データ構造とアルゴリズム

2019年4月 - 7月

教員名:松井くにお

研究室:67・106(やつかほ)内線:75-2206

E-mail: kmatsui@neptune.kanazawa-it.ac.jp

この授業について

■ 教室と時間

- ▶ 2EP2クラス:水曜1限@23.323
- ▶ 2EP3クラス:水曜2限@23.323

■ オフィスアワー

- ▶ 火曜5限、場所は 21.405室
- できるだけ事前にメールでアポをとって下さい。
- ▶ これ以外の時間帯:必ずメールでアポをとって下さい。

■ 教科書

▶ アルゴリズムとデータ構造 第2版[森北出版]

学習計画

データ	構造と	:アルゴリズム	ラス)講義日程と内容(予定)	
2EP2、	2EP3	@23. 323		第3版 5月31日
日	付	曜日	講義回数	学習内容
4月	10日	(水)	第1回	授業のガイダンス、アルゴリズムの基礎、時間計算量
	17日	(水)	第2回	基本データ構造(配列とリスト、スタックとキュー)
	24日	(水)	第3回	アルゴリズムにおける基本概念(木、再帰)
5月	8日	(水)	第4回	データの探索
	15日	(水)	第5回	ソートアルゴリズム 1 (選択ソート, 挿入ソート)
	22日	(水)	第6回	ソートアルゴリズム 2 (クイックソート, マージソート)
	29日	(水)		休講
	3 1 日	(金) 4限	第7回	レポート課題 1 - 6 の解説 2 クラス合同小テスト (教室は23・221)
6月	5日	(水)	第8回	小テストの解答・解説、ソートアルゴリズムのまとめ
	12日		第9回	グラフアルゴリズム(グラフとそのデータ構造)
	19日	(水)2EP2穴水		総合演習(2EP2)/重み付きグラフ、最短経路探索(2EP3)
		(水)2EP3穴水		<u>重み付きグラフ、最短経路探索 (2EP2) /総合演習 (2EP3)</u>
	28日			重み付きグラフ、最短経路探索(2EP2)@23.320/総合演習(2EP3)
7月	3日	(水)	第12回	アルゴリズム設計手法、総復習
	10日	(水)	第13回	達成度確認試験の過去問
	19日	(金) 4限	第14回	2クラス合同達成度確認試験(教室は23・221) アルゴリズムの限界
	24日	(水)		休講
	3 1 日	(水)	第15回	試験の解答、総復習、自己点検

前回のおさらい

- グラフとは
- グラフを表すデータ構造
 - ▶ 隣接行列
 - ▶ 隣接リスト
- グラフの探索
 - ▶ 幅優先探索
 - > 深さ優先探索

■ 幅優先探索のアルゴリズム

- ➤ 空のキューに始点をenqueueする
 - ① キューから頂点をdequeueする
 - ② 取り出した頂点を調査済とする
 - ③ 取り出した頂点に隣接する頂点のうち、キューにenqueueしていない、 かつ、調査済でない頂点をすべてenqueueする
- ▶ キューが空でない間①~③を繰り返す

■ 幅優先探索の例

■ 深さ優先探索のアルゴリズム

- ▶ 空のスタックに始点をpushする
 - ① スタックから頂点をpopする
 - ② 取り出した頂点が調査済でなければ調査済とする
 - ③ 取り出した頂点に隣接する頂点のうち、調査済でない頂点をすべて pushする
- ▶ スタックが空でない間①~③を繰り返す

■ 深さ優先探索の例

第10週出席課題

【出席課題】学籍番号:

クラス・番号:

氏名:

1. 以下のグラフに対して、始点を V_3 として幅優先探索を実行せよ。

2. 以下のグラフに対して、始点を v3として深さ優先探索を実行せよ。

今回の内容

- グラフ探索アルゴリズム
 - > 最短経路問題
 - ▶ グリーディ法
 - ▶ ダイクストラ法

最短経路問題

■ 最短経路問題とは

▶ 始点から終点までの経路の中から、経路に含まれる辺に与えられ た重みの和が最小になるような経路を求める問題

■ 例

- 鉄道の乗り換え案内(時間優先、料金優先)
- カーナビの道路案内(距離優先、時間優先、料金優先)
- ▶ uberの運転手呼び出し(時間優先+複数の候補から料金を考慮して選択)

ダイクストラ法の前に「グリーディ法」

■ 考え方

- ▶「その場で最善と思われる選択をする」
- ▶ =評価値の高い順に取り込んでいく(greedy:貪欲)

■ 例:コインの両替問題

- ▶ 問:100円、50円、10円、5円、1円硬貨が十分にある。138円を支払う ために最小の硬貨の枚数の組み合わせは?
- 解法:直観的に大きな額の硬貨から当てはめる
- ➤ 解:100円×1 + 50円×0 + 10円×3 + 5円×1 + 1円×3

■ ところが例外もあり(条件によって解法が異なる)

- ▶ 問:50円、40円、1円硬貨が十分にある。120円を支払うために最小の硬貨の枚数の組み合わせは?
- ▶ 解法:直観的に大きな額の硬貨から当てはめる
- ➤ ×解:50円×2 + 40円×0 + 1円×20
- ➤ ○解:50円×0 + 40円×3 + 1円×0

ダイクストラ法

■ 考え方

- ① 始点から近い頂点を順番に選ぶ
- ② 選んだ頂点に隣接する頂点の距離を再計算する
- ▶ すべての頂点が選ばれるまで①②を繰り返す

■ アルゴリズム

- ① 集合Sに含まれない頂点のうち、始点からの距離を表す変数 d_i の値がもっとも小さい頂点 v_k を選ぶ
- ② 頂点 _{V_k}をSに加える
- ③ 頂点 V_k に隣接する頂点のうちSに含まれないすべての頂点について、始点から距離を格納する変数 d_i を再計算する

初期値: $S = \phi$,

d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	8	8	8	8	00	8

1 \square \exists : $S = \{v_1\},$

_	d_1	d_2	d_3	d_4	d_5	d_6	d_7
-	0	17	8	8	8	8	8

2 \square \exists : $S = \{v_1, v_2\},$

-						d_7
0	17	38	24	8	8	8

 $3 \square \exists : S = \{v_1, v_2, v_4\},$

d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	17	37	24	∞	29	∞

4 \square \exists : $S = \{v_1, v_2, v_4, v_6\},$

d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	$\frac{d_2}{17}$	37	24	45	29	54

 $5 \square \exists : S = \{v_1, v_2, v_3, v_4, v_6\},\$

d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	17	37	24	42	29	54

6 🗖 $\exists S = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$

d_1	d_2	d_3	d_4	d_5	d_6	$\frac{d_7}{54}$
0	17	37	24	42	29	54

d_1	d_2	d_3	d_4	d_5	d_6	d_7
0	17	37	24	42	29	54

