Problem 1:

(a) Assuming that the set $\{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty}$ where $\omega = \frac{\pi}{T}$ spans the space of all square integrable functions f(t) defined on the domain $t \in [-T, T)$, show that the set $\{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty}$ also forms a basis for any $f(t) \in L^2([-T, T))$.

Solution (2 points): A set $B = \{b_1, b_2, \dots b_n\}$ is called a basis of the space V if $\{b_1, b_2, \dots b_n\}$ spans V; and $\{b_1, b_2, \dots b_n\}$ is a linearly independent set.

The question already assumes that the set $\{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty}$ spans $L^2([-T, T))$. Hence we only need to show that the set is linearly independent. The set $\{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty}$ is linearly

independent if for constants $\{\alpha_0, \alpha_l, \beta_l\}_{l=1}^{\infty}$, $\alpha_0 + \sum_{k=1}^{\infty} \alpha_k \cos(k\omega t) + \beta_k \sin(k\omega t) = 0$ implies $\alpha_0 = \alpha_l = \beta_l = 0 \ \forall l$

We show this by noting that each element of the set $\{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty}$ is orthogonal to every other element over the domain $t \in [-T, T)$ for $\omega = \frac{\pi}{T}$. For any integers m, n:

$$\bullet \int_{-T}^{T} 1 \cdot \cos\left(m\frac{\pi}{T}t\right) dt = 0$$

$$\bullet \int_{-T}^{T} 1 \cdot \sin\left(m\frac{\pi}{T}t\right) dt = 0$$

• for
$$m \neq n$$
, $\int_{-T}^{T} \cos\left(m\frac{\pi}{T}t\right) \cos\left(n\frac{\pi}{T}t\right) dt = 0$

• for
$$m \neq n$$
, $\int_{-T}^{T} \sin\left(m\frac{\pi}{T}t\right) \sin\left(n\frac{\pi}{T}t\right) dt = 0$

With the above results, given the constants $\{\alpha_0, \alpha_l, \beta_l\}_{l=1}^{\infty}$,

$$f(t) = \alpha_0 + \sum_{k=1}^{\infty} \alpha_k \cos\left(k\frac{\pi}{T}t\right) + \beta_k \sin\left(k\frac{\pi}{T}t\right) = 0 \text{ implies that } \int_{-T}^{T} f(t)dt = 2L\alpha_0 = 0,$$

$$\int_{-T}^{T} f(t) \cos\left(l\frac{\pi}{T}t\right) dt = T\alpha_l = 0, \text{ and } \int_{-T}^{T} f(t) \sin\left(l\frac{\pi}{T}t\right) dt = T\beta_l = 0. \text{ Thus the set } \{1, \cos k\omega t, \sin k\omega t\}_{k=1}^{\infty} \text{ is linearly independent.}$$

(b) Show that the Fourier series

$$f(x) = \frac{1}{2}a_0 + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx$$

can be written as the complex series expansion

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}.$$

where c_k 's for $k \in \mathbb{Z}$ are constants that may be expressed in terms of a_k, b_k for $k = 0, \dots, \infty$.

Solution (1.5 points): From Euler's formula,

$$\begin{cases} e^{i\theta} = \cos\theta + i\sin\theta \\ e^{-i\theta} = \cos\theta - i\sin\theta \end{cases} \begin{cases} \cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \\ \sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = -i\frac{e^{i\theta} - e^{-i\theta}}{2} \end{cases},$$

we have that

$$a_k \cos kx + b_k \sin kx = a_k \frac{e^{ikx} + e^{-ikx}}{2} - ib_k \frac{e^{ikx} - e^{-ikx}}{2}$$
$$= \frac{a_k - ib_k}{2} e^{ikx} + \frac{a_k + ib_k}{2} e^{-ikx}$$
$$= c_k e^{ikx} + c_{-k} e^{-ikx}$$

where $c_k := \frac{a_k - ib_k}{2}$ and $c_{-k} := \frac{a_k + ib_k}{2}$; in addition, $c_0 := \frac{a_0}{2}$. Hence,

$$f(x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx + b_k \sin kx = c_0 + \sum_{k=1}^{\infty} c_k e^{ikx} + \sum_{k=1}^{\infty} c_{-k} e^{-ikx} = \sum_{k \in \mathbb{Z}} c_k e^{ikx}.$$

(c) Show that the Discrete Fourier Transform $\hat{\mathbf{f}}$ of a signal vector \mathbf{f} preserves its energy, that is, $\|\hat{\mathbf{f}}\|^2 = \|\mathbf{f}\|^2$.

Solution (1.5 points): Recall that for a signal vector $\mathbf{f} \in \mathbb{R}^N$, the DFT $\hat{\mathbf{f}} \in \mathbb{R}^N$ can be written as:

$$\hat{\mathbf{f}} = \underbrace{\frac{1}{\sqrt{N}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega_N^1 & \omega_N^2 & & \omega_N^{N-1} \\ 1 & \omega_N^2 & \omega_N^4 & \cdots & \omega_N^{2(N-1)} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \omega_N^{N-1} & \omega_N^{2(N-1)} & \cdots & \omega_N^{(N-1)^2} \end{bmatrix}}_{=\Omega} \mathbf{f}$$

where $\omega_N := e^{-i\frac{2\pi}{N}}$.

Now $\|\hat{\mathbf{f}}\|^2 = \hat{\mathbf{f}}^H \hat{\mathbf{f}} = \mathbf{f}^H \Omega^H \Omega \mathbf{f} = \mathbf{f}^H \mathbf{f} = \|\mathbf{f}\|^2$ (since $\Omega^H \Omega = I$; let $W = \Omega^H \Omega$, you can show this by noting that $W_{m,n} = \sum_{k=0}^{N-1} \omega_N^{(n-m)k} = \delta_{m,n}$ where $\delta_{m,n}$ is the kronecker delta function). This is known as Parseval's theorem.

It is also okay to show that $\|\hat{\mathbf{f}}\|^2 = C\|\mathbf{f}\|^2$ where C is some constant.

Problem 2:

(a) Active noise cancellation (used in headphones) typically work by generating an anti-noise signal. The file hwk1_p2a.mat (attached with this assignment) is a noisy audio signal. (After downloading the file, load the variables piano_noisy and the sample rate Fs. Listen to the audio using the MATLAB command sound(piano_noisy,Fs)). Generate an anti-noise signal, which when added to the original signal, eliminates the noise. Listen to verify that the anti-noise signal does indeed eliminate the noise. Submit the anti-noise signal.

Solution(2.5 points): Denote the noisy signal piano_noisy by $\tilde{\mathbf{f}}$. We assume that $\tilde{\mathbf{f}}$ is the sum of a pure signal \mathbf{f} and noise signal \mathbf{s} . Hence,

$$\mathcal{F}\left(\tilde{\mathbf{f}}\right) = \mathcal{F}(\mathbf{f} + \mathbf{s}) = \mathcal{F}(\mathbf{f}) + \mathcal{F}(\mathbf{s})$$

Figure 1 shows the one-sided power spectrum of $\tilde{\mathbf{f}}\left(\mathcal{F}(\tilde{\mathbf{f}})\cdot\overline{\mathcal{F}(\tilde{\mathbf{f}})}\right)$. The plot suggest two distinct bandwidths: one below 5kHz and the other centered between 5kHz and 10kHz. We assume the higher frequency range constitutes noise, that is, in fact, the spectrum above 5kHz represents the (high-frequency) noise component added by $\mathcal{F}(\mathbf{s})$. We find the inverse Fourier transform $\mathcal{F}^{-1}\left(\mathcal{F}(\mathbf{s})\right)$ and the anti-noise signal becomes $-\mathbf{s}$. We verify that this assumption is reasonable by adding $-\mathbf{s}$ to $\tilde{\mathbf{f}}$ and listening to the sound to see if a pure signal \mathbf{f} is played. The audio confirms the noise is gone and, hence, that our assumption is tenable.

Figure 1: PSD (first half) of given noisy signal.

```
1 % load data
2 load('hwk1_p2a.mat');
3 sound(piano_noisy,Fs);
4
5 % Fourier transform the signal and plot PSD
6 n = length(piano_noisy); %length of signal
7 fhat = fft(piano_noisy); %FFT of signal
8 PSD = fhat.*conj(fhat)/n; % Power spectrum (power per freq)
```

(b) 2D convolution of an image with a Gaussian (or Gaussian-like) kernel is often used for blurring images. The variable Xblurred, in the file hwk1_p2b.mat, is the image of a dog (in floating points; use imshow(uint8(Xblurred)) to display image) that was blurred using the filter

$$\frac{1}{100} \begin{bmatrix} 0 & 2 & 4 & 2 & 0 \\ 2 & 4 & 6 & 4 & 2 \\ 4 & 6 & 8 & 6 & 4 \\ 2 & 4 & 6 & 4 & 2 \\ 0 & 2 & 4 & 2 & 0 \end{bmatrix}.$$

Recover the original image. Submit a side-by-side image of the blurred and recovered image. (For example, assuming X is the recovered image, in floating points, you may use the command imshow([uint8(Xblurred),uint8(X)]) to display both images).

Solution(2.5 points): Let $F \in \mathbb{R}^{l \times l}$ be the blurring filter, and suppose that $G \in \mathbb{R}^{m \times m}$ is the original image. The linear 2D convolution is $F * G \in \mathbb{R}^{n \times n}$ where n = l + m - 1. This 2D convolution is equivalent to a circular convolution of $\tilde{F} \in \mathbb{R}^{n \times n}$ over $\tilde{G} \in \mathbb{R}^{n \times n}$, that is, $\tilde{F} \circledast \tilde{G}$ where \tilde{F} is F that has been padded with m - 1 zeros, and \tilde{G} is G that has been padded with l - 1 zeros. Now according to the Convolutional Theorem,

$$\mathcal{F}(\tilde{F}\circledast\tilde{G})=\mathcal{F}(\tilde{F})\cdot\mathcal{F}(\tilde{G})$$

where \mathcal{F} is the DFT. Suppose the given blurred image is $\tilde{F} \circledast \tilde{G}$, the padded original image is therefore $\tilde{G} = \mathcal{F}^{-1}\left(\mathcal{F}(\tilde{F} \circledast \tilde{G})/\mathcal{F}(\tilde{F})\right)$, where '/' denote element-wise division.

```
11
12 % Get inverse FFT; shift the zero-frequency component to the center
13 X = fftshift(ifft2(xbhat./bhat)); % padded recovered image
14 imshow([uint8(Xblurred(3:end-2,3:end-2)),uint8(X(3:end-2,3:end-2))]) %display ...
blurred and recovered images
```


Figure 2: Blurred (left) and recovered (right) images.