Data Structures

structure	<u>add</u>	remove	contains
array	$O(N)$, $\Omega(1)$	$\Theta(1)$	O(N)
arraylist	$O(N)$, $\Omega(1)$	$O(N)$, $\Omega(1)$	O(N)
linkedlist	$\Theta(1)$	$\Theta(1)$	O(N)
stack, queue	$\Theta(1)$	$\Theta(1)$	O(N)
heap	$O(\log(N))$, $\Omega(1)$	$O\log(N)$	O(N)
hashmap	$O(N)$, $\Theta(1)$	$O(N)$, $\Theta(1)$	$O(N)$, $\Theta(1)$
BST	$O(N)$, $\Theta(\log(N))$	$O(N)$, $\Theta(\log(N))$	$O(N)$, $\Theta(\log(N))$
BTree	$\Theta(\log(N))$	$\Theta(\log(N))$	$\Theta(\log(N))$
skiplist	$O(N)$, $\Theta(\log(N))$	$O(N)$, $\Theta(\log(N))$	$O(N)$, $\Theta(\log(N))$

Point of Confusion: O was used for worst case; Θ for best / overall; if there's only Θ , worst = overall.

Note:

- Cost of array insertion can be amortized to $\Theta(1)$ if array is resized to 2 * array.length everytime array is full: $\Theta(N)\cdot(1/N)=\Theta(1)$.

Sorting Asymptotics (source: CSM review slides for Fa17 MT2)

sort	runtime (best)	runtime (worst)	stable	notes
insertion	$\Theta(N)$	$\Theta(N^2)$	~	<pre>fast for small / almost-sorted data (less than log N inversions)</pre>
selection	$\Theta(N^2)$	$\Theta(N^2)$	no	should avoid using
merge	$\Theta(NlogN)$	$\Theta(NlogN)$	~	fastest stable-comparison sort
quick	$\Theta(NlogN)$	$\Theta(N^2)$	no	<pre>fastest comparison sort; improbable worst case</pre>
heap	$\Theta(NlogN)$	$\Theta(NlogN)$	no	
counting	$\Theta(N+R)$	$\Theta(N+R)$	~	alphabet keys only
LSD	$\Theta(WN + WR)$	$\Theta(WN + WR)$	~	required to be stable to work
MSD	$\Theta(WN + WR)$	$\Theta(WN + WR)$	~	

N = num elements, W = longest-width key, R = size alphabet (radix)

Point of Confusion: if best case $\Theta(f(n))$ and worst case $\Theta(g(n))$, then overall $\Omega(f(n))$ and O(g(n)); and vice versa.

Asymptotics (source: wikipedia.org/wiki/Big_O_notation)

Big-Omega	Big-O	Big-Theta
$f(n) \in \Omega(g(n))$	$f(n) \in O(g(n))$	$f(n) \in \Theta(g(n))$
iff	iff	iff
$\exists k > 0 \ \forall n$	$\exists k > 0 \ \forall n$	$f(n) \in \Omega(g(n))$
s.t.	s.t.	and
$f(n) \ge k \cdot g(n)$	$f(n) \le k \cdot g(n)$	$f(n) \in O(g(n))$
$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k > 0$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k < \infty$	$\lim_{n \to \infty} \frac{f(n)}{g(n)} = k$

Relation between Big-Omega and Big-O:

- If f(n) is in O(g(n)), then g(n) is in $\Omega(f(n))$.
- If f(n) is in $\Omega(g(n))$, then g(n) is in O(f(n)).

Asymptotics Cont.

Useful Sequences

Arithmetic:

$$1 + 2 + 3 + \dots + (N - 1) + N = \sum_{i=1}^{N} i \in \Theta(N^2)$$

Geometric:

Note:

There are two different types of Geometric sequences: converging and diverging. The former has a runtime of $\Theta(N)$ and the latter has a runtime of $\Theta(p^N)$

$$1 + 2 + 4 + \dots + (N/2) + N = \sum_{i=0}^{\log(N)} 2^i \in \Theta(N)$$

$$1 + 2 + 4 + \dots + 2^{N-1} + 2^N = \sum_{i=0}^{N} 2^i \in \Theta(2^N)$$

If the first one seems foreign, it's because it is more often seen as $N+(N/2)+\cdots+4+2+1$

Both of them have general extensions, where previously $p=2\,.$

$$1 + p + p^{2} + \dots + (N/2) + N = \sum_{i=0}^{\log(N)} p^{i} = N \cdot \frac{p}{p-1} \in \Theta(N)$$

$$1 + p + p^{2} + \dots + p^{N-1} + p^{N} = \sum_{i=0}^{N} p^{i} = \frac{p^{N+1} - 1}{p - 1} \in \Theta(p^{N})$$

Stirling's Approximation:

$$\log(1) + \log(2) + \log(3) + \dots + \log(N-1) + \log(N) = \log(N!) \in \Theta(N \log(N))$$

Or more generally,

$$\log(n!) \in \Theta(n\log(n))$$

Tree Transversals (DFS) (source: wikipedia.org/wiki/Tree_traversal)

dotted-line trick: if you place a dot on the left / bottom / right side of each
node like above, you will find the pre-order / in-order / post-order
transversals, respectively.

- pre-order / in-order / post-order are terms that only apply to DFS traversal
- pre-order / in-order / post-order are also the orders in which you print the value of a node:

pre-order	in-order	post-order	
<pre>while (!end) { print(node.value) recursive-call(left) recursive-call(right) }</pre>	<pre>while (!end) recursive-call(left) print(node.value) recursive-call(right) }</pre>	<pre>while (!end) { recursive-call(left) recursive-call(right) print(node.value) }</pre>	

Heaps

- Heaps are always maximally bushy $h(N) = \log_k{(N+1)}$, and follow either of two constraints:
 - <u>min-heap</u>: root is smallest element; parent must have a smaller value than its children and their children.
 - max-heap: root is biggest element; parent must have a bigger value than its children and their children.
- Two ways to make a valid heap:
 - reverse-order bubble down: start from bottom and swaps child with parent if heap condition is not met; constructs multiple small heaps and connects them
 - <u>level-order bubble up</u>: start from root and swaps parent with child if heap condition is not met; constructs a new heap by repeatedly adding elements, correct heap along the way
- An array can be used to implement a heap.
 - For a binary heap with root indexed at 0: parent(n) = (n 1) / 2; left-child(n) = 2 * n + 1; right-child(n) = 2 * n + 2.
 - For a k-nary heap with root indexed at 0: parent(n) = (n 1) / k; i-th child(n) = k * n + i.

B-tree

Note:

- A self-balancing tree data structure that keeps data sorted and allows operations (search, access, insertion, deletion) in logarithmic time $O(\log n)$
- N-K tree: a tree with [N, K] possible children; maximum number of children is equal to (number of values stored in a node) + 1.
- example a 2-4 tree is a tree with the possible configurations: 1 value, 2 children; 2 values, 3 children; 3 values, 4 children.

Red-Black Tree

Note:

- A binary B-tree often used in place of other B-trees (as BSTs are easier to implement).
- Nodes with color red indicate same depth in B-tree representation.
- Restrictions:
 - root is black (optional)
 - if a node is red, then both of its children are black
 - new nodes are originally inserted as red

- 4 Operations to balance RBTree

4 Operations to barance inflied	
1 red root => flip color at each level	1 red child => swap to left
[no img found]	P N A S P 3 A S
<pre>1 red child, 1 red parent, 1 black</pre>	2 red children, 1 black parent => 2 black children, 1 red parent
	G U P G U N 3 4 5

Graph Transversals

Asymptotics

transversal	runtime		
BFS	O(V + E)		
DFS	O(V + E)		
Dijkstra	$O((V + E)\log(V)$		
A*	$O((V + E)\log(V)$		
Kruskal	$O((V + E)\log(V)$		
Prim	$O((V + E)\log(V)$		

 $O((|V| + |E|)\log(|V|) = O(|E|\log(|V|))$

Point of Confusion: runtime of Dijkstra, A*, Kruskal, and Prim assumes the use of adjacency lists and binary heap; if an adjacency matrix was used, runtime would be $O(|V|^2)$.

Pseudocode for BFS & DFS

```
BFS: fringe = queue; DFS: fringe = stack

transverse(int start, fringe) {
   List seen; fringe.add(start);
   while (!fringe.isEmpty()) {
      node = fringe.pop();
      if (!seen.contains(node)) {
           seen.add(node);
           for (neigh : node.neighbors) {
                fringe.add(neigh);
            }
      }
   }
}
```

- As with trees, pre-order and post-order:
 - applies only to DFS.
 - depends on the order in which an operation is performed on node: pre-order implies do(node) occurs before the addition of neighbors; post-order implies do(node) after.
- Use BFS to find shortest number of edges (on unweighted graph) to a goal, and or if solution is shallow in graph; DFS to find solutions deep in graph (e.g. does there exists a cycle?)

Note (cont.):

- Surprisingly, reversing a sequence given by post-order DFS on a directed acyclic graph results in a valid **topological sort**. Thus, runtime of finding a topological sort = runtime of DFS.

Dijkstra

- 1. Assign distance value of 0 to initial node; infinity for all other nodes.
- 2. Create a set of unvisited nodes ("the frontier").
- 3. For the current node, consider all of its neighbors and calculate their tentative distance: min(prev dist, edge dist + curr dist).
- 4. Mark the current node as visited; a visited node will never be checked again.
- 5. Select the node with the smallest tentative distance from the frontier, and label that as your current node.
- 6. Repeat steps 3-5 until "the frontier" is empty.

Note:

- shortest-path tree (SPT): a spanning tree such that the path distance from root v to any other u is the shortest path from v to u; this can be constructed using Dijkstra.
- Dijkstra does <u>NOT</u> work for graphs with negative edge weights.
- Implementation-wise, Dijkstra is the same as BFS except with a priority queue instead of a regular queue.

A* Search

- A* search is essentially the combination of two searches:
 - <u>uniform cost search</u>: same as Dijkstra, except it stops when goal node is reached.
 - greedy search: uses solely a heuristic to find a path -- not necessarily
 the shortest -- to the goal node
- Thus, A* chooses the next node with the lowest $f(n_1) = h(n_1) + d(n_0, n_1)$, where $n_0 = \text{current node}$, $n_1 = \text{next node}$, and $d(n_0, n_1)$ is the distance from n_0 to n_1 .
- For A* to find the shortest path, its heuristic must be consistent.
 - consistent (monotone): $\forall n, h(n_0) h(n_1) \leq d(n_0, n_1)$ and h(G) = 0, where h(G) is the heuristic function evaluated for the goal node.
 - A consistent heuristic never overestimates the cost of reaching the goal; in other terms, it is always admissible.
 - <u>admissible</u>: $\forall n, h(n) \leq h^*(n)$, where $h^*(n)$ is the optimal cost of reaching the goal.

Kruskal

- 1. Sort edges by ascending weights (using a queue).
- 2. Pop an edge off the queue; if adding the edge does not create a cycle, add it; else, discard the edge.
- 3. Repeat until (N-1) edges where N is number of vertices.

Note:

- minimum spanning tree (MST): a subset tree within a graph that that connects all the vertices together without any cycles, and whose sum of edge weights is as small as possible; this can be found using Kruskal (or Prim).
- union find: a data structure used to implement Kruskal and allows set-operations (add, union, find) in near-constant time
 - path-compression: a way of flattening the structure of the union-tree whenever find is called; threads node to root such that distance from root is simply 1.

Prim

- 1. Initialize a tree with a single vertex.
- 2. Find the minimum-weight edge which connects the tree to a vertex not yet in the tree. Add it to the tree.
- 3. Repeat step 2 until (N-1) edges where N is number of vertices.

Bitwise Operators

and x & y = z		or x y = z		xor x ^ y = z			not ~y = z				
0	0	0	0	0	0	0	0	0	-	0	1
0	1	0	0	1	1	0	1	1	-	1	0
1	0	0	1	0	1	1	0	1	-	-	-
1	1	1	1	1	1	1	1	0	_	_	_

name		description	example	
<<	shift left logical	<pre>zero-extends new left-bits; = to multiplying by 2^n</pre>	10001 << 1 = 00010	
>>	shift right arithmetic	sign-extends new right-bits	10001 >> 1 = 11000	
>>>	shift right logical	zero-extends new left-bits; = to dividing by 2^n	10001 >>> 1 = 01000	

Note:

Negative numbers are represented by a method known as **two's complement**, where – the most significant bit (MSB) determines the sign of the number: 0 indicating a non-negative number; 1 indicating a negative number – the negative complement of a number is: -x = -x + 1

What about addition?

Hashing

- load factor = (N/k), where $N=\mathrm{num}$ elements and $k=\mathrm{num}$ buckets
 - When load factor is exceeded, resize the hash table such that the new size = 2 * current size; this allows for an amortized cost of $\Theta(1)$.
 - When a hash table is resized, all elements must be rehashed and remapped since the hashcode depends on the size of buckets in the table. Cost is amortized.
- A hashcode is considered valid if it satisfies the following two properties:
 - If two objects are considered to be equal, then they should have the same hashcode: thus, <u>if you override obj.equals() method</u>, <u>you should also override the obj.hashcode() method</u> -- and vice versa
 - consistent: given the same object multiple times, the outputted hashcode should be the same for all instances; thus, a hashcode should not be dependent on a random number generator
- In addition to being valid, a hashcode should try to distribute items as evenly as possible into buckets.
 - This means minimizing the chance of collision.

Java Regex

*	0 or more
+	1 or more
?	0 or 1
{x}	X times
{X, Y}	X min to Y max (inclusive)

\\s	whitespace
\\s	non-whitespace
[0-9]	decimal

I	or
()	grouping