Data table

Field	Description
MessageId	Unique identifier [primary key]
Message	Cyphertext

Index table

Field	Description
KeywordRefld	Unique identifier [primary key]
MessageId	A reference to Data.MessageId [foreign key]
KeywordHash	SHA256(H'(kw _i)) Keyword hash as defined by LSABE-MA algorithm [indexed]

Let I1 be the number of keywords for the message as defined in the paragraph D.2 of section V. Construction of LSABE-MA

For each message there will be l₁ records in the index table – one per keyword defined for this message

Extension for Encryption

(Item 4 of Paragraph D.2 of section V. Construction of LSABE-MA)

When cyphertext is outsourced to the cloud it is extended with blind indexes SHA256(H'(kw_i)), i =0..l₁-1

Prelude for Search

(Paragraph E of section V. Construction of LSABE-MA)

The search request is extended with blind indexes $SHA256(H'(kw_i))$, j =0..l₂-1

Search algorithm

```
Set of data records: S
Set of index records: R
Integer: j
S = IndexTable
j=0
while (number of records in S is greater than 1) and (j is less than I_2)
R = subset of IndexTable such that (R.KeywordHash is equal to SHA256(H'(kw_j)))
S = subset of S such that (S.MessageId is equal to one of R.MessageId)
j = j+1
```

if (number of records in S is greater than 1) is 0 then no records match give keyword set else trapdoor method is applied to all records in S

If binary search is used complexity of that search would be O(K * log (M)) where K is the number of keywords and M is the number of messages in the storage