Assignment #1

Automatic pieces detection and quantification in thermographic image

Libraries used

- 1. OpenCV Python Library
- 2. NumPy Python Library
- 3. MatplotLib Python plotting Library

• Algorithm

1. Resize the original image

The original input image is resized while maintaining aspect ratio so that parameters of Hough circles function are the same

2. Convert to grayscale

convert resized image to grayscale

3. Apply GaussianBlur

Apply GaussianBlur with 5*5 kernel to gray image to reduce noise and improve contour detection

4. Apply HoughCircles to detect circles

Apply Houghcircles function to blurred image to obtain all circles even partial circles since votes parameter is not returned

5. Apply Sobel Y filter

Apply Sobel Y filter to blurred image to detect horizontal edges used later to detect intersection of edges with circles since main edge is horizontal

6. Apply Hough Lines to Sobel Y filter

Apply HoughLinesP to obtain line segments in Sobel Y convolved image

7. Detect and filter the circle

filter the circle only if it is not intersected with any edge obtained from Sobel Y convolved image or an image border by comparing it's radius with perpendicular distance to the edge or border

Visual outputs

Run **test_per_image.py** for each of the input images to get the following results.

Load image
image = cv2.imread("images/image1.png")

The edge lines are shown in the resized image.

1. image1.png

2. image2.png

3. image3.png

4. image4.png

Run Assignment1.py to get the results for all input images in one figure

