Soluciones Termoquímica

Gonzalo Esteban

26 de agosto de 2019

1 Calor y entalpía

Entalpía de reacción

S 1.1

a) C(grafito) +
$$\frac{1}{2}$$
 O₂(g) \longrightarrow CO(g) ΔH_f^0 = -110,5 kJ/mol.

b)
$$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(g) \Delta H_f^0 = -241.8 \text{ kJ/mol}.$$

c)
$$H_2(g) + \frac{1}{2} O_2(g) \longrightarrow H_2O(l) \Delta H_f^0 = -285,8 \text{ kJ/mol}.$$

S 1.2
$$\Delta H_r = -283,0 \text{ kJ}$$

S 1.3
$$\Delta H_r^0 = -488,3 \text{ kJ/mol}$$

S 1.4
$$\Delta H_r = -137 \text{ kJ}$$

Termoquímica

S 1.7 -495 kJ

S 1.8 -76 kJ

S 1.9 a) -780 kJ; b) 78 kJ; c) 0,5 mol(Fe).

2 Entropía y espontaneidad

Entropía

S 2.1 a) Aumenta; b) disminuye; c) aumenta; d) disminuye; e) aumenta.

S 2.2 a) Aumenta; b) disminuye; c) disminuye.

S 2.3 La entropía disminuirá, debido a que el hielo es una estructura más ordenada que el agua líquida.

S 2.4 a) -146,5 J/K b) 108,3 J/K

Espontaneidad y energía libre de Gibbs

S 2.5 $\Delta G^0 = -1106 \text{ J}$

S 2.6 $\Delta S^0 = -99,3 \text{ J/K}$

S 2.7 ΔG^0 = 130 kJ, T = 833 °C.

S 2.8 $\Delta G^0 = -350,3$ kJ.

S 2.9 El proceso siempre será espontáneo, ya que $\Delta H > 0$ y $\Delta S > 0$ (la entropía aumenta porque aparecen elementos en fase acuosa que antes eran sólidos).

\$2.10 a)
$$6 \, \text{CO}_2 + 6 \, \text{H}_2 \text{O} \longrightarrow 6 \, \text{O}_2 + \text{C}_6 \text{H}_{12} \text{O}_6$$
; b) 1910,2 kJ; c) $\Delta G^0 = 2,88 \cdot 10^6 \, \text{J/mol}$

S 2.11 a) 30,61 kJ/mol; b) 93,2 kJ/(K mol); c) 2836,4 kJ/mol; d) 328,4 K (55 °C).

S 2.12

- a) La reacción es espontánea a 289 K.
- b) $\Delta H_r = -5,68 \text{ kJ}.$

S 2.13 El proceso es espontáneo a cualquier temperatura. $\Delta S_r = 566,4 \text{ J/K}; \Delta G_r(25 \,^{\circ}\text{C}) = -238,2 \text{ kJ}$