MA502 Fall 2019 - Homework 8. Due November 17th, 2019

Write down detailed proofs of every statement you make

- 1. Let A be a $n \times n$ matrix with a eigenvalue $\alpha \in \mathbb{C}$. Set $d_i = dim(Ker(A \alpha I)^i)$. Let $d_0 = 0$ and recall that $d_k d_{k-1}$ is the number of Jordan blocks larger or equal than k.
 - If n = 4, and $d_1 = 2$, $d_2 = 4$ find the Jordan canonical form of A.
 - If n = 6 and $d_1 = 3$, $d_2 = 5$ and $d_3 = 6$, find the Jordan canonical form of A.
 - If n = 5 and there is one eigenvalue $\alpha = 0$ with $d_1 = 2, d_2 = 3, d_3 = 4$; and one eigenvalue $\alpha = 1$ with $d_1 = 1$. Find the Jordan canonical form of A.
- 2. Find all eigenvectors and the size of the Jordan blocks of

$$A = \left(\begin{array}{ccc} 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right).$$

- 3. Prove that for any linear transformation $A: V \to V$, with eigenvalues $\lambda_1, ..., \lambda_n$ and any polynomial f(t) the linear transformation f(A) will have as eigenvalues $f(\lambda_1), ..., f(\lambda_n)$.
- 4. Show that if A is a square matrix with zero determinant, then there exists a polynomial p(t) such that

$$A \cdot p(A) = 0.$$

5. Find four 4×4 matrices A_1, A_2, A_3, A_4 with minimal polynomial of degree 1, 2, 3, 4 respectively.