```
In [1]: # import libraries
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]: from sklearn.linear_model import LogisticRegression

In [3]: # To Import Dataset
sd=pd.read_csv(r"c:\Users\user\Downloads\C5_health care diabetes.csv")
sd

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunctio
0	6	148	72	35	0	33.6	0.62
1	1	85	66	29	0	26.6	0.35
2	8	183	64	0	0	23.3	0.67
3	1	89	66	23	94	28.1	0.16
4	0	137	40	35	168	43.1	2.28
763	10	101	76	48	180	32.9	0.17
764	2	122	70	27	0	36.8	0.34
765	5	121	72	23	112	26.2	0.24
766	1	126	60	0	0	30.1	0.34
767	1	93	70	31	0	30.4	0.31

768 rows × 9 columns

```
In [4]: | sd.fillna(20)
 Out[4]:
                Pregnancies Glucose BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunctio
             0
                         6
                                148
                                              72
                                                            35
                                                                     0
                                                                       33.6
                                                                                              0.62
             1
                         1
                                85
                                              66
                                                            29
                                                                     0
                                                                       26.6
                                                                                              0.35
             2
                         8
                                183
                                              64
                                                             0
                                                                     0 23.3
                                                                                              0.67
                         1
             3
                                89
                                              66
                                                            23
                                                                    94
                                                                       28.1
                                                                                              0.16
                         0
                                              40
                                                            35
                                                                   168 43.1
                                                                                              2.28
             4
                               137
           763
                        10
                                101
                                              76
                                                            48
                                                                   180 32.9
                                                                                              0.17
           764
                         2
                               122
                                              70
                                                            27
                                                                     0 36.8
                                                                                              0.34
                         5
           765
                                121
                                              72
                                                            23
                                                                   112 26.2
                                                                                              0.24
           766
                         1
                                126
                                              60
                                                             0
                                                                     0 30.1
                                                                                              0.34
                                                                     0 30.4
           767
                         1
                                93
                                              70
                                                                                              0.31
                                                            31
          768 rows × 9 columns
 In [7]: feature matrix = sd.iloc[:,0:12]
          target_vector=sd.iloc[:,-1]
 In [8]: feature_matrix.shape
 Out[8]: (768, 9)
 In [9]: | target_vector.shape
 Out[9]: (768,)
In [10]: from sklearn.preprocessing import StandardScaler
In [11]: fs=StandardScaler().fit transform(feature matrix)
In [12]: logr= LogisticRegression()
          logr.fit(fs,target_vector)
Out[12]: LogisticRegression()
In [13]: observation =[[1.2,2.3,3.3]]
In [15]: logr.classes_
Out[15]: array([0, 1], dtype=int64)
```