

Continuité À rendre le le 29 avril 2016

Soit $n \in \mathbb{N}^*$ et h_n la fonction définie sur \mathbb{R}_+ par :

$$\forall x \in \mathbf{R}_+ \quad h_n(x) = x^n \sqrt{\frac{x^3}{x+1}}.$$

- **1.** Étudier les variations de h_n .
- **2.** Établir que h_n réalise une bijection de \mathbf{R}_+ sur un intervalle J que l'on précisera et donner les propriétés de sa bijection réciproque h_n^{-1} .
- **3.** En déduire que pour tout entier naturel n > 0, l'équation $h_n(x) = 1$ admet une unique solution positive ou nulle notée x_n dans la suite.
- **4.** Calculer $h_n(1)$. En déduire que pour tout entier n > 0 : $x_n > 1$.
- **5.** Montrer que $h_n(x_{n+1}) < 1$ et en déduire la monotonie de la suite (x_n) .
- **6.** Montrer que la suite (x_n) converge. Soit ℓ la limite. Prouver que $\ell \geq 1$.
- **7.** Montrer que $x_n = \exp\left(\frac{1}{2n}\ln\left(\frac{1+x_n}{x_n^3}\right)\right)$. En déduire la valeur de ℓ .
- **8.** Soit $\varepsilon_n = x_n \ell$. Trouver un équivalent de ε_n .