

6

ลำดับที่ \\\

ใบบันทึกผลการทดลองที่ 4 การสั่นแบบฮาร์มอนิกอย่างง่ายและกฎของฮุก

ชื่อผู้ทดลอง_	ปถุดพัฒน	2817016,0108	เลขประจำตัว	6432106821
_	•			

ตอนที่ 1 การหาค่าคงตัวของสปริงโดยอาศัยกฎของฮุก

ตำแหน่งปลายสปริงก่อนแขวนแป้นถ่วงมวล (l_0) ____29.0___หน่วย___cm_

มวล m	ตำแ	ระยะยืดของสปริง x		
(kg)	ครั้งที่ 1	ครั้งที่ 2	ค่าเฉลี่ย	(cm)
0.200	30.5	30.5	30.5	1.5
0.300	32.8	32.8	32.8	3.8
0.400	35.2	35.2	35.2	6.2
0.500	37.5	37.5	37.5	8.5
0.600	39.8	39.8	39.8	10.8

จากกราฟความสัมพันธ์ระหว่างระยะยืดของสปริง x (แกนตั้ง) และมวล m (แกนนอน)

- 1. กฎของฮุกเป็นจริงตลอดช่วงค่ามวลถ่วงที่ทำการทดลองหรือไม่?
 - 🗹 เป็นจริงตลอด
- □ เป็นจริงบางช่วง
- 2. จงเขียนกราฟและจงหาค่าคงตัวของสปริง (k) โดยใช้กราฟ

910
$$\mathcal{E}$$
 $f: \delta$ $f:$

ตอนที่ 2 การหาค่าคงตัวของสปริงจากการสั่นแบบซิมเปิลฮาร์มอนิก

มวล m	เวลาที่ใช้การสั่นของสปริงใน 10 รอบ (s)				คาบ T	T_{\perp}^{2}
(kg)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	เฉลี่ย	(s)	(s ²)
0.250	4.78	4.89	4.81	4.83	0.483	0.133
0.350	5.72	5.63	5.78	5.71	0.571	0.326
0.450	6.49	6.55	6.62	6.55	0.655	0.429
0.550	7.32	7.21	7.25	7.26	0.726	0.527
0.650	7.89	7.91	7.94	7.91	0.791	0.626

จงเขียนกราฟความสัมพันธ์ระหว่างคาบยกกำลังสอง T^2 (แกนตั้ง) และมวล m (แกนนอน)

จงแสดงวิธีคำนวณค่าคงตัวของสปริง (k) โดยอาศัยสมการที่ (4.7)

and
$$T = 2\pi \int_{K}^{m}$$

$$T^{2} = \frac{4\pi^{2}}{K} \cdot m$$

$$4\pi^{2} \cdot m$$

$$4\pi^{$$

สรุปผลการทดลอง

ค่าคงตัวของสปริง (k) จากตอนที่ 1 = $\frac{40.7}{1000}$ หน่วย $\frac{100.7}{1000}$ หน่วย $\frac{100.7}{1000}$ หน่วย $\frac{100.7}{1000}$ ผลต่างของค่าคงตัวของสปริง = $\frac{100.7}{1000}$ หน่วย $\frac{100.7}{1000}$ หน่วย $\frac{100.7}{1000}$ คิดเป็น $\frac{100.7}{1000}$ % (คำนวณโดยเทียบกับ $\frac{100.7}{1000}$ ที่มีค่าน้อย)

