RÉDUCTION ALGÉBRIQUE

1 Polynômes d'un endomorphisme ou d'une matrice carrée

1.1 Définition d'un polynôme d'un endomorphisme ou d'une matrice carrée

Définition 1.1

- (i) Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel et $P = \sum_{n=0}^{+\infty} a_n X^n \in \mathbb{K}[X]$. On pose $P(u) = \sum_{n=0}^{+\infty} a_n u^n$.
- (ii) Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P = \sum_{n=0}^{+\infty} a_n X^n \in \mathbb{K}[X]$. On pose $P(A) = \sum_{n=0}^{+\infty} a_n A^n$.

Exemple 1.1

Si u est un endomorphisme d'un espace vectoriel E et $P = X^2 + X + 1$, alors $P(u) = u^2 + u + Id_E$ (et non $u^2 + u + 1$, ce qui n'aurait aucun sens).

Si $A \in \mathcal{M}_n(\mathbb{K})$ et $P = X^2 + X + 1$, alors $P(A) = A^2 + A + I_n$ (et non $A^2 + A + 1$, ce qui n'aurait aucun sens).

Exercice 1.1

Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel et $P \in \mathbb{K}[X]$. Montrer que $\operatorname{Ker} P(u)$ et $\operatorname{Im} P(u)$ sont des sous-espaces vectoriels stables par u.

Lemme 1.1

- (i) Soient u un endomorphisme d'un \mathbb{K} -espace vectoriel E et $P \in \mathbb{K}[X]$. Alors pour tout $(\lambda, x) \in \mathbb{K} \times E$, $u(x) = \lambda x \implies P(u)(x) = P(\lambda)x$.
- (ii) Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $P \in \mathbb{K}[X]$. Alors pour tout $(\lambda, X) \in \mathbb{K} \times \mathcal{M}_{n,1}(\mathbb{K})$, $AX = \lambda X \implies P(A)X = P(\lambda)X$.

Définition 1.2 Sous-algèbre engendrée par un endomorphisme ou une matrice carrée

- (i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E. L'application $P \in \mathbb{K}[X] \mapsto P(u) \in \mathcal{L}(E)$ est un morphisme de \mathbb{K} -algèbres. L'image de ce morphisme, notée $\mathbb{K}[u]$, est une sous-algèbre commutative de $\mathcal{L}(E)$.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'application $P \in \mathbb{K}[X] \mapsto P(A) \in \mathcal{M}_n(\mathbb{K})$ est un morphisme de \mathbb{K} -algèbres. L'image de ce morphisme, notée $\mathbb{K}[A]$, est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{K})$.

Exercice 1.2

Soient f et g deux endomophismes d'un espace vectoriel E. Montrer que si g commute avec f, alors g commute avec tout élément de $\mathbb{K}[f]$.

1

2 Application à la réduction

2.1 Polynômes annulateurs

Définition 2.1 Polynôme annulateur

(i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel. On appelle **polynôme annulateur** de u tout polynôme $P \in \mathbb{K}[X]$ tel que P(u) = 0.

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. On appelle **polynôme annulateur** de A tout polynôme $P \in \mathbb{K}[X]$ tel que P(A) = 0.

Proposition 2.1 Polynôme annulateur et valeur propre

- (i) Soient *u* un endomorphisme d'un espace vectoriel et P un polynôme annulateur de *u*. Alors toute valeur propre de *u* est racine de P.
- (ii) Soient $A \in \mathcal{M}_n(\mathbb{K})$ et P un polynôme annulateur de A. Alors toute valeur propre de A est racine de P.

ATTENTION! La réciproque est fausse. Une racine d'un polynôme annulateur n'est pas forcément une valeur propre.

Théorème 2.1 Lemme des noyaux

Soient P_1, \dots, P_r des polynômes premiers entre eux deux à deux et $P = \prod_{i=1}^r P_i$.

(i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel. Alors

$$\operatorname{Ker} P(u) = \bigoplus_{i=1}^{r} \operatorname{Ker} P_{i}(u)$$

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors

$$\operatorname{Ker} P(A) = \bigoplus_{i=1}^{r} \operatorname{Ker} P_{i}(A)$$

Corollaire 2.1 Polynôme annulateur et diagonalisabilité

- (i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie. Alors u est diagonalisable si et seulement si il existe un polynôme annulateur de u scindé sur \mathbb{K} à racines simples.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est diagonalisable si et seulement si il existe un polynôme annulateur de A scindé sur \mathbb{K} à racines simples.

Corollaire 2.2 Diagonalisabilité d'un endomorphisme induit

Soient u un endomorphisme diagonalisable d'un espace vectoriel de dimension finie et F un sous-espace vectoriel stable par f. Alors $u_{|F}$ est diagonalisable.

Remarque. En fait, de manière générale, si F est stable par u, $Sp(u|F) \subset Sp(u)$ et pour tout $\lambda \in Sp(u|F)$, $E_{\lambda}(u|F) = E_{\lambda}(u) \cap F$.

Exercice 2.1

Soient u et v deux endomorphismes diagonalisables d'un même espace vectoriel E de dimension finie. Montrer que si u et v commutent, alors il existe une base de E dans laquelle les matrices de u et v sont toutes deux diagonales.

Théorème 2.2 Cayley-Hamilton

- (i) Soit u un endomorphisme d'un espace vectoriel de **dimension finie**. Alors $\chi_u(u) = 0$.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors $\chi_A(A) = 0$.

Proposition 2.2 Polynôme annulateur et trigonalisabilité

- (i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel de dimension finie. Alors u est trigonalisable si et seulement si il existe un polynôme annulateur de u scindé sur \mathbb{K} .
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors A est trigonalisable si et seulement si il existe un polynôme annulateur de A scindé sur \mathbb{K} .

Exercice 2.2

Soient u et v deux endomorphismes diagonalisables d'un même espace vectoriel E de dimension finie. Montrer que si u et v commutent, alors il existe une base de E dans laquelle les matrices de u et v sont toutes deux triangulaires supérieures.

On peut affiner ce résultat.

Proposition 2.3

- (i) Soit u un endomorphisme d'un espace vectoriel E de dimension finie annulé par un polynôme scindé. Alors il existe des sous-espaces vectoriels E_1, \ldots, E_r de E stables par u tels que $E = \bigoplus_{i=1}^r E_i$ et tels que pour tout $i \in [\![1,r]\!]$, l'endomorphisme induit par u sur E_i soit la somme d'une homothétie et d'un endomorphisme nilpotent.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$ annulée par un polynôme scindé. Alors A est semblable à une matrice diagonale par blocs où chaque bloc diagonal est la somme d'une matrice scalaire et d'une matrice triangulaire supérieure stricte.

Remarque. Plus précisément, si $P = \prod_{i=1}^{r} (X - \lambda_i)^{m_i}$ annule u, alors en posant $E_i = \operatorname{Ker}(u - \lambda_i)^{m_i}$ pour tout $i \in [1, r]$, les E_i sont stables par u et $u_{|E_i} = \lambda_i \operatorname{Id}_{E_i} + n_i$ avec $n_i = u_{|E_i} - \lambda_i \operatorname{Id}_{E_i}$ nilpotent.

De même, si $P = \prod_{i=1}^{r} (X - \lambda_i)^{m_i}$ annule A, alors A est semblable à une matrice de la forme

Décomposition de Dunford

Il en résulte qu'il existe des endomorphismes d et n de E tels que

- u = d + n;
- les restrictions de d aux sous-espaces vectoriels E_1, \dots, E_r sont des homothéties;
- *n* est nilpotent;
- *d* et *n* commutent.

On peut alors montrer que ces endomorphismes d et n sont uniques. L'écriture u = d + n s'appelle la **décomposition de Dunford** de l'endomorphisme u.

De même, il existe des matrices D et N de $\mathcal{M}_n(\mathbb{K})$ telles que

- A = D + N;
- D est diagonalisable;
- N est nilpotente;
- D et N commutent.

A nouveau, ces matrices D et N sont uniques. L'écriture A = D + N s'appelle la **décomposition de Dunford** de la matrice A.

2.2 Idéal annulateur

Définition 2.2 Idéal annulateur d'un endomorphisme ou d'une matrice carrée

- (i) Soit u un endomorphisme d'un \mathbb{K} -espace vectoriel E. Le noyau du morphisme d'algèbres $P \in \mathbb{K}[X] \mapsto P(u) \in \mathcal{L}(E)$ est un idéal de $\mathbb{K}[X]$ appelé **idéal annulateur** de u.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Le noyau du morphisme d'algèbres $P \in \mathbb{K}[X] \mapsto P(A) \in \mathcal{M}_n(\mathbb{K})$ est un idéal de $\mathbb{K}[X]$ appelé idéal annulateur de A.

Proposition 2.4 Polynôme minimal

(i) Soit u un endomorphisme d'un espace vectoriel de **dimension finie**. L'idéal annulateur de u admet un unique générateur unitaire appelé **polynôme minimal** de u, noté π_u .

(ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. L'idéal annulateur de A admet un unique générateur unitaire appelé **polynôme minimal** de A, noté π_A .

Remarque. En clair, ceci signifie que pour tout $P \in K[X]$,

$$P(u) = 0 \iff \pi_u \mid P$$
 et $P(A) = 0 \iff \pi_A \mid P$

ATTENTION! L'idéal annulateur d'un endomorphisme d'un espace vectoriel de dimension infinie peut être réduit à {0}, auquel cas il n'existe pas de polynôme minimal.

Par exemple, l'idéal annulateur de l'endomorphisme D : $P \in \mathbb{K}[X] \mapsto P'$ est nul.

Exemple 2.1

Le polynôme minimal d'un projecteur sur un sous-espace vectoriel non trivial est X(X - 1). Le polynôme minimal d'une symétrie par rapport à un sous-espace vectoriel non trivial est (X - 1)(X + 1).

Corollaire 2.3

- (i) Soit u un endomorphisme d'un espace vectoriel de **dimension finie**. Alors π_u divise χ_u .
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors π_A divise χ_A .

ATTENTION! Une erreur classique consiste à croire qu'il suffit d'«enlever» les puissances du polynôme caractéristique pour obtenir le polynôme minimal.

Par exemple, si A =
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 2 \end{pmatrix}, \chi_{A} = (X - 1)^{2}(X - 2)^{2} \text{ et on vérifie que } (X - 1)(X - 2) \text{ n'annule pas A. On a en fait}$$
$$\pi_{A} = (X - 1)(X - 2)^{2}.$$

Exemple 2.2

- (i) Si u est un endomorphisme nilpotent d'indice p d'un espace vectoriel de dimension n, alors son polynôme minimal est X^p . Puisque son polynôme caractéristique est X^n et que π_u divise χ_u , on en déduit $p \le n$.
- (ii) Si A est une matrice nilpotente d'indice p de $\mathcal{M}_n(\mathbb{K})$, alors son polynôme minimal est X^p . Puisque son polynôme caractéristique est X^n et que π_A divise χ_A , on en déduit $p \le n$.

Exercice 2.3 Matrice compagnon

Soient
$$(a_0, \dots, a_{n-1}) \in \mathbb{K}^n$$
 et $A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & a_0 \\ 1 & \ddots & & \vdots & a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$. Montrer que $\chi_A = \pi_A = X^n - \sum_{k=0}^{n-1} a_k X^k$.

Proposition 2.5 Le polynôme minimal est un invariant de similitude

Deux matrices carrées semblables ont le même polynôme minimal.

Proposition 2.6 Spectre et polynôme minimal

- (i) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors Sp(A) est l'ensemble des racines de π_A .
- (ii) Soit u un endomorphisme d'un espace vectoriel de E de **dimension finie**. Alors Sp(u) est l'ensemble des racines de π_u .

Exemple 2.3 Calcul d'un polynôme minimal

On pose $A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 2 & -1 \\ 1 & 1 & 0 \end{pmatrix}$. On trouve $\chi_A = X(X-1)^2$. Ainsi le polynôme minimal de A vaut X(X-1) ou $X(X-1)^2$.

On vérifie que $A(A - I_3) = 0$ donc $\pi_A = X(X - 1)$.

Exemple 2.4 Calcul d'un polynôme minimal

Posons A = $\begin{pmatrix} 3 & 2 & -2 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$. On calcule $\chi_A = (X - 1)^3$. Ainsi π_A vaut X - 1, $(X - 1)^2$ ou $(X - 1)^3$. Comme A $\neq I_3$,

 $\pi_A \neq X-1.$ On vérifie que $(A-I_3)^2=0$ donc $\pi_A=0.$

Proposition 2.7 Polynôme minimal d'un endomorphisme induit

Soient u un endomorphisme d'un espace vectoriel de dimension finie et F un sous-espace vectoriel stable par F. Alors $\pi_{u_{|F}}$ divise π_u .

Proposition 2.8 Diagonalisabilité et polynôme minimal

(i) Un endomorphisme d'un espace vectoriel de dimension finie est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples. Dans ce cas, $\pi_u = \prod_{\lambda \in \operatorname{Sn}(u)} (X - \lambda)$.

(ii) Une matrice carrée est diagonalisable si et seulement si son polynôme minimal est scindé à racines simples. Dans ce cas, $\pi_A = \prod_{\lambda \in Sp(A)} (X - \lambda)$.

Proposition 2.9 Trigonalisabilité et polynôme minimal

- Un endomorphisme d'un espace vectoriel de dimension finie est trigonalisable si et seulement si son polynôme minimal est scindé.
- (ii) Une matrice carrée est trigonalisable si et seulement si son polynôme minimal est scindé.

Proposition 2.10 Dimension de la sous-algèbre engendrée par un endomorphisme ou une matrice carrée

- (i) Soit u un endomorphisme d'un espace vectoriel de **dimension finie**. Posons $d = \deg \pi_u$. Alors $\dim \mathbb{K}[u] = d$ et $(u^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[u]$.
- (ii) Soit $A \in \mathcal{M}_n(\mathbb{K})$. Posons $d = \deg \pi_A$. Alors $\dim \mathbb{K}[A] = d$ et $(A^k)_{0 \le k \le d-1}$ est une base de $\mathbb{K}[A]$.

Sous-espaces caractéristiques -

Soit $u \in \mathcal{L}(E)$ dont le polynôme minimal est scindé i.e.

$$\pi_u = \prod_{\lambda \in \mathrm{Sp}(u)} (X - \lambda)^{\mu_{\lambda}}$$

On appelle sous-espace caractéristique associé à la valeur propre λ le sous-espace vectoriel

$$N_{\lambda}(u) = \text{Ker}(u - \lambda \operatorname{Id}_{E})^{\mu_{\lambda}}$$

Le lemme des noyaux garantit que

$$E = \bigoplus_{\lambda \in \mathrm{Sp}(u)} \mathrm{N}_{\lambda}(u)$$

Par ailleurs, le polynôme caractéristique de u est alors de la forme

$$\chi_u = \prod_{\lambda \in \mathrm{Sp}(u)} (\mathrm{X} - \lambda)^{m_\lambda}$$

où $\mu_{\lambda} \leq m_{\lambda}$ pour tout $\lambda \in \operatorname{Sp}(u)$. On peut montrer que

$$\forall \lambda \in \mathrm{Sp}(u), \ \mathrm{N}_{\lambda}(u) = \mathrm{Ker}(u - \lambda \mathrm{Id}_{\mathrm{E}})^{m_{\lambda}}$$

Si u est diagonalisable, alors $\mu_{\lambda} = 1$ pour tout $\lambda \in \operatorname{Sp}(u)$. Les sous-espaces caractéristiques sont alors exactement les sous-espaces propres.

Les sous-espaces caractéristiques de u sont stables par u. L'endomorphisme u_{λ} de $N_{\lambda}(u)$ induit par u est alors de la forme $\lambda \operatorname{Id}_{N_{\lambda}(u)} + n_{\lambda}$ où n_{λ} est un endomorphisme nilpotent de $N_{\lambda}(u)$ (cf. Proposition 2.3).

3 Exponentielle d'un endomorphisme ou d'une matrice

Définition 3.1 Exponentielle d'un endomorphisme

Soient E un \mathbb{K} -espace vectoriel de **dimension finie** et $u \in \mathcal{L}(E)$. Alors la série $\sum_{n \in \mathbb{N}} \frac{u^n}{n!}$ converge absolument. Sa somme est appelée **exponentielle** de u et est notée e^u ou $\exp(u)$.

Remarque. L'exponentielle de l'endomorphisme nul de $\mathcal{L}(E)$ est Id_E .

Définition 3.2 Exponentielle d'une matrice carrée

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors la série $\sum_{k \in \mathbb{N}} \frac{A^k}{k!}$ converge absolument. Sa somme est appelée **exponentielle** de A et est notée e^A ou $\exp(A)$.

Remarque. L'exponentielle de la matrice nulle de $\mathcal{M}_n(\mathbb{K})$ est la matrice identité I_n .

Remarque. Si N est une matrice **nilpotente** d'indice d. Alors

$$\exp(\mathbf{N}) = \sum_{k=0}^{d-1} \frac{\mathbf{N}^k}{k!}$$

Exercice 3.1 Exponentielle d'une matrice diagonale

Montrer que l'exponentielle d'une matrice diagonale D est une matrice diagonale et que les coefficients diagonaux de exp(D) sont les exponentielles des coefficients diagonaux de D.

Exercice 3.2 Exponentielle d'une matrice triangulaire

Montrer que l'exponentielle d'une matrice triangulaire supérieure / inférieure T est une matrice triangulaire supérieure / inférieure et que les coefficients diagonaux de exp(T) sont les exponentielles des coefficients diagonaux de T.

Exercice 3.3 Exponentielle et similitude

Soit $(A, B, P) \in \mathcal{M}_n(\mathbb{K})^2 \times GL_n(\mathbb{K})$ tel que $B = P^{-1}AP$. Montrer que $\exp(B) = P^{-1}\exp(A)P$.

Exercice 3.4

Montrer que pour toute matrice $M \in \mathcal{M}_n(\mathbb{K})$, il existe un polynôme $P \in \mathbb{K}[X]$ tel que $\exp(M) = P(M)$. On pourra au choix utiliser les polynômes interpolateurs de Lagrange ou montrer que $\mathbb{K}[M]$ est fermé dans $\mathcal{M}_n(\mathbb{K})$.

Méthode Calcul de l'exponentielle d'une matrice diagonalisable

Pour calculer l'exponentielle d'une matrice $A \in \mathcal{M}_n(\mathbb{K})$, on peut chercher, **si possible**, à la diagonaliser. En effet, si $A = PDP^{-1}$, alors $exp(A) = Pexp(D)P^{-1}$ et l'exponentielle d'une matrice diagonale est facile à calculer.

Exemple 3.1 Exponentielle d'une matrice diagonalisable

On souhaite calculer l'exponentielle de la matrice $A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$. Le polynôme caractéristique de A est

$$\chi_A = (X-1)(X-4) + 2 = X^2 - 5X + 6 = (X-2)(X-3)$$

 $Comme \ \chi_A \ est \ scind\'e \ a \ racines \ simples, \chi_A \ est \ diagonalisable. \ De \ plus, \ Sp(A) = \{2,3\} \ et \ les \ sous-espaces \ propres \ sont \ a \ plus, \ Sp(A) = \{2,3\} \ et \ les \ sous-espaces \ propres \ sont \ plus, \ sont \ plus, \ sous-espaces \ propres \ sont \ plus, \ sous-espaces \ propres \ plus, \ sont \ plus, \ plu$

$$E_2(A) = vect\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right) \qquad \qquad E_3(A) = vect\left(\begin{pmatrix} 1 \\ -2 \end{pmatrix}\right)$$

Ainsi A = PDP⁻¹ avec D = $\begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$ et P = $\begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$. De plus,

$$P^{-1} = \frac{1}{\det(P)} \operatorname{com}(P)^{\mathsf{T}} = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$$

Finalement

$$\exp(\mathbf{A}) = \Pr(\mathbf{D})\mathbf{P}^{-1} = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \cdot \begin{pmatrix} e^2 & 0 \\ 0 & e^3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix} = \begin{pmatrix} 2e^2 - e^3 & e^2 - e^3 \\ 2e^3 - 2e^2 & 2e^3 - e^2 \end{pmatrix}$$

Exercice 3.5

Soient $\theta \in \mathbb{R}$ et $A = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}$. Montrer de deux manières différentes que $\exp(A) = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$.

Proposition 3.1 Exponentielle d'une somme

- Soient a et b deux endomorphisme de $\mathcal{L}(E)$ qui **commutent**. Alors $\exp(a+b) = \exp(a)\exp(b)$.
- Soient A et B deux matrices de $\mathcal{M}_n(\mathbb{K})$ qui **commutent**. Alors $\exp(A + B) = \exp(A) \exp(B)$.

REMARQUE. On en déduit notamment que si A et B commutent, exp(A) et exp(B) commutent également.

ATTENTION! L'hypothèse de commutativité est essentielle. Par exemple, si l'on prend $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, on obtient aisément $\exp(A) = \begin{pmatrix} 1 & 0 \\ 0 & e \end{pmatrix}$ (A est diagonale) et $\exp(B) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ (B est nilpotente). En posant $C = A + B = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$, on s'aperçoit facilement que $C^n = C$ pour tout $n \in \mathbb{N}^*$ de sorte que $\exp(C) = \begin{pmatrix} 1 & e - 1 \\ 0 & e \end{pmatrix}$. On vérifie alors facilement que $\exp(A + B) \neq \exp(A) \exp(B)$.

Exemple 3.2

Soit
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
. Alors $A = I_3 + N$ avec $N = \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. On remarque en particulier que N est **nilpotente**. Comme I_3 et N commutent, $exp(A) = exp(I_3) exp(N)$. Or $exp(I_3) = \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix}$ et $exp(N) = I_3 + N + \frac{N^2}{2} = \begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. On en

$$I_3 \text{ et N commutent, } \exp(A) = \exp(I_3) \exp(N). \text{ Or } \exp(I_3) = \begin{pmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix} \text{ et } \exp(N) = I_3 + N + \frac{N^2}{2} = \begin{pmatrix} 1 & 1 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}. \text{ On en}$$

déduit que
$$\exp(A) = \begin{pmatrix} e & e & e/2 \\ 0 & e & e \\ 0 & 0 & e \end{pmatrix}$$
.

Décomposition de Dunford et exponentielle

Un théorème hors-programme affirme que pour tout endomorphisme $u \in \mathcal{L}(E)$ trigonalisable, il existe un endomorphisme diagonalisable d et un endomorphisme nilpotent n qui **commutent** tels que u = d + n. Cette écriture s'appelle la **décomposition** de Dunford de u. On a bien évidemment un énoncé similaire pour les matrices.

Si l'on dispose d'une décomposition de Dunford u = d + n, alors $\exp(u) = \exp(d) \exp(n)$ et les exponentielles d'un endomorphisme diagonalisable et d'un endomorphisme nilpotent sont simples à calculer.

Exemple 3.3 Exponentielle d'une matrice trigonalisable

On considère la matrice $A = \begin{pmatrix} 2 & -1 & -1 \\ 2 & 1 & -2 \\ 3 & -1 & -2 \end{pmatrix}$. Son polynôme caractéristique est

$$\chi_{A} = \begin{vmatrix} X-2 & 1 & 1 \\ -2 & X-1 & 2 \\ -3 & 1 & X+2 \end{vmatrix} = \begin{vmatrix} X-1 & 1 & 1 \\ 0 & X-1 & 2 \\ X-1 & 1 & X+2 \end{vmatrix} = \begin{vmatrix} X-1 & 1 & 1 \\ 0 & X-1 & 2 \\ X-1 & 1 & X+2 \end{vmatrix} = (X-1)^{2}(X+1)$$

Comme χ_A est scindé, A est trigonalisable. De plus, $Sp(A) = \{-1, 1\}$ et les sous-espaces propres sont

$$E_{-1}(A) = \text{vect}(C_1) \quad \text{avec} \quad C_1 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \qquad \qquad E_1(A) = \text{vect}(C_2) \quad \text{avec} \quad C_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Notamment, A n'est pas diagonalisable. On cherche alors C_3 vérifiant $AC_3 = C_3 + C_2$ et on trouve par exemple $C_3 = C_3 + C_2$

$$\begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}. \text{ Ainsi } A = PTP^{-1} \text{ en posant } T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \text{ et } P = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{pmatrix}. \text{ On en déduit que } \exp(A) = P\exp(T)P^{-1}.$$

Or, d'une part,
$$P^{-1} = \begin{pmatrix} -1 & 0 & 1 \\ 2 & 0 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$
 et, d'autre part, $T = D + N$ avec $D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. D et N

commutent de sorte que

$$\exp(T) = \exp(D) \exp(N) = \exp(D)(I_3 + N) = \begin{pmatrix} e^{-1} & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} e^{-1} & 0 & 0 \\ 0 & e & e \\ 0 & 0 & e \end{pmatrix}$$

Enfin, on trouve

$$\exp(\mathbf{A}) = \operatorname{P} \exp(\mathbf{T}) \operatorname{P}^{-1} = \begin{pmatrix} e - e^{-1} & -e & e^{-1} \\ e - e^{-1} & e & e^{-1} - e \\ e - 2e^{-1} & -e & 2e^{-1} \end{pmatrix}$$

Corollaire 3.1 Exponentielle et inversibilité

- Soit $a \in \mathcal{L}(E)$. Alors $\exp(a) \in GL(E)$ et $\exp(a)^{-1} = \exp(-a)$.
- Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors $\exp(A) \in GL_n(\mathbb{K})$ et $\exp(A)^{-1} = \exp(-A)$.

Exercice 3.6

Soit $A \in \mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que det(exp(A)) > 0.
- 2. On suppose A antisymétrique. Montrer que $\exp(A) \in SO_n(\mathbb{R})$.

Exercice 3.7

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Montrer que $det(A) = e^{tr(A)}$.