Part IB Physics A: Lent 2022

QUANTUM PHYSICS EXAMPLES III

Prof. C. Castelnovo

1. Obtain the following commutation relations for the angular momentum operators $\widehat{L} = \widehat{r} \times \widehat{p}$, and comment on the results:

$$\begin{aligned} \left[\widehat{L}_x, \widehat{x}\right] &= 0 & \left[\widehat{L}_x, \widehat{y}\right] &= i\hbar \widehat{z} \\ \left[\widehat{L}_x, \widehat{p}_x\right] &= 0 & \left[\widehat{L}_x, \widehat{p}_y\right] &= i\hbar \widehat{p}_z \\ \left[\widehat{L}_x, \widehat{L}^2\right] &= \left[\widehat{L}_x, \widehat{r}^2\right] &= \left[\widehat{L}_x, \widehat{p}^2\right] &= 0 \end{aligned}$$

(All other commutation relations follow by the cyclic permutations $x \to y \to z \to x$.)

2. Use the commutation relations for the angular momentum operators,

$$\left[\widehat{L}_x,\widehat{L}_y\right]=i\hbar\widehat{L}_z \qquad \quad \left[\widehat{L}_y,\widehat{L}_z\right]=i\hbar\widehat{L}_x \qquad \quad \left[\widehat{L}_z,\widehat{L}_x\right]=i\hbar\widehat{L}_y\,,$$

and the definitions of angular momentum raising and lowering operators,

$$\widehat{L}_{\pm} = \widehat{L}_x \pm i\widehat{L}_y = \hbar e^{\pm i\phi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right) ,$$

to show that

$$\widehat{L}^2 = \widehat{L}_+ \widehat{L}_- + \widehat{L}_z^2 - \hbar \widehat{L}_z$$

and that

$$\left[\widehat{L}_{+},\widehat{L}_{-}\right]=2\hbar\widehat{L}_{z}\,.$$

Hence show that

$$\widehat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$$

and that

$$\widehat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta} + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right).$$

Finally, obtain the angular momentum quantum numbers for an electron in the hydrogen atom for the following eigenfunctions:

$$\psi(r,\theta,\phi) = R_1(r) \qquad \qquad \psi(r,\theta,\phi) = R_2(r)\sin\theta \,\,\mathrm{e}^{i\phi} \qquad \qquad \psi(r,\theta,\phi) = R_3(r)(3\cos^2\theta - 1) \,.$$

3. The orthogonal wave functions $\psi_x = xf(r)$, $\psi_y = yf(r)$ and $\psi_z = zf(r)$ represent three of the electronic bound state solutions for a hydrogen atom. Prove the relations shown in the first row of the table below:

Use the results in the table to prove that the expectation value of each component of the angular momentum of any one of ψ_x , ψ_y and ψ_z is zero. Show, however, that each is an eigenfunction of the operator $\widehat{L}^2 = \widehat{L}_x^2 + \widehat{L}_y^2 + \widehat{L}_z^2$ and determine the eigenvalue.

Show that the linear combinations $\psi_{\pm} = \psi_x \pm i \psi_y$ are eigenfunctions of \widehat{L}_z and determine their orbital angular momentum quantum numbers m and ℓ .

For Questions 4 and 5 you can use the following information about a hydrogenlike atom

The normalised wavefunctions $Y_{\ell m_{\ell}}(\theta, \phi)$ for $\ell = 0, 1$ and 2 are:

$$Y_{00} = \sqrt{\frac{1}{4\pi}}$$

$$Y_{10} = \sqrt{\frac{3}{4\pi}}\cos\theta \qquad Y_{1\pm 1} = \mp\sqrt{\frac{3}{8\pi}}\sin\theta \ e^{\pm i\phi}$$

$$Y_{20} = \sqrt{\frac{5}{16\pi}}(3\cos^2\theta - 1) \quad Y_{2\pm 1} = \mp\sqrt{\frac{15}{8\pi}}\sin\theta\cos\theta \ e^{\pm i\phi} \quad Y_{2\pm 2} = \sqrt{\frac{15}{32\pi}}\sin^2\theta \ e^{\pm 2i\phi}$$

and the normalised hydrogen-like radial wavefunctions $R_{n\ell}$ for n=1,2 are:

$$R_{10} = (Z/a_0)^{3/2} 2 \exp(-Zr/a_0)$$

$$R_{20} = (Z/2a_0)^{3/2} (2 - Zr/a_0) \exp(-Zr/2a_0)$$

$$R_{21} = (Z/2a_0)^{3/2} (1/\sqrt{3}) (Zr/a_0) \exp(-Zr/2a_0)$$

where a_0 is the Bohr radius and Z is the atomic number.

Note also that $\int_0^\infty x^n e^{-x} dx = n!$.

4. Confirm, for the cases $\ell = 1$ and $\ell = 2$, that

$$\sum_{m_{\ell}=-\ell}^{m_{\ell}=\ell} |Y_{\ell m_{\ell}}|^2 = \text{constant}.$$

Discuss the significance of this result for the electron probability distributions in the hydrogen atom. (The theorem for general ℓ follows from an addition formula for Legendre polynomials, see Whittaker and Watson, p. 327.)

- **5.** An electron is in the ground state of a hydrogen-like atom with nuclear charge +Ze.
- (a) What is its average distance from the nucleus?
- (b) At what distance from the nucleus is it most likely to be found?
- (c) Show that the expectation value of the potential energy operator of the electron is $-Z^2e^2/4\pi\epsilon_0a_0$.
- (d) Show that the expectation value of the kinetic energy operator is $Z^2e^2/8\pi\epsilon_0a_0$.
- (e) Hence verify that the expectation value of the Hamiltonian is the energy of the ground state.

6. The potential energy for a three-dimensional harmonic oscillator of mass m and frequency ω is $V(x,y,z) = \frac{1}{2}m\omega^2(x^2+y^2+z^2)$.

What are the energies and degeneracies of the three lowest levels? Show that the degeneracy of the n^{th} excited level is $\frac{1}{2}(n+1)(n+2)$.

- 7. In a one-dimensional system two particles each of mass m interact through the potential $\frac{1}{2}m\omega^2(x_1-x_2)^2$, where x_1 and x_1 are their position coordinates. Find the energy levels of the system when its centre of mass is at rest.
- **8.** The Hamiltonian \widehat{H} of two interacting particles a and b is given by

$$\widehat{H} = \frac{\widehat{p}_a^2}{2m_a} + \frac{\widehat{p}_b^2}{2m_b} + \widehat{V}(|\boldsymbol{r}|)$$

where $\mathbf{r} = \mathbf{r}_a - \mathbf{r}_b$ is the relative position of the particles.

Derive the commutation relations of the centre-of-mass and relative position and momentum operators \widehat{R} , \widehat{r} , \widehat{P} and \widehat{p} , where:

$$oxed{\widehat{m{R}}} = rac{m_a \widehat{m{r}}_a + m_b \widehat{m{r}}_b}{m_a + m_b} \qquad \qquad \widehat{m{p}} = rac{m_a m_b}{m_a + m_b} \left(rac{\widehat{m{p}}_a}{m_a} - rac{\widehat{m{p}}_b}{m_b}
ight)$$

Comment on your results.

ANSWERS:

- **2.** $\ell = 0, m_{\ell} = 0; \ \ell = 1, m_{\ell} = 1; \ \ell = 2, m_{\ell} = 0.$
- **3.** Eigenvalue of \widehat{L}^2 is $2\hbar^2$; $\ell = 1, m_{\ell} = \pm 1$.
- **4.** $\ell = 1$: $3/(4\pi)$; $\ell = 2$: $5/(4\pi)$.
- **5.** (a) $3a_0/2Z$; (b) a_0/Z .
- **6.** $\frac{3}{2}\hbar\omega$, $\frac{5}{2}\hbar\omega$, $\frac{7}{2}\hbar\omega$; 1, 3, 6.
- 7. $E_n = \sqrt{2}(n + \frac{1}{2})\hbar\omega$.
- **8.** $\left[\widehat{R}_{j},\widehat{P}_{k}\right]=\left[\widehat{r}_{j},\widehat{p}_{k}\right]=i\hbar\delta_{jk}$, where j,k=x,y,z. All other commutators are zero.