

**Solar Inverter** 

# **Modbus Interface Definitions (V3.0)**

Issue 02

Date 2020-06-08



#### Copyright © Huawei Technologies Co., Ltd. 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

#### **Trademarks and Permissions**

HUAWEI and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders.

#### **Notice**

The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied.

The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied.

### Huawei Technologies Co., Ltd.

Address: Huawei Industrial Base

Bantian, Longgang Shenzhen 518129

People's Republic of China

Website: <a href="https://e.huawei.com">https://e.huawei.com</a>

# **Contents**

| 1 Supported Models                                 |    |
|----------------------------------------------------|----|
| 1.1 Model Description                              | 1  |
| 2 Overview                                         | 6  |
| 2.1 Terms and Abbreviations                        | 6  |
| 3 Register Definitions                             | 8  |
| 4 Customized Interfaces                            | 23 |
| 4.1 Obtaining the System Information of Optimizers | 23 |
| 4.2 Obtaining Real-time Data of Optimizers         | 24 |
| 5 Interface Instructions                           | 28 |
| 5.1 Alarm Information                              | 28 |
| 5.2 Power Grid Scheduling                          | 31 |
| 5.2.1 cosφ-P/Pn Characteristic Curve               | 31 |
| 5.2.2 Q-U Characteristic Curve                     | 32 |
| 5.2.3 PF-U Characteristic Curve                    | 33 |
| 5.3 Grid Codes                                     | 34 |
| 5.4 Energy Storage Specifications                  | 44 |
| 6 Overview of the Communications Protocol          | 48 |
| 6.1 Physical Layer                                 | 48 |
| 6.2 Data Link Layer                                | 48 |
| 6.2.1 Modbus-RTU                                   | 49 |
| 6.2.1.1 ADU Length                                 | 49 |
| 6.2.1.2 Communications Address                     | 49 |
| 6.2.1.3 CRC                                        | 50 |
| 6.2.2 Modbus-TCP                                   | 51 |
| 6.2.2.1 ADU Length                                 | 51 |
| 6.2.2.2 MBAP Packet Header                         | 51 |
| 6.2.2.3 Communications Address                     | 52 |
| 6.2.2.4 TCP Port                                   | 53 |
| 6.2.2.5 TCP Link Establishment Process             | 53 |
| 6.3 Application Layer                              | 54 |
| 6.3.1 Function Code List                           | 54 |

| 6.3.2 Exception Code List                                      | 55 |
|----------------------------------------------------------------|----|
| 6.3.3 Reading Registers (0x03)                                 | 56 |
| 6.3.3.1 Frame Format of a Request from a Master Node           | 56 |
| 6.3.3.2 Frame Format of a Normal Response from a Slave Node    | 56 |
| 6.3.3.3 Frame Format of an Abnormal Response from a Slave Node | 56 |
| 6.3.3.4 Examples                                               | 57 |
| 6.3.4 Writing a Single Register (0x06)                         | 58 |
| 6.3.4.1 Frame Format of a Request from a Master Node           | 58 |
| 6.3.4.2 Frame Format of a Normal Response from a Slave Node    | 58 |
| 6.3.4.3 Frame Format of an Abnormal Response from a Slave Node | 59 |
| 6.3.4.4 Examples                                               | 59 |
| 6.3.5 Writing Multiple Registers (0x10)                        | 60 |
| 6.3.5.1 Frame Format of a Request from a Master Node           | 60 |
| 6.3.5.2 Frame Format of a Normal Response from a Slave Node    | 61 |
| 6.3.5.3 Frame Format of an Abnormal Response from a Slave Node | 61 |
| 6.3.5.4 Examples                                               | 61 |
| 6.3.6 Reading Device Identifiers (0x2B)                        | 63 |
| 6.3.6.1 Command for Querying Device Identifiers                | 64 |
| 6.3.6.2 Command for Querying a Device List                     | 65 |
| 6.3.6.3 Device Description Definition                          | 66 |
| 6.3.7 Huawei-defined Functions (0x41)                          | 67 |
| 6.3.7.1 Uploading Files                                        | 67 |
| 6.3.7.1.1 Starting the Upload                                  | 68 |
| 6.3.7.1.2 Uploading Data                                       | 69 |
| 6.3.7.1.3 Completing the Data Upload                           | 70 |
| 6.3.7.1.4 Timeout Processing                                   | 71 |

# **1** Supported Models

This chapter describes the solar inverter models that use the Modbus protocol and the earliest firmware version. When a host needs to connect to these solar inverters, ensure that the firmware version is correct.

1.1 Model Description

# 1.1 Model Description

**Table 1-1** Supported models and firmware versions

| Model               | Model ID | Earliest Firm Version |  |  |  |
|---------------------|----------|-----------------------|--|--|--|
| SUN2000L-2KTL       | 305      | SUN2000L V100R001C00  |  |  |  |
| SUN2000-2KTL-L0     | 338      | SUN2000L V100R001C00  |  |  |  |
| SUN2000L-3KTL       | 304      | SUN2000L V100R001C00  |  |  |  |
| SUN2000L-3KTL-CN    | 310      | SUN2000L V100R001C00  |  |  |  |
| SUN2000L-3KTL-CN-4G | 311      | SUN2000L V100R001C00  |  |  |  |
| SUN2000-3KTL-CNL0   | 334      | SUN2000L V100R001C20  |  |  |  |
| SUN2000-3KTL-L0     | 339      | SUN2000L V100R001C00  |  |  |  |
| SUN2000-3KTL-M0     | 410      | SUN2000MA V100R001C00 |  |  |  |
| SUN2000-3KTL-M1     | 424      | SUN2000MA V100R001C00 |  |  |  |
| SUN2000L-3.68KTL    | 303      | SUN2000L V100R001C00  |  |  |  |
| SUN2000-3.8KTL-USL0 | 318      | SUN2000L V100R001C10  |  |  |  |
| SUN2000-3.8KTL-USL0 | 319      | SUN2000L V100R001C10  |  |  |  |
| SUN2000L-4KTL       | 302      | SUN2000L V100R001C00  |  |  |  |
| SUN2000L-4KTL-CN    | 308      | SUN2000L V100R001C00  |  |  |  |

| Model                | Model ID | Earliest Firm Version |  |  |  |  |  |
|----------------------|----------|-----------------------|--|--|--|--|--|
| SUN2000L-4KTL-CN-4G  | 309      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000-4KTL-CNL0    | 335      | SUN2000L V100R001C20  |  |  |  |  |  |
| SUN2000-4KTL-L0      | 340      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000-4KTL-M0      | 411      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-4KTL-M1      | 425      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000L-4.125KTL-JP | 331      | SUN2000L V100R001C12  |  |  |  |  |  |
| SUN2000L-4.6KTL      | 301      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000L-4.95KTL-JP  | 330      | SUN2000L V100R001C12  |  |  |  |  |  |
| SUN2000-4.95KTL-JPL0 | 342      | SUN2000L V100R001C20  |  |  |  |  |  |
| SUN2000L-5KTL        | 300      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000L-5KTL-CN     | 306      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000L-5KTL-CN-4G  | 307      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000-5KTL-USL0    | 315      | SUN2000L V100R001C10  |  |  |  |  |  |
| SUN2000-5KTL-USL0    | 316      | SUN2000L V100R001C10  |  |  |  |  |  |
| SUN2000-5KTL-CNL0    | 336      | SUN2000L V100R001C20  |  |  |  |  |  |
| SUN2000-5KTL-L0      | 341      | SUN2000L V100R001C00  |  |  |  |  |  |
| SUN2000-5KTL-M0      | 400      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-5KTL-M0      | 401      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-5KTL-M1      | 426      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-6KTL-CNL0    | 337      | SUN2000L V100R001C20  |  |  |  |  |  |
| SUN2000-6KTL-M0      | 402      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-6KTL-M0      | 403      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-6KTL-M1      | 427      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-7.6KTL-USL0  | 312      | SUN2000L V100R001C10  |  |  |  |  |  |
| SUN2000-7.6KTL-USL0  | 313      | SUN2000L V100R001C10  |  |  |  |  |  |
| SUN2000-8KTL-M0      | 404      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-8KTL-M0      | 405      | SUN2000MA V100R001C00 |  |  |  |  |  |
| SUN2000-8KTL         | 415      | SUN2000MA V100R001C10 |  |  |  |  |  |
| SUN2000-8KTL-M0      | 418      | SUN2000MA V100R001C10 |  |  |  |  |  |
| SUN2000-8KTL-M1      | 428      | SUN2000MA V100R001C00 |  |  |  |  |  |

| Model                | Model ID | Earliest Firm Version |
|----------------------|----------|-----------------------|
| SUN2000-8KTL-M2      | 430      | SUN2000MA V100R001C10 |
| SUN2000-9KTL-USL0    | 324      | SUN2000L V100R001C10  |
| SUN2000-9KTL-USL0    | 325      | SUN2000L V100R001C10  |
| SUN2000-10KTL-USL0   | 332      | SUN2000L V100R001C10  |
| SUN2000-10KTL-USL0   | 333      | SUN2000L V100R001C10  |
| SUN2000-10KTL-M0     | 406      | SUN2000MA V100R001C00 |
| SUN2000-10KTL-M0     | 407      | SUN2000MA V100R001C00 |
| SUN2000-10KTL        | 416      | SUN2000MA V100R001C10 |
| SUN2000-10KTL-M0     | 419      | SUN2000MA V100R001C10 |
| SUN2000-10KTL-M1     | 429      | SUN2000MA V100R001C00 |
| SUN2000-10KTL-M2     | 431      | SUN2000MA V100R001C10 |
| SUN2000-11.4KTL-USL0 | 321      | SUN2000L V100R001C10  |
| SUN2000-11.4KTL-USL0 | 322      | SUN2000L V100R001C10  |
| SUN2000-12KTL-M0     | 408      | SUN2000MA V100R001C00 |
| SUN2000-12KTL        | 417      | SUN2000MA V100R001C10 |
| SUN2000-12KTL-M0     | 420      | SUN2000MA V100R001C10 |
| SUN2000-12KTL-M2     | 432      | SUN2000MA V100R001C10 |
| SUN2000-15KTL-M0     | 412      | SUN2000MA V100R001C10 |
| SUN2000-15KTL-M0     | 421      | SUN2000MA V100R001C10 |
| SUN2000-15KTL-M2     | 433      | SUN2000MA V100R001C10 |
| SUN2000-17KTL-M0     | 413      | SUN2000MA V100R001C10 |
| SUN2000-17KTL-M0     | 422      | SUN2000MA V100R001C10 |
| SUN2000-17KTL-M2     | 434      | SUN2000MA V100R001C10 |
| SUN2000-20KTL-M0     | 414      | SUN2000MA V100R001C10 |
| SUN2000-20KTL-M0     | 423      | SUN2000MA V100R001C10 |
| SUN2000-20KTL-M2     | 435      | SUN2000MA V100R001C10 |
| SUN2000-50KTL-JPM1   | 59       | SUN2000 V300R001C00   |
| SUN2000-50KTL-M0     | 50       | SUN2000 V300R001C00   |
| SUN2000-50KTL-JPM0   | 53       | SUN2000 V300R001C00   |
| SUN2000-60KTL-M0     | 55       | SUN2000 V300R001C00   |

| Model               | Model ID | Earliest Firm Version |
|---------------------|----------|-----------------------|
| SUN2000-63KTL-JPM0  | 51       | SUN2000 V300R001C00   |
| SUN2000-63KTL-JPH0  | 76       | SUN2000HA V200R001C00 |
| SUN2000-65KTL-M0    | 46       | SUN2000 V300R001C00   |
| SUN2000-70KTL-INM0  | 48       | SUN2000 V300R001C00   |
| SUN2000-70KTL-C1    | 45       | SUN2000 V300R001C00   |
| SUN2000-75KTL-C1    | 56       | SUN2000 V300R001C00   |
| SUN2000-90KTL-H1    | 73       | SUN2000HA V200R001C00 |
| SUN2000-95KTL-INH0  | 74       | SUN2000HA V200R001C00 |
| SUN2000-90KTL-H0    | 75       | SUN2000HA V200R001C00 |
| SUN2000-90KTL-H2    | 81       | SUN2000HA V200R001C00 |
| SUN2000-95KTL-INH1  | 82       | SUN2000HA V200R001C00 |
| SUN2000-100KTL-USH0 | 70       | SUN2000HA V200R001C00 |
| SUN2000-100KTL-H1   | 71       | SUN2000HA V200R001C00 |
| SUN2000-100KTL-H0   | 72       | SUN2000HA V200R001C00 |
| SUN2000-100KTL-H2   | 78       | SUN2000HA V200R001C00 |
| SUN2000-100KTL-M0   | 141      | SUN2000 V500R001C00   |
| SUN2000-100KTL-M1   | 142      | SUN2000 V500R001C00   |
| SUN2000-100KTL-INM0 | 143      | SUN2000 V500R001C00   |
| SUN2000-105KTL-H1   | 79       | SUN2000HA V200R001C00 |
| SUN2000-110KTL-M0   | 144      | SUN2000 V500R001C00   |
| SUN2000-125KTL-M0   | 145      | SUN2000 V500R001C00   |
| SUN2000-168KTL-H1   | 103      | SUN2000HA V300R001C00 |
| SUN2000-185KTL-INH0 | 102      | SUN2000HA V300R001C00 |
| SUN2000-175KTL-H0   | 101      | SUN2000HA V300R001C00 |
| SUN2000-185KTL-H1   | 104      | SUN2000HA V300R001C00 |
| SUN2000-193KTL-H0   | 105      | SUN2000HA V300R001C00 |

#### **◯** NOTE

The maximum active power  $(P_{max})$ , maximum reactive power  $(Q_{max})$ , and rated power  $(P_n)$  corresponding to each model can be obtained from the register interface. The model ID is the unique code of the model.

# **2** Overview

Modbus is a widely used protocol for device communications. This document describes the Modbus protocol used by Huawei solar inverters, and can be used to regulate follow-up third-party integrated development. Huawei solar inverters comply with the standard Modbus protocol, and this document focuses on the information specific to Huawei solar inverters. For other information about Modbus, see the standard documents about the Modbus protocol. For details about the standard protocols used by Huawei solar inverters and customized interaction modes and examples, see chapter 6 Overview of the Communications Protocol.

2.1 Terms and Abbreviations

## 2.1 Terms and Abbreviations

Table 2-1 Terms and abbreviations

| Name              | Description                                                                                                             |  |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Master node       | During master-slave communication, the party that initiates a communication request is referred to as the master node.  |  |  |  |  |  |
| Slave node        | During master-slave communication, the party that responds to a communication request is referred to as the slave node. |  |  |  |  |  |
| Broadcast address | Fixed to 0.                                                                                                             |  |  |  |  |  |
| Register address  | A register address is recorded in two bytes.                                                                            |  |  |  |  |  |
| U16               | Unsigned integer (16 bits)                                                                                              |  |  |  |  |  |
| U32               | Unsigned integer (32 bits)                                                                                              |  |  |  |  |  |
| 116               | Signed integer (16 bits)                                                                                                |  |  |  |  |  |
| 132               | Signed integer (32 bits)                                                                                                |  |  |  |  |  |
| STR               | Character string                                                                                                        |  |  |  |  |  |

| Name          | Description                                                       |
|---------------|-------------------------------------------------------------------|
| MLD           | Multiple bytes                                                    |
| Bitfield16    | 16-bit data expressed by bit                                      |
| Bitfield32    | 32-bit data expressed by bit                                      |
| N/A           | Not applicable                                                    |
| S             | Second                                                            |
| Epoch seconds | The number of seconds that have elapsed since 1970-01-01 00:00:00 |
| RO            | Data that is readable only                                        |
| RW            | Data that is readable and writable                                |
| WO            | Data that is writable only                                        |

# 3 Register Definitions

**Table 3-1** Register definitions

| No. | Signal<br>Name                                   | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                    |
|-----|--------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|------------------------------------------|
| 1   | Model                                            | RO                     | STR      | N/<br>A  | 1        | 300<br>00   | 15                   | For details, see 1.1 Model Description.  |
| 2   | SN                                               | RO                     | STR      | N/<br>A  | 1        | 300<br>15   | 10                   | N/A                                      |
| 3   | PN                                               | RO                     | STR      | N/<br>A  | 1        | 300<br>25   | 10                   | N/A                                      |
| 4   | Model ID                                         | RO                     | U1<br>6  | N/<br>A  | 1        | 300<br>70   | 1                    | For details, see 1.1  Model Description. |
| 5   | Number of PV strings                             | RO                     | U1<br>6  | N/<br>A  | 1        | 300<br>71   | 1                    | N/A                                      |
| 6   | Number of<br>MPP trackers                        | RO                     | U1<br>6  | N/<br>A  | 1        | 300<br>72   | 1                    | N/A                                      |
| 7   | Rated power (P <sub>n</sub> )                    | RO                     | U3<br>2  | kW       | 100<br>0 | 300<br>73   | 2                    | N/A                                      |
| 8   | Maximum<br>active power<br>(P <sub>max</sub> )   | RO                     | U3<br>2  | kW       | 100<br>0 | 300<br>75   | 2                    | N/A                                      |
| 9   | Maximum<br>apparent<br>power (S <sub>max</sub> ) | RO                     | U3<br>2  | kV<br>A  | 100<br>0 | 300<br>77   | 2                    | N/A                                      |

| No. | Signal<br>Name                                                                | Re<br>ad/<br>Wri<br>te | Typ<br>e           | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                                                                                                                                                                               |
|-----|-------------------------------------------------------------------------------|------------------------|--------------------|----------|----------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10  | Maximum<br>reactive<br>power (Q <sub>max</sub> ,<br>fed to the<br>power grid) | RO                     | 132                | kVa<br>r | 100      | 300<br>79   | 2                    | N/A                                                                                                                                                                                                                                                                                                                                 |
| 11  | Maximum reactive power (Q <sub>max</sub> , absorbed from the power grid)      | RO                     | 132                | kVa<br>r | 100      | 300<br>81   | 2                    | N/A                                                                                                                                                                                                                                                                                                                                 |
| 12  | State 1                                                                       | RO                     | Bitf<br>ield<br>16 | N/<br>A  | 1        | 320<br>00   | 1                    | Bit 0: standby Bit 1: grid-connected Bit 2: grid-connected normally Bit 3: grid connection with derating due to power rationing Bit 4: grid connection with derating due to internal causes of the solar inverter Bit 5: normal stop Bit 6: stop due to faults Bit 7: stop due to power rationing Bit 8: shutdown Bit 9: spot check |
| 13  | State 2                                                                       | RO                     | Bitf<br>ield<br>16 | N/<br>A  | 1        | 320<br>02   | 1                    | Bit 0: locking status (0: locked; 1: unlocked) Bit 1: PV connection status (0: disconnected; 1: connected) Bit 2: DSP data collection (0: no; 1: yes)                                                                                                                                                                               |

| No. | Signal<br>Name                                                        | Re<br>ad/<br>Wri<br>te | Typ<br>e           | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                              |
|-----|-----------------------------------------------------------------------|------------------------|--------------------|----------|----------|-------------|----------------------|----------------------------------------------------------------------------------------------------|
| 14  | State 3                                                               | RO                     | Bitf<br>ield<br>32 | N/<br>A  | 1        | 320<br>03   | 2                    | Bit 0: off-grid (0: on-<br>grid; 1: off-grid)<br>Bit 1: off-grid switch<br>(0: disable; 1: enable) |
| 15  | Alarm 1                                                               | RO                     | Bitf<br>ield<br>16 | N/<br>A  | 1        | 320<br>08   | 1                    | For details, see <b>5.1 Alarm Information</b> .                                                    |
| 16  | Alarm 2                                                               | RO                     | Bitf<br>ield<br>16 | N/<br>A  | 1        | 320<br>09   | 1                    | For details, see 5.1 Alarm Information.                                                            |
| 17  | Alarm 3                                                               | RO                     | Bitf<br>ield<br>16 | N/<br>A  | 1        | 320<br>10   | 1                    | For details, see 5.1 Alarm Information.                                                            |
| 18  | PV1 voltage                                                           | RO                     | I16                | V        | 10       | 320<br>16   | 1                    | A maximum of 24 PV strings are supported.                                                          |
| 19  | PV1 current                                                           | RO                     | I16                | Α        | 100      | 320<br>17   | 1                    | The number of PV strings read by the host is defined by the                                        |
| 20  | PV2 voltage                                                           | RO                     | I16                | V        | 10       | 320<br>18   | 1                    | Number of PV strings<br>signal. The voltage<br>and current register                                |
| 21  | PV2 current                                                           | RO                     | I16                | Α        | 100      | 320<br>19   | 1                    | addresses for each PV<br>string are as follows:                                                    |
| 22  | PV3 voltage                                                           | RO                     | I16                | V        | 10       | 320<br>20   | 1                    | PV <i>n</i> voltage: 32014<br>+ 2 <i>n</i>                                                         |
| 23  | PV3 current                                                           | RO                     | I16                | Α        | 100      | 320<br>21   | 1                    | PV <i>n</i> current: 32015<br>+ 2 <i>n</i>                                                         |
| 24  | PV4 voltage                                                           | RO                     | I16                | V        | 10       | 320<br>22   | 1                    | <i>n</i> indicates the PV string number, which ranges from 1 to 24.                                |
| 25  | PV4 current                                                           | RO                     | I16                | Α        | 100      | 320<br>23   | 1                    |                                                                                                    |
| 26  | Input power                                                           | RO                     | 132                | kW       | 100<br>0 | 320<br>64   | 2                    | N/A                                                                                                |
| 27  | Power grid<br>voltage/Line<br>voltage<br>between<br>phases A<br>and B | RO                     | U1<br>6            | V        | 10       | 320<br>66   | 1                    | When the output mode is L/N, L1/L2/N, or L1/L2, <b>Power grid voltage</b> is used.                 |

| No. | Signal<br>Name                               | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                |
|-----|----------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|--------------------------------------------------------------------------------------|
| 28  | Line voltage<br>between<br>phases B and<br>C | RO                     | U1<br>6  | V        | 10       | 320<br>67   | 1                    | When the output<br>mode is L/N, L1/L2/N,<br>or L1/L2, the<br>information is invalid. |
| 29  | Line voltage<br>between<br>phases C and<br>A | RO                     | U1<br>6  | V        | 10       | 320<br>68   | 1                    | When the output mode is L/N, L1/L2/N, or L1/L2, the information is invalid.          |
| 30  | Phase A<br>voltage                           | RO                     | U1<br>6  | V        | 10       | 320<br>69   | 1                    | When the output mode is L/N, L1/L2/N, or L1/L2, the information is invalid.          |
| 31  | Phase B<br>voltage                           | RO                     | U1<br>6  | V        | 10       | 320<br>70   | 1                    | When the output<br>mode is L/N, L1/L2/N,<br>or L1/L2, the<br>information is invalid. |
| 32  | Phase C<br>voltage                           | RO                     | U1<br>6  | V        | 10       | 320<br>71   | 1                    | When the output<br>mode is L/N, L1/L2/N,<br>or L1/L2, the<br>information is invalid. |
| 33  | Power grid<br>current/<br>Phase A<br>current | RO                     | I32      | A        | 100<br>0 | 320<br>72   | 2                    | When the output mode is L/N, L1/L2/N, or L1/L2, <b>Power grid</b> current is used.   |
| 34  | Phase B<br>current                           | RO                     | I32      | A        | 100<br>0 | 320<br>74   | 2                    | When the output<br>mode is L/N, L1/L2/N,<br>or L1/L2, the<br>information is invalid. |
| 35  | Phase C<br>current                           | RO                     | 132      | А        | 100<br>0 | 320<br>76   | 2                    | When the output<br>mode is L/N, L1/L2/N,<br>or L1/L2, the<br>information is invalid. |
| 36  | Peak active<br>power of<br>current day       | RO                     | 132      | kW       | 100<br>0 | 320<br>78   | 2                    | N/A                                                                                  |
| 37  | Active power                                 | RO                     | 132      | kW       | 100<br>0 | 320<br>80   | 2                    | N/A                                                                                  |
| 38  | Reactive<br>power                            | RO                     | 132      | kVa<br>r | 100<br>0 | 320<br>82   | 2                    | N/A                                                                                  |

| No. | Signal<br>Name          | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope |
|-----|-------------------------|------------------------|----------|----------|----------|-------------|----------------------|-------|
| 39  | Power factor            | RO                     | I16      | N/<br>A  | 100<br>0 | 320<br>84   | 1                    | N/A   |
| 40  | Grid<br>frequency       | RO                     | U1<br>6  | Hz       | 100      | 320<br>85   | 1                    | N/A   |
| 41  | Efficiency              | RO                     | U1<br>6  | %        | 100      | 320<br>86   | 1                    | N/A   |
| 42  | Internal<br>temperature | RO                     | I16      | °C       | 10       | 320<br>87   | 1                    | N/A   |
| 43  | Insulation resistance   | RO                     | U1<br>6  | M<br>Ω   | 100<br>0 | 320<br>88   | 1                    | N/A   |

|       | gnal<br>nme  | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------|--------------|------------------------|----------|----------|----------|-------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 44 De | evice status | RO                     | U1 6     | N/ A     | 1        | 320 89      | 1                    | 0x0000 Standby: initializing 0x0001 Standby: detecting insulation resistance 0x0002 Standby: detecting irradiation 0x0003 Standby: drid detecting 0x0100 Starting 0x0200 On-grid (Off-grid mode: running) 0x0201 Grid connection: power limited (Off-grid mode: running: power limited) 0x0202 Grid connection: self-derating (Off-grid mode: running: self-derating) 0x0300 Shutdown: fault 0x0301 Shutdown: command 0x0302 Shutdown: command 0x0303 Shutdown: communication disconnected 0x0304 Shutdown: power limited 0x0305 Shutdown: power limited 0x0305 Shutdown: power limited 0x0306 Shutdown: manual startup required 0x0307 Shutdown: DC switches disconnected 0x0307 Shutdown: rapid cutoff |

| No. | Signal<br>Name           | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|--------------------------|------------------------|----------|----------|----------|-------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                          |                        |          |          |          |             |                      | Ox0308 Shutdown: input underpower Ox0401 Grid scheduling: cosφ-P curve Ox0402 Grid scheduling: Q-U curve Ox0403 Grid scheduling: PF-U curve Ox0404 Grid scheduling: dry contact Ox0405 Grid scheduling: Q-P curve Ox0500 Spot-check ready Ox0501 Spot-check ready Ox0501 Spot-checking Ox0600 Inspecting OX0700 AFCI self check OX0800 I-V scanning OX0900 DC input detection OX0A00 Running: off- grid charging OxA000 Standby: no irradiation |
| 45  | Fault code               | RO                     | U1<br>6  | N/<br>A  | 1        | 320<br>90   | 1                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 46  | Startup time             | RO                     | U3<br>2  | N/<br>A  | 1        | 320<br>91   | 2                    | Epoch seconds, local time                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 47  | Shutdown<br>time         | RO                     | U3<br>2  | N/<br>A  | 1        | 320<br>93   | 2                    | Epoch seconds, local time                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 48  | Accumulated energy yield | RO                     | U3<br>2  | kW<br>h  | 100      | 321<br>06   | 2                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 49  | Daily energy<br>yield    | RO                     | U3<br>2  | kW<br>h  | 100      | 321<br>14   | 2                    | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| No. | Signal<br>Name                    | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                     |
|-----|-----------------------------------|------------------------|----------|----------|----------|-------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 50  | [Active]<br>Adjustment<br>mode    | RO                     | U1<br>6  | N/<br>A  | 1        | 353<br>00   | 1                    | 0: percentage 1: fixed value  NOTE Addresses 35300 to 35303 need to be read at a time.                                                                                    |
| 51  | [Active]<br>Adjustment<br>value   | RO                     | U3<br>2  | N/<br>A  | *        | 353<br>02   | 2                    | Percentage: 0.1%  Fixed value: 0.001 kW  Note: For details about the adjustment value precision, see the corresponding adjustment command precision.                      |
| 52  | [Active]<br>Adjustment<br>command | RO                     | U1<br>6  | N/<br>A  | 1        | 353<br>03   | 1                    | 40125: active power derating by percentage (0.1%) 40120: active power derating by fixed value 40126: active power derating by fixed value (W) 42178: maximum active power |

| No. | Signal<br>Name                      | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                                                                                                                                                |
|-----|-------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 53  | [Reactive]<br>Adjustment<br>mode    | RO                     | U1<br>6  | N/<br>A  | 1        | 353<br>04   | 1                    | 0: power factor 1: absolute value 2: Q/S 3: Q-U characteristic curve (command ID: 0) 4: cosφ-P/P <sub>n</sub> characteristic curve (command ID: 0) 5: PF-U characteristic curve (command ID: 0) 6: Q-P characteristic curve (command ID: 0) NOTE Addresses 35304 to 35306 need to be read at a time. |
| 54  | [Reactive]<br>Adjustment<br>value   | RO                     | U3<br>2  | N/<br>A  | *        | 353<br>05   | 2                    | Power factor: 0.001 Absolute value: 0.001 kVar Q/S: 0.001 Q-U characteristic curve: 0 cosф-P/P <sub>n</sub> characteristic curve: 0 PF-U characteristic curve: 0 Q-P characteristic curve: 0                                                                                                         |
| 55  | [Reactive]<br>Adjustment<br>command | RO                     | U1<br>6  | N/<br>A  | 1        | 353<br>07   | 1                    | 40122: power factor 40123: Q/S adjustment 40129: reactive power compensation at night (kVar) 42809: reactive power at night Q/S                                                                                                                                                                      |

| No. | Signal<br>Name                                                                | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                  |
|-----|-------------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|----------------------------------------------------------------------------------------|
| 56  | [Energy<br>storage unit<br>1] Running<br>status <sup>*</sup>                  | RO                     | U1<br>6  | N/<br>A  | 1        | 370<br>00   | 1                    | 0: offline 1: standby 2: running 3: fault 4: sleep mode                                |
| 57  | [Energy<br>storage unit<br>1] Charge<br>and<br>discharge<br>power*            | RO                     | 132      | W        | 1        | 370<br>01   | 2                    | > 0: charging<br>< 0: discharging                                                      |
| 58  | [Energy<br>storage unit<br>1] Current-<br>day charge<br>capacity <sup>*</sup> | RO                     | U3<br>2  | kW<br>h  | 100      | 370<br>15   | 2                    | N/A                                                                                    |
| 59  | [Energy<br>storage unit<br>1] Current-<br>day<br>discharge<br>capacity*       | RO                     | U3<br>2  | kW<br>h  | 100      | 370<br>17   | 2                    | N/A                                                                                    |
| 60  | [Power<br>meter<br>collection]<br>Active<br>power*                            | RO                     | 132      | W        | 1        | 371<br>13   | 2                    | > 0: feeding power to<br>the power grid<br>< 0: obtaining power<br>from the power grid |
| 61  | [Optimizer]<br>Total<br>number of<br>optimizers*                              | RO                     | U1<br>6  | N/<br>A  | 1        | 372<br>00   | 1                    | N/A                                                                                    |
| 62  | [Optimizer]<br>Number of<br>online<br>optimizers*                             | RO                     | U1<br>6  | N/<br>A  | 1        | 372<br>01   | 1                    | N/A                                                                                    |
| 63  | [Optimizer]<br>Feature data*                                                  | RO                     | U1<br>6  | N/<br>A  | 1        | 372<br>02   | 1                    | N/A                                                                                    |

| No. | Signal<br>Name                                                            | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                  |
|-----|---------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|------------------------------------------------------------------------------------------------------------------------|
| 64  | System time                                                               | RW                     | U3<br>2  | N/<br>A  | 1        | 400<br>00   | 2                    | [946684800,<br>3155759999]<br>Epoch seconds, local<br>time                                                             |
| 65  | [Power grid<br>scheduling]<br>Q-U<br>characteristic<br>curve mode*        | RW                     | U1<br>6  | N/<br>A  | 1        | 400<br>37   | 1                    | 0: non-hysteresis 1: hysteresis                                                                                        |
| 66  | [Power grid<br>scheduling]<br>Q-U dispatch<br>trigger<br>power (%)*       | RW                     | U1<br>6  | %        | 1        | 400<br>38   | 1                    | [0, 100]                                                                                                               |
| 67  | [Power grid<br>scheduling]<br>Fixed active<br>power<br>derated            | RW                     | U1<br>6  | kW       | 10       | 401<br>20   | 1                    | Scope: [0, P <sub>max</sub> ]                                                                                          |
| 68  | [Power grid<br>scheduling]<br>Reactive<br>power<br>compensatio<br>n (PF)  | RW                     | 116      | N/<br>A  | 100      | 401<br>22   | 1                    | (-1, -0.8]U[0.8, 1]                                                                                                    |
| 69  | [Power grid<br>scheduling]<br>Reactive<br>power<br>compensatio<br>n (Q/S) | RW                     | 116      | N/<br>A  | 100      | 401<br>23   | 1                    | [-1, 1] The device converts the value to a fixed value of Q for reactive power control. S indicates S <sub>max</sub> . |
| 70  | [Power grid scheduling] Active power percentage derating (0.1%)           | RW                     | U1<br>6  | %        | 10       | 401<br>25   | 1                    | Scope: [0, 100] Interface for fine adjustment of active power                                                          |
| 71  | [Power grid<br>scheduling]<br>Fixed active<br>power<br>derated (W)        | RW                     | U3<br>2  | W        | 1        | 401<br>26   | 2                    | Scope: [0, P <sub>max</sub> ]                                                                                          |

| No. | Signal<br>Name                                                                         | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                       |
|-----|----------------------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|---------------------------------------------|
| 72  | [Power grid<br>scheduling]<br>Reactive<br>power<br>compensatio<br>n at night<br>(kVar) | RW                     | 132      | kVa<br>r | 100      | 401<br>29   | 2                    | [-Q <sub>max</sub> , Q <sub>max</sub> ]     |
| 73  | [Power grid<br>scheduling]<br>cosφ-P/P <sub>n</sub><br>characteristic<br>curve         | RW                     | ML<br>D  | N/<br>A  | 1        | 401<br>33   | 21                   | For details, see 5.2 Power Grid Scheduling. |
| 74  | [Power grid<br>scheduling]<br>Q-U<br>characteristic<br>curve                           | RW                     | ML<br>D  | N/<br>A  | 1        | 401<br>54   | 21                   | For details, see 5.2 Power Grid Scheduling. |
| 75  | [Power grid<br>scheduling]<br>PF-U<br>characteristic<br>curve                          | RW                     | ML<br>D  | N/<br>A  | 1        | 401<br>75   | 21                   | For details, see 5.2 Power Grid Scheduling. |
| 76  | [Power grid<br>scheduling]<br>Reactive<br>power<br>adjustment<br>time                  | RW                     | U1<br>6  | S        | 1        | 401<br>96   | 1                    | [1, 120]. The default value is 10.          |
| 77  | [Power grid<br>scheduling]<br>Q-U power<br>percentage<br>to exit<br>scheduling*        | RW                     | U1<br>6  | %        | 1        | 401<br>98   | 1                    | [0, 100]                                    |
| 78  | Startup                                                                                | W<br>O                 | U1<br>6  | N/<br>A  | 1        | 402<br>00   | 1                    | N/A                                         |
| 79  | Shutdown                                                                               | W<br>O                 | U1<br>6  | N/<br>A  | 1        | 402<br>01   | 1                    | N/A                                         |
| 80  | Grid code                                                                              | RW                     | U1<br>6  | NA       | 1        | 420<br>00   | 1                    | For details, see <b>5.3 Grid Codes</b> .    |

| No. | Signal<br>Name                                                              | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                 |
|-----|-----------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|---------------------------------------------------------------------------------------|
| 81  | [Power grid<br>scheduling]<br>Reactive<br>power<br>change<br>gradient       | RW                     | U3<br>2  | %/s      | 100      | 420<br>15   | 2                    | [0.1, 1000]                                                                           |
| 82  | [Power grid<br>scheduling]<br>Active power<br>change<br>gradient            | RW                     | U3<br>2  | %/s      | 100      | 420<br>17   | 2                    | [0.1, 1000]                                                                           |
| 83  | [Power grid<br>scheduling]<br>Schedule<br>instruction<br>valid<br>duration  | RW                     | U3<br>2  | S        | 1        | 420<br>19   | 2                    | [0, 86400] The value 0 indicates that the command is valid permanently.               |
| 84  | Time zone                                                                   | RW                     | I16      | mi<br>n  | 1        | 430<br>06   | 1                    | [-720, 840]                                                                           |
| 85  | [Energy<br>storage unit]<br>Working<br>mode*                                | RW                     | U1<br>6  | N/<br>A  | 1        | 470<br>04   | 1                    | 0: unlimited 1: grid connection with zero power 2: grid connection with limited power |
| 86  | [Energy<br>storage unit]<br>Time-of-use<br>electricity<br>price*            | RW                     | U1<br>6  | N/<br>A  | 1        | 470<br>27   | 1                    | 0: disable<br>1: enable                                                               |
| 87  | [Energy<br>storage unit]<br>Time-of-use<br>electricity<br>price<br>periods* | RW                     | ML<br>D  | N/<br>A  | 1        | 470<br>28   | 41                   | For details, see 5.4 Energy Storage Specifications.                                   |
| 88  | [Energy<br>storage unit]<br>LCOE*                                           | RW                     | U3<br>2  | N/<br>A  | 100<br>0 | 470<br>69   | 2                    | N/A                                                                                   |

| No. | Signal<br>Name                                                               | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                                                                                                                                                                       |
|-----|------------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 89  | [Energy<br>storage unit]<br>Maximum<br>charging<br>power*                    | RW                     | U3<br>2  | W        | 1        | 470<br>75   | 2                    | [0, Upper threshold] Default value: 3500                                                                                                                                                    |
| 90  | [Energy<br>storage unit]<br>Maximum<br>discharging<br>power*                 | RW                     | U3<br>2  | W        | 1        | 470<br>77   | 2                    | [0, Upper threshold]<br>Default value: 3500                                                                                                                                                 |
| 91  | [Energy<br>storage unit]<br>Power limit<br>of the grid-<br>tied point*       | RW                     | 132      | W        | 1        | 470<br>79   | 2                    | [0, P <sub>max</sub> ]<br>Default value: P <sub>max</sub>                                                                                                                                   |
| 92  | [Energy<br>storage unit]<br>Charging<br>cutoff<br>capacity*                  | RW                     | U1<br>6  | %        | 10       | 470<br>81   | 1                    | [90, 100]<br>Default value: 100                                                                                                                                                             |
| 93  | [Energy<br>storage unit]<br>Discharge<br>cutoff<br>capacity*                 | RW                     | U1<br>6  | %        | 10       | 470<br>82   | 1                    | [12, 20]<br>Default value: 15                                                                                                                                                               |
| 94  | [Energy<br>storage unit]<br>Forced<br>charging and<br>discharging<br>period* | RW                     | U1<br>6  | mi<br>n  | 1        | 470<br>83   | 1                    | [0, 1440]<br>The value is not<br>stored.                                                                                                                                                    |
| 95  | [Energy<br>storage unit]<br>Forced<br>charging and<br>discharging<br>power*  | RW                     | 132      | W        | 1        | 470<br>84   | 2                    | [-Max discharging power, Max charging power] Forced charging and discharging power ≤ Maximum charging and discharging power ≤ Rated charging and discharging power The value is not stored. |

| No. | Signal<br>Name                                                               | Re<br>ad/<br>Wri<br>te | Typ<br>e | Uni<br>t | Gai<br>n | Add<br>ress | Q<br>ua<br>nt<br>ity | Scope                                               |
|-----|------------------------------------------------------------------------------|------------------------|----------|----------|----------|-------------|----------------------|-----------------------------------------------------|
| 96  | [Energy<br>storage unit]<br>Fixed<br>charging and<br>discharging<br>periods* | RW                     | ML<br>D  | N/<br>A  | 1        | 472<br>00   | 41                   | For details, see 5.4 Energy Storage Specifications. |

#### NOTICE

Signals marked with \* are supported only by certain models or standard codes.

# 4 Customized Interfaces

- 4.1 Obtaining the System Information of Optimizers
- 4.2 Obtaining Real-time Data of Optimizers

# 4.1 Obtaining the System Information of Optimizers

Data synchronization mechanism: The host is driven to refresh the system information of optimizers by the change of the serial number (SN).

Synchronization process: For details, see 6.3.7.1 Uploading Files.

Data storage of the solar inverters: After the device search and positioning are complete, the record is updated. The record format is as follows:

File type: 0x45

**Table 4-1** Record format

| Data                        | Length (Byte) | Remarks                                     |
|-----------------------------|---------------|---------------------------------------------|
| Format version              | 4             | V101                                        |
| SN                          | 2             | -                                           |
| Length                      | 2             | -                                           |
| Reserved                    | 4             | -                                           |
| Number of optimizers        | 2             | <i>n</i> , including the offline optimizers |
| Feature data of optimizer 1 | 78            | -                                           |
| Feature data of optimizer 2 | 78            | -                                           |
|                             |               | -                                           |

| Data                               | Length (Byte) | Remarks |  |
|------------------------------------|---------------|---------|--|
| Feature data of optimizer <i>n</i> | 78            | -       |  |

Table 4-2 Feature data format (V101)

| Data                               | Length (Byte) | Remarks                                            |
|------------------------------------|---------------|----------------------------------------------------|
| Optimizer address                  | 2             | Logical communication address                      |
| Status                             | 2             | 0: offline<br>1: online                            |
| String number                      | 2             | -                                                  |
| Relative position of the PV string | 2             | 1: near DC wiring terminals of the solar inverters |
| SN                                 | 20            | -                                                  |
| Software version                   | 30            | -                                                  |
| Alias                              | 20            | -                                                  |

# 4.2 Obtaining Real-time Data of Optimizers

Data synchronization mechanism: five-minute interval

Synchronization process: uploads the files and synchronizes data according to the time period; uploads the most recent data if there is no filter condition. For details, see **6.3.7.1 Uploading Files**.

Data storage: stores real-time data at five-minute intervals.

File type: 0x44

Table 4-3 Record format

| Data                  | Length (Byte) | Remarks                        |  |
|-----------------------|---------------|--------------------------------|--|
| File version          | 4             | V101                           |  |
| Reserved              | 8             | -                              |  |
| Optimizer data unit 1 | N             | 12 + 26 x Number of optimizers |  |
| Optimizer data unit 2 | N             | -                              |  |

| Data                         | Length (Byte) | Remarks                                                                                                                                |  |
|------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|--|
|                              | -             | -                                                                                                                                      |  |
| Optimizer data unit <i>n</i> | N             | n indicates the number of data records that meet the filter condition. Each piece of data contains all optimizer data for a time node. |  |

Table 4-4 Data unit format (V101)

| Data                                 | Length (Byte) | Remarks                               |
|--------------------------------------|---------------|---------------------------------------|
| Time                                 | 4             | Epoch seconds, local time             |
| Reserved                             | 4             | -                                     |
| Length                               | 2             | -                                     |
| Number of optimizers                 | 2             | -                                     |
| Real-time data of optimizer 1        | 26            | -                                     |
| Real-time data of optimizer 2        | 26            | -                                     |
|                                      | -             | -                                     |
| Real-time data of optimizer <i>n</i> | 26            | <i>n</i> is the number of optimizers. |

**Table 4-5** Real-time data format

| Data              | Length (Byte) | Remarks                       |
|-------------------|---------------|-------------------------------|
| Optimizer address | 2             | Logical communication address |
| Output power      | 2             | Gain: 10<br>Unit: W           |
| Voltage to ground | 2             | Gain: 10<br>Unit: V           |

| Data           | Length (Byte) | Remarks                                                           |
|----------------|---------------|-------------------------------------------------------------------|
| Alarm          | 4             | Bit 00: abnormal PV module: input overvoltage                     |
|                |               | Bit 01: abnormal PV module: input undervoltage                    |
|                |               | Bit 02: abnormal PV module: output overvoltage                    |
|                |               | Bit 04: overtemperature alarm: overtemperature                    |
|                |               | Bit 06: short circuit alarm: output short circuit                 |
|                |               | Bit 07: abnormal device: EEPROM fault                             |
|                |               | Bit 08: abnormal device: internal hardware fault                  |
|                |               | Bit 09: abnormal device: abnormal voltage to ground               |
|                |               | Bit 10: abnormal communication: shutdown due to heartbeat timeout |
| Output voltage | 2             | Gain: 10<br>Unit: V                                               |
|                |               |                                                                   |
| Output current | 2             | Gain: 100<br>Unit: A                                              |
| Input voltage  | 2             | Gain: 10                                                          |
|                |               | Unit: V                                                           |
| Input current  | 2             | Gain: 100                                                         |
|                |               | Unit: A                                                           |
| Temperature    | 2             | Gain: 10                                                          |
|                |               | Unit: °C                                                          |
| Running status | 2             | 0: offline                                                        |
| _              |               | 1: standby                                                        |
|                |               | 2: locking                                                        |
|                |               | 3: faulty                                                         |
|                |               | 4: running                                                        |
|                |               | 5: pass-through                                                   |
|                |               | 6: inspecting                                                     |
|                |               | 7: escaping                                                       |
|                |               | 8: current limiting                                               |
|                |               | 9: secure                                                         |

| Data                     | Length (Byte) | Remarks                 |
|--------------------------|---------------|-------------------------|
| Accumulated energy yield | 4             | Gain: 1000<br>Unit: kWh |

# 5 Interface Instructions

- 5.1 Alarm Information
- 5.2 Power Grid Scheduling
- 5.3 Grid Codes
- 5.4 Energy Storage Specifications

# 5.1 Alarm Information

Table 5-1 Alarm information

| No. | Alar<br>m  | Bit | Alarm Name                           | Alarm ID | Level   |
|-----|------------|-----|--------------------------------------|----------|---------|
| 1   | Alarm<br>1 | 0   | High String Input Voltage            | 2001     | Major   |
| 2   | Alarm<br>1 | 1   | DC Arc Fault <sup>[1]</sup>          | 2002     | Major   |
| 3   | Alarm<br>1 | 2   | String Reverse Connection            | 2011     | Major   |
| 4   | Alarm<br>1 | 3   | String Current Backfeed              | 2012     | Warning |
| 5   | Alarm<br>1 | 4   | Abnormal String Power                | 2013     | Warning |
| 6   | Alarm<br>1 | 5   | AFCI Self-Check Fail. <sup>[1]</sup> | 2021     | Major   |
| 7   | Alarm<br>1 | 6   | Phase Wire Short-Circuited to PE     | 2031     | Major   |
| 8   | Alarm<br>1 | 7   | Grid Loss                            | 2032     | Major   |

| No. | Alar<br>m  | Bit | Alarm Name                            | Alarm ID | Level   |
|-----|------------|-----|---------------------------------------|----------|---------|
| 9   | Alarm<br>1 | 8   | Grid Undervoltage                     | 2033     | Major   |
| 10  | Alarm<br>1 | 9   | Grid Overvoltage                      | 2034     | Major   |
| 11  | Alarm<br>1 | 10  | Grid Volt. Imbalance                  | 2035     | Major   |
| 12  | Alarm<br>1 | 11  | Grid Overfrequency                    | 2036     | Major   |
| 13  | Alarm<br>1 | 12  | Grid Underfrequency                   | 2037     | Major   |
| 14  | Alarm<br>1 | 13  | Unstable Grid Frequency               | 2038     | Major   |
| 15  | Alarm<br>1 | 14  | Output Overcurrent                    | 2039     | Major   |
| 16  | Alarm<br>1 | 15  | Output DC Component<br>Overhigh       | 2040     | Major   |
| 17  | Alarm<br>2 | 0   | Abnormal Residual Current             | 2051     | Major   |
| 18  | Alarm<br>2 | 1   | Abnormal Grounding                    | 2061     | Major   |
| 19  | Alarm<br>2 | 2   | Low Insulation Resistance             | 2062     | Major   |
| 20  | Alarm<br>2 | 3   | Overtemperature                       | 2063     | Minor   |
| 21  | Alarm<br>2 | 4   | Device Fault                          | 2064     | Major   |
| 22  | Alarm<br>2 | 5   | Upgrade Failed or Version<br>Mismatch | 2065     | Minor   |
| 23  | Alarm<br>2 | 6   | License Expired                       | 2066     | Warning |
| 24  | Alarm<br>2 | 7   | Faulty Monitoring Unit                | 61440    | Minor   |
| 25  | Alarm<br>2 | 8   | Faulty Power Collector <sup>[2]</sup> | 2067     | Major   |
| 26  | Alarm<br>2 | 9   | Battery abnormal                      | 2068     | Minor   |

| No. | Alar<br>m  | Bit | Alarm Name                                          | Alarm ID | Level   |
|-----|------------|-----|-----------------------------------------------------|----------|---------|
| 27  | Alarm<br>2 | 10  | Active Islanding                                    | 2070     | Major   |
| 28  | Alarm<br>2 | 11  | Passive Islanding                                   | 2071     | Major   |
| 29  | Alarm<br>2 | 12  | Transient AC Overvoltage                            | 2072     | Major   |
| 30  | Alarm<br>2 | 13  | Peripheral port short circuit <sup>[3]</sup>        | 2075     | Warning |
| 31  | Alarm<br>2 | 14  | Churn output overload <sup>[4]</sup>                | 2077     | Major   |
| 32  | Alarm<br>2 | 15  | Abnormal PV module configuration                    | 2080     | Major   |
| 33  | Alarm<br>3 | 0   | Optimizer fault <sup>[5]</sup>                      | 2081     | Warning |
| 34  | Alarm<br>3 | 1   | Built-in PID operation abnormal <sup>[6]</sup>      | 2085     | Minor   |
| 35  | Alarm<br>3 | 2   | High input string voltage to ground.                | 2014     | Major   |
| 36  | Alarm<br>3 | 3   | External Fan Abnormal                               | 2086     | Major   |
| 37  | Alarm<br>3 | 4   | Battery Reverse<br>Connection <sup>[7]</sup>        | 2069     | Major   |
| 38  | Alarm<br>3 | 5   | On-grid/Off-grid controller abnormal <sup>[4]</sup> | 2082     | Major   |
| 39  | Alarm<br>3 | 6   | PV String Loss                                      | 2015     | Warning |
| 40  | Alarm<br>3 | 7   | Internal Fan Abnormal                               | 2087     | Major   |
| 41  | Alarm<br>3 | 8   | DC Protection Unit<br>Abnormal <sup>[8]</sup>       | 2088     | Major   |

#### **NOTICE**

The preceding table lists the alarm information about Huawei solar inverters. Some alarms can be detected only after corresponding functional modules are configured.

- [1] AFCI functional unit
- [2] Power collector or power meter connected to the solar inverters
- [3] Detection of the external ports of the solar inverters that provide the 12 V power supply
- [4] This item can be detected when a built-in or external on-grid/off-grid functional unit is configured.
- [5] This item can be detected when optimizers are configured on the DC side.
- [6] This item can be detected when the solar inverters are configured with PID functional units.
- [7] This item can be detected when energy storage units (ESUs) are configured.
- [8] Some models have DC protection units.

## 5.2 Power Grid Scheduling

This section describes the curve configuration format and precautions for power grid scheduling by curve.

### 5.2.1 cosφ-P/Pn Characteristic Curve

**Table 5-2**  $\cos\phi$ -P/P<sub>n</sub> characteristic curve definition

| Description                       | Data<br>Type | Gain | Unit | Value Range         |
|-----------------------------------|--------------|------|------|---------------------|
| Number of points                  | U16          | 1    | N/A  | [2, 10]             |
| P/P <sub>n</sub> value at point 1 | U16          | 10   | %    | [0, 100]            |
| cosφ value at point 1             | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 2 | U16          | 10   | %    | [0, 100]            |
| cosφ value at point 2             | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 3 | U16          | 10   | %    | [0, 100]            |
| cosφ value at point 3             | 116          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 4 | U16          | 10   | %    | [0, 100]            |
| cosф value at point 4             | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 5 | U16          | 10   | %    | [0, 100]            |
| cosφ value at point 5             | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |

| Description                        | Data<br>Type | Gain | Unit | Value Range         |
|------------------------------------|--------------|------|------|---------------------|
| P/P <sub>n</sub> value at point 6  | U16          | 10   | %    | [0, 100]            |
| cosф value at point 6              | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 7  | U16          | 10   | %    | [0,100]             |
| cosф value at point 7              | I16          | 1000 | N/A  | (-1,-0.8]U[0.8,1]   |
| P/P <sub>n</sub> value at point 8  | U16          | 10   | %    | [0, 100]            |
| cosф value at point 8              | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 9  | U16          | 10   | %    | [0, 100]            |
| cosφ value at point 9              | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| P/P <sub>n</sub> value at point 10 | U16          | 10   | %    | [0, 100]            |
| cosф value at point 10             | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |

## **5.2.2 Q-U Characteristic Curve**

Table2 Q-U Characteristic Curve definition

| Description                       | Data<br>Type | Gain | Unit | Value Range |
|-----------------------------------|--------------|------|------|-------------|
| Number of points                  | U16          | 1    | N/A  | [2, 10]     |
| U/U <sub>n</sub> value at point 1 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 1              | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 2 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 2              | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 3 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 3              | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 4 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 4              | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 5 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 5              | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 6 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 6              | I16          | 1000 | N/A  | [-0.6, 0.6] |

| Description                        | Data<br>Type | Gain | Unit | Value Range |
|------------------------------------|--------------|------|------|-------------|
| U/U <sub>n</sub> value at point 7  | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 7               | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 8  | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 8               | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 9  | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 9               | I16          | 1000 | N/A  | [-0.6, 0.6] |
| U/U <sub>n</sub> value at point 10 | U16          | 10   | %    | [80, 136]   |
| Q/S value at point 10              | I16          | 1000 | N/A  | [-0.6, 0.6] |

#### NOTICE

In Italian standards, this curve may be used together with the **Q-U characteristic** curve mode, **Q-U dispatch trigger power (%)**, and **Q-U power percentage to exit scheduling** parameters.

# 5.2.3 PF-U Characteristic Curve

Table3 PF-U Characteristic Curve definition

| Description                       | Data<br>Type | Gain | Unit | Value Range         |
|-----------------------------------|--------------|------|------|---------------------|
| Number of points                  | U16          | 1    | N/A  | [2, 10]             |
| U/U <sub>n</sub> value at point 1 | U16          | 10   | %    | [80, 136]           |
| PF value at point 1               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 2 | U16          | 10   | %    | [80, 136]           |
| PF value at point 2               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 3 | U16          | 10   | %    | [80, 136]           |
| PF value at point 3               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 4 | U16          | 10   | %    | [80, 136]           |
| PF value at point 4               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 5 | U16          | 10   | %    | [80, 136]           |
| PF value at point 5               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |

| Description                        | Data<br>Type | Gain | Unit | Value Range         |
|------------------------------------|--------------|------|------|---------------------|
| U/U <sub>n</sub> value at point 6  | U16          | 10   | %    | [80, 136]           |
| PF value at point 6                | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 7  | U16          | 10   | %    | [80, 136]           |
| PF value at point 7                | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 8  | U16          | 10   | %    | [80, 136]           |
| PF value at point 8                | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 9  | U16          | 10   | %    | [80, 136]           |
| PF value at point 9                | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |
| U/U <sub>n</sub> value at point 10 | U16          | 10   | %    | [80, 136]           |
| PF value at point 10               | I16          | 1000 | N/A  | (-1, -0.8]U[0.8, 1] |

# **5.3 Grid Codes**

Table 5-3 List of grid codes

| No. | Standard           | Applicable Country or Region |
|-----|--------------------|------------------------------|
| 0   | VDE-AR-N-4105      | Germany                      |
| 1   | NB/T 32004         | China                        |
| 2   | UTE C 15-712-1(A)  | France                       |
| 3   | UTE C 15-712-1(B)  | France                       |
| 4   | UTE C 15-712-1(C)  | France                       |
| 5   | VDE 0126-1-1-BU    | Bulgaria                     |
| 6   | VDE 0126-1-1-GR(A) | Greece                       |
| 7   | VDE 0126-1-1-GR(B) | Greece                       |
| 8   | BDEW-MV            | Germany                      |
| 9   | G59-England        | UK                           |
| 10  | G59-Scotland       | UK                           |
| 11  | G83-England        | UK                           |
| 12  | G83-Scotland       | UK                           |

| No. | Standard               | Applicable Country or Region |
|-----|------------------------|------------------------------|
| 13  | CEI0-21                | Italy                        |
| 14  | EN50438-CZ             | Czech Republic               |
| 15  | RD1699/661             | Spain                        |
| 16  | RD1699/661-MV480       | Spain                        |
| 17  | EN50438-NL             | Netherlands                  |
| 18  | C10/11                 | Belgium                      |
| 19  | AS4777                 | Australia                    |
| 20  | IEC61727               | General                      |
| 21  | Custom (50 Hz)         | Custom                       |
| 22  | Custom (60 Hz)         | Custom                       |
| 23  | CEI0-16                | Italy                        |
| 24  | CHINA-MV480            | China                        |
| 25  | CHINA-MV               | China                        |
| 26  | TAI-PEA                | Thailand                     |
| 27  | TAI-MEA                | Thailand                     |
| 28  | BDEW-MV480             | Germany                      |
| 29  | Custom MV480 (50 Hz)   | Custom                       |
| 30  | Custom MV480 (60 Hz)   | Custom                       |
| 31  | G59-England-MV480      | UK                           |
| 32  | IEC61727-MV480         | General                      |
| 33  | UTE C 15-712-1-MV480   | France                       |
| 34  | TAI-PEA-MV480          | Thailand                     |
| 35  | TAI-MEA-MV480          | Thailand                     |
| 36  | EN50438-DK-MV480       | Denmark                      |
| 37  | Japan standard (50 Hz) | Japan                        |
| 38  | Japan standard (60 Hz) | Japan                        |
| 39  | EN50438-TR-MV480       | Turkey                       |
| 40  | EN50438-TR             | Turkey                       |
| 41  | C11/C10-MV480          | Belgium                      |

| No. | Standard                        | Applicable Country or Region |
|-----|---------------------------------|------------------------------|
| 42  | Philippines                     | Philippines                  |
| 43  | Philippines-MV480               | Philippines                  |
| 44  | AS4777-MV480                    | Australia                    |
| 45  | NRS-097-2-1                     | South Africa                 |
| 46  | NRS-097-2-1-MV480               | South Africa                 |
| 47  | KOREA                           | South Korea                  |
| 48  | IEEE 1547-MV480                 | USA                          |
| 49  | IEC61727-60Hz                   | General                      |
| 50  | IEC61727-60Hz-MV480             | General                      |
| 51  | CHINA_MV500                     | China                        |
| 52  | ANRE                            | Romania                      |
| 53  | ANRE-MV480                      | Romania                      |
| 54  | ELECTRIC RULE NO.21-<br>MV480   | California, USA              |
| 55  | HECO-MV480                      | Hawaii, USA                  |
| 56  | PRC_024_Eastern-MV480           | Eastern USA                  |
| 57  | PRC_024_Western-<br>MV480       | Western USA                  |
| 58  | PRC_024_Quebec-MV480            | Quebec, Canada               |
| 59  | PRC_024_ERCOT-MV480             | Texas, USA                   |
| 60  | PO12.3-MV480                    | Spain                        |
| 61  | EN50438_IE-MV480                | Ireland                      |
| 62  | EN50438_IE                      | Ireland                      |
| 63  | IEEE 1547a-MV480                | USA                          |
| 64  | Japan standard<br>(MV420-50 Hz) | Japan                        |
| 65  | Japan standard<br>(MV420-60 Hz) | Japan                        |
| 66  | Japan standard<br>(MV440-50 Hz) | Japan                        |
| 67  | Japan standard<br>(MV440-60 Hz) | Japan                        |

| No. | Standard                        | Applicable Country or Region |
|-----|---------------------------------|------------------------------|
| 68  | IEC61727-50Hz-MV500             | General                      |
| 70  | CEI0-16-MV480                   | Italy                        |
| 71  | PO12.3                          | Spain                        |
| 72  | Japan standard<br>(MV400-50 Hz) | Japan                        |
| 73  | Japan standard<br>(MV400-60 Hz) | Japan                        |
| 74  | CEI0-21-MV480                   | Italy                        |
| 75  | KOREA-MV480                     | South Korea                  |
| 76  | Egypt ETEC                      | Egypt                        |
| 77  | Egypt ETEC-MV480                | Egypt                        |
| 78  | CHINA_MV800                     | China                        |
| 79  | IEEE 1547-MV600                 | USA                          |
| 80  | ELECTRIC RULE NO.21-<br>MV600   | California, USA              |
| 81  | HECO-MV600                      | Hawaii, USA                  |
| 82  | PRC_024_Eastern-MV600           | Eastern USA                  |
| 83  | PRC_024_Western-<br>MV600       | Western USA                  |
| 84  | PRC_024_Quebec-MV600            | Quebec, Canada               |
| 85  | PRC_024_ERCOT-MV600             | Texas, USA                   |
| 86  | IEEE 1547a-MV600                | USA                          |
| 87  | EN50549-LV                      | Ireland                      |
| 88  | EN50549-MV480                   | Ireland                      |
| 89  | Jordan-Transmission             | Jordan                       |
| 90  | Jordan-Transmission-<br>MV480   | Jordan                       |
| 91  | NAMIBIA                         | Namibia                      |
| 92  | ABNT NBR 16149                  | Brazil                       |
| 93  | ABNT NBR 16149-<br>MV480        | Brazil                       |
| 94  | SA_RPPs                         | South Africa                 |

| No. | Standard                      | Applicable Country or Region |
|-----|-------------------------------|------------------------------|
| 95  | SA_RPPs-MV480                 | South Africa                 |
| 96  | INDIA                         | India                        |
| 97  | INDIA-MV500                   | India                        |
| 98  | ZAMBIA                        | Zambia                       |
| 99  | ZAMBIA-MV480                  | Zambia                       |
| 100 | Chile                         | Chile                        |
| 101 | Chile-MV480                   | Chile                        |
| 102 | CHINA-MV500-STD               | China                        |
| 103 | CHINA-MV480-STD               | China                        |
| 104 | Mexico-MV480                  | Mexico                       |
| 105 | Malaysian                     | Malaysia                     |
| 106 | Malaysian-MV480               | Malaysia                     |
| 107 | KENYA_ETHIOPIA                | East Africa                  |
| 108 | KENYA_ETHIOPIA-<br>MV480      | East Africa                  |
| 109 | G59-England-MV800             | UK                           |
| 110 | NIGERIA                       | Nigeria                      |
| 111 | NIGERIA-MV480                 | Nigeria                      |
| 112 | DUBAI                         | Dubai                        |
| 113 | DUBAI-MV480                   | Dubai                        |
| 114 | Northern Ireland              | Northern Ireland             |
| 115 | Northern Ireland-MV480        | Northern Ireland             |
| 116 | Cameroon                      | Cameroon                     |
| 117 | Cameroon-MV480                | Cameroon                     |
| 118 | Jordan-Distribution           | Jordan                       |
| 119 | Jordan-Distribution-<br>MV480 | Jordan                       |
| 120 | Custom MV600-50 Hz            | Custom                       |
| 121 | AS4777-MV800                  | Australia                    |
| 122 | INDIA-MV800                   | India                        |

| No. | Standard                      | Applicable Country or Region |
|-----|-------------------------------|------------------------------|
| 123 | IEC61727-MV800                | General                      |
| 124 | BDEW-MV800                    | Germany                      |
| 125 | ABNT NBR 16149-<br>MV800      | Brazil                       |
| 126 | UTE C 15-712-1-MV800          | France                       |
| 127 | Chile-MV800                   | Chile                        |
| 128 | Mexico-MV800                  | Mexico                       |
| 129 | EN50438-TR-MV800              | Turkey                       |
| 130 | TAI-PEA-MV800                 | Thailand                     |
| 131 | Philippines-MV800             | Philippines                  |
| 132 | Malaysian-MV800               | Malaysia                     |
| 133 | NRS-097-2-1-MV800             | South Africa                 |
| 134 | SA_RPPs-MV800                 | South Africa                 |
| 135 | Jordan-Transmission-<br>MV800 | Jordan                       |
| 136 | Jordan-Distribution-<br>MV800 | Jordan                       |
| 137 | Egypt ETEC-MV800              | Egypt                        |
| 138 | DUBAI-MV800                   | Dubai                        |
| 139 | SAUDI-MV800                   | Saudi Arabia                 |
| 140 | EN50438_IE-MV800              | Ireland                      |
| 141 | EN50549-MV800                 | Ireland                      |
| 142 | Northern Ireland-MV800        | Northern Ireland             |
| 143 | CEI0-21-MV800                 | Italy                        |
| 144 | IEC 61727-MV800-60Hz          | General                      |
| 145 | NAMIBIA_MV480                 | Namibia                      |
| 146 | Japan (LV202-50 Hz)           | Japan                        |
| 147 | Japan (LV202-60 Hz)           | Japan                        |
| 148 | Pakistan-MV800                | Pakistan                     |
| 149 | BRASIL-ANEEL-MV800            | Brazil                       |
| 150 | Israel-MV800                  | Israel                       |

| No. | Standard                      | Applicable Country or Region |
|-----|-------------------------------|------------------------------|
| 151 | CEI0-16-MV800                 | Italy                        |
| 152 | ZAMBIA-MV800                  | Zambia                       |
| 153 | KENYA_ETHIOPIA-<br>MV800      | East Africa                  |
| 154 | NAMIBIA_MV800                 | Namibia                      |
| 155 | Cameroon-MV800                | Cameroon                     |
| 156 | NIGERIA-MV800                 | Nigeria                      |
| 157 | ABUDHABI-MV800                | Abu Dhabi                    |
| 158 | LEBANON                       | Lebanon                      |
| 159 | LEBANON-MV480                 | Lebanon                      |
| 160 | LEBANON-MV800                 | Lebanon                      |
| 161 | ARGENTINA-MV800               | Argentina                    |
| 162 | ARGENTINA-MV500               | Argentina                    |
| 163 | Jordan-Transmission-HV        | Jordan                       |
| 164 | Jordan-Transmission-<br>HV480 | Jordan                       |
| 165 | Jordan-Transmission-<br>HV800 | Jordan                       |
| 166 | TUNISIA                       | Tunisia                      |
| 167 | TUNISIA-MV480                 | Tunisia                      |
| 168 | TUNISIA-MV800                 | Tunisia                      |
| 169 | JAMAICA-MV800                 | Jamaica                      |
| 170 | AUSTRALIA-NER                 | Australia                    |
| 171 | AUSTRALIA-NER-MV480           | Australia                    |
| 172 | AUSTRALIA-NER-MV800           | Australia                    |
| 173 | SAUDI                         | Saudi Arabia                 |
| 174 | SAUDI-MV480                   | Saudi Arabia                 |
| 175 | Ghana-MV480                   | Ghana                        |
| 176 | Israel                        | Israel                       |
| 177 | Israel-MV480                  | Israel                       |
| 178 | Chile-PMGD                    | Chile                        |

| No. | Standard                      | Applicable Country or Region |
|-----|-------------------------------|------------------------------|
| 179 | Chile-PMGD-MV480              | Chile                        |
| 180 | VDE-AR-N4120-HV               | Germany                      |
| 181 | VDE-AR-N4120-HV480            | Germany                      |
| 182 | VDE-AR-N4120-HV800            | Germany                      |
| 183 | IEEE 1547-MV800               | USA                          |
| 184 | Nicaragua-MV800               | Nicaragua                    |
| 185 | IEEE 1547a-MV800              | USA                          |
| 186 | ELECTRIC RULE NO.21-<br>MV800 | California, USA              |
| 187 | HECO-MV800                    | Hawaii, USA                  |
| 188 | PRC_024_Eastern-MV800         | Eastern USA                  |
| 189 | PRC_024_Western-<br>MV800     | Western USA                  |
| 190 | PRC_024_Quebec-MV800          | Quebec, Canada               |
| 191 | PRC_024_ERCOT-MV800           | Texas, USA                   |
| 192 | Custom-MV800-50Hz             | Custom                       |
| 193 | RD1699/661-MV800              | Spain                        |
| 194 | PO12.3-MV800                  | Spain                        |
| 195 | Mexico-MV600                  | Mexico                       |
| 196 | Vietnam-MV800                 | Vietnam                      |
| 197 | CHINA-LV220/380               | China                        |
| 198 | SVG-LV                        | Dedicated                    |
| 199 | Vietnam                       | Vietnam                      |
| 200 | Vietnam-MV480                 | Vietnam                      |
| 201 | Chile-PMGD-MV800              | Chile                        |
| 202 | Ghana-MV800                   | Ghana                        |
| 203 | TAIPOWER                      | Taiwan                       |
| 204 | TAIPOWER-MV480                | Taiwan                       |
| 205 | TAIPOWER-MV800                | Taiwan                       |
| 206 | IEEE 1547-LV208               | USA                          |

| No. | Standard                      | Applicable Country or Region |
|-----|-------------------------------|------------------------------|
| 207 | IEEE 1547-LV240               | USA                          |
| 208 | IEEE 1547a-LV208              | USA                          |
| 209 | IEEE 1547a-LV240              | USA                          |
| 210 | ELECTRIC RULE NO.21-<br>LV208 | USA                          |
| 211 | ELECTRIC RULE NO.21-<br>LV240 | USA                          |
| 212 | HECO-O+M+H-LV208              | USA                          |
| 213 | HECO-O+M+H-LV240              | USA                          |
| 214 | PRC_024_Eastern-LV208         | USA                          |
| 215 | PRC_024_Eastern-LV240         | USA                          |
| 216 | PRC_024_Western-LV208         | USA                          |
| 217 | PRC_024_Western-LV240         | USA                          |
| 218 | PRC_024_ERCOT-LV208           | USA                          |
| 219 | PRC_024_ERCOT-LV240           | USA                          |
| 220 | PRC_024_Quebec-LV208          | USA                          |
| 221 | PRC_024_Quebec-LV240          | USA                          |
| 222 | ARGENTINA-MV480               | Argentina                    |
| 223 | Oman                          | Oman                         |
| 224 | Oman-MV480                    | Oman                         |
| 225 | Oman-MV800                    | Oman                         |
| 226 | Kuwait                        | Kuwait                       |
| 227 | Kuwait-MV480                  | Kuwait                       |
| 228 | Kuwait-MV800                  | Kuwait                       |
| 229 | Bangladesh                    | Bangladesh                   |
| 230 | Bangladesh-MV480              | Bangladesh                   |
| 231 | Bangladesh-MV800              | Bangladesh                   |
| 232 | Chile-Net_Billing             | Chile                        |
| 233 | EN50438-NL-MV480              | Netherlands                  |
| 234 | Bahrain                       | Bahrain                      |

| No. | Standard           | Applicable Country or Region |
|-----|--------------------|------------------------------|
| 235 | Bahrain-MV480      | Bahrain                      |
| 236 | Bahrain-MV800      | Bahrain                      |
| 238 | Japan-MV550-50Hz   | Japan                        |
| 239 | Japan-MV550-60Hz   | Japan                        |
| 241 | ARGENTINA          | Argentina                    |
| 242 | KAZAKHSTAN-MV800   | Kazakhstan                   |
| 243 | Mauritius          | Mauritius                    |
| 244 | Mauritius-MV480    | Mauritius                    |
| 245 | Mauritius-MV800    | Mauritius                    |
| 246 | Oman-PDO-MV800     | Oman                         |
| 247 | EN50438-SE         | Sweden                       |
| 248 | TAI-MEA-MV800      | Thailand                     |
| 249 | Pakistan           | Pakistan                     |
| 250 | Pakistan-MV480     | Pakistan                     |
| 251 | PORTUGAL-MV800     | Portugal                     |
| 252 | HECO-L+M-LV208     | USA                          |
| 253 | HECO-L+M-LV240     | USA                          |
| 254 | C10/11-MV800       | Belgium                      |
| 255 | Austria            | Austria                      |
| 256 | Austria-MV480      | Austria                      |
| 257 | G98                | UK                           |
| 258 | G99-TYPEA-LV       | UK                           |
| 259 | G99-TYPEB-LV       | UK                           |
| 260 | G99-TYPEB-HV       | UK                           |
| 261 | G99-TYPEB-HV-MV480 | UK                           |
| 262 | G99-TYPEB-HV-MV800 | UK                           |
| 263 | G99-TYPEC-HV-MV800 | UK                           |
| 264 | G99-TYPED-MV800    | UK                           |
| 265 | G99-TYPEA-HV       | UK                           |

| No. | Standard                  | Applicable Country or Region |
|-----|---------------------------|------------------------------|
| 266 | CEA-MV800                 | India                        |
| 267 | EN50549-MV400             | Europe                       |
| 268 | VDE-AR-N4110              | Germany                      |
| 269 | VDE-AR-N4110-MV480        | Germany                      |
| 270 | VDE-AR-N4110-MV800        | Germany                      |
| 271 | Panama-MV800              | Panama                       |
| 272 | North Macedonia-<br>MV800 | North Macedonia              |
| 273 | NTS                       | Spain                        |
| 274 | NTS-MV480                 | Spain                        |
| 275 | NTS-MV800                 | Spain                        |

#### **NOTICE**

Set the grid code based on local laws and regulations.

# **5.4 Energy Storage Specifications**

**Table 5-4** Format description of parameters for time-of-use electricity price periods

| Description            | Data Type | Gain | Unit | Value Range                                                                                                      |
|------------------------|-----------|------|------|------------------------------------------------------------------------------------------------------------------|
| Number of periods      | U16       | 1    | N/A  | [0, 10]                                                                                                          |
| Start time of period 1 | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| End time of period 1   | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |

| Description                    | Data Type | Gain | Unit | Value Range                                                                                                      |
|--------------------------------|-----------|------|------|------------------------------------------------------------------------------------------------------------------|
| Electricity price in period 1  | U32       | 1000 | N/A  | N/A                                                                                                              |
| Start time of period 2         | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| End time of period 2           | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| Electricity price in period 2  | U32       | 1000 | N/A  | N/A                                                                                                              |
|                                |           |      |      |                                                                                                                  |
| Start time of period<br>10     | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| End time of period<br>10       | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| Electricity price in period 10 | U32       | 1000 | N/A  | N/A                                                                                                              |

**Table 5-5** Format description of parameters for fixed charging and discharging periods

| Description       | Data Type | Gain | Unit | Value Range |
|-------------------|-----------|------|------|-------------|
| Number of periods | U16       | 1    | N/A  | [0, 10]     |

| Description                                      | Data Type | Gain | Unit | Value Range                                                                                                      |
|--------------------------------------------------|-----------|------|------|------------------------------------------------------------------------------------------------------------------|
| Start time of period<br>1                        | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| End time of period 1                             | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| Charging and<br>discharging power in<br>period 1 | 132       | 1    | W    | [Discharging power limit, Charging power limit]. For details, see the description of the supported model.        |
| Start time of period 2                           | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| End time of period 2                             | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| Charging and discharging power in period 2       | 132       | 1    | W    | [Discharging power limit, Charging power limit]. For details, see the description of the supported model.        |
|                                                  |           |      |      |                                                                                                                  |
| Start time of period<br>10                       | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |

| Description                                 | Data Type | Gain | Unit | Value Range                                                                                                      |
|---------------------------------------------|-----------|------|------|------------------------------------------------------------------------------------------------------------------|
| End time of period<br>10                    | U16       | 1    | min  | [0, 1440]. The value is the elapsed minutes since 00:00 a.m. The start time should be earlier than the end time. |
| Charging and discharging power in period 10 | 132       | 1    | W    | [Discharging power limit, Charging power limit]. For details, see the description of the supported model.        |

# 6 Overview of the Communications Protocol

The Modbus communications protocol consists of the following layers.

Figure 6-1 Modbus protocol layers

| Application layer |
|-------------------|
| Data link layer   |
| Physical layer    |

- 6.1 Physical Layer
- 6.2 Data Link Layer
- 6.3 Application Layer

# 6.1 Physical Layer

Huawei solar inverters provide Modbus communication based on physical media such as MBUS, RS485, WLAN, FE, and 4G. MBUS and RS485 comply with the Modbus-RTU format. The communication through the WLAN, FE, and 4G media is based on the TCP link and complies with the Modbus-TCP format.

# 6.2 Data Link Layer

The following figure shows the generic frame structure of the Modbus protocol.

Figure 6-2 Modbus generic frame format



## 6.2.1 Modbus-RTU

Figure 6-3 Modbus-RTU frame format



## 6.2.1.1 ADU Length

The application data unit (ADU) consists of 256 bytes based on the serial bus.

- 1. Slave address: 1 byte
- 2. Cyclic redundancy check (CRC): 2 bytes
- 3. PDU: 253 bytes

#### 6.2.1.2 Communications Address

As shown in the figure below, Modbus-RTU is usually used for serial communication. Slave address represents the address of a slave solar inverter. The address range is allocated as follows:

Figure 6-4 Modbus generic frame format



Table 6-1 Serial link address allocation

| <b>Broadcast Address</b> | Slave Node Address | Reserved Address |
|--------------------------|--------------------|------------------|
| 0                        | 1–247              | 248-255          |

Reserved addresses are used for access control of the communication extension modules. Huawei reserves the right to allocate the reserved addresses.

#### 6.2.1.3 CRC

CRC applies to all bytes in front of the CRC code, which consists of 16 bits. The reference code is as follows:

```
static unsigned char auchCRCHi[] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41,
0x00,\,0xC1,\,0x81,\,0x40,\,0x01,\,0xC0,\,0x80,\,0x41,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x00,\,0xC1,\,0x81,\,0x40,\,0x40,\,0x40,\,0x40,\,0x41,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40,\,0x40
0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0,\ 0x80,\ 0x41,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,\ 0x00,\ 0xC1,\ 0x81,\ 0x40,\ 0x01,\ 0xC0,\ 0x80,\ 0x41,
0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40
/*CRC values for the low-order byte*/
static char auchCRCLo[] = {
0x00,\ 0xC0,\ 0xC1,\ 0x01,\ 0xC3,\ 0x03,\ 0x02,\ 0xC2,\ 0xC6,\ 0x06,\ 0x07,\ 0xC7,\ 0x05,\ 0xC5,\ 0xC4,
0x04, 0xCC, 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09,
0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD,
0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3,
0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7,
0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A,
0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE,
0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26,
0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2,
0x62, 0x66, 0xA6, 0xA7, 0x67, 0x65, 0x65, 0x64, 0xA4, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F,
0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, 0x69, 0xA9, 0xA8, 0x68, 0x78, 0xB8, 0xB9, 0x79, 0xBB,
0x7B, 0x7A, 0xBA, 0xBE, 0x7E, 0x7F, 0xBF, 0x7D, 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5,
0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91,
0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C,
0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88,
0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C,
0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40
unsigned short CRC16 ( puchMsq, usDataLen ) /* The function returns the CRC as a unsigned short type */
unsigned char *puchMsg; /* message to calculate CRC upon */
unsigned short usDataLen; /* quantity of bytes in message */
unsigned char uchCRCHi = 0xFF; /* high byte of CRC initialized */
unsigned char uchCRCLo = 0xFF; /* low byte of CRC initialized */
unsigned uIndex; /* will index into CRC lookup table */
while (usDataLen--) /* pass through message buffer */
uIndex = uchCRCLo ^ *puchMsg++ ; /* calculate the CRC */
uchCRCLo = uchCRCHi ^ auchCRCHi[uIndex];
uchCRCHi = auchCRCLo[uIndex];
return (uchCRCHi << 8 | uchCRCLo);
```

Code source: *MODBUS over Serial Line Specification and Implementation Guide V1.02* 

## 6.2.2 Modbus-TCP

Figure 6-5 Modbus-TCP frame format



# 6.2.2.1 ADU Length

The recommended frame length is 260 bytes based on the standard. When some extended functions are applied, the data service provider may extend the ADU to a proper length based on the resources it possesses, to improve network transmission efficiency. The ADU length is indicated by the length field in the MBAP packet header.

#### 6.2.2.2 MBAP Packet Header

If Modbus is applied to TCP/IP, a dedicated MBAP packet header (Modbus application protocol packet header) is used to identify the Modbus ADU. The Modbus packet header consists of four fields and seven bytes, which are defined as follows.

Table 6-2 MBAP definition

| Data Field                  | Length<br>(Byte) | Description                                                                  | Client                                                                      | Server                                                                                                  |
|-----------------------------|------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Transmissio<br>n identifier | 2                | Matching<br>identifier between<br>a request frame<br>and a response<br>frame | Assigned by<br>the client;<br>better be<br>unique for<br>each data<br>frame | The identifier of the response frame from the server must be consistent with that of the request frame. |

| Data Field           | Length<br>(Byte) | Description              | Client                                                                    | Server                                                                                                  |
|----------------------|------------------|--------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Protocol<br>type     | 2                | 0 = Modbus<br>protocol   | Assigned by<br>the client; 0 by<br>default                                | The identifier of the response frame from the server must be consistent with that of the request frame. |
| Data length          | 2                | Follow-up data<br>length | Assigned by<br>the client<br>based on the<br>actual data<br>frame         | Assigned by<br>the server<br>based on the<br>actual frame<br>length                                     |
| Logical<br>device ID | 1                | 0                        | Assigned by<br>the client<br>based on the<br>actual data<br>frame request | The identifier of the response frame from the server must be consistent with that of the request frame. |

## **6.2.2.3 Communications Address**

Based on the TCP communications host, unit 0 is used by default to access the directly connected slave node, and other addresses are used to access the downstream devices of the slave node. The default address of the slave node is 0. The address is adjustable.

Master

Modbus-TCP / Ethernet

Slave address: 0

Modbus-RTU / RS485

Sub-slave address: 1

Sub-slave address: 2

Sub-slave address: n

Figure 6-6 Communications address of the three-layer object structure

#### 6.2.2.4 TCP Port

In a local area network or VPN environment, the master node may actively initiate TCP socket link establishment to the slave node. The master node can use the 502 port to request data services from the slave node.

In a non-VPN environment across the public network, the device deployed on the internal network needs to initiate TCP socket link establishment to the master node exposed on the public network. In this case, you need to preset the fixed access port number of the master node on the slave node. To ensure security and reduce traffic, the master node must provide at least one encrypted port and one non-encrypted port.

### **6.2.2.5 TCP Link Establishment Process**

This section focuses on the cross-public network application.

The following figure shows the process of connecting a slave node.



Figure 6-7 Process of establishing a secure TCP connection

# 6.3 Application Layer

# 6.3.1 Function Code List

**Table 6-3** Function code list

| Function Code | Meaning                   | Remarks                                                     |
|---------------|---------------------------|-------------------------------------------------------------|
| 0x03          | Read registers.           | Continuously reads a single register or multiple registers. |
| 0x06          | Write a single register.  | Writes into a single register.                              |
| 0x10          | Write multiple registers. | Continuously writes into multiple registers.                |

# **6.3.2 Exception Code List**

The exception codes must be unique for each network element (NE) type. The names and descriptions should be provided in both the Chinese and English NE interface document. Different versions of the same NE type must be backward compatible. Exception codes in use cannot be assigned to other exceptions.

**Table 6-4** Exception codes returned by an NE (0x00–0x8F are for common exception codes)

| Code | Name                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x01 | Illegal function        | The function code received in the query is not an allowable action for the server (or slave node). This may be because the function code is only applicable to newer devices, and was not implemented in the unit selected. It could also indicate that the server (or slave node) is in the wrong state to process a request of this type, for example because it is not configured and is being asked to return register values.                                                                                                                                                                                                                                                                                                                                                |
| 0x02 | Illegal data<br>address | The data address received in the query is not an allowable address for the server. More specifically, the combination of reference number and transfer length is invalid. For a controller with 100 registers, the PDU addresses the first register as 0, and the last one as 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 4, then this request will successfully operate (address-wise at least) on registers 96, 97, 98, 99. If a request is submitted with a starting register address of 96 and a quantity of registers of 5, then this request will fail with Exception Code 0x02 "Illegal Data Address" since it attempts to operate on registers 96, 97, 98, 99 and 100, and there is no register with address 100. |
| 0x03 | Illegal data<br>value   | The value contained in the query data field is not an allowable value for the server (or slave). The value indicates a fault in the structure of the remainder of a complex request, such as an incorrectly implied length. It specifically does not mean that a data item submitted for storage in a register has a value outside the expectation of the application program since the Modbus protocol is unaware of the significance of any particular value of any particular register.                                                                                                                                                                                                                                                                                        |
| 0x04 | Slave node<br>failure   | An error occurred while the server was attempting to perform the requested action.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Code | Name                 | Description                                                                                                            |
|------|----------------------|------------------------------------------------------------------------------------------------------------------------|
| 0x06 | Slave device<br>busy | The server cannot accept a Modbus request PDU. A client application determines whether and when to resend the request. |
| 0x80 | No permission        | An operation is not allowed because of a permission authentication failure or permission expiration.                   |

# 6.3.3 Reading Registers (0x03)

## 6.3.3.1 Frame Format of a Request from a Master Node

| Data Field             | Length (Byte) | Description   |
|------------------------|---------------|---------------|
| Function code          | 1             | 0x03          |
| Register start address | 2             | 0x0000-0xFFFF |
| Number of registers    | 2             | 1–125         |

## 6.3.3.2 Frame Format of a Normal Response from a Slave Node

| Data Field      | Length (Byte) | Description |
|-----------------|---------------|-------------|
| Function code   | 1             | 0x03        |
| Number of bytes | 1             | 2 x N       |
| Register value  | 2 x N         | N/A         |

**◯** NOTE

N refers to the number of registers.

## 6.3.3.3 Frame Format of an Abnormal Response from a Slave Node

| Data Field     | Length (Byte) | Description                       |
|----------------|---------------|-----------------------------------|
| Function code  | 1             | 0x83                              |
| Exception code | 1             | See 6.3.2 Exception<br>Code List. |

## 6.3.3.4 Examples

This section takes the Modbus-TCP communications frames as an example. The differences between Modbus-RTU and Modbus-TCP lie in the additional address field and the CRC. Pay attention to the differences when using the Modbus-RTU frames. This also works for the follow-up examples.

The master node sends a query request (register address: 32306/0X7E32) to the slave node (logical device ID: 00).

| Description   |                     | Frame Data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 06         |
|               | Logical device ID   | 00         |
| Function code |                     | 03         |
| Data          | Register address    | 7E         |
|               |                     | 32         |
|               | Number of registers | 00         |
|               |                     | 02         |

Normal response from the slave node

| Description   |                     | Frame Data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 07         |
|               | Logical device ID   | 00         |
| Function code |                     | 03         |
| Data          | Number of bytes     | 04         |

| Description |               | Frame Data |
|-------------|---------------|------------|
|             | Register data | 00         |
|             |               | 00         |
|             |               | 00         |
|             |               | 01         |

## Abnormal response from the slave node

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 03         |
|               | Logical device ID   | 00         |
| Function code |                     | 83         |
| Data          | Error code          | 03         |

# 6.3.4 Writing a Single Register (0x06)

## 6.3.4.1 Frame Format of a Request from a Master Node

| Data Field       | Length (Byte) | Description   |
|------------------|---------------|---------------|
| Function code    | 1             | 0x06          |
| Register address | 2             | 0x0000-0xFFFF |
| Register value   | 2             | 0x0000-0xFFFF |

# 6.3.4.2 Frame Format of a Normal Response from a Slave Node

| Data Field    | Length (Byte) | Description |
|---------------|---------------|-------------|
| Function code | 1             | 0x06        |

| Data Field       | Length (Byte) | Description   |
|------------------|---------------|---------------|
| Register address | 2             | 0x0000-0xFFFF |
| Register value   | 2             | 0x0000-0xFFFF |

## 6.3.4.3 Frame Format of an Abnormal Response from a Slave Node

| Data Field     | Length (Byte) | Description                    |
|----------------|---------------|--------------------------------|
| Function code  | 1             | 0x86                           |
| Exception code | 1             | See 6.3.2 Exception Code List. |

## 6.3.4.4 Examples

A master node sends a command (register address: 40200/0X9D08) to a slave node (address: 00).

| Description   |                     | Frame data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 06         |
|               | Logical device ID   | 00         |
| Function code |                     | 06         |
| Data          | Register address    | 9D         |
|               |                     | 08         |
|               | Register data       | 00         |
|               |                     | 00         |

Normal response from the slave node

| Description |                     | Frame Data |
|-------------|---------------------|------------|
| MBAP header | Protocol identifier | 00         |

| Description   |                   | Frame Data |
|---------------|-------------------|------------|
|               |                   | 01         |
|               | Protocol type     | 00         |
|               |                   | 00         |
|               | Data length       | 00         |
|               |                   | 06         |
|               | Logical device ID | 00         |
| Function code |                   | 06         |
| Data          | Register address  | 9D         |
|               |                   | 08         |
|               | Register data     | 00         |
|               |                   | 00         |

## Abnormal response from the slave node

| Description   |                     | Frame Data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 03         |
|               | Logical device ID   | 00         |
| Function code |                     | 86         |
| Data          | Error code          | 04         |

# 6.3.5 Writing Multiple Registers (0x10)

# 6.3.5.1 Frame Format of a Request from a Master Node

| Data Field    | Length (Byte) | Description |
|---------------|---------------|-------------|
| Function code | 1             | 0x10        |

| Data Field             | Length (Byte) | Description   |
|------------------------|---------------|---------------|
| Register start address | 2             | 0x0000-0xFFFF |
| Number of registers    | 2             | 0x0000-0x007b |
| Number of bytes        | 1             | 2 x N         |
| Register value         | 2 x N         | Value         |

#### **□** NOTE

N refers to the number of registers.

## 6.3.5.2 Frame Format of a Normal Response from a Slave Node

| Data Field          | Length (Byte) | Description   |
|---------------------|---------------|---------------|
| Function code       | 1             | 0x10          |
| Register address    | 2             | 0x0000-0xFFFF |
| Number of registers | 2             | 0x0000-0x007b |

## 6.3.5.3 Frame Format of an Abnormal Response from a Slave Node

| Data Field     | Length (Byte) | Description                    |
|----------------|---------------|--------------------------------|
| Function code  | 1             | 0x90                           |
| Exception code | 1             | See 6.3.2 Exception Code List. |

## **6.3.5.4 Examples**

The master node sets the register address 40118/0X9CB6 to 2 and the register address 40119/0X9CB7 to 50 for the slave node (address: 00). The request frame format is as follows.

| Description |                     | Frame Data |
|-------------|---------------------|------------|
| MBAP header | Protocol identifier | 00         |
|             |                     | 01         |
|             | Protocol type       | 00         |
|             |                     | 00         |
|             | Data length         | 00         |

| Description   |                     | Frame Data |
|---------------|---------------------|------------|
|               |                     | ОВ         |
|               | Logical device ID   | 00         |
| Function code |                     | 10         |
| Data          | Register address    | 9C         |
|               |                     | В6         |
|               | Number of registers | 00         |
|               |                     | 02         |
|               | Number of bytes     | 04         |
|               | Register data       | 00         |
|               |                     | 02         |
|               |                     | 00         |
|               |                     | 32         |

## Normal response from the slave node

| Description   |                     | Frame Data |
|---------------|---------------------|------------|
| MBAP header   | Protocol identifier | 00         |
|               |                     | 01         |
|               | Protocol type       | 00         |
|               |                     | 00         |
|               | Data length         | 00         |
|               |                     | 06         |
|               | Logical device ID   | 00         |
| Function code |                     | 10         |
| Data          | Register address    | 9C         |
|               |                     | В6         |
|               | Number of registers | 00         |
|               |                     | 02         |

Abnormal response from the slave node

| Description   | Frame Data          |    |
|---------------|---------------------|----|
| MBAP header   | Protocol identifier | 00 |
|               |                     | 01 |
|               | Protocol type       | 00 |
|               |                     | 00 |
|               | Data length         | 00 |
|               |                     | 03 |
|               | Logical device ID   | 00 |
| Function code | 90                  |    |
| Data          | Error code          | 04 |

# 6.3.6 Reading Device Identifiers (0x2B)

This command code allows reading identifiers and added packets that are relevant to the physical and function description of the remote devices.

Simulate the interface of the read device identifier as an address space. This address space consists of a set of addressable data elements. The data elements are objects to be read, and the object IDs determine these data elements.

A data element consists of three objects:

- 1. Basic device identifier: All objects of this type are mandatory, such as the vendor name, product code, and revision version.
- 2. Normal device identifier: Except basic data objects, the device provides additional and optional identifiers and data object description. Define all types of objects according to definitions in the standard, but the execution of this type of objects is optional.
- 3. Extended device identifier: In addition to the normal data objects, the device provides additional and optional identifiers and special data object description. All the data is related to the device.

**Table 6-5** Reading device identifiers

| Object ID | Object Name or Description | Туре                         | Mandatory<br>or Optional<br>(M/O) | Туре  |
|-----------|----------------------------|------------------------------|-----------------------------------|-------|
| 0x00      | Manufacturer<br>name       | ASCII<br>character<br>string | М                                 | Basic |
| 0x01      | Product code               | ASCII<br>character<br>string | М                                 |       |

| Object ID | Object Name<br>or<br>Description | Туре                         | Mandatory<br>or Optional<br>(M/O) | Туре      |
|-----------|----------------------------------|------------------------------|-----------------------------------|-----------|
| 0x02      | Main revision version            | ASCII<br>character<br>string | М                                 |           |
| 0x03-0x7F | -                                | -                            | -                                 | Normal    |
| 0x80-0xFF | -                                | -                            | -                                 | Expansion |

# **6.3.6.1 Command for Querying Device Identifiers**

**Table 6-6** Request frame format

| Data Field     | Length (Byte) | Description |
|----------------|---------------|-------------|
| Function code  | 1             | 0x2B        |
| MEI type       | 1             | 0x0E        |
| ReadDevId code | 1             | 01          |
| Object ID      | 1             | 0x00        |

**Table 6-7** Frame format for a normal response

| Data Field        |              | Length<br>(Byte) | Description |      |
|-------------------|--------------|------------------|-------------|------|
| Function code     |              |                  | 1           | 0x2B |
| MEI type          |              |                  | 1           | 0x0E |
| ReadDevId cod     | e            |                  | 1           | 01   |
| Consistency lev   | rel          |                  | 1           | 01   |
| More              |              |                  | 1           | -    |
| Next object ID    |              | 1                | -           |      |
| Number of objects |              | 1                | -           |      |
| Object list       | First object | Object ID        | 1           | 0x00 |
|                   |              | Object length    | 1           | N    |
|                   |              | Object value     | N           | -    |
|                   |              |                  |             |      |

Table 6-8 Object list

| Object ID | Object Name or<br>Description | Description                                    | Туре  |
|-----------|-------------------------------|------------------------------------------------|-------|
| 0x00      | Manufacturer<br>name          | HUAWEI                                         | Basic |
| 0x01      | Product code                  | SUN2000                                        |       |
| 0x02      | Main revision version         | ASCII character<br>string, software<br>version |       |

**Table 6-9** Frame format for an abnormal response

| Data Field     | Length (Byte) | Description                       |
|----------------|---------------|-----------------------------------|
| Function code  | 1             | 0xAB                              |
| Exception code | 1             | See 6.3.2 Exception<br>Code List. |

# 6.3.6.2 Command for Querying a Device List

Table 6-10 Request frame format

| Data Field     | Length (Byte) | Description |
|----------------|---------------|-------------|
| Function code  | 1             | 0x2B        |
| MEI type       | 1             | 0x0E        |
| ReadDevId code | 1             | 03          |
| Object ID      | 1 byte        | 0x87        |

**Table 6-11** Frame format for a normal response

| Data Field        | Length<br>(Byte) | Description |
|-------------------|------------------|-------------|
| Function code     | 1                | 0x2B        |
| MEI type          | 1                | 0x0E        |
| ReadDevId code    | 1                | 03          |
| Consistency level | 1                | 03          |
| More              | 1                | -           |

| Data Field     |                   | Length<br>(Byte) | Description |      |
|----------------|-------------------|------------------|-------------|------|
| Next object ID |                   | 1                | -           |      |
| Number of obje | Number of objects |                  | 1           | -    |
| Object list    | First object      | Object ID        | 1           | 0x87 |
|                |                   | Object length    | 1           | N    |
|                |                   | Object value     | N           | -    |
|                |                   |                  |             |      |

Table 6-12 Object list

| Object ID | Object Name                           | Туре                                                           | Description                                                                                                                             |
|-----------|---------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 0x80-0x86 | Reserved                              |                                                                | Returns a null<br>object with a<br>length of 0.                                                                                         |
| 0x87      | Number of devices                     | int                                                            | Returns the<br>number of devices<br>connected to the<br>RS485 address.                                                                  |
| 0x88      | Description about<br>the first device | ASCII character string See the device description definitions. | Returns only<br>description about<br>the first device if<br>a NE allows only<br>one device to be<br>connected to each<br>RS485 address. |
| 0x8A      | Description about the second device   | -                                                              | -                                                                                                                                       |
| -         | -                                     | -                                                              | -                                                                                                                                       |
| 0xFF      | Description about the 120th device    | -                                                              | -                                                                                                                                       |

## **6.3.6.3 Device Description Definition**

Each device description consists of all "attribute=value" character strings.

"Attribute ID=%s;attribute ID=%s;... attribute ID=%s"

For example: "1=SUN2000MA-XXKTL;2=V100R001C00SPC100;3=P1.0-D5.0;4=123232323;5=1;6=1.1"

Table 6-13 Attribute definition

| Attribut<br>e ID | Name                     | Туре                         | Description                                                                                       |
|------------------|--------------------------|------------------------------|---------------------------------------------------------------------------------------------------|
| 1                | Device model             | ASCII<br>character<br>string | SUN2000                                                                                           |
| 2                | Device software version  | ASCII<br>character<br>string | -                                                                                                 |
| 3                | Port protocol<br>version | ASCII<br>character<br>string | See the interface protocol version definitions.                                                   |
| 4                | ESN                      | ASCII<br>character<br>string | -                                                                                                 |
| 5                | Device ID                | int                          | 0, 1, 2, 3(assigned by NEs; 0 indicates the master device into which the Modbus card is inserted) |
| 6                | Feature version          | ASCII<br>character<br>string | -                                                                                                 |

Table 6-14 Frame format for an abnormal response

| Data Field     | Length (Byte) | Description                       |
|----------------|---------------|-----------------------------------|
| Function code  | 1             | 0xAB                              |
| Exception code | 1             | See 6.3.2 Exception<br>Code List. |

# 6.3.7 Huawei-defined Functions (0x41)

# 6.3.7.1 Uploading Files

Uploading files means uploading them by stream data from a slave node to a master node. The following figure shows the file uploading process.



Figure 6-8 File uploading process

## 6.3.7.1.1 Starting the Upload

Frame format of a request from a master node

**Table 6-15** PDU data field of the request frame for starting upload (0x05)

| PDU<br>Data<br>Field     | Length<br>(Byte) | Description         |
|--------------------------|------------------|---------------------|
| Function code            | 1                | 0x41                |
| Sub-<br>function<br>code | 1                | 0x05                |
| Data<br>length           | 1                | 1 + N               |
| File type                | 1                | Unique ID of a file |
| Customi<br>zed data      | N                | -                   |

**Table 6-16** PDU data field of the response frame for starting upload (0x05)

| Data<br>Field            | Length<br>(Byte) | Description         |  |
|--------------------------|------------------|---------------------|--|
| Function code            | 1                | 0x41                |  |
| Sub-<br>function<br>code | 1                | 0x05                |  |
| Data<br>length           | 1                | 6 + N               |  |
| File type                | 1                | Unique ID of a file |  |
| File<br>length           | 4                | -                   |  |
| Data<br>frame<br>length  | 1                | -                   |  |
| Customi<br>zed data      | N                | -                   |  |

**Table 6-17** PDU data field in the abnormal response frame of the slave node

| PDU Data Field | Length<br>(Byte) | Description                    |
|----------------|------------------|--------------------------------|
| Error code     | 1                | 0xC1                           |
| Exception code | 1                | See 6.3.2 Exception Code List. |

#### **□** NOTE

If the exception code is 0x06, resend the request after 10 seconds. A request can be resent for no more than six times.

## 6.3.7.1.2 Uploading Data

**Table 6-18** Request frame for uploading data (0x06)

| PDU Data Field    | Length<br>(Byte) | Description |
|-------------------|------------------|-------------|
| Function code     | 1                | 0x41        |
| Sub-function code | 1                | 0x06        |
| Data length       | 1                | 3           |

| PDU Data Field | Length<br>(Byte) | Description         |
|----------------|------------------|---------------------|
| File type      | 1                | Unique ID of a file |
| Frame No.      | 2                | 0x0000-0xFFFF       |

**Table 6-19** Response frame for uploading data (0x06)

| PDU Data Field    | Length<br>(Byte) | Description   |
|-------------------|------------------|---------------|
| Function code     | 1                | 0x41          |
| Sub-function code | 1                | 0x06          |
| Data length       | 1                | 3 + N         |
| File type         | 1                | -             |
| Frame No.         | 2                | 0x0000-0xFFFF |
| Frame data        | N                | -             |

Table 6-20 Abnormal response frame for uploading data

| PDU Data Field | Length<br>(Byte) | Description                    |
|----------------|------------------|--------------------------------|
| Error code     | 1                | 0xC1                           |
| Exception code | 1                | See 6.3.2 Exception Code List. |

## 6.3.7.1.3 Completing the Data Upload

Table 6-21 Request frame for completing the data upload

| PDU Data Field    | Length<br>(Byte) | Description |
|-------------------|------------------|-------------|
| Function code     | 1                | 0x41        |
| Sub-function code | 1                | 0x0c        |
| Data length       | 1                | 1           |
| File type         | 1                | -           |

**Table 6-22** Response frame for completing the data upload

| PDU Data Field    | Length<br>(Byte) | Description |
|-------------------|------------------|-------------|
| Function code     | 1                | 0x41        |
| Sub-function code | 1                | 0x0c        |
| Data length       | 1                | 3           |
| File type         | 1                | -           |
| File CRC          | 2                | -           |

Table 6-23 Abnormal response frame for completing the data upload

| Data Field     | Length<br>(Byte) | Description                    |
|----------------|------------------|--------------------------------|
| Error code     | 1                | 0xC1                           |
| Exception code | 1                | See 6.3.2 Exception Code List. |

## 6.3.7.1.4 Timeout Processing

**Table 6-24** Processing specifications of sub-process timeout

| Name                                                 | Restraints |
|------------------------------------------------------|------------|
| Response timeout period for starting an upload       | 10s        |
| Response timeout period for uploading data           | 10s        |
| Number of times of resending a data upload command   | 6          |
| Response timeout period for completing a data upload | 10s        |