Graphs 1: Strongly Connected Components

Graph Algorithms

- 1. Outline
 - Review
 - Directed Graphs: SCC's
 - Application: 2-SAT
 - MST
 - PageRank

Outline

- 1. Connected components via DFS-based algorithms
 - Depth-first search
 - Undirected graphs
 - Directed graphs
 - DAG: Directed acyclic graph
 - * Topological sorting
 - SCC: Strongly connected components
 - * Find with 2 DFS's

Undirected Graphs

- 1. How do we get connected components in undirected G?
 - Run DFS and keep track of component number

```
DFS(G):
input: G(V,E) in adjacency list representation
output: Vertices labeled by connected components
cc = 0
for all v in V:
    visited(v) = false
for all v in V:
    if not visited(v):
        cc++
        Explore(v)
```

Exploring Undirected Graphs

- 1. How to explore a graph:
- 2. Running time: O(n+m)
 - n = |V|, m = |E|

```
Explore(z):
ccnum(z) = cc
visited(z) = true
for all (z,w) in E:
    if not visited(w):
        Explore(e)
```

DFS: Paths

- 1. DFS: connected components
 - How to find a path between connected vertices?

```
DFS(G):
input: G(V,E) in adjacency list representation
output: Vertices labeled by connected components
cc = 0
for all v in V:
   visited(v) = false
   prev(v) = null
for all v in V:
    if not visited(v):
        cc++
       Explore(v)
Explore(z):
ccnum(z) = cc
visited(z) = true
for all (z,w) in E:
    if not visited(w):
       Explore(e)
       prev(w) = z
```

DFS on Directed Graphs

- 1. How do we get connectivity info for directed G?
 - Use DFS: add pre/postorder numbers

```
DFS(G):
input: G(V,E) in adjacency list representation
output: Vertices labeled by connected components
clock = 1
for all v in V:
   visited(v) = false
   prev(v) = null
for all v in V:
    if not visited(v):
       Explore(v)
Explore(z):
pre(z) = clock; clock++;
visited(z) = true
for all (z,w) in E:
    if not visited(w):
       Explore(e)
       prev(w) = z
post(z) = clock; clock++;
```

Directed DFS: Example

- 1. Run DFS starting at B
 - Assume linked lists are stored in alphabetical order

Example of directed DFS

DFS Example

Types of Edges

- 1. Edge $z \rightarrow w$:
 - Tree edge:
 - $B -> A, A -> D, \dots$
 - post(z) > post(w)
 - Back:
 - E -> A, F -> B
 - post(z) < post(w)
 - Forward:
 - D -> G, B -> E
 - post(z) > post(w)
 - Cross:
 - F -> H, H -> G
 - post(z) > post(w)

Cycles

- 1. G has a cycle iff its DFS tree has a back edge
- 2. Proof:
 - cycle $a \rightarrow b \rightarrow c \rightarrow \dots \rightarrow j \rightarrow a$
 - Suppose our graph has a cycle, prove that the DFS tree has a back edge
 - One of these is first explored, say i
 - * Back edge: i-1 -> i (from descendant to ancestor)
 - Suppose our DFS tree has a back edge, prove the tree contains a cycle
 - Back edge a -> b

Topological Sorting

- 1. DAG: Directed acyclic graph
 - No cycles = No back edges
- 2. Topologically sorting a DAG
 - Order vertices so that all edges go lower -> higher
- 3. Run DFS on DAG G
 - for all $z \rightarrow w$, we know post(z) > post(w)
 - Order vertices by decreasing post-order number
 - Post-order numbers range from 1 to 2n
 - Linear time sorting because we can just place them at their index in an array
 - Overall runtime: O(n+m)

Topological Ordering Quiz

- 1. Give all topological orderings:
 - XYUZW
 - XYZWU
 - XYZUW
 - Z must come before W
- 2. How many topological orderings are there?

Topological Ordering Quiz

DAG Structure

- 1. Source vertex = no incoming edges = highest post-order number
- 2. Sink vertex = no outgoing edges = lowest post-order number
- 3. DAG guarantees at least one source and one sink
- 4. Alternative topological sorting algorithm:
 - Use for general directed graphs
 - 1) Find a sink, output it and delete it
 - 2) Repeat (1) until the graph is empty

Outline Review

- 1. Connected components via DFS-based algorithms
 - Undirected graphs
 - Directed graphs
 - DAG = directed acyclic graph
 - * Topological sorting
 - SCC = strongly connected components
 - * Find with 2 DFS's

Connectivity in Directed Graphs

- 1. Vertices v and w are strongly connected if:
 - $\bullet \;$ There is a path v -> w and w -> v
- 2. SCC = Strongly connected component
 - Maximal set of strongly connected vertices

SCC Quiz

- 1. How many SCCs in this graph?
 - 5
- 2. What are they?
 - {A}
 - {B,E}
 - {C,F,G}
 - {D}
 - {H,I,J,K,L}

Graph of SCC

- 1. Metagraph: Vertex for each SCC
 - Metagraph of SCC is always a DAG
 - Two SCCs that have a cycle are, by definition, a single SCC
- 2. Every directed graph is a DAG of its SCC's
 - Find SCCs and topological ordering with two runs of DFS

SCC Metagraph

SCC Algorithm Idea

- 1. Steps to the algorithm
 - Find sink SCC S
 - Output it
 - Remove it
 - Repeat
- 2. Why sink SCC?
 - Take any v in S where S is sink SCC
 - Run Explore(v): visit all of S and nothing else
 - If we start with a source, like we could for a topological sort, we'll find that we can reach many vertices
- 3. How do we find a sink SCC?

Vertex in sink SCC

- 1. In a DAG:
 - Vertex with lowest postorder number is a sink
- 2. In a general directed G:
 - Does v with lowest postorder number always lie in a sink SCC?
 - No
 - B <-> A -> C
 - * Start at A
 - * A = (1,6)
 - * B = (2,3)
 - * C = (4,5)

- * B has the lowest postorder number, but is part of a source SCC
- Does v with highest postorder number always lie in a source SCC?
 - Yes

Finding sink SCC

- 1. Vertex v with highest postorder number lies in a source SCC
 - How to get w in sink SCC?
 - Reverse the graph and find a source SCC
 - * Sources become sinks, sinks become sources
 - For directed G = (V,E), look at $G^R = (V,E^R)$ = reverse of G
 - $Er = \{wv : vw \text{ in } E\} = reverse \text{ of every edge in } E$
 - Source SCC in G = sink SCC in G^R
 - Sink SCC in G =source SCC in G^R

SCC Example

- 1. Sort the vertices by postorder number on the reverse graph in decreasing order
 - Two runs of DFS provide the strongly connected components and structure them in topological order

 SCC Algorithm

SCC Alg. Example

SCC Algorithm

SCC Algorithm

1. Runtime: O(n+m)

SCC(G):

input: directed G = (V,E) in adjacency list

Construct Gr Run DFS on Gr

Order V by decreasing postorder number

Run undirected connected components algorithm on G

Proof of Key SCC Fact

- 1. Vertex with highest postorder number lies in a source SCC
 - Simpler claim:
 - For SCC's S and S'
 - * if v in S -> w in S'
 - $\ast\,$ then max postorder number in S > max postorder number in S'
 - Topologically sort by max postorder number

Simpler Claim

- 1. For SCC's S and S'
 - if v in $S \rightarrow w$ in S'
 - then max postorder number in S > max postorder number in S'
 - No path from S' -> S because S and S' are both SCCs
- 2. Run DFS on G
 - Some vertex z in S U S' visited first

- if z in S':
 - * when we Explore(z) we see all of S' and none of S
 - * All postorder numbers in S' < all min(postorder numbers is S)
- if z in S:
 - * when we Explore(z), z has max postorder number in S U S'
 - * We will traverse the whole tree and finish at z

BFS/Dijkstra's

- 1. DFS: Connectivity
- 2. BFS:
 - Input: G(V,E) and start vertex s in V
 - Output: for all v in V, $\operatorname{dist}(v) = \min$ number of edges from s to v
 - Also, prev(v)
 - Runtime: O(n+m)
- 3. Dijkstra's:
 - Input: G(V,E) and start vertex s in V, l(e) > 0 for every e in E
 - Output: for all v in V, dist(v) = length of shortest $s \rightarrow v$ path
 - Also, prev(v)
 - Runtime: $O((n+m)\log n)$
 - Like BFS, but considers weights for each edge
 - Uses a min-heap