Release	285
	Interleaving Experiments	285
	Bandits	287
	Summary	291
10.	Infrastructure and Tooling for MLOps	293
	Storage and Compute	297
	Public Cloud Versus Private Data Centers	300
	Development Environment	302
	Dev Environment Setup	303
	Standardizing Dev Environments	306
	From Dev to Prod: Containers	308
	Resource Management	311
	Cron, Schedulers, and Orchestrators	311
	Data Science Workflow Management	314
	ML Platform	319
	Model Deployment	320

	Model Store	321
	Feature Store	325
	Build Versus Buy	327
	Summary	329
11.	The Human Side of Machine Learning	331
	User Experience	331
	Ensuring User Experience Consistency	332
	Combatting "Mostly Correct" Predictions	332
	Smooth Failing	334
	Team Structure	334
	Cross-functional Teams Collaboration	335
	End-to-End Data Scientists	335
	Responsible AI	339
	Irresponsible AI: Case Studies	341
	A Framework for Responsible AI	347
	Summary	353
Ер	ilogue	355
Inc	dex	357