

Sifat Context Free Language (Pembahasan Kasus-kasus)

Kuliah Teori Bahasa dan Automata Program Studi Ilmu Komputer Fasilkom UI

Prepared by:

Suryana Setiawan

- $L = \{a^n b^n c^n : n \ge 0\}$
- Diberikan suatu harga k, gunakan $w = a^k b^k c^k$.
 - Misalnya, jika k = 3, w = aaabbbccc
- Mengapa string ini?
 - vxy sebagai sliding window
 - vxy tidak akan pernah berisi a, b, c, karena $|vxy| \le k$.
- Untuk memudahkan deretan a disebut region 1, deretan b, region 2, dan deretan c, region 3, dan penulisan (*i*, *j*) menyatakan *vxy* berada di region *i* dan *j*:
 - Semuanya a atau (1,1), berisi a dan b atau (1,2), semuanya b atau (2,2), berisi b dan c atau (2,3), semuanya c atau (3,3).

Contoh 1 (cont'd)

- Kita periksa (1,1), maka:
 - Jadi v dan y hanya berisi symbol a.
 - Dengan pumping maka banyaknya a menjadi tidak sama dengan symbol-symbol lain.
- Demikian juga (2,2) dan (3,3).
- Berikutnya kita kasus (1,2):
 - Jika v berisi a dan/atau y berisi b maka banyaknya a dan b bias dibuat sama tapi jadi berbeda dengan banyaknya c.
 - Jika v dan/atau y berisi ab maka pumping menyebabkan adanya kemunculan (ab)* di dalam string.
- Demikian juga (2,3) menyebabkan hasil pumping bukan lagi anggota bahasa tsb.
- Kesimpulan: Tidak ada suatu cara pemecahan w ke dalam u,v,x,y, dan z yang bisa memompa dengan setiap harga q selalu $uv^qxy^qz \in L$.

- $L = \{a^m : m = n^2, \text{ dengan } n \ge 0\}$
- Dengan suatu harga k gunakan $|w| = k^4$
- Karena hanya satu symbol jelas bahwa vxy atau vy yang panjangnya maksimum k.
- Juga salah satu (atau keduanya) dari v dan y minimal terdapat satu symbol a; jadi misalkan |vy| = p dengan $1 \le p \le k$.
- Dengan pumping q = 2 maka hasil pumpingnya, w, memiliki panjang $(k^4 + p)$ dengan $(k^4 + 1) \le (k^4 + p) \le (k^4 + k)$.

Contoh 2 (Cont'd)

- Sementara secara proper-order setelah w tsb adalah w" dengan $|w|"| = (k^2+1)^2 = k^4+2k^2+1$ dan ini jelas lebih besar dari (k^4+k) karena $k \ge 1$.
 - Misalnya jika k = 3, $w = a^{81}$, dan |vy| = 3, hasil pumping a^{84} , sementara secara properorder setelah a^{81} adalah a^{100} .
 - Sementara $(k^4 + p) \le (k^4 + k) = 82 + 3 = 84 < 100$
- Berarti pumping menghasilkan string $w' \notin L$

- $L = \{a^ib^ic^j : i, j \ge 0, i \ne j\}$
- Kesulitan teorema Pumping: banyaknya cara partisi w menjadi u, v, x, y, z.
- Tujuan kita menunjukkan:
 - Deretan a dan deretan b bisa dipumping sehingga panjangnya berbeda, atau
 - Deretan c dibuat menjadi sama dengan deretan lain.
- Untuk k > 1 kemungkinan-kemeungkinan:
 - $w = a^k b^k c^{k+1}$ maka sifat pumping terpenuhi dengan v=aa dan y=bb
 - $w = a^k b^k c^{2k}$ maka sifat pumping terpenuhi dengan v=c y= ϵ
 - $w = a^k b^k c^{k+k!}$ juga sifat pumping terpenuhi dengan v=c dan y=c (mengapa $a^k b^k c^{k+k!}$?)
- Gagal dalam membuktikan "L bukan CFL" karena vxy bias beredar dimana saja dalam w.

Contoh 4 (cont'd)

- Dengan Ogden's Lemma, kembali $w = a^k b^k c^{k+k!}$.
- Penentuan *distinguished position* (DP) bertujuan mengurangi banyaknya kemungkinan *vxy* yang bias terjadi.
 - Salah satu symbol dalam v atau y harus DP.
 - Tapi panjang xvy tidak dibatasi lagi (hanya maks meliputi k buah DP, dan minimum 1 DP).
 - Teorema Pumping gagal untuk v dan y berisi c, jadi c jangan menjadi DP.
 - Setiap a ditandai sebagai DP.
- Dengan pembatasan DP ini kemungkinan (2, 2), (2, 3), (3, 3) dihilangkan.
- Jika v atau y berisi dua atau lebih simbol berbeda, ambil q=2, langsung terbukti bukan CFL.
- Untuk (1, 1) dan (1, 3): dengan q=2, panjang deretan a akan bebeda dari deretan b.
- Untuk (1, 2) dan $|v| \neq |y|$ maka dengan q = 2, segera terbukti bukan CFL.
- Yang rumit adalah untuk (1,2) dan |v| = |y|
 - Tapi dengan q = (k!/|v|) + 1, panjang deretan a = deretan c.
- Pertanyaan "mengapa $a^k b^k c^{k+k!}$?" \rightarrow untuk menghasilkan q bilangan bulat.

- $L = \{a^ib^jc^k : i \neq j \neq k\}$
- Ini juga secara intuitif pasti bukan CFL. Dengan teorema pumping pasti sulit (atau tidak bisa?).
- Dengan Ogden's Lemma, $w = a^{k+k!}b^kc^{k+k!}$
 - DP pada setiap simbol b
 - Supaya vy berisi sekurangnya sebuah b,
- Kemungkinan-kemungkinan adalah: (1,2), (2,2), dan (2,3).

Contoh 5 (Cont'd)

- Untuk (1, 2) atau (2,3) dengan v dan/atau y berisi dua simbol:
 - menghasilkan string bukan di *L* karena ada sequence ...abab... atau ...bcbc...
- Untuk (1, 2) atau (2,3) dan salah satu (v atau y) berisi b sebanyak p dengan $p \le k$
 - maka dengan q = (k!/p + 1) menyebabkan banyaknya b == banyaknya a atau banyaknya b.
- (2,2), berarti vxy semuanya b:
 - jika |xy| = p, dengan $p \le k$, maka dengan q = (k!/p + 1) menyebabkan banyaknya b == banyaknya a dan/atau banyaknya b.
- Jadi semua kemungkinan sudah dianalisis dan kesimpulannya bahasa ini bukan Context Free.