Zagadnienia Filozoficzne w Nauce

© Copernicus Center Foundation & Aut	hors, 2023

Except as otherwise noted, the material in this issue is licenced under the Creative Commons BY-NC-ND licence. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.o.

Editorial Board
Paweł Jan Polak (Editor-in-Chief)
Janusz Mączka
Roman Krzanowski
Michał Heller (Honorary Editor)
Piotr Urbańczyk (Editorial Secretary)

Cover design: Mariusz Banachowicz

ISSN 0867-8286 (print format) e-ISSN 2451-0602 (electronic format)

Editorial Office
Philosophical Problems in Science (ZFN)
Copernicus Center Foundation
Pl. Szczepański 8, 31-011 Kraków
POLAND
e-mail: info@zfn.edu.pl

www.zfn.edu.pl

Philosophical Problems in Science

Zagadnienia Filozoficzne w Nauce

LXXV = 2023

Editorial Od redakcji
Michał Heller At the interface of theory and experience
Articles Artykuły
Adrian Heathcote Realism, irrationality, and spinor spaces
Paweł Polak Philosophy in technology: A research program
Roman Krzanowski From philosophy in science to information in nature: Michael Heller's ideas
Sławomir Grzegorz Leciejewski New experimentalism and computer-aided experiments 107
Timothy Tambassi For the sake of simplicity: Applying software design parsimony to the content of information system ontologies
Andrzej Bielecki, Ryszard Stocki The concept of structural information and possible applications
Wojciech P. Grygiel The applicability of the concept of the field of rationality in the explanation of the fundamental role of symmetries in physics
Tadeusz Sierotowicz Theology of science: Its collocation and critical role for understanding of limits of theological and scientific investigations
Kamil Trombik Andrzej Fuliński as a representative of the concept of philosophy in
science
Review essays Artykuły recenzyjne
Andrzej Anderwald The interdisciplinary profile of theology—fashion or necessity?
Roman Krzanowski Introduction to topo-philosophy 267

Od redakcji

At the interface of theory and experience

Michał Heller Copernicus Center for Interdisciplinary Studies

The founding motto of philosophy in science is "tracking down big philosophical problems in contemporary science." Knowing the basic history of philosophy and the history of science, we more or less know what "big philosophical topics" mean. The most representative topics of this kind include: time, space, causality, matter, life, consciousness, thinking... The tables of contents of philosophy and the history of science, we more or less know what "big philosophical topics" mean. The most representative topics of this kind include: time, space, causality, matter, life, consciousness, thinking... The tables of contents of philosophy textbooks could be copied to continue this list. These topics are big not only when they get down to special cases and particular sub-problems. Sometimes it is only then that they fully reveal their big format.

But where in science should we pursue these topics? As usual, when struggling with a difficult question, it is worth limiting ourselves to an easier case. Such a "methodologically easier" case is, of course, physics; this is where we will focus our attention in this short essay.

But where exactly in physics should we look for these philosophical topics? To be sure, in the core of modern physics, that is, at the interface of theory and experience, but experience, but experience without theories of physics and experiment, but this interface between the theories of physics and experiment, but this interface itself creates a great philosophical epistemology.

For obvious reasons, the problem of the relationship between the mathematical formalism of theories of modern physics seem to reach domains in which experiment is impossible, either for financial reasons (theories of extremely high energies) or for even more fundamental reasons (theories of multiverses). Is physics without the possibility to confront its hypotheses with experimental data still physics? The question of the relationship between formalism and experience becomes the question of the identity of physics as a science.

Undoubtedly, the identity of modern physics was determined by its empirical character. Rapid progress in physics occurred precisely when experience becomes the departure from the belief, cultivated throughout antiquity and the Middle Ages, that the universe can be reconstructed basing on rigorous

deduction from "first principles" and the understanding that such a deduction, together with its conclusions, must be abandoned.

As physical theories became more and more sophisticated, the understanding of their empirical character (that is supposed to constitute the identity of physics) became less and less obvious. In fact, the entire history and philosophy of science of the last two centuries has revolved around this concept.

Empiricism achieved its maximum in the views of logical empiricism, which postulated the reduction of the entire theoretical "superstructure" of modern physics to direct empiricism to the clearest features of this heritage are empiricist tendencies. Of course, there is no return to the

idea of direct reports of experimental results (the so-called elementary propositions), to which all physical theories should be reduced. No one denies that mathematical formalism is an important element of physical theories, but in many so-called case studies, i.e. in methodological analyzes of specific theories or models of contemporary physics, we find attempts to distinguish as clearly as possible those elements of formalism that can be directly associated with measurement procedures. What is evident in these attempts is the idea that a given physical theory will be more empirical the more precisely it can be done.

This is not how it works in the scientific practice of physicists. The practice of physicists is much more monolithic. When you can really have the impression that you can really

are touching a nerve of reality. But you only need to look a little more carefully into what is actually happening here to understand that it is impossible to draw even a relatively sharp line separating what is theoretical from what is empirical.

It would seem that at least what is theoretical can be clearly distinguished from what is empirical. After all, "theoretical" is simply the mathematical formalism of the theory can virtually contain the results of future measurements. This is eloquently evidenced by the history of the field equations of general relativity, which "knew" about future empirical discoveries (microwave background radiation, gravitational radiation and many others) much earlier than they could be made.

It is often said, somewhat metaphorically, that theoretical and empirical elements in physical theory cannot be decomposed into the sum of a nonlinear differential equation, a physical theory cannot be decomposed into the sum of a theoretical component and an empirical component.

According to aesthetic criteria, that go back to the shadows of logical empiricism, this would be an argument on behalf of the thesis that the theories of modern physics do not meet the criterion of being an empirical science precisely because the empiricism runs so deep into its theoretical body that it cannot be separated from it.

This coupling of mathematical formalism and empirical results, the element of empiricism, constitutes a Big Philosophical Problems.

Adrian Heathcote

Mathematics, as Eugene Wigner noted, is unreasonably effective in physics. The argument for platonism, which lies in continuous structures—in fields and their derived algebras, such as Clifford algebras. The argument that Wigner was making is best made with respect to geometry rather than arithmetic and geometry rather than arithmetic. The purpose of the present paper is to make this connection between mathematical realism, for which mathematical realism and geometry rather than arithmetic. The purpose of the present paper is to make this connection between mathematical realism and geometry rather than arithmetic. mathematics is used is eliminable in the final analysis, by often insufficiently specified means. The hope is that light may be cast on the stubborn mysteries of the nature of quantum mechanics and its mathematical formulation, with particular reference to spinor representations—as they have been developed by Andrej Trautman. Thus, according to our argument, QM may appear more natural, as we have better reasons to take spinor structures as irreducibly real, a view consonant with the work of Trautman and Penrose in particular.

Keywords indispensibility, nominalism, spinors, complex numbers, incommensurability

If any who have more than a passing interest in mathematical physics have been impressed by the intimate connection that exists between quite advanced mathematical platonism. Yet, in the wider philosophical community, and certainly in the culture at large, nominalism 1 seems (perhaps only to a jaundiced eye) to dominate. Thus we have a rather stark opposition between philosophy and science in which the two sides appear to be largely talking past one another, and little that is said advances the debate in a successful manner, The present paper is an attempt to get beyond this impasse by offering a way of recasting the issues, so that 1) a central part of the nominalist intuition can be seen to be correct in that mathematical physics does in fact offer an argument for the reality of mathematical entities. Indeed, my suggestion will be that there is a straight line between the motivation for platonism among the ancient Greeks and platonism today. Thus the main claim of the present work is that there is a mechanism for the expansion of our mathematical physics, a connection that is unlikely to be accidental. In brief: the taking of roots is often ontologically ampliative We may begin by noting that perhaps the most important way that the discussion has gone astray is through the reductive programmes of the 20th Century. The natural numbers were seen to have first place in the ordo cognoscendi: they were our original mathematics—account for these and all else will somehow surely fall into place. In due course philosophical discussion became bound to the twin poles of arithmetic and set theory—the latter having first place in the ordo essendi. Though nominalists and realists disagreed on what mathematics we should be considering.

The implicit thought here seems to be that whatever we can say about the natural numbers are a special case that lend themselves to a very special nominalist explanation, an explanation that does not extend to other mathematical entities in which we might be interested.

1. A nominalism for arithmetic

Let us begin by giving the Peano axioms in their second-order form. We modify them in a way that is now customary by taking the first number as 0. Since 0 is the additive unit it means that much more of what would lead to problems unless modified, for it would allow division by zero.¹

AXIOMS FOR PEANO ARITHMETIC

PI: 0 is a natural number; PII: For every natural number n, n + 1 is a natural number

PIII: For every natural number $n, n + 1 \neq 0$:

PIV: For all natural numbers n and m, n+1=m+1 if and only if n=m; PV: If ϕ is a property of numbers such that: 0 is ϕ , and for every natural number n, if n is ϕ , then n+1 is ϕ , then all natural numbers n are ϕ ;

Where Peano speaks, in the first axiom (and then throughout) of the n being a member of a set N, I will be explicit that this set is to be the set of natural numbers \mathbb{N} .

PVI: n + 0 = n;

PVII: n + (m + 1) = (n + m) + 1; PVIII: n.0 = 0;

PIX: n.(m+1) = (n.m) + n; PX : n.(m+p) = (n.m) + (n.p).

These axioms, as is well known, are derived from Dedekind's Was Sind und was sollen die Zahlen? (1888), and Dedekind had there shown that his axiom-set is categorical. His method, as outlined in his letter to Hans Keferstein in 1890, is not to appeal to known features of the natural numbers—this, he says, would result in a vicious circularity—but to give axioms that ought to determine any infinite, well-ordered set (Van Heijenoort, 1967). But now we come to the crucial point. Not only are these axioms such that numerals are also a well-ordered infinite set and begin with a first numerals that no one will ever,

or could ever, write down. But no matter, these numerals exist and there are many that cannot be written down without a secondary abbreviated notation. Of course, there will be some nominalists for whom an infinite set of numerals is already going too far in the direction of platonism: it must be understood that I am offering here will not be a way that is open to them. But a rigid Inscriptionism is, I believe, a most difficult position to extract explanatory content from, and so we must await someone who is prepared to try to make it work.

 $P*I: 0 \in N;$

 $P^*II : If n \in N then n + 1 \in N;$ $P^*III: \text{ If } n \in N \text{ then } n+1 \neq 0;$

P*IV : For n and $m \in N$, n+1=m+1 if and only if n=m; P^*V : If ϕ is a property of the members of N such that: '0' is P*VI : etc.

Since addition is simply an operation that takes a member of Now the philosophical point should be clear: since there is 'numbers can be written down'. I can write down a numeral b Now if we take a Medieval conception of nominalism, we n evidence that this was the view of Helmholtz and Kronecker, Some credence is given to this position if we ask ourselves, only objects available for us to manipulate are numerals. Like Now I will say that I think we have here the beginning of a numerals that we may write down. By contrast I am not sure t When is it being realised? Can these numbers return to being But I cut this discussion short to say that, ultimately, I do complex numbers—a point I come to in the next two sections

Mathematics began as an abstract discipline, I suggest—as opp speculation. Nor can it be certain that the Pythagoreans were If $\sqrt{2}$ were a fraction then there would be a set of natural $m\sqrt{2}$ is also a whole number. Thus consider m=k ($\sqrt{2}$ -1)

However, I think that something like the above reasoning

This shows that m is a member of S since $2k - k\sqrt{2}$ is obv

and thus $m = k (\sqrt{2} - 1)$ is less than k). So we have found The beauty of this proof, besides its great simplicity, is the requiring no heavy theorems like the Fundamental Theorem c The Pythagoreans of the 6th Century BC probably did not that is $\sqrt{2}$ and so, such a length must exist. It was left to the Elements. In Book X Euclid extends the theory of irrationals

A lost book of Apollonius is meant to have gone further and The mathematical significance of this discovery has been t The best way to approach this question is to ask what $\sqrt{2}$ three goats—that this is a social fact, like their worth in a ma Secondly, it might be thought that some geometrical magni the hypotenuse of unit length then the catheti of the triangle w is intrinsically irrational either.⁶ It is for this reason that, by E identified with geometrical magnitudes in an absolute sense. The third form of Nominalism is the one that I regard as in how the Pythagoreans themselves understood their discovery: In fact as late as Euclid, Heath reminds us that the term In saying that irrational numbers are unsayable we do not a

such magnitudes as $\sqrt{2}$ are not expressible in numbres exact, Wallis, and Euler. But all of these means of expression are esse $\sqrt{2}$. So $\sqrt{2}$ is something beyond what we can express in num To say that $\sqrt{2}$ is unsayable in numerals must also be to w that there was *something* that was $\sqrt{2}$ but remained agnostic despite being 'unsayable'. They marked their caution by disti If there are entities without numerical names then those en problem. For with the numerals expressing the natural number proven but only assumed that for real numbers

(And the issue was not trivial, as this equation fails for comple absence of discussion of adding or multiplying arbitrary incon

It seems that we have in this reconstruction a quite solid argua) There exist mathematical entities for which there is no

b) These entities figure in the measurement of space and ti

The tale has been told often enough of the discovery of th

In a sense we have here an indispensability argument. But this that impossibility? After all, neither are invoking the existence to argue that real numbers are unnecessary, but his argument And yet though this gives us a realism of the real number But the way we go beyond this beginning point is exactly t number solutions, as in that of Diophantus, or generally in re-The stability of mathematical ontology up to the 15th Cer

and the interpretation of this, geometrically, as a mean propo The striking thing about the way complex numbers arise in $-2-\sqrt{3}$, $-2+\sqrt{3}$. They can be found by solving this equati

This will give us, on substitution:

where each cube root has three solutions. One of these, 2+iThe philosophical puzzle that Bombelli faced was this: the that we *must* take seriously. For Bombelli the puzzle must have radical and said that he had a geometrical proof of it. He say: This kind of root has in its calculation different operations tl

This geometric proof of Dal Ferro's equation appears late in Bo

not just be proven to exist but also given a representation in tl it is this that gives one the confidence that they exist. 12 En passant this helps to solve another puzzle. It has some instantiated in the way one might have thought. And once we Our realism, or platonism, has taken us as far as complex r initial commitment to whole numbers than had been realised-Complex numbers are used routinely in quantum mechani a standard suggestion made against being realists about comp and Charlie: when Bob measures the two particles he has rea Clauser-Horne-Shimony-Holt inequality, of $6\sqrt{2}$, which is high If this is so, what we have is a mathematical discovery the A very similar case is provided by the quaternions. Hamilt

We can find an even more significant discovery that affords a In his (1913) Élie Cartan discovered an entirely new represe quantum mechanics in 1927 as a way of describing electron spi 1937—making full reference to Grassmann's exterior algebra a

possibly exist. Nevertheless, subsequently, we may feel quite c

essential. The orthogonal transformations are the automorph What might Weyl have meant by this enigmatic final remark?

The normalization requires the possibility of extracting squ

Isotropic vectors are those whose 'length'—as given by the

¹ An extra condition stating that in all cases of m/n, $n \neq 0$ would be su

² See Button and Walsh (2018) for a discussion of the rôle of language i ³ No direct evidence of Roscelin's position survives, only the replies of hi ⁴ One can find something of this view expressed in Whitehead's *Universe* ⁵ Man-Keung Siu (1998). See also P. Shiu (1999) ⁶ The Planck length might be thought to be a candidate for such a funda-Additional evidence is provided by the title of a lost work of Democriti ⁸ Euclid in Heath translation (Euclid, 1956). ⁹ That Plato came at some time in his adulthood to be imbued with Pyth investigated with zeal. In this way, accordingly, this was the first time tha furthermore, in [optics] and mechanics [...]' Philodemus History of the ¹⁰ His notation for $\sqrt{-1}$ was R $(0 \cdot m \cdot 1)$ which translates directly to ¹¹ The geometric proof is broken down a little in La Nave and Mazur (20 ¹² Thus I am here resisting the idea that the indispensibility of mathema $\overline{\Omega}$ 13 See for example Liang Shin-Hahn (1994); also Kaplansky (2003) (a ree 💆 💆 ¹⁴ For the fraught history of quaternions see Simon Altmann's (1989). ¹⁵ Brauer and Weyl (1935, pp.425–449). For the English translation of C

¹⁶ In a direct reference, Atiyah, in his 2013 conference lecture "What is a \bigcirc

 $n \in \mathbb{N}$, if n is ϕ , then n + 1 is ϕ , then all $n \in \mathbb{N}$ are ϕ ;

tember of N it is also well-defined on numerals: it is simply counting forward. Likewise for multiplication. Thus the remaining Peano axioms will also have a clear meaning. between the two models of the Peano axioms, and since we use the numerals to speak of numbers, there is always a danger that we will confused them, and confused them throughout history. Thus we are, whether we are nominalists or realists, simply creating confusion if we say that e down a number. By analogy, to make the point clear, I cannot write down Mary but I can write down Mary's name, 'Mary'. So when we speak of writing down numbers we are already confusing a name with the referent of the name. Thus in Peano's axiomatization what is written down and axiomatised are numerals.² ere are nothing but numerals, that these do not refer to numbers, as a name refers to a thing, but that they are all there is to what we think of as number. Thus numerals are a flatus vocis, in Roscelin's phrase, an empty wind, and mathematics is simply a game with rules for the manipulation of these numerals. In the 19th Century there is edly many others followed in the 20th Century, notably the Formalists.³ his nominalism, what the law of the commutativity for multiplication means: if we multiply together two numbers a and b then the order of an operation suggests something that we do, some way of manipulating objects, in a particular sequence, and the

ativity: the order in which an operation is performed suggests an action with consequences. After all, to add and to multiply are verbs and require objects on which the action is to be performed.⁴ scussion about nominalism that could be developed further, and one that would be helpful in clearing our minds of long standing confusion. In particular it may help us understand what we mean when we make a distinction between the potential infinite, for there is a clear sense in which there are a potential infinity of e made of saying that numbers themselves are potentially infinite; either they are finite or they are finite nfusion between name and referent is rife in this area, and of long standing.

it can be correct for anything more than the natural numbers (and in the light of an argument to come in §5, not even there). It depends on our having numerals which can stand in proxy for natural numbers and thinks of numerical operations as manipulations of those numerals. But, as Hilbert realised, this cannot be extended to the real or he Pythagoreans and Plato: as long as we had to think only of the natural numbers we were able to be lulled into a state of Nominalism about numbers. But when irrational magnitudes were discovered there was no longer a way to avoid realism. The argument for this, with some historical evidence, is given in the next section.

2. Plato and incommensurability

natic aid to accounting—with the Pythagorean discovery that the square root of two cannot be either a whole number or a ratio of whole numbers. There are now many proofs of this, but here is a beautiful, little-known one by Theodor Estermann (1975). (It isn't known what proof the Pythagoreans actually used, though there has been much se members when multiplied by said fraction would yield a natural number. And if there is such a set then by well-ordering there is a least member of that set: call it k. So $k\sqrt{2}$ is a fraction we can find a number m that is smaller than k for which We now have $m\sqrt{2} = (k\sqrt{2} - k)\sqrt{2} = 2k - k\sqrt{2}$.

number. But this m is also less than k (the number 1 was chosen specifically so that we would have

 $0 < \sqrt{2} - 1 < 1$

h $m \in S$, contrary to the hypothesis that k was the least member in S. Repeating the proof will produce an infinitely descending set of natural numbers, which is impossible.

Allowing ourselves an infinite set of numerals we can check the Peano axioms to see what they mean when applied to numerals. As already noted neither Peano nor Dedekind mention numbers, for their purpose in providing an axiomatisation is to characterise numbers without circular descriptions. So, adapting Peano, we have simply:

on the properties of natural numbers and ratios of same. As Man-Keung Siu has pointed out there is an interpretation of this proof in the geometry of triangles, but the proof is an interpretation of this proof in the geometry of triangles, but the proof is an interpretation of this proof in the geometry of triangles, but the proof is an interpretation of this proo his proof (if they had, the generalisations to other non-square numbers would have been evident to them) but no matter—they had some other that proved the same fact: $\sqrt{2}$ cannot be either a whole numbers. And it is a simple application of the Pythagorean Theorem that the diagonal of a unit square has a length Theodorus to extend the proof up to 17 and Theaetetus to generalise the discovery to the square roots of all numbers that are not perfect squares (and again, we cannot be sure what proof was used). By the time of Euclid this discovery was well-developed as the theory of incommensurable magnitudes, and developed in books V, IX and X of the

that were unordered—possibly including π . rched, by Knorr (1975) and Fowler (1999). But what about the metaphysical significance? In metaphysical terms, what can $\sqrt{2}$ be, and what can it not be?

he first thing is that, given the above proof and others like it, we cannot automatically think that a nominalising strategy that might be thought that we could regard number as an abstraction for our purposes from aggregates of individuals, as in, five sheep, 't say that such a nominalising strategy has any real plausibility merely that it will not work for $\sqrt{2}$, for no aggregate of individuals has that number. areas and volumes—might be this number $\sqrt{2}$. But this cannot be right either. The hypotenuse of a right-angled isosceles (RAI) triangle with catheti of unit length then the hypotenuse will have the length $\sqrt{2}$. But if we had chosen instead to make which is irrational. The same can be said, mutatis mutandis, for areas and volumes. Whereas it might be plausible to think of things as having natural units—one goat, one sheep, one neutron, etc.—this cannot be carried across to geometrical magnitudes. And if there are no natural units for geometrical magnitudes then no other such magnitude phenomenon revealed by the Pythagorean proof was sometimes referred to as incommensurability. This is a pair-wise relation. The catheti and the hypotenuse of a RAI triangle cannot both be whole numbers or ratios of whole numbers.

liscovered numbers that were unsayable. Evidence for this can be found in Plato's statement in The Republic: such numbers (or magnitudes) were arrheton (unspeakable or unsayable). translated as 'rational' was rheta, meaning sayable, and the obvious root of arrheton. By contrast the word in Euclid that we translate as 'irrational' was aloga which can have as many meanings as that very loaded word logos—but will certainly include beyond words. and nor did the Greeks mean) that there is no form of words which will describe such numbers, for the expression in numerals that will do so. As Leibniz put it, in his Dialogue on Human Freedom and the Origin of Evil, of 1695 (Leibniz, 1989), buld not find such an expression. If we allow infinite forms of expression then we can think of these numbers as limits, for example by the approximation method known as anthyphyrasis, which was known in Plato's time. And this in itself leads to a continued fraction representation of these numbers, as discovered by Pietro Cataldi, Brouncker,

plausible, and the one that was outlined in the first section, above,. The trouble is that this view will not work either for $\sqrt{2}$. This is because there is no numerical expression—for this or any other irrational number. In fact this seems to be

here is no finite expression in numerals, or numbers exact: it is in this sense that they are unsayable. Every schoolchild learns at least one manifestation of this profound fact: the decimal representation of $\sqrt{2}$ would be an infinite, non-recurring string of numerals. Cutting it off after any finite length will give a rational number that is not equal to

ual confusion between numerals and numbers that has given nominalism its longevity is simply not available in this case. is a number at all. This is the important ontological issue to which we have become numb, but which was still very much a live issue in the 19th Century. It is a familiar point that 'numbers, though they also understood ratios of these natural numbers. So it is possible that Plato could have said, cautiously, was number in a new sense of the term, or whether it was some other kind of entity whose square was a number! And yet there was at least one good argument for thinking of these unsayable entities as number, namely 2; so the square root of 2 surely ought to be something of the same kind, en geometria, as the study that encompasses these entities, and arithmos. There is some evidence in the later dialogues that Plato was prepared to take the step of expanding the concept of number to including these new entities, at Epinomis 990d, for example. collapsed into such names—and the proof that there are an uncountable number of real numbers means that not every real number can receive a name of any kind. Thus even if we allow ourselves to make use of countable ad hoc names—as we do with ' π ' or 'e'—or disguised definite descriptions—as we do with ' $\sqrt{2}$ '—we still have a significant gorithms for the common arithmetical operations. But there is no such natural extension of these algorithms for these ad hoc names. How would Plato (or any mathematician before the 19th Century) go about adding $\sqrt{2}$ and π ? Can we be sure that $\sqrt{2} \times \sqrt{3} = \sqrt{6}$? In fact it was Dedekind who noted, as late as 1858, that it had never been

 $\sqrt{a}.\sqrt{b} = \sqrt{ab}.$

Waterhouse, 2012). So a formalist or fictionalist conception of Nominalism—in which mathematics is just the manipulation of symbols according to set rules—has to confront the fact that here we have entities for which there can be no systematic naming procedure. Moreover this must have been evident even in Plato's day, for there is a complete

3. Taking roots

of mathematical realism.

alist construal.

I curvature, but also in particular physical problems, including those that require the use of calculus. Moreover their properties explain certain things that are impossible: namely the Delian cube problem, squaring the circle, etc.

'is quite targeted in this case, for it is not simply an indispensibility to modern science, but has a more general cast: an indispensibility of carrying out particular acts, how does a nominalist or a fictionalist strategy have anything that can equally explain already available to the realist. They are arguing for less, and so have fewer resources. As far as I'm aware that might have something to say here is that of Hartry Field in his (1980). Field helps himself to a particular space-time manifold model t to explaining positive metrical facts, not all facts. I think his argument fails in general (I take it up in section 5) and if it fails there is nothing to replace it.

vay mathematics itself evolved beyond this beginning point. Euclid is the germ from which mathematics grew, by demonstration from axioms which are self-evident. For 1700 years mathematics on sisted of furthering the work of Euclid by enlarging on the subjects of geometry, arithmetic and analysis. Abstraction led to algebra, whether in whole whether mathematics was furthered by solving equations or giving proofs, the method by which mathematical knowledge was gained was hardly a mystical intuition. Mathematical truths are known by proof and calculation. vival of Platonism and the re-establishment of the Academy in Florence under Marsilio Ficino and Cosimo de Medici, laid the ground for the next expansion: the discovery of the complex numbers. $\sqrt{1}$ ing cubic equations by Tartaglia and its theft and publishing by Cardano in 1545. The interpretation of the root of -1 as a geometric mean of 1 and -1 obtained by solving

cular to the ordinary number line gives us 'two-dimensional numbers', removing linearity as an essential condition of what it is to be a number. Again, the mathematical aspect of the discovery of complex numbers has been well-described elsewhere, but what of the philosophical significance? the cubic is that they seem to force themselves upon us. We are looking for real solutions to a cubic equation, which itself has only real coefficients, and yet complex numbers arise naturally on the way to the real number solutions. Thus consider this example, from Bombelli's L'Algebra: $x^3 = 15 \ x + 4$. The three roots of this equation are 4, e Dal Ferro, with b = 15, and c = 4:

> $x = \sqrt[3]{\frac{c}{2}} + \sqrt{\frac{c^2}{4} - \frac{b^3}{27}} + \sqrt[3]{\frac{c}{2}} - \sqrt{\frac{c^2}{4} - \frac{b^3}{27}}.$ $x = \sqrt[3]{2 + \sqrt{-121}} + \sqrt[3]{2 - \sqrt{-121}}$

> > $x = \sqrt[3]{2 + 11i} + \sqrt[3]{2 - 11i}$

onjugate 2-i, Bombelli must have found, since it yields the root 4, which he gives as a solution to the equation. (Bombelli would have been inclined to discard the negative roots.) ation are acceptable numbers, or at the very least, one of them is; but the method by which we reach them involves taking the cube roots of numbers that appear unreal or "sophistical". And the cube roots of numbers that appear unreal or sophistical. But it is only by adding together these unreal numbers (in conjugate pairs) that we reach the roots, radox: for he did not regard negative numbers as proper—by contrast he had no problem with irrational numbers—and vet he was taking the square root of the complex radicals that resulted—and then adding them pairwise. 10 He declared this discovery as the discovery of a new kind of cubic

d has a different name... [It] will seem to most people more sophistic than real. This was the opinion I held too until I found its geometrical proof (translated in Federica La Nave and Barry Mazur's (2002))

Id resembles the geometric proofs of the existence of irrationals: in a sense complex numbers stand to irrationals as Dal Ferro's equation stands to Pythagoras's Theorem—they both emerge as surprising solutions given well-recognised inputs. 11 However it was not for another 100 years, when Wallis and then De Moivre showed that $\sqrt{-1}$ could be ne, the mis-named Argand plane, that its acceptance was assured. But they—i.e. complex numbers—come to us as a natural extension of our previous ontological commitments—they were not 'posited' for the purposes of doing physics, or whatever, they were instead a discovery that emerged naturally from pursuing ordinary mathematics. And

tiation for Euclidean space then we get linear algebra and operators all as part of the machinery for the description of that space. The rich connections between Euclidean geometry and the real and complex numbers have been thoroughly explored, and need no further comment. Again, this is an issue we come back to. 13 ar geometry with no reliance on the usefulness of mathematics to physics—and Bombelli died 60 years before the appearance of even Galileo's Dialogue Concerning the Two Chief World Systems. Most curiously, the expansion of the mathematical ontology—or, to put it more accurately, the realisation that there was more ontology implicit in the goras and Cardano-Tartaglia-Bombelli—involved taking roots. Once again: taking roots has been ontologically ampliative. In fact had the ancients been prepared from the outset to countenance negative numbers then the process of taking roots might have led directly to the complex numbers two millennia earlier. ave any evidence that their use is unavoidable? Until recently the answer would have seemed to be 'no', for it always looked possible to translate standard quantum mechanics on the complex field (CQM) into a more cumbersome real number form (which we will abbreviate to RQM). This is hardly any form of nominalism, but it has been nis situation may have changed recently by a paper that argues that there are situations in CQM that cannot be explained in RQM (Renou et al., 2021). The gist of the argument is that if we take three individuals, Alice, Bob and Charlie, and have two entangled photons shared between Alice and Bob, and another two shared between Bob glement is transferred to one between Alice and Charlie, even though they have not received particles from a common source. The claim of Renou et al., 2021) is that this transfer of entanglement can't be explained in RQM, though it can be explained in CQM. They calculate an entanglement coefficient, based on the ximum attainable by RQM. There is also an experimental protocol that could test this difference. If the test were to come out as the authors believe then complex numbers would not after all be eliminable in favour of real numbers.

that the discovery that our physical space is not Euclidean but instead has a Riemannian curvature shows that Euclidean geometry is "wrong". This, I think, is a mis-saying. The geometry are instantiated after all. They are just not

physics being made well before that physics came into existence. It would be hard in this circumstance not to come to the conclusion that mathematical discoveries are of something real that are laying the groundwork for us to make such physical discoveries. of these was designed to be by analogy with the complex numbers: he wished to find a four-dimensional analogue of them to represent spatial rotation. But it was not forced by the solution of any existing equations or problems in mainstream physics or mathematics. So we once had no reason to believe that they exist—only that they could Clifford's use of them in what we now call Clifford algebra, and the role that they play in the theory of spinors, may convince us that Hamilton's instincts were right, against the critics of the day. This is the issue we take up in the next section. 14

4. Spinors

of mathematics preceding the physics for which it is indispensible. rthogonal Lie Algebra SO(3) which could not be obtained from vector representations. This was, again, a discovery in pure mathematics—following on from previous discoveries in transformed in a wholly unexpected way. Quite separately, however, Wolfgang Pauli began to employ these entities in pendently, by Dirac for the relativistic electron in 1928) and the mathematical entities were then named after their physical manifestations: spinors. R. Brauer and H. Weyl described the mathematical theory of these entities in a paper in 1935, without knowledge it seems of Clifford algebra, and then Cartan followed with a fuller monograph in age of it. In Weyl's Classical Groups (1939), the fuller picture is given also. Thus we have from Weyl (1939) the derivation of the spin representation. Instead of the projective we have thus obtained an ordinary though double-valued representation.

and a structions in Euclidean geometry with ruler and compass are algebraically equivalent to the four species and the extraction of square roots. A field in which every quadratic equation $x^2 - \rho = 0$ is solvable may therefore be called a Euclidean field. Our result is then that in every Euclidean field we can construct the spin representation; the Euclidean nature of the field is vector space. Only with the spinors do we strike that level in the theory of its representations on which Euclid's geometry must be deeply connected with the existence of the spin representation (Weyl, 1939, p.273).

d by Michael Atiyah. 'No one fully understands spinors. Their algebra is formally understood but their general significance is mysterious. In some sense they describe the 'square root' of geometry and, just as understanding the square root of -1 took centuries, the same might be true of spinors.' (quoted in Farmelo (2009)). What is the 'square root' of geometry and, just as understanding the square root of -1 took centuries, the same might be true of spinors.' nodulus—is zero. So let $\mathbf{x}=(x_1,x_2,x_3)$ be an isotropic vector in a three-dimensional space. In fact we will specify that the space is \mathbb{C}^3 to make the connection with the physics more apparent—thus each of the components is a complex number. The isotropic vectors form a two-dimensional surface in \mathbb{C}^3 , and for each we will have

 $x_1^2 + x_2^2 + x_3^2 = 0.$

al axiomatisation is weaker than that of Hilbert and Bernays in their Grundlagen. including second-order axiomatisations of arithmetic. In their section 1.13 there is again signs of confusion between numbers and numerals. Properly, however, in such second-order axiomatisations we are quantifying over properties of numbers themselves, but we then also sacrifice Dedekind's desideratum of non-circularity. as John of Salisbury. Thus see Joseph Owens (1982)

e speaks in the introduction of a + b and b + a 'directing different thoughts'. I do not say that this performative interpretation of arithmetical operations is correct, merely that if we have it then it seems most apt to apply it to numerals.

is not clear whether at this level the continuity of the space is destroyed as well. traight Lines and Solids, noted by Diogenes Laertius. This is the earliest known written work on the Pythagorean discovery, since the Pythagoreans themselves, famously, committed nothing to writing.

gmatic cast, as though it were a tool of an engineer with an Aristotelian bent (q.v., Newstead and Franklin, 2012).

s standard, and many date this transition to the post-Republic period. But precise dating is more difficult. Philodemus attemptical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced, because Plato was supervising (them) and posing problems that the mathematical sciences were also greatly advanced by the problems of the posing problems and problems are problems. he theory of ratios reached [the peak of their development], and the same holds for the problems related [to definition], since Eudoxus and his followers introduced changes to the old-fashioned approach [of Hippocrates]. Geometry [too] made great progress. For there were produced both the method of analysis and the examination of the limits (of a problem) and geometry in general was much [advanced]; nding for 'minus'—thus neatly avoiding making the negative sign an adjectival modifier. Note also that there are nine pairs that could be summed, and it requires some clarity to realise that only three of those pairs, the conjugates, are relevant for finding the roots. Barry Mazur's (2004), which tells the story of Bombelli's imaginative leap.

: (Cartan, 1966). B.L. van der Waerden was the important link between Ehrenfest's physics group and the mathematical community in the early 1930's: it was the latter who simplified and made accessible the mathematics. See Veblen (1933) and (1934), also Payne (1952). Vevl's line verbatim.

Adrian Heathcote

Each such isotropic vector has associated with it two numbers ξ_0 and ξ_1 given as solutions to the following three equations:

 $x_1 = \xi_0^2 - \xi_1^2$ $x_2 = i(\xi_0^2 + \xi_1^2),$ $x_3 = -2\xi_0\xi_1,$

where these are of the form

 $\xi_0 = \pm \sqrt{\frac{x_1 - ix_2}{2}}$ and $\xi_1 = \pm \sqrt{\frac{-x_1 - ix_2}{2}}$. These two numbers parameterize the two-dimensional surface of isotropic vectors. The vector

is a spinor. But as with Bombelli's solution to Dal Ferro's formula there are two choices, depending on the sign, as the solutions come in yoked pairs (again the cross terms are discarded). So we also have

as a second solution, analogous to the partnering of $\sqrt{-1}$ and $-\sqrt{-1}$.

Though Atiyah spoke of spinors as being 'square roots' of (isotropic vectors, Cartan himself refers to them as "polarisations"—"en quelque sorte un vecteur isotrope orienté ou polarisé", where a rotation of this vector through 2π changes this polarisations. These are not unknown in relativity theory either—the light cone is represented by isotropic vectors and has associated with it spinors (with real components) which are time-like. This was the point of view emphasised by Cartan in his 1937 lectures, with particular emphasised by Cartan wanted to emphasise their relation to space-time geometry. Thus he presented

[...] a purely geometrical definition of these mathematical entities: because of this geometrical origin, the matrices used by physicists in Quantum Mechanics appear of their own accord, and we can grasp the profound origin of the property, possessed by Clifford algebras, of representing rotations in space having any number of dimensions. (Cartan (1966) from his Introduction.)

of spin. It is when one moves to higher fermionic spin states that this picture—the Majorana picture—becomes highly non-classical and defies ready visualisation. Penrose pointed out that as we aggregate matter to form higher spin values that there is no convergence to the classical picture, rather the opposite.

But, with respect to his conception of spinors, he also pointed to the impossibility of using the usual coordinate transformation techniques in Riemannian geometry (a remark that was sometimes mistakenly construed as an impossibility proof of introducing spinors into general relativity). Spinors are closely related to the Atiyah-Singer Index theorem and K-Theory, the Seiberg-Witten theory and Alain Connes' non-commutative geometry. Roger Penrose has made them the centrepiece of his proposed unification scheme for relativity and quantum mechanics in Twistor theory and Alain Connes' non-commutative geometry. Roger Penrose has made them the centrepiece of his proposed unification scheme for relativity and quantum mechanics in Twistor theory and Alain Connes' non-commutative geometry. mathematics, only to (independently) come, some 13 years later, to represent a property that had no macroscopic visualisation: a hitherto unsuspected property of mathematical structures in nature. And here the mathematics seems very close to being directly physically detectable in the form of spin eigenvalues. And due to the character of the double cover SU(2) spinors have the remarkable property that if we pick an isotropic vector and rotate it through π and its sign is reversed. It takes a rotation of 4π to bring it back to its original state. It is argued in

The non-classical nature of a spinor's double-rotational invariance is surprising and constitutes a challenge to the Riemann Sphere $\mathbb{P}(\mathscr{H}^2)$ to give a graphical representation of the pure states

Christian (2014) that this is also measurable. The former giving the spin values of the fermions and bosons arise directly from the dimension of the Lie algebra of the groups SO(3) and SU(2)—the former giving the spin values for bosons and the latter for fermions.

[...] we see that a randomly chosen quantum system with a large angular momentum (large j value) has a state defined by a Majorana description consisting of 2j points more-or-less randomly peppered about the sphere S^2 . This bears no resemblance to the classical angular momentum system with large values for its quantum numbers should approximate a classical system! [...] The answer is that almost all 'large' quantum states do not resemble classical ones (Penrose, 2004, p.566; also see Penrose and Rindler, 1987; 1988).

But despite defying ready geometric visualisation, spinors are required in quantum mechanical spin is representable, the 8-dimensional algebra usually denoted Cl₃, the real numbers and the complex numbers are naturally represented as sub-algebras. Thus, spinors represent a culmination of algebras encapsulate and relate together these seemingly different mathematical structures—all of which are intimately related to our most successful physical theories and in the case of the real and complex numbers, spinors, and quaternions, actually preceded them. We can close the circle on the progression that we have been noting here: from right angled triangles to the Pythagorean understanding of irrationality and the real numbers, to spinors, by mentioning a remarkable fact: Pythagorean triples can be understood as generating spinors defined on the null vectors of \mathbb{Z}^3 . This is due to the mapping induced by the Euclidean parameters (p,q), with p>q, to the Pythagorean triples (x, y, z) by

At least one of the numbers (x,y) must be even. The primitive with z positive and y even, or $(\frac{x}{2},\frac{y}{2},\frac{z}{2})$ is primitive and y even, or $(\frac{x}{2},\frac{y}{2},\frac{z}{2})$ is primitive and (x,y) must be even. The primitive and (x,y) must be even. The primitive and (x,y) is standard Pythagorean triple is one which is either primitive and (x,y) is not. Then, it is provable that for every standard Pythagorean triple is one which is either primitive and (x,y) is not. Then, it is provable that for every standard Pythagorean triple is one which is either primitive and (x,y) is primitive and (x,y) is not. Then, it is provable that for every standard Pythagorean triple is one which is either primitive and (x,y) is primitive and (x,y) is not. relatively prime which generate the Pythagorean triple. This is then a one-to-one correspondence (bijection) between the directions in \mathbb{Z}^2 and the null directions in \mathbb{Z}^3 . Euclid's discovery of the parameterisation of Pythagorean triples may be viewed then as the first recorded use of a spinor space.

 $x = p^2 - q^2$, y = 2pq, $z = p^2 + q^2$.

This in turn is related to complex numbers: c = p + qi, since the norm is equal to cc*, the complex number multiplied by its conjugate, which is

 $p^2 + q^2$.

And the square of the complex number is

Thus the squares of certain integer complex numbers are analogous to the equations for Pythagorean triples are analogous to the equations of the equations of the equations for Pythagorean triples are analogous to the equations of spinors in \mathbb{Z}^2 ! As Kocik (2007) puts it: 'Euclid's discovery of the parameterisation of Pythagorean triples may be viewed then as the first recorded use of a spinor space.'

 $(p^2 - q^2) + 2pqi$

This appears to vindicate Weyl's mysterious remark. But it also emphasises that there is a connection between the metric on the space and the definition of spinors—so that the latter actually requires the former. This dependence is further discussed in Bär et al. (2005) and Bourguinon et al (2015). Let us return briefly to Penrose's idea of the centrality of the Riemann sphere. As noted, he pointed out that a spin-\frac{1}{2} particle can have the possible directions in which its spin can be measured mapped to the Riemann sphere. But he then said:

Although quantum amplitudes seem to be very abstract things, having this strange 'square root' relation to a probability, they actually have close associations with space-time geometry (Penrose, 2000, p.230).

To make this connection he noted that being situated at a point in space. This Riemann sphere is then conformally deformed if we pass to another observer's point in space. This Riemann sphere is then conformally deformed if we pass to another observer's point in space. This Riemann sphere is then conformally deformed if we pass to another observer passing through that same point with a different velocity, Thus the non-reflective Lorentz transformations can be represented by complex conformal transformations of the Riemann sphere. It would be interesting to consider that these different usages of the Riemann sphere could be unified by Cartan's geometrical picture of spinors as square roots of null vectors.²⁰

5. Realism defended

The enlargement of mathematical ontology from Pythagoras through to Cartan and Weyl is properly the uncovering of structures. And through this process mathematical structures are already present, and uncovered through the process of doing ordinary mathematical structures. And through this process mathematical structures are already present, and uncovered through the process of doing ordinary mathematical structures. geometry; complex numbers and their associated structures in geometry and algebra; and spinors and their structures. In these three cases the mathematical structures preceded, sometimes by centuries, their application in physics. We can thus see the danger in an over-reliance on the indispensability thesis. There is a strongly pragmatist construal of this thesis that would have it that the only reason we should believe in mathematical entities is their usefulness in physical explanation—with the implication that if they had not found an application in physical explanation we would not have reason to believe in them. This does an injustice to the very thing that makes mathematical epistemology unique: proof. A far more compelling fact about the use of mathematics in physics is that the mathematical discoveries made by entirely different methods often precede the discovery that they can be found also in the natural world. It is this that should keep the Nominalist awake at night. But we should accept a more modest role for indispensability: that physics is capable

of providing a layer of additional confirmation that mathematical structures and entities exist, and moreover that this existence should not be regarded as an abstract matter, for they are part of the fabric of the Universe. Thus let us consider the most well-developed nominalist view: that proposed by Hartry Field in his (1980). The central idea is to take congruences on a Newtonian space as giving one all the 'numbers' that we need. And yet I think it misses the mark. As suggested earlier, if the nominalist is permitted to help himself to space-time as a flat 4-dimensional differentiable manifold with a metric structure then he has thereby helped himself to the real numbers already, both in the metric and also in the differentiable structure. For an n-dimensional differentiable manifold is locally isomorphic to \mathbb{R}^{n} . In fact a 4-dimensional differentiable manifold is locally isomorphic to \mathbb{R}^{n} . In fact a 4-dimensional differentiable manifold is locally isomorphic to \mathbb{R}^{n} . there can be more than one way to determine the local mappings to \mathbb{R}^4 that are conformally inequivalent (Donaldson and Sullivan, 1989). These are not simply many different metrics definable on a differentiable manifold—which would be a trivial point and would not distinguish 4-manifolds. Rather the quasi-conformal structures are distinct in that no finite amount of stretching or shrinking of the metric will deform one quasi-conformal manifold into another, despite being topologically identical. (Guided as we are by 2- and 3-dimensional topology this seems impossible to visualise.) The problem for Field is that these infinite possibilities are precisely the kind of abstracta that his nominalism cannot countenance.

If the space-time is Newtonian (as it is for Field) then the metric is globally singular though well-defined on the fibrations. If it is Minkowskian then it is globally singular though well-defined on the fibrations are only defined on the fibrations. If it is Minkowskian then it is globally singular though well-defined on the fibrations. give a Nominalist construal of the light cone structure, since all points that are light-like separated have 0 distance from one another by the Lorentz-signature metric, even when they are collinear! This by itself refutes the idea that congruence can be a nominalist substitute for the role that the metric structure plays! Since Minkowski space-time is a more realistic space-time is a more realistic space-time is a more realistic space-time structure plays! this seems definitive But I'd like to sketch an ancilliary argument of a different kind, which suggests that Field's strategy does not do away with numbers in the way he suggests, even on Euclidean space. Suppose that there were two four-dimensional manifolds, one with its metrical structure determined by a mapping to the quaternions H or even to C × C. According to Field's nominalism these

spaces are acceptable because they can be construed substantive, because they involve numbers. So his plan is to eliminate these metrical structures are not taken to be substantive, because they involve numbers. So his plan is to eliminate these metrical structures are not taken to be substantive, because they involve numbers. So his plan is to eliminate these metrical structures are not taken to be substantive, because they involve numbers. same then the reformulation has eliminated crucial information—because multiplication (and therefore segment length) acts different then the metrical structures are still present in an implicit form; we have simply stopped using useful numerical words! We could run this same argument with a comparison of \mathbb{R}^4 with Minkowski space-time, or with a different signature metric entirely, such as (++--), or, most significantly, with a Kähler 4-manifold in which there is more than one metric-like structure.

If real numbers are smuggled in in the form of geometric structure then the nominalist, though helping himself to a lot, has still not got enough even for the simplest case of C²—for a spin-half spinor space—it is not reducible to anything that Field is prepared to countenance—for despite being topologically identical to \mathbb{R}^4 —which Field needs for the purpose of his space-time structure—it is precisely unlike \mathbb{R}^4 in its metrical features. And for the Hilbert space of the spin-1 particle there is simply nothing available at all. The problems are then only compounded from this point on. Once we begin to consider quantum field theory we must consider spaces of operators that are defined on each of the space-time points. So let us consider the noncommuting operators of the electro-magnetic field: then the algebra will be an infinite-dimensional noncommutative algebra. Dispensibilist Instrumentalism has no hope in this case, nor has it ever been attempted.²³ The Indispensibilist Instrumentalist might accept all of this as evidence of the indispensability of said mathematics but insist that we can think of the mathematics as merely "indexing" the physical facts. The term 'indexing' comes from Melia (2000) and is meant to cover the use of real numbers for distances as well as other cases of measured magnitudes. However it is not at all clear what else it is meant to cover and

without a very clear recipe for applying the term the charge of question begging will be hard to avoid (see Daly and Langford (2009) for a defence of this way of understanding Indispensibilist Instrumentalism).²⁴ Thus it is hard to see how we can account for dimensionless physical constants—such as Summerfeld's fine structure constant $\alpha = 0.0072973525693...$, first introduced in 1917. The constant has the (or one) meaning:

 $\alpha = \frac{1}{4\pi e_0} \frac{e^2}{\hbar c}.$

Here e_0 is the electric constant and e^2 is the square of the elementary charge of an electron. The value of the accuracy is always improving, but it does not seem to be related to any known mathematical constants, and may never be clear, whether it is rational or irrational. And yet, it has been argued that if α were different by even a small amount then the Universe would not exist: matter as we know it would not exist. However it is not its precise value that is our concern here, but simply the fact that it is a dimensionless number. For the nominalist view is that numbers don't exist. No form of nominalism of which I'm aware has made an attempt to deal with this problem of dimensionless constants such as α —and no strategy suggests itself. That is the realist argument in its starkest form, and indeed may summarise the point of this paper: either numbers exist or nothing exists.²⁶ But, as hinted at earlier, I believe we can find a simpler case, with ancient and venerable Platonic credentials, that seems rather clearly to not be a case of mere indexing. And it is one that is equally as hard for any form of nominalism that is currently espoused.²⁷

The argument is as follows. Premise 1: Whether an action can be performed, or a task completed, has a determinate truth value: one either can or can't. Premise 2: Whatever facts the ability to perform the act or complete the task depends upon must likewise be determinate. But consider the task depends upon must likewise be determinate. But consider the task depends upon must likewise be determinate. let us suppose, as Plato apparently did, when the Delians approximate. 28 The doubling of the cube requires finding $\sqrt[3]{2}$ which is irrational (the proof is an easy generalisation of some of the proofs of the irrationality of $\sqrt{2}$). But it is also a non-constructible number—as proven by Wantzel in 1837. And this means that there is no way to perform the action required by the oracle. So it is false that $\sqrt[3]{2}$ is constructible and so false that the Delians task can be performed. The same argument can be run using squaring the circle as the example, where the impossibility depends upon the transcendental character of π , which implies that it too is non-constructible. The point is that mathematics is not just, as a discipline, indispensable to science, it is that mathematical facts constrain and determine physical facts, and cannot easily be distinguished from them. Thus, as another example, it is the topology of the 2-sphere that determines that there must be some point on Earth where the wind does not blow. It is impossible to partition explanation into the physical versus the mathematical in a way that leaves Nominalism with any clear content. Once we have let in what is needed for physical explanation then mathematics and physics seem to have converged.

6. The royal road to ontology

It is time to take stock.

In the process of taking roots we have jumped from a discrete structure to continuous structures, in other words to geometry. And then, through complex numbers, via incommensurable magnitudes and irrational numbers, via incommensurable magnitudes and irrational numbers. Then in a second step we were led to the complex numbers, via incommensurable magnitudes and irrational numbers. argued that there is no plausible nominalist strategy won't work and—even if its problem could be set aside (as I believe they cannot)—we would confront the problem of the dimensionless constants. This latter problem defeats even a putative structuralist solution. Nor is a narrow indispensibilist explanation plausible. My suggestion in this paper has been that the major steps of this progress would warrant a realistic attitude to these entities even if one could lay aside the application of this mathematics to physics.

So the process of taking roots turns out to be ontologically ampliative, and resists nominalistic reduction. Should we find this surprising? One might suggest, aphoristically, that platonism manifests itself in its most irresistible form as geometry: Since the time of the Greek mathematicians, geometry has always been at the centre of science. Scientists cannot resist explaining natural phenomena in terms of the language of geometry. Indeed, it is reasonable to consider geometry have found applications in classical or modern physics (Shing-Tung, 2000, p.253).

This of course is not to seek to take anything away from algebra and geometry? If geometry may be likened to the face, then algebra as the revelation of the realm of ideas postulated by *Plato*" (Kähler, 2003).

Thus this argument for mathematical realism gives precedence to the reals over the integers, and to the complex numbers over the integers—I believe that even here it must fail. But in mathematical terms the integers, and to the complex numbers over the reals. This is not to say that nominalism can easily deal with the integers—I believe that even here it must fail. But in mathematical terms the integers, and to the complex numbers over the reals. attention to the non-commutative rings as possibly equally or more fundamental. The primary basis for mathematical realism, a meaning that is in accord with Plato's own emphasis on the importance of geometry. These division algebras and their associated higher structures about which we must be realist. It is here that the evidence is most irresistible. Indeed, if we turn the matter around, we could say this: the only plausible explanation for physics continually using the seemingly abstract mathematical structures uncovered by mathematics is that our universe contains those mathematical facts as generalised, non-local, parts of itself. In short: as 'geometry'. My historical conjecture is that this was itself Plato's original insight, inscribed on the entrance to the Academy: Let No-one Unskilled in Geometry Enter Here.

Acknowledgement: I wish to express my warm thanks to the readers for the journal who offered useful suggestions.

Declaration: The author declares that there are no conflicts of interest, no funding issues, and no ethics issues involved with this paper.

Bibliography

Altmann, S.L., 1989. Hamilton, Rodrigues, and the quaternion scandal. Mathematics Magazine, 62(5), pp.291–308. https://doi.org/10.1080/0025570X.1989.11977459. Azzouni, J., 2006. Deflating Existential Consequence: A Case for Nominalism. Oxford University Press.

Azzouni, J., 2010. Talking About Nothing: Numbers, Hallucinations, and Fictions. Oxford; New York: Oxford University Press. Bär, C., Gauduchon, P. and Moroianu, A., 2005. Generalized cylinders in semi-Riemannian and spin geometry. Mathematische Zeitschrift, 249(3), pp.545–580. https://doi.org/10.1007/s00209-004-0718-0.

Batterman, R.W., 2010. On the explanatory role of mathematics in empirical science. The British Journal for the Philosophy of Science, 61(1), pp.1–25. https://doi.org/10.1093/bjps/axp018. Bourguignon, J.-P. et al., 2015. A Spinorial Approach to Riemannian and Conformal Geometry, EMS Monographs in Mathematics. EMS Press. https://doi.org/10.4171/136.

Brauer, R. and Weyl, H., 1935. Spinors in n dimensions. American Journal of Mathematics, 57(2), pp.425–449. https://doi.org/10.2307/2371218. Button, T. and Walsh, S., 2018. Philosophy and Model Theory. Oxford University PressOxford. https://doi.org/10.1093/oso/9780198790396.001.0001.

Cartan, E., 1913. Les groupes projectifs qui ne laissent invariante aucune multiplicité plane. Bulletin de la Société Mathématique de France, 41, pp.53–96. Available at: https://eudml.org/doc/86329 [visited on 12 January 2024]. Cartan, E., 1966. The Theory of Spinors. Cambridge, MA: MIT Press

Chevalley, C., 1997. The Algebraic Theory of Spinors and Clifford Algebras. Ed. by P. Cartier and C. Chevalley, Collected works / Claude Chevalley, vol. 2. Berlin [etc.]: Springer. Daly, C. and Langford, S., 2009. Mathematical explanation and indispensability arguments. The Philosophical Quarterly, 59(237), pp.641–658. https://doi.org/10.1111/j.1467-9213.2008.601.x. Dedekind, R., 1888, Was sind und was sollen die Zahlen? Braunschwieg: Friedrich Vieweg & Sohn, Available at: http://www.digibib.tu-bs.de/?docid=00024927 [visited on 30 October 2020].

Donaldson, S.K. and Sullivan, D.P., 1989. Quasiconformal 4-manifolds. Acta Mathematica, 163, pp.181–252. https://doi.org/10.1007/BF02392736. Estermann, T., 1975. The irrationality of $\sqrt{2}$. The Mathematical Gazette, 59(408), pp.110–110. https://doi.org/10.2307/3616647.

Euclid, 1956. The Thirteen Books of Euclid's Elements (Book X-XIII), vol. 3 (T.L. Heath, Trans.). New York: Dover Publications. Farmelo, G., 2009. The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom. New York: Basic Books.

Field, H.H., 1980. Science Without Numbers: A Defence of Nominalism, Library of Philosophy and Logic. Oxford: Basil Blackwell. Fowler, D.C., 1999. The Mathematics of Plato's Academy: A New Reconstruction. 2nd ed. Oxford: Clarendon press.

Hahn, L.-s., 1994. Complex Numbers and Geometry. Spectrum Series. Washington, DC: Mathematical Association of America. Heathcote, A., 2014. On the exhaustion of mathematical entities by structures. Axiomathes, 24(2), pp.167–180. https://doi.org/10.1007/s10516-013-9223-6.

Heathcote, A., 2021. Multiplicity and indiscernibility. Synthese, 198(9), pp.8779–8808. https://doi.org/10.1007/s11229-020-02600-8. Kähler, E., 2003. Il Regno delle Idee. In: R. Berndt and O. Riemenschneider, eds. Mathematische Werke / Mathematical Works. Berlin: Walter de Gruyter, pp.932–938.

Kalligas, P., Mpala, C., Baziotopoulou-Valavani, E. and Karasmanes, B., eds., 2020. Plato's Academy: Its Workings and Its History. Cambridge: Cambridge University Press. Kaplansky, I., 2003. Linear Algebra and Geometry: A Second Course. Mineola, N.Y: Dover Publications.

Knorr, W.R., 1975. The Evolution of the Euclidean Elements: A Study of the Theory of Incommensurable Magnitudes and Its Significance for Early Greek Geometry, Synthese Historical Library, vol. 15. Dordrecht: D. Reidel. Kocik, J., 2007. Clifford algebras and Euclid's parametrization of Pythagorean triples. Advances in Applied Clifford Algebras, 17(1), pp.71–93. https://doi.org/10.1007/s00006-006-0019-2. La Nave, F. and Mazur, B., 2002. Reading Bombelli. The Mathematical Intelligencer, 24(1), pp.12–21. https://doi.org/10.1007/BF03025306.

Leibniz, G.W., 1989. Dialogue on Human Freedom and the Origin of Evil (1695). Philosophical Essays (R. Ariew and D. Garber, Trans.). Indianapolis, Ind.: Hackett Publ, pp.111–116. Lounesto, P., 2001. Clifford Algebras and Spinors. 2nd ed, London Mathematical Society Lecture Note Series, 286. Cambridge, UK: Cambridge University Press.

Malament, D., 1982. Science without numbers by Hartry H. Field. Journal of Philosophy, 79(9), pp.523–534. https://doi.org/10.5840/jphil198279913. Mazur, B., 2004. Imagining Numbers: (particularly the Square Root of Minus Fifteen). 1st ed. New York: Picador.

Melia, J., 2000. Weaseling away the indispensability argument. *Mind*, 109(435), pp.455–480. https://doi.org/10.1093/mind/109.435.455. Newstead, A. and Franklin, J., 2012. Indispensability Without Platonism. In: A. Bird, B. Ellis and H. Sankey, eds. Properties, Powers, and Structures: Issues in the Metaphysics of Realism. London: Routledge, pp.81–97.

Steiner, M., 1998. The Applicability of Mathematics as a Philosophical Problem. Cambridge, MA: Harvard Univ. Press.

Owens, J., 1982. Faith, ideas, illumination, and experience. The Cambridge History of Later Medieval Philosophy. Cambridge: Cambridge University Press, pp.440–459. Available at: http://opac.regesta-imperii.de/id/252620. Payne, W.T., 1952. Elementary spinor theory. American Journal of Physics, 20(5), pp.253–262. https://doi.org/10.1119/1.1933190.

Penrose, R., 2000. Mathematical Physics in the 20th and 21st Centuries. In: V.I. Arnol'd, M. Atiyah, P. Lax and B. Mazur, eds. Mathematics: Frontiers and Perspectives. Providence: American Mathematical Society, pp.219–234. Penrose, R., 2004. The Road to Reality: A Complete Guide to the Laws of the Universe. 1st american ed. Alfred A. Knopf Inc.

Penrose, R. and Rindler, W., 1987. Spinors and Space-Time. Vol. 1: Two-Spinor Calculus and Relativistic Fields, Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press. Penrose, R. and Rindler, W., 1988. Spinors and Space-Time. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry, Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press. Renou, M.-O. et al., 2021. Quantum theory based on real numbers can be experimentally falsified. Nature, 600(7890), pp.625–629. https://doi.org/10.1038/s41586-021-04160-4.

Resnik, M.D., 1983. Hartry H. Field: Science without numbers. Noûs, 17(3), p.514. https://doi.org/10.2307/2215268. Resnik, M.D., 1985. How nominalist is Hartry Field's nominalism? *Philosophical Studies*, 47(2), pp.163–181. https://doi.org/10.1007/BF00354144.

Shing-Tung, Y., 2000. Review of Geometry and Analysis. In: V.I. Arnol'd, M. Atiyah, P. Lax and B. Mazur, eds. Mathematics: Frontiers and Perspectives. Providence: American Mathematical Society, pp.353–401. Shiu, P., 1999. More on Estermann and Pythagoras. The Mathematical Gazette, 83(497), pp.267–269. https://doi.org/10.2307/3619055.

Siu, M.-K., 1998. Estermann and Pythagoras. The Mathematical Gazette, 82(493), pp.92–93. https://doi.org/10.2307/3620162.

Trautman, A., 1998. Pythagorean Spinors and Penrose Twistors. In: S.A. Huggett et al., eds. The Geometry, and the Work of Roger Penrose. Oxford University Press, pp.411–419. https://doi.org/10.1093/oso/9780198500599.003.0031. Van Heijenoort, J., 1967. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931. Cambridge: Harvard University Press. Available at: http://archive.org/details/fromfregetogodel0000vanh [visited on 23 January 2024]. Veblen, O., 1933. Geometry of four-component spinors. Proceedings of the National Academy of Sciences, 19(5), pp.503–517. https://doi.org/10.1073/pnas.19.5.503.

Veblen, O., 1934. Spinors. Science, 80(2080), pp.415–419. https://doi.org/10.1126/science.80.2080.415. Waterhouse, W.C., 2012. Square root as a homomorphism. The American Mathematical Monthly, 119(3), pp.235–239. https://doi.org/10.4169/amer.math.monthly.119.03.235.

Weyl, H., 1931. Theory of Groups and Quantum Mechanics. London: Methuen. Weyl, H., 1939. The Classical Groups; Their Invariants and Representations, Princeton mathematical series. Princeton, N.J.; London: Princeton University Press; H. Milford, Oxford University Press.

Wigner, E., 1939. On unitary representations of the inhomogeneous Lorentz group. The Annals of Mathematics (second series), 40(1), pp.149–204. https://doi.org/10.2307/1968551.

¹⁷ See Penrose and Rindler (1987; 1988). Also Claude Chevalley (1997), particularly the afterword by J.-P. Bourguignon; also Lounesto (2001).

¹⁸ See Trautman (1998) Proposition 1. These ideas are developed in greater detail in Kocik (2007), though without acknowledging Trautman's prior work. Kocik links this with quasi-quaternions and the Apollonian Gasket. ¹⁹ Of course we might also add, for further evidence, that the square root of the classical Laplacian is the Dirac operator of relativistic quantum mechanics is the square root of classical mechanics, as suggested by Penrose. ²⁰ Penrose (2004) does not reference Cartan in this context.

²¹ This style of criticism of Field was signalled early on by Michael D. Resnik in his review of Field's book: (Resnik, 1983; also Resnik, 1985; see also Steiner, 1998). ²² This leads David Malament in his review (1982) to shift Field's case to a Klein-Gordon scalar field theory. 23 Of course, we can accept, with Field, that there is no canonical natural isomorphic mapping of an n-manifold to \mathbb{R}^4 . But that is less than Field needs, for we can allow that the metric is a part of the space. The metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space. The metric is a part of the space and in the metric is a part of the space and in the metric is a part of the spac

back to one of the main themes of this paper—for he cannot capture the facts about incommensurable magnitudes that so impressed the Greeks. Thus consider again the 1:1:\(\sqrt{2}\) triangle. Congruence classes will allow an integer that is assigned to the typotenuse, or vice versa. Incommensurable magnitudes that so impressed the Greeks. Thus consider again the 1:1:\(\sqrt{2}\) triangle. Congruence classes will allow an integer that is assigned to the typotenuse, or vice versa. Incommensurable magnitudes that so impressed the Greeks. every coordinatization in the equivalence class that defines the metric. ²⁴ I say nothing in this paper about structuralism, as I've discussed it elsewhere—see Heathcote (2014). In its anti-realist form structuralism is unable to address the objections made here. ²⁵ The fine structure constant is often given in the reciprocal form $\alpha^{-1} = 137.035999206$. ²⁶ As Wolfgang Pauli is alleged to have said: 'When I die my first question to the Devil will be: What is the meaning of the fine structure constant?' Of course there are other dimensionless physical constants besides α that could make the same point. ²⁷ Jody Azzouni has recently resurrected, in his (2006) and (2010), a form of pure fictionalism about mathematics—mixed with a form of social constructionism—that seems particularly vulnerable to this challenge, as it makes no attempt to deal with the mathematics that occurs in physics and is content to discuss the counting and computation of natural numbers (see Batterman, 2010).

²⁸ Thus note Plutarch's comment on this: 'And therefore Plato himself dislikes Eudoxus, Archytas, and Menaechmus for endeavouring to bring down the doubling of the cube to mechanical operations; for by this means all that was good in geometry would be lost and corrupted, it falling back again to sensible things, and not rising upward and considering immaterial and immortal images [...]. 'Platonic Questions, Quest. 2, Moralia. ²⁹ As proven by Lindemann in 1882. The impossibility of squaring the circle was probably known by the time Plato was writing: Aristophanes ridicules circle-squarers in *The Birds*. ³⁰ In this context, the importance of group representation theory in quantum physics is worth emphasising. For here we take an often complicated non-linear algebraic object by considering a homomorphism to a vector space. That this is especially fruitful has been argued often, as far back as Weyl (1931) or Wigner (1939). For additional comments on this see Heathcote (2021).

Paweł Polak

The Pontifical University of John Paul II in Krakow

Keywords

Abstract Philosophy in technology is a research program that studies the philosophical roots of engineering and technology. By virtue of their education, technology asserts that the resolutions to these problems need to be rooted in an understanding of their philosophical origins. In this program paper, we define the objectives of philosophy in technology together with the kinds of questions it explores, the methods it uses, and its differences to the philosophy of technology.

philosophy in technology, philosophy of technology, engineering perspective, semantic gap, philosophy in science, theology.

The man who has no tincture of philosophy goes through life imprisoned in the prejudices derived from common sense, from the habitual beliefs of his age or his nation, and from convictions which have grown up in his mind without the co-operation or consent of his deliberate reason. To such a man the world tends to become definite, finite, obvious; common objects rouse no questions, and unfamiliar possibilities are contemptuously rejected. (Russell, 1912, p.243).

[Philosophy] removes the somewhat arrogant dogmatism of those who have never travelled into the region of liberating doubt (Russell, 1912, pp.243-244).

1. Introduction: The Need for a new approach for reflecting on technology¹

The modern world bears the stamp of the science and technology to express and promote themselves, with some even spinning the most extreme anti-rationalist, anti-developmental ideas. A deeper philosophical reflection is therefore needed for the L technology that forms the fabric of modern culture and determines our future models of life. We believe that the philosophy of technology." We picked this name because we want to pay greater attention to philosophy that is "internal" to technology sometimes benefits directly from philosophical concepts, but the roles played by philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, with them ranging from fundamental ideas and assumptions to the philosophy are more diverse, and the philosophy are more diverse, with the more diverse, and the philosophy are more diverse, and the p The following section begins by discussing the roots of "philosophy in technology as a research program before we outline the methodological assumptions of philosophy in technology as a research program before we outline the methodological assumptions of philosophy in technology. In Section 5, we move on to discussing the main tenets of philosophy in technology as a research program before we outline the methodological assumptions of philosophy in technology.

technology in Section 6. Next, Section 7 presents how a philosophy in technology agenda may be useful for technology and suggests a need for an open dialogue between philosophy in technology and suggests a need for an open dialogue between philosophy in technology agenda may be useful for technology agenda may be useful for technology and suggests a need for an open dialogue between philosophy in technology agenda may be useful for technology. This text is programmatic for developing a philosophical inquiry in such an important contemporary direction. As such, many topics are treated only sketchily, and the analyses are far from complete. This work aims to point out a new direction for research, and subsequent works should fill in the identified gaps.

to formulate certain general relationships. A typical aim of philosophy of technology is to understand the philosophical implications of technology and its products.

accompanied the journal ZFN since its first issues. The program has proven fruitful on many levels (e.g., Brożek, Mączka and Grygiel, 2017), and it has served as a bridge for developing a dialogue between the fields of science and faith (Polak and Rodzeń, 2023).

2. Historical background: The shift from science to technology

Contemporary technology is so closely related to science and modern technology (Hottois, 2023). We focus here mainly on technology because the philosophy of science and technology, we believe that we could benefit from some philosophical considerations about science, namely the metaphilosophical concept of "philosophy in science."³

Now, what does the concept of "philosophy in science" (Heller, 2019; see also Polak, 2019)? Is it just a play on words, or is it a deeper result of the development of the philosophy in science (Polak and Trombik, 2022)? We believe that we can adapt this existing metaphilosophical concept to illuminate the most important contemporary aspects of technology. While we were inspired by Heller's concept, it has also been greatly modified due to the differences between science and technology and the different historical backgrounds. If we consider that good philosophy should shed some light on the current pressing problems faced by humanity, then "philosophy in science" was primarily an attempt to respond to the broad cultural crisis caused by the extreme positivist interpretations imposed on the sciences. This program was initiated by Michel Heller almost fifty years ago, and its name, which is used literally in the English version, has

Today, it is worth taking a broader look at this philosophical program from the perspective of 75 issues of the history of philosophy, and the groundbreaking theories of the natural sciences are now standard topics for philosophers. As science continues to provide new intellectual challenges, we believe that philosophy in science is still necessary. These days, however, we do not focus exclusively on physics, like positivism did in the past, because the range of sciences, such as economics, which has found an important place in ZFN, as well as technology.

3. Technology as a philosophical challenge

Technology occupies a special place among all the challenges facing modern society. It is broadly related to science in the sense that it makes extensive use of scientific developments, yet the problems associated with it. Indeed, they emphasize different goals: Science's goals are cognitive in nature (i.e., gaining knowledge), while technology has practical goals (i.e., taking actions).⁵

Social media alienation of the individual (Reveley, 2013), digital surveillance (Galič, Timan and Koops, 2017; Selinger and Rhee, 2021), the undermining of democracy (Olaniran and Williams, 2020), and censorship (Cobbe, 2021) are just some of the current problems that technology was supposed to be the embodiment of scientific rationality and provide tangible proof of the effectiveness and usefulness of science, but in reality, it has turned out to be far more complex and problematic than earlier philosophy in science and technology, which we will call "philosophy in science" program needs to be supplemented by a complementary program for technology, which we will call "philosophy in technology." These research programs share many metaphilosophical issues, but there are also some important differences between them. It therefore seems high time that we attempt to better define what philosophy in technology is and what it could be, because this should also help us gain a better understanding of what technoscience could be. is not concerned with any particular technical domain but rather with how different technological perspective, philosophical concepts, how technological domains often unwittingly adapt traditional philosophical concepts, how technological domains often unwittingly adapt traditional philosophy and perspective, philosophy adapt traditional philosophy adapt traditi Philosophy in technology explores the philosophical roots

epts used by technology and the concepts that are understood in philosophy. We argue here that this semantic gap has become a source of confusion that leads to misunderstandings between philosophers, the general population, and technologists. It also serves to downplay or exaggerate the risks and threats posed by technological development.

4. Philosophy in technology versus the philosophy of technology

It can be seen as (1) a systematic clarification of the nature of technology as an element and product of human culture. Alternatively, it can be regarded as (2) a systematic investigation of the practices involved in inventing, designing, engineering, and making technological artifacts or (3) a systematic reflection on a technology's consequences for Philosophy of technology can be viewed from many perspective What distinguishes the pre-existing philosophy of technology I (from technology) perspective that it adopts and its aims. Technical systems, networks of interactions, artifacts, and so on are analyzed "from the outside," as a given object of philosophical perspective, imposing chosen philosophical view on technology. In its broadest

> oncepts, assumptions, and values have been used in the process of creating a particular technology, technical solution or artefact. In doing so, we hope to gain a better understanding of the object of study. In other words, philosophy in technology is an important preparation for philosophy of technology. Even more important is the practical emove philosophical obstacles to the development of technology. Examples of such blocking effects of philosophical concepts on the development of AI can be found, see for example (Smith, 2019; Krzanowski, 2021; Wooldridge, 2021). rounding for technology and engineering and the role it plays in shaping technological solutions; (2) explicates the ontological, axiological, axiological, axiological dimensions of technology; and (3) clarifies the semantic gap between technical and philosophical concepts and attempts to bring them together under one perspective. The the mind, ethics, justification, responsibility, phenomenology, selfhood, personhood, knowledge, wisdom, privacy, power, right vs. wrong, ontology, truth conditions, verification, and so on, although the list is potentially endless.

> is we are interested in the philosophy that underlies a particular technology. In other words, we want to reconstruct and consider the philosophy that is embodied in the technology. We stress here that the mere ideological declarations of the technology is creators are, at most, of secondary importance, because what we are interested in here is

or an analysis of the nature of technology itself—its concepts, its methods, its cognitive structures, and objective manifested throughout human affairs and, indeed, even seeks to explain both the nonhuman and the human worlds in technological terms. [...] Humanities [...] philosophy of technology seeks by contrast

neers and the world of humanists, but it takes a different perspective. It looks for the philosophical implications are of using these Mitcham's two variations of the philosophy of technology. So, what are the specific details of this new approach?

5. Philosophy in technology as a research program

shared and incorporated into the development of technology. This program is a critical study of the philosophical foundations of technology primarily but also philosophy itself. This will enable technology to free itself from ideological traps, purify itself of sophy, it opens up a new field of inquiry and prompts it to contribute to the development of our techno-scientific civilization.

ots of technology by (a) explaining how philosophy is present in technology and engineering (e.g., fundamental philosophical assumptions, the philosophy plays in technology and engineering (i.e., philosophy for technology and engineering); (c) stimulating ogies, such as to minimize any existential threats; (d) using philosophical reflection to shape a more humanistic technology; and (e) opening up the technical perspective to philosophical analysis. echnology, we need involve not just philosophers but also the representatives of technology. This will not be possible without a change in both parties' mutual attitudes, so it is also necessary to look for new ways of teaching philosophy at technical universities in order to bridge the gap between these two fields.

6. Methodological remarks

nd adaptation of the concept of philosophy in science, which Michel Heller developed in the 1980s primarily to analyze the relationship between philosophy not just to physics but also other natural sciences (e.g., Brożek, Mączka and Grygiel, of modern technology have made it evident that an analogous concept is needed to analyze the relationship between philosophy and technology should be rooted in the critical rationalism mainly by the thinking of Karl Popper. I list some proposals below, but the list remains open for further discussion.

ical problems in technology. It is analogous to philosophy in science because we propose tracing the presence and roles of the great classical philosophical questions in technology, such as the nature of free will, the mind, intelligence, autonomous agents, and so on, so that we may be able to identify and analyze references to classical hnology is not just philosophy-laden—it also influences our thinking as a source of models and metaphors. Understanding what the intellectual contribution of technology is to our comprehension of reality is an important task for philosophers, but it is one that is all too often quietly overlooked. ts can be adapted to meet the needs of technology. Of course, we are aware that it is generally not possible to apply classical concepts directly, because they were forged for different purposes and embedded in specific concepts directly, because they are n example of this could be adapting Aristotelian phronetic ethics to machine ethics (Polak and Krzanowski, 2020b,a). An important and interesting issue here is the task of formalizing classical concepts, so they can be made as specific as possible and translated into a language that fits the pragmatics of a technical implementation (e.g.,

nology that exposes philosophical biases and assumptions, reconstructs accepted philosophical concepts in technology and engineering (e.g., Smith, 2019), and clarifies the unclear use of concepts (e.g., Smith, 2019). Engineers who create and use technology refer to philosophy, and even if they are unaware of it, they rely on aptions mostly subconsciously and uncritically, following the principles they have learned without usually caring about the far-reaching, non-technical consequences of their actions. On the other hand, even when they are aware of the philosophical significance of the decisions they make, their lack of philosophical experience makes them

I prejudices in technology, thus determining their role in specific technical realizations and analyzing the consequences and possible postulates for any changes in the philosophical foundations (e.g., Smith, 2019; Suchacka, Muster and Wojewoda, 2021; Wieczorek and Jędrzejko, 2021). In this way, philosophy in technology contributes to the i just as easily be called "philosophy for technology."

7. Framework for technology–theology (technology-religion) relationships analysis¹¹

the philosophical aspects of technology stretches beyond philosophy itself. One important area is the impact of technology on religion and theology (e.g., Rodzeń, 2016). and religions include, for example, technological spiritual enhancement (e.g., Wildman and Stockly, 2021) or the theological aspects of human-like robots (Balle, 2022). The classical religions of today also face important challenges like secularization, and at the heart of such issues lies the question of the profound cultural changes brought about

w will the message of faith be shaped for people who are surrounded by the wondrous realm of technology, which often obscures reality. 12 about by technology's exceptionally rapid development in the 21st century make the classical theological concepts unclear and incomprehensible to modern people, because these concepts were created within the context of a completely different worldview. This is particularly evident in Catholic theology, which is based on the concepts, ideas, and

Attempts to reinterpret modern culture within this medieval conceptual framework began as early as the nineteenth century with Leo XIII's encyclical Aeterni Patris (1879), but these were doomed to failure as evidenced by the problems with receiving the discoveries of modern science (Polak and Rodzeń, 2023). The same applies to the latest erstanding of the realm of technology. If we understand the philosophical role of technology, it will become easier to understanding of technology, its goals, and the values it embodies, one can perhaps hope to navigate between the extremes of fanatical of these extremes pose a risk to rational human beings and threaten to ideologize religion in the context of technology. After all, theology has always built its message on the existing philosophy through which a given culture expresses itself.

its direct involvement in the sphere of human activity. Theology, after all, concerns itself with the practical life of people, albeit from the perspective of faith rather than technical action. However, the two fields are united by the question of a person's practical life (praxis), which is why a mutual interaction between these spheres is inevitable. 13 m for a dialogue to take place between modern technology and theology. It could provide theology with the concepts and elements of the current worldview that are needed to modernize the theology will not isolate itself from this sphere and instead ent of modern technology (e.g., axiology). From the point of view of technology, thanks to such a high-level dialogue, the far-reaching effects of technology and technology technical applications, will become clearer. In other words, the dialogue between theology and technology technology technical applications, will become clearer. tional opponent of technology, it should engage in such a dialogue. This dialogue seems feasible because an analogous process has already developed at the interface of science and theology, one where the concept of philosophy in science has played an important role.

8. Conclusions

me of a non-technical nature. In the past, classical engineering operated within requirements that were clearly defined, precise (i.e., a permissible range of parameters was specified), and measurable (quantifiable). Today's engineering, in contrast, works with requirements of an extremely non-technical nature, such as requiring ethical or social attention to philosophy. While this may give the impression that only some recent technologies are directly related to philosophical problems in other areas of technology. Some philosophical concepts were even directly applied in classical engineering. 14

I connotations in philosophy, but usually there is no awareness of what new meanings are being created. Indeed, the difference between the meanings of technological and philosophical terms are often so great that they may refer to completely different things, such as in the case of ethics, ethical behavior, justice, agency, autonomy, intelligence, tandings, and this confusion with terms can even become a tool for ideological manipulation.

ous consequences, not only within academic discussions but also for sociocultural change. Incorrect meanings also lead to a myopic vision of technology. in terms of the philosophical concepts and assumptions of technology. We need a full disclosure and critical analysis of technology to expose its philosophical biases and assumptions. losophical concepts can be adapted to meet the needs of technology.

e of the technology's impact. For example, it could serve as a conceptual bridge for analyzing the relationship between technology and theology. nologists with a philosophical bent and philosophers with a technological understanding) can freely exchange their ideas without fear of being dismissed as ignoramuses or simpletons.

e hope to facilitate a technological development that is better suited to the complex nature of us Homo sapiens. We also hope that it will mitigate, at least a little, the scale of the crises that humanity is experiencing as a result of the unusually rapid transformations affecting most areas of our lives.

whose cooperation the idea of "Philosophy in Technology" finally matured. In many discussions, rehearsals, and joint papers, this vision was gradually clarified. Of course, all the errors and ambiguities in this present article are entirely my own. I would also like to thank Roman for his efforts in creating the "Philosophy in Technology" conference stance of the aforementioned conference and being kind enough to contribute many critical comments for my text that certainly helped to improve it.

and technology that we have been having for more than a decade. Many ideas were born under the influence of these discussions. I would also like to thank Jacek for his valuable and profound comments on this text. ments and inspiration for further research.

Bibliography

rk; London: Free Press (Simon & Schuster) & Penguin. cal inquiry. Theology and Science, pp.1–25. https://doi.org/10.1080/14746700.2022.2155916.

orth Carolina Press. 's and Applications. Kraków: Copernicus Center Press; Konsorcjum Akademickie. Wydawnictwo. Science and Engineering Ethics. https://doi.org/10.1007/s11948-019-00151-x.

Philosophy & Technology, 34(4), pp.739-766. https://doi.org/10.1007/s13347-020-00429-0. e, SpringerBriefs in Applied Sciences and Technology. Singapore: Springer. https://doi.org/10.1007/978-981-15-1271-1.

n: E.N. Zalta and U. Nodelman, eds. The Stanford Encyclopedia of Philosophy. Spring 2023. Stanford, CA: Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/entries/technology/ [visited on 2 October 2023]. rview of surveillance theories from the panopticon to participation. Philosophy & Technology, 30(1), pp.9–37. https://doi.org/10.1007/s13347-016-0219-1.

ind Engineering Ethics, 26(1), pp.141–157. https://doi.org/10.1007/s11948-019-00084-5. cience (Zagadnienia Filozoficzne w Nauce), (66), pp.231–249. Available at: https://zfn.edu.pl/index.php/zfn/article/view/482 [visited on 6 October 2021]. encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/technoscience> [visited on 2 October 2023].

'hicago, IL: University of Chicago Press. rski, ed. Philosophiae & musicae: księga pamiątkowa z okazji jubileuszu 75-lecia urodzin księdza profesora Stanisława Ziemiańskiego SJ. Kraków: "Ignatianum" - Wydawnictwo WAM, pp.375–380. osophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (70), pp.171–181. Available at: https://zfn.edu.pl/index.php/zfn/article/view/556 [visited on 28 December 2021].

id Philosophy. Chicago: University of Chicago Press. Available at: http://archive.org/details/ThinkingThroughTechnologyThePathBetweenEngineeringAndPhilosophy [visited on 13 July 2023]. ivility in civic engagement. Platforms, Protests, and the Challenge of Networked Democracy, pp.77–94. https://doi.org/10.1007/978-3-030-36525-7_5.

ulture. New Brunswick: Rutgers University Press. ilosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (66), pp.251–270. Available at: https://zfn.edu.pl/index.php/zfn/article/view/472 [visited on 6 October 2021].

silico: The study case of phronetic machine ethics. Logos i Ethos, (52), pp.33-48. https://doi.org/10.15633/lie.3576. roach to building ethical robots. Studies in Logic, Grammar and Rhetoric, 63(1), pp.165–183. https://doi.org/10.2478/slgr-2020-0033.

pamiątkowa z okazji 80. urodzin Michała Hellera. Kraków: Copernicus Center Press. ist science-theology separation vs. Michael Heller's path to dialogue. Theology and Science, 21(1), pp.157–174. https://doi.org/10.1080/14746700.2022.2155917. ting from two traditions. Edukacja Filozoficzna, (2(74)), pp.205–229. https://doi.org/10.14394/edufil.2022.0023.

ie. E-Learning and Digital Media, 10(1), pp.83–94. https://doi.org/10.2304/elea.2013.10.1.83. ii: nurt analityczny, Przewodniki po Filozofii. Kraków: Wydawnictwo WAM, pp.403–419.

A. Starościc, eds. Metodologia nauk. Cz. 1: Czym jest nauka?, Dydaktyka Filozofii, 9. Lublin: Wydawnictwo KUL, pp.655–681. tp://archive.org/details/problemsofphilo00russuoft> [visited on 5 January 2023].

https://doi.org/10.1515/sats-2021-0002. Cambridge, MA: The MIT Press.

EF models. INNOVATOR. Journal of the European TRIZ Association, 4(2), pp.4–11. Available at: https://www.etria.eu/innovator/ETRIAjournal2017vol04.pdf [visited on 9 October 2023].

al engineering. In: S. Koziołek, L. Chechurin and M. Collan, eds. Advances and Impacts of the Theory of Inventive Problem Solving: The TRIZ Methodology, Tools and Case Studies. Cham: Springer International Publishing, pp.135–145. https://doi.org/10.1007/978-3-319-96532-1 13. social and ethical aspects of the development of artificial intelligence. Creativity Studies, 14(2), pp.430–443. https://doi.org/10.3846/cs.2021.14316.

for Ethical Computing. 4th ed. Hoboken, NJ: Wiley. elligence and the problem of moral responsibility. Er(r)go. Teoria - Literatura - Kultura, (42), pp.15–34. https://doi.org/10.31261/errgo.10418.

ciousness Hacking and Enlightenment Engineering. 1st ed. New York: St. Martin's Press. UK: Penguin.

onference "Philosophy in Technology 2.0" (Wroclaw University of Technology & Polish Academy of Arts and Sciences). This text is an extended and modified version of my part of the joint publication. I would like to thank Roman Krzanowski for the discussions, inspiration, and contributions to the joint publication. I would like to thank Roman Krzanowski for the discussions, inspiration, and contributions to the joint publication. ngthening since the emergence of engineering (polytechnic) sciences in the 18th century (Rodzeń, 2019, p.669) nthetic account of the relationship between technology and science, see, for example, (Franssen, Lokhorst and van de Poel, 2023). n translates as "Philosophical Problems in Science." difficult to maintain, see e.g. (Franssen, Lokhorst and van de Poel, 2023, sec.2.1.-2.2.).

as decision making' (Franssen, Lokhorst and van de Poel, 2023). For most engineering or that they are absent from engineering or that they are ineering education. We must note that there is already an emerging group of engineers who recognize the importance of philosophy in relation to technology and engineering are basically in line with the program of philosophy in technology presented ovided by Smolnik (2017; 2018), who shows the use of philosophical praxeology in systems engineering. reas of human activity and has a rich history of development (Hughes, 2005; Arthur, 2009). Given the limited scope of the article, we refer here only to the most recent technologies, which we have chosen because of their current cultural significance. This does not mean, however, that philosophy in technologies, which we have chosen because of their current cultural significance. greatly depending on the field.

e at the beginning of this article (Russell, 1912, pp.243–244). ogy, as well as for his lengthy discussions on the issue of the neo-Scholastic reinterpretation of science.

Stockly, 2021) is an expression of the contemporary crisis of theology and religious faith as classically understood. It should be noted, however, that deep interactions between the spheres of faith and technology have been taking place for centuries and took a particularly interesting form in the Middle Ages (Ovitt, 1987). (I am especially grateful to Jacek Rodzeń for bringing this important issue of the nalyzed by Maksymilian Smolnik, e.g. application of Tadeusz Kotarbiński's praxiological model for mechanical engineering (Smolnik, 2018) as well Józef Konieczny praxiological models (Smolnik, 2017).

⁷ It should be noted that we take a broad view of technology here, as it is although the readability of the philosophical issues involved in a given te $\frac{1}{6}$

¹¹ I would like to thank Jacek Rodzeń for his valuable comments on phil ¹² Recall Baudrillard's concept of simulacra (Baudrillard, 1994). ¹³ Today's increasingly bold takeover of areas of faith by technology (see, proximity of science and technology to our attention.)

¹⁴ An example of direct application of philosophical theories in 'classical'

Wildman, W.J. and Stockly, K.J., 2021. Spirit Tech: The Brave $N\epsilon$ Wooldridge, M., 2021. The Road to Conscious Machines: The Stor

nphasized the role of critical reasoning skills when building an artificial ethical system.

concepts, but these can be reasonably modified in the course of critical discussion (see below).

3 Carl Mitcham's distinction between the engineering philosophy of technology and the humanistic philosophy of technology, we see that they are orthogonal. According to Mitcham:

on concepts of critical rationalism that have been adapted from the Kraków School of Philosophy of Science (Polak and Trombik, 2022).

and literature, ethics and politics, religion (Mitcham, 1994, p.62).

Philosophy in technology is not a given set of philosophical pr erroneous or harmful elements, and provide developmental im Thus, philosophy in technology is a metaphilosophical con

a discussion of the philosophical foundations and implications In order to deepen our discussion about the philosophical

As a research program, philosophy in technology was created a 2011; Polak, Maczka and Grygiel, 2017). However, reflections framework of the Krakow school of philosophy of science, whi (I) Philosophy in technology is a reflection on the class: philosophical concepts such as matter and time (e.g., Bo (II) Philosophy in technology explores how classical philos

indeed inspired by classical concepts, they are not equiva-Janusz, 2006; Tavani, 2013). (III) Philosophy in technology is a disclosure and critical a serious philosophical assumptions in their actions. They exceptionally ill-equipped to avoid naive or extremely re-(IV) Philosophy in technology analyzes the consequences o

Technology today plays various important roles in daily life, s Contemporary discussions about technological impact on reby the rapid development of technology. Will technology displ In the field of theology, we could observe that the cultural ϵ worldview of medieval culture (e.g., the contribution of St. The

optimism about technology and a fear-driven techno-skepticis In reality, technology is even closer to theology than it is to Due to its goals, philosophy in technology can serve as a co become more sensitive to the important problems that condition technology. Moreover, if theology does not wish to be reduced

The new digital technologies place many demands on engineer behavior. Such problems should prompt engineers to automat The lessons we can draw from this discussion are as follow

(2) Changes in the meaning of concepts applied to technolo

(3) To better understand technology, we need to understand

(4) For technological development, we need to understand I (5) Philosophy in technology is also important for painting (6) There should be an open and frank dialogue where both By drawing attention to the important role of philosophy

Acknowledgements: I would like to firstly thank Roman K series, because he is the true spiritus movens behind this serie I would also like to thank Łukasz Mścisławski for organizi I am also very grateful to Jacek Rodzeń for the discussion

I would also like to thank the anonymous reviewers for the

Arthur, W.B., 2009. The nature of technology: what it is and how i Balle, S., 2022. Theological dimensions of humanlike robots: A roac

Baudrillard, J., 1994. Simulacra and Simulation. Ann Arbor: Unive

Bolter, J., 1984. Turing's man: western culture in the computer age Brożek, B., Mączka, J. and Grygiel, W.P., eds., 2011. Philosophy in Cervantes, J.-A. et al., 2019. Artificial moral agents: A survey of the Cobbe, J., 2021. Algorithmic censorship by social platforms: Power Dias, P., 2019. Philosophy for Engineering: Practice, Context, Ethi Franssen, M., Lokhorst, G.-J. and van de Poel, I., 2023. Philosophy Galič, M., Timan, T. and Koops, B.-J., 2017. Bentham, Deleuze an Gordon, J.-S., 2020. Building moral robots: Ethical pitfalls and cha Heller, M., 2019. How is philosophy in science possible? *Philosophi*

Janusz, R., 2006. Relacja etyczno-psychologiczna w ujęciu obiektow Krzanowski, R., 2021. The road to conscious machines: AI through Mitcham, C., 1994. Thinking Through Technology The Path Betwee Olaniran, B. and Williams, I., 2020. Social media effects: Hijacking Ovitt, G., 1987. The Restoration of Perfection: Labor and Technolo Polak, P., 2019. Philosophy in science: A name with a long intellect

Rodzeń, J., 2016. Religia a technika. In: J. Salamon, ed. Przewodni Rodzeń, J., 2019. Nauka a technika (technonauka). In: S. Janeczek,

Russell, B., 1912. The Problems of Philosophy. New York: H. Holt.

Selinger, E. and Rhee, H.J., 2021. Normalizing surveillance. SATS, Smith, B.C., 2019. The Promise of Artificial Intelligence: Reckonin Smolnik, M., 2017. A comparative analysis of praxiological network Smolnik, M., 2018. A praxiological model of creative actions in the Suchacka, M., Muster, R. and Wojewoda, M., 2021. Human and ma Tavani, H.T., 2013. Ethics and Technology: Controversies, Question Wieczorek, K.T. and Jędrzejko, P., 2021. The conscience of a mach

Thus, philosophy in technology (1) searches for the implicit latter endeavor could involve concepts such as agents, autono: If we compare philosophy in technology with well-known c Engineering philosophy of technology begins with the justifica insight into the meaning of technology—its relation to the tr Philosophy in technology is located somewhere between tl transformed concepts. The aims of philosophy in technology ε

shapes and defines what technology does, how it develops, an Philosophy in technology also highlights the semantic gap 1

sense, technology is therefore simply an object of reflection w

Philosophy in technology, in contrast, takes an "internal" p what a technology actually does and the philosophical basis for

The aim of philosophy in technology is to understand wha

purpose—to raise awareness of the role of philosophy for engi

Philosophy in technology therefore attempts to clarify the

humanity.

long-term beneficial development of humanity, and in the

technologies and the culture based on them.

Any attempt to solve mentioned problems should begin wi

(1) Technology tends to substitute its own meaning for term the mind, and so on. This lies at the root of many signi-

Hottois, G., 2023. Technoscience (J.A. Lynch, Trans.). Available at Hughes, T.P., 2005. Human-built world: how to think about technol

Polak, P. and Krzanowski, R., 2020a. Ethics in autonomous robots Polak, P. and Krzanowski, R., 2020b. Phronetic ethics in social rob Polak, P., Mączka, J. and Grygiel, W.P., eds., 2017. Oblicza filozofi Polak, P. and Rodzeń, J., 2023. The theory of relativity and theolo Polak, P. and Trombik, K., 2022. The Kraków School of Philosophy Reveley, J., 2013. Understanding social media use as alienation: A

¹ This paper is based on the paper co-authored with Roman Krzanowski ² It is worth to mention that the relationship between science and techno ³ Keeping in mind the important differences between science and technol ⁴ ZFN is an acronym of this journal's Polish title "Zagadnienia Filozoficz" • In fact, the matter of relationships is more complex, but strong reducti ⁶ By this we mean the process of creating technology, and in particular th neutral—rather, it points to the shortcomings and problematic nature of $\varepsilon = \frac{\Omega}{\Omega}$ here. Another example of the use of philosophical concepts directly in te

¹⁰ Bertrand Russell aptly pointed out this general problem over a centur $\stackrel{\sim}{\sim}$

⁸ Evidently, such reconstruction is always biased by certain a priori acce ⁹ It is worth noting that Tavani (2013) independently proposed many sir

Roman Krzanowski

The Pontifical University of John Paul II in Krakow

Keywords

Abstract This paper discusses the concept of information, or as providing information, or as providing information, with this being a complementary view to scientific structuralism (not discussed in this paper). According to Heller, the information it contains. In Heller's view, the concept of information presented in the Shannon's Theory of Communication (ToC) is inadequate for expressing the notion of information beyond the concepts of a signal structure. Information in Heller's research comes very close to the concepts of Jacquette's and Perzanowski's combinatorial ontology (the concepts of a signal structure. Information in Heller's research comes very close to the concepts of Jacquette's and Perzanowski's combinatorial ontology (the concepts of a signal structure. Information in Heller's research comes very close to the concepts of Jacquette's and Perzanowski's combinatorial ontology (the concepts of a signal structure.)

natural information, physical information, information in nature, information in cosmology, Michał Heller, Mark Burgin

For Heller, the laws of nature act like information (fragments (3) and (4)) in determining and constraining what is possible.

of the abstract models of the cosmos. According to Heller, the

and nature as their realization, and such a view would certain

schema) (Heller, 1987).

Further explanations for the concepts of nature, structures

(11) As one must have some image of the world, the image of

In particular, modern physics does model the universe as

In fragments (13) and (14), Heller suggests that even if the

This statement approaches the position of epistemic struc

In fragments (15 and 16), Heller posits that this concept of

This theory perceives structure as something for encoding

referred to as a measure of information (i.e., information entrop

certain assumptions of syntax. Thus, it no more defines inforr

If we were to consider the most insightful ideas from Heller, w

Shannon himself (Shannon, 1956), foresaw this profusion of cor and little more than this. Shannon's information entropy, in I

never associates information with meaning, such as knowledge

2003; 2010; Burgin and Feistel, 2017; Burgin and Mikkilineni,

information in nature) and mental information.

The next insight from Heller's work would be the notion the

In Heller's view, with "information expressed in or by 'emp

In the GTI, information is stratified according to the global Structures (Burgin, 2010; Burgin and Feistel, 2017). The Physi

A more detailed explanation of the GTI can be gained from

information does not take away anything from its import; the

Out of Heller's fragment (11) and the works of other cosmolog

a more stable existence. ¹³ These material forms (the external

further research. Several recent studies have implied the existe

Heller's intuitions about information in nature are not part of being frequently referred to, albeit with the delight of explori

ignorance and ambiguities about information and the foundat

meanwhile, is a complex construct, and comprehensive as it is

(1986), Stonier (1990), Devlin (1991), De Mul (1999), Polikgho

Adriaans, P., 2020. Information. In: E.N. Zalta and U. Nodelman, of

Austin, C.J. and Marmodoro, A., 2017. Structural Powers and the

Baeyer, H.C.v., 2005. Information: The New Language of Science.

Bird, A., 2007. Nature's Metaphysics: Laws and Properties. Oxford

Burgin, M., 2003. Information: problems, paradoxes, and solutions.

Burgin, M., 2010. Theory of Information: Fundamentality, Diversit

Burgin, M. and Feistel, R., 2017. Structural and symbolic informat

Burgin, M. and Mikkilineni, R., 2022. Is information physical and

Carroll, S.M., 2017. The Big Picture: On the Origins of Life, Mean

Casagrande, D.G., 1999. Information as a verb: reconceptualizing in

Collier, J.D., 1990. Intrinsic Information. In: P.P. Hanson, ed. Information.

Davies, P., 2019. The Demon in the Machine: How Hidden Webs o

Davies, P. and Gregersen, N.H., eds., 2010. Information and the na

Devlin, K., 1991. Logic and Information. New York, NY, US: Caml Dodig-Crnkovic, G., 2012. Alan Turing's legacy: Info-computationa

Dretske, F., 1999. Knowledge and the Flow of Information, David

Eigen, M. and Winkler, R., 1993. Laws of the Game: how the princ Floridi, L., 2010. Information: A Very Short Introduction, Very Sh

Floridi, L., 2011. The Philosophy of Information. Oxford: Oxford U Floridi, L., 2019. Semantic Conceptions of Information. In: E.N. Za

Gleick, J., 2011. The Information: A History, a Theory, a Flood. N

Heller, M., 2011. Philosophy in Science. Berlin, Heidelberg: Springe Heller, M., 2019. How is philosophy in science possible? *Philosophia*

Heller, M., 1987. Ewolucja pojęcia masy. In: M. Heller, A. Michalik

Heller, M., 1995. Nauka i wyobraźnia. Kraków: Wydawnictwo "Zna Heller, M., 2008a. Ostateczne wyjaśnienia wszechświata. Kraków: T

Heller, M., 2008b. Podglądanie wszechświata. Kraków: Wydawnictw Heller, M., 2009. Filozofia nauki: wprowadzenie. Kraków: Petrus. Heller, M., 2012. Matematyka i kosmologia. *Philosophical Problems*

Heller, M., 2013a. Filozofia kosmologii: wprowadzenie, Bramy Nauk

Heller, M., 2013b. Logos Wszechświata: zarys filozofii przyrody. 3rd Heller, M., 2017. Przestrzenie Wszechświata: od geometrii do kosm

Heller, M., 2020. Jedna chwila w dziejach wszechświata: Lemaître i

Hidalgo, C.A., 2015. Why Information Grows: The Evolution of Or

Jones, D., 2018. Everything is Information, and Information is Eve Krzanowski, R., 2023. An inquiry concerning the persistence of phy

Krzanowski, R. and Polak, P., 2022. Ontological information—inform

Landauer, R., 1961. Irreversibility and heat generation in the comp Landauer, R., 1991. Information is physical. *Physics Today*, 44(5),

Landauer, R., 1996. The physical nature of information. Physics Le Laughlin, R.B., 2008. The Crime of Reason: And the Closing of the

Lenski, W., 2010. Information: A conceptual investigation. *Informa*

Linnebo, \emptyset ., 2018. Platonism in the Philosophy of Mathematics. In Losee, R.M., 1997. A discipline independent definition of information

Mul, J.D., 1999. The informatization of the worldview. *Information* Page, L.A., 2020. The Little Book of Cosmology. Princeton; Oxford

Polak, P., 2019. Philosophy in science: A name with a long intellect

Polak, P., 2022. Beyond epistemic concepts of information: The cas Polkinghorne, J.C., 2000. Faith, science, and understanding. New I

Reeves, H., 1986. L'heure de s'enivrer: l'univers a-t-il un sens?, C Rovelli, C., 2016. Reality Is Not What It Seems: The Journey to Q

Schrodinger, E., 2012. What is Life?: With Mind and Matter and A

Schroeder, M.J., 2017. Structural realism, structural information, a

Schroeder, M.J., 2005. Philosophical Foundations for the Concept Scott, D., 2018. The Standard Model of Cosmology: A Skeptic's Gu

Seife, C., 2006. Decoding the Universe: How the New Science of Inj

Seising, R., 2009. 60 years "A Mathematical Theory of Communica Shannon, C.E., 1948. A mathematical theory of communication. Be

Shannon, C.E., 1956. The bandwagon. IRE Transactions on Inform

Shannon, C.E. and Weaver, W., 1949. The mathematical theory of

Shannon, C.E. and Weaver, W., 1998. The mathematical theory of

Sloman, A., 2018. What did Bateson mean when he wrote "informa

Smeenk, C. and Ellis, G., 2017. Philosophy of Cosmology. In: E.N.

Solé, R.V. and Elena, S.F., 2019. Viruses as complex adaptive syste Stonier, T., 1990. Information and the Internal Structure of the Ur

¹ For historical, pre-Shannon, notes on the concept of information, see V

² The papers were published in an edited volume by Davies and Gregers ³ The fact that these phrases have been entrenched in popular culture do

intuitions, they continue their lives in commons, unchallenged (commons ⁴ In the author's view, enthusiasm about the apparent deep meaning of t

⁵ A part of this paper has been published as D. Phil. thesis (Krzanowski ⁶ All Heller's quoted writings here have been translated from Polish into ⁷ Heller's views about laws of nature and structuralism may be found in ⁸ The degrees of freedom is the number of independent variables (dimens

⁹ An interesting interpretation of the relation between the laws of nature \square organization or that information is expressed through the laws of physics $0 \ge \frac{1}{5}$ Any measure of information based on shape/form does not measure in

¹¹ The term "Platonic" refers to the original teachings of Plato himself, v

¹³ The stability in time of physical objects, which is denoted as persistence

 12 Not surprisingly, visions of information as a fundamental element of n $\stackrel{60}{\subseteq}$

back to the 1960s) seminal discussions on this topic.

The connection between Heller and the GTI, the most com-

The possible role of information in nature has been discuss

Heller's writings about information should be seen on a pa

Being a hard-core scientist, Heller never abandoned the ph code information or express information," "in what sense are 1

modern form does not attribute Aristotelian telos to nature.

In the GTI, information is conceptualized as nature's pote

1. Introduction

2. Heller and Information

modern concept of information (and its quantification) in science and technology was introduced (not created) into the scientific and technical discourse in the mid-20th century by Shannon (1948), Shannon and Weaver (1949; 1998), and Weaver (19 understanding of what information is. Instead of one definition, we have many (e.g., Adriaans, 2020; Krzanowski and Polak, 2022). Most discussions of information, symbolic information, physical information, symbolic info environmental information, or structural information with variants in each of the classes, although this list is not exhaustive. On a few occasions, in an attempt to express information more comprehensively as a fundamental aspect of reality (an intuition shared with our pre-Socratics, religious colleagues, and some physicist with the bent for metaphysics), researchers have formulated enigmatic koans like "everything is Information" (Jones, 2018), "information" (Jones, 2018), "information (Wheeler, 1989). Different versions of these have become entrenched in popular culture, yet these sayings do not explain much.³ They serve as useful quips in TED talks or alike, but they are without much impact beyond (see, e.g., Tetlow, 2017).⁴

Heller as a philosopher, theoretical physicist, cosmologist, and theologian provided a complex image of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology, something that is rarely found in studies of information and illustrated its role in cosmology. structures and nature. We also discuss how Heller's concepts of information fit into the wider modern discussion about information, including the GTI and the idea of the latent order of nature.⁵ A word of caution: Heller's ideas on information do not form a comprehensive theory of information (GDI) (see, e.g., Floridi's General Theory of Information (GDI) (see, e.g., Floridi's Gener Shannon's, Floridi's, or Burgin's comprehensive theories. Thus, they have to be in some way weaved out of the larger context. Interpretation of such dispersed fragments is riddled with dangers. On one hand, we want to over-interpret his ideas, as it has been done (sometimes) with pre-Socratics. Therefore, the following

presentation of Heller's thoughts on information may be seen by some as incomplete. But, we prefer the presentation to be incomplete in this sense, rather than incorrect, stating what Heller might have said. Thus, the reader will often find our comments on Heller's fragments ending with the pose, "Heller does not clarify this intuition further," and so we don't do it either.

Michael Heller's views on information resulted from his studies of the fundamental structures of the cosmos (i.e., the Universe), its mathematical models, and the properties of nature (i.e., physical phenomena). In a series of observations, Heller outlines his vision of information in nature. The first fragment (1) comes from Heller's book The Introduction to the Philosophy of Sciences

(1) The informational interpretation of the laws of nature may be seen as a complement rather than a competing option to scientific structuralism (Heller, 2009, pp.62–63).

Heller posits that the laws of nature may be interpreted as information, or as providing information both being characteristic of nature. What "complements" means here is unclear, but it may be interpreted as saying that there is no dichotomy between the structural and information views of nature, with structure and information both being characteristic of nature. In fragment (2), Heller interprets Shannon's theory of communication and claims that the increase in the information content of a structure is inversely proportional to the structure's degrees of freedom.⁸

(2) According to the modern theory of information, the increase in informational content arises in transition from a set with a larger number of degrees of freedom to a more limited set. For example, the informational content of a set of all letters will increase for a set of letters that expresses some sentence (Heller, 2009, pp.62–63). Heller observes how the laws of nature impose constraints on nature's structures, so they control, in a way, what can and what cannot be (i.e., not everything is possible in physics). What is possible in physical laws. The presence of quantum or discrete building blocks then makes the universe possible. This view is also reflected in the models of the universe in combinatorial ontologies, or ancient atomism.

(3) Thus, information increases when the number of degrees of freedom decreases. (4) Limited sets (i.e., sets with constraints imposed on them) are nothing but certain structures, and every structure has certain information. The more restrictions that a given structure possesses, the more information it contains (Heller, 2009, pp.62–63).

The more constrained or complex structures are, and therefore less likely to exist, the more information they contain, based on Shannon's law. Thus, do the structures (in nature) code information (fragment (5)) or express information?

(5) As the world is a certain structure, it contains information, because this structure-world encodes information is decoded by science and formulated as the laws of nature (Heller, 2009, pp.62–63).

Would Heller suggest here that the laws of nature are information, or is information merely their expression? Alternatively, maybe it is a chicken-and-the-egg problem. Nevertheless, we do not get an answer to this question in Heller's writings. This interpretation of nature, information, structures, and natural laws is further discussed in Heller's article titled "Nauka i wyobraźnia" [Science and Imagination] (Heller, 1995). In fragments (6,7, and 8), Heller positions structures and laws of nature as information.

(6) Modern theoretical physics suggests that the world does not possess structure but is a structure contains encoded information or is information.

This information, as natural laws, is partially decoded and ientific laws. While scientific laws do represent a fragment, or an aspect, of cosmic structures, even though they are obviously much less complex than the natural structures, Heller does not explain in what sense the laws of nature are natural structures. In fragments (9) and (10), Heller states that while the law structures are not isomorphic, they act in concert with nature, which perhaps refers to a sort of codependency.

(9) The decoded fragments of information are denoted as scie models of nature. (10) The mathematical structures of the cosmos are not isomorphic, but there is a strange resonance, a harmony between them. Because of this, resonance are grossly simplified in comparison to the structures of the cosmos, but they harmonize with the world, reproducing some of its [structural] properties (Heller, 1995, p.170). In other words, the laws of nature are the causes, or the reproperties to some degree, although to what degree we are not sure. The point behind this remark is that laws and natural structures are not the same but somewhat codependent. Heller refers to the similarity between nature and abstract mathematical structures as harmony, as proposed by Heller, is an intriguing (strange) property

> odels of nature are highly simplified, with respect to the complexity of nature, and formalized. In other words, they have a high level of abstraction. They are not of the same "nature" as physical entities, so how are they able to reflect some of nature's properties quite accurately? In these abstractions, one may be tempted to see Platonic forms strange harmony. This would be the position of modern Platonism or mathematical Platonism, which by the way has little to do with the ontology of Plato (e.g., Linnebo, 2018). nd form can be found in Heller's paper titled "Evolution of the concept of mass" (Heller, 1987). In fragments (11) and (12), Heller posits that information can be thought of as a foundational element of nature instead of matter.

tional "stuff" must be substituted with another one. The image of the world not as a material composite but as a pure form would correspond much better with the findings of modern physics are abstract mathematical models. They do not have anything else but shape and structure (i.e., purely formal

rmulas through shapes/structures without content. In this view, information is expressed in, or by, the "empty" mathematical structures are information. Nevertheless, Heller does not clarify this intuition further. beyond these "Platonic" structures, modern science is unable to detect it.

(13) Even if the real world contains something beyond the fo nethods of physics cannot detect it; this something slips through the net of mathematical—empirical methods. (14) In this sense, the world of physics is a pure form (Heller, 1987).

king the mathematical version of structuralism) in claiming that the structures of nature are mathematical structures of which nothing else (i.e., ontology) cannot be known.

fers from the concept of information arising in the Shannon-Weaver-Hartley theory of communication (ToC).

the constraint on degrees of freedom (possibilities), each law of physics is information as it limits the possibilities of nature. (16) One may think that the "stuff" of the universe is nothing else but information. But our current understanding of information is purely formal (e.g., Shannon-Hartley theory of information). Thus, information is reduced here to structure rather (15) The same concept can be expressed as follows: If we defin rld is an information code, or encoded information, and the role of science is to decipher this code (Heller, 1987). than to what this structure is filled with. In this view, the st

> r than as the "stuff of the universe." Thus, the concept of information in the ToC does not define information beyond the concept of a numerical value. In fact, the ToC does not define defined by Shannon is mentary unit of information being a digital bit (0/1). Indeed, Shannon's measure of information (i.e., the entropy of information merely quantifies a specific property of a modulated physical phenomenon (i.e., a signal) under definition of a kilogram defines what mass is. It is instead simply quantifying a certain physical phenomenon (a signal) under certain assumptions. Thinking of the ToC this way is less prone to misinterpretations and may be closer to Shannon's original intention.

3. Heller on Information in Perspective

be? The statement that "the concept of information in the ToC is inadequate for expressing the notion of information beyond the concept of information on Shannon's information metrics (i.e., information entropy). Few people, including from his idea and warned against this. Indeed, these "Shannon's extensions" are often over-interpretations (of the original intent) or to put it more bluntly, misinterpretations of the original intent) or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly, misinterpretations of the original intent or to put it more bluntly. a metric for certain observable structures that depending on what information is, may or may not contain information. As it happens, if we ask in what sense is this information, we generally get lost in explanations, or mathematics. 10 s somewhat expressed as the natural (and by extension any) structures and laws of nature while being neither of these. According to Heller, the structures only encode or express information. Information lies beyond the visible and is expressed in, or by, "empty" mathematical structures, or these structures are information. Interestingly, Heller ny do (e.g., Losee, 1997; Sveiby, 1998; Casagrande, 1999; Dretske, 1999; Floridi, 2010; 2011; 2019; Lenski, 2010; Vernon, 2014). However, Heller's information in the physical world is just form or form behind form, with meaning as in knowledge coming from, and with, us.

l structures," information comes close to Platonic or platonic forms, 1 a metaphysical position that has a ring of truth to it, but this does not go down well with hardline physicalists. Nevertheless, the fact is that Burgin's theory of information (GTI) is arguably the most comprehensive conceptualization of information proposed so far (Burgin, cludes Heller's metaphysical aspect of information in some form, thereby granting Heller's intuitions legitimacy of sorts. world, as represented by the Existential Triad, which comprises the world's top-level components as a unified whole that reflects the unity of the world. This triadic structure is rooted in the long-standing traditions of Plato and Aristotle, and it comprises three components: the Physical (i.e., material) World, the Mental World, and the World of ents the physical reality that is studied by natural and technological sciences, while the Mental World encompasses different forms and levels of mentality. Finally, the World of Structures comprises various kinds of ideal structures. The Existential Triad involves differentiating information into two fundamental classes: ontological information (i.e.,

, as cited above. Due to its metaphysical import, the GTI may not be to everyone's liking, but it does not make the theory itself any less comprehensive or wrong; philosophy is not a beauty contest, even if it seems to be so from time to time. Further, the fact that the GTI is not known outside of the narrow circle of experts in the philosophy of atific theories is not voted in or out by a democratic process or won in a popularity contest (a point that some people may miss). Moreover, in the authors view, we do not have anything better than the GTI theory, at least for now.

4. Beyond Heller's Information

ler, Reeves), 12 which envision information as a fundamental element of nature, grew the idea that information cannot be identical to, or identified with, the external form or shape of an object, structure as such, syntax, or even semantics because these "things" are temporal and ephemeral, whereas a fundamental element of nature should have f an object) should be better regarded as the medium through which information discloses itself to us, Heller's position, rather than information is "an abstract form" or "something beyond the form," which verges on the Platonic realm. nplexes or low-entropy structures (see Krzanowski, 2023)¹⁴ or information as a latent order in nature. The concept of information as the potential of nature to create low-entropy (thermodynamic entropy) complexes (structures) appears to resemble the concept of Aristotelian potency, but the precise nature of this apparent similarity needs the potentiality, which is also referred to as self-organization, to create forms or complexes (e.g., Eigen and Winkler, 1993). The self-organization property of nature is observable in everything from snowflake structures to organic life and the cosmos (e.g., Reeves, 1986; Schrodinger, 2012). 16 Nevertheless, we should add that potentiality in its ature's potency or power is a rather poorly explored topic and it should therefore be the subject of a separate study. (See the discussion about nature's potencies in the work of Bird (2007) or Austin and Marmodoro (2017).)

5. Conclusion

nown. Then again, is this not where the real pleasures of science and philosophy reside? ective (called by himself 'philosophy in science', see Heller, 2019; Polak, 2019; P atural structures," and "information is expressed in or by 'empty' mathematical structures or these structures are information"). This leaves the reader feeling somewhat uneasy. Yet the concepts Heller was grappling with are not well understood, and even now, nobody has proposed any better elucidations for them. At least with Heller, our ave been explicated. Why we did not try to interpret Heller's ideas on information further? As we have said in the introduction, we try to report what Heller said, not what his claims might have implied. ulation for the nature of information we have, adds some importance to Heller's perspectives (it shows that Heller's ideas on information fits well into a larger comprehensive theory), but it also legitimizes the GTI itself. This is because Heller's perspective is built upon a deep understanding of the foundation of nature and physics. 17 The GTI, ve currently have, having been built by an exquisite philosopher and mathematician extraordinaire, not through a deep study of nature, as was the case with Heller's ideas, 18 but rather through the deep conceptual analysis. dies. The researchers who have conceptualized information as something more fundamental in nature (like Heller proposed) rather than just an idea or knowledge over the past 50 years includes von Weizsäcker (1971), Burgin and Feistel (2017), Burgin and Feistel (2017), Burgin and Mikkilineni (2022), Turek (1978; 1981), Collier (1990), Reeves Baever (2005), Seife (2006), Dodig-Crnkovic (2012), Hidalgo (2015), Wilczek (2015), Carrol (2017), Rovelli (2016), Davies (2019), Sole and Elena (2019), Sole an

of these authors, and should enter the canon of works on this topic, because his insights and intuitions not only confirm their studies but offer a perspective about the role of information in nature that is grounded in cosmology and physics rather than just in conceptualizations and philosophy, as is often the case with works on information.

information research, fortunately, otherwise we would have few reasons to talk about his work. Heller's intuitions belong to studies into the deep foundations of reality and border (for some) on metaphysics. It is certainly a path less travelled, one reserved rather for a minority of more open minds. With this comes the (sort of) penalty of not

Bibliography

Encyclopedia of Philosophy. Fall 2020. Stanford, CA: Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/archives/fall2020/entries/information/. Juity of Organisms. Neo-Aristotelian Perspectives on Contemporary Science. New York: Routledge, pp.169–183. https://doi.org/10.4324/9781315211626-10.

Harvard University Press. endon Press; Oxford University Press. nication, Capitalism & Critique. Open Access Journal for a Global Sustainable Information Society, 1(1), pp.53–70. https://doi.org/10.31269/triplec.v1i1.5.

. Vol. 1, World Scientific Series in Information Studies. Singapore: World Scientific. of the general theory of information. Information, 8(4), p.139. https://doi.org/10.3390/info8040139.

? Information, 13(11), p.540. https://doi.org/10.3390/info13110540. perse Itself. London: Oneworld.

nitive and ecological models. Georgia Journal of Ecological Anthropology, 3, pp.4–13. Available at: https://www.lehigh.edu/~dac511/literature/casagrande1999.pdf [visited on 13 July 2020]. e, and Cognition. Vancouver: University of British Columbia Press, pp.390–409. Available at: http://web.ncf.ca/collier/papers/intrinfo.pdf [visited on 13 July 2020].

Solving the Mystery of Life. Chicago, IL: University of Chicago Press. Available at: https://press.uchicago.edu/ucp/books/book/chicago/D/bo45084244.html [visited on 17 February 2024] om physics to metaphysics. New York: Cambridge University Press.

ture. arXiv:1207.1033 [cs]. Available at: http://arxiv.org/abs/1207.1033 [visited on 21 October 2014]. ilosophy and cognitive science reissues. Stanford, CA: CSLI Publications.

vern chance (R. Kimber and R. Kimber, Trans.), Princeton science library. Princeton, NJ: Princeton Univ. Press. Oxford, New York: Oxford University Press.

ford Encyclopedia of Philosophy. Winter 2019. Stanford, CA: Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/archives/win2019/entries/information-semantic/. on Books.

rg. https://doi.org/10.1007/978-3-642-17705-7. cience (Zagadnienia Filozoficzne w Nauce), (66), pp.231–249. Available at: https://zfn.edu.pl/index.php/zfn/article/view/482 [visited on 6 October 2021]. eds. Filozofować w kontekście nauki. Kraków: Polskie Towarzystwo Teologiczne, pp.152–169.

itas".

dnienia Filozoficzne w Nauce), (50), pp.63–74. Available at: https://zfn.edu.pl/index.php/zfn/article/view/102 [visited on 26 February 2024]. eczny Instytut Wydawniczy Znak.

opernicus Center Press. aków: Copernicus Center Press.

to Economies. London: Penguin Books. at: https://www.kmworld.com/Articles/White-Paper/Article/Everything-is-Information-and-Information-is-Everything-123561.aspx [visited on 26 February 2024].

Philosophies, 8(2), p.41. https://doi.org/10.3390/philosophies8020041. al phenomenon. Proceedings, 81(1), p.21. https://doi.org/10.3390/proceedings2022081021. M Journal of Research and Development, 5, pp.183–191. Available at: http://worrydream.com/refs/Landauer%20-%20Irreversibility%20and%20Heat%20Generation%20in%20the%20Computing%20Process.pdf [visited on 14 November 2020].

le at: http://dx.doi.org/10.1063/1.881299 [visited on 26 February 2024]. p.188–193. https://doi.org/10.1016/0375-9601(96)00453-7. New York: Basic Books.

118. https://doi.org/10.3390/info1020074. U. Nodelman, eds. The Stanford Encyclopedia of Philosophy. Spring 2018. Stanford, CA: Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/archives/spr2018/entries/platonism-mathematics/. American Society for Information Science, 48(3), pp.254–269. https://doi.org/10.1002/(SICI)1097-4571(199703)48:3<254::AID-ASI6>3.0.CO:2-W.

*** \(\mathcal{E}\) Society, 2(1), pp.69–94. https://doi.org/10.1080/136911899359763. ersity Press.

ilosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (66), pp.251–270. Available at: https://zfn.edu.pl/index.php/zfn/article/view/472 [visited on 6 October 2021]. formation as philosophy in science. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (73), pp.335–345. Available at: https://zfn.edu.pl/index.php/zfn/article/view/626 [visited on 12 February 2024].

rsity Press. Série Sciences. Paris: Éd. du Seuil. S. Carnell and E. Segre, Trans.). London: Allen Lane.

ketches, Canto classics. Cambridge: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9781107295629 [visited on 26 February 2024]. ncept of structure. Proceedings, 1(3), p.66. https://doi.org/10.3390/IS4SI-2017-03930.

lective and Structural Information. In: M. Petitjean, ed. Proceedings of FIS2005, The Third Conference on the Foundations of Information Science, Paris, July 4-7, 2005. Basel: MDPI. ble at: http://arxiv.org/abs/1804.01318 [visited on 26 February 2024]. aining Everything in the Cosmos, from Our Brains to Black Holes. New York: Viking.

valho, D. Dubois, U. Kaymak and J. Costa Sousa da, eds. Proceedings of the joint 2009 International Fuzzy Systems Association world congress and 2009 European Society of Fuzzy Logic and Technology conference (IFSA/EUSFLAT 2009), Lisbon, Portugal, July 20-24, 2009. IFSA/EUSFLAT, pp.1332–1337. cal Journal, 27(3), pp.379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. 1), p.3. Available at: https://paginas.fe.up.pt/~vinhoza/itpa/bandwagon.pdf> Jrbana: University of Illinois Press.

Reprint edition. Urbana: University of Illinois Press. nce that makes a difference"? Available at: https://www.cs.bham.ac.uk/research/projects/cogaff/misc/information-difference.pdf [visited on 26 February 2024]. anford Encyclopedia of Philosophy. Winter 2017. Stanford, CA: Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/archives/win2017/entries/cosmology/.

ation into Information Physics. London: Springer-Verlag. https://doi.org/10.1007/978-1-4471-3265-3.

 $omplex\ systems.\ Princeton:\ Princeton\ University\ Press.\ Available\ at: < https://search.ebscohost.com/login.aspx?direct=true\&scope=site\&db=nlebk\&db=n$

nate from computer or data scientists or communication and networking engineers but rather people working intimately with information and nature

laans (2020), or Gleick (2011).

truer. It makes them what they are—a staple of popular culture. Further, one of these koans, a well-known "It from Bit" (Wheeler, 1989) implying human effect on QM has been proven wrong in the Delayed Choice Quantum Eraser experiment, the point which, of course, popular publications miss to the detriment of the scientific truth. As other 'koans' do not pretend to express scientific truths but

videspread in popular publications, has not been reflected in advanced discussions on philosophy of information.

tem may be characterized by or exist within. on of natural world is suggested by Laughlin. He writes that "At the most fundamental level, the laws of physics are laid out in plain sight for everyone to see. Yet you cannot generally predict things with these equations" (Laughlin, 2008, p.36). Thus, you may say that the laws of physics define principles of er its effect in nature. In addition, any measure of information based on shape/form/morphology actually contains/conceals a time variable, as pointed out by Burgin (2010), so such measures should be indexed by time. For example, Shannon's information entropy "IE" should be rewritten as "IEt". onic" refers to modern versions of Plato's metaphysics.

of nature to create complex morphologies." Wheeler denotes this latent order, it seems, as a principle of organization (Wheeler, 1989). bjects or naturally organized complexes (Reeves, 1986). Forming complexes (i.e., ice crystals) that later disintegrate exemplifies nature's flux and the transition from low-high-low organizational states. Under specific conditions, nature forms low-entropy systems in local violation of the second law of entropy. Complex, highly organized natural systems are characterized by low entropy, while chaotic systems ystems can go on for as long as the required conditions are satisfied. For an extended discussion of low-entropy complexes and information, see the work of Krzanowski (2023). he universe, see (Heller, 2008a,b; Heller, 2011; Heller, 2012; 2013a,b; 2017; 2020). For the full list of Heller's 200+ scientific publications, see http://www.obi.opoka.org/heller/ or https://www.faraday.cam.ac.uk/about/people/prof-michal-heller/. attempt to address fundamental questions using their own different methodologies, and often they diverge in their conclusions. Nevertheless, when their conclusions agree in some cases, it significantly strengthens the results of their inquiries.

something to exist through time simpliciter. All physical things, including the Universe itself, persist in that they come into existence, exist for a certain time (possibly changing forms on the way), and disappear (as in Heraclitian flux), at least this is the view of The Standard Model of Cosmology. (See the discussion about the SMC in, for example, the work of Smeenk and Ellis (2017), Scott (2018), and

¹⁶ We regard snowflakes as low-entropy complexes that epitomize the pers with simpler organization are high-entropy systems. This process for form ¹⁷ For more popular publications by Heller on the cosmos, science, and t 18 This point is important. Philosophy, mathematics, cosmology, and scie $\stackrel{\cong}{\sqsubseteq} \stackrel{\circ}{\underline{\bigcirc}}$

¹⁴ See ft. 14. ¹⁵ The term "latent order" should always be interpreted as the "latent or

Page (2020).)

Roman Krzanowski

Sveiby, K.-E., 1998. What is information. Available at: http://www.sveiby.com/articles/information.html [visited on 20 April 2016].

Tetlow, P., 2017. Phil Tetlow: 8 steps to understanding information (and maybe the universe). Available at: https://www.ted.com/talks/phil_tetlow_8_steps_to_understanding_information_and_maybe_the_universe [visited on 26 February 2024]. Turek, K., 1978. Filozoficzne aspekty pojęcia informacji. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (1), pp.32–41.

Turek, K., 1981. Rozważania o pojęciu struktury. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (3), pp.73–95.

Vernon, D., 2014. Artificial Cognitive Systems: A Primer. Cambridge, MA: The MIT Press.

Vreeken, A., 2005. The History of Information: Lessons for Information Management. Universiteit van Amsterdam. Available at: https://www.researchgate.net/publication/279641557. The History of Information Lessons for Information Management. Universiteit van Amsterdam. Available at: https://www.researchgate.net/publication/279641557. The History of Information Lessons for Information Management. Universiteit van Amsterdam.

Weaver, W., 1949. The mathematics of communication. Scientific American, 181(1), pp.11–15. Available at: https://monoskop.org/images/4/48/Weaver_Warren_1949_The_Mathematics_of_Communication.pdf [visited on 26 February 2024]. Weizsäcker, C.F., 1971. Die Einheit der Natur. München: Hanser.

Wheeler, J.A., 1989. Information, Physics, Quantum: The Search for Links. Proceedings of the 3rd International Symposium Foundations of Quantum Mechanics in the Light of New Technology: Central Research Laboratory, Hitachi, Ltd., Kokubunji, Tokyo, Japan, August 28-31, 1989. Tokyo: Physical Society of Japan, pp.354–368. Wilczek, F., 2015. A Beautiful Question: Finding Nature's Deep Design. London: Penguin Books.

Sławomir Grzegorz Leciejewski

Adam Mickiewicz University in Poznań

In the 1980s, computer-aided experimental research became standard in the majority of good research laboratories. Unfortunately, back then this was not proposed in order to adequately describe the experimental practice (this will be later discussed in the first part of this article), however, in the initial phase of its development, it omitted in its analyses the role of computers in experimentalism (see the second part of this article) and calls for supplementation (see the fourth part of this article). It is true that the turn of the 20th and 21st century saw a number of philosophical analyses related to computer systems (e.g., computer simulations, however I am only interested in classic experiments. These include, e.g., computer systems (e.g., computer simulations, however I am only interested in classic experiments whose performance is enabled by various computer systems (e.g., computer systems). that have not yet been analyzed and that may, in fact, supplement the new experimentalism with the analyses of computer-aided experiments.

philosophy of science, computer-aided experiment, new experimentalism.

Introduction

Keywords

The development of computers, software and peripheral devices has enabled a more efficient use of computers in virtually any area of human activity. Computer sciences as such, being a group of theoretical (mathematical methods, logic, theory of automates, 1 theory of algorithms, mathematical linguistics), technical (the structure of computer sciences in various fields) have currently been developing extremely fast. One of the crucial uses of computers is supporting scientific research in empirical sciences.

In the 1980s, computer-aided experimental research became standard in the majority of good research laboratories (Crowley-Milling, 1974). Unfortunately, back then this was not properly reflected in the professional literature related to the philosophy and methodology of science. As a matter of fact, a new experimentalism did emerge, and this sort of philosophy of experimental practice (this will be later discussed in the first part of this article), however, in the initial phase of its development, it omitted in its analyses the role of computers in experimental research (see the second part of this article). This seems to be the greatest oversight of the philosophers of science being the creators of the new experimentalism (see the third part of this article) and calls for supplementation (see the fourth part of this article). It is true that the turn of the 20th and 21st century saw a number of philosophical analyses related to computer experiments. These include, e.g., computer simulations (Bartz-Beielstein, 2005; Giere, 2009; Humphreys, 1995; Morgan, 2003; Peschard, 2009; Winsberg, 2010; Burge, 1998; Epstein, 1999; Hartmann, 1996; Lenhard, 2007; Morrison, 2009; Winsberg, 2010; Burge, 1998; Epstein, 1999; Hartmann, 1996; Lenhard, 2007; Morrison, 2009; Parker, 2013), however I am only interested

New experimentalism

It is obvious to many philosophers of science that theories the many philosophers of science that the man results obtained in the course of experimental research. However, theoreticism, when juxtaposed with actual research practice, appears to be a grossly inadequate description of that practice, appears to be a grossly inadequate description of that practice. This prompted Ian Hacking to propose a new program for philosophical reflection on science, which was later known as "new experimentalism" (Hacking, 1983; Ackermann, 1989) New experimentalism was created by philosophers (Ian Hacking, Peter Galison, Allan Franklin) who were convinced that the philosophical reflection on empirical sciences should be conducted starting from real experimental stories

related mainly to high energy physics, assist in the course of experiments, represent a high level of knowledge of physics and the principles of construction of research equipment. Hacking's philosophy of science can be seen as belonging to the study area of problem-solving activity, yet it is fundamentally different from other concepts of this type (e.g. those of Thomas Kuhn or Larry Laudan). Solving research problems is not, according to Hacking, solving the puzzles of normal science within a particular paradigm, nor is it a measure of the theoretical progress of science. Most of the research problems present in the natural sciences are empirical problems arising in the course of experimental research practice (Schummer, 2021).

Hacking also weakens the thesis of the complete theoretical dependence of the experiment. He does not claim that experiments (Hacking, 1983). Hacking also claims that the analysis of the research practice and that theorizing is not a homogeneous form of scientific work but it is broken down into a series of activities such as: speculation, calculation and building models (Hacking, 1983, pp.210–217). According to this philosopher of science, theoretical research and experimental discoveries often proceed independently and only later are they combined to create theoretically developed scientific facts (e.g. the discovery of positrons or relic radiation). Thus, according to Hacking, the role of scientific experiments is not merely limited to situations in which a choice is made between competing theories or to procedures for testing scientific theories. A crucial postulate of the new experimentalism is also assigning a fundamental role in scientific research to tampering with, acting and intervening in the world, and, to a much lesser extent, in representing it in scientific theories (Hacking, 1983, pp.153–154). Thus, science cannot be reduced only to learning about and representing the world. Science is also acting and intervening in the world. The new experimentalists therefore propose a new vision of science, in which science becomes not so much knowledge as practice. The culture of science is therefore propose a new vision of science, in which science becomes not so much knowledge as practice. The culture of science is therefore propose a new vision of logical empiricism) or paradigms (as proposed by Kuhn), but consists of many different elements that enter into relationships with each other. As already indicated, according to new experimentalists, one of the important roles of the experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, refine and stabilize phenomena" (Hacking, "to experiment is to create, produce, 1983, p.230).

New experimentalists also believe that experimental activity in science is now becoming a largely autonomous field. The own life of the experimental cultures" and "experimental cultures" and technique and technique and technology. The third area is the sometimes significant non-theoretical or a-theoretical nature of experimental practice (e.g. PEGGY II) (Hacking, 1984, pp.161–170). Hacking (1985) and Franklin (1986, pp.226-243) also analyze the issue of "fraud" produced by research equipment on the example of microscopic artifacts as each experimental device produces its own effects, generally known as "noise". These effects arise as a result of the work of experimental apparatus raise anxiety among naturalists and philosophers of science. However, according to the new experimentalists, it is unnecessary to exaggerate the negative significance of artifacts. In the functional-engineering approach to the research apparatus, it is unnecessary to exaggerate the negative significance of artifacts. In the functional-engineering approach to the research apparatus, it is unnecessary to exaggerate the negative significance of artifacts.

from real images: on the basis of the grid¹, coincidence² and the "blind test" method (Hacking, 1985, pp.145–151). I will return to the methods of unmasking artifacts in the context of computer-aided experimental research systems in the last section. I will be used to support the thesis that it is necessary to further develop new experimentalism so that it constitutes a philosophy of experiment that would be adequate also in the 21st century.

Computer-aided experimental research

One of the crucial applications of computers is to support research analog-to-digital converters and interface) and is mainly used

- 1. retrieving empirical data from measuring devices using 2. gathering empirical data (creating digital empirical data 3. comparing empirical data with theoretical data.
- In the second group of applications, the computer is no lo
- 4. formulating simple phenomenological laws (computer in 5. numerical justification of further experiments (optimization) 6. computer simulations of the course of phenomena/proce 7. design and optimization of new, computer-aided experir
- An important class of computer applications is the presenta includes:
- 8. visualization of the empirical data and obtained results
- 9. electronic communication between research centers (the 10. optimization of the human-machine communication pro-
- In general, however, there are three interacting factors in
- A. the experimenter, i.e. the subject stimulating the experi B. the tested object, i.e. the object of the experimental res C. and what mediates between them, i.e. the experimental
- In contemporary computer-aided experimental set, severa analog-to-digital converters. The digitized data is then transfe From the perspective of computerization of contemporary ϵ interfaces (C)? Is the interpretation of the results of experimen the scientific research is supported by computers?
- In the initial phase of the development of the new experir subsequently, determine research fields which, once developed

Undoubtedly, the representatives of the new experimentalism h It is the creation of new phenomena that do not or cannot oc Hacking noted that the so-called laboratory science emerge computer calculations (it is quite surprising that he does not i Examples of this type of computer calculations, according to The above remarks made by Hacking indicate that he does theories, which currently is not feasible (Leciejewski, 2013, pp. The new experimentalists argue that many scientific exper intricate research facility, the Large Hadron Collider, was buil

published in 1964 in which the author proposed a theoretical It is worth noting that the Higgs mechanism played a key 1 particles, W and Z bosons, responsible for the transfer of wea It needs to be emphasized that already at the time of the ϵ examples of the use of computers in research work, which wer Computers have been widely used at CERN since the early hear about the most computerized laboratory in the world (i. In addition, in the PEGGY II experiment described by Ha mentioned philosopher and is not subject to a methodological a

It should therefore be concluded that the failure to take in products. Unfortunately, he fails to observe the fact that the a as it is largely computer-aided. In support of this thesis, I wil Hacking and Franklin investigate the emergence of artifact Hacking is based on one example only—various types of micro For example, Hacking's argument from coincidence applies

the significance of computers in experimental research.

use of a computer (Bialynicki-Birula and Bialynicka-Birula, 2) From the perspective of computer-aided experimental sets, have to refer to the analysis and processing of the obtained em of the results obtained. Therefore, we would have two more arg of digital data (Leciejewski, 2015) or, for example, analytical It is, therefore, evident that the theoretically possible arguof the negative significance of artifacts in modern science can

In the following part of this article I will analyze, as I did so f discussion, it is hard to equate real experiments of that kind Moreover, the new experimentalists have repeatedly spok experimentalists had in mind. In their works they analyzed re publications issues related to the digital support used in expe

Galison's analyzes mainly related to the analyzes of digital

problems relating to the impossibility of archiving all empirical

It is worth remembering that as a result of natural pheno transmitted to the computer via an interface. Also via interfa Most measuring devices respond to physical influences suc experimental system (between the measuring device and the i Crucial parameters of analog-to-digital converters include: be said that each converter has a specific "inertia" (processing data flowing to the computer. Each A/D converter may have d from all detectors begins.

The processing time of analog-to-digital converters only slo fast converter if one knows how fast the changes in a given pa The sampling frequency is also of great importance for the frequency cannot be less than twice the value of the highest fr modern experimental research means that we must have some

Similar conclusions can be drawn when analyzing the reso Moreover, it is known that analog-to-digital converters gene nonlinearity, differential nonlinearity coefficient, zero and scal appearance of various types of artifacts in analog-to-digital co In addition to artifacts, another consequence of incorporat converter), or very accurate but slow. Thus, in computer-aide

The introduction of computer support to experimental research introduces a qualitatively new cognitive limitation (speed or a A similar analysis should also be carried out in relation to time over 99% of the data representing the processes taking pl cognitive limitation of the cognizing entity that has not been I am aware that there is a number of analyzes relating to

research field of the philosophy of science. Their development

Ackermann, R., 1989. The new experimentalism. The British Journ Bartz-Beielstein, T., 2005. New experimentalism applied to evolutio Bhat, P.C., 2013. Observation of a Higgs-like boson in CMS at the Bialynicki-Birula, I. and Bialynicka-Birula, I., 2004. Modeling Real Burge, T., 1998. Computer proof, apriori knowledge, and other mir Crowley-Milling, M.C., 1974. Computer control applied to accelerate Epstein, J.M., 1999. Agent-based computational models and genera Franklin, A., 1986. The Neglect of Experiment. Cambridge Universi Franklin, A., 1990. Experiment: Right or Wrong. Cambridge: Camb Galison, P., 1987. How Experiments End. Chicago, IL: University o Galison, P., 1997. Image and Logic: A Material Culture of Microph Giere, R.N., 2009. Is computer simulation changing the face of expe Gilbert, G.N. and Troitzsch, K.G., 2005. Simulation for the Social Guala, F., 2002. Models, Simulations, and Experiments. In: L. Mag Guala, F., 2008. Paradigmatic Experiments: The Ultimatum Game Hacking, I., 1983. Representing and Intervening: Introductory Topi Hacking, I., 1984. Experimentation and Scientific Realism. In: J. Le Hacking, I., 1985. Do We See through a Microscope? In: P.M. Chu Hacking, I., 1996. The Disunities of the Sciences. In: P. Galison and Hartmann, S., 1996. The World as a Process. In: R. Hegselmann, U Higgs, P.W., 1964. Broken symmetries and the massesof gauge bose Hughes, R., 1999. The Ising Model, Computer Simulation, and Uni Humphreys, P., 1995. Computational science and scientific method Kaufmann, W.J. and Smarr, L.L., 1993. Supercomputing and the T Leciejewski, S., 2013. Cyfrowa rewolucja w badaniach eksperymenta Leciejewski, S., 2015. The digital revolution in empirical science. ELeciejewski, S., 2018. Struktura cyfrowej rewolucji naukowej. Philo-Leciejewski, S., 2019. Preface to the special issue on philosophy in Lenhard, J., 2007. Computer simulation: The cooperation between

¹ Scaled grids are prepared for microscopic observation of various objects. are observing a real image, not an artifact (Hacking, 1985). ² Apart from optical microscopes, we currently also use electron, fluoresce camera would produce exactly the same artifact (Hacking, 1985). ³ The blind test method (calibration) consists in both the suspension and ⁴ It is quite obvious that this is not a disjoint division. Some points over ⁵ A computer-aided experimental research system is a set of methods an \subseteq ⁶ The sensor converts the measured quantity (e.g. temperature) to anoth ⁷ Thanks to the analog-digital converter, the information from measuring ⁸ The interface is a type of digital-to-digital converter that can be either

⁹ The computer being part of the experimental set can perform various fu

outside the experimental set (e.g. via the Internet).

Morgan, M.S., 2003. Experiments without material intervention: m

sciences. Contemporary computer functions in empirical sciences can be divided into three main groups: analytical (on-line) and presentational (on-line) and pres n and preliminary analysis of empirical data coming from the experimental set. This group of computer applications in empirical sciences includes: converters (A/D) and interfaces as well as controlling the course of the experiment through digital-to-analog converters (D/A) and actuators (this computer function will be subject to a detailed discussion later in this article);

nected to the experimental set but is mainly used to process the previously gathered empirical data. This group of computer functions includes:

in classic experiments whose performance is enabled by various computer systems (e.g. LHC at CERN). In the final part of this article I will present examples of experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may, in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that may in fact, supplement the new experimental works that have not yet been analyzed and that have not ye

zations formulated on the basis of digital empirical databases); xperiments by narrowing down the possible class of experiments);

athered empirical data and assumed theories);

essed empirical data (from the first group—points 1-3) and of the obtained results of numerical analyzes (from the experimental set (on-line mode) and outside of it (off-line mode). This group of computer applications in empirical sciences

alyses, a, simulations and visualizations),

-computer system supporting scientific research).⁴

reting its results:

ation system (nowadays, it is usually a computer-aided experimental research system⁵).

ents can be distinguished, constituting one functional whole being the first of the above-mentioned computer functions in empirical sciences. In the system in question, the information from the object of the experimental research is gathered using measuring devices (sensors⁶). Subsequently, this analog information is pre-processed using interfaces to a computer. There, the information—as a result of the operation of various kinds of software and actuators. A computer with appropriate software can also control the course of the experiment through interfaces, digital-to-analog converters and actuators. worth considering whether the use of computer-aided experimental research introduces only indisputable quantitative changes to experimental work, or if we are also dealing here with qualitative changes to experimental work, or if we are also dealing here with qualitative changes. Does the "distance" between the subject (A) and the object of the experimental work, or if we are also dealing here with qualitative changes to experimental work, or if we are also dealing here with qualitative changes. rimental research supported by a computer different from the interpretation of the results of classic empirical research? Does the status of the experimenter in empirical sciences change in a qualitative way when

questions, crucial from the perspective of the philosophy of experimental sciences, were not even posed by its representatives, and thus no answers were given to them. In the following paragraph, I will also present other shortcomings of this philosophy of experimental sciences, were not even posed by its representatives, and thus no answers were given to them. In the following paragraph, I will also present other shortcomings of this philosophy of experimental sciences, were not even posed by its representatives, and thus no answers were given to them. he emergence of a new version of the new experimentalism. It turns out that the instruments used in computer-aided experimentalism that the instruments used in computer advanced by the supporters of the existing version of the new experimentalism.

New experimentalism and computer-aided experimental research: problems

appreciated the role of experiment in scientific research. Together, they opposed the dismissive treatment of the new experimentalism to the philosophy of science is the analysis of the new role that an experiment can play. a pure state. According to the representatives of the new experimentalism, experimenting does not only mean testing theories but above all—creating, producing, refining and stabilizing phenomena. 17th century. It is characterized by the construction of apparatus intended to isolate and purify the existing phenomena and to create new ones (Hacking, 1996). Today, this type of equipment is aided by computer systems. Hacking himself also notes that one of the unifying factors that bring together sciences are certain tools which include fast rs among the tools, but, instead, fast computer calculations (Hacking, 1996)). Unfortunately, his analysis of this issue cannot be exhaustive, as it only spreads over a single paragraph of the cited article. Hacking claims in it that thanks to fast numerical calculations, we can formulate new theories and process large amounts of empirical data. Ints of data coming from a telescope with many small mirrors as well as virtual acoustic designs of theater architecture (Hacking, 1996). count the specificity of computer-aided experiments, as—firstly—he reduces the role of computers in empirical research only to fast computer calculations (in the previous paragraph I listed nine other functions that computers can perform in empirical sciences). Secondly, he claims that, thanks to these calculations, it is possible to formulate new

heoretical or a-theoretical. This thesis is valid for chemistry, however, in physics fundamental theories play a much greater role than, for example, in chemistry (Zeidler and Sobczyńska, 1995). In modern physics, laboratory research is aimed at confirming a general theory. For example, CERN's largest physics laboratory and most complex and a certain theoretical concept explaining the origin of hadron masses. This experiment was conducted with a view to confirming the existence of the so-called Higgs boson (Bhat, 2013). The idea of such a new particle appeared in an article by Peter Higgs the origin of the mass of elementary particles (Higgs, 1964). opment of the theory of the electroweak interaction by Steven Weinberg (1967). Without this mechanism, the unification of the electroweak interactions resulted in many predictions that could be verified experimentally. These were, for example, two new types of

They were discovered in 1983, in the SPS (Super Proton Synchrotron) accelerator operating at CERN since 1976. One of the main research objectives of this accelerator was to indirectly confirm the electroweak theory by discovering new particles (Weinberg, 1992). This experiment was therefore aimed at confirming the general theory.

new experimentalism (in the 1980s), computers played a crucial part in the experimental research. The creators of this philosophy of experimental research was already significant at that time. To support this thesis, I will present two to the creators of the new experimentalism (as they write about them themselves), or commonly known when the new experimentalism was emerging (the existence of the CERN laboratory). Milling, 1974). Their role in the above-mentioned discovery of theoretically predicted bosons mediating weak interactions (the Super Proton Synchrotron accelerator which was transformed into a proton-antiproton collider) in 1983 was crucial. Without computers, the entire device was unable to function. It is hard to believe that Hacking did not id not know about the role of computers in the experiments carried out there for already over a decade, especially since he himself gave numerous examples related to high energy physics, thus he for sure must have been familiar with the most important laboratory dealing with this particular branch of physics. act the computer that was responsible for recording the polarization direction for each pulse (as reported by Hacking himself (Hacking, 1984, p.164)), thus—and it is worth emphasizing—without the computer the entire device would be worthless. However, this aspect of the functionality of the PEGGY II device is altogether disregarded by the

ady in 1978 (the creation of PEGGY II (Hacking, 1984, p.162)) an important part of the experimental apparatus analyzed (in 1984) by Hacking was the computer, although the author ignores this fact. Thus, based on the analysis of the works of representatives of the new experimentalism, it can be concluded that they failed to fully comprehend

ole of the computer together with the appropriate software (and analog-to-digital converters) in experimental research is a serious oversight of the representatives of the new experimentalism. Hacking postulates that the philosophy of science should begin with the analysis of actual research practice, and not only focus on the analysis of its actice of the last twenty years of the 20th century and the beginning of the 21st century was indeed dominated by computer-aided experimental practice, nples of results obtained by representatives of the new experimentalism which cannot be easily applied to modern computer-aided experimental sets as those described in the previous paragraph. It will at least partially justify the need to supplement the new experimentalism. ripment. As we know, each experimental device generates noise resulting from the operation of the experimental apparatus without the tested object. According to the new experimental device generates noise resulting from the operation of this issue by r, as this is not the only research tool, it is worth checking whether the methods of exposing artifacts postulated by this philosopher can also be applied to commonly used computer-aided experimental sets.

echniques, thus it is not universal. Nowadays, in most empirical sciences, we perceive objects not only with the help of computer systems. Therefore, one should try to reformulate the argument from coincidence in such a way that it would also refer to contemporary scientific work, i.e. perceiving with the

for coincidences between the empirical research conducted without the use of a computer and that in which the computer functions in the empirical sciences (listed in the previous paragraph). The second coincidence would to the remaining tasks of the computer (listed in the previous paragraph). If a given experiment could be conducted analysis of empirical data, it would undoubtedly strengthen the importance incidence: analog-digital and analytical-numerical. However, I am afraid that in the vast majority of cases conducted in the field of elementary particle physics, e.g. analogous to those conducted at CERN, which collects 30 PB he dynamics of the observable Universe involving only the determination of the trajectory of 150 billion galaxies. The mere analytical justification of the stability of the Solar System is not possible, let alone modeling the dynamics of the entire Universe. g-digital and analytical-numerical coincidence are unfortunately inapplicable in practice. Therefore, the problem of exposing artifacts in digitally-aided experimental sets can be solved neither using the methods proposed by Hacking (grid-based, coincidence-based, blind test method) nor applying their modifications proposed above. The problem , ignored, as the representatives of the new experimentalism would like, claiming that there are reliable methods of exposing them.

New experimentalism and computer-aided experimental research: perspectives

puter-aided experiments. I will skip in my study computer experiments, i.e. various types of computer simulations. They might be considered a next step in the development of the new experimentalism, if one could prove that they differ fundamentally from real experiments performed on physical objects. In light of the related long-standing imulations. 12 ening in the world (Hacking, 1983, pp.149-219) and the manipulative criterion of existence (Hacking, 1983, pp.220-232) and, in the case of computer simulations, this intervention and manipulation would be limited to electric currents in silicon devices and yet—so it seems—this is not necessarily the kind of "experimentation" the new e.g. Hacking analyzed the Michelson-Morley experiment (Hacking, 1983, pp.253–261), Franklin—the measurement of the K⁺ experiment (Franklin, 1990, pp.115–131), while Galison—the early stages of seeking the intermediate vector bosons in weak W and Z interactions at CERN (Galison, 1987, pp.198–208). Only Galison discussed in his 1, 1997, pp.752–780). However, also in this case these analyses still referred to real experiments and not to research being computer simulations exclusively (Galison, 1997, pp.689–752).

ried out on the basis of previously obtained experimental data (Galison, 1997, pp.1-7, 752-771). Thus, it appears that several important aspects of computer-aided experimental data (Galison, 1997, pp.1-7, 752-771).

d by modern digitally supported experiments. signals corresponding to physical quantities such as: temperature, pressure, stress, radiation intensity, magnetic field strength, electrochemical potential, etc. are generated in measuring devices. These analog signals cannot be transmitted directly to the computer and require processing in analog-to-digital converters. This digital signal is to-analog converters), the computer controls actuating devices (e.g. heaters, dosing valves, motors, radiation intensity regulators, etc.), which ensure control of the experiment parameters. imperature, electrical voltage, liquid flow rate, etc., which change continuously within a certain range. These are analog signals that must be converted to digital signals before they can be processed by computers. This change is made possible by analog-to-digital converters located at the meeting point of the analog and digital parts of the e computer). Similarly, if digital signals from a computer are to be used to control an experiment through analog actuators, they must be converted to an analog form using a digital-to-analog converter. 13 nallest size of the input signal distinguishable by the converter), frequency (the maximum number of input signal processing per unit of time) and processing time (the time elapsed between the input signal and the appearance of the encoded value at the output).

ises delays between the moment of occurrence of the examined phenomenon and the possibility of recording and processing the digital signal in a computer system consists of many different analog-to-digital converters, there is a problem of time synchronization of the

ig times and this must be taken into account when planning the experiment. This will result in a slowdown in the operation of the A/D converters will have to "wait" for the slowest one before the next cycle of time-synchronized measurements

berimental system, yet the "granularity" of the converters (processing frequency) brings forth much more severe consequences. A computer-aided experimental system may not "notice" rapidly changing processes taking place between the quantized moments of reading data from the measuring device. It is only possible to choose an appropriately in the phenomenon under study, yet this is exactly what is to be determined in the very experiment! Therefore, it is impossible to properly design a computer-aided experimental system without a considerable knowledge about the tested object. Thus, it is difficult to talk about computer-aided atheoretical experiments. accuracy of the data that is transmitted between the measuring device and the computer. Without the knowledge of the phenomenon under study and the type of input data that will reach the analog-to-digital converter, it is impossible to select an appropriately accurate converter that meets the Kotelnikov-Shannon theorem (the sampling in the signal) or the Nyquist theorem (a continuous signal can be recreated from a discrete signal if it has been sampled at a frequency at least twice the cut-off frequency of its spectrum). This further strengthens the thesis that it is impossible to conduct atheoretical computer-aided research. The very use of analog-to-digital converters in

r of the analog-to-digital converter. The input signal may change in such a small range that the converter will not be able to distinguish these changes that may potentially occur, we will not be able to select a converter with the appropriate resolution. rrors in the course of signal processing. The converter characteristics may not be linear, gain errors and zero offset errors may occur. Although the latter two can be eliminated by making an appropriate adjustment, there is no method to reduce linearity errors. Other errors (nonlinearity errors, total nonlinearity, total processing error, differential ients, differential nonlinearity thermal coefficient) often overlap and separating them is often impossible, as compensation for one error may cause an increase in another. This means that we will not be able to eliminate and about which we will often know little. This results in the ver, there are no simple methods for exposing artifacts appearing in A/D converters, which are a very important element emerging at the meeting point of the analog and digital parts of modern experimental systems. ital converters into the experimental set is the emergence of a qualitative principle that can be considered an analogy to the Heisenberg's uncertainty principle for quantum mechanics. The limitation of our cognitive capabilities is caused by the fact that the A/D converter is either fast with low resolution and generates numerous errors (flash

Conclusions eation of a "distance" between the experimenter and the tested object as well as the appearance of completely new artifacts that could not appear in experimental system causes the appearance of qualitatively new errors and

surements). Moreover, when using A/D converters, we should be aware that in order to select the appropriate converter for the experimental system we are assembling, we must not only know the principle governing the operation of the measuring device, but also have a lot of theoretical knowledge about the tested object of archiving all empirical data generated by modern digitally supported experiments. In great research laboratories (e.g. LHC at CERN) it is impossible to archive as little as 1% of the data generated by detectors, as there are no such massive data repositories that could store this information. It is therefore necessary to delete almost in real of the experiment. We should therefore consider to what extent algorithms filtering empirical data deprive us of valuable knowledge about the processes taking place within the framework of the experimental data? Is this another yzed? These questions relating to the role of digital elements in the experimental system are still waiting to be developed (discussing them here would excessively expand the scope of this article). ments (computer simulations), which, under certain assumptions, could be considered an extension of the new experimentalism (Bartz-Beielstein, 2005). It seems, however, that the methodological aspects of incorporating digital elements into the experimental system are still an important and unrecognized expand the new experiment to such an extent that it could be a philosophy of experiment of the 21st century and not just a historical concept dating back to the end of the 20th century.

Bibliography

. PhD thesis. Dortmund: Technische Universität Dortmund. https://doi.org/10.17877/DE290R-15667. $ysics~B~-Proceedings~Supplements.~16^{\rm th}~International~Conference~in~Quantum~ChromoDynamics,~234,~pp.7-14.~https://doi.org/10.1016/j.nuclphysbps.2012.11.003.$ rs Mirror Life. Oxford: Oxford University Press. losophical perspectives lecture. Philosophical Perspectives, 12, pp.1–37. Available at: https://www.jstor.org/stable/2676139 [visited on 27 February 2024]. Technology Arising from High-Energy Physics. Geneva: CERN, pp.120–128. https://doi.org/10.5170/CERN-1974-009-V-1.120. ${\tt i.} \ Complexity, 4(5), pp.41-60. \ https://doi.org/10.1002/(SICI)1099-0526(199905/06)4:5<41::AID-CPLX9>3.0.CO; 2-F.$ doi.org/10.1017/CBO9780511624896.

: University of Chicago Press. Available at: https://press.uchicago.edu/ucp/books/book/chicago/I/bo3710110.html [visited on 20 February 2024]. ilosophical Studies, 143(1), pp.59–62. https://doi.org/10.1007/s11098-008-9314-1. Maidenhead, England; New York, NY: Open University Press.

rsessian, eds. Model-Based Reasoning: Science, Technology, Values. New York, NY: Springer US, pp.59-74. https://doi.org/10.1007/978-1-4615-0605-8_4. Measurement Device. Philosophy of Science, 75(5), pp.658-669. https://doi.org/10.1086/594512.

Available at: https://press.uchicago.edu/ucp/books/book/chicago/H/bo5969426.html [visited on 20 February 2024].

to their scope, e.g. 8 is partly contained in 6, 5 intersects with 6, similarly as 6 and 7 (however the latter ones to a small extent).

hy of Natural Science. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511814563.

phy of Science, 40(2), pp.185–190. https://doi.org/10.1093/bjps/40.2.185.

ic Realism. Berkeley: University of California Press, pp.154–172. oker and W.a.R.f.B.C.v. Fraassen, eds. Images of Science: Essays on Realism and Empiricism, Science and Its Conceptual Foundations series. Chicago, IL: University of Chicago, IL: Univ The Disunity of Science. Stanford, CA: Stanford University Press, pp.37–74.

G. Troitzsch, eds. Modelling and Simulation in the Social Sciences from the Philosophy of Science Point of View, Theory and Decision Library. Dordrecht: Springer Netherlands, pp.77–100. https://doi.org/10.1007/978-94-015-8686-3_5. iew Letters, 13(16), pp.508–509. https://doi.org/10.1103/PhysRevLett.13.508. : M.S. Morgan, ed. Models as Mediators: Perspectives on Natural and Social Science, Ideas in context, 52. Cambridge: Cambridge Univ. Press, pp.97–145.

hines, 5(4), pp.499–512. https://doi.org/10.1007/BF00974980. Science. New York: W H Freeman & Co.

etodologiczno-filozoficzne, Seria Filozofia i Logika / Uniwersytet im. Adama Mickiewicza w Poznaniu, nr 114. Poznań: Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza. p.9–17. https://doi.org/10.15503/emet2015.9.17.

in Science (Zagadnienia Filozoficzne w Nauce), (64), pp.117–136. Available at: https://www.zfn.edu.pl/index.php/zfn/article/view/429 [visited on 4 February 2021]. Foundations of Computing and Decision Sciences, 44(1), 3–9.

d modeling. *Philosophy of Science*, 74(2), pp.176–194. https://doi.org/10.1086/519029. virtual experiments and virtually experiments. In: H. Radder, ed. The Philosophy of Scientific Experimentation. Pittsburgh, PA: University of Pittsburgh Press, pp.216–235.

grid made by the researcher is subject to the process of photographic reduction, and then enlarged under the microscope as many times as it was reduced. The person using the apparatus—from preparing the grid to observing the magnified image—convinces them that they oustic ones, and others. If the image of a given specimen seen through each of these instruments looks the same, it is a confirmation of the reliability of the images from different types of microscopes were false in such a way that each ispension being examined separately to check if the suspension does not give an absorption signal in the expected specimen wavelength range (e.g. in IR spectroscopy). The spectrum of the substance is taken into account only when the result of the blind test is negative (Franklin, 1986).

der to improve, in compliance with the general assumptions of the (scientific, technical, medical, etc.) experiment, the processes of collecting information on the tested object and its processing by means of computer technology. y (e.g. DC voltage), which is easier to measure or more convenient to transmit over a distance (the input quantity of the sensor is the measured quantity).

owledge about the input signals of such converters. This, in turn, forces us to refer to theoretical knowledge regarding the phenomenon under study in order to be able to select the appropriate measuring device and analog-to-digital converters.

systems, thanks to the use of analog-to-digital converters, we either obtain a massive amount of inaccurate data in a short time or are satisfied with a small portion of very precise data. It therefore seems as if measurement accuracy and speed are negatively correlated

can be obtained in the form of data that will be digitally processed using a computer with software. Converting an analog quantity into a digital signal consists of three operations: sampling (signal discretization in time), quantization (signal value discretization) and coding.

m: control the course of the experiment (through the analog-to-digital converters and actuators), record and process data coming from the measuring device (through the analog-to-digital converter and interface), operate the peripherals (monitor, keyboard, mouse, printer) used for controlling the experimental set and presenting the measurement and calculation results, control data transmission

Sławomir Grzegorz Leciejewski

Morrison, M., 2009. Models, measurement and computer simulation: the changing face of experimentation. *Philosophical Studies*, 143(1), pp.33–57. https://doi.org/10.1007/s11098-008-9317-y.

Norton, S.D. and Suppe, F., 2001. Why Atmospheric Modeling Is Good Science. In: C.A. Miller and P.N. Edwards, eds. Changing the Atmosphere: Expert Knowledge and Environmental Governance, Politics, science, and the environmental Governance, and the e Parke, E.C., 2014. Experiments, simulations, and epistemic privilege. *Philosophy of Science*, 81(4), pp.516–536. https://doi.org/10.1086/677956.

Parker, W.S., 2009. Does matter really matter? Computer simulations, experiments, and materiality. Synthese, 169(3), pp.483–496. https://doi.org/10.1007/s11229-008-9434-3.

Parker, W.S., 2013. Computer Simulation. In: M. Curd and S. Psillos, eds. The Routledge Companion to Philosophy of Science. 2nd ed. Routledge. Parker, W.S., 2017. Computer simulation, measurement, and data assimilation. The British Journal for the Philosophy of Science, 68(1), pp.273–304. https://doi.org/10.1093/bjps/axv037.

Pelgrom, M.J., 2022. Analog-to-Digital Conversion. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90808-9. Peschard, I., 2009. Modeling and Experimenting. In: P. Humphreys and C. Imbert, eds. Models, Simulations, and Representations. London: Routledge, pp.42–61.

Schummer, J., 2021. Why Do Chemists Perform Experiments? In: D. Sobczynska, P. Zeidler and E. Zielonacka-Lis, eds. Chemistry in the Philosophical Melting Pot, Dia-Logos, 5. Frankfurt am Main: Peter Lang, pp.395–410. Available at: https://www.peterlang.com/document/1097803 [visited on 23 February 2024]. Weinberg, S., 1967. A model of leptons. Physical Review Letters, 19(21), pp.1264–1266. https://doi.org/10.1103/PhysRevLett.19.1264.

Weinberg, S., 1992. Dreams of a Final Theory. 1st ed. New York: Pantheon Books.

Winsberg, E., 2009. A tale of two methods. Synthese, 169(3), pp.575–592. https://doi.org/10.1007/s11229-008-9437-0. Winsberg, E., 2010. Science in the Age of Computer Simulation. Chicago: University of Chicago Press.

Zeidler, P. and Sobczyńska, D., 1995. The idea of realism in the new experimentalism and the problem of the existence of theoretical entities in chemistry. Foundations of Science, 1(4), pp.517–535. https://doi.org/10.1007/BF00125784.

Timothy Tambassi Ca' Foscari University of Venice

Abstract Although many information system ontologies [ISOs] claim to be parsimonious, the notion of parsimonious, the notion of parsimonious, the notion of parsimonious assumption. To challenge this trend, the paper aims to clarify what it means for ISOs only at the level of vague and uncritical assumption. To challenge this trend, the paper aims to clarify what it means for ISOs only at the level of vague and uncritical assumption. of the two aspects of the broader notion of simplicity. Section 3 transforms the main claims of parsimony of content"—where "content of ISOs, the combination of which is hereafter called "parsimony of this parsimony of this parsimony of content"—where "content of ISOs, and outline different kinds (and combinations) of parsimony of this parsimony of thi content. Finally, section 8 considers whether parsimony of content could provide some criteria both for selecting and/or classifying the contents of ISOs and for choosing between different and equally consistent ISOs.

information system ontologies, ontological aims, parsimony, representation primitives, simplicity.

There are two ways of constructing a software design: one way is to make it so simple that there are obviously no deficiencies, and the other way is to make it so complicated that there are no obvious deficiencies. Tony Hoare (1980)

1. Introduction

Keywords

According to Turner (2018), there are two methodological advantages to adopting parsimony in software design:

• diminishing the amount of work, • reducing the risk of error.

«This is in line with Quine, who, in the case of theories, argues that parsimony carries with it pragmatic advantages, and that pragmatic advantages are provided as a pragmatic advantages.

Acknowledging such advantages, however, does not imply that the adoption of parsimony is mandatory. Indeed, in speaking of information system ontologies [ISOs], Smith (2004) and Grenon (2008) remark that nothing prevents ISOs from:

[1] endorsing/rejecting different assumptions,

[2] including parsimony among those assumptions, [3] considering the possibility of multiple forms of parsimony, and then repeating [1–2].

Despite [1-3], the adoption of parsimony is so common for ISOs that many ISOs implicitly and uncritically assume this notion. To prevent parsimony in computer science generally concerns software design and, together without assumption, this paper aims to clarify what it means for ISOs to be parsimonious. Sect. 2 shows that parsimony in computer science generally concerns software design and, together without assumption, this paper aims to clarify what it means for ISOs at the level of an implicit and uncritically assume this notion. elegance, is one of the two aspects of the broader notion of simplicity. Sect. 3 transforms the main claims of parsimony to the contents of ISOs, the combination of which is hereafter called "parsimony to the design of ISOs, and outline different kinds (and combinations) of parsimony of content. Finally, Sect. 8 considers whether parsimony of content could provide some criteria both for selecting and/or classifying the contents of ISOs and for choosing between different and equally consistent ISOs.

2. Parsimony in software design

3. Parsimony in information system ontologies

4. On the rivers of the UK

5. On the aims of information system ontologies

6. Completeness and parsimony of content

7. Parsimony of content and (representational) primitives

One of the main reasons why computer scientists place simplicity at the core of good and/or successful software design. According to Turner (2018, pp.133–134), simplicity does not have a single meaning in this context; rather, it refers to two distinct and related notions: elegance (or syntactic simplicity at the core of good and/or successful software design.) Elegance generally concerns the graspability, clarity, transparency, correctness, efficiency, consistency, generality, uniformity, and explanatory power of software. Parsimony links software design with its specification⁵, and insists that

[4] software solutions do not go beyond what is required.

While Turner further specifies the meaning of "what is required" in [4] by claiming that

[5] software should solve the problem it aims to solve, but no more,

Pawson (1998) takes one step further. First, he considers

[6] parsimony to have been achieved when it is no longer possible to improve software by subtraction.

Then, he adds that

[7] parsimony is the quality that software applications have when their components, details, and junctions have been reduced to the essential

means that:

[7] in turn means that [8] the link between the design and the aims of software (se

ncerns the components, details, and junctions of the software. [4–8] (together) imply that

[9] parsimony concerns the [9.1] aims of software and [9.2] details, and junctions

and thus also apply to something other than the content of ISOs (Turner, 2018, pp.161–167). Moreover, although it would transitively follow from [8–9] that

Section 2 has shown that

[10] simplicity is at the core of good and/or successful software [11] simplicity can be divided into elegance and parsimony.

Turner (2018, p.128) adds that [12] design is everywhere in computer science.

This means that, if [10–12] hold, parsimony also applies to

Gruber (2009) defines ISOs as follows:

[13] ISOs are sets of representational primitives (henceforth,

Therefore, based on [4–9], applying parsimony (of software

[14] ISOs should not go beyond the problem(s) they aim to [15] the components, details and junctions of ISOs, that is t

Henceforth, by "parsimony of content" (where "content" refe "content" in "parsimony of content" and "primitives" in [13] (i.e.

[10–12], which do not rule out that parsimony could be "every [16] parsimony of content deals with both [14–15],

we should also consider the possibility of

[17] following [14–15] separately. Indeed, if adopting parsimony of content means following

e [16]), nothing prevents us from adopting parsimony of content partially, that is, from adopting either [14] or [15] by itself.

and [9.1])—that is, beyond the domain(s) (of knowledge) ISOs aim to model;

ISOs, should be reduced to the essential (see [6–7] and [9.2]).

n which to model a domain (of knowledge). Primitives are primarily instances, classes, properties, and relations.

we build an ISO, ISO_1 , aimed at $[A_1]$ listing and $[A_2]$ classifying all the rivers of the UK. Unless A_1 and A_2 are further specified, A_1 is fulfilled if and only if To specify what it means to adopt parsimony of content in pr

[18] no river in the UK is excluded from ISO₁,

whereas achieving A_2 means

[19] providing any classification of such rivers. [18] generally refers to the notion of completeness (of ISOs

[20] the contents of an ISO should be exhaustive with resp in that the ISO aims to model.

For ISO₁, [20] means that the nearly 1,500 rivers crossing find their place among the contents of ISO_1 , which ultimately fall within (one of) the primitives of ISO_1 (see also [13]), no matter which primitive. As for [19], A_2 can in principle be achieved in many ways. SO₁ could

[21] classify the rivers according to their biotic and/or topog [22] systematize the rivers according to the geographical reg

[23] catalogue the rivers according to some (arbitrary) lengt] [24] consider [21–23] together;

[25] provide any arbitrary classification. The reason why there can be many ways to achieve A_2 is

According to [14–15], applying parsimony of content to ISO₁

[26] ISO_1 should not go beyond its aims; [27] (and) the primitives of ISO_1 should be reduced to the e

As for [26], ISO_1 has two aims: A_1 and A_2 . In accordance

[28] list all the UK's rivers (see A_1). [29] classify those rivers (see A_{2}),

[30] do nothing more than what [25–26] specify. [28] implies [18], [29] leads to [21–25], and thus assumes the

[31] list the UK's lakes, [32] (or) classify Germany's rivers,

because [31–32] would go beyond A_1 and A_2 , and hence co [33] (all) ISO₁'s contents should be consistent with and func

but also that [34] no content of ISO_1 should go beyond the aims of ISO_1 .

However, things can get complicated in cases like the follow

and A_2 only require [28–29], which do not explicitly refer to t

is thus expected to

d [28–29]. All this also implies that

[35] the same river appears twice (or several times) in ISO_{1} , [36] ISO₁ also includes the UK's lakes and/or Germany's riv

The principle of completeness (of ISOs) states that the conter

Conversely, applying parsimony of content to A_1 implies [37] ISOs may consistently follow both completeness and par

To justify [37], we could consider the negation of [36] to b

To answer [38], let us return to [27], according to which I_{i}^{k}

[38] how does the negation of [35] follow from parsimony of

[39] each content of an ISO should appear only once in the s

Now, [39] is based on [27], which follows from [15], which

While [39] follows from [27], this is not all. Indeed, "ISO₁'s pr

[41] reducing the tokens of the primitives we use (to the esse [42] combining [40] and [41]. To explain [40–42], let us imagine that ISO_1 follows [23] a Now, [40] suggests reducing the types of primitives: using fe

the instances, classes, and properties of $ISO_1 \wedge [23]$. Indeed,

[40] reducing the types of the primitives we use (to the esser

[41] is instead ambiguous. It may refer to [41.1] an ISO's overall amount of tokens.

meaning that the tokens of $ISO_1 \wedge [23]$ should be reduced classifying the UK's rivers by means of two length intervals (e. 5 classes, 1,505 tokens in total. (This also means that, insofar ϵ preferable to S_3 . In other words, the reduction of tokens with [41.1], however, is not the only way to interpret [41], which

[41.2] the tokens of each primitive.

Lando (2010), and Schaffer (2015).

In turn, [41.2] could have two interpretations: [41.2.1] and terms of the tokens of classes, S_5 is preferable to S_6 in terms of not directly concern [41.1] or [41.2.1]. In other words, [41.2.2] that those applications of [41] to one and only one primitive c However, there are also ambiguities surrounding [42]. First

[43] the combination refers to [40] and [41.1], or [40] and [41 Secondly,

[44] once [43] is clarified, we should also define the order of To clarify [44], let us suppose that the combination refers

¹ On software design, see Allen (1997); Baljon (2002); Parsons (2015).

² On simplicity in software design, see also Wirth (1974); Dijkstra (1979) ³ See also Baker (2016), who analyzes the distinction between elegance a On elegance in software design, see Bentley and McIrov (1993): Gelern ⁵ One referee rightly pointed out that there are other ways of relating sim ⁶ For further (and competing) definitions of ISO, see Neches et al. (1991); "ontology" in computer science has (at least) two different meanings: the

⁷ Instances are the lowest-level components, the basic units, of ISOs (Lau Tambassi (Tambassi, 2021). ⁸ See Burgun et al. (1999); Yao et al. (2011); Motara and Van der Schiff ⁹ See Bittner and Smith (2008). ¹⁰ See Tambassi (2021b). "Exhaustive" in [20] also refers to the debate or

¹¹ The distinction between [40] and [41] is largely based on Fiddaman and

buld be exhaustive for the domain that the ISO aims to model (see [20]). Applying completeness to (ISO₁'s) A₁ implies [14], but does not exclude that:

s [36] because of [33–34]—which are ultimately inferred from [26]. From [36], however, it does not follow that completeness and parsimony of content are mutually contradictory, since:

h of the rivers. On the other hand, one could also answer "yes", insofar as the "length of the river" would justify the assignment of each (UK) river to one of the length intervals of [23]

t specify any criteria for classifying the UK's rivers. Therefore, to the extent that each of [21–25] classifies the UK's rivers, there is no way to prefer one among [21–25] over the others, at least according to A_2 .

different ways of fulfilling [26], or that ISO₁ could not go beyond its aims in different ways. [30] limits ISO₁'s tasks to [28] (or A₁) and to [29] (or A₂). This means that, according to [30], ISO₁ should not, for example,

nt (see [1]).

ity for completeness, as well as a necessity for parsimony of content. The same, we may add, can be said for the negation of [35]. If so,

should be reduced to the essential. If [27], an (easy) solution might be to avoid repetitions, so that

the two pillars of parsimony of content (see [14–15]). Moreover, maintaining [39] means affirming the negation of [35], which is a necessity for parsimony of content and a possibility for completeness. But if so, [37] can also be justified by [35].

be reduced to the essential" seems to be open to different interpretations, such as:

s all the UK's rivers according to some (arbitrary) length intervals. ISO $_1 \land [23]$ therefore has two aims: (A_3) to list all the UK's rivers and (A_4) to classify them according to [23]. pes to model a domain (see [13] and [20]) is preferable to modelling the same domain using more primitive types. This means that placing $[S_1]$ the UK's rivers among the instances of $ISO_1 \wedge [23]$ (respectively) would be preferable to $[S_2]$ placing those rivers and length intervals among imitive types than S_2 .

fulfill [29] by means of [23], that is, by classifying the UK's rivers according to some (arbitrary) length intervals, such as 0-40 miles, 40-80 miles, 80-120 miles, and so on. What about the property "length of the river"? Does the inclusion of such a property within ISO₁'s contents follow from [33-34]? On the one hand, one could answer "no": A₁

ontents of ISOs) I will mean the application of [4-9] to [13], namely [14-15]. There are two main reasons for this emphasis on "content"—rather than on "parsimony is chiefly associated with the content of primitives. 8 Therefore, to speak of

Gruber's definition of ISO) means to account for this relation. The second reason is that parsimony of content does not (aspire to) exhaust the debate on the parsimony of ISOs. In other ways of applying [4–9] to ISOs. And this is also in line with

l. Now, while A_3 (simply) requires that all of the nearly 1,500 rivers crossing the UK find their place among the contents of $ISO_1 \wedge [23]$ (for example, among the instances of $ISO_1 \wedge [23]$), A_4 might be fulfilled in different ways. Supposing, for example, that each length interval corresponds to a class of $ISO_1 \wedge [23]$, [41.1] suggests that $[S_3]$ 1.00 miles" and "shorter than 100 miles") is preferable to $[S_4]$ classifying those rivers by means of five length intervals (e.g., "between 40–80 miles", "be both consistent with the aims of $ISO_1 \wedge [23]$, it is irrelevant to [41.1] whether S_4 is more detailed than S_3). But [41.1] also represents a way of balancing the overall tokens of $ISO_1 \wedge [23]$ within the various primitives. For example, if achieving A_3 and A_4 required that S_3 also include 10 properties and S_4 includes 2 properties, then S_4 would be should not be at the expense of a proliferation of tokens within the whole ISO er to

indicates that modelling $ISO_1 \wedge [23]$ by means of, for example, $[S_5]$ 10 classes, 2 relations and 1,500 instances. For although there is no difference between S_5 and S_6 in terms of the tokens of instances, and S_6 is preferable to S_5 in elations and properties. This means that, according to [41.2.1], we should prefer S_5 over S_6 , insofar as S_5 is preferable only with regard to both relations and properties, and S_6 is preferable only with regard to both relations and properties, and S_6 is preferable only with regard to both relations and properties. to apply [41] (and more generally [15] or [27]) to one and only one primitive. Consequently, we could have a [41] based on the tokens of classes when the tokens of relations when the tokens of relations when the tokens of relations are reduced to the essential, and so on for each primitive. All this does not imply ned to improve [15], [27] and/or [40–41], nor that the list of primitives will never change, and with it the varieties of applications of [41] to which the primitives refer.

[41.2.2], or [40], [41.1], and [41.2.1], and so on

mbination.

whether

.]. Giving priority to [40] means that reducing the types of primitives is more important than reducing the total number of tokens: that is, both primitive types and tokens should be reduced to the essential but the reducing the types of primitives. Giving priority to [41.1] means the opposite.

in the philosophy of science debate.

ny. The example they give is simplicity in understanding the code (i.e. "semantic simplicity"), including self-commenting code, which is simple in terms of understanding the code. I fully agree with them. I can only note here that this paper is not intended to exhaust the debate on the relationship between simplicity and parsimony. For more details on semantic simplicity, see Gelernter (1998); Sober (2002); arino and Giaretta (1995); Bernaras et al. (1996); Borst (1997); Swartout et al. (1997); Swartout et al. (1998); Guarino (1998); Uschold and Jasper (1999); Sowa (2005); Noy and McGuinness (2003); Tambassi and Magro (2015). Gruber (2009, p.1964) has also affirmed that ISOs, or "ontologies", are artefacts specified by (ontological) languages. Before him, Guarino and Giaretta (1998); Have pointed out that hilosophical discipline—which finds direct application in computer science (see, for example Turner, 2018; Krzanowski and Polak, 2022). This explains why "ontology" can have the same meaning in both philosophy and computer science. which may contain sub-classes and/or be sub-classes and of its instances (Noy and McGuinness, 2010). Relations represent the way in which both classes and instances interact with each other (Laurini, 2017). On primitives, see also et al. (2020).

osophy, within which "exhaustive" represents one of the three criteria of adequacy (see Cumpa 2019), indicating that whatever there is (or could be) should find its place in one and only one category (see Thomasson 2019). a's (2018) distinction between two different forms of ontological economy, see Sober (1975), Lewis (1973), van Inwagen (2001),

Timothy Tambassi

8. Parsimony (of content) as a set of criteria

According to [14], ISOs should not go beyond their aims, whatever these may be. As regards the contents of an ISO, [14] means that they should all be consistent with the ISO's aims (see [41.2.1] and [41.2.2]) to the essential. Alternatively (see [42]), we could adopt [40] and one or more of [41.1], [41.2.1], and [41.2.2] by defining their priority. According to [16], we should adopt both [14] and [15], or better [14] and at least one of [40], [41.1], [41.2.1], [41.2.2], or [42].

[45] [21–25] as equally consistent with A_2 .

But, if [45], how are we to choose among [21–25]? The fact that the criteria, if any, are not deducible from A_2 does not imply or guarantee that [14–16] provide any criteria. In other words,

[46] choosing among [21–25] may both [46.1] (at least partially) depend and [46.2] not depend on (some of) [14–16].

In turn, [46] does not imply or guarantee that

[47] once we choose among [21–25], [14–16] provide criteria for selecting and/or classifying the contents of ISOs.

All this means that parsimony of content (in general) can provide:

[48] some criteria for choosing among different and equally consistent classifications/ISOs;

[49] some criteria for selecting and/or classifying the content of ISOs; [50] both [48] and [49];

[51] neither [48] nor [49].

9. Concluding remarks

Since some ISOs adopt parsimony as an implicit and uncritical assumption, and/or without explaining what parsimony specifically consists of (or refers to), these pages sought to clarify the point. In this regard, I introduced the notion of parsimony of content, showing that

On this basis, let us focus on ISO_1 's A_2 , according to which ISO_1 should provide a classification of the UK's rivers and [21–25] are (all) consistent with A_2 , there is no reason why we should not regard

[52] this parsimony concerns two main claims, [14–15], as well as their connection, [16], from which [33–34], [37], [39–40], [41.1], [41.2.1], [41.2.2], [43–44] and [48–51] follow.

[52] broadly suggests that the adoption of parsimony of content has to do with

[53] the interpretation and combination of claims about parsimony of content,

[54] specifying whether parsimony of content provides some criteria for choosing among different classifications/ISOs and/or for selecting and/or classifying the contents of ISOs. 12

All this means that

[55] the notion (and application) of parsimony of content is multifaceted;

[56] an informed adoption of parsimony of content requires [53–54].

It does not follow from [55–56] that parsimony of content exhausts the debate on the parsimony of content. In other words, [55–56] are consistent with [1–3], thus ensuring the plurality of the methodological approaches shaping the debate on ISOs.

Funding. This paper has received funding from the European Research Council under the European Union Horizon Europe Research and Innovation Programme (GA no. 101041596 ERC—PolyphonicPhilosophy).

Disclamer. Funded by the European Union. Views and opinions expressed are however those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Bibliography

Allen, R.J., 1997. A Formal Approach to Software Architecture (CMU Technical Report CMU-CS-97-144). (technical report). Pittsburgh: Carnegie Mellon, School of Computer Science. Baker, A., 2016. Simplicity. In: E.N. Zalta, ed. The Stanford Encyclopedia of Philosophy. Winter 2016. Metaphysics Research Lab, Stanford University. Available at: https://plato.stanford.edu/archives/win2016/entries/simplicity/ [visited on 29 January 2024]. $Baljon, C.J., 2002. \ History \ of \ history \ and \ canons \ of \ design. \ \textit{Design Studies}. \ Philosophy \ of \ design, 23(3), pp.333-343. \ https://doi.org/10.1016/S0142-694X(01)00042-4.$ Bentley, J.L. and McIlroy, M.D., 1993. Engineering a sort function. Software: Practice and Experience, 23(11), pp.1249–1265. https://doi.org/10.1002/spe.4380231105. Bernaras, A., Laresgoiti, I. and Corera, J., 1996. Building and Reusing Ontologies for Electrical Network Applications. In: W. Wahlster, ed. Proceedings of the 12th European Conference on Artificial Intelligence (ECAI'96). Chichester, UK: John Wiley and Sons, pp.298–302. Borst, W.N., 1997. Construction of Engineering Ontologies for Knowledge Sharing and Reuse. PhD thesis. University of Twente, Centre for Telematics and Information Technology (CTIT). Available at: https://research.utwente.nl/en/publications/construction-of-engineering-ontologies-for-knowledge-sharing-and- [visited on 31 January 2024]. Burgun, A., Botti, G., Fieschi, M. and Le Beux, P., 1999. Sharing knowledge in medicine: semantic and ontologic facets of medical concepts. IEEE SMC'99 Conference Proceedings. 1999 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.99CH37028). Vol. 6. Tokyo, Japan: IEEE, pp.300–305. https://doi.org/10.1109/ICSMC.1999.816568. Dijkstra, E.W., 1979. The Humble Programmer. Turing Award Lecture. In: E. Yourdon, ed. Classics in Software Engineering. New York, N.Y: Yourdon Press, pp.113–128. Available at: http://archive.org/details/classicsinsoftwa00your [visited on 31 January 2024]. Fiddaman, M. and Rodriguez-Pereyra, G., 2018. The razor and the laser. Analytic Philosophy, 59(3), pp.341–358. https://doi.org/10.1111/phib.12128. Floyd, R.W., 1967. Assigning meanings to programs. Proceedings of Symposium on Applied Mathematics, 19, pp.19–32. Available at: http://laser.cs.umass.edu/courses/cs521-621.Spr06/papers/Floyd.pdf. Gelernter, D.H., 1998. Machine Beauty: Elegance and the Heart of Technology. New York: Basic Books. Available at: http://archive.org/details/machinebeautyele00gele [visited on 31 January 2024]. Grenon, P., 2008. A Primer on Knowledge Representation and Ontological Engineering. In: K. Munn and B. Smith, eds. Applied Ontology. Frankfurt am Main: Ontos Verlag, pp.57–82. https://doi.org/10.1515/9783110324860.57. Gruber, T.R., 1993. A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), pp.199–220. https://doi.org/10.1006/knac.1993.1008.

Gruber, T., 2009. Ontology. In: L. Liu and M.T. Özsu, eds. Encyclopedia of Database Systems. Boston, MA: Springer US, pp.1963–1965. https://doi.org/10.1007/978-0-387-39940-9 1318. Guarino, N., 1998. Formal Ontologies and Information Systems. In: N. Guarino, ed. Formal Ontology in Information Systems. Proceedings of FOIS'98, Trento, Italy, 6-8 June 1998. Amsterdam: IOS Press, 3-15.

Guarino, N. and Giaretta, P., 1995. Ontologies and Knowledge Bases: Towards a Terminological Clarification. In: N.J.I. Mars, ed. Towards Very Large Knowledge Bases: Knowledge Bases: Knowledge Bases: Knowledge Bases: Towards a Terminological Clarification. In: N.J.I. Mars, ed. Towards Very Large Knowledge Bases: Knowledge Bases: Knowledge Bases: Towards a Terminological Clarification.

Hill, R.K., 2018. Elegance in Software. In: L. De Mol and G. Primiero, eds. Reflections on Programming Systems. Vol. 133, Philosophical Studies Series. Cham: Springer International Publishing, pp.273–286. https://doi.org/10.1007/978-3-319-97226-8_10. Jaziri, W. and Gargouri, F., 2010. Ontology Theory, Management and Design: An Overview and Future Directions. In: W. Jaziri and F. Gargouri, eds. Ontology Theory, Management and Design: Advanced Tools and Models. IGI Global, pp.27–77. https://doi.org/10.4018/978-1-61520-859-3.ch002.

Krzanowski, R. and Polak, P., 2022. The meta-ontology of AI systems with human-level intelligence. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (73), pp.199–232. Lando, G., 2010. Ontologia. Un'introduzione. Rome: Carocci.

Laurini, R., 2017. Geographic Knowledge Infrastructure: Applications to Territorial Intelligence and Smart Cities. London: ISTE Press - Elsevier. Lewis, D., 1973. *Counterfactuals*. 1st ed. Oxford: Blackwell.

Motara, Y.M. and Van Der Schyff, K., 2019. A functional ontology for information systems. South African Computer Journal, 31(2). https://doi.org/10.18489/sacj.v31i2.691. Neches, R. et al., 1991. Enabling technology for knowledge sharing. AI Magazine, 12(3), pp.36–36. https://doi.org/10.1609/aimag.v12i3.902.

Noy, N.F. and McGuinness, D.L., 2003. Ontology Development 101: A Guide to Creating Your First Ontology. (technical report). Stanford University. Available at: http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html [visited on 1 February 2024]. Oram, A. and Wilson, G., eds., 2007. Beautiful code. 1st ed, Theory in practice series. Beijing; Sebastapol, Calif: O'Reilly.

Parsons, G., 2015. The Philosophy of Design. Cambridge: Polity press. Partridge, C. et al., 2020. A Survey of Top-Level Ontologies - to inform the ontological choices for a Foundation Data Model. (technical report). CDBB. https://doi.org/10.17863/CAM.58311.

Pawson, J., 1998. Minimum. London: Phaidon Press. Schaffer, J., 2015. What not to multiply without necessity. Australasian Journal of Philosophy, 93(4), pp.644–664. https://doi.org/10.1080/00048402.2014.992447.

Smith, B., 2004. Ontology. In: L. Floridi, ed. The Blackwell Guide to the Philosophy of Computing and Information. 1st ed, Blackwell philosophy guides, 14. Malden, Mass.: Blackwell, pp.155–166. Sober, E., 1975. Simplicity. Oxford: Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198244073.001.0001.

Sober, E., 2002. What is the Problem of Simplicity? In: A. Zellner, H.A. Keuzenkamp and M. McAleer, eds. Simplicity, Inference, and Modelling. Cambridge: Cambridge University Press, pp.13–32.

Sowa, J.F., 2005. Guided Tour of Ontology. Available at: http://www.jfsowa.com/ontology/guided.htm [visited on 29 January 2024]. Studer, R., Benjamins, V.R. and Fensel, D., 1998. Knowledge engineering: Principles and methods. Data & Knowledge Engineering, 25(1), pp.161–197. https://doi.org/10.1016/S0169-023X(97)00056-6.

Swartout, B., Patil, R., Knight, K. and Russ, T., 1997. Toward Distributed Use of Large-Scale Ontologies. AAAI Symposium on Ontological Engineering. Stanford, CA, pp.138–148. Tambassi, T., 2021. The Philosophy of Geo-Ontologies: Applied Ontology of Geography, SpringerBriefs in Geography. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-78145-3. Tambassi, T. and Magro, D., 2015. Ontologie informatiche della geografia. Una sistematizzazione del dibattito contemporaneo. Rivista di Estetica, (58), pp.191–205. https://doi.org/10.4000/estetica.447.

Turner, R., 2018. Computational Artifacts: Towards a Philosophy of Computer Science. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-55565-1. Uschold, M., Box, P.O. and Usa, W., 1999. A Framework for Understanding and Classifying Ontology Applications. Proceedings of the IJCAI99 Workshop on Ontologies and Problem-Solving Method. Stockholm.

Van Inwagen, P., 2001. Ontology, identity, and modality: essays in metaphysics, Cambridge studies in Philosophy. Cambridge, U.K.; New York: Cambridge University Press. Wirth, N., 1974. On the Design of Programming Languages. Proc. IFICP Congress 74, pp.386–393. Available at: https://web.eecs.umich.edu/~bchandra/courses/papers/Wirth Design.pdf > [visited on 1 February 2024].

Yao, L. et al., 2011. Benchmarking ontologies: Bigger or better? PLoS Computational Biology, 7(1), e1001055. https://doi.org/10.1371/journal.pcbi.1001055.

Figure 1: The node-ball of radius 1 centered at a grey node. The no

caph composed of the grey node, white nodes, and grey edges.

The concept of structural information and possible applications

AGH University of Krakow Ryszard Stocki

Andrzej Bielecki

Keywords

(3)

1. Introduction

The Pontifical University of John Paul II in Krakow

Abstract

2. Formulation of the concept of structural information

In this paper, the concept of structural information is present

information, structure, graph, relation, cognitive maps.

In contemporary science, information is supposed to be one and processing of information are commonly regarded as the cognitive psychology (Lindsay and Norman, 1972). Research in (Kolmogorov, 1965), to the works of modern philosophers who On the other hand, signal and information processing in li Studies on information often lead to the conclusion that the of information is introduced and the method of calculating its of psychology and management—see section 3.

The very idea presented in this section was outlined in (Bielea Information is generated on a set by relations on this set. I let us call it node existential information and denote this amount

where log denotes log_2 . The above formula is consistent with t X (the set X, is therefore, simply, identified with the set V of t above idea concerning the fundamental relationship between th minimum number of steps needed to go from one node to anot of a ball on the given digraph is presented in Fig.1.

As it has been mentioned, the information is the structure these nodes. If all node-balls of equal radii are isomorphic, mea X, as a consequence) and equivalent classes generates organization

In formula (2) K denotes the number of equivalent classes presented in (Bielecki and Schmittel, 2022) with node existen The node structural information is insufficient because thre information as information introduced by the fact that a grap

Thus, the edge existential information I^{edex} is the number As it was specified above, information is a structure of the necessary to define the edge structural information in similar So let us define edge-balls on the digraph G=(V)all edges adjacent to the nodes of the ball and by complet centers in these edges and equal radii are isomorphic edge-bal

where m denotes the number of edges, T denotes the number ϵ

on the graph $G(X,\mathcal{R})$. Returning to the example presented in Fig.2 for both graph of its edges we have the partition (5,5)(20) and, as a conseque Let us notice that edges generated by various relations ha

Let us summarize the proposed concept. Information is gen which, in turn, allows to define two types of balls—vertex and **Node existential information** is given by the number of Edge existential information is given by the number o \Box Node structural information determines which elemen Edge structural information determines the character

Thus, the information introduced by a relation on a base

natical foundation of the concept is put forward. The nature of information encoded in a structure is studied. The method of calculating the amount of structural information is introduced. An application to analysis of cognitive maps is presented and discussed

ncept of information in various contexts, including possible applications (Bateson, 1951; Smith, 2000; Burgin, 2011; Ebeling and Feistel, 2015; Davies, 2019; Schroeder, 2019b). ot only in the neurophysiological aspect (Tadeusiewicz, 2010) but also on the subcellular level and in the context of networks of interacting nets of processes, are investigated (Kauffman, 2019, chap.5). In such approaches strong references to logics and molecular cybernetics can be observed (Boniolo et al., 2023; Spirin, 2002). rmation is indeed related to the concept of structure (Burgin, 2011; Bielecki, 2015; Bielecki and Schmittel, 2022; Tao et al., 2021). The concept of information discussed in this article falls within this line of research. In the subsequent section the mathematical aspect of the concept of structural information is presented. The definition of this type n the idea of organization (Hellerman, 2006), is put forward. Although the concept was originally worked out as the tool for studies of the life phenomenon, it is also useful for the study of information in different areas of scientific interest. In this paper the concept is applied to cognitive maps that were obtained during research on the borderline

tal components of reality (Barreiro et al., 2020; Krzanowski, 2020a,b). Both the physical character of information and its reference to other basic concepts in physics, for instance material structures and energy, are studied intensively (Krzanowski, 2022; Krzanowski, 2022; Mścisławski, 2022; Polak, 2022). Furthermore, generation

the life phenomenon (Smith, 2000; Nurse, 2008; 2020; Davies, 2019). Information is put as the crucial concept in definitions of life (Bielecki, 2015; 2016; Davies, 2019). Information processing is placed at the center of

tion has resulted in valuable scientific results. Starting with Shannon's classic results, in which he studied the amount of information (Shannon, 1948), through the work of Kolmogorov, who studied the amount of information in an algorithm

resented in (Bielecki and Schmittel, 2022) in which structural information was introduced. In this section the concept is clarified, refined in detail, discussed and complemented with definitions of two sorts of existential information.

n-element set, let us call it the base set. The information generated by the mere fact of the existence of this set is the number of its elements. In this context, assigning one bit of information. Thus, the amount of this type of information, an be defined as $H^{ndex} = \log(n+1),$

all used in physics for a system that can be in one of N states. Thus, the node existential information I^{ndex} is the number of elements of the base set X. Let a relation \mathcal{R} be given on X. The relation generates the directed graph (digraph, for abbreviation) $G(X,\mathcal{R}) = (V,E)$ in a such way that it has n nodes that represent the elements of the set graph), whereas E is the set of directed edges. Two nodes are connected by a directed edge if the elements represented by these nodes satisfy the relation, i.e. (x,y) ϵ E if xRy. On a given set a few various relations can be specified, among others labelling that has a specific meaning in this context (for details see Bielecki and Schmittel, 2022). The et and the graph has a classical rank today (Carnap, 1928). Intuitively, structural information is the structure of the generated graph. In formal terms, it is necessary to specify precisely the mentioned structure of the generated graph. The distance between two nodes is the regardless of their orientation. As a consequence, a closed node-ball with center at the node x and radius r, where r is a natural number, is a subgraph composed of the graph that connect the nodes obtained in this way. An example

enerated by the relation. This structure can be described by the balls. Formally, the node structural information I^{node} on the set X, generated by the relation \mathcal{R} on this set, is the set of all node-balls on the graph and all node-balls in the centers in omorphic graphs and the isomorphism transforms the center of one ball to the center of another, then the nodes are, by definition, indistinguishable. Otherwise, they are distinguishable. To sum up, the nodes of $G(X,\mathcal{R})$. Indistinguishable of the nodes is an equivalent relation on V (and on Hellerman, 2006). Consequently, the amount of node information H^{node} generates by \mathcal{R} on n-elementary set X is given as

$$H^{node} = -n\sum_{k=1}^{K} \frac{n_k}{n} \log \frac{n_k}{n}.$$

the number of elements in the k-th class. If there are a few relations on X, let us set $\mathcal{R}_1, \ldots, \mathcal{R}_m$, where $Y_{k_1} \cap \ldots \cap Y_{k_m}$, where Y_{k_i} denotes the k-th class. If there are a few relations on X, let us set $\mathcal{R}_1, \ldots, \mathcal{R}_m$, where Y_{k_i} denotes the k-th class in the i-th relation, generate the new partition of X and formula (2) is applied to this new partition. Let us note that supplementing the approach is necessary, because otherwise sets with a different number of elements on which there would be no relation would generate the same amount of information, in both cases equal to zero, which would be counterintuitive. have the same number of nodes: the one without edges, the cyclic one and the complete one would have the same amount of information in each case equal to zero (each two nodes are indistinguishable) that would be a nonsense result. Therefore, let us introduce edge information. As in the case of node information, we will define edge existential number of edges, let us say m. Amount of this type of information H^{edex} is given as

$$H^{edex} = \log(m+1)$$

d by a relation. However, it may happen, for example, that two graphs have the same number of both nodes and edges, and in both cases all nodes are distinguishable. Example of such graphs is presented in Fig.2. Therefore, it is structural information was introduced. ball of radius 1 and a center in the edge $(u,v)\epsilon E$ consists of the nodes u,v, the edge (u,v) and (u,

that are adjacent to the added nodes. Two edge-balls are, by definition, isomorphic balls if they are isomorphic as the graphs and the isomorphic balls if they are isomorphic as the graphs and the isomorphic as the graphs and the isomorphic as the graphs and the isomorphic balls if they are isomorphic as the graphs and the isomorphic balls if they are isomorphic as the graphs and the isomorphic balls if they are isomorphic balls if he edges are distinguishable. Indistinguishability of edges of a given graph is an equivalent relation of the set of the graph edges, so it introduces partition of the set of edges. Amount H^{edge} of edge information is given as

$$H^{edge} = -m\sum_{k=1}^{T} \frac{m_k}{M} \log \frac{m_k}{M},$$

ses, m_k denotes the number of edges in the k-th class and M is the number of the complete graph that has the same number of nodes. If it is assumed that the relation is antireflexive, then M=n(n-1). Otherwise, $M=n^2$. Formally, the edge structural information I^{node} on the set X, generated by the relation \mathcal{R} on this set, is the set of all node-balls $x = log \ 6$, $H^{edex} = log \ (11)$ and, taken into consideration that in both graphs each two nodes are indistinguishable, so $H^{edge} = 0$. In graph G_2 each two edges are indistinguishable, because balls of radii 2 are not isomorphic—see Fig.3. For G_1 on the set

 $0 \cdot 2 \cdot (5/20) \log (5/20) = 10.$ ls, so amount of edge information generated by various relations will add up. a finite set X by a relation defined on this set, which can be easily generalized to a finite number of relations. This relation, in turn, generated structure is a graph whose form is information. This information can be formalized by introducing a metric into the generated graph, l balls define different types of structural information introduced by the said relation. Let us discuss the introduced sorts of information.

e set X, on which the information is generated by a relation or relations on it. This sort of information determines upper boundary of the amount of structural information that can be generated on X.

aph generated by a given relation on X. This sort of information determines what part of the possibility of generating information on X was utilized by a given relation. related to each other and how the introduced relation differentiates the elements of the set in the context of the overall structure, i.e. the graph generated by this relation.

onship between two specific elements in the context of the whole information generated by the introduced relation on X. by existential information, which consists of node existential information and edge existential information, and structural information, that consists of node structural information and edge structural information.

(a) Graph G_1 Figure 2: Two graphs that have the same number of nodes and edges and the same amount of node information and the same amount of both type of existence information but different amount of edge information.

(b) Graph G_2

The ball with the expert is dealed edge and surface 2

(b) The ball with the center in dashed edge and radius $\it 2$

3. Some remarks about the proposed concept of information

Let us discuss some aspects and nuances of the proposed concept of information. Research on structured information is conducted in a broad field in philosophy. Mathematically oriented studies, are related to the concept of distinguishability of elements of a given set (Schroeder, 2019b), which is sometimes connected with operational aspects of information (Bateson, 1951). In physical and biological aspects, structural information is considered as a physical property represented by the spatial and temporal configuration of matter and follows the laws of physics (Ebeling and Feistel, 2015; Davies, 2019). The effect of the large number of research directions on structured information is, among other things, the fact that the term structural information is used with different meanings, depending on the research context. In this paper the term structure has only mathematical meaning used in physics, cosmology and in some contexts of philosophy (see, e.g., Burgin, 2011). The presented concept of information seems to be pioneering. Therefore, it is hard to point out papers in which the key terms are used in similar meaning. Nevertheless, the idea of structural information is rooted in the Hellerman's concept of organization (see Hellerman, 2006; 2016).

The possibility of generalizing the presented concept is an important problem in the philosophical and mathematical aspect. At the present stage, the proposed concept has been developed for specific biological and biochemical applications (Bielecki, 2015; Bielecki and Schmittel, 2022), where infinite sets do not occur neither. Therefore, its application possibilities and formalization were more important than purely philosophical aspects.

Returning to the problem of generalization to the case of infinite sets, instead of the number of vertices in the graph, a certain measure should be used, which is undoubtedly feasible. However, a significant difficulty will be replacing the graph with some other mathematical structure that will generate appropriate equivalence classes. At the present stage, it is impossible to determine whether this is doable.

It should be stressed that the structural information cannot be reduced to quantitative aspect. The presented approach does not introduce such reductionism. The form of the generated graph represents the qualitative aspect.

Information, in general, has both ontological and epistemological dimensions. Referring to the ontological aspect, the situation is analogue as with energy that, from the most general point of view, can be kinetic or potential, which has far-reaching consequences for its agency. It seems, that in the context of diversity of information, reality is much richer than in the context of various forms of energy. In addition to the four types information defined in the paper—two structural and two existential—there exists at least information generated by possible node labelling—see also remarks at the end of Section 4. Additionally, information generated by the fact that the generated graph, the form of which is information generated by the relation defined on the base set.

4. Application to cognitive maps

As it was mentioned in the first section, the presented concept of information was dedicated to studies that concern life processes. It can be, however, successfully utilized to cognitive maps, is described in subsection 3.1. In the subsequent subsection application of the proposed concept to analysis of cognitive maps is described.

4.1 Cognitive maps in psychology, management and philosophy

The problem of legitimate methods of knowing the world and the adequate representation of knowledge about the world is a classic issue of epistemology. Until the end of the 19th century, it was considered only in the context of human cognitive abilities. In the 20th and 21st centuries, these issues included research on the perception of the world by animals and the representation of the world in the context of human cognitive abilities. In the 20th and 21st centuries, these issues included research on the perception of the world by animals and the representation of the world in the context of human cognitive abilities. In the 20th and 21st centuries, these issues included research on the perception of the world by animals and the representation of the world by animals and the representation of the world in the context of human cognitive abilities. In the 20th and 21st centuries, these issues included research on the perception of the world by animals and the representation of the world in the context of autonomous robots (see, e.g., Bielecki, 2021). In this context representation by using cognitive maps and various logical representations are studied. The discussion of this stream of scientific investigation in philosophical aspect is presented in (Rescorla, 2009).

Authors of *Visible thinking* (Brysson et al., 2004) start their book with the statement that *thinking process*. Cognitive maps are the first candidate for such endeavour. Although the first cognitive maps were attributed to William James, their first confirmed use was done in 1948 (Tolman, 1948). At that time these were cognitive space representations located in hippocampus. Conceptual maps as we view them now only started with George Kelly in 1955. He compared human beings to scientists who are continuously making hypothesis, formulating theories and checking them empirically. According to Kelly, we are continuously making hypothesis, formulating theories and checking them empirically. We do this to better navigate our life. Kel

Testing causal maps as cognitive constructs was also applied in developmental psychology—its action was conditioned there with help of mathematical tool—Bayes' network. It was a trial to understand process of creating causal connections (Gopnik, Glymour et al., 2004). Psychologists not only want to know rules of passing on the knowledge, as it is in the theory of social learning (Bandura, 1977), but also want to understand the mechanism of gaining new knowledge indirectly derived from world's observation. Of course children do not know anything about any maps. Those maps have tacit character; they are only a construct, which is seen and later on conditioned by scientists. Modelling like that allows for computer simulation and generating analogous "behavior" of systems with applications, among others, in robotics (Chaib-draa, 2002).

Research like this is carried on yet in children from the age of 30 months. For example, a specific arrangement of simple objects on the stand with a detector evokes a sound signal and researches are very general so they are useful in organizational diagnosis only in limited scope. Gopnik is a ruthless opponent of directly asking tested persons about causal connections. As she wrote (Gopnik, Glymour et al., 2004), she is almost sure that adults would have made a mistake if they were directly judge their cognitive constructs. It is worth taking note of the fact that accepting constructivist assumptions concerning how the mind works does not mean that they are also supporters of the second from the proposed approaches—domain specificity, meaning the belief that it is hard to talk about general rules of building cause-result connections in isolation from content. Some researchers see the relationship between the map and the real world. For instance Leslie states that "the infant is a specialized processor of information with an architecture that (in part) reflects properties of the world" (Leslie, 1994). Such ontological references are infrequent. Usually cognitive maps are simply treated as educational or management (Brysson et al., 2016), management (Brysso

study of positive concepts of mental health, Iasiello et al. (2023) after review of all the relevant literature arrived at 155 measures and 410 original constituent dimensions. These were reduced to a set of 21 themes. Figure 4 shows an example of an expert map of an effective cooperative.

The concept of structural information, and particularly its analytic opportunities related to balls of different diameter might allow focus on such a huge 410 (Iasiello et al., 2023) or 40 elements map in Fig.4 without the necessity to synthesize it.

4.2 Application the concept of structural information to cognitive maps

How people think in the economic context, and particularly in management has a direct impact on companies' success. No wonder, management is one of the domains that uses the tool such as map analysis most often. Preliminary results indicate that managers' cognitive maps, may impact the decision making process and, as a result, success of a company. Thus, investigation of the structure and complexity of such maps can be fruitfully applied in psychology of management. The example of cognitive maps obtained during these studies is presented in Fig.5. The managers were asked to draw cognitive maps on which the notion responsibility affects or which have an impact on responsibility. It was also necessary to take into account the mutual influence of the placed concepts.

The presented concept of information, at its current, initial stage, is not a tool powerful enough to study the structure of cognitive maps without analyzing their lexical content. Let us consider two cognitive maps obtained during the investigations described in subsection 4.1 presented in Fig.5. An

The presented concept of information, at its current, initial stage, is not a tool powerful enough to study the structure of natural language utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less the meaning of utterances. Nevertheless, it is sufficient to study the structure of natural language utterances. Nevertheless, it is sufficient to study the structure of natural language utterances, much less than 100 and 100 a

$$H^{ndex} = \log 7 \approx 2.8,$$

 $H^{edex} = \log 6 \approx 2.6.$

The filled node is distinguishable from any other whereas the others are pairwise indistinguishable. Thus, on the set of the nodes we have partition (5,1) (in the Hellerman sense) and, as a consequence

Unfortunately, that research had either general character (e.g., Kruglansky, 1980) or concerned theories of core domains having basic meaning for human life (mainly physics concepts, theories of mind, etc.), or connected with teaching individual subjects at school.

$$H^{node} = -6\left[\left(\frac{5}{6}\right)\log\left(\frac{5}{6}\right) + \left(\frac{1}{6}\right)\log\left(\frac{1}{6}\right)\right] \approx 3.9.$$

It is obvious that all edges are pairwise indistinguishable, so Graph G_2 consists of six nodes and thirteen edges, so

Figure 3: The balls with centers in bold and dashed edges and radius 2

$$H^{cage}=0.$$

 $H^{ndex} = \log 7 \approx 2.8,$ $H^{edex} = \log 14 \approx 3.8.$

In graph G_2 each two nodes are distinguishable. Indeed, apart from two nodes, all others have pairwise different bi-labels that encoded indegree and outdegree and out

$$H^{\text{node}} = -6 \left[6 \left(\frac{1}{6} \right) \log \left(\frac{1}{6} \right) \right] \approx 15.5.$$

$$H^{\mathrm{edge}} = -13 \left[13 \left(\frac{1}{30} \right) \log \left(\frac{1}{30} \right) \right] \approx 27.7.$$

Thus, graphs G_1 and G_2 have the same amount of node existential information. Graph G_2 has, however, significantly more amount of edge existential information is far more greater in graph G_2 —15.5 versus 3.9 bites in the case of edge structural information and 27.7 versus 0 bites in the case of edge structural information. As it has been mentioned, at the current stage of studies it is impossible to conduct deep lexical analysis in the frame of the proposed concept. Nevertheless, labeling could be introduced to distinguish the central term in the analyzed maps—responsibility—from the other terms. In the case of graph G_2 all nodes are distinguishable by the considered relation. In the case of graph G_2 all nodes are distinguishable by the common label the atoms of the same chemical elements is a typical example (see Bielecki and Schmittel, 2022). In this paper, in the analyzed cognitive maps, the term responsibility is highlighted as the base term provided by the researcher

to which referred all other terms used by the person being examined. Therefore, without falling into the trap of lexical meaning, it was proposed to label this word with a unique status in the study. The remaining vertices were labeled with a different label, but all with the same one. This labeling was done in order to distinguish the base term without going into lexical analysis.

Andrzej Bielecki, Ryszard Stocki

Figure 6: The structure of cognitive maps presented in Fig.5. The numbers in parentheses in graph G₂ denote indegree and outdegree of the node.

5. Concluding remarks

Let us summarize the proposed concept of information and the presented example of its application. The concept was originally and their basic properties have been specified. This was done with care for formal correctness and completeness. Although the concept was originally dedicated to applications for analysis of biological structures and processes (see Bielecki and Schmittel, 2022) it turned out that the concept is also applications, formal analysis of such maps with the assistance of structural information concept allows the researchers to go beyond from the simple analysis of the map content to the analysis of the map content to the analysis of the maps structure and complexity. As is visible in the example above, we can, for instance, analyze the role of the central concept from the second graph causes only partial disintegration of the structure of the graph. This means that in critical moments in the decision with the help of a substitute. Such formal analysis of the concepts make visible properties of our thinking that were, so far, treated as tacit. Furthermore, the proposed approach allow the researcher to calculate precisely amount of information in the cognitive maps.

Bibliography

Bandura, A., 1977. Social Learning Theory. Englewood Cliffs: Prentice Hall. Barreiro, C. et al., 2020. The third construct of the universe: Information. Foundations of Science, 25(2), pp.425–440. https://doi.org/10.1007/s10699-019-09630-7.

Barton, A., Eussen, J., Lardjane, S. and Nuutinen, A.M., 2016. Mind maps and concept maps in Education: Draft Version. University Bretagne Sud. Available at: http://web.univ-ubs.fr/lmba/lardjane/draft-1.pdf [visited on 16 February 2024].

Bateson, G., 1951. Information and codification: philosophical approach. In: J. Ruesch and G. Bateson, eds. Communications: The Social Matrix of Psychiatry. New York: Norton, pp.168–211. Berge, C., 1989. Hypergraphs: Combinatorics of Finite Sets, North-Holland mathematical library, 45. Amsterdam; New York: North Holland.

Bielecki, A., 2015. The general entity of life: a cybernetic approach. Biological Cybernetics, 109(3), pp.401–419. https://doi.org/10.1007/s00422-015-0652-8. Bielecki, A., 2016. Cybernetic analysis of the phenomenon of life. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (61), pp.133–164. Available at: https://zfn.edu.pl/index.php/zfn/article/view/361 [visited on 17 February 2024]

Bielecki, A., 2021. The systemic concept of contextual truth. Foundations of Science, 26(4), pp.807–824. https://doi.org/10.1007/s10699-020-09713-w. Bielecki, A. and Nieszporska, S., 2019. Analysis of healthcare systems by using systemic approach. Complexity, 2019, pp.1–12. https://doi.org/10.1155/2019/6807140.

Bielecki, A. and Schmittel, M., 2022. The information encoded in structures: Theory and application to molecular cybernetics. Foundations of Science, 27(4), pp.1327–1345. https://doi.org/10.1007/s10699-022-09830-8. Bielecki, A. and Stocki, R., 2010. Systems theory approach to the health care organization on national level. Cybernetics and Systems, 41(7), pp.489–507. https://doi.org/10.1080/01969722.2010.511533.

Boniolo, G., D'Agostino, M., Piazza, M. and Pulcini, G., 2023. Molecular biology meets logic: Context-sensitiveness in focus. Foundations of Science, 28(1), pp.307–325. https://doi.org/10.1007/s10699-021-09789-y. Brysson, J., Ackermann, F., Eden, C. and Finn, C., 2004. Visible Thinking: Unlocking Causal Mapping for Practical Business Results. Ed. by J. Bryson.

Burgin, M., 2011. Information in the structure of the world. Information Theories and Applications, 18(1), pp.16–32. Available at: https://www.semanticscholar.org/paper/INFORMATION-IN-THE-STRUCTURE-OF-THE-WORLD-Burgin/c0a122a3c6fc62fc394e0e1e90003e12eed47bf0">https://www.semanticscholar.org/paper/INFORMATION-IN-THE-STRUCTURE-OF-THE-WORLD-Burgin/c0a122a3c6fc62fc394e0e1e90003e12eed47bf0 [visited on 17 February 2024]. Carnap, R., 1928. Der logische Aufbau der Welt. Berlin-Schlachtensee: Weltkreis-Verlag.

Chaib-draa, B., 2002. Causal maps: theory, implementation, and practical applications in multiagent environments. IEEE Transactions on Knowledge and Data Engineering, 14(6), pp.1201–1217. https://doi.org/10.1109/TKDE.2002.1047761.

Davies, P., 2019. The Demon in the Machine: How Hidden Webs of Information Are Solving the Mystery of Life. Chicago, IL: University of Chicago Press. Available at: https://press.uchicago.edu/ucp/books/book/chicago/D/bo45084244.html [visited on 17 February 2024]. Ebeling, W. and Feistel, R., 2015. Selforganization of Symbols and Information. In: G. Nicolis and Vasileios Basios, eds. Chaos, Information Processing and Paradoxical Games. World Scientific, pp.141–184. https://doi.org/10.1142/9789814602136 0009. Gopnik, A., Glymour, C. et al., 2004. A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, 111(1), pp.3–32. https://doi.org/10.1037/0033-295X.111.1.3.

Gopnik, A., Sobel, D.M., Schulz, L.E. and Glymour, C., 2001. Causal learning mechanisms in very young children: Two-, three-, and four-year-olds infer causal relations from patterns of variation. Developmental Psychology, 37(5), pp.620–629. https://doi.org/10.1037/0012-1649.37.5.620. Hellerman, L., 2006. Representation of living forms. Biology and Philosophy, 21(4), pp.537–552. https://doi.org/10.1007/s10539-005-9009-3.

 $Hellerman, L., 2016. \ The \ animate \ -in an imate \ -in an imate \ -in an imate \ -in a limit \$ Iasiello, M. et al., 2023. What's the Difference Between Measures of Wellbeing, Quality of Life, Resilience, and Coping? An Umbrella Review and Concept Map of 155 Measures of Positive Mental Health. (preprint). PsyArXiv. https://doi.org/10.31234/osf.io/s96mr.

Kauffman, S.A., 2019. A World Beyond Physics: The Emergence and Evolution of Life. New York, NY: Oxford University Press. Kolmogorov, A.N., 1965. Three approaches to the quantitative definition of information. Problemy Pieredachi Informatsii, 1(1), pp.3–11.

Korzeniewski, B., 2001. Cybernetic formulation of the definition of life. Journal of Theoretical Biology, 209(3), pp.275–286. https://doi.org/10.1006/jtbi.2001.2262. Kruglansky, A., 1980. Lay epistemologic process and contents: Another look at attribution theory. Psychological Review, 87(1), pp.70–87. Available at: https://www.academia.edu/7445739/Kruglanski A 1980 Lay epistemologic process and contents: Another look at attribution theory. Psychological Review, 87(1), pp.70–87. Available at: https://www.academia.edu/7445739/Kruglanski A 1980 Lay epistemologic process and contents: Another look at attribution theory.

Krzanowski, R., 2020a. Ontological information. investigation into the properties of ontological information. Praca doktorska. Kraków. Available at: http://bc.upjp2.edu.pl/dlibra/docmetadata?id=5024 [visited on 17 February 2024]. Krzanowski, R., 2020b. What is physical information? *Philosophies*, 5(2), pp.9–22. https://doi.org/10.3390/philosophies5020010. Krzanowski, R., 2022. Ontological Information: Information in the Physical World. Vol. 13, World Scientific series in information studies. Hackensack, New Jersey: World Scientific. https://doi.org/10.1142/12601.

Krzanowski, R. and Polak, P., 2022. Ontological information—information as physical phenomenon. *Proceedings*, 81(1), p.21. https://doi.org/10.3390/proceedings2022081021. Kuhn, D., 1989. Children and adults as intuitive scientists. Psychological Review, 96(4), pp.674–689. https://doi.org/10.1037/0033-295X.96.4.674.

Laukkanen, M., 1998. Conducting Causal Mapping Research: Opportunities and Challenges. In: C. Eden and J.-C. Spender, eds. Managerial and Organizational Cognition: Theory, Methods and Research. London; Thousand Oaks, Calif; New Dehli: Sage, pp.168–191. Lengyel, D. and Sarah, M.-G., 2023. Capturing ERM Lessons Learned from the Covid -19 Pandemic through Concept Mapping. SSRN Scholarly Paper. Rochester, NY. https://doi.org/10.2139/ssrn.4381266.

Leslie, A.M., 1994. ToMM, ToBY, and Agency: Core architecture and domain specificity. In: L.A. Hirschfeld and S.A. Gelman, eds. Mapping the Mind. 1st ed. Cambridge: Cambridge University Press, pp.119–148. https://doi.org/10.1017/CBO9780511752902.006. Lindsay, P.H. and Norman, D.A., 1972. Human Information Processing: An Introduction to Psychology. New York; London: Academic Press.

Moon, B.M., Hoffman, R.R., Novak, J. and Canas, A., eds., 2011. Applied Concept Mapping: Capturing, Analyzing, and Organizing Knowledge. Boca Raton, [FL]: CRC Press. Mścisławski, Ł., 2022. Is information something ontological, or physical or perhaps something else? Some remarks on R. Krzanowski approach to concept of information. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (73), pp.147–169.

Novak, J.D. and Cañas, A.J., 2006. The origins of the concept mapping tool and the continuing evolution of the tool. *Information Visualization*, 5(3), pp.175–184. https://doi.org/10.1057/palgrave.ivs.9500126. Nurse, P., 2008. Life, logic and information. *Nature*, 454(7203), pp.424–426. https://doi.org/10.1038/454424a.

Nurse, P., 2020. What Is Life? Understand Biology in Five Steps. Ed. by B. Martynoga. Oxford: David Fickling Books. Offermann, L.R., Kennedy, J.K. and Wirtz, P.W., 1994. Implicit leadership theories: Content, structure, and generalizability. The Leadership Quarterly, 5(1), pp.43–58. https://doi.org/10.1016/1048-9843(94)90005-1.

Polak, P., 2022. Beyond epistemic concepts of information: The case of ontological information as philosophy in science. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (73), pp.335–345. Available at: https://zfn.edu.pl/index.php/zfn/article/view/626 [visited on 12 February 2024]. Rescorla, M., 2009. Cognitive maps and the language of thought. The British Journal for the Philosophy of Science, 60(2), pp.377–407. https://doi.org/10.1093/bjps/axp012.

Schroeder, M.J., 2019a. Analogy in terms of identity, equivalence, similarity, and their cryptomorphs. *Philosophies*, 4(2), p.32. https://doi.org/10.3390/philosophies4020032. Schroeder, M.J., 2019b. Theoretical Study of the Concepts of Information Defined as Difference and M. Burgin, eds. Philosophy and Methodology of Information. Singapore: World Scientific, pp.289–314. https://doi.org/10.1142/9789813277526_0013.

Shannon, C.E., 1948. A mathematical theory of communication. Bell System Technical Journal, 27(3), pp.379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x. Smith, J.M., 2000. The concept of information in biology. Philosophy of Science, 67(2), pp.177–194. Available at: https://www.jstor.org/stable/188717 [visited on 17 February 2024].

Spirin, A.S., 2002. Ribosome as a molecular machine. FEBS Letters, 514(1), pp.2–10. https://doi.org/10.1016/S0014-5793(02)02309-8. Stocki, R., n.d. Tacit knowledge in unconventional organizations: Two tools to measure co-operative expertise.

Tadeusiewicz, R., 2010. New trends in neurocybernetics. Computer Methods in Materials Science, 10(1), pp.1–7. Available at: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BUJ8-0006-0041 [visited on 17 February 2024]. Tao, M., Wang, S., Chen, H. and Wang, X., 2021. Information space of multi-sensor networks. *Information Sciences*, 565, pp.128–145. https://doi.org/10.1016/j.ins.2021.02.059.

Tolman, E.C., 1948. Cognitive maps in rats and men. Psychological Review, 55(4), pp.189–208. https://doi.org/10.1037/h0061626. Vosniadou, S., 1996. Towards a revised cognitive psychology for new advances in learning and instruction. Learning and Instruction, 6(2), pp.95–109. https://doi.org/10.1016/0959-4752(96)00008-4.

Voss, J.F. et al., 1986. Informal reasoning and subject matter knowledge in the solving of economics problems by naive and novice individuals. Cognition and Instruction, 3(4), pp.269–302. Available at: https://www.jstor.org/stable/3233587 [visited on 17 February 2024].

Wojciech P. Grygiel The Pontifical University of John Paul II in Krakow

The introduction of the concept of the field of potentiality and its correlates (the field of potentiality and the formal field) by Józef Życiński and Michael (Michael) Heller opened up space for the philosophical explanation of the unreasonable effectiveness of mathematics in capturing regularities built into the physical reality. The presented study is a response to the clear incentive of these authors towards the development of the understanding and applicability of these concepts. It is argued that identifying symmetries of this field can be more deeply comprehended. By indicating the drawbacks and limitations of this approach, perspectives for further inquiry into the meaning and usefulness are suggested.

symmetry, ontology, potentiality, emergence, field of rationality, field of potentiality.

question "why is the Universe mathematical" should be rephra

aposterioric in the sense that it will attempt to infer more on

The first indication that there may exist connections between t etymology of the term as the *common measure* and which prec

and how the equal and different elements are chosen on the otl

occurs a transition from the formal order to the order of real r

which are continuous groups playing key role in physical applic a vector space. By using representation theory, one can study

The next important piece of information on how to locate s

The simplest and quite illustrative examples in that regard probably the simplest non-compact Lie group, has several unit

which are symmetries, should find their place in the field of re

that are physically irrelevant such as the symplectic structure

is given by the four possible formulations of quantum mechan representations refer to the fabric of the microworld (Heller 201

Dirac (1930, p.vii) asserts the following:

In order gain further insight into the relations between the

[Nature's] fundamental laws control a substratum of which w

The third general feature of a physical theory with symme particularly visible. The three-flavor neutrino oscillation can b

violated—as it seems to be the case according to the recent e:

of the Universe represented by physical theories. Taking into ε influence on the properties of the systems subject to the regim

does and not any other. One may also legitimately doubt whe

A close corollary of identifying symmetries within the field of

original metaphysical outlook where the field of rationality con-

formal field corresponds to the Platonic universe of mathemat

structure underpinning a number of concretes is fulfilled. In a

intuitive origin of this assertion based on the geometric symn

displacements of its furnishings that would escape the attention

subjected to a constraint. As a confirmation of his conclusion

that it is less constrained because it contains less invariants. So

bears more nuanced character but its informal treatment shou

geometry. The "softest" structure is topology whose invariant

symmetrical as it is, a symmetrical crystal is less symmetrical

becomes unstable under small perturbations as some paramete

harmonic oscillator), phase transitions yield a much better ex

means of an appropriate subgroup of a symmetry group that h

from the field of rationality could be then understood as a pro-

conversely, the patterns exhibited by the behavior of nature p The identification of symmetries within the field of potent

The presence of the groups of symmetries in the field of ra

Also, the identification of symmetries in the field of rationa the world around us appears to us very asymmetric but it do

Everything points to the fact that at the beginning there was

An attentive reader will quickly notice that in this quote H

It turns out the issue of potentiality is one of the central

connection between unification and potentiality in light of whi gravitation with the dynamic symmetry of other interactions"

behave in a certain way, or produce a certain effect—that is, th

domain of the abstract mathematical formalisms of the symme turn out instrumental in sorting out these difficulties. In orde

In the conclusion of the presented inquiry it is worth to bring (

but they address questions which cannot be posed within their

observation, a novel insight into the global structure of the for section of the field of symmetries with the field of rationality

application of the non-commutative geometry in the pursuit c

suggesting that that the field of categories may relate to the fie

the intuitively understood duality expressing the relation of re-

Acknowledgments: The author wishes to express his than

The identification of symmetries within the field of rational

One can rightly expect that the development of Heller's id

A good example of the relationship between the operations

It is commonly known that the structuring and diversification

As Debs and Redhead (2007, pp.37–39) point out in a rath twofold manner as "two sides of the same coin". Debs and Red

Keeping in mind that symmetries impose restrictions on th

The second way of associating potentiality with symmetrie

Although by taking into account the ubiquity of symmetrie mathematical structures. It turns out naming the field of ratio

Introduction

Keywords

The concept of the field of rationality has been proposed independently by Józef Życiński and Michał (Michael) Heller in order to address two fundamental questions within the philosophical reflection on the nature and method of mathematics is so effective in the physical sciences. The development of the contemporary physics 1 has revealed that the formalisms of the fundamental physical theories rely on symmetry manifested by the appropriate symmetry groups. Also, symmetry is a principal tool by which the unification of physics has become possible thereby making the Universe intelligible at an unprecedented scale (e.g., Gross, 1996). This outcome has found its vocal expression in a phrase coined by Wolfgang Pauli who referred to the ubiquity of symmetry in physics as Gruppenpest (the plague of symmetries is so effective in physics has been emphasized by Michael Redhead (2003, p.138) in the following assertion: "The gauge principle is generally regarded as the most fundamental cornerstone of modern theoretical physics. In my view its elucidation is the most pressing problem in current philosophy of physics". The philosophical concerns regarding symmetries in physical theories continue to spark interest and discussions from a wide range of perspectives (e.g., Dardashti, Frisch and Valente, 2021).

The aim of this study is to show how the understanding of the internal structure and the global properties of the field of rationality a metaphysical argument for this state of affairs will become available. The need for this deepening has been clearly expressed by Heller (2014, p.442) in his assertion that "the idea never went beyond its seminal stage" and still remains "fuzzy". The additional advantage of identifying symmetries within the field of rationality is that one can better explicate the moment of the Big Bang. The objective of this study will be carried out in fours steps. Firstly, an introduction to the origins and the meaning of the field of potentialities will be offered. A special emphasis will be made on how Życiński attempted to capture the process of the emergence of the physical structures in the Universe as the actualization of potentialities latent in the field and what are the possible shortcomings of this attempt. Secondly, the specificity of the formal field and the field of symmetries. Thirdly, the formal field and the field of symmetry and structure will be utilized in advancing better understanding of potentialities and the ensuing dynamics leading to the emergence of structures in the Universe. Some useful references to the contemporary discussions on potentialities will be made. Fourthly and lastly, keeping in mind that the inquiry is intended more as an exploration of the possible interpretative perspectives of the field formal field and the field formal field and the field formal field and the field of rationality, some suggestions concerning further investigative efforts will be offered. Since identifying symmetry groups within the field of rationality implies a decidedly realist position in regards to the status of symmetries within the findamental fabric of the Universe, this study explores a new dimension of metaphysical issues that arise in the context of contemporary science.

The field

The concept of the field of rationality was originally proposed by Józef Życiński and introduced with detailed justification in (Życiński, 1987). In a nutshell, this field provides a matrix for the physical functioning of the Universe. This clearly reflects the fact that only a small portion of mathematics turns out to be relevant from the point of view of physical applications. As long as this field is considered from purely formal field and to link the field of rationality with the ontological claim positing it as an existing entity that justifies the possibility mathematics as the activity of the human mind (Heller, 1997, p.238). This, of course, reveals Platonic preferences of Heller and Życiński to which they openly subscribe (e.g., Życiński, 2013). Unfortunately, both these authors remain somewhat ambiguous whether the field of rationality should refer to the world of mathematical structures that shows the desired explanative power in regards to the possibility of mathematics and its applicability in physics, for the purpose of the conceptual clarity the Platonic world of all possible mathematical structures will be referred to as the field of rationality. The distinct ontology of the three worlds of math, physics and mind proposed by British mathematician and theoretical physicist, Roger Penrose (e.g., Penrose, 2004, pp.17–21). In this ontology, the physical structures reinforces a strong metaphysical claim but, at the same time, it does justice to the preferred standpoint of mathematicians treating the object of their study as a objectively existing reality which they do not construct but discover (e.g., Penrose, 2004, p.13).

While the above paragraph shows only a general statement of what the field of rationality is, Zyciński took up the challenge to delve deeper into its nature. In his view, the key role of the field of rationality is to capture the fact that "the fundamental level of reality is constituted by an abstract network of formal relations and the reality of the observed physical substrate is secondary with respect to the formal relations whose existence we discover in the physical processes which are concrete exemplifications of these structures" (Życiński, 1995, p.102)². In order to provide a suitable illustration of the excitation of the excitation of the lowest energy field, that is, the vacuum. Following the suggestion of American particle physicist, Heinz Pagels (1983, p.245), Życiński treated the vacuum as a reservoir of potentialities out of which physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and, ultimately, find their exemplification in concrete physical structures could emerge in the evolution of the Universe and Universe an His favorite examples of the emergent structures were the Kepler laws of the planetary motions and the Mendeleev's periodic table which—in his opinion—should have both already existed in the early Universe prior to the appearance of planets and chemical elements. He maintains that although these laws must have been somehow coded in the structure of the Universe prior to the appearance of planets and chemical elements.

strictly by natural powers, there must remain a "radical separation" between these two domains of existence (Życiński, 2006, pp.53–54). In other words, on one hand he wished to secure the workings of the physical causality in effecting this actualization and yet to preserve some form of otherness of the field of rationality to sensibly articulate the idea of potentiality. It is not difficult to see that this ambiguity makes Zyciński's argumentation inconclusive and that he never came up with a satisfactory way out of it. Initially, he opted for the Platonic metaphysical view of the field of rationality with respect to the domain of physicality, it effectively prevented their causal activity in this domain. Zyciński (2006, pp.58–59) has eventually abandoned the Platonic view of the field of rationality the nomic structure of the Universe. In his introduction to Życiński's Świat matematyki i jej materialnych cieni Heller parallels this conceptual change with the transformation of the philosophical stance of Życiński qualifies and Wenoctares (Heller, 2013)³. Heller opines that this is precisely where the final ontological stance of Życiński qualifies and where the idea of the mathematicity of the Universe has its roots.

Życiński's ontological turn finds its corroboration in the approach to quantum gravity pursued by Heller and his collaborators with the use of the non-commutative geometries (Heller and Sasin, 1998; Heller, 2002, pp.115–122). This approach to quantum gravity pursued by Heller and his collaborators with the use of the non-commutative geometries (Heller and Sasin, 1998; Heller, 2002, pp.115–122). means of delineating what is abstract and ideal and what is concrete. Contrary to the Platonic stance, this situation neutralizes the barrier for the physical causation in actualizing potentialities but, by this very fact, it makes the articulation of potentiality more difficult. By bringing up only a handful of examples illustrating the usefulness of the concept of the field of rationality Zyciński de facto provides only some local characteristics of this field without much attention its more fundamental global properties. However, intimations of this kind of description appear in his insistence that the field of rationality zyciński de facto provides only some local characteristics of this field without much attention its more fundamental global properties.

phenomena and processes impossible (Życiński, 1987, p.180). According to Życiński, the existence of the field as a constraint manifests itself in the unchangeability of the physical processes and—most importantly—symmetries and their invariants. In order to substantiate this claim he recalls Pagels' observation that the majority of the physical constants, stability of the physical constants, stability of the physical constants, stability of the physical constants. symmetries (Pagels, 1983, p.296). Engaging the field of rationality to explain the role of symmetries as the cornerstone of contemporary physics accords with Zyciński's philosophical intuitions and his endorsement of this line of argumentation can be taken for granted. It turns out that Życiński's incentive to investigate the glo the field of rationality echoed in a study carried out by Heller in which he does not commence from the field's physical concretizations but he reaches out to the nature of mathematics itself by turning to a highly abstract mathematical theory known as the category theory (Heller, 2014). The category theory perceives the different branches of mathematics like calculus or linear algebra as separate categori ovides an overview "from above" and reveals possible connections among them. Since a separate category may be selected to represent a section of the field of rationality that constitutes a matrix for the field of rationality that constitutes a matrix for the field of rationality can be matched with the field of rationality that constitutes a matrix for the field of rationality can be matched with the field of rationality c

the Universe categorical" suggests that the field of rationality is rather meant to indicate the collection of physically relevant mathematical structures only. Although there are studies which indicate deep connection between symmetry and categories (e.g., Heunen, Landsman and Spitters, 2008), the approach taken up in this study will be re of the field of rationality from the well established fact of the ubiquity of symmetry in physical theories.

Symmetries in the Field ality and symmetry can be found in the philosophical understanding of the term ratio and it may stand for reason, relation as well mathematical proportion. This coincides with the original understanding of symmetry developed in the ancient Greece which reflects the heoretical account of symmetry. As emphasized by Brading and Castellani, symmetry remains closely linked with unity which in the ancient meaning is effected by proportion and in the modern by the symmetry operations belonging to a precisely defined transformation group. They assert that "the way which this unity is realized on one hand, he resulting symmetry and in what exactly it consists" (Brading and Castellani, 2003, p.3). This, in turn, correlates with the invariance with respect to a group of transformations imparts significant restrictions on the theory's form as well as on the form of its equations (Brading and Castellani,

e field of rationality comes from Heller's attempt to compare the process of the formation of an abstract group with the commencement of its existence in the analogy to St. Anselm's proof of the existence of God on the premise that there e (Heller, 2003, p.63). As an illustration Heller offers the example of the irreducible unitary representations of the Poincaré group which describe properties of all existing elementary particles and fields. Considered in themselves, groups are but sets of abstract objects defined by the group operation satisfying the group axioms. The Lie groups, ich the Poincaré group belongs, are additionally equipped with differentiable manifolds (e.g., Schwichtenberg, 2018, pp.47–54). However, these abstract objects begin to "do physics" once they are represented as group structure preserving operations on a uniquely selected mathematical space most frequently considered as linear transformations of sup operates on a variety of vector spaces thereby generating distinct meaningful physical situations. and SU(1,1) symmetries. Since both these symmetries offer powerful tools in advancing our understanding of the properties of quantum systems, they are undoubtedly important elements of the field of rationality. While there is only one unitary and finite dimensional representation of the SU(2) compact group, the SU(1,1) group, which is

presentations which refer to different families of coherent states and serve to study physically distinct systems (e.g., Vourdas, 2006). Since the abstract groups within the formal field while their physically pertinent representations, quently, considering that the abstract groups may have representations that are not physical (e.g., non-unitary representations), one can postulate the existence of the field of symmetries that constitutes the subfield of the formal field which contains all possible abstract groups and symmetries regardless of their physical relevance. field of symmetries and the field of rationality, one needs to take into account three general features of physical theories contain symmetries. Firstly, the formalisms of these theories feature mathematical structures other than symmetries are the field of rationality, one needs to take into account three general features of physical theories contain symmetries. , for instance. This state of affairs may have its source in the fact that physical theories put forward by physicists are but approximations of the structure of the physical reality and as such they may contain structural elements that do not pertain to reality but they are artifacts of the workings of the human mind. A good example in this regard irically but not mathematically equivalent: Hilbert spaces, Feynman path integrals, C*-algebras and density matrices. As Heller points out, these formulations are different representations of the guantum reality taken in an informal sense that they encode some of the structural features of this reality and only structural invariants of these Whatever remains variant is relegated to the domain of the artifact of description. Interestingly enough, such inference is oftentimes given as the defining feature of symmetry whereby symmetries constitute mathematical tools which discriminate between what pertains to reality and what is a surplus structure, that is, an artifact of a theory. Paul

nental picture without introducing irrelevancies. The formulation of these laws requires the use of the mathematics of transformations.

with the fact that although symmetries provide important constraints for the dynamical equations, they don't determine them uniquely and other factors need to be taken into account in their derivation. For instance, neutrino oscillation is a phenomenon where an impact of symmetry on dynamic properties (equations of motion) becomes cribed as a 3-level system of a dynamics generated by a highly non-trivial Hamiltonian directly related to Pontecorvo—Maki—Nakagawa—Sakata mixing matrix relating mass and flavor states (e.g., Banerjee et al., 2015; Bilenky, 2016). A form of this matrix depends on the CP symmetry constraining neutrino properties. If the CP symmetry is The T2K Collaboration, 2020)—neutrino and its antiparticle become distinguishable and evolve in time with different Hamiltonians generating particular form of the time evolution and its symmetry (e.g., Richter, Dziewit and Dajka, 2017). can be initially tempted to match the field of rationality with the field of symmetries, considerations presented above show that the situation is more complex and a more nuanced approach needs to be adopted. It has been already suggested that the abstract groups and symmetries belong to the formal field and that this field contains all possible has yet another advantage because the precise mathematical definition of a field associates a certain quantity with each of its points. By way of analogy, a particular instance of rationality such as those indicated by Zyciński can be linked with a corresponding point of the field. Such a point stands for a section of the fundamental ontic structure uity of symmetries in physics a conjecture can be put forward that a symmetry group is located in the neighborhood of the points of the field of rationality and it may constrain structures proper to a given point. As a result, a symmetry group will turn up in the physical theory that describes reality's structure at this point and it will exert and its equations. Ultimately, physically relevant symmetries present in the field of rationality seem to form a non trivial cross section of the field of symmetries, that is a part of the formal field, with the field of rationality. Unfortunately, at this stage of analysis it is not possible to explain why this cross section contains the symmetries that it mere statement, such an explanation is even possible.

Exploring potentiality

possibility of clarifying Życiński's ambiguity in regards to the nature of potentialities latent in the field of rationality. It turns out that one can think of these potentialities in two different ways based on how the "radical separation" between the abstract and the concrete comes about. The first way arises in some accordance with Życiński's structures was placed in the Platonic world of ideas thereby generating the much desired "radical separation" between the abstract and the concrete. It is not hard too see that the proposed placing of the abstract are the abstract and the concrete. It is not hard too see that the proposed placing of the abstract are the abstrac vious reservation of how such abstract groups can exert their causal influence in the physical domain, this separation has to serve as the only reason for now why these groups should be regarded as potencies that become actualized in the form of the properties of fields and particles when unitarily represented in concrete linear spaces. he physical objects they describe, it is worthwhile to point an important difference between the two abstract groups. In contradistinction to SU(2), the SU(1,1) has several physically meaningful representations suggesting that its abstract structure is refracted in a number concrete physical realizations whereby Zyciński's demand of one abstract er of physically relevant representations could become a measure of how potent a given abstract group is in giving rise to real physical systems. Also, this kind of potency accounts for the physical character of the unbroken symmetries.

the processes of symmetry breaking. Let us start with the difference between symmetry and design. The opinion that symmetry is a key element of the Universe has been expressed by American physicist Anthony Zee (2007, pp.3). It has been critically analyzed by American philosopher of science, Peter Kosso, who suggested an ometrical objects. In his effort to dismantle this intuition, Kosso (2003, p.421) gave a simple but telling example of juxtaposing a messy and ordered room. While in a messy room one can quite easily shift items around without upsetting its invariant structure and frustrating its owner, an ordered room does not admit of practically any arranged them. Kosso concluded that the messy room has more symmetry and less design while the ordered less symmetry and more design. Consequently, design means not symmetry but the breaking of symmetry suggesting that producing a design connotes rather having intentional control over the choice of the desired symmetry symmetry and more design. teven Weinberg's example of a chair constructed out of atoms where each atom is rotationally symmetric but the chair itself is not. In other words, the building of a chair by its designer has led to the decrease of symmetry. ntuitive way, symmetry and invariance are complementary ideas bound by the relation of duality. In mathematics duality is known to be a broad concept and its precise definition is given when duality is that it points to a deeper structure that manifests itself in

sue any rigorous identification of an underlying structure that symmetry and invariance may represent but they wish to articular, they refer to the fact that the higher the symmetry group of a structure, the more changes it can endure indicating the symmetry and invariance may represent but they wish to articular, they refer to the fact that the higher the symmetry group of a structure, the more changes it can endure indicating the symmetry group of a structure and invariance may represent but they wish to articular, they refer to the fact that the higher the symmetry group of a structure and invariance may represent but they wish to articular, they refer to the fact that the higher the symmetry group of a structure, the more changes it can endure indicating the symmetry group of a structure and invariance may represent but they wish to articular the symmetry group of a structure. y group gets smaller, the number of invariants grows and the structure becomes richer (more rigid). In other words, the decrease of the symmetry breaking, leads to the emergence of more complex structures resulting in the growth of complexity. Manchak and Barrett (2023) demonstrate that this relation e purpose of this study. and the invariant structures are the different geometries with the Euclidean being the most rigid that is having the greatest number of invariants and the smallest symmetry group, through affine geometry where the requirement of constant length is loosened and only the parallel lines are preserved. Yet less structure comes with the projective aber and any transformation is allowed that preserves continuity, that is, the structure of the neighborhoods of points. Ripping the structure apart would mean changing topology and breaking the structure's symmetry.

ical reality occurs by means of the processes of symmetry breaking. Peter W. Anderson (1972, p.395) offers an example the formation of a crystal, is that the large system is less symmetrical than the underlying structure would suggest: nogeneity". The nature of symmetry breaking has received an extensive treatment in physics leading to the identification of two basic mechanisms of the spontaneous symmetry breaking occurs when the lowest energy symmetrical solution ritical value resulting in a new asymmetric but stable lowest energy state. Inasmuch as Życiński's illustration of the excitation of the excitation of the quantum gard. A system that is capable of undergoing a phase transition could be regarded as having potentialities at its disposal to assume a more ordered state due to symmetry breaking as a certain external parameter is changed (i.e., decrease of temperature). or a rather straightforward understanding of what it means that a physical structure is contained in this field. Since following the explanation provided in a previous section symmetries relate to the corresponding invariant structures via the relation of duality, a concrete structure may be considered as encoded within the field of rationality by eously broken. From a more formal point of view, duality stands for a mathematically precise relation between the abstract and concrete finds its expression in this reciprocality. In summary, the actualization of a physical structure that emerges

ring of a symmetry present in this field where the original larger symmetry group connotes the potentiality to bring forth a diversity of concrete structures which commence their physical existence as accessible for the scrutiny of the scientific method. r ways of better insight into Życiński's claim that concrete physical systems are instantiations of the general physical laws that govern their dynamics (e.g., the Kepler laws). When symmetry is spontaneously broken, the solutions of the equation's symmetries. Phrased differently, t the fundamental laws are not symmetric. Although the new lowest energy solutions are asymmetry transformations and the whole set maintains the symmetry ground its laws. Thus the lower symmetry solutions do not violate the symmetry properties of these laws. And the symmetries that are being broken. The extent to which this mechanism is applicable to such instances as the planetary systems fulfilling the Kepler laws of motion would need much more detailed analysis that remains beyond the confines of this study. additional justification in a path that is in some sense reverse to that of symmetry breaking, namely, a path that hypothetically leads back to a structure that has the potency of producing every possible complexity in the Universe. In addressing this issue Heller (1997, p.232) asserts the following:

-an extremely rich and geometrically simple mathematical structure. The subsequent symmetry breakings (the separation of each of the four interactions) gave rise to increasing diversity. The dream of the theory of everything is the dream of discovering of the mathematical structure from which everything has its origin.

ne reciprocal relation between symmetry and invariance as applied to the early stages of the Universe. In order to unify bosons and fermions, supersymmetry requires a sufficiently large symmetry group which should in turn yield relatively few invariants thereby making the corresponding geometry simple. This observation signals an interesting ory would encode potentialities towards a larger number of possible concretizations. For instance, such increased potentiality could manifest itself in a theory unifying gravity with the three other interactions because, as Heller (2002, p.63) admits: "it is very difficult to find a symmetry rich enough to combine the spatiotemporal symmetry of

approximately metaphysics and it concerns the ongoing discussion on the nature of powers and dispositions are fulfilled, then that thing will approximately metaphysics and it concerns the ongoing discussion on the nature of powers and dispositions are fulfilled, then that thing will approximate the concepts are used into the explanation of what the laws of nature are (e.g., Friend and Kimpton-Nye, 2023). In most general terms, to attribute a disposition to a thing means that if certain conditions are fulfilled, then that thing will come will occur. For instance, a negatively charged particle is an entity that, if brought together with another negatively charged particle, it will experience a repulsive force. As French (2020) clearly shows, while the articulation of dispositions and powers in regards to objects of everyday experience is a fairly straightforward task, the shift to the al theories presents a considerable challenge. In this regard one can legitimately ask what is the metaphysical significance of the formal field and the field of rationality may that, however, a separate detailed study will need to follow.

Conclusions

tification of symmetries within the field of rationality—much the same as the postulate of the field itself—are philosophical interpretations. This means that they cannot influence the progress of physics but they provide answers to why this progress is possible. In other words, they do not modify or oppose the formalisms of the physical theories ameworks. Nevertheless, it is crucial to recall that the efficacy of the proposed interpretation relies on an a posterior observation derived from the practical aspects of theoretical physics, revealing that symmetry serves as a fundamental underpinning in all physical theories. The major contribution of the inquiry consists in that, by relying on this e field of rationality has been obtained. Moreover, the identification of symmetries within these domains fortifies a robust realist standpoint concerning their metaphysical significance. What might escape even the most sophisticated metaphysical consideration is why the cross nd not other symmetries that are physically relevant.

sted justification carry a number of shortcomings and are in need of further development to address their full philosophical import. For instance, no reference was made to the different kinds of symmetries that enter into the theoretical frameworks (external (i.e., spatio-temporal), internal, gauge). Moreover, in light of the works of Heller on the quantum gravity that has been already mentioned of this study, some promising results can be obtained when the concept of a group is generalized with that of a group is generalized with the group is gener ig the field of rationality as the field of categories will provide further support for the meaningfulness of the field of rationality but at some point it might face its conceptual limitations as well. What appears promising from the point of view of this study is that some deep connections have been identified between categories and symmetry in a yet unknown way (e.g., Heunen, Landsman and Spitters, 2008). Consequently, the process of "unfuzzying" of the field of rationality remains a challenge as one needs to constantly re-represent it with the use of more abstract conceptual frameworks allowing for the gradual unveiling of its nature. Ultimately, however, one cannot exclude that en symmetry and invariance will reveal its full mathematical meaning suggesting that they are but two sides of the same coin and that the field of rationality is but another means by which the human mind strives to decipher the mystery of the Universe.

ers for their incisive comments and to Professor Jerzy Dajka from The Department of Physics of the University of Silesia in Poland for his help in sorting out complex formal technicalities.

Bibliography

Anderson, P.W., 1972. More is different. Science, 177(4047), pp.395 Banerjee, S., Alok, A.K., Srikanth, R. and Hiesmayr, B.C., 2015. A Bilenky, S., 2016. Neutrino oscillations: From a historical perspecti Brading, K. and Castellani, E., 2003. Introduction. In: K. Brading Castellani, E., 2003. On the Meaning of Symmetry Breaking. In: K Dardashti, R., Frisch, M. and Valente, G., 2021. Editorial: symmetry Debs, T.A. and Redhead, M., 2007. Objectivity, Invariance, and Co Dembiński, B., 2010. Późny Platon i Stara Akademia [Late Plato a Dembiński, B., 2015. On some aspects of mathematical platonism. Dembiński, B., 2019. The theory of ideas and plato's philosophy of Dirac, P.A.M., 1930. The Principles of Quantum Mechanics. Oxfor French, S., 2020. Doing Away with Dispositions: Powers in the Con Friend, T. and Kimpton-Nye, S., 2023. Dispositions and Powers, E Gross, D.J., 1996. The role of symmetry in fundamental physics. P

Grygiel, W.P., 2022. A critical analysis of the philosophical motival Heller, M., 2014. The field of rationality and category theory. In: N Heller, M. and Sasin, W., 1998. Emergence of time. Physics Letters Heller, M., 1997. Uchwycić przemijanie. Kraków: Znak. Heller, M., 2002. Poczatek jest wszedzie: nowa hipoteza pochodzenia Heller, M., 2003. Teilhard's Vision of the World and Modern Cosm Heller, M., 2006. Evolution of the space-time structures. Concepts Heller, M., 2013. Wstęp. Świat matematyki i jej materialnych cieni Heunen, C., Landsman, N.P. and Spitters, B., 2008. The principle Kosso, P., 2003. Symmetry, Objectivity and Design. In: K. Brading Manchak, J. and Barrett, T., 2023. A hierarchy of spacetime symm

Pabjan, T., 2011. Józefa życińskiego koncepcja pola racjonalności.

Pagels, H.R., 1983. The Cosmic Code: Quantum Physics as the Lar

Penrose, R., 2004. The Road to Reality: A Complete Guide to the 1 Redhead, M., 2003. The interpretation of gauge symmetry. In: K. I Richter, M., Dziewit, B. and Dajka, J., 2017. Leggett-Garg K_3 qua Schwichtenberg, J., 2018. Physics from Symmetry, Undergraduate 1 The T2K Collaboration, 2020. Constraint on the matter–antimatte Vourdas, A., 2006. Analytic representations in quantum mechanics. Zee, A., 2007. Fearful Symmetry: The Search for Beauty in Modern Życiński, J., 1987. Filozoficzne aspekty matematyczności przyrody. Życiński, J., 1995. Status przedmiotów idealnych a ontlogia współc Życiński, J., 2006. Pole potencjalności a ewolucja Wszechświata. In Życiński, J., 2013. Świat matematyki i jej materialnych cieni. 2nd e

.org/10.1126/science.177.4047.393.ation theoretic analysis of three-flavor neutrino oscillations. The European Physical Journal C, 75(10), p.487. https://doi.org/10.1140/epjc/s10052-015-3717-x.

status. Nuclear Physics B. Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015, 908, pp.2–13. https://doi.org/10.1016/j.nuclphysb.2016.01.025. . eds. Symmetries in Physics: Philosophical Reflections, Cambridge, U.K.; New York: Cambridge University Press, pp.1–18. Castellani, eds. Symmetries in Physics: Philosophical Reflections. Cambridge, U.K.; New York: Cambridge University Press, pp.321–334. ries in physics. Synthese, 199, pp.983–989. https://doi.org/10.1007/s11229-020-02745-6. etry in Physical Science. Cambridge, Mass: Harvard University Press.

my], Fundamenta: studia z historii filozofii, 63. Kety: Wydawnictwo Marek Derewiecki. blems in Science (Zagadnienia Filozoficzne w Nauce), (58), pp.45–61. Available at: https://zfn.edu.pl/index.php/zfn/article/view/7. ilosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (66), pp.95–108. Available at: https://zfn.edu.pl/index.php/zfn/article/view/468.

hysics. In: A.S. Meincke, ed. Dispositionalism: Perspectives from Metaphysics and the Philosophy of Science, Synthese Library. Cham: Springer International Publishing, pp.189–212. https://doi.org/10.1007/978-3-030-28722-1 12. hysics. Cambridge: Cambridge University Press. https://doi.org/10.1017/9781009118910.

National Academy of Sciences, 93(25), pp.14256–14259. https://doi.org/10.1073/pnas.93.25.14256. ment of the concept of the field of rationality as a representation of the fundamental ontology of the physical reality. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (72), pp.87–108. eller and S.J. Szybka, eds. Mathematical Structures of the Universe. Kraków: Copernicus Center Press, pp.441–457. Available at: http://adsabs.harvard.edu/abs/2014msu..book..441H [visited on 28 January 2020].

-54. https://doi.org/10.1016/S0375-9601(98)00824-X. *a Ścieżkach Nauki*. Warszawa: Prószyński i S-ka.

ension: Essays on Science and Religion. Philadelphia; London: Templeton Foundation Press, pp.57-69. Copernicus Center Press, pp.5–15.

ice. AIP Conference Proceedings, 1023, pp.93–102. https://doi.org/10.1063/1.2958182. i, eds. Symmetries in Physics: Philosophical Reflections. Cambridge, U.K.; New York: Cambridge University Press, pp.413–454.

eraclitus. The British Journal for the Philosophy of Science. https://doi.org/10.1086/727002. 9(2), pp.7–18. Available at: https://fn.uw.edu.pl/index.php/fn/article/view/635 [visited on 10 February 2024]. New York: Batnam Books. rse. 1st ed. London: Jonathan Cape.

astellani, eds. Symmetries in Physics: Philosophical Reflections. Cambridge, U.K.; New York: Cambridge University Press, pp.124–139. s between Dirac and Majorana neutrinos. Physical Review D, 96(7), p.076008. https://doi.org/10.1103/PhysRevD.96.076008. Physics. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-66631-0.

ting phase in neutrino oscillations. Nature, 580(7803), pp.339-344. https://doi.org/10.1038/s41586-020-2177-0. ics A: Mathematical and General, 39(7), R65. https://doi.org/10.1088/0305-4470/39/7/R01.

Michalik and J. Życiński, eds. Filozofować w kontekście nauki. Kraków: Polskie Towarzystwo Teologiczne, pp.170–185.

V. Stróżewski and A. Węgrzecki, eds. W kręgu filozofii Romana Ingardena: materiały z konferencji naukowej, Kraków 1985: praca zbiorowa. Warszawa; Kraków: Wydawnictwo Naukowe PWN, pp.97–110. Nauka, religia, dzieje: materia i forma, potencja i akt, czyn: XIII seminariów z Castel Gandolfo, 25-27 września 2005, Lublin, Varia/Uniwersytet Jagielloński, 407. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, pp.49-60. nicus Center Press.

¹ An extensive overview of the origin and the development of the concep

onality can be found in: (Pabjan, 2011; Grygiel, 2022). 10; see also 201 Dembiński, 2015; 2019).

² Translated from Polish by Wojciech P. Grygiel. ³ For an in-depth analysis of the transformation of the Platonic School s $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$

⁴ Translated from Polish by Wojciech P. Grygiel.

Tadeusz Sierotowicz ISR-Bolzano, IISS "Gandhi" Merano

Abstract
The paper presents a brief outline of the Michał Heller's programme of theology of science, with a specific attention to its collocation and critical role with respect to both theology and science. The former consideration is based on a third domain of truths (Hans Urs von Balthasar), while the latter is inspired by Józef Tischner's presentation of religious thinking. Theology of science as such will be described with the reference to Larry Laudan's approach, considered here as a very useful and pragmatic tool for the description of basic concepts of this theology.

theology of science, third domain of the truths, research tradition, Michał Heller, Hans Urs von Balthasar, Józef Tischner, Larry Laudan.

1. Introduction

Keywords

In the vast area of study designated "faith and reason" the theology of science occupies a special position. While considered a branch of theology, the theology of science has a specific topic of study, namely science, which do not belong to theology and locus of enquiry. In this essay, I will focus my attention to two issues: the collocation of theology of science in the realm of theology and science in the realm of theology and science. In fact, the theology of science serves in communicating faith to a secular world and in developing a reasonable and informed faith. But not only, as it will be explained later.

I will follow the approach of Donald Lococo developed in his Life in One Breath: Meditations on Science and Christology (2021). As he writes, modern reflections on theology and science evince a "large lacunae, owing to the near ablation from consideration" of some of the "most significant twentieth-century Catholic theologians, namely Balthasar and Karl Rahner". (O]ne can hardly conceive of building on the theology of any denomination without paying attention to its most deeply influential thinkers" (Lococo, 2021, p.11).

Lococo mentions these two names only. Of course, in order to give a fuller account of the development of theology in the context that interests me, the list of names should be considerably longer, including theologians as Ratzinger, Guardini or Teilhard de Chardin. As this text is not intended to be a review paper, but aims to formulate a working hypothesis inspired by Balthasar's approach, his works will provide the basis for further considerations. As far as the role of science in religious thinking and the limits of the thought of Michael (Michael) Heller. At the same time it is worthwhile to remember the possible correlation between Balthasar's and Tischner's thinking (see Wołowski, 2019).

With these thoughts in mind, I will state my point of view as follows. As to the understanding of theology of science in the domain of theology of science in the domain of theology of science in developing a reasonable faith and in understanding of limits of both science and theology (section 4).

2. Michael Heller's theology of science programme

This essay has its raison d'être in the faith of the Church. Before proceeding, an important clarification must be made. The main participants in the conversation reported in this essay belong to the circle of Catholic Church. Coherently, the views expressed by the Christian Catholic theology represent what can be considered "the First Truth Discourse" on God and His Revelation. It is presupposed the existence of God, who reveals Himself, and the legitimacy of theology which "begins with the self-revelation of the triune God in the Incarnation of the divine Logos, the Word, the Son, and the expositor [Auslegei] of the Father" (Balthasar, 2004, p.11). Stated otherwise, the essay has its locus in theology, which refers to talk about God and God's Word of Revelation in the Catholic Church (an expression, mutatis mutandis, of Barth, 2010, p.2).

The purpose of Revelation is not to communicate truths about the natural world that satisfy the innate curiosity of the human being, but above all to show the path leading to salvation. Revelation is not informative in the way that ordinary knowledge is informative. It does not add to our list of facts about the world or the universe in which we live. Instead, it is existential in the sense that it concerns the deepest dimension of human existence and gives direction and meaning to human life. For this reason, the knowledge gained through revelation cannot be combined with the findings of science, which focus on the material universe and do not touch the deeper question of meaning. As John Paul II puts it, addressing a group of scientists and researchers, "Divine Revelation, of which the Church is the guarantor and witness, does not in itself entail any scientific theory of the universe, and the assistance of the Holy Spirit does not guarantee the explanations we propose regarding the physical constitution of reality (John Paul II, 1983).

Nevertheless, within the framework of theology, it is possible to reflect critically on those truths of Revelation which allow for a dee

According to Michael Heller, the theology of science is a branch of theology as a discipline. Its context for reflection is the life of the believer, the Church, and

The basic premise of the theology of science is thus one that has already been put forward: the statement that the universe was created by God. It should be specified here that, for theology are not identical. The former pertains to the material world while the universe of theology goes beyond the material or visible world. However, while the two realms are separate, theology cannot bring forward theses that contradict those advocated by the sciences. It cannot, therefore, enter arbitrarily into the specific domain of the experimental sciences.

The thesis that the world, and indeed the universe, came into existence through God's special design has to be completed by the thesis which affirms the absolute dependence of everything that exists on the Creator. Traditional philosophy, thus used to speak of the "contingency of the world". The thesis that the world is utterly dependent on God not only for its creation

but also for its continued existence is one of the essential elements of Christian doctrine concerning creation; however, the way God interacts with world is not a question that will be addressed in this essay.

Rather, I will focus on the rationality and comprehensibility of the world, a primary focus within the theology of science. As Heller writes, "with the theology of science and the accomplishments within the sciences are the best attestation to the rationality of the world. From a theological perspective, the rationality of the domain of science. In the Christian doctrine of creation, it belongs to a study of the Logos-Word. Olaf Pedersen writes that "the identification of the divine logos with Christ [...] make it possible to connect in a fundamental way faith in Christ with the quest for understanding the inherent rationality of Pedersen, 1990, p.147).

Finally, the question of values needs to be mentioned in connection with the theology of sciences. It is well known that the method of the experimental sciences is insensitive to values: normative and value statements do not belong to the language of the experimental sciences is insensitive to values: normative and value statements do not belong to the language of the experimental sciences is insensitive to values: normative and value statements do not belong to the language of the experimental sciences. This thesis has been put forward since at least the time of the Vienna Circle formed in the 1920s. It does not mean, however, that the material world has nothing to do with values. On the contrary, from the standpoint of theology, the creation of God's project takes into account not only everything that the experimental sciences from an axiological point of view is also one of the tasks of the theology of science.

3. A Third domain of truths

Clear from what has been so far written is that the theology of a pillar of the theology of science. But what is the precise mean on the other, to the relation of theology of science to the nature considered a distinct theological discipline, distinct from the suggested by may be, Szczurek's suggestion can be further elaborated and suggested by a discipline into one that already exists remains to be investigated. According to Balthasar, "the world as it concretely exists is (Balthasar, 2000, p.11). The author of Theo-Logic emphasizes to concrete object of enquiry deeper and deeper, it begins to encounty impossible, it would be sheer folly to attempt at all costs. Balthasar proceeds to describe three ways in which theolog first way, however, is no longer accessible given our knowledge includes elements that are immediately of divine, supernatural 2000, p.12).

This third domain of truths is constituted by truths "visibl foundation for a specific, material object of theology of scienc effectively autonomous in their specific fields.⁸

Having described the specific object of theology of science, I'l development of science accepts the so-called research traditions a more synthetic way: a research tradition is "a set of ontolog."

A given research tradition consists of various theories (whi commitments, which, taken as a whole, define a particular tra

in which the individual symbols stand for, respectively: I - metaphysical and methodological commitments, O&R - basic objects&relationships,

M – methodology accepted in the particular research trad $\{T\}$ –the set of theories proposed in the framework of the $\{p\}$ – problems occurring in the given field of reflection (a Laudan believed that his approach could be applied, after r I – the existence of God as described in Christian Tradition O&R – a third domain of truths,

M – overall methodology of theology in the Christian Tra $\{T\}$ – e. g. evolution and creation as presented in (Heller, $\{p\}$ – first order problems: contingency, comprehensibility of problem), which without its contribution would not be known But, after all, who needs such a research tradition? Doesn't V. Coyne remains a magna carta. Just a few passages from the

the Church and the scientific community will inevitably intera challenge theology far more deeply than did the introduction forms of human knowing, may invigorate and inform those p

An example of a "potentially important resource" could be significant" (Lococo, 2021, p.61). Again, significant for what? The second reason is the critical role played by theology of issue following Józef Tischner's approach to religious thinking, the critical role of theology of science (that is not absolutizing

For Tischner religious thinking is the thinking of "the man wh Religious thinking, as with all thinking, is "someone's thinking a dramatic being is to: live in the present time, with other pe

For the people involved in living the drama, writes Tischner, t 2020, p.166).

However, in the context of religious thinking, is the objectiful the same for happiness, love, real life" (Tischner, 2011, p.388). above all, it forgets that the objectified world of man, the scene dedicated exclusively to the scene (i.e., science).

On the other hand, the rapid development of the sciences ε our is the world of contingencies, follows the contingency of the science permit to sum up the train of thought and bilateral. Besides, the theology of science preserves the rat metaphors of the stage, and never less so than when it presum theologian thought.

Balthasar, H.U.v., 2000. Theo-Logic, Vol. 1: The Truth of the Worl Balthasar, H.U.v., 2004. Theo-Logic, Vol. 2: Truth of God (A.J. W. Balthasar, H.U.v., 2009. The Glory of the Lord: A Theological Aest Barth, K., 2010. Church Dogmatics, vol. I.1: The Doctrine of the V Brożek, B. and Heller, M., 2015. Science and Religion in the Krakó Heller, M., 1996. The New Physics and a New Theology. Vatican C Heller, M., 1982. Stworzenie a ewolucja. Communio, 2(4(10)), pp.55 Heller, M., 2015. Wstęp do teologii nauki. In: J. Mączka and P. Url Jagiełło, J., ed., 2020. Józef Tischner, The Polish Christian Philose John Paul II, 1983. Address on the Occasion of the 350th Annivers John Paul II, 1988. Letter to Father George V. Coyne, Director of Johnson, K.L., 2019. Barth on Natural Theology. In: G. Hunsinger Laudan, L., 1977. Progress and Its Problems: Toward a Theory of & Lococo, D., 2002. Towards a Theology of Science, Saint Paul Unive Lococo, D.J., 2021. Life in One Breath: Meditations on Science an Macek, W.M., 2014. Teologia nauki według księdza Michała Hellera Maziarka, T., 2016. W stronę teologii nauki – na kanwie myśli ks. p Mączka, J. and Urbańczyk, P., eds., 2015. Teologia nauki | Theology McMullin, E., 1999. From Augustine to Galileo. Modern Schoolman Obolevitch, T., 2015. The relationship between science and religion Oleksowicz, M., 2020. Do we need a theology of science? / Necesit Pedersen, O., 1990. Historical interaction between science and relig Polak, P., 2015. Teologia nauki w perspektywie metodologicznej. In Polak, P. and Rodzeń, J., 2021. The science-religion relationship in Polak, P. and Rodzeń, J., 2023. The theory of relativity and theolo Polak, T., 2016. Teologia nauki. Krytyka założeń. Nauka Polska, 25 Rodzeń, J., 2021. Teologia nauki–skazana na sukces? [Theology of s Sierotowicz, T., 2018. Filozofia dramatu jako filozoficzna tradycja ł Szczurek, J.D., 2015. Teologia nauki. Poszukiwanie struktury. In: J Szybka, S.J., 2020. Some remarks on the first image of a black hole Tischner, J., 2011. Myślenie religijne. Myślenie według wartości. 6^{tl} Tyson, P.G., 2022. A Christian Theology of Science: Reimagining c

Wilkinson David, T.M., Harrison, P. and Tyson, P., 2022. After an

Wołowski, L., 2019. Problem niezależności refleksji dramatycznej Je

Życiński, J., 1984. W poszukiwaniu teologii nauki. In: J.A. Janik a

to the discipline of theology and shares with science an interest in the natural world, albeit from a particular perspective, which is different from that of the experimental sciences. Michał Heller and his commentators emphasise that it is a perspective which considers the world as created by God. Therefore, the theology of creation is considered ement? What is the specific, material object of the theology of science, which, while guaranteeing its belonging to the field of theological disciplines and from the sciences as well? The question pertains, on the one hand, to the place of the theology of science within theology and, short, the question is about the specific domain (the material object) of the theology of science. To properly belong to the domain of theology as such; (2) it must also belong to the domain of the sciences; (3) it must allow theology of science to be to the theology of the science of the domain of theology and science. To properly belong to the domain of theology and science is an authentically theological discipline working with sciencific results as interpreted by the philosophy of science in the light of Revelation and the Ultimate Aim of the man. Interesting as this thesis

lating remarks which outline a possible, more profound, I even dare to say – ontological – insight, can be found in the works of Hans Urs von Balthasar, 2000). Let us follow his train of thoughts.

ays already related positively or negatively to the God of grace and supernatural revelation". Consequently, "the world, considered as an object of knowledge, is always already embedded in this supernatural sphere, and, in the same way, man's cognitive powers operate either under the positive sign of faith or under the negative sign of unbelief" fundamental structures of the world and knowledge are by no means eliminated or altered in their essence by their inclusion in the supernatural sphere. Therefore, philosophical thought, in its capacity for abstraction, can probe them apart from conscious reflection on their supernatural imbuement. However, as philosophical thought probes the ing amount of theological data. This is so, because "the supernatural takes root in the deepest structures of being, leavens them through and through, and permeates them like a breath of an omnipresent aroma". For that reason, Balthasar asserts that it is impossible not to include theological data in thinking about the nature of things: "it is not uproot this fragrance of supernatural truth from philosophical research; the supernatural has too strongly impregnated nature so deeply that there is simply no way to reconstruct it in its pure state" (Balthasar, 2000, p.12).

Added in concrete philosophical thought. There is, of course, the unconscious assimilation of such data in philosophical enquiry (Balthasar gives the example of Plato). Then there is a kind of secularization of theological data, whereby the data is given the status of rational, properly human truths (e.g. modern rationalism and existentialism).

since it identifies the formal object of theology of science with science as seen by philosophy of science and its achievements. Whether a more radical interpretation of theology of science that does not collapse the

rtain conditions, that is only when illuminated by "a supernatural ray". Which truths belong to this domain? Balthasar indicates, as an example, the First Vatican Council teaching that natural reason suffices "to know with certainty the one true God as our Creator and Lord through creatures" (Balthasar, 2000, p.12). This truth could be the of fact, it satisfies all four criteria stated at the beginning of this section. Indeed, it is the supernatural light (theology) that illuminated by that supernatural light is what theology of science explores. Given this approach, it follows as a matter of course that theology and science remain

n, and the second way entails a prejudice against divine Revelation, which can hardly be justified theologically and is therefore unsuitable for a theology of science. There remains a third way: "to describe the truth of the world in its prevalently worldly character, without, however, ruling out the possibility that the truth we are describing in fact

cording to this statement, between the two domains of the natural and the supernatural, we need to postulate what Balthasar, following Romano Guardini, calls "a third domain of truths, that genuinely belong to creaturely nature yet do not emerge into the light of consciousness until they are illuminated by a ray of the supernatural" (Balthasar,

4. Theology of science as research tradition

ent my case to present Heller's theology of science as a research tradition. One can find a useful guide in the mainstream of the philosophy of science set forth by Thomas Kuhn and Imre Lakatos. Laudan's model, which as a basic unit of the description of the ice as intellectual activity of solving problems of different kind. A research tradition is a "group of general assumptions concerning the methods that should be applied in order to solve problems and to construct new theories in this field" (Laudan, 1977, pp.79–80).

s in conflict with each other). Among various research traditions in the same field of research, the more successful ones are those that leads to solving more different problems. The full research tradition definition must also take into account "certain metaphysical and methodological nguish it from other traditions". One might introduce the following schematic description of research traditions:

Research Tradition $\rightarrow (I; O; R; M; \{T\}; \{p\})$

on to solve the set of problems of the vital importance, and

gical enterprise that bear on the relation of nature, humanity and God? (John Paul II, 1988).

there are two kinds of problems: "first order problems; they are substantive questions about the object which constitute the domain of any given science" (Laudan, 1977, p.15, Laudan's italics); and conceptual problems that relates to the theory itself (Laudan, 1977, chap.2)).

"the changes, to other fields of knowledge (Laudan, 1977, pp.189–192). Thus, Michał Heller's program of theological research tradition operating in the area of theological research. If so, the meaning of symbols in the above-mentioned synthetic definition of research tradition could be as follows:

3) ation, evolution (for a more detailed compilation, see: Macek, 2014, pp.67–137); conceptual problems: (1) if theology, and have nothing in common with science, (2) has theology of science bring any new solution to significant problems (or formulate any new

than it can deliver, letting down theologians and scientists as unable to offer anything new to both theological and scientific reflection? 10 It seems that at least two reasons in favor of Heller's theology of science can be given. The first one is that of its contribution to the announcement of the Gospel. Here, the Message of John Paul II to George

ve an example of what is at stake here:

lo not include isolation. Christians will inevitably assimilate the prevailing ideas about the world, and today these are deeply shaped by science. The only question is whether they will do this critically or unreflectively, with depth and nuance or with a shallowness that debases the Gospel and leaves us ashamed before history. [...] Contemporary developments in science Vestern Europe in the thirteenth century. Yet these developments also offer to theology a potentially important resource. Just as Aristotelian philosophy, trough the ministry of such great scholars as St Thomas Aquinas, ultimately came to shape some of the most profound expressions of theological doctrine, so can we not hope that the sciences of today, along with all

roc rightly writes, "beauty and truth are linked in physical science, as is reason with our feelings" (Lococo, 2021, p.61). Of course, one cannot forget, that beauty is not a scientific category. Nevertheless, the beauty of the first image of a black hole (Szybka, 2020) or of an electron micrograph "makes us enthused that data gleaned from it will be valid, explains Lococo, "to posit that the beauty-that-beings-are, is being-in-unity" (Lococo, 2021, p.62). These considerations lead to Balthasar, 2009).

both science and theology. John Paul II, in the quoted letter has stated that: "Science can purify religion from error and superstition; religion can purify science from idolatry and false absolutes. Each can draw the other into a wider world, a world in which both can flourish" (John Paul II, 1988). In the conclusion, I would like to examine this very profound insight into the question at hand. Of course, and it is to be stressed clearly, Tischner's thinking is rather weakly related to the theology of science. It has different object, vocabulary, philosophical roots – shortly, it is a pretty different research tradition (Sierotowicz, 2018). However, using the language which is typical for Tischner, and scientific rationality) can be described clearly enough.

5. Conclusions: On the role of theology of science

king faith, and whose faith is seeking reason thinks in a religious manner. His faith becomes manifest in his thinking, and his thinking makes possible different, sometimes contradictory, theologies. But each theology exists because of religious thinking, not vice versa. someone and thinking about something. Thus, thinking has three dimensions: a subjective dimension (I think), a dialogic dimension (We think about it)" (Jagiełło, 2020, p.224). Roughly speaking these dimensions correspond to Tischner's description of a human being as a dramatic existence: "to be the ground under one's feet. Man would not be a dramatic existence but for these three factors: opening up to another man, opening up to another man, opening up to another man to the passage of time" (Jagiełło, 2020, p.165). Religious thinking in its objective dimension turns to the stage of human drama:

above all a plane of meetings and partings, a sphere of freedom, in which man searches for a home, bread and God, and where he finds a graveyard. The stage is at man's feet. [...] Man experiences the stage by objectifying it, turning it into a space filled with 'objects', which he then arranges in a variety of wholes that serve him looking for its essential design (Jagiełło,

t man's feet? That stage undergoes a process of metaphorization. It turns into the metaphor of the true, proper reality. The stage as a metaphor suggests movement from one domain of existence to another. This happens, when for example, somebody affirms "my home is not a true home, my true home has to be collocated in another world, and ng is in opposition to all those interpretations of the scene that attribute absolute existence to what man's has under his feet. This way of looking at the scene blinds all hope of human existence to the "here and now", attributing definitive existence to the scene. It thus becomes blind to the contingency and relative character of the scene. But cene of the human drama, also manifests itself as a metaphor of true existence (Tischner, 2011, p.391). The non-absolute character of the scene is precisely where I see the theology of science as occupying a critical role, especially insofar as it points to the metaphorical character of the scene, and, consequently, to the limitation of the investigation gly profound understanding of the world of nature offered by experimental science, invites theology to adopt more than one metaphorical interpretations, one can indicate the conviction, that the stage is the only intersubjective way to God or the belief that from the circumstance that

Fischner, 2011, pp.386–387). The second point to be stressed is that the bond between science and theology within the theology of science appears both critical of both theology and science. In fact, science "is never more reasonable than when it recognizes the limits of its methods, and never less so than when it presumes to be adequate to the full reality of the science appears both critical nique metaphorization of the science. The issues outlined above open up further research perspectives. To give just one example: a systematic presentation of the science and theology within the theology of science appears both critical formula to be stressed is that the bond between science and theology within the theology of science appears both critical formula theology and science. In fact, science "is never more reasonable than when it recognizes the limits of its nique metaphorization of the science-faith/theology relationship in the works of Hans Urs von Balthasar. This topic seems urgent, as so far it has been almost completely ignored by researchers studying the Swiss

Bibliography

Prans.). San Francisco: Ignatius Press.

Fessio and J. Riches (E. Leiva-Merikakis, Trans.). 2nd ed. San Francisco; New York: Ignatius Press; Crossroad Publications.

C. Ed. by G.W. Bromiley and T.F. Torrance (G. Bromiley, G. Thomson and H. Knight, Trans.). London; New York: T & T Clark.

50(1), pp.194–208. https://doi.org/10.1111/zygo.12160. rvatory Publications.

logia nauki [Theology of science]. Kraków: Copernicus Center Press, pp.13–22.

Century. Kraków: Ignatianum University Press. Available at: https://pchph.ign

Century. Kraków: Ignatianum University Press. Available at: https://pchph.ignatianum.edu.pl/uploads/content/Tischner-EN.pdf [visited on 27 September 2023].

"ublication, Rome 1983, May 9. Available at: https://www.vetican.va/content/iohn-paul-ii/en/letters/1988/documents/hf_in-ii-let_19880601_padre-covne.html [visited on 27 September 2023].

vatory (June 1, 1988). Available at: https://www.vatican.va/content/john-paul-ii/en/letters/1988/documents/hf_jp-ii_let_19880601_padre-coyne.html [visited on 27 September 2023].

n, eds. The Wiley Blackwell Companion to Karl Barth. Hoboken (NJ); Chichester: Wiley, pp.95–107. https://doi.org/10.1002/9781119156574.ch8.

Berkeley; Los Angeles; London: University of California Press. ies: Faith and Science. Ottawa: Novalis.

gene, OR: Resource Publications.
va: Wydawnictwo Uniwersytetu Kardynała Stefana Wyszyńskiego.
era. Tarnowskie Studia Teologiczne, 35(1), pp.7–18. https://doi.org/10.15633/tst.1711.

s Centre in Krakow (Michael Heller, Józef życinski and others). European Journal of Science and Theology, 11(4), pp.1–11. Available at: http://www.ejst.tuiasi.ro/Files/53/1_Obolevitch.pdf. a de la ciencia? CAURIENSIA. Revista anual de Ciencias Eclesiásticas, 15, pp.755–770. Available at: http://cauriensia/article/view/345 [visited on 26 October 2020]. na and I. Paul, eds. Science and Religion: One World — Changing Perspectives on Reality. Dordrecht: Springer Netherlands, pp.139–160. https://doi.org/10.1007/978-94-009-2021-7 10.

2. Urbańczyk, eds. Teologia nauki. Kraków: Copernicus Center Press, pp.23–54.

Date in Poland, 1945-1998. European Journal of Science and Theology, 17(6), pp.1–17. Available at: https://www.ejst.tuiasi.ro/Files/91/1_Polak%20&%20Rodzen.pdf [visited on 20 December 2022].

to success?]. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (70), pp.235–242.

phy of drama as a philosophical research tradition]. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (64), pp.59–92. Available at: https://zfn.edu.pl/index.php/zfn/article/view/407 [visited on 27 September 2023].

Urbańczyk, eds. Teologia nauki [Theology of science]. Kraków: Copernicus Center Press, pp.127–142.

roblems in Science (Zagadnienia Filozoficzne w Nauce), (68), pp.281–294. Available at: https://zfn.edu.pl/index.php/zfn/article/view/497 [visited on 27 September 2023]. sleczny Instytut Wydawniczy "Znak", pp.370–393. on of Natural Knowledge. Grand Rapids, Michigan: Baker Academic, a division of Baker Publishing Group.

affict: Biblical exegesis for a creation theology of science. New Directions in Theology and Science. London: Routledge, pp.147–169.

d myśli teodramatycznej Hansa Ursa von Balthasara. Analecta Cracoviensia, 51, pp.141–160. https://doi.org/10.15633/acr.3637.

, eds. Nauka - religia - dzieje: II Seminarium Interdyscyplinarne w Castel Gandolfo, 6-9 września 1982 roku. Kraków: Wydział Filozoficzny Towarzystwa Jezusowego, pp.80-85.

ist science—theology separation vs. Michael Heller's path to dialogue. Theology and Science, 21(1), pp.157–174. https://doi.org/10.1080/14746700.2022.2155917.

ne of theology of science described below (cf. Macek, 2014, pp.80–81; Maziarka, 2016, p.13).

ip between science and faith has been addressed by numerous scholars, resulting in the publication of a surfeit of books, many with titles so similar that it is difficult to distinguish between them" (Lococo, 2021, p.10). Rather than attempting to summarize the immense number of resources available, I will focus specifically on Michael Heller's approach to the theology of science. An extensive bibliography is And and Of in the aggregation of theology and science (see Tyson, 2022, pp.1–4; for other programmes of theology of science see, for example Lococo, 2021; Tyson, 2022; Wilkinson, Harrison and Tyson, 2022).

i in 1984 (Heller, 1982; Życiński, 1984; see Polak, 2015; Rodzeń, 2021). M. Heller's writings on theology of science goes back to 1992 (for an overview see Oleksowicz, 2020, pp.759–760). As to the main bibliography, see: (Heller, 1996; Heller, 2015; Maziarka, 2016; Polak, 2016; Oleksowicz, 2020; Rodzeń, 2021). As to the science and religion dialogue in the Kraków

to teach us how to go to heaven, and not how the heavens go" (McMullin, 1999, p.185).

of all theology, but always with reference to the specific object as it is proper for a given theological discipline". Therefore, "the theology of science is dedicated to a critical reflection on those data of Revelation which allow us to contemplate the sciences as a specific human activity" of exploring the world created by God (Heller, 1996, pp.97 and 99).

I Tyson in his book on theology of science: Tyson, 2022, chap.9.1.) Nevertheless, other researchers like (Lococo, 2021) and the scholars from the so called Kraków School (Obolevitch, 2015; see also Macek, 2014) hold up the theses of autonomy.

of 'science' and 'religion''. His way of thinking is that of a hermeneutic spiral: to think what is "unfamiliar" (religion), starting with what is familiar (science). It entails a new integration between understanding (religion) and knowledge (science) from theology of science is very stimulating. Nevertheless, it gives an impression of infringing slightly the autonomy of science from theology of science.

¹ It is worth to note, that Karl Rahner thought is also present in Michae ² Donald J. Lococo has observed that "over the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between the last quarter-century and r appears in the next section. For an understanding of the difference between

6 In the words of Michael Heller, "the purpose of the theology of science 7 The fourth condition may appear not obvious. Some scholars consider i 8 Paul Tyson, in his remarkable book on theology of science, tries to reth meticulously constructs an "Integrative Zone of Knowledge and Understar 9 The reference to Larry Laudan's approach is purely pragmatic as it offi 10 For a critical appraisal of M. Heller's research tradition, see: (Polak, 2 11 For a critical evaluation of these interpretations of the scene, see: (Joh 12 See J. McGrath in his introduction to (Lococo, 2021, p.5).

Kamil Trombik

The Pontifical University of John Paul II in Krakow

Abstract This paper analyzes selected issues related to the philosophy of the Krakow School of Philosophy in Science, which was founded by Heller and Życiński. This paper proposes the thesis that Fuliński's style of philosophy is connected with the concept of philosophy in science and tries to justify the thesis that Fuliński, due to his cooperation with the interdisciplinary milieu in Krakow and the specificity of his philosophy in science.

Andrzej Fuliński, the Krakow School of Philosophy in Science, philosophy in science, philosophy of nature, history of philosophy in Poland.

Introduction

Keywords

The interdisciplinary approach to issues on the border between science and philosophy has become a permanent part of Krakow's intellectual landscape, with an important element of this local tradition being the philosophy of science and the philosophy of nature, based on scientific investigations. Over the past century, these philosophizing scientists have included Marian Smoluchowski, Tadeusz Garbowski, Zygmunt Zawirski, and many others (see, for example, Heller and Mączka, 2007; Polak, 2011b,a; 2018). Following World War II, cooperation between philosophizing scientists developed in Krakow, mainly among the friends of Karol Wojtyła (Heller and Mączka, 2006; Trombik, 2021; 2022). At the time, physicists associated with the Jagiellonian University were widely influential in this milieu, alongside others including Jerzy Janik and Andrzej Fuliński. Following the election of Cardinal Wojtyła as pope, Janik and Fuliński remained active participants in local interdisciplinary projects, which were initiated from that point on by Michael (Michael) Heller and Józef Życiński. After 1978, both these scientists from the Jagiellonian University became involved in organizing seminars at Castel Gandolfo, which provided an opportunity for meetings and discussions between

scientists, philosophers, and theologians throughout the pontificate of John Paul II. These meetings continued previous interdisciplinary conferences organized by Wojtyła during his time in Krakow in the 1960s and 1970s (Trombik, 2022). Janik's work in philosophy has already had its initial reception within the Polish academic community (Fuliński and Maślanka, 2015), but the case is completely different with Fuliński's work. Nevertheless, this scientist's activity seems noteworthy for at least two reasons: First, it fits into the tradition of having a dialogue between science and philosophy, something that was successfully achieved in the circle of the Polish Pope's associates. It therefore provides important evidence about the crossing of boundaries between natural sciences and philosophy that took place in Polish culture over the past several decades. Second, although Fuliński's academic achievements lie primarily in the area of statistical physics, he is not limited to the area of pure science. Taking various issues that are present in contemporary science as a starting point, Fuliński has often expressed his philosophical competencies, as evidenced by the numerous, valued articles in which this physicist discussed various issues in the field of the philosophical activity" in Fuliński's case is not confined to a short period—it accompanied him continuously for several decades. Moreover, in his articles, this physicist often returned to previously discussed philosophical issues, trying to philosophize within the context of the natural sciences at various stages on his scientific path.

Fuliński's ties to the interdisciplinary milieu centered around Heller and Zyciński, and this makes it possible to consider his activities within the context of the broader phenomenon known as the Krakow School of Philosophy in Science (Trombik, 2021, p.226; Polak and Trombik, 2022). In this paper, I propose that Fuliński's publications fit well with the style of practicing the philosophy of nature that was initiated by Heller. Moreover, I believe that Fuliński himself, due to his cooperation with the local interdisciplinary milieu and the specificity of his philosophical works, deserves to be regarded as a representative of the Krakow School of Philosophy in Science (see Polak and Trombik, 2022). In the remainder of this article, I will present Fuliński's profile and discuss a selection of his philosophical activity that fit with the trend of philosophy in science (Polak, 2019; Trombik, 2021).

Between Kraków and Castel Gandolfo: Fuliński as a philosophizing scientist

Andrzej Fuliński began his academic career in Krakow. In 1955, he was awarded a master's degree in theoretical chemistry at the Jagiellonian University before obtaining his doctorate five years later at the Polish Academy of Sciences in Warsaw. He later obtained his habilitation in 1966 at his alma mater. Fuliński's scientific activity was highly appreciated by the academic community. In 1975, he became the head of the newly established Department of Statistical Physics at the Jagiellonian University. Fuliński, together with his colleagues, dealt primarily with describing the phenomena that occur in complex systems using broadly understood statistical physics at the Jagiellonian University.

A period of increased scientific activity for Fuliński coincided with the initiatives of Michał Heller and Józef Życiński, who in Krakow had developed, on behalf of the Pontifical Academy of Theology, some large-scale interdisciplinary activities that had been previously initiated by Wojtyła (Trombik, 2022). Their areas of interest included, among other things, issues on the border between philosophy and physics, as well as the general methodology of science. They took up philosophical issues in the science within the Center for Interdisciplinary Studies [in Polish Ośrodek Badań Interdyscyplinarnych (OBI)], which since the 1980s has been an important, although informal, institution aimed at deepening the dialogue between science and philosophy. This goal was achieved thanks to interdisciplinary meetings, conferences, and publications mainly appearing in the periodical Zagadnienia Filozoficzne w Nauce / Philosophical Problems in Science (Heller and Maczka, 2006; Polak, 2019; Trombik, 2019). From the very beginning, Fuliński engaged in various interdisciplinary initiatives that were undertaken first by Wojtyła and then by Heller and Życiński. He participated in seminars, panel discussions, and conferences organized by the OBI (Liana and Maczka, 1999), and he also took part in the "Krakow Methodological Conferences" that have replaced the earlier interdisciplinary meetings since the 1990s. Fuliński also regularly appeared at the Castel Gandolfo Seminars, which were held from 1980 at the summer residence of John Paul II. The Pope wanted these meetings to be a continuation of the discussions on the border between science, religion, and philosophy that he had started with Krakow's scholars as early as the 1950s (Janik, 1981, p.5; Nowina Konopka, 2020). Among physicists, Fuliński was, along with Janik, the most

Fuliński also published in the already mentioned Zagadnienia Filozoficzne w Nauce (Fuliński, 1989), and Prace Komisji Filozoficzne w Nauce (Fuliński, 1989), and Prace Komisji Filozoficzne w Nauce (Fuliński, 2017). His philosophiae Christianae (Fuliński, 1989), and Prace Komisji Filozoficzne w Nauce (Fuliński, 2017). 1990a; 1991b; 2003). The topics of his work fit well with the issues raised by Heller, Życiński, and their students. Fuliński dealt with issues like the relationship between science and philosophy, the issue of time, the issue of the "two cultures" phenomenon), the ontological aspects of physics, the problem of the mathematical universe, the issue of reductionism in science and philosophy, the issue of time, the issue of the "two cultures" phenomenon), the ontological aspects of physics, the problem of the mathematical universe, the issue of time, the issue determinism, and the concept of chance. At the same time, these issues were vigorously discussed by the representatives of "philosophy in science" (e.g., Trombik, 2021, pp.222–223), and Fuliński himself regularly referred to the publications of Heller and Życiński in his works. In the 1980s, Fuliński's cooperation with the OBI community deepened. The Krakow physicist even became one of the reviewers for Włodzimierz Skoczny's doctoral dissertation, which was titled "Filozoficzne aspekty Zasady Antropicznej" ["Philosophical Aspects of the Anthropic Principle"], written under the supervision of Życiński and defended at the Pontifical Academy of Theology in 1986. Fuliński was also keenly interested in the publications of Heller and Zyciński. A good example of this is his review of their book Wszechświat—maszyna czy myśl? [The Universe—a machine or a thought?] that was published in the periodical Studia Philosophiae Christianae (Fuliński, 1989). It should also be noted that between 1988 and 1991—at the request of John Paul II and together with Heller, Życiński, and Zygmunt Kolenda—Fuliński prepared the work "Reports on the socio-political situation in Poland" (Heller, 2020). This proves not only the enormous trust that the pope had in Fuliński but also the spirit of understanding and cooperation that continued into later years. Even over the last decade, Fuliński has repeatedly participated in various scientific

frequent participant in these seminars. During his stay in Castel Gandolfo, he had the opportunity to deliver a number of papers, and his speeches were later published in the form of articles in special issues of Nauka-Religia-Dzieje [Science-Religion-History], which has been in circulation since 1981.

a more adequate system with better methods for analyzing the results of natural sciences.

initiatives of the Copernicus Center for Interdisciplinary Studies, an institution that was established by Heller after receiving the prestigious Templeton Prize in 2008, with this being a 21st century continuation of the former OBI. The indicated connections between Fuliński and the Krakow interdisciplinary milieu seem so important and so large scale that they provoke questions about the mutual dependencies that existed, including philosophical ones. When reconstructing Fuliński's views, it is worth noting their references to the concept of philosophy in science. Due to the limited length of this article, I will limit myself here to discussing just some selected philosophical ideas in Fuliński's works, ones that will illustrate the mutual connections and dependencies, namely the issue of the relationship between science and religion), the problem of reductionism, and the dispute over the mathematical nature of the universe.

Toward interdisciplinary research: Selected philosophical issues in Fuliński's works

The "philosophy in science" project, as initiated by Heller and 2016, p.107), but during their academic careers, they quickly philosophical systems and critical of the so-called great synthes Fuliński also shared this critical stance toward philosophy contact with contemporary intellectual culture. As Fuliński w Fuliński shared the view that the discrepancy between scie historical rooting of Thomism in Western culture has over time The Thomist assumes that he possesses the Absolute Truth, w scientific knowledge, so it should be abandoned altogether bef His approach was not intended to discredit the intellectual and Trombik, 2022). It is worth noting here that Fuliński clea Both Heller and Życiński were convinced of the need to de development of the sciences and methodological reflection. A One of the basic goals behind Heller's and Życiński's efforts

Such interactions can be seen, for example, in the transition a language and common culture. The most obvious example is t this processing process is the concept of time (Fuliński, 1981.

visible, for example, at the level of language:

The interpenetration of the precise language of science wit Fuliński about the unity of the world and therefore the need to including the humanities" (Fuliński, 1981, p.28). The idea of th the walls between science and culture and justifying it in a m Fuliński believed that at the root of the growing antagonism devoted attention to this issue in his opening article for the fi For the Krakow physicist, reductionism is "an attempt to re the understanding of reductionism he proposes expresses not j model that explains all phenomena. According to Fuliński, rec

I see the dangers of today's reflection on the world not in red viewing the world in terms of purpose, causality, blind fate,

In his papers, Fuliński suggested distinguishing between me to a monistic, extremely physicalistic metaphysics. According At one point, Fuliński even wrote that "there is no contradi the world of physical objects (i.e., the equivalent of Popper's W of Życiński related to the concept of emergence (e.g., Życiński Another issue to which Fuliński devoted considerable atter Platonism (the subject of mathematics research is not a prod Firstly, it was obvious to Fuliński that nature exhibits impo should be captured in a broader context, with this also taking When confronted with the question of whether a scientific given in his following words:

[...] the statements that theoretical physics discovers objectiv but when we talk about physics, we tend to emphasize the m

Fuliński therefore distanced himself from the question of w that appear in the context of the dispute, as well as to the fact subtle analyses and caution when formulating an answer. It is worth emphasizing, however, that Fuliński's analyses i from other authors, could consequently influence a more nuan

During his scientific career, Fuliński became well known not j Fuliński's publications clearly bear the mark of "philosophy theories; (B) traditional philosophical problems that are entar

(A): methodological analyses of science–culture relations, inc (B): problems of time, determinism, the question of chance, (C): the question of the mathematicality of the world and th

It is noteworthy that Fuliński's approach to analyzing phil problems. 10 This was appreciated by some representatives of Significantly, the activities of the Krakow physicist fell into having participated in various interdisciplinary undertakings. Thinking about the research perspectives related to the Sc research would not only enrich our knowledge about the histo

Fuliński, A., 1981. Fizyka w kontekście kultury. In: J. Janik, ed. N

Fuliński, A., 1988a. [Głos w dyskusji] Dyskusja po referacie A. Fuli

Fuliński, A., 1988b. O matematyczności świata. In: J.A. Janik and Fuliński, A., 1989. Maszyna czy myśl? [recenzja: M. Heller, J. życiń

Fuliński, A., 1990a. [Głos w dyskusji] Dyskusja po referatach W. K

Fuliński, A., 1990b. Część i całość (równoważne sposoby opisu i rec

Fuliński, A., 1990c. Wątpliwości fizyka. In: M. Heller and J. Życińs Fuliński, A., 1991a. [Głos w dyskusji] Między wiedzieć i wierzyć. Z Fuliński, A., 1991b. Co jak istnieje? Z punktu widzenia fizyka. In: 1

Fuliński, A., 1993. O chaosie i przypadku, a także o determinizmie,

Fuliński, A., 1996. O czasie i świadomości. In: S. Wszołek, ed. Prze

Fuliński, A., 1998. Fizyka a wolny wybór. In: J.A. Janik, ed. Nauke

Fuliński, A., 2003. Jedność czy redukcjonizm, czyli o zakusach fizyl

Fuliński, A., 2005. Determinizm fizyki versus wolna wola człowieka Fuliński, A., 2010. Czy istnieje przypadek?: skąd się biorą tzw. zjav

Fuliński, A., 2017. Fluktuujący świat Mariana Smoluchowskiego. P

Fuliński, A., Heller, M. et al., 1995. [Głos w dyskusji] Racjonalność

Fuliński, A. and Maślanka, K.D., eds., 2015. Profesor Jerzy A. Jan Głódź, M., 1999. ZFwN a OBI: dwom panom służyć. Zagadnienia

Heller, M., 2011. Philosophy in Science. Berlin, Heidelberg: Springe

Heller, M., 2019. How is philosophy in science possible? *Philosophia* Heller, M., 1986. Jak możliwa jest "filozofia w nauce"? Studia Philo Heller, M., 1990. Nowa fizyka – perspektywy trwającej rewolucji. Ir

Heller, M., 1998. Czy fizyka jest nauką humanistyczną? Tarnów: Bi Heller, M., 2004. Filozofia przyrody: zarys historyczny, Kompendia

Heller, M., 2016. Wierzę, żeby rozumieć: w osobistej rozmowie o ży

Heller, M., 2020. Jan Paweł II i polskie przemiany. PAUza Akadem

Heller, M. and Maczka, J., 2006. Poczatki filozofii przyrody w Ośrc

Heller, M. and Mączka, J., eds., 2007. Krakowska filozofia przyrody

Janik, J., 1981. Nauka – religia – dzieje. In: J. Janik, ed. Nauka, re

Liana, Z. and Mączka, J., 1999. Z kroniki OBI. *Philosophical Probl* Nowina Konopka, M., 2020. Kontakty Jana Pawła II z fizykami. Pe

Polak, P., 2011a. 19th Century Beginnings of the Kraków Philosopl

Polak, P., 2011b. U źródeł krakowskiej filozofii przyrody. Studia z Polak, P., 2018. Tradycja krakowskiej filozofii w nauce: między XIX

Polak, P., 2019. Philosophy in science: A name with a long intellect

Polak, P. and Rodzeń, J., 2021. The science-religion relationship in

Polak, P. and Rodzeń, J., 2023. The theory of relativity and theolo

Polak, P. and Trombik, K., 2022. The Kraków School of Philosophy

Snow, C.P., 1959. Two cultures. *Science*, 130(3373), pp.419–419. Av Trombik, K., 2021. Koncepcje filozofii przyrody w Papieskiej Akade

Trombik, K., 2022. Stworzyć płaszczyzne wolności myśli. Wkład Ka

Trombik, K.P., 2019. The origin and development of the Center for Życiński, J., 1988. Teizm i filozofia analityczna. T. 2. Kraków: Zna Życiński, J., 1990. Trzy kultury: nauki przyrodnicze, humanistyka i

Życiński, J., 2000. Inspiracje chrześcijańskie w powstaniu nauki no

Życiński, J., 2009. Wszechświat emergentny: Bóg w ewolucji przyro Życiński, J., 2013. Świat matematyki i jej materialnych cieni. 2nd e

Krakow milieu, was a proposal to practice philosophy within the context of the results of contemporary mathematical and natural sciences (Heller, 2019; Polak, 2019). As scholars coming from a Catholic background, Heller and Życiński were formed during their studies in seminary by the spirit of the Thomistic philosophy of nature (e.g. Heller, le of practicing philosophy that was far removed from the Aristotelian and Thomistic trend. There were several reasons for this: According to Heller, Thomism as a metaphysical system was not capable of creatively addressing key problems on the border between science and philosophy (Heller, 1990). Moreover, Heller was skeptical of all f Thomism, Hegelianism, and so on (see e.g., Heller, 2004, pp.139–146; Heller, 2011, pp.92–95). Similar thoughts were echoed by Heller's students and colleagues, who despite their strictly metaphysical interests, usually rejected the products of philosophical systems as being unsuitable for interdisciplinary research (see Polak and Trombik, 2022). Aristotelian—Thomistic trend. In this aspect, his thoughts corresponded well with those of Heller and his colleagues. According to Fuliński, Thomistic philosophy, but also harmful in light of the social mission of the Church, which wanted to establish ays had quite mixed feelings towards Thomism (and especially neo-Thomism), suspecting, probably not without reason, that it is today one of the causes of mutual distrust, not to say dislike or even sometimes hostility, between the community of people of science and the Church" (Fuliński, 1989, p.227). nity may have its origins in the overly strong connection between the Church's teachings and neo-Thomistic philosophy, a type of philosophy, a type of philosophy that is inadequate for addressing problems that have emerged in the context of the modern natural sciences, so it is unattractive for the scientific community. Elsewhere, Fuliński even suggested that the the causes of the gap both between science and religion and, from a broader perspective, between humanistic culture, thus contributing to the emergence of the so-called "two cultures" phenomenon (Snow, 1959). Fuliński wote: "It is possible that the roots [of this phenomenon] could be looked for in the Thomistic doctrine.

he right to treat in advance all those who do not want to recognize this Truth. This mentality was then taken over by both armchair philosophers and scientism (Fuliński, 1993, p.32). It was obvious to Fuliński that the Thomistic philosophers to treat in advance all those who do not want to recognize this Truth. This mentality was then taken over by both armchair philosophers to Fuliński, 1993, p.32). It was obvious to Fuliński that the Thomistic philosophers that the Thomistic philosophers that the Thomistic philosophers the Fuliński t

stianity, however. On the contrary, the development of a different type of reflection was intended to establish a new platform of understanding between science and faith. Together with his colleagues and students, Heller made a similar assumption when developing the concept of philosophy in science (e.g. Polak and Rodzeń, 2021; 2023; Polak he historical importance of Christianity in the emergence of modern science (Fuliński, 1981), which over time also became the main view of, among others, Życiński, who devoted a book to this issue (Życiński, 2000). by that was in close contact with science and the latest logic and methodologies. The prerequisites for practicing this kind of philosophy include anti-separationism (i.e., a rejection of the thesis that there is a radical epistemological rift between the sciences and philosophy) and an openness to the changes and modifications being dictated by the a can be seen in the works of Fuliński, which serve as a good example of the practical application of the assumptions of the "philosophy in science" project.

t to deepen the dialogue between philosophy and natural sciences. The search for contacts between broadly understood humanities and the mathematical—empirical sciences is also noticeable in Fuliński's work. Taking part in the discussion of the "two cultures," he emphasized how numerous interactions between science and culture exist that are

concepts, in the cycle: philosophy and common parlance, science, and common parlance and general culture. Philosophy or common parlance introduces some concepts. Science takes them over, when it is prepared to do so, and on examining them carefully, processes them in its own way. Eventually, this concept is returned, albeit in a processed form, into everyday atom [...] An example of a concept that is currently being refined by detailed science, and at the same time, in a purified form, is beginning to enter

3 language of culture is a key, although not the only, area of possible interaction between natural sciences and the humanities. Fuliński also noticed other example, to the importance of various cultural creations in the context of scientific discovery (Fuliński, 1981, p.15). The view shared by rious disciplines that describe the same world (despite them coming from different perspectives) is the main reason for him rejecting the separation paradigm. He also expresses hope "that the understanding of the unity of culture will return to our way of thinking in a purified and processed form in the specific sciences, orld, and consequently the postulated unity of knowledge, would remedy the existing rupture in culture, as manifested by the gap between humanists and representatives of empirical sciences. The concept of "philosophy in science" also sought to counteract this discrepancy: Heller and Życiński emphasizing in their works the need to break down Fuliński (Życiński, 1990; Heller, 1998).

rer things, a simplified, colloquial image of science that is deeply rooted in culture. According to Fuliński, various areas of misunderstanding exist between the humanities and science, and one of the key ones is the dispute over evaluating the reductionist method. The issue of reductionism in physics appears in many of Fuliński's works. He already 'astel Gandolfo, where he suggested that the reductionist attitude specific to science is sometimes treated by humanists with a great deal of suspicion, but how does Fuliński himself respond to this type of allegations? of physics to the basic laws of nature and, if possible, to one basic law of nature" (Fuliński, 1990c, p.187). Nevertheless, according to Fuliński, the proposed concept of reductionisms of the past that were grounded in mechanistic or scientistic philosophies (Fuliński, 1993; 2003). Fuliński is aware that thodology, but "it is sometimes actually the adoption of a certain ontology, the belief that there is a some unifying principle, some central order of things and phenomena" (Fuliński, 1990b, p.36). Nevertheless, the reductionism of physics, as Fuliński puts it, does not mean the belief that everything can be reduced to one simple "world-machine" rstood like this would be a real threat to philosophy:

, biology to chemistry or physics, emphasizing the role of chance in evolution, or such like. The pitfalls today lie in the fact that the tendency to think in simple models is struggle, agent activity, and so on. The class of such simplifications also includes sity. The danger is that belief in simple models leads to belief in simple recipes for understanding the world, taming it, and even worse, repairing all its sins and imperfections (Fuliński, 1989, p.230).

uctionism and the ontological version of reductionism, but he also defined the relationship between them fluently. Drawing attention to the benefits of using reductionism, as long as it is applied to the scope of the physical world, does not have to necessarily lead ing that the properties of increasingly higher levels of the world are reducible to some basic law is not the same as asserting that it is possible to model the entirety of reality according to one pattern and based on one language. ne reductionism of physics, the search for a unified description of the natural world, and the existence of a transcending world of freedom, the products of which are not fully determined by the laws of nature, with them containing an element of human creation" (Fuliński, 1993, p.47). This suggests that Fuliński applied the reductionist theory to n excluding the sphere of the human mind and the results of its activity, such as the issue of self-awareness, the problem of free will⁹, the issue of values, and so on. This approach to the problem was not so distant from the methodological and ontological views expressed in the OBI community, such as what can be seen, for example, in the works

sophical works is the problem of the mathematical nature of the world. The question of "Is the world mathematical?" was one of the most important and frequently discussed issues by Heller and Życiński. Many representatives of the OBI formulated an affirmative answer to this question, and their views often moved towards mathematical but refers to a reality that exists independently of cognitive entities). Fuliński was slightly more cautious in this context (e.g., Fuliński, 1990a), with him clearly not taking sides in the philosophical dispute. f ordering, so we can model it mathematically, but he also believed that the fact that the world can be described mathematically does not mean that reality is mathematically does not mean that reality ther solutions. objectively existing laws or just constructs a description of the world, Fuliński answered that the problem was apparent and that the two claims should not be considered to be contradictory. A scientific theory can be a reflection of reality as well as its reconstruction, structuring, and even a kind of "creation." A good illustration of this view is

or that theoretical physics constitutes the description of the world, are probably not contradictory. Like a work of art, like an artistic creation, theoretical physics is both a reconstruction (in a different order) of the world and, to some extent, the moment of creation, g" (Fuliński, 1988b, p.221).

tics is a kind of ontology of the world, as has been assumed, for example, by Życiński (2013). Although he did not question this possibility, he demanded greater caution when examining this dispute, pointing to, among other things, the linguistic difficulties that philosophers and scientists encounter here. He pointed to terminological ambiguities m of the primary or secondary nature of language in relation to perception is directly related to the understanding of the mathematical nature of the world and the ontological status of theoretical physics" (Fuliński, 1988a, p.65; see also Fuliński, 1991b, p.81) and how these make the metaphysical question about the nature of reality require very the problem of the mathematical nature of the world were positively received in the OBI community, it can be discerned that they took Fuliński's critical remarks into account. Such critical positions, which also came the idea of the mathematical universe, and this is already noticeable in the works of the younger generation of philosophers from Heller's milieu, such as Ł. Lamża and M. Hohol.

An attempt to summarize

t but also as a scholar who was sensitive to philosophical issues. For many years, he has been involved in the dialogue between science and philosophy and participated in various interdisciplinary projects, with him publishing a number of works primarily in the area of the philosophy of nature and the methodology of science. nis texts, the Krakow physicist has addressed issues that fit into the project of philosophy that was outlined by Heller (1986; English translation: 2019). In his programmatic paper, Heller indicated that the subjects of interest for philosophy in science include (A) the influence of philosophy that was outlined by Heller (1986; English translation: 2019). al theories; and (C) philosophical reflections on the assumptions of empirical science. The issues discussed by Fuliński correspond to each of the three areas of "philosophy in science", e.g.:

interaction; this group could also include, among other things, works on the history of science and philosophy, devoted, for example, to the achievements of the "philosophical physicist" Marian Smoluchowski (e.g., Fuliński, 2017); Fuliński, 1993; Fuliński and Maślanka, 2015);

elementarity and unity of nature (including the issue of reductionism).

ms also turned out to be close to the style of Heller. The works of the Krakow physicist show that he rejected the radical isolationism of science and philosophy, and he was also very critical of systemic philosophy, and he was also very critical of systemic philosophy, and he was also very critical of systemic philosophy. as Życiński, who willingly referred to Fuliński's publications (see footnote 1). hings, the early formative period for the concept of "philosophy in science" and the milieu of Heller and Życiński (Trombik, 2021). It is therefore possible to speculate that Fuliński was not just part of the Krakow School of Philosophy in Science current but also a creative influence within this school, both philosophically and organizationally, and should be developed and deepened in a future, larger dissertation that would more comprehensively study the life and work of Fuliński. I believe that it would be worth undertaking detailed research to indicate the possible scope of the impact on Heller and Życiński's milieu from other philosophizing scientists, such as Jerzy Janik, Andrzej Staruszkiewicz, Zygmunt Chyliński, Małgorzata Głódź, Jerzy Rayski, Leszek Sokołowski, Alicja Michalik, or Marek Szydłowski. 11 Such

nt of the School but could also bring closer some interesting and often still-current philosophical views that are part of native interdisciplinary traditions.

Bibliography

je: seminarium w Castel Gandolfo 16-19 sierpnia 1980 roku. Rome: s.n., pp.13-33.

atyczności przyrody". In: J.A. Janik and P. Lenartowicz, eds. Nauka - religia - dzieje: IV Seminarium interdyscyplinarne w Castel Gandolfo, 6-8 sierpnia 1986, Teksty i Studia / Wydział Filozoficzny Towarzystwa Jezusowego, pp.213–222. ds. Nauka - religia - dzieje: IV Seminarium interdyscyplinarne w Castel Gandolfo, 6-8 sierpnia 1986, Teksty i Studia / Wydział Filozoficzny Towarzystwa Jezusowego, pp.51–72.

hanicyzmu, Kraków 1988]. Studia Philosophiae Christianae-r1989-t25-n2-s226-230. Available at: https://bazhum.muzhp.pl/media/files/Studia Philosophiae Christianae-r1989-t25-n2-s26-230. Available at: https://bazhum.muzhp.pl/media/files/Studia Philosophiae Christianae-r1989-t25-n2-s26-230. Available at: <a href="h ego i J. Janika. In: J.A. Janik and P. Lenartowicz, eds. Nauka - religia - dzieje: V Seminarium Interdyscyplinarne w Castel Gandolfo, 8-11 sierpnia 1988, Teksty i Studia / Wydział Filozoficzny Towarzystwa Jezusowego, pp.181–191. zach fizyka). In: J.A. Janik and P. Lenartowicz, eds. Nauka - religia - dzieje: V Seminarium Interdyscyplinarne w Castel Gandolfo, 8-11 sierpnia 1988, Teksty i Studia / Wydział Filozoficzny Towarzystwa Jezusowego, pp.181–191. jczność przyrody. Kraków: Ośrodek Badań Interdyscyplinarnych przy Wydziale Filozofii Papieskiej Akademii Teologicznej, pp.72–75.

coczny and J. Życiński, eds. Spór o uniwersalia a nauka współczesna: sympozjum, Kraków 11-12 maja 1990 / pod red. Michała Hellera, Włodzimierza Skocznego i Józefa Życińskiego. Kraków: Ośrodek Badań Interdyscyplinarnych przy Wydziale Filozofii Papieskiej Akademii Teologicznej, pp.81-85. innych grzechach fizyków czyli o zmianach w obrazie świata widzianych okiem jednego z nich. Znak, XLV(456(5)), pp.31–49. Cogito: księdzu Michałowi Hellerowi w sześćdziesiątą rocznicę urodzin. Tarnów: Biblos, pp.58–63.

auk. In: M. Heller and J. Mączka, eds. Jedność nauki - jedność świata? Tarnów: Wydawnictwo Diecezji Tarnowskiej Biblos, pp.63–68.

: IX Seminarium w Castel Gandolfo, 5-7 sierpnia 1997, Varia / Uniwersytet Jaqielloński. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, pp.45-56.

z, ed. Determinizm, przypadek, wolność: teksty wykładów wygłoszonych na sympozjum naukowym zorganizowanym przez Oddział Polskiej Akademii Nauk i Wydział Teologiczny UAM w Poznaniu dnia 30 listopada 2004 roku. Poznań: Ośrodek Wydawnictw Naukowych, 27–38. ce Komisji Filozofii Nauk Przyrodniczych, 4, pp.117–140. ems in Science (Zagadnienia Filozoficzne w Nauce), (62), pp.127–138. Available at: https://zfn.edu.pl/index.php/zfn/article/view/393 [visited on 11 November 2023].

-Kosmologia. Filozofia Nauki, 3(1-2), pp.143–182. Available at: https://www.fn.uw.edu.pl/index.php/fn/article/view/956 [visited on 13 November 2023]. ony - myśliciel - mistrz: materiały z sesji w dniu 12 kwietnia 2013, poświęconej pamięci Profesora w pierwszą rocznicę Jego śmierci. Kraków: Polska Akademia Umiejętności.

rg. https://doi.org/10.1007/978-3-642-17705-7. cience (Zagadnienia Filozoficzne w Nauce), (66), pp.231–249. Available at: https://zfn.edu.pl/index.php/zfn/article/view/482 [visited on 6 October 2021].

P. Lenartowicz, eds. Nauka - reliqia - dzieje: V Seminarium Interdyscyplinarne w Castel Gandolfo, 8-11 sierpnia 1988, Teksty i Studia / Wydział Filozoficzny Towarzystwa Jezusowego, pp.66-83.

ców: Znak. Kraków: Wydawnictwo Znak.

idrowej, 63(3), pp.28–34.

vailable at: http://www.pauza.krakow.pl/514 2020.pdf> [visited on 13 November 2023]. lyscyplinarnych w Krakowie (The beginnings of the Center for Interdisciplinary Studies in Cracow). Roczniki Filozoficzne, 54(2), pp.49–62. Available at: http://www.jstor.org/stable/43409838 [visited on 14 September 2016].

wojennym. T. 1: Początki. Vol. 1, Źródła: Filozofia Przyrody, Filozofia Nauki, 3. Kraków: Tarnów: Ośrodek Badań Interdyscyplinarnych przy Wydziale Filozoficznym Papieskiej Akademii Teologicznej; Wydawnictwo Diecezji Tarnowskiej Biblos. narium w Castel Gandolfo 16-19 sierpnia 1980 roku. Rome: s.n., pp.5-12. Yaqadnienia Filozoficzne w Nauce), (25), pp.133–152.

B. Brożek, J. Mączka and W. Grygiel, eds. Philosophy in Science. Methods and Applications. Kraków: Copernicus Center Press, pp.325–333. 6, pp.135–153. Available at: https://www.researchgate.net/publication/262363588 U zrodel krakowskiej filozofii przyrody (Tradition of Krakow philosophy in science: since 19th to 21st century). In: J. Jagiełło, ed. 40 lat filozofii w uczelni papieskiej w Krakowie. Kraków: Wydawnictwo Naukowe UPJPII, pp.491–514.

ilosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (66), pp.251–270. Available at: https://zfn.edu.pl/index.php/zfn/article/view/472 [visited on 6 October 2021]. bate in Poland, 1945-1998. European Journal of Science and Theology, 17(6), pp.1–17. Available at: http://www.ejst.tuiasi.ro/Files/91/1_Polak%20&%20Rodzen.pdf [visited on 20 December 2022]. st science-theology separation vs. Michael Heller's path to dialogue. Theology and Science, 21(1), pp.157-174. https://doi.org/10.1080/14746700.2022.2155917.

ting from two traditions. Edukacja Filozoficzna, (2(74)), pp.205–229. https://doi.org/10.14394/edufil.2022.0023. s://www.jstor.org/stable/1758035> [visited on 27 January 2024]. v Krakowie w latach 1978-1993: studium historyczno-filozoficzne. Kraków: Wydawnictwo "Scriptum".

powstanie Wydziału Filozoficznego Papieskiej Akademii Teologicznej w Krakowie. Ethos Kwartalnik Instytutu Jana Pawła II KUL, (35(2022) 1(137)), pp.255–276. https://doi.org/10.12887/35-2022-1-137-15. Studies. A historical outline by 1993. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (66), pp.271–295. Available at: https://zfn.edu.pl/index.php/zfn/article/view/474 [visited on 7 October 2021].

ka / Józef życiński. Poznań: W Drodze. Redakcja Wydawnictw Katolickiego Uniwersytetu Lubelskiego. rody i Nauk Przyrodniczych, 4. Lublin: Wydawnictwo KUL. nicus Center Press.

¹ Fuliński's papers were cited in various philosophical works, including a ² The pope read these reports carefully. Fuliński recognized fragments of ³ In the case of Życiński, the problem is somewhat more complex, becaus ⁴ Fuliński used this term to refer to those philosophers who, as he used t ⁵ The Louvain type of Thomism was an attempt at the turn of the 19th ⁶ Remarks related to this can also be found in, *inter alia*, the transcript It is worth noting here that in Fuliński's works, one can find numerou understanding of the philosophical aspects of natural science rather than ⁸ In this context, Fuliński referred to the "mirror metaphor" from Profess together. This metaphor can be extended, in particular, to philosophy as ⁹ Particularly interesting in this respect are Fuliński's analyses about the

10 However, on various occasions, Fuliński himself has expressed a distanc knows how much harm is associated with the implementation of some rest

a lot; at least many physicists believe that physics, especially theoretical r

examples of adopting philosophical concepts into science, such as Lysenk ¹¹ It is worth adding that some of the mentioned representatives of philo

philosophy of nature (Bugajak et al., 2009) and in books and papers by authors such as J. Życiński, A. Lemańska, K. Doliwa, A. Biegalska, S. Cisek, and J. Grzanka (e.g., Lemańska, 1996; Życiński, 1988, 1993, 2009, 2011; Biegalska, 2016; Doliwa, 2009). 1 the current situation in Poland in the speeches of John Paul II during his pilgrimage to Poland in 1991. l by some metaphysical systems like Whitehead's philosophical project. It should be noted, however, that Życiński himself never developed any philosophical systems that followed the example of the British thinker. In his works, especially from the 1990s, it is difficult to discern any attempt to develop anything like a philosophical system.

cientists in how science should be interpreted (see Bergson). to harmonize modern science with Aristotelian-Thomistic philosophy, an attempt that was ultimately unsuccessful, and the Louvain type of Thomism did not gain traction beyond a narrow circle of Catholic philosophers.

anel named "Between knowing and believing" (Fuliński, 1990c), where Fuliński, in the context of the question about the relationship between science and faith, referred to the methodological proposals of I. Barbour (Fuliński, 1991a) hilosophical tradition, as well as to contemporary philosophy, especially in the area of the philosophy of physics and the philosophy of science. In addition to the works of K.R. Popper, T. Kuhn, P.K. Feyerabend, W. Quine, W. Heisenberg, and even E. Husserl (see Fuliński, 1996). This shows that Fuliński attempted to gain a deeper

ses to just the professional perspective of a theoretical physicist. z, writing, among other things, "physics is a mirror reflecting the world. About a hundred years ago, it was a mirror perhaps not the more accurate and sharper, but the mirror has shattered into many pieces that we cannot fit eed to the entire culture: unfortunately, we still have a broken mirror. It would be good if we managed not to merge this mirror, but to create one, a new one" (Fuliński, Heller et al., 1995, p.154). eterminism of physics and human free will" (see e.g., Fuliński, 1998; 2005), which also demonstrate Fuliński's competence in the area of the traditional problems of philosophical anthropology. philosophy as such and philosophers in particular. This is well illustrated by a statement from a discussion panel during a symposium organized by the OBI in 1995: "What do physics and philosophy are sometimes put into practice. The implementation of certain philosophical concepts has brought a lot of harm, which we experienced first-hand. Everyone

uldn't be able to judge which of these effects were worse. What good do physics and philosophy do? Physics certainly gives various good things: the light in this room, the flash just now, and so on. What good do physics and philosophy? Theoretically, it should give a sufficiently deep level, is actually philosophy. In practice, I'm afraid it doesn't help much, because the typical response of a philosopher to a physicist's arguments is at best 'Yes, but...' or at worst 'The physicists know from practice that it is nothing. It is better not to talk about seriously, philosophy gives some things, but not so much to physicist, not least because it broadens the imagination. But the whole culture works in the same way as philosophy" (Fuliński, Heller et al., 1995, p.147). were very sympathetic to the idea of "philosophy in science" (e.g., Głódź, 1999).

Andrzej Anderwald

Keywords

University of Opole

Wojciech P. Grygiel, Damian Wasek, Teologia ewolucyjna. Założenia—problemy—hipotezy, Copernicus Center Press, Kraków 2022, ss. 268.

Tudies of the complexity of reality, which are carried out at the intersection of different areas of knowledge, are nowadays gaining more and more supporters among researchers. Three directions of these studies dominate today: multidisciplinarity, intradisciplinarity and interdisciplinarity and interdisciplinarity. This occurs at each stage of the project beginning with the formulation of a research problem, then proposing appropriate hypotheses and ultimately interpreting data that were obtained (Mette, 1996). Since the Second Vatican Council, theology has also become more open to cooperation with other sciences, including not only the humanities, but various disciplines of empirical sciences such as physics, chemistry, biology, psychology, sociology and cognitive science. The need of this kind of cooperation is signaled at present not only by the representatives of theology and its presence at universities dependent on the interdisciplinary direction of research. However, the interdisciplinary openness of theology raises a number of questions: Does opening theology to other disciplines not threaten to break the internal identity of its content? Why should a theological listen to the voices of representatives of other sciences in an interdisciplinary dialogue? Is theology itself interested in opening up to new loci theological listen? Can the interdisciplinary nature of theology help in creating an integral concept of man and the world? Can interdisciplinary theological research contribute to the clarification and transmission of faith among people with scientific and technical mentality?

An unequivocally positive answer to the questions posed is provided by the authors of the book Evolutionary Theology: Wojciech Grygiel, a natural philosopher, chemist, theologian. As representatives of various disciplines through their joint work they give a concrete example of the interdisciplinary cooperation. Their project is methodological in nature: it is to "show how the development of science can entail the development of theology, and what assumptions must be met to result in a constantly deepening insight into the divine essence" (Grygiel and Wasek, 2022, p.12). The book consists of two main parts: Assumptions (pp. 15–151) and Problems and Hypotheses (pp. 152–236).

The first part, consisting of five chapters, discusses the methodological assumptions of evolutionary theology, presents a dynamic concept of theology of revelation in the perspective of its historical development. This approach shows, with all its internal dynamics, the importance of the concept of revelation in the construction of evolutionary theology. The category linking the conducted considerations is the relationship between man and the self-giving God taking place against the background of changing images of the world. Chapter 2 entitled Truths of Faith: Between Immutability and Evolution (2022, pp.38–60) presents the tension between what is essential, unchangeable and changeable and changeable in the interpretation of the truths of the Christian faith. The latter conditioned by the time context, especially the specific image of the world related to it, may be subject to change, reinterpretation or even correction. In reference to theological thought, e.g., John Henry Newman (2022, pp.43–44) and Karl Rahner (2022, pp.50–51) the authors clearly point to the evolution of the Christian doctrine taking place in compliance with certain rules. "The doctrine—as they write—is not about accepting historical formulations, but their inner essence. At the same time, one should be aware that this "explication" cannot be expressed in an ahistorical way" (2022, p.51). Unlike the descriptive titles of the previous chapters, the third chapter with a metaphorical title Theology as a Work for Orchestra (2022, pp.61-84) deals with the classification of the theological places. Theology distinguishes two types of its sources: proper places (loci proprii) and auxiliary ones (loci alieni). It is the latter, based solely on human authority, that is the subject of the analysis conducted in this chapter. The authors are particularly interested in defining more precisely the criteria for interdisciplinary dialogue involving theology (2022, pp.77-84), so strongly related to the topic of loci alieni. This issue seems crucial in developing a methodology for evolutionary theology. The fourth chapter, From a static to a dynamic image of the world, as proposed here, makes it possible to better capture and understand the complex contextuality of not only scientific, but also religious and theological beliefs (2022, pp.86–87). In a broader historical perspective, as indicated by the new discoveries in physics and biology, as well as the related reinterpretations at the level of the philosophy of science (e.g., Grygiel and Wasek, 2022, pp.119–120). In the fifth chapter, In the flow of logos (2022, pp.122–151), one more argument for the evolving Universe strives not only to protect against its marginalization by taking into account the current image of the world in theological reflection, but "is primarily aimed at a much deeper insight into the mysteries of who God is in essence" (2022, p.122). This chapter is a supplement to the methodological assumptions of evolutionary theology and it is particularly important in setting the epistemic boundaries that prevent from making unjustified extrapolations between natural and theological cognition. "The existence of such a border—as we read—is necessary for revelation to make sense, that is, for there needs to be room for the transcendent voice of God who speaks from beyond the immanence of the Logos to its interior" (2022, p.146).

The second part of the book, which consists of three chapters, deals with the application of the discussed assumptions (Grygiel and Wasek, 2022, p.13). And so, in chapter six, Adam, where are you? Evil and The Original Sin (2022, pp.153–173) they synthetically discuss the problem of evil and suffering as well as the classical doctrine of the evolving image of the world. The presented reinterpretation of the doctrine of evil and suffering as well as the classical doctrine of evil and suffering as well as the classical doctrine of the evolving image of the world. The presented reinterpretation of the doctrine of original sin is a strong argument for the evolving image of the world. deals with the analysis of the current topic of the relationship between the biological reality shaped in the process of evolutionary development, and the one that is associated in traditional theology with direct divine intervention" (Grygiel and Wasek, 2022, p.175). The emphasis is placed here on showing the consequences of this type of relationship both for the reinterpretation of the theological concept of the soul and the very contribution of neuroscience to the theological discourse. In their considerations, they strive to capture and show the impact of the scientific knowledge on the formation of religious beliefs. Specific issues are analyzed in turn, such as: the origin of religious beliefs, the doctrine of intelligent design and miraculous events. Some doubts may be raised by the presented analysis of a miracle which links its recognition as God's way of acting in the world with interpretations inspired by the thought of St. Augustine and St. Thomas Aquinas (2022, pp.224–230). It seems that reference to the modern semantic concept of a miracle, especially in the layer of its cognition including scientific and religious knowledge, gives the possibility of the interpretation of a miracle better harmonizing with the evolving image of the world.

The second part of the discussed book is not only an example of a practical application of the methodological assumptions of evolutionary theology presented in the first part but it also provides specific arguments against the anti-Christian theses of Richard Dawkins. They have been quite widespread recently mainly through his The God Delusion (2006) as well as through the naturalistic ideas propagated by the supporters of the new atheism.²

In conclusion, the book Evolutionary Theology is a successful study that shows how interdisciplinarity in theological research leads to a departure from the one-dimensional scientific paradigm and gives the opportunity to develop a holistic view of nature and man. Especially from the perspective of the fundamental theology interdisciplinarity is not a fashion but rather a necessity and an expression of the understanding the complexity of reality which no single science is able to grasp integrally. The interest of a modern theology and philosophy of science as well as science itself shows the importance and necessity of the interest of a modern theology. The interest of a modern theology and philosophy of science as well as science is able to grasp integrally. a certain sign of the times in which his expectations, needs and requirements are revealed. Also, the reviewed book is a positive example in search of the dialogue between theology and other sciences. It shows how to defend the rationality of the Christian faith as it confronts the claims of the contemporary science. The book adds its voice to the attempts of providing this king of defense which are present in the Anglosaxon literature by such authors as John Polkinghorne, Alister McGrath, Gary Keogh, Anderw Pinsent, Markus Holden, and in German by Jürgen Moltmann, Christian Link, Dieter Hattrup, Urlich Lüke and Alexander Loichinger.

A reliable interdisciplinary exchange may not only lead to discovering the boundaries of one's own scientific discipline, but also to an increase in methodological awareness. Such discoveries result in the mutual cleansing of past errors and guard against unwarranted extrapolations so that theology does not turn into pseudoscience and science into unconscious theology. The reliance on the contribution of the authors' own scientific community to interdisciplinary research, which fits into the research perspective of evolutionary theology, should also be positively assessed. Grygiel and Wasek not only refer to the achievements of the Interdisciplinary research, which fits into the research perspective of evolutionary theology, should also be positively assessed. Grygiel and Wasek not only refer to the achievements of philosophers and initiators of the Interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, but they also incorporate the achievements of philosophers and initiators of the Interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, but they also incorporate the achievements of philosophers and initiators of the Interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, but they also incorporate the achievements of the Interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, but they also incorporate the achievements of the Interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, and interdisciplinary Studies, Michael Heller and Józef Zyciński or their own publications, and interdisciplinary Studies, and inter theologians associated with the Pontifical University of John Paul II, such as: S. Wszołek, J. Bremer, J. Mączka, Z. Liana, R.J. Woźniak, Ł. Kamykowski or T. Dzidek.

Abstract This review pertains to the book Evolutionary Theology (Teologia ewolucyjna) written by Wojciech P. Grygiel and Damian Wasek. The book presents a distinct and modern viewpoint on theology by offering a comprehensive analysis of the characteristics of theological language and utilizing it to reevaluate certain theological beliefs, such as the concept of original sin, within the framework of the ever-changing

understanding of the Universe. This approach contributes significantly to the restoration of theology's credibility in modern culture by bridging the gap between science and theology.

Bibliography

Dawkins, R., 2006. The god delusion. London, UK: Bantam. Grygiel, W., 2019. The doctrine of the intelligent design from the r Grygiel, W., 2021. Cognitive aspects of the philosophical and theole Grygiel, W. and Wąsek, D., 2022. Teologia ewolucyjna: założenia -Harris, S., 2004. The End of Faith: Religion, Terror, and the Futur Harris, S., 2006. Letter to a Christian Nation. New York, NY: Kno Hitchens, C., 2007. God Is Not Great: How Religion Poisons Every Mette, N., 1996. Interdisziplinarität. In: W. Kasper, ed. Lexikon fü Wąsek, D., 2018. Teologia katolicka w konfrontacji z neuronaukami Wąsek, D., ed., 2021. Teologia w dialogu z innymi naukami: spotka

evolutionary theology, interdisciplinarity, science and theology.

e cognitive science of religion. Scientia et Fides, 8(1), pp.165–181. https://doi.org/10.12775/SetF.2020.006. of the concept of a miracle within the contemporary scientific world view. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (70), pp.111–138. Available at: https://zfn.edu.pl/index.php/zfn/article/view/543 [visited on 2 November 2023]. ezy. Kraków: Copernicus Center Press.

Based on the above considerations, I recommend the book Evolutionary Theology not only to anyone who is interested in the interdisciplinary dialogue and who wishes to do theology within the changing image of the world but to anyone who is looking for the justification of a personal Christian creed against the claims of mentality dominated by the scientific thinking.

Cirche. Bd. 5: Hermeneutik bis Kirchengemeinschaft. 3rd ed. Freiburg; Basel; Rom; Wien: Herder, p.557.

York; London: W.W. Norton & Company.

lialogu. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (64), pp.167–181. Available at: https://zfn.edu.pl/index.php/zfn/article/view/430 [visited on 2 November 2023]. e – perspektywy, Horyzonty dogmatu, 20. Kraków: Wydawnictwo "Scriptum".

Roman Krzanowski The Pontifical University of John Paul II in Krakow

Bartłomiej Skowron, *Część i całość. W stronę topoontologii*, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2021.

TN philosophy, it is always refreshing to introduce unconventional ideas. It requires a certain audacity from the author; she/he may face the wall of silence or be shunned by academia, both treatments being undesirable. But still these are more rewarding than gathering laurels for beating the dead philosophical cats like Humes, Leibnitzs, Whiteheads and others, the practice that for many philosophers is their life opus. Bartłowmiej Skowron's book Part and Whole: Towards Topo-Onotology published by Oficyna Wydawnicza Politechniki Warszawskiej in 2022² is certainly not in this last category. The book is quite rich in content and topics. It may be seen, as the author suggests, as a review of mereological perspectives (Skowron, 2021, p.xi) or a topological vision of what exists (Skowron, 2021, p.xi). The book may also be regarded as an advanced introduction to topology, mereology, and mereo-topology as well as their historic roots, beginning with Plato and ending with Brentano and Ingarden.³

The concept of an advanced introduction is clearly an oxymoron, yet it still seems to reflect the book's content. For example, the definitions and formalism in the book certainly go beyond an introduction, yet it still seems to reflect the book's content. For example, the definitions and formalism in the book certainly go beyond an introduction, yet it still seems to reflect the book's content. We believe that the center of gravity for this book lies in its discussion of topo-philosophy, so we expect Skowron to introduce us to topo-philosophy and explain what topo-philosophy is, who has engaged with it, and where it may go in future. Now, why might topo-philosophy be interesting and worthy of attention? The answer to this question is rather long but rewarding. We are told the following: "Philosophy, in particular its theoretical part, is too difficult to be apprehended with common sense and everyday reasoning" (Skowron, 2021, p.xvi). So, what is needed to address this? The author states that a deep understanding of philosophical ideas requires a deep understanding of the fundamental philosophical structure for concepts like that of the whole and parts, of unity, of foundation, of place, and of autonomy. Topo-philosophy—as a fusion of topology, topo-ontology, mereology, and philosophy—as a fusion of topology, topo-ontology, mereology, and topology, topo-ontology, to

density, dimensions, and metrics. Now, let us attempt a simpler explanation. Philosophy is about ideas and their structures, while topology is about topology—fusion of topology—fusion o philosophical ideas that go beyond mere ontology. In the author's own words, "philosophy using spatio-topological concepts is denoted as topo-philosophy" (Skowron, 2021, p.xi). A two other explanations of topo-philosophy can be found in the book: (1) "[...] topo-philosophy uses the language and concepts of topology" (Skowron, 2021, p.153). Alternatively, (2) "Topo-philosophy is based on the judicious application of ideas of

geometry [esprit de géométrie is Skowron's suggestion]" to philosophy (p.169). Geometry always involves an ordering of things, and topo-philosophy (p.171). "Judicious application" must be done with "esprit de finesse" (again Skowron's suggestion), otherwise it may lose its power to give insight into non-topological ideas and morph into a barren abstract discourse. Thus, how to "topologize" philosophy can be learned by studying applications of topo-philosophy, for which Skowron discusses applications of topo-philosophy in epistemology, physics, robotics, data analysis, and models of the mind and the

central nervous system. Indeed, topo-philosophy is really coming out into the open. We see the emerging applications of topo-philosophy in research for AI, information and information have a topological side in terms of topological side in terms

of modern geometry." Information geometry studies information science—which is an umbrella term grouping statistics, information science can be viewed as the science of deriving models from data, which is often presented as the geometry of decision making, such as through curve fitting and classification (Nielsen, 2020; 2022). Topological information is topological information wiews information to the sense that the relations between systems that manipulate and exchange information is topological information wiews information to the sense that the relations between systems that manipulate and exchange information is topological information wiews information wiews information is topological information. A topological representation of information and computing allows for Turing machines and computing to be generalized to information manipulation on tangle machines. (For more about information geometry and topological information from their power to capture various forms of information manipulation on tangle machines. processing (e.g., information science, decision science) in context-free formal systems based on geometry or topology, thus allowing for results to be generalized from a specific domain. Of course, if the topological perspective is so revealing, we may wonder why we did not realize this before. Indeed, Skowron's book is an eye opener to some extent.

However, focusing on topo-philosophy may not do Skowron's work justice, because it is only a small part of his book. Substantial parts are devoted to reviewing topological research, mereo-topology, and historical notes. How then should we view these sections? One way is to regard them as a sort of background introduction to topo-philosophy, but why? Well, if you want to learn about topo-philosophy, you need to understand some basic tenets of mereology, topology, mereo-topology, and topo-ontology, so these sections are helpful as a reference. It is certainly useful to have them in one place. One could also forget the notion that the book is about topo-philosophy (the subtitle of the book suggests an introduction to topo-philosophy is an integral part. From this viewpoint, Chapter 3 being about topo-philosophy is not

Thus, one may think of the book as a review of the main tenets of topo-philosophy (unfortunately quite short) together with a background discussion of topo-philosophy (appropriately quite short). The problem with this second option, however, is that it takes the punch away from the book in terms of its novelty, because topology, mereology, and mereo-topology are rather unique, topo-philosophy would be a good choice to serve as the fulcrum for the book, as we originally suggested.

There are a few more impressions from reading the book is certainly not an easy read, and the presentation of topology, mereology, are mereo-topology, mereology, and mereo-topology, mereology, and mereo-topology, mereology, and mereo-topology, mereology, mereology, and mereo-topology, mereology, and mereo-topology, mereology, and mereo-topology, mereology, mereology, mereology, mereology, and mereo-topology, mereology, mereol

a rather advanced introduction. In other words, the book provides a formal introduction to the topics and is rather shy on conceptual or intuitive perspectives. (For an easier ride into topology, see, for example, the work of Earl (2019) and the philosophy of mereology by Lando (2017).) Skowron is well aware of this, however, and from time to time, he shows a lighter side (Socrates' sting). Overall, though, the thorough, formal approach makes the book a hard nut to crack. Every author has to make choices, and this book was certainly not intended for display on airport bookstands. There are also a few minor things that catch the eye: (1) The claims for the "entropy of philosophical systems" (Skowron, 2021, p.172) and "entropy as a measure of unpredictability" (after Hutchins (2012)), seem to be a misadventure, albeit one that is quite popular in philosophical systems. Any application of thermodynamic entropy concept outside of its proper context, while quite common (see e.g., Müller, 2007), are misleading. (2) The book would benefit from a more extended synthesis of the discussed ideas. We have a short synthetic view of what the topo-philosophical method may be but more would benefit from a more extended synthesis of the discussed ideas. We have a short synthetic view of what the topo-philosophical method may be but more would benefit from a more extended synthesis of the discussed ideas.

the Polish text would be greatly facilitated if the author provided a lexicon of English technical terms rendered in Polish. (4) The book may also benefit by focusing on topo-philosophy and its main actors, objectives, and applications from a historical perspective. As we have said, topo-philosophy and its main actors, objectives, and applications from a historical perspective. contextual parts? In addition, a more focused book would be more amenable to being published in English, which I think would be worth doing. (5) Moreover, an English edition of the entire book, or selected parts thereof, would bring some interesting works from Polish philosophers to a wider audience, so it is certainly worth considering. Overall, the book is a well-executed foray into topo-philosophy, depending on whichever lens you prefer to use. More specifically, whatever perspective you may adopt, Skowron offers a much-needed review of the main discussions, players, applications, and perspectives related to topo-philosophy, something that is hard to find collected in one place, so this is certainly a plus. What the reader may wish to see, however, is more of the author's synthesis for the presented ideas, expanded beyond "Towards general topology of object and its parts" in section 7. One may also follow up on Skowron's ideas in his recently published paper 'A metaphysical foundation for mathematical philosophy" (Wójtowicz and Skowron, 2022).

In philosophy, it is always refreshing to introduce unconventional ideas. It requires a certain audacity from the author; she/he may face the wall of silence or be shunned by academia, both treatments being undesirable. But still these are more rewarding than gathering laurels for beating the dead philosophical cats like Humes, Leibnitzs, Whiteheads and others, the practice that for many philosophers is their life opus. Skowron's book is certainly not in this category. Bartłomiej Skowron undertakes such a discovery trip into an unknown land in his book Part and Whole: Towards Topo-Onotology, which was published by Oficyna Wydawnicza Politechniki Warszawskiej in 2021.

topology, topoontology, mereology, topo-philosophy.

Keywords

Abstract

Amari, S., 2016. Information Geometry and Its Applications. Vol. 1 Carmi, A.Y. and Moskovich, D., 2015. Tangle machines. Proceeding Earl, R., 2019. Topology: A Very Short Introduction, Very Short In Eckstein, M. and Skowron, B., 2020. "Is logic a physical variable?" Hutchins, E., 2012. Concepts in Practice as Sources of Order. Mine Krzanowski, R., 2020. Contemporary Polish ontology. Where it is a Lando, G., 2017. Mereology: A Philosophical Introduction. London; Moskovich, D. and Carmi, A.Y., 2014. Tangle Machines II: Invaria Müller, I., 2007. A History of Thermodynamics: The Doctrine of E Nielsen, F., 2020. An Elementary Introduction to Information Geor Nielsen, F., 2022. The many faces of information geometry. Notices Skowron, B., ed., 2020. Contemporary Polish Ontology. Vol. 82, Ph Skowron, B., 2021. Cześć i całość: w strone topoontologii. Warszawa Wójtowicz, K. and Skowron, B., 2022. A metaphysical foundation f

ematical Sciences. Tokyo: Springer Japan. https://doi.org/10.1007/978-4-431-55978-8.

ciety A: Mathematical, Physical and Engineering Sciences, 471(2179), p.20150111. https://doi.org/10.1098/rspa.2015.0111. rd, New York: Oxford University Press.

he Special Issue. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (69), pp.7–13. Available at: https://zfn.edu.pl/index.php/zfn/article/view/536 [visited on 18 September 2023]. *tivity*, 19(3), pp.314–323. https://doi.org/10.1080/10749039.2012.694006. ng. Philosophical Problems in Science (Zagadnienia Filozoficzne w Nauce), (69), pp.294–298. Available at: https://zfn.edu.pl/index.php/zfn/article/view/531 [visited on 18 September 2023].

y. Berlin; New York: Springer. 2(10), p.1100. https://doi.org/10.3390/e22101100.

//doi.org/10.48550/arXiv.1404.2863.

central, as we previously presumed. Instead, all the chapters are equally important, and the message is the entire book, which elaborates on the main title and subtitle.

Mathematical Society, 69(1), pp.36–45. https://doi.org/10.1090/noti2403. is, 2627-227X. Berlin; Boston: De Gruyter. https://doi.org/10.1515/9783110669411.

micza Politechniki Warszawskiej. philosophy. Synthese, 200(4), p.299. https://doi.org/10.1007/s11229-022-03760-5. **Bibliography**

ences at Warsaw University of Technology. B. Skowron research interests include formal ontology (part-whole theory, mereotopology), phenomenology, philosophy of morality, axiology, philosophy of morality, axiol ne book is also available in in an open access model as a PDF file at https://philarchive.org/archive/SKOCIC-2. ch us humility. This goes contrary to the deep-seated conviction in Anglo-Saxon philosophy began with Hume and Locke et al., and everything that came before—with the exception of Plato, Aristotle, and a few others—were musings about ultimate questions that were of no importance, both in terms of the questions and the musings.

heir natural notion of equivalence. Equivalent tangle machines may differ locally, but globally they share the same information content. The goal of tangle machine equivalence is to provide a context-independent method to select, from among many ways to perform a task, the 'best' way to perform the task." (Carmi and Moskovich, 2015, p.1). nces for all the presented ideas, both historical and modern, so his book is a self-contained, comprehensive source of knowledge for the discussed topics. 970 Mexican acid Western art film based on "symbolism and Eastern philosophy," a topic certainly outside the scope of Skorwon's book (accessed at https://en.wikipedia.org/wiki/El_Topo). In addition, topo-philosophy does not register in the Google Ngram Viewer, so this concept has been banished into the Internet's conceptual never-never land. In contrast, the presence of topology, mereology and ing essays on topo-philosophy anytime soon, but it may do so for topology or mereology (signa temporum). be seen and discussed in conjunction with temperature and heat, and energy and work. And, if there is to be an extrapolation of entropy to a foreign field, it must be accompanied by the appropriate extrapolations of temperature and heat and work. If we wish, we can now assign an entropy to a foreign field, it must be accompanied by the appropriate extrapolations of temperature and heat and work. mation entropy). People do that and we may suppose that they know why. Ingenious as this joke may be, it provides no more than amusement." (Müller, 2007, pp.133–134).

¹ Bartlomiej Skowron is an adjunct professor at the Faculty of Administra book on contemporary Polish ontology (Skowron, 2020; reviewed by Krz ² The book was published in Polish with the title Część i całość. W stro ⊆ Taking a historical perspective in philosophy is always a rewarding exe Taking a historical perspective in philosophy at the them of the them of the saying that "the them of the saying that the the saying the saying the saying the saying that the saying that the saying the ⁵ "Tangle machines are topologically inspired diagrammatic models. Thei ⁶ Substantial resources on these topics are available. In fact, Skowron pro ⁷ A Google search for topo-philosophy directed us to a Wiki page on El t

mereo-topology is well established. This also means that LLMs like GTF $\frac{1}{2}$ ⁸ "For level-headed physicists, entropy—or order and disorder—is nothing

English alphabet, count how often they occur in Hamlet and calculate Ir

apter discussing topo-philosophy] is essential for the book" (Skowron, 2021, p.xix).