Report workbook

John Doe

This is a very long summary. This is a

very long summary. This is a very long summary.

Departamento de Física de la Materia Condensada Universidad Zaragoza

Report workbook

John Doe

John Doe University October 2020

Contents

	Page
List of Equations	II
Glossary	III
Declaration	IV
Abstract	\mathbf{V}
1 Introduction	1
2 Another chapter	2
Bibliography	4
Epilogue	5

List of Equations

				P			
2.1	Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe.						3

Glossary

Glossary item 1 Glossary item 1 1

Glossary item 2 Glossary item 2 1

Declaration

I hereby declare that the work presented in this thesis is entirely my own and that I did not use any other sources and references than the listed ones. I have marked all direct or indirect statements from other sources contained therein as quotations. Neither this work nor significant parts of it were part of another examination procedure. I have not published this work in whole or in part before. The electronic copy is consistent with all submitted copies.

Zaragoza (Aragón), October 2020

Abstract

This is justified text.

Introduction

This is an introduction. this is bold this is italic text

This is Glossary item 1 and this is Glossary item 2.

Citation here[1]. Footnote url here¹.

Another footnote simple 2

¹http://google.com ²this is a footnote

2 Another chapter

This is a chapter.

Second page.

Footnote url here with header³.

$$f = 28 \cdot \sqrt{(B_{DC} + (N_y - N_x) \cdot 0.86 \cdot 10^6 \cdot 4\pi \cdot 10^{-7}) \cdot (B_{DC} + (N_z - N_x) \cdot 0.86 \cdot 10^6) \cdot 4\pi \cdot 10^{-7}}$$

Equation 2.1: Theoretical Kittel equation expanded for a Permalloy thin-film for X-axe

 $^{^3 \}rm http://google.com$

Bibliography

[1] Y. Li, T. Polakovic, Y.-L. Wang, J. Xu, S. Lendinez, Z. Zhang, J. Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W.-K. Kwok, Z. Xiao, V. Novosad, A. Hoffmann, and W. Zhang, "Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices.", *Physical review letters*, vol. 123, p. 107701, Sept. 2019.

Epilogue

This is an epilogue.