Wave-Particle Duality in Swirl-String Theory: Toroidal Circulation, Knot Collapse, and Photon-Induced Transitions

Omar Iskandarani Independent Researcher, Groningen, The Netherlands

September 18, 2025

Abstract

We present a Swirl–String Theory (SST) interpretation of the electron's wave–particle duality based on Canon v0.3.1. The electron is modeled as a swirl-string admitting two phases: an unknotted, delocalized toroidal circulation \mathcal{R} (wave-like) and a localized, knotted soliton (trefoil) \mathcal{T} (particle-like). We define an effective energy functional including bulk swirl density, line tension, near-contact interactions, and helicity terms. Photon-induced transitions $\mathcal{R} \rightleftarrows \mathcal{T}$ occur at resonant frequencies determined by impedance matching between electromagnetic modes and topological excitations. We show how circulation quantization on \mathcal{R} recovers de Broglie wave relations, while \mathcal{T} provides a stable, localized excitation. This framework yields falsifiable predictions in atomic absorption spectra, Rydberg scaling, and polarization-dependent selection rules.

1 Introduction

Wave-particle duality remains a central puzzle in quantum mechanics. The hydrodynamic representation of the Schrödinger equation by Madelung [4], the matter-wave hypothesis of de Broglie [7], and Bohm's hidden-variable interpretation [8, 9] all highlight fluid analogies. In superfluids, Onsager's circulation quantization [10] and Feynman's analysis of helium vortices [11] demonstrate how phase coherence enforces quantized flow. Earlier, Helmholtz [12] and Kelvin [13] established the conservation of vorticity and proposed atoms as vortex rings.

Within SST, the Canon postulates a universal swirl condensate with effective density ρ_f and characteristic swirl velocity $\|\mathbf{v}_{\circlearrowleft}\|$. Electrons are interpreted not as point particles but as filamentary swirl-strings. We propose here that the dual character of the electron arises from two distinct phases of the same underlying string.

2 Two Phases of the Electron String

2.1 Unknotted toroidal ring R

The delocalized phase is an unknotted ring circulation \mathcal{R} with radius R and length $L(\mathcal{R}) = 2\pi R$. Its circulation is quantized:

$$\Gamma_n = \oint_{\mathcal{R}} \mathbf{v} \cdot d\boldsymbol{\ell} = n \frac{h}{m_e}, \qquad n \in \mathbb{Z}.$$
 (1)

Hence the tangential speed is

$$v_{\theta}(R) = \frac{\Gamma_n}{2\pi R},\tag{2}$$

and the phase around the ring is $e^{in\theta}$, yielding the de Broglie relation

$$\lambda_{\text{ring}} = \frac{2\pi R}{n} = \frac{h}{p_{\theta}}, \qquad p_{\theta} = m_e v_{\theta}. \tag{3}$$

Thus \mathcal{R} naturally supports interference and standing-wave behavior.

2.2 Knotted trefoil soliton

The localized phase \mathcal{T} is a knotted filament (e.g. trefoil 3_1) with enhanced curvature and helicity. Its invariants satisfy $C(\mathcal{T}) > 0$, $\mathcal{H}(\mathcal{T}) \neq 0$, and typically $L(\mathcal{T}) > L(\mathcal{R})$ for equal scale.

2.3 Effective energy functional

We postulate an effective energy functional

$$\mathcal{E}_{eff}[K] = \underbrace{\epsilon_0 A L(K)}_{\text{bulk swirl energy}} + \underbrace{\beta L(K)}_{\text{line tension}} + \underbrace{\alpha C(K)}_{\text{near-contact}} + \underbrace{\gamma \mathcal{H}(K)}_{\text{helicity}}$$
(4)

where K is the filament curve, $A = \pi r_c^2$ is the core cross-sectional area, and ϵ_0 is the Canon bulk energy density

$$\epsilon_0 = \frac{4}{\alpha_{f_8} \varphi} \left(\frac{1}{2} \rho_f \| \mathbf{v}_{\circlearrowleft} \|^2 \right). \tag{5}$$

2.4 Dimensional analysis

- $[\epsilon_0] = \text{J m}^{-3}, [A] = \text{m}^2, [L] = \text{m} \Rightarrow [\epsilon_0 A L] = \text{J}.$
- $[\beta] = \mathrm{J} \, \mathrm{m}^{-1}$, hence $[\beta L] = \mathrm{J}$.
- αC , $\gamma \mathcal{H}$ contribute as energy terms.

Numerically, with Canon constants,

$$\epsilon_0 \approx 1.4187 \times 10^8 \text{ J m}^{-3}, \quad A \approx 6.24 \times 10^{-30} \text{ m}^2,$$
 (6)

so bulk energy per length is

$$\epsilon_0 A \approx 8.85 \times 10^{-22} \text{ J m}^{-1}.$$
 (7)

3 Photon-Driven Transitions

3.1 Resonance condition

The transition $\mathcal{R} \to \mathcal{T}$ changes the energy by

$$\Delta E = (\epsilon_0 A + \beta) \Delta L + \alpha C(\mathcal{T}) + \gamma \mathcal{H}(\mathcal{T}). \tag{8}$$

Resonance occurs when

$$\hbar\omega \approx \Delta E \quad . \tag{9}$$

3.2 Selection rules

- Angular momentum matching: photon helicity must match the winding number (e.g. $\Delta n = \pm 3$ for trefoil).
- Radius dependence: larger R reduces ΔL , lowering resonance energy (Rydberg scaling).
- Polarization dependence: circular polarization aligned with knot chirality enhances coupling.

4 Effective Field Theory Formulation

At the EFT level, the string world-sheet Σ enters a Lagrangian

$$\mathcal{L} = \frac{1}{2}\rho_f \|\mathbf{v}\|^2 - \rho_E - \beta \ell[\Sigma] - \alpha \mathcal{C}[\Sigma] - \gamma \mathcal{H}[\Sigma] + \mathcal{L}_{EM}^{int}[A_\mu; \Sigma].$$
 (10)

In the static limit, $\mathcal{L} \to -\mathcal{E}_{eff}$. Time-dependent solutions yield Rabi-like oscillations between \mathcal{R} and \mathcal{T} under monochromatic drive $\omega \approx \Delta E/\hbar$.

5 Photoelectric and Compton Effects from Canonical Photon Modes

5.1 Canonical Photon Mode Recap

From Sec. X (Canonical photon derivation), the photon is described as a *pulsed unknot swirl-string*, with action

$$S[\xi] = \frac{1}{2} \rho_f A_{\text{eff}} \int dt \int_0^L ds \left[(\partial_t \xi)^2 - c^2 (\partial_s \xi)^2 \right],$$

normal modes $\xi_m(s,t)$ of frequency $\omega_m = ck_m$, and single-quantum amplitude

$$a_m = \sqrt{\frac{\hbar}{\rho_f A_{\text{eff}} L \omega_m}}.$$
 (11)

This constitutes the *canonical* photon description in SST: delocalized circulation with no restmass density ($\rho_m = 0$), but finite energy density ρ_E .

5.2 Swirl-EM Mapping (Empirical Consistency)

To compare with classical electrodynamics, we adopt the empirical swirl-EM map

$$\mathbf{E} = \sqrt{\frac{\rho_f}{\varepsilon_0}} \mathbf{v}, \qquad \mathbf{B} = \sqrt{\frac{\rho_f}{\varepsilon_0}} \mathbf{b}, \qquad \omega = ck, \tag{12}$$

so that the quadratic energy-momentum balance reproduces Maxwell:

$$u = \frac{\varepsilon_0}{2}E^2 + \frac{1}{2\mu_0}B^2, \quad \mathbf{S} = \mu_0^{-1}\mathbf{E} \times \mathbf{B},$$

with $c^{-2} = \varepsilon_0 \mu_0$ [18]. Equation (11) is then consistent with the cavity-QED single-photon field amplitudes [19, 20].

5.3 Photoelectric Effect as $\mathcal{R} \rightarrow \mathcal{T}$ Transition

Within the \mathcal{R}/\mathcal{T} two-phase electron model (SST-1), absorption of a canonical photon mode by a delocalized electron \mathcal{R} can trigger localization to a knotted \mathcal{T} state if

$$\hbar\omega \ge \Phi + \Delta E_{RT},\tag{13}$$

where Φ is the material work function and $\Delta E_{RT} = E[\mathcal{T}] - E[\mathcal{R}]$ the localization gap. In metals, ΔE_{RT} is negligible or renormalized into an effective Φ_{eff} , giving Einstein's law

$$K_{\text{max}} = \hbar\omega - \Phi_{\text{eff}}.\tag{14}$$

This is thus recovered as an *empirical consequence* of the canonical photon.

5.4 Compton Scattering with a Delocalized Photon Packet

Treating the incident photon as a canonical delocalized mode of momentum $(\hbar\omega/c, \, \hbar\mathbf{k})$ and the target electron as a localized \mathcal{T} of mass m_e , energy-momentum conservation gives

$$\Delta \lambda = \lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta), \tag{15}$$

the standard Compton shift [16]. The equality follows because the swirl-EM map (12) preserves stress-energy flux.

5.5 Consistency, Limits, and Corrections

Finite core structure of the electron string introduces corrections $\mathcal{O}((kr_c)^2)$, negligible for $kr_c \ll 1$ (X-rays) but potentially testable at γ -ray energies.

Interpretation.

- 1. Photoelectric: canonical photon \rightarrow delocalized \mathcal{R} electron \rightarrow localized \mathcal{T} emission.
- 2. Compton: canonical photon scattering on \mathcal{T} electron, kinematics as in QED.
- 3. **Polarization:** photon helicity corresponds to swirl-clock orientation, affecting cross sections and selection rules.

5.6 Notes on Provenance

- Einstein's photoelectric law [14, 15].
- Compton scattering and Klein-Nishina [16, 17].
- Swirl-EM map consistency with Maxwell [18].
- Cavity QED amplitudes [19, 20].

6 Predictions and Tests

- 1. **Spectral lines:** new resonances in absorption spectra, not coinciding with standard atomic transitions.
- 2. Rydberg atoms: red-shifted knotting lines with increasing principal quantum number.
- 3. **Pump–probe:** suppression of interference fringes coincident with localization after resonant pump.
- 4. **Polarization dependence:** transition rates sensitive to photon chirality.

7 Conclusion

In SST, the same electron string supports both a delocalized circulation \mathcal{R} (wave aspect) and a localized knot \mathcal{T} (particle aspect). Photon-induced transitions between these phases provide a dynamical explanation of wave–particle duality consistent with the Canon and with hydrodynamic analogies established since Helmholtz and Kelvin. The framework yields concrete, falsifiable predictions.

Figure 1: SST double slit schematic. The electron approaches as a delocalized toroidal circulation \mathcal{R} (ring), whose phase bifurcates at two slits to produce coherent downstream fields that interfere. At the screen, interaction triggers collapse into a localized knotted state \mathcal{T} , yielding discrete impacts while the ensemble reproduces the fringe intensity.

Appendix: Popular Summary

A swirl-ring can ripple smoothly like a hula-hoop (wave). If twisted into a knot, the swirl bunches up in one spot (particle). A photon of just the right frequency can flip the string between these two states.

A Quantitative Fringe Geometry and Visibility

Consider a double slit with center-to-center separation s and distance L from slits to screen. Let the electron approach in the delocalized ring phase \mathcal{R} with mean axial momentum p_z (de Broglie wavelength $\lambda = h/p_z$). In the Fraunhofer regime $(L \gg s^2/\lambda)$, the transverse intensity on the screen is well approximated by

$$I(x) \propto I_1(x) + I_2(x) + 2\sqrt{I_1(x)I_2(x)} \cos\left(\frac{2\pi s}{\lambda} \frac{x}{L} + \phi_0\right),$$
 (16)

with fringe spacing

$$d = \frac{\lambda L}{s} \, . \tag{17}$$

Within SST, the phase ϕ_0 is the circulation phase offset inherited from \mathcal{R} ; any path-dependent coupling to the environment adds a random phase $\delta\phi$ that reduces the fringe visibility

$$\mathcal{V} \equiv \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} = \left| \langle e^{i\delta\phi} \rangle \right|. \tag{18}$$

A.1 Ring-phase mapping

For the ring state \mathcal{R} with quantized azimuthal phase $e^{in\theta}$, the two slits act as partial projectors of this phase onto two spatially separated downstream wavefronts. The resulting interference encodes the same azimuthal winding through the optical path difference $\Delta \ell(x) \approx s \, x/L$, hence the cosine argument above.

B Which-Way Coupling and Decoherence in SST

In SST language, "which-way" monitoring is an EM impedance to the ring phase, parameterized by a coupling rate Γ (net photon or field-interaction rate that carries path information). Let τ be the transit time through the interferometer. For weak, memoryless monitoring the phase undergoes a random walk, giving the standard exponential visibility law [21]

Equivalently, define a monitoring strength $\eta \in [0,1]$ as the single-pass which-way information; then $\mathcal{V} = \sqrt{1-\eta}$ (two-outcome, information-balance form). Both parameterizations are compatible at small η via $\eta \simeq 2(1-e^{-\Gamma\tau})$.

SST mechanism. Microscopically, the EM coupling stochastically seeds premature $\mathcal{R} \to \mathcal{T}$ collapses *upstream*, terminating coherent superposition. Equation (19) thus measures the survival probability of coherence before the knotting transition.

B.1 Dimensional check

 Γ has units s⁻¹ and τ has units s, so $\Gamma \tau$ is dimensionless, consistent with (19).

C Delayed-Choice and Quantum Eraser (SST View)

In a Wheeler-type delayed choice, the interferometer is reconfigured after the electron passes the slits [22]. In SST, this reconfiguration alters whether the downstream optics allow continued \mathcal{R} -phase recombination or instead force local \mathcal{T} -phase collapse:

- Interference mode on: downstream optics preserve the \mathcal{R} phase coherence until the screen \Rightarrow fringes.
- Which-way mode on: downstream optics couple EM impedance strongly, enforcing premature $\mathcal{R} \to \mathcal{T}$ collapse \Rightarrow no fringes.

A quantum eraser removes the stored which-way information, effectively *post-selecting* runs where \mathcal{R} -coherence survived to the recombination stage; sorted sub-ensembles then display fringes.

D Spectroscopic Rabi Drive Between $\mathcal R$ and $\mathcal T$

We model the $\mathcal{R} \leftrightarrow \mathcal{T}$ manifold as a driven two-level system with detuning $\Delta = \omega - \omega_0$ (where $\hbar\omega_0 = \Delta E_{\mathcal{R}\to\mathcal{T}}$) and coupling Ω_R set by the EM impedance overlap:

$$\dot{c}_{\mathcal{R}} = -\frac{i}{2}\Omega_R c_{\mathcal{T}} - \frac{\gamma_{\mathcal{R}}}{2} c_{\mathcal{R}},\tag{20}$$

$$\dot{c}_{\mathcal{T}} = -\frac{i}{2}\Omega_R c_{\mathcal{R}} - \left(\frac{\gamma_{\mathcal{T}}}{2} + i\Delta\right) c_{\mathcal{T}}.\tag{21}$$

Figure 2: Fringe visibility vs. which-way coupling in SST. The parameter Γ encodes EM impedance to the \mathcal{R} phase (path information rate), τ is the transit time. Exponential decay of visibility reflects coherence loss prior to recombination.

Figure 3: Two-level SST manifold for $\mathcal{R} \leftrightarrow \mathcal{T}$ with Rabi drive. At resonance $\omega = \omega_0$, the knotting probability oscillates at Ω_R and decays at rate γ , enabling pump-probe control of collapse within an interferometer.

At resonance ($\Delta = 0$) and for $\gamma_{\mathcal{R}}, \gamma_{\mathcal{T}} \ll \Omega_{\mathcal{R}}$,

$$P_{\mathcal{T}}(t) = |c_{\mathcal{T}}(t)|^2 = \sin^2\left(\frac{\Omega_R t}{2}\right) e^{-\gamma t}, \qquad \gamma \equiv \frac{\gamma_R + \gamma_T}{2}.$$
 (22)

A pump-probe synchronized to the flight time across the interferometer can therefore gate the knotting probability and modulate fringe visibility in a time-resolved fashion.

Boxed Result (SST double slit). An electron is a single swirl-string with two phases: \mathcal{R} (delocalized ring) for propagation and \mathcal{T} (knotted soliton) for detection. Interference arises from coherent splitting and recombination of \mathcal{R} ; localized impacts result from $\mathcal{R} \to \mathcal{T}$ collapse at the screen. Which-way monitoring increases the EM impedance, raising the premature knotting rate Γ ; the fringe visibility obeys $\mathcal{V} = e^{-\Gamma \tau}$ and vanishes in the strong-monitoring limit.

References

- [1] William Thomson (Lord Kelvin). On Vortex Atoms. Proceedings of the Royal Society of Edinburgh, 6:94-105, 1867. https://zapatopi.net/kelvin/papers/on_vortex_atoms.html
- [2] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press, 1967. doi:10.1017/CBO9780511800955

- [3] P. G. Saffman. Vortex Dynamics. Cambridge University Press, 1992. doi:10.1017/CBO9780511624063
- [4] E. Madelung. Quantentheorie in hydrodynamischer Form. Zeitschrift für Physik, 40:322–326, 1927. doi:10.1007/BF01400372
- [5] A. L. Fetter. Quantum Theory of Superfluid Vortices. I. Liquid Helium II. Physical Review, 162:143–153, 1967. doi:10.1103/PhysRev.162.143
- [6] Andrés Corrada-Emmanuel. Algebraic topology and the quantization of circulation in superfluid helium. Physical Review B, 45:2553–2556, 1992. doi:10.1103/PhysRevB.45.2553
- [7] L. de Broglie. Recherches sur la théorie des quanta. Annales de Physique, 3(10):22–128, 1925. doi:10.1051/anphys/192510030022.
- [8] D. Bohm. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables I. Phys. Rev., 85(2):166–179, 1952. doi:10.1103/PhysRev.85.166.
- [9] D. Bohm. A Suggested Interpretation of the Quantum Theory in Terms of "Hidden" Variables II. Phys. Rev., 85(2):180–193, 1952. doi:10.1103/PhysRev.85.180.
- [10] L. Onsager. Statistical hydrodynamics. Il Nuovo Cimento (Supplemento), 6:279–287, 1949. doi:10.1007/BF02780991.
- [11] R. P. Feynman. Application of Quantum Mechanics to Liquid Helium. In C. J. Gorter, editor, Progress in Low Temperature Physics, Vol. I, pages 17–53. North-Holland, 1955. doi:10.1016/S0079-6417(08)60077-3.
- [12] H. von Helmholtz. Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik, 55:25–55, 1858. doi:10.1515/crll.1858.55.25.
- [13] W. Thomson (Lord Kelvin). On Vortex Motion. Transactions of the Royal Society of Edinburgh, 25:217–260, 1869.
- [14] A. Einstein. On a Heuristic Viewpoint Concerning the Production and Transformation of Light. Annalen der Physik, 1905.
- [15] R. A. Millikan. A Direct Photoelectric Determination of Planck's h. Physical Review, 7:355–388, 1916. doi:10.1103/PhysRev.7.355.
- [16] A. H. Compton. A Quantum Theory of the Scattering of X-Rays by Light Elements. Physical Review, 21:483–502, 1923. doi:10.1103/PhysRev.21.483.
- [17] O. Klein and Y. Nishina. Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52:853–868, 1929. doi:10.1007/BF01366453.
- [18] J. D. Jackson. Classical Electrodynamics, 3rd Edition. Wiley, 1999. ISBN: 9780471309321.
- [19] S. Haroche and J.-M. Raimond. Exploring the Quantum: Atoms, Cavities, and Photons. Oxford University Press, 2006. ISBN: 9780198509141.
- [20] M. O. Scully and M. S. Zubairy. Quantum Optics. Cambridge University Press, 1997. ISBN: 9780521435956.
- [21] W. H. Zurek, Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. **75**(3), 715–775 (2003). doi:10.1103/RevModPhys.75.715

[22] J. A. Wheeler, The 'Past' and the 'Delayed-Choice' Double-Slit Experiment, in Mathematical Foundations of Quantum Theory, ed. A. R. Marlow, Academic Press, New York, 1978, pp. 9–48.