

Axiome und Inferenzschemata des Hoare-Kalküls

Anja Wolffgramm

5. Juni 2017

Wie sind die Regeln zu lesen?

Wenn die Prämisse(n) gezeigt wurde(n), dann gilt nach RegelXY die Konklusion.

Stärkere und schwächere Aussagen (Statements) unterscheiden

Im Nachfolgenden beschäftigen wir uns mit Logik und wollen stärkere und schwächere Aussagen unterscheiden lernen.

Aussage A	Aussage B	Implikation
"Zum Bestehen der Klausur benötigt man $\geq 50\%$ der Punkte"	"Zum Bestehen der Klausur benötigt man $\geq 50\%$ der Punkte und muss Anja einen Kuchen backen"	B ist stärker, da A eine Teilmenge ist. Es gilt: $B \implies A$
"Zum Bestehen der Klausur benötigt man $\geq 50\%$ der Punkte"	"Zum Bestehen der Klausur benötigt man $\geq 50\%$ der Punkte oder muss Anja einen Kuchen backen"	A ist stärker, da B eine Teilmenge ist. Es gilt: $A \implies B$
"Zum Bestehen der Klausur benötigt man $\geq 50\%$ der Punkte"	"Zum Bestehen der Klausur muss man Anja einen Kuchen backen"	A und B sind nicht vergleichbar, da sie disjunkt sind. Keine von bei- den ist stärker.
"True"	,n=2k+1"	B ist stärker, da A keine Einschränkungen hat. Es gilt: $B \Longrightarrow A$
"False"	,n=2k+1"	A ist stärker, da es kein Tupel (n,k) geben kann, sodass A erfüllt wäre. Es gilt: $A \implies B$

Regeln

1. **Nullaxiom** (es findet keine Zuweisung zwischen P und Q statt und $P \equiv Q$)

$$\{P\} = \{n \ge 1 \land n \in \mathbb{N}\}$$

$$\{Q\} \equiv \{n > 0 \land n \in \mathbb{N}\}$$
 Nullaxiom

2. **Zuweisungsaxiom** (ersetzt alle Vorkommen von x in Q durch expr)

3. Sequenzregel

• Sequenzregel

• erweiterte Sequenzregel: Per Induktion lässt sich nachweisen, dass beliebig viele Sequenzen mit der Sequenzregel zusammen gefasst werden können:

$$\{P\}S_1\{R_1\}, \{R_1\}S_2\{R_2\}, \dots \{R_{k-1}\}S_k\{Q\}\}$$

 $\{P\}S_1; S_2; \dots; S_k\{Q\}$

4. Konsequenzregel

• Konsequenzregel I (Regel der schwächeren Nachbedingung)

• Konsequenzregel II (Regel der stärkeren Vorbedingung)

5. Bedingungsregel

• Bedingungsregel I

• Bedingungsregel II (ohne else-Fall)

• erweiterte Bedingungsregel (if-elif-else)

6. while-Regel

