

Logistic Regression

Koushik Khan

 Λ otivatior

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin Parameters

References

Thanks

Introduction to Logistic Regression A Beginner Friendly Tutorial

Koushik Khan

koushik.khan.ds@gmail.com linkedin.com/in/koushikkhan/ koushikkhan.github.io

March 22, 2025

Contents

Logistic Regression

Koushik Khan

Iotivatio:

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

Parameters

Thank

Motivation

2 ML For Classification

3 Logistic Regression

4 Parameter Estimation

6 Model Evaluation

6 Interpreting Parameters

References

Logistic Regression

Koushik Khan

Motivation

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin Parameter:

References

Thanks

MOTIVATION

The Binary Classification Problem

Logistic Regression

Koushik Khan

Motivation

tion

Regression

Estimation Estimation

Model Evaluation

References

- Imagine situations where we would like to know,
 - the *eligibility* of getting a bank loan given the value of credit score (x_{credit_score}) and monthly income (x_{income}) .
 - identifying a tumor as *benign* or *malignant* given its size (x_{tumor_size}) .
 - classifying an email as *promotional* given the no. of occurrences for some keywords like {'win', 'gift', 'discount'} $(x_{n \text{ win}}, x_{n \text{ qift}}, x_{n \text{ discount}})$.
 - finding a monetary transaction as *fraudulent* given the time of occurrence (x_{time_stamp}) and amount (x_{amount}) .
- These problems occur frequently in real life & can be dealt with machine learning.
- All such problems come under the umbrella of what is known as *Classification*.
- In each scenario, only one of the two possible outcomes can occur, hence these are specifically known as *Binary Classification* problems.

Understanding The Dataset

Logistic Regression

Koushik Khan

Motivation

tion

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

References

- Any dataset containing *numerical* or *categorical* features can be used for classification.
- However, the target variable must be *categorical* in nature.
- Specifically, for binary classification, a target variable (Y) must take any one of the two distinct values like {'benign', 'malignant'}.
- To use with ML algorithms, values of the target variable are *encoded* into numeric representations e.g. {"benign": 0, "malignant": 1}, a.k.a 'class-0' & 'class-1' respectively.
- In literature, typically 'class-0' is tagged as *failure* and 'class-1' is tagged as *success*.

Logistic Regression

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

Reference

Thanks

MACHINE LEARNING FOR CLASSIFICATION

How Does A Machine Perform Classification?

Logistic Regression

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

rtererence

Thanks

- During the inference, the goal is to have the ML model *predict the class label* for a given set of feature values.
- Specifically, a binary classification model estimates two probabilities \hat{p}_0 & \hat{p}_1 for 'class-0' and 'class-1' respectively where $\hat{p}_0 + \hat{p}_1 = 1$.
- The predicted label depends on $\max\{\hat{p}_0, \hat{p}_1\}$ i.e. it's the one which is most probable based on the given features.
- In logistic regression, \hat{p}_1 (i.e. success probability) is compared with a *predefined threshold* p^* to predict the class label like below:

predicted class = 1;
$$\hat{p}_1 \ge p^*$$

= 0; otherwise (1)

● To keep the notation simple and consistent, we will denote the *success* probability as p, and failure probability as (1-p) instead of p_1 and p_0 respectively.

Why NOT Linear Regression?

Logistic Regression

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Deference

- Can't we really use linear regression to address classification? The answer is NO!
- Let's try to understand why:
 - \bullet To estimate p using linear regression, we would need:

$$\hat{p} = \hat{\alpha} + \hat{\beta} x_{tumor_size} \tag{2}$$

- Eqn. (2) doesn't seem to be feasible as the R.H.S, in principle, belongs to $\mathbb{R}(-\infty, +\infty)$ & the L.H.S belongs to (0,1).
- Can we convert $(\hat{\alpha} + \hat{\beta}x_{tumor_size})$ to something belonging to (0,1)? That may work as an estimate of a probability! The answer is YES!
- We need a converter (a function), say, g(.) that will connect $p \in (0,1)$ to $(\hat{\alpha} + \hat{\beta}x_{tumor_size}) \in \mathbb{R}$.
- Fortunately, such functions do exist and they are often referred to as *link* functions in this context.

 $\begin{array}{c} {\rm Logistic} \\ {\rm Regression} \end{array}$

Koushik Khan

Intivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin

References

Thanks

LOGISTIC REGRESSION

The Bernoulli Distribution

Logistic Regression

Koushik Khan

Motivation

ML For Classifica tion

Logistic Regression

Parameter Estimation

Model Evaluation

Parameters

Thanks

- Following the definition, a link function connects the liner predictor like $(\alpha + \beta x_{tumor_size})$ to the expected value of the target variable.
- The *binary* target variable naturally suits the *Bernoulli Distribution* (Bernoulli's Trial) for explanation.

Bernoulli's Trial

A random experiment that results in one of the two possible outcomes, often called, a success and a failure, with a $constant\ probability$ of success, say, p.

Examples

- tossing a fair coin the coin shows either the 'HEAD' or the 'TAIL'
- performing COVID test result will be either '+ve' or '-ve'
- detecting a tumor as 'benign' or 'malignant' etc.

PMF And Expectation

Logistic Regression

Koushik Khan

Iotivatio:

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

D.C.

Thanks

ullet Bernoulli's trial can be expressed mathematically with a random variable, say, Y as:

$$f(y|p) = P(Y = y) = p^{y} \times (1 - p)^{1 - y}; \ y \in \{0, 1\}$$
(3)

where eqn. (3) is known as Probability Mass Function (PMF).

• The PMF maps the values (y) taken by Y to probabilities e.g.

when
$$y = 1 \Rightarrow P(Y = 1) = p$$

when $y = 0 \Rightarrow P(Y = 0) = (1 - p)$

• The expected value of Y is calculated as:

$$E(Y) = 0 \times P(Y = 0) + 1 \times P(Y = 1)$$

$$= P(Y = 1)$$

$$= p$$

$$= Probability of 'success' or identifying a malignant case (4)$$

The Logit Link Function

Logistic Regression

Koushik Khan

Motivation

ML For Classifica tion

Logistic Regression

 $\begin{array}{c} {\bf Parameter} \\ {\bf Estimation} \end{array}$

Model Evaluation

Parameter

Reference

Thanks

• The logit link function is defined as:

$$logit(E(Y)) = \log\left(\frac{E(Y)}{1 - E(Y)}\right)$$
 (5)

• And by the definition of a link function, it connects the linear predictor i.e. $(\alpha + \beta x_{tumor size})$ to E(Y) i.e. p as:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x_{tumor_size} \tag{6}$$

The eqn. (6) is formally called the *Logistic Regression* equation.

• For a linear regression, the link function is the *identity function* i.e. g(x) = x.

The Inverse of Logit - Sigmoid Function

Logistic Regression

Koushik Khan

Motivation

ML For Classifica-

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin Parameter

References

Thanks

• In logistic regression, we try to model P(Y = 1) as:

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x_{tumor_size}$$

where the L.H.S is also known as *log-odds*.

• Alternatively we can write:

$$p = \frac{e^{\alpha + \beta x_{tumor_size}}}{1 + e^{\alpha + \beta x_{tumor_size}}} \text{ (verify)}$$
 (7

• The R.H.S of eqn.(7) is referred to as *sigmoid* function, denoted by $\sigma(.)$ which is the *inverse* of the logit function.

Nature Of The Sigmoid

Logistic Regression

Koushik Khan

Activation

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin

References

Figure: The sigmoid function

Math Behind The Sigmoid

Logistic Regression

Koushik Khan

Motivatio:

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin Parameter

References

Γhanks

• The sigmoid function:

$$\sigma(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}; \ z \in \mathbb{R}$$
 (8)

maps any $z \in \mathbb{R}$ to a number belonging to (0,1).

• It has a very nice & important property too:

$$\frac{d\sigma}{dz} = \sigma'(z) = \sigma(z) \times (1 - \sigma(z)) \text{ (verify)}$$
(9)

• It looks like an *elongated* 'S', that is where it gets its name from.

Linear And Non-linear Classification

Logistic Regression

Koushik Khan

Iotivatio

ML For Classifica-

Logistic Regression

Parameter Estimation

Model Evaluation

Parameters

References

Thanks

Figure: On the left, the classes are linearly separable as the boundary is a straight line, however they are not on the right

Logistic Regression Is A Linear Classifier

Logistic Regression

Koushik Khan

Motivatio

ML For Classifica-

Logistic Regression

Parameter Estimation

Model Evaluation

Paramete:

References

 Γ hanks

- The logistic regression equation (6) is actually a *straight line* (of the form y = mx + c).
- Decall the prediction rule:

predicted class = 1;
$$\hat{p} \ge p^* \Rightarrow \hat{\alpha} + \hat{\beta} x_{tumor_size} \ge \log \left(\frac{p^*}{1 - p^*} \right)$$

= 0; otherwise

- A simple logistic regression (the one we discussed) predicts the class label by identifying the regions on either side of a *straight line* (or hyperplane in general), hence it's a *linear classifier*.
- Logistic regression works well for *linearly separable* classes.

Logistic Regression

Koushik Khan

Motivation

Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpreting Parameter

Reference

Thanks

ESTIMATION OF PARAMETERS

The Likelihood Function

Logistic Regression

Koushik Khan

Motivation

ML For Classifica-

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

Reference

Γhanks

- While defining PMF, it is assumed that the success probability (p) is known.
- However, in reality we *don't know* the p consequently, PMF is *not suitable* for further use.
- The dataset involves N patients (say): $\{(x_{i,tumor_size}, y_i)\}_{i=1}^N$, $y_i \in \{0, 1\}$.
- Imagine the i^{th} patient, Y_i , has a probability p_i of developing a malignant case. Here $Y_i \sim Bernoulli(p_i) \ \forall i = 1, 2, ..., N$.
- Interestingly, the expression for $P(Y_i = y_i)$ is same as the PMF, eqn. (3),

$$\ell_i(p_i|y_i) = P(Y_i = y_i) = p_i^{y_i} \times (1 - p_i)^{1 - y_i}; \ y_i \in \{0, 1\} \ \forall i = 1, 2, \dots, N$$
(10)

The eqn. (10) is known as the likelihood for Y_i taking a value y_i .

• In Likelihood we know the dataset (as we're observing it), but the p_i is unknown to us.

The Joint Likelihood Function

Logistic Regression Koushik

Khan

Logistic

Regression

Parameter

Estimation

Model
Evaluation

Interpretin

Reference

• What's the likelihood for observing the entire dataset? Well, the joint likelihood gives that answer.

• It's computed as below:

$$L = P(Y_1 = y_1 \cap \ldots \cap Y_N = y_N) = \prod_{i=1}^N p_i^{y_i} \times (1 - p_i)^{1 - y_i}$$
 (11)

Eqn. (11) is called the *joint likelihood* (L).

• It is much easier to work with joint likelihood after a *log-transformation*, also called the *log-likelihood* (*LL*),

$$LL = \log(L) = \sum_{i=1}^{N} \left\{ y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right\}$$
 (12)

• No Joint likelihood measures the probability of observing the underlying dataset i.e. having $\{Y_1 = y_1, \dots, Y_N = y_N\}$ for some unknown set of probabilities $\{p_1, \dots, p_N\}$.

Maximum Likelihood Estimation

Logistic Regression

Koushik Khan

Motivatio

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

Thanks

- Imagine that some process might have produced the observed dataset $\{(x_{i,tumor_size}, y_i)\}_{i=1}^{N}$
- We are NOT sure what values of p_i 's the process would have considered to produce the dataset.
- We can imagine *several potential candidates* for each p_i (say, all belong to a set \mathbb{P}) that might have been used to produce the dataset.
- In principle, the best candidate for each p_i would be the one that eventually makes the joint likelihood (L) or log likelihood (LL) (both are functions of p_i 's) maximum.
- Mathematically, we would perform,

$$\underset{p_1, \dots, p_N \in \mathbb{P}}{\operatorname{arg max}} \sum_{i=1}^{N} \left\{ y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right\}$$
 (13)

to find $\hat{p}_1, \ldots, \hat{p}_N$.

Going Deeper

Logistic Regression

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter Parameter

References

- Finding $\hat{p}_1, \ldots, \hat{p}_N$ using eqn. (13) is basically an *optimization problem*.
- **9** Recall $p_i = \frac{e^{\alpha + \beta x_{i,tumor_size}}}{1 + e^{\alpha + \beta x_{i,tumor_size}}} = \sigma(\alpha + \beta x_{i,tumor_size})$
- The eqn. (13) can be simplified as:

$$\underset{p_{1},\dots,p_{N}\in\mathbb{P}}{\operatorname{arg\,max}} \left[\sum_{i=1}^{N} \left\{ y_{i} \log \left(\sigma(\alpha + \beta x_{i,tumor_size}) \right) + \left(1 - y_{i} \right) \log \left(1 - \sigma(\alpha + \beta x_{i,tumor_size}) \right) \right\} \right]$$
(14)

- Here each p_i is a function of the parameters $\alpha \& \beta$ and the known data $x_{i,tumor_size}$.
- Finding $\hat{p}_1, \ldots, \hat{p}_N$ is *equivalent* to finding α and β with the help of eqn. (14).

Using Gradient Descent

Logistic Regression

Koushik Khan

10t1vat10

tion

Logistic Regression

Parameter Estimation

Model Evaluation

Reference

Thanks

- Though this is a *maximization* problem, the ML community prefers *minimizing* the *negative log-likelihood* (NLL) using gradient descent.
- In practice, a scaled version of NLL $(\frac{1}{N}NLL)$ is used which is known as Binary Cross Entropy (BCE) loss function.
- Now the problem boils down to:

$$\underset{p_1, \dots, p_N \in \mathbb{P}}{\operatorname{arg\,min}} \frac{1}{N} NLL = \underset{p_1, \dots, p_N \in \mathbb{P}}{\operatorname{arg\,min}} - \frac{1}{N} \sum_{i=1}^{N} \left\{ y_i \log(p_i) + (1 - y_i) \log(1 - p_i) \right\}$$
(15)

or equivalently,

$$\underset{\alpha,\beta}{\operatorname{arg\,min}} - \frac{1}{N} \sum_{i=1}^{N} \left\{ y_{i} \log \left(\sigma(\alpha + \beta x_{i,tumor_size}) \right) + (1 - y_{i}) \log (1 - \sigma(\alpha + \beta x_{i,tumor_size})) \right\}$$
(16)

Computing Derivatives

Logistic Regression

Koushik Khan

lotivatio

ML For Classifica-

Logistic

Parameter Estimation

Model Evaluation

Interpretir Parameter

rtererence

l'hanks

- Gradient Descent computes *derivatives* of BCE w.r.t α and β .
- Here is how it works: Let us first consider $z_i = \alpha + \beta x_{i,tumor_size}$ we would like to compute:

$$\frac{\partial BCE}{\partial \alpha} = -\frac{1}{N} \frac{\partial}{\partial \alpha} \sum_{i=1}^{N} \left\{ y_i \log (\sigma(z_i)) + (1 - y_i) \log (1 - \sigma(z_i)) \right\}
= -\frac{1}{N} \sum_{i=1}^{N} \left\{ y_i \frac{\partial}{\partial \alpha} \log (\sigma(z_i)) + (1 - y_i) \frac{\partial}{\partial \alpha} \log (1 - \sigma(z_i)) \right\}$$
(17)

and similarly,

$$\frac{\partial BCE}{\partial \beta} = -\frac{1}{N} \sum_{i=1}^{N} \left\{ y_i \frac{\partial}{\partial \beta} \log \left(\sigma(z_i) \right) + (1 - y_i) \frac{\partial}{\partial \beta} \log \left(1 - \sigma(z_i) \right) \right\}$$
(18)

The Magic Of Using The Sigmoid

Logistic Regression

Koushik Khan

ML For Classification

 $\begin{array}{c} \text{Logistic} \\ \text{Regression} \end{array}$

Parameter Estimation

Evaluation Evaluation

Parameter

Reference

Thanks

- We will compute the derivatives one by one.
- Here is how we proceed for α :

 $\frac{\partial \log (\sigma(z_i))}{\partial \alpha} = \underbrace{\frac{\partial \log (\sigma(z_i))}{\partial \sigma(z_i)} \times \frac{\partial \sigma(z_i)}{\partial z_i} \times \frac{\partial z_i}{\partial \alpha}}_{\text{clain rule of differentiation}}$ $= \frac{1}{\sigma(z_i)} \times \sigma(z_i) \times (1 - \sigma(z_i)) \times 1$ $= (1 - \sigma(\alpha + \beta x_{i,tumor_size}))$ (19)

$$\frac{\partial \log (1 - \sigma(z_i))}{\partial \alpha} = \frac{\partial \log (1 - \sigma(z_i))}{\partial (1 - \sigma(z_i))} \times \frac{\partial (1 - \sigma(z_i))}{\partial \sigma(z_i)} \times \frac{\partial \sigma(z_i)}{\partial z_i} \times \frac{\partial z_i}{\partial \alpha}$$

$$= \frac{1}{(1 - \sigma(z_i))} \times (-1) \times \sigma(z_i) \times (1 - \sigma(z_i)) \times 1$$

$$= -\sigma(z_i) = -\sigma(\alpha + \beta x_{i,tumor_size})$$
(20)

Continuing...

Logistic Regression

Koushik Khan

Matiration

ML For Classifica-

Logistic Regression

Parameter Estimation

Model Evaluation

Defense

mı . . .

• And similarly for β :

chain rule of differentiation
$$\frac{\partial \log (\sigma(z_i))}{\partial \beta} = \underbrace{\frac{\partial \log (\sigma(z_i))}{\partial \sigma(z_i)} \times \frac{\partial \sigma(z_i)}{\partial z_i} \times \frac{\partial z_i}{\partial \beta}}_{\text{claim rule of differentiation}} (21)$$

$$= \frac{1}{\sigma(z_i)} \times \sigma(z_i) \times (1 - \sigma(z_i)) \times x_{i,tumor_size}$$

$$= (1 - \sigma(\alpha + \beta x_{i,tumor_size})) \times x_{i,tumor_size}$$

$$\frac{\partial \log (1 - \sigma(z_i))}{\partial \beta} = \frac{\partial \log (1 - \sigma(z_i))}{\partial (1 - \sigma(z_i))} \times \frac{\partial (1 - \sigma(z_i))}{\partial \sigma(z_i)} \times \frac{\partial \sigma(z_i)}{\partial z_i} \times \frac{\partial z_i}{\partial \beta}$$

$$= \frac{1}{(1 - \sigma(z_i))} \times (-1) \times \sigma(z_i) \times (1 - \sigma(z_i)) \times x_{i,tumor_size}$$

$$= -\sigma(\alpha + \beta x_{i,tumor_size}) \times x_{i,tumor_size}$$
(22)

The Iterative Rule Of Gradient Descent

$\begin{array}{c} {\rm Logistic} \\ {\rm Regression} \end{array}$

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin Parameter

Reference

Thanks

- We can now compute $\frac{\partial BCE}{\partial \alpha}$ and $\frac{\partial BCE}{\partial \beta}$.
- And finally make use of the Gradient Decent *update rule*:

estimates at
$$(t+1)^{th}$$
 step estimates at t^{th} step
$$\begin{pmatrix}
\hat{\alpha}^{(t+1)} \\
\hat{\beta}^{(t+1)}
\end{pmatrix} = \begin{pmatrix}
\hat{\alpha}^{(t)} \\
\hat{\beta}^{(t)}
\end{pmatrix} - \eta \cdot \begin{pmatrix}
\frac{\partial BCE}{\partial \alpha} \\
\hat{\alpha}^{(t)}
\end{pmatrix}$$

$$\frac{\partial BCE}{\partial \beta} \\
\hat{\beta}^{(t)}$$
(23)

Here η is the *learning rate*.

Logistic Regression

Koushik Khan

Motivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretii Parameter

References

Thanks

EVALUATING MODEL PERFORMANCE

Confusion Matrix And Related Metrics

Actual Values

Logistic Regression

Koushik Khan

Model Evaluation Predicted Values

Negative (0)

Positive (1) Negative (0) Positive (1)

Figure: Confusion Matrix

- All cases = TP + TN + FP + FN
- Correctly classified cases = TP + TN
- Misclassified cases = FP + FN
- Precision = $\frac{TP}{TP+FP}$
- Recall (Sensitivity) = $\frac{TP}{TP + FN}$
- Specificity = $\frac{TN}{TN \perp FP}$
- Accuracy = $\frac{TP+TN}{TP+TN+FP+FN}$
- F1-score = $\frac{2 \times \text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}}$
- All the above metrics except the first one depends on the threshold p^* .

Understanding The Precision

Logistic Regression

Koushik Khan

Motivatio

tion

Logistic Regression

Parameter Estimation

Model Evaluation

_ .

- Precision measures the *probability of predicting a true positive case* by a fitted model.
- According to the formula: $\frac{TP}{TP+FP}$, the *lesser* the number of false positive cases, the *higher* will be the precision.
- Precision is important where is making *false positive mistakes* is *risky*.
- In a email spam detection system, it's crucial that a *non-spam* email is *not* getting tagged as a spam email, otherwise an user may miss an important email. expecting a high precision
- In medical diagnosis (e.g. cancer detection) high precision gives confidence to the doctors to start treatment without further tests. expecting a high precision
- Precision is also important when the dataset is highly imbalanced (e.g. credit fraud detection, where getting a fraudulent transaction is rare). If the precision is low, even if the accuracy is very high, the model would probably raise many *false alarms*, which is misleading. *expecting a high precision*

Understanding The Recall

Logistic Regression

Koushik Khan

Motivation

ML For Classifica tion

Logistic Regression

Parameter Estimation

Model Evaluation

Parameter

rtererence

• Recall (a.k.a **Sensitivity**) measures the probability of detecting a true positive case when it's actually positive.

- According to the formula: $\frac{TP}{TP+FN}$, the *lesser* the number of false negative cases, the *higher* will be the recall.
- Recall is important where making *false negative mistakes* is *risky*.
- In case of cancer detection diagnosis, it's very important that a cancer is getting detected in the body if it is actually there, otherwise it will be a life risk. expecting a high recall
- While using medical kit for detecting COVID, it's important that a person is *NOT tagged* as 'COVID -VE' when he is *actually* 'COVID +VE'. Having such cases will *infect* many other people. *expecting a high recall*
- Detecting as many threats as possible is important for an airport security system. Having higher values of recall will make sure almost all positive cases are identified. *expecting a high recall*

Understanding The F1 Score

Logistic Regression

Koushik Khan

Motivation

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

Parameters

Thanks

- The idea of using F1-score is to keep *a balance* between precision and recall.
- According to the formula: $\frac{2 \cdot Precision \cdot Recall}{Precision + Recall}$, F1-score calculates $\frac{harmonic}{mean}$ of precision and recall.
- Harmonic mean *penalizes* the extreme values of both precision and recall.
- For example, in case of credit fraud detection, actual fraudulent cases (positive) are very rare and this may make the model biased towards *legitimate cases* with a *very high accuracy*, however it *may not* make any sense.
- Here the model should actually:
 - have *high precision* i.e. lower chance of raising false alarm by identifying a legitimate case as fraudulent
 - have *high recall* i.e. lower chance of missing fraudulent transaction

The F1-score keeps a balance between these and gives a much more realistic evaluation of how well a model is performing in detecting the minority class (fraud).

The Receiver Operating Characteristic Curve (ROC)

Logistic Regression

Koushik Khan

Matimatic

ML For Classifica

Logistic Regression

Parameter Estimation

Model Evaluation

D

701 - 1

- It's a *graphical tool* depending on two metrics derived from the *confusion* matrix:
 - True Positive Rate = P(Predicted Positive | Actually Positive) = $\frac{TP}{TP+FN}$
 - False Positive Rate = P(Predicted Positive | Actually Negative) = $\frac{FP}{FP+TN}$
- By varying p^* within a permissible range a set of $\{(FPR_k, TPR_k)\}_{k=1}^K$ are obtained, and are plotted to form what is known as $ROC\ Curve$.
- The FPR varies along the X-axis and TPR varies along the Y-axis.
- Both TPR and FPR vary within [0,1] making the *total area* of the plotting canvas to be 1.
- The *diagonal line*, connecting the coordinates (0,0) and (1,1) indicates FPR = TPR, which is how a *random model* would behave.
- It's always good to have a model which produces *TPR values on the higher side* and *FPR values on the lower side*.

Area Under The [ROC] Curve (AUC)

Logistic Regression

Koushik Khan

Motivatioi

Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpreting Parameters

References

- It's one of the robust measures to compare different models or model configurations.
- The diagonal line (- -) divides
 the plotting canvas in to two halves
 having an area of 0.5 each. This
 line indicates a random classifier
 which is equally good and bad.
- Any model better than the random one will *cover an area* > 0.5.
- The *higher* the AUC the model achieves, the *better* its performance.

Figure: Comparing models with ROC curves and AUC values ¹

¹Image Source: Wikipedia

Interpretations Of The Parameters

Logistic Regression

Koushik Khan

Motivatio

tion

Logistic Regression

Parameter Estimation

Model Evaluation Interpreting

Parameters
References

- α : When x_{tumor_size} is zero, it's the value of the log-odds. It's often called the baseline log-odds.
- β : It's the change in log-odds for an unit change in $x_{tumor\ size}$.
- Interpretations are just like the *linear regression* as the alternate form of logistic regression (eqn. (6)) is exactly a linear regression w.r.t the log-odds.
- \square log-odds belongs to $(-\infty, +\infty)$ (verify)
- Even though logistic regression is used for *classification*, it actually *estimates a probability*, which is *continuous* within (0, 1) it's a *bridge* between *continuous modeling* and *discrete outcomes*, classification is just a *practical application* of this model.

References

Logistic Regression

Koushik Khan

Motivatio

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin

References

- 🗗 Generalized Linear Models by B. McCullagh, J. A. Nelder 🗹
- 🗗 Categorical Data Analysis by Alan Agresti 🗹
- Machine Learning Crash Course by Google 🗹

Logistic Regression

Koushik Khan

Iotivation

ML For Classification

Logistic Regression

Parameter Estimation

Model Evaluation

Interpretin

References

Thanks

Thank You