NOM:

INTERRO DE COURS – SEMAINE 16

Exercice 1 – Calculer les intégrales suivantes.

1.
$$I_1 = \int_0^1 e^{2x} - e^{-3x} dx$$

Solution: Je sais primitiver directement la fonction sous l'intégrale:

$$I_1 = \int_0^1 e^{2x} - e^{-3x} dx = \left[\frac{1}{2} e^{2x} + \frac{1}{3} e^{-3x} \right]_0^1 = \frac{1}{2} e^2 + \frac{1}{3} e^{-3} - \left(\frac{1}{2} + \frac{1}{3} \right) = \frac{1}{2} e^2 + \frac{1}{3} e^{-3} - \frac{5}{6}.$$

2.
$$I_2 = \int_{-1}^{1} x^2 - 2x + 1 \, dx$$

Solution: Je sais primitiver directement la fonction sous l'intégrale:

$$I_2 = \int_{-1}^{1} x^2 - 2x + 1 \, dx = \left[\frac{x^3}{3} - x^2 + x \right]_{-1}^{1} = \left(\frac{1}{3} - 1 + 1 \right) - \left(-\frac{1}{3} - 1 - 1 \right) = \frac{1}{3} - 1 + 1 + \frac{1}{3} + 1 + 1 = \frac{8}{3}.$$

$$3. I_3 = \int_1^3 \frac{x}{1+x^2} \, \mathrm{d}x$$

Solution : Je pose $f_3(x) = \frac{x}{1+x^2}$. f_3 semble être de la forme $\frac{u'}{u}$, avec $u(x) = 1+x^2$.

Puisque u'(x) = 2x, alors $\frac{u'(x)}{u(x)} = \frac{2x}{1+x^2} = 2f_3(x)$. Ainsi une primitive de f_3 est donnée par $F_3(x) = \frac{1}{2}\ln(1+x^2)$. Donc

$$I_3 = \int_1^3 \frac{x}{1+x^2} dx = \left[\frac{1}{2} \ln(1+x^2) \right]_1^3 = \frac{1}{2} \ln(10) - \frac{1}{2} \ln(2) = \frac{1}{2} \ln\left(\frac{10}{2}\right) = \frac{1}{2} \ln(5).$$

4.
$$I_4 = \int_0^1 \frac{t}{\sqrt{1+t^2}} dt$$

Solution : Je pose $f_4(t) = \frac{t}{\sqrt{1+t^2}}$. f_4 semble être de la forme $\frac{u'}{\sqrt{u}}$, avec $u(t) = 1+t^2$.

Puisque u'(t) = 2t, alors $\frac{u'(t)}{\sqrt{u(t)}} = \frac{2t}{\sqrt{1+t^2}} = 2f_4(t)$.

Ainsi une primitive de f_4 est donnée par $F_4(t) = \frac{1}{2} \times 2\sqrt{1+t^2} = \sqrt{1+t^2}$. Donc

$$I_4 = \int_0^1 \frac{t}{\sqrt{1+t^2}} dt = \left[\sqrt{1+t^2}\right]_0^1 = \sqrt{2} - \sqrt{1} = \sqrt{2} - 1.$$

Exercice 2 -

1. Calculer pour tout réel A strictement supérieur à 1, l'intégrale $I_A = \int_1^A \frac{3}{x^4} dx$.

Solution : Je sais primitiver directement la fonction sous l'intégrale :

$$I_A = \int_1^A \frac{3}{x^4} dx = \left[3 \times \left(-\frac{1}{3x^3} \right) \right]_1^A = \left[-\frac{1}{x^3} \right]_1^A = -\frac{1}{A^3} + \frac{1}{1^3} = 1 - \frac{1}{A^3}.$$

2. Calculer $\lim_{A \to +\infty} I_A$.

Solution : Lorsque *A* tend vers $+\infty$, $\lim_{A \to +\infty} \frac{1}{A^3} = 0$. Donc

$$\lim_{A \to +\infty} I_A = \lim_{A \to +\infty} 1 - \frac{1}{A^3} = 1 - 0 = 1.$$

3. Que peut-on en déduire?

Solution : J'en déduis que l'intégrale impropre $\int_1^{+\infty} \frac{3}{x^4} dx$ converge et vaut

$$\int_{1}^{+\infty} \frac{3}{x^4} \, \mathrm{d}x = 1.$$