Suites et séries de fonctions

Dans tout le chapitre \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , E et F sont des \mathbb{K} -espaces vectoriels de dimension finie et A est une partie de E. Les fonctions sont définies de A dans F. Le plus souvent, dans les exemples et exercices, A est intervalle de \mathbb{R} et F est \mathbb{R} ou \mathbb{C} .

I Convergence d'une suite de fonctions

I. A Convergence simple

Définition 1.1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F et $f:A\longrightarrow F$. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur A lorsque pour tout $x\in A$, la suite $(f_n(x))_{n\in\mathbb{N}}$ converge (dans F) vers f(x).

Remarque 1.2:

 $[(f_n)_{n \in \mathbb{N}} \text{ converge simplement vers } f \text{ sur } A]$ $\Leftrightarrow \left[\forall x \in A, f_n(x) \xrightarrow[n \to +\infty]{} f(x) \right]$ $\Leftrightarrow \left[\forall x \in A, \forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \mid \forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow \|f_n(x) - f(x)\| \leqslant \varepsilon \right]$

Ainsi une suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur A si et seulement si les suites $(f_n(x))_{n\in\mathbb{N}}$ convergent pour tout x fixé dans A.

Exemples 1.3: • sur $\mathbb{R}, f_n : x \mapsto \frac{x^2}{n}$;

- sur $[0;1], f_n: x \mapsto x^n;$
- sur $[0; +\infty[, f_n : x \mapsto \begin{cases} n^2 x & \text{si } x \in [0; \frac{1}{n}[; \frac{1}{x}] & \text{si } x \in [\frac{1}{n}; +\infty]. \end{cases}$

I. B Convergence uniforme

(Définition 1.4)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F et $f:A\longrightarrow F$. On dit que la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A lorsque :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \mid \forall n \geqslant n_0, \forall x \in A, ||f_n(x) - f(x)|| \leqslant \varepsilon.$$

Remarques 1.5 : • On munit l'espace $\mathcal{B}(A,F)$ des fonctions bornées de A dans F de la norme : $f\mapsto \|f\|_{\infty}=\sup_{x\in A}\|f(x)\|_{F}.$

Ainsi pour $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions bornées et f une fonction bornée, $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers f si et seulement si elle converge vers f dans l'espace vectoriel normé $(\mathcal{B}(A,F),\|.\|_{\infty})$.

- Dans le cas général, $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A si et seulement si $(f_n-f)_{n\in\mathbb{N}}$ est bornée à partir d'un certain rang n_0 et $\|f_n-f\|_{\infty,A} \xrightarrow[n\to+\infty]{} 0$.
- Si B est une partie de A et $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A, alors $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur B.

Proposition 1.6

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F et $f:A\longrightarrow F$. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f, alors $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f.

Remarque 1.7 : La convergence uniforme entraı̂ne la convergence simple. La réciproque est fausse.

Contre exemple 1.8 : Sur $\mathbb{R}, f_n : x \mapsto \frac{x^2}{n}$.

Méthode 1.9 (Démontrer une convergence uniforme)

- 1. On commence par déterminer un candidat pour la limite uniforme par convergence simple : on pose $\forall x \in A, f(x) = \lim_{n \to +\infty} f_n(x)$.
- 2. On calcule : $||f_n f||_{\infty} = \sup_{x \in A} ||f_n(x) f(x)||$.

Dans le cas où $F = \mathbb{R}$, on peut passer par une étude de fonction.

3. On montre que : $||f_n - f||_{\infty} \xrightarrow[n \to +\infty]{} 0$.

Exemple 1.10: Sur \mathbb{R}^+ , $f_n: x \mapsto xe^{-nx}$.

Méthode 1.11 (Démontrer une convergence uniforme par majoration)

- 1. On commence par déterminer un candidat pour la limite uniforme par convergence simple : on pose $\forall x \in A, f(x) = \lim_{n \to +\infty} f_n(x)$.
- 2. On majore : $||f_n f||_{\infty} = \sup_{x \in A} ||f_n(x) f(x)||$ par un $\alpha_n \in \mathbb{R}^+$. C'est à dire : on majore $||f_n(x) - f(x)||$ par α_n qui ne dépend pas de x (uniformément).
- 3. On montre que : $\alpha_n \xrightarrow[n \to +\infty]{} 0$.

Exemple 1.12: Sur \mathbb{R}^+ , $f_n: x \mapsto xe^{-nx}\cos(nx)$.

Méthode 1.13 (Infirmer une convergence uniforme)

méthode 1 : utiliser une propriété des fonctions f_n non conservée par la fonction f (bornée, continue : à suivre).

méthode 2 : calculer $\mu_n = ||f_n - f||_{\infty}$ et montrer que $(\mu_n)_{n \in \mathbb{N}}$ ne tend pas vers 0.

méthode 3: trouver une suite $(x_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ telle que $(f_n(x)-f(x))_{n\in\mathbb{N}}$ ne tend pas vers 0.

Exemples 1.14: • Sur \mathbb{R}^+ , $f_n : x \mapsto \begin{cases} x - n & \text{si } x \in [n; n+1]; \\ n+2-x & \text{si } x \in [n+1; n+2]; \\ 0 & \text{sinon.} \end{cases}$

• Sur $\mathbb{R}^+, f_n : x \mapsto \frac{\sqrt{n}x}{1+nx^2}$

I. C Limite uniforme d'une suite de fonctions bornées

Proposition 1.15

Si:

- $\forall n \in \mathbb{N}, f_n$ est bornée de A dans F;
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers f;

Alors : f est bornée sur A.

Exemple 1.16: Suite de l'exemple 1.3,

$$\operatorname{sur} \left[0; +\infty\right[, f_n : x \mapsto \begin{cases} n^2 x & \text{si } x \in [0; \frac{1}{n}[; \\ \frac{1}{x} & \text{si } x \in [\frac{1}{n}; +\infty]. \end{cases}$$

II Convergence uniforme et continuité

II. A Limite uniforme d'une suite de fonctions continues

[Proposition 2.1]

Si:

- $\forall n \in \mathbb{N}, f_n \text{ est continue en } a \in A;$
- il existe V un voisinage de a relativement à A tel que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur V vers f;

Alors : f est continue en a.

Corollaire 2.2

Si:

- $\forall n \in \mathbb{N}, f_n \text{ est continue en } a \in A;$
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers f;

Alors : f est continue en a.

Théorème 2.3

Si:

- $\forall n \in \mathbb{N}, f_n \text{ est continue sur } A;$
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur A vers f;

Alors: f est continue sur A.

Exemple 2.4: Retour sur l'exemple $1.3: sur [0;1], f_n: x \mapsto x^n$.

- **Remarque 2.5**: Dans le cas de fonctions définies sur un intervalle, pour montrer la continuité de la limite f on peut vérifier la convergence uniforme de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$ sur tout segment inclu dans A ou sur une famille d'intervalles adaptés à la situation tel que pour tout $x\in A$, il existe un intervalle de la famille qui soit un voisinage de x relativement à A.
- **Exemple 2.6 :** On s'intéresse à la suite des fonctions définies sur [0;1[par : $f_n:x\mapsto x^n$. Quelle famille d'intervalles peut-on considérer pour montrer la convergence uniforme sur tout segment de $(f_n)_{n\in\mathbb{N}}$ vers la fonction nulle?

II. B Théorème de la double limite

Théorème 2.7 (de la double limite)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur A et a un point adhérent à A. Si :

- pour tout $n \in \mathbb{N}$, la fonction f_n admet une limite ℓ_n en a;
- la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur A;

Alors:

- la suite $(\ell_n)_{n\in\mathbb{N}}$ converge vers une limite $\ell\in F$;
- $f(x) \xrightarrow[x \to a]{} \ell$.

Remarques 2.8 : • On peut reformuler la conclusion du théorème en :

$$\lim_{x \to a} \left(\lim_{n \to +\infty} f_n(x) \right) = \lim_{n \to +\infty} \left(\lim_{x \to a} f_n(x) \right)$$

d'où le nom du théorème.

- Si A est une partie de \mathbb{R} non majorée (par exemple si $A = [1; +\infty[)$, alors le théorème s'applique en $a = +\infty$, et de même pour $-\infty$ si A est une partie de \mathbb{R} non minorée.
- **Exemple 2.9:** Toujours avec l'exemple 1.3 sur $[0;1[,f_n:x\mapsto x^n,$

$$\lim_{x \to 1^{-}} \left(\lim_{n \to +\infty} x^{n} \right) = \underline{\qquad} \text{et} \quad \lim_{n \to +\infty} \left(\lim_{x \to 1^{-}} x^{n} \right) = \underline{\qquad}$$

donc la suite $(f_n)_{n\in\mathbb{N}}$

III Intégration d'une limite uniforme sur un segment

Théorème 3.1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues définies sur un intervalle I de \mathbb{R} et à valeurs dans F, a un point de I.

On suppose que $(f_n)_{n\in\mathbb{N}}$ converge uniformément sur tout segment de I vers une fonction f.

Pour tout $n \in \mathbb{N}$ et tout $x \in I$, on pose :

$$F_n(x) = \int_a^x f_n(t) dt \text{ et } F(x) = \int_a^x f(t) dt.$$

Alors la suite $(F_n)_{n\in\mathbb{N}}$ converge uniformément vers F sur tout segment de I.

Corollaire 3.2

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues définies sur un segment [a;b]. Si $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction f sur [a;b], alors :

$$\int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt.$$

Exemple 3.3 : Suite de l'exemple 1.10 sur $[0;1], f_n: x \mapsto xe^{-nx}$.

Attention: La convergence simple ne suffit pas!

Contre exemple 3.4 : Sur [0;2], pour $n \ge 2$,

$$f_n: x \mapsto \begin{cases} n^2 x & \text{si } x \leqslant \frac{1}{n} \\ n(2 - nx) & \text{si } x \in \left] \frac{1}{n}; \frac{2}{n} \right]. \\ 0 & \text{sinon} \end{cases}$$

Corollaire 3.5

Soit $(f_n)_{n\in\mathbb{N}}\in\mathcal{C}([a;b],F)^{\mathbb{N}}$.

Si $(f_n)_{n\in\mathbb{N}}$ converge vers f pour la norme $\|.\|_{\infty}$, alors elle converge aussi vers f pour la norme $\|.\|_{1}$.

Remarque 3.6: À nouveau la réciproque est fausse, contre exemple : sur $[0;1], f_n: x \mapsto x^n$.

IV Dérivation d'une suite de fonctions

Théorème 4.1

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans F. Si :

- pour tout $n \in \mathbb{N}, f_n \in \mathcal{C}^1(I)$;
- $(f_n)_{n\in\mathbb{N}}$ converge simplement vers f sur I;
- $(f'_n)_{n\in\mathbb{N}}$ converge uniformément vers g sur tout segment de I;

alors:

- $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment de I;
- f est de classe C^1 sur I et f' = g.

Remarque 4.2 : En pratique, on vérifie la convergence uniforme de $(f'_n)_{n\in\mathbb{N}}$ sur des intervalles adaptés à la situation.

Attention : La convergence uniforme doit être celle des dérivées!

Contre exemple 4.3 : Sur \mathbb{R} , pour $n \in \mathbb{N}^*$, $f_n : x \mapsto \sqrt{x^2 + \frac{1}{n}}$.

Théorème 4.4 (généralisation à la classe \mathcal{C}^k)

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans F. Si :

- pour tout $n \in \mathbb{N}, f_n \in \mathcal{C}^k(I)$;
- pour tout $j \in [0; k-1], (f_n^{(j)})_{n \in \mathbb{N}}$ converge simplement vers g_j sur I;
- $(f_n^{(k)})_{n\in\mathbb{N}}$ converge uniformément vers g_k sur tout segment de I; alors :
- $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers g_0 sur tout segment de I;
- g_0 est de classe C^k sur I et pour tout $j \in [0; k], g_0^{(j)} = g_j$.

V Convergence d'une série de fonctions

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de A dans F.

On note : $\forall n \in \mathbb{N}, S_n = \sum_{k=0}^n f_k$ la somme partielle d'ordre n et la suite $(S_n)_{n \in \mathbb{N}}$ est la série de terme général f_n , notée $\sum f_n$.

On reprend ainsi le vocabulaire des séries vu dans le chapitre sur les séries numériques et vectorielles, mais on n'est pas dans le cadre de ce chapitre : il ne s'agit pas de séries à valeurs dans un espace vectoriel normé de dimension finie. En effet, même si l'on choisit les fonctions f_n dans un espace que l'on munit d'une norme, ce sera souvent un espace de dimension infini comme $(\mathcal{C}([a;b],\mathbb{R}),\|.\|_{\infty})$.

V. A Convergence simple, convergence uniforme

Définition 5.1

Soit $\sum f_n$ une série de fonctions de A dans F, on dit que la série $\sum f_n$ converge simplement lorsque la suite des sommes partielles converge simplement. On appelle alors somme de la série la limite des somme partielles et pour tout

 $n \in \mathbb{N}$, on appelle reste d'ordre $n : R_n = \sum_{k=n+1}^{+\infty} f_n$.

Exemple 5.2 : Convergence simple et somme de la série $\sum xe^{-nx}$.

(Définition 5.3)

Soit $\sum f_n$ une série de fonctions de A dans F, on dit que la série $\sum f_n$ converge uniformément lorsque la suite des sommes partielles converge uniformément.

Remarque 5.4 : Une série de fonction étant une suite de fonctions, les résultats des parties précédentes s'appliquent aux séries de fonctions. En particulier :

- La convergence uniforme implique la convergence simple.
- La somme d'une série de fonctions bornées sur A qui converge uniformément sur A (ou sur tout segment si A est un intervalle de \mathbb{R}) est bornée sur A.
- La somme d'une série de fonctions continues sur A qui converge uniformément sur A (ou sur tout segment si A est un intervalle de \mathbb{R}) est continue sur A.
- Soit $\sum f_n$ une série de fonctions qui converge uniformément sur A et telle que chaque fonction f_n a une limite ℓ_n en $a \in \overline{A}$, alors $\sum \ell_n$ converge et : $S(x) \xrightarrow[x \to a]{} \sum_{n=0}^{+\infty} \ell_n$.

Proposition 5.5

Une série de fonctions converge uniformément si et seulement si elle converge simplement et si la suite de ses restes converge uniformément vers 0.

Proposition 5.6

Si $\sum f_n$ converge uniformément, alors $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers 0.

Méthode 5.7 (Infirmer une convergence uniforme)

méthode 1: trouver une suite $(x_n)_{n\in\mathbb{N}}$ telle que $(f_n(x_n))_{n\in\mathbb{N}}$ ne tend pas vers 0.

méthode 2: trouver une suite $(u_n)_{n\in\mathbb{N}}$ telle que $(R_n(x_n))_{n\in\mathbb{N}}$ ne tend pas vers 0.

Exemples 5.8: • $\sum xe^{-nx} \operatorname{sur} [0; +\infty[$.

- $\sum z^n \operatorname{sur} \{z \in \mathbb{C} \mid |z| < 1\}.$
- $\sum \frac{(-1)^n x^n}{2n+1}$ sur [0;1].

V. B Convergence normale

Définition 5.9

Une série de fonction $\sum f_n$ sur A est dite **normalement convergente** lorsque la série $\sum \|f_n\|_{\infty}$ converge.

Remarque 5.10 : En particulier les fonctions f_n doivent être bornée (pour que $||f_n||_{\infty}$ soit bien définie).

Méthode 5.11 (Démontrer une convergence normale)

- 1. On calcule $||f_n||_{\infty} = \sup_{x \in A} ||f_n(x)||$.
- 2. On montre que la série $\sum ||f_n||_{\infty}$ converge.

Méthode 5.12 (Démontrer une convergence normale par majoration)

- 1. On majore $||f_n||$ sur A par $\alpha_n \in \mathbb{R}^+ : \forall x \in A, ||f_n(x)|| \leq \alpha_n$ (majoration uniforme: indépendante de $x \in A$).
- 2. On montrer que la série la série $\sum \alpha_n$ converge.

Méthode 5.13 (Infirmer une convergence normale)

methode 1: par calcul ou minoration de $||f_n||_{\infty}$;

methode 2: trouver une suite $(x_n)_{n\in\mathbb{N}}$ telle que $\sum ||f_n(x_n)||$ diverge.

Exemple 5.14 : Série $\sum f_n$ avec $f: \begin{vmatrix} \mathbb{C} & \longrightarrow & \mathbb{C} \\ z & \longmapsto & z^n \end{vmatrix}$ sur $D = \{z \in \mathbb{C} \mid |z| < 1\}$ puis sur $B_r = \{z \in \mathbb{C} \mid |z| \leqslant r\}$ pour 0 < r < 1.

V. C Convergence normale et convergence uniforme

Théorème 5.15

Si une série de fonctions $\sum f_n$ converge normalement sur A, alors elle converge uniformément sur A.

Proposition 5.16

Si une série de fonctions $\sum f_n$ converge normalement sur A, alors pour tout $x \in A$, la série $\sum f_n(x)$ converge absolument.

Remarque 5.17 : La convergence uniforme sur A n'implique pas la convergence normale sur A.

Contre exemple 5.18: $\sum \frac{(-1)^n x^n}{2n+1}$ converge uniformément sur [0;1] d'après l'exemple 5.8, mais pas normalement sur [0;1] car pour $x \neq 0$ fixé il n'y a pas convergence absolue.

V. D Intégration et dérivation d'une série de fonctions

(Proposition 5.19)

Soit $\sum f_n$ une série de fonctions continues définies sur un intervalle I de \mathbb{R} et à valeurs dans F, a un point de I.

On suppose que $\sum f_n$ converge uniformément sur tout segment de I vers une fonction S.

Pour tout $n \in \mathbb{N}$ et tout $x \in I$, on pose :

$$F_n(x) = \int_a^x f_n(t) dt \text{ et } T(x) = \int_a^x S(t) dt.$$

Alors la suite $\sum F_n$ converge uniformément vers T sur tout segment de I.

Exemple 5.20 : Convergence et somme de la série $\sum_{n\geqslant 1} \frac{x^n}{n}$ sur]-1;1[.

Proposition 5.21

Soit $\sum f_n$ une série de fonctions continues définies sur un segment [a;b]. Si $\sum f_n$ converge uniformément vers une fonction S sur [a;b], alors :

$$\sum_{n=0}^{+\infty} \left(\int_a^b f_n(t) dt \right) = \int_a^b S(t) dt = \int_a^b \left(\sum_{n=0}^{+\infty} f_n(t) \right) dt.$$

Proposition 5.22

Soit $\sum f_n$ une suite de fonctions définies sur un intervalle I de \mathbb{R} , à valeurs dans F. Si :

- pour tout $n \in \mathbb{N}, f_n \in \mathcal{C}^1(I)$;
- $\sum f_n$ converge simplement sur I;
- $\sum f'_n$ converge uniformément sur tout segment de I;

alors:

- $\sum f_n$ converge uniformément sur tout segment de I;
- $\sum_{n=0}^{+\infty} f_n$ est de classe \mathcal{C}^1 sur I et $\left(\sum_{n=0}^{+\infty} f_n\right)' = \sum_{n=0}^{+\infty} f_n'$.

Remarque 5.23 : De même pour la généralisation à la classe C^k .

Exemple 5.24 : Convergence et somme de la série $\sum (-1)^n \frac{x^{2n+1}}{2n+1}$ sur]-1;1[.

VI Approximation uniforme

VI. A par des fonctions en escalier

Rappel: Soit $a, b \in R$ tels que a < b.

- Une **subdivision** du segment [a;b] est une famille finie $(a_k)_{k \in [0;n]}$ telle que $a = a_0 < a_1 < \cdots < a_n = b$.
- Soit $f:[a;b] \longrightarrow F$ une fonction. On dit qu'elle est **en escalier** s'il existe une subdivision (a_0,\ldots,a_n) telle que pour tout $k \in [0;n-1]$ la fonction f est constante sur $]a_k;a_{k+1}[$. On dit alors que la subdivision est **adaptée** à f.
- Soit $f:[a;b] \longrightarrow F$ une fonction. On dit qu'elle est **continue par morceaux** s'il existe une subdivision (a_0,\ldots,a_n) telle que pour tout $k\in [0;n-1]$ la fonction f est continue sur $]a_k;a_{k+1}[$ et prolongeable par continuité sur $[a_k;a_{k+1}]$. On dit alors que la subdivision est **adaptée** à f.

Théorème 6.1

Toute fonction continue par morceaux sur [a;b] à valeurs dans F est limite uniforme d'une suite de fonctions en escalier sur [a;b].

(Lemme 6.2)

Soit $f \in \mathcal{C}([a\,;b],F)$ et $\varepsilon > 0$, il existe $\varphi \in \mathcal{E}([a\,;b],F)$ telle que $||f-\varphi||_{\infty} \leqslant \varepsilon$.

- **Remarques 6.3:** En notant $\mathcal{E}([a;b],F)$ l'espace vectoriel des fonctions en escalier sur [a;b] et $\mathcal{C}_m([a;b],F)$ l'espace vectoriel des fonctions continues par morceaux sur [a;b],
 - $\mathcal{E}([a;b],F)$ est dense dans l'espace vectoriel normé $(\mathcal{C}_m([a;b],F),\|.\|_{\infty})$.
 - Ce résultat permet la construction de l'intégrale de Riemann vue en première année.
 - Dans l'espace vectoriel normé $(\mathcal{B}([a\,;b],\mathbb{R}),\|.\|_{\infty}), \overline{\mathcal{E}([a\,;b],\mathbb{R})} \neq \mathcal{C}_m([a\,;b],\mathbb{R}).$ En effet : $\sum 2^{-n} \mathbb{1}_{[0\,;2^{-n}]}$ converge uniformément (car normalement) sur $[0\,;1]$, mais sa somme a une infinité de points de discontinuité, elle n'est donc par continue par morceaux.

VI. B par des polynômes

Théorème 6.4 (Weierstrass)

Toute fonction $f \in \mathcal{C}([a;b],\mathbb{K})$ est limite uniforme sur [a;b] de fonctions polynomiales à coefficients dans \mathbb{K} .

- **Remarque 6.5 :** L'espace $\mathbb{K}[X]$ des fonctions polynomiales à coefficients dans \mathbb{K} est ense dans l'espace vectoriel normé $(\mathcal{C}([a;b],\mathbb{K}),\|.\|_{\infty})$.
 - De plus, dans l'espace vectoriel normé $(\mathcal{B}([a\,;b],\mathbb{K}),\|.\|_{\infty}), \overline{\mathbb{K}[X]} = \mathcal{C}([a\,;b],\mathbb{K})$ puisqu'une limite uniforme sur $[a\,;b]$ de fonctions polynomiales est continue sur $[a\,;b]$.