Embedding Techniques

MATRICES, TENSORS, AND NEURAL NETWORKS

Two Related Tasks

Two Related Tasks

Tensor Formulation of KG

Factorize that Tensor

Many Different Factorizations

CANDECOMP/PARAFAC-Decomposition

$$S(r(a,b)) = \sum_{k} R_{r,k} \cdot e_{a,k} \cdot e_{b,k}$$

Tucker2 and RESCAL Decompositions

$$S(r(a,b)) = (\mathbf{R}_r \times \mathbf{e}_a) \times \mathbf{e}_b$$

Model E

$$S(r(a,b)) = \mathbf{R}_{r,1} \cdot \mathbf{e}_a + \mathbf{R}_{r,2} \cdot \mathbf{e}_b$$

Translation Embeddings

TransE

$$S\left(r(a,b)\right) = -\|\mathbf{e}_a + \mathbf{R}_r - \mathbf{e}_b\|_2^2$$

Parameter Estimation: SGD

Training Objective

$$\theta = \underset{\theta}{\operatorname{argmax}} \sum_{r_{ab} \in \mathcal{P}} \sum_{r'_{a'b'} \in \mathcal{N}} \mathcal{L}()$$

Distance

$$\mathcal{L}(x,y) = -\|x - y\|_{2}^{2}$$

Likelihood

$$\mathcal{L}(x,y) = p(x)^{p(y)} (1 - p(x))^{(1-p(y))}$$

Stochastic Gradient Descent

Negative Sampling ...

Two Related Tasks

Relation Extraction as a Matrix

Sanders was born in Brooklyn, to Dorothy and Eli Sanders.

	Was born in Was born to Was born to	DUE	birthplaces	4 thospoods
Bernie Sanders, Brooklyn	1		?	
Bernie Sanders, Dorothy Sanders	1			
Bernie Sanders, Eli Sanders	1			
Dorothy Sanders, Eli Sanders		1		?
Barack Obama, Hawaii	1		1	
Barack Obama, Michelle Obama		1		1
			•	

Matrix Factorization

Training

Loss Function:
$$\max_{\mathbf{v},\mathbf{w}} \log \prod_{x,y,r} \exp \langle \mathbf{v}^{x,y}, \mathbf{w}_r \rangle - \lambda(||\mathbf{v}||_2^2 + ||\mathbf{w}||_2^2)$$

Desiderata from the training algorithm:

- Do not instantiate the whole matrix!
- Do not hold all the observed cells in memory
- Each iteration linear in the no. of observations

Solution: Stochastic Gradient Descent!

Stochastic Gradient Descent

Pick an observed cell, $\theta_{x,y}^r$:

 $^{\circ}$ Update $\mathbf{v}^{x,y}$ & \mathbf{w}^r such that $\; heta^r_{x,y}$ is higher

Pick any random cell, assume it is negative:

Update $\mathbf{v}^{x,y}$ & \mathbf{w}^r such that $\theta^r_{x,y}$ is lower

Relation Embeddings

 $\mathbf{r}_{ ext{is-native-of}} \ \mathbf{r}_{ ext{bornIn}} \ \mathbf{p}_{ ext{Barack,USA}}$

 $\mathbf{r}_{\mathrm{livedIn}}$

 $\mathbf{p}_{ ext{Barack,Michelle}} \ \mathbf{p}_{ ext{George,Laura}}^{\mathbf{r}_{ ext{spouse}}}$

Embeddings ~ Logical Relations

Relation embeddings, w

- Similar embedding for 2 relations denote they are paraphrases
 - is married to, spouseOf(X,Y), /person/spouse
- One embedding can be contained by another
 - w(topEmployeeOf) ⊂ w(employeeOf)
 - topEmployeeOf(X,Y) \rightarrow employeeOf(X,Y)
- Can capture logical patterns, without needing to specify them!

Entity Pair embeddings, v

- similar entity pairs denote similar relations between them
- entity pairs may describe multiple "relations"
 - independent foundedBy and employeeOf relations

Similar Embeddings

similar underlying embedding

		X own percentage of Y	X buy stake in Y	
similar embedding	Time, Inc Amer. Tel. and Comm.	1	1	
	Volvo Scania A.B.		1	
	Campeau Federated Dept Stores			
	Apple HP			

Successfully predicts "Volvo owns percentage of Scania A.B." from "Volvo bought a stake in Scania A.B."

Implications

X historian at Y \rightarrow X professor at Y

X professor at Y X historian at Y

Kevin Boyle Ohio State

1

R. Freeman Harvard

(Freeman, Harvard)
 → (Boyle, OhioState)

Learns asymmetric entailment:

PER historian at UNIV → PER professor at UNIV But,

PER professor at UNIV → PER historian at UNIV

Matrix vs Tensor Factorization

- No encoding of type information
- Can only predict for entity pairs that appear in text together
- Sufficient evidence has to be seen for each entity pair
- Assume low-rank for pairs
- But many relations are not!
- Spouse: you can have only ~1
- Cannot learn pair specific information

What they can, and can't, do..

- Red: deterministically implied by Black
 - needs pair-specific embedding
 - Only **F** is able to generalize
- Green: needs to estimate entity types
 - needs entity-specific embedding
 - Tensor factorization generalizes, **F** doesn't
- Blue: implied by Red and Green
 - Nothing works much better than random

Composing Dependency Paths

But we don't need linked data to know they mean similar things...

Use neural networks to produce the embeddings from text!

Composing Relational Paths

Review: Embedding Techniques

- Two Related Tasks:
 - Relation Extraction from Text
 - Graph (or Link) Completion
- Graph Completion:
 - Tensor Factorization Approaches
- Relation Extraction:
 - Matrix Factorization Approaches
- Joint Models
- Compositional Neural Network Models
 - Compose over dependency paths
 - Compose over relation paths

Tutorial Overview

Part 1: Knowledge Graphs

Part 4: Critical Analysis