# Alberi AVL

Francesco Gori

July 3, 2024

## 1 Introduzione

Gli alberi AVL, dal nome dei loro inventori Adelson-Velsky e Landis, sono una classe di alberi binari di ricerca auto-bilancianti simili agli alberi rosso-neri.

Durante l'inserimento e la cancellazione di nuovi elementi può essere necessario dover fare modifiche all'albero per mantenere l'altezza dell'albero bilanciata; questo fa sì che le operazioni abbiano una complessità temporale specifica.

Le operazioni di inserimento, cancellazione, minimo, massimo, successore, predecessore e ricerca si eseguono in tempo  $O(\lg n)$ 

## 2 Proprietà degli Alberi AVL

Gli elementi di un AVL hanno, oltre agli attributi di un ABR normale, un attributo h che ne specifica l'altezza. Questa è definita come il numero di archi nel percorso più lungo dalla radice a una foglia. La proprietà principale degli alberi AVL è che, per ogni nodo, l'altezza dei suoi sottoalberi differisce al massimo di 1. In formule:

$$|BF(x)| \le 1$$
 dove  $BF(x) = x.left.h - x.right.h$ 

## 2.1 Altezza Massima e Numero Minimo di Nodi

L'altezza massima di un AVL con n nodi interni è 2lg(n+1).

Definendo n(h) come il numero minimo di nodi in un AVL di altezza h, avremo il seguente **teorema**:

$$\forall h > 1$$
 si ha  $n(h) \ge 2^{h/2} - 1$ 

**Dimostrazione:** induzione su h

• Casi base:

- 
$$h = 1$$
:  $n(1) = 1 > 2^{1/2} - 1 = \sqrt{2} - 1$   
-  $h = 2$ :  $n(2) = 2 > 2^{1/1} - 1 = 1$ 

• Passo induttivo (per  $h \ge 2$ ): da definizione di AVL (un sottoalbero ha altezza h-1, l'altro almeno h-2)  $n(h) \ge 1 + n(h-1) + n(h-2)$  ipotesi induttiva:  $n(h) \ge 1 + 2^{\frac{h-1}{2}} - 1 + 2^{\frac{h-2}{2}} - 1 = (2^{-1/2} + 2^{-1})2^{h/2} - 1 > 2^{h/2} - 1 \Rightarrow n = n(h) \ge 2^{h/2} - 1$ 

• 
$$\Rightarrow lg(n+1) \ge h/2 \Rightarrow h \le 2lg(n+1)$$

## 3 Operazioni sugli Alberi AVL

#### 3.1 Inserimento

Durante l'inserimento di un nuovo nodo, si procede come in un normale albero binario di ricerca. Dopo l'inserimento, si risale l'albero dai nodi figli ai nodi antenati, aggiornando i fattori di bilanciamento e applicando le rotazioni necessarie per mantenere l'albero bilanciato.

#### 3.2 Rotazioni

Servono a mantenere gli alberi bilanciati, cambiando i puntatori degli elementi. Le rotazioni possono essere a sinistra o a destra. La rotazione mantiene l'ordinamento delle chiavi, bilanciando l'albero. Dato che modificano un numero costante di puntatori e aggiornano gli attributi h, le rotazioni avvengono in tempo O(1).

```
RVL-Insert(T,z)
                                                   Left-Rotate(T,x)
 1: y = T.NIL
                                                     1: y = x.right
                                                                                              \triangleright Imposta y
 2: x = T.\text{root}
                                                     2: x.right = y.left > Sposta sottoalbero sx di y
 3: while x \neq T.NIL do
                                                        in dx di x
                                                     3: x.h = \max(x.left.h, x.right.h) + 1
 4:
        y = x
        if z.\text{key} < x.\text{key then}
                                                     4: if y.left \neq T.NIL then
 5:
 6:
            x = x.left
                                                           y.left.p = x
 7:
        else
                                                     6: end if
            x = x.right
                                                                              \triangleright Collega il padre di x a y
 8:
                                                     7: y.p = x.p
        end if
                                                    8: if x.p = T.NIL then
10: end while
                                                            T.\text{root} = y
                                                    10: else if x = x.p.left then
11: z.p = y
12: if y = T.NIL then
                                                            x.p.left = y
                                                   11:
        T.\text{root} = z
                                                   12: else
14: else if z.key < y.key then
                                                   13:
                                                            x.p.right = y
        y.left = z
15:
                                                   14: end if
16: else
                                                   15: y.left = x
                                                                                       \triangleright Pone x a sx di y
                                                   16: y.h = max(y.left.h, y.right.h) + 1
17:
        y.right = z
18: end if
                                                   17: x.p = y
19: z.\text{left} = T.\text{NIL}
                                                   - Prima dell'esecuzione x.right \neq T.NIL
20: z.right = T.NIL
21: z.h = 1
22: call AVL-Insert-Fixup(T, z)
```

#### 3.3 Problematiche

Al termine dell'inserimento solo gli antenati del nuovo nodo possono essere sbilanciati (ovvero gli unici nodi con sottoalberi modificati).

 $\forall x$  antenato di z vale:  $-2 \leq BF(x) \leq 2$  (prima dell'inserimento era  $-1 \leq BF(x) \leq 1$ ) È un problema se  $BF(x) = \pm 2$ , dato che uno dei due sottoalberi sarà più alto dell'altro di 2 livelli. Consideriamo il caso BF(x) = 2 (=-2 è simmetrico), questo si divide in due sottocasi:

- Il nuovo nodo è stato inserito in  $x.left.left \Rightarrow BF(x.left) = 1$
- Il nuovo nodo è stato inserito in  $x.left.right \Rightarrow BF(x.left) = -1$

## 3.3.1 BF(x)=2 nuovo nodo in x.left.left BF(x.left)=1

Per risolvere questa situazione è sufficiente una rotazione a destra sul nodo x.



## 3.3.2 BF(x)=2 nuovo nodo in x.left.right BF(x.left)=-1

In questo caso servono 2 rotazioni: una a sinistra sul nodo y e una a destra sul nodo x.



### 3.3.3 Algoritmo Fixup

## AVL-Insert-Fixup(T,x)

```
1: x \leftarrow x.p
2: while x \neq T.NIL do
        x.h \leftarrow \max(x.left.h, x.right.h) + 1
3:
        if (x.left.h - x.right.h) = 2 then
                                                                                                             \triangleright BH(x)
4:
            if (x.left.left.h - x.left.right.h) = -1 then
5:
                                                                                                         \triangleright BH(x.left)
                Left-Rotate(T, x.left)
6:
            end if
 7:
            Right-Rotate(T, x)
8:
            x \leftarrow x.p
                                                 ⊳ è ancora radice del sottoalbero, 9-12 simmetrico con 4-7
9:
        else if (x.left.h - x.right.h) = -2 then
                                                                                                             \triangleright BH(x)
10:
            if (x.right.left.h - x.right.right.h) = 1 then
                                                                                                       \triangleright BH(x.right)
11:
12:
                Right-Rotate(T, x.right)
            end if
13:
            Left-Rotate(T, x)
14:
                                                                                ⊳ è ancora radice del sottoalbero
            x \leftarrow x.p
15:
        end if
16:
        x \leftarrow x.p
17:
18: end while
```

### 3.3.4 Correttezza e Tempo

Invariante di ciclo: all'inizio di ogni iterazione in AVL c'è al massimo una violazione del bilanciamento. Tempo:

- AVL-Insert O(lq n)
- AVL-Insert-Fixup O(1) per ogni livello,  $O(\lg n)$  livelli  $\Rightarrow O(\lg n)$

In totale quindi un inserimento occupa O(lq n)