

Collectieve Intelligentie

SIMON PAUW

MATRIXFACTORISATIE

Vandaag

Module 4:

- 1 Comedy films lijken op comedy films
 - One hot encoding
 - Jaccard
- 2 Films die lijken op films die je goed vind, vind je waarschijnlijk ook goed

Module 5:

• 1 Mensen die van comedy films houden, vinden een comedy film waarschijnlijk goed

Module 6:

Gegeven dat we weten welke films je goed vindt, kunnen we bepalen van welke genres je houdt?

Uitgangspositie, vorige week:

	drama	thriller	comedy
movieName			
Babe	0.74	0.22	0.43
Inception	0.63	0.92	0.44
A.I. Artificial Intelligence	0.67	0.46	0.22
Ace Ventura: Pet Detective	0.05	0.18	0.95
Bad Boys	0.71	0.42	0.78
Changing Lanes	0.44	0.41	0.38
Dumb & Dumber	0.00	0.17	1.00
Event Horizon	0.00	0.74	0.08
Full Metal Jacket	0.66	0.53	0.00
I, Robot	0.34	1.00	0.35

	drama	thriller	comedy
userld			
6	0.71	-0.65	0.56
7	0.85	0.22	0.18
8	0.89	-0.75	0.71
10	-0.02	0.20	0.02
11	0.94	0.33	0.07
12	0.94	0.18	0.29
13	0.75	0.75	0.29
14	0.07	0.04	0.49
15	0.52	0.42	-0.13
16	0.51	0.42	-0.31

userld	6	7	8	10	11	12	13	14	15	16
drama	0.71	0.85	0.89	-0.02	0.94	0.94	0.75	0.07	0.52	0.51
thriller	-0.65	0.22	-0.75	0.20	0.33	0.18	0.75	0.04	0.42	0.42
comedy	0.56	0.18	0.71	0.02	0.07	0.29	0.29	0.49	-0.13	-0.31

	drama	thriller	comedy	userld	6	7	8	10	11	12	13	14	15	16
movieName				movieName										
Babe	0.74	0.22	0.43	Babe	0.62	0.75	0.80	0.04	0.80	0.86	0.84	0.27	0.42	0.34
Inception	0.63	0.92	0.44	Inception	0.10	0.82	0.18	0.18	0.93	0.89	1.29	0.30	0.66	0.57
A.I. Artificial Intelligence	0.67	0.46	0.22	A.I. Artificial Intelligence	0.30	0.71	0.41	0.08	0.80	0.78	0.91	0.17	0.51	0.47
Ace Ventura: Pet Detective	0.05	0.18	0.95	Ace Ventura: Pet Detective	0.45	0.25	0.58	0.05	0.17	0.35	0.45	0.48	-0.02	-0.19
Bad Boys	0.71	0.42	0.78	Bad Boys	0.67	0.84	0.87	0.09	0.86	0.97	1.07	0.45	0.44	0.30
Changing Lanes	0.44	0.41	0.38	Changing Lanes	0.26	0.53	0.35	0.08	0.58	0.60	0.75	0.23	0.35	0.28
Dumb & Dumber	0.00	0.17	1.00	Dumb & Dumber	0.45	0.22	0.58	0.05	0.13	0.32	0.42	0.50	-0.06	-0.24
Event Horizon	0.00	0.74	0.08	Event Horizon	-0.44	0.18	-0.50	0.15	0.25	0.16	0.58	0.07	0.30	0.29
Full Metal Jacket	0.66	0.53	0.00	Full Metal Jacket	0.12	0.68	0.19	0.09	0.80	0.72	0.89	0.07	0.57	0.56
I, Robot	0.34	1.00	0.35	I, Robot	-0.21	0.57	-0.20	0.20	0.67	0.60	1.11	0.24	0.55	0.48

- 1 user_matrix_transposed = user_matrix.T
- predicted_ratings = movie_matrix @ user_matrix_transposed

Deze week

movieName

Babe	?	?	?
Inception	?	?	?
A.I. Artificial Intelligence	?	?	?
Ace Ventura: Pet Detective	?	?	?
Bad Boys	?	?	?
Changing Lanes	?	?	?
Dumb & Dumber	?	?	?
Event Horizon	?	?	?
Full Metal Jacket	?	?	?
I, Robot	?	?	?

userld	6	7	8	10	11	12	13	14	15	16
	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

Vaak hebben we geen genre informatie

Deze week

Maar wel een deel van de ratings

movieName

A.I. Artificial Intelligence ? ? ?

Ace Ventura: Pet Detective ? ? ?

Babe ? ? ?

Inception ? ? ?

Bad Boys ? ? ?

Changing Lanes ? ? ?

Dumb & Dumber ? ? ?

Full Metal Jacket ? ? ?

Event Horizon ? ? ?

I, Robot ? ? ?

12

11

13

15

16

 $M \cdot U^T = \hat{R}$, gegeven \hat{R} wat zijn M en U?

userld

userld	6	7	8	10	11	12	13	14	15	16
drama	0.71	0.85	0.89	-0.02	0.94	0.94	0.75	0.07	0.52	0.51
thriller	-0.65	0.22	-0.75	0.20	0.33	0.18	0.75	0.04	0.42	0.42
comedy	0.56	0.18	0.71	0.02	0.07	0.29	0.29	0.49	-0.13	-0.31

userld	6	7	8	10	11	12	13	14	15	16
drama	0.71	0.85	0.89	-0.02	0.94	0.94	0.75	0.07	0.52	0.51
thriller	-0.65	0.22	-0.75	0.20	0.33	0.18	0.75	0.04	0.42	0.42
comedy	0.56	0.18	0.71	0.02	0.07	0.29	0.29	0.49	-0.13	-0.31

	drama	thriller	comedy
movieName			
Babe	0.74	0.22	0.43
Inception	0.63	0.92	0.44
A.I. Artificial Intelligence	0.67	0.46	0.22
Ace Ventura: Pet Detective	0.05	0.18	0.95
Bad Boys	0.71	0.42	0.78
Changing Lanes	0.44	0.41	0.38
Dumb & Dumber	0.00	0.17	1.00
Event Horizon	0.00	0.74	0.08
Full Metal Jacket	0.66	0.53	0.00
I, Robot	0.34	1.00	0.35

userld	6	7	8	10	11	12	13	14	15	16
drama	0.71	0.85	0.89	-0.02	0.94	0.94	0.75	0.07	0.52	0.51
thriller	-0.65	0.22	-0.75	0.20	0.33	0.18	0.75	0.04	0.42	0.42
comedy	0.56	0.18	0.71	0.02	0.07	0.29	0.29	0.49	-0.13	-0.31

	drama	thriller	comedy	userld	6	7	8	10	11	1:	13	14	15	16
movieName				movieName										
Babe	0.74	0.22	0.43	Babe	0.62	0.75	0.80	0.04	0.80	0.86	0.84	0.27	0.42	0.34
Inception	0.63	0.92	0.44	Inception	0.10	0.82	0.18	0.18	0.93	0.89	1.29	0.30	0.66	0.57
A.I. Artificial Intelligence	0.67	0.46	0.22	A.I. Artificial Intelligence	0.30	0.71	0.41	0.08	0.80	0.78	0.91	0.17	0.51	0.47
Ace Ventura: Pet Detective	0.05	0.18	0.95	Ace Ventura: Pet Detective	0.45	0.25	0.58	0.05	0.17	0.3	0.45	0.48	-0.02	-0.19
Bad Boys	0.71	0.42	0.78	Bad Boys	0.67	0.84	0.87	0.09	0.86	0.9	1.07	0.45	0.44	0.30
Changing Lanes	0.44	0.41	0.38	Changing Lanes	0.26	0.53	0.35	0.08	0.58	0.60	0.75	0.23	0.35	0.28
Dumb & Dumber	0.00	0.17	1.00	Dumb & Dumber	0.45	0.22	0.58	0.05	0.13	0.32	0.42	0.50	-0.06	-0.24
Event Horizon	0.00	0.74	0.08	Event Horizon	-0.44	0.18	-0.50	0.15	0.25	0.16	0.58	0.07	0.30	0.29
Full Metal Jacket	0.66	0.53	0.00	Full Metal Jacket	0.12	0.68	0.19	0.09	0.80	0.72	0.89	0.07	0.57	0.56
I, Robot	0.34	1.00	0.35	I, Robot	-0.21	0.57	-0.20	0.20	0.67	0.60	1.11	0.24	0.55	0.48

Tussenstap

userld	6	7	8	10	11	12	13	14	15	16
	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?
	?	?	?	?	?	?	?	?	?	?

	drama	thriller	comedy	userld	6	7	8	10	11	12	13	14	15	16
movieName				movieName										
Babe	0.74	0.22	0.43	Babe	0.80		1.00							
Inception	0.63	0.92	0.44	Inception									0.70	0.60
A.I. Artificial Intelligence	0.67	0.46	0.22	A.I. Artificial Intelligence		0.90							0.80	
Ace Ventura: Pet Detective	0.05	0.18	0.95	Ace Ventura: Pet Detective	0.60							0.40		
Bad Boys	0.71	0.42	0.78	Bad Boys	0.80									
Changing Lanes	0.44	0.41	0.38	Changing Lanes										
Dumb & Dumber	0.00	0.17	1.00	Dumb & Dumber	0.60		0.80					0.60		
Event Horizon	0.00	0.74	0.08	Event Horizon							0.80			
Full Metal Jacket	0.66	0.53	0.00	Full Metal Jacket										0.90
I, Robot	0.34	1.00	0.35	I, Robot									0.70	

 $M \cdot U^T = \hat{R}$, gegeven \hat{R} en M wat is U?

Vraag 1: matrixfactorisatie

 $x \cdot b = y$

x = 2 en y = 6

wat is b?

Matrixfactorisatie

 $X \cdot B = Y$

matrices X en Y zijn bekend

wat is B?

Vraag 2: dimensies

$$X \cdot B = Y$$

$$X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \quad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

wat zijn de dimensies van *B*?

Matrixfactorisatie kan niet

$$X \cdot B = Y$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$ Bevat geen oplossing!

Wat zijn de dimensies van B? => wat zijn a en b?

Matrixfactorisatie kan niet

$$X \cdot B = Y$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$ Bevat geen oplossing! Wat is B ?

$$X \cdot B = \hat{Y}$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$

Voor welk B ligt \hat{Y} zo dicht mogelijk bij Y?

Matrixfactorisatie kan niet

$$X \cdot B = Y$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$ Bevat geen oplossing! Wat is B ?

$$X \cdot B = \hat{Y}$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$

Voor welk B ligt \hat{Y} zo dicht mogelijk bij Y?

B zodat MSE(\hat{Y}, Y) minimaal!

Welke *B* geeft de laagste MSE?

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

Algoritme:

- Begin met random waardes voor *B*.
- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

Welke *B* geeft de laagste MSE?

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 6 \\ -2 \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \widehat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \widehat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$

$$B := B + \alpha \cdot X^{T} \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + 0.01 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$

$$B := B + \alpha \cdot X^{T} \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + 0.01 \cdot \begin{bmatrix} 1 \cdot 0 + 2 \cdot 4 + 3 \cdot -4 \\ 1 \cdot 0 + 3 \cdot 4 + 1 \cdot -4 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + 0.01 \cdot \begin{bmatrix} -4 \\ 8 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + \begin{bmatrix} -0.04 \\ 0.08 \end{bmatrix} = \begin{bmatrix} 5.96 \\ -1.92 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

Algoritme:

$$B = \begin{bmatrix} 5.96 \\ -1.92 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix} - \begin{bmatrix} 0 \\ 4 \\ -4 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + \begin{bmatrix} -0.04 \\ 0.08 \end{bmatrix} = \begin{bmatrix} 5.96 \\ -1.92 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix} = \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$

Algoritme:

$$B = \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix} = \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4 - 4.04)^2 + (10 - 6.16)^2 + (12 - 15.96)^2 = 30.43$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix} = \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4 - 4.04)^2 + (10 - 6.16)^2 + (12 - 15.96)^2 = 30.43$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 3.84 \\ -3.96 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + 0.01 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} -0.4 \\ 3.84 \\ -3.96 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \widehat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5.06 \\ -1.92 \end{bmatrix} = \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4 - 4.04)^2 + (10 - 6.16)^2 + (12 - 15.96)^2 = 30.43$$

$$D = Y - \hat{Y} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} - \begin{bmatrix} 4.04 \\ 6.16 \\ 15.96 \end{bmatrix} = \begin{bmatrix} -0.4 \\ 3.84 \\ -3.96 \end{bmatrix}$$
$$B := B + \alpha \cdot X^T \cdot D = \begin{bmatrix} 6 \\ -2 \end{bmatrix} + \begin{bmatrix} -0.042 \\ 0.075 \end{bmatrix} = \begin{bmatrix} 5.918 \\ -1.845 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

Welke *B* geeft de laagste MSE?

Algoritme:

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3.69 \\ 0.82 \end{bmatrix} = \begin{bmatrix} 4.51 \\ 9.84 \\ 11.89 \end{bmatrix}$$

$$B = \begin{bmatrix} 3.69 \\ 0.82 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

• Begin met random waardes voor *B*.

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \widehat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \widehat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

Niet te groot!

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D \qquad \Rightarrow \alpha = 0.01 \ 0.1$$

Gradient descent => movies

Welke *B* geeft de laagste MSE?

Algoritme:

• Begin met random waardes voor *B*.

Herhaal:

- Bereken \hat{Y}
- Hoe fout is de oplossing?
- Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = X \cdot B = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3.69 \\ 0.82 \end{bmatrix} = \begin{bmatrix} 4.51 \\ 9.84 \\ 11.89 \end{bmatrix}$$

$$X \Rightarrow M$$

$$B \Rightarrow U^{T}$$

$$Y \Rightarrow R$$

$$\hat{Y} \Rightarrow \hat{R}$$

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$$

$$B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$X \Rightarrow M$$

$$B \Rightarrow U^{T}$$

$$Y \Rightarrow R$$

$$\hat{Y} \Rightarrow \hat{R}$$

$$U^T$$
 userId
 6
 7
 8
 10
 11
 12
 13
 14
 15
 16

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?
 ?

<i>M</i> movieName	drama	thriller	comedy	R userl movieNam		7	8	10	11	12	13	14	15	16
Babe	0.74	0.22	0.43	Bab	e 0.80		1.00							
Inception	0.63	0.92	0.44	Inception									0.70	0.60
A.I. Artificial Intelligence	0.67	0.46	0.22	A.I. Artificial Intelligence		0.90							0.80	
Ace Ventura: Pet Detective	0.05	0.18	0.95	Ace Ventura: Pet Detective								0.40		
Bad Boys	0.71	0.42	0.78	Bad Boys										
Changing Lanes	0.44	0.41	0.38	Changing Lanes										
Dumb & Dumber	0.00	0.17	1.00	Dumb & Dumber			0.80					0.60		
Event Horizon	0.00	0.74	0.08	Event Horizo	า						0.80			
Full Metal Jacket	0.66	0.53	0.00	Full Metal Jacke	t									0.90
I, Robot	0.34	1.00	0.35	I, Robo	t								0.70	

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$$

 $B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$

$$X \Rightarrow M$$

$$B \Rightarrow U^T$$

$$Y \Rightarrow R$$

$$\hat{Y} \Rightarrow \hat{R}$$

M	drama	thriller	comedy
movieName			

movicivanic			
Babe	0.74	0.22	0.43
Inception	0.63	0.92	0.44
A.I. Artificial Intelligence	0.67	0.46	0.22
Ace Ventura: Pet Detective	0.05	0.18	0.95
Bad Boys	0.71	0.42	0.78
Changing Lanes	0.44	0.41	0.38
Dumb & Dumber	0.00	0.17	1.00
Event Horizon	0.00	0.74	0.08
Full Metal Jacket	0.66	0.53	0.00
I, Robot	0.34	1.00	0.35

U^T	userId	6	7	8	10	11	12	13	14	15	16
							?				
		?	?	?	?	?	?	?	?	?	?
		?	?	?	?	?	?	?	?	?	?

\widehat{R} userId	6	7	8	10	11	12	13	14	15	16
movieName										
Babe	0.62	0.75	0.80	0.04	0.80	0.86	0.84	0.27	0.42	0.34
Inception	0.10	0.82	0.18	0.18	0.93	0.89	1.29	0.30	0.66	0.57
A.I. Artificial Intelligence	0.30	0.71	0.41	0.08	0.80	0.78	0.91	0.17	0.51	0.47
Ace Ventura: Pet Detective	0.45	0.25	0.58	0.05	0.17	0.35	0.45	0.48	-0.02	-0.19
Bad Boys	0.67	0.84	0.87	0.09	0.86	0.97	1.07	0.45	0.44	0.30
Changing Lanes	0.26	0.53	0.35	0.08	0.58	0.60	0.75	0.23	0.35	0.28
Dumb & Dumber	0.45	0.22	0.58	0.05	0.13	0.32	0.42	0.50	-0.06	-0.24
Event Horizon	-0.44	0.18	-0.50	0.15	0.25	0.16	0.58	0.07	0.30	0.29
Full Metal Jacket	0.12	0.68	0.19	0.09	0.80	0.72	0.89	0.07	0.57	0.56
I, Robot	-0.21	0.57	-0.20	0.20	0.67	0.60	1.11	0.24	0.55	0.48

$$M \cdot U^T = \hat{R}$$

Klaar, maar...

Geen exacte oplossing mogelijk! Waarom?

Waarom is dit de juiste update?

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

Matrix factorisatie is niet hetzelfde als factorisatie van getallen

 $X \cdot B = Y$ is niet hetzelde als $x \cdot b = y$

$$X \cdot B = Y$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$ Bevat geen oplossing! Wat is B ?

$$X \cdot B = \hat{Y}$$
 $X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}$, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$

Voor welk B ligt \hat{Y} zo dicht mogelijk bij Y?

B zodat $MSE(\hat{Y}, Y)$ minimaal!

$$X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} a \\ b \end{bmatrix}, Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$X \cdot B = Y$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 \cdot a + 1 \cdot b \\ 2 \cdot a + 3 \cdot b \\ 3 \cdot a + 1 \cdot b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

Vraag 3

$$1 \cdot a + 1 \cdot b = 4$$

Vraag 4

$$1 \cdot a + 1 \cdot b = 4$$
$$2 \cdot a + 3 \cdot b = 10$$

.

Vraag 5

$$1 \cdot a + 1 \cdot b = 4$$

 $2 \cdot a + 3 \cdot b = 10$
 $3 \cdot a + 1 \cdot b = 12$

$$X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, B = \begin{bmatrix} a \\ b \end{bmatrix}, Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}, X \cdot B = Y$$

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 \cdot a + 1 \cdot b \\ 2 \cdot a + 3 \cdot b \\ 3 \cdot a + 1 \cdot b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} a \\ b \end{bmatrix}$, $Y = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$, $X \cdot B = Y$

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix} \quad \Rightarrow \quad \begin{bmatrix} 1 \cdot a + 1 \cdot b \\ 2 \cdot a + 3 \cdot b \end{bmatrix} = \begin{bmatrix} 4 \\ 10 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^{T} \cdot D$$

$$B = \begin{bmatrix} 6 + 0.001 \\ -2 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 + 0.001 \\ 6 + 0.002 \\ 16 + 0.003 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4 - 4.001)^2 + (10 - 6.002)^2 + (12 - 16.003)^2$$

= 32.008
 $D = Y - \hat{Y}$

$$B := B + \alpha \cdot X^T \cdot D$$

$$B = \begin{bmatrix} 6 + 0.001 \\ -2 \end{bmatrix}^{\uparrow} \Rightarrow MSE = 32.008$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 + 0.001 \\ 6 + 0.002 \\ 16 + 0.003 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4 - 4.001)^2 + (10 - 6.002)^2 + (12 - 16.003)^2$$

= 32.008

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^{T} \cdot D$$

$$B = \begin{bmatrix} 6 + 0.001 \\ -2 \end{bmatrix}^{\uparrow} \Rightarrow MSE = 32.008 \qquad (= 32 + 0.008)$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

$$B = \begin{bmatrix} 6 \\ -2 + 0.001 \end{bmatrix} \Rightarrow MSE = 31.984 \quad (= 32 - 0.016)$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

$$B = \begin{bmatrix} 6 \\ -2 + 0.001 \end{bmatrix} \Rightarrow MSE = 31.984 \quad (= 32 - 0.016)^{\times -16}$$

Welke *B* geeft de laagste MSE?

Algoritme:

• Begin met random waardes voor *B*.

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^T \cdot D$$

Hoeveel invloed heeft een kleine verhoging van B op de MSE?

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \quad \Rightarrow \quad G = \begin{bmatrix} 8 \\ -16 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

• Begin met random waardes voor *B*.

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \widehat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

We willen de MSE zo klein mogelijk maken. Dus een klein stapje in de omgekeerde richting van G nemen.

$$\begin{array}{ll} \widehat{D} = Y - \widehat{Y} \\ B := \widehat{B} + \alpha \cdot X^T \cdot D & \Rightarrow & B \coloneqq B + \alpha \cdot -G \end{array}$$

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \quad \Rightarrow \quad G = \begin{bmatrix} 8 \\ -16 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - ∘ Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y} \qquad 2 \cdot X^T \cdot D \iff -G$$

$$B := B + \alpha \cdot X^T \cdot D \iff B := B + \alpha \cdot -G$$

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix} \quad \Rightarrow \quad G = \begin{bmatrix} 8 \\ -16 \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^{T} \cdot D \iff B := B + \alpha \cdot -G$$

$$X^{T} \cdot D = \begin{bmatrix} 1 \cdot (4 - 4) + 2 \cdot (10 - 6) + 3 \cdot (12 - 16) \\ 1 \cdot (4 - 4) + 3 \cdot (10 - 6) + 1 \cdot (12 - 16) \end{bmatrix}$$

Welke *B* geeft de laagste MSE?

Algoritme:

$$B = \begin{bmatrix} 6 \\ -2 \end{bmatrix}$$

- Herhaal:
 - Bereken \hat{Y}
 - Hoe fout is de oplossing?
 - Update: pas *B* een beetje aan.
 - Alternatief: probeer uit

$$X \cdot B = \hat{Y}, \qquad X = \begin{bmatrix} 1 & 1 \\ 2 & 3 \\ 3 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} a \\ b \end{bmatrix}, \qquad Y = \begin{bmatrix} 4 \\ 10 \\ 12 \end{bmatrix}$$

$$\hat{Y} = \begin{bmatrix} 4 \\ 6 \\ 16 \end{bmatrix}$$

$$MSE(Y, \hat{Y}) = (4-4)^2 + (10-6)^2 + (12-16)^2 = 32$$

$$D = Y - \hat{Y}$$

$$B := B + \alpha \cdot X^{T} \cdot D \iff B := B + \alpha \cdot -G$$

$$X^{T} \cdot D = \begin{bmatrix} 1 \cdot (4 - 4) + 2 \cdot (10 - 6) + 3 \cdot (12 - 16) \\ 1 \cdot (4 - 4) + 3 \cdot (10 - 6) + 1 \cdot (12 - 16) \end{bmatrix} = \begin{bmatrix} -4 \\ 8 \end{bmatrix}$$

Vragen?

PROGIK@MPROG.NL