Describing our texts: complexity, similarity, readability

Mate Akos 2019 September

MTA TK PTI

For today

- 1. Describing texts
- 2. Lexical diversity
- 3. Collocations
- 4. Readability and complexity
- 5. Similarity
- 6. Exploring keywords

Describing texts

Descriptive statistics of wordcounts, unique types, sentences, etc.

- range (min-max)
- mean or median (depending on the shape of the distribution)
- · sum
- · lenght (in tokens, sentences, paragraphs, etc.)

Lexical diversity

- Most basic measure: Type to token ratio
 - total types total tokens
- Sensitive to differences in text lengths
- · The larger the text, the smaller the TTR

Quanteda provides a huge amount of lexical diversity indices via the texstat_lexdiv() function.

```
The complete list: https:
//quanteda.io/reference/textstat_lexdiv.html
```

Beyond unigrams: collocations

- Unigrams do not provide the context for our single word tokens. We also have no information if a not/very is preceding our keywords or not.
- A way around it is to identify meaningful collocations in our corpus.
- Collocation "is an expression consisting of two or more words that correspond to some conventional way of saying things" (Manning and Schütze, FSNLP, 1999: 152)
- E.g.: ethnic cleansing, income inequality, international monetary fund
- · Problem: most collocations are noise (I am, on the, etc.)

Identifying collocations

- Frequency
- part-of-speech filtering
- Hypothesis testing: χ^2 test or t-test

Frequency based

$C(w^1 \ w^2)$	w^1	w^2
80871	of	the
58841	in	the
26430	to	the
21842	on	the
21839	for	the
18568	and	the
16121	that	the
15630	at	the
15494	to	be
13899	in	a
13689	of	a
13361	by	the
13183	with	the
12622	from	the
11428	New	York
10007	he	said
9775	as	a
9231	is	a
8753	has	been
8573	for	a

Table 5.1 Finding Collocations: Raw Frequency. $C(\cdot)$ is the frequency of something in the corpus.

Figure 1: Manning and Schütze, 1999: 154

Part of speech filtering

$C(w^1 w^2)$	w^1	w^2	Tag Pattern
11487	New	York	A N
7261	United	States	AN
5412	Los	Angeles	NN
3301	last	year	AN
3191	Saudi	Arabia	NN
2699	last	week	AN
2514	vice	president	AN
2378	Persian	Gulf	AN
2161	San	Francisco	NN
2106	President	Bush	NN
2001	Middle	East	AN
1942	Saddam	Hussein	NN
1867	Soviet	Union	AN
1850	White	House	AN
1633	United	Nations	AN
1337	York	City	NN
1328	oil	prices	NN
1210	next	year	AN
1074	chief	executive	AN
1073	real	estate	AN

Table 5.3 Finding Collocations: Justeson and Katz' part-of-speech filter.

Figure 2: Manning and Schütze, 1999: 155

Part of speech filtering

AN: linear function; lexical ambiguity; mobile phaseNN: regression coefficients; word sense; surface area

AAN: Gaussian random variable; lexical conceptual paradigm; aqueous mobile

phase

ANN: cumulative distribution function; lexical ambiguity resolution; accessible

surface area

NAN: mean squared error; domain independent set; silica based packing

NNN: class probability function; text analysis system; gradient elution chromatog-

raphy

NPN: degrees of freedom; [no example]; energy of adsorption

Figure 3: Justeson and Katz, 1995: 17

Hypothesis testing

 χ^2 is preferred to t-test as we cannot assume normally distributed propabilities (Dunning 1993).

$$X^{2} = \sum_{i,j} \frac{(O_{i,j} - E_{i,j})^{2}}{E_{i,j}}$$

The expected frequencies of $E_{i,j}$ are computed from the marginal probabilities (totals of rows and columns converted into proportions)

Quanteda implementation of collocation detection textstat_collocation()

Readability and text complexity

How "complex" is a given text?

- taking sentence lenght and combination of syllables into account
- Possible application: how complex are various political communications?

Flesch-Kincaid readability index

- $\cdot 0.39(\frac{\text{total words}}{\text{total senteces}}) + 11.8(\frac{\text{total syllables}}{\text{total words}})$
- Rescaled to US grade levels (1-12)

Figure 4: https://www.theguardian.com/world/interactive/2013/feb/12/state-of-the-union-reading-level

Year of address

Similarity (i)

How similar our documents/unit of analysis are? How to measure (dis)similarity? Frequent approaches:

- · Euclidean distance
 - $d_2(x_i, x_j) = (\sum_{k=1}^d (x_{i,k} x_{j,k})^2)^{1/2}$
- · Minkowski metric
 - $\cdot d_p(x_i, x_j) = (\sum_{k=1}^d (x_{i,k} x_{j,k})^p)^{1/p}$
 - when p = 1, it is the Manhattan distance, when p = 2, it is the Euclidean distance

Similarity (ii)

- cosine similarity
 - $cos(A, B) = \frac{A \cdot B}{\|A\| \|B\|}$
 - where $A \cdot B = \sum_{k=1}^{n} a_k b_k$ (dot product) and $||A|| = \sqrt{\sum_{k=1}^{n} a_k^2}$ (norm or length of the vector)
 - Important feature: document length does not matter as it ultimately measures the cosine of the angle between the two vectors
- · Jaccard similarity coefficient

•
$$J = \frac{|A \cap B|}{|A \cup B|}$$

correlation

quanteda implementation

- textstat_simil()
- textstat_dist()

Exploring our texts: context around keywords

Motivation: what is the **context** that our keyword appears in throughout our corpus (or one document)? The quanteda shorthand is KWIC (key words in context)

```
kwic(data corpus inaugural, pattern = "army", window = 4, valuetype = "regex", case insensitive =
   [1817-Monroe, 793]
                         heroic exploits of the
                                                   Armv
                                                          , the Navy,
                              be fortified, our
  [1817-Monroe, 1770]
                                                   Army
                                                          and Navy, regulated
   [1825-Adams, 2259]
                          and discipline of the
                                                          : to provide and
   [1849-Taylor, 366]
                               " To command the
                                                   Army
                                                          and Navy of the
   [1849-Taylor, 558]
                                                          and Navy, lately
                            In reference to the
   [1853-Pierce, 1952]
                            which has made your
                                                          what it is.
                                                   Armv
  [1853-Pierce, 1990]
                                moral tone. The
                                                   Army
                                                          as organized must be
                         Republic we support an
    [1873-Grant, 235]
                                                          less than that of
                                                   armv
[1901-McKinley, 1524]
                              the island by the
                                                          of Spain, the
[1901-McKinley, 1893]
                           however, provided an
                                                          to enable the Executive
                                                   armv
     [1909-Taft, 1690]
                        of maintaining a proper
                                                   army
                                                          , a proper navy
                                                          so organized and so
                              We should have an
     [1909-Taft, 1884]
                             under arms a great
                                                          , but it does
                                                          sufficiently large and so
     [1909-Taft, 1904]
                              we should have an
                                                   armv
                               been said of the
     [1909-Taft, 1931]
                                                          may be affirmed in
                                                   army
     [1909-Taft, 2335]
                            the expenses of the
                                                          and navy and of
     [1909-Taft, 2376]
                           to afford a suitable
                                                          and a suitable navy
                                                   armv
                        Goethals and his fellow
                                                          engineers associated with him
    [1909-Taft, 3688]
                                                   army
[1933-Roosevelt, 1457]
                            a trained and loval
                                                          willing to sacrifice for
                                                   armv
                       leadership of this great
                                                          of our people dedicated
 933-Roosevelt, 15621
```

Figure 5: