Title: Smart Building Management Using Iot

Problem Statement

Modern buildings often suffer from inefficient energy use, lack of centralized control, and delayed responses to system failures. Traditional building management relies heavily on manual operations, resulting in:

- Energy wastage
- Increased operational costs
- - Reduced occupant comfort and safety

Target Audience

Primary:

- 1. Building Owners & Facility Managers
 - Goal: Reduce energy costs and streamline operations
 - Need: Centralized real-time monitoring and control
- 2. Commercial Property Developers
 - Goal: Increase property value and tenant appeal
 - Need: Integrate smart tech into new or existing infrastructure

Objectives

Develop a scalable SBMS that:

1. Monitors real-time data from HVAC, lighting, security, and energy systems

- 2. Automates control based on occupancy, environmental conditions, and usage patterns
- 3. Optimizes energy consumption and reduces costs
- 4. Enhances comfort, safety, and productivity for building occupants

Design Thinking Approach

1. Empathize

Goal:Understand stakeholder needs

Key use concern:

- Interviews/surveys with facility managers and occupants
- On-site observation of daily operations
- Pain Points Identified
 - High energy bills

Define

Buildings today lack an intelligent, centralized system for monitoring and automating operations such as lighting, HVAC, energy usage, and security.

Key Features Required:

- Consequences:
 - High energy use
 - Increased costs
 - Reduced comfort/safety
 - Maintenance delays

Ideate

Potential Solutions

Automated Energy Management

Adjust HVAC and lighting based on occupancy and time

Predictive Maintenance

Machine learning to predict and alert before system failures

Real-Time Security Integration

Smart cameras, motion sensors, and access control in one platform

Brainstorming Results

- 1. Automated Energy Optimization
- 2. Predictive Maintenance System
- 3. Integrated Real-Time Security Monitoring

Prototype

- Real-time IoT monitoring and control
- Cloud-based analytics and automation
- Mobile & Web dashboard for end-users

Key Components of Prototype

- IoT Sensors: Temperature, humidity, occupancy, motion
- Cloud Data Platform: For storage, processing, and analytics

- Interactive Dashboard: For monitoring, control, and reporting

Test:

Ensure all components (sensors, dashboard, automation logic) work as intended.

Gather input from facility managers, occupants, and technicians to assess usability and effectiveness.

Test system responsiveness, data accuracy, and cloud processing efficiency under real-world conditions.

Improve or adjust features based on testing outcomes and user suggestions.

Testing Goal

- Validate core system functionality
- Collect user feedback from stakeholders
- Identify and fix issues
- Refine features for better usability and performance