Chapitre 7

Formules de quadrature

Sommaire

7.1	Formules de quadrature élémentaires	3
7.2	Méthode composite	6
7.3	Méthode de Gauss	10
7.4	quadrature adaptative	12

Les formules de quadrature sont des formules approchées de calcul d'intégrales de Riemann du type

$$I := \int_{a}^{b} f(x) \, dx.$$

La formule la plus connue est la formule des trapèzes, elle consiste à introduire des points équidistants a_i dans l'intervalle, $a =: a_0 < a_1 < \cdots a_N < a_{N+1} := b$, avec $a_{i+1} - a_i = b$, et à remplacer l'intégrale (l'aire de la portion de plan située entre la courbe et l'axe des x) par la somme suivante

$$I_N := \frac{h}{2}f(a) + h(f(a_1) + \dots + f(a_i) + \dots + f(a_N)) + \frac{h}{2}f(b)$$

Fig. 7.1 – calcul approché par la formule des trapèzes

Récrivons la formule comme

$$S_N := \frac{h}{2} (f(a_0) + f(a_1))$$

$$+ \frac{h}{2} (f(a_1) + f(a_2))$$

$$+ \cdots$$

$$+ \frac{h}{2} (f(a_i) + f(a_{i+1}))$$

$$+ \cdots$$

$$+ \frac{h}{2} (f(a_N) + f(a_{N+1}))$$

La quantité $\frac{h}{2}(f(a_i) + f(a_{i+1}))$ représente l'aire \mathcal{A}_i du trapèze \mathcal{T}_i . On a alors

$$S_N = \mathcal{T}_0 + \mathcal{T}_1 + \cdots + \mathcal{T}_i + \cdots + \mathcal{T}_N. \tag{7.1}$$

Maintenant pourquoi garder un partage équidistant. On peut avoir avantage à généraliser la formule (7.1), avec des points distribués différemment, $a_{i+1} - a_i = h_i$, et $A_i = \frac{h_i}{2} (f(a_i) + f(a_{i+1}))$.

Fig. 7.2 – calcul approché par la formule des trapèzes, choix des points non équidistants

On connait également les sommes de Riemann :

$$\sum_{j=0}^{N} (a_{j+1} - a_j) f(b_j), \quad b_j \in [a_j, a_{j+1}]$$

L'intégrale de Riemann d'une fonction réglée est définie comme la limite de telles sommes.

Questions

- 1. Peut-on évaluer l'erreur en fonction de h?
- 2. Peut-on en trouver d'autres?
- 3. Peut-on les comparer?

7.1 Formules de quadrature élémentaires

Ce sont les formules qui permettent de calculer dans un sous-intervalle. Reprenons la formule

$$I_{j} = \int_{a_{j}}^{a_{j+1}} f(x) dx \sim \frac{h_{j}}{2} \left(f(a_{j}) + f(a_{j+1}) \right)$$

Fig. 7.3 – calcul élémentaire par la formule des trapèzes

On voit bien que si f est affine sur l'intervalle, les deux quantités coincident. D'où une autre façon d'obtenir la formule élémentaire. On remplace f par son polynôme d'interpolation de degré ≤ 1 sur (a_i, a_{i+1}) .

$$f(x) = p_1(x) + \frac{1}{2}f''(\zeta_x)(x - a_j)(x - a_{j+1}), \quad \zeta_x \in]a_j, a_{j+1}[$$

et on écrit

$$I_j = \int_{a_j}^{a_{j+1}} p_1(x) dx + \frac{1}{2} \int_{a_j}^{a_{j+1}} f''(\zeta_x)(x - a_j)(x - a_{j+1}) dx$$

On applique la formule de la moyenne au dernier terme, et on obtient

$$I_{j} = \int_{a_{j}}^{a_{j+1}} p_{1}(x) dx + \frac{1}{2} f''(\zeta_{j}) \int_{a_{j}}^{a_{j+1}} (x - a_{j})(x - a_{j+1}) dx = \int_{a_{j}}^{a_{j+1}} p_{1}(x) dx - \frac{h_{j}^{3}}{12} f''(\zeta_{j})$$
D'autre part $p_{1} = \frac{1}{h_{j}} (f(a_{j+1})(x - a_{j}) - f(a_{j})(x - a_{j+1}))$, et

$$\int_{a_j}^{a_{j+1}} p_1(x) dx = \frac{h_j}{2} (f(a_j) + f(a_{j+1}))$$

Méthode des trapèzes
$$I_j = \frac{h_j}{2}(f(a_j) + f(a_{j+1})) - \frac{h_j^3}{12}f''(\zeta_j)$$

Si nous interpolons dans \mathbb{P}_0 , nous obtenons les 3 formules, suivant que nous interpolons à gauche, à droite ou au point milieu

Méthode	Formule	Erreur
formule des rectangles à gauche	$I_j \sim h_j f(a_j)$	$\frac{h_j^2}{2}f'(\zeta_j)$
formule des rectangles à droite	$I_j \sim h_j f(a_{j+1})$	$\frac{h_j^2}{2}f'(\zeta_j)$
formule du point milieu	$I_j \sim h_j f(\frac{a_j + a_{j+1}}{2})$	$\frac{h_j^3}{24}f''(\zeta_j)$

La méthode de Simpson, utilise l'interpolation dans \mathbb{P}_2 aux points a_j , a_{j+1} , et $\frac{a_j+a_{j+1}}{2}$. On démontre que l'on a

Méthode de Simpson
$$I_j = h_j \left(\frac{1}{6} f(a_j) + \frac{2}{3} f(\frac{a_j + a_{j+1}}{2}) + \frac{1}{6} f(a_{j+1}) \right) - \frac{h_j^5}{2880} f^{(4)}(\zeta_j)$$

On note sur cette formule qu'elle est en fait exacte pour des polynômes de degré inférieur ou égal à 3.

On appelle formules de Newton-Cotes toutes les formules qu'on obtient de cette manière. Pour systématiser on fait le changement de variable dans I_j :

$$[-1,1] \rightarrow [a_j, a_{j+1}]$$

 $y \mapsto x = \frac{a_j, a_{j+1}}{2} + \frac{h_j}{2}y$

et donc

$$I_j = \frac{h_j}{2} \int_{-1}^{1} f(\frac{a_j, a_{j+1}}{2} + \frac{h_j}{2}y) dy.$$

On notera $\varphi_j(y) = f(\frac{a_j, a_{j+1}}{2} + \frac{h_j}{2}y).$

On se donne des points $\tau_i = -1 + 2i/n$. Pour les formules de Newton-Cotes fermées, i varie de 0 à n. Pour les formules ouvertes i varie de 1 à n-1. Commençons par les formules fermées. On écrit pour tout f dans [-1, 1],

$$\int_{-1}^{1} \varphi(y) \, dy = \sum_{i=0}^{n} \omega_i \varphi(\tau_i) + E(\varphi).$$

Avec n+1 coefficients à déterminer, on peut réclamer que la formule soit exacte dans \mathbb{P}_n .

Théorème 7.1 – Il existe une et une seule formule de quadrature exacte dans \mathbb{P}_n . Les poids sont donnés par

$$\omega_i = \int_{-1}^1 \ell_i(y) \, dy$$

- Si n est pair, la formule est exacte dans \mathbb{P}_{n+1} .

$$E(\varphi) = \begin{cases} \frac{\varphi^{(n+2)}(\xi)}{(n+2)!} \int_{-1}^{1} y \Pi_{n+1}(y) \, dy & \text{si } n \text{ est pair,} \\ \frac{\varphi^{(n+1)}(\xi)}{(n+1)!} \int_{-1}^{1} \Pi_{n+1}(y) \, dy & \text{si } n \text{ est impair,} \end{cases}$$

Démonstration Prenons pour φ le polynôme d'interpolation de Lagrange au point τ_i . On en déduit les coefficients par la formule précédente, ce qui donne aussi l'unicité. Le deuxième point relève de considérations de parité. Pour l'erreur on écrit pour n impair la formule d'erreur pour le polynôme d'interpolation de φ aux points τ_i :

$$\varphi(y) = p_n(y) + \frac{\varphi^{(n+1)}(\zeta_y)}{(n+1)!} \Pi_{n+1}(y).$$

Il faut alors intégrer sur [-1,1], utilisant le fait que $\int_{-1}^{1} p_n(y) dy = \sum_{i=0}^{n} \omega_i \varphi(\tau_i)$. L'intégration précise est alors un peu difficile, voir dans les livres.

Le cas n=1 correspond à la formule des trapèzes, le cas n=2 à la formule de Simpson.

Les formules de Newton-Cotes ouvertes ne sont utilisées que dans le cas du point-milieu.

On définit l'ordre r des formules de Newton-Cotes comme le plus grand entier tel que la formule est exacte pour $f \in \mathbb{P}_{r-1}$.

Théorème 7.2 Si n est pair, r = n + 1, Si n est impair, r = n.

Méthode	nombre de points	ordre
rectangles	1	1
point-milieu	1	2
trapèzes	2	2
Simpson	3	4

7.2 Méthode composite

On recolle maintenant les intégrales élémentaires. Pour cela les points $\xi_{j,i}$ se déduisent tous des points $\tau_i = -1 + 2i/n$ au moyen de la transformation affine et

$$I = \sum_{j=0}^{N} \frac{h_{j}}{2} (\sum_{i=0}^{n} \omega_{i} f(\xi_{j,i}) + E(\varphi_{j}))$$

avec $\sum_{i=0}^{n} \omega_i = 2$. L'erreur globale E(f) est donc

$$E(f) = \sum_{j=0}^{N} \frac{h_j}{2} \begin{cases} \left(\frac{h_j}{2}\right)^{n+2} \frac{f^{(n+2)}(\xi_j)}{(n+2)!} \int_{-1}^{1} y \Pi_{n+1}(y) \, dy & \text{si } n \text{ est pair,} \\ \left(\frac{h_j}{2}\right)^{n+1} \frac{f^{(n+1)}(\xi_j)}{(n+1)!} \int_{-1}^{1} \Pi_{n+1}(y) \, dy & \text{si } n \text{ est impair,} \end{cases}$$

Que se passe t-il pour la méthode des trapèzes? L'erreur s'écrit

$$E(f) = -\sum_{j=0}^{N} \frac{h_j^3}{12} f''(\zeta_j), \quad \zeta_j \in]a_j, a_{j+1}[$$

Si $h_i \equiv h$, on peut montrer qu'il existe $\eta \in]a, b[$ tel que

$$\int_{a}^{b} f(x) dx = \frac{h}{2} f(a) + h(f(a_1) + \dots + f(a_i) + \dots + f(a_N)) + \frac{h}{2} f(b) - \frac{(b-a)^2 h^2}{12} f''(\eta)$$

Théorème 7.3 On suppose que la formule de quadrature élémentaire est d'ordre r et que $f \in C^{r+1}([a,b])$. Soit $h = \sup h_i$. Alors

$$\left| \int_{a}^{b} f(x) dx - \sum_{j=0}^{N} \frac{h_{j}}{2} \sum_{i=0}^{n} \omega_{i} f(\xi_{j,i}) \right| \le Ch^{r+1} \sup_{[a,b]} |f^{(r+1)}(x)|$$

Mise en œuvre:

Fig. 7.4 – N œuds de la formule de quadrature

Supposons que pour le pas h_N les nœuds intérieurs soient les ronds noirs du dessin, $a + i * h_N$. Pour le pas $h_{N+1} = h_N/2$, on ajoute les points rouges.

$$S_{N+1} = S_N/2 + h_{N+1}(f(a+h_{N+1}) + \dots + f(a+3h_{N+1}) + \dots + f(a+(2N-1)h_{N+1})$$

```
function T = trapez(f,a, b, tol);
% TRAPEZ(f,a, b, tol) tries to integrate int_a^b f(x) dx
% to a relative tolerance tol using the composite
% trapezoidal rule.
%
h = b - a; s = (f(a) + f(b)) / 2;
tnew = h * s; zh = 1; told = 2*tnew;
while abs (told - tnew) > tol * abs (tnew),
told = tnew; zh = 2 * zh;
h = h / 2;
s = s + sum(f(a + [1:2:zh]*h));
tnew = h * s;
end;
T = tnew;
```

Qu'en est-il pour Simpson? Les extrémités sont affectées du poids 1/6, les points noirs du poids 2/6 et les points rouge du poids 4/6. Mise en œuvre :

Fig. 7.5 – N œuds de la formule de quadrature avec les poids pour Simpson

On écrit

$$S(h) = \frac{h}{6}(s_1 + 2s_2 + 4s_4)$$

Notons s_j^{new} les nouvelles valeurs, pour $h_1 = h/2$.

$$s_1^{new} = s_1, \quad s_2^{new} = s_2 + s_4, \quad s_4^{new} = f(a + h_1/2) + f(a + 3h_1/2) + \cdots$$

On écrit alors

```
function S = simpson (f,a,b,tol);
% SIMPSON (f,a, b,tol) tries to integrate int_a^b f(x) dx
% to a relative tolerance tol using the composite
% Simpson rule.
%
h = (b-a)/2; s1 = f(a) + f(b); s2 = 0;
s4 = f(a + h); snew = h*(s1 + 4 * s4)/6
zh = 2; sold=2*snew;
while abs(sold-snew)>tol*abs(snew),
sold = snew; zh = 2 * zh; h = h / 2;
s2 = s2 + s4;
s4 = sum(f(a + [1:4:zh]*h));
snew = h*(s1 + 2*s2 + 4*s4)/6;
end
S = snew;
```

Résultats pour le calcul de

$$\int_0^1 \frac{x e^x}{(x+1)^2} dx = \frac{e}{e-2} = 0.3591409142...$$

i	h_i	$T(h_i)$	$\frac{T(h_i) - I}{T(h_{i-1}) - I}$	$S(h_i)$	$\frac{S(h_i) - I}{S(h_{i-1}) - I}$
0	1	0.339785228		0.357516745	
1	$\frac{1}{2}$	0.353083866	0.31293	0.358992305	0.09149
2	$\frac{1}{4}$	0.357515195	0.26840	0.359130237	0.07184
3	$\frac{1}{8}$	0.358726477	0.25492	0.359140219	0.06511
4	$\frac{1}{16}$	0.359036783	0.25125	0.359140870	0.06317
5	$\frac{1}{32}$	0.359114848	0.25031	0.359140911	0.06267
6	$\frac{1}{64}$	0.359134395	0.25007	0.359140914	0.06254
			γ		γ
Erreur divisée par 4			sée par 4	Erreur divisée par 16	

Fig. 7.6 – Comparaison des méthodes des trapèzes et de Simpson

7.3 Méthode de Gauss

Jusqu'ici nous nous sommes fixés les points et nous avons cherché les poids pour obtenir un ordre. On peut chercher à optimiser aussi les points pour maximiser encore l'ordre de la formule de quadrature. On se place sur [-1,1] et on cherche les points τ_j et les poids ω_j pour minimiser

$$\int_{-1}^{1} f(x) dx - \sum_{j=0}^{n} \omega_j f(\tau_j)$$

Théorème 7.4 Il existe un choix et un seul des points τ_j et des poids ω_j de sorte que la méthode soit d'ordre r=2n+1. Les points τ_j sont les zéros du polynôme de Legendre L_{n+1} . Les poids sont donnés par

$$\omega_j = \int_{-1}^1 \ell_j(x) dx,$$

l'erreur est donnée par

$$E(f) = C \frac{f^{(2n+2)}(\xi)}{(2n+2)!}$$

Exemple, n = 1. Si on connaît la formule de récurrence

$$(n+1)L_{n+1}(x) = (2n+1)xL_n(x) - nL_{n-1}(x), L_0 = 1, L_1 = x.$$

on a $L_0=1, L_1=x,$ et $L_2=3x^2/2-1/2.$ Les nœuds sont donc $\pm 1/\sqrt{3}.$ les poids sont égaux à 1.

$$\int_{-1}^{1} f(x) \, dx \sim f(\frac{1}{\sqrt{3}}) + f(-\frac{1}{\sqrt{3}})$$

Cas général, calcul des nœuds : on réécrit la formule de récurrence sous la forme

$$xL_n(x) = \frac{n+1}{2n+1}L_{n+1}(x) + \frac{n}{2n+1}L_{n-1}(x).$$

et on constate que x est valeur propre d'une matrice tridiagonale :

Calcul des coefficients : Ecrivons $L_{n+1}(x) = a_{n+1} \prod_{j=0}^{n} (\tau_j)$. On a alors $L'_{n+1}(\tau_i) = a_{n+1} \prod_{\substack{j=0 \ j \neq i}}^{n} (\tau_j)$, et on a

$$\ell_i(x) = \frac{L_{n+1}(x)}{L'_{n+1}(\tau_i)(x - \tau_i)}$$

 et

$$\omega_i = \frac{1}{L'_{n+1}(\tau_i)} \int_{-1}^1 \frac{L_{n+1}(x)}{(x - \tau_i)} dx$$

Théorème 7.5 Definissons $\Phi_0 = 0$, et

$$\Phi_i(t) = \int_{-1}^{1} \frac{L_i(x) - L_i(t)}{(x - t)} dx$$

Alors les Φ_i satisfont la même relation de récurrence que les L_i et on a

$$\omega_i = \frac{\Phi_i(\tau_i)}{L'_{n+1}(\tau_i)}$$

7.4 quadrature adaptative