Wen Sheng Taylor Arnold February 18, 2016

Problem Set 02 Data Analysis

Data Mining and Machine Learning

1. Describe how you decided the ultimate number of trees to use.

Solution: Using <u>for-loop</u> to try running tree number from 25 - 50 to find the tree number with minimum Mean Square Error. The result is using 50 will get the best result.

Best Tree Number: 50

Minimum Mean Square Error: 0.0319992743516

The running script looks like this:

2. Compare the 'out-of-bag' mean squared error. Describe the patterns.

Running the Random Forest Model model, I got following result:

A. Mean Squared Error of each states:

• CT: 0.031999

• NY: 0.049216

• MT: 0.095416

• CA: 0.038667

B. Describe what patterns or surprising features arise.

Although New York is more distance closer to state Connecticut, the random forest model (using Connecticut data to fit) is more compatible to situation in state California, while applies worst to state Montana. Since the data is about the employment statistics, it shows that the Origin-Destination Employment patterns of Connecticut and California is more similar. Using Connecticut data to predict New York is relatively fit with mean squared error of 0.05, but using Connecticut data to predict Montana is inappropriate as the mean squared error rise to 0.1

3. Linear Regression Model and OSE. Describe the patterns.

Running the linear regression model, I got following result:

- A. Mean Squared Error of each states:
- CT: 0.0289036617567
- NY: 0.0467652027483
- MT: 0.088323152621
- CA: 0.0350336440766
- B. Describe what patterns or surprising features arise.

In overview surprising, the overall mean squared error using <u>Linear Regression</u> is lower than using <u>Random Forest Regression</u>. But the state data pattern result is consistent with both models. The statistics in <u>Connecticut and California</u> is more similar with each other, while New York is relatively fit and Montana having worst prediction result.

4. What are the 3 worst counties in terms of Mean Squared Error. Explain any patterns you see and suggest a possible solution.

A. Worst 3 counties in terms of Mean Squared Error:

Worst counties in New York:

- ny-041:0.139018573758 Hamilton County
- ny-095:0.114171686704 Schoharie County
- ny-003:0.111952013297 Allegany County

Worst Counties in California:

- ca-049:0.129004175942 Modoc County
- ca-093:0.112016077362 Siskiyou County
- ca-003:0.100567615465 Alpine County

B. Patterns and possible solution:

Searching the document, the 3 worst counties in each states share a common property: all of them are having less population compare to other counties inside the same state. Hamilton has the <u>lowest population</u> in New York and Alpine has the <u>lowest population</u> in California. It seems also compatible with common sense: area with less population have smaller job markets.

States ny	ny-015:0.0591336287584	ca-015
ny-041:0.139018573758	ny-037:0.0583856899289	ca-007
ny-095:0.114171686704	ny-069:0.0563321997254	ca-109
ny-003:0.111952013297	ny-083:0.0518757333407	ca-043
ny-017:0.110439867881	ny-079:0.0497599248543	ca-091
ny-077:0.107841026586	ny-109:0.0488836004145	ca-025
ny-049:0.107185236149	ny-071:0.0483285239021	ca-057
ny-025:0.107037057688	ny-063:0.0446377755032	ca-051
ny-123:0.106934101989	ny-027:0.0426759691978	ca-009
ny-009:0.0962813388081	ny-091:0.0409643342122	ca-115
ny-097:0.0949091686752	ny-001:0.0389028589714	ca-005
ny-035:0.0930315676307	ny-067:0.0376041010732	ca-107
ny-057:0.0922400801161	ny-087:0.0332628372989	ca-017
ny-089:0.0868361478409	ny-093:0.0326337945276	ca-039
ny-043:0.0863868758764	ny-119:0.031989400829	ca-047
ny-045:0.0856134542993	ny-029:0.0310647103067	ca-031
ny-013:0.0852681756528	ny-103:0.0301581065047	ca-029
ny-031:0.0848371467958	ny-055:0.0298520929966	ca-071
ny-105:0.0836446672403	ny-059:0.0238303068257	ca-101
ny-101:0.0831418823114	ny-085:0.02202558358	ca-069
ny-021:0.0812919723477	ny-081:0.018214892142	ca-079
ny-099:0.0804814797746	ny-047:0.0164041862428	ca-053
ny-033:0.0797449282958	ny-005:0.0156284025764	ca-061
ny-051:0.0779977140327	ny-061:0.0122777550392	ca-097
ny-115:0.0775996145302	States ca	ca-065
ny-023:0.0774190195752	ca-049:0.129004175942	ca-019
ny-107:0.0735671920995	ca-093:0.112016077362	ca-077
ny-121:0.0731556087088	ca-003:0.100567615465	ca-087
ny-113:0.0730842209495	ca-063:0.100346154892	ca-095
ny-053:0.0730309732566	ca-033:0.0927486997717	ca-099
ny-065:0.0716660530627	ca-035:0.0922271686807	ca-083
ny-039:0.0683490724516	ca-023:0.0884622516137	ca-041
ny-117:0.0671794998097	ca-045:0.088243721951	ca-113
ny-075:0.0671746240119	ca-105:0.0876794919957	ca-055
ny-011:0.0650232051137	ca-027:0.0835750794501	ca-073
ny-019:0.0637134639344	ca-011:0.0787258287162	ca-013
ny-111:0.0636674822571	ca-021:0.0763434202117	ca-067
ny-073:0.0635035073798	ca-089:0.0759565635985	ca-111
ny-007:0.0596715074983	ca-103:0.0748714879434	ca-037

-015:0.0724630507126 07:0.0706211670197 9:0.069939308302 3:0.0698450613079 1:0.069398870751 25:0.0688193144022 57:0.0675186872246 1:0.0674049685089 9:0.0613579178696 5:0.0602915801016 5:0.0585343756599 7:0.0575629574606 7:0.0575312341685 9:0.0568680393798 7:0.0541328716682 31:0.0536353524195 9:0.0519407138066 1:0.0506546630302 1:0.0502307713547 9:0.0501473222899 9:0.0497685115054 3:0.0477650846684 61:0.0462766796319 97:0.0446750902915 5:0.0425121515215 9:0.0414228536366 7:0.0406258798828 37:0.0369235711754 5:0.0368672307971 9.0 0364235715602 3:0.0363564689644 1:0.033731449155 3:0.0321019844537 5:0.0313784814941 3.0 0312143995193 3:0.0303765156861 7:0.028611639036 11:0.0282786262581 ca-037:0.0278198245196

5. Calculate variables importance score and analyze the result

A. 5 most important variables in Random Forest Model:

Sorting the variable importance list, I found following 5 variables have highest importance in the Random Forest Regression model:

- **CD04**: Number of jobs for workers with <u>Educational Attainment</u>: Bachelor's degree or advanced degree
 - CA01: Number of jobs for workers age 29 or younger
 - **CNS10**: Number of jobs in NAICS sector 52 (Finance and Insurance)
 - CNS18: Number of jobs in NAICS sector 72 (Accommodation and Food Services)
 - ullet CT01: Number of jobs for workers with Ethnicity: Not Hispanic or Latino 10

```
[ 0.08526942  0.03564509  0.02927231  0.00445287
                                         0.00072778 0.00406524
           0.03130891 0.01763802
                               0.03474356
 0.0169477
                                         0.01349668
                                                  0.0127794
 0.03155929 0.01728259 0.04713548 0.02067748 0.01912411 0.02578444
 0.02779699 0.00204143 0.00994425 0.0007114
                                         0.00667864 0.03828773
 0.03295872 0.0222019
                     0.02822483 0.03248519 0.12693802 0.03567256
 0.0378048 ]
5 morst important varibles(high - low)
CD04
CA01
CNS10
CNS18
CT01
```

B. Doest it make sense that these would help identify areas with a high promotion of high income earners?

Yes. The result of this 5 most importance variables is compatible with reality. People with higher education degrees and working in areas of <u>Finance/Insurance or Accommodation/Food Services</u> tend to have higher education. Also interestedly, the figure shows that people's <u>ethnicity and age(working history)</u> also influences income a little bit: people not Hispanic and not Latino with number of jobs for workers under or equal to 29 tend to have higher income.