EXERCICES D'ANALYSE FONCTIONNELLE – SÉANCE 6 APPLICATIONS CONTRACTANTES

Dans cet exercice on montre que le théorème de point fixe vu au cours permet de résoudre des problèmes à donnée au bord non linéaire. Ici, le problème suivant modélise la hauteur u d'une corde soumise à une force f et attachée aux bords. On peut penser à une corde à linge tendue entre deux fils et f comme la somme de la gravité et du linge qui pend dessus.

Exercice 1. Dans cet exercice, on étudie une condition sur $f \in C_b([a,b] \times \mathbb{R})$ de sorte que le problème de Dirichlet,

$$\begin{cases} u''(t) = -f(t, u(t)) & t \in [a, b] \\ u(a) = 0 = u(b), \end{cases}$$

ait une solution $u \in C_b^2(a,b) \cap C_b[a,b]$. Le fait que la solution soit continue fait que la donnée au bord à du sens. Le fait que u soit C^2 permet de s'assurer que la première équation à du sens.

(a) Expliquer pourquoi le problème

$$\begin{cases} u''(t) = -f(t) & t \in [a, b] \\ u(a) = 0 = u(b) \end{cases}$$

a une solution $u \in C_b^2(a,b) \cap C_b[a,b]$ qui s'écrit

$$u(t) = \int_{a}^{b} G(t, s) f(s) \, \mathrm{d}s$$

où

$$G(t,s) = \begin{cases} \frac{(s-a)(b-t)}{b-a} & s \le t \\ \frac{(t-a)(b-s)}{b-a} & s > t. \end{cases}$$

La seconde équation du problème \star s'appelle la donnée au bord et dans ce cas il s'agit de conditions de type «Dirichlet». G s'appelle la fonction de Green du problème, il s'agit d'un outil qu'il ont déjà rencontré dans le contexte des EDO. Préciser ici qu'il ne s'agit pas d'une EDO $\it cfr$ $\it conditions$ $\it au bord$. Insister que cette partie consiste à montrer deux choses

- (I) $u \in C_b^2(a,b) \cap C_b[a,b]$
- (II) la dérivée seconde de u vaut l'intégrale de ${\cal G}(t,s)f(s)$

Date: Automne 2022.

Pour (I), on commence par noter que u s'écrit pour tout $t \in [a, b]$,

$$u(t) = \frac{b-t}{b-a} \int_a^t (s-a)f(s) ds + \frac{t-a}{b-a} \int_t^b (b-s)f(s) ds$$

Par la régle du produit de fonctions dérivables, de somme de fonctions dérivables et le théorème fondamental de l'analyse (qui affirme que pour tout

$$F \in C[a,b], t \in [a,b] \mapsto \int_0^t F(s) \, \mathrm{d}s$$

est une fonction C^1 sur [a,b] et que sa dérivée vaut $F),\,u\in C^1_b[a,b]$ et

$$u'(t) = -\frac{1}{b-a} \int_{a}^{t} (s-a)f(s) ds + \frac{b-t}{b-a}(t-a)f(t)$$
$$+ \frac{1}{b-a} \int_{t}^{b} (b-s)f(s) ds - \frac{t-a}{b-a}(b-t)f(t)$$
$$= -\frac{1}{b-a} \int_{a}^{t} (s-a)f(s) ds + \frac{1}{b-a} \int_{t}^{b} (b-s)f(s) ds$$

Par la régle du produit de fonctions dérivables, de somme de fonctions dérivables et le théorème fondamental de l'analyse, $u' \in C_b^1[a,b]$ (donc $u \in C_b^2[a,b]$ - et en dérivant encore nous trouvons que

$$-(b-a)u''(t) = (t-a)f(t) + (b-t)f(t) = (b-a)f(t),$$

ce qui montre (II).

Cette solution est-elle unique ? Oui, il y a unicité car s'il y avait deux solutions leur différence serait nulle en a et en b et de dérivée second nulle sur [a,b], ce qui implique nulle sur tout [a,b]. Leur différence étant nulle on peut conclure que les deux solutions étaient en fait égales.

(b) Considérons l'opérateur

$$R: u \in C_b[a, b] \to C_b[a, b]: u \mapsto Ru(t) = \int_a^b G(t, s) f(s, u(s)) \, \mathrm{d}s.$$

L'image de l'opérateur, est-elle bien contenue dans $C_b[a,b]$. Oui, du fait que

$$s \in [a,b] \mapsto f(t,u(t))$$

est continue, on peut appliquer le point (a) qui nous apprend que Ru est même dans $C^2[a,b] \subset C_b[a,b]$. Établir un lien entre les points fixes de R et les solutions de (\star) .

Orienter les étudiants dans les deux directions suivantes :

- (I) Tout point fixe est-il $C^2(a,b) \cap C_b[a,b]$ et solution du problème (\star)
- (II) Toute solution du problème (\star) est-elle un point fixe de R? Pour (I), la réponse est oui par le point (a). Pour le point (II), on sait par l'unicité du point (a) que la solution u doit s'écrire sous la forme u(t) = Ru(t).

(c) Supposons qu'il existe L > 0 tel que pour tout $t_1, t_2 \in [a, b]$ et $x_1, x_2 \in \mathbb{R}$

$$|f(t_1,x_1)-f(t_2,x_2)| \le L|x_1-x_2|$$

Donnez une borne supérieure sur L>0 de sorte que le problème (\star) admette une unique solution continue. Suggerer aux étudiants d'utiliser le théorème de point fixe. Il suffit de montrer qu'on peut choisir L>0 de sorte qu'il existe un $\lambda\in(0,1)$ de sorte que pour tout $u,v\in C_b(a,b)$

$$||Ru - Rv||_{\infty} \le \lambda ||u - v||_{\infty}$$

On a que

$$|Ru(t) - Rv(t)| \leq \int_a^b |G(s,t)| |f(s,u(s)) - f(s,v(s))| \leq L ||u-v||_{\infty} \sup_{t \in [a,b]} \int_a^b |G(t,s)| \, \mathrm{d} s$$

 et

$$\int_{a}^{b} |G(t,s)| \, \mathrm{d}s = (b-t) \int_{a}^{t} (s-a) \, \mathrm{d}t + (t-a) \int_{t}^{b} (b-s) \, \mathrm{d}s$$
$$= \frac{(b-t)(t-a)^{2}}{2} + \frac{(t-a)(b-t)^{2}}{2}$$
$$= (b-t)(t-a) \frac{b-a}{2}$$

et donc

$$\sup_{t \in [a,b]} \int_{a}^{b} |G(t,s)| \, \mathrm{d}s = \frac{(b-a)^3}{8}$$

Donc si on choisit $L(a,b) < 8/(b-a)^3$, on a que R est contractante et donc admet un point fixe. Ce point fixe par le point b est l'unique solution $C^2(a,b) \cap C[a,b]$ du problème (\star) . On peut soi calculer le sup ou alors donner un argument sur pourquoi il est fini.

Ici on démontre le théorème de Lax-Milgram qui est un grand classique d'analyse fonctionnelle et qui permet de montrer l'existence de solutions à l'équation Ax = b ou à d'autres EDPs telles que $-\Delta u = f$ (en intégrant par parties). Nous insistons que la méthode est bien plus important que le résultat annoncé dans l'énoncé.

Exercice 2. On se donne une espace vectoriel complet (un espace de Hilbert) H muni d'un produit scalaire $(\cdot|\cdot)$ dont découle une norme $\|\cdot\|$ ainsi qu'une application bilinéaire $B: H \times H \to \mathbb{R}$ qui vérifie :

- (1) il existe M > 0 telle que pour tout $u, v \in H |B(u, v)| \le M||u|| ||v||$, on parle de contuinuité d'application bilinéaire
- (2) il existe m>0 telle que pour tout $u\in H$ $B(u,u)\geq m(u|u).$ On parle de coercivité de B

Si $L \in \mathcal{L}(H,\mathbb{R})$, alors il existe un unique $u \in H$ tel que pour tout $v \in H$

$$B(u, v) = L(v).$$

Il s'agit d'un théorème d'existence et d'unicité pour une certaine équation.

(i) Si $A \in \mathbb{R}^{d \times d}$ est une matrice et qu'on pose B(u,v) = (Au|v) pour tout $u,v \in \mathbb{R}^d$, expliquer qu'on a toujours (1) et que (2) tient si et seulement si A est injective (donc bijective). On utilise dans l'ordre Cauchy-Scwharz, le fait que toute matrice (toute application linéaire en espaces vectoriels de dimension finie) est continue (ou bornée i.e. $\|A\|_{\mathcal{L}(\mathbb{R}^m,\mathbb{R}^n)} < \infty$, c'est montré en analyse II et en analyse numérique, c'est aussi prouvé dans le cours dans la section concrete linear mappings) on a donc

$$|B(u,v)| = |(Au|v)| \le ||Au|| ||v|| \le ||A||_{\mathcal{L}(\mathbb{R}^d,\mathbb{R}^d)} ||u|| ||v||$$

et on peut donc prendre $M=\|A\|_{\mathcal{L}(\mathbb{R}^d,\mathbb{R}^d)}$. Concernant l'injectivité : si (2) tient, on a que B(u,u)=0 implique que (u|u)=0 et par positivité du produit scalaire u=0. Donc, on a injectivité. Inversément, si l'application est injective, elle ne s'annule pas sur $\mathbb{S}^d=\{u\in\mathbb{R}^d:\|u\|_{\mathbb{R}^d}=1\}$ et par compacité il existe $\delta>0$ tel que pour tout $u\in\mathbb{S}^d$ $|B(u,u)|\geq \delta$. On termine en obsevant que $u/\|u\|_{R^d}\in\mathbb{S}^d$ et en utilisant la bilinéarité. On prend $m=\delta$.

(ii) Si $A \in \mathbb{R}^{d \times d}$ est une matrice injective, expliquer pourquoi l'existence d'une unique $u \in H$ implique l'existence d'une unique solution $x \in \mathbb{R}^d$ au système

$$Ax = b$$

où $b \in \mathbb{R}^d$ est donné.

On pose B(u,v)=(Au|v) pour tout $u,v\in\mathbb{R}^d$ et $L_b(v)=(b|v)$. On voit qu'ils vérifient les hypothèses par le point (i) et par le fait que $L_b\in\mathcal{L}(\mathbb{R}^d,\mathbb{R})$ par Cauchy-Schwarz. On observe que $H=\mathbb{R}^d$ est un espace de Hilbert (dire quel produit scalaire et quelle norme) on peut donc déduire l'existence d'un unique $x\in\mathbb{R}^d$ (c'est le v de l'affirmation) tel que pour tout $v\in\mathbb{R}^d$

$$B(x,v) = L_b(v)$$

c'est-à-dire

$$(Ax|v) = (b|v)$$

pour tout $u \in \mathbb{R}^d$ donc Ax = b (en prenant $u = e_i$) vecteurs de la base ou en disant que $(\mathbb{R}^d)^{\perp} = \{0\}$.

(iii) On va montrer le théorème dans le cas où B(u,v)=(A(u)|v) où $A:H\to H$ est linéaire et L(u)=(f|u) pour un $f\in H$. Expliquer pourquoi sous (1) et (2) A est continue et $\|A\|_{\mathcal{L}(H,H)}\leq M$. Par (1), on note en prenant v=Au que

$$||Au||^2 = (Au|Au) \le M||u|| ||Au||$$

et donc pour tout $u \in H \|Au\| \le M\|u\|$ ce qui implique que A est bornée donc continue de plus en passant au supremum $\|A\|_{\mathcal{L}(H,R)} \le M$. On utilise donc pas (2).

(iv) Expliquer pourquoi l'application

$$v \in H \mapsto g(v) \doteq v - \frac{m}{M^2} (Av - f)$$

admet un unique point fixe. On va utilise le théorème de contraction. On a que H est un espace complet quand vu comme espace métrique dont la métrique découle de la norme de H. On va montrer que g est contractante vue comme une application $H \to H$. Pour tout $v, w \in H$, on a en utilisant la linéarité de A que

$$g(v) - g(w) = (v - w) - \frac{m}{M^2}A(v - w).$$

Si l'on pose $u \doteq v - w$ on a que

$$||g(v) - g(w)||^2 = ||v - \frac{m}{M^2}Av||^2 = ||v||^2 - 2\frac{m}{M^2}(Av, v) + (\frac{m}{M^2})^2||Av||^2$$

et par (ii) on trouve que

$$||g(v) - g(w)|| \le \sqrt{1 - \frac{m^2}{M^2}} ||v - w||.$$

Vu que m>0 et que M>m on a que la racine carrée est strictment plus petite que 1. L'application est dès lors contractante. Par le théorème de point fixe. Il existe un unique $u\in H$ tel que g(u)=u càd Au=f en contractant avec $(\cdot|v)$ on obtient l'affirmation.

(v) En déduire l'affirmation de l'énoncé.

Exercice 3. Fixons un opérateur continu $A: X \to X$ d'un espace vectoriel complet vers lui-même. Supposons que $||T||_{L(X)} < 1$.

Montrez que la série

$$S = \sum_{n>0} T^n$$

converge pour la norme d'opérateur et que

$$(1-T)^{-1} = S$$
 et $1+TS = S = 1+ST$.

Exercice 4. Nous allons construire une fonction f uniformément continue, périodique mais nulle part dérivable.

Considérons les fonctions continues à valeurs réelle de période 1 sur la droite réelle \mathbb{R} . Munie de la norme uniforme

$$||u||_{C(\mathbb{T})} = \sup_{x \in \mathbb{T}} |u(x)|$$

où $\mathbb{T} = [0,1]$, notons cet espace vectoriel normé $C(\mathbb{T})$.

- (a) Expliquez pourquoi $C(\mathbb{T})$ est complet.
- (b) Montrez qu'il existe une fonction f continue et périodique telle que pour tout $x \in \mathbb{T}$,

$$\left| \frac{1}{2} - x \right| + \frac{1}{2} f(2x) = f(x).$$

Si l'on étend par périodicité la fonction

$$x \in \mathbb{T} \mapsto s(x) = \left| \frac{1}{2} - x \right|,$$

montrez que, pour tout $x \in \mathbb{T}$, la fonction f satisfait

$$f(x) = \sum_{n \in \mathbb{N}} \frac{s(2^n x)}{2^n}.$$

(c) Montrons maintenant la non-dérivabilité en $x_0 \in \mathbb{T}$. Pour chaque $m \in \mathbb{N}$, appelons a^m le premier point de la forme $k/2^m$ (où $k \in \mathbb{N}$) qui satisfait $a^m \geq x_0$. Posons ensuite

$$b^m = a^m + \frac{1}{3 \cdot 2^m}$$
 et $c^m = a^m + \frac{1}{2^m}$.

Sachant que

$$\frac{f(b^m) - f(a^m)}{b^m - a^m} - \frac{f(c^m) - f(a^m)}{c^m - a^m} = 2,$$

déduisez la non dérivabilité de f en x_0 .

Exercice 5. Décrivez toutes les fonctions continues $f : \mathbb{R} \to \mathbb{R}$ qui satisfont pour tout $x, y \in \mathbb{R}$

$$f(x) + f(y) = f(x+y).$$