第7章 模拟量模块与PID闭环控制

模拟量输入/输出处理模块

- ■1、模拟量A/D转换输入模块FX2N-4AD
- ■2、模拟量D/A转换输出模块FX2N-2DA

模拟量闭环控制系统方框图

图9-1 PLC模拟量闭环控制系统方框图

1、模拟量A/D转换输入模块FX2N-4AD

- ■选择合适的传感器和前置放大器可以用于温度、压力、 重量、速度、风力、电力、电流和电压等模拟信号的监视 和控制。
 - ■4通道12位高精度模拟量输入模块
 - ■4通道电压输入(-10至10V直流)或电流输入(-20~20mA直流)。
 - ■对每一通道,可以规定电压或电流输入
- ■模块中瞬时值和设定值等数据的读出和写入可用FROM/TO指令。

(1) FX-4AD技术指标

项目	电压输入	电流输入			
	根据是电流输入还是电压输入,	使用端子有不同			
模拟量输入范围	DC-10~+10V(输入电阻	DC-20~+20mA(输入电阻250Ω)			
	$200 \mathrm{K}\Omega$)	绝对最大输入±32mA			
	绝对最大输入±15V				
数字量输出范围	带符号位的16位二进制(有效数值11位)+2047以上固定为+2047 ,-2048以下固定为-2048				
分辨力	5mV (10V×1/2000)	20 μ A (20mA×1/1000)			
综合精确度	±1%(相对于最大值)				
转换速度	15ms×(1~4)通道(高速转换方式时为6ms×1~4通道)				
隔离方式	光电隔离及采用DC/DC转换器使输入和PLC电源间隔离(各输入端 子间不隔离)				
模拟量用电源	DC (24V±2.4V), 50mA				
输入输出占有点 数	程序上为8点(计输入或输出点5V30mA	均可),由PLC供电的消耗功率为			

(2) 模块的编号与外部连线

No.01

■特殊功能模块通过软电缆接在FX2主机右侧的1/0扩展总线上,从最近主机的那个特殊功能模块开始顺序编号为0~7号。

No.1

No.2

同一模拟量输入模块既可连接电压信号也可连接电流信号。接线方式如图4-2。

电压信号:接在V+与COM端

电流信号:接在I+和COM端, 短接该通道的V+与I+

图4-2 输入电压信号和电流信号时模块的外部接线

图8.4 FX_{2N}-4AD接线图

(3) 模拟量模块的编程(读写指令)

读:把数据从模块的 BFM存储单元复制到 PLC指定的存储单元

写:将数据写入模块的BFM存储单元

ml为特殊功能模块的编号, ml=0~7; m2为该特殊功能模块中缓冲寄存器(BFM)的编号, m2=0~32767; n是待传送数据的字数, n=1~32(16位操作)或1~16(32位操作)

- 存放经ADC转换后得到的数字量
- FX2-4AD内的缓冲数据寄存区间是由32个16位的数据寄存器组成,其编号为BFM#0~BFM#31。
- 各缓冲数据寄存器的用途及存放内容如表4-3所示
- 带*号的10个BFM: 用于初始化设置
- 不带*号的22个BFM: 10个BFM用于存放数据供PLC读取,另 外12个空置不用

BFM	内容		#13~	不能使用]							
*#0	通道初始化设定: 默认设定值=H0000, BFM#0中 写入4位十六进制分别设定4个通 道工作方式		*#20	#19 *#20 重新设置模块为默认值 默认设定值= BFM # 20=1, 设定值均恢复到设定值						官值		
*#1	通道1	平均采样次数设	*#21	禁止零点 ,1(允							, b0:	=0
*#2	通道2	定1~4096, 默	*#22	零点增	b7	b6	b5	b4	b3	b2	b1	b0
*#3	通道3			益调整	G4	04	G3	03	G2	02	G1	01
*#4	通道4			-	m h > I	\		\	<u> </u>			<u> </u>
#5	通道1		* #23			试认设定值=0,调整值以5mV/20μA 点:数字量输出为0时的输入值						μ Α
#6	通道2		量平均值,数据	量平均值,数据	*#24	增益值:默认设定值=5000,调整值以						
#7	通道3				令读取	5mV/20 μ A为步距。增益: 数字量输出为+1000 时的输入值						
#8	通道4			#25~		<u> </u>						
#9	通道1		#28	_								
#10	通道2		#29	出错信息	3							
#11	通道3	指令读取	#30	4A/D模均	快识别]码:	K2010)				
#12	通道4		#31	不能使用	3							

- 说明:
- (1)带*号的缓存器(BFM)可以使用TO指令从PLC写入。 不带*号的缓存器内的数据可以使用FROM指令读入PLC。
- (2)零点(偏移): 当数字输出为0时的模拟量输入值。 增益: 当数字输出为+1000时的模拟量输入值。

- 1) BFM#0: 输入方式设定,十六进制4位数表示各通道的初始化内容,从最低开始依次控制通道CH1~CH4,每一位的有效数范围是0~3:
- ■0一输入为电压信号,信号范围为-10~+10V;
- ■1一输入为电流信号,信号范围为+4~+20mA;
- ■2一输入为电流信号,信号范围为-20~+20mA;
- ■3一通道关闭,不接受任何信号
- ■BFM#0 的默认值为H0000, CH1~CH4都以电压信号输入方式工作。

FX2N-4AD 输入输出特性曲线说明

分辨率 =10/2000=5mV 分辨率 =20/1000=20uA

■例如:

TOP	KO	KO	H3210	K1
	模块号	RFM号	源数据	待送字数

CH1~CH4的工作方式分别是:

- ■CH1为电压信号输入,信号范围是-10V~+10V
- ■CH2为电流信号输入,信号范围是+4mA~+20mA 1
- ■CH3为电流信号输入,信号范围是-20mA~+20mA 2
- ■CH4关闭

0

- ■2) BFM#1~#4: 平均值采样次数设定。设定范围为1~4096。超过此范围按默认值8处理。
- ■3) BFM#5~#8: 存放输入的平均值数字量
- ■4) BFM#9~#12: 存放输入的当前值数字量
- ■5) BFM#20: 快速重置默认位。置1时各设定值恢复到默认值; 置0时允许重新设置, 默认值定为H0000。

■6) BFM#21:零点和增益调整控制。b1、b0值为1、0时禁止零点、增益设定值改动;为0、1时允许零点与增益设定值改动;。

零点(偏移): 当数字输出为0时的模拟量输入值。

增益: 当数字输出为+1000时的模拟量输入值。

■7) BFM # 22: 需要调整的输入通道的零点与增益值允许改动与否。由G1、01(即b1、b0状态)、G2、02(b3、b2状态)、G3、03(b5、b4状态)、G4、04(b7、b6状态)分别来控制通道CH1~CH4的增益、零点允许改动与否。对应位为1、表示对应允许改动。

例如:若BFM#22的G1、01位(增益、零点位)均置1,则存放在BFM#23和BFM#24中的零点和增益设定值就可送入CH1中的零点和增益值寄存器中。各输入通道的增益与零点既可统一调整也可单独调整。

- ■8) BFM#23: 存放设定零点值(以5mV/20 µ A为步距), 默认值为0。
- ■9) BFM#24: 存放设定增益值(以5mV/20 μ A为步距), 默认值为5000。

增益和偏移量的单位是mv或uA。即数字值=1,表示1mv或1uA。由于单位的分辨率,应将5mV或20uA为最小单位。

- ■10)BFM#29:存放出错信息,由各位状态决定。如b2为0表示DC24V电源正常,为1表示电源有故障。在用户程序中可用FROM指令将其读入以便进行相应的故障处理,BFM#29其他各位出错信息如表4-4所示。
- ■11)BFM#30: 存放模块识别码K2010。

识别码:每一个特殊功能模块都有一个识别码,其固化在BFM#30单元

表4-4 BFM#29状态

位	功能	接通(1)	断开(0)
b0	A/D模块出错	模块硬件或软件出错,各A/D通道停止转 换	无错误
b1	G-0出错	EPROM中的增益/偏置数据无用或出错	G-0数据正常
b2	电源异常	DC24V电源断电或故障	电源正常
b3	硬件损坏	A/D转化模块或相应硬件损坏	A/D硬件正常
b8	READY位置判断	FX-4AD方式开关位置在READY以外位置	在READY位置
b10	转换值异常	A/D转换值小于-2048或大于+2047	转换值在范围内
b11	平均数出错	平均次数大于4097或小于0,模块自动取 值8	平均数在范围内
b12	调整禁止/允许	BFM#21的b1b0为10B,处于禁止状态	b1b0为01B

_例4-1:

FX2N-4AD模块在0 号位置, 其通道 CH1和CH2作为电压 输入。CH3、CH4关 闭,平均值采样次 数为4、数据存储 器D1和D2用于接收 CH1、CH2输入的平 均值。

例4-2:

要求FX2N-4AD的CH1 ~CH4均设置成电 压输入方式,CH1 通道设置成零偏置 ,增益值为2.5V。 试设计其初始化设 置程序。

FX2N-4AD实验

■线路图:

将外部可调电压(0-9.7V)通过A/D模块输入到PLC中,并通过数码管显示出电压值

FX2N-4AD实验

默认情况下:数值2000对应10v,特性曲线增益(斜率)是200

第2 节、模拟量D/A转换输出模块FX2N-2DA

- 2通道、12位高精度
- 主要功能:输出的数字量→电压信号(-10V~+10V)或电流信号(+4~+20mA)
- 模块中每个通道可以独立设置电压输出或电流输出方式,并 且可以通过简易的调节或通过程序方便地改变模拟量的输出 范围。

(1)FX-2DA的技术指标

项目	电压输出	电流输出			
数字输入		12 位			
分辨率	2.5mV(10V/4000) 1.25mV(5V/4000)	4 μ A{(20-4)/4000}			
集成精度	± 1%(全范围0到10V)	± 1%(全范围 4 到 20mA)			
处理时间	4ms/1 通道(顺序程序和同步)				

(2) FX-2DA的外部接线

图4 电压信号与电流信号输出时的外部接线

缓冲存储器分配(BFM)

BFM 编号	b15到b8	b7到b3	b2	b1	b0	
#0到#15				保留		
#16	保留		输出数据的当前值(8位数据)			
#17 保留		ä	D/A 低 8 位 数据保持	通道2 D/A转换开始		
#18 或更大				保留		

BFM#16:由 BFM#17(数字值)指定的通道的 D/A 转换数据被写。D/A 数据以二进制形式,并以下端 8 位和高端 4 位两部分的顺序进行写。

BFM#17: b0 ······通过将1改变成0,通道2的D/A转换开始。

b1……通过将1改变成0,通道1的D/A转换开始。

b2……通过将1改变成0, D/A转换的下端8位数据保持。

偏置及增益的调整请详见数据手册

(4) 模块读、写操作程序设计举例

■例4-3:图4-1所示。若保持FX-2DA原有的零点与增益缺省值,也不需要读取状态信息且CH1、CH2输出数字量分别存放在PLC的D0、D1则采用图4-7所示简单程序。

例4-4: 使CH1为电压输出方式, CH2为电流输出方式, CH1、CH2的输入数字量分别存放在PLC的D0、D1中, 当PLC从RUN到STOP状态后,最后的输出值保持不变。试设计其应用程序。

8.3 与PT100型温度传感器匹配的模拟量输入模块

FX2N-4AD-PT

- 1、特点
 - (1) 它与白金测温电阻(Pt100
- 、3线型)温度传感器匹配
 - (2) 4路输入通道
 - (3) 测量单位为摄氏度或华氏度
 - (4) 分辨率很高: 0.2℃~0.3℃
- 或0.36°F~0.54°F

FX2N-4AD-PT的技术指标

项目	摄氏度℃	华氏度下		
模拟量输入信号	箔温度PT100传感器(100W),3线,4通道			
传感器电流	PT100传感器100 W时1mA			
补偿范围	-100~+600°C	−148°F ~+1112°F		
粉学检门	− 1000∼+6000	- 1480∼+11120		
数字输出	12转换(11个数据位+1个符号位)			
最小分辨率	0. 2∼0. 3℃	0. 36∼0. 54°F		
整体精度	满量程的±1%			
转换速度	15ms			
电源	主单元提供5V/30mA直流,外部提供24V/50mA直流			
占用I/0点数	占用8个点,可分配为输入或输出			
适用PLC	FX _{1N} , FX _{2N} , FX _{2NC}			

2. 接线

- (2) 注意事项
- ■① FX2N-4AD-PT应使用PT100 传感器的电缆或双绞屏蔽电缆作为 模拟输入电缆,并且和电源线或其 他可能产生电气干扰的电线隔开。
- ②可以采用压降补偿的方式来提高传感器的精度。如果存在电气干扰,将电缆屏蔽层与外壳地线端子(FG)连接到FX2N-4AD-PT的接地端和主单元的接地端。如可行的话,可在主单元使用3级接地。
- ■③ FX2N-4AD-PT可以使用可编程控制器的外部或内部的24V电源

温度转换特性

(1) 缓冲存储器BFM#28

BFM#28是数字范围错误锁存,它锁存每个通道的错误状态如表8-6所示,据此可用于检查热电阻是否断开。

表8-6

FX2N-4AD-PT BFM#28位信息

b15到b8	b7	b6	b5	b4	b3	b2	b1	b0
未	.高	低	高	低	间	低	高	低
用	CI	CH4 CH3		CH	H2	CI	1 1	

注: "低"表示当测量温度下降,并低于最低可测量温度极限时,对应位为ON; "高"表示当测量温度升高,并高于最高可测量温度极限或者热电偶断开时,对应位为ON。

当错误消除后,可用TO指令向BFM#28写入K0或者关闭电源,以清除错误

表8-7

FX2N-4AD-PT BFM#29位信息

BFM#29中各位的状态是FX2N-4AD-PT运行正常与否的信息,具体规定如表8-7所示。

BFM#29各位的功能	ON (1)	0FF (0)
b0: 错误	如果b1~b3中任何一个为ON,出错通道的A/D转 换停止	无错误
b1: 保留	保留	保留
b2: 电源故障	DC 24V电源故障	电源正常
b3: 硬件错误	A/D转换器或其他硬件故障	硬件正常
b4~b9: 保留	保留	保留
b10: 数字范围错误	数字输出/模拟输入值超出指定范围	数字输出值正常
b11: 平均值的采样次数 错误	采样次数超出范围,参考BFM#1~#4	正常(1~4096)
b12~b15: 保留	保留	保留

■4. 实例程序

下图所示的程序中,FX2N-4AD-PT模块占用特殊模块 0的位置(即紧靠可编程控制器),平均采样次数是4,输 入通道CH1~CH4以℃表示的平均温度值分别保存在数据 寄存器D0~D3中。

