Esercizi Primo Maggio

1. Data la PDF dell'arcoseno

$$f(x) = \frac{1}{\pi\sqrt{1-x^2}}, |x| < 1 \tag{1}$$

si definisca la nuova PDF

$$h(x) = \begin{cases} f(x+1), -1 < x < 0\\ f(x-1), 0 < x < 1. \end{cases}$$
 (2)

Determinare la CDF di h. Suggerimento: fare un grafico di f e h e ricavare la CDF di h da quella di f, che abbiamo già determinato.

- 2. Sia X una variabile aleatoria esponenziale di media 1 e si ponga $Y = X^{1/\kappa}$, con $\kappa > 0$. Determinare la PDF e la CDF di Y.
- 3. Sia U una variabile aleatoria uniforme nell'intervallo (0,1). Verificare che la variabile aleatoria X=a+(b-a)U ha densità uniforme nell'intervallo [a,b]. Se X ha media 0 e varianza 1 (variabile aleatoria standard) quanto valgono a e b?
- 4. Data una CDF F continua e crescente F in un intervallo (a^*, b^*) con $F(a^*) = 0$ e $F(b^*) = 1$, si definiscono la mediana $F^{-1}(1/2)$, il primo quartile $F^{-1}(1/4)$, il terzo quartile $F^{-1}(3/4)$ e la differenza interquartile $F^{-1}(3/4) F^{-1}(1/4)$. Se F ha una densità pari, che si può dire di queste quantità? Determinare queste quantità per la densità di Cauchy

$$f(x) = \frac{1}{\pi(1+x^2)}. (3)$$

- 5. Sia (X,Y) un punto scelto uniformemente nel cerchio unitario. Determinare la CDF e la PDF di X. Determinare la CDF e la PDF di $\sqrt{X^2+Y^2}$. Calcolare la covarianza tra X e Y.
- 6. Siano U e V due punti scelti uniformemente nell'intervallo (0,1), indipendenti. Calcolare E(|U-V|) e $E[(U-V)^2]$. Calcolare la probabilità che i tre segmenti in cui i punti U e V dividono l'intervallo (0,1) abbiano tutti lunghezza inferiore a 1/2.
- 7. Un'azienda utilizza componenti prodotti da 2 fabbriche che chiamiamo A e B, nelle proporzioni p_A , e p_B . Questi componenti hanno durata esponenziale, ma la media dipende dalla fabbrica in cui sono prodotti. Chiamiamo quindi $\mu_A < \mu_B$ tali medie. Un componente viene scelto caso: qual è la CDF della sua durata? Sapendo che la sua durata supera t istanti di tempo, con che probabilità proviene dalla fabbrica A? E sapendo che la sua durata è esattamente t quale la sua PDF?
- 8. Nelle ipotesi del punto precedente, siano T e Z le durate di due componenti scelti a caso, il primo tra quelli prodotti dalla fabbrica A, e il secondo tra quelli prodotti dalla fabbrica B. Determinare la CDF di $\min(T,Z)$ e calcolare P(T < Z). Determinare poi la CDF di |T Z| (suggerimento: condizionare a $\{T < Z\}$ e a $\{T > Z\}$ e sfruttare la proprietà di mancanza di memoria della distribuzione esponenziale) e calcolare la covarianza tra $\min(T,Z)$ e $\max(T,Z)$.