Econ 675 Assignment 1

Nathan Mather*

October 28, 2018

Contents

1	Que	estion 1: Non-linear Least Squares
	1.1	Q1 Part 1
	1.2	Q1 Part 2
	1.3	Q1 Part 3
	1.4	Q1 Part 4
	1.5	Q1 Part 5
	1.6	Q1 Part 6
	1.7	Q1 Part 7
	1.8	Q1 Part 8
	1.9	Q1 Part 9
2	0	antinu 2. Saminana ataia CMM mith Mininu Data
2	•	estion 2: Semiparametric GMM with Missing Data
	2.1	Q2 part 1
	2.2	Q2 part 2
3	Que	estion 3: When Bootstrap Fails
	3.1	Q3 part 1
	3.2	Q3 part 2
	3.3	O3 part 3

1 Question 1: Non-linear Least Squares

1.1 Q1 Part 1

The general non-linear least squares estimator is

$$\hat{\boldsymbol{\beta}}_n = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x_i'\beta}))^2$$

Now for $\beta_0 = \arg\min_{\beta \in \mathbb{R}^d} E[(y_i - \mu(x_i'\beta))^2]$ to be identifiable we need:

$$\beta_0 = \beta_0^*$$

^{*}Shouts out to Ani, Paul, Tyler, Erin, Caitlin and others for all the help with this

$$\iff \beta_0^* = \arg\min_{\beta \in \mathbb{R}^d} \mathrm{E}[(y_i - \mu(x_i'\beta))^2]$$

To find this start by noting that

$$E[(y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta}))^2] = E[(y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta}_0) + \mu(\mathbf{x}_i'\boldsymbol{\beta}_0) - \mu(\mathbf{x}_i'\boldsymbol{\beta}))^2]$$

$$= E[(y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta}_0))^2] + E[(\mu(\mathbf{x}_i'\boldsymbol{\beta}_0) - \mu(\mathbf{x}_i'\boldsymbol{\beta}))^2] + 2E[(y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta}_0))(\mu(\mathbf{x}_i'\boldsymbol{\beta}_0) - \mu(\mathbf{x}_i'\boldsymbol{\beta}))]$$

$$= E[(y_i - \mu(\mathbf{x}_i'\boldsymbol{\beta}_0))^2] + E[(\mu(\mathbf{x}_i'\boldsymbol{\beta}_0) - \mu(\mathbf{x}_i'\boldsymbol{\beta}))^2]$$

The last equality comes from the last term being zero by iterated expectations. I show this below.

$$E[(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))(\mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0) - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))] = E[E[(y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))(\mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0) - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))]|\boldsymbol{x}_i]$$

$$= \mathbb{E}[(\mathbb{E}[y_i|\boldsymbol{x}_i] - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))(\mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0) - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))] = 0$$

Using this fact we have that

$$E[(y_i - \mu(x_i'\beta))^2] = E[(y_i - \mu(x_i'\beta_0))^2] + E[(\mu(x_i'\beta_0) - \mu(x_i'\beta))^2] \ge E[(y_i - \mu(x_i'\beta_0))^2]$$

$$\forall \boldsymbol{\beta} \neq \boldsymbol{\beta}_0$$

This is strictly greater than unless $\exists \beta \neq \beta_0$ such that $E[(\mu(x_i'\beta_0) - \mu(x_i'\beta))^2] = 0$ Thus this give us an identification condition that $E[(\mu(x_i'\beta_0) - \mu(x_i'\beta))^2] \neq 0 \ \forall \beta \neq \beta_0$. This means that β_0 is the unique minimizer of $E[(y_i - \mu(x_i'\beta))^2]$

Next note that if $\mu(\cdot)$ is a linear function, β_0 is the coefficient of the best linear predictor and has the usual closed form $\beta_0 = \mathrm{E}[\boldsymbol{x}_i \boldsymbol{x}_i']^{-1} \mathrm{E}[\boldsymbol{x}_i \boldsymbol{y}_i]$

1.2 Q1 Part 2

In order to set this up as a Z estimator lets take a first order condition. This gives use the following condition.

$$E[(\mu(\mathbf{x}_i'\boldsymbol{\beta}_0) - \mu(\mathbf{x}_i'\boldsymbol{\beta}))\dot{\mu}(\mathbf{x}_i'\boldsymbol{\beta})\mathbf{x}_i] = 0$$

Now take the sample analog and let $m(z_i, \beta) = (y_i - \mu(x_i'\beta))\dot{\mu}(x_i'\beta)x_i$ where $z_i = (y_i, x_i')'$. We can write $\hat{\beta}_n$ as the Z-estimator that solves:

$$0 = \frac{1}{n} \sum_{i=1}^{n} m(\boldsymbol{z}_i, \hat{\boldsymbol{\beta}}_n)$$

Now assuming $\hat{\beta}_n \to \beta_0$ and regularity conditions we get the standard M estimation result.

$$\sqrt{n}(\hat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}_0) \rightarrow_d \mathcal{N}(0, \boldsymbol{H_0^{-1}} \boldsymbol{\Sigma_0} \boldsymbol{H_0^{-1}})$$

Were

$$\boldsymbol{H}_0 = \mathrm{E}\left[\frac{\partial}{\partial \boldsymbol{\beta}} m(\boldsymbol{z}_i, \boldsymbol{\beta}_0)\right] = \mathrm{E}[\dot{\mu}(\boldsymbol{x}_i' \boldsymbol{\beta}_0)^2 \boldsymbol{x}_i \boldsymbol{x}_i']$$

and

$$\Sigma_0 = V[m(z_i, \beta_0)] = E[\sigma^2(x_i)\dot{\mu}(x_i'\beta_o)^2x_ix_i']$$

1.3 Q1 Part 3

$$\hat{\mathbf{V}}_{n}^{HC} = \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{m}} \hat{\boldsymbol{m}}'\right)^{-1} \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{m}} \hat{\boldsymbol{m}}' \hat{e}_{i}^{2}\right) \left(\frac{1}{n} \sum_{i=1}^{n} \hat{\boldsymbol{m}} \hat{\boldsymbol{m}}'\right)^{-1}$$

where $\hat{\boldsymbol{m}} = \boldsymbol{m}_{\boldsymbol{\beta}}(\boldsymbol{z_i}, \hat{\boldsymbol{\beta}})$ and $hate = y_i - \boldsymbol{m}(\boldsymbol{z_i}, \hat{\boldsymbol{\beta}})$

Now by the delta method and letting $g(\beta) = ||\beta|| = \sum_{k=1}^{d} \beta_k^2$ we get

$$\sqrt{n}(g(\hat{\boldsymbol{\beta_n}}) - g(\boldsymbol{\beta_0})) \rightarrow_d \mathcal{N}(0, \dot{g}(\boldsymbol{\beta_0}) \boldsymbol{V_0} \dot{g}(\boldsymbol{\beta_0})')$$

where $\dot{g}(\beta_0) = \frac{d}{d\beta'}g(\beta) = 2\beta'$ Hence the confidence interval is given by

$$CI_{0.95} = \left[\|\hat{\beta}_n\|^2 - 1.96\sqrt{\frac{4\hat{\beta_n}'\hat{V}\hat{\beta_n}}{n}}, \|\hat{\beta}_n\|^2 + 1.96\sqrt{\frac{4\hat{\beta_n}'\hat{V}\hat{\beta_n}}{n}} \right]$$

1.4 Q1 Part 4

In this case we get $\Sigma_0 = \sigma^2 H_0$ and the asymptotic variance reduces to

$$V_0 = \sigma^2 \boldsymbol{H}_0^{-1} = \sigma^2 \mathrm{E}[\dot{\mu}(\boldsymbol{x}_i'\boldsymbol{\beta}_0)^2 \boldsymbol{x}_i \boldsymbol{x}_i']^{-1}$$

We can estimate variane using $\hat{\mathbf{V}} = \hat{\sigma}^2 \hat{\mathbf{H}}^{-1}$ where

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mu(\mathbf{x}_i' \hat{\beta}_n))^2$$

and

$$\hat{\boldsymbol{H}} = \frac{a}{n} \sum_{i=1}^{n} \dot{\mu} (\boldsymbol{x}_{i}' \boldsymbol{\beta}_{0})^{2} \boldsymbol{x}_{i} \boldsymbol{x}_{i}'$$

Which is consistent by the continuous mapping theorem. Now by the delta method and letting $g(\beta) = \|\beta\| = \sum_{k=1}^d \beta_k^2$ we get

$$\sqrt{n}(g(\hat{\boldsymbol{\beta_n}}) - g(\boldsymbol{\beta_0})) \rightarrow_d \mathcal{N}(0, \dot{g}(\boldsymbol{\beta_0}) \boldsymbol{V_0} \dot{g}(\boldsymbol{\beta_0})')$$

where $\dot{g}(\beta_0) = \frac{d}{d\beta'}g(\beta) = 2\beta'$ Hence the confidence interval is given by

$$CI_{0.95} = \left[\|\hat{\beta}_n\|^2 - 1.96\sqrt{\frac{4\hat{\beta_n}'\hat{\mathbf{V}}\hat{\beta_n}}{n}}, \|\hat{\beta}_n\|^2 + 1.96\sqrt{\frac{4\hat{\beta_n}'\hat{\mathbf{V}}\hat{\beta_n}}{n}} \right]$$

1.5 Q1 Part 5

The conditional likelihod function is

$$f_{y|x}(y_i|\boldsymbol{x}_i) = \frac{1}{(2\pi)^{n/2}\sigma^2} exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2\right)$$

with log likelihood

$$\ell_n(\boldsymbol{\beta}, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}))^2 - \frac{n}{2} \log(\sigma^2)$$

This gives us the following first order conditions

$$\frac{\partial}{\partial \boldsymbol{\beta}} \ell_n(\boldsymbol{\beta}, \sigma^2) = \frac{1}{\hat{\sigma}_{ML}^2} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i' \boldsymbol{\beta}_{ML})) \dot{\mu}(\boldsymbol{x}_i' \boldsymbol{\beta}_{ML}) \boldsymbol{x}_i = 0$$

$$\frac{\partial}{\partial \sigma^2} \ell_n(\boldsymbol{\beta}, \sigma^2) = \frac{1}{2\hat{\sigma}_{ML}^4} \sum_{i=1}^n (y_i - \mu(\boldsymbol{x}_i' \boldsymbol{\beta}_{ML}))^2 - \frac{n}{2\hat{\sigma}_{ML}^2} = 0$$

These conditions are equivalent to those found above.

1.6 Q1 Part 6

If the link function is unknown, β_0 is not identified. To see this, consider two pairs of parameters $(\mu(\cdot), \beta_0)$ and $(\tilde{\mu}(\cdot), \tilde{\beta}_0)$ where $\tilde{\mu}(z) = \mu(z/k)$ and $\tilde{\beta}_0 = k\beta_0$ for some $k \neq 0$. Then the parameters are clearly different, but $(\mu(\cdot), \beta_0) = (\tilde{\mu}(\cdot), \tilde{\beta}_0)$. A common normalization is $\|\beta_0\| = 1$, but more conditions are needed to regain identification.

1.7 Q1 Part 7

The link function is

$$\mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0) = \mathrm{E}[y_i|\boldsymbol{x}_i] = \mathrm{E}[\mathbb{1}(\boldsymbol{x}_i'\boldsymbol{\beta}_0 \ge \epsilon_i)|\boldsymbol{x}_i] = \Pr[\boldsymbol{x}_i'\boldsymbol{\beta}_0 \ge \epsilon_i|\boldsymbol{x}_i] = F(\boldsymbol{x}_i'\boldsymbol{\beta}_0) = \frac{1}{1 + exp(-\boldsymbol{x}_i'\boldsymbol{\beta}_0)}$$

The conditional variance of y_i is

$$\sigma^2(\boldsymbol{x}_i)\mathrm{V}[y_i|\boldsymbol{x}_i]$$

Now, note that $y_i|\mathbf{x}_i$, is a Bernoulli random variable with $Pr[y_i=1|\mathbf{x}_i]=F(\mathbf{x}_i'\boldsymbol{\beta}_0)$. then this implies

$$\sigma^2(\boldsymbol{x}_i) = F(\boldsymbol{x}_i'\boldsymbol{\beta}_0)(1 - F(\boldsymbol{x}_i'\boldsymbol{\beta}_0)) = \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0)(1 - \mu(\boldsymbol{x}_i'\boldsymbol{\beta}_0))$$

Now to derie the asymptotic variance we note that for the logistic CDF: $\dot{\mu}(u) = (1 - \mu(u))\mu(u)$

1.8 Q1 Part 8

1.9 Q1 Part 9

(a)

R table

term	estimate	std.error	statistic	p.value	CI_L	CI_H
(Intercept)	1.755	0.335	5.245	0.000	1.099	2.411
$S_{-}age$	1.333	0.123	10.826	0.000	1.092	1.575
$S_{-}HHpeople$	-0.067	0.023	-2.871	0.004	-0.112	-0.021
\log_{-inc}	-0.119	0.044	-2.707	0.007	-0.205	-0.033

(b)

R table

term	estimate	std.error	$t_{-}q.975$	$t_{-}q.025$	CI_L	CI_H
(Intercept)	1.755	0.335	2.167	-1.774	1.161	2.480
$S_{-}HHpeople$	-0.067	0.023	2.040	-1.958	-0.112	-0.019
$S_{-}age$	1.333	0.123	2.210	-1.558	1.142	1.606
\log_{-inc}	-0.119	0.044	1.817	-2.155	-0.213	-0.039

(c) R Graph

2 Question 2: Semiparametric GMM with Missing Data

2.1 Q2 part 1

Start with the moment condition we are given

$$0 = \mathbb{E}[m(y_i^*, t_i, x_i; \beta_0) | t_i, x_i]$$

Now by law of iterated expectations we can multiply by a function g and still get zero

$$0 = \mathbb{E}[g(t_i, x_i)\mathbb{E}[m(y_i^*, t_i, x_i; \beta_0)|t_i, x_i]]$$
 for any $g(t_i, x_i)$

Next we can put g inside the first expectation

$$0 = \mathbb{E}[\mathbb{E}[g(t_i, x_i)m(y_i^*, t_i, x_i; \beta_0)|t_i, x_i]]$$

now removing the inside expectation

$$0 = \mathbb{E}[g(t_i, x_i)m(y_i^*, t_i, x_i; \beta_0)]$$

We want to find g_0 , the optimal g that minimizes AsyVar($\hat{\beta}$). Let $z_i = (t_i, x_i)$, $w_i = (y_i^*, t_i, x_i)$, and $\theta = \beta$.

The first thing we need to do is determine the asymptotic variance V associated with

$$\hat{\theta} = \arg\min(\frac{1}{n}\sum_{i}g(z_i)m(w_i,\theta))'W(\frac{1}{n}\sum_{i}g(z_i)m(w_i,\theta))$$

Taking first order conditions and setting equal to zero we get

FOC:
$$0 = \left[\frac{1}{n} \sum_{i} \frac{\partial}{\partial \theta} g(z_i) m(w_i, \theta)\right]' W\left[\frac{1}{n} \sum_{i} \frac{\partial}{\partial \theta} g(z_i) m(w_i, \theta)\right]$$

or

$$0 = \left[\frac{1}{n} \sum_{i} \frac{\partial}{\partial \theta} g(z_i) m(w_i, \hat{\theta})\right]' W\left[\frac{1}{n} \sum_{i} \frac{\partial}{\partial \theta} g(z_i) m(w_i, \hat{\theta})\right]$$

Since it is equal to zero we can add another of the same term and multiply by $(\hat{\theta} - \theta_0)$ giving

$$0 = \left[\frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}g(z_{i})m(w_{i},\theta_{0})\right]'W\left[\frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}g(z_{i})m(w_{i},\theta_{0})\right] + \left[\frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}g(z_{i})m(w_{i},\hat{\theta})\right]'W\left[\frac{1}{n}\sum_{i}\frac{\partial}{\partial\theta}g(z_{i})m(w_{i},\hat{\theta})\right](\hat{\theta}-\theta_{0})$$

Which can be rearanged to give

$$\sqrt{n}(\hat{\theta} - \theta_0) = (\Omega_0' W_0 \Omega_0)^{-1} \Omega_0 W_0 \frac{1}{\sqrt{n}} \sum_{i} g(z_i) m(w_i, \theta) + o_p(1)$$

And then By the CLT, $\sqrt{n}(\hat{\theta} - \theta_0) \rightarrow_d N(0, V_0)$

where
$$V_0 = (\Omega'_0 W_0 \Omega_0)^{-1} \Omega'_0 W_0 \Sigma_0 W_0 \Omega_0 (\Omega'_0 W_0 \Omega_0)^{-1}$$

and where $\Sigma_0 = \mathbb{V}[g(z_i)m(w_i, \theta)]$

setting values Optimally to minimize V gives us the following conditions.

$$W_0^* = \Sigma_0^{-1} \text{ and } V_0^* = \Omega_0' \Sigma_0 \Omega_0$$

$$g^*(z_i) = \frac{\partial m_i}{\partial \theta} \mathbb{V}[m(w_i, \theta_0)|z_i]^{-1}$$

Now applying this specifically to a probit model gives

$$\mathbb{V}[m(y_i^*, t_i, x_i, \beta_0) | t_i, x_i] = F(t_i \cdot \theta_0 + x_i \gamma_0) (1 - F(t_i \cdot \theta_0 + x_i' \gamma_0))$$

$$\mathbb{E}\left[\frac{\partial}{\partial \beta}m(y_i^*, t_i, x_i, \beta_0)|t_i, x_i\right] = \mathbb{E}\left[f(t_i \cdot \theta_0 + x_i \gamma_0)(t_i, x_i)|t_i, x_i\right] = f(t_i \cdot \theta_0 + x_i \gamma_0)\left[t_i, x_i'\right]'$$

Therefore,
$$g_0(t_i, x_i) = \frac{f(t_i \cdot \theta_0 + x_i \gamma_0)}{F(t_i \cdot \theta_0 + x_i \gamma_0)(1 - F(t_i \cdot \theta_0 + x_i' \gamma_0))} [t_i, x_i']'$$

If F is the logistic cdf we instead get

$$F(x) = \frac{1}{1 + e^{-x}}$$

$$f(x) = \frac{\partial}{\partial x} F(x) = \frac{-e^{-x}}{(1 + e^{-x})^2} = -e^{-x} F(x)^2$$

$$\frac{f(x)}{F(x)(1 - F(x))} = \frac{-e^{-x} F(x)^2}{F(x)(1 - F(x))} = \frac{-e^{-x} F(x)}{1 - F(x)} = 1$$

$$g_0(t_i, x_i) = [t_i, x_i']'$$

2.2 Q2 part 2

(a) The optimal unconditional moment condition is:

$$0 = \mathbb{E}[g(t_i, x_i)m(y_i^*, t_i, x_i; \beta_0)]$$

In part 2.1 we showed that, setting $g = g_0$ this is equivalent to:

$$0 = \mathbb{E}[m(y_i^*, t_i, x_i; \beta_0)|t_i, x_i]$$

Since $s_i \perp (y_i^*, t_i, x_i)$:

$$0 = \mathbb{E}[m(y_i^*, t_i, x_i; \beta_0) | t_i, x_i]$$

$$0 = \mathbb{E}[g_0(t_i, x_i) m(y_i^*, t_i, x_i; \beta_0)]$$

$$0 = \mathbb{E}[g_0(t_i, x_i) m(y_i^*, t_i, x_i; \beta_0) | s_i = 1]$$

Thus, $\hat{\beta}_{MCAR}$ solving $0 \approx \hat{\mathbb{E}}[g_0(t_i, x_i) m(y_i, t_i, x_i; \hat{\beta}_{MCAR}) | s_i = 1]$ is consistent for β_0 $\hat{\beta}_{MCAR,feasible}$ solves $0 \approx \hat{\mathbb{E}}[\hat{g}(t_i, x_i) m(y_i, t_i, x_i; \hat{\beta}_{MCAR}) | s_i = 1]$

(b) The tables for this section are below

R table

term	Estimate	sd	p_value	t	CI_L	CI_H
dpisofirme	-0.317	0.073	0.008	-4.363	-0.453	-0.187
$S_{-}age$	-0.244	0.020	0.000	-11.975	-0.284	-0.205
$S_HHpeople$	0.024	0.013	0.104	1.775	-0.002	0.049
\log_{-inc}	0.033	0.014	0.020	2.397	0.006	0.058

3 Question 3: When Bootstrap Fails

3.1 Q3 part 1

R Graph

3.2 Q3 part 2

R Graph

3.3 Q3 part 3

In the nonparametric case, the bootstrap statistic has a mass point at zero. However, the parametric bootstrap corrects for this since $Pr[max\{x_i\} = max\{x_i^*\}] = 0$, since $x_i^* \sim_{iid} Uniform[0, maz\{x_i\}]$