Lecture 24: CMOS inverter

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Speed of inverter (1/4)

- VTC merely describes the DC behavior.
 - Input voltages with different frequencies (1 kHz, 1 MHz, 1 GHz, ...)
 - Time-dependent behavior

Speed of inverter (2/4)

- A rapid transition of V_{in} from V_{DD} to 0
 - The capacitor should be charged.

Speed of inverter (3/4)

- Simply, it is a RC circuit.
 - Then, the solution is simply

$$V_{out}(t) = V_{out}(0^{-}) + [V_{DD} - V_{out}(0^{-})] \left(1 - \exp\frac{-t}{R_D C_L}\right)$$

- Since exp(-3) ≈ 0.05, after $3R_DC_L$, V_{out} reaches 0.95 V_{DD} .
- Yes, it takes time to get the stable output voltage...
- The delay restricts the maximum signal frequency.

Speed of inverter (4/4)

- A rapid transition of V_{in} from 0 to V_{DD} to 0
 - At the initial phase, the resistor does not conduct.
 - Also the MOSFET is operated in its saturation mode. Then,

$$I_{D,sat} + C_L \frac{dV_{out}}{dt} = 0$$

Origin of C_L ?

- Consider an inverter chain.
 - Then, what is the load capacitance for the first stage?

Interconnect

Standby(!) power

- The biggest problem in the NMOS inverter
 - When $V_{in} = 0$, no standby power
 - When $V_{in} = V_{DD}$?
 - The power consumption is (approximately) $\frac{V_{DD}^2}{R_D}$.
 - If $V_{DD}=1.8~\mathrm{V}$ and $R_D=10~k\Omega$, 324 $\mu\mathrm{W}!$

$$I_D = \frac{V_{DD} - V_{out}}{R_D} \approx \frac{V_{DD}}{R_D}$$

GIST Lecture on June 10, 2020 (Internal use only)

NMOS inverter

- Passive "pull-up" device
 - (a) Degradation of output level

Too small R_D , when $V_{in} = V_{DD}$.

In this case, large R_D is desirable.

(b) Risetime limitation

Too small current for 1 \rightarrow 0 transition. ($V_{in} = 0$)

In this case, a better capability to charge the C_L is desirable.

(c) Static power consumption

No ability to block the current, when $V_{in} = V_{DD}$.

In this case, no current conduction is desirable.

$$- (a) & (c) \leftarrow \rightarrow (b)$$

CMOS inverter

- Ideal "pull-up" should have the following properties.
 - When $V_{in} = V_{DD}$, no current conduction.
 - When $V_{in} = 0$, improved current conduction.
- PMOS can do those jobs!

CMOS inverter

Voltage transfer curve of a CMOS inverter

Noise margin?

- Greatly improved!
 - Steeper transition

Speed of CMOS inverter (1/4)

- Consider the input transition from HIGH to LOW.
 - Instead of the resistor (R_D) , now the PMOS pulls up the V_{out} .

Speed of CMOS inverter (2/4)

- Guess the charging speed.
 - The PMOS current matters. $(I_{PMOS} = C_L \frac{dV_{out}}{dt})$
 - Initially, the PMOS is in the saturation.
 - Later, the PMOS is in the triode.
 - When does the transition happen?

$$V_{in} - V_{DD} - V_{TH2} = V_{out} - V_{DD}$$

- Therefore, when $V_{out} = -V_{TH2}$

 V_{DD}

Speed of CMOS inverter (3/4)

- The first case (charge up to $-V_{TH2}$)
 - PMOS saturation current (constant)
 - Time to reach $|V_{TH2}|$

$$T_{PLH1} = \frac{C_L |V_{TH2}|}{\frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{DD} - |V_{TH2}|)^2}$$

$$T_{PLH1} = R_{on2} C_L \frac{2|V_{TH2}|}{V_{DD} - |V_{TH2}|}$$

Speed of CMOS inverter (4/4)

- The second case (charge up to $\frac{V_{DD}}{2}$)
 - PMOS triode current

$$\frac{1}{2}\mu_p C_{ox} \frac{W}{L} \left[2(V_{DD} - |V_{TH2}|)(V_{DD} - V_{out}) - (V_{DD} - V_{out})^2 \right] = C_L \frac{dV_{out}}{dt}$$

- Time to reach $\frac{V_{DD}}{2}$

$$T_{PLH2} = R_{on2}C_L \ln \left(3 - 4\frac{|V_{TH2}|}{V_{DD}}\right)$$

The overall propagation delay is

$$- T_{PLH} = R_{on2} C_L \left[\frac{2|V_{TH2}|}{|V_{DD}| - |V_{TH2}|} + \ln \left(3 - 4 \frac{|V_{TH2}|}{|V_{DD}|} \right) \right]$$

Power consumption

- No static power dissipated!
 - Only the "dynamic" power dissipation is determined.
 - High → Low → High → …
 - It involves charging and discharging the load capacitance.
 - The energy stored in the load capacitance

$$\frac{1}{2}C_L V_{DD}^2$$

- The energy dissipated by the PMOS is also $\frac{1}{2}C_LV_{DD}^2$.
- Therefore, $C_L V_{DD}^2$ is dissipated during T_{in} .

$$P_{av} = f_{in} C_L V_{DD}^2$$

NAND gate (1/4)

Its truth table

A	В	A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

Only when two inputs are 1, the output node is connected to GND.

NAND gate (2/4)

- It is easy to realize that the serially connected NMOSFETs can do it.
 - When one of V_A or V_B is low, no electric connection between V_{out} and GND.

NAND gate (3/4)

- Similarly, the output node is not connected to V_{DD} , when two inputs are 1.
- It is easy to realize that the parallel connected NMOSFETs can do it.

NAND gate (4/4)

Overall, the NAND gate looks like:

