Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Высшая школа интеллектуальных систем и суперкомпьютерных технологий

Отчет по лабораторной работе №7
По теме "Синтез и исследование иерархической системы управления. Решение задачи координации по принципу прогнозирования взаимодействий путем модификации образов"

Дисциплина: Компьютерные системы управления

Выполнил студент гр. 3540901/02001			Дроздов Н.Д.	
Руководитель	(подпись)			
	 (подпись)		Нестеров С. А.	
	(1104111105)	«	» 2021г.	

г. Санкт-Петербург 2021г.

1. Исходные данные:

Объект первого порядка:

$$\begin{vmatrix} \dot{x_1} \\ \dot{x_2} \end{vmatrix} = \begin{vmatrix} -2 & 12 \\ -12 & -2 \end{vmatrix} \cdot \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 2 & 0 \\ 0 & 2 \end{vmatrix} \begin{vmatrix} u_1 \\ u_2 \end{vmatrix}$$

Целевые функции:

$$\begin{cases} f_1 = (x_1 - 1)^2 + (x_2 - 1)^2 \\ f_2 = (x_1 - 2)^2 + (x_2 - 2)^2 \\ \alpha_1 = 0.2, \ \alpha_2 = 0.8 \end{cases}$$

2. Задание

Реализовать двухуровневую иерархическую систему управления. Для координации подсистем использовать принцип прогнозирования взаимодействий путем модификации целей образов.

3. Ход работы

3.1. Формализация модели

Основным недостатком одноуровневого многоцелевого управления является необходимость ввода компромиссных решений для сведения многокритериальной задачи к однокритериальной. В случае многоуровневого управления принятие компромиссных решений производится на дополнительном вышестоящем уровне. Координатор должен иметь возможность воздействовать на действия решающих органов локальных подсистем.

Координация по принципу прогнозирования взаимодействий относится к типу координаций до принятия решений решающими органами локальных подсистем.

Рис. 1. Структурная схема многоуровневой системы управления по принципу прогнозирования взаимодействий.

Конфликты в иерархических системах управления могут возникать из-за несогласованного изменения связующих переменных отдельных подсистем. При координации по принципу прогнозирования взаимодействий используется идея вмешательства координатора в работу решающих органов подсистем до

принятия ими решений. На верхнем уровне определяются желательные для оптимизации глобальной целевой функции значения связующих переменных на входе z и на выходе s для каждой из подсистем.

Считается, что задача локального управления на уровне подсистем решена, поэтому требуется только организация совместного управления. В качестве реализации подсистемы с регулятором возьмем полученные в работе 2 результаты синтеза локального регулятора. В этом случае подсистемы будут иметь структуру:

Puc. 1. Структурная схема первой подсистемы с локальным регулятором. Далее определим формальную постановку задачи.

Глобальная целевая функция

Локальные цели:

$$f_1 = (x_1 - 1)^2 + (x_2 - 1)^2$$

 $f_2 = (x_1 - 2)^2 + (x_2 - 2)^2$

С учётом весовых коэффициентов $f = 0.2 \cdot f_1 + 0.8 \cdot f_2$

С минимумом в точке $\{1.8, 1.8\}$

Записываем перекрёстное влияние подсистем:

$$\frac{12}{2}s_2 = 6 \cdot s_2 = z_1$$

$$\frac{-12}{3}s_1 = -6s_1 = z_2$$

Записываем уравнения для каждой подсистемы:

$$s_1 - z_1 - u_1 = 0$$

$$s_2 - z_2 - u_2 = 0$$

Найдём экстремумы с учётом записанных условий в подсистемах:

$$L_0 = 0.2((x_1 - 1)^2 + (x_2 - 1)^2) + 0.8((x_1 - 2)^2 + (x_2 - 2)^2) + \mu_1(s_1 - z_1 - u_1) + \mu_2(s_2 - z_2 - u_2) + \rho_1(z_1 - 6 \cdot s_2) + \rho_2(z_2 + 6s_1)$$

Тогда получаем Лагранжианы подсистем:

$$L_{i}(u_{i}, z, \mu_{i}, \rho_{i}) = f_{i}(z, u_{i}) + \mu_{i}(s_{i} - \varphi_{i}(u_{i}, z_{i})) + \rho_{i}(z_{i} - c_{ij}s_{j})$$

$$L_{1} = 0.2\left((z_{1} + u_{1} - 1)^{2} + \left(\frac{1}{6}z_{1} - 1\right)^{2}\right) + \mu_{1}(s_{1} - z_{1} - u_{1}) + \rho_{1}(z_{1} - 6 \cdot s_{2})$$

$$L_{0} = 0.8\left(\left(\frac{1}{6}z_{2} - 2\right)^{2} + (z_{2} + u_{2} - 2)^{2}\right) + \mu_{2}(s_{2} - z_{2} - u_{2}) + \rho_{2}(z_{2} + 6s_{1})$$

3.2. Синтез решающих органов первого уровня

В локальных подсистемах для нахождения экстремума при заданных ограничениях необходимо найти экстремум соответствующего Лагранжиана: Для этого требуется решить следующую систему уравнений:

$$\begin{cases} \frac{dL_i}{du_i} = 0\\ \frac{dL_i}{dz_i} = 0\\ \frac{dL_i}{d\mu_i} = 0\\ \frac{dL_i}{d\rho_i} = 0 \end{cases}$$

При этом, значения s_i задаются координатором.

Листинг 1. Вычисление частных производных локальных Лагранжианов.

```
w=0.3;
syms z1 z2 u1 u2 f1 f2 s1 s2 m1 m2 p1 p2;
f1 = w*((z1+u1-1)^2+(z1/6-1)^2);
f2 = (1-w)*((-z^2/6-2)^2+(z^2+u^2-2)^2);
syms L1 L2;
L1 = f1 + m1*(s1-z1-u1) + p1*(z1 - 6*s2)
L2 = f2 + m2*(s2-z2-u2) + p2*(z2 + 6*s1)
display('Лагранжиан 1')
diff(L1,u1)%*5/3
diff(L1,z1)%*5/3
diff(L1,m1)
diff(L1,p1)
display('Лагранжиан 2')
diff(L2,u2)%*5/7
diff(L2,z2)%*5/7
diff(L2, m2)
diff(L2,p2)
```

Первая подсистема

$$\begin{cases} \frac{dL_1}{du_1} = -\mu_1 + \frac{2}{5}u_1 + \frac{2}{5}z_1 - \frac{2}{5} = 0\\ \frac{dL_1}{dz_1} = -\mu_1 + \frac{2}{5}u_1 + \frac{37}{90}z_1 + \rho_1 - \frac{7}{15} = 0\\ \frac{dL_1}{ds_1} = z_1 + 6s_2 = 0\\ \frac{dL_1}{du_1} = s_1 - z_1 - u_1 = 0 \end{cases}$$

$$\begin{cases} \mu_1 = \frac{2}{5}(u_1 + z_1 - 1) \\ \rho_1 = \frac{1}{15} \cdot (1 - \frac{1}{6}z_1) \\ z_1 = 6s_2 \\ u_1 = s_1 - z_1 \end{cases}$$

Соответствующая схема решающего органа первого уровня:

Вторая подсистема

$$\begin{cases} \frac{dL_2}{du_2} = -\mu_2 + \frac{8}{5} u_2 + \frac{8}{5} z_2 - \frac{16}{5} = 0 \\ \frac{dL_2}{dz_2} \frac{5}{7} = -\mu_2 + \frac{8}{5} u_2 + \frac{74}{45} \cdot z_2 + \rho_2 + \frac{8}{3} = 0 \\ \frac{dL_2}{ds_2} = z_2 + 6 s_1 = 0 \\ \frac{dL_2}{d\mu_2} = s_2 - u_2 - z_2 = 0 \end{cases}$$

$$\begin{cases} \mu_2 = \frac{8}{5} \cdot (u_2 + z_2 - 2) \\ \rho_2 = \frac{2}{15} \cdot (-4 - \frac{1}{3} z_2) \\ z_2 = -6 s_1 \\ u_2 = s_2 - z_2 \end{cases}$$

Соответствующая схема решающего органа первого уровня.

3.3. Синтез решающего органа верхнего уровня

В локальных решающих органах для нахождения управляющего воздействия ищется экстремум локального Лагранжиана и вычисляются неопределенные множители µ и р. При этом на верхнем уровне для каждой из подсистем определяются желаемые для оптимизации глобальной целевой функции значения связующих переменных s_i. Эти значения передаются на нижний уровень, и локальные задачи решаются с их учетом.

Желаемое значение s_i корректируется в координаторе методом наискорейшего спуска:

$$\Delta s(k)_i = \pm \gamma \left(\hat{\mu}_i - \sum_j c_{ij} \hat{\rho}_j \right); \quad s(k)_i = s(k-1)_i + \Delta s(k)_i,$$

где у – величина шага. Условие остановки:

$$|\Delta s_i(k) - \Delta s_i(k-1)| \le \varepsilon$$

где ε — порог изменения величины шага.

Когда условие согласованности локальных и глобальных целей будет выполнено, на нижний уровень будет подан сигнал разрешения управления.

Листинг 3. Реализация решающего органа верхнего уровня.

```
function [s1, s2, ena1, ena2] = fcn(p1, p2, m1, m2)
persistent ds1 t;
persistent ds2 t;
persistent s1 t;
persistent s2 t;
persistent enal t;
persistent ena2 t;
eps = 0.02; % Величина отклонения оценки от реального значения
step = 0.001; % Шаг изменения множителей р
% Инициализация
if(isempty(s1 t))
    s1 t = 1.; %-12.5;
    s2^{-}t = 1.; %12.5;
    ds\overline{1} t = 0;
    ds2 t = 0;
    ena1 t = 0;
    ena2 t = 0;
    s1 = s1 t;
```

```
s2 = s2_t;
    ena1 = ena1_t;
    ena2 = ena2_t;
    return;
end
if(abs((m1-p2)) > eps \mid \mid abs((m2-p1)) > eps)
   s1_t = s1_t-step*(m1-p2);%+
   ena1_t = 0;
   s2_t = s2_t-step*(m2-p1);%-
   ena2_t = 0;
else
   enal_t = 1;
   ena2_t = 1;
end
s1 = s1_t;
s2 = s2_t;
ena1 = ena1 t;
ena2 = ena2 t;
```

Полная модель двухуровневой системы управления имеет вид:

3.4. Моделирование работы системы

Перед началом моделирования требуется задать исходные данные: ϵ и γ . Величина шага спуска γ влияет на скорость сходимости решения, ϵ влияет как на отклонение решения от исходной глобальной цели, так и на скорость сходимости. Экспериментально были подобраны следующие значения: $\epsilon = 0.02, \gamma = 0.001$

Динамика изменения связующих переменных s:

Полученное решение:

$\varepsilon = 0.0002, \, \gamma = 0.03$

Динамика изменения связующих переменных s:

Полученное решение:

Вывод

Метод модификации образов позволяет задавать на уровне координатора желаемые значения связующих переменных, с учетом которых будут решаться локальные задачи управления. Условием остановки в данном случае является достижение локальными регуляторами оптимальных значений связующих переменных, наиболее близких к желаемым. Метод модификации образов позволяет задавать на уровне координатора желаемые значения связующих переменных, с учетом которых будут решаться локальные задачи управления.

К недостаткам данного подхода можно отнести существенное усложнение структуры системы и продолжительный процесс поиска решения координатором. Метод градиентного спуска, применяемый в координаторе, требует подбора двух параметров. При увеличении шага в градиентном спуске возможно достижение более высокой скорости поиска решения и более быстрого переходного процесса. Также удалось достичь большей точности, уменьшив є в сто раз по сравнению с первым случаем.