ES 491 - Modeling and Simulation of Complex Systems

## SIMULATING NATURAL SELECTION OF SPEED





#### **MOTIVATION**

- → To study if there is an optimal value of speed which a system approaches.
- → To study what factors such an optimal value depends on if it exists.



## **AGENTS**

### **FOOD**

- → A turtle breed.
- → Cannot move in the environment.
- → Spawns randomly in the environment at the start of a generation.
- → No. of food = food-count

#### **ANIMALS**

- → A turtle breed.
- → Can move around in the environment and eat food.
- → Spawns randomly at the start of a generation.
- → Dies, survives or reproduces at the end of a generation.



# AGENT PROPERTIES



## **FOOD**

- → xcor, ycor
- → shape
- → color
- → size

#### **ANIMALS**

- → xcor, ycor → energy
- $\rightarrow$  size  $\rightarrow$  cost = speed<sup>2</sup>
- → shape → speed
- → color → food-collected



## **ENVIRONMENT**

- → Empty except for food and animals that spawn at the start of each generation.
- → World is 33×33 patches and wraps around.



# FLOW OF EVENTS



- → Every 240 time steps is a generation.
- → At the start of each generation, food and animals spawn at random locations.
- → During the generation, animals move around in the environment.

- → In each time step, an animal moves a distance equal to its speed and its energy decreases by an amount equal to its cost.
- → If it finds a food within a radius of 1 unit, it eats the food.

- → In each time step, an animal moves a distance equal to its speed and its energy decreases by an amount equal to its cost.
- → If it finds a food within a radius of 1 unit, it eats the food.

- → When a food is eaten by an animal, it dies and the food-collected of the animal increases by 1.
- → At the end of a generation, an animal dies if its food-collected is 0.

- → At the end of a generation, an animal survives and creates (food-collected 1) new animals if its food-collected is > 0.
- → The energy of the surviving animal is reset to max-energy.
- → The remaining food is cleared and the next generation begins.

## **MUTATIONS**

- → When an animal reproduces, the new animal has a 50% chance of having a mutation.
- → A mutation may cause its speed to increase or decreasing by a number less than 0.1
- $\rightarrow$  cost = speed<sup>2</sup>



#### SPEED VS COST TRADE-OFF

- $\rightarrow$  cost = speed<sup>2</sup>
- → If speed = 2, cost = 4
  ie, the animal can move 2
  units in every step but
  has to use 4 units of
  energy
- → cost ~ energy
- $\rightarrow$  energy ~ mv<sup>2</sup>/2



## **DEMO**

## **OBSERVATIONS**

- → Regardless of the initial speed, the average speed of the animals approaches a value that is optimal for the system.
- → The population approaches food-count.
- → The optimal value of speed depends on max-energy.



## CONCLUSIONS

→ Even though we do not know the optimal speed for the system, the agents themselves interact with each other and attain the speed optimal to them.

→ This emergent value of speed depends on max-energy because:

if animals start with more energy, they can afford a higher cost, while they can't if they start with less energy.

## **THANK YOU**

Chris Francis 18110041