Übungsblatt 9 - Mengenlehre - Teil 2

- 1. (a) Geben Sie die Identität einer beliebigen Menge A in Mengenschreibweise an.
 - (b) Warum folgt aus $A \rightleftharpoons B \ B \rightleftharpoons A$?
 - (c) Warum folgt aus $A \rightleftharpoons B$ und $B \rightleftharpoons C$, $A \rightleftharpoons C$?
- **2.** Begründen Sie, warum die beiden Mengen \mathbb{N} und $\{n \in \mathbb{N} : n \geq 42\}$ bijektiv sind, also warum $\mathbb{N} \rightleftharpoons \{n \in \mathbb{N} : n \geq 42\}$ gilt.
- **3.** Stellen Sie eine Liste mit möglichst vielen Mengen auf, von denen Sie wissen, dass sie abzählbar sind.
- 4. Schreiben Sie eine Python-Funktion finiteSubsets welche alle endlichen Teilmengen von N rekursiv aufzählt.

Hinweis: Schreiben Sie zuerst eine Funktion powerSet(A) welche Ihnen die Potenzmengen von A berechnet und rufen Sie dann diese Funktion von ihrer Funktion finiteSubsets auf. (ähnlich wie fixedSizeSubsets aus der Vorlesung combs aufruft)

- 5. Wiederholen Sie den Beweis der Überabzählbarkeit einer Potenzmenge einer abzählbar unendlichen Menge und versuchen Sie diesen in eigenen Worten wiederzugeben.
- **6.** Geben Sie alternative Schreibweisen für [3,3], [3,3), (4,3] sowie $[3,3] \cup [4,4]$ an.
- 7. Welche der folgenden Aussagen sind wahr?

(a)
$$\sqrt{2} \in [1, 2]$$

(f)
$$42 \in (42, 43)$$

(b)
$$[1,3] \cap [3,4] = \{2\}$$

(g)
$$42 \in [41.99, 42.1]$$

(c)
$$\sqrt{2} \in [-1, 1]$$

(h)
$$42 \in (41.99, 42.1)$$

(d)
$$42 \in (42, 43]$$

(i)
$$[1,2] \cup [2,3] = \{2\}$$

(e)
$$42 \in [42, 43)$$

(j)
$$[1,2) \cup [2,3] = \{2\}$$

8. Welche der folgenden Aussagen sind wahr?

(a)
$$[0, 100] \cup (2, 3] = (2, 3]$$

(d)
$$[42, 43) \setminus [43, 44] = [42, 43]$$

(b)
$$[1,3) \cup [2,4] = (1,4)$$

(e)
$$[\sqrt{2}, \pi] \subseteq (-1/2, 39/10)$$

(c)
$$[42, 43] \setminus (43, 44] = [42, 43]$$

(f)
$$[-2,2) \cup (2,4] = (1,4)$$

- **9.** Wiederholen Sie den Beweis der Überabzählbarkeit von (0,1] aus der Vorlesung und geben Sie ihn in eigenen Worten wieder.
- 10. Beweisen Sie, dass [0,1) überabzählbar ist.
- 11. Geben Sie die bijektive Abbildung f zwischen den beiden Intervallen [3,8] und [2,4] mit einer Formel der Form f(x) = ... an.

Mögliche Theoriefragen:

- Wann ist eine unendliche Menge abzählbar?
- Was besagt der Satz von Cantor?
- Was beweist Cantors erstes Diagonalelement?
- Geben Sie eine undnedliche, abzählbare Menge an.
- Geben Sie eine undnedliche, überabzählbare Menge an.
- \bullet Warum kann ein Intervall bei dem mindestens ein Endpunkt $\pm \infty$ ist nicht geschlossen sein?
- \bullet Warum muss (0,1) überabzählbar sein, wenn (0,1] überabzählbar ist?