

- **1.** Dados los polinomios $p(x) = x^6 + (a+1)x^4 + (a+4)x^2 + 4$, $a \in \mathbb{R}$ y $q(x) = x^6 + 3x^4 4$.
 - 1.1 Pruebe que x-i divide a p(x) .
 - 1.2 Pruebe que $(x^2+2)^2$ divide q(x), sin utilizar la división en galera.
 - 1.3 Pruebe que existe $a \in \mathbb{R}$, tal que $mcd(p(x), q(x)) = (x^2 + 2)^2$. Halle $a \in \mathbb{R}$.
 - 1.4 Plantee la descomposición de $\frac{x+1}{q(x)}$ en fracciones simples sobre $\mathbb{R}(x)$ y $\mathbb{C}(x)$.
- 2. Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} 2x + ky + z + 3w = 0 \\ 4x + 2ky + (-k+2)z + (-k+8)w = 3 & a, k \in \mathbb{K} \\ -2kx + (4-k)w = a \end{cases}$$

- **2.1** Para que valores de los parámetros $a, k \in \mathbb{K}$ el sistema tiene una variable libre.
- **2.2** Obtenga una solución particular del sistema del dado para a = -6, k = 2.
- **3.** Sea *E* el espacio de las matrices triangulares superiores de orden 3 y *S* un sistema de vectores de *E*

$$S = \left\{ \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 2 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \right\}.$$

- **3.1** Halle el subespacio vectorial generado por S.
- **3.2** Halle una base de L[S] a partir de un sistema l.i. maximal de S.
- **3.3** Sea W el espacio de las matrices triangulares superiores de orden 3 de traza nula. Obtenga, de ser posible, una base de W a partir de una base de L[S].
- **4.** Sea el espacio vectorial $E = \mathbb{C}^2_{\mathbb{R}}$, $V \subseteq_S E$ $V = \{(a+bi,c+di)/2a-b+c=0,4a+b+2c=0\}$, encuentre, si es posible:
 - **4.1** un subespacio de E, cuya suma con V sea directa pero que no suplementen sobre E.
 - **4.2** un subespacio de E suplementario con V sobre E que contenga a todos los múltiplos de (2, -4 + 3i).
 - **4.3** un subespacio de E en el cual V y el subespacio generado por (1+2i,3+4i) sean suplementarios.
- 5. Responda verdadero o falso y justifique cada respuesta.
- **5.1** __El producto de una raíz de 1 de grado a por otra raíz de 1 de grado b es una raíz de 1 de grado ab.
- **5.2** __Sea $W = \mathbb{R}_4[x]$ y $V \subseteq_S W, V = \{p(x) \in W \mid p(0) = p(1) = p(-1) = 0\}$ entonces $\dim W + \dim V = 6$.
- **5.3** __Sean $A, B \in M_n(\mathbb{R})$ nilpotentes $(\exists r \in \mathbb{N} : A^r = B^r = 0)$ si AB = BA entonces AB es nilpotente.
- **5.4** __En el e.v. $M_n(\mathbb{R})$ el subconjunto de las matrices con determinante no nulo es un subespacio vectorial.

Nota: En todos los ejercicios debe justificar rigurosamente su respuesta, apoyándose en la teoría vista a lo largo del curso.

Nota: Al entregar el examen, cada ejercicio debe estar en hojas independientes.