

# Preliminaries

NLP Andreas Marfurt

**Information Technology** 20.02.2025

### Content of this Lecture

- Things you were taught in previous courses
- Things I wish you were taught in previous courses ;-)

### Overview

- Linear algebra
  - Tensor operations
- Neural networks (ADML)
  - Input & output
  - Architecture & weights
  - Loss computation
  - Backpropagation & optimization

# Linear Algebra

# Naming

- Scalar: 0-dimensional tensor, e.g.: 5
- Vector: 1-dimensional tensor, e.g.: [1, 2, 3]
- Matrix: 2-dimensional tensor, e.g.: [[1, 0], [0, 1]]
- Tensor: n-dimensional tensor, with  $n \ge 0$

### Indexing Matrix Elements

- mxn ("m by n") matrix: m rows, n columns
- Elements: a<sub>ii</sub>
  - i-th row
  - j-th column



### Vector as Matrix

A vector is a mx1 or an 1xn matrix

$$\begin{bmatrix} a_1 \\ a_2 \\ \dots \\ a_n \end{bmatrix}$$

$$\begin{bmatrix} a_1 & a_2 & \dots \\ a_m \end{bmatrix}$$

# **Vector Operations**

- Vector addition
  - Must have same dimensionality
  - Add elements at the same position ("element-wise" operation)
- Dot-product

$$a \cdot b = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$

Outer product

$$a \otimes b = \begin{bmatrix} a_1b_1 & \cdots & a_1b_n \\ \vdots & \ddots & \vdots \\ a_nb_1 & \cdots & a_nb_n \end{bmatrix}$$

# **Vector Operations**

- Norm: Different ways to compute
  - Most common: Euclidean norm

$$||a||_2 = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$$

Cosine similarity

$$\cos(a,b) = \frac{a \cdot b}{\|a\|_2 \|b\|_2}$$

# Matrix Operations

- Matrix addition: Same dimension, element-wise
- Matrix multiplication
  - Inner dimension must match
    - lxm x mxn
  - Result has dimension lxn

$$c_{ik} = \sum_{j=1}^{m} a_{ij} b_{jk}$$

- Compare to vector dot-product: 1xn x nx1
  - Same with matrix-vector multiplication

#### Definition (Matrixmultiplikation)

 $\mathbf{A} \in \mathbb{R}^{1 \times m}$  ist eine Matrix mit 1 Zeilen, m Spalten und den Elementen  $a_{ij}$ .

 $\mathbf{B} \in \mathbb{R}^{m \times n}$  ist eine Matrix mit m Zeilen, n Spalten und den Elementen  $b_{jk}$ .

Das Produkt  $AB = C \in \mathbb{R}^{1 \times n}$  hat l Zeilen, n Spalten und die Elemente

$$c_{ik} = \sum_{j=1}^{m} a_{ij}b_{jk}$$
,  $i = 1, 2, ..., l$ ,  $k = 1, 2, ..., n$ .

#### Beispiel

$$\begin{pmatrix} 4 & -2 & -2 & 0 \\ -2 & -7 & 3 & 8 \\ 0 & 1 & -2 & -1 \end{pmatrix} \cdot \begin{pmatrix} 4 & -5 \\ 3 & -1 \\ 6 & 4 \\ 0 & -3 \end{pmatrix} = \begin{pmatrix} -2 & -26 \\ -11 & 5 \\ -9 & -6 \end{pmatrix}$$

$$c_{21} = \sum_{j=1}^{4} a_{2j}b_{j1} = a_{21}b_{11} + a_{22}b_{21} + a_{23}b_{31} + a_{24}b_{41}$$
$$= -2 \cdot 4 - 7 \cdot 3 + 3 \cdot 6 + 8 \cdot 0 = -8 - 21 + 18 + 0 = -11$$

# Neural Networks

#### Tensor in NLP (Fort.)

#### tensor example in NLP

| sentence | vector representation    |
|----------|--------------------------|
| hi John  | [ [1,0,0,0], [0,1,0,0] ] |
| hi James | [ [1,0,0,0], [0,0,1,0] ] |
| hi Brian | [ [1,0,0,0], [0,0,0,1] ] |

#### mini batch input will be

hi John hi James hi Brian [[[1,0,0,0],[0,1,0]],[[1,0,0,0],[0,0,0,1]]]]

(3, 2, 4) 3d tensor!

Input dimensions: [batch size, sequence length, hidden size/dim]



#### Sentences:

- "Hi John", "Hi James", "Hi Brian"
  - Batch size?
  - Sequence length?
  - Hidden size?

- "Hi John", "Hi James, how are you?"
  - Batch size?
  - Sequence length?
  - Hidden size?

#### Sentences:

- "Hi John", "Hi James", "Hi Brian"
  - Batch size?
  - Sequence length? 2
  - Hidden size? 4

- "Hi John", "Hi James, how are you?"
  - Batch size?
  - Sequence length?
  - Hidden size?

#### Sentences:

- "Hi John", "Hi James", "Hi Brian"
  - Batch size?
  - Sequence length? 2
  - Hidden size? 4

- "Hi John", "Hi James, how are you?"
  - Batch size?
  - Sequence length? 5/7 (are "," and "?" tokenized separately?)
  - Hidden size? 6/8

# Input: Encoding words

- One-hot
   Bag-of-words (BoW)
   TF-IDF
- Word embeddings (e.g. word2vec)
- Neural networks: Input embedding matrix

rearar freeworks. Impac cribeaanig macrix

### Neural Network

- Defined by architecture and weights
- Architecture predefined
  - Number of hidden layers
  - Number of "neurons" per layer
  - Type of layer: Connectivity pattern, dropout, normalization, ...
- Weights & biases
  - Randomly initialized
  - Updated by training iterations ("learning")
  - Loss/objective determines how

### Neural Network

- Defined by architecture and weights
- Architecture predefined
  - Number of hidden layers
  - Number of "neurons" per layer
  - Type of layer: Connectivity pattern, dropout, normal zation, ...
- Weights & biases
  - Randomly initialized
  - .earnable weights & Updated by training iterations ("learning") biases
  - Loss/objective determines how

Hyperparameters: Predefined settings (number of layers, hidden size, dropout probability, ...)

Parameters:

**HSLU** 

### Neural Network

- Defined by architecture and weights
- Architecture predefined
  - Number of hidden layers
  - Number of "neurons" per layer
  - Type of layer: Connectivity pattern, dropout, normalization, ...
- Weights & biases
  - Randomly initialized
  - .earnable weights & Updated by training iterations ("learning") biases
  - Loss/objective determines how

Hyperparameters: Predefined settings (number of layers, hidden size, dropout probability, ...)

Parameters:

This is where the knowledge is stored!

# Linear Layer

Also called "dense layer" or "fully-connected layer"

$$y = Wx + b$$

- x: input
- y: output
- W: weights
- b: bias



Let's vectorize:  $a = g(b + \mathbf{w}^T \mathbf{x})$ 

- $\mathbf{w} = [w_1 \quad w_2 \quad w_3]^T$  (weights)
- $\mathbf{x} = [x_1 \quad x_2 \quad x_3]^T$  (input)

Data flows left-to-right:

A feed-forward network

Dr. Donnacha Daly donnacha.daly@hslu.ch

#### **Add a Second Neuron**

Hochschule Luzern Computer Science & Information Technology



Vectorize again: a = g(b + Wx)

- $\mathbf{a} = [a_1 \quad a_2]^T$  (output)
- **b** =  $[b_1 \ b_2]^T$  (bias)
- $\mathbf{W}|_{ij} = w_{ij}$  (weights)
- **g** is element-wise function *g*

Dr. Donnacha Daly donnacha.daly@hslu.ch

# Output

- Output representations (usually vectors)
- Decisions in neural networks: Classifier
  - Map from output representation to decision space
    - Binary decision: 1 or 2 dimensions
    - ImageNet: 1000 classes → 1000 dimensions
    - Words: vocab size = #dimensions
      - This is the inverse mapping from input embeddings
      - Can use the same matrix (but transposed)
  - Simple classifier: Linear layer → softmax (gives probabilities over classes)
  - Common: Linear layer → non-linearity (e.g. ReLU) → linear layer → softmax

#### **Add a Second Neuron**

Hochschule Luzern Computer Science & Information Technology



Vectorize again: a = g(b + Wx)

- $\mathbf{a} = [a_1 \quad a_2]^T$  (output)
- $\mathbf{b} = [b_1 \quad b_2]^T$  (bias)
- $\mathbf{W}|_{ij} = w_{ij}$  (weights)
- g is element-wise function g

Output representation/vector

Dr. Donnacha Daly donnacha.daly@hslu.ch

### Neural Network Losses

- Mean squared error (MSE) loss
- Cross-entropy loss
- Margin loss
- Contrastive loss

# Backpropagation

- Important to understand concept
- Store activations in forward pass
- Loss is scalar
- Backward pass computes updates for each NN weight to make a better prediction (smaller loss) next time
- Optimization decides how strongly to update weights

# Optimization

- Basic idea: stochastic gradient descent (SGD)
  - Update in the direction of the gradient of the current batch
- Momentum: When the loss is large, increase the update step size
  - Vice versa when the loss is small
  - Optimizers: e.g. SGD with (Nesterov) momentum, Adam
- Adam is the most popular optimization algorithm
  - Several adaptations exist, e.g. AdamW (with weight decay)