

Information Technology Fundamentals

Mohammad Hossein Manshaei manshaei@gmail.com

Networking: WiFi Networks Module 2: Part 2

Reference: Chapter 7 Wireless and Mobile Networks

A note on the use of these Powerpoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a lot of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top Down Approach

7th edition Jim Kurose, Keith Ross Pearson/Addison Wesley April 2016

Chapter 7 outline

7. Introduction

Wireless

- 7.2 Wireless links, characteristics
 - CDMA
- 7.3 IEEE 802.11 wireless LANs ("Wi-Fi")
- 7.4 Cellular Internet Access
 - architecture
 - standards (e.g., 3G, LTE)

Mobility

- 7.5 Principles: addressing and routing to mobile users
- 7.6 Mobile IP
- 7.7 Handling mobility in cellular networks
- 7.8 Mobility and higher-layer protocols

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps
- direct sequence spread spectrum (DSSS) in physical layer
 - all hosts use same chipping code

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802. I In: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps
- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

Standards and amendments

- Within the IEEE 802.11 Working Group, the following IEEE Standards Association Standard and Amendments exist:
- IEEE 802.11-1997: The WLAN standard was originally I Mbit/s and 2 Mbit/s, 2.4 GHz RF and infrared (IR) standard (1997), all the others listed below are Amendments to this standard, except for Recommended Practices 802.11F and 802.11T.
- IEEE 802.11a: 54 Mbit/s, 5 GHz standard (1999, shipping products in 2001)
- IEEE 802.11b; Enhancements to 802.11 to support 5.5 Mbit/s and 11 Mbit/s (1999)
- IEEE 802.11c: Bridge operation procedures; included in the IEEE 802.1D standard (2001)
- IEEE 802.11d: International (country-to-country) roaming extensions (2001)
- IEEE 802.11e: Enhancements: QoS, including packet bursting (2005)
- IEEE 802.11F: Inter-Access Point Protocol (2003) Withdrawn February 2006
- IEEE 802.11g: 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)
- IEEE 802.11h: Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)
- IEEE 802.111: Enhanced security (2004)
- IEEE 802.11j: Extensions for Japan (2004)
- IEEE 802.11-2007: A new release of the standard that includes amendments a, b, d, e, g, h, i, and j. (July 2007)
- IEEE 802.11k: Radio resource measurement enhancements (2008)
- IEEE 802.11n: Higher-throughput improvements using MIMO (multiple-input, multiple-output antennas) (September 2009)
- IEEE 802.11p:WAVE—Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (July 2010)
- IEEE 802.11r: Fast BSS transition (FT) (2008)
- IEEE 802.11s: Mesh Networking, Extended Service Set (ESS) (July 2011)
- IEEE 802.11T:Wireless Performance Prediction (WPP)—test methods and metrics Recommendation cancelled
- IEEE 802.11u: Improvements related to HotSpots and 3rd-party authorization of clients, e.g., cellular network offload (February 2011)
- IEEE 802.11v:Wireless network management (February 2011)
- IEEE 802.11w: Protected Management Frames (September 2009)
- IEEE 802.11y: 3650–3700 MHz Operation in the U.S. (2008)
- IEEE 802.11z: Extensions to Direct Link Setup (DLS) (September 2010)

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
 - ad hoc mode: hosts only

802. I I: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802. I I: passive/active scanning

<u>passive scanning:</u>

- (I) beacon frames sent from APs
- (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (I) Probe Request frame broadcast from HI
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: HI to selected AP
- (4) Association Response frame sent from selected AP to HI

IEEE 802. I 1: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802. | 1: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - · can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

- if sense channel idle for DIFS then transmit entire frame (no CD)
- 2 if sense channel busy then start random backoff time timer counts down while channel idle transmit when timer expires if no ACK, increase random backoff interval, repeat 2

802.11 receiver

 if frame received OK return ACK after SIFS (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - · sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

802.11 frame: addressing

802.11 frame: more

802.11: mobility within same subnet

- H I remains in same
 IP subnet: IP address
 can remain same
- switch: which AP is associated with H1?
 - self-learning (Ch. 5):
 switch will see frame
 from HI and
 "remember" which
 switch port can be used
 to reach HI

802. I I: advanced capabilities

Rate adaptation

 base station, mobile dynamically change transmission rate (physical layer modulation technique) as mobile moves, SNR varies

- I. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

