Class 69

Sec.5.3. Spectral theory,

X normed space over \square .

 $T: X \to X$ bdd linear

Def: $\sigma(T) = \{ A \in \square : \lambda I - T \text{ not invertible} \}$

(spectrum of T)

 $\rho(T) = \Box \setminus \sigma(T) = \{A \in \Box : \lambda I - T \text{ invertible}\}$

(resolvent set of T).

$$R(\lambda, T) = (\lambda I - T)^{-1}$$
 for $\lambda \in \rho(T)$

(resolvent of T)

 $\lambda \in \square$ eigenvalue of *T* if $\lambda I - T$ not 1-1.

 $\lambda \in \Box$ in continuous spectrum of T if $\lambda I - T$ 1-1, $\overline{\operatorname{ran}(\lambda I - T)} = X$ but $\operatorname{ran}(\lambda I - T) \neq X$.

 $\lambda \in \square$ in residual spectrum of T if $\lambda I - T$ 1-1, $\overline{\operatorname{ran}(\lambda I - T)} \neq X$

Note: $\sigma(T) = \{\text{eigenvalue}\} \cup \text{conti. spectrum } \cup \text{ residual spectrum, \& mutually disjoint.}$

Thm. X Banach space.

T: operator on X

Then (1) $\rho(T)$ open in \square ;

(2)
$$R(u,T) - R(\lambda,T) = (\lambda - u) R(\lambda,T) R(u,T) \ \forall u,\lambda \in \rho(T);$$

(3)
$$R(\lambda, T)$$
 analytic for $\lambda \in \rho(T)$: $\rho(T) \rightarrow B(X)$.

Pf.: (1) Let $\lambda_0 \in \rho(T)$.

Check:
$$B\left(\lambda_0, \frac{1}{\left\|(\lambda_0 I - T)^{-1}\right\|}\right) \subseteq \rho(T)$$

Check: $\left|\lambda - \lambda_0\right| < \frac{1}{\left\|\left(\lambda I - T\right)^{-1}\right\|} \Rightarrow \lambda I - T$ invertible.

$$(\lambda_0 I - T) + (\lambda - \lambda_0) I = \underbrace{(\lambda_0 I - T)}_{\text{invertible}} \underbrace{I + (\lambda - \lambda_0) (\lambda_0 I - T)^{-1}}_{\text{invertible}}$$

(Ex. 4.6.2. on p.144, $||(\lambda - \lambda_0)| \cdot ||(\lambda_0 - T)||^{-1} < 1$)

(Need Banach space: $||A|| < 1 \Rightarrow I + A$ invertible & $(I + A)^{-1} = I - A + A^2 - \dots$ conv. in $||\Box||$.)

(2) Main idea 通分:

LHS =
$$(uI - T)^{-1} - (\lambda I - T)^{-1} = (uI - T)^{-1} [(\lambda I - T) - (uI - T)] (\lambda I - T)^{-1}$$
 (通分)
= $(uI - T)^{-1} (\lambda - u) (\lambda I - T)^{-1} = \text{RHS}.$

(3) Main idea: 用 (2), reduce to conti.

$$R'(\lambda,T) = \lim_{u \to \lambda} \frac{R(u,T) - R(\lambda,T)}{u - \lambda} = \lim_{u \to \lambda} \frac{(\lambda - u)R(\lambda,T) \cdot R(u,T)}{u - \lambda}$$

$$(by(2))$$

$$= -R(\lambda,T) \lim_{u \to \lambda} R(u,T) = -R(\lambda,T)^{2}$$

$$\Rightarrow R(\lambda,T) \text{ analy. in } \lambda \quad \text{(Reason: As } u \to \lambda, uI - T \to \lambda I - T \text{ in } \|\cdot\|)$$

$$\Rightarrow (uI - T)^{-1} \to (\lambda I - T)^{-1} \text{ in } \|\cdot\|)$$
Lma. A invertible & $\|B - A\| < \frac{1}{\|A^{-1}\|} \Rightarrow B$ invertible & $\|B^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|B - A\| \|A^{-1}\|}$

$$Pf: \|B^{-1}\| \le \|A^{-1}\| \|AB^{-1}\| \le \frac{\|A^{-1}\|}{1 - \|B - A\| \|A^{-1}\|}$$

Thm. Assume *X* Banach space over \Box , $T: X \to X$ bdd operator

- (1) $\sigma(T)$ compact (Ex.5.2.6),
- (2) $\sigma(T) \neq \emptyset$ (Ex.5.3.1). \leftarrow (Deep: dim $X < \infty$, by fundamental thm of algebra)

Pf.: (1) $\sigma(T) = \Box \setminus \rho(T)$ is closed.

Let
$$\lambda \in \sigma(T)$$

Check:
$$|\lambda| \leq |T|$$

Assume
$$|\lambda| > |T|$$
.

Then
$$\lambda I - T = \lambda \left(I - \frac{T}{\lambda} \right) & \left\| \frac{T}{\lambda} \right\| = \frac{\|T\|}{|\lambda|} < 1$$

$$\therefore$$
 Ex.4.6.2. $\Rightarrow I - \frac{T}{\lambda}$ invertible.

$$\Rightarrow \lambda I - T = \lambda \left(I - \frac{T}{\lambda} \right) \text{ invertible.} \rightarrow \leftarrow$$

MILITA

(2) Assume $\sigma(T) = \emptyset$.

Then $R(\lambda, T)$ analytic on \square , i.e. entire func.

Check:
$$\lim_{|\lambda| \to \infty} R(\lambda, T) = 0.$$

For
$$|\lambda| > ||T||$$
, $R(\lambda, T) = (\lambda I - T)^{-1} = \frac{1}{\lambda} \left(1 - \frac{T}{\lambda}\right)^{-1}$

$$= \frac{1}{\lambda} \sum_{n=0}^{\infty} \left(\frac{T}{\lambda}\right)^n : ||T|| < 1, \text{ by Ex. 4.6.2}$$

$$\therefore ||R(\lambda, T)|| \le \frac{1}{|\lambda|} \sum_{n=0}^{\infty} \frac{||T||^n}{|\lambda|^n} = \frac{1}{|\lambda|} \frac{1}{1 - \frac{||T||}{|\lambda|}} = \frac{1}{|\lambda| - ||T||} \to 0 \text{ as } |\lambda| \to \infty.$$

 $\Rightarrow R(\lambda,T)$ entire & bdd on \square .

Liouville's Thm $\Rightarrow R(\lambda, T)$ is constant $\rightarrow \leftarrow$

(Same as proving fundamental thm of algebra for finite matrices)

$$\Rightarrow \sigma(T) \neq \emptyset$$
.

Thm. X Banach space, T compact on X, dim $X = \infty$.

Then one of the following holds:

$$(1) \sigma(T) = \{0\};$$

(2)
$$\sigma(T) = \{0, \lambda_1, ..., \lambda_n\}$$
, where $\lambda_i \neq 0$ eigenvalues;

(3)
$$\sigma(T) = \{0, \lambda_1, \lambda_2, ...\}$$
, where $\lambda_i \neq 0$ eigenvalues & $\lim_{i \to \infty} \lambda_i = 0$

Main idea: (1) indep. of eigenvectors

(2) Riesz Lmma

Note: If dim $X < \infty$, $\sigma(T) = \{\lambda_1, ..., \lambda_n\}$ can be arbitrary.

Pf.: (i) Check:
$$0 \in \sigma(T)$$

i.e., T not invertible.

Assume T invertible

Then
$$I = T^{-1}T$$
 compact.

$$\Rightarrow \forall \text{ bdd } Y \subseteq X, \ \overline{I(Y)} = \overline{Y} \text{ compact}$$

$$\therefore$$
 Thm. 4.3.3. (p.133) \Rightarrow dim $X < \infty$. $\rightarrow \leftarrow$

(ii) $\forall \lambda \in \sigma(T) \setminus \{0\}, \lambda$ eigenvalue of T

Reason:
$$\lambda I - T$$
 1-1 \Rightarrow onto \Rightarrow invertible $\rightarrow \leftarrow$

$$\therefore \lambda I - T$$
 not 1-1.

Let $\varepsilon > 0$.

(iii) Check: $\sigma(T) \cap \{\lambda \in \square : |\lambda| > \varepsilon\}$ is finite.

Assume
$$\lambda_n \in \sigma(T) \cap \{\lambda \in \square : |\lambda| > \varepsilon\}, n = 1, 2, ..., \text{ distinct}$$

 $\therefore \lambda_n \neq 0$

(ii) $\Rightarrow \lambda_n$ eigenvalue of T.

Let
$$x_n \neq 0$$
 in $X \ni (\lambda_n I - T) x_n = 0$

Check: $\{x_n\}$ indep. (as in finite-dim space)

Assume otherwise, say, $x_1,...x_{k-1}$ indep. & $x_1,...,x_k$ dependent($k \ge 1$) Assume $c_1x_1 + ... + c_kx_k = 0$, with c's not all 0

Apply
$$T: c_1\lambda_1x_1 + ... + c_k\lambda_kx_k = 0$$

$$\begin{array}{c} - \Rightarrow c_1 \frac{\lambda_1}{\lambda_k} x_1 + \ldots + c_k \lambda_k x_k = 0 \\ \hline - \Rightarrow c_1 \frac{\lambda_1}{\lambda_k} x_1 + \ldots + c_{k-1} \frac{\lambda_{k-1}}{\lambda_k} x_{k-1} + c_k x_k = 0 \\ \hline \left(1 - \frac{\lambda_1}{\lambda_k}\right) c_1 x_1 + \ldots + \left(1 - \frac{\lambda_{k-1}}{\lambda_k}\right) c_{k-1} x_{k-1} = 0 \\ \hline \neq 0 & 0 \\ \Rightarrow c_1 = \ldots = c_{k-1} = 0 \end{array}$$

Let
$$Y_n = \bigvee \{x_1, ..., x_n\}, n = 1, 2, ...$$

$$\Rightarrow Y_1 \subset Y_2 \subset$$

Riesz Lma
$$\Rightarrow \exists y_n \in Y_n \ni ||y_n|| = 1 \& ||y_n - y|| > \frac{1}{2} \forall y \in Y_{n-1}.$$

$$\therefore Y \text{ compact & } \left\| \frac{y_n}{\lambda_n} \right\| < \frac{1}{\varepsilon} \ \forall n$$

$$\Rightarrow \exists \frac{y_{n_j}}{\lambda_{n_j}} \ni T\left(\frac{y_{n_j}}{\lambda_{n_j}}\right) \text{conv.}$$

For
$$n_k > n_j$$
, $\left\| T \left(\frac{y_{n_k}}{\lambda_{n_k}} \right) - T \left(\frac{y_{n_j}}{\lambda_{n_j}} \right) \right\| = \left\| y_{n_k} - \left(\underbrace{y_{n_k} - T \frac{y_{n_k}}{\lambda_{n_k}} + T \frac{y_{n_j}}{\lambda_{n_j}}}_{\in Y_{n_k-1}} \right) \right\| > \frac{1}{2} \longrightarrow \longleftarrow$

$$\begin{aligned} \text{Check:} & \left(y_{n_k} - T \frac{y_{n_k}}{\lambda_{n_k}} \right) + T \frac{y_{n_j}}{\lambda_{n_j}} \in Y_{n_k - 1} \\ & \vdots \\ & y_{n_k} \in Y_{n_k} \Rightarrow y_{n_k} = \sum_{i=1}^{n_k} \alpha_i x_i \\ & \Rightarrow T y_{n_k} = \sum_{i=1}^{n_k} \alpha_i T x_i = \sum_{i=1}^{n_k} \alpha_i \lambda_i x_i \in Y_{n_k} \\ & \Rightarrow y_{n_k} - \frac{1}{\lambda_{n_k}} T y_{n_k} = \sum_{i=1}^{n_k - 1} \left(1 - \frac{\lambda_i}{\lambda_{n_k}} \right) \alpha_i x_i \in Y_{n_k - 1} \\ & & & \underbrace{\frac{1}{\lambda_{n_j}} T y_{n_j}}_{I_j} \in Y_{n_j} \subseteq Y_{n_k - 1} \end{aligned}$$

(iv) $\sigma(T)$ countable

Reason:
$$\sigma(T) = \{0\} \cup \bigcup_{n=1}^{\infty} \underbrace{\left(\sigma(T) \cap \left\{\lambda \in \square : |\lambda| > \frac{1}{n}\right\}\right)}_{\text{finite}} \Rightarrow \text{countable.}$$

(v) Assume $\{\lambda_i\}$ infinite

Then $\forall \varepsilon > 0$, except for finitely many λ 's, $|\lambda_i| \le \varepsilon$ i.e. $\lim \lambda_i = 0$

Homework:

Sec. 5.3 Ex.3,4,10

Ex. for $\sigma(T)$ for compact T.

Ex.1.
$$T(x_1, x_2, ...) = \left(x_1, \frac{x_2}{2}, \frac{x_3}{3}, ...\right)$$
 on l^2
Then $\sigma(T) = \left\{0, 1, \frac{1}{2}, \frac{1}{3}, ...\right\}$.

Ex.2.
$$T(x_1, x_2,...) = (0, x_1, \frac{x_2}{2}, \frac{x_3}{3},...)$$
 on l^2
Then $\sigma(T) = \{0\}$

Pf.: "
$$\subseteq$$
": Let $\lambda \in \sigma(T)$ & $\lambda \neq 0$

Then λ eigenvalue of T.

Say,
$$T(x_1, x_2,...) = \left(0, x_1, \frac{x_2}{2}, \frac{x_3}{3},...\right) = \lambda(x_1, x_2,...) \neq 0$$

$$\Rightarrow \lambda x_1 = 0$$

$$\lambda x_2 = x_1 \qquad \Rightarrow x_1 = x_2 = ... = 0. \rightarrow \leftarrow$$

$$\lambda x_3 = \frac{x_2}{2}$$

$$\Rightarrow \sigma(T) = \{0\}$$

:: T not onto

 $\Rightarrow T$ not invertible

$$\Rightarrow$$
 0 \in $\sigma(T)$.

Ex. 3.
$$T(x_1, x_2,...) = \left(\frac{x_2}{2}, \frac{x_3}{3},...\right)$$
 on l^2 .

Then $\sigma(T) = \{0\}$.

Pf.: " \subseteq ": Let $\lambda \in \sigma(T)$ & $\lambda \neq 0$

 $\therefore \lambda$ eigenvalue of T

$$\therefore T(x_1, x_2, ...) = \left(\frac{x_2}{2}, \frac{x_3}{3}, ...\right) = \lambda(x_1, x_2, ...) \neq 0$$

$$\begin{vmatrix} \frac{x_2}{2} = \lambda x_1 \\ \frac{x_3}{3} = \lambda x_2 \end{vmatrix} \Rightarrow x_2 = 2\lambda x_1 = 2!\lambda x_1$$

$$\Rightarrow \begin{cases} \frac{x_3}{3} = \lambda x_2 \\ \frac{x_3}{3} = \lambda x_2 \end{cases} \Rightarrow x_3 = 3\lambda x_2 = 3!\lambda^2 x_1$$

$$:: n!\lambda^n \to \infty \text{ as } n \to \infty.$$

$$\therefore (x_n) \in l^2 \Rightarrow x_1 = 0 \Rightarrow x_n = 0 \quad \forall n \rightarrow \leftarrow$$