Fundamentals of Machine Learning (Fall 2022)

Homework #2 (120 Pts, Due date: Oct 5)

	Student ID
	Name
Insti	ruction: Once solving the problems, submit two files as follows.
	- 'ML_HW2_YourName_STUDENTID.zip': Compress the 'models' folder including 'models/SoftmaxClassifier.py' and 'models/LogisticRegression.py.'
	'ML_HW2_YourName_STUDENTID.pdf': Convert your document into a pdf file.
1.	Solve the following problems.
	[10 pts] Suppose we have the following samples from the Bernoulli distribution. Calculate the parameter p using the maximum likelihood estimation method.
	{0, 1, 1, 1, 1, 0, 1, 1, 1, 0}
Ansv	wer:

(b)	10 p	ots] Suppose	we have t	the following	samples fi	rom the	Gaussian	distribution.	Calculate t	he para	ımeter µ
and	σ^2	using the ma	aximum lil	kelihood esti	mation me	thod.					

$$\{0.3, 0.5, 0.7, 0.8, 1.2\}$$

Answer:

Instruction: For problems 2 and 3, we provide two classification datasets, the Banknote authentication dataset and the Litmus dataset. The banknote authentication dataset is used for binary classification. It consists of 4 features (e.g., the variance of image, skewness, kurtosis, and entropy) to predict authentication for banknotes. The Litmus dataset is used for multi-class classification, representing a pH scale from 0 to 14. It consists of 3 features (e.g., blue, red, and green). The detailed information for each dataset is as follows.

Dataset	# of training data	# of test data	# of classes	Details
Banknote	1,029	343	2	link
Litmus	488	165	15	-

NOTE 1: You should write your codes only in 'EDIT HERE.' Once you complete your implementation, run the checker code ('0_LogitisticRegression_Checker.py' or '1_SoftmaxClassifier_Checker.py') to validate if your code is executed correctly.

NOTE 2: You may need to install NumPy and Matplotlib libraries.

NOTE 3: Please carefully read the comments in the code.

- **2.** [Logistic regression] Write your code to implement logistic regression. (Default hyperparameter settings for (b), (c): Epoch = 50, Batch_size = 512, learning_rate = 0.1)
- (a) [30 pts] Implement functions in 'models/LogisticRegression.py'. ('forward', 'compute_grad', '_sigmoid', and 'eval' respectively). Given a mini-batch data (X, Y), the error function for a mini-batch is defined as follows:

$$E(\mathbf{w}) = -\frac{1}{|\mathcal{B}|} \sum_{(x,y) \in \mathcal{B}} y * \log(\widehat{y}) + (1-y) * \log(1-\widehat{y}),$$

where $\hat{y} = sigmoid(\mathbf{w}^T\mathbf{x})$, $|\mathcal{B}|$ is the number of the mini – batch samples.

	signistic (w 11); 2 15 the number of the mini button samples.	
Fill in your code here. Y	You also have to submit your code to i-campus.	
Answer:		
hyperparameters fix searched, and the y-a	anknote dataset, draw the plots by adjusting the learning rate . (Let the otless default hyperparameter settings.) The x-axis is the value of hyperparameter axis is the accuracy score. Try at least five different values and explain your results.	ers
Answer:		

(c)	[5 pts] For the Banknote dataset, draw the plots by adjusting the number of epochs. (Let the other hyperparameters fix as default hyperparameter settings.) The x-axis is the value of hyperparameters searched, and the y-axis is the accuracy score. Try at least five different values and explain your results. Answer:

- **3.** [Softmax classifier] Write your code to implement the softmax classifier. (Default hyperparameter settings for (b), (c): Epoch = 150, Batch_size = 512, learning_rate = 0.0005)
- (a) [30 pts] Implement functions in 'models/SoftmaxClassifier.py'. ('forward', 'compute_grad', '_softmax', and 'eval' respectively). Given a mini-batch data (X, Y), the error function for a mini-batch is defined as follows:

$$E(w) = -\frac{1}{|\mathcal{B}|} \sum_{(x_i, y_i) \in \mathcal{B}} y_i * \log(\widehat{y}_i),$$

where $\hat{y}_i = softmax(w^Tx_i)$, $|\mathcal{B}|$ is the number of the mini — batch samples.

Fill in your code here. You also have to submit your code to i-campus.				
Answer:				

y-axis is the	J					
Answer:						
hyperparam	r the Litmus da eters are fixed as d the y-axis is the	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam
hyperparam searched, an	eters are fixed as	default hyperpar	rameter settings	.) The x-axis is	the value of	hyperparam

4. [BONUS CREDIT 20 pts] Write your review about the SKKU AI Colloquium held on Sep $22^{nd} - 23^{rd}$ in more than five lines. Please summarize the talk and write your comment about one or more lectures.					
Answer:					