- 1. Let \mathbb{F} be an ordered field such that $\mathbb{Q} \subset \mathbb{F}$ (with the same ordering and same field operations) and such that \mathbb{Q} is dense in \mathbb{F} . Prove the following properties of \mathbb{F} are equivalent:
 - (a) Every nonempty subset of \mathbb{F} that is bounded above has a least upper bound in \mathbb{F} .
 - (b) If $A \subset \mathbb{F}$ is such that $A \neq \emptyset$, $\mathbb{F} \setminus A \neq \emptyset$, $x < y \in A \Rightarrow x \in A$, and $x \in A \Rightarrow \exists y \in A, y > x$, then there is a unique $\alpha \in \mathbb{F}$ such that $A = \{x \in \mathbb{F} : x < \alpha\}$.
 - (c) Every bounded increasing sequence in \mathbb{F} converges to a point in \mathbb{F} , where x_n converges to X means that for every $\mathbb{F} \ni \epsilon > 0$ there is N so that $x \epsilon < x_n < x + \epsilon$ whenever n > N.
 - (d) Every Cauchy sequence in \mathbb{F} converges to a point of \mathbb{F} , where the sequence x_n is Cauchy in \mathbb{F} if for every $\mathbb{F} \ni \epsilon > 0$ there is N so that $x_m \epsilon < x_n < x_m + \epsilon$ whenever n > N and m > N.

Solution

• $(a) \Rightarrow (b)$

Let A be as in the hypotheses of (b). A is nonempty (by hypothesis). Further, $\mathbb{F}\backslash A$ is nonempty as well (by hypothesis), hence there exists some $z\in\mathbb{F}$ such that $z\notin A$. z is an upper bound of A, for if x>z were such that $x\in A$, then, since A satisfies the condition " $x< y\in A\Rightarrow x\in A$ " (by hypothesis), we'd conclude that, in fact, $z\in A$, but we chose z specifically such that $z\notin A$. Thus A satisfies the hypotheses of (a), so has a least upper bound $\alpha\in\mathbb{F}$. Further, $\alpha\notin A$, for, since A satisfies the condition " $x\in A\Rightarrow \exists y\in A,y>x$ " (by hypothesis), the inclusion of $\alpha\in A$ would imply the existence of some $x\in A$ but with $x>\alpha$, violating the fact that α is a least upper bound of A. This establishes that $A\subset \{x\in\mathbb{F}:x<\alpha\}$. To show the opposite inclusion, suppose $x<\alpha$. There must exist some $y\in A$ such that $x< y<\alpha$, for if such was not the case, x would be an upper bound of A, contradicting the fact that α is the least upper bound. But then the existence of such a y and the condition on A that " $x< y\in A\Rightarrow x\in A$ " implies that $x\in A$, which establishes the desired opposite inclusion. Therefore, $A=\{x\in\mathbb{F}:x<\alpha\}$.

• $(b) \Rightarrow (c)$

Let $\{x_n\}_{n=1}^{\infty}$ be a sequence as in the hypotheses of (c). Let $A_n = \{x \in \mathbb{F} : x < x_n\}$ and set $A = \bigcup_n A_n$. Clearly, $A \neq \emptyset$ as each $A_n \neq \emptyset$. Further, $\{x_n\}$ is bounded (by hypothesis), say, by $z \in \mathbb{F}$, thus each $A_n \subset \{x \in \mathbb{F} : x < z\}$, so $A \subset \{x \in \mathbb{F} : x < z\}$, from which it follows that $\mathbb{F} \setminus A \supset \{x \in \mathbb{F} : x \geq z\} \neq \emptyset$. Further, suppose $y \in A$. Then $y \in A_n$ for some n, and since $A_n \supset \{x \in \mathbb{F} : x < y\}$, any $x \in \mathbb{F}$ with x < y will be in A_n , hence A. This establishes the condition " $x < y \in A \Rightarrow x \in A$ ". Lastly, suppose $x \in A$. Then, again, $x \in A_n$ for some n, so $x < x_n$ and there exists a $y \in \mathbb{F}$ such that $x < y < x_n$. $y \in A_n$, so $y \in A$, establishing the condition " $x \in A \Rightarrow \exists y \in A, y > x$ ". Thus A satisfies the hypotheses of (b), so there exists a unique $\alpha \in \mathbb{F}$ such that $A = \{x \in \mathbb{F} : x < \alpha\}$.

Now let $\epsilon \in \mathbb{F}$, $\epsilon > 0$ be given, and set $\alpha_- = \alpha - \epsilon \in A$. Then $\alpha_- \in A_N$ for some N. Indeed, since $\{x_n\}$ is an increasing sequence (by hypothesis), $A_m \subset A_{m+1}$, hence $\alpha_- \in A_n$ for all $n \geq N$. Thus $\alpha_- < x_n$ for all $n \geq N$, or, equivalently, $\alpha - \epsilon < x_n$ for all $n \geq N$. Clearly, $x_n < \alpha < \alpha + \epsilon$ for all n, showing that $x_n \to \alpha \in \mathbb{F}$.

• $(c) \Rightarrow (d)$

Let $\{x_n\}_{n=1}^{\infty}$ be a Cauchy sequence as in the hypotheses of (d). Let $\epsilon_i = 2^{-i}$ for integral $i \geq 1$. Now since $\{x_n\}$ is Cauchy, for each i, there exists an N_i such that for $n, m \geq N_i$, $|x_n - x_m| < \epsilon_i$. Further, we can choose $\{N_i\}_{i=1}^{\infty}$ to be an increasing sequence of integers. It follows that, for each $i, x_{N_i} - \epsilon_i < x_n < x_{N_i} + \epsilon_i$ whenever $n \geq N_i$. Set $y_i = x_{N_i} - \sum_{j=i}^{\infty} \epsilon_j$. Note that since $\{N_i\}$ is an increasing sequence, $N_{i+1} > N_i$, so

$$x_{N_i} - \epsilon_i < x_{N_{i+1}},$$

hence

$$y_i = x_{N_i} - \epsilon_i - \sum_{j=i+1}^{\infty} \epsilon_j < x_{N_{i+1}} - \sum_{j=i+1}^{\infty} \epsilon_j = y_{i+1},$$

showing that $\{y_i\}_{i=1}^{\infty}$ is an increasing sequence. Further,

$$y_i = x_{N_i} - \sum_{j=i}^{\infty} \epsilon_j < x_{N_i} < x_{N_1} + \epsilon_1,$$

showing that $\{y_i\}$ is bounded. Thus $\{y_i\}$ satisfies the hypotheses of (c), so $y_i \to y$ for some $y \in \mathbb{F}$. Now let $\epsilon \in \mathbb{F}$, $\epsilon > 0$ be given. Choose I_1 such that $\epsilon_i < \epsilon$ for $i \geq I_1$ (possible since $\epsilon_i = 2^{-i} \to 0$). Further, by the conclusions of (c) above, there exists an I_2 such that $|y_i - y| < \epsilon$ for $i \geq I_2$. Set $I = \max\{I_1, I_2\}$. Now

$$\sum_{j=i}^{\infty} \epsilon_j = \sum_{j=i}^{\infty} 2^{-j} = 2^{1-i} = 2\epsilon_i < 2\epsilon$$

for $i \geq I$, so

$$|\epsilon| |x_i - y| = \left| |x_{N_i} - \sum_{j=i}^{\infty} \epsilon_j - y| \right| > |x_{N_i} - y| - \left| \sum_{j=i}^{\infty} \epsilon_j \right| > |x_{N_i} - y| - 2\epsilon,$$

for $i \geq I$, hence

$$|x_{N_i} - y| < 3\epsilon$$
,

for $i \geq I$. In particular, choose i = I. Then for $n > N_I$, we know that

$$|x_n - y| < |x_n - x_{N_I}| + |x_{N_I} - y| < \epsilon_I + 3\epsilon < 4\epsilon,$$

proving that $x_n \to y \in \mathbb{F}$.

- $(d) \Rightarrow (a)$
 - Let $A \subset \mathbb{F}$ satisfy the hypotheses of (a). Construct two sequences, $\{x_n\}$ and $\{z_m\}$ (finite or infinite) as follows. A is nonempty (by hypothesis), so there exists, say, $x_1 \in A$. Further, A is bounded (by hypothesis), so there exists, say, $z_1 \in \mathbb{F}$ such that $x < z_1$ for all $x \in A$. Set $n_1 = 1$, $m_1 = 1$, and $y_1 = \frac{1}{2}(x_1 + z_1)$. Now if y_1 is an upper bound of A, set $n_2 = n_1$, $m_2 = m_1 + 1$, $z_2 = y_1$, and $y_2 = \frac{1}{2}(x_1 + z_2)$. On the other hand, if y_1 is not an upper bound of A, set $n_2 = n_1 + 1$, $m_2 = m_1$, $x_2 = y_1$, and $y_2 = \frac{1}{2}(x_2 + z_1)$. Continue the previous step on y_2 , obtaining y_3 , and so forth. Explicitly, given y_i ,
 - if y_i is an upper bound of A, set $n_{i+1} = n_i$, $m_{i+1} = m_i + 1$, $z_{m_{i+1}} = y_i$;
 - if y_i is not an upper bound of A, set $n_{i+1} = n_i + 1$, $m_{i+1} = m_i$, $x_{n_{i+1}} = y_i$;

and finally set $y_{i+1} = \frac{1}{2} (x_{n_{i+1}} + z_{m_{i+1}})$.

Suppose first that both of $\{x_n\}$ and $\{z_m\}$ are infinite; that is, $n_i \to \infty$ and $m_i \to \infty$. We make the following observations. For each i, $x_{n_i} < y_i < z_{m_i}$, which can easily be proved inductively. Indeed, each z_m is an upper bound of A while each x_n is not, so, in fact, $x_n < z_m$ for all pairs n, m. Further, $\{z_{m_i}\}$ is a decreasing sequence while $\{x_{n_i}\}$ is an increasing sequence. Also, one can show that

$$z_{m_i} - x_{n_i} = \frac{1}{2} (z_{m_{i-1}} - x_{n_{i-1}}),$$

hence

$$z_{m_i} - x_{n_i} = 2^{-i+1} (z_{m_1} - x_{n_1}) = 2^{-i} d$$

for $d = 2(z_{m_1} - x_{n_1})$. Now given $\epsilon \in \mathbb{F}$, $\epsilon > 0$, choose I large enough such that $2^{-i}d < \epsilon$ for $i \ge I$. Then for any $j, k \ge I$,

$$|z_{m_i} - z_{m_k}| < (z_{m_I} - z_{m_i}) + (z_{m_I} - z_{m_k}) < (z_{m_I} - x_{n_I}) + (z_{m_I} - x_{n_I}) = 2(2^{-i}d) < 2\epsilon.$$

Now since both $\{n_i\}$ and $\{m_i\}$ are nondecreasing sequences, and, as sets, $\{n_i\} = \{m_i\} = \mathbb{N}$, we have that

$$|z_r - z_s| < 2\epsilon$$

for $r, s \geq m_I$ (since $r = m_j$ for some $j \geq I$, and similarly for s), establishing that $\{z_m\}$ is a Cauchy sequence in \mathbb{F} . By (d), then, $\{z_m\}$ converges to a point $\alpha \in \mathbb{F}$.

A similar argument shows that $\{x_n\}$ is a Cauchy sequence, too, hence converges as well. More importantly, though, $x_n \to \alpha$ as well, for take $\epsilon \in \mathbb{F}$, $\epsilon > 0$. We can choose I large enough such that $z_{m_i} - x_{n_i} = 2^{-i}d < \epsilon$ for $i \geq I$. Since $\alpha < z_m$, we see that $|\alpha - x_n| = \alpha - x_n < \epsilon$ for $n \geq n_I$. We show first that α is an upper bound of A. For suppose some $y \in A$ was such that $y > \alpha$; we can can choose m large enough such that $\alpha < z_m < y$, contradicting the fact that z_m is an upper bound of A. To show that α is the least upper bound, suppose $y < \alpha$ was also an upper bound for A. We can choose n large enough such that $y < x_n < \alpha$, contradicting the fact that x_n is not an upper bound of A. This establishes that α is the least upper bound of A.

We now address the case when one of $\{x_n\}$ or $\{z_m\}$ are finite. Suppose that $\{x_n\}$ was finite, and set $N = \max\{n_i\}$. The observations above still apply. In particular, $\{z_m\}$ is still a Cauchy sequence which converges to some $\alpha \in \mathbb{F}$, and α is still an upper bound for A. Additionally, α must be the least upper bound, for suppose $y < \alpha$ was also an upper bound for A. We can choose m large enough such that $z_m - x_N < \alpha - y$, implying that $x_N > y$ (since $z_m > \alpha$), contradicting the fact that x_N is not an upper bound of A.

The case for $\{z_m\}$ finite is similar. Set $M = \max\{m_i\}$. $\{x_n\}$ is still a Cauchy sequence which converges to $\alpha \in \mathbb{F}$. Again, α is an upper bound for A, for suppose some $y \in A$ was such that $y > \alpha$. We can choose n large enough such that $z_M - x_n < y - \alpha$, implying that $z_M < y$ (since $x_n < \alpha$), contradicting the fact that z_M is an upper bound of A.

Therefore, in call cases, α is the least upper bound of A

- 2. Gamelin and Greene, page 8. 4, 10, 11, 12.
 - 4. Show that the semiopen interval (0,1] is neither open nor closed in \mathbb{R} .

Solution

 $1 \in (0,1]$ is not an interior point of (0,1] (since $B(1;r) \cap (0,1] = (1,1+r) \neq \emptyset$ for any r > 0), while $0 \notin (0,1]$ is adherent to (0,1] (since $B(0;r) \cap (0,1] = (0,r) \neq \emptyset$ for any r > 0), so (0,1] is neither open nor closed in \mathbb{R} .

10. A point $x \in X$ is a limit point of a subset S of X if every ball B(x;r) contains infinitely many points of S. Show that x is a limit point of S if and only if there is a sequence $\{x_j\}_{j=1}^{\infty}$ in S such that $x_j \to x$ and $x_j \neq x$ for all j. Show that the set of limit points of S is closed.

Solution

Let $r_j = \frac{1}{j}$ for $j \ge 1$. Set x_j to be some point of $B(x; r_j) \cap S \setminus \{x\}$ (possible since this set is given to contain infinitely many points). Then given any $\epsilon > 0$, there exists a J such that $r_j < \epsilon$ for j > J, hence $d(x_j, x) < \epsilon$ for j > J (since $x_j \in B(x; r_j)$), showing that $x_j \to x$.

Denote the set of limit points of S by S'. Let x be adherent to S', and choose r > 0. x adherent to S' implies that $B(x;r) \cap S' \neq \emptyset$, hence there exists some $y \in B(x;r) \cap S'$. Let h = r - d(x,y). y is a limit point of S, hence B(y;h) contains infinitely many points of S. Since $B(y;h) \subset B(x;r)$, B(x;r) also contains infinitely many points of S. As r was arbitrary, we conclude that x is a limit point of S as as well, i.e., $x \in S'$. Therefore S' is closed.

11. A point $x \in S$ is an isolated point of S if there exists r > 0 such that $B(x;r) \cap S = \{x\}$. Show that the closure of a subset S of X is the disjoint union of the limit points of S and the isolated points of S.

Solution

First note that the properties of being a limit point and of being an isolated point are mutually exclusive (that is, a point cannot be both a limit point and an isolated point). Thus, we aim to show that every adherent point of $S \subset X$ is either a limit point of S or an isolated point of S. Indeed, suppose $x \in X$ was adherent to S, i.e., $B(x;r) \cap S \neq \emptyset$ for all r > 0. Either x is a limit point of S (in which case we're done), or there exists some r such that B(x;r) contains finitely many points of S. Set $h = \min_{y \in B(x;r) \cap S \setminus \{x\}} d(x,y)$, or h = r in the case that $B(x;r) \cap S \setminus \{x\} = \emptyset$. Note that h > 0 and $B(x;h) \cap S$ has no points in common with $B(x;r) \cap S \setminus \{x\}$. Yet $B(x;h) \subset B(x;r)$, and $B(x;h) \cap S \neq \emptyset$ (since x is adherent to S), so we must have that $B(x;h) = \{x\}$, showing that x is, in fact, an isolated point of S.

12. Two metrics on X are equivalent if they determine the same open subsets. Show that two metrics d, ρ on X are equivalent if and only if the convergent sequences in (X, d) are the same as the convergent sequences in (X, ρ) .

Solution

Suppose d, ρ are equivalent metrics on X. Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence in (X, d), and suppose it converges to $x \in X$. Let $\epsilon > 0$ be given. $B_{\rho}(x, \epsilon) = \{y \in X : \rho(y, x) < \epsilon\}$ is an open subset of (X, ρ) , hence is also an open subset of (X, d) (since d, ρ are equivalent on X), and in particular, contains x. Thus, there exists some $\delta > 0$ such that $B_d(x, \delta) \subset B_{\rho}(x, \epsilon)$, and correspondingly some N such that $x_n \in B_d(x, \delta)$ for n > N. It follows that $x_n \in B_{\rho}(x, \epsilon)$ for n > N, i.e., $\rho(x_n, x) < \epsilon$ for n > N, hence $\{x_n\}$ converges to x in (X, ρ) . Similarly, any convergent sequence in (X, ρ) can be shown to be a convergent sequence in (X, d).

Now suppose the convergent sequences in (X,d) are the same as in (X,ρ) , and let Y be an open subset of (X,d). Suppose, for the sake of contradiction, that Y is not an open subset of (X,ρ) , that is, there exists some $x \in Y$ such that $B_{\rho}(x,r) \not\subset Y$ for all r > 0. Let $r_n = \frac{1}{n}$ for $n \ge 1$, and choose $x_n \in B_{\rho}(x,r_n) \setminus Y \ne \emptyset$. Then $\{x_n\}_{n=1}^{\infty}$ converges to x in (X,ρ) , hence also converges to x in (X,d) (by hypothesis). But this means that for each r > 0, there exists some N such that $x_n \in B_d(x,r)$ for n > N, and each $x_n \notin Y$, contradicting the fact that x is an interior point of Y with respect to x (since $x \in Y$ and x is open in (x,d)). It follows that x must also be an open subset of (x,ρ) .

- 3. Gamelin and Greene, page 12. 3, 5, 7, 8.
 - 3. Prove that the set of isolated points of a countable complete metric space X forms a dense subset of X.

Solution

Let T be the set of isolated points of X. Now suppose, for the sake of contradiction, that T is not dense in X. Then there exists some $x \in X$ and r > 0 such that B(x; 2r) contains no points of T. Then $Y = \overline{B(x; r)} \subset B(x; 2r)$ contains no points of T as well. Y is a closed subspace of X, which is complete, hence Y is complete as well, by Theorem 2.3, and since $Y \subset X$, Y is at most countable

Further, Y contains no isolated points with respect to Y. For suppose there existed some $y \in Y$ and h > 0 such that $B(y;h) \cap Y = \{y\}$. If d(x,y) < r, then y is an interior point of Y, i.e., $B(y;r-d(x,y)) \subset Y$. Set $k = \min\{h,r-d(x,y)\}$. Then $B(y;k) \subset Y$, so $\{y\} \subset B(y;k) = B(y;k) \cap Y \subset B(y;h) \cap Y = \{y\}$, hence $B(y;k) = \{y\}$ and y would also be an isolated point with respect to X. But this contradicts the construction of Y containing no isolated points of X. On the other hand, suppose d(x,y) = r. Then $y \notin B(x;r)$, and since $B(y;h) \cap B(x;r) \subset B(y;h) \cap Y = \{y\}$, we must conclude that $B(y;h) \cap B(x;r) = \emptyset$. But this implies that y is not adherent to B(x;r),

contradicting the fact that $y \in Y = \overline{B(x;r)}$. Clearly, $d(x,y) \le r$ if $y \in Y$, so Y cannot contain any isolated points with respect to Y.

For $y \in Y$, set $U_y = Y \setminus \{y\}$. As no $y \in Y$ is an isolated point of Y, each U_y is dense in Y. Further, each $z \in U_y$ is an interior point of U_y with respect to Y, since $B(z; d(z, y)) \cap Y \subset U_y$, hence each U_y is open with respect to Y. As established earlier, Y is countable, hence $\{U_y\}$ can be arranged into a sequence, and Y is complete, so it follows from Theorem 2.6 (Baire Category Theorem) that $\bigcap_{y \in Y} U_y$ is dense in Y. But $\bigcap_{y \in Y} U_y = \emptyset$, so this implies that $Y = \overline{\emptyset} = \emptyset$, which contradicts the fact that $x \in Y$, by construction. This proves that, indeed, T must be dense in X.

(Note: Easier to take each $U_y = Y \setminus \{y\}$ for $y \in Y \setminus T$.)

5. Prove that any countable union of sets of the first category in X is again of the first category in X.

Solution

A subset of the first category of a metric space X is a countable union of nowhere dense subsets, hence a countable union of subsets of the first category is a countable union of countable unions of nowhere dense subsets, hence is a countable union of nowhere dense subsets (a countable union of countable unions is again a countable union), hence is again of the first category.

- 7. Let (X,d) be a metric space and let S be the set of Cauchy sequences in S. Define a relation " \sim " in X by declaring " $\{s_k\} \sim \{t_k\}$ " to mean that $d(s_k, t_k) \to 0$ as $k \to \infty$.
 - (a) Show that the relation "~" is an equivalence relation.
 - (b) Let \tilde{X} denote the set of equivalence classes of S and let \tilde{s} denote the equivalence class of $s = \{s_k\}_{k=1}^{\infty}$. Show that the function

$$\rho(\tilde{s}, \tilde{t}) = \lim_{k \to \infty} d(s_k, t_k), \quad \tilde{s}, \tilde{t} \in \tilde{X}$$

defines a metric on \tilde{X} .

- (c) Show that (\tilde{X}, ρ) is complete.
- (d) For $x \in X$, define \tilde{x} to be the equivalence class of the constant sequence $\{x, x, \ldots\}$. Show that the function $x \to \tilde{x}$ is an isometry of X onto a dense subset of \tilde{X} . (By an isometry, we mean that $d(x,y) = \rho(\tilde{x},\tilde{y}), \ x,y \in X$.)

Note: If a complete metric space Y contains X as a dense subspace, we say that Y is a completion of X. The space \tilde{X} of Exercise 7 can be regarded as a completion of X by identifying each $x \in X$ with the constant sequence $\{x, x, \ldots\}$. The next part of the exercise shows that the completion of X is unique, up to isometry.

(e) Show that when Y is a completion of X, then the inclusion map $X \to Y$ extends to an isometry of \tilde{X} onto Y.

Solution

(a) Let $\{r_k\}_{k=1}^{\infty}$, $\{s_k\}_{k=1}^{\infty}$, and $\{t_k\}_{k=1}^{\infty}$ be sequences in X. $d(r_k, r_k) = 0$ for all k, hence $d(r_k, r_k) \to 0$ as $k \to \infty$, establishing that $\{r_k\} \sim \{r_k\}$ and " \sim " is reflexive.

 $d(r_k, s_k) = d(s_k, r_k)$ for all k, hence $d(r_k, s_k) \to 0 \Leftrightarrow d(s_k, r_k) \to 0$ (as $k \to \infty$), establishing that $\{r_k\} \sim \{s_k\} \Leftrightarrow \{s_k\} \sim \{r_k\}$ and " \sim " is symmetric.

 $d(r_k, t_k) \leq d(r_k, s_k) + d(s_k, t_k)$ for all k, hence $d(r_k, s_k) \to 0$ and $d(s_k, t_k) \to 0$ implies that $d(r_k, t_k) \to 0$ (as $k \to \infty$), establishing that $\{r_k\} \sim \{s_k\}, \{s_k\} \sim \{t_k\} \Rightarrow \{r_k\} \sim \{t_k\}$ and " \sim " is transitive.

(b) Let $\tilde{r}, \tilde{s}, \tilde{t} \in \tilde{X}, r = \{r_k\}_{k=1}^{\infty}, s = \{s_k\}_{k=1}^{\infty} \in \tilde{s}, \text{ and } t = \{t_k\}_{k=1}^{\infty} \in \tilde{t}.$ Let $s' = \{s'_k\}_{k=1}^{\infty} \in \tilde{s} \text{ and } t' = \{t'_k\}_{k=1}^{\infty} \in \tilde{t}.$ Now

$$d(s_k, t_k) \le d(s_k, s_k') + d(s_k', t_k') + d(t_k', t_k),$$

and since $d(s_k, s_k') \to 0$ and $d(t_k', t_k) \to 0$ (as $k \to \infty$), we obtain

$$\lim_{k \to \infty} d(s_k, t_k) \le \lim_{k \to \infty} d(s'_k, t'_k).$$

The above argument is completely symmetrical, which allows us to obtain the reverse inequality and conclude that

$$\lim_{k \to \infty} d(s_k, t_k) = \lim_{k \to \infty} d(s'_k, t'_k)$$

and ρ is well-defined.

 $d(s_k, t_k) \ge 0$, so it follows that $\rho(\tilde{s}, \tilde{t}) = \lim_{k \to \infty} d(s_k, t_k) \ge 0$ as well. $\tilde{s} = \tilde{t}$ if and only if $\{s_k\} \sim \{t_k\}$ if and only if $\rho(\tilde{s}, \tilde{t}) = \lim_{k \to \infty} d(s_k, t_k) = 0$. $d(s_k, t_k) = d(t_k, s_k)$, hence $\rho(\tilde{s}, \tilde{t}) = \lim_{k \to \infty} d(s_k, t_k) = \lim_{k \to \infty} d(t_k, s_k) = \rho(\tilde{t}, \tilde{s})$.

$$\rho(\tilde{r}, \tilde{t}) = \lim_{k \to \infty} d(r_k, t_k) \le \lim_{k \to \infty} (d(r_k, s_k) + d(s_k, t_k))$$
$$= \lim_{k \to \infty} d(r_k, s_k) + \lim_{k \to \infty} d(s_k, t_k) = \rho(\tilde{r}, \tilde{s}) + \rho(\tilde{s}, \tilde{t}).$$

(c) Let $\{\tilde{s}_n\}_{n=1}^{\infty}$ be a Cauchy sequence in \tilde{X} . Let $\{s_n^k\}_{k=1}^{\infty} \in \tilde{s}_n$ for each n. Now since each $\{s_n^k\} \in S$, there exists a K_n such that $d(s_n^i, s_n^j) < \frac{1}{n}$ for $i, j \geq K_n$. Set $s = \left\{s_k^{K_k}\right\}_{k=1}^{\infty}$. Let $\epsilon > 0$ be given. Now since $\{\tilde{s}_n\}$ is a Cauchy sequence, there exists an N such that $\rho(\tilde{s}_n, \tilde{s}_m) < \epsilon$ for n, m > N. Set $M = \max\{N, \lceil \frac{1}{\epsilon} \rceil\}$, so that $\frac{1}{M} < \epsilon$. Now, for the moment, fix n, m > M. Since $\epsilon > \rho(\tilde{s}_n, \tilde{s}_m) = \lim_{k \to \infty} d(s_n^k, s_m^k)$, there exists a K such that $d(s_n^k, s_m^k) < \epsilon$ for $k \geq K$. Assume, without loss of generality, that $K_n \leq K_m$, and set $K'_m = \max\{K_m, K\}$. Then

$$d\left(s_{n}^{K_{n}}, s_{m}^{K_{m}}\right) \leq d\left(s_{n}^{K_{n}}, s_{n}^{K'_{m}}\right) + d\left(s_{n}^{K'_{m}}, s_{m}^{K'_{m}}\right) + d\left(s_{m}^{K'_{m}}, s_{m}^{K_{m}}\right) < \frac{1}{n} + \epsilon + \frac{1}{m} < 3\epsilon.$$

Since the only requirements of n, m are that n, m > M, this establishes that $\tilde{s} \in \tilde{X}$ (that is, s is a Cauchy sequence). Further, fix n > M. Then for $k > \max\{K_n, M\}$,

$$d\left(s_n^k, s_k^{K_k}\right) \le d\left(s_n^k, s_n^{K_n}\right) + d\left(s_n^{K_n}, s_k^{K_k}\right) < \frac{1}{n} + 3\epsilon < 4\epsilon,$$

hence $\rho(\tilde{s}_n, \tilde{s}) = \lim_{k \to \infty} d\left(s_n^k, s_k^{K_k}\right) < 4\epsilon$. Since the only requirement on n is that n > M, this establishes that $\tilde{s}_n \to \tilde{s} \in \tilde{X}$, i.e., that $\{\tilde{s}_n\}$ converges. Therefore, (\tilde{X}, ρ) is complete.

- (d) Let $x, y \in X$, $x_k = x$ and $y_k = y$ for $k \ge 1$, $\tilde{x} = \{x_k\}_{k=1}^{\infty}$, and $\tilde{y} = \{y_k\}_{k=1}^{\infty}$. $d(x_k, y_k) = d(x, y)$, hence $\rho(\tilde{x}, \tilde{y}) = \lim_{k \to \infty} d(x_k, y_k) = d(x, y)$, showing that $x \to \tilde{x}$ is an isometry of (X, d) onto (\tilde{X}, ρ) . Let $\tilde{s} \in \tilde{X}$, $\{s_k\}_{k=1}^{\infty} \in \tilde{s}$, and r > 0. Since $\{s_k\}$ is a Cauchy sequence, there exists a K such that $d(s_i, s_j) < r$ for $i, j \ge K$. Set $\tilde{x} = \{x, x, \ldots\}$ for $x = s_K$. Then $\rho(\tilde{s}, \tilde{x}) = \lim_{k \to \infty} d(s_k, x) < r$, hence $\tilde{x} \in B_{\rho}(\tilde{s}, r)$. Since \tilde{x} is in the image of X of the mapping $x \to \tilde{x}$, this shows that the said image is dense in \tilde{X} .
- (e) Define $f: \tilde{X} \to Y$ by $f(\tilde{s} = \{s_k\}_{k=1}^{\infty}) = \lim_{k \to \infty} s_k$, where each s_k is mapped by the inclusion $X \to Y$.
- 8. The diameter of a nonempty subset E of a metric space (X,d) is defined to be

$$diam(E) = \sup\{d(x, y) : x, y \in E\}.$$

Show that if $\{E_k\}_{k=1}^{\infty}$ is a decreasing sequence of closed nonempty subsets of a complete metric space whose diameters tend to zero, then $\bigcap_{k=1}^{\infty} E_k$ consists of precisely one point. How much

of the conclusion remains true if X is not complete? Can this property be used to characterize complete metric spaces? Justify your answer.

Solution

Suppose $x \in \bigcap_{k=1}^{\infty} E_k$. Then for any $y \in X$, there exists some K such that $\operatorname{diam}(E_k) < d(x,y)$ for k > K, hence $y \notin E_k$ for k > K (since $x \in E_k$), hence $y \notin \bigcap E_k$. This shows that $\bigcap E_k$ consists of at most one point.

Choose $x_k \in E_k \cap (X \setminus E_{k+1})$ (possible since each $E_k \neq \emptyset$). $\{x_k\}$ is a Cauchy sequence, since, given some $\epsilon > 0$, there exists a K > 0 such that $\operatorname{diam}(E_k) < \epsilon$ for $k \geq K$, hence $d(x_i, x_j) < \epsilon$ for $i, j \geq K$ (since $x_i, x_j \in E_K$ for $i, j \geq K$). Thus, $x_k \to x$ for some $x \in X$, since X is complete. Fix k and k > 0, and notice that there exists some k = 1 such that k = 1. Since k = 1 for k = 1 for k = 1 for k = 1. Since k = 1 for k = 1

If X is not complete, the first argument remains valid since it did not utilize the fact that X was complete, so all we can conclude is that $\bigcap E_k$ consists of at most one point. Indeed, if we take $E_k = (0, \frac{1}{k}]$ within the metric space X = (0, 1], then $\bigcap E_k = \emptyset$.

Suppose a metric space X was such that all such decreasing sequences of nonempty closed subsets whose diameters tended to 0 had precisely one point in their intersection. Let $\{x_k\}_{k=1}^{\infty}$ be a Cauchy sequence in X, set $E = \overline{\bigcup_{k=1}^{\infty} \{x_k\}}$, and set $E_k = E \setminus \bigcup_{i=1}^k \{x_i\}$. Each E_k is closed (the removal of a finite number of points from a closed set is still closed), $E_k \supset E_{k+1}$, and diam $(E_k) \to 0$, hence, by hypothesis, $\bigcap E_k = \{x\}$ for some $x \in X$. But x satisfies the conditions of being a convergent point of $\{x_k\}$, and we conclude that X is complete.

- 4. Gamelin and Greene, page 15. 4, 6, 9.
 - 4. Prove that every open subset of \mathbb{R} is a union of disjoint open intervals (finite, semi-infinite, or infinite).

Solution

Let $Y \subset \mathbb{R}$ be open, and for $x \in Y$, set I_x be the union of all open intervals containing x and contained by Y. I_x is then open as well (by Theorem 1.3). Further, given $x, y \in Y$, suppose some $z \in I_x \cap I_y$. Then some open interval containing x, z is contained in Y, and some open interval containing y, z is contained in Y, so it follows that some open interval containing x, y is contained in Y. Thus any open interval containing x and contained by Y can be extended to an open interval containing x, y and contained by Y, and similarly for y, hence $I_x = I_y$. Thus each pair of I_x 's is either disjoint or identical, and their union is all of Y.

6. Prove that the set of rational numbers cannot be expressed as the intersection of a sequence of open subsets of \mathbb{R} .

Solution

Suppose that there exists some sequence $\{E_n\}_{n=1}^{\infty}$ of open subsets of \mathbb{R} such that $\bigcap_{n=1}^{\infty} E_n = \mathbb{Q}$. Then $(\bigcap_{n=1}^{\infty} E_n) \cap (\bigcap_{r \in \mathbb{Q}} \mathbb{R} \backslash r) = \emptyset$, which is not dense in \mathbb{R} . Each of the sets in the intersection is open, hence, by Theorem 2.6 (Baire Category Theorem), one of them is not dense in \mathbb{R} . Each $\mathbb{R} \backslash r$ is dense in \mathbb{R} for $r \in \mathbb{Q}$, hence one of the E_n 's is not dense in \mathbb{R} , i.e., there exists an open interval $I \subset \mathbb{R}$ not in one of the E_n 's. But then $\bigcap_n E_n$ would not contain I either, and this contradicts the fact that $\bigcap_n E_n = \mathbb{Q}$ is dense in \mathbb{R} . Therefore, the set of rational numbers cannot be expressed as the intersection of a sequence of open subsets of \mathbb{R} .

- 9. Determine the interior, the closure, the limit points, and the isolated points of each of the following subsets of \mathbb{R} :
 - (a) the interval [0,1),
 - (b) the set of rational numbers,

- (c) $\{m+n\pi: m \text{ and } n \text{ positive integers}\},$
- (d) $\left\{\frac{1}{m} + \frac{1}{n} : m \text{ and } n \text{ positive integers}\right\}$.

Solution

- (a) $-\inf([0,1)) = (0,1)$ $-\overline{[0,1)} = [0,1]$ $-\liminf \text{ points of } [0,1) = [0,1]$ $-\operatorname{isolated points of } [0,1) = \emptyset$
- $\begin{array}{ll} (b) & -\operatorname{int}(\mathbb{Q}) = \emptyset \\ & -\overline{\mathbb{Q}} = \mathbb{R} \\ & -\operatorname{limit\ points\ of\ } \mathbb{Q} = \mathbb{R} \\ & -\operatorname{isolated\ points\ of\ } \mathbb{Q} = \emptyset \end{array}$
- (c) $\inf(\{m + n\pi\}) = \emptyset$ $\overline{\{m + n\pi\}} = \{m + n\pi\}$ $\text{ limit points of } \{m + n\pi\} = \emptyset$ $\text{ isolated points of } \{m + n\pi\} = \{m + n\pi\}$
- (d) $-\inf\left(\left\{\frac{1}{m} + \frac{1}{n}\right\}\right) = \emptyset$ $-\left\{\frac{1}{m} + \frac{1}{n}\right\} = \left\{\frac{1}{m} + \frac{1}{n}\right\} \cup \{0\}$ $-\liminf \text{ points of } \left\{\frac{1}{m} + \frac{1}{n}\right\} = \left\{\frac{1}{n}\right\} \cup \{0\}$ $-\operatorname{isolated points of } \left\{\frac{1}{m} + \frac{1}{n}\right\} = \left\{\frac{1}{m} + \frac{1}{n}\right\} \setminus \left\{\frac{1}{n}\right\}$