第3.3节 ——二维随机变量函数的分布

(1) 二维离散型函数的分布(*****)

Y	-1	0	1
-1	0.2	0.1	0.1
1	0.1	0.3	0.2

- (1) 求Z = X + Y的分布律;
- (2) 求Z = |XY|的分布律;
- (3) 求 $Z = \max\{X,Y\}$ 的分布律;
- (4) 求 $Z = \min\{X, Y\}$ 的分布律;

YX	-1	0	1
-1	0.2	0.1	0.1
1	0.1	 0.3	0.2

- (1) 求Z = X + Y的分布律;
- (2) 求Z = |XY|的分布律;
- (3) 求 $Z = \max\{X, Y\}$ 的分布律;
- (4) 求 $Z = \min\{X, Y\}$ 的分布律;

YX	-1		0		1	÷
-1	0.2	-2	0.1	-1	0.1	
1	0.1	0	0.3	1	0.2	2

- (1) 求Z = X + Y的分布律;
- (2) 求Z = |XY|的分布律;
- (3) 求 $Z = \max\{X, Y\}$ 的分布律;
- (4) 求 $Z = \min\{X, Y\}$ 的分布律;

Z = X + Y	-2	-1	0	1	2
P	0.2	0.1	0.2	0.3	0.2

YX	-1		0		1	
-1	0.2	1	0.1	0	0.1	1
1	0.1	1	0.3	0	0.2	1

(2) 求
$$Z = |XY|$$
的分布律;

(3) 求
$$Z = \max\{X, Y\}$$
的分布律;

(4) 求
$$Z = \min\{X,Y\}$$
的分布律.

Z = XY	0	1
P	0.4	0.6

YX	-1		0		1	
-1	0.2	-1	0.1	0	0.1	1
1	0.1	1	0.3	1	0.2	1

(1) 求 $Z = X + Y$ 的分布律;	,
-------------------------	---

(2) 求
$$Z = |XY|$$
的分布律;

(3) 求
$$Z = \max\{X, Y\}$$
的分布律;

(4) 求
$$Z = \min\{X, Y\}$$
的分布律.

$Z=\max\{X,Y\}$	-1	0	1
P	0.2	0.1	0.7

YX	-1		0		1	
-1	0.2	-1	0.1	-1	0.1	-1
1	0.1	-1	0.3	0	0.2	1

(1) $求Z = X +$	Y的分布	律:
----------------	------	----

(2) 求
$$Z = |XY|$$
的分布律;

(3) 求
$$Z = \max\{X, Y\}$$
的分布律;

(4) 求
$$Z = \min\{X, Y\}$$
的分布律.

$Z=\min\{X,Y\}$	-1	0	1
P	0.5	0.3	0.2

YX	-1	0	1
-1	0.2	0.1	0.1
1	0.1	0.3	0.2

(1) 求
$$Z = X + Y$$
的分布律;

(2) 求
$$Z = |XY|$$
的分布律;

(3) 求
$$Z = \max\{X, Y\}$$
的分布律;

(4) 求
$$Z = \min\{X, Y\}$$
的分布律.

(5)
$$R$$
 $P\{X+Y>0\}$

(6)
$$R$$
 $P\{X > Y\}$

答案: (5)
$$P\{X+Y>0\}=0.5$$

(6)
$$P\{X > Y\} = 0.2$$

1:
$$Z = X + Y$$
的分布

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx = \int_{-\infty}^{+\infty} f(z - y, y) dy$$

当X,Y独立时:

$$f_{Z}(z) = \int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(z-x) dx = \int_{-\infty}^{+\infty} f_{X}(z-y) f_{Y}(y) dy$$

例:已知X,Y相互独立,且 $X \sim U(0,1),Y \sim e(1)$

- (1) 求X,Y的联合概率密度;
- (2) 求 $P\{X > Y\}$;
- (3) 求Z = X + Y的概率密度.

(1) 由已知得:
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & \text{else} \end{cases}$

$$f(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-y}, & 0 < x < 1, y > 0 \\ 0, & \text{else} \end{cases}$$

(2)
$$P\{X > Y\} = \iint_{x>y} f(x,y) dxdy$$
$$= \int_0^1 dx \int_0^x e^{-y} dy = \frac{1}{e}$$

例:已知
$$X,Y$$
相互独立,且 $X\sim U(0,1),Y\sim e(1)$

- (1) 求X,Y的联合概率密度;
- (2) 求 $P\{X>Y\}$;
- (3) 求Z = X + Y的概率密度.

(1)
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & \text{else} \end{cases}$

(3)
$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) dx = \begin{cases} 0, & z \le 0 \\ \int_{0}^{z} e^{-z+x} dx, & 0 < z < 1 \\ \int_{0}^{1} e^{-z+x} dx, & z \ge 1 \end{cases} = \begin{cases} 0, & z \le 0 \\ 1-e^{-z}, & 0 < z < 1 \\ e^{-z}(e-1), & z \ge 1 \end{cases}$$

例:已知
$$X,Y$$
相互独立,且 $X\sim U(0,1),Y\sim e(1)$

- (1) 求X,Y的联合概率密度;
- (2) $RP\{X > Y\};$
- (3) 求Z = X + Y的概率密度.

(1)
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & \text{else} \end{cases}$

(3)
$$f_{z}(z) = \int_{-\infty}^{+\infty} f_{x}(z-y) f_{y}(y) dy = \begin{cases} 0, & z \le 0 \\ \int_{0}^{z} e^{-y} dy, & 0 < z < 1 \\ \int_{z-1}^{z} e^{-y} dy, & z \ge 1 \end{cases} \begin{cases} 0, & z \le 0 \\ 1 - e^{-z}, & 0 < z < 1 \\ e^{-z}(e-1), & z \ge 1 \end{cases}$$

例:已知
$$X,Y$$
相互独立,且 $X\sim U(0,1),Y\sim e(1)$

- (1) 求X,Y的联合概率密度;
- (2) $RP\{X > Y\};$
- (3) 求Z = X + Y的概率密度.

(1)
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & \text{else} \end{cases}$$
 $f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & \text{else} \end{cases}$ $f(x, y) = f_X(x) f_Y(y) = \begin{cases} e^{-y}, & 0 < x < 1, y > 0 \\ 0, & \text{else} \end{cases}$

(2)
$$P\{X > Y\} = \iint_{X > Y} f(x, y) dxdy = \int_0^1 dx \int_0^x e^{-y} dy = \frac{1}{e}$$

(3)
$$f_{Z}(z) = \int_{-\infty}^{\infty} f_{X}(x) f_{Y}(z-x) dx = \begin{cases} 0, & z \le 0 \\ \int_{0}^{z} e^{-z+x} dx, & 0 < z < 1 = \begin{cases} 0, & z \le 0 \\ 1-e^{-z}, & 0 < z < 1 \end{cases} \\ \int_{0}^{1} e^{-z+x} dx, & z \ge 1 \end{cases}$$

2:
$$M = \max\{X,Y\}$$
, $N = \min\{X,Y\}$ 的分布 $(X,Y$ 独立)
$$F_{M}(z) = F_{X}(z)F_{Y}(z)$$

$$F_{N}(z) = 1 - \left[1 - F_{X}(z)\right]\left[1 - F_{Y}(z)\right]$$

推广: 当X,Y独立同分布时:

$$F_{M}(z) = [F(z)]^{2}, F_{N}(z) = 1 - [1 - F(z)]^{2}$$

推广: 设 X_1, X_2, \dots, X_n 独立同分布, $M = \max\{X_1, X_2, \dots, X_n\}$, $N = \min\{X_1, X_2, \dots, X_n\}$, 则

$$F_{M}(z) = [F(z)]^{n}, F_{N}(z) = 1 - [1 - F(z)]^{n}$$

例: 已知X,Y相互独立,且 $X \sim U(0,1),Y \sim U(0,2),U = \max\{X,Y\},V = \min\{X,Y\}$ (1)求U的概率密度 $f_U(z)$.(2)求V的概率密度 $f_V(z)$.

(1) 由已知得:
$$F_X(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x < 1 \end{cases}, F_Y(y) = \begin{cases} 0, & y \le 0 \\ \frac{y}{2}, & 0 < y < 2 \\ 1, & x \ge 1 \end{cases}$$

$$F_{U}(z) = F_{X}(z)F_{Y}(z) = \begin{cases} 0, & z \le 0 \\ \frac{z^{2}}{2}, & 0 < z < 1 \\ \frac{z}{2}, & 1 \le z < 2 \\ 1, & z \ge 2 \end{cases} \Rightarrow f_{U}(z) = F'_{U}(z) = \begin{cases} z, & 0 < z < 1 \\ \frac{1}{2}, & 1 \le z < 2 \\ 0, & \text{else} \end{cases}$$

例: 已知X, Y相互独立,且 $X \sim U(0,1), Y \sim U(0,2), U = \max\{X,Y\}, V = \min\{X,Y\}$ (1) 求U的概率密度 $f_U(z)$. (2) 求V的概率密度 $f_V(z)$.

(2) 由已知得:
$$F_X(x) = \begin{cases} 0, & x \le 0 \\ x, & 0 < x < 1 \end{cases}$$
, $F_Y(y) = \begin{cases} 0, & y \le 0 \\ \frac{y}{2}, & 0 < y < 2 \\ 1, & y \ge 2 \end{cases}$

$$F_{V}(z) = 1 - \left[1 - F_{X}(z)\right] \left[1 - F_{Y}(z)\right] = \begin{cases} 0, & z \le 0 \\ 1 - (1 - z)\left(1 - \frac{z}{2}\right), & 0 < z < 1 \\ 1, & z \ge 1 \end{cases}$$

$$\Rightarrow f_{V}(z) = F'_{V}(z) = \begin{cases} \frac{3}{2} - z, & 0 < z < 1 \\ 0, & \text{else} \end{cases}$$

3: 一般情形:
$$Z = g(X,Y)$$

例:已知
$$(X,Y)$$
的密度为: $f(x,y)=\frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$,求 $Z=\sqrt{X^2+Y^2}$ 的概率密度 $f_Z(z)$.

解:
$$F_Z(z) = P\{Z \le z\} = P\{\sqrt{X^2 + Y^2} \le z\} = \begin{cases} 0, & z < 0 \\ \iint_{\sqrt{x^2 + y^2} \le z} f(x, y) dx dy, & z \ge 0 \end{cases}$$

$$= \begin{cases} 0, & z < 0 \\ \iint_{x^2 + y^2 \le z^2} \frac{1}{2\pi} e^{-\frac{x^2 + y^2}{2}} dx dy, & z \ge 0 \end{cases} = \begin{cases} 0, & z < 0 \\ \int_0^{2\pi} d\theta \int_0^z \frac{1}{2\pi} e^{-\frac{\rho^2}{2}} \rho d\rho & z \ge 0 \end{cases}$$

$$=\begin{cases} 0, & z < 0 \\ \frac{z^2}{1-e^{-\frac{z^2}{2}}} & z \ge 0 \end{cases} \Rightarrow f_Z(z) = F_Z'(z) = \begin{cases} 0, & z < 0 \\ \frac{z^2}{2e^{-\frac{z^2}{2}}}, & \text{else} \end{cases}$$

◆作业

习题3-3 (Page88-89):3,9

◆作业

3: 设二维随机变量(X,Y)服从矩形区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上的均匀分布,且

$$U = \begin{cases} 0, & X \le Y \\ 1, & X > Y \end{cases}, \quad V = \begin{cases} 0, & X \le 2Y \\ 1, & X > 2Y \end{cases}$$

求U与V的联合概率分布。

9:设随机变量X,Y相互独立,且服从同一分布,试证明:

$$P\{a < \min\{X,Y\} \leq b\} = [P\{X > a\}]^2 - [P\{X > b\}]^2$$

3: 设二维随机变量(X,Y)服从矩形区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上的均匀分布,且

$$U = \begin{cases} 0, & X \le Y \\ 1, & X > Y \end{cases}, \quad V = \begin{cases} 0, & X \le 2Y \\ 1, & X > 2Y \end{cases}$$

求U与V的联合概率分布.

解:
$$P\{U=0,V=0\} = P\{X \le Y, X \le 2Y\} = P\{X \le Y\} = 0.25$$

$$P\{U=0,V=1\} = P\{X \le Y, X > 2Y\} = P\{\Phi\} = 0$$

$$P\{U=1, V=0\} = P\{X>Y, X \le 2Y\} = 0.25$$

$$P\{U=1,V=1\} = P\{X>Y,X>2Y\} = P\{X>2Y\} = 0.5$$

3: 设二维随机变量(X,Y)服从矩形区域 $D = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上的均匀分布,且

$$U = \begin{cases} 0, & X \le Y \\ 1, & X > Y \end{cases}, \quad V = \begin{cases} 0, & X \le 2Y \\ 1, & X > 2Y \end{cases}$$

求U与V的联合概率分布。

V	0	1
0	0.25	0.25
1	0	0.5

9:设随机变量X,Y相互独立,且服从同一分布,试证明:

$$P\{a < \min\{X,Y\} \leq b\} = [P\{X > a\}]^2 - [P\{X > b\}]^2$$

证明:设X,Y的分布函数分别为F(x),F(y),记 $Z=\min\{X,Y\}$,则

$$\boldsymbol{F}_{\boldsymbol{z}}(\boldsymbol{z}) = 1 - \left[1 - \boldsymbol{F}(\boldsymbol{z})\right]^{2}$$

故等式左边=
$$P\{a < \min\{X,Y\} \le b\} = P\{a < Z \le b\} = F_Z(b) - F_Z(a)$$

$$= \left[1 - \boldsymbol{F}(\boldsymbol{a})\right]^{2} - \left[1 - \boldsymbol{F}(\boldsymbol{b})\right]^{2}$$

等式右边=
$$\left[P\left\{X>a\right\}\right]^2-\left[P\left\{X>b\right\}\right]^2=\left[1-P\left\{X\leq a\right\}\right]^2-\left[1-P\left\{X\leq b\right\}\right]^2$$

$$= \left[1 - F(a)\right]^2 - \left[1 - F(b)\right]^2$$