UNIVERSITY OF MAURITIUS

DISCRETE STRUCTURES – SIS 1042Y

ASSIGNMENT 1

ID: 2117144

Name: Deesha Beerachee

Submitted to: Dr Oomesh Gukhool

Question 1

Problem description

Since my childhood I was always fascinated and fond of having many different footwear. As a result, I have grown up with a large collection of footwear in my closet and this makes my day to day decisions of what to wear a real hassle.

I am often indecisive to choose a footwear, be it to go to the University or for any other occasions. As a consequence, this delays my daily routine.

So I decided to classify all of my footwear as follows:

```
U= {Garment}
F= {Footwear}
T= {Sandals, Sneakers, Heels}
C= {Light colour footwear}, C'= {Dark colour footwear}
O= {Casual footwear}, O'= {Classic footwear}
```

- U is the universal set of all garments that are in my closet.
- F is the set containing all my footwear.

 $F \subset U$, F has some elements of U

- T is the set of the types of footwear I have; T* is sandal, T*** is sneakers and T*** is heels
- C is the set of the colour of my light coloured footwear and C* is the set of the colour of my dark coloured footwear.
- O is the set containing casual footwear and O* is the set containing classic

Relation between sets

 $C \cap O$: The footwear is light coloured and casual.

 $C \cap O^*$: The footwear is light coloured and classic.

 $C^* \cap O$: The footwear is dark coloured and casual.

 $C^* \cap O^*$: The footwear is dark coloured and classic.

 $T^* \cap C \cap O$: The footwear is a sandal, light coloured and casual.

 $T^* \cap C \cap O'$: The footwear is a sandal, light coloured and classic.

 $T^* \cap C' \cap O$: The footwear is a sandal, dark coloured and casual.

 $T^* \cap C' \cap O'$: The footwear is a sandal, dark coloured and classic.

 $T^{**} \cap C \cap O$: The footwear is a sneakers, light coloured and casual.

 $T^{**} \cap C \cap O'$: The footwear is a sneakers, light coloured and classic.

 $T^{**} \cap C' \cap O$: The footwear is a sneakers, dark coloured and casual.

 $T^{**} \cap C' \cap O'$: The footwear is a sneakers, dark coloured and classic.

 $T^{***} \cap C \cap O$: The footwear is a heel, light coloured and casual.

 $T^{***} \cap C \cap O'$: The footwear is a heel, light coloured and classic.

 $T^{***} \cap C' \cap O$: The footwear is a heel, dark coloured and casual.

 $T^{***} \cap C' \cap O'$: The footwear is a heel, dark coloured and classic.

SET PROPERTIES:

De Morgan's law:

- 1. $(C \cup O)^c = C^c \cap O^c$
- 2. $(C \cap O)^c = C^c \cup O^c$

Let P = (C U O)^c and Q= $C^c \cap O^c$

Let x be an arbitrary element of P

 $x \in P \Rightarrow x \in (C \cup O)^c$

- $\Rightarrow x \in (C \cup O)^c$
- $\Rightarrow x \notin (C \cup O)$
- \Rightarrow x \notin C and x \notin O
- $\Rightarrow x \in C^c$ and $x \in O^c$
- $\Rightarrow x \in C^c \cap O^c$
- $\Rightarrow x \in Q$
- $\therefore P \subset Q ---- (1)$

Let y be an arbitrary element of Q

 $y \in Q \Rightarrow y \in Cc \cap O^c$

- \Rightarrow y \in C^c \cap O^c
- \Rightarrow y \in C^c and y \in O^c
- \Rightarrow y \notin C and y \notin O
- ⇒y ∉ (C U O)
- \Rightarrow y \in (C U O)^c
- \Rightarrow y \in P
- \therefore Q \subset P ---- (2)

Combining (1) & (2), we get

P=Q, that is $(C \cup O)^c = C^c \cap O^c$

Commutative Law:

- 1. $C \cup O = O \cup C$
- 2. C ∩ O=O ∩ C

Let $x \in C \cup O$

If $x \in C \cup O$, then $x \in C$ or $x \in O$

 $(x \in C \text{ or } x \in O \text{ also means } x \in O \text{ or } x \in C)$

 $x \in O \text{ or } x \in C$

 $x \in O \cup C$

 $\therefore x \in C \cup O \Leftrightarrow x \in O \cup C ---- (1)$

Taking the first law in reverse, $O \cup C = C \cup O$

Let $x \in O \cup C$

If $x \in O \cup C$, then $x \in O$ or $x \in C$

 $(x \in O \text{ or } x \in C \text{ also means } x \in C \text{ or } x \in O)$

 $x \in C \text{ or } x \in O$

 $x \in C \cup O$

 $\therefore x \in O \cup C \Leftrightarrow x \in C \cup O ---- (2)$

Combining (1) & (2), we get

 $C \cup O = O \cup C$

Associative Law:

1.
$$(T^* \cap C) \cap O = T^* \cap (C \cap O)$$

Taking LHS of the first law, $(T^* \cap C) \cap O$

Let
$$x \in (T^* \cap C) \cap O$$

If
$$x \in (T^* \cap C) \cap O$$
, then $x \in (T^* \cap C)$ and $x \in O$

$$x \in (T^* \cap C)$$
 and $x \in O$

$$x \in (T^* \cap C)$$
 further means that $x \in T^*$ and $x \in C$

Now having,

$$x \in T^*$$
, $x \in C$ and $x \in O$

$$x \in T^*$$
 and $x \in (C \cap O)$

$$x \in T^* \cap (C \cap O)$$

$$(T^* \cap C) \cap O \Leftrightarrow T^* \cap (C \cap O)$$

$$\therefore (\mathsf{T}^* \cap \mathsf{C}) \cap \mathsf{O} \subset \mathsf{T}^* \cap (\mathsf{C} \cap \mathsf{O}) \dashrightarrow (1)$$

Taking the first law in reverse (RHS), $T^* \cap (C \cap O) = (T^* \cap C) \cap O$

Let
$$x \in T^* \cap (C \cap O)$$

If
$$x \in T^*$$
 (C \cap O), then $x \in T^*$ and $x \in (C \cap O)$

$$x \in T^*$$
 and $x \in (C \cap O)$

 $x \in (C \cap O)$ further means that $x \in C$ and $x \in O$

Now having,

$$x \in T^*$$
, $x \in C$ and $x \in O$

$$x \in (T^* \cap C)$$
 and $x \in O$

$$x \in (T^* \cap C) \cap x \in O$$

$$T^* \cap (C \cap O) \Leftrightarrow (T^* \cap C) \cap O$$

$$\therefore \mathsf{T}^* \cap (\mathsf{C} \cap \mathsf{O}) \subset (\mathsf{T}^* \cap \mathsf{C}) \cap \mathsf{O} \dashrightarrow (2)$$

Combining (1) & (2), we get
$$(T^* \cap C) \cap O = T^* \cap (C \cap O)$$

Double Complement Law:

$$(C^c)^c = \{x \mid x \notin C^c\}$$

$$(C^c)^c = \{x \mid \neg (x \in C^c)\}$$

$$(C^c)^c = \{x \mid \neg (x \notin C)\}$$

$$(C^c)^c = \{x \mid \neg (\neg (x \in C))\}$$

$$(C^c)^c = \{x \mid x \in C\}$$

Distributive law:

1.
$$T^* \cup (C \cap O) = (T^* \cup C) \cap (T^* \cup O)$$

2.
$$T^* \cap (C \cup O) = (T^* \cap C) \cup (T^* \cap O)$$

Taking LHS of first law, $T^* \cup (C \cap O)$

Let
$$x \in T^* \cup (C \cap O)$$

$$x \in T^* \text{ or } x \in (C \cap O)$$

$$x \in T^*$$
 or $\{x \in C \text{ and } x \in O\}$

$$\{x \in T^* \text{ or } x \in C\} \text{ and } \{x \in T^* \text{ or } x \in O\}$$

$$x \in (T^* \cup C)$$
 and $x \in (T^* \cup C)$

$$x \in (T^* \cup C) \cap x \in (T^* \cup O)$$

$$x \in (T^* \cup C) \cap (T^* \cup O)$$

$$x \in T^* \cup (C \cap O) \Rightarrow x \in (T^* \cup C) \cap (T^* \cup O)$$

$$\therefore \mathsf{T}^* \cup (\mathsf{C} \cap \mathsf{O}) \subset (\mathsf{T}^* \cup \mathsf{C}) \cap (\mathsf{T}^* \cup \mathsf{O}) \dashrightarrow (1)$$

Taking RHS of first law, $(T^* \cup C) \cap (T^* \cup O)$

$$x \in (T^* \cup C) \cap (T^* \cup O)$$

$$x \in (T^* \cup C)$$
 and $x \in (T^* \cup O)$

$$x \in T^*$$
 or $x \in C$ and $x \in T^*$ or $x \in O$

$$x \in T^*$$
 or $(x \in C \text{ and } x \in O)$

$$x \in T^*$$
 or $(x \in C \cap O)$

$$x \in T^* \cup (x \in C \cap O)$$

$$x \in T^* \cup (C \cap O)$$

$$x \in (T^* \cup C) \cap (T^* \cup O) \Rightarrow x \in T^* \cup (C \cap O)$$

$$\therefore (T^* \cup C) \cap (T^* \cup O) \subset T^* \cup (C \cap O) ---- (2)$$

Combining (1) & (2), we get $T^* \cup (C \cap O) = (T^* \cup C) \cap (T^* \cup O)$

Absorption law:

- 1. C ∪ (C ∩ O)= C
- 2. $C \cap (C \cup O) = C$

Let $x \in C \cup (C \cap O)$

 \Rightarrow x \in C or x \in (C \cap O)

 \Rightarrow x \in C or (x \in C and x \in O)

Specifically, $x \in C$

Thus, $C \cup (C \cap O) \subset C$

Showing that $C \subset C \cup (C \cap O)$

Using the definition of union, $x \in C \cup (C \cap O)$ since $x \in C$

Thus, $C \subset C \cup (C \cap O)$

Therefore, by the above results,

 $C \cup (C \cap O) = C$

Truth table

Let P(x) be the statement "x is a sandal"

Let Q(x) be the statement "x is a light colored sandal"

Let R(x) be the statement "x is a casual sandal"

Statement	Proposition
I wear a sandal.	$\exists x(P(x))$
I wear a light colored sandal.	$\exists x (P(x) \land Q(x))$
I wear a light colored sandal or a casual sandal.	$\exists x(Q(x) \lor R(x))$
I do not wear a light colored sandal or a casual sandal.	$\forall x \neg (P(x) \lor Q(x) \lor R(x))$
I wear a sandal which is a light colored and casual.	$\forall x (P(x) \land Q(x) \land R(x))$

Proposition	True when	False when		
∃x(P(x))	There is an x for which P(x) is	P(x) is false for every x.		
	true.			
$\exists x (P(x) \land Q(x))$	There is an x for which P(x) and	P(x) and Q(x) is false for		
	Q(x) is true.	every x.		
$\exists x(Q(x) \ V \ R(x))$	Q(x) or R(x) is true for every x.	There is an x for which Q(x)		
		or R(x) is false.		
$\forall x \neg (P(x) \land Q(x) \land R(x))$	P(x) or Q(x) or R(X) is true for	There is an x for which		
	every x.	P(x) or $Q(x)$ or $R(x)$ is false.		
$\forall x (P(x) \land Q(x) \land R(x))$	P(x), Q(x) and R(x) are true for	There is an x for which P(x),		
	every x.	Q(x) and R(x) is false.		

Question 2

Village: Pailles

Total number of residents: 10,622

(Source of information: https://worldpopulationreview.com/countries/cities/mauritius)

Number of residents per area:

Area	Number of residents
A1	1800
A2	1800
A3	1800
A4	1800
A5	1800
A6	1622

6 areas = 1 hour each slot

30 seconds = 1 test

 $1 \operatorname{second} = 1/30$

1 hour (3600 seconds) = 1/30 * 3600

=120 tests

1 officer = 120 tests

15 officers = 120*5

=1800 tests

1800 people are to be tested in each area.

Let break = B

Let working slot = S

Case 1: Assume that only one break can be taken between 2 working time slots, no break at the start and at the end

\uparrow \uparrow \uparrow \uparrow \uparrow	\uparrow	个	\uparrow	\uparrow	\uparrow
--	------------	---	------------	------------	------------

S <u>B</u> S <u>B</u> S <u>B</u> S <u>B</u> S <u>B</u> S

Therefore,

Number of ways to arrange the working slots= 6!

=720

Number of ways to choose the breaks=5C2

=10

Total number of ways = 720*10=7200

Case 2: 2 breaks can be taken one after the other between 2 working time slots

Therefore,

Number of ways to arrange the working slots= 6!

=720

Number of ways to choose the breaks=5

Total number of ways = 720*5

=3600

Total number of unique schedules = 7200+3600

= 10800

END OF PAGE