Graphs

Anders Kalhauge and Marjahan Begum

Graphs

Set of vertices connected pairwise by edges.

 Collection of nodes/vertices connected to each other through set of edges

Edges connected in any possible way

• G = (V,E)

Definitions

- Path. Sequence of vertices connected by edges.
- Cycle. Path whose first and last vertices are the same.
- Two vertices are connected if there is a path between them.

A simple graph

Vertices	Neighbours	
А	BCGH	
В	ACH	
С	ABG	
G	A C	
Н	АВ	

Graph types

- Acyclic graph has no cycles
 - A tree an acyclic connected graph

Forest – disjoint set of trees

Tree

- V-1 edges and no cycles
- V-1 edges and is connected
- Connected and moving any edge disconnects it
- Acyclic but adding any edge creates a cycles
- Exactly one simple plath connects each pair of vertices in G

Applications of Graphs

Highway network, Flight network.

 Computer networks: Local area network, Internet, Web.

Representing relationships between components in electronic circuits.

 Facebook Graph Search is a real-life example of application of graph algorithms for example friends suggestions

Applications of Graphs

- Biology and conservation efforts where a vertex represents regions where certain species exist and the edges represent migration path or movement between the regions.
- Google Maps: Various locations are represented as vertices and the roads are represented as edges and graph theory is used to find shortest path between two nodes.
- E-commerce The "Recommendations for you" section on various e-commerce websites uses graph theory to recommend items of similar type to user's choice.

Graph continues

- Directed
- Undirected
- Weighted and unweighted

Graph Representation

- Edge List representation
- Operations
 - Finding nodes adjacent to a given nodes O(|E|)
 - Finding if two node are connected O(|E|)
 - Number of edges can be very large
 - -O(|V|) better?

Adjacency Matrix

0	1	2	3	4	5
1					
2					
3					
4					
5					

Time Complexity

- Findng adjacent vertices
 - Go to the vertices list O (v)
 - Then go to the row associated with the vertice in the two dimensional array O(v)
 - Total O(v)
- Finding if two nodes are connected
 - O(1) if you know i and j indexes
 - -O(v+v+1)=O(v)

Time Complexity

- Finding if two nodes are connected
 - O(1) + O(V)
 - How can the second O can be avoided?

How would you represent weighted graph?

Memory Big O?

- V²
- Sparse vs dense graph
- Redundant information when it is not connected
- Most graph will not be anything close to v²
- Adjacency Matrix will not be a good fit

What is the solution

- Only keep listed of nodes that are connected using indexes
- List
 - Array v1 = new int[?]
 - Linked list
 - Binary tree
- Space O(e)
- $E < V^2$

Memory usage

- 2 x e (edges) (undirected graph)
- Exactly e edges (directed graph)
- Space is proportional to number of edges

Time Complexity

- Two nodes connected?
 - O(1) Aij in adjacency matrix
 - Linear search O(v)
 - Sort the binary search?
 - $O(\log v)$
- Adjacent nodes
 - O(v) for both structure

Simple Exercise

- Design a social network of friends in the class using a graph data structure
- Get inspirations from
 - http://introcs.cs.princeton.edu/java/45graph/Graph.java
 - https://www.cs.duke.edu/courses/cps100e/fall10/ class/11 Bacon/code/Graph.html