

Documentation for Astrometry Routines

Contents

1 LScalc.py	2
-------------	---

2 AScalc.py 3

1 LScalc.py

This program has a very simple goal: calculate the linear distance of an astronomical object given a redshift and angular view. To do this, I simply utilized the following set of equations to calculate the quantity of intereset, l.

Parameter	Brief Description
l	Linear Distance in Kiloparsecs
z	Redshift
$d_A(z)$	Angular Distance
θ	Angular Seperation in arcseconds
d_H	Hubble Distance
c	Speed of Light
H_0	Hubble Constant
d_C	Comoving Distance
E(z)	Energy Function
$d_M(z)$	Moving Distance
Ω_{rel}	Mass Density of Relativistic Particles
Ω_{mass}	Mass Density of Baryonic and NonBaryonic Particles
Ω_{Λ}	Mass Density of Dark Energy

$$l = d_A(z) * \theta \tag{1}$$

$$d_A(z) = \frac{d_M(z)}{1+z} \tag{2}$$

$$d_{M}(z) = \begin{cases} \frac{d_{H}}{\sqrt{\Omega_{k}}} \sinh\left(\sqrt{\Omega_{k}} \frac{d_{C}(z)}{d_{H}}\right) & \Omega_{k} > 0\\ d_{C}(z) & \Omega_{k} = 0\\ \frac{d_{H}}{\sqrt{|\Omega_{k}|}} \sin\left(\sqrt{|\Omega_{k}|} \frac{d_{C}(z)}{d_{H}}\right) & \Omega_{k} < 0 \end{cases}$$
(3)

$$d_C(z) = d_H \int_0^z \frac{dz'}{E(z')} \tag{4}$$

$$E(z) = \sqrt{\Omega_{rel}(1+z)^4 + \Omega_{mass}(1+z)^3 + \Omega_k(1+z)^2 + \Omega_{\Lambda}}$$
 (5)

$$\Omega_k = 1 - \Omega_{mass} - \Omega_{\Lambda} \tag{6}$$

$$d_H = \frac{c}{H_0} \tag{7}$$

2 AScalc.py

This program is almost identitical to **LScalc.py** except that instead of solving for the linear distance we are solving for the angular separation.

Parameter	Brief Description
l	Linear Distance in Kiloparsecs
z	Redshift
$d_A(z)$	Angular Distance
θ	Angular Seperation in arcseconds
d_H	Hubble Distance
c	Speed of Light
H_0	Hubble Constant
d_C	Comoving Distance
E(z)	Energy Function
$d_M(z)$	Moving Distance
Ω_{rel}	Mass Density of Relativistic Particles
Ω_{mass}	Mass Density of Baryonic and NonBaryonic Particles
Ω_{Λ}	Mass Density of Dark Energy

$$\theta = \frac{l}{d_A(z)} \tag{8}$$

$$d_A(z) = \frac{d_M(z)}{1+z} \tag{9}$$

$$d_{M}(z) = \begin{cases} \frac{d_{H}}{\sqrt{\Omega_{k}}} \sinh\left(\sqrt{\Omega_{k}} \frac{d_{C}(z)}{d_{H}}\right) & \Omega_{k} > 0\\ d_{C}(z) & \Omega_{k} = 0\\ \frac{d_{H}}{\sqrt{|\Omega_{k}|}} \sin\left(\sqrt{|\Omega_{k}|} \frac{d_{C}(z)}{d_{H}}\right) & \Omega_{k} < 0 \end{cases}$$

$$(10)$$

$$d_C(z) = d_H \int_0^z \frac{dz'}{E(z')} \tag{11}$$

$$E(z) = \sqrt{\Omega_{rel}(1+z)^4 + \Omega_{mass}(1+z)^3 + \Omega_k(1+z)^2 + \Omega_{\Lambda}}$$
(12)

$$\Omega_k = 1 - \Omega_{mass} - \Omega_{\Lambda} \tag{13}$$

$$d_H = \frac{c}{H_0} \tag{14}$$