

算法基础 Foundation of Algorithms

主讲人 徐云 Fall 2018, USTC

- Part 1 Foundation
- Part 2 Sorting and Order Statistics
- Part 3 Data Structure
- Part 4 Advanced Design and Analysis Techniques
 - chap 15 Dynamic Programming
 - chap 16 Greedy Algorithms
 - chap 17 Amortized Analysis
- Part 5 Advanced Data Structures
- Part 6 Graph Algorithms
- Part 7 Selected Topics
- Part 8 Supplement

Chapter 17 Amortized Analysis

- 17.1 Background and Methods
- 17.2 Aggregate Analysis
- 17.3 Accounting Method
- 17.4 Potential Method

17.1 Background and Methods

- Background
- Amortized analysis
- Three methods

Incrementing a Binary Counter

• k-bit Binary Counter: A[0..k-1]

$$x = \sum_{i=0}^{k-1} A[i] \cdot 2^{i}$$

```
INCREMENT(A)

1. i \leftarrow 0

2. while i < length[A] and A[i] = 1

3. do A[i] \leftarrow 0 \triangleright reset\ a\ bit

4. i \leftarrow i + 1

5. if i < length[A]

6. then A[i] \leftarrow 1 \triangleright set\ a\ bit
```

k-bit Binary Counter

Value	A[4]	A[3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	3
3	0	0	0	1	1	4
4	0	0	1	0	0	7
5	0	0	1	0	1	8
6	0	0	1	1	0	10
7	0	0	1	1	1	11
8	0	1	0	0	0	<i>15</i>
9	0	1	0	0	1	16
10	0	1	0	1	0	18
11	0	1	0	1	1	19

Worst-case analysis

Consider a sequence of n insertions. The worst-case time to execute one insertion is $\Theta(k)$. Therefore, the worst-case time for n insertions is $n \cdot \Theta(k) = \Theta(n \cdot k)$.

WRONG! In fact, the worst-case cost for n insertions is only $\Theta(n) \ll \Theta(n \cdot k)$.

Let's see why.

Note: You'll be correct If you'd said $O(n \cdot k)$. But, it's an overestimate.

Tighter analysis

value	A[4]	A [3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	3
3	0	0	0	1	1	4
4	0	0	1	0	0	7
5	0	0	1	0	1	8
6	0	0	1	1	0	10
7	0	0	1	1	1	11
8	0	1	0	0	0	<i>15</i>
9	0	1	0	0	1	16
10	0	1	0	1	0	18
11	0	1	0	1	1	19

Total cost of n operations

Tighter analysis (cont.)

Cost of *n* increments
$$= \sum_{i=1}^{\lfloor \lg n \rfloor} \lfloor \frac{n}{2^i} \rfloor$$
$$< n \sum_{i=1}^{\infty} \frac{1}{2^i} = 2n$$
$$= \Theta(n).$$

Thus, the average cost of each increment operation is $\Theta(n)/n = \Theta(1)$.

Amortized Analysis (平維分析)

- Amortized analysis is a cost analysis technique, which computes the average cost required to perform a sequence of n operations on a data structure.
- Background: Show that although some individual operations may be expensive, on average the cost per operation is small. Often worst case analysis is not tight.
- Goal: The amortized cost of an operation is less than its worst case, so that average cost in the worst case for a sequence of n operations is more tighter.
- This average cost is not based on averaging over a distribution of inputs. Here, no probability is involved.

Three Methods

- Aggregate analysis (聚集分析) in worst case, the total amount of time needed for the n operations is computed and divided by n.
- Accounting (记账方法) different operations are assigned different charges. Some operations charged more or less than their actual cost.
- Potential (使能方法) the prepaid work is represented as "potential" energy that can be released to pay for future operations.

Chapter 17 Amortized Analysis

- 17.1 Background and Methods
- 17.2 Aggregate Analysis
- 17.3 Accounting Method
- 17.4 Potential Method

17.2 Aggregate Analysis (聚集分析)

- Basic idea
- Stack example
- Binary counter example

Basic Idea of Aggregate Analysis

- Assume that n operations together take worst-case time T(n).
- The *amortized cost* (or average cost) of an operation is T(n)/n.
- Remark
 - Amortized cost is the same for any operations, even for several types of operations.
 - Amortized cost may be more or less than the actual cost for an operations.

Example 1: A Stack

- Three operations:
 - \square push(S, x)
 - \square pop(S)
 - □ multipop(S, k): Pop the stack k times
- Multipop operation

```
MULTIPOP(S, k)

1 while not Stack-Empty(S) and k \neq 0

2 do Pop(S)

3 k \leftarrow k-1
```

The total cost of Multipop(S, k) is min(s, k). The worst-case cost of a Multipop is O(n).

Stack: Regular Cost Analysis

- Consider a sequence of n push(S, x), pop(S) and multipop(S, k) operations on a stack having as many as n items (元素).
- Regualr anlysis:
 - □ Note that worst-case cost of multipop() is O(n).
 - \square So, the worst-case cost for n-ops is $O(n^2)$.
 - □ This is not tight.

Stack: Aggregate Analysis

- For a stack is initially empty, Consider a nsequence of push(), pop() and multipop().
- Aggregate analysis:
 - □ Each item (元素) can be popped only once for each time it is pushed.
 - So the total number of times pop() can be called, either directly or from multipop, is bounded by the number of pushes.
 - The number of pushes in a sequence of n ops is ≤ n, then the number of all pops (including those from multipop) is O(n).
 - □ So the total cost of the sequence of n ops is O(n). Therefore, we have O(1) per op on average.

Example 2: A Binary Counter

• A k-bit binary counter A[0..k-1] of bits, where A[0] is the least bit and A[k-1] is the most bit.

 \square Value of the counter is $\sum_{i=0}^{k-1} A[i] \cdot 2^i$

- □ Initially, counter value is 0. Then, Counts upward from 0.
- Increment operation, add 1:
- Flip all 1's from right to 0 until encountering the first 0.
- Change this 0 to 1 and stop.

INCREMENT
$$(A, k)$$
 $i = 0$

while $i < k$ and $A[i] == 1$
 $A[i] = 0$
 $i = i + 1$
if $i < k$
 $A[i] = 1$

2018/11/16

Actual Cost and Regular analysis

- It shows a 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 Increment operations.
- The average cost per operation is 31/16 < 2.
- However, regular analysis gets O(nk) in the worst case (see 17.1)

Counter	MINGHSHANSHONING)	Total
value	M' M' M' M' M' M' M' M'	cost
0	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	0
1	$0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$	1
2	0 0 0 0 0 0 1 0	3
3	$0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 1$	4
4	0 0 0 0 0 1 0 0	7
5	0 0 0 0 0 1 0 1	8
6	0 0 0 0 0 1 1 0	10
7	0 0 0 0 0 1 1 1	11
8	0 0 0 0 1 0 0	15
9	0 0 0 0 1 0 0 1	16
10	0 0 0 0 1 0 1 0	18
11	0 0 0 0 1 0 1 1	19
12	0 0 0 0 1 1 0 0	22
13	0 0 0 0 1 1 0 1	23
14	0 0 0 0 1 1 1 0	25
15	0 0 0 0 1 1 1 1	26
16	0 0 0 1 0 0 0 0	31

Binary Counter: Aggregate Analysis

- Observations about Increment():
 - □ No all bits are flipped for each call.
 - □ In general, A[i] flips only every 2ith time.
- Thus, A[i] flips only \[\ln/2^i \] times in a sequence of n Increment ops on an initially 0 counter.
- So the total number of flips is:

$$T(n) = \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor < n \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n.$$

• We have T(n) = O(n). And the amortized cost per operation is O(n)/n = O(1).

Chapter 17 Amortized Analysis

- 17.1 Background and Methods
- 17.2 Aggregate Analysis
- 17.3 Accounting Method
- 17.4 Potential Method

17.3 Accounting Method

- Basic idea
- Stack example
- Binary counter example

Basic Idea of Accounting Method

- Assign different charges to different operations.
 - □ Some are charged more than actual cost.
 - □ Some are charged less than actual cost.
- Amortized cost = amount we charge.

• Remark:

- □ When amortized cost > actual cost, store the difference on *specific items* in the data structure as *credit* (存款).
- □ Use credit later to pay for operations whose actual cost > amortized cost.

Credit Rules

- Need credit to never go negative.
- Let c_i = actual cost of i-th operation, \hat{c}_i = amortized cost of i-th operation.
- For all sequences of n operations, require:

$$\sum_{i=1}^{n} \hat{c}_i \ge \sum_{i=1}^{n} c_i$$

• Total credit stored = $\sum_{i=1}^{n} \hat{c}_i - \sum_{i=1}^{n} c_i$

Example 1: A Stack

Operation	Actual Cost	Amortized Cost
push	1	2
рор	1	0
multipop	min{ <i>n, k</i> }	0

- When pushing an item, pay \$2:
 - □ \$1 pays for the push.
 - □ \$1 is prepayment for it being popped by either pop or multipop.
 - □ Since each item on the stack has \$1 credit, the credit can never go negative.
 - \square The total amortized cost in the worst case is: $2n \in O(n)$
 - □ It is an upper bound on total actual cost.

Example 2: A Binary Counter

- Charge \$2 to set a bit to 1.
 - □ \$1 pays for setting a bit to 1.
 - □ \$1 is prepayment for flipping it back to 0.
 - □ Have \$1 of credit for every 1 in the counter.
 - □ Therefore, credit ≥ 0.
- Amortized cost of Increment:
 - Cost of resetting bits to 0 is paid by credit.
 - □ At most 1 bit is set to 1 in each increment operation.
 - \square Therefore, amortized cost \leq \$2.
 - □ For n operations, the total amortized cost in the worst case is $2n \in O(n)$. So, amortized cost for an op is O(1).

Chapter 17 Amortized Analysis

- 17.1 Background and Methods
- 17.2 Aggregate Analysis
- 17.3 Accounting Method
- 17.4 Potential Method

17.4 Potential Method

- Basic idea
- Stack example
- Binary counter example

Basic Idea of Potential Method

- Idea: like the accounting method, but think of the credit as potential stored with the entire data structure.
 - □ Accounting method stores credit with specific items.
 - Can release potential to pay for future operations.
- It is the most flexible among the amortized analysis methods.

Understanding Potential (1)

• Framework:

- \square Start with an initial data structure D_0 .
- \square Operation *i* transforms D_{i-1} to D_i .
- \square The cost of operation i is c_i .
- \Box Define a potential function $\Phi\colon\{D_i\}\to \mathbb{R}$, such that $\Phi(D_0)=0$ and $\Phi(D_i)\geq 0$ for all i
- □ The amortized cost \hat{c}_i with respect to Φ is defined to be $\hat{c}_i = c_i + \Phi(D_i) \Phi(D_{i-1})$

potential difference $\Delta\Phi_i$

- In practice, $\Phi(D_0) = 0$, $\Phi(D_i) \ge 0$ for all i. So,
 - □ the amortized cost is always an upper bound on actual cost.
 - work is stored *in the entire data structure* for later use.

Understanding Potential (2)

The total amortized cost of n operations is

$$\begin{split} \sum_{i=1}^{n} \hat{c}_{i} &= \sum_{i=1}^{n} \left(c_{i} + \Phi(D_{i}) - \Phi(D_{i-1}) \right) \\ &= \sum_{i=1}^{n} c_{i} + \Phi(D_{n}) - \Phi(D_{0}) \\ &\geq \sum_{i=1}^{n} c_{i} \quad \text{since } \Phi(D_{n}) \geq 0 \text{ and } \\ &= \sum_{i=1}^{n} c_{i} \quad \Phi(D_{0}) = 0. \end{split}$$

Example 1: A Stack

- Define potential function Φ on a stack = number of items on the stack.
- Let D_0 = empty, then $\Phi(D_0)$ = 0.

• Since the number of items on a stack is always ≥ 0 , $\Phi(D_i) \geq \Phi(D_0) = 0$.

operation	actual cost	$\Delta\Phi$	amortized cost
PUSH	1	(s+1) - s = 1	1 + 1 = 2
		where $s = \#$ of objects initially	y
Pop	1	(s-1)-s=-1	1 - 1 = 0
MULTIPOP	$k' = \min(k, s)$	(s-k')-s=-k'	k' - k' = 0

 So, the total amortized cost of a sequence of n operations in the worst case is 2n = O(n).

Example 1: A Stack (cont.)

operation	actual cost	$\Delta\Phi$	amortized cost
PUSH	1	(s+1) - s = 1	1 + 1 = 2
		where $s = \#$ of objects initially	
Pop	1	(s-1)-s=-1	1 - 1 = 0
MULTIPOP	$k' = \min(k, s)$	(s - k') - s = -k'	k' - k' = 0

Push:
$$\hat{c}_{i} = c_{i} + \phi(D_{i}) - \phi(D_{i-1})$$

 $= 1 + j - (j-1)$
 $= 2$
Pop: $\hat{c}_{i} = c_{i} + \phi(D_{i}) - \phi(D_{i-1})$
 $= 1 + (j-1) - j$
 $= 0$
Multi-pop: $\hat{c}_{i} = c_{i} + \phi(D_{i}) - \phi(D_{i-1})$
 $= k' + (j-k') - j$ k'=min(|S|,k)
 $= 0$

Example 2: A Binary Counter

 $\Phi = b_i = \#$ of 1's after ith Increment

Suppose i th operation resets t_i bits to 0.

$$c_i \le t_i + 1$$
 (resets t_i bits, sets ≤ 1 bit to 1)

- If $b_i = 0$, the *i*th operation reset all *k* bits and didn't set one, so $b_{i-1} = t_i = k \Rightarrow b_i = b_{i-1} t_i$.
- If $b_i > 0$, the *i*th operation reset t_i bits, set one, so $b_i = b_{i-1} t_i + 1$.
- Either way, $b_i \le b_{i-1} t_i + 1$.
- Therefore,

$$\Delta\Phi(D_i) \leq (b_{i-1} - t_i + 1) - b_{i-1}
= 1 - t_i.$$

$$\hat{c}_i = c_i + \Delta \Phi(D_i)
\leq (t_i + 1) + (1 - t_i)
= 2.$$

If counter starts at 0, $\Phi(D_0) = 0$.

Therefore, amortized cost of n operations = O(n).

Example 2: A Binary Counter (cont.)

General Case

The potential method gives us an easy way to analyze the counter even when it does not start at 0. There are initially b_0 1's and after n Increment operations there are b_n 1's.

$$\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} 2 - b_{n} + b_{0}$$

$$= 2n - b_n + b_0$$

No matter what initial value the counter contains, the actual cost has an upper bound of O(n).

End of Ch17