Chapitre 17

Dimension finie

Définition: Soit E un \mathbb{K} -espace vectoriel. On dit que E est de <u>dimension finie</u> si E a au moins une famille génératrice finie. On dit que E est de <u>dimension infinie</u> sinon.

Théorème (Théorème de la base extraite): Soit E un \mathbb{K} -espace vectoriel non nul de dimension finie. Soit \mathscr{G} une famille génératrice finie de E. Alors, il existe une base \mathscr{B} de \mathscr{E} telle que $\mathscr{B} \subset \mathscr{G}$.

Corollaire: Tout espace de dimension finie a une base.

Théorème (Théorème de la base incomplète): Soit E un \mathbb{K} -espace vectoriel de dimension finie, \mathscr{G} une famille génératrice finie de E. \mathscr{L} une famille libre de E. Alors, il existe une base \mathscr{B} de E telle que

$$\mathcal{L} \subset \mathcal{B}$$
 et $\mathcal{B} \setminus \mathcal{L} \subset \mathcal{G}$

Théorème: Soit E un \mathbb{K} -espace vectoriel de dimension finie. Toutes les bases de E ont le même cardinal.

Lemme: Soient \mathscr{B} et \mathscr{B}' deux bases de E telles que $\mathscr{B} \subset \mathscr{B}'$. Alors, $\mathscr{B} = \mathscr{B}'$.

Lemme (Lemme d'échange): Soient \mathcal{B}_1 et \mathcal{B}_2 deux bases de E et $u \in \mathcal{B}_1 \setminus \mathcal{B}_2$. Alors, il existe $v \in \mathcal{B}_2$ tel que $(\mathcal{B}_1 \setminus \{u\}) \cup \{v\}$ soit une base de E.

Définition: Soit E un \mathbb{K} -espace vectoriel de dimension finie. Le cardinal commun à toutes les bases de E est appelé <u>dimension</u> de E est notée $\dim(E)$ ou $\dim_{\mathbb{K}}(E)$ C'est donc aussi le nombre de coordonnées de n'importe quel vecteur dans n'importe quelle base.

Corollaire: Soit E un \mathbb{K} -espace vectoriel de dimension finie, \mathscr{L} une famille libre de E, \mathscr{G} une famille génératrice de E. On note $n=\dim(E)$

- 1. $\#\mathscr{G} \geqslant n$ et $(\#\mathscr{G} = n \implies \mathscr{G}$ est une base de E)
- 2. $\#\mathscr{L}\leqslant n$ et $(\#\mathscr{L}=n\implies\mathscr{L}$ est une base de E)

Corollaire: $\mathbb{R}^{\mathbb{R}}$ est de dimension infinie. $\forall i \in \mathbb{N}, e_i : x \mapsto x^i$ $(e_i)_{i \in \mathbb{N}}$ est libre dans $\mathbb{R}^{\mathbb{R}}$

Proposition: Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie. Alors $E \times F$ est de dimension finie et $\dim(E \times F) = \dim(E) + \dim(F)$

Remarque (Convention):

$$\dim\left(\left\{0_E\right\}\right) = 0$$

Théorème: Soit E un \mathbb{K} -espace vectoriel de dimension finie, F un sous-espace vectoriel de E. Alors, F est de dimension finie et $\dim(F) \leq \dim(E)$ Si $\dim(F) = \dim(E)$, alors F = E

Proposition (Formule de Grassmann): Soit E un \mathbb{K} -espace vectoriel de dimension finie, F et G deux sous-espace vectoriels de E. Alors,

$$\dim(F+G) = \dim(F) + \dim(G) - \dim(F \cap G)$$

Corollaire: Avec les hypothèse précédentes,

$$E = F \oplus G \iff \begin{cases} F \cap G = \{0_E\} \\ \dim(E) = \dim(F) + \dim(G) \end{cases}$$

Proposition: Soit F un \mathbb{K} -espace vectoriel de dimension finie n. Soit $\mathscr{B}=(e_1,\ldots,e_n)$ une base de F. L'application

$$f: \mathbb{K}^n \longrightarrow F$$

$$(\lambda_1, \dots, \lambda_n) \longmapsto \sum_{i=1}^n \lambda_i e_i$$

est bijective.

Si \mathbb{K} est infini, \mathbb{K}^n aussi et donc F aussi.

Si $\#\mathbb{K} = p \in \mathbb{N}_*$,

$$#\mathbb{K}^n = p^n$$

$$\parallel$$

$$#F$$

2