

Institute of Computer Science Knowledge Processing and Information Systems

Titel

Bachelorthesis

Jakob Westphal

28. Juli 2022

Erstgutachter: Prof. Dr. Torsten Schaub Zweitgutachter: Tobias Stolzmann

Abstract

Abstract in english This is my bachelorthesis

Zusammenfassung

Zusammenfassung auf Deutsch

Acknowledgments

Danksagung!

Contents

1	Introduction	1
2	Test	3
	2.1 Perzepte und Symbole	3

1 Introduction

Einleitung

2 Test

- 1. Bla. (Bla.)
- 2. Bla. (Bla.)

Chapter 1 Referenz zu Kapitel. Section 2.1 Referenz zu Unterkapitel. Figure 2.1 Referenz zu Bild. Listing 2.1 Referenz zu Listing Janhunen et al. [Jan+10] Zitat mit Namen der Autoren [Jan+10] Zitat nur mit Abkürzung Answer Set Programming (ASP) Link zu Abkürzungen symbol grounding problem Randkommentar ¹ Fussnote

Symbol

2.1 Perzepte und Symbole

Bla.

$$\operatorname{match}(\sigma, \gamma) \Leftrightarrow \forall p \in \sigma \; \exists \phi \in \operatorname{feat}(\gamma) : \; g(p, \phi, \gamma(\phi))$$

Proof. Zu jeder Teilmenge $M \subseteq A = \{a,b,c\}$ ist $P^M = P$. Die Teilmengen \emptyset , $\{a\}$, $\{c\}$, $\{a,b\}$ und $\{b,c\}$ sind keine Modelle von P^M . $\{a,c\}$, $\{a,b,c\}$ und $\{b\}$ sind Modelle von P^M . $\{a,b,c\}$ ist kein minimales Modell von P^M , da $\{b\} \subseteq \{a,b,c\}$. Da $\{a,c\} \nsubseteq \{b\}$ und $\{b\} \nsubseteq \{a,c\}$, sind beide Modelle minimal und damit stabile Modelle von P. \square

M	P_1^M	$Cn(P_1^M)$
Ø	$\{a \leftarrow a, b \leftarrow\}$	$\{b\}$
$\{a\}$	$\{a \leftarrow a\}$	Ø
$\{b\}$	$\{a \leftarrow a, b \leftarrow \}$	$\{b\}$
$\{a,b\}$	$\{a \leftarrow a\}$	Ø

Table 2.1: $P_1 = \{a \leftarrow a, b \leftarrow nafa\}$ hat ein stabiles Modell $\{b\}$.

 $^{^{1}}$ Bla

Figure 2.1: Ein Kamerabild mit eingezeichneten Perzepten.

```
1 symbol(cup_1; cup_2; cup_3; spoon; diningtable).
2
3 is_on(
       cup_1, diningtable;
4
       cup_2, diningtable;
5
       cup_3, diningtable
6
  ).
7
8
  is_inside_of(spoon, cup_3).
9
10
  contains(
11
       cup_1, coffee;
12
       cup_2, coffee;
13
       cup_3, hot_chocolate
14
  ).
15
```

Listing 2.1: Eine symbolische Beschreibung der Objekte in bla.

2.1 Perzepte und Symbole

#show p(X,Y) : q(X).

Test für #show p(X) in einer Zeile.

```
= \{\operatorname{cup}_1, \operatorname{cup}_2\}
X
П
                                                  = \{\pi_1, \pi_2, \pi_3\}
                                                  = \{ coffee, tea, hot, cold \}
Φ
T
                                                  = \{t_1, t_2\}
\beta(\operatorname{cup}_1, t_1)
                                                  = \{coffee\}
\beta(\operatorname{cup}_2, t_1)
                                                   = \emptyset
\beta(\pi_1,t_1)
                                                  = \{coffee\}
\beta(\pi_2,t_1)
                                                  = \{ {\rm tea}, {\rm cold} \}
\beta(\pi_3,t_2)
                                                  = \{tea\}
```

Abbreviations

ASP Answer Set Programming

List of Figures

List of Tables

Listings

Bibliography

[Jan+10] Tomi Janhunen et al. "On testing answer-set programs". In: ECAI~2010. IOS Press, 2010, pp. 951–956 (cit. on p. 3).

Declaration

Hierher	kommt	die	eidesstattliche	Erklärung!

Berlin, 28. Juli 2022

Jakob Westphal