离散数学

第二章 命题逻辑等值演算

主要内容

- 2.1 等值式
- 2.2 析取范式与合取范式
- 2.3 联结词完备集
- 2.4 可满足性问题与消解法

2.3 联结词的完备集

- 其他联结词
 - ●与非↑
 - 或非↓
 - 不可兼析取 ▽
- 联结词的完备集
 - n元真值函数
 - 联结词的完备集
 - ●最小联结词完备集

与非↑&或非↓

定义2.8 设p,q为两个命题,

 $\neg (p \land q)$ 称作 $p \ni q$ 的与非式,记作 $p \uparrow q$,

即 $p \uparrow q \Leftrightarrow \neg (p \land q)$, 个称为与非联结词

 $\neg(p \lor q)$ 称作 $p \vdash q$ 的或非式, 记作 $p \downarrow q$,

即 $p \downarrow q \Leftrightarrow \neg (p \lor q), \downarrow$ 称为或非联结词

真值表

p	\boldsymbol{q}	$p {\uparrow} q$	$p \downarrow q$
0	0	1	1
0	1	1	0
1	0	1	0
1	1	0	0

不可兼析取 ▽

定义: 给定两个命题p和q,复合命题 $p \nabla q$ 称作p和q的 "不可兼析取".

 $p \nabla q$ 的真值为1,当且仅当p和q真值不相同,否则 $p \nabla q$ 的真值为0.

真值表

p	$oldsymbol{q}$	$p \bigtriangledown q$
0	0	0
0	1	1
1	0	1
1	1	0

$$p \bigtriangledown q \Leftrightarrow \neg(p \leftrightarrow q)$$

不可兼析取 ▽

p	\boldsymbol{q}	$p \bigtriangledown q$
0	0	0
0	1	1
1	0	1
1	1	0

$$p \bigtriangledown q$$

$$\Leftrightarrow (\neg p \land q) \lor (p \land \neg q)$$

$$\Leftrightarrow (p \lor q) \land (\neg p \lor \neg q)$$

$$\Leftrightarrow (p \lor q) \land \neg (p \land q)$$

ľ)	\boldsymbol{q}	$\neg p$	$\neg q$	$\neg p \land q$	$p \land \neg q$	$(\neg p \land q) \lor (p \land \neg q)$
0)	0	1	1	0	0	0
0)	1	1	0	1	0	1
•	1	0	0	1	0	1	1
•	1	1	0	0	0	0	0

小结_八个联结词

•1. 否定

• 2. 合取

问题:

• 3. 析取

• 4. 蕴涵

•5. 等价

 \leftrightarrow

 $\overline{\vee}$

- 6. 不可兼析取
- •7. 与非

●8. 或非

除了这八个逻辑联 结词之外,是否需要 定义其它联结词呢?

n元真值函数

定义2.6 称 $F:\{0,1\}^n \to \{0,1\}$ 为n元真值函数.

其中,定义域 $\{0,1\}^n = \{00...0, 00...1, ..., 11...1\}$,包含 2^n 个长为n的0,1符号串. 值域为 $\{0,1\}$.

● n个命题变项共有 2^{2^n} 个n元真值函数.

1元真值函数

p	$F_0^{(1)}$	$F_1^{(1)}$	$F_2^{(1)}$	$F_3^{(1)}$
0	0	0	1	1
1	0	1	0	1

2元真值函数

p	q	$oldsymbol{F_0^{(2)}}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$F_6^{(2)}$	$F_7^{(2)}$
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
p	\boldsymbol{q}	$oxed{F_8^{(2)}}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
$egin{bmatrix} 0 \\ 1 \end{bmatrix}$	1 0	0 0	0 0	0 1	0 1	1 0	1 0	1 1	1 1

2元真值函数共有16个

2元真值函数

		$p \land q$	$p \land \neg q$		$\neg p \land q$			
		(m_3)	(m_2)	p	(m_1)	q -	$\neg (p \leftrightarrow q)$	$p \lor q$
p q	$F_0^{(2)}$	$F_1^{(2)}$	$F_2^{(2)}$	$F_3^{(2)}$	$F_4^{(2)}$	$F_5^{(2)}$	$ F_6^{(2)} $	$oldsymbol{F_7^{(2)}}$
0 0	0	0	0	0	0	0	0	0
0 1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1
p q	$F_8^{(2)}$	$F_9^{(2)}$	$F_{10}^{(2)}$	$F_{11}^{(2)}$	$F_{12}^{(2)}$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
0 0	1	1	1	1	1	1	1	1
0 1	0	0	0	0	1	1	1	1
1 0	0	0	1	1	0	0	1	1
1 1	0	1	0	1	0	1	0	1
	-	10 () 01				10		
	_	$p \leftrightarrow q$	$\neg q$	$q \rightarrow p$	$\neg p$	$p \rightarrow q$	$\neg (p \land q)$	
((m_0)							

公式与真值函数

任何一个含n个命题变项的命题公式A都对应唯一的一个n元真值函数 F, F 恰好为A的真值表.

等值的公式对应的真值函数相同.

例如: $p\rightarrow q$, $\neg p\lor q$ 都对应 $F_{13}^{(2)}$

$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$F_{13}^{(2)}$	$F_{14}^{(2)}$	$F_{15}^{(2)}$
0 0 1 1 1 1 1	1	1	1
0 1 0 0 0 1	1	1	1
1000110	0	1	1
11 0 1 0 1 0	1	0	1

联结词完备集

定义2.7 设S是一个联结词集合,如果任何 $n(n \ge 1)$ 元真值函数都可以由仅含S中的联结词构成的公式表示,则称S是联结词完备集

若S是联结词完备集,则任何命题公式都可由S中的联结词表示

定理2.6 $S = \{\neg, \land, \lor\}$ 是联结词完备集证明 任何 $n(n \ge 1)$ 元真值函数都与唯一的一个主析取范式等值,而在主析取范式中仅含联结词 \neg, \land, \lor ,所以, $S = \{\neg, \land, \lor\}$ 是联结词完备集。

联结词完备集

推论以下都是联结词完备集

$$(1) S_1 = \{\neg, \land, \lor, \rightarrow\}$$

$$(2) S_2 = \{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$$

$$(3) S_3 = {\neg, \land}$$

$$(4) S_4 = {\neg, \lor}$$

$$(5) S_5 = \{\neg, \rightarrow\}$$

证明

(1),(2) 在联结词完备集中加入新的联结词后仍为完备集

$$(3) A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$$

$$(4) A \land B \Leftrightarrow \neg (\neg A \lor \neg B)$$

$$(5) A \rightarrow B \Leftrightarrow \neg A \lor B$$

 $\{\land,\lor,\rightarrow,\leftrightarrow\}$ 不是联结词完备集,0(恒取0值的真值函数)不能用它表示:

它的子集{∧},{∨},{→},{↔},{∧,∨},{∧,∨,→}等都不是

联结词完备集

定理2.7 {↑}与{↓}为联结词完备集.

证明:因为 $\{\neg, \land, \lor\}$ 为联结词完备集而 $\neg p \Leftrightarrow \neg p \land \neg p \Leftrightarrow \neg (p \lor p) \Leftrightarrow p \lor p$ $p \land q \Leftrightarrow \neg (\neg p \lor \neg q) \Leftrightarrow \neg p \lor \neg q \Leftrightarrow (p \lor p) \lor (q \lor q)$ $p \lor q \Leftrightarrow \neg \neg (p \lor q) \Leftrightarrow \neg (p \lor q) \Leftrightarrow (p \lor q) \lor (p \lor q)$ 所以, $\{\downarrow\}$ 为联结词完备集.

对{个}类似可证

结论

•1. 否定

• 2. 合取

问题:

• 3. 析取

• 4. 蕴涵

•5. 等价

 \leftrightarrow

• 6. 不可兼析取

 $\overline{\nabla}$

• 7. 与非

• 8. 或非

除常量T,F以及 命题变项本身外,命题 联结词共有8个就够了!

除了这8个逻辑联

结词之外,是否需要

定义其它联结词呢?

是不是8个逻辑联结词都是必要的?

最小联结词完备集

- S是联结词完备集,从S中任意去掉一个联结词后,得到一个联结词集合S',至少有一个公式B,不等值于仅包含S'中联结词的任一公式,则称S为最小联结词完备集。
- 试说明{¬,∧}、{¬,∨}和{¬,→}是最小联结词完备集。
 - ✓ 根据推论已知{¬,∧} 是联结词完备集,下面说明一元联结词¬不能用 二元联结词 ∧ 表示。
 - ✓ 如有¬p⇔(… (p∧q)∧…∧…)的形式,则对该等值式的右边所出现的变元,都指派真值1,则其真值必为1,而该式的左边的真值为0,产生矛盾,说明"¬"不能由"∧"的复合所替代.
 - ✓ 同理可说明 "¬" 不能由 "∨" 和 "→" 的复合所替代.所以去掉¬是不可以的,所以{¬, ∧}、{¬, ∨}和{¬, →}是最小联结词完备集。

离散数学

2.3 联结词的完备集(回顾)

- 其他联结词
 - ●与非↑
 - 或非↓
 - 不可兼析取 ▽
- 联结词的完备集
 - n元真值函数
 - 联结词的完备集
 - 最小联结词完备集

第二章 命题逻辑等值演算

主要内容

- 2.1 等值式
- 2.2 析取范式与合取范式
- 2.3 联结词完备集
- 2.4 可满足性问题与消解法

离散数学

2.4 可满足性问题与消解法

- 消解文字、消解式(消解结果)
- 消解规则
- 消解序列
- 消解算法

例子: 判断公式的可满足性

$$(p \lor q \lor r) \land (p \lor \neg r)$$
$$\Leftrightarrow p \lor (q \land \neg r)$$

p	q	r	$\neg r$	$q \land \neg r$	$p\lor (q\land \neg r)$
0	0	0	1	0	0
0	0	1	0	0	0
0	1	0	1	1	1
0	1	1	0	0	0
1	0	0	1	0	1
1	0	1	0	0	1
1	1	0	1	1	1
1	1	1	0	0	1

例子: 判断公式的可满足性

$$(p \lor q \lor r) \land (p \lor \neg r) \approx p \lor q$$

 $\Leftrightarrow p \lor (q \land \neg r)$

p	\boldsymbol{q}	r	$\neg r$	$q \land \neg r$	$p\lor (q\land \neg r)$	$p \lor q$
0	0	0	1	0	0	0
0	0	1	0	0	0	0
0	1	0	1	1	1	1
0	1	1	0	0	0	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	1	0	1	1	1	1
1	1	1	0	0	1	1

2.4 可满足性问题与消解法

- 命题公式的可满足性问题可以归结为其合取范式的可满足性问题(原因:任意一个公式可以化成等值的合取范式)
- 不含任何文字的简单析取式称作空简单析取式,记作λ
 - 规定 》是不可满足的

- 约定:
 - 简单析取式不同时含某个命题变项和它的否定
 - S:合取范式,C:简单析取式,l:文字, α :赋值
 - 文字l的补 l^c : 若l=p,则 $l^c=\neg p$;若 $l=\neg p$,则 $l^c=p$.
 - $S \approx S' : S$ 是可满足的当且仅当S'是可满足的

定义2.9设 C_1 , C_2 是两个简单析取式,且 C_1 = $l \lor C_1'$, C_2 = $l^c \lor C_2'$, C_1' 和 C_2' 不含l和 l^c ,称 $C_1' \lor C_2'$ 为 C_1 和 C_2 (以l和 l^c 为消解文字)的消解式或消解结果,记作: $Res(C_1,C_2)$

• 例如: $\operatorname{Res}(p \lor q \lor r, p \lor \neg r) = p \lor q \lor p = p \lor q$

离散数学

消解规则

定理2.8 $C_1 \land C_2 \approx \text{Res}(C_1, C_2)$

【注意: $C_1 \land C_2$ 与 $Res(C_1,C_2)$ 有相同的可满足性, 但不一定等值.】

证 记 $C = \operatorname{Res}(C_1, C_2) = C_1' \lor C_2'$,其中 $l \cap l^c$ 为消解文字, $C_1 = l \lor C_1'$, $C_2 = l^c \lor C_2'$,且 $C_1' \cap l^c$ 。

① 假设 $C_1 \land C_2 \ (l \lor C_1') \land (l^c \lor C_2') \$ 是可满足的, α 是它的满足赋值,若 $\alpha(l)=1$,则 $\alpha(l^c)=0$,所以 $\alpha(C_2')=1$ 否则 $\alpha(l)=0$,则 $\alpha(C_1')=1$ 故 α 满足 $C \ C_1' \lor C_2' \$.

② 假设C 【 C_1 ' $\vee C_2$ '】是可满足的, α 是它的满足赋值.

要把 α 扩张到 $l(l^c)$ 上:

若 $\alpha(C_1')=1$,则令 $\alpha(l^c)=1$

否则 $\alpha(C_2')=1$,则令 $\alpha(l)=1$

故 α 满足 $C_1 \land C_2$ 【 $(l \lor C_1') \land (l^c \lor C_2')$ 】.

消解序列与合取范式的否证

定义2.10 设S是一个合取范式, C_1 , C_2 ,..., C_n 是一个简单析取式序列. 如果对每一个 $i(1 \le i \le n)$, C_i 是S的一个简单析取式或者是 $Res(C_j,C_k)(1 \le j < k < i)$,则称此序列是由S导出 C_n 的消解序列. 当 $C_n = \lambda$ 时,称此序列是S的一个否证.

定理2.9 一个合取范式是不可满足的当且仅当它有否证.

例11 用消解规则证明 $S=(\neg p \lor q) \land (p \lor q \lor \neg s) \land (q \lor s) \land \neg q$ 是不可满足的.

证 $C_1 = \neg p \lor q$, $C_2 = p \lor q \lor \neg s$, $C_3 = \operatorname{Res}(C_1, C_2) = q \lor \neg s$, $C_4 = q \lor s$, $C_5 = \operatorname{Res}(C_3, C_4) = q$, $C_6 = \neg q$, $C_7 = \operatorname{Res}(C_5, C_6) = \lambda$, 这是S的否证.

离散数学

消解序列与合取范式的否证

例11 用消解规则证明 $S=(\neg p \lor q) \land (p \lor q \lor \neg s) \land (q \lor s) \land \neg q$ 是不可满足的.

消解序列

1) $\neg p \lor q$

- S的简单析取式
- 2) $p \lor q \lor \neg s$
- S的简单析取式

3) $q \vee \neg s$

1)2)消解

4) *q*∨*s*

S的简单析取式

5) q

3)4)消解

 $6) \neg q$

S的简单析取式

7) λ

5)6)消解

这是5的一个否证,

从而证明S是不可满足的(矛盾式).

练习

• 构造公式 $A=(p\lor q)\land (\neg q\lor r)\land (\neg p\lor q)\land \neg r$ 的否证,从而证明它是矛盾式.

解 消解序列:

① $p \lor q$ A的简单析取式

② $\neg p \lor q$ A的简单析取式

③ q ①,②消解

 $4 \neg q \lor r$ A的简单析取式

⑤¬r A的简单析取式

⑥ ¬q ④,⑤消解

⑦ *λ* ③,⑥消解

这是A的一个否证,从而证明A是矛盾式。

消解算法

消解算法

输入: 合式公式A

输出:

```
当A是可满足时,
回答"Yes";
否则,
回答"No".
```

```
1. 求A的合取范式S
2. \diamondsuit S_0 \leftarrow \varnothing, S_2 \leftarrow \varnothing, S_1 \leftarrow S的所有简单析取式
3. For C_1 \in S_0和C_2 \in S_1
    If C_1, C_2可以消解 then
5.
             计算C \leftarrow \text{Res}(C_1, C_2)
          If C=\lambda then
                   输出"No", 计算结束
7.
              If C \notin S_0且C \notin S_1 then
                   S_2 \leftarrow S_2 \cup \{C\}
10. For C_1 \in S_1, C_2 \in S_1 \coprod C_1 \neq C_2
        If C_1, C_2可以消解 then
11.
12.
               计算C \leftarrow \text{Res}(C_1, C_2)
13.
               If C=\lambda then
                     输出"No", 计算结束
14.
15.
               If C \notin S_0 且C \notin S_1 then
                    S_2 \leftarrow S_2 \cup \{C\}
16.
17. If S_2 = \emptyset then
18. 输出 "Yes", 计算结束
19. Else S_0 \leftarrow S_0 \cup S_1, S_1 \leftarrow S_2, S_2 \leftarrow \emptyset, goto 3
```


例12 用消解算法判断下述公式是否是可满足的:

1)
$$(\neg p \lor q) \land (p \lor q) \land \neg q$$

解:

$$S = (\neg p \lor q) \land (p \lor q) \land \neg q$$

循环1 $S_0 = \varnothing$, $S_1 = \{\neg p \lor q, p \lor q, \neg q\}$, $S_2 = \varnothing$
 $\operatorname{Res}(\neg p \lor q, \neg q) = \neg p$
 $\operatorname{Res}(p \lor q, \neg q) = p$
 $\operatorname{Res}(\neg p \lor q, p \lor q) = q$
 $S_2 = \{p, \neg p, q\}$

循环2 $S_0 = \{\neg p \lor q, p \lor q, \neg q\}, S_1 = \{p, \neg p, q\}, S_2 = \emptyset$

 $\operatorname{Res}(\neg p \lor q, p) = q$

 $\operatorname{Res}(p \lor q, \neg p) = q$

 $\operatorname{Res}(q, \neg q) = \lambda$

输出"No",说明S是不可满足的。

例12 用消解算法判断下述公式是否是可满足的:

2)
$$p \land (p \lor q) \land (p \lor \neg q) \land (q \lor \neg r) \land (q \lor r)$$

解

$$S = p \land (p \lor q) \land (p \lor \neg q) \land (q \lor \neg r) \land (q \lor r)$$

循环1
$$S_0$$
=Ø, S_1 ={ $p,p\lor q,p\lor \neg q,q\lor \neg r,q\lor r$ }, S_2 =Ø

$$Res(p \lor q, p \lor \neg q) = p$$

$$\operatorname{Res}(p \lor \neg q, q \lor \neg r) = p \lor \neg r$$

$$\operatorname{Res}(p \lor \neg q, q \lor r) = p \lor r$$

$$\operatorname{Res}(q \lor \neg r, q \lor r) = q$$

$$S_2 = \{p \lor r, p \lor \neg r, q\}$$

循环2 $S_0 = \{p, p \lor q, p \lor \neg q, q \lor \neg r, q \lor r\}, S_1 = \{p \lor r, p \lor \neg r, q\}, S_2 = \emptyset$

 $\operatorname{Res}(p \lor \neg q, q) = p$

 $Res(q \lor \neg r, p \lor r) = p \lor q$

 $Res(q \lor r, p \lor \neg r) = p \lor q$

 $Res(p \lor r, p \lor \neg r) = p$

 $S_2 = \emptyset$

输出"Yes",说明S是可满足的。

离散数学2.4 可满足性问题与消解法(回顾)

- 消解文字、消解式(消解结果)
- 消解规则
- 消解序列
- 消解算法

离散数学第二章 命题逻辑等值演算(回顾)

主要内容

- 2.1 等值式
- 2.2 析取范式与合取范式
- 2.3 联结词完备集
- 2.4 可满足性问题与消解法

离散数学 复习: 合取范式 > 简单析取式 >文字

合取范式是简单析取式的合取

简单析取式是有限个文字的析取

文字是命题变项及其否的总称

