

RBE 510 – Multi-Robot Systems Lecture 5: Pairwise Interactions

Kevin Leahy 05, September 2025

Admin

- HW 0 solutions/grades posted
- HW 1 due Today 11:59:59 PM
- HW 2 out this afternoon
- Office hours Wednesday 3-3:45 in UH 250 D

Admin

- First paper presentation on Monday
- Paper posted on canvas read it!
 - Poonawala, Satici, Eckert, and Spong. "Collision-Free Formation Control with Decentralized Connectivity Preservation for Nonholonomic-Wheeled Mobile Robots" TCNS, 2015.
- Future papers ML?

Today

- Clarifications
 - Homework 1 pointers
 - Rigidity
- Closing out consensus and formation control
 - Combining reference frame invariance with abstraction-based control
 - Generalizing the results for reference-frame invariance

Homework 1 Tips

Question 1 – Consensus

"compact form"

Question 2 – Stubborn Agent

• Show (analytically) ≈ prove

Modeling Multiple Robots

Question 2 (and in general)

- Dynamical system $\dot{x} = f(x, u)$
- Equlibrium

Convergence

Question 2 (and in general)

- Existence of an equilibrium does not mean the system will reach it!
- Example, harmonic oscillator $\ddot{s} = -Cs$

Harmonic Oscillator Phase Portrait

Other Example

• Inverted oscillator $\ddot{s} = Cs$

Inverted Oscillator Phase Portrait

Clarification and Recap

Rigidity

Globally Rigid

Worcester Polytechnic Institute

Recap

Consensus-based control

$$\dot{x} = -Lx$$

- Including different assumptions on topologies, information flow, etc.
- Formation control

$$\dot{x} = -Lx + d$$

- Modified consensus
- Leader-follower

$$\begin{bmatrix} \dot{x_f} \\ \dot{x_l} \end{bmatrix} = -L \begin{bmatrix} x_f \\ x_l \end{bmatrix}$$

Reference-frame invariant formations

$$\dot{x_i} = \sum_{j \in \mathcal{N}_i} k_{ij} (\|p_i - p_j\| - d_{ij}) \frac{p_i - p_j}{\|p_i - p_j\|}$$

Putting It All Together

Motivation

Recall

- Common centralized command and observer
- Automatic calculation of distributed individual control laws
- Control position, orientation, and shape of abstraction
- Requires absolute knowledge of position in a global reference frame

Recall

Reference-frame invariant control laws

$$\dot{p_i} = \sum_{j:(i,j)\in E} (\|p_i - p_j\| - d_{ij}) \frac{p_i - p_j}{\|p_i - p_j\|}$$

- Use for consensus and formations with only local information
- Can we leverage this for abstraction control?

Observations

- Agents observe other agents in their own body frame
 - Relative position
 - Relative orientation
 - Agent i's observation is denoted o_i
 - Consists of all neighbors observed by its sensor
- Observer/Operator observes overall abstraction as μ , Σ , θ as discussed last time
 - Denoted o_a

Goal

- Design global control law ν to map desired swarm behaviors to a control input u_a that is broadcast to the swarm
- Design a distributed control law $\pi: o_i \times u_a \to u_i$ for each agent to satisfy the desired swarm behavior
- Such that
 - $-\pi$ depends only on o_i and u_a
 - $-\pi$ expressed in agents' body frames
 - No common global reference frame is required
 - No pairwise communication is required

Architecture

Control Hierarchy

- Lowest layer
 - Consensus on heading with neighbors
 - Effectively creates common arbitrary reference frame
- Middle layer
 - Formation control
 - Keeps agents contained to abstraction region
- Highest layer
 - Controls the abstraction
 - Updates the goal of the abstraction layer

Abstraction Control (Alters Formation)

Formation Control (Maintains the Abstraction)

Consensus (Maintains Common Heading)

Lowest Layer – Consensus

 If agents can observe each others' headings, each agent updates their heading according to

$$\dot{\theta}_i = \frac{1}{\beta} \sum_{i} (\theta_i - \theta_i)$$

Abstraction Control (Alters Formation)

Formation Control (Maintains the Abstraction)

Consensus (Maintains Common Heading)

Middle Layer – Formation Control

- No prescribed distance vector d
- Instead, assume initial group interagent vectors are desired separation
- Formation control keeps agents in same relative positions

Highest Layer – Abstraction Control

- Four operations at abstraction level
 - Translation trivial as we saw last time
 - $\nu = \dot{\mu}$
 - Scaling multiply distances by α as we saw last time
 - $\nu = \alpha$
 - Rotation requires global knowledge not possible

Agents and Distance from μ

 Shear is a linear operation that transforms one component of a point in proportion to another value (e.g., x in proportion to y)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = x + hy$$
$$y' = y$$

This example is an x-shear, but can do the same for y

Shear as Rotation

• Rotation by any angle $0^{\circ} \le \psi \le 90^{\circ}$ can be decomposed from rotation matrix R to a series of three shears

$$R = \begin{bmatrix} 1 & -\tan(\frac{\psi}{2}) \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \sin(\psi) & 1 \end{bmatrix} \begin{bmatrix} 1 & -\tan(\frac{\psi}{2}) \\ 0 & 1 \end{bmatrix}$$

- This operates on vectors in \mathbb{R}^2
- We can use it on the entries of d

Results

An aside about weighting and connectivity

The Problem

When does this happen?

- For distance-based edges $\{v_i, v_j\} \in E$ iff $||x_i x_j|| \le \Delta$
- If comms are lost beyond distance δ , we want edges to be at most $\delta \epsilon$
- Can we define a controller such that
- If all edges are $< \delta \epsilon$, we can guarantee $||x_i x_j|| \le \delta$

The Solution

• Define ϵ -interior of δ -constrained graph realization as $D^{\epsilon}_{G,\delta} = \{x \in \mathbb{R}^{pn} \mid ||l_{ij}|| \leq \delta - \epsilon \ \forall \{v_i,v_j\} \in E\}$

• Edge tension
$$\mathcal{V}_{ij}(\delta, x) = \begin{cases} \frac{\|l_{ij}(x)\|^2}{\delta - \|l_{ij}(x)\|} & if \{v_i, v_j\} \in E \\ 0 & otherwise \end{cases}$$

• Gradient:
$$\frac{\partial v_{ij}(\delta, x)}{\partial x_i} = \begin{cases} \frac{2\delta - \left\| l_{ij}(x) \right\|}{\left(\delta - \left\| l_{ij}(x) \right\|\right)^2} \left(x_i - x_j\right) & if \left\{v_i, v_j\right\} \in E \\ 0 & otherwise \end{cases}$$

Total Energy

Total Energy is defined as

$$\mathcal{V}(\delta, x) = \frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} \mathcal{V}_{ij}(\delta, x)$$

Gradient of total energy is non-increasing!!

But what's going on here?

The Real Solution

Rendezvous

Weighted Rendezvous

Formations

Formations

Pairwise Interactions and SE(N)-invariance

Source

 Vasile, Schwager, and Belta, "Translational and Rotational Invariance in Networked Dynamical Systems." In IEEE Trans. On Control of Network Systems, 2018

Robot Teams with Only Local Information

How can we design an effective controller when there is no global reference frame?

Inspiration – Physics

The laws of physics are the same in all inertial reference frames

Reference Frames

- $x_i^{\mathbb{W}}$ state of agent i in frame \mathbb{W}
- $x_i^{\mathbb{M}}$ state of agent i in frame \mathbb{M}
- Frame M related to W by pair (R, w)

$$-x_i^{\mathbb{W}} = Rx_i^{\mathbb{M}} + w$$

$$-v_i^{\mathbb{W}} = Rv_i^{\mathbb{M}}$$

Reference Frames

 Consider pairwise interaction between agents i and j

$$-v_i^{\mathbb{W}}=f_{ij}(x_i^{\mathbb{W}},x_j^{\mathbb{W}})$$

$$-v_i^{\mathbb{M}}=f_{ij}(x_i^{\mathbb{M}},x_j^{\mathbb{M}})$$

Substituting:

$$-Rv_i^{\mathbb{M}} = f_{ij}(Rx_i^{\mathbb{M}} + w, Rx_j^{\mathbb{M}} + w)$$
$$-Rv_i^{\mathbb{M}} = Rf_{ij}(x_i^{\mathbb{M}}, x_i^{\mathbb{M}})$$

Combining:

$$-Rf_{ij}(x_i^{\mathbb{M}}, x_j^{\mathbb{M}}) = f_{ij}(Rx_i^{\mathbb{M}} + w, Rx_j^{\mathbb{M}} + w)$$

The Special Euclidean Group

- SE(N) is the Special Euclidean group in N-dimensions
 - The set of all possible rotations and displacements in \mathbb{R}^N
- A function $f: \mathbb{R}^N \times \cdots \times \mathbb{R}^N \to \mathbb{R}^N$ is SE(N)-invariant if for all $R \in SO(N)$ and all $w \in \mathbb{R}^N$

$$Rf(x_1, \dots, x_p) = f(Rx_1 + w, \dots, Rx_p + w)$$

 This is the property we would like for reference-frame invariant control policies!

Example

- Consider two frames, \mathbb{W}_1 and \mathbb{W}_2
- Related by a clockwise rotation of $\pi/4$ and a translation of $[1,1]^T$

Worcester Polytechnic Institute

Pairwise Interaction System

- A pairwise interaction system is a double (G,F), where
 - -G is a graph

$$-F = \left\{ f_{ij} \mid f_{ij} : \mathbb{R}^N \times \mathbb{R}^N \to \mathbb{R}^N, (i,j) \in E(G) \right\}$$

Dynamics of agent

$$\dot{x_i} = \sum_{j \in \mathcal{N}_i} f_{ij}(x_i, x_j)$$

Call this the total interaction on agent i

$$S_i(x_1, \dots, x_n) = \sum_{j \in \mathcal{N}_i} f_{ij}(x_i, x_j)$$

Pairwise Interaction System

- A pairwise interaction system (G,F) is SE(N)-invariant if, for all $i \in V(G)$, the total interaction function S_i are SE(N)-invariant
- Note: this does not necessarily mean the *individual* f_{ij} functions are SE(N)-invariant. It is their *sum* for an agent.

Quasi-Linearity

• A function $f: \mathbb{R}^N \to \mathbb{R}^N$ is called **quasi-linear** if there is a function $k: \mathbb{R}_{\geq 0} \to \mathbb{R}$ such that

$$f(x) = k(||x||)x$$

For all $x \in \mathbb{R}^N$

Quasi-Linear Pairwise Interactions

• A pairwise interaction system (G,F) is quasi-linear if the total interaction function of each agent is a sum of quasi-linear functions

$$S_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\|x_j - x_i\|) (x_j - x_i)$$

- $k_{ij}: \mathbb{R}_{\geq 0} \to \mathbb{R}$
- $N \ge 3$

Main Result

- A pairwise interaction system (G,F) is SE(N)-invariant if and only if it is quasi-linear
 - If we have a pairwise interaction system, we can check for invariance
 - If we are designing one, we have a design criterion
 - Does not imply any result about stability
 - Does not impose restrictions on G or F

Only for pairwise systems

• $S_1(x_1, x_2, x_3) = ||x_2 - x_1||(x_3 - x_2)|$

What about stability?

- Can prove (using Lyapunov) that if (G,F)
 - -(G,F) is SE(N)-invariant
 - − *G* is strongly connected
 - (G,F) is balanced: $\sum_{j\in\mathcal{N}_i} f_{ij}(x_i,x_j) + \sum_{j\in\mathcal{N}_i} f_{ji}(x_j,x_i) = 0$ Outgoing Incoming
 - For all $(i,j) \in E$, $x_i \neq x_j$: $(x_j x_i)^T f_{ij}(x_i, x_j) > 0$
- Then the consensus set is globally asymptotically stable

Let's look at some examples

$$S_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\|x_j - x_i\|) (x_j - x_i)$$

Consensus:

$$\dot{x_i} = \sum_{j \in \mathcal{N}_i} (x_j - x_i)$$

Formation:

$$\dot{x}_i = \sum_{j \in \mathcal{N}_i} (\|x_i - x_j\|^2 - d_{ij}) (x_i - x_j)$$

Let's look at some examples

$$S_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\|x_j - x_i\|) (x_j - x_i)$$

Navigation functions:

$$\dot{x_i} = -\alpha \nabla_{x_i} \left(\frac{\gamma_i(x)}{\left(\gamma_i(x)^k + \beta_i(x) \right)^{\frac{1}{k}}} \right)$$

Hamiltonian physics:

$$\ddot{x_i} = \frac{1}{m_i} \sum_{j=1, j \neq i}^{m} \frac{Gm_i m_j}{\|x_i - x_j\|^3} (x_j - x_i)$$

Let's look at some examples

$$S_i = \sum_{j \in \mathcal{N}_i} k_{ij} (\|x_j - x_i\|) (x_j - x_i)$$

Edge potentials:

$$\frac{\partial \mathcal{V}_{ij}(\delta, x)}{\partial x_i} = \begin{cases} \frac{2\delta - \|l_{ij}(x)\|}{\left(\delta - \|l_{ij}(x)\|\right)^2} (x_i - x_j) & \text{if } \{v_i, v_j\} \in E\\ 0 & \text{otherwise} \end{cases}$$

Not Just Consensus

Consider complete graph with 3 agents

$$f_{ij}(x_i, x_j) = \begin{cases} x_j & (i, j) \in \{(1, 2), (2, 3), (3, 1) \\ -x_j & otherwise \end{cases}$$

Pairwise interactions: quasi-linear?

Not Just Consensus

Consider complete graph with 3 agents

$$f_{ij}(x_i, x_j) = \begin{cases} x_j & (i, j) \in \{(1, 2), (2, 3), (3, 1) \\ -x_j & otherwise \end{cases}$$

SE(N)-invariant?

Total Interaction Function

• But SE(N)-invariance \Leftrightarrow quasi-linear?

Not Just Consensus

Consider complete graph with 3 agents

$$f_{ij}(x_i, x_j) = \begin{cases} x_j & (i, j) \in \{(1, 2), (2, 3), (3, 1) \\ -x_j & otherwise \end{cases}$$

Total interaction: quasi-linear?

Result: Periodic Orbits

Where are we now

Recap

- Consensus and nearest-neighbor rules
 - Average consensus for undirected, connected, intermittently connected
 - Requirements: comms/sensing, synchronous updates (in what we discussed, at least)
 - Advantages: scalable, decentralized, local
 - Formations: consensus-like approach
 - Requirements: same as consensus + global information
 - Advantages: same as consensus, but global information/awareness required
 - Leader-follower control: same as consensus
- Centralized formation control:
 - Aggregated control
 - Requirements: centralization, localization
 - Advantages: very little comms (one to many), scalable (size-agnostic)

Recap

- Distributed Formation Control:
 - Requirements: comms/sensing, synchronous updates (in what we discussed, at least)
 - Advantages: scalable, decentralized, local
 - Disadvantages: shearing instead of rotation
- Connectivity maintenance in nearest-neighbor formations
 - Hybrid approach
 - Local information, local reference frames, distributed
- *SE(N)*-invariance
 - Iff quasi-linear
 - Design requirement/validation criteria to ensure local reference frame control

Overview

- Distributed algorithms and control
- Sensing and estimation
- Communication and information sharing
- Cooperative decision making

Distributed Algorithm with Control

Distributed Algorithm

- A distributed algorithm DA for a network S consists of the sets
 - A: a set containing the alphabet, including the null symbol
 - $-W^{[i]}, i \in I$: the processor state sets
 - $-W_0^{[i]} \subseteq W^{[i]}, i \in I$: the allowable initial values
- It also has the maps
 - $msg^{[i]}:W^{[i]}\times I\to \mathbb{A}, i\in I$: the message-generation functions
 - $stf^{[i]}$: $W^{[i]} \times \mathbb{A}^n \to W^{[i]}$, $i \in I$: the state-transition functions

Communication on a Network

Control and Communication Law

- A control and communication law CC for a robotic network S
 consists of the sets
 - A: a set containing the alphabet, including the null symbol
 - $-W^{[i]}, i \in I$: the processor state sets
 - $-W_0^{[i]} \subseteq W^{[i]}, i \in I$: the allowable initial values
- It also has the maps
 - $-msg^{[i]}:X^{[i]}\times W^{[i]}\times I\to \mathbb{A},i\in I:$ the message-generation functions
 - $-stf^{[i]}:X^{[i]}\times W^{[i]}\times \mathbb{A}^n\to W^{[i]},i\in I$: the state-transition functions
 - $-ctl^{[i]}: X^{[i]} \times X^{[i]} \times W^{[i]} \times \mathbb{A}^n \to U^{[i]}, i \in I$: the (motion) control functions

Communication and Control on a Network

Transmit and receive

Receive messages: $y^{[i]} \in \mathbb{A}^n$

Processor state: $w^{[i]} \in W^{[i]}$

Update state: $w^{[i]} \leftarrow stf^{[i]}(x^{[i]}, w^{[i]}, y^{[i]})$

Update processor state

Apply control: $\dot{x}^{[i]} = f(x^{[i]}, U^{[i]})$

Generate messages:

$$y_i^{[j]} \leftarrow msg^{[i]}(x^{[i]}, w^{[i]}, j) \text{ if } (i, j) \in E_{cmm}$$

Update physical state

Worcester Polytechnic Institute

Wrap Up

Recap

- Closing out consensus and formation control
 - Combining reference frame invariance with abstraction-based control
 - Generalizing the results for reference-frame invariance
- Next time: starting sensing, deployment, and coverage