TER-TIAD 2021 Translation inference across dictionaries

THAI Ba Tuan

Supervisor: Carlos Ramisch

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclusions and Future works

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclusions and Future works

Introduction

- The fourth shared task for Translation Inference Across Dictionaries (TIAD 2021)
- Goal is to generate new translation pairs (bilingual dictionaries) based on provided bilingual dictionaries, BUT the existing dictionaries do not contain the target language pairs. Add an example.
- TIAD-2021 will be held In Zaragoza (Spain) on September 1, 2021
- TIAD-2021: English(EN), French(FR), Portuguese (PT)
- Generate 6 dictionaries (EN-FR, EN-PT, FR-EN, FR-PT, PT-EN, PT-FR)
- Participants may also make use of **other freely available sources of background knowledge** (e.g. lexical linked open data and parallel corpora) to improve performance.
- No direct translation among the target language pairs is applied.
- Submit dictionaries on 14/05/2021 (have been submitted)
- Result announcement 14/06/2021

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclusions and Future works

2.1 Data source

• Apertium relies on a set of bilingual dictionaries, developed by a community of contributors, which covers more than 40 languages pairs.

• Apertium RDF is the result of publishing the Apertium bilingual dictionaries as linked data on the Web, It contains 44 languages and 53 language pairs

• How to get the data source:

Option 1

- Apertium RDF v2, SPARQL query
- <u>Ontolex lemon</u> core model
- 44 languages and 53 language pairs
- Use SPARQL query to get direct translations

Option 2

- CSV "shortcut"
- 51/53 language pairs csv files
- Information:
 - source written, source lexical (URI), source sense (URI),
 - translation (URI)
 - target sense (URI), target lexical (URI), target written
 - part of speech (URI)

> Choose option 2 for saving time and easy to process

2.2 Data preprocessing

	"written_rep_a"	"lex_entry_a"	"sense_a"	"trans"	"sense_b"	"lex_entry_b"	"written_rep_b"	"POS"
0	"waiting for"	•				"http://linguistic. a-ADP-es"		"http://www.lexi nfoposition"
1	"split"	• •				"http://linguisticVERB-es"	"partir"	"http://www.lexi nfonfo#verb"
2	"Donostia-San Sebastián"	"http://linguistic PROPN-en"				"http://linguistic. PROPN-es"		"http://www.lexi nfooperNoun"
3	"little"					"http://linguistic. o-ADV-es"	"poco"	"http://www.lexi nfoo#adverb"
4	"send back"					"http://linguistic. VERB-es"	"devolver"	"http://www.lexi nfonfo#verb"

	source	target	POS
0	waiting for	esperando a	preposition
1	split	partir	verb
2	Donostia-San Sebastián	Donostia-San Sebastián	properNoun
3	little	росо	adverb
4	send back	devolver	verb

2.2 Data preprocessing

• The Dictionary from English to Welch (EN-CY) or from English to Kazakh (EN-KK) can remove

• Because: No inference path from English, French, Portuguese use KK or CY

as a pivot

How to list all related dictionaries?

• Using Depth First Search to find all possible paths from:

EN- FR, EN-PT, FR-PT

=> 27 bilingual dictionaries to build inference dictionaries

2.3 Statistic Data

Table 1 Number of POS for each lang and total

	C						
	all	EN	PT	FR	CA	ES	
noun	307,599 (43.3%)	26,707	11,475	27,798	33,050	35,829	
properNou n	166,166 (23.39%)	43,856	24,210	36,626	42,573	34,225	
adjective	107,067 (15.07%)	9990	9,670	11,519	17,100	19,939	
verb	70,248 (9.89%)	6640	2,519	6,208	6,574	9,015	
adverb	44,566 (6,27%)	4756	2,556	3,670	8,010	9,556	
Total	710,441	93,463	51,035	87,145	108,646	110,447	
Total records							

Table 2 Number of Inference word for each langague

	EN	PT	FR
properNoun	20,978 (35.2%)	24,210	36,626
noun	19,945 (33.5%)	11,475	27,798
adjective	7996 (13.42%(9,670	11,519
verb	5,299 (8.9%)	2,519	6,208
adverb	4,266 (7.16%)	2,556	3,670
Total	59,576	82,200	51,035

- Table 1 show all word (remove duplicates) of data in the TIAD-2021 and some langague Because some words can appear many times (ex: life noun)
- Table 2 show the word need to inference of each langague after filter by DFS

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclusions and Future works

3.1 Word2Vec

- Introduced in 2013 by Mikolov et al.
- Statistical method for learning a standalone words embedding from text corpus
- Feed-forward, fully connected neural network
- There are 2 methods:
 - Bag-of-words (CBOW): learn from its context
 - Skip-Gram: predict surrounding context word

Source: Mikolov et al. 2013a

3.1.1 Implementation Word2Vec

• With a dictionary lang1-lang2 create pseudo-sentence:

```
X_lang1_pos Y_lang2_pos X_lang1_pos Y_lang2_pos
```

for each translation in this dictionary

Example: dictionary EN-ES:

```
    life vida noun → life_EN_noun vida_ES_noun life_EN_noun vida_ES_noun
    GPS GPS noun → GPS EN_noun GPS ES_noun GPS ES_noun
```

- Build a single **corpus** from 27 bilingual dictionaries => corpus for learning word embeddings
- Why it works?
 - If use window size is 1
 - The word "vida_ES_noun" is predict by the word "life_EN_noun" and vice versa.
 - If we have a translation from FR-ES: "vie vida noun" -> vie_FR_noun vida_ES_noun vie_FR_noun vida_ES_noun.
 - ⇒ Translation from "life noun" from EN -> FR is "life vie noun"

3.1.2 Building dictionary

- Using Cosine similarity: $\cos \theta = \frac{A*B}{||A||*||B||}$
- Building dictionary for 6 pairs langagues

Algorithm 1: Building Inference dictionary Word2Vec

Input: source lang, target lang, word embedding model

Output: dictionary of two languages

- 1. Pick all the word of source and target language in Word2Vec model by get all the word which have "_source-lang_" or "_target-lang". They are W1 and W2
- 2. For each word in W1:
 - 1. Calculate score cosine similarity of this word to all word in W2
 - 2. Order score descending
 - 3. Get the first word with the same pos with entry word
 - 4. Make the output: "source word \t target word \t pos \t score" Where score is the confidence of this translate
- 3. Return Dictionary

Note: By the request of the organizers
All dictionaries submit have format TSV (tab-separated)
Contains: "source" "target" "Part of speech" "confidence score"

3.2 Cross-lingual word embedding

- Cross-lingual word embeddings simply refers to word embeddings in two or more languages that are aligned to a common space
- MUSE: Multilingual Unsupervised and Supervised Embeddings, Intro by Facebook AI 2018
- State-of-the-art multilingual word embeddings

Find mapping matrix from lang1 to lang2 by optimize $W^* = argmin_{W \in dxd} ||WX - Y||$

- X, Y is dictionary of n pairs of word (n=5000, 10000, ...)
- Translation t of any source word s is $t = \operatorname{argmax}_t \cos(Wx_s, y_t)$

3.2.1 Implementation MUSE

- Create mapping matrix from Source-lang to Target-lang (ex: EN -> FR)
- No direct dictionaris => choose Pivot-Lang
- Learning mapping matrix from Source->Pivot, and Pivot -> Target
- Product two mapping matrix

Why it works?

For a word in Source-lang representation with vector **x**:

- $x \to x W_1 \sim y$ in the pivot-lang
- and $y \rightarrow y W_2 \sim z$ in the target-lang
- With source-lang vector $x \to x W_1W_2 \sim yW_2 \sim z$ in the target-lang We can find a target word embeeding with similarity for the source word
- Using Supervised method (Using dictionary TIAD)

3.2.2 Building Dictionary

Algorithm 2: Building Inference dictionary from MUSE

Input: source-words, target-words, source embeddings, target embeddings, mapping matrix source-pivot W1,

mapping matrix pivot-target W2

Output: dictionary of two languages

- 1. Calculate the mapping matrix from source to target W_1W_2
- 2. For each word x in source-words:
 - 1. Get the vector representation of x is v
 - 2. Calculate vW_1W_2 is v1
 - 3. Calculate cosine similarity score of v1 to all vector in target embeddings
 - 4. Sort the score and get the word with the same pos with input
 - 5. Make the output: source word \t target word \t pos \t score Where score is the confidence of this translate
- 1. Return Dictionary

Note:

The dictionary to submit have format TSV (tab-separated)
Contain: "source" "target" "Part of speech" "confidence score"

3.2 Systems

• List all word common in Source-Target (which have same word, same pos)

ex: Brook Brook properNoun (EN-FR)

• Find the inference for the other

Pair	Size
EN-FR	20738
FR-PT	13373
PT-EN	23219

Table 3 List of all common word for each pair

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclution and Future works

TER - M1 Informatique

4.1.1 Data Evaluation

- Extract Gold Standard (Using KDictionaries)
- Calculate by F-measure
- Find Intersection beetween Gold Standard and Systems

$$Precision(P) = \frac{|TRUE|}{|TRUE| + |FALSE|} Recall(R) = \frac{|TRUE|}{|Gold Standard|}$$
$$F - measure = 2/(\frac{1}{R} + \frac{1}{P}) = \frac{2 * R * P}{R + P}$$

- We can not access to Kdictionaries (limited 100-queries for day)
- => Building Data

Source TIAD

4.1.2 Builing Data evaluation

Method 1

- Wikitionary dumps
- Scraping from Matthias Buchmeier generated dictionary
- 6 dictionaries

afternoon {n} / a:f.tə. nu:n/ (part of the day between noon :: après-midi {m} {f} and evening) afternoon tea {n} (formal afternoon meal) :: collation (f) afternoon tea {n} (light meal or snack taken in the mid to :: goûter {m} late afternoon) after-party {n} / æfta-parti/ (party that takes place after :: after {m} another party) aftershaft (n) (accessory plume) :: hypotile aftershave {n} (lotion, gel or liquid) :: après-rasage {m} :: après-rasage {m} after-shave {n} (lotion, gel, or liquid used after shaving) aftershock {n} (earthquake that follows in the same vicinity :: réplique {f} as another)

Example EN-FR from Matthias Buchmeier

Method 2

- Google Translated
- Avoid missing word
- Using selenium (python library)
- Extract POS, translation
- Using Xpath

Table: Size of dictionary

Lang, Pair	Size (Wiki)	Size (Google Translate)
EN-FR	118,272	159,104
EN-PT	102,269	103,597
FR-EN	125,945	68,584
FR-PT	29,340	74851
PT-EN	91,813	120,399
PT-FR	12,235	49,517

4.2 Word2Vec

- Gensim Library
- Building corpus from 27 csv files:
 - 66.6 MB text and 810598 lines
- Configuration:
 - Skip-Gram and Cbow, 200 epochs,
 - vector size 300, window size = 1
 - min count = 2 (to get all vocabularies)
- Result: Correct EN->FR

apple	pomme	noun	0.99
approximate	approximatif	adjective	0.95
arm	bras	noun	0.93

• Wrong in practice effrénément adverb 0.56 in reply à bout de souffle adverb 0.5 20th Century Fox Gemeaux properNoun 0.51

Table results using Cbow

	Wiktiona	ary		Google Translate			Accuracy	
	Precisi on	Recall	F- measur e	Precision	Recall	F- measu re	Wiktionary	Google translate
EN-FR	0.7606	0.3304	0.4607	0.5185	0.1898	0.2779	0.3325	0.4966
EN-PT	0.7604	0.3153	0.4458	0.3372	0.1112	0.1673	0.3077	0.1915
FR-EN	0.4502	0.2526	0.3236	0.5001	0.2009	0.2866	0.1877	0.165
PT-FR	0.7519	0.666	0.7064	0.4146	0.4274	0.4209	0.1024	0.4146

Table results using Skip-gram

	Wikipedia	-		Google Tra	nslate	-	Accuracy	
	Precision	Recall	F- measure	Precision	Recall	F- measure	Wiktionary	Google translate
EN-FR	0.7592	0.3298	0.4598	0.5168	0.1892	0.2770	0.3318	0.4951
EN-PT	0.7615	0.3157	0.4464	0.3361	0.1109	0.1667	0.3081	0.1909
PT-EN	0.5932	0.3134	0.4101	0.5482	0.2351	0.3291	0.1971	0.5477
PT-FR	0.7481	0.6625	0.7027	0.4137	0.4264	0.42	0.1018	0.4136

4.3 MUSE

- Pivot lang: Catalan (CA), Spanish (ES) which have more connections
- Learning fastText word embeedings for each Langague using data from CoNLL 2017 Shared Task
- CoNLL-U Format: ID, FORM, LEMMA, UPOS,...
- Extract word with LEMMA and UPOS for each lang and build new sentence:

Ex: thank_verb you_ pronoun for_adposition your_ pronoun time_noun ._punctuation

```
# sent id = email-enronsent19 02-0049
# text = Thank you for your time.
        Thank
                thank
                        VERB
                                         Mood=Ind | Tense=Pres | VerbForm=Fin
                                VBP
                                                                                                   0:root
                        PRON
                                PRP
                                         Case=Acc|Person=2|PronType=Prs 1
        you
                you
        for
                        ADP
                                IN
                                         Person=2 | Poss=Yes | PronType=Prs 5
        your
                you
                        PRON
                                PRP$
                                                                                  nmod:poss
                                                                                                   5:nmod:poss
                                         Number=Sing
                                                                  obl
                                                                          1:obl:for
                                                                                          SpaceAfter=No
        time
                time
                        NOUN
                        PUNCT
                                                                1:punct
                                                         punct
```

- Building corpus for English(EN), French(FR), Portuguese (PT), Catalan (CA), Spanish (ES)
- About 4.5GB text for each corpus
- Learning word Embeedings with fastText: vector size 300, min count 4, epochs 15, window size 4, loss hs

4.3 MUSE

- Builing dictionary for each pair:
- Example: EN -> ES -> FR

little_adverb metallic_adjective retailer_noun by-train_adverb poco_adverb metálico_adjective detallista_noun en-tren_adverb decano_noun reformación_noun paraná_propernoun aleatorio_adjective doyen_noun réformation_noun parana_propernoun aléatoire_adjective

EN-ES

ES-FR

- Similar for: EN->ES->PT, EN-CA-FR,
- Learning mapping matrix
- Configuarion: epochs15, cuda False

4.3 MUSE

- Generally, MUSE not good as Word2Vec
- Take long time to build dictionary
 - 1s / 1 translation (11 hours to build English-French)
 - Not have Portuguese -> English use
 Catalan as pivot, missing some words
- Can find the translate of word which not appear in TIAD dataset:

Example: English to French dictionary:

diversified diversifié adjective 0.4661188

• Not handel the uppercase word (MUSE source code not allow)

Table: Using ES pivot

	Wikipedia			Google Tra	ınslate	Accuracy		
	Precision	Recall	F- measure	Precision	Recall	F- measure	Wiktionary	Google translate
EN-FR	0.8714	0.3143	0.4619	0.6631	0.1314	0.2194	0.3772	0.6531
EN-PT	0.1316	0.0424	0.0642	0.1609	0.0234	0.0409	0.0563	0.0958
FR-EN	0.1558	0.0801	0.1058	0.1892	0.035	0.0591	0.0698	0.0552
FR-PT	0.0632	0.0363	0.0461	0.1879	0.0842	0.1163	0.0095	0.1709
PT-EN	0.1338	0.0683	0.0904	0.4148	0.0841	0.1398	0.0387	0.4141
PT-FR	0.0407	0.0356	0.038	0.2569	0.2314	0.2435	0.006	0.2569

Table: Using CA pivot

	Wikipedia			Goo	gle Trans	slate	Accuracy	
	Precision	Recall	F-measure	Precision	Recall	F-measure	Wiktionary	Google translate
EN-FR	0.3938	0.1379	0.2043	0.5154	0.0949	0.1603	0.1592	0.507
EN-PT	0.5987	0.2344	0.3369	0.2977	0.0679	0.1106	0.2793	0.169
FR-EN	0.2182	0.1161	0.1516	0.2597	0.035	0.0617	0.0853	0.0552
FR-PT	0.067	0.0384	0.0488	0.1919	0.0842	0.1171	0.0097	0.0673
PT-EN	no file	no file	nofile	no file	no file	nofile	nofile	nofile
PT-FR	0.0402	0.0352	0.0376	0.2554	0.2314	0.2428	0.0059	0.2553

- 1. Introduction
- 2. Data Processing
- 3. Algorithms
- 4. Experiments and Results
- 5. Conclusions and Future works

5. Conclusions and Future works

- With this project, I have learned a lot of knowledge:
 - Word2Embeedings and is application
 - Cross-lingual word embedding with MUSE
 - Processing data with Pandas library
 - Web scraping with selenium, beautiful soup
 - Practice programming with Python, using bash scripts, using source version control with Github
 - Reading paper and writing report

Future works:

- Improve MUSE, find the other method (try implementation in TIAD-2022)
- Consider the "sense" of word

Github repository: https://github.com/batuan/TER_TIAD_2021

Questions

