Training robust neural network

ama_adv Team: Adrien Golebiewski, Alexis Hummel, Maximilien Wemaere

I. Context

Problem: Help a little CNN to defend against adversarial attacks

The simple CNN:

The attacks:

FGSM: $x_{attacked} = x + \epsilon \operatorname{sign}(\nabla_x l_f(x,y))$

PGD: $x_0 = x$

$$x_{t+1} = \Pi_{B(x_0,\epsilon)}(x_t + \epsilon \operatorname{sign}(
abla_x l_f(x,y)))$$

Attacks

FGSM

Attack

PGD

I. Attacks

II. Classic defenses - Adversarial Training

Adversarial Training: include the adversarial examples during the model training

$$\min_{\delta} \mathbb{E}_{(x,y)}[\max_{\|\delta\| < \epsilon} \ell_{f_{\theta}}(x + \delta, y)]]$$

Simple approach but does not generalize for all adversarial examples.

II. Classic defenses - Adversarial Training Results

Adversarial Training

FGSM	PGD-Linf	PGD_L2
28%		1

III. Innovatives strategies

Introducing randomness : **Noise injection** (in progress)

- Adversarial test accuracies of a Basic Net without and with noise in the input.

	Basic Net	Basic Net with Noise	Wide Net	Wide Net with Noise
Norm infinity PGD Attack	21,39 %	29,26 %	/	1
Norm 2 PGD Attack	1	/	/	/

Comparative with Wide Net Noise (Resnet) to do soon

III. Innovatives strategies

Denoise the images with a DnCNN: gaussian denoiser

- 1- Train the DnCNN with adversarial images as input and clean images as output
- 2- During the test, before entering the image in our model, we clean them with the DnCNN

Accuracy	No Denoiser	Denoiser 10 hidden layers 5 epochs	Denoiser 10 hidden layers 10 epochs
FGSM Attack eps=0.05	9.96%	16.66%	17,27%

To do next time:

 We have independently tested several defense techniques and several attack techniques based on different neural architectures as well.

- Testing others defenses :
 - Adversarial training on Noising Resnet
 - Mixed Adversarial Training with both L2 and L-infinity
 - Randomized network
 - ...

 The objective would be to be able to group and compare all the results in order to find the most effective attack/defense strategy!

References

- . K. Zhang, W. Zuo, Y. Chen, D. Meng and L. Zhang, "Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising," in *IEEE Transactions on Image Processing*, vol. 26, no. 7, pp. 3142-3155, July 2017, doi: 10.1109/TIP.2017.2662206.
- Araujo, Alexandre et al. (2020). "Advocating for Multiple Defense Strategies against Adversarial Examples". In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, pp. 165–177