PAMSI Projekt 2 - Grafy

Krystian Mirek

May 2020

1 Wstęp

Celem projektu było zapoznanie się z grafami oraz algorytmów do problemów związanymi z nimi. Problemem projektu było wyznaczenie najkrótszej drogi w grafie ważonym pomiędzy wierzchołkami. W projekcie posłużono się algorytmem Dijkstry. Badano algorytm w dwóch różnych reprezentacjach grafu (lista, macierz) dla pięciu różnych liczb wierzchołków w grafie V (wybrano 10, 30, 50, 150, 250) oraz następujących gęstości grafu: 25%, 50%, 75%, 100%. Dla każdego zestawu parametrów wygenerowano po 100% instancji.

2 Badania

Przeprowadzono badania efektywności algorytmu dla grafu reprezentowanego w postaci listy, następnie w macierzy i porównano ze sobą metody

2.1 Reprezentacja grafu w liście sąsiedztwa

Reprezentacja grafu w liście sąsiedztwa jest efektywną metodą reprezentacji grafu. Listy te dają możliwość reprezentacji krawędzi wielokrotnych w łatwy sposób, co jest użyteczne przy algorytmach grafowych. W tej metodzie program odczytuje definicję grafu, żeby utworzyć tablicę list sąsiedztwa, na podstawie której wykonuje algorytm. Zestawiono w tabeli czas obliczeń dla gęstości grafów w zależności od liczby wierzchołków.

	Czas dla liczby wierzchołków						
Gęstość	10	30	50	150	250		
25%	0,00000000	0,00021011	0,00125005	0,01927887	0,088319658		
50%	0,00003996	0,00040991	0,00266045	0,03508063	0,31239106		
75%	0,00004997	0,00080000	0,00344974	0,04527887	0,49506212		
100%	0,00005001	0,00226661	0,00371936	0,06234086	0,53657294		

2.2 Reprezentacja grafu w macierzy sąsiedztwa

Macierz sąsiedztwa odwzorowuje połączenia wierzchołków krawędziami. W tym przypadku, grafu nieskierowanego, wiersze macierzy odwzorowują wierzchołki startowe krawędzi, a kolumny odwzorowują wierzchołki końcowe krawędzi. Komórka tab[i][j], która znajduje się w i-tym wierszu i j-tej kolumnie odwzorowuje krawędź łączącą wierzchołek startowy v1 z wierzchołkiem końcowym v2. Jeśli tab[i][j] ma wartość 1, to dana krawędź istnieje, a jeśli ma wartość 0, to krawędzi nie ma. Zestawiono w tabeli czas obliczeń dla gęstości grafów w zależności od liczby wierzchołków.

	Czas dla liczby wierzchołków						
Gęstość	10	30	50	150	250		
25%	0,00000000	0,00036012	0,00187002	0,02443080	0,08254048		
50%	0,00000000	0,00032995	0,00186000	0,01921902	0,10756920		
75%	0,00002001	0,00027018	0,00155009	0,01581001	0,09856950		
100%	0,00001000	0,00057559	0,00144059	0,01617002	0,08453002		

2.3 Porównanie reprezentacji

Zestawiono ze sobą wyniki badania efektywności działania algorytmu dla pełnego wypełnienia grafu w celu porównania efektywności reprezentacji w liście sąsiedztwa i reprezentacji w macierzy sąsiedztwa.

3 Wnioski

Przedstawione uśrednione wyniki na wykresach jednoznacznie ukazują, że metoda reprezentacji grafu w postaci macierzy sąsiedztwa jest mniej efektywna od reprezentacji w liście sąsiedztwa potrzebuje znacznie więcej czasu na realizacje algorytmu, z czego wynika, że reprezentacja metody reprezentacji grafu ma bardzo duże znaczenie w problemie poszukiwania najkrótszej drogi.

Literatura

- [1] http://lukasz.jelen.staff.iiar.pwr.edu.pl/downloads/files/lab/Projekt2.pdf
- [2] http://lukasz.jelen.staff.iiar.pwr.edu.pl/downloads/files/lect/wyklad07.pdf
- [3] https://stackoverflow.com/