Homework 06

1. (改编自 COD_CH, P337, 5.2)

现对一个64位存储器进行访问,表 1_1 的第一列是以字地址形式给出的访问地址顺序。(假设字的大小为64位)

1) 假设存储器的 Cache 共有 16 个基本块,每个块大小为 1 个字。请参考表 1_1 的形式,给出这些访问地址在 Cache 中对应的:二进制字地址、索引、标签和访问的命中情况。

Word Address	Binary Address	index	Tag	Hit/Miss
0x03	0000 0011	3	0	Miss
0xb4	1011 0100	4	Ь	Miss
0x2b	00101011	Ь	2	Miss
0x02	0000 0010	2	0	Miss
Oxbf	1011 1111	†	Ь	Miss
0x58	0101 1000	8	5	Miss
0xbe	1011 1110	9	Ь	Miss
0x0e	0000 1110	е	0	Miss
0xb5	1011 0101	5	Ь	Miss
0x2c	0010 1100	С	2	Miss
0xba	1011 1010	a	Ь	Miss
Oxfd	1111 1101	d	f	Miss

2) 假设存储器的 Cache 共有 8 个基本块,每个块大小为 2 个字。请参考表 1_1 的形式,给出这些访问地址在 Cache 中对应的:二进制字地址、索引、标签和访问的命中情况。

(Cache 最初为空,替换策略采用 LRU,索引、标签给出二进制形式即可)

Word Address	Binary Address	index	Tag	Hit/Miss
0x03	0000 0011	1	0	Miss
0xb4	1011 0100	2	Ь	Miss
0x2b	00101011	5	2	Miss
0x02	0000 0010	1	0	Hit
0xbf	1011 1111	7	Ь	Miss
0x58	0101 1000	4	5	Miss
0xbe	1011 1110	7	Ь	Hit
0x0e	0000 1110	7	0	Miss
0xb5	1011 0101	2	Ь	Hit
0x2c	0010 1100	6	2	Miss
0xba	1011 1010	5	Ь	Miss
0xfd	1111 1101	6	f	Miss

2. (改编自 COD_CH, P339, 5.7)

考虑以下的程序和 Cache 行为:

每 1000 条指令的	每 1000 条指令的	指令 Cache	数据 Cache	块大小	
数据读次数	数据写次数	失效率	失效率	(字节)	
250	100	0.30%	2%	64	

存储器位宽为 32-bit,带宽单位采用: bytes/cycle

这里的读写带宽是指所有读写操作的期望值分别求和,而不是瞬时最大值

- 1) 假设一个带有写直达、写分配 Cache 的 CPU 每周期执行的指令条数期望值为 0.5,那么 RAM 和 Cache 之间的读写带宽应该为多少合适? (假设每个失效 会生成一个块的请求)
- 2) 对于一个写回、写分配 Cache 来说,假设替换出的数据 Cache 块中有 30% 是脏块,那么假设 CPU 每周期执行的指令条数期望值依然为 0.5, RAM 和 Cache 之间的读写带宽需要达到多少?

CPI=2 网每周期执行 0.5条指令

读带宽: 0.5 x 0.30% x 64 = 0.096 bytes/cycle (指金 Cache 失效)

0.5 x 250 x 2% x 64 = 0.16 bytes/cycle (读数据Cache失故)

0.5 x 100 x2% x64 = 0.064 bytes/cycle (写数据Cache 失欲时写分配)

0.096 + 0. 16+ 0.064 = 0.32 bytes/cycle

写带宽: 0.5x 1000 x 4 = 0.2 bytes/cycle (写直达)

2) 对于一个写回、写分配 Cache 来说,假设替换出的数据 Cache 块中有 30% 是脏块,那么为了实现 CPI 为 2,读写带宽需要达到多少?

读带宽不变, 仍为 0.32 by tes/y cle 写带家: $0.5x \frac{250 + 100}{1000} \times 2\% \times 0.3 \times 69 = 0.0672$ by tes/y cle

假设 CPU 执行某段程序时,共访问 Cache 命中 2000 次,访问主存 50 次。已知 Cache 存取周期为 50ns,主存存取周期为 200ns。求 Cache—主存系统的 命中率和平均访问时间。

命中: 2000 ~ 27.6%

平均访问时间: 认为在未命中时需考虑 Ca che 访问时间

2000 x50 + 50x250 2000 +50 ~ 54.87 ns

4. (改编自 *COD_CH*, *P*341, 5.12)

多级 Cache 是一种重要的技术,可以克服在一级 Cache 提供的有限空间的同时仍然保持速度。考虑具有一下参数的处理器:

无内存停顿 的基本CPI	处理器速度	主存访问 时间	每条指令的 L1 Cache 失效率	L2 直接映射 Cache 速度	L2 直接映射 Cache 全局失效率	L2 八路组 相联 Cache 速度	L2 八路组 相联 Cache 全局失效率
1.5	2GHz	100ns	7%	$12\ cycles$	3.5%	$28\ cycles$	1.5%

 $^{^*}L1\ Cache$ 失效率是针对每条指令而言的。假设 $L1\ Cache$ 的总失效数量(包括指令和数据)为总指令数的 7%

- 1) 分别计算在下列情况下的处理器 CPI:
- 仅有 L1 Cache
- 使用 L2 直接映射 Cache
- 使用 L2 八路组相联 Cache

仅有 L1 Cache

 $1.5 + 7\% \times 2 \times 10^{9} \times 100 \times 10^{-9} = 15.5$

• 使用 L2 直接映射 Cache

 $1.5 + 7\% \times 12 + 3.5\% \times 2 \times 10^{9} \times 100 \times 10^{-9} = 9.34$

使用 L2 八路组相联 Cache

 $1.5 + 7\% \times 28 + 1.5\% \times 2 \times 10^{9} \times 100 \times 10^{-9} = 6.46$

2) 假设处理器采用 L2 直接映射 Cache,设计人员希望添加一个 L3 Cache,该 Cache 访问时间为 50 个时钟周期,并且具有 13% 的失效率,请计算此处理器的 CPI。

认为此处 13% 失效率为局部失效率 1.5 + 7% × 12 + 3.5% × 50 + 3.5% × 13% × 2× 10⁹ × 100×10⁻⁹ = 5

3) 在较老的处理器中,例如 $Intel\ Pentium$ 或 $Alpha\ 21264$, $L2\ Cache$ 在主处理器和 $L1\ Cache$ 的外部(位于不同芯片上)。虽然这种做法使得大型 $L2\ Cache$ 成为可能,但是访问 $L2\ Cache$ 的延迟也变得很高,并且因为 $L2\ Cache$ 以较低的频率运行,所以带宽通常也很低。假设 512KiB 的片外 $L2\ Cache$ 的失效率为 4%,如果每增加一个额外的 512KiB 片外 $L2\ Cache$ 能够降低 0.7% 的失效率,并且片外 $L2\ Cache$ 的总访问时间为 $50\$ 个时钟周期,那么片外 $L2\ Cache$ 容量必须多大才能与第一问列出的 $L2\$ 直接映射 Cache 的性能相匹配?

认为此处 4% 失效率为局部失效率

1.5 + 7% x 50 + 7%x 4% x2x109x loox10-9 = 5.56 < 9.34

R.] Cache容量为 512 KiB