Entscheidbare Probleme

• Gegeben CFG $\langle G \rangle$, ist L(G) leer / endlich / $w \in L(G)$ für ein festes $w \in \Sigma^*$.

Unentscheidbare Probleme

Komplemente werden im folgenden weggelassen, da offensichtlich auch unentschiedbar.

- Diagonalsprache $D := \{w \in \{0,1\}^* \mid w = w_i \text{ und } M_i \text{ akzeptiert } w \text{ nicht}\}$
- Halteproblem $H := \{ \langle M \rangle w \mid M \text{ hält auf } w \}.$
- ε -Halteproblem $H_{\varepsilon} := \{ \langle M \rangle \mid M \text{ hält auf } \varepsilon \}.$
- Totales Halteproblem $H_{tot} := \{ \langle M \rangle \mid M \text{ hält auf allen Eingaben} \}.$
- PCP, MPCP und PCP mit 5 oder mehr als 7 Dominos
- Besitzt eine elementare Funktion eine elementare Stammfunktion? (Satz von Richardson)
- Dioph := $\{\langle p \rangle \mid p \text{ Polynom ""uber } \mathbb{Z} \text{ mit Nullstelle in } \mathbb{Z}\}$
- Gegeben $\langle M \rangle$, ist $L(M) = \Sigma^*$ / leer / (un)endlich / regulär / kontext-frei?
- Gegeben CFG $\langle G \rangle$, ist G eindeutig / $L(G) = \Sigma^* / L(G)$ regulär?
- Gegeben CFGs $\langle G_1 \rangle, \langle G_2 \rangle$, ist $L(G_1) \subseteq L(G_2) / L(G_1) \cap L(G_2) = \emptyset$?

Rekursiv-aufzählbare Probleme

- H (Halteproblem)
- H_{ε} (ε -Halteproblem)
- \bullet $\,\overline{\!D}$ (Komplement der Diagonalsprache)
- PCP und MPCP
- Dioph

Nicht rekursiv-aufzählbare Probleme

- \bullet \overline{H} (Komplement des Halteproblems)
- $\overline{H_{\varepsilon}}$ (Komplement des $\varepsilon\textsc{-Halteproblems})$
- D (Diagonalsprache)
- \bullet $~\overline{\rm PCP}$ und $~\overline{\rm MPCP}$
- \bullet $\overline{\text{Dioph}}$

Probleme in P

- SORTIEREN
- Graphzusammenhang
- \bullet Primzahltest
- Eulerkreis
- Minimaler Spannbaum
- Maximaler Fluss
- Maximum Matching
- \bullet ggT
- Konvexe Hülle in 2D

Probleme in NP

- \bullet SAT
- 3-SAT
- CLIQUE
- INDEP-SET
- VC (Vertex-Cover)
- COLORING
- HAM-CYCLE
- TSP
- EX-COVER
- SUBSET-SUM
- PARTITION
- KP (Rucksack / Knapsack)
- BPP

Definitionen

SAT

Eingabe: Eine Aussagenlogische Formel φ in CNF über einer Variablenmenge $X = \{x_1, \dots, x_n\}$.

Frage: Ist φ erfüllbar (ex. Variablenbelegung, sodass $\varphi \equiv 1$)?

3-SAT

Eingabe: Eine Aussagenlogische Formel φ in 3-CNF über einer Variablenmenge $X = \{x_1, \dots, x_n\}$. Dabei ist 3-CNF wie CNF, nur dass jede Klausul exakt 3 Literale haben muss.

Frage: Ist φ erfüllbar (ex. Variablenbelegung, sodass $\varphi \equiv 1$)?

CLIQUE

Eingabe: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$

Frage: Enthält G eine Clique (vollständiger Teilgraph) mit $\geq k$ Knoten?

INDEP-SET

Eingabe: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$

Frage: Enthält G eine unabhängige Menge $(S \subseteq V \text{ pw. nicht adjazent})$ mit $\geq k$ Knoten?

VC (Vertex-Cover)

Eingabe: Ein ungerichteter Graph G = (V, E) und $k \in \mathbb{N}$

Frage: Enthält G ein Vertex-Cover ($S \subseteq V$ berührt alle Kanten) mit $\leq k$ Knoten?

COLORING

Eingabe: Ein ungerichteter Graph G=(V,E) und $k\in\mathbb{N}$

Frage: Gibt es eine Färbung $c: V \to [1, k]$ sodass $\forall e \in E: c(e_1) \neq c(e_2)$?

HAM-CYCLE

Eingabe: Ein ungerichteter Graph G = (V, E)

Frage: Besitzt G einen Hamiltonkreis (geschl. Pfad, der jeden Knoten genau einmal enthält)?

TSP

Eingabe: Städte $1, \ldots, n$, Distanzen $d(i, j) \in \mathbb{N}$ und $\gamma \in \mathbb{N}$.

Frage: Gibt es eine Rundreise (TSP-Tour) mit Länge $\leq \gamma$?

EX-COVER

Eingabe: Eine endliche Menge X und $S_1, \dots, S_M \subseteq X$

Frage: Existiert $I \subseteq [1, m]$ sodass $(S_i)_{i \in I}$ eine Parition von X ist?

SUBSET-SUM

Eingabe: $a \in \mathbb{N}^k, b \in \mathbb{N}$

Frage: Existiert $I \subseteq [1, k]$ sodass $\sum_{i \in I} a_i = b$?

KP (Rucksack / Knapsack)

Eingabe: $w, p \in \mathbb{N}^k$ und $b \in \mathbb{N}$ (und $\gamma \in \mathbb{N}$)

Zulässige Lösung: Menge $K \subseteq [1,n]$ mit $w(K) := \sum_{i \in K} w_i \leq b$

Optimierungsziel: Maximiere $p(K) := \sum_{i \in K} p_i$

Als Entscheidungsproblem: Existiert K sodass $p(k) \ge \gamma$?

BPP

Eingabe: $b \in \mathbb{N}$ und $w \in [1, b]^n$ (und $\gamma \in \mathbb{N}$)

Zulässige Lösung: $k \in \mathbb{N}$ und $f:[1,n] \to [1,k]$ sodass $\forall i \in [1,k]: \sum_{j \in f^{-1}(i)} w_j \leq b$

(Zuordnung von Gewichten zu Kisten, sodass Tragkraft b der Kisten nicht überschritten wird)

Optimierungsziel: Minimiere k (= Anzahl Kisten)

Als Entscheidungsproblem: Existiert eine zulässige Lösung mit $k \leq \gamma$?