

Plan Curs 7 – Morfologie matematică

- 7.1. Introducere
- 7.2. Operații morfologice pentru imagini binare
- 7.3. Operații morfologice pentru niveluri de gri
- 7.4. Operații morfologice vectoriale

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

- 4

7.1. Introducere

Fehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologia matematică

o altă abordare, prelucrarea imaginii în acest caz înseamnă modificarea formei spațiale sau a structurii **obiectelor** dintr-o imagine.

- → morphos = formă logos = ştiinţă
- pixelii din imagine (valori + coordonate) vor fi priviţi ca fiind structuraţi în *mulţimi* (partiţii, forme, ...)
- modificarea formei obiectelor nu va fi o operație de filtrare în sensul descris anterior (ponderare a vecinilor), ci mai degrabă rezultatul comparației formelor din imagine (=interacțiunii, aplicării de reguli) cu o anumită formă prestabilită,

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

3

Morfologia matematică

punctul curent (originea)

forma prestabilită = element structurant: o mulţime geometrică, aleasă arbitrar sau impusă (cunoscută a priori) a cărei formă geometrică determină modul de prelucrare al imaginii.

- → comparația se va reduce la operații clasice pe mulțimi (incluziune, intersecție, reuniune,...) aplicate între mulțimea imagine și mulțimea element structurant,
- → astfel, rezultatul unei operații morfologice va fi tot o mulțime.

elementul structurant este echivalentul vecinătății folosite în cazul operațiilor de filtrare de vecinătate, astfel:

Fehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

7.2. Operații morfologice pentru imagini binare

ehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații de bază

→ proprietăți erodare şi dilatare

- erodarea și dilatarea nu sunt *inversabile* și nu sunt *inversa* una alteia.

- sunt duale în raport cu operația de complementare (°):

$$A^{C} = \{ \alpha \mid \alpha \notin A \}$$

$$\{ (A \ominus B)^{C} = A^{C} \ominus B \}$$

$$\{ (A \ominus B)^{C} = A^{C} \ominus B \}$$

- efectele unei transformări asupra obiectelor/formelor sunt efectele dualei sale asupra fundalului (mulţimii duale obiectelor).

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații de bază

proprietăți erodare și dilatare (continuare)

- invarianță la translație:

$$A_{t} = \{\alpha + t \mid \alpha \in A\}$$

$$\begin{cases} A_{t} \oplus B = (A \oplus B)_{t} \\ A_{t} \Theta B = (A \ominus B)_{t} \end{cases}$$

$$\begin{cases} A \oplus B_{t} = (A \ominus B)_{-t} \\ A \ominus B_{t} = (A \ominus B)_{-t} \end{cases}$$

- invarianță la scalare:

$$\begin{cases} \frac{1}{\lambda} (\lambda A \oplus B) = A \oplus \frac{1}{\lambda} B \\ \frac{1}{\lambda} (\lambda A \Theta B) = A \Theta \frac{1}{\lambda} B \end{cases}$$

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații de bază

proprietăți erodare și dilatare (continuare)

- monotonie:

- sunt transformări crescătoare față de mulțimea de prelucrat:

$$A_1 \subset A_2, \quad A_1 \oplus B \subset A_2 \oplus B$$

 $A_1 \ominus B \subset A_2 \ominus B$

- dilatarea este crescătoare față de elementul structurant:

$$B_1 \subset B_2$$
, $A \oplus B_1 \subset A \oplus B_2$

- erodarea este descrescătoare față de elementul structurant:

$$B_1 \subset B_2$$
, $A \Theta B_2 \subset A \Theta B_1$

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații de bază

proprietăți erodare și dilatare (continuare)

- extensivitate:

- în general dilatarea este extensivă:

$$A \subset A \oplus B$$

- în general erodarea este anti-extensivă:

$$A \Theta B \subset A$$

 condiția suficientă pentru ca erodarea să fie anti-extensivă şi dilatarea să fie extensivă este ca elementul structurant să îşi conțină originea (nu este însă şi o condiție necesară).

etc.

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

39

Morfologie matematică imagini binare: operații de bază

proprietăți erodare și dilatare (continuare)

- asociativitate ??

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C^{S}$$
$$C^{S} = \{-\alpha \mid \alpha \in C\}$$

$$(A \Theta B) \Theta C = A \Theta (B \oplus C)$$

- distributive față de operațiile clasice cu mulțimi:

$$(A \cup B) \oplus C = (A \oplus C) \cup (B \oplus C)$$
$$A \oplus (B \cup C) = (A \oplus B) \cup (A \oplus C)$$

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații de bază

proprietăți erodare și dilatare (continuare)

- distributive față de operațiile clasice cu mulțimi (continuare):

$$A \oplus (B \cap C) \subset (A \oplus B) \cap (A \oplus C)$$

$$(B \cap C) \oplus A \subset (B \oplus A) \cap (C \oplus A)$$

$$A\Theta(B \cup C) = (A\Theta B) \cap (A\Theta C)$$

$$(A \cap B)\Theta C = (A\Theta C) \cap (B\Theta C)$$

$$A\Theta(B\cap C)\supset (A\Theta B)\cup (A\Theta C)$$

$$(B \cap C)\Theta A \supset (B\Theta A) \cap (C\Theta A)$$

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații compuse

unde A este mulțimea imagine (pixelii obiect), B este mulțimea elementului structurant, Θ este operația de erodare, \oplus este operația de dilatare iar B^{S}

- închiderea morfologică a mulțimii A prin elementul structurant B

se definește ca fiind operația de dilatare a lui A cu elementul

structurant B urmată de o erodare cu elementul structurant

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

transformarea de închidere morfologică

reprezintă mulțimea elementului structurant simetrizată:

 $A \bullet B = (A \oplus B)\Theta B^{S}$

 $B^{S} = \{-b \mid b \in B\}$

simetrizat BS

Morfologie matematică imagini binare: operații compuse → umplerea golurilor (hole filling)

- un defect frecvent în imaginile binare constă în prezența

anumitor goluri în interiorul obiectelor ce ar trebui să fie pline (ex. binarizarea imaginii a fost realizată cu un prag inadaptat),

- unele dintre transformările mofologice menționate anterior permit eliminarea golurilor, totuşi acestea modifică și forma obiectului

→ se caută o strategie dedicată.

o strategie posibilă:

- în imaginea Ac (fundalul devine obiect), folosind un algoritm de tip "flood-fill" se determină toate obiectele conexe,

- obiectele de o anumită dimensiune din A^C sunt copiate în imaginea initială A,

constrângeri: necesar un ordin de măsură al golurilor, merge doar pentru anumite tipuri de imagini (ex. obiect vs. fundal)

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații compuse transformarea de subțiere (thinning) - ideal, subțierea constă în înlăturarea punctelor obiectelor astfel încât obiectele fără goluri se erodează până la o linie minimă echidistantă față de marginile cele mai apropiate ale obiectului; și un obiect cu goluri se erodează până la un inel minim ce se află la mijlocul distanței dintre gol și marginea cea mai apropiată a obiectului. $A \otimes B = A - (A*B)$ unde A este mulțimea imagine (pixelii obiect), B este mulțimea elementului structurant, *-" reprezintă operația de scădere matematică iar **" reprezintă transformarea hit or miss. $A \otimes B = A \cap (A*B)^C$ Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații compuse

→ skeletonul morfologic (continuare)

dacă notăm cu rD_x un disc de rază r centrat în x, şi cu $S_r(x)$ mulțimea centrelor discurilor maximale rD_x ce sunt conținute în obiectul X și care intersectează marginile obiectului în cel puțin 2 puncte, atunci skeletonul este definit astfel:

$$S(X) = \bigcup_{r>0} S_r(x)$$

$$S(X) = \bigcup_{r>0} \{ (X\Theta rD) - ((X\Theta rD)^{\circ} drD) \}$$

unde Θ denotă operația de erodare, "-" reprezintă operația de scădere dintre mulțimi, "o" este operația de deschidere morfologică iar drD este un disc infinitezimal.

$$(X\Theta rD)^{\circ} drD \subset (X\Theta rD)$$

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică imagini binare: operații compuse

→ skeletonul morfologic (continuare)

definit în acest fel, skeletonul este *regenerativ*, obiectul *X* poate fi reconstituit după următoarea relatie:

$$X = \bigcup_{r \to 0} \{ S_r(x) \oplus rD \}$$

r>0 unde ⊕ denotă operatia de dilatare.

- să transpunem în practică:

$$S(X) = \bigcup_{n=0}^{n_{\text{max}}} S_n(x) = \bigcup_{n=0}^{n_{\text{max}}} \{ (X \Theta nB) - ((X \Theta nB)^{\circ}B) \}$$

unde B este elementul structurant disc minim (rază 1), $(X \odot nB) = (...((X \odot B) \odot B)... \odot B)$, iar n_{max} reprezintă ultima iterație pentru care erodarea lui X este diferită de mulțimea vidă (~dimensiunea maximă a discului)

$$X = \bigcup_{n=0}^{n_{\text{max}}} \{ S_n(x) \oplus nB \}$$

[A.K. Jain

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

91

Morfologie matematică imagini binare: operații compuse \rightarrow skeletonul morfologic (continuare) $S(X) = \bigcup_{n=0}^{n_{max}} \{(X \odot nB) - ((X \odot nB)^{\circ}B)\}$ $X \circ B = (X \odot B) \oplus B^{S}$

 $S_0(X) = X - (X^{\circ}B)$

Fehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

7.3. Operații morfologice pentru niveluri de gri

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

operațiile morfologice pot fi extinse și pentru cazul imaginilor cu niveluri de gri, totuși această extensie nu este "evidentă/naturală":

>ipoteze:

- imaginea conține obiecte cu niveluri de gri distincte față de fundalul imaginii, de asemenea reprezentat cu niveluri de gri,
- obiectele și fundalul sunt considerate a fi relativ uniforme

soluție: imaginea cu niveluri de gri este binarizată și apoi sunt aplicate metodele de morfologie binară, de ce să nu folosim această abordare?

- binarizarea introduce erori semnificative în separarea obiectelor de fundal (vezi exemplul de la pagina 63),

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

[H. Coetzer]

Morfologie matematică pentru niveluri de gri

soluția matematică: fie A(x,y) imaginea cu niveluri de gri inițială definită pe domeniul D_A și B(x,y) elementul structurant definit pe domeniul D_B ,

→ dilatarea pe niveluri de gri

$$(A \oplus B)_{(s,t)} = \max \begin{cases} A(s-x,t-y) + B(x,y) | \\ (s-x,t-y) \in D_A, (x,y) \in D_B \end{cases}$$

cu alte cuvinte, dilatarea imaginii A cu elementul B în punctul curent (s,t) este dată de valoarea maximă a sumei dintre valorile pixelilor imaginii și valorile corespunzătoare din elementul structurant.

dilatare niveluri de gri ~ valoare maximă din vecinătatea elementului structurant considerat, = dacă B=0:

$$(A \oplus B)_{(s,t)} = \max\{A(s-x,t-y) | (x,y) \in D_B\}$$

ehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

dilatarea pe niveluri de gri (continuare)

- din punct de vedere al valorilor, elementul structurant este o funcție similară imaginii, spațial păstrează convenția vecinătăților!

- exemplu caz 1D:

$$(A \oplus B)_{(s)} = \max \{ A(s-x) + B(x) \mid (s-x) \in D_A, (x) \in D_B \}$$

B(x) elementul structurant

- efectul dilatării este similar efectului dilatării binare și anume obiectul se mărește,

ehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

- dilatarea pe niveluri de gri (continuare)
- exemplu imagine:

dilatare disc rază 5 min=38, max=218, val.medie=80

dilatare disc rază 7

- dacă valorile elementului structurant sunt pozitive, atunci imaginea devine mai luminoasă,
- se dilată obiectele, unde un obiect este o zonă din imagine mărginită de valori mai întunecate (ex. de fundal).

ehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

- dilatarea pe niveluri de gri (continuare)
- exemplu imagine (continuare):

dilatare disc rază 1 min=10, max=255, val.medie=138

dilatare disc rază 5 val.medie=171

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

$$(A\Theta B)_{(s,t)} = \min \begin{cases} A(s+x,t+y) - B(x,y) \mid \\ (s+x,t+y) \in D_A, (x,y) \in D_B \end{cases}$$

cu alte cuvinte, erodarea imaginii A cu elementul B în punctul curent (s,t) este dată de valoarea minimă a diferențelor dintre valorile pixelilor imaginii și valorile corespunzătoare din elementul structurant.

erodare niveluri de gri ~ *valoare minimă* din vecinătatea elementului structurant considerat, = dacă *B*=0:

$$(A\Theta B)_{(s,t)} = \min\{A(s+x,t+y) \mid (x,y) \in D_B\}$$

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

erodarea pe niveluri de gri (continuare)

- exemplu imagine:

imagine iniţială min=14, max=218, val.medie=72

erodare disc rază 5 min=14, max=204, val.medie=64

erodare disc rază 7 min=14, max=197, val.medie=61.2

 dacă valorile elementului structurant sunt pozitive, atunci imaginea devine mai întunecată,

- se erodează obiectele, unde un obiect este o zonă din imagine mărginită de valori mai întunecate (ex. de fundal),

Fehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

→ erodarea pe niveluri de gri (continuare)

- exemplu imagine (continuare):

imagine iniţială, val.medie=124.5

erodare disc rază 1, val.medie=111.2

erodare disc rază 5, val.medie=81.2

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

111

Morfologie matematică pentru niveluri de gri

- cazuri limită, B=0 , imagine binară:

$$(A \oplus B)_{(s,t)} = \max\{A(s-x,t-y) | (x,y) \in D_B\}$$

 $\iff A \oplus B = \{x \mid B_x \cap A \neq \emptyset\}$

unde B=

returnează valoarea maximă din vecinătatea lui B, şi anume 1 dacă vecinătatea atinge obiectul din imagine

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru niveluri de gri

dilatarea și erodarea pe niveluri de gri (continuare)

- cazuri limită, B=0 , imagine binară:

$$(A\Theta B)_{(s,t)} = \min\{A(s+x,t+y) \mid (x,y) \in D_B\}$$

 $\iff A\Theta B = \{x \mid B_x \subset A\}$

unde B=

returnează valoarea minimă din vecinătatea lui B, şi anume 0 dacă vecinătatea nu este inclusă total în obiectul din imagine

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color - folosim principiul morfologiei pe niveluri de gri unde abordare operațiile erau definite ca maxime și minime pe vectorială: mulțimi, ceea ce corespunde la limită cazului binar. - acest lucru este posibil doar dacă putem defini conceptul de maxim şi minim pentru orice submulțime a spațiului vectorial considerat. - o anumită relație "≤" introduce o ordonare totală sau parțială a multimii X dacă: $\forall x \in X, x \leq x$ (reflexivitate) $\forall x, y \in X, x = y \operatorname{daca} x \le y, y \le x$ (anti-simetrie) $\forall x, y, z \in X, x \le z \text{ daca } x \le y, y \le z \text{ (tranzitivitate)}$ Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color
câteva definiții:

- mulțimea X este semi-ordonată dacă ordonarea este definită
doar pentru anumite perechi de elemente,

- mulțimea X este ordonată total dacă ordonarea este definită
pentru oricare pereche de elemente (elementele formează o
secvență liniară ordonată, ex. nivelurile de gri).

- mulțimea elementelor din X "≥" / "≤" decât toate elementele
dintr-o submulțime A din X, reprezintă limita superioară /
inferioară a lui A.

- minimul / maximul limitei superioare / inferioare se numeşte
supremum / infimum al lui A.

- morfologia matematică necesită o astfel de structură matematică
în care există o relație de ordine şi în care există un sup şi un inf
= lattice

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

- modalități de definire a unei relații de ordine între culori (vezi median color Cursul 6):

- distanță cumulativă:

$$D_k = \sum_{i=1}^{K} ||A_k - A_i||, k = 1, ..., K \text{ unde } \{A_1, ..., A_K\} \text{ este setul de vectori}$$

- unghi cumulat:

$$\alpha_k = \sum_{i=1}^{K} \angle (A_k, A_i)$$

- distanță și unghi:

$$\Omega_k = D_k^{1-w} \cdot \alpha_k^w$$

- distanță față de un punct de referință (ex. vector mediu,...),

 $D_k = ||A_k - R||$

- amestecul biţilor (ordonare totală).

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color

- având la dispoziție un sup și un inf putem defini operațiile morfologice în sensul max/min (vezi cazul nivelurilor de gri).

- exemple abordare marginală (element structurant pătrat 7x7, spaţiu RGB): introduce culori false

imagine initială

(elim. obiecte luminoase)

închidere morfologică

Tehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color

- exemple abordare marginală (element structurant pătrat 7x7, spaţiu HSI):

(Edvard Munch)

deschidere morfologică

(elim. obiecte luminoase)

închidere morfologică

și mai multe culori false

IP. Lambert, J. Chanusso

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

126

Morfologie matematică pentru imagini color

- exemple abordare marginală (element structurant pătrat 7x7, componentă de intensitate I din HSI): nu apar culori false, dar

(Edvard Munch)

deschidere morfologică (elim. objecte luminoase) (elim. objecte întunecate)

închidere morfologică

IP. Lambert, J. Chanusso

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color

- exemple abordare vectorială (element structurant pătrat 7x7, distanță cumulată):

deschidere morfologică

închidere morfologică (elim. objecte luminoase) (elim. objecte întunecate)

- rezultate slabe datorate în principal instabilității valorii sup (variații mici de culoare pot conduce la valori complet diferite ale lui sup)

[P. Lambert, J. Chanusso

Fehnici avansate de prelucrarea şi analiza imaginilor, Ş.I. Bogdan IONESCU

Morfologie matematică pentru imagini color

- exemple abordare vectorială (element structurant pătrat 7x7, distanță la un punct de referință):

deschidere morfologică închidere morfologică (elim. obiecte întunecate) (elim. obiecte luminoase)

- nu sunt introduse culori false deoarece ieşirea este o valoare din imagine dar elementul structurant este mai vizibil.

[P. Lambert, J. Chanusso

Tehnici avansate de prelucrarea și analiza imaginilor, Ş.I. Bogdan IONESCU

