Homework 03: Due 9/27 (completion based)

Stat061-F23

Prof Amanda Luby

In HW1, we found the MOM and MLE estimates for each of the probability distributions below. For Q1-Q4, find (a) the posterior distribution for an iid sample of X_1, X_2, \dots, X_n and (b) the posterior mean (our Bayesian estimate).

- 1. The parameter λ for a Poisson distribution where $P(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}$ for k=0,1,2,... and we assume the prior distribution for λ is $\operatorname{Gamma}(\alpha,\beta)$. (This should be a named distribution; be sure to specify the parameters)
- 2. The parameter p in the Geometric distribution where $P(X=k)=p(1-p)^{k-1}$ for k=1,2,3,... and we assume the prior distribution for p is $\mathrm{Beta}(a,b)$. (This should be a named distribution; be sure to specify the parameters)
- 3. The parameter α in the distribution with pdf $f(x|\alpha) = \frac{\Gamma(2\alpha)}{\Gamma(\alpha)^2}[x(1-x)]^{\alpha-1}$ where $x \in [0,1]$ and we assume the prior distribution for α is Unif(0,1). (You will probably not be able to solve the integral to determine the posterior mean, but write out the integral you would have to solve.)
- 4. The parameter β in the Pareto distribution with pdf $f(x|\beta) = \frac{\beta}{x^{\beta+1}}$ where x > 1 and we assume the prior distribution for β is Gamma (α, λ) . (This should be a named distribution; be sure to specify the parameters)
- 5. For a Binomial (n, π) observation y, consider the Bayes estimator of π using a Beta (α, β) prior distribution.
 - (a) For large n, show that the posterior distribution of π has approximate mean $\hat{\pi} = \frac{y}{n}$ (it also has approximate variance $\frac{\hat{\pi}(1-\hat{\pi})}{n}$. Relate this result to classical estimation.
 - (b) Show that the MLE estimator is a limit of Bayes estimators, for a certain sequence of $\alpha = \beta$ values.
- 6. In class on Friday, we defined the posterior distribution for θ as:

$$f_{\theta|X}(\theta|x) = \frac{f_x(x|\theta)f_{\theta}(\theta)}{\int f_x(x|\theta)f_{\theta}(\theta)d\theta}$$

which is true if we observe 1 draw from the data model and have $X \sim f_x$.

If we have n IID observations $X_1, ..., X_n$, we replace $f_x(x|\theta)$ with the joint pdf:

$$f_{X^n}(x_1,...,x_n|\theta) = \prod_{i=1}^n f_x(x_i|\theta) = L_n(\theta)$$

where x^n denotes the set of $(x_1,....,x_n)$, and $L_n(\theta)$ is the same likelihood function that is so near and dear to our hearts.

Then, the posterior distribution is:

$$f(\theta|x^n) = \frac{f_{x^n}(x^n|\theta)f_{\theta}(\theta)}{\int f_{x^n}(x^n|\theta)f_{\theta}(\theta)d\theta} = \frac{L_n(\theta)f_{\theta}(\theta)}{c_n} \propto L_n(\theta)f_{\theta}(\theta)$$

- (a) Why can we write the joint pdf as $\prod_{i=1}^n f_x(x_i|\theta)$? (b) What is c_n and how do we know that it is a constant?
- (c) Explain what the $\propto L_n f_{\theta}(\theta)$ means.
- (d) Do you think the Bayes estimator will generally be more similar to the MLE or to the MoM? Why?
- 7. Wrap up lab activity
- 8. Review for quiz on Wednesday!