Tối ưu hoá câu hỏi

Vũ Tuyết Trinh trinhvt@it-hut.edu.vn

Bộ môn Các hệ thống thông tin, Khoa Công nghệ thông tin Đại học Bách Khoa Hà Nội

Tối ưu hoá

- Biến đổi biểu thức ĐSQH để tìm 1 biểu thức hiệu quả
- Tối ưu dựa trên cấu trúc và nội dung của dữ liêu
- Nâng cao hiệu quả thực hiện câu hỏi trên 1 hay nhiều tiêu chí: thời gian, sử dụng bộ nhớ, ...
- o Lưu ý:
 - Không nhất thiết phải tìm biểu thức tối ưu nhất
 - Chú ý tới tài nguyên sử dụng cho tối ưu

Kỹ thuật tối ưu hoá

- o 2 kỹ thuật chính
 - Tối ưu logic (rewriting)
 - Tối ưu vật lý (access methods)
- Mục đích của các kỹ thuật tối ưu
 - Giảm số bản ghi
 - Giảm kích thước bản ghi
- Ví dụ
 WAGON (NW, TYPE, COND, STATION, CAPACITY, WEIGHT)
 TRAIN (NT, NW)

Nội dung

- ✓ Giới thiệu chung
- Tối ưu logic
- Tối ưu vật lý
- Mô hình giá

Tối ưu hoá logic

- Sử dụng các phép biến đổi tương đương để tìm ra biểu thức ĐSQH tốt
- Gồm 2 giai đoạn
 - Biến đổi dựa trên ngữ nghĩa
 - Biến đổi dựa trên tính chất của các phép toán ĐSQH

Tối ưu dựa trên ngữ nghĩa

- Mục đích:
 - Dựa trên các ràng buộc dữ liệu để xác định các biểu thức tương đương
 - Viết lại câu hỏi trên khung nhìn dựa trên các định nghĩa của khung nhìn
- Ví du

EMPLOYEE (FirstName, LastName, <u>SSN</u>, Birthday, Adrresse, NoDept)

DEPARTEMENT (DNO, DName, SSNManager)

PROJECT (PNO, PName, PLocation, DNo)

WORK-IN (ESSN, PNO, Heures)

Tối ưu dựa trên ngữ nghĩa (2)

- Loại bỏ các đồ thị con không liên kết trong đồ thị kết nối các quan hệ
- Kiểm tra mâu thuẫn trong đồ thị kết nối các thuộc tính
- Biến đổi câu hỏi tương đương

Tính chất của phép toán ĐSQH

A ~ tập các thuộc tính, C ~ biểu thức điều kiện

1. Phép chiếu và phép chọn

$$\Pi_{A}(R) \Rightarrow \Pi_{A}(\Pi_{A1}(R)) \text{ neu A} \subseteq A1$$

$$\sigma_{C}$$
 (R) => σ_{C1} (σ_{C2} (R)) nếu C = C1^C2

2. Tính giao hoán đối với phép chọn và chiếu

$$\sigma_{C1}(\sigma_{C2}(R)) \Rightarrow \sigma_{C2}(\sigma_{C1}(R))$$

$$\sigma_{C1}^{(\Pi)}(R) = \Pi_{A2}^{(G)}(R)$$

nếu các thuộc tính của C2 thuộc A1

$$\Pi_{A1} (\sigma_{C2} (R)) \Rightarrow \sigma_{C2} (\Pi_{A1} (R))$$

$$\Pi_{A1} (\Pi_{A2} (R)) => \Pi_{A1} (R)$$

nếu A1 ⊆ A2

Tính chất của phép toán ĐSQH (2)

3. Tính giao hoán và kết hợp của các phép toán

 $*, \cap, \cup, -, X$

$$\begin{array}{l} R \hspace{0.1cm} X \hspace{0.1cm} S \Longrightarrow S \hspace{0.1cm} X \hspace{0.1cm} R \\ R \hspace{0.1cm} * \hspace{0.1cm} S \Longrightarrow S \hspace{0.1cm} * \hspace{0.1cm} R \\ R \hspace{0.1cm} \cap \hspace{0.1cm} S \Longrightarrow S \hspace{0.1cm} \cap \hspace{0.1cm} R \\ R \hspace{0.1cm} \cup \hspace{0.1cm} S \Longrightarrow S \hspace{0.1cm} \cup \hspace{0.1cm} R \\ (R \hspace{0.1cm} X \hspace{0.1cm} S) \hspace{0.1cm} X \hspace{0.1cm} T \Longrightarrow R \hspace{0.1cm} X \hspace{0.1cm} (S \hspace{0.1cm} X \hspace{0.1cm} T) \\ (R \hspace{0.1cm} \cap \hspace{0.1cm} S) \hspace{0.1cm} \cap \hspace{0.1cm} T \Longrightarrow R \hspace{0.1cm} \cap \hspace{0.1cm} (S \hspace{0.1cm} \cup \hspace{0.1cm} T) \\ (R \hspace{0.1cm} * \hspace{0.1cm} C1 \hspace{0.1cm} S) \hspace{0.1cm} C2 \hspace{0.1cm} T \Longrightarrow R \hspace{0.1cm} (S \hspace{0.1cm} C2 \hspace{0.1cm} T) \hspace{0.1cm} \text{chi n\'eu} \\ Attr(C2) \subseteq \text{Attr}(S) \hspace{0.1cm} U \hspace{0.1cm} \text{Attr}(T) \end{array}$$

Tính chất của phép toán ĐSQH (3)

4. Tính phân phối σ và Π trên các phép toán *, $\cap,$ $\cup,$ -, X

Nếu C = (CR ^ CS) và nếu Attr(CR) \subseteq R và Attr(CS) \subseteq S thì :

$$\sigma_{C}(R *_{JC} S) \Rightarrow \sigma_{CR}(R) *_{JC} \sigma_{CS}(S)$$

$$\sigma_{C}^{(R X S)} \Rightarrow \sigma_{CR}^{(R) X} \sigma_{CS}^{(S)}$$

Biến đổi biểu thức ĐSQH

T1	$R: F1 \wedge F2 \wedge \dots Fn$	(((R:F1) : F2):):Fn
T2	(R[Y])[Z]	$R[Z]$ n u $Z \subseteq Y$
T3	(R[Y]):F(X)	$(R:F(X))\;[Y]\;n\;\;u\;X\subseteq Y$
	(R: F(X))[Y]	$(R[X \cup Y]) : F(X) \) \ [Y] \ n \ u \ X \not\subset Y$
T4	$(R(X) \times S(Y)) : F(Z)$	$(R(X):F) \times S(Y) \times Z \subseteq X$
(R(X	$(x) \times S(Y) : F(ZI) \wedge F(Z2)$	$\begin{array}{ll} (R(X) \hbox{:} F(Z1)) & x \ (S(Y) \hbox{:} \ F(Z2)) \\ n \ u \ Z1 \subseteq X \ v\aa \ Z2 \subseteq Y \end{array}$
T5	$(R \cup S)$: F	$(R:F) \cup (S:F)$
T6	(R - S): F	(R:F) - S
T7	$(R(X) \times S(Y))[Z]$	$R[X \cap Z] \times S[Y \cap Z]$
T8	$(R \cup S)[Z]$	$(R[Z]) \cup (S[Z])$

Trình tự áp dụng

- Khai triển phép lựa chọn dựa trên nhiều điều kiện: T1
- Hoán vị phép chọn với tích đề-các, hợp, trừ: T3, T4, T5, T6
- Hoán vị phép chiếu với tích đề-các, hợp : T2, T7, T8
- Nhóm các điều kiện chọn bởi T1 và áp dụng T2 để loại các phép chiếu dư thừa

Bài tập

Lựa chọn cách truy nhập dữ liệu

- Giả thiết
 - TRAIN : có chỉ số trên NT
 - WAGON : có chỉ số trên NW
- Thực hiện phép kết nối
 - Lựa chọn 1 giải thuật.
 - Lựa chọn cách truy nhập các quan hệ

Thông tin về các quan hệ

o Kích thước của các quan hệ và bản ghi

Relation	Cardinality	Record size
WAGON	200000	60
TRAIN	60000	30
TRAFFIC	80000	20

oThông tin về các thuộc tính

Attribute	Cardinality	Size	min -max
NW	200000	20	
TYPE	200	5	
COND	5	15	
CAPACITY	400	15	5-45
NT	2000	10	
DATE	800	6	

oThông tin về các chỉ số

Relation	Attributes	Unique	T	ype	Num of page
WAGON	NW	Yes	Principal		45
WAGON	TYPE	No	Seco	ndary	25
WAGON	COND	No	Seco	ndary	30
WAGON	CAPACITY	No	Seco	ndary	25
TRAIN	NT	No	Pri	ncipal	18
TRAFFIC	NT	No	Pri	ncipal	20
TRAFFIC	DATE	no	Principal		40
Relation	Cardinality	Record	size	Num of	f nages

Relation	Cardinality	Record size (num of rec./page)	Num. of pages (NP')
WAGON	200000	60(100)	1500(375)
TRAIN	60000	30 (200)	225(60)
TRAFFIC	80000	20 (300)	200(60)

Mô hình giá

- o Chí phí thực hiện câu hỏi phụ thuộc:
 - đọc/ghi bộ nhớ ngoài (số trang nhớ)
 - Kích thước dữ liệu phải xử lý
- oChi phí truy nhập dữ liệu
 - Đọc ghi dữ liệu
 - •xử lý
 - Truyền thông giữa các trạm làm việc

CTA = σ * NBPAGES + τ * NBNUPLETS (+ μ * NBMESSAGES)

Trọng số

 $\circ \sigma$ = trọng số đọc/ghi dữ liệu (ví dụ = 1)

 $o\tau$ = trọng số xử lý của CPU (ví dụ = 1/3)

oμ = trọng số truyền dữ liệu

Tối ưu hoá dựa trên mô hình giá

- Mục đích: Chọn phương án thực hiện câu hỏi với chi phí thấp nhất
- O Nhân xét:
 - Chi phí cho liệt kê các phương án trả lời câu hỏi
 - Chi phí cho lượng hoá các phương án theo mô hình giá
 - Có thể sử dụng các « mẹo » (heuristics) để giảm không gian tìm kiếm của câu hỏi

Kết luận

- Tối ưu hoá nhằm tìm phương án tốt nhất để thực hiện một câu hỏi
 - Cần lưu ý: chí phí thực hiện tối ưu hoá và chi phí thực hiện câu hỏi
- Các kỹ thuật tối ưu
 - Logic : kiểm tra điều kiện ràng buộc của các thuộc tính/quan hệ và điều kiện lựa chọn trong câu hỏi, biến đổi tương đương các biểu thức ĐSQH
 - Vật lý: tổ chức vật lý của dữ liệu trên đĩa, mô hình giá
 - Không nhất thiết phải áp dụng tất cả các kỹ thuật trên khi thực hiện tối ưu hoá 1 câu hỏi