

# **QSAR** modeling of growth inhibition

Egon Willighagen 2011-08-12

#### **Data and Goal**



#### Compounds

- 230 drugs → molecular descriptors
  - logP, number of acidic groups, etc

#### Activities

- log GI<sub>50</sub> values (between -7 and -4), where GI<sub>50</sub> is in molar
  - GI<sub>50</sub> is the dose where the growth is inhibited 50%
- Three cell lines: HL60, PC3, MCF7

#### Toxic molecules

- $\rightarrow$  low(er) log GI<sub>50</sub> values. That is log GI<sub>50</sub> < -5
- → Toxic: ~20%, non-toxic: ~80%

### Toxic vs non-toxic





Density plots for all (black), toxic (red), and non-toxic (green) Compounds (relative).

Egon Willighagen

## Larger molecules more toxic?





Toxic (1) and non-toxic (-1) as function of the molecule weight. A small shoulder is visible, but not enough to get regression (see next slide).

# Toxicity cannot be predicted for our molecular structures





Receiver Operator curve plot, which should show a steeply ascending curve.

Classification methods cannot predict if a compound is toxic.

## The "best" descriptors...





Skeletal variation

Number of double bonded carbons

Even the best QSAR descriptors show little correlation (0.38 and 0.4).

We saw the same for Molecular weight earlier.

## Structural diversity is too high?



#### **Similarities**



Structure are likely too dissimilar that there are no structure activity patterns.

# **Structure diversty**





Egon Willighagen