Nonlinear optimization

- ▶ optimization problem in standard form
- ► solving optimization problems
- ► convex optimization problems
- ► Topics and goals

Optimization problem in standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

- $x \in \mathbb{R}^n$ is the optimization variable
- $f_0: \mathbb{R}^n \to \mathbb{R}$ is the objective or cost function
- $f_i: \mathbb{R}^n \to \mathbb{R}, i = 1, \dots, m$, are the inequality constraint functions
- $h_i: \mathbb{R}^n \to \mathbb{R}$ are the equality constraint functions

optimal solution: x has smallest value of f_0 among all vectors that satisfy the constraints

Solving optimization problems

general optimization problem

- ► very difficult to solve
- methods involve some compromise, e.g., very long computation time, or not always finding the solution

exceptions: certain problem classes can be solved efficiently and reliably

- ▶ linear programming problems
- convex optimization problems

Convex optimization problem

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad i=1,\ldots,m \\ & h_i(x) = 0, \quad i=1,\ldots,p \end{array}$$

• objective and inequality constraint functions are convex:

$$f_i(\alpha x + (1 - \alpha)y) \le \alpha f_i(x) + (1 - \alpha)f_i(y), \quad \text{for } \alpha \in [0, 1]$$

- equality constraint functions are linear
- ▶ includes linear programs as special cases

solving convex optimization problems

- no analytical solution
- reliable and efficient algorithms
- ▶ computation time (roughly) proportional to $\max\{n^3, n^2m, F\}$, where F is cost of evaluating f_i s and their first and second derivatives
- ► almost a technology

using convex optimization

- ▶ often difficult to recognize
- ▶ many tricks for transforming problems into convex form
- surprisingly many problems can be solved via convex optimization

Topics and goals

topics

- ► convex sets, functions, optimization problems
- ▶ duality
- algorithms: gradient methods, qusi-Newton methods, Newton methods, etc.

goals

- ► recognize/formulate problems as convex optimization problems
- ▶ develop code for problems of moderate size
- ► characterize optimal solution, give limits of performance, etc.