Homework 4

Feb 23, 2021

In this homework assignment you are going to implement the forward algorithm in the forward-backward algorithm and write a unit test for your function.

Task 1 - Forward model

The formula is

$$P(X_{t+1}|e_{1:t+1}) = \alpha P(e_{t+1}|X_{t+1}) \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

You are supposed to complete the **forward** function in the *forward.py* file. In this function you calculate the probability distribution of the belief states (X_t) given the evidence (e_t) and the probability distribution of the belief states (X_{t-1}) .

There are four input parameters of the function **forward**.

- (1) xT_1Distribution A dictionary representing the distribution of the random variable. The keys of dictionary are the possible values of random variable X_{t-1} and the values of the dictionary are the corresponding probability $P(x_{t-1}|e_{1:t-1})$.
- (2) eT a scalar representing e_t .
- (3) transitionFunction transitionTable A dictionary whose keys are belief states (X_{t-1}) and values are dictionaries whose keys are the next belief states (X_t) and values are the probabilities of transitioning from X_{t-1} to X_t $(P(X_t|x_{t-1}))$.
- (4) sensorTable A dictionary whose keys are belief states (X) and values are dictionaries whose keys are observations (e) and values are the probabilities of getting the observation from the belief state $(P(e_t|X_t))$.

The return value of the function **forward** is a dictionary. It represents probability distribution of the belief states (X_t) given one step forward information.

In the main function, these pieces of information are provided:

- (1) e A list containing $e_{1:t}$. The first element of the list
- (2) pX0 A dictionary containing prior distribution of belief states $(P(X_{t-1}|e_{1:t-1}))$.
- (3) transition Table A dictionary whose keys are belief states (X_{t-1}) and values are dictionaries whose keys are the next belief states (X_t) and values are the probabilities of transitioning from X_{t-1} to X_t $(P(X_t|x_{t-1}))$.
- (4) sensorTable A dictionary whose keys are belief states (X) and values are dictionaries whose keys are observations (e) and values are the probabilities of getting the observation from the belief state (P(e|x)).

Task 2 - Unit test

You are supposed to complete the **TestForward** object in the *testForward.py* file. In this object you can perform a unit test on your **forward** function in the *forward.py*.

Fill in at least two set of data and complete the **test_forward** function. You have to calculate what result your function should return and see if it passes the test. **Do not use the set of data provided in** forward.py.

Submission

Please submit a completed forward_YourLastName_YourFirstName.py file and a completed testForward_YourLastName_YourFirstName.py on CCLE before due. Please submit two seperate files. Do not zip them! The due date and time of this homework assignment is Monday, 03/01/2021 11:59pm.