Francesca Cuomo

Lo strato Fisico

Parte 1 Rappresentazione digitale dell'informazione

Obiettivi e problemi

- Come ridurre il tempo di trasmissione di un "messaggio" (testo, immagine) ?
 - Qual è la lunghezza di un "messaggio"?
 - Quali sono i vincoli che devono essere rispettati nella trasmissione di un "messaggio"?
- Può una rete gestire chiamate vocali o video ?
 - Qual è la banda richiesta per il supporto di una chiamata vocale o video?
 - Quali sono i vincoli di qualità che devono essere soddisfatti?
- Qual è il tempo necessario a trasferire un messaggio senza errori ?
 - Per quale motivo si verificano errori in trasmissione?
 - come è possibile rivelare e correggere gli errori in trasmissione ?
- Qual è la banda disponibile nei vari mezzi trasmissivi (rame, fibra, radio, ecc.)?

Informazione a Blocchi vs. Stream

- Informazione a blocchi
- L'informazione è naturalmente strutturata in unità indipendenti (blocchi)
 - Text message
 - Data file
 - JPEG image
 - MPEG file
- Dimensione (size)
 - numero di bit (byte) per blocco

- Informazione Stream
- Informazione prodotta e trasmessa in modo continuo
 - Real-time voice
 - Streaming video
- Bit rate
 - misura la quantità di bit prodotti dalla sorgente in una unità di tempo

Delay di trasferimento di un messaggio

- L numero di bit in un messaggio
- R velocità del sistema di trasmissione (bit/s)
- ullet $t_{ extstyle e$
- d lunghezza del collegamento
- velocità di propagazione sul mezzo trasmissivo
 (3x10⁸ m/s nel vuoto, 2x10⁸ m/s nei mezzi guidati)

Delay minimo = t_{prop} + L/R = d/c + L/R

- L si riduce mediante tecniche di compressione
- R si aumenta mediante tecniche di trasmissione
- d si riduce avvicinando sender e receiver

Compressione

- Algoritmi di compressione dati
 - Riducono il numero di bit necessari alla rappresentazione dell'informazione riducendo la ridondanza
 - Senza perdita (Lossless): l'informazione originale è ricostruita esattamente
 - zip, GIF, fax
 - Con perdita (lossy): l'informazione decompressa non è identica all'originale
 - JPEG
- Rapporto di compressione (Compression Ratio) (R_c)
 - R_c = B_{orig}/B_{compr} (#bits file originale / #bits file compresso)
 - Compromesso tra numero di bit e qualità

$$R_c = \frac{B_{orig}}{B_{compr}}$$

5

 B_{orig} = 3 \times H \times W pixel \times B bit/pixel = 3HWB bit

Esempio: 8×10 inch picture a 400×400 pixel per inch² $400 \times 400 \times 8 \times 10$ = 12.8 million pixels 8 bits/pixel/color

12.8 megapixel × 3 byte/pixel = 38.4 megabyte

Esempi di informazione a blocchi

Tipo	Metodo	Formato	Originale	Compressed Ratio
Text	Zip	ASCII	Kbyte- Mbyte	2 <r<sub>c<6</r<sub>
Fax	CCITT Group 3	A4 page 200×100 pixel/in²	256 kbyte	5-54 kbyte (5 <r<sub>c<50)</r<sub>
Immagine a Colori	JPEG	8×10 in² photo 400² pixel/in²	38.4 Mbyte	1-8 Mbyte (5 <r<sub>c<30)</r<sub>

Stream Information

- Un segnale vocale nella forma originale è di tipo analogico
- Un segnale vocale deve essere digitalizzato e trasmesso in tempo reale
- Il livello del segnale analogico varia nel tempo

Digitalizzazione di segnali analogici

 Campionamento (sampling) del segnale analogico nel tempo e codifica dell'ampiezza dei campioni

 R_s = Bit rate = # bit/sample x # sample/second

Bit rate dei segnali digitalizzati

- Larghezza di banda (Bandwidth) Ws (Hz)
 - indica quanto "velocemente" il segnale varia nel tempo
 - Maggiore bandwidth → campioni più frequenti
 - Frequenza di campionamento minima Fc = 2 x Ws
- Accuratezza della rappresentazione
 - Maggiore accuratezza
 - → minore spaziatura tra approssimazione dei campioni
 - → numero maggiore di bit per campione

12

Esempio: Voce & Audio

Codifica vocale (Telefonia)

- W_s = 4 kHz → 8000 sample/sec
- 8 bit/sample
- $R_s = 8 \times 8000 = 64 \text{ kbit/s}$
- Nella telefonia mobile si usano codifiche con maggiore rapporto di compressione
 - R_s = 8-12 kbit/s

CD Audio

- $W_s = 22 \text{ kHz} \rightarrow 44000 \text{ sample/sec}$
- 16 bit/sample
- R_s=16 × 44000= 704 kbps per canale
- MP3 usa una codifica con maggiore rapporto di compressione
 - R_s = 50 kbit/s per canale audio

			•
Dia	iital	Video	Signals

Tipo	Metodo	Formato	Originale	Compresso
Video Confer- enza	H.261	176×144 or 352×288 pix a 10-30 fr/sec	2-36 Mbit/s	64-1544 kbit/s
Full Motion	MPEG2	720×480 pix a 30 fr/sec	249 Mbit/s	2-6 Mbit/s
HDTV	MPEG2	1920×1080 a 30 fr/sec	1.6 <i>G</i> bit/s	19-38 Mbit/s

Parametri di qualità per servizi di tipo Stream

- Possibili problemi introdotti dal transito in rete (Network Impairment)
 - Ritardo (Delay)
 - Per ogni servizio occorre individuare il vincolo sul ritardo massimo di attraversamento della rete
 - Variabilità del ritardo (Jitter)
 - Per ogni servizio occorre individuare il vincolo sulla variabilità massima consentita del ritardo di attraversamento della rete
 - Perdita di informazioni (Loss)
 - Per ogni servizio occorre individuare il vincolo sul percentuale massima di bit persi (per errori o congestione) sul totale dei bit trasmessi (Probabilità di perdita)
 - I protocolli di trasferimento sono progettati per gestire questi problemi

18

Introduzione alle trasmissioni numeriche

Trasmissione ad impulsi

Obiettivo

 Rendere massimo il rate di trasmissione degli impulsi in un canale, ovvero rendere T il più piccolo possibile

- Se l'ingresso è un impulso di breve durata, l'uscita sarà un impulso "allargato" e "arrotondato"
 - due impulsi consecutivi possono sovrapporsi tra loro

Domanda

qual è la frequenza massima F di trasmissione degli impulsi in modo che non ci sia interferenza tra loro?

Risposta

- $F = 2 \times W_c$ impulsi/secondo
- dove W_c è the larghezza di banda del canale (Bandwidth)

26

Larghezza di banda di un canale trasmissivo

$$X(t) = a \cos(2\pi f t)$$
 \longrightarrow $Canale$ \longrightarrow $Y(t) = A(f) a \cos(2\pi f t)$

- Se il segnale di ingresso ad un canale è una sinusoide di frequenza f allora
 - l'uscita sarà una sinusoide della stessa frequenza f
 - attenuata di un fattore A(f) che dipende da f
 - A(f)≈1, il segnale transita inalterato
 - A(f)≈0, il segnale è bloccato
- La larghezza di banda W_c è definita come l'intervallo di frequenze per cui A(f)≈1

Canale passa basso ideale

Trasmissione ad impulsi multilivello

- Si consideri un canale con larghezza di banda W_c e una trasmissione ad un rate 2W_c impulsi/s (senza interferenza)
- Se l'ampiezza degli impulsi può assumere due valori (-A o +A), ogni impulso può rappresentare un solo bit informativo, quindi
 - Bit Rate = 1 bit/impulso x 2Wc impulsi/sec = 2Wc bit/s
- Se l'ampiezza degli impulsi può assumere valori appartenti all'insieme {-A,-A/3,+A/3,+A}, ogni impulso può rappresentare 2 bit quindi
 - Bit Rate = 2 bit/impulso x 2Wc impulsi/sec = 4Wc bit/s
- Se il segnale può assumere M = 2^m livelli, si ha
 - Bit Rate = m bit/impulso x 2Wc impulsi/sec = 2mWc bit/s
- In assenza di rumore il bit rate può essere incrementato aumentando il valore di m (livelli del segnale)
 - Attenzione: aumentando m si riduce la distanza tra livelli adiacenti

28

Rumore

- Tutti i sistemi fisici introducono rumore
 - Gli elettroni vibrano a temperature superiori allo zero assoluto, il moto degli elettroni introduce rumore
- La presenza di rumore limita l'accuratezza della misura dell'ampiezza del segnale ricevuto
- L'effetto del rumore è modellabile come un <u>segnale additivo</u> rispetto al segnale utile
- Gli errori nella rivelazione del segnale ricevuto appaiono quando la separazione tra i livelli del segnale è comparabile con il livello di rumore
- Il Bit Error Rate (BER) aumenta quando diminuisce il rapporto segnale-rumore (signal-to-noise ratio)
- Il rumore pone un limite al numero di livelli che possono essere utilizzati nella trasmissione di impulsi e quindi un limite al bit rate in trasmissione

Limite di Shannon alla capacità di un canale

 $C = W_c \log_2 (1 + SNR)$ bit/s

- C è una funzione della larghezza di banda e del rapporto segnale rumore
- Se il bit rate di trasmissione R è inferiore a C (R<C) è possibile ottenere un BER arbitrariamente piccolo
 - e necessario introdurre una codifica di linea opportuna
- Se R>C, non è possibile ridurre il BER a valori arbitrariamente piccoli
- La capacità C può essere utilizzata come una misura di riferimento per stabilire quanto un sistema di trasmissione è vicino alle migliori prestazioni possibili

Esempio

Calcolare la capacità limite di Shannon per un canale di comunicazione telefonico con W_c = 3400 Hz and SNR = 10000

```
C = W_c \log_2 (1 + SNR) = 3400 \log_2 (1 + 10000) =
= 3400 log<sub>10</sub> (10001)/log<sub>10</sub>2 = 45200 bit/s =
= 45.2 kbit/s
```

```
Si osservi che SNR = 10000 corrisponde a SNR (dB) = 10 \log_{10}(10000) = 40 \text{ dB}
```

32

Bit rate in sistemi di trasmissione numerici

Sistema	Bit Rate	Osservazioni
Telephone twisted pair	33.6-56 kbit/s	4 kHz telephone channel
Ethernet twisted pair	10 Mbps, 100 Mbit/s	100 meters of unshielded twisted copper wire pair
Cable modem	500 kbps-4 Mbps	Shared CATV return channel
ADSL twisted pair	64-640 kbps in, 1.536- 6.144 Mbit/s out	Coexists with analog telephone signal
2.4 GHz radio	2-11 Mbit/s	IEEE 802.11 wireless LAN
28 GHz radio	1.5-45 Mbit/s	5 km multipoint radio
Optical fiber	2.5-40 <i>G</i> bit/s	1 wavelength
Optical fiber	>1600 <i>G</i> bit/s	Many wavelengths

Esempi di canali trasmissivi

Channel	Bandwidth	Bit Rate
Canale telefonico	3 kHz	33 kbit/s
Coppia simmetrica	1 MHz	1-6 Mbit/s
Cavo coassiale	500 MHz (6 MHz per canale)	30 Mbit/s/ channel
5 GHz radio (IEEE 802.11)	300 MHz (11 channels)	54 Mbit/s / channel
Fibra ottica	Fibra ottica Molti TeraHertz	