Programowanie narzędzi analitycznych Z02

Rafał Woźniak

Faculty of Economic Sciences, University of Warsaw

Warszawa, 14-10-2021

Testowanie hipotez statystycznych

Schemat testowania hipotez statystycznych

- $oldsymbol{0}$ policzyć statystykę testową t_{test}
- przy prawdziwości H₀ statystyka testowa ma pewien znany rozkład
- \odot obszar krytyczny K zależny od hipotezy alternatywnej H_1
- ullet jeżeli $t_{test} \in K$, to dane są mało prawdopodobne
- ullet mało prawdopodobne dane mogą być podstawą do odrzucenia H_0

Testowanie hipotez - przykład

- X_1, X_2, \dots, X_n jest próbą losową z rozkładu normalnego $N(\mu, 1^2)$
- Hipoteza zerowa: H_0 : $\mu=\mu_0$
- ullet Statystyka testowa: $U=rac{ar{X}-\mu_0}{\sigma}\sqrt{n}$ przy prawdziwej H_0 ma rozkład N(0,1)
- Alternatywa:

$$H_1: \mu \neq \mu_0 \Rightarrow K_1 = \left(-\infty, -u(1-\frac{\alpha}{2})\right) \cup \left(u(1-\frac{\alpha}{2}), +\infty\right)$$

- ${X_1, \dots, X_5} = {-0.6256417; -2.3999373; -0.2979613; -1.5966765; 1.3804601}$
- $H_0: \mu = 0, U_{test} = -1.583027$
- $K = (-\infty, -1.96)) \cup (1.96, +\infty)$
- $U_{test} \notin K$

Wartości krytyczne

- Odczytywanie z tablic statystycznych
- Wykorzystanie funkcji programu R
- Tablica z PNA_Polecenia_Z02.pdf

Rozkład	Kwantyl	Gęstość	
Normalny	q norm(p, mean, sd)	d norm(x,mean, sd)	
Beta	q beta(p, s1, s2)	d beta(x, s1, s2)	
χ_n^2	q chisq(p, df)	dchisq(x, df)	
Wykładniczy	q exp(p, rate)	\mathbf{d} exp(x, rate)	
t-Studenta	$\mathbf{q}t(p, df)$	$\mathbf{d}t(x, df)$	
Jednostajny(0,1)	qunif(p, min, max)	<pre>dunif(x, min, max)</pre>	
Gamma	q gamma(p, s, r)	\mathbf{d} gamma (x, s, r)	
F-Snedecora	qf(p, df1, df2)	$\mathbf{d}f(x, df1, df2)$	
Dwumianowy	\mathbf{q} binom(p, s, p)	\mathbf{d} binom(x, s, p)	
Poissona	q pois(p, lambda)	d pois(x, lambda)	

p-value (p-wartość)

- $H_0: \theta = \theta_0$ oraz α jest poziomem istotności
- Obszar krytyczny $K = \{T(X) > c_{\alpha}\}$
- ullet p-wartość jest równa $\mathbb{P}_{ heta_{ullet}}(T(X)>t_{test})$
- Wnioskowanie:
 - Jeśli p-wartość $< \alpha$, to H_0 odrzucamy.
 - Jeśli p-wartość> α , to nie ma podstaw do odrzucenia H_0 .
 - Źródło: A. Boratyńska, Wykłady ze statystyki matematycznej (II rok WNE), str. 84.

p-value (p-wartość)

- $H_0: \theta = \theta_0$ oraz α jest poziomem istotności
- Obszar krytyczny $K = \{T(X) > c_{\alpha}\}$
- p-wartość jest równa $\mathbb{P}_{\theta_{\mathbf{0}}}(T(X) > t_{test})$
- Wnioskowanie:
 - Jeśli p-wartość $< \alpha$, to H_0 odrzucamy.
 - Jeśli p-wartość> α , to nie ma podstaw do odrzucenia H_0 .
 - Žródło: A. Boratyńska, Wykłady ze statystyki matematycznej (II rok WNE), str. 84.

p-value a hipoteza alternatywna

- $H_1: \theta \neq \theta_0 \Rightarrow \text{p-value} = \mathbb{P}_{\theta_0}(T(X) > |t_{test}|)$
- $H_1: \theta < \theta_0 \Rightarrow \text{p-value} = \mathbb{P}_{\theta_0}(T(X) < t_{test})$
- $H_1: \theta > \theta_0 \Rightarrow \text{p-value} = \mathbb{P}_{\theta_0}(T(X) > t_{test})$

Programowanie w R

Bardzo proszę żeby osoby, które nie miały programowania zapoznały się i spróbowały uruchomić kody z:

- Przemysław Biecek, Przewodnik po pakiecie R, 2014, (link), strony 37-45.
- Mikołaj Rybiński, Krótkie wprowadzenie do R dla programistów, z elementami statystyki opisowej, (link), strony 30-34.

Cel zajęć

Podstawowe testy są zaprogramowane w R. Część zagadnień trzeba zapisać samemu.

Zadanie 1* (Zadanie 6.12)

Niech X_1,X_2,\ldots,X_n , n>1, będą niezależnymi zmiennymi losowymi o tym samym rozkładzie wykładniczym o gęstości

$$p_{\lambda}(x) = \lambda e^{\lambda x} \mathbb{1}_{[0,\infty)}(x),$$

 $\lambda>0$. Wiedząc, że zmienna losowa $T=2\lambda\sum_{i=1}^n X_i\sim\chi_{2n}^2$ wyznaczyć a,b tak, aby

$$P\{T < a\} = P\{T > b\} = \frac{\alpha}{2}.$$

Wyznaczyć na tej podstawie przedział ufności dla parametru λ na poziomie ufności $1-\alpha$.

Cel zajęć

Zadanie 2 (Modyfikacja zadania 7.5)

Niech x_1, x_2, \ldots, x_n będą wynikami n-elementowej próby losowej pobranej z populacji, w której cecha X ma rozkład jednostajny na przedziale $(0,\theta)$. Do weryfikacji hipotezy $H:\theta=\theta_0$ przy alternatywie $K:\theta>\theta_0$ zaproponowano test: gdy $\max(x_1,x_2,\ldots,x_n)=x_{n:n}\geq c$ hipotezę H odrzucamy na korzyść hipotezy K. Wykorzystując fakt, że statystyka $X_{n:n}$ ma rozkład o gęstości

$$f(z) = \begin{cases} \frac{n}{\theta^n} z^{n-1} & \text{gdy } z \in (0, \theta) \\ 0 & \text{w p.p.} \end{cases},$$

- a) wyznacz stałą c tak, aby rozmiar testu był równy 0,1
- b) dla realizacji 0.08436747 1.04285094 0.04980488 1.19777030 1.05726010 zweryfikuj hipotezę $H: \theta = \sqrt{2}$.

