Machine Learning Product Design

Product: Real-Time Customer Churn Prediction System

Authors: Emmanuel Kirui Barkacha, Audrey Djiosseu Tiodo and Chist Sagombaye

Date: 2025-10-17

1. BACKGROUND	2. VALUE PROPOSITION	3. OBJECTIVES	4. SOLUTION	5. FEASIBILITY
User: Telecommunications company. Goal: Predict customer churn in real time and understand why a customer is likely to churn(explainability). Pain: High customer churn rate leading to revenue loss.	Product: Real time churn prediction system. Alleviates: Enables proactive retention through timely alerts. Advantages: Improves customer retention and reduces revenue loss.	Develop a churn prediction model with high accuracy. Implement explainability and transparency. Deploy real time inference pipeline. Enable visualization dashboard for churn insights. Establish automated monitoring and retraining.	Core Features: Data pipeline and preprocessing, model training, real-time inference API, monitoring dashboard. Integration: Integrate with a user interface and database via REST APIs for easier access and management. Also integration with Prometheus and Grafana dashboards for monitoring. Alternatives: Supports batch inference for scheduled predictions when real-time is not required. Constraints: low-latency performance for real-time predictions. Out-of-Scope: Role-specific business workflows and advanced AI models (e.g., reinforcement learning).	 Data: Kaggle datasets available; production data can be simulated. Processing: Supports data balancing and preprocessing for model reliability. Infrastructure: Azure cloud provides required storage, compute and container resources. Team: Skilled in machine learning, backend, frontend and DevOps for full implementation.

6. DATA & SOURCES	7. LABELING	8. METRICS	9. EVALUATION	10. MODELING
Training Data: Uses Kaggle's	The dataset includes a predefined	Accuracy, Precision, Recall,	Offline: Evaluate models using	Iterative experimentation with
Telco Customer Churn dataset.	"Churn" label (Yes/No).	F1-score, ROC-AUC.	an 80/20 train-test split with	Logistic Regression, Random
Data is split into training,	• The label is converted to binary (1		metrics like AUC, Precision,	Forest, and XGBoost.
validation, and testing sets, with	= churned, $0 =$ retained).		Recall, and F1-score. Compare	Use feature selection,
sampling techniques (e.g.,	Key features include		baselines (Logistic Regression,	hyperparameter tuning, and
stratified sampling, SMOTE) to	demographics, account details		Random Forest, XGBoost) to	cross-validation.
address class imbalance.	(tenure, contract type, payment		select the best model.	Initial baselines built using
Production Data: Ingested via	method), and service usage metrics.		Online: Simulate real-time	simple rule-based methods
secure APIs in batch or real-time	Categorical data is encoded,		evaluation with rolling windows	before ML models.
modes. Data quality and trust	numerical data is scaled, and class		against reference data. Use tools	
ensured through schema	imbalance is addressed using		like Evidently AI to detect	
validation and automated	stratified sampling or class		feature and prediction drift,	
monitoring.	weighting.		triggering alerts (i.e if AUC	
			drops by more than 5% or drift is	
			statistically significant.	
11. INFERENCE	12. FEEDBACK	13. PROJECT		I
Real-time (online) inference	Continuous model monitoring via	Team: Skilled in machine		
through REST API for instant	Prometheus and Grafana.	learning, backend, frontend		
churn prediction.	Human-in-the-loop feedback to	and DevOps.		
Batch inference for periodic	review and correct false predictions.	Key deliverables: ML		
churn reports and analytics	Automated drift detection triggers	model, deployed API,		
dashboards.	retraining pipeline.	functional frontend, and		
		CI/CD pipeline.		
		Timeline: Project scheduled		

for 3 weeks duration.

System design flow diagram

Data pipeline

