

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

1 Define Trigonometric Functions of Acute Angles

Definition of	Trigonometri	ic Functions of Ad	cute Angles
Function Name	Definition	Example	
sine	$\sin\theta = \frac{\text{opp}}{\text{hyp}}$	$\sin\theta = \frac{3 \text{ ft}}{5 \text{ ft}} = \frac{3}{5}$	
cosine	$\cos \theta = \frac{\text{adj}}{\text{hyp}}$	$\cos \theta = \frac{4 \text{ ft}}{5 \text{ ft}} = \frac{4}{5}$	Hypotenuse
tangent	$\tan \theta = \frac{\text{opp}}{\text{adj}}$	$\tan \theta = \frac{3 \text{ ft}}{4 \text{ ft}} = \frac{3}{4}$	hyp = 5 ft Adjacer adj = 4 Fig
cosecant	$\csc \theta = \frac{\text{hyp}}{\text{opp}}$	$\csc \theta = \frac{5 \text{ ft}}{3 \text{ ft}} = \frac{5}{3}$	
secant.	$\sec \theta = \frac{\text{hyp}}{\text{adj}}$	$\sec \theta = \frac{5 \text{ ft}}{4 \text{ ft}} = \frac{5}{4}$	
cotangent	$\cot \theta = \frac{\text{adj}}{\text{opp}}$	$\cot \theta = \frac{4 \text{ ft}}{3 \text{ ft}} = \frac{4}{3}$	

- It is very important to note that the values of the trigonometric functions depend only on the measure of the angle, not the size of the triangle.
- Triangles $\triangle ABC$ and $\triangle ADE$ are similar triangles with common angle θ , thus:

$$sin\theta = \frac{x}{b} = \frac{y}{d}$$

2 Evaluate Trigonometric Functions of Acute Angles

Example 1:

Suppose that a right triangle has legs of length 5 cm and 12 cm. Evaluate the six trigonometric functions of the smaller angle.

Example 2:

Suppose that $\cos\theta = \frac{\sqrt{5}}{3}$ for the acute angle θ . Evaluate $\tan\theta$.

3 Determine Trigonometric Function Values for Special Angles

An isosceles right triangle is a right triangle in which two legs are of equal length. Two acute angles in this triangle have equal measures of 45° or $\pi/4$.

Example 3:

Evaluate sin45°, cos45°, tan45°.

Example 4:

Evaluate sin60°, cos60°, tan60°.

Trigonon	Trigonometric Function Values of Special Angles					
. 0	$\sin heta$	$\cos heta$	an heta	$\csc \theta$	$\sec \theta$	$\cot \theta$
$30^{\circ} = \frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$45^{\circ} = \frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	T	$\sqrt{2}$	$\sqrt{2}$	1 .
$60^{\circ} = \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Example 5:

Simplify:

a) $\tan 60^{\circ} - \tan 30^{\circ}$

b)
$$2\sin\frac{\pi}{3}\cos\frac{\pi}{3}$$

4 Use Fundamental Identities

Reciprocal and Quotient Identities		
$\csc \theta = \frac{1}{\sin \theta} \text{ or } \sin \theta = \frac{1}{\csc \theta}$	$\sin \theta$ and $\csc \theta$ are reciprocals.	
$\sec \theta = \frac{1}{\cos \theta} \text{ or } \cos \theta = \frac{1}{\sec \theta}$	$\cos \theta$ and $\sec \theta$ are reciprocals.	
$\cot \theta = \frac{1}{\tan \theta} \text{ or } \tan \theta = \frac{1}{\cot \theta}$	$\tan \theta$ and $\cot \theta$ are reciprocals.	
$an heta = rac{\sin heta}{\cos heta}$	$\tan \theta$ is the ratio of $\sin \theta$ and $\cos \theta$.	
$\cot \theta = \frac{\cos \theta}{\sin \theta}$	$\cot \theta$ is the ratio of $\cos \theta$ and $\sin \theta$.	

Example 6:

Given $\sin\alpha = 8/17$ and $\cos\alpha = 15/17$, find the values of the other trigonometric functions of α .

Pythagorean Identities:

$$\sin^2\theta + \cos^2\theta = 1$$
 $\tan^2\theta + 1 = \sec^2\theta$

$$\tan^2\theta + 1 = \sec^2\theta$$

$$\cot^2\theta + 1 = \csc^2\theta$$

Proof:

Example 7:

Given that $tan\theta = \frac{12}{5}$ for an acute angle θ . Find the values of

 $\sec\theta$ and $\csc\theta$.

Cofunctions:

For an acute angle θ , two trigonometric functions f and g are cofunctions if

$$f(\theta) = g(90^{\circ} - \theta)$$
 and $g(\theta) = f(90^{\circ} - \theta)$

$$sin\theta = cos(90^{\circ} - \theta) = \frac{a}{c}$$

$$tan\theta = cot(90^{\circ} - \theta) = \frac{a}{b}$$

$$sec\theta = csc(90^{\circ} - \theta) = \frac{c}{b}$$

Cofunction Identities

Cofunctions of complementary angles are equal.

$$\sin \theta = \cos(90^{\circ} - \theta) \cos \theta = \sin(90^{\circ} - \theta)$$

$$\sin \theta = \cos \left(\frac{\pi}{2} - \theta\right) \cos \theta = \sin \left(\frac{\pi}{2} - \theta\right)$$

Sine and cosine are cofunctions.

$$\tan \theta = \cot(90^{\circ} - \theta) \cot \theta = \tan(90^{\circ} - \theta)$$

$$an \theta = \cot\left(\frac{\pi}{2} - \theta\right) \cot \theta = \tan\left(\frac{\pi}{2} - \theta\right)$$

Tangent and cotangent are cofunctions.

$$\sec \theta = \csc(90^{\circ} - \theta) \quad \csc \theta = \sec(90^{\circ} - \theta)$$

$$\sec \theta = \csc \left(\frac{\pi}{2} - \theta\right) \ \csc \theta = \sec \left(\frac{\pi}{2} - \theta\right)$$

Secant and cosecant are cofunctions.

Example 8:

For each function value, find a cofunction with the same value.

a)
$$cot15^{\circ} = 2 + \sqrt{3}$$

b)
$$cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$$

1 Evaluate Trigonometric Functions of Any Angle

Trigonometric Functions of Any Angle

Let θ be an angle in standard position with point P(x, y) on the terminal side, and let $r = \sqrt{x^2 + y^2} \neq 0$ represent the distance from P(x, y) to (0, 0). Then,

$$\sin\theta = \frac{y}{r}$$

$$\csc\theta = \frac{r}{y}(y \neq 0)$$

$$\cos \theta = \frac{x}{r}$$

$$\sec \theta = \frac{r}{x}(x \neq 0)$$

$$\tan\theta = \frac{y}{x}(x \neq 0)$$

$$\cot \theta = \frac{x}{y} (y \neq 0)$$

Example 1:

Let P(-2, -5) be a point on the terminal side of angle θ drawn in standard position. Find the values of the six trigonometric functions of angle θ .

Example 2:

Find the values of sine, cosine, and tangent for the given angles.

a)
$$\theta = \frac{3\pi}{2}$$

b)
$$\theta = 180^{\circ}$$

2 Determine Reference Angles

Definition of a Reference Angle:

Let θ be an angle in standard position. The reference angle for θ is the acute angle θ' formed by the terminal side of θ and the horizontal axis.

Example 3:

Find the reference angle θ' .

a)
$$\theta = 315^{\circ}$$

b)
$$\theta = -\frac{13\pi}{12}$$

c)
$$\theta = 3.5$$

$$\theta = \frac{25\pi}{4}$$

3 Evaluate Trigonometric Functions Using Reference Angles

To find the value of a trigonometric function of a given angle θ :

- 1. Determine the function value of the reference angle θ' .
- 2. Affix the appropriate sign based on the quadrant in which θ lies.

Trigonometric Function Values of Special Angles						
. 0	$\sin \theta$	$\cos heta$	an heta	$\csc \theta$	$\sec heta$	$\cot \theta$
$30^{\circ} = \frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2\sqrt{3}}{3}$	$\sqrt{3}$
$45^{\circ} = \frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1 .
$60^{\circ} = \frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$		$\frac{2\sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$

Example 4: Using Reference Angles to Evaluate Functions:

a)
$$\sin \frac{4\pi}{3}$$

a)
$$\sin \frac{4\pi}{3}$$
 b) $\tan(-225^{\circ})$ c) $\sec \frac{11\pi}{6}$

c)
$$\sec \frac{11\pi}{6}$$

Example 5:

Evaluate:

a)
$$\sec \frac{9\pi}{2}$$

a)
$$\sec \frac{9\pi}{2}$$
 b) $\sin(-510^{\circ})$

Example 6 & 7:

6) Given $\sin \theta = -\frac{4}{7}$ and $\cos \theta > 0$, find $\cos \theta$ and $\tan \theta$.

7) Given
$$\cos\theta = -\frac{3}{5}$$
 for θ in Quadrant II, find $\sin\theta$ and $\tan\theta$.

4 Identify the Domains of Trigonometric Functions

Function	Domain
sin θ	$(-\infty, \infty)$
$\cos \theta$	$(-\infty, \infty)$
$tan\theta = \frac{sin\theta}{cos\theta}$	$cos\theta \neq 0 \implies \theta \neq \frac{(2n+1)\pi}{2}$ for all integers n
$cot\theta = \frac{cos\theta}{sin\theta}$	$sin\theta \neq 0 \implies \theta \neq n\pi$ for all integers n
$sec\theta = \frac{1}{cos\theta}$	$cos\theta \neq 0 \implies \theta \neq \frac{(2n+1)\pi}{2}$ for all integers n
$csc\theta = \frac{1}{sin\theta}$	$sin\theta \neq 0 \implies \theta \neq n\pi$ for all integers n

Example 8:

Evaluate:

a) $tan\frac{3\pi}{2}$

b) sec(-180°)

c) $cot(-\frac{\pi}{2})$