Theorem 26.1: Let f(x) be a function and let a be a real number. Let r > 0 be a positive real number such that f is defined at every point of $\{x \in \mathbb{R} \mid 0 < |x - a| < r\}$. Let L be any real number.

Then $\lim_{x\to a} f(x) = L$ if and only if for every sequence $\{x_n\}_{n=1}^{\infty}$ that converges to a and satisfies $0 < |x_n - a| < r$ for all n, we have that the sequence $\{f(x_n)\}_{n=1}^{\infty}$ converges to L.

Theorem 26.2. (Algebra and limits of functions): Suppose f and g are two functions and that a is a real number, and assume that

$$\lim_{x\to a} f(x) = L \text{ and } \lim_{x\to a} g(x) = M$$

for some real numbers L and M. Then

- (1) $\lim_{x\to a} (f(x) + g(x)) = L + M$.
- (2) For any real number c, $\lim_{x\to a} (c \cdot f(x)) = c \cdot L$.
- (3) $\lim_{x\to a} (f(x) \cdot g(x)) = L \cdot M$.
- (4) If, in addition, we have that $M \neq 0$, then $\lim_{x\to a} (f(x)/g(x)) = L/M$.

Theorem 26.3. (Squeeze Theorem for limits): Suppose f, g, and h are three functions and a is a real number. Suppose there is a positive real number r > 0 such that

- each of f, g, h is defined on $\{x \in \mathbb{R} \mid 0 < |x a| < r\}$,
- $f(x) \le g(x) \le h(x)$ for all x such that 0 < |x a| < r, and
- $\lim_{x\to a} f(x) = L = \lim_{x\to a} h(x)$ for some number L.

Then $\lim_{x\to a} g(x) = L$.

(1) Use Theorem 26.1 to show that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Suggestion: Let $f(x) = \sin(\frac{1}{x})$ and suppose $\lim_{x\to 0} f(x) = L$. Find sequences $\{x_n\}_{n=1}$ and $\{y_n\}_{n=1}$ such that

- $\{x_n\}_{n=1}$ and $\{y_n\}_{n=1}$ both converge to 0,
- $f(x_n) = 1$ for all n, and
- $f(y_n) = -1$ for all n.

You can use any trig facts on the bottom of the page.

- (2) Use Theorem 26.2 plus a fact from last time¹ to compute $\lim_{x\to 2} \frac{3x^2 x + 2}{x+3}$.
- (3) Use Theorem 26.3 to show that $\lim_{x\to 0} x \sin\left(\frac{1}{x}\right) = 0$. You can use any trig facts on the bottom of the page.
- (4) Use Theorem 26.1 to deduce Theorem 26.3 from our Squeeze Theorem for sequences.
- (5) Use Theorem 26.1 to deduce Theorem 26.2 part (1) from our Theorem on algebra and sequences.
- (6) Use Theorem 26.1 to deduce Theorem 26.2 part (4) from our Theorem on algebra and sequences.
 - $-1 \le \sin(x) \le 1$ for all $x \in \mathbb{R}$
 - $\sin(x) = 1 \Longleftrightarrow x \in \frac{\pi}{2} + 2\pi\mathbb{Z}$
 - $\sin(x) = 0 \iff x \in \pi \mathbb{Z}$

- $\sin(x) = -1 \Longleftrightarrow x \in \frac{-\pi}{2} + 2\pi \mathbb{Z}$
- \bullet $\pi \notin \mathbb{Q}$
- $\sin(x) = \sin(y) \iff x y \in 2\pi \mathbb{Z} \text{ or } x + y \in \pi + 2\pi \mathbb{Z}$

 $[\]lim_{x\to a} mx + b = ma + b$. In particular, $\lim_{x\to a} x = a$ and $\lim_{x\to b} b = b$.