

Image of patient

Registration of Surgical Microscope Images with a CT Scan

SCIEN

The Stanford Center for Image Systems Engineering

Lars Jebe, Bernd Girod {larsjebe, bgirod}@stanford.edu

Motivation

- The ARRISCOPE is one of the first digital **stereo microscopes** intended for surgery
- No optical path to the eye: surgeon looks at a display
- Goal: Augment the displayed image with CT data and give surgeon X-ray vision

Main Problem: Initial Registration

Input Data

CT Data

Convert to Surface Point Cloud

3D surface point cloud from CT data

2.5D point cloud from stereo images

Registration Procedure

Detect Unique Keypoints and Calculate Local **Descriptors**

Local point count histogram

- Align points to local reference frame (PCA) for rotation invariant descriptors
- RootSIFT matching for robustness against outliers

Match and Estimate 3D Rigid Transform

- RANSAC to estimate 6 degree of freedom rigid body transformation
- Match 2.5D point cloud against many local cropped regions from the model
- Use rotation variant descriptors (global alignment) to check correctness
- RANSAC to refine estimate

Initial Registration on Phantom

- Approach similar to database retrieval, where one database entry is one local region from the 3D point cloud (CT data)
- Simultaneously retrieve correct region and the 6 DoF transform needed for alignment

One dot indicates one database entry

Stereo Images (Phantom)

RANSAC succeeds multiple times in the same local area of the 3D point cloud

5730 Matching Candidates 2773 RANSAC Candidates 61 RANSAC Successes

Preliminary Registration Result

Conclusion and Future Work

Conclusion

- This is work in progress. Test on real patient data have yet to be performed.
- Registration works for the phantom, but real patient scenarios are more difficult due to reflecting surfaces and non-rigid material.

Future work

- Integrate structured light into the microscope for more reliable depth estimation
- Develop strategy for automatically segmenting tissue/ non-rigid material
- Motion Tracking after Initial Registration is successful