EECS 16A Designing Information Devices and Systems I Fall 2018 Discussion 6B

1. A Simple Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

- (a) In the above circuit, pick a ground node. Does your choice of ground matter?
- (b) With your choice of ground, label the node potentials for every node in the circuit.
- (c) Label all of the branch currents. Does the direction you pick matter?
- (d) Draw the +/- labels on every element. What convention must you follow?
- (e) Set up a matrix equation in the form $A\vec{x} = \vec{b}$ to solve for the unknown node potentials and currents. What are the dimensions of the matrix A?
- (f) Use KCL to find as many equations as you can for the matrix.
- (g) Use IV relations to find the remaining the equations for the matrix.
- (h) Solve the system of equations if $V_S = 5 \text{ V}$ and $R_1 = 5 \Omega$.

2. A Slightly More Complicated Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

- (a) In the above circuit, pick a ground node. Does your choice of ground matter?
- (b) With your choice of ground, label the node potentials for every node in the circuit.
- (c) Label all of the branch currents. Does the direction you pick matter?
- (d) Draw the +/- labels on every element. What convention must you follow?
- (e) Set up a matrix equation in the form $A\vec{x} = \vec{b}$ to solve for the unknown node potentials and currents. What are the dimensions of the matrix A?
- (f) Use KCL to find as many equations as you can for the matrix.

- (g) Use IV relations to find the remaining the equations for the matrix.
- (h) Solve the system of equations if $I_S = 5 \text{ A}$, $R_1 = 5 \Omega$, and $R_2 = 10 \Omega$.

3. (PRACTICE) Another Circuit

For the circuit shown below, find the voltages across all the elements and the currents through all the elements.

- (a) In the above circuit, pick a ground node. Does your choice of ground matter?
- (b) With your choice of ground, label the node potentials for every node in the circuit.
- (c) Label all the branch currents. Does the direction you pick matter?
- (d) Draw the +/- labels on every element. What convention must you follow?
- (e) Set up a matrix equation in the form $A\vec{x} = \vec{b}$ to solve for the unknown node potentials and currents. What are the dimensions of the matrix A?
- (f) Use KCL to find as many equations as you can for the matrix.
- (g) Use IV relations to find the remaining equations for the matrix.
- (h) Solve the system of equations if $V_S = 5 \text{ V}$, $R_1 = 5 \Omega$, and $R_2 = 10 \Omega$.

4. Mechanical Circuits

Find the voltages across and currents flowing through all of the resistors.

