REPUBLICA DE CHILE MINISTERIO DE OBRAS PUBLICAS DIRECCION GENERAL DE AGUAS

PRONOSTICO DE DISPONIBILIDAD DE AGUA TEMPORADA DE RIEGO 2010-2011

DIRECTOR GENERAL DE AGUAS Abogado Matías Desmadryl L.

JEFE DIVISION DE HIDROLOGIA Ing. Javier Narbona N.

El presente informe fue elaborado en la División de Hidrología por :

Ing. Brahim Nazarala G. Ing. José Miñano C. Ing. Marco Larenas C.

Septiembre del 2010

PRONOSTICO DE DISPONIBILIDAD DE AGUA TEMPORADA DE RIEGO 2010-2011

INDICE

1 Introducción	 1
2 Bases del Pronóstico	 1
3 Situación General	 3
4 Pronóstico	 11
5 - Conclusiones	2.1

1.- INTRODUCCIÓN

La Dirección General de Aguas, con el propósito de dar a conocer la situación hidrológica general del país, específicamente de las zonas de riego de las principales cuencas del norte chico, zona central y sur, elabora anualmente un pronóstico de volúmenes de deshielo, caudales medios mensuales y máximos instantáneos para la temporada de riego del período primavera-verano. Este pronóstico abarca desde la cuenca del Río Copiapó hasta la cuenca del Río Ñuble.

2.- BASES DEL PRONOSTICO

El presente pronóstico se realiza con datos de la Red Hidrométrica de la Dirección General de Aguas, para las estaciones fluviométricas ubicadas en las zonas altas de las cuencas, las que se indican en el Cuadro Nº 1 y se ha elaborado de acuerdo con los siguientes criterios y supuestos.

- El período de pronóstico es el comprendido entre los meses de Septiembre a Marzo, debido a la importancia que éstos tienen en la agricultura de riego y está orientado a estos usuarios
- Se pronostican los volúmenes para la temporada de deshielo, los que se entregan junto con la probabilidad de excedencia o tipo de año. La distribución mensual de caudales medios puede tener fluctuaciones apreciables en la medida que las variables meteorológicas, tales como precipitación, temperatura, radiación y nubosidad, presenten comportamientos irregulares en el período de deshielo. Con mayor razón pueden presentarse variaciones muy significativas a nivel diario, en relación con el valor medio mensual, por lo que este pronóstico no es estricto para aquellos usuarios cuyas necesidades de caudales diarios son determinantes para su producción. Ante estos requerimientos, los interesados debieran desarrollar sus propias metodologías para satisfacer sus necesidades particulares.
- Los pronósticos se realizan para las cuencas señaladas en el presente informe, por lo cual los resultados no se aplican a cuencas más pequeñas, intermedias o de secano, que presentan condiciones hidrológicas diferentes, en cuyo caso habrá que hacer análisis particulares.
- Se consideran como variables independientes los datos registrados hasta el mes de Agosto y para primavera-verano se han supuesto precipitaciones promedios. Por lo tanto, los caudales pronosticados pueden resultar distintos de los reales si se producen durante dicho período, precipitaciones muy diferentes a la situación supuesta.
- La magnitud de los errores está en relación con la calidad y cantidad de antecedentes disponibles y las características hidrológicas de cada región. En términos generales, los errores aceptables desde el punto de vista práctico se estiman en aproximadamente 20%.

Se incluye además un pronóstico de los caudales máximos instantáneos de los ríos comprendidos entre el Huasco y el Rapel. Es necesario destacar que dicha estimación considera exclusivamente los caudales originados por la fusión de la nieve y no los producidos por eventuales precipitaciones durante el período primavera-verano.

C U A D R O N°1

NOMINA DE ESTACIONES FLUVIOMETRICAS
DE PRONOSTICO

CUENCA	ESTACION	LATITUD	LONGITUD	ALTURA	AREA
		S	O	msnm	km2
Copiapó	Copiapó en la Puerta	27°48	70°07′	758	7419
Huasco	Huasco en Algodones	28°44′	70°30′	600	6999
Elqui	Elqui en Algarrobal	29°59′	70°35′	707	5566
Limarí	Grande en Las Ramadas	31°00′	70°35′	1380	544
Choapa	Choapa en Cuncumén	31°58′	70°35′	955	1172
Aconcagua	Aconcagua Chacabuquito	32°51′	70°31′	1030	2059
Maipo	Mapocho en los Almendros	33°22′	70°27′	950	616
Maipo	Maipo en el Manzano	33°36′	70°23′	890	4769
Rapel	Cachapoal en Puente Terma	s 34°15′	70°34′	700	2522
Rapel	Tinguiririca en B.Briones	34°43′	70°49′	518	1424
Mataquito	Teno después de Junta	35°00′	70°49′	680	1179
Maule	Maule en Armerillo	35°42′	71°07′	512	5362
Itata	Ñuble en San Fabián	36°36′	71°36′	500	1666

3. - SITUACIÓN GENERAL

Precipitaciones

En línea generales, la situación pluviométrica en el país al 31 de Agosto, es deficitaria en prácticamente toda la zona que abarca el presente pronóstico, salvo en la región de Atacama y las cuencas de los ríos Elqui y Limarí, donde se presenta superávit producto de las lluvias registradas en dicha área principalmente en los meses de Mayo y Junio. Desde la cuenca del Choapa al sur el déficit es generalizado con valores que varían entre un 15% y 50%, con una leve tendencia a disminuir en la medida que se avanza hacia el sur. Como excepción a las características deficitarias del invierno pasado, las precipitaciones muestran valores acumulados semejantes a los normales en la zona de la cuenca del río BioBio.

La acumulación de nieve, al igual que las precipitaciones líquidas, son deficitarias, con la diferencia que son más acentuadas en el norte chico, donde varían entre mediciones prácticamente nulas a un 50% de déficit respecto al promedio histórico. Desde la región Metropolitana al sur los déficits disminuyen y alcanzan acumulaciones cercanas a dichos promedios en la cuenca del río BioBio.

Como conclusión general, se puede señalar que la situación es deficitaria en la zona de pronóstico y que la acumulación de nieve en la cordillera es proporcionalmente inferior a las precipitaciones medidas en los valles, característica muy acentuada en el norte chico.

En la Figura N° 1 se presenta la distribución espacial de las precipitaciones, expresadas en porcentaje respecto al promedio estadístico 1961-2000. Los antecedentes utilizados al 31 de Agosto, tanto pluviométricos como nivométricos, se entregan en los cuadros N° 2 y N° 3, respectivamente.

En la Figura Nº 2 se muestran las precipitaciones, tanto pluviales como nivales, registradas al 31 de Agosto, en estaciones representativas de las zonas norte, centro y sur del área del pronóstico.

Caudales de invierno

Los caudales de invierno de los principales ríos de la zona que corresponde al pronóstico, siguieron, en líneas generales, la tendencia de las precipitaciones, de tal forma que se mantuvieron bajo los promedios históricos, aunque sobre los mínimos estadísticos. Una excepción se observa en el río Copiapó, en el cual los caudales muestran valores bajo los correspondientes al año más seco y el río Maipo que presentó, durante algunos meses, caudales algo superiores a los promedios.

Estado de embalses

Las acumulaciones de los principales embalses son, en general, inferiores respecto a los medidos a igual fecha del año pasado. El embalse Lautaro dispone de 5.6 mill-m3, inferior a los 7.3 del 2009. Los embalses Santa Juana y Puclaro, si bien los recursos actuales son inferiores a los de la temporada anterior, son semejantes a los respectivos promedios históricos para el mes de Agosto.

El sistema Paloma, conformado por los embalses La Paloma, Cogotí y Recoleta dispone actualmente de 375 mill-m3, que corresponde sólo a un 64% del promedio del mes e inferior a los 560 mill-m3 del año 2009.

El embalse Rapel, de generación hidroeléctrica, acumula 419 mill-m3, inferior a los 522 mill.m3 que acumulaba en Agosto del 2009, y representa un 80% del promedio del mes.

El embalse Colbún, de uso compartido para riego y generación, acumula 968 mill-m3, valor prácticamente igual de Agosto de 2009, aunque inferior a los 1172, promedio histórico del mes

Los grandes embalses Laguna del Maule y Lago Laja, en conjunto acumulan 1928 mill-m3, que corresponde al 45% del promedio del mes, e inferior a los 2599 mill-m3 de Agosto de 2009. Prácticamente toda la diferencia respecto al año pasado se debe al descenso del Lago Laja, ya que Laguna del Maule actualmente dispone de recursos similares a los de la temporada pasada.

En el Cuadro Nº 4 se entrega la situación de los principales embalses, relacionada con el volumen del agua almacenada al 31 de Agosto, y cuyos principales aportes corresponden a recursos de componente nival. En la Figura Nº 3 se presentan los volúmenes a Agosto de los últimos años para embalses importantes del país.

Figura Nº 1

C U A D R O N° 2

PRECIPITACIONES AL 31 DE AGOSTO 2010

ESTACIÓN	2010	PROMEDIO	Superavit o déficit
	mm	mm (1)	%
Copiapó	15.8	12.4	27
E. Lautaro	47.0	28.2	67
Vallenar	48.2	30.8	56
Conay	49.0	73.4	-33
Rivadavia	49.0	85.7	-43
La Serena	75.2	72.1	4
Pisco Elqui	43.8	104.5	-58
Los Nichos	49.1	117.5	-58
Ovalle	109.7	93.3	18
E. La Paloma	131.4	122.3	7
Las Ramadas	222.4	251.5	-12
Cuncumén	87.0	243.1	-64
Salamanca	129.2	218.7	-41
Reg. Los Patos	73.0	253.2	-71
Los Andes	136.0	213.9	36
Riecillos	179.2	443.3	-60
Vilcuya	180.0	283.1	-36
Lago Peñuelas	313.5	544.2	-42
Santiago	152.7	263.1	-42
La Obra	303.6	517.5	-41
Rancagua	217.0	340.4	-36
S. Fernando	337.0	591.7	-43
La Rufina	493.0	923.5	-47
Curicó	337.2	586.9	-43
Los Queñes	614.6	1111.9	-45
Talca	373.6	535.1	-30
Armerillo	856.5	1973.2	-57
Bullileo	1187.2	1658.8	-28
Linares	490.0	732.4	-33
Parral	541.3	778.4	-30
Chillan	617.6	790.9	-22
Atacalco	1097.2	1803	-39
Angol	927.2	873.7	6
Temuco	687.6	896.9	-23

⁽¹⁾ Promedio del Período 1961-90

CUADRO Nº3

NIEVE ACUMULADA EQUIVALENCIA EN AGUA

ACUMULACIÓN MAXIMA PORCENTAJE **CUENCA RUTA DE NIEVE** Promedio (1) 2010 (2) mm % mm **ELQUI** Cerro Olivares 141 0 0 LIMARI Quebrada Larga 206 41 20 LIMARI Cerro Vega Negra 528 264 50 El Soldado 210 51 **CHOAPA** 412 Portillo ACONCAGUA 52 630 320 70 **MAIPO** Farellones 453 318 **MAIPO** Laguna Negra 566 329 58 **MAULE** Lo Aguirre 1035 600 58 Volcán Chillán 83 **ITATA** 879 730 Alto Mallines 97 **BIO-BIO** 758 732

⁽¹⁾ Promedio para el Período 1951-90

⁽²⁾ Porcentaje respecto al Promedio

Figura Nº 2

CUADRO Nº 4

ESTADO DE EMBALSES Al 31 de Agosto 2010 (millones de m3)

EMBALSE	REGION	CUENCA	CAPACIDAD MAXIMA	PROMEDIO AGOSTO	2009	2010
Lautaro	III	Copiapó	35	13	7.3	5.6
Santa Juana	III	Huasco	166	126	149	131
La Laguna	IV	Elqui	40	25	37	27
Puclaro	IV	Elqui	200	136	194	137
Recoleta	IV	Limarí	100	69	100	74
La Paloma	IV	Limarí	748	432	406	273
Cogotí	IV	Limarí	150	85	54	28
El Yeso	M	Maipo	256	176	165	186
Rapel	VI	Rapel	695	527	522	419
Colbún	VII	Maule	1544	1172	970	968
Lag. Del Maule	VII	Maule	1420	951	714	726
Bullileo	VII	Maule	60	54	60	48
Digua	VII	Maule	220	200	216	180
Ralco	VIII	Bio-Bio	1174		934	463
Lago Laja	VIII	Bio-Bío	5582	3323	1885	1202

Figura Nº 3

4.- PRONOSTICO

Se puede estudiar la disponibilidad de los recursos hídricos utilizando como índice de comparación el porcentaje del valor promedio o la probabilidad de excedencia de los caudales pronosticados. El primer índice sirve para cuantificar la magnitud de las diferencias con respecto al promedio. El segundo corresponde a la probabilidad que estadísticamente el volumen de deshielo estimado sea superado por otras temporadas y sirve para establecer de manera relativa al resto de los años, la frecuencia con que se han presentado situaciones análogas.

En el Cuadro Nº 5 se presentan los volúmenes pronosticados para la temporada de deshielo Septiembre – Marzo, y una distribución mensual de los caudales, de carácter referencial, para los meses que abarca el período de deshielo. Se muestran también los porcentajes de los valores pronosticados en relación con los promedios históricos respectivos de cada estación y la probabilidad de excedencia de los volúmenes esperados para la temporada.

La Figura N° 4 presenta los caudales pronosticados comparados con las curvas de probabilidad de excedencia 20%, 50% y 80%, para las estaciones consideradas en las estimaciones.

Finalmente en el Cuadro Nº 6 se entrega un pronóstico de los caudales máximos de deshielo para las estaciones fluviométricas comprendidas entre los ríos Huasco y Rapel.

C U A D R O N ° 5

CAUDALES PRONOSTICADOS (2010/2011)
(m3/s)

ESTACION	Sep	Oct	Nov	Dic	Ene	Feb		Vol. Mill-m3	V/V 3	Prob. exc. %
Copiapó en la Puerta	0.7	0.7	0.7	0.7	0.8	0.9	0.8	15	0.34	90
Huasco en Algodones	2.2	1.5	1.4	1.3	1.2	1.1	1	25	0.22	80
Elqui en Algarrobal	4	4	4.5	5	4.5	4	4	80	0.38	80
Grande en Las Ramadas	1.7	2	1.7	1.3	1.1	1	1	25	0.25	85
Choapa en Cuncumén	4	7	10	6	3	2	2	90	0.39	85
Aconcagua en Chacabuquito	10	17	32	40	32	25	15	450	0.55	85
Mapocho en los Almendros	4	6	7	6.5	5	3.5	2	90	0.59	70
Maipo en el Manzano	65	80	120	165	155	105	70	2000	0.76	65
Cachapoal en Puente Termas	40	65	105	130	115	90	63	1600	0.74	80
Tinguiririca en B.Briones	25	35	60	65	60	50	30	850	0.74	75
Teno después de Junta	27	50	75	70	40	23	20	800	0.69	80
Maule en Armerillo	185	285	360	260	160	115	80	3800	0.70	80
Ñuble en San Fabián	80	115	115	70	35	25	20	1200	0.64	80

V: Volumen pronosticado para la temporada Sep-Mar, en mill.m3

V : Volumen promedio para la temporada Sep-Mar, en mill-m3

Prob.exc : Probabilidad de excedencia o número promedio de años de 100, con volúmenes superiores a la presente temporada

C U A D R O N ° 6

CAUDALES MÁXIMOS INSTANTANEOS PRONOSTICADOS (m3/s)

CUENCA	ESTACION	CAUDAL (m3/seg)
Huasco	Huasco en Algodones	3
Elqui	Elqui en Algarrobal	6.5
Limarí	Grande en Las Ramadas	3.5
Choapa	Choapa en Cuncumén	18
Aconcagua	Aconcagua en Chacabuquito	65
Maipo	Mapocho en Los Almendros	15
Maipo	Maipo en El Manzano	200
Rapel	Tinguiririca en Bajo Briones	110

Figura Nº 4

5.- CONCLUSIONES

Las principales conclusiones que se pueden extraer de los antecedentes hidrológicos de la temporada invernal y del pronóstico se señalan a continuación.

- La situación pluviométrica del presente año fue deficitaria en prácticamente toda la zona que comprende el pronóstico, salvo en la región de Atacama y parte de la región de Coquimbo, donde se registraron precipitaciones importantes especialmente durante el mes de Mayo.
- Las acumulaciones nivales fueron muy deficitarias y sólo en la región del BioBio se acercan a los promedios estadísticos. En la región de Atacama y la zona norte de la región de Coquimbo, las acumulaciones son muy bajas e incluso inferiores al 20% de los promedios, a pesar de las precipitaciones líquidas que, como se señaló, fueron importantes para la temporada y se produjeron a comienzos del invierno, sin las correspondientes nevazones. En la zona central del pronóstico, la nieve acumulada también es muy deficitaria, con valores cercanos al 50% de los respectivos promedios.
- Los volúmenes de deshielo esperados para la temporada en las regiones Atacama y Coquimbo presentan valores inferiores al 40% del promedio histórico y llegan incluso a un 22%, lo que obliga a tomar medidas importantes con el fin de optimizar el uso del agua, particularmente en el río Copiapó, que inicia la temporada con un caudal muy bajo.
- Entre las regiones de Valparaíso y Ñuble, los volúmenes pronosticados varían entre un 55% y 75% del promedio histórico, con lo cual se deberá mejorar la eficiencia de los recursos hídricos, especialmente en aquellas áreas no cubiertas por el aporte de embalses.
- En cuanto a los grandes embalses, y conocidas las previsiones de deshielo, deberían terminar la temporada con volúmenes inferiores a los actuales, como es el caso de Santa Juana y Puclaro que acumularían, cada uno, valores algo inferiores a 100 mill-m3.
- El sistema Paloma, que actualmente acumula 375 mill-m3, considerando una demanda de 320 mill-m3 para el riego Septiembre Marzo y estimando el aporte de las diversas cuencas, se prevé que podría llegar a alrededor de 110 mill-m3, recursos insuficientes para asegurar una próxima temporada de riego 2011 2012.
- Los embalses Laguna del Maule y Lago Laja, por su parte, terminarían la temporada con volúmenes inferiores o en el mejor de los casos, semejantes a los actuales.
- Debido a que los caudales que se esperan son menores a los respectivos promedios, no se esperan problemas causados por las crecidas de deshielo.