

INCREMENTAL STRATEGU FOR APPLYING OPERATORS EMPHASIZING FAULTS DIFFICULT TO BE DETECTED BY AUTOMATED STATIC ANALYSER

This briefing reports scientific evidence on Mutation Testing Strategy.

FINDINGS

- Um subconjunto de operadores de mutação selecionados a partir de dados de análise estática.
- O conjunto STAT se mostrou atraente dado o aspecto da combinação entre análise estática e análise dinâmica.
- Tendo operadores de mutação com menor sobreposição com defeitos passíveis de detecção pelo analisador estático automatizado empregado, a STAT se mostra uma boa opção para a aplicação do Teste de Mutação.
- A correspondência entre avisos e mutantes foi baseada na taxa de Correspondência Direta por Linha (CDL) nos permitiu quantificar o número de mutantes identificados pelo analisador estático e determinar a STAT.
- Foi identificado um conjunto dos tipos de avisos do analisador estático que mais identificaram as mutações produzidas nos mutantes.
- Foi identificado um conjunto dos tipos de avisos do analisador estático que menos identificaram as mutações produzidas nos mutantes.
- Foi identificado um conjunto de operadores de mutação que mais tiveram correspondência com os avisos do analisador estático.
- Foi identificado um conjunto de operadores de mutação que menos tiveram mutações identificadas pelo analisador estático.
- A avaliação qualitativa dos dados gerados permitem a evolução do analisador estático e da ferramenta de mutação utilizados.
- A taxa de Correspondência Direta por Linha (CDL) em ordem crescente permitiu que chegasse no subconjunto de operadores da STAT.

- Os operadores com as menores taxas CDL são aqueles que geram mutantes mais difíceis de serem percebidos pelo analisador estático utilizado.
- Foi feita a comparação estatística entre os operadores da STAT, E5 e E27 par a par e foi constatado que não existe diferença estatística entre as estratégias.
- A diferença estatística foi baseada na comparação par a par em termos de escore de mutação, redução de custo e redução de custo em termos de número de mutantes equivalentes.
- Mesmo não existindo diferença estatística entre as estratégias, foi possível constatar que houve pouca intersecção entre os operadores da STAT e os operadores da E5 e da E27.
- Dentre os 23 operadores da STAT estão apenas dois dos seis operadores da estratégia E5 e apenas três dos dez operadores da estratégia E27.
- O conjunto essencial STAT foi baseado nos 23 primeiros operadores de mutação e apresentam uma taxa CDL abaixo de 14%.
- Mesmo a STAT tendo mais operadores mutação, gerou 6,2% mais mutantes que o E5, e 64,6% menos mutantes que a E27.
- Os resultados obtidos possibilitam que sejam propostas melhorias tanto para o analisador estático quanto para a ferramenta de mutação utilizada.
- Para o analisador estático é possível sugerir a criação de novas regras de detecção que tornem o analisador mais robusto.
- Para a ferramenta de mutação é possível sugerir quais operadores de mutação empregar ou não durante o teste de mutação.

Who is this briefing for?

Para profissionais de engenharia de software a fim de tornar mais eficiente a atividade de teste.

Where the findings come from?

Todas as descobertas deste Briefing foram extraídas do trabalho conduzido por Silva et al.

What is included in this briefing?

Informações básicas sobre as principais contribuições do trabalho e uma breve apresentação do conjunto STAT.

To access other evidence briefings on software engineering:

http://www.lia.ufc.br/~cbsoft2017/xxxi -sbes/

For additional information about LaPES:

http://lapes.dc.ufscar.br/