Thermodynamics & Statistical Physics Chapter 4. Multi-component multi-phase system

Yuan-Chuan Zou zouyc@hust.edu.cn

School of Physics, Huazhong University of Science and Technology

December 30, 2013

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

• Object: multi-component, e.g. O₂+CO+CO₂.

- Object: multi-component, e.g. $O_2+CO+CO_2$.
- Property: multi-phase, chemical reaction.

- Object: multi-component, e.g. O₂+CO+CO₂.
- Property: multi-phase, chemical reaction.
- Aim: Get the thermodynamic functions and equations.

- Object: multi-component, e.g. O₂+CO+CO₂.
- Property: multi-phase, chemical reaction.
- Aim: Get the thermodynamic functions and equations.
- Description: $(T, p, n_1, ...n_k)$ for k-component, single phase.

- Object: multi-component, e.g. O₂+CO+CO₂.
- Property: multi-phase, chemical reaction.
- Aim: Get the thermodynamic functions and equations.
- Description: $(T, p, n_1, ...n_k)$ for k-component, single phase.
- As extensive quantities: $V=\sum_i n_i v_i$, $U=\sum_i n_i u_i$, $S=\sum_i n_i s_i$;

- Object: multi-component, e.g. O₂+CO+CO₂.
- Property: multi-phase, chemical reaction.
- Aim: Get the thermodynamic functions and equations.
- Description: $(T, p, n_1, ...n_k)$ for k-component, single phase.
- As extensive quantities: $V=\sum_i n_i v_i$, $U=\sum_i n_i u_i$, $S=\sum_i n_i s_i$; also $G=\sum_i n_i \mu_i$.

- Object: multi-component, e.g. $O_2+CO+CO_2$.
- Property: multi-phase, chemical reaction.
- Aim: Get the thermodynamic functions and equations.
- Description: $(T, p, n_1, ...n_k)$ for k-component, single phase.
- As extensive quantities: $V = \sum\limits_{i} n_{i}v_{i}$, $U = \sum\limits_{i} n_{i}u_{i}$, $S = \sum_{i} n_i s_i$; also $G = \sum_{i} n_i \mu_i$.
- $\bullet \text{ Naturally, } v_i = \left(\frac{\partial V}{\partial n_i}\right)_{T,p,n_{j(j\neq i)}} \text{, } u_i = \left(\frac{\partial U}{\partial n_i}\right)_{T,p,n_{j(j\neq i)}} \text{,}$ $s_i = \left(\frac{\partial S}{\partial n_i}\right)_{T,p,n_{j(j \neq i)}}, \ \mu_i = \left(\frac{\partial G}{\partial n_i}\right)_{T,p,n_{i(j \neq i)}}.$

• Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2)

• Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $\rightarrow dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$,

• Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $\rightarrow dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$, while G is the characteristic function of $(T, p, n_{1}, ...n_{k})$.

- Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $\rightarrow dG = -SdT + Vdp + \sum \mu_i dn_i$, while G is the characteristic function of $(T, p, n_1, ...n_k)$.
- $dU = TdS pdV + \mu dn$ $\rightarrow dU = TdS - pdV + \sum_{i} \mu_{i} dn_{i}$

- Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $ightarrow \mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum \mu_i \mathrm{d}n_i$, while G is the characteristic function of $(T, p, n_1, ...n_k)$.
- $dU = TdS pdV + \mu dn$ $\rightarrow dU = TdS - pdV + \sum_{i} \mu_{i} dn_{i}$
- $dH = TdS + Vdp + \mu dn$ $\rightarrow dH = TdS + Vdp + \sum_{i} \mu_{i} dn_{i}$

- Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $ightarrow \mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum \mu_i \mathrm{d}n_i$, while G is the characteristic function of $(T, p, n_1, ...n_k)$.
- $dU = TdS pdV + \mu dn$
- $\rightarrow dU = TdS pdV + \sum_{i} \mu_{i} dn_{i}$ $dH = TdS + Vdp + \mu dn$
- $\rightarrow dH = TdS + Vdp + \sum_{i} \mu_{i} dn_{i}$
- $dF = -SdT pdV + \mu dn$ $\rightarrow dF = -SdT - pdV + \sum_{i} \mu_{i} dn_{i}$

- Remember $dG = -SdT + Vdp + \mu dn$. (3.2.2) $ightarrow \mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum \mu_i \mathrm{d}n_i$, while G is the characteristic function of $(T, p, n_1, ...n_k)$.
- $dU = TdS pdV + \mu dn$

$$\rightarrow dU = TdS - pdV + \sum_{i} \mu_{i} dn_{i},$$

$$dH = TdS + Vdp + \mu dn$$

- $\rightarrow dH = TdS + Vdp + \sum_{i} \mu_{i} dn_{i}$
- $dF = -SdT pdV + \mu dn$
- $\rightarrow dF = -SdT pdV + \sum_{i} \mu_{i} dn_{i}$
- $dJ = -SdT pdV nd\mu$
- $\rightarrow dJ = -SdT pdV \sum_{i} n_i du_i$ Thermodynamics & Statistical Physics

• Notice $G = \sum_{i} n_i \mu_i$,

• Notice
$$G = \sum_{i} n_i \mu_i$$
, $\Rightarrow dG = \sum_{i} n_i d\mu_i + \sum_{i} \mu_i dn_i$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

• Notice
$$G = \sum_{i} n_{i}\mu_{i}$$
, $\Rightarrow dG = \sum_{i} n_{i}d\mu_{i} + \sum_{i} \mu_{i}dn_{i}$.
 $\Rightarrow SdT - Vdp + \sum_{i} n_{i}d\mu_{i} = 0$, called Gibbs relation.

multi-component system $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$

• Notice $G = \sum_{i} n_i \mu_i$, $\Rightarrow dG = \sum_{i} n_i d\mu_i + \sum_{i} \mu_i dn_i$. $\Rightarrow SdT - Vdp + \sum_{i} n_i d\mu_i = 0$, called Gibbs relation. It means in the k+2 intensive quantities, only k+1is independent. (Another independent is an extensive quantity, like total amount of substance n.)

- Notice $G = \sum_{i} n_i \mu_i$, $\Rightarrow dG = \sum_{i} n_i d\mu_i + \sum_{i} \mu_i dn_i$. $\Rightarrow SdT - Vdp + \sum_{i} n_i d\mu_i = 0$, called Gibbs relation. It means in the k+2 intensive quantities, only k+1is independent. (Another independent is an extensive quantity, like total amount of substance n.)
- For multi-component multi-phase system, phase α : $\mathrm{d}U^{\alpha} = T^{\alpha}\mathrm{d}S^{\alpha} - p^{\alpha}\mathrm{d}V^{\alpha} + \sum_{i} \mu_{i}^{\alpha}\mathrm{d}n_{i}^{\alpha}$ $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha},$ $dH^{\alpha} = T^{\alpha}dS^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$ $dF^{\alpha} = -S^{\alpha}dT^{\alpha} - p^{\alpha}dV^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha},$

 $d I^{\alpha} = -S^{\alpha} dT^{\alpha} - n^{\alpha} dV^{\alpha} - \sum_{\alpha} n^{\alpha} d\mu_{\alpha}^{\alpha}.$

The total extensive quantities:

• The total extensive quantities: $V = \sum_{\alpha} V^{\alpha}$, $U = \sum_{\alpha} U^{\alpha}$, $S = \sum_{\alpha} S^{\alpha}$, $n_i = \sum_{\alpha} n_i^{\alpha}$.

- The total extensive quantities: $V = \sum_{\alpha} V^{\alpha}$, $U = \sum_{\alpha} U^{\alpha}$, $S = \sum_{\alpha} S^{\alpha}$, $n_i = \sum_{\alpha} n_i^{\alpha}$.
- However, for H, $H = \sum_{\alpha} H^{\alpha}$?

- The total extensive quantities: $V = \sum_{\alpha} V^{\alpha}$, $U = \sum_{\alpha} U^{\alpha}$, $S = \sum_{\alpha} S^{\alpha}$, $n_i = \sum_{\alpha} n_i^{\alpha}$.
- However, for H, $H = \sum_{\alpha} H^{\alpha}$? just $H^{\alpha} = U^{\alpha} + p^{\alpha}V^{\alpha}$. Only if $p^{\alpha} = p^{\beta} = ...$ $\sum_{\alpha} H^{\alpha} = \sum_{\alpha} U^{\alpha} + p \sum_{\alpha} V^{\alpha} = U + pV \equiv H$, i.e., $H=\sum_{\alpha}H^{\alpha}$; otherwise, there is no definition for the total enthalpy H.

- The total extensive quantities: $V = \sum_{\alpha} V^{\alpha}$, $U = \sum_{\alpha} U^{\alpha}$, $S = \sum_{\alpha} S^{\alpha}$, $n_i = \sum_{\alpha} n_i^{\alpha}$.
- However, for H, $H = \sum_{\alpha} H^{\alpha}$? just $H^{\alpha} = U^{\alpha} + p^{\alpha}V^{\alpha}$. Only if $p^{\alpha} = p^{\beta} = ...$, $\sum_{\alpha} H^{\alpha} = \sum_{\alpha} U^{\alpha} + p \sum_{\alpha} V^{\alpha} = U + pV \equiv H$, i.e., $H = \sum_{\alpha} H^{\alpha}$; otherwise, there is no definition for the total enthalpy H.
- Similarly, for F, as $F^{\alpha}=U^{\alpha}-T^{\alpha}S^{\alpha}$, only if $T^{\alpha}=T^{\beta}=...$, there exists definition of total free energy, and $F=\sum_{\alpha}F^{\alpha}$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

- The total extensive quantities: $V = \sum_{\alpha} V^{\alpha}$, $U = \sum_{\alpha} U^{\alpha}$, $S = \sum_{\alpha} S^{\alpha}$, $n_i = \sum_{\alpha} n_i^{\alpha}$.
- However, for H, $H = \sum_{\alpha} H^{\alpha}$? just $H^{\alpha} = U^{\alpha} + p^{\alpha}V^{\alpha}$. Only if $p^{\alpha} = p^{\beta} = ...$ $\sum_{\alpha} H^{\alpha} = \sum_{\alpha} U^{\alpha} + p \sum_{\alpha} V^{\alpha} = U + pV \equiv H$, i.e., $H=\sum_{\alpha}H^{\alpha}$; otherwise, there is no definition for the total enthalpy H.
- Similarly, for F, as $F^{\alpha}=U^{\alpha}-T^{\alpha}S^{\alpha}$, only if $T^{\alpha} = T^{\beta} = \dots$, there exists definition of total free energy, and $F = \sum_{\alpha} F^{\alpha}$. For G, as $G^{\alpha} = U^{\alpha} - T^{\alpha}S^{\alpha} + p^{\alpha}V^{\alpha}$, only if $p^{\alpha}=p^{\beta}=...$, and $T^{\alpha}=T^{\beta}=...$, $G=\sum_{\alpha}G^{\alpha}$.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

• Simply, 1. two-phase(α, β);

• Simply, 1. two-phase(α, β); 2. no chemical reaction.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition:

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$:

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process,

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$. In equilibrium, $\delta G = 0$ for a virtual change.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}.$
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^\alpha + \delta n_i^\beta = 0$.
- Remind $\mathrm{d}G^{\alpha}=-S^{\alpha}\mathrm{d}T^{\alpha}+V^{\alpha}\mathrm{d}p^{\alpha}+\sum_{i}\mu_{i}^{\alpha}\mathrm{d}n_{i}^{\alpha}$,

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T, p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G > 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.
- Remind $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$, for constant (T, p), $dG^{\alpha} = \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$;

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T, p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G > 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.
- Remind $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$, for constant (T, p), $dG^{\alpha} = \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$; $dG^{\beta} = \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta}$.

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^\alpha + \delta n_i^\beta = 0$.
- Remind $\mathrm{d}G^{\alpha} = -S^{\alpha}\mathrm{d}T^{\alpha} + V^{\alpha}\mathrm{d}p^{\alpha} + \sum_{i}\mu_{i}^{\alpha}\mathrm{d}n_{i}^{\alpha}$, for constant (T,p), $\mathrm{d}G^{\alpha} = \sum_{i}\mu_{i}^{\alpha}\mathrm{d}n_{i}^{\alpha}$; $\mathrm{d}G^{\beta} = \sum_{i}\mu_{i}^{\beta}\mathrm{d}n_{i}^{\beta}$.
- $\delta G = \delta G^{\alpha} + \delta G^{\beta}$

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T, p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G > 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.
- Remind $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$, for constant (T,p), $\mathrm{d}G^{\alpha}=\sum_{i}\mu_{i}^{\alpha}\mathrm{d}n_{i}^{\alpha}$; $\mathrm{d}G^{\beta}=\sum_{i}\mu_{i}^{\beta}\mathrm{d}n_{i}^{\beta}$. • $\delta G=\delta G^{\alpha}+\delta G^{\beta}=\sum_{i}\mu_{i}^{\alpha}\delta n_{i}^{\alpha}+\sum_{i}\mu_{i}^{\beta}\delta n_{i}^{\beta}$

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T, p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G > 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.
- Remind $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$, for $\begin{array}{l} \text{constant } (T,p), \ \mathrm{d} G^\alpha = \sum_i \mu_i^\alpha \mathrm{d} n_i^\alpha; \ \mathrm{d} \overline{G}^\beta = \sum_i \mu_i^\beta \mathrm{d} n_i^\beta. \\ \bullet \ \delta G = \delta G^\alpha + \delta G^\beta = \sum_i \mu_i^\alpha \delta n_i^\alpha + \sum_i \mu_i^\beta \delta n_i^\beta. \end{array}$
- $=\sum_{i}(\mu_{i}^{\alpha}-\mu_{i}^{\beta})\delta n_{i}^{\alpha}$

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha}=T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T,p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \geq 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^\alpha + \delta n_i^\beta = 0$.
- $\begin{array}{l} \bullet \ \mbox{Remind} \ \mbox{d} G^{\alpha} = -S^{\alpha} \mbox{d} T^{\alpha} + V^{\alpha} \mbox{d} p^{\alpha} + \sum_{i} \mu_{i}^{\alpha} \mbox{d} n_{i}^{\alpha} \mbox{, for constant } (T,p), \ \mbox{d} G^{\alpha} = \sum_{i} \mu_{i}^{\alpha} \mbox{d} n_{i}^{\alpha} \mbox{; } \mbox{d} G^{\beta} = \sum_{i} \mu_{i}^{\beta} \mbox{d} n_{i}^{\beta} \mbox{.} \\ \bullet \ \delta G = \delta G^{\alpha} + \delta G^{\beta} = \sum_{i} \mu_{i}^{\alpha} \delta n_{i}^{\alpha} + \sum_{i} \mu_{i}^{\beta} \delta n_{i}^{\beta} \end{array}$
- $\delta G = \delta G^{\alpha} + \delta G^{\beta} = \sum_{i} \mu_{i}^{\alpha} \delta n_{i}^{\alpha} + \sum_{i} \mu_{i}^{\beta} \delta n_{i}^{\beta}$ = $\sum_{i} (\mu_{i}^{\alpha} - \mu_{i}^{\beta}) \delta n_{i}^{\alpha} = 0.$

- Simply, 1. two-phase(α, β); 2. no chemical reaction.
- Equilibrium condition: thermal, $T^{\alpha} = T^{\beta}$; mechanical, $p^{\alpha}=p^{\beta}$.
- So consider for constant (T, p): in the isothermal and isobaric process, G never increases. I.e., $\Delta G \ge 0$. In equilibrium, $\delta G = 0$ for a virtual change. The change obeys $\delta n_i^{\alpha} + \delta n_i^{\beta} = 0$.
- Remind $dG^{\alpha} = -S^{\alpha}dT^{\alpha} + V^{\alpha}dp^{\alpha} + \sum_{i} \mu_{i}^{\alpha}dn_{i}^{\alpha}$, for constant (T, p), $dG^{\alpha} = \sum_{i} \mu_{i}^{\alpha} dn_{i}^{\alpha}$; $dG^{\beta} = \sum_{i} \mu_{i}^{\beta} dn_{i}^{\beta}$.
- $\delta G = \delta G^{\alpha} + \delta G^{\beta} = \sum_{i} \mu_{i}^{\alpha} \delta n_{i}^{\alpha} + \sum_{i} \mu_{i}^{\beta} \delta n_{i}^{\beta}$ $=\sum_{i}(\mu_{i}^{\alpha}-\mu_{i}^{\beta})\delta n_{i}^{\alpha}=0.$ $\Rightarrow \mu_i^{\alpha} = \mu_i^{\beta}$, equilibrium condition.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

 Question: how many independent parameters in multi-component multi-phase system?

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system:

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase,

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent;

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist,

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist, Clapeyron equation, one independent;

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist,

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T, p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist, one point.

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist, one point.
- For k-component φ -phase system (no chemical reaction), number of independent parameters $(T^{\alpha}, p^{\alpha}, n_i^{\alpha})$, k+2.

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist, one point.
- For k-component φ -phase system (no chemical reaction), number of independent parameters $(T^{\alpha}, p^{\alpha}, n_i^{\alpha}), k + 2.$
- Set $x_i^{\alpha} \equiv \frac{n_i^{\alpha}}{n^{\alpha}}$, intense parameter.

10 / 25

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T,p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist, one point.
- For k-component φ -phase system (no chemical reaction), number of independent parameters $(T^{\alpha}, p^{\alpha}, n_i^{\alpha}), k + 2.$
- Set $x_i^{\alpha}\equiv \frac{n_i^{\alpha}}{n^{\alpha}}$, intense parameter. As $\sum_i x_i^{\alpha}=1$, only k+1 independents.

- Question: how many independent parameters in multi-component multi-phase system?
- For single-component system: one phase, (T, p), two independent; two phases coexist, Clapeyron equation, one independent; three phases coexist, one point.
- For k-component φ -phase system (no chemical reaction), number of independent parameters $(T^{\alpha}, p^{\alpha}, n_i^{\alpha}), k+2.$
- \bullet Set $x_i^\alpha \equiv \frac{n_i^\alpha}{n^\alpha}$, intense parameter. As $\sum_i x_i^\alpha = 1$, only k+1 independents. For φ phases, $(k+1)\varphi$ independent intense parameters.

• Consider the equilibrium condition for multi-phase:

• Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi}$;

• Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi};$ mechanical $p^1=p^2=\ldots=p^{\varphi};$

• Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi}$:

thermal
$$T^1=T^2=\ldots=T^{\varphi}$$
; mechanical $p^1=p^2=\ldots=p^{\varphi}$; phase $\mu_i^1=\mu_i^2=\ldots=\mu_i^{\varphi}$.

• Consider the equilibrium condition for multi-phase:

thermal
$$T^1=\dot{T}^2=\ldots=T^{\varphi};$$
 mechanical $p^1=p^2=\ldots=p^{\varphi};$ phase $\mu_i^1=\mu_i^2=\ldots=\mu_i^{\varphi}.$ $(k+2)(\varphi-1)$ equations in total.

- Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi};$ mechanical $p^1=p^2=\ldots=p^{\varphi};$
 - phase $\mu_i^1 = \mu_i^2 = \dots = \mu_i^{\varphi}$. $(k+2)(\varphi-1)$ equations in total.
- $\begin{array}{c} \bullet \text{ Independent intense parameters} \\ f \end{array}$

• Consider the equilibrium condition for multi-phase: $T^{1} = T^{2}$

thermal
$$T^1=T^2=\ldots=T^{\varphi}$$
; mechanical $p^1=p^2=\ldots=p^{\varphi}$; phase $\mu_i^1=\mu_i^2=\ldots=\mu_i^{\varphi}$. $(k+2)(\varphi-1)$ equations in total.

Independent intense parameters

$$f = (k+1)\varphi - (k+2)(\varphi - 1) = k+2-\varphi,$$

- Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi};$ mechanical $p^1=p^2=\ldots=p^{\varphi};$ phase $\mu_i^1=\mu_i^2=\ldots=\mu_i^{\varphi}.$
- $(k+2)(\varphi-1)$ equations in total. • Independent intense parameters $f=(k+1)\varphi-(k+2)(\varphi-1)=k+2-\varphi$, called Gibbs rule.

- Consider the equilibrium condition for multi-phase: thermal $T^1=T^2=\ldots=T^{\varphi};$ mechanical $p^1=p^2=\ldots=p^{\varphi};$ phase $\mu_i^1=\mu_i^2=\ldots=\mu_i^{\varphi}.$ $(k+2)(\varphi-1)$ equations in total.
- Independent intense parameters $f=(k+1)\varphi-(k+2)(\varphi-1)=k+2-\varphi,$ called Gibbs rule.
- E.g., water, $k = 1, \varphi = 1, f = 2;$

- Consider the equilibrium condition for multi-phase: thermal $T^1 = T^2 = \dots = T^{\varphi}$: mechanical $p^1 = p^2 = \dots = p^{\varphi}$; phase $\mu_{i}^{1} = \mu_{i}^{2} = ... = \mu_{i}^{\varphi}$. $(k+2)(\varphi-1)$ equations in total.
- Independent intense parameters $f = (k+1)\varphi - (k+2)(\varphi - 1) = k+2-\varphi$ called Gibbs rule.
- E.g., water, $k=1, \varphi=1, f=2$; water and ice coexist, $k=1, \varphi=2, f=1$;

11 / 25

Gibbs rule

- Consider the equilibrium condition for multi-phase: thermal $T^1 = T^2 = \dots = T^{\varphi}$: mechanical $p^1 = p^2 = \dots = p^{\varphi}$; phase $\mu_{i}^{1} = \mu_{i}^{2} = ... = \mu_{i}^{\varphi}$. $(k+2)(\varphi-1)$ equations in total.
- Independent intense parameters $f = (k+1)\varphi - (k+2)(\varphi - 1) = k+2-\varphi$ called Gibbs rule.
- E.g., water, $k=1, \varphi=1, f=2$; water and ice coexist, $k = 1, \varphi = 2, f = 1$; water, ice and water vapour coexist, $k=1, \varphi=3, f=0$.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

For simplicity, single-phase chemical reaction.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O 2H_2 O_2=0$.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O - 2H_2 - O_2 = 0$. Generally, $\sum_i \nu_i A_i = 0$.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O$ $2H_2$ O_2 =0. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i .

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O$ $2H_2$ O_2 =0. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O$ $2H_2$ O_2 =0. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O$ $2H_2$ O_2 =0. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$. $\delta G = \sum_i \mu_i \delta n_i$ (4.1.11)

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O - 2H_2 - O_2 = 0$. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$. $\delta G = \sum_{i} \mu_{i} \delta n_{i}$ (4.1.11)
 - $=\delta n \sum_{i} \nu_{i} \mu_{i}$.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O - 2H_2 - O_2 = 0$. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$. $\delta G = \sum_{i} \mu_{i} \delta n_{i}$ (4.1.11) $=\delta n \sum_{i} \nu_{i} \mu_{i}$.
- $\Rightarrow \sum_{i} \nu_{i} \mu_{i} = 0$, condition of chemical equilibrium.

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O - 2H_2 - O_2 = 0$. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$. $\delta G = \sum_{i} \mu_{i} \delta n_{i}$ (4.1.11) $=\delta n \sum_{i} \nu_{i} \mu_{i}$.
- $\Rightarrow \sum_{i} \nu_{i} \mu_{i} = 0$, condition of chemical equilibrium.
- If not, the process goes toward $\delta n \sum_i \nu_i \mu_i < 0$,

- For simplicity, single-phase chemical reaction.
- E.g., $2H_2+O_2 \rightleftharpoons 2H_2O$. Rewrite as $2H_2O - 2H_2 - O_2 = 0$. Generally, $\sum_i \nu_i A_i = 0$.
- In chemical equilibrium, suppose a virtual transition δn_i , then $\delta n_i = \nu_i \delta n$, where δn is the only independent variable.
- In the isothermal isobaric condition, $\delta G = 0$. $\delta G = \sum_{i} \mu_{i} \delta n_{i}$ (4.1.11) $=\delta n \sum_{i} \nu_{i} \mu_{i}$.
- $\Rightarrow \sum_{i} \nu_{i} \mu_{i} = 0$, condition of chemical equilibrium.
- If not, the process goes toward $\delta n \sum_i \nu_i \mu_i < 0$, except, any $\nu_i = 0$.

Table of contents

Chpt 4. Multi-component multi-phase system

- 4.1 Thermodynamic functions and equations of multi-component system
- 4.2 Equilibrium condition of multi-component multi-phase system
- 4.3 Gibbs rule
- 4.5 Condition of chemical equilibrium
- 4.6 Properties of mixed ideal gases
- 4.7 Chemical equilibrium of ideal gas
- 4.8 Third law of thermodynamics

• Dalton's law of partial pressures: $p = \sum_i p_i$.

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV = n_iRT$, i.e., $p_i \propto n_i$.

15 / 25

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV=n_iRT$, i.e.,

$$p_i \propto n_i$$
. $\Rightarrow \frac{p_i}{p} = \frac{n_i}{\sum_i n_i} = x_i$.

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV=n_iRT$, i.e.,
- $p_i \propto n_i. \Rightarrow \frac{p_i}{p} = \frac{n_i}{\sum_i n_i} = x_i.$
- The total EOS: $pV = \sum_i n_i RT$.

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV=n_iRT$, i.e., $p_i \propto n_i$. $\Rightarrow \frac{p_i}{p} = \frac{n_i}{\sum_i n_i} = x_i$.
- The total EOS: $pV = \sum_{i} n_i RT$.
- Experiment: on each side of semi-permeable membrane, $p_i = p'_i$, where p'_i is the pressure for the pure component side.

15 / 25

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV = n_iRT$, i.e., $p_i \propto n_i$. $\Rightarrow \frac{p_i}{p} = \frac{n_i}{\sum_i n_i} = x_i$.
- The total EOS: $pV = \sum_{i} n_i RT$.
- Experiment: on each side of semi-permeable membrane, $p_i = p'_i$, where p'_i is the pressure for the pure component side.
 - On the other side, in (phase) equilibrium, $\mu_i = \mu'_i$, where μ'_i is the chemical potential for pure ideal gas:

15 / 25

- Dalton's law of partial pressures: $p = \sum_i p_i$.
- For each component, the EOS: $p_iV = n_iRT$, i.e., $p_i \propto n_i$. $\Rightarrow \frac{p_i}{p} = \frac{n_i}{\sum_i n_i} = x_i$.
- The total EOS: $pV = \sum_{i} n_i RT$.
- Experiment: on each side of semi-permeable membrane, $p_i = p'_i$, where p'_i is the pressure for the pure component side. On the other side, in (phase) equilibrium, $\mu_i = \mu'_i$, where μ'_i is the chemical potential for pure ideal gas: $\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}.$
- Possible to write G, H, U... (4.6.9,11,12,13).

(2.4.13)

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$,

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$ $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{n,n_i}$

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{n,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$

16 / 25

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $dG = -SdT + Vdp + \sum_{i} \mu_{i}dn_{i}$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_{i}} = -\sum_{i} \frac{\partial \mu_{i}}{\partial T}n_{i}$ $= -\sum_{i} \left[c_{pi} - \left(\int c_{pi} \frac{dT}{T} + c_{pi}\right) + R\ln(x_{i}p) - s_{i0}\right]n_{i}$

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_{i} \mu_{i}\mathrm{d}n_{i}$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_{i}} = -\sum_{i} \frac{\partial \mu_{i}}{\partial T}n_{i}$ $= -\sum_{i} \left[c_{pi} - \left(\int c_{pi} \frac{\mathrm{d}T}{T} + c_{pi}\right) + R\ln(x_{i}p) - s_{i0} \right] n_{i}$ $= \sum_{i} n_{i} \left[\int c_{pi} \frac{\mathrm{d}T}{T} - R\ln(x_{i}p) + s_{i0} \right]$

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

• Remember $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_i \mu_i \mathrm{d}n_i$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$ $= -\sum_i [c_{pi} - \left(\int c_{pi} \frac{\mathrm{d}T}{T} + c_{pi}\right) + R\ln(x_i p) - s_{i0}]n_i$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} - R\ln(x_i p) + s_{i0}]$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} - R\ln p + s_{i0}] + C$, where $C = -R\sum_i n_i \ln x_i$.

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

- Remember $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_i \mu_i \mathrm{d}n_i$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$ $= -\sum_i [c_{pi} (\int c_{pi} \frac{\mathrm{d}T}{T} + c_{pi}) + R \ln(x_i p) s_{i0}] n_i$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} R \ln(x_i p) + s_{i0}]$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} R \ln p + s_{i0}] + C$, where $C = -R \sum_i n_i \ln x_i$.
- Remind (2.4.12), $s_i = \int c_{pi} \frac{dT}{T} R \ln p + s_{i0}$ is the entropy for each pure component.

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

- Remember $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_i \mu_i \mathrm{d}n_i$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$ $= -\sum_i [c_{pi} - \left(\int c_{pi} \frac{\mathrm{d}T}{T} + c_{pi}\right) + R \ln(x_i p) - s_{i0}] n_i$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} - R \ln(x_i p) + s_{i0}]$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} - R \ln p + s_{i0}] + C$, where $C = -R \sum_i n_i \ln x_i$.
- Remind (2.4.12), $s_i = \int c_{pi} \frac{dT}{T} R \ln p + s_{i0}$ is the entropy for each pure component.
 - \therefore C is the entropy increase for the mixing.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

- Remember $dG = -SdT + Vdp + \sum_{i} \mu_{i} dn_{i}$ $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{n,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$ $= -\sum_{i} [c_{pi} - (\int c_{pi} \frac{dT}{T} + c_{pi}) + R \ln(x_{i}p) - s_{i0}]n_{i}$ $= \sum_{i} n_i \left[\int c_{pi} \frac{\mathrm{d}T}{T} - R \ln(x_i p) + s_{i0} \right]$ $=\sum_{i=1}^{n}n_{i}[\int c_{ni}\frac{\mathrm{d}T}{T}-R\ln p+s_{i0}]+C$, where $C = -R \sum_{i} n_i \ln x_i$.
- Remind (2.4.12), $s_i = \int c_{pi} \frac{dT}{T} R \ln p + s_{i0}$ is the entropy for each pure component.
 - \therefore C is the entropy increase for the mixing. C > 0.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

$$\mu_i = \int c_{pi} dT - T \int c_{pi} \frac{dT}{T} + RT \ln(x_i p) + h_{i0} - T s_{i0}$$

- Remember $\mathrm{d}G = -S\mathrm{d}T + V\mathrm{d}p + \sum_i \mu_i \mathrm{d}n_i$, $\Rightarrow S = -\left(\frac{\partial G}{\partial T}\right)_{p,n_i} = -\sum_i \frac{\partial \mu_i}{\partial T} n_i$ $= -\sum_i [c_{pi} (\int c_{pi} \frac{\mathrm{d}T}{T} + c_{pi}) + R \ln(x_i p) s_{i0}] n_i$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} R \ln(x_i p) + s_{i0}]$ $= \sum_i n_i [\int c_{pi} \frac{\mathrm{d}T}{T} R \ln p + s_{i0}] + C$, where $C = -R \sum_i n_i \ln x_i$.
- Remind (2.4.12), $s_i = \int c_{pi} \frac{dT}{T} R \ln p + s_{i0}$ is the entropy for each pure component.
 - \therefore C is the entropy increase for the mixing. C > 0.
- If the two mixed gases are very close, transits to mix the same gas, there is a jump C for the entropy change, called **Gibbs paradox**.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

§4.7 Chemical equilibrium of ideal gas

• A chemical reaction: $\sum_i \nu_i A_i = 0$,

• A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$.

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i(\varphi_i + \ln p_i) = 0$,

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i (\varphi_i + \ln p_i) = 0$, i.e., $\sum_i \nu_i \varphi_i + \sum_i \nu_i \ln p_i = 0$.

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i (\varphi_i + \ln p_i) = 0$, i.e., $\sum_i \nu_i \varphi_i + \sum_i \nu_i \ln p_i = 0$.
- Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$,

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i(\varphi_i + \ln p_i) = 0$,

i.e.,
$$\sum_{i} \nu_{i} \varphi_{i} + \sum_{i} \nu_{i} \ln p_{i} = 0.$$

• Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$, then $\ln K_p = \sum_i \nu_i \ln p_i$

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i(\varphi_i + \ln p_i) = 0$,

i.e.,
$$\sum_{i} \nu_{i} \varphi_{i} + \sum_{i} \nu_{i} \ln p_{i} = 0.$$

• Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$, then $\ln K_p = \sum_i \nu_i \ln p_i$ = $\sum_i \ln p_i^{\nu_i}$

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i(\varphi_i + \ln p_i) = 0$,

i.e.,
$$\sum_{i} \nu_{i}(\varphi_{i} + \ln p_{i}) = 0$$
,

• Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$, then $\ln K_p = \sum_i \nu_i \ln p_i$ = $\sum_i \ln p_i^{\nu_i} = \ln \prod_i p_i^{\nu_i}$.

- A chemical reaction: $\sum_i \nu_i A_i = 0$, the condition for equilibrium: $\sum_i \nu_i \mu_i = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{RT} \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T \frac{s_{i0}}{R}$. Taken to the equilibrium condition: $RT \sum_i \nu_i (\varphi_i + \ln p_i) = 0$, i.e., $\sum_i \nu_i \varphi_i + \sum_i \nu_i \ln p_i = 0$.
- Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$, then $\ln K_p = \sum_i \nu_i \ln p_i$ = $\sum_i \ln p_i^{\nu_i} = \ln \prod_i p_i^{\nu_i}$. $\Rightarrow \prod_i p_i^{\nu_i} = K_p$, equilibrium condition.

- A chemical reaction: $\sum_{i} \nu_{i} A_{i} = 0$, the condition for equilibrium: $\sum_{i} \nu_{i} \mu_{i} = 0$.
- For ideal gas, $\mu_i = RT(\varphi_i + \ln p_i)$, where $\varphi_i(T) = \frac{h_{i0}}{PT} - \int \frac{dT}{PT^2} \int c_{ni} dT - \frac{s_{i0}}{P}$ Taken to the equilibrium condition: $RT \sum_{i} \nu_i (\varphi_i + \ln p_i) = 0$ i.e., $\sum_i \nu_i \varphi_i + \sum_i \nu_i \ln p_i = 0$.
- Set $\ln K_p \equiv -\sum_i \nu_i \varphi_i$, then $\ln K_p = \sum_i \nu_i \ln p_i$ $=\sum_{i}\ln p_{i}^{\nu_{i}}=\ln\prod_{i}p_{i}^{\nu_{i}}$ $\Rightarrow \prod_i p_i^{\nu_i} = K_p$, equilibrium condition. Or using $p_i = x_i p$, $\prod_i x_i^{\nu_i} = p^{-\sum_i \nu_i} K_n$.

 $\prod_{i} x_i^{r_i} = p^{-\omega_i \nu_i} K_p$

• In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .

$$\left|\prod_{i} x_{i}^{\nu_{i}} = p^{-\sum_{i} \nu_{i}} K_{p}\right|$$

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.

• In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .

- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .
- In equilibrium, A: $n_0(1-\varepsilon)$ mol, A^+ and e^- : $n_0\varepsilon$ mol, total $n_0(1+\varepsilon)$ mol.

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .
- In equilibrium, A: $n_0(1-\varepsilon)$ mol, A^+ and e^- : $n_0\varepsilon$ mol, total $n_0(1+\varepsilon)$ mol.
- The mole fraction: $x_A = \frac{1-\varepsilon}{1+\varepsilon}$, $x_{A^+} = x_{e^-} = \frac{\varepsilon}{1+\varepsilon}$.

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .
- In equilibrium, A: $n_0(1-\varepsilon)$ mol, A^+ and e^- : $n_0\varepsilon$ mol, total $n_0(1+\varepsilon)$ mol.
- The mole fraction: $x_A=\frac{1-\varepsilon}{1+\varepsilon}$, $x_{A^+}=x_{e^-}=\frac{\varepsilon}{1+\varepsilon}$.
- Taken into the equilibrium condition: $x_{A^+} \cdot x_{e^-} \cdot x_A^{-1} = p^{-\sum_i \nu_i} K_v;$

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .
- In equilibrium, A: $n_0(1-\varepsilon)$ mol, A^+ and e^- : $n_0\varepsilon$ mol, total $n_0(1+\varepsilon)$ mol.
- The mole fraction: $x_A=\frac{1-\varepsilon}{1+\varepsilon}$, $x_{A^+}=x_{e^-}=\frac{\varepsilon}{1+\varepsilon}$.
- Taken into the equilibrium condition: $x_{A^+} \cdot x_{e^-} \cdot x_A^{-1} = p^{-\sum_i \nu_i} K_p$; i.e., $\frac{\varepsilon^2}{1-\varepsilon^2} = p^{-1} K_p$.

- In high temperature, consider the coexistence of atom A, ion A^+ and electron e^- .
- Chemical reaction $A^+ + e^- A = 0$.
- Suppose n_0 mol A in the beginning, fraction of ionization ε .
- In equilibrium, A: $n_0(1-\varepsilon)$ mol, A^+ and e^- : $n_0\varepsilon$ mol, total $n_0(1+\varepsilon)$ mol.
- The mole fraction: $x_A = \frac{1-\varepsilon}{1+\varepsilon}$, $x_{A^+} = x_{e^-} = \frac{\varepsilon}{1+\varepsilon}$.
- Taken into the equilibrium condition: $x_{A^+} \cdot x_{e^-} \cdot x_A^{-1} = p^{-\sum_i \nu_i} K_p$; i.e., $\frac{\varepsilon^2}{1-\varepsilon^2} = p^{-1} K_p$.

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{\mathrm{d}T}{RT^2} \int c_{pi} \mathrm{d}T - \frac{s_{i0}}{R}$$

• For ideal gas, using (2.4.16), $\ln K_p = -\sum_i \nu_i \varphi_i$

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{dT}{RT^2} \int c_{pi} dT - \frac{s_{i0}}{R}$$

• For ideal gas, using (2.4.16), $\ln K_p = -\sum_i \nu_i \varphi_i$ $= -\frac{\sum_{i} \nu_{i} h_{i0}}{RT} + \sum_{i} \nu_{i} \int \frac{dT}{RT^{2}} \int c_{pi} dT + \frac{\sum_{i} \nu_{i} s_{i0}}{R}$

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{dT}{RT^2} \int c_{pi} dT - \frac{s_{i0}}{R}$$

- For ideal gas, using (2.4.16), $\ln K_p = -\sum_i \nu_i \varphi_i$ $=-\frac{\sum_{i}\nu_{i}h_{i0}}{RT}+\sum_{i}\nu_{i}\int\frac{\mathrm{d}T}{RT^{2}}\int c_{pi}\mathrm{d}T+\frac{\sum_{i}\nu_{i}s_{i0}}{R}$
- ionization energy.

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{dT}{RT^2} \int c_{pi} dT - \frac{s_{i0}}{R}$$

- For ideal gas, using (2.4.16), $\ln K_v = -\sum_i \nu_i \varphi_i$ $=-\frac{\sum_{i}\nu_{i}h_{i0}}{RT}+\sum_{i}\nu_{i}\int\frac{\mathrm{d}T}{RT^{2}}\int c_{pi}\mathrm{d}T+\frac{\sum_{i}\nu_{i}s_{i0}}{R}$
- ionization energy.
 - $c_{ni} = \frac{5}{2}R$ for monatomic molecular.

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{dT}{RT^2} \int c_{pi} dT - \frac{s_{i0}}{R}$$

- For ideal gas, using (2.4.16), $\ln K_p = -\sum_i \nu_i \varphi_i$ $= -\frac{\sum_{i} \nu_{i} h_{i0}}{RT} + \sum_{i} \nu_{i} \int \frac{dT}{RT^{2}} \int c_{pi} dT + \frac{\sum_{i} \nu_{i} s_{i0}}{R}$
- ionization energy.

 $c_{ni} = \frac{5}{2}R$ for monatomic molecular.

•
$$\therefore \ln K_p = -\frac{\Delta h_0}{RT} + \frac{5}{2} \ln T + C$$
,

E.g., Saha equation
$$\varphi_i(T) = \frac{h_{i0}}{RT} - \int \frac{dT}{RT^2} \int c_{pi} dT - \frac{s_{i0}}{R}$$

- For ideal gas, using (2.4.16), $\ln K_p = -\sum_i \nu_i \varphi_i$ $= -\frac{\sum_{i} \nu_{i} h_{i0}}{RT} + \sum_{i} \nu_{i} \int \frac{\mathrm{d}T}{RT^{2}} \int c_{pi} \mathrm{d}T + \frac{\sum_{i} \nu_{i} s_{i0}}{R}$
- ionization energy.

 $c_{pi} = \frac{5}{2}R$ for monatomic molecular.

- $\bullet : \ln K_p = -\frac{\Delta h_0}{RT} + \frac{5}{2} \ln T + C,$
- $\Rightarrow \varepsilon = \sqrt{\frac{1}{1+bpT^{-\frac{5}{2}}e^{\frac{\Delta h_0}{RT}}}}$, where b is a constant, called

Saha equation. Determine the fraction of ionization for a given T and p.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics

• Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.

December 30, 2013

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof:

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS.

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process, $\Delta G = \Delta H T\Delta S$.

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G=H-TS. In isothermal process, $\Delta G = \Delta H T\Delta S.$ $\Rightarrow \Delta S = \frac{\Delta H \Delta G}{T}.$

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process,

$$\Delta G = \Delta H - T \Delta S.$$

$$\Rightarrow \Delta S = \frac{\Delta H - \Delta G}{T}$$
.

For
$$T \to 0$$
, $\lim_{T \to 0} \Delta S = \frac{\partial (\Delta H - \Delta G)}{\partial T} \mid_{T=0}$

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process,

$$\Delta G = \Delta H - T \Delta S.$$

$$\Rightarrow \Delta S = \frac{\Delta H - \Delta G}{T}.$$

$$\Rightarrow \Delta S = \frac{}{T}.$$
 For $T \to 0$, $\lim_{T \to 0} \Delta S = \frac{\partial (\Delta H - \Delta G)}{\partial T} \mid_{T=0}$

$$= \frac{\partial \Delta H}{\partial T} \mid_{T=0} - \frac{\partial \Delta G}{\partial T} \mid_{T=0}.$$

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process,

$$\Delta G = \Delta H - T\Delta S.$$

 $\Rightarrow \Delta S = \frac{\Delta H - \Delta G}{T}.$

For
$$T \to 0$$
, $\lim_{T \to 0} \Delta S = \frac{\partial (\Delta H - \Delta G)}{\partial T} \mid_{T=0}$
= $\frac{\partial \Delta H}{\partial T} \mid_{T=0} - \frac{\partial \Delta G}{\partial T} \mid_{T=0}$.
If $\frac{\partial \Delta H}{\partial T} \mid_{T=0} = \frac{\partial \Delta G}{\partial T} \mid_{T=0}$.

Yuan-Chuan Zou zouyc@hust.edu.cn (HUS

§4.8 Third law of thermodynamics

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process,

$$\Delta G = \Delta H - T \Delta S.$$

$$\Rightarrow \Delta S = \frac{\Delta H - \Delta G}{T}.$$

For
$$T \to 0$$
, $\lim_{T \to 0} \Delta S = \frac{\partial (\Delta H - \Delta G)}{\partial T} \mid_{T=0}$

$$= \frac{\partial \Delta H}{\partial T} \Big|_{T=0} - \frac{\partial \Delta G}{\partial T} \Big|_{T=0}.$$

$$=\frac{\partial\Delta H}{\partial T}\mid_{T=0}^{T\to 0}-\frac{\partial\Delta G}{\partial T}\mid_{T=0}.$$
 If $\frac{\partial\Delta H}{\partial T}\mid_{T=0}=\frac{\partial\Delta G}{\partial T}\mid_{T=0}$, then $\lim_{T\to 0}(\Delta S)_T=0$.

§4.8 Third law of thermodynamics

- Nernst theorem: $\lim_{T\to 0} (\Delta S)_T = 0$.
- Proof: G = H TS. In isothermal process, $\Delta G = \Delta H - T \Delta S$ $\Rightarrow \Delta S = \frac{\Delta H - \Delta G}{T}$. For $T \to 0$, $\lim_{T \to 0} \Delta S = \frac{\partial (\Delta H - \Delta G)}{\partial T} \mid_{T=0}$ $=\frac{\partial\Delta H}{\partial T}\mid_{T=0}-\frac{\partial\Delta G}{\partial T}\mid_{T=0}.$ If $\frac{\partial\Delta H}{\partial T}\mid_{T=0}=\frac{\partial\Delta G}{\partial T}\mid_{T=0}$, then $\lim_{T\to 0}(\Delta S)_T=0$.
- The correctness of the 3rd law depends on the correctness of its inferences.

• 1. Heat capacity: $\lim_{T\to 0} C_y$

• 1. Heat capacity: $\lim_{T \to 0} C_y = \lim_{T \to 0} T\left(\frac{\partial S}{\partial T}\right)_y$

• 1. Heat capacity: $\lim_{T\to 0} C_y = \lim_{T\to 0} T\left(\frac{\partial S}{\partial T}\right)_y = 0.$ Consistent with experiments.

- 1. Heat capacity: $\lim_{T\to 0} C_y = \lim_{T\to 0} T\left(\frac{\partial S}{\partial T}\right)_y = 0.$ Consistent with experiments.
- 2. : $\lim_{T\to 0} (\Delta S)_T = 0$,

- 1. Heat capacity: $\lim_{T\to 0}C_y=\lim_{T\to 0}T\left(\frac{\partial S}{\partial T}\right)_y=0.$ Consistent with experiments.
- 2. $\lim_{T \to 0} (\Delta S)_T = 0$, $\lim_{T \to 0} \left(\frac{\partial S}{\partial p} \right)_T = \lim_{T \to 0} \left(\frac{\Delta S}{\Delta p} \right)_T = 0;$

- 1. Heat capacity: $\lim_{T\to 0}C_y=\lim_{T\to 0}T\left(\frac{\partial S}{\partial T}\right)_y=0.$ Consistent with experiments.
- 2. : $\lim_{T \to 0} (\Delta S)_T = 0$, : $\lim_{T \to 0} \left(\frac{\partial S}{\partial p} \right)_T = \lim_{T \to 0} \left(\frac{\Delta S}{\Delta p} \right)_T = 0$; similarly, $\lim_{T \to 0} \left(\frac{\partial S}{\partial V} \right)_T = 0.$

- 1. Heat capacity: $\lim_{T\to 0} C_y = \lim_{T\to 0} T\left(\frac{\partial S}{\partial T}\right)_y = 0.$ Consistent with experiments.
- 2. $\lim_{T \to 0} (\Delta S)_T = 0$, $\lim_{T \to 0} \left(\frac{\partial S}{\partial p} \right)_T = \lim_{T \to 0} \left(\frac{\Delta S}{\Delta p} \right)_T = 0$; similarly, $\lim_{T \to 0} \left(\frac{\partial S}{\partial V} \right)_T = 0.$

Maxwell relation:
$$\left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$$
, $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$.

- 1. Heat capacity: $\lim_{T\to 0} C_y = \lim_{T\to 0} T\left(\frac{\partial S}{\partial T}\right)_y = 0.$ Consistent with experiments.
- 2. $\lim_{T \to 0} (\Delta S)_T = 0$, $\lim_{T \to 0} \left(\frac{\partial S}{\partial p} \right)_T = \lim_{T \to 0} \left(\frac{\Delta S}{\Delta p} \right)_T = 0$; similarly, $\lim_{T \to 0} \left(\frac{\partial S}{\partial V} \right)_T = 0.$ Maxwell relation: $\left(\frac{\partial V}{\partial T} \right)_p = -\left(\frac{\partial S}{\partial p} \right)_T$,

Maxwell relation:
$$\left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$$

 $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$.
 $\therefore \lim_{T \to 0} \alpha = \lim_{T \to 0} \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_p = 0$,

- 1. Heat capacity: $\lim_{T\to 0} C_y = \lim_{T\to 0} T\left(\frac{\partial S}{\partial T}\right)_y = 0$. Consistent with experiments.
- 2. $\lim_{T\to 0} (\Delta S)_T = 0$,

$$\therefore \lim_{T \to 0} \left(\frac{\partial S}{\partial p} \right)_T = \lim_{T \to 0} \left(\frac{\Delta S}{\Delta p} \right)_T = 0; \text{ similarly,}$$

$$\lim_{T \to 0} \left(\frac{\partial S}{\partial V} \right)_T = 0.$$

Maxwell relation:
$$\left(\frac{\partial V}{\partial T}\right)_p = -\left(\frac{\partial S}{\partial p}\right)_T$$
, $\left(\frac{\partial p}{\partial T}\right)_V = \left(\frac{\partial S}{\partial V}\right)_T$.

$$\therefore \lim_{T \to 0} \alpha = \lim_{T \to 0} \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = 0, \text{ and}$$

$$\lim_{T\to 0} \beta = \lim_{T\to 0} \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_V = 0$$
. Proved by experiments.

• 3. Clapeyron's equation: $\lim_{T\to 0} \frac{\mathrm{d}p}{\mathrm{d}T} = \lim_{T\to 0} \frac{S^{\beta} - S^{\alpha}}{V^{\beta} - V^{\alpha}} = 0$,

• 3. Clapeyron's equation: $\lim_{T\to 0}\frac{\mathrm{d}p}{\mathrm{d}T}=\lim_{T\to 0}\frac{S^{\beta}-S^{\alpha}}{V^{\beta}-V^{\alpha}}=0$, means all the two-phase coexistence curves become horizontal when approaching 0K. Consistent with experiments.

- 3. Clapeyron's equation: $\lim_{T \to 0} \frac{\mathrm{d}p}{\mathrm{d}T} = \lim_{T \to 0} \frac{S^{\beta} S^{\alpha}}{V^{\beta} V^{\alpha}} = 0$, means all the two-phase coexistence curves become horizontal when approaching 0K. Consistent with experiments.
- 3rd law stated in various ways:

- 3. Clapeyron's equation: $\lim_{T \to 0} \frac{\mathrm{d}p}{\mathrm{d}T} = \lim_{T \to 0} \frac{S^{\beta} S^{\alpha}}{V^{\beta} V^{\alpha}} = 0$, means all the two-phase coexistence curves become horizontal when approaching 0K. Consistent with experiments.
- 3rd law stated in various ways:
 - 1. Nernst's expression: $\lim_{T\to 0} (\Delta S)_T = 0$.

- 3. Clapeyron's equation: $\lim_{T\to 0}\frac{\mathrm{d}p}{\mathrm{d}T}=\lim_{T\to 0}\frac{S^{\beta}-S^{\alpha}}{V^{\beta}-V^{\alpha}}=0$, means all the two-phase coexistence curves become horizontal when approaching 0K. Consistent with experiments.
- 3rd law stated in various ways:
 - 1. Nernst's expression: $\lim_{T\to 0} (\Delta S)_T = 0$.
 - 2. Dirac's expression: $\lim_{T\to 0} S = S_0 = 0$.

- 3. Clapeyron's equation: $\lim_{T\to 0} \frac{\mathrm{d}p}{\mathrm{d}T} = \lim_{T\to 0} \frac{S^{\beta} S^{\alpha}}{V^{\beta} V^{\alpha}} = 0$, means all the two-phase coexistence curves become horizontal when approaching 0K. Consistent with experiments.
- 3rd law stated in various ways:
 - 1. Nernst's expression: $\lim_{T\to 0} (\Delta S)_T = 0$.
 - 2. Dirac's expression: $\lim S = S_0 = 0$.
 - 3. Unattainability of $T=0\mathrm{K}$: impossible to cool to T=0K in a finite number of steps.

Table of contents

- Chpt 4. Multi-component multi-phase system
 - 4.1 Thermodynamic functions and equations of multi-component system
 - 4.2 Equilibrium condition of multi-component multi-phase system
 - 4.3 Gibbs rule
 - 4.5 Condition of chemical equilibrium
 - 4.6 Properties of mixed ideal gases
 - 4.7 Chemical equilibrium of ideal gas
 - 4.8 Third law of thermodynamics