EE 440 Homework #3

(Luke Jiang, 1560831)

1)

By comparing the original image and the expected output, I found that the original image is heavy in magenta. Therefore, I used Power-Law transform with gamma = 2.5 and c = 1 to make the image look more natural.

Source Code:

```
% 3.1. Remove extra magenta content from 3 1.bmp to make the image look
% more natural.
% -read image 3 1
img = double(imread('3 1.bmp'));
figure(1);
subplot (1, 2, 1);
   imshow(img / 255);
   title('original 3\_1.bmp');
% -M255 is used for conversion between RGB and CMY
M255 = 255 * ones(202, 282, 3);
% -get the CMY image
img cmy = M255 - img;
C = img cmy(:,:,1);
M = img_cmy(:,:,2);
Y = img_cmy(:,:,3);
% -the input image is heavy in magneta, use Power-Law Transform with
% -gamma = 2.5 to create a weaker version of the magneta band
M_{\text{weaker}} = ((M/255).^2.5)*255;
% -replace the original magneta band with the weakened version
img_weaker = img_cmy;
img_weaker(:,:,2) = M_weaker;
% -convert back to RGB and display
img weaker = M255 - img weaker;
subplot(1, 2, 2);
   imshow(img weaker / 255);
    title('modified 3\_1.bmp');
```

-a. Processing 3 2.jpg:

-linear stretching:

From histogram for V band of original 3_2.jpg, I found that the majority of pixels lies in the range [0, 0.6]. Therefore, I multiplied V with coefficient 1/0.6 = 5/2 to produce V_str whose histogram is the 2nd picture in 2.2.

-histogram equalization:

I used library function imhist to divide [0, 1] interval of possible intensities into 256 parts (step = 0.0039), and used the algorithm covered in class to calculate the resultant intensities:

$$h(v) = round(cdf(v) / (M*N) * (L-1))$$

Where M*N is the total number of pixels of the image and (L-1) is the range of intensities of the image. For $3_2.jpg$, M*N = 68400 and (L-1) = 1.

-histogram specification:

I used library function normpdf(0:0.0039:1, 1, 0.39) to generate a normally distributed sequence of 256 entries centered at 1 with standard deviation = 0.39.

-results:

All methods made the image looks brighter, but the picture generated histogram specification looks most natural.

-b Processing 3_3.jpg:

-linear stretching:

From histogram for V band of original 3_3.jpg, I found that the majority of pixels lies also in the range [0, 0.6]. Therefore, I used the same procedure as with 3_2.jpg.

-histogram equalization & histogram specification:

Same as 3_2.jpg

-results:

The output of histogram equalization and histogram specification are very similar, and both of them are far inferior to the result of linear stretching in terms of image quality.

original 3_2.jpg

Histogram equalized 3_2.jpg

linear stretched 3_2.jpg

Histogram specified 3_2.jpg

(2.1)

(2.2)

(2.3)

original 3_3.jpg

linear stretched 3_3.jpg

Histogram equalized 3_3.jpg

Histogram specified 3_3.jpg

(2.4)

(2.5)

(2.6)

Source Code:

A:

```
% -parameters for drawing
      IM2 RES = 2;
8 -
      IM2 HIST = 3;
9 -
      IM2 CDF = 4;
10
      % -read and display the orignal image
11 -
      im2 = imread('3 2.jpg');
12 -
      figure (IM2 RES); subplot(2, 2, 1);
13 -
           imshow(im2);
14 -
          title('original 3\2.jpg');
15
      % -convert to HSV and get the histogram of the V band
16 -
      im2 hsv = rgb2hsv(im2);
17 -
      V2 = im2 hsv(:,:,3);
     V2 X = size(V2, 1);
18 -
19 -
     V2 Y = size(V2, 2);
20 -
      figure (IM2 HIST); subplot(2, 2, 1);
21 -
           imhist (V2);
22 -
          title('histogram for V band of original 3\ 2.jpg');
23
      % -get CDF and plot it
24 -
       [binLocations, cdf2] = getCDF(V2, IM2 CDF, 2, 2, 1, 'CDF of original 3\ 2.jpg');
25
26
      % a) Linear Stretching:
27
       % -from hist see that V mostly falls in [0, 0.6] => 5/3
28
      % -produce stretched V as V str and display its histogram
      V2 str = V2 * 5/3;
30 -
     figure (IM2 HIST); subplot(2, 2, 2);
31 -
          imhist(V2 str);
32 -
          title('histogram for V band of stretched 3\ 2.jpg');
33
      % -get equalized CDF and display
34 -
      getCDF(V2 str, IM2 CDF, 2, 2, 2, 'CDF of stretched 3\ 2.jpg');
35
      % -get result image, display and save
36 -
      VReplaceDisplaySave(im2 hsv, V2 str, IM2 RES, 2, 2, 2, ...
     'linear stretched 3\_2.jpg', 'im2_stretched.jpg');
37
```

```
% b) Histogram Equalization:
40
       % -calculate equalized V band
41 -
       V2 = q = cdf2(round(V2 / 0.0039) + 1);
42
       % -display the equalized histogram
43 -
       figure (IM2 HIST); subplot (2, 2, 3);
44 -
           imhist (V2 eq);
45 -
           title('histogram for V band of equalized 3\ 2.jpg');
46
       % -get equalized CDF and display
47 -
       getCDF(V2 eq, IM2 CDF, 2, 2, 3, 'CDF of equalized 3\ 2.jpg');
48
       % -get result image, display and save
49 -
       VReplaceDisplaySave(im2 hsv, V2 eq, IM2 RES, 2, 2, 3, ...
       'Histogram equalized 3\ 2.jpg', 'im2 equalized.jpg');
50
51
52
       % c) Histogram Specification:
       % -use a specified normal distribution (sp) as the target histogram
54 -
      sp2 = normpdf(0:0.0039:1, 1, 0.39)';
55 -
      sp2 = sp2(1:end-1);
56 -
      cdf sp2 = cumsum(cdf2);
57 -
      cdf sp2 = cdf sp2 / max(cdf sp2);
58
       % -for each pixel, get the index of the sp value that is smaller and
       % most close to the cdf of this pixel.
60 -
      V2 sp = zeros(V2 X, V2 Y);
61 - for i = 1:V2_X
62 - -
           for j = 1:V2 Y
               cdf ij = cdf2(round(V2(i, j) / 0.0039) + 1);
63 -
64 -
               index = 1;
65 - -
               while (cdf sp2(index) < cdf ij)
66 -
                   index = index + 1;
67 -
68 -
               V2 sp(i, j) = binLocations(index);
69 -
           end
     end
70 -
     % -display the specified histogram
72 -
      figure (IM2 HIST); subplot (2, 2, 4);
73 -
          imhist (V2 sp);
74 -
          title('histogram for V band of specified 3\ 2.jpg');
      % -get specified CDF and display
      getCDF(V2 sp, IM2 CDF, 2, 2, 4, 'CDF of specified 3\ 2.jpg');
76 -
77
      % -get result image, display and save
78 -
      VReplaceDisplaySave(im2 hsv, V2 sp, IM2 RES, 2, 2, 4, ...
       'Histogram specified 3\_2.jpg', 'im2_specified.jpg');
79
```

```
% -parameters for drawing
7 -
     IM3 RES = 5;
8 -
     IM3 HIST = 6;
9 -
      IM3 CDF = 7;
.0
     % -read and display the orignal image
1 -
     im3 = imread('3 3.jpg');
2 -
     figure (IM3 RES); subplot(2, 2, 1);
3 -
          imshow(im3);
4 -
          title('original 3\_3.jpg');
.5
     % -convert to HSV and get the histogram of the V band
.6 -
     im3 hsv = rgb2hsv(im3);
.7 -
    V3 = im3 hsv(:,:,3);
.8 -
      V3 X = size(V3, 1);
9 -
     V3 Y = size(V3, 2);
0 -
     figure (IM3 HIST); subplot(2, 2, 1);
1 -
          imhist (V3);
2 -
          title('histogram for V band of original 3\ 3.jpg');
:3
      % get CDF and plot it:
4 -
     [binLocations3, cdf3] = getCDF(V3, IM3_CDF, 2, 2, 1, 'CDF of original 3\_3.jpg');
5 -
    cdf3 = [cdf3; 1]; % fix off-by-one error
6 -
    binLocations3 = [binLocations3; 1]; % fix off-by-one error
:7
      % a) Linear Stretching:
      % -from hist see that V mostly falls in [0, 0.6] => 5/3
:8
9
      % -produce stretched V as V str and display its histogram
0 -
      V3_str = V3 * 5/3;
1 -
      figure (IM3 HIST); subplot (2, 2, 2);
2 -
          imhist (V3 str);
3 -
          title('histogram for V band of stretched 3\ 3.jpg');
4
     % -get equalized CDF and display
5 -
    getCDF(V3 str, IM3 CDF, 2, 2, 2, 'CDF of stretched 3\ 3.jpg');
      % -get result image, display and save
```

```
VReplaceDisplaySave(im3_hsv, V3_str, IM3_RES, 2, 2, 2, ...
       'linear stretched 3\_3.jpg', 'im3_stretched.jpg');
38
39
40
       % b) Histogram Equalization:
       % -calculate equalized V band
41
42 -
      V3 = cdf3(round(V3 / 0.0039) + 1);
      % -display the equalized histogram
43
44 -
      figure (IM3 HIST); subplot(2, 2, 3);
45 -
          imhist (V3 eq);
46 -
          title('histogram for V band of equalized 3\ 3.jpg');
      % -get equalized CDF and display
47
48 -
       getCDF(V3 eq, IM3 CDF, 2, 2, 3, 'CDF of equalized 3\ 3.jpg');
       % -get result image, display and save
       VReplaceDisplaySave(im3 hsv, V3 eq, IM3 RES, 2, 2, 3, ...
       'Histogram equalized 3\_3.jpg', 'im3_equalized.jpg');
51
52
53
      % c) Histogram Specification:
      % -use a specified normal distribution (sp) as the target histogram
55 - sp3 = normpdf(0:0.0039:1, 1, 0.39)';
56 -
      sp3 = sp3(1:end-1);
57 - cdf sp3 = cumsum(cdf3);
      cdf sp3 = cdf sp3 / max(cdf sp3);
58 -
      % -for each pixel, get the index of the sp value that is smaller and
       % most close to the cdf of this pixel.
60
61 -
      V3 sp = zeros(240, 320);
62 - for i = 1:240
63 - E for j = 1:320
64 -
               cdf ij = cdf3(round(V3(i, j) / 0.0039) + 1);
65 -
              index = 1;
66 -
              while (cdf sp3(index) < cdf ij)
67 -
                   index = index + 1;
68 -
               end
69 -
               V3 sp(i, j) = binLocations3(index);
71 - end
72
      % -display the specified histogram
73 -
      figure (IM3 HIST); subplot(2, 2, 4);
74 -
           imhist (V3 sp);
           title('histogram for V band of specified 3\_3.jpg');
75 -
      % -get specified CDF and display
76
77 -
      getCDF(V3 sp, IM3 CDF, 2, 2, 4, 'CDF of specified 3\ 3.jpg');
78
       % -get result image, display and save
      VReplaceDisplaySave(im3_hsv, V3_sp, IM3_RES, 2, 2, 4, ...
       'Histogram specified 3\ 3.jpg', 'im3 specified.jpg');
81
```

Helper functions:

To make the code cleaner and more organized, I wrote two customary functions to encapsulate repetitive logics.

-getCDF

```
2
      % for a given image, plot the CDF of the pixels in the image and return
3
       % the CDF
4
5
      % @param V: input image
 6
      % @param fignum, a, b, c: which figure, (a, b, c) are subplot inputs
7
       % @param ttl: the title of the plot
8
       % @return binLocations: binLocations returned by imhist
9
      % @return cdf: computed CDF
10
11
     function [binLocations, cdf] = getCDF(V, fignum, a, b, c, ttl)
12 -
           [counts , binLocations ] = imhist(V);
13 -
           counts = counts ;
14 -
           binLocations = binLocations ;
           % -get normalized CDF
15
           cdf = cumsum(counts) / (size(V, 1) * size(V, 2));
16 -
          % -plot the CDF
17
18 -
           figure (fignum); subplot (a, b, c);
19 -
           plot(binLocations, cdf);
20 -
           title(ttl);
21 -
      end
```

-VPeplaceDisplaySave:

```
% given a HSV file and a V band, replace the original V band with the input
       % V band, convert the image back to RGB and display, save, and return the
 5
       % image
 6
7
      % @param hsv: input image in HSV format
       % @param V: input V band to replace V band in hsv
9
       % @param fignum, a, b, c: which figure, (a, b, c) are subplot inputs
10
       % @param ttl: the title of the plot
11
      % @param filename: the filename of the saved image
       % @return res: the resultant RGB image
12
13
     function res = VReplaceDisplaySave(hsv, V, fignum, a, b, c, ttl, filename)
14 -
          res = hsv;
15 -
         res(:,:,3) = V;
16 -
          res = hsv2rgb(res);
17 -
           figure (fignum); subplot (a, b, c);
18 -
          imshow(res);
19 -
          title(ttl);
20 -
           imwrite (res, filename);
21 -
      end
```