

<u>Help</u> 🗘

sandipan_dey >

Next >

<u>Course Progress Dates Discussion Syllabus Outline laff routines Community</u>

★ Course / Week 12: Eigenvalues and Eigenvectors / 12.4 Practical Methods

()

12.4.3 In Preparation for this Week's Enrichment

☐ Bookmark this page

Previous

■ Calculator

Week 12 due Dec 29, 2023 10:42 IST

12.4.3 In Preparation for this Week's Enrichment

No video for this unit

Reading Assignment

0 points possible (ungraded)

Read Unit 12.4.3 of the notes. [LINK]

Done

Submit

✓ Correct

Discussion

Topic: Week 12 / 12.4.3

Show all posts

Hide Discussion

by recent activity >

Add a Post

3

Homework 12.4.3.1

1/1 point (graded)

Let $A \in \mathbb{R}^{n \times n}$ and x equal an eigenvector of A. Assume that x is real valued as is the eigenvalue λ with $Ax = \lambda x$.

 $\lambda = rac{x^T A x}{x^T x}$ is the eigenvalue associated with the eigenvector x.

Answer: Always

 $Ax=\lambda x$ implies that $x^TAx=x^T\left(\lambda x
ight)=\lambda x^Tx$. But $x^Tx
eq 0$ since x is an eigenvector. Hence $\lambda=x^TAx/\left(x^Tx
ight)$.

Submit

Answers are displayed within the problem

Homework 12.4.3.2

1/1 point (graded)

Let $A\in\mathbb{R}^{n imes n}$ be nonsingular, $\lambda\in\Lambda\left(A
ight)$, and $Ax=\lambda x$. Then $A^{-1}x=rac{1}{\lambda}x$.

_

✓ Answer: TRUE

 $Ax=\lambda x$ means that $rac{1}{\lambda}A^{-1}Ax=rac{1}{\lambda}A^{-1}\lambda x$ which means that $rac{1}{\lambda}x=A^{-1}x$.

Submit

1 Answers are displayed within the problem

Homework 12.4.3.3

10/10 points (graded)

Let $A \in \mathbb{R}^{n imes n}$ and $\lambda \in \Lambda\left(A
ight)$. Then $(\lambda - \mu) \in \Lambda\left(A - \mu I
ight)$.

TRUE

✓ Answer: TRUE

Let $Ax=\lambda x$ for x
eq 0. Then

$$(A-\mu I)\,x=Ax-\mu Ix=Ax-\mu x=\lambda x-\mu x=(\lambda-\mu)\,x.$$

Submit

1 Answers are displayed within the problem

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>