durée : 2h00 Exercice 1.—

- 1. Écrire $\frac{1+2i}{5-i}$ sous forme algébrique.
- 2. Écrire $-2\sqrt{3} + 2i$ sous forme polaire et le représenter dans le plan complexe.
- 3. Résoudre dans \mathbb{C} l'équation $(\frac{z}{2})^3 = i$ et représenter les solutions dans le plan complexe.

Correction:

1. (1 pt) On a:

$$\frac{1+2i}{5-i} = \frac{(1+2i)(5+i)}{(5-i)(5+i)}$$
$$= \frac{(5-2+i(10+1))}{5^2+1^2}$$
$$= \frac{3}{26} + i\frac{11}{26}$$

2. (1pt + 0.5 pour le dessin) On a :

$$-2\sqrt{3} + 2i = 4\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$$
$$= 4e^{\frac{5i\pi}{6}}$$

Une façon de bien placer ce point dans le plan est de remarquer que ce nombre est situé au point d'intersection d'abscisse négative entre le cercle de centre O et de rayon 4 et la droite d'équation y=2.

3. (2 pt + 1 pour le dessin) On remarque que $i = e^{i\frac{\pi}{2}} = \left(e^{i\frac{\pi}{6}}\right)^3$. Dans la suite, on note \mathbb{U}_3 l'ensemble des racines cubiques de l'unité, c'est à dire $\mathbb{U}_3 = \{1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}\}$. Pour tout z complexe,

$$\begin{split} &(\frac{z}{2})^3 = i &\Leftrightarrow (\frac{z}{2})^3 = \left(e^{i\frac{\pi}{6}}\right)^3 \\ &\Leftrightarrow (\frac{z}{2e^{i\frac{\pi}{6}}})^3 = 1 \\ &\Leftrightarrow \frac{z}{2e^{i\frac{\pi}{6}}} \in \mathbb{U}_3 \\ &\Leftrightarrow z \in \{2e^{i\frac{\pi}{6}}, 2e^{i\frac{\pi}{6}}e^{i\frac{2\pi}{3}}, 2e^{i\frac{\pi}{6}}e^{i\frac{4\pi}{3}}\} \\ &\Leftrightarrow z \in \{2e^{i\frac{\pi}{6}}, 2e^{i\frac{5\pi}{6}}, 2e^{i\frac{3\pi}{2}}\} \end{split}$$

Donc l'ensemble des solutions est $\{2e^{i\frac{\pi}{6}}, 2e^{i\frac{5\pi}{6}}, 2e^{i\frac{3\pi}{2}}\}$. Pour placer ces points dans le plan complexe, on peut remarquer qu'ils sont sur le cercle de centre O et de rayon 2, et on les place selon leurs arguments, ou bien on remarque que les deux premiers ont pour ordonnée 1 et le dernier est égal à -2i.

Exercice 2.—

1. Calculer les racines carrées du nombre complexe 3-i, c'est-à-dire les nombres complexes δ vérifiant $\delta^2=3-i$.

Correction : (Exo sur 3, q1 : 2pts, q2 : 1pt) On pose $\delta = x + iy$ avec x et y réels. On a :

$$\delta^{2} = 3 - i \Leftrightarrow \begin{cases} x^{2} - y^{2} + 2ixy = 3 - i \\ |\delta^{2}| = |3 - i| \end{cases}$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = 3 \\ xy = -1 \\ x^{2} + y^{2} = \sqrt{10} \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x^{2} = 3 + \sqrt{10} \\ 2y^{2} = \sqrt{10} - 3 \\ xy = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} |x| = \sqrt{\frac{3 + \sqrt{10}}{2}} \\ |y| = \sqrt{\frac{\sqrt{10} - 3}{2}} \\ xy = -1 \end{cases}$$

Les solutions sont donc $\sqrt{\frac{3+\sqrt{10}}{2}} - i\sqrt{\frac{\sqrt{10}-3}{2}}$ et $-\sqrt{\frac{3+\sqrt{10}}{2}} + i\sqrt{\frac{\sqrt{10}-3}{2}}$.

2. Résoudre dans \mathbb{C} l'équation $\frac{1}{4}z^2 + 2z + (1+i) = 0$.

Correction: On calcule le discriminant Δ du trinôme:

$$\Delta = 2^2 - 4 \times \frac{1}{4} \times (1+i) = 3-i$$

La première question nous fournit une racine carrée de Δ : $\delta = \sqrt{\frac{3+\sqrt{10}}{2}} - i\sqrt{\frac{\sqrt{10}-3}{2}}$. Les solutions de l'équation sont alors :

$$z_1 = \frac{-2+\delta}{\frac{1}{2}}$$
 et $z_2 = \frac{-2-\delta}{\frac{1}{2}}$

soit:

$$z_1 = -4 + \sqrt{6 + 2\sqrt{10}} - i\sqrt{2\sqrt{10} - 6}$$
 et $z_2 = -4 - \sqrt{6 + 2\sqrt{10}} + i\sqrt{2\sqrt{10} - 6}$

Exercice 3.— On définit une suite $(u_n)_{n\geq 0}$ par :

$$\begin{cases} u_0 = 0 \\ \forall n \ge 0, \ u_{n+1} = \frac{u_n^2 + 1}{2} \ . \end{cases}$$

Montrer par récurrence que :

$$\forall n \ge 1, \ u_n \in \left[\frac{1}{2}, 1\right[\ .$$

Correction: (Exo: 3 pts) On note P(n) l'assertion « $u_n \in \left[\frac{1}{2}, 1\right[$ ».

Initialisation: P(1) est l'assertion $u_1 \in \left[\frac{1}{2}, 1\right[$. Or $u_1 = \frac{u_0^2 + 1}{2} = \frac{0^2 + 1}{2} = \frac{1}{2}$. Ce nombre appartient bien à l'intervalle $\left[\frac{1}{2}, 1\right[$ donc P(1) est vérifiée.

Hérédité: Soit n un entier supérieur ou égal à 1. On cherche à montrer que $P(n) \Rightarrow P(n+1)$. Supposons que P(n) est vraie. On a donc :

$$1/2 \le u_n < 1. \tag{1}$$

Et on rappelle que $u_{n+1} = \frac{u_n^2 + 1}{2}$. Comme $x \mapsto x^2$ est strictement croissante sur \mathbb{R}^+ , on en déduit :

$$(1/2)^2 \le u_n^2 < 1^2$$
.

Puis

$$\frac{(1/2)^2 + 1}{2} \le \frac{u_n^2 + 1}{2} < \frac{1^2 + 1}{2} .$$

C'est-à-dire:

$$\frac{5}{8} \le \frac{u_n^2 + 1}{2} < \frac{1^2 + 1}{2}$$

Comme $\frac{5}{8} \ge \frac{1}{2}$ et $u_{n+1} = \frac{u_n^2 + 1}{2}$, on obtient que P(n+1) est vraie. Conclusion: Par récurrence, on en déduit que P(n) est vraie pour tout $n \ge 1$.

Exercice 4.— On pose:

$$\mathcal{A} := \{ (z, z') \in \mathbb{C}^2 \mid Re(z) \le Re(z') \text{ et } Im(z) \le Im(z') \} .$$

1. Montrer que $(1+2i, 3-2i) \notin \mathcal{A}$.

Correction: (Exo: 7 pts) (q1:1pt) On constate que Im(1+2i)=2>-2=Im(3-2i)donc $(1+2i, 3-2i) \notin \mathcal{A}$.

2. L'assertion suivante est-elle vraie ou fausse (justifier)?

$$\forall (z,z') \in \mathbb{C}^2, (z,z') \in \mathcal{A} \text{ ou } (z',z) \in \mathcal{A} .$$

Correction: (q2:1pt) L'assertion est fausse. En effet, il existe des couples (z, z') tels que ni (z,z') ni (z',z) n'appartient à A. Pour donner un exemple, posons (z,z')=(1+2i,3-2i). La question précédente montre que $(z,z') \notin A$. De plus, (z',z) = (3-2i,1+2i). Or Re(z') = 3 > 1 = Re(z). Donc $(z', z) \notin A$.

3. Montrer que

$$\forall (z, z', z'') \in \mathbb{C}^3, \ ((z, z') \in \mathcal{A} \ \text{et} \ (z', z'') \in \mathcal{A}) \Rightarrow (z, z'') \in \mathcal{A}.$$

Correction: (q3:1,5pt) Soit $(z,z',z'') \in \mathbb{C}^3$. Supposons que $(z,z') \in \mathcal{A}$ et $(z',z'') \in \mathcal{A}$. On a donc:

$$Re(z) \leq Re(z')$$
 et $Im(z) \leq Im(z')$ et $Re(z') \leq Re(z'')$ et $Im(z') \leq Im(z'')$.

Notamment:

$$Re(z) \le Re(z') \le Re(z'')$$

donc

$$Re(z) \le Re(z'')$$
. (2)

De même,

$$Im(z) \le Im(z') \le Im(z'')$$
,

donc

$$Im(z) \le Im(z'') \ . \tag{3}$$

De (5) et (6) on déduit que $(z, z'') \in \mathcal{A}$.

On a bien montré

$$\forall (z, z', z'') \in \mathbb{C}^3, ((z, z') \in \mathcal{A} \text{ et } (z', z'') \in \mathcal{A}) \Rightarrow (z, z'') \in \mathcal{A}.$$

4. Montrer que

$$\forall (z, z') \in \mathbb{C}^2, ((z, z') \in \mathcal{A} \text{ et } (z', z) \in \mathcal{A}) \Leftrightarrow z = z'.$$

Correction: (q4: 1,5 pt) Soit $(z, z') \in \mathbb{C}^2$. On a:

$$\begin{cases} (z,z') \in \mathcal{A} \\ (z',z) \in \mathcal{A} \end{cases} \Leftrightarrow \begin{cases} Re(z) \leq Re(z') \text{ et } Im(z) \leq Im(z') \\ Re(z') \leq Re(z) \text{ et } Im(z') \leq Im(z) \end{cases}$$

$$\Leftrightarrow \begin{cases} Re(z) \leq Re(z') \leq Re(z) \\ Im(z) \leq Im(z') \leq Im(z) \end{cases}$$

$$\Leftrightarrow \begin{cases} Re(z) = Re(z') \\ Im(z) = Im(z') \end{cases}$$

$$\Leftrightarrow z = z'$$

5. On pose

$$\mathcal{B} := \{ (z, z') \in \mathbb{C}^2 \mid Re(z) + Im(z) \le Re(z') + Im(z') \} .$$

Montrer que $A \subset \mathcal{B}$.

Correction: (q5:1pt) Soit $(z, z') \in A$. On a alors:

$$Re(z) \le Re(z')$$
 et $Im(z) \le Im(z')$.

Donc,

$$Re(z) + Im(z) \le Re(z') + Im(z')$$
.

Donc $(z, z') \in \mathcal{B}$, ce qui montre que $\mathcal{A} \subset \mathcal{B}$.

6. A-t-on $\mathcal{A} = \mathcal{B}$ (justifier)?

Correction: (q6:1pt) En posant (z, z') = (3 - 2i, 1 + 2i), on constate que:

$$Re(z) + Im(z) = 1 \le 3 = Re(z') + Im(z')$$

donc $(z, z') \in \mathcal{B}$. Or, on a déjà vu dans la deuxième question que $(z, z') \notin \mathcal{A}$. Donc $\mathcal{A} \neq \mathcal{B}$.

 $\mathsf{TSVP} \hookrightarrow$

Exercice 5.— Dans cet exercice, on rappelle que si A et B sont deux ensembles, A—B désigne l'ensemble des éléments appartenant à A, mais pas à B.

Soit $E = \{1, 2, 3, 4\}$. On note $\mathcal{P}(E)$ l'ensemble des sous-ensembles de E. Pour tout $\mathcal{B} \subset \mathcal{P}(E)$, on note $P(\mathcal{B})$ l'assertion suivante :

$$\forall x \in E, \exists A \in \mathcal{B}, x \in A$$

et $Q(\mathcal{B})$ l'assertion suivante :

$$\forall x \in E, \forall y \in E, x \neq y \Rightarrow (\exists A \in \mathcal{B}, (x \in A) \text{ et } (y \in E - A))$$
.

1. Écrire la négation de $P(\mathcal{B})$.

Correction: (Exo: 6 pts, q1:1pt)

$$\exists x \in E, \forall A \in \mathcal{B}, x \notin A$$

2. Écrire la négation de $Q(\mathcal{B})$.

Correction: (q2:1pt)

$$\exists x \in E, \exists y \in E, \forall A \in \mathcal{B}, x \neq y \text{ et } (x \notin A \text{ ou } y \notin E - A)$$

ou encore

$$\exists x \in E, \exists y \in E, x \neq y \text{ et } (\forall A \in \mathcal{B}, (x \notin A \text{ ou } y \in A))$$

3. Dans cette question, on suppose que

$$\mathcal{B} = \{E - \{x\}; x \in E\}$$
.

- (a) Laquelle de ces expressions est une écriture de \mathcal{B} en extension?
 - (A) $\mathcal{B} = \emptyset$
 - (B) $\mathcal{B} = \{\{1\}, \{2\}, \{3\}, \{4\}, \emptyset\}$
 - (C) $\mathcal{B} = \{\{1, 2, 3\}, \{1, 2, 4\}, \{2, 3, 4\}, \{1, 3, 4\}\}$
 - (D) $\mathcal{B} = \{\{1\}, \{4\}\}$

Correction: (q3:1pt) La (C)

(b) $P(\mathcal{B})$ est-elle vraie ou fausse (justifier)?

Correction : (q4 : 1pt) $P(\mathcal{B})$ est vraie. En effet, $1 \in \{1, 3, 4\}, 2 \in \{2, 3, 4\}, 3 \in \{1, 3, 4\}$ et $4 \in \{1, 3, 4\}$.

(c) $Q(\mathcal{B})$ est-elle vraie ou fausse (justifier)?

Correction : (q5 : 2 pts) $Q(\mathcal{B})$ est vraie. En effet, si x et y sont dans E, on sait par la définition de \mathcal{B} que $E - \{y\}$ est dans \mathcal{B} . Si $x \neq y$, $x \in E - \{y\}$, et comme $E - (E - \{y\}) = \{y\}$, on a bien sûr $y \in E - (E - \{y\})$. Donc pour tous x et y dans E, en notant $A = E - \{y\}$, on a montré qu'il existe un ensemble A appartenant à \mathcal{B} tel que

$$x \neq y \Rightarrow ((x \in A) \text{ et } (y \in E - A))$$
.

FIN

duration: 2h00

Exercice 1.—

1. Write $\frac{1+2i}{5-i}$ in algebraic form.

2. Write $-2\sqrt{3} + 2i$ in polar form and represent it in the complex plane.

3. Solve the equation $(\frac{z}{2})^3 = i$ and represent the solutions in the complex plane.

Correction:

1. (1 pt) We have:

$$\frac{1+2i}{5-i} = \frac{(1+2i)(5+i)}{(5-i)(5+i)}$$
$$= \frac{(5-2+i(10+1))}{5^2+1^2}$$
$$= \frac{3}{26} + i\frac{11}{26}$$

2. (1pt + 0.5 for the drawing) We have :

$$-2\sqrt{3} + 2i = 4\left(-\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$$
$$= 4e^{\frac{5i\pi}{6}}$$

One simple way to place it in the complex plane is to notice that this number has negative abscissa and is located at the intersection of the circle of center O and radius 4 and the line of equation y = 2.

3. (2 pts + 1 for the drawing) Notice that $i = e^{i\frac{\pi}{2}} = \left(e^{i\frac{\pi}{6}}\right)^3$. In the sequel, \mathbb{U}_3 denotes the set of cubic roots of unity, i.e $\mathbb{U}_3 = \{1, e^{i\frac{2\pi}{3}}, e^{i\frac{4\pi}{3}}\}$. For any complex number z,

$$\begin{split} (\frac{z}{2})^3 &= i &\Leftrightarrow (\frac{z}{2})^3 = \left(e^{i\frac{\pi}{6}}\right)^3 \\ &\Leftrightarrow (\frac{z}{2e^{i\frac{\pi}{6}}})^3 = 1 \\ &\Leftrightarrow \frac{z}{2e^{i\frac{\pi}{6}}} \in \mathbb{U}_3 \\ &\Leftrightarrow z \in \{2e^{i\frac{\pi}{6}}, 2e^{i\frac{\pi}{6}}e^{i\frac{2\pi}{3}}, 2e^{i\frac{\pi}{6}}e^{i\frac{4\pi}{3}}\} \\ &\Leftrightarrow z \in \{2e^{i\frac{\pi}{6}}, 2e^{i\frac{5\pi}{6}}, 2e^{i\frac{3\pi}{2}}\} \end{split}$$

Then, the set of solutions is $\{2e^{i\frac{\pi}{6}}, 2e^{i\frac{5\pi}{6}}, 2e^{i\frac{3\pi}{2}}\}$. To place these points in the complex plane, we notice that they belong to the circle of center O and radius 2, and we place them according to their arguments, or we notice that the first two have ordinate 1 and the last one equals -2i.

Exercice 2.—

1. Compute the square roots of the complex number 3-i, i.e the complex numbers δ such that $\delta^2=3-i$.

Correction : (Exo sur 3, q1 : 2pts, q2 : 1pt) Let $\delta = x + iy$ with x and y real numbers. We have :

$$\delta^{2} = 3 - i \Leftrightarrow \begin{cases} x^{2} - y^{2} + 2ixy = 3 - i \\ |\delta^{2}| = |3 - i| \end{cases}$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = 3 \\ xy = -1 \\ x^{2} + y^{2} = \sqrt{10} \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x^{2} = 3 + \sqrt{10} \\ 2y^{2} = \sqrt{10} - 3 \\ xy = -1 \end{cases}$$

$$\Leftrightarrow \begin{cases} |x| = \sqrt{\frac{3 + \sqrt{10}}{2}} \\ |y| = \sqrt{\frac{\sqrt{10} - 3}{2}} \\ xy = -1 \end{cases}$$

The solutions are thus $\sqrt{\frac{3+\sqrt{10}}{2}} - i\sqrt{\frac{\sqrt{10}-3}{2}}$ and $-\sqrt{\frac{3+\sqrt{10}}{2}} + i\sqrt{\frac{\sqrt{10}-3}{2}}$.

2. Solve in \mathbb{C} the equation $\frac{1}{4}z^2 + 2z + (1+i) = 0$.

Correction: Let us compute the discriminant of $z^2 + 2z + (1+i)$:

$$\Delta = 2^2 - 4 \times \frac{1}{4} \times (1+i) = 3 - i$$

The first question give us a square root of Δ : $\delta = \sqrt{\frac{3+\sqrt{10}}{2}} - i\sqrt{\frac{\sqrt{10}-3}{2}}$. The roots of the equation are thus :

$$z_1 = \frac{-2+\delta}{\frac{1}{2}}$$
 and $z_2 = \frac{-2-\delta}{\frac{1}{2}}$

i.e. :

$$z_1 = -4 + \sqrt{6 + 2\sqrt{10}} - i\sqrt{2\sqrt{10} - 6}$$
 et $z_2 = -4 - \sqrt{6 + 2\sqrt{10}} + i\sqrt{2\sqrt{10} - 6}$

Exercice 3.— Let us define a sequence $(u_n)_{n\geq 0}$ by :

$$\begin{cases} u_0 = 0 \\ \forall n \ge 0, \ u_{n+1} = \frac{u_n^2 + 1}{2} \ . \end{cases}$$

Show by induction that:

$$\forall n \ge 1, \ u_n \in \left[\frac{1}{2}, 1\right[\ .$$

Correction: (Exo: 3 pts) Let P(n) be the assertion $\ll u_n \in \left[\frac{1}{2}, 1\right] \gg$.

Initialization: P(1) is the assertion $u_1 \in \left[\frac{1}{2}, 1\right[$. But $u_1 = \frac{u_0^2 + 1}{2} = \frac{0^2 + 1}{2} = \frac{1}{2}$. This number belongs to the interval $\left[\frac{1}{2}, 1\right]$ thus P(1) is satisfied.

Induction step: Let n be a positive natural number. We want to show that $P(n) \Rightarrow P(n+1)$. Suppose P(n) holds. Thus:

$$1/2 \le u_n < 1. \tag{4}$$

And we recall that $u_{n+1} = \frac{u_n^2 + 1}{2}$. Since $x \mapsto x^2$ is increasing on \mathbb{R}^+ ,

$$(1/2)^2 \le u_n^2 < 1^2$$
.

Then

$$\frac{(1/2)^2 + 1}{2} \le \frac{u_n^2 + 1}{2} < \frac{1^2 + 1}{2} ,$$

i.e.

$$\frac{5}{8} \le \frac{u_n^2 + 1}{2} < \frac{1^2 + 1}{2} .$$

Since $\frac{5}{8} \ge \frac{1}{2}$ and $u_{n+1} = \frac{u_n^2 + 1}{2}$, we get that P(n+1) holds. **Conclusion**: By induction, we conclude that P(n) holds for any $n \ge 1$.

Exercice 4.— Let

$$\mathcal{A}:=\{(z,z')\in\mathbb{C}^2\,|\,Re(z)\leq Re(z')\text{ and }Im(z)\leq Im(z')\}$$
 .

1. Show that $(1+2i, 3-2i) \notin \mathcal{A}$.

Correction: (Exo: 7 pts) (q1:1pt) Notice that Im(1+2i) = 2 > -2 = Im(3-2i), and thus $(1+2i, 3-2i) \notin \mathcal{A}$.

2. Is the following assertion true or false (justify)?

$$\forall (z, z') \in \mathbb{C}^2, (z, z') \in \mathcal{A} \text{ or } (z', z) \in \mathcal{A}.$$

Correction: (q2:1pt) The assertion is false. Indeed, there are couples (z, z') such that neither (z, z') nor (z', z) belong to A. To give one concrete example, let (z, z') = (1 + 2i, 3 - 2i). The previous question shows that $(z, z') \notin A$. Furthermore, (z', z) = (3 - 2i, 1 + 2i). But Re(z') = 3 > 1 = Re(z). Thus, $(z'z) \notin A$.

3. Show that

$$\forall (z, z', z'') \in \mathbb{C}^3, \ ((z, z') \in \mathcal{A} \text{ and } (z', z'') \in \mathcal{A}) \Rightarrow (z, z'') \in \mathcal{A}.$$

Correction: (q3:1,5pt) Let $(z,z',z'') \in \mathbb{C}^3$. Suppose that $(z,z') \in \mathcal{A}$ et $(z',z'') \in \mathcal{A}$. Thus:

$$Re(z) \le Re(z')$$
 et $Im(z) \le Im(z')$ et $Re(z') \le Re(z'')$ et $Im(z') \le Im(z'')$

Notably:

$$Re(z) \le Re(z') \le Re(z'')$$

thus

$$Re(z) \le Re(z'')$$
 . (5)

In the same way,

$$Im(z) \le Im(z') \le Im(z'')$$

thus

$$Im(z) < Im(z'') \tag{6}$$

From (5) and (6) we deduce that $(z, z'') \in A$.

We do have shown that

$$\forall (z, z', z'') \in \mathbb{C}^3, \ ((z, z') \in \mathcal{A} \ \text{et} \ (z', z'') \in \mathcal{A}) \Rightarrow (z, z'') \in \mathcal{A}.$$

4. Show that

$$\forall (z, z') \in \mathbb{C}^2, \ ((z, z') \in \mathcal{A} \text{ and } (z', z) \in \mathcal{A}) \Leftrightarrow z = z'.$$

Correction: (q4: 1,5 pt) Let $(z,z') \in \mathbb{C}^2$. We have:

$$\begin{cases} (z, z') \in \mathcal{A} \\ (z', z) \in \mathcal{A} \end{cases} \Leftrightarrow \begin{cases} Re(z) \leq Re(z') \text{ and } Im(z) \leq Im(z') \\ Re(z') \leq Re(z) \text{ and } Im(z') \leq Im(z) \end{cases}$$
$$\Leftrightarrow \begin{cases} Re(z) \leq Re(z') \leq Re(z) \\ Im(z) \leq Im(z') \leq Im(z) \end{cases}$$
$$\Leftrightarrow \begin{cases} Re(z) = Re(z') \\ Im(z) = Im(z') \end{cases}$$
$$\Leftrightarrow z = z'$$

5. Let

$$\mathcal{B} := \{ (z, z') \in \mathbb{C}^2 \mid Re(z) + Im(z) \le Re(z') + Im(z') \} .$$

Prove that $\mathcal{A} \subset \mathcal{B}$.

Correction: (q5:1pt) Let $(z, z') \in \mathcal{A}$. Then,

$$Re(z) \le Re(z')$$
 et $Im(z) \le Im(z')$

Thus,

$$Re(z) + Im(z) \le Re(z') + Im(z')$$

Thus $(z, z') \in \mathcal{B}$, which shows that $\mathcal{A} \subset \mathcal{B}$.

6. Does it hold that A = B (justify)?

Correction: (q6:1pt) Letting (z,z')=(3-2i,1+2i), we see that

$$Re(z) + Im(z) = 1 \le 3 = Re(z') + Im(z')$$

and thus $(z, z') \in \mathcal{B}$. But we already saw in the second question that $(z, z') \notin \mathcal{A}$. Thus $\mathcal{A} \neq \mathcal{B}$.

Please turn over \hookrightarrow

Exercice 5.— In this exercise, we recall that if A and B are two sets, A - B is the set of elements which belong to A, but not to B.

Let $E = \{1, 2, 3, 4\}$. We denote by $\mathcal{P}(E)$ the set of all the subsets of E. For any $\mathcal{B} \subset \mathcal{P}(E)$, we let $P(\mathcal{B})$ be the following assertion:

$$\forall x \in E, \exists A \in \mathcal{B}, x \in A$$

and $Q(\mathcal{B})$ be the following assertion:

$$\forall x \in E, \forall y \in E, x \neq y \Rightarrow (\exists A \in \mathcal{B}, (x \in A) \text{ and } (y \in E - A))$$
.

1. Write the negation of $P(\mathcal{B})$.

Correction: (Exo: 6 pts, q1: 1pt)

$$\exists x \in E, \forall A \in \mathcal{B}, x \notin A$$

2. Write the negation of $Q(\mathcal{B})$.

Correction: (q2:1pt)

$$\exists x \in E, \exists y \in E, \forall A \in \mathcal{B}, x \neq y \text{ and } (x \notin A \text{ or } y \notin E - A)$$

ou encore

$$\exists x \in E, \exists y \in E, \forall A \in \mathcal{B}, x \neq y \text{ and } (x \notin A \text{ or } y \in A)$$

3. In this question, we suppose that

$$\mathcal{B} = \{ E - \{x\}; x \in E \} .$$

- (a) Which one of the following expressions is a writing of \mathcal{B} by enumeration?
 - (A) $\mathcal{B} = \emptyset$
 - (B) $\mathcal{B} = \{\{1\}, \{2\}, \{3\}, \{4\}, \emptyset\}$
 - (C) $\mathcal{B} = \{\{1, 2, 3\}, \{1, 2, 4\}, \{2, 3, 4\}, \{1, 3, 4\}\}$
 - (D) $\mathcal{B} = \{\{1\}, \{4\}\}$

Correction: (q3:1pt) (C)

(b) Is $P(\mathcal{B})$ true or false (justify)?

Correction : (q4 : 1pt) $P(\mathcal{B})$ holds. Indeed, $1 \in \{1, 3, 4\}, 2 \in \{1, 2, 4\}, 3 \in \{1, 3, 4\}$ and $4 \in \{1, 3, 4\}$.

(c) Is $Q(\mathcal{B})$ true or false (justify)?

Correction: (q5: 2 pts) $Q(\mathcal{B})$ is true. Indeed, if x and y belong to E, we know by the very definition of \mathcal{B} that $E - \{y\}$ belongs to \mathcal{B} . If $x \neq y$, $x \in E - \{y\}$, and since $E - (E - \{y\}) = \{y\}$, we have $y \in E - (E - \{y\})$. Thus for any x and y in E, letting $A = E - \{y\}$, we have shown that there exists a set A in \mathcal{B} such that

$$x \neq y \Rightarrow ((x \in A) \text{ et } (y \in E - A))$$
.

END