All of Statistics - Key Concepts

Albert Richard Caputo

November 2018

1 Probability

1.1 Sample Space

A sample space Ω is the set of possible outcomes of an experiment. Points ω in Ω are called sample outcomes, realizations, or elements. Subsets of Ω are called Events.

1.2 Probability Distribution

Definition 1.1. We will assign a real number $\mathbb{P}(A)$ to every event A, called the probability of A. We also call \mathbb{P} a probability distribution or probability measure if it satisfies the following axioms:

- 1. Axiom 1: $\mathbb{P}(A) \geq 0$ for every A.
- 2. **Axiom 2**: $\mathbb{P}(\Omega) = 1$.
- 3. Axiom 3: If $A_1, A_2, ...$ are disjoint, then

$$\mathbb{P}\Big(\cup_{i=1}^{\infty} A_i\Big) = \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

Lemma 1.2. For any events A and B,

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Remark 1.3. If Ω is finite and if each outcome is equally likely, then

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}$$

which is called a uniform probability distribution. Also, it is always true that

$$\mathbb{P}(A) = 1 - \mathbb{P}(A^C)$$

where A^C is the complement of A.

For convenience, define $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ to read n choose k as the number of distinct ways of choosing k objects from n.

1.3 Independent Events

Definition 1.4. Two events A and B are independent if (and only if)

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

and write $A \perp\!\!\!\perp B$. A set of events $\{A_i : i \in I\}$ is independent if

$$\mathbb{P}\bigg(\cap_{i\in J} A_i\bigg) = \prod_{i\in J} \mathbb{P}(A_i).$$

Some important things to note about independence:

- 1. Independence is sometimes assumed and sometimes derived.
 - 2. Disjoint events with positive probability are not independent.

1.4 Conditional Probability

Definition 1.5. If $\mathbb{P}(B) > 0$, we define the conditional probability of A given B as

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

In simplest terms, $\mathbb{P}(A|B)$ is the fraction of times A occurs among those in which B occurs.

Some important things to note about conditional probabilitty:

- 1. $\mathbb{P}(\cdot|B)$ satisfies the axioms of probability for fixed B. In general, $\mathbb{P}(A|\cdot)$ does not satisfy the axioms of probability for fixed A.
- 2. In general, $\mathbb{P}(A|B) \neq \mathbb{P}(B|A)$.
- 3. A and B are independent if and only if $\mathbb{P}(A|B) = \mathbb{P}(A)$.

4.

$$\mathbb{P}(A \cap B) = \mathbb{P}(AB) = \mathbb{P}(A|B)\mathbb{P}(B)$$
$$= \mathbb{P}(B|A)\mathbb{P}(A)$$

1.5 Bayes' Theorem

Theorem 1.6 (The Law of Total Probability). Let $A_1, ..., A_k$ be a partition of Ω . Then, for every event B,

$$\mathbb{P}(B) = \sum_{i=1}^{k} \mathbb{P}(B|A_i)\mathbb{P}(A_i).$$

Proof. Define $C_j = BA_j$ and note that $C_1, ..., C_k$ are disjoin and $B = \bigcup_{j=1}^k C_j$. Hence,

$$\mathbb{P}(B) = \sum_{j} \mathbb{P}(C_j) = \sum_{j} \mathbb{P}(BA_j) = \sum_{j} \mathbb{P}(B|A_j)\mathbb{P}(A_j)$$

since $\mathbb{P}(BA_i) = \mathbb{P}(B|A_i)\mathbb{P}(A_i)$ by the definition of conditional probability.

Theorem 1.7 (Bayes' Theorem). Let $A_1, ..., A_k$ be a partition of Ω such that $\mathbb{P}(A_i) > 0$ for each i. If $\mathbb{P}(B) > 0$ them, for each i = 1, ..., k,

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{j} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}.$$

Remark 1.8. We call $\mathbb{P}(A_i)$ the prior probability of A and $\mathbb{P}(A_i|B)$ the posterior probability of A.

Proof. We apply the definition of conditional probability twice, followed by the law of total probability:

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_iB)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\mathbb{P}(B)} = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{i} \mathbb{P}(B|A_j)\mathbb{P}(A_j)}$$

2 Random Variables

Definition 2.1. A random variable is a mapping

$$X:\Omega\to\mathbb{R}$$

that assigns a real number $X(\omega)$ to each outcome ω .

2.1 Distribution Functions and Proabability Functions

Given a random variable X, we define the cumulative distribution function as follows.

Definition 2.2. The cumulative distribution function, or CDF, is the function $F_X : \mathbb{R} \to [0,1]$ defined by

$$F_X(x) = \mathbb{P}(X \le x)$$

Theorem 2.3. Let X have CDF F and let Y have CDF G. If F(x) = G(x) for all x, then $\mathbb{P}(X \in A) = \mathbb{P}(Y \in A)$ for all A.

Theorem 2.4. A function F mapping the real line to [0,1] is a CDF for probability \mathbb{P} if and only if F satisfies the following conditions:

- 1. F is non-decreasing: $x_1 < x_2$ implies $F(x_1) \le F(x_2)$.
- 2. F is normalized:

$$\lim_{x \to -\infty} F(X) = 0$$
$$\lim_{x \to \infty} F(X) = 1$$

3. F is right-continuous: $F(x) = F(x^+)$ for all x, where

$$F(x^+) = \lim_{y \to x, y > x} F(y);$$

Proof. Suppose that F is a CDF. Let us show that (3) holds. Let x be a real number and let $y_1, y_2, ...$ be a sequence of numbers such that $y_1 > y_2 > ...$ and $\lim_i y_i = x$. Let $A_i = (-\infty, y_i]$ and let $A = (-\infty, x]$. Note that $A = \bigcap_{i=1}^{\infty} A_i$ and also note that $A_1 \supset A_2 \supset ...$ Because the events are monotone, $\lim_i \mathbb{P}(A_i) = \mathbb{P}(\cap_i A_i)$. Thus,

$$F(x) = \mathbb{P}(A) = \mathbb{P}\Big(\cap_i A_i\Big) = \lim_i \mathbb{P}(A_i) = \lim_i F(y_i) = F(x^+)$$

Showing (1) and (2) is similar. Proving the other direction requires some deep tools in analysis.

Definition 2.5. X is discrete if it takes countably many values $\{x_1, x_2, ...\}$. We define the probability function or probability mass function for X by $f_X(x) = \mathbb{P}(X = x)$.

Thus, $f_X(x) \ge 0$ for all $x \in \mathbb{R}$ and $\sum_i f_X(x_i) = 1$. Sometimes we write f instead of f_X . The CDF of X is related to f_X by

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{x_i \le x} f_X(x_i).$$

Definition 2.6. A random variable X is continuous if there exists a function f_X such that $f_X(x) \geq 0$ for all x, $\int_{-\infty}^{\infty} f_X(x) dx = 1$ and for every $a \leq b$,

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f_X(x) dx.$$

The function f_X is called a probability density function (PDF). We have that

$$F_X(x) = \int_{-\infty}^x f_X(t)dt$$

and $f_X(x) = F'_X(x)$ at all points x at which $F_X(x)$ is differentiable.

Lemma 2.7. Let F be the CDF for a random variable X. Then:

1.
$$\mathbb{P}(X = x) = F(x) - F(x^{-})$$
 where $F(x^{-}) = \lim_{y \uparrow x} F(y)$

2.
$$\mathbb{P}(x < X < y) = F(y) - F(x)$$

- 3. $\mathbb{P}(X > x) = 1 F(x)$
- 4. If X is continuous then

$$F(b) - F(a) = \mathbb{P}(a < X < b) = \mathbb{P}(a \le X < b)$$
$$= \mathbb{P}(a < X \le b) = \mathbb{P}(a \le X \le b)$$

Let us now define the inverse CDF (or quantile function).

Definition 2.8. Let X be a random variable with CDF F. The inverse CDF or quantile function is defined by

$$F^{-1}(q) = \inf\{x : F(x) > q\}$$

for $q \in [0,1]$. If F is strictly increasing and continuous then $F^{-1}(q)$ is the unique real number x such that F(x) = q.

Remark 2.9. Two random variables are equal in distribution, written $X = {}^d Y$, if $F_X(x) = F_Y(x)$ for all x. This does not mean X and Y are equal. Rather, it means that all probability statements about X and Y will be the same.

2.2 Some Important Discrete Distributions

THE POINT MASS DISTRIBUTION. X has a point mass distribution at a, written $X \sim \delta_a$, if $\mathbb{P}(X = a) = 1$ in which case

$$F(x) = \begin{cases} 0 & x < a \\ 1 & x \ge a. \end{cases}$$

The probability mass function is f(x) = 1 for x = a and 0 otherwise

THE DISCRETE UNIFORM DISTRIBUTION. Let k>1 be a given integer. Suppose that X has a probability mass function given by

$$f(x) = \begin{cases} 1/k & \text{for } x = 1, ..., k \\ 0 & \text{otherwise.} \end{cases}$$

We say that X has a uniform distribution on $\{1, ..., k\}$.

THE BERNOULLI DISTRIBUTION. Let X represent a binary coin flip. Then $\mathbb{P}(X=1)=p$ and $\mathbb{P}(X=0)=1-p$ for some $p \in [0,1]$. We say that X has a Bernoulli distribution written $X \sim \text{Bernoulli}(p)$. The probability function is

$$f(x) = p^x (1-p)^{1-x}$$

for $x \in \{0, 1\}$.

THE BINOMIAL DISTRIBUTION. Suppose we have a coin which falls heads up with probability p for some $0 \le p \le 1$. Flip the coin n times and let X be the number of heads. Assume the tosses are independent. Let $f(x) = \mathbb{P}(X = x)$ be the mass function. It can be shown that

$$f(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & \text{for } x = 0, ..., n \\ 0 & \text{otherwise.} \end{cases}$$

A random variable with this mass function is called a Binomial random variable and we write $X \sim \text{Binomial}(n,p)$. If $X_1 \sim \text{Binomial}(n_1,p)$ and $X_2 \sim \text{Binomial}(n_2,p)$ then $X_1 + X_2 \sim \text{Binomial}(n_1+n_2,p)$.

THE GEOMETRIC DISTRIBUTION. X has a geometric distribution with parameter $p \in (0, 1)$, written $X \sim \text{Geom}(p)$, if

$$\mathbb{P}(X = k) = p(1-p)^{k-1}, \quad k > 1.$$

We have that

$$\sum_{k=1}^{\infty} \mathbb{P}(X=k) = p \sum_{k=1}^{\infty} (1-p)^k = \frac{p}{1-(1-p)} = 1.$$

Think of X as the number of flips needed until the first head when flipping a coin.

THE POISSON DISTRIBUTION. X has a Poisson distribution with parameter λ , written $X \sim \text{Poisson}(\lambda)$ if

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \quad x \ge 0.$$

Note that

$$\sum_{x=0}^{\infty} f(x) = e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^x}{x!} = e^{-\lambda} e^{\lambda} = 1.$$

The Poisson is often used as a model for counts of rare events. If $X_1 \sim \text{Poisson}(\lambda_1)$ and $X_2 \sim \text{Poisson}(\lambda_2)$ then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

2.3 Some Important Continuous Distributions

THE UNIFORM DISTRIBUTION. X has a Uniform(a, b) distribution, written $X \sim \text{Uniform}(a, b)$, if

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{for } x \in [a, b] \\ 0 & \text{otherwise} \end{cases}$$

where a < b. The distribution function is

$$F(x) = \begin{cases} 0 & \text{for } x < a \\ \frac{x-a}{b-a} & \text{for } x \in [a,b] \\ 1 & \text{for } x > b. \end{cases}$$

NORMAL (GAUSSIAN). X has a Normal (Gaussian) distribution with parameters μ and σ , denoted by $X \sim N(\mu, \sigma^2)$, if

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma}\right), \quad x \in \mathbb{R}$$

where $\mu \in \mathbb{R}$ and $\sigma > 0$. The parameter μ is the center, or mean, of the distribution and σ is the spread, or standard deviation, of the distribution. We say that X has a standard Normal distribution if $\mu = 0$ and $\sigma = 1$. Traditionally, a standard normal random variable is denoted by Z. The PDF and CDF of a standard normal are denoted by $\phi(z)$ and $\Phi(z)$, respectively. Some useful facts:

- 1. If $X \sim N(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma} \sim N(0, 1)$.
- 2. If $Z \sim N(0,1)$, then $X = \mu + \sigma Z \sim N(\mu, \sigma^2)$.
- 3. If $X_i = N(\mu_i, \sigma_i^2), i = 1, ..., n$ are independent, then

$$\sum_{i=1}^{n} X_{i} \sim N(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}).$$

It follows from (1) that if $X \sim N(\mu, \sigma^2)$, then

$$\mathbb{P}(a < X < b) = \mathbb{P}(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma})$$
$$= \Phi(\frac{a - \mu}{\sigma}) - \Phi(\frac{b - \mu}{\sigma}).$$

Thus we can compute any probabilities we want so long as we can compute the CDF $\Phi(z)$ of the standard Normal.

THE EXPONENTIAL DISTRIBUTION. X has an Exponential Distribution with parameter β , denoted by $X \sim \text{Exp}(\beta)$, if

$$f(x) = \frac{1}{\beta} e^{-\frac{x}{\beta}}, \quad x > 0.$$

The exponential distribution is used to model the lifetimes of electronic components and the waiting times between rare events.

THE GAMMA DISTRIBUTION. For $\alpha > 0$, the Gamma function is defined by $\Gamma(\alpha) = \int_0^\infty y^{\alpha-1} e^{-y} dy$. X has a Gamma distribution with parameters α and β , denoted by $X \sim \text{Gamma}(\alpha, \beta)$, if

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-\frac{x}{\beta}}, \quad x > 0$$

where $\alpha, \beta > 0$. The exponential distribution is just a Gamma $(1, \beta)$ distribution. If $X_i \sim \text{Gamma}(\alpha_i, \beta)$ are independent, then $\sum_{i=1}^n X_i \sim \text{Gamma}(\alpha_i, \beta)$.

t and Cauchy Distribution. X has a t distribution with v degrees of freedom, written $X \sim t_v$ if

$$f(x) = \frac{\Gamma(\frac{v+1}{2})}{\Gamma(\frac{v}{2})} \frac{1}{(1 + \frac{x^2}{v})^{\frac{v+1}{2}}}.$$

The t distribution is similar to a Normal but it has thicker tails. In fact, the Normal corresponds to a t with $v = \infty$. The Cauchy distribution is a special case of the t distribution corresponding to v = 1. The density is

$$f(x) = \frac{1}{\pi(1+x^2)}.$$

The χ^2 Distribution. X has a χ^2 distribution with p degrees of freedom, written $X \sim \chi_p^2$, if

$$f(x) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}} x^{\frac{p}{2}-1} e^{-\frac{x}{2}}, \quad x > 0.$$

If $Z_1,...,Z_p$ are independent standard Normal random variables then $\sum_{i=1}^p Z_i^2 \sim \chi_p^2$.

2.4 Bivariate Distributions

Given a pair of discrete random variables X and Y, define the join mass function by $f(x,y) = \mathbb{P}(X = x \text{ and } Y = y) = \mathbb{P}(X = x, Y = y)$.

In the continuous case, we call a function f(x,y) a PDF for the random variables (X,Y) if

- 1. $f(x,y) \ge 0$ for all (x,y),
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1 \text{ and,}$
- 3. for any set $A \subset \mathbb{R} \times \mathbb{R}$, $\mathbb{P}((X,Y) \in A) = \int \int_A f(x,y) dx dy$.

2.5 Marginal Distributions

Definition 2.10. If (X,Y) have joint distribution with mass function $f_{X,Y}$, then the marginal mass function for X is defined by

$$f_X(x) = \mathbb{P}(X = x) = \sum_y \mathbb{P}(X = x, Y = y) = \sum_y f(x, y)$$

and the marginal mass function for Y is defined by

$$f_Y(y) = \mathbb{P}(Y = y) = \sum_x \mathbb{P}(X = x, Y = y) = \sum_x f(x, y).$$

For continuous random variables, the marginal densities are

$$f_X(x) = \int f(x,y)dy$$

and

$$f_Y(y) = \int f(x,y)dx.$$

The corresponding marginal distribution functions are denoted by F_X and F_Y .

2.6 Independent Random Variables

Definition 2.11. Two random variables X and Y are independent if, for every A and B,

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

and we write $X \perp\!\!\!\perp Y$. Otherwise we say X and Y are dependent.

2.7 Conditional Distributions

Definition 2.13. The conditional probability mass function is

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)} = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$

if $f_Y(y) > 0$.

For continuous random variables, the conditional probability density function is

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

assuming that $f_Y(y) > 0$. Then,

$$\mathbb{P}(X \in A|Y = y) = \int_A f_{X|Y}(x|y)dx.$$

2.8 Multivariate Distributions and IID Samples

Let $X = (X_1, ..., X_n)$ where $X_1, ... X_n$ are random variables. We call X a random vector. Let $f(x_1, ..., x_n)$ denote the PDF. It is possible to define their marginals, conditionals, etc. much the same way as in the bivariate case. We say that $X_1, ..., X_n$ are independent if, for every $A_1, ..., A_n$,

$$\mathbb{P}(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n \mathbb{P}(X_i \in A_i).$$

It suffices to check that

$$f(x_1, ..., x_n) = \prod_{i=1}^n f_{X_i}(x_i)$$

Definition 2.14. If $X_1, ..., X_n$ are independent and each has the same marginal distribution with CDF F, we say that $X_1, ..., X_n$ are IID (independent and identically distributed) and we write

$$X_1,...,X_n \sim F$$
.

If F has density f we also write $X_1,...,X_n \sim f$. We also call $X_1,...,X_n$ a random sample of size n from F.

See All of Statistics p.39-p.40 for some important multivariate distributions.

2.9 Transformations of Random Variables

Suppose that X is a random variable with PDF f_X and CDF F_X . Let Y = r(X) be a function of X.

Three steps for transformations:

- 1. For each y, find the set $A_y = \{x : r(x) \le y\}$.
- 2. Find the CDF

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(r(X) \le y)$$
$$= \mathbb{P}(\{x; r(x) \le y\})$$
$$= \int_{A_x} f_X(x) dx.$$

3. The PDF $f_Y(y) = F'_Y(y)$.

When r is strictly monotone increasing or strictly monotone decreasing then r has an inverse $s=r^{-1}$ and in this case one can show that

$$f_Y(y) = f_X(s(y)) \left| \frac{ds(y)}{dy} \right|$$

2.10 Transformations of Several Random Variables

Let Z = r(X, Y) be the function of interest. Three steps for transformations:

- 1. For each z, find the set $A_y = \{(x,y) : r(x,y) \le z\}$.
- 2. Find the CDF

$$\begin{split} F_Z(y) &= \mathbb{P}(Z \leq z) = \mathbb{P}(r(X,Y) \leq z) \\ &= \mathbb{P}(\{(x,y); r(x,y) \leq z\}) \\ &= \int \int_{A_y} f_{X,Y}(x,y) dx dy. \end{split}$$

3. The PDF $f_Z(z) = F_Z'(z)$.