LaTeX for Economists – Mini exam

Attila Gyetvai

Abstract

This is the mini exam for the IATEX for Economists course at CEU.

Contents

1	Topics	1
2	Math	1
3	Graphics	3
Li	st of Figures	
	1 A colorful square	3
Li	st of Tables	
	1 What does X mean?	2
1	${f Topics}^1$	
(a)	Text styling	
	(i) Bold, emphasize(ii) Alignment, spacing	
(b)) Math	
(c)	Graphics	
	If stuck, refer to Google.	

2 Math

Problem 1 (Wooldridge Problem 9.7 (i)). (This problem is taken from Wooldridge (2009).)

Consider the simple regression model with classical measurement error, $y = \beta_0 + \beta_1 x^* + u$, where we have m measures on x^* . Write these as $z_h = x^* + e_h$, h = 1, ..., m. Assume that x^* is uncorrelated with $u, e_1, ..., e_m$, that the measurement errors are pairwise uncorrelated, and have the same variance, σ_e^2 . Let $w = (z_1 + ... + z_m)/m$ be the average of the measures on x^* , so that, for each observation i, $w_i = (z_{i1} + ... + z_{im})/m$ is the average of the m measures. Let $\bar{\beta}_1$ be

¹A footnote in headings is not straightforward.

the OLS estimator from the simple regression y_i on $1, w_i, i = 1, ..., n$, using a random sample of data. Show that

$$\underset{n \to \infty}{\text{plim}}(\bar{\beta}_1) = \beta_1 \cdot \left\{ \frac{\sigma_{x^*}^2}{\sigma_{x^*}^2 + \frac{\sigma_e^2}{m}} \right\}.$$
(1)

The meaning of matrix X can be found in Table 1.

Notation	Meaning					
	$\int x_{11}$	x_{12}		x_{1n}		
v	x_{21}	x_{22}		x_{2n}		
Λ		:	٠	:		
	$\int x_{m1}$	x_{m2}		x_{mn}		
An $m \times n$ matrix						

Table 1: What does X mean?

3 Graphics

This section include figures 1 and 2. Figure 2 consists of figures 2a and 2b.

Figure 1: A colorful square.

Figure 2: 2- and 3-dimensional plots.

References

Wooldridge, J. M. (2009). Introductory Econometrics: A Modern Approach. South-Western Cengage Learning, 4th edition.