UB 08

Max Springenberg

15. März 2017

8.1

8.1.1

Gruppe: Monoid = inverses Element Monoid: neutrales Element, Halbgruppe

Halbgruppe: Assoziativität

endliche Gruppe: endliche Anzahl der Elemente, neutrales Element, inversees

Element, Assoziativität

$$\begin{split} h :< G, \oplus > \times < G, \oplus > \to < G, \oplus >' x \\ \forall a, b, c \in G. h(a) = a \oplus x = h(b) = b \oplus x \\ \Leftrightarrow h(a) = h(b) \\ \Leftrightarrow a \oplus x = b \oplus x \Leftrightarrow a = b \end{split}$$

8.1.2

\oplus	a	b	c	d	е	f
a	f	d	е	b	c	a
b	е	f	d	c	a	b
c	d	e	f	a	b	$^{\mathrm{c}}$
d	c	a	b	e	f	d
e	b	c	a	f	d	e
f	a	b	c	d	е	f

8.2

8.2.1

$$T = \{\lambda_a | a \in G\}$$
$$\lambda_a(x) = a \oplus x$$
$$< T, \circ >$$
$$\forall a, b, c \in T$$

$As soziativit \ddot{a}t:$

$$\lambda_{a} \circ (\lambda_{a} \circ \lambda_{c}(x))$$

$$= \lambda_{a} \circ (\lambda_{b} \circ (\lambda_{c}(x)))$$

$$= \lambda_{a}(\lambda_{b}(\lambda_{c}(x)))$$

$$= \lambda_{a}(\lambda_{b}(c \oplus x))$$

$$= \lambda_{a}(b \oplus c \oplus)$$

$$= (a \oplus b \oplus c \oplus x)$$

$$= (a \oplus b) \circ \lambda_{c}(x)$$

$$= (\lambda_{a}(b \oplus e)) \circ \lambda_{c}(x)$$

$$= (\lambda_{a} \circ \lambda_{b}) \circ \lambda_{c}(x)$$

neutrales Element:

$$\lambda_a \circ \lambda_e(x)$$

$$= a \oplus e \oplus x$$

$$= a \oplus x$$

$$= e \oplus a \oplus x$$

$$\lambda_e \circ \lambda_a(x)$$

inverses Element:

$$\lambda_a \circ \lambda_{a^{-1}}(x) = \lambda_e(x)$$

 $a \oplus a^{-1} \oplus x = e \oplus x$

8.2.2

$$\begin{split} h &:< G, \oplus > \to < T, \circ > \\ h(a) &= \lambda_a \\ h(a \oplus b) &= \footnote{!} h(a) \circ h(b) \\ h(a \oplus b) &= \lambda_{a \oplus b}(x) \\ &= a \oplus b \oplus x \\ &= \lambda_a(b \oplus x) \\ &= \lambda_a(\lambda_b(x)) \\ &= \lambda_a \circ \lambda_b(x) \\ &= h(a) \circ h(b) \end{split}$$

8.3

8.3.1

Tipp:

$$(\forall a,b \in A: a \odot (-b) = (-a) \odot b = -(a \odot b) \wedge (-a) \odot (-b) = a \odot b)$$

Kriterien Bezüglich des Plusoperanden:

Assoziativität:

Aus $A' \subseteq A$ folgt, dass $\forall a, c, d \in A'.a \oplus (c \oplus d) = (a \oplus c) \oplus d$ gilt.

neutrales Element:

$$b \odot 0 = 0 \odot b \Rightarrow 0 injedem A'$$
 (Folie 272)

inverses Element:

$$b\odot(-a)=-(b\odot a)=-(a\odot b)=(-a)\odot b$$

Kommutativität:

$$\forall a, c \in A'.a \oplus c = c \oplus a, \text{ da } A' \subseteq A$$

Kriterien Bezüglich des Maloperanden:

Assoziativität:

$$\forall a, c, d \in A.a \odot (c \odot d) = (a \odot c) \odot d, da A' \subseteq A$$

8.3.2

Ring mit 0=1 sei ein Nullring! Annahme $a\in R \wedge a\neq 0$ $a\odot 1=a \notin 0$ 0=1 müsste $a\odot 1=0$