

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: A61K 31/70, A61F 13/20, G02C 7/02		A1	(21) International Publication Number: WO 95/07085 (43) International Publication Date: 16 March 1995 (16.03.95)
(21) International Application Number: PCT/US94/10175 (22) International Filing Date: 7 September 1994 (07.09.94)		(81) Designated States: CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 08/116,908 7 September 1993 (07.09.93) US		Published <i>With international search report.</i>	
(71) Applicant: ESCALON OPHTHALMICS, INC. [US/US]; 182 Tamarack Circle, Skillman, NJ 08558 (US). (72) Inventor: BENEDETTO, Dominick, A.; 124 Avenue B, Bayonne, NJ 07002 (US). (74) Agent: SAUNDERS, Thomas, M.; Lorusso & Loud, 440 Commercial Street, Boston, MA 02109 (US).			

(54) Title: SURFACE ACTIVE VISCOELASTIC SOLUTIONS FOR OCULAR USE

(57) Abstract

This invention encompasses a modified mucopolysaccharide solution for use as a biologically active therapeutic infusion comprising a pharmaceutical grade viscoelastic fraction selected from a group consisting of an acyl-substituted hyaluronic acid having acyl groups thereof with three to twenty carbon atoms and mixtures of said acyl-substituted hyaluronic acid with hyaluronic acid, and hydroxypropylmethylcellulose. In particular these solutions have a surface tension of between 40 and 65 dynes/cm², particularly a viscoelastic fraction has an average molecular weight of at least 50,000. In some embodiments a physiological buffer fraction is present. This invention further encompasses a method of using the claimed composition.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mongolia
AU	Australia	GE	Georgia	MW	Malawi
BH	Bahamas	GN	Ghana	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Beira	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KR	Korea	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	L1	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
EI	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				

WO 95/07085

PCT/US94/10175

1 SURFACE ACTIVE VISCOELASTIC SOLUTIONS FOR OCULAR USE

2

3 This application is a continuation-in-part of copending
4 U.S. Pat. App. 08/061,773 filed May 13, 1993, which is a
5 continuation of U.S. Pat. App. 07/440,078 filed November 22,
6 1989, now abandoned.

7

8

Field of the Invention.

9 The present invention relates to ophthalmic solutions for
10 use during ocular and intraocular surgery, and more particularly
11 to the use of surface active viscoelastic solutions during the
12 extraction of a cataractous human lens and the implantation of a
13 prosthetic ocular and intraocular lens. During surgery, the use
14 of ophthalmic infusions with controlled physical properties,
15 especially surface activity and viscoelastic properties, is
16 advantageous for (1) replacing the fluid aqueous humor or ocular
17 and intraocular air, (2) protecting the internal structures of
18 the eye from accidental instrument or ocular and intraocular
19 prosthetic device contact, (3) preventing irrigation damage by
20 solutions used in routine cataract surgery, and (4) retarding
21 aspiration from the eye of the viscoelastic solution during the
22 surgical procedure. In addition, the invention relates to a
23 method of adhering a contact lens to the surface of the eye,
24 such as in association with procedures permitting a medical
25 professional to view ocular and intraocular structures through
26 the contact lens and through the viscoelastic solution. In
27
28

WO 95/07085

PCT/US94/10175

1 another application, the viscoelastic solution of this invention
2 is used by injecting the solution into or under tissues within
3 the eye, such as to dissect tissue off of the retina.

4 Background of the Invention

5 In the past, biocompatible polymers used in ocular and
6 intraocular surgery have been the naturally occurring
7 mucopolysaccharides hyaluronic acid and chondroitin sulfate;
8 mixtures of hyaluronic acid and chondroitin sulfate; and,
9 cellulose derivatives, such as hydroxypropylmethylcellulose
10 (HPMC). Table 1
11 presents data reported in Viscoelastic Materials, Ed. E.S.
12 Rosen, Proceedings of the Second International Symposium of the
13 Northern Eye Institute, Manchester [U.K.], 17-19 July, 1986
14 (Pergamon Press, New York) as to the molecular weight of
15 commercially available ocular products. Depending on the source
16 from which these mucopolysaccharides are drawn, the molecular
17 weights are estimated in the 50,000 range with the hyaluronic
18 acid extending upwards to the 8×10^6 range. Hyaluronic acid
19 was first isolated and characterized by Meyer, Palmer and
20 reported in the J. Biol. Chem., Vol. 107, p. 629 (1934) and Vol.
21 114, p. 689 (1936) and by Balazs in the Fed. Proc. Vol. 17, p.
22 1086 (1958); and chondroitin sulfate by Bray et al. in Biochem.
23 J. Vol. 38, p. 144 (1944); and Patat, Elias, Z. Physiol. Chem.
24 vol. 316, p. 1 (1959).
25

26 Literature in the art describes the basic isolation and
27 characterization of the viscoelastic solutions. It is a
28 surprising feature of this invention which describes the control

WO 95/07085

PCT/US94/10173

1 of viscoelastic properties as related to the surface activity,
2 or the solution fracturing under applied stress. In particular,
3 it is surprising to manipulate or enhance the physical
4 properties of viscoelastic solutions of mucopolysaccharides,
5 hyaluronic acid, and/or chondroitin sulfate. It is believed
6 that disclosure here of a processes to provide hyaluronic acid
7 and species thereof with controlled surface activity is unique.
8 This is also especially true of the control of surface activity
9 of mucopolysaccharide solutions by the addition of biologically
10 compatible surfactants. A characteristic feature of
11 biologically compatible surfactants is the absence of observed
12 alteration in cellular physiology upon contact. Early work in
13 the viscoelastic field was presented by the inventor of this
14 disclosure and his associates. Benedetto, D.A. et. al.,
15 Viscoelastic Materials: Basic Science and Clinical Application,
16 (Symposium Proceedings), University of Manchester, England, July
17 17-19, 1986.

18 As to commercial production, a review of the ophthalmic
19 pharmacopoeia reveals there are several viscoelastic solutions
20 produced for ocular and intraocular use during ophthalmic
21 surgery. The most common application for these solutions is in
22 the intraocular lens implant procedure for human cataract
23 surgery. This procedure involves extraction of the cataractous
24 human lens through a small surgical opening in the eye and the
25 replacement of the lens by a prosthetic intraocular lens placed
26 in situ. Biocompatible polymers presently or previously in use
27 are hyaluronic acid (Healon™, Amvisc™); chondroitin sulfate, and
28

WO 95/07085

PCT/US94/10175

1 a combined solution of hyaluronic acid and chondroitin sulfate
2 (Viscoat™); and a hydroxypropylmethylcellulose solution
3 (Occucoat™). Research conducted recently demonstrates that
4 Healon™ and Amvisc™ are not surface active, but Viscoat™ and
5 Occucoat™ are.

6 Chondroitin sulfate does not exist as a free polysaccharide
7 in its native state, but as a proteoglycan. It is obtained from
8 sources associated with protein contaminants. The avoidance of
9 chondroitin sulfate avoids a potential source of pyrogenic
10 reaction, and the substantial cost associated with protein
11 removal.

12

13 Summary of the Invention

14 The invention presented herein discloses modified
15 mucopolysaccharide or viscoelastic solutions for use as
16 biologically active therapeutic infusions. In one form of the
17 invention, the mucopolysaccharide solution is formed from a
18 viscoelastic fraction and a buffer fraction. It has been found
19 that when a new synthetic molecule acyl-substituted hyaluronic
20 acid is employed as the viscoelastic fraction, control of
21 surface activity is achieved. An indicia of this is the
22 decrease of the surface tension of the solution which is now
23 within predetermined limits discussed below. Surface tension
24 modification is also accomplished with viscoelastic fractions in
25 which the acyl-substituted hyaluronic acid is mixed with one or
26 more of hyaluronic acid; and hydroxypropylmethylcellulose. In
27 certain applications, the viscoelastic solution of this
28 invention is used in a method of adhering a contact lens to the

WO 95/07085

PCT/US94/10175

1 surface of the eye, such as in association with procedures
2 permitting a medical professional to view ocular and intraocular
3 structures through the contact lens and through the viscoelastic
4 solution. This is particularly useful in facilitating surgical
5 procedures. In another application, the viscoelastic solution of
6 this invention is used by injection the solution into or under
7 structures or tissues within the eye, such as to dissect tissue
8 off of the retina.

9
10 In the broadest terms, surface active viscoelastic
11 solutions with controlled solution properties, are characterized
12 by surface tension, equilibrium contact angle, dynamic
13 viscosity, and cohesiveness (the measure of solution fracture
14 under stress). In a particular embodiment, this invention is
15 delimited by the three dimensional representation of Fig. 7.
16

17 In one example, bioengineered hyaluronic acid from a
18 bacterial source with an average molecular weight of 50,000 is
19 modified by acyl substitution with three to twenty carbon atom
20 acyl groups so that the resultant surface tension of such a
21 solution is between 40 and 65 dynes/cm². In the practice of
22 this invention, a viscoelastic solution having a surface tension
23 of less than about 56 dynes/cm², and more particularly, less
24 than about 50 dynes/cm² is of particular advantage.

25 This invention comprises a modified mucopolysaccharide
26 solution for use as a biologically active therapeutic infusion
27 comprising:
28

WO 95/07085

PCT/US94/10175

1 a pharmaceutical grade viscoelastic fraction selected from
2 the group consisting of acyl-substituted hyaluronic acid having
3 acyl groups thereof with three to twenty carbon atoms,
4 hyaluronic acid, hydroxypropylmethylcellulose and mixtures
5 thereof, and absent chondroitin sulfate said fraction having a
6 surface tension of between 40 and 65 dynes/cm²; and,

7 optionally with a physiological buffer fraction, such that
8 the viscoelastic comprises about a 0.1% percent of the solution
9 to about 5% of the solution, by weight, and preferably from
10 about 0.5 % to about 3%;

11 said modified mucopolysaccharide solution having a
12 viscosity of between 10,000 and 100,000 centipoise when measured
13 at a shear rate of 3 sec⁻¹ at 25°C; and,

14 optionally wherein the modified mucopolysaccharide
15 solution has a surface tension of less than about 56 dynes/cm²,
16 and further a surface tension of less than about 50 dynes/cm²;
17 and further,

18 optionally wherein the solution has an osmolality of from
19 about 250 to about 400 milliosmoles, or is generally isotonic
20 with ophthalmic tissue.

21 In some embodiments the modified mucopolysaccharide
22 solution viscoelastic fraction has an average molecular weight
23 of at least 50,000. Reference is further made to the
24 viscoelastic fraction being an acyl-substitute hyaluronic acid
25 having acyl groups thereof with three to twenty carbon atoms.

26 In particular applications the modified mucopolysaccharide
27 solution of this invention includes a surfactant fraction of a
28 biocompatible component selected from a group consisting of

WO 95/07085

PCT/US94/10175

1 phospholipids, monoglycerides, free fatty acids, free fatty acid
2 soaps, cholesterol, fluorocarbons, silicones, and nonionic
3 surfactants, with the surfactant present in an amount sufficient
4 to produce the required surface tension. In particular, a
5 biological surfactant fraction of a free fatty acid is present
6 in an amount of less than 1 mg/ml. Further embodiments include
7 a surfactant fraction of a biocompatible component selected from
8 a group consisting of phospholipids, monoglycerides, free fatty
9 acids, free fatty acid soaps, cholesterol, fluorocarbons,
10 silicones, and nonionic surfactants, said surfactant present in
11 an amount less than 10 micrograms/ml. In a preferred embodiment
12 the surfactant fraction of biocompatible component is a free
13 fatty acid.

14 In a further embodiment the modified mucopolysaccharide
15 solution has a viscoelastic fraction of a mixture of
16 acyl-substituted hyaluronic acid and hyaluronic acid, and
17 particularly with a surfactant fraction of a biocompatible
18 component selected from a group consisting of phospholipids,
19 monoglycerides, free fatty acids, free fatty acid soaps,
20 cholesterol, fluorocarbons, silicones, and nonionic surfactants,
21 with surfactant present in an amount sufficient to produce the
22 required surface tension, usefully in an amount less than
23 10 micrograms/ml. Preferred surfactants are free fatty acids
24 such as oleic acid.

25 Particular modified mucopolysaccharide solutions of the
26 invention are characterized by aspiration through a 0.3 mm
27 cannula at a vacuum pressure in a range of 5 to 400 mm Hg, and
28 particularly in a range of 50 to 200 mm Hg, wherein the solution

WO 95/07085

PCT/US94/10175

1 is easily fractured. Similarly, those solutions with an
2 aspiration profile of from about horizontal up to about 1.5 and
3 more particularly from about horizontal to about 1.0 are
4 preferred.

5 In another embodiment this present invention comprises a
6 modified mucopolysaccharide solution for use during ophthalmic
7 surgery for protection of the internal ocular structures
8 including corneal endothelium from accidental touch by surgical
9 instruments, yet permitting of observation of said structures
10 comprising:

11 an optically clear polymeric fraction of high purity
12 mucopolysaccharides selected from the group consisting of
13 acyl-substituted hyaluronic acid having acyl groups thereof with
14 three to twenty carbon atoms, hyaluronic acid,
15 hydroxypropylmethylcellulose and mixtures thereof and absent
16 chondroitin sulfate, said fraction having a surface tension of
17 between 40 and 65 dynes/cm²; and,

18 optionally a physiological buffer fraction, such that the
19 viscoelastic comprises about a 0.1% percent of the solution to
20 about 5% of the solution, by weight, and preferably from about
21 0.5 % to about 3%;

22 said modified mucopolysaccharide solution having a
23 viscosity of between 10,000 and 100,000 centipoise when measured
24 at a shear rate of 3 sec⁻¹ at 25 C; and,

25 wherein said mucopolysaccharide fraction has an average
26 molecular weight of at least 50,000; and,

28

WO 95/07085

PCT/US94/10175

1 a biological surfactant fraction of a free fatty acid
2 present in an amount less than 10 micrograms/ml; and,
3 optionally wherein the modified mucopolysaccharide
4 solution has a surface tension of less than about 56 dynes/cm²,
5 and further a surface tension of less than about 50 dynes/cm².

6 In some embodiment of this modified mucopolysaccharide
7 solution a particular polymeric fraction is hyaluronic acid.

8 Particular modified mucopolysaccharide solutions of the
9 invention are characterized by aspiration through a 0.3 mm
10 cannula at a vacuum pressure in a range of 5 to 400 mm Hg, and
11 particularly in a range of 50 to 200 mm Hg, wherein the solution
12 is easily fractured, which optionally include those solutions
13 with an aspiration profile of from about horizontal up to about
14 1.5 and more particularly from about horizontal to about 1.0.

15 Another embodiment of the present invention includes a
16 pharmaceutically acceptable modified mucopolysaccharide solution
17 (particularly a surface active mucopolysaccharide) absent
18 chondroitin sulfate having a surface tension of between 40 and
19 65 dynes/cm²; and,

20 a viscosity of between 10,000 and 100,000 centipoise
21 (particularly an average molecular weight of at least 50,000)
22 when measured at a shear rate of 3 sec⁻¹ at 25 C.

23 optionally wherein the modified mucopolysaccharide
24 solution has a surface tension of less than about 56 dynes/cm²,
25 and further a surface tension of less than about 50 dynes/cm².

26 In this embodiment of a modified mucopolysaccharide
27 solution a particular polymeric fraction is hyaluronic acid.
28

WO 95/07085

PCT/US94/10175

1 In certain applications the mucopolysaccharide solution
2 further comprises a biological surfactant selected from a group
3 consisting of phospholipids, monoglycerides, free fatty acids,
4 free fatty acid soaps, cholesterol, fluorocarbons, silicones,
5 and nonionic surfactants.

6 Yet a further embodiment of the invention includes a method
7 of protecting internal ocular structures during ocular surgery
8 and retarding aspiration of material from the ocular surgery
9 site by the steps of:

10 intraocularly introducing biologically active therapeutic
11 infusion amount of a modified mucopolysaccharide solution
12 comprising:

13 a pharmaceutical grade viscoelastic fraction selected from
14 the group consisting of acyl-substituted hyaluronic acid having
15 acyl groups thereof with three to twenty carbon atoms,
16 hyaluronic acid, hydroxypropylmethylcellulose and mixtures
17 thereof and absent chondroitin sulfate, said fraction with a
18 surface tension of between 40 and 65 dynes/cm² (particularly
19 less than about 56 and more particularly less than about 50
20 dynes/cm²); and,

21 optionally a physiological buffer fraction, such that the
22 viscoelastic comprises about a 0.1% percent of the solution to
23 about 5% of the solution, by weight, and preferably from about
24 0.5 % to about 3%;

25 said modified mucopolysaccharide solution having a
26 viscosity of between 10,000 and 100,000 centipoise when measured
27 at a shear rate of 3 sec⁻¹ at 25 C. In such embodiment a
28

WO 95/07085

PCT/US94/10175

1 preferred method entails intraocularly introducing biologically
2 active therapeutic infusion amount of a modified
3 mucopolysaccharide solution by a syringe of about 1.13 cm³ in
4 cross section or less, and optionally about 0.57 cm³ or less,
5 and further optionally about 0.16 cm³. In certain embodiments a
6 "sloped" syringe absent sharp reductions in cross sectional area
7 is useful.

8 Further in this method the invention includes particular
9 modified mucopolysaccharide solutions characterized by
10 aspiration through a 0.3 mm cannula at a vacuum pressure in a
11 range of 5 to 400 mm Hg, and particularly in a range of 50 to
12 200 mm Hg, wherein the solution is easily fractured. Similarly,
13 those solutions with an aspiration profile of from about
14 horizontal up to about 1.5 and more particularly from about
15 horizontal to about 1.0 are preferred.

16 An additional embodiment of the invention includes a method
17 of protecting internal ocular structures during ocular surgery
18 by providing a viscoelastic solution that coats ocular
19 structures at a surgical site such that aspiration of the
20 viscoelastic solution is retarded, said method being:
21

22 intraocularly introducing biologically active therapeutic
23 infusion amount of a modified mucopolysaccharide solution absent
24 chondroitin sulfate and having a surface tension of between 40
25 and 65 dynes/cm² (particularly less than about 56 and more
26 particularly less than about 50 dynes/cm²); and,

27

28

WO 98/07085

PCT/US94/10175

1 a viscosity of between 10,000 and 100,000 centipoise when
2 measured at a shear rate of 3 sec⁻¹ at 25 C. In such embodiment
3 a preferred method entails intraocularly introducing
4 biologically active therapeutic infusion amount of a modified
5 mucopolysaccharide solution by a syringe of about 1.13 cm³ in
6 cross section or less, and optionally about 0.57 cm³ or less,
7 and further optionally about 0.16 cm³.

8 Further in this method the invention includes particular
9 modified mucopolysaccharide solutions characterized by
10 aspiration through a 0.3 mm cannula at a vacuum pressure in a
11 range of 5 to 400 mm Hg, and particularly in a range of 50 to
12 200 mm Hg, wherein the solution is easily fractured. Similarly,
13 those solutions with an aspiration profile of from about
14 horizontal up to about 1.5 and more particularly from about
15 horizontal to about 1.0 are preferred.

16 A next method of the present invention includes a method of
17 protection of internal ocular structures including corneal
18 endothelium from accidental touch by surgical instruments, yet
19 permitting of observation of said structures comprising:

20 intraocularly introducing a modified mucopolysaccharide
21 solution during ophthalmic surgery wherein said solution
22 comprises

23 an optically clear polymeric fraction of high purity
24 mucopolysaccharides selected from the group consisting of
25 acyl-substituted hyaluronic acid having acyl groups thereof with
26 three to twenty carbon atoms, hyaluronic acid,
27 hydroxypropylmethylcellulose and mixtures thereof and absent
28

WO 95/07085

PCT/US94/10175

1 chondroitin sulfate, said fraction having a surface tension of
2 between 40 and 65 dynes/cm² (particularly less than about 56 and
3 more particularly less than about 50 dynes/cm²); and,
4 optionally a physiological buffer fraction, such that the
5 viscoelastic comprises about a 0.1% percent of the solution to
6 about 5% of the solution, by weight, and preferably from about
7 0.5 % to about 3%;
8 said modified mucopolysaccharide solution having a
9 viscosity of between 10,000 and 100,000 centipoise when measured
10 at a shear rate of 3 sec⁻¹ at 25 C; and,
11 wherein said mucopolysaccharide fraction has an average
12 molecular weight of at least 50,000; and,
13 a biological surfactant fraction of a free fatty acid
14 present in an amount less than 10 micrograms/ml.
15 In such embodiment a specific method entails intraocularly
16 introducing biologically active therapeutic infusion amount of a
17 modified mucopolysaccharide solution by a syringe of about 1.13
18 cm² in cross section or less, and optionally about 0.57 cm² or
19 less, and further optionally about 0.16 cm².
20 Further in this method the invention includes particular
21 modified mucopolysaccharide solutions characterized by
22 aspiration through a 0.3 mm cannula at a vacuum pressure in a
23 range of 5 to 400 mm Hg, and particularly in a range of 50 to
24 200 mm Hg, wherein the solution is easily fractured. Similarly,
25 those solutions with an aspiration profile of from about
26 horizontal up to about 1.5 and more particularly from about
27 horizontal to about 1.0 are preferred.
28

WO 95/07085

PCT/US94/10175

1 A next embodiment of the invention comprises a modified
2 mucopolysaccharide solution for use as a biologically active
3 therapeutic infusion comprising:

4 a pharmaceutical grade viscoelastic fraction selected from
5 the group consisting of acyl-substituted hyaluronic acid having
6 acyl groups thereof with three to twenty carbon atoms,
7 hyaluronic acid, hydroxypropylmethylcellulose and mixtures
8 thereof, and absent chondroitin sulfate said fraction having a
9 surface tension of between 40 and 65 dynes/cm² (particularly
10 less than about 56 and more particularly less than about 50
11 dynes/cm²); and,

12 said modified mucopolysaccharide solution having a
13 viscosity of between 10,000 and 100,000 centipoise when measured
14 at a shear rate of 3 sec⁻¹ at 25°C.

15 This invention encompasses a modified mucopolysaccharide
16 solution for use as a biologically active therapeutic infusion
17 comprising:

18 a pharmaceutical grade viscoelastic fraction selected from
19 a group consisting of an acyl-substituted hyaluronic acid having
20 acyl groups thereof with three to twenty carbon atoms and
21 mixtures of said acyl-substituted hyaluronic acid with
22 hyaluronic acid, chondroitin sulfate A, chondroitin sulfate B,
23 chondroitin sulfate C, and hydroxypropylmethylcellulose, said
24 fraction with a surface tension of between 40 and 65 dynes/cm²;
25 particularly a viscoelastic fraction has an average molecular
26 weight of at least 50,000; and,

27

28

WO 95/07085

PCT/US94/10175

1 optionally a physiological buffer fraction, such that the
2 viscoelastic comprises about a 0.1% percent of the solution to
3 about 5% of the solution, by weight, and preferably from about
4 0.5 % to about 3%;

5 whereby, upon infusion of modified mucopolysaccharide
6 solution at the site, the surface activity of the solution
7 enhances coating of the site.

8 A specific modified mucopolysaccharide solution is one with
9 an acyl-substituted hyaluronic acid, and a preferred viscosity
10 is between 10,000 and 100,000 centipoise when measured at a
11 shear rate of 3 sec⁻¹ at 25°C, and optionally further including
12 a surfactant fraction of a biocompatible component selected from
13 a group consisting of phospholipids, monoglycerides, free fatty
14 acids, free fatty acid soaps, cholesterol, fluorocarbons,
15 silicones, and nonionic surfactants, said surfactant present in
16 a trace amount sufficient to produce said surface tension. In
17 one embodiment the surfactant is present in an amount less than
18 10 micrograms/ml. A preferred surfactant is oleic acid. A
19 preferred modified mucopolysaccharide solution comprises a
20 mixture of an acyl-substituted hyaluronic acid and hyaluronic
21 acid.

22 In a particular application this invention includes a
23 modified mucopolysaccharide solution for use a biologically
24 compatible therapeutic infusion comprising:

25 a pharmaceutical grade viscoelastic fraction selected from
26 a group consisting of hyaluronic acid, chondroitin sulfate A,
27 chondroitin sulfate B, and chondroitin sulfate C, said fraction
28 having an average molecular weight of at least 50,000.

WO 95/07085

PCT/US94/10175

1 a surfactant fraction of a biocompatible component selected
2 from a group consisting of phospholipids, monoglycerides, free
3 fatty acids, free fatty acid soaps, cholesterol, fluorocarbons,
4 silicones, and nonionic surfactants, said surfactant present in
5 a trace amount sufficient to produce a surface tension of
6 between 40 and 65 dynes/cm²; and,

7 optionally a physiological buffer fraction, such that the
8 viscoelastic comprises about a 0.1% percent of the solution to
9 about 5% of the solution, by weight, and preferably from about
10 0.5 % to about 3%;

11 whereby, upon infusion of modified mucopolysaccharide
12 solution at the site, the surface activity of the solution
13 enhances coating of the site and results in retardation of
14 aspiration at the site. A preferred modified mucopolysaccharide
15 solution has a viscoelastic fraction of hyaluronic acid, and,
16 optionally, a viscosity of between 10,000 and 100,000 centipoise
17 when measured at a shear rate of 3 sec⁻¹, and further
18 optionally, a surfactant, particularly oleic acid, and
19 particularly with surfactant present in an amount less than 10
20 micrograms/ml.

21 In one embodiment this invention includes a modified
22 mucopolysaccharide solution for use during ophthalmic surgery
23 for protection of the internal ocular structures comprising:

24 an optically clear polymeric fraction of high-purity
25 mucopolysaccharides and mixtures thereof, said polymeric
26 fraction selected from the group consisting of hyaluronic acid,
27 chondroitin sulfate A, chondroitin sulfate B, chondroitin

28

WO 95/07085

PCT/US94/10175

1 sulfate C, and mixtures of hyaluronic acid, chondroitin sulfate
2 A, chondroitin sulfate B and chondroitin sulfate C with an
3 average molecular weight of at least 50,000;

4 a biological surfactant fraction of a free fatty acid
5 present in an amount of less than 1 mg/ml; and,

6 optionally a physiological buffer fraction, such that the
7 viscoelastic comprises about a 0.1% percent of the solution to
8 about 5% of the solution, by weight, and preferably from about
9 0.5 % to about 3%;

10 whereby, upon the modified mucopolysaccharide solution
11 being placed in the eye space during surgery, the surgeon can
12 observe the ocular and intraocular structure through the
13 optically clear solution, and the corneal endothelium is
14 protected from accidental touch by surgical instruments, ocular
15 and intraocular prosthetic devices, and in ocular and
16 intraocular irrigating solutions, particularly wherein the
17 polymeric fraction is hyaluronic acid, and particularly wherein
18 the solution has a viscosity of between 10,000 and 100,000
19 centipoise when measured at a shear rate of 3 sec⁻¹ at 25°C.

20 An additional embodiment of this invention is a method of
21 adhering a contact lens to the surface of the eye in
22 operational-optical connection with said eye, by the step of
23 interposing between said lens and said eye surface an adhering
24 amount of substantially transparent modified mucopolysaccharide
25 solution of this invention. In the practice of this method, an
26 apparatus comprising a contact lens and a layer of transparent
27 modified mucopolysaccharide solution is employed. Preferably
28 the optical properties of such lens/solution unit will be

WO 95/07085

PCT/US94/10175

1 configured to facilitate observation of internal ophthalmic
2 structures when the observer is positioned to peer directly
3 through the lens. Alternatively, the "observer" may be a
4 television, film or other camera directed into the lens.
5 Further, the camera lens may substitute for the contact lens,
6 and thus with a layer of the mucopolysaccharide solution of this
7 invention, be in direct contact with the eye.

8 A yet further embodiment of this invention is a method of
9 hydraulically positioning intra-optic structures or tissues by
10 the step of applying against such tissues under elevated
11 hydrostatic pressure the modified mucopolysaccharide solution of
12 this invention. Typically this would be applied to dissect or
13 elevate hyperplastic tissue that grows over the retina in
14 certain pathologies. The degree of elevation of hydrostatic
15 pressure would be that sufficient to move the intended tissue.

16 An additional aspect of this invention is based upon
17 ophthalmic osmolality. Osmolality of from about 250
18 milliosmoles to about 400 milliosmoles is essentially isotonic
19 to optic structures. Lower osmolality will cause optic
20 structures to swell and higher osmolality will cause shrinkage.

21
22
23
24
25
26
27
28

WO 95/07085

PCT/US94/10175

1

Brief Description of the Drawings

2

Fig. 1 is a plot of K_c/R_g against concentration, C. The material tested is high molecular weight HA. The molecular weight was obtained from the inverse of the abscissa extrapolated to zero concentration.

3

Fig. 2 is a plot of maximum load versus time for high molecular weight HA. The maximum load was determined as the largest load needed to force a sample of viscoelastic from a syringe through a 23 gauge needle.

4

Fig. 3. is a graphic comparison of the surface tension of one embodiment of a solution of the present invention as compared to the surface tension of a commercially available HPMC ocular solution, and a commercially available HA ocular solution.

5

Fig. 4 is a graphic comparison of the viscosity of one embodiment of a solution of the present invention as compared with other, commercially available, ocular solutions, and measured at a shear rate of 0.35 sec^{-1} . Standard deviation is shown in gray, and the average values in black. All columns except E and F are statistically different than B, Healon™

6

Fig. 5 is a plot comparison of the aspiration characteristics of the *in situ* retention of solutions embodying the present invention as compared other viscoelastic ocular solutions.

7

Fig. 5(a) repeats Fig. 5 with a preferred range shaded.

WO 95/07085

PCT/US94/10175

1 Fig. 6 is a plot of viscosity against surface tension
2 enclosing a preferred range for solutions of the present
3 invention.
4

5 Fig. 7 is a three dimensional plot of viscosity against
6 surface tension against "aspiration profile" (the slope of the %
7 of aspiration between 50 mmHg and 90 mmHg under test conditions
8 as plotted in Fig. 5, and excluding sigmoidal curves) enclosing
9 in cubic representation a of viscoelastic solutions of the
10 present invention.

11 Fig. 8 is a graphic representation of stress (MPa) recorded
12 by injecting various solutions of varying viscosity from a
13 syringe and through a 23 gauge needle.
14

15 Fig. 9(a), (b), and (c) represent various embodiments of
16 "sloped" syringe absent sharp reductions in cross sectional
17 area.

18 Fig. 10(a) and (b) are diagrammatic representations of
19 various embodiments of an apparatus for viewing the interior of
20 the eye (depicted in contact with an eye).
21

22

23 Detailed Description of the Invention

24 In general terms, viscoelastic solutions are placed in the
25 anterior chamber of the eye during ocular and intraocular lens
26 implant surgery, replacing the fluid aqueous humor of the eye.
27 Clearly, hosts suitable for application of the present materials
28 and methods are ocular and intraocular site of animal requiring

WO 95/07085

PCT/US94/10175

1 such material. In particular, host sites are mammalian eyes,
2 particularly those of humans, and most particularly the anterior
3 chamber thereof. By nature of their viscosity (10,000 to 1
4 million times greater than that of aqueous humor), viscoelastic
5 solutions allow the eye to maintain its normal shape and ocular
6 and intraocular structural relationships during cataract
7 extraction and lens implantation. When the fluid aqueous humor
8 leaks from the eye, as when the eye is opened by incision at the
9 time of surgery, the anterior structures of the eye collapse.
10 There is no space within the anterior segment of the eye within
11 which the surgeon can place instruments for cataract extraction
12 without damaging ocular and intraocular structures by touch from
13 his instruments. Air may be used to maintain this space, but it
14 is more likely to leak from the eye compared to a viscous
15 solution. In addition, air on top of other ocular fluids, does
16 not allow the surgeon to visualize ocular and intraocular
17 structures, as effectively as through clear viscoelastic
18 solution. Viscoelastic solutions are fluids which resist flow
19 by nature of their high viscosity. These fluids are elastic
20 because they have a "memory." They return to approximately
21 their original shape after stretch. These solutions are
22 optically clear and are basically aqueous solutions of higher
23 molecular weight polymers in the molecular weight range of
24 50,000 to 8 million.

25 As used herein, in reference to HPMC, the term "low" in
26 reference to "low molecular weight" HPMC, "HPMC(L)," shall mean
27 below about 250,000 MW and particularly below about 150,000 MW,
28 while "high" molecular weight HPMC, "HPMC(H)," shall mean above

WO 95/07085

PCT/US94/10175

1 about 250,000 MW and particularly above about 300,000 MW. In
2 reference to HA, the term "low" in reference to "low molecular
3 weight" HA, "HA(L)," shall mean below about 1,500,000 MW, and
4 particularly below about 700,000 MW, while "high" molecular
5 weight HA, "HA(H)," shall mean above about 1,500,000 MW, and in
6 particular above about 3,000,000 MW, and more particularly above
7 about 5,000,000 MW.

8 In addition to being viscous and elastic, a mild degree of
9 surface activity is a desirable property of viscoelastic
10 solutions. Surface activity is a measure of the ability of a
11 solution to coat or spread on a surface. Solutions which coat
12 the internal structures of the eye are better able to protect
13 the eye from accidental touch by surgical instruments or an
14 intraocular lens. In addition, these solutions protect the eye
15 from irrigation damage by irrigating solutions used in routine
16 cataract surgery. Viscoelastic solutions which are not surface
17 active and do not fracture at aspiration pressures used during
18 cataract surgery are too easily aspirated from the eye during
19 cataract surgery. The surgeon is then faced with lack of
20 protective ophthalmic solution, which necessitates replacement
21 of viscoelastic at additional cost.
22

23 Particular note is made of the distinction between
24 viscosity and pseudoplasticity (which includes thixotropy).
25 Viscosity is the propensity of a solution to resist flow.
26 Pseudoplasticity is the general case of a change in viscosity
27
28

WO 95/07085

PCT/US94/10175

1 with applied force, which may or may not be reversible.
2 Thixotropy describes reversible shear thinning, limited largely
3 to the period while subject to shear.

4 Surface tension is a measure of the tendency of molecules
5 within a solution to attract or repel each other. With high
6 mutual attraction, the solution has a high surface tension and
7 the solution is cohesive. Without being bound by any particular
8 theory, it is believed that at a solution interface (air/liquid,
9 liquid/liquid, liquid/solid) of a solution of high surface
10 tension, the tendency would be for solution molecules to be
11 drawn back into the solution. In a solution of low surface
12 tension (i.e., a surfactant type solution) solution molecules
13 accumulate at an interface because the molecules are not
14 completely soluble within the bulk solution. It is presumed
15 that the hydrophobic/hydrophilic structure of surfactant
16 molecules cause them to accumulate at a solution interface,
17 representing the lowest energy state.
18

19 Particular attention is drawn to the unique confluence of
20 physical characteristics present in the viscoelastic solution of
21 the present invention. Considering viscosity, Fig. 4 discloses
22 that a variety of viscosities (Fig. 4, Examples E-H) may be
23 obtained within the practice of this invention, while still
24 presenting the required surface tension and aspiration profile.
25 Viscosity is presented in m Pa·s or millipascal·seconds. One
26 Pa·s equals 1000 centipoise, and one mPa·s equals 1 centipoise.
27 Fig 4. data was obtained at a shear rate of 0.35 sec⁻¹. The
28 solutions represented are as follows: A is 2% HPMC(L) and a

WO 95/07085

PCT/US94/10175

1 molecular weight of about 200,000 with a viscosity of 98 cps; B
2 is 2% HPMC with a viscosity of 3680 cps; C is 1% HA(L) (L
3 denotes an average MW of about 0.8×10^6) solution with a
4 viscosity of 424 cps; D is 1% HA(H) (H denotes an average MW of
5 about 2.1×10^6) solution with a viscosity of 21,845 cps; E is a
6 mixture of 2% HPMC(L) and 1% HA(L) with a viscosity of 2,095
7 cps; F is a mixture of 2% HPMC(L) and 1% HA(H) with a viscosity
8 of 38,460 cps; G is a mixture of 2% HPMC(H) and 1% HA(L) with a
9 viscosity of 25,344 cps; and H is a mixture of 2% HPMC(H) and 1%
10 HA(H) with a viscosity of 56,691 cps. The substantial and
11 synergistic increase in HPMC viscosity in combination with a
12 viscoelastic, such as, HA is noted.

13 Fig. 3 compares the surface tension of various ocular
14 solutions. Solution A is Occucoat™, a commercially available
15 HPMC solution, measured at 1:10 dilution as having a surface
16 tension of 43.0 ± 1.41 dynes/cm; Solution B is Healon™, a
17 commercially available HA solution, measured at 62.7 ± 6.51
18 dynes/cm, Solution C, low molecular weight HPMC, and Solution D,
19 high molecular weight HPMC were measured at about $50 \pm .75$
20 dynes/cm; Solution E, low molecular weight HA, and Solution F,
21 high molecular weight HA were measured at about 70 ± 2.25
22 dynes/cm; Solutions G through J are mixtures of 1% HA and 2%
23 HPMC all having a surface tension of about 50 ± 0.58 dynes/cm.
24 Specifically Solution G is HA(L) and HPMC(L). Solution H is
25 HA(H) and HPMC(L). Solution I is HA(L) and HPMC(H). Solution J

26
27
28

WO 95/07085

PCT/US94/10175

1 is HA(H) and HPMC(H). Note that Fig. 3 solutions A, C, D, G-J
2 exhibit surface tension statistically significantly different
3 than B, Healon™.

4 Further note is made of the fracture and aspiration
5 characteristics of the mucopolysaccharide solutions of this
6 invention. In ocular surgery, a tiny cannula is used to
7 inject/remove viscoelastic solutions. The claimed solutions
8 easily fracture when vacuum is applied by a cannula. Thus to
9 remove all of such solution, the cannula must be repeatedly
10 moved to remain in contact with the solution. In contrast, a
11 typical solution of high molecular weight as known in the prior
12 art fall into two groupings. One, typified by Healon™, an HA
13 solution will not fracture easily, nor will it elute in
14 solutions typically present during ophthalmic surgery and
15 generally aspirates only in a bolus. The other grouping
16 comprises solutions "incohesive" solutions. "Incohesive"
17 solutions elute so rapidly that, they are removed from the
18 ocular surgical site by irrigation fluids. This rapid elution
19 destroys the viscosity, coating and shock absorbing properties
20 for which they were being used, leaving the field unprotected.

21 A useful measure of fracture and aspiration characteristics
22 of various solutions is set forth in Fig. 5. In particular,
23 Fig. 5 is a clear representation of the achievement of
24 protective *in situ* retention of a solution embodying the present
25 invention as compared to an HA ocular solution -- independent of
26 viscosity. The aspiration behavior of HA is seen to be
27 generally sigmoidal. At low vacuum, only small amounts of HA
28

WO 95/07085

PCT/US94/10173

1 are aspirated, while at vacuums of about 40 mm Hg, almost 100%
2 of the HA is removed. In contrast, a mixture of HA and HPMC, is
3 removed in a manner generally linear to the amount of vacuum
4 applied, permitting gradual removal, which may be continued to
5 almost total removal, but not removal generally as a single
6 bolus. Again, this linear removal profile may be obtained with
7 solutions of a viscosity similar to that of HA alone, and
8 substantially above the viscosity of HPMC alone. Particularly
9 useful viscoelastic solutions are those whose aspiration
10 characteristics are non-sigmoidal under the described
11 experimental conditions, and most particularly those which are
12 generally linear with a slope of between about horizontal and
13 about 1.5, (and preferably between about horizontal and about 1)
14 as presented in Fig. 5 as percentage aspiration against mmHG
15 from about 50 mm HG to about 90 mm HG, using a 23 gauge needle.
16 The procedure is more fully described in Aspiration Profile
17 (below). A preferred range is shaded in Fig. 5(a) which
18 reproduces Fig 5.

19 Figs. 6 and 7 define meets and bounds of particular
20 embodiments of this invention. Fig. 6 is seen to delimit
21 suitable viscoelastics by viscosity and surface tension.
22 Particularly preferred are those solutions of less than 56
23 dynes/cm and more particularly, those of less than 50 dynes/cm
24 surface tension. Occucoat™ is plotted as point "I" and Healon™
25 is plotted as point "II." Fig. 7 graphically distinguishes the
26 chondroitin free viscoelastic solution of the present invention
27 from particular commercial viscoelastic solutions. Three
28

WO 93/07085

PCT/US94/10175

1 parameters, viscosity, surface tension, and aspiration profile
2 are presented. It is the three dimensional area circumscribed
3 by these parameters that are particularly useful. More
4 particularly is the circumscribed area, below 56 dynes/cm in
5 surface tension and more particularly still, the circumscribed
6 area below 50 dynes/cm surface tension.

7 Given the delimiting parameters of the claimed viscoelastic
8 solutions, a general protocol to achieve such solutions is
9 presented. Viscosity is increased or decreased in relation to
10 highest molecular weight viscoelastic material or polymeric
11 material present. If the viscosity of that highest molecular
12 weight material is the viscosity desired, no adjustment is
13 required. If lower viscosity is desired, increased dilution, or
14 substitution of material of identical structure, but lower
15 molecular weight, decreases viscosity. When increasing
16 dilution, attention must be paid to the resulting solution
17 osmolarity. Aspiration characteristics of the invention are
18 modified by admixing viscoelastic polymers with low molecular
19 weight polymers of the same or other species, including
20 polysaccharides such as HPMC. Such additions increase ease of
21 fracture on aspiration. Surface tension is reduced by addition
22 of surfactant or by modification of a non-surface active
23 molecule to be surface active. Particular note is made of the
24 surface activity of HPMC. In the case of HA, surface activity
25 adjustment entails addition of a lipophilic acyl side chain or
26 chains. Osmolality is adjusted by modification of the
27 solute/solvent ratio.
28

WO 95/07085

PCT/US94/10175

1 All of the foregoing parameters are most easily adjusted by
2 empirical methods such as a checkerboard type assay, increasing
3 the amount of each particular factor (serial dilution) until the
4 desired characteristic is obtained. However, approximate
5 methods of calculation are possible.

6 By this disclosure, non-surface active viscoelastic
7 solutions are modified to make them surface active. This can be
8 accomplished by the addition of any one of many biocompatible
9 surfactants, or by substitution or admixture of hyaluronic acid
10 polymer in a viscoelastic solution with hyaluronic acid polymer
11 having a lipophilic side chain. A lipophilic acyl side chain
12 substituted hyaluronic acid renders the previously completely
13 water soluble molecule surface active. Biological surfactants
14 belong to the following categories of chemical substances:
15 phospholipids, monoglycerides, free fatty acids or fatty acid
16 soaps, cholesterol, and pharmaceutical grade nonionic
17 surfactants. Though it is understood that HPMC has some
18 surfactant activity, as used herein, biological surfactants
19 excludes HPMC. Preliminary results with oleic acid, a fatty
20 acid component of phospholipids which composes most mammalian
21 cell membranes, indicate that at a concentration of 1 microgram
22 oleic acid per ml of solution can provide moderate surface
23 activity to a solution which was not previously surface active.