České vysoké učení technické v Praze Fakulta elektrotechnická

Sbírka řešených příkladů

Optimalizace a teorie her

Jakub Adamec Praha, 2025

https://github.com/knedl1k/A8B010GT

Obsah

			Strana
1	Prv	ní týden	2
	1.1	Důkaz souvislosti minima a maxima	2
	1.2	Hledání přípustných množin	2
	1.3	Hledání přípustných množin	2
	1.4	Maximalisační úloha	3
	1.5	Minimalisační úloha	3
	1.6	Optimalisační úloha s nadrovinami	4
	1.7	Uzavřená úsečka	6
	1.8	Je nadrovina konvexní?	6
	1.9	Je uzavřený poloprostor konvexní?	6
	1.10	Je uzavřená koule konvexní?	6
	1.11	Je okolí konvexní?	6
	1.12	Je průnik množin konvexní?	7
	1.13	Důkaz, že rozdíl a sjednocení nezachovává konvexitu	7
	1.14	Důkaz, že afinní zobrazení je konvexní	7
	1.15	Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní	8
	1.16	Důkaz, že kartézský součin je konvexní	8
	1.17	Určení definitnosti matic	9
	1.18	Existence matice	10
2	Dru	hý týden	12
4	2.1	Věta o nejlepší aproximaci	
	2.1	Projekce bodu a variační nerovnost	
	2.3	Koule?	
	2.4	Věta o ortogonálním rozkladu	
	2.4	veta o ortogonamim rozkiadu	10
3	Třet	tí týden	15
	3.1	Metoda nejmenších čtverců	15
	3.2	Příklad výpočtu metody nejmenších čtverců	15
	3.3	Příklad výpočtu metody nejmenších čtverců	16
	3.4	Věta o oddělitelnosti bodu a konvexní množiny	16
4	Čtv	rtý týden	17

5	Pátý týden	18
6	Šestý týden	19
7	Sedmý týden	20
8	Osmý týden	21
9	Devátý týden	22
10	Desátý týden	23
11	Jedenáctý týden	24
12	Dvanáctý týden	25
13	Třináctý týden	26
14	Čtrnáctý týden	27

$\mathbf{\acute{U}vod}$

Tento text není psán jako učebnice, nýbrž jako soubor řešených příkladů, u kterých je vždy uveden celý korektní postup a případné moje poznámky, které často nebývají formální, a tedy by neměly být používány při oficálním řešení problémů, například při zkoušce. Jedná se pouze o pokus předat probíranou látku z různých úhlů pohledu, pokud by korektní matematický nebyl dostatečně výřečný.

Velmi ocením, pokud čtenáři zašlou své podněty, úpravy anebo připomínky k textu. Budu rád za všechnu konstruktivní kritiku a nápady na změny. Dejte mi také prosím vědět, pokud v textu objevíte překlepy, chyby a jiné.

Errata a aktuální verse textu bude na stránce https://github.com/knedl1k/A8B010GT.

Poděkování. Rád bych poděkoval docentu Martinu Bohatovi nejen za zadání, okolo kterých je postavena celá sbírka, ale také za celý předmět Optimalizace a teorie her.

Text je vysázen makrem IAT_EX Leslieho Lamporta s využitím balíků hypperref Sebastiana Rahtze a Heiko Oberdiek.

Stručné informace o textu

Všechny růžové texty jsou zároveň hypertextové odkazy. Často jsou použity u přednáškových příkladů, pomocí nichž lze vidět ukázkové řešení příkladu na přednášce.

U každého příkladu je pro ušetření místa a zpřehlednění sbírky řešení jednotlivých příkladů ihned pod zadáním.

1 První týden

1.1 Důkaz souvislosti minima a maxima

Tvrzení. Pro $f:D \to \mathbb{R}, M \subseteq D, \hat{x} \in M$ platí:

- $(1) \ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x) \iff \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)),$
- (2) jesliže $\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$, pak $\underset{x \in M}{\min} f(x) = -\underset{x \in M}{\max} (-f(x))$.

Důkaz.

$$(1)\ \hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x), \operatorname{tj.}\ f(\hat{x}) \leq f(x), \forall x \in M \iff -f(\hat{x}) \geq -f(x), \forall x \in M, \operatorname{tj.}\ \hat{x} \in \underset{x \in M}{\operatorname{argmax}} (-f(x)). \quad \Box$$

(2) At
$$\hat{x} \in \underset{x \in M}{\operatorname{argmin}} f(x)$$
, pak $\underset{x \in M}{\min} f(x) = f(\hat{x}) = -(-f(\hat{x})) \stackrel{(1)}{=} -\underset{x \in M}{\max} (-f(x))$.

1.2 Hledání přípustných množin

minimalizujte
$$x^2 + 1$$

za podmínek
$$\frac{3}{x} \le 1$$
,

$$x \in \mathbb{N}$$

Upravíme podmínky a uděláme jejich průnik: $(x-3 \ge 0) \land (x \in \mathbb{N}) \Rightarrow M = \mathbb{N} \setminus \{1,2\}.$

Úvahou pak lze uhodnout minimum - minimum leží v bodě x = 3.

1.3 Hledání přípustných množin

maximalizujte
$$\ln x$$

za podmínek
$$x \leq 5$$
,

$$\cos(\pi x) = 1.$$

$$D(f) = (0, \infty).$$

Udělejme průnik definičního oboru funkce a podmínek: $(x \in (0, \infty)) \land (x \le 5) \land (\cos(\pi x) = 1)$.

Očividně tedy $M = \{2, 4\}.$

Úvahou pak lze uhodnout $\underset{x \in M}{\operatorname{argmax}} \ln x = \{4\}.$

1.4 Maximalisační úloha

Banka nabízí dva investiční produkty. Očekávaný měsíční výnos prvního investičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{2x}{4x+25}$ a očekávaný měsíční výnos druhého invetičního produktu (v tis. Kč) při investici x (v tis. Kč) je $\frac{x}{x+50}$. Jakým způsobem má investor rozdělit částku c=100000 Kč mezi uvedené dva produkty tak, aby celkový očekávaný měsíční výnos byl co největší?

maximalisujme
$$\frac{x}{x+50} + \frac{2y}{4y+25}$$
 za podmínek $x+y=100,$ $x,y \geq 0.$

Vyjádřeme si jednu proměnnou v závislosti na druhé, například x = 100 - y. Následně dosadíme do úlohy a vyšetříme stacionární body pomocí první derivace.

$$\frac{\mathrm{d}}{\mathrm{d}y}\left(\frac{100-y}{150-y} + \frac{2y}{4y+25}\right) = \frac{-50}{(150-y)^2} + \frac{50}{(4y+25)^2} \stackrel{!}{=} 0$$

Zbavme se zlomků:

$$-50(4y + 25)^{2} + 50(150 - y)^{2} = 0$$
$$(150 - y)^{2} - (4y + 25)^{2} = 0$$
$$(150 - y - 4y - 25) - (150 - y + 4y + 25) = 0$$
$$(125 - 5y)(175 + 3y) = 0$$
$$y_{1} = 25, y_{2} \approx -58.3$$

Tedy aby byly splněny všechny podmínky je jediné možné řešení $y = 25 \rightarrow x = 75$.

1.5 Minimalisační úloha

Ve firmě potřebují nalézt rozměry otevřené krabice (tj. krabice bez horní stěny) se čtvercovou podstavou o objemu 10 dm³ tak, aby obsah plochy jejího pláště byl co nejmenší. Formulujte odpovídající optimalisační úlohu za předpokladu, že krabice je vyrobena z materiálu, jehož tloušťka je zanedbatelná. Tuto úlohu poté vyřešte.

minimalisujme
$$4xy + x^2$$

za podmínek $x^2y = 10$,
 $x, y > 0$.

Vyjádřeme si jednu proměnnou v závislosti na druhé, například $y = \frac{10}{x^2}$. Následně dosadíme do úlohy a vyšetříme stacionární body pomocí první derivace.

$$\frac{\mathrm{d}}{\mathrm{d}y} \left(4x \frac{10}{x^2} + x^2 \right) = \frac{-40}{x^2} + 2x \stackrel{!}{=} 0$$

Zbavme se zlomků:

$$-40 + 2x^3 = 0$$
$$x^3 = 20$$
$$x = \sqrt[3]{20}$$

Tedy jediné možné řešení $x = \sqrt[3]{20} \rightarrow y = \frac{10}{\left(\sqrt[3]{20}\right)^2} = \sqrt[3]{\frac{5}{2}}.$

1.6 Optimalisační úloha s nadrovinami

V \mathbb{R}^n jsou dány množiny bodů $A = \{a_1, \ldots, a_k\}$ a $B = \{b_1, \ldots, b_t\}$. Ať $w \in \mathbb{R}^n$ a $\lambda \in \mathbb{R}$. Předpokládejme, že H je nadrovina o rovnici $\langle x, w \rangle + \lambda = 0$, H_1 je nadrovina o rovnici $\langle x, w \rangle + \lambda = 1$ a H_2 je nadrovina o rovnici $\langle x, w \rangle + \lambda = -1$.

- (a) Ukažte, že vzdálenost mezi nadrovinami H_1 a H_2 je $\frac{2}{||w||}$. Dále ukažte, že $\frac{1}{||w||}$ je vzdálenost H od H_2 .
- (b) Iterpretujte optimalisační úlohu

maximalisujte
$$g(w,\lambda)=\frac{2}{||w||}$$
 za podmínek $\langle a_i,w\rangle+\lambda\geq 1$ pro všechna $i=1,\ldots,k,$ $\langle b_i,w\rangle+\lambda\leq -1$ pro všechna $j=1,\ldots,l.$

(c) Ukažte, že $(\hat{w}, \hat{\lambda})$ je řešením úlohy z předchozího bodu právě tehdy, když je řešením úlohy (kvadratického programování) ve tvaru

minimalisujte
$$h(w, \lambda) = \frac{1}{2}||w||^2$$

za podmínek $\langle a_i, w \rangle + \lambda \ge 1$ pro všechna $i = 1, \dots, k$, $\langle b_i, w \rangle + \lambda \le -1$ pro všechna $j = 1, \dots, l$.

(a)

Pak vzdálenost mezi nadrovinami H_1 a H_2 je dána rozdílem průsečíků P a Q v normě. Tedy:

$$||Q - P|| = \left\| \frac{1 - \lambda}{||w||^2} w + \frac{1 + \lambda}{||w||^2} w \right\| = \left\| \frac{2w}{||w||^2} \right\| = \frac{2}{||w||^2} ||w|| = \frac{2}{||w||}.$$

To je príma, to jsme přesně chtěli. \Box

(b)

(c) V úloze (b) maximalisujeme zlomek, kde se proměnná nachází ve jmenovateli. Tedy snažíme se najít co nejmenší možný jmenovatel, aby zlomek měl co největší hodnotu. Můžeme úlohu převrátit a minimalisovat samotný jmenovatel. Protože násobení je lineární a zachovává nám všechny nerovnosti, můžeme různě modifikovat jakou konstantou násobíme námi minimalisovanou proměnnou. Zároveň si můžeme dovolit umocnit normu, protože i to nám zachová všechny nerovnosti. Zde si tedy chytře zvolíme násobení $\frac{1}{2}$, protože při následném hledání stacionárních bodů funkce nám vyskočí z kvadrátu dvojka, jenž pěkně pokrátíme. Podmínky nám zůstaly stejné, není co řešit.

Konvexní množiny

Definice. Množina $C \subseteq \mathbb{R}^n$ se nazve konvexní, jestliže pro každé $x, y \in C$ je $[x, y] \in C$.

1.7 Uzavřená úsečka

Nechť $x, y \in \mathbb{R}^n$. Množina

$$[x,y] := \{\lambda x + (1-\lambda)y \mid 0 \le \lambda \le 1\}$$

se nazývá uzavřená úsečka s krajními body x a y.

1.8 Je nadrovina konvexní?

Definice nadroviny: $H(y;\alpha) := \{x \in \mathbb{R}^n \mid \langle x,y \rangle = \alpha\}, y \in \mathbb{R}^n, \alpha \in \mathbb{R}.$

Důkaz.

Af $x, z \in H(y, \alpha), \lambda \in [0, 1].$

Cíl: $\lambda x + (1 - \lambda)z \in H(y, \alpha)$. Tedy dokazujeme podle definice.

$$\langle \lambda x + (1-\lambda)z, y \rangle = \lambda \underbrace{\langle x, y \rangle}_{\alpha} + (1-\lambda) \underbrace{\langle z, y \rangle}_{\alpha} = \lambda \alpha + (1-\lambda)\alpha = \alpha.$$

$$\Rightarrow \lambda x + (1 - \lambda)z \in H(y, \alpha). \quad \Box$$

1.9 Je uzavřený poloprostor konvexní?

1.10 Je uzavřená koule konvexní?

Definice uzavřené koule: $B(a,r)=\{a\in\mathbb{R}^n\mid ||x-a||\leq r\},$ o středu $a\in\mathbb{R}^n$ a poloměru r>0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| \le r$. Tedy za x z definice dosadíme úsečku mezi body x a y, které jsme si vybrali a chceme ukázat, že i tato úsečka leží v uzavřené kouli, dle definice.

$$||[\lambda x + (1 - \alpha)y] - a|| = ||\lambda x - (1 - \lambda)a + (1 - \lambda)y - \lambda a|| = ||\lambda(x - a) + (1 - \lambda)(y - a)||$$

$$\leq \lambda ||\underbrace{x - a}_{\leq r}|| + (1 - \lambda)||\underbrace{y - a}_{\leq r}|| \leq \lambda r + (1 - \lambda)r = r. \quad \Box$$

1.11 Je okolí konvexní?

Definice okolí: $B(a,r) = \{a \in \mathbb{R}^n \mid ||x-a|| < r\}$, o středu $a \in \mathbb{R}^n$ a poloměru r > 0.

Důkaz.

At $x, y \in \mathbb{R}^n, \lambda \in [0, 1]$.

Cíl: $||[\lambda x + (1 - \alpha)y] - a|| < r$. Dle definice.

$$||[\lambda x + (1-\alpha)y] - a|| = ||\lambda x - (1-\lambda)a + (1-\lambda)y - \lambda a|| = ||\lambda(x-a) + (1-\lambda)(y-a)||$$

$$\leq \lambda ||\underbrace{x-a}_{\leq r}|| + (1-\lambda)||\underbrace{y-a}_{\leq r}|| < \lambda r + (1-\lambda)r = r. \quad \Box$$

1.12 Je průnik množin konvexní?

Úvaha pro 2 množiny ve \mathbb{R}^2 :

Mějme jednu modrou $(y \ge 0)$ a druhou červenou $(x \ge 0)$ konvexní množinu. Jejich průnik je pak nezáporný ortant, tedy

$$\mathbb{R}^n_+ = \{(x_1, \dots, x_n)^T \in \mathbb{R}^n \mid x_1 \ge 0, \dots, x_n \ge 0\}.$$

Visuálně je průnik nekonvexní.

Důkaz.

Nechť
$$x, y \in \bigcap_{i \in I} \mathbb{M}_i, \forall i \in I \implies [x, y] \in \mathbb{M}_i, \forall i \in I \implies [x, y] \subseteq \bigcap_{i \in I} \mathbb{M}_i.$$

1.13 Důkaz, že rozdíl a sjednocení nezachovává konvexitu

Mějme $[0,1] \setminus (0,1) = \{0,1\} = \{0\} \cup \{1\}.$

[0,1] a (0,1) jsou konvexní množiny. Jejich rozdíl ale už konvexní není.

 $\{0\}$ a $\{1\}$ jsou konvexní množiny. Jejich sjednocení ale už konvexní není.

Afinní zobrazení

Definice. Zobrazení $f: \mathbb{R}^n \to \mathbb{R}^m$ se nazývá afinní, existují-li $A \in \mathbb{M}_{m,n}(\mathbb{R})$ a $b \in \mathbb{R}^m$ tak, že f(x) = Ax + b.

1.14 Důkaz, že afinní zobrazení je konvexní

Tvrzení.

Nechť $f:\mathbb{R}^n\to\mathbb{R}^m$. Pak f je afinní \iff pro každé $x,y\in\mathbb{R}^n$ a každé $\lambda\in\mathbb{R}$ platí

$$f(\lambda x + (1 - \lambda)y) = \lambda f(x) + (1 - \lambda)f(y).$$

Důkaz.

 \Rightarrow ": At f(x) = Ax + b, kde $A \in \mathbb{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^n$.

At $x, y \in \mathbb{R}^n, \lambda \in \mathbb{R}$.

$$f(\lambda x + (1 - \lambda)y) = A[\lambda x + (1 - \lambda)y] + b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + (1 - \lambda)b = \lambda Ax + (1 - \lambda)Ay + \lambda b + \lambda$$

" \Leftarrow ": Cíl: Ukázat, že f je afinní, tedy f(x) = Ax + b.

Zvolme $\varphi(x) = f(x) - f(0)$.

Pokud je f afinní, pak zobrazení φ by mělo být dáno jako Ax, tedy být lineární.

Cíl: φ je lineární zobrazení.

Musíme ověřit uzavřenost na násobení a sčítání z definice.

(1) At $x \in \mathbb{R}^n$, $\alpha \in R$.

Cíl: $\varphi(\alpha x) = \alpha \varphi(x)$.

$$\varphi(\alpha x) = f(\alpha x) - f(0) = f(\alpha x + (1 - \alpha)0) - f(0) = \alpha f(x) + (1 - \alpha)f(0) - f(0) = \alpha f(x) - \alpha f(0) = \alpha f(x) - f(0) = \alpha \varphi(x - 0). \quad \Box$$

(2) At $x, y \in \mathbb{R}^n$.

Cíl: $\varphi(x+y) = \varphi(x) + \varphi(y)$.

$$\varphi(x+y) = \varphi\left(2\left(\frac{1}{2}(x+y)\right)\right) \stackrel{(1)}{=} 2\varphi\left(\frac{1}{2}(x+y)\right) = 2\left[f(\frac{1}{2}x + \frac{1}{2}y) - f(0)\right] = 2\left[\frac{1}{2}f(x) + \frac{1}{2}f(y) - f(0)\right] = f(x) + f(y) - f(0) - f(0) = \underbrace{f(x) - f(0)}_{\varphi(x)} + \underbrace{f(y) - f(0)}_{\varphi(y)} = \varphi(x) + \varphi(y). \quad \Box$$

1.15 Důkaz, že obraz konvexní množiny při afinním zobrazení je konvexní

Tvrzení.

Je-li $f: \mathbb{R}^n \to \mathbb{R}^m$ afinní a $C \subseteq \mathbb{R}^n$ konvexní, pak f(C) je konvexní.

Důkaz.

Mějme $a, b \in f(C) \implies \exists x, y \in C : f(x) = a, f(y) = b.$

Dle předpokladu je
$$C$$
 konvexní. $\Longrightarrow [x,y] \subseteq C \Longrightarrow \underbrace{f([x,y])}_{\subseteq f(C)} = \underbrace{[f(x),f(y)]}_{a} \subseteq f(C)$. \square

1.16 Důkaz, že kartézský součin je konvexní

Tvrzení.

Nechť $C_1 \subseteq \mathbb{R}^n$ a $C_2 \subseteq \mathbb{R}^m$. Pak C_1 a C_2 jsou konvexní množiny právě tehdy, když $C_1 \times C_2$ je konvexní množina.

Důkaz.

"⇒": Mějme
$$\begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2, \lambda \in [0,1]$$

Cil:
$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} \in C_1 \times C_2$$
. Dle definice.

$$\lambda \begin{bmatrix} a \\ b \end{bmatrix} + (1 - \lambda) \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} \lambda a \\ \lambda b \end{bmatrix} + \begin{bmatrix} (1 - \lambda)c \\ (1 - \lambda)d \end{bmatrix} = \begin{bmatrix} \lambda a + (1 - \lambda)c \\ \lambda b + (1 - \lambda)d \end{bmatrix} \in C_1 \times C_2. \quad \Box$$

"
—": Definujme afinní zobrazení $f:\mathbb{R}^n\times\mathbb{R}^m\to\mathbb{R}^n$ předpisem

$$f(x,y) = x$$
.

Pak f je afinní. Navíc $f(C_1 \times C_2) = C_1$. $\Longrightarrow C_1$ je konvexní, protože afinní zobrazení zachovává konvexitu. A důkaz bude obdobný pro C_2 , zde zadefinujme afinní zobr. $g: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ předpisem

$$q(x,y) = y.$$

Pak g je afinní. Navíc $g(C_1 \times C_2) = C_2$. $\Longrightarrow C_2$ je konvexní, protože afinní zobrazení zachovává konvexitu. \square

1.17 Určení definitnosti matic

Určete definitnost matice A, jestliže

(a)
$$\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix}$$
;

(b)
$$\begin{bmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix};$$

(c)
$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix};$$

(d)
$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix};$$

(e)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix};$$

(f)
$$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 5 & 1 \\ 0 & 1 & 1 \end{bmatrix} .$$

Matice, u které ch
ceme určovat definitnost, musí být
 $\underbrace{\text{symetrická}}_{Q=Q^T}.$

Pak platí:

$$\langle Qx, x \rangle \ge 0 \forall x \in \mathbb{R}^n \iff Q$$
 je positivně semidefinitní. $\langle Qx, x \rangle > 0 \forall x \in \mathbb{R}^n \iff Q$ je positivně definitní.

Analogicky pro negativně semidefinitní, respektive definitní.

Matice je indefitní pokud nesplňuje ani jednu možnost.

Pro symetrické matice také platí, že Q je negativně (semi)defitní, jestliže (-Q) je positivně (semi)defintní.

Pomocí Sylvesterova kritéria lze určit positivní, či negativní definitnost. Pro případy podezření na semidefinitnost je potřeba navíc prozkoumat menší minory matice.

(a)
$$\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix} \rightarrow |9| = 9 > 0, \begin{vmatrix} 9 & 6 \\ 6 & 4 \end{vmatrix} = 36 - 36 = 0. \rightarrow \text{podezření na positivní semidefinitnost.}$$

Hlavní minory jsou $Q_{\{1\}}$ a $Q_{\{1,2\}}$. Menší minory: Q_I , kde $I\subseteq\{1,\ldots,n\}$ neprázdná. Aby matice byla positivně semidefinitní, tak $\det Q_I \geq 0.$

Tedy:
$$Q_{\{2\}} = [4]$$
. det $Q_{\{2\}} = 4 > 0$.

Tedy matice $\begin{bmatrix} 9 & 6 \\ 6 & 4 \end{bmatrix}$ je positivně semidefinitní.

(b)
$$\begin{vmatrix} 15 & 3 & 2 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix}$$
 $\begin{vmatrix} R_1 - 2R_3 \\ R_2 \\ R_3 \end{vmatrix} = \begin{vmatrix} 11 & 3 & 0 \\ 3 & 1 & 0 \\ 2 & 0 & 1 \end{vmatrix} = \begin{vmatrix} 11 & 3 \\ 3 & 1 \end{vmatrix} = 11 - 9 = 2 > 0$. Matice je positivně definitní.

9

(c)
$$Q = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 1 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$

Pozorování: Matice je lineárně závislá, tedy $\det Q = 0$.

$$Q_{\{1\}} = 4 > 0,$$

$$Q_{\{2\}} = 1 > 0,$$

$$Q_{\{3\}} = 0 = 0.$$

Tedy matice je jedině positivně semidefinitní, nebo indefinitní.

Spočtěme tedy vedlejší minor, například vynechejme 1. řádek a 1. sloupec:

 $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = -1 < 0. \text{ Aby matice } Q \text{ byla positivně semidefinitní, musely by i všechny vedlejší minory být} \geq 0. Protože jsme našli případ, kdy tomu tak není, matice <math>Q$ je indefinitní.

(e)
$$\begin{bmatrix} -1 & 0 & 1 \\ 0 & -2 & 2 \\ 1 & 2 & -3 \end{bmatrix}$$

Pozorování: matice může být negativně (semi)definitní, nebo indefinitní.

Využijme tedy vlastnosti symetrických matic a určeme definitnost pro matici (-Q).

$$-Q = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ -1 & -2 & 3 \end{bmatrix}$$

$$\det(-Q) = \begin{vmatrix} 1 & 0 & -1 & R_1 \\ 0 & 2 & -2 & R_2 \\ -1 & -2 & 3 & R_3 + R_1 + R_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & -1 \\ 0 & 2 & -2 \\ 0 & 0 & 0 \end{vmatrix} = 0.$$

Tedy matice (-Q) je positivně semidefinitní, nebo indefinitní.

$$\begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 2 \ge 0. \begin{vmatrix} 2 & -2 \\ -2 & 3 \end{vmatrix} = 2 \ge 0. \begin{vmatrix} 1 & -1 \\ -1 & 3 \end{vmatrix} = 2 \ge 0.$$

 $\implies (-Q)$ je positivně semidefinitní
 $\iff Q$ je negativně semidefinitní.

1.18 Existence matice

 $At' A \in \mathbb{M}_n(\mathbb{R}).$

- (a) Ukažte, že $\langle Ax, y \rangle = \langle x, A^T y \rangle$ pro všechna $x, y \in \mathbb{R}^n$.
- (b) Ukažte, že existují matice $B, C \in \mathbb{M}_n(\mathbb{R})$ takové, že $B^T = B$, $C^T = -C$ a A = B + C. Jsou matice B a C určeny jednoznačně?

10

(c) Ukažte, že existuje symetrická matice $B \in \mathbb{M}_n(\mathbb{R})$ taková, že $\langle Ax, x \rangle = \langle Bx, x \rangle$.

Zadefinujme si vlastnost skalárního součinu: $\langle a, b \rangle = b^T a$, kde $b^T = (b_1, \dots, b_n)$, $a = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

(a) Využijme zmíněné vlastnosti.

$$\langle Ax, y \rangle = y^T Ax = \underbrace{y^T (A^T)^T}_{(A^T y)^T} x = \langle A^T y \rangle^T x = \langle x, A^T y \rangle. \quad \Box$$

(b) Pozorování: Matice B je symetrická a matice C je antisymetrická.

Zvolme:
$$B = \frac{1}{2}(A + A^{T})$$

$$C = \frac{1}{2}(A - A^{T})$$

$$B + C = A.$$

$$C^{T} = \frac{1}{2}(A - A^{T})^{T} = \frac{1}{2}(A^{T} - A) = -\frac{1}{2}(A - A^{T}) = -C.\checkmark$$

$$B^{T} = \frac{1}{2}(A + A^{T})^{T} = \frac{1}{2}(A^{T} + A) = \frac{1}{2}(A + A^{T}) = B.\checkmark \square$$

$$(c) \langle Cx, x \rangle \stackrel{?}{=} 0$$

$$\langle Cx, x \rangle \stackrel{(a)}{=} \langle x, C^T x \rangle \stackrel{-C = C^T}{=} -\langle x, Cx \rangle = -\langle Cx, x \rangle = 0.$$

Matice C tedy nijak nepřispívá do výsledku. Takže platí $\langle Ax,x\rangle=\langle Bx,x\rangle.$

$\mathbf{2}$ Druhý týden

Věta o nejlepší aproximaci 2.1

Je-li $C \subseteq \mathbb{R}^n$ neprázdná uzavřená konvexní množina, pak pro každé $x \in \mathbb{R}^n$ existuje právě jeden bod $\hat{y} \in C \text{ tak, } \check{\text{ze dist}}(x; C) = ||x - \hat{y}||.$

Důkaz.

1. Existence

Cíl: Existuje bod minima

Úvaha:

M je obecná konvexní množina.

c x
$$R = ||x - z||$$
,
 $Cz = M \cap B(x, R) = M \cap \{a \in \mathbb{R}^n \mid ||z - a|| \le R\}$.
 \uparrow

uzavřená, omezená, neprázdná

Tedy $a \mapsto ||x - a||$ je spojitá.

⇒ Spojitost na kompaktní množině znamená, že f nabývá na C_z minima dle Weierstrassova kritéria.

Ať y je bod minima. Všechny body v M mají od x vzdálenost $\geq ||x-y||$. \square

2. Jednoznačnost.

Cíl: Pokud $a,b\in\mathbb{R}^n: ||x-a||=||x-b||=\overbrace{\mathrm{dist}(x,M)}^{\delta},$ pak a=b. Lemma, rovnoběžníkové pravidlo: $u,v\in\mathbb{R}^n\Rightarrow ||u+v||^2+||u-v||^2=2\left(||u||^2+||v||^2\right).$ Důkaz lemma:

$$||u+v||^2 + ||u-v||^2 = \langle u+v, u+v \rangle + \langle u-v, u-v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2 + ||u||^2 - 2\langle u, v \rangle + ||v||^2$$

$$= 2\left(||u||^2 + ||v||^2\right). \quad \Box$$

Důkaz jednoznačnosti:

At
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.

At
$$y = \frac{1}{2}a + \frac{1}{2}b$$
.
Pak $\delta^2 \le ||x - y||^2 = ||x - \frac{1}{2}a - \frac{1}{2}b||^2 = ||\frac{1}{2}(x - a) + \frac{1}{2}(x - b)||^2 = \frac{1}{4}||\underbrace{(x - a)}_u + \underbrace{(x - b)}_v||^2$

$$\stackrel{\text{lemma}}{=} \frac{1}{4} \left[2 \left(\underbrace{||x-a||^2}_{\delta^2} + \underbrace{||x-b||^2}_{\delta^2} \right) - \underbrace{||(x-a) + (x-b)||^2}_{b-a} \right] = \delta^2 - \frac{1}{4} ||b-a||^2 \Rightarrow \delta^2 \le \delta^2 - \underbrace{\frac{1}{4} ||b-a||^2}_{<0 \Rightarrow a=b}.$$

2.2Projekce bodu a variační nerovnost

Nechť $C \subseteq \mathbb{R}^n$ je neprázdná uzavřená konvexní množina, $x \in \mathbb{R}^n$ a $y \in C$. Pak následující tvrzení jsou ekvivalentní:

- (1) $y = P_C(x)$, kde $P_C(x)$ je projekční operátor.
- (2) Pro každé $z \in C$ je $\langle x y, z y \rangle \leq 0$.

Důkaz.

$$(1) \Rightarrow (2)$$
:

At
$$v_{\lambda} = y + \lambda(z - y), \lambda \in (0, 1].$$

Pak

$$||x-y||^2 \le ||x-v_{\lambda}||^2 = ||x-y-\lambda(z-y)||^2 = \langle (x-y)-\lambda(z-y), (x-y)-\lambda(z-y) \rangle$$

$$||x-y||^2 \le ||x-y||^2 - 2\lambda \langle x-y, z-y \rangle + \lambda^2 ||z-y||^2$$

$$\Rightarrow \langle x-y, z-y \rangle \le \frac{\lambda}{2} ||z-y||^2 \to 0 \text{ pro } \lambda \to 0^+$$

$$\Rightarrow \langle x-y, z-y \rangle < 0. \quad \Box$$

 $(2) \Rightarrow (1)$:

Ať $z \in C$.

Pak

$$0 \ge \langle x - y, z - y \rangle = \langle x - y, (z - x) + (x - y) \rangle = \langle x - y, z - y \rangle + ||x - y||^2$$
$$\langle x - y, z - y \rangle + ||x - y||^2 \ge ||x - y||^2 - \underbrace{|\langle x - y, z - y \rangle|}_{\text{odhad shora}} \ge \star$$

$$\star = ||x - y||^2 - ||x - y|| \cdot ||z - x||.$$

Je-li $x \neq y$, pak vydělíme: $||z - x|| \geq ||x - y||$. Je-li x = y, pak $y \in C$: $x \in C$... triviální.

2.3 Koule?

2.4 Věta o ortogonálním rozkladu

Nechť $L \subseteq \mathbb{R}^n$ je lineární podprostor. Potom platí:

- (a) $P_L: \mathbb{R}^n \to \mathbb{R}^n$ je lineární zobrazení.
- (b) Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x P_L(x)$.
- (c) Pro každé $x \in \mathbb{R}^n$ existují jednoznačně určené body $y \in L$ a $z \in L^{\perp}$ tak, že x = y + z. Navíc $y = P_L(x)$ a $z = P_{L,\perp}(x)$.

Důkaz.

(a)

Cíl: Dokázat vlastnosti lineárního zobrazení, tedy

- 1. $P_L(\alpha x) = \alpha \cdot P_L(x), \forall \alpha \in \mathbb{R}, x \in \mathbb{R}^n$.
- 2. $P_L(x+y) = P_L(x) + P_L(y), \forall x, y \in \mathbb{R}^n$.
- 1. : Ať $z \in L$. Pak

$$\langle \alpha x - \alpha P_L(x), z - \alpha P_L(x) \rangle = \alpha \langle x - P_L(x), z - \alpha P_L(x) \rangle$$

$$\stackrel{\alpha \neq 0}{=} \underbrace{\alpha^2}_{>0} \langle x - P_L(x), \underbrace{\frac{1}{\alpha} \cdot z}_{\in L} - P_L(x) \rangle$$

Tedy $P_L(\alpha x) = \alpha P_L(x), \forall \alpha \neq 0$. Pro $\alpha = 0$ zřejmě plyne z lineárnosti zobrazení.

 $2.: At' z \in L.$

$$\underbrace{\langle x+y-(P_L(x)+P_L(y)), z-(P_L(x)+P_L(y))\rangle}_{(x-P_L(x))+(y-P_L(y))}, z-(P_L(x)+P_L(y))\rangle}_{(x-P_L(x))+(y-P_L(y))} + \underbrace{\langle y-P_L(y), \underbrace{(z-P_L(x))}_{\in L} - P_L(y)\rangle}_{\in L} \leq 0.$$

Z variační nerovnosti tedy plyne, že P_L je nutně lineární. \square

(b) Pro každé $x \in \mathbb{R}^n$ je $P_{L^{\perp}}(x) = x - P_L(x)$.

L ... lineární podprostor \mathbb{R}^n , $L^{\perp} = \{x \in \mathbb{R}^n \mid \langle x, y \rangle = 0, \forall y \in L\}.$

Důkaz.

Cíl: $P_{L^{\perp}}(x) = x - P_L(x)$. Ať $x \in \mathbb{R}^n, z \in L^{\perp}$. Pak

$$\langle x - (x - P_L(x)), z - (x - P_L(x)) \rangle = \langle \underbrace{P_L(x)}_{\in L}, z - (x - P_L(x)) \rangle$$
$$= \underbrace{\langle P_L(x), z \rangle}_{0} - \langle P_L(x), x - P_L(x) \rangle = \langle x - P_L(x), 0 - P_L(x) \rangle \leq 0. \quad \Box$$

(c) Pro každé $x \in \mathbb{R}^n$ existují jednoznačně určené body $y \in L$ a $z \in L^{\perp}$ tak, že x = y + z. Navíc $y = P_L(x)$ a $z = P_{L^{\perp}}(x)$.

Ať $x \in \mathbb{R}^n$.

Důkaz existence.

Pak
$$x = \underbrace{P_L(x)}_{\in L} + \underbrace{(x - P_L(x))}_{\in L^{\perp}}.$$

Důkaz jednoznačnosti.

Ať $a \in L, b \in L^{\perp}$ takové, že x = a + b.

Cíl: $a = P_L(x)$

Ať $z \in L$.

$$\langle x-a,z-a\rangle = \langle b,\underbrace{z-a}_{\in L}\rangle = 0 \leq 0 \implies a = P_L(x) \implies x-P_L(x) = b \stackrel{(2)}{\Longrightarrow} P_{L^{\perp}}(x) = b. \quad \Box$$

3 Třetí týden

3.1 Metoda nejmenších čtverců

Pokud $b \in L$, řešíme úlohu Ax = b. Pokud $b \notin L$, řešíme $Ax = P_L(b)$.

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\| = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b\|^2$$

Důkaz.

Chceme ukázat, že $\hat{x} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|Ax - b^2\| \iff A^T A \hat{x} = A^T b.$

$$\Rightarrow$$
 ": At $\hat{A}\hat{x} = P_L(b) \stackrel{(2)}{=} b - P_{L^{\perp}}(b) / A^T$

$$A^T A \hat{x} = A^T b - \underbrace{A^T P_{L^{\perp}}(b)}_{\stackrel{?}{=0}}$$

$$\rightarrow \|A^T P_{L^{\perp}}(b)\|^2 = \langle A^T P_{L^{\perp}}(b), A^T P_{L^{\perp}}(b) \rangle = \langle \underbrace{P_{L^{\perp}}(b)}_{\in L^{\perp}}, \underbrace{(A^T)^T (A^T P_{L^{\perp}}(b))}_{\in L} \rangle = 0. \quad \Box$$

 $, \Leftarrow$ ": At $A^T A \hat{x} = A^T b$.

At $x \in \mathbb{R}^n$.

$$0 = \langle \underbrace{x, A^T A \hat{x} - A^T b}_{A^T (A \hat{x} - b)} \rangle = \langle \underbrace{(A^T)^T x}_{L}, A \hat{x} - b \rangle \implies A \hat{x} - b \in L^{\perp}$$

$$\rightarrow b = \underbrace{A\hat{x}}_{\in L} + \underbrace{(b - A\hat{x})}_{L^{\perp}} \stackrel{\text{(c)}}{\Longrightarrow} A\hat{x} = P_L(b). \quad \Box$$

3.2 Příklad výpočtu metody nejmenších čtverců

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$

$$A^TA\hat{x} = A^Tb$$

$$A^{T}A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \rightarrow \det = 3 \implies \text{existuje inverze.}$$

$$(A^T A)^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \implies \hat{x} = (A^T A)^{-1} A^T b = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

3.3 Příklad výpočtu metody nejmenších čtverců

V rovině jsou dány body $(0, -\frac{1}{2})^T$, $(1, \frac{1}{3})^T$ a $(2, \frac{2}{3})^T$. Pomocí metody nejmenších čtverců proložme těmito body přímku o rovnici y = kx + q, kde $k, q \in \mathbb{R}$.

$$\begin{cases}
 0k + q = -\frac{1}{2} \\
 1k + q = \frac{1}{3} \\
 2k + q = \frac{2}{3}
 \end{cases}
 A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix}, b = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$A^TA = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 3 & 3 \end{bmatrix}$$

$$(A^T A)^{-1} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix}$$

$$\hat{x} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & -3 \\ -3 & 5 \end{bmatrix} \begin{bmatrix} \frac{5}{3} \\ \frac{1}{2} \end{bmatrix} = \frac{1}{6} \begin{bmatrix} \frac{7}{2} \\ -\frac{5}{2} \end{bmatrix} = \frac{1}{12} \begin{bmatrix} 7 \\ -5 \end{bmatrix}.$$

3.4 Věta o oddělitelnosti bodu a konvexní množiny

4 Čtvrtý týden

5 Pátý týden

6 Šestý týden

7 Sedmý týden

8 Osmý týden

9 Devátý týden

10 Desátý týden

11 Jedenáctý týden

12 Dvanáctý týden

13 Třináctý týden

14 Čtrnáctý týden