Projekt

STEROWNIKI ROBOTÓW

Sterownik wentylatora z czujnikiem DHT11 z interfejsem webowym

Skład grupy: Piotr Koczy, 259367 Michał Ragan, 259364

Termin: wtTN19

 $\begin{array}{c} Prowadzący: \\ \text{dr inż. Wojciech Domski} \end{array}$

Spis treści

1	Opis projektu	2
2	Konfiguracja mikrokontrolera 2.1 Konfiguracja pinów 2.2 USART 2.3 Timery 2.3.1 RCC 2.3.2 TM2 2.3.3 TM1	2 4 4 4 4 4 4
3	Urządzenia zewnętrzne 3.1 Mikrokontroler STM32L476 3.2 Czujnik DHT11 3.3 Moduł WiFi ESP8266 3.4 Wentylator PWM	5 5 5 5
4	Projekt elektroniki	5
5	Konstrukcja mechaniczna	6
6	Opis działania programu	6
7	Aktualny stan projektu	6
8	Harmonogram pracy 8.1 Podział pracy	6
9	Zadania niezrealizowane	7
10	Podsumowanie	7
Bi	bilografia	8

1 Opis projektu

Projekt "Sterownik wentylatora z czujnikiem DHT11 z interfejsem webowym" polega na stworzeniu urządzenia umożliwiającego automatyczne sterowanie wentylatorem na podstawie wskazań czujnika temperatury i wilgotności DHT11 oraz zdalne sterowanie poprzez interfejs webowy.

2 Konfiguracja mikrokontrolera

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Numer pinu	Pin	Tryb pracy	Etykieta
23	PA0	GPIO_Output	DHT11
30	PA5	TM2_CH1	
68	PD5	USART1_TX	
69	PD6	USART1_RX	
86	PD5	USART2_TX	
87	PD6	USART2_RX	

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 USART

Wykorzystane zostały 2 interfejsy UART. UART1 jest wykorzystywany do komunikacji z modułem WiFi, a UART2 służy głównie do debugowania programu, oba interfejsy mają skonfigurowane parametry w ten sam sposób 2.

Baud Rate	11520	
Word Length	8 Bits (including parity)	
Parity	None	
Stop Bits	1	

Tabela 2: Konfiguracja peryferium USART

2.3 Timery

2.3.1 RCC

Do sterowania wentylatorem zostanie wykorzystany sygnał PWM generowany z wykorzystaniem RCC (High Speed Clock).

HSI Calibration Value	16
MSI Calibration Value	0
MSI Auto Calibration	Disabled

Tabela 3: Konfiguracja peryferium RCC

2.3.2 TM2

Sygnał PWM do sterowania wentylatorem jest generowany w tym timerze o parametrach:

Prescaler (PSC - 16 bits value)	0
Counter Mode	Up
Counter Period	65535
Internal Clock Division (CKD)	No Division
auto-reload preload	Enable

Tabela 4: Konfiguracja peryferium TM2

2.3.3 TM1

Do komunikacji z czujnikiem za pomocą protokołu 1-WIRE wykorzystany jest timer TM1, ma on rozdzielczość 1us.

Prescaler (PSC - 16 bits value)	4
Counter Mode	Up
Counter Period	0xffff-1
Internal Clock Division (CKD)	No Division
auto-reload preload	Disable

Tabela 5: Konfiguracja peryferium TM1

3 Urządzenia zewnętrzne

3.1 Mikrokontroler STM32L476

Mikrokontroler STM32L476 będzie sterować wentylatorem na podstawie odczytanych wartości z czujników. [1] [3]

3.2 Czujnik DHT11

Czujnik temperatury i wilgotności DHT11 posłuży do odczytu tych wartości. Komunikacja jest przy uzyciu protokołu 1-wire z wykorzystaniem rezystora PULL-UP [2]

3.3 Moduł WiFi ESP8266

Zewnętrzny moduł WiFi ESP8266 zapewni łączność bezprzewodową przez interfejs webowy.

3.4 Wentylator PWM

Mikrokontroler będzie sterował wentylatorem obsługującym PWM.

4 Projekt elektroniki

Rysunek 3: Schemat elektroniki

5 Konstrukcja mechaniczna

Nie dotyczy naszego projektu

6 Opis działania programu

Program odczytuje dane z czujnika temperatury i wilgotności i steruje wyjściem PWM (reprezentuje to sterowanie prędkością wentylatora) oraz przesyła odczytane wartości na interaktywną stronę internetową uruchomioną na module ESP8266. Program zawiera naszą autorską implementację protokołu do komunikacji 1-wire z czujnikiem DHT11.

7 Aktualny stan projektu

- Uruchomiona została komunikacja 1-wire z czujnikiem DHT11 z użyciem autorskiej implementacji protokołu 1-wire.
- Działa również komunikacja z modułem ESP8266, jednak prezentacja danych zebranych z czujnika DTH11 jest w fazie testów i debugowania.
- Moduł ESP8266 hostuje stronę na której znajduje się stan diody LED2 oraz przycisk do jej włączania i wyłączania. Finalna wersja strony nie jest jeszcze gotowa.
- Nie zostało jeszcze zaimplementowane generowanie sygnału PWM, jedynie skonfigurowanie timera oraz portu do jego obsługi.

8 Harmonogram pracy

- 1. Zaplanowanie projektu i zdefiniowanie wymagań użytkownika, na podstawie których powstanie sterownik wentylatora.
- 2. Wykonanie schematu podłączenia mikrokontrolera STM32L476, czujnika DHT11, wentylatora i modułu WiFi.
- 3. Zaimplementowanie komunikacji z czujnikiem DHT11 bez wykorzystania gotowych bibliotek
- 4. Wybór odpowiedniego modułu WiFi i sprawdzenie połaczenia z mikrokontrolerem.
- 5. Zaprogramowanie mikrokontrolera STM32L476 umożliwiające odczyt temperatury i wilgotności z czujnika DHT11, sterowanie wentylatorem oraz przesyłanie danych do modułu WiFi.
- 6. Utworzenie interfejsu sieciowego, aby umożliwić zdalne sterowanie wentylatorem i wyświetlanie danych z czujnika.
- 7. Implementacja funkcji automatycznego sterowania wentylatorem na podstawie wskazań czujnika.

Rysunek 4: Diagram Gantta

8.1 Podział pracy

Michał Ragan	Piotr Koczy
Zaplanowanie projektu i zdefiniowanie	Zaplanowanie projektu i zdefiniowanie
wymagań użytkownika, na podstawie których	wymagań użytkownika, na podstawie których
powstanie sterownik wentylatora.	powstanie sterownik wentylatora.
Wybór odpowiedniego modułu WiFi i sprawdzenie połączenia z mikrokontrolerem.	Wykonanie schematu podłączenia
	mikrokontrolera STM32L476, czujnika
sprawdzenie porączenia z imkrokontrolereni.	DHT11, wentylatora i modułu WiFi.
	Zaprogramowanie mikrokontrolera
Utworzenie interfejsu sieciowego, aby	STM32L476 umożliwiające odczyt
umożliwić zdalne sterowanie wentylatorem i	temperatury i wilgotności z czujnika DHT11,
wyświetlanie danych z czujnika.	sterowanie wentylatorem oraz przesyłanie
	danych do modułu WiFi.
Implementacja funkcji automatycznego	Zaimplementowanie komunikacji z czujnikiem
sterowania wentylatorem na podstawie	DHT11 bez wykorzystania gotowych
wskazań czujnika.	bibliotek

9 Zadania niezrealizowane

Punkt 9 nie został zrealizowany

10 Podsumowanie

Krótkie podsumowanie projektu: Projekt jeszcze nie został ukończony.

Literatura

- [1] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Mar. 2017.
- [2] M. Electronics. DHT11 Temperature Humidity Sensor features temperature humidity sensor complex with a calibrated digital signal output. 2023.
- [3] M. Szumski. Mikrokontrolery STM32 w systemach sterowania i regulacji. Sty. 2017.