Novatel

REVISED TEST REPORT FOR

PwrPak7 Model: 01019717

Tested To The Following Standards:

FCC Part 15 Subpart C Section(s)

15.247 (DTS 2400-2483.5 MHz)

Report No.: 100173-6A

Date of issue: September 26, 2017

This test report bears the accreditation symbol indicating that the testing performed herein meets the test and reporting requirements of ISO/IEC 17025 under the applicable scope of EMC testing for CKC Laboratories, Inc.

We strive to create long-term, trust based relationships by providing sound, adaptive, customer first testing services. We embrace each of our customers' unique EMC challenges, not as an interruption to set processes, but rather as the reason we are in business.

This report contains a total of 65 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc.

TABLE OF CONTENTS

A	dministrative information	3
	Test Report Information	3
	Revision History	3
	Report Authorization	3
	Test Facility Information	4
	Software Versions	4
	Site Registration & Accreditation Information	4
	Summary of Results	5
	Modifications During Testing	5
	Conditions During Testing.	5
	Equipment Under Test	6
	General Product Information	7
F	CC Part 15 Subpart C	8
	15.247(a)(2) 6dB Bandwidth	8
	15.247(b)(3) Output Power	16
	15.247(e) Power Spectral Density	22
	15.247(d) RF Conducted Emissions & Band Edge	28
	15.247(d) Radiated Emissions & Band Edge	37
Sı	upplemental Information	64
	Measurement Uncertainty	64
	Emissions Test Details	

ADMINISTRATIVE INFORMATION

Test Report Information

REPORT PREPARED FOR: REPORT PREPARED BY:

Novatel Terri Rayle 1120-68th Ave NE CKC Laboratories, Inc.

Calgary AB T2E 8S5 5046 Sierra Pines Drive Canada Mariposa, CA 95338

REPRESENTATIVE: Jim Turner Project Number: 100173

Customer Reference Number: RPO0005724

DATE OF EQUIPMENT RECEIPT: August 7, 2017

DATE(S) OF TESTING: August 7-10, 2017 and September 12, 2017

Revision History

Original: Testing of the PwrPak7, Model: 01019717 to FCC Part 15 Subpart C Section(s), 15.247 (DTS 2400-2483.5 MHz).

Revision A: To replace data, plots and correct the limit values in section 15.247(d) Conducted Emissions and Band Edge

Report Authorization

The test data contained in this report documents the observed testing parameters pertaining to and are relevant for only the sample equipment tested in the agreed upon operational mode(s) and configuration(s) as identified herein. Compliance assessment remains the client's responsibility. This report may not be used to claim product endorsement by A2LA or any government agencies. This test report has been authorized for release under quality control from CKC Laboratories, Inc.

Steve Behm

Director of Quality Assurance & Engineering Services CKC Laboratories, Inc.

Steve I B

Page 3 of 65 Report No.: 100173-6A

Test Facility Information

Our laboratories are configured to effectively test a wide variety of product types. CKC utilizes first class test equipment, anechoic chambers, data acquisition and information services to create accurate, repeatable and affordable test results.

TEST LOCATION(S): CKC Laboratories, Inc. 22116 23rd Drive S.E., Suite A Canyon Park, Bothell, WA 98021

Software Versions

CKC Laboratories Proprietary Software	Version
EMITest Emissions	5.03.02

Site Registration & Accreditation Information

Location	NIST CB #	TAIWAN	CANADA	FCC	JAPAN
Canyon Park, Bothell, WA	US0081	SL2-IN-E-1145R	3082C-1	US1022	A-0148

Page 4 of 65 Report No.: 100173-6A

SUMMARY OF RESULTS

Standard / Specification: FCC Part 15 Subpart C - 15.247 (DTS)

Test Procedure	t Procedure Description		Results
15.247(a)(2)	6dB Bandwidth	NA	Pass
15.247(b)(3)	5.247(b)(3) Output Power		Pass
15.247(e)	247(e) Power Spectral Density		Pass
15.247(d)	RF Conducted Emissions & Band Edge		Pass
15.247(d) Radiated Emissions & Band Edge		NA	Pass
15.207 AC Conducted Emissions		NA	NP

NA = Not Applicable

NP = CKC Laboratories was not contracted to perform test.

Modifications During Testing

This list is a summary of the modifications made to the equipment during testing.

Summary of Conditions

No modifications were made during testing.

Modifications listed above must be incorporated into all production units.

Conditions During Testing

This list is a summary of the conditions noted to the equipment during testing.

Summary of Conditions

All data rates investigated, only worst case data reported.

Page 5 of 65 Report No.: 100173-6A

EQUIPMENT UNDER TEST (EUT)

During testing, numerous configurations may have been utilized. The configurations listed below support compliance to the standard(s) listed in the Summary of Results section.

Configuration 1

Equipment Tested:

Device	Manufacturer	Model #	S/N		
PwrPak7	Novatel	01019717	NMNE17190018S		

Support Equipment:

Device	Manufacturer	Model #	S/N
GNSS Active Antenna	Novatel	GPS-703-GGG	NA
Laptop	Panasonic	Toughbook CF-31	NA
AC Adaptor (for Laptop)	Panasonic	CF-AA5713A	NA
Bias Tee Coupler	Mini-Circuits	ZFBT-4R2G-FT	NA
Amplifier	Mini-Circuits	ZHL-1217HLN-SMA	NA
Attenuator	Alan	Model 50TX82.5 BNC	NA
CAN Interface	Vector	VN1610	NA
USB to 4 Port RS-232 Serial HUB	Moxa	UPort 1450	NA

Configuration 2

Equipment Tested:

Device	Manufacturer	Model #	S/N
PwrPak7	Novatel	01019717	NMNE17190014K

Support Equipment:

Device	Manufacturer	Model #	S/N
GNSS Active Antenna	Novatel	GPS-703-GGG	NA
Laptop	Panasonic	Toughbook CF-31	NA
AC Adaptor (for Laptop)	Panasonic	CF-AA5713A	NA
Bias Tee Coupler	Mini-Circuits	ZFBT-4R2G-FT	NA
Amplifier	Mini-Circuits	ZHL-1217HLN-SMA	NA
Attenuator	Alan	Model 50TX82.5 BNC	NA
CAN Interface	Vector	VN1610	NA
USB to 4 Port RS-232 Serial HUB	Moxa	UPort 1450	NA

Page 6 of 65 Report No.: 100173-6A

General Product Information:

Product Information	Manufacturer-Provided Details
Equipment Type:	Stand-Alone Equipment
Type of Wideband System:	802.11 b/g/n20
Operating Frequency Range:	2412-2462MHz
Modulation Type(s):	CCK, DQPSK, PBCC, BPSK, QPSK OFDM, 16-QAM, 64-QAM
Maximum Duty Cycle:	Tested 100%
Number of TX Chains:	1
Antenna Type(s) and Gain:	Integral Trace, 2.6dBi
Beamforming Type:	NA
Antenna Connection Type:	Integral (External connector provided to facilitate testing)
Nominal Input Voltage:	13.2VDC (9V-36VDC range)
Firmware / Software used for Test:	OM7CR0301SN0007 / WifiConfigSequencer.exe

Page 7 of 65 Report No.: 100173-6A

FCC Part 15 Subpart C

15.247(a)(2) 6dB Bandwidth

	Test Setup/Conditions					
Test Location:	Bothell Lab Bench	Test Engineer:	M. Atkinson			
Test Method:	ANSI C63.10 (2013), KDB 558074	Test Date(s):	8/10/2017			
	v04 (April 5, 2017)					
Configuration:	2					
v04 (April 5, 2017)						

Environmental Conditions				
Temperature (°C)	22.4	Relative Humidity (%):	41	

Test Equipment						
Asset# Description Manufacturer Model Cal Date Cal Due						
02871	Spectrum Analyzer	Agilent	E4440A	2/24/2017	2/24/2019	
P05748	Attenuator	Pasternack	PE7004-20	4/11/2016	4/11/2018	
P06518	Cable	Andrews	Heliax	1/21/2016	1/21/2018	

	Test Data Summary									
Frequency (MHz)	Antenna Port	Modulation	Measured (kHz)	Limit (kHz)	Results					
2412	1	1M Data Rate (CCK/DQPSK)	10012	≥500	Pass					
2442	1	1M Data Rate (CCK/DQPSK)	10074	≥500	Pass					
2462	1	1M Data Rate (CCK/DQPSK)	9600	≥500	Pass					
2412	1	11M Data Rate (PBCC/QPSK)	9244	≥500	Pass					
2442	1	11M Data Rate (PBCC/QPSK)	8887	≥500	Pass					
2462	1	11M Data Rate (PBCC/QPSK)	9108	≥500	Pass					
2412	1	24M Data Rate (OFDM/16-QAM)	16509	≥500	Pass					
2442	1	24M Data Rate (OFDM/16-QAM)	16535	≥500	Pass					
2462	1	24M Data Rate (OFDM/16-QAM)	16522	≥500	Pass					
2412	1	MCS7 Data Rate (64-QAM)	17746	≥500	Pass					
2442	1	MCS7 Data Rate (64-QAM)	17757	≥500	Pass					
2462	1	MCS7 Data Rate (64-QAM)	17734	≥500	Pass					

Page 8 of 65 Report No.: 100173-6A

Plots

Data Rate 1Mbps, Low Channel

Data Rate 1Mbps, Middle Channel

Data Rate 1Mbps, High Channel

Data Rate 11Mbps, Low Channel

Data Rate 11Mbps, Middle Channel

Data Rate 11Mbps, High Channel

Data Rate 24Mbps, Low Channel

Data Rate 24Mbps, Middle Channel

Data Rate 24Mbps, High Channel

Data Rate MCS7, Low Channel

Data Rate MCS7, Middle Channel

Data Rate MCS7, High Channel

Test Setup Photo

Page 15 of 65 Report No.: 100173-6A

15.247(b)(3) Output Power

	Test Data Summary - Voltage Variations									
Frequency (MHz)	Modulation	V _{Minimum} (dBm)	V _{Nominal} (dBm)	V _{Maximum} (dBm)	Max Deviation from V _{Nominal} (dB)					
2412	11M Data Rate (PBCC/QPSK) (Worst Case)	11.1	11.1	11.1	0.0					
2442	11M Data Rate (PBCC/QPSK) (Worst Case)	16.2	16.2	16.2	0.0					
2462	11M Data Rate (PBCC/QPSK) (Worst Case)	11.3	11.3	11.3	0.0					

Test performed using operational mode with the highest output power, representing worst case.

Parameter Definitions:

Measurements performed at input voltage according to manufacturer specification.

	- 1 0 0					
Parameter	Value					
V _{Nominal} :	13.2VDC					
V _{Minimum} :	9VDC					
V _{Maximum} :	36VDC					

	Test Data Summary - RF Conducted Measurement									
Measuremen	t Option: AVGSA-1									
Frequency (MHz) Modulation Ant. Type / Gain (dBi) Measured Limit (dBm) Results										
2412	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	11.1	≤30	Pass					
2442	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	16.2	≤30	Pass					
2462	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	11.3	≤30	Pass					

Page 16 of 65 Report No.: 100173-6A

Plots

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.247(b) Power Output (2400-2483.5 MHz DTS)

Work Order #: 100173 Date: 9/12/2017
Test Type: Conducted Emissions Time: 15:41:52
Tested By: Michael Atkinson Sequence#: 12
Software: EMITest 5.03.02 13.2VDC

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Frequency Range: Fundamental

Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, 11M data rate worst case.

Antenna type: Integral Trace Antenna Gain : 2.6dBi

Duty Cycle: 100% Bothell Lab Bench

Test Method: ANSI C63.10 (2013), KDB 558074 v04 (April 5, 2017)

Temperature (°C):19-20 Relative Humidity (%): 35-45

Setup:

The EUT is DC powered through a power supply to vary the voltage. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

The EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. The EUT was fitted with a temporary antenna port for direct conducted measurements.

Page 19 of 65 Report No.: 100173-6A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	ANP05748	Attenuator	PE7004-20	4/11/2016	4/11/2018
T2	ANP06518	Cable	Heliax	1/21/2016	1/21/2018
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019

Measurement Data: Reading listed by margin. Test Lead: RF Output Freq Rdng T1 T2 Dist Corr Spec Margin Polar MHz $dB\mu V \\$ dB dΒ dBdΒ Table $dB\mu V$ $dB\mu V$ dBAnt 1 2442.000M 123.2 RF Ou 101.6 +20.1+1.5+0.0137.0 -13.8 Ave 2 2462.000M 96.7 +0.0118.3 137.0 -18.7 RF Ou +20.1+1.5Ave 3 2412.000M 96.5 +20.1+1.5+0.0118.1 137.0 -18.9 RF Ou Ave

> Page 20 of 65 Report No.: 100173-6A

Test Setup Photo

Page 21 of 65 Report No.: 100173-6A

15.247(e) Power Spectral Density

	Test Data Summary - Radiated Measurement									
Measuremen	Measurement Method: PKPSD									
Frequency (MHz)	Modulation	Ant. Type / Gain (dBi)	Field Strength (dBuV/m @3m)	Calculated (dBm/3kHz)	Limit (dBm/3kHz)	Results				
2412	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	95.0	-2.83	≤8	Pass				
2442	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	97.6	-0.23	≤8	Pass				
2462	11M Data Rate (PBCC/QPSK) (Worst Case)	Integral Trace / 2.6dBi	93.7	-4.13	≤8	Pass				

Conducted RF output power calculated in accordance with ANSI C63.10.

$$P(W) = \frac{(E \cdot d)^2}{30 \ G}$$

Or equivalently, in logarithmic form:

$$P(dBm) = E(dBuV/m) + 20LOG(d) - G - 104.77$$

Page 22 of 65 Report No.: 100173-6A

Plots

Low Channel

Middle Channel

High Channel

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)
Work Order #: 100173 Date: 8/9/2017
Test Type: Maximized Emissions Time: 13:55:24
Tested By: Michael Atkinson Sequence#: 10

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N
Configuration 1			

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: Fundamental

Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, only worst case data reported

Antenna type: Integral Trace Antenna Gain: 2.6dBi

Duty Cycle: 100%

Setup:

The EUT is DC powered through a power supply to vary the voltage. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

The EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. Horizontal and Vertical antenna polarities investigated, only worst case reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. The EUT is on the test table 150cm high connected to the internal trace antenna.

Test Method: ANSI C63.10 (2013), KDB 558074 v04 (April 5, 2017)

Temperature (°C): 26 Relative Humidity (%): 38

Bothell Lab C3

Page 25 of 65 Report No.: 100173-6A

Novatel WO#: 100173 Sequence#: 10 Date: 8/9/2017 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS) Test Distance: 3 Meters Horiz

Readings

Peak Readings QP Readings

Average Readings

Ambient

Software Version: 5.03.02

1 - 15.247(e) Peak Power Spectral Density (2400-2483.5 MHz DTS)

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T1	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T2	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T3	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T4	AN01467	Horn Antenna-ANSI	3115	8/12/2015	8/12/2017
		C63.5 Calibration			
T5	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T6	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018

Meas	surement Data:	Re	eading list	ted by ma	argin.	Test Distance: 3 Meters					
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6							
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
	1 2438.110M	90.7	+0.6	+2.9	-34.0	+27.7	+0.0	97.6	109.2	-11.6	Horiz
			+0.4	+9.3					11M		
2	2 2413.110M	88.2	+0.6	+2.8	-34.0	+27.7	+0.0	95.0	109.2	-14.2	Horiz
			+0.4	+9.3					11M		
,	3 2463.110M	86.8	+0.6	+2.9	-34.0	+27.7	+0.0	93.7	109.2	-15.5	Horiz
			+0.4	+9.3					11M		

Test Setup Photo

Page 27 of 65 Report No.: 100173-6A

15.247(d) RF Conducted Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 100173 Date: 8/10/2017
Test Type: Conducted Emissions Time: 16:27:05
Tested By: Michael Atkinson Sequence#: 13
Software: EMITest 5.03.02 13.2VDC

Software. Entirest 5.0

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 2

Support Equipment:

Device Manufacturer Model # S/N
Configuration 2

Test Conditions / Notes:

Frequency Range: 9kHz to 24.835GHz Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, only worst case data reported.

Antenna type: Integral Trace Antenna Gain: 2.6dBi

Duty Cycle: 100%

Test Method: ANSI C63.10 (2013), KDB 558074 v04 (April 5, 2017)

Temperature (°C): 19 Relative Humidity (%): 45

Bothell Lab Bench

Setup:

The EUT is DC powered through a power supply to vary the voltage. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

Investigated EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. The EUT was fitted with a temporary antenna port for direct conducted measurements. Also investigated EUT in receive only mode.

Page 28 of 65 Report No.: 100173-6A

Page 29 of 65 Report No.: 100173-6A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019
T1	ANP06678	Cable	32026-29801-	9/19/2016	9/19/2018
			29801-144		
T2	ANP06241	Attenuator	54A-10	3/28/2016	3/28/2018
T3	ANP05748	Attenuator	PE7004-20	4/11/2016	4/11/2018
T4	ANP06518	Cable	Heliax	1/21/2016	1/21/2018

Measu	rement Data:	Re	eading lis	ted by ma	argin.			Test Lead	l: RF Outp	out	
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
	MHz	dΒμV	dB	dB	dB	dB	Table	dΒμV	dΒμV	dB	Ant
1	3317.000M	37.4	+0.0	+0.0	+20.2	+1.7	+0.0	59.3	84.7	-25.4	RF Ou
2	22878.555 M	40.7	+8.4	+10.0	+0.0	+0.0	+0.0	59.1	84.7	-25.6	RF Ou
3	5379.000M	36.0	+0.0	+0.0	+20.3	+2.4	+0.0	58.7	84.7	-26.0	RF Ou
4	3353.000M	36.2	+0.0	+0.0	+20.2	+1.7	+0.0	58.1	84.7	-26.6	RF Ou
5	3260.000M	45.3	+3.1	+9.7	+0.0	+0.0	+0.0	58.1	84.7	-26.6	RF Ou
6	170.559k	36.9	+0.0	+0.0	+20.1	+0.1	+0.0	57.1	84.7	-27.6	RF Ou
7	3.210M	34.6	+0.0	+0.0	+20.1	+0.1	+0.0	54.8	84.7	-29.9	RF Ou
8	3217.000M	41.2	+3.1	+9.7	+0.0	+0.0	+0.0	54.0	84.7	-30.7	RF Ou
9	52.400M	33.1	+0.0	+0.0	+20.0	+0.3	+0.0	53.4	84.7	-31.3	RF Ou
10	3208.000M	40.3	+3.1	+9.7	+0.0	+0.0	+0.0	53.1	84.7	-31.6	RF Ou

Page 30 of 65 Report No.: 100173-6A

Plots

Band Edge

Band Edge Summary								
Limit applied:	Limit applied: Max Power/100kHz - 30dB (When average power limit is applied).							
Frequency (MHz)	Modulation	Measured (dBm)	Limit (dBm)	Results				
2400.0	6M Data Rate (OFDM/BPSK) (Worst Case)	-37.8	<-22.3	Pass				
2483.5	MCS7 Data Rate (64-QAM) (Worst Case)	-45.7	<-22.3	Pass				

Page 33 of 65 Report No.: 100173-6A

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.247(d) Conducted Spurious Emissions

Work Order #: 100173 Date: 8/10/2017
Test Type: Conducted Emissions Time: 15:30:01
Tested By: Michael Atkinson Sequence#: 12
Software: EMITest 5.03.02 13.2VDC

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Support Equipment:

Device	Manufacturer	Model #	S/N	
Configuration 2				

Test Conditions / Notes:

Frequency Range: Band Edge

Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, only worst case data reported.

Antenna type: Integral Trace Antenna Gain: 2.6dBi

Duty Cycle: 100% Bothell Lab Bench

Test Method: ANSI C63.10 (2013)

Temperature (°C): 19 Relative Humidity (%): 45

Setup:

The EUT is DC powered through a power supply to vary the voltage. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

The EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. The EUT was fitted with a temporary antenna port for direct conducted measurements.

Page 35 of 65 Report No.: 100173-6A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date			
T1	ANP05748	Attenuator	PE7004-20	4/11/2016	4/11/2018			
T2	ANP06518	Cable	Heliax	1/21/2016	1/21/2018			
T3	AN02871	Spectrum Analyzer	E4440A	2/24/2017	2/24/2019			

Measurement Data:		Reading listed by margin.			argin.		Test Lead: RF Output					
	#	Freq	Rdng	T1	T2	T3		Dist	Corr	Spec	Margin	Polar
		MHz	$dB\mu V$	dB	dB	dB	dΒ	Table	$dB\mu V$	$dB\mu V$	dB	Ant
	1	2400.000M	47.6	+20.1	+1.5	+0.0		+0.0	69.2	84.7	-15.5	RF Ou
								6M				
	2	2483.500M	39.6	+20.1	+1.5	+0.0		+0.0	61.2	84.7	-23.5	RF Ou
										MCS7		

Test Setup Photo

Page 36 of 65 Report No.: 100173-6A

15.247(d) Radiated Emissions & Band Edge

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.209 Radiated Emissions

Work Order #: 100174 Date: 8/7/2017
Test Type: Maximized Emissions Time: 16:11:36
Tested By: Michael Atkinson Sequence#: 5

Software: EMITest 5.03.02

Equipment Tested:

Device Manufacturer Model # S/N
Configuration 1

Support Equipment:

Device Manufacturer Model # S/N
Configuration 1

Test Conditions / Notes:

Frequency Range: 9kHz-24.835GHz Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, only worst case data reported

Antenna type: Integral Trace Antenna Gain: 2.6dBi

Duty Cycle: 100%

Setup:

The EUT is DC powered through a battery. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. Horizontal and Vertical antenna polarities investigated, only worst case reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. Below 1GHz: the EUT is on the test table 80cm high. Above 1GHz: The EUT is on the test table 150cm high. EUT connected to the internal trace antenna. Also investigated the EUT in receive only mode.

Test Method: ANSI C63.10 (2013), KDB 558074 v04 (April 5, 2017)

Temperature (°C): 23-26 Relative Humidity (%): 35-41

Bothell Lab C3

Page 37 of 65 Report No.: 100173-6A

Novatel WO#: 100174 Sequence#: 5 Date: 8/7/2017 15:209 Radiated Emissions Test Distance: 3 Meters

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
Т3	ANP05963	Cable	RG-214	2/15/2016	2/15/2018
T4	ANP05360	Cable	RG214	11/30/2016	11/30/2018
T5	AN02307	Preamp	8447D	2/15/2016	2/15/2018
T6	ANP06123	Attenuator	18N-6	5/5/2017	5/5/2019
T7	AN03628	Biconilog Antenna	3142E	6/7/2017	6/7/2019
T8	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
Т9	AN00052	Loop Antenna	6502	4/8/2016	4/8/2018
T10	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T11	AN01467	Horn Antenna-ANSI	3115	8/12/2015	8/12/2017
		C63.5 Calibration			
T12	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T13	ANP06124	Attenuator	18N-6	5/5/2017	5/5/2019
T14	AN03116	High Pass Filter	11SH10-00313	1/16/2017	1/16/2019
T15	AN02741	Active Horn Antenna	AMFW-5F-	3/30/2017	3/30/2019
			12001800-20-10P		
T16	AN02742	Active Horn Antenna	AMFW-5F-	10/7/2016	10/7/2018
			18002650-20-10P		
T17	ANP06678	Cable	32026-29801-	9/19/2016	9/19/2018
			29801-144		
T18	AN03122	Cable	32026-2-29801-	4/28/2016	4/28/2018
			36		
T19	AN02763-69	Waveguide	Multiple	7/14/2017	7/14/2019

Page 39 of 65 Report No.: 100173-6A

Measurement D	Oata:	Re	eading lis	ted by ma	argin.		Т	est Distance	e: 3 Meters		
# Freq	Ro	dng	T1	T2	Т3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7	T8					
			T9	T10	T11	T12					
			T13	T14	T15	T16					
			T17	T18	T19						
MHz		BμV	dB	dB	dB	dB	Table		•	dB	Ant
1 480.004	4M	40.9	+0.0	+0.3	+1.9	+1.4	+0.0	40.7	46.0	-5.3	Horiz
QP			-28.0	+5.9	+18.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
45000		10.1	+0.0	+0.0	+0.0			• • • •	160		
2 479.997	7M	40.1	+0.0	+0.3	+1.9	+1.4	+0.0	39.9	46.0	-6.1	Horiz
QP			-28.0	+5.9	+18.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
2 400.017	014	20.6	+0.0	+0.0	+0.0	11.4	100	20.4	46.0		17 /
3 480.010	UM	39.6	+0.0	+0.3	+1.9	+1.4	+0.0	39.4	46.0	-6.6	Vert
QP			-28.0	+5.9	+18.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	$^{+0.0}_{+0.0}$	+0.0	+0.0					
^ 480 100	014	20.6	+0.0		+0.0	+1.4	100	20.4	46.0	((174
^ 480.100	UIVI	39.6	+0.0 -28.0	+0.3 +5.9	+1.9 +18.3	+1.4 +0.0	+0.0	39.4	46.0	-6.6	Vert
			+0.0	+0.0	+18.3 $+0.0$	$^{+0.0}$					
			+0.0 +0.0	$+0.0 \\ +0.0$	+0.0 +0.0	+0.0 +0.0					
			+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0					
5 480.002	2M	39.4	+0.0	+0.3	+1.9	+1.4	+0.0	39.2	46.0	-6.8	Horiz
QP	21VI	37.7	-28.0	+5.9	+18.3	+0.0	10.0	39.2	40.0	-0.6	110112
Qī			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	. 0.0					
^ 479.976	6M	42.5	+0.0	+0.3	+1.9	+1.4	+0.0	42.3	46.0	-3.7	Horiz
177.57	0141	12.3	-28.0	+5.9	+18.3	+0.0	. 0.0	12.3	10.0	5.7	HOHE
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^ 479.988	8M	41.4	+0.0	+0.3	+1.9	+1.4	+0.0	41.2	46.0	-4.8	Horiz
			-28.0	+5.9	+18.3	+0.0				-	
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^ 480.100	$0\overline{\mathrm{M}}$	40.5	+0.0	+0.3	+1.9	+1.4	+0.0	40.3	46.0	-5.7	Horiz
			-28.0	+5.9	+18.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^ 480.100	0M	40.2	+0.0	+0.3	+1.9	+1.4	+0.0	40.0	46.0	-6.0	Horiz
			-28.0	+5.9	+18.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

10 6994.000M	39.8	+0.0	+1.2	+0.0	+0.0	+0.0	47.1	54.0	-6.9	Vert
		+0.0	+0.0	+0.0	+4.3			Receive M	ode	
		+0.0	-33.8	+34.9	+0.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
11 9848.650M	34.1	+0.0	+1.4	+0.0	+0.0	+0.0	46.6	54.0	-7.4	Horiz
		+0.0	+0.0	+0.0	+6.1			High		
		+0.0	-33.6	+37.3	+0.7					
		+0.0	+0.6	+0.0	+0.0					
		+0.0	+0.0	+0.0						
12 2322.000M	41.9	+0.0	+0.6	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Horiz
		+0.0	+0.0	+0.0	+2.8					
		+0.0	-34.1	+27.7	+0.4					
		+5.9	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
13 4824.160M	39.0	+0.0	+0.9	+0.0	+0.0	+0.0	45.2	54.0	-8.8	Horiz
		+0.0	+0.0	+0.0	+4.3			Low		
		+0.0	-33.2	+32.7	+0.5					
		+0.0	+1.0	+0.0	+0.0					
11 1202 0002 5	10.0	+0.0	+0.0	+0.0						
14 4393.000M	40.0	+0.0	+0.9	+0.0	+0.0	+0.0	44.6	54.0	-9.4	Vert
		+0.0	+0.0	+0.0	+4.1			Receive M	ode	
		+0.0	-33.1	+32.2	+0.5					
		+0.0	+0.0	+0.0	+0.0					
15. 520 ((52) (240	+0.0	+0.0	+0.0	. 0. 0	. 0. 0		7.4.0	0.5	** '
15 7386.650M	34.8	+0.0	+1.3	+0.0	+0.0	+0.0	44.5	54.0	-9.5	Horiz
		+0.0	+0.0	+0.0	+4.8			High		
		+0.0	-34.3	+36.4	+0.6					
		+0.0	+0.9	+0.0	+0.0					
16 4024 65014	27.7	+0.0	+0.0	+0.0			44.1	7.4.0	0.0	
16 4924.650M	37.7	+0.0	+0.9	+0.0	+0.0	+0.0	44.1	54.0	-9.9	Horiz
		+0.0	+0.0	+0.0	+4.4			High		
		+0.0	-33.2	+32.8	+0.5					
		+0.0	+1.0	+0.0	+0.0					
17 1602 00014	42 O	+0.0	+0.0	+0.0			12.7	540	10.2	Цотіт
17 1692.000M	43.0	+0.0	+0.5 +0.0	+0.0	+0.0 +2.4	+0.0	43.7	54.0	-10.3	Horiz
		+0.0		+0.0 +26.3	+2.4					
		+0.0 +5.9	-34.7 +0.0	+26.3 +0.0	$+0.3 \\ +0.0$					
		+0.0	$^{+0.0}$	+0.0 +0.0	10.0					
18 858.400M	29.3	+0.0	+0.0	+2.3	+2.0	+0.0	35.2	46.0	-10.8	Vert
10 030.400101	49.3	-27.6	+5.9	+2.3 $+23.0$	+2.0 +0.0	10.0	33.2	40.0	-10.0	v ei t
		+0.0	+0.0	+0.0	$^{+0.0}$					
		$^{+0.0}$	$^{+0.0}$	+0.0 +0.0	$^{+0.0}$					
		$^{+0.0}$	$^{+0.0}$	+0.0 +0.0	10.0					
19 1432.000M	43.9	+0.0	+0.5	+0.0	+0.0	+0.0	42.7	54.0	-11.3	Horiz
19 1734.0001	T J.7	$+0.0 \\ +0.0$	+0.0	+0.0 +0.0	+2.2	10.0	7∠./	J 1 .0	-11.3	110112
		+0.0 +0.0	-35.1	+25.0	+0.3					
		+5.9	+0.0	+0.0	+0.5 +0.0					
		+0.0	+0.0 +0.0	+0.0 +0.0	10.0					
		10.0	10.0	10.0						

20 24043.000	43.1	+0.0	+0.0	+0.0	+0.0	+0.0	42.5	54.0	-11.5	Vert
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	-12.5					
		+8.5	+2.4	+1.0						
21 22142.000	44.5	+0.0	+0.0	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Vert
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	-14.4					
22 1725 1711	40.5	+8.3	+2.3	+1.5						***
22 17824.000	40.2	+0.0	+2.1	+0.0	+0.0	+0.0	42.1	54.0	-11.9	Vert
M		+0.0	+0.0	+0.0	+9.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-9.2	+0.0					
22 2170 0003 5	A 1 4	+0.0	+0.0	+0.0	10.0	100	41.0	E 4 0	10.1	тт .
23 3178.000M	41.4	+0.0	+0.7	+0.0	+0.0	+0.0	41.9	54.0	-12.1	Horiz
		+0.0	+0.0	+0.0	+3.3					
		+0.0	-33.6	+29.7	+0.4					
		+0.0	+0.0	+0.0	+0.0					
24 1154 000 4	Λ5 1	+0.0	+0.0	+0.0	±0.0		/1 O	540	12.2	
24 1154.000M	45.1	+0.0	+0.4	+0.0	+0.0	+0.0	41.8	54.0	-12.2	Horiz
		+0.0	+0.0	+0.0	+2.0					
		+0.0 +5.9	-36.1 +0.0	$+24.2 \\ +0.0$	$+0.3 \\ +0.0$					
		+5.9 +0.0	$^{+0.0}$	$^{+0.0}$	±0.0					
25 3781.000M	39.7	$+0.0 \\ +0.0$	+0.0	$+0.0 \\ +0.0$	+0.0	+0.0	41.6	54.0	-12.4	Horiz
23 3/01.000M	39./	$^{+0.0}_{+0.0}$	+0.7 +0.0	$^{+0.0}$	+0.0 +3.8	±0.0	41.0	54.0	-12.4	HOUZ
		$^{+0.0}$	+0.0 -33.4	+30.3	+3.8 +0.5					
		$^{+0.0}$	+0.0	+30.3 $+0.0$	+0.5 +0.0					
		+0.0 +0.0	+0.0	+0.0 +0.0	, 0.0					
26 17760.000	39.6	+0.0	+2.1	+0.0	+0.0	+0.0	41.4	54.0	-12.6	Vert
M	33.0	$+0.0 \\ +0.0$	+0.0	$^{+0.0}$	+0.0 +9.1	· 0.0	¬1. "	J T. U	-12.0	v CI t
171		$^{+0.0}$	+0.0 +0.0	$^{+0.0}$	+9.1 +0.0					
		+0.0 +0.0	+0.0 +0.0	-9.4	+0.0 +0.0					
		$+0.0 \\ +0.0$	+0.0 +0.0	+0.0	. 0.0					
27 3252.000M	39.5	+0.0	+0.7	+0.0	+0.0	+0.0	41.2	54.0	-12.8	Horiz
2, 3232.000WI	٠,٠٠	+0.0	+0.0	+0.0	+3.4	. 0.0	11.4	27.0	12.0	110112
		+0.0	-33.5	+29.6	+0.4					
		+0.0	+1.1	+0.0	+0.4					
		+0.0	+0.0	+0.0						
28 22503.000	43.7	+0.0	+0.0	+0.0	+0.0	+0.0	41.2	54.0	-12.8	Horiz
M	.5.1	+0.0	+0.0	+0.0	+0.0	0.0		20	12.0	110112
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	-14.6					
		+8.4	+2.3	+1.4						
29 20007.000	41.9	+0.0	+0.0	+0.0	+0.0	+0.0	41.0	54.0	-13.0	Vert
M		+0.0	+0.0	+0.0	+0.0	•			0	•
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	-12.5					
		+7.9	+2.1	+1.6	,					
<u> </u>										

20 2424 2225	10.0					. 0 . 0	40.0		12.2	* *
30 2431.000M	43.3	+0.0	+0.6	+0.0	+0.0	+0.0	40.8	54.0	-13.2	Vert
		+0.0	+0.0	+0.0	+2.8			Receive M	lode	
		+0.0	-34.0	+27.7	+0.4					
		+0.0	+0.0	+0.0	+0.0					
21 15520 000	20.0	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	10.6	7.4.0	12.4	TT 1
31 17520.000	39.9	+0.0	+2.1	+0.0	+0.0	+0.0	40.6	54.0	-13.4	Horiz
M		+0.0	+0.0	+0.0	+8.9					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-10.3	+0.0					
22 10260 000	41.7	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	40.2	7.4.0	12.7	T 7 .
32 18268.000	41.7	+0.0	+0.0	+0.0	+0.0	+0.0	40.3	54.0	-13.7	Vert
M		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	-12.9					
22 2000 00015	41.2	+7.5	+2.0	+2.0	10.0	10.0	20.2	540	15.0	тт .
33 2080.000M	41.2	+0.0	+0.6	+0.0	+0.0	+0.0	38.2	54.0	-15.8	Horiz
		+0.0	+0.0	+0.0	+2.6					
		+0.0	-34.2	+27.7	+0.3					
		+0.0	+0.0	+0.0	+0.0					
24 101 00014	20.5	+0.0	+0.0	+0.0	10.6	10.0	27.7	12.5	15.0	T 7 4
34 101.800M	39.5	+0.0	+0.1	+1.2	+0.6	+0.0	27.7	43.5	-15.8	Vert
		-27.7	+5.9	+8.1	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
25 4071 70014	21.0	+0.0	+0.0	+0.0	100	100	20.1	54.0	150	TT '-
35 4871.700M	31.9	+0.0	+0.9	+0.0	+0.0	+0.0	38.1	54.0	-15.9	Horiz
		+0.0	+0.0	+0.0	+4.3			Mid		
		+0.0	-33.2	+32.7	+0.5					
		+0.0	$^{+1.0}$ $^{+0.0}$	$^{+0.0}$	+0.0					
26 149 20014	27.7	+0.0			+0.7	100	27.2	12.5	16.2	1 74
36 148.300M	37.7	+0.0	+0.2	+1.3	+0.7	+0.0	27.2	43.5	-16.3	Vert
		-27.5	+5.9	+8.9	+0.0					
		+0.0	$+0.0 \\ +0.0$	+0.0	+0.0					
		+0.0		+0.0	+0.0					
37 13760.000	42.3	+0.0	+0.0	+0.0	±0.0	+0.0	27.0	54.0	17.0	Horiz
	42.3	+0.0		+0.0	+0.0	±0.0	37.0	34.0	-17.0	HOLIZ
M		+0.0	+0.0	+0.0	+7.3 +0.0					
		$^{+0.0}$	$^{+0.0}_{+0.0}$	+0.0 -14.4	$^{+0.0}_{+0.0}$					
		$+0.0 \\ +0.0$	$^{+0.0}$	+0.0	±0.0					
38 9648.350M	22.7		+1.5		±0.0	±0.0	36.6	54.0	-17.4	Цетіт
38 9648.350M Ave	23.7	$^{+0.0}$	$^{+1.5}$	$^{+0.0}_{+0.0}$	+0.0 +6.1	+0.0	30.0	54.0 Low	-1/.4	Horiz
Ave		$+0.0 \\ +0.0$	-33.6	+37.3				LUW		
		+0.0 +0.0	-33.6 +0.9	+37.3 $+0.0$	$+0.7 \\ +0.0$					
			+0.9 $+0.0$		+0.0					
A 0640 250M	246	+0.0		+0.0	10.0	10.0	17.5	510	(5	II.a!.
^ 9648.350M	34.6	+0.0	+1.5	+0.0	+0.0	+0.0	47.5	54.0	-6.5	Horiz
		+0.0	+0.0	+0.0	+6.1			Low		
		+0.0	-33.6 +0.0	+37.3	+0.7					
		+0.0	+0.9	+0.0	+0.0					
		+0.0	+0.0	+0.0						

40	13704.000	41.8	+0.0	+1.8	+0.0	+0.0	+0.0	36.5	54.0	-17.5	Vert
40	13704.000 M	41.0	+0.0 +0.0	$^{+1.8}$	+0.0 +0.0	+7.3	+0.0	30.3	34.0	-17.3	VEIT
	IVI		+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-14.4	+0.0					
			+0.0	+0.0	+0.0	. 0.0					
41	9748.900M	23.7	+0.0	+1.4	+0.0	+0.0	+0.0	36.2	54.0	-17.8	Horiz
	Ave		+0.0	+0.0	+0.0	+6.1			Mid	-,	
			+0.0	-33.6	+37.3	+0.7					
			+0.0	+0.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^	9748.900M	32.2	+0.0	+1.4	+0.0	+0.0	+0.0	44.7	54.0	-9.3	Horiz
			+0.0	+0.0	+0.0	+6.1			Mid		
			+0.0	-33.6	+37.3	+0.7					
			+0.0	+0.6	+0.0	+0.0					
			+0.0	+0.0	+0.0						
43	9613.000M	23.7	+0.0	+1.5	+0.0	+0.0	+0.0	36.0	54.0	-18.0	Horiz
	Ave		+0.0	+0.0	+0.0	+6.1			Receive M	ode	
			+0.0	-33.5	+37.4	+0.8					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
^	9613.000M	36.9	+0.0	+1.5	+0.0	+0.0	+0.0	49.2	54.0	-4.8	Horiz
			+0.0	+0.0	+0.0	+6.1			Receive M	ode	
			+0.0	-33.5	+37.4	+0.8					
			+0.0	+0.0	+0.0	+0.0					
1.5	114400016	45.1	+0.0	+0.0	+0.0	. 0. 0	. 0. 0	25.0	540	10.1	T. 7
45	1144.000M	45.1	+0.0	+0.4	+0.0	+0.0	+0.0	35.9	54.0	-18.1	Vert
			+0.0	+0.0	+0.0	+2.0					
			$^{+0.0}_{+0.0}$	-36.1 +0.0	+24.2 +0.0	+0.3 +0.0					
			+0.0 +0.0	+0.0 +0.0	+0.0 +0.0	+0.0					
16	1153.000M	44.9	+0.0	+0.4	+0.0	+0.0	+0.0	35.7	54.0	-18.3	Horiz
40	1133.00011	44.7	+0.0	+0.4	+0.0	+2.0	10.0	33.1	34.0	-10.3	HOHZ
			+0.0	-36.1	+24.2	+0.3					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	. 0.0					
47	14216.000	40.7	+0.0	+1.9	+0.0	+0.0	+0.0	35.6	54.0	-18.4	Vert
	M	,	+0.0	+0.0	+0.0	+7.7					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-14.7	+0.0					
			+0.0	+0.0	+0.0						
48	11920.000	40.4	+0.0	+1.5	+0.0	+0.0	+0.0	35.2	54.0	-18.8	Vert
	M		+0.0	+0.0	+0.0	+6.5					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	-13.2	+0.0					
			+0.0	+0.0	+0.0						
49	244.400M	33.1	+0.0	+0.2	+1.5	+0.9	+0.0	26.8	46.0	-19.2	Horiz
			-27.1	+5.9	+12.3	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

50 12196 (50	20.0	100	.1.5	100	ι Ο Ο	ΙΟ Ο	240	510	10.2	T 7 4
50 12186.650	39.9	+0.0	+1.5	+0.0	+0.0	+0.0	34.8	54.0	-19.2	Vert
M		+0.0	+0.0	+0.0	+6.5					
		$+0.0 \\ +0.0$	$+0.0 \\ +0.0$	+0.0 -13.1	+0.0					
		+0.0 +0.0	$^{+0.0}$	+0.0	+0.0					
51 11920.000	39.8	+0.0	+1.5	+0.0	+0.0	+0.0	34.6	54.0	-19.4	Horiz
M	39.0	$+0.0 \\ +0.0$	+0.0	+0.0 +0.0	+6.5	⊤0.0	34.0	34.0	-19.4	попи
IVI		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-13.2	+0.0					
		+0.0	+0.0	+0.0	10.0					
52 281.200M	32.5	+0.0	+0.2	+1.6	+1.0	+0.0	26.6	46.0	-19.4	Horiz
32 201.200W	32.3	-27.0	+5.9	+12.4	+0.0	10.0	20.0	70.0	-17.4	110112
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	. 0.0					
53 11984.000	39.9	+0.0	+1.5	+0.0	+0.0	+0.0	34.5	54.0	-19.5	Vert
M	37.7	+0.0	+0.0	+0.0	+6.4	. 0.0	5 1.5	2 110	17.5	, 611
1,1		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-13.3	+0.0					
		+0.0	+0.0	+0.0						
54 7312.850M	24.7	+0.0	+1.2	+0.0	+0.0	+0.0	34.2	54.0	-19.8	Horiz
Ave		+0.0	+0.0	+0.0	+4.7			Mid		
		+0.0	-34.1	+36.1	+0.6					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 7312.850M	32.7	+0.0	+1.2	+0.0	+0.0	+0.0	42.2	54.0	-11.8	Horiz
		+0.0	+0.0	+0.0	+4.7			Mid		
		+0.0	-34.1	+36.1	+0.6					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
56 7240.050M	24.7	+0.0	+1.2	+0.0	+0.0	+0.0	34.0	54.0	-20.0	Horiz
Ave		+0.0	+0.0	+0.0	+4.6			Low		
		+0.0	-33.9	+35.8	+0.6					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 7240.050M	38.3	+0.0	+1.2	+0.0	+0.0	+0.0	47.6	54.0	-6.4	Horiz
		+0.0	+0.0	+0.0	+4.6			Low		
		+0.0	-33.9	+35.8	+0.6					
		+0.0	+1.0	+0.0	+0.0					
50 7202 0003 5	247	+0.0	+0.0	+0.0	100	10.0	22.1	540	20.0	тт .
58 7282.000M	24.7	+0.0	+1.2	+0.0	+0.0	+0.0	33.1	54.0	-20.9	Horiz
Ave		+0.0	+0.0	+0.0	+4.6					
		+0.0	-34.0 -0.0	+36.0	+0.6					
		+0.0	+0.0	+0.0	+0.0					
A 7292 000M	20.5	+0.0	+0.0	+0.0	ΙΛ.Λ	10.0	46.0	540	7 1	IIa!-
^ 7282.000M	38.5	+0.0	+1.2	+0.0	+0.0	+0.0	46.9	54.0	-7.1	Horiz
		$^{+0.0}$	+0.0 -34.0	$+0.0 \\ +36.0$	+4.6 +0.6					
		$^{+0.0}$	+0.0	+30.0 $+0.0$						
			$^{+0.0}$		+0.0					
		+0.0	±0.0	+0.0						

60 12059.400	38.2	+0.0	+1.5	+0.0	+0.0	+0.0	32.8	54.0	-21.2	Vert
M		+0.0	+0.0	+0.0	+6.4					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	-13.3	+0.0					
		+0.0	+0.0	+0.0						
61 6994.000M	24.5	+0.0	+1.2	+0.0	+0.0	+0.0	31.8	54.0	-22.2	Horiz
Ave		+0.0	+0.0	+0.0	+4.3			Receive M	lode	
		+0.0	-33.8	+34.9	+0.7					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
62 4823.800M	24.4	+0.0	+0.9	+0.0	+0.0	+0.0	30.6	54.0	-23.4	Horiz
Ave		+0.0	+0.0	+0.0	+4.3			Low		
		+0.0	-33.2	+32.7	+0.5					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
63 4876.450M	23.7	+0.0	+0.9	+0.0	+0.0	+0.0	30.0	54.0	-24.0	Horiz
Ave		+0.0	+0.0	+0.0	+4.4			Mid		
		+0.0	-33.2	+32.7	+0.5					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
^ 4876.450M	34.5	+0.0	+0.9	+0.0	+0.0	+0.0	40.8	54.0	-13.2	Horiz
		+0.0	+0.0	+0.0	+4.4			Mid		
		+0.0	-33.2	+32.7	+0.5					
		+0.0	+1.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
65 3.728M	21.4	+0.0	+0.0	+0.0	+0.0	-40.0	-9.0	29.5	-38.5	Perp
		+0.0	+0.0	+0.0	+0.1					
		+9.5	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
66 27.160M	22.2	+0.0	+0.0	+0.0	+0.0	-40.0	-11.1	29.5	-40.6	Groun
		+0.0	+0.0	+0.0	+0.3					
		+6.4	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
67 27.151M	20.1	+0.0	+0.0	+0.0	+0.0	-40.0	-13.2	29.5	-42.7	Groun
		+0.0	+0.0	+0.0	+0.3					
		+6.4	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
68 39.000k	60.6	+0.0	+0.0	+0.0	+0.0	-80.0	-8.0	35.8	-43.8	Perp
		+0.0	+0.0	+0.0	+0.0					
		+11.4	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
69 9.546M	15.0	+0.0	+0.0	+0.0	+0.0	-40.0	-15.6	29.5	-45.1	Para
		+0.0	+0.0	+0.0	+0.2					
		+9.2	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0	+0.0					
		+0.0	+0.0	+0.0						
	·	<u></u>	<u></u>	<u></u>	<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·		

70	26.611M	16.5	+0.0	+0.0	+0.0	+0.0	-40.0	-16.7	29.5	-46.2	Groun
, 0		- 0.0	+0.0	+0.0	+0.0	+0.3	. 3.0	- 017	_,		
			+6.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
71	26.611M	15.0	+0.0	+0.0	+0.0	+0.0	-40.0	-18.2	29.5	-47.7	Para
			+0.0	+0.0	+0.0	+0.3		-			
			+6.5	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
72	28.350M	14.5	+0.0	+0.0	+0.0	+0.0	-40.0	-19.1	29.5	-48.6	Perp
			+0.0	+0.0	+0.0	+0.3					1
			+6.1	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						
73	20.000k	42.6	+0.0	+0.0	+0.0	+0.0	-80.0	-23.6	41.6	-65.2	Para
			+0.0	+0.0	+0.0	+0.0					
			+13.8	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0						

Page 47 of 65 Report No.: 100173-6A

Band Edge

	Band Edge Summary										
Frequency (MHz)	Modulation	Ant. Type	Field Strength (dBuV/m @3m)	Limit (dBuV/m @3m)	Results						
2390.0 (PEAK)	MCS7 Data Rate - 64- QAM (Worst Case)	Integral Trace	61.1	<74	Pass						
2390.0 (AVG)	MCS7 Data Rate - 64- QAM (Worst Case)	Integral Trace	40.7	<54	Pass						
2400.0 (PEAK)	MCS7 Data Rate - 64- QAM (Worst Case)	Integral Trace	69.7	<104	Pass						
2400.0 (AVG)	MCS7 Data Rate - 64- QAM (Worst Case)	Integral Trace	51.1	<84	Pass						
2483.5 (PEAK)	6M Data Rate (OFDM)	Integral Trace	61.5	<74	Pass						
2483.5 (AVG)	MCS7 Data Rate - 64- QAM (Worst Case)	Integral Trace	41.1	<54	Pass						

Page 48 of 65 Report No.: 100173-6A

Band Edge Plots

Test Setup / Conditions / Data

Test Location: CKC Laboratories • 22116 23rd Drive SE, Suite A • Bothell, WA 98021 • 1-800-500-4EMC (4362)

Customer: Novatel

Specification: 15.247(d) / 15.209 Radiated Spurious Emissions

 Work Order #:
 100174
 Date:
 8/8/2017

 Test Type:
 Maximized Emissions
 Time:
 18:06:49

Tested By: Michael Atkinson Sequence#: 7

Software: EMITest 5.03.02

Equipment Tested:

Device	Manufacturer	Model #	S/N	
Configuration 1				

Support Equipment:

TI TI				
Device	Manufacturer	Model #	S/N	
Configuration 1				

Test Conditions / Notes:

Frequency Range: Band Edge

Frequency tested: 2412, 2442, 2462MHz

Firmware power setting: Max

EUT Firmware: OM7CR0301SN0007

Modulation/Data Rate: All data rates investigated, only worst case data reported

Antenna type: Integral Trace Antenna Gain : 2.6dBi

Duty Cycle: 100%

Setup:

The EUT is DC powered through a battery. The EUT is connected to an external GNSS active antenna which is located remotely with an open view of the sky. The active antenna is powered by a Bias Tee coupler and the signal strength is tuned with an amplifier and output DC power supply. The Bias Tee coupler is powered by a dual output power supply. The EUT is connected to a support laptop via Ethernet and the 2 x USB ports. The 26Pin IO contained 1 x CAN Interface and 3 x RS-232 ports. The CAN Interface is connected to the laptop via a CAN USB Adapter with a Terminator Resistor on the adapter side. The RS-232 ports which were connected to a serial to USB 4 port hub which is then connected to the laptop.

Investigated EUT is continuously transmitting. Low, Mid, and High channels as well as all data rates investigated, worst case data reported. Horizontal and Vertical antenna polarities, only worst case reported. The EUT is fully exercised with communication and data transfer between the EUT and support laptop. The EUT is on the test table 150cm high connected to the internal trace antenna.

Page 59 of 65 Report No.: 100173-6A

Test Equipment:

ID	Asset #	Description	Model	Calibration Date	Cal Due Date
T1	AN02872	Spectrum Analyzer	E4440A	11/18/2015	11/18/2017
T2	ANP06540	Cable	Heliax	10/29/2015	10/29/2017
T3	ANP05305	Cable	ETSI-50T	2/15/2016	2/15/2018
T4	AN03540	Preamp	83017A	5/2/2017	5/2/2019
T5	AN01467	Horn Antenna-ANSI	3115	8/12/2015	8/12/2017
		C63.5 Calibration			
T6	ANP06935	Cable	32026-29801-	3/11/2016	3/11/2018
			29801-18		
T7	ANP06219	Attenuator	768-10	4/12/2016	4/12/2018

Measu	rement Data:	Re	eading lis	ted by ma	ırgin.		Те	est Distanc	e: 3 Meters		
#	Freq	Rdng	T1	T2	T3	T4	Dist	Corr	Spec	Margin	Polar
			T5	T6	T7						
	MHz	$dB\mu V$	dB	dB	dB	dB	Table	$dB\mu V/m$	$dB\mu V/m$	dB	Ant
1	2483.500M	34.2	+0.0	+0.6	+2.9	-34.0	+0.0	41.1	54.0	-12.9	Horiz
	Ave		+27.7	+0.4	+9.3				BE High M	ICS7	
2	2390.000M	33.9	+0.0	+0.6	+2.8	-34.0	+0.0	40.7	54.0	-13.3	Horiz
	Ave		+27.7	+0.4	+9.3				BE Low M	CS7	
3	2483.500M	33.8	+0.0	+0.6	+2.9	-34.0	+0.0	40.7	54.0	-13.3	Horiz
	Ave		+27.7	+0.4	+9.3				BE High 6	M	
4	2483.500M	33.0	+0.0	+0.6	+2.9	-34.0	+0.0	39.9	54.0	-14.1	Horiz
	Ave		+27.7	+0.4	+9.3				BE High 24M		
^	2483.500M	54.6	+0.0	+0.6	+2.9	-34.0	+0.0	61.5	74.0	-12.5	Horiz
			+27.7	+0.4	+9.3				BE High 6	M	
^	2483.500M	54.3	+0.0	+0.6	+2.9	-34.0	+0.0	61.2	74.0	-12.8	Horiz
			+27.7	+0.4	+9.3				BE High MCS7		
^	2483.500M	51.0	+0.0	+0.6	+2.9	-34.0	+0.0	57.9	74.0	-16.1	Horiz
			+27.7	+0.4	+9.3				BE High 2	4M	
^	2483.500M	41.4	+0.0	+0.6	+2.9	-34.0	+0.0	48.3	74.0	-25.7	Horiz
			+27.7	+0.4	+9.3				BE High 1	M	
^	2483.500M	40.9	+0.0	+0.6	+2.9	-34.0	+0.0	47.8	74.0	-26.2	Horiz
			+27.7	+0.4	+9.3				BE High 2	M	
^	2483.500M	40.5	+0.0	+0.6	+2.9	-34.0	+0.0	47.4	74.0	-26.6	Horiz
			+27.7	+0.4	+9.3				BE High 1	1M	
^	2483.500M	40.3	+0.0	+0.6	+2.9	-34.0	+0.0	47.2	74.0	-26.8	Horiz
			+27.7	+0.4	+9.3				BE High 5.5M		
12	2390.000M	32.3	+0.0	+0.6	+2.8	-34.0	+0.0	39.1	54.0	-14.9	Horiz
	Ave		+27.7	+0.4	+9.3				BE Low 61	M	

Page 60 of 65 Report No.: 100173-6A

13	2390.000M	31.7	+0.0	+0.6	+2.8	-34.0	+0.0	38.5		15.5	Horiz
	Ave		+27.7	+0.4	+9.3				BE Low 24M		
^	2390.000M	54.3	+0.0	+0.6	+2.8	-34.0	+0.0	61.1		12.9	Horiz
			+27.7	+0.4	+9.3				BE Low MCS7		
^	2390.000M	52.6	+0.0	+0.6	+2.8	-34.0	+0.0	59.4		14.6	Horiz
			+27.7	+0.4	+9.3				BE Low 6M		
^	2390.000M	50.0	+0.0	+0.6	+2.8	-34.0	+0.0	56.8	74.0 -1	17.2	Horiz
			+27.7	+0.4	+9.3				BE Low 24M		
^	2390.000M	41.1	+0.0	+0.6	+2.8	-34.0	+0.0	47.9		26.1	Horiz
			+27.7	+0.4	+9.3				BE Low 11M		
^	2390.000M	41.1	+0.0	+0.6	+2.8	-34.0	+0.0	47.9		26.1	Horiz
			+27.7	+0.4	+9.3				BE Low 1M		
^	2390.000M	39.5	+0.0	+0.6	+2.8	-34.0	+0.0	46.3		27.7	Horiz
			+27.7	+0.4	+9.3				BE Low 2M		
^	2390.000M	39.1	+0.0	+0.6	+2.8	-34.0	+0.0	45.9	74.0 -2	28.1	Horiz
			+27.7	+0.4	+9.3				BE Low 5.5M		
21	2655.000M	27.5	+0.0	+0.7	+3.0	-33.9	+0.0	35.4		18.6	Horiz
	Ave		+28.4	+0.4	+9.3				BE High 24M		
22	2655.000M	27.5	+0.0	+0.7	+3.0	-33.9	+0.0	35.4	54.0 -1	18.6	Horiz
	Ave		+28.4	+0.4	+9.3				BE High 6M		
23	2655.000M	27.4	+0.0	+0.7	+3.0	-33.9	+0.0	35.3	54.0 -1	18.7	Horiz
	Ave		+28.4	+0.4	+9.3				BE High MCS7	7	
^	2655.000M	40.6	+0.0	+0.7	+3.0	-33.9	+0.0	48.5	74.0 -2	25.5	Horiz
			+28.4	+0.4	+9.3				BE High 24M		
^	2655.000M	40.1	+0.0	+0.7	+3.0	-33.9	+0.0	48.0	74.0 -2	26.0	Horiz
			+28.4	+0.4	+9.3				BE High 5.5M		
^	2655.000M	40.1	+0.0	+0.7	+3.0	-33.9	+0.0	48.0	74.0 -2	26.0	Horiz
			+28.4	+0.4	+9.3				BE High 6M		
^	2655.000M	40.0	+0.0	+0.7	+3.0	-33.9	+0.0	47.9	74.0 -2	26.1	Horiz
			+28.4	+0.4	+9.3				BE High 1M		
^	2655.000M	40.0	+0.0	+0.7	+3.0	-33.9	+0.0	47.9	74.0 -2	26.1	Horiz
			+28.4	+0.4	+9.3				BE High 11M		
^	2655.000M	39.9	+0.0	+0.7	+3.0	-33.9	+0.0	47.8	74.0 -2	26.2	Horiz
			+28.4	+0.4	+9.3				BE High 2M		
^	2655.000M	39.9	+0.0	+0.7	+3.0	-33.9	+0.0	47.8	74.0 -2	26.2	Horiz
			+28.4	+0.4	+9.3				BE High MCS7	7	
31	2400.000M	44.3	+0.0	+0.6	+2.8	-34.0	+0.0	51.1	84.0 -3	32.9	Horiz
	Ave		+27.7	+0.4	+9.3				BE Low MCS7	,	

32 2400.000M	43.9	+0.0	+0.6	+2.8	-34.0	+0.0	50.7	84.0	-33.3	Horiz
Ave		+27.7	+0.4	+9.3				BE Low 24	4M	
33 2400.000M	43.4	+0.0	+0.6	+2.8	-34.0	+0.0	50.2	84.0	-33.8	Horiz
Ave		+27.7	+0.4	+9.3				BE Low 6M		
^ 2400.000M	63.2	+0.0	+0.6	+2.8	-34.0	+0.0	70.0	104.0	-34.0	Horiz
		+27.7	+0.4	+9.3				BE Low 61	M	
^ 2400.000M	62.9	+0.0	+0.6	+2.8	-34.0	+0.0	69.7	104.0	-34.3	Horiz
		+27.7	+0.4	+9.3				BE Low M	CS7	
^ 2400.000M	62.1	+0.0	+0.6	+2.8	-34.0	+0.0	68.9	104.0	-35.1	Horiz
		+27.7	+0.4	+9.3				BE Low 24	4M	
^ 2400.000M	51.5	+0.0	+0.6	+2.8	-34.0	+0.0	58.3	104.0	-45.7	Horiz
		+27.7	+0.4	+9.3				BE Low 11	lM	
^ 2400.000M	50.8	+0.0	+0.6	+2.8	-34.0	+0.0	57.6	104.0	-46.4	Horiz
		+27.7	+0.4	+9.3				BE Low 21	M	
^ 2400.000M	50.4	+0.0	+0.6	+2.8	-34.0	+0.0	57.2	104.0	-46.8	Horiz
		+27.7	+0.4	+9.3				BE Low 11	M	
^ 2400.000M	46.6	+0.0	+0.6	+2.8	-34.0	+0.0	53.4	104.0	-50.6	Horiz
		+27.7	+0.4	+9.3				BE Low 5.	5M	

Page 62 of 65 Report No.: 100173-6A

Test Setup Photos

Below 1GHz, 80cm table height

Above 1 GHz, 150cm table height

SUPPLEMENTAL INFORMATION

Measurement Uncertainty

Uncertainty Value	Parameter
4.73 dB	Radiated Emissions
3.34 dB	Mains Conducted Emissions
3.30 dB	Disturbance Power

Uncertainties reported are worst case for all CKC Laboratories' sites and represent expanded uncertainties expressed at approximately the 95% confidence level using a coverage factor of k=2. Compliance is deemed to occur provided measurements are below the specified limits.

Emissions Test Details

TESTING PARAMETERS

Unless otherwise indicated, the following configuration parameters are used for equipment setup: The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $dB\mu V/m$, the spectrum analyzer reading in $dB\mu V$ was corrected by using the following formula. This reading was then compared to the applicable specification limit. Individual measurements were compared with the displayed limit value in the margin column. The margin was calculated based on subtracting the limit value from the corrected measurement value; a positive margin represents a measurement exceeding the limit, while a negative margin represents a measurement less than the limit.

SAMPLE CALCULATIONS								
Meter reading (dBμV)								
+	Antenna Factor	(dB/m)						
+	Cable Loss	(dB)						
-	Distance Correction	(dB)						
-	Preamplifier Gain	(dB)						
=	Corrected Reading	(dBμV/m)						

Page 64 of 65 Report No.: 100173-6A

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. Unless otherwise specified, the following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE								
TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING					
CONDUCTED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	9 kHz	150 kHz	200 Hz					
RADIATED EMISSIONS	150 kHz	30 MHz	9 kHz					
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz					
RADIATED EMISSIONS	1000 MHz	>1 GHz	1 MHz					

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "positive peak" detector mode. Whenever a "quasi-peak" or "average" reading was recorded, the measurement was annotated with a "QP" or an "Ave" on the appropriate rows of the data sheets. In cases where quasi-peak or average limits were employed and data exists for multiple measurement types for the same frequency then the peak measurement was retained in the report for reference, however the numbering for the affected row was removed and an arrow or caret ("^") was placed in the far left-hand column indicating that the row above takes precedence for comparison to the limit. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer or receiver recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature called "peak hold," the measurement device had the ability to measure intermittent or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

Quasi-peak measurements were taken using the quasi-peak detector when the true peak values exceeded or were within 2 dB of a quasi-peak specification limit. Additional QP measurements may have been taken at the discretion of the operator.

Average

Average measurements were taken using the average detector when the true peak values exceeded or were within 2 dB of an average specification limit. Additional average measurements may have been taken at the discretion of the operator. If the specification or test procedure requires trace averaging, then the averaging was performed using 100 samples or as required by the specification. All other average measurements are performed using video bandwidth averaging. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point, the measuring device is set into the linear mode and the scan time is reduced.

Page 65 of 65 Report No.: 100173-6A