

DEEP LEARNING INFERENCE WITH INTEL® FPGA

Class 1

Agenda

Refresher: Introduction to Deep Learning

Introduction to FPGAs for Software Developers

Why Intel® FPGAs for Inference

Objectives

You will be able to:

Define Artificial Intelligence, Machine Learning and Deep Learning

Differentiate Deep Learning inference and training

Explain the basic components of Deep Learning CNN models

Explain the components that make up an FPGA and how programs are mapped to them

Explain why FPGAs are good for inference application acceleration

Al is Transforming Industries

INDUSTRIAL

CONSUMER

Smart Assistants

Chatbots

Search

Personalization

Augmented Reality

Robots

HEALTHEnhanced

Diagnostic: Drug

Discovery

Patient Care

Research

Sensory Aids **FINANCE**Algorithmic

Trading
Fraud Detection

raud Detection

Research

Personal Finance

Risk Mitigation

Support

RETAIL

Experience

Marketing

Merchandising

Loyalty

Supply Chain

Security

Defense

GOVERNMENT

Data Insights

Safety & Security

Resident Engagement

Smarter Cities Oil & Gas

Smart Grid

ENERGY

Operational Improvement

Conservation

TRANSPORT

Automated Cars

Automated

Trucking

Aerospace

Shipping

Search & Rescue

Factory Automation

Predictive Maintenance

Precision Agriculture

Field Automation Advertising

OTHER

Education

Gaming

Professional & IT Services

Telco/Media

Sports

The Flood of Data

BY 2020

The average internet user will generate ~1.5 GB OF TRAFFIC PER DAY

Smart hospitals will be generating over 3,000 GB PER DAY

Self driving cars will be generating over

4,000 GB PER DAY... EACH

A connected plane will be generating over

40,000 GB PER DAY

A connected factory will be generating over

1,000,000 GB PER DAY

ll numbers are approximated
ttp://www.dsco.com/c/en/us/solutions/service-provider/vni-network-traffic-forecast/infographic.html
ttp://www.dsco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/doud_index_White_Paper.html
ttps://datafioq.com/read/self-driving-ars-areate-2-petabytes-data-annually/172
ttp://www.dsco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/doud_index_White_Paper.html
ttp://www.dsco.com/c/en/us/solutions/collateral/service-provider/global-cloud-index-gci/doud_index_White_Paper.html

RADAR ~10-100 KB PER SECI

SONAR ~10-100 KB PER SECON

GPS ~50 KB PER SECOND

LIDAR ~10-70 MB PER SECOND

CAMERAS ~20-40 MB PER SECOND

1 CAR 5 EXAFLOPS PER HOUR

Fast Evolution of Technology

We have the compute capability to solve these problems today

Taxonomic Foundations

Classical Machine Learning vs Deep Learning

Use massive "known" dataset

iteratively adjust weighting of

(e.g. 10M tagged images) to

neural network connections

Form inference about

new input data (e.g. a

photo) using trained

neural network

Training vs Inference

Also known as Learning

Also known as Classification, Scoring, Execution

Common Data Sets

MNIST

- 28 x 28 greyscale images
- 10 categories
- 60,000 training images
- 10,00 validation images

CIFAR-10

- 32 x 32 colour images
- 10 categories
- 50,000 training images
- 10,00 validation images

ImageNet

- 224 x 224 colour images
- 1000 categories
- 1.2M training images
- 50,000 validation images
- 100,000 test images

ImageNet Classification Competition

Recent winners all Deep Neural Nets!

- 2012 Winner: AlexNet (University of Toronto), top-5 error rate of 15.3%, 5 convolution layers
- 2014 Winner: GoogLeNet, top-5 error rate of 6.67%, 22 layers in total
- 2015 Winner: Microsoft (ResNet) with 3.6%, 152 layers
- 2016 Winner: 3rd Research Institute of Ministry of Public Security, China with 2.991%
- 2017 Winner: WMW (Researchers from Momenta and Oxford) with 2.251%

Trained human result: 5.1% Top-5 Error Rate @ 1 min/image

(b) Eskimo dog

CPU's & FPGAs process thousands of frames of images per second

Deep Learning Terminology

DL Network

- Layers and other hyperparameters
- e.g. AlexNet, GoogLeNet, VGG, ResNet, etc..

DL Frameworks

- High-level tools make it easier to build deep learning algorithms
- Provides definitions and tools to define, train, and deploy your network
- e.g. Caffe, TensorFlow[™], MxNet, Caffe2, Theano, Torch, etc

DL Primitives Libraries

- Low-level accelerator specific libraries
- e.g. clDNN, MKL, DLA Suite, cuDNN, etc

Perceptron

Simple model of a neuron

Developed in the 1950s and 1960s

Arbitrary number of inputs, single output

Binary inputs and output

Weights and Bias

Weights determine the level of influence for a given input

Bias impacts the likelihood of activation

Example

Shall I eat out tonight?

Sigmoid Neuron

Inputs and outputs range from 0.0 to 1.0

Same concept of weights and bias as a Perceptron

Sigmoid function applied to the output

Neurons become less sensitive to small changes at the input and easier to train

Neural Networks

Network of interconnected Neurons

Each neuron in the input layer relates to a piece of input data

E.g.: pixel for image classification

Each neuron in the output relates to a piece of output data

 E.g.: confidence of a car for image classification

Diagram shows a Fully Connected Network

AlexNet

Common benchmark used by the industry

Based upon Convolutional Neural Network - CNN

Input Layers

Image depicts the AlexNet **Graph** that describes the **Topology** of the network based upon the **Hyper-Parameters** that define the layer types, dimensions, filter dimensions, etc

Why Convolution?

Reduces the data and number of calculations

Take first two layers of AlexNet

Layer 1 neurons	Layer 2 neurons	Fully Connected Calculations	Convolutional Calculations
224 x 224 x 3 = 150,528	55 x 55 x 96 = 290,400	43 Billion	97 Million

Output Feature Map

Repeat for Multiple Filters to Create Multiple "Layers" of Output Feature Map

Additional Layers Used in AlexNet

Rectified Linear Unit (ReLU)

Activation Layer

Similar function to Sigmoid function

Applied to each neuron independently during the ReLU layer

Normalization (Local Response Normalization)

Smoothing function applied through the depth of the image layers

- Reduces the relative peaks in neighbouring filters
- Padding used to preserve output layer depth

$$b_{x,y}^i = a_{x,y}^i / \left(k + \alpha \sum_{j=\max(0,i-n/2)}^{\min(N-1,i+n/2)} (a_{x,y}^j)^2\right)^{\beta}$$

AlexNet normalization function

Pooling

Data reduction technique

Performed on each layer

2 dimensional – reduces the width and height but not the depth

Common techniques are max pool and average pool

Input Layer

Output Layer

WHAT ARE FPGAS?

FPGA Architecture

Field Programmable Gate Array (FPGA)

Millions of logic elements

Thousands of embedded memory blocks,

- Thousands of DSP blocks
- Programmable interconnect
- High speed transceivers
- Various built-in hardened IP

Used to create **Custom Hardware!**

FPGA Architecture: Basic Elements

FPGA Architecture: Flexible Interconnect

FPGA Architecture: Flexible Interconnect

FPGA Architecture: Custom Operations Using Basic Elements

FPGA Architecture: Memory Blocks

FPGA Architecture: Memory Blocks

FPGA Architecture: Floating Point Multiplier/Adder Blocks

DSP Blocks

Thousands Digital Signal Processing (DSP) Blocks in Modern FPGAs

- Configurable to support multiple features
 - Variable precision fixed-point multipliers
 - Adders with accumulation register
 - Internal coefficient register bank
 - Rounding
 - Pre-adder to form tap-delay line for filters
 - Single precision floating point multiplication, addition, accumulation

FPGA Architecture: Configurable Routing

Blocks are connected into a **custom data-path** that matches your application.

FPGA Architecture: Configurable IO

The Custom data-path can be connected directly to custom or standard IO interfaces

for inline data processing

FPGA I/Os and Interfaces

Hardened Memory Controllers

 Available interfaces to off-chip memory such as HBM, HMC, DDR SDRAM, QDR SRAM, etc.

High-Speed Transceivers

Provide any variety of protocols for moving data in and out of the FPGA

Hard IP for PCI Express standard

Phase Lock Loops (PLLs)

Intel[®] FPGA Product Portfolio

Wide range of FPGA products for a wide range of applications

Non-volatile, low-cost, single chip small form

Low-power, costsensitive performance

Midrange, cost, power, performance balance

FPGA •SoC

High-performance, state-of-the-art

- Products features differs across families
 - Logic density, embedded memory, DSP blocks, transceiver speeds, IP features, process technology, etc.

Mapping a Simple Program to an FPGA

Mem[100] += 42 * Mem[101]

R0 ← Load Mem[100]

R1 ← Load Mem[101]

R2 ← Load #42

R2 ← Mul R1, R2

R0 ← Add R2, R0

Store R0 \rightarrow Mem[100]

First let's take a look at execution on a simple CPU

Fixed and general architecture:

- General "cover-all-cases" data-paths
- Fixed data-widths
- Fixed operations

Looking at a Single Instruction

Very inefficient use of hardware!

Sequential Architecture vs. Dataflow Architecture

Sequential CPU Architecture

FPGA Dataflow Architecture

Custom Data-Path on the FPGA Matches Your Algorithm!

High-level code

Mem[100] += 42 * Mem[101]

Custom data-path

Build exactly what you need:

Operations

Data widths

Memory size & configuration

Efficiency:

Throughput / Latency / Power

Advantages of Custom Hardware with FPGAs

- Custom hardware!
- Efficient processing
- Fine-grained parallelism
- Low power
- Flexible silicon
- Ability to reconfigure
- Fast time-to-market
- Many available I/O standards

WHY FPGAS FOR DL INFERENCE

Solving Challenges with FPGA

EASE-OF-USE

SOFTWARE ABSTRACTION, PLATFORMS & LIBRARIES

Intel FPGA solutions enable software-defined programming of customized machine learning accelerator libraries.

REAL-TIME

DETERMINISTIC LOW LATENCY

Intel FPGA hardware implements a deterministic low latency data path unlike any other competing compute device.

FLEXIBILITY

CUSTOMIZABLE HARDWARE FOR NEXT GEN DNN ARCHITECTURES

Intel FPGAs can be customized to enable advances in machine learning algorithms.

FPGAs Provide Flexibility to Control the Data path

Compute Acceleration/Offload

- Workload agnostic compute
- FPGAaaS
- Virtualization

Inline Data Flow Processing

- Machine learning
- Object detection and recognition
- Advanced driver assistance system (ADAS)
- Gesture recognition
- Face detection

Storage Acceleration

- Machine learning
- Cryptography
- Compression
- Indexing

Why Intel® FPGAs for Machine Learning?

Convolutional Neural Networks are Compute Intensive

Feature	Benefit
Highly parallel architecture	Facilitates efficient low-batch video stream processing and reduces latency
Configurable Distributed Floating Point DSP Blocks	FP32 9Tflops, FP16, FP11 Accelerates computation by tuning compute performance
Tightly coupled high-bandwidth memory	>50TB/s on chip SRAM bandwidth, random access, reduces latency, minimizes external memory access
Programmable Data Path	Reduces unnecessary data movement, improving latency and efficiency
Configurability	Support for variable precision (trade- off throughput and accuracy). Future proof designs, and system connectivity

Deterministic Latency Matters for Inference

Automotive example:

- Latency impacts response time and distance
- Factors that impact latency batch size / IO latency
- Need to perform better than human

FPGAs Provide Deterministic System Latency

FPGAs leverages parallelism across the entire chip to reduce compute latency

FPGAs has flexible and customizable IOs with low & deterministic I/O latency

System Latency = I/O Latency + Compute Latency

FPGA Flexibility Supports Arbitrary Architectures

Many efforts to improve efficiency in network development around limitations of GPU

- Batching
- Reduce bit width
- Sparse weights
- Sparse activations
- Weight sharing
- Compact network

XNORNet

CNN Inference Implementation Requirements

High throughput, feed forward data flow

High bandwidth local storage for filter data and partial sums
>58 TB/s internal memory bandwidth in Stratix 10

Flexibility for different topologies and different problems

Summary

Deep Learning is a type of machine learning for extracting patterns from data using neural networks

DL neural networks are built and trained using frameworks and combining various layers

FPGAs are made up of a variety of building blocks that using FPGA development tools will translate code into custom hardware

FPGAs provide a flexible, deterministic low-latency, high-throughput, and energy-efficient solution for accelerating the constantly changing networks and precisions for DL inference

Legal Disclaimers/Acknowledgements

Features and benefits of Intel technologies depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. Check with your system manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone, Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

