Apresentação Prova 2 Regressão

Moisés Sales

Abril 2025

Considere uma aplicação de regressão logística em análise de sobrevivência. Seja $\pi_i(t)$ a probabilidade de um equipamento do tipo i falhar no intervalo $I_t = (t-1, t]$ dado que o mesmo não falhou até o tempo t-1. Seja Y_{it} o número de falhas no intervalo I_t e seja n_{it} o número de equipamentos que não falharam até o tempo t-1 no i-ésimo grupo.

Assumir que $Y_{it} \sim B(n_{it}, \pi_i(t))$, e que as falhas são independentes. Ajustar um modelo logístico do tipo

$$\log\left(\frac{\pi_i(t)}{1-\pi_i(t)}\right) = \alpha + \beta_i t + \gamma_i t^2$$

Assumir que $Y_{it} \sim B(n_{it}, \pi_i(t))$, e que as falhas são independentes. Ajustar um modelo logístico do tipo

$$\log\left(\frac{\pi_i(t)}{1-\pi_i(t)}\right) = \alpha + \beta_i t + \gamma_i t^2$$

Apresente o gráfico com as curvas ajustadas e os valores observados. Tente selecionar um submodelo apropriado. Verifique a adequação do modelo adotado através de gráficos de resíduos. Interprete os resultados.

Os dados estão apresentados da seguinte forma:

	tempo	tipo	n	у
1	1	1	42	4
2	2	1	38	3
3	3	1	35	3
4	4	1	31	5
5	5	1	26	6
6	1	2	50	6

Ajustaremos um modelo logístico da seguinte forma:

$$\log\left(\frac{\pi_i(t)}{1-\pi_i(t)}\right) = \alpha + \beta_i t$$

com i = 1, 2, 3 e t = 1, 2, 3, 4, 5, referente ao tipo de equipamento A, B e C, respectivamente.

Temos, então

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-3.2656	0.3893	-8.39	0.0000
tipo2	1.1326	0.3083	3.67	0.0002
tipo3	1.6358	0.3172	5.16	0.0000
tempo	0.4201	0.0915	4.59	0.0000
Desvio	2.9159	11 g.l.		

Em que podemos notar um valor de desvio que indica um ajuste adequado, realizando uma análise de diagnóstico, temos:

Figura: Gráficos de diagnósticos referentes a regressão logística.

Moisés Sales Apresentação Prova 2 Regressão

Figura: Gráfico normal de probabilidade referente a regressão logística.

A probabilidade de um produto do tipo A (i = 1) falhar no tempo 3 é dada por:

$$\log\left(\frac{\hat{\pi}_1(1)}{1-\hat{\pi}_1(1)}\right) = -3.2656 + 0.4201$$

$$\frac{\hat{\pi}_1(1)}{1-\hat{\pi}_1(1)} = \exp(-3.2656 + 0.4201)$$

$$\hat{\pi}_1(1) = \frac{\exp(-2.8455)}{1+\exp(-2.8455)}$$

$$\hat{\pi}_1(1) = 0.054 = 5.4\%$$

que é a menor probabilidade entre todos os tipos de materiais e todos os tempos.

Já a probabilidade de um equipamento do tipo A quebrar no tempo 5, é dada por:

$$\hat{\pi}_1(5) = 0.237 = 23.7\%$$

 $\ \, \hbox{E o material que tem a maior probabilidade de quebrar \'e o material do tipo C no tempo 5, com}$

$$\hat{\pi}_3(5) = 0.615 = 61.5\%$$

A razão de chances entre o material do tipo A no tempo 3 e no tempo 1 é dada por:

$$\frac{\exp(-3.2656 + (0.4201 * 3))}{\exp(-3.2656 + 0.4201)} = 2.31683$$

ou seja, a probabilidade de um equipamento do tipo A quebrar no tempo 3 é 2.31 vezes maior, comparada a probabilidade de quebrar no tempo 1.

No arquivo são descritos os resultados de um estudo desenvolvido em 1990 com recrutas americanos referentes a associação entre o número de infecções de ouvido e alguns fatores. Os dados são apresentados na seguinte ordem: hábito de nadar (ocasional ou frequente), local onde costuma nadar (piscina ou praia), faixa etária (15-19,20-25 ou 25-29), sexo (masculino ou feminino) e número de infecções de ouvido diagnosticadas pelo próprio recruta.

	nadar	local	idade	sexo	num_infec
1	Occas	NonBeach	15-19	Male	0
2	Occas	NonBeach	15-19	Male	0
3	Occas	NonBeach	15-19	Male	0
4	Occas	NonBeach	15-19	Male	0
5	Occas	NonBeach	15-19	Male	0
6	Occas	NonBeach	15-19	Male	0

Verifique qual dos modelos, log-linear de Poisson, quase-verossimilhança ou log-linear binomial negativo, se ajusta melhor aos dados. Utilize métodos de diagnóstico como critério.

Denotamos por Y_{ijkl} a quantidade de infecções de ouvido do l-ésimo recruta, que possui o i-ésimo hábito de nadar, no j-ésimo local e está na k-ésima faixa etária. Supondo que $Y_{ijkl} \sim P(\mu_{ijkl})$, o modelo utilizado possui parte sistemática dada por:

Denotamos por Y_{ijkl} a quantidade de infecções de ouvido do l-ésimo recruta, que possui o i-ésimo hábito de nadar, no j-ésimo local e está na k-ésima faixa etária. Supondo que $Y_{ijkl} \sim P(\mu_{ijkl})$, o modelo utilizado possui parte sistemática dada por:

$$\log \mu_{ijkl} = \alpha + \beta_i \mathsf{nadar}_i + \theta_j \mathsf{local}_j + \gamma_k \mathsf{faixa}_k$$

com as restrições $\beta_1 = \theta_1 = \gamma_1 = 0$, para i = 1, 2; j = 1, 2 e k = 1, 2, 3.

Os níveis 20 - 25 e 25 - 29, da variável faixa etária, foram unidos, visto que o nível 25 - 29 foi o único nível não significativo para o modelo.

Os níveis 20-25 e 25-29, da variável faixa etária, foram unidos, visto que o nível 25-29 foi o único nível não significativo para o modelo. O seguinte modelo resulta em:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.1699	0.1157	-1.47	0.1422
nadarOccas	0.6136	0.1050	5.84	0.0000
IocalNonBeach	0.4982	0.1029	4.84	0.0000
idade20-29	-0.2742	0.1011	-2.71	0.0067
Desvio	757.23	283 g.l.		

Os níveis 20 - 25 e 25 - 29, da variável faixa etária, foram unidos, visto que o nível 25 - 29 foi o único nível não significativo para o modelo. O seguinte modelo resulta em:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.1699	0.1157	-1.47	0.1422
nadarOccas	0.6136	0.1050	5.84	0.0000
IocalNonBeach	0.4982	0.1029	4.84	0.0000
idade20-29	-0.2742	0.1011	-2.71	0.0067
Desvio	757.23	283 g.l.		

Podemos notar um alto valor do desvio, indicando que o modelo não está adequadamente ajustado, sendo provável a existência de sobredispersão.

Realizando uma análise de diagnóstico, temos:

Figura: Gráficos de diagnóstico referentes ao modelo log-linear.

Figura: Gráfico normal de probabilidade referente ao modelo log-linear.

18 / 27

Utilizando, agora, o método de quase-verossimilhança, calculamos

$$\hat{\sigma}^2 = \sum_{i=1}^n \frac{y_i - \hat{\mu}_i}{\hat{\mu}_i} / (n - p)$$

para obtermos a estimativa do parâmetro de dispersão, que, nesse caso, é dada por:

$$\hat{\sigma}^2 = 3.348$$

que é um valor maior que um, mais uma vez indicando uma sobredispersão.

Dessa forma, corrigimos o desvio do modelo, que agora é dado por:

$$D^*(\mathbf{y}; \hat{\boldsymbol{\mu}}) = \frac{757.23}{3.348} = 226.173$$
 com 283 g.l.

indicando um ajuste mais adequado.

Dessa forma, corrigimos o desvio do modelo, que agora é dado por:

$$D^*(\mathbf{y}; \hat{\boldsymbol{\mu}}) = \frac{757.23}{3.348} = 226.173$$
 com 283 g.l.

indicando um ajuste mais adequado. O resíduo componente desvio corrigido é dado por:

$$t_{D_i}^* = \pm d_i/\hat{\sigma}\sqrt{1-\hat{h}_{ii}}$$

As novas estimativas corrigidas são dadas por:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.1699	0.2118	-0.80	0.4232
nadarOccas	0.6136	0.1921	3.19	0.0016
IocalNonBeach	0.4982	0.1883	2.65	0.0086
idade20-29	-0.2742	0.1849	-1.48	0.1392
Desvio	226.173	283 g.l.		

Figura: Gráficos de diagnóstico referente ao modelo quase-verossimilhança.

22 / 27

Figura: Gráfico normal de probabilidade referente ao modelo quase-verossimilhança.

Supondo, agora, que $Y_{ijkl} \sim \mathsf{BN}(\mu_{ijkl};\phi)$, cuja parte sistemática do modelo é a mesma, temos:

Estimate	Std. Error	z value	Pr(> z)
-0.1322	0.1975	-0.67	0.5033
0.6117	0.1898	3.22	0.0013
0.4838	0.1893	2.56	0.0106
-0.3349	0.1890	-1.77	0.0764
0.572			
269.10	283 g.l.		
	-0.1322 0.6117 0.4838 -0.3349 0.572	-0.1322 0.1975 0.6117 0.1898 0.4838 0.1893 -0.3349 0.1890 0.572	-0.1322 0.1975 -0.67 0.6117 0.1898 3.22 0.4838 0.1893 2.56 -0.3349 0.1890 -1.77 0.572

O desvio do modelo indica que é um ajuste adequado, e a análise de diagnóstico resulta em:

Figura: Gráficos de diagnóstico para o modelo log-linear binomial negativo.

25 / 27

Figura: Gráfico normal de probabilidade par ao modelo log-linear binomial negativo.

Notamos que com esse modelo, todos os pontos estão contidos no envelope de confiança da figura 8. Logo, em comparação com os outros apresentados, este é o modelo que parece mais se ajustar aos dados, portanto é o escolhido.

$$\log \mu_{ijkl} = -0.1322 + \beta_i \mathsf{nadar}_i + \theta_j \mathsf{local}_j + \gamma_k \mathsf{faixa}_k$$