Show all necessary work neatly.

- 7. (a) Set up a sum of definite integrals that represents the total shaded area between the curves y = f(x) and y = g(x) in the accompanying figure.
 - (b) Find the total area enclosed between $y = x^3$ and y = x over the interval [-1, 2].

Figure Ex-7

8.

The accompanying figure shows velocity versus time curves for two cars that move along a straight track, accelerating from rest at a common starting line.

- (a) How far apart are the cars after 60 seconds?
- (b) How far apart are the cars after T seconds, where $0 \le T \le 60$?

- 9. Let R be the region enclosed by the curves $y = x^2 + 4$, $y = x^3$, and the y-axis. Find and evaluate a definite integral that represents the volume of the solid generated by revolving R about the x-axis.
- 11. Find the volume of the solid whose base is the region bounded between the curves $y=\sqrt{x}$ and $y=\frac{1}{\sqrt{x}}$ for $1\leq x\leq 4$ and whose cross sections perpendicular to the x-axis are squares.

12. Consider the region enclosed by $y = \sin^{-1} x$, $y = 0$, and $x = 1$. Set up, but do not evaluate, an integral that represents the volume of the solid generated by revolving the region about the x-axis using	13. Find the arc length in the second quadrant of the curve $x^{2/3} + y^{2/3} = 4$ from $x = -8$ to $x = -1$.
(a) disks	
(b) cylindrical shells	
14. Let C be the curve $y=e^x$ between $x=0$ and $x=\ln 10$. Set up, but do not evaluate, an integral that represents the arclength C by integrating (a) with respect to x	(b) with respect to y