

Algorithms and Data Structures 2 CS 1501

Fall 2022

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming Deadlines
 - Homework 7: this Friday @ 11:59 pm
 - Lab 6: next Monday 10/31 @ 11:59 pm
 - Assignment 2: Friday 11/4 @ 11:59 pm
 - Lab 7: Monday 11/7 @ 11:59 pm
- Live Support Session for Assignment 2
 - This Friday 7-8 pm (https://pitt.zoom.us/my/khattab)
- Weekly Live QA Session on Piazza
 - Friday 4:30-5:30 pm

Previous lecture

- ADT Priority Queue (PQ)
 - Heap implementation
- Heap Sort
- Indexable PQ

This Lecture

- ADT Graph
 - definitions
 - representations
 - traversals

Problem of the Day

- Input: A file containing LinkedIn (LI) accounts and their connections
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...

•

CS 1501 – Algorithms & Data Structures 2 – Sherif Khattab

Problem of the Day

- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - e.g., 1st connection?, 2nd connection?, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - For each connected component, are there certain accounts that if removed, the remaining accounts become partitioned?

Which Data Type to use?

- Let's think first about how to organize the data that we have in memory
- Note that the operations are different from what we have been used to (search, sort, min, max, add, delete, ...)

- Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
- ...

Graphs!

Graphs

- A graph G = (V, E)
 - O where V is a set of vertices
 - O E is a set of edges connecting vertex pairs
- Example:
 - \bigcirc V = {0, 1, 2, 3, 4, 5}
 - \bigcirc E = {(0, 1), (0, 4), (1, 2), (1, 4), (2, 3), (3, 4), (3, 5)}

Why?

• Can be used to model many different scenarios

Some definitions

- Undirected graph
 - \bigcirc Edges are unordered pairs: (A, B) == (B, A)
- Directed graph
 - O Edges are ordered pairs: (A, B) != (B, A)
- Adjacent vertices, or neighbors
 - O Vertices connected by an edge

Graph sizes

- Let v = |V|, and e = |E|
- Given v, what are the minimum/maximum sizes of e?
 - O Minimum value of e?
 - Definition doesn't necessitate that there are any edges...
 - **So, 0**
 - O Maximum of e?
 - Depends...
 - Are self edges allowed?
 - Directed graph or undirected graph?
 - In this class, we'll assume directed graphs have self edges while undirected graphs do not

Maximum value of e (MAX)

- Undirected graph
 - O no self edges
 - v*(v-1)?
 - O But, A->B is the same edge as B-> A
 - O Are we counting each twice?
 - \circ v*(v-1)/2
- Directed graph
 - O self edges allowed
 - O v*v?
 - A -> B is a different edge thanB -> A
 - Ov^2

More definitions

• A graph is considered *sparse* if:

$$\bigcirc$$
 e <= v lg v

A graph is considered *dense* as it approaches
 the maximum number of edges

$$\bigcirc$$
 I.e., $e = = MAX - \epsilon$

- A complete graph has the maximum number of edges
- Have we seen "sparse" and dense before?

Sparse graphs

Question:

• Is

Representing graphs

- Trivially, graphs can be represented as:
 - O List of vertices
 - List of edges
- Performance?
 - O Assume we're going to be analyzing static graphs
 - I.e., no insert and remove
 - O So what operations should we consider?

Graph operations

- Static graphs
 - O check if two vertices are neighbors
 - O find the list of neighbors of a given vertex
 - for directed graphs, in-neighbors and out-neighbors
- Dynamic graphs
 - O add/remove edges
 - Not our focus in this class

Representing graphs

- Trivially, graphs can be represented as:
 - List of vertices
 - List of edges
- Performance?
 - Check if two vertices are neighbors
 - **■** O(e)
 - O Find the list of neighbors of a given vertex
 - **■** O(e)
- Space?
 - \bigcirc $\Theta(v + e)$ memory

Using an adjacency matrix

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j) \in E

$$\bigcirc$$
 M[i][j] = 0 if (i, j) \notin E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	~	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Using an adjacency matrix

Rows/columns are vertex labels

$$\bigcirc$$
 M[i][j] = 1 if (i, j) \in E

$$\bigcirc$$
 M[i][j] = 0 if (i, j) \notin E

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency matrix analysis

- Runtime?
 - O Check if two vertices are neighbors
 - Θ(1)
 - O Find the list of neighbors of a vertex
 - **■** O(v)
 - \bigcirc O(v²) time to initialize
- Space?
 - $O(v^2)$

	0	1	2	3	4	5
0	0	1	0	0	1	0
1	1	0	1	0	1	0
2	0	1	0	1	0	0
3	0	0	1	0	1	1
4	1	1	0	1	0	0
5	0	0	0	1	0	0

Adjacency lists

Array of neighbor lists

O A[i] contains a list of the neighbors of vertex i

Adjacency list analysis

- Check if two vertices are neighbors
- O Find the list of neighbors of a vertex
 - **■** Θ(d)
 - d is the degree of a vertex (# of neighbors)
 - **■** O(v)

Space?

- \bigcirc $\Theta(v + e)$ memory
- O overhead of node use
- \bigcirc Could be much less than v^2

Comparison

 Where would we want to use adjacency lists vs adjacency matrices?

- Dense graphs?
- Sparse graphs?
- What about the list of vertices/list of edges approach?

Even more definitions

- Path
 - A sequence of adjacent vertices
- Simple Path
 - A path in which no vertices are repeated
- Simple Cycle
 - A simple path with the same first and last vertex
- Connected Graph
 - A graph in which a path exists between all vertex pairs
- Connected Component
 - Connected subgraph of a graph
- Acyclic Graph
 - A graph with no cycles
- Tree
 - 0 ?
 - A connected, acyclic graph
 - Has exactly v-1 edges

Complete Graph vs. Connected Graph

- Difference between Connected graph and Complete graph?
 - Connected means there is a path from A to B for each pair of vertices
 A and B
 - Complete means there is an **edge** between A and B for each pair of vertices A and B

Graph traversal

- What is the best order to traverse a graph?
- Two primary approaches:
 - Breadth-first search (BFS)
 - Search all directions evenly
 - i.e., from i, visit all of i's neighbors, then all of their neighbors, etc.
 - Would help us compute the distance between two vertices
 - Remember our Problem of the Day?
 - Depth-first search (DFS)
 - "Dive" as deep as possible into the graph first
 - Branch when necessary

BFS

- Can be easily implemented using a queue
 - O For each vertex visited, add all of its neighbors to the Q (if not previously added)
 - Vertices that have been seen (i.e., added to the Q) but not yet visited are said to be the *fringe*
 - O Pop head of the queue to be the next visited vertex
- See example

BFS example

BFS Pseudo-code

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
         visited[w] = true //mark w as visited
         for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             add x to Q
```

Shortest paths

 BFS traversals can further be used to determine the shortest path between two vertices

BFS Pseudo-code to compute shortest paths

```
Q = new Queue
BFS(vertex v){
    add v to Q
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true //mark w as visited
        for each unseen neighbor x
             seen[x] = true //mark x as seen
              parent[x] = w
             distance[x] = distance[w] + 1
             add x to Q
```

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called *articulation points*

Finding connected components

- A connected component is a connected subgraph G'
 - (V', E')
 - $\bigvee'\subseteq\bigvee$
 - \blacksquare E' = {(u, v) \in E and both u and v \in V'}
- To find all connected components:
 - wrapper function around BFS
 - A loop in the wrapper function will have to continually call bfs() while
 there are still unseen vertices
 - Each call will yield a spanning tree for a connected component of the graph

BFS Pseudo-code to compute connected components

```
int components = 0
for each vertex v in V

if visited[v] = false

components++

Q = new Queue

BFS(v)
```

```
BFS(vertex v){
    add v to Q
    component[v] = components
    component
    while(Q is not empty){
        w = remove head of Q
        visited[w] = true
        for each unseen neighbor x
             seen[x] = true
             add x to Q
```

Problem of the Day

- Input: A file containing LinkedIn Connection information formatted like the following:
 - Account1: Connection1, Connection2, ...
 - Account2: Connection1, Connection2, ...
 - •
- Output: Answer the following questions:
 - Given two LI accounts, how "far" are they from each other?
 - E.g., 1st connection, 2nd connection, etc.
 - Are the accounts in the file all connected?
 - If not, how many connected components are there?
 - Are there certain accounts that if removed, the remaining accounts become *partitioned*?
 - These account are called articulation points

DFS – Depth First Search

- Already seen and used this throughout the term
 - O For Huffman encoding...
- Can be easily implemented recursively
 - O For each vertex, visit first (in some arbitrary order) unseen neighbor
 - recursively!
 - O Backtrack at deadends (i.e., vertices with no unseen neighbors)
 - Try next unseen neighbor after backtracking

DFS Pseudo-code

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

DFS example 2

When to visit a vertex

```
DFS(vertex v) {
 seen[v] = true //mark v as seen
 visit v //before visiting children in the spanning tree
 for each unseen neighbor w
   parent[w] = v
   DFS(w)
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
    parent[w] = v
    DFS(w)
visit v //after visiting children in the spanning tree
```

When to visit a vertex

```
DFS(vertex v) {
  seen[v] = true //mark v as seen
for each unseen neighbor w
    parent[w] = v
   visit v //between visiting children in the spanning tree
    DFS(w)
```