Pata Analysis
1. Comp. Programmy
2 Statisties
3. Applications
Rpackage Stidefy - http://ramnathv.grthul.com/
Stades - gither con / j'tleele / dabaanaly sis
all classes are available there as well as slides
to comprise them 4.
Wordsfy (index. Rud")
Weeh I
Mada - values of quanto qualitative or
quant there variables, belonging to
a set of items

Set of dems - subjects variables - measurements Parte hand of observation how data Processed hard to use comprex format ready for analysis (luch variable has a column leach observation forms a row each file stores date about on By data - data that is too lung to manipulate on a single computer has to represent date ? H for hught, W for neglet 3 informative Randonners
- represents incompletely for measured carralle
- ce random mechanism Destributions X- random value Po- probabolity OEXFT P: 1- 1 pn = 1. Continuous discrete

Parameters. N(M, 1) Rosson () X ~ N (xe, T) means X has the N(p, t) destrobetion The most important parameters ELXI - expected value Var [X] - how "spread out" a distribution is nearword in (unit of X)2 SDCX7 = VVar[x] how spread out, but in the same unit. Conditioning to indicate that south is fixed XIn X rand variable with fixed I YIX=2 When X is fixed at 2

meto butions W of cours Bonomial X~ Bon (CO, O. 5) dust that describes a sum of E[X] = Nop-Var [X] = n.p. (1-p) x value you flop to coins and count when they come up Heads - Nermal deveity X value

density - explains south about probability for ranges of values of X. Clartform U(d, B) X~ U(0,1) density all values are equally likely Condofranchy Law of total Vanance -) Wiki have of total expectation, openintro org/stat/textlook. Mp- free Statisties cource

Representing daba in R my Rabe France (first Name = = "jeft",] consider reading on style guides in R Simulation Basics Distributions Dences rbeta a beka r Conon r ganina diganina runi [dunt rnom Sampung sample = x . seq & (from 5, 40 - 5) length : w) normal De droin (x, mean = 0 V (500, 2) 0,0 00 0.01 0 10 03 4 034 0.10 0,010 Sample draws a random sample x size replace = F, prob = WULL h= rnorm(10, mean-488, sd = 3 Sz Sample (heights, sizer w, replace z T) the same value is used several fines Sample with probabolity S=c(0.4,0.3,0,2,0,1,0.0) 1 2 3 4 5 10 el of vie X sample (heights, Size = 10, replace = t, prof = s) set. seed (12345) for reproducing

Types of Pate Analysis · Descripture goal to describe a leb of data (for generalizing?) (not for explaining!) · Explanatory goal : find relationships ideas for following studies · Inferential analysis goal: use relatively small sample of data to say smith about a bigger populations most common goal of statistics models depends on sample you got. · Preoceene goal: use data on same object to predict values for another object ansus - nepenus chop chegerine

· Casual goals to find out what happens to one variable when you make another variable change explores an average effect-randomined, to see it x causes 4 · plechamistic goal, understand the exact changes in variables that lead to changes in other variables for individual objects (in one object we change X)
You the same object changes
in predoctable way) for fonding formulo, etc by emperical analysis Sources of Pata Sets census Observational Study randomized trieds population Ea set of objects Sample - and measure individuals

Sample (1:8, svzer4, replace = F) central - all (sample with in replacements) (Sample with probabilities) of no replace Observation Study convenience randomi sed "get Ano groups and apply doffered get a ruleset, do analysis, get newar a subset of newarinong and check of it works preductions Struly over fine cross-sectional only at one day Congretudinal the same individuals over time rebrospective (relationship between surtenne and exposure)