Aggregated Residual Transformations for Deep Neural Networks (CVPR 2017)

• 연구동기 & Method:

문제: Network depth ↑ -> Hyper-parameters 선택 양 ↑

해결: Hyper-parameter 효율적 조절 + 계산 복잡도 유지 or 감소 + 성능 향상 (ResNet에서 발전).

Repeating layer 전략(VGG, ResNet) + "Cardinarity" + Split/Transform/Merge 전략(InceptionNet) +

Grouped convolution

C: cardinality, ConvNet을 몇 개로 나눌지

d: ConvNet의 Channel

Split/Transform/Merge

$$F(x) = \sum_{i=1}^{C} T_i(x) + x_{identity}$$

$$y = x + \sum_{i=1}^{C} T_i(x)$$

Split: x를 split $(x_1, x_2, x_3, ..., x_D)$

Transform: weigh을 곱함 $(x_1W_1, x_2W_2, ..., x_DW_D)$ **Merge**: 전체 결과 합 $(x_1W_1 + x_2W_2 + \cdots + x_DW_D)$

Aggregated Residual Transformations for Deep Neural Networks (CVPR 2017)

Method:

같은 spatial map인 경우, block들은 같은 hyperparameter 공유 => hyper-parameter 선택 부담감↓ Grouped convolution 의 사용으로 구현을 간단하게!

Input

Fully connected+Softmax

Equivalent building blocks of ResNeXt Performance: (a) = (b) = (c)

Relations between cardinality(C) and width(d)

가장	외식의	싱글
8	32	
		_

cardinality C	1	2	4	8	32
width of bottleneck d	64	40	24	14	4
width of group conv.	64	80	96	112	128

Aggregated Residual Transformations for Deep Neural Networks (CVPR 2017)

• Experiment:

Cardinality라는 새로운 차원을 활용해, 기존의 ResNet 보다 더 좋은 성능을 달성

Training curves on ImageNet-1K

Ablation experiments on ImageNet-1K

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	$2 \times 40d$	23.0
ResNeXt-50	$4 \times 24d$	22.6
ResNeXt-50	$8 \times 14d$	22.3
ResNeXt-50	$32 \times 4d$	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	$2 \times 40d$	21.7
ResNeXt-101	$4 \times 24d$	21.4
ResNeXt-101	$8 \times 14d$	21.3
ResNeXt-101	$32 \times 4d$	21.2

- 1. ResNet 보다 ResNeXt가 더 좋은 성능을 보인다.
- 2. Cardinality(C)와 width(d)의 설정값에 따른 비교, 32 x 4d가 가장 좋은 성능을 보인다.

Aggregated Residual Transformations for Deep Neural Networks (CVPR 2017)

• Experiment:

Cardinality라는 새로운 차원을 활용해, 기존의 ResNet 보다 더 좋은 성능을 달성

Increasing Cardinality vs Deeper/Wider

		<u> </u>			
	setting	top-1 err (%)	top-5 err (%)		
1× complexity references:					
ResNet-101	1 × 64d	22.0	6.0		
ResNeXt-101	$32 \times 4d$	21.2	5.6		
2× complexity models follow:					
ResNet-200 [15]	1 × 64d	21.7	5.8		
ResNet-101, wider	1 × 100 d	21.3	5.7		
ResNeXt-101	2 × 64d	20.7	5.5		
ResNeXt-101	64 × 4d	20.4	5.3		

성능: deeper < wider << Cardinality

State-of-the-art models on ImageNet-1K Validation

	224×224		320×320 / 299×299	
	top-1 err	top-5 err	top-1 err	top-5 err
ResNet-101 [14]	22.0	6.0	-	-
ResNet-200 [15]	21.7	5.8	20.1	4.8
Inception-v3 [39]	-	-	21.2	5.6
Inception-v4 [37]	-	-	20.0	5.0
Inception-ResNet-v2 [37]	-	-	19.9	4.9
ResNeXt-101 (64 × 4d)	20.4	5.3	19.1	4.4

개인적으로, 본 논문은 depth와 width를 함께 활용한 방법이란 생각이 든다.

-> cardinality는 결국 convolution을 얼마나 쪼갤지를 나타내는 것 -> Residual block을 wider하게 만든다.