The infrastructure required to run the artifact is set up on a VirtualBox virtual machine (https://www.virtualbox.org). The VM can be downloaded from http://people.cs.umass.edu/~brun/ICSE2019SwamiVM

and can be imported using the VirtualBox software as described below. If you are asked for a password to log into the VM, that password is swami

NOTE: VirtualBox can conflict with Docker or any other hypervisor tool that is running on the host machine. Before running VirtualBox, stop all other hypervisors.

Steps to import the VM using VirtualBox software:

- 1. Download VirtualBox from https://www.virtualbox.org/
- 2. Download the swami.ova file from the above url. Please note that this is a large file (8GB) and may take a long time to download.
- 3. Open VirtualBox
- 4. Click on File -> Import Appliance
- 5. In the import appliance wizard, select the **swami.ova** file downloaded in step 2.
- 6. Click continue
- 7. Click **import**. This step may take 2-3 minutes to execute.

To ensure that the artifact is set up properly, execute the following commands sequentially in the terminal:

```
cd swami/src
./reproduceRQ1.sh
```

The script reproduceRQ1.sh will take around 10 minutes to finish the execution and will print results to the terminal, as shown in Figure 1 below. If the output obtained by you matches the output shown in Figure 1, the installation package is successfully installed.

```
STEP1: Extract Relevant sections
| 100.0% Complete
                                                                                                                                      | 100.0% Complete
| 100.0% Complete
| 100.3% Complete
Trotal number of relevant sections extracted = 367
Output is available in: ../results//ECMA-262_v8_relevant_sections.txt
STEP2: Generate Templates for extracted Relevant sections Node.js
| 100.0% Complete
Generated templates are available in file: ../results//ecma262_templates.js
STEP3: Instantiate generated Templates for Node.js
Reading relevant sections from existing file.................

Generating Executable Tests Progress: |
Test files generated for Node.js are available in: ../results//Node_ECMA262_Tests
Total #tests generated: 83000
                                                                                                                            | 100.0% Complete
STEP4: Run and analyse generated Tests on Node.js
Total #tests generated: 83000
#Innocuous tests: 50086
#Non-Innocuous tests: 32914
#failing tests: 1533
Manual analysis of 1533 failing tests to identify false alarms reveals that 998 tests of test-get-arraybuffer-prototype-bytelength.js test file are not false alarms and expose a bug in the implementation of ArrayBuffer.byteLength. The remaining 532 tests are false alarms caused because of the existing overloaded methods
#Good tests: 32379
#Bad tests: 535
Percent of Good tests (out of total): 39.01%
Percent of Bad tests (out of total): .64%
Percent of Innocuous tests (out of total): 60.34%
Percent of Good tests (out of non-innocuous): 98.37%
```

Figure 1: Output of the reproduce RQ1.sh script.