Modelación de la Especialización Hemisférica del Cerebro para Frecuencias Espaciales a través de Campos Receptivos Poblacionales

Marié del Valle Reyes

Tutores:

Dr. Mitchell Valdes Sosa Msc. Ania Mesa Rodríguez

1/20

Contenidos

- El Cerebro
- Objetivos
- 3 Modelos
- 4 Resultados
- 6 Conclusión

El Cerebro

Sistema complejo que regula y controla la mayoría de las funciones del cuerpo y la mente.

Se encarga de recibir, interpretar y responder a los estímulos del entorno.

Especialización hemisférica en la percepción visual

Hemisferio Izquierdo

Hemisferio Derecho

Cerebro Objetivos Modelos Resultados Conclusión ●0000000 00 00 00 00

Niveles organizativos de las imágenes visuales

Global

Percibir y procesar el conjunto o configuración general del estímulo visual.

Local

Analizar y procesar los detalles específicos de un estímulo visual.

5/20

FI Cerebro

Modelos

Frecuencia espacial de estímulos visuales

Una imagen compleja puede descomponerse en componentes más simples, que varían en frecuencias diferentes.

Marié del Valle Reves enero de 2024 7/20

Teoría del Doble Filtraje por Frecuencia

- Seleccionar un rango de operación en el espacio de frecuencias espaciales, de acuerdo con la escena visual a analizar.
- Distribuir la información a los dos hemiferios.

FI Cerebro

Hemisferio Izquierdo

detalles finos, aspectos
locales

frecuencias espaciales
altas

FI Cerebro

Hemisferio Derecho

aspectos globales

frecuencias espaciales

bajas

fMRI

La resonancia magnética funcional (fMRI) es una técnica no invasiva para estudiar la activación cerebral con gran resolución espacial. Mide los cambios en la oxigenación de la sangre y el flujo sanguíneo relacionados con la actividad neuronal.

10/20

Objetivos oo

pRF

El Cerebro

Mapa Retinotópico

FI Cerebro

000000000

$$P(H|E) = \frac{P(E|H)P(H)}{P(E)} \tag{1}$$

- H es la deformación particular de la superficie cortical.
- *E* es un conjunto particular de mediciones retinotópicas.

Objetivo General

El objetivo general de este estudio es analizar la especialización hemisférica en el procesamiento visual del cerebro humano.

13/20

Objetivos Específicos

Fl Cerebro

- 1. Aplicar modelos que estiman la frecuencia espacial preferida de los vértices corticales.
- 2. Implementar modelos estadísticos para explicar las diferencias en las frecuencias preferidas de los vértices corticales entre hemisferios.
- 3. Analizar la lateralización hemisférica en diferentes áreas visuales.

14/20

Estimación de período preferido

FI Cerebro

$$\hat{\beta}_b(w_l) = A_b \cdot \exp\left(\frac{-(\log_2(w_l) + \log_2(p_b))^2}{2\sigma_b^2}\right) \tag{2}$$

- $\hat{\beta}_b(w_l)$: Respuesta BOLD promedio en el intervalo de excentricidad b a la frecuencia espacial w_l .
- A_b: Ganancia de respuesta.
- p_b: Período preferido.
- σ_h : Ancho de banda medido en octavas.

16/20

• Modelo Nulo:

Fl Cerebro

Período Preferido
$$\sim 1 + (1|Sujeto) + (1|Estímulo)$$
 (3)

Modelo con Excentricidad:

Período Preferido
$$\sim$$
 Excentricidad $+$ (1|Sujeto) $+$ (1|Estímulo) (4)

• Modelo Aditivo con Excentricidad y Hemisferio:

Período Preferido
$$\sim$$
 Excentricidad $+$ Hemisferio $+$ (1|Sujeto) $+$ (1|Estímulo) (5)

• Modelo con Interacción de Excentricidad y Hemisferio:

Período Preferido \sim Excentricidad \times Hemisferio + (1|Sujeto) + (1|Estímulo) (6)

Tamaño de pRF crece con la excentricidad

El Cerebro

Período preferido y excentricidad

El Cerebro

Marié del Valle Reyes enero de 2024 18/20

Tabla con resultados

El Cerebro

áreas	Excentricidad				Hemisferio				Excentricidad:Hemisferio					
	Coef	SE	t-val	BF10	Coef	SE	t-val	BF10	Coef	SE	t-val	BF10		
V1	0.15	0.00	67.94	Inf	0.10	0.01	8.96	9.78e-04	-0.03	0.00	-10.94	2.01e+21		
V2	0.20	0.00	49.13	Inf	-0.03	0.02	-1.75	1.47e+18	-0.02	0.01	-2.88	3.08e-03		
V3	0.13	0.01	20.97	1.06e+60	0.36	0.03	12.99	3.3e+00	-0.11	0.01	-12.26	3.3e+28		
hV4	-0.03	0.01	-2.32	9.71e+08	0.50	0.05	9.81	1.37e+35	-0.08	0.02	-4.09	1.21e+00		
VO1	0.01	0.02	0.94	4.66e-04	0.77	0.07	11.28	1.89e+63	-0.10	0.02	-4.27	3.71e+00		
VO2	0.22	0.03	8.16	7.53e+22	-0.07	0.11	-0.66	4.37e-01	-0.04	0.04	-1.00	1.82e-03		
LO1	0.38	0.02	19.62	2.19e+109	0.45	0.06	7.44	4.35e+00	-0.15	0.02	-6.15	7.96e+04		
LO2	0.35	0.02	21.09	8.32e+256	-0.36	0.06	-6.07	2.01e+13	0.05	0.02	2.25	5.71e-03		
TO1	0.33	0.01	26.04	1e+208	0.07	0.06	1.19	8.28e-03	-0.05	0.02	-2.55	1.27e-02		
TO2	0.40	0.01	39.02	Inf	0.22	0.05	4.38	4.65e+02	-0.04	0.02	-2.23	4.38e-03		
V3b	0.50	0.01	34.16	Inf	0.38	0.06	6.96	2.42e+23	-0.04	0.02	-1.97	2.54e-03		
V3a	0.23	0.01	21.32	4.42e+158	0.13	0.05	2.70	2.71e-03	-0.06	0.01	-4.06	6.58e-01		

Gracias

20/20