Programación Científica y HPCI

Máster Universitario en Ingeniería Matemática y Computación

Actividad 1 – Directrices de ayuda

Tarea 1. Recorrido del árbol en profundidad de forma iterativa

- Recorrido en pre-orden
- 2. Recorrido en in-orden

Recorrido en pre-orden

[10, 5, 1, 6, 14, 12, 15]

- 1. Se apila el nodo raíz
- 2. Mientras la pila no esté vacía
 - a. Desapilar y guardar en una lista
 - b. Guardar hijo derecho en la pila.
 - c. Guardar hijo izquierdo en la pila.

Recorrido en pre-orden

Pila	Lista	
10		
5 14	[10]	
1 6 14	[10,5]	
6 14	[10,5,1]	
14	[10,5,1,6]	
12 15	[10,5,1,6,14]	
15	[10,5,1,6,14,12]	
	[10,5,1,6,14,12,15]	

[10, 5, 1, 6, 14, 12, 15]

Recorrido en in-orden

[1, 5, 6, 10, 12, 14, 15]

- 1. Obtener la raíz y asignarlo a una variable actual.
- 2. Si actual no es NULL
 - a. Apilar actual en la pila.
 - Asignar a actual al hijo izquierdo de actual y pasar al paso 2.
- 3. Si actual es NULL y la pila no está vacía
 - a. sacar el elemento de la pila y meterlo en la lista
 - b. Guardar en actual al hijo derecho del que sea acaba de obtener
 - c. Ir al paso 2.

Actual	Pila	Lista
10		
5	10	[]
1	5 10	[]
nulll	1 5 10	[]
null	5 10	[1]
6	10	[1,5]
null	6 10	[1,5]
null	10	[1,5,6]
14		[1,5,6,10]
12	14	[1,5,6,10]
null	12 14	[1,5,6,10]
null	14	[1,5,6,10,12]
15		[1,5,6,10,12,14]
null	15	[1,5,6,10,12,14]
null		[1,5,6,10,12,14,15]

Recorrido en in-orden

[1, 5, 6, 10, 12, 14, 15]

Tarea 2. Recorrido en amplitud

[10, 5, 14, 1, 6, 12, 15]

- Se visitan los nodos por niveles
- Se introduce la raíz en la cola
- 2. Se repite:
 - a. Quitar primer elemento de la cola,
 - b. Guardar en la lista el contenido de dicho nodo
 - c. Almacenar en la cola sus hijos izquierdo y derecho.

Recorrido en amplitud

Cola	Lista
10	[]
5, 14	[10]
14 , 1, 6	[10,5]
1,6,12,15	[10,5,14]
6,12,15	[10,5,14,1]
12,15	[10,5,14,1,6]
15	[10,5,14,1,6,12]
	[10,5,14,1,6,12,15]

[10, 5, 1, 6, 14, 12, 15]

Rendimiento de una función

```
import profile
from time import time
def ordenacionBurbuja(lista):
    'Variable global que puede se usada fuera de la función'
   global numComparaciones
   n = len(lista)
    for i in range(1, n):
        for j in range(n-i):
            numComparaciones += 1
            if lista[j] > lista[j+1]:
                 'intercambio de valores'
                lista[j], lista[j+1] = lista[j+1], lista[j]
lista = [35, 16, 17, 73,8, 0]
numComparaciones = 0
t0 = time()
ordenacionBurbuja(lista)
t1 = time()
                                                          ncalls tottime percall cumtime percall filename:lineno(function)
print ("Lista ordenada:")
                                                        18454895/33
                                                                      4.665
                                                                               0.000
                                                                                       4.665
                                                                                                0.141 <stdin>:1(fib)
print(lista)
                                                            33/1
                                                                    0.000
                                                                             0.000
                                                                                      4.665
                                                                                              4.665 <stdin>:1(fib seq)
                                                                    0.000
                                                                             0.000
                                                                                      4.666
                                                                                              4.666 <string>:1(<module>)
print ("Tiempo: {0:f} segundos".format(t1 - t0))
print ("Comparaciones:", numComparaciones)
                                                                    0.000
                                                                             0.000
                                                                                      4.666
                                                                                              4.666 {built-in method builtins.exec}
                                                                    0.000
                                                                             0.000
                                                                                      0.000
                                                                                              0.000 {built-in method builtins.print}
profile.run('print(ordenacionBurbuja(lista))')
                                                              33
                                                                    0.000
                                                                             0.000
                                                                                      0.000
                                                                                              0.000 {method 'append' of 'list' objects}
                                                                    0.000
                                                                             0.000
                                                                                      0.000
                                                                                              0.000 (method 'disable' of 'lsprof.Profiler' obj
                                                              32
                                                                                      0.000
                                                                                              0.000 (method 'extend' of 'list' objects)
                                                                    0.000
                                                                             0.000
```


