Slater Type Orbitals

A bond is a small perturbation on an atom.¹

Use simpler wavefunctions that have appropriate large r behavior. Bond formation involves overlap of atomic orbitals at large r.

Slater Type Orbitals, STO

$$\Psi_{\text{nlm}}(r) = N \ Y_{\text{lm}}(\theta,\!\varphi) \ r^{(\text{n-1})} \ e^{-Z_{\text{eff}} \ r/ \ n \ a_o} \label{eq:plm}$$

For He $Z_{eff} = 1.6875$

Slater Orbital Parameters Z_{eff}. (ref. 2)

	Li	Be	В	С	N	О	F
Z	3	4	5	6	7	8	9
1s	2.6906	3.6843	4.6795	5.6727	6.6651	7.6579	8.6501
2s	1.2792	1.9120	2.5762	3.2166	3.8474	4.4916	5.1276
2p			2.4214	3.1358	3.8340	4.4532	5.1000

- 1. I don't know who said this first. I heard it from Warren Hehre.
- 2. John S. Winn, *Physical Chemistry*, Harper Collins, New York, NY, 1995, p. 472