Overfitting and Underfitting

Errors of Machine Learning Models

- **Bias** errors due to overly simplistic assumption in the learning algorithms
 - ☐ Inability to represent the true relationship between features and target variable
 - ☐ High bias means that the model has poor performance on both training and test data
- Variance errors due to the model's sensitivity to fluctuations in the training data
 - ☐ Inability to generalize the model to different training data set
 - ☐ High variance means that the model performs well for the training data but performs poorly for unseen data

Underfitting

Overfitting

Good Fitting

Reasons for Underfitting/Overfitting

- Model complexity
 - ☐ Model too complex
 - Too many features (parameters)
 - Overfitting
 - ☐ Model too simple
 - Linear separable model
 - Underfitting
- Noisy data
- Insufficient training data

Remedies for Overfitting/Underfitting

- Too many features
 - ☐ Feature selection
 - ☐ Regularization
- Linear separability
 - ☐ Kernel method
- Noisy data
 - ☐ Decision tree pruning
 - ☐ SVM soft margin

Regularization

• Add a *regularization term* to the objective function of linear regression, logistic regression algorithms

$$\frac{\lambda}{2} \|\mathbf{w}\|^2 = \frac{\lambda}{2} \sum_{j=1}^m w_j^2$$

- λ is the so-called **regularization parameter** (hyperparameter)
- Regularization can help
 - ☐ Reduce the coefficients of less important features to zero
 - ☐ Prevent excessive weighting of outliers or irrelevant features
 - ☐ Handle high correlation between features (multicollinearity)
 - ☐ Achieve the right balance between bias and variance

Logistic Regression with Regularization

```
>>> weights, params = [], []
>>> for c in np.arange(-5, 5):
        lr = LogisticRegression(C=10.**c, random state=1)
       lr.fit(X train std, y train)
       weights.append(lr.coef [1])
        params.append(10.**c)
>>> weights = np.array(weights)
>>> plt.plot(params, weights[:, 0],
             label='petal length')
>>> plt.plot(params, weights[:, 1], linestyle='--',
             label='petal width')
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.legend(loc='upper left')
>>> plt.xscale('log')
>>> plt.show()
```


Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early-do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - <u>Postpruning</u>: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Number of Nodes and Overfitting

Notes on Overfitting

 Overfitting results in decision trees that are more complex than necessary

 Training error no longer provides a good estimate of how well the tree will perform on previously unseen records

Need new ways for estimating errors

How to Avoid Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - Stop if all instances belong to the same class
 - Stop if all the attribute values are the same
 - More restrictive conditions:
 - Stop if number of instances is less than some user-specified threshold
 - Stop if class distribution of instances are independent of the available features (e.g., using χ^2 test)
 - Stop if expanding the current node does not improve impurity measures (e.g., Gini or information gain).

How to Avoid Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node.
- Class label of leaf node is determined from majority class of instances in the sub-tree

Estimating Generalization Errors

- Re-substitution errors: error on training (Σ e(t))
- Generalization errors: error on testing (Σ e'(t))
- Methods for estimating generalization errors:
 - Optimistic approach: e'(t) = e(t)
 - Pessimistic approach:
 - For each leaf node: e'(t) = (e(t)+0.5)
 - Total errors: $e'(T) = e(T) + N \times 0.5$ (N: number of leaf nodes)
 - For a tree with 30 leaf nodes and 10 errors on training (out of 1000 instances):
 Training error = 10/1000 = 1%

Generalization error = $(10 + 30 \times 0.5)/1000 = 2.5\%$

- Reduced error pruning (REP):
 - uses validation data set to estimate generalization error

Example of Post-Pruning

Class = Yes 20Class = No 10Error = 10/30 **Training Error (Before splitting) = 10/30**

Pessimistic error = (10 + 0.5)/30 = 10.5/30

Training Error (After splitting) = 9/30

Pessimistic error (After splitting)

$$= (9 + 4 \times 0.5)/30 = 11/30$$

PRUNE!

A1 A4 A2 A3

A?

Class = Yes	8
Class = No	4

Class = Yes	3
Class = No	4

Class = Yes	4
Class = No	1

Class = Yes	5
Class = No	1

Reduced Error Pruning (REP)

Use pruning set to estimate accuracy of sub-trees and accuracy at individual nodes

Let T be a sub-tree rooted at node v

Define:

Gain from prunning at v = # misclassification in T - # misclassification at v

Repeat: prune at node with largest gain until until only negative gain nodes remain

"Bottom-up restriction": T can only be pruned if it does not contain a sub-tree with lower error than T

Partition Data in Tree Induction

Estimating accuracy of a tree on new data: "Test Set"

Some post pruning methods need an independent data set: "Pruning Set"

To evaluate the classification technique, experiment with repeated random splits of data

Typical Proportions

REP Example

$$E(T_{v_2}) = 3$$
, $E(v_2) = 2$, $E(T_{v_3}) = 1$, $E(v_3) = 3$.

Learning Curve and Underfitting

Learning Curve and Overfitting

Validation Curve and Overfitting/Underfitting

