Thermodynamics Worksheet #2: An ideal gas in a Carnot cycle

As in the previous worksheet, we start with a sample of diatomic N_2 gas at pressure $P_a = 10^5 \text{ N/m}^2$ (about 1 atm), volume $V_a = 1$ liter, and temperature $T_a = 300 \text{ K}$. From before, this gives $nR = \left(\frac{1}{3}\right) \text{ J/K}$, or n = 0.0401 moles. As before, we heat the gas to a maximum temperature of 1800 K, but here we do so in one step, a single adiabatic compression.

1. Recalling that PV^{γ} is constant for an adiabatic process, where $\gamma = C_P/C_V$, what is the final volume V. 2. (Answer: $V_V = 1.134 \times 10^{-5} \text{ m}^3$)

$$V_{b}? \text{ (Answer: } V_{b} = 1.134 \times 10^{-5} \text{ m}^{3}.\text{)}$$

$$V_{b}^{Y} = P_{a}V_{a}^{Y}$$

$$V_{b}^{Y} = \frac{P_{a}V_{a}^{Y}}{P_{b}}$$

$$V_{b}^{Y} = \frac{P_{a}V_{a}^{Y}}{P_{b}}$$

$$V_{b} = \frac{P_{a}V_{a}$$

2. What are ΔE_{ab} , W_{ab} , and Q_{ab} ? Go ahead and start filling out the table on the next page if you like. Also, the table at the top of this page may help you keep your thoughts organized.

$$Q_{ab} = 0$$
, because its adiabatic.
 $\Delta E_{ab} = \frac{5}{2} \pi R \Delta T = 1250 J$
 $W = \Delta E_{ab} = 1250 J$

(Kudos to Arsalan for this!)

$$\frac{P_b}{P_b} = \left(\frac{V_b}{V_a}\right)^{\gamma}$$

$$\frac{nRT_a/V_a}{nRT_b/V_b} = \left(\frac{V_b}{V_a}\right)^{\gamma}$$

$$\frac{T_a}{T_b} = \left(\frac{V_b}{V_a}\right)^{8-1}$$

$$V_b = V_a \left(\frac{I_a}{T_b}\right)^{\frac{1}{2}-1} = \left(10^{-3} \text{ m}^3\right) \left(\frac{300 \text{ k}}{1800 \text{ k}}\right)^{\frac{7}{5}-1}$$

$$V_b = 1.134 \times 10^{-5} \, \text{m}^3$$

3. In the process $b \to c$, the gas is expanded isothermally to a new volume, $V_c = 1.6918 \times 10^{-5} \text{ m}^3$. Calculate ΔE_{bc} , W_{bc} , and Q_{bc} for this process. (This particular value for V_c makes the numbers in the table turn out pretty. You'll see.)

turn out pretty. You'll see.)

$$\Delta E_{bc} = 0, \text{ because process is isothermal.}$$

$$W_{bc} = -\int PJV = -\int \frac{nRT}{V} dV = -nRT \int_{V_b}^{V_c} \frac{1}{V} dV = -nRT \ln \frac{V_c}{V_b} = -240J$$

 $Q_{L_c} = -W_{L_c} = + 240 \text{ J}$ 4. Now the gas is expanded adiabatically back to $T_d = 300 \text{ K}$. Find V_d , and also find ΔE_{cd} , W_{cd} , and

Qca. As in problem 1:
$$V_{d} = \left(\frac{P_{c}V_{c}}{nRT_{d}}\right)^{\frac{1}{8-1}} = 1.492 \times 10^{-3} \, \text{m}^{3}$$

or $V_{d} = V_{c} \left(\frac{T_{c}}{T_{d}}\right)^{\frac{1}{8-1}} = 1.492 \times 10^{-3} \, \text{m}^{3}$

$$\Delta E_{cd} = \frac{5}{3} \, nR\Delta T = -1250 \, \text{T}$$

5. Finally, the gas is compressed isothermally back to V_a . Find ΔE_{da} , W_{da} , and Q_{da} .

When the pass is compressed isothermany obtained
$$V_a$$
. The V_a is V_a in V_a

6. If you haven't done so already, complete the following table:

	ΔΕ	W	Q
$a \rightarrow b$	+12507	+12507	0
$b \rightarrow c$	0	-2405	+2405
$c \rightarrow d$	-1250J	-12507	0
$d \rightarrow a$	O	+405	-405
NET:	0	-200 J	+2005+

- 7. Compare the table on page 2 of this worksheet with the table on the previous thermodynamics worksheet, for a rectangular cycle.
- a) What is the Net work done by the gas in each case?

$$W_{RECT} = +200$$
 T $W_{CARNOT} = +200$ T

b) What is the total heat Q_{IN} put into the gas from the hot reservoir?

$$|Q_{IN}| = 1400T + 250T$$
 $|Q_{IN}| = 240 T$ $|Q_{IN}| = 1650 T$

c) What is the total heat Q_{OUT} dumped into the cold reservoir in each process?

$$\left|Q_{OUT}\right| = 1450 \text{ T}$$
 $\left|Q_{OUT}\right| = 40 \text{ T}$

d) Which heat engine is more efficient? That is, which heat engine does the most work per ton of coal burned?

For this Earnot cycle,
$$\frac{W_{NET}}{Q_{in}} = \frac{200J}{240J} = 0.83$$
.

For the rectangular cycle,
$$\frac{W_{NET}}{Q_{in}} = \frac{200J}{1650J} = 0.12$$
. The Carnot cycle is much more efficient.