소프트웨어전공 교과목해설

교과목해설

학부 공통 교과목

학년-학기	교과목명	교과목설명	권장 선이수 교과목
1-1	소프트웨어개론 (Introduction to Software)	컴퓨터의 역사, 주요 구성요소인 CPU, 메모리, 보조기 억장치, 입출력 장치 등의 동작 원리 및 특성들을 배운 후, 프로그래밍 언어, 운영체제, 데이터베이스 등 소프트 웨어 개념, 정보통신 및 네트워크, 인공지능, 빅데이터, IoT, 로봇 등 새로운 IT 분야의 흐름에 대하여 학습	
	가상현실콘텐츠기초 (Basic Virtual Reality Contents)	가상현실 컨텐츠를 제작하기 위한 Alice 프로그래밍 언 어 이해 및 실습	
	전자공학개론및과학기술 문서작성 (Introduction to Electronics & Strategies for Engineering Communication)	전자공학 관련 물리적 법칙 이해를 통한 전기전자통신 공학의 기초지식을 습득하며, 공학도로서 과학기술문서 작성법 및 발표 등 능력을 함양한다.	
1-2	C프로그래밍 (C Programming)	C언어 프로그래밍 기초	
	파이썬응용 (Python Programming Application)	파이썬 응용을 위한 활용 프로그램 이해 및 실습	
	프로그래밍언어 (Programming Language)	C 프로그래밍언어를 학습하여 IoT 알고리즘 구현, IoT 펌웨어 개발, IoT 응용소프트웨어 개발 능력을 향상시킨 다.	

학년-학기	교과목명	교과목 설명	권장 선이수 교과목
	디지털회로 (Digital Logic Circuits)	컴퓨터를 기반으로 구성되는 시스템을 이해하기 위한 기 본적인 지식과 다양한 논리회로를 학습함으로써 시스템 을 설계할 수 있는 능력을 배양	
2-1	이산수학 (Discrete Mathematics)	미적분과 고전해석학의 가장 중요한 부분인 무한극한과 연속함수가 들어가지 않는 이산적인 대상과 유한과정을 다루는 수학으로 반복적, 귀납적, 알고리즘적인 관점에 대 해 학습	
	자료구조 (Data Structures)	자료구조에 대한 개념에서 자료 객체와 연산자를 학습하고, 정확한 알고리즘 작성 및 평가 능력을 배양하여 자료 구조의 표현 능력과 응용 능력을 배양	C프로그래밍
	자바프로그래밍 (Java Programming)	자바 언어의 문법과 프로그램 작성 방법, 객체지향 프로그 래밍의 개념 등에 대한 이해와 훈련을 통해 자바 프로그래 밍 능력을 배양	C프로그래밍
	정보통신개론 (Introduction to Information Communication)	인터넷과 이동통신을 망라한 정보통신기술 및 서비스의 기초 지식을 이해하고, 데이터 통신 및 컴퓨터 네트워크의 기본원리를 학습	
2-2	객체지향프로그래밍 (Object-Oriented Programming)	C++ 언어의 기본 문법, 클래스, 상속, 다형성 등 주요 객체 지향 개념을 학습하여 객체지향 프로그래밍 방법과 구현 능력을 배양	
	모바일프로그래밍 (Mobile Programming)	대표적 모바일 운영체제인 안드로이드의 프로그래밍 환 경을 이해하고 안드로이드 애플리케이션 개발 능력을 배 양	
	선형대수 (Linear Algebra)	컴퓨터 분야에서 기본이 되는 벡터와 벡터공간, 행렬과 행 렬식, 선형변환, 내적, 유클리드 공간기하, 특성치 등의 이 론과 응용을 학습	
	임베디드기초 (Introduction to Embedded System)	임베디드 시스템에 대한 기초 지식을 학습한다. 임베디드 프로세서용 크로스 컴파일 방법 및 개발 환경 구축 등을 실습하고, 타겟 보드 상에 실제 실험 부품들을 조립한 후, LED, 부저, 스위치 등 GPIO 프로그래밍 실습	C프로그래밍II
		Created with PDFCrowd HTML to PDF.API	

교과목명	교과목 설명	권장 선이수 교과목
정보보호개론 (Introduction to Information Security)	dp 대한 노출, 전송, 수정 그리고 파괴로부터 정보를 보호 하는 다양한 기법들을 교육하고 관리적·기술적 수단을 강 구하는 능력을 배양	선형대수
통계응용 (Applied Statistics)	통계자료 분석 및 자료 정리, 확률, 통계적 추론 등의 통계 학의 기본 개념을 학습하고, 컴퓨터 시물레이션 실습을 통 해 전산분야에서의 활용 능력을 배양	
Unix 서버 (Unix Server)	UNIX 운영체제 환경과 UNIX 시스템 프로그래밍을 학습한다. 주요 내용으로는 UNIX 명령어, shell 프로그래밍, 데 몬 프로세스 관리, make, awk 등의 시스템 도구 등을 익힌 다음, 파일 입출력, 프로세스 생성 및 통신, 메시지 교환, 시그널 등을 학습	
기초암호학 (Basic Modern Cryptography)	고전 암호체계를 중심으로 암호의 기본적인 이해를 돕고 암호 전반에 사용되는 수학적 이론을 공부한다.	선형대수 정보보호개론
알고리즘 (Algorithm)	컴퓨터 프로그래밍에서 필요한 알고리즘의 설계 방법과 전형적인 패턴을 학습하고 분석하는 교과목	
웹프로그래밍 (Web Programming)	웹의 동작 원리를 이해하고 서버 프로그래밍 기법을 학습 함	
인공지능개론 (Introduction to Artificial Intelligence)	인공지능 관점에서 문제 해결을 위한 탐색, 지식표현, 추론 등의 핵심 이론과 불확실성 처리를 위한 수리적인 방법을 학습하고 다양한 인공지능 응용분야에 적용된 방법론을 이해	자료구조 통계응용
자기주도프로젝트 I (Self-directed Project I)	전공 교과과정에서 배운 내용들에 대하여 자기 주도적으로 주제를 설정하고 팀워크를 통해 이를 해결해 감으로써 문제해결 및 소통 능력을 학습	
컴퓨터구조 (Computer System Archietecture)	컴퓨터의 기본적인 구성과 구조를 이해하고 컴퓨터의 구성요소인 CPU, 기억장치, 입출력 및 주변 장치 등의 동작원리를 학습하여 컴퓨터 하드웨어 설계능력을 배양	

학년-학기	교과목명	교과목 설명	권장 선이수 교과목
	기계학습 (Machine Leaming)	인공지능 구현의 핵심기술로 부상한 기계학습의 기본 개념과 원리 및 지도학습, 비지도학습, 강화학습 등에 대한모델 구조와 학습 알고리즘을 살펴보고, 미니 프로젝트 실습을 통해 응용 방법을 학습	인공지능개론
	네트워크 (Network)	데이터 통신의 핵심이 되는 인터넷의 이해와 활용을 위한 컴퓨터 네트워크의 프로토콜과 구조를 학습하고, 실제 구 현을 위한 Socket 프로그램을 실습	
	데이터베이스 (Databases)	데이터베이스 시스템의 특징과 운영에 관한 일반적인 개념을 이해하고 관계형 데이터 모델을 이용하여 데이터베이스를 표현하고 구축하는데 전반적인 지식을 비롯하여 제약조건과 정규화 과정을 통하여 관계형 데이터베이스를 설계	
3-2	운영체제 (Operating Systems)	운영체제의 기본 개념들을 다루고, 프로세스 관리, 기억장 치 관리, 파일 및 입출력 관리 등 운영체제의 핵심적인 기 능들을 배운 후, 임베디드, 분산 및 병렬처리용 운영체제, 클라우드 등의 이슈들을 학습	
	자기주도프로젝트 II (Self-directed Project II)	전공 교과과정에서 배운 내용들에 대하여 자기 주도적으로 주제를 설정하고 팀워크를 통해 이를 해결해 감으로써 문제해결 및 소통 능력을 학습	
	컴파일러구성론 (Compilers)	현대 프로그래밍 언어의 컴파일러 구성 원리와 구현 기법 의 이해	
	현대암호학 (Modem Cryptography)	대칭키 암호체계, 비대칭키 암호체계등 기본적인 암호체계와 그와 관련된 여러 기술들을 소개하고 간단한 프로토콜도 살펴본다.	기초암호학
4-1	IoT응용 (Advanced Internet of Things)	사물 인터넷 구성시 다루어야 할 이슈들인 단말 센서, 경 량 임베디드 시스템, 통신/네트워크 기술, 자율적/지능형 플랫폼 등을 중심으로 학습	
	빅데이터 (Introduction to Big Data)	빅데이터용 오픈소스 SW인 Hadoop, R 등을 활용하여, 대용량 데이터 수집, 관리, 저장, 검색, 분석, 시각화, 플랫 폼, 분석기법에 대하여 학습	데이터베이스
		Created with PDFCrowd HTML to PDF API	

	교과목명	교과목 설명	권장 선이수 교과목
	정보보호응용 (Application of Information Security)	최신의 운영체제, 임베디드 시스템, 정보보호 시스템 등과 관련하여 새롭게 출현할 기술 등에 대한 보안 사항에 중점 을 두고 강의한다.	현대암호학
O	캡스톤디자인 I (SW) (SW Capstone Design I)	졸업작품 발표 및 지도	
4-2	소프트웨어공학 (Software Engineering)	학생들이 일정기간 기업 현장에 근무하며 현장실무능력 을 함양하고 산업 현장에 적용	
	정보보호관리 및 정책 (Management and Policy to Information Security)	정보보호 시스템 관리를 위한 이론적인 내용 및 현재 시행되고 있는 정책. 보안 계획에 대해 이해하고 보안 프로그램의 형태 및 평가 방법 및 평가 모델, 보안 표준, 위기관리, 정보보호 정책 등에 대한 내용 중심	정보보호응용
	현장실습 (Field Practice)	학생들이 일정기간 기업 현장에 근무하며 현장실무능력 을 함양하고 산업 현장에 적용	
	캡스톤디자인 II (SW) (SW Capstone Design II)	졸업작품 발표 및 지도	

개인정보처리방침

경기도 용인시 기흥구 강남로 40(구갈동) 우(16979), 대표전화 : 031-280-3114, 031-280-3500, 팩스번호 : 031-281-3604 Copyright © 2019 Kangnam University. All right reserved.

① 강남대학교 I ICT융합공학부