7+

College of Computer and Information Sciences Computer Science Department CSC 281 Final -1^{st} Semester 2016/2017

Question 1	
Question 2	
Question 3	
Question 4	
Total	

Question 1 (10)

For each of the following statements, determine whether it is true or false. Write "true" or "false". Do not write "T", "t", "F" or "f".

	STATEMENT	True/False
(a)	\neg (A \land B) and (\neg A \land \neg B) are logically equivalent	False
(b)	$\neg \forall x \exists y \ (F(x,y) \rightarrow P(x))$ is logically equivalent to $\exists x \forall y \ \neg F(x,y) \lor P(x)$	False
(c)	The statement $(t \land q \land \neg q \land r) \rightarrow (\neg p \lor q \lor t \lor r)$ is a tautology	True
(d)	Given two sets A={1,2,3,4} and B={3}, B-A={1,2,4}	True
(e)	$\sum_{k=0}^{3} (3x2^k)$ is equal to 45	True
(f)	If f is the function from $\{a,b,c,d\}$ to $\{1,2,3\}$ defined by $f(a)=3$, $f(b)=2$, $f(c)=1$, and $f(d)=3$ then f is a bijection	False
(g)	If a≡b(mod m) and c≡d(mod m), then 2a+d≡2b+c(mod m) where m is a positive number	True
(h)	$2n^2+3n+1$ is $O(n^4)$	True
(i)	3 ⁴⁴³ mod 11 = 5	True
(j)	If a=b-3m, then a≡b(mod m), where m is a positive integer	True

Question 2 (10)

A) Solve the congruence $9x \equiv 15 \pmod{23}$ Hint use the inverse of 9 modulo 23. (5)

Let's first use Euclid's algorithm to find gcd(23, 9).

$$23 = 9(2) + 5$$

$$9 = 5(1) + 4$$

$$5 = 4(1) + \boxed{1} \longleftarrow \gcd(23, 9)$$

$$4 = 1(4) + 0$$

Using back substitution we obtain

$$1 = 5 - 4$$

$$= 5 - (9 - 5) = 5(2) - 9$$

$$= (23 - 9(2))(2) - 9 = 23(2) - 9(5)$$

The last equation implies that

$$9(-5) = 1 + 23(-2) \longrightarrow 9(-5) \equiv 1 \pmod{23}$$
.

We conclude that $x_0 = -5$ is an inverse of 9 modulo 23.

Multiplying equation (3) by 15 we obtain

$$9(-75) \equiv 15 \pmod{23}$$
.

Then, for any integer k, x = -75 + 23k are solutions of the linear congruence (2). The unique solution in $0 \le x < 23$ is

$$x = -75 \mod 23 = 17.$$

B) Prove that for every positive integer n,

$$1*2+2*3+3*4+\cdots+n(n+1)=n(n+1)(n+2)/3.$$
 (5)

Basis step: Let n = 1. Then

Left-hand side = 2

Right-hand side = 1(2)(3)/3 = 2

Inductive hypothesis: Assume that for some positive integer k

$$1*2+2*3+...+k(k+1)=k(k+1)(k+2)/3$$

Inductive step:

$$1 * 2 + 2 * 3 + ... + k (k+1) + (k+1) (k+2) = k (k+1) (k+2) / 3 + (k+1) (k+2)$$
$$= k (k+1) (k+2) / 3 + 3(k+1) (k+2) / 3$$

by taking (k+1)(k+2) as a common factor, then the above is equal to

(k+1)(k+2)(k+3)/3 = right-hand side done

Question 3 (10)

A) Use strong induction to show that every positive integer n can be written as a sum of distinct powers of two, that is, as a sum of a subset of the integers: $1 = 2^0$, $2 = 2^1$, $3 = (2^0 + 2^1)$, $4 = 2^2$ and so on.

[Hint: For the inductive step, separately consider the case where k+1 is even and where it is odd. When it is even, note that (k+1)/2 is an integer.] (5)

We will prove this statement using strong induction on n. Let n be a positive integer. We will prove that n can be written as the sum of distinct powers of 2. Let P(n) be the statement that we can write n as the sum of distinct powers of 2.

Base step: P(1) is true because $1 = 2^0$.

Inductive step: Assume for $1 \le j \le k$ for some integer k that P(k) is true. That is, assume we can write all integers from 1 to k as the sum of distinct powers of 2. We have two cases to consider.

Case 1: k is even. Then, k + 1 is odd. Now, by the inductive hypothesis, we have that k has an expansion

$$k = 2^{m1} + 2^{m2} + \ldots + 2^{mn}$$

where $m_1 > m_2 > ... > m_n$. (Note: we need to write it in general terms because we don't know which powers of 2 are needed for the integer. There is no reason that k would have to have 2 or 4 or any other particular power of 2 in it's expansion.). Notice that since k is even, there is no 2^0 in the expansion; so, from the expansion for k we add 2^0 to yield

$$k{+}1 = 2^{m1} + 2^{m2} + \ldots + 2^{mn} + 2^0$$

to give the expansion for k+1.

Case 2: k is odd. Then k + 1 is even. Since k + 1 is even, then $(k+1)/2 \in \mathbb{Z}$ and therefore by the inductive hypothesis, has an expansion consisting of the sum of distinct powers of 2. Let the expansion be

$$(k+1)/2 = 2^{m1} + 2^{m2} + \ldots + 2^{mn}$$

Then, we can multiply both sides by 2, yielding

$$2 (k+1)/2 = 2(2^{m1} + 2^{m2} + \dots + 2^{mn})$$

$$k+1 = 2^{m1+1} + 2^{m2+1} + \dots + 2^{mn+1}$$

which completes the inductive step. So, by strong induction, we have shown that if P(j) is true for $1 \le j \le k$, then P(k+1) is true as well.

B) How many strings of eight uppercase English letters are there? (5)

A	That contain no vowels, if letters can be repeated?(1)
	218
В	That contain no vowels, if letters cannot be repeated? (1)
	21*20*19*18*17*16*15*14
C	That start with a vowel, if letters can be repeated? (1)
	5*26 ⁷
D	That contain at least one vowel, if letters can be repeated? (1)
	26 ⁸ - 21 ⁸
E	That contain exactly one vowel, if letters can be repeated? (1)
	8 * 5 * 217

(Note: A, E, I, O and U are vowels)

Question 4 (10)

C) One hundred tickets, numbered 1, 2, 3... 100 are sold to 100 different people for a drawing. Four different prizes are awarded, including a grand prize (a trip to Tahiti). How many ways are there to award the prizes if (10)

A	There are no restrictions?
	100 * 99 * 98 * 97
В	The person holding ticket 47 wins the grand prize?
	99 * 98 * 97
C	The person holding ticket 47 wins one of the prizes?
	99 * 98 * 97 * 4
D	The manner helding 4 death 47 deans 4 min a min 2
D	The person holding ticket 47 does not win a prize? 99 * 98 * 97 * 96
	99 * 98 * 97 * 96
E	The people holding tickets 19 and 47 both win prizes?
	98 * 97 * C(4,2) * 2
F	The people holding tickets 19, 47, and 73 all win prizes?
	C(4,3) * 97 * 3!
G	The people holding tickets 19, 47, 73, and 97 all win prizes?
	4 * 3 * 2 * 1
**	NT 6/1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
H	None of the people holding tickets 19, 47, 73, and 97 wins a prize?
	96 * 95 * 94 * 93
I	The grand prize winner is a person holding ticket 19, 47, 73, or 97?
	4 * 99 * 98 * 97
J	The people holding tickets 19 and 47 win prizes, but the people holding tickets 73
	and 97 do not win prizes?
	96 * 95 * C(4,2) * 2