Precept Seven: Mixture Models and the EM Algorithm

Rebecca Johnson

March 28th, 2017

Outline

- ► Replication/psets check-in
- Mixture model example: Middle-Inflated Ordered Probit (MiOP) model with views on EU membership
- Shift to EM algorithm with different mixture: wines from distinct cultivars (plants) in Italy
 - Move from mixture of k = 2 univariate normals to mixture of k = 3 multivariate normals
 - ▶ Practice coding EM algorithm into R to gain intuition on the algorithm

Inflation models as mixture models

- ▶ In precept 6, Ian took us through an example of a zero-inflated negative binomial (if a logit and negative binomial model mated and gave birth to a zinb!)
 - ► Example: count of male 'satellites' around a female horseshoe crab
 - Counts are a mixture of two processes, each modeled using a different distribution:
 - Mhether or not the female attracts *any* satellites...modeled using a Bernoulli distribution that draws $Z_i = 0$ or $Z_i = 1$
 - Conditional upon attracting satellites, the count she attracts...modeled using a Negative Binomial distribution that draws from positive integers including 0

Inflation models as mixture models

- ► On problem set 5, we have an example of a *zero-inflated poisson* (if a logit (or probit) mated with a Poisson and gave birth to a *zip!*)
 - ► Example: the count of speeches critical of the Iraq War that Republican house members give in a particular month
 - Counts are a mixture of two processes, each modeled using a different distribution:
 - ▶ Whether or not there are any speeches given...modeled using a Bernoulli distribution that draws $Z_i = 0$ or $Z_i = 1$
 - Conditional upon any speeches, the count of speeches...modeled using a Poisson distribution that draws from positive integers including 0

This framing of the two zero-inflated models should look familiar from Monday's lecture...

- ▶ *Mixture models* (sometimes called finite mixture models): we assume that each observation is generated from one of *k* clusters/distributions
- Common notation:
 - Latent variable for which distribution/cluster: Z before estimated; z
 after estimated; z_i indicates which distribution/cluster observation i
 comes from
 - ▶ Number of distributions/clusters to choose from: *k*
 - ▶ Putting these together: $z_i \in \{1, 2, ..., k\}$

This framing of the two zero-inflated models should look familiar from Monday's lecture...

- ▶ In previous examples, k = 2, allowing us to model k using distributions for binary outcomes like logit and probit
- ▶ In other examples, k > 2, meaning we need to switch to a distribution that allows us to draw from more than two categories...¹
 - ▶ Multinomial distribution, where 1 = number of trials and $\pi =$ probability of choosing category $1, 2 \dots k$:

 $z_i|\pi \sim Multinomial(1,\pi)$

 $^{^1}$ More formally, we can think of the Bernoulli distribution behind the logit model as a special case of a Multinomial when the number of trials = 1 and k = 2

Mixture models we've seen: happen to be models where we've assumed observations are drawn from one of two categories

- ▶ Old faithful and height by sex examples: mixture of normals (Gaussian mixture) with k = 2
 - ▶ What's 'mixed'?: same distribution (normal) but each of the k = 2 normal distributions has a different mean and variance
 - ▶ Which parameters can we estimate?: $\{\mu_1, \mu_2, \Sigma_1, \Sigma_2, \pi\}$
- ▶ Horseshoe crab and count of speeches examples: mixture of two distributions with k = 2
 - What's 'mixed'?: different distributions: a distribution that explains zero's and a distribution that explains counts that include zero's (negative binomial; poisson)
 - Which parameters can we estimate?: $\{\beta \text{ for logit or probit; } \gamma \text{ for negative binomial or poisson, } \pi\}$
- ▶ **Voting on trade bills example**: mixture of regression models with k = 2 (Stoper-Samuelson theory v. Ricardo-Viner theory)

Mixture models: examples where k > 2

- ▶ If Garip (2012) had estimated membership in one of the four migration clusters using EM algorithm rather than *k-means* clustering
- ▶ Multivariate normal example we'll turn to later where k = 3 distinct plants used to grow wine
- ► Many others! (extracting dominant *k* dominant colors from images, modeling ancestry, etc.)

New mixture model for today's precept...

Middle-inflated ordered probit model (MiOP)

Bagozzi, Benjamin E., Bumba Mukherjee, and R. Michael Alvarez. A mixture model for middle category inflation in ordered survey responses. Political Analysis (2012): 369-386.

- Why we're covering:
 - Reiterates general ideas behind zero-inflated model you'll derive/estimate in Pset 5 because builds on general intuition behind zero inflation
 - 2. Useful for applied survey work using Likert-type scales

Motivation for MiOP: Eurobarometer poller takes a trip to Vilnius, Lithuania in 2002

Motivation for MiOP: Eurobarometer poller takes a trip to Vilnius, Lithuania in 2002

- ► Interviewer: "Generally speaking, do you think that Lithuania's membership in the European Union would be a good thing, a bad thing, or neither good nor bad? (or you can choose do not know)"
 - Informed Vilnius resident 1: a good thing!
 - ▶ Informed Vilnius resident 2: neither good or bad! I can see the benefits of easier migration, but I also think we benefit from having litas and that switching to the Euro might induce inflation
 - Uninformed Vilnius resident who is willing to admit he or she is uninformed: don't know!
 - Uninformed Vilnius resident who is not willing to admit he or she is uninformed: neither good or bad! (while thinking: I don't want to choose 'do not know' because that will show I'm clueless about the EU)

Focusing on the neither good nor bad category, how do we distinguish between...?

- 1. Informed Vilnius resident 2: neither good or bad! I can see the benefits of easier migration, but I also think we benefit from having litas and that switching to the Euro might induce inflation
- 2. Uninformed Vilnius resident who is **not** willing to admit he or she is uninformed: neither good or bad! (while thinking: I don't want to choose 'do not know' because that will show I'm clueless about the EU)

Problem: same observed choice but different DGP behind that choice

The ideal: a variable *in the data* that labels these two types of respondents with their corresponding DGP

Name ²	Choice	Label
Nojus Matas Vilt	Neither good nor bad Neither good nor bad Neither good nor bad	Informed

² Source: Babynamewizard.com Most popular Lithuanian boys and girls names

What we have instead: covariates that we're going to use to probabilistically model that label assignment

Name	Choice	Label	Education	Age
Matas	Neither good nor bad	?	College	45
	Neither good nor bad	?	H.S.	35
	Neither good nor bad	?	H.S.	21

The need to model who might be informed v. uninformed before modeling views on EU leads to a shift from one-stage to a two-stage process

Assume there is a latent variable Y_i^* that in this case, represents something like the latent degree of support for Lithuana's EU membership

- **Standard ordered probit**: use covariates to model choice:
 - 1. 'A bad thing': low Y_i^*
 - 2. 'Neither good nor bad': medium Y_i^*
 - 3. 'A good thing': high Y_i^*
- ▶ That one-stage process is for 'a bad thing' and 'a good thing', but MiOP argues that middle category is likely inflated (has excess responses) because that response for observation *i* could be generated by the following two-stage DGP:
 - 1. Stage one: is the respondent informed or uninformed but wants to save face?
 - If uninformed and wants to save face: chooses 'neither good nor bad'
 - 2. Stage two: conditional on being informed, having medium Y_i^*

Putting that argument into mathematical notation: sidenote on notation we use versus notation in paper

- ▶ For consistency with Lectures 4/5, and because the authors make the *confusing* choice to use z_i to refer to a vector of covariates that relates to being informed rather than a latent variable, we're shifting some notation from the paper
- In particular (and only relevant if you want to cross-ref paper eventually):
 - Modeling binary outcome of informed v. uninformed
 - Authors use: si
 - ▶ We will use: z_i
 - Vector of covariates that predict being informed v. uninformed
 - Authors use: z_i
 - ▶ We will use: wi
 - Threshold parameters for ordered probit
 - Authors use: μ_i
 - We use: ψ_j (Lecture also sometimes uses τ_j)
 - lackbox For ordered probit, they start with j=0 as first category while we start with j=1

Stage one of the model: is respondent informed or uninformed (latent variable)

- ▶ Split between two sub-populations: $z_i \in \{0,1\}$ where 0 = uninformed and 1 = informed
- Latent variable representation:
 - $\triangleright z_i^*$: latent propensity to be informed
 - w_i: vector of covariates related to that propensity (e.g., age; whether you discuss politics)
 - \triangleright γ : coefficients on those covariates
 - Putting it together: $z_i^* = w_i' \gamma + u_i$
- Translating back into binary outcomes and modeling using probit...two types of respondents, where Φ is standard normal CDF:
 - 1. Informed: $Pr(z_i = 1|w_i) = Pr(z_i^* > 0|w_i) = \Phi(w_i\gamma)$
 - 2. Uninformed: $Pr(z_i = 0 | z_i) = Pr(z_i^* \le 0 | w_i) = 1 \Phi(w_i \gamma)$

Taking stock: we now have a model for stage one of our DGP (is the respondent informed or uninformed?)

1. Informed:

$$Pr(z_i = 1|w_i) = Pr(z_i^* > 0|w_i) = \Phi(w_i\gamma)$$

2. Uninformed:

$$Pr(z_i = 0|w_i) = Pr(z_i^* \le 0|w_i) = 1 - \Phi(w_i\gamma)$$

How do we then incorporate this information into stage two of our DGP (views on EU?)

Stage two: add these indicators to ordered probit model from Lecture 4, Slide 101

Where:

- ▶ y_i is observed choice
- x_i: covariates predicting that choice importantly, these can be different than the covariates that predict being informed or not
- \triangleright β : coefs on covars
- And we generalize to j choices (rather than just the j=3 of EU case) where m= middle choice:

$$Pr(y_i) = \begin{cases} Pr(y_i = 1 | x_i, w_i) &= \Phi(w_i' \gamma) \Phi(w_i' \beta) \\ Pr(y_i = j | x_i, w_i) &= [\mathbf{1} - \Phi(w_i' \gamma)]^{j=m} + \Phi(w_i' \gamma) [\Phi(\psi_j - x_i' \beta) - \Phi(\psi_{j-1} - x_i' \beta)] \\ Pr(y_i = J | x_i, w_i) &= \Phi(w_i' \gamma) [1 - \Phi(\psi_{J-1} - x_i' \beta)] \end{cases}$$

Aside about paper: correlated errors ordered probit model (MiOPC)

- Now that we've shifted from a one-stage model in the typical ordered probit case (just modeling how a respondent's covariates predict his or her choice on EU question) to a two-stage model, we run into a challenge with the error terms in each model
- More specifically, we have two one equation and one error term in each stage:
 - 1. Stage one: model informed v. uninformed

$$z_i^* = w_i' \gamma + u_i$$

2. Stage two model: choice among informed

$$y_i^* = x_i' \beta + e_i$$

Since both e_i and u_i come from the same respondent, these error terms are likely to be correlated so the authors create another model (MiOPC) that adds to the model/estimates ρ_{eu}

Combining the two stages into one likelihood/log-likelihood

In writing out the likelihood, we distinguish between two cases, where m= indicates middle category:

- 1. Observed choice is not middle category: $Pr(y_i = j | x_i, w_i)$ means we don't include observations classified as uninformed
 - ▶ **Don't include** $1 \Phi(w_i'\gamma)$ in that part of the likelihood
- 2. Observed choice is middle category: $Pr(y_i = m|x_i, w_i)$
 - ▶ **Do include** $1 \Phi(w_i'\gamma)$ in that part of the likelihood

This leads to a likelihood/log-likelihood with three components...

Likelihood/log-likelihood for MiOP

1.
$$L(\gamma, \beta, \psi | x, w)^3 = \prod_i^n \prod_{j=1}^{m-1} [Pr(z_i = 1)Pr(y_i = j)]^{d_{ij}}$$
 $choose \ cat < m$
 $\times \prod_i^n \prod_{j=m}^m [Pr(z_i = 0) + Pr(z_i = 1)Pr(y_i = j)]^{d_{ij}}$
 $choose \ cat \ m$
 $\times \prod_i^n \prod_{j=m}^J [Pr(z_i = 1)Pr(y_i = j)]^{d_{ij}}$

2. $\ell(\gamma, \beta, \psi | x, w)$: \prod become \sum and $a^b = bln(a)$ so move d_{ij} out of exponent

choose cat>m

i i > m

 $^{^{3}}d_{ij}$ is an indicator for whether respondent i chose category j

Coding this log-likelihood into ${\sf R}$

Coding the log-likelihood into R (from replication package)

```
MIOP <- function(b.data) {
#stores outcome
  v<-data[,1]</pre>
                      #EU Support
##stores each covar
  x1<-data[,2] #political trust
  x2<-data[,3] #xenophobia
  x3<-data[,4] #discuss politics
  x4<-data[,5] #univers_ed
  x5<-data[.6] #professional
  x6<-data[,7] #executive
  x7<-data[.8] #manual
  x8<-data[,9] #farmer
  x9<-data[,10] #unemp
  x10<-data[,11] #rural
  x11<-data[,12] #female
  x12<-data[,13] #age
  x13<-data[.16] #student
  x14<-data[,18] #income
  x15<-data[,17] #EU Bid Knowledge
  x16<-data[,14] #EU Knowledge Objective
  x17<-data[,22] #TV
  --10< d-+- [ 02] . --10< d-+- [ 04] . --00< d-+- [ 05] #H:-- H:-- M:d . I --- M:d
```

Coding the log-likelihood into R (from replication package)

```
#observations
n<-nrow(data)
#covars for stage 2 choice if informed
z<-cbind(x1,x2,x3,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x18,x19,x20)
#covars for stage 1 - informed or not
x<-cbind(1,x3,x10,x11,x12,x13,x15,x16,x17,x18,x19,x20)
#initialize thresholds for ordered probit
tau<- rep(0,6)
tau[1]<--(Inf)</pre>
```

tau[2]<- b[1]

tau[4]<- (Inf)

tau[3] < b[1] + exp(b[2])

Coding the log-likelihood into R (from replication package)

```
llik <- matrix(0, nrow=n, ncol = 1)
  #iterate through each obs
 for(i in 1:n){
 #coef for informed or not
 B < -b[3:14]; XB < -B \% *\% x[i,]
 #coef for EU view
 G \leftarrow b[15:30]; ZG \leftarrow G \% *\% z[i,]
 #if choice is 1 (EU bad), assume informed and estimate choice prob
if(v[i]==1){llik[i]<-log((pnorm(XB)) * (pnorm(tau[2]-ZG)) )}</pre>
#if choice is 2 (neither), add prob of uninformed to informed*choice
else if(v[i]==2){llik[i]<-log((1-pnorm(XB))+
  (pnorm(XB)) * (pnorm(tau[3]-ZG) - pnorm(tau[2]-ZG)))}
#if choice is 3, assume informed and estimate choice prob
else if(y[i]==3){llik[i]<-log((pnorm(XB)) * (1-pnorm(tau[3]-ZG)))}
}
        llik<--1*sum(llik): return(llik)</pre>
}
```

Estimating using one of R's built-in methods for numerical optimization

BFGS = briefly reviewed in Precept 3; 'quasi-Newton' method that takes the general form of using both the first and second derivative of the function we're max/minimizing (quasi = uses approximation for Hessian rather than analytic solution)

Results: first stage (predicted being informed = 1)

	coefficient	SE	z-score
constant	0.43	0.22	1.97
discuss pol	0.21	0.05	4.33
rural	-0.09	0.04	-2.29
female	-0.39	0.08	-4.76
age	-0.01	0.00	-2.98
student	-0.36	0.16	-2.28
EU bid	0.49	0.10	4.82
EU_-know	0.15	0.02	6.94
TV	0.06	0.03	1.97
high	-0.22	0.14	-1.62
high-mid	-0.52	0.14	-3.81
low-mid	-0.48	0.09	-5.22

Results: second stage (conditional on informed, choice of category)

	coefficient	SE	z-score
polit_trust	0.90	0.05	17.43
Xenophobia	-0.58	0.05	-10.94
discuss_politics	0.02	0.02	0.81
professional	-0.09	0.08	-1.15
executive	0.12	0.10	1.19
manual	-0.13	0.05	-2.71
farmer	-0.05	0.09	-0.56
Unemployed	0.12	0.06	2.10
rural	0.01	0.02	0.44
female	0.03	0.03	0.81
age	-0.00	0.00	-1.45
student	0.15	0.08	1.78
income	0.07	0.01	10.75
high	0.09	0.06	1.52
high-mid	0.01	0.07	0.13
low-mid	-0.03	0.05	-0.72

Takeaways

- ► Same observed choice—neither good nor bad—in population of respondents disguises two sub-populations: informed about EU bid and genuinely torn versus uninformed and saving face
- Ideal data: we'd have a label identifying each observation as belonging to one of those two sub-populations
- ▶ Real data: we lack that label so model it using covariates
- Adding that modeling of the label transforms a typical ordered probit case into a two-stage process, just as in the zero-inflation models, adding in the logit/probit as the first stage transforms a typical count model into a two-stage process

Transition to EM

- ► In previous optimization, we ended up with a challenging log-likelihood involving a normal pdf that required using a *numerical optimization* method (BFGS)
- ► EM is focused on similarly intractable likelihoods that have two characteristics:
 - 1. We can write the model using a latent variable representation, which we can do with mixture models
 - 2. When we get to a step reviewed on a later slide, we are able to take the expectation to compute responsibilities

Motivating example: classification of wine based on observed attributes

- ▶ Opening up a script or .rmd, install and load the gclus package
- ▶ Then, load and view the wine data

- ▶ You'll notice there's a variable Class that indicates which cultivar out of k = 3 options the wine comes from
- ▶ When coding the EM algorithm, we'll use that to check our work
- ▶ But the example is motivated by idea that those labels are *latent* variables that we need to probabilistically estimate

What we did with student heights and old faithful...univariate normal

▶ In univariate normal, we model a given wine's label using a *single* observed attribute among the many present in the data (e.g., choose one out of Alcohol; Phenols; Ash, etc)

But we might think that if we add in other attributes, we can better distinguish between labels/clusters

▶ Rather than estimate labels based on a single attribute (Alcohol content), can estimate labels based on multiple attributes (in this case: Alcohol content + Phenols)

Conveniently, this takes us into the world of the EM algorithm derivation from Slides 38 and 39 of this week's lecture...we're going to go slowly step by step and implement in R using the wine data, Alcohol and Phenol attributes (bivariate normal), and k=3

Algorithm for Gaussian mixture

- 1) Initialize parameters $oldsymbol{\mu}^t, oldsymbol{\Sigma}^t$, $oldsymbol{\pi}^t$
- 2) Expectation step: compute 'responsibilities' $p(\pmb{z}_i|\pmb{\mu}^t, \pmb{\Sigma}^t, \pmb{\pi}^t, \pmb{X}) \rightsquigarrow \pmb{r}_i^t$

$$r_{ik} = \frac{\pi_k \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{k'} \pi_{k'} \mathcal{N}(x_i | \mu_{k'}, \Sigma_{k'})}$$

3) Maximization step: maximize with respect to μ, Σ and π :

$$\begin{aligned} \mathsf{E}_{z}[\log p(\mathbf{x}, \mathbf{z} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \boldsymbol{\pi})] &= \mathsf{E}_{z}\left[\log \left(\prod_{i=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{nk}} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})^{z_{nk}}\right)\right] \\ &= \mathsf{E}_{z}\left[\sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left[\log \pi_{k} \mathcal{N}(\mathbf{x}_{n} | \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k})\right]\right] \end{aligned}$$

Obtain $\mu_k^{t+1}, \Sigma_k^{t+1}$, π^{t+1}

4) Assess change in the log-likelihood

Focus on M-step

3) M-Step:

$$\mathsf{E}[\log\mathsf{Complete}\;\mathsf{data}|\boldsymbol{\theta},\boldsymbol{\pi}] \;\; = \;\; \sum_{i=1}^{N} \sum_{k=1}^{K} \mathsf{E}[z_{ik}] \log \left(\pi_{k} \mathcal{N}(x_{i}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})\right)$$

Because $E[z_{ik}] = r_{ik}$, solutions are weighted averages of usual updates

$$\pi_k^{t+1} = \frac{\sum_{i=1}^{N} r_{ik}^t}{N} \tag{1}$$

$$\pi_k^{t+1} = \frac{\sum_{i=1}^{N} r_{ik}^t}{N}$$

$$\mu_k^{t+1} = \frac{\sum_{i=1}^{N} r_{ik}^t x_i}{\sum_{i=1}^{N} r_{ik}^t}$$
(2)

$$\Sigma_k^{t+1} = \frac{1}{\sum_{i=1}^{N} r_{ik}^t} \sum_{i=1}^{N} r_{ik} (x_i - \mu_k^{t+1}) (x_i - \mu_k^{t+1})^T$$
 (3)