

DIMENSIONS ARE IN INCHES AND AFTER PLATING		DR <i>D. Mase</i>	3-16-89
TOLERANCES (unless otherwise specified)		CHK	
DSGN		PROJ	
REL		APPROVED	
MACH SURF <input checked="" type="checkbox"/>		APPROVED	
DO NOT SCALE DRAWING		SCALE	SHEET OF

Parko
 ELECTRONICS COMPANY INC., SANTA ANA, CALIF.

*OPTICAL LINK
RECEIVER*

CODE	IDENT NO.	SIZE	101848
13979		-	REV

METAC
END 13

3-185

101848

3-21-89

DIMENSIONS ARE IN INCHES AND AFTER PLATING	
DR	3-1/16-89
CHK	
DSGN	
TOLERANCES (unless otherwise specified)	
X	$\pm .1$
XX	$\pm .03$
XXX	$\pm .010$
ANGLES	$\pm 0.5^\circ$
MACH	
SURF	✓
<u>APPROVED</u>	
DO NOT SCALE DRAWING	SCALE

Parko

ELECTRONICS COMPANY INC., SANTA ANA, CALIF.

OPTICAL LINK
RECEIVER

CODE IDENT NO.	SIZE
13979	.101848
SCHEET	OF

REV

37

13

Designer's Data Sheet

TMOS IV

Power Field Effect Transistor

N-Channel Enhancement-Mode Silicon Gate

This advanced E-FET is a TMOS power MOSFET designed to withstand high energy in the avalanche and commutation modes. This device is also designed with a low threshold voltage so it is fully enhanced with 5 Volts. This new energy efficient device also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Low Drive Requirement to Interface Power Loads to Logic Level ICs or Microprocessors — $V_{GS(th)} = 2$ Volts Max
- Internal Source-to-Drain Diode Designed to Replace External Zener Transient Suppressor — Absorbs High Energy in the Avalanche Mode — Unclamped Inductive Switching (UIS) Energy Capability Specified at 100°C
- Commutating Safe Operating Area (CSOA) Specified for Use in Half and Full Bridge Circuits
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- I_{DSS} , $V_{GS(th)}$ and $V_{DS(on)}$ Specified at 150°C
- Available With Long Leads, Add -1 Suffix

MTD3055EL

TMOS POWER MOSFET
LOGIC LEVEL
12 AMPERES
 $r_{DS(on)} = 0.18 \text{ OHM}$
60 VOLTS

CASE 369A-04
 MTD3055EL

CASE 369-03
 MTD3055EL-1

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	60	Vdc
Drain-Gate Voltage ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	60	Vdc
Gate-Source Voltage — Continuous — Non-repetitive ($t_p \leq 50 \mu\text{s}$)	V_{GS}	± 15 ± 20	Vdc Vpk
Drain Current — Continuous — Pulsed	I_D I_{DM}	12 26	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	40 0.32	Watts W/ $^\circ\text{C}$
Operating and Storage Temperature Range	T_J , T_{stg}	-65 to 150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case — Junction to Ambient	$R_{\theta JC}$ $R_{\theta JA}$	3.12 62.5	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T_L	275	$^\circ\text{C}$

MINIMUM PAD SIZES RECOMMENDED FOR SURFACE MOUNTED APPLICATIONS

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

TMOS is a trademark of Motorola Inc.

METAL
S+D13

METAL
S1DF

Designer's Data Sheet

TMOS IV

Power Field Effect Transistor

N-Channel Enhancement-Mode Silicon Gate

This advanced E-FET is a TMOS power MOSFET designed to withstand high energy in the avalanche and commutation modes. This device is also designed with a low threshold voltage so it is fully enhanced with 5 Volts. This new energy efficient device also offers a drain-to-source diode with a fast recovery time. Designed for low voltage, high speed switching applications in power supplies, converters and PWM motor controls, these devices are particularly well suited for bridge circuits where diode speed and commutating safe operating areas are critical and offer additional safety margin against unexpected voltage transients.

- Low Drive Requirement to Interface Power Loads to Logic Level ICs or Microprocessors — $V_{GS(th)} = 2$ Volts Max
- Internal Source-to-Drain Diode Designed to Replace External Zener Transient Suppressor — Absorbs High Energy in the Avalanche Mode — Unclamped Inductive Switching (UIS) Energy Capability Specified at 100°C
- Commutating Safe Operating Area (CSOA) Specified for Use in Half and Full Bridge Circuits
- Source-to-Drain Diode Recovery Time Comparable to a Discrete Fast Recovery Diode
- Diode is Characterized for Use in Bridge Circuits
- $IdSS$, $V_{GS(th)}$ and $V_{DS(on)}$ Specified at 150°C
- Available With Long Leads, Add -1 Suffix

MTD3055EL

TMOS POWER MOSFET
LOGIC LEVEL
12 AMPERES
 $r_{DS(on)} = 0.18 \text{ OHM}$
60 VOLTS

CASE 369A-04
MTD3055EL

CASE 369-03
MTD3055EL-1

MAXIMUM RATINGS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	60	Vdc
Drain-Gate Voltage ($R_{GS} = 1 \text{ M}\Omega$)	V_{DGR}	60	Vdc
Gate-Source Voltage — Continuous — Non-repetitive ($t_p \leq 50 \mu\text{s}$)	V_{GS}	± 15 ± 20	Vdc Vpk
Drain Current — Continuous — Pulsed	I_D I_{DM}	12 26	Adc
Total Power Dissipation @ $T_C = 25^\circ\text{C}$ Derate above 25°C	P_D	40 0.32	Watts W/ $^\circ\text{C}$
Operating and Storage Temperature Range	T_J , T_{Stg}	-65 to 150	$^\circ\text{C}$

THERMAL CHARACTERISTICS

Thermal Resistance — Junction to Case — Junction to Ambient	$R_{\theta JC}$ $R_{\theta JA}$	3.12 62.5	$^\circ\text{C/W}$
Maximum Lead Temperature for Soldering Purposes, 1/8" from case for 5 seconds	T_L	275	$^\circ\text{C}$

MINIMUM PAD SIZES RECOMMENDED FOR SURFACE MOUNTED APPLICATIONS

Designer's Data for "Worst Case" Conditions — The Designer's Data Sheet permits the design of most circuits entirely from the information presented. SOA Limit curves — representing boundaries on device characteristics — are given to facilitate "worst case" design.

TMOS is a trademark of Motorola Inc.

MOTOROLA

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 0.25 \text{ mA}$)	$V_{(BR)DSS}$	60	—	Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$) ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$, $T_J = 150^\circ\text{C}$)	I_{DSS}	— —	1 50	μA
Gate-Body Leakage Current, Forward ($V_{GSF} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSF}	—	100	nAdc
Gate-Body Leakage Current, Reverse ($V_{GSR} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSR}	—	100	nAdc

ON CHARACTERISTICS*

Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$) $T_J = 150^\circ\text{C}$	$V_{GS(\text{th})}$	1 0.6	2 1.6	Vdc
Static Drain-Source On-Resistance ($V_{GS} = 5 \text{ Vdc}$, $I_D = 6 \text{ Adc}$)	$r_{DS(\text{on})}$	—	0.18	Ohm
Drain-Source On-Voltage ($V_{GS} = 5 \text{ V}$) ($I_D = 12 \text{ Adc}$) ($I_D = 6 \text{ Adc}$, $T_J = 150^\circ\text{C}$)	$V_{DS(\text{on})}$	— —	2.4 1.95	Vdc
Forward Transconductance ($V_{DS} = 15 \text{ V}$, $I_D = 6 \text{ A}$)	g_{FS}	5	—	mhos

DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS

Unclamped Drain-to-Source Avalanche Energy See Figures 13 and 14 ($I_D = 26 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, Single Pulse, Non-repetitive) ($I_D = 12 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$) ($I_D = 4.8 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 100^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$)	W_{DSR}	— — —	18 35 16	mJ
--	-----------	-------------	----------------	----

DYNAMIC CHARACTERISTICS

Input Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C_{iss}	400 (Typ)	—	pF
	$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		1000 (Typ)	—	
Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C_{rss}	30 (Typ)	—	pF
	$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		660 (Typ)	—	
Output Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$ See Figure 15	C_{oss}	175 (Typ)	—	pF

SWITCHING CHARACTERISTICS ($T_J = 100^\circ\text{C}$)

Turn-On Delay Time	$(V_{DD} = 25 \text{ V}$, $I_D = 6 \text{ A}$, $V_{GS} = 5 \text{ V}$, $R_{gen} = 50 \text{ ohms}$, $R_{GS} = 50 \text{ ohms}$)	$t_{d(on)}$	20 (Typ)	—	ns
Rise Time		t_r	95 (Typ)	—	
Turn-Off Delay Time		$t_{d(off)}$	38 (Typ)	—	
Fall Time		t_f	50 (Typ)	—	
Total Gate Charge	$(V_{DS} = 48 \text{ V}$, $I_D = 12 \text{ A}$, $V_{GS} = 5 \text{ Vdc}$) See Figures 16 and 17	Q_g	11 (Typ)	17	nC
Gate-Source Charge		Q_{gs}	4 (Typ)	—	
Gate-Drain Charge		Q_{gd}	7 (Typ)	—	

SOURCE DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	$(I_S = 12 \text{ A}$, $V_{GS} = 0$)	V_{SD}	1.04 (Typ)	1.18	Vdc
Forward Turn-On Time	$(I_S = 26 \text{ A}$, $V_{GS} = 0$,	t_{on}	Limited by stray inductance		
Reverse Recovery Time		t_{rr}	55 (Typ)	—	ns

COMMUTATING SAFE OPERATING AREA (CSOA)

The Commutating Safe Operating Area (CSOA) of Figure 11 defines the limits of safe operation for commutated source-drain current versus re-applied drain voltage when the source-drain diode has undergone forward bias. The curve shows the limitations of I_{FM} and peak V_{DS} for a given rate of change of source current. It is applicable when waveforms similar to those of Figure 10 are present. Full or half-bridge PWM DC motor controllers are common applications requiring CSOA data.

Device stresses increase with increasing rate of change of source current so dI_S/dt is specified with a maximum value. Higher values of dI_S/dt require an appropriate derating of I_{FM} , peak V_{DS} or both. Ultimately dI_S/dt is limited primarily by device, package, and circuit impedances. Maximum device stress occurs during t_{rr} as the diode goes from conduction to reverse blocking.

$V_{DS(pk)}$ is the peak drain-to-source voltage that the device must sustain during commutation; I_{FM} is the maximum forward source-drain diode current just prior to the onset of commutation.

V_R is specified at 80% of $V_{(BR)DSS}$ to ensure that the CSOA stress is maximized as I_S decays from I_{RM} to zero.

R_{GS} should be minimized during commutation. T_J has only a second order effect on CSOA.

Stray inductances in Motorola's test circuit are assumed to be practical minimums. dV_{DS}/dt in excess of 10 V/ns was attained with dI_S/dt of 400 A/ μ s.

Figure 11. Commutating Safe Operating Area (CSOA)

Figure 13. Unclamped Inductive Switching Test Circuit

Figure 10. Commutating Waveforms

Figure 12. Commutating Safe Operating Area Test Circuit

Figure 14. Unclamped Inductive Switching Waveforms

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Drain-Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 0.25 \text{ mA}$)	$V_{(BR)DSS}$	60	—	Vdc
Zero Gate Voltage Drain Current ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$) ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$, $T_J = 150^\circ\text{C}$)	I_{DSS}	—	1 50	μA
Gate-Body Leakage Current, Forward ($V_{GSF} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSF}	—	100	nAdc
Gate-Body Leakage Current, Reverse ($V_{GSR} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSR}	—	100	nAdc

ON CHARACTERISTICS*

Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$) $T_J = 150^\circ\text{C}$	$V_{GS(\text{th})}$	1 0.6	2 1.6	Vdc
Static Drain-Source On-Resistance ($V_{GS} = 5 \text{ Vdc}$, $I_D = 6 \text{ Adc}$)	$r_{DS(\text{on})}$	—	0.18	Ohm
Drain-Source On-Voltage ($V_{GS} = 5 \text{ V}$) ($I_D = 12 \text{ Adc}$) ($I_D = 6 \text{ Adc}$, $T_J = 150^\circ\text{C}$)	$V_{DS(\text{on})}$	— —	2.4 1.95	Vdc
Forward Transconductance ($V_{DS} = 15 \text{ V}$, $I_D = 6 \text{ A}$)	g_{FS}	5	—	mhos

DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS

Unclamped Drain-to-Source Avalanche Energy See Figures 13 and 14 ($I_D = 26 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, Single Pulse, Non-repetitive) ($I_D = 12 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$) ($I_D = 4.8 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 100^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$)	W_{DSR}	— — —	18 35 16	mJ
--	-----------	-------------	----------------	----

DYNAMIC CHARACTERISTICS

Input Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C_{iss}	400 (Typ)	—	pF
	$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		1000 (Typ)	—	
Reverse Transfer Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	C_{rss}	30 (Typ)	—	pF
	$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		660 (Typ)	—	
Output Capacitance	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$ See Figure 15	C_{oss}	175 (Typ)	—	pF

SWITCHING CHARACTERISTICS ($T_J = 100^\circ\text{C}$)

Turn-On Delay Time	$(V_{DD} = 25 \text{ V}$, $I_D = 6 \text{ A}$, $V_{GS} = 5 \text{ V}$, $R_{\text{gen}} = 50 \text{ ohms}$, $R_{GS} = 50 \text{ ohms}$)	$t_{d(on)}$	20 (Typ)	—	ns
Rise Time		t_r	95 (Typ)	—	
Turn-Off Delay Time		$t_{d(off)}$	38 (Typ)	—	
Fall Time		t_f	50 (Typ)	—	
Total Gate Charge	$(V_{DS} = 48 \text{ V}$, $I_D = 12 \text{ A}$, $V_{GS} = 5 \text{ Vdc}$)	Q_g	11 (Typ)	17	nC
Gate-Source Charge		Q_{gs}	4 (Typ)	—	
Gate-Drain Charge		Q_{gd}	7 (Typ)	—	

SOURCE DRAIN DIODE CHARACTERISTICS

Forward On-Voltage	$(I_S = 12 \text{ A}$, $V_{GS} = 0$)	V_{SD}	1.04 (Typ)	1.18	Vdc
Forward Turn-On Time	$(I_S = 26 \text{ A}$, $V_{GS} = 0$,	t_{on}	Limited by stray inductance		
Reverse Recovery Time	$dI_S/dt = 400 \text{ A}/\mu\text{s}$, $V_R = 30 \text{ V}$)	t_{rr}	55 (Typ)	—	ns

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ($V_{GS} = 0$, $I_D = 0.25 \text{ mA}$)	$V_{(BR)DSS}$	60	—	Vdc	
Zero Gate Voltage Drain Current ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$) ($V_{DS} = 60 \text{ V}$, $V_{GS} = 0$, $T_J = 150^\circ\text{C}$)	I_{DSS}	—	1 50	μA	
Gate-Body Leakage Current, Forward ($V_{GSF} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSF}	—	100	nAdc	
Gate-Body Leakage Current, Reverse ($V_{GSR} = 15 \text{ Vdc}$, $V_{DS} = 0$)	I_{GSSR}	—	100	nAdc	
ON CHARACTERISTICS*					
Gate Threshold Voltage ($V_{DS} = V_{GS}$, $I_D = 1 \text{ mA}$) ($T_J = 150^\circ\text{C}$)	$V_{GS(\text{th})}$	1 0.6	2 1.6	Vdc	
Static Drain-Source On-Resistance ($V_{GS} = 5 \text{ Vdc}$, $I_D = 6 \text{ Adc}$)	$r_{DS(on)}$	—	0.18	Ohm	
Drain-Source On-Voltage ($V_{GS} = 5 \text{ V}$) ($I_D = 12 \text{ Adc}$) ($I_D = 6 \text{ Adc}$, $T_J = 150^\circ\text{C}$)	$V_{DS(on)}$	—	2.4 1.95	Vdc	
Forward Transconductance ($V_{DS} = 15 \text{ V}$, $I_D = 6 \text{ A}$)	g_{FS}	5	—	mhos	
DRAIN-TO-SOURCE AVALANCHE CHARACTERISTICS					
Unclamped Drain-to-Source Avalanche Energy See Figures 13 and 14 ($I_D = 26 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, Single Pulse, Non-repetitive) ($I_D = 12 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 25^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$) ($I_D = 4.8 \text{ A}$, $V_{DD} = 6 \text{ V}$, $T_C = 100^\circ\text{C}$, P.W. $\leq 100 \mu\text{s}$, Duty Cycle $\leq 1\%$)	W_{DSR}	—	18 35 16	mJ	
DYNAMIC CHARACTERISTICS					
Input Capacitance	C_{iss}	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	400 (Typ)	—	
$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		1000 (Typ)	—	pF	
Reverse Transfer Capacitance	C_{rss}	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$	30 (Typ)	—	
$V_{GS} = 15 \text{ V}$, $V_{DS} = 0$, $f = 1 \text{ MHz}$ See Figure 15		660 (Typ)	—	pF	
Output Capacitance	C_{oss}	$V_{DS} = 25 \text{ V}$, $V_{GS} = 0$, $f = 1 \text{ MHz}$ See Figure 15	175 (Typ)	—	pF
SWITCHING CHARACTERISTICS ($T_J = 100^\circ\text{C}$)					
Turn-On Delay Time	$t_{d(on)}$	20 (Typ)	—	ns	
Rise Time	t_r	95 (Typ)	—		
Turn-Off Delay Time	$t_{d(off)}$	38 (Typ)	—		
Fall Time	t_f	50 (Typ)	—		
Total Gate Charge	Q_g	11 (Typ)	17	nC	
Gate-Source Charge	Q_{gs}	4 (Typ)	—		
Gate-Drain Charge	Q_{gd}	7 (Typ)	—		
SOURCE DRAIN DIODE CHARACTERISTICS					
Forward On-Voltage	V_{SD}	1.04 (Typ)	1.18	Vdc	
Forward Turn-On Time	t_{on}	Limited by stray inductance			
Reverse Recovery Time	t_{rr}	55 (Typ)	—	ns	

TYPICAL ELECTRICAL CHARACTERISTICS
Figure 1. On-Region Characteristics

Figure 2. Gate-Threshold Voltage Variation With Temperature

Figure 3. Transfer Characteristics

Figure 4. On-Resistance versus Drain Current

Figure 5. On-Resistance versus Gate-to-Source Voltage

Figure 6. On-Resistance Variation With Temperature

Figure 7. Breakdown Voltage Variation With Temperature

Figure 8. Maximum Rated Forward Biased Safe Operating Area

FORWARD BIASED SAFE OPERATING AREA

The FBSOA curves define the maximum drain-to-source voltage and drain current that a device can safely handle when it is forward biased, or when it is on, or being turned on. Because these curves include the limitations of simultaneous high voltage and high current, up to the rating of the device, they are especially useful to designers of linear systems. The curves are based on a case temperature of 25°C and a maximum junction temperature of 150°C. Limitations for repetitive pulses at various case temperatures can be determined by using the thermal response curves. Motorola Application Note, AN569, "Transient Thermal Resistance-General Data and Its Use" provides detailed instructions.

The switching safe operating area fundamental limits are the peak current, I_{DM} and the breakdown voltage, $V_{(BR)DSS}$. This is applicable for both turn-on and turn-off of the devices for switching times less than one microsecond.

The power averaged over a complete switching cycle must be less than:

$$\frac{T_{J(max)} - T_C}{R_{\theta JC}}$$

Figure 9. Thermal Response

Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others. Motorola and M are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity Affirmative Action Employer.

Figure 15. Capacitance Variation

Figure 16. Gate Charge versus Gate-to-Source Voltage

Figure 17. Gate Charge Test Circuit

V_{in} = 15 V_{pk}; PULSE WIDTH ≤ 100 μs, DUTY CYCLE ≤ 10%

OUTLINE DIMENSIONS

Literature Distribution Centers:

USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.

EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands Milton Keynes, MK145BP, England.

ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; P.O. Box 80300; Cheung Sha Wan Post Office; Kowloon Hong Kong.

MOTOROLA

RECEIVED SEP 24 1986

UAR/T: Universal Asynchronous Receiver/Transmitter

FEATURES

- DTL and TTL compatible—no interfacing circuits required—drives one TTL load
- Fully Double Buffered—eliminates need for system synchronization, facilitates high-speed operation
- Full Duplex Operation—can handle multiple bauds (receiving-transmitting) simultaneously
- Start Bit Verification—decreases error rate with center sampling
- Receiver center sampling of serial input; 46% distortion immunity
- High Speed Operation
- Three-State Outputs—bus structure capability
- Low Power—minimum power requirements
- Input Protected—eliminates handling problems

AY-3-1015D

- Single Supply Operation:
+4.75V to +5.25V
- 1½ stop bit mode
- External reset of all registers except control bits register
- N-channel Ion Implant Process
- 0 to 25K baud
- Pull-up resistors to V_{cc} on all inputs

DESCRIPTION

The Universal Asynchronous Receiver/Transmitter (UAR/T) is an LSI subsystem which accepts binary characters from either a terminal device or a computer and receives/transmits this character with appended control and error detecting bits. All characters contain a start bit, 5 to 8 data bits, 1, 1½, or 2 stop bit capability, and either odd/even parity or no parity. In order to make the UAR/T universal, the baud, bits per word, parity mode, and the number of stop bits are externally selectable. The device is constructed on a single monolithic chip. All inputs and outputs are directly compatible with MTOS/MTNS logic, and also with TTL/DTL/CMOS logic without the need for interfacing components. All strobed outputs are three-state logic.

PIN CONFIGURATION

40 LEAD DUAL IN LINE

Top View

V _{cc} (+5V)	1	40	TCP
N.C.	2	39	EPS
GND	3	38	NB1
RDE	4	37	NB2
RD8	5	36	TSB
RD7	6	35	NP
RD6	7	34	CS
RD5	8	33	DB8
RD4	9	32	DB7
RD3	10	31	DB6
RD2	11	30	DB5
RD1	12	29	DB4
PE	13	28	DB3
FE	14	27	DB2
OR	15	26	DB1
SWE	16	25	SO
RCP	17	24	EOC
RDAV	18	23	GS
DAV	19	22	TBMT
SI	20	21	XR

BLOCK DIAGRAM

PIN FUNCTIONS

Pin No.	Name (Symbol)	Function
1	Vcc Power Supply (V_{CC})	+5V Supply
2	N.C.	(Not connected)
3	Ground	Ground
4	Received Data Enable (\overline{RDE})	A logic "0" on the receiver enable line places the received data onto the output lines.
5-12	Received Data Bits (RD8-RD1)	These are the 8 data output lines. Received characters are right justified: the LSB always appears on RD1. These lines have tri-state outputs; i.e., they have the normal TTL output characteristics when RDE is "0" and a high impedance state when RDE is "1". Thus, the data output lines can be bus structure oriented.
13	Parity Error (PE)	This line goes to a logic "1" if the received character parity does not agree with the selected parity. Tri-state.
14	Framing Error (FE)	This line goes to a logic "1" if the received character has no valid stop bit. Tri-state.
15	Over-Run (OR)	This line goes to a logic "1" if the previously received character is not read (DAV line not reset) before the present character is transferred to the receiver holding register. Tri-state.
16	Status Word Enable (SWE)	A logic "0" on this line places the status word bits (PE, FE, OR, DAV, TBMT) onto the output lines. Tri-state.
17	Receiver Clock (RCP)	This line will contain a clock whose frequency is 16 times (16X) the desired receiver baud.
18	Reset Data Available (RDAV)	A logic "0" will reset the DAV line. The DAV F/F is only thing that is reset.
19	Data Available (DAV)	This line goes to a logic "1" when an entire character has been received and transferred to the receiver holding register. Tri-state. Fig. 8.
20	Serial Input (SI)	This line accepts the serial bit input stream. A Marking (logic "1") to spacing (logic "0") transition is required for initiation of data reception. Fig. 7, 8.
21	External Reset (XR)	Resets all registers. Sets SO, EOC, and TBMT to a logic "1". Resets DAV, and error flags to "0". Clears input data buffer. Must be tied to logic "0" when not in use.
22	Transmitter Buffer Empty (TBMT)	The transmitter buffer empty flag goes to a logic "1" when the data bits holding register may be loaded with another character. Tri-state. See Fig. 14, 16.
23	Data Strobe (\overline{DS})	A strobe on this line will enter the data bits into the data bits holding register. Initial data transmission is initiated by the rising edge of DS. Data must be stable during entire strobe.
24	End of Character (EOC)	This line goes to a logic "1" each time a full character is transmitted. It remains at this level until the start of transmission of the next character. See Fig. 13, 15.
25	Serial Output (SO)	This line will serially, by bit, provide the entire transmitted character. It will remain at a logic "1" when no data is being transmitted.
26-33	Data Bit Inputs (DB1-DB8)	There are up to 8 data bit input lines available.
34	Control Strobe (CS)	A logic "1" on this lead will enter the control bits (EPS, NB1, NB2, TSB, NP) into the control bits holding register. This line can be strobed or hard wired to a logic "1" level.
35	No Parity (NP)	A logic "1" on this lead will eliminate the parity bit from the transmitted and received character (no PE indication). The stop bit(s) will immediately follow the last data bit. If not used, this lead must be tied to a logic "0".
36	Number of Stop Bits (TSB)	This lead will select the number of stop bits, 1 or 2, to be appended immediately after the parity bit. A logic "0" will insert 1 stop bit and a logic "1" will insert 2 stop bits. The combined selection of 2 stop bits and 5 bits/character will produce 1½ stop bits.
37-38	Number of Bits/Character (NB2, NB1)	These two leads will be internally decoded to select either 5, 6, 7 or 8 data bits/character.
		NB2 NB1 Bits/Character 0 0 5 0 1 6 1 0 7 1 1 8
39	Odd/Even Parity Select (EPS)	The logic level on this pin selects the type of parity which will be appended immediately after the data bits. It also determines the parity that will be checked by the receiver. A logic "0" will insert odd parity and a logic "1" will insert even parity.
40	Transmitter Clock (TCP)	This line will contain a clock whose frequency is 16 times (16X) the desired transmitter baud

ELECTRICAL CHARACTERISTICS**Maximum Ratings***

V_{CC} (with Respect to GND)	—0.3V to +16V
Storage Temperature	—65°C to +150°C
Operating Temperature	0°C to +70°C
Lead Temperature (Soldering, 10 sec)	+330°C

Standard Condition (unless otherwise noted): $V_{CC} = +4.75V$ to $+5.25V$ Operating Temperature (T_A) = 0°C to +70°C**DC CHARACTERISTICS**

Characteristic	Min	Typ **	Max	Units	Conditions
Input Logic Levels (AY-3-1015)					
Logic 0	0	—	0.8	Volts	
Logic 1	2.0	—	$V_{CC}+0.3$	Volts	Has internal pull-up resistors to V_{CC}
Input Capacitance					
All inputs	—	—	20	pF	0 volts bias, $f = 1MHz$
Output Impedance					
Tri-State Outputs	1.0	—	—	MΩ	
Data Output Levels					
Logic 0	—	—	+0.4	Volts	$I_{OL} = 1.6mA$ (sink)
Logic 1	2.4	—	—	Volts	$I_{OH} = -40\mu A$ (source)—at $V_{CC} = +5V$
Output Capacitance					
Short Ckt. Current	—	—	—	—	See Fig. 19
Power Supply Current					
I_{CC} at $V_{CC} = +5V$	—	10	15	mA	See Fig. 21

Standard Conditions (unless otherwise noted) $T_A = 25^\circ C$, Output load capacitance 50pF max.**AC CHARACTERISTICS**

Characteristic	Min	Typ **	Max	Units	Conditions
Clock Frequency	DC	—	400	kHz	at $V_{CC} = +4.75V$
Baud	0	—	25	kbaud	at $V_{CC} = +4.75V$
Pulse Width					
Clock Pulse	1.0	—	—	μs	See Fig. 5
Control Strobe	200	—	—	ns	See Fig. 11
Data Strobe	200	—	—	ns	See Fig. 10
External Reset	500	—	—	ns	See Fig. 9
Status Word Enable	500	—	—	ns	See Fig. 17
Reset Data Available	200	—	—	ns	See Fig. 18
Received Data Enable	500	—	—	ns	See Fig. 17
Set Up & Hold Time					
Input Data Bits	20	—	—	ns	See Fig. 10
Input Control Bits	20	—	—	ns	See Fig. 11
Output Propagation Delay					
TPD0	—	—	500	ns	See Fig. 17 & 20
TPD1	—	—	500	ns	See Fig. 17 & 20

** Typical values are at +70°C and nominal voltages.

* Exceeding these ratings could cause permanent damage to the device. This is a stress rating only and functional operation of this device at these conditions is not implied—operating ranges are specified in Standard Conditions. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data labeled "typical" is presented for design guidance only and is not guaranteed.

TIMING DIAGRAMS

Fig. 1 UAR/T — TRANSMITTER TIMING

Fig. 2 TRANSMITTER AT START BIT
NOT A TEST POINT

Fig. 3 TRANSMITTER AT START BIT

Fig. 4. ALLOWABLE POINTS TO USE CONTROL STROBE

Fig. 5 ALLOWABLE TCP, RCP

TIMING DIAGRAMS

Fig. 6 UAR/T — RECEIVER TIMING

Fig. 7

Fig. 8 RECEIVER DURING 1ST STOP BIT

Fig. 9 XR PULSE

Fig. 10 DS

Fig. 11a CS

Fig. 11b

Fig. 12

TIMING DIAGRAMS

Fig. 13 EOC TURN-ON

Fig. 14 TBMT TURN-OFF

Fig. 15 EOC TURN-OFF

Fig. 16 TBMT TURN-ON

Fig. 17 RDE, SWE

Fig. 18 RDAV

TYPICAL CHARACTERISTIC CURVES

Fig. 19 SHORT CIRCUIT OUTPUT CURRENT
(only 1 output may be
shorted at a time)

Fig. 20 RD1-RD8, PE, FE, OR, TBMT, DAV

Fig. 21 +5 VOLT SUPPLY CURRENT

UAR/T: Universal Asynchronous Receiver/Transmitter

TRANSMITTER OPERATION

Initializing

Power is applied, external reset is enabled and clock pulse is applied having a frequency of 16 times the desired baud. The above conditions will set TBMT, EOC, and SO to logic "1" (line is marking).

After initializing is completed, user may set control bits and data bits with control bits selection normally occurring before data bits selection. However, one may set both DS and CS simultaneously if minimum pulse width specifications are followed. Once Data Strobe (DS) is pulsed the TBMT signal will change from a logic "1" to a logic "0" indicating that the data bits holding register is filled with a previous character and is unable to receive new data bits, and transmitter shift register is transmitting previously loaded data. TBMT will return to a logic "1". When transmitter shift register is empty, data bits in the holding register are immediately loaded into the transmitter shift register for transmission. The shifting of information from the holding register to the transmitter shift register will be followed by SO and EOC going to a logic "0", and TBMT will also go to a logic "1" indicating that the shifting operation is completed and that the data bits holding register is ready to accept new data. It should be remembered that one full character time is now available for loading of the next character without loss in transmission speed due to double buffering (separate data bits holding register and transmitter shift register).

Data transmission is initiated with transmission of a start bit, data bits, parity bit (if desired) and stop bit(s). When the last stop bit has been on line for one bit time, EOC will go to a logic "1" indicating that new character is ready for transmission. This new character will be transmitted only if TBMT is a logic "0" as was previously discussed.

Fig. 23

RECEIVER OPERATION

Initializing

Power is applied, external reset is enabled, and clock pulse is applied having a frequency of 16 times the desired baud. The previous conditions will set data available (DAV) to a logic "1". After initializing is completed, user should note that one set of control bits will be used for both receiver and transmitter making individual control bit setting unnecessary. Data reception starts when serial input signal changes from Marking (logic "1") to spacing (logic "0") which initiates start bit. The start bit is valid if, after transition from logic "1" to logic "0", the SI line continues to be at logic "0", when center sampled, 8 clock pulses later. If, however, line is at a logic "1" when center sampling occurs, the start bit verification process will be reset. If the Serial Input line transitions from a logic "1" to a logic "0" (marking to spacing) when the 16x clock is in a logic "1" state, the bit time, for center sampling will begin when the clock line transitions from a logic "1" to a logic "0" state. After verification of a genuine start bit, data bit reception, parity bit reception and stop bit(s), reception proceeds in an orderly manner.

While receiving parity and stop bit(s) the receiver will compare transmitted parity and stop bit(s) with control data bits (parity and number of stop bits) previously set and indicate an error by changing the parity error flip flop and/or the framing error flip flop to a logic "1". It should be noted that if the No Parity Mode is selected the PE (parity error) will be unconditionally set to a logic "0".

Once a full character is received, internal logic looks at the data available (DAV) signal to determine if data has been read out. If the DAV signal is at a logic "1" the receiver will assume data has not been read out and the over run flip flop of the status word holding register will be set to a logic "1". If the DAV signal is at a logic "0" the receiver will assume that data has been read out. After DAV goes to a logic "1", the receiver shift register is now ready to accept the next character and has one full character time to remove the received character.

Fig. 24

Fig. 25 TRANSMITTER BLOCK DIAGRAM

Fig. 26 RECEIVER BLOCK DIAGRAM

3-16-89

P/N: 101847- OPTICAL CIRCUIT RECEIVER

1 2

Ref. Des.	P/N	Description	Unit Total Qty	Ind	No. Description	P/N	Notes
	HU-8830-1250	CAN COVER 3 TIN DIP	1		HUDSON		
	HU-8830-02	CABINET	1				
	D.C. 130412D		1				
	POTTER C160-1						
	MERLEOSCT	5V RECORDER	1		MOTOR - 012 REEDERANT		
	AY-3-1015-D	DA12T	1		GT		
	SN74HC4060N	OSCILLATOR/divider	1		TL-02 FAULT		
	CD4095BE	BUCK ONE SHOT	1		RCA OR SAW		
	CD4001BE	BUCK 4 IN	1		RCA OR SAW		
	CD4017BE	FLIP-FLOP LATCH	2		RCA OR SAW		
	CD407513E	TRIPLEX 13 IN	1		PERP-012 EACH		
	Q1-Q2	2N4123	1		motor - on board		
		X1012	2				
	CR3-Q16	MFD3055EU	14		motor2		
	CR1	PENKE22	1		MOTOR 012 BOARD		
	CR2	MFD3100	1		motor2		
	CR3	L59D-R2-W	1		LEADER/WEASEL		
X1	ME-332-1833	3.2768MHz X1PC	1		WEASEL		

Date 3-16-89 Part # N 101847-OPTICAL INK RECEIVER

Ref. Des.	P/N	Description	Unit	Qty	Inuse	Supplier	Part No.	Notes
F1	44FPO44	0.5A FUSE - STRANDED	1			Mouser		
R1	RC076F424R	420Ω - RESISTOR						
R2	RC076F101R	100Ω	"					
R3 - R6	RC076F103R	10Ω	"					
R4	RC076F223R	22Ω	"					
R5	RC076F226R	22MEG	"					
R7	RC076F104R	100Ω	"					
R8	RC076F121R	12Ω	"					
C1	540-1.0M35	1V/35V - CAP	/			Mouser-Marsco		
C2	540-4.7M10	4.7V/10V CAP	/			"		
C3-C6	CK12BX103R	.01/.50Ω CAP	2					
C4-C5	21RD722	2.2PF/35V CAP	2			Mouser		
C7	540-0.22M35	.22V/35V CAP	1			Mouser-Marsco		
V1	905-145-5000	FIBER OPTICS RECEIVER	/					
C - 403	CROMET (3/8" HOLE) (1/4")	/						
AWB - 22	CURVES	/						
				16				

Date 3-16-89 Parko P/N 101847- OPTICAL COMM RECEIVER Qty. — S/C

Ref. Des.	P/N	Description	Unit Qty	Total Qty	Insp	Manufacturer	Parko PQ	Notes
HU-8830-1250	CR~ TIN DIP COVER	1	1	1		Hudson		
HU-8830-CR	LADIE	1						
	D.C. BOARD	1						
V1	ME78605CT	5V REGULATOR	1			MOTEC-012 Evident		
V2	AY-3-1015D	DA12T	1			GE		
V3	SN74HC4060N	OSCILLATOR/divider	1			TI-02 Each		
V4	CD4098BE	DUAL ONE SHOT	1			ROHM or 5000.		
V5	CD4002BE	DUAL 4 IN	1			ROHM or 02 Each		
V6	CD4001BE	OPA 2 IN	1			ROHM 012 Each		
V7-V8	CD40174BE	FIFP-PDP LATCH	2			ROHM 02 Each		
V9	CD4075BE	TRIPLEX 273 IN	1			ROHM-012 Each		
Q1-Q2	2N4123	X7012	2			ROHM-012 Each		
Q3-Q16	MD3055EU	MOSFET	14			MOTOR.		
CR1	PCMK22	SUPPRESSOR Diode	1			MOTOR. 012 Each.		
CR2	MDOD3100	PNP Photo diode	1			MOTOR.012		
CR3	L59D-R2-W	LED INDICATOR	1			LEADER/NEUTRAL		
X1	ME-332-1033	3.2768 MHZ XTRAC	1			WUSER		

Date 3-16-89

Parko P/N 101847-01110000 RECEIVER Qty. — S/C —

Ref. Des.	P/N	Description	Unit Qty	Total Qty	Insp	Manufacturer	Parko PO	Notes
F1	44FP049	.5A FUSE- ^{STRANDED}	1	1		Mouser		
R1	RC076F474R	470K - RES15002						
R2	RC076F101R	100Ω "						
R3 - R6	RC076F103R	10Ω "		2				
R4	RC076F223R	22Ω "		1				
R5	RC076F226R	22MEG "		1				
R7	RC076F104R	100K "		1				
R8	RC076F121R	120Ω "		1				
C1	540-1.0M35	1UF/35V - CAP	1			Mouser-MARCO		
C2	540-4.7M10	4.7UF/10V CAP	1		" "			
C3-C6	CK12BX103R	.01/50V CAP	2					
C4-C5	21RD722	22PF/35V CAP	2			Mouser		
C7	540-0.22M35	.22UF/35V CAP	1			Mouser-MARCO		
V1	905-145-5000	FIBER OPTICS RECEIVER	1			AMPHENOL		
G-403	GROMET (3/8" HOLE X 1/4")	1				WACOON		
AUC-22	AURIES	16						

3. PARTS LIST - P101847
2. ASSEMBLY: 101847
1. TOP DRAWING: 101847
NOTES:

DIMENSIONS ARE IN INCHES AND AFTER PLATING		DR. 1-427
TOLERANCES (unless otherwise specified)		CHK
X ±.1 XX ±.03 XXX ±.010 ANGLES ±0.5°		DSGN
MACH SURF ✓		PROJ
		REL
		APPROVED
		APPROVED
		DO NOT SCALE DRAWING
CODE IDENT NO.	SIZE	REV
13979	101848	
SCALE	SHEET OF	

Parko
ELECTRONICS COMPANY INC., SANTA ANA, CALIF.

OPTICAL LINK RECEIVER

Date 1-4-89 Parko P/N 101247 - RECEIVER

Ref. Des.	P/N	Description	Init Qty	Total Qty	Insp.	Manufacturer	Parko PO	Notes
UV-2830-1250	CRV	CANISTER TRNDIP	1	1		Hudson		
P.C. BOARD								
U1	MC28L05C1	5 VOLT REGULATOR	1	1		Not		
U2	AY-3-1015D	WAFER	1	1		CE		
U3	SN74HC4060	OSCILOSCOPE	1	1		RCA		
U4	CD4092BE	DUAL DUAL SNM	1	1		RCA		
U5	CD4011BE	TRIPLER	1	1		RCA		
U6, U7	CD40124BE	TRIPLER 3 IN 1 OR	1	1		RCA		
Q1, Q2	2N4123	KTR02	2	2		Not		
Q3-Q14	MTP15N05L	NEUTRON KTR	12	12		Not		
CR1	PEN222	SUPPRESSOR	1	1		Not		
CR2	MED300	PN PHOTO DIODE	1	1		Not		
CR3-CR14	IN4002	DIODE	12	12				

101844

Connections diagram - interface with
101844 MM 101847

PARNO ELECTRONICS

3-17-89

CR.2

RED TO Q1

BCK - TO +5V

It is difficult to find out who
was responsible for this

DIMENSIONS ARE IN INCHES AND AFTER PLATING		DSGN	CODE IDENT NO.	SIZE	REV
		PROJ	13979	101848	
		REL			
TOLERANCES (unless otherwise specified)			APPROVED		SHEET OF
		X ± .1			
		.XX ± .03			
		.XXX ± .010			
ANGLES ± 0.5°		MACH SURF	APPROVED		
			DO NOT SCALE DRAWING		

4. WIRING CONNECTION DRAWING 101863
 3. PARTS LIST PL101847
 2. ASSEMBLY 101849
 1. TOP DRAWING 101847
 NOTES:

DIMENSIONS ARE IN INCHES AND AFTER PLATING		DR. <i>[Signature]</i>	Rev. <i>[Signature]</i>
TOLERANCES (unless otherwise specified)		CHK	
X ±.1 XX ±.03 XXX ±.010 ANGLES ±.5°		DSGN	
REL		PROJ	
		APPROVED	
		APPROVED	
		DO NOT SCALE DRAWING	REV
CODE IDENT NO. 13979		SIZE 101848	
		SCALE	SHEET OF

Parko
ELECTRONICS COMPANY INC., SANTA ANA, CALIF.

OPTICAL LINK RECEIVER

ASSY - RECEIVER

3, 5

60-74385

12/2/77

Brewer
#20 ga.

Ideonator Wyle
#22 ga.

5

4

4

and

new

not yet used

Mr. T. H. Dow

Now

Dawn

4

#

5

2-1-89

Both holes on
Same END

RECEIVER CAN

101847

PARKS E. - H. C.

STAN - 31-89 Parko P/N 101847-OPTICAL CIRCUIT RECEIVER

5/0

Ref. Des.	P/N	Description	Init Qty	Total Qty	Imp.	Parko P/N	Notes
H4 - 8830-1.232 H4 - 8830-CA	CAR CENTER	3 TIN DIP	1	1		1402502	
L4BEC	3.85 x 2.35	PCB BOARD	1				
POTINC-160-1							
U1	MD78405CT	5V REGULATOR	1			METCO	
U2	A4-3-1015D	U425	1			GT	
U3	SN74HC4067	OSCILOSCOPIC POWER	1			TI	
U4	CD4092BE	DUAL INTEGRATOR	1			RCA	
U5	CD4011BE	CD4011 2-IN WORD	1			RCA	
U6-U7	CD40174BE	FIFTEEN LATCH	2			RCA	
U8	CD4025BE	TRIPLEX 3-IN OR	1			RCA	
Q1-Q2	2N4123	X102	2				
Q3-Q4	2N4123	X102	12			not	
CR1	PER22	SUPPRESSOR	1			not	
CR2	MFOD3100	PIN PHOTO DIODE	1			not	
CR3-CR4	1N4002	DIODE	12				
CR15	1N4128	DIODE	1				

Date 1/29-31-29 Parko P/N 101842 - OPTICAC Link RECEIVER Qty. 1

Part No.	P/N	Description	Unit Qty	Total Qty	Insp	Manufacturer	Parko Part No.
X1	ME-332-1033	3.2768 MHZ XTRAC	1	1		MESER	
F1	0125A FUSE	1					
4454C18	UNIV. FUSE HOLDER	1				MESER	
R1, R8	RCC26CF474K	470K - PASSIVE	2	2			
R2	RCC26CF101K	100K -	1	1			
R3-R6	RCC26C103K	10K -	2	2			
R4	RCC26C 103K ^{22.3}	22K -	1	1			
R5	RCC26C226K	22K -	1	1			
R7	RCC26C104K	10K -	1	1			
C1	540-1.0M35	1UF/35V - CAP	1	1		MICHAEL-MATCO	
C2	540-4.7M10	4.7UF/10V	1	1			
C3-C6	C412B103K	0.01UF/50V -	2	2			
C4-C5	21RD222	22PF/50V	2	2		MAUSER	
C7-C8	540-0.4M35	.001UF/35V	2	2		MAUSER-MATCO	
T1	905-145-5000	FIBER OPTICS RECEPTACLE				AMPHENOL	
G-403	CRIMMER(3/8 HOLE)	WADDER					
	CRIMPERS						14

SHIP TO

GENERAL CABLE
APPARATUS DIVISION
5600 W 88th Ave
Westminster, CO 80030

ATTN: Steve Epps

~~Littletown~~
Jefferson Co Airport

40170

101897

PARTS ON HAND

A4-3-1015D	-	2
MC3423 - O/U/V.	-	5
74HC4060 - 050/Count	-	14
178205 - REC.	-	2
4082 - AND	-	1 +
4503 - TRI-STATE BUFF	-	12
40174 - LATCH	-	2
15 NOS L-MOSFETS	-	30
MF0E - 3200 Emitter	-	4
MF0D - 3100 Detector	-	4
ME-332-1033 XTRC	-	9
22PF KOR XTRC	-	4
4.7U RES. NETWORK DIP	-	LOTS
905-145-5000	O/U/V	
AMPHEROL FIBER OPTICS RECEPTC.		- 10

[NO CABLE]

2N4125, 2N4123, 4088 STOCK
P6KE22 - STOCK.

QAP. & RES. STOCK

PARTS ON HAND

A4-3-1015D - 2

MC 3423 - 0U/V. - 5

74HC4060 - osc/count - 14

178205-REC. - 2

4082 - AND - 1 +

4503 - TRI-STATE BUFF - 12

40174 - LATCH - 2

15 NOS L-MOSFETS - 30

MF0E - 3200 Emitter - 4

MF0D - 3100 DETECTOR - 4

ME-332-1033 XTAL - 9

22PF K012 XTAL - 4

4.7V RES. NETWORK DIP - LOTS

905-145-5000 ~~0000~~

AMPHENOL FIBER OPTICS RECEP TO. - 10

[NO CABLE]

2N4125, 2N4123, 4088 STOCK
P6KE22 - STOCK.

OAP. & RES. STOCK

W₀⁰ = W₁⁰ = W₂⁰ = W₃⁰ = W₄⁰ = W₅⁰ = W₆⁰