Natalia (Natasha) Antropova

+1 414 429 0135 · antropova@uchicago.edu

The University of Chicago

Education

University of Chicago 2014 – present

Ph.D. in Medical Physics (3.92/4.0)

University of Wisconsin – Madison 2010 – 2014

Bachelor of Science in Applied Math, Electrical Engineering, and Physics (3.85/4.0)

Work and Research Experience

University of Chicago, Committee on Medical Physics Computer Aided Diagnosis/Radiomics Research Group

2014 - present

Advisor: Dr. Maryellen Giger

Thesis project

- Developed a novel end-to-end deep learning pipeline for characterizing breast DCE-MRIs, significantly outperforming the state of the art on multiple tasks within computer-aided diagnosis.
- Established a data-intensive image processing methodology involving raw 3D/4D MRI in conjunction with unstructured clinical data, resulting in cleanly structured datasets optimized for image analysis.
- Pioneered transfer- and multi-task learning methods to solve challenges involving heterogeneous data sources, small datasets, and patient-level inference.
- Published 5 conference submissions as first-author and co-authored 3 abstracts on topics ranging from deep learning in computer-aided diagnosis to statistical robustness studies of analytical image features.

University of Chicago, Committee on Medical Physics Image Reconstruction Research Group

Spring 2015

Rotation Project Advisor: Dr. Xiaochuan Pan

Developed Python software to reconstruct 3D CT images from projection data.
 Evaluated image reconstruction methods for dedicated breast CT system and engineered a new efficient reconstruction methodology.

University of Wisconsin, Madison, Medical Physics Department Biomagnetism Research Group

2011 – 2014

Research Assistant Advisor: Dr. Ron Wakai

- Collected, processed, and analyzed fetal magnetic heart signals in magnetocardiography.
- Designed a hardware probe and developed software to reconstruct 3D ultrasound images based on 2D scans and position of the probe attached to ultrasound transducer.

Honors and Awards

The University of Chicago Paul C. Hodges Alumni Society Research Award	Autumn 2016
Academic Excellence Scholarship	2010-2014
Applied Mathematics, Engineering, and Physics Leadership Prize	Spring 2013
Dr. Maritza Irene Stapanian Crabtree Physics Scholarship	Spring 2013
Clarice Cox Mathematics and Physics Scholarship	Spring 2012
Henry and Eleanor Firminhac Physics Scholarship	Spring 2012

Skills

Preferred Languages: Python, Matlab

Libraries, Frameworks: Caffe, Keras, TensorFlow, Scikit-Learn, Pandas

Tools: Jupyter, LaTex

The University of Chicago Biological Sciences Division Dean's Council

2015-present

- Organizer and reviewer for the travel grant review process
- Medical physics student representative
- Organized a social event for Biological Sciences Division with about 300 students attending

Publications and presentations

Oral Presentations

<u>N Antropova</u>, B Huynh, M Giger, "Performance comparison of deep learning and segmentation-based radiomic methods in the task of distinguishing benign and malignant breast lesions on DCE-MRIs" *SPIE Medical Imaging: Physics of Medical Imaging* (February, 2017)

N Antropova, B Huynh, M Giger, "Predicting Breast Cancer Malignancy using Pre-trained Convolutional Neural Networks on DCE-MRI Data" American Association of Physicists in Medicine (July, 2016)

N Antropova, M Giger, H Li, K Drukker, L Lan, "Radiomics of Breast Cancer: A Robustness Study" *American Association of Physicists in Medicine* (July, 2015)

H Li, B Huynh, M Giger, N Antropova, L Lan, "Use of Deep Learning in Breast Cancer Risk Assessment: Evaluation of Convolutional Neural Networks on a Large Clinical Dataset of FFDMs" Radiological Society of North America (November, 2016)

Poster Presentations

N Antropova, B Huynh, M Giger, "Multi-task Learning in the Computerized Diagnosis of Breast Cancer on DCE-MRIs" Neural Information Processing Systems, Machine Learning in Health Care (December, 2016)

N Antropova, A Sanchez, I Reiser, E Sidky, j Boone, X Pan, "Efficient Iterative Reconstruction Method for Dedicated Breast CT Images", SPIE Medical Imaging: Physics of Medical Imaging (February, 2015)

B Huynh, N Antropova, M Giger, "Comparison of Breast DCE-MRI Contrast Time Points for Predicting Response to Neoadjuvant Chemotherapy Using Deep Convolutional Neural Network Features with Transfer Learning," SPIE Medical Imaging, 2017 (February, 2017)

Research Papers

<u>N Antropova</u>, B Huynh, H Li, H Abe, J Mueller, A Edwards, M Giger, "Assessment of deep convolutional neural networks and transfer learning in the diagnosis of breast lesions on a large clinical dataset of 640 DCE-MRIs", *Radiology (under review)*

N Antropova, B Huynh, M Giger, "Multi-task Learning in the Computerized Diagnosis of Breast Cancer on DCE-MRIs." arXiv preprint arXiv:1701.03882 (2017).

Proceeding Papers

<u>N Antropova</u>, A Sanchez, I Reiser, E Sigky, J Boone, X Pan. (2016, March). "Efficient iterative image reconstruction algorithm for dedicated breast CT." In *SPIE Medical Imaging*. International Society for Optics and Photonics.

Professional Associations

American Association of Physicists in Medicine - Member American College of Radiology - Member