Análise de Dados Longitudinais Aula 01.08.2018

José Luiz Padilha da Silva - UFPR www.docs.ufpr.br/~jlpadilha

Sumário

- Comparação de Médias
- Caracterização dos Dados Longitudinais
- Modelos de Regressão
 - Modelos Marginais
 - Modelos Mistos
 - Modelos de Transição

Comparação de duas Médias

Retomar a Comparação dos Colírios A e B

- Pacientes com pressão intra-ocular (PIO) elevada irão participar do estudo.
- A pressão será medida após dois meses de uso do colírio.
- O objetivo é comparar a redução média de PIO dos dois colírios.

Então, queremos o seguinte:

$$\delta = \mu_A - \mu_B$$
.

O interesse é então testar a hipótese:

$$H_0: \delta = 0$$

Comparação de Médias

- Existem duas formas de conduzir o estudo:
 - 50 pacientes são submetidos ao colírio A e ao colírio B (medidas repetidas). Considera-se uma período de descanso de dois meses entre a aplicação dos colírios. É indicado aleatorizar a ordem de aplicação de A e B.
 - 100 pacientes são selecionados e 50 são sorteados para receber o colírio A e os demais recebem o B.
- Ambos estudos s\(\tilde{a}\)o experimentais
 - Pareado: Estudo Cross-over
 - Amostras Independentes: Estudo Clínico Aleatorizado.
- Qual forma você utilizaria?

Amostra Pareada ou Independente?

- Vantagens de Parear as Amostras
 - Controlar por possíveis fatores de confusão.
 - Menos pacientes/unidades na amostra.
 - Teste mais preciso com menos suposições.
 - Controla pelo efeito de coorte.
- Vantagens de Amostras Independentes
 - Dados são obtidos de forma mais rápida.

Amostras Pareada ou Independente?

Quando devemos parear?

SEMPRE (que for possível).

- Caso típico: antes e depois.
- Situações impossíveis: fumantes e não-fumantes, etc.

Teste-t pareado

O objetivo é comparar duas medidas pareadas.

$$\delta = \mu_A - \mu_B$$
.

Uma estimativa natural para δ é a diferença das médias. Ou seja

$$\widehat{\delta} = \widehat{\mu}_{\mathsf{A}} - \widehat{\mu}_{\mathsf{B}}.$$

A variância de $\widehat{\delta}$ é

$$Var(\widehat{\delta}) = \frac{1}{N}(\sigma_A^2 + \sigma_B^2 - 2\sigma_{AB})$$

Teste-t pareado

Usualmente dados longitudinais têm correlação positiva. Ou seja $\sigma_{AB}>0$.

Isto significa que a estatística a ser utilizada tem menor variância do que aquela obtida com dados independentes.

Exemplo: Colírio A: Timoptol (timo) e Colírio B: Betoptic (cor=0,43).

Teste-t pareado

Considere as diferenças:

$$d_i = y_{i1} - y_{i2}$$
 $i = 1, ..., n$.

A estatística é:

$$t = \frac{\overline{d}}{s_d/\sqrt{n}},$$

que, sob H_0 , tem uma distribuição t com n-1 graus de liberdade.

Suposição: *d_i* vem de uma distribuição normal.

Exemplo Colírio¹: t = 2.9934, df = 31, p-value = 0.005378.

¹o teste somente é válido se não houver efeito de período e de "carry-over"

Exemplo Colírio

```
> head(colirio)
  PRONT. IDADE
            SEXO
                IOP_sem IOP_betop IOP_timo Ordem
  6649 75
             F 19.1
                         17.7
                                14.4
 3106 61 M 30.5
                        21.7
                                21.4
3
  15231 57 F 19.1 18.4
                                17.8
4
  799 42 F 20.0 14.8
                                18.1
5 9371 59 M 24.0
                       21.8
                                14.7
  757
         65
             M 19.3
                        20.3
                                20.8
> colMeans(cbind(colirio$IOP_beto,colirio$IOP timo))
[1] 18.2375 16.1375
> var(cbind(colirio$IOP_beto,colirio$IOP_timo))
       [,1] [,2]
[1,] 16.20242 5.65629
[2,] 5.65629 10.85919
```

 Calcule e discuta estatística t considerando e desconsiderando o pareamento.

Comparação de mais de duas Médias

Comparação dos Colírios A e B e C

- Pacientes com pressão intra-ocular elevada irão participar do estudo.
- A pressão será medida após dois meses de uso do colírio.
- O objetivo é comparar a redução média dos três colírios.

Então, queremos testar a seguinte hipótese:

$$H_0: \mu_A = \mu_B = \mu_C.$$

ANOVA é válido?

Análise de Dados Longitudinais

- Características:
 - As respostas de diferentes unidades s\u00e3o independentes;
 - As respostas para a mesma unidade são correlacionadas. De uma forma geral, as respostas próximas no tempo devem ser mais correlacionadas.
- Medida Temporal
 - Idade;
 - Calendário medido a partir de um certo evento.
- Objetivos do Estudo:
 - avaliar o comportamento temporal;
 - avaliar o efeito de covariáveis sobre a resposta;
 - predição.
- Modelos de Regressão
 - Modelos marginais (modelar a média e a estrutura de covariância);
 - Modelo de efeitos aleatórios.
 - Modelo de transição.

Características da Correlação dos Dados

- As correlações usualmente são positivas;
- as correlações usualmente diminuem à medida que aumenta a separação no tempo;
- as correlações entre medidas repetidas raramente aproximam do zero.
- medidas muito próximas tendem a ter correlação um.

Fontes de Variabilidade em Estudos Longitudinais

- Variação entre-unidades;
- Variação intra-unidade;
- Erro de medição.

Fontes de Variabilidade em Estudos Longitudinais

Estas três fontes de variação podem ser visualizadas de forma gráfica.

- pontos pretos são respostas livre de erro de medição;
- pontos brancos são as respostas observadas;
- A e B são diferentes indivíduos.

Notação

Seja Y_{ij} a variável resposta para i-ésimo indivíduo (i = 1, ..., N) na j-ésima ocasião² (j = 1, ..., n).

Dado que temos n medidas repetidas da resposta no mesmo indivíduo, podemos agrupá-las em um vetor $n \times 1$, denotado por

$$Y_i = \left(egin{array}{c} Y_{i1} \ Y_{i2} \ dots \ Y_{in} \end{array}
ight),$$

ou, por conveniência,

$$Y_i = (Y_{i1}, Y_{i2}, \dots, Y_{in})'.$$

²Mais tarde estenderemos a notação para o caso desbalanceado.

O principal interesse está na média da resposta (em particular, em mudanças da média no tempo e como esta mudança depende de covariáveis).

Denote a média ou esperança de cada resposta Y_{ij} por $\mu_j = E(Y_{ij})$. Adicionalmente, para permitir que a resposta média varie de indivíduo para indivíduo como função de covariáveis medidas em nível de indivíduo, requeremos $\mu_{ij} = E(Y_{ij})$.

Denotando a média condicional de Y_{ij} por μ_{ij} , a variância condicional de Y_{ij} é definida como:

$$\sigma_j^2 = E\left[Y_{ij} - E(Y_{ij})\right]^2 = E\left(Y_{ij} - \mu_{ij}\right)^2.$$

A *covariância* condicional entre as respostas em duas ocasiões diferentes, digamos Y_{ij} e Y_{ik} , é definida por

$$\sigma_{jk} = E\left[(Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik}) \right].$$

e fornece uma medida da dependência *linear* entre Y_{ij} e Y_{ik} , dado as covariáveis.

A correlação condicional entre Y_{ij} e Y_{ik} é denotada por

$$\rho_{jk} = \frac{E\left[(Y_{ij} - \mu_{ij})(Y_{ik} - \mu_{ik})\right]}{\sigma_i \sigma_k},$$

que, por definição, assume valores entre -1 e +1.

Definimos a matriz de variância-covariância como segue

$$Cov\begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in} \end{pmatrix} = \begin{pmatrix} Var(Y_{i1}) & Cov(Y_{i1}, Y_{i2}) & \dots & Cov(Y_{i1}, Y_{in}) \\ Cov(Y_{i2}, Y_{i1}) & Var(Y_{i2}) & \dots & Cov(Y_{i2}, Y_{in}) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(Y_{in}, Y_{i1}) & Cov(Y_{in}, Y_{i2}) & \dots & Var(Y_{in}) \end{pmatrix}$$

$$= \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_{nn} \end{pmatrix}.$$

Assumimos que as variâncias e covariâncias são constantes. Note que há simetria, ou seja, $Cov(Y_{ii}, Y_{ik}) = \sigma_{ik} = \sigma_{kj} = Cov(Y_{ik}, Y_{ij})$.

Usaremos frequentemente a notação

$$Cov(Y_i) = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix}.$$

Definimos a matriz de correlação em termos de

$$Corr(Y_i) = \begin{pmatrix} 1 & \rho_{12} & \dots & \rho_{1n} \\ \rho_{21} & 1 & \dots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \dots & 1 \end{pmatrix},$$

que é simétrica, ou seja, $Corr(Y_{ij}, Y_{ik}) = \rho_{jk} = \rho_{kj} = Corr(Y_{ik}, Y_{ij})$.

Modelo Marginal

O modelo para a resposta média em cada ocasião não incorpora a dependência sobre nenhum efeito aleatório ou sobre respostas anteriores.

Apropriado quando o foco da análise é inferir sobre a população média.

- ② $Var(Y_{ij}|X_{ij}) = \phi v(\mu_{ij})$, em que ϕ é um parâmetro de dispersão e $v(\cdot)$ é uma função conhecida da média.
- **1** A correlação intra-indivíduos é função de α . Por exemplo:
 - $Corr(Y_{ij}, Y_{ik}) = \alpha^{|k-j|}$ (AR-1 para respostas contínuas);
 - $logOR(Y_{ij}, Y_{ik}) = \alpha_{jk}$ (não-estruturado para respostas categóricas).

Modelos Mistos

Incluem efeitos aleatórios no modelo de efeitos fixos, em nível de indivíduo, modelando a heterogeneidade entre indivíduos e induzindo, assim, uma estrutura de covariância entre as respostas repetidas.

- $E(Y_{ij}|X_{ij},b_i) = \mu_{ij}$, com $g(\mu_{ij}) = \eta_{ij} = X'_{ij}\beta + Z'_{ij}b_i$, sendo b_i o efeito aleatório associado com Y_i .
- $2 Var(Y_{ij}|X_{ij},b_i) = \phi v(\mu_{ij}).$
- **③** Geralmente assume-se $b_i \sim N_q(0, G)$.

Modelos de Transição

A distribuição condicional de Y_{ij} é descrita como uma função explícita das respostas passadas e de um vetor de variáveis preditoras.

- $E(Y_{ij}|X_{ij},H_{ij})=\mu_{ij}$, com $H_{ij}=\{Y_{id},d=1,\ldots,j-1\}$. $g(\mu)=X'_{ij}\beta+\sum_{q=1}^Q f_q(H_{ij},\alpha)$, em que $f_q(\cdot)$ são funções conhecidas.
- $2 Var(Y_{ij}|X_{ij},H_{ij}) = \phi v(\mu_{ij}).$
- **3** A correlação entre Y_{i1}, \ldots, Y_{in} é avaliada através do parâmetro α que aparece na função $f_q(\cdot)$.