Medical Image Processing

Structures Segmentation In CT Scans

Raz Karl ID 311143127

raz.karl@mail.huji.ac.il

Introduction

In this exercise I experimented analyzing CT scans for the first time. It was extremely interesting and I learned a lot! Unfortunately, having been sick part of the week, I had to race against the time to submit on this time. I hope you can excuse the small delay.

Part 1 - Skeleton Threshold Segmentation

The following table shows segmentation models resulting from running SegmentationByTH (nifti_path, Imin, Imax) and SkeletonTHFinder (nifti_path, connectivity=1) on CT scans 1-5

As you can see in the plots, the ideal minimum threshold value to get good segmentation varies between different CT scans, and moves between [234,276].

Implementing this part was pretty straightforward. The full code is available at bone segmentation.py

Part 2 - Aorta Segmentation in Contrast CT

This part was a lot more interesting, as I had to come up with my own algorithm for the segmentation of the Aorta.

After exploring some scans via ITK Snap (screenshots below), I learnt that the aorta is somewhat of a vertical pipe, usually seen from the top plane as a circle, sitting next to the leftmost point of the widest layer of L1.

I assumed that if I was able to track down a single layer of the Aorta, I will be able to follow it up and down the stack.

So my algorithm works as follows:

After three long nights with not much sleep, and three full days of pretty much nothing but working on this exercise... I was able to make this work! The results are in the table below:

As you can see, the DICE score is pretty good in $\frac{3}{4}$ cases. The VOD score has room for improvement, but for now the best improvement is submitting and finally, getting some sleep.

Thank you for reviewing my submission, and please contact me if you have any questions! - Raz -