Agentų modeliavimas

Aleksejus Kononovičius

Teorinės fizikos ir astronomijos institutas, Vilniaus universitetas

☐ aleksejus.kononovicius@tfai.vu.lt

Ø kononovicius.lt, rf.mokslasplius.lt

Faculty of Physics

Kompleksinių fizinių ir socialinių sistemų grupė

Vystomos sritys: netiesinė dinamika ir sinchronizacija, ilga atmintis, sociofizika ir ekonofizika.

Rizikos fizikos tinklaraštis

Planas

- 1 Įvadas į agentų modeliavimą
- 2 Protingi agentai ir lošimų teorija
- Turtas ir idealios dujos
- 4 Tinklų teorija
- 6 Nuomonių dinamika

Paveikslas: goodreads.com

Kas tai?

Modeliavimas yra realybės apibendrinimas.

Agentai:

- atitinka modeliuojamas esybes,
- turi būdingas savybes,
- gali siekti tikslų,
- sąveikauja su aplinka,
- sąveikauja su kitais.

"Visi modeliai yra klaidingi, bet dalis jų yra naudingi" (George Box)

Kam to reikia?

• Agentai: keleiviai

• Aplinka: lėktuvas (praėjimas, kėdės, lentynos)

Kas įdomaus iš fizikos pusės?

Miško gaisro modelis:

- Miškas: ρ medžių tankis
- Gaisras: plinta tarp gretimų medžių
- Kiek išplis gaisras?

Paveiksle: $\rho = 0.4, 0.5, 0.55 \text{ ir } 0.6.$

Įrankiai

- NetLogo grafiniai elementai, sava kalba (Logo)
- GAMA GIS, sava kalba (paremta Java)
- AnyLogic korporacinio lygio įrankis
- Agents.jl Julia
- Mason Java, turi GIS plėtinį
- Mesa Python
- Repast Java, palaiko HPC

Apžvalga: [Antelmi et al.(2022)]; Paveikslai: Wikimedia, Anylogic

Lošimų teorija (angl. game theory)

Tiria sąveikas tarp racionalių ir savanaudžių agentų.

		~	٠			٠	
	\sim	Č	ī	m	2	п	
_	u	-			а		

- kooperaciniai arba konkurenciniai
- (ne)nulinės sumos
- (a)simetriniai
- (a)sinchroniniai
- baigtiniai arba begaliniai
- ...

	Ak	Ži	Po
Akmuo	0, 0	1, -1	-1, 1
Žirklės	-1, 1	0, 0	1, -1
Popierius	1, -1	-1, 1	0, 0

angl. rock-paper-scissors

angl. ultimatum game

"Grynos" (angl. pure) strategijos

	"Ba"	Ne
"Backoff"	-1, -1	-4, 0
Ne	0, -4	-3, -3

angl. TCP backoff game

- Kas yra optimalu?
- Kas yra racionalu?

Ikonos: vecta.io

Mišrios (angl. mixed) strategijos

$m \backslash v$	Tw	Ra	
Twilight	2, 1	0, 0	
Rambo	0, 0	1, 2	

angl. battle of the sexes

Ką daryti kai vieno akivaizdaus pasirinkimo nėra?

$$U_m(p_m = 1, p_v) = U_m(p_m = 0, p_v),$$

$$U_v(p_m, p_v = 1) = U_v(p_m, p_v = 1).$$

Paveikslai: MoviePosterDB.com, MoviePosterDB.com

Kas nutiks nukrypus nuo mišrios strategijos?

$$U_m(p_m, p_v) = 2p_m p_v + (1 - p_m)(1 - p_v)$$

$$U_v(p_m, p_v) = p_m p_v + 2(1 - p_m)(1 - p_v)$$

Kai kurie lošimai neturi "grynos" strategijos

$v \backslash s$	Ka	De	
Kairė	1, 0	0, 1	
Dešinė	0, 1	1, 0	

angl. matching pennies

Vartininkas bando atspėti į kurią pusę smūgiuos **s**mūgiuojantis.

$$U_v(p_v, p_s) = p_v p_s + (1 - p_v)(1 - p_s), \quad U_s(p_v, p_s) = p_v(1 - p_s) + (1 - p_v) p_s$$

Praktiniai klausimai treneriui

$v \backslash s$	Kairė	Dešinė	
Kairė	0.42, 0.58	0.07, 0.93	
Dešinė	0.05, 0.95	0.3, 0.7	

1 Kaip elgtis vartininkui? (Ats.: $p_v \approx 0.42$)

2 Ką daryti smūgiuojančiam? (Ats.: $p_s \approx 0.38$)

3 Kokios baigčių tikimybės? (Ats.: $U_v \approx 0.2$)

Empirinis lošimas: [Palacios-Huerta (2003)]; Paveikslas: sportingnews.com

Greitesnė reakcija

Sudėtingesni klausimai

- Daugiau veiksmų
- Daugiau žaidėjų
- Daugiau lošimų
- Atsitiktiniai lošimai
- Alternatyvūs "racionalumai"

Efektyvūs lošimai:

- Aukcionų mechanizmai
- Balsavimo mechanizmai
- ...

Atsparumas:

- Klaidoms
- Piktnaudžiavimui

Rekomendacija: "Game Theory" kursas (Coursera ir Youtube)

Kinetinis modelis (angl. kinetic exchange model)

- Susiduria dvi daleles i ir j.
- 2 Susidūrimo metu bus perduota Δw_{ij} energijos:

$$\Delta w_{ij} = r_i w_i - r_j w_j.$$

3 Atnaujiname energijas:

$$w_i(t+1) = w_i(t) - \Delta w_{ij},$$

$$w_j(t+1) = w_j(t) + \Delta w_{ij}.$$

Empiriniai turto duomenys

Elementarus kinetinis modelis

- \bullet Susitinka du agentai i ir j.
- **2** Sąveikos metu perduodama Δw_{ij} turto:

$$\Delta w_{ij} = (1 - \varepsilon) w_i - \varepsilon w_j.$$

3 Atnaujiname turtus:

$$w_i(t+1) = w_i(t) - \Delta w_{ij},$$

$$w_j(t+1) = w_j(t) + \Delta w_{ij}.$$

Programėlė: Elementarūs kinetiniai modeliai (RF)

Elementaraus kinetinio modelio analizė

Pagrindinė kinetinė lygtis:

$$\frac{\partial p(w,t)}{\partial t} = \frac{\partial N^{+}(w,t)}{\partial t} - \frac{\partial N^{-}(w,t)}{\partial t}$$

- "Išeinančios" dalelės: $\frac{\partial N^-(w,t)}{\partial t} \sim 2p(w,t)$
- "Ateinančios" dalelės: $\frac{\partial N^+(w,t)}{\partial t} \sim 2 \mathbb{P} \left[0 < w < w_i(t) + w_j(t) \right]$
- Stacionarus skirstinys:

$$\frac{\partial p_{st}(w,t)}{\partial t} = 0, \quad \Rightarrow \quad p_{st} \sim \mathbb{P}\left[\dots\right], \quad \Rightarrow \quad p_{st}(w) = \frac{1}{\langle w \rangle} \exp\left(-\frac{w}{\langle w \rangle}\right).$$

Santykinis taupymas

- \bullet Susitinka du agentai i ir j.
- 2 Sąveikos metu perduodama Δw_{ij} turto:

$$\Delta w_{ij} = (1 - \kappa) \left[(1 - \varepsilon) w_i - \varepsilon w_j \right].$$

Atnaujiname turtus:

$$w_i(t+1) = w_i(t) - \Delta w_{ij},$$

$$w_i(t+1) = w_i(t) + \Delta w_{ii}.$$

Random reshuffle with savings (t=40k)

κ= 0.2

Programėlė: Turto modeliavimas kinetiniais modeliais (RF)

Momentų analizė

Pusiausvyroje kairė ir dešinė pusė turėtų turėti tą patį skirstinį:

$$w_{i}\left(t+1\right)\stackrel{d}{=}\kappa w_{i}\left(t\right)+\varepsilon\left(1-\kappa\right)\left[w_{i}\left(t\right)+w_{j}\left(t\right)\right]$$

Taigi:

$$\langle w^m \rangle = \langle \{ \kappa w_i + \varepsilon (1 - \kappa) [w_i + w_j] \}^m \rangle.$$

Spręsti turime rekurentiškai:

$$\langle w^1 \rangle = 1,$$

$$\langle w^2 \rangle = \frac{\kappa + 2}{1 + 2\kappa},$$

$$\langle w^3 \rangle = \frac{3(\kappa + 2)}{(1 + 2\kappa)^2},$$

$$\langle w^4 \rangle = \frac{72 + 12\kappa - 2\kappa^2 + 9\kappa^3 - \kappa^5}{(1 + 2\kappa)^2 (3 + 6\kappa - \kappa^2 + 2\kappa^3)}.$$

Ganėtinai gera aproksimacija:

$$p(w) \sim w^{n-1} \exp(-nw),$$

$$\operatorname{kur} n = 1 + \frac{3\kappa}{1-\kappa}.$$

Laipsninio skirstinio gavimas

Yra žinoma, kad

$$\int_{0}^{\infty} \lambda \exp(-\lambda x) \, d\lambda = \frac{1}{x^2}.$$

O kaip su santykinio taupymo modeliu?

$$p(\kappa) = ???$$

Fig. 3. (Color online) Wealth distribution f(w) for uniformly distributed κ_i (or λ_i) in the interval (0,1); f(w) is decomposed into partial distributions $f_i(w)$, where each $f_i(w)$ is obtained by counting the statistics of those agents with parameter λ_i in a specific sub-interval (from Ref. 36). The left panel shows the decomposition of f(w) into ten partial distributions in the λ_i -bundlervals (0,0,1), (0,1,2),...,...(0,9,1). The right panel decomposes the final partial distribution in the λ_i -interval (0,9,1) into partial distributions obtained by counting the statistics of agents with λ_i -subintervals (0,9,01), (0,91)

Kinetiniai modeliai: turtui ir ne tik

Turtui:

- Suderinamumas su ekonomikos teorijomis
- Gabumų / sėkmės įtaka
- Laikinė dinamika
- Skirtingi įplaukų mechanizmai

Ne tik:

- Nuomonių dinamika (Biswas-Chatterjee-Sen modelis)
- Reitingavimo sistemos (pvz., ELO)
- Epidemiologinis modeliavimas pagal socialines kategorijas
- Alkoholio vartojimas

Ryšiai

Paveikslai: [Lynn, Basset (2019)], slate.com, Wikimedia.

Pagrindiniai terminai

- Tinklas mazgų ir jungčių rinkinys.
- Matematikams: grafai, viršūnės ir briaunos.
- Gretimi mazgai sujungti jungtimi.
- Mazgo laipsnis gretimų jam mazgų skaičius.
- Kelias gretimų mazgų seka.
- Geodezė trumpiausias kelias tarp mazgų i ir j.
- Tinklo diametras ilgiausia geodezė tinkle.

Kaimynystės matrica

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\bullet \quad \mathbf{Kilpos:} \ A_{ii} = 1.$$

$$\bullet \quad \mathbf{Milpos:} \ A_{ii} = 1.$$

$$\bullet \quad \mathbf{Jungtys} \ \text{gali turėti kryptį:} \ A_{ij} \neq A_{ji}.$$

- Jei $A_{ij} \neq 0$, tai tinkle yra $j \rightarrow i$ jungtis.
- Mazgo laipsnis: $k_i = \sum_{i=1}^{N} \mathbf{1}_{A_{i,i} \neq 0} = \sum_{i=1}^{N} \mathbf{1}_{A_{i,i} \neq 0}.$

- Jungtys gali turėti **kryptį:** $A_{ij} \neq A_{ji}$.
- Kelios (**multi**) jungtys: $A_{ij} \in \mathbb{N}_0$.
- Jungtys gali turėti **svori**: $A_{ii} \in \mathbb{R}$.

Erdos-Renyi (atsitiktinis) tinklas

- $\begin{tabular}{ll} \Peliant Pradėkime nuo tinklo su N mazgų ir $L=0$ jungčių. \end{tabular}$
- Tinklas turės $\langle L \rangle = pN\left(N-1\right)/2$ jungčių.
- Mazgo laipsnis: $\langle k \rangle = 2L/N = p (N-1).$

Programėlė: E-R modelis (RF)

Fazinis virsmas E-R modelyje

Jei mazgas i priklauso **didžiajai komponentei**, tai jam gretimas mazgas j irgi priklauso d.k.

Tikimybė, kad mazgas nepriklauso d.k.:

$$u = (1 - p + pu)^{N-1},$$

$$\frac{N_G}{N} = 1 - \exp\left[-\left\langle k \right\rangle \frac{N_G}{N}\right].$$

Paveikslas: networksciencebook.com (senesnis leidimas)

E-R tinklas ir reguliari gardelė

Watts-Strogatz tinklas

Atsitiktinės briaunos mažina diametrą nenaikindamos lokalios struktūros.

Mastelio neturintys tinklai

Prisijungimas: $p(i \rightarrow j) = \frac{k_j}{\sum_m k_m}$

Nukreipimas: r

Kaštai: $\min_{j} (\delta d_{ij} + h_{j})$

 $Programėlės:\ Barabasi-Albert\ modelis\ (RF),\ Briaunų\ nukreipimo\ modelis\ (RF),\ Sėkmės-priežasties\ modelis\ (RF)$

Laipsninis mazgo laipsnio skirstinys

B-A modeliui skirstinį galime nustatyti "kontinuumo" metodu:

$$\frac{dk_{j}}{dt} = mp (i \to j, t) = m \frac{k_{j}}{\sum_{m} k_{m}},$$

$$\Rightarrow k_{j} (t) \approx m \sqrt{\frac{t}{j}}.$$

Kiek mazgų turi didesnį laipsnį nei k?

$$N_{k_i > k} = \frac{m^2 t}{k^2}.$$

Kokia tikimybė rasti mazgą $k_i = k$?

Tolesni klausimai

Kas neaptarta:

- Laipsnių koreliacijos
- Klasterizacija
- Tankėjimas
- "Centriškumas" (=įtaka)
- Strateginis tinklų formavimas
- "Lošimai" ant tinklų

Pastaruoju metu aktualu:

- Laikinė tinklų evoliucija
- Daugelio lygių tinklai
- Hyper-jungtys
- Aukšto rango tinklai
- Nuomonių dinamika tinkluose
- Bendruomenių atpažinimas
- Trūkstamų jungčių radimas
- "Nulinio" paciento radimas

Rekomendacija: Barabasi "Network Science", Jackson "Social and Economic Networks" kursas (Coursera ir Youtube)

Tematika, o ne įrankis

- Rinkimai ir apklausos
- Gyventojų surašymas
- Elgsena viešose erdvėse
- Laboratoriniai eksperimentai

Paveikslai: Gizmodo, Wikimedia, Wikimedia

Agentų modelių įvairovė nuomonių dinamikoje

Paveikslas: [Jedrzejewski, Weron (2019)]

Nuomonių vektorius: Axelrod'o kultūros plitimo modelis

- Agentas d-matis vektorius.
- Komponentė gali įgyti q verčių.
- Pasirenkame agentą *i*.
- **2** Pasirenkame i kaimyną j.
- 3 i sąveikauja su j su tikimybe, kuri yra proporcinga sutampančių komponenčių skaičiui.
- **4** Sąveikos metu i nukopijuoja vieną iš j nuomonės komponenčių.

Originalus darbas: [Axelrod (1997)]; Programėlė: Axelrod modelis (RF)

Tolydi nuomonė: riboto pasitikėjimo modeliai

- Agentas turi tolydžią nuomonę x_i .
- Sąveika vyksta tik su panašiais, jei $|x_i(t) x_i(t)| < \varepsilon$:

$$x_i(t+1) = x_i(t) + \mu [x_j(t) - x_i(t)].$$

Priešingu atveju nieko nevyksta:

$$x_i(t+1) = x_i(t).$$

x
Apžvalga: [Flache et al.(2017)]. Programėlė: Defuant et al.modelis (RF)

0.6

0.8

0.4

0.1

0.2

Diskreti nuomonė: Galam modeliai

- Diskrečios nuomonės
- Diskutuojama grupėse
- Visi perima lokalios daugumos nuomonę
- Jei daugumos nėra, tai perimama globalios mažumos nuomonė

Paveikslas/Apžvalga: [Galam (2008)]. Programėlė: Hierarchinio balsavimo modelis (RF)

Rinkėjo modelis

- Diskrečios nuomonės
- Individualios sąveikos: agentai savarankiškai keičia nuomonę
- Porinės sąveikos: agentai kopijuoja kaimynus
- Sąveikos yra apibrėžtos įvairioms topologijoms (agentų tinklams)

Originalus darbas: [Clifford, Sudbury (1973)]. Apžvalgos: [Redner (2019); Jedrzejewski, Weron (2019)]. Programėlės: #voter-model (RF)

Rinkėjo modelis – gimimo-mirties procesas

Vykstančius procesus galima apibendrintai užrašyti:

$$\lambda^{+}(X) = (N - X) \left[\sigma^{+} + h \frac{X}{N^{\alpha}} \right], \quad \lambda^{-}(X) = X \left[\sigma^{-} + h \frac{N - X}{N^{\alpha}} \right].$$

Pagrindinė kinetinė lygtis:

$$\frac{\Delta p(X,t)}{\Delta t} = -\lambda^{+}(X)p(X,t) - \lambda^{-}(X)p(X,t) + \lambda^{+}(X-1)p(X-1,t) + \lambda^{-}(X+1)p(X+1,t).$$

Vieno žingsnio formalizmas: [van Kampen (2007)]

Termodinaminė $(N o \infty)$ riba

Perrašome spartas:

$$\lambda_s^+(x) = N^2 \cdot (1-x) \left[\frac{\varepsilon^+}{N} + \frac{x}{N^\alpha} \right], \quad \lambda_s^-(x) = N^2 \cdot x \left[\frac{\varepsilon^-}{N} + \frac{1-x}{N^\alpha} \right].$$

Pagrindinė kinetinė lygtis:

$$\frac{\Delta p(x, t_s)}{\Delta t_s} = -\lambda_s^+(x)p(x, t_s) - \lambda_s^-(x)p(x, t_s)
+ \lambda_s^+(x - \Delta x)p(x - \Delta x, t_s) + \lambda_s^-(x + \Delta x)p(x + \Delta x, t_s) =
= (\mathbf{E}^+ - 1) [\lambda_s^-(x)p(x, t_s)] + (\mathbf{E}^- - 1) [\lambda_s^+(x)p(x, t_s)].$$

$$\mathsf{\check{C}ia}\;\mathbf{E}^{\pm}f(x) = f(x\pm\Delta x) \approx f(x)\pm\Delta x f'(x) + \frac{(\Delta x)^2}{2}f''(x) + \mathcal{O}\left((\Delta x)^3\right).$$

Fokerio-Planko lygtis

$$\frac{\partial p(x,t_s)}{\partial t_s} \approx -\frac{1}{N} \frac{\partial}{\partial x} \left[\left(\lambda_s^+(x) - \lambda_s^-(x) \right) p(x,t_s) \right] + \frac{1}{2N^2} \frac{\partial^2}{\partial x^2} \left[\left(\lambda_s^+(x) + \lambda_s^-(x) \right) p(x,t_s) \right] \approx$$

$$\approx -\frac{\partial}{\partial x} \left[\left\{ \varepsilon^+(1-x) - \varepsilon^- x \right\} p(x,t_s) \right] + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left[\frac{2x(1-x)}{N^\alpha} p(x,t_s) \right]$$

Stacionarus ($t \to \infty$) skirstinys $\alpha = 0$ atveju:

$$0 = -\left\{\varepsilon^{+}\left(1 - x\right) - \varepsilon^{-}x\right\}p_{st}(x) + \frac{d}{dx}\left[x\left(1 - x\right)p_{st}(x)\right] =$$

$$p_{st}(x) = C_N \cdot x^{\varepsilon^{+}-1} \left(1 - x\right)^{\varepsilon^{-}-1}.$$

Beta skirstinys tinka empiriniams duomenims!

SK, LKDP ir LDDP balsų dalis 1992 m. Seimo rinkimų apylinkėse.

2022 m. savivaldybių rinkimų rezultatai apylinkėse.

Paveikslai: [Kononovicius (2018)], maps.lt. Straipsnis: [Fernandez-Gracia et al. (2014)].

Kas toliau?

- q-Rinkėjo modelis
- Daugelio būsenų modelis
- Analizinės aproksimacijos

- Ne-Markovo mechanizmai
- Socialinių tinklų įtaka
- Socialinių mokslų teorijos

Ačiū už dėmesį!

☑ aleksejus.kononovicius@tfai.vu.lt • kononovicius.lt, rf.mokslasplius.lt

Faculty of Physics

