

CAI 4104/6108 – Machine Learning Engineering: Midterm Review

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

■ Homework 3 is out

- Topic: Gradient Descent & Dimensionality Reduction
- Due 3/20
- Do not submit the data file, only submit the notebook (.ipynb)
- Advice: start early

Administrivia

- Midterm grades are posted
 - We will be adjusting grades based on max score
 - * Tentative new max (=97 for 4104; 93 for 6108)
 - If you have questions about your exam, please contact me and (or) the TA team

- Mean (± std): 85.0 (± 9.4)
- Median: 85.5
- Min: 62, Max: 100

- Mean (± std): 74.5 (± 11.7)
- Median: 78.
- Min: 42.5, Max: 96

Short Answers Questions

- Given a dataset and a ML algorithm, briefly describe a procedure to determine if you have enough data to solve the problem.
- Consider k-Nearest Neighbors. What is the effect of increasing k in terms of bias and variance?
- Briefly describe is a way to reduce the number of values for a numerical feature/attribute.

Reminder: The Kernel Trick

- Wait! It is (computationally) expensive to transform our data to higher dimensional space
 - Can we do this transformation implicitly?
 - In other words: can we only reflect the transformation only in our cost function for optimization?
 - Yes! This is called the kernel trick!
 - Suppose we have a mapping Φ such that $\Phi(x)$ is in the higher dimensional space
 - * For example: if $x=(x_1,x_2)$ we can take: $\Phi(x)=(x_1^2, x_1 x_2, x_2^2)$
 - In the formulation of the *dual problem*, the only term involving feature vectors is their dot-product $x_i x_j$
 - * So we define kernels in terms of x_i , x_j . That is: $K(x_i, x_j) = \Phi(x_i) \Phi(x_j)$ (dot-product)
 - Popular kernels
 - $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i \boldsymbol{x}_j)^2$
 - $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i \, \boldsymbol{x}_j)^k$
 - * $K(x_i, x_j) = \exp(-||x_i x_j||^2/(2\sigma^2))$
 - * $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\gamma \boldsymbol{x}_i \boldsymbol{x}_j + r)$

("quadratic kernel")

("polynomial kernel" of degree exactly k)

("RBF kernel") [feature space has infinite dimensions]

("sigmoid kernel")

* Note: σ , γ , and r are hyperparameters. For RBF we can set $\gamma = 1/(2\sigma^2)$ to be consistent with Scikit-learn!

Reminder: Kernel Trick: Why Does it Work?

- Mercer's Theorem:
 - If a function $K(x_i, x_j)$ satisfies some conditions then there exists some mapping Φ to possibly much higher dimension such that $K(x_i, x_j) = \Phi(x_i)^T \Phi(x_j)$
- Why does this matter?
 - ullet The dual formulation depends only (for the data) on the dot-product: $x_i^T x_j$

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i} \sum_{j} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j} - \sum_{i} \boldsymbol{\alpha}_{i}$$
 such that: $\boldsymbol{\alpha}_{i} \geq 0$ for $i=1,2,...,n$ and $\sum_{i} \boldsymbol{\alpha}_{i} \boldsymbol{\alpha}_{i} y_{i} = 0$

- So we can replace that term by $K(\boldsymbol{x}_i, \boldsymbol{x}_j)$ since $K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \Phi(\boldsymbol{x}_i)^T \Phi(\boldsymbol{x}_j)$
- ullet Observe: we do not need to know how to compute Φ
 - In some cases we cannot even compute it

Problems

- Kernels: Your friend Carol is starting to do ML research. For this she needs to learn about kernels. Recall that a kernel is a function $K(x_1, x_2)$ that maps a pair of input feature vectors x_1 , x_2 to a different space.
 - (a) (3pts) Briefly explain for what reason we may want to use a kernel?
 - (b) (4pts) In machine learning, we use kernels that satisfy $K(x_1, x_2) = \Phi(x_1) \cdot \Phi(x_2)$, where \cdot denotes the dot- product and Φ is some mapping. What is the "kernel trick" and what does it have to do with this condition?
 - (c) (8pts) The following are kernels that Carol is considering using for her ML pipeline. For each one state whether it is a valid kernel.
 - 1. $K(x_1, x_2) = -1$
 - 2. $K(x_1, x_2) = x_1 \cdot x_2 + c$, where c>0 is a constant
 - 3. $K(x_1, x_2) = \exp(x_1) \cdot \exp(x_2)$
 - 4. $K(x_1, x_2) = x_1 x_2$
 - (d) (3pts) Carol decided to use the RBF kernel $K(x_1, x_2) = \exp(-\alpha ||x_1 x_2||^2)$. Explain how Carol should optimize the value of α .

Reminder: Neural Network Terminology

Transfer Learning

- Should you train a deep neural network from scratch?
 - Not always. When possible you should use transfer learning:
 - Pick a pre-trained deep neural network in the same or related domain
 - Then fine-tune on the task you care about
- Reusing an existing deep neural network
 - 1. Pick some layers to reuse (typically the earlier layers)
 - 2. Freeze these layers
 - This will set the corresponding parameters as non-trainable
 - Optimization: you can actually cache the outputs of frozen layers for every input
 - 3. Add your own layers hidden layer(s)
 - 4. Replace or discard upper layers
 - You should always discard the existing output layer and use your own

Next Time

- Friday (3/8): Exercise
- Upcoming:
 - Homework 3 is due 3/20