

Questionnaire Contrôle périodique

MTH1102D

MTH1102D				
			Réservé	
	<u></u>		7	/9
	22	2	6.5	/9
	23	3	5	/8
	24	1	7.5	/9
	/ io	tal	26	/35

L'étudiant doit honorer l'engagement pris lors de la signature du code de conduite.

Question 1 [9 points]

Évaluez les intégrales suivantes.

a)
$$J_1 = \int_0^{\pi} \int_{2x}^{2\pi} y^4 \sin(xy^2) dy dx$$
.

b)
$$J_2 = \iint_D \left[xy^2 + \frac{xy}{10 + xy^2 + y^4} \right] dA$$
,

où D est le domaine borné par les droites y = -x, y = x et la parabole $x = 2 - y^2$.

ATTENTION : rien au-dessus de cette ligne ne sera corrigé. Écrivez votre solution ci-dessous.

Solution et réponse :

On va faire un changement de borne et changement d'ordre d'intégration.

 $0 \le x \le T$, $2x \le y \le 2T$

$$y = 2x \rightarrow x = y$$

$$0 \le x \le y$$
, $0 \le y \le 2\pi$

$$J_1 = \int_0^{2\pi} \int_0^{2\pi} y^4 \sin(xy^2) dx dy$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} y^{2} \sin(u) du dy$$

$$= -\int_{0}^{2\pi i} y^{2} \cos(xy^{2}) \Big|_{0}^{1/2} dy = -\int_{0}^{2\pi i} y^{2} \cos(y^{3}) - \int_{0}^{2\pi i} y^{2} \cos(y^{3}) dy$$

$$U = \chi y^2$$

$$du = y^2 d\chi$$

$$-\int_{0}^{2\pi i} y^{2} \cos(y^{3}) - \int_{0}^{2\pi i} dy = 0$$

Département de mathématiques et de génie industrie

Ainsi on sait que

Calcul II - MTH1102D

Calcul II - MTH1102D

Les bornes de y: On peut utiliser la symétrie y=x y=-x pour dire que les bornes sont:

 $x = 2-y^2$ $y = \sqrt{2}-x$ Doisque les régions D, e

puisque les régions D, et D2 aurons le

On aura donc l'intégrale: meme a $2 \times \sqrt{12-x^2}$ dy dx =D $\frac{2}{3} \int_{x}^{2} x y^3 \left| \sqrt{12-x^2} \right| dx$

 $= 0 \frac{2}{3} \int \chi ((\sqrt{2} - \chi^{3})^{3} - \chi^{3}) d\chi = 0 \frac{2}{3} \int \chi (\sqrt{2} - \chi^{7})^{3} - \chi^{4} d\chi$

 $= D \frac{2}{5} \int x \sqrt{2-x} dy - \int x dx = D \frac{2}{5} \int x \sqrt{2-x} dy - \frac{x5}{5} \int x \sqrt{2-x} dy - \frac{x5}{5} \int x \sqrt{2-x} dy = \frac{x5}{5} \int x \sqrt{2-x} dy - \frac{x5}{5} \int x \sqrt{2-x} dy = \frac{x5}{$

 $= \sum_{3} \sum_{0}^{1} x (\sqrt{2} + x)^{3} dx - \frac{2^{6}}{15} = D$

U= 2-x

Département de mathématiques et de génie industri<u>el</u>

Calcul II - MTH1102D

Contrôle périodique - Été 2023

Question 2 [9 points]

Soit D la région du plan située à l'intérieur du cercle $x^2 + y^2 = 2$ et à l'extérieur du cercle $x^2 + (y-1)^2 = 1$. La région D est représentée ci-dessous.

- a) Calculez l'aire de D.
- b) Évaluez l'intégrale suivante

$$J_3 = \iint_D \frac{y}{\sqrt{x^2 + y^2}} \, dA.$$

Solution et réponse: On utilise les conviers polities $\chi = r \cos \theta$

Solution et réponse: Un utilité les bornes de $r d\theta$ $\chi = r \cos \theta$ $\chi^2 + y^2 = 2 = D r^2 = 2 = D r = \sqrt{2}$ $D_1 = \int \int r dr d\theta = \int \frac{r^2}{2} \int_{0}^{2\pi} d\theta = \int \frac{2\pi}{4} d\theta = D 2\pi - \pi = \pi$

D2 & D3: Les deux sont des rigions symittiques On trouve quand les 2 cercles sinherectronn.

grant code: r = 12

path circle: x2+y2-ly +1=1=1 x1+y2-24=0 $rl-2 rsin\theta = ()$

r(r-2sin0)=0 = r=2sm0

Département de mathématiques et de génie industrie

Calcul II - MTH1102D

$$\begin{array}{lll}
& \text{Tr} = \sqrt{2} \\
& \text{Tr} = 2\sin\theta = D
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\sin\theta = D
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\sin\theta = D
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\sin\theta
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta
\end{array}$$

$$\begin{array}{lll}
& \text{Tr} = 2\cos\theta$$

$$\begin{array}{lll}
& \text{$$

Département de mathématiques et de génie industriel

Calcul II - MTH1102D

b)
$$J_1 = \int \int \frac{d}{\sqrt{2}} dA = D$$

$$\int \int \frac{d}{\sqrt{2}} \int \frac{d}{\sqrt{2}} dA = D$$

$$\int \int \frac{d}{\sqrt{2}} \int \frac{d}{\sqrt$$

Contrôle périodique - Été 2023

Question 3 [8 points]

Calculez le volume de la région E de l'espace bornée par le cylindre parabolique $z = 5 - y^2$ et les plans z = 0, z = x + 2 et z = 3x.

Département de mathématiques et de génie indus

 $Calcul\ II\ -\ MTH1102D$

Question 4 [9 points]

On considère un solide sphérique possédant une cavité conique, comme illustré ci-dessous. Ce solide occupe la région B située à l'intérieur de la sphère d'équation $x^2 + y^2 + (z - 2)^2 = 4$ et sous le cône d'équation $z = \sqrt{3(x^2 + y^2)}$. La densité du solide est proportionnelle au carré de la distance à l'origine. La région B est représentée ci-dessous.

Soit m la masse du solide B.

- a) Exprimez m comme une intégrale en coordonnées cylindriques. On ne demande PAS ici d'évaluer cette intégrale.
- b) Exprimez m comme une intégrale en coordonnées sphériques. On ne demande PAS ici d'évaluer cette intégrale.
- c) Calculez maintenant la masse m dans le système de coordonnées de votre choix.

ATTENTION : rien au-dessus de cette ligne ne sera corrigé. Écrivez votre solution ci-dessous.

Solution et réponse :

a)
$$\Theta: O \le \Theta \le 2\pi$$

 $r: r^2 + (7-2)^2 = 4 = 0 \quad r^2 + 7^2 - 47 + 4 = 4$
 $r = \sqrt{47 - 7^2} = 0 \quad E = r\sqrt{3} = 0 \quad r = \frac{7}{2}$
 $73^2 \le r \le \sqrt{47 - 7^2} = \frac{7}{2} = 0$
 $73^2 \le r \le \sqrt{47 - 7^2} = \frac{7}{2} = 0$
 $73^2 \le r \le \sqrt{73} = 7^2 = 7$

Département de mathématiques et de génie industriel

Calcul II - MTH1102D

Contrôle périodique - Été 2023

b) $\theta: 0 \leq \theta \leq 2\pi$

 \emptyset

=D
$$p\cos\emptyset = \sqrt{3}p^2\sin^2\emptyset^7 = D$$
 $p\cos\emptyset = p\sin\emptyset\sqrt{3}$

$$= D \frac{1}{\sqrt{3}} = tan \emptyset = D \emptyset = T_6$$

p:

$$p^{2} - 4p \cos \emptyset = 0 \Rightarrow p(p - 4\cos \emptyset) = 0$$

$$2\pi \sqrt{6} + \cos \theta \leq p \leq 4 \cos \theta$$

$$\left(\int_{0}^{\infty} k p p^{2} \sin \theta dp d\theta d\theta \right)$$

3/35

Département de mathématiques et de génie industriel

Calcul II - MTH1102D

C) M rn loor longer springer densite
$$\times$$

25 Th 4000 \times

15 Th 4000 \times

15 Th 4000 \times

16 \times

17 Th 4000 \times

18 \times

18 \times

19 \times

10 \times

10

Polytechnique Montréal
Département de mathématiques et de génie industriel
Calcul II - MTH1102D

page 14

PAGE SUPPLÉMENTAIRE

Contrôle périodique - Été 2023

Utilisez cette page en cas de besoin. Indiquez clairement le numéro de la question.

Polytechnique Montréal Département de mathématiques et de génie ind Calcul II - MTH1102D Contrôle périodique - Été 2023

PAGE SUPPLÉMENTAIRE

Utilisez cette page en cas de besoin. Indiquez clairement le numéro de la question.