Indian Institute of Technology Bhilai

IC202: Calculus II

2023-24-M Instructor: Dr. Raj Kumar Mistri

TUTORIAL SHEET-5

1. Show that the following functions are differentiable everywhere.

(a) f(x, y, z) = x + 2y + 4z.

- (b) f(x, y, z) = xy + yz + zx.
- 2. (a) Find the directional derivative of $f(x,y) = x^2 + xy$ at the point (1,2) in the direction of the unit vector which makes an angle of $\pi/4$ radian with the positive x-axis.
 - (b) Find the directional derivative of $f(x, y, z) = x^3 xy^2 z$ at (1, 1, 0) in the direction of the vector u = 2i 3j + 6k.
- 3. Prove that the function

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

has all the directional derivative at (0,0).

4. Find the direction in which the function f defined by

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

has directional derivative at (0,0).

- 5. (a) Let $f(x,y) = x^2 y^2$. Find the gradient of f at the point $(a,b) \in \mathbb{R}^2$. In what direction from (0,1) should one proceed to increase f the fastest.
 - (b) Let $f(x,y,z) = \sin(xy)e^{-z^2}$. In what direction from $(1,\pi,0)$ should one proceed to increase f most rapidly?
- 6. (a) Let $f(x,y) = x^2 + 3xy + y^3$, $x = u^2 v^2$, $y = u^2 + v^2$. Find f_u and f_v .
 - (b) Let $f(x, y, z) = x^2 + y xz$, x = u v, y = uv, z = u + v. Find f_u and f_v .
 - (c) Let $f(x, y, z) = x^2 y^2 + z^2$, $x = t, y = e^t$, $z = e^{-t}$. Find $\frac{df}{dt}$.
 - (d) Let $f(x,y) = xy^2 + 3x + 2y$, $x = t^2$, y = t + 1. Find $\frac{df}{dt}$.
 - (e) Using Chain Rule, find $\frac{df}{dt}$, where $f(t) = (\sin t)^{\tan t} + (\tan t)^{\sin t}$.
 - (f) Let $f(x) = x^5 + x^3 1$, where $x = u^2 v^2$. Find f_u and f_v .
 - (g) Find $\frac{dy}{dx}$ if $y^2 x^2 \sin(xy) = 0$.
 - (h) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (1,2,4) if $z^3-xy+yz+y^3-2=0$.
- 7. Find the tangent plane and normal line of the level surface $f(x, y, z) = x^2 + y^2 + z 9 = 0$ at the point (1, 2, 4).