

Data clearinghouse, validation and curation of BioSamples, ENA, Breeding API endpoints, MAR databases (topic #08)

Proponent: Luca Cherubin, Cyril Pommier
On the behalf of the Elixir Validation Implementation study group

Project links

GitHub project

Background

- Regular practice in life-sciences is for domain experts to manually curate and improve the quality of metadata associated with biological sample(s)
- Unfortunately this curated, high quality metadata often can't be embedded back into the original assay and results, reducing data FAIRness.

Goal and expected outcome

- Expose metadata for programmatic access
- Programmatically validate the metadata against predefined schemas
- Store metadata in a central repository easily accessible from any resource

Use cases

BioSample, MarRef Use Case

Biosamples: EMBL-EBI hub for sample metadata

 Marine Metagenomic Portal: high-quality curated and freely accessible microbial genomics and metagenomics resources

BioSample, Marine Metadata Use Case

- BioSamples stores sample metadata accessible to anybody
- Curators, like MarRef, re annotate the metadata based on literature and manual curation
- BioSamples, as well as associated services, will not be able to access that data easily and make sure the data is valid

MarRef compared to BioSamples

What we want to build

	Integrate BioSchemas into MarRef and extract the metadata using the BioSchemas crawler	•Python •Go	Day 1
{ ×}	Produce a JSON schema to validate the data	•JSON schemas •Validation •Ontology	Day 1 – Day 2
	Feedback between BioSamples and MarRef	•JSON API •Python •Java	Day 2 - Day 3
ELIXIA clearinghouse	Work on a repository for exported/validated metadata – Elixir clearinghouse	•MongoDB •Java •Python	Day 3 – Day 4

Workflow

Plant Use Case

Association

Elixir Plant data search: community data portal

Phenotypes

of the INRA Small Grain Cereals Network.

François-Xavier Oury, Emmanuel Heumez, Bernard Rolland, Jérôme Auzanneau, Pierre Bérard, Maryse Brancourt-Hulmel, Xavier Charrier, Hubert Chiron, Camille Depatureaux, Laurent Falchetto, Olivier Gardet, Stéphane Gilles, Alex Giraud, Christophe Lecomte, Jean-Yves Morlais, Pierre Pluchard, Didier Tropée, Maxime Trottet, Patrice Walczak, Gérard Doussinault, Milchel Rousset, Gilles Charmet

DATA SETS: 4

Luxembourg

Genève[±]

2011 × 2012 × 2013 × 2014 × 2015 ×

Switzerland

Leaflet | Map data @ OpenStreetMap contributors, CC-BY-SA, Imagery Â@ Mapbox

2004 × 2005 × 2006 ×

· Paris

France

2003 ×

Česko

Wien

Hrvats

Österreich

Slovenija

2007 × 2008 ×

Winter wheat (Triticum aestivum L) phenotypic data from the multiannual, multilocal field trials

Query dataset as a semantic graph.

Or download the dataset as RDF archive.

+ Abstract

Published 2015 by INRA

■ Search parameter(s):

2002 ×

2010 ×

2000 × 2001 ×

Phenotyping campaign(s)

remove all add all

Trial list Phenotypic data

Elixir Plant data search: distributed system

- Phenotype through Breeding API
- Generic WheatIS/transPlant for all other data types

EnsemblPlants

- Open source software.
 - https://github.com/elixir-europe/plant-brapi-etl-data-lookup-gnpis

elixir

Elixir Plant data search: Hackathon objectives

- Endpoints need to be validated
- Datasets must really comply to MIAPPE BrAPI specifications
- Datasets must be made available as ISA-Tab for further analysis

What we want to build

JSON-LD	BrAPI v1.2 JSON-LD context BrAPI v1.2 JSON Schemas BrAPI 2 JSON-LD	•Python •JSON schemas	Day 1 - Day2
isa tools	Validate BrAPi2ISA on all uses cases - Single experiment - Phenotyping network - Perenial plants	•Java •REST API	Day 2 – Day 3
#BrAPI	Integrate BrAPi 2 ISA as a service	•JSON API •Python •Java	Day 3 - Day 4
miappe	Validate datasets - Ontologies & JSON-LD - JSON-Schemas - ISA framework	•Ontologies •Java •Python	Day 3 – Day 4

Post-biohackathon perspectives

- Integration of BrAPI 2 ISA in Elixir Plant Data Search
- Data validator proposed to the whole Plant community
- Semantic capabilities on BrAPI endpoints
- [...]

We want you

- Developers interested in Bioschemas applications
- Developers with knowledge on any of JavaScript, Java, GO, Python, data indexing tools...
- Developers with knowledge on MongoDB, JSON and JSON Schema
- Data resource developers or owners
- Curators or data validators
- Ontologists

Contacts

- Luca Cherubin cherubin@ebi.ac.uk
- Cyrill Pommier cyril.pommier@inra.fr

Github repo

• Github repo

Acknowledgements

