Department of Physics

Electrodynamics and Optics (PH005)

Tuturial 1 (July 30, 2019)

- (1) For an observer moving with velocity $v_1 = 20 \,\mathrm{km/h}$ in the positive x-direction, the wave equation is $y = A \sin k(x vt)$ and for another observer moving along the same direction with velocity $v_2 = 40 \,\mathrm{km/h}$, the equation is $y' = A \sin k(x' + vt)$. Calculate the actual velocity of the wave.
- (2) Find the gradients of following functions:
 - a) $f(x, y, z) = x^2 + y^3 + z^4$
 - b) $f(x, y, z) = x^2 y^3 z^4$
 - $c) f(x, y, z) = e^x \sin(y) \ln(z)$

(Problem: 1.11 Griffith)

- (3) Prove that $\nabla \cdot (\nabla \times \mathbf{V}) = \mathbf{0}$. Check it for $f(x) = xy \hat{i} + 2yz \hat{j} + 3zx \hat{k}$ b) Prove that $\nabla \times (\nabla f) = 0$.
- (4) Which one can not be an electrostatic field?
 - (a) $\mathbf{E}_1 = (y\hat{i} + z^3\hat{j} + x^2\hat{k})$
 - (b) $\mathbf{E}_2 = (\mathbf{x}^2 \hat{\imath} + 2\mathbf{y}\mathbf{z}\hat{\jmath} + \mathbf{y}^2\hat{k})$
- (5) Calculate the flux of \mathbf{E} through shaded region due to charge q at the corner of the cube shown in following figure

(Problem: 3.2 Griffith)

- (6) Using Gauss's law, find the electric field inside a uniformly charged sphere at radial distance r_1 from $\operatorname{origin}(r_1 < R)$. R is radius of the sphere. Volume charge density of the sphere is ρ . Also find electric field outside the sphere at radial distance r_2 ($r_2 > R$). Plot $|\mathbf{E}|$ as a function of r.
- (7) Is curl of a vector field is always orthogonal to the vector field. Justify your argument with example.

1

- (8) Calculate the divergence and curl of the following vector fields;
 - (a) $\mathbf{A}(\mathbf{r}) = -\frac{y}{x^2 + y^2} \hat{\imath} + \frac{x}{x^2 + y^2} \hat{\jmath}$ (b) $\mathbf{A}(\mathbf{r}) = -\frac{x}{x^2 + y^2} \hat{\imath} + \frac{y}{x^2 + y^2} \hat{\jmath}$

 - (b) Let C be a circle of unit radius in the x-y plane, enclosing the unit surface a=S having a vector field $\mathbf{A} = \mathbf{y}\hat{\imath}$ Calculate the line integral of \mathbf{A} around C and (ii) the flux of $\nabla \times \mathbf{A}$ through S.
- (9) Calculate the gradient and Laplacian of the function $T = r(\cos\theta + \sin\theta\cos\phi)$. Check the Laplacian by converting to Cartesian coordinates. Test the gradient theorem fir this function using the path shown in following figure

(Problem: 1.39 Griffith)

10 A vector field is defined by $\mathbf{A}(x,y) = xy^2\hat{\imath} + (x+y)\hat{\jmath}$ and surface S is surrounded by the curves $y = x^2$ and y = x Calculate $\iint_S (\nabla \times \mathbf{A}) d\mathbf{s}$ also repeat the calculation for surface bound by the curves $y = x^2$, $y = -x^2$ and x = 1.