```
In [1]: import os
        import warnings
        from datetime import datetime
        from collections import defaultdict
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from imblearn.over_sampling import SMOTE
        import statsmodels.api as sm
        from statsmodels.stats.outliers_influence import variance_inflation_factor as vif
        from sklearn.metrics import confusion_matrix, plot_confusion_matrix
        from sklearn.exceptions import ConvergenceWarning
        from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
        from sklearn.model selection import train test split, StratifiedKFold
        from sklearn.linear model import LogisticRegression
        from sklearn.feature_selection import RFECV
In [2]: sns.set()
        pd.set_option('display.max_columns', None)
```

1. The HR Analytics Dataset

This dataset came from Kaggle: https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset https://www.kaggle.com/pavansubhasht/ibm-hr-analytics-attrition-dataset

Load the dataset from a csv file.

```
In [3]: # Load the csv dataset into pandas dataframes
    data_file = os.path.join(os.getcwd(), 'dataset', 'hr_employee_attrition.csv')
    hr_df = pd.read_csv(data_file)
    hr_df.head(3)
```

Out[3]:

•		Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Emp
	0	41	Yes	Travel_Rarely	1102	Sales	1	2	Life Sciences	
	1	49	No	Travel_Frequently	279	Research & Development	8	1	Life Sciences	
	2	37	Yes	Travel_Rarely	1373	Research & Development	2	2	Other	
	4									•

```
In [4]: hr_df.describe(include='all')
Out[4]:
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Edι
count	1470.000000	1470	1470	1470.000000	1470	1470.000000	1470.000000	
unique	NaN	2	3	NaN	3	NaN	NaN	
top	NaN	No	Travel_Rarely	NaN	Research & Development	NaN	NaN	L
freq	NaN	1233	1043	NaN	961	NaN	NaN	
mean	36.923810	NaN	NaN	802.485714	NaN	9.192517	2.912925	
std	9.135373	NaN	NaN	403.509100	NaN	8.106864	1.024165	
min	18.000000	NaN	NaN	102.000000	NaN	1.000000	1.000000	
25%	30.000000	NaN	NaN	465.000000	NaN	2.000000	2.000000	
50%	36.000000	NaN	NaN	802.000000	NaN	7.000000	3.000000	
75%	43.000000	NaN	NaN	1157.000000	NaN	14.000000	4.000000	
max	60.000000	NaN	NaN	1499.000000	NaN	29.000000	5.000000	
4								•

All rows have values for each column. Therefore, there's no need to drop any rows.

```
In [5]: hr_df.columns[hr_df.isna().any()].tolist()
Out[5]: []
```

Upon inspection, column Over18 has values that are all 'Y'. A good assumption would be that a person has to be 18 years old at the minimum to be employed. Initially, this can be considered uselss. However, I retained this for the following reasons:

- 1. Country There are some countries where the legal minimum working age is lower than 18 (e.g. 15 for Japan). This dataset did not indicate which countries the employees are from.
- 2. Live Production Data This dataset is a snippet in its current form. However, if production data is always extracted, there will always be a possibility that the opposite value, 'N', would appear.
- 3. Interns While not present in the dataset, interns can be below 18 years old. In addition, every employer keeps records of their interns as they're still considered employees.

```
In [6]: hr_df['Over18'].value_counts()
Out[6]: Y     1470
     Name: Over18, dtype: int64
```

Column EmployeeCount contains a single value as well. However, this column does not make sense at all so I removed this one.

```
In [7]: hr_df['EmployeeCount'].value_counts()
Out[7]: 1    1470
        Name: EmployeeCount, dtype: int64
In [8]: hr_df.drop(['EmployeeCount'], axis=1, inplace=True)
```

Column StandardHours contains only one value which is 80. There is a possibility that in the future, there will be a new value. However, at present, we cannot invent rows with say, 88, without considering other variables. There, this column needs to be dropped.

```
In [9]: hr_df['StandardHours'].value_counts()
Out[9]: 80    1470
    Name: StandardHours, dtype: int64
In [10]: hr_df.drop(['StandardHours'], axis=1, inplace=True)
```

2. Exploring the Data

2.1. Exploring the Whole Data

In the attrition, those who stayed (No) greatly outnumber those who left (Yes).

```
In [11]: ax = hr_df['Attrition'].value_counts().plot(kind='bar')
   ax.set_title('Count of Attrition');
```


Research & Development department has the highest number of employees, followed by Sales and Human Resources. R & D also has the highest number of employees who left.

```
In [12]: fig = sns.catplot(x='Attrition', kind='count', hue='Department', data=hr_df)
fig.set(xlabel='Attrition', ylabel="Employee Count", title="Count of Attritions by Department");
```


If combined, those with Job Satisfaction of 1 and 2 are greater than those with 3 and 4.

```
In [13]: fig = sns.catplot(x='JobSatisfaction', kind='count', data=hr_df )
    fig.set(xlabel='Attrition', ylabel="Employee Count", title="Count of Employees by Job Satisfaction");
```


Majority of employees traver rarely.

In [14]: hr_df['BusinessTravel'].value_counts().plot(kind='bar');

In [15]: print("Mean Age: {}".format(hr_df['Age'].mean()))
 sns.distplot(hr_df['Age']);

Mean Age: 36.923809523809524


```
In [16]: print("Mean Monthly Rate: {}".format(hr_df['MonthlyRate'].mean()))
sns.distplot(hr_df['MonthlyRate']);
```

Mean Monthly Rate: 14313.103401360544

While the average tenure is 7 years, there are some outliers. These are employees who have stayed for longer than 10 years.

```
In [17]: print("Mean Tenure (YearsAtCompany): {}".format(hr_df['YearsAtCompany'].mean()))
    sns.distplot(hr_df['YearsAtCompany']);
```

Mean Tenure (YearsAtCompany): 7.0081632653061225

This chart shows the distribution and average monthly rates for each department. Human Resources has the lowest average monthly salary.

```
In [18]: unique_depts = hr_df['Department'].unique()

for dept in unique_depts:
    subset = hr_df[hr_df['Department'] == dept]
    dept_mean = subset['MonthlyRate'].mean()
    dept_label = '{} (Ave: {:.2f})'.format(dept, dept_mean)
    sns.distplot(subset['MonthlyRate'], hist=False, label=dept_label)

plt.legend(title='Departments');
```


2.2. Exploring those who Left

```
In [19]: leaver_df = hr_df[hr_df['Attrition'] == 'Yes']
In [20]: leaver_df.describe(include='all')
Out[20]:
```

	Age	Attrition	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	Educa
count	237.000000	237	237	237.000000	237	237.000000	237.000000	
unique	NaN	1	3	NaN	3	NaN	NaN	
top	NaN	Yes	Travel_Rarely	NaN	Research & Development	NaN	NaN	Life
freq	NaN	237	156	NaN	133	NaN	NaN	
mean	33.607595	NaN	NaN	750.362869	NaN	10.632911	2.839662	
std	9.689350	NaN	NaN	401.899519	NaN	8.452525	1.008244	
min	18.000000	NaN	NaN	103.000000	NaN	1.000000	1.000000	
25%	28.000000	NaN	NaN	408.000000	NaN	3.000000	2.000000	
50%	32.000000	NaN	NaN	699.000000	NaN	9.000000	3.000000	
75%	39.000000	NaN	NaN	1092.000000	NaN	17.000000	4.000000	
max	58.000000	NaN	NaN	1496.000000	NaN	29.000000	5.000000	
4								•

```
In [21]: fig = sns.catplot(x='JobLevel', kind='count', hue='Department', data=leaver_df )
    fig.set(xlabel='JobLevel', ylabel="Employee Count", title="Count of Leavers by Job Level"
    );
```



```
In [22]: leaver_df[leaver_df['Department'] == 'Research & Development']['JobRole'].value_counts()

Out[22]: Laboratory Technician 62
    Research Scientist 47
    Manufacturing Director 10
    Healthcare Representative 9
    Manager 3
    Research Director 2
    Name: JobRole, dtype: int64
```

Laboratory Technicians, Sales Executives and Research Scientists are the roles with the most number of leavers.

```
In [23]: fig = sns.catplot(x='JobRole', kind='count', data=leaver_df )
    fig.set(xlabel='JobRole', ylabel="Employee Count", title="Count of Leavers by Job Role")
    fig.set_xticklabels(rotation=90);
```


3. Reusable Functions

Below cells contain functions that will be reused during the logistic regressions.

```
In [24]: def get_features_and_target(dataframe, target_column):
    if isinstance(target_column, str):
        target = dataframe[target_column]
        features = dataframe.drop([target_column], axis=1)
    elif isinstance(target_column, pd.core.series.Series):
        target = target_column
        features = dataframe
    return features, target
```

```
In [25]: def statsmodel logit(features, target):
             if 'const' not in features.columns:
                 features = sm.add constant(features)
             # Create a Logit object
             sm_obj = sm.Logit(target, features)
             # Create a fitted logit model
             sm model = sm obj.fit()
             return sm model
In [26]: def sklearn_logit(features, target):
             with warnings.catch warnings():
                 warnings.filterwarnings('error')
                 try:
                     sk model = LogisticRegression(fit intercept=True)
                     sk model.fit(features, target)
                 except ConvergenceWarning:
                     # The default max iter is 1000. There are cases when during fitting, max iter
          has been reached
                     # If the fitting has encountered this warning, increase max_iter to 3000
                     # Set C to a high number as well to make sure that statsmodels' coefs match wi
         th sklearn's
                     sk_model = LogisticRegression(fit_intercept=True, C=1e9, max_iter=3000)
                     sk_model.fit(features, target)
             score = sk model.score(features, target)
             print('Model Accuracy Score: {}%'.format(score * 100))
             return sk model
In [27]: | def sklearn_predict(sklearn_model, features, actual_target, title):
             predicted_target = sklearn_model.predict(features)
             labels = actual_target.unique()
             cm = plot_confusion_matrix(sklearn_model, X=features, y_true=actual_target, display_la
         bels=labels,
                                         values_format='.2f', cmap=plt.cm.Blues)
             cm.ax_.set_title(title)
```

4. Logistic Regression on Initial Data State

This section attempts to train a model to predict which employee will be a part of the attrition. The dependent variable is **Attrition**. Since it has two values, Yes and No, I used binary logistic regression.

```
For clarity, the Attrition Values are:
```

Yes (1) = Employee left the company

No (2) = Employee stayed in the company

plt.show()

4.1. Initial Data Preparation

4.1.1. Train Test Split

Before proceeding with the train_test_split , I added a constant column of 1s. This will be useful later on for the Varianc Inflation Factor and for running statmodels' Logit .

I turned x_train and y_train into train_df . All preprocessing will be fitted on the train_df and applied to the test_df after. I also reinserted the Attrition at its original column index 0. This will come in handy later on during One Hot Encoding.

```
In [30]: train_df = x_train.copy()
    train_df.insert(0, 'Attrition', y_train)
    train_df.reset_index(drop=True, inplace=True)
    train_df.head(2)
```

Out[30]:

	Attrition	const	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField
0	No	1.0	31	Travel_Rarely	1274	Research & Development	9	1	Life Sciences
1	No	1.0	28	Travel_Rarely	640	Research & Development	1	3	Technica Degree
4									•

Quick sanity check if the re-inserted Attrition column still has the same values with the original hr_df . Join the train_df and hr_df on EmployeeNumber resulting to a new dataframe, check_train_df .

```
In [31]: check_train_df = pd.merge(left=train_df, right=hr_df, on=['EmployeeNumber'])
```

If check_train_df.Attrition is not equal with hr_df.Attrition it should show some rows. Luckily, it didn't, so the reinserted Attrition column in train df still retained the original values.

For the test_df, do the same method as that for train_df. A quick check ensured that the reinserted Attrition column still has the original values.

```
In [33]: test df = x test.copy()
          test df.insert(0, 'Attrition', y test)
          test df.reset index(drop=True, inplace=True)
          test df.head(2)
Out[33]:
             Attrition const Age BusinessTravel DailyRate
                                                          Department DistanceFromHome Education EducationField
                  Yes
                        1.0
                              50
                                   Travel Rarely
                                                     869
                                                               Sales
                                                                                                      Marketinc
                                                          Research &
                        1.0
                              27
                                   Travel Rarely
                                                    1103
                                                                                                    Life Sciences
                  Nο
                                                         Development
          check test df = pd.merge(left=test df, right=hr df, on=['EmployeeNumber'])
          check test df[(check test df['Attrition x'] != check test df['Attrition y'])]
Out[34]:
             Attrition x const x Age x BusinessTravel x DailyRate x Department x DistanceFromHome x Education x
```

4.1.2. One-Hot Encoding the Training Dataset

These columns have categorical values. To be able to proceed with preprocessing and model fitting, I used One-Hot Encoding.

Multicollinearity is the problem where 2 or more variables are highly correlated. To avoid this, the argument <code>drop='first'</code> is specified.

```
In [36]: ohe = OneHotEncoder(categories='auto', drop='first')
```

Fit OHE on to the train_df , then use it to transform the same dataframe.

```
In [37]: ohe.fit(train_df[nominal_categories])
    train_arr = ohe.transform(train_df[nominal_categories]).toarray()
```

These are the new feature names generated from OHE.

```
In [38]: train_cols = ohe.get_feature_names()
    train_cols_list = train_cols.tolist()
    print(train_cols_list)
```

['x0_Yes', 'x1_Travel_Frequently', 'x1_Travel_Rarely', 'x2_Research & Development', 'x2_S ales', 'x3_Life Sciences', 'x3_Marketing', 'x3_Medical', 'x3_Other', 'x3_Technical Degre e', 'x4_Male', 'x5_Human Resources', 'x5_Laboratory Technician', 'x5_Manager', 'x5_Manufa cturing Director', 'x5_Research Director', 'x5_Research Scientist', 'x5_Sales Executive', 'x5_Sales Representative', 'x6_Married', 'x6_Single', 'x8_Yes']

For each new feature name, append the original column name with the new value name. Put them all in a list.

```
In [39]: new_cols_list = []
    for index, value in enumerate(train_cols_list):
        new_cols_list.append(nominal_categories[int(value[1])] + value[2:])
        continue
    print(new_cols_list)
```

['Attrition_Yes', 'BusinessTravel_Travel_Frequently', 'BusinessTravel_Travel_Rarely', 'Department_Research & Development', 'Department_Sales', 'EducationField_Life Sciences', 'EducationField_Marketing', 'EducationField_Medical', 'EducationField_Other', 'EducationField_Technical Degree', 'Gender_Male', 'JobRole_Human Resources', 'JobRole_Laboratory Technician', 'JobRole_Manager', 'JobRole_Manufacturing Director', 'JobRole_Research Director', 'JobRole_Research Scientist', 'JobRole_Sales Executive', 'JobRole_Sales Representative', 'MaritalStatus_Married', 'MaritalStatus_Single', 'OverTime_Yes']

Create train ohe df with the transformed train arr . Label the columns with the new cols list .

```
In [40]: train_ohe_df = pd.DataFrame(train_arr, columns=new_cols_list)
    train_ohe_df.head(2)
```

Out[40]:

	Attrition_Yes	BusinessTravel_Travel_Frequently	BusinessTravel_Travel_Rarely	Department_Research & Development	Departm
0	0.0	0.0	1.0	1.0	_
1	0.0	0.0	1.0	1.0	
4					•

Merge the original train_df and train_ohe_df by their indexes. The result will be the new value of train_df.

```
In [41]: train_df = pd.merge(left=train_df, right=train_ohe_df, left_index=True, right_index=True)
```

Drop the original nominal category columns so that only the one-hot encoded columns remain

```
In [42]: train_df.drop(nominal_categories, axis=1, inplace=True)
```

Drop EmployeeNumber column since they will affect the model even if they are meaningless.

```
In [43]: train_df.drop(['EmployeeNumber'], axis=1, inplace=True)
In [44]: train_df.head(2)
Out[44]:
```

	const	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobinvolvement
0	1.0	31	1274	9	1	3	33	3
1	1.0	28	640	1	3	4	84	3
4								•

4.1.3. Applying OHE to the Test Dataset

With the OHE fitted on the training dataset, use it again to transform the test_df 's categorical columns. Do the same processing for test df after.

```
In [45]:
         test arr = ohe.transform(test df[nominal categories]).toarray()
In [46]: test_cols = ohe.get_feature_names()
          test_cols_list = test_cols.tolist()
In [47]:
         new cols list = []
          for index, value in enumerate(test cols list):
              new cols list.append(nominal categories[int(value[1])] + value[2:])
In [48]:
         test_ohe_df = pd.DataFrame(test_arr, columns=new_cols_list)
          test_ohe_df.head(2)
Out[48]:
                                                                               Department Research
             Attrition_Yes BusinessTravel_Travel_Frequently BusinessTravel_Travel_Rarely
                                                                                                  Departm
                                                                                    & Development
          0
                     1.0
                                                  0.0
                                                                           1.0
                                                                                              0.0
          1
                     0.0
                                                  0.0
                                                                           1.0
                                                                                              1.0
In [49]:
         test df = pd.merge(left=test df, right=test ohe df, left index=True, right index=True)
In [50]:
         test_df.drop(nominal_categories, axis=1, inplace=True)
         test df.drop(['EmployeeNumber'], axis=1, inplace=True)
```

4.1.4. Variance Inflation Factor

To detect multicollinearity, I used Variance Inflation Factor (VIF).

```
In [52]: vif_df = pd.DataFrame()
  variables = train_df.drop(['Attrition_Yes'], axis=1)
  vif_df['Independent Variables'] = variables.columns
  vif_df['VIF'] = [vif(variables.values, i) for i in range(variables.shape[1])]
  vif_df.sort_values(by='VIF')
```

	Independent Variables	VIF
3	DistanceFromHome	1.019908
6	HourlyRate	1.030179
11	MonthlyRate	1.032481
33	Gender_Male	1.032588
9	JobSatisfaction	1.033529
15	RelationshipSatisfaction	1.035164
19	WorkLifeBalance	1.039642
7	JobInvolvement	1.041250
18	TrainingTimesLastYear	1.041352
5	EnvironmentSatisfaction	1.041774
2	DailyRate	1.043193
44	OverTime_Yes	1.045045
4	Education	1.080111
12	NumCompaniesWorked	1.263437
22	YearsSinceLastPromotion	1.771375
42	MaritalStatus_Married	1.808821
16	StockOptionLevel	1.913115
37	JobRole_Manufacturing Director	1.944353
1	Age	2.035180
24	BusinessTravel_Travel_Frequently	2.417022
25	BusinessTravel_Travel_Rarely	2.418450
14	PerformanceRating	2.555080
13	PercentSalaryHike	2.576426
38	JobRole_Research Director	2.723024
23	YearsWithCurrManager	2.773584
21	YearsInCurrentRole	2.794820
43	MaritalStatus_Single	2.967017
35	JobRole_Laboratory Technician	3.221695
39	JobRole_Research Scientist	3.431305
36	JobRole_Manager	4.473090
20	YearsAtCompany	4.740765
41	JobRole_Sales Representative	5.025629
17	TotalWorkingYears	5.123743
31	EducationField_Other	5.734186
34	JobRole_Human Resources	7.486205
32	EducationField_Technical Degree	8.747694
29	EducationField_Marketing	11.075825
40	JobRole_Sales Executive	13.746882
8	JobLevel	14.570042
10	MonthlyIncome	19.216663

	Independent Variables	VIF
30	EducationField_Medical	21.445197
28	EducationField_Life Sciences	24.054523
27	Department_Sales	46.152920
26	Department_Research & Development	46.584758
0	const	429.360556

Drop the columns whose VIF are greater than 10 from both train_df and test_df.

```
In [53]: high_vif_columns = vif_df[(vif_df['VIF'] > 10) & (vif_df['Independent Variables'] != 'cons
t')]['Independent Variables']
high_vif_columns = high_vif_columns.values
print(high_vif_columns)

['JobLevel' 'MonthlyIncome' 'Department_Research & Development'
    'Department_Sales' 'EducationField_Life Sciences'
    'EducationField_Marketing' 'EducationField_Medical'
    'JobRole_Sales Executive']

In [54]: train_df.drop(high_vif_columns, axis=1, inplace=True)
test_df.drop(high_vif_columns, axis=1, inplace=True)
```

4.2. Logistic Regression on Data after OHE and VIF

4.2.1. Training the Model

In [57]: m1_sm_model.summary()

Dep. Variable:

Model:	Logit	Df Residuals:		1139			
Method:	MLE		Of Model:	3	36		
Date:	Tue, 21 Apr 2020	Pseudo	o R-squ.:	0.344	18		
Time:	00:08:48	Log-Lik	kelihood:	-334.2	21		
converged:	True		LL-Null:	-510.1	10		
Covariance Type:	nonrobust	LLR	p-value:	1.876e-53			
		coef	std err	z	P> z	[0.025	0.975]
	const	1.6982	1.492	1.138	0.255	-1.226	4.623
	Age	-0.0342	0.015	-2.232	0.026	-0.064	-0.004
	DailyRate	-0.0004	0.000	-1.441	0.150	-0.001	0.000
Dist	tanceFromHome	0.0522	0.012	4.287	0.000	0.028	0.076
	Education	0.0486	0.099	0.490	0.624	-0.146	0.243
Environr	mentSatisfaction	-0.4767	0.095	-5.026	0.000	-0.663	-0.291
	HourlyRate	0.0040	0.005	0.789	0.430	-0.006	0.014
	Jobinvolvement	-0.5154	0.138	-3.730	0.000	-0.786	-0.245
	JobSatisfaction	-0.3393	0.094	-3.604	0.000	-0.524	-0.155
	MonthlyRate	1.398e-05	1.43e-05	0.978	0.328	-1.4e-05	4.2e-05
NumCo	mpaniesWorked	0.2226	0.042	5.247	0.000	0.139	0.306
Pe	ercentSalaryHike	-0.0340	0.045	-0.753	0.451	-0.122	0.054
Per	formanceRating	0.2377	0.454	0.524	0.600	-0.651	1.127
Relation	shipSatisfaction	-0.2209	0.094	-2.348	0.019	-0.405	-0.037
S	tockOptionLevel	-0.2917	0.176	-1.659	0.097	-0.636	0.053
То	talWorkingYears	-0.0684	0.030	-2.286	0.022	-0.127	-0.010
Trainin	gTimesLastYear	-0.2558	0.083	-3.080	0.002	-0.419	-0.093
V	VorkLifeBalance	-0.4144	0.143	-2.888	0.004	-0.696	-0.133
Y	earsAtCompany	0.1050	0.043	2.462	0.014	0.021	0.189
Yea	rsInCurrentRole	-0.1519	0.051	-2.958	0.003	-0.253	-0.051
YearsSind	eLastPromotion	0.1603	0.048	3.363	0.001	0.067	0.254
YearsW	/ithCurrManager	-0.1455	0.051	-2.826	0.005	-0.246	-0.045
BusinessTravel_Tr	ravel_Frequently	1.7595	0.475	3.706	0.000	0.829	2.690
BusinessTrave	el_Travel_Rarely	1.0772	0.437	2.465	0.014	0.221	1.934
Educa	ationField_Other	0.1825	0.451	0.405	0.686	-0.701	1.066
EducationField_T	echnical Degree	0.9444	0.318	2.971	0.003	0.321	1.567
	Gender_Male	0.4026	0.210	1.919	0.055	-0.009	0.814
JobRole_Hu	ıman Resources	0.8306	0.486	1.707	0.088	-0.123	1.784
JobRole_Labora	atory Technician	0.5852	0.291	2.010	0.044	0.014	1.156
Jo	bRole_Manager	-0.7580	0.635	-1.194	0.232	-2.002	0.486
JobRole_Manufa	acturing Director	-1.0030	0.504	-1.991	0.046	-1.990	-0.016
JobRole_R	esearch Director	-1.3319	0.831	-1.604	0.109	-2.960	0.296

Attrition_Yes No. Observations:

1176

```
-0.701
  JobRole_Research Scientist
                                  -0.1178
                                             0.298
                                                    -0.396 0.692
                                                                               0.466
JobRole_Sales Representative
                                  1.1972
                                             0.403
                                                     2.969
                                                            0.003
                                                                      0.407
                                                                               1.987
                                             0.305
        MaritalStatus_Married
                                  0.3926
                                                     1.288
                                                            0.198
                                                                      -0.205
                                                                               0.990
         MaritalStatus_Single
                                  1.0671
                                             0.395
                                                     2.698
                                                            0.007
                                                                      0.292
                                                                               1.842
               OverTime Yes
                                  1.9744
                                             0.222
                                                     8.910
                                                            0.000
                                                                      1.540
                                                                               2.409
```

In [58]: sk_model = sklearn_logit(train_features, train_target)

Model Accuracy Score: 89.28571428571429%

4.2.2 Testing the Model

In [60]: test_features, test_target = get_features_and_target(test_df, 'Attrition_Yes')
In [61]: sklearn_predict(sk_model, test_features, test_target, title='Method 1: Confusion Matrix of Test Data')

4.2.3. Conclusion

The model has an accuracy score of **89.29%**. The pseudo R-squared is **0.3448**. However, from statsmodels' summary, there are many variables whose p-values are greater than 0.05.

There is a possibility that accuracy can be increased if scaled data is used. In the next section, the data will be scaled.

5. Logistic Regression on a Scaled Dataset

5.1. Fitting the Scaler on the Training Dataset

The scaled_train_df is a copy of train_df . Sklearn's StandardScaler is fitted on the training data. The scaled results are now in the scaled train df .

During fitting and transforming, columns Attrition Yes and const shouldn't be scaled so I left them out.

```
In [62]: scaled_train_df = train_df.copy()
In [63]: scaler = StandardScaler()
    scaler.fit(scaled_train_df.drop(['Attrition_Yes', 'const'], axis=1))
Out[63]: StandardScaler(copy=True, with_mean=True, with_std=True)
In [64]: scaled_train_arr = scaler.transform(train_df.drop(['Attrition_Yes', 'const'], axis=1))
```

Put the results scaled_train_arr in a dataframe, then merge them back with train_df 's columns Attrition_Yes and const .

Out[65]:

	Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobinvolvement	J
0	-0.689868	1.143634	-0.016933	-1.917270	0.236912	-1.614977	0.392794	_
1	-1.021999	-0.409053	-1.006426	0.071887	1.156410	0.906036	0.392794	
2	1.967178	0.695461	-0.882739	-1.917270	1.156410	-0.033165	0.392794	
4								•

5.2 Scaling the Test Dataset

Apply the fitted StandardScaler to transform the test dataset. After that, do the same steps to get scaled test df.

```
In [66]: scaled_test_arr = scaler.transform(test_df.drop(['Attrition_Yes', 'const'], axis=1))
```

```
In [67]: scaled_test_df = pd.DataFrame(scaled_test_arr, columns=test_df.drop(['Attrition_Yes', 'con
st'], axis=1).columns)
scaled_test_df = pd.merge(left=scaled_test_df, right=test_df[['Attrition_Yes', 'const']],
left_index=True, right_index=True)
scaled_test_df.head(3)
```

Out[67]:

		Age	DailyRate	DistanceFromHome	Education	EnvironmentSatisfaction	HourlyRate	Jobinvolvement	J
_	0	1.413627	0.151775	-0.759053	-0.922691	-1.602085	1.004900	-1.002752	_
	1	-1.132709	0.724849	0.601500	0.071887	-1.602085	-1.170092	0.392794	
	2	-0.136317	-0.607425	0.354126	1.066465	0.236912	0.510583	0.392794	
4								•	•

5.3. Logistic Regression on Scaled Data

5.3.1. Training the Model

In [70]: m2_sm_model.summary()

Dep. Variable:	Attrition_Yes	No. Observations:	1176
Model:	Logit	Df Residuals:	1139
Method:	MLE	Df Model:	36
Date:	Tue, 21 Apr 2020	Pseudo R-squ.:	0.3448
Time:	00:08:55	Log-Likelihood:	-334.21
converged:	True	LL-Null:	-510.10
Covariance Type:	nonrobust	LLR p-value:	1.876e-53

	coef	std err	z	P> z	[0.025	0.975]
Age	-0.3088	0.138	-2.232	0.026	-0.580	-0.038
DailyRate	-0.1458	0.101	-1.441	0.150	-0.344	0.053
DistanceFromHome	0.4218	0.098	4.287	0.000	0.229	0.615
Education	0.0488	0.100	0.490	0.624	-0.146	0.244
EnvironmentSatisfaction	-0.5185	0.103	-5.026	0.000	-0.721	-0.316
HourlyRate	0.0810	0.103	0.789	0.430	-0.120	0.282
JobInvolvement	-0.3693	0.099	-3.730	0.000	-0.563	-0.175
JobSatisfaction	-0.3717	0.103	-3.604	0.000	-0.574	-0.170
MonthlyRate	0.0994	0.102	0.978	0.328	-0.100	0.299
NumCompaniesWorked	0.5558	0.106	5.247	0.000	0.348	0.763
PercentSalaryHike	-0.1238	0.164	-0.753	0.451	-0.446	0.198
PerformanceRating	0.0852	0.163	0.524	0.600	-0.233	0.404
RelationshipSatisfaction	-0.2389	0.102	-2.348	0.019	-0.438	-0.039
StockOptionLevel	-0.2523	0.152	-1.659	0.097	-0.550	0.046
TotalWorkingYears	-0.5345	0.234	-2.286	0.022	-0.993	-0.076
TrainingTimesLastYear	-0.3292	0.107	-3.080	0.002	-0.539	-0.120
WorkLifeBalance	-0.2906	0.101	-2.888	0.004	-0.488	-0.093
YearsAtCompany	0.6495	0.264	2.462	0.014	0.133	1.166
YearsInCurrentRole	-0.5574	0.188	-2.958	0.003	-0.927	-0.188
YearsSinceLastPromotion	0.5255	0.156	3.363	0.001	0.219	0.832
YearsWithCurrManager	-0.5220	0.185	-2.826	0.005	-0.884	-0.160
BusinessTravel_Travel_Frequently	0.6897	0.186	3.706	0.000	0.325	1.055
BusinessTravel_Travel_Rarely	0.4892	0.198	2.465	0.014	0.100	0.878
EducationField_Other	0.0408	0.101	0.405	0.686	-0.157	0.238
EducationField_Technical Degree	0.2681	0.090	2.971	0.003	0.091	0.445
Gender_Male	0.1974	0.103	1.919	0.055	-0.004	0.399
JobRole_Human Resources	0.1559	0.091	1.707	0.088	-0.023	0.335
JobRole_Laboratory Technician	0.2207	0.110	2.010	0.044	0.005	0.436
JobRole_Manager	-0.2015	0.169	-1.194	0.232	-0.532	0.129
JobRole_Manufacturing Director	-0.3002	0.151	-1.991	0.046	-0.596	-0.005
JobRole_Research Director	-0.3066	0.191	-1.604	0.109	-0.681	0.068
JobRole_Research Scientist	-0.0461	0.117	-0.396	0.692	-0.274	0.182

```
0.091
JobRole_Sales Representative
                              0.2716
                                                2.969 0.003
                                                               0.092
                                                                      0.451
       MaritalStatus_Married
                              0.1953
                                        0.152
                                                1.288
                                                       0.198
                                                               -0.102
                                                                       0.493
         MaritalStatus_Single
                              0.4948
                                        0.183
                                                2.698
                                                       0.007
                                                               0.135
                                                                       0.854
              OverTime_Yes
                              0.8920
                                        0.100
                                                8.910 0.000
                                                               0.696
                                                                       1.088
                       const -2.7582
                                        0.161 -17.181 0.000
                                                              -3.073 -2.444
```

In [71]: m2_sk_model = sklearn_logit(train_features, train_target)

Model Accuracy Score: 89.62585034013605%

In [72]: sklearn_predict(m2_sk_model, train_features, train_target, title='Method 2: Confusion Matr
ix of Training Data')

5.3.2. Testing the Model

5.3.2. Conclusion

The model has an accuracy score of **89.62%**. It's an increase of 0.33% from the previous model. However, the pseudo R-squared is still **0.3448** and there are still a lot of variables whose p-values are greater than 0.05.

6. Logistic Regression of Selected Features

6.1. Recursive Feature Elimination with Cross Validation (RFECV)

Recursive Feature Elimination (RFE) repeatedly fits a model and chooses the best features based on their coefficients. RFE with Cross Validation (RFECV) cross-validates the number of features selected.

Create a LogisticRegression object.

```
In [75]: log_reg = LogisticRegression()
```

In the RFECV instance, the estimator is the LogisticRegression object. StratifiedKFold() returns approximately the same percentage samples of the targets. scoring='accuracy' uses sklearn.metrics.accuracy_score to compute multilable classification accuracy.

```
In [76]: rfecv = RFECV(estimator=log_reg, cv=StratifiedKFold(), scoring='accuracy')
```

Fit the rfecv on the training features (except const) and on the training target.

Plot the

```
In [78]: plt.figure(figsize=(10, 10))
   plt.xlabel("Number of features selected")
   plt.ylabel("Cross validation score (Correct Classifications)")
   plt.xticks(np.arange(0,50,1));
   plt.plot(range(1, len(rfecv.grid_scores_) + 1), rfecv.grid_scores_);
```


Based on this plot, the most ideal number of features is 31.

Get the indices selected by the RFECV, then extract them from the scaled_train_df and scaled_test_df.

Reattach the target Attrition_Yes and the const column to the datasets.m

```
In [81]: cols_to_retain = scaled_train_df.iloc[:, rfecv_idx].columns.tolist()
    cols_to_retain.append('Attrition_Yes')
    cols_to_retain.append('const')
    print(len(cols_to_retain))

33
In [82]: scaled_train_df = scaled_train_df[cols_to_retain]
In [83]: scaled_test_df = scaled_test_df[cols_to_retain]
```

6.2. Logistic Regression on the RFECV-Selected Features

6.2.1. Train the Model

In [86]: m3_sm_model.summary()

Dep. Variable:	Attrition_Yes	No. Observations:	1176
Model:	Logit	Df Residuals:	1144
Method:	MLE	Df Model:	31
Date:	Tue, 21 Apr 2020	Pseudo R-squ.:	0.3434
Time:	00:09:07	Log-Likelihood:	-334.93
converged:	True	LL-Null:	-510.10
Covariance Type:	nonrobust	LLR p-value:	9.291e-56

	coef	std err	z	P> z	[0.025	0.975]
Age	-0.2975	0.137	-2.174	0.030	-0.566	-0.029
DailyRate	-0.1410	0.101	-1.400	0.162	-0.338	0.056
DistanceFromHome	0.4199	0.098	4.283	0.000	0.228	0.612
EnvironmentSatisfaction	-0.5156	0.102	-5.048	0.000	-0.716	-0.315
Joblnvolvement	-0.3673	0.098	-3.729	0.000	-0.560	-0.174
JobSatisfaction	-0.3806	0.102	-3.713	0.000	-0.581	-0.180
MonthlyRate	0.0909	0.101	0.904	0.366	-0.106	0.288
NumCompaniesWorked	0.5521	0.106	5.227	0.000	0.345	0.759
PercentSalaryHike	-0.0569	0.103	-0.553	0.580	-0.258	0.144
RelationshipSatisfaction	-0.2383	0.101	-2.356	0.018	-0.436	-0.040
StockOptionLevel	-0.2596	0.152	-1.710	0.087	-0.557	0.038
TotalWorkingYears	-0.5119	0.228	-2.242	0.025	-0.959	-0.064
TrainingTimesLastYear	-0.3240	0.107	-3.042	0.002	-0.533	-0.115
WorkLifeBalance	-0.2858	0.100	-2.864	0.004	-0.481	-0.090
YearsAtCompany	0.6353	0.262	2.424	0.015	0.122	1.149
YearsInCurrentRole	-0.5461	0.187	-2.916	0.004	-0.913	-0.179
YearsSinceLastPromotion	0.5185	0.155	3.342	0.001	0.214	0.823
YearsWithCurrManager	-0.5086	0.183	-2.776	0.006	-0.868	-0.149
BusinessTravel_Travel_Frequently	0.6959	0.185	3.767	0.000	0.334	1.058
BusinessTravel_Travel_Rarely	0.4929	0.197	2.503	0.012	0.107	0.879
EducationField_Technical Degree	0.2644	0.090	2.941	0.003	0.088	0.441
Gender_Male	0.1929	0.103	1.881	0.060	-0.008	0.394
JobRole_Human Resources	0.1635	0.087	1.869	0.062	-0.008	0.335
JobRole_Laboratory Technician	0.2414	0.096	2.519	0.012	0.054	0.429
JobRole_Manager	-0.1864	0.167	-1.117	0.264	-0.513	0.141
JobRole_Manufacturing Director	-0.2926	0.147	-1.993	0.046	-0.580	-0.005
JobRole_Research Director	-0.3126	0.191	-1.639	0.101	-0.686	0.061
JobRole_Sales Representative	0.2761	0.085	3.260	0.001	0.110	0.442
MaritalStatus_Married	0.2026	0.151	1.339	0.181	-0.094	0.499
MaritalStatus_Single	0.4929	0.183	2.699	0.007	0.135	0.851
OverTime_Yes	0.8904	0.099	9.009	0.000	0.697	1.084

```
In [87]: m3_sk_model = sklearn_logit(train_features, train_target)
          Model Accuracy Score: 89.54081632653062%
In [88]:
           sklearn_predict(m3_sk_model, train_features, train_target, title='Method 3: Confusion Matr
           ix of Training Data')
                Method 3: Confusion Matrix of Training Data
                                                       800
              0.0
                                        24.00
                                                       - 600
           True label
                                                      - 400
                       99.00
                                       85.00
              1.0
                                                      - 200
```

6.2.2. Test the Model

0.0

1.0

Predicted label

6.2.3. Conclusion

There is a slight decrease from the previous results. This model has is 89.54% accurate and the pseudo R-squared is 0.3434.

However, nearly all variables are statistically significant, save for a few. These need to be dropped from the training and testing datasets.

6.3. Logistic Regression on Significant Features

6.3.1. Dropping Features with P-values > 0.05

From the last model's summary, there are still a few features left whose p-values are greater than 0.05, meaning they are statistically insignificant.

Drop these columns from the scaled training and testing datasets.

```
In [92]: scaled_train_df.drop(insignificant_cols, axis=1, inplace=True)
In [93]: scaled_test_df.drop(insignificant_cols, axis=1, inplace=True)
```

6.3.2. Train the Model

```
In [97]: m4_sm_model.summary()
```

Out[97]: Logit Regression Results

1176	No. Observations:	Attrition_Yes	Dep. Variable:
1153	Df Residuals:	Logit	Model:
22	Df Model:	MLE	Method:
0.3226	Pseudo R-squ.:	Tue, 21 Apr 2020	Date:
-345.53	Log-Likelihood:	00:09:10	Time:
-510.10	LL-Null:	True	converged:
1.449e-56	LLR p-value:	nonrobust	Covariance Type:

	coef	std err	z	P> z	[0.025	0.975]
Age	-0.2960	0.136	-2.173	0.030	-0.563	-0.029
DistanceFromHome	0.4012	0.095	4.233	0.000	0.215	0.587
EnvironmentSatisfaction	-0.5164	0.101	-5.132	0.000	-0.714	-0.319
Joblnvolvement	-0.3778	0.096	-3.929	0.000	-0.566	-0.189
JobSatisfaction	-0.3786	0.100	-3.792	0.000	-0.574	-0.183
NumCompaniesWorked	0.5261	0.103	5.128	0.000	0.325	0.727
RelationshipSatisfaction	-0.2126	0.098	-2.163	0.031	-0.405	-0.020
TotalWorkingYears	-0.6428	0.210	-3.065	0.002	-1.054	-0.232
TrainingTimesLastYear	-0.3526	0.105	-3.355	0.001	-0.559	-0.147
WorkLifeBalance	-0.2740	0.097	-2.821	0.005	-0.464	-0.084
YearsAtCompany	0.6010	0.256	2.346	0.019	0.099	1.103
YearsInCurrentRole	-0.4914	0.184	-2.676	0.007	-0.851	-0.132
YearsSinceLastPromotion	0.5037	0.149	3.383	0.001	0.212	0.795
YearsWithCurrManager	-0.5145	0.183	-2.807	0.005	-0.874	-0.155
BusinessTravel_Travel_Frequently	0.7196	0.180	4.005	0.000	0.367	1.072
BusinessTravel_Travel_Rarely	0.5055	0.192	2.627	0.009	0.128	0.883
EducationField_Technical Degree	0.2639	0.089	2.978	0.003	0.090	0.438
JobRole_Laboratory Technician	0.2204	0.093	2.373	0.018	0.038	0.402
JobRole_Manufacturing Director	-0.2760	0.141	-1.952	0.051	-0.553	0.001
JobRole_Sales Representative	0.2448	0.083	2.962	0.003	0.083	0.407
MaritalStatus_Single	0.5097	0.096	5.313	0.000	0.322	0.698
OverTime_Yes	0.8408	0.095	8.808	0.000	0.654	1.028
const	-2.6231	0.147	-17.813	0.000	-2.912	-2.334

In [98]: m4_sk_model = sklearn_logit(train_features, train_target)

Model Accuracy Score: 89.54081632653062%

In [99]: sklearn_predict(m4_sk_model, train_features, train_target, title='Method 4: Confusion Matr
ix of Training Data')

6.3.3. Testing the Model

6.3.4. Conclusion

This model has the same accuracy of 89.54% like the previous one. However, the Pseudo R-squared decreased to 0.3226.

7. Logistic Regression on Oversampled Data

In the original dataset hr_df , the count of rows with Attrition value of *No* greatly outnumbers those with *Yes*. Those with *No* values are then the minority class.

```
In [102]: ax = hr_df['Attrition'].value_counts().plot(kind='bar');

1200
1000
800
600
400
200
0
```

There is a great imbalance between the two values of the target variable. To solve this, I used SMOTE.

7.1. Synthetic Minority Oversampling Technique (SMOTE)

SMOTE selects a random sample from the minority class and finds that sample's k-nearest neighbors. It then chooses a random neighbor then generates synthetic data based on the combined random sample and the random neighbor.

Fit SMOTE on the scaled_train_df.

Both 1 and 0 values of Attrition_Yes now have the same number of rows/instances.

```
In [107]: smote_train_target.value_counts()
Out[107]: 1.0    992
          0.0    992
          Name: Attrition_Yes, dtype: int64
```

7.2. Logistic Regression on the Balanced Model Created from SMOTE

7.2.1 Train the Model

```
In [108]:
             train features, train target = get features and target(smote train feat, smote train targe
In [109]:
             m5 sm model = statsmodel logit(train features, train target)
             Optimization terminated successfully.
                        Current function value: 0.447414
                        Iterations 7
In [110]:
             m5 sm model.summary()
Out[110]:
             Logit Regression Results
                 Dep. Variable:
                                    Attrition Yes
                                                 No. Observations:
                                                                          1984
                                                      Df Residuals:
                        Model:
                                           Logit
                                                                          1961
                      Method:
                                           MLE
                                                         Df Model:
                                                                            22
                         Date:
                                Tue, 21 Apr 2020
                                                    Pseudo R-squ.:
                                                                        0.3545
                         Time:
                                        00:09:13
                                                    Log-Likelihood:
                                                                        -887.67
                    converged:
                                                           LL-Null:
                                                                        -1375.2
                                           True
              Covariance Type:
                                      nonrobust
                                                      LLR p-value: 3.941e-192
                                                                                 [0.025
                                                                          P>|z|
                                                   coef
                                                         std err
                                                                       z
                                                                                        0.975]
                                                          0.085
                                          Age
                                                -0.1643
                                                                  -1.924
                                                                          0.054
                                                                                 -0.332
                                                                                         0.003
                           DistanceFromHome
                                                 0.4250
                                                          0.062
                                                                   6.815
                                                                         0.000
                                                                                 0.303
                                                                                         0.547
                       EnvironmentSatisfaction
                                                -0.5234
                                                          0.063
                                                                  -8.364
                                                                          0.000
                                                                                 -0.646
                                                                                        -0.401
                               Jobinvolvement -0.3436
                                                          0.063
                                                                  -5.435
                                                                          0.000
                                                                                 -0.468
                                                                                        -0.220
                               JobSatisfaction
                                                -0.3701
                                                          0.064
                                                                  -5.825
                                                                          0.000
                                                                                 -0.495
                                                                                        -0.246
                        NumCompaniesWorked
                                                 0.5161
                                                          0.069
                                                                   7.518
                                                                          0.000
                                                                                 0.382
                                                                                         0.651
                       RelationshipSatisfaction
                                                -0.1254
                                                          0.062
                                                                  -2.035
                                                                         0.042
                                                                                 -0.246
                                                                                        -0.005
                             TotalWorkingYears
                                                -0.7765
                                                                          0.000
                                                                                 -1.038
                                                          0.133
                                                                  -5.821
                                                                                        -0.515
                         TrainingTimesLastYear
                                                -0.4546
                                                          0.067
                                                                  -6.760
                                                                          0.000
                                                                                 -0.586
                                                                                        -0.323
                              WorkLifeBalance
                                                -0.1919
                                                          0.062
                                                                  -3.112
                                                                         0.002
                                                                                 -0.313
                                                                                        -0.071
                                                                          0.000
                                                                                 0.344
                              YearsAtCompany
                                                 0.6416
                                                          0.152
                                                                   4.223
                                                                                         0.939
                            YearsInCurrentRole
                                                -0.4597
                                                          0.117
                                                                  -3.915
                                                                          0.000
                                                                                 -0.690
                                                                                        -0.230
                      YearsSinceLastPromotion
                                                                         0.000
                                                 0.4671
                                                          0.090
                                                                                 0.292
                                                                   5.216
                                                                                         0.643
                        YearsWithCurrManager
                                                -0.4277
                                                                          0.000
                                                                                 -0.640
                                                                                        -0.215
                                                          0.109
                                                                  -3.939
              BusinessTravel Travel Frequently
                                                 0.8406
                                                                   6.999
                                                                          0.000
                                                                                 0.605
                                                                                         1.076
                                                          0.120
                                                 0.7964
                  BusinessTravel_Travel_Rarely
                                                          0.129
                                                                   6.171
                                                                          0.000
                                                                                 0.543
                                                                                         1.049
               EducationField_Technical Degree
                                                 0.1889
                                                          0.060
                                                                          0.002
                                                                                 0.072
                                                                   3.173
                                                                                         0.306
                JobRole_Laboratory Technician
                                                 0.1346
                                                          0.061
                                                                   2.207
                                                                          0.027
                                                                                 0.015
                                                                                         0.254
```

JobRole_Manufacturing Director

JobRole_Sales Representative

MaritalStatus_Single

OverTime_Yes

-0.3799

0.2244

0.4867

0.8315

const -0.9714

0.088

0.054

0.061

0.060

0.076

-4.315

4.121

7.969

13.922

-12.795 0.000

0.000

0.000

0.000

0.000

-0.552

0.118

0.367

0.714

-1.120

-0.207

0.331

0.606

0.949

-0.823

```
In [111]: | m5_sk_model = sklearn_logit(train_features, train_target)
           Model Accuracy Score: 79.83870967741935%
In [112]:
            sklearn_predict(m5_sk_model, train_features, train_target, title='Method 5: Confusion Matr
            ix of Training Data')
                 Method 5: Confusion Matrix of Training Data
                                                        800
                                                        700
               0.0
                                        211.00
                                                        - 600
            True label
                                                        500
                                                       - 400
                        189.00
               1.0
                                                       - 300
```

- 200

1.0

7.2.2. Testing the Model

0.0

Predicted label

7.2.3. Conclusion

The accuracy model definitely decreased to 79.84%. However, this model has increased its pseudo r-squared to 0.3545.

8. Takeaways

The last model which was trained on feature-selected and oversampled data is the one I'm going to use. While it is less accurate than its previous versions, it is still accurate at almost 80%. In addition, this model is **more relevant because of its higher pseudo r-squared**.

While it might sound good to use the previous models (especially the one with 89.62% accuracy), there is a strong possibility that they are **overfitted**. Those models have barely undergone feature selection, and having too many features without regards to the sample size runs a risk of overfitting. If those models are used on unseen data, it will perform poorly.

For my next action, I will look at other ways to improve the last model or find another method of binary classification.