

DIRECTORATE OF TECHNICAL EDUCATION DIPLOMA IN MECHANICAL ENGINEERING

M SCHEME 2015 -2016 onwards

III YEAR V SEMESTER

32051 - DESIGN OF MACHINE ELEMENTS

CURRICULUM DEVELOPMENT CENTRE

M-SCHEME

(Implements from the Academic year 2015-2016 onwards)

Course Name : DIPLOMA IN MECHANICAL ENGINEERING

Course Code : 1020 Subject Code : 32051

Semester : V

Subject Title : DESIGN OF MACHINE ELEMENTS

TEACHING AND SCHEME OF EXAMINATIONS:

No. of Weeks per Semester: 15 Weeks

Subject	Instructions		Examination			
	Hours/ Week	Hours/ Semester	Marks			Duration
Design of Machine Elements	6	90	Internal Assessment	Board Examination	Total	3 Hrs
			25	75	100	

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Design of Joints And Fasteners	17
II	Design of shafts, couplings and keys	17
III	Design of friction drives (flat belt and v-belt)	17
IV	Design of bearings	16
V	Design of levers and spur gears	16
	REVISION AND TEST	7
	Total	90

RATIONALE:

The main objective of Machine Design is to create new and better machine components to improve the existing one. A mechanical engineer should have thorough knowledge of design of machine elements to avoid the failure of machines or components.

OBJECTIVES:

- Design riveted joints, welded joints, sleeve and cotter joint and knuckle joint.
- Design eye bolts, cylinder cover studs.
- Design shafts, keys and couplings required for power transmission.
- Compare the different types of couplings.
- Design flat and V-belt for power transmission.
- Study the various types of bearings and their applications.
- Design journal bearings.
- Design spur gear used for power transmission.
- Design hand lever, foot lever and cranked lever.

DESIGN OF MACHINE ELEMENTS DETAILED SYLLABUS

Contents: Theory

Unit Name of the Topic

Hours

I ENGINEERING MATERIALS, JOINTS AND FASTENERS

17

General Considerations in Machine Design. Engineering materials - Factors affecting selection of material – BIS designation of Ferrous materials – Preferred number - Factor of safety and allowable stress – Stresses: Tension, Compression, Shear, Bearing pressure Intensity, Crushing, bending and torsion - problem.

Creep strain and Creep Curve- Fatigue, S-N curve, Endurance Limit - Stress Concentration – Causes & Remedies.

Theories of Elastic Failures – Principal normal stress theory, Maximum shear stress theory & maximum distortion energy theory.

Joints: Design of sleeve and cotter joint, knuckle joint and welded joint.

Fasteners: Design of bolted joints - eye bolts.

II DESIGN OF SHAFTS, KEYS AND COUPLINGS

17

Shafts: Design of shafts subjected to – twisting moment – bending moment – combined twisting and bending moments – fluctuating loads – design of shafts based on rigidity.

Keys: Types of keys - design of sunk keys only - Effect of keyways on shaft-problems.

Couplings: Requirements of good couplings – types - design of - rigid protected type flange couplings - marine couplings – pin type flexible coupling (Description only).

III DESIGN OF FLAT BELTS AND V-BELTS

17

Flat Belts: Types of belts - materials for belt — types of belt drives — Speed ratio — effect of slip - length of flat belts —Tension Ratio T1/T2= $e^{\mu\theta}$ - centrifugal tension - power transmitted — condition for maximum power - transmission — Initial Tension - problems - design procedure of flat belts - design of flat belt based on manufacturer's data only — problems.

V-Belts: V-belt drive - comparison with flat belt drive - designation of V-belts - length of belt - power transmitted - Design of V-belt using manufacturer's data only - Problem.

IV DESIGN OF BEARINGS

16

Bearings: Classifications of bearings – sliding contact and rolling contact bearings - radial and thrust bearings - roller bearing – types - Designation of ball bearings - materials used for bearings - journal bearings - heat generated - heat dissipated - cooling oil requirement – problems - design of journal bearings – Problems.

Design based on approved data books only.

V DESIGN OF LEVERS AND SPUR GEARS

16

Levers: Types of levers – applications - mechanical advantage – leverage - displacement ratio - design of-hand lever-foot lever-cranked lever - problems.

Spur gears: Gear drives - merits and demerits over belt drive - Classification of gears - gear materials - spur gear terminology - design of spur gears based on Lewis & Buckingham equation - Problems - speed reducer - types -(Approved data books only).

Text Book:

- 1) Machine Design, Pandya & Shah, Edn. 1995, Charotar Publishing House.
- 2) Machine Design, T. V. Sundararajamoorthy & N. Shanmugam, Revised Edition June-2003–Anuradha Publications, Kumbakonam.
- 3) Design Data Book by PSG College of Technology, DPV Printers, Coimbatore.

Reference Book:

- 1) A text book of Machine Design, R.S. Khurmi & J.K.Gupta, Edn. 18, Eurosia Publishing House Pvt. Limited, New Delhi-110 055.
- 2) Machine Design Bandari,
- 3) Theory and Problems of Machine Design, Holowenko, Laughlin, Schaum's outline Series.

BOARD EXAMINATIONS

QUESTION PATTERN

Note:

- Five questions will be asked, one question from each unit in either or pattern.
 All the five questions are to be answered.
- 2. Each question carries 15 marks. These questions may have sub-divisions also.
- 3. **P.S.G. DESIGN DATA BOOK IS PERMITTED.** (Required abstract pages of the P.S.G. Design Data Book Certified by the Chief Supdt. may be permitted.)