EC ENGR 113 (Digital Signal Processing)

September 27, 2022

1 9.26 1m

• syllabus

1.1 ece102: signals & systems

- signals were modeled as functions of time
 - -x(t): $t ∈ \mathbb{R}$ (continuous time)
 - $-x:\mathbb{R}\to\mathbb{R},\mathbb{C}$
 - sampling $t = nT_s$
 - * T_s = sampling interval
 - * n = integer
 - * $t x \text{ plot} \xrightarrow{sampling} n x \text{ plot}$
 - * x(t) bandlimited ($|X(f)| \le f_{\text{max}}$) then if sampling rate is $f_s > 2f_{\text{max}}$ (nyquist rate) then it is possible to recover the original signal
 - * sampling at lower rate then there will be aliasing
- sytems

$$-x(t) \to \boxed{S} \to y(t)$$
$$-x[n] \to \boxed{S} \to y[n]$$

1.2 three ways tor write out signals

- mathematical expression
 - $-x[n] = 3\cos(2n), n \in \mathbb{Z}$
- tabular list of significant samples

$$-x[n] = \{-1, 8, 0, 5, -2\}, n \in \mathbb{Z}$$

- * underspecified signal: loss of indices
- * typically put an arrow underneath the 0 index
- * convention: any sample not listed has 0 amplitude
- plotting

1.3 signal operations

- arithmetic
 - g[n] = x[n] + A
 - -g[n] = Bx[n]
 - signal addition: $g[n] = x_1[n] + x_2[n]$
 - signal multiplication: $g[n] = x_1[n] \cdot x_2[n]$
- time shifting
 - ece102
 - * $x(t) \rightarrow x(t \tau)$ delays signal by shifting it right
 - * $x(t) \rightarrow x(t + \tau)$ advances signal by shifting left
 - ece113

$$* g[n] = x[n-k], k > 0$$

- time scaling
 - ece102
 - * x(at), a > 1: contraction
 - * x(at), 0 < a < 1: dilation
 - ece113
 - * g[n] = x[2n] (downsampling)
 - * $g[n] = x \left[\frac{1}{2}n\right]$ (upsampling)
 - * g[n] = x[-n] (time reversal)

1.4 basic signals

- $\delta(t)$ from ece102 \rightarrow hard concept to grasp
- $\delta[t]$ from ece113 \rightarrow :)

$$-\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

- $\delta[n]$ does not have complexities of $\delta(t)$
- sampling property of δ

$$-x[n]*\delta[n] = x[0] \cdot \delta[n] = x[0]$$

$$-x[n]*\delta[n-k] = x[k]\cdot\delta[n-k] = x[k]$$