STOR 635 HW 7

BY AMEER QAQISH

February 28, 2022

1 Solutions

1. Let X_n and Y_n be positive integrable and adapted to \mathcal{F}_n . Suppose that $E(X_{n+1} | \mathcal{F}_n) \leq X_n + Y_n$ with $\sum Y_n < \infty$ a.s. Prove that X_n converges a.s. to a finite limit.

Proof. For $n \in \mathbb{N}_0$, let $Z_n = X_n - \sum_{i=0}^{n-1} Y_i$. Clearly Z_n is integrable and \mathcal{F}_n -measurable. For $n \in \mathbb{N}$,

$$E(Z_n | \mathcal{F}_{n-1}) = E(X_n | \mathcal{F}_{n-1}) - \sum_{i=0}^{n-1} Y_i$$

$$\leq X_{n-1} + Y_{n-1} - \sum_{i=0}^{n-1} Y_i$$

$$= X_{n-1} + \sum_{i=0}^{n-2} Y_i$$

$$= Z_{n-1}.$$

Thus $(Z_n)_{n\in\mathbb{N}_0}$ is a supermartingale. For K>0, let

$$\tau_K = \inf \left\{ n \in \mathbb{N}_0 : \sum_{i=0}^n Y_i > K \right\}.$$

 τ_K is a stopping time since $\sum_{i=1}^n Y_i$ is \mathcal{F}_n -measurable. Since $(\tau_K \wedge n) - 1 < \tau_K$, we have $\sum_{i=0}^{(\tau_K \wedge n)-1} Y_i \leq K$. Hence

$$Z_{\tau_K \wedge n} = X_{\tau_K \wedge n} - \sum_{i=0}^{(\tau_K \wedge n) - 1} Y_i \ge - \sum_{i=0}^{(\tau_K \wedge n) - 1} Y_i \ge -K.$$

Thus $Z_{\tau_K \wedge n}^- \leq K$. By the martingale convergence theorem, there is an integrable (hence a.s. finite) random variable $Z_{\infty}^{\tau_K}$ such that $Z_{\tau_K \wedge n} \to Z_{\infty}^{\tau_K}$ a.s.. On the set $\{\tau_K = \infty\}$ we have $Z_n = Z_{\tau_K \wedge n} \to Z_{\infty}^{\tau_K}$ a.s.. Thus Z_n converges to a finite limit Z a.s. on the set

$$S = \bigcup_{K=1}^{\infty} \left\{ \tau_K = \infty \right\} = \bigcup_{K=1}^{\infty} \left\{ \sum_{i=0}^{\infty} Y_i \le K \right\} = \left\{ \sum_{i=0}^{\infty} Y_i < \infty \right\}.$$

Since $\sum_{i=0}^{\infty} Y_i < \infty$ on S, it follows that $X_n = Z_n + \sum_{i=0}^{n-1} Y_i \to Z + \sum_{i=0}^{\infty} Y_i$ a.s. on S. By assumption, P(S) = 1.

2. Let X_1, X_2, \ldots be i.i.d. random variables with

$$P(X_1=1) = P(X_1=-1) = \frac{1}{2}$$
.

2 Section 1

Let $S_0 = 0$ and $S_n = X_1 + \dots + X_n$ for $n \ge 1$. Let

$$\tau = \inf \{ n \ge 1 : S_n = 0 \}.$$

Show that the martingale $S_{n \wedge \tau}$ converges almost surely but not in L^1 .

Proof. By conditioning and symmetry,

$$P(\tau < \infty) = P(X_1 = -1) P(\tau < \infty \mid X_1 = -1) + P(X_1 = 1) P(\tau < \infty \mid X_1 = 1)$$

$$= \frac{1}{2} (P(S_n = 1 \text{ for some } n \in \mathbb{N}_0) + P(S_n = -1 \text{ for some } n \in \mathbb{N}_0))$$

$$= \frac{1}{2} (1 + 1)$$

$$= 1.$$

If $\omega \in \Omega$ and $\tau(\omega) < \infty$, then $\tau(\omega) \wedge n = \tau(\omega)$ for n large, so $S_{\tau(\omega) \wedge n}(\omega) \to S_{\tau(\omega)}(\omega)$. Thus $S_{\tau \wedge n} \to S_{\tau} = 0$ a.s.

Since $S_{\tau \wedge n}$ is a martingale, $E(S_{\tau \wedge n}) = E(S_{\tau \wedge 0}) = E(S_0) = 0$. On the other hand, $S_{\tau} = 1$, so $E(S_{\tau}) = 1$. Since $E(S_{\tau \wedge n}) \nrightarrow E(S_{\tau})$, it follows that $S_{\tau \wedge n}$ does not converge to S_{τ} in L^1 . Since any L^1 limit of $S_{\tau \wedge n}$ must agree with the a.s. limit S_{τ} almost everywhere, it follows that $S_{\tau \wedge n}$ does not converge in L^1 .

- **3.** Let $\{X_n\}$ be a martingale on (Ω, \mathcal{F}, P) with respect to a filtration $\{\mathcal{F}_n\}$. Then show that the following are equivalent.
 - (i) There exists a random variable X_{∞} in L^1 such that $X_n \to X_{\infty}$ in L^1 .
 - (ii) $\{X_n\}_{n\geq 1}$ is uniformly integrable.
 - (iii) For some integrable random variable X, $X_n = E(X \mid \mathcal{F}_n)$.
- **Proof.** (i) \Longrightarrow (ii): Suppose there exists a random variable X_{∞} in L^1 such that $X_n \to X_{\infty}$ in L^1 . Recall the theorem that if $f_n \in L^1$ and $f_n \to f$ in measure, then $f_n \to f$ in L^1 if and only if $\{f_n : n \in \mathbb{N}_0\}$ is uniformly integrable. Since $X_n \to X_{\infty}$ in L^1 , it follows that $X_n \to X_{\infty}$ in measure. By the theorem, $\{X_n : n \in \mathbb{N}_0\}$ is uniformly integrable.
- (ii) \Longrightarrow (iii): Suppose $\{X_n\}_{n\geq 1}$ is uniformly integrable. By the martingale convergence theorem for uniformly integrable martingales, there exists a random variable $X_{\infty} \in L^1$ such that $X_n \to X_{\infty}$ a.s. and in L^1 and $E(X_{\infty} | \mathcal{F}_n) = X_n$ for all $n \in \mathbb{N}_0$. Hence taking $X = X_{\infty}$ proves the claim.
- (iii) \Longrightarrow (i): Suppose that there is a random variable $X \in L^1$ such that $X_n = E(X \mid \mathcal{F}_n)$ for all $n \in \mathbb{N}_0$. X_n is indeed a martingale since if m < n, the tower property yields $E(E(X \mid \mathcal{F}_n) \mid \mathcal{F}_m) = E(X \mid \mathcal{F}_m)$. Since $\{X\}$ is uniformly integrable, there exists a measurable increasing convex function $H: [0, \infty) \to [0, \infty)$ with $\lim_{x \to \infty} \frac{H(x)}{x} = \infty$ such that $E(H(|X|)) < \infty$. For any $n \in \mathbb{N}_0$,

$$H(|E(X \mid \mathcal{F}_n)|) \le H(E(|X| \mid \mathcal{F}_n)) \le E(H(|X|) \mid \mathcal{F}_n).$$

Hence $E(H(|E(X \mid \mathcal{F}_n)|)) \leq E(H(|X|))$. Hence $\sup_{n \in \mathbb{N}_0} E(H(|E(X \mid \mathcal{F}_n)|)) \leq E(H(|X|)) < \infty$. Thus $\{E(X \mid \mathcal{F}_n) : n \in \mathbb{N}_0\}$ is uniformly integrable. By the martingale convergence theorem for uniformly integrable martingales, there exists a random variable X_{∞} in L^1 such that $X_n \to X_{\infty}$ a.s. and in L^1 .

Solutions 3

4. Let $\{Z_n\}$ be iid sequence of N(0,1) random variables. Let θ be an integrable random variable independent of $\{Z_i\}$. Let $Y_n \doteq Z_n + \theta$, $n \geq 1$. Show that

$$E(\theta \mid \sigma\{Y_1,\ldots,Y_n\}) \rightarrow \theta$$

a.s. and in L^1 .

Solution. First we need a theorem

Theorem 1. Let $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ be a filtration, and let $X\in L^1$. Then $E(X\mid\mathcal{F}_n)\to E(X\mid\mathcal{F}_\infty)$ a.s. and in L^1 , where $\mathcal{F}_\infty=\sigma(\bigcup_{n=0}^\infty\mathcal{F}_n)$.

Proof. By problem 3, $(E(X | \mathcal{F}_n))_{n \in \mathbb{N}_0}$ is a uniformly integrable martingale. By the martingale convergence theorem for uniformly integrable martingales, there is an \mathcal{F}_{∞} -measurable random variable $Y \in L^1$ such that

$$E(X \mid \mathcal{F}_n) \to Y$$
 a.s. and in L^1 .

To show that $Y = E(X \mid \mathcal{F}_{\infty})$, we will show that $E(X \mid I_A) = E(Y \mid I_A)$ for all $A \in \mathcal{F}_{\infty}$. Let

$$\mathcal{D} = \{ A \in \mathcal{F}_{\infty} : E(X 1_A) = E(Y 1_A) \}.$$

We need to show that $\mathcal{D} = \mathcal{F}_{\infty}$. First we show that $\bigcup_{n=0}^{\infty} \mathcal{F}_n \subset \mathcal{D}$. Let $n \in \mathbb{N}_0$ and $A \in \mathcal{F}_n$ be arbitrary. By the martingale convergence theorem for uniformly integrable martingales, $E(Y \mid \mathcal{F}_n) = E(X \mid \mathcal{F}_n)$. Hence $E(X \mid I_A) = E(Y \mid I_A)$. Thus $\bigcup_{n=0}^{\infty} \mathcal{F}_n \subset \mathcal{D}$.

martingales, $E(Y | \mathcal{F}_n) = E(X | \mathcal{F}_n)$. Hence $E(X 1_A) = E(Y 1_A)$. Thus $\bigcup_{n=0}^{\infty} \mathcal{F}_n \subset \mathcal{D}$. Next note that the π -system generated by $\bigcup_{n=0}^{\infty} \mathcal{F}_n$ is $\bigcup_{n=0}^{\infty} \mathcal{F}_n$ since if $A_1, \ldots, A_N \in \bigcup_{n=0}^{\infty} \mathcal{F}_n$ with $A_j \in \mathcal{F}_{n_j}$, then $A_1 \cap \ldots \cap A_N \in \mathcal{F}_{\max(n_1,\ldots,n_N)}$. Thus, by the π - λ theorem, it will suffice to show that \mathcal{D} is a λ -system.

To show that \mathcal{D} is a λ -system, we verify the three axioms:

- (i) Clearly $\emptyset \in \mathcal{D}$.
- (ii) Let $A \in \mathcal{D}$ be arbitrary. We have

$$E(X 1_{A^c}) = E(X) - E(X 1_A).$$

Since $E(E(X \mid \mathcal{F}_n)) = E(X)$ for all n, it follows from the L^1 convergence $E(X \mid \mathcal{F}_n) \to Y$ that E(Y) = E(X). Hence

$$E(X 1_{A^c}) = E(X) - E(X 1_A)$$

= $E(Y) - E(Y 1_A)$
= $E(Y 1_{A^c}).$

Thus $A^c \in \mathcal{D}$.

(iii) Suppose $A_1, A_2, \ldots \in \mathcal{D}$ are disjoint. By the dominated convergence theorem,

$$E(X 1_{\bigcup_{n=1}^{\infty} A_n}) = E\left(\sum_{n=1}^{\infty} X 1_{A_n}\right)$$

$$= \sum_{n=1}^{\infty} E(X 1_{A_n})$$

$$= \sum_{n=1}^{\infty} E(Y 1_{A_n})$$

$$= E(Y 1_{\bigcup_{n=1}^{\infty} A_n}).$$

4 Section 1

Thus $\bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$.

Thus \mathcal{D} is a λ -system. This completes the proof.

Proof of Problem 4. By Theorem (1), $E(\theta \mid \sigma(Y_1, ..., Y_n)) \to E(\theta \mid \mathcal{F}_{\infty})$ a.s. and in L^1 , where $\mathcal{F}_{\infty} = \sigma(\bigcup_{n=1}^{\infty} \sigma(Y_1, ..., Y_n))$. Note that for each $n \in \mathbb{N}$, Y_n is \mathcal{F}_{∞} -measurable. Thus $\sigma\{Y_n : n \in \mathbb{N}\} \subset \mathcal{F}_{\infty}$. Note that for each $n \in \mathbb{N}$, $\sigma(Y_1, ..., Y_n) \subset \sigma\{Y_n : n \in \mathbb{N}\}$. Thus $\bigcup_{n=1}^{\infty} \sigma(Y_1, ..., Y_n) \subset \sigma\{Y_n : n \in \mathbb{N}\}$, and therefore $\mathcal{F}_{\infty} \subset \sigma\{Y_n : n \in \mathbb{N}\}$. Thus $\mathcal{F}_{\infty} = \sigma\{Y_n : n \in \mathbb{N}\}$.

The strong law of large numbers yields

$$\frac{Y_1 + \dots + Y_n}{n} = \theta + \frac{Z_1 + \dots + Z_n}{n} \to \theta \text{ a.s.}$$

Let

$$Y = \left(\limsup_{n \to \infty} \frac{Y_1 + \dots + Y_n}{n}\right) \mathbb{1}_{\left\{\limsup_{n \to \infty} \frac{Y_1 + \dots + Y_n}{n} = \liminf_{n \to \infty} \frac{Y_1 + \dots + Y_n}{n}\right\} \cap \left\{\left|\limsup_{n \to \infty} \frac{Y_1 + \dots + Y_n}{n}\right| < \infty\right\}}.$$

Since $\limsup_{n\to\infty} \frac{Y_1+\cdots+Y_n}{n}$ and $\liminf_{n\to\infty} \frac{Y_1+\cdots+Y_n}{n}$ are \mathcal{F}_{∞} measurable, it follows that Y is \mathcal{F}_{∞} -measurable. Since $\frac{Y_1+\cdots+Y_n}{n}\to\theta$ a.s., it follows that $Y=\theta$ a.s. Hence

$$E(\theta \mid \mathcal{F}_{\infty}) = E(Y \mid \mathcal{F}_{\infty}) = Y = \theta.$$

- **5.** (i) Let $\{X_n\}$ be a square integrable martingale and let τ be a stopping time. Show that $\{X_n^{\tau}\}_{n\in\mathbb{N}_0}$ is a square integrable martingale and $\langle X^{\tau}\rangle_n = \langle X\rangle_{\tau\wedge n}$.
- (ii) Let $\{X_n\}$ be a square integrable martingale for which $\sup_{n\in\mathbb{N}_0} \langle X \rangle_n < \infty$ a.s.. Then X_n converges a.s. to a r.v. that is finite a.s.

Proof. (i) By the optional stopping theorem, X^{τ} is a martingale. It is square integrable since $|X_{\tau \wedge n}| \leq |X_1| + \cdots + |X_n| \Rightarrow ||X_{\tau \wedge n}||_{L^2} \leq \sum_{k=0}^n ||X_k||_{L^2} < \infty$. We have

$$\langle X^{\tau} \rangle_n = \sum_{i=1}^n E((X_{\tau \wedge i} - X_{\tau \wedge (i-1)})^2 \mid \mathcal{F}_{i-1}).$$

Note that when $\tau \leq i-1$, we have $\tau \wedge i = \tau \wedge (i-1) = \tau$. Thus when $i \geq \tau+1$, we have $E((X_{\tau \wedge i} - X_{\tau \wedge (i-1)})^2 \mid \mathcal{F}_{i-1}) = 0$. Hence

$$\langle X^{\tau} \rangle_{n} = \sum_{i=1}^{\tau \wedge n} E((X_{\tau \wedge i} - X_{\tau \wedge (i-1)})^{2} | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^{\tau \wedge n} E((X_{i} - X_{i-1})^{2} | \mathcal{F}_{i-1})$$

$$= \langle X \rangle_{\tau \wedge n}.$$

(ii) Let $(\mathcal{F}_n)_{n\in\mathbb{N}_0}$ be the filtration with respect to which $(X_n)_{n\in\mathbb{N}_0}$ is a martingale. For $K\geq 0$, let

$$\tau_K = \inf \{ n \in \mathbb{N}_0 : \langle X \rangle_{n+1} > K \}.$$

Solutions 5

Since $(\langle X \rangle_{n+1})_{n \in \mathbb{N}_0}$ is \mathcal{F}_n -adapted, it follows that τ_K is a stopping time. Let

$$X_n^2 = X_0^2 + M_n + \langle X \rangle_n$$

be the Doob decomposition of $(X_n^2)_{n\in\mathbb{N}_0}$. Then

$$X_{\tau_K \wedge n}^2 = X_0^2 + M_{\tau_K \wedge n} + \langle X \rangle_{\tau_K \wedge n}.$$

Since $\langle X \rangle_{\tau_K \wedge n} \leq K$, the optional sampling theorem gives

$$E(X_{\tau_K \wedge n}^2) = E(X_0^2) + E(\langle X \rangle_{\tau_K \wedge n}) \le E(X_0^2) + K.$$

Thus $\sup_{n\in\mathbb{N}_0} E(X_{\tau_K\wedge n}^2) < \infty$. By the L^2 martingale convergence theorem, there is a random variable $X_{\infty}^{\tau_K} \in L^2$ such that $X_{\tau_K\wedge n} \to X_{\infty}^{\tau_K}$ a.s. and in L^2 . Since $X_{\infty}^{\tau_K} \in L^2$, $X_{\infty}^{\tau_K}$ is a.s. finite. On the set $\{\tau_K = \infty\}$, we have $X_{\tau_K\wedge n} = X_n \to X_{\infty}^{\tau_K}$ a.s.. Thus X_n converges to a finite limit a.s. on the set

$$\bigcup_{K=1}^{\infty} \left\{ \tau_K = \infty \right\} = \bigcup_{K=1}^{\infty} \left\{ \sup_{n \in \mathbb{N}_0} \langle X \rangle_n \le K \right\} = \left\{ \sup_{n \in \mathbb{N}_0} \langle X \rangle_n < \infty \right\}.$$

By hypothesis, $P(\sup_{n\in\mathbb{N}_0}\langle X\rangle_n<\infty)=1$. Thus X_n converges to a finite limit a.s.. \square

6. Let $\{\xi_i\}$ be iid with mean 0 and variance σ^2 . Let $S_0 = 0$, $S_n = \sum_{i=1}^n \xi_i$, $n \ge 1$. If N is a stopping time with $E(N) < \infty$, show that $E(S_N^2) = \sigma^2 E(N)$.

Proof. For $n \in \mathbb{N}_0$, let $\mathcal{F}_n = \sigma(\xi_1, ..., \xi_n) = \sigma(S_1, ..., S_n)$. Then $(S_n)_{n \in \mathbb{N}_0}$ is a martingale with respect to the filtration $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$. We assume that N is a stopping time with respect to $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$. Let $S_n^2 = M_n + \langle S \rangle_n$ be the Doob decomposition of $(S_n^2)_{n \in \mathbb{N}_0}$. We have

$$\langle S \rangle_n = \sum_{i=1}^n E((S_i - S_{i-1})^2 | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^n E(\xi_i^2 | \mathcal{F}_{i-1})$$

$$= \sum_{i=1}^n E(\xi_i^2)$$

$$= n \sigma^2.$$

First consider the case when N is bounded. By the optional sampling theorem,

$$E(S_N^2) = E(M_N + N\sigma^2)$$

= $E(M_N) + E(N)\sigma^2$
= $E(N)\sigma^2$.

Now consider the general case where only $E(N) < \infty$. Since $E(N) < \infty$, N is a.s. finite. Thus $S_{N \wedge n} \to S_N$ a.s.. By the bounded case, for each $n \in \mathbb{N}_0$,

$$E(S_{N \wedge n}^2) = E(N \wedge n) \sigma^2 \le E(N) \sigma^2 < \infty.$$

Section 1

Hence the martingale $(S_{N \wedge n})_{n \in \mathbb{N}_0}$ is L^2 bounded. By the martingale convergence theorem, $S_{N \wedge n}$ converges a.s. and in L^2 . Thus $S_{N \wedge n} \to S_N$ a.s. and in L^2 . In particular,

$$E(S_N^2) = \lim_{n \to \infty} E(S_{N \wedge n}^2)$$
$$= \lim_{n \to \infty} E(N \wedge n) \sigma^2$$
$$= E(N) \sigma^2,$$

where the last equality is by the monotone convergence theorem.