My studies about Transformers

M. Mahdi Farahbakhsh

In the Name of Allah

Abstract

Your abstract text goes here.

1 Introduction

Introduce your topic and the purpose of the report here.

2 Background

Provide any background information that your reader will need.

3 Multimodal Learning With Transformers: A Survey [6]

Note that this survey will not discuss the multimodal papers where Transformers is used simply as the feature extractor without multimodal designs.

1. Introduction

- We suggest that self-attention be treated as a graph style models th input sequences(both uni-modal and multi-modal) as a fully connected graph.

2. Background

- Derivatives of *Vanilla* Transformer:
 - * BERT [4]
 - * BART [5]
 - * GPT [3]
 - * Long-former [1]
 - * Transformer-XL [2]
 - * XLNet [7]
- Transformers in different Domains:
 - * in NLP domains: Dominated
 - * in visual domains: general pipeline is "CNN features + Strandard Transformer Encoder"
 - * multimodal tasks :
 - + VideoBERT : the first
 - + CLIP : new milestone
 - @ IDK: uses multimodal pretraining to convert classification as retrieval task that enables the pretrained modals to tackles zero-shot recognition.
- Multimodal Big Data
 - * Data scales are larger: recently released datasets are million scales
 - * More modalities: vision, text, audio
 - + Pono: audio-visual question answering
 - * More Application & Scenarios
 - * Tasks are more difficult
 - * Instructional Videos
 - @ IDK: Transformers are data hungry, Therefore ,their high -capasity modals and multi-modal Big Data basis co-created the prosperity of the Transformer based multimodal machine learning.
 - + VideoBERT : the first
 - + CLIP : new milestone
 - @ IDK: uses multimodal pretraining to convert classification as retrieval task that enables the pretrained modals to tackles zero-shot recognition.

3. advantages

- * more general space
 - + Vanilla transformers (self attention) can model any given tokenized input from any model.

 ; compare with CNN: CNN is restricted in the aligned grid spaces/metrics
- 4. Vanilla Transformers
 - @ IDK: "position-wise" Fully-connected Feed Forward (FFN)
 - To help the back propagation of the gradient, both MHSA and FFN use Residual Connection(any mapping f(.) is defined as $x \leftarrow f(x) + x$)
 - $Z \leftarrow N(sublayer(Z) + Z)$
 - + Z: Input tensor sublayer output
 - + sublayer: FFN or MHSA
 - + Residual Connection is used.
 - + N: normalization
 - + BN
 - + LN
 - @ Open Problem: post-normalization vs pre-normalization
 - ¿. Vanilla Transformation: post.
 - ¿ mathematical perspective: pre. make more sense
 - ¿ both theoretical research and experiment validation

4 Results

Present your findings here.

5 Discussion

Discuss the implications of your results.

6 Conclusion

Sum up the report and any final thoughts.

References

- $[1]\,$ I. Beltagy. Longformer: The long-document transformer. 2020.
- [2] Z. Dai. Transformer-xl: Attentive language models beyond a fixed-length context. 2019.
- [3] A. Radford et al. Improving language understanding by generative pre-training.
- [4] J. Devlin et al. Bert: Pretraining of deep bidirectional transformers for language understanding. 2018.
- [5] M. Lewis et al. Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension. 2019.
- [6] Peng Xu. Multimodal learning with transformers: A survey. *IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE*, 45(10), 2023.
- [7] Z. Yang. Xlnet: Generalized autoregressive pretraining for language understanding. 2019.