Recursive Counting

Vladimir Podolskii

Computer Science Department, Higher School of Economics

Outline

Number of Paths

Rule of Product

Back to Recursive Counting

Problem

Suppose there are several points connected by arrows. There is a starting point s (called source) and a final point t (called sink). How many different ways are there to get from s to t?

 There are several various paths; how not to miss anything when counting?

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- · We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

- There are several various paths; how not to miss anything when counting?
- We can count them recursively: for each node count the number of paths from s to this node
- We use the rule of sum!

Outline

Number of Paths

Rule of Product

Back to Recursive Counting

Rule of Product

Rule of Product

If there are k object of the first type and there are n object of the second type, then there are $k\times n$ pairs of objects, the first of the first type and the second of the second type

Rule of Product

Rule of Product

If there are k object of the first type and there are n object of the second type, then there are $k \times n$ pairs of objects, the first of the first type and the second of the second type

Pizza options

Soda options

Rule of Product

Rule of Product

If there are k object of the first type and there are n object of the second type, then there are $k \times n$ pairs of objects, the first of the first type and the second of the second type

Pizza options

Soda options

 $4 \times 3 = 12$ combo options

List of All Combo Options

Rule of Product in the Set Language

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

$$A = \{a_1, \dots, a_k\}$$
$$B = \{b_1, \dots, b_n\}$$

	b_1	b_2	b_{j}		b_n
a_1					
a_2					
a_{i}					
a_k					

$$A = \{a_1, \dots, a_k\}$$
$$B = \{b_1, \dots, b_n\}$$

	b_1	b_2	b_{j}		b_n
a_1 a_2					
a_2					
a_{i}					
a_k					

$$A = \{a_1, \dots, a_k\}$$
$$B = \{b_1, \dots, b_n\}$$

	b_1	b_2	b_{j}		b_n
a_1					
a_2					
a_{i}			a_i , b_j		
a_k					

$$A = \{a_1, \dots, a_k\}$$
$$B = \{b_1, \dots, b_n\}$$

	b_1	b_2	b_{j}		b_n
a_1					
a_2					
a_{i}			a_i , b_j		
a_k					

There are as many pairs as cells in this table

Outline

Number of Paths

Rule of Product

Back to Recursive Counting

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A|\times |B|$ pairs of objects, the first from A and the second from B

Can we express this counting rule in terms of counting the number of paths?

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A|\times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A|\times |B|$ pairs of objects, the first from A and the second from B

Rule of Product

If there is a finite set A and a finite set B, then there are $|A| \times |B|$ pairs of objects, the first from A and the second from B

