SKRIPSI

DEEP LEARNING UNTUK DETEKSI TANDA NOMOR KENDARAAN BERMOTOR MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DENGAN PYTHON DAN TENSORFLOW

DEEP LEARNING FOR DETECTION MOTOR VEHICLE NUMBER SIGNS USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM WITH PYTHON AND TENSORFLOW

IMAM TAUFIQ

135610103

PROGRAM STUDI SISTEM INFORMASI
SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER
AKAKOM
YOGYAKARTA

2018

SKRIPSI

DEEP LEARNING UNTUK DETEKSI TANDA NOMOR KENDARAAN BERMOTOR MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DENGAN PYTHON DAN TENSORFLOW

DEEP LEARNING FOR DETECTION MOTOR VEHICLE NUMBER SIGNS USING CONVOLUTIONAL NEURAL NETWORK ALGORITHM WITH PYTHON AND TENSORFLOW

Diajukan sebagai salah satu syarat untuk menyelesaikan studi jenjang strata satu

(S1) Program Studi Sistem Informasi

Sekolah Tinggi Manajemen Informatika dan Komputer

AKAKOM

Yogyakarta

Disusun Oleh

IMAM TAUFIQ

135610103

PROGRAM STUD<mark>I SISTE</mark>M INFORMASI SEKOLAH TINGGI MANAJEMEN INFORMATIKA DAN KOMPUTER AKAKOM YOGYAKARTA

2018

HALAMAN PENGESAHAN

SKRIPSI

DEEP LEARNING UNTUK DETEKSI TANDA NOMOR KENDARAAN BERMOTOR MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK DENGAN PYTHON DAN TENSORFLOW

Telah dipersiapkan dan disusun oleh

IMAM TAUFIQ 135610103

Telah dipertahankan didepan Tim Penguji

Pada tanggal

30 Januari 2018

Susunan Tim Penguji

Pembimbing/Penguji

Ketua Penguji

DR. Bambang Rurnomosidi Dwi

P, S.E., Akt., S.Kom, M.Msi

NIP/NPP. 981109

Pulut Survati, S.Kom., M.Cs

NIP/NPP, 19780315 200501 2 002

Anggota

Deborah Kurniawati, S.Kom., M.Cs

NIP/NPP. 051149

Skripsi ini telah diterima sebagai salah satu persyaratan untuk memperoleh gelar Sarjana Komputer

Tanggal 8 Februari 2018

Ketua Program Studi Sistem Informasi

Deborah Kurnizwati, S.Kom., M.Cs

NIP/NPP. 051149

PERNYATAAN

Dengan ini saya menyatakan bahwa Laporan Skripsi ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar sarjana di suatu Perguruan Tinggi, dan sepanjang pengetahuan saya juga tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Yogyakarta, 30 Januari 2018

Imam Taufiq

HALAMAN PERSEMBAHAN

Alhamdulillah, puji syukur saya panjatkan kehadirat Allah SWT atas limpahan berkah dan rahmat-Nya kepada saya sehingga saya selalu dalam lindungan-Nya untuk menyelesaikan skripsi ini dan shalawat serta salam selalu tercurahkan kepada junjungan baginda Rasulallah nabi Muhammad SAW atas tuntunannyalah yang membawa kita dari zaman kegelapan hingga kezaman yang terang benderang saat ini.

Skripsi ini saya dedikasikan untuk almarhum bapak saya Busro bin Pardi dan juga untuk ibu ku Kurotul'aeni. Terimakasih saya ucapkan yang sebesar-besarnya kepada:

- 1. Bpk DR. Bambang Purnomosidi Dwi P, S.E., Akt., S.Kom, M.Msi selaku dosen pembimbing atas bimbingan dan nasihatnya selama saya megerjakan skripsi ini dan guru terbaik saya dalam belajar dan menyemangati diri untuk terus berkarya
- 2. Ibu Deborah Kurniawati, S.Kom., M.Cs selaku ketua program studi Sistem Informasi yang selalu mendorong dan mendesak saya untuk menyelesaikan skripsi dan membuat karya ilmiah yang dapat membanggakan
- 3. Ibu Pulut Suryati, S.Kom., M.Cs selaku sekertaris program studi Sistem Informasi yang selalu memberikan semangat agar dapat segera menyelesaikan studi ini
- 4. Digmi Family: Ramita, Rosmini, Amanu, dan Uton yang dahulu pernah berjuang bersama untuk kuliah di Jogja
- 5. Rizky D. Novyantika yang telah mengenalkan ku ke dunia Data Science dan membuat ku terus semangat untuk menjadi manusia yang bermanfaat
- **6.** Keluarga besar HMJ SI yang telah menjaga dan membuat banyak kenangan indah selama aku berjuang menjalani hidup di Jogja untuk menimba ilmu

HALAMAN MOTTO

Aku adalah Imam.

DAFTAR ISI

COVER	2	i	
HALAN	MAN JUDUL	ii	
HALAN	MAN PENGESAHANi	ii	
HALAN	MAN PERNYATAAN i	V	
HALAN	MAN PERSEMBAHAN	V	
HALAN	MAN MOTTOv	ii	
DAFTA	ıR ISIvi	ii	
DAFTA	AR GAMBAR	ζi	
DAFTAR TABELxii			
KATA l	PENGANTAR xi	ii	
ABSTR	AKx	V	
ABSTRA	ACTxv	⁄i	
BAB I I	PENDAHULUAN	1	
1.1	Latar Belakang Masalah	1	
1.2	Rumusan Masalah	2	
1.3	Ruang Lingkup	3	
1.4	Tujuan Penelitian	3	
1.5	Manfaat Penelitian	3	
1.6	Sistematika Penulisan	4	
BAB II TINJAUAN PUSTAKA DAN DASAR TEORI 5			
2.1.	Tinjauan Pustaka	5	

2.2. Da	sar Teori	9
2.2.1.	Kendaraan Bermotor	9
2.2.2.	Tanda Nomor Kendaraan Bermotor	10
2.2.3.	Citra	10
2.2.4.	Citra Digital	11
2.2.5.	Model Warna RGB	12
2.2.6.	Pengolahan Citra (Image Processing)	13
2.2.7.	Binerisasi	13
2.2.8.	Segmentasi	14
2.2.9.	Pengenalan Pola (Pattern Recognition)	15
2.2.10.	Convolutional Neural Network (CNN)	16
2.2.11.	ReLu (Rectified Liner Unit)	18
2.2.12.	Python	19
2.2.13.	TensorFlow	20
BAB III MI	ETODE PENELITIAN	21
3.1. Ba	han/Data	21
3.2. Ar	nalisis Kebutuhan	21
3.2.1.	Kebutuhan Input	21
3.2.2.	Kebutuhan Output	21
3.2.3.	Perangkat Lunak (Software)	21
3.2.4.	Perangkat Keras (Hardware)	22
3.3. Pro	osedur dan Pengumpulan Data	22
3.3.1.	Metode Pengumpulan Data	22
3.3.2.	Metode Penelitian	22
3.3.3.	Diagram Alur Penelitian	23

3.4. Per	rancangan Sistem	25		
3.4.1.	FlowChart Alur Convolutional Neural Network	29		
3.4.2.	Rancangan Output	30		
BAB IV IM	PLEMENTASI DAN PEMBAHASAN SISTEM	32		
4.1. Im	plementasi	32		
4.1.1.	Pelabelan Gambar	32		
4.1.2.	Konversi Datasets Meta XML ke CSV	32		
4.1.3.	Konversi Datasets CSV ke TFRecord	33		
4.1.4.	Label Map	34		
4.1.5.	Konfigurasi Object Detection Training Pipeline	34		
4.1.6.	Training Neural Network	36		
4.1.7.	Export Graph Model	36		
4.1.8.	Deteksi Tanda Nomor Kendaraan Bermotor (TNKB)	37		
4.2. Pe	mbahasan Sistem	38		
4.2.1.	Training Steps	38		
4.2.2.	Total Loss	39		
4.2.3.	Tensor Graph	40		
4.2.4.	Model	43		
4.2.5.	Hasil Deteksi	43		
BAB 5 KES	SIMPULAN DAN SARAN	45		
5.1 Ke	esimpulan	45		
5.2 Sa	ran	45		
DAFTAR PUSTAKA				

DAFTAR GAMBAR

Gambar 2.1 Model Warna RGB	13
Gambar 2.2 Arsitektur MLP Sederhana	17
Gambar 2.3 Ilustrasi Proses Konvolusi	18
Gambar 2.4 Proses Konvolusi pada CNN	18
Gambar 2.5 Grafik Fungsi Aktifasi ReLu	19
Gambar 3.1 Alur Penelitian	23
Gambar 3.2 Sliding Window	25
Gambar 3.3 Proses Max Pooling	27
Gambar 3.4 Alur Convolutional Neural Network	29
Gambar 3.5 Rancangan Output	30
Gambar 4.1 Proses Pelabelan Dataset	32
Gambar 4.2 Kode Program Konversi XML ke CSV	33
Gambar 4.3 Kode Program Konversi CSV ke TFRecord	34
Gambar 4.4 Kode Konfigurasi Label Map	34
Gambar 4.5 Kode Konfigurasi Pipeline	35
Gambar 4.6 Kode Program Proses Training	36
Gambar 4.7 Kode Program Export Graph Model	37
Gambar 4.8 Kode Program Uji Coba Model	38
Gambar 4.9 Grafik Global Training Step	38
Gambar 4.10 Log Training Step Process	39
Gambar 4.11 Grafik Total Loss	39
Gambar 4.12 Graph Legend	40
Gambar 4.13 Batch Graph	40
Gambar 4.14 Train Step Graph	41
Gambar 4.15 Total Loss Graph	42
Gambar 4.16 Global Step Graph	42
Gambar 4.17 Model Hasil Training	43
Gambar 4.18 Hasil Deteksi Tanda Nomor Kendaraan	44

DAFTAR TABEL

Tabel 2.1 Tinjauan Pustaka	
Tabel 2.2 Posisi Neighbours of a Pixel	11
Tabel 3.1 Matriks Nilai Input	25
Tabel 3.2 Kernel Vertical Edges	20
Tabel 3.3 Kernel Horizontal Edges	26

KATA PENGANTAR

Puji syukur saya panjatkan kehadirat Allah SWT yang telah memberikan rahmat dan karunia-Nya kepada penulisa sehingga penulis berhasil menyelesaikan naskah skripsi yang berjudul "Deep Learning Untuk Deteksi Tanda Nomor Kendaraan Bermotor Menggunakan Algoritma Convolutional Neural Network Dengan Python Dan Tensorflow". Skripsi ini disusun sebagai salah satu syarat untuk menyelesaikan pendidikan komputer di jurusan sistem informasi STMIK AKAKOM Yogyakarta.

Dalam penyusunan naskah skripsi ini mungkin tidak akan terlaksana tanpa dukungan, bimbingan dan petunjuk dari semua pihak yang telah membantu sehingga naskah skripsi dapat terselesaikan dengan baik. Untuk itu penulis ingin menyampaikan rasa terima kasih kepada :

- 1. Ibu Deborah Kurniawati, S.Kom., M.Cs., selaku Kaprodi Sistem Informasi.
- 2. Bapak DR. Bambang Purnomosidi Dwi P, S.E., Akt., S.Kom, M.Msi, yang telah banyak memberikan pengarahan saran yang sangat besar manfaatnya dalam penyelesaian tugas akhir ini.
- Seluruh dosen di Jurusan Sistem informasi STMIK AKAKOM Yogyakarta yang selama ini telah memberikan ilmunya kepada penulis sehingga penulis dapat menjadi lebih baik.

Yogyakarta, 11 Januari 2018

Penulis

ABSTRAK

Pencatatan plat nomor kendaraan di Indonesia pada umumnya masih menggunakan cara konvensional, yaitu dengan mencatat plat nomor kendaraan satu persatu secara manual oleh penjaga parkir atau petugas keamanan yang berjaga di tempat tersebut. Seiring dengan pesatnya perkembangan ilmu pengetahuan dan teknologi saat ini menyebabkan banyak bermunculan inovasi yang semakin memudahkan manusia untuk melakukan kegiatan sehari-harinya. Salah satu yang mengalami perkembangan pesat adalah Pengolahan Citra. Salah pegolahan citra adalah Convolutional Neural Network (CNN). Deteksi objek Convolutional masih berkembang sebagai teknologi, walaupun metode deteksi objeknya lebih hebat. Dengan berkembangnya deteksi objek peneliti ingin mengetahui bagaimana hasil pendeteksian objek kendaraan bermotor dan mengetahui model hasil pelatihan pada data gambar untuk identifikasi objek kendaraan bermotor menggunakan algoritma convolutional neural network. Hasil analisis menunjukkan bahwa dengan algoritma Convolutional Neural Network didapatkan nilai keakuratan hingga mencapai tingkat akurasi yang sangat tinggi untuk melakukan identifikasi objek pada Tanda Nomor Kendaraan Bermotor (TNKB).

Kata Kunci : *Deep Learning, Convolutional Neural Network,* Deteksi Objek, Tanda Nomor Kendaraan Bermotor, *Tensorflow*

ABSTRACT

Vehicle license plate registration in Indonesia in general still using conventional way, that is by manually record number plate of vehicle one by one by parking guard or security guard who guard at the place. Along with the rapid development of science and technology today led to many emerging innovations that make it easier for humans to perform daily activities. One that is experiencing rapid development is Image Processing. One of the image processing is the Convolutional Neural Network (CNN). Convolutional object detection is still evolving as a technology, although its object detection methods are more powerful. With the development of object detection, the researcher wanted to know how the result of motor vehicle detection and to know the model of training result on the image data for motor vehicle identification using convolutional neural network algorithm. The result of analysis shows that with convolutional neural network algorithm, the accuracy value is reached until it reaches a very high accuracy level to identify object in Motor Vehicle Number Sign.

Keyword : Deep Learning, Convolutional Neural Network, Object Identification, Motor Vehicle Number Sign, Tensorflow