

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
- §4 群与子群
- §5 阿贝尔群和循环群
 - §7 陪集与拉格朗日定理
 - §8 同态与同构
 - §9 环和域

定义1 如果群<G,*>中运算*是可交换的,则称该群为 阿贝尔群(或称为交换群)。

例: <I,+> 为阿贝尔群。

例:代数系统<F,。>是阿贝尔群。

$$S=\{a,b,c,d\}$$
, S 上定义双射函数 $f:S\rightarrow S$ $f(a)=b$ $f(b)=c$ $f(c)=d$ $f(d)=a$

构造复合函数
$$f^1 = f(x) = \{\langle a,b \rangle, \langle b,c \rangle, \langle c,d \rangle, \langle d,a \rangle\}$$

 $f^2 = f \circ f(x) = \{\langle a,c \rangle, \langle b,d \rangle, \langle c,a \rangle, \langle d,b \rangle\}$
 $f^3 = f \circ f^2(x) = \{\langle a,d \rangle, \langle b,a \rangle, \langle c,b \rangle, \langle d,c \rangle\}$
 $f^4 = f \circ f^3(x) = \{\langle a,a \rangle, \langle b,b \rangle, \langle c,c \rangle, \langle d,d \rangle\} = f^0$
 $F = \{f^0, f^1, f^2, f^3\}$

由运算表可见:

- (1)运算是封闭的;
- (2) "。"可结合;
- (3) 幺元 f^0 ;
- (4) 每一个元素均可逆;

 f^0 的逆元就是本身, f^1 和 f^3 互为逆元, f^2 的逆元也是本身。

- (5) 以主对角线为对称。
- ∴ <F,。>为阿贝尔群。

o	f ⁰	f^{1}	f^2	f
f ⁰	f^0	f^{I}	f^2	f^{s}
f^{1}	f^{1}	$ f^2 $	f^{s}	f^{0}
f^2	$ f^2 $	f^{s}	f^0	f^{1}
f^3	f^{s}	f^0	f^{I}	f^2

雨课堂

例:设G为所有n阶非奇(满秩)矩阵的集合,矩阵乘法运算o作为定义在集合G上的二元运算,则<G,o>是一个不可交换群。

解:任意两个n阶非奇矩阵相乘后,仍是一个非奇矩阵, 所以o是封闭的。

矩阵乘法运算是可结合的。

n阶单位阵E是G中的幺元。

任意一个非奇阵A存在着唯一的逆阵 A^{-1} ,使 $A^{-1}\cdot A=A\cdot A^{-1}=E$,但矩阵乘法是不可交换的, 因此,<G,o>是一个不可交换群。

定理1 设<G,*>是一个群, <G,*>是阿贝尔群的充分必要 条件是对∀a,b∈G有 (a*b)*(a*b) = (a*a)*(b*b)。

证明: (1) 先证充分性

(a*b)*(a*b) = (a*a) *(b*b) ⇒ <G, *>是阿贝尔群。

对∀a,b∈G 有(a*b) *(a*b) = (a*a) *(b*b)成立,

- ∵*是可结合的
- ∴ a*(a*b)*b = (a*a)*(b*b)=(a*b)*(a*b)=a*(b*a)*b得a*b=b*a
- ∴ < G, * > 是阿贝尔群。

雨课堂 Rain Classroom

(2) 再证必要性

<G, *>是阿贝尔群⇒(a*b) * (a*b)=(a*a) * (b*b)

: 阿贝尔群满足交换律,对∀a,b∈G有a*b=b*a,

证毕!

在阿贝尔群中,对任一a,b∈G有

$$(a * b)^{-1} = b^{-1} * a^{-1} = a^{-1} * b^{-1}$$

定义2 设<G,*>是一个群,I 是整数集合,若存在一个元素 $a \in G$,对于G中每一个元素都能表示成 a^n 的形式($n \in I$),则称<G,*>是一个循环群,a称为循环群G的生成元。

例: A={1,-1, i, -i}

由运算表可见:

$$(1)^1=1$$
 $(1)^2=1\cdots$

$$(-1)^1 = -1$$
 $(-1)^2 = 1$ $(-1)^3 = -1$ $(-1)^4 = 1$

$$(i)^1 = i$$
 $(i)^2 = -1$ $(i)^3 = -i$ $(i)^4 = 1$

$$(-i)^1 = -i$$
 $(-i)^2 = -1$ $(-i)^3 = i$ $(-i)^4 = 1$

•	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	-i	-1	1
1 -1 <i>i</i> - <i>i</i>	-i	i	1	-1

<**A**, •>是循环群 *i*,-*i*是生成元

例: 60°, 300°就是群< {0°,60°,120°,180°,240°,300°}, ★> 的生成元, 所以该群为循环群。

*	0°	60°	120°	180°	240°	300°
0°	0°	60°	120°	180°	240°	300°
60°	60°	120°	180°	240°	300°	$\mathbf{0_o}$
120°	120°	180°	240°	300°	0^{o}	60°
180°	180°	240°	300°	0^{o}	60°	120°
240°	240°	300°	$0^{\mathbf{o}}$	60°	120°	180°
300°	300°	0^{o}	60°	120°	180°	240°

例: I为整数集合。"模m同余"是一个等价关系。

设m=4, N_4 表示"模4同余"所产生的等价类的集合,

 $N_4 = \{[0], [1], [2], [3]\},$

定义运算+₄: $[i]+_4[j]=[(i+j)(mod\ 4)],\ (i,j=0,1,2,3)$

则 <N₄,+₄>是群并且是循环群。

+4	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

由运算表可见:

$$[1]^2 = [2]$$
 $[3]^2 = [2]$

$$[1]^3 = [3]$$
 $[3]^3 = [1]$

$$[1]^4 = [0]$$
 $[3]^4 = [0]$

定理2 每一个循环群必然是阿贝尔群。

证明: 循环群⇒是阿贝尔群

设 <G,*>是一个循环群, a是该群的生成元,则对于任意的x, $y \in$ G ,必有r, $s \in$ I ,使得

$$x=a^{r}$$
 和 $y=a^{s}$

而且 $x*y=a^r*a^s=a^{r+s}=a^{s+r}=a^s*a^r=y*x$

因此,运算*可交换。

∴ <G, * >循环群一定是阿贝尔群。

定义3 设<G,*>为群, $a \in G$,如果 $a^n = e$,且n为满足此式的最小正整数,则称 a 的阶(order)为n,如果上述n不存在时,则称a为无限阶。

雨课堂 Rain Classroom

定理3 设<G,*>是由元素 $a \in G$ 生成的有限循环群,如果G的阶数是n,即|G|=n,则

 $a^{n}=e$,且 $G=\{a^{1}, a^{2}, ..., a^{n-1}, a^{n}=e\}$ 其中e 是<G, *>的幺元,n是使 $a^{n}=e$ 的最小正整数。 (即n为元素a的阶)

证明: (1) 首先证明n是使 $a^n = e$ 的最小正整数,即 a^1 , a^2 ,… a^{n-1} 都不为e,且 $a^n = e$ (a的阶为n)

假设对于某个正数m, m < n, 有 $a^m = e$ 。

- ∵ <G, *>是一个循环群,
- ∴ G中的任何元素都能写为 a^k ($k \in I$) 且 k = mq + r, 其中,q是某个整数, $0 \le r < m$ 。 则有 $a^k = a^{mq+r} = (a^m)^q * a^r = (e)^q * a^r = a^r$
- ∴ G中每一个元素都可表示成 a^r ($0 \le r \le m$), 这样,G中最多有m个不同的元素,与|G|=n相矛盾。

所以 $a^{m}=e(m < n)$ 是不可能的。

(2) 近一步证明a, a^2 , a^3 , …, a^{n-1} , a^n 互不相同。

用反证法。

假设 $a^{i}=a^{j}$,($1\leq i\leq j\leq n$),则 $a^{i}=a^{i}*a^{j\cdot i}$ 所以 $a^{j\cdot i}=e$,($1\leq j\cdot i\leq n$),这已经由上面证明是不可能的。

所以 a, a^2 , a^3 , ..., a^{n-1} , a^n 都不相同, 因此G={a, a^2 , a^3 , ..., a^{n-1} , $a^n = e$ }

注意的问题:

- (1) 群的阶与元素的阶概念不同。
- (2) 群中唯一的一个一阶元素是幺元。
- (3) 循环群中的生成元的阶与群的阶相等。

例:设 $G = \{\alpha, \beta, \gamma, \delta\}$, 二元运算*如下表所示。

解: *是封闭的, α 是幺元。 β , γ 和 δ 的逆元分别是 β , δ 和 γ 。 可以验证运算*是可结合的。 所以<G, *>是一个群。

$\gamma * \gamma = \gamma^2 = \beta$,	$\gamma^3 = \delta$,	$\gamma = \alpha$
$\delta * \delta = \delta^2 = \beta$,	δ 3= γ ,	$\delta = \alpha$
故群 <g, *="">是</g,>	由γ或δ生	成的。
因此 <g, *="">是-</g,>	一个循环	詳。

结论:一个	个循环群的生成元可以不唯一。
-------	----------------

*	α	β	γ	δ
αβ	αβ	βα	δ	δγ
δ	γ δ	δ γ	β α	α β

例:整数加群<I, +>, 任取 $i \in I$,

若i>0,则 $i=1+1+\cdots+1=1^i$

i个1相加

若i=0,因为0是幺元,由定义,有 $0=1^0$;

若*i*<0,设*i=-j*

$$i=-j=(-1)+(-1)+\cdots+(-1)=(-1)^{j}=(1^{-1})^{j}=1^{-j}=1^{i}$$

j个1相加

所以,群的<I,+>,任何元素都可以写成1的幂,即是循环群,1是循环群的生成元。

-1也是循环群<I, +>的生成元。

循环群的生成元

定理

设 $G = \langle a \rangle$ 是循环群.

- (1) 若G是无限循环群,则G只有a和 a^{-1} 两个生成元.
- (2) 若 G 是 n 阶循环群,则 a^r 是 G 的生成元当且仅当 r 是小于等于n 且与 n 互质的正整数.

生成元的实例

- (1) 设G={e, a, ..., a¹¹}是12阶循环群,则小于或等于 12且与12互素的数是 1, 5, 7, 11, 由定理可知 a, a⁵, a⁷和 a¹¹是 G 的生成元.
- (2) 设 $G=\langle Z_9,\Theta \rangle$ 是模9的整数加群,则小于或等于9 且与9 互素的数是 1, 2, 4, 5, 7, 8. 根据定理,G的 生成元是 1, 2, 4, 5, 7 和 8.
- (3) 设 $G=3Z=\{3z \mid z \in Z\}$, G上的运算是普通加法. 那 么G只有两个生成元: 3 和 -3.

循环群的子群

定理

设G=<a>是循环群.

- (1) 设G=<a>是循环群,则G的子群仍是循环群.
- (2) 若G=<a>是无限循环群,则G的子群除 $\{e\}$ 以外都是无限循环群.
- (3) 若 $G=\langle a \rangle$ 是n 阶循环群,则对n 的每个正因子d,G 恰好含有一个d 阶子群.
- (4) 若G=<a>是n 阶循环群,则元素 a^r 的阶d=n/(n,r),这里 (n,r)表示n和r的最大公约数.

子群的实例

(1) G=<Z,+>是无限循环群,对于自然数m∈N,1 的m 次幂是m, m 生成的子群是mZ, m∈N. 即

$$<0> = {0} = 0Z$$

 $= {mz | z \in Z} = mZ, m>0$

(2) $G=Z_{12}$ 是12阶循环群. 12的正因子是1, 2, 3, 4, 6 和 12, 因此G 的子群是:

1 阶子群 <12>=<0>={0}, 2 阶子群 <6> = {0,6}

3 阶子群 <4>={0,4,8}, 4 阶子群 <3> = {0,3,6,9}

6 阶子群<2>={0,2,4,6,8,10}, 12 阶子群<1> = Z₁₂

n元置换的定义

定义 设 $S = \{1, 2, ..., n\}$, S上的双射函数 $\sigma: S \rightarrow S$ 称为 S上的 n元置换. 一般将 n 元置换 σ 记为

$$\sigma = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix}$$

例如 S = { 1, 2, 3, 4, 5 }, 则

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 4 & 1 & 2 \end{pmatrix}, \qquad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 1 & 3 & 2 \end{pmatrix}$$

都是5元置换.

k 阶轮换与对换

定义 设 σ 是 $S = \{1, 2, ..., n\}$ 上的 n 元置换. 若 $\sigma(i_1)=i_2$, $\sigma(i_2)=i_3$, ..., $\sigma(i_{k-1})=i_k$, $\sigma(i_k)=i_1$

且保持 S 中的其他元素不变,则称 σ 为 S上的 k 阶轮换,记作 $(i_1i_2...i_k)$. 若 k=2,称 σ 为S上的对换. 例如 5元置换

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 4 & 5 \end{pmatrix}$$

分别是 5 阶和 2 阶轮换 σ =(1 2 3 4 5), τ =(1 3), 其中 τ 是对换

- 23/42页 -

n元置换分解为轮换之积

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 3 & 6 & 4 & 2 & 1 & 8 & 7 \end{pmatrix}, \quad \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 1 & 4 & 2 & 6 & 7 & 5 & 3 \end{pmatrix}$$

从 σ 中分解出来的第一个轮换式 (1 5 2 3 6);第二个轮换为(4);第三个轮换为 (7 8). σ 的轮换表示式 σ =(1 5 2 3 6) (4) (7 8)=(1 5 2 3 6) (7 8)

用同样的方法可以得到τ的分解式

$$\tau$$
=(1 8 3 4 2) (5 6 7)

注意: 在轮换分解式中,1阶轮换可以省略.

n元置换的乘法与求逆

两个n元置换的乘法就是函数的复合运算.n元置换求逆就是求反函数.

例证
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$
, $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$

$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 1 & 3 & 4 & 2 \end{pmatrix}$$
, $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 5 & 3 & 4 \end{pmatrix}$

$$\sigma^{-1} = \begin{pmatrix} 5 & 3 & 2 & 1 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$

使用轮换表示是:

n元置换群及其实例

考虑所有的 n 元置换构成的集合 S_n S_n 关于置换的乘法是封闭的. 置换的乘法满足结合律. 恒等置换(1)是 S_n 中的单位元. 对于任何 n元置换 $\sigma \in S_n$,逆置换 σ^{-1} 是 σ 的逆元. 这就证明了 S_n 关于置换的乘法构成一个群,称为 n元对称群. n元对称群的子群称为 n元置换群.

例 设 $S = \{1, 2, 3\}$, 3元对称群 $S_3 = \{(1), (12), (13), (23), (123), (132)\}$

S_3 的运算表

	(1)	(1 2)	(1 3)	(2 3)	(1 2 3)	(1 3 2)
(1)	(1)	(1 2)	(1 3)	(2 3)	(1 2 3)	(1 3 2)
(1 2)	(1 2)	(1)	(1 2 3)	(1 3 2)	(1 3)	(23)
(1 3)	(1 3)	(1 3 2)	(1)	(1 2 3)	(2 3)	(12)
(2 3)	(2 3)	(1 2 3)	(1 3 2)	(1)	(12)	(13)
(1 2 3)	(1 2 3)	(2 3)	(1 2)	(13)	(1 3 2)	(1)
(1 3 2)	(1 3 2)	(1 3)	(2 3)	(1 2)	(1)	(1 2 3)

S_3 的子群

$$S_3 = \{(1), (1\ 2), (1\ 3), (2\ 3), (1\ 2\ 3), (1\ 3\ 2)\},$$
 $A_3 = \langle (1\ 2\ 3) \rangle = \{(1), (1\ 2\ 3), (1\ 3\ 2)\},$
 $\langle (1) \rangle = \{(1)\}$
 $\langle (1\ 2) \rangle = \{(1), (1\ 2)\},$
 $\langle (1\ 3) \rangle = \{(1), (1\ 3)\},$
 $\langle (2\ 3) \rangle = \{(1), (2\ 3)\}$

第五章 代数结构

- §1 代数系统的引入
- §2 运算及其性质
- §3 半群
- §4 群与子群
- §5 阿贝尔群和循环群
- ▶ §7 陪集与拉格朗日定理
 - §8 同态与同构
 - §9 环和域

雨课堂 Rain Classroom

讨论群理论中的又一重要内容: 群<G,*>的任意子群<H,*>将G分解成H在G中的陪集。

定义1 设<G,*>为群, A,B∈ P(G), 且A≠Ø, B≠Ø, 记 AB={ a*b | a∈A, b∈B} 和A-1= { a-1 | a∈A} 分别称为A, B的积和A的逆。

- 30/42页 -

11.

定义2 设<H, *>为群<G, *>的子群, a∈G, 则集合 {a}H(或H{a}) 称为由a所确定的H在G中的左 陪集(或右陪集),

简称为H关于a的左陪集(右陪集),记为aH(或Ha)。元素a称为陪集aH(或Ha)的代表元素。

为确定起见,下面只对左陪集进行讨论。

雨课堂 Rain Classroom

例:设G=R×R,R为实数集,G上的一个二元运算+定义为 $\langle x_1, y_1 \rangle + \langle x_2, y_2 \rangle = \langle x_1 + x_2, y_1 + y_2 \rangle$ 显然, $\langle G, + \rangle$ 是一个具有幺元 $\langle 0, 0 \rangle$ 的阿贝尔群。

设 $H=\{\langle x,y\rangle|y=2x\}$

容易验证<H, +>是<G, +>的子群。

对于 $\langle x_0, y_0 \rangle \in G$, H关于 $\langle x_0, y_0 \rangle$ 的左陪集为 $\langle x_0, y_0 \rangle$ H。

这个例子的几何意义为:

G是笛卡尔平面,H是通过原点的直线y=2x,

陪集 $\langle x_0, y_0 \rangle$ H是通过点 $\langle x_0, y_0 \rangle$ 且平行于H的直线。

对于有限群,有下面一个很重要的结论。 定理1 (拉格朗日定理)

设<H, *>为<G, *>的子群, $a,b\in G$, 那么

- (a) $R = \{ \langle a,b \rangle | a \in G, b \in G \coprod a^{-1} * b \in H \}$ 是G中的一个等价关系。对于 $a \in G$,若记 $[a]_R = \{ x | x \in G \coprod \langle a, x \rangle \in R \}$,则 $[a]_R = aH$
- (b) 设<H, *>为有限群<G, *>的子群, |G|=n, |H|=m, 那么H的阶整除G的阶,即m|n。

雨课堂 Rain Classroom

证明: 先证(a) $R = \{ \langle a,b \rangle | a \in G, b \in G \coprod a^{-1} * b \in H \}$

- (1) 对于 $\forall a \in G$,必有 $a^{-1} \in G$,
 - $a^{-1} * a = e \in H$, $a < a, a > \in R$ 。 R是自反的。
- (2)若<a, b>∈R,则a⁻¹ *b∈H,
 - : H是G的子群,故(a-1*b)-1 = b-1*a∈H
 - ∴ <b, a>∈R。R是对称的。
- (3)若<a, b> \in R, <b, c> \in R, 则a⁻¹*b \in H, b⁻¹*c \in H,
 - ∴ a⁻¹*b*b⁻¹*c=a⁻¹*c∈H, <a,c>∈R, R是传递的。
 - ∴ R是G中的一个等价关系。

对于a∈G,有b∈[a]_R当且仅当<a,b>∈R, 即当且仅当 a-1*b∈H,而a-1*b∈H就是b∈aH。因此[a]_R=aH。

再证(b) H的阶整除G的阶,即m|n

由于R是G中的一个等价关系,所以必定将G划分成

两两不交的等价类[a_1]_R, [a_2]_R, ..., [a_k]_R, 使得

$$G = \bigcup_{i=1}^{k} a_i|_{R} = \bigcup_{i=1}^{k} a_i H$$

又因为H中任意两个不同的元素 h_1, h_2 , 设 $a \in G$

必有a*h₁≠a*h₂,

所以 $|a_iH| = |H| = m$, i=1,2,...,k。

因此, $\mathbf{n}=|\mathbf{G}|=|\mathbf{u}|a_{\mathbf{i}}\mathbf{H}|=\sum_{i}|a_{\mathbf{i}}\mathbf{H}|=\mathbf{m}\mathbf{k}$

所以H阶的整除G的阶 m|n。

根据拉格朗日定理, 可直接得到以下几个推论。

推论1 任何质数阶的群不可能有非平凡子群。

证明: 因为对于其任何子群,

该子群的阶必定是原来群的阶的一个正因子,

而原来群的阶是质数p,正因子只能是1或p,

只能是平凡子群.

推论2 设<G,*>为n阶有限群,那么对于任意 $a \in G$,a的 阶必是n的因子且必有 $a^n = e$,这里e是群<G,*>的幺元。如果n为质数,则<G,*>必是循环群。

证明:由G中的任意元素a生成的循环群 $H=\{a^i|i\in I, a\in G\}$,一定是G的一个子群。

如果H的阶是m,那么由定理5-5.3可知 $a^{m}=e$,即a的阶等于m。

由拉格朗日定理知:必有n=mk, $k \in \mathbb{N}$,因此,a的阶m是n的因子,且有 $a^n=a^{mk}=(a^m)^k=e^k=e$

雨课堂 Rain Classroom

因为质数阶群只有平凡子群,

所以, 质数阶群必定是循环群。

并且除幺元以外的其它元素都是生成元。

例: 设 $K=\{e,a,b,c\}$, 在K上定义二元运算*如表所示。 证明<K,*>是一个群,但不是循环群。

*	e	а	b	c
e	e	a	b	\boldsymbol{c}
a	a	e	\boldsymbol{c}	\boldsymbol{b}
b	b	\boldsymbol{c}	e	a
c	c	\boldsymbol{b}	a	e

称<K, *>为Klein四元群。

证明:由表可知,运算*是封闭的和可结合的。幺元 e, 每个元素的逆元是自身, K, *因为a, b, c都是二阶元,故<K, *>不是循环群。

例: 任何一个四阶群只能是四阶循环群或者Klein四元群。

证明:设四阶群为 $\langle \{e, a, b, c\}, * \rangle$,其中e是幺元。

- 1) 当四阶群含有一个四阶元素时, 这个群就是循环群。
- 2)当四阶群不含有四阶元素时,则由推论2可知,除幺元*e*外,*a*,*b*,*c*的阶一定都是2。

若a*b=a,将导致b=e若a*b=b,将导致a=e若a*b=e,将导致a=b所以a*b=c。

同样有b*a=c 以及 a*c=c*a=b, b*c=c*b=a。 因此,这个群是Klein四元群。