

$$\#_{1}\left(2\right) = \frac{\left(2-0.5\right)}{\left(2-0.5\right)}$$

$$\#_2(z) = \frac{2 + 0.5}{2 + 0.7}$$

Exercise 1 / Corp 9:

$$y[n] = \frac{1}{2}y[n-1] + x[n]$$

$$X[M] = \left(\frac{1}{4}\right)^{M} M[M]$$

	x[m]	y [n]
M=0	# <u>1</u>	1
M = 1	1/4	3/4
w=2	1/16	7/16
M=3	1/64	15/64
M=4	1/256	31/256
M=5	1/1029	63/1024
	\downarrow	1
	0	0

Tuthol cond.
= 0
$y[0] = \frac{1}{2} \left(y[-1] + \pi[0] = 1 \right)$
$y[1] = \frac{1}{2} \cdot y[0] + x[1] = \frac{1}{2} + \frac{1}{24} = \frac{3}{4}$

$$\frac{3}{8} + \frac{1}{16}$$
 $\frac{7}{32} + \frac{1}{64} = \frac{15}{64}$
 $\frac{15}{128} + \frac{1}{256} = \frac{15}{128}$

(Quant - with sollurotion)

	[M3x	[m]Y	
w = 0	15/16	15/16	
w = 1	1/4 = 4/16	11/16	
M= Z	1/16	6/16 (.0110
W = 3	0	3/16	
m = 4	0	1/16	<u>}</u>
N = 5	0	0	
	O	1 0	
		↓ :	

$$\begin{cases} 1 \\ 0 \end{cases} = \frac{15}{16} \\ 1 \\ 0 \end{cases}$$

$$\begin{cases} 1 \\ 0 \end{cases} = \frac{1}{2} \cdot (91) + x[0] \\ 15/16$$

$$\begin{cases} 1/4 = 4/6 \\ 1/5 = 1/6 \end{cases}$$

$$\begin{cases} 1/6 \\ 1/6 = 1/6 \end{cases}$$

$$N=3: \times [3]=\frac{1}{64}=\frac{0.25}{16}$$

	x [m] x	y[m]	
N = 0	15/16	15/16	
W = 1	1/4 = 4/16	(12/16	
W = Z	1/16	7/16	
n = 3	0	4 /16	
N =4	0	2/16	
W = 2	0	1/16	
W=6	0	1/16	4
w=7	0	1/16	
		1/1/6	
	0	1/16	(anstorn)
			/1 -1 .

 $\times \left\{ u \right\} = \left(\frac{1}{4} \right)^{N_1} \cdot u \left\{ u \right\}$

$$y(6) = \frac{1}{2} \cdot \frac{1}{16} + 0$$

$$\left(\frac{0.5}{0.5}\right)_{6} = \frac{1}{16}$$

$$\frac{1}{2} \cdot \frac{11}{16} + \frac{13}{16} = \frac{6}{16} + \frac{13}{16} = \frac{15}{16}$$
Saturated

Exercise
$$\pm 1$$
 / $\log 10$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^2)}$$

$$H_1(z) = \frac{1 - 4z^2}{(1 - 4z^2)(1 + 4z^$$

 $\geq \left(h_{2}(n)\right)^{2}: \qquad H_{2}\left(\frac{1}{2}\right) \cdot \frac{1}{2} = \frac{1}{1 + \frac{1}{4}z^{-1}} \cdot \frac{1}{1 + \frac{1}{4}z} \cdot \frac{1}{1 + \frac{1}$ residual (2+4)

(2+4) $\frac{4}{\left(\frac{2}{2} + \frac{1}{4}\right)\left(\frac{2}{2} + 4\right)} = \frac{A}{2} + \frac{A}{4} + \frac{A}{2}$ $P = -\frac{1}{4}$ P = -4podro: X 1/x $A_{\perp} = \frac{4}{\frac{15}{4}} = \frac{4}{\frac{15}{4}} = \frac{16}{15}$ $= \sum \left(h_{2} \left(h_{1} \right)^{2} \right)^{2} = \frac{16}{15}$ $+ \left(t_{1} \right)^{2} + \left(t_{2} \right)^{2} + \left(t_{3} \right)^{2} + \left(t_{4} \right)^{2} + \left(t_{1} \right)^$ $\frac{2-\frac{1}{2}}{2-\frac{1}{2}} \cdot \frac{\left(1-\frac{1}{2}z\right)}{2}$ $(\frac{7-\frac{1}{4}}{4})(\frac{7+\frac{1}{4}}{4}) \qquad (1-\frac{1}{4}\frac{2}{4})$ $\frac{\left(2-\frac{1}{2}\right)\left(1-\frac{1}{2}2\right)}{-16}$ $\left(2-\frac{1}{4}\right)\left(2-\frac{1}{4}\right)\left(1-\frac{1}{4}2\right)\left(1+\frac{1}{4}2\right)$ $(2-\frac{1}{4})(2+\frac{1}{4})(2-4)(2+4)$ $= \frac{A_{1}}{2 - \frac{1}{4}} + \frac{A_{2}}{2 + \frac{1}{4}} + \frac{A_{3}}{2 - 4} + \frac{A_{4}}{2 + 4}$

- END-