1 Abstract Group Theory

Lagrange's Theorem:

• For a subgroup H of G: $\frac{|G|}{|H|} = i \in \mathbb{N}^+$

index i: number of distinct cosets

⇒ Groups of prime order are cyclic

pitfall: you can have none or more than one subgroup of the same order

Abelian groups:

- $\bullet\,$ Group containing only second order elements are Abelian.
- Cyclic groups are Abelian.
 - \implies A group of prime order is Abelian.
- all subgroups of an Abelian group are invariant

First group isomorphism theorem:

- $f: G \to L$ is injective (isomorphism) if $\ker(f) = E$
- a matrix representation is faithful / isomorphic to G if $D(g) \neq I$ for $g \neq E$

 \implies no other element has the same character as E

Schur's Lemmas: $D^{(i)}(G)M = MD^{(j)}(G) \implies M = \delta_{ij}\alpha I$

1.1 Conjugate Classes

- identity E forms a class of its own
- conj. elements have same order: $g^k = E \implies (g')^k = E$
- \bullet G is abelian iff every conjugacy class has size one

Point Groups:

- conjugation changes axis of rotation
 - ⇒ classes consist of (im)proper rotations of the same angle, such that their axes can be mapped onto each other
- conjugating a rotation by a reflection yields the inverse rotation
 - $\implies C_n$ and C_n^{-1} belong to the same class if the group contains σ_v or S_n

1.2 Generators

Finite groups: Elements whose products generate the whole group. Often not unique.

example: generate C_{3v} from products of C_3 and σ_v

2 Character Table Completion

- 1. # IRREPs = # Conjugate Classes
- 2. First column $\chi(E)$ using $\sum_{j} n_{j}^{2} = |G| = \sum_{C} n_{C}$
- 3. homomorphism: $g^n = E \iff D(g)^n = I$
 - Abelian \implies 1D IRREP $\implies \chi(g) = \exp(i\frac{2\pi}{n}k)$
 - g, g^{-1} in same class $\implies \chi(g) = \chi(g)^*$ is real
 - then, if n odd (e.g. C_5) then it is +1
- 4. Row and column orthogonality

Row orthogonality

$$(\chi^{(i)}, \chi^{(j)}) = \sum_{g} \chi^{(i)}(g)^* \chi^{(j)}(g) = |G| \delta_{ij}$$

Column orthogonality

$$\sum_{i} n_{C}(\chi^{(i)}(C))^{*}\chi^{(i)}(C') = |G|\delta_{CC'}$$

The basis functions $|k_i\rangle$ of an IRREP k are defined as

$$\hat{T}(g) |k_i\rangle = \sum_{i} D(g)_{ji}^{(k)} |k_j\rangle$$

3 Degeneracy and Lifting

A $n \times n$ IRREP has n degenerate eigenfunctions ψ as a basis.

- Perturbation can only decrease symmetry $G' \subset G$
- new rep: select from D(G) the matrices $D(g' \in G')$
 - If new rep. is reducible: lift degeneracy; split level
 - guess or use character orthogonality to decompose

trick: In questions about lifting degeneracy, use only rotational subgroup SO(3). For selection rules, use full O(3).

pitfall: Example $\Gamma^2 = A_1 \oplus 2E$, then the 2 E have different energies in general (each with 2-fold degeneracy).

4 Normal Modes in Molecules

Normal modes transform as (form basis of) IRREPs of the symmetry group of the potential

- basis: 3N-component N-atom displacement vectors
- representation matrices $D^{(3N)} = R \otimes A$
 - R exchanges equilibrium positions of N atoms
 - -A(g) is action on each atom (e.g. rotation)
- n_g : number of atoms that stay in place after g

In practice, find normal modes IRREPs as follows:

- 1. Write down table (group elements, n_g , φ , (im)proper)
- 2. Decompose into IRREPs: $\chi^{\text{(vib)}} = \sum_{i} a_i \chi^{(i)}$

$$a_i = \frac{1}{m} \sum_{g} \chi^{(i)}(g)^* \chi^{(\text{vib})}(g)$$

- 3. if IRREP turns up twice $(a_i \neq 1)$, cannot deduce normal modes / eigenstates
 - $\bullet\,$ normal mode is lin. comb. of projection op. results

Projection operators:

$$\hat{P}_{jk}^{(i)} \propto \sum_{q} D_{jk}^{(i)}(g)^* \hat{T}(g)$$

5 Selection Rules

- $\langle \psi_i | \hat{T}'_{\alpha} | \psi_j \rangle \neq 0$ only if $D^{(i)} \otimes D' \otimes D^{(j)}$ contains A_{1g}
 - Calculate $\chi^{(D^{(i)}\otimes D'\otimes D^{(j)})}(g)=\chi^{(i)}(g)\chi'(g)\chi^{(j)}(g)$
 - Scalar product with $\chi^{(A_1)}$ is $0 \implies$ forbidden
- fundamental transition $|0\rangle \to |1\rangle$: ground state transforms as totally symmetric IRREP A_{1q}

trick (PS10) use direct product parity rules

gerade:
$$\chi_g \otimes \chi_g = \chi_u \otimes \chi_u = \bigoplus \chi_g$$

ungerade: $\chi_g \otimes \chi_u = \bigoplus \chi_u \neq A_{1g}$

5.1 Perturbation of spherically symmetric \hat{H}

For degeneracy, only use SO(3), but for transitions, need O(3)

• Since $\hat{i}Y_{lm} = (-1)^l Y_{lm}$, have extra factor $(-1)^l$

$$\chi^{(l)}(i \otimes R(\varphi)) = (-1)^l \chi^{(l)}(R(\varphi))$$

• Can then calculate characters with

$$S_n(\varphi) = iC_n(\varphi + \pi)$$

e.g.:

$$\chi(\sigma_h) = \chi(i \otimes C_2) = \chi(i \otimes R(\pi))$$

$$\chi(S_4) = \chi(i \otimes C_4^{-1}) = \chi(i \otimes R(\frac{\pi}{2}))$$

$$\chi(S_n) = \chi(i \otimes C_2 \otimes C_n) = \chi(i \otimes R(\pi + \frac{2\pi}{n}))$$

$$\begin{array}{c|c|c|c} O(3) & R(\varphi) & i = i \otimes E & i \otimes R(\varphi) & \text{basis} \\ \chi^{(l)} & \frac{\sin[(2l+1)\varphi/2]}{\sin(\varphi/2)} & (-1)^l(2l+1) & (-1)^l\chi^{(l)}(R(\varphi)) & Y_{lm} \end{array}$$

- perturbation example: Octahedral arrangement
 - new \hat{H} has symmetry of rotational subgroup of O_h
 - calculate characters $\chi^{(l)}(O_h)$ via table
 - decompose into IRREPs of O_h
 - * l=2 level is split into $\chi^{(2)}=E\oplus T_2$
 - selection rules between split states
 - * use symmetry (g / u) arguments

6 Selection Rules and Wigner Eckart

Perturbation $V = V_0 \underbrace{xy \dots}_{\omega \text{ factors}}$

Selection rules:

Have matrix elements $\langle j'm'|V|jm\rangle$

- 1. write $V \propto \sum_{\mu} Y_{\omega,\mu}$ using spherical coordinates
- 2. Clebsch-Gordan series

$$D^{(\omega)}D^{(j)} = \bigoplus_{L=|\omega-j|}^{\omega+j} D^{(L)} = D^{|\omega-j|} \oplus \cdots \oplus D^{\omega+j}$$
$$\implies |j'-j| \le \omega$$

3. selection rules for $\langle j'm'|Y_{\mu}^{(\omega)}|jm\rangle$ are

$$j' = j + \omega, \dots, |j - \omega|$$
 C-G coeff.:
$$m' = \mu + m$$
 (left) = (center) + (right)

4. finally, using parity $(-1)^j$,

V even:
$$1 = (-1)^{j+j'}$$
, so $\Delta j = 0, 2, ...$
V odd: $1 = (-1)^{j+j'+1}$, so $\Delta j = 1, 3, ...$

Wigner-Eckert theorem:

$$\langle N'j'm'|\,\hat{T}_{\mu}^{(\omega)}\,|Njm\rangle = C_{m\mu m'}^{j\omega j'}\,\underbrace{\langle N'j'|\,\left|\hat{T}^{(\omega)}\right|\,|Nj\rangle}_{\text{reduced matrix elemen}}$$

where

$$\hat{T}^{(\omega)}_{\mu} = r^{\omega} Y_{\omega,\mu}$$

- 1. Find $\langle 0, 0 | | T^{\omega} | \rangle N, \omega \propto C^{-1} r_{0N}^{\omega}$
- 2. then other matrix elements are written down as (e.g.)

$$\langle 0, 0, 0 | \underbrace{r^2 Y_{2, \mp 2}}_{T^{(2) \mp 2}} | N, 2, \pm 2 \rangle = C_{0 \pm 2 \mp 2}^{022} \langle 0, 0 | \left| T^{(2)} \right| | N, 2 \rangle$$

6.1 Spherical Harmonics

- First spherical harmonic: $Y_{0,0} = \frac{1}{\sqrt{4\pi}}$
- symmetry under inversion: $(-1)^l$

$$\begin{array}{c|ccc} & C_n & \sigma_v & \sigma_h \\ \hline \varphi & \varphi + \frac{2\pi}{n} & -\varphi & \\ \theta & & \pi - \theta \end{array}$$

Table 1: Action of symmetry operations