DATA403 Final Presentation:

with HumanoidStandup-v4 and HalfCheetah-v4

2021320303 Jiwon Jeong

Agenda

- Introduction
- Method
- Experiments & Analysis (HumanoidStandup-v4)
- Experiments & Analysis (HalfCheetah-v4)
- Conclusion

Introduction

- HumanoidStandup-v4
 - Goal: Make the humanoid standup and then keep it standing
 - Action Space: 17 continuous actions in [-0.4, 0.4]
 - Action represents the numerical torques applied at the hinge joints
 - Observation Space: 376 continuous space in (-inf, +inf)
 - State consists of positional values of different body parts of Humanoid
 - Why? Very Challenging and Interesting (Unsolved)

Introduction

- HalfCheetah-v4
 - Goal: Make the cheetah run forward as fast as possible
 - Action Space: 6 continuous actions in [-1, 1]
 - Action represents the torques applied between links
 - Observation Space: 17 continuous space in (-inf, +inf)
 - State consists of positional values of different body parts of the cheetah
 - Why? Looks Fun!

- Based on PPO (Proximal Policy Gradient)
- MLP with tanh

etc...

- Gym Wrappers
 - FlattenObservation flatten the observation
 - ClipAction clip the continuous action to the valid bound
 - NormalizeObservation normalize observation
 - TransformObservation clip(obs, -10, 10)
 - NormalizeReward normalize reward
 - TransformReward clip(reward, -10, 10)

Robust Policy Optimization (ICLR 2023)

ROBUST POLICY OPTIMIZATION IN DEEP REINFORCE-MENT LEARNING

Md Masudur Rahman & Yexiang Xue
Department of Computer Science
Purdue University
West Lafayette, IN 47907, USA
{rahman64, yexiang}@purdue.edu

- Modified from PPO
- RPO leverages a method of perturbing the distribution representing actions
- Improved Performance compared to PPO

Robust Policy Optimization (ICLR 2023)

```
Algorithm 1 Robust Policy Optimization (RPO)
```

```
1: Initialize parameter vectors \theta for policy network.
 2: for each iteration do
         \mathcal{D} \leftarrow \{\}
         for each environment step do
          \mu, \sigma \leftarrow \pi_{\theta}(.|s_t)
       a_t \sim \mathcal{N}(\mu, \sigma)
       s_{t+1} \sim P(s_{t+1}|s_t, a_t)
        r_t \sim R(s_t, a_t)
            \mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r_t, s_{t+1})\}
        end for
        for each observation s_t in \mathcal{D} do
            \mu, \sigma \leftarrow \pi_{\theta}(.|s_t)
          z \sim \mathcal{U}(-\alpha, \alpha)
          \mu' \leftarrow \mu + z
          prob \leftarrow \mathcal{N}(\mu', \sigma)
15:
            logp \leftarrow prob(a_t)
16:
17:
             Compute RL loss L_{\pi} using log p, a_t, and value function.
18:
         end for
19: end for
```

- "Symmetric Action Loss" in HumanoidStandup setting
 - Why do Humanoid use only one arm or leg?

- "Symmetric Action Loss" in HumanoidStandup setting
 - Gym Documentation: Action descriptions

6	Torque applied on the rotor between the right hip/thigh and the right shin	-0.4	0.4	right_knee	hinge	torque (N m)
10	Torque applied on the rotor between the left hip/thigh and the left shin	-0.4	0.4	left_knee	hinge	torque (N m)

Implementation (Use MSELoss() in torch.nn)

Experiments

- Device
 - CPU: AMD Ryzen 5 3600
 - GPU: GTX 1060 3GB

- Changed Hyperparameters
 - Seed
 - Entropy coefficient, Symmetric action coefficient
 - Learning rate
 - RPO alpha

- 1. Entropy Coefficient
 - 0.01 (pink) vs. **0.0001 (yellow)** vs. 0.0 (blue)

Tensorboard

- 2. Learning rate
 - 3e-4 (gray) with 1M timesteps vs. 1e-4 (cyan) with 2M timesteps

- 3. PPO vs. RPO
 - PPO (green) vs. RPO with coef=0.5 (yellow)

- 4. Symmetric action coefficient
 - 0.0 (green) vs. 0.01 (black) vs. 0.05 (orange). Positive effect!

Best Result

Training: 160,000 (highest)

Test: 131,000 (highest)

Hyperparameter	Value		
Seed	0		
Timesteps	5000000 (5M)		
num_rollout_steps	2048		
minibatch_size	64		
Learning rate	2e-5		
max_grad_norm	0.5		
clip_coef	0.2		
ent_coef	0.0001		
vf_coef	0.5		
gamma	0.99		
gae_lambda	0.95		
rpo_coef	0.5		
sym_action_coef	0.02		

Best Result

Analysis (HumanoidStandup-v4)

RPO is better than PPO

Analysis (HumanoidStandup-v4)

- Symmetric Action Loss guided the use of both arms and legs
- And Improve performance!

- 1. Entropy Coefficient
 - **0.0 (pink)** vs. 0.0001 (black)

- 2. RPO vs PPO
 - PPO (orange) vs. RPO with coef=0.5 (cyan)

- 3. MLP
 - **64-64 (Orange)** vs. 64-32 (cyan) vs. 128-64 (yellow)

- 4. Seed
 - 0 (left) vs. 8 (right)

Best Performance

Training: 4,000 (highest)

■ Test: 3,250 (highest)

Hyperparameter	Value
Seed	8
Timesteps	1000000 (1M)
num_rollout_steps	128
minibatch_size	32
Learning rate	3e-5
max_grad_norm	2.0
clip_coef	0.2
ent_coef	0.5
vf_coef	0.5
gamma	0.99
gae_lambda	0.95

Best Result

Analysis (HalfCheetah-v4)

- Why does halfcheetah do a forward roll?
 - Maybe halfcheetah get a big reward at once... → Stuck in local optima

Rewards

The reward consists of two parts:

- forward_reward: A reward of moving forward which is measured as forward_reward_weight * (x-coordinate before action x-coordinate after action)/dt. dt is the time between actions and is dependent on the frame_skip parameter (fixed to 5), where the frametime is 0.01 making the default dt = 5 * 0.01 = 0.05. This reward would be positive if the cheetah runs forward (right).
- ctrl_cost: A cost for penalising the cheetah if it takes actions that are too large. It is measured as ctrl_cost_weight * sum(action²) where ctrl_cost_weight is a parameter set for the control and has a default value of 0.1

The total reward returned is **reward** = forward_reward - ctrl_cost and info will also contain the individual reward terms

Depending on the seed, Halfcheetah do or do not a forward roll

Analysis (HalfCheetah-v4)

- Why does halfcheetah do a forward roll?
 - Maybe halfcheetah get a big reward at once... → Stuck in local optima
 - Forward roll: ~1500 (left) vs. Run fast: ~3000+ (right)

Conclusion

- Hyperparameters are very important
- Entropy loss is not useful in the two environments
- RPO worked depending on the environment
- Depending on the seed, results can vary a lot...
- It seems that other methods are needed to standup a humanoid.
- Still, PPO is an effective reinforcement learning algorithm!

Thanks ©

