Engenharia de Software

Natália Schots

Agenda

- Medição de Software Parte 2
 - Estimativas
 - Análise por Ponto de Função
 - COCOMO
 - Planning Poker

Na aula passada...

Medição de Software

- Medição
- Medida x Métrica

Medição de Software

- Medição
- Medida x Métrica
- Medida básica x derivada
- Definição operacional
- Plano de Medição
- Relatório de Medição

Abordagens

GQM – Goal Question Metric

• PSM – Practical Software Measure

Five Core Metrics

Tamanho

Produtividade

• Esforço

Qualidade

Tempo

Estimativas

Dificuldades em estimar

Natureza intangível do software

 Muitas variáveis impactam no desenvolvimento do software

Falta de dados históricos

Falta de caracterização adequada dos projetos

Tipos de estimativas (1/3)

- Estimativa análoga
 - Usa a duração real de uma atividade anterior semelhante como base
 - Usa informações históricas e opinião especializada
 - Geralmente é utilizada quando ainda não há informações detalhadas sobre o projeto
 - Em fases iniciais do projeto

Tipos de estimativas (2/3)

- Estimativa paramétrica
 - Determinada quantitativamente multiplicando a quantidade de trabalho a ser realizada pelo valor da produtividade
 - Dado de entrada mais importante é o tamanho do software
 - Ex: Análise por Pontos de Função, Pontos de Casos de Uso, COCOMO

Tipos de estimativas (3/3)

- Estimativa de três pontos
 - Média (ponderada) de três estimativas
 - Mais provável: estimativa obtida por meio da análise da disponibilidade dos recursos, produtividade, dependências etc.
 - Otimista: estimativa considerando o melhor cenário
 - Pessimista: estimativa considerando o pior cenário

COCOMO

O que é?

- COnstructive COst MOdel
 - Desenvolvido por Barry Boehm no início da década de 1980

 Modelo empírico para esforço e tempo baseado no tamanho do projeto, estimado em número de linhas de código

 Dividido em três níveis, aplicados quando novas informações sobre o projeto estão disponíveis

Níveis do Modelo

COCOMO básico

 Calcula o esforço e o tempo de desenvolvimento de um projeto de acordo com seu tamanho em linhas de código

COCOMO intermediário

 Considera alguns "geradores de custos" (cost drivers) no cálculo do esforço de desenvolvimento

COCOMO avançado

 Avalia o impacto dos geradores de custos nas diversas etapas do processo de desenvolvimento (análise, projeto, ...)

Categorias de Projetos

- Orgânicos (organic)
 - Projetos pequenos, com requisitos bem definidos e desenvolvidos por equipes experientes no domínio da aplicação
- Médios (semi-detached)
 - Projetos de médio porte, com requisitos mais instáveis e desenvolvidos por equipes maiores e com diversos níveis de experiência
- Complexos (embedded)
 - Projetos sujeitos a restrições técnicas (hardware, desempenho, ...) ou projetos grandes em um domínio de aplicação pouco conhecido

Parâmetros – COCOMO Básico

Esforço = a . KLOC b

Tempo = c . Esforço d

Tipo de Projeto	a	ь	с	d
Orgânico	2.4	1.05	2.5	0.38
Médio	3.0	1.12	2.5	0.35
Complexo	3.6	1.20	2.5	0.32

Fatores de Ajuste

- Atributos do produto
 - Confiabilidade, complexidade, tamanho do BD
- Atributos do hardware
 - Restrições de memória, desempenho, ...
- Atributos de recursos humanos
 - Capacidade do analista, capacidade dos desenvolvedores, experiência no domínio, experiência com a linguagem, ...
- Atributos de projeto
 - Utilização de ferramentas, utilização de métodos de ES, cronograma de desenvolvimento do projeto

COCOMO Intermediário e Avançado

- Ajuste da medido inicial
 - Cada fator de ajuste é avaliado em uma escala ordinal de 0 e 5, variando de "pouco" até "muito"
 - Pesos publicados em tabelas são associados a cada fator de ajuste, de acordo com sua avaliação
 - O esforço calculado pelo COCOMO básico é multiplicado pelo produto dos pesos de cada fator de ajuste
 - A nova medida de esforço é utilizada para reavaliar o tempo de desenvolvimento

Vantagens x Desvantagens

- Por utilizar o número de linhas de código como base:
 - Vantagens
 - Possibilidade de automação do processo de medição
 - Existência de dados históricos na literatura
 - Relativa simplicidade de coleta
 - Desvantagens
 - Dependência de linguagem de programação
 - Desconsidera programas mais curtos e inteligentes
 - Nível de detalhes difícil de estimar no início do projeto

COCOMO II

Atualização do COCOMO

Possui nova classificação dos projetos

- Incorpora métodos por linhas de código e variantes de pontos por função
 - Pontos por função são recomendados no início do projeto

Análise por Pontos de Função (APF)

O que é?

• É uma técnica para medição de projetos, visando estabelecer uma medida de **tamanho**

Focaliza na funcionalidade do software

• É uma medida do ponto de vista do usuário

Processo de contagem (1/2)

- 1. Cinco informações básicas são estimadas
 - Número de arquivos internos
 - Número de interfaces externas
 - Número de dados de entrada
 - Número de dados de saída
 - Número de consultas

Função de dados

Funções

transacionais

- 2. Um fator de complexidade é associado a cada informação
 - Baixa, Média, Alta

Processo de contagem (2/2)

- 3. As informações são ponderadas e agregadas (somadas)
 - Resultado: número de pontos por função

- 4. Fator de ajuste é calculado de acordo com as características da organização e é aplicado ao número de pontos por função anterior
 - Resultado: número de pontos por função ajustado

Estrutura da contagem

Funções de dados (1/2)

- Arquivo Interno (ILF –Internal Logical File)
 - É um grupo de dados logicamente relacionados entre si e mantidos dentro do escopo da aplicação
 - Deve ser identificado no nível do requisitos do sistema
- Interface Externa (EIF –External Interface File)
 - É um grupo de dados logicamente relacionados entre si e referenciados pela aplicação, embora sejam mantidos por outra aplicação
 - Deve ser identificado no nível do requisitos do sistema
- Para a identificação do ILF e EIF, o desenvolvedor deve construir um "modelo de dados" conceitual simplificado da aplicação

Funções de dados (2/2)

• Exemplo: sistema de controle de reservas de passagens aéreas

Funções Transacionais (1/3)

- Uma transação é a menor unidade de funcionalidade que satisfaz as seguintes condições:
 - É representativa para os usuários
 - Representa uma tarefa completa do ponto de vista do sistema
 - Deixa o sistema em um estado consistente
- Por exemplo, o requisito funcional "Manter Clientes" deve ser dividido nas seguintes transações:
 - Adicionar cliente
 - Alterar cliente
 - Remover cliente
 - Consultar cliente

Funções Transacionais (2/3)

- Dado de entrada (El –External Input)
 - É um processo elementar que coleta e processa dados e informações de controle que são recebidos pela aplicação
 - Seu objetivo é manter o conjunto de informações registradas em um ou mais arquivos internos
- Dado de saída (EO –External Output)
 - É um processo elementar que processa e envia dados ou informações de controle para fora da aplicação
 - Seu objetivo é apresentar informações processadas para o usuário (deve haver pelo menos uma transformação na informação original)

Funções Transacionais (3/3)

- Consulta (EQ –External Query)
 - É um processo elementar que envia dados ou informações de controle para fora do contexto da aplicação
 - Seu objetivo é apresentar informações para o usuário sem que haja um processamento nem alteração no conteúdo de arquivos internos

Fatores de Ajuste

- Mecanismos de comunicação são necessários ?
- Processamento distribuído é necessário ?
- O nível de desempenho é crítico ?
- O sistema deve atender a transações de alta frequência?
- O sistema exige entrada de dados on-line?
- A interface com o usuário é complexa ?
- Os arquivos sofrem atualizações on-line?
- O processamento interno é complexo ?
- O código desenvolvido deve ser reutilizável ?
- ...

Vantagens x Desvantagens

Vantagens

- Independe da linguagem de programação
- Dados que podem ser determinados no início do projeto
- Existência de um processo padronizado para contagem

Desvantagens

- Medida parcialmente subjetiva
- Dificuldades na automação da medida
- Dados não podem ser interpretados fisicamente

Planning Poker

O que é? (1/2)

 Técnica de estimativa de esforço utilizada nas metodologias ágeis, principalmente no Scrum

 Obtém-se a estimativa por meio de um jogo de cartas, no qual todos os membros da equipe de desenvolvimento devem participar

• A partir deste jogo de cartas, chega-se um consenso sobre o esforço e tempo de uma estória (requisito)

Jogo de cartas (1/3)

 Baralho de 12 cartas em uma sequência (similar aos número de Fibonacci), cada um representa o esforço

(horas ou dias)

Jogo de cartas (2/3)

- O Product Owner descreve para a equipe Scrum a estória e fornece informações a respeito do seu valor de negócio. A seguir, o coordenador vai perguntar o esforço necessário para concluir a história aos membros da equipe
- 2. Cada membro da equipe deve pensar a respeito do tempo e esforço necessário para se implementar a estória lida. Os membros da equipe devem considerar todas as tarefas envolvidas: desenvolver, testar, criar design, etc. Então, deve escolher uma carta no baralho correspondente ao valor desta estimativa e coloca-a virada para baixo. Quando todos os membros fizerem o procedimento acima, então devem revelar as cartas escolhidas simultaneamente.

Jogo de cartas (3/3)

- 3. Todos avaliam os resultados e verificam se houve convergência entre as cartas mostradas, ou seja, todas as estimativas possuam valores aproximados para a mesma estória
- 4. Caso contrário, o Scrum Master solicita aos membros, que mostraram o menor e o maior valor estimado, que expliquem o motivo que os levaram a tal estimativa. Então, uma nova rodada é realizada até que as estimativas de esforço cheguem a uma convergência
- 5. A estimativa final da estória será o valor que tiver maior ocorrência ou a média entre as estimativas informadas 4

Vantagens x Desvantagens

- Vantagens
 - Enfatiza a importância da opinião de todos os membros da equipe
 - Equipe mais comprometida
 - Divertida
- Desvantagens
 - Algumas pessoas podem ser influenciadas por outras
 - Pouco objetivo

Referências

- Pressman, R.S.; "Engenharia de Software"; 6ª edição, Ed.
 McGraw-Hill, 2006
- Slides do professor Márcio Barros, 2013, "Gerência de Estimativas"
- Devmedia, "Planning Poker e Ideal Day: Técnicas de Abordagem de Estimativa Ágil", disponível em: http://www.devmedia.com.br/planning-poker-e-ideal-daytecnicas-de-abordagem-de-estimativa-agil/31220