Cálculo Numérico

Lista de Exercícios 1 - Valor 20 pontos Cada grupo entregar ao professor no dia 15/08/17 no início da aula

Professores do DCC/UFPB

Nota: quando não declarado, considere 4 dígitos de precisão para os cálculos e arredondamento.

Exercícios Teóricos

Questão Converta os seguintes números na base 2 para a base 10:	1
a) (101101) ₂	
b) (101.011) ₂	
c) $(0.01101)_2$	
Questão Converta os seguintes números na base 10 para a base 2:	2
a) $(2432)_{10}$	
b) (9880) ₁₀	
c) $(32.47)_{10}$	
Questão Converta os seguintes números na base 8 para a base 10:	3
a) $(314)_8$	
b) (71.263) ₈	
Questão Considere o sistema $\mathbb{F}(3,3,-2,1)$.	4
a) À exceção de zero, quantos e quais números podemos representar neste sistema?	
b) Represente no sistema os números: $x_1 = (0.40)_{10}$ e $x_2 = (2.8)_{10}$.	
Questão Considere o sistema $\mathbb{F}(2,5,-3,1)$	5
a) À exceção de zero, quantos e quais números podemos representar neste sistema?	
b) Qual o maior número na base 10 que podemos representar neste sistema (sem fazer dondamento)?	arre-

Questão

6

Dados os números: $(13.44)_5$, $(122.35)_6$, $(31.202)_4$. Existe algum com representação exata no sistema $\mathbb{F}(2, 10, -10, 10)$?

Questão 7

Considere o sistema $\mathbb{F}(2,8,-4,4)$ e os números

$$x_1 = 0.10110011 \times 2^2 e \ x_2 = 0.10110010 \times 2^2.$$

Qual dos dois números representa melhor (2.8)₁₀?

Questão 8

Considere o sistema $\mathbb{F}(2, 8, -10, 10)$. Represente no sistema os números: $x_1 = \sqrt{8}$, $x_2 = e^2$ e $x_3 = 3.57$, onde todos estão na base 10. Existe algum com representação exata nesse sistema?

Questão 9

Considere o sistema $\mathbb{F}(10,3,-5,5)$. Efetue as operações indicadas:

a)
$$(1.386 - 0.987) + 7.6485 e 1.386 - (0.987 - 7.6485)$$

b)
$$\frac{1.338-2.038}{4.577}$$
 e $\left(\frac{1.338}{4.577}\right)-\left(\frac{2.038}{4.577}\right)$

Questão 10

Seja

$$x = \frac{17.678}{3.471} + \frac{(9.617)^2}{3.716 \times 1.85}.$$

- a) Calcule *x* com todos os algarismos da sua calculadora sem efetuar arredondamento.
- b) Calcule x considerando o sistema $\mathbb{F}(10,3,-4,3)$. Faça arredondamento a cada operação efetuada.

Questão 11

Efetue as operações indicadas utilizando aritmética de ponto flutuante com 3 algarismos significativos:

b)
$$27.2 \times 1.3 - 327.0 \times 0.00251$$

c)
$$\frac{10.1 - 3.1 \times 8.22}{14.1 + 7.09 \times 3.2^2}$$

d)
$$(367.0 + 0.6) + 0.5 e 367.0 + (0.6 + 0.5)$$

e) $\sum_{i=1}^{100} 0.11$. (Compare o resultado com 100×0.11).

Questão 12

Usando arredondamento para 4 dígitos significativos, efetue as operações indicadas e escreva o resultado na forma normalizada:

a)
$$0.5971 \times 10^3 + 0.4268 \times 10^0$$

b)
$$0.5971 \times 10^{-1} - 0.5956 \times 10^{-2}$$

c)
$$\frac{0.5971 \times 10^3}{0.4268 \times 10^{-1}}$$

d)
$$(0.5971 \times 10^3) \times (0.4268 \times 10^0)$$

13

Seja

$$P(x) = 2.3x^3 - 0.6x^2 + 1.8x - 2.2.$$

Deseja-se obter o valor de P(x) para x = 1.61.

- a) Calcule P(1.61) com todos os algarismos da sua calculadora sem efetuar arredondamento.
- b) Calcule P(1.61) considerando o sistema $\mathbb{F}(10,3,-4,3)$. Faça arredondamento a cada operação efetuada.

Questão 14

Calcule o polinômio

$$P(x) = x^3 - 5x^2 + 6x + 0.55$$

em x=1.37 para obter y=P(1.37) em precisão dupla no computador. Em seguida, recalcule P(x) usando aritmética com 3 **algarismos significativos** e truncamento para obter \tilde{y} . Calcule o erro relativo percentual $ER_{y,P}$ para P. Repita o cálculo considerando

$$Q(x) = ((x-5)x+6)x+0.55,$$

e calcule o erro relativo percentual $ER_{y,Q}$ e compare com $ER_{y,P}$.

Exercícios Computacionais

Questão 15

Seja:

$$S = \sum_{i=1}^n \frac{i(i+1)}{2}.$$

Usando computação numérica, calcule S considerando n = 1000.

Questão 16

Deseja-se calcular $e^{-0.15}$. Sabendo que

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots,$$

- a) Com a série truncada em 25 termos, compute:
 - (i) $e^{-0.15}$
 - (ii) $\frac{1}{e^{0.15}}$

e compare os resultados.

Questão 17

Usando computação numérica, calcule

$$S = \sum_{k=1}^{10} \cos(\frac{3\pi k}{4}) \frac{2}{k^2}$$

e produza uma saída de dados em forma tabelada (k, S(k)), k = 1, 2, ... 10.

Questão 18

O volume de uma esfera é dado por $V=\frac{4}{3}\pi r^3$, onde r é o raio. Escreva um código para calcular o raio R de uma esfera tendo um volume 40% maior do que aquele de uma esfera de 4m de raio.

Questão 19

Deseja-se calcular $e^{-0.15}$. Sabendo que

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots,$$

- a) Com a série truncada em 25 termos, compute:
 - (i) $e^{-0.15}$
 - (ii) $\frac{1}{\rho^{0.15}}$

e compare os resultados.

Questão 20

A sequencia infinita $f(n) = \sum_{k=1}^{n} \frac{1}{k^4}$ converge para $\pi^4/90$ quando n tende a infinito. Escreva um programa para calcular f(n) considerando tanto a soma na ordem crescente (k variando de 1 a n com incremento +1), como na ordem decrescente (k variando de n para 1 com incremento -1). Agora use o seu programa e obtenha o valor de f(10000) pelas duas maneiras e calcule o erro relativo percentual verdadeiro em cada uma delas.