Statistique

Corinne Mailhes et Jean-Yves Tourneret⁽¹⁾

(1) Université de Toulouse, ENSEEIHT-IRIT-TeSA

Corinne.Mailhes@tesa.prd.fr et jyt@n7.fr

Plan du cours

Chapitre 1 : Convergence et théorèmes limites

Chapitre 2 : Estimation

Chapitre 3: Tests Statistiques

Bibliographie

- B. Lacaze, M. Maubourguet, C. Mailhes et J.-Y. Tourneret,
 Probabilités et Statistique appliquées, Cépadues, 1997.
- Athanasios Papoulis and S. Unnikrishna Pillai, Probability, Random Variable and Stochastic Processes, McGraw Hill Higher Education, 4th edition, 2002.

Convergence en loi

Définition

La suite de va $X_1, ..., X_n$ converge en loi vers la va X si et ssi la suite des fonctions de répartition $F_n(x) = P[X_n < x]$ converge simplement vers F(x) = P[X < x] en tout point x où F est continue.

Notation

$$X_n \xrightarrow[n \to \infty]{\mathcal{L}} X$$

Exemple

$$P[X_n = 1] = \frac{1}{n} \text{ et } P[X_n = 0] = 1 - \frac{1}{n}$$

Convergence en loi

Propriétés

Théorème de Levy X_n cv en loi vers X si et ssi ϕ continue en t=0 et

$$\phi_n(t) = E\left[e^{itX_n}\right] \underset{n\to\infty}{\longrightarrow} \phi(t) = E\left[e^{itX}\right], \forall t.$$

- Si X_n est une suite de va continues de densités $p_n(x)$ et que $p_n(x) \underset{n \to \infty}{\longrightarrow} p(x)$ p.p., alors $X_n \overset{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} X$.
- Si $X_n \overset{\mathcal{L}}{\underset{n \to \infty}{\longrightarrow}} X$ et $g : \mathbb{R} \to \mathbb{R}$ continue, alors

$$g(X_n) \xrightarrow[n \to \infty]{\mathcal{L}} g(X).$$

Convergence en probabilité

Définition

La suite de va $X_1, ..., X_n$ converge en probabilité vers la va X si et ssi $\forall \epsilon > 0$, on a

$$P[|X_n - X| > \epsilon] \underset{n \to \infty}{\longrightarrow} 0.$$

Notation

$$X_n \xrightarrow[n \to \infty]{\mathcal{P}} X$$

- Exemple : X_n de densité $p_n(x) = \frac{ne^{-nx}}{(1+e^{-nx})^2}$.
- Propriété

Si
$$X_n \overset{\mathcal{P}}{\underset{n \to \infty}{\longrightarrow}} X$$
 et $g : \mathbb{R} \to \mathbb{R}$ continue, alors

$$g(X_n) \xrightarrow[n \to \infty]{\mathcal{P}} g(X).$$

Convergence en moyenne quadratique

Définition

La suite de va $X_1, ..., X_n$ converge en moyenne quadratique vers la va X si et ssi

$$E\left[(X_n-X)^2\right] \underset{n\to\infty}{\longrightarrow} 0.$$

Notation

$$X_n \xrightarrow[n \to \infty]{\mathcal{MQ}} X$$

Exemple

$$P[X_n = n] = \frac{1}{n^p} \text{ et } P[X_n = 0] = 1 - \frac{1}{n^p}$$

avec
$$p=2$$
 et $p=3$.

Convergence presque sûre

Définition

La suite de va $X_1, ..., X_n$ converge presque sûrement vers la va X si et ssi

$$X_n(\omega) \underset{n \to \infty}{\longrightarrow} X(\omega), \quad \forall \omega \in A | P(A) = 1.$$

Notation

$$X_n \xrightarrow[n \to \infty]{\mathcal{PS}} X$$

Comparaison entre les différents types de convergence

Loi faible des grands nombres

Loi faible des grands nombres

Si $X_1,...,X_n$ sont des va indépendantes et de même loi de moyenne $E\left[X_k\right]=m<\infty$, alors la va

$$\overline{X}_n = \frac{1}{n} \sum_{k=1}^n X_k$$
 converge en probabilité vers m .

Preuve

$$\varphi_{\overline{X}_n}(t) = E\left[e^{it\frac{1}{n}\sum_{k=1}^n X_k}\right] = E\left[\prod_{k=1}^n e^{i\frac{t}{n}X_k}\right] = \left[\varphi\left(\frac{t}{n}\right)\right]^n$$

Dév. de Taylor de ϕ

$$\varphi(t) = \varphi(0) + t\varphi'(0) + t\lambda(t) = 1 + itm + t\lambda(t)$$

Preuve

On en déduit

$$\ln\left[\varphi_{\overline{X}_n}\left(t\right)\right] = n\ln\left[1 + i\frac{t}{n}m + \frac{t}{n}\lambda\left(\frac{t}{n}\right)\right] = n\left[i\frac{t}{n}m + \frac{t}{n}\lambda\left(\frac{t}{n}\right)\right]$$

ďoù

$$\lim_{n \to \infty} \varphi_{\overline{X}_n}(t) = e^{itm} \qquad \forall t$$

i.e.,

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathcal{L}} m \Leftrightarrow \overline{X}_n \xrightarrow[n \to \infty]{\mathcal{P}} m$$

Loi forte des grands nombres

- Loi forte des grands nombres
 - Si $X_1,...,X_n$ sont des va indépendantes et de même loi de moyenne $E\left[X_k\right]=m<\infty$ et de variance $\sigma^2<\infty$, alors la va $\overline{X}_n=\frac{1}{n}\sum_{k=1}^n X_k$ converge en moyenne quadratique vers m.
- Preuve

$$E\left[\left(\overline{X} - m\right)^{2}\right] = \frac{1}{n^{2}} \sum_{k=1}^{n} \sum_{l=1}^{n} E\left[\left(X_{k} - m\right)\left(X_{l} - m\right)\right]$$

Mais

$$E\left[\left(X_{k}-m\right)\left(X_{l}-m\right)\right]=\left\{ \begin{array}{l} \sigma^{2}\sin k=l\\ 0\sin k\neq l \end{array} \right.$$

Preuve

Donc

$$E\left[\left(\overline{X}_n - m\right)^2\right] = \frac{\sigma^2}{n} \underset{n \to \infty}{\longrightarrow} 0$$

i.e.,

$$\overline{X}_n \overset{\mathcal{MQ}}{\underset{n \to \infty}{\to}} m$$

Théorème de la limite centrale

- Théorème de la limite centrale
 - Si $X_1,...,X_n$ sont des va indépendantes et de même loi de moyenne $E\left[X_k\right]=m<\infty$ et de variance $\sigma^2<\infty$, alors la va centrée réduite $Y_n=\frac{\sum_{k=1}^n X_k-nm}{\sqrt{n\sigma^2}}$ converge en loi vers la loi normale $\mathcal{N}(0,1)$.
- Preuve

$$\varphi_{Y_n}(t) = E\left[e^{itY_n}\right] = e^{-\frac{itm\sqrt{n}}{\sigma}} \prod_{k=1}^n E\left[e^{i\frac{t}{\sigma\sqrt{n}}X_k}\right]$$

Mais

$$E\left[e^{i\frac{t}{\sigma\sqrt{n}}X_k}\right] = \varphi\left(\frac{t}{\sigma\sqrt{n}}\right)$$

Preuve

Donc

$$\ln \left[\varphi_{Y_n}\left(t\right)\right] = -\frac{itm\sqrt{n}}{\sigma} + n\ln\varphi\left(\frac{t}{\sigma\sqrt{n}}\right)$$

En utilisant le développement de Taylor de φ

$$\varphi(t) = \varphi(0) + t\varphi'(0) + \frac{t^2}{2}\varphi''(0) + t^2\lambda(t)$$

On en déduit

$$\ln\left[\varphi_{Y_n}\left(t\right)\right] = -\frac{t^2}{2} + \frac{t^2}{n}\lambda\left(\frac{t}{\sigma\sqrt{n}}\right)$$

$$\lim_{n \to \infty} \varphi_{Y_n}(t) = e^{-\frac{t^2}{2}} \qquad \forall t \iff Y_n \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0,1)$$

Que faut-il savoir?

- Convergence en loi ?
- Convergence en moyenne quadratique ?
- $= \frac{1}{n} \sum_{k=1}^{n} X_k$ converge en probabilité vers ? Conditions ?
- $\frac{1}{n} \sum_{k=1}^{n} X_k$ converge en moyenne quadratique vers ? Conditions ?
- $Y_n = \frac{\sum_{k=1}^n X_k ?}{?}$ converge en loi vers ?

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Modèle Statistique

Observations

$$x_1,...,x_n$$

Échantillon

$$X_1, ..., X_n$$

n va iid associées aux observations

Estimateur

$$\widehat{\theta}(X_1,...,X_n)$$
 ou $\widehat{\theta}_n$ ou $\widehat{\theta}$

Modèle 1 : $x_i = a + e_i$ avec $e_i \sim \mathcal{N}(0, \sigma^2)$

Modèle 2 : $x_i = ai + b + e_i$ avec $e_i \sim \mathcal{N}(0, \sigma^2)$

Modèle 3: $x_i = a\cos(i\phi) + e_i$ avec $e_i \sim \mathcal{N}(0, \sigma^2)$

Altimétrie

Formation de l'écho altimétrique

Modèle de Brown

Modèle de Brown

Qualités d'un estimateur

- $\theta \in \mathbb{R}$
 - Biais (erreur systématique) : $b_n(\theta) = E\left(\widehat{\theta}_n\right) \theta$
 - Variance

$$v_n(\theta) = E\left[\left(\widehat{\theta}_n - E\left(\widehat{\theta}_n\right)\right)^2\right] = E\left[\widehat{\theta}_n^2\right] - E\left(\widehat{\theta}_n\right)^2$$

Erreur quadratique moyenne (précision)

$$e_n(\theta) = E\left[\left(\widehat{\theta}_n - \theta\right)^2\right] = v_n(\theta) + b_n^2(\theta)$$

CS de convergence : $\widehat{\theta}_n$ est un estimateur convergent si $\lim_{n\to +\infty}b_n(\theta)=\lim_{n\to +\infty}v_n(\theta)=0$

Qualités d'un estimateur

- $oldsymbol{\theta} \in \mathbb{R}^p$
 - Biais

$$b_n(\boldsymbol{\theta}) = E\left(\widehat{\boldsymbol{\theta}}_n\right) - \boldsymbol{\theta} \in \mathbb{R}^p$$

Matrice de covariance

$$E\left[\left(\widehat{\boldsymbol{\theta}}_{n}-E\left(\widehat{\boldsymbol{\theta}}_{n}\right)\right)\left(\widehat{\boldsymbol{\theta}}_{n}-E\left(\widehat{\boldsymbol{\theta}}_{n}\right)\right)^{T}\right]$$

Exemples

- Exemple 1: $X_i \sim \mathcal{N}(m, \sigma^2)$, $\theta = m$ et σ^2 connue
 - Moyenne empirique

$$\widehat{\theta}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

Autre estimateur

$$\widetilde{\theta}_n = \frac{2}{n(n+1)} \sum_{i=1}^n iX_i$$

- Exemple 2 : $X_i \sim \mathcal{N}(m, \sigma^2)$, $\theta = \sigma^2$, m connue ou inconnue
- Exemple 3: $X_i \sim \mathcal{N}(m, \sigma^2)$, $\boldsymbol{\theta} = (m, \sigma^2)^T$

Mean Square Errors

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Inégalité de Cramér Rao

Vraisemblance

$$L(x_1, ..., x_n; \theta) = \begin{cases} X_i \text{ va discrète} : P[X_1 = x_1, ..., X_n = x_n; \theta] \\ X_i \text{ va continue} : p(x_1, ..., x_n; \theta) \end{cases}$$

- Inégalité pour $\theta \in \mathbb{R}$
 - Définition

$$\operatorname{Var}\left(\widehat{\theta}_{n}\right) \geq \frac{\left[1 + b_{n}'(\theta)\right]^{2}}{-E\left[\frac{\partial^{2} \ln L(X_{1}, \ldots, X_{n}; \theta)}{\partial \theta^{2}}\right]} = \operatorname{BCR}(\theta)$$

 $BCR(\theta)$ est appelée Borne de Cramér Rao de θ

Hypothèses

Log-vraisemblance deux fois dérivable et support de la loi indépendant de θ (contre-exemple : loi $\mathcal{U}[0,\theta]$)

Inégalité de Cramér Rao

Estimateur Efficace : estimateur sans biais tel que

$$\operatorname{Var}\left(\widehat{\theta}_{n}\right)=\operatorname{BCR}(\theta)$$
 (II est unique !)

Exemple: $X_i \sim \mathcal{N}(m, \sigma^2)$, $\theta = m$ et σ^2 connue

• Cas où $(X_1,...,X_n)$ est un échantillon

$$\operatorname{Var}\left(\widehat{\theta}_{n}\right) \geq \frac{\left[1 + b_{n}'(\theta)\right]^{2}}{-nE\left\lceil\frac{\partial^{2}\ln L(X_{1};\theta)}{\partial\theta^{2}}\right\rceil} = \operatorname{BCR}(\theta)$$

Cas multivarié

ullet Inégalité pour un estimateur non biaisé de $oldsymbol{ heta} \in \mathbb{R}^p$

$$\operatorname{Cov}\left(\widehat{\boldsymbol{\theta}}\right) \geq I_n^{-1}(\boldsymbol{\theta})$$

avec $I_{ij} = E\left[-\frac{\partial^2 \ln L(X_1,...,X_n;\theta)}{\partial \theta_i \partial \theta_j}\right]$ pour i,j=1,...,p et $A \geq B$ signifie A-B matrice semi définie positive

$$x^T(A-B)x \ge 0, \quad \forall x \in \mathbb{R}^p$$

On en déduit

$$\operatorname{Var}\left(\widehat{\theta_i}\right) \geq \left[I_n^{-1}(\boldsymbol{\theta})\right]_{ii}$$

Exemple: $X_i \sim \mathcal{N}(m, \sigma^2)$, $\boldsymbol{\theta} = (m, \sigma^2)^T$.

Borne de Cramér-Rao

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Méthode du Maximum de Vraisemblance

Définition

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MV}} = \underset{\boldsymbol{\theta}}{\operatorname{arg\,max}} L(X_1, ..., X_n; \boldsymbol{\theta})$$

Recherche du maximum pour $\theta \in \mathbb{R}$ Si $L(X_1,...,X_n;\theta)$ est régulière, on résoud

$$\frac{\partial L(X_1, ..., X_n; \theta)}{\partial \theta} = 0 \text{ ou } \frac{\partial \ln L(X_1, ..., X_n; \theta)}{\partial \theta} = 0$$

et on vérifie qu'on a bien un maximum en faisant un tableau de variations ou en étudiant

$$\frac{\partial^2 \ln L(X_1, ..., X_n; \widehat{\theta}_{MV})}{\partial \theta^2} < 0$$

Régularité

On dit qu'une variable aléatoire X de densité de probabilité $f(x;\theta)$ est régulière si (voir livre de Lehmann, Theory of Point Estimation)

- Le support de la densité f, i.e., $\{x|f(x;\theta)>0\}$, est indépendant de θ
- $f(x;\theta)$ est au moins trois fois dérivable par rapport à θ
- La vraie valeur de θ appartient à un ensemble compact Θ .

Dans ce cas, la recherche de l'estimateur du maximum de vraisemblance peut se faire en cherchant les racines de

$$\frac{\partial L(X_1, ..., X_n; \theta)}{\partial \theta} = 0 \text{ ou } \frac{\partial \ln L(X_1, ..., X_n; \theta)}{\partial \theta} = 0$$

Méthode du Maximum de Vraisemblance

ullet Recherche du maximum pour $heta \in \mathbb{R}^p$

$$\frac{\partial L(X_1, ..., X_n; \theta)}{\partial \theta_i} = 0 \text{ ou } \frac{\partial \ln L(X_1, ..., X_n; \theta)}{\partial \theta_i} = 0$$

pour
$$i = 1, ..., p$$

- Exemples
 - Exemple 1 : $X_i \sim \mathcal{P}(\lambda)$, $\theta = \lambda$
 - Exemple 2: $X_i \sim \mathcal{N}(m, \sigma^2)$, $\boldsymbol{\theta} = (m, \sigma^2)^T$

Propriétés

Estimateur asymptotiquement non biaisé

$$\lim_{n \to +\infty} E\left[\widehat{\boldsymbol{\theta}}_{\mathsf{MV}}\right] - \boldsymbol{\theta} = 0$$

- Estimateur convergent
- Estimateur asymptotiquement efficace

$$\lim_{n \to +\infty} \frac{\operatorname{Var}\left(\widehat{\theta}_{i}\right)}{\left[I_{n}^{-1}(\boldsymbol{\theta})\right]_{ii}} = 1$$

Normalité Asymptotique

Propriétés

Invariance Fonctionnelle

Si $\mu = h(\theta)$, où h est une fonction bijective d'un ouvert $O \subset \mathbb{R}^p$ dans un ouvert $V \subset \mathbb{R}^p$, alors

$$\widehat{\boldsymbol{\mu}}_{\mathsf{MV}} = h\left(\widehat{\boldsymbol{\theta}}_{\mathsf{MV}}\right)$$

Conclusions

L'estimateur $\widehat{\theta}_{\text{MV}}$ possède beaucoup de bonnes propriétés asymptotiques mais peut être difficile à étudier car il est la solution d'un problème d'optimisation.

Remarques sur la convergence

Théorème (voir livre de Lehmann, Theory of Point Estimation) : soient $X_1, ..., X_n$ des variables aléatoires iid de même densité $f(x_i; \theta)$ avec les hypothèses suivantes

- \bullet appartient à un ouvert $\Theta \in \mathbb{R}$
- Le paramètre θ est identifiable, i.e., deux valeurs différentes de θ donnent des densités $f(x_i; \theta)$ différentes
- la log-vraisemblance $l(\theta)$ est dérivable par rapport à θ
- lacktriangle le support de la densité f ne dépend pas de θ

alors l'équation $l'(\theta) = 0$ admet une solution qui converge en probabilité vers θ_0 (pas nécessairement $\hat{\theta}_{\text{MV}}$). Donc s'il y a une unique solution de $l'(\theta) = 0$ et que cette solution est un maximum local de la vraisemblance, alors cette solution est l'estimateur du maximum de vraisemblance de θ et cet estimateur est convergent.

Exemple d'estimateur $\widehat{\theta}_{\text{MV}}$ non convergent (avec plusieurs maxima locaux de $l'(\theta) = 0$)

$$f(x_i; \theta) = \frac{1}{2} \mathcal{N}(0, 1) + \frac{1}{2} \mathcal{N}\left(\theta, \left[\exp(-1/\theta^2)\right]^2\right)$$

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Méthode des moments

• Définition : supposons que $X_1, ..., X_n$ ont la même loi de paramètre inconnu $\theta \in \mathbb{R}^p$. En général, le vecteur paramètre à estimer θ est lié aux premiers moments de la loi commune des va X_i par une relation notée

$$\boldsymbol{\theta} = h(m_1, ..., m_q)$$

avec $m_k = E[X_i^k]$ et $q \ge p$. Un estimateur des moments de θ est défini par

$$\widehat{m{ heta}}_{\mathsf{Mo}} = h(\widehat{m}_1,...,\widehat{m}_q) \text{ avec } \widehat{m}_k = rac{1}{n} \sum_{i=1}^n X_i^k$$

• Exemple: $X_i \sim \mathcal{N}(m, \sigma^2), \ \boldsymbol{\theta} = (m, \sigma^2)^T$

Propriétés

- Estimateur convergent
- Normalité Asymptotique
- Conclusion : peu de propriétés mais cet estimateur est généralement facile à étudier.

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Estimation Bayésienne

- Principe: l'estimation Bayésienne consiste à estimer un vecteur paramètre inconnu $\theta \in \mathbb{R}^p$ à l'aide de la vraisemblance de $X_1,...,X_n$ (paramétrée par θ) et d'une loi *a priori* $p(\theta)$. Pour cela, on minimise une fonction de coût $c\left(\theta,\widehat{\theta}\right)$ qui représente l'erreur entre θ et $\widehat{\theta}$.
- Estimateur MMSE: l'estimateur qui minimise l'erreur quadratique moyenne (mean square error (MSE))

$$c\left(oldsymbol{ heta},\widehat{oldsymbol{ heta}}
ight) = E\left[\left(oldsymbol{ heta}-\widehat{oldsymbol{ heta}}
ight)^T\left(oldsymbol{ heta}-\widehat{oldsymbol{ heta}}
ight)
ight]$$
 est

$$\widehat{\boldsymbol{\theta}}_{\text{MMSE}} = E\left(\boldsymbol{\theta}|X_1,...,X_n\right)$$

- Remarque : $p(\theta|x_1,...,x_n)$ est la loi *a posteriori* de θ
- Preuve : voir cours

Estimation Bayésienne

 Estimateur MAP : l'estimateur du maximum a posteriori (MAP) est défini par

$$\widehat{\boldsymbol{\theta}}_{\mathsf{MAP}} = \underset{\boldsymbol{\theta}}{\mathrm{arg\,max}} \ p(\boldsymbol{\theta}|X_1,...,X_n)$$

Cet estimateur minimise la fonction de coût $E\left[c\left(\pmb{\theta},\widehat{\pmb{\theta}}\right)\right]$ avec

$$c\left(oldsymbol{ heta}, \widehat{oldsymbol{ heta}}
ight) = \left\{egin{array}{c} 1 ext{ si } \left\|oldsymbol{ heta} - \widehat{oldsymbol{ heta}}
ight\| > \Delta \\ 0 ext{ si } \left\|oldsymbol{ heta} - \widehat{oldsymbol{ heta}}
ight\| < \Delta \end{array}
ight.$$

avec Δ arbitrairement petit.

Preuve : voir livre de H. Van Trees

Exemple

Vraisemblance

$$X_i \sim \mathcal{N}(\theta, \sigma^2)$$

Loi a priori

$$\theta \sim \mathcal{N}(\mu, \nu^2)$$

Loi a posteriori

$$\theta | X_1, ..., X_n \sim \mathcal{N}\left(m_p, \sigma_p^2\right)$$

Estimateurs Bayésiens

$$\widehat{\theta}_{\text{MAP}} = \widehat{\theta}_{\text{MMSE}} = m_p = \overline{X} \left(\frac{n\nu^2}{n\nu^2 + \sigma^2} \right) + \mu \left(\frac{\sigma^2}{\sigma^2 + n\nu^2} \right)$$

Avec ou sans prior?

Examples for the Significant Wave Height (SWH)

Dynamic priors

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
 - Modèle statistique, qualités d'un estimateur, exemples
 - Inégalité de Cramér Rao
 - Maximum de vraisemblance
 - Méthode des moments
 - Estimation Bayésienne
 - Intervalles de confiance
- Chapitre 3: Tests Statistiques

Intervalles de confiance

- Principe: un intervalle de confiance [a,b] pour le paramètre $\theta \in \mathbb{R}$ est un intervalle tel que $P[a < \theta < b] = \alpha$, où α est le paramètre de confiance (en général $\alpha = 0.99$ ou $\alpha = 0.95$).
- Détermination pratique de l'intervalle : on cherche un estimateur de θ noté $\widehat{\theta}$ (par la méthode des moments, du maximum de vraisemblance, ...), on en déduit une statistique $T(X_1,...,X_n)$ qui dépend de θ de loi connue, on cherche $c(\theta)$ et $d(\theta)$ tels que

$$P[c(\theta) < T(X_1, ..., X_n) < d(\theta)] = \alpha$$

On en déduit l'intervalle [a, b].

Exemples

• Exemple 1: $X_i \sim \mathcal{N}(m, \sigma^2)$, m inconnue, σ^2 connue.

$$T = \frac{\frac{1}{n} \sum_{i=1}^{n} X_i - m}{\sigma / \sqrt{n}} \sim \mathcal{N}(0, 1)$$

• Exemple 2: $X_i \sim \mathcal{N}(m, \sigma^2)$, IC pour m, σ^2 inconnue.

$$T \sim \mathcal{N}(0,1)$$
 et $U = \frac{1}{\sigma^2} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 \sim \chi_{n-1}^2$

donc

$$\frac{T}{\sqrt{\frac{U}{n-1}}} \sim t_{n-1}$$

suit une loi de Student à n-1 degrés de liberté.

Que faut-il savoir?

- Notions de biais, variance et convergence d'un estimateur
- Calcul d'une borne de Cramér-Rao et notion d'efficacité
- Détermination de l'estimateur du maximum de vraisemblance (MV)
- Propriétés de l'estimateur MV
- Principe et application de la méthode des moments
- Principe et application de l'estimation Bayésienne
- Détermination des intervalles de confiance

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3 : Tests Statistiques
 - Généralités, exemple
 - Courbes COR
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Généralités

Principe : un test statistique est un mécanisme qui permet de décider entre plusieurs hypothèses $H_0, H_1, ...$ à partir de n observations $x_1, ..., x_n$. On se limitera dans ce cours à deux hypothèses H_0 et H_1 . Effectuer un test, c'est déterminer une statistique de test $T(X_1, ..., X_n)$ et un ensemble Δ tel que

$$\mathcal{H}_0$$
 rejetée si $T(X_1,...,X_n)\in\Delta$ (1) \mathcal{H}_0 acceptée si $T(X_1,...,X_n)\notin\Delta$.

- Vocabulaire
 - H_0 est l'hypothèse nulle
 - \bullet H_1 est l'hypothèse alternative
 - $\{(x_1,...,x_n)|T(x_1,...,x_n)\in\Delta\}$: région critique

Définitions

- Tests paramétriques et non paramétriques
- Hypothèses simples et hypothèses composites
- Risque de première espèce = probabilité de fausse alarme

$$\alpha = \text{PFA} = P[\text{Rejeter } H_0 | H_0 \text{ vraie}]$$

Risque de seconde espèce = probabilité de non-détection

$$\beta = \text{PND} = P[\text{Rejeter } H_1 | H_1 \text{ vraie}]$$

• Puissance du test = probabilité de détection : $\pi = 1 - \beta$

Exemple

$$X_i \sim \mathcal{N}(m, \sigma^2), \ \sigma^2 \ \text{connue}$$

Hypothèses

$$H_0: m = m_0, H_1: m = m_1 > m_0$$

Stratégie du test

Rejet de
$$H_0$$
 si $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i > S_{\alpha}$

Problèmes

Déterminer le seuil S_{α} , le risque β et la puissance du test π .

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3 : Tests Statistiques
 - Généralités, exemple
 - Courbes COR, p-valeur
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Courbes COR

Caractéristiques opérationnelles du récepteur

$$PD = h(PFA)$$

• Exemple: $X_i \sim \mathcal{N}(m, \sigma^2), \ \sigma^2$ connue

$$H_0: m = m_0, H_1: m = m_1 > m_0$$

Probabilité de fausse alarme

$$\alpha = 1 - F\left(\frac{S_{\alpha} - m_0}{\frac{\sigma}{\sqrt{n}}}\right) \Leftrightarrow S_{\alpha} = m_0 + \frac{\sigma}{\sqrt{n}}F^{-1}(1 - \alpha)$$

Probabilité de détection

$$PD = \pi = 1 - F\left(\frac{S_{\alpha} - m_1}{\frac{\sigma}{\sqrt{n}}}\right)$$

Représentation graphique

ROC's for iid and correlated sequences

p-valeur d'un test

Définition

$$p(\boldsymbol{x}) = \inf\{\alpha \in]0,1[\mid \boldsymbol{x} \in \mathcal{R}_{\alpha}\}$$

où \mathcal{R}_{α} est la zone de rejet pour α fixé et $\mathbf{x} = (x_1, ..., x_n)$. C'est la plus petite valeur de α pour laquelle on rejette H_0 .

Calcul

- Si $\alpha = 0$, on accepte toujours H_0 donc $S_0 = +\infty$
- Si $\alpha = 1$, on rejette toujours H_0 donc $S_1 = -\infty$
- Plus petite valeur de α pour laquelle on rejette H_0

$$\alpha^* = 1 - F(T_{\text{obs}}).$$

Autre exemple

- Si $\alpha = 0$, on accepte toujours H_0 donc $z_0 = 0$
- Si $\alpha = 1$, on rejette toujours H_0 donc $z_1 = +\infty$
- Plus petite valeur de α pour laquelle on rejette H_0

$$\frac{\alpha^*}{2} = 1 - F(|T_{\text{obs}}|) \Leftrightarrow \alpha^* = 2[1 - F(|T_{\text{obs}})|].$$

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3: Tests Statistiques
 - Généralités, exemple
 - Courbes COR
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Théorème de Neyman-Pearson

Test paramétrique à hypothèses simples

$$H_0: \boldsymbol{\theta} = \boldsymbol{\theta}_0 \text{ et } H_1: \boldsymbol{\theta} = \boldsymbol{\theta}_1$$
 (2)

- Variables aléatoires continues
 - Théorème : à α fixé, le test qui minimise β (ou maximise π) est défini par

Rejet de
$$H_0$$
 si $\frac{L(x_1,...,x_n|H_1)}{L(x_1,...,x_n|H_0)}>S_{\alpha}$

- Remarque : $L(x_1, ..., x_n | H_i) = f(x_1, ..., x_n | \theta_i)$
- Exemple: $X_i \sim \mathcal{N}(m, \sigma^2), \ \sigma^2$ connue

$$H_0: m = m_0, H_1: m = m_1 > m_0$$

Résumé

Effectuer un test de Neyman-Pearson, c'est

- 1) Déterminer la statistique et la région critique du test
- ullet 2) Déterminer la relation entre le seuil S_{α} et le risque α
- 3) Calculer le risque β et la puissance π du test (ou la courbe COR)
- 4) Application numérique : on accepte ou rejette l'hypothèse H_0 en précisant le risque α donné

Théorème de Neyman-Pearson

- Variables aléatoires discrètes
 - Théorème : parmi tous les tests de risque de première espèce $\leq \alpha$ fixé, le test de puissance maximale est défini par

Rejet de
$$H_0$$
 si $\frac{L(x_1,...,x_n|H_1)}{L(x_1,...,x_n|H_0)}>S_{\alpha}$

Remarque :

$$L(x_1, ..., x_n | H_i) = P[X_1 = x_1, ..., X_n = x_n | \boldsymbol{\theta}_i]$$

- Exemple: $X_i \sim \mathcal{P}(\lambda)$, $H_0: \lambda = \lambda_0, H_1: \lambda = \lambda_1 > \lambda_0$
- Loi asymptotique : quand n est suffisamment grand, utilisation du théorème de la limite centrale

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3 : Tests Statistiques
 - Généralités, exemple
 - Courbes COR
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Test du rapport de vraisemblance généralisé

Test paramétrique à hypothèses composites

$$H_0: \boldsymbol{\theta} \in \Theta_0 \text{ et } H_1: \boldsymbol{\theta} \in \Theta_1$$
 (3)

Définition (Test GLR)

Rejet de
$$H_0$$
 si $\frac{L\left(x_1,...,x_n|\widehat{m{ heta}}_1^{\,\mathrm{MV}}\right)}{L\left(x_1,...,x_n|\widehat{m{ heta}}_0^{\,\mathrm{MV}}\right)} > S_{\alpha}$

où $\widehat{\boldsymbol{\theta}}_0^{\text{MV}}$ et $\widehat{\boldsymbol{\theta}}_1^{\text{MV}}$ sont les estimateurs du maximum de vraisemblance de $\boldsymbol{\theta}$ sous les hypothèses H_0 et H_1 .

Remarque

$$L\left(x_1, ..., x_n | \widehat{\boldsymbol{\theta}}_i^{\mathsf{MV}}\right) = \sup_{\boldsymbol{\theta} \in \Theta_i} L\left(x_1, ..., x_n | \boldsymbol{\theta}\right)$$

Tests sur l'espérance d'un échantillon gaussien

Soit $(X_1,...,X_n)$ un échantillon gaussien de loi $\mathcal{N}(m,\sigma^2)$ avec une variance σ^2 connue. On considère les hypothèses

$$H_0: m = m_0 \text{ et } H_1: m = m_1 \text{ avec } m_1 > m_0$$
 (4)

Rejet de
$$H_0$$
 si $T=\sqrt{n}\left(\frac{\overline{X}-m_0}{\sigma}\right)>S_{\alpha}$ avec $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$

- Remarques
 - ullet T suit une loi normale sous H_0
 - Application directe de Neyman-Pearson
 - Généralisation immédiate à $m_1 < m_0$ ou à $m_1 \neq m_0$

Tests sur l'espérance d'un échantillon gaussien

Soit $(X_1,...,X_n)$ un échantillon gaussien de loi $\mathcal{N}(m,\sigma^2)$ avec une variance σ^2 inconnue et les hypothèses

$$H_0: m = m_0 \text{ et } H_1: m = m_1 \text{ avec } m_1 > m_0$$
 (5)

$$\text{Rejet de } H_0 \text{ si } T = \sqrt{n} \left(\frac{\overline{X} - m_0}{S_n} \right) > S_\alpha \quad \text{avec} \quad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

- Remarques
 - Si on pose $U=\sqrt{n}\left(\frac{\overline{X}-m_0}{\sigma}\right)$ et $V=\frac{1}{\sigma^2}\sum_{i=1}^n(X_i-\overline{X})^2$, on a $T=\frac{U}{\sqrt{\frac{V}{n-1}}}$ qui suit donc une loi de Student à n-1 ddl sous H_0
 - Généralisation immédiate à $m_1 < m_0$ ou à $m_1 \neq m_0$

Tests sur la variance d'un échantillon gaussien

Soit $(X_1,...,X_n)$ un échantillon gaussien de loi $\mathcal{N}(m,\sigma^2)$ avec une moyenne m connue et les hypothèses

$$H_0: \sigma^2 = \sigma_0^2 \text{ et } H_1: \sigma^2 = \sigma_1^2 \text{ avec } \sigma_1^2 > \sigma_0^2$$
 (6)

Rejet de
$$H_0$$
 si $T=rac{1}{\sigma_0^2}\sum_{i=1}^n(X_i-m)^2>S_{lpha}$

- Remarques
 - La loi de T sous H_0 est une loi du χ_n^2 , ce qui permet de déterminer S_{α} en fonction de α .
 - Généralisation immédiate à $\sigma_1^2 < \sigma_0^2$ ou à $\sigma_1^2 \neq \sigma_0^2$

Tests sur la variance d'un échantillon gaussien

Soit $(X_1,...,X_n)$ un échantillon gaussien de loi $\mathcal{N}(m,\sigma^2)$ avec une moyenne m inconnue et les hypothèses

$$H_0: \sigma^2 = \sigma_0^2 \text{ et } H_1: \sigma^2 = \sigma_1^2 \text{ avec } \sigma_1^2 > \sigma_0^2$$
 (7)

Rejet de
$$H_0$$
 si $T=\frac{1}{\sigma_0^2}\sum_{i=1}^n(X_i-\overline{X})^2>S_\alpha$ avec $\overline{X}=\frac{1}{n}\sum_{i=1}^nX_i$

- Remarques
 - La loi de T sous H_0 est une loi du χ^2_{n-1} , ce qui permet de déterminer S_{α} en fonction de α .
 - Généralisation immédiate à $\sigma_1^2 < \sigma_0^2$ ou à $\sigma_1^2 \neq \sigma_0^2$

Comparaison d'espérances

Soient $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ deux échantillons gaussiens indépendant de lois respectives $\mathcal{N}(m_1,\sigma_1^2)$ et $\mathcal{N}(m_2,\sigma_2^2)$ avec des variances σ_1^2 et σ_2^2 connues, et les hypothèses

$$H_0: m_1 = m_2 \text{ et } H_1: m_1 > m_2$$
 (8)

Définition du test

$$\text{Rejet de } H_0 \text{ si } T = \frac{\overline{X} - \overline{Y}}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} > S_\alpha \quad \text{avec} \quad \overline{X} = \frac{1}{n} \sum_{i=1}^n X_i, \overline{Y} = \frac{1}{m} \sum_{j=1}^m Y_j$$

Remarques

- La loi de T sous H_0 est une loi normale $\mathcal{N}(0,1)$, ce qui permet de déterminer S_{α} en fonction de α .
- lacktriangle Généralisation immédiate à $m_1 < m_2$ ou à $m_1
 eq m_2$

Comparaison d'espérances

Soient $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ deux échantillons gaussiens indépendant de lois respectives $\mathcal{N}(m_1,\sigma_1^2)$ et $\mathcal{N}(m_2,\sigma_2^2)$ avec une même variance $\sigma_1^2=\sigma_2^2=\sigma^2$ inconnue, et les hypothèses

$$H_0: m_1 = m_2 \text{ et } H_1: m_1 > m_2$$
 (9)

Définition du test

Rejet de
$$H_0$$
 si $T=rac{\overline{X}-\overline{Y}}{S_{n,m}(\pmb{x},\pmb{y})\sqrt{rac{1}{n}+rac{1}{m}}}>S_{lpha}$

avec

$$S_{n,m}(\boldsymbol{x},\boldsymbol{y}) = \frac{\sum_{i=1}^{n} (X_i - \overline{X})^2 + \sum_{j=1}^{m} (Y_j - \overline{Y})^2}{n+m-2}$$

- Remarques
 - La loi de T sous H_0 est une loi de Student à n+m-2 ddl.
 - Appelé test de Student ou t-test.
 - Généralisation immédiate à $m_1 < m_2$ ou à $m_1 \neq m_2$

Comparaison d'espérances

Soient $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ deux échantillons gaussiens indépendant de lois respectives $\mathcal{N}(m_1,\sigma_1^2)$ et $\mathcal{N}(m_2,\sigma_2^2)$ avec des variances σ_1^2 et σ_2^2 inconnues, et les hypothèses

$$H_0: m_1 = m_2 \text{ et } H_1: m_1 > m_2$$
 (10)

Définition du test

Rejet de
$$H_0$$
 si $T=rac{\overline{X}-\overline{Y}}{\sqrt{rac{S_n^2(m{x})}{n}+rac{S_m^2(m{y})}{m}}}>S_{lpha}$

avec

$$S_n^2(\boldsymbol{x}) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ et } S_m^2(\boldsymbol{y}) = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y})^2$$

- Remarques
 - Sous l'hypothèse H_0 , T converge en loi vers une loi normale $\mathcal{N}(0,1)$ lorsque n et m tendent vers ∞ .
 - Généralisation immédiate à $m_1 < m_2$ ou à $m_1 \neq m_2$

Comparaison d'espérances

Remarques

- Les tests précédents supposent que les deux échantillons $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ sont indépendants. Si ce n'est pas le cas et que n=m, on parle de données appariées. On peut alors considérer les différences $Z_i=X_i-Y_i$ et tester la nullité de l'espérance des Z_i .
- Si l'hypothèse de gaussiannité n'est pas satisfaite, on pourra effectuer un test non paramétrique.

Comparaison de variances

Soient $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ deux échantillons gaussiens indépendant de lois respectives $\mathcal{N}(m_1,\sigma_1^2)$ et $\mathcal{N}(m_2,\sigma_2^2)$ avec des moyennes m_1 et m_2 connues, et les hypothèses

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ et } H_1: \sigma_1^2 > \sigma_2^2$$
 (11)

Définition du test

Rejet de
$$H_0$$
 si $T=rac{\widetilde{S}_n^2(m{x})}{\widetilde{S}_m^2(m{y})}>S_{lpha}$

avec

$$\widetilde{S}_n^2(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n (X_i - m_1)^2 \text{ et } \widetilde{S}_m^2(\boldsymbol{y}) = \frac{1}{m} \sum_{j=1}^m (Y_j - m_2)^2$$

- Remarques
 - lacktriangle Sous l'hypothèse H_0 , T est distribuée suivant une loi de Fisher $\mathcal{F}(n,m)$
 - Appelé *F*-test.
 - Généralisation immédiate à $\sigma_1^2 < \sigma_2^2$ ou à $\sigma_1^2 \neq \sigma_2^2$

Comparaison de variances

Soient $(X_1,...,X_n)$ et $(Y_1,...,Y_m)$ deux échantillons gaussiens indépendant de lois respectives $\mathcal{N}(m_1,\sigma_1^2)$ et $\mathcal{N}(m_2,\sigma_2^2)$ avec des moyennes m_1 et m_2 inconnues, et les hypothèses

$$H_0: \sigma_1^2 = \sigma_1^2 \text{ et } H_1: \sigma_1^2 > \sigma_2^2$$
 (12)

Définition du test

Rejet de
$$H_0$$
 si $T=rac{S_n^2(oldsymbol{x})}{S_m^2(oldsymbol{y})}>S_{lpha}$

avec

$$S_n^2(\boldsymbol{x}) = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 \text{ et } S_m^2(\boldsymbol{y}) = \frac{1}{m-1} \sum_{j=1}^m (Y_j - \overline{Y})^2$$

- Remarques
 - Sous l'hypothèse H_0 , T est distribuée suivant une loi de Fisher $\mathcal{F}(n-1,m-1)$
 - Généralisation immédiate à $\sigma_1^2 < \sigma_2^2$ ou à $\sigma_1^2 \neq \sigma_2^2$

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3: Tests Statistiques
 - Généralités, exemple
 - Courbes COR
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Test du χ^2

Le test du χ^2 est un test non paramétrique d'ajustement (ou d'adéquation) qui permet de tester les deux hypothèses suivantes

$$H_0: L = L_0, \quad H_1: L \neq L_0$$

où L_0 est une loi donnée. Le test consiste à déterminer si $(x_1,...,x_n)$ est de loi L_0 ou non. On se limitera dans ce cours au cas simple où $x_i \in \mathbb{R}$.

Définition

Rejet de
$$H_0$$
 si $\phi_n = \sum_{k=1}^K \frac{(Z_k - np_k)^2}{np_k} > S_\alpha$

ightharpoonup Remarque : L_0 peut être une loi discrète ou continue

Test du χ^2

- Statistique de test
 - Z_k : nombre d'observations x_i appartenant à la classe C_k , k = 1, ..., K
 - p_k : probabilité qu'une observation x_i appartienne à la classe C_k sachant $X_i \sim L_0$

$$P\left[X_i \in C_k | X_i \sim L_0\right]$$

- n : nombre total d'observations
- Loi (asymptotique) de la statistique de test sous H_0

$$\phi_n \xrightarrow[n \to \infty]{\mathcal{L}} \chi^2_{K-1}$$

Remarques

• Interprétation de ϕ_n

$$\phi_n = \sum_{k=1}^K \frac{n}{p_k} \left(\frac{Z_k}{n} - p_k \right)^2$$

Distance entre probabilités théoriques et empiriques

- Loi asymptotique de ϕ_n : voir notes de cours ou livres
- Nombre d'observations fini Une heuristique dit que la loi asymptotique de ϕ_n est une bonne approximation pour n fini si 80% des classes vérifient $np_k \geq 5$ et si $p_k > 0, \forall k = 1, ..., K$ Classes équiprobables

Remarques

Correction

Lorsque les paramètres de la loi L_0 sont inconnus

$$\phi_n \xrightarrow[n \to \infty]{\mathcal{L}} \chi^2_{K-1-n_p}$$

où n_p est le nombre de paramètres inconnus estimés par la méthode du maximum de vraisemblance

- Constitution des classes dans le cas d'une loi discrète
- Puissance du test Non calculable

Exemple

4.13	1.41	-1.16	-0.75	1.96	2.46	0.197	0.24	0.42	2.00
2.08	1.48	1.73	0.82	0.33	-0.76	0.42	4.60	-2.83	0.197
2.59	0.54	4.06	-0.69	4.99	0.67	2.45	5.61	2.13	1.76
5.03	0.85	1.29	0.17	-0.38	2.76	-1.03	1.87	4.48	0.73

Est-il raisonnable de penser que ces observations sont issues d'une population de loi $\mathcal{N}\left(1,4\right)$? Solution

Classes

$$C_1:]-\infty, -0.34], C_2:]-0.34, 1], C_3:]1, 2.34], C_4:]2.34, \infty[$$

Nombres d'observations

$$Z_1 = 7$$
, $Z_2 = 12$, $Z_3 = 10$, $Z_4 = 11$

Exemple

Statistique de test

$$\phi_n = 1.4$$

Seuils

	χ^2_2	χ_3^2
$S_{0.05}$	5.991	7.815
$S_{0.01}$	9.210	11.345

donc on accepte l'hypothèse H_0 avec les risques $\alpha=0.01$ et $\alpha=0.05$.

Plan du cours

- Chapitre 1 : Convergence et théorèmes limites
- Chapitre 2 : Estimation
- Chapitre 3: Tests Statistiques
 - Généralités, exemple
 - Courbes COR
 - Théorème de Neyman Pearson
 - Autres tests paramétriques
 - $lue{}$ Test du χ^2
 - Test de Kolmogorov

Test de Kolmogorov

Le test de Kolmogorov est un test non paramétrique d'ajustement (ou d'adéquation) qui permet de tester les deux hypothèses suivantes

$$H_0: L = L_0, \quad H_1: L \neq L_0$$

où L_0 est une loi donnée. Le test consiste à déterminer si $(x_1,...,x_n)$ est de loi L_0 ou non. On se limitera dans ce cours au cas simple où $x_i \in \mathbb{R}$.

Définition

Rejet de
$$H_0$$
 si $D_n = \sup_{x \in \mathbb{R}} |\widehat{F}(x) - F_0(x)| > S_\alpha$

 $lue{}$ Remarque : L_0 doit être une loi continue

Statistique de test

Fonctions de répartition

 $F_0(x) = P[X \le x]$ est la fonction de répartition théorique de L_0 et $\widehat{F}_n(x)$ est la fonction de répartition empirique de $(x_1,...,x_n)$

 D_n est l'écart maximum entre les deux courbes.

Calcul de D_n

Á l'aide de l'échantillon ordonné

$$D_n = \max_{i \in \{1, \dots, n\}} \max\{E_i^+, E_i^-\}$$

$$E_{i}^{+} = \left| \widehat{F}_{n} \left(x_{(i)}^{+} \right) - F_{0} \left(x_{(i)} \right) \right|, \ E_{i}^{-} = \left| \widehat{F}_{n} \left(x_{(i)}^{-} \right) - F_{0} \left(x_{(i)} \right) \right|$$

- Rq: $x_{(1)},...,x_{(n)}$ est la statistique d'ordre de $x_1,...,x_n$ telle que $x_{(1)} \leq ... \leq x_{(n)}$
- $Arr Rq:\widehat{F}_n\left(x_{(i)}^+\right)=i/n \ {
 m et} \ \widehat{F}_n\left(x_{(i)}^-\right)=(i-1)/n.$

Statistique de test

- Loi de D_n sous H_0
 - $lue{}$ Indépendante de L_0
 - Loi asymptotique

$$P[\sqrt{n}D_n < y] \underset{n \to \infty}{\to} \sum_{k = -\infty}^{+\infty} (-1)^k \exp(-2k^2y^2) = K(y)$$

Convergence de cette série très rapide (pour y > 0.56, les trois premiers termes donnent une approximation avec une erreur inférieure à 10^{-4}).

• Détermination du seuil S_{α}

$$S_{n,\alpha} = \frac{1}{\sqrt{n}}K^{-1}(1-\alpha)$$

Le seuil dépend de α et de n.

Remarques

- Puissance du testNon calculable
- Tests unilatéraux
 - Pour tester $H_0: F = F_0$ contre $H_1: F \ge F_0$, le test de Kolmogorov rejette H_0 si

$$D_n^+ = \sup_{t \in \mathbb{R}} \left[\widehat{F}_n(t) - F_0(t) \right] \ge S_{n,\alpha}$$

• Pour tester $H_0: F = F_0$ contre $H_1: F \leq F_0$, le test de Kolmogorov rejette H_0 si

$$D_n^- = \sup_{t \in \mathbb{R}} \left[F_0(t) - \widehat{F}_n(t) \right] \ge S_{n,\alpha}$$

Exemple

Est-il raisonnable de penser que ces observations sont issues d'une population de loi uniforme sur [0,1] ?

x_i	0.0078	0.063	0.10	0.25	0.32	0.39	0.40	0.48	0.49	0.53
E_i^-	0.0078	0.013	0.00	0.10	0.07	0.14	0.05	0.008	0.04	0.03
E_i^+	0.0422	0.037	0.05	0.05	0.12	0.09	0.10	0.13	0.09	0.08
$Max(E_i^+, E_i^-)$	0.0422	0.037	0.05	0.1	0.12	0.14	0.10	0.13	0.09	0.08

x_i	0.67	0.68	0.69	0.73	0.79	0.80	0.87	0.88	0.90	0.996
E_i^-	0.17	0.13	0.04	0.03	0.04	0.05	0.07	0.03	0.05	0.046
E_i^+	0.12	0.08	0.09	0.08	0.09	0.00	0.02	0.02	0.00	4e-3
$Max(E_i^+, E_i^-)$	0.17	0.13	0.09	0.08	0.09	0.05	0.07	0.03	0.05	0.046

Exemple

Statistique de test

$$D_n = 0.17$$

• Seuils pour n=20

$S_{0.05}$	0.294
$S_{0.01}$	0.352

donc on accepte l'hypothèse H_0 avec les risques $\alpha = 0.01$ et $\alpha = 0.05$.

Que faut-il savoir?

- Définition et calcul des risques de première et seconde espèce et de la puissance d'un test binaire
- Définition et détermination des courbes COR
- Appliquer le théorème de Neyman-Pearson dans le cas de variables aléatoires discrètes et continues
- Connaître l'existence des tests paramétriques pour tester la valeur de la moyenne ou de la variance d'un échantillon gaussien
- Connaître l'existence des tests paramétriques pour tester l'égalité de moyennes et de variances pour deux échantillons gaussiens indépendants
- ullet Principe et mise en oeuvre d'un test du χ^2
- Principe et mise en oeuvre d'un test de Kolmogorov