

Learning optimal seeds for diffusion-based salient object detection: A Report

Paper's Writers

Song Lu, Vijay Mahadevan, Nuno Vasconcelos

Advisor

Dr. Maryam Abedi

Student

Mohammad Shahpouri

September 2022

Contents

Li	st of	Tables Tables	ii
Li	st of	Equations	iii
1	Opt	cimal seeds for object saliency	1
	1.1	Feature based saliency diffusion	1
	1.2	Seed representation	1
	1.3	Learning	2
	1.4	Pre-attentive saliency map	2
	1.5	Mid-level features	3
2	Exp	periments	4
	2.1	Eye fixation prediction	4
	2.2	Salient object detection	5
\mathbf{R}	efere	nces	6

List of Tables

1	Diffusion matrices for graph-based similarity propagation	2
2	Eye fixation prediction performance: Gaussian kernel/Shuffled AUC score	4
3	Object saliency detection performance: AUC/AP	Ę

List of Equations

1	Equation 1	l	 •		•				•		•	•		•	•	•	 	•	•	•						 	1
2	Equation 2	2															 									 	1
3	Equation 3	3															 									 	1
4	Equation 4	1															 									 	2
5	Equation 5	5															 									 	2
6	Equation 6	3															 									 	3
7	Equation 7	7															 									 	3
8	Equation 8	3															 									 	3
9	Equation 9	9															 									 	3
10	Equation 1	10															 									 	3
11	Equation 1	11															 									 	3
12	Equation 1	12															 									 	3
13	Equation 1	13															 									 	4

1 Optimal seeds for object saliency

Combination of pre-attentive saliency maps and mid-level vision cues for object perception are proposed as an algorithm for learning saliency seeds.

1.1 Feature based saliency diffusion

An image \mathbf{x} is first segmented into N superpixels $\{x_i\}$, i = (1 ... N), using the algorithm of [1], and represented as a graph G = (V, E) where each node corresponds to a superpixel. Following [2], affinity matrix is adopted

$$w_{ij} = \begin{cases} \nu(\mathbf{x}_i, \mathbf{x}_j) & \text{if } j \in \mathcal{N}_i \text{ or } \exists k \in \mathcal{N}_i | j \in \mathcal{N}_k \\ 0 & \text{otherwise} \end{cases}$$
 (1)

where \mathcal{N}_i is the set of neighbors of superpixel x_i . The function $\nu(\mathbf{x}_i, \mathbf{x}_j)$ is a measure of visual similarity of two superpixels. They adopt a classifier to determine if \mathbf{x}_i and \mathbf{x}_j belong to the same object [3, 4]. A boosted decision tree are utilized as the classifier, which operates on a feature space that accounts for color difference, texture difference, and geometric properties such as distance.

1.2 Seed representation

Seed vector \mathbf{s} consider as a linear combination

$$\mathbf{s} = \mathbf{F}(\mathbf{x})\mathbf{w} \tag{2}$$

where \mathbf{F} is an $N \times K$ matrix, whose columns are the responses of K features to image \mathbf{x} . The weight vector \mathbf{w} determines the contribution of the different features to the seed vector. With these seeds the saliency map can be written as

$$\mathbf{y}(\mathbf{x}) = \mathbf{A}(\mathbf{x})\mathbf{F}(\mathbf{x})\mathbf{w}$$

$$= \sum_{i} w_{i}\mathbf{A}(\mathbf{x})\mathbf{f}_{i}(\mathbf{x})$$
(3)

where $\mathbf{f}_i(\mathbf{x})$ is the i^{th} column of $\mathbf{F}(\mathbf{x})$ and contains the saliency information derived from feature i and $\mathbf{A}(\mathbf{x})$ is a diffusion matrix, as defined in Table 1.

Table 1. Diffusion matrices for graph-based similarity propagation.

Method	Propagation matrix A
Quadratic energy models	$(\mathbf{K} + \lambda(\mathbf{D} - \mathbf{W}))^{-1}\mathbf{K}$
Random walks	$(\mathbf{I} - \alpha \mathbf{W} \mathbf{D}^{-1})^{-1}$
Manifold ranking	$(\mathbf{I} - \alpha \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2})^{-1}$

1.3 Learning

Learning is accomplished by optimizing w

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \frac{1}{2} \alpha \|w\|^2 + \sum_{k} \sum_{\{ij \mid \delta_i^k = 1, \delta_j^k = 0\}} \max(0, 1 - (y_i(\mathbf{x}^{(k)}) - y_j(\mathbf{x}^{(k)})))$$
(4)

where $\mathbf{y}(\mathbf{x})$ is the object saliency map of 3 and $\delta_i^k = m_i(\mathbf{x}^{(k)})$ an indicator of the saliency of the i^{th} superpixel of the k^{th} image.

1.4 Pre-attentive saliency map

To obtained pre-attentive saliency map, images are first decomposed into patches $\{\mathbf{t}_i\}$ of 8×8 pixels and 3 RGB color channels. Then approximating the sparse coefficients of patch \mathbf{t} with $\xi = \Psi^{-1}\mathbf{t}$. The sparse coefficients are used as features for the computation of saliency. ξ_i is well approximated by a generalized Gaussian distribution (GGD)

$$p(\xi_i; \alpha_i, \beta_i) = \frac{\beta_i}{2\alpha_i \Gamma(\frac{1}{\beta_i})} \exp\left(-\left|\frac{\xi_i}{\alpha_i}\right|^{\beta_i}\right)$$
 (5)

where α_i is a scale parameter, β_i a shape parameter, and $\Gamma(z) = \int_0^\infty e^{-t}t^{z-1}dt$, t > 0, the Gamma function. α_i is estimated by the maximum a posteriori (MAP) under the assumption of a conjugate (Gamma distributed) prior, is given by [5]

$$\hat{\alpha}_{i,MAP} = \left[\frac{1}{k_i} \left(\sum_{j=1}^n |\xi_i^{(j)}|^{\beta_i} + \nu \right) \right]^{1/\beta_i}$$
 (6)

where $k_i = \frac{n+\eta}{\beta_i}$ and ν, η are fixed prior parameters ($\nu = \eta = 10^{-3}$). As in [6], β_i is learned for each image, using

$$\sigma^2 = \frac{\alpha^2 \Gamma(\frac{3}{\beta_i})}{\Gamma(\frac{1}{\beta_i})} \quad \kappa = \frac{\Gamma(\frac{1}{\beta_i}) \Gamma(\frac{5}{\beta_i})}{\Gamma(\frac{3}{\beta_i})^2} \tag{7}$$

where σ^2 and κ are the variance and kurtosis of the i^{th} feature. As in [7], the saliency of image location l is

$$s(\xi_i(l); \alpha_i, \beta_i) = -\log p(\xi_i(l); \alpha_i, \beta_i)$$
(8)

Using (5) and (6) leads to

$$s(\xi_i(l)) = \frac{|\xi_i(l)|^{\beta_i}}{\frac{1}{k}(\sum_{j=1}^n |\xi_i^{(j)}|) + \nu} + Q$$
(9)

where Q is a constant that does not depend on $\xi_i(l)$. Finally, the saliency maps derived from the B feature channels are combined with

$$s_f(l) = \sum_{1}^{B} a_i s(\xi_i(l)) \tag{10}$$

and the pre-attentive saliency score of superpixel x_i set to the mean saliency score of its pixels. The weights a_i are learned.

1.5 Mid-level features

They proposed a bunch of mid-level features to evaluate the likelihood of a superpixel belonging to a generic object.

Element uniqueness measures the rarity of a superpixel color [8] with

$$\mathcal{U}_i = \sum_{j=1}^N \|c_i - c_j\|^2 w_{ij}^{(l)} \tag{11}$$

$$w_{ij}^{(l)} = \frac{1}{Z_i} \exp(-\frac{1}{2\sigma_l^2} ||l_i - l_j||^2)$$
(12)

where l_i and c_i are the position and average CIELab color of the i^{th} superpixel, respectively. Z_i is a normalization factor to ensure that $\sum_{j=1}^{N} w_{ij}^{(l)} = 1$.

Element distribution measures the spatial variance of the color of a superpixel [8], according to

$$\mathcal{D}_{i} = \sum_{j=1}^{N} \|l_{j} - l_{i}^{(\mu)}\|^{2} w_{ij}^{(c)}$$
(13)

where $w_{ij}^{(c)} = \frac{1}{Z_i} \exp(-\frac{1}{2\sigma_c^2} ||c_i - c_j||^2)$ and $l_i^{(\mu)} = \sum_{j=1}^N w_{ij}^{(c)} l_j$ is the center of mass of color c_i . Z_i is a normalization constant such that $\sum_{j=1}^N w_{ij}^{(c)} = 1$.

Pattern distinctness [9] measures the l_1 mean distance of patches in a superpixel to the mean patch, by principal component analysis (PCA). This is defined as $\mathcal{P}(\mathbf{x}_i) = \|\hat{\mathbf{x}}_i\|_1$, where $\hat{\mathbf{x}}_i$ contains the PCA coefficients of patch x_i .

Color distinctness same as pattern distinctness but for a PCA of the RGB color space of each patch.

Center bias distance between superpixel center and image center, normalized to [0,1].

Backgroundness similarity between a superpixel and the superpixels in the four image boundaries, using the similarity measure $\nu(x_i, x_j)$ of (1).

Local contrast measures [3] based on Chi-square distances between distributions of color and texton response [10] and geometric attributes such as size, and position.

2 Experiments

2.1 Eye fixation prediction

Table 2. Eye fixation prediction performance: Gaussian kernel/Shuffled AUC score

Gaussian kernel/Shuffled AUC score	Kootstra	Bruce	Judd	VOC2008_1000
RGB-Signature [11]	0.030/0.5869	0.040/0.6900	0.040/0.6547	0.065/0.6497
LAB-Signature [11]	0.040/0.6020	0.045/0.7115	0.040/0.6631	0.050/0.6595
Sparse [12]	0.015/0.6024	0.030/0.6956	0.020/0.6629	0.030/0.6491
Spectral [13]	0.040/0.5865	0.040/0.6898	0.040/0.6545	0.065/0.6527
SUN [14]	0.020/0.5609	0.030/0.6663	0.030/0.6565	0.050/0.6373
sparse-GGD	0.015/ 0.6105	0.030/0.7140	0.035/ 0.6751	0.050/ 0.6681

2.2 Salient object detection

Table 3. Object saliency detection performance: AUC/AP

AUC/AP	MSRA5000	SOD	SED1	SED2	VOC2008_1023
СВ	0.9281/0.8289	0.7672/0.6235	0.9105/0.8380	0.8741/0.7767	0.7546/0.6158
FT	0.7605/0.5603	0.6078/0.4274	0.6699/0.5493	0.8205/0.7225	0.6071/0.4493
Gof	0.8622/0.6214	0.8027/0.5818	0.8513/0.6804	0.8617/0.6474	0.7847/0.5959
НС	0.8223/0.6452	0.6612/0.4646	0.7770/0.6311	0.8769/0.7773	0.6525/0.4756
RC	0.9200/0.7724	0.8133/0.6337	0.8881/0.7633	0.9142/0.8272	0.7965/0.6186
GBMR	0.9424/0.8614	0.8319/0.6759	0.9341/0.8841	0.8360/0.7548	0.7838/0.6442
PCA	0.9407/0.8057	0.8414/0.6423	0.9085/0.7862	0.9035/0.7905	0.8102/0.6451
SalseedProp	0.9058/0.8136	0.8175/0.6688	0.9176/0.8537	0.8806/0.7500	0.7908/0.6421
OptseedProp	0.9615/0.8790	0.8684/0.7019	0.9530/0.8905	0.9058/0.8062	0.8181/0.6556

References

- [1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, "Slic superpixels," École Polytechnique Fédéral de Lausssanne (EPFL), vol. 149300, p. 15, 2010. 1
- [2] C. Yang, L. Zhang, H. Lu, X. Ruan, and M.-H. Yang, "Saliency detection via graph-based manifold ranking," in 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173, 2013.
- [3] H. Jiang, J. Wang, Z. Yuan, Y. Wu, N. Zheng, and S. Li, "Salient object detection: A discriminative regional feature integration approach," in 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2083–2090, 2013. 1, 4
- [4] E. Rahtu, J. Kannala, and M. Blaschko, "Learning a category independent object detection cascade," in 2011 International Conference on Computer Vision, pp. 1052–1059, 2011.
- [5] D. Gao and N. Vasconcelos, "Decision-theoretic saliency: computational principles, biological plausibility, and implications for neurophysiology and psychophysics," *Neural Comput*, vol. 21, pp. 239–271, Jan. 2009.
- [6] D. Gao and N. Vasconcelos, "Bottom-up saliency is a discriminant process," in 2007 IEEE 11th International Conference on Computer Vision, pp. 1–6, 2007.
- [7] N. Bruce and J. Tsotsos, "Saliency based on information maximization," in Advances in Neural Information Processing Systems (Y. Weiss, B. Schölkopf, and J. Platt, eds.), vol. 18, MIT Press, 2005.
- [8] F. Perazzi, P. Krähenbühl, Y. Pritch, and A. Hornung, "Saliency filters: Contrast based filtering for salient region detection," in 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740, 2012. 3, 4
- [9] R. Margolin, A. Tal, and L. Zelnik-Manor, "What makes a patch distinct?," in 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1139–1146, 2013.
- [10] T. Leung and J. Malik, "Representing and recognizing the visual appearance of materials using threedimensional textons," *International Journal of Computer Vision*, vol. 43, pp. 29–44, Jun 2001. 4
- [11] X. Hou, J. Harel, and C. Koch, "Image signature: Highlighting sparse salient regions," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 1, pp. 194–201, 2012. 4
- [12] X. Hou and L. Zhang, "Dynamic visual attention: searching for coding length increments," in Advances in Neural Information Processing Systems (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), vol. 21, Curran Associates, Inc., 2008. 4

- [13] X. Hou and L. Zhang, "Saliency detection: A spectral residual approach," in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007. 4
- [14] L. Zhang, M. H. Tong, T. K. Marks, H. Shan, and G. W. Cottrell, "SUN: A Bayesian framework for saliency using natural statistics," *Journal of Vision*, vol. 8, pp. 32–32, 12 2008. 4