CSE-308: Digital System Design

Lecture 9

O CET

Test Generation

Basic Idea

- Given the description of a <u>circuit</u> and a <u>fault set</u> under an assumed fault model, determine
 - the set of test vectors required to detect faults in the set.
 - the undetected faults.

- What is required actually?
 - Set a reverse logic value at the site of the fault.
 - Justify primary inputs accordingly.
 - Set / modify primary input values so that any change in logic value at the site of the fault may propagate to the primary output.

Test Generation Algorithms COLET LILT. KGP

- · Many algorithms exist:
 - Boolean difference method
 - D-algorithm
 - PODEM
 - FAN
 - etc etc etc

Path Sensitization

- · Three steps:
 - Fault sensitization
 - Fault propagation
 - Line justification

 $D:: a change (0 \rightarrow 1)$ $\overline{D}:: 1 \rightarrow 0$

■ Try path f - h - k - L. This path is blocked at j, since there is no way to justify the 1 on i

■ Try simultaneous paths f - h - k - L and g - i - j - k - L. These paths blocked at k because D-frontier (chain of D or \overline{D}) disappears

■ Final try: path g-i-j-k-L – test found!

ATPG - Algorithmic

- Path Sensitization Method
 - > Fault Sensitization
 - > Fault Propagation
 - Line Justification

- Path Sensitization Algorithms
 - > D- Algorithm (Roth)
 - PODEM (P. Goel)
 - FAN (Fujiwara)
 - ➤ SOCRATES (Schultz)
 - SPIRIT (Emil & Fujiwara)

Path Sensitization

General Structure of TG Algorithm

```
begin

set all values to x

Justify (I, v)

if (v = 0) then Propagate (I, D)

else Propagate (I, D')

end
```


Path Sensitization

TG: Common Concept

- ❖ Fault Activation problem → a LJ Problem
- ❖ The Fault Propagation problem →
 - Select a FP path to PO → Decision
 - Once the path is selected > a set of LJ problems
- ❖ The LJ Problems → Decisions or Implications

To justify $c = 1 \rightarrow a = 1$, b = 1 (Implication)

To justify $c = 0 \rightarrow a = 0$ or b = 0 (Decision)

Incorrect decision → Backtrack → Another decision

D-Algorithm

Roth (IBM) - 1966

- Fundamental concepts invented:
 - First complete ATPG algorithm
 - D-Calculus (5 valued logic) Composite value
 - 0 (0/0)
 - 1 (1/1)
 - D (1/0)
 - D' (0/1)
 - X (x/0, x/1, 1/x, 0/x, x/x)
 - Implications forward and backward
 - Implication stack
 - Backtrack

Test Search Space

Decisions during FP

D – frontier: The set of all gates whose output value is currently x but have one or more fault signals on their inputs

Decisions during LJ

J – Frontier: A set of all gates whose output value is known but not implied by its isput value

D-Algorithm: Example

Decision Tree

Two times of backtracking!!

