Xinda Wu

October 2020

Content

- Generative Models and Variational Inference
 - ullet designs of variational distribution q_ϕ
- ② Deep Generative Models
 - deep latent Gaussian model
 - neural SDEs (inference, exact sampling, expressivity)
- Scalable Gradients for Neural SDEs
 - algorithm and experiment

A generative model: probabilistic, estimates p(y), the probability of observing the observation y.
 (describes how data sets are generated, and by sampling from this model we can generate new data)

- A generative model: probabilistic, estimates p(y), the probability of observing the observation y.
 (describes how data sets are generated, and by sampling from this model we can generate new data)
- Discriminative models estimate p(I|y), the probability of a label I given observation y, used for classification and regression.

- A generative model: probabilistic, estimates p(y), the probability of observing the observation y.
 (describes how data sets are generated, and by sampling from this model we can generate new data)
- Discriminative models estimate p(I|y), the probability of a label I given observation y, used for classification and regression.
- assumption: $\exists p_{data}$ s.t. $y \sim p_{data}$ want: a generative model $p_{model} \approx p_{data}$

- A generative model: probabilistic, estimates p(y), the probability of observing the observation y.
 (describes how data sets are generated, and by sampling from this model we can generate new data)
- Discriminative models estimate p(I|y), the probability of a label I given observation y, used for classification and regression.
- assumption: $\exists p_{data}$ s.t. $y \sim p_{data}$ want: a generative model $p_{model} \approx p_{data}$
- ullet defining a parametric family of densities $\{p_{ heta}\}_{ heta}$, we to solve the problem

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(y_i).$$

(finding the one that maximize the likelihood on the given data $\{y_i\}_{i=1}^n$ where $p_{\theta}(y)$ is interpreted as the plausibility of θ given the data y)

- A generative model: probabilistic, estimates p(y), the probability of observing the
 observation y.
 (describes how data sets are generated, and by sampling from this model we can generate
 new data)
- Discriminative models estimate p(I|y), the probability of a label I given observation y, used for classification and regression.
- assumption: $\exists p_{data}$ s.t. $y \sim p_{data}$ want: a generative model $p_{model} \approx p_{data}$
- ullet defining a parametric family of densities $\{p_{ heta}\}_{ heta}$, we to solve the problem

$$\max_{\theta} \frac{1}{n} \sum_{i=1}^{n} \log p_{\theta}(y_i).$$

(finding the one that maximize the likelihood on the given data $\{y_i\}_{i=1}^n$ where $p_{\theta}(y)$ is interpreted as the plausibility of θ given the data y)

- Bayesian Inference: $p_{\theta}(x|y) = p_{\theta}(y|x)p_{\theta}(x)/p_{\theta}(y)$
- Approximate Inference
 - MCMC
 - Variational Inference

 \bullet Idea: use a variational distribution $q_\phi(\mathbf{x}|\mathbf{y})$ to approximate the posterior, and solve the problem:

$$\min_{\phi} D(q_{\phi}(x|y)||p_{\theta}(x|y))$$

• Idea: use a variational distribution $q_{\phi}(x|y)$ to approximate the posterior, and solve the problem:

$$\min_{\phi} D(q_{\phi}(x|y)||p_{\theta}(x|y))$$

· By the definition of KL divergence

$$\begin{split} D(q_{\phi}(x|y)||p_{\theta}(x|y)) &= \mathbf{E}_{q_{\phi}(x|y)} \log \frac{q_{\phi}(x|y)p_{\theta}(y)}{p_{\theta}(x|y)p_{\theta}(y)} \\ &= \mathbf{E}_{q_{\phi}(x|y)} \log \frac{q_{\phi}(x|y)}{p_{\theta}(x,y)} + \mathbf{E}_{q_{\phi}(x|y)} [\log p_{\theta}(y)] \\ &= \mathbf{F}_{\phi,\theta}(y) + \log p_{\theta}(y) \end{split}$$

• Idea: use a variational distribution $q_{\phi}(\mathbf{x}|\mathbf{y})$ to approximate the posterior, and solve the problem:

$$\min_{\phi} D(q_{\phi}(x|y)||p_{\theta}(x|y))$$

• By the definition of KL divergence

$$\begin{split} D(q_{\phi}(x|y)||p_{\theta}(x|y)) &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)p_{\theta}(y)}{p_{\theta}(x|y)p_{\theta}(y)} \\ &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)}{p_{\theta}(x,y)} + \mathsf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y)] \\ &= \mathsf{F}_{\phi,\theta}(y) + \log p_{\theta}(y) \end{split}$$

with the variational free energy

$$\mathbf{F}_{\phi, heta}(y) := D(q_{\phi}(x|y)||p_{ heta}(x)) - \mathbf{E}_{q_{\phi}(x|y)}[\log p_{ heta}(y|x)]$$

which is computable.

• Idea: use a variational distribution $q_{\phi}(\mathbf{x}|\mathbf{y})$ to approximate the posterior, and solve the problem:

$$\min_{x} D(q_{\phi}(x|y)||p_{\theta}(x|y))$$

· By the definition of KL divergence

$$\begin{split} D(q_{\phi}(x|y)||p_{\theta}(x|y)) &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)p_{\theta}(y)}{p_{\theta}(x|y)p_{\theta}(y)} \\ &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)}{p_{\theta}(x,y)} + \mathsf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y)] \\ &= \mathsf{F}_{\phi,\theta}(y) + \log p_{\theta}(y) \end{split}$$

with the variational free energy

$$\mathbf{F}_{\phi,\theta}(y) := D(q_{\phi}(x|y)||p_{\theta}(x)) - \mathbf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y|x)]$$

which is computable.

The problem becomes:

$$\min_{\phi} \mathbf{F}_{\phi, heta}(y)$$

• Idea: use a variational distribution $q_{\phi}(\mathbf{x}|\mathbf{y})$ to approximate the posterior, and solve the problem:

$$\min_{x} D(q_{\phi}(x|y)||p_{\theta}(x|y))$$

By the definition of KL divergence

$$\begin{split} D(q_{\phi}(x|y)||p_{\theta}(x|y)) &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)p_{\theta}(y)}{p_{\theta}(x|y)p_{\theta}(y)} \\ &= \mathsf{E}_{q_{\phi}(x|y)}\log\frac{q_{\phi}(x|y)}{p_{\theta}(x,y)} + \mathsf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y)] \\ &= \mathsf{F}_{\phi,\theta}(y) + \log p_{\theta}(y) \end{split}$$

with the variational free energy

$$\mathbf{F}_{\phi, heta}(y) := D(q_{\phi}(x|y)||p_{ heta}(x)) - \mathbf{E}_{q_{\phi}(x|y)}[\log p_{ heta}(y|x)]$$

which is computable.

• The problem becomes:

$$\min_{\phi} \mathbf{F}_{\phi, \theta}(y)$$

Also obtain the following inequality

$$-\log p_{\theta}(y) \leq \mathbf{F}_{\phi,\theta}(y)$$

'=' holds when $q_{\phi}(x|y) = p_{\theta}(x|y)$. The problem of MLE becomes:

$$\min_{\phi} \mathbf{F}_{\phi,\theta}(y)$$

$$\mathbf{F}_{\phi,\theta}(y) = \underbrace{D(q_{\phi}(x|y)||p_{\theta}(x))}_{\text{regulariser}} \underbrace{-\mathbf{E}_{q_{\phi}}[\log p_{\theta}(y|x_k)]}_{\text{reconstruction error}}$$

$$\mathbf{F}_{\phi,\theta}(y) = \underbrace{D(q_{\phi}(x|y)||p_{\theta}(x))}_{\text{regulariser}} \underbrace{-\mathbf{E}_{q_{\phi}}[\log p_{\theta}(y|x_k)]}_{\text{reconstruction error}}$$

```
Algorithm 2: Learning with Variational Inference
```

```
Input: parameters \phi for variational distributions, \theta for the generative model (both initialized randomly). 

1 while the free energy F_{\phi,\theta} not converged do 

2 | y \leftarrow \{\text{Get mini-batch}\}

3 | compute the variational distribution q_{\phi}

4 | sample x \sim q_{\phi}(\cdot)

5 | compute the free energy F_{\phi,\theta}(y) \approx F_{\phi,\theta}(x,y)

6 | \Delta\theta \propto -\nabla_{\theta}F_{\phi,\theta}

7 | \Delta\phi \propto -\nabla_{\phi}F_{\phi,\theta}
```

end

$$\mathbf{F}_{\phi,\theta}(y) = \underbrace{D(q_{\phi}(x|y)||p_{\theta}(x))}_{\text{regulariser}} \underbrace{-\mathbf{E}_{q_{\phi}}[\log p_{\theta}(y|x_k)]}_{\text{reconstruction error}}$$

Algorithm 3: Learning with Variational Inference

```
Input: parameters \phi for variational distributions, \theta for the generative model (both initialized randomly). 

1 while the free energy F_{\phi,\theta} not converged do 
2 | y \leftarrow \{\text{Get mini-batch}\}

3 | compute the variational distribution q_{\phi}

4 | sample x \sim q_{\phi}(\cdot)

5 | compute the free energy

F_{\phi,\theta}(y) \approx F_{\phi,\theta}(x,y)

6 | \Delta\theta \propto -\nabla_{\theta}F_{\phi,\theta}

7 | \Delta\phi \propto -\nabla_{\phi}F_{\phi,\theta}
```


$$\mathbf{F}_{\phi,\theta}(y) = \underbrace{D(q_\phi(\mathbf{x}|y)||p_\theta(\mathbf{x}))}_{\text{regulariser}} \underbrace{-\mathbf{E}_{q_\phi}[\log p_\theta(y|\mathbf{x}_k)]}_{\text{reconstruction error}}$$

Algorithm 4: Learning with Variational Inference

Input: parameters ϕ for variational distributions, θ for the generative model (both initialized randomly). 1 while the free energy $F_{\phi,\theta}$ not converged do $y \leftarrow \{\text{Get mini-batch}\}\$ compute the variational distribution q_{ϕ} sample $x \sim q_{\phi}(\cdot)$ compute the free energy $F_{\phi,\theta}(y) \approx F_{\phi,\theta}(x,y)$ $\Delta \theta \propto -\nabla_{\theta} F_{\phi,\theta}$ $\Delta \phi \propto -\nabla_{\phi} F_{\phi,\theta}$

Two problems in implementation:

- compute the gradients of free energy
- construct q_{ϕ} , balancing between richness and scalability

2

3

6

end

Mean-field Approximation (Parisi, 1988)

• assume the latent variables to be mutually independent and the distribution q_ϕ factorizes as follows

$$q_{\phi}(x_0,...,x_k) = \prod_{i=0}^k q_{\phi_i}(x_i)$$

Mean-field Approximation (Parisi, 1988)

• assume the latent variables to be mutually independent and the distribution q_ϕ factorizes as follows

$$q_{\phi}(x_0,...,x_k) = \prod_{i=0}^k q_{\phi_i}(x_i)$$

- cannot capture the correlation between latent variables (fig.1)
- fail to fit a multimodal posterior (fig.2)
- Improvements: parameterize the correlation; use mixture model

$$q_{mix} = \sum_{i} \alpha_{i} q_{mf}^{(i)}$$

Figure 1: uncorrelated

Figure 2: not fitting multi-modal

Normalizing Flows (Rezende 2015)

 Idea: use a sequence of 'simple', differentiable, invertible transformations to construct an arbitrarily complex distribution

$$x_K = f_K \circ ... \circ f_1(x_0); \quad x_0 \sim q(x_0)$$

Normalizing Flows (Rezende 2015)

 Idea: use a sequence of 'simple', differentiable, invertible transformations to construct an arbitrarily complex distribution

$$x_K = f_K \circ ... \circ f_1(x_0); \quad x_0 \sim q(x_0)$$

• For each mapping $f: \mathbb{R}^d \to \mathbb{R}^d$, random variable x with distribution q(x), the resulting variable x' = f(x) has a distribution (chage of variable)

$$q(x') = q(x) \left| \det \frac{\partial f^{-1}}{\partial x'} \right| = q(x) \left| \det \frac{\partial f}{\partial x} \right|^{-1}.$$

Normalizing Flows (Rezende 2015)

 Idea: use a sequence of 'simple', differentiable, invertible transformations to construct an arbitrarily complex distribution

$$x_K = f_K \circ ... \circ f_1(x_0); \quad x_0 \sim q(x_0)$$

• For each mapping $f: \mathbb{R}^d \to \mathbb{R}^d$, random variable x with distribution q(x), the resulting variable x' = f(x) has a distribution (chage of variable)

$$q(x') = q(x) \left| \det \frac{\partial f^{-1}}{\partial x'} \right| = q(x) \left| \det \frac{\partial f}{\partial x} \right|^{-1}.$$

after K transformations

$$\ln q_K(x_K) = \ln q_0(x_0) - \sum_{i=1}^K \ln \left| \det \frac{\partial f_i}{\partial x_{i-1}} \right|$$

Normalizing Flows (Rezende 2015)

 Idea: use a sequence of 'simple', differentiable, invertible transformations to construct an arbitrarily complex distribution

$$x_K = f_K \circ ... \circ f_1(x_0); \quad x_0 \sim q(x_0)$$

• For each mapping $f: \mathbb{R}^d \to \mathbb{R}^d$, random variable x with distribution q(x), the resulting variable x' = f(x) has a distribution (chage of variable)

$$q(x') = q(x) \left| \det \frac{\partial f^{-1}}{\partial x'} \right| = q(x) \left| \det \frac{\partial f}{\partial x} \right|^{-1}.$$

after K transformations

$$\ln q_K(x_K) = \ln q_0(x_0) - \sum_{i=1}^K \ln \left| \det \frac{\partial f_i}{\partial x_{i-1}} \right|$$

• Law of the unconscious statistician (LOTUS): expectation w.r.t. q_K can be computed without explicitly knowing q_K

$$\mathbf{E}_{q_{K}}[g(x_{K})] = \mathbf{E}_{q_{0}}[g(f_{K} \circ ... \circ f_{1}(x_{0}))]$$

Planar flow:

$$f(x) = x + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}x + b)$$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{u} \in \mathbb{R}^d$, $b \in \mathbb{R}$ parameters and $h : \mathbb{R} \to \mathbb{R}$ a smooth, element-wise nonlinear function

• Radial flow: $f(x) = x + \frac{\beta}{\alpha + r}(x - x_0)$ with $r = |x - x_0|$, $\alpha \in \mathbb{R}^+$, $\beta \in \mathbb{R}$

Planar flow:

$$f(x) = x + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}x + b)$$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{u} \in \mathbb{R}^d$, $b \in \mathbb{R}$ parameters and $h : \mathbb{R} \to \mathbb{R}$ a smooth, element-wise nonlinear function

- Radial flow: $f(x) = x + \frac{\beta}{\alpha + r}(x x_0)$ with $r = |x - x_0|$, $\alpha \in \mathbb{R}^+$, $\beta \in \mathbb{R}$
- Free energy with planar flow

with $\psi(x) = h'(\mathbf{w}^{\mathsf{T}}x + b)\mathbf{w}$

$$\begin{split} \mathbf{F}_{\phi,\theta}(y) &:= D(q_{\phi}(x|y)||p_{\theta}(x)) - \mathbf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y|x)] \\ &= \mathbf{E}_{q_{\phi}(x|y)}[\log q_{\phi}(x|y) - \log p_{\theta}(x,y)] \\ &= \mathbf{E}_{q_{0}(x_{0})}[\ln q_{K}(x_{K}) - \log p_{\theta}(x_{K},y)] \\ &= \mathbf{E}_{q_{0}(x_{0})}[\ln q_{0}(x_{0})] - \mathbf{E}_{q_{0}(x_{0})}[\log p_{\theta}(x_{K},y)] \\ &- \mathbf{E}_{q_{0}(x_{0})}\left[\sum_{i=1}^{K} \ln |1 + \mathbf{u}_{i}^{T}\psi_{i}(x_{i-1})|\right] \end{split}$$

Figure 3: planarFlow

Figure 4: radialFlow

Planar flow:

$$f(x) = x + \mathbf{u}h(\mathbf{w}^{\mathsf{T}}x + b)$$

with $\mathbf{w} \in \mathbb{R}^d$, $\mathbf{u} \in \mathbb{R}^d$, $b \in \mathbb{R}$ parameters and $h : \mathbb{R} \to \mathbb{R}$ a smooth, element-wise nonlinear function

- Radial flow: $f(x) = x + \frac{\beta}{\alpha + r}(x x_0)$ with $r = |x x_0|$, $\alpha \in \mathbb{R}^+$, $\beta \in \mathbb{R}$
- Free energy with planar flow

$$\begin{split} \mathbf{F}_{\phi,\theta}(y) &:= D(q_{\phi}(x|y)||p_{\theta}(x)) - \mathbf{E}_{q_{\phi}(x|y)}[\log p_{\theta}(y|x)] \\ &= \mathbf{E}_{q_{\phi}(x|y)}[\log q_{\phi}(x|y) - \log p_{\theta}(x,y)] \\ &= \mathbf{E}_{q_{0}(x_{0})}[\ln q_{K}(x_{K}) - \log p_{\theta}(x_{K},y)] \\ &= \mathbf{E}_{q_{0}(x_{0})}[\ln q_{0}(x_{0})] - \mathbf{E}_{q_{0}(x_{0})}[\log p_{\theta}(x_{K},y)] \\ &- \mathbf{E}_{q_{0}(x_{0})}\left[\sum_{i=1}^{K} \ln |1 + \mathbf{u}_{i}^{\mathsf{T}} \psi_{i}(x_{i-1})|\right] \end{split}$$

with
$$\psi(x) = h'(\mathbf{w}^{\mathsf{T}}x + b)\mathbf{w}$$

Figure 3: planarFlow

Figure 4: radialFlow

Figure 5: approx posterior using planarFlow

Deep Latent Gaussian Model (Rezende, Kingma, 2014)

In this model, the latent variables $X_0,...,X_k$ and the observed variable Y are generated recursively according to

$$X_0 = Z_0$$

 $X_i = X_{i-1} + b_i(X_{i-1}) + \sigma_i Z_i, i = 1, ..., k$
 $Y \sim p(\cdot|X_k)$

where $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, I_d)$ in \mathbb{R}^d and $b_i : \mathbb{R}^d \to \mathbb{R}^d$ parametric nonlinear transformations, $\sigma_i \in \mathbb{R}^d \times \mathbb{R}^d$ sequence of matrices, $p(\cdot|\cdot)$ observation likelihood.

 b_i, implemented by multilayer perceptrons (MLPs). In practice, it may select other type of neural nets, up to the purpose of usage

Deep Latent Gaussian Model (Rezende, Kingma, 2014)

In this model, the latent variables $X_0,...,X_k$ and the observed variable Y are generated recursively according to

$$X_0 = Z_0$$

 $X_i = X_{i-1} + b_i(X_{i-1}) + \sigma_i Z_i, i = 1, ..., k$
 $Y \sim p(\cdot | X_k)$

where $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, I_d)$ in \mathbb{R}^d and $b_i : \mathbb{R}^d \to \mathbb{R}^d$ parametric nonlinear transformations, $\sigma_i \in \mathbb{R}^d \times \mathbb{R}^d$ sequence of matrices, $\rho(\cdot|\cdot)$ observation likelihood.

- b_i, implemented by multilayer perceptrons (MLPs). In practice, it may select other type of neural nets, up to the purpose of usage
- ullet designed based on the idea of representation learning: $\dim(X) < \dim(Y)$

Deep Latent Gaussian Model (Rezende, Kingma, 2014)

In this model, the latent variables $X_0,...,X_k$ and the observed variable Y are generated recursively according to

$$X_0 = Z_0$$

 $X_i = X_{i-1} + b_i(X_{i-1}) + \sigma_i Z_i, i = 1, ..., k$
 $Y \sim p(\cdot | X_k)$

where $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, I_d)$ in \mathbb{R}^d and $b_i : \mathbb{R}^d \to \mathbb{R}^d$ parametric nonlinear transformations, $\sigma_i \in \mathbb{R}^d \times \mathbb{R}^d$ sequence of matrices, $\rho(\cdot|\cdot)$ observation likelihood.

- b_i, implemented by multilayer perceptrons (MLPs). In practice, it may select other type of neural nets, up to the purpose of usage
- ullet designed based on the idea of representation learning: $\dim(X) < \dim(Y)$
- when k=1, b uses linear activation, without primitive random variables Z, it performs the principal component analysis (PCA)

Deep Latent Gaussian Model (Rezende, Kingma, 2014)

In this model, the latent variables $X_0,...,X_k$ and the observed variable Y are generated recursively according to

$$X_0 = Z_0$$

 $X_i = X_{i-1} + b_i(X_{i-1}) + \sigma_i Z_i, i = 1, ..., k$
 $Y \sim p(\cdot | X_k)$

where $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, I_d)$ in \mathbb{R}^d and $b_i : \mathbb{R}^d \to \mathbb{R}^d$ parametric nonlinear transformations, $\sigma_i \in \mathbb{R}^d \times \mathbb{R}^d$ sequence of matrices, $\rho(\cdot|\cdot)$ observation likelihood.

- b_i, implemented by multilayer perceptrons (MLPs). In practice, it may select other type of neural nets, up to the purpose of usage
- designed based on the idea of representation learning: $\dim(X) < \dim(Y)$
- when k = 1, b uses linear activation, without primitive random variables Z, it performs the principal component analysis (PCA)
- Stochastic Backpropagation (Rezende, 2014)

Deep Latent Gaussian Model (Rezende, Kingma, 2014)

In this model, the latent variables $X_0,...,X_k$ and the observed variable Y are generated recursively according to

$$X_0 = Z_0$$

 $X_i = X_{i-1} + b_i(X_{i-1}) + \sigma_i Z_i, i = 1, ..., k$
 $Y \sim p(\cdot|X_k)$

where $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, I_d)$ in \mathbb{R}^d and $b_i : \mathbb{R}^d \to \mathbb{R}^d$ parametric nonlinear transformations, $\sigma_i \in \mathbb{R}^d \times \mathbb{R}^d$ sequence of matrices, $p(\cdot|\cdot)$ observation likelihood.

- b_i, implemented by multilayer perceptrons (MLPs). In practice, it may select other type of neural nets, up to the purpose of usage
- designed based on the idea of representation learning: dim(X) < dim(Y)
- when k=1, b uses linear activation, without primitive random variables Z, it performs the principal component analysis (PCA)
- Stochastic Backpropagation (Rezende, 2014)
- ullet representative power increases as $k \to \infty$. To avoid $n_{\theta} \to \infty$, consider its diffusion limit

and joint density

• Consider the continuous-time limit of DLGM, the latent object becomes a d-dimensional diffusion process

$$dX_t = b(X_t,t)dt + \sigma(X_t,t)dW_t, \ t \in [0,1]$$
 and the observed variable $Y \sim p(\cdot|X_1)$, latent space $\mathbb{W} = C([0,1];\mathbb{R}^d)$ and joint density

$$p_{\theta}(dy, dw) = p_{\theta}(y|X_1(w))\mu_w(dw)dy$$

 Consider the continuous-time limit of DLGM, the latent object becomes a d-dimensional diffusion process

$$dX_t = b(X_t,t)dt + \sigma(X_t,t)dW_t, \ t \in [0,1]$$
 and the observed variable $Y \sim p(\cdot|X_1)$, latent space $\mathbb{W} = C([0,1];\mathbb{R}^d)$

and the observed variable $Y \sim p(\cdot|X_1)$, latent space $\mathbb{W} = \mathbb{C}([0,1];\mathbb{R}^n)$ and joint density

$$p_{\theta}(dy, dw) = p_{\theta}(y|X_1(w))\mu_w(dw)dy$$

• We work on the special case $\sigma \equiv I_d$,

$$dX_t = b(X_t, t; \theta)dt + dW_t, \ t \in [0, 1]$$

 Consider the continuous-time limit of DLGM, the latent object becomes a d-dimensional diffusion process

$$dX_t = b(X_t, t)dt + \sigma(X_t, t)dW_t, \ t \in [0, 1]$$

and the observed variable $Y \sim p(\cdot|X_1)$, latent space $\mathbb{W} = C([0,1];\mathbb{R}^d)$ and joint density

$$p_{\theta}(dy, dw) = p_{\theta}(y|X_1(w))\mu_w(dw)dy$$

• We work on the special case $\sigma \equiv I_d$,

$$dX_t = b(X_t, t; \theta)dt + dW_t, t \in [0, 1]$$

and
$$b: \mathbb{R}^d imes [0,1] o \mathbb{R}^d$$

- ullet implemented by neural nets, heta weight parameters
- sufficiently well behaves (bounded, Lipschitz), admits a unique strong solution and a transition kernel

A Stochastic Control Problem

Consider the following stochastic control problem:

ullet controlled diffusion process $X^u = \{X^u_t\}_{t \in [0,1]}$ defined by

$$dX^u_t = \big(b(X^u_t,t;\theta) + u(X^u_t,t;\phi)\big)dt + dW_t, \ t \in [0,1]$$

for
$$u:\mathbb{R}^d imes [0,1] o \mathbb{R}^d$$
 measurable with $\mathbf{E}[\int_0^1\|u_s\|^2ds]<\infty$

A Stochastic Control Problem

Consider the following stochastic control problem:

• controlled diffusion process $X^u = \{X_t^u\}_{t \in [0,1]}$ defined by

$$dX^{u}_{t} = (b(X^{u}_{t}, t; \theta) + u(X^{u}_{t}, t; \phi))dt + dW_{t}, \ t \in [0, 1]$$

for
$$u:\mathbb{R}^d imes [0,1] o \mathbb{R}^d$$
 measurable with $\mathbf{E}[\int_0^1\|u_s\|^2ds]<\infty$

cost-to-go function defined in the form of variational free energy:

$$J^{u}(x,t) := D(\mathbf{P}^{u}||\mathbf{P}^{0}) - \mathbf{E}[\log g(X_{1}^{u})|X_{t}^{u} = x]$$

for each u and $g:\mathbb{R} o (0,\infty)$ be given, where $\mathbf{P}^0:=\mathsf{Law}(X_{[t,1]})$ and $\mathbf{P}^u:=\mathsf{Law}(X_{[t,1]}^u)$

A Stochastic Control Problem

Consider the following stochastic control problem:

• controlled diffusion process $X^u = \{X_t^u\}_{t \in [0,1]}$ defined by

$$dX_{t}^{u} = (b(X_{t}^{u}, t; \theta) + u(X_{t}^{u}, t; \phi))dt + dW_{t}, t \in [0, 1]$$

for
$$u:\mathbb{R}^d imes [0,1] o \mathbb{R}^d$$
 measurable with $\mathbf{E}[\int_0^1\|u_s\|^2ds]<\infty$

• cost-to-go function defined in the form of variational free energy:

$$J^{u}(x,t) := D(\mathbf{P}^{u}||\mathbf{P}^{0}) - \mathbf{E}[\log g(X_{1}^{u})|X_{t}^{u} = x]$$

for each u and $g:\mathbb{R} o(0,\infty)$ be given, where $\mathbf{P}^0:=\mathsf{Law}(X_{[t,1]})$ and $\mathbf{P}^u:=\mathsf{Law}(X_{[t,1]}^u)$

Girsanov representation

X and X^u differ by a change of drift, by Girsanov formula

$$\frac{d\mathbf{P}^{u}}{d\mathbf{P}^{0}} = \exp\left(\int_{t}^{1} u_{s}^{T} dW_{s} + \frac{1}{2} \int_{t}^{1} \|u_{s}\|^{2} ds\right),$$

$$D(\mathbf{P}^{u} \| \mathbf{P}^{0}) = \mathbf{E}_{\mathbf{P}^{u}} \left[\log \frac{d\mathbf{P}^{u}}{d\mathbf{P}^{0}}\right] = \mathbf{E} \left[\frac{1}{2} \int_{t}^{1} \|u_{s}\|^{2} ds\right]$$

$$\Rightarrow J^{u}(x, t) := \mathbf{E} \left[\frac{1}{2} \int_{t}^{1} \|u_{s}\|^{2} ds - \log g(X_{1}^{u}) | X_{t}^{u} = x\right]$$

ullet Goal: to find the value function $v:\mathbb{R}^d imes [0,1] o \mathbb{R}_+$

$$v(x,t) := \inf_{u} J^{u}(x,t); \ v(\cdot,1) = -\log g(\cdot)$$

and the optimal control u^* s.t. $v(x,t) = J^{u^*}(x,t)$

• Goal: to find the value function $v: \mathbb{R}^d \times [0,1] \to \mathbb{R}_+$

$$v(x,t) := \inf_{u} J^{u}(x,t); \ v(\cdot,1) = -\log g(\cdot)$$

and the optimal control u^* s.t. $v(x,t) = J^{u^*}(x,t)$

• Bellman equation By the principle of optimality (Bellman, 1957), from t to t + dt,

$$v(x,t) = \min_{u} \left\{ v(x,t+dt) + \mathbf{E} \left[\frac{1}{2} \int_{t}^{t+dt} \|u_{s}\|^{2} ds \right] \right\}$$

• Goal: to find the value function $v: \mathbb{R}^d \times [0,1] \to \mathbb{R}_+$

$$v(x,t) := \inf_{u} J^{u}(x,t); \ v(\cdot,1) = -\log g(\cdot)$$

and the optimal control u^* s.t. $v(x,t) = J^{u^*}(x,t)$

Bellman equation

By the principle of optimality (Bellman, 1957), from t to t + dt,

$$v(x,t) = \min_{u} \left\{ v(x,t+dt) + \mathbf{E} \left[\frac{1}{2} \int_{t}^{t+dt} \|u_s\|^2 ds \right] \right\}$$

use Itô formula to expand v(x,t+dt) and let $dt \to 0$, we have

$$\frac{\partial v}{\partial t} + \mathcal{L}_t v = -\min_{\alpha \in \mathbb{R}^d} \left\{ \alpha^\mathsf{T} \nabla v + \frac{1}{2} \|\alpha\|^2 \right\}; v(\cdot, 1) = -\log g(\cdot)$$

• Goal: to find the value function $v: \mathbb{R}^d \times [0,1] \to \mathbb{R}_+$

$$v(x,t) := \inf_{u} J^{u}(x,t); \ v(\cdot,1) = -\log g(\cdot)$$

and the optimal control u^* s.t. $v(x,t) = J^{u^*}(x,t)$

Bellman equation

By the principle of optimality (Bellman, 1957), from t to t + dt,

$$v(x,t) = \min_{u} \left\{ v(x,t+dt) + \mathbf{E} \left[\frac{1}{2} \int_{t}^{t+dt} \|u_s\|^2 ds \right] \right\}$$

use Itô formula to expand v(x, t + dt) and let $dt \rightarrow 0$, we have

$$\frac{\partial v}{\partial t} + \mathcal{L}_t v = -\min_{\alpha \in \mathbb{R}^d} \left\{ \alpha^\mathsf{T} \nabla v + \frac{1}{2} \|\alpha\|^2 \right\}; v(\cdot, 1) = -\log g(\cdot)$$

reduced to the following Cauchy problem

$$\frac{\partial v}{\partial t} + \mathcal{L}_t v = \frac{1}{2} \|\nabla v\|^2 \text{ on } \mathbb{R}^d \times [0,1]; v(\cdot,1) = -\log g(\cdot)$$

which can be solved by Feynman-Kac formula.

Theorem (Jamison, 1975; Dai Pra, 1991)

Consider the above control problem, then the value function is given by

$$v(x,t) = -\log \mathbf{E}[g(X_1)|X_t = x]$$

the optimal control is given by

$$u^*(x,t) = -\nabla v(x,t) = \nabla \log \mathbf{E}[g(X_1)|X_t = x]$$

the corresponding controlled diffusion X^{u^*} has the transition density

$$\kappa_{s,t}^*(x,y) = \kappa_{s,t}(x,y) \exp(v(x,s) - v(y,t))$$

where $\kappa_{s,t}(\cdot)$ is the transition density of uncontrolled process.

Theorem (Jamison, 1975; Dai Pra, 1991)

Consider the above control problem, then the value function is given by

$$v(x,t) = -\log \mathbf{E}[g(X_1)|X_t = x]$$

the optimal control is given by

$$u^*(x,t) = -\nabla v(x,t) = \nabla \log \mathbf{E}[g(X_1)|X_t = x]$$

the corresponding controlled diffusion X^{u^*} has the transition density

$$\kappa_{s,t}^*(x,y) = \kappa_{s,t}(x,y) \exp(v(x,s) - v(y,t))$$

where $\kappa_{s,t}(\cdot)$ is the transition density of uncontrolled process.

Entropy Inequality:

$$-\log \mathbf{E}[g(X_1)|X_0=x] \leq D(\mathbf{P^u}||\mathbf{P^0}) - \mathbf{E}[\log g(X_1^u)|X_0^u=x]$$

Theorem (Jamison, 1975; Dai Pra, 1991)

Consider the above control problem, then the value function is given by

$$v(x,t) = -\log \mathbf{E}[g(X_1)|X_t = x]$$

the optimal control is given by

$$u^*(x,t) = -\nabla v(x,t) = \nabla \log \mathbf{E}[g(X_1)|X_t = x]$$

the corresponding controlled diffusion X^{u^*} has the transition density

$$\kappa_{s,t}^*(x,y) = \kappa_{s,t}(x,y) \exp(v(x,s) - v(y,t))$$

where $\kappa_{s,t}(\cdot)$ is the transition density of uncontrolled process.

Entropy Inequality:

$$-\log E[g(X_1)|X_0=x] \le D(\mathbf{P^u}||\mathbf{P^0}) - E[\log g(X_1^u)|X_0^u=x]$$

• Variational upper-bound: (let g(x) = p(y|x) observation likelihood)

$$-\log \mathbf{E}[p(y|X_1)|X_0 = x] \le D(\mathbf{P^u}||\mathbf{P^0}) - \mathbf{E}[\log p(y|X_1^u)|X_0^u = x]$$

$$= \underbrace{\mathbf{E}\left[\frac{1}{2}\int_0^1 \|u_s\|^2 ds - \log p(y|X_1^u)\Big|X_0^u = x\right]}_{\mathbf{E^u}(y,y,\phi,\theta) := -}$$

Sampling problem: Given target distribution μ , and the prior process with $X_1 \sim \nu$

• $\exists u \text{ s.t. } X_1^u \sim \mu$?

Sampling problem: Given target distribution μ , and the prior process with $X_1 \sim \nu$

- $\exists u$ s.t. $X_1^u \sim \mu$?
- among these controls, which has the minimal control cost?

$$D(\mathbf{P}^u||\mathbf{P}^0) \rightarrow \min?$$

Sampling problem: Given target distribution μ , and the prior process with $X_1 \sim \nu$

- $\exists u$ s.t. $X_1^u \sim \mu$?
- among these controls, which has the minimal control cost?

$$D(\mathbf{P}^u||\mathbf{P}^0) \rightarrow \min$$
?

an optimal control s.t. encoder and decoder communicate most efficiently?

Sampling problem: Given target distribution μ , and the prior process with $X_1 \sim \nu$

- $\exists u$ s.t. $X_1^u \sim \mu$?
- among these controls, which has the minimal control cost?

$$D(\mathbf{P}^u||\mathbf{P}^0) \rightarrow \min$$
?

an optimal control s.t. encoder and decoder communicate most efficiently?

Sampling problem: Given target distribution μ , and the prior process with $X_1 \sim \nu$

- $\exists u$ s.t. $X_1^u \sim \mu$?
- among these controls, which has the minimal control cost?

$$D(\mathbf{P}^u||\mathbf{P}^0) \rightarrow \min?$$

• an optimal control s.t. encoder and decoder communicate most efficiently?

Theorem

Given a target μ at t=1, $X_0=0$, $X_1\sim \nu$, with $\mu\ll \nu$. Let $g=f=d\mu/d\nu$, then

$$X_1^* \sim \mu$$

and the optimal control u^* has the minimal energy

$$D(\mathbf{P^u}||\mathbf{P^0}) \ge D(d\mu||d\nu)$$

among all admissible controls u that induce the target distribution μ at t=1

Proof:

 $\bullet \ X_1^* \sim \mu$

$$\mathbb{P}[X_1^* \in A] = \int_A \kappa_{0,1}^*(0, y) dy$$

$$= \int_A \kappa_{0,1}(0, y) \exp(v(0, 0) - v(y, 1)) dy$$

$$= \int_A f d\nu$$

$$= \mu(A)$$

Proof:

• $X_1^* \sim \mu$

$$\mathbb{P}[X_1^* \in A] = \int_A \kappa_{0,1}^*(0, y) dy$$

$$= \int_A \kappa_{0,1}(0, y) \exp(v(0, 0) - v(y, 1)) dy$$

$$= \int_A f d\nu$$

$$= \mu(A)$$

Recall the entropy inequality

$$-\log\underbrace{\frac{\mathbf{E}[f(X_1)|X_0=0]}{\mathbf{E}[L_0]}}_{=\mathbf{E}_{\nu}[\frac{d\mu}{d\nu}]=1} \leq D(\mathbf{P^u}||\mathbf{P^0}) - \underbrace{\mathbf{E}[\log f(X_1^u)|X_0^u=0]}_{=\mathbf{E}_{\mu}[\log \frac{d\mu}{d\nu}]=D(d\mu||d\nu)}$$

$$\Longrightarrow D(\mathbf{P^u}||\mathbf{P^0}) \ge D(d\mu||d\nu)$$

$$\Longrightarrow \underbrace{D(d\mu||d\nu)}_{\text{minimal energy}} = \min_{u} \{ \frac{1}{2} \mathbf{E} [\int_{0}^{1} \|u_{s}\|^{2} ds] \}$$

Fix
$$b(x, t) \equiv 0$$
, $X_1 \sim \gamma_d$,

compute the value function

$$\begin{split} v(x,t) &= -\log \mathbf{E}[g(X_1)|X_t = x] = -\log \mathbf{E}[f(W_1)|X_t = x] \\ &= -\log \left((2\pi(1-t))^{-d/2} \int_t^1 f(y) \exp(-\frac{\|y - x\|^2}{2(1-t)}) dy \right) \\ &= -\log Q_{1-t} f(x) \end{split}$$

conpute the optimal control

$$u^*(x,t) = -\nabla v(x,t) = \underbrace{\nabla \log Q_{1-t}f(x)}_{ ext{F\"ollmer drift}}$$

Expressivity: could we approximate Föllmer drift by neural nets?

Expressivity: could we approximate Föllmer drift by neural nets?

- replace $Q_t f(x)$ by Monte Carlo estimate
- replace $f(\cdot)$ by a neural net approximation $\hat{f}(\cdot; \theta)$
- elementary operations(i.e. gradients,multiplications, reciprocals) can be computed by neural nets

$$\nabla \log Q_{1-t}f(x) \approx \nabla \log \left\{ \frac{1}{N} \sum_{n=1}^{N} \hat{f}(x + \sqrt{1-t}z_n; \theta) \right\}$$
$$= \frac{\sum_{n=1}^{N} \nabla \hat{f}(x + \sqrt{1-t}z_n; \theta)}{\sum_{n=1}^{N} \hat{f}(x + \sqrt{1-t}z_n; \theta)}$$

• **(A1)** f differentiable, both f and ∇f are Lipschitz, and exits a constant $c \in (0,1]$ such that f>c everywhere

- **(A1)** f differentiable, both f and ∇f are Lipschitz, and exits a constant $c \in (0,1]$ such that f > c everywhere
- (regularity of the Föllmer drift) With assumption (A1), the Föllmer drift $b(x,t) = \nabla \log Q_{1-t}f(x)$ is bounded in the Euclidean norm,

$$\|\nabla \log Q_{1-t}f(x)\| \le \frac{L}{c}$$

for $x\in\mathbb{R}^d$, $t\in[0,1]$, and L the maximum of the Lipschitz constants of f and ∇f . And also, it is Lipschitz with Lipschitz constant $L/c+L^2/c^2$,

$$||b(x,t)-b(x',t)|| \le \left(\frac{L}{c} + \frac{L^2}{c^2}\right)||x-x'||.$$

- **(A1)** f differentiable, both f and ∇f are Lipschitz, and exits a constant $c \in (0,1]$ such that f > c everywhere
- (regularity of the Föllmer drift) With assumption (A1), the Föllmer drift $b(x,t) = \nabla \log Q_{1-t}f(x)$ is bounded in the Euclidean norm,

$$\|\nabla \log Q_{1-t}f(x)\| \leq \frac{L}{c}$$

for $x \in \mathbb{R}^d$, $t \in [0,1]$, and L the maximum of the Lipschitz constants of f and ∇f . And also, it is Lipschitz with Lipschitz constant $L/c + L^2/c^2$,

$$||b(x,t)-b(x',t)|| \le \left(\frac{L}{c} + \frac{L^2}{c^2}\right) ||x-x'||.$$

 (A2) activation function σ is differentiable and universal (any univariate Lipschitz function on a bounded interval can approximated well by a 2-layer MLP)

- **(A1)** f differentiable, both f and ∇f are Lipschitz, and exits a constant $c \in (0,1]$ such that f > c everywhere
- (regularity of the Föllmer drift) With assumption (A1), the Föllmer drift $b(x,t) = \nabla \log Q_{1-t}f(x)$ is bounded in the Euclidean norm,

$$\|\nabla \log Q_{1-t}f(x)\| \leq \frac{L}{c}$$

for $x \in \mathbb{R}^d$, $t \in [0,1]$, and L the maximum of the Lipschitz constants of f and ∇f . And also, it is Lipschitz with Lipschitz constant $L/c + L^2/c^2$,

$$||b(x,t)-b(x',t)|| \le \left(\frac{L}{c} + \frac{L^2}{c^2}\right) ||x-x'||.$$

- (A2) activation function σ is differentiable and universal (any univariate Lipschitz function on a bounded interval can approximated well by a 2-layer MLP)
- (A3) both f and ∇f can be efficiently approximated by a neural net on any compact subset of \mathbb{R}^d

Theorem (Tzen 2019)

Suppose assumptions A1-A3 are in force. Let L denote the maximum of Lipschitz constants of f and ∇f . Then for any $0<\epsilon<16L^2/c^2$, there exists a neural net $\hat{v}:\mathbb{R}^d\times[0,1]\to\mathbb{R}^d$ with size polynomial in $1/\epsilon,d,L,c,1/c$, and the following holds:

If $\{\hat{X}_t\}_{t\in[0,1]}$ is the diffusion process governed by the Itô SDE

$$d\hat{X}_t = \hat{b}(\hat{X}_t, t)dt + dW_t, \, \hat{X}_0 = 0$$

with the drift $\hat{b}(x,t) = \hat{v}(x,\sqrt{1-t})$, then $\hat{\mu} := \text{Law}(\hat{X}_1)$ satisfies $D(\mu||\hat{\mu}) \leq \epsilon$.

Theorem (Tzen 2019)

Suppose assumptions A1-A3 are in force. Let L denote the maximum of Lipschitz constants of f and ∇f . Then for any $0 < \epsilon < 16L^2/c^2$, there exists a neural net $\hat{v} : \mathbb{R}^d \times [0,1] \to \mathbb{R}^d$ with size polynomial in $1/\epsilon$, d, L, c, 1/c, and the following holds:

If $\{\hat{X}_t\}_{t\in[0,1]}$ is the diffusion process governed by the Itô SDE

$$d\hat{X}_t = \hat{b}(\hat{X}_t, t)dt + dW_t, \, \hat{X}_0 = 0$$

with the drift $\hat{b}(x,t) = \hat{v}(x,\sqrt{1-t})$, then $\hat{\mu} := \text{Law}(\hat{X}_1)$ satisfies $D(\mu||\hat{\mu}) \le \epsilon$.

Proof:

Using probabilistic method and results from theory of empirical process to control the error incurred in each of the following steps:

- replace $Q_t f(x)$ by Monte Carlo estimate
- replace $f(\cdot)$ by a neural net approximation $\hat{f}(\cdot; \theta)$
- approximate the elementary operations by neural nets

Trainability

Consider the following problem of sensitivity analysis: (Gobet and Munos, 2005)

Given a d-dimensional Itô process,

$$dX_t^{\alpha} = b(X_t^{\alpha}, t; \alpha)dt + \sigma(X_t^{\alpha}, t; \alpha)dW_t; t \in [0, T]$$

where α is a n_{α} -dimensional parameter, and a function $\mathcal{L}: \mathbb{R}^d \to \mathbb{R}$ is given. We want to compute the gradient of the expectation

$$J(\alpha) := \mathbf{E}[\mathcal{L}(X_T^{\alpha})]$$

w.r.t α .

Note: for Neural SDE, $\alpha = (\phi, \theta)$, $\mathcal{L}(\cdot) = \mathbf{F}^u(y; \phi, \theta)(\cdot)$

Trainability

Consider the following problem of sensitivity analysis: (Gobet and Munos, 2005)

Given a d-dimensional Itô process,

$$dX_t^{\alpha} = b(X_t^{\alpha}, t; \alpha)dt + \sigma(X_t^{\alpha}, t; \alpha)dW_t; t \in [0, T]$$

where α is a n_{α} -dimensional parameter, and a function $\mathcal{L}: \mathbb{R}^d \to \mathbb{R}$ is given. We want to compute the gradient of the expectation

$$J(\alpha) := \mathbf{E}[\mathcal{L}(X_T^{\alpha})]$$

w.r.t α .

Note: for Neural SDE, $\alpha = (\phi, \theta)$, $\mathcal{L}(\cdot) = \mathbf{F}^u(y; \phi, \theta)(\cdot)$

Path-wise forward

$$\nabla_{\alpha} J = \nabla_{\alpha} \mathbf{E}[\mathcal{L}(X_T^{\alpha})] = \mathbf{E}[\nabla \mathcal{L}(X_T^{\alpha}) \nabla_{\alpha} X_T^{\alpha}]$$

$$\frac{\partial X_t}{\partial \alpha_i} = \int_0^t \left(\frac{\partial b_s}{\partial \alpha_i} + \frac{\partial b_s}{\partial x} \frac{\partial X_s}{\partial \alpha_i} \right) ds + \sum_{l=1}^d \int_0^t \left(\frac{\partial \sigma_{s,l}}{\partial \alpha_i} + \frac{\partial \sigma_{s,l}}{\partial x} \frac{\partial X_s}{\partial \alpha_i} \right) dW_s^l$$

state sensitivities $\nabla_{\alpha} X_t$ will be computationally prohibitive as n_{α} increases largely

Idea:

• mimic the standard back-propagation of neural net

$$\frac{d\mathcal{L}}{dh_t} = \frac{d\mathcal{L}}{dh_{t+1}} \frac{dh_{t+1}}{dh_t}$$

- define the adjoint state $a_t = d\mathcal{L}/dx_t$
- derive a backward dynamic for the adjoint state which shows how the gradient propagate backward
- treating the parameters as additional part of the augmented state

Idea:

• mimic the standard back-propagation of neural net

$$\frac{d\mathcal{L}}{dh_t} = \frac{d\mathcal{L}}{dh_{t+1}} \frac{dh_{t+1}}{dh_t}$$

- define the adjoint state $a_t = d\mathcal{L}/dx_t$
- derive a backward dynamic for the adjoint state which shows how the gradient propagate backward
- treating the parameters as additional part of the augmented state

Advantages:

- adjoint state does not depend on parameters
- the gradients w.r.t parameters can be computed using adjoint state sensitivity
- ullet " n_lpha+1 systems " o " ${f 2}$ systems"

Some backward calculus: (Kunita, 2019)

• Two-sided filtration $\{\mathcal{F}_{s,t}\}_{s \leq t; s,t \in \mathbb{T}}$,

$$\mathcal{F}_{s,t} := \sigma(W_u - W_v : s \le u < v \le t), \, s,t \in \mathbb{T}(:=[0,T])$$

• Backward Wiener process $\{\check{W}_t\}_{t\in\mathbb{T}}$,

$$\check{W}_t = W_t - W_T, t \in \mathbb{T}$$

which is adapted to the backward filtration $\{\mathcal{F}_{t,T}\}_{t\in\mathbb{T}}$

• Backward Stratonovich integrals for continuous semimartingale \dot{Y}_t adapted to the backward filtration, define(in the L^2 sense)

$$\int_{s}^{T} \check{Y}_{t} \circ d\check{W}_{t} = \lim_{|\Pi| \to 0} \sum_{k=1}^{N} \frac{1}{2} \left(\check{Y}_{t_{k}} + \check{Y}_{t_{k-1}} \right) \left(\check{W}_{t_{k-1}} - \check{W}_{t_{k}} \right)$$

Stratonovich SDE

$$Z_T = z_0 + \int_0^T b(Z_t, t) dt + \sum_{i=1}^m \int_0^T \sigma_i(Z_t, t) \circ dW_t^{(i)}$$

with $b, \sigma \in C_b^{\infty,1}$ so that the SDE has unique strong solution.

• $\Phi_{s,t}(z) := Z_t^{s,z}$, the solution at time t when the process started at z at time s. Given a realization of the Wiener process, this defines

$$\mathcal{S} = \{\Phi_{s,t}\}_{s \leq t; s,t \in \mathbb{T}}$$

a collection of continuous maps from \mathbb{R}^d to itself, satisfying

$$\Phi_{s,u} = \Phi_{t,u} \circ \Phi_{s,t} \,, \ s < t < u$$

• $\Phi_{s,t}(z) := Z_t^{s,z}$, the solution at time t when the process started at z at time s. Given a realization of the Wiener process, this defines

$$\mathcal{S} = \{\Phi_{s,t}\}_{s \leq t; s,t \in \mathbb{T}}$$

a collection of continuous maps from \mathbb{R}^d to itself, satisfying

$$\Phi_{s,u} = \Phi_{t,u} \circ \Phi_{s,t} \,, \ s < t < u$$

- Stochastic flow of diffeomorphisms [Thm 3.7.1 (Kunita, 2019)]
 - ullet each $\Phi_{s,t}$ is a diffeomorphism $\mathbb{R}^d o \mathbb{R}^d$
 - $\check{\Psi}_{s,t} := \Phi_{s,t}^{-1}$, the *inverse flow* satisfies the backward SDE:

$$\check{\Psi}_{s,t}(z) = z - \int_s^t b(\check{\Psi}_{s,t}(z), u) du - \sum_{i=1}^m \int_s^t \sigma_i(\check{\Psi}_{s,t}(z), u) \circ d\check{W}_u^{(i)}$$

for $z \in \mathbb{R}^d$, $s, t \in \mathbb{T}$, $s \le t$.

Recall from
$$\frac{d\mathcal{L}}{dh_t} = \frac{d\mathcal{L}}{dh_{t+1}} \frac{dh_{t+1}}{dh_t}$$

•
$$A_{s,t}(z) := \nabla(\mathcal{L}(\Phi_{s,t}(z))) = \nabla\mathcal{L}(\Phi_{s,t}(z))\nabla\Phi_{s,t}(z)$$

$$\bullet \ \check{A}_{s,\mathit{T}}(z) := A_{s,\mathit{T}}(\check{\Psi}_{s,\mathit{T}}(z)) = \underbrace{\nabla \mathcal{L}(z)}_{\check{A}_{\mathit{T}}} \underbrace{\nabla \Phi_{s,\mathit{T}}(\check{\Psi}_{s,\mathit{T}}(z))}_{\partial Z_{\mathit{T}}/\partial Z_{s}}$$

• $J_{s,t}(z) := \nabla \check{\Psi}_{s,t}(z) = \partial Z_s/\partial Z_t$ satisfies,

$$J_{s,t}(z) = I_d - \int_s^t \nabla b(\check{\Psi}_{r,t}(z), r) J_{r,t}(z) dr$$
$$- \sum_{i=1}^m \int_s^t \nabla \sigma_i(\check{\Psi}_{r,t}(z), r) J_{r,t}(z) \circ d\check{W}_r^{(i)}$$

 $\bullet \ \, \textit{K}_{s,t}(\textit{z}) := \textit{J}_{s,t}(\textit{z})^{-1} = \nabla \Phi_{s,t}(\check{\Psi}_{s,t}(\textit{z})) = \partial \textit{Z}_t/\partial \textit{Z}_s \ \, \text{satisfies,}$

$$\begin{split} \mathcal{K}_{s,t}(z) &= I_d + \int_s^t \mathcal{K}_{r,t}(z) \nabla b(\check{\Psi}_{r,t}(z),r) dr \\ &+ \sum_{i=1}^m \int_s^t \mathcal{K}_{r,t}(z) \nabla \sigma_i(\check{\Psi}_{r,t}(z),r) \circ d\check{W}_r^{(i)} \end{split}$$

 $\bullet \ \, \check{A}_{s,T}(z) = \check{A}_T K_{s,T}(z) = \nabla \mathcal{L}(z) \nabla \Phi_{s,T}(\check{\Psi}_{s,T}(z))$

$$\check{A}_{s,T}(z) = \nabla \mathcal{L}(z) + \int_{s}^{T} \check{A}_{r,T}(z)^{\mathsf{T}} \nabla b(\check{\Psi}_{r,T}(z), r) dr
+ \sum_{i=1}^{m} \int_{s}^{T} \check{A}_{r,T}(z)^{\mathsf{T}} \nabla \sigma_{i}(\check{\Psi}_{r,T}(z), r) \circ d\check{W}_{r}^{(i)}$$

- consider augmented state $Y_t := (Z_t, \alpha)$, which satisfies a Stratonovich SDE with the drift function $\tilde{b}(y,t) = (b(z,t), \mathbf{0}_{n_{\alpha}})$ and the diffusion function $\tilde{\sigma}_i(y,t) = (\sigma_i(y,t), \mathbf{0}_{n_{\alpha}})$
- write the backward SDE for augmented adjoint $\check{A}^y := (\check{A}^z, \check{A}^\alpha)$ separately, we get the total gradient w.r.t parameters

Algorithm 5: Stochastic Ajoint Sensitivity (Stratonovich)

```
Input: parameters \alpha, start time t_0, stop time t_1, final state z_{t_1}, observation gradient \partial \mathcal{L}/z_{t_1}, drift function b(z,t,\alpha), diffusion function \sigma(z,t,\alpha), Wiener process sample path w(t).

1 def augmented drift \bar{b}(z_t,a_t,t,\alpha):
2 | return [-b(z_t,-t,\alpha), a_t^{\mathsf{T}}\partial b/\partial z, a_t^{\mathsf{T}}\partial b/\partial \alpha]
3 def augmented diffusion \bar{\sigma}(z_t,a_t,t,\alpha):
4 | return [-\sigma_i(z_t,-t,\alpha), a_t^{\mathsf{T}}\partial \sigma_i/\partial z, a_t^{\mathsf{T}}\partial \sigma_i/\partial \alpha]
5 def replicated noise \bar{w}(t):
6 | return [-w(-t),-w(-t),-w(-t)]
7 \begin{bmatrix} z_{t_0} \\ \partial \mathcal{L}/\partial z_{t_0} \\ \partial \mathcal{L}/\partial \alpha \end{bmatrix} = \mathrm{SDESolver} \begin{pmatrix} z_{t_1} \\ \partial \mathcal{L}/\partial z_{t_1} \\ 0_{n_{\alpha}} \end{bmatrix}, \bar{b}, \bar{\sigma}, \bar{w}, -t_1, -t_0
8 return \partial \mathcal{L}/\partial z_{t_0}, \partial \mathcal{L}/\partial \alpha
```

Algorithm 6: Stochastic Ajoint Sensitivity (Stratonovich)

Input: parameters α , start time t_0 , stop time t_1 , final state z_{t_1} , observation gradient $\partial \mathcal{L}/z_{t_1}$, drift function $b(z, t, \alpha)$, diffusion function $\sigma(z, t, \alpha)$, Wiener process sample path w(t).

```
1 def augmented drift \bar{b}(z_t, a_t, t, \alpha):
          return [-b(z_t, -t, \alpha), a_t^{\mathsf{T}} \partial b/\partial z, a_t^{\mathsf{T}} \partial b/\partial \alpha]
3 def augmented diffusion \bar{\sigma}(z_t, a_t, t, \alpha):
          return [-\sigma_i(z_t, -t, \alpha), a_t^{\mathsf{T}} \partial \sigma_i / \partial z, a_t^{\mathsf{T}} \partial \sigma_i / \partial \alpha]
5 def replicated noise \bar{w}(t):
          return [-w(-t), -w(-t), -w(-t)]
```

7
$$\begin{bmatrix} z_{t_0} \\ \partial \mathcal{L}/\partial z_{t_0} \\ \partial \mathcal{L}/\partial \alpha \end{bmatrix} = \text{SDESolver} \begin{pmatrix} z_{t_1} \\ \partial \mathcal{L}/\partial z_{t_1} \\ \mathbf{0}_{n_{\alpha}} \end{bmatrix}, \bar{b}, \bar{\sigma}, \bar{w}, -t_1, -t_0$$
8 return $\partial \mathcal{L}/\partial z_{t_1} = \partial \mathcal{L}/\partial \alpha$

8 return $\partial \mathcal{L}/\partial z_{t_0}$, $\partial \mathcal{L}/\partial \alpha$

Table 1: L denotes the numbers of steps in the SDE solving. n_{α} is the dimension of the parameter, and d is the dimension of the system state.

Method	Memory	Time
Path-wise Forward Sensitivity Adjoint Sensitivity	$\mathcal{O}(1)$ $\mathcal{O}(1)$	$\frac{\mathcal{O}(L\cdot(n_{\alpha}+d))}{\mathcal{O}(L)}$

Implementation

• parameterize the prior and the approximate posterior using SDEs

$$\begin{split} dZ_t &= b_{\theta}(Z_t,t)dt + \sigma(Z_t,t)dW_t \quad \text{(prior)} \\ d\tilde{Z}_t &= \tilde{b}_{\phi}(\tilde{Z}_t,t)dt + \sigma(\tilde{Z}_t,t)dW_t \quad \text{(approx.post.)} \end{split}$$

sharing the same diffusion function σ , with $Z_0 = \tilde{Z}_0 = z_0 \in \mathbb{R}^d$, and $u : \mathbb{R}^d \times [0, T] \to \mathbb{R}^m$ satisfies $b_{\sigma}(z, t) - b_{\theta}(z, t) = \sigma(z, t)u(z, t)$.

Implementation

parameterize the prior and the approximate posterior using SDEs

$$\begin{split} dZ_t &= b_{\theta}(Z_t,t)dt + \sigma(Z_t,t)dW_t \quad \text{(prior)} \\ d\tilde{Z}_t &= \tilde{b}_{\phi}(\tilde{Z}_t,t)dt + \sigma(\tilde{Z}_t,t)dW_t \quad \text{(approx.post.)} \end{split}$$

sharing the same diffusion function σ , with $Z_0 = \tilde{Z}_0 = z_0 \in \mathbb{R}^d$, and $u : \mathbb{R}^d \times [0, T] \to \mathbb{R}^m$ satisfies $b_{\phi}(z, t) - b_{\theta}(z, t) = \sigma(z, t)u(z, t)$.

Modelling time series: use a recurrent neural net (RNN) to encode the posterior process,
 MLP to implement the prior process and KL divergence penalty for parameter update

• Presetting a stochastic process, and using simulation data to play neural SDEs

- Presetting a stochastic process, and using simulation data to play neural SDEs
- fitting to a Ornstein-Uhlenbeck process

- Presetting a stochastic process, and using simulation data to play neural SDEs
- fitting to a Ornstein-Uhlenbeck process

- Possible issues in practice:
 - SDE solvers may not be working well
 - overfitting
 - KL divergence may not be well-defined or constantly 0, when we deal with high dimensional data supported in low dimensional sub-manifold

- Presetting a stochastic process, and using simulation data to play neural SDEs
- fitting to a Ornstein-Uhlenbeck process

- Possible issues in practice:
 - SDE solvers may not be working well
 - overfitting
 - KL divergence may not be well-defined or constantly 0, when we deal with high dimensional data supported in low dimensional sub-manifold
- Unofficial package from Google Research: https://github.com/google-research/torchsde

References

- D. J. Rezende, S. Mohamed. Variational Inference with Normalizing Flows. Proceedings of the 32nd International Conference on Machine Learning, PMLR 37:1530-1538, 2015.
- D. J. Rezende, S. Mohamed, D. Wierstra. Stochastic Backpropagation and Approximate Inference in Deep Generative Models. Proceedings of the 31st International Conference on Machine Learning, PMLR 32(2):1278-1286, 2014.
- D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes, International Conference on Learning Representations, 2014.
- B. Tzen, M. Raginsky, Theoretical guarantees for sampling and inference in generative models with latent diffusions, Proceedings of Machine Learning Research vol 99:1–31, 2019.
- Xuechen Li, Ting-Kam Leonard, Ricky T.Q. Chen, David Duvenaud, Scalable Gradients and Variational Inference for Stochastic Differential Equation, Proceedings of The 2nd Symposium on Advances in Approximate Bayesian Inference, PMLR 118:1-28, 2020.

Thank you!

