Digitaltechnik Wintersemester 2024/2025 Vorlesung 5





#### Inhalt



1 Boole'sche Algebra

2 Bubble Pushing

3 Logik-Realisierung mit Basis-Gattern



Harris 2016 Kap. 2.3 - 2.5, 2.8

| Anwendungs- | >"hello |
|-------------|---------|
| oftware     | world!" |
|             |         |

Gerätetreiber

Architektur

**+** 

Befehle Register

Programme

Mikroarchitektur

Retriebs-

systeme

Datenpfade Steuerung

Addierer Speicher

Verstärker

Transistoren

Dioden

Filter

Digitalschaltungen



Analogschaltungen



naltungen 178



Physik Physik

Elektronen



# Abgabefrist für Hausaufgabe B zu Vorlesungen 03 und 04 nächste Woche Freitag 23:59! Wöchentliches Moodle-Quiz nicht vergessen!

# Agenda



Boole'sche Algebra

3 Logik-Realisierung mit Basis-Gattern

Anwendungs->"hello world!" software

Programme

Betriebssysteme

Gerätetreiber

Architektur -

Befehle Register

Mikroarchitektur

 $\rightarrow$ 

Datenpfade Steuerung

Logik



Addierer Speicher



schaltungen



Analogschaltungen



Verstärker Filter

Bauteile



Physik







- Rechenregeln boole'scher Gleichungen
  - Axiome: grundlegende Annahmen der Algebra (nicht beweisbar)
  - Theoreme: komplexere Regeln, die sich aus Axiomen ergeben (beweisbar)
- analog zur Algebra auf natürlichen Zahlen
- ergänzt um Optimierungen durch Begrenzung auf B
- $lue{}$  Axiome und Theoreme haben jeweils duale Entsprechung: AND  $\leftrightarrow$  OR, 0  $\leftrightarrow$  1



(Dualität: AND  $\leftrightarrow$  OR, 0  $\leftrightarrow$  1)

|    | Axiom                        |     | <b>Duales Axiom</b> | Bedeutung  |
|----|------------------------------|-----|---------------------|------------|
| A1 | $B \neq 1 \Rightarrow B = 0$ |     |                     | Dualität   |
| A2 | $\overline{0}=1$             |     | $\overline{1}=0$    | Negieren   |
| А3 | $0 \cdot 0 = 0$              |     |                     | Und / Oder |
| A4 | $1 \cdot 1 = 1$              | A4' | 0 + 0 = 0           | Und / Oder |
| A5 | $0\cdot 1=1\cdot 0=0$        | A5' | 1 + 0 = 0 + 1 = 1   | Und / Oder |

# Theoreme der boole'schen Algebra (siehe auch "Hilfsblatt Klausur")



|     | Theorem                                                                                     |      | <b>Duales Theorem</b>                                                         | Bedeutung       |
|-----|---------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------|-----------------|
| T1  | $A \cdot 1 = A$                                                                             | T1'  | A + 0 = A                                                                     | Neutralität     |
| T2  | $A \cdot 0 = 0$                                                                             | T2'  | A+1=1                                                                         | Extremum        |
| Т3  | $A \cdot A = A$                                                                             | T3'  | A + A = A                                                                     | Idempotenz      |
| T4  | $\overline{\overline{A}} = A$                                                               |      |                                                                               | Involution      |
| T5  | $A \cdot \overline{A} = 0$                                                                  | T5'  | $A+\overline{A}=1$                                                            | Komplement      |
| Т6  | $A \cdot B = B \cdot A$                                                                     | Т6'  | A + B = B + A                                                                 | Kommutativität  |
| T7  | $A\cdot (B\cdot C)=(A\cdot B)\cdot C$                                                       | T7'  | A + (B + C) = (A + B) + C                                                     | Assoziativität  |
| Т8  | $A\cdot (B+C)=(A\cdot B)+(A\cdot C)$                                                        | T8'  | $A + (B \cdot C) = (A + B) \cdot (A + C)$                                     | Distributivität |
| Т9  | $A \cdot (A + B) = A$                                                                       | T9'  | $A + (A \cdot B) = A$                                                         | Absorption      |
| T10 | $(A\cdot B)+(A\cdot \overline{B})=A$                                                        | T10' | $(A+B)\cdot (A+\overline{B})=A$                                               | Zusammenfassen  |
| T11 | $(A \cdot B) + (\overline{A} \cdot C) + (B \cdot C) = (A \cdot B) + (\overline{A} \cdot C)$ | T11' | $(A+B)\cdot (\overline{A}+C)\cdot (B+C)=(A+B)\cdot (\overline{A}+C)$          | Konsensus       |
| T12 | $\overline{A \cdot B \cdot C \dots} = \overline{A} + \overline{B} + \overline{C} \dots$     | T12' | $\overline{A+B+C\ldots}=\overline{A}\cdot\overline{B}\cdot\overline{C}\ldots$ | De Morgan       |

#### T1: Neutralität von 1 und 0





$$A > \longrightarrow A + 0 = A$$

#### T2: Extremum von 0 und 1





## T3: Idempotenz







#### T4: Involution





# T5: Komplement



$$A > A > \overline{A} > A < \overline{A} = 0$$

$$A \rightarrow A \rightarrow A + \overline{A} = 1$$

#### T6: Kommutativität



$$\begin{array}{c}
A \\
B
\end{array}$$

$$A \cdot B = B \cdot A \leftarrow A \leftarrow B = B + A \leftarrow B$$

#### T7: Assoziativität







#### T8: Distributivität







# T9: Absorption





#### T10: Zusammenfassen





#### T11: Konsensus







#### T12: De Morgan



$$\begin{array}{c}
A \\
B
\end{array}
\qquad \longrightarrow \overline{A \cdot B} = \overline{A} + \overline{B} \longleftrightarrow A \\
A \\
B
\end{array}$$

$$A \\
A \\
B$$

$$A \\
A \\
B$$

$$A \\
B \\
B$$

## Augustus De Morgan, 1806 - 1871



- erster Präsident der London Mathematical Society
- Lehrer von Ada Lovelace
- De Morgan'sche Regeln:
  - Das Komplement des Produkts ist die Summe der Komplemente.
  - Das Komplement der Summe ist das Produkt der Komplemente.

#### Beweis für Theoreme



- Methode 1: Überprüfen aller Möglichkeiten
- Methode 2: Gleichung durch Axiome und andere Theoreme vereinfachen

# Beweis für Distributivität (T8) Durch Überprüfen aller Möglichkeiten



| Α | В | С | B+C | A(B+C) | A B | A C | AB+AC |
|---|---|---|-----|--------|-----|-----|-------|
| 0 | 0 | 0 | 0   | 0      | 0   | 0   | 0     |
| 0 | 0 | 1 | 1   | 0      | 0   | 0   | 0     |
| 0 | 1 | 0 | 1   | 0      | 0   | 0   | 0     |
| 0 | 1 | 1 | 1   | 0      | 0   | 0   | 0     |
| 1 | 0 | 0 | 0   | 0      | 0   | 0   | 0     |
| 1 | 0 | 1 | 1   | 1      | 0   | 1   | 1     |
| 1 | 1 | 0 | 1   | 1      | 1   | 0   | 1     |
| 1 | 1 | 1 | 1   | 1      | 1   | 1   | 1     |

#### Beweis für Absorption (T9) Durch Anwendung von Axiomen und Theoremen



$$A \cdot (A + B)$$

$$= A \cdot A + A \cdot B$$

$$= A + A \cdot B$$

$$= A \cdot 1 + A \cdot B$$

$$= A \cdot (1 + B)$$

$$= A \cdot 1$$

$$= A$$

Distributivität Idempotenz Neutralität Distributivität Extremum Neutralität q.e.d.

#### Beweis für Zusammenfassen (T10) Durch Anwendung von Axiomen und Theoremen



$$A \cdot B + A \overline{B}$$

$$= A \cdot (B + \overline{B})$$

$$= A \cdot 1$$

$$= A$$

Distributivität Komplement Neutralität q.e.d.

#### Beweis für Konsensus (T11) Durch Anwendung von Axiomen und Theoremen



# Logikminimierung







$$Y = \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} C + A \overline{B} \overline{C} + A \overline{B} C + A B C$$

$$= \overline{A} (\overline{B} \overline{C} + \overline{B} C) + A (\overline{B} \overline{C} + \overline{B} C) + A B C$$

$$= \overline{A} (\overline{B} (\overline{C} + C)) + A (\overline{B} (\overline{C} + C)) + A B C$$

$$= \overline{A} \overline{B} + A \overline{B} + A B C$$

$$= (\overline{A} + A) \overline{B} + A B C$$

$$= \overline{B} + A B C$$

- weitere Vereinfachungen möglich?
- $Y = \overline{B} + A C$
- Systematik notwendig, um minimale Ausdücke zu erkennen/finden



# Agenda



1 Boole'sche Algebra

2 Bubble Pushing

3 Logik-Realisierung mit Basis-Gattern

Anwendungs->"hello software

Programme

Betriebssysteme Gerätetreiber

Architektur

Befehle Register

Mikroarchitektur

Datenpfade Steuerung

Logik

Addierer Speicher

Digitalschaltungen



UND Gatter Inverter

Analogschaltungen



Verstärker Filter

Bauteile

Transistoren Dioden

Physik



Elektronen

# Graphische Umformung von Schaltungen Nach De Morgan und Involution



$$\begin{array}{c}
A \\
B
\end{array}
\longrightarrow \overline{A + B} = \overline{A} \cdot \overline{B} \longleftarrow \begin{array}{c}
C \\
C \\
C
\end{array}
\longrightarrow \begin{array}{c}
A \\
B
\end{array}$$



#### Invertierungsblasen verschieben Bubble Pushing



■ über Gatter (AND/OR/NOT/BUF) hinweg

 $lacktriang{}$  vorwärts: Eingang o Ausgang

lacktriang rückwärts: Ausgang ightarrow Eingang

 $\blacksquare$  Art des Gatters ändern: AND  $\leftrightarrow$  OR

■ Blasen an allen Eingängen ändern: vorhanden ↔ nicht vorhanden

■ Blase an Ausgang ändern: vorhanden ↔ nicht vorhanden

zwischen Gattern

lacktriangle vorwärts: Treiber othe alle Empfänger

lacksquare rückwärts: alle Empfänger o Treiber

doppelte Blasen heben sich gegenseitig auf (Involution)

verbleibende Buffer (vorher Inverter) können entfernt werden

#### Beispiel Invertierungsblasen rückwärts verschieben











- De Morgan über G3
  - lacksquare Blase am Ausgang ightarrow Blase an beiden Eingängen
  - $\blacksquare$  AND  $\rightarrow$  OR
- Blasen entlang Leitungen verschieben
  - $\blacksquare$  G3  $\rightarrow$  G1
  - $\blacksquare$  G3  $\rightarrow$  G2 (Doppelblase aufheben)
- De Morgan über G1
  - Blasen an Ein- und Ausgängen invertieren
  - lacksquare OR ightarrow AND
- Buffer G2 entfernen
- zwei Inverter weniger

# Anwendungen



- Schaltungen vereinfachen
  - weniger Inverter
  - weniger Literale (z.B. nur A statt A,  $\overline{A}$ )
  - weniger verschiedene Gatter-Arten → einfachere Zellbibliothek (z.B. nur AND, kein OR)
- Komplementäre Schaltungen für CMOS-Schaltung ableiten
  - Y für Pull-Up Netzwerk  $\leftrightarrow \overline{Y}$  für Pull-Down Netzwerk

  - $Y = \overline{\underline{A}B + C}$   $\overline{Y} = \overline{\overline{A}B + C} = \overline{\overline{A}B} \overline{C} = (A + \overline{B})\overline{C}$

# Agenda



1 Boole'sche Algebra

2 Bubble Pushing

3 Logik-Realisierung mit Basis-Gattern

Anwendungs-"hello world!"

ello ld!" Programme

Betriebssysteme

Gerätetreiber

Architektur

Befehle Register

Mikroarchitektur

, [<del>|</del>

Datenpfade Steuerung

Logik



Addierer Speicher

Digitalschaltungen



UND Gatter Inverter

Analogschaltungen



Verstärker Filter

Bauteile



Physik



Elektronen

# Zweistufige Logik



Y = A B C D

- direkte (konstruktive) Umsetzung der disjunktiven Normalform (DNF)
  - Eingangsliterale:ein Inverter pro Variable (falls benötigt)
  - Minterme: je ein "breites" AND Gatter an passende Literale anschließen
  - Summe: alle Minterme an ein "breites" OR Gatter anschließen
- Gatter mit vielen Inputs als Bäume kleinerer Gatter
- ⇒ jede boole'sche Funktion realisierbar mit Basisgattern
  - AND2
  - OR2
  - NOT



# Konventionen für lesbare Schaltpläne



- Eingänge links (oder oben)
- Ausgänge rechts (oder unten)
- Gatter von links nach rechts (oben nach unten) angeordnet
- gerade (oder rechtwinklige) Verbindungen
- ⇒ keine Schrägen oder Kurven
  - 3-armige Kreuzungen gelten implizit als verbunden
  - 4-armige Kreuzungen gelten nur bei Markierung (Punkt) als verbunden

|           | nicht     |           |  |
|-----------|-----------|-----------|--|
| verbunden | verbunden | verbunden |  |

#### Weitere kombinatorische Grundelemente



- zweistufige Logik
  - sehr mächtig
  - aufwändige Darstellung und Realisierung
  - realisiertes Verhalten nicht intuitiv ersichtlich
- weitere Basisgatter neben AND, OR, NOT:

XOR: ParitätMultiplever (MLIX): n.zu. 1

■ Multiplexer (MUX): n zu 1

■ Dekodierer (DEC):  $n \text{ zu } 2^n$ 

# $\overline{\mathsf{MUX}n:\mathbb{B}^{n+\lceil\log_2 n ceil}} o\mathbb{B}$



- Selektiert einen der n Dateneingänge  $A_0, \ldots, A_{n-1}$  als Ausgang Y
- $k = \lceil \log_2 n \rceil$  Steuersignale  $S_0, \dots, S_{k-1}$
- $Y = A_{u_{2,k}(S_{k-1}...S_0)}$



|                                                | S <sub>0</sub> 0 1 | <i>Y A</i> <sub>0</sub> <i>A</i> <sub>1</sub> | -             |   |
|------------------------------------------------|--------------------|-----------------------------------------------|---------------|---|
| $A_0 \succ                                   $ | )-                 |                                               | $\rightarrow$ | Y |







# Logikrealisierung mit Multiplexern



RQ7-4 MUX1



- Variablen als Steuersignale verwenden
- Wahrheitswertetabelle als Konstanten an Dateneingängen
- entspricht adressiertem Speicherzugriff
  - Look-up Tabelle
  - ROM oder RAM → rekonfigurierbare Logik
- Beliebige Funktion mit N Variablen kann sogar via MUX2 $^{N-1}$  realisiert werden (s. Harris, Fig. 2.60)

| Α | В | Y = A B |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |
|   |   |         |







- $\blacksquare$  *n* Eingänge  $A_0, \ldots, A_{n-1}$
- $\blacksquare$  2<sup>n</sup> Ausgänge  $Y_0, \ldots, Y_{2^n-1}$
- "One-Hot" Kodierung:  $Y_i = u_{2,n}(A_{n-1}...A_0) == i ? 1 : 0$

| $A_1$ | A <sub>0</sub> 0 1 0 1 | Y <sub>0</sub> | $Y_1$ | $Y_2$ | <i>Y</i> <sub>3</sub> |
|-------|------------------------|----------------|-------|-------|-----------------------|
| 0     | 0                      | 1              | 0     | 0     | 0                     |
| 0     | 1                      | 0              | 1     | 0     | 0                     |
| 1     | 0                      | 0              | 0     | 1     | 0                     |
| 1     | 1                      | 0              | 0     | 0     | 1                     |



# Implementierung von Dekodierern







- Summe über Minterme, auf denen Zielfunktion wahr ist
- ⇒ Decoder ersetzt erste Stufe der zweistufigen Logikrealisierung

| Α | В | $Y = A \oplus B$ |
|---|---|------------------|
| 0 | 0 | 0                |
| 0 | 1 | 1                |
| 1 | 0 | 1                |
| 1 | 1 | 0                |





# Abgabegruppen-Börse im Anschluss Einzelabgaben bei den Hausaufgaben werden **nicht** bewertet!

# Zusammenfassung und Ausblick



- Boole'sche Algebra
- **Bubble Pushing**
- Logik-Realisierung mit Basis-Gattern

nächste Vorlesung beinhaltet

- Logikminimierung
- Mehrwertige Logik
- Zeitverhalten in kombinatorischen Schaltungen

Hausaufgabe B zu Vorlesungen 03 und 04 muss bis nächste Woche Freitag 23:59 abgegeben werden. Wöchentliches Moodle-Quiz nicht vergessen!

| nwendungs- | >"hello |
|------------|---------|
| oftware    | world!" |

Programme

Retriebssysteme

Gerätetreiher

Architektur

Befehle Register

Mikroarchitektur

 $\leftrightarrow$ 

Datenpfade Steuerung

Logik

Addierer Speicher

Digitalschaltungen



-

LIND Gatter Inverter

Analogschaltungen



Bauteile



Physik



