Consensus

Consensus

All-to-all communication

- All-to-all communication
- Two possible input values, 0 and 1

- All-to-all communication
- Two possible input values, 0 and 1
- Unique IDs

- All-to-all communication
- Two possible input values, 0 and 1
- Unique IDs
- Asynchronous model

Recall: Asynchronous model

 Messages arrive eventually we cannot assume an upper bound on the message delay

Consensus

Consensus

Crash failures

- A node can crash at any time,
- This node does not recover anymore,
- Messages that have been successfully sent by this node arrive eventually,
- We know how many nodes can crash – f of them

Requirements

- Agreement
 the nodes agree on the same value
- Termination
 the nodes terminate in a finite time
- Validity
 the decision should be one of the inputs

Examples

No deterministic algorithm in the asynchronous model can solve consensus

Algorithm Configuration

Fully described by:

- States
- Messages in transit

Initial Configuration C_0

Fully described by:

- IDs
- Inputs of the nodes

Bivalent Configuration B_i

Configuration after which both decisions, 0 and 1, can follow

Univalent Configurations U_0 and U_1

Configuration after which only one decision can follow, e.g., 1

Critical Configuration

Last configuration after which both decisions can follow

Transition au

A transition $\tau = (m, u)$ is characterized by a node ureceiving a message m

Impossibility result - recipe

- There always exists a bivalent initial configuration
- There must exist a critical configuration
- The action of a single node decides whether the outcome is 0/1

Impossibility result - recipe

- There always exists a bivalent initial configuration
- There must exist a critical configuration
- The action of a single node decides whether the outcome is 0/1

Randomized Consensus, $f < \frac{n}{2}$

- Broadcast input
- Wait for a majority of valuesAre all values the same?

- Wait for a majority of propose values
 - Is there a proposal for v?

- Wait for a majority of propose values
 - Is there a proposal for v?

Example

Can any algorithm handle $f = \frac{n}{2}$ crashes?

Example

Improving the coinflip, $f < \frac{n}{3}$

Requirement: output 0 and 1 with constant probability

- Biased local coin:
 - \geq 0 with probability 1/n
 - > 1 with probability $1 \frac{1}{n}$
- Broadcast coinflip

- Biased local coin:
 - \geq 0 with probability 1/n
 - > 1 with probability $1 \frac{1}{n}$
- Broadcast coinflip
- Wait for n-f coins, store them in C_u
- Broadcast C_u

- Biased local coin:
 - \geq 0 with probability 1/n
 - > 1 with probability $1 \frac{1}{n}$
- Broadcast coinflip
- Wait for n-f coins, store them in C_u
- Broadcast C_u
- Wait for n f coin sets
- Does one of them contain 0?

- Biased local coin:
 - \geq 0 with probability 1/n
 - > 1 with probability $1 \frac{1}{n}$
- Broadcast coinflip
- Wait for n-f coins, store them in C_u
- Broadcast C_u
- Wait for n f coin sets
- Does one of them contain 0?

Analysis

Learning goals

- o Problems: Consensus
- Distributed models: asynchronous all-to-all communication
- Impossibility results:
 - Impossibility of deterministic asynchronous consensus
 - Impossibility of consensus with n/2 failures
- O Algorithms:
 - Randomized consensus algorithm with f < n/2
 - Biased local coin