Vorlesung

Daten

Vom Zettel nach Excel nach R

Version: 2.0

Unterscheiden sich die Sprungweiten von

Hunde- und Katzenflöhen?

x "exchange"

W- Worte

Messwerte /

X "exchange"

W- Worte

5 was Womit

Wu Wu

Wann

Tabelle 9.1— Tabelle von sieben Hunde- und Katzenflöhen mit der Sprunglänge [cm], Anzahl an Haaren am rechten Flohbein, Gewicht der Flöhe, Boniturnote sowie der Infektionsstatus für Flohschnupfen. Die erste Spalte animal gibt an, dass wir es hier mit Hunde- und Katzenflöhe zu tun haben. Die Tabelle ist im Long-Format dargestellt.

animal	jump_length	flea_count	weight	grade	infected
dog	5.7	18	2.1	8	FALSE
dog	8.9	22	2.3	8	TRUE
dog	11.8	17	2.8	6	TRUE
dog	5.6	12	2.4	8	FALSE
dog	9.1	23	1.2	7	TRUE
dog	8.2	18	4.1	7	FALSE
dog	7.6	21	3.2	9	FALSE
cat	3.2	12	1.1	7	TRUE
cat	2.2	13	2.1	5	FALSE
cat	5.4	11	2.4	7	FALSE
cat	4.1	12	2.1	6	FALSE
cat	4.3	16	1.5	6	TRUE
cat	7.9	9	3.7	6	FALSE
cat	6.1	7	2.9	5	FALSE

Daten in Excel

Tidy

Daten als tibble in R

Programmieren ist me eine Sprache bernen D

(i) Ein tibble ist tidy (deu. sauber)

Das Datenformat, was wir hier erarbeiten wollen, nennen wir auch *tidy* (deu. *sauber*) nach dem <u>R Paket</u>

<u>tidyr</u> was dann auch später mit die Basis für unsere Analysen in R sein wird. Wenn ein Datensatz *tidy* ist, dann erfüllt er folgende Bedingungen.

- 1. Jede Variable ist eine Spalte; jede Spalte ist eine Variable.
- 2. Jede Beobachtung ist eine Zeile; jede Zeile ist eine Beobachtung.
- 3. Jeder Wert ist eine Zelle; jede Zelle ist ein einziger Wert.

Nach diesen Regeln bauen wir dann jeden Datensatz auf, den wir in einem Experiment gemessen haben.

(a) Ein leerer tibble ist wie ein Schrank der befüllt werden kann.

Vandole

animal jump_length flea_count weight grade infected <chr> <dbl> <int> <dbl> <dbl> <lql> Wester 1 000 5.7 18 2.1 8 FALSE 2 dog 8.9 22 2.3 8 TRUE 11.8 17 2.8 6 TRUE 3 📆 5.6 8 FALSE 4 dog 12 2.4 5 dog 9.1 23 1.2 7 TRUE 8.2 18 4.1 6 dog 7 FALSE 7 dog 7.6 21 3.2 9 FALSE 3.2 12 1.1 7 TRUE 8 cat 2.2 9 cat 13 2.1 5 FALSE 5.4 10 cat 11 2.4 7 FALSE 4.1 2.1 6 FALSE 11 cat 12 12 cat 4.3 16 1.5 6 TRUE 7.9 3.7 13 cat 9 6 FALSE 7 14 cat 6.1 2.9 5 FALSE

DATE

Messwerte

Faletoren -> Snippe "txchange" animal

W- Work

· Was (Aussagen . Womt (Tuber die

Von Wortern ur	und tunkt onen												
as_tibble()	animal		dog	 u 		u C	at	u ;					
							7						
Function	fet		chr				chr						
$^{\prime\prime}$	Voniable												
Ersdaft	Objekt												
Objete													