Problem Set 5

Hoang Nguyen, Huy Nguyen

December 15, 2019

Problem 1.

1. Because $X_1, X_2, ... X_n$ follow exponential, hence $\mathbb{E}[X] = \frac{1}{\lambda}$ and $\mathbb{V}[X] = \frac{1}{\lambda^2}$.

From CTT, we know: $\frac{X_n - \frac{1}{\lambda}}{\frac{1}{\lambda}} \sim N(0, 1)$.

Under H_0 : $\frac{X_n - \frac{1}{\lambda_0}}{\frac{1}{\lambda_0}} \sim N(0, 1)$. Now we have test statistic: $T = \left| \frac{X_n - \frac{1}{\lambda_0}}{\frac{1}{\lambda_0}} \right|$.

With asymptotic level α , $\mathbb{P}[T > c] = \alpha$, hence $c = 1 - \phi^{-1}(\frac{\alpha}{2})$

Conclusion: If T > c, we reject H_0 . Otherwise, we are fail to reject H_0 .

2. Let denote $\hat{\lambda} = argmax_{\theta \in \{0; +\infty\}} l(\theta)$ and $\hat{\lambda^c} = argmax_{\theta \in H_0} l(\theta)$ where $l(\theta)$ is likehood funtion of θ . Using Likelood ratio test, we have test stattistic: $T = 2(l(\hat{\lambda}) - l(\hat{\lambda^c}))$.

The difference in the number of parameters for the two models is 1 because we only consider paramer $\lambda \in \mathbb{R}$. Hence $T \sim \chi_1^2$. With asymptotic level test α , $\mathbb{P}[T > c] = \alpha$, hence c is the $(1 - \alpha)$ -quantile of χ_1^2 . Conclusion: If T > c, we reject H_0 . Otherwise, we are fail to reject H_0 .

3. a) Because $X_1, X_2, ... X_n$ follow exponential, hence $l(\lambda) = n l n(\lambda) - \lambda \sum_{i=1}^n X_i$. Because there are 50 consecutive calls and these observations have average value is 0.98, hence $\sum_{i=1}^n X_i = 0.98x50 = 49$.

Now we have log-likelihood function $l(\lambda) = 50ln(\lambda) - 49\lambda$. Taking derivate respect to λ , we get $l'(\lambda) = \frac{50}{\lambda} - 49$. Setting this equals to zeros we get $\hat{\lambda} = \frac{50}{49}$, hence $l(\hat{\lambda}) = -48.989$

Because $l'(\lambda) > 0$ for all θ under H_0 , hence $\hat{\lambda^c} = 1 => l(\hat{\lambda^c}) = -49$

Based on previous questions, we have $T = 2(l(\hat{\lambda}) - l(\hat{\lambda^c})) = 2(-48.989 + 49) = 0.022$. With asymptotic level test $\alpha = 0.05$, we get c = 3.814

Because T = 0.022 < 3.814, hence we are fail to reject null hypothesis.

b) $p-value = \mathbb{P}[\chi_1^2 > 0.022] = 0.8829$

Problem 2.

1. Take derivative of Gaussian expression respect to μ_1, σ_1 , and set it equals to 0, we get: $\hat{\mu} = \bar{X}_n$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\mu})^2$.

2. Cochrans theorem implies that for $X_1, X_2, ... X_n$ follow Gaussian distribution with μ and σ^2 , we have:

$$\sqrt{n-1}\frac{\bar{X_n} - \mu}{\sqrt{S_n}} \sim t_{n-1}$$

From previous question, we have $\hat{\mu} = \bar{X}_n$ and $S_n = \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$. Plugging this to the equation above, we get:

$$S = \sqrt{n-1} \frac{\hat{\mu} - \mu}{\sqrt{\hat{\sigma}^2}} \sim t_{n-1}$$

3 From previous question, we know $S \sim t_{n-1}$, so we will bulid Student test based on this intuition with test statistic S

Let denote c is the $(1 - \alpha)$ -quantile of Student distribution with n - 1 degrees of freedom. That means $\mathbb{P}[t_{n-1} > c] = \alpha$.

Based on the previous question, we have test statistic: $T = \sqrt{n-1} \frac{\hat{\mu}}{\sqrt{\hat{\sigma}^2}} = \sqrt{n-1} \frac{\bar{X}_n}{\sqrt{\frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2}} \sim t_{n-1}$.

1

Concretely, the graph below show the t-test diagram with Student test (n-1 dgrees of freedom) and level test $\alpha = 0.05$, for example.

Conclusion: If T > c that means H_0 fall into reject region so we reject H_0 ,. Otherwise, we are fail to reject H_0

Problem 3.

• Prove X and Y are independent implies r=pq: From Bayes rule, we have $\mathbb{P}[X=1|Y=1]=\frac{\mathbb{P}[X=1,Y=1]}{\mathbb{P}[Y=1]}$ (1) From X and Y are independent, we have $\mathbb{P}[X=1|Y=1]=\mathbb{P}[X=1]$. Plugging this to (1), we have: $\mathbb{P}[X=1]\mathbb{P}[Y=1] = \mathbb{P}[X=1,Y=1] \Leftrightarrow r = pq.$

• Prove r = pq implies X and Y are independent:

By defination of independent event, we have if $\mathbb{P}[X=1]\mathbb{P}[Y=1] = \mathbb{P}[X=1,Y=1] \Leftrightarrow r=pq$, X and Y are independent.

Hence X and Y are independent iff r = pq.

a)

• By Markov's inequality:

$$\mathbb{P}\Big[|\hat{p} - p| > \epsilon\Big] \leqslant \mathbb{P}\Big[\hat{p} - p > \epsilon\Big] \leqslant \frac{\mathbb{E}[\hat{p} - p]}{\epsilon} = \frac{\mathbb{E}[\hat{p}] - p}{\epsilon} = 0$$

Hence, \hat{p} is consistent estimators of p.

Using similar method, we get \hat{q} and \hat{r} are consistent estimator of q and r, respectively.