Departamento de Engenharia Elétrica - FT - UnB

Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2015.2

Professor: Geovany Araújo Borges

Prova 1: Amplificadores Operacionais e Diodo Ideal- Data: 21/09/2015

Nota:	

Nome:	Matrícula:	

Instruções:

- Explique o desenvolvimento das questões. Resultados sem explicações e sem desenvolvimentos não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- Não é permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (*i.e.*, fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Amplificador operacional:

Modelo de primeira ordem (domínio s):

$$V_S(s) = \frac{A_0}{1 + \frac{s}{\omega_h}} \cdot (V_2(s) - V_1(s)),$$

no qual ω_b é a frequência de corte de malha aberta e $\omega_t = \omega_b \cdot A_0$ é a frequência de transição. As imperfeições DC são desprezadas.

Modelos de ordem zero (domínio de tempo):

 $v_S = A \cdot (v_2 - v_1)$, considerando ganho finito de malha aberta, e desconsiderando V_{OS} .

 $v_S = A \cdot (v_2 - v_1 + V_{OS})$, considerando ganho finito de malha aberta e imperfeição DC V_{OS} .

Sobre as imperfeições DC de corrente de entrada:

$$I_B = \frac{I_{B1} + I_{B2}}{2}.$$
 $I_{OS} = |I_{B1} - I_{B2}|.$

Amplificador operacional ideal: modelo de ordem zero com ganho A infinito, sem imperfeições DC e sem slew-rate.

Ouestões:

- 1. Considerando o circuito da Figura 1, responda:
 - (a) Supondo um amplificador operacional com modelo de ordem zero com ganho finito, determine a relação entre a tensão de saída v_s e a tensão de entrada v_e (**pontos: 1,0**).
 - (b) Para analisar a influência da tensão de deslocamento V_{OS} sobre v_s , considera-se um AMPOP com ganho A infinito. Assim, determine a relação entre V_{OS} e v_s (**pontos: 1,0**).

Figura 1: Circuito da questão 1.

Figura 2: Circuito da questão 2.

- (c) Uma forma de minimizar a influência V_{OS} para este circuito seria transformá-lo em um amplificador AC para v_e . Isso seria feito colocando um capacitor de capacitância C em série co v_e . Analise tal amplificador e determine a influência de V_{OS} sobre v_s considerando um AMPOP com ganho A infinito (**pontos: 1,0**).
- 2. O circuito da Figura 2 pode ser usado para medir tensões AC elevadas, do tipo $v_e(t) = V_E \sin(\omega_E t)$. No entanto, alguns cuidados devem ser tomados no seu projeto, de modo que as condições abaixo sejam satisfeitas:
 - Condição 1: Intervalo aceitável da tensões na entrada não-inversora: $v_L^- < v_2(t) < v_L^+;$
 - Condição 2: Intervalo aceitável da tensões na saída, de forma que esta não sature: $v_L^- < v_s(t) < v_L^+$;
 - Condição 3: Limitação devido ao *slew-rate*: $dv_s/dt < SR$;
 - Condição 4: $v_e(t)$ deve ter uma freqüência ω_E dentro da banda passante do amplificador AC (considerando modelo de primeira ordem para o AMPOP).

Diante do exposto acima, um engenheiro deve determinar relações entre os diferentes parâmetros de modo a projetar o amplificador AC para $v_e(t) = V_E \sin(\omega_E t)$. Responda:

(a) Determine a restrição que se aplica entre R_A e R_B de modo que seja satisfeita Condição 1 (**pontos: 0,5**). Desconsidere o efeito de imperfeições DC e suponha um AMPOP com ganho infinito.

- (b) Determine a restrição que se aplica a R_2/R_1 de modo que seja satisfeita Condição 2 (**pontos: 1,0**). Desconsidere o efeito de imperfeições DC e suponha um AMPOP com ganho infinito.
- (c) Que relação garante que não haja deformação em v_s devido ao *slew-rate* (**pontos: 1,0**).
- (d) Considerando um AMPOP com modelo de primeira ordem, determine a função de transferência $V_s(s)/V_e(s)$ (**pontos: 1,0**) e indique claramente o ganho DC (**pontos: 0,5**) e a freqüência de corte (**pontos: 0,5**). Se usar aproximações, indique qual.
- 3. Considerando que os diodos do circuito da Figura 3 sejam ideais, analise o circuito e determine as tensões v_1 e v_2 , e a corrente i_{12} (**pontos: 2,5**).

Figura 3: Circuito da questão 3.

BOA PROVA!