

主要内容:

向量组的秩与最大无关组的概念

 R^n 的基、维数与坐标

一. 向量组的秩与最大无关组的概念

定义 设向量组T满足

- 1º 在T中有r个向量 $\alpha_1, \alpha_2, ..., \alpha_r$ 线性无关;
- 2° T中任意r+1个向量都线性相关;

则称 $\alpha_1, \alpha_2, ..., \alpha_r$ 是向量组T的一个最大无关组,数r为向量组T的秩.

最大无关组一般不惟一, 秩是惟一的.

若向量组线性无关,则其最大无关组就是它本身,秩 = 向量个数.

向量组线性无关(相关) ⇔ 向量组的秩 = (<)向量组所含向量个数.

 $\overline{\mathbf{O}_{2}}$ \mathbf{R}^{n} 的秩为 n, 且任意 n 个线性无关的 n 维向量均为 \mathbf{R}^{n} 的一个最大无关组.

矩阵A的列秩: A的列向量组的秩;

矩阵A的行秩: A的行向量组的秩.

定理1 若 $A_{m\times n}$ — f_{N} f_{N}

证

 $A_k X=0$ 与 $B_k X=0$ 同时有非零解或只有零解.

 A_k 的列向量与 B_k 的列向量有相同的线性相关性.

定理2 矩阵的 行秩 = 列秩 = 矩阵的秩.

证 $\partial \mathbf{R}(A) = r$,

 $A \xrightarrow{f \to 0 \oplus \mathfrak{S} \not \oplus} B$ (行阶梯形矩阵),

B有r个非零行,B的r个非零行的非零首元素所在的r个列向量线性无关,为B的列向量组的最大无关组.

A中与B的这r个列向量相对应的r个列向量也是A的列向量组的最大无关组. 故 A 的列秩等于r.

同理,由 $R(A) = R(A^T)$,并且A的行向量即为 A^T 的列向量,可得A的行秩等于r.

定理2的证明一求向量组的秩和最大无关组的方法.

例3 求向量组 α_1 =(1,2,0,3), α_2 =(2,-1,3,1), α_3 =(4,-7,9,-3) 的秩和一个最大无关组,并判断线性相关性.

解

$$A = (\alpha_1^{\mathsf{T}}, \alpha_2^{\mathsf{T}}, \alpha_3^{\mathsf{T}}) = \begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & -7 \\ 0 & 3 & 9 \\ 3 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 \\ 0 & -5 & -15 \\ 0 & 3 & 9 \\ 0 & -5 & -15 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = B,$$

所以,秩(α_1 , α_2 , α_3) = 2 < 3,

 $\alpha_1, \alpha_2, \alpha_3$ 线性相关.

 α_1 , α_2 为一个最大无关组.

例4 求向量组

$$\alpha_1 = (1,2,0,3), \ \alpha_2 = (2,-1,3,1), \ \alpha_3 = (4,-7,9,-3)$$

的一个最大无关组,并将其余向量用最大无关组线性表出.

$$B \to \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
,所以, $\alpha_3 = -2\alpha_1 + 3\alpha_2$.

例5 求向量组

$$\alpha_1$$
=(2,4,2), α_2 =(1,1,0), α_3 =(2,3,1), α_4 =(3,5,2)

的秩和一个最大无关组,并将其余向量用最大无关组线性表出.

解

$$A = (\alpha_1^{\mathrm{T}}, \alpha_2^{\mathrm{T}}, \alpha_3^{\mathrm{T}}, \alpha_4^{\mathrm{T}}) \rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = B, \quad 所以, 秩(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 2$$

$$B \to \begin{pmatrix} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \quad \text{ix}, \quad \alpha_3 = \frac{1}{2}\alpha_1 + \alpha_2, \quad \alpha_4 = \alpha_1 + \alpha_2.$$

邓良剑

• 向量组与其任一最大无关组等价;

• 一向量组的任两个最大无关组等价;

一向量组的任两个最大无关组所含向量个数相等,其个数都等于向量组的秩。

定理3 若向量组 $\alpha_1, \alpha_2, ..., \alpha_r$ 可由 $\beta_1, \beta_2, ..., \beta_s$ 线性表出,且 $\alpha_1, \alpha_2, ..., \alpha_r$ 线性无关,则 $r \leq s$.

证 为便于书写,不妨设向量均为列向量,设

$$A = (\alpha_1, \alpha_2, ..., \alpha_r), B = (\beta_1, \beta_2, ..., \beta_s),$$

因 $\alpha_1, \alpha_2, ..., \alpha_r$ 可由 $\beta_1, \beta_2, ..., \beta_s$ 线性表出,所以存在

$$K = (k_{ij})_{s \times r} = (\gamma_1, \gamma_2, ..., \gamma_r)$$
, 使得 $A = BK$.

若 r > s, 则 γ_1 , γ_2 , ..., γ_r 线性相关, 则有不全为零的数 $x_1, x_2, ..., x_r$ 使

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_r \end{pmatrix} = KX = 0, \quad \text{所以 } AX = BKX = B0 = 0.$$

$$AX = 0$$
 有非零解,则 $\alpha_1, \alpha_2, ..., \alpha_r$ 线性相关,矛盾!

两向量组秩的关系:

若向量组(||)可由组(||)线性表出,则组(||)的秩 $r_1 \leq$ 组(||)的秩 r_2 .

证 设 $\alpha_1,...,\alpha_r$ 为(I)的最大无关组为(II)的最大无关组.

组(I)可由组(II)线性表出,所以 α_{r_1} ,可由 $\beta_1,...,\beta_{r_2}$

线性表出,又 $\alpha_1,...,\alpha_{r_1}$ 线性无关, 故 $r_1 \leq r_2$.

若组(I)与组(II)等价,则组(I)的秩 r_1 = 组(II)的秩 r_2 .

定理4 设 α_{j_1} ,…, α_{j_r} 是 α_1 , α_2 , …, α_s 的线性无关部分组,它是最大无关组的充要条件是 α_1 , α_2 , …, α_s 中每一个向量均可由 α_{j_1} ,…, α_{j_r} 线性表出.

证: 充分性: 若 α_1 , α_2 , ..., α_s 可由 α_{j_1} , ..., α_{j_r} 线性表出,则 α_1 , α_2 , ..., α_s

中任r+1个向量线性相关(定理3逆否),所以, $\alpha_{j_i}, \dots, \alpha_{j_t}$ 是最大无关组.

必要性: 若 $\alpha_{j_1},...,\alpha_{j_r}$ 是 $\alpha_1,\alpha_2,...,\alpha_s$ 的最大无关组,

$$\forall \alpha_{j} \in \{\alpha_{l}, \dots, \alpha_{s}\}: \begin{cases} \alpha_{j} \in \{\alpha_{j_{l}}, \dots, \alpha_{j_{r}}\} & \text{结论显然} \\ \alpha_{j} \notin \{\alpha_{j_{l}}, \dots, \alpha_{j_{r}}\} & \alpha_{j}, \alpha_{j_{l}}, \dots, \alpha_{j_{r}} \text{线性相关} \end{cases}$$

因而 α_j 可由 α_{j_l} ,…, α_{j_r} 线性表出.

例6 设A, B分别为 $m \times r$, $r \times n$ 矩阵, 证明

$$R(AB) \leq \min\{R(A), R(B)\}.$$

证 设
$$C_{m \times n} = AB$$
,
$$(c_1, \dots, c_n) = (\alpha_1, \dots, \alpha_r) \begin{pmatrix} b_{11} & \dots & b_{1n} \\ b_{21} & \dots & b_{2n} \\ \dots & \dots & \dots \\ b_{r1} & \dots & b_{rn} \end{pmatrix}$$
$$c_k = b_{1k}\alpha_1 + b_{2k}\alpha_2 + \dots + b_{rk}\alpha_r, \quad (k = 1, \dots, n)$$

(AB)的列向量组可由A的列向量组线性表出,

故
$$R(AB) \leq R(A)$$
.

$$\nabla$$
, $R(C) = R(C^T) = R(B^TA^T) \leq R(B^T) = R(B)$.

所以 $R(AB) \leq \min\{R(A), R(B)\}$.

R^n 的基、维数与坐标

二. R^n 的基、维数与坐标

Rⁿ: n 维向量空间

R"的一组基: R"的一个最大无关组

 \mathbf{R}^n 的维数(dim \mathbf{R}^n): \mathbf{R}^n 的秩, dim $\mathbf{R}^n = n$.

设 $\alpha_1, \alpha_2, ..., \alpha_n$ 为 R^n 的一组基,则

$$\mathbf{R}^n = L(\alpha_1, \alpha_2, ..., \alpha_n)$$

$$\nabla$$
, $\mathbf{R}^n = L(\varepsilon_1, \varepsilon_2, ..., \varepsilon_n)$

 R^n 的标准基

R^n 的基、维数与坐标

$$\forall \alpha \in \mathbb{R}^n, \alpha_1, \alpha_2, ..., \alpha_n$$
为一组基,

$$\alpha = x_1 \alpha_1 + x_2 \alpha_2 + \ldots + x_n \alpha_n$$

 α 在基 $\alpha_1, \alpha_2, ..., \alpha_n$ 下的坐标

一个向量在确定基下的坐标是惟一的(坐标的惟一性).

- 例7 (1) 设 $\alpha = (x_1, x_2, x_3) \neq 0$, $L(\alpha): \mathbf{R}^3$ 的一维子空间;
 - (2) 设α = (x_1, x_2, x_3) , β = (y_1, y_2, y_3) 线性无关, $L(\alpha, \beta)$: \mathbb{R}^3 的二维子空间.

学到了什么?

向量组的秩与最大无关组的概念

 R^n 的基、维数与坐标