Homework Assignments

MA1130 VECTOR CALCULUS

January 8, 2019

- 1. If $\mathbf{u} \perp \mathbf{v}$ and $\mathbf{u} \perp \mathbf{w}$ then show that $\mathbf{u} \perp a\mathbf{v} + b\mathbf{w}$ for all $a, b \in \mathbb{R}$
- 2. Prove the law of cosine: For any two nonzero vectors v and w one has

$$\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 - 2\|\mathbf{v}\| \|\mathbf{w}\| \cos\theta,$$

 θ being the angle between \mathbf{v} and \mathbf{w}

- 3. Show that the area of a triangle with adjacent sides \mathbf{v} and \mathbf{w} is $\frac{1}{2} \|\mathbf{v} \times \mathbf{w}\|$
- 4. For any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} show that

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$$

5. For vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}$ show that

$$(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{w} \times \mathbf{z}) = \begin{vmatrix} \mathbf{u} \cdot \mathbf{w} & \mathbf{u} \cdot \mathbf{z} \\ \mathbf{v} \cdot \mathbf{w} & \mathbf{v} \cdot \mathbf{z} \end{vmatrix}$$

- 6. Show that for $\mathbf{a} \neq 0$, $\mathbf{x} = \frac{\mathbf{b} \times \mathbf{a}}{\|\mathbf{a}\|^2} + k\mathbf{a}$ solves $\mathbf{a} \times \mathbf{x} = \mathbf{b}$ for any scalar k.
- 7. Prove the **Jacobi Identity:** For any vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) + \mathbf{v} \times (\mathbf{w} \times \mathbf{u}) + \mathbf{w} \times (\mathbf{u} \times \mathbf{v}) = 0$$

- 8. Find the point(s) of intersection of the sphere $(x-3)^2 + (y+1)^2 + (z-3)^2 = 9$ and the line x = -1 + 2t, y = 2 3t, z = 3 + t.
- 9. Find the intersection of the sphere $x^2 + y^2 + z^2 = 9$ and the cylinder $x^2 + y^2 = 4$.

- 10. It can be shown that any four non coplanar points (i.e. points that do not lie in the same plane) determine a sphere (Ref: Welchons, A.M. and W.R. Krickenberger, Solid Geometry, pp 160). Assuming this fact find the equation of the sphere that passes through the points (0,0,0), (0,0,2), (1,-4,3) and (0,-1,3).
- 11. Let S be the sphere with radius 1 centered at (0,0,1), and let S be S without the north pole point (0,0,2). Let (a,b,c) be an arbitrary point on S. Then the line passing through (0,0,2) and (a,b,c) intersects the xy-plane at some point (x,y,0). Find this point (x,y,0) in terms of a,b and c.
- 12. Let P_1 and P_2 be points whose spherical coordinates are $(\rho_1, \theta_1, \phi_1)$ and $(\rho_2, \theta_2, \phi_2)$, respectively. Let \mathbf{v}_1 be the vector from the origin to P_1 , and let \mathbf{v}_2 be the vector from the origin to P_2 . For the angle γ between \mathbf{v}_1 and \mathbf{v}_2 , show that

$$\gamma = \cos^{-1}(\cos\phi_1\cos\phi_2 + \sin\phi_1\sin\phi_2\cos(\theta_2 - \theta_1)).$$

13. Show that the distance d between the points P_1 and P_2 with cylindrical coordinates (r_1, θ_1, z_1) and (r_2, θ_2, z_2) , respectively, is

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1) + (z_2 - z_1)^2}.$$

14. Show that the distance d between the points P_1 and P_2 with spherical coordinates $(\rho_1, \theta_1, \phi_1)$ and $(\rho_2, \theta_2, \phi_2)$ respectively, is

$$d = \sqrt{\rho_1^2 + \rho_2^2 - 2\rho_1 \rho_2 [\cos\phi_1 \cos\phi_2 + \sin\phi_1 \sin\phi_2 \cos(\theta_2 - \theta_1)]}.$$