工程数学基础

DR_CAN

2023年2月15日

目录

第一章	特征值与特征向量	1
1.1	线性变化	1
1.2	求解特征值特征向量	3

第一章 特征值与特征向量

在数学中,特别是线性代数中,对于一个给定的线性变换 A,它的特征向量 v 经过这个线性变换的作用之后,得到的新向量仍然与原来的 v 保持在同一条直线上,但其长度或方向也许会改变,即

$$Av = \lambda v$$

其中 λ 为标量,即特征向量的长度在该线性变换下缩放的比例,称为 其特征值

1.1 线性变化

现有二维线性变化矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$$

以及一个向量

$$v_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

向量 v_1 通过 A 的线性变换,即

$$\mathbf{A}\mathbf{v_1} = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 1 \times 2 \\ 4 \times 1 + (-2) \times 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

笛卡尔坐标系下 v_1 向量的 A 变化如图1.1所示

图 $1.1: v_1$ 向量的 A 变化

通过图1.1可以看出 v_1 通过 A 的线性变化后大小和方向都发生了变化现有另一个向量

$$v_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

同样的对 v_2 进行 A 线性变化得到

$$Av_2 = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \times 1 + 1 \times 1 \\ 4 \times 1 + (-2) \times 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2v_2$$

 Av_2 与 v_2 在一条直线上,根据定义可知 v_2 是矩阵 A 的特征向量,缩放比例 2 即是特征值 λ

1.2 求解特征值特征向量

求解矩阵的特征值和特征向量推导:

$$Av = \lambda v \tag{1.1}$$

$$Av - \lambda v = 0 \tag{1.2}$$

$$(A - \lambda I)v = 0 \tag{1.3}$$

此处 I 是一个单位矩阵 若式1.3有非零解则有

$$\left| A - \lambda I \right| = 0$$

通过上式即可求得特征值 λ ,然后再将特征值带回式1.3中即可得到特征向量。