Bayesian Analysis II, Fall 2020

Lab Exercise 4:

1.

a)

X: 12; ~ Poisson(t;2;) t; = known
3; 13 2 Gamma (a, 1/3) a = krown B ~ Gamma (y, 1/8) y = krown, 8 = lenoun
ces Derive the posterior density $f(\lambda, \beta x) = \rho(\lambda, \beta x)$
Likhd: $P(X_i \lambda_i) = \prod_{i=1}^{p} (\lambda_i t_i)^{x_i} P(X_i t_i)^{x_i} P(X_i$
Prior λ : ρ $p(\lambda \mid \beta) = \prod_{\beta \in \Lambda} (\lambda_j \mid \beta) = \prod_{\beta \in \Lambda} \beta = \prod_{\beta \in \Lambda} (\alpha) \lambda_j = \prod_$
Prior B: 1 $p(\beta) = 8 \cdot r(\gamma) \beta' = 0$
Joint dist. $P(\lambda, \beta, X) = P(X \lambda)P(\lambda \beta)P(\beta)$
$ \rho(\lambda, \beta, \underline{x}) = \left(\frac{\beta^{\alpha}}{\Gamma(\alpha)}\right)^{\rho} \exp\left(-\beta \sum_{i} \lambda_{i}\right) \left[\prod_{i} \lambda_{i}^{\alpha-1}\right] \exp\left(-\sum_{i} \lambda_{i} t_{i}\right) \left[\prod_{i} (\lambda_{i} t_{i})^{X_{i}} \cdot \overline{X_{i}}\right] \\ \frac{1}{\delta^{-\gamma} \Gamma(\gamma)} \beta^{\gamma-1} \exp\left(-\beta \delta\right) \qquad \qquad \frac{\rho}{\pi} \lambda_{i}^{\gamma} i t_{i}^{\gamma} t_{i}^{\gamma} \underline{x_{i}}\right] $
$\propto \beta^{\alpha \rho} \exp(-\beta \sum_{i}^{\rho} \lambda_{i}) \left[\pi \lambda_{i}^{\alpha-1} \right] \exp(-\sum_{i}^{\rho} \lambda_{i} t_{i}) \left[\pi (\lambda_{i} t_{i})^{x_{i}} \frac{1}{x_{i}} \right] \beta^{x_{i}} \exp(-\beta \delta)$
Joint posterior P(231x)
$P(\Delta \beta X) \propto P(\Delta \beta X)$ $\propto \beta^{\alpha P} \exp(-\beta \sum_{i} \lambda_{i}) [f(\lambda_{i}^{\alpha-i})] \exp(-\sum_{i} \lambda_{i} t_{i}) [f(\lambda_{i}^{x_{i}})] \beta^{y-1} \exp(-\beta \delta)$

Doint costenier:	
$p(J,\beta X) \propto \beta^{\alpha P} \exp(-\beta \hat{\Sigma} \lambda_i) [\hat{\pi}_{\lambda_i}^{\alpha - 1}] \exp(-\hat{\Sigma} \lambda_i)$	(t;)[TIX;;] B' exp(-35)
Full-cond. P(BID.X)	
$p(\beta \lambda,x) \propto \beta^{\alpha} \exp(-\beta \sum_{i=1}^{p} \lambda_{i}), \beta^{\gamma-1} \exp(-\beta \delta)$ $= \beta^{\alpha} \exp(-\beta \sum_{i=1}^{p} \lambda_{i}) + \beta \delta)$ $= \beta^{\alpha} \exp(-\beta (\delta + \sum_{i=1}^{p} \lambda_{i}))$	
: .: B[] x ~ Gamma(aP+y, (8+2))	-1)
Full-cond. P(); (B. Aj-1, X),	
$P(\lambda_j \mid \beta, \lambda_{j-1}, x) \propto \exp(-\beta \sum_{i=1}^{p} \lambda_j) \left[\prod_{i=1}^{p} \lambda_{j-1}^{\alpha-1} \right] \exp(-\sum_{i=1}^{p} \lambda_i)$	jtj)[Tlajxs]
$= \exp(-\beta\lambda; -\lambda; t;) \frac{1}{1} \lambda_i x_i \pi a_i t$	
$\propto \exp(-\lambda_j(\beta+t_j))\lambda_j^{x_j}\alpha^{-1}$	
λ; [3, λ;-1, X ~ Gamma(x;+a, β+t;	

c)

Ca Gibbs sampler
1. Initialize $\beta^{(0)}$ & $\lambda^{(0)}$
2. Draw B(1) From Gamma (aP+y, (6+ \(\int \))) Draw X(1) From Gamma (x, +a, (B(1) + \(\int \)))
Doan Xp From Gamma (Xp+a, (B(1)+tp))
3. Docu B ⁽²⁾ (som Gamma(apty, (5+£ 1;))) -11- 2 ⁽²⁾ (som G(x,+a (B ⁽²⁾ +t,)))
-11- (2) From G(xp+a, (3 ⁽²⁾ +tp)-)
4 Repeat untin enough samples

a)

$\chi \sim \chi_n(\mu, \lambda \sim N(\mu, \overline{\lambda}))$
$\mu \sim N(\mu_0, \tau)$, Ho-known T=lenown
μ~N(μο, τ), μο-kipun, γ=lenown) λ~Gamma(a, 3), a=lenown, β=lenown
Then : $n = \frac{1}{(2\pi x^{1})^{2}} \exp(-\frac{1}{2x^{1}}(x-\mu)^{2})$
$= (2\pi X')^{\frac{1}{2}} e \times \rho(-\frac{1}{2X'} \sum_{i} (X_i - \mu)^2)$
Prior for 1 1
$\rho(\mu) = (2\pi \gamma^{-1})^{-\frac{1}{2}} \exp(-2\gamma^{-1}(\mu - \mu \log^2))$
$\rho(\lambda) = \overline{\beta^{-\alpha} \Gamma(\alpha)} \lambda^{\alpha} \exp(-\lambda \beta)$
Joint dist: $P(X,\mu,\lambda) = P(X \mu,\lambda) P(\mu,\lambda) = P(X \mu,\lambda) P(\mu,\lambda)$
$O(X,\mu,\lambda) = (2\pi X')^{\frac{1}{2}} \exp(-\frac{1}{2\lambda^{-1}}\sum_{(X_{1}-\mu)^{2}})(2\pi Y')^{\frac{1}{2}} \exp(-\frac{1}{2Y'}(\mu-\mu_{0})^{2})$
$\frac{1}{\beta^{-\alpha} \Gamma(\alpha)} \lambda^{\alpha-1} = \times \rho(-\lambda \beta)$
$\frac{1}{(1-\alpha)^2}$
$5 \propto \lambda^{\frac{n}{2}} \exp(-\frac{1}{2\lambda^{-1}}\sum_{i}(x_{i}-\mu)^{2}) \exp(-\frac{1}{2\gamma^{-1}}(\mu\mu\omega^{2})\lambda^{\alpha-1}\exp(-\lambda\beta))$

b)

b) Full cand.
$$P(\lambda | \mu, x)$$

$$P(\lambda | \mu, x) \propto \lambda^{\frac{n}{2}} \lambda^{\alpha-1} \exp(-\frac{1}{2\lambda^{-1}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}) \exp(-\lambda \beta)$$

$$= \lambda^{\frac{n}{2} + \alpha - 1} \exp(-\frac{\lambda}{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2} - \lambda \beta)$$

$$= \lambda^{\frac{n}{2} + \alpha - 1} \exp(-\lambda \left[\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2} + \beta\right])$$

$$\approx \lambda | \mu, x Gamma \left(\frac{n}{2} + \alpha, \left(\frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2} + \beta\right)^{-1}\right)$$

b) Full cond $p(\mu_1)\lambda, x$) $p(\mu_1\lambda, x) \propto \exp(-\frac{1}{2}x^2)\sum(x_1-\mu_1^2)\exp(-\frac{1}{2}\tau^2)(\mu_1-\mu_0)^2)$ $=\exp(-\frac{1}{2}(\lambda_1^2)(x_1^2-2x_1\mu_1+\mu_1^2)+\tau(\mu_1^2-2\mu_0\mu_1+\mu_0^2)))$ $=\exp(-\frac{1}{2}[\lambda_1^2)(x_1^2-2x_1\mu_1+\mu_1^2)+\tau(\mu_1^2-2\mu_0\tau_1+\tau_1\mu_0^2))$ $=\exp(-\frac{1}{2}[\lambda_1^2)(x_1^2-2\lambda_1\mu_1^2)(x_1^2+\eta_1\mu_1^2-2\mu_0\tau_1+\tau_1\mu_0^2))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1\mu_1^2-2\lambda_1\mu_1^2)(x_1^2+\eta_0\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1)(\mu_1^2-2(\lambda_1^2)(x_1^2+\mu_0\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1)(\mu_1^2-2(\lambda_1^2)(x_1^2+\mu_0\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1)(\mu_1^2-2(\lambda_1^2)(x_1^2+\mu_0\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1)(\mu_1^2-\eta_1\lambda_1+\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1](\mu_1^2-\eta_1\lambda_1+\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1](\eta_1^2-\eta_1\lambda_1+\tau_1))$ $=\exp(-\frac{1}{2}[\eta_1\lambda_1+\tau_1](\eta_1^2-\eta_1\lambda_1+\tau_1)$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ $=\exp(-\frac{1}{2}\eta_1^2-\eta_1^2$ =

a)

Lkhd: 10
$$p(X|\theta) = \prod_{P(X; |\theta;)} |\theta_{Y}| = \prod_{P(X; |\theta$$

b)

$$p(\alpha,\beta|X) = \frac{p(\underline{\theta},\alpha,\beta|X)}{p(\underline{\theta}|\alpha,\beta,X)} = 0$$

$$p(\underline{\theta}|\alpha,\beta,X) \propto \prod_{j=1}^{10} \frac{p(\underline{\theta},\alpha,\beta,X)}{(1-\underline{\theta}_{j})^{n_{j}-x_{j}+\beta-1}} \stackrel{\circ}{\circ} \frac{\theta_{j}|\alpha,\beta,X}{\theta_{j}} \times \frac{\theta_{j}|\alpha,X}{\theta_{j}} \times \frac{\theta_{j}|\alpha,X}{\theta_$$

There seems to be shrinkage of posterior means towards the averages calculated from raw data.

e)

2.5% 97.5% 0.1450659 0.2927260