Fig. 1

Fig. 3

Fig. 4

TABLE III. Specular Reflectivity for Mirrors See page 211 for Explanation of Tables

Gold (Au) $\rho = 19.30 \text{ gm/cm}^3$

Grazing Incidence Angle, θ (milliradians)

,												
Line		E(eV)	5 mr	10 mr	15 mr	20 mr	30 mr	50 mr	80 mr	125 mr	200 mr	400 mr
Al	L _{2,3}	72.4	98.7	97.5	96.3	95.0	92.6	88.0	81.5	72.3	58.6	28.1
Si	L2.3	91.5	98.9	97.7	96.6	95.5	93.4	89.1	83.1	74.4	60.7	24.1
Be	ĸ.	108.5	99.0	98.0	96.9	95.9	94.0	90.1	84.5	76.2	62.1	14.6
Zr	MC	151.1	98.7	97.4	96.0	94.8	92.2	87.2	79.7	68.0	42.7	1.19
В	Kα	183.3	97.0	94.0	91.1	88.3	82.9	72.8	58.7	38.8	11.1	.376
C	Κα	277.0	94.9	90.0	85.4	81.0	72.7	58.0	39.6	18.8	3.50	.152
N	Kα	392.4	94.2	88.7	83.6	78.6	69.4	53.2	33.0	11.7	1.58	7.00E-2
Ti	Lα	452.2	93.9	88.2	82.8	77.7	68.1	51.2	29.9	8.76	1.07	4.83E-2
0	Kα	524.9	93.8	87.9	82.3	77.0	67.1	49.5	26.8	6.20	.708	3.24E-2
Cr	Lα	572.8	93.7	87.7	82.0	76.6	66.5	48.3	24.6	4.82	.540	2.51E-2
F	Kα	676.8	93.5	87.4	81.6	76.0	65.5	46.1	19.9	2.86	.322	1.53E-2
Co	Lα	776.2	93.5	87.4	81.5	75.9	65.2	44.5	15.3	1.77	.205	9.95B-3
Ni	Lα	851.5	93.5	87.4	81.5	75.8	64.9	43.0	11.7	1.24	.147	7.25E-3
Cu	Lα	929.7	93.5	87.4	81.5	75.8	64.5	41.1	8.47	.880	.107	5.34E-3
Zn	Lα	1011.7	93.6	87.5	81.6	75.8	64.3	39.0	5.91	.628	7.82E-2	3.94E-3
Mg	$K\alpha$	1253.6	93.8	87.8	81.9	76.0	63.3	27.7	2.06	.251	3.31E-2	1.71E-3
Al	Kα	1486.7	93.7	87.7	81.5	75.2	60.1	11.6	.869	.117	1.59E-2	8.36E-4
Si	Kα	1740.0	93.5	87.1	80.5	73.2	53.0	4.03	.386	5.55E-2	7.75E-3	4.11E-4
Zr	Lα	2042.4	92.3	84.7	76.3	65.9	26.3	1.22	.143	2.17E-2	3.10E-3	1.66E-4
Cl	Kα	2622.4	82.9	67.4	52.3	36.7	9.46	.753	9.60E-2	1.49E-2	2.15E-3	1.16E-4
Ag	La	2984.3	83.6	68.3	52.7	35.1	6.56	.519	6.75E-2	1.06E-2	1.53E-3	8.25E-5
Ca	Kα	3691.7	84.9	69.8	51.8	26.3	2.68	.238	3.23E-2	5.15E-3	7.48E-4	4.04E-5
Ti	Kα	4510.8	86.4	71.1	46.5	10.2	1.05	.105	1.48E-2	2.39E-3	3.49E-4	1.89E-5
V	Kα	4952.2	86.9	71.1	38.5	5.74	.677	7.14E-2	1.02E-2	1.65E-3	2.41E-4	1.31E-5
Cr	Kα	5414.7	87.3	70.6	24.4	3.41	.449	4.91E-2	7.06E-3	1.15E-3	1.68E-4	9.13E-6
Mn	Κα	5898.8	87.7	69.5	12.8	2.13	.304	3.42E-2	4.97E-3	8.10E-4	1.19E-4	6.46E-6
Co	Kα	6930.3	88.2	62.9	4.29	.929	.148	1.74E-2	2.55E-3	4.18E-4	6.15E-5	3.34E-6
Ni	Kα	7478.2	88.4	53.0	2.74	.641	.106	1.26E-2	1.86E-3	3.05E-4	4.49E-5	2.44E-6
Cu	Kα	8047.8	88.5	30.7	1.82	.451	7.67E-2	9.24E-3	1.37E-3	2.25E-4	3.32E-5	1.80E-6
Ge	Kα	9886.4	88.3	5. 38	.628	.172	3.10E-2	3.84E-3	5.74E-4	9.45E-5	1.39E-5	7.58E-7
Y	Kα	14988.0	44.7	.627	.104	3.11E-2	5.90E-3	7.49E-4	1.13E-4	1.87E-5	2.76E-6	1.50E-7
Mo	Kα	17479.0	15.9	.333	5.79E-2	1.76E-2	3.37E-3	4.29E-4	6.48E-5	1.07E-5	1.58E-6	8.61E-8
Pd	Κα	21177.0	4.28	.147	2.67E-2	8.21E-3	1.59E-3	2.03B-4	3.07E-5	5.09E-6	7.52E-7	4.09E-8
Sn	Kα	25271.0	1.62	6.96E-2	1.30E-2	4.02E-3	7.83E-4	1.01E-4	1.52E-5	2.52E-6	3.72E-7	2.03E-8
Xe	Kα	29779.0	.720	3.50E-2	6.63E-3	2.07E-3	4.04E-4	5.20E-5	7.87E-6	1.30E-6	1.93E-7	1.05E-8
		l	l	I	l .	ı		•	I	l .	l .	ł

Fig. 6

Fig. 7 (Conventional example)

