VTC (Voltage Transfer Characteristics):

Y axis→ output voltage, X axis→ Input voltage

Ideal Op-Amp VTC:

Y axis \rightarrow output voltage= Vo, X axis \rightarrow Input voltage= Vd Differential voltage, Vd= (V₊) - (V₋) = V2-V1

$$v_o = \begin{cases} V_s^+ & \text{if } v_d > 0 \Rightarrow v_2 > v_1 \\ V_s^- & \text{if } v_d < 0 \Rightarrow v_2 < v_1 \end{cases}$$

Non-inverting comparator VTC:

A non-inverting comparator is an op-amp based comparator for which a reference voltage (V_{REF}) is applied to the inverting terminal and the input voltage (V_{I}) is applied to the **non-**

inverting terminal

Y axis → output voltage= V_0 , X axis → Input voltage= V_I

$$V_H = V_{S+} = V_{CC}$$

$$V_L = V_{S-} = -V_{CC}$$

$$v_o = \begin{cases} V_s^+ \ if \ v_d > 0 \Rightarrow V_I - V_{REF} > 0 \Rightarrow V_I > V_{REF} \\ V_s^- \ if \ v_d < 0 \Rightarrow < V_I - V_{REF} < 0 \Rightarrow V_I < V_{REF} \end{cases}$$

If V_I is a sine/triangular/square wave or DC signal, the VTC graph would be same. The graph would change if V_{REF} changes.

Now, try to draw the VTC of non-inverting op-amp when-

a)
$$V_{REF} = 3V$$
, b) $V_{REF} = -2V$

Inverting comparator VTC:

An *inverting comparator* is an op-amp based *comparator* for which a reference voltage (V_{REF}) is applied to the non-inverting terminal and the input voltage (V_I) is applied to the **inverting terminal** Y axis \rightarrow output voltage= V_O , X axis \rightarrow Input voltage= V_I

$$V_H = V_{S+} = V_{CC}$$

 $V_L = V_{S-} = -V_{CC}$

$$v_o = \begin{cases} V_s^+ & \text{if } v_d > 0 \Rightarrow V_{REF} - V_I > 0 \Rightarrow V_I < V_{REF} \\ V_s^- & \text{if } v_d < 0 \Rightarrow < V_{REF} - V_I < 0 \Rightarrow V_I > V_{REF} \end{cases}$$

(Opposite graph of non-inverting comparator VTC)

If V_I is a sine/triangular/square wave or DC signal, the VTC graph would be same. The graph would change if V_{REF} changes. Now, try to draw the VTC of inverting op-amp when

a)
$$V_{REF} = 4V$$
, b) $V_{REF} = -3V$

Waveform Graph:

Y axis → Voltage/Current, X axis → time

Q1: V_{CC}= 15V= V_{EE}, Vref= 1V, Vi is a 6V p-p triangular signal as shown below

Draw output Vo for the following op-amp circuit.

Sol:

Vi (input voltage) in the -ve terminal & Vref (reference voltage) in the +ve terminal \rightarrow inverting comparator. So,

$$V_o = \begin{cases} +V_{CC} \ if \ v_d > 0 \Rightarrow V_{ref} - V_i > 0 \Rightarrow V_i < V_{ref} \\ -V_{EE} \ if \ v_d < 0 \Rightarrow < V_{ref} - V_i < 0 \Rightarrow V_i > V_{ref} \end{cases}$$

[Here, drawing output Vo means drawing waveform graph of Vo vs time not VTC graph.]

Q1: V_{s+} = 15V = V_{s-} , V_{REF} = 1V, Vi is a 6V p-p sinusoidal signal. **Draw output Vo** for the following op-amp circuit

Sol:

Vi (input voltage) in the +ve terminal & V_{REF} (reference voltage) $v_1 = V_{
m REF}$ O in the -ve terminal \rightarrow non-inverting comparator. So,

$$v_o = \begin{cases} V_s^+ & \text{if } v_d > 0 \Rightarrow V_i - V_{REF} > 0 \Rightarrow V_i > V_{REF} \\ V_s^- & \text{if } v_d < 0 \Rightarrow < V_i - V_{REF} < 0 \Rightarrow V_i < V_{REF} \end{cases}$$

