

Example

Construct approximate likelihood at an arbitrary parameter value

Gaussian empirical estimate

Set of samples at θ

 $\approx p(\theta \mid x^o)$

Example

Construct approximate likelihood at an arbitrary parameter value

Set of samples Gaussian empirical estimate at θ $\approx p(\theta \mid x^o)$

Synthetic likelihood is hardly efficient

Surrogate is fitted at each parameter value separately

- BOLFI Bayesian optimization for likelihood-free inference:
 - Model the discrepancy as a function of the parameter $\Delta(\theta) = d(x(\theta), x^o)$ conditioned on simulated data $\{(\theta_i, \Delta(\theta_i))\}_{i=1}^t$ using a Gaussian process

$$\Delta(\theta) \mid \{(\theta_i, \Delta(\theta_i))\}_{i=1}^t \sim GP(\mu_{1:t}(\theta), \nu_{1:t}(\theta) + \sigma_n^2)$$