Pràctiques de Matemàtica Discreta: Introducció a la teoria de grafs

Sessió 9

- Problema del flux màxim
- 2 Terminologia
- Solució
- 4 Exemple
- 6 Aplicació (transport)

Problema model

Un agent de viatges vol preparar un viatge de 12 turistes de Madrid a Sant Petersburg en una certa data, sabent el nombre de seients lliures en cadascun dels vols que poden ser utilitzats^a. Es detallen en la següent taula^b:

Vol	Seients Iliures
Madrid-París	5
Madrid-Frankfurt	4
Madrid-Bruselas	6
París-Helsinki	12
Frankfurt-París	7
Frankfurt-Bruselas	6
Frankfurt-Varsovia	6
Bruselas-Riga	9
Bruselas-Varsovia	7
Helsinki-Sant Petersburg	2
Riga-París	10
Riga-Sant Petersburg	5
Varsovia-Riga	8
Varsovia-Sant Petersburg	5

Es possible que puguen viatjar tots els turistes? Quines rutes han de seguir?

^aSe suposa que tots els horaris dels vols són compatibles a efectes d'enllaços

^bDades fictícies sense cap pretensió realista

La situació mot modelitzar-se mitjançant un graf dirigit ponderat els vèrtexs del qual es corresponen amb les ciutats, les arestes amb els vols, i els pesos (que, en aquest tipus de problema, s'anomenen **capacitats**) són les quantitats de seients lliures en cada vol:

La correspondència entre les etiquetes dels vèrtexs i les ciutats són les següents: A: Madrid, B: París,

C: Frankfurt, D: Bruselas, E: Helsinki, F: Riga, G: Varsovia, H: San Petersburgo.

Denominarem **flux** a tot conjunt possible de pesos que representen al nombre de viatgers de cada vol. Un possible exemple de flux seria el següent: 2 dels viatgers segueixen el recorregut ABEH, altres 4 recorren AC i, un cop a C, es bifurquen: 3 segueixen el camí CGFH i 1 segueix el camí CDGFH. Podem representar aquest flux (conjuntament amb les capacitats) de la següent manera:

Observeu que aquest flux només permet viatjar a 6 dels 12 turistes.

Objectiu: trobar un flux que permeta tiaiar al màxim nombre de turistes.

- Problema del flux màxim
- 2 Terminologia
- Solució
- 4 Exemple
- Aplicació (transport)

Xarxa de transport

Una xarxa (o xarxa de transport) és un graf dirigit ponderat dèbilment connex i sense bucles amb dos vèrtexs especials:

- una font, amb grau d'eixida > 0 i grau d'entrada = 0,
- i un pou, amb grau d'entrada > 0 i grau d'eixida = 0, i tal que els pesos són enters no negatius. El pes d'una aresta e s'anomena capacitat de e, i es denota per c(e).

El graf del nostre exemple és una xarxa que té com a font el vèrtex *A*, i com a pou el vèrtex *H*.

Flux

Un flux f d'una xarxa és un conjunt de pesos de les arestes tal que:

- Els pesos són enters no negatius.
- El pes (flux) de cada aresta e (que denotarem per f(e)) és menor o igual que la capacitat de l'aresta. És a dir: f(e) ≤ c(e).
- Per a cada vèrtex que no siga ni la font ni el pou, la suma dels fluxos de les arestes entrants coincideix amb la suma dels fluxos de les arestes que eixen.

Valor del flux

El valor d'un flux f, denotat per v(f), és la suma dels fluxos de les arestes que eixen de la font.

- Problema del flux màxim
- 2 Terminologia
- Solució
- 4 Exemple
- Aplicació (transport)

Existeix un algorisme, anomenat de Ford-Fulkerson, que calcula un flux màxim d'una xarxa. Aplicant este algorisme al nostre exemple s'obté, com a flux màxim, el següent (el valor del qual és 12):

- Problema del flux màxim
- 2 Terminologia
- Solució
- 4 Exemple
- 6 Aplicació (transport)

Exemple

Al següent exemple mostrem una xarxa i indiquem, com a pesos de les arestes, les capacitats:

Ejemplo

Aplicant l'algorisme de Ford-Fulkerson obtenim el següent flux màxim:

El seu valor és 8.

- Problema del flux màxim
- 2 Terminologia
- Solució
- 4 Exemple
- 6 Aplicació (transport)

Problema

Tenim la seguent llista de productes químics i les corresponents quantitats de contenidors (per a emmagatzemar-los):

Volem transportar-los des d'un magatzem a un altre. Per fer açò disposem de 4 camions les capacitats dels quals (en nombre de contenidors) són les següents:

Camión 1 (4), camión 2 (7), camión 3 (6), camión 4 (5) A més a més, a l'hora de transportar els productes, per motius de seguretat, es té que complir la següent condició: no poden transportar-se en un mateix camió dos contenidors del mateix tipus.

Quin és el nombre màxim de contenidors que poden transportar-se en un viatge dels 4 camions, i com han de distribuir-se?

Modelització del problema

Este problema pot modelitzar-se mitjançant la següent xarxa:

Qüestió:

Quines són les capacitats que han de colocar-se en cada aresta per a resoldre el problema utilitzant l'algorisme de Ford-Fulkerson?

