Data Science with Python [DSP 2023-JAN]

Rev 0.1 - 25th January 2023	First Class - Initial file creation
Rev 0.2 - 1st February 2023	Second Class
Rev 0.3 - 8th February 2023	Third Class
Rev 0.4 - 1st March 2023	Fourth Class
Rev 0.5 - 8st March 2023	Fifth Class

pandas's DataFrame Python Object

- The pandas Python module (library) was started by Wes McKinney in 2008 and has now grown into one of the most popular Python modules.
- DataFrames are at the core of the pandas Python module and are used to represent rectangular data, aka tabular data.
- Rectangular data is represented by rows and columns, similar to a Spreadsheet or SQL database table.
- Rows are indexed with a number and columns can be named.

	Pet	Name	Height	Height Unit	Colour	0wn	DOB
0	Dog	Bailey	NaN	None	White Brown Black	True	None
1	Dog	Noodles	45.00	cm	White	True	2021-01-01
2	Bulldog	Luigi	16.00	inches	Black	True	2019-04-10
3	Dog	Pickles	1.00	m	Ginger	True	2021-07-23
4	Dog	Badger	15.00	CM	Black White	True	2022-10-01
5	Dog	Rex	1.00	foot	Brown White	True	2020-06-01
6	Bird	Anastasia	0.11	m	White	True	1996-11-01
7	Cat	Sugar	NaN	None	White Yellow	True	None
8	Dog	Darky	2.00	foot	Black	True	1970-07-19
9	Cat	Ann	30.00	cm	Black	True	2020-04-01
10	Cat	Domino	30.00	cm	Grey	True	2013-09-03
11	Dog	Yorkie	20.00	cm	Brown	True	2015-07-07
12	Dog	Penny	70.00	CM	Golden Yellow	True	2014-06-01
13	Dog	Jeddy	20.00	cm	Brown White	True	2018-06-01
14	Cat	Fluffy	32.00	cm	Black	True	2010-09-17
15	Cat	Cookie	26.00	cm	Silver	True	2022-03-29
16	Cat	Trixie	30.00	cm	White Black Ginger	True	2015-10-28

DataFrame Class

- The pandas DataFrame class is the blueprint or the template for a DataFrame object that is based on the pandas DataFrame class's common attributes and methods. The pandas DataFrame constructor is a way to define a new DataFrame object that contains both data and functionality.
- DataFrame objects functionality is defined by the pandas DataFrame class.
- Dataframe objects data can be added from a Python list, a data file, another DataFrame object, etc.
- pd is the standard alias for the pandas module.

```
1 import pandas as pd
 3 - python list = [
        ['Dog', 'Bailey', None, None, 'White Brown Black', True, None],
        ['Dog', 'Noodles', 45, 'cm', 'White', True, '2021-01-01'],
        ['Bulldog', 'Luigi', 16, 'inches', 'Black', True, '2019-04-10'],
        ['Dog', 'Pickles', 1, 'm', 'Ginger', True, '2021-07-23'],
        ['Dog', 'Badger', 15, 'cm', 'Black White', True, '2022-10-01'],
        ['Dog', 'Rex', 1, 'foot', 'Brown White', True, '2020-06-01'],
10
        ['Bird', 'Anastasia', 0.11, 'm', 'White', True, '1996-11-01'],
11
        ['Cat', 'Sugar', None, None, 'White Yellow', True, None],
        ['Dog', 'Darky', 2, 'foot', 'Black', True, '1970-07-19'],
12
        ['Cat', 'Ann', 30, 'cm', 'Black', True, '2020-04-01'],
13
        ['Cat', 'Trixie', 30, 'cm', 'White Black Ginger', True, '2015-10-28']
14
15
16
17
    pandas_pets = pd.DataFrame(python_list, columns = ['Pet', 'Name', 'Height',
    'Height Unit', 'Colour', 'Own', 'DOB'])
18
19
    print(pandas pets)
```


DataFrame Object shape Property

The shape property holds the number of rows and columns of the DataFrame.

```
26 print(pandas_pets.shape)
(17, 7)
```

• The first index [0] of the shape property holds the row count.

```
26 print(pandas_pets.shape[0])
```

• The second index [1] of the shape property holds the column count.

```
26 print(pandas_pets.shape[1])
```


DataFrame Object head() Method

• The head() method returns the first 5 rows of the dataframe.

```
26 print(pandas_pets.head())
```

	Pet	Name	Height	Height Unit	Colour	0wn	DOB
0	Dog	Bailey	NaN	None	White Brown Black	True	None
1	Dog	Noodles	45.0	CM	White	True	2021-01-01
2	Bulldog	Luigi	16.0	inches	Black	True	2019-04-10
3	Dog	Pickles	1.0	m	Ginger	True	2021-07-23
4	Dog	Badger	15.0	cm	Black White	True	2022-10-01

DataFrame Object info() Method

• The info() method returns information on each of the columns.

```
26 print(pandas_pets.info())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17 entries, 0 to 16
Data columns (total 7 columns):
                 Non-Null Count Dtype
    Column
    Pet
                17 non-null
                                 object
              17 non-null
    Name
                                 object
                                 float64
    Height
            15 non-null
    Height Unit 15 non-null
                                 object
    Colour
                 17 non-null
                                 object
                 17 non-null
                                 bool
    0wn
    DOB
                 15 non-null
                                 object
dtypes: bool(1), float64(1), object(5)
memory usage: 961.0+ bytes
```


DataFrame Object describe() Method

• The describe() method returns calculated summary statistics for each column.

```
26 print(pandas_pets.describe())
```

```
Height
count 15.000000
mean 22.540667
std 18.880805
min 0.110000
25% 8.500000
50% 20.000000
75% 30.000000
max 70.000000
```


Dealing With Missing Data: NaN & None

1. Impute Missing Data

Fill in missing data with average values or estimated values.

2. Drop Missing Data

• If the missing data is limited in amount, dropping it might be the simplest option.

3. Create an Indicator Variable

• If missing data is a frequent occurrence, creating an indicator variable that represents whether data is missing or not can be helpful.

4. Use Machine Learning Algorithms

 Machine learning algorithms such as decision trees and random forests are capable of handling missing data.

Missing Data in pandas_pets DataFrame

• The data in our pandas pets DataFrame is limited in amount, therefore we decided to drop it.

Additional Resources

University of North Florida - Pseudocode Examples:

https://www.unf.edu/~broggio/cop2221/2221pseu.htm#:~:text=Pseudocode%20is%20an%20artificial%20and,%2C%20for%2C%20if%2C%20switch.

