

## Numerical Integration - Lecture 04

**Dr. Serhat Hosder** 

**Associate Professor of Aerospace Engineering** 

**Mechanical and Aerospace Engineering** 

**290B Toomey Hall** 

Missouri S&T

**Rolla, MO 65409** 

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2018



### **Outline**

- Numerical integration plays a key role in many engineering applications. The integration methods that we examine
  - Trapezoidal Rule
  - Simpson's 1/3 Rule
  - Mid-point Rule
  - Romberg Integration
  - Gauss Quadrature
  - Multiple Integrals ——— (This lecture)
  - Multiple integrals are very common in engineering applications. The approach that we will use is based on integrating a function over a single variable holding the remaining variables constant. This is repeated for each independent variable.

AE/ME 5830 Spring 2018



## **Multiple Integrals**

The evaluation of multiple integrals is a straightforward extension of the methods that we have already discussed. As an example, consider the double integral

$$\iint\limits_R f(x,y)\,dA$$

over the region 
$$R = \{(x,y) | a \le x \le b, c \le y \le d\}$$

The integral over the 2-D space

$$I = \iint_{R} f(x,y) dA$$

$$= \int_{a}^{b} \left[ \int_{c}^{d} f(x,y) dy \right] dx$$

$$= \int_{a}^{b} \left[ g(x) \right] dx$$

Approach: Break it up into a sequence of 1D problems

The term in brackets is a function of x only.

The integration rules we developed can be applied here.



## Multiple Integrals - Simpson's Rule

For a multiple integral, Simpson's integration rule can be used:

$$I = \int_{a}^{b} g(x)dx = \frac{h_{1}}{3} \left[ g(a) + 4g \left( \frac{a+b}{2} \right) + g(b) \right]$$

$$h_1 = \frac{b-a}{2}$$

By definition

$$g(a) = \int_{c}^{d} f(a,y)dy = \frac{h_{2}}{3} \left[ f(a,c) + 4f\left(a, \frac{c+d}{2}\right) + f(a,d) \right] \qquad h_{2} = \frac{d-c}{2}$$

Likewise,

$$g\left(\frac{a+b}{2}\right) = \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) dy = \frac{h_{2}}{3} \left[ f\left(\frac{a+b}{2}, c\right) + 4f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) + f\left(\frac{a+b}{2}, d\right) \right]$$

Finally,

$$g(b) = \int_{c}^{d} f(b,y)dy = \frac{h_{2}}{3} \left[ f(b,c) + 4f\left(b, \frac{c+d}{2}\right) + f(b,d) \right]$$

This approach can be extended to any of the methods we discussed earlier and to any number of dimensions

AE/ME 5830 Spring 2018



## Example for Simpson's Integration Rule

### **Example:**

$$I = \int_{0}^{1} \left( \int_{-1}^{1} xy^{2} dy \right) dx = \frac{1}{6} \left[ g(0) + 4g(0.5) + g(1) \right]$$

$$g(x) = \frac{1}{3} \left[ f(x,-1) + 4f(x,0) + f(x,1) \right]$$

$$g(0) = \frac{1}{3} [0 + 0 + 0] = 0$$

$$g(\frac{1}{2}) = \frac{1}{3} \left[ \frac{1}{2} + 0 + \frac{1}{2} \right] = \frac{1}{3}$$

$$g(1) = \frac{1}{3} [1 + 0 + 1] = \frac{2}{3}$$

AE/ME 5830 Spring 2018

5



## Example for Simpson's Integration Rule

From before,

$$I = \int_{0}^{1} \left( \int_{-1}^{1} xy^{2} dy \right) dx = \frac{1}{6} \left[ g(0) + 4g(0.5) + g(1) \right]$$

$$= \frac{1}{6} \left[ 0 + 4 \left( \frac{1}{3} \right) + \frac{2}{3} \right] = \frac{1}{3}$$

The exact value is

$$\int_{0}^{1} \int_{-1}^{1} xy^{2} dy dx = \int_{0}^{1} \frac{xy^{3}}{3} \bigg|_{-1}^{1} dx = \int_{0}^{1} \frac{2x}{3} dx = \frac{x^{2}}{3} \bigg|_{0}^{1} = \frac{1}{3}$$



### **Different Methods**

Let's work the same problem with Trapezoidal Rule in both directions (x and y) using a single panel:

$$I = \int_{0}^{1} \left( \int_{-1}^{1} xy^{2} dy \right) dx = (1) \frac{g(0) + g(1)}{2}$$

$$g(x) \approx (2) \frac{f(x, -1) + f(x, +1)}{2}$$

$$g(0) \approx (2) \frac{0 + 0}{2} = 0; \quad g(1) \approx (2) \frac{1 + 1}{2} = 2$$

$$I = \int_{0}^{1} \left( \int_{-1}^{1} xy^{2} dy \right) dx \approx (1) \frac{0 + 2}{2} = 1$$

The truncation error is  $\Re(h^p)$  in each direction. To improve results, we may refine h or increase p



### **Different Methods**

Let's work the same problem with Trapezoidal Rule in x direction and Simpson's 1/3 rule in y direction

$$I = \int_{0}^{1} \left( \int_{-1}^{1} xy^{2} dy \right) dx = (1) \frac{g(0) + g(1)}{2}$$

Use Simpson's Rule in y

direction 
$$g(x) = \left(\frac{1}{3}\right) \left[ f(x,-1) + 4f(x,0) + f(x,+1) \right]$$

$$g(0) = \left(\frac{1}{3}\right) \left[0 + 4(0) + 0\right] = 0$$

$$g(1) = \left(\frac{1}{3}\right) \left[1 + 4(0) + 1\right] = \frac{2}{3}$$

$$I = \int_{0}^{1} \left(\int_{-1}^{1} xy^{2} dy\right) dx = (1) \frac{0 + 2/3}{2} = \frac{1}{3}$$

To get the exact result, all it takes is a method in x that is exact for  $P_1(x)$  and a method in y that is exact for  $P_2(y)$ .



# What if the integration limits are functions of an independent variable?

What if the integral is in the form:

$$I = \int_{a}^{b} \left[ \int_{c(x)}^{d(x)} f(x, y) dy \right] dx$$
$$= \int_{a}^{b} \left[ g(x) \right] dx \quad where \ g(x) = \int_{c(x)}^{d(x)} f(x, y) dy$$

Again define  $h_1 = \frac{b-a}{2}$  then Using Simpson's Rule:

$$I \approx \frac{h_1}{3} \left[ g(a) + 4g \left( \frac{b+a}{2} \right) + g(b) \right]$$

$$g(a) = \int_{c(a)}^{d(a)} f(a,y) dy$$
 and  $h_{21} = \frac{d(a) - c(a)}{2}$ 

$$g(a) = \frac{h_{21}}{3} \left[ f(a,c(a)) + 4f(a,\frac{c(a)+d(a)}{2}) + f(a,d(a)) \right]$$

**AE/ME 5830** 



# What if the integration limits are functions of an independent variable?

$$g\left(\frac{a+b}{2}\right) = \int_{c(\frac{a+b}{2})}^{d(\frac{a+b}{2})} f(\frac{a+b}{2}, y) dy \quad and \quad h_{22} = \frac{d(\frac{a+b}{2}) - c(\frac{a+b}{2})}{2}$$

$$g(\frac{a+b}{2}) = \frac{h_{22}}{3} \left[ f\left(\frac{a+b}{2}, c(\frac{a+b}{2})\right) + 4f\left(\frac{a+b}{2}, \frac{c(\frac{a+b}{2}) + d(\frac{a+b}{2})}{2}\right) + f\left(\frac{a+b}{2}, d(\frac{a+b}{2})\right) \right]$$

### And finally for g(b):

$$g(b) = \int_{c(b)}^{d(b)} f(b, y) dy \quad and \quad h_{23} = \frac{d(b) - c(b)}{2}$$

$$g(b) = \frac{h_{23}}{3} \left[ f(b, c(b)) + 4f(b, \frac{c(b) + d(b)}{2}) + f(b, d(b)) \right]$$



## Gauss Quadrature – Basic Principle

The Gauss Quadrature Rule for finding an integral numerically is given by the function

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} c_{i} f(x_{i})$$

where  $c_i$  are the weights of the function  $f(x_i)$  at  $x_i$  and  $x_i$  are the zeros(roots) of the  $n^{th}$  Legendre polynomial

We have 2n parameters for evaluating the integral

$$c_1, c_2, ..., c_n$$
 and  $x_1, x_2, x_3, ..., x_n$ .

**Approach:** Choose the parameters to exactly integrate the largest class of polynomials possible. With 2n parameters, the class of polynomials of degree 2n-1 can be integrated exactly.



## Zeros (Roots) and Weights (Coefficients) for Gauss-Legendre Quadrature on [-1,1]

| n | Zeros      | Weights  |
|---|------------|----------|
| 2 | - 0.57735  | 1.       |
|   | 0.57735    | 1.       |
|   |            |          |
| 3 | - 0.774597 | 0.555556 |
|   | 0.         | 0.888889 |
|   | 0.774597   | 0.555556 |
|   |            |          |
| 4 | - 0.861136 | 0.347855 |
|   | - 0.339981 | 0.652145 |
|   | 0.339981   | 0.652145 |
|   | 0.861136   | 0.347855 |
|   |            |          |
| 5 | - 0.90618  | 0.236927 |
|   | - 0.538469 | 0.478629 |
|   | 0.         | 0.568889 |
|   | 0.538469   | 0.478629 |
|   | 0.90618    | 0.236927 |

This is Table 4.11 in the text on page 225.

The roots are the zeros of the n<sup>th</sup> degree Legendre polynomial

An arbitrary interval [a,b] is mapped onto [-1,1] via a linear transformation

$$x = \frac{b+a}{2} + \frac{b-a}{2}t \quad \text{where} \quad dx = \frac{(b-a)}{2}dt$$

$$\int_{a}^{b} f(x)dx = \frac{(b-a)}{2} \int_{-1}^{1} f[x(t)]dt = \frac{(b-a)}{2} \sum_{i=1}^{n} c_{i} f(x(t_{i}))$$



# Gauss Quadrature Example for Single Integral

### Evaluate the integral

$$\begin{split} &\int_0^{\frac{\pi}{2}} \sin x \ dx = 1 \quad \text{using Gauss Quadrature and Trapezoidal Rule} \\ &b = \frac{\pi}{2}; \quad a = 0; \qquad x = \frac{\pi}{4} + \frac{\pi}{4} t = (1+t) \frac{\pi}{4} \\ &With \ \mathbf{n} = 2, \ \mathbf{c}_1 = \mathbf{c}_2 = 1; \ t_1 = -0.577; \ t_2 = 0.577 \\ &I_{QUAD} = \frac{\pi}{4} \Big[ \sin \Big( \frac{\pi}{4} (1-0.577) \Big) + \sin \Big( \frac{\pi}{4} (1+0.577) \Big) \Big] \\ &I_{OUAD} = 0.9984716 \end{split}$$

The Single Panel Trapezoidal Rule gives  $I_{TRAP} = 0.7584$  (also requires two function evaluations)



## Gauss Quadrature Example for **Multiple Integrals**

$$I = \int_{1.4}^{2.0} \left[ \int_{1.0}^{1.5} \ln(x + 2y) dy \right] dx$$
 Integrate using a 3-point Gauss quadrature in both directions

$$R = \{(x,y) | 1.4 \le x \le 2.0, 1.0 \le y \le 1.5 \}$$

To apply Gauss Quadrature, we have to make the transformation:

$$\hat{R} = \{(u, v) | -1 \le u \le 1, -1 \le v \le 1\}$$

$$x = \frac{b+a}{2} + \frac{b-a}{2}u \rightarrow x = 1.7 + 0.3u \text{ and } dx = 0.3du$$

$$y = \frac{d+c}{2} + \frac{d-c}{2}v \rightarrow y = 1.25 + 0.25v \text{ and } dy = 0.25dv$$

$$I = 0.075 \int_{-1}^{1} \int_{-1}^{1} \ln[(1.7 + 0.3u) + 2(1.25 + 0.25v)] dv du$$

$$I = 0.075 \int_{-1}^{1} \int_{-1}^{1} \ln[4.2 + 0.3u + 0.5v] dv du = 0.075 \int_{-1}^{1} \int_{-1}^{1} f(u,v) dv du$$

**AE/ME 5830** 

**Spring 2018** 



# Gauss Quadrature Example for Multiple Integrals

$$g(u) = \int_{-1}^{1} f(u,v)dv$$
 then  $I = 0.075 \int_{-1}^{1} g(u)du$ 

### **Apply a 3-point Gauss Quadrature in both directions**

$$\hat{I} = 0.075 [c_1 g(u_1) + c_2 g(u_2) + c_3 g(u_3)]$$
 where

$$g(u_1) = \int_{-1}^{1} f(u_1, v) dv \approx c_1 f(u_1, v_1) + c_2 f(u_1, v_2) + c_3 f(u_1, v_3)$$

$$g(u_2) = \int_{-1}^{1} f(u_2, v) dv \approx c_1 f(u_2, v_1) + c_2 f(u_2, v_2) + c_3 f(u_2, v_3)$$

$$g(u_3) = \int_{-1}^{1} f(u_3, v) dv \approx c_1 f(u_3, v_1) + c_2 f(u_3, v_2) + c_3 f(u_3, v_3)$$



# Gauss Quadrature Example for Multiple Integrals

$$\hat{I} = 0.075 [c_1 g(u_1) + c_2 g(u_2) + c_3 g(u_3)]$$

### Using the expression for $g(u_1)$ , $g(u_2)$ , and $g(u_3)$ from previous slide

$$\hat{I} = 0.075 \sum_{i=1}^{3} \sum_{j=1}^{3} c_i c_j f(u_i, v_j)$$
where  $f(u_i, v_j) = \ln(4.2 + 0.3u_i + 0.5v_j)$ 

### For a 3-point Gauss quadrature:

#### **Final Result:**

$$\hat{I} = 0.4295545314$$
 and  $Error = 4.8 \times 10^{-9}$ 



### Summary

#### In this lecture we have

- Learnt to evaluate Multiple Integrals by the extension of one-dimensional quadrature rules.
  - Integration holding all variables constant but one was accomplished by using earlier methods
  - Repeated for each independent variable
  - Showed the approach when the integration limits are functions of one of the independent variables
  - Worked on an example to show how Gauss Quadrature can be applied to multiple integrals