PROGRAMMING IN PYTHON I

Plotting in Python

Andreas Schörgenhumer Institute for Machine Learning

Copyright Statement

This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this material, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors.

Contact

Andreas Schörgenhumer

Institute for Machine Learning Johannes Kepler University Altenberger Str. 69 A-4040 Linz

E-Mail: schoergenhumer@ml.jku.at Write mails only for personal questions Institute ML Homepage

PLOTTING IN PYTHON

Motivation

- Often, we want to visualize data or handle images files
 - Visualize data and data distributions
 - Show/visualize image data
 - Create image data and save/load it from image files
 - □ ...
- We will now take a look at how this is done in Python and what we have to be aware of when dealing with image data

IMAGE FILES

■ Image data is often recorded as a 2D or 3D array of pixels

- Image data is often recorded as a 2D or 3D array of pixels
- Each pixel is a point in the array, carrying a value

- Image data is often recorded as a 2D or 3D array of pixels
- Each pixel is a point in the array, carrying a value
- Grayscale 2D image:
 - 2D array (2 spatial dimensions)
 - ☐ Each pixel carries a brightness information
 - ☐ https://en.wikipedia.org/wiki/Grayscale

- Image data is often recorded as a 2D or 3D array of pixels
- Each pixel is a point in the array, carrying a value
- Grayscale 2D image:
 - 2D array (2 spatial dimensions)
 - Each pixel carries a brightness information
 - ☐ https://en.wikipedia.org/wiki/Grayscale
- RGB(A) 2D image:
 - 3D array (2 spatial dimensions + 1 dimension for color channels)
 - □ Each pixel carries a brightness information of a specific color channel (red, green, blue, (alpha))
 - https://en.wikipedia.org/wiki/RGB_color_model

JPEG

- JPEG (Joint Photographic Experts Group)
- File suffix: .jpg or .jepg
- Pixel-based (stores values of pixels in image = raster graphics)
- Uses lossy compression
 - Data is lost when creating the file

PNG

- PNG (Portable Network Graphics)
- File suffix: .png
- Pixel-based (stores values of pixels in image = raster graphics)
- Uses lossless compression
 - No data is lost when creating the file

SVG

- SVG (Scalable Vector Graphics)
- File suffix: .svg
- Vector-based (stores code to produce image, e.g., coordinates of lines = vector graphics)
 - ☐ Image is "drawn" based on specifications in .svg file
 - □ No loss of resolution when zooming into image
 - □ E.g.: Draw line from x to y with line width w
- Uses lossless compression
- Mainly used for images where resolution is important and vector design is feasible
 - Line plots, histograms, neural network architecture depictions, . . .

MATPLOTLIB

■ In Python, matplotlib is the go-to plotting tool

- In Python, matplotlib is the go-to plotting tool
- Vast range of functions, documentation sometimes lacking, differences between versions

- In Python, matplotlib is the go-to plotting tool
- Vast range of functions, documentation sometimes lacking, differences between versions
- Typical usage: Search https://matplotlib.org/stable/gallery/index.html for something close to what you want and continue from there.

- In Python, matplotlib is the go-to plotting tool
- Vast range of functions, documentation sometimes lacking, differences between versions
- Typical usage: Search https://matplotlib.org/stable/gallery/index.html for something close to what you want and continue from there.
- Documentation/Tutorials: https://matplotlib.org/

matplotlib: Backends

- matplotlib will use the system backends, which depend on the OS
 - Different backends for different tasks (performance, user interaction, animations, 3D plots, etc.)
 - □ Plots might look different on different OS due to backends
 - ☐ Functionality depends on available backends, some backends can be installed manually
- matplotlib has an interactive and non-interactive mode
 - Interactive mode will show plots immediately, non-interactive mode only when explicitly shown
- https://matplotlib.org/stable/users/explain/ backends.html

matplotlib: Figures and Axes (1)

matplotlib works with figures and axes

matplotlib: Figures and Axes (1)

- matplotlib works with figures and axes
- Figure:
 - The window you are plotting in
 - Comes with tools for user interaction
 - □ Can be saved to image files

matplotlib: Figures and Axes (1)

- matplotlib works with figures and axes
- Figure:
 - The window you are plotting in
 - Comes with tools for user interaction
 - Can be saved to image files
- Axis:¹
 - The object we can use to plot on
 - ☐ A figure can have multiple axes
 - We can draw to an axis multiple times

¹To avoid confusion with "number lines" (x-axis, y-axis,), matplotlib actually always refers to the plotting object as Axes and to these number lines as Axis.

matplotlib: Figures and Axes (2)

ADDITIONAL INFORMATION: VISUAL PERCEPTION

Visual Perception

The following (optional) slides just serve as a starting point if you are interested and want to delve deeper into the topic of visualization.

Human Limitations and Biases (1)

Human eyes only perceive a very small fraction of wavelengths at a limited frame-rate

[Source: https://www.cyberphysics.co.uk/topics/radioact/Radio/EMSpectrumcolor.jpg]

Human Limitations and Biases (2)

- A lot of things make more sense in spectra we cannot see
 - □ Flowers in UV spectrum provide signals for insects

[Source: https://www.pnas.org/content/98/24/13745]

Human Limitations and Biases (3)

 PC-screen under the microscope (humans perceive this as white color)

Human Limitations and Biases (4)

- Human perception is biased towards certain wavelengths
 - □ Color perception differs across individuals (https://www.color-blindness.com/coblis-color-blindness-simulator/)
 - □ Different standards to mix RGB channels into grayscale image (https://en.wikipedia.org/wiki/Grayscale# Colorimetric_(perceptual_luminance-preserving) _conversion_to_grayscale)
- Especially when dealing with ML, it is important to be aware of our natural limitations and biases!