Chemisches Gleichgewicht – Beispiel Ester

Was haben die Stoffe gemeinsam?

Ordne die Stoffe den Bildern zu

Essigsäureetyhlester	Rootbeer
Ist sehr leicht zu riechen	
Essigsäure-2-hexen-1-ylester	Uhu
Wird oft auf Backwaren verarbeitet	
Essigsäureoktylester	Erdbeere
Hat eine saure Schwesterfrucht.	
Methansäuresalicylester	Orange
Ist der unnatürlichste Geschmack	

Aufgabe 1:

- a) Um welchen Ester handelt es sich aus den vier Beispielen?
- b) Zeichne die beiden Ausgangsstoffe, wenn bei der Reaktion Wasser abgespalten wird.
- c) Hausaufgabe: Zeichne die fehlenden Ester aus dem Anfangsquiz

	H-C-C C C-C-F	H + H₂O
 _ +		+

D . C.				
Detii	nition	Esteri	cona	lensation:

ſ		
l		

Praktikum Ester-Synthese:

Zeitlicher Verlauf der Veresterung

Aufgabe 2: Beschreibe die Konzentrationen von Essigsäure und Ethanol im Verlauf des Versuchs. Wähle dazu drei markante Punkte aus dem Diagramm.

Startkonzentration Essigsäure + Ethanol:

Im Verlauf der Reaktion:

Wenn sich das chemische Gleichgewicht eingestellt hat:

Aufgabe 3: Ergänze die fehlenden Stoffmengen-Angaben mit Hilfe des Diagramms.

Modell des Versuchsverlaufs

Überlege: Warum sind bei der Ester-Synthese im Gleichgewicht immer genau gleich viele Essigsäure- Moleküle wie Ethanol-Moleküle vorhanden?
Aufgabe 4: Notiere das Massenwirkungsgesetz für die Reaktion.
Da die Estersynthese eine Gleichgewichtsreaktion gibt es auch ihre
Aufgabe 5: Die Umkehrung der Estersynthese nennt man die saure Hydrolyse. Notiere die Reaktionsgleichung der sauren Hydrolyse in Strukturformelschreibweise. Die Säure nimmt daran wieder katalytisch teil, wird also über den Reaktionspfeil notiert.
Aufgabe 6: Notiere das Massenwirkungsgesetz (MWG) für die saure Hydrolyse. K _c =
Aufgabe 7: Fertige analog zur Estersynthese ein Modell zur Esterhydrolyse an. Beschreibe die drei Phasen des Modells. Start, Einstellung des ch. GG und im ch. Gleichgewicht.
Nimm dabei Bezug auf die Konzentrationen der beteiligten Stoffe, auf die Hin und Rück-Reaktion sowie auf die Reaktionsgeschwindigkeiten.
Aufgabe 8: Der Zustand des ch. Gleichgewicht ist ein dynamischer Zustand. Was versteht man unter einem dynamischen Gleichgewicht.