Deep Forest

CNN Models to Analyse Forest Image and Deforestation

Goal

Analyse Amazon Rainforest Images to predict 'Deforestation' and 'Pollution'

How to achieve

- Apply 4 different CNN models
 - 3 Pre-Trained Models
 - 1 Model from scratch

ResNet50

VGG

MobileNet

DeepForestNet

Our Dataset

Training Dataset

- ≈40,500 satellite images
- Label embedded (tags) in CSV

	A	В
1	image_name	tags
2	train_0	haze primary
3	train_1	agriculture clear primary water
4	train_2	clear primary
5	train_3	clear primary
5	train_4	agriculture clear habitation primary road
7	train_5	haze primary water
В	train_6	agriculture clear cultivation primary water
9	train_7	haze primary
0	train_8	agriculture clear cultivation primary
1	train_9	agriculture clear cultivation primary road
2	train_10	agriculture clear primary slash_burn water
3	train_11	clear primary water
4	train_12	cloudy
5	train_13	clear primary
6	train_14	cloudy
7	train_15	clear primary

Testing Dataset

○ ≈40,500 satellite images

Explore Data

One-hot encode

Out[21]:		agriculture	artisinal_mine	bare_ground	blooming	blow_down	clear	cloudy	conventional_mine	cultivation	habitation
	0	0	0	0	0	0	0	0	0	0	0
	1	1	0	0	0	0	1	0	0	0	0
	2	0	0	0	0	0	1	0	0	0	0
	3	0	0	0	0	0	1	0	0	0	0
	4	1	0	0	0	0	1	0	0	0	1
	40474	0	0	0	0	0	1	0	0	0	0
	40475	0	0	0	0	0	0	1	0	0	0
	40476	1	0	0	0	0	1	0	0	0	0
	40477	1	0	0	0	0	1	0	0	0	0
	40478	- 1	0	0	0	0	0	0	0	- 1	0

According to NASA Earth Observatory,

Deforestation ⊂ {the expansion of infrastructure and urbanization}

Pollution ⊂ {Farmers slash burn the remaining forest}

'Habitation' and 'Slash_Burn'

Data Preprocessing

Image Dimension

Missing values NA in Label Encoding CSV

For all models: TensorFlow *

Activation Function

ReLU
$$\max(0,x)$$

PoolingGlobalAveragePooling

3 Epochs

Desired Outcome Sigmoid

- Optimizer = Adam
- Binary Cross Entropy Loss
- AUC

Training Model

ResNet50

Principales Caractéristiques :

- Composé de 50 couches de convolution
- Connexions Skip
- Pré-entraînement sur ImageNet (d'image et classification)
- Adaptabilité

Resultats

Training Model

MobilNetV2

- Architecture Légère : faible puissance de Calcul
- Factorisation Profonde : depthwise separable convolution
- Blocs Linéaires : réduire le nombre de paramètres
- Précision Équilibrée : entre la précision et l'efficacité
- Pré-Entraînement et Fine-Tuning : ImageNet, tâches spécifiques

Resultats:

```
'Epoch 1': {'val_auc': 0.9377, 'val_loss': 0.1140},
'Epoch 2': {'val_auc': 0.9545, 'val_loss': 0.0910},
'Epoch 3': {'val_auc': 0.9531, 'val_loss': 0.0915}
```


Training Model

MobilNetV2

Deforestation Probability: 0.0071 Pollution Probability: 0.0015

Deforestation Probability: 0.0391 Pollution Probability: 0.0033

Deforestation Probability: 0.0049 Pollution Probability: 0.0004

ResNet50

Deforestation Probability: 0.0338 Pollution Probability: 0.0011

Deforestation Probability: 0.0090 Pollution Probability: 0.0006

Deforestation Probability: 0.2665 Pollution Probability: 0.0012

Deforestation Probability: 0.0339 Pollution Probability: 0.0039

VGG Model

- •Choix du Modèle VGG16 : 92,7% de précision
- Avantages VGG vs ResNet
 - Simplicité de l'Architecture
 - Transfert d'Apprentissage Plus Rapide
 - Facilité d'Interprétation
- VGG vs MobileNet :
 - Meilleure performance sur des jeux de données complexes.
 - Transfert d'apprentissage plus puissant grâce à sa structure plus profonde.
 - Facilité d'interprétation des caractéristiques extraites

Architecture VGG16

Résultats VGG16

Epoque	AUC (Training)	AUC (Validation)	Loss (Training)	Loss (Validation)
1	0.9155	0.9309	0.1133	0.1020
2	0.9308	0.9407	0.1028	0.1035
3	0.9327	0.9335	0.1019	0.1009

- Augmentation de AUC au fil des époques
- Diminution de Loss au fil des époques

Deforestation Probability: 0.2665 Pollution Probability: 0.0012

Deforestation Probability: 0.0090 Pollution Probability: 0.0006

DeepForestNet

Uses CNN Residual Network Architecture

Deforestation Probability: 0.0029 Pollution Probability: 0.0003

output

Conclusion - Model Comparison

Conclusion

Training the Model with another Dataset (maybe)

ResNet50 V

VGG

MobileNet