Curs 1

Diferențe finite. Diferențe divizate

Dacā E este o multime nevidă atunci

$$B(E) = \{F : E \to \mathbb{R} : f \text{ este m\"{a}rginit\'{a}}\}\$$

este un spațiu vectorial normal în raport cu adunarea și înmulțirea cu scalari a funcțiilor. Mai mult, este spațiu normat în raport cu norma

$$||f|| = \sup_{x \in E} |f(x)|.$$

Fie acum $a,b \in \mathbb{R}, a < b$. Notăm cu C[a,b] mulțimea funcțiilor reale continue definite pe [a,b]. Atunci $(C[a,b],+,\cdot,\|\cdot\|)$ este spațiu Banach în raport cu norma uniformă (numită și Cebîșev)

$$||f|| = \sup_{x \in [a,b]} |f(x)| = \max_{x \in [a,b]} . |f(x)|.$$

Apoi, pentru $n \in \mathbb{N}^*$ notăm cu $C^n[a,b]$ clasa funcțiilor reale de n ori derivabile pe [a,b] și cu derivata de ordinul n continuă.

Pentru un interval $I \subseteq \mathbb{R}$, C > 0 și $\alpha \in (0,1]$ noăm cu $Lip_{C,\alpha}(I)$ clasa funcțiilor α -Lipschitz de constantă C pe I. Asta înseamnă că

$$|f(x) - f(y)| \le C |x - y|^{\alpha}, \ (\forall) x, y \in I.$$

Pentru $\alpha=1$ spunem simplu funcție Lipschitz (de constantă C) și notăm cu $Lip_C(I)$ această clasă.

Dacă I=[a,b] atunci $Lip_{C,\alpha}([a,b])\subseteq C[a,b], \ (\forall)\ \alpha\in(0,1].$ Apoi, se demonstrează ușor că $C^1[a,b]\subseteq Lip_{\parallel f'\parallel}([a,b]).$

Pentru $p \geq 1$ consideram mulţimea $L_p[a,b]$ conţinând funcţiile p-integrabile. Funcţia $f:[a,b] \to \mathbb{R}$ este p-integrabilă dacă există în \mathbb{R} integrala Lebesgue $\int_a^b |f(x)|^p dx. \left(L_p[a,b],+,\cdot,\|\cdot\|_p\right)$ este spaţiu Banach în raport cu norma

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{\frac{1}{p}} dx.$$

Diferențe finite

Pentru $x \in \mathbb{R}, h \in \mathbb{R}^*$ și $r \geq 1$ natural, considerăm mulțimea

$$M_x := \left\{ x + kh : k = \overline{0, r} \right\}$$

şi funcţia $f: E \to \mathbb{R}$ astfel încât $M_x \subseteq E$.

Diferența finită de ordinul 1 cu pasul h a funcției f pe punctul x este

$$\Delta_h f(x) = f(x+h) - f(x).$$

Uneori, se poate folosi și un indice superior pentru a sublinia faptul că diferența finită este de ordinul 1 și atunci notăm $\Delta_h^1 f(x)$.

Diferența finită de ordinul k $(2 \le k \le r)$ cu pasul h a funcției f pe punctul x este

$$\Delta_h^k f(x) = \Delta_h \left(\Delta_h^{k-1} f \right)(x). \tag{1}$$

Propoziția 1.

(i) Pentru $p, k \in \mathbb{N}, 1 \leq p + k \leq r$, avem

$$\Delta_h^p \left(\Delta_h^k f \right) (x) = \Delta_h^k \left(\Delta_h^p f \right) (x) = \Delta_h^{k+p} f(x).$$

(ii) Pentru $k \in \mathbb{N}^*$, $1 \le k \le r$, avem

$$\Delta_{h}^{k} f(x) = \sum_{i=0}^{k} (-1)^{i} {k \choose i} f(x + (k-i)h)
= \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} f(x + jh).$$
(2)

Ambele proprietăți se demonstrează ușor prin inducție matematică.

Diferențe divizate

Definiția 2. Fie $I \subseteq \mathbb{R}, p \in \mathbb{N}, x_0, x_1, ..., x_n \in I$, distincte două câte două (numite noduri distincte în continuare) și $f: I \to \mathbb{R}$. Diferența divizată de ordinul p a funcției f pe nodurile $x_0, x_1, ..., x_n$, se definește astfel:

pentru
$$p = 0$$
, $[x_0; f] := f(x_0)$;
pentru $p = 1$, $[x_0, x_1; f] := f(x_1) - f(x_0)$;
pentru $p = 2$,

$$[x_0,x_1,...,x_p;f]:=\frac{[x_1,...,x_p;f]-[x_0,x_1,...,x_{p-1};f]}{x_p-x_0}.$$

Propoziția 2.

(i) Avem

$$[x_0, x_1, ..., x_p; f] = \sum_{i=0}^{p} \frac{f(x_i)}{u'(x_i)},$$

unde

$$u(x) = (x - x_0)(x - x_1) \cdot \cdot \cdot (x - x_n), x \in \mathbb{R}.$$

(ii) Avem

$$[x_0, x_1, ..., x_p; f] = \frac{W(x_0, x_1, ..., x_p; f)}{V(x_0, x_1, ..., x_p; f)},$$

unde $V\left(x_0,x_1,...,x_p;f\right)$ este determinantul Vandermonde corespunzător numerelor $x_0,..,x_p$ și $W\left(x_0,x_1,...,x_p;f\right)$ se obține din $V\left(x_0,x_1,...,x_p;f\right)$ înlocuind în $V\left(x_0,x_1,...,x_p;f\right)$ elementele ultimei coloane cu valorile $f(x_0),f(x_1),...,f(x_p)$.

(iii) Dacă $f \in C^p([a,b])$ atunci există ξ cuprins între nodul cel mai mic și nodul cel mai mare astfel încât

$$[x_0, x_1, ..., x_p; f] = \frac{f^{(p)}(\xi)}{p!}.$$

(iv)
$$\Delta_h^p f(x) = p! h^p [x, x+h, ..., x+ph; f].$$

Din proprietatea (i) rezultă ușor că $[x_0, x_1, ..., x_p; f]$ nu depinde de ordinea nodurilor iar din (iii) rezultă imediat că $[x_0, x_1, ..., x_p; f]$ este o valoare constantă indiferent de noduri dacă $f \in \mathbb{R}_n[x]$.

Definiția 3. (T. Popoviciu) Fie $I \subseteq \mathbb{R}$ un interval, $p \in \mathbb{N}^*$ și $f : I \to \mathbb{R}$. Spunem că f este convexă (concavă) de ordinul p dacă

$$[x_0, x_1, ..., x_p, x_{p+1}; f] \ge 0 \ (\le 0), \ (\forall) \ x_0, ..., x_{p+1} \in I.$$

Pentru p=0 obţinem funcţiile crescătoare (descrescătoare) pe I iar pentru p=1 obţinem funcţiile convexe (concave) pe I.

Temă

- 1. Pentru $x=1,\,h=1$ ş i $f(x)=x^2$ să se calculeze $\Delta_h^3 f(x)$ aplicănd iterativ formula (1) iar apoi prin aplicarea directă a formulei (2). Încercați apoi să scrieți un program în care datele de intrare să fie x,h și k iar data de ieșire (afișare) să fie $\Delta_h^3 f(x)$ unde $f(x)=x^2$. Puteți încerca și cu alte funcții dar să țineți cont de faptul că trebuie ca domeniul lor de definiție să conțină toate valorille în care calculați valorile funcției.
- 2. Aplicănd Definiția 2 calculați $\left[1, \frac{3}{2}, 2, 3; f\right]$ pentru $f(x) = \frac{1}{x}$. Indicație: Scrieți un program care să aplice iterativ Definiția 2.
- 3. Fie $a_0, a_1, a_2 \in [0, 1]$. Să se demonstreze că $[a_0, a_1, a_2; x^3] \leq 3$ (deci, $f(x) = x^3$ pentru această diferență divizată).
- 4. Fie $I \subseteq \mathbb{R}$ un interval și $f: I \to \mathbb{R}$. Demonstrați că f este convexă pe I dacă și numai dacă $[x_0, x_1, x_2; f] \ge 0$, pentru orice noduri distincte x_0, x_1, x_2 din I.

Indicație: Vă reaminstesc că f este convexă dacă

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \ (\forall) \ x, y \in I, \alpha \in [0, 1].$$

Secretul este să alegeți nodurile x_0, x_1, x_2 , astfel încât din calculul diferenței divizate să ajungem la relația de mai sus.

$\begin{array}{c} \text{Curs 2} \\ \text{Interpolare polinomial} \\ \end{array}$

Polinomul de interpolare Lagrange

Fie numerele reale $x_0, x_1, ..., x_n$, distincte două câte două și să le asociem numerele reale $y_0, y_1, ..., y_n$. Căutăm un polinom P de gradul n astfel încât $P(x_i) = y_i, i = \overline{0, n}$.

Se observă ușor că un astfel de polinom este

$$P(x) = \sum_{i=0}^{n} \left(\frac{\prod_{j=0, j \neq i}^{n} (x - x_j)}{\prod_{j=0, j \neq i}^{n} (x_i - x_j)} \right) \cdot y_i.$$

Dacă există $f:[a,b] \to \mathbb{R}$, astfel încât $f(x_i) = y_i$, $i = \overline{0,n}$, atunci notăm $P = L_n(f,x_0,...,x_n)$ sau, cînd nu este pericol de confuzie $P = L_n(f)$ și numim acest polinom ca fiind polinomul de intrpolare Lagrange a funcției f pe nodurile $x_0,...,x_n$. Astfel, avem

$$L_n f(x) = \sum_{i=0}^n \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdots(x_i-x_{i-1})(x_i-x_{i+1})\cdots(x_i-x_n)} \cdot f(x_i),$$

$$(\forall) x \in [a,b].$$

Dacă notăm $u(x)=(x-x_0)\,(x-x_1)\,\cdots\,(x-x_n)$ și $u_i(x)=\frac{u(x)}{x-x_i},\,i=\overline{0,n},$ obținem

$$L_n f(x) = \sum_{i=0}^n \frac{u_i(x)}{u_i(x_i)} \cdot f(x_i), \ (\forall) \ x \in [a, b].$$

De exemplu, dacă $x_0 = -1$, $x_1 = 1$, $x_2 = 2$ şi $f(x_0) = y_0 = 2$, $f(x_1) = y_1 = 0$, $f(x_2) = y_2 = 1$, avem

$$u(x) = (x+1)(x-1)(x-2),$$

$$u_0(x) = (x-1)(x-2),$$

$$u_1(x) = (x+1)(x-2)$$

$$u_2(x) = (x+1)(x-1).$$

Astfel

$$L_2 f(x) = \frac{u_0(x)}{u_0(x_0)} \cdot y_0 + \frac{u_1(x)}{u_1(x_1)} \cdot y_1 + \frac{u(x)}{u_2(x_2)} \cdot y_2$$

$$= \frac{(x-1)(x-2)}{6} \cdot 2 - \frac{(x+1)(x-2)}{2} \cdot 0 + \frac{(x+1)(x-1)}{3} \cdot 1$$

$$= \frac{2x^2}{3} - x + \frac{1}{3}.$$

Polinomul lui Lagrange se poate scrie și cu ajutorul diferențelor divizate. Considerând nodurile distincte $x_0, ..., x_n$, pentru $i, i + k \in \{0, ..., n\}$ notăm

$$[x_i, x_{i+1}, ..., x_{i+k}; f] = D^k f(x_i).$$

Atunci, are loc formula

$$L_n f(x) = f(x_0) + D^1 f(x_0) (x - x_0) + D^2 f(x_0) (x - a_0) (x - x_1) + \dots + D^n f(x_0) (x - x_0) (x - x_1) \dots (x - x_{n-1}).$$

Formula de mai sus se numește formula lui Newton pentru polinomul de interpolare Lagrange. De obicei în acest caz polinomul Lagrange se notează $N_n f(x)$.

Estimarea erorii în interpolarea Lagrange

Desigur putem scrie

$$f(x) = L_n f(x) + R_n f(x), x \in [a, b].$$

iar expresia $R_n f(x)$ se numește restul în formula de interpolare Lagrange pentru $x \in [a, b]$.

Teorema 1. Dacă $f \in C^{n+1}[a,b]$ și $x \in [a,b]$ atunci există $\eta \in (a,b)$ astfel încât

$$|R_n f(x)| = \frac{|u(x)|}{(n+1)!} \cdot \left| f^{(n+1)}(\eta) \right|. \tag{3}$$

Polinomul Cebîşev de speţa întâi

Pornind de la estimarea din relația (3), în cazul particular $a=-1,\ b=1$ se pune problema să determinăm nodurile $x_1,...,x_n$, astfel încât $\|u\| \leq \|v\|$ pentru orice polinom

$$v(x) = (x - t_1)(x - t_2) \cdots (x - t_n),$$

 $t_1, ..., t_n \in [-1, 1],$

unde

$$u(x) = (x - x_1)(x - x_2) \cdot \cdot \cdot (x - x_n).$$

Cebîşev a demonstrat că aceste noduri sunt

$$x_i = \cos\left(\frac{(2i-1)\pi}{2n}\right), i = \overline{1,n}.$$

Se observă imediat că $T_n(x_i) = 0$, $i = \overline{1, n}$, unde

$$T_n(x) = \cos(n \arccos x), n \in \mathbb{N}^*, x \in [-1, 1].$$

Folosind substituția $x = \cos \theta$, obținem $\theta = \arccos x$ și apoi $T_n(x) = \cos (n\theta)$. Tinând cont de binecunoscutele formule

$$\cos((n+1)\theta) = \cos n\theta \cos \theta - \sin n\theta \sin \theta,$$

$$\cos((n-1)\theta) = \cos n\theta \cos \theta + \sin n\theta \sin \theta,$$

prin însumare obținem

$$\cos((n+1)\theta) + \cos((n-1)\theta) = 2\cos n\theta\cos\theta$$

ceea ce implică faptul că

$$T_{n+1}(x) + T_{n-1}(x) = 2xT_n(x), \ (\forall) \ n \in \mathbb{N}^*, x \in [-1, 1],$$

și apoi

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x), (\forall) n \in \mathbb{N}^*, x \in [-1, 1],$$

unde $T_0(x) = 1$, $(\forall) x \in [-1, 1]$.

Aplicând această relație de recurență pentru n = 2, 3, ..., obținem

$$T_2(x) = 2x^2 - 1,$$

 $T_3(x) = 4x^3 - 3x,$
 $T_4(x) = 8x^4 - 8x^2 + 1.$

Luînd

$$\overline{T_n} = \frac{1}{2^{n-1}} T_n$$

se obține polinomul căutat ș
si numit polinomul lui Cebîșev de speța întâi. În plus, se verifică ușor că

$$\left\| \overline{T_n} \right\| = \frac{1}{2^{n-1}}$$

iar de aici, folosind acest rezultat în (3), rezultă că

$$|R_n f(x)| \le \frac{1}{2^n} \cdot \frac{1}{(n+1)!} \cdot \left\| f^{(n+1)} \right\|.$$

Polinomul de interpolare Hermite

Fie nodurile distincte $x_0 < x_1 < \cdots < x_m$ pentru care se cunosc valorile $f(x_0), f'(x_0), ..., f^{(r_0)}(x_0)$

$$f(x_1), f'(x_1), ..., f^{(r_1)}(x_1)$$

.

$$f(x_m), f'(x_m), ..., f^{(r_m)}(x_1)$$

$$n+1 = \sum_{i=0}^{m} (r_i + 1).$$

Căutăm un polinom $H_n f: [x_0, x_m] \to \mathbb{R}$, de grad n astfel încât

$$H_n^{(j)}f(x_k) = f^{(j)}(x_k), (\forall) j = \overline{0, r_k}, k = \overline{0, m}.$$

Considerăm

$$u(x) = (x - x_0)^{r_0 + 1} (x - x_1)^{r_1 + 1} \cdots (x - x_m)^{r_m + 1},$$

$$u_k(x) = \frac{u(x)}{(x - x_k)^{r_k + 1}}, k = \overline{0, m}.$$

Polinomul

$$H_n f(x) = \sum_{k=0}^{m} \left[u_k(x) \cdot \left(\sum_{j=0}^{r_k} \frac{(x - x_k)^j}{j!} \cdot \left(\frac{f(t)}{u_k(t)} \right)_{|t = x_k}^{(j)} \right) \right]$$

este polnomul căutat și se numește polinomul de interpolare Hermite.

Notăm restul cu $R_n f(x)$, ceea ce înseamnă că $f(x) = H_n f(x) + R_n f(x)$, $(\forall) x \in [a, b]$. Mai mult, avem

$$|R_n f(x)| \le \frac{|u(x)|}{(n+1)!} \cdot ||f^{(n+1)}||, \ \ (\forall) \ x \in [a,b].$$

Cazuri particulare

Dacă m=0 și $r_0=n$ se obține polinomul lui Taylor în jurul lui x_0 (dacă $x_0=0$ se numește polinomul Maclaurin) notat $T_nf(x)$, unde

$$T_n f(x) = f(x_0) + f'(x_0) (x - x_0) + \frac{(x - x_0)^2}{2!} \cdot f''(x_0) + \dots + \frac{(x - x_0)^n}{n!} \cdot f^{(n)}(x_0).$$

Dacă $r_0=\cdots=r_m=1,\;n=2m+1$ se obține polinomul de interpolare hermite pe nodurile duble $x_0,...,x_m,$ și anume

$$H_{2m+1}f(x) = \sum_{k=0}^{m} \left(u_k(x) \cdot \frac{f(x_k)}{u_k(x_k)} + (x - x_k) \left(\frac{f(t)}{u_k(t)} \right)'_{|t=x_k|} \right).$$

Seminar 2

Funcții spline

Fie diviziunea Δ a intervalului $[a, b], \Delta = (x_0, ..., x_n)$, unde

$$a = x_0 < x_1 < \dots < x_n = b.$$

și fie valorile reale $y_0, y_1, ..., y_n$.

Definiția 1. Pentru $k\in\mathbb{N}^*$ funcția $S:[a,b]\to\mathbb{R}$ este funcție spline polinomială de grad k dacă

- i) $S \in C^{k-1}[a, b];$
- ii) $S \mid_{[x_{i-1},x_i]} = S_i$ este polinom de grad cel mult k, i = 1,...,n.
- iii) $S(x_i) = y_i, i = 0, ..., n.$

Dacă $f \in C[a, b]$ astfel încât $f(x_i) = y_i$, $i = \overline{0, n}$ atunci S se numește spline de interpolare a funcției f pe diviziunea Δ .

Cazuri particulare

Dacă k=1 și grad $S_i \leq 1, i=1,...,n$, se obține interpolarea spline poligonală pe porțiuni. În acest caz, dacă $f \in C^2[a,b]$, avem

$$|S(x) - f(x)| \le \left| \frac{(x - x_{i-1})(x - x_i)}{2} \right| ||f''||, \ (\forall) \ x \in [x_{i-1}, x_i], \ i = \overline{1, n}.$$

De aici rezultă ușor că

$$|S(x) - f(x)| \le \frac{h^2}{8} \cdot ||f''||, (\forall) x \in [a, b],$$

unde

$$h = ||\Delta|| = \max\{x_i - x_{i-1} : i = \overline{1, n}\}.$$

Pentru k=3 și $S \in C^2[a,b]$ se obține interpolarea spline cubică.

În final, prezentăm un rezultat interesant de interplare al lui Passaw.

Teorema 2 (Passaw). Fie diviziunea Δ a intervalului $[a,b], \Delta=(x_0,...,x_n),$ unde

$$a = x_0 < x_1 < \dots < x_n = b.$$

și fie valorile reale $y_0, y_1, ..., y_n$. Atunci pentru orice $l \in \mathbb{N}$ există o funcție $S: [a, b] \to \mathbb{R}$ cu proprietățile:

- i) $S \in C^{l}[a, b];$
- ii) $S|_{[x_{i-1},x_i]}=S_i$ este polinom de grad cel mult m, unde $m\geq 2l+1,$ i=1,...,n;
 - iii) $S(x_i) = y_i, i = 0, ..., n;$
- iv) Pentru orice $i \in \{0,...,n-1\}$, dacă $y_i \leq y_{i+1}$ atunci S este crescătoare pe $[x_i,x_{i+1}]$ iar dacă $y_i \geq y_{i+1}$ atunci S este descrescătoare pe $[x_i,x_{i+1}]$.

Temă

1. Folosind formula lui Newton să se se determine polinomul lui Lagrange asociat funcției f pe nodurile $x_0=-1,\,x_1=1,\,x_2=2,\,x_3=3,\,$ știind că $f(x_0)=2,\,f(x_1)=-1,\,f(x_2)=1,\,f(x_3)=2.$

- 2. Folosind polinomul Maclaurin asociat funcției $f(x) = e^x$ calculați $\int_0^1 e^{x^2} dx$ cu două zecimale exacte.
- 3. Cu ce eroare se poate calcula $\sqrt{115}$ cu ajutorul formulei de interpolare Lagrange considerând funcția $f(x) = \sqrt{x}$ și nodurile de interpolare $x_0 = 100, x_1 = 121, x_2 = 144.$
- 4. Considerând funcția f și nodurile $x_0,x_1,...,x_n$ să se demonstreze că polinomul de interpolare Lagrange verifică relația de recurență

$$(x_n - x_0) L_n(f, x_0, ..., x_n)(x)$$

$$= (x - x_0) L_n(f, x_1, ..., x_n)(x) - (x - x_n) L_n(f, x_0, ..., x_{n-1})(x).$$

Curs 3 Modulul de continuitate

Fie I un interval din \mathbb{R} . Noăm cu B(I) mulțimea funcțiilor mărginite pe I, cu C(I), mulțimea funcțiilor continue pe I și cu $C_B(I)$ mulțime funcțiilor continue și mărginite pe I. Dacă I este un interval compact reamintim că $C_B(I) = C(I)$.

Funcția $f:I\to\mathbb{R}$ se numește uniform continuă pe I dacă $(\forall)\,\varepsilon>0$, $(\exists)\,\delta(\varepsilon)>0$ astfel încât

$$|f(x_1) - f(x_2)| < \varepsilon, (\forall) x_1, x_2 \in I$$
, astfel încât $|x_1 - x_2| < \delta(\varepsilon)$.

Orice funcție uniform continuă pe I este continuă pe I. Reciproca este în general valabilă doar dacă I este interval compact.

Definiția 1 Fie $f \in C_B(I)$ unde I este interval din \mathbb{R} . Funcția $\omega_f : [0, \infty) \to [0, \infty)$,

$$\omega_f(\delta) = \sup\{|f(x_1) - f(x_2)| : x_1, x_2 \in I, |x_1 - x_2| \le \delta\}$$

se numește modulul de continuitate al lui f. Pentru $\omega_f(\delta)$ se mai folsește și notația $\omega(f;\delta)$.

Se observă uşor că

$$\omega_f(h) = \sup \{ |f(x+h) - f(x)| : x, x+h \in I, 0 \le h \le \delta \}.$$

Dacă I este interval compact atunci în formula lui $\omega_f(\delta)$ (în ambele) se poate scrie "max" în loc de "sup".

Teorema 2 Dacă $f \in C_B(I)$ atunci au loc proprietățile:

- 1) $\omega_f \geq 0$;
- 2) $\omega_f(0) = 0$;
- 3) ω_f este crescătoare;
- 4) $\omega_f(\delta_1 + \delta_2) \leq \omega_f(\delta_1) + \omega_f(\delta_2)$, $(\forall) \, \delta_1, \delta_2 \in [0, \infty)$ (adică ω_f este subaditivă);
 - 5) ω_f este uniform continuă pe I;
 - 6) $\omega_f(n\delta) \leq n\omega_f(\delta), (\forall) n \in \mathbb{N}^*, \delta \geq 0$;
 - 7) $\omega_f(\lambda\delta) \leq (\lambda+1)\,\omega_f(\delta), (\forall)\,\lambda,\,\delta\geq 0;$
 - 8)

$$|f(x) - f(y)| \leq (1 + \delta^{-1} |x - y|) \omega_f(\delta),$$

$$(\forall) x, y \in I, \delta > 0;$$

9)

$$|f(x) - f(y)| \leq \left(1 + \delta^{-2} |x - y|^2\right) \omega_f(\delta),$$

$$(\forall) x, y \in I, \delta > 0;$$

10)
$$f \in Lip_{M,\alpha}(I) \iff \omega_f(\delta) \le M\delta^{\alpha}.$$

Demonstrăm o parte din aceaste proprietăți

3) Fie $\delta_1, \delta_2 \geq 0, \, \delta_1 \leq \delta_2$ şi mulţimile

$$D_1 = \{(x_1, x_2) \in I \times I, |x_1 - x_2| \le \delta_1\},$$

$$D_2 = \{(x_1, x_2) \in I \times I, |x_1 - x_2| \le \delta_2\}.$$

Evident $D_1 \subseteq D_2$ ceea ce înseamnă că

$$\sup_{(x_1, x_2) \in D_1} |f(x_1) - f(x_2)| \le \sup_{(x_1, x_2) \in D_2} |f(x_1) - f(x_2)|,$$

de unde rezultă imediat că $\omega_f(\delta_1) \leq \omega_f(\delta_2)$, adică ω_f este crescătoare.

4) Fie $x_1,x_2\in I$, astfel încât $|x_1-x_2|\leq \delta_1+\delta_2$. Dacă $|x_1-x_2|\leq \delta_1$ atunci evident avem

$$|f(x_1) - f(x_2)| \le \omega_f(\delta_1) \le \omega_f(\delta_1) + \omega_f(\delta_2)$$
.

Dacă $|x_1 - x_2| > \delta_1$ fie atunci y cuprins între x_1 și x_2 astfel încât $|x_1 - y| = \delta_1$. Rezultă ușor atunci că $|x_2 - y| \le \delta_2$, și astfel obținem

$$|f(x_1) - f(x_2)| \le |f(x_1) - f(y)| + |f(y) - f(x_2)|$$

 $\le \omega_f(\delta_1) + \omega_f(\delta_2).$

Deci, în general avem $|f(x_1) - f(x_2)| \le \omega_f(\delta_1) + \omega_f(\delta_2)$ și deoarece $x_1, x_2 \in I$, cu $|x_1 - x_2| \le \delta_1 + \delta_2$, au fost alese arbitrar, prin trecerea la supremum rezultă imediat că

$$\omega_f (\delta_1 + \delta_2) \leq \omega_f (\delta_1) + \omega_f (\delta_2)$$
.

6) Ținând cont de 4), avem

$$\omega_f(2\delta) = \omega_f(\delta + \delta) \le \omega_f(\delta) + \omega_f(\delta) = 2\omega_f(\delta)$$
.

Din aproape în aproape (sau folosind inducția matematică) obținem ușor inegalitatea dorită.

7) Ținând cont de monotonia lui ω_f și de proprietatea 6) rezultă că

$$\omega_f(\lambda \delta) \leq \omega_f(([\lambda] + 1) \delta) \leq ([\lambda] + 1) \omega_f(\delta)$$

 $\leq (\lambda + 1) \omega_f(\delta).$

8) Avem

$$|f(x) - f(y)| \le \omega_f(|x - y|) = \omega_f(\delta^{-1}|x - y|\delta)$$

și aplicând 7) cu $\lambda = \delta^{-1} |x - y|$ rezultă că

$$|f(x) - f(y)| \le (1 + \delta^{-1} |x - y|) \omega_f(\delta).$$

Lema 3. Fie $I \subseteq \mathbb{R}$ interval şi $f: I \to \mathbb{R}$ convexă. Atunci f are derivate laterale finite în fiecare punct $x_0 \in \text{int}(I)$ şi avem

$$f'_s(x_1) \le f'_d(x_1) \le f'_s(x_2) \le f'_d(x_2), \ (\forall) \ x_1, x_2 \in \text{int}(I), x_1 < x_2.$$

Teorema 4. (Sorin G. Gal) Fie $f \in C[a,b]$ convexă pe [a,b] și $\delta \in [0,b-a]$.

(i) Dacă f este crescătoare pe [a, b] atunci

$$\omega_f(\delta) = f(b) - f(b - \delta).$$

(ii) Dacă f este decrescătoare pe [a, b] atunci

$$\omega_f(\delta) = f(a) - f(a + \delta).$$

Temă

Deduceți valorile lui $\omega_f(\delta)$ pentru cazul când f este concavă.

Teorema 5. Pentru orice funcție $f \in C[a,b]$ și $\delta \in [0,b-a]$ monotonă și convexă (sau concavă), modulul de continuitate ω_f este concav pe [0,b-a].

Demonstrație. Considerăm cazul cănd f este crescătoare și convexă pe [a,b] (celelalte cazuri le las ca temă). Din Teorema 4, (i), rezultă că $\omega_f(\delta) = f(b) - f(b-\delta)$, (\forall) $\delta \in [0,b-a]$. Fie $\alpha \in [0,1]$ și $\delta_1, \delta_2 \in [0,b-a]$ aleși arbitrar. Aplicând egalitatea anterioară pentru $\delta := \delta_1$, respectiv $\delta := \delta_2$, obținem

$$\alpha \omega_f(\delta_1) + (1 - \alpha) \omega_f(\delta_2)$$

$$= f(b) - \alpha f(b - \delta_1) - (1 - \alpha) f(b - \delta_2). \tag{4}$$

Aplicând acum aceeași egalitate pentru $\delta := \alpha \delta_1 + (1 - \alpha) \delta_2$, rezultă

$$\omega_f \left(\alpha \delta_1 + (1 - \alpha) \delta_2\right) = f(b) - f\left(b - \alpha \delta_1 - (1 - \alpha) \delta_2\right). \tag{5}$$

Din convexitatea lui f rezultă că

$$f(b - \alpha\delta_1 - (1 - \alpha)\delta_2) = f(\alpha(b - \delta_1) + (1 - \alpha)(b - \delta_2))$$

$$\leq \alpha f(b - \delta_1) + (1 - \alpha)f(b - \delta_2).$$
(6)

Combinând relațiile (4), (5), (6), se obține

$$\alpha \omega_f(\delta_1) + (1 - \alpha) \omega_f(\delta_2) \le \omega_f(\alpha \delta_1 + (1 - \alpha) \delta_2),$$

ceea ce înseamnă că ω_f este concavă pe [0, b-a].

Curs 4 Module de netezime

Pentru $x \in \mathbb{R}, \, h \in \mathbb{R}^*$ și $r \geq 1$ natural, considerăm din nou mulțimea

$$M_x := \left\{ x + kh : k = \overline{0, r} \right\}.$$

Fie $f: E \to \mathbb{R}$ astfel încât $M_x \subseteq E$.

Definiția 1. Fie $f \in C_B(I)$, unde I este un interval real. Fie $k \in \mathbb{N}$ și $\delta > 0$. Modulul de netezime de ordinul k și argument δ al lui f notat $\omega_k(f; \delta)$ este definit prin

$$\omega_k(f;\delta) = \sup_{\substack{|h| \le \delta \\ x,x+kh \in I}} |\Delta_h^k f(x)|. \tag{7}$$

Se verifică ușor faptul că $\omega_1(f;\cdot) = \omega_f(\cdot)$. Cu alte cuvinte, modulul de continuitate este egal cu modul de netezime de ordinul 1.

Dacă I este interval compact atunci în (7) putem pune "max" în loc de "sup".

Teorema 2. (Proprietățile modulului de netezime) Fie $f \in C_B(I)$ și $\omega_k(f;\cdot):[0,\infty)\to[0,\infty)$ definit în (7). Au loc proprietățile:

- 1) $\omega_k(f;\cdot)$ este crescătoare;
- 2) $\omega_{k+1}(f;\cdot) \leq \omega_k(f;\cdot);$
- 3) Dacă f este uniform continuă atunci

$$\lim_{\delta \searrow 0} \omega_k \left(f; \delta \right) = 0.$$

4) Dacă f este derivabilă și $f' \in C_B(I)$ atunci

$$\omega_{k+1}(f;\delta) < \delta\omega_k(f';\delta), \delta > 0.$$

5) Dacă $f \in C^r(I)$ și $f^{(r)}$ este mărginită pe I atunci

$$\omega_r(f;\delta) \le \delta^r \sup_{t \in I} \left| f^{(r)}(t) \right|.$$

6) Pentru orice $\delta > 0$ și $n \in \mathbb{N}$,

$$\omega_k(f; n\delta) \le n^k \omega_k(f'; \delta).$$

7) Pentru orice $\delta > 0$ și $\lambda > 0$,

$$\omega_k(f; \lambda \delta) \le (1 + [\lambda])^k \omega_k(f'; \delta).$$

Demonstrație.

- 1) Demonstrația este asem
[n[toare cu cea din cazul modulului de continuitate (k=1).
 - 2) Folosind proprietățile diferențelor finite avem

$$\Delta_h^{k+1}f(x) = \Delta_h \left(\Delta_h^k f\right)(x) = \Delta_h^k f(x+h) - \Delta_h^k f(x)$$

de unde rezultă

$$\left|\Delta_h^{k+1} f(x)\right| = \left|\Delta_h^k f(x+h)\right| + \left|\Delta_h^k f(x)\right| \le 2\omega_k \left(f'; \delta\right).$$

Prin trecerea la supremum după sup se obține concluzia dorită. $_{|h|<\delta}$

- 3) Se obține din 2) prin inducție matematică.
- 4) Pentru $h \in \mathbb{R}^*$ și $x \in I$ astfel încât $|h| \leq \delta$, $x + kh \in I$, avem

$$\begin{aligned} \left| \Delta_h^{k+1} f(x) \right| &= \left| \Delta_h^k f(x+h) - \Delta_h^k f(x) \right| \\ &= \left| \sum_{j=0}^k \left(-1 \right)^{k-j} \binom{k}{j} \left[f\left(x + (j+1) h \right) - f\left(x + j h \right) \right] \right| \\ &= \left| \sum_{j=0}^k \left(-1 \right)^{k-j} \binom{k}{j} \int_{jh}^{(j+1)h} f'\left(x + t \right) dt \right| \\ &= \left| \sum_{j=0}^k \left(-1 \right)^{k-j} \binom{k}{j} \int_{0}^h f'\left(x + j h + u \right) du \right| \\ &= \left| \int_0^h \Delta_h^k f(x+u) du \right| \le \int_0^h \left| \Delta_h^k f(x+u) \right| du \\ &\le h \cdot \omega_k \left(f'; \delta \right) \le \delta \omega_k \left(f'; \delta \right). \end{aligned}$$

5) Folosind succesiv Proprietatea 2), rezultă

$$\omega_r(f;\delta) \le \delta\omega_{r-1}(f';\delta) \le \dots \le \delta^{r-1}\omega_1(f^{(r-1)};\delta)$$
.

Pe de altă parte, folosind Teorema lui Lagrange pentru $f^{(r-1)}$, se poate demonstra ușor că $(\forall) x, x+h \in I$, există $\xi(x,h)$ cuprins între x și x+h, astfel încât

$$\omega_{1}\left(f^{(r-1)};\delta\right) = \sup_{\substack{|h| \leq \delta \\ x,x+h \in I}} \left| f^{(r-1)}(x+h) - f^{(r-1)}(x) \right|$$
$$= \sup_{\substack{|h| \leq \delta \\ x,x+h \in I}} |h| \left| f^{(r)}(\xi(x,h)) \right|.$$

Deoarece

$$\sup_{\substack{|h| \le \delta \\ x, x+h \in I}} |h| \left| f^{(r)} \left(\xi \left(x, h \right) \right) \right| \le \delta \sup_{t \in I} \left| f^{(r)} (t) \right|,$$

se ajunge ușor la concluzia dorită.

Demonstrațiile Proprietăților 6)-7) se găsesc la paginile 31-32, în: O. Agratini, Aproximare prin operatori liniari, Presa Universitară Clujeană, 2000.

Din Teorema 2 rezultă ușor următoarele proprietăți.

Corolarul 3. Considerăm aceleași ipoteze ca și în Teorema 2. Avem în plus următoarele proprietăți?

1) Pentru orice $\delta > 0$, avem

$$\omega_{k+r}(f;\delta) \leq 2^r \omega_k(f;\delta), (\forall) k, r \in \mathbb{N}.$$

2) Pentru orice $0 < \delta \le 1$, avem

$$\omega_k\left(f;\delta^k\right) \le \omega_k\left(f;\delta\right).$$

Ponderi

În cursul 1 am reamintit normele L_p pentru cazul particular al intervalelor compacte. Acestea se pot generaliza pentru orice tip de intervale din \mathbb{R} . Astfel, dacă $I \subseteq \mathbb{R}$ este un interval oarecare, $p \geq 1$ și $f: I \to \mathbb{R}$, spunem că f este p-integrabilă pe I dacă există și este finită integrala Lebesgue $\int |f(x)|^p dx$.

Spunem că f și g sunt egale aproape peste tot pe I și scriem f=g a.p.t. dacă mulțimea $\{x\in I: f(x)\neq g(x)\}$ este de măsură Lebesgue 0. Notăm cu \widetilde{f} clasa de echivalență a tuturor funcțiilor egale cu f a.p.t.. și cu $L_p(I)$ mulțimea tuturor acestor clase. Atunci $\left(L_p(I), \|\cdot\|_p, +, \cdot\right)$ este spațiu Banach, unde

$$||f||_p = \left(\int\limits_I |f(x)|^p dx\right)^p$$

iar operațiile internă și externă pe $L_p(I)$ sunt cele clasice pe spații de funții folosind reprezentanți pentru clasele de echivalență. În cazul $p=2, (L_2(I), \|\cdot\|_2, +, \cdot)$ este spațiu Hilbert iar produsul scalar care generează această normă este

$$\langle f, g \rangle = \int_I f(x)g(x)dx.$$

Obsevație.

Definiția 4. O aplicație $\varphi \in C(I)$, $I \subseteq \mathbb{R}$, strict pozitivă pe int(I) se numește funcție pondere.

Exemple. Dacă I=(0,1) se poate lua $\varphi(x)=\sqrt{x(1-x)}$ sau $\varphi(x)=\sqrt{x}\,(1-x)$.

Dacă $I=(0,\infty)$ se poate lua $\varphi(x)=\sqrt{x}$ sau $\varphi(x)=\sqrt{x(1+x)}$ sau $\varphi(x)=x$.

Dacă I = (-1, 1) se poate lua $\varphi(x) = \sqrt{1 - x^2}$.

Definiția 5. Funcțiile $\psi_1,\psi_2:I\to\mathbb{R},\,I\subseteq\mathbb{R},$ se numesc de același ordin pe I dacă există o constantă reală M>0 independentă de $x\in I$, astfel încât

$$M^{-1}\psi_1 \leq \psi_2 \leq M\psi_1.$$

Notăm $\psi_1 \sim \psi_2$.

Modulelel de netezime ponderate au fost introduse de Ditzian și Totik și pentru a le putea defini avem nevoie de condiții suplimentare pentru o pondere φ și anume:

C1) Există constantele strict pozitive M_0 şi h_0 astfel încât pentru orice $h \in (0, h_0]$ şi orice interval mărginit $E \subseteq I$, avem

$$m\left(\left\{x \in I : x \pm h\varphi(x) \in E\right\}\right) \le M_0 m\left(E\right)$$

unde m(H) reprezintă măsura Lebesgue a mulțimii H.

C2) Dacă I = (0,1) atunci

$$\varphi(x) \sim \left\{ \begin{array}{c} x^{\beta_1}, \ x \searrow 0, \\ (1-x)^{\beta_2}, \ x \nearrow 1 \end{array} \right. \text{, unde } \beta_1 \geq 0 \text{ si } \beta_2 \geq 0.$$

Dacă $I = (0, \infty)$ atunci

$$\varphi(x) \sim \left\{ \begin{array}{l} x^{\beta_1}, \; x \searrow 0, \\ x^{\beta_2}, \; x \to \infty \end{array} \right. \text{, unde } \beta_1 \geq 0 \text{ şi } \beta_2 \leq 1.$$

Dacă $I = \mathbb{R}$ atunci

$$\varphi(x) \sim |x|^{\beta}, |x| \to \infty, \text{ unde } \beta \le 1.$$

Definiția 6. Fie $f:I\to\mathbb{R},\ k\in\mathbb{N}$ și h>0, astfel încât $x\pm\frac{kh}{2}\in I$. Diferența finită simetrică (sau centrată) de ordinul k cu pasul h a lui f pe x se definește astfel:

$$\begin{array}{lcl} \delta_h f(x) & = & f\left(x+\frac{h}{2}\right) - f\left(x-\frac{h}{2}\right), \, \mathrm{pentru} \,\, k = 1, \\ \delta_h^k f(x) & = & \delta_h\left(\delta_h^{k-1} f(x)\right), \, \mathrm{pentru} \,\, k \geq 2. \end{array}$$

Similar formulei pentru diferențe finite se poate demonstra că

$$\delta_h^k f(x) = \sum_{i=0}^k (-1)^i \binom{k}{i} f\left(x + \left(\frac{k}{2} - i\right)h\right).$$

Mai mult, avem

$$\begin{split} \delta_h^{2n+1} f(x) &= \Delta_h^{2n+1} f\left(x - \frac{2n+1}{2}h\right), \\ \delta_h^{2n} f(x) &= \Delta_h^{2n} f\left(x - nh\right). \end{split}$$

Definiția 7. (Ditzian-Totik) Fie I=(0,1) sau $I=(0,\infty)$ sau $I=\mathbb{R}$ și $\varphi\in C(I)$ o funcție pondere care satisface condițiile C1)-C2) de mai sus (în funcție de intervalul ales pentru I). Modulul de netezime de ordinul $r\in\mathbb{N}$ asociat ponderii φ și funcției $f\in L_p(I), 1\leq p<\infty$, este definit prin relația

$$\omega_{r,\varphi}(f;t)_p = \sup_{0 < h \le t} \left\| \delta_{h\varphi}^r f \right\|_p.$$

Proprietățile modulului ponderat de netezime $\omega_{r,\varphi}$ precum și ale k-funcționalelor se găsesc în cartea lui O. Agratini menționată deja mai sus la paragrafele 1.4 și 1.5..