SEMINARI 4. TEORIA GLOBAL DE CORBES PLANES.

Víctor Ballester Ribó NIU: 1570866

Geometria diferencial Grau en Matemàtiques Universitat Autònoma de Barcelona Març de 2022

Teorema (Umlaufsatz). El nombre de rotació d'una corba tancada simple és ± 1 .

Exercici 6. Demostrem l'Umlaufsatz per deformació. Sigui $\mathbf{x} = (x, y) : [0, \ell] \to \mathbb{R}^2$ tancada i simple parametritzada per l'arc. Prenent els eixos convenientment, podem suposar que y(t) és mínim per t = 0. Suposem a més que $\mathbf{x}(0) = (0, 0)$ i $\mathbf{x}'(0) = (1, 0)$.

a) Considereu el triangle $\Delta = \{(s,t) : 0 \le s \le t \le \ell\}$ i l'aplicació $\Psi : \Delta \to \mathbb{R}$ definida per:

$$\Psi(s,t) = \begin{cases} \frac{\mathbf{x}(t) - \mathbf{x}(s)}{\|\mathbf{x}(t) - \mathbf{x}(s)\|} & si \quad s \neq t, (s,t) \neq (0,\ell) \\ \mathbf{x}'(s) & si \quad s = t \\ -\mathbf{x}'(0) & si \quad (s,t) = (0,\ell) \end{cases}$$

Interpreteu-la geomètricament i proveu que és contínua.

Resolució. Primer de tot vegem que la funció és contínua $\Psi(s,t)$. Com que \mathbf{x} és almenys de classe \mathcal{C}^1 i l'aplicació norma és contínua, deduïm que les funcions components de $\Psi(s,t)$ són totes contínues. Cal veure ara la continuïtat en els punts de la forma s=t i $(s,t)=(0,\ell)$. Sigui $s\in[0,\ell]$ i $t=s+\varepsilon$ amb $\varepsilon\neq 0$ tal que $(s,s+\varepsilon)\in\Delta$. Per tant, hem de tenir $\varepsilon>0$. Aleshores tenim que:

$$\lim_{t \to s} \Psi(s, t) = \lim_{\varepsilon \to 0} \frac{\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)}{\|\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)\|}$$

$$= \lim_{\varepsilon \to 0} \frac{\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)}{\varepsilon} \cdot \frac{\varepsilon}{\|\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)\|}$$

$$= \lim_{\varepsilon \to 0} \frac{\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)}{\varepsilon} \cdot \lim_{\varepsilon \to 0} \frac{1}{\left\|\frac{\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)}{\varepsilon}\right\|}$$

$$= \mathbf{x}'(s) \cdot \frac{1}{\left\|\lim_{\varepsilon \to 0} \frac{\mathbf{x}(s + \varepsilon) - \mathbf{x}(s)}{\varepsilon}\right\|}$$

$$= \frac{\mathbf{x}'(s)}{\|\mathbf{x}'(s)\|}$$

$$= \mathbf{x}'(s)$$

on en l'última igualtat hem aplicat que la corba està parametritzada per l'arc. Per a l'altre cas, si fem $s = \epsilon$ i $t = \ell - \varepsilon$ amb $\varepsilon, \epsilon > 0$ perquè es compleixi $(s, t) \in \Delta$, tenim que:

$$\begin{split} &\lim_{\substack{t \to \ell \\ s \to 0}} \Psi(s,t) = \lim_{\epsilon,\varepsilon \to 0} \frac{\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)}{\|\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)\|} \\ &= \lim_{\epsilon,\varepsilon \to 0} \left[(-\varepsilon) \frac{\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\ell)}{-\varepsilon} + \epsilon \frac{\mathbf{x}(0) - \mathbf{x}(\epsilon)}{\epsilon} \right] \cdot \frac{1}{\|\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)\|} \\ &= \lim_{\epsilon,\varepsilon \to 0} \left[-\varepsilon \mathbf{x}'(\ell) - \epsilon \mathbf{x}'(0) \right] \cdot \frac{1}{\|\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)\|} \\ &= -\mathbf{x}'(0) \lim_{\epsilon,\varepsilon \to 0} \frac{\varepsilon + \epsilon}{\|\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)\|} \\ &= -\mathbf{x}'(0) \cdot \frac{1}{\|\lim_{\epsilon,\varepsilon \to 0} \frac{\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\epsilon)}{\varepsilon + \epsilon} \|} \\ &= -\mathbf{x}'(0) \cdot \frac{1}{\|\lim_{\epsilon,\varepsilon \to 0} \frac{1}{\varepsilon + \epsilon} \left[(-\varepsilon) \frac{\mathbf{x}(\ell-\varepsilon) - \mathbf{x}(\ell)}{-\varepsilon} + \epsilon \frac{\mathbf{x}(0) - \mathbf{x}(\epsilon)}{\epsilon} \right] \|} \\ &= -\mathbf{x}'(0) \cdot \frac{1}{\|\lim_{\epsilon,\varepsilon \to 0} \frac{1}{\varepsilon + \epsilon} \left[-\varepsilon \mathbf{x}'(\ell) - \epsilon \mathbf{x}'(0) \right] \|} \\ &= -\mathbf{x}'(0) \\ &= -\mathbf{x}'(0) \\ &= -\mathbf{x}'(0) \end{split}$$

on hem aplicat que la corba és tancada per deduir que $\mathbf{x}(\ell) = \mathbf{x}(0)$ i $\mathbf{x}'(\ell) = \mathbf{x}'(0)$.

L'interpretació geomètrica d'aquesta funció és la següent: $\Psi(s,t)$ dona el vector director unitari que va des de la posició $\mathbf{x}(s)$ a $\mathbf{x}(t)$ per a valors $(s,t) \in \operatorname{Int} \Delta$ i l'exten de manera contínua a tot $(s,t) \in \Delta$.

- b) Donat $u \in [0,1]$ considered una corba $c_u : [0,\ell] \to \Delta$ definida a trossos com segueix.
 - $Per \ 0 \le t \le \ell/2$ fem que $c_u(t)$ recorri amb velocitat constant el segment des de (0,0) fins a $\frac{\ell}{2}(1-u,1+u)$.
 - Per $\ell/2 \le t \le \ell$ fem que $c_u(t)$ recorri amb velocitat constant el segment des de $\frac{\ell}{2}(1-u,1+u)$ fins a (ℓ,ℓ) .

Proveu que existeix una aplicació contínua $\Theta: [0,1] \times [0,\ell] \to \mathbb{R}$ tal que $\Psi(c_u(t)) = (\cos(\Theta(u,t)), \sin(\Theta(u,t)))$. Resolució. Denotem per (e_1,e_2) la base canònica. Primer de tot observem que $\|\Psi(s,t)\| = 1 \ \forall (s,t) \in \Delta$. Definim $\Theta(u,t)$ com l'angle (no restringit a cap interval¹) que formen els vectors unitaris $\Psi(c_u(t))$ i e_1 . Per tant, es compleix que:

$$cos(\Theta(u,t)) = \langle \Psi(c_u(t)), e_1 \rangle$$

Observem que $\Theta(u,t)$ és contínua perquè Ψ , $c_u(t)$ i $\langle \cdot, e_1 \rangle$ són funcions contínues. Vegem ara que necessàriament hem de tenir $\Psi(c_u(t)) = (\cos(\Theta(u,t)), \sin(\Theta(u,t)))$. Per això, expressem $\Psi(c_u(t))$ en termes de la base canònica de la forma següent:

$$\Psi(c_u(t)) = \lambda(u, t)e_1 + \mu(u, t)e_2$$

Sabem que $\lambda(u,t) = \langle \Psi(c_u(t)), e_1 \rangle = \cos(\Theta(u,t))$ i $\mu(u,t) = \langle \Psi(c_u(t)), e_2 \rangle$. Com que s'ha de complir que $\lambda(u,t)^2 + \mu(u,t)^2 = 1$, necessàriament hem de tenir $\mu(u,t) = \pm \sin(\Theta(u,t))$. Per decidir quina de les dues opcions és, fixem-nos que per u=1 i $0 < t < \frac{\ell}{2}$ tenim que $\Psi(c_u(t)) = \frac{\mathbf{x}(t)}{\|\mathbf{x}(t)\|}$, que té component y major a zero per el supòsit inicial que y(t) és mínim per t=0. Per tant, l'angle $\Theta(1,t)$, ha d'estar entre $2\pi k + 0$ i $2\pi k + \pi$ per algun $k \in \mathbb{Z}$ (que compleix $\Theta(1,0) = 2\pi k$), el que implica que $\mu(u,t) = \sin(\Theta(u,t))$. Per tant, $\Psi(c_u(t)) = (\cos(\Theta(u,t)), \sin(\Theta(u,t)))$.

Observem que per a tot $u \in [0,1]$, sense pèrdua de generalitat podem suposar $\Theta(u,0) = 0$. Si no fos així, aleshores $\Theta(u,0) = 2\pi k$ amb $k \in \mathbb{Z}$, però llavors podríem definir una nova funció $\tilde{\Theta}(u,t) = \Theta(u,t) - 2\pi k$ que compleix els mateixos requisits que Θ i tal que $\tilde{\Theta}(u,0) = 0$. Per tant, d'ara en endavant suposarem $\Theta(u,0) = 0$.

c) Proveu que $\Theta(u,\ell) - \Theta(u,0) \in 2\pi\mathbb{Z}$ i deduïu que el valor és independent de u.

¹És a dir, $\Theta(u,t) \in \mathbb{R}$ i no només únicament a l'interval $[0,2\pi)$.

Resolució. Observem que $c_u(\ell) = (\ell, \ell) \ \forall u \in [0, 1] \ i \ c_u(0) = (0, 0) \ \forall u \in [0, 1]$. Per tant, d'una banda tenim que:

$$\Psi(c_u(\ell)) - \Psi(c_u(0)) = \mathbf{x}'(\ell) - \mathbf{x}'(0) = 0$$

$$\tag{1}$$

ja que la corba x és tancada. D'altra banda, per l'apartat anterior tenim que:

$$0 = \Psi(c_u(\ell)) - \Psi(c_u(0)) = (\cos(\Theta(u, \ell)), \sin(\Theta(u, \ell))) - (\cos(\Theta(u, 0)), \sin(\Theta(u, 0)))$$
$$= (\cos(\Theta(u, \ell)) - \cos(\Theta(u, 0)), \sin(\Theta(u, \ell)) - \sin(\Theta(u, 0)))$$

Ara bé, sabem que si tenim $x, y \in \mathbb{R}$ tals que

$$\begin{cases} \cos x = \cos y \\ \sin x = \sin y \end{cases}$$

aleshores és $x=y+2\pi k$ per a algun $k\in\mathbb{Z}$. Per tant, de l'equació anterior es desprèn que $\Theta(u,\ell)=\Theta(u,0)+2\pi k$ per algun $k\in\mathbb{Z}$, o equivalentment, $\Theta(u,\ell)-\Theta(u,0)\in 2\pi\mathbb{Z}$. Vegem ara que la diferència $\Theta(u,\ell)-\Theta(u,0)$ no depèn de u. Suposem que tenim $u_1,u_2\in[0,1]$ tals que $\Theta(u_1,\ell)-\Theta(u_1,0)=2\pi k_1$ i $\Theta(u_2,\ell)-\Theta(u_2,0)=2\pi k_2$ amb $k_1,k_2\in\mathbb{Z}$ i $k_1\neq k_2$. Per l'observació que hem fet en fórmula (1), deduïm que $\Psi(c_{u_1}(\ell))=\Psi(c_{u_2}(\ell))=\mathbf{x}'(\ell)$ i $\Psi(c_{u_1}(0))=\Psi(c_{u_2}(0))=\mathbf{x}'(0)$. Per tant, per ser en el temps t=0, tenim $\Theta(u_1,0)=\Theta(u_2,0)$. D'altra banda, $\Theta(u_1,\ell)$ i $\Theta(u_2,\ell)$ difereixen d'un múltiple enter de 2π . Ara bé, $\Theta(\cdot,\ell)$ és una funció contínua (perquè Θ ho és) que pren valors a $2\pi\mathbb{Z}$. D'altra banda, recordem que una funció contínua prenen valors a \mathbb{Z} ha de ser també necessàriament constant. Per tant, una funció contínua prenen valors a $2\pi\mathbb{Z}$ ha de ser també necessàriament constant. D'aquí deduïm que $\Theta(u_1,\ell)=\Theta(u_2,\ell)$. Per tant, tenim que:

$$0 = 0 + 0 = [\Theta(u_1, \ell) - \Theta(u_2, \ell)] - [\Theta(u_1, 0) - \Theta(u_2, 0)]$$
$$= [\Theta(u_1, \ell) - \Theta(u_1, 0)] - [\Theta(u_2, \ell) - \Theta(u_2, 0)]$$
$$= 2\pi k_1 - 2\pi k_2 \neq 0$$

que és una contradicció. Per tant, la diferència $\Theta(u,\ell)-\Theta(u,0)$ no depèn de u.

d) Proveu que $\Theta(1,\ell) - \Theta(1,0) = 2\pi$.

Resolució. Ja sabem que $\Theta(1,0)=0$ pel que hem comentat al final de l'apartat b). D'altra banda, $c_1(\ell)=(0,0)$ i llavors $\Psi(c_1(\ell))=\mathbf{x}'(\ell)=\mathbf{x}'(0)=(1,0)$. Però en aquest cas $\Theta(1,\ell)=2\pi$, degut a la continuïtat de Θ . En efecte, fixem-nos que $c_1(t)$, $0 < t < \ell/2$, té la primera component fixada a l'origen i l'altre és positiva. Per tant, el vector $\Psi(c_1(t))$, $0 < t < \ell/2$, anirà dirigit sempre des de l'origen fins un punt per sobre l'eix x. Per tant, $\Psi(c_1(t))$ formarà sempre un angle $\Theta(1,t) \in (0,\pi)$ amb l'eix x. Per continuïtat i tenint en compte que

$$\cos(\Theta(1,\ell/2)) = \langle \Psi(c_1(\ell/2)), e_1 \rangle = \langle \Psi(0,\ell), e_1 \rangle = \langle -\mathbf{x}'(0), e_1 \rangle = -1 \implies \Theta(1,\ell/2) \in \pi + 2\pi\mathbb{Z}$$

deduïm que $\Theta(1, \ell/2) = \pi$. A partir de llavors, és a dir, per $\ell/2 < t < \ell$, $c_1(t)$ té la primera component variant i la segona fixada. Per tant, el vector $\Psi(c_1(t))$ anirà dirigit sempre des d'un punt per sobre l'eix x fins l'origen, i en conseqüència $\Theta(1, t) \in (\pi, 2\pi)$. Per tant, per continuïtat i tenint en compte que

$$\cos(\Theta(1,\ell)) = \langle \Psi(c_1(\ell)), e_1 \rangle = \langle \Psi((\ell,\ell)), e_1 \rangle = \langle \mathbf{x}'(\ell), e_1 \rangle = 1 \implies \Theta(1,\ell) \in 2\pi\mathbb{Z}$$

tindrem $\Theta(1,\ell) = 2\pi$. Per tant, $\Theta(1,\ell) - \Theta(1,0) = 2\pi$.

e) Deduïu l'Umlaufsatz.

Resolució. Fixem-nos que si $\mathbf{T}(t) = (x'(t), y'(t))$ és el vector tangent a \mathbf{x} en el punt $\mathbf{x}(t)$, tenim que $\mathbf{T}(t) = \Psi(c_0(t)) = (\cos(\Theta(0,t)), \sin(\Theta(0,t)))$. D'altra banda (pel vist a l'exercici 1 del seminari), $\mathbf{T}(t) = (\cos(\theta(t)), \sin(\theta(t)))$ on $\theta(t) = \int_0^t [x'(t)y''(t) - x''(t)y'(t)] ds$. D'aquí, juntament amb el fet que $\theta(0) = \Theta(0,0) = 0$, deduïm que $\theta(t) = \Theta(0,t) \ \forall t \in [0,\ell]$. Per tant, la curvatura total de \mathbf{x} és:

$$\int_0^\ell k(t) dt = \theta(\ell) - \theta(0) = \Theta(0, \ell) - \Theta(0, 0)$$

Ara bé, combinant els dos últims apartats, deduïm que $\Theta(0,\ell)-\Theta(0,0)=2\pi$ i, per tant, el nombre de rotació és 1.

A l'enunciat hem suposat que el sentit "global" de gir de la corba era l'antihorari. Si suposem ara que $\mathbf{x}'(0) = (-1,0)$, aleshores fent uns raonaments completament anàlegs als ja fets en apartats anteriors obtindrem que $\Theta(1,\ell) - \Theta(1,0) = -2\pi$, $\Theta(0,\ell) - \Theta(0,0) = -2\pi$ i, per tant, el nombre de rotació serà -1.