Universidad Rafael Landívar Facultad de Ingeniería Laboratorio de Pensamiento Computacional Catedrático: Ing. Manolo Agusto Mazariegos Caballeros

PROYECTO DE LABORATORIO #1 - ROLL OUT (parte a)

Ashlee Ximena Robledo Mancio 1260424 Sofía Virginia Nolasco Gomar 1143924

ÍNDICE

INTRODUCCIÓN	3
ACCIONES QUE DEBE PODER HACER EL PROGRAMA:	4
CON QUÉ DATOS SE VA A TRABAJAR:	4
QUÉ INFORMACIÓN DEBE PEDIR AL USUARIO	4
VARIABLES PARA ALMACENAR INFO:	4
CONDICIONES / RESTRICCIONES	4
CÁLCULOS A REALIZAR	5
DIAGRAMAS DE FLUJO	6

INTRODUCCIÓN

El comando central de los Autobots desea crear un simulador que le permita analizar el gasto de energón de sus nuevos reclutas y así hacerlos más eficientes disminuyendo el gasto de recursos y la generación de residuos tóxicos.

En colaboración con la Universidad Rafael Landívar, el curso de Pensamiento Computacional se ha comprometido a ofrecer su apoyo a este proyecto de responsabilidad social ambiental; elaborando un programa de fácil uso, que permita realizar este análisis.

A continuación se presenta un informe el cual resalta las acciones a ejecutar por el programa y los datos con que este trabajará, especificando el tipo de variable adecuada según la acción a realizar. Además de diagramas de flujo que representan visualmente los procesos y las condiciones/restricciones a tomar en cuenta durante el programa.

ACCIONES QUE DEBE PODER HACER EL PROGRAMA:

- 1. Solicitar al usuario que escriba un nombre.
- 2. solicitar al usuario que indique el tipo de modo alterno, si es: (auto, camion, moto)
- 3. solicitar al usuario que indique el nivel inicial de energon.
- 4. indicar en qué posición inicial se encuentra el usuario.
- 5. Mostrar un menú interactivo mostrando la información del robot.
- 6. Incremento de el nivel de energon del robot a 5%
- 7. Cambiar el modo del robot.
- 8. Solicitar que pregunte cuánto tiempo desea que se mueva el robot.
- 9. Calcular cuánto energon será suficiente según la información proporcionada.
- 10. Mostrar al usuario la posición y la cantidad de energon que tiene el robot.

CON QUÉ DATOS SE VA A TRABAJAR:

- Nombre del robot
- Modo del robot
- Distancia que se va a recorrer
- Cuánto energon debe tener

MODO	TIPO	Velocidad (k/h)	Gasto de Energon (x hora)
Robot	Robot	50	5%
Vehículo	Auto	110	10%
	Camión	85	25%
	Moto	120	20%

QUÉ INFORMACIÓN DEBE PEDIR AL USUARIO

- El cálculo del gasto de energon de los reclutas.
- En qué modo se encuentra el robot
- El nombre que se quiere asignar

VARIABLES PARA ALMACENAR INFO:

nombreRobot: string

modo: string nivelEnergíaE: int posición: in

CONDICIONES / RESTRICCIONES

- las únicas opciones de modo son robot, auto, camión o moto, de ingresar otra se debe informar que esa opción es inválida
- si el energón se encuentra al 100% no es posible recargarlo
- si la energía de energón no es suficiente para avanzar el tiempo solicitado, hay que solicitar recargarlo hasta que sea suficiente
- Existen horas límites que cada modo puede recorrer aunque tengan energía al 100% (robot-20hr, auto-10hr, camión-4hr, moto-5hr)
- La energía de energón se recarga en intervalos de 5%
- El menú interactivo debe utilizar DO WHILE ya que debe ejecutarse mínimo una vez, y debe aparecer cada vez que se finalice una opción.
- Todos inician en modo robot (esto puede cambiarse más adelante)
- Debe existir la opción "salir" para dejar de ejecutar el programa

CÁLCULOS A REALIZAR

- Recarga de energon: "energía de energón + 5"
- Energón suficiente en modo robot "5*cantidad de horas indicadas <= energía de energón"
- Distancia recorrida en modo robot "50*cantidad de horas indicadas"
- Energón suficiente en modo vehículo (case auto)"10*cantidad de horas indicadas <= energía de energón"
- Distancia recorrida en modo vehículo (case auto)"10*cantidad de horas indicadas"
- Energón suficiente en modo vehículo (case camión)"25*cantidad de horas indicadas <= energía de energón"
- Distancia recorrida en modo vehículo (case camión) "85* cantidad de horas indicadas"
- Energón suficiente en modo vehículo (case moto)"20*cantidad de horas indicadas <= energía de energón"
- Distancia recorrida en modo vehículo (case auto)"120*cantidad de horas indicadas"

DIAGRAMAS DE FLUJO

1. VER INFORMACIÓN DEL ROBOT.

2.CARGAR ENERGON

3.ROLL OUT

4. MOVILIZARSE

