Maulana Azad National Institute of Technology Bhopal End-Term Examination (March 2022)

Course: B.Tech. Semester-I Section: All Subject: Mathematics-I Subject Code: MTH-101 Time:3:00 Hours Max. Marks: 50

Note: All questions are compulsory.

S.No	Question	Marks
1	Expand $\cos x$ using Taylor series upto order 4 about the point $x = \pi/6$. Can we calculate the value of $\cos 32^\circ$ using Taylor Series? If yes, calculate the value of $\cos 32^\circ$.	05
2(a)	If $z = f(u, v)$, $u = e^x \cos y$, $v = e^x \sin y$, show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} \right)$	05
2(b)	Using the properties of beta and gamma functions, show that $\int_0^{\pi/2} \sqrt{\sin \theta} \ d\theta \times \int_0^{\pi/2} \frac{1}{\sqrt{\sin \theta}} \ d\theta = \pi$	05
3(a)	Change the order of integration and hence evaluate $\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^{2} dy dx}{\sqrt{y^{4} - a^{2}x^{2}}}$	05
3(b)	Find the area of a loop of the curve $a^2x^2 = 4y^2(a^2 - y^2)$	05
4(a)	Verify the Green's theorem for $f(x, y) = e^{-x} \sin y$, $g(x, y) = e^{-x} \cos y$, where C is the square with vertices at $(0,0)$, $(\pi/2,0)$, $(\pi/2,\pi/2)$ and $(0,\pi/2)$.	05
4(b)	Calculate $\iint_S \vec{F} \cdot \vec{n} dS$, where $\vec{F} = 4xz \vec{i} - y^2 \vec{j} + yz \vec{k}$ and S is the surface of the cube bounded by the planes $x = 0$, $x = 2$, $y = 0$, $y = 2$, $z = 0$, $z = 2$.	05
5(a)	Solve the system of differential equations $\frac{\frac{d^2x}{dt^2} - \frac{dy}{dt} = 2x + 2t}{\frac{dx}{dt} + 4\frac{dy}{dt} = 3y}$	08
5(b)	Solve the following differential equation by using the method of variation of parameter $(3x+2)^2 \frac{d^2y}{dx^2} + 3(3x+2)\frac{dy}{dx} - 36y = 3x^2 + 4x + 1$	07