

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Addease COMMISSIONER FOR PATENTS PO Box 1430 Alexandra, Virginia 22313-1450 www.webjo.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/674,159	09/29/2003	Jianzhu Chen	0492611-0506 (MIT 9926)	1899
24280 7590 12/01/2008 CHOATE, HALL & STEWART LLP			EXAMINER	
TWO INTERN	IATIONAL PLACE		MCGARRY, SEAN	
BOSTON, MA 02110			ART UNIT	PAPER NUMBER
			1635	
			NOTIFICATION DATE	DELIVERY MODE
			12/01/2008	ELECTRONIC

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Notice of the Office communication was sent electronically on above-indicated "Notification Date" to the following e-mail $\,$ address(es):

patentdocket@choate.com

Application No. Applicant(s) 10/674,159 CHEN ET AL. Office Action Summary Examiner Art Unit Sean R. McGarry 1635 -- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --Period for Reply A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS. WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b). Status 1) Responsive to communication(s) filed on 1/10/07, 6/04/07, 10/07/08, and 8/22/08. 2a) ☐ This action is FINAL. 2b) This action is non-final. 3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under Ex parte Quayle, 1935 C.D. 11, 453 O.G. 213. Disposition of Claims 4) Claim(s) 1-201 is/are pending in the application. 4a) Of the above claim(s) See Continuation Sheet is/are withdrawn from consideration. 5) Claim(s) _____ is/are allowed. 6) Claim(s) 1-20.22-28.31-38.70-88.90-93.98-104.112-117.145 and 165-193 is/are rejected. 7) Claim(s) 39-48,64-69,94-97 and 201 is/are objected to. 8) Claim(s) _____ are subject to restriction and/or election requirement. Application Papers 9) The specification is objected to by the Examiner. 10) ☐ The drawing(s) filed on is/are: a) ☐ accepted or b) ☐ objected to by the Examiner. Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a). Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d). 11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152. Priority under 35 U.S.C. § 119 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. Attachment(s)

1) Notice of References Cited (PTO-892)

Notice of Draftsperson's Patent Drawing Review (PTO-948)

Information Disclosure Statement(s) (PTO/SB/08)
 Paper No(s)/Mail Date 12/28/04;9/12/05;8/23/07.

Interview Summary (PTO-413)
 Paper No(s)/Mail Date. _____.

6) Other:

5) Notice of Informal Patent Application

Continuation of Disposition of Claims: Claims withdrawn from consideration are 21,29,30,49-63,89,105-111,118-144,146-164 and 194-200.

Art Unit: 1635

DETAILED ACTION

Election/Restrictions

Applicant's election with traverse of Group I and SEQ ID NOS: 43, 93, 94, 188, and 189 in the replies filed on 1/10/07;6/04/07;1/07/08; and 8/22/08 is acknowledged. The traversal is on the ground(s) that many of the sequences target the same gene and that the oofice has policy to examine up to 10 sequences and that it would not be a burden to search all of the inventions of the instant application. This is not found persuasive because applicants arguments that many of the sequences target the same gene was addressed in the restriction requirement and applicant has not provided argument or evidence that the reasons set forth in the requirement are in error. The policy of up to 10 sequences has been rescinded by the office. See

Applicant asserts that he sequences should be treated as species. The restriction requirement makes it clear that the requirement is a restriction among the sequences. Applicant provides no evidence that the requirement is in error. The burden on the office to examine all the inventions in this application is readily evident in that there are hundreds of sequences combined with hundreds of claims. The sequences would be rejoined only in the event that a generic claim embracing the recited sequences was found allowable.

The requirement is still deemed proper and is therefore made FINAL.

Art Unit: 1635

Claims 1-201 are pending.

Claims21, 29, 30, 49-63, 89, 105-11, 118-144, 146-164, 194-200 are withdrawn from further consideration pursuant to 37 CFR 1.142(b), as being drawn to a nonelected invention, there being no allowable generic or linking claim. Applicant timely traversed the restriction (election) requirement in the replies filed on 1/10/07;6/04/07;1/07/08; and 8/22/08.

Claims 1-20, 22-28, 31-48, 64-88, 90-104, 112-117, 145, 165-193 and 201 are currently under examination.

Applicant is reminded that upon the cancellation of claims to a non-elected invention, the inventorship must be amended in compliance with 37 CFR 1.48(b) if one or more of the currently named inventors is no longer an inventor of at least one claim remaining in the application. Any amendment of inventorship must be accompanied by a request under 37 CFR 1.48(b) and by the fee required under 37 CFR 1.17(i).

Specification

The disclosure is objected to because of the following informalities: Page 84 of the specification is blank.

Appropriate correction is required.

Information Disclosure Statement

The information disclosure statement filed 12/28/2004 fails to comply with the provisions of 37 CFR 1.97, 1.98 and MPEP § 609 because the last citation on page 6 does not contain a date. It has been placed in the application file, but the information referred to therein as "International Search Report. . ." will not be printed on any patent issing from theis application. The information therein, however, has been considered by the examiner as to the merits. Applicant is advised that the date of any re-submission of any item of information contained in this information disclosure statement or the submission of any missing element(s) will be the date of submission for purposes of determining compliance with the requirements based on the time of filing the statement, including all certification requirements for statements under 37 CFR 1.97(e). See MPEP § 609.05(a).

Art Unit: 1635

Claim Rejections - 35 USC § 112

Claims 145 and 165-193 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Claim 145 depends from a claim that has been withdrawn from consideration.

The metes and bounds of the claim are therefore unclear.

Claims 165-193 all recite of depend from claims that recite "an RNAi inducing entity" The term is not an art recognized term and the instant specification does not provide any specific definition of what is embraced by such a term. It is noted that the specification at paragraph 83 provides limited examples of what is embraced by the term, but the specification does not provide any specific guidance as to what other "entities" may be embraced by the term. The claims are rendered vague and indefinite.

Claim Rejections - 35 USC § 103

The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary sik lin the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein

Art Unit: 1635

were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).

Claims 1-20, 22-28, 31-38, 70-88, 90-93, 98-104, 112-117, 165-178, and 185-193 are rejected under 35 U.S.C. 103(a) as being unpatentable over Tuschl et al [US 2004/0259,247] and Beach et al [US 2002/0162126, cited by applicant] in view of Abe et al [European Journal of Pharmaceutical Sciences, Vol. 13:61-69, 2001, cited by applicant], Gitlin et al. [Nature Vol.418:430-434, 25 July 2002, cited by applicant], Brummelkamp et al [Science Vol. 296:550-553, 19 April 2002, cited by applicant], and Paddison et al [Genes & Development Vol.16:948-958, 2002].

The invention is as clearly set forth in the claims. The examination of claims 165-178 and 185-193, addressed above as rejected under 35 U.S.C. 112, second paragraph, are examined limited to the species defined by the specification at paragraph 83.

Tuschl et al have taught the use of siRNA and have taught that siRNA may be used to inhibit viral genes. Tuschl teaches, for example:

[0008] The object underlying the present invention is to provide novel agents capable of mediating target-specific RNA interference or other target-specific nucleic acid modifications such as DNA methylation, said agents having an improved efficacy and safety compared to prior art agents.

[0009] The solution of this problem is provided by an isolated double-stranded RNA molecule, wherein each RNA strand has a length from 19-25, particularly from 19-23 nucleotides, wherein said RNA molecule is capable of mediating target-specific nucleic acid modifications,

Art Unit: 1635

particularly RNA interference and/or DNA methylation. Preferably at least one strand has a 3'overhang from 1-5 nucleotides, more preferably from 1-3 nucleotides and most preferably 2
nucleotides. The other strand may be blunt-ended or has up to 6 nucleotides 3' overhang. Also, if
both strands of the dsRNA are exactly 21 or 22 nt, it is possible to observe some RNA
interference when both ends are blunt (0 nt overhang). The RNA molecule is preferably a
synthetic RNA molecule which is substantially free from contaminants occurring in cell extracts,
e.g. from Drosophila embryos. Further, the RNA molecule is preferably substantially free from
any non-target-specific contaminants, particularly non-target-specific RNA molecules e.g. from
contaminants occurring in cell extracts.

[0010] Further, the invention relates to the use of isolated double-stranded RNA molecules, wherein each RNA strand has a length from 19-25 nucleotides, for mediating, target-specific nucleic acid modifications, particularly RNAi, in mammalian cells, particularly in human cells.

[0011] Surprisingly, it was found that synthetic short double-stranded RNA molecules particularly with overhanging 3'-ends are sequence-specific mediators of RNAi and mediate efficient target-RNA cleavage, wherein the cleavage site is located near the center of the region spanned by the guiding short RNA.

[0012] Preferably, each strand of the RNA molecule has a length from 20-22 nucleotides (or 20-25 nucleotides in mammalian cells), wherein the length of each strand may be the same or different. Preferably, the length of the 3'-overhang reaches from 1-3 nucleotides, wherein the length of the overhang may be the same or different for each strand. The RNA-strands preferably have 3'-hydroxyl groups. The 5'-terminus preferably comprises a phosphate, diphosphate, triphosphate or hydroxyl group. The most effective dsRNAs are composed of two 21 nt strands which are paired such that 1-3, particularly 2 nt 3' overhangs are present on both ends of the dsRNA.

[0013] The target RNA cleavage reaction guided by siRNAs is highly sequence-specific. However, not all positions of a siRNA contribute equally to target recognition. Mismatches in the center of the siRNA duplex are most critical and essentially abolish target RNA cleavage. In contrast, the 3' nucleotide of the siRNA strand (e.g. position 21) that is complementary to the single-stranded target RNA, does not contribute to specificity of the target recognition. Further, the sequence of the unpaired 2-nt 3' overhang of the siRNA strand with the same polarity as the target RNA is not critical for target RNA cleavage as only the antisense siRNA strand guides target recognition. Thus, from the single-stranded overhanging nucleotides only the penultimate position of the antisense siRNA (e.g. position 20) needs to match the targeted sense mRNA.

[0014] Surprisingly, the double-stranded RNA molecules of the present invention exhibit a high in vivo stability in serum or in growth medium for cell cultures. In order to further enhance the stability, the 3'-overhangs may be stablized against degradation, e.g. they may be selected such that they consist of purine nucleotides, particularly adenosine or guanosine nucleotides. Alternatively, substitution of pyrimidine nucleotides by modified analogues, e.g. substitution of uridine 2 nt 3' overhangs by 2'-deoxythymidine is tolerated and does not affect the efficiency of RNA interference. The absence of a 2' hydroxyl significantly enhances the nuclease resistance of the overhang in tissue culture medium.

Art Unit: 1635

[0015] In an especially preferred embodiment of the present invention the RNA molecule may contain at least one modified nucleotide analogue. The nucleotide analogues may be located at positions where the target-specific activity, e.g. the RNAi mediating activity is not substantially effected, e.g. in a region at the 5'-end and/or the 3'-end of the double-stranded RNA molecule. Particularly, the overhangs may be stabilized by incorporating modified nucleotide analogues.

[0016] Preferred nucleotide analogues are selected from sugar- or backbone-modified ribonucleotides. It should be noted, however, that also nucleobase-modified ribonucleotides, i.e. ribonucleotides, containing a non-naturally occurring nucleobase instead of a naturally occurring nucleobase such as uridines or cytidines modified at the 5-position, e.g. 5-(2-amino)propyl uridine, 5-bromo uridine; adenosines and guanosines modified at the 8-position, e.g. 8-bromo guanosine; deaza nucleotides, e.g. 7-deaza-adenosine; O- and N-alkylated nucleotides, e.g. N6-methyl adenosine are suitable. In preferred sugar-modified ribonucleotides the 2'OH-group is replaced by a group selected from H, OR, R, halo, SH, SR, NH.sub.2, NHR, NR.sub.2 or CN, wherein R is C.sub.1-C.sub.6 alkyl, alkenyl or alkynyl and halo is F, Cl, Br or I. In preferred backbone-modified ribonucleotides the phosphoester group connecting to adjacent ribonucleotides is replaced by a modified group, e.g. of phosphothioate group. It should be noted that the above modifications may be combined.

[0017] The sequence of the double-stranded RNA molecule of the present invention has to have a sufficient identity to a nucleic acid target molecule in order to mediate target-specific RNAi and/or DNA methylation. Preferably, the sequence has an identity of at least 50%, particularly of at least 70% to the desired target molecule in the double-stranded portion of the RNA molecule. More preferably, the identity is at least 85% and most preferably 100% in the double-stranded portion of the RNA molecule. The identity of a double-stranded RNA molecule to a predetermined nucleic acid target molecule, e.g. an mRNA target molecule may be determined as follows: 1 I = n L times. 100

[0020] The double-stranded RNA molecule of the invention may be prepared by a method comprising the steps:

[0021] (a) synthesizing two RNA strands each having a length from 19-25, e.g. from 19-23 nucleotides, wherein said RNA strands are capable of forming a double-stranded RNA molecule, wherein preferably at least one strand has a 3'-overhang from 1-5 nucleotides,

[0022] (b) combining the synthesized RNA strands under conditions, wherein a double-stranded RNA molecule is formed, which is capable of mediating target-specific nucleic acid modifications, particularly RNA interference and/or DNA methylation.

[0028] Preferably the contacting step (a) comprises introducing the double-stranded RNA molecule into a target cell, e.g. an isolated target cell, e.g. in cell culture, a unicellular microorganism or a target cell or a plurality of target cells within a multicellular organism. More preferably, the introducing step comprises a carrier-mediated delivery, e.g. by liposomal carriers or by injection.

Application/Control Number: 10/674,159 Page 9

Art Unit: 1635

[0030] The target gene to which the RNA molecule of the invention is directed may be associated with a pathological condition. For example, the gene may be a pathogen-associated gene, e.g., a viral gene, a tumor-associated gene or an autoimmune disease-associated gene. The target gene may also be a heterologous gene expressed in a recombinant cell or a genetically altered organism. By determinating or modulating, particularly, inhibiting the function of such a gene valuable information and therapeutic benefits in the agricultural field or in the medicine or veterinary medicine field may be obtained.

[0031] The dsRNA is usually administered as a pharmaceutical composition. The administration may be carried out by known methods, wherein a nucleic acid is introduced into a desired target cell in vitro or in vivo. Commonly used gene transfer techniques include calcium phosphate, DEAE-dextran, electroporation and microinjection and viral methods (Graham, F. L. and van der Eb, A. J. (1973) Virol. 52, 456; McCutchan, J. H. and Pagano, J. S. (1968), J. Natl. Cancer Inst. 41, 351; Chu, G. et al (1987), Nucl. Acids Res. 15, 1311; Fraley, R. et al. (1980), J. Biol. Chem. 255, 10431; Capecchi, M. R. (1980), Cell 22, 479). A recent addition to this arsenal of techniques for the introduction of DNA into cells is the use of cationic liposomes (Feigner, P. L. et al. (1987), Proc. Natl. Acad. Sci USA 84, 7413). Commercially available cationic lipid formulations are e.g. Tfx 50 (Promega) or Lipofectamin 2000 (Life Technologies).

[0032] Thus, the invention also relates to a pharmaceutical composition containing as an active agent at least one double-stranded RNA molecule as described above and a pharmaceutical carrier. The composition may be used for diagnostic and for therapeutic applications in human medicine or in veterinary medicine.

[0033] For diagnostic or therapeutic applications, the composition may be in form of a solution, e.g. an injectable solution, a cream, ointment, tablet, suspension or the like. The composition may be administered in any suitable way, e.g. by injection, by oral, topical, nasal, rectal application etc. The carrier may be any suitable pharmaceutical carrier. Preferably, a carrier is used, which is capable of increasing the efficacy of the RNA molecules to enter the target-cells. Suitable examples of such carriers are liposomes, particularly cationic liposomes. A further preferred administration method is injection.

[0035] Thus, a further subject matter of the invention is a eukaryotic cell or a eukaryotic non-human organism exhibiting a target gene-specific knockout phenotype comprising an at least partially deficient expression of at least one endogeneous target gene wherein said cell or organism is transfected with at least one double-stranded RNA molecule capable of inhibiting the expression of at least one endogeneous target gene or with a DNA encoding at least one double stranded RNA molecule capable of inhibiting the expression of at least one endogeneous target gene. It should be noted that the present invention allows a target-specific knockout of several different endogeneous genes due to the specificity of RNAi.

Beach et al also teach siRNA and teach shRNA compounds that may be

expressed from a vector. Beach teaches, for example:

Page 10

Application/Control Number: 10/674,159

Art Unit: 1635

[0014] In certain preferred embodiments, the target gene is an endogenous gene of the cell. In other embodiments, the target gene is an heterologous gene relative to the genome of the cell, such as a nathogen gene. e.g. a viral gene.

[0017] In certain preferred embodiments, the length of the dsRNA is at least 20, 21 or 22 nucleotides in length, e.g., corresponding in size to RNA products produced by Dicer-dependent cleavage. In certain embodiments, the dsRNA construct is at least 25, 50, 100, 200, 300 or 400 bases. In certain embodiments, the dsRNA construct is 400-800 bases in length.

[0018] In certain preferred embodiments, expression of the target gene is attenuated by at least 5 fold, and more preferably at least 10, 20 or even 50 fold, e.g., relative to the untreated cell or a cell treated with a dsRNA construct which does not correspond to the target gene. Tuschl and beach et al do not teach specifically targeting influenza or the np gene of influenza. They do not specifically teach targeting conserved regions of a viral gene, for example.

[0037] The dsRNA construct may comprise one or more strands of polymerized ribonucleotide. It may include modifications to either the phosphate-sugar backbone or the nucleoside. The double-stranded structure may be formed by a single self-complementary RNA strand or two complementary RNA strands. RNA duplex formation may be initiated either inside or outside the cell. The dsRNA construct may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses of double-stranded material may yield more effective inhibition. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition. dsRNA constructs containing a nucleotide sequences identical to a portion of the target gene is preferred for inhibition. RNA sequences with insertions, deletions, and single point mutations relative to the target sequence have also been found to be effective for inhibition. Thus, sequence identity may optimized by alignment algorithms known in the art and calculating the percent difference between the nucleotide sequences. Alternatively, the duplex region of the RNA may be defined functionally as a nucleotide sequence that is capable of hybridizing with a portion of the target gene transcript.

[0084] As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to that it has been linked. One type of vector is a genomic integrated vector, or "integrated vector," which can become integrated into the chromsomal DNA of the host cell. Another type of vector is an episomal vector, i.e., a nucleic acid capable of extra-chromosomal replication. Vectors capable of directing the expression of genes to that they are operatively linked are referred to herein as "expression vectors". In the present specification, "plasmid" and "vector" are used interchangeably unless otherwise clear from the context.

[0120] The cell with the target gene may be derived from or contained in any organism (e.g., plant, animal, protozoan, virus, bacterium, or fungus). The dsRNA construct may be synthesized either in vivo or in vitro. Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For generating double stranded transcripts from a transgene in vivo, a regulatory region may be used to transcribe the RNA strand (or strands).

Art Unit: 1635

[0122] The cell with the target gene may be derived from or contained in any organism. The organism may a plant, animal, protozoan, bacterium, virus, or fungus. The plant may be a monocot, dicot or gymnosperm; the animal may be a vertebrate or invertebrate. Preferred microbes are those used in agriculture or by industry, and those that are pathogenic for plants or animals. Fungi include organisms in both the mold and yeast morphologies.

[0128] The target gene may be a gene derived from the cell, an endogenous gene, a transgene, or a gene of a pathogen which is present in the cell after infection thereof. Depending on the particular target gene and the dose of double stranded RNA material delivered, the procedure may provide partial or complete loss of function for the target gene. Lower doses of injected material and longer times after administration of dsRNA may result in inhibition in a smaller fraction of cells. Quantitation of gene expression in a cell may show similar amounts of inhibition at the level of accumulation of target mRNA or translation of target protein.

[0133] The dsRNA construct may comprise one or more strands of polymerized ribonucleotide. It may include modifications to either the phosphate-sugar backbone or the nucleoside. For example, the phosphodiester linkages of natural RNA may be modified to include at least one of a nitrogen or sulfur heteroatom. Modifications in RNA structure may be tailored to allow specific genetic inhibition while avoiding a general panic response in some organisms which is generated by dsRNA. Likewise, bases may be modified to block the activity of adenosine deaminase. The dsRNA construct may be produced enzymatically or by partial/total organic synthesis, any modified ribonucleotide can be introduced by in vitro enzymatic or organic synthesis.

[0135] The double-stranded structure may be formed by a single self-complementary RNA strand or two complementary RNA strands. RNA duplex formation may be initiated either inside or outside the cell. The RNA may be introduced in an amount which allows delivery of at least one copy per cell. Higher doses (e.g., at least 5, 10, 100, 500 or 1000 copies per cell) of double-stranded material may yield more effective inhibition; lower doses may also be useful for specific applications. Inhibition is sequence-specific in that nucleotide sequences corresponding to the duplex region of the RNA are targeted for genetic inhibition.

[0137] 100% sequence identity between the RNA and the target gene is not required to practice the present invention. Thus the invention has the advantage of being able to tolerate sequence variations that might be expected due to genetic mutation, strain polymorphism, or evolutionary divergence.

[0138] The dsRNA construct may be synthesized either in vivo or in vitro. Endogenous RNA polymerase of the cell may mediate transcription in vivo, or cloned RNA polymerase can be used for transcription in vivo or in vitro. For transcription from a transgene in vivo or an expression construct, a regulatory region (e.g., promoter, enhancer, silencer, splice donor and acceptor, polyadenylation) may be used to transcribe the dsRNA strand (or strands). Inhibition may be targeted by specific transcription in an organ, tissue, or cell type; stimulation of an environmental condition (e.g., infection, stress, temperature, chemical inducers); and/or engineering transcription at a developmental stage or age. The RNA strands may or may not be polyadenylated: the RNA strands may or may not be be capable of being translated into a

Art Unit: 1635

polypeptide by a cell's translational apparatus. The dsRNA construct may be chemically or enzymatically synthesized by manual or automated reactions. The dsRNA construct may be synthesized by a cellular RNA polymerase or a bacteriophage RNA polymerase (e.g., T3, T7, SP6). The use and production of an expression construct are known in the art 32,33,34 (see also WO 97/32016; U.S. Pat. Nos. 5,593,874, 5,698,425, 5,712,135, 5,789,214, and 5,804,693; and the references cited therein). If synthesized chemically or by in vitro enzymatic synthesis, the RNA may be purified prior to introduction into the cell. For example, RNA can be punified from a mixture by extraction with a solvent or resin, precipitation, electrophoresis, chromatography or a combination thereof. Alternatively, the dsRNA construct may be used with no or a minimum of purification to avoid losses due to sample processing. The dsRNA construct may be dried for storage or dissolved in an aqueous solution. The solution may contain buffers or salts to promote annealing, and/or stabilization of the duplex strands.

[0139] Physical methods of introducing nucleic acids include injection of a solution containing the dsRNA construct, bombardment by particles covered by the dsRNA construct, soaking the cell or organism in a solution of the RNA, or electroporation of cell membranes in the presence of the dsRNA construct. A viral construct packaged into a viral particle would accomplish both efficient introduction of an expression construct into the cell and transcription of dsRNA construct encoded by the expression construct. Other methods known in the art for introducing nucleic acids to cells may be used, such as lipid-mediated carrier transport, chemicalmediated transport, such as calcium phosphate, and the like. Thus the dsRNA construct may be introduced along with components that perform one or more of the following activities: enhance RNA uptake by the cell, promote annealing of the duplex strands, stabilize the annealed strands, or other-wise increase inhibition of the target gene.

Abe et al have taught the inhibiting of influenza virus via the use of antisense oligonucleotides targeting various genes of the influenza genome. It has been taught, for example to target the PB1, PB2, PA and NP genes of influenza. Abe et teach the use of liposomes. Abe et al have shown a protective effect of antisense inhibition of influenza in mice that were provided antisense via i.v. administration showing reduced influenza proliferation in lungs, reduced lung damage and increased survival rates. Abe et al have therefore demonstrated nucleic acid inhibition as a viable means for protecting against the influenza virus.

Art Unit: 1635

Gitlin et al have shown the inhibition of polio virus genes via the use of siRNA compounds. Gitlin et al have shown that siRNA can provide a therapeutic strategy against human viruses. Gitlin et al have also taught that improved strategy of inhibiting or providing cellular immunity to human viruses, especially RNA viruses will have to contend with their variability due to high mutation rates. They teach that using dsRNA directed to multiple conserved RNA target sequences will provide for the aforementioned.

Brummelkamp et al and Paddison et al have both taught the use of vectors utilizing pollII promoters for the effective expression of siRNA and shRNA compounds in vivo.

The art taken as a whole has therefore shown that there is a need in the art to inhibit influenza virus which is well known in the art to be a problem in the human population, for example. The at has shown the inhibition of influenza targeting various influenza genes via antisense compounds where Beach et al and Tuschl et al both teach that siRNA is a more effective and safer means of gene inhibition that antisense and Gitlin et al have demonstrated the inhibition of human viral genes via siRNA. One in the art would clearly have looked to use a more effective compound in the inhibition of influenza. The at has taught that known means of delivery and nucleic acid modifications can be used for/in siRNA compounds. The art has taught the siRNA and shRNA compounds can be delivered via vectors and specifically teaches the use of pollIII promoters as an effective means of providing siRNA and shRNA compounds. The art has also taught that to better provide protection from viral infection, that multiple

Art Unit: 1635

conserved regions of the viral genes should be targeted. The prior art also shows that siRNA has the capacity to inhibit gene expression by many fold where the inhibition levels are optimized via siRNA selection, dose, duration and delivery means.

The invention as a whole would therefore have been *prima facie* obvious to one in the art at the time the invention was made.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Sean R. McGarry whose telephone number is (571) 272-0761. The examiner can normally be reached on M-Th (6:00-4:30).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, J. Douglas Schultz can be reached on (571) 272-0763. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Sean R McGarry Primary Examiner Art Unit 1635

/Sean R McGarry/ Primary Examiner, Art Unit 1635