

NASA Space Transportation: Safety, Cost and Performance Initiatives

Row Rogacki NASA/Marshall Space Flight Center May 12, 2000

RISK BARRIER

- The way to safe, reliable, affordable access to space is blocked by technical and business risk
- integrated approach to removing the risk barrier for NASA and the Administration have developed an a 2nd Generation system:

Space Launch Initiative

Complex Space Platforms **Crew Rescue** NASA's Integrated Architectural Approach Retrieval and Deploy Spacecraft Delivery, ISS Crew and Logistics Commercial Satellites

The Administration/NASA Integrated Space Transportation Plan Five Point Strategy

Shuttle safety upgrades

Enable competition for 2nd Generation RLV

- Integrated architecture to meet NASA requirements
- Enable procurement of alternate access to ISS

Plant "seeds" for 3rd Generation RLV

SLI Addresses Technology Investment Gap

after 10 yrs Ops

Internal Rate of Return

Gap Driven by Technology Need, Risk and Market Conditions Industry Investment

Key NASA Space Transportation Earth-to-Orbit Requirements

Safety/Reliability Goals

- Probability of Loss of Crew (LOC): 1 in approximately 10,000 missions (2nd Generation)
- Probability of Loss of Vehicle (LOV): 1 in approximately 1,000 missions (2nd Generation)
- Crew survivable abort capability throughout the flight profile
- Probability of LOC/LOV: 1 in approximately 1,000,000 missions (3rd Generation)

Cost Goals

- Reduce the recurring operational cost to NASA of the space transportation architecture to \$1,000 per pound of payload (2nd Generation)
- Reduce the recurring operational cost of the space transportation architecture to \$100 per pound of payload (3rd Generation)

Performance Goals

- NASA, DoD, Commercial planned missions and capabilities
- Design reference missions for human/cargo mission capabilities through 2030

Maximize the opportunity for commercial development and ownership

- Risk and market driven
- USG incentives are a critical part of the decision process

Technology Planning Philosophy

Relation of Technologies to Goals

)	
20 20 20 20 20 20 20 20 20 20 20 20 20 2	2000 20	2005	2010	2015	2020 3rd 2025
Micstolics			Generation RLV		Generation RLV
i Goals		10	100X Safer 10X Cheaper		10,000X Safer 100X Cheaper
 Inherent Reliability 		• • 10X	10X Improvement		10,000X
Intact Aborts			TBD		TBD
Low DevelopmentCost			• 1.8X	\ - -	4X Improvement
- Low Operations Cost			8X Improvement		93X Improvement
Low Production Cost		$x = \frac{1}{2}$	Improvement		3X Imp byement
I Technology					
Challenges	200 Mission Life		/ / S00 Mission Life		
Propulsion	Advanced Rocket	3	Increased Performance Margin	rmance Margin	
Airframe / TPS	• 500 Mission Life • Integrated Airframe • Robust TPS		Sharp Ultra-high 200 Temp TPS Sm. Str.	200 Mission Life Smart / Adaptive Structure	• Enhance Aero
Intelligent Systems	 Quick Turnaround Intelligent Data Analysis 	nalysis	- Adi	Adaptive Self-Diagnosis, Self-Healing Systems Wireless, Regenerative Micro / Nano Sensors	f-Healing Systems o / Nano Sensors
Range / Operations	 Containenzed Payloads Automated Umbilicals 	yloads icals	Passive Coherent Location	Sp.	Spaceport Aero-Space Traffic Control
					5497

Significant 2nd Generation Technology Drivers

Crew Escape and Survival

Detection, separation, ascent/descent

◆ Operable, Long-life H₂/O₂ and RP/O₂ Engines

200 mission life, 100 missions to overhaul

Critical integrated cycle testing (500 missions)

Quick turn vehicle with intelligent data analysis

3rd Generation Technology Drivers

Dramatic Propulsion Performance Improvement

- RBCC/TBCC Dual Mode Ramjet/Scramjet
- Pulse Detonation Rocket Engine/Combined Cycle Engine
- 500 mission propulsion component life
- Magnetic Launch Assist

Low Drag aerodynamic structures

- SHARP ultra-high temperature ceramics
- Integrated smart/adaptive thermal-structures
- Morphing structures
- Drag modulation through electromagnetics and flow physics

Adaptive Intelligent Systems

- Adaptive, self-diagnosis, self-healing thermal protection systems
- Structurally integrated, wireless, micro/nano sensors and avionics
- Regenerative sensors and system healing
- Autonomous, adaptive control

Spaceport Range Operations

Driven by Goals, Not System Concepts Revolutionary Technologies

Key Objectives

- Mature the SSTO technologies required for a Next Generation launch system
- Demonstrate the capability to achieve low launch cost and rapid launch turnaround times
- Reduce technical and programmatic risks sufficient to encourage private financing of the development and operation of the nextgeneration system

Program Status

- Protoflight composite tank failed during verification/ proof test in Nov. 1999
- Failure Investigation Report: April '00
- Program Recovery Plan: April '00
- Flight engine delivery: Dec. '00
- Protoflight tank test: Apr. May '01
- · Vehicle rollout: Feb. '02
- First flight: Fall '02
- Seven flights planned

Key Technologies

- Demonstrate aircraft-like reusability, maintenance and scheduling
- Robust metallic TPS system
- Composite liquid hydrogen tank Mfg. processes/assembly techniques
- · Linear Aerospike engine
- · Vehicle health monitoring system
- Aerothermal environment prediction verification

Key Objectives

- Test Bed Vehicle for demonstrating key Reusable Launch Vehicle (RLV) operations and technologies
- Focus Areas:
- Investigation of new methods for low-cost operations
- New RLV technologies embedded in vehicle design
- Demonstration of hosted RLV and hypersonic experiments

Program Status

- Replanning completed: Apr. '00
- Reviewing to emphasize mission success:
 - Redundant Avionics/Autonomous Landing
- Engine/MPS
- Complete vehicle independent review
- Five drop tests beginning in '01
- 22 powered flight tests beginning in '02

Key Technologies

- Composite primary and secondary airframe structures
- · Composite reusable propellant tanks
- Integrated vehicle health monitoring system
- Advanced operable TPS Including leading edge materials
- Low-cost avionics including integrated (GPS/INS) and differential (DGPS) GPS
- New low-cost rocket engine (government developed)
- Integral closed loop flush air data system

Key Objectives

- Successfully achieve orbit and return to Earth safely.
- environments, key technologies applicable Demonstrate, in representative flight for future RLV's.
- Provide an economical test bed capability for fully automated (unmanned) orbital, earthentry, and landing flight demonstrations.

Program Status

- Initial Design Review completed: March '00
- X-40A rollout mid/late Apr. '00
- Seven drop tests beginning Aug. '00
- · X-37 rollout July '01
- Two captive carry tests completion Sept. '01
- Five drop tests completion Dec. '01
 - Two orbital flights
- » Sept. '02, Jan. '03

Key Technologies

- 32 technology demonstrations are imbedded plus eight planned experiments
- Technologies include:
- Rapid TPS waterproofing
- Highly operable metallic TPS
- Durable leading edge tiles
- Non-toxic storable propellant tank

High density batteries (Li lon)

... Building a Highway to Space Safe, Reliable, and Affordable...

For more information, visit *Highway2Space.com*

Mission Definition

NASA requires an integrated space transportation architecture that fulfills a broad range of functional capabilities and mission services. These

- Service the International Space Station (ISS)
- Accomplish crew rotation for the ISS
- Deliver, deploy, activate, checkout and return spacecraft and/or payloads for human and robotic mission operations
- Provide services to cargo (e.g., power conditioning, fluids, command and monitoring)
- Accomplish rendezvous and docking/berthing
- Retrieve, repair, or service on orbit spacecraft; including refueling capability
- Assemble, service, and checkout space platforms
- Reboost on orbit spacecraft and platforms
- Deorbit space debris or inactive spacecraft
- Station keep with other spacecraft
- Provide remote manipulator services for deployment and assembly tasks
- Accomplish extravehicular activities for assembly, repair, and servicing functions
- Perform emergency operations for crew and high value assets

NASA Reference Missions

NASA is planning additional mission capabilities. These include:

Spacecraft or satellite payload delivery and deployment

• Spacecraft or satellite payload delivery, deploy, activate or return with on-orbit crew

▶ Spacecraft or satellite payload retrieval, servicing and/or return

Science or technology payload platform missions

ISS re-supply and crew exchange missions

Complex space platform assembly & servicing

◆ Additional Excursion missions:

Crew rescue

Polar orbit insertion

Example Pathfinder Demonstrations

And Demonstrations Additional X-34 and X-37 Experiments

Space Shuttle **Experiments**

First Stage Reusable

Rocket Based Combined Cycle Experiments

High Lift/Drag Experiments SHARP Materials /

Crew Escape Demonstrations (Narrow Envelope / Subscale)

Rapid Operations **Demonstrations**

ASAIN

Example Trailblazer Demonstrations

Additional X-33 Flights and Experiments (X-33B)

Reusable First Stage Demonstrator

Multi-Stage to Orbit Demonstrator

Crew Escape Demonstrations (Larger Envelope / Large Scale)

Complex Orbital Operations Demonstrations

2nd Generation Program Plan

Architecture Summary

	Architecture 1	Architecture 2	Architecture 3	Architecture 4	Architecture 5
Key Features	 Shuttle to 2020 Phase III Upgrades 	Shuttle w/Phase III Upgrades to 2020 with a Reusable First Stage	Replace Shuttle EELV Heavy Launch New Crew/Cargo Transfer Vehicle(s)	Replace Shuttle New TSTO Launch Crew Transfer Vehicle/Module	Replace Shuttle New SSTO Launch Crew Transfer Vehicle/Module
Key Options	• Comm'i Shuttle • Exploration	 Comm'l Shuttle Exploration RFS Derived Vehicles 	 Partial ISS Downmass Exploration 	• Comm'l TSTO • Exploration • Alternate Access on EELV	 Comm'l SSTO Exploration Alternate Access on EELV
Potential New Elements	• Low Cost Upperstage • Magnum • EELV	Low Cost Upperstage Reusable First Stage New Orbital Stage Magnum EELV	Crew Transfer Vehicle Cargo Transfer Vehicle Crew/Cargo Transfer Vehicle ATV Magnum EELV (human rated)	 Low Cost Upperstage New TSTO Crew Transfer Vehicle Magnum EELV (human rated) 	 Low Cost Upperstage New SSTO Crew Transfer Vehicle Magnum EELV (human rated)