AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

l(Original). A method of inducing contraception comprising the step of delivering to a female of child-bearing age a composition comprising a compound of formula I or formula II, or a tautomer thereof, in a regimen which involves delivering a pharmaceutically effective amount of one or more of a selective estrogen receptor modulator to said female,

wherein formula I is:

wherein:

 R^1 and R^2 are independent substituents selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_2 to C_6 alkenyl, substituted C_2 to C_6 alkenyl, C_3 to C_8 cycloalkyl, substituted C_2 to C_6 alkynyl, C_8 to C_8 cycloalkyl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, COR^A , and NR^BCOR^A ;

or R^1 and R^2 are fused to form a ring selected from the group consisting of a), b) and c), wherein said ring is optionally substituted by from 1 to 3 substituents selected from the group consisting of H and C_1 to C_3 alkyl;

- a) a carbon-based 3 to 8 membered saturated spirocyclic ring;
- b) a carbon-based 3 to 8 membered spirocyclic ring having one or more carbon-carbon double bonds; and

c) a 3 to 8 membered spirocyclic ring having in its backbone one to three heteroatoms selected from the group consisting of O, S and N,

 R^{Λ} is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl;

 R^B is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl,

 R^3 is selected from the group consisting of H, OH, NH₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₃ to C₆ alkenyl, substituted C₃ to C₆ alkenyl, alkynyl, substituted alkynyl, and COR^C;

 R^C is selected from the group consisting of H, C_1 to C_4 alkyl, substituted C_1 to C_4 alkyl, aryl, substituted aryl, C_1 to C_4 alkoxy, substituted C_1 to C_4 alkoxy, C_1 to C_4 aminoalkyl, and substituted C_1 to C_4 aminoalkyl;

 R^4 is selected from the group consisting of H, halogen, CN, NO₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₁ to C₆ alkoxy, substituted C₁ to C₆ alkoxy, C₁ to C₆ arninoalkyl, and substituted C₁ to C₆ arninoalkyl;

R⁵ is selected from the group consisting of (i) and (ii):

a substituted benzene ring having the structure:

X is selected from the group consisting of halogen, CN, C₁ to C₃ alkyl, substituted C₁ to C₃ alkyl, C₁ to C₃ alkoxy, substituted C₁ to C₃ alkoxy, C₁ to C₃ thioalkyl, substituted C₁ to C₃ thioalkyl, C₁ to C₃ aminoalkyl, substituted C₁ to C₃ aminoalkyl, NO₂, C₁ to C₃ perfluoroalkyl, substituted C₁ to C₃ perfluoroalkyl, 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, COR^D, OCOR^D, and NR^ECOR^D.

 R^D is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 arninoalkyl, and substituted C_1 to C_3 arninoalkyl,

 R^E is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl,

Y and Z are independent substituents selected from the group consisting of H, halogen, CN, NO₂, C_1 to C_3 alkoxy, substituted C_1 to C_5 alkoxy, C_1 to C_4 alkyl, substituted C_1 to C_4 alkyl, C_1 to C_3 thioalkyl, and substituted C_1 to C_3 thioalkyl; and

b) a five or six membered carbon-based heterocyclic ring having in its backbone 1, 2, or 3 heteroatoms selected from the group consisting of O, S, SO, SO₂, and NR⁶ and having one or two independent substituents selected from the group consisting of H, halogen, CN, NO₂, C₁ to C₄ alkyl, substituted C₁ to C₄ alkyl, C₁ to C₃ alkoxy, substituted C₁ to C₃ alkoxy, C₁ to C₃ aminoalkyl, substituted C₁ to C₃ seriluoroalkyl, substituted C₁ to C₃ perfluoroalkyl, 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, C₁ to C₃ thioalkyl, substituted C₁ to C₃ thioalkyl, COR^F, and NR^GCOR^F;

 R^F is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl;

 R^G is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl,

 R^6 is selected from the group consisting of H, C_1 to C_3 alkyl, and C_1 to C_4 CO2alkyl;

 Q^1 is selected from the group consisting of S, NR^7 , and CR^8R^9 ;

R⁷ is selected from the group consisting of CN, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₃ to C₈ cycloalkyl, substituted C₃ to C₈ cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, SO₂CF₃, OR¹¹, and NR¹¹R¹²;

 R^8 and R^9 are independent substituents selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_3 to C_8 cycloalkyl, substituted C_3 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its

backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, NO₂, CN, and CO_2R^{10} ;

 R^{10} is selected from the group consisting of C_1 to C_3 alkyl and substituted C_1 to C_3 alkyl;

or CR8R9 comprise a six membered ring having the structure:

 R^{11} and R^{12} are independently selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, acyl, substituted acyl, sulfonyl, and substituted sulfonyl;

and formula II is:

wherein:

R1' is selected from the group methyl, ethyl, trifluoromethyl,

R2' is selected from the group methyl, ethyl, trifluoromethyl, or

 $R^{1'}$ and $R^{2'}$ are joined to form a spirocyclic ring containing 3 to 7 carbon atoms; and $R^{3'}$ is selected from the group C_1 to C_4 alkyl;

or a pharmaceutically acceptable salt, tautomer, metabolite, or prodrug of formula I or formula II.

2(Original). The method according to claim 1, wherein said compound of formula I or formula II and said selective estrogen receptor modulator are delivered in a single composition.

3(Original). The method according to claim 1, wherein said compound of formula I or formula II and said selective estrogen receptor modulator are delivered separately.

4(Original). The method according to claim 1, wherein said selective estrogen receptor modulator is selected from the group consisting of EM-800, EM-652, raloxifene hydrochloride, arzoxifene, lasofoxifene, droloxifene, idoxifene, levormeloxifene, centchroman, nafoxidene, tamoxifen citrate, 4-hydroxytamoxifen citrate, clomiphene citrate, toremifene citrate, pipendoxifene, and bazedoxifene.

5(Original). The method according to claim 1, wherein said compound is delivered at a daily dosage of about 0.1 to about 50 mg.

6(Original). The method according to claim 1, wherein said regimen comprises delivering said composition daily for 1 to about 21 days, wherein said regimen is a cycle which is repeated monthly.

7(Original). Them method according to claim 1, wherein said selective estrogen receptor modulator is delivered at a daily dosage of about 0.2 to about 100 mg.

8(Original). The method according to Claim 1, wherein in formula I:

R¹ is selected from the group consisting of H, C₁ to C6 alkyl, substituted C₁ to

C6 alkyl, C3 to C8 cycloalkyl, substituted C3 to C8 cycloalkyl, aryl, substituted aryl,
carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted
carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, CORA, and

NRBCORA,

 R^2 is selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_2 to C_6 alkenyl, substituted C_2 to C_6 alkenyl, C_3 to C_8 cycloalkyl, substituted C_3 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, COR^A , and NR^BCOR^A :

 R^A is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl;

R⁵ is selected from the group consisting of (iii) and (iv):

the substituted benzene ring, wherein:

X is selected from the group consisting of halogen, CN, C1 to C3 alkyl, substituted C_1 to C_3 alkyl, C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, C_1 to C_3 thioalkyl, substituted C_1 to C_3 thioalkyl, C_1 to C_3 aminoalkyl, substituted C_1 to C_3 aminoalkyl, NO2, C1 to C3 perfluoroalkyl, 5 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, CORD, OCORD, and NRECORD, and

the five or six membered ring, wherein said one or two independent substituents are selected from the group consisting of H, halogen, CN, NO2, C1 to C3 alkyl, and C1 to C3 alkoxy;

 R^7 is selected from the group consisting of CN, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_3 to C_8 cycloalkyl, substituted C_3 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, and SO₂CF₃.

The method according to claim 8, wherein in formula 1:

 R^1 and R^2 and are independently selected from the group consisting of C_1 to C₃ alkyl and substituted C₁ to C₃ alkyl;

or \mathbb{R}^1 and \mathbb{R}^2 are fused to form the carbon-based 3 to 6 membered saturated spirocyclic ring;

R3 is selected from the group consisting of H, OH, NH2, C1 to C6 alkyl, substituted C_1 to C_6 alkyl, and COR^C ;

 $R^{\rm C}$ is selected from the group consisting of H, C_1 to C_4 alkyl, and C_1 to C_4 alkoxy;

R⁴ is selected from the group consisting of H, halogen, NO₂, C₁ to C₃ alkyl, and substituted C1 to C3 alkyl;

 R^5 is the substituted benzene ring having the structure:

X is selected from the group consisting of halogen, CN, C_1 to C_3 alkoxy, C_1 to C_3 alkyl, NO_2 , C_1 to C_3 perfluoroalkyl, 5 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, and C_1 to C_3 thioalkyl

10(Original). The method according to Claim 8, wherein in formula I:

 R^1 and R^2 and are independently selected from the group consisting of C_1 to C_3 alkyl and substituted C_1 to C_3 alkyl;

or \mathbb{R}^1 and \mathbb{R}^2 are fused to form the carbon-based 3 to 6 membered saturated spirocyclic ring;

 R^3 is selected from the group consisting of H, OH, NH₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, and COR^C;

 R^{C} is selected from the group consisting of H, C_{1} to C_{4} alkyl, and C_{1} to C_{4} alkoxy;

 R^4 is selected from the group consisting of H, halogen, NO₂, C₁ to C₃ alkyl, and substituted C₁ to C₃ alkyl;

R⁵ is the five membered ring having the structure:

U is selected from the group consisting of O, S, and NR⁵;

X is selected from the group consisting of halogen, CN, C_1 to C_3 alkoxy, C_1 to C_3 alkyl, NO₂, C_1 to C_3 perfluoroalkyl, 5 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, and C_1 to C_3 thioalkyl,

Y' is selected from the group consisting of H, halogen, CN, NO₂, C_1 to C_3 alkoxy, C_1 to C_4 alkyl, and C_1 to C_3 thioalkyl.

11(Original). The method according to claim 8, wherein in formula I:

 R^1 and R^2 and are independently selected from the group consisting of C_1 to C_3 alkyl and substituted C_1 to C_3 alkyl;

or \mathbb{R}^1 and \mathbb{R}^2 are fused to form the carbon-based 3 to 6 membered saturated spirocyclic ring;

 R^3 is selected from the group consisting of H, OH, NH₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, and COR^C;

 R^{C} is selected from the group consisting of H, C_{1} to C_{4} alkyl, and C_{1} to C_{4} alkoxy;

 \mathbb{R}^4 is selected from the group consisting of H, halogen, NO₂, C₁ to C₃ alkyl, and substituted C₁ to C₃ alkyl,

R⁵ is the six membered ring having the structure:

 X^1 is selected from the group consisting of N and CX^2 ;

X² is selected from the group consisting of halogen, CN, and NO₂.

12(Original). The method according to claim 1, wherein in formula I \mathbb{R}^3 is H and \mathbb{Q}^1 is S.

13(Original). The method according to claim 1, wherein in formula I:

R¹ and R² are independent substituents selected from the group consisting of H, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₂ to C₆ alkenyl, substituted C₂ to C₆ alkynyl, C₃ to C₆ alkynyl, substituted C₂ to C₆ alkynyl, C₃ to C₆ cycloalkyl, substituted C₃ to C₆ to C₆ cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone I to 3 heteroatoms, and substituted carbon-based heterocyclic ring having in its backbone I to 3 heteroatoms.

14(Original). The method according to claim 1, wherein in formula I: \mathbb{R}^1 and \mathbb{R}^2 are fused to form a carbon-based 3 to 6 membered saturated spirocyclic ring.

15(Original). The method according to claim 1, wherein in formula I: R¹ and R² are fused to form a carbon-based 3 to 6 membered spirocyclic ring having one or more carbon-carbon double bonds.

16(Original). The method according to claim 1, wherein in formula I: R¹ and R² are fused to form a 3 to 6 membered spirocyclic ring having in its backbone one to three heteroatoms.

Claims 17-24 (Canceled).

25(Original). The method according to claim I wherein said compound of formula I is selected from the group consisting of 6-(3-Chlorophenyl)-4,4-dimethyl-1,4-dihydro-benzo[d][1,3]oxazin-2-thione, 4-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2Hbenzo[d][1,3]oxazin-6-yl)-thiophene-2-carbonitrile, 3-(4,4-Dimethyl-2-thioxo-1,4dihydro-2H-benzo[d][1,3]oxazin-6-yl)-5-fluorobenzonitrile, 3-(4,4-Dimethyl-2thioxo-1,4-dihydro-2H-benzo[d][1,3]oxazin-6-yl)-benzonitrile, 6-(3-fluorophenyl)-4methyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 5-(4,4-Dimethyl-2-thioxo-1,4dihydro-2H-3,1-benzoxazin-6-yl)-4-methylthiophene-2-carbonitrile, tert-Butyl 2cyano-5-(4,4-dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1H-pyrrole-1carboxylate, 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1Hpyrrole-2-carbonitrile, [6-(4,4-dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6yl)-pyridin-2-yl]acetonitrile, 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1benzoxazin-6-yl)-1-methyl-1H-pyrrole-2-carbonitrile, 5-(4,4-dimethyl-2-thioxo-1,4dihydro-2H-3,1-benzoxazin-6-yl)-1H-pyrrole-2-carbothiamide, 5-(4,4-Dimethyl-2thioxo-1,4-dihydro-2H-benzo[d][1,3]oxazin-6-yl) thiophene-3-carbonitrile, 5-(4,4dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1-ethyl-1H-pyrrole-2carbonitrile, 4-(1,2-Dihydro-2-thioxospiro[4H-3,1-benzoxazin-4,1-cyclohexan]-6-yl)-2-thiophenecarbonitrile, 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6yl)-2-fluorobenzonitrile, 6-(5-Bromopyridin-3-yl)-4,4-dimethyl-1,4-dihydro-2H-3,1benzoxazine-2-thione, 6-(3-Chloro-5-fluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1benzoxazine-2-thione, 6-(3-Bromo-5-methylphenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Bromo-5-trifluoromethoxyphenyl)-4,4-dimethyl-1,4-

dihydro-2H-3,1-benzoxazine-2-thione, 3-(1,2-Dihydro-2-thioxospiro[4H-3,1benzoxazine-4,1-cyclohexan]-6-yl)-5-fluorobenzonitrile, 3-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-5-methylbenzonitrile, 6-(3,5-Dichlorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 5-(4,4-Dimethyl-1,2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)isophthalonitrile, 5-(4,4-Dimethyl-2-thioxo-1,4dihydro-2H-3, 1-benzoxazin-6-yl)-2-furonitrile, 4,4-Diethyl-6-(3-nitrophenyl)-1,4dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Chlorophenyl)-4-methyl-4-phenyl-1,4dihydro-2H-3,1-benzoxazine-2-thione, 4-Allyl-6-(3-chlorophenyl)-4-methyl-1,4dihydro-2H-3, 1-benzoxazine-2-thione, 3-Chloro-5-(4,4-dimethyl-2-thioxo-1,4dihydro-2H-3,1-benzoxazin-6-yl)benzonitrile, 6-(3,5-Difluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Fluoro-5-methoxyphenyl)-4,4dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 3-(4,4-Dimethyl-2-thioxo-1,4dihydro-2H-3, l-benzoxazin-6-yl)-5-methoxybenzonitrile, 6-(3-Fluorophenyl)-4,4dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-[3-Fluoro-5-(trifluoromethyl)phenyl]-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(2-Fluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3,4-Difluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(4-Fluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 3-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-4-fluorobenzonitrile, 6-(2,3-Difluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 3-(8-Bromo-4,4-dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-5fluorobenzonitrile, 4,4-Dimethyl-6-(3-nitrophenyl)-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Chlorophenyl)-4,4-diethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Methoxyphenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(2-Chlorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 4-Benzyl-6-(3-chlorophenyl)-4-methyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 6-(3-Bromo-5fluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl) thiophene-2-carbonitrile, 3-Fluoro-5-(8-fluoro-4,4-dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6yl)benzonitrile, 3-(1,2-Dihydro-2-thioxospiro[4H-3,1-benzoxazine-4,1-cyclohexan]-6-yl)benzonitrile, 5-(1,2-Dihydro-2-thioxospiro[4H-3,1-benzoxazine-4,1cyclohexan]-6-yl)-4-methyl-2-thiophenecarbonitrile, 5-(1,2-Dihydro-2-

thioxospiro[4H-3, I-benzoxazine-4, 1-cyclohexan]-6-yl)-2-thiophenecarbonitrile, 6-(3-Chloro-4-fluorophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazine-2-thione, 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-4-propylthiophene-2-carbonitrile, 4-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-2-furonitrile, 4-Butyl-5-(4,4-dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)thiophene-2-carbonitrile, 6-(3-Bromophenyl)-4,4-dimethyl-1,4-dihydro-2H-3,1-benzoxazin-6-yl)thiophene-3-carbonitrile, or a pharmaceutically acceptable salt, tautomer, metabolite, or prodrug thereof.

26(Original). The method according to claim 1, wherein said compound of formula I is 5-(4,4-Dimethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1-methyl-1H-pyrrole-2-carbonitrile or a pharmaceutically acceptable salt, tautomer, metabolite, or prodrug thereof.

27(Original). The method according to claim 1, wherein said compound of formula II is selected from the group consisting of: 5-(4-ethyl-4-methyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1-methyl-1H-pyrrole-2-carbonitrile, 5-(4,4-diethyl-2-thioxo-1,4-dihydro-2H-3,1-benzoxazin-6-yl)-1-methyl-1H-pyrrole-2-carbonitrile, 1-methyl-5-(2-thioxo-1,2-dihydrospiro[3,1-benzoxazine-4,1'-cyclobutan]-6-yl)-1H-pyrrole-2-carbonitrile, 1-methyl-5-(2-thioxo-1,2-dihydrospiro[3,1-benzoxazine-4,1'-cyclohexan]-6-yl)-1H-pyrrole-2-carbonitrile, 1-methyl-5-(2-thioxo-1,2-dihydrospiro[3,1-benzoxazine-4,1'-cyclopentan]-6-yl)-1H-pyrrole-2-carbonitrile, 1-methyl-5-[2-thioxo-4,4-bis(trifluoromethyl)-1,4-dihydro-2H-3,1-benzoxazine-6-yl]-1H-pyrrole-2-carbonitrile, and prodrugs, metabolites, and pharmaceutically acceptable salts thereof.

28(Original). A pharmaceutical kit useful for inducing contraception or hormone replacement therapy, said kit comprising a compound of formula I or formula II and at least one selective estrogen receptor modulator,

wherein formula I is:

wherein:

 R^1 and R^2 are independent substituents selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_2 to C_6 alkenyl, substituted C_2 to C_6 alkenyl, C_3 to C_8 cycloalkyl, substituted C_2 to C_6 alkynyl, C_3 to C_8 cycloalkyl, substituted C_9 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, COR^A , and NR^BCOR^A ;

or \mathbb{R}^1 and \mathbb{R}^2 are fused to form a ring selected from the group consisting of a), b) and c), wherein said ring is optionally substituted by from 1 to 3 substituents selected from the group consisting of H and \mathbb{C}_1 to \mathbb{C}_3 alkyl;

- a) a carbon-based 3 to 8 membered saturated spirocyclic ring;
- b) a carbon-based 3 to 8 membered spirocyclic ring having one or more carbon-carbon double bonds; and
- c) a 3 to 8 membered spirocyclic ring having in its backbone one to three heteroatoms selected from the group consisting of O, S and N;

 R^A is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, amino, C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl;

 R^B is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl;

 R^3 is selected from the group consisting of H, OH, NH₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₃ to C₆ alkenyl, substituted C₃ to C₆ alkenyl, alkynyl, substituted alkynyl, and COR^C,

 R^C is selected from the group consisting of H, C₁ to C₄ alkyl, substituted C₁ to C₄ alkyl, aryl, substituted aryl, C₁ to C₄ alkoxy, substituted C₁ to C₄ alkoxy, C₁ to C₄ aminoalkyl, and substituted C₁ to C₄ aminoalkyl,

 R^4 is selected from the group consisting of H, halogen, CN, NO₂, C₁ to C₆ alkyl, substituted C₁ to C₆ alkyl, C₁ to C₆ alkoxy, substituted C₁ to C₆ alkoxy, C₁ to C₆ aminoalkyl, and substituted C₁ to C₆ aminoalkyl,

R⁵ is selected from the group consisting of (i) and (ii):

a substituted benzene ring having the structure:

X is selected from the group consisting of halogen, CN, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, C_1 to C_3 thioalkyl, substituted C_1 to C_3 aminoalkyl, substituted C_1 to C_3 aminoalkyl, NO_2 , C_1 to C_3 perfluoroalkyl, substituted C_1 to C_3 perfluoroalkyl, substituted C_1 to C_3 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, substituted C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, substituted C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, substituted C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, C_2 perfluoroalkyl, C_2 perfluoroalkyl, C_1 to C_2 perfluoroalkyl, C_2 perfluoroalkyl, C_2 perfluoroalkyl, C_3 perfluoroalkyl, C_4 perfluoroalkyl, C_2 perfluoroalkyl, C_3 perfluoroalkyl, C_4 per

 R^D is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, substituted C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl,

 R^E is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl;

Y and Z are independent substituents selected from the group consisting of H, halogen, CN, NO₂, C_1 to C_3 alkoxy, substituted C_1 to C_3 alkoxy, C_1 to C_4 alkyl, substituted C_1 to C_4 alkyl, C_1 to C_3 thioalkyl, and substituted C_1 to C_3 thioalkyl, and

b) a five or six membered carbon-based heterocyclic ring having in its backbone 1, 2, or 3 heteroatoms selected from the group consisting of O, S, SO, SO₂, and NR⁶ and having one or two independent substituents selected from the group consisting of H, halogen, CN, NO₂, C₁ to C₄ alkyl, substituted C₁ to C₄ alkyl, C₁ to C₃ alkoxy, substituted C₁ to C₃ alkoxy, C₁ to C₃ aminoalkyl, substituted C₁ to C₃ perfluoroalkyl, substituted C₁ to C₃ perfluoroalkyl, 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted 5 or 6 membered carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, C₁ to C₃ thioalkyl, substituted C₁ to C₃ thioalkyl, COR^F, and NR^GCOR^F;

 R^F is selected from the group consisting of H, C_1 to C_3 alkyl, substituted C_1 to C_3 alkyl, aryl, substituted aryl, C_1 to C_3 alkoxy, substituted C_1 to C_3 aminoalkyl, and substituted C_1 to C_3 aminoalkyl;

 R^{Θ} is selected from the group consisting of H, C_1 to C_3 alkyl, and substituted C_1 to C_3 alkyl;

 R^6 is selected from the group consisting of H, C_1 to C_3 alkyl, and C_1 to C_4 CO2alkyl;

Q1 is selected from the group consisting of S, NR7, and CR8R9,

 R^7 is selected from the group consisting of CN, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_3 to C_8 cycloalkyl, substituted C_3 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, SO_2CF_3 , OR^{11} , and $NR^{11}R^{12}$;

 R^8 and R^9 are independent substituents selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, C_3 to C_8 cycloalkyl, substituted C_3 to C_8 cycloalkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, NO₂, CN, and CO_2R^{10} ;

 R^{10} is selected from the group consisting of C_1 to C_3 alkyl and substituted C_1 to C_3 alkyl;

or CR⁸R⁹ comprise a six membered ring having the structure:

 R^{11} and R^{12} are independently selected from the group consisting of H, C_1 to C_6 alkyl, substituted C_1 to C_6 alkyl, aryl, substituted aryl, carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, substituted carbon-based heterocyclic ring having in its backbone 1 to 3 heteroatoms, acyl, substituted acyl, sulfonyl, and substituted sulfonyl;

and formula II is:

wherein:

R¹ is selected from the group methyl, ethyl, trifluoromethyl,

R2' is selected from the group methyl, ethyl, trifluoromethyl; or

 $R^{1'}$ and $R^{2'}$ are joined to form a spirocyclic ring containing 3 to 7 carbon atoms; and $R^{3'}$ is selected from the group C_1 to C_4 alkyl; and

a pharmaceutically acceptable salt, tautomer, metabolite, or prodrug thereof.