Numerikus módszerek C

7. előadás: A Newton-módszer és társai

Krebsz Anna

ELTE IK

Tartalomjegyzék

- 1 A Newton-módszer és konvergenciatételei
- 2 Húrmódszer és szelőmódszer
- 3 Általánosítás többváltozós esetre
- 4 Matlab példák

Feladat

Keressük meg egy $f: \mathbb{R} \to \mathbb{R}$ nemlineáris függvény gyökét, avagy zérushelyét. (\exists ?, 1, több?)

$$f(x^*) = 0, \qquad x^* = ?$$

Tartalomjegyzék

- 1 A Newton-módszer és konvergenciatételei
- 2 Húrmódszer és szelőmódszer
- 3 Általánosítás többváltozós esetre
- 4 Matlab példák

A Newton-módszer levezetése

Geometriai megközelítés:

$$f, x_k o ext{\'erint\'o} o ext{\'erushely (y=0)} o x_{k+1}$$

Geometriai megközelítés:

$$f, x_k \rightarrow \text{\'erint\'o} \rightarrow \text{z\'erushely (y=0)} \rightarrow x_{k+1}$$

Geometriai megközelítés:

$$f, x_k \rightarrow \text{\'erint\'o} \rightarrow \text{z\'erushely (y=0)} \rightarrow x_{k+1}$$

Geometriai megközelítés:

$$f, x_k \rightarrow \text{\'erint\'o} \rightarrow \text{z\'erushely (y=0)} \rightarrow x_{k+1}$$

Az érintő egyenlete:

$$y - f(x_k) = f'(x_k) \cdot (x - x_k)$$

$$-f(x_k) = f'(x_k) \cdot (x_{k+1} - x_k)$$

$$-\frac{f(x_k)}{f'(x_k)} = x_{k+1} - x_k$$

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$

A Newton-módszer levezetése

Analitikus megközelítés:

f gyöke $\approx x_k$ körüli Taylor-polinomának gyöke

$$0 = f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \dots$$

A Newton-módszer levezetése

Analitikus megközelítés:

f gyöke $\approx x_k$ körüli Taylor-polinomának gyöke

$$0 = f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \dots$$

Definíció: Newton-módszer

Adott $f: \mathbb{R} \to \mathbb{R}$ differenciálható függvény és $x_0 \in \mathbb{R}$ kezdőpont esetén a *Newton-módszer* alakja:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}$$
 $(k = 0, 1, 2, ...).$

Newton-módszer

Példa

Írjuk fel a Newton-módszert a $\sqrt{2}$ értékének közelítésére, és számoljuk ki a közelítő sorozat első néhány elemét valamely kezdőpontból!

Példa

Írjuk fel a Newton-módszert a $\sqrt{2}$ értékének közelítésére, és számoljuk ki a közelítő sorozat első néhány elemét valamely kezdőpontból!

Megj.: babiloni módszer (\sqrt{n} számítása).

Példa

Írjuk fel a Newton-módszert a $\sqrt{2}$ értékének közelítésére, és számoljuk ki a közelítő sorozat első néhány elemét valamely kezdőpontból!

Megj.: babiloni módszer (\sqrt{n} számítása).

Általában másodrendben konvergens!

Tétel: monoton konvergencia tétele

Ha $f \in C^2[a;b]$ és

 $\mathbf{1} \exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,

Tétel: monoton konvergencia tétele

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- $\mathbf{2} \ f'$ és f'' állandó előjelű,

Tétel: monoton konvergencia tétele

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- 2 f' és f'' állandó előjelű,
- $3 x_0 \in [a; b] : f(x_0) \cdot f''(x_0) > 0,$

Tétel: monoton konvergencia tétele

Ha $f \in C^2[a;b]$ és

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- 2 f' és f" állandó előjelű,
- $3 x_0 \in [a; b] : f(x_0) \cdot f''(x_0) > 0,$

akkor az x_0 pontból indított Newton-módszer (által adott (x_k) sorozat) monoton konvergál x^* -hoz.

Tétel: monoton konvergencia tétele

Ha $f \in C^2[a; b]$ és

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- 2 f' és f'' állandó előjelű,
- 3 $x_0 \in [a; b] : f(x_0) \cdot f''(x_0) > 0$,

akkor az x_0 pontból indított Newton-módszer (által adott (x_k) sorozat) monoton konvergál x^* -hoz.

Megi.: 4 eset van:

Biz.: Csak az f' > 0, f'' > 0 esetre (a többi hasonló) $\Rightarrow f(x_0) > 0$.

Biz.: Csak az f' > 0, f'' > 0 esetre (a többi hasonló) $\Rightarrow f(x_0) > 0$.

1 Taylor-formula másodfokú maradéktaggal, x_k középponttal: $\exists \xi_k \in (x, x_k)$ vagy (x_k, x) :

$$f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{f''(\xi_k)}{2} \cdot (x - x_k)^2.$$

Biz.: Csak az f' > 0, f'' > 0 esetre (a többi hasonló) $\Rightarrow f(x_0) > 0$.

1 Taylor-formula másodfokú maradéktaggal, x_k középponttal: $\exists \xi_k \in (x, x_k)$ vagy (x_k, x) :

$$f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{f''(\xi_k)}{2} \cdot (x - x_k)^2.$$

Az x_{k+1} helyen: $\exists \xi_k \in (x_{k+1}, x_k) \text{ vagy } (x_k, x_{k+1})$

$$f(x_{k+1}) = \underbrace{f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k)}_{=0 \text{ (def. alapján)}} + \underbrace{\frac{f''(\xi_k)}{2}}_{>0} \cdot \underbrace{(x_{k+1} - x_k)^2}_{>0}.$$

Biz.: Csak az f' > 0, f'' > 0 esetre (a többi hasonló) $\Rightarrow f(x_0) > 0$.

1 Taylor-formula másodfokú maradéktaggal, x_k középponttal: $\exists \xi_k \in (x, x_k)$ vagy (x_k, x) :

$$f(x) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{f''(\xi_k)}{2} \cdot (x - x_k)^2.$$

Az x_{k+1} helyen: $\exists \xi_k \in (x_{k+1}, x_k) \text{ vagy } (x_k, x_{k+1})$

$$f(x_{k+1}) = \underbrace{f(x_k) + f'(x_k) \cdot (x_{k+1} - x_k)}_{=0 \text{ (def. alapján)}} + \underbrace{\frac{f''(\xi_k)}{2}}_{>0} \cdot \underbrace{(x_{k+1} - x_k)^2}_{>0}.$$

Tehát $f(x_k) > 0 \ (\forall k \in \mathbb{N}).$

2 Az (x_k) sorozat monoton fogyó,

valamint az (x_k) sorozat alulról korlátos,

így az
$$(x_k)$$
 sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

2 Az (x_k) sorozat monoton fogyó,

$$x_{k+1} = x_k - \underbrace{\frac{f(x_k)}{f'(x_k)}}_{>0} < x_k;$$

valamint az (x_k) sorozat alulról korlátos,

így az
$$(x_k)$$
 sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

2 Az (x_k) sorozat monoton fogyó,

$$x_{k+1} = x_k - \underbrace{\frac{f(x_k)}{f'(x_k)}}_{>0} < x_k;$$

valamint az (x_k) sorozat alulról korlátos,

$$0 = f(x^*) < f(x_k), \ f \ \text{szig. mon. nő} \implies x^* < x_k$$

így az (x_k) sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

2 Az (x_k) sorozat monoton fogyó,

$$x_{k+1} = x_k - \underbrace{\frac{f(x_k)}{f'(x_k)}}_{>0} < x_k;$$

valamint az (x_k) sorozat alulról korlátos,

$$0 = f(x^*) < f(x_k), \ f \text{ szig. mon. nő} \implies x^* < x_k$$

így az (x_k) sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

3 Kell: $\hat{x} = x^*$. Elég: $f(\hat{x}) = 0$. $(f \in C[a; b], f \text{ szig. mon.})$

2 Az (x_k) sorozat monoton fogyó,

$$x_{k+1} = x_k - \underbrace{\frac{f(x_k)}{f'(x_k)}}_{>0} < x_k;$$

valamint az (x_k) sorozat alulról korlátos,

$$0 = f(x^*) < f(x_k), \ f \ \text{szig. mon. nő} \implies x^* < x_k$$

így az (x_k) sorozat konvergens, $\hat{x} := \lim_{k \to \infty} x_k$.

3 Kell: $\hat{x} = x^*$. Elég: $f(\hat{x}) = 0$. $(f \in C[a; b], f \text{ szig. mon.})$

$$f(\hat{x}) = \lim_{k \to \infty} f(x_{k+1}) = \lim_{k \to \infty} \underbrace{\frac{f''(\xi_k)}{2}}_{\text{korlátos}} \cdot \underbrace{(x_{k+1} - x_k)^2}_{\text{→ 0 (Cauchy)}} = 0. \quad \Box$$

Tétel: lokális konvergencia tétele

Ha $f \in C^2[a;b]$ és

Tétel: lokális konvergencia tétele

- **1** ∃ $x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- f' állandó előjelű,

Tétel: lokális konvergencia tétele

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- g f' állandó előjelű,
- $m_1 = \min_{x \in [a;b]} |f'(x)| > 0,$

Tétel: lokális konvergencia tétele

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- g f' állandó előjelű,
- $m_1 = \min_{x \in [a;b]} |f'(x)| > 0,$
- **4** $M_2 = \max_{x \in [a;b]} |f''(x)| < +\infty$, innen $M = \frac{M_2}{2 \cdot m_1}$.

Tétel: lokális konvergencia tétele

- **1** $\exists x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- g f' állandó előjelű,
- **4** $M_2 = \max_{x \in [a;b]} |f''(x)| < +\infty$, innen $M = \frac{M_2}{2 \cdot m_1}$.
- **6** $x_0 \in [a; b] : |x_0 x^*| < r := \min \left\{ \frac{1}{M}, |x^* a|, |x^* b| \right\},$

Tétel: lokális konvergencia tétele

Ha $f \in C^2[a; b]$ és

1
$$\exists x^* \in [a; b] : f(x^*) = 0$$
, azaz van gyök,

g f' állandó előjelű,

$$m_1 = \min_{x \in [a;b]} |f'(x)| > 0,$$

4
$$M_2 = \max_{x \in [a;b]} |f''(x)| < +\infty$$
, innen $M = \frac{M_2}{2 \cdot m_1}$.

6
$$x_0 \in [a; b] : |x_0 - x^*| < r := \min \left\{ \frac{1}{M}, |x^* - a|, |x^* - b| \right\},$$

akkor az x_0 pontból indított Newton-módszer másodrendben konvergál a gyökhöz, és az

$$|x_{k+1} - x^*| \le M \cdot |x_k - x^*|^2$$

hibabecslés érvényes.

Röviden: Ha elég közelről indulunk, akkor gyorsan odatalálunk.

Röviden: Ha elég közelről indulunk, akkor gyorsan odatalálunk.

Megjegyzés:

Röviden: Ha elég közelről indulunk, akkor gyorsan odatalálunk.

Meg jegyzés:

• $|x_0 - x^*| < r := \min\left\{\frac{1}{M}, |x^* - a|, |x^* - b|\right\}$, azaz legyünk "elég közel", de azért mindenesetre legyünk [a; b]-n belül is.

Röviden: Ha elég közelről indulunk, akkor gyorsan odatalálunk.

Meg jegyzés:

- $|x_0 x^*| < r := \min\left\{\frac{1}{M}, |x^* a|, |x^* b|\right\}$, azaz legyünk "elég közel", de azért mindenesetre legyünk [a; b]-n belül is.
- A monoton konvergencia feltételeinek esetén is másodrendű lesz a konvergencia, hiszen előbb-utóbb "elég közel" kerülünk a gyökhöz.

Biz.:

1 Alkalmazzuk az f függvényre a Taylor-formulát, x_k középpponttal az x^* helyen, másodfokú maradéktaggal. $\exists \xi_k \in (x_k, x^*)$ (vagy (x^*, x_k)):

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2}(x^* - x_k)^2.$$

Biz.:

1 Alkalmazzuk az f függvényre a Taylor-formulát, x_k középpponttal az x^* helyen, másodfokú maradéktaggal. $\exists \xi_k \in (x_k, x^*)$ (vagy (x^*, x_k)):

$$0 = f(x^*) = f(x_k) + f'(x_k)(x^* - x_k) + \frac{f''(\xi_k)}{2}(x^* - x_k)^2.$$

2 Mindkét oldalt $f'(x_k)$ -val osztva, majd átrendezve és a Newton-módszer képletét felismerve kapjuk, hogy

$$0 = \frac{f(x_k)}{f'(x_k)} + x^* - x_k + \frac{f''(\xi_k)}{2 \cdot f'(x_k)} (x^* - x_k)^2,$$

$$\left(x_k - \frac{f(x_k)}{f'(x_k)}\right) - x^* = x_{k+1} - x^* = \frac{f''(\xi_k)}{2 \cdot f'(x_k)} (x^* - x_k)^2,$$

$$|x_{k+1} - x^*| \le \frac{M_2}{2 \cdot m_1} \cdot |x_k - x^*|^2 = M \cdot |x_k - x^*|^2,$$

ahol M, m_1, M_2 a tételben definiált mennyiségek.

3 Bevezetve az $\varepsilon_k := x_k - x^*$ jelölést, így is írhatjuk:

$$|\varepsilon_{k+1}| \leq M \cdot |\varepsilon_k|^2$$
.

Ezzel beláttuk, hogy ha (x_k) konvergál és határértéke x^* .

3 Bevezetve az $\varepsilon_k := x_k - x^*$ jelölést, így is írhatjuk:

$$|\varepsilon_{k+1}| \leq M \cdot |\varepsilon_k|^2$$
.

Ezzel beláttuk, hogy ha (x_k) konvergál és határértéke x^* .

4 A Taylor-formából

$$\frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \frac{|f''(\xi_k)|}{2|f'(x_k)|}.$$

Határértéket véve

$$\lim_{k \to \infty} \frac{|x_{k+1} - x^*|}{|x_k - x^*|^2} = \lim_{k \to \infty} \frac{|f''(\xi_k)|}{2|f'(x_k)|} = \frac{|f''(x^*)|}{2|f'(x^*)|} \neq 0,$$

tehát legalább másodrendben konvergens a sorozat.

6 Teljes indukcióval belátjuk, hogy a sorozat minden tagja a $K_r(x^*)$ környezetben marad. $|x_0-x^*| < r$ feltétel volt. Tegyük fel, hogy $|x_k-x^*| = |\varepsilon_k| < r \leq \frac{1}{M}$, ekkor

$$|\varepsilon_{k+1}| = |x_{k+1} - x^*| \le M \cdot |\varepsilon_k|^2 = \underbrace{(M|\varepsilon_k|)}_{\le 1} \cdot |\varepsilon_k| < |\varepsilon_k| < r.$$

6 A konvergencia bizonyításához belátjuk, hogy az $|\varepsilon_k|$ hibakorlátok sorozata 0-hoz tart. Bevezetjük a $d_k:=M\cdot|\varepsilon_k|$ jelölést.

$$\begin{aligned} |\varepsilon_{k+1}| &\leq M \cdot |\varepsilon_{k}|^{2} &\implies M \cdot |\varepsilon_{k+1}| \leq (M \cdot |\varepsilon_{k}|)^{2} &\implies \\ d_{k+1} &\leq d_{k}^{2} &\implies d_{k} \leq d_{k-1}^{2} \leq d_{k-2}^{2 \cdot 2} \leq \ldots \leq d_{0}^{2^{k}}, \\ M \cdot |\varepsilon_{k}| &\leq (M \cdot |\varepsilon_{0}|)^{2^{k}} &\implies |\varepsilon_{k}| \leq \frac{1}{M} \cdot (M \cdot |\varepsilon_{0}|)^{2^{k}}. \end{aligned}$$

5 Teljes indukcióval belátjuk, hogy a sorozat minden tagja a $K_r(x^*)$ környezetben marad. $|x_0-x^*| < r$ feltétel volt. Tegyük fel, hogy $|x_k-x^*| = |\varepsilon_k| < r \le \frac{1}{M}$, ekkor $|\varepsilon_{k+1}| = |x_{k+1}-x^*| \le M \cdot |\varepsilon_k|^2 = \underbrace{(M|\varepsilon_k|)} \cdot |\varepsilon_k| < |\varepsilon_k| < r$.

6 A konvergencia bizonyításához belátjuk, hogy az $|\varepsilon_k|$ hibakorlátok sorozata 0-hoz tart. Bevezetjük a $d_k := M \cdot |\varepsilon_k|$ jelölést.

$$\begin{aligned} |\varepsilon_{k+1}| &\leq M \cdot |\varepsilon_k|^2 & \Longrightarrow & M \cdot |\varepsilon_{k+1}| \leq (M \cdot |\varepsilon_k|)^2 & \Longrightarrow \\ d_{k+1} &\leq d_k^2 & \Longrightarrow & d_k \leq d_{k-1}^2 \leq d_{k-2}^{2 \cdot 2} \leq \dots \leq d_0^{2^k}, \\ M \cdot |\varepsilon_k| &\leq (M \cdot |\varepsilon_0|)^{2^k} & \Longrightarrow & |\varepsilon_k| \leq \frac{1}{M} \cdot (M \cdot |\varepsilon_0|)^{2^k}. \end{aligned}$$

⊘ Mivel $|\varepsilon_0| = |x_0 - x^*| < \frac{1}{M}$, így $M \cdot |\varepsilon_0| < 1$, ezért $|\varepsilon_k| \to 0$, ami az (x_k) sorozat konvergenciáját jelenti.

Newton-módszer

Megjegyzés:

• Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.

Megjegyzés:

- Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.
- Néha a konvergencia csak elsőrendű (vagy instabillá válik). Például ha $f'(x^*)=0$, azaz x^* többszörös gyök. A Newton-módszerrel x^* közelében $\frac{0}{0}$ alakú osztást végzünk.

Megjegyzés:

- Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.
- Néha a konvergencia csak elsőrendű (vagy instabillá válik). Például ha $f'(x^*)=0$, azaz x^* többszörös gyök. A Newton-módszerrel x^* közelében $\frac{0}{0}$ alakú osztást végzünk.
- Többszörös gyök esetén például alkalmazzuk a $g(x) := \frac{f(x)}{f'(x)}$ függvényre a Newton-módszert.

Megjegyzés:

- Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.
- Néha a konvergencia csak elsőrendű (vagy instabillá válik). Például ha $f'(x^*)=0$, azaz x^* többszörös gyök. A Newton-módszerrel x^* közelében $\frac{0}{0}$ alakú osztást végzünk.
- Többszörös gyök esetén például alkalmazzuk a $g(x) := \frac{f(x)}{f'(x)}$ függvényre a Newton-módszert.
- Másik lehetőség: ha x* r-szeres gyök, akkor az

$$x_{k+1} := x_k - r \cdot \frac{f(x_k)}{f'(x_k)}$$

módosítást használjuk, amivel másodrendű iterációt kapunk.

Meg jegyzés:

- Ha $f'(x_k) = 0$, akkor x_{k+1} nincs értelmezve.
- Néha a konvergencia csak elsőrendű (vagy instabillá válik). Például ha $f'(x^*) = 0$, azaz x^* többszörös gyök. A Newton-módszerrel x^* közelében $\frac{0}{0}$ alakú osztást végzünk.
- Többszörös gyök esetén például alkalmazzuk a $g(x) := \frac{f(x)}{f'(x)}$ függvényre a Newton-módszert.
- Másik lehetőség: ha x* r-szeres gyök, akkor az

$$x_{k+1} := x_k - r \cdot \frac{f(x_k)}{f'(x_k)}$$

módosítást használjuk, amivel másodrendű iterációt kapunk.

 Néha akár harmadrendű is lehet (v.ö. magasabbrendű konvergencia tétel).

• Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x - \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.

- Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.
- Hívják Newton-Raphson-, ill. Newton-Fourier-módszernek is.

- Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.
- Hívják Newton-Raphson-, ill. Newton-Fourier-módszernek is.
- A módszer nem biztos, hogy konvergál.

- Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.
- Hívják Newton-Raphson-, ill. Newton-Fourier-módszernek is.
- A módszer nem biztos, hogy konvergál.
- Ciklusba is kerülhet (pontos számolás esetén...).

- Használhattuk volna a magasabbrendű konvergencia tételt is a Newton-módszer lokális konvergencia tételének bizonyítására a $\varphi(x) := x \frac{f(x)}{f'(x)}$ megfeleltetéssel, de akkor $f \in C^3[a;b]$ -t kellett volna feltennünk.
- Hívják Newton-Raphson-, ill. Newton-Fourier-módszernek is.
- A módszer nem biztos, hogy konvergál.
- Ciklusba is kerülhet (pontos számolás esetén...).
- A gyökök "vonzásterületein" kívül kaotikus jelenségek...

Tartalomjegyzék

- 1 A Newton-módszer és konvergenciatételei
- 2 Húrmódszer és szelőmódszer
- 3 Általánosítás többváltozós esetre
- 4 Matlab példák

Ismétlés

Ismétlés: Két adott ponton átmenő egyenes egyenlete.

$$\frac{f(a)-f(b)}{a-b}.$$

Az egyenes meredeksége:

$$\frac{f(a)-f(b)}{a-b}.$$

Az egyenes egyenlete:

$$y-f(a)=\frac{f(a)-f(b)}{a-b}\cdot(x-a).$$

Az egyenes meredeksége:

$$\frac{f(a)-f(b)}{a-b}.$$

Az egyenes egyenlete:

$$y-f(a)=\frac{f(a)-f(b)}{a-b}\cdot(x-a).$$

Ennek zérushelye (y = 0):

$$x = a - \frac{f(a) \cdot (a - b)}{f(a) - f(b)}.$$

Húrmódszer

Definíció: húrmódszer

Az $f \in C[a; b]$ függvény esetén, ha $f(a) \cdot f(b) < 0$, akkor a húrmódszer alakja:

$$x_0 := a, \quad x_1 := b,$$

$$x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_s)}{f(x_k) - f(x_s)}$$

$$(k = 0, 1, 2, ...),$$

ahol s a legnagyobb olyan index, amelyre $f(x_k) \cdot f(x_s) < 0$.

Tétel: a húrmódszer konvergenciája

Ha $f \in C^2[a; b]$ és

1
$$f(a) \cdot f(b) < 0$$
,

2
$$M \cdot (b-a) < 1$$
,

akkor a húrmódszer elsőrendben konvergál az x^* gyökhöz és

$$|x_k - x^*| \le \frac{1}{M} \cdot (M \cdot |x_0 - x^*|)^k$$

teljesül, ahol $M=\frac{M_2}{2\cdot m_1}$ ugyanúgy, mint korábban.

Tétel: a húrmódszer konvergenciája

Ha $f \in C^2[a; b]$ és

1
$$f(a) \cdot f(b) < 0$$
,

2
$$M \cdot (b-a) < 1$$
,

akkor a húrmódszer elsőrendben konvergál az x^* gyökhöz és

$$|x_k - x^*| \le \frac{1}{M} \cdot (M \cdot |x_0 - x^*|)^k$$

teljesül, ahol $M=\frac{M_2}{2\cdot m_1}$ ugyanúgy, mint korábban.

Biz.: nélkül.

Szelőmódszer

Definíció: szelőmódszer

Az $f \in C[a; b]$ függvény esetén a szelőmódszer alakja:

$$x_0, x_1 \in [a; b],$$

 $x_{k+1} = x_k - \frac{f(x_k) \cdot (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$
 $(k = 0, 1, 2, ...).$

Tétel: a szelőmódszer konvergenciája

Ha $f \in C^2[a;b]$ és

- **1** ∃ $x^* \in [a; b] : f(x^*) = 0$, azaz van gyök,
- g f' állandó előjelű,
- **3** $x_0, x_1 \in [a; b]$:

$$\begin{vmatrix} |x_0 - x^*| \\ |x_1 - x^*| \end{vmatrix} < r := \min \left\{ \frac{1}{M}, |x^* - a|, |x^* - b| \right\},$$

akkor a szelőmódszer $p = \frac{1+\sqrt{5}}{2}$ rendben konvergál az x^* gyökhöz. (M a szokásos.)

Tétel: a szelőmódszer konvergenciája

Ha $f \in C^2[a; b]$ és

- g f' állandó előjelű,
- **3** $x_0, x_1 \in [a; b]$:

$$\begin{vmatrix} |x_0 - x^*| \\ |x_1 - x^*| \end{vmatrix}$$
 $< r := \min \left\{ \frac{1}{M}, |x^* - a|, |x^* - b| \right\},$

akkor a szelőmódszer $p = \frac{1+\sqrt{5}}{2}$ rendben konvergál az x^* gyökhöz. (M a szokásos.)

Biz.: nélkül.

Tartalomjegyzék

- 1 A Newton-módszer és konvergenciatételei
- 2 Húrmódszer és szelőmódszer
- 3 Általánosítás többváltozós esetre
- 4 Matlab példák

Többváltozós nemlineáris egyenletrendszerek

Feladat

$$F: \mathbb{R}^n \to \mathbb{R}^n$$
, $F(x) = 0$, $x = ?$, $(x \in \mathbb{R}^n)$

Legtöbb módszerünk általánosítható többváltozós esetre.

Többváltozós nemlineáris egyenletrendszerek

Feladat

$$F: \mathbb{R}^n \to \mathbb{R}^n$$
, $F(x) = 0$, $x = ?$, $(x \in \mathbb{R}^n)$

Legtöbb módszerünk általánosítható többváltozós esetre.

Egyszerű iteráció

$$F(x) = 0 \iff x = \Phi(x)$$

Banach-féle fixponttétel szerint...

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

$$F(x) \approx F(x^{(k)}) + F'(x^{(k)}) \cdot (x - x^{(k)}),$$

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

$$F(x) \approx F(x^{(k)}) + F'(x^{(k)}) \cdot (x - x^{(k)}),$$

$$F'(x^{(k)}) = \left(\frac{\partial f_i(x^{(k)})}{\partial x_j}\right)_{i,j=1}^n \in \mathbb{R}^{n \times n}$$

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

$$F(x) \approx F(x^{(k)}) + F'(x^{(k)}) \cdot (x - x^{(k)}),$$

$$F'(x^{(k)}) = \left(\frac{\partial f_i(x^{(k)})}{\partial x_j}\right)_{i,j=1}^n \in \mathbb{R}^{n \times n}$$

Ezen közelítés zérushelye lesz $x^{(k+1)}$:

Többváltozós Newton-módszer

Közelítsük F-et az elsőfokú Taylor-polinomjával.

$$F(x) \approx F(x^{(k)}) + F'(x^{(k)}) \cdot (x - x^{(k)}),$$

$$F'(x^{(k)}) = \left(\frac{\partial f_i(x^{(k)})}{\partial x_j}\right)_{i,j=1}^n \in \mathbb{R}^{n \times n}$$

Ezen közelítés zérushelye lesz $x^{(k+1)}$:

2 $x^{(k+1)} = x^{(k)} + s^{(k)}$, $s^{(k)}$ a továbblépés iránya.

Definíció: a többváltozós Newton-módszer képlete

$$x^{(k+1)} = x^{(k)} - (F'(x^{(k)}))^{-1} \cdot F(x^{(k)})$$

Definíció: a többváltozós Newton-módszer képlete

$$x^{(k+1)} = x^{(k)} - (F'(x^{(k)}))^{-1} \cdot F(x^{(k)})$$

Megj.: A módszer javítható pl. úgy, hogy ne kelljen minden lépésben invertálni és deriváltat számolni ↔ Broyden-módszer (lassabb).

Tartalomjegyzék

- 1 A Newton-módszer és konvergenciatételei
- 2 Húrmódszer és szelőmódszer
- 3 Általánosítás többváltozós esetre
- 4 Matlab példák

Példák Matlab-ban

- \bullet A $\sqrt{2}$ értékének másodrendben konvergens közelítése.
- **2** Példák a Newton-módszer működésére: konvergencia, divergencia, ciklizálás, fraktálszerű jelenségek.

Példa:

Alkalmazzuk a következő kétváltozós függvényre a Newton-módszert!

$$F(x) = \begin{bmatrix} f_1(x) \\ f_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad F: \mathbb{R}^2 \to \mathbb{R}^2,$$

ahol $f_1(x) = x_1^2 + x_2^2 - 1$, $f_2(x) = -x_1^2 - x_2$.

Geometriailag egy fordított parabola és az origó körüli egy sugarú kör metszéspontját keressük.

Megj.:

• Bizonyos pontokban a Newton-módszer nem értelmezett, mert $det(f'(x^{(k)})) = 0$.

$$\det(F'(x)) = \begin{vmatrix} 2x_1 & 2x_2 \\ -2x_1 & -1 \end{vmatrix} = -2x_1 + 4x_1x_2 = 2x_1(2x_2 - 1) = 0$$

 $x_1 = 0$ és $x_2 = 0.5$ esetén a módszer nem értelmezett.

• Divergens például $x_0 = \begin{bmatrix} \pm 1 & 1 \end{bmatrix}^T$ -ből úgy, hogy az első koordináta sorozat konvergens (de a határérték rossz).