SPECTRUM AND ASYMPTOTIC BEHAVIOUR OF COMPLETELY POSITIVE MAPS ON $\mathscr{F}(H)$

Ulrich GROH*

(Received January 10, 1983)

Abstract. Let \mathscr{S} be the W^* -algebra $\mathscr{B}(H)$ of all bounded linear operators on a Hilbert space H, let T be an identity preserving, completely positive map on \mathscr{S} and suppose the fixed space of T is one-dimensional and there exists a faithful normal T^* -invariant state on \mathscr{S} . Using the theory of semitopological semigroups the following is proved: (a) The peripheral point spectrum of T is the group Γ_h of all h-th roots of unity for some $h \ge 1$. (b) There exists a partially periodic map S on \mathscr{S} (with the same properties as T) such that $\lim_{n} (T^n_* - S^n_*) = 0$ in the strong operator topology $\mathscr{L}_S(\mathscr{S}_*)$.

1. If $T=(t_{i,j})$ is a contraction on the finite-dimensional Banach space $E=\mathbb{C}^n$ then the set of unimodular eigenvalues $\sigma(T)\cap \Gamma$, Γ being the unit circle, determines the asymptotic behaviour of T, i. e. the convergence properties of $(T^n)_{n\in\mathbb{N}}$. Indeed, the point 1 is always a pole of the resolvent of order ≤ 1 and the Cesàro means $\frac{1}{n}\sum_{k=0}^{n-1}T^k$ converge to a projection P onto the fixed space $F(T):=\{x\in E\colon Tx=x\}$. If additionally there exists a natural number $h\geqslant 1$ such that $\sigma(T^h)\cap \Gamma=\{1\}$ (e. g. $t_{i,j}\geqslant 0$ for all $1\leqslant i,j\leqslant n$ ([9] I. Theorem 2.7)), the powers of T^h converge to a projection Q onto $F(T^h)=\{x\in E\colon Tx=\alpha x \text{ for some }\alpha=\alpha(x)\in \Gamma\}$. Let $S:=T\circ Q$. Then it is easy to see that $\lim_n (T^n-S^n)=0$. Since $(S\mid_{QE})^h=I\mid_{QE}$ and $S\mid_{kerQ}=0$, the powers of T behave asymptotically like a "periodic" operator.

In order to extend these results to operators on infinite-dimensional Banach spaces E the first difficulty that arises is of topological nature, i. e. one has to distinguish between the uniform operator topology $\mathscr{L}_{\mathcal{E}}(E)$, the strong operator topology $\mathscr{L}_{\mathcal{E}}(E)$ and the weak operator topology $\mathscr{L}_{\mathcal{W}}(E)$. The second difficulty is of spectral theoretical nature: In contrast to the finite-dimensional situation the spectral values of T need not to be eigenvalues nor are the singularities of the resolvent R(., T) of T necessarily poles.

^{*} Mathematisches Institut, Universität Tübingen, auf der Morgenstelle 10, 74 Tübingen, F. R. Germany.

U. GROH

In this paper we use the theory of semitopological semigroups with a single generator to study the peripheral point spectrum and the asymptotic behaviour of completely positive maps on the W^* -algebra $\mathcal{B}(H)$ of all bounded linear operators on some Hilbert space H. More precisely, we prove the following:

Theorem 1. Let $(\mathcal{B}(H), \varphi, T)$ be an irreducible W*-dynamical system. Then the peripheral point spectrum of T is the group Γ_h of all h-th roots of unity for some $h \ge 1$.

Theorem 2. Let $(\mathcal{B}(H), \varphi, T)$ be an irreducible W*-dynamical system. Then there exists an irreducible, partially periodic W*-dynamical system $(\mathcal{B}(H), \varphi, S)$ such that $\lim_n (T_*^n - S_*^n) = 0$ in the strong operator topology $\mathscr{L}_S(\mathcal{B}(H)_*)$.

Obviously, both results depend on the algebraic and topological nature of the W^* -algebra $\mathscr{B}(H)$. For a discussion of W^* -dynamical systems on general W^* -algebras we refer to [4], [6].

We call a triple $(\mathscr{N}, \varphi, T)$ a W^* -dynamical system, if \mathscr{N} is a W^* -algebra with predual \mathscr{N}_* , φ is a faithful normal state on \mathscr{N} and T is a completely positive, identity preserving map on \mathscr{N} with $\varphi(Tx) = \varphi(x)$ for all x in \mathscr{N} . Since φ is faithful and invariant, T is weak *-continuous hence possesses a preadjoint $T_* \in \mathscr{L}(\mathscr{N}_*)$. We call a W^* -dynamical system irreducible, if the fixed space of T is one-dimensional and partially periodic, if T is a partially periodic map on \mathscr{N} . Recall that an operator S on a Banach space E is called partially periodic, if there exists $m_0 \in \mathbb{N}$ such that $S(I - S^m \circ) = 0$. Since $S^m \circ (I - S^m \circ) = 0$ it follows that $S^m \circ$ is a projection. If $E_1 := S^m \circ (E)$ and $E_0 := \ker S^m \circ$, then $E = E_0 \oplus E_1$, $S \mid_{E_0} = 0$ and $(S \mid_{E_1})^m \circ = I \mid_{E_1}$. In particular, every periodic operator is partially periodic with $E_0 = \{0\}$.

I greatfully acknowledge a grant from NIHON GAKUJUTSU SHINKŌ KAI (Japan Society for the Promotion of Science) and from ALEXANDER VON HUMBOLDT — STIFTUNG. I am also deeply indebted to Prof. T. Ando for his warm hospitality during my stay at his institute.

2. In this section we give a proof of our spectral theoretical result. For this the following result is basic.

Proposition 2.1. Let $(\mathscr{A}, \varphi, T)$ be a W^* -dynamical system. Then the cyclic semigroup $\mathscr{S}_* := \{T_*^n : n \in \mathbb{N}\}$ is relatively compact in the weak operator topology $\mathscr{L}_W(\mathscr{A}_*)$.

Proof. We are using [10] Theorem III. 5.4. (iii) to prove this assertion: Let $(p_n)_{n\in\mathbb{N}}$ be a decreasing sequence of projections in \mathscr{A} with $\inf_n p_n = 0$. From the Schwarz inequality for completely positive maps (see, e.g., [10] Corollary IV. 3. 8.) it follows

$$\varphi((T^k p_n)(T^k p_n)) \leq \varphi(T^k p_n) = \varphi(p_n)$$

for all k and n in \mathbb{N} . Since $\lim_n \varphi(p_n) = 0$ we obtain $\lim_n T^k(p_n) = 0$ uniformly in k in the σ -strong operator topology on \mathscr{A} ([10] Proposition III. 5.3.). Since this topology is finer than the weak*-topology, it follows $\lim_n \psi(T^k p_n) = 0$ uniformly in $k \in \mathbb{N}$ for all $\psi \in \mathscr{A}_*$. Thus the set \mathscr{S}_* is relatively compact in $\mathscr{L}_w(\mathscr{A}_*)$.

Therefore we can apply the theory of compact semitopological semigroups of operators with a single generator: the closure \mathcal{F}_* contains an unique minimal ideal \mathscr{K}_* called the kernel, which is a compact group. The identity Q_* of \mathscr{K}_* is a projection onto the closed linear span of all eigenvectors of T_* pertaining to peripheral eigenvalues. Moreover, the dual group $\widehat{\mathscr{K}}_*$ of \mathscr{K}_* can be identified with the subgroup of the circle group generated by the peripheral point spectrum of T_* . For these facts we refer to [1] or, more adapted to our situation, [2] VII/4.

In the next proposition we make frequently use of the following fact: Let T be a completely positive contraction on a C^* -algebra $\mathscr A$ and let $x \in \mathscr A$ such that $T(xx^*) = T(x) T(x)^*$. Then $T(yx^*) = T(y) T(x)^*$ for all $y \in \mathscr A$. To see this, let for x and y in $\mathscr A$ be $B(x,y) := T(xy^*) - T(x) T(y)^*$. Then $B(\ ,\)$ is a positive, sesquilinear map from $\mathscr A \times \mathscr A$ in $\mathscr A$ such that B(x,x) = 0 for some $x \in \mathscr A$ iff B(x,y) = 0 for all $y \in \mathscr A$ (since for all states ψ on $\mathscr A$ $\psi(B(x,x) = 0$ for some x in $\mathscr A$ iff $\psi(B(x,y) = 0$ for all $y \in \mathscr A$ by the Cauchy-Schwarz inequality). In particular if T^{-1} exists, is completely positive and contractive, then T is an *-automorphism on $\mathscr A$.

Proposition 2.2. Let $(\mathscr{A}, \varphi, T)$ be a W^* -dynamical system. Then the following assertions hold:

- (a) The set of peripheral eigenvalues of T and T_* are equal.
- (b) There exists a faithful normal conditional expectation Q of $\mathscr A$ onto the weak*-closed linear span $\mathscr M$ of all eigenvectors of T pertaining to the peripheral eigenvalues.

Proof. (a) Since T is a contraction it follows $P\sigma(T_*) \cap \Gamma \subseteq P\sigma(T) \cap \Gamma$ ([3]

398 U. GROH

Proposition 3.1.). Conversely, let $\alpha \in P\sigma(T) \cap \Gamma$ with normalized eigenvector $x_{\alpha} \in \mathscr{A}$. Using the Schwarz inequality for T and the faithfulness of φ it follows $T(x_{\alpha}x_{\alpha}^*) = x_{\alpha}x_{\alpha}^* = T(x_{\alpha}) T(x_{\alpha})^*$. Thus $T(yx_{\alpha}^*) = \alpha^*T(y) x_{\alpha}^*$ for all $y \in \mathscr{A}$. Let φ_{α} be the normal linear form $(y \mapsto (yx_{\alpha}^*))$ on \mathscr{A} . Then $\varphi_{\alpha} \neq 0$ and for all $y \in \mathscr{A}$ we obtain

$$(T_*\varphi_\alpha)(y) = \varphi_\alpha(Ty \cdot x_\alpha^*) = \alpha\varphi(T(yx_\alpha^*)) = \alpha \cdot \varphi_\alpha(y),$$

hence $\alpha \in P\sigma(T_*)$.

(b) Let Q_* be the unit of the topological group \mathscr{K}_* . Using [10] Corollary IV. 3. 4. and the complete positivity of T, it is easy to see that the operator $Q:=(Q_*)^*$ is completely positive. Furthermore Q is faithful, i. e. $\ker Q \cap \mathscr{N}_+ = \{0\}$, since $Q_*\varphi = \varphi$. Thus Q is a conditional expectation and the range of Q is a W^* -subalgebra of \mathscr{N} with $1 \in Q(\mathscr{N})$.

By the relative compactness of \mathscr{S}_* there exists some ultrafilter \mathscr{U} on \mathbb{N} such that $\lim_{\mathscr{U}} T_*^n = Q_*$ in the weak operator topology. Letting $\alpha \in P\sigma(T) \cap \Gamma$ (considered as a subset of the dual group of \mathscr{X}_*), $0 \neq x_\alpha \in \mathscr{A}$ an eigenvector pertaining to α and $\varphi_\alpha \in \mathscr{A}_*$ as in (a), we obtain:

$$\varphi_{\alpha} = Q_* \varphi_{\alpha} = \lim_{\mathscr{L}} T_*^n \varphi_{\alpha} = (\lim_{\mathscr{L}} \alpha^n) \varphi_{\alpha}.$$

Thus $\lim_{\mathcal{N}} \alpha^n = 1$. Hence for all $\psi \in \mathscr{A}_*$

$$\psi(Qx_{\alpha}) = \psi(\lim_{\mathscr{U}} T^n x_{\alpha}) = (\lim_{\mathscr{U}} \alpha^n) \psi(x_{\alpha}) = \psi(x_{\alpha}).$$

Therefore $Qx_{\alpha} = x_{\alpha}$ or $x_{\alpha} \in Q(\mathscr{A})$.

Conversely let $\gamma \in \mathcal{R}_*$ and take $0 \neq x \in \mathscr{A}$. Then the element x_{γ} defined by

$$\psi(x_{\gamma}) := \int_{\mathscr{K}_{*}} (S_{*}\psi)(x) \langle \overline{S_{*}, \gamma} \rangle dm(S_{*}) \qquad (\psi \in \mathscr{A}_{*})$$

where m is the Haar measure on \mathscr{K}_* belongs to \mathscr{A} and $Tx_{\gamma} = \langle (Q \circ T)_*, \gamma \rangle x_{\gamma}$. Since $|\langle (Q \circ T)_*, \gamma \rangle| = 1$, x_{γ} belongs to \mathscr{M} . Thus the assertion is proved if we can show $Q(\mathscr{A}) \in \overline{\lim} \{x_{\gamma} : \gamma \in \widehat{\mathscr{K}}_*\}$. Suppose there exists $\psi_0 \in \mathscr{A}_*$ such that

$$\psi_0(x_{\gamma}) = \int_{\mathcal{K}_*} \psi_0(Sx) \langle \overline{S_*, \gamma} \rangle dm(S_*) = 0$$

for all $\gamma \in \widehat{\mathscr{H}}_*$. Since the mapping $(S_* \longmapsto \psi_0(Sx))$ is continuous and since the characters of $\widehat{\mathscr{H}}_*$ form a complete orthonormal basis of $L^2(\mathscr{H}_*, dm)$, we obtain $\psi_0(Sx) = 0$ for all $S_* \in \mathscr{H}_*$, in particular $\psi_0(Qx) = 0$. Therefore $\psi_0|_{Q(\mathscr{H})} = 0$, hence $Q(\mathscr{H}) \subseteq \overline{\lim} \{x_\gamma \colon \gamma \in \widehat{\mathscr{H}}_*\}$ by the Hahn-Banach theorem.

Now we are prepared to give a proof of our spectral theoretical result.

Theorem 2.3. Let $(\mathcal{B}(H), \varphi, T)$ be an irreducible W^* -dynamical system. Then the peripheral point spectrum of T is the group Γ_h of all h-th roots of unity for some $h \ge 1$.

Proof. Take α , $\beta \in P\sigma(T) \cap \Gamma$ and let x_{α} and x_{β} be normalized eigenvectors of T pertaining to α (resp. β). Because of $T(x_{\alpha}x_{\alpha}^*) \geqslant x_{\alpha}x_{\alpha}^*$ and the faithfulness of φ it follows $x_{\alpha}x_{\alpha}^* \in F(T)$. Therefore x_{α} is unitary because $||x_{\alpha}|| = 1$ and T is irreducible. Since $T(x_{\alpha}x_{\beta}^*) = T(x_{\alpha}) T(x_{\beta})^* = \alpha \beta^* x_{\alpha} x_{\beta}^*$, the peripheral point spectrum of T is a subgroup of the circle group, the restriction of T to $\mathscr{M} = Q(\mathscr{B}(H))$ is an *-automorphism and the restriction of φ to \mathscr{M} is a faithful normal trace. For the trace property note that $\varphi(x_{\alpha}x_{\beta}^*) = \varphi(T(x_{\alpha}x_{\beta}^*)) = \alpha \beta^* \varphi(x_{\alpha}x_{\beta}^*)$, thus $\varphi(x_{\alpha}x_{\beta}^*) = 0$ for $\alpha \neq \beta$ and $\varphi(x_{\alpha}x_{\alpha}^*) = \varphi(x_{\alpha}^*x_{\alpha}) = 1$. Therefore $\varphi(xy) = \varphi(yx)$ for all $x, y \in \text{lin}\{u \in \mathscr{A}: u \text{ unitary}, Tu = \alpha u, |\alpha| = 1\}$. Thus φ is a trace on \mathscr{M} (e.g. [8], 1.8.).

Since $\mathscr{B}(H)$ is atomic and Q is a faithful normal conditional expactation, \mathscr{M} is atomic ([10] Exercise V. 8. (a), p. 334), is of type I and is finite. Suppose the center \mathscr{X} of \mathscr{M} is infinite-dimensional. Since \mathscr{X} is atomic it is isomorphic to ℓ^{∞} , T induces an irreducible *-automorphism S on \mathscr{X} and there exists a faithful normal linear form $\psi_0 \in \mathscr{X}_*^+ (\cong \ell_+^1)$ such that $S_*\psi_0 = \psi_0$. But S is induced by some transformation τ of N onto N. In fact, if $\delta_n(x) = \xi_n$ $(n \in \mathbb{N}, x = (\xi_n) \in \mathscr{X})$, then $\delta_n \circ S$ is a normal, scalar valued *-homomorphism with $(\delta_n \circ S)(1) = 1$, hence of the form δ_m for some $m = \tau(n)$. Thus $S = S_{\tau}$. But since τ is bijective this conflicts with $S_*\psi = \psi$. Therefore the center of \mathscr{M} is finite-dimensional.

Using [10] Theorem V. 1. 27. it follows that \mathscr{M} is finite-dimensional. Thus the set of peripheral eigenvalues of T is a finite subgroup of Γ hence of the form Γ_h for some $h \ge 1$.

Remarks. (1) For every natural number $h \leqslant \dim H$ there exists an irreducible W^* -dynamical system $(\mathscr{B}(H), \varphi, T)$ such that $P\sigma(T) \cap \Gamma = \Gamma_h$. Indeed, let $h \leqslant \dim H$ and take mutually orthogonal projections p_1, \ldots, p_h in $\mathscr{B}(H)$ such that $\Sigma_{k=1}^h p_k = 1$. If π is a cyclic permutation of the set $\{1, \ldots, h\}$ of length h then the map S on $\lim\{p_k\colon 1\leqslant k\leqslant h\}$ given by extension of the mapping $(p_k\mapsto p_{\pi(k)})$ is completely positive, identity preserving and $F(S)=\mathbb{C}1$. Let Q be the faithful normal, conditional expactation on $\mathscr{B}(H)$ given by $(x\mapsto \Sigma_{k=1}^h p_k x p_k)$ and let $T\colon S\circ Q$. If $\varphi\colon \tau\circ Q$ where τ is the normal state $(x\mapsto \Sigma_{k=1}^h \gamma_k)$,

 $x = \sum_{k=1}^h \gamma_k \cdot p_k \in \lim\{p_k \colon 1 \leqslant k \leqslant h\}$, then $(\mathcal{B}(H), \varphi, T)$ is an irreducible W^* -dynamical system such that $P\sigma(T) \cap \Gamma = \Gamma_h$.

- (2) Let T be a completely positive and identity preserving map on a W^* -algebra $\mathscr M$ with preadjoint $T_* \in \mathscr L(\mathscr M_*)$ and suppose $P\sigma(T_*) \cap \Gamma \neq \emptyset$. Then there exists a positive linear form $\varphi \in \mathscr M_*$ such that $T_*\varphi = \varphi$. To see this let $\varphi_\alpha \in \mathscr M_*$ be a normalized eigenvector pertaining to the peripheral eigenvalue α of T_* . Then for all $x \in \mathscr M$: $|\varphi_\alpha(x)|^2 = |\varphi_\alpha(Tx)|^2 \le |\varphi_\alpha|(TxTx^*) \le (T_*|\varphi_\alpha|)(xx^*)$ and $||\varphi_\alpha|| = ||\varphi_\alpha|| ||\varphi_\alpha|| = ||\varphi_\alpha||(T1) = ||T_*||\varphi_\alpha|||$. Therefore $T_*||\varphi_\alpha|| = ||\varphi_\alpha||$ by [10] Proposition III. 4. 6. Assuming that T_* leaves no closed face $(\neq \{0\}, \mathscr M_*^+)$ of $\mathscr M_*^+$ invariant, every $0 \ne \varphi \in F(T_*)$ is faithful.
- (3) If $(\mathscr{A}, \varphi, T)$ is a W^* -dynamical system it follows from Proposition 2. 1 and [9] Example III. 7. 3, that the Cesaro means $\frac{1}{n} \sum_{k=0}^{n-1} T_*^k$ of T_* converge in the strong operator topology on $\mathscr{L}(\mathscr{A}_*)$ to a projection of \mathscr{A}_* onto the fixed space of T_* . Therefore a W^* -dynamical system $(\mathscr{A}, \varphi, T)$ is irreducible, iff $P\sigma(T_*) \cap \Gamma \neq \emptyset$ and T_* leaves no non trivial closed face of \mathscr{A}_*^+ invariant.
- 3. In this section we study the asymptotic behaviour of the powers T^n of an irreducible W^* -dynamical system $(\mathcal{B}(H), \varphi, T)$.

Proposition 3.1. Let $(\mathcal{B}(H), \varphi, T)$ be a W*-dynamical system. Then the cyclic semi-group \mathcal{S}_* is relatively compact in the strong operator topology $\mathcal{L}_s(\mathcal{B}(H)_*)$.

Proof. Proposition 2.1 shows that for all $0 \le \psi \in \mathscr{A}_*$ the set $\{T_*^n \psi \colon n \in \mathbb{N}\}$ is weakly relatively compact. Using the [10] III. Corollary 5.11. the assertion follows

From Proposition 3. 1 it follows that the compact semi-group $\bar{\mathscr{S}}_*\subseteq\mathscr{L}_s(\mathscr{B}(H)_*)$ has jointly continuous multiplication. If \mathscr{X}_* is the kernel of $\bar{\mathscr{S}}_*$ then \mathscr{X}_* = $\bigcap_{k=1}^{\infty} \{T_*^n : n \geqslant k\}$, every point T_*^n is isolated in $\bar{\mathscr{S}}_*$ and $\bar{\mathscr{S}}_* = \mathscr{X}_* \cup \{T_*^n : n \in \mathbb{N}\}$ ([5], Theorem 3.6). The next proposition shows how the topology on $\bar{\mathscr{S}}_*$ is related to the one on \mathscr{X}_* . (For a proof we refer to [5] Theorem 5.3).

Proposition 3.2. Let $\overline{\mathcal{G}}$ be a compact topological semigroup with jointly continuous multiplication, generator t, kernel \mathscr{K} and let q be the unit of \mathscr{K} . Let $\overline{\mathcal{G}}$ be topologized as follows:

- (a) Every point t^n , $n \in \mathbb{N}$, is isolated.
- (b) For every $s \in \mathcal{K}$ and an arbitrary neighbourhood U(s) of s and $n \in \mathbb{N}$ we define the neighbourhood $\widehat{U}_n(s)$ as

$$\widehat{U}_n(s) := U(s) \cup \{ t^k : k \geqslant n, (qt)^k \in U(s) \}.$$

Then the family of all sets $\widehat{U}_n(s)$ for all neighbourhoods U(s) of $s \in \mathcal{X}$ and all positive integers n defines a topology on $\overline{\mathcal{S}}$ which is equivalent to the given one.

Using this topological result we are able to give a proof of our convergence theorem.

Theorem 3.3. Let $(\mathcal{B}(H), \varphi, T)$ be an irreducible W^* -dynamical system. Then there exists an irreducible, partially periodic W^* -dynamical system $(\mathcal{B}(H), \varphi, S)$ such that $\lim_n (T_*^n - S_*^n) = 0$ in the strong operator topology $\mathcal{L}_S(\mathcal{B}(H)_*)$.

Proof. It follows from Proposition 2. 2 (a) and Theorem 2. 3 that the kernel \mathscr{K}_* of the compact topological semi-group $\overline{\mathscr{S}}_*$ generated by T_* in $\mathscr{L}_{\mathcal{S}}(\mathscr{B}(H))$ is cyclic of order h for some positive integer h. Letting $S_* := Q_* \circ T_*$, Q_* the unit of \mathscr{K}_* , it follows that S_* is partially periodic, is irreducible and $\{S_*^k : 1 \le k \le h\}$ = \mathscr{S}_* . Since \mathscr{K}_* carries the discrete topology it follows that the powers of T_*^{kh} converge to S_*^k in the strong operator topology by Proposition 3. 2. Thus $\lim_n (T_*^n - S_*^n) = 0$ in $\mathscr{L}_{\mathcal{S}}(\mathscr{B}(H))$.

The following follows immediately from Theorem 3.3.

Corollary 3. 4. Let $(\mathcal{B}(H), \varphi, T)$ be an irreducible W^* -dynamical system with $P\sigma(T) \cap \Gamma = \{1\}$. Then $\lim_n (T_*^n - 1 \otimes \varphi) = 0$ in the strong operator topology $\mathscr{L}_s(\mathcal{B}(H))$.

References

- K. DeLeeuw and I. Glicksberg: Applications of almost periodic compactifications, Acta Math., 105 (1961), 63-97.
- [2] R. Derndinger, R. Nagel and G. Palm: 13 Lectures on ergodic theory, Preprint, Tübingen (1982).
- [3] U. Groh: On the peripheral spectrum of uniformly ergodic positive operators on C*-algebras, J. Operator Theory, 10 (1983), 31-37.
- [4] U. Groh: Asymptotic behaviour of dynamical systems on W*-algebras, Semesterbericht Funktionalanalysis Tübingen: Sommersemester (1982), 15-25.
- [5] E. Hewitt: Compact, monothetic semigroups, Duke. Math. J., 23 (1956), 447-457.

- [6] B. Kümmerer and R. Nagel: Mean ergodic semi-groups on W*-algebras, Acta. Sci. Math., 41 (1979), 151-159.
- [7] R. Nagel: Ergodic and mixing properties of linear operators, Proc. Royal Irish Acad. Sect. A, 74 (1974), 245-261.
- [8] S. Sakai: C^* -algebras and W^* -algebras, Springer Verlag, Berlin-Heidelberg-New York, (1971).
- [9] H. H. Schaefer: Banach lattices and positive operators, Springer Verlag, Berlin-Heidelberg-New York, (1974).
- [10] M. Takesaki: Theory of operator algebras I, Springer Verlag, Berlin-Heidelberg-New York, (1979).