Introduction to Automatic Controls

Output Feedback

Mitch Pryor

THE UNIVERSITY OF TEXAS AT AUSTIN

Objective: Use output not states

Given a system with the following dynamic model and output:

$$\frac{d\mathbf{z}}{dt} = \mathbf{A}\mathbf{z} + \mathbf{B}u$$
$$\mathbf{y} = \mathbf{C}\mathbf{z} + \mathbf{D}u$$

Design a linear controller with a single input which is stable at an equilibrium point we define as z_e =0.

But first, back to our example.

Consider a motor driving a system consisting of two inertial disks connected by a compliant shaft:

Where the inertial of each disk is given as J_1 and J_2 . The spring constant and friction in the shaft are c and k. And the motor constant is k_1 .

$$J_1 = 10/9$$
, $J_2 = 10$, $c = 0.1$, $k = 1$, $k_I = 1$,

- Verify the eigenvalues of the open loop system are 0, 0, and -0.05±i
- Design a state feedback controller that produce the system eigenvalues -2, -1, and -1±i.
- Simulate the system for a commanded step change in position of the second (outer) inertial disk.

The equations of motion

Derive a state space model for the system by introducing the (normalized) state variables $x_1 = \varphi_1$, $x_2 = \varphi_2$, $x_3 = \omega_1/\omega_0$, and $x_4 = \omega_2/\omega_0$, where $\omega_0 = \sqrt{k(J_1 + J_2)/(J_1J_2)}$ is the undamped natural frequency of the system when the control signal is zero.

Which is totally a real thing

Fig. 3: Robonaut 2 lifting 20 lbs at full extension

Fig. 2: Custom torsion springs from the R2 series elastic actuators

SLIDE 5

We verified the open loop eigenvalues.

```
%main function
clear all;
%system parameters
                                                >> Prob6 11
J1 = 10/9; J2 = 10;
c = 0.1; k = 1; ki = 1;
                                                ans =
%state space model
                                                   -0.0500 + 0.9987i
A = [0 1 0 0;
                                                   -0.0500 - 0.9987i
    -k/J1 -c/J1 k/J1 c/J1;
                                                   0.0000 + 0.0000i
    0 0 0 1;
                                                    0.0000 - 0.0000i
    k/J2 c/J2 - k/J2 - c/J2 ;
                                                                       No.... (and we
%state space model normalized
                                                ans =
w0 = sqrt(k*(J1+J2)/(J1*J2));
                                                                     ▼ got the right
                                                   -0.0500 + 0.9987i
                                                                       answer)
An = [0 0 1 0;
                                                   -0.0500 - 0.9987i
    0 0 0 1;
                                                    0.0000 + 0.0000i
    -w0*k/J1 w0*k/J1 -w0*c/J1 w0*c/J1;
                                                    0.0000 - 0.0000i
    w0*k/J2 - w0*k/J2 w0*c/J2 - w0*c/J2];
                                                                     ⊌ But, whoa....
                                                         2.8921e+17
%verify open loop eigenvalues
eig(A)
                                                ans = 2.1357e+18
eig(An)
cond(A)
cond (An)
```

Open loop with step input (I=0.05)

$$J_{1} \frac{d^{2} \varphi_{1}}{dt^{2}} = -c(\omega_{1} - \omega_{2}) - k(\varphi_{1} - \varphi_{2}) + k_{1}I$$

$$J_{2} \frac{d^{2} \varphi_{2}}{dt^{2}} = -c(\omega_{2} - \omega_{1}) - k(\varphi_{2} - \varphi_{1}) + T_{d}$$

$$\mathbf{z} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \\ z_4 \end{bmatrix} = \begin{bmatrix} \varphi_1 \\ \omega_1 \\ \varphi_2 \\ \omega_2 \end{bmatrix}$$

Do these results make sense?

Open loop with a step input (I=0.0)

Open loop with a step input (I=0.0)

$$J_{1} \frac{d^{2} \varphi_{1}}{dt^{2}} = -c(\omega_{1} - \omega_{2}) - k(\varphi_{1} - \varphi_{2}) + k_{1}I$$

$$J_{2} \frac{d^{2} \varphi_{2}}{dt^{2}} = -c(\omega_{2} - \omega_{1}) - k(\varphi_{2} - \varphi_{1}) + T_{d}$$

Why did I do this?

Open loop with (I=1.5, Td=-0.1675)

Open loop with (I=1.5, Td=-0.1675)

$$J_{1} \frac{d^{2} \varphi_{1}}{dt^{2}} = -c(\omega_{1} - \omega_{2}) - k(\varphi_{1} - \varphi_{2}) + k_{1}I$$

$$J_{2} \frac{d^{2} \varphi_{2}}{dt^{2}} = -c(\omega_{2} - \omega_{1}) - k(\varphi_{2} - \varphi_{1}) + T_{d}$$

Why did I do this?

Open loop summary...

- I experimented with the open loop system until:
 - I was confident in my programming
 - I understood the physical behavior of the system
- What I learned...
 - It is hard to remove energy unless there is a difference in the velocity between the two inertial objects
 - It is hard to have difference unless
 - There is a disturbance torque
 - They start at different locations.

State/Output feedback

So…let's design a controller…..

Consider a motor driving a system consisting of two inertial disks connected by a compliant shaft:

Where the inertial of each disk is given as J_1 and J_2 . The spring constant and friction in the shaft are c and k. And the motor constant is k_1 .

$$J_1 = 10/9$$
, $J_2 = 10$, $c = 0.1$, $k = 1$, $k_I = 1$,

- Verify the eigenvalues of the open loop system are 0, 0, and -0.05±i
- Design a state feedback controller that produce the system eigenvalues -2, -1, and -1±i.
- Simulate the system for a commanded step change in position of the second (outer) inertial disk.

Are the states reachable?

$$\frac{dz}{dt} = \mathbf{Az} + \mathbf{Bu} + d$$

$$= \begin{bmatrix} 0 & 1 & 0 & 0 \\ -\frac{k}{J_{1}} & -\frac{c}{J_{1}} & \frac{k}{J_{1}} & \frac{c}{J_{1}} \\ 0 & 0 & 0 & 1 \\ \frac{k}{J_{2}} & \frac{c}{J_{2}} & -\frac{k}{J_{2}} & -\frac{c}{J_{2}} \end{bmatrix} \begin{bmatrix} z_{1} \\ z_{2} \\ z_{3} \\ z_{4} \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{k}{J_{1}} \\ 0 \\ 0 \end{bmatrix} I + \begin{bmatrix} 0 \\ 0 \\ \frac{1}{J_{2}} \end{bmatrix} T_{0}$$

What is the input we control?

Wr =

>> Prob6 11

0 0.9000 -0.0810 -0.8019 0.9000 -0.0810 -0.8019 0.1612 0 0 0.0090 0.0891 0 0.0090 0.0891 -0.0179

 $\mathbf{W}_r = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \mathbf{A}^3\mathbf{B} \end{bmatrix}$

ans =

4

Wr = B;
for(i=2:length(A))
 Wr(:,i) = A*Wr(:,i-1);
end
Wr
rank(Wr)
det(Wr)
cond(Wr)

ans =

0.0066

ans =

19.0886

So..... ? SLIDE 14

Are the states reachable?

$$\frac{dz}{dt} = \mathbf{Az} + \mathbf{Bu}$$

What if I use two columns of B (i.e. two inputs)?

$$=egin{bmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ -\omega_o k/J_1 & \omega_o k/J_1 & -\omega_o c/J_1 & \omega_o c/J_1 \ \omega_o k/J_2 & -\omega_o k/J_2 & \omega_o c/J_2 & -\omega_o c/J_2 \end{bmatrix} egin{bmatrix} z_1 \ z_2 \ z_3 \ z_4 \end{bmatrix} + egin{bmatrix} 0 & 0 \ 0 & 0 \ k_{I/J_1} & 0 \ 0 & 1/J_2 \end{bmatrix} egin{bmatrix} I \ T_d \end{bmatrix}$$

$$\mathbf{w}_r = \begin{bmatrix} \mathbf{B} & \mathbf{A}\mathbf{B} & \mathbf{A}^2\mathbf{B} & \mathbf{A}^3\mathbf{B} \end{bmatrix}$$

```
>> Prob6 11
Wr =
                                           -0.0810
                                                               -0.8019
                                                      0.0810
                                                                          0.8019
    0.9000
                0 -0.0810
                                  0.0810
                                           -0.8019
                                                      0.8019
                                                                0.1612
                                                                         -0.1612
                                  0.9000
                                          0.0090
                                                     -0.0090
                                                                0.0891
                                                                          -0.0891
              0.9000
                        0.0090
                                 -0.0090
                                            0.0891
                                                     -0.0891
                                                               -0.0179
                                                                          0.0179
rank =
     4
```

Look at rank, not determinant...

But T_d is not really an input!

So let's find a controller...

Option: Rely on MATLAB

```
%state space model (1 input)
A = [0 1 0 0;
    -k/J1 -c/J1 k/J1 c/J1;
    0 0 0 1;
    k/J2 c/J2 - k/J2 - c/J2 1;
B = [0;
    kI/J1;
    0;
    0; ];
C = [1 \ 0 \ 0 \ 0];
D = 0;
p = [-1 -2 -1 + 1i -1 -1i];
p = [-1 -2 -3 -4];
sys = ss(A, B, C, D);
Kc = place(A, B, p)
eigs (A-B*Kc)
kr = -1/(C*inv(A-B*Kc)*B)
```

$$u = -K_c z + k_r r$$

$$\dot{z} = Az + Bu$$

$$= Az + B(-K_c z + k_r r)$$

$$= (A - BK_c)z + Bk_r r$$
KC =
$$32.489 \ 11 \ 234.18 \ 517.89$$
ans =
$$-4$$

$$-3$$

$$-2$$

$$-1$$

$$kr = 266.67$$

Are these the right eigenvalues? Why or why not?

System Response (to dummy eigenvalues)

```
% EE362K
% Super fun example time!!!
clear all;
J1 = 10/9; J2 = 10;
c = 0.1; k = 1;
ki = 1;
A = [0 1 0 0;
    -k/J1 -c/J1 k/J1 c/J1
    0 0 0 1;
    k/J2 c/J2 - k/J2 - c/J2];
B = [ 0 ki/J1 0 0 ]
C = [1 0 0 0];
ref = 0.5;
%check to see if a controller exists...
p = [-4 -3 -2 -1];
Kp = place(A, B, p)
kr = -1/(C*inv(A-B*Kp)*B)
%simulate the controller
[t z] = ode45(@motor, [0 20], [0 0 0 0]);
plot(t, z(:,1)); grid on;
```


SLIDE 17

System Response

```
% EE362K
% Summer 2014
% hwk 5 prob 7
clear all;
J1 = 10/9; J2 = 10;
c = 0.1; k = 1;
ki = 1;
A = [0 1 0 0;
   -k/J1 -c/J1 k/J1 c/J1
   0 0 0 1;
   k/J2 c/J2 - k/J2 - c/J2 ;
B = [ 0 ki/J1 0 0 ]'
C = [0 0 1 0];
ref = 0.5;
%check to see if a controller exists...
p = [????];
Kp = place(A, B, p)
kr = -1/(C*inv(A-B*Kp)*B)
%simulate the controller
[t z] = ode45(@motor, [0 20], [0 0 0 0]);
plot(t, z(:,3)); grid on;
```



```
p = [ -10 -9 -8 -7 ]; %green
p = [ -4 -3 -2 -1 ]; %blue
p = [ -2 -1 -1+1i -1-1i ]; %red
p = [ -.5+2i -.5-2i -.1+10i -1-10i ]; %blue x's
```

Generalized (Acker's) Method

```
K_{c} = \left[ \left( p_{1} - a_{1} \right) \quad \left( p_{2} - a_{2} \right) \quad \left( p_{3} - a_{3} \right) \quad \left( p_{4} - a_{4} \right) \right] \tilde{w}_{r} w_{r}^{-1} \qquad k_{r} = \frac{-1}{\left( C \left( A - BK \right)^{-1} B \right)}
                                                         CE(A-BK_a) = (s+2)(s+1)(s+1+i)(s+1-i)
    CE(A) = (s+0)(s+0)(s+0.05+i)(s+0.05-i)
                                                                             =(s^2+3s+2)(s+2s^2+2)
            =(s^2)(s+2s+2)
                                                                             = s^4 + 5s^3 + 10s^2 + 10s + 4
            = s^4 + 0.1s^3 + 1.0025s^2
  A = [0 1 0 0;
       -k/J1 -c/J1 k/J1 c/J1;
       0 0 0 1;
                                                   Ac = [a(1) a(2) a(3) a(4);
       k/J2 c/J2 - k/J2 - c/J2 1;
                                                            1 0 0 0;
  B = [0; kI/J1; 0; 0;];
                                                             0 1 0 0;
  C = [1 \ 0 \ 0 \ 0];
                                                             0 0 1 0; ];
                                                   Bc = [1; 0; 0; 0];
  p = [5 10 10 4];
  a = [.1 \ 1.0025 \ 0 \ 0];
                                                   Wrc = Bc(:,1);
  r = [-2 -1 -1 + 1i -1 -1i];
                                                   for (i=2:length(Ac))
                                                          Wrc(:,i) = Ac*Wrc(:,i-1);
  Wr = B(:,1);
                                                   end
  for( i=2:length(A))
                                                   Wrc
         Wr(:,i) = A*Wr(:,i-1);
  end
                                                   K = (p-a) *Wrc*inv(Wr)
  Wr;
```

Acker's continued....

What I get from my code....

What I got from place()

```
Kp = [8.9333 5.4444 35.511 101.22];

kr = 44.444;
```

Any questions?

So back to drilling...

- What are we really interested in?
 - Want to control the velocity of the drill bit
 - But we can only measure the position (or velocity) of the pipe at the surface.

But do we know all the states?

Given a system with the following dynamic model and output:

$$\frac{d\mathbf{z}}{dt} = \mathbf{A}\mathbf{z} + \mathbf{B}u$$
$$\mathbf{y} = \mathbf{C}\mathbf{z} + \mathbf{D}u$$

Design a linear controller with a single input which is stable at an equilibrium point we define as z_e =0.

Observer/Estimator

Our objectives

- Determine if a system is observable
- Define the Observable Canonical Form (OCF)
- Create estimates of the states that allow us to continue to implement state feedback

Observability

Observability: The ability to determine the states of the system from the system output.

Start with our state-space model

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u$$
$$\mathbf{y} = \mathbf{C}\mathbf{z} + \mathbf{D}u$$

The first test is simple...

$$\mathbf{z} = \mathbf{C}^{-1} \left(\mathbf{y} - \mathbf{D} u \right)$$

Whether we need the input or not, the system is observable as long as:

$$det(\mathbf{C}) \neq \mathbf{0}$$

This is a sufficient, but not necessary condition. If C is not full rank (like for a SISO system), we have another option.

Note, observability is only a function of the dynamics, not the input.

Consider a system without an input

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z}$$

$$y = Cz$$

The solution to this system is

$$\mathbf{y} = \mathbf{C}e^{\mathbf{A}\mathbf{t}}\mathbf{z}(0)$$

where

$$e^{\mathbf{At}} = \sum_{k=0}^{n-1} \frac{1}{k!} \mathbf{A}^k$$

And thus for n states...

$$\mathbf{y}(t) = \sum_{k=0}^{n-1} \frac{1}{k!} \mathbf{C} \mathbf{A}^k \mathbf{z}(0)$$

= $\left(\frac{1}{0!} \mathbf{C} \mathbf{A}^0 + \frac{t}{1!} \mathbf{C} \mathbf{A} + \frac{t^2}{2!} \mathbf{C} \mathbf{A}^2 + \dots + \frac{t^n}{(n-1)!} \mathbf{C} \mathbf{A}^{n-1}\right) \mathbf{z}(0)$

Observability

Observability: The ability to determine the states of the system from the system output.

From the previous page...

$$\mathbf{y}(t) = \left(\frac{1}{0!}\mathbf{C}\mathbf{A}^0 + \frac{t}{1!}\mathbf{C}\mathbf{A} + \frac{t^2}{2!}\mathbf{C}\mathbf{A}^2 + \dots + \frac{t^k}{k!}\mathbf{C}\mathbf{A}^k + \dots\right)\mathbf{z}(0)$$

Given y, we know the states, z, if the material in the parentheses is invertible.

$$\mathbf{z} = \left(\frac{1}{0!} \mathbf{C} \mathbf{A}^0 + \frac{1}{1!} \mathbf{C} \mathbf{A} + \frac{1}{2!} \mathbf{C} \mathbf{A}^2 + \dots + \frac{1}{(n-1)!} \mathbf{C} \mathbf{A}^{n-1} \right)^{-1} \mathbf{y}(t)$$

To simplify, recognize the coefficients are not necessary to perform the test, and recall that for a single output C is 1xn and A is nxn....

$$\mathbf{w_o} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \mathbf{C}\mathbf{A}^2 \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix} = \begin{bmatrix} \mathbf{C}^T & \mathbf{A}^T\mathbf{C}^T & \mathbf{A}^{2^T}\mathbf{C}^T & \cdots & \mathbf{A}^{(n-1)^T}\mathbf{C}^T \end{bmatrix}^T$$

This is known as the <u>observability matrix</u> and if and only if it is invertible can we say the matrix in the equation above is also invertible, and thus, the system is observable.

Proof of Observability Rank Condition

Theorem: A linear system is observable if and only if the observability matrix, \mathbf{w}_o is full rank

Proof (sufficiency): Start with the output in form of the convolution integral...

$$\mathbf{y}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{z}(0) + \int_0^t \mathbf{C}e^{\mathbf{A}(t-\tau)}\mathbf{B}u(\tau)d\tau + \mathbf{D}u(t)$$

Since we know u(t), we can subtract its contribution, and write the new output as...

$$\tilde{\mathbf{y}}(t) = \mathbf{C}e^{\mathbf{A}t}\mathbf{z}(0)$$

Differentiate the new output and evaluate at t=0....

$$\tilde{\mathbf{y}}(0) = \mathbf{C}\mathbf{z}(0)$$

$$\tilde{\dot{\mathbf{y}}}(0) = \mathbf{C}\mathbf{A}\mathbf{z}(0)$$

$$\tilde{\ddot{\mathbf{y}}}(0) = \mathbf{C}\mathbf{A}^{2}\mathbf{z}(0)$$

$$\vdots$$

$$\tilde{\mathbf{y}}^{(n)}(0) = \mathbf{C}\mathbf{A}^{n-1}\mathbf{z}(0)$$

Which we can rewrite in matrix form and solve for the states.

$$\mathbf{z}(0) = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \\ \mathbf{C}\mathbf{A}^2 \\ \vdots \\ \mathbf{C}\mathbf{A}^{n-1} \end{bmatrix}^{-1} \begin{bmatrix} \tilde{\mathbf{y}}(0) \\ \dot{\tilde{\mathbf{y}}}(0) \\ \ddot{\tilde{\mathbf{y}}}(0) \\ \vdots \\ \tilde{\mathbf{y}}^{(n)}(0) \end{bmatrix} = \mathbf{w}_0^{-1} \begin{bmatrix} \tilde{\mathbf{y}}(0) \\ \dot{\tilde{\mathbf{y}}}(0) \\ \ddot{\tilde{\mathbf{y}}}(0) \\ \vdots \\ \tilde{\mathbf{y}}^{(n)}(0) \end{bmatrix}$$

Thus if the observability matrix is full rank, we can determine the states that produce a given output.

So we solve for z(0) and then find z(t) using.

$$\mathbf{z}(t) = e^{\mathbf{A}t}\mathbf{z}(0)$$

Example: 2 Vessel model

Recall our state-space model...

$$\frac{d\mathbf{c}}{dt} = \begin{bmatrix} -k_o - k_1 & k_1 \\ k_2 & -k_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} b_0 \\ 0 \end{bmatrix} u \qquad = \begin{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \\ \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -k_o - k_1 & k_1 \\ k_2 & -k_2 \end{bmatrix} \end{bmatrix}$$

$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u \qquad = \begin{bmatrix} 0 & 1 \\ k & -k \end{bmatrix}$$

$$w_o = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} & \\ \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -k_o - k_1 & k_1 \\ k_2 & -k_2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ k_2 & -k_2 \end{bmatrix}$$

Therefore, observable if $k_2 \neq 0$.

Example: 2 Vessel model

$$\frac{d\mathbf{c}}{dt} = \begin{bmatrix} -k_o - k_1 & k_1 \\ k_2 & -k_2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} b_0 \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} + \begin{bmatrix} 0 \end{bmatrix} u$$
Now measure concentration in vessel 1.

$$w_o = \begin{bmatrix} \mathbf{C} \\ \mathbf{C} \mathbf{A} \end{bmatrix}$$

$$= \begin{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \\ \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -k_o - k_1 & k_1 \\ k_2 & -k_2 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -k_o - k_1 & k_1 \end{bmatrix}$$

Therefore, observable if $k_1 \neq 0$.

Recall our Inverted Pendulum

In the state feedback lectures, we derived our equations of motion for an inverted

pendulum system:

And our state-space model was....

$$\mathbf{Z} = \begin{bmatrix} x & \theta & \dot{x} & \dot{\theta} \end{bmatrix}^{T} \begin{bmatrix} \ddot{x} \\ \ddot{\theta} \end{bmatrix} = \frac{1}{\mu} \begin{bmatrix} (J+ml^{2}) & -ml \\ ml & (M+m) \end{bmatrix} \begin{bmatrix} 0 \\ mgl\theta \end{bmatrix} + \begin{bmatrix} u \\ 0 \end{bmatrix}$$

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^{2}l^{2}g}{\mu} & 0 & 0 \\ 0 & \frac{(M+m)mgl}{\mu} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J+ml^{2}}{\mu} \\ \frac{lm}{\mu} \end{bmatrix} u$$

Example: Inverted Pendulum

Determine the observability of the inverted pendulum derived in previous lecture.

Recall...

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 l^2 g}{\mu} & 0 & 0 \\ 0 & \frac{(M+m)mgl}{\mu} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J+ml^2}{\mu} \\ \frac{lm}{\mu} \end{bmatrix} u$$

The output of interest is the angular position...

$$y = \begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{z}$$

We can use MATLAB to calculate the observability matrix.

Therefore this system is <u>NOT</u> observable.

Example: Inverted Pendulum, cont'd

Determine the observability of the inverted pendulum derived in previous lecture.

Recall...

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2 l^2 g}{\mu} & 0 & 0 \\ 0 & \frac{(M+m)mgl}{\mu} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J+ml^2}{\mu} \\ \frac{lm}{\mu} \end{bmatrix} u$$

but we can always add more sensors!

$$y = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} \mathbf{z} \quad \text{or...} \quad \mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{z}$$

We can use MATLAB to calculate the observability matrix.

Therefore this system can be redesigned to be observable. (note: $cond(w_o)=70,000!$)

Example: Inverted Pendulum, cont'd

Determine the observability of the inverted pendulum derived in previous lecture.

Recall...

$$\dot{\mathbf{z}} = \mathbf{A}\mathbf{z} + \mathbf{B}u = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{m^2l^2g}{\mu} & 0 & 0 \\ 0 & \frac{(M+m)mgl}{\mu} & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ \theta \\ \dot{x} \\ \dot{\theta} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \frac{J+ml^2}{\mu} \\ \frac{lm}{\mu} \end{bmatrix} u$$

What if y is a vector and not a sum?

$$\mathbf{y} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{z}$$

We can use MATLAB to calculate the observability matrix.

```
A = [ 0 0 1 0;
    0 0 0 1;
    0 Mb^2*len^2*g/mu 0 0;
    0 (Mb + Mc)*Mb*g*len 0 0; ];

C = [ 1 0 0 0; 0 1 0 0];

wo = [ C; C*A; C*A*A; C*A*A*A]

rank(wo)
rank(obsv(A, C))
```

Note: same condition since $cond(w_o)=70,000$.

Observer/Estimator Summary

Our objectives

- ✓ Determine if a system is observable.
- Define the Observable Canonical Form (OCF)
- Create Estimators that allow us to continue to implement state feedback