OPTIMAL DSST INPUT DECKS FOR VARIOUS ORBIT TYPES

Capt Daniel J. Fonte, Jr. Chris Sabol

June 1995

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19960215 031

OTTO QUALITY INSTITUTED &

PHILLIPS LABORATORY
Space and Missiles Technology Directorate
AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

PL-TR--95-1072

This final report was prepared by Phillips Laboratory, Kirtland Air Force Base, Job Order 8809TA01. The Laboratory Project Officer-in-Charge was Capt Dan Fonte, (VTA).

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been authored by an employee of the United States Government. Accordingly, the United States Government retains a nonexclusive royalty-free license to publish or reproduce the material contained herein, or allow others to do so, for the United States Government purposes.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

If your address has changed, if you wish to be removed from the mailing list, or if your organization no longer employs the addressee, please notify PL/VTA, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776, to help maintain a current mailing list.

This report has been reviewed and is approved for publication.

Daniel J. FONTE, JR

Project Officer

FOR THE COMMANDER

SALVADOR ALFANO, Lt Col, USAF

Chief, Astrodynamics Division

HENRY L. PUGH, JR., Col, USAF

Director of Space and Missiles Technology

DO NOT RETURN COPIES OF THIS REPORT UNLESS CONTRACTUAL OBLIGATIONS OR NOTICE ON A SPECIFIC DOCUMENT REQUIRES THAT IT BE RETURNED.

DRAFT SF 298

1. Report Date (do June 1995	l-mm-yy)	2. Report Type Final		3. Dates covered (from to) 7/94 to 6/95						
4. Title & subtitle Optimal DSST Inp	ut Decks fo	r Various Orbit Types	i i	5a. Contract or Grant #						
			5b. Pro	gram Elem	ent# 62601F					
6. Author(s) Capt Daniel Fonte	· le	· ·	5c. Pro	ject # 88	09					
Capt Damer Fonte Chris Sabol	: Jr.		5d. Tas	sk# TA						
			5e. Wo	rk Unit#	01					
7. Performing Org Phillips Laborato 3550 Aberdeen A Kirtland AFB, NM	ry ve SE			8. Performing Organization Report # PL-TR95-1072						
9. Sponsoring/Mo	nitoring Ag	ency Name & Address	5	10. Monito	or Acronym					
				11. Monitor Report #						
13. Supplementar	y Notes		***************************************							
various orbit type computation time geosynchronous Cowell truth mode	14. Abstract This paper describes optimal input decks for Draper Semianalytic Satellite Theory (DSST) for various orbit types. These input decks are optimized to balance the trade-off between accuracy and computation time. Input decks for low, medium, and high altitude circular, near earth eccentric, Molniya, and geosynchronous orbit types are given. Accuracy metrics are derived from fits to simulated data generated by a Cowell truth model. Timing measurements are obtained by a call to an internal clock routine immediately prior to and subsequent to execution. The PC based version of R&D GTDS provides the testbed for this analysis.									
	s, Orbit Pro	pagation, Semianalytions, Draper Laboratory								
Security Classific			19. Limitation of Abstract	20. # of Pages	21. Responsible Person (Name and Telephone #)					
16. Report Unclassified	17. Abstrac	1	Unlimited	108	Capt Daniel Fonte (505) 846-7991					

ACKNOWLEDGMENTS

The authors would like to thank Paul Cefola, Wayne McClain, and Ronald Proulx of the Charles Stark Draper Laboratory for their constructive comments throughout this effort. In addition, the support of Lt. Col. Sal Alfano and Maj. David Vallado (Division Chief and Deputy Division Chief, respectively) is clearly appreciated.

TABLE OF CONTENTS

SECT	<u>ION</u>	PAGE
	Summary	1
1.0	Introduction	2
2.0	Low Altitude Circular Case	2
3.0	Medium Altitude Circular Case	13
4.0	High Altitude Circular Case	22
5.0	Geosynchronous Case	28
6.0	Molniya Case	33
7.0	Near Earth Eccentric Case	39
8.0	Conclusions	45
9.0	Recommendations	45
10.0	References	45
	Appendices	
	A.Optimized DSST Input Decks	48
	B.Optimal Deck Test Case Summaries	55
	LACC Test Case	56
	MACC Test Case	62
	HACC Test Case	68
	GEO Test Case	75
•	MOLY Test Case	82
	NEEC Test Case	88
	Distribution List	95

LIST OF TABLES

SECTION		PAGE
Table 1	DSST Specifics to Build Osculating Elements, LACC	2
Table 2	Cowell Truth EG Inputs, LACC	3
Table 3	DSST DC Specifics, LACC	4
Table 4	DSST DC and Subsequent EG Results, LACC	6
Table 5	Simulation of Real World Drag Uncertainties, LACC	12
Table 6	DSST Specifics to Build Osculating Elements, MACC	13
Table 7	Cowell Truth EG Inputs, MACC	13
Table 8	DSST DC Specifics, MACC	14
Table 9	DSST DC and Subsequent EG Results, MACC	15
Table 10	DSST Harris-Priester DC and Subsequent EG Results I, MACC	20
Table 11	Simulation of Real World Drag Uncertainties, MACC	21
Table 12	Explorer Two-Card Element Set, HACC, September 1994 SATCAT	22
Table 13	Cowell DC and Subsequent EG Inputs, HACC	22
Table 14	DSST DC Specifics, HACC	23
Table 15	DSST DC and Subsequent EG Results, HACC	25.
Table 16	BS 3A Two-Card Element Set, GEO, September 1994 SATCAT	28
Table 17	Cowell DC and Subsequent EG Inputs, GEO	29
Table 18	DSST DC Specifics, GEO	29
Table 19	DSST DC and Subsequent EG Results, GEO	31
Table 20	Mean Element Set Used To Build Osculating Elements, MOLY (from Reference 14)	33
Table 21	Cowell Truth EG Inputs, MOLY	34
Table 22	DSST DC Specifics, MOLY	34
Table 23	DSST DC and Subsequent EG Results, MOLY	36
Table 24	Vanguard 2 Two-Card Element Set, NEEC, September 1994 SATCAT	39
Table 25	Cowell DC and Subsequent EG Inputs, NEEC	39
Table 26	DSST DC Specifics, NEEC	40
Table 27	DSST DC and Subsequent EG Results, NEEC	41

NOMENCLATURE

AAS American Astronautical Society

AIAA American Institute of Aeronautics and Astronautics

AOG DSST Averaged Orbit Generator

B* SGP4 Drag Parameter

C_D Coefficient of Drag

cm Centimeters

C_R Solar Radiation Pressure Parameter

DC Differential Correction

deg Degrees

DSST Draper Semianalytic Satellite Theory

EG Ephemeris Generation

er Earth Radii

ETAS The Ephemeris Theory Accuracy Study

GEM Goddard Earth Model

GEO Geosynchronous Case

GRAV Refers to Geopotential Modelling in AOG (see page 5)

HACC High Altitude Circular Case

H-P Harris Priester Drag Model

JGM Joint Gravitational Model

J-R Jacchia-Roberts Drag Model

kg Kilograms

km Kilometers

LACC Low Altitude Circular Case

L-S Lunar/Solar Third Body Point Mass Effects

m Meter

MACC Medium Altitude Circular Case

MOLY Molniya Case

NEEC

Near Earth Eccentric Case

OD

Orbit Determination

ORB1

A GTDS File Containing Evenly Spaced, Time-Tagged Values of Position and Velocity

PC

Personal Computer

PL/VTA

Astrodynamics Division, Phillips Laboratory

R&D GTDS

Draper Laboratory's Version of the Goddard Trajectory Determination System

R.

Radius of the Earth

RESNM

GTDS Keyword to Include Resonant Terms in AOG (see page 5)

RESONPRD

GTDS Keyword to Adjust Modelling of Resonance Between AOG and SPG (see page 5)

RMS

Root Mean Square

SATCAT

Satellite Catalog

sec

Seconds

SMAH

Semimajor Axis Height (a - R_e)

SPG

DSST Short Periodic Orbit Generator

SRP

Solar Radiation Pressure

SPSHPER

Keyword in R&D GTDS for Global Short Periodic Selection

SSTAPGFL

Keyword to establish AOG partial derivatives for various force model options

SSTESTFL

Keyword to control the matrix partitioning of DSST partial derivatives (AOG & SPG)

TESS

Refers to the Tesseral Linear Combination Short Periodic Modelling in SPG (see page 5)

VOP

Variation of Parameters

WTD

Weak Time Dependence

Summary

Objectives: The objective of this research was to develop input configurations for the Draper Semianalytic Satellite Theory (DSST) which provide a balance between computational speed and ephemeris accuracy. This research follows VTA's efforts in 1994 to port the software system containing DSST (Draper Research and Development Goddard Trajectory Determination System, R&D GTDS) from a UNIX-based platform to a Windows/DOS environment (486 and Pentium). These input decks, which are required to properly run the software, have been developed for distribution along with a complete mathematical description of theory (the description was developed by the Naval Postgraduate School with assistance from Draper Laboratory). Optimal input decks were developed for low, medium, and high altitude circular, geosynchronous, Molniya, and near earth eccentric orbits.

Approach: In order to determine the proper configurations for the theory, various batch, differential correction fits to simulated observational data were performed. The results of these various fits were then compared in terms of accuracy and computational efficiency to operational orbit determination capabilities. Selection of appropriate input deck configurations was based on attaining speeds comparable to operational algorithms while maintaining at least a 5-10 fold increase in ephemeris accuracy.

Alternative Technologies: Various alternative technologies for orbit determination (OD) are available; these OD technologies can be compared based on the orbit propagation technique used. Classically, orbit propagation has been categorized as either numeric (very high accuracy with slow run times) or analytic (very fast with severely limited accuracy). DSST represents a hybrid approach which combines the advantageous aspects of both numeric and analytic theories (accuracies approaching that of numeric methods with speeds comparable to analytic techniques). DSST, developed by Dr. Paul Cefola and his colleagues at the Charles Stark Draper Laboratory, is the state of the art in American semianalytic techniques.

<u>Technical Challenges</u>: VTA has had to combat (1) a limited knowledge base concerning the cutting edge astrodynamic techniques of DSST and (2) a lack of knowledge of how to properly run the software with potential users.

Payoffs: DSST will be used by various research and operational based institutions. Currently, DSST is slated for operational use with the RADARSAT mission (work accomplished by Draper Laboratory), the Air Force Maui Optical Station (AMOS), and the STARFIRE facility. VTA has been using R&D GTDS to support operational orbit determination experiments for the past eight months. Specifically, dark pass satellite illumination has been accomplished. Kaman Sciences has been using the input decks for their Space Command supported Ephemeris Theory Accuracy Study. The Naval Postgraduate School has been using results generated with the input decks to increase Navy Space Command's understanding of semianalytic techniques.

<u>Results</u>: For the first time, input decks to balance computational speed and ephemeris accuracy have been documented. This gives the user with limited knowledge concerning the intricacies of DSST a better chance at *properly* running the software.

1.0 Introduction

Various studies in the past twenty years have demonstrated the accuracy, computational efficiency, and flexibility of DSST for a variety of orbit types¹⁻²⁴. These encouraging results have led to a proliferation of the theory to various academic and research based institutions. In most cases, DSST has been distributed as part of the larger scale R&D GTDS orbit determination system, which also includes the Cowell³², SGP²⁵, SGP4/ SDP4^{25,26,27}, HANDE²⁸, SALT^{29,30,31}, Brouwer Lyddane³², and Vinti³² orbit propagation theories (the addition of PPT2 to R&D GTDS is nearing completion as of the date of publication of this document). In addition to these orbit propagation theories, R&D GTDS includes estimation (batch & filter), early orbit determination, data simulation, and error analysis programs³². These programs give R&D GTDS the flexibility to compare the performance of various orbit propagation theories.

Recent efforts have unified DSST's theoretical documentation from a multitude of AIAA/AAS papers, journal articles, contract reports, laboratory memorandums, and working notes to a single document¹. The knowledge of how to *properly* run the software, however, has not been as easily grasped by the community. The addition of the Semianalytic Input Processor to the software has provided a tool which simplifies the configuration of DSST's SPG³³. This document sheds light on how to best use the tool.

Specifically, this paper contains a set of DSST input decks which balance accuracy and computational efficiency for a variety of orbit types. These configurations span the orbit classes established by Kaman Sciences in the Ephemeris Theory Accuracy Study (ETAS)⁵. These configurations can be inserted into the code for automatic set-up of the theory, or used in a standalone fashion by the traditional R&D GTDS user. The information in this paper, when coupled with the description of the theory¹, provides current and potential users with a concise package which supports R&D GTDS.

One final note before each specific orbit class is described in detail is that two separate machines were used for the generation of results herein (both a 486 and a Pentium 586 machine were used). Therefore, from case to case, timing statistics may not seem consistent; however, within one particular case, the results are consistent. In addition, most cases used a spacecraft cross-sectional area of 1 m² and a mass of 100 kg. Even though these values may not exactly match the parameters for the actual, "real-world" spacecraft, they were chosen to represent a standard area to mass ratio. Furthermore, appendices are attached which provide the information necessary to replicate test cases with the optimal input decks.

2.0 Low Altitude Circular Case (LACC)

An orbit very close to decay was chosen to fulfill the low altitude circular test case. In the ETAS study, the LACC is characterized by a SMAH range of 0 - 575 km and an eccentricity range from 0.0 to 0.05. For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a 90 minute arc. A 90 minute DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 450 seconds.

The osculating elements required for the Cowell truth EG were built from a one day DSST run with the following inputs:

Epoch Date YYMMDD HHMMSS.S	820223 000000.0
End Date YYMMDD HHMMSS.S	820224 000000.0
Semimajor Axis (mean)	6635.0814 km
Eccentricity (mean)	0.010201164

Table 1. DSST Specifics to Build Osculating Elements, LACC

Table 1. DSST Specifics to Build Osculating Elements, LACC (Continued)

Inclination (mean)	64.9567 deg
Longitude of Ascending Node (mean)	228.6393 deg
Argument of Perigee (mean)	271.2229 deg
Mean Anomaly (mean)	88.164558 deg
Input Frame	True of Date
Integration and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Integrator	4th Order Runge-Kutta
DSST Step Size	43200.0 sec
Gravity Field	8x8 GEM10B
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts
	$C_{D} = 2.0$
Solar Radiation Pressure	No
Global Short Periodic Select	Low Altitude, Improved Accuracy Option (SPSHPER = 3)
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg

The osculating elements which resulted from this one day DSST run were then used as inputs for a six day Cowell EG. The specifics for this Cowell EG are given in Table 2:

Table 2. Cowell Truth EG Inputs, LACC

Lunar / Solar Point Masses	Yes
Gravity Field	21x21 GEM10B
Step Size	60.0 sec
Integrator	12th Order Summed Cowell/ Adams Predict-Partially Correct
·.	Equinox of 1950 (Mean of 1950)
Input, Integration, and Output Frame	Earth Equator and
End Date YYMMDD HHMMSS.S	820302 000000.0
Epoch Date YYMMDD HHMMSS.S	820224 000000.0

Table 2. Cowell Truth EG Inputs, LACC (Continued)

Drag Model	Jacchia-Roberts $C_D = 2.0$
Solar Radiation Pressure	No
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg

It can be noted in this table a six day Cowell EG was created, even thought the fit and predict spans totalled 180 minutes (in other words, more ORB1 data was generated than was required). This test procedure was established to provide enough data if subsequent testing with other fit and predict spans was desired. The output of this EG indicated the satellite would re-enter the atmosphere three days after the Cowell epoch (this particular test case reflects an orbit extremely close to decay). Due to the short remaining orbital lifetime for this satellite, it was determined that fit and predict spans on the order of the satellite's period should be used. This test protocol was deemed analogous to operational procedures for a satellite this close to re-entering the atmosphere.

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in Table 3:

Table 3. DSST DC Specifics, LACC

Epoch Date YYMMDD HHMMSS.S	820224 000000.0
Fit Span Begin YYMMDD HHMMSS.S	820224 000000.0
Fit Span End YYMMDD HHMMSS.S	820224 013000.0
Semimajor Axis (mean)	6628.457 km
Eccentricity (mean)	0.0089
Inclination (mean)	64.84 deg
Longitude of Ascending Node (mean)	224.51 deg
Argument of Perigee (mean)	271.89 deg
Mean Anomaly (mean)	115.16 deg
DSST Input, Integration, and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
DSST Step Size	43200.0 sec
Geopotential Model	GEM10B
Position Standard Deviation	100 meters
Velocity Standard Deviation	10 cm/sec

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the LACC are given in Table 4; however, it is first desirable to describe some of the notation used in this table (and other tables in this paper):

- GRAV refers to the geopotential modeling in the AOG.
- RESONPRD is a GTDS keyword for the input processor to override the default boundary for the modeling of tesseral resonance in the AOG (if the period of the resonance is less than 10 days in the default configuration, the resonance is modelled in the SPG as a tesseral linear combination high frequency term); by specifying a value with this keyword, a new boundary can be set to force the modeling of resonance into the AOG (i.e., for shallow resonance).
- RESNM is a GTDS keyword for the input processor to include resonant harmonics in the AOG. Typically, this card is used to augment a small "base" gravity field (i.e., 4x4) specified with MAXDEGEQ and MAXORDEQ cards with resonant harmonics beyond the "base" field (for example, the 16th order). It should be noted the RESNM card eliminates the need for a RESONPRD card; all harmonics specified with the RESNM card are forced into the AOG (even shallow resonance). For this particular case, an 8x8 base field was established and the RESNM card was used to include resonant effects at the 16th and 17th orders (an AUTOFORC card must be used with RESNM).
- TESS refers to the tesseral linear combination high frequency short periodic terms.
- · SRP is an abbreviation for solar radiation pressure.
- J-R is an abbreviation for the Jacchia-Roberts atmospheric density model.
- H-P is an abbreviation for the Harris-Priester atmospheric density model.
- L-S is an abbreviation for lunar / solar third body point mass effects.
- "trunc" refers to truncated modeling; modeling descriptions corresponding to the R&D GTDS Semianalytic Satellite Theory input processor are specified where needed. Additional details can be found in the R&D GTDS Semianalytic Theory Input Processor keyword description booklet³³.
- Total Position RMS is derived over the 90 minute predict span only (from the R&D GTDS Ephemeris Comparison Program).
- R&D GTDS default configuration settings are used unless specifically noted.
- "Iszak" refers to Iszak's J₂ height correction (a second order atmospheric drag effect included in AOG partials). All cases which attempt to solve for C_D include first order drag effects in the AOG partials (as well as Iszak's corrections if indicated; if C_D is not solved for, then all drag partials in the AOG are shut off). All cases include J₂ partials analytically in the AOG. No other AOG or SPG partials were included in any of the runs.
- Most cases have an SSTESTFL card of 1 3; this setting includes all desired AOG partials in the A matrix (J₂ partials are computed analytically; all other partial derivatives are computed via finite differences). In addition, this setting includes desired AOG partial derivatives for non-conservative perturbations in the D matrix via finite differences (these partials were also included in the A matrix). Cases noted by ** have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences (with this setting, third body and J₂² AOG partial derivatives, if desired, would not be included anywhere, if they are desired, the SSTESTFL setting of 1 3 should be used).

Table 4. DSST DC and Subsequent EG Results, LACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21×21 J_2^2 RESON PRD = 1 day	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG Solve C _D	No	L-S AOG SPG	DC DIVERGES		
21x21 J ₂ ² RESON PRD = 1 day	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG Iszak Solve CD	No	L-S AOG SPG	54.62 sec	3.01 meters (6 its)	33.960 meters
21x21 J ₂ ²	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG Iszak Solve C _D	No	L-S AOG SPG	54.33 sec	2.66 meters (6 its)	34.034 meters
21x21 J ₂ ²	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG Iszak Solve CD	No	No	53.83 sec	2.81 meters (6 its)	34.168 meters
21×21 J ₂ ²	Yes	Yes	Yes	Yes	Yes	J-R AOG Iszak Solve C _D	No	No	45.36 sec	77.12 meters (4 its)	163.31 meters
21x21 J ₂ ²	Yes	Yes	Yes	Yes	Yes	No	No	No	46.26 sec	207.81 meters (5 its)	5238.7 meters

Table 4. DSST DC and Subsequent EG Results, LACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	No	Yes	Yes	J-R	No	No	31.36	50.59	216.51
J ₂ ²						AOG			sec	meters	meters
						SPG				(5 its)	
						Iszak					
						Solve					
						C _D					
21x21	Yes	No	No	Yes	No	J-R	No	No	17.19	32.71	468.24
J ₂ ²						AOG			sec	meters	meters
						SPG				(5 its)	
1						Iszak					
						Solve					
						C _D					
21x21	Yes	No	Yes	Yes	No	J-R	No	No	35.53	50.16	309.45
J ₂ ²						AOG			sec	meters	meters
						SPG		1.		(5 its)	a e e e e e e e e e e e e e e e e e e e
						Iszak	i	ļ		Ì	
						Solve C _D					
21x21	Yes	Yes	Yes	Yes	No	J-R	No	No	39.16	3.62	31.292
J ₂ ²						AOG			sec	meters	meters
						SPG		<u> </u>		(6 its)	
						Iszak					
·		• •				Solve C _D					
12x12	Yes	Yes	Yes	Yes	No	J-R	No	No	21.64	8.39	87.282
J ₂ ²						AOG			sec	meters	meters
						SPG				(6 its)	
						Iszak					
						Solve					
						c_{D}					

Table 4. DSST DC and Subsequent EG Results, LACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
12x12	Yes	Yes	trunc	Yes	No	J-R	No	No	19.28	10.17	58.072
J ₂ ²			8842			AOG			sec	meters	meters
			-12 12			SPG				(6 its)	
						Iszak			}		
						Solve					
						c_{D}					
12x12	Yes	Yes	trunc	Yes	No	J-R	No	No	16.81	22.16	198.45
J ₂ ²			4442			AOG			sec	meters	meters
			-88			SPG				(5 its)	
						Iszak					
						Solve					
						c_{D}					
8x8	Yes	Yes	Yes	Yes	No	J-R	No	No	17.56	18.30	58.201
J ₂ ²						AOG			sec	meters	meters
					•#	SPG				(5 its)	
						Iszak					
		:				Solve C _D	_		i i		
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	16.80	17.40	65.710
J ₂ ²			6642			AOG			sec	meters	meters
_			-10 10			SPG				(5 its)	
				•		Iszak					
						Solve					
						c_{D}					
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	16.31	17.40	65.720
J_2^2			6642			AOG			sec	meters	meters
**			-10 10			SPG	•			(6 its)	
(opt.						Iszak					
deck)						Solve					
]			c_{D}					

Table 4. DSST DC and Subsequent EG Results, LACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	trunc	Yes	trunc	Yes	No	J-R	No	No	16.91	18.25	60.651
J ₂ ²	424		6642			AOG			sec	meters	meters
<u> </u>			-10 10	!		SPG				(5 its)	
						Iszak					
						Solve C _D					:
8x8	trunc	trunc	trunc	Yes	No	J-R	No	No	16.48	23.15	291.89
J ₂ ²	424	442	6642			AOG		·	sec	meters	meters
			-10 10	1		SPG				(5 its)	
				!		Iszak		•			
-				,		Solve					ļ
						C _D					
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	16.42	30.89	123.48
J ₂ ²			4442			AOG			sec	meters	meters
1			-88		•	SPG				(5 its)	
						Iszak Solve					
						C _D			}		
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	15.87	34.75	211.94
J ₂ ²			2242			AOG			sec	meters	meters
*			-66			SPG				(5 its)	
						Iszak				` ′	
		ll				Solve					
						c_{D}		1			
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	15.98	34.76	212.44
J ₂ ²			2242			AOG			sec	meters	meters
			-66			SPG	1			(5 its)	
						Solve					
						C _D					
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	15.98	35.28	209.94
J ₂ ²			2242			AOG			sec	meters	meters
16th			-66			SPG]	}	(5 its)	
order RESNM						Iszak					
						Solve					
			<u> </u>		<u> </u>	C_{D}		<u> </u>	<u> </u>	<u> </u>	

Table 4. DSST DC and Subsequent EG Results, LACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	trunc	Yes	No	J-R	No	No	16.20	34.90	214.43
J ₂ ²			2242			AOG			sec	meters	meters
16 &			-66			SPG				(5 its)	
17 th order						Iszak					
RESNM						Solve					
						C _D					
6x6	Yes	Yes	Yes	Yes	No	J-R	No	No	16.64	15.22	143.55
J ₂ ²						AOG			sec	meters	meters
						SPG				(5 its)	
						Iszak Solve					
						C _D					
6x6	Yes	Yes	trunc	Yes	No	J-R	No	No	16.14	27.83	86.261
J_2^2			4442			AOG			sec	meters	meters
			-88			SPG				(5 its)	
		. "				Iszak					
						Solve					
						CD					
6x6	Yes	Yes	trunc	Yes	No	J-R	No	No	15.60	36.55	364.52
J ₂ ²			2242			AOG			sec	meters	meters
			-66			SPG				(5 its)	!
						Iszak					
						Solve C _D					
4x4	Yes	Yes	Yes	Yes	No	J-R	No	No	16.09	22.46	332.57
J ₂ ²						AOG			sec	meters	meters
						SPG				(5 its)	
	j					Iszak					
						Solve					
						c_{D}		<u> </u>			

Table 4. DSST DC and Subsequent EG Results, LACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-dally SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
	Space Command's SGP (solve for drag term ndot/2)										12605.0 meters
	Space Command's SGP4 (solve for drag term ndot/2)									138.64 meters (5 its)	505.19 meters

The results in Table 4 enforce some important concepts for low earth orbits. First, large effects stem from atmospheric drag, tesseral m-dailies, and tesseral linear combination short periodics. In fact, attempting to even slightly truncate the drag or m-daily modeling greatly impacts the accuracy. On the contrary, these results indicate the tesseral linear combination short periodic modeling can be truncated to vastly improve the computation time with an acceptable degradation of accuracy (for most applications).

Specifically, the following errors can be noted for a one revolution predict:

- removing drag entirely results in ~ 5 km error
- drag short periodics ~ 130 m error
- tesseral m-dailies ~ 300 m error
- removing all tesseral linear combination short periodic terms ~ 200 m error

These results also indicate the J_2 / m-daily model serves to provide accuracy closure with Cowell, but at an expense of computation time. For reasons of simplicity and computational time savings, this model can be neglected in an optimized DSST configuration.

Third body effects were determined to not significantly impact these orbits. Specifically, the inclusion of these effects does not dramatically improve accuracy or greatly increase computer run time. For reasons of simplicity, their effects can also be neglected in an optimized DSST configuration for this orbit type.

Several comments can be made about the short nature of these runs (90 minute fit and predict spans). Short fit spans can lead to "observability" problems when the DC attempts to solve for drag terms (or any other desired solve for parameter, i.e. station biases). These "observability" problems result because the DC can not sample or observe a large arc of the satellite's trajectory, which makes it difficult to discern or separate the various contributions to the satellite's motion. For analytic theories, these observability problems are compounded by their limited physical force models. To deal with observability problems or a lack of physical force models, longer fit spans are usually employed; however, longer fit spans may not be practical or even possible for decay orbits. For these reasons, only complete perturbation theories should be used to process decay orbits. It should also be mentioned the short nature of these runs negated the benefit of special shallow resonance processing for the truncated geopotential cases (i.e., RESONPRD and RESNM).

As the Approach section of the Summary on page 1 states, the selection of appropriate input deck configurations was based on attaining speeds comparable to operational algorithms while maintaining at least a 5-10 fold increase in ephemeris accuracy. The results for this particular test case and test methodology indicate that several of the DSST configurations very nearly meet this criteria (the timing statistics fall short of the desired criteria by 20-30 percent).

Testing was done to try to simulate real-world uncertainties with atmospheric drag. In these tests, a Jacchia-Roberts drag model was used to generate a Cowell truth EG. Then, a Harris-Priester DSST configuration was fit over a 90 minute arc to the Jacchia-Roberts Cowell truth trajectory (in these cases, either the default Harris-Priester table with F#=150 or the "hottest" table with F#=275 in R&D GTDS was used). Again, a 90 minute predict span followed the fit span, with accuracy metrics derived over both the fit (DC RMS) and predict spans (R&D GTDS Ephemeris Comparison Program). The results of this testing are presented in Table 5:

Table 5. Simulation of Real World Drag Uncertainties, LACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	trunc	Yes	No	H-P	No	No	15.87	16.29	150.97
J_2^2			6642			AOG			sec	meters	meters
(opt.			-10 10			SPG		<u>[</u>		(6 its)	
deck)						Iszak					
**						Solve					
						CD			·		
			<u> </u>			F#=275	· · · · · · · · · · · · · · · · · · ·				
8x8	Yes	Yes	trunc	Yes	No	H-P	No	No	15.73	24.68	311.96
J_2^2			6642			AOG			sec	meters	meters
(opt.			-10 10			SPG				(6 its)	
deck)		- 121				Iszak					
**						Solve					
			ſ			C _D					
						F#=150					

Note the configurations listed in Table 5 are designated as "opt. deck" even though they use the Harris-Priester atmospheric model (the optimal configuration uses the Jacchia-roberts atmospheric model). This designation was given because all geopotential, partial derivative, solve-for, and force model options for the AOG and SPG match the optimal configuration (even though the particular atmospheric model may be different).

The setup for the LACC which provides an optimal balance between accuracy and computational speed can now be given (opt. deck):

- 8x8 geopotential (AOG)
- J_2^2 (AOG and SPG)
- · Zonal short periodics with default settings
- · M-daily short periodics with default settings
- Truncated tesseral linear combination high frequency short periodics (SPTESSLC = 6 6 4 2 10 10)
- Jacchia-Roberts drag (AOG and SPG)
- Solve C_D
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 1.0 6.0 0.0

Sample input decks for the LACC are given in the appendices.

3.0 Medium Altitude Circular Case (MACC)

A Landsat type orbit was chosen to fulfill the medium altitude circular orbit test case. In the ETAS study, the MACC is characterized by a SMAH range of 575 - 1000 km and an eccentricity range from 0.0 to 0.05. For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a three day arc. A three day DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 450 seconds (a 45 minute time interval was used in the R&D GTDS Ephemeris Comparison Program).

The osculating elements required for the Cowell truth EG were built from a one day DSST run with the following inputs:

Table 6. DSST Specifics to Build Osculating Elements, MACC

Epoch Date YYMMDD HHMMSS.S	820223 000000.0
End Date YYMMDD HHMMSS.S	820224 000000.0
Semimajor Axis (mean)	7077.787 km
Eccentricity (mean)	0.011542
Inclination (mean)	98.250452 deg
Longitude of Ascending Node (mean)	158.15349 deg
Argument of Perigee (mean)	89.4 deg
Mean Anomaly (mean)	312.90205 deg
Input Frame	True of Date
Integration and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Integrator	4th Order Runge-Kutta
DSST Step Size	43200.0 sec
Gravity Field	8x8 GEM10B
Lunar / Solar Point Masses	Yes
Drag Model	No
Solar Radiation Pressure	No

The osculating elements which resulted from this one day DSST run were then used as inputs for a six day Cowell EG. The specifics for this Cowell EG are given in Table 7:

Table 7. Cowell Truth EG Inputs, MACC

Epoch Date YYMMDD HHMMSS.S	820224 000000.0
End Date YYMMDD HHMMSS.S	820302 000000.0

Table 7. Cowell Truth EG Inputs, MACC (Continued)

Input, Integration, and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Integrator	12th Order Summed Cowell/ Adams Predict-Partially Correct
Step Size	60.0 sec
Gravity Field	21x21 GEM10B
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts
	$C_{\rm D} = 2.0$
Solar Radiation Pressure	No
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in the following table:

Table 8. DSST DC Specifics, MACC

Epoch Date YYMMDD HHMMSS.S	820224 000000.0
Fit Span Begin YYMMDD HHMMSS.S	820224 000000.0
Fit Span End YYMMDD HHMMSS.S	820227 000000.0
Semimajor Axis (mean)	7077.8 km
Eccentricity (mean)	0.0011
Inclination (mean)	98.2 deg
Longitude of Ascending Node (mean)	158.1 deg
Argument of Perigee (mean)	89.4 deg
Mean Anomaly (mean)	176.0 deg
DSST Input Frame	True of Date
DSST Integration and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
DSST Step Size	43200.0 sec
Geopotential Model	GEM10B
Position Standard Deviation	100 meters
Velocity Standard Deviation	10 cm/sec

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the MACC are given in Table 9; again, it is first desirable to describe some of the notation used in this table (and other tables in this section):

- GRAV refers to the geopotential modeling in the AOG.
- RESONPRD is a GTDS keyword for the input processor to override the default border for the modeling of
 tesseral resonance in the AOG (if the period of the resonance is less than 10 days in the default configuration,
 the resonance is modelled in the SPG as a tesseral linear combination high frequency term); by specifying a
 value with this keyword, a new border can be set to force the modeling of resonance into the AOG (i.e., for
 shallow resonance).
- TESS refers to the tesseral linear combination high frequency short periodic terms.
- SRP is an abbreviation for solar radiation pressure.
- J-R is an abbreviation for the Jacchia-Roberts atmospheric density model.
- H-P is an abbreviation for the Harris-Priester atmospheric density model.
- L-S is an abbreviation for lunar / solar third body point mass effects.
- trunc refers to truncated modeling; specifically, the maximum power of the eccentricity was set to 2 and the maximum frequency in true longitude was set to 11 in Fourier coefficients for these short periodic expansions³³.
- Total Position RMS is derived over the three day predict span only (from the R&D GTDS Ephemeris Comparison Program).
- All cases which attempt to solve for C_D include first order drag effects in the AOG partials (if C_D is not solved
 for, then all drag partials in the AOG are shut off). All cases include J₂ partials analytically in the AOG. No
 other AOG or SPG partials were included in any of the runs.
- Most cases have an SSTESTFL card of 1 3; this setting includes all desired AOG partials in the A matrix (J₂ partials are computed analytically; all other partial derivatives are computed via finite differences). In addition, this setting includes desired AOG partial derivatives for non-conservative perturbations in the D matrix via finite differences (these partials were also included in the A matrix). Cases noted by ** have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences (with this setting, third body and J₂² AOG partial derivatives, if desired, would not be included anywhere; if they are desired, the SSTESTFL setting of 1 3 should be used).

Table 9. DSST DC and Subsequent EG Results, MACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21 J ₂ ²	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG	No	L-S AOG SPG	232.83 sec	23.50 meters (6 its)	248.76 meters
$ \begin{array}{c} 21 \times 21 \\ J_2^2 \\ RESON \\ PRD = \\ 1 \text{ day} \end{array} $	Yes	Yes	Yes	Yes	Yes	J-R AOG SPG	No	L-S AOG SPG	311.6 sec	9.38 meters (9 its)	260.40 meters

Table 9. DSST DC and Subsequent EG Results, MACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	674.48	13.18	212.13
J ₂ ²				÷		AOG		AOG	sec	meters	meters
					}	SPG	i	SPG		(23 its)	
						Solve					
			<u> </u>			C _D					
21x21	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	317.14	9.20	236.57
J ₂ ²						AOG		AOG	sec	meters	meters
RESON						SPG		SPG	}	(9 its)	
PRD = 1 day				•		Solve				,	
						CD					
21x21	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	310.44	8.28	259.63
J ₂ ²						AOG		AOG	sec	meters	meters
RESON PRD =						SPG		SPG		(9 its)	
2 days											
21x21	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	393.10	7.75	241.01
J ₂ ²						AOG		AOG	sec	meters	meters
RESON						SPG		SPG		(12 its)	
PRD = 2 days						Solve					
						CD					
4x4	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	47.29	123.48	342.54
J ₂ ²						AOG		AOG	sec	meters	meters
				•		SPG		SPG		(7 its)	
4x4	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	52.98	117.47	386.02
J ₂ ²		•				AOG		AOG	sec	meters	meters
					}	SPG		SPG		(8 its)	
						Solve					
						C _D					
8x8	Yes	Yes	Yes	Yes	Yes	J-R	No	L-S	72.72	71.15	261.57
J ₂ ²						AOG		AOG	sec	meters	meters
]						SPG		SPG		(7 its)	
						Solve		İ			
						C_{D}			<u> </u>		

Table 9. DSST DC and Subsequent EG Results, MACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	No	Yes	Yes	J-R	No	L-S	46.68	92.70	279.60
J ₂ ²						AOG		AOG	sec	meters	meters
						SPG		SPG		(7 its)	
						Solve C _D		<u> </u> 			
8x8	Yes	Yes	No	Yes	No	J-R	No	L-S	41.47	92.96	277.11
J ₂ ²				!		AOG		AOG	sec	meters	meters
						SPG		SPG		(7 its)	
						Solve C _D					
8x8	Yes	Yes	No	Yes	No	J-R	No	L-S	40.26	92.95	276.77
J ₂ ²	}					AOG		AOG	sec	meters	meters
						Solve C _D		SPG		(7 its)	
8x8	trunc	trunc	No	Yes	No	J-R	No	L-S	39.33	92.95	276.77
J ₂ ²	8211	882			,	AOG	,	AOG	sec	meters	meters
						Solve C _D		SPG		(7 its)	,
8x8	trunc	trunc	No	Yes	No	J-R	No	L-S	38.06	92.92	276.70
J ₂ ²	8 2 11	882				AOG		AOG	sec	meters	meters
				-		Solve C _D				(7 its)	
8x8	trunc	trunc	No	No	No	J-R	No	L-S	33.83	97.50	259.80
J ₂ ²	8211	882			:	AOG		AOG	sec	meters	meters
				!	,			ļ		(7 its)	
8x8	trunc	trunc	No	No	No	J-R	No	L-S	37.08	93.06	278.26
J ₂ ²	8211	882				AOG		AOG	sec	meters	meters
	:					Solve C _D				(7 its)	
8x8	trunc	trunc	No	No	No	J-R	No	L-S	34.28	93.06	278.30
J ₂ ²	8 2 11	882				AOG		AOG	sec	meters	meters
**				·		Solve C _D				(7 its)	

Table 9. DSST DC and Subsequent EG Results, MACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
_	trunc 8 2 11	trunc 8 8 2	No	No	No	J-R AOG Solve C _D	No	L-S AOG	35.31 sec	76.51 meters (7 its)	196.85 meters
		ce Comm	28.67 sec 36.03 sec	581.68 meters (5 its) 905.98 meters	1412.3 meters 17876.0 meters						

The results in this table indicate that when fitting an optimized version of DSST to simulated data for the MACC, solving for C_D appears to make the results worse. However, solving for C_D in the "full-up" DSST cases leads to results which are more accurate than in the analogous case in which C_D is not solved for. This phenomena can be accredited to the decreased modeling in the optimized DSST configuration. Specifically, error characteristics resulting from perturbations other than atmospheric drag may bias the drag effect. For example, the drag model in DSST may attempt to account for error signatures in the semimajor axis which stem from un-modeled tesseral resonance; the reduced modeling makes it more difficult for the OD system to separate which source perturbing effects are coming from. If C_D is not solved for in these cases, its value defaults to the same value used in the generation of the truth ephemeris; hence, better results can be expected in these controlled experiments if C_D is not solved for. In real world analysis, the actual value of C_D may not be known very accurately, which necessitates a solution for C_D .

Clearly, the modeling of the tesseral short periodics can be truncated to greatly reduce the computer run time. In fact, for the 8x8 case in which the tesseral short periodics have been turned off, a 36% savings in computer run time is gained at the expense of an approximate 20 meter fit and predict difference (as compare to the 8x8 case with a full tesseral short periodic model). Similarly, the zonal and m-daily short periodic modeling can be slightly truncated to benefit the computer run time without a significant loss of accuracy. Third body and drag short periodics can be removed to enhance run time with no degradation in accuracy.

Both the J_2^2 and the J_2 / m-daily model serve to provide accuracy closure with Cowell, but at an expense of computation time. For reasons of simplicity and computational time savings, these models can be neglected in an optimized DSST configuration.

The period of resonance for the 14th order is less than two days (approximately 1.84 days), while the period of resonance for the 15th order is less than three days (approximately 2.18 days). Therefore, running R&D GTDS without a RESONPRD card to change the default resonance border from ten days would force the shallow resonance terms at these orders into the tesseral linear combination model of the SPG. A RESONPRD card setting the resonance border at one day forces the shallow resonance terms at both the 14th and 15th orders into the AOG. Using RESONPRD with a value of two days only puts the 15th order shallow resonance into the AOG. As is shown in the results using a "full" 21x21 geopotential field, modeling resonance in the AOG provides for modest improvements in fit span accuracy over modeling resonance in the SPG. However, improvements in predict span accuracy are not necessarily gained. With the optimized version of DSST, almost 100 meters worth of improvement in predict accuracy is gained by including the resonant terms at the 14th and 15th orders in the AOG (as opposed to neglecting these terms with an optimized version of DSST using an 8x8 base gravity field. It should be noted some of this improvement can be attributed to the increased AOG zonal modeling which results from the method used to include the shallow resonance terms--refer to the following paragraph for details of this method). As a general rule of thumb, it is probably better to have resonance modeled in the AOG due to the nature of the theory. In this manner, resonance is captured in the mean equations of motion and handled numerically (which tends to provide better treatment of the non-linearities and large magnitudes associated with resonance).

It is of particular importance to use extreme care when running an optimized version of the DSST. For example, if the tesseral linear combination high frequency short periodics have been truncated or removed for an orbit in which shallow resonance occurs, resonance terms will be totally neglected (assuming a resonant period < 10 days and no adjustment with the RESONPRD card). In these cases, the user must experiment with the AUTOFORC and RESNM cards or the RESONPRD card and hand calculation of the resonant periods to ensure the appropriate resonance modeling occurs (which can become quite tedious). As an alternative, the user can specify a 21x21 gravity field with truncated or no tesseral linear combination short periodics and a RESONPRD of one day. This would include all shallow resonant terms (and obviously deep resonant terms) with a period greater than one day into the AOG at the expense of additional secular and long period zonal calculations in the AOG. This configuration, which is used in the MACC optimal deck, is much simpler than experimenting with the AUTOFORC and RESNM cards or hand calculation of resonant period (which is not practical for operational scenarios with multiple satellites). For example, an 8x8 base gravity field could have been established for the MACC along with AUTOFORC and RESNM cards to include all the resonant terms at the 14th and 15th order (which requires 1 AUTOFORC card and 15 RESNM cards). This configuration would not introduce any secular and long period zonal calculations in the AOG beyond the 8x8 base gravity field. However, for only a 3% increase in computer run time (35.31 seconds versus 34.28 seconds), the 21x21 configuration with a RESONPRD of one day can be used (which does introduce secular and long period zonal calculations in the AOG beyond the 8x8 base gravity field up to the 21x21 limit) and remove the introduction of 16 R&D GTDS keyword cards. This example shows the generality and efficiency with which the recursions handle the calculation of zonal effects in the AOG (it should be noted the same recursion concept is used for all portions of the geopotential in the AOG and SPG).

This general handling of resonant terms becomes extremely useful when considering multiple satellites under the broad definition of the MACC. Instead of introducing costly "man-in-the-loop" calculations, this general configuration efficiently captures resonant terms (shallow and deep) for all orbits in the MACC (up to the 21x21 limit; note that the same general concept can be used with the 50x50 version of R&D GTDS).

The initial drag results led to some further processing with the Harris Priester drag model. In contrast to the Jacchia-Roberts drag model, the Harris-Priester model can be considered "static" in nature. The "dynamic" Jacchia-Roberts model implements "observed" or predicted values for drag-related parameters (solar flux and geomagnetic data). The Harris-Priester model implements established "look-up" tables to obtain drag-related parameters (altitude versus density). In this manner, the Harris-Priester model presents a "smoother" or more stable picture of the atmosphere. It should be noted various Harris-Priester density tables have been constructed to correspond to different levels of activity in the atmosphere.

Results for a full-up Harris-Priester DSST fit to a Harris-Priester Cowell truth model are given in Table 10 (all test procedures for items other than atmospheric drag are identical to the other test procedures described in this section):

Table 10. DSST Harris-Priester DC and Subsequent EG Results I, MACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	Yes	Yes	Yes	H-P	No	L-S	230.14	16.20	21.218
J ₂ ²						AOG		AOG	sec	meters	meters
						SPG		SPG		(6 its)	
						F#=150					·
21x21	Yes	Yes	Yes	Yes	Yes	H-P	No	L-S	283.36	2.97	4.7777
J ₂ ²						AOG		AOG	sec	meters	meters
RESON						SPG		SPG		(8 its)	
PRD =						F#=150					
21x21	Yes	Yes	Yes	Yes	Yes	H-P	No	L-S	358.83	7.64	280.20
J ₂ ²						AOG		AOG	sec	meters	meters
						SPG		SPG		(11 its)	
		3.27 s				Solve C _D F#=150		i			·
21x21	Yes	Yes	Yes	Yes	Yes	H-P	No	L-S	285.00	2.96	9.049
J ₂ ²						AOG		AOG	sec	meters	meters
RESON						SPG		SPG		(8 its)	
PRD =						Solve					
						C _D					
,						F#=150					

As expected, the results in this table show the static Harris-Priester model provides for a tighter DSST fit to a Cowell truth model (stressing the difficulties which arise due to the dynamic, "noisy" nature of the atmosphere; DCs with the Jacchia-Roberts atmospheric model did not provide the same tight closure as with the "smooth" Harris Priester model. Real world analysis of atmospheric effects proves quite challenging due to the noisy and uncertain nature of atmospheric conditions, especially for orbital predictions into the future). Of particular importance in these results is the accuracy improvement gained by modeling resonance in the AOG in cases in which C_D is solved for .

Some testing was also done to try and simulate real-world uncertainties with atmospheric drag. In these tests, a Jacchia-Roberts drag model was used to generate a Cowell truth EG. Then, a Harris-Priester DSST configuration was fit over a three day arc to the Jacchia-Roberts Cowell truth trajectory. Again, a three day predict span followed the fit span, with accuracy metrics derived over both the fit (DC RMS) and predict spans (R&D GTDS Ephemeris Comparison Program). The results of this testing are presented in Table 11:

Table 11. Simulation of Real World Drag Uncertainties, MACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Fit + Predict)
21x21	trunc	trunc	No	No	No	H-P	No	L-S	40.37	764.30	15754.0
J ₂ ²	8 2 11	882		:		AOG		AOG	sec	meters	meters
* *						F#=275				(12 its)	
RESON											
PRD=											
l day		,									
21x21	trunc	trunc	No	No	No	H-P	No	L-S	35.04	78.98	469.52
J ₂ ²	8 2 11	882				AOG		AOG	sec	meters	meters
**						Solve C _D				(7 its)	
RESON						F#=275					
PRD=										,	
1 day											
(opt. deck)										e a Nasa	
21x21	trunc	trunc	No	No	No	H-P	No	L-S	34.77	80.06	636.23
J ₂ ²	8 2 11	882				AOG		AOG	sec	meters	meters
**						Solve C _D				(7 its)	
RESON						F#=150					
PRD =											
l day									*		
(opt. deck)											

Note the configurations listed in Table 11 are designated as "opt. deck" even though they use the Harris-Priester atmospheric model (the optimal configuration uses the Jacchia-roberts atmospheric model). This designation was given because all geopotential, partial derivative, solve-for, and force model options for the AOG and SPG match the optimal configuration (even though the particular atmospheric model may be different).

The setup for the MACC which provides an optimal balance between accuracy and computational speed can now be given:

- 21x21 geopotential (AOG)
- RESONPRD equal to one day (86400.0 seconds)
- J₂² (AOG)
- Truncated zonal short periodic modeling (the maximum power of the eccentricity was set to 2 and the maximum frequency in true longitude was set to 11 in Fourier coefficients for these short periodic expansions)

- Truncated tesseral m-daily short periodic modeling (maximum power of the eccentricity was set to 2 in Fourier Coefficients for these short periodic expansions)
- Jacchia-Roberts drag (AOG)
- Solve C_D
- Lunar / solar third body point mass effects (AOG)
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 1.0 0.0 0.0

Sample input decks for the MACC are given in the appendices.

4.0 High Altitude Circular Case (HACC)

The Explorer 27 (BE-C) orbit was chosen to fulfill the high altitude circular test case. In the ETAS study, the HACC is characterized by a SMAH range of 1000 - 2500 km and an eccentricity range from 0.0 to 0.05. For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a two day arc. A three day DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 60 seconds for the Cowell truth generation (a 45 minute time interval was used in the R&D GTDS Ephemeris Comparison Program).

The osculating elements required for the Cowell truth EG were derived from a five day Cowell fit to an SGP4. ephemeris. The two card element set used to generate the SGP4 ephemeris is given in Table 12:

Table 12. Explorer Two-Card Element Set, HACC, September 1994 SATCAT

Epoch Date YYMMDD HHMMSS.SSSS	940826 074853.5101
Mean Motion	13.37418275 rev/day
Eccentricity	0.0247108
. Inclination	41.1904 deg
Longitude of Ascending Node	349.3346 deg
Argument of Perigee	66.5461 deg
Mean Anomaly	296.1065 deg
B*	0.000091 er ⁻¹
ORB1 Output Frequency	Every 450.0 Seconds

The specifics for the Cowell DC and subsequent EG are given in Table 13:

Table 13. Cowell DC and Subsequent EG Inputs, HACC

Epoch Date YYMMDD HHMMSS.SSSS	940826 074853.5101
Fit Begin Date YYMMDD HHMMSS.SSSS	940826 074854.0000
Fit End Date YYMMDD HHMMSS.SSSS	940831 074854.0000
EG End Date YYMMDD HHMMSS.SSSS	940903 074854.0000

Table 13. Cowell DC and Subsequent EG Inputs, HACC (Continued)

Input, Integration, and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
Integrator	12th Order Summed Cowell/ Adams Predict-Partially Correct
Step Size	60.0 sec
Gravity Field	21x21 JGM2
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts-Schatten (Solve ρ ₁)
Solar Radiation Pressure	Yes (Solve C _R)
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg
Position Standard Deviation	500 meters
Velocity Standard Deviation	50 cm/sec
ORB1 Output Frequency	Every 60.0 Seconds

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in Table 14:

Table 14. DSST DC Specifics, HACC

Epoch Date YYMMDD HHMMSS.SSSS	940826 074853.5101
Fit Span Begin YYMMDD HHMMSS.S	940826 074854.0
Fit Span End YYMMDD HHMMSS.S	940828 074854.0
Semimajor Axis (mean)	7498.0 km
Eccentricity (mean)	0.0247108
Inclination (mean)	41.1904 deg
Longitude of Ascending Node (mean)	349.3346 deg
Argument of Perigee (mean)	66.5461 deg
Mean Anomaly (mean)	296.1065 deg
DSST Input Frame	True of Date
DSST Integration and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)

Table 14. DSST DC Specifics, HACC (Continued)

DSST Step Size	43200.0 sec
Geopotential Model	JGM2
Position Standard Deviation	100 meters
Velocity Standard Deviation	10 cm/sec
ORB1 Output Frequency	Every 450.0 Seconds

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the HACC are given in Table 15; however, it is first desirable to highlight a few notes concerning the test protocol for the HACC:

- Total Position RMS is derived over the three day predict span only (R&D GTDS Ephemeris Comparison Program).
- R&D GTDS default configuration settings are used unless specifically noted.
- RES refers to the inclusion of the 13th and 14th order shallow resonance terms with the AUTOFORC and RESNM keyword cards.
- "trunc" refers to truncated modeling; modeling descriptions corresponding to the R&D GTDS Semianalytic Satellite Theory input processor are specified where needed. Additional details can be found in the R&D GTDS Semianalytic Theory Input Processor keyword description booklet³³.
- All cases which attempt to solve for C_D include first order drag effects in the AOG partials (if C_D is not solved for, then all drag partials in the AOG are shut off). Similarly, all cases which attempt to solve for C_R include solar radiation pressure effects in the AOG partials (if C_R is not solved for, then all solar radiation pressure partials in the AOG are shut off). All cases include J₂ partials analytically in the AOG. No other AOG or SPG partials were included in any of the runs.
- Most cases have an SSTESTFL card of 1 3; this setting includes all desired AOG partials in the A matrix (J₂ partials are computed analytically; all other partial derivatives are computed via finite differences). In addition, this setting includes desired AOG partial derivatives for non-conservative perturbations in the D matrix via finite differences (these partials were also included in the A matrix). Cases noted by ** have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences (with this setting, third body and J₂² AOG partial derivatives, if desired, would not be included anywhere; if they are desired, the SSTESTFL setting of 1 3 should be used).

Table 15. DSST DC and Subsequent EG Results, HACC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	Yes	Yes	Yes	J-R	AOG	L-S	1165.3	2.77	74.141
J_2^2						AOG	SPG	AOG	sec	meters	meters
RESON						SPG	Solve	SPG		(11 its)	
PRD =						Solve C _D	C _R				
21x21	Yes	Yes	trunc	Yes	No	J-R	AOG	L-S	203.45	13.93	76.522
J_2^2			6642			AOG	SPG	AOG	sec	meters	meters
RESON			-10 10			SPG	Solve	SPG		(6 its)	
PRD =						Solve C _D	C _R				
21x21	Yes	Yes	trunc	·Yes	No	J-R	AOG	L-S	156.76	20.79	71.134
J ₂ ²	ļ	}	4442			AOG	SPG	AOG	sec	meters	meters
RESON			-88			SPG	Solve	SPG		(5 its)	
PRD =						Solve C _D	C _R		7.		
21x21	Yes	Yes	No	Yes	No	J-R	AOG	L-S	144.56	39.88	66.637
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
RESON						SPG	Solve	SPG	:	(6 its)	
PRD =						Solve C _D	C _R				
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	125.23	52.60	149.71
J ₂ ²			J J			AOG	SPG	AOG	sec	meters	meters
						SPG	Solve	SPG		(6 its)	
						Solve C _D	C _R				
8x8	Yes	Yes	No	Yes	No	J-R	No	L-S	103.81	58.77	332.22
J ₂ ²						AOG		AOG	sec	meters	meters
						SPG		SPG		(4 its)	
						Solve C _D					

Table 15. DSST DC and Subsequent EG Results, HACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	102.21	61.05	392.25
J ₂ ²						AOG		AOG	sec	meters	meters
						SPG		SPG		(4 its)	·
						Solve C _D					
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	102.64	53.19	155.03
J ₂ ²						AOG	Solve	AOG	sec	meters	meters
						SPG	C_{R}	SPG		(4 its)	
						Solve C _D					
8x8	Yes	Yes	No	Yes	No	No	AOG	L-S	98.03	53.38	151.55
J ₂ ²							Solve	AOG	sec	meters	meters
1					,		$C_{\mathbf{R}}$	SPG		(4 its)	
8x8	Yes	Yes	No	Yes	No	No	AOG	L-S	96.29	53.39	151.69
J ₂ ²	h						Solve	AOG	sec	meters	meters
		-					C_{R}			(4 its)	
8x8	trunc	trunc	No	Yes	No	No	AOG	L-S	94.58	53.39	151.65
J ₂ ²	8211	882					Solve	AOG	sec	meters	meters
							C_{R}			(4 its)	;
8x8	trunc	trunc	No	No	No	No	AOG	L-S	92.89	53.59	151.41
J ₂ ²	8211	882					Solve	AOG	sec	meters	meters
							$C_{\mathbf{R}}$			(4 its)	
6x6	trunc	trunc	No	No	No	No	AOG	L-S	91.18	80.34	285.94
J ₂ ²	6211	662					Solve	AOG	sec	meters	meters
							C_{R}			(4 its)	
8x8	trunc	trunc	No	No	No	No	AOG	L-S	92.39	48.53	111.23
J ₂ ²	8 2 11	882					Solve	AOG	sec	meters	meters
RES							C_{R}	<u> </u>		(4 its)	
21x21	trunc	trunc	No	No	No	No	AOG	L-S	96.83	48.71	81.619
J ₂ ²	8211	882					Solve	AOG	sec	meters	meters
RESON					,		C_{R}			(4 its)	
PRD =	:									į.	
			Ļ			<u> </u>	l		<u> </u>	<u></u>	

Table 15. DSST DC and Subsequent EG Results, HACC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	trunc	trunc	No	No	No	No	AOG	L-S	97.10	48.71	81.693
J_2^2 RESON PRD = 1 day * *	8211	882					Solve C _R	AOG	sec	meters (4 its)	meters
1/5 day step size											
21x21	trunc	trunc	No	No	No	No	AOG	L-S	93.12	48.71	81.619
J ₂ ² RESON PRD = 1 day	8211	882					Solve C _R	AOG	sec	meters (4 its)	meters
* * (opt. deck)			ang panggan		Ş	·					ukt flytt Rought en e
	Space Command's SGP4 (solve for drag term ndot/2)									415.75	1752.9
										meters (4 its)	meters
,	Space Command's SGP4 (do not solve for drag term ndot/2) $B* = 0.000091 \text{ er}^{-1}$										694.49 meters

The results in Table 15 indicate the importance of modeling solar radiation pressure in the AOG and solving for C_R (~200 meters over the three day predict). In addition, the impact of higher degree and order zonal and tesseral m-daily terms, as well as shallow tesseral resonance terms, can be clearly seen; specifically, neglecting the contributions from these effects above the 8x8 field (up to the 21x21 gravity model limit used in this testing) more than doubles the predict error. Furthermore, at altitudes characteristic of this orbit, the effects of atmospheric drag and third body short periodics are negligible, while SRP short periodics are on the order of 5 meters. Finally, the tesseral high frequency short periodic, J_2^2 short periodic, and J_2 /m-daily short periodic terms serve to provide accuracy closure with Cowell, but are computationally expensive. For these orbits, their effects can be neglected.

Again, it is of particular importance to use extreme care when running an optimized version of the DSST. This particular orbit does experience shallow resonance effects. In the cases where only an 8x8 gravity field (AOG) has been included, the resonant effects were neglected. In order to capture these effects, one DSST case implemented the "RES" modeling (use of the RESNM and AUTOFORC cards with a small base field), while another case implemented a 21x21 geopotential field with a RESONPRD card set equal to one day and geopotential short periodic

terms either removed (as with the tesseral high frequency short periodics) or truncated (as with the zonal and m-daily short periodics). Both of these configurations capture the shallow resonance contributions; however, as was stated in the MACC section, the configuration using a 21x21 geopotential model and a RESONPRD card set to one day is (1) simpler than using the AUTOFORC and RESNM configuration and (2) applicable for all cases under the broad scope of the HACC. For these reasons, the 21x21 geopotential model with RESONPRD equal to one day (and geopotential short periodics either removed or truncated) was chosen for the optimal configuration. This configuration was only 5% slower than the more complicated AUTOFORC and RESNM combination, but 30 meters more accurate in the predict span (a benefit gained by the AOG zonal terms above the 8x8 base configuration up to the 21x21 limit). In all, roughly 40 meters is gained in the three day predict with the addition of the shallow resonance terms.

The setup for the HACC which provides an optimal balance between accuracy and computational speed can now be given:

- 21x21 geopotential (AOG)
- RESONPRD equal to one day (86400.0 seconds)
- J₂² (AOG)
- Truncated zonal short periodic modeling (the maximum power of the eccentricity was set to 2 and the
 maximum frequency in true longitude was set to 11 in Fourier coefficients for these short periodic expansions)
- Truncated tesseral m-daily short periodic modeling (maximum power of the eccentricity was set to 2 in Fourier Coefficients for these short periodic expansions)
- Lunar / solar third body point mass effects (AOG)
- Solar Radiation Pressure (AOG)
- Solve for C_R
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 0.0 0.0 1.0

Sample input decks for the HACC are given in the appendices.

5.0 Geosynchronous Case (GEO)

The BS 3A orbit was chosen to fulfill the geosynchronous test case. In the ETAS study, the GEO is characterized by a SMAH range of 33,000 - 39,000 km and an eccentricity range from 0.0 - 0.05. For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a three day arc. A three day DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 450 seconds.

The osculating elements required for the Cowell truth EG were derived from a ten day Cowell fit to an SGP4 ephemeris. The two card element set used to generate the SGP4 ephemeris is given in Table 16:

Epoch Date YYMMDD HHMMSS.SSSS	940825 170334.9932 1.00266891 rev/day	
Mean Motion		
Eccentricity	0.0003102	
Inclination	0.0467 deg	
Longitude of Ascending Node	243.1923 deg	
Argument of Perigee	288.7716 deg	

Table 16. BS 3A Two-Card Element Set, GEO, September 1994 SATCAT

Table 16. BS 3A Two-Card Element Set, GEO, September 1994 SATCAT (Continued)

Mean Anomaly	167.5966 deg
B*	0.0 er ⁻¹

The specifics for the Cowell DC and subsequent EG are given in Table 17:

Table 17. Cowell DC and Subsequent EG Inputs, GEO

Epoch Date YYMMDD HHMMSS.SSSS	940825 170334.9932
Fit Begin Date YYMMDD HHMMSS.SSSS	940825 170335.0000
Fit End Date YYMMDD HHMMSS.SSSS	940904 170335.0000
EG End Date YYMMDD HHMMSS.SSSS	940905 170335.0000
Input, Integration, and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Integrator	12th Order Summed Cowell/ Adams Predict-Partially Correct
Step Size	60.0 sec
Gravity Field	21x21 JGM2
Lunar / Solar Point Masses	Yes
Drag Model	No
Solar Radiation Pressure	Yes
	(Solve C _R)
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg
Position Standard Deviation	500 meters
Velocity Standard Deviation	50 cm/sec
	<u> </u>

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in Table 18:

Table 18. DSST DC Specifics, GEO

Epoch Date YYMMDD HHMMSS.SSSS	940825 170334.9932
Fit Span Begin YYMMDD HHMMSS.S	940825 170335.0000
Fit Span End YYMMDD HHMMSS.S	940828 170335.0000
Semimajor Axis (mean)	42167.16
Eccentricity (mean)	0.000275
Inclination (mean)	0.23 deg

Table 18. DSST DC Specifics, GEO (Continued)

Longitude of Ascending Node (mean)	97.6 deg
Argument of Perigee (mean)	75.3 deg
Mean Anomaly (mean)	166.09 deg
DSST Input, Integration and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
DSST Step Size	43200.0 sec
Geopotential Model	JGM2
Position Standard Deviation	100 meters
Velocity Standard Deviation	10 cm/sec

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the GEO are given in Table 19; first, a few notes concerning the test protocol for the GEO:

- Total Position RMS is derived over the three day predict span only (from the R&D GTDS Ephemeris Comparison Program).
- R&D GTDS default configuration settings are used unless specifically noted.
- "NUM SP" refers to numerical short periodics used in conjunction with weak time dependence (WTD) and third body perturbations.
- All cases which attempt to solve for C_R include solar radiation pressure effects in the AOG partials (if C_R is not solved for, then all solar radiation pressure partials in the AOG are shut off). All cases include J_2 partials analytically in the AOG. No other AOG or SPG partials were included in any of the runs.
- All cases have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences. For these runs, only solar radiation pressure effects (if solving for C_R) have been included in the D matrix.
- Cases with a "*" in the DC RMS column had a DC convergence criteria of 1.D-3 (rather than 1.D-4 which was used for all other cases).

Table 19. DSST DC and Subsequent EG Results, GEO

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	No	Yes	No	No	AOG	L-S	137.54 sec	8.24	228.17
J ₂ ²			}				SPG Solve C _R	AOG SPG	355	meters (29 its)	meters
0-0	37	37	NT.	37	NT-	NTo	AOG	TC	78.49	8.24	228.17
8x8 J ₂ ²	Yes	Yes	No	Yes	No	No	SPG	L-S AOG	78.49 sec	meters	meters
32							Solve C _R	SPG		(29 its)	Motors
4x4	Yes	Yes	No	Yes	No	No	AOG	L-S	72.01	8.94	209.87
J ₂ ²							SPG	AOG	sec	meters	meters
							Solve C _R	SPG		(30 its)	
4x4	Yes	No	No	Yes	No	No	AOG	L-S	69.32	8.94	209.80
J ₂ ²							SPG Solve C _R	AOG SPG	sec	meters (29 its)	meters
4x4 J ₂ ² (opt. deck)	Yes	No	No	Yes	No	No	SPG Solve C _R	L-S AOG NUM SP WTD	30.19 sec	5.10 meters (4 its)	21.249 meters
<u> </u>	Voc	Nic	No	Yes	No	No	AOG	L-S	41.91	3.54	25.578
4x4 J ₂ ²	Yes	No	INO	ies	140	NO	Solve C _R	AOG NUM SP WTD	sec	meters (12 its)	meters
4x4 J ₂ ²	Yes	No	No	Yes	No	No	No	L-S AOG num sp WTD	27.80 sec	80.99 meters (3 its)	391.75 meters
4x4 J ₂ ²	Yes	No	No	Yes	No	No	AOG SPG Solve C _R	No	35.86 sec	714.81 meters (9 its)	4046.5 meters

Table 19. DSST DC and Subsequent EG Results, GEO (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
4x0	Yes	No	No	Yes	No	No	AOG	L-S	46.35	24.74	7229.1
J ₂ ²							SPG	AOG	sec	meters	meters
							Solve C _R	NUM SP WTD		(16 its)	
·····	Spa	ce Comm	and's SG	P4 (solve	for drag	term ndo	t/2)		59.67	159.50	3934.5
									sec	meters	meters
										(30 its)	
										*	
	Space (Command	l's SGP4	(do not s	olve for d	rag term	ndot/2)		36.21	479.85	2060.2
			B ^s	* = 0.0 er	-1			,	sec	meters	meters
										(12 its)	
										*	

The results in Table 19 indicate a small degree and order geopotential model (i.e., 4x4) can be used without a significant loss in accuracy. In addition, the importance of third body effects and solar radiation pressure (solving for C_R) can clearly be seen. Completely neglecting third body effects leads to ~ 4 km worth of predict error over the three day span; neglecting solar radiation pressure in both the AOG and SPG leads to roughly a 350-400 meter error over the three day predict. Neglecting SRP short periodics (but still modeling SRP in the AOG and solving for C_R), does not significantly impact accuracy (~ 5 m), but causes extra DC iterations for convergence (and, hence, longer run times). Furthermore, weak time dependence, which accounts for the motion of the third bodies over the course of the satellite's orbit in the equations of motion, must be modeled. A weak time independent theory assumes the position of the third body does not move over the course of an averaging interval (the orbital period) in the development of the equations of motion. For low altitude orbits, this assumption works well. However, for geosynchronous orbits (with periods of roughly 24 hours), these results indicate using a weak time independent theory leads to extra DC iterations for convergence and roughly a 200 meter predict error over the course of three days.

The case using a 4x0 geopotential field illustrates the impact of resonance on the geosynchronous orbit. For the three day predict, over 7 km worth of error is introduced by neglecting resonant terms. The impact of using a subset of resonant terms (rather the the full complement for the 1:1 resonance) can clearly be seen in the SGP4 results. The results for optimized DSST indicate the efficiency with which a full complement of resonant terms can be added to a propagation theory.

The setup for the GEO which provides an optimal balance between accuracy and computational speed can now be given:

- 4x4 geopotential (AOG)
- J₂² (AOG and SPG)
- · Zonal short periodics with default settings
- Lunar / solar third body point mass effects (AOG)
- Numerical third body short periodics (WTD)
- Solar radiation pressure (AOG & SPG)

- Solve for C_R
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 0.0 0.0 1.0

Sample input decks for the GEO are given in the appendices.

6.0 Molniya Case (MOLY)

Satellite #9829 (SATCAT) was chosen to fulfill the Molniya test case 14,20 . In the ETAS study, the Molniya / geostationary transfer orbit is characterized by a SMAH range from 18,000 - 22,000 km and an eccentricity range from 0.05 to 1.0 (this analysis will strictly focus on the Molniya orbit which, typically, has an eccentricity of ~ 0.73).

For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a three day arc. A three day DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 450 seconds.

The osculating elements required for the Cowell truth EG were derived from a six month DSST fit to real data ¹⁴. The six month DSST fit to the real data resulted in a set of mean Keplerian elements which were propagated forward one day to produce the osculating elements used in the Cowell truth EG. The mean Keplerian elements, as well as other settings used in the one day DSST propagation, are listed in Table 20:

Table 20. Mean Element Set Used To Build Osculating Elements, MOLY (from Reference 14)

Epoch Date YYMMDD HHMMSS.SSSS	790803 234212.0000
Semi-Major Axis (mean)	26556.9582 km
Eccentricity (mean)	0.6990986
Inclination (mean)	63.173001 deg
Longitude of Ascending Node (mean)	190.619681 deg
Argument of Perigee (mean)	281.59624 deg
Mean Anomaly (mean)	13.29315 deg
Input, Integration, and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Integrator	4th Order Runge-Kutta
DSST Step Size	43200.0 sec
Gravity Field	8x8 GEM9
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts
	$C_{D} = 2.0$
Solar Radiation Pressure	Yes
	$C_R = 1.2$

Table 20. Mean Element Set Used To Build Osculating Elements, MOLY (from Reference 14)

Global Short Periodic Select	Moderate Accuracy Molniya Configuration (SPSHPER = 5)
Average Spacecraft Cross-Sectional Area	12.5 m ²
Spacecraft Mass	1250 kg

The specifics for the Cowell truth EG are given in Table 21:

Table 21. Cowell Truth EG Inputs, MOLY

Epoch Date YYMMDD HHMMSS.SSSS	790804 234212.0000
EG End Date YYMMDD HHMMSS.SSSS	790818 234212.0000
Input, Integration, and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
Integrator	Time Regularized Cowell
Time Regularization Constant for Integrator	1.5
Step Size	200 Step Per Revolution
Gravity Field	21x21 GEM10B
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts $C_{\rm D} = 2.0$
Solar Radiation Pressure	Yes C _R = 1.2
Average Spacecraft Cross-Sectional Area	12.5 m ²
Spacecraft Mass	1250 kg

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in Table 22:

Table 22. DSST DC Specifics, MOLY

Epoch Date YYMMDD HHMMSS.SSSS	790804 234212.0000
Fit Span Begin YYMMDD HHMMSS.S	790804 234212.0000
Fit Span End YYMMDD HHMMSS.S	790807 234212.0000
Semimajor Axis (mean)	26572.176 km
Eccentricity (mean)	0.699
Inclination (mean)	63.2 deg
Longitude of Ascending Node (mean)	190.5 deg

Table 22. DSST DC Specifics, MOLY (Continued)

Argument of Perigee (mean)	281.6 deg	
Mean Anomaly (mean)	15.429 deg	
DSST Input, Integration and Output Frame		
Geopotential Model	GEM10B	
Position Standard Deviation	100 meters	
Velocity Standard Deviation	10 cm/sec	

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the MOLY are given in Table 23; again, it is first desirable to highlight a few notes concerning the test protocol for the MOLY:

- Total Position RMS is derived over the three day predict span only (from R&D GTDS Ephemeris Comparison Program).
- R&D GTDS default configuration settings are used unless specifically noted.
- "trunc" refers to truncated modeling; modeling descriptions corresponding to the R&D GTDS Semianalytic Satellite Theory input processor are specified where needed. Additional details can be found in the R&D GTDS Semianalytic Theory Input Processor keyword description booklet³³.
- "splunara" and "spsolara" also refer to truncated modeling; additional details can be found in the R&D GTDS Semianalytic Theory Input Processor keyword description booklet³³.
- All cases which attempt to solve for C_D include first order drag effects in the AOG partials (if C_D is not solved for, then all drag partials in the AOG are shut off). Similarly, all cases which attempt to solve for C_R include solar radiation pressure effects in the AOG partials (if C_R is not solved for, then all solar radiation pressure partials in the AOG are shut off). All cases include J₂ partials analytically in the AOG. No other AOG or SPG partials were included in any of the runs.
- Most cases have an SSTESTFL card of 1 3; this setting includes all desired AOG partials in the A matrix (J₂ partials are computed analytically; all other partial derivatives are computed via finite differences). In addition, this setting includes desired AOG partial derivatives for non-conservative perturbations in the D matrix via finite differences (these partials were also included in the A matrix). Cases noted by ** have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences (with this setting, third body and J₂² AOG partial derivatives, if desired, would not be included anywhere; if they are desired, the SSTESTFL setting of 1 3 should be used).

Table 23. DSST DC and Subsequent EG Results, MOLY

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	trunc	Yes	No	J-R	AOG	L-S	174.17	20.62	149.19
J ₂ ²			88			AOG	SPG	AOG	sec	meters	meters
			33 35			SPG	Solve	SPG		(5 its)	
			-41 41			Solve C _D	C _R				
8x8	Yes	Yes	trunc	Yes	No	J-R	AOG	L-S	60.24	33.15	146.27
J ₂ ²			44			AOG	SPG	AOG	sec	meters	meters
			33 35	,		SPG	Solve	SPG		(5 its)	
			-15 15			Solve C _D	C _R				
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	43.89	117.30	220.10
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
						SPG	Solve	SPG		(5 its)	
		·				Solve C _D	C _R				
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	39.92	117.65	220.08
J ₂ ²						AOG	Solve	AOG	sec	meters	meters
						SPG	C_{R}	SPG		(4 its)	:
				i I		Solve C _D					
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	39.00	117.65	220.08
J ₂ ²						AOG	Solve	AOG	sec	meters	meters
						Solve C _D	C _R	SPG		(4 its)	
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	38.49	208.28	357.40
J ₂ ²						AOG	Solve	AOG	sec	meters	meters
						Solve C _D	C _R			(4 its)	
8x8	Yes	Yes	No	Yes	No	J-R	AOG	No	42.90	1027.38	12670.0
J ₂ ²						AOG	Solve		sec	meters	meters
						Solve C _D	C _R			(6 its)	

Table 23. DSST DC and Subsequent EG Results, MOLY (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	38.83	116.66	219.04
J_2^2] 					AOG	Solve C _R	AOG	sec	meters	meters
			splunara 4482 spsolara 2242		(4 its)						
8x8	Yes	Yes	No	Yes	No	J-R	No	L-S	38.62	121.09	256.95
J_2^2						AOG		AOG	sec	meters	meters
						Solve C _D		SPG		(4 its)	
8x8	Yes	Yes	No	Yes	No	No	AOG	L-S	34.77	117.63	218.75
J_2^2							Solve	AOG	sec	meters	meters
							$C_{\mathbf{R}}$	SPG		(4 its)	
8x8	trunc	trunc	No	Yes	No	J-R	AOG	L-S	37.24	114.62	219.37
J_2^2	6510	442		4		AOG	Solve C _R	AOG	sec	meters	meters
			SPG		(4 its)						
8x8	trunc	trunc	No	Yes	No	J-R	AOG	L-S	36.59	114.82	219.33
J_2^2	438	442				AOG	Solve	AOG	sec	meters	meters
					 	Solve C _D	C _R	SPG		(4 its)	
8x8	trunc	trunc	No	Yes	No	J-R	AOG	L-S	34.11	114.82	219.33
J_2^2	438	442				AOG	Solve	AOG	sec	meters	meters
* *	:			·		Solve	C_R	SPG		(4 its)	
(opt. deck)						C _D				:	
Space Command's SGP4 (solve for drag term ndot/2)									35.41	2690.67	5519.0
										meters	meters
					(8 its)						
	Space Command's SGP4 (do not solve for drag term ndot/2)									3082.99	4537.3
	$B* = 0.0001 \text{ er}^{-1}$										meters
	D = 0.0001 E1										

The results in Table 23 demonstrate the wide variety of perturbative effects experienced by Molniya orbits. The low perigee heights contribute to geopotential and atmospheric effects, while the high apogee heights lead to third body and solar radiation pressure effects. Of particular importance are the effects of tesseral resonance (Molniya

orbits usually maintain a repeating groundtrack and complete very nearly two revolutions per day). If neglected, resonance can contribute several kilometers worth of error (as is evident in the analytic DCs, which only model a subset of the resonant terms)²⁰. Specifically, the following notes can be taken from Table 23 concerning the short periodic models of DSST:

- drag and solar radiation pressure short periodics do not significantly affect accuracy; they can be truncated to reduce computation time
- neglecting third body short periodics adds ~ 100-150 meters worth of error over the three day predict
- zonal and m-daily short periodics can be truncated to decrease computation time without significantly impacting accuracy
- tesseral high frequency short periodics serve to provide accuracy closure with Cowell (they have an impact on the order of 100 meters), but are computationally expensive

These results also indicate neglecting third body effects (both AOG and SPG) leads to almost 13 km worth of error over the three day predict.

In the first high accuracy DSST run, the DC RMS error is on the order of 20 meters. This error can be attributed to geopotential effects beyond the 8x8 configuration for DSST (up to the 21x21 limit in the Cowell truth model), truncations to the equations of motion in DSST's J_2^2 model (O[e^1] in the AOG and O[e^0] in the SPG), neglecting J_2 / m-daily coupling, an incomplete tesseral high frequency short periodic model at the 8x8 limit (SPTESSLC = 8 8 33 35 -41 41), and an error due to a discrepancy between the truth and DC "solved-for" values of CD and CR. If this first high accuracy DSST DC is repeated with the exact values of C_D and C_R used in the truth ($C_D = 2.0$, $C_R = 1.2$), a DC RMS of ~ 13 meters results. This implies roughly 7 to 8 meters of the original ~ 20 meter DC RMS error is due to having poor DC solutions for C_D and C_R. Further analysis implementing an 8x8 DSST fit (SPTESSLC = 8 8 33 35 -41 41, J₂ / m-daily off) to an 8x8 Cowell truth model in which both the fit and truth theories used a small value of J₂ $(1.0\,\mathrm{D^{-6}})$ and geopotential effects only results in a DC RMS of \sim 3 meters. This 3 meter error can be attributed to the incomplete tesseral high frequency short periodic model of DSST for the 8x8 configuration (remember, the 8x8 DSST configuration isn't really "full-up"; rather, an SPTESSLC of 8 8 33 35 -41 41 was used). If this same test is repeated except for using the regular value of J₂, an error of ~ 7 meters results. This means the truncations in DSST J_2^2 model and the neglect of J_2 / m-daily coupling terms results in ~ 4 meters of error. This leaves an approximate 5 to 6 meter error due to geopotential terms beyond the 8x8 configuration up to the 21x21 limit used in the truth. As a final note, it should be mentioned this specific breakdown of errors is dependent upon the geometry of this particular orbit, the relationship between the fit span and perigee locations, etc. Therefore, these error quantifications should be used as a "rule of thumb" metrics.

The setup for the MOLY which provides an optimal balance between accuracy and computational speed can now be given:

- 8x8 geopotential (AOG)
- J_2^2 (AOG and SPG)
- Truncated central body zonal harmonic short periodics (SPZONALS = 4 3 8)
- Truncated m-daily tesseral harmonic short periodics (SPMDAILY = 4 4 2)
- Lunar / solar third body point mass effects (AOG & SPG)
- Atmospheric drag (AOG)
- Solve for C_D
- Solar radiation pressure (AOG)
- Solve for C_R
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 1.0 0.0 1.0

Sample input decks for the MOLY are given in the appendices.

7.0 Near Earth Eccentric Case (NEEC)

The Vanguard 2 orbit was chosen to fulfill the near earth eccentric test case. In the ETAS study, the NEEC is characterized by a SMAH range from 0 - 2500 km and an eccentricity range from 0.05 to 1.0. For this test case, multiple runs were made in which varying configurations of DSST were fit to a Cowell truth model over a three day arc. A three day DSST EG with the DC solve-for parameters followed the fit span. Accuracy metrics were derived from comparisons between the DSST and Cowell trajectories over both the fit (DC RMS) and predict spans (from the R&D GTDS Ephemeris Comparison Program). ORB1 output was produced every 450 seconds.

The osculating elements required for the Cowell truth EG were derived from a five day Cowell fit to an SGP4 ephemeris. The two card element set used to generate the SGP4 ephemeris is given in Table 24:

Table 24. Vanguard 2 Two-Card Element Set, NEEC, September 1994 SATCAT

Epoch Date YYMMDD HHMMSS.SSSS	940826 073513.6735
Mean Motion	11.73921485 rev/day
Eccentricity	0.1522640
Inclination	32.8834 deg
Longitude of Ascending Node	251.8592 deg
Argument of Perigee	10.8368 deg
Mean Anomaly	352.1515 deg
B*	0.000154 er ⁻¹

The specifics for the Cowell DC and subsequent EG are given in Table 25:

Table 25. Cowell DC and Subsequent EG Inputs, NEEC

Epoch Date YYMMDD HHMMSS.SSSS	940826 073513.6735
Fit Begin Date YYMMDD HHMMSS.SSSS	940826 073514.0000
Fit End Date YYMMDD HHMMSS.SSSS	940831 073514.0000
EG End Date YYMMDD HHMMSS.SSSS	940905 073514.0000
Input, Integration, and Output Frame	Earth Equator and Equinox of 1950 (Mean of 1950)
Integrator	12th Order Summed Cowell/ Adams Predict-Partially Correct
Step Size	60.0 sec
Gravity Field	21x21 JGM2
Lunar / Solar Point Masses	Yes
Drag Model	Jacchia-Roberts-Schatten (Solve ρ ₁)

Table 25. Cowell DC and Subsequent EG Inputs, NEEC (Continued)

Solar Radiation Pressure	Yes
·	(Solve C _R)
Average Spacecraft Cross-Sectional Area	1.0 m ²
Spacecraft Mass	100 kg
Position Standard Deviation	500 meters
Velocity Standard Deviation	50 cm/sec

The same initial guess of the state vector and observation noise standard deviation were used for all of the DSST DC runs. These values are highlighted in Table 26:

Table 26. DSST DC Specifics, NEEC

Epoch Date YYMMDD HHMMSS.SSSS	940826 073513.6735
Fit Span Begin YYMMDD HHMMSS.S	940826 073514.0
Fit Span End YYMMDD HHMMSS.S	940829 073514.0
Semimajor Axis (mean)	8177.913 km
Eccentricity (mean)	0.1522640
Inclination (mean)	32.8834 deg
Longitude of Ascending Node (mean)	251.8592 deg
Argument of Perigee (mean)	10.8368 deg
Mean Anomaly (mean)	352.1515 deg
DSST Input Frame	True of Date
DSST Integration and Output Frame	Earth Equator and
	Equinox of 1950
	(Mean of 1950)
Geopotential Model	JGM2
Position Standard Deviation	100 meters
Velocity Standard Deviation	10 cm/sec

In the DSST DC runs, varying configurations corresponding to different perturbation modeling were used to determine the optimal balance of accuracy and computational speed. Results of the DC's and subsequent EG's for the NEEC are given in Table 27; however, it is first desirable to highlight a few notes concerning the test protocol for the NEEC:

- Total Position RMS is derived over the three day predict span only (from R&D GTDS Ephemeris Comparison Program).
- R&D GTDS default configuration settings are used unless specifically noted.
- "trunc" refers to truncated modeling; modeling descriptions corresponding to the R&D GTDS Semianalytic Satellite Theory input processor are specified where needed. Additional details can be found in the R&D GTDS Semianalytic Theory Input Processor keyword description booklet³³.

- RES refers to the inclusion of the 11th and 12th order shallow resonance terms with the AUTOFORC and RESNM keyword cards.
- All cases which attempt to solve for C_D include first order drag effects in the AOG partials (if C_D is not solved for, then all drag partials in the AOG are shut off). Similarly, all cases which attempt to solve for C_R include solar radiation pressure effects in the AOG partials (if C_R is not solved for, then all solar radiation pressure partials in the AOG are shut off). All cases include J₂ partials analytically in the AOG. No other AOG or SPG partials were included in any of the runs.
- Most cases have an SSTESTFL card of 1 3; this setting includes all desired AOG partials in the A matrix (J₂ partials are computed analytically; all other partial derivatives are computed via finite differences). In addition, this setting includes desired AOG partial derivatives for non-conservative perturbations in the D matrix via finite differences (these partials were also included in the A matrix). Cases noted by ** have an SSTESTFL card of 1 2; this setting puts only J₂ AOG partials into the A matrix (computed analytically). All other desired AOG partials for non-conservative perturbations are included in the D matrix via finite differences (with this setting, third body and J₂² AOG partial derivatives, if desired, would not be included anywhere; if they are desired, the SSTESTFL setting of 1 3 should be used).

Table 27. DSST DC and Subsequent EG Results, NEEC

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Yes	Yes	trunc	Yes	Yes	J-R	AOG	L-S	541.29	41.76	223.16
J ₂ ²	*		21 21			AOG	SPG	AOG	sec	meters	meters
RESON			21 15			SPG	Solve	SPG		(6 its)	
PRD = 1 day			-37 37			Solve C _D	C _R				
21x21	Yes	Yes	trunc	Yes	Yes	J-R	AOG	L-S	202.46	42.76	234.47
J ₂ ²			6621			AOG	SPG	AOG	sec	meters	meters
RESON			15		<u> </u>	SPG	Solve	SPG		(9 its)	1
PRD =			-27 27			Solve C _D	C _R				
21x21	Yes	Yes	trunc	Yes	No	J-R	AOG	L-S	132.27	42.83	232.69
J ₂ ²			6621			AOG	SPG	AOG	sec	meters	meters
RESON			15			SPG	Solve	SPG		(8 its)	
PRD = l day			-27 27			Solve C _D	C _R		,		
21x21	Yes	Yes	No	Yes	No	J-R	AOG	L-S	70.74	55.08	239.42
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
RESON						SPG	Solve	SPG		(9 its)	
PRD = 1 day						Solve C _D	C _R				

Table 27. DSST DC and Subsequent EG Results, NEEC (Continued)

					,						
GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
12x12	Yes	Yes	No	Yes	No	J-R	AOG	L-S	57.42	55.37	456.24
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
RESON						SPG	Solve	SPG		(9 its)	
PRD=		·				Solve	$C_{\mathbf{R}}$				
1 day						CD					·
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	48.50	58.63	389.63
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
						SPG	Solve	SPG		(8 its)	
						Solve	C_R				
						C_D					*** · · · · · · · · · · · · · · · · · ·
8x8	Yes	Yes	No	Yes	No	J-R	AOG	L-S	47.46	61.08	207.29
J ₂ ²						AOG	SPG	AOG	sec	meters	meters
RES						SPG	Solve	SPG		(6 its)	
						Solve	CR				
						C _D					
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	47.67	61.06	229.95
J ₂ ²	8717	886				AOG	SPG	AOG	sec	meters	meters
RESON PRD =						SPG	Solve C _R	SPG		(6 its)	
l day						Solve C _D	○R				
21 21			27	77 -	NT-		400	7.0	45.92	(1.06	220.05
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	45.92 sec	61.06	229.95
J ₂ ²	8717	886				AOG	SPG	AOG SPG	SCC	meters (6 its)	meters
RESON PRD =			:			Solve C _D	Solve C _R	Sru		(0 165)	
1 day						"					
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	45.54	61.06	229.94
J_2^2	8717	886				AOG	Solve	AOG	sec	meters	meters
RESON						Solve	$C_{\mathbf{R}}$	SPG		(6 its)	
PRD=						CD					
1 day											400.53
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	44.10	60.94	228.52
J ₂ ²	8717	886				AOG	Solve C _R	AOG	sec	meters	meters
RESON PRD =						Solve C _D	, ⊂ĸ			(6 its)	
1 day						עכ					
L					<u> </u>	L	L	t	<u> </u>		<u> </u>

Table 27. DSST DC and Subsequent EG Results, NEEC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	42.63	69.54	217.87
J_2^2 RESON PRD = 1 day	6 5 13	664				AOG Solve C _D	Solve C _R	AOG	sec	meters (6 its)	meters
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	46.30	78.95	238.46
J ₂ ²	439	442				AOG	Solve	AOG	sec	meters	meters
RESON PRD = 1 day						Solve C _D	C _R			(8 its)	
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	L-S	37.89	69.42	218.71
J ₂ ²	6 5 13	664				AOG	Solve	AOG	sec	meters	meters
* *						Solve	$C_{\mathbf{R}}$			(6 its)	
RESON PRD =						C _D					
l day (opt. deck)					•			٠.			
21x21	Trunc.	Trunc.	No	Yes	No	No	AOG	L-S	35.97	78.48	312.51
J ₂ ²	6 5 13	664					Solve	AOG	sec	meters	meters
**							$C_{\mathbf{R}}$			(6 its)	ļ
RESON PRD = 1 day									·		
21x21	Trunc.	Trunc.	No	Yes	No	J-R	No	L-S	36.75	67.82	267.96
J ₂ ²	6513	664				AOG		AOG	sec	meters	meters
* *						Solve	•			(6 its)	
RESON PRD = 1 day						C _D					• - -
21x21	Trunc.	Trunc.	No	Yes	No	J-R	AOG	No	38.06	72.15	266.27
J_2^2	6 5 13	664	140	103	740	AOG	Solve	110	sec	meters	meters
* *						Solve	$C_{\mathbf{R}}$			(6 its)	
RESON PRD = 1 day						C _D					

Table 27. DSST DC and Subsequent EG Results, NEEC (Continued)

GRAV (AOG)	Zonal SP	M- daily SP	TESS SP	J ₂ ² SP	J ₂ / m-daily SP	Drag	SRP	3rd Body	Run Time	DC RMS	Total Position RMS (Predict Span)
	Spa	ce Comm	nand's SG	P4 (solve	for drag	term ndo	t√2)		28.27 sec	909.86 meters (5 its)	1080.7 meters
	Space Command's SGP4 (do not solve for drag term ndot/2) $B^* = 0.000154 \text{ er}^{-1}$								26.69 sec	910.34 meters (4 its)	3284.2 meters

The results in Table 27 indicate the importance of modeling shallow resonance terms; adding the 11th and 12th order shallow resonance terms reduces the predict error by roughly 200 meters. The short periodic models for drag, SRP, and third body have negligible accuracy contributions, but each add a few seconds of run time; therefore, these short periodic models can be neglected to reduce computation time. Like many other cases, the tesseral high frequency short periodic and J_2 / m-daily short periodic terms serve to provide closure with Cowell, but are computationally expensive. For these orbits, their effects can be neglected.

These results also highlight the contribution of several of the AOG terms:

- not modeling drag in the AOG (as well as not solving for C_D) adds roughly 100 meters worth of predict error
- not modeling solar radiation pressure in the AOG (as well as not solving for C_R) adds roughly 50 meters worth of predict error
- not modeling third body effects in the AOG adds roughly 50 meters worth of predict error

In the first high accuracy DSST run, the DC RMS error is on the order of 40 meters. This error can mainly be attributed to truncations to the equations of motion in DSST's J_2^2 model (O[e¹] in the AOG and O[e⁰] in the SPG), an incomplete tesseral high frequency short periodic model, and discrepancies between the truth and DC "solved-for" values of C_D and C_R . If this same DSST case is fit to another Cowell truth model containing 21x21 geopotential effects only, the DC RMS is reduced to ~ 21 meters (in other words, ~ 20 meters can be attributed to the poor DC solution for C_D and C_R). If this test is taken one step further such that both the 21x21 Cowell truth and DSST use a small value of J_2 (1.0 D⁻⁶), the error is reduced to ~ 1.7 meters (i.e., errors due to truncations in DSST's J_2^2 model are on the order of ~ 20 meters). This means ~1-2 meters of error can be attributed to not having a complete 21x21 tesseral high frequency short periodic model (remember, an SPTESSLC of 21 21 21 15 -37 37 was used). Finally, it should be mentioned this specific breakdown of errors is dependent upon the geometry of this particular orbit, the relationship between the fit span and perigee locations, etc. Therefore, these error quantifications should be used as a "rule of thumb" metrics.

Again, it is of particular importance to use extreme care when running an optimized version of the DSST. Note how the optimized deck for this case implements a 21x21 geopotential field with a RESONPRD card set to one day and truncated short periodics (rather than the RESNM and AUTOFORC combination). Again, some accuracy and run-time is sacrificed for a deck which is (1) simpler to implement than the RESNM and AUTOFORC combination and (2) general enough to capture resonant terms which might be experienced by other satellites under the broad definition of the NEEC.

The setup for the NEEC which provides an optimal balance between accuracy and computational speed can now be given:

- 21x21 geopotential (AOG)
- RESONPRD equal to one day (86400.0 seconds)
- J₂² (AOG and SPG)
- Truncated zonal short periodics (SPZONALS = 6 5 13)
- Truncated m-daily short periodics (SPMDAILY = 664)
- Lunar / solar third body point mass effects (AOG)
- Atmospheric drag (AOG)
- Solve for C_D
- Solar radiation pressure (AOG)
- Solve for C_R
- SSTESTFL 1 2 0 0.0
- SSTAPGFL 1 0 0 1.0 0.0 1.0

Sample input decks for the NEEC are given in the appendices.

8.0 Conclusions

This paper describes R&D GTDS input decks which provide a balance between speed and accuracy when using the DSST orbit propagation theory. The orbit classes studied in this effort are similar to those investigated in the Ephemeris Theory Accuracy Study (ETAS) performed by Kaman Sciences⁵, and include low, medium, and high altitude circular orbits, as well as Molniya, geosynchronous, and near earth eccentric orbits. In addition to the optimized decks (refer to Appendix A), standardized test cases have been supplied for each of the orbit types analyzed herein (refer to Appendix B). All results were obtained from batch differential correction fits and subsequent ephemeris comparisons to Cowell generated truth data. The input decks specified in this study provide the R&D GTDS user with insight concerning the accuracy and computational expense of the various force model options (AOG & SPG) available in DSST for each orbital class. The optimal decks also provide the basis for an automatic force model option which can be added to current DSST implementations.

9.0 Recommendations

Clearly, this paper does not address all of the orbit types currently in use. Therefore, if optimal DSST input decks are desired for other orbit types, further research is required. In addition, software modifications should be made to R&D GTDS to allow the user to automatically implement these optimal input decks (if so desired). These setups could be specified on the SPSHPER keyword card. Finally, an automatic resonance selection capability (based on the input semimajor axis) should be considered for R&D GTDS.

10.0 REFERENCES

- [1] Danielson, Don et al. Semianalytical Satellite Theory (SST) Mathematical Algorithms. Naval Postgraduate School, Monterey, California. NPS-MA-94-001. January 1994.
- [2] McClain, Wayne. A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging. Volume I. Contract NAS 5-24300. Task Assignment 880. June 1978.
- [3] McClain, Wayne. A Recursively Formulated First-Order Semianalytic Artificial Satellite Theory Based on the Generalized Method of Averaging. Volume II. Contract NAS 5-24300. Task Assignment 895. May 1978.

- [4] Fonte, Daniel. PC Based Orbit Determination. AIAA Paper 94-3776. AIAA/AAS Astrodynamics Conference. Scottsdale, Arizona. August 1994.
- [5] Ephemeris Theory Accuracy Study. Cheyenne Mountain AFB Software Support. Kaman Sciences Corporation, Colorado Springs. Contract No. F05603-91-C-0011. Presented at MIT Space Surveillance Workshop. March 1995.
- [6] Cefola, P., Long, A., and Holloway, G. The Long-Term Prediction of Artificial Satellite Orbits. AIAA Paper 74-170. AIAA 12th Aerospace Sciences Meeting. Washington DC. January/February 1974.
- [7] McClain, W., Long, A., and Early, L. Development and Evaluation of a Hybrid Averaged Orbit Generator. Paper 78-1382. AIAA/AAS Astrodynamics Conference. Palo Alto, California. August 1978.
- [8] McClain, W. and Slutsky, M. A Theory for the Short Period Motion of an Artificial Satellite. AIAA 80-1658. AIAA/AAS Astrodynamics Conference. Danvers, Massachusetts. August 1980.
- [9] Proulx, R., McClain, W., Early, L., and Cefola, P. A Theory for the Short Period Motion Due to the Tesseral Harmonic Gravity Field. Paper 81-180. AIAA/AAS Astrodynamics Specialist Conference. Lake Tahoe, Nevada. August 1981.
- [10] Proulx, Ronald. Numerical Testing of Semianalytic Satellite Theory for a High Eccentricity Orbit. PL-023-82-RP. Draper Laboratory Intralab Memorandum. March 1982.
- [11] Green, Andrew. Orbit Determination and Prediction Processes for Low Altitude Satellites. Doctor of Philosophy Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-703. December 1979.
- [12] Collins, Sean. Long Term Prediction of High Altitude Orbits. Doctor of Philosophy Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-739. March 1981.
- [13] Taylor, Steve. Semianalytic Satellite Theory and Sequential Estimation. Master of Science Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-757. September 1981.
- [14] Feiger, Martin. An Evaluation of Semianalytic Satellite Theory Against Long Arcs of Real Data for Highly Eccentric Orbits. Master of Science Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-938. January 1987.
- [15] Herriges, Darrell. NORAD General Perturbation Theories: An Independent Analysis. Master of Science Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-972. January 1988.
- [16] Dyar, Walter. Comparison of Orbit Propagators in the Research and Development Goddard Trajectory Determination System (R&D GTDS). Master of Science Thesis, Department of Applied Mathematics, Naval Postgraduate School. September 1993.
- [17] Cefola, Paul and Proulx, Ronald. Application of the Semianalytic Satellite Theory to Shallow Resonance Orbits. AAS 91-139. AAS/AIAA Spaceflight Mechanics Conference. Houston, Texas. February 1991.
- [18] Fonte, Daniel. Implementing a 50x50 Gravity Field Model in an Orbit Determination System. Master of Science Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-1169. May 1993.
- [19] Fonte, Daniel, Proulx, Ronald, and Cefola, Paul. Implementing a 50x50 Gravity Field Model in an Orbit Determination System. AAS Paper 93-693. AIAA/AAS Astrodynamics Conference. Victoria, BC, Canada. August 1993.

- [20] Fonte, Daniel. Tesseral Harmonic Effects for Molniya Orbits. AAS Paper 95-197. AAS/AIAA Spaceflight Mechanics Conference. Albuquerque, New Mexico. February 1995.
- [21] Sabol, Chris. Application of Sun-Synchronous, Critically Inclined Orbits to Global Personal Communications Systems. Master of Science Thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology. CSDL-T-1235. February 1995.
- [22] Sabol, Chris, Cefola, Paul, and Metzinger, Rick. Application of Sun-Synchronous, Critically Inclined Orbits to Global Personal Communications Systems. AAS Paper 95-222. AAS/AIAA Spaceflight Mechanics Conference. Albuquerque, New Mexico. February 1995.
- [23] Fonte, Daniel. Evaluation of Orbit Propagators for the HI-CLASS Program. Phillips Laboratory Technical Report, PL 94-1017. Presented at MIT Space Surveillance Workshop. March 1995.
- [24] Fonte, D., Neta, B., Sabol, C., Danielson, D., and Dyar, W. Comparison of Orbit Propagators in the Research and Development Goddard Trajectory Determination System (R&D GTDS). Part I: Simulated Data. Proposed AAS/AIAA Paper. AAS/AIAA Astrodynamics Conference. Halifax, Nova Scotia. August 1995.
- [25] Hoots, Felix R., and Roehrich, Ronald L. Models for Propagation of NORAD Element Sets. Spacetrack Report #3. December 1980. Aerospace Defense Command, United States Air Force.
- [26] Lane, M. and Cranford, K. An Improved Analytical Drag Theory for the Artificial Satellite Problem. AIAA Paper 69-925. AIAA/AAS Astrodynamics Conference. Princeton, New Jersey. August 1969.
- [27] Hujsak, R.S. A Restricted Four Body Solution for Resonating Satellites with an Oblate Earth. AAS Paper 79-136. AAS/AIAA Astrodynamics Specialist Conference. Provincetown, Massachusetts. June 1979.
- [28] Hoots, F.R. and France, R.G. An Analytic Satellite Theory Using Gravity and a Dynamic Atmosphere. Celestial Mechanics, Volume 40, No. 1. 1987.
- [29] Liu, J.F. and Alford, R.L. A Semi-Analytic Theory for the Motion of a Close-Earth Artificial Satellite with Drag. AIAA Paper 79-0123. 17th Aerospace Sciences Meeting. New Orleans, Louisiana. January 1979.
- [30] Liu, J.F. and Alford, R.L. Semianalytic Theory for a Close-Earth Artificial Satellite (Errata). Journal of Guidance and Control. Volume 4, No. 5, 1981.
- [31] Liu, J., France, R., and Hujsak, R. Application of a Semianalytic Orbit Theory Using Observed Data. Journal of the Astronautical Sciences. Volume 31, No. 1. 1983.
- [32] Goddard Trajectory Determination System (GTDS) Mathematical Theory. NASA's Operational GTDS Mathematical Specification. Revision 1. Edited by Computer Sciences Corporation and NASA Goddard Space Flight Center. Contract NAS 5-31500. Task 213. July 1989.
- [33] Metzinger, Richard. R&D GTDS Semianalytical Satellite Theory Input Processor. Intralab Memorandum. ESD-92-582, February 8, 1993. Available through The Charles Stark Draper Laboratory, Cambridge, MA 02139.

Appendix A Optimized DSST Input Decks

LACC OPTIMIZED INPUT DECK

EPOCH	CONTROL	DC					SATNAME	1234567
ELEMENT2	EPOCH				820224.0	0.0		
OBSINPUT 15	ELEMENT1	1	6	1	6628.457	0.0089	64.84	
OBSINPUT 15	ELEMENT2				224.51	271.89	115.16	
DMOPT OBSDEV 21 22 23 100. 100. 100. OBSDEV 24 25 26 10. 10. 10. 10. OBSDEV 24 25 26 10. 10. 10. 10. OBSDEV 26 27 28 100. 10. 10. 10. OBSDEV 27 28 28 100. 10. 10. 10. 10. OBSDEV 27 28 28 28 100. 10. 10. 10. 10. I0. OBSDEV 28 28 28 28 28 28 28 28 28 28 28 28 28	OBSINPUT	15			820224000000.0	820224013000.0		
DMOPT OBSDEV 21 22 23 100. 100. 100. OBSDEV 24 25 26 10. 10. 10. 10. OBSDEV 26 26 10. 10. 10. 10. OBSDEV 27 28 28 100. 10. 10. 10. OBSDEV 28 28 26 10. 10. 10. 10. 10. OBSDEV 28 28 26 10. 10. 10. 10. 10. OBSDEV 28 28 28 10. 10. 10. 10. 10. I0. OBSDEV 29 28 28 28 28 28 28 28 28 28 28 28 28 28	ORBTYPE	5	1	1	43200.0	1.0		
OBSDEV	DMOPT							
OBSDEV		21	22	23	100.	100.	100.	
Note						10.	10.	
DCOPT PRINTOUT 1								
PRINTOUT								
CONVERGE CONVERGE		1		4				
COOPT					1.D-4			
OGOPT		•		_				
NCBODY								
DRAG		T						
ATMOSDEN 1					1.0			
SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0 SPTESSLC 6 6 4 2.0 -10.0 10.0 POTFIELD 1 6 **** **** MAXDEGEQ 1 8. **** MAXORDEQ 1 8. **** STATETAB 1 2 3 4.0 5.0 6.0 DRAGPAR 1 **** **** DRAGPAR2 1 1 **** **** SSTESTFL 1 2 0 0.0 0.0 **** SSTAPGFL 1 0 0 1.0 6.0 0.0 END **** **** **** FIN **** **** **** CONTROL EPHEM *** **** **** OUTPUT 1 2 1 820224. 030000.0 86400.0 *** ORBTYPE 5 1 1 43200.0 1.0 *** *** OBOQOT *** *** *** *** *** NCBODY 1 *** *** *** *** DRAG 1 1.0 *** ***				7	1.0	•		
SPGRVFRC 1 1 1 3.0 1.0 3.0 SPTESSLC 6 4 2.0 -10.0 10.0 10.0 POTFIELD 1 6 4 2.0 10.0 10.0 10.0 MAXORDEQ 1 8. 10.0 10.				_	1.D-6	100 -D0		
SPTESSLC 6 6 4 2.0 -10.0 10.0 POTFIELD 1 6 MAXDEGEQ 1 8. MAXORDEQ 1 8. STATEPAR 3 STATETAB 1 2 3 4.0 5.0 6.0 DRAGPAR 1 DRAGPAR 1 DRAGPAR 2 1 1 SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBITYPE 5 1 1 43200.0 1.0 GOOPT NCBODY 1 DRAGPAR 0 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 1.0 SCPARAM 1 1.0-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 1.0 3.0		1	7	1			3.0	
POTFIELD 1 6								
MAXDEGEQ 1 8. MAXORDEQ 1 8. STATEPAR 3 STATETAB 1 2 3 4.0 5.0 6.0 DRAGPAR 1 DRAGPAR 1 DRAGPAR 1 0 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.0 SPGRVFRC 1 1 1 3.0 1.0 0.0 0.0				•				
MAXORDEQ 1 88. STATEPAR 3 STATETAB 1 2 3 4.0 5.0 6.0 DRAGPAR 1 DRAGPAR 1 SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 ORBTYPE 5 1 1 43200.0 1.0 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.0 SPGRVFRC 1 1 1 3.0 1.0 0.0 0.0 0.0			_		8			
STATETAB	-							
STATETAB 1 2 3 4.0 5.0 6.0 DRAGPAR 1 DRAGPAR2 1 1 1 SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0					•			
DRAGPAR 1 DRAGPAR2 1 1 SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 03000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0			2	2	4.0	5.0	6.0	
DRAGPAR2 1 1 1 SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 03000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAGPAR 1 1.0 ATMOSDEN 1 SCPARAM 1 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0			_	-	2.0	3.0	•••	
SSTESTFL 1 2 0 0.0 SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM			1					
SSTAPGFL 1 0 0 1.0 6.0 0.0 END FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0				٥	0.0			
FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		_	_	_		6.0	0.0	
FIN CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0			7		and the second of the second o	3.9	J.J	
CONTROL EPHEM OUTPUT SATNAME 1234567 OUTPUT 1 2 1 820224. 030000.0 86400.0 86400.0 ORETYPE 5 1 1 43200.0 1.0 986400.0	·						***	4
OUTPUT 1 2 1 820224. 030000.0 86400.0 ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		RD	нем			OUTPRITT	SATNAME	1234567
ORBTYPE 5 1 1 43200.0 1.0 OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0					820224			1231307
OGOPT NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		_	_	_			20100.0	
NCBODY 1 DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		_	_	_				
DRAGPAR 0 DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		1						
DRAG 1 1.0 ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0	= "							
ATMOSDEN 1 SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0		-			1.0			
SCPARAM 1.D-6 100.D0 SPGRVFRC 1 1 1 3.0 1.0 3.0				1				
SPGRVFRC 1 1 1 3.0 1.0 3.0				_	1.D-6	100.D0		
		1	1	1			3.0	
SPTESSLC 6 6 4 2.0 +10.0 10.0	SPTESSLC		6	4		-10.0	10.0	
POTFIELD 1 6				-			· ·	
MAXDEGEQ 1 8.			_		8.			
					8.			
MAXORDEO 1 8.		Τ.						
MAXORDEQ 1 8. OUTOPT 21 82022400000.0 82022403000.0 450.0	OUTOPT				820224000000.0	820224030000.0	450.0	
·-					820224000000.0	820224030000.0	450.0	
	MAXORDEQ	-			8.			
·-								
OUTOPT 21 820224000000.0 820224030000.0 450.0					820224000000.0	820224030000.0	450.0	
OUTOPT 21 820224000000.0 820224030000.0 450.0	END				820224000000.0		450.0	

MACC OPTIMIZED INPUT DECK

CONTROL	D	2				LNDSAT-4	8207201
EPOCH				820224.0	0.0		
ELEMENT1	3	6	1	7077.8	0.0011	98.2	
ELEMENT2				158.1	89.4	176.0	
OBSINPUT	15			820224000000.0	820227000000.0		
ORBTYPE		1	1	43200.0	1.0		
DMOPT	•	_	_				
OBSDEV	21	22	23	100.	100.	100.	
OBSDEV		25		10.	10.	10.	
END	47	2,5	20	10.			
DCOPT	-		4				
PRINTOUT				1.5.4			
CONVERG	30		1	1.D-4			
END							
OGOPT				_			
DRAG	1			1			
ATMOSDEN			1				
SPDRAG	0				_		
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	1	3	3.0	3.0	3.0	
SPZONALS	8	2	11				
SPMDAILY	. 8	8	2				
POTFIELD	1	6					
MAXDEGEQ	1			21.			
MAXORDEC	1			21.			
RESONPRE	,			86400.0			
STATEPAR	. 3						
STATETAB	1	2	3	4.0	5.0	6.0	
DRAGPAR	1						
DRAGPAR2	1	1					
SSTESTFL	. 1	2					
SSTAPGFL	. 1	0	0	1.0	0.0	0.0	•
END							
FIN							
CONTROL	E	PHE	M		OUTPUT	LNDSAT-4	8207201
OUTPUT	1	2	1	820302.	0.0	86400.0	
ORBTYPE .				43200.0	1.0		
OGOPT							
DRAG	1			1			
DRAGPAR	D					1	
ATMOSDEN			1				
SPDRAG	۵		_				
SCPARAM	•			1.D-6	100.D0		
SPGRVFRO	: 1	1	. 3	3.0	3.0	3.0 :	
SPZONALS			11	3.0			
SPMDAILY							
POTFIELD							
MAXDEGEO		-		21.			
MAXORDEC				21.			
RESONPRI				86400.0			
OUTOPT	, 21			820224000000.0	820302000000.0	450.0	
END	21			050554000000	22050200000.0		
FIN							

HACC OPTIMIZED INPUT DECK

CONTROL	DC	:				EXPLORER	65032A
EPOCH				940826.0	074853.5101		
ELEMENT1	3	6	1	7498.0	0.0247108	41.1904	
ELEMENT2				349.3346	66.5461	296.1065	
OBSINPUT	15			940826074854.0	940828074854.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT	_						
OBSDEV	21	22	23	100.	100.	100.	
OBSDEV	24			10.	10.	10.	
END							
DCOPT							
PRINTOUT	1		4		•		
CONVERG	30		1	1.D-4			
END	30		4	1.5-4			
OGOPT							
	1			1.0			
SOLRAD	0			1.0			
SPSRP	U			1.D-6	100.D0		
SCPARAM	-		3	3.0	3.0	3.0	
SPGRVFRC		1	11	3.0	3.0	3.0	
SPZONALS		_					
SPMDAILY		2					
POTFIELD		4		21.			
MAXDEGEQ				21.			
MAXORDEQ	1			==:			
RESONPRD	_			86400.0			٠
STATEPAR			_		5.0	6.0	
STATETAB		2	3	4.0	5.0	5.0	
SOLRDPAR							
SSTESTFL		2		0.0		3 0	
SSTAPGFL	1	0	0	0.0	0.0	1.0	Karala Sana
END				• •			
FIN						=1/2+ AN #7	650222
CONTROL		PHE			OUTPUT	EXPLORER	65032A
OUTPUT	1	2		940831.	074854.0	86400.0	
ORBTYPE	5	1	1	43200.0	1.0		
OGOPT							
SOLRAD	1			1.0			
SPSRP	0						
SCPARAM				1.D-6	100.D0		
SOLRDPAR							
SPGRVFRC				3.0	3.0	3.0	
SPZONALS	8		11				
SPMDAILY		8					
POTFIELD							•
MAXDEGEQ				21.			
MAXORDEQ				21.			
RESONPRD				86400.0			
OUTOPT	21			940826074854.0	940831074854.0	450.0	
END					-		
FIN							

GEOSYNCHRONOUS OPTIMIZED INPUT DECK

CONTROL	DC					BS3A	20771
EPOCH				940825.0	170334.9932		
ELEMENT1	1	6	1	42167.16	0.000275	0.23	
ELEMENT2				97.6	75.3	166.09	
OBSINPUT	15			940825170335.0	940828170335.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT							
OBSDEV	21	22	23	100.	100.	100.	
OBSDEV	24	25	26	10.	10.	10.	
END							
DCOPT							
PRINTOUT	1		4				
CONVERG	30		1	1.D-4			
END							
OGOPT							
SOLRAD	1			1.0			
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	3	3	2.0	1.0	3.0	
SPNUMGRV	7	1	8	2.0	2.0	3600.0	
POTFIELD	1	2					
MAXDEGEQ	1			4.			
MAXORDEQ	1			4.			
STATEPAR	3						
STATETAB	1	2	3	4.0	5.0	6.0	
SOLRDPAR	1						
SSTESTFL	1	2	0	0.0			
SSTAPGFL	1	0	0	0.0	0.0	1.0	
END							
FIN							
CONTROL	EP	HEM		A Commence of the Commence of	OUTPUT	BS3A	20771
OUTPUT	1	2	1	940905_	170335.0	86400.0	
ORBTYPE	5	1	1	43200.0	1.0		
OGOPT							
SOLRAD	1			1.0			
SOLRDPAR	0						
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	3	3	2.0	1.0	3.0	
SPNUMGRV	7	1	8	2.0	2.0	3600.0	
POTFIELD	1	2					
MAXDEGEQ	1			4.			
MAXORDEQ	ı			4.			
OUTOPT	21			940825170335.0	940905170335.0	450.0	
END							
FIN							

MOLNIYA OPTIMIZED INPUT DECK

CONTROL	D	ATAN	GT			NSSC	9829
OGOPT							
POTFIELD	1	6					
END							
FIN							
CONTROL	D	2				NSSC	9829
EPOCH				790804.0	234212.0		
ELEMENT1	1	6	1	26572.176	0.699	63.2	
ELEMENT2	_	-		190.5	281.6	15.429	
OBSINPUT	15			790804234212.0	790807234212.0		
ORBTYPE	5	1	1	43200.0	1.0		
	,	_	_	43200.0	2.0		
DMOPT		~~		100	100	100	
OBSDEV		22		100.	100.	100.	
OBSDEV	24	25	26	10.	10.	10.	
END							
OGOPT							
DRAG	1			1.0			
ATMOSDEN			1				
SPDRAG	0						
SCPARAM				12.5D-6	1250.D0		
SOLRAD	1			1.0			
SPSRP	0						
SPGRVFRC	1	1	3	1.	1.	3.	
SPZONALS	4	3	8				
SPMDAILY	4	4	2				
MAXDEGEQ	1	_	_	8.			
MAXORDEQ	1			8.			
STATEPAR	3			•			
STATETAB	1	2	3	4.0	5.0	6.0	
DRAGPAR	1	-	•		3.0	0.0	
במעם העם ה		. 7					
DRAGPAR2							* 2.
SOLRDPAR	1						12.
SOLRDPAR SSTESTFL	1	2	0	0.0		1.0	1 ž.
SOLRDPAR SSTESTFL SSTAPGFL	1		0	0.0	0.0	1.0	1 ž.,
SOLRDPAR SSTESTFL SSTAPGFL END	1	2			0.0	1.0	12.
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT	1 1 1	2	0		0.0	1.0	12, 1
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT	1 1 1	2	0	1.0	0.0	1.0	12.
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG	1 1 1	2	0		0.0	1.0	12.
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END	1 1 1	2	0	1.0	0.0	1.0	12.
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN	1 1 1 30	 2 0	0 4 1	1.0			
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL	1 1 30	2 0	0 4 1	1.0 1.D-3	OUTPUT	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT	1 1 30 EI	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0	OUTPUT 234212.0		9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE	1 1 30	2 0	0 4 1	1.0 1.D-3	OUTPUT	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT	1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR	1 1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.D-3 790818.0 43200.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT	1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR	1 1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.D-3 790818.0 43200.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG	1 1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0 43200.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN	1 1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.D-3 790818.0 43200.0	OUTPUT 234212.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG	1 1 1 30 EI 1 5	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0 43200.0	OUTPUT 234212.0 1.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM	1 1 1 30 EI 1 5 0	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0 43200.0 1.0	OUTPUT 234212.0 1.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD	1 1 30 EI 1 5 0	2 0 PHEN 2	0 4 1	1.0 1.D-3 790818.0 43200.0 1.0	OUTPUT 234212.0 1.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP	1 1 30 EI 1 5 0 1 0	2 0 PHEN 2	0 4 1 1 1 1 1	1.0 1.D-3 790818.0 43200.0 1.0	OUTPUT 234212.0 1.0	nssc	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR	1 1 30 EI 1 5 0 1 0 0 0	2 C PHEN 2 1	0 4 1 1 1 1 1	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPSRP SOLRDPAR SPGRVFRC	1 1 30 EI 1 5 0 1 0 0 1 4	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SCPARAM SOLRAD SPSRP SOLRDPAR SOLRDPAR SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY	1 1 30 EI 1 5 0 1 0 0 1 4 4	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SCPARAM SOLRAD SPSRP SOLRDPAR SOLRDPAR SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY MAXDEGEQ	1 1 30 EI 1 5 0 1 0 0 1 4 4 1	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SCPARAM SOLRAD SPSRP SOLRDPAR SOLRDPAR SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY	1 1 30 EI 1 5 0 1 0 0 1 4 4 1	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0 1.	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY MAXDEGEQ MAXORDEQ OUTOPT	1 1 30 5 0 1 0 0 1 4 4 4 1	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0	OUTPUT 234212.0 1.0	NSSC 172800.0	9829
SOLRDPAR SSTESTFL SSTAPGFL END DCOPT PRINTOUT CONVERG END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG STPAG SCPARAM SOLRAD SPSRP SOLRDPAR SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY MAXDEGEQ MAXORDEQ	1 1 30 5 0 1 0 0 1 4 4 4 1	2 0 PHEN 2 1	0 4 1 1 1 1 1 1 3 8	1.0 1.D-3 790818.0 43200.0 1.0 12.5D-6 1.0 1.	OUTPUT 234212.0 1.0	NSSC 172800.0	9829

NEEC OPTIMIZED INPUT DECK

CONTROL	DC	:				VANGARD2	59001A
EPOCH				940826.0	073513.6735		
ELEMENT1	3	6	1	8177.913	0.1522640	32.8834	
ELEMENT2	•	-	_	251.8592	10.8368	352.1515	
OBSINPUT	15			940826073514.0	940829073514.0		
	5	1	1	43200.0	1.0		
ORBTYPE	2	1	1	43200.0	1.0		
DMOPT				100	100.	100.	
OBSDEV	21			100.	10.	10.	
OBSDEV	24	25	26	10.	10.	10.	
END							
DCOPT							
PRINTOUT	1		4	•			
CONVERG	30		1	1.D-4			
END							
OGOPT							
DRAG	1			1.0			
ATMOSDEN			1				
SPDRAG	0						
SCPARAM				1.D-6	100.D0		
SOLRAD	1			1.0			
SPSRP	0						
SPGRVFRC	1	1	3	3.0	1.0	3.0	
	6		13	3.0	2.0		
SPZONALS SPMDAILY		6					
	6		4				
POTFIELD	1	2		21			
MAXDEGEQ	1			21.			
MAXORDEQ	1			21.			
RESONPRD	_			86400.0			
STATEPAR	3						
STATETAB	1	. 2	3	4.0	5.0	6.0	
DRAGPAR	1		•	the second of the second	e e e	**************************************	
	1	1	,		e e		
DRAGPAR		1	•	To the explain of the second	· · · · · · · · · · · · · · · · · · ·		
DRAGPAR DRAGPAR2	1	1	0	0.0	e e e		
DRAGPAR DRAGPAR2 SOLRDPAR	1	2	0	0.0	0.0	1.0	. · · · · ·
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL	1 1 1	2			0.0	1.0	
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL	1 1 1	2			0.0	1.0	
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END	1 1 1	2	0		0.0 OUTPUT	1.0 VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN	1 1 1	2	0				59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL	1 1 1,	2 0 PHE	0 M 1	1.0	OUTPUT	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE	1 1 1, E)	2 0 PHE	0 M 1	940905.	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT	1 1 1, E)	2 0 PHE	0 M 1	940905.	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR	1 1 1, 1, 5	2 0 PHE	0 M 1	940905. 43200.0	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG	1 1 1, 1,	2 0 PHE	0 M 1 1	940905.	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN	1 1 1, 1, 5	2 0 PHE	0 M 1	940905. 43200.0	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG	1 1 1, 1, 5	2 0 PHE	0 M 1 1	940905. 43200.0	OUTPUT 073514.0 1.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM	1 1 1 1, 5 0 1	2 0 PHE	0 M 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD	1 1 1 1, 5 0 1	2 0 PHE	0 M 1 1	940905. 43200.0	OUTPUT 073514.0 1.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP	1 1 1 1, 1 5 0 1	2 0 PHE	0 M 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0 1.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR	1 1 1 1 1 5 0 1 0 0	2 0 PHE 2 1	0 M 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC	1 1 1 1 1 5 0 1 0 0 0 1	2 0 PHE 2 1	0 M 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0 1.0	VANGARD2	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC SPZONALS	1 1 1 1 1 5 0 1 0 0 1 0 0 1 6	2 0 PHE 2 1	0 M 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY	1 1 1 1 1 5 0 1 0 0 0 1 6 6	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY POTFIELD	1 1 1 1 5 0 1 0 0 1 6 6 1	2 0 PHE 2 1	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPGRVFRC SPZONALS SPMDAILY POTFIELD MAXDEGEQ	1 1 1 1 5 0 1 0 0 0 1 0 0 1 6 1 1	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0 3.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SOLRAD SPSRP SOLRAD SPSRP SOLRDPAR SPSRP SPGRVFRC SPZONALS SPMDAILY POTFIELD MAXDEGEQ MAXORDEQ	1 1 1 1 5 0 1 0 0 0 1 0 0 1 6 1 1	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0 3.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SOLRAD SPSRP SOLRADALS SPGRVFRC SPZONALS SPMDAILY POTFIELD MAXDEGEQ MAXORDEQ RESONPRD	1 1 1 1 1 5 0 1 0 0 1 0 0 1 6 6 1 1	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0 3.0 21. 21. 86400.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SPDRAG SCPARAM SOLRAD SPSRP SOLRDPAR SPROREN SPROPT S	1 1 1 1 5 0 1 0 0 0 1 0 0 1 6 1 1	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0 3.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A
DRAGPAR DRAGPAR2 SOLRDPAR SSTESTFL SSTAPGFL END FIN CONTROL OUTPUT ORBTYPE OGOPT DRAGPAR DRAG ATMOSDEN SOLRAD SPSRP SOLRADALS SPGRVFRC SPZONALS SPMDAILY POTFIELD MAXDEGEQ MAXORDEQ RESONPRD	1 1 1 1 1 5 0 1 0 0 1 0 0 1 6 6 1 1	2 0 2 1 1 5 6	0 M 1 1 1	1.0 940905. 43200.0 1.0 1.D-6 1.0 3.0 21. 21. 86400.0	OUTPUT 073514.0 1.0	VANGARD2 86400.0	59001A

Appendix B

Optimal Deck Test Case Summaries

This appendix details information required to reproduce results for each of the optimal DSST input deck test cases described in this document. Specifically, the following information is given:

- The input decks required to generate the Cowell truth orbit. For cases starting with a two card elements set, SGP4 ephemeris generation decks are given, along with the Cowell DC and subsequent Cowell ephemeris generation decks that were used to fit the SGP4 ephemeris and produce the truth trajectory. For cases starting with DSST mean Keplerian elements, the DSST ephemeris generation decks used to convert the mean elements to osculating elements are given, along with the Cowell ephemeris generation decks which used the osculating elements as inputs to produce a truth trajectory. In all cases, output summaries are included to verify the reproduction of truth data.
- The optimal DSST DC input decks. Vital statistics from the DC output report are included to verify reproduction of the test cases. GTDS input decks and output summaries are also given for the comparison of the predicted "optimal" ephemerides to the truth data.

LACC Test Case

TRUTH DATA GENERATION

PROCEDURE:

- Start with mean Keplerian elements
 Propagate forward one day using DSST to obtain osculating elements
 Propagate osculating elements forward using Cowell theory to generate truth data

CONTROL	EP.	HEM				SATNAME 1234567			
EPOCH				820223.0	0.0				
ELEMENT1	3	6	1	6635.0814	0.010201164	64.9567			
ELEMENT2				228.6393	271.2229	88.164558			
OUTPUI	1	2	1	820224.0	0.0	43200.0			
ORETYPE	5	1	1	43200.0	1.0				
OGOPT									
SPSHPER	3								
DRAG	1			1.0		·			
ATMOSDEN			1						
SCPARAM				1.D-6	100.D0				
POTFIELD	1	6							
MAXDEGEQ	1			8.					
MAKORDEQ	1			8.					
END									
FIN									
CONTROL	ΕP	HEM			OUTPUT	SATNAME	1234567		
OUTPUT	1	2	1	820302.0	0.0	86400.0			
ORETYPE	2	1	1	60.0					
OGOPT									
DRAG	1			1.0					
ATMOSDEN			1						
SCPARAM				1.D-6	100.D0				
POTFIELD	1	6							
MAXDEGEQ	1			21.0					
MAXORDEQ	1			21.0					
OUTOPT	1			820224000000.0	820302000000.0	450.0			
END									
FIN									

TRUTH DATA GENERATION

COWELL EPHEMERIS OUTPUT SUMMARY:

GTDS FINAL REPORT

PA		

				SATELLI SATELLI RUN REF RUN EPO RUN FIN TOTAL T CAUSE O	TE NUI ERENCI CH DA' AL TII IME O	MBER E DATE TE ME F FLIGH	-		FEB FEB FEB	3456 23, 24, 27,	1982 1982	0 HRS 0 HRS 8 HRS 8 HRS BODY	0 MINS 0 MINS 30 MINS 30 MINS	0.00000	SECONDS SECONDS SECONDS
								**END	COND	TTTO	MC+++				
				news (Th	mm T A	L SYSTE		END	COND	1110	N3	MEAN	. OF 1950 D	EARTH EQU	ATOR
		RAL BODY				P 21211	Y Y	0.00		2506	38768E+0		2 1930.0	0.798486333	
	Х			577529E+0			vy vy				04645E+0		vz	-0.652406346	
	VΧ	-0.1067	207195	7121575+0	T		٧ı	0.23	04363	2202	04045570		**	-0.052300530	20340316+01
				626048E+0	,		ECC	0.15	50203	7321	94910E+D	n	INC	0.646080195	7824047E+02
	SMA						AP				41062B+0		MA	0.198737053	
	LAN			735612E+0 234382E+0			P				91020E+0		SLR	0.542572213	
	EA						APR				51044E+0		PH	-0.169768194	
	PR			501052E+0			C3				52344E+0		TA		3439430E+03
	APH	0.7513	470675	104418E+0	2		C3	-0.33	90110	3103	22344540	2	174	0.133813624	34334306+03
							nec		46771	4000	93070E+0		VPA	0 025753355	7949978E+02
	RA			454737E+0							93070E+0 89311E+0			0.725319796	
	AZ	0.1543	948811	906195E+0	3		KUMG	U. 61	128207	3031	09311E+U	•	VILAG	0.725525750	30009111401
								ITIAL	CONE	ITIO	NS***				
		RAL BODY				L SYSTE								EARTH EQU	
	x			207152E+0			_				34642E+0		z		0949725E+04
	VX	0.4586	987250	728033E+0	1		ΛX	0.43	41328	4736	29827E+0	0	VZ	0.620097500	3201267E+01
				-							C4 77 77 A	2	INC	0 648378043	5043533B+02
	SMA			322488E+0			ECC				61727E-0				
	LAN			605057E+0			AP				48535E+0		MA		0839504E+03
	EA			311188E+0			P				64069E+0		SLR		0346489E+04
	PR			250206E+0			APR				94770E+0		PH		2502062E+03
	APH	0.3094	635173	94770CE+0	3	200	C3	-0.30	006736	1622	17285E+0	2 .	TA	0.116083024	
* .					_							_	****		
	RA			669332E+0							17055E+0		VPA		4810165E+02
	AZ	0.2800	897356	458445E+0	2		RMAG	0.6	554033	9795	60448E+0	4	VMAG	0.772479331	1207796E+01
								cecmt/	NATTANO	CIDA	ARY ***				
				NUMBER	O	OTTONE				1	WLT				
				NUMBER						1					
						CITONS	COMPL	י שום ב			NTO FLIG	urr	C31169 AP	CROSSING	
SECTION	CENTR	AL RODA	TIM	E OF CROS			s				M S	a.	CAUSE OF	CAUSSING	
_	_		-	***	H B	M 30	0.000			п.	-	00	TMDT/CT O	N CENTRAL BOI	١V
1	E	ARTH	FEB	21	В	30	0.000				u u.u	V-V	IMPACT U	" CENTRAD BOL	•

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE HAS BEEN GENERATED

START TIME OF THE FILE # \$20224000000.000

END TIME OF THE FILE # \$20227083000.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED= 0**

LACC OPTIMIZED INPUT DECK

CONTROL	DC					SATNAME	1234567
EPOCH				820224.0	0.0		
ELEMENT1	1	6	1	6628.457	0.0089	64.84	
ELEMENT2				224.51	271.89	115,16	
OBSINPUT	15			820224000000.0	82022401300D.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT							
OBSDEV	21	22	23	100.	100.	100.	
OBSDEV	24	25	26	10.	10.	10.	
END							
DCOPT							
PRINTOUT	1		4				
CONVERG	30		1	1.D-4			
END							
OGOPT							
NCBODY	1						
DRAG	1			1.0			
ATMOSDEN			1				
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	1	1	3.0	1.0	3.0	
SPTESSLC		6	4	2.0	-10.0	10.0	
POTFIELD	1	6					
MAXDEGEO	_	-		8.			
MAXORDEO	1			8.			
STATEPAR	3						
STATETAB		2	3	4.0	5.0	6.0	
DRAGPAR	1						
DRAGPAR 2	1	1					
SSTESTFL		2	0	0.0			
SSTAPGFL		٥	ō	1.0	6.0	0.0	
END							
FIN							
CONTROL	EF	HEM			OUTPUT	SATNAME	1234567
OUTPUT	1	2	1	820224.	030000.0	86400.0	
ORBTYPE	5	1	1	43200.0	1.0		
OGOPT							
NCBODY	1						
DRAGPAR	0						
DRAG	1			1.0			
ATMOSDEN			1				
SCPARAM	**			1.D-6	100 DO		
SPGRVFRC	ì	1	1	3.0	1.0	3.0	
SPTESSLC	6	6	4	2.0	-10.0	10.0	• • • • • • • • • • • • • • • • • • • •
POTFIELD	1	6					
MAXDEGEQ	1			8.			
MAXORDEQ	1			8.			
OUTOPT	21			820224000000.0	820224030000.0	450.0	
END							
FIN							

ITERATION NUMBER 6

			***	********	*******	***				
				POSITION ERROR RMS (M)	17.404205	*				
SATELLITE	SATNAME	1234567	*	CURRENT WEIGHTED RMS	0.11590288	*	START TIME \$200	224	0.000	
0			*	PREDICTED WEIGHTED RMS	0.11590311	*				
EPOCH	820224	0.000	*	PREVIOUS WEIGHTED RMS	0.11590339	*	END TIME 820:	224	12230.00	0
Di ocii			*	SMALLEST WEIGHTED RMS	0.11590339					
COORD SYSTEM	MEAN OF	1950.0	*	RELATIVE CHANGE IN RMS	4.40389818E-06	+	NO. OBS. AVAILA	3LE	72	
COOLD . DIDIDI			*	PENALTY	0.00000000	*				
CENTRAL BODY	EARTH		*	DC HAS CONVERGED		*	NO. OBS. INCLUD	ED.	72	
CENTION DODI			*			*				
			**	*********	***********	***	NO. OBS. ACCEPT	ED 7	2 100 PCT	٠.

OBSERVATION SUMMARY BY TYPE

TYPE	x	¥	Z	XDOT	YDOT	ZDOT
TOTAL NO.	12	12	12	12	12	12
NO. ACCEPTED	12 (100%)	12 (100%)	12 (100%)	12 (100%)	12 (100%)	12 (100%)
WEIGHTED RMS	7.0606E-02	0.1319	8.8872E-02	0.1270	0.1428	0.1152
MEAN RESDUAL	0.5897	-0.1745	1.190	-0.4787	0.7263	0.2646
STANDARD DEV	7.036	13.19	8.607	1.176	1.229	1.122

CINTERVAL	00-20		20-40	OBSERVAT	60-80	BY 20 DEGREE 80-100	100-120	Y INTERVAL 120-140 0	140-160	160-180 6
TOTAL NO. NO. ACCEPTED	0 D {	01)	6 6 (100%)	6 (10 0%)	0 (0%)	6 (10 0%)	6 (100%)	0 (0%)	-	6
(100%)	0 (0.	0 (1001)	5 (2000)	• • • • • • • • • • • • • • • • • • • •	, (2777)	* (====,			
OINTERVAL	180-200		200-220	220-240	240-260	260-280	280-300	300-320	320-340	340-360
TOTAL NO.	0		6	6	0	6	6	0	6	6
NO. ACCEPTED	0 (01)	6 (100%)	6 (100%)	0 (0%)	6 (100%)	6 (100%)	0 (0%)	6 (100%)	6

THERE ARE 7 SOLVE PARAMETERS

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

COMPARE DECK FOR LACC:

SATNAME 1234567

CONTROL COMPARE
COMPOPT
CMPEPHEM 1102102 820224013000.0
END
FIN

820224030000.0

7.5

LACC COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

Number of Points Compared

13

	M:	INIMUM POSITION	DIFFERENCE	MAXIMUM POSITION DIFFERENCE			
	YYMMDD	HHMMSS.SSS	(km)	YYMMDD	HHMMSS.SSS	(km)	
RADIAL	820224	24500.000	8.498042E-04	B20224	21500.000	2.135948E-02	
CROSS TRACK	820224	21500.000	1.065784B-02	B20224	15230.000	4.588219E-02	
ALONG TRACK	820224	13000.000	5.055184E-03	820224	30000.000	1.013102E-01	
TOTAL	820224	13000.000	1.9840668-02	820224	30000.000	1.052537E-01	

	M	MINIMUM VELOCITY DIFFERENCE			MAXIMUM VELOCITY DIFFERENCE		
	XXWWDD	HHMMSS.SSS	(km/sec)	YYMMDD	HHMMSS.SSS	(km/sec)	
RADIAL	820224	22230.000	1.024987E-05	820224	30000.000	1.508931E-04	
CROSS TRACK	820224	24500.000	3.131833E-06	820224	13730.000	5.871673E-05	
ALONG TRACK	820224	24500.000	1.064040E-07	820224	13730.000	2.326795E-05	
TOTAL	820224	20730.000	4.3303948-05	820224	30000.000	1.585244E-04	

PAGE

	POSITION RMS		VELOCITY RMS
	(km)		(km/sec)
RADIAL	1.2699E-02		7.20328-05
CROSS TRACK	3.0955E-02		3.6669E-05
ALONG TRACK	5.6565E-02		1.3224E-05
TOTAL	6.5720E-02		8.1903E-05
	GTDS COMPARE	PROGRAM	

NORMAL COMPLETION OF JOB

MACC Test Case

TRUTH DATA GENERATION

PROCEDURE:

- Start with mean Replerian elements
 Propagate forward one day using DSST to obtain osculating elements
 Propagate osculating elements forward using Cowell theory to generate truth data

CONTROL	EP	HEM				LNDSAT-4	8207201
EPOCH				820223.0	0.0		
ELEMENT1	3	6	1	7077.787	0.011542	98.250452	
ELEMENT2	•	_		158.15349	89.4	312.90205	
OUTPUT	1	2	1	820224.0	0.0	43200.0	
ORBTYPE	5	ī	1	43200.0	1.D		
OGOPT	-	_					*
MAXDEGEQ	1			В			
MAXORDEO	1			В			
DRAG	1			2			
SCPARAM				1.D-6	100.D0		
POTFIELD	1	6					
END							
FIN							
CONTROL	EPHEM				OUTPUT	LNDSAT-4	8207201
OUTPUT	1	2	1	820302.0	0.0	86400.0	
ORBTYPE	2	1	1	60.0			
OGOPT							
DRAG	1			1			
atmosden			1				
MAXDEGEQ	1			21.0			
MAXORDEQ	1			21.0			
OUTOPT	1			820224000000.0	820302000000.0	450.0	
SCPARAM				1.D-6	100.D0		
POTFIELD	1	6					
END							
FIN							

COWELL EPHEMERIS OUTPUT SUMMARY:

GTDS FINAL REPORT

PA	ΞE	2	€

				SATELLI SATELLI				IJ	DSAT- 8207						
				RUN REF	ERENCI	DATE				, 1982		HRS	O MINS		SECONDS
				RUN EPO	CH DAT	re		F	B 24	, 1982		HRS	O MINS		SECONDS
				RUN FIN	AL TIN	1E		M	AR 2	, 1982		HRS	O MINS		SECONDS
				TOTAL T	IME OF	FLIGH	T			6 DAY		HRS	O MINS	0.0000	SECONDS
				CAUSE O	F TERM	INATIO	N	S	PECIFI	ED TIM	ie op i	LIGHT	REACHED		
							*1	**END (CONDIT	IONS**	*				
	CENTE	RAL BODY	TS PART	CH (IN	ERTIA	SYSTE						MEAN	OF 1950.0	EARTH EQU	ATOR
	X	-0.63247					Y	0.207	281865	799432	2E+04		Z	0.226821744	3679385E+04
	vx			9485E+0			VY	0.323	508674	042329	6E+00		VZ	0.704737749	4503171E+01
	SMA	0.70846	0064553	30947E+0	4		ECC	0.118	196769	121746	3E-01		INC	0.982917537	9969750E+02
	LAN			19553E+0			AP	•		159663			MA	0.310117617	1932150E+03
	EA			L7889E+0			P			042261			SLR	0.708400883	7479219E+04
	PR			17576B+0			APR			044431			PH	0.623118250	6175765E+03
	APH			3181E+0			C3	-0.2B1					TA	0.309071955	5792481E+03
	AFA	0.75000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	171075+0	-			• • • • • • • • • • • • • • • • • • • •							
	RA	0 16189	4385421	L7003E+0	3	4	DEC	0.188	186470	769289	6E+02		VPA	0.905218589	4543646E+02
	AZ			29003E+0				0.703	162398	631816	8E+04		VMAG	0.755737216	2575918E+01
	112	0.0000			-										
							***IN	ITIAL :	CONDIT	ions * *					
	CENT	RAL BODY	IS EAR	TH (IN	ERTIA	L SYSTI	EM)					MEAN	OF 1950.0	EARTH EQU	JATOR
	X			85991E+0	4		Y	-0.195	677979	370795	55E+04		Z	-0.643937134	4275231E+04
	VX	-0.64384					VY	0.201	961045	018717	77E+01		vz	-0.308085589	6509433E+01
	***	•													
	SMA	0.70720	04403501	79919E+0	4		ECC	0.126	531483	597756	SBE-01		INC		5268920E+02
	LAN	0.1587	5648542	92450E+0	3		AP	0.833	440761	975373	35E+02		MA	0.16161253	9350340E+03
	EA	0.1618	3851104	59561E+0	3		P	0.164	409123	875501	10E+01		SLR		15530140E+04
	PR			97187E+0			APR	0.716	152765	746265	51E+04		PH		26971867E+03
1	APH	0.7833	8965746	26515E+0	3	4.	, C3	-0.281	814167	179104	3E+02		TA	0.16206314	5221004E+03
	RA	0.3212	1428313	84352E+0	13		DEC	-0.641					VPA		6957886E+D2
	AZ	0.1993	5844527	82684E+0	13		RMAG	0.715	706974	18830	23E+04		VMAG	0.74177932	6916529E+01
							***	SECTION	ING ST	MMARY	***				
				NUMBER					1						
				NUMBER	OF SE	CTIONS	COMPL	ETED =	1					_	
SECTION	CENTR	AL BODY	TIME	OF CROS	SSING						FLIGH	T	CAUSE OF	CROSSING	
					H	M	s		H	M	5				
1	E.	arth	MAR	2	0	٥	0.000		144	0	0.00	0	SPECIFIE	D TIME OF FL	IGHT REACHED

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE HAS BEEN GENERATED
START TIME OF THE FILE = 820224000000.000
END TIME OF THE FILE = 820302000000.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED= 0**

MACC OPTIMIZED INPUT DECE

CONTROL	D	2				LNDSAT-4	8207201
EPOCH				820224.0	0.0		
ELEMENT1	3	6	1	7077.8	0.0011	98.2	
ELEMENT2	-	٠	-	158.1	69.4	176.0	
OBSINPUT	15			82D224000DD.0	82022700000D.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT	_	-	-	1525514			
OBSDEV	2.7	22	23	100.	100.	100.	
OBSDEV			26	10.	10.	10.	
END	24	25	40	10.	10.		
DCOPT							
PRINTOUT	1		4	1.5.4			
CONVERG	30		1	1.D-4			
END							
OGOPT							
DRAG	1			1			
ATMOSDEN			1				
SPDRAG	0						
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	1	3	3.0	3.0	3.0	
SPZONALS	8	2	11				
SPMDAILY	8	8	2				
POTFIELD	1	6					
MAXDEGEQ	1			21.			
MAXORDEQ	1			21.			
RESONPRD				86400.0			
STATEPAR	3						
STATETAB	1	2	3	4.0	5.0	6.0	
DRAGPAR	1						
DRAGPAR2	1	1					
SSTESTFL	1						
SSTAPGFL	1	. 0	0	1.0	0.0	0.0	
END							
FIN							
CONTROL	Ε	PHE	M		OUTPUT	LNDSAT-4	8207201
OUTPUT	1	. 2		820302.	0.0	86400.0	
ORBTYPE	5	1	. 1	43200.0	1.0		
OCOPT							
DRAG	1			1			
DRAGPAR	٥						
ATMOSDEN			- 1		-		100
SPDRAG	٥	e,					
SCPARAM				1.D-6	100.D0		
SPGRVFRC	1	. 1	. 3	3.0	3.0	3.0	
SPZONALS	8	2	11				
SPMDAILY	8	8	2				
POTFIELD	1	. 6	i				
MAXDEGEQ	1			21.			
MAXORDEQ	1			21.			
RESONPRD				86400.0			
OUTOPT	21			820224000000.0	820302000000.0	450.0	
END							
FIN							

ITERATION NUMBER 7

SATELLITE	INDSAT-4 8207201	*	POSITION ERROR RMS (M) CURRENT WEIGHTED RMS PREDICTED WEIGHTED RMS PREVIOUS WEIGHTED RMS	76.510799 0.45418732 0.45580603 0.45582550	* * *	START TIME 820224 0.000 END TIME 820226 235230.000
COORD. SYSTEM	MEAN OF 1950.0	* *	SMALLEST WEIGHTED RMS RELATIVE CHANGE IN RMS PENALTY DC HAS CONVERGED	0.45582550 3.59387939E-03 0.00000000	*	NO. OBS. AVAILABLE 3456 NO. OBS. INCLUDED 3456
CENTRAL SOST	ESPENDED.	*	OBSERVATION SU		*	NO. OBS. ACCEPTED 3423 99 FCT
TYPE X	Y	z	XDOT YDOT	ZDOT		

TYPE	x	Υ	Z	XDOT	YDOT	ZDOT
TOTAL NO.	576	576	576	576	576	576
NO. ACCEPTED	570 (98%)	576 (100%)	575 (99%)	560 (97 %)	575 (99%)	
WEIGHTED RMS	0.4544	0.3822	0.4861	0.4854	0.3506	0.5407
MEAN RESDUAL	0.3981	0.2098	0.4400	9.6646E-02	-3.4598E-02	-3.1819E-02
STANDARD DEV	45.44	38.22	48.61	4.853	3.506	5.407

OBSERVATION SUMMARY BY 20 DEGREE TRUE ANOMALY INTERVAL

OINTERVAL 00-20 20-40 40-60 60-80 80-100 100-120 120-140 140-160 160-180

TOTAL NO. 156 168 198 234 204 168 156 192 228

NO. ACCEPTED 156 (100%) 167 (99%) 197 (99%) 234 (100%) 204 (100%) 166 (98%) 153 (98%) 191 (99%) 225 (98%)

S84)
OINTERVAL 180-200 200-220 220-240 240-260 260-280 280-300 300-320 320-340 340-360
TOTAL NO. 240 204 174 168 174 216 228 192 156
NO. ACCEPTED 237 (984) 202 (994) 172 (984) 165 (984) 171 (984) 213 (984) 225 (984) 190 (984) 155 (

THERE ARE 7 SOLVE PARAMETERS

NUMBER OF DYNAMIC SOLVE PARAMETERS = 7 A H K P Q LAM CSUBL

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

COMPARE DECK FOR MACC:

LNDSAT-4 8207201

CONTROL COMPARE
COMPOPT
CMPEPHEM 1102102 820227000000.0
END
FIN

820302000000.0

MACC COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

Number of Points Compared

WID	NIMUM POSITION	DIFFERENCE	MAXIMUM POSITION DIFFERENCE				
COMMO	HHMMSS.SSS	(km)	YYMMDD	HHMMSS.SSS	(km)		
20228	94500.000	1.374394E-03	820227	184500.000	9.115588E-02		
20301	141500.000	5.420682E-04	820301	21500.000	8.921743E-02		
20227	163000.000	2.999669E-03	820301	193000.000	3.680619E-01		
20227	163000.000	1.2864298-02	820301	193000.000	3.764689E-01		
	MMDD 20228 20301 20227	MMDD HHMMSS.SSS 20228 94500.000 20301 141500.000 20227 163000.000	00228 94500.000 1.374394E-03 00301 141500.000 5.420682E-04 00227 163000.000 2.999669E-03	MMDD HHMMSS.SSS (km) YYMMDD 10228 94500.000 1.374394E-03 820227 10301 141500.000 5.420682E-04 820301 10227 163000.000 2.999669E-03 820301	MMDD HHMMSS.SSS (km) YYMMDD HHMMSS.SSS 20228 94500.000 1.374394E-03 820227 184500.000 20301 141500.000 5.420682E-04 820301 21500.000 20227 163000.000 2.999669E-03 820301 193000.000		

	M	INIMUM VELOCITY	DIFFERENCE	M	MAXIMUM VELOCITY DIFFERENCE				
	YYMMDD	HHMMSS.SSS	(km/sec)	YYMMDD	HHMMSS.SSS	(km/sec)			
RADIAL	820228	81500.000	5.361974E-06	820301	124500.000	3.909677E-04			
CROSS TRACK	820228	21500.000	5.331724E-07	820227	43000.000	1.131149E-04			
ALONG TRACK	820228	163000.000	3.636120E-08	820228	73000.000	9.8226458-05			
TOTAL	820227	133000.000	2.2798608-05	820301	124500.000	3.942775E-04			

	POSITION RMS	VELOCITY RMS
	(km)	(km/sec)
RADIAL	4.0244E-02	2.06438-04
CROSS TRACK	3.2424E-02	3.3844E-05
ALONG TRACK	1.8994E-01	4.4235E-05
TOTAL	1.9685E-01	2.1381E-04
	GTDS COMPARE	PROGRAM

PAGE

NORMAL COMPLETION OF JOB

HACC Test Case

PROCEDURE:

- Start with 2-card element set
 Propagate 2-card element set forward using SGP4 to obtain SGP4-based ephemeris
 Pit Cowell theory to SGP4-based ephemeris
 Propagate Cowell DC solve-for vector forward to produce truth data

CONTROL	EF	HEM				EXPLORER	65032A
EPOCH				940826.0	074853.5101		
ELEMENT1	8	18	1	13.37418275	0.0247108	41.1904	
ELEMENT2				349.3346	66.5461	296.1065	
ELEMENT3				-0.00000029	0.000000	0.000091	
OUTPUT	1	2	1	940831.0	D74854.Q	86400.0	
ORBTYPE OGOPT	14	1	8	1.0			
POTFIELD	1	7					
OUTOPT END	1			940826074854.0	940831074854.0	450.0	
PIN							

SGP4 EPHEMERIS OUTPUT SUMMARY:

GTDS FINAL REPORT

PAGE 12

SATELLITE NAME	EXPLORER		
SATELLITE NUMBER	65032		
RUN REFERENCE DATE	AUG 26, 1994	O HRS O MINS	0.00000 SECONDS
RUN EPOCH DATE	AUG 26, 1994	7 HRS 48 MINS	53.51010 SECONDS
RUN FINAL TIME	AUG 31, 1994	7 HRS 48 MINS	54.00000 SECONDS
TOTAL TIME OF PLIGHT	5 DAYS	O HRS O MINS	0.48990 SECONDS
CAUSE OF TERMINATION	SPECIFIED TIME OF	FLIGHT REACHED	

	DIAM	CONDITIONS
TAL SYSTEM)		

CENTE	AL BODY IS EARTH (INERTIAL SYST	EM)		MEATH OF	1950.0	EARIN EQUATOR
x	0.4887549306874350E+04	Y	-0.5498692794044931E+04		Z	-0.1768913280088411E+04
VX	0.4786071196055583E+01	.VY	0.3047635044022132E+01		vz	0.4475570612493452E+01
SMA	0.7501908902328932E+04	`ECC	0.2499062301383419E-01		INC	0.4120299091118378E+02
LAN	0.32797707056186B3E+03	AP	0.9098909633714638E+02		MA	0.2511718748703972E+03
EA	0.2498278467174672E+03	P	0.1796246619168853E+01		SLR	0.7497223725870149E+04
PR	0.7314431525066702E+04	APR	0.7689386279591161E+04		PH	0.9362965250667021E+03
APH	0.1311251279591161E+04	C3	-0.2656662492104218E+02		TA	0.2484894377614734E+D3
RA	0.3122485301361856E+03	DEC	-0.1335140772811090E+02		VPA	0.9134420137012032E+02
AZ	0.5064941371860270E+02	RMAG	0.7566558982575450E+04		VMAG	0.7226706663664657E+01

+++**** CONTITUTONS+++

			INI	TIAL CONDITIONS		
CENTRA	L BODY IS EARTH	(INERTIAL	SYSTEM)		"NORAD" TRUE OF	REF EARTH EQUATOR
x	0.72944688993682	15E+04	¥	-0.1366234653D03144E+04	Z	0.6456847303414492E+01
VX	0.85374425435273	09E+00	VY	0.5478661153568532E+01	vz	0.48500326764296562+01
SMA	0.74991061698472	56E+04	BCC	0.2471080000000148E-01	INC	0.4119040000000000E+02
LAN	0.34933460000000	00E+03	AP	0.6654609999999940E+02	MA	0.2961065000000007E+03
EA	0.29482146897751	.55E+03	P	0.1795240089651203B+01	SLR	0.7494527038366274E+04
PR	0.73137972571053	83E+04	APR	0.7684415082589128E+04	PH	0.9356622571053831E+03
aph	0.13062800825891	28E+04	C3	-0.2657655399004164E+02	TA	0.2935295945886971E+03
RA	0.34939156210462	52E+03	DEC	0.4984967616062881E-01	VPA	0.9128520794121377B+02
AZ	0.48809624779686	25E+02	RMAG	0.7421314933473303E+04	VMAG	0.7366642671522530E+01

*** SECTIONING SUMMARY ***

NUMBER OF SECTIONS SCHEDULED =

NUMBER OF SECTIONS COMPLETED = TIME OF CROSSING SECTION CENTRAL BODY TIME INTO FLIGHT

CAUSE OF CROSSING H M EARTH AUG 31 120 0.490 SPECIFIED TIME OF FLIGHT REACHED 54.000

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE HAS BEEN GENERATED START TIME OF THE FILE =
END TIME OF THE FILE = 940826074854.000 940831074854.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED=

COWELL DC & EPHEM DECK (FIT TO SGP4-BASED EPHEMERIS) TO GENERATE TRUTH DATA:

CONTROL	DC					EXPLORER	65032A
EPOCH				940826.0	074853.5101		
ELEMENT1	1	2	1	7502.98	0.02566	41.2	
ELEMENT2	-	-	-	349.0	65.1	297.22	
OBSINPUT	15			940826074854.0	940831074854.0		
ORBTYPE	2	1	1	60.0			
DMOPT	_	_	-				
OBSDEV	21	22	23	500.0	500.0	500.0	
OBSDEV	24	25	26	50.0	50.0	50.0	
END				,			
DCOPT							
PRINTOUT	1		4				
CONVERG	30		1	1.D-3			
END							
OGOPT							
DRAG	1			1.0			
ATMOSDEN			1				
SCPARAM				1.D-6	100.D0		
SOLRAD	1			1.0			
POTFIELD	1	2					
MAXDEGEQ	1			21.0			
MAXORDEQ	1			21.0			
STATEPAR	1						
STATETAB	1	2	3	4.0	5.0	6.0	
DRAGPAR	1						
SOLRDPAR	1						
END							
FIN							
CONTROL	E	HE			OUTPUT	EXPLORER	65032A
OUTPUT	1	2	1	940903.0	074854.0	86400.0	
ORBTYPE	2	1	1	60.0			
OGOPT							
DRAG	1			1.0			
DRAGPAR	C						
ATMOSDEN			1				
SCPARAM				1.D-6	100.D0		
SOLRAD	1			1.0			
SOLRDPAR							
POTFIELD	-	2		21.0			
MAXDEGEQ				21.0 21.0			
MAXORDEQ OUTOPT	22	2	1	940826074854.0	940903074854.0		
END		2	_	3406260/4634.V	5405050,4054.0		
FIN							
L TIN							

COWELL EPHEMERIS OUTPUT SUMMARY:

ITERATION NUMBER 5

		*******	*********	*******	******	***		
		 POSI 	TION ERROR RA	MS (M) 421	8.11032	*		
SATELLITE	EXPLORER 650	32 * CURR	ENT WEIGHTED	RMS 0.45	5208753	* START	TIME 940826	75624.000
		* PRED	ICTED WEIGHT	ED RMS 0.4	5480147	*		
EPOCH	940826 74853.5	10 * PREV	IOUS WEIGHTED	RMS 0.45	5491167	* END TI	ME 940831	74854.000
		* SMAL	LEST WEIGHTER	RMS 0.4	5491167	*		
COORD, SYSTEM	MEAN OF 1950.0	* RELA	TIVE CHANGE	IN RMS 6.20	0810804E-03	* NO. OB:	S. AVAILABLE	5760
		* PENA	LTY	0.0	0000000	*		
CENTRAL BODY	EARTH	* DC H	AS CONVERGED			* NO. OB	S. INCLUDED	5760
		*				*		
		******	********	********	********	*** NO. OB	S. ACCEPTED	5732 99 PCT
			OBSERVA:	TION SUMMARY	BY TYPE			
TYPE X	Y	z	XDOT	YDOT	ZDOT			
TOTAL NO. 96	960	960	960	960	960			
NO. ACCEPTED 94:	9 (98%) 948 (98	%) 955 (99%)	960 (100%)	960 (100%)	960 (100%)			
WEIGHTED RMS 0.5	0.4876	0.4891	0.4272	0.3988	0.3968			
MEAN RESDUAL -69	.59 -129.6	144.0	-2.610	0.4184	2.070			
STANDARD DEV 24	0.9 206.5	197.7	21.20	19.94	19.73			
		OBSERVAT	ION SUMMARY I	BY 20 DEGREE	TRUE ANOMALY	Y INTERVAL		
DINTERVAL 00	-20 20-40	40-60	60-80	80-100	100-120	120-140	140-160	160-180
TOTAL NO. 30	5 306	318	336	318	324	318	318	342
NO. ACCEPTED 30 (100%)	6 (100%) 306 (100	*) 318 (100%)	336 (100%)	318 (100%)	321 (99%)	317 (99%)	315 (99%)	342

THERE ARE 8 SOLVE PARAMETERS

34D-360

NUMBER OF DYNAMIC SOLVE PARAMETERS = 8 VY $\cdot .vz$ RH01

NUMBER OF STATION LOCATIONS BEING SOLVED FOR .

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE =

OINTERVAL 180-200 200-220 220-240 240-260 260-280 280-300 300-320 320-340 340-3 100-320 330 320-340 340-3 100-320 330 320-340 340-3 100. ACCEPTED 332 (98%) 327 (99%) 320 (98%) 317 (99%) 304 (99%) 308 (98%) 334 (99%) 305 (99%) 306 (100%)

HACC OPTIMIZED INPUT DECK

CONTROL	DC				EXPLORER	65032A
EPOCH			940826.0	074853.5101		
ELEMENTI	3	6 1	7498.G	0.0247108	41.1904	
ELEMENT2			349.3346	66.5461	296.1065	
OBSINPUT	15		940826074854.0	940828074854.0		
ORBTYPE	5	1 1	43200.0	1.0		
DMOPT						
OBSDEV	21 2	2 23	100.	100.	100.	
OBSDEV	24 2	5 26	10.	10.	10.	
END						
DCOFT						
PRINTOUT	1	4				
CONVERG	30	1	1.D-4			
END	• •					
DGOPT						
SOLRAD	1		1.0			
SPSRP	0					
SCPARAM	•		1.D-6	100.D0		
SPGRVFRC	1	1 3	3.0	3.0	3.0	
SPZONALS		2 11	• • • • • • • • • • • • • • • • • • • •			
SPMDAILY		8 2				
POTFIELD	_	2				
MAXDEGEQ	1	-	21.			
MAXORDEQ			21.			
RESONPRD			86400.0			
STATEPAR			5515515			
STATETAB	-	2 3	4.0	5.0	6.0	
SOLEDPAR						
SSTESTFL		2 0	0.0			
SSTAPGFL	_	0 0	0.0	0.0	1.0	
END	_					
FIN						
CONTROL	EPH	EM		OUTPUT	EXPLORER	65032A
OUTPUT	1	2 1	940831.	074854.0	86400.0	
ORBTYPE	5	1 1	43200.0	1.0		
OGOPT						
SOLRAD	1		1.0			
SPSRP	0					
SCPARAM			1.D-6	100.D0		
SOLRDPAR	. 0			•		
SPGRVFRC	1	1 3	3.0	3.0	3.0	
SPZONALS	8	2 11	•	•	•	
SPMDAILY	В	8 2				
POTFIELD		2				
MAXDEGEQ	1		21.			
MAXORDEO			21.			
RESONPRD			86400.0			
OUTOPT	21		940826074854.0	940831074854.0	450.0	
END						
FIN						

ITERATION NUMBER 4

		***************	***********	
SATELLITE	EXPLORER 65032	* POSITION ERROR RMS (M) * CURRENT WEIGHTED RMS * PREDICTED WEIGHTED RMS	48.705827 * 0.28884820 * 0.30075942 *	START TIME 940826 74954.000
EPOCH	940826 74853.510	* PREVIOUS WEIGHTED RMS * SMALLEST WEIGHTED RMS	0.30075980 * 0.30075980 *	END TIME 940828 74854.000
COORD. SYSTEM	MEAN OF 1950.0	 RELATIVE CHANGE IN RMS PENALTY 	3.96050355E-02 * 0.00000000 *	NO. OBS. AVAILABLE ****
CENTRAL BODY	EARTH	* DC HAS CONVERGED *	*	NO. OBS. INCLUDED ****
		*********************	************	NO. OBS. ACCEPTED **** 99 PCT

OBSERVATION SUMMARY BY TYPE

TYPE	x	Y	Z	XDOT	YDOT	ZDOT
TOTAL NO	2880	2880	2880	2880	2880	2880
NO. ACCEPTED	2851 (98%	2878 (99%)	2880 (100%)	2815 (97%)	2861 (99%)	2880 (100%)
WEIGHTED RMS		0.3243	0.2218	0.2951	0.3432	0.2431
MEAN RESDUAL		0.3899	0.4194	8.5625E-02	-4.9562E-02	-6.2918E-02
STANDARD DEV		32.42	22.18	2.950	3.432	2.430

OINTERVAL 00-2 20-40 40-60 60-80 80-100 100-120 120-140 140-150 160-180 TOTAL NO. ACCEPTED 864 (1004) 954 (1004) 942 (994) 1005 (994) 954 (984) 963 (994) 972 (1004) 972 (1004) 1005

THERE ARE 7 SOLVE PARAMETERS

NUMBER OF DYNAMIC SOLVE PARAMETERS = 7
A H K P Q LAM SOLRAD

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

COMPARE DECK FOR HACC:

CONTROL COMPARE

EXPLORER 65032A

COMPOPT
CMPEPHEM 1102102 940828074854.0
END
FIN

HACC COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

Number of Points Compared

97

	M	INIMUM POSITION	DIFFERENCE	M	MAXIMUM POSITION DIFFERENCE		
	YYMMDD	HHMMSS.SSS	(km)	YYMMDD	HHMMSS.SSS	(km)	
RADIAL	940829	181854.000	1.677306E-03	940831	23354.000	7.173356E-02	
CROSS TRACK	940828	220354.000	1.377805E-04	940831	40354.000	5.726527E-02	
ALONG TRACK	940828	211854.000	3.657224E-05	940830	134854.000	2.025899E-01	
TOTAL	940828	220354.000	4.484148E-03	940830	134854.000	2.033114E-01	
	M	INIMUM VELOCITY	DIFFERENCE	м	AXIMUM VELOCITY	DIFFERENCE	
	YYMMDD	HHMMSS.SSS	(km/sec)	YYMMDD	HHMMSS.SSS	(km/sec)	
RADIAL	940828	190354.000	2.955573E-07	940830	121854.000	1.702762E-04	
CROSS TRACK	940831	23354.000	2.772951E-08	940831	74854.000	4.844473E-05	
ALONG TRACK	940828	91854.000	6.024580E-D8	940830	181854.000	6.031790E-05	
TOTAL TIOICI	940828	211854 000	1.714331E-05	940830	121854.000	1.734637E-04	

	POSITION RMS		VELOCITY RMS
	(km)		(km/sec)
RADIAL	2.8012E-02		7.0302E-05
CROSS TRACK	2.63758-02		2.55042-05
ALONG TRACK	7.19818-02		2.8725E-05
TOTAL	8.1619B-02		8.0112E-05
	GTDS COMPARE	PROGRAM	

PAGE

1

NORMAL COMPLETION OF JOB

GEO Test Case

PROCEDURE:

- 1) Start with 2-card element set
- 2) Propagate 2-card element set forward using SGP4 to obtain SGP4-based ephemeris
- 3) Fit Cowell theory to SGP4-based ephemeris
 4) Propagate Cowell DC solve-for vector forward to produce truth data

CONTROL	E	нем	1			BS3A	20771
EPOCH				940825.0	170334.9932		
ELEMENT1	8	18	1	1.00266891	0.0003102	0.0467	
ELEMENT2				243,1923	288.7716	167.5966	
ELEMENT3				0.00000000	0.000000	0.00000	
OUTPUT	1	2	1	940905.0	170335.0	86400.0	
ORBTYPE	14	1	8	1.0			
OGOPT							
POTFIELD	1	7					
OUTOPT	1			940825170335.0	940905170335.0	450.0	
BND							
FIN							

SGP4 EPHEMERIS OUTPUT SUMMARY:

PAGE 13

GTDS FINAL REPORT

SATELLITE NAME	BS3A	
SATELLITE NUMBER	20771 .	
RUN REFERENCE DATE	AUG 25, 1994 0 HRS 0 MINS 0.000	00 SECONDS
RUN EPOCH DATE	AUG 25, 1994 17 HRS 3 MINS 34.993	20 SECONDS
RUN FINAL TIME	SEPT 5, 1994 17 HRS 3 MINS 35.000	00 SECONDS
TOTAL TIME OF FLIGHT	11 DAYS 0 HRS 0 MINS 0.006	80 SECONDS
CAUSE OF TERMINATION	SPECIFIED TIME OF FLIGHT REACHED	

		***END CONDITIO	MC+++	
CENTS	RAL BODY IS EARTH (INERTIAL		MEAN OF 1950.0	EARTH EQUATOR
X	0.4147498563686865E+D5	Y -0.76795185378	39341E+04 Z	-0.1767766902439355E+03
vx	0.5596246403209475E+00	VY 0.30222733135	187103E+01 VZ	-0.3373151171135438E-02
SMA	0.4216876442281726E+05	ECC 0.27461316866	44057E-03 INC	0.2109068722704865E-01
LAN	0.1874391381048706E+03	AP 0.34492201113	41053E+03 MA	0.1777193918337379E+03
EA	0.1777200177816512E+03	P 0.23938371286	64726E+02 SLR	0.4216876124276986E+05
PR	0.4215718432480045E+05	APR 0.42180344520	83408E+05 PH	0.3577904932480045E+05
APH	0.3580220952083408E+05	C3 -0.47262565723	21093E+01 TA	0.1777206436437087E+03
RA	0.3500817939879975E+03	DEC 0.62919911222	03051E-02 VPA	0.8999937405206303E+02
AZ	0.9002013027414259E+02	RMAG 0.42180335353	51635E+05 VMAG	0.3073650453186145E+01
		INITIAL CONDITION	NC	
CENTI	RAL BODY IS EARTH (INERTIAL		·-· -	F REF EARTH EQUATOR
Х	D.3952629838700647E+05	Y -0.14724727175	93263E+05 Z	0.3416690188895451E+02
vx	D.1073172496565432E+01	VY 0.28801818070	58570E+01 VZ	-0.2780373401265742E-03

CENTE	EAL BODY IS EARTH (INERTIAL	SYSTEM)		"NORAD" TRUE OF	REF EARTH EQUATOR
х	D.3952629838700647E+05	Y	-0.1472472717593263E+05	Z	0.3416690188895451E+02
VX	D.1073172496565432E+01	VY	0.2880181807058570E+01	vz	-0.27803734012657428-03
SMA	0.4216716110762471E+05	ECC	0,3101999999597714E-03	INC	0.46700000000000000E-01
LAN	0.2431922999999999E+03	AP	0.2887715999999954E+03	MA	0.1675966000000055B+03
EA	0.1676004163972050E+03	P	0.2393700604426692E+02	SLR	0.4216715705013011B+05
PR	0.4215408085425082E+05	APR	0.4218024136099860E+05	PH	0.3577594585425081E+05
APH	0.3580210636099859E+05	C3	-0.4726436278015460E+01	TĄ	0.1676042322164656E+03
RA	0.3395681343168720E+03	DEC	0.4641115339300120E-01	VPA	0.8999618360262247E+02
AZ	0.900051B602416244E+02	RMAG	0.4217993624890280E+05	VMAG	0.3073621077231286E+01

*** SECTIONING SUMMARY ***

NUMBER OF SECTIONS SCHEDULED = NUMBER OF SECTIONS COMPLETED =

SECTION CENTRAL BODY TIME OF CROSSING TIME INTO FLIGHT CAUSE OF CROSSING

H 17 M S 3 35.000 H 264 M S 0.007 SEPT 5 SPECIFIED TIME OF FLIGHT REACHED EARTH

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE HAS BEEN GENERATED START TIME OF THE FILE = 94082 END TIME OF THE FILE = 94090 940825170335.000 940905170335.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED=

COWELL DC & EPHEM DECK (FIT TO SGP4-BASED EFHEMERIS) TO GENERATE TRUTH DATA:

CONTROL	DC					BS3A	20771
EPOCH				940825.0	170334.9932		
ELEMENT1	1	2	1	42167.16	0.000275	0.23	
ELEMENT2	_	-	-	97.6	75.3	166.09	
OBSINPUT	15			940825170335.0	940904170335.0		
ORBTYPE	2	1	1	60.0			
DMOPT	_	_	_				
OBSDEV	21	22	23	500.0	500.0	500.0	
OBSDEV			26	50.D	50.0	50.0	
END							
DCOPT							
PRINTOUT	1		4				
CONVERG	30		ī	1.D-3			
END			_				
OGOPT							
SOLRAD	1			1.D			
SCPARAM	_			1.D-6	100.D0		
POTFIELD	1	2					
MAXDEGEO				21.0			
MAXORDEO				21.0			
STATEPAR							
STATETAB	1	2	3	4.0	5.0	6.0	
SOLRDPAR	. 1						
END							
FIN							
CONTROL	Е	PHE	M		OUTPUT	BS3A	20771
OUTPUT	1	. 2	1	940905.0	170335.0	86400.0	
ORBTYPE	2	1	. 1	60.0			
OGOPT							
SOLRAD	1			1.0			
SCPARAM				1.D-6	100.D0		
SOLRDPAR	. 0						
POTFIELD	. 1	. 2	2				
MAXDEGEQ	1			21.0			
MAXORDEQ	1			21.0			
OUTOFT	21			940825170335.0	940905170335.0	450.0	
END							
FIN							

COWELL EPHEMERIS OUTPUT SUMMARY:

ITERATION NUMBER 3

			**	******	**********	****				
			*	POSITION ERROR RMS (M)	2453.3437	*				
SATELLITE	BS3A	20771	•	CURRENT WEIGHTED RMS	1.9976620	*	STA	RT TIP	IB 940825	171105.000
				PREDICTED WEIGHTED RMS	2.5423798	*				
EPOCH	940825 1	70334.993	•	PREVIOUS WEIGHTED RMS	2.5424042		END	TIME	940904	170335.000
			*	SMALLEST WEIGHTED RMS	2.5424042	ŧ				
COORD. SYSTEM	MEAN OF	1950.0		RELATIVE CHANGE IN RMS	0.21426264	*	NO.	OBS.	AVAILABLE	****
				PENALTY	0.0000000	*				
CENTRAL BODY	EARTH		*	DC HAS CONVERGED		+	NO.	OBS.	INCLUDED	****
••			*			*				
			**	***************	*******	****	NO.	OBS.	ACCEPTED	**** 97 PCT

OBSERVATION SUMMARY BY TYPE

TYPE	x	Y	z	XDOT	YDOT	ZDOT
TOTAL NO.	1920	1920	1920	1920	1920	1920
NO. ACCEPTED	1876 (97%)	1920 (100%)	1698 (88%)	1920 (100%)	1920 (100%)) 1920 (100%)
WEIGHTED RMS		2.191	3.943	0.1615	0.1515	0.3833
MEAN RESDUAL	-113.6	-2.593	-102.3	0.1289	-0.1550	-0.1233
STANDARD DEV	1084.	1095.	1969.	8.075	7.574	19.17

			OBSERVAT	ION SUMMARY	BY 20 DEGREE	TRUE ANOMAL	Y INTERVAL		
DINTERVAL	00-20	20-40	40-60	60-80	80-100	100-120	120-140	140-160	160-180
TOTAL NO.	690	684	684	678	672	660	630	594	564
NO. ACCEPTED	690 (100%)	682 (99%)	670 (97%)	649 (95%)	633 (94%)	621 (94%)	599 (95%)	594 (100%)	564
(100%)									
OINTERVAL	180-200	200-220	220-240	240-260	260-280	280-300	300-320	320-340	340-360
TOTAL NO.	582	588	612	612	630	636	64B	672	684
NO. ACCEPTED	582 (100%)	584 (99%)	602 (98%)	596 (97%)	602 (95%)	607 (95%)	629 (97 %)	566 (99 %)	684
(100%)									

THERE ARE 7 SOLVE PARAMETERS

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

GEOSYNCHRONOUS OPTIMIZED INPUT DECK

CONTROL	DC	:				BS3A	20771
EPOCH		•		940825.0	170334.9932		
ELEMENT1	1	6	3	42167.16	0.000275	0.23	
ELEMENT2	-	٠	-	97.6	75.3	166.09	
OBSINPUT	15			940825170335.0	940828170335.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT	-	_	-				
	21	22	23	100.	100.	100.	
	24			10.	10.	10.	
END				20.			
DCOPT					0		
PRINTOUT	-		4				
	30		ī	1.D-4			
END	20		_	1.5			
OGOPT							
SOLRAD	1			1.0			
SCPARAM	_			1.D-6	100.D0		
		,	3		1.0	3.0	
SPGRVFRC	7	3	_	2.0	2.0	3600.0	
SPNUMGRV	1	2	-	2.0			
POTFIELD	1			4.			
MAXDEGEQ	1			4.			
MAXORDEQ	_			••			
STATEPAR	3	2	3	4.0	5.0	6.D	
STATETAB	_		٥	4.0	3.0		
SOLRDPAR	1		٥	0.0			
SSTESTFL	1			0.0	0.0	1.0	
SSTAPGFL	1	0	0	0.0	0.0	2.0	
END							
FIN	_				OUTPUT	BS3A	20771
CONTROL	_	PHE		940905.	170335.0	86400.0	
OUTPUT	1	_		43200.0	1.0	00.00	
ORBTYPE	5	1	. 1	43200.0	1.0		
OGOPT				1.0			
SOLRAD	1			1.0			
SOLRDPAR				1.D-6	100.D0		
SCPARAM		_			1.0	3.0	
SPGRVFRC					2.0	3600.0	
SPNUMGRV				4.0			
POTFIELD			•	4.			
MAXDEGEQ				4.			
MAXORDEQ OUTOPT				940825170335.0	940905170335.0	450.0	
END	21			3-0823110333.0	2:03021,0503.0		100
FIN							
5 TM							

ITERATION NUMBER 4

			**	*************	********	***					
			*	POSITION ERROR RMS (M)	5.1035665	*					
SATELLITE	BS3A	20771		CURRENT WEIGHTED RMS	2.20243186E-02		STA	RT TIM	E 940825	17110	5.000
OVI ######	20311		*	PREDICTED WEIGHTED RMS	2.20766417E-02	*					
EPOCH	940825	170334.993	*	PREVIOUS WEIGHTED RMS	2.20767451E-02	ŧ	END	TIME	940828	17033	5.000
BEVUN	,,,,,,,		*	SMALLEST WEIGHTED RMS	2.20767451E-02	*					
COORD, SYSTEM	MEAN OF	P 1950.0	•	RELATIVE CHANGE IN RMS	2.37472948E-03	*	NO.	OBS.	AVAILABLE	345€	i
	• • • • • • • • • • • • • • • • • • • •		*	PENALTY	0.0000000	*					
CENTRAL BODY	EARTH			DC HAS CONVERGED		*	NO.	OBS.	INCLUDED	3456	í
			•			*					
			**	******	*******	***	NO.	OBS.	ACCEPTED	3454 5	9 PCT

OBSERVATION SUMMARY BY TYPE

TYPE	x	Y	Z	XDOT	YDOT	ZDOT
TOTAL NO.	576	576	576	576	576	576
NO. ACCEPTED	576 (100%)	574 (99%)	576 (100%)	576 (100%)	576 (100%)	576 (100%)
WEIGHTED RMS	3.6111E-02	3.6011E-02	8.9331E-04	1.2533E-02	1.2431E-02	6.6651E-05
MEAN RESDUAL-	4.203BE-02	4.1731E-02	-4.706DE-02	2.98808-03	1.7902E-03	6.5442E-05
STANDARD DEV	3.611	3,601	7.5930E-02	0.1253	0.1243	6.6329E-04

OINTERVAL TOTAL NO. NO. ACCEPTED	00-20 210 210 (100%)	20-40 198 198 (100%)	40-60 186	ION SUMMARY: 60-80 180 180 (100%)	89 20 DEGREE 80-100 180 180 (100%)	TRUE ANOMAL 100-120 180 180 (100%)	Y INTERVAL 120-140 180 180 (100%)	140-160 180 180 (100%)	160-180 168 166 (
98%) OINTERVAL	180-200 174	200-220	220-240	240-260	260-280 216	280-300 204	300-320 198	320-340 204	340-360 198
TOTAL NO. NO. ACCEPTED	174 (100%)	186 (100%)	204 (100%)	210 (100%)	216 (100%)	2D4 (100%)	198 (100%)	204 (100%)	19B

THERE ARE 7 SOLVE PARAMETERS

NUMBER OF DYNAMIC SOLVE PARAMETERS = 7
A H K P Q LAM SOLRAD

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0 .

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

COMPARE DECK FOR GEOSYNCHRONOUS CASE:

BS3A

20771

CONTROL COMPARE
COMPOPT
CMPEPHEM 1102102 940828170335.0
END
FIN

940831170335.0

7.5

GEOSYNCHRONOUS COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

Number of Points Compared

577

	м	NIMUM POSITION	DIFFERENCE	MJ	AXIMUM POSITION	DIFFERENCE
	YYMMDD	HHMMSS.SSS	(Icm)	YYMMDD	HHMMSS.SSS	(km)
RADIAL	940829	111835.000	4.641092E-03 7.078641E-08	940831 940829	5605.000 222605.000	8.159907E-03 3.100871E-04
CROSS TRACK ALONG TRACK	940829 940828	51835.000 170335.000	1.198785E-03 5.880411E-03	940831 940831	170335.000 170335.000	3.501914E-02 3.581756E-02
TOTAL	940828	170335.000	5.0004118-03	340032	1,0000	
	M:	INIMUM VELOCITY	DIFFERENCE	М	AXIMUM VELOCITY	DIFFERENCE
	YYMMDD	HHMMSS.SSS	(km/sec)	DOMMER	HHMMSS.SSS	(km/sec)
RADIAL	940828	170335.000	1.860573E-06	940831	170335.000	4.400656E-06
CROSS TRACK	940831	134835.000	1.779926E-11	940830	181105.000	1.410646E-08
ALONG TRACK	940831	115605.000	2.699794E-07	940831	10335.000	5.553332E-07
TOTAL	940828	170335.000	1.901702E-06	940831	170335.000	4.426126E-06

	POSITION RMS	VELOCITY RMS
	(km)	(km/sec)
RADIAL	6.2625E-03	3.0904E-06
CROSS TRACK	1.6640E-04	9.0059E-09
ALONG TRACK	2.0304E-02	4.1029E-07
TOTAL	2.1249E-02	3,1175E-06
	GTDS COMPARE	PROGRAM

PAGE 16

NORMAL COMPLETION OF JOB

MOLY Test Case

- Start with mean Keplerian elements
 Propagate forward one day using DSST to obtain osculating elements
 Propagate osculating elements forward using Cowell theory to generate truth data

						NSSC	9829
CONTROL	EP	HEM				MODE	2023
EPOCH		_		790803.0	234212.0	63.173001	
ELEMENT1	1	6	1	26556.9582	0.6990986	13.29315	
ELEMENT2				190.619681	281.59624	43200.0	
OUTPUT	1	2	1	790804.0	234212.0	43200.0	
ORBTYPE	5	1	1	43200.0	1.0		
OGOPT							
SPSHPER	5						
DRAG	1			1.0			
ATMOSDEN			1				
SCPARAM				12.5D-6	1250.D0		
SOLRAD	1			1.0			
POTFIELD	1	5					
MAXDEGEQ	1			В.			
MAXORDEQ	1			В.			
END							
FIN							
CONTROL	EP	HEM			OUTPUT	NSSC	9829
OUTPUT	1	2	1	790818.0	234212.0	172800.0	
ORBTYPE	1	1	1	200.0		1.5	
OGOPT							
DRAG	1			1.0			
ATMOSDEN			1				
SCPARAM				12.5D-6	1250.D0		
SOLRAD	1			1.0			
POTFIELD	1	6					
MAXDEGEQ	1			21.			
MAXORDEQ	1			21.			
OUTOPT	1			790804234212.0	790818234212.0	450.	
END							
FIN							

COWELL EPHEMERIS OUTPUT SUMMARY:

GTDS FINAL REPORT

PAGE	26
------	----

				NUMBER ENCE DATE DATE			98: 3 3, 3 4, 3 18,	1979 1979 1979 4 DAYS	23 23 0	HRS HRS HRS HRS	0 MINS 42 MINS 42 MINS 0 MINS REACHED	12.000 12.000	000 SECONDS 000 SECONDS 000 SECONDS
					*	**END C	ONDITT	ONS+++					
	OE) TO	RAL BODY IS EA	oru (TNED	TIAL SYSTE		200	0110212			MEAN	OF 1950.0	EARTH E	QUATOR
	X	-0.1371825581		IIAD UIUID	Y Y	-0.1119	942652	170050	E+05		Z	0.1774665	697145402E+05
	VX	0.8606074345			ΨY	-0.1717					vz	0.3619315	325579901E+01
	VA	0.8606074343	7733776400		••	V.2/-							
	SMA	0.2655680479	R67469R405		ECC	0.6986	855599	650172	E+00		INC	0.6319595	63020B168E+02
	LAN	0.1888106505			AP	0.2815					MA	0.4550424	397783793E+02
	EA	0.8540744767			P	0.1196					SLR	0.1359279	482213544E+05
	PR	0.8001948767			APR	0.4511					PH	0.1623810	767031005E+04
	APH	0.3873352283			C3	-0.7504					TA	0.1309404	611544984E+03
	AFII	V.3073332203	0040000.02										
	RA	0.2192278053	194159E+03		DEC	0.4506	044124	614617	E+02		VPA	0.4577045	721988872E+02
	AZ	0.3967261639			RMAG	0.2507	112942	736071	E+05		VMAG	0.4097342	2207374211E+01
	G71.	RAL BODY IS EA	משות (זאושם	TIAL SYSTE		ITIAL C	ONDITI	ONS***		MEAN	OF 1950.0	EARTH I	EQUATOR
		-0.1242983594		IIAH BIBIH	Y	-0.3027	625662	738115	E+04		z	0.1415477	7535845710E+04
	X VX	-0.1242983594			vy	-0.3277					vz	0.5477775	985267707E+01
	VA	-0.2465034330	42124/ETOI		••	0.52							
	SMA	0.2657217591	471070E±05		ECC	0.6991	894044	193557	E+00		INC	0.6317748	8516631303E+02
	LAN	0.1904823387			AP	0.2816					MA	0.1542883	506600653E+02
	EA	0.4248634620			P	0.1197					SLR	0.1358194	4726056090E+05
	PR.	0.7993192062			APR	0.4515					PH	0.1615054	4062777778E+04
	APH	0.3877302176			C3	-0.7500	334960	889100	E+01		TA .	0.8547104	4510736438E+02
	***	0.5577555	7		•			100					
	RA	0.1936893756	438893E+03		DEC	0.6313	668242	350110	E+01		VPA	0.565537	2545863263E+02
	AZ	0.2699943849			RMAG	0.1287	132143	345407	E+05		VMAG	0.685095	1836531340E+01
	•												
						SECTIONI		MARY *	**				
				SECTIONS			1						
				SECTIONS	COMPL	ETED =	1	71mo 7			CAUCE OF	CROSSING	
SECTION	CENTR	AL BODY TIM	4E OF CROSSI		_			INTO F			CAUSE OF	CROSSING	
	_			H M	S		н 336	M O	s 0.000		CDECTETE	D TEMPE OF I	FLIGHT REACHED
1	E	ARTH AUG	18	23 42 1	2.000		220	U	0.000		3557578	- alim UE	

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE RAS BEEN GENERATED
START TIME OF THE FILE - 790804234212.000
END TIME OF THE FILE - 790818234212.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED= 1*

MOLNIYA OPTIMIZED INPUT DECK

CONTROL	DA	MAT	GT			NSSC	9829
OGOPT	_	_					
POTFIELD	1	6					
END							
FIN							
CONTROL	Þ	:				NSSC	9829
EPOCH				790804.0	234212.0		
ELEMENT1	1	6	1	26572.176	0.699	63.2	
ELEMENT2				190.5	281.6	15.429	
OBSINPUT	15			790804234212.0	790807234212.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT	,	-	-	15200.0			
				100.	100.	100.	
OBSDEV		22			10.	10.	
OBSDEV	24	25	26	10.	10.	10.	
END							
OGOPT							
DRAG	1			1.0			
ATMOSDEN			I				
SPDRAG	0						
SCPARAM				12.5D-6	1250.D0		
SOLRAD	1			1.0			
SPSRP	ō						
SPGRVFRC	1		3	1.	1.	3.	
				* -		••	
SPZONALS	4	3	8				
SPMDAILY	4	4	2	_			
MAXDEGEQ	2			8.			
MAXORDEQ	1			8.			
STATEPAR	3						
STATETAB	1	2	3	4.0	5.0	6.0	
DRAGFAR	1						
DRAGPAR2	1	1					
SOLRDPAR	1						
SSTESTFL		2	0	0.0			
SSTAPGFL		0		1.0	0.0	1.0	
END	-	•	•	2.0			
DCOPT							
PRINTOUT	1		4				
CONVERG			1	1.D-3			
	30		_	1.0-3			
END							
FIN						11000	
CONTROL		PHEM		A Company of the Company	OUTPUT	NSSC	9829
OUTPUT				790818.0	234212.0	172800.0	
ORBTYPE.	5	1	. 1	43200.0	1.0	1 to 1 to 1 to 1 to 1	4.00
OGOPT							
DRAGFAR	0						
DRAG	1			1.0			
ATMOSDEN			1				
SPDRAG	0						
SCPARAM				12.5D-6	1250.D0		
SOLRAD	1			1.0			
SPSRP	ō						
SOLRDPAR	ō						
SPGRVFRC	1	1	3	1.	1.	3.	
				••	- -		
SPZONALS	4	3	8				
SPMDAILY	4	4	2				
MAXDEGEQ	1			8.			
MAXORDEQ	1			8.			
OUTOPT	21			790804234212.0	790818234212.0	450.	
END							
FIN							

ITERATION NUMBER 4

SATELLITE	NSSC 982	• POSITION ERROR RMS (M) 114.82174 • CURRENT WEIGHTED RMS 0.45742789 • START TIME 790804 234212.000 • PREDICTED WEIGHTED RMS 0.51345696 •
EPOCH	790804 234212.00	D * PREVIOUS WEIGHTED RMS 0.51349399 * END TIME 790807 233442.000 * SMALLEST WEIGHTED RMS 0.51349399 *
COORD. SYSTEM	MEAN OF 1950.0	* RELATIVE CHANGE IN RMS 0.10918550 * NO. OBS. AVAILABLE 3456 * PENALTY 0.00000000 *
CENTRAL BODY	EARTH	* DC HAS CONVERGED * NO. OES. INCLUDED 3456

OBSERVATION SUMMARY BY TYPE YDOT

ZDOT

TYPE		2							
TOTAL NO.	576	576	576	576	576	576			
NO. ACCEPTED	502 (87%)	576 (100%)	576 (100%)	576 (100%)	576 (100%)	576 (100%)			
WEIGHTED RMS		0.4468	0.5014	0.1340	9.21918-02	0.1024			
MEAN RESDUAL		-5.572	19.20	-0.2010	-1.0291E-02 ·	-3.9840E-02			
STANDARD DEV		44.34	46.32	1.325	0.9219	1.023			
GIANDARD DAT	30.40								
			OBSERVAT	ION SUMMARY	BY 20 DEGREE	TRUE ANOMALY	Y INTERVAL		
CINTERVAL	00-20	20-40	40-60	60-80	80-100	100-120	120-140	140-160	160-180
TOTAL NO.	24	24	30	48	84	120	240	450	708
NO. ACCEPTED		24 (100%)	30 (100%)	48 (100%)	84 (100%)	120 (100%)	240 (100%)	448 (99%)	706 (
99%)	• •								
OINTERVAL	180-200	200-220	220-240	240-260	260-280	280-300	300-320	320-340	340-360
TOTAL NO.	714	450	234	120	72	48	36	24	30
NO. ACCEPTED			234 (100%)	120 (100%)	72 (100%)	48 (100%)	36 (100%)	24 (100%)	30

NUMBER OF DYNAMIC SOLVE PARAMETERS = 8
A H K P SOLRAD

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 0 *

COMPARE DECK FOR MOLNIYA CASE:

9829 NSSC CONTROL COMPARE

7.5 790810234212.0 CMPEPHEM 1102102 790807234212.0

END FIN

MOLNIYA COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

ALONG TRACK

TOTAL

577 Number of Points Compared

790810

790808

201212.000

121942.000

.

MAXIMUM POSITION DIFFERENCE MINIMUM POSITION DIFFERENCE YYMMDD HHMMSS.SSS YYMMDD HHMMSS.SSS (km) 3.501438E-01 104942.000 4.685057E-04 790810 220442.000 790810 RADIAL 45712.000 5.219956B-02 CROSS TRACK 790808 82712.000 5.364643E-06 790810

1.358405E-03

3.791407E-02

MAXIMUM VELOCITY DIFFERENCE MINIMUM VELOCITY DIFFERENCE HHMMSS.SSS (km/sec) YYMMDD YYMMDD HHMMSS.SSS (km/sec) 1.490001E-09 790810 224942,000 4.816413E-04 200442,000 790808 RADIAL 1.892690E-05 224212.000 44942.000 1.377708E-09 790810 CROSS TRACK 790808 224942.000 5.052250E-05 790808 ALONG TRACK 790810 81212.000 1.646474E-08 1.893925E-06 790810 224942.000 4.820318E-04 TOTAL 790808 131942.000

> VELOCITY RMS POSITION RMS (km) (km/sec) 1.2727E-01 7.3599E-05 RADIAL CROSS TRACK 2.2510E-02 3.4218E-06 1.3041E-05 ALONG TRACK 1.7720E-01 7.4824B-05 2.1933E-01 TOTAL

GTDS COMPARE PROGRAM PAGE 16

790810

224212.000

224212.000

7.213969E-01

7.334274E-01

1

NORMAL COMPLETION OF JOB

NEEC Test Case

PROCEDURE:

- Start with 2-card element set
 Propagate 2-card element set forward using SGP4 to obtain SGP4-based ephemeris
 Pit Cowell theory to SGP4-based ephemeris
 Propagate Cowell DC solve-for vector forward to produce truth data

CONTROL	EI	HEM	İ			VANGARD2	59001A
EPOCH				940826.0	073513.6735		
ELEMENT1	8	18	1	11.73921485	0.1522640	32.8834	
ELEMENT2				251.B592	10.8368	352.1515	
ELEMENT3				-0.00000000	0.00000	0.000154	
OUTPUT	1	2	1	940905.0	073514.0	86400.0	
ORBTYPE OGOPT	14	1	8	1.0			
POTFIELD	1	7					
OUTOPT END FIN	1			940826073514.0	940905073514.0	450.0	

SGP4 EPHEMERIS OUTPUT SUMMARY:

GTDS FINAL REPORT

PAGE 13

SATELLITE NAME	VANGARD2	
SATELLITE NUMBER	59001	
RUN REFERENCE DATE	AUG 26, 1994 0 HRS 0 MINS 0.00000 SE	CONDS
RUN EPOCH DATE	AUG 26, 1994 7 HRS 35 MINS 13.67350 SE	CONDS
RUN FINAL TIME	SEPT 5, 1994 7 HRS 35 MINS 14.00000 SE	CONDS
TOTAL TIME OF FLIGHT	10 DAYS 0 HRS 0 MINS 0.32650 SE	CONDS
CAUSE OF TERMINATION	SPECIFIED TIME OF FLIGHT REACHED	

		**	*END CONDITIONS***		
CENTR	VAL BODY IS EARTH (INERTIAL SY	YSTEM)		MEAN OF 1950.0	EARTH EQUATOR
x	0.4226905530387705E+04	Y	0.7668401667445838E+04	Z	-0.2551272994307648E+04
VX	-0.4861278344213523E+01	VY	0.2411752650711627E+01	vz	-0.3040089571074028E+01
SMA	0.8181674036773987E+D4	· ECC	0.1520921345305507E+00	INC	0.3288983668642646E+02
LAN	0.2150862746053120E+03	AP	0.6636140824147962E+02	MA	0.1332440193797609E+03
EA	0.1389650806767234E+03	P	0.2045839426995563E+01	SLR	0.7992415410708262E+04
PR	0.6937305768487844E+04	APR	0.9426042305060129E+04	PH	0.5591707684878438E+03
APH	0.3047907305060129E+04	C3	-0.2435936693446952E+02	TA	0.1444016201663212B+03
RA	0.6164386322942167E+02	DEC	-0.1612604086662168E+02	VPA	0.8423117145710005E+02
AZ	0.1190602065290431E+03	RMAG	0.9120312967737114E+04	VMAG	0.6220186707225738E+01
		IN]	TIAL CONDITIONS		
CENTE	RAL BODY IS EARTH (INERTIAL S)	YSTEM)		"NORAD" TRUE OF	REF EARTH EQUATOR
х	-0.2158590909184290E+04	Y	-0.6607917004462769B+04	Z	0.3943505275263057E+01
vx	0.6544250260129505E+01	VY	-0.1923627551859584E+01	vz	0.4407890047245081E+01
SMA	0.8181027891766687E+04	ECC	0.1522639999999998E+00	INC	0.3288339999999999E+02
LAN	0.251859199999999E+03	AP	0.1083680000000000E+02	MA	0.3521514999999999E+03
EA	0.3507490211595139E+03	P	0.2045597077540084E+01	SLR	0.7991356276595909E+04
PR	0.6935351860854726E+04	APR	0.9426703922678649E+04	PH	0.5572168608547254E+03
APH	0.3048568922678649E+04	G3	-0.2436129085937650E+02	TA	0.3492230657582670E+03
RA	0.2519094739042656E+03	DEC	0.3250298192318978E-01	VPA	0.9141873484191045E+02
AZ					
A4	0.5711661425979332E+02	RMAG	0.6951553596306017E+04	VMAG	0.8121394528902080E+01

*** SECTIONING SUMMARY ***

NUMBER OF SECTIONS SCHEDULED = NUMBER OF SECTIONS COMPLETED =

CAUSE OF CROSSING SECTION CENTRAL BODY TIME INTO FLIGHT TIME OF CROSSING H

EARTH 35 14.000 0.326 SPECIFIED TIME OF FLIGHT REACHED

*** FILE GENERATION SUMMARY ***

AN ORB-1 FILE HAS BEEN GENERATED START TIME OF THE FILE = 94082 END TIME OF THE FILE = 94090 940826073514.000 940905073514.000

*** NUMBER OF GTDS ERRORS ENCOUNTERED=

COWELL DC & EPHEM DECK (FIT TO SGP4-BASED EPHEMERIS) TO GENERATE TRUTH DATA:

GOVERNOT.	D					VANGARD2	59001A
CONTROL	100	•		940826.0	073513.6735		
	1	2	1	8183.787	0.153069	32.7	
ELEMENT1 ELEMENT2	_	-	-	251.2	11.1	352.022	
OBSINPUT	4 5			940826073514.0	940831073514.0		
•	2	1	1	6D.D	•		
ORBTYPE	-	-	+	80.0			
DMOPT OBSDEV	21	33	23	500.0	500.0	500.0	
OBSDEV			26	50.0	50.0	50.0	
END	24	2,	20	55.0			
DCOPT							
PRINTOUT	1		4				
	30		1	1.D-3			
	30		1	1.0-3			
END							
OGOPT				1.0			
DRAG	1		1	1.0			
ATMOSDEN			7	1.D-6	100.D0		
SCPARAM	-			1.0	100.20		
SOLRAD	1	2		1.0			
POTFIELD	_	_		21.0			
MAXDEGEQ				21.0			
MAXORDEO				21.0			
STATEPAR STATETAB			3	4.0	5.0	6.0	
	1		٠	4.0	3.0		
DRAGPAR SOLEDPAR	-						
END	1						
FIN							
CONTROL		PHE	n.i		OUTPUT	VANGARD2	59001A
OUTPUT	1			940905.0	073514.0	86400.0	
	2			60.0	0,2223.5		
ORBTYPE	2		. 1	60.0			
OGOPT				1.0			
DRAG	1 D			1.0			
DRAGPAR	•		1				
ATMOSDEN SCPARAM			_	1.D-6	100.D0		
SOLRAD	-			3 0	200.00		
SOLEDPAR				1.0		100	
POTFIELD							
MAXDEGEO			•	21.0			
MAXORDEO				21.0			
CUTOPT	21			940826073514.0	940905073514.0	450.0	
END				>			
FIN							

COWELL EPHEMERIS OUTPUT SUMMARY:

ITERATION NUMBER 6

			*******		**********	**********	***		
				TION ERROR RA	,,	.56962	*		
SATELLITE	VANGAR	ID2 59001		INT WEIGHTED		1041600	* START	TIME 940826	74244.000
				CTED WEIGHTE		1066222	*		
EPOCH	940826	73513.674		COUS WEIGHTED		1072310	* END TI	4E 940831	73514.000
				LEST WEIGHTEI		1072310	•		
COORD. SYS'	TEM MEAN C	F 1950.0	* RELAT	TIVE CHANGE		7354456E-03		S. AVAILABLE	5760
			 PENAL 	LTY	0.00	0000000	*		
CENTRAL BO	DY EARTH		* DC H	AS CONVERGED			* NO. OB	S. INCLUDED	5760
			•				•		
			******	*********	********	********	*** NO. OB	S. ACCEPTED !	5757 99 PCT
				OBSERVA	TION SUMMARY	BY TYPE			
TYPE	x	Y	Z	XDOT	YDOT	ZDOT			
TOTAL NO.	960	960	960	960	960	960			
NO. ACCEPTED			960 (100%)	960 (100%)	960 (100%)	957 (99%)			
WEIGHTED RMS		1.127	1.444	0.3973	0.7494	1.706			
MEAN RESDUAL			327.2	6.770	9.954	54.11			
STANDARD DEV		307.7	643.5	18.68	36.12	65.94			
			OBSERVAT	ION SUMMARY 1	BY 20 DEGREE	TRUE ANOMAL	Y INTERVAL		
CINTERVAL	00-20	20-40	40-60	60-80	80-100	100-120	120-140	140-160	160-180
TOTAL NO.	240	234	264	282	312	348		408	432
NO. ACCEPTED	240 (100%)	234 (100%)	264 (100%)	282 (100%)	312 (100%)	348 (100t)	378 (100%)	408 (100%)	432
(100%)									
	180-200	200-220	220-240	240-260	260-280	280-300	300-320	320-340	340-360
TOTAL NO.	426	408	384	342	300	276	252	246	228
NO. ACCEPTED		408 (100%)	384 (100%)	339 (99%)	300 (100%)	276 (100%)	252 (100%)	246 (100%)	228
(100%)		,							

THERE ARE 8 SOLVE PARAMETERS

NUMBER OF DYNAMIC SOLVE PARAMETERS = 8
X Y Z VX VY VZ RHO1 SOLRAD

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR * 0

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE = 6 *

NEEC OPTIMIZED INPUT DECK

·						VANGARD2	59001A
CONTROL	DC				000710 6735	VANGARDZ	350014
BPOCH				940826.0	073513.6735	20 6024	
ELEMENT 1	3	6	1	B177.913	0.1522640	32.8834	
ELEMENT2				251.8592	10.8368	352.1515	
OBSINPUT	15			940826073514.0	940829073514.0		
ORBTYPE	5	1	1	43200.0	1.0		
DMOPT							
OBSDEV	21	22	23	100.	100.	100.	
OBSDEV	24	25	26	10.	10.	10.	
END							
DCOPT							
PRINTOUT	1		4				
	30			1.D-4			
END	30		-				
OGOPT							
				1.0			
DRAG	1			1.0			
ATMOSDEN	_		1				
SPDRAG	0			_			
SCPARAM				1.D-6	100.D0		
SOLRAD	1			1.0			
SPSRP	0						
SPGRVFRC	ı	1	3	3.0	1.0	3.0	
SPZONALS	6	5	13				
SPMDAILY	6	6	4				
POTFIELD	1	2					
MAXDEGEO	1			21.			
MAXORDEQ	ī			21.			
RESONPRD	•			86400.0			
STATEPAR	3			50400.0			
		_		4.0	5.0	6.0	
STATETAB		2	3	4.0	5.0	0.0	
DRAGPAR	1	_					
DRAGPAR2							
SOLRDPAR							
SSTESTFL	1		0				
SSTAPGFL	1	D	0	1.0	0.0	1.0	
END							
FIN							
CONTROL	E	PHE	M		OUTPUT	VANGARD2	59001A
OUTPUT	1	2	1	940905.	073514.0	86400.0	
ORBTYPE	5		. 1		1.0		
OGOPT							
DRAGPAR	0				and the second second		
DRAG	1		- 1	1.0			
ATMOSDEN	-		1				
	0		1				
SPDRAG	u			1.D-6	100.D0		
SCPARAM	_			1.0	100.00		
SOLRAD	1			1.0			
SPSRP	0						
SOLRDPAR					_		
SPGRVFRC			. 3	3.0	1.0	3.0	
SPZONALS			13				
SPMDAILY	6						
POTFIELD	1	2					
MAXDEGEQ				21.			
MAXORDEQ				21.			
RESONPRD				86400.0			
OUTOPT	21			940826073514.0	940905073514.0	450.0	
END							
FÎN							
LIN							

ITERATION NUMBER 6

	POSITION BRROR RMS (M)	69.419240	*			
59001	CURRENT WEIGHTED RMS	0.37449436	* S	TART TIME	940826	74244.000
	PREDICTED WEIGHTED RMS	0.37647487	*			
13.674	PREVIOUS WEIGHTED RMS	0.37650718	* E	ND TIME	940829	73514.000
	* SMALLEST WEIGHTED RMS	0.37650718	*			
0.0	RELATIVE CHANGE IN RMS	5.34604546B-03	* N	O. OBS. A	VAILABLE	3456
	PENALTY	0.00000000	*			
	DC HAS CONVERGED		* N	O. OBS. I	NCLUDED	3456
	•		*			
	*******	***********	** N	O. OBS. A	CCEPTED 3	443 99 PCT
	13.674	59001 • CURRENT WEIGHTED RMS • PREDICTED WEIGHTED RMS 13.674 • PREVIOUS WEIGHTED RMS • SMALLEST WEIGHTED RMS 0.0 • RELATIVE CHANGE IN RMS • PENALTY • DC HAS CONVERGED	59001 • CURRENT WEIGHTED RMS 0.37449436 • PREDICTED WEIGHTED RMS 0.37647487 13.674 • PREVIOUS WEIGHTED RMS 0.37650718 • SMALLEST WEIGHTED RMS 0.37650718 0.0 • RELATIVE CHANGE IN RMS 5.34604546E-03 • PENALTY 0.00000000	59001 * CURRENT WEIGHTED RMS 0.37449436 * S * PREDICTED WEIGHTED RMS 0.37647487 * 13.674 * PREVIOUS WEIGHTED RMS 0.37650718 * E * SMALLEST WEIGHTED RMS 0.37650718 * 0.0 * RELATIVE CHANGE IN RMS 5.34604546E-03 * N * PENALTY 0.00000000 * * DC HAS CONVERGED * N	59001 • CURRENT WEIGHTED RMS 0.37449436 * START TIME • PREDICTED WEIGHTED RMS 0.37647487 * 13.674 * PREVIOUS WEIGHTED RMS 0.37650718 * END TIME • SMALLEST WEIGHTED RMS 0.37650718 * 0.0 • RELATIVE CHANGE IN RMS 5.34604546E-03 * NO. OBS. A • PENALTY 0.00000000 * • DC HAS CONVERGED * NO. OBS. I	59001 • CURRENT WEIGHTED RMS 0.37449436 * START TIME 940826 • PREDICTED WEIGHTED RMS 0.37647487 * 13.674 * PREVIOUS WEIGHTED RMS 0.37650718 * END TIME 940829 * SMALLEST WEIGHTED RMS 0.37650718 * 0.0 * RELATIVE CHANGE IN RMS 5.34604546E-03 * NO. OBS. AVAILABLE PENALTY 0.00000000 * * DC HAS CONVERGED * NO. OBS. INCLUDED

OBSERVATION SUMMARY BY TYPE YDOT

TOTAL NO. NO. ACCEPTED WEIGHTED RMS MEAN RESDUAL-		576 572 (99%) 0.3934 -1.781	576 (100%) 0.3666 2.432	576 (100%) 0.3263 -4.2900E-02	576 575 (99%) 0.3209 3.58668-02	0.3134		
STANDARD DEV		39.30	36.58	3.263	3.209	3.127	v *************	
OINTERVAL TOTAL NO.	00-20 150	20-40 144	40-60 156	60-80 168	80-100 198	100-120 204	120-140 222	140-160 246

XDOT

NO. ACCEPTED 149 (99%) 144 (100%) 156 (100%) 168 (100%) 198 (100%) 204 (100%) 221 (99%) 245 (99%) 251 (99%) 260-280 280-300 300-320 320-340 200-220 220-240 240-260 OINTERVAL 180-200 NOTAL NO. 252 240 234 204 180 168 156 150 132 NO. ACCEPTED 248 (98%) 239 (99%) 231 (98%) 203 (99%) 180 (100%) 168 (100%) 156 (100%) 150 (100%) 132

THERE ARE 8 SOLVE PARAMETERS

NUMBER OF DYNAMIC SOLVE PARAMETERS = 8 A Н K

NUMBER OF STATION LOCATIONS BEING SOLVED FOR = 0

NUMBER OF BIASES BEING SOLVED FOR = 0

TYPE

*** FILE GENERATION SUMMARY ***

NO FILES HAVE BEEN GENERATED

* NUMBER OF GTDS ERRORS ENCOUNTERED TO DATE =

COMPARE DECK FOR NEEC:

59001A VANGARD2

CONTROL COMPARE
COMPOPT
CMPERHEM 1102102 940829073514.0
END
FIN

940901073514.0

7.5

NEEC COMPARE SUMMARY:

EPHEMERIS COMPARISON SUMMARY REPORT

Number of Points Compared

577

	M	MINIMUM POSITION DIFFERENCE		MAXIMUM POSITION DIFFERENCE		
	YYMMDD	HHMMSS.SSS	(km)	YYMMDD	HHMMSS.SSS	(km)
RADIAL CROSS TRACK ALONG TRACK TOTAL	940829 940829 940829 940831	155014.000 84244.000 95014.000 164244.000	4.082393E-06 6.979701E-05 9.159481E-06 1.110800E-02	940901 940831 940831 940831	43514.000 130514.000 194244.000 194244.000	1.103580E-01 2.553895E-01 4.969624E-01 5.081243E-01

	MINIMUM VELOCITY DIFFERENCE		MAXIMUM VELOCITY DIFFERENCE			
	YYMMDD	HHMMSS.SSS	(km/sec)	YYMMDD	HHMMSS.SSS	(km/sec)
RADIAL	940829	115014.000	3.964064E-08	940901	42744.000	3.010421E-04
CROSS TRACK	940830	42014.000	1.722035E-07	940901	25014.000	2,334248E-04
ALONG TRACK	940830	145014.000	3.795844E-07	940831	190514.000	1.350620E-04
TOTAL	940829	150514.000	3.683908E-05	940831	195744.000	3.353047E-04

	POSITION RMS	VELOCITY RMS
	(km)	(km/sec)
RADIAL	5.1535E-02	1.2705E-04
CROSS TRACK	1.0831E-01	9.D419E-05
ALONG TRACK	1.8288E-01	5.1923E-05
TOTAL	2.1871E-01	1.6436E-04
	GTDS COMPARE P	ROGRAM

PAGE

NORMAL COMPLETION OF JOB

DISTRIBUTION LIST

AUL/LSE Bldg 1405 - 600 Chennault Circle Maxwell AFB, AL 36112-6424	1 cy
DTIC/OCC Cameron Station Alexandria, VA 22304-6145	2 cys
AFSAA/SAI 1580 Air Force Pentagon Washington, DC 20330-1580	1 cy
PL/SUL Kirtland AFB, NM 87117-5776	2 cys
PL/HO Kirtland AFB, NM 87117-5776	1 cy
Official Record Copy	
PL/VTPT/Brian Whitney	2 cys
Dr. R. V. Wick PL/VT Kirtland, AFB, NM 87117-5776	1 cy
Professor Beny Neta Code MA/Nd Naval Postgraduate School Monterey, CA 93943	1 cy
Dr. Paul Cefola The Charles Stark Draper Laboratory 555 Technology Square Cambridge, MA 02139	2 cy
Dr. Ron Proulx The Charles Stark Draper Laboratory 555 Technology Square Cambridge MA 02139	1 cy

Mr. Rick Metzinger The Charles Stark Draper Laboratory 555 Technology Square Cambridge, MA 02139	1 cy
Mr. Wayne McClain The Charles Stark Draper Laboratory 555 Technology Square Cambridge, MA 02139	1 cy
Mr. Leo Early Microcosm Inc., Suite 230 Rolling Hills Office Plaza 2601 Airport Drive Torrance, CA 90505	1 cy
Dr. Shannon Coffey Code 8233 Naval Research Laboratory Washington, DC 20375-5355	1 cy
Mr. Steve Casali Kaman Sciences Corporation P. O. Box 7463 Colorado Springs, CO 80933-7463	2 cy
Dr. Chia-Chun (George) Chao P. O. Box 92957-M4/946 Los Angeles, CA 90009-2957	1 cy
Dr. Stephen H. Knowles U.S. Naval Space Command Code 63T Dahlgren, VA 22448-5170	1 cy
Dr. Paul Schumacher U.S. Naval Space Command Code 63T Dahlgren, VA 22448-5170	1 cy

1 cy James R. Wright 305 Exton Commons Exton, PA 19341 Dr. Dave Carter The Charles Stark Draper Laboratory 555 Technology Square Cambridge, MA 02139 2 cy = W. Spencer Campbell The Aerospace Corp. 2350 E. El Segundo El Segundo, CA 90245-4691 1 cy Dr Ahmed H. Salama Jet Propulsion Lab 4800 Oak Grove Drive

Pasadena, CA 91109-8099