Confidence Interval of Proportion

How to determine a confidence interval of a proportion

Definitions

p = population proportion (to be estimated)

 $\hat{p} = \text{sample proportion (actually measured)}$

n = sample size

 γ = confidence level = chance that a confidence interval will include p

 $\alpha = \text{error rate} = 1 - \gamma$

 $\sigma_{\hat{p}}$ = standard error (standard deviation of sampling distribution)

 z^* = standardized radius of interval

 $ME = \text{margin of error (radius of interval)} = z^* \cdot \sigma_{\hat{p}}$

 $\ell =$ percentile associated with z^*

LB =lower bound of confidence interval $= \hat{p} - ME$

 $UB = \text{upper bound of confidence interval} = \hat{p} + ME$

CI = confidence interval = [LB, UB]

General Problem

• Given: \hat{p} , n, and γ

• **Find:** The lower and upper bounds of the confidence interval.

General Procedure

We first determine z^* such that $P(|Z| < z^*) = \gamma$. The graphic below suggests the strategy: determine α , find ℓ , and use the z-table to get z^* .

Determine error rate. This represents how often confidence intervals will miss the true population proportion. This error rate is a two-tail area.

$$\alpha = 1 - \gamma$$

We can determine the percentile (ℓ) of z^* .

$$\ell = 1 - \frac{\alpha}{2}$$

It should be mentioned that you could have gotten the percentile more directly.

$$\ell = \frac{\gamma + 1}{2}$$

Use the z-table to get z^* .

We estimate the standard error. (Technically we should use p, not \hat{p} , but we only know \hat{p} . We assume \hat{p} is close enough to p for this estimation to be accurate.)

$$\sigma_{\hat{\rho}} = \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}$$

Determine the margin of error.

$$ME = z^* \cdot \sigma_{\hat{D}}$$

Get the lower bound.

$$LB = \hat{p} - ME$$

Get the upper bound.

$$UB = \hat{p} + ME$$

Write the confidence interval in interval notation.

$$CI = [LB, UB]$$

We can summarize the procedure in two steps:

- 1. Determine z^* such that $P(|Z| < z^*) = \gamma$. It is helpful to know $\ell = \frac{\gamma + 1}{2}$.
- 2. Use the following expression to find the bounds:

$$\hat{\rho} \pm z^* \sqrt{\frac{\hat{\rho}(1-\hat{\rho})}{n}}$$