First, we claim the problem is in NP. For consider any set of k of the functions f_{i_1}, \ldots, f_{i_k} . If q is the maximum number of "break-points" in the piecewise linear representation of any one of them, then $F = \max(f_{i_1}, \ldots, f_{i_k})$ has at most k^2q^2 break-points. Between each pair of break-points, we can compute the area under F by computing the area of a single trapezoid; thus we can compute the integral of F in polynomial time to verify a purported solution.

We now show how the Vertex Cover problem could be solved using an algorithm for this problem. Given an instance of Vertex Cover with graph G=(V,E) and bound k, we write $V=\{1,2,\ldots,n\}$ and $E=\{e_0,\ldots,e_{m-1}\}$. We construct a function f_i for each vertex i as follows. First, let t=2m-1, so each f_i will be defined over [0,2m-1]. If e_j is incident on i, we define $f_i(x)=1$ for $x\in[2j,2j+1]$; if e_j is not incident on i, we define $f_i(x)=0$ for $x\in[2j,2j+1]$. We also define $f_i(x)=\frac{1}{2}$ for each x of the form $2j+\frac{3}{2}$. Finally, to define $f_i(x)$ for $x\in[2j+1,2j+2]$ for an integer $j\in\{0,\ldots,m-2\}$, we simply connect $f_i(2j+1)$ to $f_i(2j+\frac{3}{2})$ to $f_i(2j+2)$ by straight lines.

Now, if there is a vertex cover of size k, then the pointwise maximum of these k functions has covers an area of 1 on each interval of the form [2j, 2j + 1] and an area of $\frac{3}{4}$ on each interval of the form [2j + 1, 2j + 2], for a total area of $B = m + \frac{3}{4}(m - 1)$. Conversely, any k functions that cover this much area must cover an area of 1 on each interval of the form [2j, 2j + 1], and so the corresponding nodes constitute a vertex cover of size k.

 $^{^{1}}$ ex561.283.906