Spelling Correction and the Noisy Channel

The Spelling Correction Task

Applications for spelling correction

Word processing

Web search

Showing results for <u>natural language</u> processing Search instead for natural language processing

Phones

Spelling Tasks

- Spelling Error Detection
- Spelling Error Correction:
 - Autocorrect
 - hte → the
 - Suggest a correction
 - Suggestion lists

Types of spelling errors

- Non-word Errors 拼寫有漏字
 - $graffe \rightarrow giraffe$
- Real-word Errors
 - Typographical errors typo, 打錯字
 - three → there
 - Cognitive Errors (homophones)
 - piece → peace,
 - too → two

單字是對的,但是寫成另外一個字了

Rates of spelling errors

26%: Web queries Wang et al. 2003

13%: Retyping, no backspace: Whitelaw et al. English&German

7%: Words corrected retyping on phone-sized organizer

2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003

1-2%: Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Non-word spelling errors

- Non-word spelling error detection:
 - Any word not in a dictionary is an error
 - The larger the dictionary the better
- Non-word spelling error correction:
 - Generate candidates: real words that are similar to error
 - Choose the one which is best:
 - Shortest weighted edit distance
 - Highest noisy channel probability

Real word spelling errors

不用建dict,因為你打錯的字也在dict裡,所以沒用

- For each word w, generate candidate set:
 - Find candidate words with similar *pronunciations*
 - Find candidate words with similar spelling
 - Include w in candidate set
- Choose best candidate
 - Noisy Channel
 - Classifier

Spelling Correction and the Noisy Channel

The Spelling Correction Task

Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling

Noisy Channel Intuition

目標:建構出一個Noisy Channel 並且輸入所有可能的Original word抵達Noisy word 再從Noisy word回推到Original word 看看哪一個Original word是最有可能的

Noisy Channel

- We see an observation x of a misspelled word
- Find the correct word w 有一個拼錯的單字x 要找到最有可能的正確單字w

$$\hat{w} = \operatorname*{argmax}_{w \in V} P(w \mid x)$$

$$\operatorname{prior}$$
:
 $\operatorname{argmax} \frac{P(x \mid w)P(w)}{P(x)}$
正確單字是w的機率
 $w \in V$

Channel Model Language Model (Error Model)

History: Noisy channel for spelling proposed around 1990

IBM

 Mays, Eric, Fred J. Damerau and Robert L. Mercer. 1991.
 Context based spelling correction. Information Processing and Management, 23(5), 517–522

AT&T Bell Labs

 Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990. A spelling correction program based on a noisy channel model. Proceedings of COLING 1990, 205-210

Non-word spelling error example

acress

Candidate generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error

Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters

兩個字寫反

例如:address寫成addrses

Words within 1 of acress

Error	Candidate Correction	Correct Letter	Error Letter	Туре
acress	actress	t	-	deletion
acress	cress	_	a	insertion
acress	caress	ca	ac	transposition
acress	access	C	r	substitution
acress	across	0	е	substitution
acress	acres	_	S	insertion
acress	acres	_	s	insertion

Candidate generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

所以設計演算法只要考慮edit distance <=2 即可

- Also allow insertion of space or hyphen
 - thisidea → this idea
 - inlaw \rightarrow in-law

Language Model

- Use any of the language modeling algorithms we've learned
- Unigram, bigram, trigram
- Web-scale spelling correction
 - Stupid backoff

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

normalize by total number of words

word	Frequency of word	P(word)
actress	9,321	.0000230573
cress	220	.0000005442
caress	686	.0000016969
access	37,038	.0000916207
across	120,844	.0002989314
acres	12,874	.0000318463

Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990
- Misspelled word $x = x_1, x_2, x_3... x_m$
- Correct word $w = w_1, w_2, w_3, ..., w_n$
- P(x|w) = probability of the edit
 - (deletion/insertion/substitution/transposition)

Computing error probability: confusion

matrix

對每個x,y做統計

```
del[x,y]:
            count(xy typed as x)
```

ins[x,y]: count(x typed as xy)

sub[x,y]: count(x typed as y)

trans[x,y]: count(xy typed as yx)

Insertion and deletion conditioned on previous character

Confusion matrix for spelling errors 這是Substitution

sub[X, Y] = Substitution of X (incorrect) for Y (correct)

X											Y	(cor	rect))			•		,							
	a	ь	С	d	e	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	v	w	х	У	Z
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1_	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	-0	0	7	0	28	5	7	0	0	1	2	0	2
О	91	1	1	3	116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
S	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	1	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
x	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0
Z	0	0	0	7	0	0	0	0	0	0	0	7	5	0	0	0	0	2	21	3	0	0	0	0	3	0

例如:

e經常寫錯變成a m經常寫錯變成n

Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors

Channel model

Kernighan, Church, Gale 1990

$$P(x|w) = \begin{cases} \frac{\text{del}[w_{i-1}, w_i]}{\text{count}[w_{i-1}w_i]}, & \text{if deletion} \\ \frac{\text{ins}[w_{i-1}, x_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\ \frac{\text{sub}[x_i, w_i]}{\text{count}[w_i]}, & \text{if substitution} \\ \frac{\text{trans}[w_i, w_{i+1}]}{\text{count}[w_i w_{i+1}]}, & \text{if transposition} \end{cases}$$

₂₄ deletion發生的機率 :xy寫成x的次數 / xy的總次數

insertion發生的機率 : x寫成xy的次數 / x的總次數 substitution發生的機率 : x寫成y的次數 / y的總次數 transposition發生的機率: xy寫成yx的次數 / xy的總次數

Channel model for acress

x是錯的,w是對的

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)
actress	t	-	c ct	.000117
cress	_	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	С	r	r c	.000000209
across	0	е	e o	.0000093
acres	-	S	es e	.0000321
acres	-	S	ss s	.0000342

Noisy channel probability for acress

channel model language model

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	a	a #	.00000144	.00000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	_	S	es e	.0000321	.0000318	1.0
acres	_	S	ss s	.0000342	.0000318	1.0

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x word)	P(word)	10 ⁹ *P(x w)P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	_	a	a #	.00000144	.00000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	e	e o	.0000093	.000299	2.8
acres	_	S	es e	.0000321	.0000318	1.0
acres	_	s	ss s	.0000342	.0000318	1.0

Using a bigram language model

- "a stellar and versatile acress whose
- combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing bigram
- P(actress versatile)=.000021 P(whose actress) = .0010
- P(across versatile) = .000021 P(whose across) = .000006
- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

以這個例子來說,用bigram算出前後各一個字 可以發現actress為正解的機率較高

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = .0010
- P(across | versatile) = .000021 P(whose | across) = .000006
- P("versatile actress whose") = $.000021*.0010 = 210 \times 10^{-10}$
- P("versatile across whose") = $.000021*.000006 = 1 \times 10^{-10}$

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - Peter Norvig's list of errors (includes Wikipedia and Birkbeck, for training or testing)

Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction

Real-word spelling errors

- …leaving in about fifteen minuets to go to her house.
- The design an construction of the system...
- Can they lave him my messages?
- The study was conducted mainly be John Black.
- 25-40% of spelling errors are real words Kukich 1992

Solving real-world spelling errors

- For each word in sentence
 - Generate candidate set
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
- Choose best candidates
 - Noisy channel model
 - Task-specific classifier

Noisy channel for real-word spell correction

- Given a sentence w₁,w₂,w₃,...,w_n
- Generate a set of candidates for each word w_i
 - Candidate(w₁) = {w₁, w'₁, w''₁, w'''₁,...}
 - Candidate(w₂) = {w₂, w'₂, w''₂, w'''₂,...}
 - Candidate(\mathbf{w}_n) = { \mathbf{w}_n , $\mathbf{w'}_n$, $\mathbf{w''}_n$, $\mathbf{w'''}_n$,...}
- Choose the sequence W that maximizes P(W)

假設有一個句子: w1, w2, w3, ..., wn 我們要檢查該句子的每一個單字,找出所有可能的改寫 (改寫的edit distance通常<=2即可) 並看看有沒有比w1, w2, w3 ..., wn還要更好的排列順序 如果有的話,就代表原本的句子很可能拼錯了 就拿新的排列順序替換掉原本的句子

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Simplification: One error per sentence

Out of all possible sentences with one word replaced

```
• w_1, w''_2, w_3, w_4 two off thew
```

•
$$\mathbf{w'''}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4$$
 too of thew

• ...

Choose the sequence W that maximizes P(W)

找出最有可能的排列順序

Where to get the probabilities

- Language model
 - **Unigram**
 - Bigram
 - Etc
- Channel model
 - Same as for non-word spelling correction
 - Plus need probability for no error, P(w|w)

代表該字是正確的

Probability of no error

- What is the channel probability for a correctly typed word?
- P("the"|"the") Channel Model: p(x|w) x是寫錯的單字, w的正確的單字
- Obviously this depends on the application
 - .90 (1 error in 10 words)
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)
 - .995 (1 error in 200 words)

Peter Norvig's "thew" example

channel model language model

X	W	x w	 P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.00007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	ela	0.001	0.000007	0.7
thew	threw	h hr	0.000008	0.000004	0.03
thew	thwe	ew we	0.000003	0.0000004	0.0001

使用者寫thew時,他真正想寫的也是thew的機率有95% 也就是說,當使用者寫thew時,會有5%的機率是他打錯字

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction

Spelling Correction and the Noisy Channel

State-of-the-art
Systems

HCI issues in spelling

- If very confident in correction
 - Autocorrect
- Less confident
 - Give the best correction
- Less confident
 - Give a correction list
- Unconfident
- Just flag as an error

State of the art noisy channel

- We never just multiply the prior and the error model
- Independence assumptions > probabilities not commensurate
- Instead: Weigh them

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)^{\lambda}$$

Learn λ from a development test set

Phonetic error model

- Metaphone, used in GNU aspell
 - Convert misspelling to metaphone pronunciation
 - "Drop duplicate adjacent letters, except for C."
 - "If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter."
 - "Drop 'B' if after 'M' and if it is at the end of the word"
 - ...
 - Find words whose pronunciation is 1-2 edit distance from misspelling's
 - Score result list
 - Weighted edit distance of candidate to misspelling
 - Edit distance of candidate pronunciation to misspelling pronunciation

Improvements to channel model

- Allow richer edits (Brill and Moore 2000)
 - ent → ant

. 、 常見的字根錯誤

- ph→f
- le →al
- Incorporate pronunciation into channel (Toutanova and Moore 2002)

Channel model

- Factors that could influence p(misspelling|word)
 - The source letter
 - The target letter
 - Surrounding letters
 - The position in the word
 - Nearby keys on the keyboard
 - Homology on the keyboard
 - Pronunciations
 - Likely morpheme transformations

Nearby keys

Classifier-based methods for real-word spelling correction

- Instead of just channel model and language model
- Use many features in a classifier (next lecture).
- Build a classifier for a specific pair like:

whether/weather

- "cloudy" within +- 10 words
- ___ to VERB
- ___ or not

Spelling Correction and the Noisy Channel

Real-Word Spelling Correction