

Investigating the effects of non-uniform input data windowing on electrical load disaggregation performance

M.Sc. Thesis Seminar

B.Sc. Abdul Hakmeh, Department of Informatics March 2022

Agenda

Introduction

Motivation and Research Goal

Methodology

Results and Evolution

Conclusion and Future Work

Non-intrusive Load Monitoring (NILM)

- Cost-effective centralized application of smart meters.
- Analyzing the overall electrical signal of a household and decomposing it into individual contribution of each appliance.
- Engaging the end-user in the energy management plan by providing detailed device-level consumption information.

Non-intrusive load monitoring (NILM)

State-of-the-art NILM

- Recently proposed disaggregation methods are rely on deep neural network models.
- Sequence-to-point (S2P) & sequence-to-sequence (S2S) models achieved remarkable accuracy results.

State-of-the-art NILM

- NILM toolkit (NILMTK) is an open source toolkit for NILM designed to enable the comparison of energy disaggregation algorithms in a reproducible manner.
- NILMTK offers reference implementations of S2P & S2S models.
- The most important configuration parameter is the window length defining the number of input samples to consider.
- Setting the parameter in most contributions can be categorized into two strategies; one-for-all and per-device.

State-of-the-art NILM

- One-for-all: a fixed value is assigned and only one network is trained to predict the operating conditions of all appliances.
- Per-device: the operational duration of the appliance under consideration is averaged. A separate network must be trained per targeted appliance.

Motivation and Research Goal

- One-for-all and per-device strategies represent a trade-off between results accuracy and simplicity.
- Using the one-for-all strategy to maintain the simplicity while modifying the windowing technique to ensure improvement in load disaggregation performance.
- The goal is to investigate the effect of non-uniform windowing on load disaggregation without influencing the model complexity.

Methodology: Non-equidistant Temporal Sampling

- The core idea: splitting the traditional uniform window into two sequences according to a fraction: a high-resolution sequence and an unequally spaced sequence generated by means of non-linear algebraic functions.
- Using non-linear algebraic functions creates non-equidistant temporal space between samples.
- Allowing the input window to contain more historical information without having to adjust the window length parameter.

Time Spacing Functions

Historical interval [Minutes ago]

Quad. function

Expo. function

- Differences in:
 - Temporal distances.
 - Effective window length.
 - Samples distribution over the timeline.

Non-equidistant Temporal Sampling: Example

Windowing Parameterization

- Two parameters are associated with windowing operation.
- The spacing function value refers to the value of the exponent in the quadratic function or the base value of the exponential function.
- The history aggregation factor defines the division of the window into equidistant and non-equidistant sequences.
- An Example: given are a widow length = 561, spacing function value= 2 and history aggregation factor= 0.05, they create a window, that have 533 samples in full-resolution and 28 samples collected according to the function t².

Non-equidistant sampling variants: Inverse Function

- Proposing different variants for a fair evaluation.
- Instead of splitting the window into two parts to create a non-equidistant sampled sequence, the inverse function creates this part over the entire window in total length.
- No partitioning is used and data points are sampled according to the spacing function, resulting in a window with uneven spacing between samples.
- Targeting the entire window means setting the history aggregation factor to one.

Non-equidistant sampling variants: Linear Downsampling Function

- Linear downsampling function retains the technique of splitting the input window.
- Instead of non-equidistant temporal sampling, the sequence is performed in linear intervals, with samples collected linearly following a fixed step.
- The linear and inverse functions cover the same effective sequence length as the non-equidistant temporal sampling.

Experiment Design: Windowing Parameters Ranges

- Numerous experiments are performed to investigate the effect of the proposed methods on load disaggregation performance.
- NILMTK is used as an execution tool with setting the model configurations to the default values.
- The window length is set according to the best value (561) determined empirically in the literature on the Dutch Residential Energy Dataset (DRED).

Parameter	Value /range	Interval
Algorithm	[S2S , S2P]	-
Time spacing function	[non-equidistant, linear, inverse]	-
spacing function value	$\{0.1, \ldots, 2\}$	0.1
history aggregation factor	$\{0.003, \ldots, 0.15\}$	0.002

Backup slide: Execution System

- Running a large number of experiments in parallel on multi GPU-computers.
- The system designed to automate the experiments execution.
- Automation is responsible for robustness to unexpected terminations or interruptions.

Results Margin

- Due to fluctuations observed in F1-score, an analysis is performed to define a results margin.
- After the margin value, the difference can be interpreted with certainty as a difference in performance caused by the function being evaluated.
- Normal distribution curve fitted to the histogram of 100 samples reports standard deviation in value of 0.01523.

S2S Results: Quadratic Function $t^{1.2}$

S2S Results: Quadratic Function Summary

S2S Results: Exponential Function Summary

S2P Results: Quadratic Function Summary

Conclusion

- Analyzing the results confirms a positive impact of aggregating historical information on load disaggregation.
- The promising potential of non-equidistant sampling demonstrated during the evaluation can make a step forward in the field of NILM, as collecting historical input data in a quadratic or linear fashion ensures performance improvement without compromising model complexity.

Future Work

- Short-term research the effect of non-uniform windowing on a different dataset can be investigated, where the training and testing phases can be performed on different buildings.
- Long-term research since the window length used in this study
 has been previously defined empirically in the literature through
 experiments on DRED, a study can be conducted that describes a
 procedure for theoretically defining the appropriate window length
 when using a different energy dataset.

Thank you for your attention.

Backup slid: Data Sampling Functions

- Non-equidistant temporal sampling generates temporal gaps between sampled data points.
- It may lead to lack of information that represent the events and appliance activations that took place in this interval.
- Statistical functions are used to increase the representation of a single sample for the temporal interval generated, giving a summary of the data without listing each value.

Backup slid:: Data Sampling Functions

Backup slide: Sampling Functions Comparison

Preliminary Study: Window Functions

- Window functions are sequences of finite length.
- Their amplitude goes uniformly towards zero at both edges.
- They are used to merge discontinued waveform in signal processing, resulting in a continuous signal.
- They can be applied on the data input window to fade out data points on the sides reducing their effect on the learning model.
- Symmetric and Asymmetric windows are applied to target different part of the input window.

Backup slide

Backup slide

B.Sc. Abdul Hakmeh Department of Informatics M.Sc. Thesis Seminar

Backup Slide

hyperparameters S2S

```
(1) Input sequence with length W: Yt :t+W1
```

- (2) 1D Convolution: filters: 30; filter size: 10
- (3) 1D Convolution: filters: 30; filter size: 8
- (4) 1D Convolution: filters: 40; filter size: 6
- (5) 1D Convolution: filters: 50; filter size: 5
- (6) 1D Convolution: filters: 50; filter size: 5
- (7) Fully connected: units: 1024
- (8) Output: Number of units:W

Backup Slide

Tabelle: Data preprocessing and model parameters

Parameter	value
σ	600
\overline{X}	1800
reduction factor	10
sequence length	561
Epochs	30
Batch size	512
Stride	1

Backup Slide: S2P expo.

Backup slide: Exponential function results

Backup Slide: Mathematical formulation

$$ESL_{quad} = \left(UPL + \sum_{t=1}^{SFV} t^{SFV}\right) * DF$$
 (1)

$$ESL_{expo} = \left(UPL + \sum_{t=1} SFV^{t}\right) * DF$$
 (2)

wehre:

ESL = effective sequence length

 $\mathsf{UPL} = \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{uniformed} \ \mathsf{part}$

DF = data downsampling factor

SFV = spacing function value

Backup slide: Mathematical formulation

$$ESL_{uniform} = \left(UPL + \sum_{t=1}^{\infty} (t + FTS)\right) * DF$$
 (3)

wehre:

FTS = fixed time step

ESL = effective sequence length

 $\mathsf{UPL} = \mathsf{length} \ \mathsf{of} \ \mathsf{the} \ \mathsf{uniformed} \ \mathsf{part}$

DF = data downsampling factor

SFV = spacing function value

Backup slide: Execution System

- Running a large number of experiments in parallel on multi GPU-computers.
- The system designed to automate the experiments execution.
- Automation is responsible for robustness to unexpected terminations or interruptions.

