Reason 1: >80% of the performance of the final design is determined by early-stage design decisions

Reason 1: >80% of the performance of the final design is determined by early-stage design decisions

Example: eVTOL Noise

- Most design regrets can't be fixed later
- Noise: one of many disciplines not typically considered during conceptual design

"The very next design principle, behind safety, was noise."

-Joby Aviation, on conceptual design SEC 001-39524: "Virtual Fireside Chat with Joby..."

Joby Aviation S4

BETA Alia-250

Lilium Jet

More noise

Less noise

manufacturers

All images reproduced from their respective

Reason 2: These days, new technologies are enabling more early-stage aircraft design space exploration than ever before

Example: Drones / UAVs

- Able to take more risks with exotic designs:
 - Shorter design cycles, lower cost
 - Minimal certification and safety risks
- New trade spaces to explore
 - Packaging/folding every mm³ counts!
 - Autonomy & computing SWaP
 - Payload miniaturization
 - New missions: dull, dirty, and dangerous
 - Attritable design and cost optimization
 - Physics: scaling laws
 - Square-cube
 - Reynolds numbers

MIT Firefly (Mach 0.8, rocketpropelled micro-UAV)

Transonic DP
545 mph dynamic-soaring glider
100 G sustained turn capability
(Photo: Spencer Lisenby)

MIT Perdix (Air-launched ALE-55-class ISR UAV)

Black Hornet Nano 18-gram ISR helicopter (Photo: Richard Watt/MOD)

Reason 2: These days, new technologies are enabling more early-stage aircraft design space exploration than ever before

Example: Urban Air Mobility / eVTOLs

- After a decade, still no clear consensus on the "right" way to use electric propulsion.
- Electric propulsion is fundamentally different:

	Conventional	Electric
Energy Storage	Kerosene	Batteries
Energy Transmission	Combustion engines	Electric motors

Reason 3: The true value of conceptual MDO isn't only in answering questions ("the point design") – it's in determining which questions we should be asking

Requirements Feedback

- Which requirements are driving, and which are unimportant?
- How should we negotiate requirements?
 - Where can we give margin, and where do we need margin?

Market Identification & Competitive Analysis

- Given our technologies and capabilities, which customers should we be pitching to?
- Where are the market gaps in competitor offerings?

Risk Reduction

- How much margin do we have to various constraints?
- Which key model assumptions are we sensitive to?
- What's the most costeffective way to reduce uncertainty in our ability to deliver?