

Predictive Models Developments For Calorie Consumption

Qiyang Wang, Andrew Cao, Dichuan Zheng ,Yiru Fang

STAT 527 Final Project

Dec 6, 2024

Agenda

- Background
- Data Exploring
- Model selection and improvement
- Further Exploration of the Models
- Analyzing Method & Result
- Conclusion

Background

- Reason: Healthy living and exercise have become increasingly popular among teenagers.
- Curiosity: Exploring novel insights into the relationship between calories burned and various influencing factors.
- Objective: Designing a unique approach to analyze the relationship between calories burned and other factors and developing a predictive model to provide actionable insights.

Algorithm

• Full Model and Null Model with Stanuisa Salastian Baseasian

$$\begin{split} \sqrt{\text{Calories_Burned}} = & \beta_0 + \beta_1 \cdot \text{poly}(\text{Session_Duration, 2}) + \beta_2 \cdot \text{poly}(\text{Avg_BPM, 2}) \\ & + \beta_3 \cdot \text{Gender} + \beta_4 \cdot \text{Age} + \beta_5 \cdot \text{Resting_BPM} + \epsilon \end{split}$$

LASSO Regression :

$$\min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

Ridge Regression :

$$\min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

• Elastic Net Regression

$$\min_{\beta} \left\{ \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda \left(\alpha \sum_{j=1}^{p} |\beta_j| + (1 - \alpha) \sum_{j=1}^{p} \beta_j^2 \right) \right\}$$

Data Background

Our dataset was retrieved from Seyed Vala Khorasani through Kaggle.

- The data have 973 observations and 15 variables.
- The response is the amount of calories burned.
- The other variables are predictors.

- 1. Age: the age of the individuals in years.
- 2. Gender: the gender of the individuals, classified as "Male" or "Female".
- 3. Weight (kg): the weight of the individuals in kilograms.
- 4. Height (m): the height of the individuals in meters.
- Max_BPM: the maximum heart rate (beats per minute) recorded during a workout session.
- 6. Avg_BPM: the average heart rate (beats per minute) recorded during a workout session.
- Resting_BPM: the heart rate (beats per minute) of the individuals at rest.
- 8. Session_Duration (hours): the total duration of each workout session in hours.
- 9. Calories_Burned: the total number of calories burned during a workout session.
- 10. Workout_Type: the type of exercise performed, classified as "Yoga", "HIIT", "Cardio", or "Strength".
- 11. Fat_Percentage: the body fat percentage of the individuals.
- 12. Water_Intake (liters): the total water intake of the individuals in liters.
- Workout_Frequency (days/week): the number of days per week that individuals engage in workouts.
- 14. Experience_Level: the self-reported experience level of the individuals, rated on a scale from 1 (beginner) to 3 (advanced).
- 15. BMI: the body mass index (BMI) of the individuals, calculated as weight (kg) divided by the square of height (m).

Analysis of Calories Burned

- Data is close to a normal distribution with slight right skew.
- Most values fall between 800–1400 calories.
- A few higher values suggest possible outliers or unique cases.

Insights and Next Steps

- Data is approximately normal, suitable for modeling.
- Check for potential outliers in higher calorie range.
- Proceed with model adjustments

Correlation Analysis

Height..m. Max BPM 0.086348051 0.002090016 Avg_BPM Resting BPM 0.339658667 0.016517951 Session Duration..hours. Calories Burned 0.908140376 1.000000000 Fat Percentage Water Intake..liters. -0.597615248 0.356930683 Workout_Frequency..days.week. Experience_Level 0.694129448 0.576150125

BMI

0.059760826

Key Insights:

- Strong predictors: Session Duration (0.91), Experience Level (0.69).
- Moderate predictors: Workout Frequency (0.58), Water Intake (0.36).
- Negative predictor: Fat Percentage (-0.60).

Next Steps:

- Fit regression model including top predictors.
- Evaluate and refine feature importance.

AIC and BIC Criteria Used

• AIC:

$$AIC = 2k - 2\ln(\hat{L})$$

where k is the number of parameters in the model and \hat{L} is the maximized value of the likelihood function for the model.

• BIC:

$$BIC = k \ln(n) - 2 \ln(\hat{L})$$

where k is the number of parameters, n is the number of observations, and \hat{L} is the maximized likelihood.

- AIC (Akaike Information Criterion): Allows for more flexibility by balancing goodness-of-fit and model complexity.
- **BIC** (**Bayesian Information Criterion**): Prefers simpler models by applying a stronger penalty for adding predictors.

Stepwise Selection

Key Steps:

- Data Split:
 - 70% for training, 30% for testing.
- Models:
 - Full Model: Includes all predictors, serving as the upper limit.
 - Null Model: Includes only the intercept, serving as the lower limit.
- Stepwise Selection:
 - Principle:
 - Iteratively adds or removes predictors based on their contribution to the model's fit.
 - Balances model complexity with predictive performance.

$$\label{eq:Calories_Burned} \begin{split} \text{Calories_Burned} &= -820.8356 + 715.5878 \cdot \text{Session_Duration_hours} + 6.3692 \cdot \text{Avg_BPM} \\ &+ 88.9493 \cdot \text{GenderMale} - 3.4951 \cdot \text{Age} \end{split}$$

The table below shows the coefficients estimated by the regression:

Predictor	Coefficient	Std. Error	t-value	p-value	Significance
Intercept	-820.8356	16.8076	-48.84	< 2e-16	***
Session_Duration_hours	715.5878	4.4116	162.21	< 2e-16	***
Avg_BPM	6.3692	0.1046	60.89	< 2e-16	***
GenderMale	88.9493	3.0310	29.35	< 2e-16	***
Age	-3.4951	0.1243	-28.13	< 2e-16	***

Table 1: BIC Regression Coefficients

KeyMetrics:

Residual Standard Error(RSE):39.42

• Multiple R-squared: 0.9795

Adjusted R-squared: 0.9794

Stepwise selected model-AIC

$$\label{eq:calories_Burned} \begin{split} \text{Calories_Burned} &= -\ 881.9137 + 715.9314 \cdot \text{Session_Duration_hours} + 6.3562 \cdot \text{Avg_BPM} \\ &+ 85.1221 \cdot \text{GenderMale} - 3.4842 \cdot \text{Age} + 25.1815 \cdot \text{Height_m} \\ &+ 0.3322 \cdot \text{Resting_BPM} \end{split}$$

The table below shows the coefficients estimated by the regression:

Predictor	Coefficient	Std. Error	p-value	Significance
Intercept	-881.9137	32.2916	< 2e-16	***
Session_Duration_hours	715.9314	4.4036	< 2e-16	***
Avg_BPM	6.3562	0.1048	< 2e-16	***
GenderMale	85.1221	3.7317	< 2e-16	***
Age	-3.4842	0.1241	< 2e-16	***
$Height_m$	25.1815	14.4701	0.0823	
Resting_BPM	0.3322	0.2121	0.1178	

Table 2: AIC Regression Coefficients

Key Metrics:

Residual Standard Error (RSE): 39.32

R-squared: 0.9797

Why AIC Model Was Selected

Model Comparison:

- AIC Model:
 - AIC: 6942.609
 - BIC: **6978.797**
 - Retains more predictors
- BIC Model:
 - AIC: **6943.891**
 - BIC: **6971.033**
 - Simpler but may omit relevant variables.

Why AIC?

- Predictive Accuracy: Better for new data, aligns with modeling goals.
- Retains Key Variables
- Balance: Optimizes fit while managing complexity.

Key Insights:

- AIC model explains 97.97% of variance in calories burned.
- Top Predictors: Session Duration, Heart Rate, Gender, Age.

Selected Regression

Residuals vs Fitted:

- Slight curve suggests possible non-linear relationships.
- Consider adding non-linear terms or transformations.

Q-Q Plot:

- Residuals deviate at tails, indicating slight non-normality.
- Transform response variable if necessary.

Scale-Location:

- Variance appears mostly constant (homoscedasticity).
- No major issues observed.

Residuals vs Leverage:

- Few high-leverage points (e.g., 757, 110).
- Investigate these points for potential influence.

Transformation added : Log Transformation, Square Root Transformation, Quadratic Term, Polynomial Terms

Calories_Burned = -4508.068 + 715.524*Session_Duration..hours + 911.802*log(Avg_BPM) + 88.797 * Gender + -3.509 * Age + 18.963*log(Resting_BPM)
Residuals vs Fitted:

Linearity slightly improved but deviations persist

Q-Q Plot:

Better normality alignment, but tails show minor bias

Scale-Location:

Variance mostly constant, slight heteroscedasticity remains

Residuals vs Leverage:

High-leverage points detected but within acceptable limits

Next step :

Introduce **square root transformation** for response variable to further address residual bias and improve fit.

Sqrt(Calories_Burned) = 0.7633 + 12.13*Session_Duration..hours + 0.1053*Avg_BPM + 1.466 * Gender + -0.05649 * Aae + 9.879e-5*Resting_BPM

· Residuals vs Fitted:

Suggests partial **non-linearity** remains in the model

Q-Q Plot:

Residuals align better with normality.

Scale-Location:

Variance appears stable but not perfect

Residuals vs Leverage:

High-leverage points are minimal and manageable

Next step :

Introduce **quadratic terms** to address residual nonlinearity

Calories Burned = -830.5902 + 701.9309 * Session Duration..hours + 5.4142 * (Session_Duration..hours^2) + 6.3581 * Avg_BPM + 88.9679 * Gender – 3.4956 * Age + 0.3104 Resting BPM

· Residuals vs Fitted:

Partial non-linearity remains despite quadratic term addition.

Q-Q Plot:

Residuals closer to normal distribution but with slight deviation at tails.

Scale-Location:

Variance is still not perfectly constant.

Residuals vs Leverage:

High-leverage points detected but do not exceed Cook's Distance threshold.

Next Steps:

Apply **square root transformation** to the response variable

Sqrt(Calories_Burned) = 31.146584 + 108.577001 * poly(Session_Duration..hours,2)1 –10.049548
* poly*Session_Duration..hours.,2)2 + 39.147791* poly(Avg_BPM,2)1 – 1.425752 * Gender – 0.056822 * Resting_BPM
Residual Analysis:

- Residuals vs Fitted: Deviations caused by a few specific points.
- Q-Q Plot: Points in the tails disrupt normality.

High-Leverage Points:

- Cook's Distance plot indicates influential points
- These points may disproportionately affect model performance.

Next Steps:

Outlier Removal

Outlier and Influential Points

丌

Formula:

Cook's Distance

$$h_{ii} = \mathbf{x}_i \left(\mathbf{X}^{\top} \mathbf{X} \right)^{-1} \mathbf{x}_i^{\top}$$

Where: $-\mathbf{x}_i$: The row vector of predictor values for observation i. $-\mathbf{X}$: The matrix of all predictor values.

Threshold: Points with $h_{ii} > \frac{2p}{n}$ are considered high leverage.

Cook's Distance vs Leverage

Key Insights:

- Influential Points (Cook's Distance):
 - Points like 519, 518, 344, 278, and 284 exceed the Cook's Distance threshold, significantly influencing the model.
- High Leverage Points:
 - Observations like 9, 70, 113, 209, and 519 have high leverage, indicating they are far from average predictor values.
- Overlap:
 - Points 519, 344, and 278 are both influential and high leverage, requiring further investigation.

Debiased Square Root Polynomial Regression

Sqrt(Calories_Burned) = 31.146584 + 108.577001 * poly(Session_Duration..hours.,2)1 - 10.049548 * poly(Session_Duration..hours.,2)2 + 39.147791 * poly(Avg_BPM, 2)1 - 1.692661 * poly(Avg_BPM, 2)2 +1.425752 * Candar - 0.056923 * 4.50 : 0.002505 * Booting BPM

•The updated model better satisfies assumptions and provides more reliable predictions.

Debiased Polynomial Regression with a Transformation

$$\sqrt{\text{Calories_Burned}} = \beta_0 + \beta_1 \cdot \text{poly}(\text{Session_Duration}, 2) + \beta_2 \cdot \text{poly}(\text{Avg_BPM}, 2) + \beta_3 \cdot \text{Gender} + \beta_4 \cdot \text{Age} + \beta_5 \cdot \text{Resting_BPM} + \epsilon$$

Variable	Estimate	Std. Error	t-value	p-value	Significance
Intercept	31.136	0.156	200.116	$< 2 \times 10^{-16}$	***
poly(Session_Duration, 2)1	95.539	0.417	228.837	$< 2 \times 10^{-16}$	***
poly(Session_Duration, 2)2	-8.590	0.418	-20.544	$< 2 \times 10^{-16}$	***
poly(Avg_BPM, 2)1	37.033	0.419	88.348	$< 2 \times 10^{-16}$	***
poly(Avg_BPM, 2)2	-1.566	0.417	-3.756	0.000189	***
GenderMale	1.417	0.033	42.705	$< 2 \times 10^{-16}$	***
Age	-0.056	0.001	-41.770	$< 2 \times 10^{-16}$	***
Resting_BPM	0.002	0.002	0.816	0.415	

VIF Interpretation

- VIF = 1: No collinearity.
- 1 < VIF <= 5: Moderate collinearity (acceptable).
- VIF > 5: High collinearity (requires attention).
- VIF > 10: Severe collinearity (predictor showed be reconsidered).

Observation:

- VIF values are all below 5.
- Moderate collinearity.
- Model is relatively stable.
- Predictors are not highly correlated.

Variable	GVIF	Df	$\mathbf{GVIF}^{1/(2*Df)}$
poly(Session_Duration, 2)	1.017347	2	1.004309
poly(Avg_BPM, 2)	1.020214	2	1.005016
Gender	1.005533	1	1.002763
Age	1.005985	1	1.002988
Resting_BPM	1.008961	1	1.004471

Training MSE: 0.1708961

Test MSE: 0.2630758

Model Advantages and Limitations

Advantages:

- Accurate Predictions: Captures complex patterns with transformations (\sqrt{}, log) and polynomial terms.
- Comprehensive Insights: Analyzes key factors like session duration, avg BPM, gender, and age.
- Handles Non-Linearity: Polynomial terms model non-linear relationships effectively.
- Robust and Reliable: Outlier removal improves stability and generalizability.
- Better Model Fit: Meets key regression assumptions (linearity, normality, homoscedasticity).

Limitations:

- Generalizability: Performance may drop with unseen data.
- **Complexity**: Transformations and higher-order terms are harder to interpret.
- Residual Issues: Slight normality deviations remain.
- Risk of Overfitting: Especially with small datasets.
- Limited Interactions: Does not include predictor interaction effects.

Further Exploration of the Models

Challenges with Current Model:

- Overfitting: High risk due to complex transformations and polynomial terms.
- Limited Generalizability: Performance may decline on new or unseen data.

Explore Regularization Techniques:

- Prevents overfitting by controlling model complexity.
- Improves performance and robustness on unseen data.
- Balances model simplicity and predictive accuracy.

Considered Regularization Methods: LASSO, Ridge, Elastic Net

Introduction:

LASSO:

- 1. Adds an L1 penalty (λ∑|βi|)
- 2. Shrinking some coefficients to zero
- 3. Creating a simpler model

Ridge:

- 1. Adds an L2 penalty (λ∑βi^2)
- 2. Effective for multicollinearity and reducing overfitting
- 3. Creating a more complex model

Elastic Net:

- 1. Combines L1 and L2 penalties $(\lambda(\alpha \sum |\beta i| + (1-\alpha) \sum \beta i^2))$,
- 2. Balancing Ridge's regularization with LASSO's variable selection.

Insight:

- Elastic Net: Preferred for higher prediction accuracy and capturing complex factor interactions.
- LASSO: Recommended for identifying critical factors affecting Calories Burned, only keep significant variables.

Assumption:

As our dataset is high dimensional and large in size, Elastic Net and LASSO may better than Ridge.

Result of Models

Ridge has hightest optimal λ , suggesting the model may depending too much on penalty function.

LASSO has lowest optimal λ , meaning that the model depending less on penalty function than Ridge,

Model	Optimal λ	Key Feature
LASSO	0.00257	Shrinks coefficients to exactly zero
Ridge	0.09033	Shrinks coefficients, no selection
Elastic Net	0.00427	Combines LASSO and Ridge properties

Cross-Validation

Split the Data:

Divided the dataset is into k subsets (of approximately equal size).

Training and Testing:

Train the model on k-1 folds and tested on the remaining fold. Repeat This process k times,

Compute the Average Performance:

Calculate the performance metric for each iteration.

Optimal lambda Parameters Through Cross-Validation

Optimal λ by Cross Validation 10 folds:

LASSO: 0.0234

• **Ridge:** 0.0903

• **Elastic Net:** 0.00469

Model	Optimal λ
LASSO	0.002344007
Ridge	0.09032699
Elastic Net	0.004688015

Model Evaluation (Test MSE):

LASSO: 0.02348011

• Elastic Net: 0.02360708

Ridge: 0.03692044

The MSE results proved our assumption.

Future Directions:

- Explore interactions among predictors.
- Investigate advanced non-linear models for enhanced predictive power.

Conclusion

- The study explores factors influencing Calories_Burned and develops predictive models under rigorous testing.
- Square Root Polynomial regression:
- Captures non-linear relationships for variables like Session_Duration, Avg_BPM, and Gender.
- Practical for analyzing interactions but risks overfitting and multicollinearity.

Conclusion

- To address these challenges:
- LASSO:
 - Simplifies models by selecting key predictors.
 - Ideal for interpretability and prioritizing significant variables.
- Elastic Net:
 - Balances variable selection and multicollinearity handling.
 - Preferred for robust predictions, especially with correlated predictors.

Polynomial regression is suited for exploratory analysis; **LASSO** for interpretable models; **Elastic Net** for robust predictions.

Further directions include validating models on independent datasets, examining interaction effects, and applying advanced machine learning techniques.

Reference

https://www.kaggle.com/datasets/valakhorasani/gym-members-exercise-dataset/data

Github Source

https://github.com/WQY497/Predictive-Models-development-for-calorie-consumptions-

"

Q & A

55

