Object Detection using Tensorflow

SAMIN PAYROSANGARI

SUPERVISER: DIEGO ESTEVES

01/02/2018

Agenda

Introduction

Task

Requirments

Results

CNN

CNNs for object detection

Find specific objects in image and draw a bounding box

Extensions of image classification models

Models:

- Faster R-CNN (R-CNN → Fast R-CNN)
- R-FCN
- SSD

R-CNN

Region-based Convolutional Neural Network:

- 1. Selective search \rightarrow Scan the input image for possible objects (~2000 region proposals)
- 2. Run CNN on top of each region
- 3. feed each output to:
 - a. an SVM to classify the region
 - b. a linear regressor to tighten the bounding box

Fast R-CNN

Improved on its detection speed:

 Performing feature extraction over the image before proposing regions → running one CNN over the entire image instead

 Replacing the SVM with a softmax layer → extending the neural network for predictions instead of creating a new mode

Region proposals based on the last feature map of CNN

Faster R-CNN

Main insight \rightarrow Replace the slow selective search algorithm with a fast neural net: **Region Proposal Network** (RPN) \rightarrow **hypothesize object regions and then classify them.**

RFCN (Region-based Fully Convolutional Net)

Motivation: Increase speed by maximizing shared computation

Fully convolutional

Shares 100% of the computations across every single output \rightarrow using **position-sensitive score** maps \rightarrow each score map activates if one specific part of an object is detected.

RFCN simple explanation

Figure 3: Visualization of R-FCN ($k \times k = 3 \times 3$) for the *person* category.

SSD (Single-Shot Detector)

Simultaneously predicting the bounding box and the class as it processes the image:

- 1. Goes through convolutional layers \rightarrow yielding several sets of feature maps at different scales (e.g. 10x10, then 6x6, then 3x3, etc.)
- 2. For each location in *each* of these feature maps \rightarrow considers small set of default bounding boxes.
- 3. For each box \rightarrow simultaneously predict the bounding box offset and the class probabilities

SSD simple example

Task

Implement object detection models on specific datasets \rightarrow adidas logo dataset, a dataset of 5 classe obtained from caltech 101 and scene 13 containing person, forest, mountain, highway and building.

Report the results and analysis

Compare the models performance

Solution: Google tensorflow api which comes with object detection models \rightarrow retrain them with your own dataset.

Requirments

Python 2.7 and 3.6

Tensorflow (python 3.6 compatible)

Object detection API library

Google cloud SDK (python 2.7 compatible)

Google could machine learning engine

Work flow

Turn your dataset into TF records format:

- 1. Determine the coordinate of bounding boxex around desired objects in training set
- 2. Turn xml files of training and validation stes into 2 csv format file
- 3. Turn the csv file into one TF record
- 4. Generate a label Map for your dataset → Assign labels to int

Workflow (continued)

Prepare google cloud platform project, storage and ML engine

Choose a model → Manipulate the config file of model:

- Config number of classes
- Config optimization and regularization parameters
- Config path to training TF record

Run the training process --> 100000 itarations

Experiment 1: SSD on Adidas logo

High loss, low performance

Experiment 2: SSD on 5 classes Data set

- 1. Adopted to train images for localization
- 2. Classification performance not so bad
- 3. Weak in localization

Experiment 2: SSD on 5 classes Data set

Experiment 3: RFCN on 5 classes dataset

- 1. Performs better than SSD
- 2. Better localization
- 3. Still weak
- 4. Wrong classification
- 5. Learned some classes better
- 6. Has not learned forest class

TotalLoss

Experiment 3: RFCN on 5 classes dataset

Experiment 4: Faster R-CNN on 5 classes

- Good classification
- 2. Good localization
- 3. Still some wrong classification \rightarrow Could improve by increasing the number of iterations

TotalLoss

Experiment 4: Faster R-CNN on 5 classes

Conclusion

Ranking by performance:

- 1. Faster R-CNN
- 2. RFCN
- 3. SSD

Increasing the number of iterations for SSD does not seem to enhance the performance.

Increasing the number of iterations for RFCN might enhance the performance.

Faster R-CNN is slower but more powerful.

References

- [1] https://towardsdatascience.com/deep-learning-for-object-detection-a-comprehensive-review-73930816d8d9
- [2] https://medium.com/google-cloud/object-detection-tensorflow-and-google-cloud-platform-72e0a3f3bdd6
- [3] https://cloud.google.com/solutions/creating-object-detection-application-tensorflow
- [4] https://towardsdatascience.com/how-to-train-your-own-object-detector-with-tensorflows-object-detector-api-bec72ecfe1d9
- [5] https://github.com/tensorflow/models/issues/2739