Maximum Likelihood Estimation Merlise Clyde

STA721 Linear Models

Duke University

August 31, 2017

Outline

Topics

- Likelihood Function
- Projections
- Maximum Likelihood Estimates

Readings: Christensen Chapter 1-2, Appendix A, and Appendix B

Models

Take an random vector $\mathbf{Y} \in \mathbb{R}^n$ which is observable and decompose

$$\mathbf{Y} = \boldsymbol{\mu} + \boldsymbol{\epsilon}$$

into $\mu \in \mathbb{R}^n$ (unknown, fixed) and $\epsilon \in \mathbb{R}^n$ unobservable error vector (random)

Usual assumptions?

- ullet $E[\epsilon_i]=0 \ orall i \Leftrightarrow \mathsf{E}[oldsymbol{\epsilon}]=oldsymbol{0} \ \Rightarrow \mathsf{E}[oldsymbol{Y}]=\mu \ (\mathsf{mean} \ \mathsf{vector})$
- $ightharpoonup \epsilon_i$ independent with $Var(\epsilon_i) = \sigma^2$ and $Cov(\epsilon_i, \epsilon_j) = 0$
- Matrix version

$$Cov[\epsilon] \equiv [(E[\epsilon_i - E[\epsilon_i]])(E[\epsilon_j - E[\epsilon_j]])]_{ij} = \sigma^2 I_n$$

$$\Rightarrow \mathsf{Cov}[\mathbf{Y}] = \sigma^2 \mathbf{I}_n$$
 (errors are uncorrelated)

 $lacksymbol{\epsilon}_i \stackrel{\mathrm{iid}}{\sim} \mathsf{N}(0,\sigma^2)$ implies that $Y_i \stackrel{\mathrm{ind}}{\sim} \mathsf{N}(\mu_i,\sigma^2)$

Likelihood Functions

The likelihood function for μ , σ^2 is proportional to the sampling distribution of the data

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto \prod_{i=1}^{n} \frac{1}{\sqrt{(2\pi\sigma^2)}} \exp{-\frac{1}{2} \left\{ \frac{(y_i - \mu_i)^2}{\sigma^2} \right\}}$$

$$\propto (2\pi\sigma^2)^{-n/2} \exp{\left\{ -\frac{1}{2} \frac{\sum_i (Y_i - \mu_i)^2}{\sigma^2} \right\}}$$

$$\propto (\sigma^2)^{-n/2} \exp{\left\{ -\frac{1}{2} \frac{(\mathbf{Y} - \boldsymbol{\mu})^T (\mathbf{Y} - \boldsymbol{\mu})}{\sigma^2} \right\}}$$

$$\propto (\sigma^2)^{-n/2} \exp{\left\{ -\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right\}}$$

$$\propto (2\pi)^{-n/2} |\mathbf{I}_n \sigma^2|^{-1/2} \exp{\left\{ -\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right\}}$$

Last line is the density of $\mathbf{Y} \sim N_n \left(\mu, \sigma^2 \mathbf{I}_n \right)$

MLEs

Find values of $\hat{\mu}$ and $\hat{\sigma}^2$ that maximize the likelihood $\mathcal{L}(\mu, \sigma^2)$ for $\mu \in \mathbb{R}^n$ and $\sigma^2 \in \mathbb{R}^+$

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) \propto (\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}\right\}$$
$$\log(\mathcal{L}(\boldsymbol{\mu}, \sigma^2)) \propto -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

or equivalently the log likelihood

Clearly, $\hat{\boldsymbol{\mu}} = \mathbf{Y}$ but $\hat{\sigma}^2 = 0$ is outside the parameter space

Need restrictions on $oldsymbol{\mu} = oldsymbol{\mathsf{X}}oldsymbol{eta}$

Column Space

- ▶ Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_p \in \mathbb{R}^n$
- ▶ The set of all linear combinations of $\mathbf{X}_1, \dots, \mathbf{X}_p$ is the space spanned by $\mathbf{X}_1, \dots, \mathbf{X}_p \equiv \mathcal{S}(\mathbf{X}_1, \dots, \mathbf{X}_p)$
- Let $\mathbf{X} = [\mathbf{X}_1 \mathbf{X}_2 \dots \mathbf{X}_p]$ be a $n \times p$ matrix with columns \mathbf{X}_j then the column space of \mathbf{X} , $C(\mathbf{X}) = S(\mathbf{X}_1, \dots, \mathbf{X}_p)$ space spanned by the (column) vectors of \mathbf{X}
- $m{\mu} \in C(\mathbf{X}): C(\mathbf{X}) = \{ \mu \mid \mu \in \mathbb{R}^n \text{ such that } \mathbf{X}\boldsymbol{\beta} = \mu \text{ for some } \boldsymbol{\beta} \in \mathbb{R}^p \}$ (also called the Range of $\mathbf{X}, R(\mathbf{X})$)
- m eta are the "coordinates" of $m \mu$ in this space
- ▶ C(X) is a subspace of \mathbb{R}^n

Many equivalent ways to represent the same mean vector – inference should be independent of the coordinate system used

Projections

- $m \mu = m{\mathsf{X}}m eta$ with $m \mathsf{X}$ full rank $m \mu \in \mathcal C(m{\mathsf{X}})$
- $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- ▶ P_X is the orthogonal projection operator on the column space of X; e.g.
- $ightharpoonup \mathbf{P} = \mathbf{P}^2$ idempotent (projection)

$$\begin{aligned} \mathbf{P}_{X}^{2} &= \mathbf{P}_{X} \mathbf{P}_{X} &= \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \\ &= \mathbf{X} (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \\ &= \mathbf{P}_{X} \end{aligned}$$

 $ightharpoonup \mathbf{P} = \mathbf{P}^T$ symmetry (orthogonal)

$$\begin{aligned} \mathbf{P}_{\mathbf{X}}^T &= & (\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)^T \\ &= & (\mathbf{X}^T)^T((\mathbf{X}^T\mathbf{X})^{-1})^T(\mathbf{X})^T \\ &= & \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T \\ &= & \mathbf{P}_{\mathbf{X}} \end{aligned}$$

Projections

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

idempotent

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

= $I - P_X - P_X + P_X P_X$
= $I - P_X - P_X + P_X$
= $I - P_X$

- Symmetry $\mathbf{I} \mathbf{P_X} = (\mathbf{I} \mathbf{P_X})^T$
- ▶ $\mathbf{u} \in C(\mathbf{X})^{\perp} \Rightarrow \mathbf{u} \perp C(\mathbf{X})$ that is $u \in C(\mathbf{X})^{\perp}$ and $v \in C(\mathbf{X})$ then $\mathbf{u}^T \mathbf{v} = 0$
- $(I P_X)u = u \text{ (projection)}$
- if $v \in C(X)$, $(I P_X)v = v v = 0$

Log Likelihood

 $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$ and \mathbf{X} full column rank Claim: Maximum Likelihood Estimator (MLE) of $\boldsymbol{\mu}$ is $\mathbf{P}_{\mathbf{X}}\mathbf{Y}$

Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- $\qquad \qquad \textbf{Decompose } \mathbf{Y} = \mathbf{P_XY} + (\mathbf{I} \mathbf{P_X})\mathbf{Y}$
- lacksquare Use $\mathsf{P}_\mathsf{X}\mu=\mu$
- ▶ Simplify $\|\mathbf{Y} \boldsymbol{\mu}\|^2$

Expand

$$\begin{aligned} \|\mathbf{Y} - \boldsymbol{\mu}\|^2 &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2 \\ &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{\mathbf{X}}\mathbf{Y} - \mathbf{P}_{\mathbf{X}}\boldsymbol{\mu}\|^2 \\ &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} + \mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 \\ &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 + 2(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{P}_{\mathbf{X}}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y} \\ &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 + 0 \\ &= \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2 + \|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2 \end{aligned}$$

Crossproduct term is zero

$$\begin{aligned} \textbf{P}_{\textbf{X}}^{T}(\textbf{I} - \textbf{P}_{\textbf{X}}) &= & \textbf{P}_{\textbf{X}}(\textbf{I} - \textbf{P}_{\textbf{X}}) \\ &= & \textbf{P}_{\textbf{X}} - \textbf{P}_{\textbf{X}}\textbf{P}_{\textbf{X}} \\ &= & \textbf{P}_{\textbf{X}} - \textbf{P}_{\textbf{X}} \\ &= & \textbf{0} \end{aligned}$$

Likelihood

Substitute decomposition into log likelihood

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_X}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{1}{2} \frac{\|\mathbf{P_X}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= \text{constant with respect to } \boldsymbol{\mu} \leq 0$$

Maximize with respect to μ for each σ^2 RHS is largest when $\mu = \mathbf{P_XY}$ for any choice of σ^2

$$\hat{\mu} = \mathsf{P}_{\mathsf{X}}\mathsf{Y}$$

is the MLE of μ (yields fitted values $\hat{\mathbf{Y}} = \mathbf{P_XY}$)

MLE of β

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_XY} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P_XY} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \right)$$

Similar argument to show that RHS is maximized by minimizing

$$\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

Therefore $\hat{\boldsymbol{\beta}}$ is a MLE of $\boldsymbol{\beta}$ if and only if satisfies

$$P_XY = X\hat{\beta}$$

If X^TX is full rank, the MLE of β is

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \hat{\boldsymbol{\beta}}$$

MLE of σ^2

lacktriangle Plug-in MLE of $\hat{m{\mu}}$ for $m{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\sigma^2}\right)^2$$

Set derivative to zero and solve for MLE

$$0 = -\frac{n}{2} \frac{1}{\hat{\sigma}^2} + \frac{1}{2} \| (\mathbf{I} - \mathbf{P_X}) \mathbf{Y} \|^2 \left(\frac{1}{\hat{\sigma}^2} \right)^2$$
$$\frac{n}{2} \hat{\sigma}^2 = \frac{1}{2} \| (\mathbf{I} - \mathbf{P_X}) \mathbf{Y} \|^2$$
$$\hat{\sigma}^2 = \frac{\| (\mathbf{I} - \mathbf{P_X}) \mathbf{Y} \|^2}{n}$$

Estimate of σ^2

Maximum Likelihood Estimate of σ^2

$$\hat{\sigma}^{2} = \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^{2}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{e}^{T}\mathbf{e}}{n}$$

where $e = (I - P_X)Y$ residuals from the regression of Y on X

Geometric View

- Fitted Values $\hat{\mathbf{Y}} = \mathbf{P_XY} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- $\qquad \qquad \mathsf{Residuals} \ \mathbf{e} = (\mathbf{I} \mathbf{P_X})\mathbf{Y}$
- $\mathbf{Y} = \hat{\mathbf{Y}} + \mathbf{e}$

$$\|\mathbf{Y}\|^2 = \|\mathbf{P}_{\mathbf{X}}\mathbf{Y}\|^2 + \|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2$$

duke.eps

Properties

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$egin{array}{ll} \mathsf{E}[\hat{\mathbf{Y}}]&=&\mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]\\ &=&\mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]\\ &=&\mathsf{P}_{\mathbf{X}}\mu\\ &=&\mu \end{array}$$

$$\mathsf{E}[\mathsf{e}]=\mathbf{0} \ \mathrm{if} \ \mu\in\mathcal{C}(\mathbf{X})$$

$$\mathsf{E}[\mathsf{e}]&=&\mathsf{E}[(\mathsf{I}-\mathsf{P}_{\mathbf{X}})\mathbf{Y}]\\ &=&(\mathsf{I}-\mathsf{P}_{\mathbf{X}})\mathsf{E}[\mathbf{Y}]$$

Will not be $\mathbf{0}$ if $\mu \notin \mathcal{C}(\mathbf{X})$ (useful for model checking)

 $= (I - P_X)\mu$

Estimate of σ^2

MLE of
$$\sigma^2$$
:

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathbf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Is this an unbiased estimate of σ^2 ?

Need expectations of quadratic forms $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ for \mathbf{A} an $n \times n$ matrix \mathbf{Y} a random vector in \mathbb{R}^n

Quadratic Forms

Without loss of generality we can assume that $\mathbf{A} = \mathbf{A}^T$

Y^TAY is a scalar

$$\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} = (\mathbf{Y}^{T}\mathbf{A}\mathbf{Y})^{T} = \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}$$

$$\frac{\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}}{2} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

$$\mathbf{Y}^{T}\frac{(\mathbf{A} + \mathbf{A}^{T})}{2}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

ightharpoonup may take $\mathbf{A} = \mathbf{A}^T$

Expectations of Quadratic Forms

Theorem

Let \mathbf{Y} be a random vector in \mathbb{R}^n with $E[\mathbf{Y}] = \mu$ and $Cov(\mathbf{Y}) = \Sigma$. Then $E[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] = tr \mathbf{A} \Sigma + \mu^T \mathbf{A} \mu$.

Result useful for finding expected values of Mean Squares; no normality required!

Proof

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Rearrange

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathsf{E}([(\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathbf{\Sigma} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$tr \mathbf{A} \equiv \sum_{i=1}^{n} a_{ii}$$

Expectation of $\hat{\sigma}^2$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mu$$

$$= \sigma^{2}tr(\mathbf{I} - \mathbf{P}_{\mathbf{X}})$$

$$= \sigma^{2}r(\mathbf{I} - \mathbf{P}_{\mathbf{X}})$$

$$= \sigma^{2}(n - r(\mathbf{X}))$$

Therefore an unbiased estimate of σ^2 is

$$\frac{\mathbf{e}^{\,\prime}\,\mathbf{e}}{n-r(\mathbf{X})}$$

If **X** is full rank $(r(\mathbf{X}) = p)$ and $\mathbf{P}_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$ then the

$$\operatorname{tr}(\mathbf{P}_{\mathbf{X}}) = \operatorname{tr}(\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})$$

 $= \operatorname{tr}(\mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1})$
 $= \operatorname{tr}(\mathbf{I}_{p}) = p$

Spectral Theorem

Theorem

If \mathbf{A} $(n \times n)$ is a symmetric real matrix then there exists a \mathbf{U} $(n \times n)$ such that $\mathbf{U}^T\mathbf{U} = \mathbf{U}\mathbf{U}^T = \mathbf{I}_n$ and a diagonal matrix $\mathbf{\Lambda}$ with elements λ_i such that $\mathbf{A} = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^T$

- ▶ **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- ▶ The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- lacktriangle rank of f A equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $ightharpoonup A^p = U \Lambda^p U^T$ (matrix powers)
- a square root of $\mathbf{A} > 0$ is $\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$

Projections

Projection Matrix

If **P** is an orthogonal projection matrix, then its eigenvalues λ_i are either zero or one with $\operatorname{tr}(\mathbf{P}) = \sum_i (\lambda_i) = r(\mathbf{P})$

- ightharpoonup $P = U \Lambda U^T$
- $P = P^2 \Rightarrow U \Lambda U^T U \Lambda U^T = U \Lambda^2 U^T$
- ▶ $\Lambda = \Lambda^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$
- Since $r(\mathbf{P})$ is the number of non-zero eigenvalues, $r(\mathbf{P}) = \sum \lambda_i = \text{tr}(\mathbf{P})$

$$\begin{split} \mathbf{P} &= [\mathbf{U}_{P}\mathbf{U}_{P^{\perp}}] \left[\begin{array}{cc} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{n-r} \end{array} \right] \left[\begin{array}{c} \mathbf{U}_{P}^{T} \\ \mathbf{U}_{P^{\perp}}^{T} \end{array} \right] = \mathbf{U}_{P}\mathbf{U}_{P}^{T} \\ \mathbf{P} &= \sum_{i=1}^{r} \mathbf{u}_{i}\mathbf{u}_{i}^{T} \end{split}$$

sum of r rank 1 projections.

Next Class

distribution theory Continue Reading Chapter 1-2 and Appendices A & B in Christensen