世界知的所有権機関 国際事務局

特許協力条約に基づいて公開された国際出願

NHK-SCT-21 US

(51) 国際特許分類6 C03C 3/091, 3/093

A1

JP

(11) 国際公開番号

WO97/1192

(43) 国際公開日

1997年4月3日(03.04.9;

(21) 国際出願番号

PCT/JP96/02751

(81) 指定国

DE, JP, KR, US.

(22) 国際出願日

1996年9月25日(25.09.96)

添付公開書類

国際調査報告書

(30) 優先権データ

特願平7/276760

1995年9月28日(28.09.95)

(71) 出願人(米国を除くすべての指定国について)

日本電気硝子株式会社

(NIPPON ELECTRIC GLASS CO., LTD.)[JP/JP]

〒520 滋賀県大津市晴嵐2丁目7番1号 Shiga (JP)

(72) 発明者: および

(75) 発明者/出願人 (米国についてのみ)

三和晋吉(MIWA, Shinkichi)[JP/JP]

〒520 滋賀県大津市晴嵐2丁目7番1号

日本電気硝子株式会社内 Shiga, (JP)

(74) 代理人

弁理士 後藤洋介, 外(GOTO, Yosuke et al.)

〒105 東京都港区西新橋1丁目4番10号

第三森ビル Tokyo, (JP)

(54) Title: ALKALI-FREE GLASS SUBSTRATE

(54)発明の名称 無アルカリガラス基板

(57) Abstract

An alkali-free glass substrate that is substantially free from any alkali metal oxide, has a chemical resistance and a high strain point, is excellent in meltability and devitrification resistance, and comprises on the weight basis 58.0 to 68.0 % SiO₂, 10.0 to 25.0 % Al₂ O₃, 3.0 to 15.0 % B2 O3, 0 TO 2.9 % MgO, 0 to 8.0 % CaO, 0.1 to 5.0 % BaO, 0.1 to 10.0 % SrO, 0 to 5.0 % ZnO, 0 to 5.0 % ZrO2, and 0 to 5.0 % TiO₂.

(57) 要約

実質的にアルカリ金属酸化物を含有せず、耐薬品性を有し、高い歪点を有するとともに、優れた溶融性及び耐失透性に優れた無アルカリガラス基板を提供するために、無アルカリガラス基板は、実質的にアルカリ金属酸化物を含有せず、重量百分率で、 SiO_2 58.0~68.0%、 Al_2O_3 10.0~25.0%、 B_2O_3 3.0~15.0%、MgO 0~2.9%、CaO 0~8.0%、BaO 0.1~5.0%、SrO 0.1~10.0%、ZnO 0~5.0%、 ZrO_2 0~5.0%、 TiO_2 0~5.0%の組成を有する。

| Ref | PCT に基づいて公開される | PCT に基づいて公開される | PCT に基づいて公開される | See |

明 細 會

無アルカリガラス基板

技術分野

本発明は、液晶ディスプレイ、ELディスプレイ等のディスプレイ、フィルター、センサー等の基板として用いられる無アルカリガラス基板に関するものである。

背景技術

従来より、液晶ディスプレイ等のフラットパネルディスプレイ、フィルター、 センサー等の基板として、ガラス基板が広く使用されている。

この種のガラス基板の表面には、透明導電膜、絶縁膜、半導体膜、金属膜等が 成膜され、しかもフォトリソグラフィーエッチング (フォトエッチング) によっ て種々の回路やパターンが形成される。これらの成膜、フォトエッチング工程に おいて、ガラス基板には、種々の熱処理や薬品処理が施される。

例えば、薄膜トランジスタ(TFT)型アクティブマトリックス液晶ディスプレイの場合、ガラス基板上に絶縁膜や透明導電膜が成膜され、さらにアモルファスシリコンや多結晶シリコンのTFTが、フォトエッチングによって多数形成される。このような工程において、ガラス基板は、数百度の熱処理を受けると共に、硫酸、塩酸、アルカリ溶液、フッ酸、バッファードフッ酸等の種々の薬品による処理を受ける。

特にバッファードフッ酸は、絶縁膜のエッチングに広く用いられるが、ガラスを侵食してその表面を白濁させやすく、またガラス成分と反応して反応生成物ができ、これが工程中のフィルターをつまらせたり、基板上に付着することがある。また塩酸は、「TO膜やクロム膜のエッチングに用いられるが、これもガラス

を侵食してその表面を変色させたり、白濁やクラックを生じさせ易い。よって、この種のガラス基板には、耐バッファードフッ酸性と耐塩酸性を付与することが 大変重要となる。

従ってTFT型アクティブマトリックス液晶ディスプレイに使用されるガラス 基板には、以下のような特性が要求される。

- (1) ガラス中にアルカリ金属酸化物が含有されていると、熱処理中にアルカリイオンが成膜された半導体物質中に拡散し、膜特性の劣化を招くため、実質的にアルカリ金属酸化物を含有しないこと。
- (2) フォトエッチング工程において使用される種々の酸、アルカリ等の薬品によって劣化しないような耐薬品性を有すること。
- (3) 成膜、アニール等の工程における熱処理によって、熱収縮しないこと。そのため高い歪点を有すること。例えば多結晶シリコンTFT-LCDの場合、その工程温度が約600C以上であるため、このような用途のガラス基板には、歪点が650C以上であることが要求される。

また溶融性、成形性を考慮して、この種のガラス基板には、以下のような特性も要求される。

- (4) ガラス中に基板として好ましくない溶融欠陥が発生しないよう、溶融性に 優れていること。
- (5) ガラス中に溶融、成形中に発生する異物が存在しないように、耐失透性に 優れていること。

また近年、TFT型アクティブマトリックス液晶ディスプレイ等の電子機器は、パーソナルな分野への利用が進められており、機器の軽量化が要求されている。これに伴ってガラス基板にも軽量化が要求されており、薄板化が進められている。しかしながらこの種の電子機器は、大型化も進められており、ガラス基板の強度を考慮すると、薄板化については自ずと限界がある。そこでガラス基板の軽量化を図る目的で、ガラスの密度を低くすることが望まれている。

従来よりTFT型アクティブマトリックス液晶ディスプレイ基板に用いられている無アルカリガラスとしては、石英ガラス、バリウム硼珪酸ガラス及びアルミノ珪酸塩ガラスが存在するが、いずれも一長一短がある。

すなわち石英ガラスは、耐薬品性、耐熱性に優れ、低密度であるが、材料コストが高いという難点がある。

またバリウム硼珪酸ガラスとしては、市販品としてコーニング社製#7059

が存在するが、このガラスは耐酸性に劣るため、フォトエッチング工程においてガラス基板の表面に変質や白濁、荒れが生じやすく、しかも基板からの溶出成分によって薬液を汚染しやすい。さらにこのガラスは、歪点が低いため、熱収縮や熱変形を起こしやすく、耐熱性に劣っている。また、その密度も、 $2.76\,\mathrm{g/cm}^3$ と高い。

また、アルミノ珪酸塩ガラスは、耐熱性に優れているが、現在市場にあるガラス基板の多くが、溶融性が悪く、大量生産に不向きである。また、これらのガラス基板は、密度が $2.7\,\mathrm{g/c\,m^3}$ 以上と高かったり、耐バッファードフッ酸性に劣るものが多く、全ての要求特性を満足するものは未だ存在しないというのが実情である。

そこで、本発明の目的は、上記した要求特性項目(1)~(5)の全てを満足し、しかも密度が2. $55 \, \mathrm{g/cm}^3$ 以下の無アルカリガラス基板を提供することである。

発明の開示

本発明の無アルカリガラス基板は、重量百分率で、 SiO_2 58.0~68.0%, AI_2O_3 10.0~25.0%, B_2O_3 3.0~15.0%, MgO 0~2.9%, CaO 0~8.0%, BaO 0.1~5.0%, SrO 0.1~10.0%, ZnO 0~5.0%, ZrO $_2$ 0~5.0%, TiO_2 0~5.0%の組成を有し、実質的にアルカリ金属酸化物を含有しないことを特徴とする。

発明の実施するための最良の形態

本発明の無アルカリガラス基板は、重量百分率で、 SiO_2 58.0~68.0%, AI_2O_3 10.0~25.0%, B_2O_3 3.0~15.0%,MgO 0~2.9%,CaO 0~8.0%,BaO 0.1~5.0%,SrO 0.1~10.0%,ZnO 0~5.0%,ZrO 0~5.0% ZrO 0~5.0% ZrO

まず、本発明の無アルカリガラス基板の構成成分を上記のように限定した理由 について、説明する。

 SiO_2 は、ガラスのネットワークフォーマーとなる成分である。 SiO_2 の 含有量が多いほど、密度が低くなり、 $2.55g/cm^3$ 以下にし易くなるため、本発明では58.0%以上含有させる。しかしながら、その含有量が68.0% より多くなると、高温粘度が大きくなり、溶融性が悪化すると共に、耐失透性が著しく悪化し、ガラス中にクリストバライトの失透異物が析出しやすくなる。 SiO_2 の好ましい含有量は、 $58.5\sim67.0\%$ である。

 $A \ 1_2 \ 0_3$ は、ガラスの耐熱性、耐失透性を高めると共に、密度を低下させるために不可欠な成分である。 $A \ 1_2 \ 0_3$ の含有量は、 $10.0 \sim 25.0\%$ 、好ましくは $15.0 \sim 23.0\%$ である。10.0%より少ないと、失透傾向が増大し、ガラス中にクリストバライトの失透異物が折出する虞れがあると共に、歪点が低下する。また25.0%より多いと、耐バッファードフッ酸性が低下し、ガラス基板の表面に白濁が生じやすくなると共に、ガラスの高温粘度が高くなり、溶融性が悪化する。

 B_2 O_3 は、融剤として働き、粘性を下げ、溶融性を改善するための成分である。 B_2 O_3 の含有量は、3.0~15.0%、好ましくは6.5~15.0%、より好ましくは8.5~15.0%である。3.0%より少ないと、融剤としての働きが不十分となると共に、耐バッファードフッ酸性が低下する。また15.0%より多いと、ガラスの歪点が低下し、耐熱性が悪くなると共に耐酸性も悪くなる。

MgOは、歪点を下げずに高温粘性を下げ、ガラスの溶融性を改善する作用を有している成分である。そして、MgOは、二価のアルカリ土類酸化物の中で、最も密度を下げる効果が大きい成分である。しかし、MgOを多量に含有すると、失透傾向が増大するため好ましくない。従って、MgOの含有量は、 $0\sim2$. 9%、好ましくは $0\sim1\%$ である。

CaOb, MgOと同様に歪点を下げずに高温粘性を下げ、ガラスの溶融性を改善する作用を有する成分である。CaOの含有量は、 $O\sim8$. O%, 好ましくは 1. $8\sim7$. 5%, さらに好ましくは 2. $1\sim7$. 5%である。8. 0%より

多いと、ガラスの耐バッファードフッ酸性が著しく悪化するため好ましくない。 すなわちガラスをバッファードフッ酸で処理する際に、ガラス中のCaO成分と、 バッファードフッ酸による反応生成物が、ガラス表面に多量に析出してガラス基 板を白濁させやすくなる。それとともに、反応生成物によってガラス基板上に形 成される素子や薬液が汚染されやすくなる。

BaOは, ガラスの耐薬品性、耐失透性を向上させる成分である。BaOの含有量は、 $0.1\sim5.0%$ 、好ましくは、 $0.1\sim4.5%$ である。0.1%より少ないと、上記効果が得られず、5.0%より多いと、ガラスの密度が上昇するため好ましくない。

SrOは、BaOと同様にガラスの耐薬品性を向上させると共に、失透性を改善させる成分である。しかも、SrOはBaOに比べて、溶融性を悪化させにくいという特徴を有している。しかし、SrOを多量に含有すると、ガラスの密度が高くなるため好ましくない。従って、SrOの含有量は、O. 1~10. 0%、好ましくは1. 0~9. 0%である。

Z n Oは、耐バッファードフッ酸性を改善すると共に、溶融性を改善する成分である。 Z n Oの含有量は、 $O \sim 5$. O%である。 S. O%より多いと、逆にガラスが失透しやすくなると共に、歪点が低下するため、優れた耐熱性が得られない。

ただしMgO, CaO, SrO, BaO及びZnOの合量が5. 0%より少ないと、高温での粘性が高くなり、溶融性が悪くなると共に、ガラスが失透しやすくなる。一方、MgO, CaO, SrO, BaO及びZnOの合量が20. 0%より多いと、ガラスの密度が高くなるため好ましくない。

 TiO_2 も、耐薬品性、特に耐酸性を改善すると共に、高温粘性を低下し、溶験性を向上させ、さらに紫外線による着色を防止する成分である。即ち、液晶ディスプレイ等を製造する場合、ガラス基板上の有機物を除去するために紫外線を

照射することがある。ガラス基板が紫外線によって着色すると、透過率が低下するため好ましくない。そのためこの種のガラス基板には、紫外線によって着色しないことが要求される。しかしながら、 TiO_2 が5.0%より多いと、逆にガラスが着色しやすくなるため好ましくない。

また、本発明においては、上記成分以外にも、特性を損なわない範囲で、他の成分を添加させることが可能である。例えば、清澄剤として As_2 O_3 , Sb_2 O_3 , F_2 , Cl_2 , SO_3 , SnO_2 といった成分や、Al , Si といった金属粉末等を添加させることが可能である。

ただし、ガラス中にアルカリ金属酸化物が含有されると、ガラス基板上に形成 される各種の膜や半導体素子の特性を劣化させるため好ましくない。

また、一般に融剤として使用されるPbOは、ガラスの耐薬品性を著しく低下させる。それとともに、PbOは溶融時に融液の表面から揮発し、環境を汚染する虞れもあるため好ましくない。

さらに、 P_2 O_5 も一般に融剤として使用される。しかし、 P_2 O_5 は、ガラスを分相させると共に、耐薬品性を著しく低下させるため好ましくない。

また、CuOを含有すると、ガラスが着色するため、ディスプレイ用ガラス基板としては使用できなくなる。

次に、本発明の無アルカリガラス基板を例に基づいて更に、詳細に説明する。 表1~3は、本発明例のガラス(試料No. 1~10)と比較例のガラス(試料No. 11~14)を示すものである。

表中の各試料は、次のようにして作製した。まず表の組成となるようにガラス原料を調合し、白金坩堝に入れ、1580℃で、24時間溶融した。この溶融したガラス原料をカーボン板上に流し出し、板状に成形した。

表から明らかなように、本発明例である $No.1\sim10$ の各試料は、いずれも密度が2.51 g/c m 3 以下、歪点が668 $^{\circ}$ C以上であった。また、 $No.1\sim10$ の各試料は、耐塩酸性、耐バッファードフッ酸性、耐失透性に優れていた。さらに、 $No.1\sim10$ の各試料は、 $10^{2.5}$ ポイズに相当する温度が1625 $^{\circ}$ C以下であった。したがって、本発明例である $No.1\sim10$ の各試料は、いずれも良好な特性を有していた。

第 1 表

(重量%)

試料No.		本	発		明	例		
組成	1	2	3	4	5	6	7	8
SiO ₂	60. 0	61. 0	59. 9	62. 5	64. 0	61, 5	61. 0	63. 0
Al ₂ O ₃	17. 0	18. 0	16. 5	20. 5	21. 0	19. 0	13. 5	17. 0
B ₂ O ₃	9. 0	11.0	9. 0	6.0	6. 5	7. 5	8. 5	10.0
MgO	_	0. 5	_	1.5	0. 5	1. 0	_	_
CaO	5. 5	3. 5	2. 1	6.0	7. 0	3. 0	2. 5	7. 5
ВаО	4. 0	1. 0	3. 5	1.5	0. 5	0. 5	2. 0	0.5
SrO	3. 5	2. 0	6. 5	1. 5	0. 5	5. 0	9. 0	1.0
ZnO	0. 5	1. 0	0. 5	_	_	1. 0	_	1.0
ZrO ₂	0. 5	2. 0	1. 0	_	_		1.5	-
TiO ₂		-	1. 0	0. 5		1. 5	2. 0	<u> </u>
密度 (g/cm³)	2. 50	2. 40	2. 51	2. 45	2. 39	2. 46	2. 51	2. 39
歪点 (℃)	681	689	676	691	719	671	668	670
耐塩酸性	0	0	0	0 :	0	0	. 0	0
耐バッファードフッ酸性	0	0	0	0	0	0	0	0
耐失透性	0	0	0	0	0	0	0	0
10 ^{2.5} ポイズ温度 (℃)	1592	1611	1604	1621	1623	1625	1605	1594

第 2 表

(重量%)

試料No.	本発明例	
組成	9	10
SiO ₂	63. 5	61. 5
Al ₂ O ₃	19. 0	18. 5
B ₂ O ₃	8. 5	9. 0
МдО	0. 2	-
СаО	6.8	3. 0
ВаО	0. 5	0. 5
SrO	1.0	5. 0
ZnO	_	1. 0
ZrO ₂	0. 5	0. 5
T i O2	-	1. 0
密度(g/c m ³)	2. 39	2. 45
歪点 (℃)	701	668
耐塩酸性	0	0
耐バッファードフッ酸性	0	0
耐失透性	0	0
10 ^{2.5} ポイズ温度 (℃)	1598	1625

第 3 表

(重量%)

	比	較	例
11	1 2	1 3	1 4
61. 0	62. 5	61.0	69. 0
13. 0	18. 5	15. 0	11.5
9. 5	6. 5	5. 0	5. 5
5. 0	2. 0	2. 5	1. 0
4. 5	6. 5	3. 0	4. 0
4. 0	_	7. 0	4.0
2. 0	4. 0	5. 0	3. 0
1. 0		1. 5	2. 0
_	- -	-	
	-	_	<u> </u>
2. 54	2. 47	2. 63	2. 50
650	682	697	660
0	Δ	0	0
0	×	.0	0
×	×	0	·×
1570	1507	1620	1705
	1 1 61. 0 13. 0 9. 5 5. 0 4. 5 4. 0 2. 0 1. 0 2. 54 650 \(\text{\tint{\text{\tinit\text{\text{\text{\tinit\text{\text{\text{\text{\text{\ti}\text{\texi{\text{\texi{\text{\texi{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texit{\text{\text{\texi{\texi{\texi{\texi\texi{\texi{\texi{\texi\texi{\tii}\text{\tiin\tint{\texi{\tiint{\texi{\texi{\texi{\texi	1 1 1 2 1 2 6 1 . 0 6 2 . 5 1 3 . 0 18 . 5 9 . 5 6 . 5 6 . 5 4 . 0 - 2 . 0 4 . 0 1 . 0	1 1 1 2 1 3 61. 0 62. 5 61. 0 13. 0 18. 5 15. 0 9. 5 6. 5 5. 0 5. 0 2. 0 2. 5 4. 5 6. 5 3. 0 4. 0 - 7. 0 2. 0 4. 0 5. 0 1. 0 - 1. 5 - - - 2. 54 2. 47 2. 63 650 682 697 ○ △ ○ × × ○ × × ○

それに対し比較例であるNo.11の試料は、耐失透性に劣っていた。また、No.12の試料は、耐薬品性と耐失透性に劣っていた。No.13の試料は、密度が高かった。さらにNo.14の試料は、耐失透性に劣ると共に、 $10^{2.5}$ ポイズ温度が高く、溶融性が悪かった。

尚, 表中の密度は、周知のアルキメデス法によって測定し、歪点は、ASTM C336-71の方法に基づいて測定した。

耐塩酸性は、各試料を光学研磨してから、80℃に保持された10重量%塩酸水溶液に24時間浸漬した後、ガラス基板の表面状態を観察することによって評価し、また耐バッファードフッ酸性は、光学研磨した各試料を、20℃に保持された38.7重量%フッ化アンモニウム、1.6重量%フッ酸からなるバッファードフッ酸溶液に30分間浸漬した後、ガラス基板の表面状態を観察することによって評価したものであり、ガラス基板の表面が白濁したり、0000分割である。

耐失透性は、各試料から $300\sim500\mu$ mの粒径を有するガラス粉末を作製し、これを白金ボート内に入れ、1200で100時間熱処理した後の失透観察によって求めたものであり、失透が少しでも認められたものを \times 、全く認められなかったものを \bigcirc とした。

 $10^{2.5}$ ポイズ温度は、高温粘度である $10^{2.5}$ ポイズに相当する温度を示す ものであり、この温度が低いほど、溶融成形性に優れていることになる。

以上のように本発明によれば、実質的にアルカリ金属酸化物を含有せず、耐熱性、耐薬品性、溶融成形性に優れ、しかも密度が $2.55\,\mathrm{g/c\,m^3}$ 以下である無アルカリガラス基板を提供することができる。

産業上の利用可能性

以上、説明したように、本発明の無アルカリガラス基板は、液晶ディスプレイ、 ELディスプレイ等のディスプレイ、フィルター、センサー等の基板として用い ることができ、特に軽量化が要求されるTFT型アクティブマトリックス液晶ディスプレイに使用されるガラス基板として好適である。

請 求 の 範 囲

1. 重量百分率で、SiO₂ 58.0~68.0%、Al₂O₃ 10.0~25.0%、B₂O₃ 3.0~15.0%、MgO 0~2.9%、CaO0~8.0%、BaO 0.1~5.0%、SrO 0.1~10.0%、ZnO 0~5.0%、ZrO₂ 0~5.0%、TiO₂ 0~5.0%の組成を有し、実質的にアルカリ金属酸化物を含有しないことを特徴とする無アルカリガラス基板。

			*		
A. 発明の属する分野の分類(国際特許分類(IPC)) Int Cl' C03C3/091、 C03C3/093					
つ 報末ま	ニート八郎				
	テった分野 W小限資料(国際特許分類(IPC))	<u> </u>			
	C03C3/091、 C03C3/093				
int of	000007091; 000037093				
	٠.	,			
最小限資料以外	外の資料で調査を行った分野に含まれるもの		· · · · · · · · · · · · · · · · · · ·		
日本国実用	用新案公報 1926-1996年				
日本国公園	開実用新案公報 1971-1996年				
日本国登録	录実用新案公報 1994-1996年				
	·	\$c			
同常要求。 朱	71 LM7 - Ld - Ld - Ld				
国际調査で使用	用した 電 子データベース(データベースの名称、	、調査に使用した用語)			
	•				
C. 関連する	ると認められる文献				
引用文献の	-		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連する。	ときは、その関連する箇所の表示	請求の範囲の番号		
X	JP, 4-325436, A(日本板硝子株式会社)13.11)	月. 1992(13. 11. 92), 第1欄, 第2-9行	1		
	(ファミリーなし)	·			
A	TD 4 107040 4 (10707714-15 A 11) 44 - 5				
A	JP.4-175242.A (旭硝子株式会社) 23.6月.199 頁,右欄,第8行 (ファミリーなし)	22(23.06.92),第1頁,左欄,第5行-同	1		
	具・石榴・第・11 (ファミリーなし)				
Α	JP,61-281041,A(旭硝子株式会社)11.12月.1	086(11 19 86) 第1頁 七個 第5年	1		
	同頁,右欄,第16行 (ファミリーなし)	500(11.12.60), 第 1 頁, 在關, 第 5 1]	1		
:					
□□□□■の禁言	きにも文献が列挙されている。	□ パニン, L → 2 以 1+88++ 7 円()	4ff ≠ #\ FF7		
		□ パテントファミリーに関する別	概を変照。		
* 引用文献@	Oカテゴリー	の日の後に公表された文献			
「A」特に関連	室のある文献ではなく、一般的技術水準を示す。	「T」国際出願日又は優先日後に公表さ	れた文献であって		
もの	•	て出願と矛盾するものではなく、			
「E」先行文献	状ではあるが、国際出願日以後に公表されたも	論の理解のために引用するもの			
<u>-</u> の		「X」特に関連のある文献であって、当	(該文献のみで発明		
「し」優先権国	E張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え			
	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当	≦該文献と他の1以 │		
	理由を付す) トス際元 佐田 日子等は会立 ナスキギ	上の文献との、当業者にとって自	明である組合せに		
	よる開示、使用、展示等に言及する文献 原見前で、かつ優先権の主張の基礎したで山際	よって進歩性がないと考えられる	· もの [
「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「&」同一パテントファミリー文献					
国際調査を完了	了した日	国際調査報告の発送日			
	16. 12. 96		12.96		
		25.	12.00		
	2名称及びあて先	特許庁審査官(権限のある職員)	4G 8928		
日本国特許庁(ISA/JP) 三崎 仁 町 🗔 💮					
	P便番号100		· .		
東京都	四千代田区霞が関三丁目 4番3号	電話番号 03-3581-1101	内線3416		