LASER

ovvero

Light Amplification by

Stimulated Emission of Radiation

L'energia degli elettroni è quantizzata e i valori di energia permessi si dicono

"livelli di energia"

Niels Bohr (1913):

Livelli discreti

$$hv = E_1 - E_2$$

Transizioni accompagnate da assorbimento o emissione di **quanti di energia**

EXCITATION & DE-EXCITATION OF A HYDROGEN ATOM

Assorbimento ed emissione spontanea

Emissione stimolata

Assorbimento ed emissione della luce

(animazione)

- 1) Assorbimento
- 2) Emissione spontanea

- 1) Assorbimento
- 2) Emissione stimolata

Emissione spontanea

La variazione (diminuzione), nell'unità di tempo, del numero di elettroni presenti nel livello E_2 per effetto dell'emisione spontanea è:

$$dn_2/dt = - A n_2$$

A = probabilità di emessione spontanea (funzione del materiale)

In un sistema contenente vari elettroni nel livello metastabile E2, poiché per definizione di emissione spontanea le varie onde (fotoni) vengono emesse in modo casuale, esse non hanno nessuna relazione di fase fra di loro (luce incoerente)

Emissione stimolata

La variazione (diminuzione), nell'unità di tempo, del numero di elettroni presenti nel livello E2 per effetto dell'emisione stimolata è:

$$dn_2/dt = - W_{21} n_2$$

W₂₁= probabilità di emissione stimolata (funzione del materiale e dell'intensità dell'onda stimolante

L'onda (fotone) emessa per emissione stimolata risulta in fase (coerente) con l'onda stimolante

Assorbimento

 n_1 = num. elettroni nel livello di energia E_1

La variazione (diminuzione) , nell'unità di tempo, del numero di elettroni presenti nel livello E_1 per effetto dell'assorbimento è:

$$dn_1/dt = -W_{12} n_1$$

 W_{12} = probabilità di assorbimento (funzione del materiale e dell'intensità dell'onda stimolante)

Per:

- Stesso materiale
- · Stessa intensità dell'onda incidente

Probabilità emissione stimolata = Probabilità assorbimento

$$W_{21} = W_{12}$$

Quindi:

1) se:
$$n_1 > n_2$$
 $|dn_1/dt| > |dn_2/dt|$

l'assorbimento prevale sull'emissione

Il materiale complessivamente assorbe: normali condizioni di equilibrio

2) se:
$$n_1 = n_2$$
 $|dn_1/dt| = |dn_2/dt|$

l'assorbimento è pari all'emissione

Il materiale risulta trasparente alla radiazione incidente Se: $n_1 < n_2$ inversione di popolazione

 $|dn_1/dt| < |dn_2/dt|$

l'emissione prevale sull'assorbimento

Il materiale complessivamente emette luce (amplifica l'onda incidente)

Schema del meccanismo di amplificazione ottica

Inversione di popolazione

<u>In un sistema a 2 livelli di energia non può ottenersi inversione di popolazione</u>

Infatti, consideriamo un sistema a 2 livelli nel quale (essendo in condizioni di normale equilibrio termico) la popolazione del livello E_1 sia maggiore di quella del livello E_2 . Cioè si abbia:

$$n_1 > n_2 \longrightarrow$$

in tal caso, se si fornisce energia dall'esterno, l'assorbimento prevale sull'emissione ($dn_1/dt > dn_2/dt$), quindi gli atomi cominciano a portarsi dal livello di energia E_1 al livello E_2 .

Quando si raggiunge <u>l'uguaglianza fra le popolazioni dei 2 livelli</u>, si ha:

$$n_1 = n_2 \longrightarrow$$

in tal caso, <u>l'assorbimento eguaglia l'emissione</u> (dn1/dt = dn2/dt). Ciò significa che il numero di atomi che si portano da E_1 a E_2 , eguaglia il numero di atomi che si portano da E_2 a E_1 . Si raggiunge, quindi, una condizione di bilanciamento che fa sì che non si possa <u>mai raggiungere la condizione di inversione di popolazione</u> (cioè la condizione per cui $n_2 > n_1$).

Funzionamento del laser

Sistema a 3 livelli di energia

- a) gli atomi nel livello base E_1 sono pompati al livello eccitato E_3
- b) il decadimento fra E_3 e E_2 è un **decadimento rapido** e "non radiativo" (es: energia emessa come calore o come vibrazioni reticolari). Poichè il livello E_2 è metastabile, si crea un accumulo di atomi in tale livello. Per tale accumulo, **si raggiunge l'uguaglianza nelle popolazioni del livello** E_2 **e** E_1
- c) da questo momento in poi comincia a crearsi un inversione di popolazione fra E_2 e E_1 (il numero di atomi su E_2 è maggiore del numero di atomi su E_1)
- d) emissione stimolata

Sistema a 4 livelli

Poichè il livello E_2 è sempre vuoto (per il decadimento rapido fra E_2 e E_1). occorre un solo atomo nel livello E_3 per avere inversione di popolazione fra E_3 e E_2 (non occorre creare preventivamente l'uguaglianza nelle popolazioni dei 2 livelli)

maggiore rendimento

Elementi che costituiscono un laser

1) Mezzo attivo

materiale nel quale i livelli di energia degli atomi sono tali da poter realizzare un'inversione di popolazione e ottenere l'azione laser

2) Sorgente di energia di pompa

fornisce l'energia che realizza l'inversione di popolazione nel mezzo attivo

3) Cavità ottica

costituisce un oscillatore ottico che mantiene il guadagno del sistema al di sopra delle perdite

Schema di un laser

- · <u>Materiale attivo</u>: materiale in cui è possibile effettuare un'inversione di popolazione
- <u>Pompaggio del materiale attivo</u>: l'inversione di popolazione si ottiene per assorbimento di energia fornita da un'opportuna sorgente di pompa

Spettro di un laser

Lo spettro della radiazione emessa da un laser è costituita normalmente da uno spettro di lunghezze d'onda centrate intorno ad un picco.

Ciò è dovuto alla sovrapposizione di 2 effetti:

a) nella <u>cavità</u> possono sussistere <u>m modi</u> ciascunc con frequenza data da:

$$v = m (c/2L)$$

b) il <u>guadagno ottico del materiale</u> presenta un picco

Lo <u>spettro di uscita</u> (intensità vs. lungh. d'onda) è determinato dalla sovrapposizione dei due effetti

Nota: con particolari accorgimenti è tuttavia possibile realizzare laser monomodo (un solo picco)

Allowed Oscillations (Cavity Modes)

Relative intensity

Tipi di laser

Classificazione in base al mezzo attivo:

- · Laser a gas (es: HeNe, Ar, CO₂)
- Laser a stato solido (doped insulator laser)

(es: Rubino, NdYAG)

Laser a semiconduttore (es: GaAs)

Classificazione in base al tipo di emissione:

- laser in continua
- · laser a impulsi

Pompaggio del materiale attivo (1)

Il tipo di pompaggio dipende dal tipo di materiale attivo:

· Pompaggio mediante scarica elettrica

utilizzato nei laser a gas

TYPICAL GAS LASER

il gas è racchiuso in un tubo di quarzo sigillato agli estremi dagli specchi che costituiscono la cavità risonante

Una scarica elettrica che attraversa il gas viene creata fra gli elettrodi

Pompaggio del materiale attivo (2)

· Pompaggio mediante lampade flash

usato nei laser a stato solido

Pompaggio del materiale attivo (3)

· Pompaggio a diodi

Un diodo laser a semiconduttore (o un array di diodi laser) può essere ustao per il pompaggio ottico nei laser a stato solido (NdYAG) oppure nei laser in fibra

Caratteristiche della luce laser

1) Monocromatica

Una sola lunghezza d'onda

Ciò perchè l'emissione stimolata avviene fra due definiti livelli di energia degli atomi [v = (E_2 - E_1) / λ]

2) Collimata

Il fascio laser è molto sottile e non si allarga apprezzabilmente (bassa divergenza)

Ciò perchè la cavità risonante amplifica solo quei fotoni che rimbalzano avanti e indietro fra gli specchi. I fotoni che si muovono in direzioni non perpendicolare agli specchi fuoriescono e non danno luogo ad amplificazione.

3) Coerente

Esiste una relazione di fase fra i differenti punti del fascio laser. Tale relazione si conserva nel tempo (coerenza temporale) e nello spazio (coerenza spaziale).

Divergenza di un fascio laser

The output laser beam has a divergence characterized by the angle 2θ (highly exaggerated in the figure)

© 1999 S.O. Kasap, Optoelectronics (Prentice Hall)

<u>Luce incoerente e coerente</u>

emissione incoerente

i vari fotoni del fascio luminoso vengono emessi casualmente, in tempi diversi e con fasi diverse

> es: emissione di una lampada ad incandescenza o di un tubo fluorescente

A TRAIN OF INCOHERENT PHOTONS

emissione coerente

i vari fotoni del fascio vengono emessi simultaneamente e con la stessa fase

coerenza spaziale: le onde hanno la stessa fase in tutti i punti della sezione del fascio

coerenza temporale: le onde conservano la stessa fase nel tempo

Caratteristiche tipiche dei principali laser

tipo laser	HeNe	Ar	Rubino	NdYAG	CO ₂	AlGaAs InGaAs
materiale attivo	gas	gas	solido	solido (granato)	gas	semiconduttore
lungh. d'onda (nm)	632,8	488-514,5	694,3	1064	10600	800-1500
durata impulso	CW	CW	350 μs	cw	cw	cw
potenza ottica	5 mW	20 W	1 J	100 W	100-1000 W	100 mW
divergenza del fascio	1 mrad	1 mrad	5 mrad	5 mrad	5 mrad	20°
rendimento η = pot.ottica/pot elettrica	0,05%	0.05%	0,1%	0,5%	10%	60%
tipo pompa	scarica elettrica	scarica elettrica	flash	flash	scarica elettrica	corrente nella giunzione
COSTO (euro)	1500	50000	30000	70000	100000	500

Laser He-Ne

Il gas è racchiuso dentro un tubo di quarzo, sigillato agli estremi da 2 specchi (cavità ottica).

Un impulso elettrico di 10 KV, applicato fra gli elettrodi, dà luogo ad una scarica elettrica attraverso il gas (pompaggio del mezzo attivo). Una corrente di 3-10 mA (dc) è sufficiente per mantenere la scarica.

Gli atomi di He (leggeri) sono eccitati per collisione dagli elettroni della scarica e trasferiscono la loro energia agli atomi di Ne. Questi si portano nello stato metastabile dando luogo ad inversione di popolazione e all'effetto laser.