Modelo de simulación de una columna de destilación binaria Etanol-Agua

Juan Pablo Requez juanrequez@gmail.com jrequez@unexpo.edu.ve jprequez@ucla.edu.ve

Se suministra el modelo de una columna de destilación de presión constante atmosférica y el punto de operación de estado estacionario de ella.

El sistema que consideramos aquí es uno de la mezcla binaria de agua-etanol, que *no* puede considerarse como una mezcla ideal, y la columna de destilación posee 11 platos dentro de la columna, lo que corresponde a un modelo de 13 etapas (recuerda, el condensador es la etapa 1 y el rehervidor será la última etapa, etapa 13). La alimentación se hace en la etapa 6.

Ecuaciones diferenciales

El modelo de la columna se describe a través de las siguientes ecuaciones diferenciales:

Balance en el condensador, n=1

$$\frac{dx_n}{dt} = (Vy_{n+1} - Lx_n - Dx_n)/M_n$$

Balance en cualquier plato de la sección de rectificación n={2,3,4,5}

$$\frac{dx_n}{dt} = \frac{Lx_{n-1} + Vy_{n+1} - Lx_n - Vy_n}{M_n}$$

Balance en el plato de alimentación n=6

$$\frac{dx_n}{dt} = \frac{Lx_{n-1} + Vy_{n+1} + Fz_f - (L+F)x_n - Vy_n}{M_n}$$

Balance en cualquier plato de la sección de agotamiento n={7,8,9,10,11,12}

$$\frac{dx_n}{dt} = \frac{(L+F)x_{n-1} + Vy_{n+1} - (L+F)x_n - Vy_n}{M_n}$$

Balance en el rehervidor n=13

$$\frac{dx_n}{dt} = \frac{(L+F)x_{n-1} - Bx_n - Vy_n}{M_n}$$

Observación: este modelo tiene 13 ecuaciones diferenciales. Para obtener la expresión explícita de cada ecuación diferencial para cada variable, se sustituye el valor de n indicado en el balance que se comenta.

Otras relaciones adicionales

para el sistema Etanol-Agua se tiene la relación de equilibrio dada por

$$\alpha_n = 55.858x_n^4 - 138.26x_n^3 + 128.32x_n^2 - 55.953x_n + 11.582$$
$$y_n = \frac{\alpha_n x_n}{1 + (\alpha_n - 1)x_n}$$

Además, para mantener el balance de materia se tienen las siguientes relaciones

Parámetros y condiciones iniciales

Los valores de los parámetros que consiguen el estado estacionario son:

	•			
Flujo de vapor dentro de la columna	V	entrada	8 u(t)	Kmol/hr
Flujo de destilado que sale de la columna	D	entrada	5 u(t)	Kmol/hr
Flujo de alimentación de la columna	F	entrada	15 u(t)	Kmol/hr
Composición del flujo de alimentación de la	z_f	entrada	0.25 u(t)	adimensional
columna	,			
Masa retenida en la etapa 1	M_1	Parámetro	10	Kmol
Masa retenida en la etapa 13	M ₁₃	Parámetro	10	Kmol
Masa retenida en los platos de la columna	$M_2 = \cdots$	Parámetro	1.3382	Kmol
(etapas 2 hasta 12)	$= M_{12}$			

Y las condiciones de los estados en el estado estacionario son:

Variable de	Valor de equilibrio		
estado	(fracción molar)		
X1	0.6875		
X2	0.5667		
Х3	0.4750		
X4	0.4024		
X5	0.3356		
X6	0.2643		
X7	0.2642		
X8	0.2641		
X9	0.2634		
X10	0.2585		
X11	0.2290		
X12	0.1258		
X13	0.0314		