國立臺北科技大學電子工程系 113 年度

實務專題成果報告書

OFDM 系統模擬

專題執行期間:113年12月10日起至114年5月8日止

電資三 111820005 連蘭新

電資三 111820021 許瀚允

電資三 111820018 石博文

電資三 110820028 蔡芸榛

指導老師:劉玉蓀 教授

中華民國 114 年 5 月 8 日

摘要

關鍵字:OFDM、基頻等效訊號、星座圖、QPSK、IFFT/FFT

本專題聚焦於無線通訊系統中之訊號處理技術,涵蓋基頻等效訊號產生、調變與解調、雜訊特性分析及多徑衰落通道均衡等核心議題。首先,藉由 MATLAB 平台模擬帶通訊號之週期性特性、最小取樣率和計算與基頻等效訊號重建;接著,探討 AWGN 對 QPSK 調變訊號之影響,並透過 BER 曲線評估系統效能;最後,針對多徑衰落通道,利用頻域均衡,對接收訊號進行補償,實現失真訊號之有效恢復。實驗結果顯示,文中使用到的頻域均衡方法能顯著減輕通道失真,且噪聲統計分布吻合高斯分佈假設。整體而言,本專題不僅提供無線通訊系統設計之理論依據,亦具備良好之實務驗證成效。

一、專題簡介

現今無線通訊系統廣泛應用於行動通訊、物聯網及車聯網等領域,然 而實際傳輸環境中,訊號常受到 AWGN 以及多徑衰落效應干擾,導致接 BER (Bit Error Ratio)顯著上升,進而影響整體連線品質與頻譜效率。

為系統性地探討這些關鍵議題,本專題結合五組 MATLAB 模擬實驗,分別進行帶通訊號與基頻等效訊號的特性分析,QPSK 調變與 AWGN 影響評估,與多徑衰落通道建模與頻域均衡,當中使用 R'(f)=R(f)/H(f)之頻域均衡方法,以恢復失真訊號。

二、研究目的

- 驗證理論方法:確認 IFFT/FFT 雙向轉換與 OFDM 基本原理之正確性。
- 量化噪聲影響:探討不同 E_b/N_0 (dB)下 QPSK 調變之 BER 性能。
- 提出均衡策略:設計並驗證結合 CP 與頻域均衡之多徑補償方法,以 降低通道失真並優化接收品質。
- 整合分析流程:將分散的訊號生成、雜訊分析及通道均衡實驗,整合 為一套可重複使用之完整通訊鏈路仿真框架,為未來嵌入式系統實作 或更高階調變方案提供參考。

三、研究方法

本研究以 MATLAB 為模擬平臺,採用「訊號生成→雜訊分析→通道模型模 擬與均衡→效能評估」之模組化流程,旨在驗證 QPSK 調變系統於 AWGN 及多徑衰落環境下之效能並提出補償策略。整體步驟如下所述:

1、 訊號生成與時頻域轉換:於 MATLAB 中定義 QPSK 星座點,依週期 重複排列,形成符號序列,再將此序列映射至 IFFT 輸入向量的兩端, 中間以零填充,確保頻譜對稱且低頻分量位於向量前後端,避免混疊。

- 2、 AWGN 雜訊疊加與統計分析:利用 MATLAB 的 awgn 函數,設定 SNR 值,將 AWGN 疊加至時域訊號 s[m],得到接收訊號 r[m]。將雜訊 n[m]分離(n[m]=r[m]-s[m]),分別計算 n[m]實部與虛部之期望值與變異數,繪製概率密度直方圖,檢驗機率分布是否符合 Gaussian 分佈。
- 3、多徑衰落通道模型與頻域均衡:模擬多徑衰落,設定 fading channel 參數,在 IFFT 的每個輸出前加循環前綴 (CP),以消除符號間干擾 (ISI)。接收端透過 FFT 恢復頻域接收訊號 R(f),並將信道效應 H(f)反轉,進行頻域均衡,經 H(f)等化後,補償信道失真,恢復星座點。
- 4、BER 性能評估:固定發射符號序列,重複進行多次獨立模擬,統計錯誤碼數量,計算模擬的BER,並與QPSK理論上的BER曲線比較,以驗證模擬結果之正確性與一致性。
- 5、 主要挑戰與對策
 - 多徑相位旋轉影響:結合頻域均衡同時校正振幅與相位,透過 CP 抑制時域多徑干擾。
 - 理論 SNR 與實際匹配:
 在 awgn 函數中採用 signal power = 'measured'模式,多次量測並平均訊號與雜訊功率,縮小理論與模擬結果誤差。

四、研究內容與成果

1、 實驗一

本實驗透過一組定義好的帶通信號 m(t),探討其週期性、頻譜特性、基頻等效信號 m'(t)及其包絡線 r(t)。信號 m(t)是由四個不同頻率與相位構成的合成訊號,利用傅立葉分析和取樣理論推導出最小取樣頻率與複數頻譜 M(f),再進一步推導出基頻等效的信號 m'(t)與複數頻譜 M'(f)及複數包絡線 r(t),最後比較 m(t)和透過 IQ 分量重建出的 c(t), 結果會發現兩者相同。

設定帶通信號m(t) =
$$\sum_{n=0}^{3} a_n \cos(2\pi f_n t) - b_n \sin(2\pi f_n t)$$

n = 0, f_0 = 16, a_0 = 1, b_0 = 1; n = 1, f_1 = 18, a_1 = -1, b_1 = 1
n = 2, f_2 = 22, a_2 = 1, b_2 = -1; n = 3, f_3 = 24, a_3 = -1, b_3 = 1

圖 1、m(t)的複數頻譜

• 模擬結果

m(t)是週期性信號,週期 T=0.5 秒。

□ 2、帶通信號 m(t)

根據 Nyquist 取樣定理,最小取樣率 $f_s = 48(sample/sec)$ 。

圖 3、基頻等效信號頻譜M'(f)

m'(t) 是 m(t)的基頻等效信號 $m'(t) = \sum_{n=0}^{3} (a_n + jb_n)e^{2\pi f_n t}$

圖 $4 \cdot \mathbf{r}(t)$ 與 $m_I(t) \cdot m_Q(t)$

包絡線r(t) = $\sqrt{m_I(t)^2 + m_Q(t)^2}$

 $m_I(t) = Re[m'(t)]; \quad m_Q(t) = Im[m'(t)]$

圖 5、帶通信號 m(t)與 r(t)

m(t): 紅線; r(t): 綠線

 $m(t) = Re[m'(t)e^{2\pi f_n t}] = \sum_{n=0}^{3} r(t)e^{2\pi f_n t}$ m(t)是實數信號;r(t)為 m(t)的瞬時振幅,是 m(t)的包絡線。

圖 6、m(t)與 c(t)

結論

帶通信號可藉由基頻等效信號取得完整的相位與振幅資訊。

2、 實驗二

此實驗基頻等效頻域訊號 S(f)輸入 8 IFFT, 觀察其輸出是否為 $m_I(t)$ 與 $m_O(t)$ 在一個週期內的離散取樣點。 (IFFT: 8 input and 8 output)

圖 7、基頻等效信號 S(f)

• 模擬結果

圖 8、IFFT 輸出結果

結論

IFFT 的輸出為 $m_I(t)$ 及 $m_Q(t)$ 在一個周期內的 8 個取樣。 因此若要產生 $m_I(t)$ 及 $m_Q(t)$,可以用 IFFT 產生取樣,再用 D/A (Digital to Analog),將信號變成 Analog signal 即可。

3、實驗三

此實驗利用週期為 4 的 600 QPSK 複數信號作為頻域訊號 S(f),經過 2048 IFFT 得到傳送訊號 s[m],再通過 AWGN 通道加入雜訊,得接收訊號 r[m]。自訂 SNR 對於 AWGN block。觀察傳送與接收訊號的實部與虛部差異,計算信號與雜訊平均功率並比較 SNR 理論值與AWGN 模擬值。

• 模擬結果

圖 10、s[m]與 r[m]實部

圖 11、s[m]與 r[m]虛部

- 》 平均功率計算:(重複實驗十次,計算平均值) 傳送訊號 s[m]功率 $P_{signal}=2.861\times 10^{-4}$ 雜訊 n[m]功率 $P_{noise}=2.8567\times 10^{-5}$ (n[m]=r[m]-s[m])
- ightarrow SNR 分析: 理想 SNR = $10log_{10}(P_{signal}/P_{noise}) = 10.0065$ dB AWGN block 設定的 SNR = 10 dB,驗證模擬與理論一致

結論

複數形式的 QPSK 傳輸與 AWGN 模擬,能有效描述通訊系統中訊號失真與干擾情況,並可準確評估通道品質 (SNR)。

4、實驗四

延續第三次作業所設定的 SNR,進行頻域雜訊分析與 BER 模擬。首先,將通過 AWGN 通道的接收訊號 R(f)與原始傳送訊號 S(f)相減,獲得雜訊頻域分量 N(f)。針對 N(f)實部與虛部分別進行期望值與變異數統計,並模擬其機率分布與對應的高斯分布(Gaussian distribution)比較。其次,計算子載波的平均 E_s/N_0 ,並與設定的 SNR 作比較,說明差異原因。最後,模擬 BER 對 E_s/N_0 的變化,並與理論圖表比較,說明 BER 計算方式與 Gray Mapping 的關聯。

• 模擬結果

N(f) = 接收信號 R(f) - 傳送信號 S(f)

	Re(N(f))	Im(N(f))	
期望值	0.002	-0.0015	
變異數	0.03	0.0282	

圖 12、 Re[N(f)]:機率分布 vs 高斯分布

圖 13、

Im [N(f)]:機率分布 vs 高斯分布

▶ 平均E_s/N₀分析

子載波的平均 $E_s/N_0 = 34.0892 = 15.3262$ (dB)

 E_s/N_0 – Ideal SNR = 5.3197 (dB)

出現差值原因:因為 SNR 是以時域整體平均功率與噪聲功率的比值來衡量,而 E_s/N_0 則是以每個符號的能量對噪聲譜密度的比值來定義,二者因子不同(如 OFDM 子載波數與 IFFT 點數的能量分散)而產生差異。

▶ 模擬 BER vs E_b/N₀

使用 Gray Mapping 進行調變,結果與理論曲線吻合。

SNR(dB)	$E_b/N_0(dB)$	BER	Variance of Re(N(f))
2	4.32	9.9817e-03	0.1847
4	6.33	1.6433e-03	0.1165
6	8.32	1.0417e-04	0.0736
8	10.32	1.6667e-06	0.0465
10	12.33	0.0000e+00	0.0293
12	14.32	0.0000e+00	0.0185
14	16.32	0.0000e+00	0.0117

圖 14、 計算值與理論值 BER

結論

實驗證明 FFT 還原後的頻域雜訊具高斯性質,並可由其統計特性精準估算 SNR 與 BER 表現。

5、實驗五

本次作業探討多路徑衰落通道下的頻率響 H(f)對 QPSK 訊號造成的影響,並分析其在接收後的星座圖變化與頻域等化補償的效果。首先觀察[H(f)]及 $\angle H(f)$ 的變化趨勢,以了解不同頻率下的增益與相位特性;接著比較在有無 fading 的條件下的接收訊號 R(f)星座圖,最後透過等化 R'(f) = R(f)/H(f) 還原原始訊號結構。

• 模擬結果

▶ |H(f)|及∠H(f)的變化趨勢

因信號受多路徑效應影響,|H(f)|可能形成選擇性衰落,同時相位會受到影響,產生偏移,對應到 $\angle H(f)$ 圖,會看到 $\angle H(f)$ 波型出現轉折,不像線性,而 $\angle H(f)$ 呈現線性下降時,代表主要路徑與反射路徑的時間差固定。

圖 15、|H(f)| (未加雜訊)

圖 16、∠H(f)(未加雜訊)

▶ 接收訊號 R(f)星座圖(有無 fading)

R(f)星座圖(有 fading)的訊號分布是環狀且不集中的;星座圖 (無 fading)訊號分布均勻且集中在 QPSK 四個象限理想位置。

ightharpoonup R(f) (f fading) vs R'(f) = R(f)/H(f)

R(f)星座圖嚴重扭曲,訊號分布不集中;經等化後 R'(f) 星座圖回復整齊,顯示等化成功還原信號。

結論

通過分析與頻域等化操作,可有效還原衰落通道下的訊號,使 QPSK 星座圖回復清晰、集中,提升通訊品質與可靠性。

五、結論與展望

此專題透過分析頻域響應 H(f)、星座圖變化與頻域等化的模擬,深入探討了基頻等效訊號(baseband equivalent signal)在 OFDM 系統中的重要性。在 OFDM 系統中,傳送訊號透過 IFFT 將多個子載波的複數頻域訊號轉換為時域訊號,而這些複數符號正是基頻等效訊號的具體表現形式。實驗中,傳送端使 QPSK 編碼的基頻等效訊號 S(f),模擬訊號在多路徑衰落通道 (fading channel)與 AWGN 環境下的行為,並且透過頻域等化 R'(f) = R(f)/H(f)補償通道失真,最終成功還原原始訊號結構。這一過程不僅驗證基頻等效模型在模擬與設計上的價值,也具體展示了 OFDM 系統在現代無線通訊中的抗干擾能力。

若未來有機會,可以進一步將模擬延伸到 MIMO 系統,測試 baseband 等效模型在多天線通道中的表現;也可以加入機器學習技術,預測並補償 H(f),提升等化效果;針對|H(f)|衰落嚴重的頻段,調整載波配置或功率分配,以增加傳輸穩定性;此外,也有機會開發低功耗的等化器,應用在嵌入式或行動裝置中。

参考文獻

- T.-Y. Hsu, "I/Q Mismatch Estimation and Compensation in MIMO-OFDM Systems under CW Jamming," 碩士論文,國立交通大學電信工程研究所, 2008。
- 林志宏,"軟體無線電架構 OFDM 系統之數位基頻訊號處理平台實現",碩 士論文,國立臺灣大學電信工程學研究所,2006。
- 國立陽明交通大學電信工程研究所,"多輸入多輸出正交分頻多工(MIMO-OFDM)架構在感知與通訊融合系統中的應用",碩士論文,2021。
- https://ww2.mathworks.cn/help/comm/ug/qpsk-transmitter-and-receiver.html(2025.05.08)