Compact Toeplitz Operators and Weighted Bergman Spaces

Ethan, Ryan

Polymath Jr

2024

- $L^2(\mathbb{D}, dA)$: space of square-integrable functions on \mathbb{D}
- L_a^2 : closed subspace of analytic functions in $L^2(\mathbb{D}, dA)$
- $P: L^2(\mathbb{D}, dA) \to L^2_a$: orthogonal projection operator
- $T_u: L_a^2 \to L_a^2$: Toeplitz operator with symbol u. $T_u(f) = P(uf)$
- $K_z \in L_a^2$: Bergman reproducing kernel. $f(z) = \langle f, K_z \rangle$
- $k_z \in L^2_a$: normalized Bergman reproducing kernel. $k_z = K_z/\|K_z\|$
- $\tilde{S}: \mathbb{D} \to \mathbb{C}$: Berezin transform of S. $\tilde{S}(z) = \langle Sk_z, k_z \rangle$.
- $\varphi_z: \mathbb{D} \to \mathbb{D}$: automorphism of unit disk. $\varphi_z(w) = (z-w)/(1-\overline{z}w)$
- $U_z: L_a^2 \to L_a^2$: $U_z f = (f \circ \varphi_z) \varphi_z'$
- $S_z: L_a^2 \to L_a^2$: $S_z = U_z S U_z$
- $H_u: L_a^2 \to (L_a^2)^{\perp}$: Hankel operator with symbol u. $H_u(f) = (I P)(uf)$

Theorem

Suppose S is a finite sum of finite products of Toeplitz operators. Then the following are equivalent:

- \bigcirc S is compact

- ${f O}$ $S_z 1 o 0$ weakly in L^2_a as $z o \partial {\Bbb D}$

Fact

 U_z is unitary: $\langle U_z f, U_z f \rangle = \langle f, f \rangle$ for all $f \in L^2_a$.

Proof.

$$\langle U_z f, U_z f \rangle = \int_{\mathbb{D}} |(U_z f)(w)|^2 dA(w) = \int_{\mathbb{D}} |(f \circ \varphi_z)(w)|^2 |\varphi_z'(w)|^2 dA(w)$$

Let $\lambda = \varphi_z(w)$. Then $dA(\lambda) = |\varphi_z'(w)|^2 dA(w)$ so that

$$\int_{\mathbb{D}} |(f \circ \varphi_z)(w)|^2 |\varphi_z'(w)|^2 dA(w) = \int_{\mathbb{D}} |f(\lambda)|^2 dA(\lambda) = \langle f, f \rangle$$

