Lif10 – Fondements des bases de donn \tilde{A} ©es TD – Introduction aux d \tilde{A} ©pendances

Licence informatique - printemps 2012-2013

Résumé

Exemples d'exercices LATEX 2_{ε}

Exercise 1 : vÃc rification des dÃc pendances en SQL

Prouver que $r, s \models R[X] \subseteq S[Y]$ si et seulement si $|\pi_X(r) \setminus \pi_Y(s)| = 0$, en déduire une requÃate SQL qui permet de tester la satisfaction d'une dépendance d'inclusion.

Answer of exercise 1

SELECT COUNT(*)
FROM (SELECT DISTINCT X FROM r
MINUS
SELECT DISTINCT Y FROM s)

Exercise 2:

$$\frac{Y \subseteq X}{X \to Y} \sigma_R \text{ (rÃ@flexivitÃ@)} \qquad \frac{X \to Y}{X \to YZ} \sigma_C \text{ (composition)}$$

$$\frac{X \to Y}{WX \to WY} \sigma_A \text{ (augmentation)} \qquad \frac{X \to YZ}{X \to Y} \sigma_D \text{ (dÃ@composition)}$$

$$\frac{X \to Y \qquad Y \to Z}{X \to Z} \sigma_T \text{ (transitivit} \tilde{\mathbb{A}} \text{ (c)} \qquad \frac{X \to Y \qquad WY \to Z}{WX \to Z} \sigma_P \text{ (pseudo-transitivit} \tilde{\mathbb{A}} \text{ (c)})$$

Soit Σ l'ensemble des d \tilde{A} © pendances suivantes

$$BC \rightarrow A$$
 $D \rightarrow BE$ $AC \rightarrow B$ $B \rightarrow DE$ $AE \rightarrow C$ $C \rightarrow E$

- 1. 1. $AD \rightarrow C$ 2. $CD \rightarrow A$
- 2. MÃ^ame question en calculant la fermeture des parties gauches à partir de l'algorithme de fermeture

Answer of exercise 2

1. 1.
$$\frac{D \to BE}{AD \to ABE} \text{ aug.} \quad \frac{AE \subseteq ABE}{ABE \to AE} \text{ refl.}$$

$$\frac{AD \to AE}{AD \to C} \text{ trans.}$$

$$2. \quad \frac{D \to BE}{D \to B} \text{ decomp.}$$

$$2. \quad \frac{D \to BE}{CD \to BC} \text{ aug.}$$

$$CD \to A \text{ trans.}$$

- 2. 1. Pour $AD \rightarrow C$, les \tilde{A} © tapes successives de l'algorithme sont les suivantes :
 - (a) closure = AD
 - (b) closure = ABDE en utilisant $D \rightarrow BE$
 - (c) closure = ABCDE en utilisant $AE \rightarrow C$
 - (d) comme $C \subseteq AD^+$, on en d \tilde{A} ©duit $AD \rightarrow C$ par correction de l'algorithme
 - 2. Pour $CD \rightarrow A$, les $\tilde{A}(\tilde{c})$ tapes successives de l'algorithme sont les suivantes :
 - (a) closure = CD
 - (b) closure = BCDE en utilisant $D \rightarrow BE$
 - (c) closure = ABCDE en utilisant $BC \rightarrow A$
 - (d) comme $A \subseteq CD^+$, on en d \tilde{A} (c)duit $CD \to A$ par correction de l'algorithme

Algorithme 1: fermeture d'un ensemble d'attributs par des $d\tilde{A}(c)$ pendances fonctionnelles

```
Data : \Sigma un ensemble de DF, X un ensemble d'attributs.
  Result : X^+, la fermeture de X par \Sigma.
1 unused := \Sigma
2 closure := X
3 repeat
      closure' := closure;
      if W \rightarrow Z \in unused and W \subseteq closure then
          unused := unused -\{W \rightarrow Z\};
          closure := closure \cup Z;
8 until closure' = closure;
9 return closure;
```