

 According to the given diagram create STUDENTS, ACTIVITIES and SCHEDULE tables. (PK - PRIMARY KEY,FK - FOREIGN KEY, * - NOT NULL)

SCHEDULE		
FK	S_ID	NUMBER
FK	A_ID	NUMBER
	S_DATE	DATE

ACTIVITIES		
PK	A_ID*	NUMBER
	A_NAME*	VARCHAR2
	COST*	NUMBER

_			
STUDENTS			
PK	S_ID*	NUMBER	
	FIRST_NAME	VARCHAR2	
2	LAST_NAME	VARCHAR2	
1 8 5	PHONE_NUMBER	VARCHAR2	
inin	EMAIL	VARCHAR2	

- 2. Insert data into students table from employees table.
- 3. Change phone number to '***' for students with $s_id > 200$.
- 4. Update first name and last names of students in Upper cases.
- 5. Based on the students table populated with the following data, update the email to 'DSA' for all records whose s_id is greater than 150.
- 6. Create PROGRAMMERS table using records from EMPLOYEES where job_id contains 'PROG' substring
- 7. Delete records from students table where s_id is between 150 and 160.
- 8. a) Insert some date into SCHEDULE, then truncate and see results.
 - b) Drop schedule table
- 9. For any date given, write a script to find:
 - a) The first and the last days of the next year;
 - b) The first and the last days of the next month;
 - c) The first and the last days of the previous month.
- 10. Create a table named "Participants" which consists of first_name, last_name and salary (have to more than 10000).

