MAT 121 Statistics I

Midterm Exam #1 09/27/2023

Time: 90 minutes

Problem 1.

The following is a sample of ages (in months) of 18 children at a daycare:

18 19 22 22 24 24 25 26 28 29 29 30 31 32 35 36 36 42

What is the median age of the sample?

Answers *

29

28.2

30.5

IntroStatsApps: Descriptive Statistics

Measures of Center

The data values are:

18, 19, 22, 22, 24, 24, 25, 26, 28, 29, 29, 30, 31, 32, 35, 36, 36, 42

The sorted data values are:

18, 19, 22, 22, 24, 24, 25, 26, 28, 29, 29, 30, 31, 32, 35, 36, 36, 42

1. Sample (population) mean

 $ar{x}=\sum_{i=1}^nrac{x_i}{n}=$ 28.2 , and $\mu=\sum_{i=1}^nrac{x_i}{n}$ = 28.2 (if this data set is a population).

2. Median

The meadian of a given data set is the middle number of ${\bf sorted}$ data set. Based on this definition, the median of the given data set is: 28.5

3. Mode

A data value that appears most frquently (frequency > 1) is called the mode of the data. Based on this definition, a set of data may have one mode, more than one mode, or no mode at all. Using the above definition, this data set has 4 modes: 22, 24, 29, 36.

Problem 2.

The following grouped frequency table of the income, x, of 30 employees at a local small business (in \$1000s).

Income	[26, 28]	(28, 30]	(30, 32]	(32, 34]	(34, 36]
Frequency	2	11	8	5	4

The relative cumulative frequency of the $28 \le x \le 30$ class is

11			

≈ 0.43

≈0.06

$$\frac{11}{2+11+8+5+4} = \frac{11}{30} \approx 0.37.$$

Problem 3.

A study of 1106 college students asked about their preference for online resources. The following relative frequency distribution was determined based on the survey.

Resource	Relative Frequency
Google or Google Scholar	0.736
Library database or website	0.136
Wikipedia or online encyclopedia	0.094
Other	0.034

Of the 1106 students who participated in the survey, approximately how many chose Google or Google Scholar?

Answers *	
	34
	292
	736
✓	814
	921

 $1106 \times 0.736 = 84.046$

Instr: C. Peng

Problem 4.

The pie chart above, not drawn to scale, shows the number of vehicles parked outside a supermarket. Angle AOB is a right angle. Given that there were 60 vehicles, how many vans were there?

Answers *

6

12

15

20

Based on the definition of the pie chart.

Problem 5.

Instr: C. Peng

The table below represents 360360 books grouped by their category:

Book category		Frequency
	Science-fiction	150150
	Romance	125125
	Adventure	5050
	Horror	3535

Draw a pie chart representing this table

Answers *

Matching numbers with the corresponding slices.

Find the mean, median, and mode for the following data set. 4 7 9 11 11 11 13 17 22 26

Answers *

IntroStatsApps: Descriptive Statistics

Measures of Center

The data values are: 4, 7, 9, 11, 11, 11, 13, 17, 22, 26

The sorted data values are: 4, 7, 9, 11, 11, 11, 13, 17, 22, 26

1. Sample (population) mean

$$ar{x}=\sum_{i=1}^nrac{x_i}{n}=$$
 13.1 , and $\mu=\sum_{i=1}^nrac{x_i}{n}$ = 13.1 (if this data set is a population).

2. Median

The meadian of a given data set is the middle number of ${f sorted}$ data set. Based on this definition, the median of the given data set is: 11

3. Mode

A data value that appears most frquently (frequency > 1) is called the mode of the data. Based on this definition, a set of data may have one mode, more than one mode, or no mode at all. Using the above definition, this data set has 1 mode: 11.

The mean temperature in Glens Falls for the month of February is 23 degrees with a standard deviation of 4.2 degrees. What is the z-score for a temperature of 17 degrees (keeping 3 decimal places)?

9.523

Problem 8.

Construct a box-plot of data set: $\{3,\ 4,\ 4,\ 5,\ 5,\ 6,\ 8,\ 10,\ 10,\ 12,\ 15,\ 18\}$

Answers *

IntroStatsApps: Descriptive Statistics

Five Number Summary and Boxplot

The data values are: 3, 4, 4, 5, 5, 6, 8, 10, 10, 12, 15, 18

1. Five Number Summary:

The five-number summary is use used to describe the shape of the distribution of a given numerical data. It consists of five numbers: minimum data value, first quartile, median, the third quartile, and the maximum data value.

The five-number summary of this given data set is:

stats	value
Min.	3.00
1st Qu.	4.75
Median	7.00
3rd Qu.	10.50
Max.	18.00

2. Boxplot:

The boxplot is a geometric representation of the five-number summary. The boxplot of the given data set is given below.

Choose a one that is close to the true one.

Types of Descriptive Statistics

comma separated numerical data

5-number summary and boxplot

3,4,4,5,5,6,8,10,10,12,15,18

Numerical Measures

Measure Types

The cholesterol content of large chicken eggs is **uniformly** distributed between 190 and 210 milligrams. The density curve has a rectangular shape.

What proportion of these eggs has cholesterol content above 205 milligrams?

Answers *

5/20

205/210

190/210

20/210

$$P(\chi_{7205}) = \frac{1}{20}(210-205) = \frac{1}{20} \chi_{5} = \frac{5}{20}$$

Find the variance of the following sample data set taken from a population.

4 11 11 13 15 18

Answers *

112/6

112/5

72/6

72/5

976/5

IntroStatsApps: Descriptive Statistics

Measures of Variation

The data values are: 4, 11, 11, 13, 15, 18

The sorted data values are: 4, 11, 11, 13, 15, 18

1. Sample (population) variance

$$s^2=\sum_{i=1}^nrac{(x_i-ar{x})^2}{n-1}=$$
 22.4 , and $\sigma^2=\sum_{i=1}^nrac{(x_i-\mu)^2}{n}$ = 18.7 (if this data set is a population

2. Sample (population) standard deviation

The standard deviation is the square root of variance. Therefore, the both standard deviations are: 12

$$s=\sqrt{s^2}=\sqrt{\sum_{i=1}^n\frac{(x_i-\bar{x})^2}{n-1}}=4.7$$
 , and $\sigma=\sqrt{\sigma^2}=\sqrt{\sum_{i=1}^n\frac{(x_i-\mu)^2}{n}}=4.3$ (if this data set is a population

3. Inter - quartile range (IQR)

The inter-quartile range is defined to the difference between the first and third quartiles. By the definition, $IQR=P_{75}-P_{25}=$ 15 - 11 = 4 .

Pro	h	lom	1	1
Pro	n	ıem		•

A national achievement test is administered annually to 3rd graders. The test score is a continuous random variable that has a mean score of 100 and a standard deviation of 15. What is the probability that a randomly select student scored 95 in the test?

Answers *	
	95/100
	(100-95)/15
✓	0
	15/95
	cannot be determined.

Fifteen percent of the students in a school of Business Administration are majoring in Economics, 20% in Finance, 35% in Management, and 30% in Accounting. The graphical device(s) which can be used to present these data is (are)

Answers *	
	a line graph
	only a bar graph
	only a pie chart
✓	both a bar graph and a pie chart
	histogram

A scientist obtained a normally distributed population of scores with a mean of 70 and a standard deviation of 10. What proportion of scores do you expect to find in the interval between 60 to 80?

1.00	

The scoring of modern IQ is such that Intelligence Quotients (IQs) have a normal distribution of μ = 100 and σ = 15.

Mensa International is a non-profit organization that accepts only people with IQ scores within the top 2%. What level of IQ qualifies one to be a member of Mensa?

Answers *

 \odot Percentile (X_0)

2. X_0 in Which Probability?

$$\bigcirc P[X_0 < X < V] = P_0$$

 $\bigcirc P[V < X < X_0] = P_0$

$$P[X > X_0] = P_0$$

$$\bigcirc P[X < X_0] = P_0$$

Given Probability: P_0

0.02

3. Input Information

Population Mean: μ

100

Population Standard Deviation: σ

15

Question: Given $P(X>X_0)=0.02$, what is X_0 ?

Step 3. Finding X_0 :

$$P\left(\frac{X-100}{15} > \frac{X_0-100}{15}\right) = 0.02$$

or equivalently,

$$P\left(Z > \frac{X_0 - 100}{15}\right) = 0.02$$

Therefore,

$$\frac{X_0 - 100}{15} = Z_0 = 2.05.$$

Step 4. Answer: $X_0 = 100 + (2.05) \times 15 = 130.75$

Step 1. Z-score Transformation

$$Z = \frac{X - 100}{15}.$$

Step 2. Find the Z-score corresponding to $X_{
m 0}$

$$P(Z>Z_0)=0.02,$$

or equivalent, $1 - P(Z < Z_0) = 0.02$.

Therefore, $Z_0=2.05$.

Problem 15.

A physical fitness association is including the mile run in its secondary-school fitness test. The time for this event for boys in secondary school is known to possess a normal distribution with a mean of 440 seconds and a standard deviation of 60 seconds. Find the probability that a randomly selected boy in secondary school can run the mile in less than 302 seconds.

0.9893

0.0107

0.5107

0.4893

cannot be determined

The following are 40 measurements of the iron-solution index of tin-plate specimens, designed to measure the corrosion resistance of tin-plated steel. The original data set has been sorted in ascending order as:

We want to Construct a frequency table with **five** rows. Which of the following histogram is correct?

	[15,31]	7		
	(31,42]	16		
	(42,53]	17		
	(53,64]	0		
	(64,75]	0		
	[15,25]		1	
	(25,35]		9	
	(35,40]		7	
	(40,45]		19	
	(45,50]		4	
	[15,23]			1
	(23,31]			6
	(31,39]			7
	(39,46]		2	26
	(46,53]			0
~				
	[15,22]			1
	(22,29]			5
	(29,36]			6
	(36,43]			14

Based on the procedure of constructing histogram of a numerical data set.

Problem 17.

The age distribution of students at a community college is given below.

Age (years)	Number of students (f)
Under 21	2189
21-25	2031
26-30	1073
31-35	853
Over 35	221

A student from the community college is selected at random. The event E is defined as follows

E = event the student is between 26 and 35 inclusive.

Determine the number of outcomes that comprise the event \bar{E} (i.e., not in E).

Answers *

4441

4220

2/89 + 2031 + 221 = 4441

Tomkins Associates reports that the mean clear height for a Class A warehouse in the United States is 22 feet. Suppose clear heights are normally distributed and that the standard deviation is 4 feet. A Class A warehouse in the United States is randomly selected,

What is the probability that the clear height is greater than 17 feet?

Answers *

0.1056

0.8994

1.25

-1.25

The following bar graph presents the average amount a certain family spent, in dollars, on various food categories in a recent year.

On which food category was the most money spent?

Answers *

. 1	
~	

Dairy products

Fruits and vegetables

Meat poultry, fish	h, eggs

The following frequency distribution presents the frequency of passenger vehicles that pass through a certain intersection from 8:00 AM to 9:00 AM on a particular day.

Vehicle Type	Frequency
Motorcycle	5
Sedan	75
SUV	70
Truck	35

Construct a frequency bar graph for the data.

89 90 85 91 84 89 91 92 89 89 89 88 89 91 90

Choose	e the answer below that best completes the following statement.
Α	is a number that describes a sample.
Answers	•
	measurement
	population
\checkmark	statistic
	parameter
Problen	m 23
	n of the relative frequencies for all classes will always equal
Answers *	
✓ [one
	the number of classes
	the number of items in the study

Let Z be the standard normal random variable. Given that $P(Z < Z_0) = 0.758$, what is Z_0 ?

Answers *

0.750

0.700

0.242

-0.70

Tomkins Associates reports that the mean clear height for a Class A warehouse in the United States is 22 feet. Suppose clear heights are normally distributed and that the standard deviation is 4 feet.

Find the clear height such that 10% of all clear heights are less than it.

Answers *

0.9

1.28

-1.28

16.88

- \bigcirc Probability (P_0)
- Percentile (X_0)

2. X_0 in Which Probability?

$$\bigcirc \ P[X_0 < X < V] = P_0$$

$$\bigcirc \ P[V < X < X_0] = P_0$$

$$\bigcirc P[X > X_0] = P_0$$

 $\bigcirc P[X < X_0] = P_0$

Given Probability: P_0

0.1

3. Input Information

Population Mean: μ

22

Population Standard Deviation: σ

4

Sampling Distribution

Question: Given $P(X < X_0) = 0.1$, what is X_0 ?

Step 3. Finding X_0 :

$$P\left(rac{X-22}{4} < rac{X_0-22}{4}
ight) = 0.1$$

or equivalently,

$$P\left(Z<rac{X_0-22}{4}
ight)=0.1$$

Therefore,

$$\frac{X_0 - 22}{4} = Z_0 = -1.28.$$

Step 4. Answer:

$$X_0 = 22 + (-1.28) \times 4 = 16.88$$

Standard Normal Distribution

Step 1. Z-score Transformation

$$Z = \frac{X - 22}{4}.$$

Step 2. Find the Z-score corresponding to X_{0}

$$P(Z < Z_0) = 0.1.$$

Therefore, $Z_0 = -1.28$.

Summary of Midterm Exam #1

Histogram of the class grade distribution

Probability Distribution Histogram

1. Five Number Summary:

The five-number summary is use used to describe the shape of the distribution of a given numerical data. It consists of five numbers: minimum data value, first quartile, median, the third quartile, and the maximum data value.

The five-number summary of this given data set is:

stats	value
Min.	48.00
1st Qu.	76.00
Median	80.00
3rd Qu.	88.00
Max.	96.00

2. Boxplot:

The boxplot is a geometric representation of the five-number summary. The boxplot of the given data set is given below.

