Lecture 6. MFMC: Applications

Outline

- Disjoint paths
- · Min-weighted vertex cover in bipartite graphs
- · Max-weighted closed set

1. Disjoint Paths

Edge-disjoint paths

D = (V, A): a digraph with two nodes s and t (assuming $(s, t) \notin A$)

Disjoint path problem. Find the max number of edge-disjoint s-t paths.

Def. A set of edges $B \subseteq A$ is an s-t edge disconnector if the removal of B disconnects t from s.

Edge connectivity. Find an edge s-t separator of minimum size.

Max-flow min-cut formulation

unit-capacity flow network.

Claim. max number of edge-disjoint s-t paths = \max s-t flow value. Pf.

 \leq Given k edge-disjoint paths, sending a unit flow along each path gives a flow of value k.

 \geq Given a flow of value k, its decomposition into path/circuit flows gives flows k edge-disjoint paths (and possibly additional circuits). •

Max-flow min-cut formulation

 $B \subseteq A$: an s-t edge disconnector $U \coloneqq \{ \text{nodes reachable from s via } A \setminus B \}$

Fact. $B \supseteq \delta^{out}(U)$ and $s \in U \subseteq V \setminus \{t\}$

Fact. minimal s-t edge disconnectors \Leftrightarrow s-t cuts

Menger's Theorem: edge version

Theorem. [Menger 1927] max number of edge-disjoint s-t paths = min size of s-t edge-disconnector.

Finding blocking flow via DFS

Each iteration starts at s, and each current vertex v acts as follows:

- $_$ Case 1: v has a forward edge. Move along a forward edge to the next node.
- \Box Case 2: v has no forward edge.
 - subcase 2.1: v = s. Stop
 - <u>subcase 2.2</u>: v = t. Augment and delete ALL arcs on path. If t has no incoming edge, stop; otherwise, move on to the next iteration
 - <u>subcase</u> 2.3: $v \neq s, t$. Delete v (and all its incident edges), and move backward to its predecessor.

Total running time: O(m)

Number of augmentations by blocking flows

Theorem. The total number of augmentations $\leq 2k$, where $k := \lfloor m^{1/2} \rfloor$. Lemma. After k augmentations, $val(f^*) - val(f) \leq k$.

Pf. Each s-t path in D_f has length $\geq k+1$

- · U_i : the set of vertices at distance i from s in D_f
- For some $0 \le i \le k$, the number of edges in D_f between U_i and $U_{i+1} \le m/(k+1) \le m^{1/2}$, and hence is $\le k$
- $val(f^*) val(f) \le$ the residual cut capacity of $U_0 \cup U_1 \cup \cdots \cup U_i \le k$

Number of augmentations by blocking flows

Theorem. The total number of augmentations $\leq 2k$ where $k := \lfloor n^{2/3} \rfloor$.

Lemma. After k augmentations, $val(f^*) - val(f) \le k$.

Pf. Since
$$\sum_{i=0}^{k} (|U_i| + |U_{i+1}|) \le 2n$$
, for some $0 \le i \le k$, $|U_i| + |U_{i+1}| \le 2n/(k+1) \le 2n^{1/3}$
$$\Rightarrow |U_i| |U_{i+1}| \le \left(\frac{|U_i| + |U_{i+1}|}{2}\right)^2 \le n^{2/3}$$

$$\Rightarrow |U_i| |U_{i+1}| \le k$$

The number of edges in D_f between U_i and $U_{i+1} \leq k$

Total running time

Theorem. A maximum number of edge-disjoint s-t paths and a minimum s-t edge disconnector can be computed in $O(m \min\{m^{1/2}, n^{2/3}\})$ time.

Internally node-disjoint paths

D = (V, A): a digraph with two nodes s and t (assuming $(s, t) \notin A$)

Node-disjoint path problem. Find the max number of internally node-disjoint s-t paths.

Def. A set of nodes $U \subseteq V \setminus \{s, t\}$ is an s-t node disconnector if the removal of U disconnects t from s

Node connectivity. Find an s-t node disconnector of minimum size.

Reduction to edge-disjoint paths via node-splitting

For each node v other than s and t,

- Replace v by a self edge (v^{in}, v^{out}) ;
- Each edge entering v now enters v^{in} ;
- Each edge leaving v now leaves v^{out} .

 D^+ : expanded network

$$s-t$$
 path P in $D \leftrightarrow s-t$ path P^+ in D^+

Claim. Max number of internally node-disjoint s-t paths in D = max number of edge-disjoint s-t paths in D^+

Reduction to edge-disjoint paths via node-splitting

U: a min set of node s-t disconnectors in D

S: a min s - t cut in D^+

Claim.
$$|U| = \left| \delta_{D}^{out}(S) \right|$$

Pf. \geq : $\{(v^{in}, v^{out}) | v \in U\}$ is an s - t edge disconnector in D^+

 \leq : Expand S s.t. $\delta_{D^+}^{out}(S)$ consists of only self edges and $\left|\delta_{D^+}^{out}(S)\right|$ is same:

- If a non-self edge $(u^{out}, v^{in}) \in \delta_{D^+}^{out}(S)$, add v^{in} to S.
- $\delta_{D^{+}}^{out}(S)$ gains 1^{-} edge (v^{in}, v^{out}) but loses 1^{+} edge (u^{out}, v^{in}) .

Suppose $\delta_{D^+}^{out}(S) = \{(v^{in}, v^{out}) | v \in U'\}$. Then U' is an s-t node disconnector in D^-

Menger's Theorem: vertex version

Theorem. [Menger 1927] The max number of internal node-disjoint s-t paths = the min size of s-t node disconnectors.

Unit network

- All self edges (v^{in}, v^{out}) have unit capacity
 - each node, except s and t, either has a single unit-capacity incoming edge, or a single unit-capacity outgoing edge
- All other edges have arbitrary positive integer capacity including ∞

Such flow network is called a unit network

Finding blocking flow in unit networks via DFS

- For any 0-1 flow f, the f-residual graph and its level graph are also unit networks.
- After an augmenting path is found in the level graph, only unit-flow is sent along it, and ALL internal nodes (and their incident arcs) on path are deleted.

Total running time: O(m)

Number of augmentations by blocking flows

Theorem. Total number of augmentations $\leq 2k$, where $k := \lfloor n^{1/2} \rfloor$ Lemma. After k augmentations, $val(f^*) - val(f) \leq k$. Pf.

- Each s-t path in D_f has length $\geq k+2$
- · U_i : the set of vertices at distance i from s in D_f
- For some $1 \le i \le k+1$, $|U_i| \le n/(k+1) \le n^{1/2}$ and hence $|U_i| \le k$.
- $S := U_0 \cup U_1 \cup \cdots \cup U_{i-1} \cup \{v \in U_i \mid v \text{ has 1 outgoing residual arc}\}.$
- · $val(f^*) val(f) \le$ the residue cut capacity of $S \le |U_i| \le k$.

Total running time

Theorem. A maximum flow and a min-cut in unit networks can be computed in $O(n^{1/2}m)$ time.

Theorem. A maximum number of internally node-disjoint s-t paths and a minimum s-t node separator can be computed in $O(m^{3/2})$ time.

2. WVC in Bipartite Graphs

Reduction to Min Cut

Flow network D: turn (positive) weights into capacities

Theorem. min vertex-cover weight of $G = \min S - t$ cut capacity of D

Min-VC Weight ≥ Min-Cut Capacity

- □ C: a min-weight vertex cover
- $_{\square}$ $V \setminus C$ is a stable set
- the cut capacity of $R \coloneqq \{s\} \cup (U \setminus C) \cup (W \cap C)$ in D is $w(U \cap C) + w(W \cap C) = w(C)$
- $N(U \setminus C) = W \cap C, N(W \setminus C) = U \cap C$

Min-VC Weight = Min-Cut Capacity

- R: a min s-t cut.
- $_{\square}$ $\delta^{out}(R)$ can't have ∞ arcs \Longrightarrow no edges between $U \cap R$ and $W \setminus R$
- $I:=(U\cap R)\cup (W\setminus R)$ is a stable set
 - $-N(U \cap R) = W \cap R, N(W \setminus R) = U \setminus R$
- $C := (U \setminus R) \cup (W \cap R)$ is a vertex cover
- $w(C) = w(U \setminus R) + w(W \cap R) = \text{capacity of the min-cut } R$

3. Maximum-Weighted Closed Set

Closed subset of vertices

$$D = (V, A; w)$$
: a vertex-weighted digraph can be positive or negative

- A subset U of V is closed if for each $u \in U$ its outgoing neighbors are also in U.
- Dbjective: find a maximum-weighted closed subset of vertices.

Min-Cut formulation

- Assign capacity ∞ to all edges in D.
- For each $v \in V^+$, add edge (s, v) with capacity w(v).
- For each $v \in V^-$, add edge (v, t) with capacity -w(v).

Min Cut formulation

- A set U is closed $\Leftrightarrow U \cup \{s\}$ has finite cut capacity
- For any closed U, $U \cup \{s\}$ has cut capacity

$$w(V^+ \setminus U) - (-w(V^- \cap U))$$

$$= w(V^+) - w(V^+ \cap U) - w(V^- \cap U)$$

$$= w(V^+) - w(U)$$

U is a max-weighted closed subset $\Leftrightarrow U \cup \{s\}$ has min cut capacity

