Universität Osnabrück Theoretische Informatik Sommersemester 2014

Übungsblatt 1 zur Informatik 0: Einführung in die Theoretische Informatik

Ausgabe: 28. April Besprechung: 5.–7. Mai

Aufgabe 1.1: Landau-Symbole – Anordnen

Gegeben seien die folgenden Funktionen:

$$n \log n$$
, $n \log^2 n$, \sqrt{n} , n , $n^{1.01}$, 2^{n+1} , $\frac{n}{\log \log n}$, $n^{0.99}$, $\frac{n}{\log n}$, 2^{2n} $\log n$, 2^n , $\frac{n}{\sqrt{n}}$, $n \log n^2$

Ordnen Sie die obigen zwölf Funktionen f_i so an $(f_1, f_2, ..., f_{12})$, dass für jedes Paar aufeinanderfolgender Funktionen $f_i \in \mathcal{O}(f_{i+1})$ gilt. Markieren Sie außerdem die Funktionen, bei denen $f_i \in \Theta(f_{i+1})$ gilt.

Aufgabe 1.2: Landau-Symbole – Beweise

Es seien die folgenden sechs Funktionen gegeben (m > 1 konstant):

$$f_1(n) = n^2$$
 $f_3(n) = m^{\log n}$
 $f_2(n) = n^2 + 1000n$ $f_4(n) = n^{\log m}$
 $f_5(n) = \begin{cases} n & n \text{ ist ungerade} \\ n^3 & \text{sonst} \end{cases}$ $f_6(n) = \begin{cases} n & n \le 100 \\ n^3 & \text{sonst} \end{cases}$

Zeigen Sie formal, dass folgende Aussagen gelten: $f_2 \in \mathcal{O}(f_1), f_3 \in \mathcal{O}(f_4), f_6 \notin \mathcal{O}(f_5)$.

Hinweise: Nutzen Sie die Definition der Landau-Symbole. Setzen Sie gegebenenfalls einige Werte für n und m in f_3 und f_4 ein um ein Gefühl für die Funktionen zu bekommen.

Aufgabe 1.3: Mengenoperationen auf Sprachen

Seien L_{\min} und L_{\max} diejenigen Sprachen mit Wörtern der Länge 2 über dem Alphabet $\Sigma = \{a, b, c\}$, die *mindestens* bzw. *maximal* einmal das Symbol "a" enthalten.

- (a) Geben Sie L_{\min} , L_{\max} , $L_{\min} \cap L_{\max}$, $L_{\min} \cup L_{\max}$, $L_{\min} \setminus L_{\max}$ explizit an (d. h. zählen Sie die Elemente in Mengenklammern auf).
- (b) Mit $\overline{L} := \Sigma^* \setminus L$ bezeichnet man das Komplement einer Sprache L (mit Alphabet Σ). Geben Sie $\overline{L_{\min}}$ in Mengenschreibweise (ggf. unter Zuhilfenahme von " \cup ") an.
- (c) Geben Sie $(L_{\min} \setminus L_{\max})^*$ in Mengenschreibweise an.

Aufgabe 1.4: Unendliche Mengen zu regulären Sprachen

Gegeben eine unendliche Sprache in nicht geschlossener Mengenschreibweise über dem Alphabet $\Sigma = \{a, b, c\}$. Die enthaltenen Wörter sind der Länge nach sortiert angegeben. Geben Sie die Sprache in Mengenschreibweise an (ggf. unter Zuhilfenahme von " \cup ")!

Beispiel: $\{a, bab, bbabb, bbbabbb, \ldots\}$ \Rightarrow Lösung: $\{b^i a b^i \mid i \geq 0\}$

- (b) $\{a, b, aca, bca, acaca, bcaca, acacaca, bcacaca, \dots\}$
- $\textbf{(c)} \ \{aba, bab, abb, \ abaaba, bababa, abbaba, \ ababab, babbab, abbbab, abbbab, abbbab, abbbab, abbabab, abbabab, abbbab, abbba$

 $abaabb, bababb, abbabb, abaabaaba, \ldots \}$

Aufgabe 1.5: Kreuzworträtsel

Lösen Sie das folgende Kreuzworträtsel. Jedes Wort ist als Sprache oder durch seine Grammatik gegeben.

Aufgabe 1.6: Von der Sprachbeschreibung zur (regulären) Grammatik

Schreiben Sie folgenden Sprachen über dem Alphabet $\Sigma = \{ \mathfrak{Q}, \mathfrak{Q}, \mathfrak{Q} \}$ jeweils als reguläre Grammatik.

- (a) Alle Wörter die mit ©© beginnen und auf ©© enden.
- (b) Alle Wörter die *mindestens* drei Mal die Zeichenfolge ⊕⊕ enthalten.

 Anmerkung: Die Zeichenfolge ⊕⊕⊕⊕ (auch wenn man sie als drei *überlappende* ⊕⊕-Folgen interpretieren könnte) zählt *nicht* als drei Zeichenfolgen ⊕⊕.
- (c) Alle Wörter die *qenau* zwei Mal die Zeichenfolge ©©, aber kein ©©©, enthalten.

Viel Erfolg!