FIBER RAMAN LASER

Patent Number:

JP58121694

Publication date:

1983-07-20

Inventor(s):

AOKI YASUHIRO

Applicant(s):

NIPPON DENKI KK

Requested Patent:

☐ JP58121694

Application Number: JP19820003799 19820113

Priority Number(s):

IPC Classification:

H01S3/30; G02F1/35; H01S3/07

EC Classification:

Equivalents:

Abstract

PURPOSE: To provide a fiber Raman laser which can simply vary an output waveform with low exciting input by providing an equalizer for compensating the refractive index dispersion of an optical fiber in a resonator. CONSTITUTION: In a drawing, numeral 6 designates a refractive index dispersion compensating equalizer, 7 designates a light delay line 8, designates a synthesizer, 9 designates a branching filter, and 10 designates an etalon. An exciting pulse light source 1 employs a mode synchronous laser having 1.06mum of several tens W of power, and the equalizer 6 employs gratong pairs 61, 62 and 63, 64 which are opposed to each other. The optical fiber exhibits ordinary dispersion at the short wavelength side from zero dispersion wavelength and exhibits abnormal dispersion at the maximum wavelength side. The equalizer which is formed of the grating pairs exhibits abnormal dispersion, and the dispersing amount can be regulated by the distance between the paired gratings, that is the distance between the pair 61 and 62 and the like.

Data supplied from the esp@cenet database - I2

ا.

¥

特開昭58-121694(3)

1 0は出力波長の選択用であり、挿入しない場合 には、誘導ラマン利得に対応した波長域で散乱光 が得られる。合波器 8 は励起パルス光入力用、分 波器 9 は出力取出用の半透鏡である。

次に、周知のごとく、誘導四光子混合光が得られる条件は、

$$2kp = ks + k_{As} \cdots \cdots \cdots (1)$$

ただし、kp ………励超光の波数

3

ks ………ストークス光の波数

k_{As} ………アンチストークス光の波数 である。

したがって、本発明では、第3図より明らかな 様に、容易に(1)式を満たすことができるので、励 起光より短波長側にも誘導四光子混合により出力 が得られる。

なお、以上は、励起光が零分散被長よりも短波長側についての例であるが、励起被長が零分散波長よりも長波長の場合には、等化器6として、正常分散媒質を用いればよい。第4回は正常分散を持った等化器の一例を示す図であり、屈折率 ning

図は本発明の一実施例の構成を示す模式図、第3 図は第2図における屈折率分散補償の説明図、第 4図は正常分散を持った等化器の一例を示す図で ある。

第1図から第4図において、1は助起用パルス 光源、2は光ファイバ、3はレンズ、4は反射鏡 5は分光ブリズム、6は等化器、7は光遅延路、 8は合波器、9は分波器、10はエタロン、11 は屈折率n₁のブリズム、12は屈折率n₂のブリ ズムである。

代理人 弁理士 内原

がそれぞれ異なるブリズムを用いている。材質としては、分散の大きいBK,PKなどを用いればよい。

上記においては、本発明の一実施例について説明したが本発明の目的を逸脱することなく、構成要素の各種の置換変換等が可能であることはもちろんである。例えば、励超用パルス光源1として、高出力色素レーザや、ガラスレーザなどの他の固体レーザを用いても良いし、光ファイバ2として、GeO₂ファイバやペンセンなどの液体をコアにしたファイバを用いてもよい。また、等化器として、逆符号の分散を持っファイバや、あるいは復屈折フィルタ分波器を用いてもよい。

以上述べたごとく本発明によれば、共振器構成と し、かつ、光ファイパの屈折率分散補償等化器を含 むことによって、低励起入力で簡単に出力被長の 選択が可能なファイパラマンレーザが得られる。

4. 図面の簡単な説明

第1図は従来の構成の一例を示す模式図、第2

第 2 図 $\sqrt{\frac{62}{12}}$ $\sqrt{\frac{3}{12}}$ $\sqrt{\frac{3}$

