ADL x MLDS 2017 Fall HW4 - Generative Adversarial Networks

adlxmlds@gmail.com

Updates

- 1. (12/11 17:43): p24, Toolkit version and script usage.
- 2. (12/14 15:39): p16, About Batch Normalization or not.
- 3. (12/14 15:49): p20, Ls and Lc mean "Log-likelihood".
- 4. (12/16 14:46): p26, Deadline should be at **12/31/2017(Sun.)**
- 5. (12/17 18:30): p23, Testing Text Content

Outline

- Task Introduction
 - Text2image generation
 - Dataset collection
- Model
 - Conditional GAN
 - Tips for training
 - Discriminator loss function
 - Objective function
- Submission and grading

Task Introduction - text2image generation

an all black bird

Bird
Generative Model

this flower is white and pink

Flower
Generative Model

Task Introduction - text2image generation

Data Collection

Tags ? aikatsu! 98 ? hikami sumire 9 ? hiten goane ryu 64 ? clouds 7859 ? flowers 9334 ? leaves 1778 ? long hair 54717 ? purple eyes 10468 ? purple hair 8210 ? rainbow 302 ? sky 9537 ? twintails 18309 ? umbrella 2239 ? water 9675 ? wet 5730

Not all tags are useful

http://konachan.net/post/show/239400/aikatsu-clouds-flowers-hikami_sumire-hiten_goane_r

感謝樊恩宇助教蒐集data

Model and training tips

Conditional GAN for text2image generation real img

Paper: https://arxiv.org/pdf/1605.05396.pdf

Details for training

- Updates between Generator and Discriminator
 - o 1:1 or 2:1
- ADAM with Ir = 0.0002, momentum = 0.5
- gaussian or uniform noise dim = 100
- batch size = 64
- epoch = 300

Text feature process tool - Skip-thought vector

skip-thought source code:

https://github.com/tensorflow/models/tree/master/research/skip_thoughts#download-pret rained-models-optional

No matter which tool you use to process text input, please make sure you include that pre-trained model in your repository to let us run your code successfully.

Image process tool - skimage and scipy.misc

```
In [35]: # convert img to tensor
In [36]: import skimage
In [37]: import skimage.io
In [38]: img = skimage.io.imread('sample.jpg')
In [39]: # resize img
In [40]: import skimage.transform
In [41]: img_resized = skimage.transform.resize(img, (64, 64))
In [42]: img.shape
Out[42]: (96, 96, 3)
In [43]: img_resized.shape
Out[43]: (64, 64, 3)
```

Install:

- sudo apt-get install python-skimage
- sudo pip install --user numpy scipy

Little Demo

input text: black hair blue eyes

input text: pink hair green eyes

input text: green hair green eyes

input text: blue hair red eyes

Tips for training

- Discriminator output:
 - (real img, right text): 1
 - (fake img, right text): 0
 - (real img, wrong text): 0
 - (wrong img, right text): 0
- Different objective function
 - Wasserstein GAN (WGAN)
 - Improved W-GAN
 - Auxiliary Classifier GAN (ACGAN)

Wasserstein GAN

The output of D is thus not probability anymore.
The D loss turn to be a measure of distance.

$$L_D^{WGAN} = E[D(x)] - E[D(G(z))]$$

$$L_G^{WGAN} = E[D(G(z))]$$

$$W_D \leftarrow clip_by_value(W_D, -0.01, 0.01)$$

Wasserstein GAN

- In each training iteration: No sigmoid for the output of D
 - Sample m examples $\{x^1, x^2, ..., x^m\}$ from data distribution $P_{data}(x)$
 - Sample m noise samples $\{z^1, z^2, ..., z^m\}$ from the prior $P_{prior}(z)$

Learning .

Repeat

- Obtaining generated data $\{\widetilde{x}^1,\widetilde{x}^2,...,\widetilde{x}^m\}$, $\widetilde{x}^i=G(z^i)$
- Update discriminator parameters θ_d to maximize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} D(x^i) - \frac{1}{m} \sum_{i=1}^{m} D(\tilde{x}^i)$$

- $\theta_d \leftarrow \theta_d + \eta \nabla \tilde{V}(\theta_d)$ Weight clipping
- Sample another m noise samples $\{z^1, z^2, ..., z^m\}$ from the prior $P_{prior}(z)$

Learning • Update generator parameters $heta_g$ to minimize

•
$$\tilde{V} = \frac{1}{m} \sum_{i=1}^{m} log D(x^{i}) - \frac{1}{m} \sum_{i=1}^{m} D(G(z^{i}))$$

• $\theta_a \leftarrow \theta_a - \eta \nabla \tilde{V}(\theta_a)$

Wasserstein GAN

Implementation Notes:

- Do not apply sigmoid at the output of D
- Clip the weight of D
- Use RMSProp instead of Adam
- Train more iteration of D (the paper use 5)
- Do not use batch normalization
- Do not apply batch normalization on **Discriminator** only when using Improved W-GAN loss (WGAN-GP loss)

(ref: https://arxiv.org/pdf/1704.00028.pdf, page.4)

ref:https://arxiv.org/pdf/1701.07875.pdf

Improved W-GAN

Do not clip the weight of D but to add a new objective called "Gradient Penalty".

$$L_D^{WGAN_GP} = L_D^{WGAN} + \lambda E[(|\nabla D(\alpha x - (1 - \alpha G(z)))| - 1)^2]$$

$$L_G^{WGAN_GP} = L_G^{WGAN}$$

Improved W-GAN

$$W(P_{data}, P_G) \approx \max_{D} \{E_{x \sim P_{data}}[D(x)] - E_{x \sim P_G}[D(x)] - \lambda E_{x \sim P_{penalty}}[\max(0, ||\nabla_x D(x)|| - 1)]\}$$

$$P_{data} \qquad (||\nabla_x D(x)|| - 1)^2$$

$$P_G \qquad \text{Largest gradient in this region (=1)} \qquad D(x)$$

ref:https://arxiv.org/pdf/1704.00028.pdf

ACGAN

Discriminator should also be able to do a classification task.

$$L_{D,Q}^{ACGAN} = L_{D}^{GAN} + E[P(class = c|x)] + E[P(class = c|G(z))]$$

$$L_{G}^{ACGAN} = L_{G}^{GAN} + E[P(class = c|G(z))]$$

ACGAN

$$L_S = E[\log P(S = real \mid X_{real})] + E[\log P(S = fake \mid X_{fake})]$$

$$L_C = E[\log P(C = c \mid X_{real})] + E[\log P(C = c \mid X_{fake})]$$

D is trained to maximize $\mathbf{L_s} + \mathbf{L_c}$ while **G** is trained to maximize $\mathbf{L_c} - \mathbf{L_s}$

ref:https://arxiv.org/pdf/1610.09585.pdf

Submission and Grading

Homework 4 package

- Anime Dataset:
 - training data: 33.4k (image, tags) pair
 - faces/, tags.csv, sample_testing.txt
- training tags file format
 - o img_id <comma> tag1 <colon> #_post <tab> tag2 <colon> ...

```
1 0, touhou:17705 | chen:423 | moneti daifuku :60 | animal ears:12241 | catgirl:4903 | 2 1, touhou:17697 | onozuka komachi:224 | shikieiki yamaxanadu:217 | $ 3 2, original:25774 | blonde hair:25457 | doll:1040 | dress:16585 | pink eyes:3896 | ta 4 3, amagi brilliant park:111 | musaigen no phantom world:39 | nichijou:142 | kawakam
```

- testing text file format
 - testing_text_id <comma> testing_text

```
1, blue hair blue eyes
2, blue hair green eyes
3, blue hair red eyes
4, green hair blue eyes
```

- testing text only includes 'color hair' and 'color eyes', only alphabetic char involved.
- Data download link:
 - https://drive.google.com/open?id=1bXXeEzARYWsvUwbW3SA0meulCR3nIhDb
 - If you want to do something cool beyond generating faces, mail us. We will give you original images

blue eyes red hair short hair

tags.csv

Testing Text Content

[color hair]:

'orange hair', 'white hair', 'aqua hair', 'gray hair', 'green hair', 'red hair', 'purple hair', 'pink hair', 'blue hair', 'black hair', 'brown hair', 'blonde hair'.

[color eyes]:

'gray eyes', 'black eyes', 'orange eyes', 'pink eyes', 'yellow eyes', 'aqua eyes', 'purple eyes', 'green eyes', 'brown eyes', 'red eyes', 'blue eyes'.

Allowed packages

- Allowed package includes:
 - PyTorch v0.2.0
 - tensorflow r1.3
 - Keras 2.0.7
 - MXNet 0.11.0
 - o CNTK 2.2
 - o python 2.7/3.5/3.6
 - In .sh file, please call "python2" or "python3.5" or "python3.6"
 - Ex. python2 GAN_train.py

Submission on Github

- Only one branch master is needed
- master stores the model by using GAN structure
- Remember to put your pre-trained models or download scripts so that we can run your code successfully

Submission

- Deadline: 12/31/2017(Sun.) 23:59:59 (UTC+8)
- ADLxMLDS2017/hw4 should contain the following files:
 - run.sh train.py, (pre-)trained_model, generate.py, samples/, report.pdf
 - If some files are too big, upload to your cloud and download them when running your run.sh
- TAs will run your run.sh to generate images given a text
 - bash run.sh [testing_text.txt]
 - run.sh must output in 10 minutes.

Output Format Requirement

- The generated images should be in Directory samples/
 - o make sure it's **empty** before we run your code
- Each generated image must be resized to 64 x 64 in size
- For each input text, you must generate 5 images
- Generated img should be named as "sample_(testing_text_id)_(sample_id).jpg"
- Example:

```
andy@andy-All-Series|x86_64:samples:4$ ls
sample_1_1.jpg sample_1_3.jpg sample_1_5.jpg sample_2_2.jpg sample_2_4.jpg
sample_1_2.jpg sample_1_4.jpg sample_2_1.jpg sample_2_3.jpg sample_2_5.jpg
```

組別互評

- We will put your generated images in the grading platform
- Link will be sent to your mail after HW deadline
- Answer 2 scores for each image
 - How the image fits the text
 - How the image looks real
- Scores should be integer from 1 to 5
 - 1 to 5 corressponding to (super bad, bad, average, good, super good)
- You may score your results, so be fair when your are scoring :)

組別互評

- Separate scores with a comma (score for matching text, score for reality)
- Example:
 - 3 → Gray hair green eyes

4,5

What report should cover?

- Model description(2%)
 - Must include model strucuture, objective function for G and D
- How do you improve your performance (2%)
- Experiment settings and observation (2%)
- No more than 5 pages
- Please written in Chinese (unless you don't know how to type Chinese)

Grading Policy (18%)

- Wrong output format will not be graded
- Report (6%)
- 限時任務(2%) [To be announced]
- Score others' generated images(2%)
- Peer feedback(4%)
- Code (4%)
 - You will be scored only if you use GAN and output results in 10 minutes
 - Fix random seed so we can reproduce your results
- Bonus
 - style-transfer (2%)

Special Mission

- Open a folder ADLxMLDS2017/hw4/early/
- The condition is: red hair, green eyes
- Please generate 5 images corresponding to this condition
- Period: 2017/12/18~2017/12/24(23:59)

Other Policy

- Late policy: 25% off per day late afterwards. [Delay form will be announced afterwards]
- No plagiarism is allowed.

TA hours

- If you have other questions,
 - please contact TAs via <u>adlxmlds@gmail.com</u>
 - post your questions on <u>facebook group</u>
 - go to TA office hours
 - 季大中 Mon 17:30-19:00 (德田524)
 - 葉政杰 Fri 15:30-17:00 (電二531)
 - 楊靖平 Thu 15:30-17:00 (電二531)