ANALISIS EXPLORATORIO 1 CONCESIONARIO DE AUTOS

Alejandra / Giovanny Porras

2025-05-24

Índice

2 Exploracion de datos	
3 Análisis de la variable Marca "Marca de auto"	_

2 Exploracion de datos

- a. Descargar el archivo TABLA_TALLER.xlsx
- b. Cargar el archivo de datos en RStudio

Rta: Carga de datos inicial

```
datos_base <- read_excel("D:/MaestriaAnalitica/BasesAnalitica/gitRepository/Proyecto-02-Autos/BASE/t1fe
kable(head(datos_base, 10, caption = "Datos iniciales"), format = "latex", booktabs = TRUE) %>%
kable_styling(latex_options = c("scale_down", "hold_position"))
```

PERSONA	EDAD	SEXO	ESTATURA	NIVEL ESCOLAR	MARCA DE AUTO	NUMERO DE HIJOS	SALARIO	MASCOTA
NA	NA	NA	NA	NA	NA	NA	NA	NA
NA	NA	NA	NA	NA	NA	NA	NA	NA
PERSONA 1	21	M	1.54	MAESTRÍA	AUDI	0	1200000	SI
PERSONA 2	26	F	1.55	PROFESIONAL	RENAULT	5	1250000	NO
PERSONA 3	30	F	1.6	DOCTORADO	$_{\mathrm{BMW}}$	2	900000	NO
PERSONA 4	31	f	1.7	PROFESIONAL	RENAULT	2	800000	NO
PERSONA 5	35	M	1.71	MAESTRÍA	AUDI	1	950000	NO
PERSONA 6	65	M	1.8	MAESTRÍA	AUDI	1	2000000	SI
PERSONA 7	45	M	1.54	MAESTRÍA	$_{\mathrm{BMW}}$	1	2500000	NO
PERSONA 8	42	F	1.52	PROFESIONAL	RENAULT	1	3500000	SI

c. Describir brevemente la estructura del conjunto de datos: ¿Cuantos clientes estan registrados y que variables incluyen?

```
no_datos_persona <- datos_base %>%
  filter(grep1("PERSONA", PERSONA)) %>%
  count()

cabeceras_datos <- names(datos_base)</pre>
```

Rta: El conjunto de datos tiene 60 clientes registrados e incluyen las varibles PERSONA, EDAD, SEXO, ESTATURA, NIVEL ESCOLAR, MARCA DE AUTO, NUMERO DE HIJOS, SALARIO, MASCOTA .

d. Realizar una exploracion rapida utilizando funciones como head(), tail(), str(), summary(), **Rta:** Los ultimos valores son (tail)

```
ultimos_datos <- tail(datos_base)
kable(head(ultimos_datos, 10, caption = "Datos ultima posicion"), format = "latex", booktabs = TRUE) %>
```

PERSONA	EDAD	SEXO	ESTATURA	NIVEL ESCOLAR	MARCA DE AUTO	NUMERO DE HIJOS	SALARIO	MASCOTA
PERSONA 55	30	F	1.54	MAESTRÍA	CHEVROLET	2	2400000	SI
PERSONA 56	39	M	1.58	MAESTRÍA	AUDI	1	2600000	NO
PERSONA 57	34	F	1.6	DOCTORADO	$_{\mathrm{BMW}}$	1	3500000	SI
PERSONA 58	24	f	1.7	PROFESIONAL	RENAULT	3	800000	SI
PERSONA 59	20	\mathbf{M}	1.71	MAESTRÍA	AUDI	0	850000	NO
PERSONA 60	10	M	1.8	PROFESIONAL	AUDI	0	1000000	NO

Funciones adicionales:

```
#print(str(datos_base))
#print(dim(datos_base))
#print(colnames(datos_base))
print(summary(datos_base))
```

```
##
      PERSONA
                            EDAD
                                               SEXO
                                                                 ESTATURA
##
    Length:62
                       Length:62
                                           Length:62
                                                               Length:62
    Class :character
                       Class :character
                                           Class :character
                                                               Class : character
##
    Mode :character
                       Mode :character
                                           Mode :character
                                                               Mode :character
##
##
##
##
                       MARCA DE AUTO
                                           NUMERO DE HIJOS
                                                                  SALARIO
##
  NIVEL ESCOLAR
  Length:62
                       Length:62
                                           Length:62
                                                                      : 800000
##
                                                               Min.
  Class : character
                       Class : character
                                           Class : character
                                                               1st Qu.:2000000
##
##
    Mode :character
                       Mode :character
                                           Mode :character
                                                               Median :3450000
                                                               Mean
##
                                                                      :3286667
##
                                                               3rd Qu.:4700000
##
                                                               Max.
                                                                      :6500000
                                                               NA's
##
##
      MASCOTA
##
    Length:62
    Class : character
##
    Mode : character
##
##
##
##
```

e. Identificar si hay datos faltantes y cuantificar cuantos son en toal y por variable

```
#is.na(datos_base)
total_na = datos_base %>% is.na %>% sum()
#Contar NA por columna(variable)
na_por_columna <- colSums(is.na(datos_base))
tabla_na <- data.frame(</pre>
```

```
Variable = names(na_por_columna),
  total_na = as.vector(na_por_columna)
)

#Contar NA total
#rowSums(is.na(datos_base))

#Impresion de tabla
#kable(tabla_na, caption = "Variables faltantes por cuantificar") %>%

# kable_styling(full_width = FALSE, position = "left")
```

Rta: - El numero de total de datos faltantes es 24 y por variable son los siguientes:

Table 1: Variables faltantes por cuantificar

Variable	total_na
PERSONA	2
EDAD	2
SEXO	3
ESTATURA	2
NIVEL ESCOLAR	3
MARCA DE AUTO	4
NUMERO DE HIJOS	3
SALARIO	2
MASCOTA	3

- Analisis: Hay problemas de datos en todas las variables sera importante discriminar cada caso
- f. Comentar sobre los posibles problemas en los datos:

Filas vacías al inicio del archivo: - Las dos primeras filas están vacías o no contienen datos válidos. Inconsistencias categóricas:

- Variabilidad en la codificación de la variable SEXO, con valores como f, mujer, hombre, nan o minúsculas inconsistentes.
- Formatos no estandarizados en NIVEL ESCOLAR, como el uso de PhD en lugar de DOCTORADO.
- Uso de minúsculas en valores de MARCA DE AUTO, como renault.

Valores faltantes:

• Algunas filas tienen múltiples variables vacías, como en el caso de la PERSONA 24.

Valores extremos o anómalos (outliers):

- PERSONA 31: valor de ESTATURA = 3.45 m, fuera del rango fisiológico normal.
- PERSONA 33: valor de NUMERO DE HIJOS = 54, ampliamente fuera del promedio observado (3.03).

3 Análisis de la variable Marca "Marca de auto".

a. Evaluar la variable "MARCA DE AUTO" y determinar si hay faltantes.

```
#datos_base$`MARCA DE AUTO`(is.na)
#(is.na(datos_base$`MARCA DE AUTO`))
data_na_marca_autos <- sum(is.na(datos_base$`MARCA DE AUTO`))</pre>
```

Rta: Se tratan datos faltantes y se encuentran un total de 4; se realiza tratamiento de datos remplazando los "na"/"NA" a "NO_MANEJA", se convierte todo mayúsculas.

```
Sys.setlocale("LC_ALL", "Spanish_Colombia.UTF-8")
```

[1] "LC_COLLATE=Spanish_Colombia.utf8;LC_CTYPE=Spanish_Colombia.utf8;LC_MONETARY=Spanish_Colombia.ut

```
#Eliminar columna 1, 2

datos_base <- datos_base[-c(1,2), ]

#Datos Eliminados

#print(datos_base)

na_marca_autos <- sum(is.na(datos_base$`MARCA DE AUTO`))

# PERSONA 13, 32, 49, NA y datos vacios

datos_base$`MARCA DE AUTO`[is.na(datos_base$`MARCA DE AUTO`) | datos_base$`MARCA DE AUTO`

# PERSONA 39 cambia FOR A FORD

datos_base$`MARCA DE AUTO`[ datos_base$`MARCA DE AUTO` == "FOR"] <- "FORD"

# PERSONA 40 cambia BWM A BMW

datos_base$`MARCA DE AUTO`[ datos_base$`MARCA DE AUTO` == "BWM"] <- "BMW"

#print(datos_base)

# PERSONA 36 cambio a mayuscula marca

datos_base$`MARCA DE AUTO` <- toupper(datos_base$`MARCA DE AUTO`)

print(datos_base)
```

```
## # A tibble: 60 x 9
                 EDAD
                       SEXO ESTATURA 'NIVEL ESCOLAR' 'MARCA DE AUTO'
##
      PERSONA
##
      <chr>
                 <chr> <chr> <chr>
                                       <chr>
                                                       <chr>>
##
    1 PERSONA 1
                 21
                              1.54
                                       MAESTRÍA
                                                       AUDI
                       F
##
   2 PERSONA 2
                 26
                             1.55
                                       PROFESIONAL
                                                       RENAULT
  3 PERSONA 3
                             1.6
                                       DOCTORADO
                                                       BMW
  4 PERSONA 4
                             1.7
                                       PROFESIONAL
##
                 31
                       f
                                                       RENAULT
##
   5 PERSONA 5
                 35
                       Μ
                             1.71
                                       MAESTRÍA
                                                       AUDI
##
  6 PERSONA 6
                                       MAESTRÍA
                                                       AUDI
                 65
                       Μ
                             1.8
  7 PERSONA 7
                                       MAESTRÍA
##
                 45
                       М
                             1.54
                                                       BMW
##
  8 PERSONA 8
                42
                       F
                             1.52
                                       PROFESIONAL
                                                       RENAULT
## 9 PERSONA 9 52
                       F
                             1.51
                                       DOCTORADO
                                                       RENAULT
## 10 PERSONA 10 63
                              1.65
                                       DOCTORADO
                                                       RENAULT
## # i 50 more rows
## # i 3 more variables: 'NUMERO DE HIJOS' <chr>, SALARIO <dbl>, MASCOTA <chr>
```

b. Crear un tabla de frecuencias para entender la popularidad de las diferentes marcas entre los cliente. **Rta:** En la tabla de frecuencias se observa que las marcas más populares son AUDI, CHEVROLET, RENAULT y BMW. Los tres usuarios que no tienen la categoría ""SIN_CONFIRMAR"" se identificaron como personas a partir de 50 años

```
tabla_frecuencias_autos <- as.data.frame(table(datos_base$`MARCA DE AUTO`))
names(tabla_frecuencias_autos) <- c("MARCA DE AUTO", "Frecuencia")
#Organizar Mayor a menor
tabla_frecuencias_autos <- tabla_frecuencias_autos %>% arrange(desc(Frecuencia))
print(tabla_frecuencias_autos)
```

```
##
     MARCA DE AUTO Frecuencia
## 1
               AUDI
                             13
## 2
           RENAULT
                             13
## 3
                BMW
                             12
## 4
         CHEVROLET
                             12
                              7
## 5
               FORD
                              3
## 6 SIN_CONFIRMAR
```

c. Generar graficos de barras y de tortas para visualizar la distribución de las marcas de autos y proporcionar una interpretación. **Rta:** Se identifica que las marcas de vehiculos preferidas por los clientes del concesionario son **AUDi** y **RENAULT**; se observa una segmentación igual por pares entre las entre AUDI/RENAULT y CHEVROLET/BMW

Rta: La preferencia de vehículos esta distribuida entre 4 marcas que suman 83% de la muestra, estas cuatro marcas a su vez representan dos segmentos que se reparten en el mismo porcentaje 21%/21% y 20%/20%.

d. Concluir cuál es la marca de auto más popular entre los clientes. **Rta:** Se concluyen que AUDI y RENAULT son las marcas lideres con una distribución uniforme en el los clientes del concesionario en un porcentaje del 21.7 entre ambas ocupan el 42.4%.

tabla_frecuencias_autos\$Porcentaje <- round(tabla_frecuencias_autos\$Frecuencia/sum(tabla_frecuencias_autos)
print(tabla_frecuencias_autos)

```
MARCA DE AUTO Frecuencia Porcentaje
##
## 1
              AUDI
                           13
## 2
           RENAULT
                                    21.7
                           13
## 3
                           12
                                    20.0
               BMW
## 4
         CHEVROLET
                           12
                                    20.0
## 5
              FORD
                            7
                                    11.7
## 6 SIN_CONFIRMAR
                            3
                                     5.0
tabla_frecuencias_autos$`MARCA DE AUTO` <- factor(</pre>
  tabla_frecuencias_autos$`MARCA DE AUTO`,
  levels = tabla_frecuencias_autos$`MARCA DE AUTO`[order(-tabla_frecuencias_autos$Frecuencia)]
)
# Crear el grafico circular de MARCAS AUTOS
ggplot(tabla_frecuencias_autos, aes(x = "", y = Frecuencia, fill = `MARCA DE AUTO`)) +
  geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start = 0) +
  geom_text(aes(label = paste0(Porcentaje, "%")),
            position = position_stack(vjust = 0.5),
            size = 4,
            color = "black",
            fontface = "bold") +
  labs(title = "Distribucion Marcas de Autos",
       fill = "MARCA DE AUTO") +
  scale_fill_brewer(palette = "Paired") + # Usando paleta predefinida
  theme_void() +
  theme(legend.position = "right",
        plot.title = element_text(hjust = 0.5, face = "bold"))
```

Distribucion Marcas de Autos

