接前一讲

- ◆ 卷积神经网络 (Convolution Neural Network, CNN)
- ◆ 循环神经网络 (Recurrent Neural Network, RNN)
 - 长短期记忆网络 (Long-short Term Memory, LSTM)
 - 门控循环单元 (Gate Recurrent Unit, GRU)
- ◆ 注意力机制 (Attention)
- Transformer

▶什么是Transformer

Transformer is the first transduction model relying entirely on self-attention to compute representations of its input and output without using sequence aligned RNNs or convolution.

Transformer抛弃了传统的RNN和CNN,整个网络结构完全由Attention机制组成。更准确的讲,Transformer由且仅由self-attention和Feed Forward Neural Network组成。

Transformer 被广泛应用于NLP领域,并正在向其他领域推广

▶ 为什么采用Transformer

RNN(或者LSTM、GRU等)的计算限制为是顺序的,也就是RNN相关算法只能从左向右或从右向左依次计算,这种机制带来了两个问题:

- 1. 时间片t的计算依赖于t-1时刻的计算结果,限制了模型的并行能力;
- 2. 顺序计算的过程中信息会丢失,尽管LSTM等门机制的结构在一定程度上缓解了长期依赖的问题,但对于特别长期的依赖现象,LSTM也无能为力。

Transformer的提出解决了上面两个问题,它使用了Attention机制,将序列中的任意两个位置之间的距离缩小为一个常量;其次他不是类似于RNN的顺序结构,因此具有更好的并行性,符合现有的GPU框架。

Transformer vs. RNN

- RNN(Recurrent Neural Network)存在时间序列依赖的问题,即是一种循环网络,其训练上是基于迭代的处理模式。因而上一个时间步(例如输入语句中的词)处理完毕以后,才能处理下一个时间步(例如输入语句中的下一个词)。
- ■而Transformer的训练可以实现并行,即序列中的单词可以同时训练, 因而效率较高。其引入位置编码来处理单词的顺序。

▶Transformer结构

Transformer本质上也是encoder-decoder结构,可表示为上图所示

▶ Transformer结构

编码器由6个编码block组成,解码器由6个解码block组成,编码器的输出会作为解码器的输入,如上图所示。

Encoder结构及特点

数据首先经过self-attention模块得到一个加权之后的特征向量Z, 即Attention(Q,K,V):

$$Attention(Q, K, V) = softmax \left(\frac{QK^T}{\sqrt{d_k}}\right)V$$
 (公式含义会在后面介绍,先露个面)

得到Z之后,会被送到下一个模块Feed Forward Neural Network.这个全连接有两层,第一层激活函数是ReLU(线性整流函数),第二层是一个线性激活函数,可以表示为: $FFZ(Z) = \max(0, ZW_1 + b_1) W_2 + b_2$

[1] Vaswani A, Shazeer N, Parmar N, et al. **Attention is all you need** [C]//Advances in Neural Information Processing Systems. 2017: 5998-6008

➤ Step1: Input Embedding

将原文所有单词汇总统计频率,删除低频词汇,假设总共选出了M个单词利用Xaviers初始化方法随机生成矩阵 $Matrix_{M*N}$,M对应选出的单词数,N则为固定值,通常取N=512,矩阵如图所示,图中取M=10000

	Word2	Num-#		Matrix									
	word	num		0	1	2	***	***	508	509	510	511	
	<pad></pad>	0	\rightarrow	0.536	0, 794	0,214	***	***	0, 685	0.339	0, 964	0.555	
	tha .	1	\rightarrow	0.53	0.908	0.865	***	•••	0.625	0.14	0.031	0.806	
V	有	2	\rightarrow	0.727	0.133	0.88	•••	•••	0.313	0.674	0.913	0.656	
	人	3	\rightarrow	0.412	0. 538	0.972	***	***	0.415	0.928	0.724	0.947	
	SE	4	\rightarrow	0.821	0.6	0.976	***	***	0.082	0.252	0.862	0.68	
	民	5	->	0. 185	0.662	0.55	***	***	0.481	0.758	0.408	0.264	
	梦	6	\rightarrow	0.373	0.782	0.958	***	***	0.765	0.191	0.375	0.556	
	国	7	\rightarrow	0. 099	0.623	0.165	***		0. 905	0.308	0.412	0.171	
	***	***	\rightarrow	***		***	***	***	***	***	***	***	
	***	***	->	***	***	***	***	•••	***	***	***	***	
	芸	9997	\rightarrow	0. 985	0.014	0.406	***	***	0.93	0.917	0.182	0.411	
	开	9998	-	0. 924	0.314	0.149	***	***	0.802	0.763	0.362	0.918	
	加	9999	\rightarrow	0.837	0.475	0.558	***	***	0.369	0.189	0.596	0.879	

➤ Step1: Input Embedding

随后,可以把每句话表示成矩阵形式,设句子长度为T,则矩阵维度=T*N 如"中国人有中国梦。"可以表示为下图所示,设为矩阵matX, 这里定义矩阵行数为10;第8行,即编号为100的一行可以理解为结束符,不足的补齐(padding)

					matX				
1	0.53	0.908	0.865	•••		0,625	0.14	0.031	0.806
7	0.099	0, 623	0. 165	***	***	0. 905	0.308	0.412	0.171
3	0.412	0.538	0.972	•••	•••	0.415	0.928	0.724	0.947
2	0.727	0. 133	0.88	•••	***	0.313	0.674	0.913	0.656
1	0.53	0.908	0.865	•••	•••	0.625	0.14	0.031	0.806
7	0. 099	0, 623	0.165	•••	•••	0.905	0.308	0.412	0.171
6	0. 373	0.782	0. 958	***		0.765	0. 191	0.375	0.556
100	0.099	0.623	0. 165	•••		0.905	0.308	0.412	0.171
0	0. 536	0.794	0.214	•••	•••	0.685	0.339	0.964	0.555
0	0.536	0.794	0.214			0.685	0.339	0.964	0.555

➤ Step2: Position Encoding

Transformer模型并没有捕捉顺序序列的能力,也就是说无论句子结构怎么打乱,都会得到类似的结果。 为解决这个问题,模型在编码词向量时引入了位置编码的特征。具体来讲,位置编码会在词向量中加入了单词的位置信息,使Transformer能区分出不同位置的单词。

通常位置编码是一个长度为 d_{model} 的特征向量,以便于和词向量进行单位加的操作,编码公式如下: \uparrow 表示后面是指数

征向量,以便于和词向量进行单位加的操作
$$PE(pos, 2i) = \sin(\frac{pos}{10000})$$
 $\frac{2i}{d_{model}}$ $PE(pos, 2i + 1) = \cos(\frac{pos}{10000})$ $\frac{2i}{d_{model}}$

上式中,pos表示单词的位置,i表示词向量第i个维度。得到的矩阵设为matP

position		0	1	2	3	4	***	510	511
0	\rightarrow	f(0,0)	1(0,1)	f(0, 2)	f(0,3)	f(0,4)	***	f(0,510)	f(0,511)
1	\rightarrow	f(1,0)	f(1, 1)	f(1, 2)	f(1,3)	f(1,4)	***	f(1,510)	f(1,511)
2	\rightarrow	f(2,0)	f(2, 1)	f(2, 2)	f(2, 3)	f(2,4)	***	f(2,510)	f(2,511)
3	->	f(3,0)	f(3, 1)	f(3,2)	f(3, 3)	f(3,4)	***	f(3,510)	f(3,511)
4	\rightarrow	f(4,0)	f(4, 1)	f(4,2)	f(4, 3)	f(4,4)	***	f(4,510)	f(4,511)
5	->	f(5,0)	f(5,1)	f(5,2)	f(5,3)	f(5,4)	***	f(5,510)	f(5,511)
6	\rightarrow	f(6,0)	f(6, 1)	f(6,2)	f(6, 3)	f(6,4)	***	f(6,510)	f(6,511)
7	\rightarrow	f(7,0)	f(7,1)	f(7, 2)	f(7,3)	f(7,4)	***	f(7,510)	f(7,511)
8	\longrightarrow	f(8,0)	f(8, 1)	f(8,2)	f(8, 3)	f(8,4)	***	f(8,510)	f(8,511)
9	\rightarrow	f(9,0)	f(9,1)	f(9,2)	f(9,3)	f(9,4)	***	f (9, 510)	f(9,511)

输入句位置编码矩阵matP

➤ Step2: (Position +Input) Encoding

令 matEnc = matP + matX,将此矩阵作为输入, 进入Transformer模型编码器的循环。

Output Probabilities

Softmax

> self-attention

Self-attention(自注意力机制): 一种特殊的attention机制, 其特点在于应用于计算句子中每个单词与其他单词之间的关联。

例如 "I arrived at the bank after crossing the river."这句话的bank在翻译时有银行和河岸两种解释。在self-attention中,翻译bank一词时,会分配给river一个较高的attention score,利用该attention score可以得到一个加权的表示,再放到一个前馈神经网络中得到新的表示,这一表示可以很好的考虑到上下文信息,由此断定bank更大可能会翻译成河岸。

因此Self-attention在NLP中往往被认为扑捉了句子内部的某种关系。

▶ self-attention计算过程

- 1. 引入三个向量Q、K、V,初始值Q=K=V=matEnc(后面经过变化 会不一样)
- 2. 首先分别对Q、K、V经过线性变换,即讲三者分别输入到三个单层神经网络,激活函数选择relu,输出新的Q、K、V(经过线性变换三者的维度不变)
- 3. 计算score= $\mathbf{Q} \cdot K^T$
- 4. 为了梯度的稳定,使score归一化,即score除以 $\sqrt{d_k}$,若key的维数 d_k 特别大,可能点积变得很大导致softmax函数进入一个梯度很小的范围。
- 5. 对score施以softmax激活函数
- 6. 将归一化后的函数点乘V

公式表示: $Attention(Q, K, V) = softmax\left(\frac{QK^T}{\sqrt{d_k}}\right)V$

Softmax: 归一化函数

Scaled Dot-Product Attention

>Step3: Multi head attention

- 多头注意力机制:多个self-attention的结合
 - 每个head学习到在不同表示空间中的特征 *如图所示,两个head学习到的* attention侧重点可能不同,这给了模型更大的容量。
- 计算过程与self-attention基本相同
- 在开始和结尾多出了切分和合成部分

我们以head数=8为例说明。

>Step3: Multi head attention

- 1. 引入三个向量Q、K、V,初始值Q=K=V=matEnc(后面经过变化会不一样)
- 2. 首先分别对Q、K、V经过线性变换,即将三者分别输入到 三个单层神经网络,激活函数选择relu,输出新的Q、K、V (经过线性变换三者的维度不变)
- 3. 对Q的N维进行切分,整齐切分为8段(可以是任意段,但必须被N整除),得到8个64*10的矩阵,如下图所示,multihead attention实际上可看作是由8个self-attention连接而成。
- 4. 对V和K施以和Q同样的操作。

ReLu: 单侧抑制

切分后的Q如下图为例:

	Q_									
	0	1	2	•••	60	61	62	63		
	0.065	0. 781	0.684		0. 474	0. 551	0.304	0.60		
** 1 1	0.909	0.137	0.856	***	0.145	0.975	0.406	0.24		
Head-1		***		***						
	0.611	0.77	0.055	***	0.771	0.124	0.715	0.85		
	0.895	0. 279	0.318	***	0. 565	0.934	0.922	0.78		
11 1 0	0.284	0.399	0.803		0. 257	0. 259	0.786	0.04		
Head-2				***	***	***	***			
	0.804	0. 28	0.239		0. 353	0.105	0.286	0.21		
	***	•••	***	•••	***	•••	***	***		
	0.575	0. 283	0.308		0.315	0.85	0.029	0.34		
II 1 7	0.243	0. 25	0.626	***	0.012	0.645	0.067	0.02		
Head-7		***			***					
	0.116	0.811	0.159		0. 695	0.846	0.841	0.14		
	0. 595	0. 998	0.764	***	0.39	0.719	0.668	0.86		
111-0	0.032	0.691	0.194	***	0. 399	0.045	0.835	0.01		
Head-8	•••	•••	***	***	***	***	***	•••		
	0 210	0.849	0.021	250-41	0 404	0.74	0 500	0.00		

>Step3: Multi head attention

4.对得到的8个 Q_{10*64} 和 K_{10*64} 进行运算score= Q· K^T ,得到新的10*10维矩阵

5.为了梯度的稳定,使score归一化,即score除以 $\sqrt{d_k}$,若key的维数 d_k 特别

大,可能点积变得很大导致softmax函数进入一个梯度很小的范围。

6.对score施以softmax激活函数

7.将归一化后的函数点乘 V_{10*64} ,得到10*64的矩阵,再将八个该矩阵做连接操作,得到维度为10*512的矩阵

Scaled Dot-Product Attention

整个过程即公式

$$Attention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_{k}}}\right)V$$

➤Step4: add&norm求和和归一化

add实际上是为了使网络有效叠加,避免梯度消失, 也就是残差网络的解决办法:

Attention(Q, K, V) = Attention(Q, K, V) + Q

Norm是标准化矫正一次,意图在不改变矩阵权重的情况下实现矩阵的独立同分布:

 $h = f(g \cdot \frac{x - \mu}{\sigma} + b)$

其中 μ 、 σ 分别为Attention(Q, K, V)在512维的均值和 方差

Outputs #shape=[1,10,512]

Outputs #shape=[1,10,512]

矩阵求和和归一化

得到Attention(Q, K, V)

Output

>Step5: feed forward

Output Probabilities 对上述步骤得到的归一化结果进行两次 Softmax 卷积 Linear 卷积后得到的output与matEnc的维度相 Add & Norm Feed 同 Forward 至此一个Encoder完成,更新 Add & Norm Add & Norm Multi-Head Feed Attention matEnc=output Forward $N \times$ 重复N次上述步骤,可取N=6 Add & Norm Add & Norm Masked Multi-Head Attention Positional Positional Encodina Encoding 重复N次得到最终matEnc Input Output Embedding Embedding Inputs Outputs (shifted right)

➤ Output Enbedding

将outputs右移一位,此操作是为了解码区最初初始化的第一次输入,可统一补齐为0 注意:此处的outputs不同于上文中output,上 文最终输入解码器的结果为matEnc,此处的 outputs在训练时是对应原文的译文,在预测时 第一次输入为0

Output embedding和Positional Embedding同编码部分,此处不再赘述, 经过这两步更新outputs

➤ Masked multi head attention

Masked multi head attention与 编码器中的multi head attention类似,但多了一个 mask矩阵,因为在解码部分, 解码时是从左到右一次解码的。 当解出第一个字时,第一个字 只能与第一个字计算相关性; 解码到第二个字时,第二个字 只能与第一、二个字计算相关 性。。。故需要乘一个mask矩 阵

> multi head attention

▶其他部分

Add&norm部分、Feed-Forward 部分和编码部分结构均相同

完成上述步骤的outputs同样作为新的输入送回解码部分循环N次(每一次循环结构均相同,但对应的参数不同,即是独立训练的)

▶其他部分

Linear: 线性变换层是一个简单的全连接神经网络,它可以把outputs投射到一个比它大得多的、被称为对数几(logits)的向量里,假设一开始训练的单词是一万个,则维度为10000*512

对该向量进行softmax运算, 将生成的分数变成概率,概 率最高的单元格被选中,并 把它对应的单词作为这个时 间步的输出

▶总结

- 1. 虽然Transformer最终也没有逃脱传统学习的套路,只是一个全连接(或者一维卷积)加Attention的结合体,但它抛弃了在NLP中最根本的RNN或CNN并取得了非常不错的效果。
- 2. Transformer的设计带来性能提升的关键是任意两个单词的距离是1,这对解决NLP中棘手的长期依赖问题是有效的。
- 3. Tran former算法的并行性非常好,符合目前的硬件(主要指GPU)环境。

缺点:

- 1. 抛弃CNN和RNN使模型的机制, 缺乏捕捉局部特征的能力;
- 2. 位置信息在NLP中十分重要,位置编码的改进成为一个新问题;