

Thermo

Prof. Dr.-Ing. habil. Jadran Vrabec Fachgebiet Thermodynamik Fakultät III – Prozesswissenschaften

Aufgabe 15.1

Eine Kompressionswärmepumpe wird zur Heizung eines Hauses eingesetzt. Dabei wird zunächst bei $T_1 = 273\,\mathrm{K}$ isotherm, isobar Wärme aufgenommen. Anschließend wird das Arbeitsmedium R134a in einem adiabaten Verdichter komprimiert. Durch Kondensation des Arbeitsmediums wird später Wärme bei $T_3 = 305\,\mathrm{K}$ isobar an den Heizkreislauf abgegeben. Anschließend durchläuft das Arbeitsmedium eine adiabate Drossel. (3) \rightarrow 4). Die Umgebungstemperatur beträgt $T_a = 280\,\mathrm{K}$.

- a) Skizzieren Sie den Prozess in einem $\lg p, h$ Diagramm und einem T, s Diagramm.
- b) Welches Druckverhältnis liegt zwischen Kondensator- und Verdampferdruck vor?
- c) Welche Leistungszahl ergibt sich, wenn der Kompressor adiabat mit einem Wirkungsgrad von $\eta_{s,v} = 0.85$ arbeitet?
- d) Berechnen Sie den spezifischen Exergieverlust
 - i) bei der Kompression
 - ii) bei der Drosselung
 - iii) bei der Wärmeaufnahme im Verdampfer der Wärmepumpe

Die Temperatur des Grundwassers, dem die Wärme entnommen wird, beträgt im Mittel $T_{\rm a*}=278\,{\rm K}.$

- e) Wie groß ist der exergetische Wirkungsgrad
 - i) bezogen auf den Prozess
 - ii) bezogen auf die Raumtemperatur $T_{\rm R} = 20\,^{\circ}{\rm C}$?
- f) Wie groß ist die benötigte Antriebsleistung, wenn die Heizwärme proportional zur Temperaturdifferenz zur Umgebungstemperatur ist, $\dot{Q}_{\rm c} = (T_{\rm R} T_{\rm a}) \cdot 0.3 \, {\rm kW/K}$ und der Kondensator ideal wärmeisoliert ist. Raumtemperatur $T_{\rm R} = 20 \, {\rm ^{\circ}C}$.

Stoffdaten für R134a:

zweiphasiger Zustand:

-					
T[K]	p_s [MPa]	h' [kJ/kg]	h'' [kJ/kg]	s' [kJ/(kg K)]	s'' [kJ/(kg K)]
273	0.2912	199.8	398.52	0.999	1.727
305	0.8120	244.4	415.71	1.152	1.714

einphasiger Zustand:

T[K]	p_s [MPa]	h [kJ/kg]	s [kJ/(kg K)]
308.83	0.8120	419.79	1.727
312.40	0.8120	423.55	1.739