Задание А1

Алгоритм ALG 1

- 1. В данном задаче будем хранить графа в виде списка рёбер. Позже, при анализе, обоснуем этот выбор
- 2. Для сортировки рёбер по весу необходимо $\Theta(|E|\log|E|)$ операций (в частном случае, если веса ограниченное подмножество целых чисел фиксированного размера (в битах), можно применить radix-sort за $\Theta(|E|+K)$)
- 3. Внешний цикл будет выполняться за $\Theta(|E|)$, проверка на связность обходом в глубину / ширину (dfs / bfs) (корректно, т.к. граф неориентированный) На каждой итерации обход делается за $\Theta(|V|+|E'|)$, где E' текущее количество рёбер в графе На каждой итерации в худшем случае |E'|=|E|, если ни одно ребро на предыдущих итерациях не удалялось

Удаление ребра - за O(|E|), добавление ребра обратно - за O(1) Таким образом, цикл работает за O(|E|(|E|+|V|))) = O(|E|(|E|+|V|))

3. В данной задаче не важно - хранить граф в виде списка рёбер или списка смежности, т.к. на каждой итерации самая дорогая операция - обход за O(|V| + |E|). Если хранить граф в виде матрицы смежности/сопряжённости, то операции удаления станут работать за O(1), но обход станет работать за $O(|V|^2)$, что не лучше изначальной асимптотики. 4. Тогда весь алгоритм работает за $O(|E| \cdot (|E| + |V|) + |E| \log |E|) = O(|E| \cdot (|E| + |V|))$

Алгоритм ALG 2

- 1. В данном задаче будем хранить графа в виде списка рёбер. Позже, при анализе, обоснуем этот выбор
- 2. Случайную последовательность ребёр графа G = (V, E) можно сгенерировать за $\Theta(|E|)$, сгенерировав последовательность индексов от 0 до |E| 1 за $\Theta(|E|)$ и перемешав её при помощи std::shuffle за $\Theta(|E|)$. Тогда рёбра можно будет выбирать по индексам в списке рёбер.
- 3. Внешний цикл выполняется за $\Theta(|E|)$

Проверка на наличие циклов в неориентированном графе - dfs за O(|V| + |E|)

Добавление ребра делается за O(1), удаление ребра - за O(|E|)

Аналогично рассуждениям в предыдущей задаче, хранение графа в виде матрицы смежности/сопряжённости не улучшит асимптотику самой дорогой операции в цикле, но может ухудшить её (например, если |E| = O(|V|)).

4. Тогда весь алгоритм работает за $= O(|E| + |E| \cdot (|E| + |V|)) = O(|E| \cdot (|E| + |V|))$

Алгоритм ALG 3

- 1. В данном задаче будем хранить графа в виде списка рёбер. Позже, при анализе, обоснуем этот выбор
- 2. Добавление ребра делается за O(1), удаление ребра за O(|E|)
- 3. Случайную последовательность ребёр графа G = (V, E) можно сгенерировать за $\Theta(|E|)$, сгенерировав последовательность индексов от 0 до |E|-1 за $\Theta(|E|)$ и перемешав её при помощи std::shuffle за $\Theta(|E|)$. Тогда рёбра можно будет выбирать по индексам в списке рёбер.
- 3. Внешний цикл выполняется за $\Theta(|E|)$

Поиск цикла в неориентированном графе - dfs за O(|V| + |E|)

Поиск ребра с максимальным весом в найденном цикле - за O(V),

т.к. # рёбер в цикле = (# вершин в цикле – 1) < |V|

Аналогично рассуждениям в предыдущей задаче, хранение графа в виде матрицы смежности/сопряжённости не улучшит асимптотику самой дорогой операции в цикле, но может ухудшить её (например, если |E| = O(|V|)).

4. Тогда весь алгоритм работает за $= O(|E| + |E| \cdot ((|E| + |V|) + |E| + |E|)) = O(|E| \cdot (|E| + |V|))$

Исходный код приведён в файле а1.срр

Корректность алгоритмов

Приведём контрпример, показывающий, что алгоритм ALG 1 не строит mst:

приведем контрпример, показывающий, что алгоритм АСС_1 не строит піст.
My cms $G = (V, E)$
1) $T = E = \{ \{ \{1,3\}, \{2,3\}, \{3,4\} \} \}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2) $T = \{ \{ \{1,3\}, \{2,3\} \} \}$ Colymber your, by komposo Sorewe kerioss Yanems perpa.
Janems pespa. Ju man The mst, mx The amoblece
Jepelo, mx Bepulma 4 & VT

Приведём контрпример, показываю	ощий, что алгоритм ALG_2 не строит mst:
/	

Приведём контрпример, показывающий, что алгоритм ALG_2 не строит mst:
Jy me $G = (V, E)$.
2
1) Uguaranono $T = \emptyset$
136 Sepen pelpo (2,3), parece pelpo (12), a nomar pelpo (1,3)
Morpa anopume holypoun
makoe usuome embo pesèpe.
$T = \{(2,3), (1,2)\}$
Japunt: 21 32 - Le moz
me bee péolp pably 3>2

Приведём контр пример работы алгоритма ALG_3 (построение mst):

Lemma Лемма 1 об алгоритме ALG 3

Алгоритм ALG 3 строит остовное дерево данного графа G = (V, E)

Proof:

- 1. Здесь и далее будем обозначать через T граф, который построен на рёбрах, которые получил алгоритм ALG 3 после окончания работы.
- 2. До начала итераций цикла T пустое множество, далее, на первых двух итерациях (или одной, если |E|=1) в T добавляются 2 ребра, цикл образоваться не может
- 3. На каждой итерации из графа Т удаляется ребро e_{max} после добавления некоторого ребра e тогда и только тогда, когда после добавления ребра e образовался цикл c, и при этом $e_{max} \in c$.

Пусть в T есть цикл. Тогда, на какой-то итерации алгоритма образовалось сразу хотя бы 2 цикла (если на каждой итерации образовывается не более 1 цикла, то они сразу удаляются)

Рассмотрим первую среди таких итераций, на которой образовалось сразу 2 цикла.

Пусть на этой итерации было добавлено ребро $e = \{u, v\}$, тогда до добавления ребра в графе не было циклов

(иначе, это не первая итерация, на которой появилось сразу хотя бы 2 цикла)

Т.к. на данной итерации появилось сразу хотя 2 цикла, то между вершинами u и v было хотя бы 2 различных пути:

если между ними не было пути, то не образовался бы ни один цикл, а если был только один путь, то образовался бы 1 цикл

Но раз между ними уже было хотя бы 2 различных пути, то в графе уже был цикл, что неверно, т.е. пришли к противоречию, предположив, что в T есть цикл.

- 4. Т.к. в T рёбра удаляются только из циклов и только по-одному ребру, то граф связен При этом, каждое ребро исходного графа добавлялось в T, тогда множество вершин графа T совпадает с множеством вершин графа G (рёбра удаляются, только если они в цикле)
- 5. Доказали, что T связный граф без циклов \implies T дерево.

Тогда $T = (V, E_T) \implies T$ - остовное дерево графа G.

Lemma Лемма 2 об алгоритме ALG 3

Алгоритм ALG_3 строит минимальное остовное дерево данного графа G = (V, E)

6

Proof.

1. По лемме 1 ALG_3 построил некоторое остовное дерево $T = (V, E_T)$ графа G. В данной лемме через "mst" будем обозначать фразу "минимальное остовное дерево"

Рассмотрим некоторые крайние случаи:

$$|V|=0 \implies E_T=\varnothing \implies T-mst$$
rpaфa G

$$|V| = 1 \implies E_T = \emptyset \implies T - mst$$
rpaфa G

$$|V|=2 \implies V=\{u,v\} \implies E_T=\{\{u,v\}\} \implies T-mst$$
rpaфa G

Показали, что при $|V| \le 2$ лемма верна. Пусть $|V| > 2 \implies |V| \ge 3$

3. Граф G связен \implies \exists хотя бы одно mst графа G.

Возмём произвольное mst графа G, обозначив его как T', и покажем, что при помощи преобразований над рёбрами графа T', которые сохраняют его свойство быть минимальным остовным деревом графа G, из T' можно получить T.

4. Если T = T', то лемма доказана. Пусть $T \neq T'$.

T и
$$T'$$
 - остовные деревья графа $G \implies |E_T| = |E_{T'}| = |V| - 1 \ge 2$

$$T = (V, E_T) \wedge T' = (V, E_{T'}) \wedge T \neq T' \implies E_T \neq E_{T'}$$

$$E_T \neq E_{T'} \land |E_T| \geq 2 \land |E_{T'}| \geq 2 \implies \exists (u,v) \in V^2 : \{u,v\} \in E_T \land \{u,v\} \notin E_{T'}$$

T' - связный граф \implies в графе T' есть путь из вершину u в вершину v.

Обозначим вершины этого пути как $u, p_1, p_2, ..., p_k, v$ (быть может, k = 1)

На картинке это можно изобразить так:

Figure 1

При этом, вершины $p_1, p_2, ..., p_k \in \text{графу } T' \implies \{p_1, p_2, ..., p_k\} \subseteq V \implies$

- ⇒ эти вершины есть и в графе Т (т.к. Т остовное дерево графа G)
- 5. Любое ребро из E_T и $E_{T'}$ есть в $E \Longrightarrow$ в исходном графе G есть цикл $(u,p_1,...,p_k,v,u)$

I. Если в графе T нет ребра $\{v, p_k\}$, тогда:

Figure 2

І.1 Ребра $\{v, p_k\}$ нет в Т \implies оно было удалено во время работы алгоритма.

Оба ребра $\{u,v\}$ и $\{v,p_k\}$ есть в графе G и принадлежат одному циклу, поэтому алгоритм мог удалить любое из них, не нарушив связность T.

Из того, что алгоритм удалил $\{v, p_k\}$, следует, что $w(v, p_k) \ge w(u, v)$

Это верно, т.к. если $\{v, p_k\}$ удалил из-за образования цикла после вставки $\{u, v\}$, то $w(v, p_k) \ge w(u, v)$

А если $\{v, p_k\}$ удалили из-за другого цикла c, когда в графе ещё не было $\{u, v\}$,

то $w(v,p_k) \geq$ максимального веса рёбер в цикле c, из-за которого его удалили, но это цикл c точно проходил через вершины $\{v,p_k\} \implies$ из-за того, что в G есть цикл $(u,p_1,...,p_k,v,u)$,

ребро $\{u,v\}$ также попадало в цикл с рёбрами из c, но осталось в графе \implies

 \implies его вес не больше максимального веса рёбер в $c \implies w(u,v) \le w(v,p_k)$

I.2 Если $w(u,v) < w(v,p_k)$, то в T' можно удалить ребро $\{v,p_k\}$ и добавить ребро $\{u,v\}$

Множество вершин графа T' при этом не изменится, граф останется связным и в нём не появится цикл, т.е. граф останется остовным деревом графа G.

Но при этом его (графа T') вес уменьшится, что противоречит тому, что $T'-mst\implies\bot\implies$

 \implies предположение, что $w(u,v) < w(v,p_k)$, неверено $\implies w(u,v) = w(v,p_k)$

I.3 Тогда построим граф T'' так: уберём из $E_{T'}$ ребро $\{v,p_k\}$ и добавим ребро $\{u,v\}$, т.е.

 $E_{T''}:=\left(E_{T'}\setminus\left\{\left\{v,p_k\right\}\right\}\right)\cup\left\{\left\{u,v\right\}\right\}$

В графе T'' не появится цикл, он останется связным, и его вес не изменится, т.е. останется равным весу графа $T' \Longrightarrow T'' - mst$ графа G.

И при этом его множество рёбер $E_{T''}$ станет на 1 ребро "ближе" к множеству вершин E_T Формально, $|E_T \cap E_{T''}| = |E_T \cap E_{T'}| + 1$

На картинке это можно изобразить так:

Figure 3

II. Если в графе T есть ребро $\{v, p_k\}$, тогда:

Figure 4

II.1. Рассмотрим рёбра $\{u,p_1\},...,\{p_k,v\}$ графа T' (это множество не пусто, т.к. $k\geq 1$) Если они все $\in E_T$, то в T есть цикл $(u,p_1,...,p_k,v,u) \Longrightarrow \mathrm{T}$ - не дерево $\Longrightarrow \bot$ Пусть ребра $\{p_i,p_{i+1}\}$ (здесь $0\leq i\leq k-1,p_0:=u$) нет в графе T На картинке это можно изобразить так:

Figure 5

II.2 Ребра $\{p_i, p_{i+1}\}$ нет в Т \Longrightarrow оно было удалено во время работы алгоритма. По аналогии с пунктом I.1 $w(p_i, p_{i+1}) \ge w(u, v)$

II.3 Если $w(u,v) < w(p_i,p_{i+1})$, то в T' можно удалить ребро $\{p_i,p_{i+1}\}$ и добавить ребро $\{u,v\}$ Множество вершин графа T' при этом не изменится, граф останется связным и в нём не появится цикл, т.е. граф останется остовным деревом графа G.

Но при этом его (графа T') вес уменьшится, что противоречит тому, что $T'-mst \implies \bot \implies$ предположение, что $w(u,v) < w(p_i,p_{i+1})$, неверено $\implies w(u,v) = w(p_i,p_{i+1})$

II.4 Тогда построим граф T'' так: уберём из $E_{T'}$ ребро $\{p_i,p_{i+1}\}$ и добавим ребро $\{u,v\}$, т.е.

$$E_{T''} = (E_{T'} \setminus \{\{p_i, p_{i+1}\}\}) \cup \{\{u, v\}\}$$

В графе T'' не появится цикл, он останется связным, и его вес не изменится, т.е. T''-mst графа G. И при этом его множество рёбер $E_{T''}$ станет на 1 ребро "ближе" к множеству рёбер E_T Формально, $|E_T \cap E_{T''}| = |E_T \cap E_{T''}| + 1$

На картинке это можно изобразить так:

Figure 6

6. Таким образом, привели пример итерационного алгоритма, который на каждой итерации преобразует $mstT^j$ в $mstT^{j+1}$ путём удаления одного ребра из E_{T^j} и добавления одного ребра из E_{T^j} , которого ранее не было в E_{T^j} , так, что множества вершин графов T^j и T^{j+1} совпадают и равны V, и при этом выполняется равенство $|E_T \cap E_{T^{j+1}}| = |E_T \cap E_{T^j}| + 1$ $\forall j: |E_{T^j}| = |V| - 1 \implies \forall j: |E_T \cap E_{T^j}| \le |V| - 1$

Тогда через конечное число итераций алгоритма получим $mstT^l$, такое что: $|E_T \cap E_{T^l}| = |V| - 1$ $(|E_T| = |V| - 1) \wedge (|E_{T^l}| = |V| - 1) \wedge (|E_{T^l}| = |V| - 1) \rightarrow E_T = E_{T^l}$

У графов T и T^l множества вершин совпадают $\implies T = T^l$

Таким образом, через конечное число итераций получим $mstT^l$, равное Т $\implies T-mst$ графа G