EECS 16A Designing Information Devices and Systems I Fall 2018 Discussion 5A

Consider a vector in the standard basis,

$$\vec{x} = a\vec{e}_1 + b\vec{e}_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \mathbf{I}\vec{x}$$
 (1)

where, a, b are \vec{x} 's coordinates in the standard basis.

Given a new set of basis vectors, $\mathscr{V} = \{\vec{v_1}, \vec{v_2}\}$, if $\vec{x} \in span\{\mathscr{V}\}$, then we can find new coordinates in terms of this new basis. The new coordinates are called a_v, b_v and are described,

$$\vec{x} = a_{\nu}\vec{v_1} + b_{\nu}\vec{v_2} = \begin{bmatrix} | & | \\ \vec{v_1} & \vec{v_2} \\ | & | \end{bmatrix} \begin{bmatrix} a_{\nu} \\ b_{\nu} \end{bmatrix} = \mathbf{V}\vec{x}_{\nu}$$
 (2)

Now consider another set of basis vectors, $\mathscr{U} = \{\vec{u_1}, \vec{u_2}\}\$, if $\vec{x} \in span\{\mathscr{U}\}\$, then we can find the coordinates in terms of this basis. These coordinates are called a_u, b_u and are described,

$$\vec{x} = a_v \vec{u}_1 + b_v \vec{u}_2 = \begin{bmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{bmatrix} \begin{bmatrix} a_u \\ b_u \end{bmatrix} = \mathbf{U} \vec{x}_u$$
 (3)

All of these bases are equivalent representations of any vector $\vec{x} \in \mathbb{R}^2$; each with their own set of coordinates.

$$\vec{x} = \begin{bmatrix} | & | \\ \vec{e}_1 & \vec{e}_2 \\ | & | \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} | & | \\ \vec{u}_1 & \vec{u}_2 \\ | & | \end{bmatrix} \begin{bmatrix} a_u \\ b_u \end{bmatrix} = \begin{bmatrix} | & | \\ \vec{v}_1 & \vec{v}_2 \\ | & | \end{bmatrix} \begin{bmatrix} a_v \\ b_v \end{bmatrix}$$
(4)

$$\vec{x} = I\vec{x} = V\vec{x}_v = U\vec{x}_u \tag{5}$$

1. Coordinate Change Examples

(a) Transformation From Standard Basis To Another Basis in $\ensuremath{\mathbb{R}}^3$

Calculate the coordinate transformation between the following bases

$$\mathbf{U} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \mathbf{V} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

i.e. find a matrix **T**, such that $\vec{x}_v = \mathbf{T}\vec{x}_u$ where \vec{x}_u contains the coordinates of a vector in a basis of the columns of **U** and \vec{x}_v is the coordinates of the same vector in the basis of the columns of **V**.

Let
$$\vec{x}_u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and compute \vec{x}_v . Repeat this for $\vec{x}_u = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$. Now let $\vec{x}_u = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$. What is \vec{x}_v ?

Answer:

$$\vec{x} = \mathbf{U}\vec{x}_{u} = \mathbf{V}\vec{x}_{v}$$

$$\vec{x}_{v} = \mathbf{V}^{-1}\mathbf{U}\vec{x}_{u} = \mathbf{T}\vec{x}_{u}$$

$$\mathbf{T} = \mathbf{V}^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$\text{For } \vec{x}_{u} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \vec{x}_{v} = \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix}.$$

$$\text{For } \vec{x}_{u} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \vec{x}_{v} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}.$$

$$\text{For } \vec{x}_{u} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \vec{x}_{v} = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}.$$

(b) Transformation Between Two Bases in \mathbb{R}^3

Calculate the coordinate transformation between the following bases

$$\mathbf{U} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \qquad \mathbf{V} = \begin{bmatrix} 0 & 0 & 1 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix},$$

i.e. find a matrix **T**, such that $\vec{x}_v = \mathbf{T}\vec{x}_u$. Let $\vec{x}_u = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ and compute \vec{x}_v . Repeat this for $\vec{x}_u = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Now let
$$\vec{x}_u = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$
. What is \vec{x}_v ?

Answer

Again for any vector \vec{x} , we have that $\vec{x} = \mathbf{U}\vec{x}_u = \mathbf{V}\vec{x}_v$

$$\mathbf{T} = \mathbf{V}^{-1}\mathbf{U} = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & -1 & 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 1 \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ -1 \end{bmatrix}$$

(c) What is the coordinate transformation from \vec{x}_v to \vec{x}_u , i.e. find **W** such $\vec{x}_u = \mathbf{W}\vec{x}_v$?

Given that **T** is the transformation from \vec{x}_u to \vec{x}_v , $\mathbf{W} = \mathbf{T}^{-1}$.

(d) Transformation Between General Bases in $\ensuremath{\mathbb{R}}^2$

Calculate the coordinate transformation between the following bases

$$\mathbf{U} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \qquad \qquad \mathbf{V} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix},$$

i.e. find a matrix **T**, such that $\vec{x}_v = \mathbf{T}\vec{x}_u$. Let $\vec{x}_u = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and compute \vec{x}_v . Repeat this for $\vec{x}_u = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now let $\vec{x}_u = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. What is \vec{x}_v ?

Answer:

$$\mathbf{T} = \mathbf{V}^{-1}\mathbf{U} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 9 \\ 5 \end{bmatrix}$$

2. Proofs

(a) Let **A** be an invertible matrix. Show that if λ is an eigenvalue of **A**, then $\frac{1}{\lambda}$ is an eigenvalue of \mathbf{A}^{-1} .

Let \vec{v} be the eigenvector of **A** corresponding to λ .

$$A\vec{v} = \lambda\vec{v}$$

Since we know that **A** is invertible, we can left-multiply both sides by \mathbf{A}^{-1} .

$$\mathbf{A}^{-1}\mathbf{A}\vec{v} = \lambda \mathbf{A}^{-1}\vec{v}$$
$$\vec{v} = \lambda \mathbf{A}^{-1}\vec{v}$$
$$\mathbf{A}^{-1}\vec{v} = \frac{1}{\lambda}\vec{v}$$

3. Steady and Unsteady States

(a) You're given the matrix \mathbf{M} (below) which describes some physical system (could describe either people or water):

$$\mathbf{M} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 1 & -2 \\ 0 & 0 & 2 \end{bmatrix}$$

Find the eigenspaces associated with the following eigenvalues:

- i. span(\vec{v}_1), associated with $\lambda_1 = 1$
- ii. span(\vec{v}_2), associated with $\lambda_2 = 2$
- iii. span(\vec{v}_3), associated with $\lambda_3 = \frac{1}{2}$

Answer: This is practice finding the null space.

i. $\lambda = 1$:

$$\begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$ec{v}_1 = lpha egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}, lpha \in \mathbb{R}$$

ii. $\lambda = 2$

$$\begin{bmatrix} -\frac{3}{2} & \frac{1}{2} & -\frac{1}{2} & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} -3 & 0 & -3 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\vec{v}_2 = \beta \begin{bmatrix} -1 \\ -2 \\ 1 \end{bmatrix}, \beta \in \mathbb{R}$$

iii. $\lambda = \frac{1}{2}$

$$\left[\begin{array}{ccc|c}
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & -2 & 0 \\
0 & 0 & \frac{3}{2} & 0
\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]$$

$$ec{v}_3 = \gamma egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}, \gamma \in \mathbb{R}$$

(b) Define $\vec{x} = \alpha \vec{v}_1 + \beta \vec{v}_2 + \gamma \vec{v}_3$. The values α, β , and γ are the coordinates for the basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$. For each of the cases in the table, determine if

$$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$$

converges. If it does, what does it converge to?

α	β	γ	Converges?	$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$
0	0	$\neq 0$		
0	$\neq 0$	0		
0	$\neq 0$	$\neq 0$		
$\neq 0$	0	0		
$\neq 0$	0	$\neq 0$		
$\neq 0$	$\neq 0$	0		
$\neq 0$	$\neq 0$	$\neq 0$		

Answer:

α	β	γ	Converges?	$\lim_{n\to\infty}\mathbf{M}^n\vec{x}$
0	0	$\neq 0$	Yes	$\vec{0}$
0	$\neq 0$	0	No	-
0	$\neq 0$	$\neq 0$	No	-
$\neq 0$	0	0	Yes	$\alpha \vec{v}_1$
$\neq 0$	0	$\neq 0$	Yes	$\alpha \vec{v}_1$
$\neq 0$	$\neq 0$	0	No	-
$\neq 0$	$\neq 0$	$\neq 0$	No	-

4. More Practice with Column Spaces and Null Spaces

- The **column space** is the possible outputs of a transformation/function/linear operation. It is also the **span** of the column vectors of the matrix.
- The **null space** is the set of input vectors that output the zero vector.

For the following matrices, answer the following questions:

- i. What is the column space of A? What is its dimension?
- ii. What is the null space of A? What is its dimension?
- iii. Are the column spaces of the row reduced matrix A and the original matrix A the same?
- iv. Do the columns of **A** form a basis for \mathbb{R}^2 (or \mathbb{R}^3 for part (b))? Why or why not?

(a)
$$\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$$

Answer:

Column space: span
$$\left\{ \begin{bmatrix} 1\\1 \end{bmatrix} \right\}$$

Null space: span $\left\{ \begin{bmatrix} 1\\0 \end{bmatrix} \right\}$

The two column spaces are not the same.

Not a basis for \mathbb{R}^2 .

(b)
$$\begin{bmatrix} 1 & 2 \\ -1 & 1 \end{bmatrix}$$

Answer:

Column space: \mathbb{R}^2

Null space: span
$$\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

Yes, the two column spaces are the same as the column span \mathbb{R}^2 . This is a basis for \mathbb{R}^2 .

(c)
$$\begin{bmatrix} -2 & 4 \\ 3 & -6 \end{bmatrix}$$

Column space: span
$$\left\{ \begin{bmatrix} 1 \\ -\frac{3}{2} \end{bmatrix} \right\}$$

Null space: span $\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$

The two column spaces are not the same.

Not a basis for \mathbb{R}^2 .