Formale Semantik o5. Pr–adikatenlogik

Roland Schäfer

Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

stets aktuelle Fassungen: https://github.com/rsling/VL-Deutsche-Syntax

Inhalt

- Why predicate calculus?
- 2 The construction of PC
 - Atoms and syntax Semantics
 - More rules

- 3 Laws of PC
 - Negation and distributionMovement

 - Some in-class practice
 - Natural deduction in PC
 - Quantifier elimination
 - An example

Weak compositionality in SL

- properties/relations vs. individuals
- Martin is an expert on inversion and Martin is a good climber.
- ...becomes $E \wedge C$
- compositionality resticted to level of connected propositional atoms

Some desirable deductions

- important generalizations about all and some individuals (which have property P)
- 'all P \rightarrow some P'
- 'Martin P \rightarrow some P'

Atoms of PC

- individual variables: $x, y, z, x_1, x_2 \dots$
- individual constants: a, b, c, ...
- variables and constants: terms
- predicate symbols (taking individual symbols or tuples of them): A, B, C, \ldots
- quantifiers: existential \exists (or \lor) and universal \forall (or \land)
- plus the connectives of SL

Some syntax

- for an *n*-ary predicate P and terms $t_1 ldots t_n$, $P(t_1 ldots t_n)$ or $Pt_1 ldots t_n$ is a wff.
- possible prefix, function (bracket) and infix notation:
 Pxy, P(x, y), xPy
- syntax for connectives from SL
- for any wff ϕ and any variable x, $(\exists x)\phi$ and $(\forall x)\phi$ are wff's

Semantic for individual constants

- denote individuals
- a model \mathcal{M} contains a set of individuals D
- the valuation function V (or F): from constants to individuals in D
- for some \mathcal{M}_1 : D = {Martin, Kilroy, Scully}
- $V_{\mathcal{M}_1}(m) = Martin$
- $V_{\mathcal{M}_1}(k) = Kilroy$, $V_{\mathcal{M}_1}(s) = Scully$

Semantics for predicate symbols

- denote relations (sets of n-tuples)
- $\llbracket P \rrbracket^{\mathcal{M}_1} = \{ Martin, Kilroy \}$ or $V_{\mathcal{M}_1}(P) = \{ Martin, Kilroy \}$
- $V_{\mathcal{M}_1}(Q) = \{\langle Martin, Kilroy \rangle, \langle Martin, Scully \rangle, \langle Kilroy, Kilroy \rangle, \langle Scully, Scully \rangle \}$
- s.t. $\llbracket P(m) \rrbracket^{\mathcal{M}_1} = \llbracket P \rrbracket^{\mathcal{M}_1}(\llbracket m) \rrbracket^{\mathcal{M}_1}) = 1$ iff $\llbracket m \rrbracket^{\mathcal{M}_1} \in \llbracket P \rrbracket^{\mathcal{M}_1}$

Semantics for connectives and quantifiers

- connectives: 'apply to' formulas (semantically truth-valued), semantics as in SL
- $(\forall x)\phi$ = 1 iff ϕ is true for every $d \in D$ assigned to every occurrence of x in ϕ
- $(\exists x)\phi$ = 1 iff ϕ is true for at least one $d \in D$ assigned to every occurrence of x in ϕ
- algorithmic instruction to check wff's containing Q's
- check outside-in (unambiguous scoping)

Dependencies

• universal quantifiers can be swapped:

$$(\forall \mathbf{x})(\forall \mathbf{y})\phi \Leftrightarrow (\forall \mathbf{y})(\forall \mathbf{x})\phi$$

• same for existential quantifiers:

$$(\exists x)(\exists y)\phi \Leftrightarrow (\exists y)(\exists x)\phi$$

- whereas: $(\exists x)(\forall y)\phi \Rightarrow (\forall y)(\exists x)\phi$
- example in \mathcal{M}_1 :
 - $\qquad \qquad [(\forall \mathbf{x}) \underline{(\exists \mathbf{y}) \mathbf{Q} \mathbf{x} \mathbf{y}}]^{\mathcal{M}_1} = 1$
 - but: $[(\exists y)(\forall x)Qxy]^{\mathcal{M}_1}=0$
 - direct consequence of algorithmic definition
 - if ∃∀ is true, ∀∃ follows

Hints on quantifiers

- domain of quantifiers: D (universe of discourse)
- $\forall x$ checks for truth of some predication for all individuals
- $\exists x (Px \land \neg Px)$ is a contradiction
- $\forall x (Wx \land \neg Wx)$ is a contradiciton, $\forall x$ 'checks' for an empty set by def.
- standard form of NL quantification: $\forall x (Wx \rightarrow Bx)$ 'All women are beautiful.'
- standard form of NL existential quantification: $\exists x (Wx \land Bx)$ 'Some woman is beautiful.'

Functor/quantifier practice

- by def., functors take formulas, not terms:
 - ¬Wm 'Mary doesn't weep.'
 - ▶ $(\exists x)(Gx \land Wx)$ 'Some girl weeps.'
 - ▶ *W¬x
 - \rightarrow *($\exists \neg x$)(Gx)
- quantifiers take variables, not constants:
 - ▶ $(\forall x)(Ox \rightarrow Wx)$ 'All ozelots are wildcats.'
 - ▶ *(∀o)(Wo)
- negates the wff, not the q:
 - * $(\neg \forall x)Px$ but $\neg(\forall x)Px$

Scope

- quantifiers bind variables
- free variables (constants) are unbound
- no double binding $*(\forall x \exists x)Px$
- Q scope: only the first wff to its right:
 - ▶ $(\forall x)Px \lor Qx$
 - $(\forall x)(Px \lor Qx) = (\forall x)Px \lor (\forall x)Qx$
 - $\overline{(\exists x)Px} \to \underline{(\forall y)}(Qy \land Ry)$
 - ▶ $(\exists x)Px \land Qx$ (second x is a unbound)
- no double-naming

Universal \vee and \wedge

- \exists and \forall 'or' and 'and' over the universe of discourse (hence: \bigvee and \bigwedge)
- $(\forall x)$ Px \Leftrightarrow Px₁ \land Px₂ $\land \dots \land$ Px_n for all x_n assigned to $d_n \in D$
- $(\exists x)Px \Leftrightarrow Px_1 \lor Px_2 \lor \ldots \lor Px_n$ for all x_n assigned to $d_n \in D$
- hence: $\neg(\forall x) Px \Leftrightarrow \neg(Px_1 \land Px_2 \land \ldots \land Px_n)$
- with DeM: $\overline{Px_1 \wedge Px_2 \wedge \ldots \wedge Px_n}$
- $\Leftrightarrow \overline{Px_1} \vee \overline{Px_2} \vee \ldots \vee \overline{Px_n}$
- $\Leftrightarrow (\exists x) \neg Px$

Quantifier negation (QN)

- $\neg(\forall x)Px \Leftrightarrow (\exists x)\neg Px$
- $\neg(\exists x)Px \Leftrightarrow (\forall x)\neg Px$
- $\neg(\forall x)\neg Px \Leftrightarrow (\exists x)Px$
- $\bullet \ \neg(\exists x)\neg Px \Leftrightarrow (\forall x)Px$

The distribution laws

• the conjunction of universally quantified formulas:

$$(\forall x)(Px \land Qx) \Leftrightarrow (\forall x)Px \land (\forall x)Qx$$

• the disjunction of existentially quantified formulas:

$$(\exists x)(Px \lor Qx) \Leftrightarrow (\exists x)Px \lor (\exists x)Qx$$

- not v.v.: $(\forall x)Px \lor (\forall x)Qx \Rightarrow (\forall x)(Px \lor Qx)$
- why?

Quantifier movement (QM)

- desirable format: prefix + matrix
- Movement Laws for antecedents of conditionals:

$$(\exists x) Px \to \phi \Leftrightarrow (\forall x) (Px \to \phi) (\forall x) Px \to \phi \Leftrightarrow (\exists x) (Px \to \phi)$$

- Movement Laws for Q's in disjunction, conjunction, and the consequent of conditionals: Just move them to the prefix!
- condition: x must not be free in ϕ .
- i.e.: Watch your variables!

Let's formalize:

- Paul Kalkbrenner is a musician and signed on bpitchcontrol.
- Herr <u>S</u>. installed <u>RedHat</u> and not every <u>Linux</u> distribution is <u>e</u>asy to install.
- All talkmasters are human and Harald Schmidt is a talkmaster.
- Some talkmasters are not musicians.
- Heiko Laux owns Kanzleramt records and does not like any Gigolo artist.
- Some <u>h</u>umans are neither <u>t</u>alkmasters nor do they <u>o</u>wn <u>K</u>anzleramt records.

Universal instantiation ($-\forall$) and generalization ($+\forall$)

- $(\forall x)Px \rightarrow Pa$
- always applies
- can use any variable/constant
- $Pa \rightarrow (\forall x)Px$
- iff Pa was instantiated by $-\forall$

Existential generalization $(+\exists)$ and instantiation $(-\exists)$

- $Pa \rightarrow (\exists x)Px$ for any individual constant a
- always applies
- $(\exists x)Px \rightarrow Pa$ for some indiv. const.
- always applies (there is a minimal individual for $\exists x$)
- for some $(\exists x)Px$ and $(\exists x)Qx$ the minimal individual might be different
- hence: When you apply EI, always use fresh constants!

One sample task

- (1) Herr Keydana drives a Golf. (2) Anything that drives a golf is human or a complex program simulating an artificial neural net. (3) There are no programs s.a.a.n.n. which are complex enough to drive a Golf.
- Formalize and prove: At least one human exists.
- (1) Dk
- (2) $(\forall x)(Dx \rightarrow Hx \lor Px)$
- (3) $\neg(\exists x)(Px \wedge Dx)$
- (∃x)Hx

The proof

(1)	Dk	
(2)	$(\forall x)(Dx \rightarrow Hx \lor Px)$	
(3)	$\neg(\exists x)(Px \wedge Dx)$	
(4)	$(\forall x)\neg(Px\wedge Dx)$	3,QN
(5)	$(\forall x)(\neg Px \vee \neg Dx)$	4,DeM
(6)	$(\forall x)(Dx \rightarrow \neg Px)$	5,Comm,Impl
(7)	D k o eg P k	6,−∀(1)
(8)	$\neg Pk$	1,7,MP
(9)	Dk o Hk ee Pk	2,−∀(1)
(10)	$Hk \lor Pk$	1,9,MP
(11)	Hk	8,10,DS
<i>:</i> .	$(\exists x)Hx$	10,+∃

Literatur I

Autor

Kontakt

Prof. Dr. Roland Schäfer Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena Fürstengraben 30 07743 Jena

https://rolandschaefer.net roland.schaefer@uni-jena.de

Lizenz

Creative Commons BY-SA-3.0-DE

Dieses Werk ist unter einer Creative Commons Lizenz vom Typ Namensnennung - Weitergabe unter gleichen Bedingungen 3.0 Deutschland zugänglich. Um eine Kopie dieser Lizenz einzusehen, konsultieren Sie

http://creativecommons.org/licenses/by-sa/3.0/de/ oder wenden Sie sich brieflich an Creative Commons, Postfach 1866, Mountain View, California, 94042, USA.