ОБРАБОТКА ЧИСЛОВЫХ ДАННЫХ

Первая выборка (объема 50 = 20 + 30)

- 1. По данной числовой выборке (объема 50), взятой из **нормального распределения** с параметрами a и σ^2 , построить доверительные интервалы уровня доверия $1-\varepsilon$ для параметра:
 - (a) a, если σ^2 известно;
 - (b) a, если σ^2 неизвестно;
 - (c) σ^2 , если a известно;
 - (d) σ^2 , если a неизвестно.

Известные значения a и σ^2 брать из строчки с номером выборки.

- 2. По данным двум выборкам (объемов 20 и 30), взятым из нормального распределения, проверить на уровне значимости ε гипотезу
 - (а) о совпадении дисперсий (Критерий Фишера);
 - (b) о совпадении средних, если известно, что дисперсии совпадают (Критерий Стьюдента).

Вторая выборка (объема 30)

- 3. По данной числовой выборке, взятой из *равномерного распределения* на отрезке [0; 1], построить гистограмму и эмпирическую функцию распределения.
- 4. По данным числовым наблюдениям проверить основную гипотезу о равномерности распределения на отрезке [0; 1] на уровне значимости ε с помощью
 - (а) критерия Колмогорова.
 - (b) критерия хи-квадрат (Пирсона).

Найти реально достигнутый уровень значимости для каждого критерия.