HW 11

DUE Friday, April 27, 9am

List of Exercises

Section 5.4: 2, 12, (21), (25), 26, (27) **Section 6.1:** 6, 10, 14, 16, 20, (27), 28, (30) **Section 6.2:** 10, 12, (13), 16, 24, (33)

Section 5.4

Exercises: 2, 12, (21), (25), 26, (27)

5.4.2. Let $\mathcal{D} = \{\mathbf{d}_1, \mathbf{d}_2\}$ and $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ be bases for vector spaces V and W, respectively. Let $T: V \to W$ be a linear transformation satisfying

$$T(\mathbf{d}_1) = 2\mathbf{b}_1 - 3\mathbf{b}_2 \quad ext{ and } \quad T(\mathbf{d}_2) = -4\mathbf{b}_1 + 5\mathbf{b}_2.$$

Find the matrix for T relative to \mathcal{D} and \mathcal{B} .

5.4.12. Find the \mathcal{B} -matrix for the transformation $\mathbf{x}\mapsto A\mathbf{x}$, when $\mathcal{B}=\{\mathbf{b}_1,\mathbf{b}_2\}$, where

$$A = egin{bmatrix} -1 & 4 \ -2 & 3 \end{bmatrix}, \quad \mathbf{b}_1 = egin{bmatrix} 3 \ 2 \end{bmatrix}, \quad \mathbf{b}_2 = \quad egin{bmatrix} -1 \ 1 \end{bmatrix}.$$

5.4.21. (recommended)

Prove the following statement for square matrices, A, B, C. If B is similar to A and C is similar to A, then B is similar to C.

5.4.25. (recommended)

The *trace* of a square matrix A is the sum of the diagonal entries in A and is denoted by $\operatorname{tr} A$. It can be verified that $\operatorname{tr}(FG) = \operatorname{tr}(GF)$ for any two $n \times n$ matrices F and G. Show that if A and B are similar, then $\operatorname{tr} A = \operatorname{tr} B$.

5.4.26. It can be shown that the *trace* (see Exercise 5.4.25 for definition) of a matrix A equals the sum of the eigenvalues of A. Verify this statement for the case when A is diagonalizable.

5.4.27. (recommended)

Let V be \mathbb{R}^n with a basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, let W be \mathbb{R}^n with a the standard basis, denoted \mathcal{E} . Consider the identity transformation $I: V \to W$, where $I(\mathbf{x}) = \mathbf{x}$. Find the matrix for I relative to \mathcal{B} and \mathcal{E} . What was this matrix called in Section 4.4?

Section 6.1

Exercises: 6, 10, 14, 16, 20, (27), 28, (30)

6.1.6. Let
$$\mathbf{w} = \begin{bmatrix} 3 \\ -1 \\ -5 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 6 \\ -2 \\ 3 \end{bmatrix}$. Compute $\left(\frac{\mathbf{x} \cdot \mathbf{w}}{\mathbf{x} \cdot \mathbf{x}}\right) \mathbf{x}$

6.1.10. Find a unit vector in the direction of the vector $\begin{bmatrix} -6 \\ 4 \\ -3 \end{bmatrix}$

6.1.14. Find the distance between
$$\mathbf{u} = \begin{bmatrix} 0 \\ -5 \\ 2 \end{bmatrix}$$
 and $\mathbf{z} = \begin{bmatrix} -4 \\ -1 \\ 8 \end{bmatrix}$

6.1.16. Determine whether
$$\mathbf{u} = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$ are orthogonal vectors.

6.1.20. Mark each statement True or False. Justify each answer. All vectors are assumed to be in \mathbb{R}^n .

$$\mathbf{a.}\ \mathbf{u}\cdot\mathbf{v}-\mathbf{v}\cdot\mathbf{u}=0$$

- **b.** For any scalar c, $||c\mathbf{v}|| = c||\mathbf{v}||$.
- **c.** If $\mathbf x$ is orthogonal to every vector in a subspace W, then $\mathbf x$ is in W^\perp .
- **d.** If $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = \|\mathbf{u} + \mathbf{v}\|^2$, then **u** and **v** are orthogonal.
- **e.** For an $m \times n$ matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

6.1.27. (recommended)

Suppose a vector \mathbf{y} is orthogonal to vectors \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to the vector $\mathbf{u} + \mathbf{v}$.

6.1.28. Suppose \mathbf{y} is orthogonal to \mathbf{u} and \mathbf{v} . Show that \mathbf{y} is orthogonal to every \mathbf{w} in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$. [*Hint:* An arbitrary \mathbf{w} in $\mathrm{Span}\{\mathbf{u},\mathbf{v}\}$ has the form $\mathbf{w}=c_1\mathbf{u}+c_2\mathbf{v}$; show that \mathbf{y} is orthogonal to every such a vector.]

6.1.30. (recommended)

Let W be a subspace of \mathbb{R}^n , and let W^{\perp} be the set of all vectors orthogonal to W. Show that W^{\perp} is a subspace of \mathbb{R}^n using the following steps.

- **a.** Take \mathbf{z} in W^{\perp} , and let \mathbf{u} represent any element of W. Then $\mathbf{z} \cdot \mathbf{u} = 0$. Take any scalar c and show that $c\mathbf{z}$ is orthogonal to \mathbf{u} . (Since \mathbf{u} was an arbitrary element of W, this will show that $c\mathbf{z}$ is in W^{\perp} .)
- **b.** Take \mathbf{z}_1 and \mathbf{z}_2 in W^{\perp} , and let \mathbf{u} be any element of W. Show that $\mathbf{z}_1 + \mathbf{z}_2$ is orthogonal to \mathbf{u} . What can you conclude about $\mathbf{z}_1 + \mathbf{z}_2$? Why?
- **c.** Finish the proof that W^{\perp} is a subspace of \mathbb{R}^n .

Section 6.2

Exercises: 10, 12, (13), 16, 24, (33)

6.2.10. Let
$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}$, and $\mathbf{x} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}$. Show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ is an orthogonal basis for \mathbb{R}^3 . Then express \mathbf{x} as a linear combination of the \mathbf{u} 's.

6.2.12. Compute the orthogonal projection of
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 onto the line through $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$.

6.2.13. (recommended)

Let
$$\mathbf{y} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 4 \\ -7 \end{bmatrix}$. Write \mathbf{y} as the sum of two orthogonal vectors, one in $\mathrm{Span}\{\mathbf{u}\}$ and the other orthogonal to \mathbf{u} .

6.2.16. Let
$$\mathbf{y} = \begin{bmatrix} -3 \\ 9 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Compute the distance from \mathbf{y} to the line passing through \mathbf{u} and the origin.

- **6.2.24.** Mark each statement True or False. Justify each answer. All vectors are assumed to belong to \mathbb{R}^n .
- **a.** Not every orthogonal set in \mathbb{R}^n is linearly independent.
- **b.** If a set $S = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ has the property that $\mathbf{u}_i \cdot \mathbf{u}_j = 0$ whenever $i \neq j$, then S is an orthonormal set.
- **c.** If the columns of an $m \times n$ matrix A are orthonormal, then the linear mapping $\mathbf{x} \mapsto A\mathbf{x}$ preserves lengths.
- **d.** The orthogonal projection of **y** onto **v** is the same as the orthogonal projection of **y** onto $c\mathbf{v}$ whenever $c \neq 0$.

e. An orthogonal matrix is invertible.

6.2.33. (recommended) Suppose \mathbf{u} is a nonzero vector in \mathbb{R}^n , and let $L=\operatorname{Span}\{\mathbf{u}\}$. Show that the mapping $\mathbf{x}\mapsto\operatorname{proj}_L\mathbf{x}$ is a linear transformation.