

Department of Artificial Intelligence and Machine Learning

Date: 24.06.2025	Improvement Test	Max. Marks: 50+10
Semester: VI	UG	Duration: $1\frac{1}{2}$ Hrs + $\frac{1}{2}$ Hr
Course Title: Natural Language Processing and Transformers		Course Code: AI363IA

Part A

Part A										
Sl No	Questions		M	BT	CO					
1.	Write the equation for the scalar dot product used in the attention mechanism			2	1	1				
2.	What is the purpose of adding a classification head to a Transformer model?			2	2	1				
3.	What does the feed-forward layer in a Transformer do?		2	2	2					
4.	What is the difference between extractive and abstractive summarization?		2	2	1					
5.	Given the following probabilities for 5 tokens from a language model output: If $k = 3$, which tokens will be considered for sampling?		2	3	3					
	Token	Probability	,							
	A	0.40	,							
	В	0.25								
	C	0.15	· · · · · · · · · · · · · · · · · · ·							
	D	0.12	-		100					
	E	0.08								

Part B

SI	Questions		BT	CO
No		5		_
1.8	1.a Compare and analyse top-k and nucleus sampling techniques in text generation		4	3
	tasks. How do they balance diversity and coherence in generated text?.			
1.b	1.b Explain the concept of self-attention in transformer architecture and explain		2	1
	how the attention score is calculated			
2.a	What are some common methods used for text summarization and how do		3	3
2.0	models like T5,BART and PEGASUS contribute to improving the state of art in			
	summarization tasks?			
2.b	Describe the positional embedding's in the transformer model and how they	5	2	1
	help capture the sequential information in the input			a e Apre
3.a	Explain Character and Sub word tokenization, and also mention the	5	3	1
	importance of numericalization in tokenization process			
3.b	What is layer normalization in Transformers? Explain why and where it is		3	1
3.0	applied in the Transformer architecture			
4	Explain the role of transformer models as feature extractors in training a text	10	4	2
	classifier. How does this approach differ from fine-tuning the transformer			
	model?			
5	Explain greedy search decoding and beam search decoding in the context of text	10	2	3
	generation using transformer models			