Problem Sheet 4

Math40002, Analysis 1

- 1. You are driving down a road whose speed limit is 60 miles per hour. A police officer sees your car at 12pm, and another officer 35 miles away sees your car at 12:30pm. Assuming they've attended their analysis lectures, how can they prove that you were speeding?
- 2. Prove using l'Hôpital's rule that $\lim_{x\to\infty}\left(1+\frac{r}{x}\right)^x=e^r$. (Hint: take logs first.)
- 3. Use the mean value theorem to prove the following inequalities.
 - (a) $|\sin(x) \sin(y)| \le |x y|$ for all $x, y \in \mathbb{R}$
 - (b) $\frac{1}{2\sqrt{n+1}} < \sqrt{n+1} \sqrt{n} < \frac{1}{2\sqrt{n}}$ for all $n \in \mathbb{N}$
- 4. Let H_n denote the harmonic sum $\frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$.
 - (a) Using the mean value theorem, prove that $\frac{1}{n+1} < \log(n+1) \log(n) < \frac{1}{n}$ for all $n \in \mathbb{N}$.
 - (b) Prove that $H_n 1 < \log(n) < H_{n-1}$ for all $n \ge 2$, where $H_k = \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{k}$, and deduce that $\log(n+1) < H_n < \log(n) + 1$.
 - (c) Prove that the sequence $(H_n \log(n))$ is decreasing, and that $\lim_{n \to \infty} (H_n \log(n))$ exists. (This limit is called the *Euler-Mascheroni constant* $\gamma \approx 0.577...$)
- 5. (*) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, and suppose there is a constant C < 1 such that $|f'(x)| \leq C$ for all $x \in \mathbb{R}$. We will prove that f has exactly one fixed point, meaning there is a unique $y \in \mathbb{R}$ such that f(y) = y. Pick some $x_0 \in \mathbb{R}$ and let

$$x_{n+1} = f(x_n)$$
 for all $n \ge 0$.

- (a) Prove that $|x_{n+2} x_{n+1}| \le C|x_{n+1} x_n|$ for all n.
- (b) Prove that the sequence (x_n) converges, and that if its limit is y then f(y) = y.
- (c) Prove that f cannot have two different fixed points.
- 6. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable, and suppose that there is some M > 0 such that $|f'(x)| \leq M$ for all $x \in \mathbb{R}$.
 - (a) Prove that f is Lipschitz, meaning that there is some constant C > 0 such that $|f(x) f(y)| \le C|x y|$ for all $x, y \in \mathbb{R}$.
 - (b) Prove that Lipschitz functions are uniformly continuous, and conclude that f is uniformly continuous.

1

- 7. Let $f:[a,b] \to \mathbb{R}$ be a differentiable function. We will prove that f'(x) has the intermediate value property even though it may not be continuous. Throughout this problem, we will suppose that f'(a) < f'(b) and fix some t such that f'(a) < t < f'(b).
 - (a) Let g(x) = f(x) tx. Prove that there is some $c \in (a, b)$ such that g(c) < g(a). (Hint: what is g'(a)?) Similarly, prove that there is some $d \in (a, b)$ such that g(d) < g(b). In other words, g(x) is not minimized at x = a or at x = b.
 - (b) Show that there is some $y \in (a, b)$ such that g'(y) = 0, and deduce that f'(y) = t.