MATHEMATICS METHODS

MAWA Semester 2 (Units 3 and 4) Examination 2017

Calculator-Assumed

Marking Key

© MAWA, 2017

Licence Agreement

This examination is Copyright but may be freely used within the school that purchases this licence.

- The items that are contained in this examination are to be used solely in the school for which they are purchased.
- They are not to be shared in any manner with a school which has not purchased their own licence.
- The items and the solutions/marking keys are to be kept confidentially and not copied or made available to
 anyone who is not a teacher at the school. Teachers may give feedback to students in the form of showing
 them how the work is marked but students are not to retain a copy of the paper or marking guide until the
 agreed release date stipulated in the purchasing agreement/licence.

The release date for this exam and marking scheme is the end of week 1 of term 4, 2017

Page 1 © MAWA 2017

 $\{a=4.414950195e-3\}$

{b=1.930772091E-3}

{t=1853.800329}

Section Two: Calculator-assumed

(99 Marks)

Question 10(a)

Solution

Isotope A decays faster.

Reason: Its half-life is less than the half-life of isotope B, i.e. it loses half of its mass faster than isotope B loses half of its mass.

Marking key/mathematical behaviours	Marks
answers correctly	1
uses the concept of half-life correctly	1

Question 10(b)

Solution

May assume that $A(t) = e^{-at}$ and $B(t) = e^{-bt}$ where A(t) and B(t) are the amounts of isotopes A and B respectively, t years from now.

 $solve(e^{-157\cdot a}=0.5,a)$

 $solve(e^{-359 \cdot b} = 0.5, b)$

solve $(\frac{e^{-1.930772091E-3t}}{e^{-4.414950195E-3t}} = 100, t)$

Using the half-lives:
$$e^{-157a} = \frac{1}{2}$$
 and $e^{-359b} = \frac{1}{2}$.

So
$$a = \frac{\ln 2}{157} \approx 4.4150 \times 10^{-3}$$
 and

$$b = \frac{\ln 2}{359} \approx 1.9308 \times 10^{-3}$$

When
$$\frac{B(t)}{A(t)} = 100$$
, $\frac{e^{-0.0019308t}}{e^{-0.0044150t}} = 100$ (#)

i.e.
$$e^{0.0024842t} = 100$$
 , i.e. $t \approx 1853.8$

So it takes 1854 years before the ratio of the concentrations become 100 to 1.

Marking key/mathematical behaviours	Marks
 uses exponential models for the amounts of isotopes at time t 	1
 uses half-lives to solve for the constants a and b correctly 	1
uses equation (#)	1
 solves for the time, correct to the nearest year. 	1

Question 11(a)

Solution

Population would be all the people eligible to vote in the election Sample is the 100 voters asked

Marking key/mathematical behaviours	Marks
Identifies population correctly	1
Identifies sample correctly	1

Page 2 © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 11(b)

Solution	
Use a method to randomly choose 100 people from the electoral role	
Marking key/mathematical behaviours	Marks
states a suitable method	1

Question 11(c)

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 12(a)

Question 12(b)

Solution					
c 0 1 2					
Pr(C = c)	0.16	0.48	0.36		
Marking key	/mathematica	I behaviours			Marks
• calculat	calculates correct probabilities (if only two correct, allow 1 mark)				2

Question 12(c)

Solution

$$n = 5$$
 $p = 0.84$, $\mu = np$
= 5(0.84)
= 4.2

: The Bernesse family may expect to stop at least once, five times over the five days.

Ма	rking key/mathematical behaviours	Marks
•	recognises the binomial distribution and correctly calculates the expected value	1+1

Page **4** © MAWA 2017

Question 13(a)

Solution	
Pr (train is late 4 times out of 15)	
$= {}^{15}\mathbf{C}_4(0.7)^{11}(0.3)^4$	
= 0.219	
Marking key/mathematical behaviours	Marks
recognises the binomial distribution and correctly calculates the expected value	1+1

Question 13(b)

Solution Pr (train is late 4 times for at least 2 of the next 8 of late 4 times per day = 0.219 from part (a)	days):	
Pr that train is not late over the 8 days	$= {}^{8}\mathbf{C}_{0}(0.219)^{0}(0.781)^{8}$ $= 0.138$	
Pr train is late once over the 8 days	$= {}^{8}\mathbf{C}_{1}(0.219)^{1}(0.781)^{7}$ $= 0.311$	
∴ Pr train is late 4 times over the 8 days	= 1 - 0.138 - 0.311 = 0.551	
Marking key/mathematical behaviours		Marks
calculation of probability of train not being late (using result from (a)		1
calculates probability for train late once		1
subtracts the two probabilities from one to ac	hieve end result	1

Question 13(c)

Solution	
(0.7)(0.7)(0.7)(0.3)	
= 0.103	
Marking key/mathematical behaviours	Marks
recognizes ordered probability and uses appropriate calculation	1

Page **5** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 14(a)

Solution

Since $N \propto \log_{10} \left(\frac{P}{P_0}\right)$, where N is the noise level in decibels and P is the power and

 P_0 is a reference power level, and since N increases by 10 if the power increases by a factor of 10, $N=10(\log_{10}P-\log_{10}P_0)$, (#)

So if P increases by a factor of 40, N increases by $10\log_{10} 40 \approx 16.02 \, dB$

510	
Marking key/mathematical behaviours	Marks
obtains equation (#) or equivalent	1
obtains correct answer	1

Question 14(b)(i)

Solution

Since
$$2 \times 7^2 = 98 \approx 100 = 10^2$$

it follows that $\log_{10} 2 + 2 \log_{10} 7 \approx 2$ (#)

i.e.
$$\log_{10} 7 \approx 1 - \frac{\log_{10} 2}{2} \approx 1 - \frac{0.30}{2} = 0.85$$

Markin	g key/mathematical behaviours	Marks
•	obtains approximation (#)	1
•	obtains correct answer	1

Question 14(b)(ii)

Solution

Since
$$2^{12} \times 3^5 = 995328$$

and
$$995328 \approx 1000000 = 10^6$$

it follows that $12 \log_{10} 2 + 5 \log_{10} 3 \approx 6$ (#)

and so
$$\log_{10} 3 \approx \frac{6 - 12 \log_{10} 2}{5} \approx \frac{6 - 12 \times 0.30}{5} = 0.48$$

Marking key/mathematical behaviours	Marks
• evaluates $2^{12} \times 3^5$ correctly	1
obtains approximation (#)	1
obtains correct answer	1

Page 6

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 15(a)

Solution	
$y_{max} = a + b = 14.5$ and $y_{min} = a - b = 9.5$ (#)	
and so $a = 12$ and $b = 2.5$	
Since the period is 1 year, i.e. 365 days, $c = 365$	
Marking key/mathematical behaviours	Marks
Warking Roy/mariomatical behavioure	Marks
obtains equations (#)	1
	1 1

Question 15(b)

\sim	
C. V	lutior
. 7(1)	11 11 16 16

When
$$y(t) = y_{max}$$
 we have $\frac{2\pi(t+9)}{365} = 2\pi$ (#)

i.e.
$$t + 9 = 365$$
 i.e. $t = 356$

So the 356th day, (December 22nd) will be the longest day.

Marking key/mathematical behaviours	
obtains equation (#)	1
obtains correct answer	1

Question 15(c)

Solution

$$y'(t) = -\frac{2\pi b}{365} \sin \frac{2\pi (t+9)}{365} = -\frac{5\pi}{365} \sin \frac{2\pi (t+9)}{365}$$

So
$$y'(t) = y'_{min}$$
 when $\frac{2\pi(t+9)}{365} = \frac{\pi}{2}$ (#)

i.e. when
$$t + 9 = \frac{365}{4}$$
 i.e. $t = 82.25$

So the number of daylight hours will be decreasing fastest on the 82nd day, i.e. on March 23rd.

Marking key/mathematical behaviours	Marks
differentiates correctly	1
obtains equation (#)	1
obtains correct answer	1

Question 15(d)

Solution

$$y'_{min} = -\frac{5\pi}{365} \approx -0.0430$$

By the increments formula $\delta y \approx y' \times \delta t$ and so if $\delta t = 1$ $\delta y \approx y' \approx -0.0430$

So the largest difference in the number of daylight hours in successive days is 0.043 hours, i.e. 2.6 minutes.

Marking key/mathematical behaviours	Marks
• correctly calculates y'_{min}	1
uses increments formula correctly	1

Question 16(a)

Solution

(i) $X \sim N (3.5, 0.2^2)$

$$P(X=3.5)=0$$

(ii) $X \sim N(3.5, 0.2^2)$ P(X > 3.2) = 0.93

(iii)

$$P(X < 3.5 | X > 3.2) = \frac{P(3.2 < X < 3.5)}{P(X > 3.2)}$$
$$= \frac{0.4332}{0.9332}$$
$$= 0.4642$$

calculates the correct value for m

1

Marking key/mathematical behaviours	
recognises exact probabilities are equal to zero	1
calculates correct probability	1
applies the appropriate formula and associated probabilities leading to the correct answer and correct diagram	1+1+1

Question 16(b)

Question 16(c)

Solution
$X^{\sim}N(3.5, \sigma^2)$
P(X > 3.7) = 0.1
$P\left(Z > \frac{3.7 - 3.5}{\sigma}\right) = 0.1$
$\frac{3.7-3.5}{\sigma} = 1.28$
$\sigma = 0.156$
= 16 centimetres

Marking key/mathematical behaviours	Marks
uses the correct formula and substitutes values	1
calculation the standard score	1
states the correct answer	1 1

Question 17(a)

Solution $v = \int 3 \sin(2t) dt$ $= -\frac{3}{2} \cos(2t) + c$ $t = 0 \rightarrow -\frac{3}{2} + c = 4$ c = 5.5 $\therefore v = -\frac{3}{2} \cos(2t) + 5.5$

Marking key/mathematical behaviours	Marks
 correctly integrates to find equation for v involving c 	1
• correctly evaluates <i>c</i>	1
writes an expression for v	1

Page **9** © MAWA 2017

Question 17(b)

Question 18(a)

Question 18(b)

Question 18(c)

\sim		
So	lı ıt	ınn
		11 71 1

The *x*-value of 6 is 2.4 standard deviations away from the mean.

Marking key/mathematical behaviours	Marks
provided an acceptable explanation	1

Question 18(d)

Solution

$$F(x) = \int_{0}^{x} 3x^{2} dx = \left[x^{3}\right]_{0}^{x} = x^{3} \quad (0 < x < 1)$$

$$\therefore F(x) = \begin{cases} 0 & x \le 0 \\ x^{3} & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$$

Marking key/mathematical behaviours	Marks
evaluates the correct integral	1
• defines $F(x)$	1
• states the three domains correctly for $F(x)$	1

Question 19

Solution

Check sample size is large enough for normal approximation np > 10 and n(1-p) > 10.

In this case, $1000 \times 0.48 = 480 > 10$ $1000 \times 0.52 = 520 > 10$

Therefore, normal approximation can be applied.

$$CI = 0.48 \pm 1.96 \sqrt{\frac{0.48 \times 0.52}{1000}}$$
$$= 0.48 \pm 0.03097$$
$$= (0.45, 0.51)$$

(0.45, 0.51) is a 95% Confidence Interval for the true proportion of students excited by the upcoming concert.

Marking key/mathematical behaviours	Marks
Checks the sample size for normal approximation	1+1
Sets up CI and evaluates correctly	1+1
correctly interprets result	1

Question 20(a)

$$\sum_{i} f(x_{i}) \delta x_{i} = f(2.5) \times (1) + f(3.5) \times (1) + f(4.5) \times (1) + f(5.5) \times (1)$$
(i)
$$= 2.8 + 5.8 + 5.9 + 5.4$$

$$= 19.9$$

The area is approximately 20 square units.

(ii) The area represents the distance travelled by the projectile between t=2 and t=6

Marking key/mathematical behaviours	Marks
$ullet$ estimates the function at the values suggested (allow ± 0.2)	2
applies the summation correctly	1
states the required area	1
correctly interprets the meaning of the area as the distance travelled	1

Page **12** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 20(b)

Solution

The area of the triangle formed by g(x) and the x-axis (between x=0 and x=2) = 1 square unit.

Hence,

(i) region A =
$$\left| \int_0^2 f(x) dx \right| - 1 = 5.1 - 1 = 4.1$$

Region B =
$$\int_{2}^{4} f(x)dx - \int_{2}^{4} g(x)dx$$

= $\int_{0}^{4} f(x)dx - \int_{0}^{2} f(x) - \int_{2}^{4} g(x)dx$
= $-2.18 - (-5.1) - 1$
= 1.92

Marking key/mathematical behaviours	Marks
Calculates the area of the triangle	1
Calculates the area of region A	1
• Defines region B in terms of integrals of $f(x)$ and $g(x)$	1
 Re-arranges the integrals using the integral properties so as to be able to use the information given Shows the required result. 	2 1

Question 21(a)

Solution $\int_{0}^{1} \frac{dx}{x+1} = \left[\ln(x+1)\right]_{0}^{1} = \ln 2 - \ln 1 = \ln 2$	$\int_0^1 \frac{1}{x+1} dx$	
$\int_{0}^{\infty} x + 1$		ln(2)
Marking key/mathematical behaviours		Marks
• obtains $ln(x + 1)$ as the antiderivative		1
evaluates at limits correctly		1

Page **13** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 21(b)

Solution	
$\int_0^1 \frac{x dx}{x^2 + 1} = \left[\frac{1}{2} (\ln(x^2 + 1)) \right]_0^1 = \frac{1}{2} \ln 2 - \frac{1}{2} \ln 1 = \frac{1}{2} \ln 2$	
$\int_{0}^{1} \frac{x}{x^2 + 1} dx$ $\frac{\ln(2)}{2}$	
Marking key/mathematical behaviours	
• obtains $\frac{1}{2} \ln (x^2 + 1)$ as the antiderivative	1
evaluates at limits correctly	1

Question 21(c)(i)

Page 14	© MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 21(c)(ii)

The heat loss is ~293 kilojoules.

Marking key/mathematical behaviours	Marks
• indicates that the heat loss in the integral from 0 to 120 of $\frac{dH}{dt}$	1
states the correct result	1
states the correct units	1

Question 21(c)(iii)

a ≈ 1.16

Marking key/mathematical behaviours	Marks	
• indicates solving the integral of from 0 to 120 of $\frac{dH}{dt}$ = 300	1	
states the correct result	1	

Page **15** © MAWA 2017

MATHEMATICS METHODS SEMESTER 1 (UNITS 3 AND 4) EXAMINATION Question 22(a)

Question 22(b)

Solution

Using the CAS calculator to solve for *a*:

solve
$$(\int_{a}^{\frac{\pi}{2}} 3 \times e^{-x} \times \sin(2x) dx = 0, a)$$

{a=-14.69074126, a=-13.11994516,

From the graph in part (a) it is obvious that $-\frac{\pi}{2} < a < 0$ so, need to select

$$a \approx -0.6$$

Marking key/mathematical behaviours	Marks
 Solves correctly (if provides additional values for a – subtract one mark) 	2

Page **16** © MAWA 2017