

Cerema Nord-Picardie

Réaliser une carte accessibilité (marche, vélo ou TC) à partir d'un réseau multimodal

Sommaire

AVERTISSEMENT	4
Partie 1 : Préparation des données	5
1.Récupérer un réseau Open street map (OSM)	5
2.Nettoyer/Découper la table récupérée sous OSM	6
3. Ajouter et mettre à jour les colonnes dans la base voie découpée	7
4.Rendre les autoroutes intraversables	8
5.Préparation du sens 2	10
6.Générer les nœuds	11
7.Créer le réseau (vélo ou marche) .txt	12
8. Supprimer les nœuds isolés (nœuds qui sont inaccessibles / non connectés)	13
9.Créer un réseau TC (générer réseau horaire pour carte accessibilité TC) - Á partir d'un fichier G	
prêt pour musliw	
10.Convertir réseau GTFS	
11.Charger les arrêts (TC) dans Qgis	15
12.Générer les connecteurs	
13.Création du fichier multimodal	17
Partie 2 : Réalisation de la carte accessibilité	18
1.Préparer la matrice pour musliw	18
2.Calcul paramètre	
3.Calcul Musliw	
4.Mettre à jour les champs ti et tj	19
5.Lancer l'interpolation linéaire	
6.Créer isovaleurs (polygones)	
Partie 3 : Pour aller plus loin.	
1 Calcul population à l'intérieur des isochrones	22

AVERTISSEMENT

Ne pas mettre de blanc ni d'accent pour les noms de répertoire et/ou de tables. Exemple : Armentieres/voirie_decoupe_2sens

La plupart des scripts utilisés pour :

- modifier les différentes couches voiries, nœuds, ...
- créer les différents réseaux (vélo, marche, transport)

se trouvent dans la boîte à outils de traitements, sous l'onglet **Networks**.

Partie 1 : Préparation des données

Récupérer un réseau Open street map (OSM) 1.

Onglet : Extension / Installer gérer les extensions : Installer Quick OSM

Saisir la requête suivante :

Exemple pour obtenir les voies du département 90.

[timeout:2500] [maxsize:2000000000]; area[admin_level='6'][ref='90']->.area; rel(pivot.area)->.rel; (node[highway](area.area); node[highway](r.rel); way[highway](area.area); way[highway](r.rel); rel[highway](area.area); rel[highway](r.rel); (._;>;); out;

Ensuite:

Générer la requête

Exécuter

Fermer

Enregistrer la table « Osmquery » : modifier le SCR (EPSG 2154)

Exemple: DEPT90_voirie

Enregistrer la requête pour charger d'autres réseaux.

2. Nettoyer/Découper la table récupérée sous OSM

Afficher la boîte à outils de traitement (si pas affichée) Onglet: Traitement / Boîte à outils

Afficher la Commande Grass / Vecteur (v.*) / v.clean

Commande Grass / Vecteur (v.*) / v.clean :

Layer to clean : sélectionner la couche à nettoyer : **DEPT01_Voirie**

Cleaning tools: indiquer les outils: break,bpol

Threshold (comma separated for each tool) : Indiquer le séparateur : **0,0** Cleaned : enregistrer le résultat dans un fichier : **Clean_DEPT01_Voirie** Errors : enregistrer un fichier erreur : **Error_clean_DEPT01_Voirie**

Enregistrer la table cleaned (base voie découpée) ajoutée dans Qgis : **modifier le SCR (EPSG 2154)** Exemple : Clean_DEPT01_voirie

3. Ajouter et mettre à jour les colonnes dans la base voie découpée

<u>SCRIPT</u>: Mise à jour champ

Clic droit sur script Mise à jour champ et sélectionner « Exécuter comme processus de lot » (penser à sauvegarder la requête pour l'utiliser à nouveau)

Sélectionner la base voie à modifier :

Les colonnes à créer et à mettre à jour :

Champ : Sens
Type : String
Taille : 1
Précision : 0
Filtre :

Formule: '1'

Champ : **Longueur** Type : **Double**: Taille : **15** Précision : **5** Filtre :

Formule: \$length

Champ: **Diffusion**Type: **String**Taille: **1**Précision: **0**Filtre:

Formule: '3' (autorise la diffusion dans les deux sens)

Champ : **Impasse**Type : **String**Taille: **1**Précision : **0**Filtre :

Formule: '0' (franchissable)

Champ: Tps_vélo ou Tps_marche

Type : **Double**Taille : **15**Précision : **5**Filtre :

Formule: \$length*60/16000 (vélo: 16 km/h) ou \$length*60/4000 (marche: 4 km/h)

Résultat :

Correspondances pour la colonne Type:

String = chaîne de texte Double = décimal DateTime = Date/Heure

La colonne « **filtre** » est à utiliser pour la mise à jour d'un champ existant.

4. Rendre les autoroutes intraversables

<u>SCRIPT</u>: Mise à jour Champ

Clic droit sur script Mise à jour Champ et sélectionner Exécuter comme processus de lot (penser à sauvegarder la requête pour l'utiliser à nouveau)

Les colonnes à mettre à jour :

Champ: Sens

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: highway in ('motorway', 'motorway_link', 'trunk', 'trunk_link')

Formule: '0'

Champ: **Diffusion**

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: highway in ('motorway', 'motorway_link', 'trunk', 'trunk_link')

Formule: '0'

Champ: Impasse

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: highway in ('motorway', 'motorway_link', 'trunk', 'trunk_link') and "layer" is Null

Formule: '3' (autoriser des 2 côtés sauf autoroute)

Champ: Impasse

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: highway in ('motorway', 'motorway_link', 'trunk', 'trunk_link') and "layer" in ('0')

Formule: '3'

Champ: Sens

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: foot in ('no')

Formule: '0'

Champ: **Diffusion**

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre : foot in ('no')

Formule: '0'

Champ: Impasse

Type : laisser le champ affiché par défaut Taille : laisser le champ affiché par défaut Précision : laisser le champ affiché par défaut

Filtre: foot in ('no')

Formule: '3'

Résultat :

5. Préparation du sens 2

Réseau : Ouvrir la couche réseau à inverser

Ajouter au réseau (si cocher : le sens 2 s'ajoute directement à la couche réseau)

Enregistrer le résultat

Elliegistier le resultat

Ouvrir ou pas la couche dans Qgis.

Résultat :

Uniquement pour réseau vélo « à adapter selon le territoire »

oneway= 'yes' and highway in ('primary','secondary','tertiary','primary link','secondary link','tertiary link') and cycleway is Null

Mettre à jour champ Sens : '0'

A partir du boulier :

Mise à jour de la colonne « incline » pour inversion des inclinaisons (champs à adapter selon les types d'inclinaison dans la couche)

Case when « incline »= 'up' then 'down'

when « incline »= 'down' then 'up'

when « incline »= '-8%' then '8%'

when « incline »= '10%' then '-10%'

when « incline »= '8%' then '-8%'

when « incline »= '-10%' then '10%'

else Null

End

6. Générer les nœuds

SCRIPT Créer graphe

Réseau : **Charger la couche réseau** Node id : **Chaîne géographique (unique)** Préfixe : **m** (pour différencier les nœuds des

différents modes de transport)

Table des nœuds : **Donner un nom à la couche**

des nœuds

Exécuter

Résultat:

Uniquement pour réseau vélo « à adapter selon le territoire »

Mise à jour du champ temps vélo à partir du boulier (*champs à adapter selon les types d'inclinaison dans la couche*)

case when « incline » = 'up' then \$length*60/8000 when « incline » = 'down' then \$length*60/24000 when « incline » = '-8 %' then \$length*60/32000 when « incline » = '10 %' then \$length*60/4000 when « incline » = '8 %' then \$length*60/4000 when « incline » = '-10 %' then \$length*60/32000 else NULL END

7. Créer le réseau (vélo ou marche) .txt

SCRIPT Réseau Musliw transport individuel

Permet de générer un réseau transport individuel au format Musliw à partir d'une couche Qgis

Ouvrir la couche réseau

Lancer script ti

Réseau routier : nom de la couche voirie

Sens : **Sens**

Temps : **Tps_marche** Longueur : **Longueur**

i-node : **i** j-node : **j**

Id période : **ne rien modifier**Id plage horaire : **ne rien modifier**Heure début : **ne rien modifier**Heure fin : **ne rien modifier**Calendrier : **ne rien modifier**

Texte arc : **highway** Mode : **m** (si marche)

Réseau musliw: Enregistrer réseau (avec extension .txt)

Exécuter

Résultats

8. <u>Supprimer les nœuds isolés (nœuds qui sont inaccessibles / non connectés)</u>

SCRIPT Nœuds isolés

Nœuds : ouvrir la couche nœud

Id nœud: num

Réseau Musliw: ouvrir réseau marche.txt

Id réseau : 0 dans un premier temps, ensuite 1 voire 2, etc. selon le

résultat de l'analyse des graphes

Nœuds connectés : enregistrer le fichier

Dans cet exemple, il y a pour le réseau 0, 130 950 nœuds connectés.

9. <u>Créer un réseau TC (générer réseau horaire pour carte accessibilité TC) - A partir d'un fichier GTFS non prêt pour musliw</u>

SCRIPT Préparer GTFS

Clic droit sur le script / **Exécuter par lot**

Sélectionner le **répertoire source** (endroit où sont stockés les GTFS)

Id réseau : **AE** (exemple AE pour Aéroport Lille)

Extraire stop_id ? (UIC) : Non

Formule d'extraction : **laisser la valeur par défaut parce que** UIC = non

Répertoire GTFS destination : Enregistrer le résultat dans le **répertoire**

résultat. Exemple répertoire « GTFS »

Exécuter

Résultat :

Dans le répertoire résultat (sauvegarde des fichiers GTFS créés), éditer le fichier (avec par exemple Notepad) **calendar.txt de chaque réseau** afin de sélectionner une semaine type (hors périodes de vacances). Exemple : du 10/06/2019 au 16/06/2019

10. Convertir réseau GTFS

SCRIPT Réseau Musliw à horaires

Répertoire GTFS : ouvrir le répertoire où se trouvent les fichiers GTFS Début calendrier : **Indiquer date de début de semaine (démarre le lundi)** Fin calendrier (semaine type) **Indiquer date de fin de semaine (termine**

le dimanche)

Réseau musliw à horaires : Enregistrer le nom du réseau (avec

extension .txt) - Exemple AE.txt

Exécuter

11. Charger les arrêts (TC) dans Qgis

SCRIPT Import GTFS

Clic droit / Exécuter par lot (penser à sauvegarder la requête)

Répertoire GTFS : Sélectionner le répertoire GTFS

Début calendrier : 10/06/2019

Fin calendrier: 16/06/2019 (si semaine choisie lundi 10 juin 2019 au dimanche 16 juin 2019)

Heure début : laisser les valeurs par défaut Heure fin : laisser les valeurs par défaut

Nom des tables : **AE** (remettre le nom du réseau exemple AE pour aéroport de Lille

CRS: laisser les valeurs par défaut (EPSG 2154)

Encodage : « utf8 » laisser cette valeur par défaut. Si jamais ne fonctionne pas avec cette variable, remplacer « utf8 » par « cp1252 »

Répertoire destination : **créer un répertoire de sauvegarde** (exemple shp (les fichiers de sorties sont des .shp))

Exécuter

Résultat :

12. Générer les connecteurs

Afficher les nœuds précédemment générés Afficher le réseau voirie

SCRIPT Créer connecteurs

Permet à partir de deux couches (arrêts de transport en commun et nœuds d'un réseau routier) de générer un fichier Musliw de connecteurs. **Le connecteur créé est visible**.

Connecter les arrêts aux nœuds piéton les plus proches

Clic droit / Exécuter par lots

arrêt : arrêt TC (stops.shp)

stop id : **ident**texte nœud i : **t** (TC)
mode nœud i : **t** (TC)
nœud : **table nœud piéton**

node id: num

texte nœud j : **m** (marche) mode nœud j : **m** (marche) rayon recherche : **1000**

vitesse : **0**Nombre max : **1**

Enregistrer le fichier : connecteur_reseau_tc_map

(suite du script)

13. Création du fichier multimodal

SCRIPT Concaténer réseaux

Concaténer les différents réseaux dont l'extension est .txt

Réseau marche

Connecteurs

Arrêts piétons

Horaires TC

•••

Mettre l'ensemble des fichiers à concaténer dans un répertoire (exemple : répertoire « concatener » source : sélectionner le répertoire où se trouvent les fichiers .txt à concaténer réseau multimodal : enregistrer réseau multimodal (avec extension .txt)

Exécuter

Résultat :

Partie 2 : Réalisation de la carte accessibilité

1. Préparer la matrice pour musliw

SCRIPT Matrice Musliw simple

Nœuds: fichier nœuds

Id nœud: num

Point de départ : sélectionner directement dans Qgis

le nœud de départ

Point d'arrivée : sélectionner directement dans Qgis

le nœud d'arrivée

Demande : nombre de passagers

Jour : **1**

Horaire: horaire format 00:00:00

Départ/Arrivée : à choisir

Mode écriture : **écriture ou Ajout (lot)** Fichier matrice : **enregistrer la matrice**

2. Calcul paramètre

SCRIPT Paramètre Musliw

Facteur d'échelle temps individuel : **0,25 pour le vélo**

Temps détaillé : **Sans les arcs à horaires** (fichier temps)

3. Calcul Musliw

Réseau Musliw: Réseau marche txt

Matrice Musliw: Matrice

Paramètre Musliw: fichier parmètre

Pénalités Musliw (optional) : fichier pénalités (si

pénalités)

Accepter de télécharger l'exécutable Musliw : Cocher la case si Musliw n'a pas encore été télécharger

4. Mettre à jour les champs ti et tj

SCRIPT Mise à jour ti tj

Réseau: reseau_voirie.shp

Fichier temps de parcours : sélectionner le

fichier temps générer par musliw

Temps musliw : **temps**Temps arc : **Tps_marche**

Départ/arrivée : celui de la matrice musliw Temps en i : ti si ce champ existe (mise à jour) ou possibilité de créer un nouveau champ, dans ce cas écrire « ti_velo » par exemple.

Temps en j : tj (idem Temps en i)

Cocher d'attente initial/final pour ne pas prendre en compte le temps restant depuis

Réseau

l'arrêt si par exemple arrivée à 8h20 alors que dans la matrice l'arrivée est prévue à 8h30. Dans ce cas il ne prend pas en compte les 10 min restantes.

Mise à jour ti tj

Paramètres Journa

5. Lancer l'interpolation linéaire

SCRIPT Interpolation linéaire

Réseau : réseau_voirie_shp

Fenêtre : permet de zoomer sur la couche

Temps i : **i**Temps j : **j**Sens : **Sens**

Diffusion : **Diffusion** Impasse : **Impasse** Nb pixel x :**200** Nb pixel y : **200**

Taille pixel x : laisser les valeurs par défaut Taille pixel y : laisser les valeurs par défaut

Décimales : 5
Rayon(m) : 1000

Vitesse diffusion : **4** (4 km/h map) vitesse à adapter selon le mode (16 km/h vélo)

ou pour une carte affichage en distance : **60** Intraversables : **ne pas cocher**

Fichier Raster : enregistrer le raster

Exécuter

6. Créer isovaleurs (polygones)

SCRIPT Contour iso-valeurs

Raster: ouvrir le raster

Bande : Min : **0**

Max : **60** selon durée choisie Intervalle : **10** selon le seuil choisi Valeur absente : **laisser la valeur par**

défaut

Polygones : **cocher la case** Contours iso-valeurs : **enregistrer**

l'isochrone

Ouvrir le fichier en sortie après

l'exécution de l'algorithme : cocher la

case Exécuter

Exemple isochrone

Partie 3: Pour aller plus loin

Agrégation spatiale

Contours iso-valeurs

🌞 Importer des données de flux

Décaler lignes

NetworksAnalyses

1. Calcul population à l'intérieur des isochrones

SCRIPT Agrégation spatiale

Ouvrir la couche isochrone Ouvrir la couche des communes avec les données « population »

Polygones : **afficher l'isochrone**

Id : identifiant du polygone (correspond au seuil

défini dans le polygone)

Source : table des communes

Variable : **nom du champ où se trouvent les**

données « population »

Agrégateur : **somme** (pour sommer). Choix entre

moyenne, min, max

Sortie : enregistrer le résultat

Résultats

