AHP

UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Studi in Ingegneria Informatica

Primo Modulo di Ricerca Operativa – Prova in corso d'anno

1 febbraio 2002

Nome:

Cognome:

Barrare la casella corrispondente:

Diploma o laurea V.O. O

Laurea N.O. O

Esercizio 1

È dato il problema di PL in figura.

Partendo dalla base $B = [A_2 A_4 A_5]$ trovare una soluzione ottima del problema con l'algoritmo del simplesso o dimostrare che il problema è illimitato inferiormente. Evidenziare la soluzione di base di partenza e quella finale.

$$\min -x_1 + 3x_2
\begin{cases} x_1 + x_2 - x_3 = 3
-2x_1 + x_3 + x_4 = 2
3x_1 - 2x_3 + x_5 = 11
x > 0$$

Esercizio 2

È dato il problema di PL in figura. Trovare una soluzione ottima con il metodo grafico o dimostrare che il problema è illimitato o impossibile.

$$\min -x_1 - 3x_2$$

$$\begin{cases} x_1 - x_2 \le 4 \\ 2x_1 + x_2 \ge 5 \\ -x_1 + 2x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 3

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se esiste una soluzione ottima in cui $x_2 > 0$.

$$\min 2x_1 - 4x_2 + 5x_3$$

$$\begin{cases}
-x_1 + x_3 \le 4 \\
x_2 + x_3 \ge 2 \\
x_1 \le 0, \quad x_2 \ge 0
\end{cases}$$

Esercizio 4

È dato il grafo in figura. In tabella sono dati i costi degli archi e un flusso ammissibile. A partire dal flusso dato trovare il flusso di costo minimo con il simplesso su reti.

Archi	(1,3)	(2,1)	(2,3)	(3,4)	(4,5)	(4,6)	(5,1)	(5,6)	(6,2)
Costi	-3	5	4	-6	2	4	-2	-3	1
Flussi	2	0	0	2	0	2	0	3	5

Esercizio 5

In tabella è riportato il costo di percorrenza degli archi di un grafo con 9 nodi **a...i**. Trovare l'albero dei cammini minimi dal nodo **a** a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Evidenziare il cammino minimo dal nodo **a** al nodo **i**.

Archi	(a,b)	(a,c)	(a,e)	(b,c)	(b,e)	(b,f)	(c,d)	(d,h)	(d,g)	(e,c)	(e,h)	(e,d)	(e,g)	(f,a)	(f,d)	(f,e)	(f,g)	(g,h)	(g,i)	(h,i)
Costi	4	7	9	2	4	1	7	1	4	1	10	3	10	4	9	2	10	6	12	8

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile da s a t con l'algoritmo di Ford e Fulkerson.

Archi	(s,1)	(s,5)	(1,2)	(1,3)	(2,3)	(2,t)	(3,4)	(4,5)	(4,6)	(5,1)	(5,6)	(6,2)	(6,t)
Capacità	6	3	2	9	4	6	2	4	3	5	2	5	2
Flussi	2	0	2	0	2	0	2	2	0	0	2	0	2

Esercizio 7

In tabella sono riportate le 14 attività di un progetto, con durate e vincoli di precedenza tra attività. Formulare come problema di PL il problema di determinare la durata minima del progetto, senza risolvere il problema stesso.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A ₁₄
Durata	7	9	14	16	15	14	8	3	5	7	3	9	11	5
Predecessori	-	-	-	\mathbf{A}_{1}			A_4	A_5		A_9	A '	A_{11}	A_8	
				A_3	A_2	A_3	A_6		A_6		A_{10}		A_9	A_{13}

Domanda 8

Illustrare i problemi di programmazione convessa, dimostrando in particolare che in questi problemi un punto di minimo locale è punto di minimo globale.

Corso di Studi in Ingegneria Informatica

Primo Modulo di Ricerca Operativa – Prova in corso d'anno

1 febbraio 2002

Nome:

Cognome:

Barrare la casella corrispondente:

Diploma o laurea V.O. O

Laurea N.O. O

Esercizio 1

È dato il problema di PL in figura.

Partendo dalla base $B = [A_5 A_3 A_2]$ trovare una soluzione ottima del problema con l'algoritmo del simplesso o dimostrare che il problema è illimitato inferiormente. Evidenziare la soluzione di base di partenza e quella finale.

$$\min \quad x_2 - 2x_4$$

$$\begin{cases} 4x_1 - 3x_4 + x_5 = 12 \\ -x_1 + x_3 + 3x_4 = 6 \\ x_1 + x_2 - x_4 = 4 \\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Trovare una soluzione ottima con il metodo grafico o dimostrare che il problema è illimitato o impossibile.

$$\min -x_1 \\ \begin{cases} x_1 - x_2 \le 3 \\ 2x_1 + x_2 \le 12 \\ -x_1 + 2x_2 \le 14 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 3

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 1 & -5 & 0 \end{pmatrix}$$

$$\max x_1 - x_2 + x_3$$

$$\begin{cases} 2x_1 + x_2 - x_3 = -3\\ x_1 - x_2 \le 6\\ x_1 \ge 0, \quad x_3 \le 0 \end{cases}$$

Esercizio 4

È dato il grafo in figura. In tabella sono dati il costo, la capacità degli archi e un flusso ammissibile. A partire dal flusso dato trovare il flusso di costo minimo con il simplesso su reti.

Archi	(1,2)	(1,3)	(2,3)	(3,4)	(3,5)	(4,1)	(5,2)	(5,4)
Capacità	3	14	4	6	10	11	6	7
Costi	2	-4	4	3	-2	1	16	3
Flussi	0	8	0	0	8	4	2	0

Esercizio 5

Un progetto richiede 14 attività, con durate e vincoli di precedenza dati in tabella. Determinare la durata minima del progetto, evidenziando le attività critiche. Esprimere, per tutte le attività non critiche l'intervallo [minimo inizio, massima fine].

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A ₁₁	A ₁₂	A_{13}	A ₁₄
Durata	7	9	12	16	15	14	6	3	5	7	8	9	11	6
Predecessori	-	-	-	A_1	A_1	A_1	A_4	A_5	A_6	A_9	A_7	A_{10}	A_8	A_{10}
				A_2	A_2	A_2	A_6	A_6				A_{11}	A_9	A_{13}
					A_3									

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrare i cammini minimi dal nodo 3 al nodo 2 e dal nodo 5 al nodo 4. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

0	2	3	6	-1
8	0	1	4	-3
8	8	0	3	8
8	8	9	0	2
-2.	0	1	4	0

	1	1		
1	1	2	3	2
2	2	2	3	2
3	3	3	3	3
4	4	2	4	4
5	1	2	3	5

Esercizio 7

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi. Formulare come problema di PL il problema di inviare il massimo flusso dal nodo s al nodo t, senza risolvere il problema

Archi	(s,1)	(s,5)	(1,4)	(1,3)	(2,5)	(2,t)	(3,6)	(4,5)	(4,2)	(5,1)	(5,6)	(6,2)	(6,t)
Capacità	6	3	5	9	3	6	2	4	6	5	2	7	2

Domanda 6

Illustrare la teoria della dualità, dimostrando che i problemi di programmazione lineare godono della proprietà di dualità forte.

UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Studi in Ingegneria Informatica

Primo Modulo di Ricerca Operativa – Prova in corso d'anno 1 febbraio 2002

Nome:

Cognome:

Barrare la casella corrispondente: **Diploma o laurea V.O.** O **Laurea N.O.** O

Esercizio 1

È dato il problema di PL in figura.

Partendo dalla base $B = [A_3 A_2 A_5]$ trovare una soluzione ottima del problema con l'algoritmo del simplesso o dimostrare che il problema è illimitato inferiormente. Evidenziare la soluzione di base di partenza e quella finale.

$$\min \quad x_3 - x_4$$

$$\begin{cases}
-x_1 + x_3 + x_4 = 3 \\
x_1 + x_2 - 2x_4 = 2 \\
-2x_1 + 3x_4 + x_5 = 10 \\
x \ge 0
\end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Trovare una soluzione ottima con il metodo grafico o dimostrare che il problema è illimitato o impossibile.

$$\min \quad x_1 - 2x_2$$

$$\begin{cases} 4x_1 - x_2 \ge 4 \\ x_1 + 2x_2 \le 10 \\ x_1 - x_2 \le 4 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 3

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^T = \begin{pmatrix} 0 & 0 & 3 \end{pmatrix}$$

$$\min \quad 2x_1 - 4x_2 + x_3$$

$$\begin{cases} x_1 + x_3 \le 5 \\ x_2 + x_3 \ge 3 \\ x_1 \ge 0, \quad x_2 \le 0 \end{cases}$$

Esercizio 4

È dato il grafo in figura. In tabella sono dati i costi degli archi e un flusso ammissibile. A partire dal flusso dato trovare il flusso di costo minimo con il simplesso su reti.

Archi	(1,3)	(2,1)	(2,3)	(3,4)	(4,5)	(4,6)	(5,1)	(6,2)	(6,5)
Costi	2	-6	1	3	-6	-2	8	14	2
Flussi	0	4	3	3	3	0	0	2	0

Esercizio 5

In tabella è riportato il costo di percorrenza degli archi di un grafo con 9 nodi **a...i**. Trovare l'albero dei cammini minimi dal nodo **a** a tutti gli altri nodi utilizzando l'algoritmo di Dijkstra. Evidenziare il cammino minimo dal nodo **a** al nodo **h**.

Archi	(a,f)	(a,g)	(b,a)	(b,c)	(b,f)	(c,h)	(d,c)	(d,e)	(d,h)	(d,i)	(e,b)	(e,f)	(e,i)	(f,c)	(g,d)	(g,e)	(h,f)	(i,h)
Costi	10	2	1	1	1	1	9	3	15	14	8	2	1	12	4	8	1	2

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi ed un flusso ammissibile. A partire dal flusso dato trovare il massimo flusso inviabile da s a t con l'algoritmo di Ford e Fulkerson.

Archi	(s,1)	(s,5)	(1,2)	(1,5)	(2,3)	(2,t)	(3,1)	(3,4)	(4,2)	(4,6)	(5,3)	(5,4)	(6,t)
Capacità	3	6	2	2	5	8	4	3	5	5	2	3	3
Flussi	3	0	2	1	2	0	0	3	0	3	1	0	3

Esercizio 7

In tabella sono riportate le 14 attività di un progetto, con durate e vincoli di precedenza tra attività. Formulare come problema di PL il problema di determinare la durata minima del progetto, senza risolvere il problema stesso.

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A ₁₃	A_{14}
Durata	3	8	9	9	12	7	4	8	6	10	6	4	17	3
Predecessori	-	-	\mathbf{A}_1	A_1	A_1	A_1	A_5	A_7	A_3	A_4	A_9	A_9	A_2	A_9
						A_2		A_6	A_5	A_7		A_{11}		A_{13}
						A_3								

Domanda 8

Illustrare i problemi di flusso su reti e descrivere l'algoritmo del simplesso su reti non capacitate, illustrando in dettaglio le particolarità di questo rispetto al simplesso rivisto.

UNIVERSITÀ DEGLI STUDI ROMA TRE

Corso di Studi in Ingegneria Informatica

Primo Modulo di Ricerca Operativa – Prova in corso d'anno 1 febbraio 2002

Nome: Cognome:

Barrare la casella corrispondente: Diploma o laurea V.O. O Laurea N.O. O

Esercizio 1

È dato il problema di PL in figura.

Partendo dalla base $B = [A_5 A_3 A_2]$ trovare una soluzione ottima del problema con l'algoritmo del simplesso o dimostrare che il problema è illimitato inferiormente. Evidenziare la soluzione di base di partenza e quella finale.

$$\min \quad x_1 + x_3 + x_4$$

$$\begin{cases} x_1 - x_4 + x_5 = 3\\ 2x_1 + x_3 + x_4 = 12\\ -x_1 + x_2 + 2x_4 = 14\\ x \ge 0 \end{cases}$$

Esercizio 2

È dato il problema di PL in figura. Trovare una soluzione ottima con il metodo grafico o dimostrare che il problema è illimitato o impossibile.

$$\min -x_1 + 3x_2$$

$$\begin{cases} x_1 + x_2 \ge 3 \\ -x_1 + x_2 \le 5 \end{cases}$$

$$\begin{cases} x_1 - 2x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

Esercizio 3

È dato il problema di PL in figura. Scrivere il problema duale e, facendo uso delle condizioni di complementarità, dire se la soluzione ammissibile data è ottima o meno.

$$x^{T} = (2 \ 1 \ 0)$$

$$\max \quad x_1 + x_2$$

$$\begin{cases} 3x_1 - 2x_2 + x_3 \le 6 \\ x_1 + x_2 + x_3 = 3 \\ x_1 \ge 0, \quad x_3 \le 0 \end{cases}$$

Esercizio 4

È dato il grafo in figura. In tabella sono dati il costo, la capacità degli archi e un flusso ammissibile. A partire dal flusso dato trovare il flusso di costo minimo con il simplesso su reti.

Archi	(1,2)	(1,3)	(2,3)	(3,4)	(3,5)	(4,1)	(5,2)	(5,4)
Capacità	10	2	9	2	12	1	4	7
Costi	4	3	3	-2	1	-10	4	1
Flussi	8	0	7	0	7	0	0	3

Esercizio 5

Un progetto richiede 14 attività, con durate e vincoli di precedenza dati in tabella. Determinare la durata minima del progetto, evidenziando le attività critiche. Esprimere, per tutte le attività non critiche l'intervallo [minimo inizio, massima fine].

Attività	A_1	A_2	A_3	A_4	A_5	A_6	A_7	A_8	A_9	A_{10}	A_{11}	A_{12}	A_{13}	A_{14}
Durata	4	8	10	9	10	7	4	6	6	10	6	3	17	8
Predecessori	-	-	A_1	A_1	A_1	A_1	A_5	A_7	A_3	A_4	A_9	A_9	A_2	A_8
						A_2	A_6		A_7	A_7		A_{10}		A_9
														A12

State applicando l'algoritmo di Floyd e Warshall ad un grafo con 5 nodi. Alla fine del passo 3 ottenete le matrici in figura (quella di sinistra indica i cammini minimi, quella di destra i predecessori). Effettuate i passi 4 e 5 dell'algoritmo e mostrare i cammini minimi dal nodo 3 al nodo 2 e dal nodo 5 al nodo 4. In presenza di cicli negativi arrestate l'algoritmo e mostrate un ciclo negativo.

0	8	∞	-1	4
1	0	∞	0	-3
-7	-8	0	-4	-11
-1	-2	6	0	-5
5	4	8	6	0

1	1	1	1	1
2	2	2	1	2
2	3	3	2	2
2	3	4	4	2
2	3	5	5	5

Esercizio 7

In tabella sono riportati gli archi di un grafo con 8 nodi, e sono dati i valori di capacità degli archi. Formulare come problema di PL il problema di inviare il massimo flusso dal nodo \mathbf{s} al nodo \mathbf{t} , senza risolvere il problema

Archi	(s,1)	(s,5)	(1,2)	(1,3)	(2,3)	(2,t)	(3,4)	(3,6)	(4,2)	(4,3)	(5,2)	(5,4)	(6,t)
Capacità	2	6	2	2	4	8	4	3	7	5	2	1	3

Domanda 8

Illustrare gli algoritmi su grafo visti nel corso, dimostrando in particolare che l'algoritmo di Dijkstra trova una soluzione ottima per il problema di cammino minimo.