TEAM - BOLT

FAIQUE

PROBLEM STATEMENT:

Train a robust object detection model using a synthetic dataset generated by Duality Al's Falcon digital twin simulation of a space station environment. The model must accurately detect and classify three key object categories — Toolbox, Oxygen Tank, and Fire Extinguisher — under challenging conditions such as varying lighting, object occlusion, and diverse camera angles.

TEAM LEADER NAME: Asad Usmani

INSTITUTE NAME: Birla Institute Of Technology Mesra

TEAM LEADER EMAIL ID: umar.usmani2017@gmail.com

<u>METHODOLOGY</u>

DATASET PREPARATION

Compiled a custom dataset containing annotated images of space station components, including ToolBox, Oxygen Tank, and Eirkentigucher. The dataset was split into training, validation, and test sets to ensure robust evaluation.

MODEL ARCHITECTURE SETUP

Employed the YOLOv8 object detection architecture (Ultralytics) for its high accuracy and real-time performance in detecting multiple object classes relevant to space station operations.

TRAINING & VALIDATION

Trained the model on the curated dataset using data augmentation techniques (e.g., flipping, scaling, color jitter) to enhance generalization. Validation was performed on a separate set to monitor overfitting and tune model parameters.

PERFORMANCE OPTIMIZATION

Optimized model performance by fine-tuning hyperparameters such as learning rate, batch size, and IoU threshold. Evaluated model accuracy using metrics like precision, recall, and F1-score, and analyzed confusion matrices for error diagnosis.

MODEL DEPLOYMENT

Deployed the trained model using a Streamlit web application for interactive visualization and real-time object detection. Integrated analytics and reporting features to facilitate user interaction and result interpretation.

Technical Implementation

RESULT AND PERFORMANCE METRICS

☐ BEST EPOCH PERFORMANCE SUMMARY (Epoch 10) ☐ mAP@0.5 Training Progression

Metric	Value	Grade	Industry Standard
mAP@0.5	91.5%	☐ Excellent	> 80%
mAP@0.5:0.95	78.9%	☐ Excellent	> 60%
Precision	94.7%	Outstanding	> 85%
Recall	89.0%	☐ Excellent	> 75%
Training Time	2408s	☐ Fast	< 300s/epoch

CONFUSION MATRIX

CHALLENGES AND SOLUTIONS

"0 objects detected" in interface

Wrong objects detected (kite, bus)

Using general YOLOv8n model

Poor recall on space station data

Root Cause: Model Mismatch

Model restoration to space station best.pt

Interface updates for space station focus

Optimized confidence thresholds (0.15)

Enhanced test time augmentation

Result: Correct Space Station Detection

Technical Enhancements

CONCLUSION AND FUTURE WORK

- Specialised 3-class space station
- Real time inference < 50ms
- 91.5 % mAP@0.5 performance
- Production ready Streamlit app
- Falcon integration stratergy

Future Work & Improvements

Advanced analytics dashboard

Real-time video processing

Mobile app deployment

Multi-model ensemble