Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Functions:

If $h(x) = Ax^5 + B\sin x + C\ln \left(\frac{1+x}{1-x}\right) + 7$, where A, B, C are non-zero real constants and 10. $h\left(\frac{-1}{2}\right) = 6$, then find the vale of $h\left(\frac{\text{sgn}(e^{-x})}{2}\right)$.

Daily Work Sheet-4

SINGLE CORRECTTYPE

- It the minimum value of $f(x) = \frac{5x^2}{2} + \frac{\alpha}{x^5}$, x > 0 is 14, then the value of α is equal to: [JEE Main 2022] 34.
 - (A) 32
- (B) 64
- (C) 128
- (D) 256
- Let $f(x) = \sin\left(\frac{\pi}{6}\sin\left(\frac{\pi}{2}\sin x\right)\right)$ for all $x \in R$ and $g(x) = \frac{\pi}{2}\sin x$ for all $x \in R$. 7.

Let (fog)(x) denote f(g(x)) and (gof)(x) denote g(f(x)). Then which of the following is (are) true?

[JEE Ad. 2015]

- (A) Range of f is $\left[-\frac{1}{2}, \frac{1}{2}\right]$
- (B) Range of fog is $\left[-\frac{1}{2}, \frac{1}{2}\right]$

(C) $\lim_{x\to 0} \frac{f(x)}{g(x)} = \frac{\pi}{6}$

- (D) There is an x ∈ R such that (gof) (x) = 1
- If $x = \frac{41}{1+l^2}$ and $y = \frac{2-21}{1+l^2}$ where 'l' is a parameter and range of $f(x,y) = x^2 xy + y^2$ is [a, b] 6.

then (a + b) is equal to

- (A) 4
- (B) 6
- (C) 8
- (D) 12
- Let $f(x) = x^2$ and $g(x) = \sin x$ for all $x \in R$. Then the set of all x satisfying 1.

(fogogof)(x) = (gogof)(x), where (fog)(x) = f(g(x)), is-

[JEE 2011]

(A) $\pm \sqrt{n\pi}$, n ∈ {0,1,2,....

- (B) $\pm \sqrt{n\pi}$, $n \in \{1, 2, ...\}$
- (C) $\frac{\pi}{2} + 2n\pi$, $n \in \{..., -2, -1, 0, 1, 2, ...\}$ (D) $2n\pi$, $n \in \{..., -2, -1, 0, 1, 2, ...\}$

Vector:

VECTOR

66. If A(0, 1, 0), B(0, 0, 0), C(1, 0, 1) are the vertices of a ΔABC. Match the entries of column-II with column-II.

Column-II Column-II

- (A) Orthocentre of $\triangle ABC$. (P) $\frac{\sqrt{2}}{2}$
- (B) Circumcentre of $\triangle ABC$. (Q) $\frac{\sqrt{3}}{2}$
- (C) Area (\triangle ABC). (R) $\frac{\sqrt{3}}{3}$
- (D) Distance between orthocentre and centroid. (S) $\frac{\sqrt{3}}{6}$
- (E) Distance between orthocentre and (T) (0, 0, 0) circumcentre.

29. Let S be the reflection of a point Q with respect to the plane given by $\vec{r} = -(t+p)\hat{i} + t\hat{j} + (l+p)\hat{k}$ where t, p are real parameters and \hat{i} , \hat{j} , \hat{k} are the unit vectors along the three positive coordinate axes. If the position vectors of Q and S are $10\hat{i} + 15\hat{j} + 20\hat{k}$ and $\alpha\hat{i} + \beta\hat{j} + \gamma\hat{k}$ respectively, then which of the following is/are TRUE?

[JEE (Advanced)-2022]

- (A) $3(\alpha + \beta) = -101$
- (B) $3(\beta + \gamma) = -71$
- (C) $3(\gamma + \alpha) = -86$
- (D) $3(\alpha + \beta + \gamma) = -121$

. . .

- (a) Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of 7. \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by

 - (A) $\hat{i} 3\hat{j} + 3\hat{k}$ (B) $-3\hat{i} 3\hat{j} \hat{k}$ (C) $3\hat{i} \hat{j} + 3\hat{k}$ (D) $\hat{i} + 3\hat{j} 3\hat{k}$
- (b) The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are

 - (A) $\hat{j} \hat{k}$ (B) $-\hat{i} + \hat{j}$
- (C) $\hat{i} \hat{j}$ (D) $-\hat{j} + \hat{k}$
- (c) Let $\vec{a} = -\hat{i} \hat{k}$, $\hat{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is [JEE 2011, 3+4+4]
- If \vec{u} and \vec{v} are two vectors such that $|\vec{u}| = 3$; $|\vec{v}| = 2$ and $|\vec{u} \times \vec{v}| = 6$ then the correct statement 41.

 - (A) $\vec{u} \wedge \vec{v} \in (0, 90^{\circ})$ (B) $\vec{u} \wedge \vec{v} \in (90^{\circ}, 180^{\circ})$ (C) $\vec{u} \wedge \vec{v} = 90^{\circ}$ (D) $(\vec{u} \times \vec{v}) \times \vec{u} = 6\vec{v}$
- Let \vec{a} , \vec{b} and \vec{c} be three unit vectors such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\sqrt{3}}{2} (\vec{b} + \vec{c})$. If \vec{b} is not parallel to 17. \overline{c} , then the angle between \overline{a} and \overline{b} is :-[JEE(Main)-2016]
 - (1) $\frac{5\pi}{6}$
- (2) $\frac{3\pi}{4}$ (3) $\frac{\pi}{2}$
- (4) $\frac{2\pi}{3}$

Let $\Gamma_{X} = \mathbf{r}_{1}$