Jacket steam: 150 psig (365.9°F saturation temperature)

Overall heat-transfer coefficient of jacket, U: 150 Btu/h·ft²·°F

Agitator shaft horsepower: 25 hp

Heat of reaction, $\Delta H_{\rm Rx}^{\circ} = +20,000$

Btu/lb-mol of A (independent of temperature)

TABLE P12-6_B FEED CONDITIONS AND PROPERTIES

	Component		
	\overline{A}	В	С
Feed (lb-mol/hr)	10.0	10.0	0
Feed temperature (°F)	80	80	
Specific heat (Btu/lb-mol °F)*	51.0	44.0	47.5
Molecular weight	128	94	111 .
Density (lb _m /ft ³)	63.0	67.2	65.0

^{*} Independent of temperature. (Ans.: $T = 199^{\circ}\text{F}$) (Courtesy of the California Board of Registration for Professional & Land Surveyors.)

P12-7_B Use the data in Problem P11-4_A for the following reaction. The elementary, irreversible, organic liquid-phase reaction

$$A + B \longrightarrow C$$

is carried out in a flow reactor. An equal molar feed in A and B enters at 27°C, and the volumetric flow rate is 2 dm³/s and $C_{A0} = 0.1 \text{ kmol/m}^3$.

Additional information:

$$H_A^{\circ}$$
 (273 K) = -20 kcal/mol, H_B° (273 K) = -15 kcal/mol,

$$H_C^{\circ}(273 \text{ K}) = -41 \text{ kcal/mol}$$

$$C_{\rm P_A} = C_{\rm P_B} = 15 \text{ cal/mol} \cdot \text{K} \qquad C_{\rm P_C} = 30 \text{ cal/mol} \cdot \text{K}$$

$$k = 0.01 \frac{\rm dm^3}{\rm mol} \cdot \text{s} \quad \text{at } 300 \text{ K} \quad E = 10,000 \text{ cal/mol}$$

$$Ua = 20 \, \rm cal/m^3/s/K \qquad \dot{m}_{\rm C} = 50 \, \rm g/s$$

$$T_{a0} = 450 \, \rm K \qquad C_{\rm P_{cool}} = 1 \, \rm cal/g/K$$

(a) Calculate the conversion when the reaction is carried out adiabatically in one 500-dm³ CSTR and then compare the results with the two adiabatic 250-dm³ CSTRs in series.

The reversible reaction (part (d) of P11-4_A) is now carried out in a PFR with a heat exchanger. Plot and then analyze X, X_e , T, T_a , Q_r , Q_g , and the rate, $-r_A$, for the following cases:

- (b) Constant heat-exchanger temperature T_a
- (c) Co-current heat exchanger T_a (Ans.: At $V = 10 \text{ m}^3$ then X = 0.36 and T = 442 K)
- (d) Countercurrent heat exchanger T_a (Ans.: At $V = 10 \text{ m}^3$ then X = 0.364 and T = 450 K)
- (e) Adiabatic operation
- (f) Make a table comparing all your results (e.g., X, X_e , T, T_a). Write a paragraph describing what you find
- (g) Plot Q_r and T_a as a function of V necessary to maintain isothermal operation.

- (a) What is the $\Delta H_{\rm Rx}$ of the reaction?
- (b) What are the inlet ignition and extinction temperatures?
- (c) What are all the temperatures in the reactor corresponding to the inlet ignition and extinction temperatures?
- (d) What are the conversions at the ignition and extinction temperatures?

P12-15_B The first-order, irreversible, exothermic liquid-phase reaction

$$A \rightarrow B$$

is to be carried out in a jacketed CSTR. Species A and an inert I are fed to the reactor in equimolar amounts. The molar feed rate of A is 80 mol/min.

Additional information

Heat capacity of the inert: 30 cal/mol·°C $\tau = 100 \text{ min}$

Heat capacity of A and B: 20 cal/mol $^{\circ}$ C $\Delta H_{Rx}^{\circ} = -7500$ cal/mol

UA: 8000 cal/min·°C $k = 6.6 \times 10^{-3} \text{ min}^{-1} \text{ at } 350 \text{ K}'$

Ambient temperature, T_a : 300 K $E = 40,000 \text{ cal/mol} \cdot \text{K}$

- (a) What is the reactor temperature for a feed temperature of 450 K?
- (b) Plot and then analyze the reactor temperature as a function of the feed temperature.
- (c) To what inlet temperature must the fluid be preheated for the reactor to operate at a high conversion? What are the corresponding temperature and conversion of the fluid in the CSTR at this inlet temperature?
- (d) Suppose that the fluid inlet temperature is now heated 5°C above the reactor temperature in part (c) and then cooled 20°C, where it remains. What will be the conversion?
- (e) What is the inlet extinction temperature for this reaction system? (Ans.: $T_0 = 87^{\circ}$ C.)

P12-16_B The elementary reversible liquid-phase reaction

$$A \rightleftharpoons B$$

takes place in a CSTR with a heat exchanger. Pure A enters the reactor.

- (a) Derive an expression (or set of expressions) to calculate G(T) as a function of the heat of reaction, equilibrium constant, temperature, and so on. Show a sample calculation for G(T) at T = 400 K.
- (b) What are the steady-state temperatures? (Ans.: 310, 377, 418 K.)
- (c) Which steady states are locally stable?
- (d) What is the conversion corresponding to the upper steady state?
- (e) Vary the ambient temperature T_a and make a plot of the reactor temperature as a function of T_a , identifying the ignition and extinction temperatures.
- (f) If the heat exchanger in the reactor suddenly fails (i.e., UA = 0), what would be the conversion and the reactor temperature when the new upper steady state is reached? (Ans.: 431 K.)
- (g) What heat exchanger product, UA, will give the maximum conversion?
- (h) Write a question that requires critical thinking and then explain why your question requires critical thinking. *Hint:* See Preface Section I.
- (i) What is the adiabatic blowout flow rate, v_0 ?
- (j) Suppose that you want to operate at the lower steady state. What parameter values would you suggest to prevent runaway, e.g., the upper SS?

Additional information

$$UA = 3600 \text{ cal/min} \cdot \text{K}$$
 $E/R = 20,000 \text{ K}$ $C_{P_A} = C_{P_B} = 40 \text{ cal/mol} \cdot \text{K}$ $V = 10 \text{ dm}^3$

$$\Delta H_{\rm Rx}^{\rm o} = -80,000 \; {\rm cal/mol} \; {\rm A}$$
 $v_0 = 1 \; {\rm dm^3/min}$ $K_{\rm C} = 100 \; {\rm at} \; 400 \; {\rm K}$ $F_{\rm A0} = 10 \; {\rm mol/min}$

$$k = 1 \text{ min}^{-1} \text{ at } 400 \text{ K}$$

Ambient temperature,
$$T_a = 37^{\circ}\text{C}$$
 Feed temperature, $T_0 = 37^{\circ}\text{C}$