Übersicht

- 10 Berechenbarkeit und Entscheidbarkeit
 - Einführung
 - Maschinenmodelle
 - Berechenbarkeit und Entscheidbarkeit

Übersicht

- 10 Berechenbarkeit und Entscheidbarkeit
 - Einführung
 - Maschinenmodelle
 - Berechenbarkeit und Entscheidbarkeit

Einführung

- Welche Funktionen können
 - von Computern
 - mit funktionaler Programmierung
 - mit imperativer Programmierung
 -

berechnet werden?

- Stimmen diese Funktionsklassen überein?
- Was bedeutet Berechenbarkeit einer Funktion?
- Existieren Funktionen, die nicht berechnet werden können?
- Kann zu jeder Fragestellung eine Antwort berechnet werden? Gibt es nichtentscheidbare Probleme?

Einführung

0

- Maschinenmodelle und deren Ausdrucksfähigkeit
 - Beispiel: Registermaschine
 - Abstrakte Maschinen und Programmierkonzepte
 - Church'sche These
- Berechenbarkeit und Entscheidbarkeit
 - Beispiele für nichtberechenbare Funktionen
 - Beispiele für nichtentscheidbare Probleme
- Literatur: [Saake&Sattler] (Kapitel 6 und 7.1)

Übersicht

- 10 Berechenbarkeit und Entscheidbarkeit
 - Einführung
 - Maschinenmodelle
 - Berechenbarkeit und Entscheidbarkeit

Maschinenmodelle

- Zentrale Fragestellung: Berechenbarkeit von Funktionen
- Lege "Spielregeln" fest
 - Algorithmus beschrieben durch Befehle an einen Rechner
 - Definiere dazu ein abstraktes Rechnermodell
- Beispiel: Registermaschine "ein Idealisierter Computer"
- Abstrakte Maschine –
 Allgemeines Konzept für ein Maschinenmodell
- Idee: Abbildung von
 - Rechnerarchitekturen,
 - Programmierparadigmen oder (-sprachen),
 - . . .

auf abstrakte Maschinen

Mache verschiedene Konzepte damit vergleichbar

Registermaschine

- Einfaches abstraktes Rechnermodell, ähnlich einem "richtigen" Computer
- Eine Registermaschine besteht aus Registern und Programm.
- Jedes Register speichert einen ganzzahligen Wert
 - B ist der Befehlszähler
 - C₀ heißt Arbeitsregister oder Akkumulator
 - lacksquare C_1, C_2, C_3, \dots sind (potentiell unendlich viele) Speicherregister
- Konfiguration = momentaner Wert aller Register als Tupel

$$(b, c_0, c_1, ..., c_i, ...)$$

- Programm = (endliche) Folge von Befehlen
- Jeder Befehl X ändert die Konfiguration:

$$(b, c_0, c_1, \dots) \stackrel{X}{\mapsto} (b', c'_0, c'_1, \dots)$$

Befehlsübersicht (1)

Ein-/Ausgabe

Befehl	Argument	Semantik
LOAD	i > 0	$b' = b+1 \land c'_0 = c_i \land c'_j = c_j \text{ für } j \neq 0$
CLOAD	i ≥ 0	$b' = b+1 \land c'_0 = i \land c'_i = c_j$ für $j \neq 0$
STORE	i > 0	$b' = b+1 \land c'_i = c_0 \land c'_j = c_j \text{ für } j \neq i$

- Ein-/Ausgabe von/nach $C_i(i > 0)$ über Akkumulator C_0
- Befehlszähler wird immer um 1 erhöht
- Manipulation (Es gilt jeweils $c'_j = c_j$ für $j \neq 0$.)

Befehlsübersicht (2)

■ Manipulation (Es gilt jeweils $c'_j = c_j$ für $j \neq 0$.)

Befehl	Argument	Semantik
MULT	i > 0	$b' = b+1 \land c_0' = c_0 \cdot c_i$
CMULT	i > 0	$b' = b+1 \land c_0' = c_0 \cdot i$
DIV	i > 0	$b' = b + 1 \land c_0' = \lfloor c_0/c_i \rfloor$
CDIV	i > 0	$b' = b + 1 \land c_0' = \lfloor c_0/i \rfloor$

■ Sprungbefehle (Es gilt jeweils $c'_j = c_j$ für $j \ge 0$.)

GOTO
$$\begin{array}{c|c} \textbf{GOTO} & \textbf{i} > \textbf{0} & \textbf{b}' = \textbf{i} \\ \textbf{IF } c_0 = \textbf{0} \textbf{ GOTO} & \textbf{i} > \textbf{0} & \textbf{b}' = \begin{cases} \textbf{c}_0 = \textbf{0} \colon & \textbf{i} \\ \textbf{c}_0 \neq \textbf{0} \colon & \textbf{b} + \textbf{1} \end{cases} \\ \textbf{END} & \textbf{b}' = \textbf{b} \end{array}$$

- Sprung (GOTO) und bedingter Sprung (IF $c_0 = 0$ GOTO)
- Stoppbefehl END = Ende der Berechnung, denn Konfiguration bleibt unverändert

Aufbau einer Registermaschine

Zentrale Recheneinheit

Beispiel: Registermaschine M₁

■ Startkonfiguration $b = 1, c_0 = 0, c_1 = 32, c_2 = 5, c_3 = 0$

- 1 LOAD 1 2 DIV 2 3 MULT 2
- 4 STORE 3
- T DIOILL
- 5 LOAD 1
- 6 SUB 3
- 7 STORE 3
- 8 END

```
(1,0,32,5,0,\ldots) \stackrel{1}{\mapsto} (2,32,32,5,0,\ldots)
                                 \stackrel{2}{\mapsto} (3,6,32,5,0,...)
                                \stackrel{3}{\mapsto} (4.30, 32, 5, 0, ...)
                                \overset{4}{\mapsto} (5.30,32,5,30,...)
                                \stackrel{5}{\mapsto} (6.32, 32, 5, 30, ...)
                                \stackrel{6}{\mapsto} (7.2, 32, 5, 30, ...)
                                \stackrel{7}{\mapsto} (8.2,32,5,2,...)
                                \stackrel{8}{\mapsto} (8, 2, 32, 5, 2, ...)
```

Beispiel: Registermaschine M₁

- Allgemeine Betrachtung $b = 1, c_0 = 0, c_1 = n, c_2 = m, c_3 = 0$
- Sei $q = \lfloor \frac{n}{m} \rfloor$, d.h. $n = q \cdot m + r$ mit $0 \leqslant r < m$.

```
1 LOAD 1
2 DIV 2
3 MULT 2
4 STORE 3
5 LOAD 1
6 SUB 3
7 STORE 3
8 END
```

```
(1,0,n,m,0,...) \xrightarrow{1} (2,n,n,m,0,...)
                                         \stackrel{2}{\mapsto} (3, q, n, m, 0, ...)
                                         \stackrel{3}{\mapsto} (4, q · m, n, m, 0, ...)
                                         \stackrel{4}{\mapsto} (5, q · m, n, m, q · m, ...)
                                         \stackrel{5}{\mapsto} (6, \mathbf{n}, \mathbf{n}, \mathbf{m}, \mathbf{q} \cdot \mathbf{m}, \dots)
                                         \stackrel{6}{\mapsto} (7, \mathbf{r}, \mathbf{n}, \mathbf{m}, \mathbf{q} \cdot \mathbf{m}, \dots)
                                         \stackrel{7}{\mapsto} (8, r, n, m, r, ...)
                                         \stackrel{8}{\mapsto} (8. r. n. m, r, ...)
```

■ M_1 berechnet den Rest r der ganzzahligen Division n/m

Berechnete Funktion

Berechnete Funktion einer Registermaschine

Eine Registermaschine M berechnet die Funktion

$$f: \mathbb{N}_0^n \to \mathbb{N}_0^m \quad \text{mit} \quad f(x_1, x_2, \dots, x_n) = (y_1, y_2, \dots, y_m),$$

wenn es Zahlen i_1,i_2,\ldots,i_m gibt, so dass M jede Konfiguration

$$(1,0,x_1,x_2,\ldots,x_n,0,0,\ldots)$$

in eine Konfiguration (b, c_0, c_1, \dots) überführt, für die gilt

- b ist die Nummer einer END Anweisung, und
- $\mathbf{c}_{i_j} = y_j \text{ für } 1 \leqslant j \leqslant \mathbf{m}.$
- Das Ergebnis $(y_1,...,y_m)$ steht in den Registern $C_{i_1},...,C_{i_m}$.
- Beispiel: M_1 berechnet $f(x_1, x_2) = x_1 \lfloor \frac{x_1}{x_2} \rfloor x_2$

Einfache Beispiele

• Addition $f(x_1, x_2) = x_1 + x_2$ (Ergebnis in C_3 also $i_1 = 3$.)

- 1 LOAD 1
- 2 ADD 2
- 3 STORE 3
 - 4 END

$$f(x) = \begin{cases} x = 0 : & 0 \\ x \neq 0 : & \bot \end{cases}$$

- 1 LOAD 1
- $2 \quad \text{IF } c_0 = 0 \text{ GOTO } 4$
- 3 GOTO 2
- 4 END

Beispiel: Registermaschine M_2

- 1 CLOAD 1
- 2 STORE 3
- 3 LOAD 2
- 4 IF $c_0 = 0$ GOTO 12
- 5 LOAD 3
- 6 MULT 1
- 7 STORE 3
- 8 LOAD 2
- 9 CSUB 1
- 10 STORE 2
- 11 GOTO 4
- 12 END

- M_2 berechnet $f(x,y) = x^y$
- für Startkonfiguration (1,0,x,y,0,...)
- für Endkonfiguration gilt $C_3 = f(x, y)$

Beispiel: Registermaschine M₂

- Beispiel: $f(2,3) = 2^3 = 8$
- Startkonfiguration (1,0,2,3,0,...)
- \blacksquare $(1.0.2.3.0...) \xrightarrow{1} (2.1.2.3...) \xrightarrow{2} (3.1.2.3.1...) \xrightarrow{3}$ $(4.3,2.3,1...) \xrightarrow{4} (5.3,2.3,1...) \xrightarrow{5} (6.1,2.3,1...) \xrightarrow{6}$ $(7\ 2\ 3\ 1) \xrightarrow{7} (8\ 2\ 2\ 3\ 2) \xrightarrow{8} (9\ 3\ 2\ 3\ 2) \xrightarrow{9}$ $(10.2,2.3,2...) \stackrel{10}{\mapsto} (11.2,2.2,2...) \stackrel{11}{\mapsto} (4.2,2.2,2...) \stackrel{4}{\mapsto}$ $(5,2,2,2,2,\ldots) \stackrel{5}{\mapsto} (6,2,2,2,2,\ldots) \stackrel{6}{\mapsto} (7,4,2,2,2,\ldots) \stackrel{7}{\mapsto}$ $(8.4,2,2,4,\ldots) \stackrel{8}{\mapsto} (9.2,2,2,4,\ldots) \stackrel{9}{\mapsto} (10.1,2,2,4,\ldots) \stackrel{10}{\mapsto}$ $(11.1.2.1.4...) \xrightarrow{11} (4.1.2.1.4...) \xrightarrow{4} (5.1.2.1.4...) \xrightarrow{5}$ $(6.4,2.1.4...) \xrightarrow{6} (7.8,2.1.4...) \xrightarrow{7} (8.8,2.1.8...) \xrightarrow{8}$ $(9.1,2.1,8...) \stackrel{9}{\mapsto} (10.0,2.1,8...) \stackrel{10}{\mapsto} (11.0,2.0,8...) \stackrel{11}{\mapsto}$ $(4.0.2.0.8...) \xrightarrow{4} (12.0.2.0.8...) \xrightarrow{12} (12.0.2.0.8...) \xrightarrow{12} ...$

Beispiel: Registermaschine M_4


```
T.OAD 1
    CSUB 1
    IF c_0 = 0 GOTO 19
    CLOAD 2
 5 STORE 2
   LOAD 1
   SUB 2
   IF c_0 = 0 GOTO 21
 9
    LOAD 1
10
    DTV 2
11
    MUI.T 2
12 STORE 3
13
    LOAD 1
14
    SUB 3
```

```
15 IF c_0 = 0 GOTO 19

16 LOAD 2

17 CADD 1

18 GOTO 5

19 STORE 2

20 GOTO 23

21 CLOAD 1

22 STORE 2

23 END
```

- M_2 berechnet f(x) = $\begin{cases} x \text{ ist keine Primzahl}: & 0 \\ x \text{ ist Primzahl}: & 1 \end{cases}$
- für Startkonfiguration (1, 0, x, 0, ...)

Beispiel: Registermaschine M₄

- Startkonfiguration (1,0,2,...) $(1,0,2,...) \xrightarrow{1} (2,2,2,...) \xrightarrow{2} (3,1,2,...) \xrightarrow{3} (4,1,2,...) \xrightarrow{4}$ $(5,2,2,...) \xrightarrow{5} (6,2,2,2,...) \xrightarrow{6} (7,2,2,2,...) \xrightarrow{7} (8,0,2,2,...) \xrightarrow{8}$ $(21,0,2,2,...) \xrightarrow{21} (22,1,2,2,...) \xrightarrow{22} (23,1,2,1,...) \xrightarrow{23}$ $(23,1,2,1,...) \xrightarrow{23} ...$
- Startkonfiguration (1,0,6,...) $(1,0,6,...) \xrightarrow{1} (2,6,6,...) \xrightarrow{2} (3,5,6,...) \xrightarrow{3} (4,5,6,...) \xrightarrow{4}$ $(5,2,6,...) \xrightarrow{5} (6,2,6,2,...) \xrightarrow{6} (7,6,6,2,...) \xrightarrow{7} (8,4,6,2,...) \xrightarrow{8}$ $(9,4,6,2,...) \xrightarrow{9} (10,6,6,2,...) \xrightarrow{10} (11,3,6,2,...) \xrightarrow{11}$ $(12,6,6,2,...) \xrightarrow{12} (13,6,6,2,6,...) \xrightarrow{13} (14,6,6,2,6,...) \xrightarrow{14}$ $(15,0,6,2,6,...) \xrightarrow{15} (19,0,6,2,6,...) \xrightarrow{19} (20,0,6,0,6,...) \xrightarrow{20}$ $(23,0,6,0,6,...) \xrightarrow{23} (23,0,6,0,6,...) \xrightarrow{23} ...$

Beispiel: Registermaschine M₄

■ Startkonfiguration (1,0,5,...)

```
(1.0.5...) \xrightarrow{1} (2.5,5,...) \xrightarrow{2} (3.4,5,...) \xrightarrow{3} (4.4,5,...) \xrightarrow{4} (5,2,5,...) \xrightarrow{5}
(6.2.5.2...) \stackrel{6}{\mapsto} (7.5.5.2...) \stackrel{7}{\mapsto} (8.3.5.2...) \stackrel{8}{\mapsto} (9.3.5.2...) \stackrel{9}{\mapsto}
(10,5,5,2,\ldots) \stackrel{10}{\mapsto} (11,2,5,2,\ldots) \stackrel{11}{\mapsto} (12,4,5,2,\ldots) \stackrel{12}{\mapsto} (13,4,5,2,4,\ldots) \stackrel{13}{\mapsto}
(14, 5, 5, 2, 4, \dots) \stackrel{14}{\mapsto} (15, 1, 5, 2, 4, \dots) \stackrel{15}{\mapsto} (16, 1, 5, 2, 4, \dots) \stackrel{16}{\mapsto} (17, 2, 5, 2, 4, \dots) \stackrel{17}{\mapsto}
(18.3.5.2.4...) \stackrel{18}{\mapsto} (5.3.5.2.4...) \stackrel{5}{\mapsto} (6.3.5.3.4...) \stackrel{6}{\mapsto} (7.5.5.3.4...) \stackrel{7}{\mapsto}
(8.2.5.3.4...) \stackrel{8}{\mapsto} (9.2.5.3.4...) \stackrel{9}{\mapsto} (10.5.5.3.4...) \stackrel{10}{\mapsto} (11.1.5.3.4...) \stackrel{11}{\mapsto}
(12.3.5.3.4...) \stackrel{12}{\mapsto} (13.3.5.3.3...) \stackrel{13}{\mapsto} (14.5.5.3.3...) \stackrel{14}{\mapsto} (15.2.5.3.3...) \stackrel{15}{\mapsto}
(16.2.5.3.3...) \stackrel{16}{\mapsto} (17.3.5.3.3...) \stackrel{17}{\mapsto} (18.4.5.3.3...) \stackrel{18}{\mapsto} (5.4.5.3.3...) \stackrel{5}{\mapsto}
(6.4.5.4.3...) \stackrel{6}{\mapsto} (7.5.5.4.3...) \stackrel{7}{\mapsto} (8.1.5.4.3...) \stackrel{8}{\mapsto} (9.1.5.4.3...) \stackrel{9}{\mapsto}
(10,5,5,4,3,...) \xrightarrow{10} (11,1,5,4,3,...) \xrightarrow{11} (12,4,5,4,3,...) \xrightarrow{12} (13,4,5,4,4,...) \xrightarrow{13}
(14, 5, 5, 4, 4, \dots) \stackrel{14}{\mapsto} (15, 1, 5, 4, 4, \dots) \stackrel{15}{\mapsto} (16, 1, 5, 4, 4, \dots) \stackrel{16}{\mapsto} (17, 4, 5, 4, 4, \dots) \stackrel{17}{\mapsto}
(18, 5, 5, 4, 4, \dots) \stackrel{18}{\mapsto} (5, 5, 5, 4, 4, \dots) \stackrel{5}{\mapsto} (6, 5, 5, 5, 4, \dots) \stackrel{6}{\mapsto} (7, 5, 5, 5, 4, \dots) \stackrel{7}{\mapsto}
(8.0,5,5,4,\ldots) \stackrel{8}{\mapsto} (21,0,5,5,4,\ldots) \stackrel{21}{\mapsto} (22,1,5,5,4,\ldots) \stackrel{22}{\mapsto} (23.1.5.1.4.\ldots) \stackrel{23}{\mapsto}
(23.1.5.1.4...) \stackrel{23}{\mapsto} ...
```

Bemerkungen

- Imperative Programmierung der Registermaschine
- Befehlssatz könnte weiter eingeschränkt werden z.B.
 Manipulation nur durch SUCC, PRED
- Registermaschine ähnelt Prozessor (CPU) eines Computers
 - $lackbox{ } \{B \cup C_0\} pprox \textit{Registersatz } (\text{schneller Zwischenspeicher})$
 - Register $C_i(i \ge 1) \approx \textit{Hauptspeicher}$
- Hauptunterschiede zu CPU
 - Keine Möglichkeit zum Funktionsaufruf! (Keine Rekursion!)
 - lacktriangle Keine Möglichkeit zum *Speichern* von $c_0=\mathfrak{b}$
 - Keine *indirekten* Sprünge $\mathfrak{b} = \mathfrak{c}_0$
 - Keine *indirekte* Addressierung $c_{c_0} = \dots$ ("Felder")
 - Kein gemeinsamer Speicher für Programm und Daten
- Mehr zu Registermaschinen in [Saake&Sattler]
 - Kommentierte Beispiele M₁,..., M₄ (Kapitel 6.1)
 - Java-Implementierung eines Interpreters siehe (Kapitel 6.5)

Abstrakte Maschinenmodelle

- Es gibt viele weitere Modelle neben der Registermaschine, z.B.
 - Turing-Maschine
 - Markov-Algorithmen, s. [Saake&Sattler] (Kapitel 6.3 und 6.5)
- Allgemeines Modell für deterministische Maschinen/Algorithmen:
- Abstrakte Maschine $M = (X, Y, K, \alpha, \omega, \tau, \sigma)$
 - X Menge von Eingabewerten
 - Y Menge von Ausgabewerten
 - K Menge von Konfigurationen
 - lacksquare $\alpha: X o K$ Eingabefunktion
 - $\omega: K \to Y$ Ausgabefunktion
 - ullet τ K \to K Transitionsfunktion
 - $\sigma: K \to bool$ Stoppfunktion (markiert Endkonfiguration)
- Endkonfigurationen zu M: $E = \{k \in K | \sigma(k) = true\}$
 - Zustände, in denen eine Berechnung terminiert

Abstrakte Maschine

Funktionsweise einer abstrakten Maschine

- I Eingabewert $x \in X$ bestimmt Anfangskonfiguration $k_0 = \alpha(x) \in K$
- 2 Transitionsfunktion τ führt Konfiguration k_i über in Folgekonfiguration k_{i+1} , also

$$k_1 = \tau(k_0), \quad k_2 = \tau(k_1), \dots, k_{i+1} = \tau(k_i), \dots$$

bis zum ersten Mal eine Endkonfiguration $k_j \in E \Leftrightarrow \sigma(k_j) = \mathbf{true}$ erreicht wird.

- 3 Wird eine Endkonfiguration $k_j \in E$ erreicht, dann wird der Ausgabewert $\omega(k_j) \in Y$ berechnet.
- Dabei muss nicht zwingend eine Endkonfiguration erreicht werden.
 - Dann terminiert der Algorithmus nicht.
 - D.h., das Ergebnis ist undefiniert (⊥).

Berechnete Funktion

■ Eine abstrakte Maschine M berechnet die *partielle* Funktion

$$f_M: X \rightarrow Y$$

- Für eine Eingabe $x \in X$ gibt es zwei Möglichkeiten
 - \blacksquare M terminiert nicht, dann ist das Ergebnis undefiniert (\bot)
 - M terminiert, dann ist das Ergebnis der Ausgabewert $y \in Y$
- Die Laufzeit von M für die Eingabe $x \in X$ ist

$$t_M(x) \; = \; \min \bigl\{ n \, | \, \sigma(\tau^n(\alpha(x))) = \mathtt{true} \bigr\}$$

- Kleinste Anzahl von Übergängen, bis M terminiert.
- $t_M = \bot$ falls es keine solche Zahl gibt.
- Damit ist die von M berechnete Funktion

$$f_{M}(x) = \begin{cases} t_{M}(x) \neq \bot : & \omega(\tau^{t_{M}(x)}(\alpha(x))) \\ t_{M}(x) = \bot : & \bot \end{cases}$$

Abbildung auf abstrakte Maschine

- Registermaschine als Spezialfall einer abstrakten Maschine
 - $X = \mathbb{N}_0^n$, $Y = \mathbb{N}_0^m$
 - Konfigurationen der Registermaschine: K
 - lacktriangleright au wertet Befehle aus, σ prüft auf END
 - Kann Funktionsweise auf abstrakte Maschine abbilden
- Gleiches für Programmiersprachen
 - Funktionale Programmierung
 - K sind Terme ohne Unbestimmte
 - lacktriangledown au wertet Terme nach deterministischer Vorschrift aus
 - Imperative Programmierung
 - S.a. [Saake&Sattler] (Kapitel 6.2)
- Damit folgt: Alle können die gleiche Klasse von Funktionen berechnen!

Church'sche These

Church'sche These

Die Klasse der *intuitiv berechenbaren* Funktionen stimmt mit der Klasse der durch

- Imperative Programmierung, Funktionale Programmierung,
- Registermaschinen, Markov-Algorithmen, abstrakte Maschinen,
-

berechenbaren Funktionen überein.

- Auch Church-Turing-These (Turing-berechenbare Funktionen)
- Die These ist *nicht* beweisbar!
- Denn: Was bedeutet "intuitiv" formal?

Universelle Programmierbarkeit

- Algorithmenmodell =
 - Programmiersprache (funktional, imperativ, ...) oder
 - Maschinenmodell

Universelles Algorithmenmodell

Ein Algorithmenmodell heißt *universell*, wenn es alle berechenbaren Funktionen beschreiben kann.

- Synonym universell = Turing-vollständig
 - Definition über eine abstrakte Maschine
 - Modell kann alle Funktionen berechnen, die eine sog. universelle Turing-Maschine berechnen kann.
- Insbesondere Eigenschaften wie
 - Keine (prinzipielle) Beschränkung des Wertebereichs von Daten
 - Rekursion und/oder Iteration zur bedingten Wiederholung

Kurze Zusammenfassung

- Definition von berechenbaren Funktionen über Maschinenmodelle
 - Registermaschine
 - Abstrakte Maschine
- Abbildung von Algorithmenmodellen auf abstrakte Maschine
- Church'sche These
 - *intuitiv* berechenbar [!] Maschinen-berechenbar
- Universelle Programmiersprache
 - Alle gängigen Programmiersprachen sind gleich mächtig.

Übersicht

- 10 Berechenbarkeit und Entscheidbarkeit
 - Einführung
 - Maschinenmodelle
 - Berechenbarkeit und Entscheidbarkeit

Berechenbarkeit und Entscheidbarkeit

Frage

- Gibt es Problemstellungen, für die kein Algorithmus zur Lösung existiert?
- Kann man alles berechnen?

Definition (Berechenbarkeit)

Eine Funktion $f: \mathcal{X}^n \to \mathcal{Y}^m$ heißt berechenbar, wenn es einen Algorithmus gibt, der für Eingaben $x \in \mathcal{X}^n$ terminiert und $f(x) \in \mathcal{Y}^m$ (in endlicher Zeit) berechnet.

Church'sche These:

Die Menge der berechenbaren Funktionen entspricht allen jemals mit Computern berechenbaren Funktionen.

Existenz nichtberechenbarer Funktionen

- Wir wollen zeigen, dass es *nichtberechenbare* Funktionen gibt.
- Idee: Wir "zählen" berechenbare Funktionen und Funktionen
- Zu jeder berechenbaren Funktion gibt es einen Algorithmus.
- Jeder Algorithmus lässt sich durch einen endlichen Text über einem festen, endlichen Alphabet beschreiben.
- Wir wollen zeigen: Es gibt mehr Funktionen als Algorithmen
- Vorüberlegung: Abzählbarkeit

Abzählbarkeit.

Definition (Abzählbarkeit)

Eine Menge $\mathcal M$ heißt abzählbar (unendlich), wenn es eine bijektive Abbildung von $\mathcal M$ auf $\mathbb N$ gibt.

- N ist abzählbar.
- Die Menge der geraden Zahlen $\{2n|n \in \mathbb{N}\}$ ist abzählbar.
- Jede *unendliche* Teilmenge von N ist abzählbar.

■
$$\mathbb{Z}$$
 ist abzählbar: $f(n) = \begin{cases} n \text{ gerade} : & \frac{n}{2} \\ n \text{ ungerade} : & -\lfloor \frac{n}{2} \rfloor \end{cases}$

■ Ist Q abzählbar?

Abzählbarkeit von Q

- \blacksquare Betrachte zuerst $\frac{x}{y} \in \mathbb{Q}^+$ also Paar von natürlichen Zahlen
- Konstruiere lineare "Liste", so dass Nachfolger eindeutig, z.B.

Allgemein: Abzählbarkeit von m-Tupeln

Allgemeine Konstruktion: Cantorsche Paarungsfunktion

$$\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$$
 mit

$$\pi(x,y) = y + \sum_{i=0}^{x+y} i = \frac{1}{2}(x+y)(x+y+1) + y$$

■ Für Paare (x,y) mit $x,y \in \mathbb{N}_0$

■ Menge aller m-Tupel über $\mathbb N$ ist abzählbar (durch m -1-malige Anwendung von π)

Abzählbarkeit von Texten

- Sei $\Sigma = \{a, b, ...\}$ mit $n = |\Sigma| \in \mathbb{N}$ ein *endliches* Alphabet
- lacksquare Alle Texte über Σ in alphabetischer Reihenfolge

$$\Sigma^* = \{\epsilon, a, b, \dots, aa, ab, \dots, ba, bb, \dots, aaa, aab, \dots\}$$

- Aufzählung nach Wortlänge,
- bei gleicher Länge lexikographisch
- Diese Reihenfolge ist eindeutig.
- Damit existiert eine bijektive Abbildung nach N.
- Idee zur Konstruktion der Abbildung
 - Es gibt jeweils n^{ℓ} Worte der Länge ℓ .
 - Benötige Abbildung der Worte der Länge ℓ auf $\{1, 2, ..., n^{\ell}\}$.
- Σ^* abzählbar \Rightarrow Menge aller Algorithmen abzählbar

Überabzählbare Mengen

Definition (Überabzählbare Menge)

Eine Menge heißt *überabzählbar*, wenn sie nicht abzählbar (und nicht endlich) ist.

- lacksquare Anzahl Elemente ist größer als die in $\mathbb N$
- Jede Liste von Elementen $x_1, x_2, x_3, ...$ ist unvollständig
- lacksquare Beispiel: Menge der reellen Zahlen $\mathbb R$

\mathbb{R} ist überabzählbar

- Cantor'sches Diagonalargument (Schon wieder Georg Cantor!)
- lacksquare Sei r_i eine unendliche Folge reeller Zahlen im Intervall [0,1)
- lacksquare Seien a_{ij} die Dezimalstellen von r_i , also

```
\begin{array}{rcl} r_1 & = & 0, \underline{\alpha_{11}} \ \alpha_{12} \ \alpha_{13} \ \alpha_{14} \cdots \\ r_2 & = & 0, \alpha_{21} \ \underline{\alpha_{22}} \ \alpha_{23} \ \alpha_{24} \cdots \\ r_3 & = & 0, \alpha_{31} \ \alpha_{32} \ \underline{\alpha_{33}} \ \alpha_{34} \cdots \\ r_4 & = & \cdots \\ \vdots \end{array}
```

- Konstruiere $x=0, x_1 x_2 x_3 \cdots$ aus Diagonalelementen $\underline{a_{ii}}$ mit $x_i = (a_{ii}+1) \mod 10$
- $x \in [0,1)$ unterscheidet sich von *allen* Zahlen der Folge!
- Keine Folge enthält alle reellen Zahlen im Intervall [0,1)
- Intervall [0,1) ist überabzählbar $\Rightarrow \mathbb{R}$ ist überabzählbar

Überabzählbarkeit der Menge der Funktionen

- Wir zeigen: $\mathfrak{F} = \{ f \mid f : \mathbb{N} \to \mathbb{N} \}$ überabzählbar
 - lacksquare Gleiches Argument wie für $\mathbb R$ (Cantor'sches Diagonalargument)
- Annahme: 𝒯 ist abzählbar
- Dann können wir alle $f \in \mathcal{F}$ auflisten als $F = \{f_1, f_2, ...\}$
- Sei nun $g : \mathbb{N} \to \mathbb{N}$ mit $g(x) = f_x(x) + 1$.
- Dann gilt für $i \in \mathbb{N}$: $g(i) \neq f_i(i) \Rightarrow g \neq f_i$
- Damit gilt aber $g \in \mathcal{F}$ und $g \notin F$ Widerspruch zur Annahme!
- lacktriangle Menge der einstelligen Funktionen ${\mathcal F}$ ist überabzählbar
- Die Menge der Funktionen ist überabzählbar!

Existenz nichtberechenbarer Funktionen

- Wir haben folgendes gezeigt
 - Die Menge aller Algorithmen ist abzählbar.
 - Die Menge aller Funktionen ist *überabzählbar*.
- Folgerung: Es existieren nichtberechenbare Funktionen!
- Nichtberechenbarkeit i.a. schwerer zu zeigen als Berechenbarkeit
 - Für Berechenbarkeit genügt Angabe eines Algorithmus
 - Für Nichtberechenbarkeit zu zeigen: es gibt keinen Algorithmus
- Im folgenden zwei Beispiele
 - Halteproblem
 - Post'sches Korrespondenzproblem

Entscheidbarkeit

Definition (Entscheidbarkeit)

Eine Menge $A \in \Sigma^*$ heißt *entscheidbar*, wenn ihre charakteristische Funktion

$$\chi_A(\omega) = \begin{cases} \omega \in A: & 1 \\ \omega \notin A: & 0 \end{cases}$$

berechenbar ist.

■ Ein *Entscheidungsproblem* stellt sich wie folgt dar:

■ Ein Problem heißt *entscheidbar*, wenn es einen solchen Algorithmus gibt, der für jede Eingabe terminiert (hält).

Halteproblem

- **Halteproblem**: Hält Algorithmus x bei der Eingabe von y?
- Annahme: Das Halteproblem ist entscheidbar.
- Dann gibt es einen Algorithmus/eine Maschine STOP

$$\begin{array}{c} x \longrightarrow \\ y \longrightarrow \end{array} \begin{array}{c} \text{STOP} \longrightarrow \text{true} \\ \longrightarrow \text{false} \end{array}$$

■ Wir konstruieren eine neue Maschine SELTSAM wie folgt

- Hält SELTSAM für die Eingabe SELTSAM?

 - Wenn ja, dann liefert STOP ⇒ Endlosschleife
 Wenn nein, dann hält SELTSAM mit Ergebnis true

Halteproblem

- Hält SELTSAM für die Eingabe SELTSAM?
 - Dieses Problem heißt Spezielles Halteproblem
 - Das spezielle Halteproblem ist nicht entscheidbar
 - Konstruiere Widerspruch zur Annahme *STOP* ist berechenbar
- Somit ist auch das allgemeine Halteproblem

Hält Algorithmus x bei der Eingabe von y?

nicht entscheidbar!

- Formaler Beweis siehe z.B. [Saake&Sattler]
 - Ausführlich in Vorlesung Grundlagen der Theoretischen Informatik oder z.B. [Schöning]

Nichtenscheidebare Eigenschaften von Algorithmen

Satz von Rice

Jede nichttriviale semantische Eigenschaft von Algorithmen ist nichtentscheidbar.

- Formale Fassung siehe z.B. [Schöning]
- Beispiele
 - Ist die berechnete Funktion total? Überall undefiniert? Injektiv? Surjektiv? Bijektiv? . . .
 - Berechnen zwei gegebene Algorithmen die gleiche Funktion?
 - Ist ein gegebener Algorithmus korrekt? D.h., berechnet der die gegebene (gewünschte) Funktion?
- Entscheidung/Nachweis jeweils nur im Einzelfall möglich.
- Es gibt dafür keine *allgemeine* Methode keinen Algorithmus!
- Auch einfache Probleme können nichtentscheidbar sein ...

Post'sches Korrespondenzproblem

 $lue{}$ Gegeben ist ein endliches Alphabet Σ und zwei gleichlange Listen von Worten über Σ

$$\alpha = (\alpha_1, \alpha_2, ..., \alpha_n)$$

 $\beta = (\beta_1, \beta_2, ..., \beta_n)$

mit α_i , $\beta_i \in \Sigma^+ = \Sigma^* \setminus \{\epsilon\}$ und $n \geqslant 1$.

■ Gesucht ist eine *Korrespondenz* in Form einer endlichen Folge $(i_1,i_2,\ldots,i_k),\ i_j\in\{1,\ldots,n\}$ für $j=1,2,\ldots,k$, so dass gilt

$$\alpha_{i_1}\alpha_{i_2}\dots\alpha_{i_k}\ =\ \beta_{i_1}\beta_{i_2}\dots\beta_{i_k}\ .$$

Beispiel (1) zum Post'schen Korrespondenzproblem

$$\Sigma = \{0, 1\}$$
 und

$$\alpha = (1, 10111, 10)$$

 $\beta = (111, 10, 0)$

■ Lösung: Korrespondenz (2,1,1,3), denn

$$\underbrace{10111}_{\alpha_2} \underbrace{1}_{\alpha_1} \underbrace{1}_{\alpha_1} \underbrace{10}_{\alpha_3} = \underbrace{10}_{\beta_2} \underbrace{111}_{\beta_1} \underbrace{111}_{\beta_1} \underbrace{0}_{\beta_3}$$

Beispiel (2) zum Post'schen Korrespondenzproblem

 $\Sigma = \{0,1\}$ und

$$\alpha = (10, 011, 101)$$

 $\beta = (101, 11, 011)$

- Es existiert keine Korrespondenz als Lösung!
- Gäbe es eine Lösung, müsste sie mit dem Index $i_1 = 1$ beginnen

$$10 \cdots \stackrel{?}{=} 101 \cdots$$

- Nun müsste i_2 so gewählt werden, dass Wort $\alpha_{i_2} = 1 \cdots$
 - 1. Möglichkeit: $i_2 = 1$ und damit $10 \ 10 \cdots \ne 101 \ 101 \ \cdots$
 - 2. Möglichkeit: $i_2 = 3$ und damit $10 \ 101 \cdots \stackrel{?}{=} 101 \ 011 \cdots$
- Nun muss wieder 3 gewählt werden, also (1,3,3,...) etc.
- Konstruktion terminiert nicht!

Post'sches Korrespondenzproblem

- Wir haben lediglich zwei Beispiele betrachtet.
- Im allgemeinen gilt (ohne Beweis)
- Das Post'sche Korrespondenzproblem ist nicht entscheidbar!
 - D.h. Korrespondenzfunktion ist nicht berechenbar!
 - Gilt schon für ein eingeschränktes Alphabet $\Sigma = \{0, 1\}$!
- Korrespondenzproblem als Beispiel für ein einfaches Problem, das nicht entscheiden werden kann.
 - Es ist einfach, einen Algorithmus anzugeben, der systematisch alle Korrespondenzen testet und somit eine Lösung findet.
 - Dieser Algorithmus terminiert jedoch nicht, falls keine Lösung existiert!

Zusammenfassung

- Church'sche These: Die folgenden Mengen stimmen überein
 - Menge der intuitiv berechenbaren Funktionen
 - Menge der durch Maschinen berechenbaren Funktionen
- Es existieren *nichtberechenbare Funktionen*, denn
 - Menge aller berechenbaren Funktionen ist abzählbar
 - Menge aller Funktionen ist überabzählbar
- Es gibt nichtentscheidbare Mengen bzw. Probleme
 - Charakteristische Funktion nicht berechenbar
 - Beispiel: Halteproblem
 - Beispiel: Post'sches Korrespondenzproblem
- Jede nichttriviale Eigenschaft von Algorithmen ist nichtentscheidbar. (Rice)
- Literatur zu dieser Vorlesung: [Saake&Sattler]
 - Vertiefende Vorlesung Grundlagen der Theoretischen Informatik
 - Weiterführende Literatur z.B. [Schöning]