Notes on PPGtk

Paul Blischak

E-mail: blischak.4@osu.edu

Contents

1	Alle	ele frequency estimation	1
	1.1	The likelihood	1
	1.2	Metropolis-Hastings algorithm	1
	1.3	Genotype estimation	1
2	Dis	equilirium	2
	2.1	Derivative of the log beta-binomial function	2
	2.2	The likelihood	2
	2.3	Metropolis-Hastings algorithm	2
3	Allo	opolyploid mixture model	2
4	Beta	a mixture model	3
4	Beta 4.1	a mixture model The likelihood	
4			3
4 5	4.1 4.2	The likelihood	3
	4.1 4.2	The likelihood	3 3

1 Allele frequency estimation

1.1 The likelihood

The likelihood of an individuals' read data given the population allele frequency can be computed by summing over the possible genotypes:

$$\mathcal{L}_{i}(p) = P(r_{i}|p) = \sum_{a=0}^{m_{i}} P(r_{i}|a)P(a|p),$$
 (S1)

where $P(r_i|a)$ is the genotype likelihood for genotype $a = 0, ..., m_i$ (e.g., calculated using GATK), and

$$P(a|p) = \binom{m_i}{a} p^a (1-p)^{m_i-a}.$$

For multiple samples, we take the product of the individual likelihoods:

$$\mathcal{L}(p) = \prod_{i} \mathcal{L}_{i}(p) = \prod_{i} \left(\sum_{a=0}^{m_{i}} P(r_{i}|a) P(a|p) \right). \tag{S2}$$

Taking the natural log gives us the log likelihood of the population allele frequency at a single site:

$$\ell(p) = \log \mathcal{L}(p) = \sum_{i} \log \left(\sum_{a=0}^{m_i} P(r_i|a) P(a|p) \right).$$
 (S3)

1.2 Metropolis-Hastings algorithm

$$P(p) \sim \text{beta}(\alpha = 0.5, \beta = 0.5).$$
 (S4)

$$P(p|r) \propto P(r|p)P(p) = \left(\sum_{a} P(r|a)P(a|p)\right)P(p) \tag{S5}$$

$$\alpha = \min\left\{1, \frac{P(r|p^*)P(p^*)}{P(r|p)P(p)}\right\}$$
 (S6)

1.3 Genotype estimation

$$P(g_i = a|r_i) = \frac{P(r_i|g_i = a)P(g_i = a|\hat{p})}{\sum_{i=0}^{m_i} P(r_i|g_i = j)P(g_i = j|\hat{p})}$$
(S7)

2 Disequilirium

We introduce another parameter, ϕ , that is related to the inbreeding coefficient (F) through the following equation:

$$F = \frac{1}{1 + \phi} \tag{S8}$$

2.1 Derivative of the log beta-binomial function

The beta function is defined as: $\mathcal{B}(\alpha,\beta) = \int_0^1 t^{(\alpha-1)} (1-t)^{(\beta-1)} dt$.

$$\alpha(p) = p\phi$$
, and $\beta(p) = (1-p)\phi$. (S9)

$$\frac{\partial}{\partial p}\alpha(p) = \phi$$
, and $\frac{\partial}{\partial p}\beta(p) = -\phi$. (S10)

$$\frac{\partial}{\partial p}\mathcal{B}(\alpha(p),\beta(p)) = \int_0^1 \frac{\partial}{\partial p} \left\{ t^{(\alpha(p)-1)} (1-t)^{(\beta(p)-1)} \right\} \mathrm{d}t \tag{S11}$$

2.2 The likelihood

$$\mathcal{L}_i(p,\phi) = P(r_i|p,\phi) = \sum_{a=0}^{m_i} P(r_i|a)P(a|p,\phi)$$
(S12)

where $P(r_i|a)$ is the genotype likelihood for genotype $a=0,\ldots,m_i$ (e.g., calculated using GATK), and

$$P(a|p,\phi) = \binom{m_i}{a} \frac{\mathcal{B}(a+p\phi,m_i-a+(1-p)\phi)}{\mathcal{B}(p\phi,(1-p)\phi)},$$

which is the probability density function for the beta-binomial distribution with $n = m_i$, k = a, $\alpha = p\phi$, and $\beta = (1 - p)\phi$. Here, $\mathcal{B}()$ is the beta function:

$$\mathcal{B}(\alpha,\beta) = \int_0^1 x^{\alpha-1} (1-x)^{\beta-1} \mathrm{d}x.$$

2.3 Metropolis-Hastings algorithm

3 Allopolyploid mixture model

$$P(g_i = a | p_1, p_2, m_{i,1}, m_{i,2}) = \sum_{i=0}^{a} \sum_{r=0}^{a-j} P(g_{i,1} = j | p_1, m_{i,1}) P(g_{i,2} = r | p_2, m_{i,2}).$$
 (S13)

Here $m_{i,1} + m_{i,2} = m_i$ (e.g., 2:4 inheritance in an allopolyploid corresponds to $m_{i,1} = 2$ and $m_{i,2} = 4$).

$$P(g_i = a | p_1, p_2, m_{i,1}, m_{i,2}) = \sum_{j=0}^{a} \left(\sum_{r=0}^{a-j} \left[{m_{i,1} \choose j} p_1^j (1 - p_1)^{m_{i,1}-j} \times {m_{i,2} \choose r} p_2^r (1 - p_2)^{m_{i,2}-r} \right] \right).$$
 (S14)

This is a special case of the Poisson-Binomial probability distribution where we have two different probabilities of success. The most general case would be where the probability of success for every allele is different.

$$\mathcal{L}(p_1, p_2) = \sum_{a=0}^{m_i} \mathcal{L}(g_i = a) P(g_i = a | p_1, p_2, m_{i,1}, m_{i,2}).$$
 (S15)

$$p_{\ell,k} \sim \text{Beta}(\alpha = \pi \theta_k, \beta = (1 - \pi)\theta_k), \quad \text{where } \ell = 1, \dots, L, \text{ and } k = 1, 2.$$
 (S16)

4 Beta mixture model

$$P(g = a|p,\phi) \sim \text{beta-binomial}(n = m_i, k = a, \alpha = p\phi, \beta = (1-p)\phi)$$
 $P(p|\gamma, \pi, \theta_1, \theta_2) \sim \gamma P(p|\pi\theta_1, (1-\pi)\theta_1) + (1-\gamma)P(p|\pi\theta_2, (1-\pi)\theta_2),$
 $P(\pi) \sim \text{beta}(0.5, 0.5),$
 $P(\gamma) \sim \text{beta}(1, 1),$
 $P(\phi) \sim \text{gamma}(2, 0.1),$
 $P(\theta_1) \sim \text{gamma}(2, 0.1),$
 $P(\theta_2) \sim \text{gamma}(2, 0.1).$

- 4.1 The likelihood
- 4.2 Metropolis-Hastings algorithm
- 5 Population admixture model
- 5.1 The likelihood
- 5.2 Metropolis-Hastings algorithm