Practice for Final Exam

Math 416, Abstract linear algebra, Fall 2019 Instructor: Daesung Kim

- 1. Let $W = \{A \in \mathcal{M}_{n \times n}(\mathbb{R}) : \operatorname{tr}(A) = 1\}.$
 - (a) Determine whether W is a subspace of $\mathcal{M}_{n\times n}(\mathbb{R})$.
 - (b) Find Span(W).
- 2. Let V be a vector space. We say a subspace W is nontrivial if $W \neq \{0\}$ and $W \neq V$.
 - (a) Find an example of nontrivial subspaces W_1 and W_2 such that $W_1 \cup W_2$ is not a subspace of V.
 - (b) Find an example of nontrivial subspaces W_1 and W_2 such that $W_1 \cup W_2$ is a subspace of V.
- 3. Let V be a vector space and W a subspace of V with $\dim(V) = 5$ and $\dim(W) = 4$. Show that if $v \notin W$, then $V = \operatorname{Span}(\{v\} \cup W)$.
- 4. Let $A = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & 1 \\ -1 & 1 & 1 \end{pmatrix}$.
 - (a) Find the rank of A.
 - (b) Find the solution set of a system of linear equations

$$\begin{cases} 2y + z = 0 \\ x + 3y + z = 0 \\ -x + y + z = 0. \end{cases}$$

(c) Find $a, b, c \in \mathbb{R}$ such that a system of linear equations

$$\begin{cases} 2y + z = a \\ x + 3y + z = b \\ -x + y + z = c \end{cases}$$

has no solution.

- 5. Let V be a vector space over \mathbb{R} of dimension 3 and $\beta = \{v_1, v_2, v_3\}$ be a basis for V. Let $T: V \to V$ be a linear transformation such that $T(v_1) = v_3$, $T(v_2) = v_1$, and $T(v_3) = v_2$.
 - (a) Compute the matrix $[T]_{\beta}$.
 - (b) Prove that $T \circ T \circ T = I_V$.
 - (c) Let $\gamma = \{u_1, u_2, u_3\}$ where

$$u_1 = v_1,$$
 $u_2 = v_1 + v_2,$ $u_3 = v_1 + v_2 + v_3.$

1

Compute the matrix $[I_V]^{\gamma}_{\beta}$.

6. Let
$$A = \begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{pmatrix}$$
 with $\det(A) = 3$.

- (a) Compute the determinant of A^{-1} .
- (b) Compute the determinant of $2A^{-1}$.
- (c) Compute the determinant of $(2A)^{-1}$.
- (d) Compute the determinant of A^t .
- (e) Compute the determinant of $B = \begin{pmatrix} a_1 + b_1 & c_1 & b_1 \\ a_2 + b_2 & c_2 & b_2 \\ a_3 + b_3 & c_3 & b_3 \end{pmatrix}$.
- 7. Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{R})$ be invertible. Show that if A + B is invertible then $A^{-1} + B^{-1}$ is also invertible.
- 8. Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.
 - (a) Find the characteristic polynomial of A.
 - (b) Find all the eigenspaces of A.
 - (c) Find a diagonal matrix D and an orthogonal matrix Q such that $D = Q^*AQ$.
- 9. Find an example of a nonzero matrix $A \in \mathcal{M}_{3\times 3}(\mathbb{R})$ such that A is not diagonalizable and the characteristic polynomial f(t) splits.
- 10. Let $A = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{4} \\ 0 & \frac{1}{2} & \frac{1}{4} \\ \frac{1}{2} & 0 & \frac{1}{2} \end{pmatrix}$ be the transition matrix of a Markov chain.
 - (a) We say that a transition matrix is regular if there exists a positive integer $k \ge 1$ such that all entries of A^k are positive. Show that A is regular.
 - (b) Find the eigenspace of A corresponding to $\lambda = 1$.
 - (c) Is A^t also a transition matrix?
- 11. Let $V = \mathbb{R}^2$ with the nonstandard inner product $\langle x, y \rangle = 4x_1y_1 + x_2y_2$.
 - (a) Prove directly from the axioms that the above formula defines an inner product on V.
 - (b) Find an orthonormal basis $\beta = \{v_1, v_2\}$ of V with respect this nonstandard inner product.
 - (c) Let $A = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$. Prove that the adjoint of L_A is L_B .
- 12. Let V be an inner product space over $\mathbb C$ and let $y,z\in V$. Define $T:V\to V$ by $T(x)=\langle x,y\rangle\,z$.
 - (a) Prove that T is linear.
 - (b) Find an explicit expression for T^* .
- 13. Let V be an inner product space over \mathbb{R} and $S = \{v_1, v_2, v_3\}$ be an orthonormal basis of V.
 - (a) Let

$$w_1 = v_1,$$
 $w_2 = \frac{1}{2}(\sqrt{3}v_2 + v_3),$ $w_3 = \frac{1}{2}(v_2 - \sqrt{3}v_3).$

Prove that $S' = \{w_1, w_2, w_3\}$ is also an orthonormal basis of V.

- (b) Find a basis of $\{w_3\}^{\perp}$.
- 14. Let V be an inner product space over \mathbb{C} and $v, w \in V$. Define

$$A = \begin{pmatrix} \langle v, v \rangle & \langle v, w \rangle \\ \langle w, v \rangle & \langle w, w \rangle \end{pmatrix}.$$

(a) Show that A is self-adjoint.

(b) Show that

$$xAx^* = \begin{pmatrix} x_1 & x_2 \end{pmatrix} \begin{pmatrix} \langle v, v \rangle & \langle v, w \rangle \\ \langle w, v \rangle & \langle w, w \rangle \end{pmatrix} \begin{pmatrix} \overline{x_1} \\ \overline{x_2} \end{pmatrix} \ge 0$$

for all
$$x = (x_1, x_2) \in \mathbb{C}^2$$
.

- 15. Let V be an inner product space over \mathbb{C} and $T:V\to V$ be a self-adjoint linear transformation. Show that $\mathcal{N}(T)\cap\mathcal{R}(T)=\{0\}$.
- 16. Let $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$. Determine whether A is normal or self-adjoint.