Submitted in part fulfilment for the degree of BEng.

# **Evolutionary agent-based simulation** modelling of human life-history evolution

Caleb J. H. Riley

2017-May-1

Supervisor: Daniel W. Franks

Number of words = 8976, as counted by wc -w. This includes the body of the report only.

#### **Abstract**

The Patriarch Hypothesis [1] is the hypothesis that menopause and long post-reproductive lifespans in females evolved as an artefact of an increase in human longevity. This longevity was passed on due to older males (who have mutations beneficial to lifespan on their X chromosome) having a preference for young females (who are still fertile) meaning they are able to have a longer period of mating than those who only form mating pairs with females their own age. Several models supporting this hypothesis have been created [2, 3] and the project focuses on duplicating and extending the work already done. First various hypotheses about the origin of menopause are explored, as well as relevant supporting information about the process of evolution itself and various modelling techniques used in biology.

After this the aim was to replicate the computational model found in "Mate Choice and the origin of menopause" [3] and to try to extend it to address some of its limitations. Though there were several extensions that could be made to the existing computational model, the main one the project sought to implement was to allow the mating preferences of individuals to coevolve alongside the changes to mortality and fertility, implemented through the use of preference affecting mutations in a person's genes. Ultimately the work fell short of its original scope and the model was not replicated in its entirety, nor were its extensions (the coevolution of mating preference) implemented.

What has been implemented is the creation of an initial population with a typical age structure, and a base model which uses mortality, fertility and mating preference tables, albeit unaltered by genetics. Each generation the members of the population are aged (with some dying based on their mortality distribution and a pseudo-random number). Then the dead are replaced by pseudo-randomly selecting a male and female from the populations, checking if they are compatible, then if they are able to reproduce, repeating until all the population reaches a fixed size again. Genetics have also been implemented, with each individual having a gene string (made up of "1"s and "0"s) generated by crossing over their parent's genetics, then introducing new mutations by flipping the "1"s and "0"s according to a pseudorandom number and a mutation rate.

Since the model was not completed, there are few notable results from its output. Further work on the model, would be completing the replication and extending it to include the coevolution of mating preference.

# **Contents**

| 1 | Intro | oduction                                                   | 7  |
|---|-------|------------------------------------------------------------|----|
|   | 1.1   | Motivation                                                 | 7  |
|   | 1.2   | Aims                                                       | 7  |
|   |       | 1.2.1 Provide an overview of the origin of menopause       | 7  |
|   |       | 1.2.2 Check validity of computational model                | 7  |
|   |       | 1.2.3 Rewrite model into an object oriented language       | 8  |
|   |       | 1.2.4 Extend the model to allow co-evolution of preference | 8  |
|   | 1.3   | Thesis Outline                                             | 8  |
|   | 1.4   | Statement of Ethics                                        | 9  |
| 2 | Lite  | rature Review                                              | 10 |
|   | 2.1   | Menopause                                                  | 10 |
|   |       | 2.1.1 Patriarch Hypothesis                                 | 10 |
|   |       | 2.1.2 Grandmother Hypothesis and the Mothering Hypothesis  | 11 |
|   |       | 2.1.3 Reproductive Conflict Hypothesis                     | 12 |
|   |       | 2.1.4 Other Hypotheses                                     | 12 |
|   | 2.2   | Evolution                                                  | 13 |
|   |       | 2.2.1 Key Concepts of Evolution                            | 13 |
|   | 2.3   | Modelling in Biology                                       | 15 |
|   |       | 2.3.1 Differential Equations                               | 15 |
|   |       | 2.3.2 Multi-Agent Systems                                  | 15 |
|   |       | 2.3.3 Genetic Algorithms                                   | 16 |
| 3 | Prob  | olem Description                                           | 17 |
|   | 3.1   | Constraints of the Patriarch Hypothesis                    | 17 |
|   | 3.2   | Why Men Matter: a mathematical model                       | 17 |
|   | 3.3   | Mate Choice and the Origin of Menopause: a computational   |    |
|   |       | model                                                      | 19 |
|   | 3.4   | A better model                                             | 20 |
| 4 | Des   | ign and Implementation                                     | 22 |
|   | 4.1   | Class Structure                                            | 22 |
|   |       | 411 Person Class                                           | 22 |

### Contents

|        |                                                       |                                    | 24                                           |
|--------|-------------------------------------------------------|------------------------------------|----------------------------------------------|
|        |                                                       |                                    | 25                                           |
|        |                                                       | 4.1.4 PreferenceDistribution Class | 26                                           |
|        |                                                       | 4.1.5 Genetics Class               | 27                                           |
|        | 4.2                                                   | Set up and burn-in period          | 27                                           |
|        | 4.3                                                   | O                                  | 28                                           |
|        | 4.4                                                   | e i                                | 29                                           |
|        | 4.5                                                   | Not Implemented                    | 30                                           |
| 5      | Resi                                                  | ults and Evaluation                | 31                                           |
|        | 5.1                                                   | Results of a typical run           | 31                                           |
|        |                                                       | 5.1.1 Female and Male Numbers      | 31                                           |
|        |                                                       |                                    | 32                                           |
|        |                                                       |                                    | 32                                           |
|        |                                                       |                                    | 33                                           |
|        |                                                       |                                    | 34                                           |
|        | 5.2                                                   | Model limitations and improvements | 34                                           |
| 6      | Con                                                   | clusion                            | 38                                           |
|        |                                                       | on Oodo Listina                    |                                              |
| Α      | Pyth                                                  | on Code Listing                    | 42                                           |
| A<br>B | -                                                     |                                    | 42<br>59                                     |
|        | -                                                     | t Files                            | 59                                           |
|        | Inpu                                                  | t Files female_data.csv            |                                              |
|        | Inpu<br>B.1                                           | t Files female_data.csv            | <b>59</b> 59                                 |
|        | Inpu<br>B.1<br>B.2                                    | t Files female_data.csv            | <b>59</b><br>59<br>61                        |
|        | Inpu<br>B.1<br>B.2<br>B.3                             | t Files female_data.csv            | <b>59</b> 59 61 64                           |
|        | Inpu<br>B.1<br>B.2<br>B.3<br>B.4<br>B.5               | t Files female_data.csv            | 59<br>59<br>61<br>64<br>65                   |
| В      | Inpu<br>B.1<br>B.2<br>B.3<br>B.4<br>B.5               | t Files female_data.csv            | 59<br>61<br>64<br>65<br>65                   |
| В      | Inpu B.1 B.2 B.3 B.4 B.5                              | t Files female_data.csv            | 59<br>61<br>64<br>65<br>65                   |
| В      | B.1<br>B.2<br>B.3<br>B.4<br>B.5<br><b>Typi</b><br>C.1 | t Files female_data.csv            | 59 59 61 64 65 65 67                         |
| В      | B.1<br>B.2<br>B.3<br>B.4<br>B.5<br><b>Typi</b><br>C.1 | t Files female_data.csv            | 59<br>59<br>61<br>64<br>65<br>65<br>67<br>93 |

# **List of Figures**

| 2.1 | Verhulst-Pearl Equation                                                          | 15 |
|-----|----------------------------------------------------------------------------------|----|
| 3.2 | Marginal fertilities of females $G_n^F$ and males $G_n^F$ Stable growth equation | 18 |
| 5.1 | MAP age structure against generation (stacked in order of age group)             | 35 |
| 5.2 | MYP age structure against generation (stacked in order of age group)             | 35 |

# **List of Tables**

| 4.1 | Person Class Attributes                  | :3 |
|-----|------------------------------------------|----|
| 4.2 | Person Class Methods                     | 4  |
| 4.3 | MortalityDistribution Class Methods 2    | 5  |
| 4.4 | ReproductionDistribution Class Methods 2 | 5  |
| 4.5 | PreferenceDistribution Class Methods 2   | 6  |
| 4.6 | Genetics Class Methods                   | 7  |
| 4.7 | Base population values                   | 8  |
| 5.1 | MAP Age Structures                       | 6  |
| 5.2 | MYP Age Structures                       | 7  |

## 1 Introduction

#### 1.1 Motivation

The senescence of organisms is a long standing evolutionary puzzle: why would genes which cause an organism to degrade over time be selected for? In particular, why could genes which cause a reduction in fertility with age provide evolutionary benefit versus reproducing until death? Menopause is of particular interest since it both only occurs within females, but within limited number of species in the wild, having only been observed in humans, short finned pilot whales and orcas (killer whales).

Although we know the the biological cause of menopause, there are many theories about why it is beneficial for a species to cease reproduction long before death. This report focuses on the Patriarch Hypothesis, the idea that older male's preference for younger females cause menopause to evolve.

#### 1.2 Aims

#### 1.2.1 Provide an overview of the origin of menopause

Menopause has many different theories for its origin, and it would be useful to explore some of them as well as contextual information before focusing on the Patriarch Hypothesis in particular.

#### 1.2.2 Check validity of computational model

This project focuses on reproducing a computational model [3] that implements the patriarch hypothesis [1], a theory that males' preference for younger females caused long post-reproductive lifespans. Replicating models is useful to check their validity and discover any flaws they may possess. Replication also provides a jumping off point for improving the model or for adapting it to other hypotheses to do with the evolution of menopause or population modelling in general.

#### 1.2.3 Rewrite model into an object oriented language

The model is also being adapted from C, a performant but verbose and old imperative language, into Python, a modern object oriented language designed to be as readable as possible. Python is also popular among scientific research, so this will make the model more accessible for future work. Object oriented languages are also well suited for making multi-agent systems as the object-attribute-method structure is a good match for modelling the agent, its traits (using attribute) and the ways it can interact with the environment (using methods).

#### 1.2.4 Extend the model to allow co-evolution of preference

Whilst mortality and fertility are both able to evolve under the current model, the mating preferences of the males are fixed. Since the hypothesis relies on the preference of older males for younger females, it would be useful to see how allowing this preference to evolve over time would affect the results of the model.

#### 1.3 Thesis Outline

- **Chapter Two Literature Review** The literature review provides a critical overview of different hypotheses for the origin of menopause, as well as background information on evolution and modelling in biological contexts.
- **Chapter Three Problem Description** Is an overview of the model that already exists, how it models the hypothesis and shortcomings with the model.
- **Chapter Four Design and Implementation** Is a description of how the solution to the problem was designed and implemented.
- **Chapter Five Results and Evaluation** Presents the results of the model created and takes a critical look at how the work progressed.
- **Chapter Six Conclusion** making judgement of the solution and the results, suggesting new work.

#### 1.4 Statement of Ethics

The project is implementing a computational model which is purely theoretical. Although it concerns human reproduction, it does not involve human subjects and implementing it with them would be impossible due to time constraints (as evolution take place over many many years), there are no real ethical concerns.

# 2 Literature Review

The literature review provides an overview of existing work surrounding the problem, as well as background information that will be relevant to its solution.

### 2.1 Menopause

Menopause is the process where females cease having menstrual periods and become infertile. Whilst reduction in fertility with senescence is not uncommon among species, the long lifespan after menopause (post-reproductive lifespans, or PRLSs) are a relatively rare trait, being only found in the wild in humans, short finned pilot whales and orcas (killer whales). Although we understand to some extent the physiological cause (a decrease in oestrogen and progesterone), the evolutionary benefits of a reduction in reproduction seem unclear as any reduction in fertility would seem to be a reduction in evolutionary fitness. As such this evolutionary puzzle has resulted in many different theories for its existence [4].

#### 2.1.1 Patriarch Hypothesis

The patriarch hypothesis [1] hypothesises that menopause came about due to older, high status males having access to younger female mates allowing them to reproduce for much longer. This increased the proliferation of genes linked to longevity, increasing both the lifespan of males and females. This is reliant on several factors:

- That females have a limited number of oocytes (immature ova) which
  are depleted over time, and that reproduction naturally comes to an
  end when they run out. [5] In early females, before female longevity
  increased, most females died before their supply of oocytes had been
  completely depleted, and so did not experience menopause.
- That longevity causing mutations are on the X rather than the Y chromosome. If the gene were on the Y chromosome then the increase

#### 2 Literature Review

longevity would only be present in the males. The paper suggests that female longevity (and therefore have long post reproductive lifespans) is a result of females being "dragged along" by male longevity being passed on through the X chromosome.

That older men continue to reproduce and pass on their longevity causing genes. High states males (normally those with a better reputation for hunting and gathering) would start a new family with a second, younger wife once their first wife had undergone menopause. Thus males carrying longevity causing genes would have greater opportunity to pass them on.

A mathematical model of the hypothesis was created [2] which was a set of functions which relied on a group of females aged i, and a group of males aged j, the females' fertility at age i and the mating preference of females of age i for males of age j and vice versa. The main problem with this model is that it had a fixed age at which females stopped reproducing, rather than letting it evolve over time as you would expect in an evolutionary model. Indeed this model can be interpreted to suggest that males' preference for younger females came to be after the evolution of menopause, rather than as a cause of it.

To try and correct some of these shortcomings, a computational model [3] which does not have a fixed age where females become infertile. Each member of the population is modelled as an individual agent, with genes that affect either mortality or fertility, with genes acting either in a sex dependent or a sex indifferent manner. Pseudo-random numbers are used to determine births, deaths and partnerships against predetermined tables which are modified by genetics. One of the main shortcomings of the model is that it does not allow the preferences of the agents to coevolve with the change in fertility and mortality.

Overall the main issue with the patriarch hypothesis is that males' preference for younger females may itself be an epiphenomenon which emerged as a result of menopause, rather than the other way round. Knowledge that females would become infertile after a certain age would cause males to have a preference for younger females who had more fertile years left.

#### 2.1.2 Grandmother Hypothesis and the Mothering Hypothesis

The grandmother hypothesis [6–8] theorises that the evolution of menopause came about due to the increased inclusive fitness of a population caused by

grandmother being able to help her children raise their offspring through providing childcare and resources such as food. This is due to the grandmother being post-reproductive and not having any children that are of an age where they need care. This grandmothering improves the survival of grandchildren and allows her children to reproduce more frequently. Populations which had post-reproductive women would grow more rapidly as a result, meaning they would overtake populations where they did not occur.

One of the criticisms of the grandmother hypothesis is that the degree of increase to inclusive fitness has been overstated, and that whilst the benefit might be a factor, it is unlikely to be the only factor to have caused it. Another criticism is that if the benefits of grandmothering are so great, why do males remain reproductive throughout their lives? If the increase to inclusive fitness is so great from grandmothering then it seems unlikely that this benefit would be limited to just one sex.

The mothering hypothesis is a similar theory in which a species improves the survival of offspring by ceasing reproduction at a certain point so that resources could be focused on raising existing children, rather than continuing to focus on reproduction and newborn children. The reduced mortality rate of children would again result in an increase of inclusive fitness.

#### 2.1.3 Reproductive Conflict Hypothesis

The reproductive conflict hypothesis [9, 10] is another hypothesis based on grandmothers: this time instead of them stopping reproduction to provide childcare, they cease reproduction so that their offspring are no competing for resources such as food with their grandchildren. Menopause reduces the amount of time where a mother is fertile at the same time as her offspring, reducing the likelihood that they have young children at the same time. This reduced competition for resources means that children will have a greater chance of survival, increasing the inclusive fitness of the group as a whole.

#### 2.1.4 Other Hypotheses

A non-adaptive hypothesis is that women have a fixed number of oocytes (immature eggs), and that menopause did not evolve, but is an epiphenomenon of us now living past the age where the they run out. [11, 12] Proponents of this theory often use the evidence of menopause occurring in some primates in captivity – their increased lifespan means they now live well past becoming infertile. They suggest that human's improvements to medicine and nutrition

have extended our lifespans in the same way, which is why humans now experience menopause. Counter to this however is the fact that menopause is experienced by orcas and short-finned pilot whales. Since they do not have access to healthcare, you can only conclude that although improved lifespan makes a woman more likely to life through menopause, it is not itself what causes it.

Another hypothesis is that menopause came about to guard against the negative effects of pregnancy at an advanced age. Increased maternal age can result in: miscarriage, chromosomal abnormalities, and pregnancy diabetes, among other effects [13]. These complications would result in an increased need for investment of resources in reproduction itself (with a chance that the baby would not make it to full term), as well as resulting in the mother's other offspring being left with fewer resources such as food and childcare, or potentially being left motherless. However the improvements made to medical care have had a greater impact on both infant and maternal mortality, and the effect is a steady increase with age, rather than a sharp threshold effect. This improvement to healthcare came about after menopause was present in humans, and so this cannot be the cause.

#### 2.2 Evolution

Charles Darwin's theory of evolution, first proposed in On the Origin of Species [14] may be one of the most important and influential academic pieces of work in science. The theory supposes that organisms with traits favourable to their environment were more likely to survive and reproduce, increasing the prevalence of the trait over other less useful traits. This is often summarised as "survival of the fittest".

#### 2.2.1 Key Concepts of Evolution

#### **Fitness**

Fitness is the measure of how well suited an organism is to an environment, and how likely it is to pass on its genetic information as a result. Note that "fitness" in this instance is relating to how well an organism "fits in" with its environment, and not athletic fitness.

#### **Inclusive Fitness**

Inclusive fitness is an extension of the concept of **Fitness**, in which you can improve your fitness by improving the survival of individuals with

#### 2 Literature Review

similar genetics to you, such as siblings, nieces and nephews or grand-children. This increase to fitness is proportional to your relatedness to them. Improvement of inclusive fitness could come about due to provision of resources such as food and childcare.

#### Selection

Selection is the process in which survival and reproduction of a species is affected by the phenotype (physical expression of genetics). A trait that increases lifespan and allows more time for reproduction will cause there to be a greater chance for more offspring with that trait to be produced. By comparison a trait that decreases lifespan or realised fertility will tend to become less prevalent in the population as they have fewer offspring and these offspring if they have the same phenotype will inherit the lower survival chances. In essence useful traits survive, whereas traits that are less useful will gradually disappear.

#### Crossover

Crossover is part of the process that combines the genetics of two parents into the new set of genetics present in their offspring. For each chunk of genetic information, the offspring has a 50% chance of receiving that information from their mother, and a 50% chance of receiving the information from their father. This result in an offspring with traits of both their mother and father. When a gene at a particular location is the same in both the mother and father, this gene is transmitted to the child 100% of the time.

#### Mutation

Genetic mutation is the change of genetic information at random, usually from mistakes when copying genes over from their parents. This random change results in the emergence of new traits since it can result in genetics that are not previously present in the population. These new traits can be deleterious, neutral or positive.

#### Coevolution

Coevolution is the evolution of traits in a species in response to the evolution of traits in the same or another species. Think of it as a genetic arms race; a species that evolves a form of camouflage may cause a species that predates on

#### 2.3 Modelling in Biology

In biology, there are many problems that it is only possible to study through the use of modelling. This can be due to the difficulty in finding individuals to study (and therefore a lack of data), the amount of time required to conduct a study (especially for evolutionary effects which take place over many generations) or the ethical constraints of conducting experiments on living organisms (especially humans). Thus models provide a useful tool for examining in a theoretical space hypotheses that cannot be studied in the physical space.

#### 2.3.1 Differential Equations

Differential equations are a traditional tool for use in modelling in general, as they allow you to model the rate of change in a system (using its derivatives). The Verhulst-Pearl equation [15, 16] in Figure 2.1 is an old model for simulating population growth.

$$\frac{dN}{dt} = rN(1 - \frac{N}{K})$$

Figure 2.1: Verhulst-Pearl Equation

N is the current population at time t, r is the rate of population growth and K is the carrying capacity of the system, o the maximum number of individuals the environment it capable of supporting. As N approaches K the rate of population growth slows until an equilibrium is met. Differential equations are capable of modelling complex systems with several variables, but reaching a solution is not always possible.

#### 2.3.2 Multi-Agent Systems

Multi-agents systems are used to model individuals that interact with each other in a similar way to how organisms interact with each other. Rather than modelling a population through differential equations, you could model it by having a set of agents, who interact to form couples and produced offspring based on their inherent properties such as fertility, mortality and age. The population growth would then become apparent through the emergent properties of the system, rather than through a set, programmed idea.

More detail/ideas here. References needed

#### 2.3.3 Genetic Algorithms

Genetic algorithms are mathematical representations of the process of evolution, with the genetics being used to set parameters for program behaviour, rather than the traits of an organism. An initial pool of individual genetics (typically binary strings are used) are created. These gene strings are then used to set parameters for whatever computation is being done. The best performing sets of genes are selected using an arbitrary heuristic fitness function (such as shortest path) to create the next generation of genetics.

Random parents are selected from the best performers, and the next generation are created by crossing over the genes of the parent pair. The next generation of individuals also undergo random mutation of their genes (i.e. by flipping random bits of the binary string) to prevent the algorithm from getting stuck on a single solution and to produce potentially beneficial genes which may have not appeared in the population yet (and so cannot be acquired from their parents). These stages all correspond to the concepts of biological evolution, and so can be useful when modelling genetic change. Genetic algorithms are good at working out optimal solutions to problems with lots of parameters as the algorithm combines parts of the best solutions from each generation to produces new, potentially better solutions.

More detail/ideas here. References needed

# 3 Problem Description

### 3.1 Constraints of the Patriarch Hypothesis

The patriarch hypothesis [1] states that menopause came about due to older males' preference for younger females. Since humans have relatively long lifespans and the trait of long, post-reproductive lifespans is present in all humans, it is necessary to use a model to study the validity of this hypothesis. In the paper, 3 main conditions that the hypothesis depends on are set out – it follows that any model examining the hypothesis should model these constraints. The constraints are as follows:

- That the depletion of oocytes (undeveloped ovum) must be a constraining factor on when menopause occurs. Menopause was not previously observed until longevity increased to the extent that females lived long enough that depletion could occur.
- 2. That longevity causing genes are present on the X chromosome, rather than the Y. If it were present on the Y chromosome then a general increase in longevity would only be present in males. Thus the increase in longevity must be on the X chromosome.
- 3. That older, high status males still reproduce. This is required for the accumulation of a longevity promoting genome, as if a male with genes predisposing him to a long life only reproduces over the same time period as one without the longevity promoting gene (who lives for a shorter time), then they will have an equal chance of passing their genes on and the longevity gene will not become more prevalent.

### 3.2 Why Men Matter: a mathematical model

A mathematical model was created [2] based on the two sex demography work of Schoen [17] and Pollak [18] which link together a group of females and a group of males of different ages. The marginal fertilities for females and males are constructed in a similar manner (as seen in Figure 3.1) but

marginal male fertility is assumed to be positive when realised male fertility is non-zero . These marginal fertilities do not represent and individual's virility, rather their biological ability to procreate combined with the chance they are able to mate.

$$G_n^F = \sum_{ij} \frac{\delta B_{ij}}{\delta F_n}, \qquad G_n^M = \sum_{ij} \frac{\delta B_{ij}}{\delta M_n}$$

Figure 3.1: Marginal fertilities of females  $G_n^F$  and males  $G_n^F$ 

These marginal fertilities make up part of the equation for stable growth (Figure 3.2), where  $l_n^F$  and  $l_n^M$  correspond to the female and male life expectancies respectively, and  $\sigma$  is the male-to-female sex ratio at birth.

$$1 = \sum_{n \ge 1} (G_n^F l_n^F \lambda^{-n} + \sigma G_n^M l_n^M \lambda^{-n})$$

Figure 3.2: Stable growth equation.

A harmonic mean model similar to that of Schoen's [17] was constructed, where  $b_i$  is the fertility of a female aged i, and  $\alpha_{ij}$  are mating preference weights determined by real world data.

$$B_{ij} = \frac{b_i \alpha_{ij} F_i M_j}{F_i + M_i}$$

Figure 3.3: Harmonic mean model

When it comes to the three constraints imposed by [1] this model implements a reduction in female fertility in time but does not specifically link this to the oocyte depletion. The paper does however note that it is important to model the fertility and mortality of both sexes as any mutation that increases mortality past the age of menopause has no effect on population growth when only dealing with females. The model treats this mutation as being sex indifferent (meaning it would have to be located on the X chromosome). For the third constraint the paper largely relies on citing real-world data of hunter-gatherer societies and their social structures as evidence for continued male reproduction later in life. Data from the Dobe !Kung society [19] and preconstructed life tables [20] were used in the harmonic mean model (Figure 3.3) to this effect.

The main issue with this model is the fixed age of the end of reproduction, as mutations are only used to alter mortality, when they should also be used to affect the fertility of females since the focus of the hypothesis is based on is why menopause in humans came about. Similarly mating preferences of individuals are fixed.

Couples are also not persistent between time steps, which could influence the model since they claim that monogamy is a common social structure within modern hunter gatherers, the hunter gathers they in turn use the data from to drive their model.

# 3.3 Mate Choice and the Origin of Menopause: a computational model

Rather than modelling the hypothesis as a complex set of equations, Morton et [3] used an agent-based model. The model creates a random initial population, with random ages and genetics. A population burn-in is performed to generate the inherent age structures of the population by assigning members to random age classes, then causing them to reproduce asexually without the interference of mutations.

After this burn in period, the main simulation begins. First comes the ageing process: each generation, each member of the population has a value from their survival table (modified by mortality affecting mutations) compared to a pseudo-random number to determine whether they are assigned to the next age class or die.

Then comes the reproductive phase. Two random parents from the population are selected. If they are a compatible couple (determined by a preference matrix  $M_{ij}$  where i and j refer to their age classes) then their fertilities are checked in a similar manner to their survival to determine whether a child is born. This is repeated until all the individuals who died in the ageing process are replaced (keeping the population at a set size). The offspring receives genetic information from their parent and mutations are introduced according to a mutation rate. The model then repeats the ageing and the pairing/reproduction phase for a predetermined number of time periods, logging results as it goes.

The main problem with the mathematical model has been fixed: the age of the end of reproduction is no longer fixed. Since the fertility of an individual is affected by mutations, the fertilities of population as a whole will change over time depending on how fertility-affecting mutations accumulate over time (whether the effects are beneficial or deleterious). However the fixed mating preferences of individuals remains. With fixed mating preferences the model presupposes the social structures of early huntergatherers, justifying this with data from modern hunter-gatherer tribes. The mating preferences of older men for younger females may instead be an epiphenomenon of menopause developing in women – if realised fertility is the main reason for living then males are far more likely to choose a partner who has more years of reproductive capability ahead of her than one few or none at all. If mating preferences were not fixed we would be able to see if they are stable (meaning they change little regardless of changes in the mortality and fertility of the population) or if they coevolve alongside mortality and fertility changes. If the male preference for younger females evolved from a male preference for female their own age alongside the changes to fertility, this could suggest that the preference came about due to menopause rather than causing it.

#### 3.4 A better model

A better model for the patriarch hypothesis would have the following features:

- It would generate a typical base population asexually using mortality tables and a burn in period so that correct age structures were created. Starting with these age structures is important to ensure that when the simulation starts there is a variety of ages from which couples can form (or preference based on age would not matter). This generated population would be used for both the simulation where males have a preference for younger females (MYP) and where they don't (MAP)
- Each generation, in the ageing phase each member the population is aged or killed on the basis of a pseudo-random number, a mortality table and the presence of mortality affecting mutations in their genes (acting in both a sex-indifferent and sex-dependent manner). The deceased members of the population would then be replaced with new offspring in the pairing and mating phase.
- Next would come a pairing phase in which couples would form on the basis of a mating preference matrix. Unlike previous models, this preference matrix would be affected by mutations in the genetics of the individual in the same way that mortality and fertility are affected. This would allow the preference to coevolve alongside changes to mortality and fertility.

#### 3 Problem Description

- These pairings would also be persistent throughout generations. At present couples are selected from the male and female population pseudorandomly each generation and checked for mating preference before attempting reproduction if a pairing is formed. Non-persistent unions are inconsistent with the monogamy that the original paper posits as the norm in hunter-gatherer societies, meaning that a male could potentially reproduce with many females in one time period – passing on his genes many times regardless of the effects of the mutations they contain. It is unlikely that a male would commit the resources to try and find a new mate if his present partner is still fertile. As such pairings that are persistent between generations (checking to see if mating preference between the pair still exists each generation) is a good model for monogamy, with males only seeking a second mate after the preference for their own partner disappears. The breakup of couples would occur just before the pairing phase, so that new pairings can be formed from the newly single individuals.
- After the pairings are formed, couples would be pseudo randomly selected from the set of couples and using a pseudo-random number and their fertility distributions (modified by fertility affecting mutations in their genes). The genetics of the offspring produced would be created by first performing a crossover of the genes of the two parents, then performing a mutation of the genetics using an appropriate mutation rate to introduce mutations that may not currently present in the population.
- This process would be repeated over a number of generations, outputting appropriate information for analysis of the model. Currently the time period that a generation models is 5 years, but shortening could improve the model so that effects that shorten the reproductive gap are able to emerge.

#### 4.1 Class Structure

When designing a multi-agent system, it can be useful to model each agent as being an instance of a class, each with their own attributes (variables belonging to a class instance that are an abstract representation of the differing traits an agent has) and class methods (representing the actions an agent can take to interact with its environment). The individual people in the system are modelled using the Person class, with attributes determining their traits, including genetics and various probability and preference distributions.

#### 4.1.1 Person Class

The Person class provides the container for the attributes and methods necessary to build the model. Many of its attributes are instances of the classes used to hold probability distributions in control of mortality and fertility, as well as the person's mating preferences and genetics. Each time a new child is born, a new instance of Person is created, with the parameters for \_\_init\_\_() (see Table 4.2) based on their parents' attributes.

Table 4.1: Person Class Attributes

| Attribute    | Type                       | Purpose                       |  |
|--------------|----------------------------|-------------------------------|--|
| age          | int                        | Age of the person             |  |
| sex          | str                        | Sex of person ("f" for female |  |
|              | Sti                        | and "m" for male)             |  |
| alive        | bool                       | Whether the person is cur-    |  |
| alive        | 5001                       | rently alive                  |  |
| mortalitu    | MortalityDistribution      | The mortality distribution of |  |
| mortality    | Mortality Distribution     | the individual.               |  |
|              | Doma du ativa Diatribution | The mortality distribution of |  |
| reproduction | ReproductiveDistribution   | the individual.               |  |
| 4:-+         | PreferenceDistribution     | The mating preference distri- |  |
| pref_dist    | FreierenceDistribution     | bution of the individual.     |  |
|              | Genetics                   | The genetic information of    |  |
| genes        | Geneucs                    | the individual                |  |

Table 4.2: Person Class Methods

| Method                                  | Purpose                                                                                                                                                                                                   |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| init(self, age, sex,                    | Used when instantiating the class, set-                                                                                                                                                                   |  |  |
| mort_dist, repr_dist,                   | ting up initial values for the properties                                                                                                                                                                 |  |  |
| genes=None)                             | based on those passed as parameters                                                                                                                                                                       |  |  |
| repr(self)                              | Returns a string representation of the class                                                                                                                                                              |  |  |
| row_builder(self)                       | Returns a list of properties for outputting to csv                                                                                                                                                        |  |  |
| increase_age(self)                      | Assigns a person to next age class if they survive the current generation (based on a pseudo-ransom number and their mortality distribution, limiting age to 85 or under), otherwise sets alive to False. |  |  |
| calculate_age_class(self)               | Returns the derived attribute age_class                                                                                                                                                                   |  |  |
| reproduce(self)                         | Returns True if a person is currently able to reproduce (based on a pseudorandom number and their reproductive distribution).                                                                             |  |  |
| <pre>calc_preference(self, other)</pre> | Calculates and returns the mating<br>preference that this person has for the<br>other person (using their ages classes<br>and the person's preference distribu-<br>tion)                                  |  |  |

#### 4.1.2 MortalityDistribution Class

The MortalityDistribution class serves as a lookup table for the probability of death a given age, based on data from the input files female\_data.csv and male\_data.csv. There are two base instances of this class created female\_mortality (using female\_data.csv), the mortality distribution used by females and male\_mortality, for males (using male\_data.csv). The class also contains methods for getting survival probabilities based on age (see Table 4.3).

Table 4.3: MortalityDistribution Class Methods

| Method                                | Purpose                                |
|---------------------------------------|----------------------------------------|
| init(self, input_file)                | Used when instantiating the class,     |
| init(sell, input_life)                | reads distribution input from file     |
| monn (golf)                           | Returns a string representation of the |
| repr(self)                            | class                                  |
| <pre>get_survival(self, age)</pre>    | Returns mortality probability value    |
| get_survivar(serr, age)               | based on age.                          |
| <pre>get_survival_by_age_class(</pre> | Returns mortality probability value    |
| self, age_class)                      | based on age class.                    |
|                                       |                                        |

#### 4.1.3 Reproduction Distribution Class

The MortalityDistribution class serves as a lookup table for the probability of being able to reproduce at a given age, based on data from the input files female\_data.csv and male\_data.csv. There are two base instances of this class created female\_mortality (using female\_data.csv), the mortality distribution used by females and male\_mortality, for males (using male\_data.csv). The class also contains methods for getting survival probabilities based on age (see Table 4.4 for overview).

Table 4.4: ReproductionDistribution Class Methods

| Method                                    | Purpose                                |  |  |
|-------------------------------------------|----------------------------------------|--|--|
| init (colf input file)                    | Used when instantiating the class,     |  |  |
| init(self, input_file)                    | reads distribution input from file     |  |  |
| rong (golf)                               | Returns a string representation of the |  |  |
| repr(self)                                | class                                  |  |  |
| got manualistics (solf age)               | Returns reproduction probability       |  |  |
| <pre>get_reproduction(self, age)</pre>    | value based on age.                    |  |  |
| <pre>get_reproduction_by_age_class(</pre> | Returns reproduction probability       |  |  |
| self, age_class)                          | value based on age class.              |  |  |

#### 4.1.4 PreferenceDistribution Class

The PreferenceDistribution class is used to store in the class attribute the mating preferences based on age class of each individual, and to provide access to the data. There are three instances of this class created female\_preference representing females' mating preferences (using data from female\_pref.csv), male\_map\_preference representing males who have a preference for female of any age (using data from male\_map.csv) and male\_myp\_preference representing male preference for younger females (using data from male\_myp.csv). The data is then accessed with the age classes of two individuals (see Table 4.5 for overview).

Table 4.5: PreferenceDistribution Class Methods

| Method                          | Purpose                                |  |  |
|---------------------------------|----------------------------------------|--|--|
| init(self, name,                | Used when instantiating the class,     |  |  |
| <pre>input_file)</pre>          | reads distribution input from file     |  |  |
| mann (aclf)                     | Returns a string representation of the |  |  |
| repr(self)                      | class                                  |  |  |
| <pre>get_preference(self,</pre> | Returns the mating preference of a     |  |  |
| age_class_one,                  | person age_class_one for a person of   |  |  |
| age_class_two)                  | age_class_two.                         |  |  |

#### 4.1.5 Genetics Class

The Genetics class handles the genetic information of the person, storing it as a string of "1"s and "o"s inside the genes attribute. The class contains a method for generating a random gene string, as well as ones for performing crossover of the genes of two parents and introducing mutations (see Table 4.6 for overview).

Table 4.6: Genetics Class Methods

| Method                        | Purpose                                |  |  |
|-------------------------------|----------------------------------------|--|--|
|                               | Used when instantiating the class.     |  |  |
| init(self, genes=None)        | Uses genetic string passed or gener-   |  |  |
| init(seif, genes-None)        | ates random gene string using the      |  |  |
|                               | random_genes method.                   |  |  |
| repr (self)                   | Returns a string representation of the |  |  |
| rebr(serr)                    | class                                  |  |  |
| random gonog (golf gigo)      | Returns a random string of "1"s and    |  |  |
| random_genes(self, size)      | "o"s of length equal to size.          |  |  |
| areasourer(self ether)        | Returns a gene string made of of ran-  |  |  |
| crossover(self, other)        | dom segments of the two gene strings.  |  |  |
|                               | Pseudo-randomly flips "o"s and "1"s in |  |  |
| <pre>mutate(self, rate)</pre> | the gene attribute with a probability  |  |  |
|                               | equal to rate.                         |  |  |

#### 4.2 Set up and burn-in period

After the class definitions, the main distributions are set up (female\_mortality, male\_mortality, female\_reproduction, male\_reproduction, female\_preference, male\_map\_preference and male\_myp\_preference) as detailed in their relevant class sections. An initial population of 500 females was created using the pre-made female distributions, and random ages and genetics. A burn-in period of time (100 generations) is created in which in which they aged and deceased individuals are replaced with new females aged 0, so that a typical age structure based on the mortality distribution is then produced.

This process is then repeated with the males to produce a male population. The males are all initialised with the male\_map\_preference mating preference distribution since it does not affect this burn in period. Before the actual simulation is run up the preference distribution can be set to

male\_map\_preference when males have a preference for females of any age, or male\_myp\_preference if they have a preference for younger females.

Table 4.7: Base population values

|              | ''                          |                             |  |  |
|--------------|-----------------------------|-----------------------------|--|--|
| Attribute    | Female Value                | Male Value                  |  |  |
| 200          | Random age between o and 85 | Random age between o and 85 |  |  |
| age          | inclusive (multiple of 5)   | inclusive (multiple of 5)   |  |  |
| sex          | "f"                         | "m"                         |  |  |
| alive        | True                        | True                        |  |  |
| mortality    | female_mortality            | male_mortality              |  |  |
| reproduction | female_reproduction         | male_reproduction           |  |  |
| pref_dist    | female_preference           | male_map_preference         |  |  |
| gonog        | Randomly generated by       | Randomly generated by       |  |  |
| genes        | Genetics class              | Genetics class              |  |  |

This initial population is exported to initial\_population\_output.csv and duplicated so that population can then be used for both the simulations.

### 4.3 Running the simulation

The simulation was divided into two phases: the MAP simulation, which models when males have a preference for females of any age, and the MYP simulation, when males have a preference for younger females. The process for each simulation is identical except for the preference distribution of each male. Each simulation set to run for 100 generations (each generation representing a year period) with a mutation rate of 0.2.

The MAP model is run first. Each generation the model starts with an ageing phase. It loops through each female, and assigns them either to the next age or kills them based on a pseudo-random number and their mortality distribution, using the <code>increase\_age()</code> method (see Table 4.1). This process is repeated for the males.

Next comes a reproduction phase which loops until the population size is restored to 1000. A female and a male are randomly selected from the female and male populations. Their mating preferences are checked and if they are are compatible a mating pair is formed. Then whether they are able to reproduce is checked with both the male and the female. If they are both able to, then a child is produced.

The child's sex is randomly determined with a 50% chance for a female and % chance for a male to be born. The child inherits the reproductive,

mortality and mating preference distributions of the parent of the same sex. The genetics of the offspring are determined by first performing a crossover of their parents' genes, followed by a mutation with an arbitrary mutation chance of 0.2 (see Table 4.6).

Various statistics about the generation are calculated (including the age distribution of its members) and outputted (see the Generating an output section). The simulation then repeats with the next generation. After all the generations are complete the current population are outputted, then the simulation is repeated using the same method for the MYP model (making sure to change the mating preference distribution for the males).

### 4.4 Generating an output

There is little point to running a simulation if the results are not outputted. The csv module for Python was used both for parsing the input files, but for generating output csv files. The csv format is designed to be a human and machine readable format for storing tables of data and is readable by a variety of programming languages as well as by spreadsheet software, making it an accessible format to output to.

The first thing outputted by the program is the properties of the initial population (using the row\_builder() method - see Table 4.2), outputting the age, sex, life status, genes and preference distribution type to initial\_population\_output.csv. This process was repeated with the populations at the end of both the MAP and the MYP simulations, outputting to map\_population\_output.csv and myp\_population\_output.csv respectively.

The other thing outputted by the program is information about each generation in the simulations. In each generation, the following information is exported: the generation, the number of females, the number of males, the average age of female age of reproduction, the average male age of reproduction, the average age gap in mating pairs who reproduced, the oldest female who reproduced and the oldest male who reproduced. Also outputted each row is the number of individuals in each age group, which allows you to work out the distribution of deaths by age, as well as the number of individuals born each generation. These results are outputted to map\_simulation\_output.csv and myp\_simulation\_output.csv for the MAP and the MYP simulations respectively.

### 4.5 Not Implemented

Unfortunately the work was not completely implemented. The following features were planned, but not implemented:

- The genetics of a person should affect their mortality. This would be implemented on the MortalityDistribution class by using the person's genetics as well as sex as parameters so that specific loci in a person's genetics could act in a sex-specific or sex indifferent manner to alter their survival. The reason this is important is it provides the advantage to late-age male reproduction over males ceasing reproduction when females do. If there is a mortality-causing mutation that only affects individuals over 55, it will not affect the realised fertility of the females, but males that do not have the mutation will be able to reproduce more, causing this mutation to be selected against.
- The genetics of a person should also affect their reproduction. Similarly this would be implemented on the ReproductionDistribution class using the person's genes and sex as parameters. This is important for the accumulations of genes deleterious to reproduction in females.
- The coevolution of the mating preferences of the people. If the mating
  preferences are not allowed to evolve, then it is difficult to say whether
  males' preference for younger females caused the evolution of menopause, or the evolution of menopause what what caused males' preferences to come about.

# 5 Results and Evaluation

Since the model was not fully implemented, with genetics being stored and mutated, but these mutations having no effect on fertility or mortality, the results are somewhat limited. Nevertheless some information may be gleaned from the output produced. Presented below are some of the results of a typical run and some analysis of what these results mean. Since the model relies heavily on pseudo-random numbers these results are dependent on one particular run, although the model could be run many times and the results averaged to minimise this effect.

### 5.1 Results of a typical run

The model was run for 100 generations, with both the MAP (males with a preference for females of any age) and MYP (males with a preference for younger females) using the same base population generated in the burn in period.

#### 5.1.1 Female and Male Numbers

The base population from the burn in period produces a population with 500 females and 500 males (1000 total). Although the measure of how many females and males there are at any point may not be that useful, it is good to ensure that one sex did not become dominant over the other since this could skew the other results. The population numbers are held at 1000 at all times.

In the MAP model there was a mean of 498.4 female and 501.6 males (with variance  $\sigma^2 = 276.969$ ) with a median of 497 females and 503 males. The minimum number of females reached was 463 and the maximum 545 (range 82), and the minimum number of males was 455, with the maximum 537 (range 82).

In the MAP model there was a mean of 495.36 female and 504.64 males (with variance  $\sigma^2 = 138.091$ ) with a median of 495 females and 505 males. The minimum number of females reached was 459 and the maximum 522 (range 63), and the minimum number of males was 478, with the maximum 541 (range 63).

Both models exhibit a very slight skew overall towards the male population, but are similar to each other overall so this is unlikely to affect the outcome.

#### 5.1.2 Mean age of reproduction

The mean age of reproduction is the mean age that people reproduced at in each generation, in this case split by sex. This measure is useful for judging how a population as a whole are reproducing.

For the MAP simulation, the mean female mean age of reproduction was 29.763, with variance  $\sigma^2=0.870$  and a median mean of 29.672. The minimum mean was 26.413 and the maximum mean was 31.944 (range 5.531). For the MAP simulation, the mean male mean age of reproduction was 30.004, with variance  $\sigma^2=0.588$  and a median mean of 30.116. The minimum mean was 27.937 and the maximum mean was 31.933 (range 3.996). The difference between the mean of means for the two sexes is 0.240.

For the MYP simulation, the mean female mean age of reproduction was 23.714, with variance  $\sigma^2=0.425$  and a median mean of 23.716. The minimum mean was 22.153 and the maximum mean was 25.271 (range 3.118). For the MYP simulation, the mean male mean age of reproduction was 26.073, with variance  $\sigma^2=0.690$  and a median mean of 26.121. The minimum mean was 24.276 and the maximum mean was 28.286 (range 4.010). The difference between the mean of means for the two sexes is 2.358.

The mean age of reproduction in the MAP simulation is fairly similar between the sexes with the females only reproducing on average 0.240 years before the males. This is in line with the concept of males preferring females roughly their own age - if this is the case then males and females will reproduce at fairly similar points in their life. The gap in the mean age of reproduction was higher in the MYP simulation (where males have a preference for younger females) suggesting the preference for younger females. What is also notable is that both the female and male mean age of reproduction is much lower in the MYP simulation than the MAP simulation (6.049 years younger for females, 3.931), bigger than the gap between sexes in either simulation.

#### 5.1.3 Mean age difference in couples

The mean age difference was calculated each generation by summing the absolute difference in age for each child producing couple, then dividing it by the the number of children born that generation. Note that this value only

tells you the average age gap, not the direction of the gap (whether the male or the female is older).

For the MAP simulation, the mean of the mean age gaps was 10.435, with variance  $\sigma^2 = 0.278$  and a median mean of 10.401. The minimum mean was 9.028 and the maximum mean was 11.712 (range 2.683).

For the MYP simulation, the mean of the mean age gaps was 6.813, with variance  $\sigma^2 = 0.221$  and a median mean of 6.805. The minimum mean was 5.808 and the maximum mean was 8.216 (range 2.408).

The MYP simulation is meant to model males' preference for younger females rather than those their own age and as such you would expect the age gap to bigger than MAP model. The lower mean age gap seen in the MYP model than the MAP model would suggest the opposite is the case, meaning the model may not adequately model the male's preference. The model could be extended to take into account the direction of the age gap (i.e. whether the male or female is the older of the pair) by creating a separate average and count for couples where the males are older, the females are older and the pair are the same age.

#### 5.1.4 Maximum age of reproduction

The maximum age of reproduction was the age of the oldest person to reproduce in a given generation (again divided by sex). This measure tells roughly the age after which women will cease to reproduce. It will also tell us whether males continue to reproduce after this point. However this age is the maximum such can be an outlier and is not representative of the group as a whole.

For the MAP simulation, the mean age for oldest female reproduction was 51.75, with variance  $\sigma^2 = 7.765$  and a median age of 50. The minimum maximum age of reproduction was 45 and the maximum was 60 (range 15). For males the mean age of oldest reproduction 52.15, with variance  $\sigma^2 = 6.694$  and a median age of 50. The minimum maximum age of reproduction was 50 and the maximum was 60 (range 10). This is indicative of males preferring females their own age, as their realised fertility is linked to the females' actual fertility meaning they cease to reproduce once the females are no longer capable of doing so, even though they remain to be fertile themselves. The average maximum age for females is also reasonably similar to the age at which menopause typically occurs.

The MYP is more perhaps more interesting however as the maximum age of reproduction for both the females and the males was the same for each generation, at 30 and 35 respectively. Why the maximum age of reproduction

stayed the same is generation is unclear. There is also a gap between the two ages, with males carrying on reproduction five years longer than the females. Both females and males in the MYP cease reproduction many years before those in the MAP model, suggesting there may be an issue in the MYP as you would expect the females to reproduce for fairly similar amounts of time, and for the MYP males to reproduce for longer than the MAP males.

#### 5.1.5 Age Structures

The age structures produced by the simulations were fairly similar between the two simulations (MAP vs MYP). The age structures were also fairly stable from generation to generation. The two age groups o-5 and 5-10 consistently made up just under 50% of the population, indicating a high child mortality rate, meaning many will die before reaching the age where they are able to reproduce. Presented below are graphs showing the age structures over time for each simulation, as well as tables for the mean, variance, median, minimum, maximum and range for each age group. The mean number of people in the o-5 age group represents average number of deaths (and therefore births) over the 100 generations, meaning a total of 30800 people were born in the MAP simulation and 30666 in the MYP simulation. The simulation ran for sufficient generations to guarantee that none of the individuals from the initial population are alive at the end (since each generation represented a time period of 5 years, with a 100 generation simulation lasting 500 years and the maximum age it is possible to reach is 85).

#### 5.2 Model limitations and improvements

As previously stated the model was not fully implemented. Although genetics were implemented (including crossover of genes from parents and the introduction of the genes based on a mutation rate), these genetics had no impact on the model since they were not used to affect the mortality or fertility of individuals as previous models had done [3], but also did not use them to affect their mating preferences. Given more time these could be implemented on the relevant classes, then a more useful simulation could be run, with results that may be more interesting. There are also other measures that could be outputted each generation to provide a fuller picture of what is happening (such as outputting the ages at which people are dying and reproducing).



Figure 5.1: MAP age structure against generation (stacked in order of age group)



Figure 5.2: MYP age structure against generation (stacked in order of age group)

Table 5.1: MAP Age Structures

| Age | Mean   | Variance | Median | Minimum | Maximum | Range |
|-----|--------|----------|--------|---------|---------|-------|
| О   | 308.00 | 179.576  | 307    | 278     | 342     | 64    |
| 5   | 183.48 | 139.949  | 182    | 159     | 207     | 48    |
| 10  | 95.41  | 81.759   | 94     | 71      | 124     | 53    |
| 15  | 63.39  | 60.867   | 66     | 45      | 88      | 43    |
| 20  | 57.29  | 53.097   | 56     | 40      | 76      | 36    |
| 25  | 53.64  | 53.687   | 53     | 38      | 71      | 33    |
| 30  | 48.79  | 51.077   | 48     | 32      | 69      | 37    |
| 35  | 42.40  | 57.232   | 42     | 26      | 63      | 37    |
| 40  | 36.31  | 44.903   | 36     | 20      | 54      | 34    |
| 45  | 31.27  | 29.977   | 31     | 19      | 47      | 28    |
| 50  | 24.68  | 23.230   | 25     | 15      | 38      | 23    |
| 55  | 18.02  | 20.505   | 18     | 8       | 31      | 23    |
| 60  | 14.52  | 14.293   | 14     | 5       | 25      | 20    |
| 65  | 9.69   | 8.297    | 9      | 3       | 16      | 13    |
| 70  | 5.77   | 3.755    | 6      | 1       | 10      | 9     |
| 75  | 2.91   | 2.729    | 3      | 0       | 6       | 6     |
| 80  | 1.14   | 0.869    | 1      | О       | 5       | 5     |
| 85  | 0.29   | 0.228    | 0      | О       | 2       | 2     |
| 90  | 0      | 0        | 0      | 0       | 0       | 0     |

Table 5.2: MYP Age Structures

| Age | Mean   | Variance | Median | Minimum | Maximum    | Range |
|-----|--------|----------|--------|---------|------------|-------|
| О   | 306.66 | 198.166  | 307    | 276     | 345        | 69    |
| 5   | 181.54 | 116.675  | 181.5  | 155     | 209        | 54    |
| 10  | 96.05  | 85.583   | 96     | 71      | 122        | 51    |
| 15  | 66.05  | 82.472   | 67     | 45      | 86         | 41    |
| 20  | 57.24  | 91.053   | 57.5   | 32      | 76         | 44    |
| 25  | 54.40  | 85.252   | 55     | 33      | <i>7</i> 5 | 42    |
| 30  | 49.61  | 83.149   | 50     | 28      | 71         | 43    |
| 35  | 43.92  | 63.225   | 43     | 25      | 67         | 42    |
| 40  | 37.91  | 45.254   | 37     | 21      | 53         | 32    |
| 45  | 31.13  | 34.336   | 31     | 15      | 48         | 33    |
| 50  | 25.04  | 22.625   | 25     | 13      | 37         | 24    |
| 55  | 18.90  | 23.323   | 19     | 9       | 31         | 22    |
| 60  | 13.78  | 15.709   | 13.5   | 6       | 24         | 18    |
| 65  | 8.91   | 10.992   | 9      | 1       | 17         | 16    |
| 70  | 5.44   | 6.491    | 5      | О       | 12         | 12    |
| 75  | 2.45   | 2.533    | 2      | О       | 6          | 6     |
| 8o  | 0.80   | 0.808    | 1      | О       | 3          | 3     |
| 85  | 0.17   | 0.223    | 0      | О       | 3          | 3     |
| 90  | 0      | 0        | 0      | 0       | О          | 0     |

# 6 Conclusion

Since the work was not completed, the model produces very limited results. The first piece of further work would be to complete the intended work, so that it replicates the work of Morton, Stone and Singh in "Mate Choice and the origin of menopause" [3], then extend the model so that mutations can affect preference, to see what effect this has on the outcome. If completed the model could be extended in a variety of different ways, either to further examine the Patriarch Hypothesis, or to model other theories about menopause or reproduction in general.

After this it would be interesting to see the effect of implementing persistence of couples between generations, with couples being formed based on mating preference, then staying together until they no longer have a preference for each other. This could provide a model for monogamy, with males staying with partners rather than investing resources in attracting a new mate. This could also be used to examine the difference between societies where monogamy is the norm, versus societies where polygyny is common, with possible implications for the age differences in mating pairs.

There are also limitations to the model enforced by hardware – the speed the model runs at is affected by the number of individuals of the population. With greater computing power, you would be able to model larger populations without the model slowing down too much – possibly even allowing the population size to no longer fixed.

There are also space constraints based on the amount of information stored about an individual, the number of individuals in the population and the number of generations the model is run for. In an ideal world you would be able to log the complete state of the system each generation (including every member of the population and their attributes, as well as information about the actions taken by the population that generation – births, deaths & their age structure, existing couples breaking up, new couples forming). With the full data of each individual being stored it would be possible to track lineage of individuals (their ancestors and their decedents) and produce family trees.

This kind of model can be adapted to model the other hypotheses for the evolution of menopause. For example, the mortality of children could be affected by grandmother who are post-menopausal, representing the effects

#### 6 Conclusion

of improved childcare, modelling the grandmothering hypothesis. Currently the agents in the model only interact with each other (for coupling and reproduction) with mortality and fertility being only affected by genetics. Environmental constraints could be imposed, such as the location of the person (since they would only have the pool of people in the same location as them to choose from for forming a mating pair) or finite resources, such as food (meaning that population size of a model without a fixed population size is not restrained by an arbitrary number, but instead the competition for resources). Limiting resources could provide a good model for the reproductive conflict hypothesis. The model can also be adapted for modelling hypotheses to do with other traits that affect reproduction besides menopause (such as the presence of homosexual animals in a group, who do not reproduce but may improve inclusive fitness through resource provision and providing security).

Multi-agent systems and genetic algorithms provide a powerful tool for creating intuitive models of complex systems, that can be adapted easily to test various hypotheses.

# **Bibliography**

- [1] F. Marlowe, "The patriarch hypothesis," *Human Nature*, 2000. [Online]. Available: http://dx.doi.org/10.1007/s12110-000-1001-7
- [2] S. D. Tuljapurkar, C. O. Puleston, and M. D. Gurven, "Why men matter: Mating patterns drive evolution of human lifespan," *PLOS ONE*, 2007. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pone.0000785
- [3] R. A. Morton, J. R. Stone, and R. S. Singh, "Mate choice and the origin of menopause," *PLOS Computational Biology*, 2013. [Online]. Available: http://dx.doi.org/10.1371%2Fjournal.pcbi.1003092
- [4] D. P. Croft, L. J. Brent, D. W. Franks, and M. A. Cant, "The evolution of prolonged life after reproduction," *Trends in Ecology & Evolution*, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0169534715001044
- [5] J. Wood, S. Weeks, G. Bentley, and K. Weiss, "Human population biology and the evolution of aging," *Biological Anthropology and Aging: Perspectives on Human Variation over the Life Span*, 1994.
- [6] H. P. Alvarez, "Grandmother hypothesis and primate life histories," *American Journal of Physical Anthropology*, vol. 113, no. 3, pp. 435–450, 2000. [Online]. Available: http://dx.doi.org/10.1002/1096-8644(200011) 113:3<435::AID-AJPA11>3.0.CO;2-O
- [7] P. S. Kim, J. S. McQueen, J. E. Coxworth, and K. Hawkes, "Grandmothering drives the evolution of longevity in a probabilistic model," 2014. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0022519314001465
- [8] P. S. Kim, J. E. Coxworth, and K. Hawkes, "Increased longevity evolves from grandmothering," *Proceedings of the Royal Society of London B: Biological Sciences*, vol. 279, no. 1749, pp. 4880–4884, 2012.
- [9] M. A. Cant and R. A. Johnstone, "Reproductive conflict and the separation of reproductive generations in humans," *Proceedings of the National Academy of Sciences*, vol. 105, no. 14, pp. 5332–5336, 2008.

#### Bibliography

- [10] D. P. Croft, R. A. Johnstone, S. Ellis, S. Nattrass, D. W. Franks, L. J. N. Brent, S. Mazzi, K. C. Balcomb, J. K. B. Ford, and M. A. Cant, 2017.
- [11] L. Van Valen, "Ovarian excess and the evolution of menopause," *Evol. Theory*, vol. 12, pp. 131–153, 2003.
- [12] G. S. Cooper and D. P. Sandler, "Age at natural menopause and mortality," *Annals of epidemiology*, vol. 8, no. 4, pp. 229–235, 1998.
- [13] J. Cleary-Goldman, F. D. Malone, J. Vidaver, R. H. Ball, D. A. Nyberg, C. H. Comstock, G. R. Saade, K. A. Eddleman, S. Klugman, L. Dugoff *et al.*, "Impact of maternal age on obstetric outcome," *Obstetrics & Gynecology*, vol. 105, no. 5, Part 1, pp. 983–990, 2005.
- [14] C. Darwin, On the origin of species. John Murray, 1859.
- [15] J. Garnier and A. Quetelet, *Correspondance mathématique et physique*. Impr. d'H. Vandekerckhove, 1838, no. v. 10. [Online]. Available: https://books.google.co.uk/books?id=8GsEAAAAYAAJ
- [16] R. Pearl and L. J. Reed, "On the rate of growth of the population of the united states since 1790 and its mathematical representation," *Proceedings of the National Academy of Sciences*, vol. 6, no. 6, pp. 275–288, 1920.
- [17] R. Schoen, "The harmonic mean as the basis of a realistic two-sex marriage model," *Demography*, vol. 18, no. 2, pp. 201–216, 1981.
- [18] R. A. Pollak, "Two-sex demographic models," *Journal of Political Economy*, vol. 98, no. 2, pp. 399–420, 1990.
- [19] N. Howell, Demography of the Dobe! kung. JSTOR, 1979, vol. 35.
- [20] M. Gurven and H. Kaplan, "Hunter-gatherer longevity: Cross-cultural perspectives," *Population and Development Review*, vol. 33, no. 2, pp. 321–365, 2007.

# A Python Code Listing

import random

import copy import csv

```
return [self.age, self.sex, self.alive, self.genes, self.pref_dist.name]
                          def __init__(self, age, sex, mort_dist, repr_dist, pref_dist, genes=None):
                                                                                                                                                                                                                                                                                                                                             def __repr__(self):
    return ("AGE: " + str(self.age).zfill(2)
                                                                                                                                                                                                                                                                                                                                                                                                + ", SEX: " + str(self.sex)
+ ", ALIVE: " + str(self.alive)
+ ", GENES: " + str(self.genes))
                                                                                                                                                           self.reproduction = repr_dist
                                                                                                                                                                                                                                       self.genes = Genetics()
                                                                                                                                                                                    self.pref_dist = pref_dist
if genes is None:
                                                                                                                                self.mortality = mort_dist
                                                                                                                                                                                                                                                                                          self.genes = genes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if self.age == 85:
    self.alive = False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         def increase_age(self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           def row_builder(self):
                                                                                                        self.alive = True
                                                   self.age = age
                                                                           self.sex = sex
                                                                                                                                                                                                                                                                 else:
class Person:
```

```
return self.pref_dist.get_preference(self.calculate_age_class(), other.calculate_age_class())
                                                                                                                                                                                                                                                                                                                   return self.reproduction.get_reproduction(self.age) > random.uniform((0.0,1.0)
elif random.uniform(0.0,1.0) < self.mortality.get_survival(self.age):</pre>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            self.probability_table.append(float(row[3]))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  str_representation += str(row).zfill(0) + "\n"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if age < len(self.probability_table) and age >= 0:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   def get_survival_by_age_class(self, ageClass):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             return self.probability_table[age]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               for row in self.probability_table:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    with open(input_file, "rb") as f:
                                                                                                                                                                                                                                                                                                                                                                                      def calc_preference(self, other):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    def __init__(self, input_file):
    self.probability_table = []
                                                                                                                                                                                                        return ((self.age + 5) / 5)
                                                                                                                                                                             def calculate_age_class(self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         reader = csv.reader(f)
for row in reader:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     return str_representation
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     def get_survival(self, age):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               str_representation = ""
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           # Set up MortalityDistribution
                                                                                                     self.alive = False
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              class MortalityDistribution:
                                  self.age += 5
                                                                                                                                                                                                                                                                                   def reproduce (self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  def __repr__(self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                return 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  else:
```

```
self.probability_table.append(float(row[2]))
                                                                   female_mortality = MortalityDistribution("female_data.csv")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             str_representation += str(row).zfill(0) + "\n"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   if age < len(self.probability_table) and age >= 0:
                                                                                                                                                                        male_mortality = MortalityDistribution("male_data.csv")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         def get_reproduction_by_age_class(self, ageClass):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return get_reproduction((ageClass * 5) - 1)
return get_survival((ageClass * 5) - 1)
                                                                                                                                                                                                                                                                     print ("Initial mortality distributions set up")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   return self.probability_table[age]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for row in self.probability_table:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             self.probability_table = []
with open(input_file, "rb") as f:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       def get_reproduction(self, age):
                                                                                                                                                                                                                                                                                                                                                                                                                                              def __init__(self, input_file):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                reader = csv.reader(f)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return str_representation
                                                                                                                                                                                                                                                                                                                                           # Set up ReproductiveDistribution
                                                                                                                                                                                                                                                                                                                                                                                                          class ReproductiveDistribution:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              str_representation = ""
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             for row in reader:
                                                                                                       #print(female_mortality)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               __repr__(self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return 0.0
                                                                                                                                                                                                       #print (male_mortality)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         else:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  def
```

female\_reproduction = ReproductiveDistribution("female\_data.csv")
#print(female\_reproduction)

```
female_preference = PreferenceDistribution("female", "female_pref.csv")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return self.distribution[age_class_one][age_class_two]
male_reproduction = ReproductiveDistribution("male_data.csv")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        def get_preference(self, age_class_one, age_class_two):
                                                         print("Initial reproductive distributions set up")
                                                                                                                                                                                                                                                                                                                                                                                                                                                  self.distribution.append(new_row)
                                                                                                                                                                                                                                                                                                                                                                                                                    new_row.append(int(cell))
                                                                                                                                                                              def __init__(self, name, input_file):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          row_str += str(cell) + ",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 str_representation += row_str
                                                                                                                                                                                                                                                                 with open (input_file, "rb") as f:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for row in self.distribution:
                                                                                                                                                                                                                                                                                                     reader = csv.reader(f)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return str_representation
                                                                                                                                                                                                                                                                                                                                                                                      for cell in row:
                                                                                                                  # Set up PreferenceDistribution
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       str_representation = ""
                                                                                                                                                                                                                                                                                                                            for row in reader:
                                                                                                                                                                                                                                       self.distribution = []
                                                                                                                                                class PreferenceDistribution:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for cell in row:
                                                                                                                                                                                                                                                                                                                                                             new\_row = []
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     row_str += "\n"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              row_str = ""
                             #print (male_reproduction)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           #print(female_preference)
                                                                                                                                                                                                              self.name = name
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                def __repr__(self):
```

male\_map\_preference = PreferenceDistribution("male\_map", "male\_map.csv")

#print (male\_map\_preference)

```
\# Crosses over this set of genes with another set of genes with a 50% probability at each locus. crossed = ""
male_myp_preference = PreferenceDistribution("male_myp", "male_myp.csv")
                                                                                 print("Initial preference distributions set up")
                                                                                                                                                                                                                                                                                                                                                                                                                   def random_genes(self, size):
    return "".join(str(random.randint(0, 1))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 if rate > random.uniform(0.0, 1.0):
   if gene == "0":
                                                                                                                                                                                                                       self.genes = self.random_genes(32)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if 0.5 > random.uniform(0.0,1.0):
    crossed += self.genes[i]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for i in range(0,len(self.genes)):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       crossed += other.genes[i]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for x in xrange(size))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         new_genes += "1"
                                                                                                                                                                def __init__(self, genes=None):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                def crossover(self, other):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for gene in self.genes:
                                                                                                                                                                                                                                                                          self.genes = genes
                                                                                                                                                                                                                                                                                                                                                                  return str(self.genes)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            def mutate(self, rate):
    new_genes = ""
                           #print (male_myp_preference)
                                                                                                                                                                                           if genes is None:
                                                                                                                                                                                                                                                                                                                                  def __repr__(self):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               return crossed
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                else:
                                                                                                                                        class Genetics:
                                                                                                                                                                                                                                                     else:
```

```
*print(str(i).zfill(2) + " Population " + str(len(female_population)).zfill(4) + ", Born: " + str(born).zfill(3) + ", Died: " + st
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          female_population.append(Person(0,"f", female.mortality, female.reproduction, female.pref_dist, genes=female.genes))
                                                                                                                                                                                                                                                              female_population.append(Person(age, "f", female_mortality, female_reproduction, female_preference))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    female = random.choice(female_population)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    female_population.remove(female)
died += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                 # print(female_population[25].reproduction)
# Set up base female population
print("### Setup Female Population ###")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             while len(female_population) < 500:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for female in female_population:
                                                                                                                                                                                                                                                                                                                                  # for female in female_population:
                                                                                                                                                                                                                          age = random.randint(0,18)*5
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if female.reproduce():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     female.increase_age()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  if not female.alive:
                                                                                                                                                                                     for i in range (0,500):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     for i in range (1, 101):
                                                                                                              female_population = []
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  born += 1
                                                                                                                                                                                                                                                                                                                                                                    print(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             born = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               died = 0
```

new\_genes += "0"

new\_genes += gene

self.genes = new\_genes

```
male_population.append(Person(age, "m", male_mortality, male_reproduction, male_map_preference))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            print(str(age_group) + ": " + str(age_groups[age_group]))
female_population.sort(key=lambda x: x.age, reverse=False) #
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      print("### Female Burn In Period Ended ###")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     # print (male_population[25].reproduction)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            # Set up base male population
print("### Setup Male Population ###")
                                                                                                                                                                                                                                                                                                                                                            age_groups[female.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                    age_groups[female.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for i in range(0,500):
   age = random.randint(0,18)*5
                                                                                                                                                                                                                                                                                                       for female in female_population:
   if female.age in age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      # for male in male_population:
# print(male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for age_group in age_indices:
                                                                                                                                                                  age_indices.append(i*5)
                                                                                                                                                                                                                       for age in age_indices:
   age_groups[age] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             for i in range(1,101):
                                                                                                                                        for i in range (0, 19):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   male_population = []
                                                                                                                                                                                                                                                                                                                                                                                                                                               #print(female)
                                                     age_indices = []
age_groups = {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    born = 0 died = 0
                                                                                                                                                                                                                                                                                                                                                                                            else:
```

```
#print(str(i).zfill(2) + " Population " + str(len(male_population)).zfill(4) + ", Born: " + str(born).zfill(3) + ", Died: " + str(
                                                                                                                                                                                                                                                                                                                                    male_population.append(Person(0,"m", male_mortality, male_reproduction, male_map_preference, genes=male.genes))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    print("Female Population Size: " + str(len(female_population)))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for age_group in age_indices:
    print(str(age_group) + ": " + str(age_groups[age_group]))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              male_population.sort(key=lambda x: x.age, reverse=False)
                                                                                                                                                                                                 while len(male_population) < 500:
male = random.choice(male_population)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                print("### Male Burn In Period Ended ###")
                                                                                                                                  male_population.remove(male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         if male.age in age_groups:
    age_groups[male.age] += 1
for male in male_population:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               age_groups[male.age] = 1
                                                                                                                                                                                                                                                                                                       if male.reproduce():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for male in male_population:
                               male.increase_age()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     age_indices.append(i*5)
                                                                                              if not male.alive:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   age_groups[age] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for age in age_indices:
                                                                                                                                                                       died += 1
                                                                                                                                                                                                                                                                                                                                                                           born += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for i in range (0, 19):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 #print(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               age_indices = []
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               age_groups = {}
```

```
population_output = open("initial_population_output.csv", "wb")
writer = csv.writer(population_output, delimiter=",", quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           print(str(age_group) + ": " + str(age_groups[age_group]))
print("Male Population Size: " + str(len(male_population)))
                                                                                                                                                                                                                                                                                                                                                                                                        population.sort(key=lambda x: x.age, reverse=False)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   for person in population:
    writer.writerow(person.row_builder())
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       age_groups[person.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   age_groups[person.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      if person.age in age_groups:
                                                                                                                                                                                                                  for female in female_population:
                                                                                                                                                                                                                                                 population.append(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for age_group in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         ### Simulation Parameters ###
                                                                                                                                                                                                                                                                                                             for male in male_population:
                                                                                                                                                                                                                                                                                                                                         population.append(male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        age_indices.append(i*5)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           for person in population:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             age_groups[age] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for age in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for i in range (0,19):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      mutation_rate = 0.002
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              age_indices = []
age_groups = {}
                                                         population = []
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         else:
```

```
map_output = open("map_simulation_output.csv", "wb")
writer = csv.writer(map_output, delimiter=",", quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
                                                                                                                                                                                                                                                             output_row = [0, len(map_females), len(map_males), 0, 0, 0, 0]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        output_row.append(map_age_groups[age_group])
                                                                                                                                                                map_females = copy.deepcopy(female_population)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   for gen in range(1, simulation_generations+1):
                                                                                                                                                                                              map_males = copy.deepcopy(male_population)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         map_age_groups[female.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      map_age_groups[female.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if male.age in map_age_groups:
   map_age_groups[male.age] += 1
                                print("### Begin MAP Simulation ###")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         if female.age in map_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            map_age_groups[male.age] =
                                                                                                                                                                                                                                                                                                                                                                                                                           map_age_groups[age_index] = 0
                                                                                                                                                                                                                                                                                                                                                                                             for age_index in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for age_group in age_indices:
### Begin MAP simulation ###
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         writer.writerow(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      for female in map_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for male in map_males:
                                                                                                                                                                                                                                                                                                                            map_age_groups = {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      print(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 born = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    died = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             else:
```

simulation\_generations = 1000

```
if (female.calc_preference(male) == 1 and male.calc_preference(female) == 1):
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  couple_age_gap += abs(female.age - male.age)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             if female.reproduce() and male.reproduce():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               female_age_reproduction += female.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      while (len(map_males) + len(map_females)) < 1000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             male_age_reproduction += male.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if female.age > oldest_female:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    oldest_female = female.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    female = random.choice(map_females)
                                                                                                                                                                                               map_females.sort(key=lambda x: x.age)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              male = random.choice(map_males)
                                                                                                                                                                                                                        map_males.sort(key=lambda x: x.age)
                                                                                                                                                                                                                                                                                                                                                                                                                     map_females.remove(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      map_males.remove(male)
female_age_reproduction = 0.0
male_age_reproduction = 0.0
                                                                                                                                                                                                                                                                                                            for female in map_females:
                                                                                                                                                                                                                                                                                                                                      female.increase_age()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           # For output
                                                                                                                                                                                                                                                                                                                                                             if not female.alive:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             male.increase_age()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   if not male.alive:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                             for male in map_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       born +=1
                                                     couple_age_gap = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            # Reproduction Phase
                                                                                                                                                                                                                                                                                                                                                                                              died += 1.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            died += 1.0
                                                                                                             oldest_female = 0
                                                                                                                                       oldest_male = 0
                                                                                                                                                                                                                                                                                  # Aging Phase
```

```
new_female = Person(0, "f", female_mortality, female_reproduction, female_preference)
                                                                                                                                                                                                                                                                                                                                                                  new_male = Person(0, "m", male_mortality, male_reproduction, male_map_preference)
                                                                                                                                                                                new_genes = Genetics(genes=female.genes.crossover(male.genes))
                                                                                                                                                                                                                                                                                                                                                                                                       new_genes = Genetics(genes=male.genes.crossover(female.genes))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 female_reproductive_ave = female_age_reproduction / born
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           male_reproductive_ave = male_age_reproduction / born
                                                                                                                                                                                                                    new_genes.mutate(mutation_rate)
                                                                                                                                                                                                                                                                                                                                                                                                                                               new_genes.mutate (mutation_rate)
                                                                                                         if 0.5 > random.uniform(0.0, 1.0):
                                                                                                                                                                                                                                                                                           map_females.append(new_female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          population = len(map_males) + len(map_females)
                                                                                                                                                                                                                                                            new_female.genes = new_genes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 new_male.genes = new_genes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      map_males.append(new_male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   map_age_groups[female.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          map_age_groups[female.age] = 1
if male.age > oldest_male:
                               oldest_male = male.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              map_age_groups[male.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     map_age_groups[male.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if female.age in map_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ave_age_gap = couple_age_gap / born
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      if male.age in map_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                map_age_groups[age_index] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for age_index in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for female in map_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       for male in map_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    map_age_groups = {}
                                                                                                                                                                                                                                                                                                                                      else:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      else:
```

```
output_row = [gen, len(map_females), len(map_males), female_reproductive_ave, male_reproductive_ave, ave_age_gap, oldest_female, ol
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                output_string += str(age_group).zfill(2) + ": " + str(map_age_groups[age_group]).zfill(3) + ",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    writer = csv.writer(map_population_output, delimiter=""", quotechar=""", quoting=csv.QUOTE_NONNUMERIC)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   writer = csv.writer(myp_output, delimiter=",", quotechar='"', quoting=csv.QUOTE_NONNUMERIC)
                                                                                                                                        += ", Fem Rep Age: " + str(female_reproductive_ave)
                                                                                                                                                                               output_string += ", Mal Rep Age: " + str(male_reproductive_ave)
                                                                                                                                                                                                                                                                                                                          output_string += ", Oldest Male Rep: " + str(oldest_male) + ",
                                                                                                                                                                                                                                                                            += ", Oldest Female Rep: " + str(oldest_female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         map_population_output = open("map_population_output.csv", "wb")
                                                                                                                                                                                                                                 += ", Couple Age Gap: " + str(ave_age_gap)
                                          output_string += ", Females: " + str(len(map_females))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 map_population.sort(key=lambda x: x.age, reverse=False)
                                                                                         += ", Males: " + str(len(map_males))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              output_row.append(map_age_groups[age_group])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            myp_output = open("myp_simulation_output.csv", "wb")
output_string = "GEN: " + str(gen).zfill(2)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      writer.writerow(person.row_builder())
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      print("### Begin MYP Simulation ###")
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for age_group in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            map_population.append(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                map_population.append(male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      writer.writerow(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for person in map_population:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ### Begin MYP simulation ###
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 for female in map_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                #print (output_string)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         for male in map_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            map_population = []
                                                                                                                                                                                                                                        output_string
                                                                                                output_string
                                                                                                                                           output_string
                                                                                                                                                                                                                                                                                   output_string
```

```
0]
                                                                                                                                                          0
                                                                                                                                                          output_row = [0, len(myp_females), len(myp_males), 0, 0, 0,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    output_row.append(myp_age_groups[age_group])
myp_females = copy.deepcopy(female_population)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              for gen in range(1, simulation_generations+1): born = 0.0 \,
                        myp_males = copy.deepcopy(male_population)
                                                                                                        male.pref_dist = male_myp_preference
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                myp_age_groups[female.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    myp_age_groups[female.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                            myp_age_groups[male.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          if female.age in myp_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                              myp_age_groups[male.age] =
                                                                                                                                                                                                                                                                                                                                        for male in myp_males:
   if male.age in myp_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          female_age_reproduction = 0.0
male_age_reproduction = 0.0
                                                                                                                                                                                                                                                                                      myp_age_groups[age_index] = 0
                                                                                                                                                                                                                                                                for age_index in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            for age_group in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              writer.writerow(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for female in myp_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              couple_age_gap = 0.0
                                                                            for male in myp_males:
                                                                                                                                                                                                            myp_age_groups = {}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    print(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    died = 0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                else:
                                                                                                                                                                                                                                                                                                                                                                                                                        else:
```

```
if (female.calc_preference(male) == 1 and male.calc_preference(female) == 1);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                couple_age_gap += abs(female.age - male.age)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                if female.reproduce() and male.reproduce():
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           while (len(myp_males) + len(myp_females)) < 1000:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            female_age_reproduction += female.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       male_age_reproduction += male.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              oldest_female = female.age
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     if female.age > oldest_female:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          female = random.choice(myp_females)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   if male.age > oldest_male:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              oldest_male = male.age
                                                                           myp_females.sort(key=lambda x: x.age)
                                                                                                      myp_males.sort(key=lambda x: x.age)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              male = random.choice(myp_males)
                                                                                                                                                                                                                                                                                         myp_females.remove(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                    myp_males.remove(male)
                                                                                                                                                                                  for female in myp_females:
                                                                                                                                                                                                               female.increase_age()
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           # For output
                                                                                                                                                                                                                                       if not female.alive: died += 1.0
                                                                                                                                                                                                                                                                                                                                                                           male.increase_age()
if not male.alive:
                                                                                                                                                                                                                                                                                                                                              for male in myp_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    born += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    # Reproduction Phase
                                                                                                                                                                                                                                                                                                                                                                                                                            died += 1.0
oldest_female = 0
                    oldest_male = 0
                                                                                                                                                         # Aging Phase
```

```
new_female = Person(0, "f", female_mortality, female_reproduction, female_preference)
                                                                                                                                                                                                                                                            new_male = Person(0, "m", male_mortality, male_reproduction, male_myp_preference)
                                                                                                                                                                                                                                                                                                 new_genes = Genetics(genes=male.genes.crossover(female.genes))
                                                                 new_genes = Genetics (genes=female.genes.crossover(male.genes))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       female_reproductive_ave = female_age_reproduction / born
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           output_string += ", Females: " + str(len(myp_females))
output_string += ", Males: " + str(len(myp_males))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         male_reproductive_ave = male_age_reproduction / born
                                                                                                                                                                                                                                                                                                                                    new_genes.mutate (mutation_rate)
                                                                                                               new_genes.mutate (mutation_rate)
if 0.5 > random.uniform(0.0, 1.0):
                                                                                                                                                                                    myp_females.append(new_female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      population = len(myp_males) + len(myp_females)
                                                                                                                                                  new_female.genes = new_genes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   output_string = "GEN: " + str(gen).zfill(2)
                                                                                                                                                                                                                                                                                                                                                                               new_male.genes = new_genes
                                                                                                                                                                                                                                                                                                                                                                                                              myp_males.append(new_male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 myp_age_groups[female.age] += 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            myp_age_groups[female.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  myp_age_groups[male.age] = 1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               if female.age in myp_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       myp_age_groups[male.age] +=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ave_age_gap = couple_age_gap / born
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        if male.age in myp_age_groups:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        myp_age_groups[age_index] = 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        for age_index in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          for female in myp_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                for male in myp_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              myp_age_groups = {}
                                                                                                                                                                                                                            else:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  else:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             else:
```

```
output_row = [gen, len(myp_females), len(myp_males), female_reproductive_ave, male_reproductive_ave, ave_age_gap, oldest_female, ol
                                                                                                                                                                                                                                                                                                                                                                                                                                                output_string += str(age_group).zfill(2) + ": " + str(myp_age_groups[age_group]).zfill(3) + ",
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         writer = csv.writer(myp_population_output, delimiter=""", quotechar='"", quoting=csv.QUOTE_NONNUMERIC)
output_string += ", Fem Rep Age: " + str(female_reproductive_ave)
output_string += ", Mal Rep Age: " + str(male_reproductive_ave)
                                                                                                                                                                                             output_string += ", Oldest Male Rep: " + str(oldest_male) + ",
                                                                                                                                              output_string += ", Oldest Female Rep: " + str(oldest_female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           myp_population_output = open("myp_population_output.csv", "wb")
                                                                                        output_string += ", Couple Age Gap: " + str(ave_age_gap)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               myp_population.sort(key=lambda x: x.age, reverse=False)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         output_row.append(myp_age_groups[age_group])
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  writer.writerow(person.row_builder())
                                                                                                                                                                                                                                                                                                                                                                                                 for age_group in age_indices:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            myp_population.append(female)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              writer.writerow(output_row)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           myp_population.append(male)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   for person in myp_population:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  for female in myp_females:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      #print (output_string)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             for myle in myp_males:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       myp_population = []
```

# B.1 female\_data.csv

Used for female mortality and fertility distributions.

```
1,0,0.0020,0.5920
1,1,0.0020,0.5920
1,2,0.0020,0.5920
1,3,0.0020,0.5920
1,4,0.0020,0.5920
1,5,0.0020,0.5920
2,6,0.0520,0.7700
2,7,0.0520,0.7700
2,8,0.0520,0.7700
2,9,0.0520,0.7700
2,10,0.0520,0.7700
3,11,0.3540,0.8910
3,12,0.3540,0.8910
3,13,0.3540,0.8910
3,14,0.3540,0.8910
3,15,0.3540,0.8910
4,16,0.8090,0.9140
4,17,0.8090,0.9140
4,18,0.8090,0.9140
4,19,0.8090,0.9140
4,20,0.8090,0.9140
5,21,0.9830,0.8900
5,22,0.9830,0.8900
5,23,0.9830,0.8900
5,24,0.9830,0.8900
5,25,0.9830,0.8900
6,26,1.0000,0.8650
```

```
6,27,1.0000,0.8650
6,28,1.0000,0.8650
6,29,1.0000,0.8650
6,30,1.0000,0.8650
7,31,0.9990,0.8400
7,32,0.9990,0.8400
7,33,0.9990,0.8400
7,34,0.9990,0.8400
7,35,0.9990,0.8400
8,36,0.9700,0.8120
8,37,0.9700,0.8120
8,38,0.9700,0.8120
8,39,0.9700,0.8120
8,40,0.9700,0.8120
9,41,0.7340,0.7810
9,42,0.7340,0.7810
9,43,0.7340,0.7810
9,44,0.7340,0.7810
9,45,0.7340,0.7810
10,46,0.2660,0.7450
10,47,0.2660,0.7450
10,48,0.2660,0.7450
10,49,0.2660,0.7450
10,50,0.2660,0.7450
11,51,0.0300,0.7000
11,52,0.0300,0.7000
11,53,0.0300,0.7000
11,54,0.0300,0.7000
11,55,0.0300,0.7000
12,56,0.0010,0.6410
12,57,0.0010,0.6410
12,58,0.0010,0.6410
12,59,0.0010,0.6410
12,60,0.0010,0.6410
13,61,0.0000,0.5650
13,62,0.0000,0.5650
13,63,0.0000,0.5650
13,64,0.0000,0.5650
```

```
13,65,0.0000,0.5650
14,66,0.0000,0.4660
14,67,0.0000,0.4660
14,68,0.0000,0.4660
14,69,0.0000,0.4660
14,70,0.0000,0.4660
15,71,0.0000,0.3440
15,72,0.0000,0.3440
15,73,0.0000,0.3440
15,74,0.0000,0.3440
15,75,0.0000,0.3440
16,76,0.0000,0.2130
16,77,0.0000,0.2130
16,78,0.0000,0.2130
16,79,0.0000,0.2130
16,80,0.0000,0.2130
17,81,0.0000,0.0980
17,82,0.0000,0.0980
17,83,0.0000,0.0980
17,84,0.0000,0.0980
17,85,0.0000,0.0980
18,86,0.0000,0.0000
18,87,0.0000,0.0000
18,88,0.0000,0.0000
18,89,0.0000,0.0000
18,90,0.0000,0.0000
```

# B.2 male\_data.csv

Used for male mortality and fertility distributions.

```
1,0,0.0020,0.5920
1,1,0.0020,0.5920
1,2,0.0020,0.5920
1,3,0.0020,0.5920
```

```
1,4,0.0020,0.5920
1,5,0.0020,0.5920
2,6,0.0520,0.7700
2,7,0.0520,0.7700
2,8,0.0520,0.7700
2,9,0.0520,0.7700
2,10,0.0520,0.7700
3,11,0.3540,0.8910
3,12,0.3540,0.8910
3,13,0.3540,0.8910
3,14,0.3540,0.8910
3,15,0.3540,0.8910
4,16,0.8090,0.9140
4,17,0.8090,0.9140
4,18,0.8090,0.9140
4,19,0.8090,0.9140
4,20,0.8090,0.9140
5,21,0.9830,0.8900
5,22,0.9830,0.8900
5,23,0.9830,0.8900
5,24,0.9830,0.8900
5,25,0.9830,0.8900
6,26,1.0000,0.8650
6,27,1.0000,0.8650
6,28,1.0000,0.8650
6,29,1.0000,0.8650
6,30,1.0000,0.8650
7,31,0.9990,0.8400
7,32,0.9990,0.8400
7,33,0.9990,0.8400
7,34,0.9990,0.8400
7,35,0.9990,0.8400
8,36,0.9700,0.8120
8,37,0.9700,0.8120
8,38,0.9700,0.8120
8,39,0.9700,0.8120
8,40,0.9700,0.8120
9,41,0.7340,0.7810
```

```
9,42,0.7340,0.7810
9,43,0.7340,0.7810
9,44,0.7340,0.7810
9,45,0.7340,0.7810
10,46,0.2660,0.7450
10,47,0.2660,0.7450
10,48,0.2660,0.7450
10,49,0.2660,0.7450
10,50,0.2660,0.7450
11,51,0.0300,0.7000
11,52,0.0300,0.7000
11,53,0.0300,0.7000
11,54,0.0300,0.7000
11,55,0.0300,0.7000
12,56,0.0010,0.6410
12,57,0.0010,0.6410
12,58,0.0010,0.6410
12,59,0.0010,0.6410
12,60,0.0010,0.6410
13,61,0.0000,0.5650
13,62,0.0000,0.5650
13,63,0.0000,0.5650
13,64,0.0000,0.5650
13,65,0.0000,0.5650
14,66,0.0000,0.4660
14,67,0.0000,0.4660
14,68,0.0000,0.4660
14,69,0.0000,0.4660
14,70,0.0000,0.4660
15,71,0.0000,0.3440
15,72,0.0000,0.3440
15,73,0.0000,0.3440
15,74,0.0000,0.3440
15,75,0.0000,0.3440
16,76,0.0000,0.2130
16,77,0.0000,0.2130
16,78,0.0000,0.2130
16,79,0.0000,0.2130
```

```
16,80,0.0000,0.2130

17,81,0.0000,0.0980

17,82,0.0000,0.0980

17,83,0.0000,0.0980

17,84,0.0000,0.0980

17,85,0.0000,0.0980

18,86,0.0000,0.0000

18,87,0.0000,0.0000

18,88,0.0000,0.0000

18,89,0.0000,0.0000

18,90,0.0000,0.0000
```

# B.3 female\_preference.csv

Used for female mating preference

```
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
```

# B.4 male\_map\_preference.csv

Used for MAP model.

```
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
9,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
```

# B.5 male\_myp\_preference.csv

Used for MYP model.

```
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
5,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
7,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
8,0,0,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0
9,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
10,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
11,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
```

# C.1 Initial population output

```
0, "f", True, 1011010010101010001100010011111110, "female"
0, "f", True, 00011100100101001100011001110110, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 000101011110100101101110101111, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 10110001111010000011110011000011, "female"
0, "f", True, 00011100100101001100011001110110, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 1000001010101010110011110101101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 11100111101101000010101001100101, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 111110110111001011011111101010000, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 11100111101101000010101001100101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 010010110110101010101110000000011, "female"
```

```
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 01101111110101111001010010111001, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00010001000110011000010011110011, "female"
0, "f", True, 10000010110010011000010100001001, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 01101111110101111001010010111001, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 111111000100000011001111100000101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 10110100101110001100010011111110, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 1111110001000000110011111100000101, "female"
0, "f", True, 111110110111001011011111101010000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 11000101011110101000001110001000, "female"
```

```
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 1000001010101010110011110101101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 011100001000110000101010101010100, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 11100111101101000010101001100101, "female"
0, "f", True, 00101000000100000101001101100110, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 010010110110101010101110000000011, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 01101111110101111001010010111001, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 1111110001000000110011111100000101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 111111011101111011001010111101111, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 10110001111010000011110011000011, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 00010001000110011000010011110011, "female"
0, "f", True, 11100111101101000010101001100101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 1111110001000000110011111100000101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 10000001000111010101011100101000, "female"
```

```
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 101101001010110001100010011111110, "female"
0, "f", True, 1111110001000000110011111100000101, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 1011010010101010001100010011111110, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 000101011110100101101110101111, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 000101011110100101101110101111, "female"
0, "f", True, 00101000000100000101001101100110, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 11000101011110101000001110001000, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 11100111101101000010101001100101, "female"
0, "f", True, 10000001000111010101011100101000, "female"
0, "f", True, 11111000100000011001111100000101, "female"
0, "f", True, 0100101101101010101110000000011, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 00011011101000101000011011010000, "female"
0, "f", True, 00010101111010010101100111010111, "female"
0, "f", True, 000101011110100101101110101111, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 01100110011011101000001111010100, "female"
0, "f", True, 1000001010101010110011110101101, "female"
0, "f", True, 00000100011011000001101111001110, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "f", True, 1110100000111000001001001011100, "female"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 11101111100111101110011101101010, "male_map"
0, "m", True, 00010101011101100010100010001101, "male_map"
```

```
0, "m", True, 010101101000011011011010000000111, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 11101000010000001101011101000001, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 10000110011111000011100100010001, "male map"
0, "m", True, 100110000101111100001101111100000, "male_map"
0, "m", True, 011001011010001101000011110110000, "male_map"
0, "m", True, 10000110011111000011100100010001, "male_map"
0, "m", True, 10011000010111100001101111100000, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 11101010010011000010110100001010, "male_map"
0, "m", True, 10110011000011010000001001100101, "male map"
0, "m", True, 0011100001000110100010001011000, "male map"
0, "m", True, 10010001011001111000110010110010, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 01100101101001101000011110110000, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 10011000010111100001101111100000, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 00111000010001101000100001011000, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 10000110011111000011100100010001, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 100001100111111000011100100010001, "male_map"
0, "m", True, 11101000010000001101011101000001, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
```

```
0, "m", True, 100001100111111000011100100010001, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 00010101011101100010100010001101, "male map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 11101111100111101110011101101010, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 10010001011001111000110010110010, "male map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 1011001100001101000001001100101, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 10110011000011010000001001100101, "male map"
0, "m", True, 10110011000011010000001001100101, "male_map"
0, "m", True, 100110000101111100001101111100000, "male_map"
0, "m", True, 10110011000011010000001001100101, "male map"
0, "m", True, 10011000010111100001101111100000, "male map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 1011001100001101000001001100101, "male_map"
0, "m", True, 1010010101000100111100101110111010, "male_map"
0, "m", True, 100110000101111100001101111100000, "male map"
0, "m", True, 100110000101111100001101111100000, "male map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 10110011000011010000001001100101, "male_map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 11101111100111101110011101101010, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 001000111011111111001011101000111, "male map"
0, "m", True, 1011001100001101000001001100101, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 10010001011001111000110010110010, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
```

```
0, "m", True, 10010001011001111000110010110010, "male map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 10000110011111000011100100010001, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 10000110011111000011100100010001, "male_map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 10100101000100111100101110111010, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01100101101001101000011110110000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 10010011001001110000101010001101, "male map"
0, "m", True, 10100110111000001010100101101100, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 0010001110111111110010111101000111, "male map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 10100110111000001010100101101100, "male_map"
0, "m", True, 00111000010001101000100001011000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 1001100001011111000011011111100000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 10000110011111000011100100010001, "male map"
0, "m", True, 00111000010001101000100001011000, "male map"
0, "m", True, 01010110100011011011010000000111, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 010101101000011011011010000000111, "male map"
0, "m", True, 1011001100001101000001001100101, "male_map"
0, "m", True, 10100110111000001010100101101100, "male_map"
0, "m", True, 10000110011111000011100100010001, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 1011001100001101000001001100101, "male_map"
```

```
0, "m", True, 10100110111000001010100101101100, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 001000111011111111001011101000111, "male map"
0, "m", True, 11101111100111101110011101101010, "male_map"
0, "m", True, 1011001100001101000001001100101, "male_map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 11011110100001101100101111011101, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 10011000010111100001101111100000, "male map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 01100101100011001111101101100000, "male_map"
0, "m", True, 11101111100111101110011101101010, "male map"
0, "m", True, 001000111011111111001011101000111, "male map"
0, "m", True, 10100110111000001010100101101100, "male_map"
0, "m", True, 10100110111000001010100101101100, "male_map"
0, "m", True, 1110101001001101000010110100001010, "male_map"
0, "m", True, 1110101001001101000010110100001010, "male map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 11101111100111101110011101101010, "male_map"
0, "m", True, 0010001110111111110010111101000111, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 01010110100011011011010000000111, "male_map"
0, "m", True, 00111000010001101000100001011000, "male_map"
0, "m", True, 0011100001000110100010001011000, "male_map"
0, "m", True, 01100101100011001111101101100000, "male map"
0, "m", True, 0011100001000110100010001011000, "male_map"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 000101011110100101101110101111, "female"
5, "f", True, 01100110011011101000001111010100, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 11111000100000011001111100000101, "female"
```

```
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 111111011011100101101111101010000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 10110001111010000011110011000011, "female"
5, "f", True, 10110001111010000011110011000011, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 00000100011011000001101111001110, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 00000100011011000001101111001110, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 10000010110010011000010100001001, "female"
5, "f", True, 00101000000100000101001101100110, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 00010101111010010101100111010111, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 1111111011101111011001010111101111, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 011011111110101111001010101111001, "female"
5, "f", True, 101101001010101000110001001111110, "female"
5, "f", True, 111111011101111011001010111101111, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 11111000100000011001111100000101, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 1000001010101010110011110101101, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
```

```
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 000101011110100101101110101111, "female"
5, "f", True, 00010001000110011000010011110011, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 00011100100101001100011001110110, "female"
5, "f", True, 00011100100101001100011001110110, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 1111110001000000110011111100000101, "female"
5, "f", True, 1111110001000000110011111100000101, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 000101011110100101101110101111, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 00011100100101001100011001110110, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 10000010110010011000010100001001, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 10000010110010011000010100001001, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 01100110011011101000001111010100, "female"
5, "f", True, 11100111101101000010101001100101, "female"
5, "f", True, 11100111101101000010101001100101, "female"
5, "f", True, 00011011101000101000011011010000, "female"
5, "f", True, 010010110110101010101110000000011, "female"
5, "f", True, 1100010111110101000001110001000, "female"
5, "f", True, 01101111110101111001010010111001, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "f", True, 01100110011011101000001111010100, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 11000101011110101000001110001000, "female"
5, "f", True, 00011100100101001100011001110110, "female"
5, "f", True, 10000001000111010101011100101000, "female"
5, "f", True, 1111110001000000110011111100000101, "female"
```

```
5, "f", True, 11100111101101000010101001100101, "female"
5, "f", True, 1111110001000000110011111100000101, "female"
5, "f", True, 11111011011100101101111101010000, "female"
5, "f", True, 1110100000111000001001001011100, "female"
5, "m", True, 10010001011001111000110010110010, "male_map"
5, "m", True, 10011000010111100001101111100000, "male_map"
5, "m", True, 00010101011101100010100010001101, "male map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 11101000010000001101011101000001, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 11011110100001101100101111011101, "male map"
5, "m", True, 100110000101111100001101111100000, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 010101101000011011011010000000111, "male map"
5, "m", True, 10011000010111100001101111100000, "male map"
5, "m", True, 01010110100011011011010000000111, "male_map"
5, "m", True, 10011000010111100001101111100000, "male_map"
5, "m", True, 100001100111111000011100100010001, "male_map"
5, "m", True, 0011100001000110100010001011000, "male map"
5, "m", True, 10100110111000001010100101101100, "male map"
5, "m", True, 01100101100011001111101101100000, "male_map"
5, "m", True, 0011100001000110100010001011000, "male_map"
5, "m", True, 10011000010111100001101111100000, "male_map"
5, "m", True, 10110011000011010000001001100101, "male_map"
5, "m", True, 11101111100111101110011101101010, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 0011100001000110100010001011000, "male map"
5, "m", True, 1011001100001101000001001100101, "male_map"
5, "m", True, 00010101011101100010100010001101, "male map"
5, "m", True, 10100110111000001010100101101100, "male_map"
5, "m", True, 10110011000011010000001001100101, "male map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 10000110011111000011100100010001, "male_map"
5, "m", True, 11101000010000001101011101000001, "male_map"
5, "m", True, 11101010010011000010110100001010, "male_map"
5, "m", True, 10010001011001111000110010110010, "male_map"
```

```
5, "m", True, 0010001110111111110010111101000111, "male map"
5, "m", True, 10010001011001111000110010110010, "male_map"
5, "m", True, 11011110100001101100101111011101, "male map"
5, "m", True, 01100101101001101000011110110000, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 1011001100001101000001001100101, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 001000111011111111001011101000111, "male_map"
5, "m", True, 0011100001000110100010001011000, "male_map"
5, "m", True, 10000110011111000011100100010001, "male map"
5, "m", True, 100110000101111100001101111100000, "male_map"
5, "m", True, 00111000010001101000100001011000, "male_map"
5, "m", True, 10110011000011010000001001100101, "male map"
5, "m", True, 01100101100011001111101101100000, "male map"
5, "m", True, 1011001100001101000001001100101, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 10100110111000001010100101101100, "male_map"
5, "m", True, 01010110100011011011010000000111, "male map"
5, "m", True, 10011000010111100001101111100000, "male_map"
5, "m", True, 001000111011111111001011101000111, "male_map"
5, "m", True, 00111000010001101000100001011000, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 100110000101111100001101111100000, "male_map"
5, "m", True, 10000110011111000011100100010001, "male_map"
5, "m", True, 0011100001000110100010001011000, "male_map"
5, "m", True, 10011000010111100001101111100000, "male map"
5, "m", True, 11011110100001101100101111011101, "male_map"
5, "m", True, 011001011000110011111101101100000, "male map"
5, "m", True, 01010110100011011011010000000111, "male_map"
5, "m", True, 001000111011111111001011101000111, "male map"
5, "m", True, 10100110111000001010100101101100, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
5, "m", True, 001000111011111111001011101000111, "male_map"
5, "m", True, 10010001011001111000110010110010, "male_map"
5, "m", True, 100110000101111100001101111100000, "male_map"
```

```
5, "m", True, 10100110111000001010100101101100, "male map"
5, "m", True, 01100101101001101000011110110000, "male_map"
5, "m", True, 10000110011111000011100100010001, "male map"
5, "m", True, 011001011010001101000011110110000, "male_map"
5, "m", True, 01100101100011001111101101100000, "male_map"
5, "m", True, 01010110100011011011010000000111, "male_map"
5, "m", True, 10110011000011010000001001100101, "male map"
5, "m", True, 10100110111000001010100101101100, "male_map"
5, "m", True, 01100101100011001111101101100000, "male_map"
5, "m", True, 11101010010011000010110100001010, "male_map"
5, "m", True, 100001100111111000011100100010001, "male map"
5, "m", True, 10110011000011010000001001100101, "male_map"
5, "m", True, 0010001110111111110010111101000111, "male_map"
10, "f", True, 00011011101000101000011011010000, "female"
10, "f", True, 00011011101000101000011011010000, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 1011010010110100110001100011111110, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 1011010010110100110001100011111110, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 00000100011011000001101111001110, "female"
10, "f", True, 11111000100000011001111100000101, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 11000101011110101000001110001000, "female"
10, "f", True, 11100111101101000010101001100101, "female"
10, "f", True, 101101001010110001100010011111110, "female"
10, "f", True, 11111000100000011001111100000101, "female"
10, "f", True, 00000100011011000001101111001110, "female"
10, "f", True, 00010001000110011000010011110011, "female"
10, "f", True, 01101111110101111001010010111001, "female"
10, "f", True, 00011011101000101000011011010000, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 00000100011011000001101111001110, "female"
10, "f", True, 11000101011110101000001110001000, "female"
10, "f", True, 10000010110010011000010100001001, "female"
10, "f", True, 1110100000111000001001001011100, "female"
```

```
10, "f", True, 11101000001110000010001001011100, "female"
10, "f", True, 10000010110010011000010100001001, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 11000101011110101000001110001000, "female"
10, "f", True, 1011010010110100110001100011111110, "female"
10, "f", True, 00000100011011000001101111001110, "female"
10, "f", True, 01100110011011101000001111010100, "female"
10, "f", True, 10110001111010000011110011000011, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 11100111101101000010101001100101, "female"
10, "f", True, 00010101111010010101100111010111, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 00010101111010010101100111010111, "female"
10, "f", True, 00011100100101001100011001110110, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 01101111110101111001010010111001, "female"
10, "f", True, 1110100000111000001001001011100, "female"
10, "f", True, 00011011101000101000011011010000, "female"
10, "f", True, 01101111110101111001010010111001, "female"
10, "f", True, 10110001111010000011110011000011, "female"
10, "f", True, 11000101011110101000001110001000, "female"
10, "f", True, 0100101101101010101110000000011, "female"
10, "f", True, 00011011101000101000011011010000, "female"
10, "m", True, 11011110100001101100101111011101, "male_map"
10, "m", True, 01100101100011001111101101100000, "male_map"
10, "m", True, 10000110011111000011100100010001, "male_map"
10, "m", True, 10010001011001111000110010110010, "male_map"
10, "m", True, 10011000010111100001101111100000, "male map"
10, "m", True, 0010001110111111110010111101000111, "male_map"
10, "m", True, 11101111100111101110011101101010, "male_map"
10, "m", True, 0010001110111111110010111101000111, "male_map"
10, "m", True, 00111000010001101000100001011000, "male map"
10, "m", True, 10010001011001111000110010110010, "male_map"
10, "m", True, 11101010010011000010110100001010, "male_map"
10, "m", True, 11101000010000001101011101000001, "male_map"
10, "m", True, 1011001100001101000001001100101, "male_map"
10, "m", True, 01010110100011011011010000000111, "male_map"
10, "m", True, 01010110100011011011010000000111, "male_map"
```

```
10, "m", True, 10011000010111100001101111100000, "male_map"
10, "m", True, 0011100001000110100010001011000, "male_map"
10, "m", True, 10100110111000001010101101100, "male map"
10, "m", True, 0010001110111111110010111101000111, "male_map"
10, "m", True, 0010001110111111110010111101000111, "male_map"
10, "m", True, 1011001100001101000001001100101, "male_map"
10, "m", True, 01100101100011001111101101100000, "male map"
10, "m", True, 100010100100001111011111111110001, "male_map"
10, "m", True, 01010110100011011011010000000111, "male_map"
10, "m", True, 0011100001000110100010001011000, "male_map"
10, "m", True, 01100101101001101000011110110000, "male_map"
10, "m", True, 00010101011101100010100011001, "male_map"
10, "m", True, 100010100100001111011111111110001, "male_map"
10, "m", True, 01100101100011001111101101100000, "male_map"
10, "m", True, 11101111100111101110011101101010, "male map"
10, "m", True, 11011110100001101100101111011101, "male_map"
10, "m", True, 01100101100011001111101101100000, "male_map"
10, "m", True, 01010110100011011011010000000111, "male_map"
10, "m", True, 00010101011101100010100011001, "male map"
10, "m", True, 10100101000100111100101110111010, "male_map"
10, "m", True, 11101000010000001101011101000001, "male_map"
10, "m", True, 10011000010111100001101111100000, "male_map"
10, "m", True, 011001011010001101000011110110000, "male_map"
10, "m", True, 0010001110111111110010111101000111, "male_map"
10, "m", True, 1011001100001101000001001100101, "male_map"
10, "m", True, 1011001100001101000001001100101, "male_map"
10, "m", True, 01100101100011001111101101100000, "male_map"
10, "m", True, 0010001110111111110010111101000111, "male map"
10, "m", True, 11101000010000001101011101000001, "male_map"
10, "m", True, 01100101100011001111101101100000, "male map"
10, "m", True, 0011100001000110100010001011000, "male_map"
10, "m", True, 100010100100001111011111111110001, "male map"
15, "f", True, 11000101011110101000001110001000, "female"
15, "f", True, 00000100011011000001101111001110, "female"
15, "f", True, 1110100000111000001001001011100, "female"
15, "f", True, 111111101001101110111001011100010, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "f", True, 00011100100101001100011001110110, "female"
```

```
15, "f", True, 00011100100101001100011001110110, "female"
15, "f", True, 1000001010101010110011110101101, "female"
15, "f", True, 111111101110111011001010111101111, "female"
15, "f", True, 00011100100101001100011001110110, "female"
15, "f", True, 1110011110110100001010100101, "female"
15, "f", True, 10000001000111010101011100101000, "female"
15, "f", True, 0111000010001100001010101010101, "female"
15, "f", True, 10110001111010000011110011000011, "female"
15, "f", True, 10000001000111010101011100101000, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "f", True, 1110100000111000001001001011100, "female"
15, "f", True, 11111011011100101101111101010000, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "f", True, 11000101011110101000001110001000, "female"
15, "f", True, 011100001000110000101010101010100, "female"
15, "f", True, 1110011110110100001010100101, "female"
15, "f", True, 00010001000110011000010011110011, "female"
15, "f", True, 00011011101000101000011011010000, "female"
15, "f", True, 1110100000111000001001001011100, "female"
15, "f", True, 00010001000110011000010011110011, "female"
15, "f", True, 11000101011110101000001110001000, "female"
15, "f", True, 11111011011100101101111101010000, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "f", True, 111111000100000011001111100000101, "female"
15, "f", True, 1110100000111000001001001011100, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "f", True, 1000001010101010110011110101101, "female"
15, "f", True, 111111000100000011001111100000101, "female"
15, "f", True, 00010101111010010101100111010111, "female"
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 0011100001000110100010001011000, "male_map"
15, "m", True, 10100110111000001010101101100, "male map"
15, "m", True, 01010110100011011011010000000111, "male_map"
15, "m", True, 10100101000100111100101110111010, "male_map"
15, "m", True, 11101010010011000010110100001010, "male_map"
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 11101000010000001101011101000001, "male_map"
15, "m", True, 01010110100011011011010000000111, "male_map"
```

```
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 0010001110111111110010111101000111, "male_map"
15, "m", True, 0010001110111111110010111101000111, "male map"
15, "m", True, 01100101100011001111101101100000, "male_map"
15, "m", True, 100010100100001111011111111110001, "male_map"
15, "m", True, 1011001100001101000001001100101, "male_map"
15, "m", True, 01010110100011011011010000000111, "male map"
15, "m", True, 01010110100011011011010000000111, "male_map"
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 01100101100011001111101101100000, "male_map"
15, "m", True, 10010001011001111000110010110010, "male_map"
15, "m", True, 1011001100001101000001001100101, "male_map"
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 10011000010111100001101111100000, "male_map"
15, "m", True, 10000110011111000011100100010001, "male map"
15, "m", True, 0010001110111111110010111101000111, "male_map"
15, "m", True, 0011100001000110100010001011000, "male_map"
15, "m", True, 1001001100100111000010101010101, "male_map"
15, "m", True, 01100101100011001111101101100000, "male map"
20, "f", True, 10000001000111010101011100101000, "female"
20, "f", True, 1000001010101010110011110101101, "female"
20, "f", True, 11111000100000011001111100000101, "female"
20, "f", True, 10000001000111010101011100101000, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 1011010010110100110001100011111110, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 101101001010110001100010011111110, "female"
20, "f", True, 00010101111010010101100111010111, "female"
20, "f", True, 10110001111010000011110011000011, "female"
20, "f", True, 000101011110100101100111010111, "female"
20, "f", True, 111111011101111011001010111101111, "female"
20, "f", True, 11000101011110101000001110001000, "female"
20, "f", True, 00010001000110011000010011110011, "female"
20, "f", True, 101101001011010011000110011111110, "female"
20, "f", True, 00011011101000101000011011010000, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 11000101011110101000001110001000, "female"
20, "f", True, 1110100000111000001001001011100, "female"
```

```
20, "f", True, 00000100011011000001101111001110, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 00010101111010010101100111010111, "female"
20, "f", True, 11111000100000011001111100000101, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 00011011101000101000011011010000, "female"
20, "f", True, 01101111110101111001010101111001, "female"
20, "f", True, 01101111110101111001010010111001, "female"
20, "f", True, 11100111101101000010101001100101, "female"
20, "f", True, 101101001010110001100010011111110, "female"
20, "f", True, 11100111101101000010101001100101, "female"
20, "f", True, 101101001010110001100010011111110, "female"
20, "f", True, 00011011101000101000011011010000, "female"
20, "f", True, 11000101011110101000001110001000, "female"
20, "f", True, 11111000100000011001111100000101, "female"
20, "f", True, 10000001000111010101011100101000, "female"
20, "f", True, 111111011101111011001010111101111, "female"
20, "f", True, 11000101011110101000001110001000, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "f", True, 1110100000111000001001001011100, "female"
20, "m", True, 01010110100011011011010000000111, "male_map"
20, "m", True, 01100101100011001111101101100000, "male_map"
20, "m", True, 11101111100111101110011101101010, "male_map"
20, "m", True, 0010001110111111110010111101000111, "male_map"
20, "m", True, 01100101100011001111101101100000, "male_map"
20, "m", True, 0010001110111111110010111101000111, "male_map"
20, "m", True, 100001100111111000011100100010001, "male_map"
20, "m", True, 0010001110111111110010111101000111, "male map"
20, "m", True, 100001100111111000011100100010001, "male_map"
20, "m", True, 01100101100011001111101101100000, "male_map"
20, "m", True, 00010101011101100010100010001101, "male_map"
20, "m", True, 01100101100011001111101101100000, "male map"
20, "m", True, 1011001100001101000001001100101, "male_map"
20, "m", True, 10100110111000001010100101101100, "male_map"
20, "m", True, 00010101011101100010100010001101, "male_map"
20, "m", True, 0010001110111111110010111101000111, "male_map"
20, "m", True, 00111000010001101000100001011000, "male_map"
20, "m", True, 01100101100011001111101101100000, "male_map"
```

```
20, "m", True, 1011001100001101000001001100101, "male_map"
20, "m", True, 100001100111111000011100100010001, "male_map"
20, "m", True, 11101010010011000010110100001010, "male map"
20, "m", True, 0010001110111111110010111101000111, "male_map"
20, "m", True, 0011100001000110100010001011000, "male_map"
20, "m", True, 11101111100111101110011101101010, "male_map"
20, "m", True, 11101000010000001101011101000001, "male_map"
20, "m", True, 10010001011001111000110010110010, "male_map"
20, "m", True, 10000110011111000011100100010001, "male_map"
20, "m", True, 10010001011001111000110010110010, "male_map"
20, "m", True, 1011001100001101000001001100101, "male_map"
20, "m", True, 10110011000011010000001001100101, "male_map"
20, "m", True, 01010110100011011011010000000111, "male_map"
20, "m", True, 11101000010000001101011101000001, "male_map"
20, "m", True, 10010001011001111000110010110010, "male map"
20, "m", True, 0010001110111111110010111101000111, "male_map"
20, "m", True, 01010110100011011011010000000111, "male_map"
20, "m", True, 00011110001100010010111011010010, "male_map"
25, "f", True, 10110001111010000011110011000011, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 10000001000111010101011100101000, "female"
25, "f", True, 00010101111010010101100111010111, "female"
25, "f", True, 111111000100000011001111100000101, "female"
25, "f", True, 10000001000111010101011100101000, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 00011100100101001100011001110110, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 10000010110010011000010100001001, "female"
25, "f", True, 01101111110101111001010101111001, "female"
25, "f", True, 11111000100000011001111100000101, "female"
25, "f", True, 11111011011100101101111101010000, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 00010101111010010101100111010111, "female"
25, "f", True, 00010101111010010101100111010111, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 1110100000111000001001001011100, "female"
25, "f", True, 10000001000111010101011100101000, "female"
```

```
25, "f", True, 00010101111010010101100111010111, "female"
25, "f", True, 11111011011100101101111101010000, "female"
25, "f", True, 00011011101000101000011011010000, "female"
25, "f", True, 11000101011110101000001110001000, "female"
25, "f", True, 00011011101000101000011011010000, "female"
25, "f", True, 01101111110101111001010010111001, "female"
25, "f", True, 00000100011011000001101111001110, "female"
25, "f", True, 111111000100000011001111100000101, "female"
25, "f", True, 11111000100000011001111100000101, "female"
25, "f", True, 00010101111010010101100111010111, "female"
25, "f", True, 00011011101000101000011011010000, "female"
25, "m", True, 01100101100011001111101101100000, "male_map"
25, "m", True, 10010001011001111000110010110010, "male_map"
25, "m", True, 0011100001000110100010001011000, "male_map"
25, "m", True, 00111000010001101000100001011000, "male map"
25, "m", True, 10010001011001111000110010110010, "male_map"
25, "m", True, 0011100001000110100010001011000, "male_map"
25, "m", True, 01100101100011001111101101100000, "male_map"
25, "m", True, 0010001110111111110010111101000111, "male map"
25, "m", True, 0010001110111111110010111101000111, "male_map"
25, "m", True, 01010110100011011011010000000111, "male_map"
25, "m", True, 10000110011111000011100100010001, "male_map"
25, "m", True, 01010110100011011011010000000111, "male_map"
25, "m", True, 0010001110111111110010111101000111, "male_map"
25, "m", True, 01010110100011011011010000000111, "male_map"
25, "m", True, 10010011001001110000101010001101, "male_map"
25, "m", True, 0010001110111111110010111101000111, "male_map"
25, "m", True, 00111000010001101000100001011000, "male map"
25, "m", True, 1011001100001101000001001100101, "male_map"
25, "m", True, 101001010001001111001011110111010, "male_map"
25, "m", True, 1011001100001101000001001100101, "male_map"
25, "m", True, 11011110100001101100101111011101, "male map"
25, "m", True, 1011001100001101000001001100101, "male_map"
25, "m", True, 01100101100011001111101101100000, "male_map"
25, "m", True, 1011001100001101000001001100101, "male_map"
25, "m", True, 01100101101001101000011110110000, "male_map"
25, "m", True, 10011000010111100001101111100000, "male_map"
25, "m", True, 10000110011111000011100100010001, "male_map"
```

```
25, "m", True, 10100110111000001010100101101100, "male_map"
30, "f", True, 00011011101000101000011011010000, "female"
30, "f", True, 1111111011101111011001010111101111, "female"
30, "f", True, 1000001010101010110011110101101, "female"
30, "f", True, 1000001010101010110011110101101, "female"
30, "f", True, 1110100000111000001001001011100, "female"
30, "f", True, 00101000000100000101001101100110, "female"
30, "f", True, 10110001111010000011110011000011, "female"
30, "f", True, 00010101111010010101100111010111, "female"
30, "f", True, 00010001000110011000010011110011, "female"
30, "f", True, 01100110011011101000001111010100, "female"
30, "f", True, 01100110011011101000001111010100, "female"
30, "f", True, 111111000100000011001111100000101, "female"
30, "f", True, 00011011101000101000011011010000, "female"
30, "f", True, 1110100000111000001001001011100, "female"
30, "f", True, 1111111011101111011001010111101111, "female"
30, "f", True, 111111000100000011001111100000101, "female"
30, "f", True, 000101011110100101100111010111, "female"
30, "f", True, 111111000100000011001111100000101, "female"
30, "f", True, 1110100000111000001001001011100, "female"
30, "f", True, 11100111101101000010101001001, "female"
30, "f", True, 11000101011110101000001110001000, "female"
30, "f", True, 00011011101000101000011011010000, "female"
30, "f", True, 111111000100000011001111100000101, "female"
30, "f", True, 11000101011110101000001110001000, "female"
30, "f", True, 10000001000111010101011100101000, "female"
30, "m", True, 010101101000011011011010000000111, "male_map"
30, "m", True, 10011000010111100001101111100000, "male map"
30, "m", True, 0011100001000110100010001011000, "male_map"
30, "m", True, 100010100100001111011111111110001, "male map"
30, "m", True, 1011001100001101000001001100101, "male_map"
30, "m", True, 01010110100011011011010000000111, "male map"
30, "m", True, 10011000010111100001101111100000, "male_map"
30, "m", True, 10000110011111000011100100010001, "male_map"
30, "m", True, 11101000010000001101011101000001, "male_map"
30, "m", True, 00111000010001101000100001011000, "male_map"
30, "m", True, 100001100111111000011100100010001, "male_map"
30, "m", True, 01010110100011011011010000000111, "male_map"
```

```
30, "m", True, 10011000010111100001101111100000, "male_map"
30, "m", True, 01010110100011011011010000000111, "male_map"
30, "m", True, 01100101100011001111101101100000, "male map"
30, "m", True, 01010110100011011011010000000111, "male_map"
30, "m", True, 1011001100001101000001001100101, "male_map"
30, "m", True, 01100101100011001111101101100000, "male_map"
30, "m", True, 10011000010111100001101111100000, "male map"
35, "f", True, 11000101011110101000001110001000, "female"
35, "f", True, 10000010110010011000010100001001, "female"
35, "f", True, 00000100011011000001101111001110, "female"
35, "f", True, 1110100000111000001001001011100, "female"
35, "f", True, 10110001111010000011110011000011, "female"
35, "f", True, 11000101011110101000001110001000, "female"
35, "f", True, 0100101101101010101110000000011, "female"
35, "f", True, 1110100000111000001001001011100, "female"
35, "f", True, 11000101011110101000001110001000, "female"
35, "f", True, 00011011101000101000011011010000, "female"
35, "f", True, 1011010010110100110001100011111110, "female"
35, "f", True, 101101001010110001100010011111110, "female"
35, "f", True, 11100111101101000010101001100101, "female"
35, "f", True, 01100110011011101000001111010100, "female"
35, "f", True, 00011100100101001100011001110110, "female"
35, "f", True, 00010101111010010101100111010111, "female"
35, "f", True, 00011011101000101000011011010000, "female"
35, "f", True, 00000100011011000001101111001110, "female"
35, "f", True, 11000101011110101000001110001000, "female"
35, "f", True, 10000001000111010101011100101000, "female"
35, "f", True, 1111111011101111011001010111101111, "female"
35, "f", True, 00010001000110011000010011110011, "female"
35, "m", True, 111011111100111101110011101101010, "male map"
35, "m", True, 10000110011111000011100100010001, "male_map"
35, "m", True, 001110000100011010001010001011000, "male map"
35, "m", True, 10000110011111000011100100010001, "male_map"
35, "m", True, 0011100001000110100010001011000, "male_map"
35, "m", True, 011001011010001101000011110110000, "male_map"
35, "m", True, 0010001110111111110010111101000111, "male_map"
35, "m", True, 10011000010111100001101111100000, "male_map"
35, "m", True, 0010001110111111110010111101000111, "male_map"
```

```
35, "m", True, 0010001110111111110010111101000111, "male_map"
35, "m", True, 10100110111000001010100101101100, "male_map"
35, "m", True, 01010110100011011011010000000111, "male map"
35, "m", True, 01010110100011011011010000000111, "male_map"
35, "m", True, 01100101100011001111101101100000, "male_map"
35, "m", True, 0010001110111111110010111101000111, "male_map"
35, "m", True, 01010110100011011011010000000111, "male_map"
35, "m", True, 01010110100011011011010000000111, "male_map"
35, "m", True, 0010001110111111110010111101000111, "male_map"
35, "m", True, 1011001100001101000001001100101, "male_map"
35, "m", True, 01100101100011001111101101100000, "male map"
35, "m", True, 01100101101001101000011110110000, "male_map"
35, "m", True, 10110011000011010000001001100101, "male_map"
35, "m", True, 010101101000011011011010000000111, "male_map"
35, "m", True, 01100101100011001111101101100000, "male map"
35, "m", True, 0010001110111111110010111101000111, "male_map"
35, "m", True, 01010110100011011011010000000111, "male_map"
35, "m", True, 11101000010000001101011101000001, "male_map"
40, "f", True, 11000101011110101000001110001000, "female"
40, "f", True, 01100110011011101000001111010100, "female"
40, "f", True, 11000101011110101000001110001000, "female"
40, "f", True, 1110100000111000001001001011100, "female"
40, "f", True, 11000101011110101000001110001000, "female"
40, "f", True, 00011011101000101000011011010000, "female"
40, "f", True, 1110100000111000001001001011100, "female"
40, "f", True, 1110100000111000001001001011100, "female"
40, "f", True, 00010001000110011000010011110011, "female"
40, "f", True, 01100110011011101000001111010100, "female"
40, "f", True, 10000001000111010101011100101000, "female"
40, "f", True, 1110100000111000001001001011100, "female"
40, "f", True, 00010101111010010101100111010111, "female"
40, "f", True, 11111000100000011001111100000101, "female"
40, "m", True, 0010001110111111110010111101000111, "male_map"
40, "m", True, 0010001110111111110010111101000111, "male_map"
40, "m", True, 01100101100011001111101101100000, "male_map"
```

```
40, "m", True, 01100101101001101000011110110000, "male map"
40, "m", True, 0011100001000110100010001011000, "male_map"
40, "m", True, 01010110100011011011010000000111, "male map"
40, "m", True, 0010001110111111110010111101000111, "male_map"
40, "m", True, 01100101100011001111101101100000, "male_map"
40, "m", True, 11101010010011000010110100001010, "male_map"
40, "m", True, 111011111100111101110011101101010, "male map"
40, "m", True, 11101000010000001101011101000001, "male_map"
40, "m", True, 0010001110111111110010111101000111, "male_map"
40, "m", True, 010101101000011011011010000000111, "male_map"
40, "m", True, 10011000010111100001101111100000, "male map"
40, "m", True, 100001100111111000011100100010001, "male_map"
40, "m", True, 10110011000011010000001001100101, "male_map"
40, "m", True, 00111000010001101000100001011000, "male map"
40, "m", True, 11011110100001101100101111011101, "male map"
40, "m", True, 01100101100011001111101101100000, "male_map"
40, "m", True, 11101111100111101110011101101010, "male_map"
40, "m", True, 01010110100011011011010000000111, "male_map"
40, "m", True, 01010110100011011011010000000111, "male map"
40, "m", True, 0011100001000110100010001011000, "male_map"
40, "m", True, 10100110111000001010100101101100, "male_map"
40, "m", True, 10011000010111100001101111100000, "male_map"
40, "m", True, 0010001110111111110010111101000111, "male_map"
45, "f", True, 11000101011110101000001110001000, "female"
45, "f", True, 00010101111010010101100111010111, "female"
45, "f", True, 1111111011101111011001010111101111, "female"
45, "f", True, 11111110111101111011001010111101111, "female"
45, "f", True, 1110100000111000001001001011100, "female"
45, "f", True, 00011100100101001100011001110110, "female"
45, "f", True, 00011100100101001100011001110110, "female"
45, "f", True, 11100111101101000010101001100101, "female"
45, "f", True, 1110100000111000001001001011100, "female"
45, "f", True, 11100111101101000010101001100101, "female"
45, "m", True, 01010110100011011011010000000111, "male_map"
45, "m", True, 0011100001000110100010001011000, "male_map"
45, "m", True, 10010001011001111000110010110010, "male_map"
45, "m", True, 0001010101110110001010001101, "male_map"
45, "m", True, 0010001110111111110010111101000111, "male_map"
```

```
45, "m", True, 100001100111111000011100100010001, "male map"
45, "m", True, 0010001110111111110010111101000111, "male_map"
45, "m", True, 11101000010000001101011101000001, "male map"
45, "m", True, 00010101011101100010100010001101, "male_map"
45, "m", True, 1011001100001101000001001100101, "male_map"
45, "m", True, 10011000010111100001101111100000, "male_map"
45, "m", True, 0010001110111111110010111101000111, "male_map"
45, "m", True, 01010110100011011011010000000111, "male_map"
45, "m", True, 0010001110111111110010111101000111, "male_map"
45, "m", True, 11101000010000001101011101000001, "male_map"
45, "m", True, 100010100100001111011111111110001, "male_map"
45, "m", True, 01100101100011001111101101100000, "male_map"
45, "m", True, 10110011000011010000001001100101, "male_map"
50, "f", True, 00011011101000101000011011010000, "female"
50, "f", True, 11111000100000011001111100000101, "female"
50, "f", True, 111111000100000011001111100000101, "female"
50, "f", True, 01100110011011101000001111010100, "female"
50, "f", True, 00101000000101001001101100110, "female"
50, "f", True, 1110100000111000001001001011100, "female"
50, "f", True, 1110100000111000001001001011100, "female"
50, "f", True, 11111011011100101101111101010000, "female"
50, "f", True, 111111011101111011001010111101111, "female"
50, "f", True, 10110001111010000011110011000011, "female"
50, "f", True, 01100110011011101000001111010100, "female"
50, "m", True, 100010100100001111011111111110001, "male_map"
50, "m", True, 10011000010111100001101111100000, "male_map"
50, "m", True, 10010001011001111000110010110010, "male_map"
50, "m", True, 01010110100011011011010000000111, "male map"
50, "m", True, 0010001110111111110010111101000111, "male_map"
50, "m", True, 1101111010000110110101111011101, "male map"
50, "m", True, 01010110100011011011010000000111, "male_map"
50, "m", True, 100001100111111000011100100010001, "male map"
50, "m", True, 10010011001001110000101010001101, "male_map"
50, "m", True, 11101010010011000010110100001010, "male_map"
50, "m", True, 10011000010111100001101111100000, "male_map"
50, "m", True, 10011000010111100001101111100000, "male_map"
50, "m", True, 01010110100011011011010000000111, "male_map"
55, "f", True, 11000101011110101000001110001000, "female"
```

```
55, "f", True, 00010101111010010101100111010111, "female"
55, "f", True, 01101111110101111001010010111001, "female"
55, "f", True, 00010101111010010101100111010111, "female"
55, "f", True, 00101000000100000101001101100110, "female"
55, "f", True, 111111011101110111011001010111101111, "female"
55, "f", True, 00010101111010010101100111010111, "female"
55, "f", True, 1110100000111000001001001011100, "female"
55, "f", True, 1110100000111000001001001011100, "female"
55, "f", True, 111111011101111011001010111101111, "female"
55, "f", True, 11000101011110101000001110001000, "female"
55, "f", True, 111110110111001011011111101010000, "female"
55, "m", True, 0010001110111111110010111101000111, "male_map"
55, "m", True, 01010110100011011011010000000111, "male_map"
55, "m", True, 010101101000011011011010000000111, "male_map"
55, "m", True, 01010110100011011011010000000111, "male map"
55, "m", True, 01010110100011011011010000000111, "male_map"
55, "m", True, 10100110111000001010100101101100, "male_map"
55, "m", True, 00010101011101100010100011001, "male_map"
55, "m", True, 01100101100011001111101101100000, "male map"
60, "f", True, 1110100000111000001001001011100, "female"
60, "f", True, 00000100011011000001101111001110, "female"
60, "f", True, 11000101011110101000001110001000, "female"
60, "f", True, 11111000100000011001111100000101, "female"
60, "f", True, 00011011101000101000011011010000, "female"
60, "f", True, 1110100000111000001001001011100, "female"
60, "f", True, 00000100011011000001101111001110, "female"
60, "f", True, 10000010110010011000010100001001, "female"
60, "f", True, 1110100000111000001001001011100, "female"
60, "f", True, 111110110111001011011111101010000, "female"
60, "f", True, 00011100100101001100011001110110, "female"
60, "m", True, 01010110100011011011010000000111, "male_map"
60, "m", True, 11101111100111101110011101101010, "male map"
60, "m", True, 1011001100001101000001001100101, "male_map"
60, "m", True, 100010100100001111011111111110001, "male_map"
60, "m", True, 011001011010001101000011110110000, "male_map"
60, "m", True, 100010100100001111011111111110001, "male_map"
60, "m", True, 01100101100011001111101101100000, "male_map"
65, "f", True, 11111011011100101101111101010000, "female"
```

```
65, "f", True, 01100110011011101000001111010100, "female"
65, "f", True, 1110100000111000001001001011100, "female"
65, "f", True, 00000100011011000001101111001110, "female"
65, "f", True, 10000001000111010101011100101000, "female"
65, "f", True, 1011010010110100110001100011111110, "female"
65, "f", True, 1110100000111000001001001011100, "female"
65, "m", True, 001110000100011010000100001011000, "male map"
65, "m", True, 01010110100011011011010000000111, "male_map"
65, "m", True, 1011001100001101000001001100101, "male_map"
65, "m", True, 010101101000011011011010000000111, "male_map"
65, "m", True, 0010001110111111110010111101000111, "male map"
65, "m", True, 10011000010111100001101111100000, "male_map"
65, "m", True, 101001010001001111001011110111010, "male_map"
65, "m", True, 01010110100011011011010000000111, "male_map"
65, "m", True, 01010110100011011011010000000111, "male map"
70, "f", True, 11111000100000011001111100000101, "female"
75, "f", True, 11111000100000011001111100000101, "female"
75, "m", True, 00111000010001101000100001011000, "male_map"
75, "m", True, 10010001011001111000110010110010, "male map"
80, "f", True, 11100111101101000010101001100101, "female"
80, "f", True, 00011100100101001100011001110110, "female"
```

# **C.2 MAP Population output**

```
0,"f",True,10110111010011111001011001011011,"female"
0,"f",True,11110000011010010001110010000110,"female"
0,"f",True,101101111111111111110110000101010,"female"
0,"f",True,10011101001110101101101000000011,"female"
0,"f",True,1110001100110101111110111110000,"female"
0,"f",True,10100100110010000001001101001101,"female"
0,"f",True,01011010000101001001111011101110,"female"
0,"f",True,01001001001011110111011101110,"female"
0,"f",True,01000010111100111110111011101,"female"
0,"f",True,0100001001101011111110111001011,"female"
0,"f",True,0100001001101011111110111001011,"female"
0,"f",True,0100001001101011111110111001011,"female"
```

```
0, "f", True, 11010100111110011111001011111111101, "female"
0, "f", True, 11111011011101110110000100001100, "female"
0, "f", True, 000010001110111011101010001101111, "female"
0, "f", True, 01100110000011001011101000010010, "female"
0, "f", True, 00111011111001011001011000110110, "female"
0, "f", True, 011011110010010011101011111100000, "female"
0, "f", True, 11101000001100111000000001110110, "female"
0, "f", True, 0011110101001001001010011001110011, "female"
0, "f", True, 11011101001000000100100100110011, "female"
0, "f", True, 010101011001011111111100111011001, "female"
0, "f", True, 11110110011100100011000101010000, "female"
0, "f", True, 01001100010000010111100011110000, "female"
0, "f", True, 11000011011110010101011111100001, "female"
0, "f", True, 0011001001010010010010101011011, "female"
0, "f", True, 00111110001100010111110111010001, "female"
0, "f", True, 111111100000110001001001011001, "female"
0, "f", True, 01001110011111001110100010111001, "female"
0, "f", True, 1111110111010001001011110000101, "female"
0, "f", True, 010100111110101001101011111111, "female"
0, "f", True, 11010110111000001010110110011010, "female"
0, "f", True, 01000011101000110011100111000111, "female"
0, "f", True, 10011001000010111010111000010101, "female"
0, "f", True, 10001010111011011011010000101111, "female"
0, "f", True, 01110110000001101110010110011010, "female"
0, "f", True, 100000001111110000011100110101010, "female"
0, "f", True, 000000111111101110101000110110001, "female"
0, "f", True, 10101100110100110011011111010101, "female"
0, "f", True, 111111001000110110100001010110000, "female"
0, "f", True, 1100010100011110011101010101011011, "female"
0, "f", True, 0001110111111111101010001011000111, "female"
0, "f", True, 000010110010010010010010100011011, "female"
0, "f", True, 00111011110110010001000000101110, "female"
0, "f", True, 100111111110111000000100111010001, "female"
0, "f", True, 00111110000011100011110101101110, "female"
0, "f", True, 111111110011000000100001010110111, "female"
0, "f", True, 010000110101010101111100100101010, "female"
0, "f", True, 10000100101101101101100011001111111, "female"
0, "f", True, 011100100011110011001011111100100, "female"
```

```
0, "f", True, 1111111010110100111111000001001101, "female"
0, "f", True, 00101011011010001010100010011001, "female"
0, "f", True, 10111000110010111010111011001011, "female"
0, "f", True, 10000100100110110110110110100100, "female"
0, "f", True, 01011000101110000010101011001101, "female"
0, "f", True, 000011101000100001111111001000110, "female"
0, "f", True, 1100111001000101010111100100000, "female"
0, "f", True, 00111011000110010010111010100000, "female"
0, "f", True, 11000010010110111111010111111101, "female"
0, "f", True, 011010011111110111110000111001100, "female"
0, "f", True, 010100100111111100111010011001111, "female"
0, "f", True, 1111000111000011101011110010111111, "female"
0, "f", True, 00111011110110110000010100110110, "female"
0, "f", True, 11100100101110101100010000101000, "female"
0, "f", True, 00010011100010110001100100101110, "female"
0, "f", True, 11110000001010100011110000110011, "female"
0, "f", True, 01000110001001011011101000101010, "female"
0, "f", True, 01011100011000110000000101000011, "female"
0, "f", True, 100110001110011111111011000000100, "female"
0, "f", True, 01100011111011001001001111100110, "female"
0, "f", True, 00010011010011101011000111101011, "female"
0, "f", True, 10000011101101101011111110101111111, "female"
0, "f", True, 11000010010011110010001010100010, "female"
0, "f", True, 000000001101000011010010111111110, "female"
0, "f", True, 11100100101001101110000000010111, "female"
0, "f", True, 01001100011101001100001110111011, "female"
0, "f", True, 10111101111011000001111011111100, "female"
0, "f", True, 00011100111100100010010011010000, "female"
0, "f", True, 100010010010111111100111000001111, "female"
0, "f", True, 1001110100010001100100100101001, "female"
0, "f", True, 11011001000111011101100011100100, "female"
0, "f", True, 11000000110111010101011000111001, "female"
0, "f", True, 0001100110110110110110110000110000, "female"
0, "f", True, 01001000000000011110010100011011, "female"
0, "f", True, 11011011100000111010010101001000, "female"
0, "f", True, 00111001001010010111001110110100, "female"
0, "f", True, 01101101001010011101010000010011, "female"
0, "f", True, 00111000001010011011011010100111, "female"
```

```
0, "f", True, 00110000001101111110111100101100, "female"
0, "f", True, 0010110011111001111111100010011011, "female"
0, "f", True, 001100111111110011000101011010010, "female"
0, "f", True, 10010111100111000101011101101001, "female"
0, "f", True, 01110000101000111011110001100111, "female"
0, "f", True, 01100101000111000100011100111111, "female"
0, "f", True, 110001100000110100101101010101101, "female"
0, "f", True, 00111010011010001000101010111001, "female"
0, "f", True, 11011111011110111001101011100000, "female"
0, "f", True, 10101111001000101001110100101100, "female"
0, "f", True, 01110101011010011100010111010011, "female"
0, "f", True, 10111000011010100001011110101100, "female"
0, "f", True, 000111101111100111111010001011101, "female"
0, "f", True, 010101011110110011111011110000001, "female"
0, "f", True, 10110011010000001010111011000011, "female"
0, "f", True, 0010000101010111110111110000111, "female"
0, "f", True, 01111001110111001110111110110101, "female"
0, "f", True, 01110010101100011101101110011011, "female"
0, "f", True, 11110011001110111011110100000011, "female"
0, "f", True, 01000110010010110100011111110111, "female"
0, "f", True, 111000100101010101111101000011000, "female"
0, "f", True, 10110101011101010001001101100101, "female"
0, "f", True, 100101111001001011110111101001000, "female"
0, "f", True, 001110000010001101011111111111101110, "female"
0, "f", True, 01010011101011000000101010110000, "female"
0, "f", True, 01000000011110111100000000101000, "female"
0, "f", True, 10100110001000011000100011101111, "female"
0, "f", True, 11001010010011011011100110001010, "female"
0, "f", True, 1001101001001001001001001001001, "female"
0, "f", True, 11011100000011000000100000111010, "female"
0, "f", True, 10100011110000010010111000101000, "female"
0, "f", True, 01001110011110011100001101100100, "female"
0, "f", True, 010100010100010101101101100011110, "female"
0, "f", True, 01000011101011001010001110101011, "female"
0, "f", True, 10110001110010101110111000101100, "female"
0, "f", True, 1111111001000110001001111000001111, "female"
```

```
0, "f", True, 10010100100011011101110100011010, "female"
0, "f", True, 00011000110010001000111011011011, "female"
0, "f", True, 100111010011111111000000001001011, "female"
0, "f", True, 10001001101110011011010011000110, "female"
0, "f", True, 1101010101011110011111110000111000, "female"
0, "f", True, 11010100111010111000001010101010, "female"
0, "f", True, 01000001110000010011011110101011, "female"
0, "f", True, 111110011111110001100111101010101, "female"
0, "f", True, 110101000010010010111000000100, "female"
0, "f", True, 10110001000100101001110010011110, "female"
0, "f", True, 011001010001101101111011110010110, "female"
0, "f", True, 101111110011100001101001011010111, "female"
0, "f", True, 10100100011100011011000000101010, "female"
0, "f", True, 01111001000111011101001100000100, "female"
0, "f", True, 00010001001111010000000101101101, "female"
0, "f", True, 10000111100111010101010101010101, "female"
0, "f", True, 100000001000110111111110001011111, "female"
0, "f", True, 01010000011001101101110001110111, "female"
0, "f", True, 11010011001110000100101111100010, "female"
0, "f", True, 01010010101101011110110011011110, "female"
0, "f", True, 01100101111100010101000101100000, "female"
0, "f", True, 011011000110111101011110110100001, "female"
0, "f", True, 01101110101011110111101010111000, "female"
0, "f", True, 10010001100001011011011010101010, "female"
0, "f", True, 10011111100101101101101010110111, "female"
0, "f", True, 00011000110000010001010010010101, "female"
0, "f", True, 100110111011010100000011111110001, "female"
0, "f", True, 01010000000011000110111001100011, "female"
0, "f", True, 11110111010110001110110011100110, "female"
0, "f", True, 100100110100100001100011000110, "female"
0, "f", True, 011001111011011110111100000011001, "female"
0, "f", True, 000101110110100000111101000001010, "female"
0, "f", True, 11110000001010101010011001100110, "female"
0, "f", True, 000000101001010101001001111111000, "female"
0, "f", True, 1100111111001111100111110000101111, "female"
0, "f", True, 111010100110011111110010111001010, "female"
0, "f", True, 11001100100110001101100000010111, "female"
0, "f", True, 111100001111111001010001100001100, "female"
```

```
0, "f", True, 0011100001111010101010110101100110, "female"
0, "f", True, 110100110101101111101010001011100, "female"
0, "f", True, 0100100000110111101111111110100101, "female"
0, "f", True, 10111011011010010001100110100100, "female"
0, "f", True, 00000011110001011101001011010110, "female"
0, "m", True, 01010000100000111100110101101011, "male_map"
0, "m", True, 11000100100001000000110001111110, "male map"
0, "m", True, 0111011001000111111110001111110110, "male_map"
0, "m", True, 10101000101011100011100000101111, "male_map"
0, "m", True, 11011001001011011110011101101111, "male_map"
0, "m", True, 00011011011110001101110110001100, "male map"
0, "m", True, 11010110011100000010111010101111, "male_map"
0, "m", True, 000001011001000100001001011001, "male_map"
0, "m", True, 011111100100010101010101101111000, "male map"
0, "m", True, 11001011110010111101101110011100, "male map"
0, "m", True, 101001101011111101001111111010111, "male_map"
0, "m", True, 010101111111001111111011010010111, "male_map"
0, "m", True, 111111000010001101111011101110111010, "male_map"
0, "m", True, 101001011110010001111100111100011, "male map"
0, "m", True, 00110101100011001000110101010001, "male map"
0, "m", True, 10111100011010000011101101001101, "male_map"
0, "m", True, 01010100111011010001101000101100, "male_map"
0, "m", True, 01110001100011011010101111011001, "male_map"
0, "m", True, 00111000111000011000100111110100, "male_map"
0, "m", True, 011001011110110010111100001010, "male_map"
0, "m", True, 0111101101111000001111010111001, "male_map"
0, "m", True, 00101010001101101001000101000000, "male_map"
0, "m", True, 11001001110101011000010011110110, "male map"
0, "m", True, 10110000010011000101100000001110, "male_map"
0, "m", True, 01101111110111111011011010100111, "male map"
0, "m", True, 0111000100000100001110110110011101, "male_map"
0, "m", True, 111001101101111011101101010000110, "male_map"
0, "m", True, 111011100010101101110011111110011, "male_map"
0, "m", True, 00110011010000100000001000100010, "male_map"
0, "m", True, 101010010010010101010101101101000, "male_map"
0, "m", True, 01100001110100011101111001010111, "male_map"
0, "m", True, 11011000110011001100011110001011, "male_map"
```

```
0, "m", True, 010010100100000011010111111110010, "male map"
0, "m", True, 00101111000111000011101111000110, "male_map"
0, "m", True, 11010001111011010000000001100111, "male map"
0, "m", True, 001100101010100100111111000111, "male_map"
0, "m", True, 00100100101101111001110010110110, "male_map"
0, "m", True, 10100000101100100011011100111110, "male map"
0, "m", True, 11000010101101111001111010101010, "male_map"
0, "m", True, 10010100100010001000101010101111, "male_map"
0, "m", True, 01001110111011110011100001110101, "male_map"
0, "m", True, 00011010100010011010010000111101, "male map"
0, "m", True, 00011100010001111011001101101010, "male_map"
0, "m", True, 01010000100100011111010010001011, "male_map"
0, "m", True, 1100000001001011110010011101010, "male map"
0, "m", True, 1010101010101000100111011100111110, "male map"
0, "m", True, 01111010000000000101000110001001, "male_map"
0, "m", True, 00011011110001010111000110110010, "male_map"
0, "m", True, 110100100100100110101011110101111, "male_map"
0, "m", True, 10000001110100010011011000110010, "male map"
0, "m", True, 1101011000100101011110100000110, "male map"
0, "m", True, 11001101010000000111000101001000, "male_map"
0, "m", True, 100111011111110000101100010001100, "male_map"
0, "m", True, 11010010101001001010010010010111, "male_map"
0, "m", True, 101001111010011110010111100110110, "male_map"
0, "m", True, 10110111001011101100010111011000, "male_map"
0, "m", True, 10001011001101010000111011001001, "male_map"
0, "m", True, 1011110100110010101010101011110011, "male_map"
0, "m", True, 00110000100100101101001111001000, "male map"
0, "m", True, 101101101000001111111000101101100, "male_map"
0, "m", True, 01001010101010110001001100110001, "male map"
0, "m", True, 0100100100011010100100110111111100, "male_map"
0, "m", True, 0100110001000010101100110011011101, "male map"
0, "m", True, 1000000000000001111000110010, "male_map"
0, "m", True, 1110000110110110110101101101000000, "male_map"
0, "m", True, 01101011000100010000110010110010, "male_map"
0, "m", True, 1001111110001111110100100110001000, "male_map"
0, "m", True, 10000010001100010010111000000111, "male_map"
0, "m", True, 10011100010110110000110100111101, "male_map"
```

```
0, "m", True, 10111001000010001101110001010001, "male map"
0, "m", True, 01001010011111000010110001101101, "male_map"
0, "m", True, 0011011000001111111101111110111111, "male map"
0, "m", True, 1100111111001011111101011101110110, "male_map"
0, "m", True, 100111111110101001001001100011110, "male_map"
0, "m", True, 01100010111101010110001101111001, "male_map"
0, "m", True, 11000010000111101110110101001101000, "male map"
0, "m", True, 101000101111111011000010110110000, "male_map"
0, "m", True, 00001011100111101111010111101, "male_map"
0, "m", True, 01101000010110100000110110001110, "male_map"
0, "m", True, 01101000000001110111100110001110, "male map"
0, "m", True, 10111011110110001000011110001110, "male_map"
0, "m", True, 10010111000011000100111010000010, "male_map"
0, "m", True, 00101110111101110111110110000100, "male map"
0, "m", True, 01000100000001111000010111001010, "male map"
0, "m", True, 00100011011011011001011000000101000, "male_map"
0, "m", True, 001100001010101010100100101100110, "male_map"
0, "m", True, 00010111000110011010010000010001, "male_map"
0, "m", True, 01101111101000100101101001101000, "male map"
0, "m", True, 00010101111001100000101110101000, "male_map"
0, "m", True, 0011010010000001001010111110000, "male_map"
0, "m", True, 001101101101101111111001011001010, "male_map"
0, "m", True, 00100110010010110110010001101100, "male_map"
0, "m", True, 0111010111101101101101101001111, "male_map"
0, "m", True, 01001111011010010111010011001010, "male_map"
0, "m", True, 11010110110000011101000100111100, "male_map"
0, "m", True, 10100011100001110001011011001100, "male_map"
0, "m", True, 1010101010101010000111011001001, "male map"
0, "m", True, 01011001101000001010111110000000, "male_map"
0, "m", True, 011011111111000010010010111110001, "male map"
0, "m", True, 01001101111011000110101111001111, "male_map"
0, "m", True, 10100110011001101111100100111100, "male map"
0, "m", True, 1111001110111111111100110100100, "male_map"
0, "m", True, 1011011010101000110000100111000000, "male_map"
0, "m", True, 11000110101101110000110100011100, "male_map"
0, "m", True, 101010101110110110101001001100, "male_map"
0, "m", True, 111111100111110001001101111100011, "male_map"
0, "m", True, 1100110011011110111110110111101011, "male_map"
```

```
0, "m", True, 000110000111110001111110100011010, "male map"
0, "m", True, 01110001001010101111111111111111110, "male_map"
0, "m", True, 11101001001011001001110101000101, "male map"
0, "m", True, 001110100010001101100111111100111, "male_map"
0, "m", True, 00011100111101000101101100101110, "male_map"
0, "m", True, 00101011001110111000100011101101, "male_map"
0, "m", True, 00100000000100110011100000100101, "male map"
0, "m", True, 0111111100111101110101000111100001, "male_map"
0, "m", True, 11110010100001100010110010001100, "male_map"
0, "m", True, 00110101100110100100000101100010, "male_map"
0, "m", True, 100010111011011011011011010111101, "male map"
0, "m", True, 01000111010101110010110000001011, "male_map"
0, "m", True, 011111111010001100000110101110101, "male_map"
0, "m", True, 01001100111010111001011000110001, "male map"
0, "m", True, 01001000001000000011100000000100, "male map"
0, "m", True, 00101101110001001110001000000011, "male_map"
0, "m", True, 00001110110011110100010100100101, "male_map"
0, "m", True, 01111101001111010001110111101001, "male_map"
0, "m", True, 01011101110001010001000110001101, "male map"
0, "m", True, 1110010001010111111111111111011001010, "male map"
0, "m", True, 11000010111101010011101011001110, "male_map"
0, "m", True, 100111100101101100101011110111101, "male_map"
0, "m", True, 101011110010110101111001110010101, "male_map"
0, "m", True, 1001000010010101101101100111111101, "male_map"
0, "m", True, 1001000000011010101010000000010, "male_map"
0, "m", True, 000010111001011100100000000000, "male_map"
0, "m", True, 10110000101101010101010101110111, "male_map"
0, "m", True, 1001010010010010011011001001110, "male map"
0, "m", True, 01010111100110000100111001010100, "male_map"
0, "m", True, 100001000111001001100100111111000, "male map"
0, "m", True, 01011101111010101010101010101011100011, "male_map"
0, "m", True, 101000100001100101100111111000000, "male map"
0, "m", True, 00100010101010111110010001100100, "male_map"
0, "m", True, 010001010101010111000110101010100, "male_map"
0, "m", True, 0010000100010100010001000100110, "male_map"
0, "m", True, 101000101111010101010100001100101, "male_map"
0, "m", True, 11010100010011110110010000011011, "male_map"
0, "m", True, 111011010000000000000100111110110, "male_map"
```

```
0, "m", True, 000100110110110110110110111110011, "male map"
5, "f", True, 11101011100000100111000111011101, "female"
5, "f", True, 00000011010110011011101100110011, "female"
5, "f", True, 01000011011010000001110000001111, "female"
5, "f", True, 111111100100001111001111100011101, "female"
5, "f", True, 1110011111100100111101010010110111, "female"
5, "f", True, 00111010111110010110100100110101, "female"
5, "f", True, 100010110101101001111111001110111, "female"
5, "f", True, 10011001001011000101111100101100, "female"
5, "f", True, 11011001110000001001001000000111, "female"
5, "f", True, 00101101101110001100110110111100, "female"
5, "f", True, 100101011110110001011111001111100, "female"
5, "f", True, 10110001000101000100110001011100, "female"
5, "f", True, 00010110010010001110011000111101, "female"
5, "f", True, 1011010101101010110101110111011, "female"
5, "f", True, 00010100101011111000101011000111, "female"
5, "f", True, 10010001111001110101000101000001, "female"
5, "f", True, 1110101110001100100100101111001, "female"
5, "f", True, 001000001100100101101101001110100, "female"
5, "f", True, 00010111101011011010101010101010, "female"
5, "f", True, 101011110000010111111111111001110, "female"
5, "f", True, 01010100101100010000010011000001, "female"
5, "f", True, 10010100111000110000010100001000, "female"
5, "f", True, 11000010011110010000000100011011, "female"
5, "f", True, 01000010010010110111011011001011, "female"
5, "f", True, 11111001110011000001001001111011, "female"
5, "f", True, 00101000110100011100010101000001, "female"
5, "f", True, 10110100001001110000001111010000, "female"
5, "f", True, 01010100011101010011111011111010, "female"
5, "f", True, 001011011111111101001001100010001, "female"
5, "f", True, 00001100000111100000111100000110, "female"
5, "f", True, 00010010010011101101011100000010, "female"
5, "f", True, 00101110001000000101110000100110, "female"
5, "f", True, 111101001000111110101101111110100, "female"
5, "f", True, 00011111001110001000011001011111, "female"
5, "f", True, 11001111111101101101100110000110, "female"
5, "f", True, 110000111110001011110111011001100, "female"
5, "f", True, 01111111000101110011100000000000, "female"
```

```
5, "f", True, 01101101011001100011011110111000, "female"
5, "f", True, 01010000110101101001101010110000, "female"
5, "f", True, 01010000101011111011000110110011, "female"
5, "f", True, 111101100001011101111111110110100, "female"
5, "f", True, 0101001000110101010101111000110110, "female"
5, "f", True, 0111000100011111000100001000111, "female"
5, "f", True, 10010000001110110011100011101110, "female"
5, "f", True, 00100100011001100001110100110101, "female"
5, "f", True, 110111111010010100000111010000000, "female"
5, "f", True, 010111111000110110001010010000110, "female"
5, "f", True, 10111001001011110001001000100011, "female"
5, "f", True, 001100010011110001100011000111001, "female"
5, "f", True, 111010110110100101110110100101101, "female"
5, "f", True, 100000101111111101011100000100100, "female"
5, "f", True, 01110100011111010111101111011001, "female"
5, "f", True, 01111010100010010010010110110100, "female"
5, "f", True, 11001101100011100101100001000000, "female"
5, "f", True, 01010110100010011111101010011100, "female"
5, "f", True, 01011100101001011010011110110010, "female"
5, "f", True, 011001111111110000001000011011010, "female"
5, "f", True, 11111010101000101000100000001100, "female"
5, "f", True, 01001101111110011101110101000011, "female"
5, "f", True, 0001001111111111111010011110001011, "female"
5, "f", True, 01000011011101001000111000011000, "female"
5, "f", True, 11010110001001101010001111001000, "female"
5, "f", True, 11100010101011100010100100000000, "female"
5, "f", True, 100000111010001110110000101100000, "female"
5, "f", True, 00100000001100100110010010111111, "female"
5, "f", True, 11000011100100101001000000101101, "female"
5, "f", True, 00100111001100000101101000000000, "female"
5, "f", True, 000110111111001110001111111101100, "female"
5, "f", True, 00110001100100011101011010100110, "female"
5, "f", True, 00011110101011010100110010110001, "female"
5, "f", True, 10000001110111001100011110111000, "female"
5, "f", True, 10100100111010011011101011010000, "female"
5, "f", True, 00100100000110000111000000100001, "female"
5, "f", True, 11110101011010001001001110010000, "female"
5, "f", True, 10111101101000110000100001110000, "female"
```

```
5, "f", True, 00000110100000101100110110111000, "female"
5, "f", True, 01101110101110011110010001111011, "female"
5, "f", True, 0111110001111110000111111111011101, "female"
5, "f", True, 10101110111100001101101101101101, "female"
5, "f", True, 00010010100110000001011000110111, "female"
5, "f", True, 01001111100001010111011100011110, "female"
5, "f", True, 010011011000010011010010011111100, "female"
5, "f", True, 10100110001011011101111101011001, "female"
5, "f", True, 10111000101001001000001101101111, "female"
5, "f", True, 10001000010000110100111110101100, "female"
5, "f", True, 110000010110100101110000011111111, "female"
5, "f", True, 011001110100101111111101110000011, "female"
5, "f", True, 00100111010001001001001001010100, "female"
5, "f", True, 01000111100110110010110100100111, "female"
5, "f", True, 100110101010000110000000101101001, "female"
5, "m", True, 00001010011000111000101101111010, "male_map"
5, "m", True, 001101100111111110101010000000011, "male_map"
5, "m", True, 00110000001111000010010000101010, "male_map"
5, "m", True, 100101011111000000011100000001101, "male map"
5, "m", True, 0011010001010111111001100110110, "male map"
5, "m", True, 11001000100001100011111101100000, "male_map"
5, "m", True, 00100110000110011011000000100100, "male_map"
5, "m", True, 1111111111111111010001000001100001, "male_map"
5, "m", True, 0110010000100011000110101010111, "male_map"
5, "m", True, 11000100010001000000011001101010, "male_map"
5, "m", True, 00101010111011011011011001111111, "male_map"
5, "m", True, 010000110000110001101010101000001, "male_map"
5, "m", True, 100111111110001001011110101101011, "male map"
5, "m", True, 1001010000100111011010101101100, "male_map"
5, "m", True, 0110111000001111010001001011011, "male map"
5, "m", True, 01100110111110110000001101000101, "male_map"
5, "m", True, 0101110111000111101000010101010, "male map"
5, "m", True, 1000101101001111101000111111111110, "male_map"
5, "m", True, 01011011101110111001011000100111, "male_map"
5, "m", True, 11010000001100111011001000101000, "male_map"
5, "m", True, 0110110111111000111111110001100001, "male_map"
5, "m", True, 00111001001000111000011100010001, "male_map"
5, "m", True, 100101100010111010110101010101000, "male_map"
```

```
5, "m", True, 11011000100010111110010000101010, "male map"
5, "m", True, 11111110010111101010011111000010011, "male_map"
5, "m", True, 111111100001110100010010010010010, "male map"
5, "m", True, 11110111110101000001110000100000, "male_map"
5, "m", True, 00010001110100010111101011001110, "male_map"
5, "m", True, 000101000101111111011110001100101, "male_map"
5, "m", True, 10110111010100110001011110101111, "male map"
5, "m", True, 00011010000010101111010000100100, "male_map"
5, "m", True, 00001000100010101111100101110001, "male_map"
5, "m", True, 01010010000000010010010010010010, "male_map"
5, "m", True, 110011010111100010101111010110101, "male map"
5, "m", True, 10111001100100111000111001000001, "male_map"
5, "m", True, 11111010010101000010101000010, "male_map"
5, "m", True, 1011100111001010101111011011111111, "male map"
5, "m", True, 110000111100010011010101111111, "male map"
5, "m", True, 110011010110010010111111111011101, "male_map"
5, "m", True, 11101111011010111000010101000101, "male_map"
5, "m", True, 00000100101110011010110100101110, "male_map"
5, "m", True, 000101010101010101010101010101, "male map"
5, "m", True, 01001111010000001100111110001001, "male_map"
5, "m", True, 10101100101110100000001011110101, "male_map"
5, "m", True, 01110001101011110010110100000101, "male_map"
5, "m", True, 110101011000100011111111000010010, "male_map"
5, "m", True, 100001111011100010101110101010101, "male_map"
5, "m", True, 11010001111000111011111010001010, "male_map"
5, "m", True, 11001010000111010110011100101000, "male_map"
5, "m", True, 00100011101111101100001100000101, "male_map"
5, "m", True, 101100101001010000101001111111111, "male map"
5, "m", True, 00101110110100110000010010000100, "male_map"
5, "m", True, 10010000010011000110011111001000, "male map"
5, "m", True, 00111001001011110110010100011110, "male_map"
5, "m", True, 01011101101001101010111101011001, "male map"
5, "m", True, 1010111011010101010101111111100001, "male_map"
5, "m", True, 00000111010011110111010001000100, "male_map"
5, "m", True, 0011101111111111110110110110011001, "male_map"
5, "m", True, 1100000001110000101100000000000, "male_map"
5, "m", True, 100011100100100100100100100111101, "male_map"
```

```
5, "m", True, 11010111101001101100100111110001, "male map"
5, "m", True, 10010111000000100001001001100011, "male_map"
5, "m", True, 001010011001101000010111101101, "male map"
5, "m", True, 10000101001111111000000100101110, "male_map"
5, "m", True, 0101000011111111000000101010101101, "male_map"
5, "m", True, 1110101011111110101101101000000101, "male map"
5, "m", True, 1100010011101011111111001101111110, "male_map"
5, "m", True, 0011010011111100001111110111001010, "male_map"
5, "m", True, 0001111110011111000111110100001001, "male_map"
5, "m", True, 00000010000101001001111011001000, "male_map"
5, "m", True, 10111001011001100101001101000110, "male_map"
5, "m", True, 001101100111111111100011100001000, "male_map"
5, "m", True, 01011001010100001100000011110000, "male_map"
5, "m", True, 0100111010101011100011001110000, "male map"
5, "m", True, 001010011010100011111111011110101, "male_map"
5, "m", True, 11010111000111111011101100111110, "male_map"
5, "m", True, 11110101000011100101100001111100, "male_map"
5, "m", True, 101100011011001010111111110100000, "male map"
5, "m", True, 00011000000010010100111000111000, "male_map"
5, "m", True, 010110010011110010010111101111001, "male_map"
5, "m", True, 011100001111111110000001110111101, "male_map"
5, "m", True, 11001110101111001000000011110011, "male_map"
5, "m", True, 00100111101001011100010110001100, "male_map"
5, "m", True, 00011000001101100110011001101101, "male_map"
5, "m", True, 0100011111111111010101011001000111, "male_map"
5, "m", True, 010100001111111100101000010011101, "male_map"
5, "m", True, 00100001100100100111110011111010, "male map"
5, "m", True, 00110110000011111001111011010111, "male_map"
5, "m", True, 11011001100010001011001101000111, "male map"
5, "m", True, 101101000010110010010100011111110, "male_map"
10, "f", True, 110101110011111110100011001100010, "female"
10, "f", True, 10011100000001010010111101111101, "female"
10, "f", True, 001100111111011011011111110100001, "female"
10, "f", True, 000110011010010010010101111010, "female"
10, "f", True, 0010110001100100100101100000101, "female"
10, "f", True, 01011001100000000001011101101010, "female"
10, "f", True, 00000111011011111000101101110001, "female"
```

```
10, "f", True, 01001110001101000100110110010111, "female"
10, "f", True, 0111111100011001110110110110111111, "female"
10, "f", True, 11110000101011010111011001111010, "female"
10, "f", True, 010101000111111101101010000100011, "female"
10, "f", True, 11011110000000110110111101001111, "female"
10, "f", True, 01111010000111001000111100000111, "female"
10, "f", True, 0100011111001101111100001111111001, "female"
10, "f", True, 10111001111111000010001001011000, "female"
10, "f", True, 111011000110011001111111101001010, "female"
10, "f", True, 10110111111001000010101100110110, "female"
10, "f", True, 00101111100000000001100100001100, "female"
10, "f", True, 101100011101000111101000110100010, "female"
10, "f", True, 111011111010100010110110110111111, "female"
10, "f", True, 01111011000011000111101101101101, "female"
10, "f", True, 01000010011111101011101101010101, "female"
10, "f", True, 000111111111100100101101100000101, "female"
10, "f", True, 11011101001101010101010111101001111110, "female"
10, "f", True, 0001100100100100100000101010001, "female"
10, "f", True, 1111110111100111111101000000111011, "female"
10, "f", True, 01000011101001001000011100110011, "female"
10, "f", True, 1001011010101111001010100100001, "female"
10, "f", True, 10101110010001101111110011010011, "female"
10, "f", True, 01111111101101101001001100011011, "female"
10, "f", True, 11000000010000111011101101001111, "female"
10, "f", True, 00000111110010011001111010101000, "female"
10, "f", True, 000100001110000111011111110000000, "female"
10, "f", True, 11000100110111000000000000101110, "female"
10, "f", True, 10110010011010101010100000110111, "female"
10, "f", True, 00001101100101000010010111010111, "female"
10, "f", True, 01110111011001110111011110010001, "female"
10, "f", True, 100111110110110100001100001100111, "female"
10, "f", True, 010111111110010011000110000000111, "female"
10, "f", True, 1001010010101010101010100001011, "female"
10, "f", True, 11110011110000000100000101010001, "female"
10, "f", True, 100000010011111111101010111001010, "female"
10, "f", True, 00110000110101110010010000100010, "female"
10, "f", True, 0110010101010101010101011001101, "female"
10, "f", True, 00101010000111110110010110100110, "female"
```

```
10, "f", True, 00001100001011101010011110100011, "female"
10, "f", True, 10100111011111000111101110000001, "female"
10, "f", True, 00011011101000011011100001011100, "female"
10, "f", True, 01001100011100001000100101111110, "female"
10, "m", True, 01111100101111001010111011001001, "male_map"
10, "m", True, 10101010111101011110010000010001, "male_map"
10, "m", True, 0001000001000011011111100001101, "male_map"
10, "m", True, 10110111101111001111010110101100, "male_map"
10, "m", True, 0011111111000111010101101011111110, "male_map"
10, "m", True, 1010011010101010100100111110111101, "male_map"
10, "m", True, 0011111100011111100101111010110011, "male_map"
10, "m", True, 11011001100000011000100110110011, "male_map"
10, "m", True, 10010001000100011111101010000100, "male_map"
10, "m", True, 10000011000010000010001111111100, "male_map"
10, "m", True, 0010111001110110100111000100011, "male map"
10, "m", True, 0000010101011001100010111011110, "male_map"
10, "m", True, 10001110011001111101011110001100, "male_map"
10, "m", True, 01110000110111011011101101101111, "male_map"
10, "m", True, 010010111111001010010000110101010, "male map"
10, "m", True, 00010001001001001101110011000, "male_map"
10, "m", True, 0010101011101010110111000001010, "male_map"
10, "m", True, 01011100100000000110110000000100, "male_map"
10, "m", True, 0000001101111011011011010100100101, "male_map"
10, "m", True, 0101001100111111110110010110011110, "male_map"
10, "m", True, 10111000010001001011101010111001, "male_map"
10, "m", True, 1010001000000101111110111001011, "male_map"
10, "m", True, 101111110010101101000101010100010, "male_map"
10, "m", True, 0011101101010101010101010101001110, "male map"
10, "m", True, 00001010011010001111101010111101, "male_map"
10, "m", True, 00011001000001100000100101101010, "male_map"
10, "m", True, 101010000100100101101001111111101, "male_map"
10, "m", True, 00111110001001000011100010010111, "male map"
10, "m", True, 11100100011000001011100100101110, "male_map"
10, "m", True, 01010100011110011000101111000000, "male_map"
10, "m", True, 111101110101101111101100100000001, "male_map"
10, "m", True, 00001110110111101101000010000110, "male_map"
10, "m", True, 0011010110001100100100100101111, "male_map"
10, "m", True, 00010111001111101111000011000111, "male_map"
```

```
10, "m", True, 101110010010011110011111011010001, "male map"
10, "m", True, 001111110010010000001100101110111, "male_map"
10, "m", True, 001111101011011110001111100111101, "male map"
10, "m", True, 101001111111100101001001010001010, "male_map"
10, "m", True, 1110011101010110100011010101010, "male_map"
10, "m", True, 11000100011100000011100101010010, "male_map"
10, "m", True, 0110110101111010101111010111101000, "male map"
10, "m", True, 00100110010000110010010010010, "male_map"
10, "m", True, 000111111110111101000110100011110, "male_map"
10, "m", True, 00100110110001011110101001100101, "male_map"
10, "m", True, 01000101000001001110110110100011, "male_map"
10, "m", True, 0101001001011000000011011001011, "male_map"
10, "m", True, 01100100100110011011100110111, "male_map"
10, "m", True, 01000011110110000101000100001110, "male map"
10, "m", True, 101111111001101000101001100001000, "male_map"
10, "m", True, 10101111010100001010100000010111, "male_map"
10, "m", True, 10010010011100000010001101000000, "male_map"
10, "m", True, 01100000011110010001011110100011, "male map"
10, "m", True, 011111011100001001111110000001110, "male_map"
10, "m", True, 0101111111010110110110111111010010, "male_map"
10, "m", True, 01011111001100101000011111101011, "male_map"
10, "m", True, 010011010101011100110000110001000, "male_map"
15, "f", True, 11100100000000111010000010111010, "female"
15, "f", True, 001011001001110111111110000100101, "female"
15, "f", True, 1111110010011011101010001111110001, "female"
15, "f", True, 10101110011000001010001111011000, "female"
15, "f", True, 11011101000001001111110100110101, "female"
15, "f", True, 10101111101110111001011011100111, "female"
15, "f", True, 00110100000101110001110100001100, "female"
15, "f", True, 11000110011010011100101001111111, "female"
15, "f", True, 01001001010110111000111111111110, "female"
15, "f", True, 0110011010110110111100111010100, "female"
15, "f", True, 1000000011100000111111011010110, "female"
15, "f", True, 01001101001010111101100100001010, "female"
15, "f", True, 10110111000000000001111101000110, "female"
15, "f", True, 10101000101100101100011111010110, "female"
15, "f", True, 11110010110001110110100101001101, "female"
```

```
15, "f", True, 11011000010010011011010101101110, "female"
15, "f", True, 00010011100110101111010000110100, "female"
15, "f", True, 01011000111110111101001110001011, "female"
15, "f", True, 1010011010001001011000100101110, "female"
15, "f", True, 101001001010001011000111100111, "female"
15, "f", True, 10001110000110100110100101000110, "female"
15, "f", True, 100110001111100011011110000100000, "female"
15, "f", True, 0101101010101010101010101010111, "female"
15, "f", True, 00111010100110010010100000111011, "female"
15, "f", True, 10001010110101010000010000011100, "female"
15, "f", True, 10010111001101011001110000111100, "female"
15, "f", True, 00101011101011001001011001101000, "female"
15, "f", True, 0111000000001101101110111111111101110, "female"
15, "f", True, 1001000001100101010101111000100, "female"
15, "f", True, 01100101100011010100010100001010, "female"
15, "f", True, 01011101000001001111100010101111, "female"
15, "f", True, 010000110000101110000000111111111, "female"
15, "f", True, 11001110010111011000110100000100, "female"
15, "f", True, 010110000001101011110100111100100, "female"
15, "f", True, 1000001101110100001011001011111, "female"
15, "f", True, 00011110110101000100010001000000, "female"
15, "m", True, 10110100000010001110011110101001, "male_map"
15, "m", True, 000101010101011100111011010000001, "male_map"
15, "m", True, 11010001011110100000100011110000, "male_map"
15, "m", True, 1100000101101010101100101101010, "male_map"
15, "m", True, 0100111011010011010101011110111, "male_map"
15, "m", True, 01101111011110010011011001010100, "male_map"
15, "m", True, 11011101100010100000011110101101, "male map"
15, "m", True, 11010100100000001101101100100101, "male_map"
15, "m", True, 01001011001101110101010001010100, "male_map"
15, "m", True, 1100100101001001010101010101010, "male_map"
15, "m", True, 00000101000110111110000110010100, "male map"
15, "m", True, 00110000100000101111000110010100, "male_map"
15, "m", True, 10101011001000000000011000100111, "male_map"
15, "m", True, 11010010101011110000100101101111, "male_map"
15, "m", True, 0000001011000001001011000010111, "male_map"
15, "m", True, 01011000010110000110111110011100, "male_map"
15, "m", True, 10001010011000000011101110100111, "male_map"
```

```
15, "m", True, 01111000111000010001000101111000, "male_map"
15, "m", True, 01101101101010001011111001001100, "male_map"
15, "m", True, 100101000001000010101111011100, "male map"
15, "m", True, 00000100110101011011011011011011, "male_map"
15, "m", True, 11001101101001101010001000011001, "male_map"
15, "m", True, 00010010101011101110100011111101, "male_map"
15, "m", True, 001101000101101101000101110101, "male_map"
15, "m", True, 0001111110011000111111000011110111, "male_map"
15, "m", True, 01111100101111101100011111101100, "male_map"
15, "m", True, 01101001000011011111000110110110, "male_map"
20, "f", True, 00110100110101000111001100111110, "female"
20, "f", True, 011111111010110000101100010110111, "female"
20, "f", True, 00010111000101001110100110110111, "female"
20, "f", True, 000110111010001001010101010111010, "female"
20, "f", True, 10110001011000110111010001011100, "female"
20, "f", True, 10000100000011101111000001110101, "female"
20, "f", True, 11011100011101000011000100000111, "female"
20, "f", True, 01110101000010111101111110110111, "female"
20, "f", True, 01100111110011000110101100010100, "female"
20, "f", True, 111010110011100101111111001100100, "female"
20, "f", True, 11010110011110010000101100101110, "female"
20, "f", True, 01110010101111011010001101111001, "female"
20, "f", True, 00000000010111011011110111100110, "female"
20, "f", True, 00110001011010001100011000010111, "female"
20, "f", True, 11001111000111010100111110101011, "female"
20, "f", True, 11000110111100010011101110101011, "female"
20, "f", True, 11010000100110011101100111110101, "female"
20, "f", True, 010001000101000001111111100000001, "female"
20, "f", True, 101001100011111110010010110100000, "female"
20, "f", True, 0001101100101010101010101010101, "female"
20, "f", True, 1011111101000000111011011011001010, "female"
20, "f", True, 00011010111011000101101100011101, "female"
20, "f", True, 01111000000000000010001010000100, "female"
20, "f", True, 10101100111101011001110111000011, "female"
20, "f", True, 11001010111001001011000101101110, "female"
20, "f", True, 10110011010011000101100010110101, "female"
20, "f", True, 10100000001011110010110100100101, "female"
20, "f", True, 10011010010110010100001100100010, "female"
```

```
20, "f", True, 11110101101000001101011001000110, "female"
20, "f", True, 10011001000001000100101111101110, "female"
20, "f", True, 11111101011111111011110111101010110, "female"
20, "m", True, 110110110000011111101011000001011, "male_map"
20, "m", True, 010011000110000000010011001011, "male_map"
20, "m", True, 1111000011000100101111000001110, "male_map"
20, "m", True, 11101110010111100010101110101000, "male map"
20, "m", True, 010011000111001001111110100001100, "male_map"
20, "m", True, 01011010000111110001101101001100, "male_map"
20, "m", True, 1100100101111010101001001100100, "male_map"
20, "m", True, 01110000101101011001001100110010, "male_map"
20, "m", True, 01011111011011010101010101010111, "male_map"
20, "m", True, 11100001111001001111001000100111, "male_map"
20, "m", True, 010111001111111101100001101101001, "male_map"
20, "m", True, 01101011000010010011000100111011, "male map"
20, "m", True, 0101010101010111110100010100100110, "male_map"
20, "m", True, 10000001010111011101110010110110, "male_map"
20, "m", True, 00101011010100011110100110001101, "male_map"
20, "m", True, 10100000010000010000110110100111, "male map"
20, "m", True, 0000010111111100001111101000011010, "male_map"
20, "m", True, 001010101000100101010101010101101, "male_map"
20, "m", True, 11101001111101001101101001110010, "male_map"
20, "m", True, 01011111010100011011110001110100, "male_map"
20, "m", True, 10110000101110110101111010110011, "male_map"
20, "m", True, 00001110100111110010110100001010, "male_map"
20, "m", True, 111101110101010101110000010110110, "male_map"
20, "m", True, 1000110101010101011011010101111, "male_map"
20, "m", True, 01110001100000010000010110101101, "male map"
20, "m", True, 00111101001100000001110011111010, "male_map"
20, "m", True, 110100000001100100101111111101000, "male_map"
20, "m", True, 110011110101010111100111001110, "male_map"
20, "m", True, 01111111100110011011011010000111010, "male map"
20, "m", True, 0001001010110111000001010111111, "male_map"
25, "f", True, 010101001011111010100111100011111, "female"
25, "f", True, 10111110111011101001101111000111, "female"
25, "f", True, 10011101100011100101111010011111, "female"
25, "f", True, 10100100011101100010010000100000, "female"
25, "f", True, 010100000001010110100001110111010, "female"
```

```
25, "f", True, 10011001000000111110011101010100, "female"
25, "f", True, 10110110000100110010100000110000, "female"
25, "f", True, 000110011111100010011111101100001, "female"
25, "f", True, 1000101001111110101011111110010, "female"
25, "f", True, 10100011011011011110111110111110, "female"
25, "f", True, 0011010010000100101111000010111, "female"
25, "f", True, 0110101011001100110011010110111, "female"
25, "f", True, 11110110010000001000010000100100, "female"
25, "f", True, 10000000101011011001010111101101, "female"
25, "f", True, 1001010101010101010001000010100010, "female"
25, "f", True, 10110011110101011010001110001110, "female"
25, "f", True, 10100001100011000001000001101101, "female"
25, "f", True, 10110000010000000100101101101100, "female"
25, "f", True, 0011011101100101011111010101111110, "female"
25, "f", True, 0110111110010101111100011111110000, "female"
25, "f", True, 11000110110010111010000001101011, "female"
25, "f", True, 01011001000011110110000111101010, "female"
25, "f", True, 101010111111100000111001001011000, "female"
25, "f", True, 0111111110011001101111100100011000, "female"
25, "m", True, 01011000110011110010101100111011, "male_map"
25, "m", True, 01110111100100110110111011110110, "male_map"
25, "m", True, 11001100110000011011001101010101, "male_map"
25, "m", True, 000000101111111100100010010000001, "male_map"
25, "m", True, 01101101001101100100010101100010, "male_map"
25, "m", True, 01110110001111010011101011101110, "male_map"
25, "m", True, 00001111010000001011111100101011, "male_map"
25, "m", True, 10000011000111100011001111100010, "male_map"
25, "m", True, 10010010010111010111000110111010, "male map"
25, "m", True, 01011100110010111011000111011001, "male_map"
25, "m", True, 100110111101111010100100100010000, "male_map"
25, "m", True, 11110001010011000011110111100101, "male_map"
25, "m", True, 00110111100011111001110000100101, "male map"
25, "m", True, 11010100111011001010000010111011, "male_map"
25, "m", True, 00000001011000011001110110011011, "male_map"
25, "m", True, 10110000000111010000100111110000, "male_map"
25, "m", True, 11110111110010110111111000110111, "male_map"
25, "m", True, 100100001010011111011110111101111, "male_map"
25, "m", True, 1000001110010100101110001001111, "male_map"
```

```
25, "m", True, 101011100111000010011010101000100, "male_map"
25, "m", True, 110011001001111110100100001110010, "male_map"
30, "f", True, 01110101001001100010010111010000, "female"
30, "f", True, 01000001010110001000110001011110, "female"
30, "f", True, 010010000110111101111010111101011, "female"
30, "f", True, 111111111000111011010010001100011, "female"
30, "f", True, 01010100010011001110011100110011, "female"
30, "f", True, 1001011010100010000100001000001, "female"
30, "f", True, 000110100101100011111101011111010, "female"
30, "f", True, 00000011110000010101110010001010, "female"
30, "f", True, 100100101111101110101010101001001, "female"
30, "f", True, 11010100001110001011010111100001, "female"
30, "f", True, 0101111100111111011011011101100111, "female"
30, "f", True, 1100001110000000101101000000000, "female"
30, "f", True, 10010000101110010011010001110111, "female"
30, "f", True, 01111010001011011111010111011010, "female"
30, "f", True, 10010111001001010001001101101100, "female"
30, "f", True, 011100100111011010011001011111110, "female"
30, "f", True, 100111111111001101101111011111000, "female"
30, "f", True, 10110111111100100000000100101000, "female"
30, "f", True, 10100110100011100110011011011111, "female"
30, "f", True, 10010100010111011100001100101001, "female"
30, "f", True, 00011110001001100001110011101011, "female"
30, "m", True, 1110000000011000000111001110011, "male_map"
30, "m", True, 11011101100011100010110100010000, "male_map"
30, "m", True, 0110000101101001011000111111111, "male_map"
30, "m", True, 01001111010001111110001110100111, "male_map"
30, "m", True, 00000111010111001011011100010111, "male map"
30, "m", True, 100100110101100111111111001101101, "male_map"
30, "m", True, 111101000011100110101001001101010, "male map"
30, "m", True, 111011001011111111001010000101000, "male_map"
30, "m", True, 1100110110100100101111100000000, "male map"
30, "m", True, 0111111101100001111010010010011101, "male_map"
30, "m", True, 110111001100111101000111100001111, "male_map"
30, "m", True, 0101010101110001101000100001000, "male_map"
30, "m", True, 1101110000100010001010010010010, "male_map"
30, "m", True, 01010100001011100000001111011000, "male_map"
```

```
30, "m", True, 11111001100100001011110101100110, "male_map"
30, "m", True, 010010101111011100001111111000011, "male_map"
30, "m", True, 101101000111100101111011110011111, "male map"
30, "m", True, 1101100010110101010100010000111, "male_map"
30, "m", True, 010011011111111011010001110101001, "male_map"
30, "m", True, 0110100100001010101010010011011010, "male_map"
30, "m", True, 011111110111101100100100100001000, "male map"
30, "m", True, 1101001000111100001010111100011, "male_map"
30, "m", True, 011011011110111100010010110001110, "male_map"
35, "f", True, 10110100010101001000001011011000, "female"
35, "f", True, 111011101001010111111111100001100, "female"
35, "f", True, 01011001001010011001100000110000, "female"
35, "f", True, 110010010101010001100011110011010, "female"
35, "f", True, 00110110000000011111000101101001, "female"
35, "f", True, 11010011000011110100010000001010, "female"
35, "f", True, 11101001010011000011111001110101, "female"
35, "f", True, 010110111011110111101111001111101, "female"
35, "f", True, 001010101010101010101110110101011, "female"
35, "f", True, 01110111100011100010100101100000, "female"
35, "f", True, 01001101101111010110000010100001, "female"
35, "f", True, 01100100011011101011110100001010, "female"
35, "f", True, 10111001101110010100111011100111, "female"
35, "f", True, 010010101011111101100001011111111100, "female"
35, "f", True, 111101001001111101110111010101111, "female"
35, "f", True, 01100100010011000011111010010100, "female"
35, "f", True, 01010111100101000100010001110011, "female"
35, "f", True, 0011101111111100101011110111000110, "female"
35, "f", True, 01010111100011111010110010001010, "female"
35, "f", True, 00010101101111101100011100000001, "female"
35, "m", True, 01110011000101001011010101111101, "male map"
35, "m", True, 11110011101010101010100000000101, "male_map"
35, "m", True, 00111100000110010110001100110000, "male map"
35, "m", True, 11001001101100111101000001101001, "male_map"
35, "m", True, 11100011001110010110010011010000, "male_map"
35, "m", True, 1111110101001001001000001101010101, "male_map"
35, "m", True, 000011111110011000010111011001000, "male_map"
35, "m", True, 000111111101111011010000011011111, "male_map"
35, "m", True, 1101100001000010000110001110111, "male_map"
```

```
35, "m", True, 10000010101011100001110111000100, "male_map"
35, "m", True, 011000101111111101000101111000111, "male_map"
35, "m", True, 011010101001110101001000111100010, "male map"
35, "m", True, 1001011100100000010010101010110, "male_map"
35, "m", True, 001011001110001101010101000110010, "male_map"
35, "m", True, 1010100000001011010110101101010, "male_map"
35, "m", True, 00110000100000011101110010000100, "male map"
35, "m", True, 00101111011000010000110110001000, "male_map"
35, "m", True, 11101100001100110011100011110001, "male_map"
35, "m", True, 011111101000011101101001001101010, "male_map"
35, "m", True, 11101101100011001101110100011001, "male_map"
35, "m", True, 11001100001001101010000011000111, "male_map"
35, "m", True, 10001011101110111010010010011001, "male_map"
35, "m", True, 111011111010111010011111101000000, "male_map"
35, "m", True, 01101001000110110100111110101000, "male map"
35, "m", True, 1000000111101101101100100101000, "male_map"
35, "m", True, 00101100101110110101011001100111, "male_map"
35, "m", True, 00010110000001000110111110110100, "male_map"
40, "f", True, 10011000010010101010101011011001, "female"
40, "f", True, 10001011010011110100001110010111, "female"
40, "f", True, 10100010101010101010100000101100, "female"
40, "f", True, 01001010111011100010010011101101, "female"
40, "f", True, 00010000010000000110011100001100, "female"
40, "f", True, 1100010000100001001111011011011, "female"
40, "f", True, 11101011100010000010101111010110, "female"
40, "f", True, 001111001010101010101010100100111, "female"
40, "f", True, 10001100111010001001101001011000, "female"
40, "f", True, 00010101100111010001101000100101, "female"
40, "f", True, 11000110001000110011000011110111, "female"
40, "f", True, 10111011011000010001011100100001, "female"
40, "f", True, 110011000111100010110011111111100, "female"
40, "f", True, 00011011011010000101001011011010, "female"
40, "f", True, 00001000111000010101100100100110, "female"
40, "f", True, 00100000011010111101000001111101, "female"
40, "f", True, 001000001101101101111110000101100, "female"
40, "f", True, 10000010000011010011110101101010, "female"
40, "f", True, 11000110101101010101111000101101, "female"
40, "f", True, 0101111110110110110110010010101, "female"
```

```
40, "f", True, 11000011010110010110010110100101, "female"
40, "m", True, 010010110110001101100000110110110, "male_map"
40, "m", True, 010110010100001111111101110001010, "male map"
40, "m", True, 11011010001011100011100100110100, "male_map"
40, "m", True, 11011010001101011001000111101011, "male_map"
40, "m", True, 01100110110010100000001100010001, "male_map"
40, "m", True, 000111000011100011111000101111110, "male map"
40, "m", True, 00011001101100000101001100100101, "male_map"
40, "m", True, 01001100000011101110000001010111, "male_map"
40, "m", True, 01110001011010011110011001100011, "male_map"
40, "m", True, 00111000001101111010110100110110, "male map"
40, "m", True, 11011100000101000011001000011010, "male_map"
40, "m", True, 0111111010001001101011110001111010, "male_map"
40, "m", True, 1110010001010111011101100100010, "male_map"
45, "f", True, 001011111110000010010011011011100, "female"
45, "f", True, 11100101111010101111011110111000, "female"
45, "f", True, 0101100110110110110110110100000, "female"
45, "f", True, 01000100011011011000010111110011, "female"
45, "f", True, 11110010000101000101001111011011, "female"
45, "f", True, 01101011101001011100101011001100, "female"
45, "f", True, 111100000111111101100110000001101, "female"
45, "f", True, 00011110101010101111111000011010, "female"
45, "f", True, 00011011000101100000110111110011, "female"
45, "m", True, 111111111000001001100001001101, "male_map"
45, "m", True, 10110111001101011001110101100101, "male_map"
45, "m", True, 11011101101100101000110110001100, "male_map"
45, "m", True, 101110000101100110101111110100101, "male_map"
45, "m", True, 10000111000001111011011001100011, "male map"
45, "m", True, 00100011110111101110111010110000, "male_map"
45, "m", True, 00001011100101010101010010010001, "male_map"
45, "m", True, 111000000101010111010110111011111, "male_map"
45, "m", True, 01111101111000011011010011100111, "male map"
45, "m", True, 10100011111000111011110010001111, "male_map"
45, "m", True, 110101110111000111100111100, "male_map"
45, "m", True, 1111010011100011111110001111111000, "male_map"
45, "m", True, 000111100001100010100111000111000, "male_map"
45, "m", True, 01001110001001001000011110101001, "male_map"
45, "m", True, 010101100101001111111111101011101, "male_map"
```

```
45, "m", True, 00100010011100001100101111011001, "male_map"
45, "m", True, 0010100111100111111110010111111011, "male_map"
50, "f", True, 01110000010101100100000101100001, "female"
50, "f", True, 01100101000011010111101001010101, "female"
50, "f", True, 00011010110111110100100110110110, "female"
50, "f", True, 001101111111001000000100000101001, "female"
50, "f", True, 00111101111100101001011001110011, "female"
50, "f", True, 10111111101110011011111100100111100, "female"
50, "f", True, 01010110000110110101100100001110, "female"
50, "f", True, 10111101101101101101100111100001, "female"
50, "f", True, 000011100001001110111011111111111, "female"
50, "f", True, 11001110101011100100001000111001, "female"
50, "m", True, 010110000101101001001001001101, "male_map"
50, "m", True, 111000101110010101010101010101010, "male_map"
50, "m", True, 1010010100100101101000111101110, "male map"
50, "m", True, 01011001011010111000000010101110, "male_map"
50, "m", True, 10111101110011001001001111101011, "male_map"
50, "m", True, 00001010101101010000000111010011, "male_map"
55, "f", True, 1011100110000110101010100000010, "female"
55, "f", True, 01101000011111010111100111101010, "female"
55, "f", True, 00110110001111100111100111000110, "female"
55, "f", True, 10100111001010001101010101011111, "female"
55, "f", True, 01000000010100100111010111000100, "female"
55, "f", True, 10011001001011111001001111000010, "female"
55, "f", True, 11010111000011010100010000001011, "female"
55, "f", True, 0100001111111011011010011111111110, "female"
55, "f", True, 0100000010110100101001001001101101, "female"
55, "f", True, 10100100101010101000001111110101, "female"
55, "m", True, 010110000111111110010001010011011, "male_map"
55, "m", True, 0101010001000100110111110101000, "male map"
55, "m", True, 11101100010000000100010101100110, "male_map"
55, "m", True, 11100110001101110011100000000111, "male map"
55, "m", True, 01000100001110000100111010001100, "male_map"
55, "m", True, 001010110111011000101111101110, "male_map"
55, "m", True, 001111111101000101010010001100110, "male_map"
60, "f", True, 0101000100000001100000001001101, "female"
60, "f", True, 11011100110011100111011100111111, "female"
60, "f", True, 11000100011111001111010000110111, "female"
```

```
60, "f", True, 001000111111111000000111001000110, "female"
60, "f", True, 1011011001001101110100010001000, "female"
60, "f", True, 10000000100110000000011110100110, "female"
60, "f", True, 11101110000101010111001000011110, "female"
60, "f", True, 0000110001100001010101011001100, "female"
60, "f", True, 10100110010111001101000001011111, "female"
60, "f", True, 01110001100000111100110101100010, "female"
60, "f", True, 100111000000111110111010101010101, "female"
60, "f", True, 10000111110011100100100110101111, "female"
60, "m", True, 1000101100111011010010101110110, "male_map"
60, "m", True, 001111001100111110111110111110100, "male map"
60, "m", True, 01010110001100101000100100110001, "male_map"
60, "m", True, 01011111101011011111000011101010, "male_map"
60, "m", True, 10011101011100010010100100110010, "male_map"
60, "m", True, 11000111000010001100010110101000, "male map"
60, "m", True, 10001101010101010101111110101011111, "male_map"
60, "m", True, 101111111101001110010100101101001, "male_map"
60, "m", True, 0111111010001110111100101010101110, "male_map"
60, "m", True, 0101001100110000000001101110, "male map"
60, "m", True, 11000000110111110100100010100110, "male_map"
60, "m", True, 11001000001011001011001011010111, "male_map"
60, "m", True, 0011100011110011010110101110111, "male_map"
65, "f", True, 10000100110101000000010101100101, "female"
65, "f", True, 0100110000000101011101101101101111, "female"
65, "f", True, 11110010000000011101011111101011, "female"
65, "f", True, 0011001100001111111011010111111100, "female"
65, "f", True, 111011111100100100101101000101110, "female"
65, "m", True, 011111111001110110101010101111010, "male map"
65, "m", True, 0110011001011111000100000010110, "male_map"
65, "m", True, 110000011100100100010000111111111, "male map"
65, "m", True, 1000001101111111111100010010101111, "male_map"
65, "m", True, 00111011110101100111111101010100, "male map"
70, "f", True, 010010111111100000100011100111000, "female"
70, "m", True, 101000010110110010111100101111010, "male_map"
70, "m", True, 101011100010011100110101011111110, "male_map"
70, "m", True, 111011110011101001101101111110111, "male_map"
75, "m", True, 00001100001111100000111101010111, "male_map"
75, "m", True, 1000100000011110101001011110010, "male_map"
```

```
80, "f", True, 011111110101011110001000010001101, "female"
```

## **C.3 MYP Population output**

```
0, "f", True, 01001111010101001001100110001110, "female"
0, "f", True, 11111001110000100111000000011000, "female"
0, "f", True, 0010001100011111011110111000011, "female"
0, "f", True, 11010000000110110101100010001000, "female"
0, "f", True, 01001010011011001000110101000100, "female"
0, "f", True, 11100001010010110111011001101101, "female"
0, "f", True, 11101101111010001100011101010010, "female"
0, "f", True, 01111110011111110000110011111100100, "female"
0, "f", True, 1110101010101010101010101111010111, "female"
0, "f", True, 0101111110111111101011010001101010, "female"
0, "f", True, 01010111110010101100000001011100, "female"
0, "f", True, 01101010001010000111101111110100, "female"
0, "f", True, 00111001010010001110111001011011, "female"
0, "f", True, 10001111100011111001001011100100, "female"
0, "f", True, 1111001010000011111110010011111111, "female"
0, "f", True, 1010011101101101101010111001100, "female"
0, "f", True, 10100010001111000011111010001111, "female"
0, "f", True, 11001101011111011110100010100111, "female"
0, "f", True, 11101110010010100010110100110000, "female"
0, "f", True, 0101000011101101010101010100010001, "female"
0, "f", True, 11101111001111001000111110100110, "female"
0, "f", True, 11110101010010010010110100001100, "female"
0, "f", True, 01011111111111111010001111111110000, "female"
0, "f", True, 10111011110001101000000001100001, "female"
0, "f", True, 001111010100011101001101010101101, "female"
0, "f", True, 11100001100011111000010000111010, "female"
0, "f", True, 101011101111111111000011111001110, "female"
0, "f", True, 1111111010011110110110111011101110, "female"
0, "f", True, 11000001101000000110110000001110, "female"
0, "f", True, 11010111011101100000101001100000, "female"
0, "f", True, 00101101110101001001010111011111, "female"
```

```
0, "f", True, 1111111111001101011110001010001110, "female"
0, "f", True, 00001000110110000110010000011110, "female"
0, "f", True, 11110000101000101101110000001101, "female"
0, "f", True, 11000000010001011100011010111010, "female"
0, "f", True, 0101101011110110000100100101110, "female"
0, "f", True, 11001100000100001110101001110000, "female"
0, "f", True, 1100010110010001010000101000000111, "female"
0, "f", True, 000101001111010010111100110111100, "female"
0, "f", True, 10111100011000111011101110110010, "female"
0, "f", True, 11010011011010010110100001111011, "female"
0, "f", True, 111010101000001011100000011111110, "female"
0, "f", True, 10000011110000110100000001110010, "female"
0, "f", True, 00101000010011001101110110000111, "female"
0, "f", True, 1001001011001001001001010101011, "female"
0, "f", True, 000111101001111111100000100110100, "female"
0, "f", True, 101010111111111001000010011011111, "female"
0, "f", True, 000101001111111110000110100001101, "female"
0, "f", True, 10011010011110011001111101101100, "female"
0, "f", True, 00111011000111000100010011100001, "female"
0, "f", True, 00001001010000000101011011011010, "female"
0, "f", True, 00011101100101100110110001000000, "female"
0, "f", True, 111111111111111111110101011010110101, "female"
0, "f", True, 101001001111110110111110110111100, "female"
0, "f", True, 110100010110111001011001010000, "female"
0, "f", True, 001111111011000111011111001110001, "female"
0, "f", True, 10001110100111001110111111011011, "female"
0, "f", True, 10101000000101001100000010010010, "female"
0, "f", True, 0101111101000001101010101010111, "female"
0, "f", True, 110101011000111011011111010010011, "female"
0, "f", True, 11101010101010101000111000011101111, "female"
0, "f", True, 10010011110101110010001110001001, "female"
0, "f", True, 1000100110011111111101101011110100, "female"
0, "f", True, 01000000110110100010001101000111, "female"
0, "f", True, 0101001100001001000001010010010, "female"
0, "f", True, 10011000100010011101001001110010, "female"
0, "f", True, 10001111011110111010100100110010, "female"
0, "f", True, 00011110010110000100110110011011, "female"
0, "f", True, 1010010101010101010100000101111, "female"
```

```
0, "f", True, 00010110101111101010001001000000, "female"
0, "f", True, 00110011000000000000110111000110, "female"
0, "f", True, 110010101010101111011111000111101101, "female"
0, "f", True, 0001110010001000100011010010100, "female"
0, "f", True, 10110010010101101000010001111101, "female"
0, "f", True, 01111110000000100010111111111111100, "female"
0, "f", True, 001110000000011001010001001010, "female"
0, "f", True, 01000010011001001001000001110100, "female"
0, "f", True, 001110010111101010110010111111000, "female"
0, "f", True, 11110010100100011010011010110100, "female"
0, "f", True, 10110001010111010100110000111100, "female"
0, "f", True, 0101000101000111110100010001010, "female"
0, "f", True, 0111100100010101010101110111010, "female"
0, "f", True, 01110100101001010001010111000101, "female"
0, "f", True, 11110001010111000111100100011000, "female"
0, "f", True, 0000111111110011110011011010011000, "female"
0, "f", True, 11000101110011001010001011100100, "female"
0, "f", True, 01111100000010100000010111111010, "female"
0, "f", True, 101000101011011101110111011100, "female"
0, "f", True, 11110010011101110011001100111011, "female"
0, "f", True, 00110110011100111110011100001011, "female"
0, "f", True, 010101101000100011001100111111100, "female"
0, "f", True, 10011101010001001011100010000011, "female"
0, "f", True, 01011100111101100000100101111100, "female"
0, "f", True, 00001110010011000110011111000100, "female"
0, "f", True, 101010001011010101010000111100110, "female"
0, "f", True, 11011100000101101100000010000101, "female"
0, "f", True, 10111000010000111000110100110111, "female"
0, "f", True, 1010111011111111010110111111010100, "female"
0, "f", True, 11100011101001111011010000100101, "female"
0, "f", True, 1010100011110101010111101011111111, "female"
0, "f", True, 1000010011111110011001111110110000, "female"
0, "f", True, 10100110111000011010011101100000, "female"
0, "f", True, 10111101011010110000011010111010, "female"
0, "f", True, 010000100011111111000100111001001, "female"
0, "f", True, 1010011011010010011001011000101, "female"
0, "f", True, 01000100100100001111100100011111, "female"
0, "f", True, 110100000111110000101011111110100, "female"
```

```
0, "f", True, 01111010110000010110100000010111, "female"
0, "f", True, 00001110001110111100001011110001, "female"
0, "f", True, 000100101110100010111111101000111, "female"
0, "f", True, 00100101110101110000101100011111, "female"
0, "f", True, 11100101100110101011011101100010, "female"
0, "f", True, 000110101010000100110111111111110110, "female"
0, "f", True, 01100011111010101001001101010000, "female"
0, "f", True, 11001000100100111001111010110101, "female"
0, "f", True, 10011001010101000000101000110111, "female"
0, "f", True, 10100010011001100111011010000100, "female"
0, "f", True, 001110011100100110011111100010111, "female"
0, "f", True, 10111101101001100000010010000100, "female"
0, "f", True, 11001011111011110110011011001110, "female"
0, "f", True, 10001001110101101100101000000001, "female"
0, "f", True, 011000001100011011111110100111001, "female"
0, "f", True, 11000100111010000100111100111101, "female"
0, "f", True, 0100100001001001011110011001011, "female"
0, "f", True, 11101110111000010001011001111100, "female"
0, "f", True, 110101111110110110101000000000, "female"
0, "f", True, 001011110010110100011111100111111, "female"
0, "f", True, 10111011010101000011001010110011, "female"
0, "f", True, 10100001000011001011110001001101, "female"
0, "f", True, 01011000001001110100010101111000, "female"
0, "f", True, 110001001001101010101000111111, "female"
0, "f", True, 11000010110010100011000001000111, "female"
0, "f", True, 0011100101110100000000011101110, "female"
0, "f", True, 01110010000010011000111000100101, "female"
0, "f", True, 11010010101100000100111001000000, "female"
0, "f", True, 011010100111011101100101011111101, "female"
0, "f", True, 11011101101101010010011100001110, "female"
0, "f", True, 00000001111000011110100010001010, "female"
0, "f", True, 10100101110100101110000111101001, "female"
0, "f", True, 0010010111101010000110000101001, "female"
0, "f", True, 01011111000101101110101001101100, "female"
0, "f", True, 1111111101101101111100001101111111, "female"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 01100110011011111010011111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
```

```
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
0, "m", True, 011001100110111110100111111100110, "male_myp"
0, "m", True, 0110011001101111110100111111100110, "male_myp"
5, "f", True, 11101100110101100111100010001110, "female"
5, "f", True, 01000010110110011010001101111010, "female"
5, "f", True, 01110001011111011101111011101110, "female"
5, "f", True, 10110100000010000010111010110001, "female"
5, "f", True, 00010111101011100011100101100101, "female"
5, "f", True, 0101111110001001111110101000010001, "female"
5, "f", True, 01010010100001100110100101000010, "female"
5, "f", True, 110110111111001010110111111011001, "female"
5, "f", True, 10100100000000011110100010111101, "female"
5, "f", True, 110100000000000001101111111110001, "female"
5, "f", True, 100000011011011011010010010010101, "female"
5, "f", True, 01100100011001101100010000111111, "female"
5, "f", True, 10010001111000101000010101000101, "female"
5, "f", True, 01000101110110010100010100110101, "female"
5, "f", True, 01100001001011101100000110010000, "female"
5, "f", True, 101101010010000101000101110010, "female"
5, "f", True, 111010100100111110011111011110001, "female"
5, "f", True, 11111010110000010100101000011110, "female"
5, "f", True, 111101100000111101111100110111100, "female"
5, "f", True, 01001011001111001000011000110010, "female"
5, "f", True, 1110010101010101010101010111111, "female"
5, "f", True, 01111001110000011011000000010000, "female"
5, "f", True, 11111011110000000100111000110111, "female"
5, "f", True, 01011001101011100011001100110000, "female"
5, "f", True, 01101001000111100010000011110100, "female"
5, "f", True, 0100110110011001010001001001010, "female"
5, "f", True, 00011000100010011010001010101010, "female"
5, "f", True, 00000010111100101101111000110001, "female"
5, "f", True, 10101000111101000000101010101110, "female"
5, "f", True, 10000010100001011010011100101100, "female"
5, "f", True, 100000111011011011011011101110111, "female"
5, "f", True, 11001010010010011001100010110110, "female"
```

```
5, "f", True, 1011100011010101000001110011101011, "female"
5, "f", True, 010001111111100011000001001101000, "female"
5, "f", True, 000100010111111111111110111010001000, "female"
5, "f", True, 1100100101100010011101101101100, "female"
5, "f", True, 00000001011111011000000111001000, "female"
5, "f", True, 000001011100111111110000110110010, "female"
5, "f", True, 011000100100100110010011011100000, "female"
5, "f", True, 00000111100100100101111011001100, "female"
5, "f", True, 01001110100110001101100111001110, "female"
5, "f", True, 001111101001101111110011011111001, "female"
5, "f", True, 10011000111000010101000001111100, "female"
5, "f", True, 01101101011000100110101101101001, "female"
5, "f", True, 0111100010100010110011000100001, "female"
5, "f", True, 11110000100011110010010111110010, "female"
5, "f", True, 11001011010111100011010110001110, "female"
5, "f", True, 01111010010000011100011010110011, "female"
5, "f", True, 011011111101101101100100011111111, "female"
5, "f", True, 011010010111111100001010010011010, "female"
5, "f", True, 100111001011010110100111011011011, "female"
5, "f", True, 10100101000010001000101100010100, "female"
5, "f", True, 101001010101010101010101010101010, "female"
5, "f", True, 00001011011110111011110111001100, "female"
5, "f", True, 01001100000101100110000010110001, "female"
5, "f", True, 101001000111011101001111110000011, "female"
5, "f", True, 01111010100101101100111100100001, "female"
5, "f", True, 11000010100100111001000100011111, "female"
5, "f", True, 10101010010011001000110110011000, "female"
5, "f", True, 100101101100111111100001001011100, "female"
5, "f", True, 00000100001111100110100001011000, "female"
5, "f", True, 0101101010101010000110110101010, "female"
5, "f", True, 10001101100110100110010111101011, "female"
5, "f", True, 1111010111001100110110110100100, "female"
5, "f", True, 10001000010011111101110100010100, "female"
5, "f", True, 100000110011111101101111101101110, "female"
5, "f", True, 10010101110001101010101110001101, "female"
5, "f", True, 01100101101101000101100111101100, "female"
5, "f", True, 10100101101010010010000001001110, "female"
5, "f", True, 01100001100111100010110111011111, "female"
```

```
5, "f", True, 11110101000010100110100100000001, "female"
5, "f", True, 001001011101110110101010101010111, "female"
5, "f", True, 01110111110110000000100001011010, "female"
5, "f", True, 00001111110111001110011001011001, "female"
5, "f", True, 00000000111000100001110101110111, "female"
5, "f", True, 1101100111001110101010111000110, "female"
5, "f", True, 01000101111100000000101010101000, "female"
10, "f", True, 011100001111101011101001010101011, "female"
10, "f", True, 01110000111101110101111000011010, "female"
10, "f", True, 01010111001100110111000010100010, "female"
10, "f", True, 11100011110100001001111000111110, "female"
10, "f", True, 0100111011011011011111010111100111, "female"
10, "f", True, 1100010100010111110101011110101111, "female"
10, "f", True, 10010000010000111100100010111010, "female"
10, "f", True, 00110010111000010001011011110110, "female"
10, "f", True, 100010000010010111100100111101001, "female"
10, "f", True, 01110000000100001110011010001111, "female"
10, "f", True, 00000100100111010100100011001010, "female"
10, "f", True, 11100011110110001010110011000110, "female"
10, "f", True, 10001111101101011000101001111000, "female"
10, "f", True, 01100110100001010001001111100110, "female"
10, "f", True, 01010001100100111101001111101101, "female"
10, "f", True, 000001001100100111101011110011010, "female"
10, "f", True, 00000010001101001011011011010010, "female"
10, "f", True, 10001010011110101001100111000011, "female"
10, "f", True, 01101111011110010000001000100010, "female"
10, "f", True, 010001011000010011111111000101110, "female"
10, "f", True, 0011000011001101101101101111010111, "female"
10, "f", True, 11001111110101111000011100110000, "female"
10, "f", True, 10100110011010010001000001111101, "female"
10, "f", True, 11110010101010100000101010000101, "female"
10, "f", True, 011010001001010010000011101000011, "female"
10, "f", True, 00001101001000111110011000100101, "female"
10, "f", True, 110011001010101010100110001001001, "female"
10, "f", True, 100000110100011001101111111111100, "female"
10, "f", True, 01100100110111010000111011001011, "female"
10, "f", True, 0110110000100011011001010110111, "female"
```

```
10, "f", True, 0100110101000011101010100100000, "female"
10, "f", True, 10001001010001010101010000101011, "female"
10, "f", True, 1010101010101000111100010011111011, "female"
10, "f", True, 01100101011101000110011110111011, "female"
10, "f", True, 01111011100111111111000100100101, "female"
10, "f", True, 10110010111100011110000011000110, "female"
10, "f", True, 01111100001111101010001010001011, "female"
10, "f", True, 11000101100101110101111001100000, "female"
10, "f", True, 0001110110001001110001000000000, "female"
10, "f", True, 111111110100101010100001001101110, "female"
10, "f", True, 001000110101011111111101011010010, "female"
10, "f", True, 1001101100100100010101010101001001, "female"
10, "f", True, 01011101111000001010001011101001, "female"
10, "f", True, 00111011110000000000011110100010, "female"
10, "f", True, 10101101010110010010110001011000, "female"
10, "f", True, 001110011111110101110110110010101, "female"
10, "f", True, 00000001111000110011000101111000, "female"
10, "f", True, 01011011111011111001010100010100, "female"
10, "f", True, 111100000101111111010111000000011, "female"
10, "f", True, 1010101011011011111101111101000000, "female"
10, "f", True, 11000110011100000110111100101110, "female"
10, "f", True, 110101111111000101100011000001110, "female"
15, "f", True, 11100011110110000010000000011111, "female"
15, "f", True, 00011101101111001001100011100110, "female"
15, "f", True, 01001110100100100101101100101010, "female"
15, "f", True, 110111001100011010111111001110111, "female"
15, "f", True, 11101101101101110011110000000010, "female"
15, "f", True, 00110010101010101010101010101000110, "female"
15, "f", True, 01000001000110010110000101000001, "female"
15, "f", True, 111011000110000100010010010111, "female"
15, "f", True, 01101010100000010001100011011000, "female"
15, "f", True, 1111111000110101111000010110111100, "female"
15, "f", True, 11010011111111011101010101101001011, "female"
15, "f", True, 10011000101010100001011100101000, "female"
15, "f", True, 00110011000101111100100111001000, "female"
15, "f", True, 110000111000101011011011011001001, "female"
15, "f", True, 0101010101011011101011100110111, "female"
15, "f", True, 10010011100111010100110010111111, "female"
```

```
15, "f", True, 11001000010001100101000010101111, "female"
15, "f", True, 011111011010111101111010000001111, "female"
15, "f", True, 00010010011011100100001110010011, "female"
15, "f", True, 10110111100101000011100100011001, "female"
15, "f", True, 101001010010010101010110111111100, "female"
15, "f", True, 00010010111100110001001110000011, "female"
15, "f", True, 110101101001011011000001110100001, "female"
15, "f", True, 001101011100001111110000100101110, "female"
15, "f", True, 11101111011010000000111101100100, "female"
15, "f", True, 11000101000000100011111000010001, "female"
15, "f", True, 11011100010101110100100110110111, "female"
15, "f", True, 00100001101111001111010111101101, "female"
15, "f", True, 000011111010111111110010010011101, "female"
15, "f", True, 11011100001111001100001000110001, "female"
15, "f", True, 11000100111011100010110011001010, "female"
15, "f", True, 1100001000011001001001101001001, "female"
20, "f", True, 01010010010101010101011101001110, "female"
20, "f", True, 11110111010100010111011101111011, "female"
20, "f", True, 0001000010111100100011101111000, "female"
20, "f", True, 1010011011000001101000001111111100, "female"
20, "f", True, 100001101011111111100101111111100, "female"
20, "f", True, 11000000101110111010111001011001, "female"
20, "f", True, 10101100010101001001001001101100, "female"
20, "f", True, 001100111101100110011111101000100, "female"
20, "f", True, 100110101010101000000010100111110, "female"
20, "f", True, 10110001111000110001110001000111, "female"
20, "f", True, 111111010001101111010011101110110, "female"
20, "f", True, 00011010111010100110000101100010, "female"
20, "f", True, 100001000001111111110001101100010, "female"
20, "f", True, 1001101101111111101101001011111101, "female"
20, "f", True, 00101100001010011010111010011101, "female"
20, "f", True, 10000001111010011001000011000011, "female"
20, "f", True, 0110001111111111001100001111111111, "female"
25, "f", True, 111001001001111111000010010111110, "female"
25, "f", True, 11001101110110001001010100011111, "female"
25, "f", True, 00110000011001100110001000010000, "female"
25, "f", True, 11001101100001101011100101011011, "female"
25, "f", True, 00001011111011101011100000111000, "female"
```

```
25, "f", True, 11111100010010010101011110011111100, "female"
25, "f", True, 10001111001110111010110101110001, "female"
25, "f", True, 01110000110110101111001110110001, "female"
25, "f", True, 000010011101001110111111100011000, "female"
25, "f", True, 01000011011111010011101100011111, "female"
25, "f", True, 01101010101010000001000011100110, "female"
25, "f", True, 00001010100000101101111111111100, "female"
25, "f", True, 01100011000010001100000011011110, "female"
25, "f", True, 00110010011101100000100101111001, "female"
25, "f", True, 1001111001111001101101101100100110, "female"
25, "f", True, 01100110101100000010000011101001, "female"
25, "f", True, 10010000100011001010001110010001, "female"
25, "f", True, 0111111100001010001110001110010010, "female"
25, "f", True, 101110000110101010001101000000010, "female"
25, "f", True, 000001000001100001011000001001, "female"
30, "f", True, 11110000010100100011101100110001, "female"
30, "f", True, 10010011100011001001111000111011, "female"
30, "f", True, 11000101111000001110100011000111, "female"
30, "f", True, 0000001101010101000011011010000100, "female"
30, "f", True, 001110101101101101101101101110111, "female"
30, "f", True, 001010000100111110111111110110011, "female"
30, "f", True, 00011011010001111000111101100100, "female"
30, "f", True, 1010110111011100101001001011011, "female"
30, "f", True, 110110001111101110111001100110, "female"
30, "f", True, 110110111111111111111101101101100, "female"
30, "f", True, 1101001011111100000101111111010000, "female"
30, "f", True, 11111100001110110011001110110100, "female"
30, "f", True, 110100100011001011010101001010101, "female"
30, "f", True, 00101010110100010111101001011011, "female"
30, "f", True, 110101010101010101010000111100000, "female"
30, "f", True, 111000011000101010101010000000, "female"
30, "f", True, 100000101101001100000100101101, "female"
30, "f", True, 10101001100100100011001111100011, "female"
30, "f", True, 1000000101010101110010110011000, "female"
30, "f", True, 101000010011111000000101101010000, "female"
30, "f", True, 11000111100111001000001000100100, "female"
30, "f", True, 01101110010110110011111011100110, "female"
30, "f", True, 00111110100011000010011111100101, "female"
```

```
30, "f", True, 100101000100011101000011111111011, "female"
30, "f", True, 0111111111000101100001000011111110, "female"
30, "f", True, 01000011010111011100100111000101, "female"
30, "f", True, 10111010111101000001111010011101, "female"
30, "f", True, 001111111010111100000001011101110, "female"
35, "f", True, 010111111011011111000001101110110, "female"
35, "f", True, 01011101111001000100110001111101, "female"
35, "f", True, 10001010101010101111011001111001, "female"
35, "f", True, 11100111101111001011111000001110, "female"
35, "f", True, 0111101111000001001011110100110, "female"
35, "f", True, 11000001010010001110111110101011, "female"
35, "f", True, 00100001100110110010110001110000, "female"
35, "f", True, 111101001010101010101010100101001110, "female"
35, "f", True, 00111001001100111110100110101101, "female"
35, "f", True, 11101100110000100101111000010111, "female"
35, "f", True, 0000101010101000101101100100110, "female"
35, "f", True, 11010001111001101110010101010101, "female"
35, "f", True, 11100110111000001111010101101001, "female"
35, "f", True, 000010111101000100011001101010101, "female"
35, "f", True, 01110101000101000100011011001110, "female"
35, "f", True, 01001111010110111010100000100101, "female"
35, "f", True, 00111001011011010001001110111000, "female"
40, "f", True, 11001110000010100100101111110001, "female"
40, "f", True, 11101110100010110101000011000011, "female"
40, "f", True, 010101011110000110111110001001101, "female"
40, "f", True, 00110111001000110011000000110111, "female"
40, "f", True, 10110001100100001011100100001110, "female"
40, "f", True, 01000010111101100110101110010010, "female"
40, "f", True, 11110010100011000011000101101001, "female"
40, "f", True, 11001000101001000001001000000100, "female"
40, "f", True, 010011100110010010111111110100111, "female"
40, "f", True, 11011111001101101011110000011111110, "female"
40, "f", True, 11101111010001000001111000100000, "female"
40, "f", True, 010001001010011111110011111100101, "female"
40, "f", True, 10001000110001110101111110011100, "female"
40, "f", True, 1111111100111110100011000100111000, "female"
40, "f", True, 00100001011110001000010101010110, "female"
40, "f", True, 010000011110111011011111101110110, "female"
```

```
40, "f", True, 011000001111111110000000110100010, "female"
40, "f", True, 100001101101111111010000101011011, "female"
40, "f", True, 110011110101100111111011000101111, "female"
40, "f", True, 11101101111111011111101111001000, "female"
40, "f", True, 111100010010111101100111101111111, "female"
45, "f", True, 001010101100101011011101111111111, "female"
45, "f", True, 11000011110101111000011010010110, "female"
45, "f", True, 00000100010111111001001100111010, "female"
45, "f", True, 001100110100000111111110000100101, "female"
45, "f", True, 011100001110101000111111110000010, "female"
45, "f", True, 00000111001010010111110001000001, "female"
45, "f", True, 0001011100011110000110010111110, "female"
45, "f", True, 01101101100001010010110000011110, "female"
45, "f", True, 011111100011110001001001011110001, "female"
45, "f", True, 10000111010011101011101000011011, "female"
45, "f", True, 1110101101101101100100101000001, "female"
45, "f", True, 010000110111111001101111110101011, "female"
45, "f", True, 01101110011001000100000001001000, "female"
45, "f", True, 00000011011100000101000111110010, "female"
45, "f", True, 11011001001110101001110010110001, "female"
45, "f", True, 10111000001101110010111000111100, "female"
45, "f", True, 00000100100110011100001010001100, "female"
50, "f", True, 110001000000110101111111101010100, "female"
50, "f", True, 100101010101011100111100101111011, "female"
50, "f", True, 00111110110011000101100111011000, "female"
50, "f", True, 11010101011000000010000101110111, "female"
50, "f", True, 11100101111000010101100011101110, "female"
50, "f", True, 100001001011110011000001011111111, "female"
50, "f", True, 01111011010000100110011101000111, "female"
50, "f", True, 0001100011010000011000010010010, "female"
50, "f", True, 1001010010000001100000001100101, "female"
50, "f", True, 011001001101111010110110111110101, "female"
50, "f", True, 00000111000000001010001100011001, "female"
50, "f", True, 11010011100010010110110111100101, "female"
55, "f", True, 11101010000110010100000110101100, "female"
55, "f", True, 00101110001111100000011101001101, "female"
55, "f", True, 010001001111001001101111111010010, "female"
```

```
55, "f", True, 11100000101010101010101010101010, "female"
55, "f", True, 11101010100010001110010000101001, "female"
55, "f", True, 01100000010000111100000110001111, "female"
55, "f", True, 11010001000111001010111001100100, "female"
55, "f", True, 10011011000000000101011101000000, "female"
55, "f", True, 10101101111000000111100011001, "female"
60, "f", True, 010011111110011001100111000000100, "female"
60, "f", True, 000011111001111111111000000101001, "female"
60, "f", True, 00001001011010000101110011110111, "female"
60, "f", True, 10000011110010011001011011010100, "female"
60, "f", True, 00000001110000101011000101011011, "female"
60, "f", True, 1000101111111111111111111000100100, "female"
60, "f", True, 10000101111000000110100001001111, "female"
60, "f", True, 010101011111010110111011111111101, "female"
65, "f", True, 00100011001000010110000101001000, "female"
65, "f", True, 0110100011101110010101111000000, "female"
70, "f", True, 11011001010000010001011110100010, "female"
75, "f", True, 001000000110011111111010001010101, "female"
```

## C.4 MAP Simulation Results

```
10,503,497,27.920353982300885,29.668141592920353,11.216814159292035,55,55,55,318,174,106,70,58,47,45,35,33,25,30,21,14,13,5,5,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    24,496,504,29.262672811059907,30.138248847926267,10.184331797235023,50,55,300,185,100,71,49,60,57,35,30,28,25,19,13,13,9,6,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   30,511,489,29.154589371980677,30.120772946859905,10.483091787439614,50,55,295,171,102,57,69,68,50,33,51,22,28,17,13,10,8,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      23,485,515,29.041095890410958,29.246575342465754,9.474885844748858,50,50,304,177,106,55,56,63,48,42,29,33,28,17,15,16,8,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   11,503,497,28.854625556660792,30.176211453744493,10.220264317180616,50,50,322,178,93,78,57,44,45,41,31,30,23,18,16,11,7,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    13,496,504,28.94736842105263,30.239234449760765,10.526315789473685,55,50,297,186,104,68,49,71,45,29,43,31,24,18,15,11,6,0,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      31,514,486,29.48019801982,30.173267326732674,10.346534653465346,50,55,279,192,87,68,51,71,61,43,34,40,19,21,10,13,5,3,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               15,504,496,31.02803738317757,30.747663551401867,10.280373831775702,50,55,298,189,106,59,45,60,41,53,43,20,28,22,13,9,5,4,5,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  16,507,493,31.689497716894977,28.972602739726028,9.703196347031964,50,50,312,159,117,64,55,44,50,37,52,32,18,6,6,4,4,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             26,512,488,28.954545454545453,30.863636363636363.9.8636363636363.50,50,307,190,100,63,66,42,46,48,37,26,22,16,16,9,9,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   34,545,29.912280701754387,29.82456140350877,10.526315789473685,50,50,320,175,91,66,54,52,47,48,37,37,20,18,16,10,4,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            35,532,468,31.07456140350877,30.8333333332,10.592105263157896,55,50,317,198,82,53,64,53,45,40,39,34,29,12,14,10,6,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            12,487,513,28.60730593607306,30.684931506849313,10.38812785388128,50,50,309,193,95,62,67,49,45,40,33,27,25,17,15,13,4,3,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          17,500,500,31.790697674418606,29.976744186046513,11.581395348837209,50,50,299,190,90,76,54,55,43,42,31,47,23,8,23,8,3,4,3,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               22,494,506,28.67924528301887,31.132075471698112,9.716981132075471,50,55,293,199,78,65,75,46,44,47,31,33,30,15,21,13,6,2,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           25,504,496,28.3920704845815,29.625550660792953,10.484581497797357,55,513,183,93,75,52,49,51,47,32,25,16,25,12,15,8,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            27,513,487,29.85645933014354,31.05263157894737,10.47846889952153,50,55,291,196,103,72,49,57,40,46,38,24,30,16,14,10,7,6,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        28,518,482,28.89952153110048,31.60287081339713,11.076555023923445,50,55,287,192,100,73,61,46,60,31,39,31,23,25,12,9,4,6,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           29,522,478,30.02314814815,29.560185185185187,10.27777777777779,55,55,298,185,82,73,75,52,46,55,22,32,27,16,15,9,7,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 6,519,481,30.73008849557522,29.579646017699115,10.265486725663717,50,50,316,176,95,57,59,42,58,52,36,37,20,18,18,11,3,1,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  20,484,516,29.74770642201835,29.862385321100916,10.756880733944953,55,50,317,168,99,67,55,50,50,50,50,50,22,27,13,9,5,5,1,0,0
                                                                                                              1,503,497,28.649289099526065,29.502369668246445,9.95260663507109,50,50,294,164,102,64,61,68,55,37,47,34,19,18,15,15,4,1,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                   3,493,507,31.367924528301888,30.82547169811321,10.495283018867925,55,50,296,178,89,54,68,49,53,57,36,33,31,21,11,15,6,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   7,520,480,30.42654028436019,31.018957345971565,10.165876777251185,55,55,303,176,104,66,53,53,45,52,34,29,31,16,22,7,8,1,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    9,496,504,28.529411764705884,30.81447963800905,10.83710407239819,50,50,309,187,99,66,52,55,36,41,30,40,26,23,14,10,9,1,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            4,508,492,31.131221719457013,30.407239819004523,9.457013574660634,50,55,310,171,88,59,46,71,41,50,43,32,30,26,13,7,6,6,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     21,497,503,28.82075471698113,31.08490566037736,11.462264150943396,50,55,303,180,88,82,56,51,53,35,39,30,22,19,24,9,5,2,2,0,0
                                                                                                                                                                                                                                                           2,491,509,29.502369668246445,29.43127962085308,9.028436018957345,55,50,293,178,86,71,54,58,59,50,34,39,22,12,16,14,9,4,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      8,499,501,29.73568281938326,30.770925110132158,9.845814977973568,55,50,315,177,97,69,53,44,53,33,46,30,28,21,13,15,3,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    5,515,485,31.9444444444444443,30.27777777777778,9.537037037036,55,50,304,181,93,63,46,49,66,37,49,29,27,23,22,5,5,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             14,503,497,30.585585585585587,30.6981981981982982,9.797297297297296,50,60,300,199,99,51,58,46,64,45,22,37,22,24,11,6,9,6,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   18,498,502,30.73008849557522,28.4070796460177,10.774336283185841,50,50,313,186,84,64,63,54,47,33,41,32,38,16,7,16,2,2,0,2,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              32,522,478,29.80603448275862,29.63362068965517,9.39655172413793,55,50,320,159,96,62,59,50,60,55,29,37,24,19,13,5,6,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           33,535,465,31.069767441860463,31.0,10.023255813953488,50,50,304,184,94,64,53,57,45,54,42,24,32,18,13,5,4,6,1,0,0
0,500,500,0,0,0,0,0,0,86,174,95,63,75,59,44,49,43,28,24,20,18,16,1,3,2,0,0
```

```
61,481,519,29.787735849056602,29.599056603773583,10.660377358490566,50,55,289,199,102,72,57,55,37,26,48,24,26,24,16,16,6,2,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   69,491,509,30.024271844660195,29.660194174757283,10.266990291262136,55,50,291,195,88,70,63,53,44,42,54,26,29,13,14,10,5,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   41,525,475,29.547511312217196,28.687782805429865,10.723981900452488,55,50,309,182,89,77,65,60,43,42,26,29,25,19,13,12,5,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      46,511,489,31.697674418604652,31.093023255813954,11.255813953488373,55,55,320,159,87,70,51,38,59,63,29,39,29,19,15,12,5,3,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           52,490,510,29.767441860465116,29.093023255813954,11.046511627906977,50,50,299,182,100,67,61,53,52,42,37,34,24,14,16,8,7,2,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   63,463,537,29.2171717171716,29.545454545454547,10.02525252525256,50,50,50,718,101,80,57,58,51,37,31,29,26,17,18,9,5,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      74,497,503,29.518072289156628,30.160642570281123,10.923694779116467,55,50,342,176,88,55,55,56,50,35,44,28,18,19,13,12,5,2,1,1,0
                                                                                                                                                                                                                                              38,533,467,30.192307692307693,29.316239316239315,10.61965811965812,55,55,332,178,113,52,61,48,32,47,30,39,20,20,12,6,7,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             47,503,497,29.894957983193276,30.021008403361346,11.470588235294118,50,55,335,177,71,64,63,46,50,29,25,21,17,6,8,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    48,483,517,31.111111111111111,29.62222222222224,10.022222222222222,50,50,327,182,89,45,55,60,43,39,42,41,19,21,16,12,5,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  53,489,511,29.028436018957347,30.56872037914692,10.260663507109005,50,50,300,170,101,70,58,58,44,55,37,34,26,13,17,9,4,2,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             55,467,533,29.479638009049772,30.15837104072398,10.542986425339366,50,55,313,191,87,69,46,45,55,35,37,40,21,31,12,10,4,2,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          64,480,520,29.495192307692307,30.28846153846154,9.975961538461538,50,50,287,182,92,72,70,48,53,51,28,29,25,20,13,15,10,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            65,477,523,29.65437788018433,30.161290322580644,10.414746543778802,55,55,287,203,92,54,66,58,45,47,39,22,29,22,11,12,7,5,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            40,512,488,29.014084507042252,29.037558685446008,10.258215962441314,50,55,299,196,91,74,76,42,54,27,35,28,22,26,12,9,7,2,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    45,504,496,29.377777777777776,31.933333333334,10.111111111111111,60,50,325,160,98,59,40,58,69,33,41,38,24,16,18,11,4,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           49,482,518,31.312217194570135,29.14027149321267,10.76923076923077,50,50,320,176,101,64,49,45,56,36,39,36,26,17,17,10,3,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            62,477,523,29.232456140350877,30.94298245614035,10.74561403508772,50,55,315,164,124,63,59,61,44,29,29,40,19,17,16,12,6,1,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    70,490,510,29.56937799043062,30.071770334928228,10.023923444976077,55,50,292,173,113,64,59,61,51,32,44,35,27,18,14,9,6,1,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                71,503,497,30.27027027027027,29.617117117117118,11.013513513514,50,55,307,171,98,73,56,58,45,44,26,40,25,26,10,12,5,2,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          42,525,475,29.05829596412556,27.937219730941703,10.044843049327355,55,50,308,196,78,76,66,55,56,39,28,30,17,19,18,4,8,1,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               55,488,512,30.454545454545453,29.0909090909090909,10.5454545454545455,50,55,306,177,92,66,55,58,57,37,46,34,25,18,14,9,2,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      55, 495, 505, 30. 982532751091703, 30. 56768558951965, 10. 152838427947598, 55, 50, 325, 166, 90, 61, 59, 56, 49, 43, 37, 35, 27, 17, 15, 9, 7, 2, 2, 0, 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  56,486,514,31.04265402843602,30.402843601895736,10.165876777251185,50,50,303,191,78,70,57,50,52,43,43,37,25,19,14,5,8,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         57,478,522,30.783410138248847,30.668202764976957,10.852534562211982,50,50,310,177,82,58,67,52,45,51,41,40,28,21,9,9,6,2,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          58,477,523,31.27705627705628,28.67965367965368,10.476190476190476,50,50,323,173,103,47,53,61,45,39,41,32,32,18,19,3,6,4,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   60,482,518,29.413145539906104,29.76525821596244,11.056338028169014,50,50,298,199,90,70,56,50,32,52,30,33,32,18,24,9,3,3,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        66,484,516,29.677419354838708,29.42396313364055,10.990783410138249,55,50,293,201,83,72,51,63,48,39,32,36,17,26,17,9,8,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               67,484,516,29.349775784753362,29.103139013452914,9.977578475336323,50,50,313,172,95,65,58,53,62,36,38,32,27,13,15,9,7,3,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        44,508,492,30.424107142857142,30.379464285714285,9.732142857142858,55,50,312,172,97,50,58,68,47,50,42,29,18,16,21,9,6,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  50, 50, 50, 474, 526, 30.391705069124423, 30.161290322580644, 11.19815668202765, 50, 50, 306, 193, 90, 74, 54, 45, 42, 48, 35, 33, 29, 20, 14, 8, 5, 3, 1, 0, 0
36,533,467,29.46808510638298,30.404255319148938,11.02127659574468,50,50,332,181,95,60,52,54,40,46,34,28,31,14,11,12,8,0,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      43,520,480,29.82758620689655,28.34975369458128,10.19704433497537,50,55,295,179,94,63,72,55,53,52,33,25,21,17,17,14,5,4,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          73,500,500,28.94009216589862,29.285714285714285,9.88479262672811,45,50,297,196,94,66,53,56,45,50,42,24,19,24,15,10,7,0,1,1,0
                                                                                                                            37,539,461,30.24122807017544,30.13157894736842,11.425438596491228,50,55,328,183,94,70,48,50,45,36,44,29,29,15,11,7,8,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                     339,514,486,28.870967741935484,29.5852534562212,10.52995391705069,50,50,312,196,84,88,45,61,39,32,38,28,36,13,15,8,3,2,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             72,500,500,30.29953917050691,29.746543778801843,9.90783410138249,50,55,303,182,98,63,58,51,60,45,29,22,36,22,15,9,5,0,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    51,484,516,28.838862559241708,30.0,10.450236966824644,50,55,295,195,94,66,60,54,43,44,43,28,21,26,12,10,5,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                68,487,513,29.59641255605381,30.044843049327355,10.0,50,55,314,180,91,66,56,50,53,60,29,34,22,16,13,5,8,2,0,1,0
```

77,472,528,29.525862068965516,29.698275862068964,10.344827586206897,55,50,322,189,102,66,50,44,43,43,43,43,25,20,13,7,7,5,1,1,0 80,484,516,29.145299145,28.482905982905983,10.27777777777,9,55,50,331,174,114,59,54,61,47,28,27,31,25,16,16,8,5,2,1,1,0 83,511,489,28.976744186046513,30.813953488372093,10.581395348837209,50,50,50,98,10,69,98,71,69,52,43,48,41,26,17,17,12,11,4,2,0,1,0 95,508,492,29.746543778801843,28.087557603686637,10.599078341013826,50,55,311,191,89,65,56,64,37,47,36,30,22,10,16,12,9,4,1,0,0 82,502,498,26.41255605381166,30.896860986547086,10.986547085201794,55,50,297,201,100,75,54,57,49,42,33,19,22,20,15,8,6,0,2,0,0 85,487,513,29.624413145539908,30.492957746478872,10.868544600938968,50,55,301,176,98,74,57,61,53,45,37,33,28,10,11,6,6,3,1,0,0 87,481,519,28.788546255506606,30.440528634361232,10.154185022026432,60,50,322,169,90,63,57,60,53,41,43,26,27,18,15,4,4,5,3,0,0 81,488,512,29.27860696517413,30.223880597014926,10.348258706467663,50,50,292,193,109,72,53,58,47,48,20,25,30,19,17,8,6,0,3,0,0 89,485,515,30.02314814815,30.277777777778,10.532407407407,60,55,301,193,111,61,46,52,45,42,38,36,23,25,10,12,1,2,1,1,0 90,496,504,30.11682242990654,30.093457943925234,11.285046728971963,50,50,297,195,92,77,54,46,50,35,35,40,27,20,13,13,4,1,1,0,0 91,506,494,29.688995215311003,29.282296650717704,10.741626794258373,50,50,290,191,98,66,71,49,40,46,29,26,33,30,13,9,8,0,1,0,0 94,499,501,29.15929203539823,30.464601769911503,10.508849557522124,50,55,331,172,88,60,68,45,53,42,35,33,15,17,17,14,4,6,0,0 75, 476, 524, 29.048672566371682, 31.327433628318584, 11.216814159292035, 50, 55, 324, 197, 92, 58, 51, 44, 54, 37, 35, 37, 19, 24, 5, 12, 7, 1, 2, 1, 0 76,479,521,29.840182648401825,30.45662100456621,10.114155251141552,50,55,310,195,110,58,52,46,45,45,34,29,24,17,14,8,8,3,1,1,0 79,483,517,29.5662100456621,28.949771689497716,10.159817351598173,55,55,311,203,102,61,71,48,35,39,33,25,22,19,14,7,5,4,0,1,0 96,499,501,30.311111111111111111,30.288888888888888111.13333333333335,50,50,306,207,95,53,56,56,50,39,40,34,21,10,11,9,8,4,1,0,0 97, 497, 503, 30.296803652968038, 30.753424657534246, 10.091324200913242, 50, 50, 303, 203, 94, 59, 53, 51, 57, 40, 37, 31, 28, 15, 7, 8, 7, 6, 1, 0, 0 98,507,493,29.4104803493498,29.95633187772926,10.152833427947598,50,50,319,181,107,56,54,51,53,44,25,34,30,19,12,6,4,4,1,0,0 92,502,498,28.755656108597286,29.07239819004525,10.452488687782806,50,55,304,182,93,66,59,67,47,35,36,25,21,30,18,9,8,0,0,0,0 93,505,495,29.89539748953975,29.330543933054393,10.06276150627615,50,50,337,159,94,70,53,54,53,43,28,29,19,16,22,13,9,1,0,0,0 11, 29, 49, 511, 29, 49771689497717, 30. 251141552511417, 11. 712328767123287, 50, 55, 312, 166, 91, 71, 61, 57, 57, 42, 40, 33, 21, 25, 5, 8, 4, 5, 2, 0, 0 88,483,517,30.9375,30.334821428571427,10.379464285714286,50,50,50,311,200,84,57,51,61,48,46,35,41,22,14,16,7,3,3,0,1,0 78,477,523,29.66666666666668,30.5416666666668,11.375,55,337,185,91,77,56,40,47,30,39,27,23,17,13,9,4,3,2,0,0 100,508,492,30.0,29.366812227074234,9.890829694323145,50,50,316,182,106,63,61,45,45,47,34,26,16,17,25,10,4,2,1,0,0 99,496,504,29.976525821596244,30.0,10.586854460093896,55,55,298,201,99,69,49,47,51,48,34,23,25,26,16,8,2,3,1,0,0 84,486,514,27.6036866359447,30.0,9.67741935483871,50,55,306,171,108,61,68,62,50,41,43,32,16,16,9,10,4,2,1,0,0

# C.5 Typical MYP Run Results

```
27,502,498,23.561946902654867,24.690265486725664,6.792035398230088,30,35,316,175,104,79,57,43,64,43,36,19,16,15,11,11,8,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            23,508,492,22.5694444444444444443,27.037037037037038,7.8472222222222,30,35,300,209,104,69,47,41,54,41,33,35,19,21,17,6,3,1,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      25,498,502,23.098591549295776,25.23474178403756,6.502347417840376,30,35,295,183,110,67,76,64,35,39,30,26,24,18,16,10,3,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           26,499,501,24.822222222223,25.9333333333334,6.5333333333333,30,35,301,199,94,72,52,66,53,39,33,19,24,20,12,10,2,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                29,500,500,500,23.214285715,27.428571428571427,7.023809524,30,35,299,197,101,57,65,68,41,42,40,31,20,10,10,6,6,6,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     30,484,516,24.493087557603687,26.129032258064516,6.1981566820276495,30,35,307,173,106,67,50,64,64,34,36,30,31,13,8,7,5,3,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         33,492,508,23.632075471698112,26.367924528301888,6.7924528301886795,30,35,298,188,90,72,58,57,49,44,37,41,17,19,19,6,1,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               35,506,494,23.407960199004975,25.895522388059703,7.313432835820896,30,35,280,179,98,74,62,64,53,42,32,35,29,22,10,16,2,11,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    10,520,480,22.985436893203882,25.436893203883496,6.91747572815534,30,35,295,183,105,76,53,52,35,58,21,33,32,25,13,11,8,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             13,491,509,22.990654205607477,26.378504672897197,6.845794392523365,30,35,307,158,98,73,59,67,48,47,33,29,19,27,13,14,6,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       22,513,487,23.69098712446352,26.266094420600858,6.008583690987124,30,35,329,179,107,56,46,60,42,36,46,24,28,17,15,6,8,1,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              14,506,494,24.439252336448597,27.429906542056074,6.869158878504673,30,35,302,174,85,75,59,56,71,45,36,25,21,15,20,9,4,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   15,493,507,24.728506787330318,26.266968325791854,6.877828054298643,30,35,310,169,99,62,63,56,54,65,30,31,19,10,15,9,4,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             17,490,510,23.571428571428573,24.476190476190474,6.0476190476190474,30,35,292,185,71,69,65,61,56,44,42,42,42,525,21,8,8,9,1,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            19,489,511,23.422222222222,27.755555555556,7.133333333333334,30,35,317,163,104,65,32,68,46,50,48,29,29,21,14,5,3,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      21,498,502,23.362068965517242,26.65948275862069,7.650862068965517,30,35,317,197,87,56,63,44,34,58,35,32,23,24,14,10,4,0,2,0,0
                                                                                                                1, 498, 502, 24.04117647058822, 25.098039215686274, 6.348039215686274, 30, 35, 292, 155, 99, 75, 46, 68, 61, 40, 46, 34, 24, 22, 17, 12, 7, 1, 1, 0, 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                5,490,510,24.68609865470852,26.524663677130047,6.367713004484305,30,35,309,169,107,48,53,58,50,43,45,34,26,18,18,10,7,2,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     6,489,511,23.698630136986303,27.44292233,7.488584474885845,30,35,307,181,94,71,43,41,62,40,36,38,34,17,15,12,3,5,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         9,513,487,25.271493212669682,24.27601809954751,6.742081447963801,30,35,309,193,103,63,54,35,63,25,35,36,25,28,10,10,9,1,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 20,496,504,24.908675799086758,27.442922374429223,6.598173515981735,30,35,306,192,87,67,46,33,68,40,46,34,29,24,14,8,3,1,2,0,0
                                                                                                                                                                                                                                                               2,489,511,23.467336683417084,26.407035175879397,7.060301507537688,30,35,276,181,85,70,70,46,64,51,37,30,34,23,11,13,6,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               , 488, 512, 22.61061946902655, 26.504424778761063, 8.185840707964601, 30, 35, 317, 179, 91, 60, 71, 35, 37, 56, 29, 44, 25, 23, 14, 10, 5, 1, 3, 0, 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       24,496,504,22.84037558685446,27.441314553990612,8.215962441314554,30,35,296,196,95,86,62,43,42,43,38,25,27,16,16,7,7,0,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     4,492,508,24.069767441860463,25.976744186046513,6.372093023255814,30,35,288,193,84,57,62,54,44,53,27,24,25,14,9,8,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         8,503,497,24.05701754385965,25.964912280701753,7.214912280701754,30,35,315,195,94,60,47,65,28,40,40,34,32,17,11,10,9,1,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           28,505,495,22.467811158798284,25.278969957081546,6.84549356223176,30,35,324,191,84,63,72,47,43,49,36,30,17,14,9,7,11,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               31,479,521,24.141414141414142,26.540404040404040407.1969696969696969697,30,35,283,180,107,68,67,46,57,60,24,33,28,24,9,6,4,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    34,489,511,23.57843137254902,25.735294117647058,6.862745098039215,30,35,291,178,91,73,64,57,58,37,47,32,27,9,21,8,3,3,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          32,480,520,24.08695652173913,25.73913043478261,6.434782608695652,30,35,315,164,99,67,62,56,49,41,49,26,22,23,15,6,2,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                          3,483,517,23.803827751196174,26.05263157894737,6.889952153110048,30,35,285,177,85,67,60,61,49,56,45,27,30,25,12,7,8,5,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        12,509,491,23.94736842105263,25.43062200956938,6.842105263157895,30,35,295,182,94,68,76,54,50,37,36,29,25,14,22,9,6,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             18,496,504,23.23394495412844,26.3302752293578,6.032110091743119,30,35,301,177,93,57,64,57,59,43,37,35,30,23,9,7,5,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   11,515,485,22.75,25.681818181818183,6.2045454545454544,30,35,303,181,97,79,57,53,45,32,45,26,22,16,9,7,2,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        16,501,499,24.9,25.6,6.65,30,35,291,175,90,71,61,57,55,47,53,28,29,11,9,15,6,1,1,0,0
0,500,500,0,0,0,0,0,286,174,95,63,75,59,44,49,43,28,24,20,18,16,1,3,2,0,0
```

```
52,497,503,23.606965174129353,26.417910447761194,6.1940298507462686,30,35,288,183,122,54,49,57,59,32,37,30,18,22,22,17,7,2,1,0,0
                                                                                                                 37,494,506,22.953488372093023,26.674418604651162,6.930232558139535,30,35,295,181,101,45,68,65,55,47,36,32,19,23,12,4,5,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             74,510,490,23.674418604651162,25.837209302325583,6.627906976744186,30,35,300,191,111,62,61,57,43,32,37,36,16,25,10,13,3,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        41,511,489,22.465437788018434,24.308755760368662,6.497695852534562,30,35,306,186,100,76,57,42,46,38,40,26,28,23,13,8,5,5,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          42,512,488,23.785046728971963,24.626168224299064,6.682242990654205,30,35,306,169,107,74,71,50,42,35,40,28,25,22,15,9,4,3,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 46,486,514,24.241071428571427,27.433035714285715,6.986607142857143,30,35,319,172,98,56,45,57,43,61,41,33,26,12,15,11,4,4,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     64,489,511,23.94859813084112,26.752336448598133,7.289719626168225,30,35,290,197,107,72,51,57,46,45,43,33,19,15,10,10,4,0,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       63,487,513,23.246445497630333,26.563981042654028,7.203791469194313,30,35,295,196,101,66,57,57,51,43,43,27,21,15,16,8,1,2,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               70,505,495,23.43612334801762,27.070484581497798,6.8061674008810575,30,35,327,183,99,54,51,61,42,40,43,28,22,23,12,14,1,0,0,0,0
                                                                                                                                                                                                                        31, 15, 485, 23.950617283950617, 26.6666666666666668, 6.748971193415638, 30, 35, 334, 170, 91, 55, 40, 64, 60, 50, 32, 35, 19, 13, 18, 8, 7, 3, 1, 0, 0
                                                                                                                                                                                                                                                                                                                                                   39,505,495,24.45175438596491,25.70175438596491,7.0394736842105265,30,35,330,180,88,56,51,46,53,49,38,33,26,15,12,11,8,3,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    51,509,491,23.47345132743363,25.464601769911503,6.283185840707965,30,35,312,188,96,63,53,66,30,39,39,18,30,21,21,11,5,1,1,0,0
36,500,500,23.014018691588785,26.238317757009344,6.401869158878505,30,35,292,179,81,76,69,55,57,44,35,25,29,22,19,8,7,1,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     55,522,478,23.162790697674417,24.906976744186046,6.767441860465116,30,35,314,171,89,78,67,53,44,34,50,28,28,13,11,9,6,5,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   65,496,504,23.159090909091,25.7727272727273,6.568181818181818,30,35,300,187,104,72,62,44,52,41,42,35,12,14,2,8,0,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 72,489,511,22.896995708154506,26.43776824034335,7.489270386266094,30,35,328,173,102,69,56,46,43,45,31,32,29,13,21,3,9,0,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         45,488,512,24.5437899543379,26.689497716894977,6.1187214611872145,30,35,305,193,90,52,65,53,66,42,42,42,21,28,13,15,6,5,3,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 49, 489, 511, 23. 401826484018265, 25. 068493150684933, 6.872146118721461, 30, 35, 318, 187, 91, 78, 42, 44, 46, 34, 45, 33, 36, 19, 11, 8, 3, 4, 1, 0, 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   54,505,495,23.869565217391305,25.58695652173913,6.717391304347826,30,35,325,162,106,67,65,50,36,50,35,32,24,14,7,17,6,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         68,500,500,23.770491803278688,26.311475409836067,6.762295081967213,30,35,345,166,95,63,50,59,50,43,30,44,13,23,11,5,0,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     44,492,508,23.530701754385966,25.37280701754386,6.315789473684211,30,35,309,182,89,69,55,70,53,39,28,36,23,18,8,10,5,4,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       50,30,493,507,24.38914027149321,24.547511312217196,6.538461538461538,30,35,309,189,88,84,51,61,42,31,48,29,24,15,11,7,6,2,0,3,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          69,493,507,23.827433628318584,27.47787610619469,7.057522123893805,30,35,322,201,89,63,54,51,47,44,35,25,28,14,21,3,2,1,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    43,492,508,22.70935960591133,24.43349753694581,6.551724137931035,30,35,287,184,94,80,68,58,47,38,37,33,23,16,15,10,8,0,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  61,496,504,24.541484716157207,24.58515283842795,5.807860262008734,30,35,315,194,94,57,71,45,58,32,33,37,23,18,11,3,6,1,0,2,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    66,496,504,23.408071748878925,25.7847533632287,7.219730941704036,30,35,308,182,105,63,66,52,39,53,29,35,32,14,10,6,2,4,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     50,502,498,23.20754716981132,25.919811320754718,7.287735849056604,30,35,300,201,85,65,66,42,40,47,26,36,32,31,11,8,5,2,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        67,495,505,23.55555555555557,25.577777777777778,6.777777777777777778,30,35,314,180,102,69,54,65,47,37,46,15,31,22,9,4,2,2,1,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                71,493,507,23.65740740741,26.99074074074,7.12962962962963,30,35,309,191,103,62,47,49,54,41,33,39,20,22,12,8,10,0,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       48,472,528,24.23076923076923,25.277777777778,6.1752136752136755,30,35,329,190,98,55,46,46,39,47,41,41,24,9,16,7,5,5,2,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  47,482,518,24.2274678111588,26.28755364806867,6.738197424892704,30,35,324,191,89,49,51,45,49,44,50,35,20,20,11,11,6,2,3,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  73,508,492,23.08219178082192,26.36986301369863,6.80365296803653,30,35,311,195,94,60,67,46,44,39,43,24,27,14,15,16,4,1,0,0,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      56,512,488,22.15311004784689,26.31578947368421,7.08133971291866,30,35,297,184,94,61,74,61,52,35,31,40,28,14,11,4,7,6,1,0.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 57,510,490,24.03587443946188,26.8609865470852,6.63677130044843,30,35,305,193,82,69,36,75,59,39,33,31,29,19,10,9,4,5,1,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      62,490,510,23.75,25.568181818181817,5.90909090909090909,30,35,316,177,100,65,59,68,39,56,25,32,23,18,10,6,2,3,0,1,0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         40,518,482,23.394495412844037,27.5,7.31651376146789,30,35,313,187,103,57,47,57,35,51,36,31,29,22,12,9,8,3,0,0,0
```

98,486,514,24.13333333332,26.73333333334,6.155555555556,30,35,319,195,101,52,43,64,50,42,32,28,26,15,18,10,1,3,1,0,0 75,493,507,23.778280542986426,24.615384615384617,7.036199095022624,30,35,309,178,104,76,54,55,47,36,37,30,24,15,16,11,6,2,0,0,0 88,475,525,23.733333334,26.488888888887,6.57777777777775,30,35,320,158,104,64,46,71,39,44,43,34,24,27,13,1,7,4,1,0,0 93,517,483,22.882882882882882,26.126126126126128,6.486486486487,30,35,315,173,101,49,73,46,48,49,30,31,33,14,16,11,9,1,1,0,0 85,477,523,23.651162790697676,26.74418604651163,7.1395348837209305,30,35,300,181,90,59,51,49,51,54,53,35,21,23,16,11,4,2,0,0,0 36, 484, 516, 24.33333332, 26.71794871794872, 7.3076923075, 30, 35, 280, 180, 88, 81, 49, 52, 51, 45, 48, 20, 22, 12, 13, 6, 1, 1, 0, 0 87,475,525,24.04444444444444444425.511111111111111113,6.71111111111111,30,35,306,164,106,58,69,46,50,42,45,33,31,21,11,7,7,3,1,0,0 90,478,522,24.215686274509803,25.784313725490197,6.323529411764706,30,35,285,200,93,61,62,52,45,60,26,41,22,22,15,10,1,3,2,0,0 92,497,503,23.027522935779817,25.527522935779817,7.591743119266055,30,35,308,187,75,80,52,49,55,41,36,39,19,25,13,12,6,2,1,0,0 76,488,512,24.975609756097562,24.878048780487806,6.536585365853658,30,35,289,191,98,69,69,41,57,41,35,34,26,19,6,10,12,3,0,0 79,482,518,22.48780487804878,25.585365853658537,6.7560975609756095,30,35,281,183,99,74,66,53,53,53,45,29,40,23,19,15,13,3,2,2,0,0 31,493,507,24.469026548672566,26.194690265486727,6.991150442477876,30,35,313,166,111,56,47,59,50,45,45,21,37,13,20,8,4,1,3,1,0 83,487,513,23.738317757009344,26.799065420560748,6.9392523364485985,30,35,302,167,87,61,58,61,67,51,39,29,26,20,16,7,5,3,0,1,0 100,459,541,24.63768115942029,26.280193236714975,6.908212560386473,30,35,302,184,108,78,53,41,50,41,35,35,21,23,14,9,5,1,0,0,0 82,495,505,24.34673366834171,26.381909547738694,6.909547738693467,30,35,287,181,93,64,61,70,56,43,37,32,25,17,15,7,10,1,1,0,0 94,515,485,23.410138248847925,25.52995391705069,6.728110599078341,30,35,307,182,96,73,41,71,40,42,41,24,30,18,12,13,7,2,1,0,0 96,495,505,23.891304347826086,25.869565217391305,6.891304347826087,30,35,326,176,87,76,63,53,40,46,35,23,23,22,12,7,7,3,1,0,0 99, 476, 524, 24.27038626609442, 26.28755364806867, 7.210300429184549, 30, 35, 336, 163, 118, 60, 43, 51, 49, 44, 39, 26, 19, 24, 11, 11, 5, 1, 0, 0, 0 77,488,512,23.430493273542602,25.87443946188341,6.524663677130045,30,35,310,167,110,58,63,61,35,49,38,32,21,24,11,5,9,6,1,0,0 81,495,505,23.986175115207374,25.483870967741936,5.829493087557604,30,35,309,177,87,67,69,58,57,35,40,30,30,23,19,8,11,7,2,1,0,0 80,493,507,23.630434782608695,25.76086956521739,6.913043478260869,30,35,313,175,81,70,63,68,44,43,40,24,29,11,16,15,6,1,1,0,0 97,488,512,24.012875536480685,26.11587982832618,6.266094420600858,30,35,337,172,85,57,67,59,51,41,32,30,20,15,21,5,5,2,1,0,0 84,477,523,24.31924882629108,28.28638497652582,7.347417840375587,30,35,300,177,87,53,55,52,59,67,41,31,24,22,22,3,5,20,0,0 89,486,514,24.49771689497717,26.75799086757991,7.420091324200913,30,35,314,178,76,52,48,63,36,42,31,32,18,18,6,2,6,0,0,0 95,503,497,24.07079646017699,25.97345132743363,7.123893805309734,30,35,318,173,97,74,59,42,58,38,31,26,26,8,10,8,6,0,0,0 78,483,517,24.125,25.45,6.625,30,35,284,183,101,84,51,60,53,31,37,33,23,19,24,5,8,2,2,0,0