

Neural reranking

Georgios Peikos, Wojciech Kusa, Annisa Maulida Ningtyas, Oscar E. Mendoza

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Neural Retrieval

Three approaches to neural IR

- 1. Cross-encoder
- 2. Bi-encoder
- 3. Learned sparse retrieval

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Technical Challenges

- Data Quality
- Interpretability
- Scalability
- Integration

Ethical and Regulatory Challenges

- Patient Privacy
- Bias and Fairness
- Regulatory Hurdles
- Accountability

BigBio

Figure 2: Treemap visualization of BIGBIO's 126 datasets and 13 task categories, denoted by color.

BIGBIO: A Framework for Data-Centric Biomedical Natural Language Processing

Jason Alan Fries^{1*} Leon Weber^{2,3*} Natasha Seelam^{4*} Gabriel Altay^{5*} Debajyoti Datta^{6†} Ruisi Su^{7†} Samuele Garda^{2†} Sunny MS Kang^{8†} Stella Biderman^{9,10†} Matthias Samwald^{11†} Stephen H. Bach^{12†} Wojciech Kusa^{13†} Samuel Cahyawijava^{14†} Fabio Barth^{2†} Simon Ott^{11†} Mario Sänger^{2†} Bo Wang¹⁵ Alison Callahan¹ Daniel León Periñán¹⁶ Théo Gigant⁷ Patrick Haller² Jenny Chim¹⁷ Jose Posada¹⁸ John Giorgi¹⁹ Karthik Rangasai Siyaraman²⁰ Marc Pàmies²¹ Marianna Nezhurina²² Robert Martin² Moritz Freidank²³ Nathan Dahlberg⁷ Shubhanshu Mishra²⁴ Shamik Bose⁷ Nicholas Broad²⁵ Yanis Labrak²⁶ Shlok S Deshmukh²⁷ Sid Kiblawi²⁸ Ayush Singh⁷ Minh Chien Vu²⁹ Trishala Neeraj³⁰ Jonas Golde² Albert Villanova del Moral²⁵ Benjamin Beilharz³¹ ¹Stanford University ²Humboldt-Universität zu Berlin ³Max Delbrück Center for Molecular Medicine ⁴Sherlock Biosciences ⁵Tempus Labs Inc. ⁶University of Virginia ⁷BigScience ⁸Immuneering ⁹EleutherAI ¹⁰Booz Allen Hamilton ¹¹Institute of Artificial Intelligence, Medical University of Vienna ¹²Brown University ¹³TU Wien ¹⁴The Hong Kong University of Science and Technology ¹⁵⁻³¹See Appendix B *Equal Contribution †Equal Contribution Corresponding Authors: jason-fries@stanford.edu leonweber@posteo.de nseelam1@gmail.com gabriel.altav@gmail.com

- BigBio
- BLURB

Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing

YU GU*, ROBERT TINN*, HAO CHENG*, MICHAEL LUCAS, NAOTO USUYAMA, XIAODONG LIU, TRISTAN NAUMANN, JIANFENG GAO, and HOIFUNG POON, Microsoft Research

- BigBio
- BLURB
- CBLUE

CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark

Ningyu Zhang¹*, Mosha Chen²*, Zhen Bi¹*, Xiaozhuan Liang¹*, Lei Li¹*, Xin Shang³
Kangping Yin², Chuanqi Tan², Jian Xu², Fei Huang², Luo Si², Yuan Ni⁴, Guotong Xie^{4,5,6}
Zhifang Sui^{7,13}, Baobao Chang^{7,13}, Hui Zong^{8,14}, Zheng Yuan⁹, Linfeng Li¹⁰, Jun Yan¹⁰
Hongying Zan^{11,13}, Kunli Zhang^{11,13}, Buzhou Tang^{12,13}†, Qingcai Chen^{12,13}†

¹Alibaba-Zhejiang University Joint Research Institute of Frontier Technologies, Zhejiang University

²Alibaba Group, ³School of Mathematical Science, Zhejiang University, ⁴Pingan Health Technology

⁵Ping An Health Cloud Company Limited ⁶Ping An International Smart City Technology Co., Ltd

⁷Key Laboratory of Computational Linguistics, Ministry of Education, Peking University

⁸School of Life Sciences and Technology, Tongji University ⁹Tsinghua University,

¹⁰Yidu Cloud Technology Inc ¹¹School of Information Engineering, Zhengzhou University

¹²Harbin Institute of Technology (Shenzhen) ¹³Peng Cheng Laboratory, ¹⁴Philips Research China

- BigBio
- BLURB
- CBLUE
- https://ir-datasets.com

ir_datasets: Catalog ir_datasets provides a common interface to many IR ranking datasets. Getting Started Install with pip: pip install --upgrade ir_datasets

Medical models

- BioBERT
- SciBERT
- BlueBERT
- ClinicalBERT

- ClinicalLongformer
- ClinicalBigBird
- ...

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Neural retrieval for clinical trials

- 1. Neural query expansion with T5
- 2. Dense retrieval
- 3. Cross encoder

Neural Query Synthesis and Domain-Specific Ranking
Templates for Multi-Stage Clinical Trial Matching

Authors: Ronak Pradeep, Yilin Li, Yuetong Wang, Jimmy Lin Authors Info & Claims

SIGIR '22: Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval • July 2022 • Pages 2325–2330 • https://doi.org/10.1145/3477495.3531853

Published: 07 July 2022 Publication History

A Check for updates

■ ABSTRACT

In this work, we propose an effective multi-stage neural ranking system for the clinical trial matching problem. First, we introduce NQS, a neural query synthesis method that leverages a zero-shot document expansion model to generate multiple sentence-long queries from lengthy patient descriptions. These queries are independently issued to a search engine and the results are fused. We find that on the TREC 2021 Clinical Trials Track, this method outperforms strong traditional baselines like BM25 and BM25 + RM3 by about 12 points in nDCG@10, a relative improvement of 34%. This simple method is so effective that even a state-of-the-art neural relevance ranking method trained on the medical subset of MS MARCO passage, when reranking the results of NQS, fails to improve on the ranked list. Second, we introduce a two-stage neural reranking pipeline trained on clinical trial matching data using tailored ranking templates. In this setting, we can train a pointwise reranker using just 1.1k positive examples and obtain effectiveness improvements over NQS by 24 points. This end-to-end multi-stage system demonstrates a 20% relative effectiveness gain compared to the second-best submission at TREC 2021, making it an important step towards better automated clinical trial matching.

Journal of Biomedical Informatics

Volume 144, August 2023, 104444

Effective matching of patients to clinical trials using entity extraction and neural re-ranking

Highlights

- We conduct several experiments for the patient-to-trial matching retrieval problem.
- Inclusion criteria section has the biggest influence on the score in lexical models.
- Query and document enrichment techniques improve retrieval of relevant trials.
- Age and gender-based filtering helped remove 26% ineligible trials.
- Novel training strategy for re-ranking further increases retrieval effectiveness.

Matching a Patient from An Admission Note to Clinical Trials: Experiments with Query Generation and Neural-Ranking

Vincent Nguyen Maciej Rybinski Sarvnaz Karimi CSIRO Data61 Sydney, Australia firstname.lastname@csiro.au

ABSTRACT

Many clinical trials fail to attract enough eligible participants. The TREC 2022 Clinical Trials track set a task where patient data, in the form of clinical notes, can be used to match eligible patients to a relevant clinical trial. We explore a number of dense retrieval methods using Bidirectional Encoder Representations from Transformers (BERT). Our best method used BERT reranking using models based on monoBERT architecture. Our self-supervised monoBERT run achieved effectiveness competitive to that of a fully-tuned monoBERT run.

CCS CONCEPTS

Information systems → Retrieval models and ranking;
 Language models; Decision support systems;
 Applied computing → Health informatics.

KEYWORDS

Clinical trials search; Medical information retrieval; Learningto-rank; Evidence-based medicine

ACM Reference Format:

Vincent Nguyen Maciej Rybinski Sarvnaz Karimi. 2021. Matching a Patient from An Admission Note to Clinical Trials: Experiments with Query Generation and Neural-Ranking. In TREC'22: TREC, November, 2022. ACM, New York, NY, USA, 4 pages. tasks [4–6] in its 2017, 2018, and 2019 editions. The task of this year's track is to link a synthetic patient's electronic health record (EHR), in free text, to relevant clinical trials. TREC CT's goal is to study the use of automatic retrieval systems to expose patients to relevant clinical trials to increase participation.

In our submission to this year in the TREC CT track, we build upon our last year's submission [7]. Our experiments this year focus on neural ranking using resource-effective self-supervision and supervision signals from last year's judgement pool. Our experiments with a neural reranking pipeline centered around resource-effective learning, used a reranker trained on labeled data (from last year's edition of the track) compared with a self-supervised model trained using the target document corpus. We also experiment with efficient end-to-end neural ranking (where document representations can be pre-computed) with bi-encoders and with neural query expansion. Finally, we also probe the effect of a simple heuristic for matching the patient note with the demographic profile specified in the clinical trials, which we apply to one of the bi-encoder runs.

2 DATASET

The TREC 2022 CT dataset consists of 50 topics with 35,394

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Topical and Criteria Re-Ranking — TCRR

Training Pipeline

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

What can be visualised?

- 1. Model architecture
- 2. Model training
- 3. Model inference

What can be visualised?

- 1. Model architecture
- 2. Model training
- 3. Model inference

Wandb example

```
# train.py
import wandb
import random # for demo script
wandb.login()
epochs=10
lr=0.01
run = wandb.init(
    # Set the project where this run will be logged
    project="my-awesome-project",
    # Track hyperparameters and run metadata
    config={
        "learning_rate": lr,
        "epochs": epochs,
   })
offset = random.random() / 5
print(f"lr: {lr}")
# simulating a training run
for epoch in range(2, epochs):
    acc = 1 - 2 ** -epoch - random.random() / epoch -
offsets = 2 ** -epoch + random.random() / epoch + offset
    print(f"epoch={epoch}, accuracy={acc}, loss={loss}")
    wandb.log({"accuracy": acc, "loss": loss})
# run.log code()
```

Wandb — PyTorch example

```
import wandb
wandb.init(config=args)
# set up your model
model = AutoModelForSequenceClassification.from_pretrained(
               model_name, num_labels=2
# Magic
wandb.watch(model, log_freq=100)
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
    output = model(data)
    loss = F.nll_loss(output, target)
    loss.backward()
    optimizer.step()
    if batch_idx % args.log_interval == 0:
        wandb.log({"loss": loss})
```

Wandb — logging metrics

```
predictions = trainer.predict(
   tokenized_datasets[test_data],
wandb.log(
       f"{test_data}_precision": predictions.metrics["test_precision"],
        f"{test_data}_recall": predictions.metrics["test_recall"],
       f"{test_data}_f1": predictions.metrics["test_f1"],
       f"{test_data}_loss": predictions.metrics["test_loss"],
```

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Hands-on Session 1: Training with TCRR

Google Colab

- 1. Neural retrieval recap
- 2. Challenges in medical neural retrieval
- 3. Neural retrieval for clinical trials
- 4. Introduction to the TCRR model
- 5. Performance tracking
- 6. Hands-on #1: model training
- 7. Hands-on #2: inference

Hands-on Session 2: Inference and Application

Google Colab

Questions?