Tablas Resumen de Modelos Probabilísticos Santiago Alférez (adaptado del libro de referencia)

Tablas de Resumen

Prefijos de Comandos en R

Prefijo	Descripción	Uso	Ejemplo
d	Función de densidad/masa	Calcula P(X = x)	dnorm(0, mean=0, sd=1) \rightarrow 0.3989
p	Función de distribución	Calcula $P(X \le x)$	pnorm(1.96, mean=0, sd=1) \rightarrow 0.975
q	Función cuantil	Calcula x tal que $P(X \le x) = p$	qnorm(0.975, mean=0, sd=1) \rightarrow 1.96
r	Generación aleatoria	Genera n muestras aleatorias	rnorm(5, mean=0, sd=1) \rightarrow [-0.2, 1.1, 0.8, -1.2, 0.5]

Fórmulas de Distribuciones Discretas

Distribución	Función de Masa	Media	Varianza	Soporte	Aplicación
Binomial	$P(X=x) = \binom{n}{x} p^{x} (1-p)^{n-1}$	-х пр	np(1-p)	x = 0,1,,n	Éxitos en n ensayos
Geométrica	$P(X=x)=p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	x = 1,2,	Ensayos hasta éxito
Poisson	$P(X=x) = \frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	x = 0,1,2,	Eventos en intervalo/región
Binomial Negativa	$\binom{x-1}{r-1}p^r(1-p)^{x-r}$	$\frac{r}{p}$	$r\frac{1-p}{p^2}$	$x \ge r$	Ensayos hasta r éxitos
Hipergeométrica	$\frac{\binom{k}{x}\binom{N-k}{n-x}}{}$	$n\frac{k}{N}$	$n\frac{k}{N}\bigg(1-\frac{k}{N}\bigg)\frac{N-n}{N-1}$	max(0,n+k- N)≤x≤min(k,n)	Muestreo sin reemplazo
	$\begin{pmatrix} N \\ n \end{pmatrix}$				

Fórmulas de Distribuciones Continuas

Distribución	Función de Densidad	Media	Varianza	Soporte	
Uniforme	$f(x) = \frac{1}{b-a}$	<u>a+b</u> 2	$\frac{(b-a)^2}{12}$	$x \in [a,b]$	
Exponencial	$f(x) = \lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$x \ge 0$	
Normal	$f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}$	μ	σ^2	$x \in \mathbb{R}$	

Distribuciones Discretas con Ejemplos

Distribución	Descripción	Comando	Parámetros	Ejemplo
Binomial	Número de éxitos en n ensayos	dbinom()	size, prob	dbinom(3, size=10, prob=0.5) \rightarrow 0.1172
Geométrica	Ensayos hasta primer éxito	dgeom()	prob	$dgeom(2, prob=0.3) \rightarrow 0.147$
Poisson	Eventos en intervalo temporal o región espacial	dpois()	lambda	dpois(2, lambda=3) \rightarrow 0.2240
Binomial Negativa	Ensayos hasta r éxitos	dnbinom()	size (r), prob	dnbinom(3, size=2, prob=0.4) \rightarrow 0.1536
Hipergeométrica	Éxitos en muestreo sin reemplazo	dhyper()	m, n, k	dhyper(2, m=8, n=12, k=5) → 0.4066

Distribuciones Continuas con Ejemplos

Distribución	Descripción	Comando	Parámetros	Ejemplo
Uniforme	Valores con igual probabilidad	dunif()	min, max	dunif(1.5, min=0, max=2) \rightarrow 0.5
Exponencial	Tiempo entre eventos	dexp()	rate	$dexp(1, rate=2) \rightarrow 0.271$
Normal	Fenómenos naturales	dnorm()	mean, sd	$dnorm(0, mean=0, sd=1) \rightarrow 0.3989$

Comandos de Gráficas con Ejemplos

Tipo	Gráfica	Descripción	Comando	Ejemplo
Discreta	Masa	Función de masa de probabilidad	plot(type="h")	plot(x, dbinom(x,10,0.3), type="h")
Discreta	Acumulada	Función de distribución	plot(type="s")	plot(x, pbinom(x,10,0.3), type="s")
Continua	Densidad	Función de densidad	curve(dnorm())	curve(dnorm(x,0,1), -3, 3)
Continua	Acumulada	Función de distribución	curve(pnorm())	curve(pnorm(x,0,1), -3, 3)

Notas sobre gráficas discretas: - type="h": Dibuja líneas verticales (histograma) - type="s": Dibuja función escalonada - points(): Agrega puntos en los valores discretos - Para distribuciones discretas se usa plot() con un vector de valores x

Guía para Selección de Distribución

¿Cómo elegir la distribución adecuada?

Sigue estos pasos para identificar qué distribución de probabilidad usar:

1. Determina si la variable es discreta o continua

- o Discreta: Cuenta elementos o sucesos (números enteros)
- o Continua: Mide magnitudes (puede tomar cualquier valor en un intervalo)

2. Para variables discretas, pregúntate:

- o ¿Estás contando éxitos en un número fijo de intentos? → **Binomial**
 - Ejemplo: Número de piezas defectuosas en 100 inspecciones
 - Clave: Número fijo de intentos, cada uno con mismo p
- o ¿Estás contando intentos hasta el primer éxito? → **Geométrica**
 - Ejemplo: Número de lanzamientos hasta obtener cara
 - Clave: Interesa el número de intentos hasta éxito
- o ¿Estás contando eventos en un intervalo/región? → **Poisson**
 - Ejemplo: Número de clientes por hora, defectos por m²
 - Clave: Tasa media conocida, eventos independientes
- o ¿Estás contando éxitos hasta alcanzar un número r de ellos? → Binomial Negativa
 - Ejemplo: Número de ventas hasta conseguir 5 clientes premium
 - Clave: Interesa número de intentos hasta r éxitos
- o ¿Estás muestreando sin reemplazo? → **Hipergeométrica**
 - Ejemplo: Seleccionar 5 componentes de un lote de 20, donde 8 son defectuosos
 - Clave: Población finita, sin reemplazo

3. Para variables continuas, pregúntate:

- o ¿Todos los valores en un intervalo son igualmente probables? → **Uniforme**
 - Ejemplo: Tiempo de espera entre 0 y 10 minutos
 - Clave: Igual probabilidad en todo el intervalo
- o ¿Estás midiendo tiempo entre eventos? → Exponencial
 - Ejemplo: Tiempo entre llegadas de clientes
 - Clave: Tiempo entre eventos de Poisson
- o ¿Es una medida natural o industrial? \rightarrow **Normal**
 - Ejemplo: Alturas, pesos, medidas de fabricación
 - Clave: Resultado de muchos factores pequeños e independientes

Señales de alerta para cada distribución

Binomial: - Necesitas: número fijo de intentos (n) - Cada intento es independiente - Solo dos resultados posibles (éxito/fracaso) - Misma probabilidad de éxito en cada intento

Poisson: - Eventos ocurren de forma individual - Eventos son independientes - Conoces la tasa media - La ocurrencia en un intervalo no afecta a otros

Normal: - Datos son simétricos alrededor de la media - Medidas físicas o naturales - Resultado de muchos factores pequeños - Valores extremos son menos probables

Exponencial: - Tiempos de espera - Tiempo hasta el siguiente evento - Los eventos siguen distribución de Poisson - Sin "memoria" (tiempo pasado no afecta)

Binomial Negativa: - Se busca número de intentos hasta r éxitos - Cada intento es independiente - Misma probabilidad de éxito en cada intento - No hay límite en número de intentos

Hipergeométrica: - Muestreo sin reemplazo - Población finita y conocida - Número conocido de éxitos en población - La probabilidad cambia en cada extracción