Cours Algorithmique des systèmes parallèles et distribués

Exercices

Série 2 : Protocoles de communication par Dominique Méry 27 janvier 2021

Exercice 1

Question 1.1 Modéliser en TLA^+ l'envoi d'un message m à un processus P via un canal CHAN par Q

Question 1.2 Modéliser en TLA^+ le broadcast d'un message à tous les processus P en lien avec Q

Exercice 2

Trois processus P_1 , P_2 et P_3 réalisent les actions suivantes :

- P_1 calcule la fonction f_1 en appliquant cette fonction sur les valeurs se trouvant sur un tas T.
- P_2 calcule la somme des valeurs produites par le processus P_1 .
- P_3 produit les valeurs utilisées par P_1 .

Modéliser ce système en TLA⁺.

Exercice 3 (local and distributed algorithms)

On peut définir un algorithme réparti comme un ensemble d'algorithmes locaux et on définit les systèmes de transition associées comme suit.

Given a set LC of configurations a set $LI \subseteq LC$ of initial configurations, and a set M of messages, a local algorithm LA is a structure (LC, LI,

- $\longrightarrow_i, \longrightarrow_s, \longrightarrow_r, \mathcal{M})$ with :

 - $--\longrightarrow_s\subseteq \mathcal{LC}\times\mathcal{M}\times\mathcal{LC}$ modelling sending steps,

A distributed algorithm for a collection of processes is a collection $\{\mathcal{L}A_1,\ldots,\mathcal{L}A_n\}$ of local algorithms, one algorithm $\mathcal{L}A_k = (\mathcal{L}\mathcal{C}_k,\mathcal{L}\mathcal{I}_k,\longrightarrow_i^k,\longrightarrow_s^k,\longrightarrow_r^k,\mathcal{M})$ for each process P_k , with a transition relation \longrightarrow defined over the set $\mathcal{C} = \mathcal{L}\mathcal{C}_1 \times \ldots \times \mathcal{L}\mathcal{C}_n \times (\mathcal{M} \rightarrow \mathbb{N})$ of configurations : let $C = (C_1,\ldots,C_n,M)$ and $C' = (C'_1,\ldots,C'_n,M')$ two configurations and let define $C \longrightarrow C'$:

- internal transition $\exists k \in \{1, ..., n\} : (\forall j \in 1..n : j \neq k : C_j = C'_j) \land C_k \longrightarrow_i^k C'_k \land M' = M$
- $\text{ send transition } \exists k \in \{1, \dots, n\} : \exists m \in \mathcal{M} : \begin{cases} \forall j \in 1..n : j \neq k : C_j = C'_j \\ \land \forall o \in \mathcal{M} \backslash \{m\} : M'(o) = M(o) \\ \land M'(m) = M(m) + 1 \land (C_k, m, C'_k) \in \longrightarrow_s^k \end{cases}$

$$- \textit{receive transition} \ \exists k \in \{1, \dots, n\} : \exists m \in \mathcal{M} : M(m) \neq 0 : \left\{ \begin{array}{l} \forall j \in 1..N : j \neq k : C_j = C'_j \\ \land \forall o \in \mathcal{M} \backslash \{m\} : M'(o) = M(o) \\ \land M(m) = M'(m) + 1 \land (C_k, m, C'_k) \in \ \longrightarrow_r^k \end{array} \right.$$

Ecrire un module TLA⁺ qui décrit les algorithmes locaux constituant un algorithme réparti et modéliser l'algorithme réparti lui-même.

Exercice 4

 $Traduire\ la\ modélisation\ des\ algorithmes\ locaux\ et\ répartis\ dans\ la\ notation\ TLA^+$

Exercice 5

Nous considérons les protocoles de communication selon diverses hypothèses. Ecrire une solution pour la communication FIFO en intégrant les différents cas d'erreurs ou non.

Exercice 6

Nous considérons les protocoles de communication selon diverses hypothèses. Ecrire une solution pour la communication FIFO en intégrant les différents cas d'erreurs ou non.

Exercice 7 Question 7.1 Ecrire une solution pour l'algorithme du bit alterné.

Question 7.2 Le protocole appelé Sliding Window Protocol est fondé sur un fenêtre qui glisse pour valider progressivement les envois reçus. Le protocole est donné sous la forme d'invariant avec des événements. Proposer un schéma de traduction pour cet algorithme réparti en un module TLA+.

EVENT e
ANY

$$x$$
WHERE
 $G(x, u)$
THEN
 $u := f(x, u)$
END

$$G(x, u)$$

$$G(x, u$$

Question 7.3 Proposer un schéma de traduction pour un algorithme réparti en TLA⁺.

Question 7.4 Reprendre la solution précédente pour modéliser chan comme un buffer de taille la taille de la fenêtre.

AXIOMS

 $\begin{aligned} & \textit{axm} 1: n \in \mathbb{N}_1 \\ & \textit{axm} 2: \textit{IN} \in \mathbb{N} \rightarrow \textit{D} \\ & \textit{axm} 3: \textit{dom}(\textit{IN}) = 0 \dots n \\ & \textit{axm} 4: l \in \mathbb{N} \\ & \textit{axm} 5: l \leq n \end{aligned}$

$\begin{array}{l} \textbf{VARIABLES} & OUT, i, ack, got, b \\ \textbf{INVARIANTS} \\ & inv1: OUT \subseteq IN \\ & inv2: 0 \ldots i-1 \vartriangleleft OUT = 0 \ldots i-1 \vartriangleleft IN \\ & inv3: i \in 0 \ldots n+1 \\ & inv4: ack \cup got \subseteq i \ldots i+l \cap 0 \ldots n \\ & inv5: ack \subseteq dom(OUT) \\ & inv1: OUT \in \mathbb{N} \to D \\ & inv2: i \in 0 \ldots n+1 \\ & inv3: 0 \ldots i-1 \subseteq dom(OUT) \land dom(OUT) \subseteq 0 \ldots n \\ & inv8: ack \subseteq \mathbb{N} \\ & inv10: got \subseteq \mathbb{N} \\ & inv13: got \subseteq dom(OUT) \\ & inv14: ack \subseteq dom(OUT) \\ & inv16: 0 \ldots i-1 \vartriangleleft OUT = 0 \ldots i-1 \vartriangleleft IN \\ \end{array}$

EVENT INITIALISATION

BEGIN

 $\begin{aligned} &act1:OUT:=\varnothing\\ &act2:i:=0\\ &act5:ack:=\varnothing\\ &act6:got:=\varnothing\\ &act8:b:=\varnothing \end{aligned}$

END

EVENT send

ANY

WHERE

 $\begin{array}{l} grd1:j\in i\mathinner{\ldotp\ldotp} i{+}l\\ grd2:j\leq n\\ grd3:j\notin got\\ grd4:j{-}i\in 0\mathinner{\ldotp\ldotp} l \end{array}$

THEN

 $act3:b(j\!-\!i):=I\!N(j)$ **END**

3

```
EVENT receive 

ANY
j
WHERE
grd2: j \in i ... i+l
grd3: j-i \in dom(b)
THEN
act2: ack := ack \cup \{j\}
act3: OUT(j) := b(j-i)
END
```

$\begin{aligned} & \textbf{EVENT receivenck} \\ & \textbf{ANY} \\ & k \\ & \textbf{WHERE} \\ & grd1: k \in ack \\ & \textbf{THEN} \\ & act1: got := got \cup \{k\} \\ & act2: ack := ack \setminus \{k\} \\ & \textbf{END} \end{aligned}$

```
 \begin{array}{l} \textbf{EVENT sliding} \\ \textbf{ANY} \\ c \\ \textbf{WHERE} \\ grd1: got \neq \varnothing \\ grd3: i \in got \\ grd4: i+l < n \\ \\ grd5: \begin{pmatrix} c \in 0 \ldots l \rightarrow D \\ \land dom(c) = \{u|u \in 0 \ldots l-1 \land u+1 \in dom(b)\} \\ \land (\forall o \cdot o \in dom(b) \land o \neq 0 \Rightarrow o-1 \in dom(c) \land c(o-1) = b(o)) \\ \end{pmatrix} \\ \textbf{THEN} \\ act1: i:= i+1 \\ act2: got := got \setminus \{i\} \\ act3: ack := ack \setminus \{i\} \\ act5: b:= c \\ \textbf{END} \\ \end{array}
```

```
EVENT emptywindow
ANY
   c
WHERE
   grd1:got\neq\varnothing
   \mathit{grd}\, 2: i \in \mathit{got}\,
   grd3: i+l \ge n
   grd4: i \leq n
                \begin{array}{l} \ell & c \in 0 \dots l \to D \\ \wedge dom(c) = \{u | u \in 0 \dots l - 1 \wedge u + 1 \in dom(b)\} ) \end{array} 
   grd5:
                \wedge (\forall o \cdot o \in dom(b) \wedge o \neq 0 \Rightarrow o - 1 \in dom(c) \wedge c(o - 1) = b(o))
THEN
   act1: i := i+1
   act2:got:=got\setminus\{i\}
   act3: ack := ack \setminus \{i\}
   act5:b:=c
END
```

EVENT completion

```
\begin{array}{l} \textbf{WHEN} \\ grd1: i = n{+}1{\wedge}got = \varnothing \\ \textbf{THEN} \\ skip \\ \textbf{END} \end{array}
```

EVENT loosingchan

```
ANY
j
WHERE
grd1: j \in i ... i+l
grd3: j \notin got
grd4: j-i \in dom(b)
THEN
act3: b := \{j-i\} \triangleleft b
END
```

EVENT loosingack

```
\begin{array}{c} \textbf{ANY} \\ k \\ \textbf{WHERE} \\ grd1: k \in ack \\ \textbf{THEN} \\ act1: ack := ack \setminus \{k\} \\ \textbf{END} \end{array}
```