

<u>Gameboard</u>

Maths

Arithmetic Series 3i

Arithmetic Series 3i

A sequence $u_1, u_2, u_3, ...$ is defined by

$$u_1 = 8$$
 and $u_{n+1} = u_n + 3$.

Part A u_5

Find u_5 .

The following symbols may be useful: u_5

Part B Terms in the sequence

The $n^{
m th}$ term of the sequence can be written in the form $u_n=pn+q$. State the values of p and q.

$$p =$$

$$q = \bigcap$$

Part C Type of sequence

What type of sequence is it?

- Arithmetic progression
- Geometric progression
- Periodic sequence

Find the value of
$$N$$
 such that $\sum\limits_{n=1}^{2N}u_n-\sum\limits_{n=1}^{N}u_n=1256.$

The following symbols may be useful: N

Used with permission from UCLES A-level Maths papers, 2003-2017.

<u>Gameboard</u>

Maths

Geometric Series 5i

Geometric Series 5i

Part A	V	alu	۵ ۵	f k
Pari F	V	alu	e u	1 N

The	first term of a	ı geometric	progression	is 50 and	d the	common	ratio is 0.	.8. Use	logarithms	to f	ind the
sma	llest value of	k such that	the $k^{ m th}$ term	n is less t	han 0	.15.					

The following symbols may be useful: k

Part B Common ratio and first term

In a different geometric progression, the second term is -3 and the sum to infinity is 4. Find the common ratio. Hence, find the first term.

Enter your answers below. If a value is not a whole number, enter the value as a decimal.

first term =

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)

Revision

<u>Gameboard</u>

Maths

Binomial: All Rational n 1i

Binomial: All Rational n 1i

Part A Partial Fractions

Given that
$$\dfrac{3x+4}{(1+x)(2+x)^2}\equiv\dfrac{A}{1+x}+\dfrac{B}{2+x}+\dfrac{C}{(2+x)^2},$$
 find $A,B,$ and $C.$

If a value is not a whole number, enter the value as a decimal.

$$A = \bigcap$$

$$B = \bigcap$$

$$C = \bigcap$$

Part B Expand

Hence or otherwise expand $\frac{3x+4}{(1+x)(2+x)^2}$ in ascending powers of x, up to and including the term in x^2 .

The following symbols may be useful: x

$\textbf{Part C} \qquad \textbf{Values of } x$

State the set of values of \boldsymbol{x} for which the expansion in the above part is valid.

Construct your answer from the items below.

Items:

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)

Revision

<u>Gameboard</u>

Maths

Circles 4i

Circles 4i

A circle with centre C has the equation $x^2 + y^2 - 10x + 4y + 4 = 0$.

Part A Find the coordinates of C

By completing the square for x and y find the coordinates of C.

Enter the x and y coordinates below. If a value is not a whole number, enter the value as a decimal.

Part B Find radius

Find the radius of the circle.

Part C Find tangent

Find the equation of the tangent to the circle at the point P(8,2). Give your answer in the form ax + by + c = 0, where a, b, and c are integers.

The following symbols may be useful: x, y

Part D Find area

The circle meets the y axis at Q and the tangent to the circle at P (as in part C) meets the y axis at R. Find the area of triangle PQR.

Used with permission from UCLES, A level, June 2015, Paper 4721, Question 10.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)

Revision

12/02/2025, 09:09

<u>Gameboard</u>

Maths

Modulus 1i

Modulus 1i

Part A Transformations

Which two of the transformations described below are needed to transform the graph of $y=\left x\right $ to the graph
of $y=ig 2(x+3)ig $?

- A translation by 3 units in the negative x direction.
- A stretch parallel to the y-axis with scale factor 2.
- A translation by 3 units in the positive x direction.
- A stretch parallel to the x-axis with scale factor 2.
- A translation by 6 units in the negative x direction.
- A stretch parallel to the y-axis with scale factor 3.

Part B Inequality

Solve the inequality $\left|x\right| > \left|2(x+3)\right|$, and give the upper bound for the solution in the form x < a or $x \le a$.

The following symbols may be useful: $\langle , \langle =, \rangle, \rangle =$, x

Give the lower bound for the solution in the form x > a or $x \ge a$.

The following symbols may be useful: <, <=, >, >=, x

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)

Revision

<u>Gameboard</u>

Maths

Functions: Reciprocal Trig 3i

Functions: Reciprocal Trig 3i

It is given that θ is the acute angle such that $\sec\theta\sin\theta=36\cot\theta$.

Part A Value of $\tan \theta$

Find $\tan \theta$.

The following symbols may be useful: cos(), sin(), tan(), theta

Part B Value of $an{(\theta-\frac{\pi}{4})}$

Hence, using an appropriate formula, find the exact value of $\tan{(\theta - \frac{\pi}{4})}$.

The following symbols may be useful: pi, theta

Part C Value of $an{(2\theta)}$

Using an appropriate formula, find the exact value of $\tan{(2\theta)}$.

The following symbols may be useful: theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)

Revision

<u>Gameboard</u>

Maths

Trigonometry: Double Angles 2i

Trigonometry: Double Angles 2i

Part A Proof

Simplify $\sin{(2\theta)} \big(\tan{\theta} + \cot{\theta} \big)$ as far as possible.

The following symbols may be useful: theta

Part B Exact Value

Hence find the exact value of $\tan \frac{\pi}{12} + \tan \frac{\pi}{8} + \cot \frac{\pi}{12} + \cot \frac{\pi}{8}$.

Part C Solve

Using your answer to part A, solve the equation $\sin{(4\theta)} \left(\tan{\theta} + \cot{\theta}\right) = 1$ for $0 < \theta < \frac{\pi}{2}$, to three significant figures, giving your answer in **radians**.

Part D
$$\left(1-\cos\left(2 heta
ight)
ight)^2 \left(anrac{ heta}{2}+\cotrac{ heta}{2}
ight)^3$$

Using you answer to part A, express $\left(1-\cos\left(2\theta\right)\right)^2\left(\tan\frac{\theta}{2}+\cot\frac{\theta}{2}\right)^3$ in terms of $\sin\theta$.

The following symbols may be useful: theta

Used with permission from UCLES A-level Maths papers, 2003-2017.

Gameboard:

STEM SMART Single Maths 46 - Pure (non-calculus)
Revision

<u>Home</u> <u>Gameboard</u> Maths Functions Graph Sketching Sketching Inverse Trigonometric Functions 2

Sketching Inverse Trigonometric Functions 2

Part A Sketch $\arccos{(x-1)}-1$

Sketch the graph of $y = \arccos(x - 1) - 1$.

Part B Sketch $\frac{\pi}{2} - 2 \arctan x$

Sketch the graph of $y = \frac{\pi}{2} - 2 \arctan x$.

Part C Sketch $rcsin{(2x-1)-rac{\pi}{2}}$

Sketch the graph of $y=rcsin{(2x-1)-rac{\pi}{2}}$.

Created for isaacphysics.org by Matthew Rihan