

4. Perform descriptive statistics on thedataset

0.75 - 0.

5. Handle the Missingvalues

In [34]: dr.tanul1().sun()

Out[34]: Restinate

Out[34]: Restinate

Credit.core | 0

Durance | 0

Credit.core | 0

Out[35]: <AxesSubplot:xlabel='CreditScore'>

In [40]: A = df.iloc[:, :-1].values
 print(A)

Split the data into dependent and independent variables

In [42]: from sklearn.preprocessingimport StandardScalerfrom sklearn.preprocessingimport WindsatCaler scaler = MindsatCaler() df[["Customerfor"]] = scaler.fit_transform(df(["Customerfor"])) print(df) RoselumberCustomerfd Surmane CreditScore Geography Gender Age \ RoselumberCustomerfd Surmane CreditScore Geography Gender Gender Geography Gender Gender

9. Scale the independent variables

0		1 0.2756	16	Hargrave	61	9 France	Female	42
1		2 0.3264				8 Spain		
2		3 0.2144				2 France		
3		4 0.5426	36	Boni	69	9 France	Female	39
4		5 0.6887	78	Mitchell			Female :	43
9995	9	96 0.1621	19	Obijiaku			e Male	39
9996	9	997 0.0167	65	Johnstone	51	6 Franc	e Male	35
9997	91	998 0 0753	27	Lin			Female	36
9998	91	999 0.4666	37	Sabbatini	77.	2 German	y Male	42
9999	10	000 0.2504	83	Walker	79	2 France	Female	28
				ductsHasCr	CardIsActiv	eMember \		
0	2	0.0	0	1	1	1		
1	1	83807.8	6	1	0	1		
2	8	159660.80		3		(
3	1	0.0	0	2	0			
4		125510.82		1		1		
9995		0.0		2	1			
9996	10	57369.6		1	1			
9997	7	0.0	0			1		
9998	3	75075.3	1	2	1			
9999	4	130142.79		1	1			
		EstimatedSalary						
0		01348.88	1					
1		12542.58						
2		13931.57						
3		93826.63	0					
4		79084.10						
9995		96270.64						
9996		01699.77						
9997		42085.58						
		92888.52						
2220		32000.32	-					

10. Split the data into training andtesting

from stiearn.model selectionimpost train test split (from stiearn.model) acta-continuous state training data, testing data-continuous state-25) print(ffb. of training examples: (training data-happe(0))*) print(ffb. of testing examples: (tasting data.shappe(0))*)
No. of training examples: 1937
No. of testing examples: 1937