НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас, 19 юни 2019 година

ВАРИАНТ 1

ПЪРВА ЧАСТ (60 минути)

Отговорите на задачите от 1. до 17. включително отбелязвайте в листа за отговори.

1. Кое от дадените равенства е вярно?

A)
$$\frac{2}{7} = \frac{3}{6}$$

$$\mathbf{E}) \ \frac{1,2}{60} = \frac{0,1}{5}$$

B)
$$\frac{3}{2}$$
:2 = $\frac{1}{2}$: $\frac{1}{3}$

$$\Gamma$$
) -5:(-3)=10:(-6)

2. Стойността на израза $2y - 4y^2$ за y = -0,5 е:

- A) -4
- Б) –2
- B) 0
- Γ) 2

3. Изразът $1-(1-x)^2$ е тъждествено равен на:

A)
$$2 - 2x + x^2$$

$$\mathbf{b}) -2x + x^2$$

B)
$$2x - x^2$$

$$\Gamma) 2 + 2x - x^2$$

4. Изразът $4x^2y - 8xy + 12xy^2$ е тъждествено равен на:

A)
$$4xy(x-2+3y)$$

Б)
$$4xy(x-4+8y)$$

B)
$$4xy(x-4+3y)$$

$$\Gamma$$
) $4xy(x+2+3y)$

5. Коренът на уравнението $(x-10)^2 = (2-x)^2$ е:

- A) -6
- Б) –4
- B) 4
- Γ) 6

6. Уравнението |x+7| = 3 има:

- А) единствен корен -4
- Б) единствен корен -10
- В) корени 4 и 10
- Г) корени −4 и −10

7. Вероятността при хвърляне на зар да се падне просто число, е:

- A) 0
- Б) $\frac{1}{3}$
- B) $\frac{1}{2}$
- Γ) $\frac{2}{3}$

8. Решенията на неравенството $1 - 3x \ge 0$ са числата от интервала:

- A) $\left[\frac{1}{3}; +\infty\right)$
- $\mathbf{E})\left(-\infty;\frac{1}{3}\right]$
- B) $\left(-\infty; \frac{1}{3}\right)$
- Γ) $\left(\frac{1}{3};+\infty\right)$

<u>Чертежите са само за илюстрация. Те не са начертани в мащаб и не са предназначени</u> <u>за директно измерване на дължини и на ъгли.</u>

- **9.** Лицето на околната повърхнина на прав кръгов цилиндър с диаметър 10 cm и височина 3 dm e:
- A) $300\pi \text{ cm}^2$
- Б) $325\pi \text{ cm}^2$
- B) $350\pi \text{ cm}^2$
- Γ) 600π cm²
- **10.** На чертежа правите a и b са успоредни, $∢ CAB = 30^\circ$, AD е ъглополовящата на ∢ CAB.

A) 165°

Мярката на *∢МDA* е:

- Б) 150°
- B) 135°
- Γ) 120°
- **11.** По данните от чертежа определете мярката на $\angle AOM$.

- Б) 68°
- B) 72°
- Γ) 84°

12. В $\triangle ABC$ на чертежа мерките на ъглите при върховете A, B и C са в отношение съответно 2:3:4 и правата $CM \parallel AB$. Мярката на $\not <\!\!\! ACM$ е:

- A) 140°
- Б) 120°
- B) 100°
- Γ) 80°

- 13. По данните от чертежа е вярно, че:
- A) ako $\angle CBD = 25^{\circ}$, to $\triangle ABC \cong \triangle CDB$
- Б) ако $AC \perp CD$, то AB = CD
- В) ако $AC \parallel BD$, то BC = AD
- Γ) $\triangle ABC \not\cong \triangle CDB$

14. Точката M е средата на хипотенузата AB в правоъгълния $\triangle ABC$ на чертежа. Ако $\angle ABC = 30^\circ$ и $CP \perp AB$, то е вярно, че:

A)
$$PB = \frac{1}{4}AB$$

$$\mathbf{E}) \ PB = \frac{1}{3} AB$$

B)
$$PB = \frac{2}{3}AB$$

$$\Gamma) PB = \frac{3}{4}AB$$

15. От квадрата с дължина на страната a е изрязан оцветеният правоъгълник. По данните от чертежа лицето на неоцветената част от квадрата се представя с израза:

Б)
$$a^2 - b^2$$

B)
$$a^2 - b(a - b)$$

$$\Gamma$$
) $a^2 - ab - b^2$

16. На чертежа симетралите на страните AC и BC в $\triangle ABC$ се пресичат в точка O. Ако $\angle ACB = 85^{\circ}$, $\angle ACO = 25^{\circ}$ и BC = 6 cm, то дължината на AO е:

17. Спортна площадка има формата, изобразена на чертежа с плътната линия. Ако PMNK е правоъгълник, KN = 20 m, MN = 15 m и KT = 23 m, то обиколката на площадката (в метри) е:

- A) $35 + 3\pi$
- Б) $35 + 6\pi$
- B) $70 + 6\pi$
- Γ) 70+9 π

<u>Отговорите на задачите от 18. до 20. включително запишете на съответното място в</u>
<u>листа за отговори.</u>

- **18.** Дадено е неравенството $x^2 5 \le x(x+1)$.
- **А)** Представете графично решението на неравенството и запишете целите отрицателни числа, които са негови решения.
- **Б)** Пресметнете и запишете средноаритметичното на целите отрицателни решения на неравенството.
- **19.** В библиотека доставили S на брой помагала по три учебни предмета математика, литература и чужд език. Ако помагалата по математика са x на брой, по литература са с 5 по-малко от математическите, а по чужд език с 5 повече от половината на математическите, то:
- **A)** изразете и запишете чрез x броя на помагалата по литература и по чужд език;
- **Б)** изразете и запишете чрез x броя на помагалата S и приведете израза в нормален вид;
- **B)** пресметнете и запишете броя на помагалата по трите учебни предмета, ако S = 200.
- **20.** Броят на превозните средства, заредили гориво на бензиностанция, е представен на кръговата диаграма. Общият брой на камионите и на мотопедите е $\frac{1}{3}$ от всички превозни средства, заредили гориво.

Б) Намерете и запишете с несъкратима дроб каква част от всички превозни средства са автобусите. Запишете градусната мярка на ъгъла на сектора, с който е представен броят на автобусите на кръговата диаграма.

МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас, 19 юни 2019 година

ВАРИАНТ 1

ВТОРА ЧАСТ (90 минути)

Отговорите на задачите от 21. до 25. включително запишете в свитъка за белова.

21. В декартовата координатна система на чертежа са дадени точките A, C и D. Определете и запишете:

А) координатите на дадените точки;

Б) координатите на точката B от четвърти квадрант, така че четириъгълникът ABCD да е успоредник;

B) вида на успоредника, лицето и периметъра на ABCD.

22. Чипровските килими са част от културното наследство на България. Изобразената

геометрична фигура (повлияна от често срещания мотив *канатица*) се състои от равнобедрени правоъгълни триъгълници, като големите триъгълници са еднакви помежду си, а малките триъгълници са с равни хипотенузи. Катетите на големите триъгълници ограждат квадрата ABCD, а всеки катет на малките триъгълници лежи на една

права със страна на квадрата и CB=2MC. Ако $S_{\Delta MCP}=4,5~{\rm cm}^2$, то намерете и запишете:

- **A)** лицето на ABCD и на $\triangle ABN$;
- **Б)** с несъкратима дроб отношението $S_{\substack{o \text{цветената} \\ \text{фигура}}}: S_{ABCD}$

<u>Пълните решения с необходимите обосновки на задачите от 23. до 25. включително</u> запишете в свитъка за белова.

- **23.** Велосипедист изминава разстоянието от град A до град B през град C за 4 h. От град A до град C велосипедистът се движи със скорост 10 km/h, а от град C до град B със скорост 12 km/h. Ако BC = 2AC, то намерете:
- **A)** разстоянието от град A до град B;
- **Б)** времената, за които велосипедистът изминава разстоянията съответно от град A до град C и от град C до град B;
- **B)** в колко часа́ велосипедистът ще се намира на разстояние 9 km от град B, ако тръгне от град A в 9,00 часа́ сутринта?
- **24**. Дадено е неравенството $\frac{1}{2}(x-1)^2 \frac{x(3x-7)}{6} > 2 + \frac{2(x-9)}{9}$.
- А) Решете неравенството и запишете решенията му с интервал.
- **Б)** Пресметнете числото $m = \frac{9^2.8^{10}.(-6)}{27.(-2)^{31}}.$
- **В**) Проверете и запишете дали числото m е решение на неравенството.
- **25.** Точката M лежи на страната BC на равностранен $\triangle ABC$ така, че $CM = \frac{1}{3}BC$. Построена е отсечка MK, перпендикулярна на $AB(K \in AB)$. Лицето на $\triangle KCM$ е 3 cm².
- **A)** Изразете отсечката KB чрез страната AB.
- **Б)** Докажете, че AM = CK.
- **В)** Намерете лицето на $\triangle ACM$.

НАЦИОНАЛНО ВЪНШНО ОЦЕНЯВАНЕ ПО МАТЕМАТИКА – VII клас, 19 юни 2019 година

ВАРИАНТ 1

КЛЮЧ С ВЕРНИТЕ ОТГОВОРИ

№ на	Отговор	Брой точки
задача		
1	Б	2
2	Б	2
3	В	2
4	A	3
5	Γ	3
6	Γ	3
7	В	3
8	Б	2
9	A	3
10	A	3
11	Б	3
12	A	3
13	Γ	3
14	Γ	3
15	В	3
16	В	3
17	В	3
		6 точки, от които:
18	A) -5	2 точки
	-5, -4, -3, -2, -1	2,5 точки (за всяко посочено число по 0,5 т.)
	b) $-\frac{15}{5} = -3$	1,5 точки
10		6 точки , от които:
19	А) литература: <i>x</i> – 5	2 точки (по 1 т. за всеки верен отговор)

		чужд език: $\frac{x}{2} + 5$	
	Б)	$S = \frac{5x}{2} = 2,5x$	2,5 точки
	B)	литература – 75	1,5 точки (по 0,5 т. за всеки отговор)
		чужд език – 45	
		математика – 80	
			6 точки, от които:
	A)	144	2 точки
20	Б)	1/24	2 точки
		15° (или 15)	2 точки
			6 точки, от които:
	A)	A(-2;-1), C(1;0), D(-2;4)	1,5 точки (по 0,5 т. за координатите на всяка
	A		точка)
21	Б)	B(1;-5)	1 точка (по 0,5 т. за всяка от координатите)
	B)	Вид – ромб	1,5 точки
	10)	Лице $-15 \text{ cm}^2(15)$	1 точка
		Периметър – 20 cm (20)	1 точка
		,	6 точки , от които:
22	A)	$S_{ABCD} = 36 \text{ cm}^2 (36) \text{ и}$ $S_{\triangle ABN} = 18 \text{ cm}^2 (18)$	3 точки (по 1,5 т. за всяко лице)
	Б)	$\frac{S_{ougemena\ \phiuzypa}}{S_{ABCD}} = \frac{9}{4}$	3 точки
			6 точки, от които:
	A)	AB = 45 km	3,5 точки
23	Б)	$t_{AC} = 1 \text{ h} 30 \text{ min } \text{ и}$	
		$t_{CB} = 2 \text{ h} 30 \text{ min}$	1 точка
	B)	12 часа́ и 15 мин.	1,5 точки
24			8 точки , от които:
	A)	$x \in (-\infty; 9)$	4,5 точки
	Б)	m = 9	2,5 точки
	B)	<i>m</i> = 9 не е решение на неравенството	1 точка

25			9 точки , от които:
	A)	$KB = \frac{1}{3}AB$	2,5 точки
	Б)		3,5 точки
	B)	$S_{\Delta ACM} = 9 \mathrm{cm}^2$	3 точки

Задача 23. Примерно решение:

A) Нека AC = x, x > 0, тогава BC = 2x.

Времената за изминаване на разстоянията AC и BC са съответно $t_{AC} = \frac{x}{10} \, \mathrm{h}$ и $t_{CB} = \frac{2x}{12} \, \mathrm{h} = \frac{x}{6} \, \mathrm{h}.$

Неизвестното число x се намира от уравнението $\frac{x}{10} + \frac{x}{6} = 4 \Leftrightarrow 3x + 5x = 120 \Leftrightarrow x = 15$.

Изминатите разстояния са AC = 15 km, BC = 30 km и AB = 45 km.

- **Б)** Времената, за които велосипедистът изминава разстоянията съответно от A до C и от C до B, са $t_{AC} = \frac{15}{10} \text{ h} = 1\frac{1}{2} \text{ h} = 1\text{ h}$ 30 min и $t_{CB} = 4 \text{ h} \frac{3}{2} \text{ h} = 2\frac{1}{2} \text{ h} = 2\text{ h}$ 30 min .
- **B)** Нека M е такава, че MB=9 km и M е между C и B. Тогава времето, за което велосипедистът би изминал разстоянието MB, ще е $t_{MB}=\frac{9}{12}=\frac{3}{4}$ h . Следователно търсеният час е: $9+4-\frac{3}{4}=12\frac{1}{4}$ h , т. е. 12 часа́ и 15 мин.

Задача 24. Примерно решение:

A)
$$\frac{1}{2}(x-1)^2 - \frac{x(3x-7)}{6} > 2 + \frac{2(x-9)}{9} \Leftrightarrow 9(x-1)^2 - 3x(3x-7) > 36 + 4(x-9) \Leftrightarrow$$

 $9(x^2 - 2x + 1) - 9x^2 + 21x > 36 + 4x - 36 \Leftrightarrow 9x^2 - 18x + 9 - 9x^2 + 21x > 36 + 4x - 36$
 $\Leftrightarrow 3x + 9 > 4x \Leftrightarrow x < 9$

Решенията на неравенството се записват с интервала $(-\infty; 9)$.

B)
$$m = \frac{9^2 \cdot 8^{10} \cdot (-6)}{27 \cdot (-2)^{31}} = \frac{\left(3^2\right)^2 \cdot \left(2^3\right)^{10} \cdot (-2) \cdot 3}{3^3 \cdot (-2)^{31}} = \frac{3^5 \cdot 2^{31}}{3^3 \cdot 2^{31}} = 9$$

B) $9 \notin (-\infty; 9)$ Следователно m = 9 не е решение на неравенството.

Задача 25. Примерно решение:

A) $\triangle ABC$ е равностранен, то $\angle ABM = 60^{\circ}$.

Тъй като $MK \perp AB$, то $\angle MKB = 90^{\circ}$.

Тогава в $\triangle MKB \ll KMB = 30^{\circ} \Rightarrow KB = \frac{1}{2}MB$.

$$CM = \frac{1}{3}BC \Rightarrow MB = \frac{2}{3}CB \Rightarrow KB = \frac{1}{2}.\frac{2}{3}BC$$
, Ho

$$BC = AB \Rightarrow KB = \frac{1}{3}AB$$
.

Б) За да се докаже, че AM = CK, е достатъчно да се докаже, че те са съответни страни в еднакви триъгълници.

$$CM = \frac{1}{3}BC = KB$$

$$AC = BC (\triangle ABC - \text{равностранен})$$

$$\angle ACM = \angle CBK = 60^{\circ} (\triangle ABC - \text{равностранен})$$

$$\Rightarrow \triangle ACM \cong \triangle CBK \text{ по първи признак}$$

$$\Rightarrow AM = CK$$
.

B) В
$$\triangle CBK$$
 построяваме $KH \perp BC(H \in BC)$. Тогава $S_{\triangle CMK} = \frac{CM.KH}{2}$, а

$$S_{\triangle CBK} = \frac{CB.KH}{2} = \frac{3.CM.KH}{2} = 3.\frac{CM.KH}{2} = 3S_{\triangle CMK} = 3.3 \text{ cm}^2 = 9 \text{ cm}^2.$$

Тъй като
$$\triangle ACM \cong \triangle CBK$$
 , то $S_{\triangle ACM} = S_{\triangle CBK} = 9\,\mathrm{cm}^2$.