Resolução Numérica de Equações Diferenciais Parciais

MAP5724 - 2022

Projeto Numerico

Entrega: 18/11/2022

Escolhe três projetos, indicando sua ordem de preferência. Se duas pessoas escolhem o mesmo projeto em primeira escolha, será feito um sorteio para determinar quem ficará com sua primeira escolha. Os resultados obtidos deverão ser organizados sob a forma de um relatório em LATEX de forma a explicar a modelagem do problema em estudo e as soluções obtidas na simulação numérica do problema. A qualidade do relatório será o principal fator considerado na nota. Desta forma, é importante que os resultados obtidos e as conclusões sejam feitas de forma clara e objetiva. O código de simulações computacionais em Python deverá ser entregue. Por favor pergunte se quiser usar uma outra linguagem de programação.

O relatório precisa ter pelo menos quatro seções:

- Uma primeira seção com a descrição do problema no domínio contínuo, provando existência e unicidade de uma solução.
- 2. A segunda seção é dedicada à descrição da discretização do problema e à análise de convergência da solução discreta. Imagens de malhas podem ser incluídas para ilustrar a discretização.
- 3. Na terceira seção, os resultados numéricos e as imagens das soluçãos devem ser apresentados. Também serão incluidas tabelas mostrando a convergência da solução para uma sequência decrescente do passo de discretização h. A convergência observada nesta tabela deveria confirmar à ordem teórica de convergência (se não for o caso, isso indica um erro de implementação). Por exemplo, se a ordem teórica de convergência for h^2 , também deve-se observar isso numericamente (na prática, é comum que a ordem de convergência teórica seja satisfeita apenas para h suficientemente pequeno). Para mostrar a convergência numericamente, precisa calcular o erro $||u-u_h||$, e por isso precisa de uma solução exata u. Uma possível stratégia é de escolher uma solução u de forma explicita, e calcular o termo fonte f e a condição de fronteira φ correspondentes. Por exemplo, no caso do Laplaciano em um quadrado $\Omega = [0,1] \times [0,1]$, poderiamos escolher a solução explicita $u(x,y) = x^3 + xy 3x + 1$, ou qualquer outro polinômio. Neste exemplo, o problema correspondente seria

$$-\Delta u(x,y) = f(x,y) = 6x \text{ em } \Omega,$$

$$u(x,y) = \varphi(x,y) = x^3 + xy - 3x + 1 \text{ em } \partial\Omega.$$

As vezes pode ser difícil achar uma solução u de forma explicita que satisfaz condições de fronteira particulares. Em situações onde não tem solução exata a disposição, o erro $||u-u_h||$ pode ser aproximado substituindo a solução exata u por uma solução numérica calculada na malha mais fina possível. Porém, é melhor achar um exemplo de solução exata na medida do possível.

4. Interpretações dos resultados e conclusões.

As Seções 1, 2 e 4 não precisam ser extremamente detalhadas, elas devem apresentar o problema de forma eficiente e ser matematicamente rigorosas. O mais importante no projeto é que as implementações numéricas

devem entregar a solução numérica correta, porém a apresentação dos resultados de forma clara também é importante para obter uma boa nota. A convergência numérica da solução deve ser apresentada de forma clara no relatório, na terceira seção. Um relatório desorganizado pode dar a impressão de que existem erros no código, mesmo com um código correto.

Entrega

A entrega poderá ser feita por email. Deverão ser entregues em uma pasta compactada (zipada) somente os seguintes itens:

- 1. Código(s) fonte do(s) programa(s).
- 2. Relatório em pdf contendo os resultados e as análises;
- 3. (Opcional) Arquivo readme.txt contendo informações relevantes sobre a execução do programa e a geração das imagens;

Por favor, preste atenção aos seguintes avisos:

- 1. O projeto é individual. Cada aluno(a) deve escolher um projeto diferente. Escolha três projetos com uma ordem de preferência (projetos no. 1, 2 e 3). Atribuirei um projeto para cada um, fazendo um sorteio se precisar.
- 2. Use comentários no código e tente manter o código eficiente, bem organizado e fácil de ler. Isso ajudará na correção e evitará mal-entendidos.
- 3. Todas as imagens apresentadas no relatório relativas a simulação numérica devem ser geradas pelo seu código. O formato dos gráficos produzidos por o código deve ser um formato que é fácil de abrir (por exemplo, JPG, PNG, etc ...) e não necessita de um software especial.
- 4. Apenas as funções básicas da linguagem de programação podem ser utilizadas. Isto significa que não é permitido utilizar uma função do programa que resolveria a EDP diretamente, com os parâmetros do problema como entrada.
- 5. Somente serão corrigidos relatórios apresentados em arquivos no formato pdf. Relatórios apresentados em quaisquer outros formatos serão zerados.

Projetos

Em alguns destes problemas, os métodos que precisam ser usados são indicados. Se o método não for indicado, você pode optar por usar o método das diferenças finitas ou o método dos elementos finitos (em dimensão 2, é mais fácil usar o método das diferenças finitas).

Problemas elípticos

1. Seja $\Omega = (0,1) \times (0,1)$ e $\Gamma = \partial \Omega$. Considere o problema

$$-\operatorname{div}(M(x)\nabla u(x)) + b(x)u(x) = f(x) \text{ em } \Omega,$$
(1)

$$M(x)\nabla u(x) \cdot n(x) = g(x) \text{ em } \Gamma,$$
 (2)

onde $f: \Omega \to \mathbb{R}, g: \Gamma \to \mathbb{R}, b: \Omega \to \mathbb{R}$ é de classe C^2 , e $M: \Omega \to \mathbb{R}^{2 \times 2}$ é uma função matricial de classe C^2 . As funções b e M devem ser escolhidas de maneira que o problema (1)-(2) seja bem-posto e tenha uma solução única; essas questões devem ser discutidas na parte teórica. O código pode ser escrito para b e M fixos, ou tais que b, M são parâmetros do codigo. Apresente resultados numéricos para alguns casos diferentes e discute as propriedades das soluções correspondentes. Referências: [7]

2. Seja $\Omega = (0,1) \times (0,1)$ e $\Gamma = \partial \Omega$. Implementar e estudar a convergência para uma discretização de ordem superior, usando o estencil compacto de 9 pontos, para a equação de Poisson seguinte:

$$-\Delta u(x) = f(x) \text{ em } \Omega, \tag{3}$$

$$u(x) = g(x) \text{ em } \Gamma.$$
 (4)

Referências: [7] e seção III.7 do curso.

3. Seja $\Omega=(0,1)^3$ e $\Gamma=\partial\Omega$. Implementar e estudar a convergência para a equação de Poisson em dimensão três:

$$-\Delta u(x) = f(x) \text{ em } \Omega, \tag{5}$$

$$u(x) = g(x) \text{ em } \Gamma,$$
 (6)

para algumas escolhas diferentes de f e g (em particular, use um caso explícito para verificar que sua solução numérica esta certa).

4. Seja $\Omega = (0,1) \times (0,1)$ e $\Gamma = \partial \Omega$. Encontre uma aproximação numérica do problema do Bilaplaciano:

$$\Delta^2 u(x) = f(x) \text{ em } \Omega, \tag{7}$$

$$u(x) = 0 \text{ em } \Gamma, \tag{8}$$

$$\partial_n u(x) = 0 \text{ em } \Gamma. \tag{9}$$

Pode-se também considerar o problema com a condição de limite $\Delta u = 0$ em Γ em vez de (9). Referências: [7].

5. Seja $\Omega = (0,1) \times (0,1)$ e $\Gamma = \partial \Omega$. Resolva o problema de autovalor:

$$-\nabla \cdot (m(x)\nabla u(x)) = \lambda u(x) \qquad \text{em } \Omega$$
 (10)

$$u(x) = 0 \qquad \text{em } \Gamma \tag{11}$$

onde $m: \overline{\Omega} \to \mathbb{R}$ é uma função positiva. Aqui $\lambda \in \mathbb{R}$ é o primeiro autovalor (isto é, o menor autovalor do operador diferencial), e $u: \overline{\Omega} \to \mathbb{R}$ é a autofunção associada. A autofunção deve ser normalizada com a condição $\int_{\Omega} u(x) dx = 1$. Pode-se escolher $m \equiv 1$ para começar; neste caso a solução é explicita (use a solução explicita para verificar sua implementação). Em vez da condição de Dirichlet u(x) = 0 em Γ , é possível considerar uma condição de Neumann $\nabla u(x) \cdot n(x) = 0$ em Γ , onde n é o vetor normal a Γ saindo de Ω . Referências: [14, Chapter 9] e [7, Chapter 11].

6. Considere a solução da equação de Poisson com condições de contorno homogêneas em um hexágono regular. Desenvolva um estencil de sete pontos para aproximar o Laplaciano usando pontos de malha deitados nos vértices de um grade de triângulos equilátero, conforme mostrado abaixo (a figura mostra apenas um nível de discretização, mas o nível de discretização deve ser um parâmetro do código). Prove a convergência do método e calcula a taxa de convergência. Resolva a equação de Poisson com condições homogêneas de Dirichlet usando este esquema.

Problemas parabólicos

1. Seja $u: \overline{\Omega} \times [0,T] \to \mathbb{R}$ e $\Omega = (0,1) \times (0,1)$. Resolva a equação do calor com condições de Robin:

$$\partial_t u(x,t) - \operatorname{div}(m(x)u(x,t)) = f(x,t) \qquad \text{em } \Omega \times (0,T]$$
(12)

$$u(x,0) = u_0(x) \qquad \text{em } \overline{\Omega}$$
 (13)

$$\partial_n u(x,t) + c(x,t) u(x,t) = g(x,t) \qquad \text{em } \Gamma \times [0,T]$$
(14)

onde $f: \Omega \times [0,T] \to \mathbb{R}$, $g,c: \Gamma \times [0,T] \to \mathbb{R}$, $u_0: \overline{\Omega} \to \mathbb{R}$ e $m: \overline{\Omega} \to \mathbb{R}$ é uma função positiva. Pode-se escolher f=g=0 e m=1 para começar. Referências [13, Sec. 9.2].

2. Seja $\Omega = (0,1) \times (0,1)$. Resolva a equação do calor, usando ambos os métodos FTCS e BTCS,

$$\partial_t u(x,t) - \Delta u(x,t) = f(x) \text{ em } \Omega \times [0,T]$$
 (15)

$$u(x,0) = u_0(x) \text{ em } \Omega \tag{16}$$

$$u(x,t) = c_0 \text{ em } \Gamma \times [0,T] \tag{17}$$

onde $f: \Omega \times [0,T] \to \mathbb{R}$, $u_0: \Omega \to \mathbb{R}$ são dadas, $c_0 > 0$, T > 0 são constantes. Deve-se experimentar alguns valores diferentes de u_0, c_0 e f. Pode-se escolher f = 0 para começar.

3. Seja $\Omega=(0,1)$ e $u:\overline{\Omega}\times[0,T]\to\mathbb{R}$. Resolva a equação do calor unidimensional com condições de Dirichlet:

$$\partial_t u(x,t) - \partial_{xx} u(x,t) = f(x,t) \qquad \text{em } \Omega \times (0,T]$$
 (18)

$$u(x,0) = u_0(x)$$
 em $\overline{\Omega}$ (19)

$$u(0,t) = \alpha(t) \qquad \text{em } [0,T]$$

$$u(1,t) = \beta(t) \qquad \text{em } [0,T]$$

usando o método de elementos finitos para a discretização do espaço e o método de differenças finitas para a discretização do tempo, onde $\alpha, \beta : [0, T] \to \mathbb{R}$ e $u_0 : \overline{\Omega} \to \mathbb{R}$. Referências [11, Sec. 9.2] e [15, Sec. 12.3].

4. Seja $\Omega=(0,1)$ e $u:\overline{\Omega}\times[0,T]\to\mathbb{R}$. Resolva a equação do calor unidimensional com condições de Robin:

$$\partial_t u(x,t) - \partial_{xx} u(x,t) = f(x,t) \qquad \text{em } \Omega \times (0,T]$$
 (22)

$$u(x,0) = u_0(x) \qquad \text{em } \overline{\Omega}$$
 (23)

$$\partial_x u\left(0,t\right) - p\left(u\left(0,t\right) - \alpha\left(t\right)\right) = 0 \qquad \text{em } \left[0,T\right] \tag{24}$$

$$\partial_{\tau} u(1,t) + q(u(1,t) - \beta(t)) = 0$$
 em $[0,T]$ (25)

usando o método de elementos finitos para a discretização do espaço e o método de differenças finitas para a discretização do tempo, onde $p,q>0,\ \alpha,\beta:[0,T]\to\mathbb{R}$ e $u_0:\overline{\Omega}\to\mathbb{R}$. Referências: [9, Sec. 11.6] e [15, Sec. 12.3].

Problemas hiperbólicos

1. Seja $\Omega = (0,1) \times (0,1)$. Resolva a equação da onda seguinte, usando o métodos FTCS:

$$\partial_{tt}^2 u(x,t) - \Delta u(x,t) = f(x) \text{ em } \Omega \times [0,T]$$
 (26)

$$u(x,0) = u_0(x) \text{ em } \Omega \tag{27}$$

$$\partial_t u(x,0) = u_1(x) \text{ em } \Omega \tag{28}$$

$$u(x,t) = 0 \text{ em } \Gamma \times [0,T] \tag{29}$$

onde $f: \Omega \times [0,T] \to \mathbb{R}$, $u_0, u_1: \Omega \to \mathbb{R}$ são dadas, T>0 constante. Analise a condição de estabilidade do modelo, dependendo do passo e da velocidade, e estude a ordem de convergência do esquema. Referências: [16].

2. Seja o domínio $\Omega = (0,1)$. Resolva a equação de onda unidimensional $(u: \overline{\Omega} \times [0,T] \to \mathbb{R})$:

$$\partial_{tt}^{2}u(x,t) - \partial_{x}\left(m(x)\partial_{x}u(x,t)\right) = f(x,t) \qquad \text{em } \Omega \times (0,T]$$
(30)

$$u(x,0) = u_0(x)$$
 em $\overline{\Omega}$ (31)

$$\partial_t u(x,0) = u_1(x)$$
 em $\overline{\Omega}$ (32)

$$u(0,t) = \alpha(t) \qquad \text{em } [0,T] \tag{33}$$

$$u(1,t) = \beta(t) \qquad \text{em } [0,T] \tag{34}$$

usando o método de elementos finitos para a discretização do espaço e o método de differenças finitas para a discretização do tempo, onde $m:\Omega\to\mathbb{R},\ f:\Omega\times[0,T]\to\mathbb{R},\ u_0,u_1:\overline{\Omega}\to\mathbb{R}$ e $\alpha,\beta:[0,T]\to\mathbb{R}$. Pode-se escolher $f=u_1=\alpha=\beta=0$ e m função constante para começar. Faça um teste com

$$u_0(x) = e^{-10(4x-2)^2}, m = 1, u_1 = f = \alpha = \beta = 0, T = 3.$$

Referências: [2, 15, 16] e [11, Example 9.7].

3. Seja o domínio $\Omega = (0,1)$ e $\mathbf{u} : \overline{\Omega} \times [0,T] \to \mathbb{R}^2$. Resolva o sistema de primeira ordem seguinte, usando um método explícito e um método implícito:

$$\partial_t \mathbf{u}(x,t) + M(x)\partial_x \mathbf{u}(x,t) = \mathbf{f}(x,t)$$
 em $\Omega \times (0,T]$ (35)

$$\mathbf{u}(x,0) = \mathbf{u}_0(x) \qquad \text{em } \overline{\Omega}$$
 (36)

onde $M: \Omega \to \mathbb{R}^{2\times 2}$, $\mathbf{f}: \Omega \times [0,T] \to \mathbb{R}^2$ e $\mathbf{u}_0: \Omega \to \mathbb{R}^2$. Pode-se escolher f=0 e M constante para começar. Referências: [16] e [11, Exercício 9.13].

Outras EDPs

1. Seja o domínio $\Omega = (0,1) \times (0,1)$. Resolva o problema de difusão, convecção e reação $(u:\overline{\Omega} \to \mathbb{R})$

$$-\nabla \cdot (m(x)\nabla u(x)) + \mathbf{b} \cdot \nabla u + cu = f(x)$$
 em Ω (37)

$$u\left(x\right) = q\left(x\right) \qquad \text{em } \Gamma \tag{38}$$

onde $m:\Omega\to\mathbb{R},\,\mathbf{b}\in\mathbb{R}^2,\,c\in\mathbb{R},\,f:\Omega\to\mathbb{R}$ e $g:\Gamma\to\mathbb{R}$. Pode-se escolher m=1 e f=0 para começar. Referências: [14, Section 5.2].

2. Seja o domínio $\Omega = (0,1)$. Resolva a equação de Fisher-Kolmogorov $(u:\overline{\Omega}\times[0,T]\to\mathbb{R})$

$$\partial_t u(x,t) - D\partial_{xx} u(x,t) = ru(x) \left(1 - \frac{u(x)}{K} \right) \qquad \text{em } \Omega \times (0,T]$$
(39)

$$u(x,0) = u_0(x) \qquad \text{em } \overline{\Omega} \tag{40}$$

$$u(0,t) = \alpha(t) \qquad \text{em } [0,T] \tag{41}$$

$$u(1,t) = \beta(t) \qquad \text{em } [0,T] \tag{42}$$

onde $D, r, K \in \mathbb{R}, u_0 : \overline{\Omega} \to \mathbb{R} \in \alpha, \beta : [0, T] \to \mathbb{R}$. Faça um teste com

$$D = 1, r = 6, K = 1, T = 1,$$

$$u_0(x) = \frac{1}{(1+e^x)^2}, \ \alpha(t) = \frac{1}{(1+e^{-5t})^2}, \ \beta(t) = \frac{1}{(1+e^{1-5t})^2}.$$

Em este caso, a solução exata é

$$u(x,t) = \frac{1}{(1 + e^{x-5t})^2}.$$

Referências: [1, 5, 10, 6]

3. Seja o domínio $\Omega=(0,1)$. Resolva a equação de Fisher-Kolmogorov $(u:\overline{\Omega}\times[0,T]\to\mathbb{R})$

$$\partial_t u(x,t) - D\partial_{xx} u(x,t) = ru(x) \left(1 - \frac{u(x)}{K} \right) \qquad \text{em } \Omega \times (0,T]$$
(43)

$$u(x,0) = u_0(x) \qquad \text{em } \overline{\Omega} \tag{44}$$

$$\partial_x u\left(0,t\right) = 0 \qquad \text{em } \left[0,T\right] \tag{45}$$

$$\partial_x u(1,t) = 0 \qquad \text{em } [0,T] \tag{46}$$

onde $D, r, K \in \mathbb{R}$ e $u_0 : \overline{\Omega} \to \mathbb{R}$. Faça um teste com

$$D = 10^{-4}, r = 1, K = 1, T = 20, u_0(x) = \begin{cases} 0.8 & x < 1/2 \\ 0 & x \ge 1/2 \end{cases}$$

Referências: [3, 10, 6]

4. Seja o domínio $\Omega=(0,1)$. Resolva a equação de Burgers $(u:\overline{\Omega}\times[0,T]\to\mathbb{R})$

$$\partial_t u(x,t) - m \partial_{xx} u(x,t) + u(x,t) \partial_x u(x,t) = 0 \qquad \text{em } \Omega \times (0,T]$$
(47)

$$u(x,0) = u_0(x)$$
 em $\overline{\Omega}$ (48)

$$u(0,t) = \alpha(t) \qquad \text{em } [0,T] \tag{49}$$

$$u(1,t) = \beta(t) \qquad \text{em } [0,T] \tag{50}$$

onde $m \in \mathbb{R}, u_0 : \overline{\Omega} \to \mathbb{R}$ e $\alpha, \beta : [0, T] \to \mathbb{R}$. Além, considere a mudança de variável

$$u(x,t) = -2m \frac{\partial_x w(x,t)}{w(x,t)}$$

com $\alpha=\beta=0,$ e resolva a equação do calor resultante. Faça um teste com

$$m = 1, 1/10, 1/100, \alpha = \beta = 0, T = 0.1, u_0(x) = \sin(\pi x).$$

Referências: [8]

Referências

- [1] Marwan Alquran, Kamel Al-Khaled, Tridip Sardar, and Joydev Chattopadhyay. Revisited fisher equation in a new outlook: a fractional derivative approach. *Physica A: Statistical Mechanics and its Applications*, 438:81–93, 2015.
- [2] Christian Böhm. Efficient inversion methods for constrained parameter identification in full-waveform seismic tomography. PhD thesis, Technische Universität München, 2015.
- [3] Francesca Bonizzoni, Marcel Braukhoff, Ansgar Jüngel, and Ilaria Perugia. A structure-preserving discontinuous galerkin scheme for the fisher–kpp equation. *Numerische Mathematik*, 146(1):119–157, 2020.

- [4] RL Burden and JD Faires. Numerical analysis, 9 th international edition. Brooks/Cole, Cencag Learning, 2011.
- [5] Vinay Chandraker, Ashish Awasthi, and Simon Jayaraj. A numerical treatment of fisher equation. Procedia Engineering, 127:1256-1262, 2015.
- [6] Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of eugenics, 7(4):355–369, 1937.
- [7] Wolfgang Hackbusch. Elliptic differential equations: theory and numerical treatment, volume 18. Springer, 2017.
- [8] SELÇUK Kutluay, AR Bahadir, and A Özdeş. Numerical solution of one-dimensional burgers equation: explicit and exact-explicit finite difference methods. *Journal of computational and applied mathematics*, 103(2):251–261, 1999.
- [9] Robert MM Mattheij, Sjoerd W Rienstra, and JHM Ten Thije Boonkkamp. Partial differential equations: modeling, analysis, computation. SIAM, 2005.
- [10] James Dickson Murray. Mathematical biology: I. An introduction. Springer, 2002.
- [11] Alfio Quarteroni, Fausto Saleri, and Paola Gervasio. Scientific computing with MATLAB and Octave, volume 3. Springer, 2006.
- [12] V Sagar and DJ Payne. Incremental collapse of thick-walled circular cylinders under steady axial tension and torsion loads and cyclic transient heating. *Journal of the Mechanics and Physics of Solids*, 23(1):39–53, 1975.
- [13] S Salsa. Partial Differential Equations in Action Springer. Milano, 2008.
- [14] Francisco-Javier Sayas, Thomas S Brown, and Matthew E Hassell. Variational techniques for elliptic partial differential equations: Theoretical tools and advanced applications. CRC Press, 2019.
- [15] Alexander Stanoyevitch. Introduction to numerical ordinary and partial differential equations using MATLAB, volume 72. John Wiley & Sons, 2005.
- [16] John C. Strikwerda. Finite difference schemes and partial differential equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 2004.