MATH H113: Honors Introduction to Abstract Algebra

2016-02-01

- Finish presentation of groups
- Symmetric groups
- Matrix groups

A trickier example:

• Quaternionic group (time permitting)

Given a group presentation $\langle S|R_1,\ldots,R_m\rangle$, to find out what group G it describes:

- 1. Find a list of expressions in the generators (elements of S) that should cover all elements of the group
- 2. Find an explicit group G' such that
 - a. the relations are all true in G', and

We did this for $\{\{r, s\} | r^n = 1, s^2 = 1, sr = r^{-1}s\}$.

What is $\langle \{x, y\} | x^5 = 1, y^3 = 1, yx = x^3 y \rangle$?

b. each expression in the list from Step 1 is a different element of G' (this is not easy).

```
You expect the group to have 15 elements: x^iy^j: i=0,1,2,3,4; j=0,1,2. In fact, these expressions cover all the elements of the group, but there are redundancies. yx^2=(yx)x=x^3yx=x^3\times x^2y=x^6y=x^2y Similarly by induction, yx^i=x^{3i}y for all i=1,2,3,\ldots Then y^2x^i=y\times yx^i=y\times x^{3i}y=x^{9i}y^2 and then y^3x=y\times y^2x=y\times x^9y^2=x^{27}y^3 But y^3=1, so x=x^{27}; x^{26}=1. But also x^{25}=(x^5)^5=1^5=1, so 1=x^{26}=x\times x^{25}=x\times 1=x So x=1, and therefore the group is actually \langle \{y\}|y^3=1\rangle. This group has 3 elements: 1,y,y^2.
```

Symmetric Groups

Definition: Let Ω be a set (allow $\Omega \neq \emptyset$, but don't worry too much about that case). Then the *symmetric group on* Ω is the group S_{Ω} , whose elements are all of the bijections from Ω to Ω , and whose group operation is composition of functions. Note: if $f, g \in S_{\Omega}$, then $f \circ g \in S_{\Omega}$ because $f \circ g$ maps Ω to Ω , and is bijective. $f \circ g$ is injective: $x \neq y \implies g(x) \neq g(y) \implies f(g(x)) \neq f(g(y)) \forall x, y \in \Omega$:

 $f \circ g$ is 1-1.

 $\forall z \in \Omega. \exists y \in \Omega \text{ s.t. } g(y) = z \text{ (since } g \text{ is surjective) and } \exists \in \Omega \text{ s.t. } f(x) = y \text{ (since f is surjective). } \therefore (f \circ g)(x) = f(g(x)) = f(y) = z \text{ so } f \circ g \text{ is surjective.}$ Therefore $f \circ g \in S_{\Omega} \forall f, g \in S_{\Omega}$.

Also, composition is associative.

The *identity map*, $i: \Omega \to \Omega$, given by $i(x) = x \forall x \in \Omega$ is the group identity, and for all $f \in S_{\Omega}$, the inverse function f^{-1} is the inverse in the group. $\therefore S_{\Omega}$ is a group.

Definition: Let $n \in \mathbb{Z}_{>0}$ (or $n \in \mathbb{N}$). Then the *symmetric group on* n *letters* is the group $S_n = S_{\{1,2,\dots,n\}}$.

Examples:

- 0. $S_0 = S_{\emptyset}$ is the trivial group (there is only one function $f : \emptyset \to \emptyset$).
- 1. S_1 is also the trivial group. There is only one function $f:\{1\} \to \{1\}$.
- 2. $S_2 = S_{\{1,2\}}$ has two elements: f = identity function: f(1) = 1, f(2) = 2g = function that switches 1 and 2: g(1) = 2, g(2) = 1.

$$\begin{array}{ccccc}
f & g \\
f & f & g \\
g & g & f
\end{array}$$

Looks a lot like $\mathbb{Z}/2\mathbb{Z}$:

In general, S_n has n! elements $\forall n \in \mathbb{Z}_{>0}$ (or $n \in \mathbb{N}$, not that 0! = 1).

To choose $\sigma \in S_n$:

You have n possibile choices for $\sigma(1)$

You have n-1 possible choices for $\sigma(2)$

You have n-2 possible choices for $\sigma(3)$

You have 1 possible choices for $\sigma(n)$

Cycles

Definition: The notation (a_1, a_2, \ldots, a_m) , where $m \in \mathbb{Z}_{>0}$ and a_1, \ldots, a_m are distinct elements of $\{1, 2, \ldots, n\}$, is the element $\sigma \in S_n$ defined by:

$$\sigma(a_i) = a_{i+1}, i = 1, \dots, m-1$$

 $\sigma(a_m) = a_1$

and $\sigma(x) = x \forall x \in \{1, 2, ..., n\} \setminus \{a_1, a_2, ..., a_m\}$. This is called a *cycle*, or an *m-cycle*, and its *length* is m.

Definition: Cycles (a_1, a_2, \ldots, a_m) and (b_1, b_2, \ldots, b_k) , are *disjoint* if the sets $\{a_1, a_2, \ldots, a_m\}$ and $\{b_1, b_2, \ldots, b_k\}$ are disjoint.

Key Fact: Disjoint cycles commute.

Proof:

$$(a_1 a_2 \dots a_m)(b_1 b_2 \dots b_k) = (b_1 b_2 \dots b_k)(a_1 a_2 \dots a_m)$$

because both sides take:

- a_i to $a_i + 1 \ (1 \le i < m)$
- a_m to a_1
- b_j to b_{j+1} $(1 \le j < k)$
- b_k to b_1
- and leave all other elements of $\{1, 2, ..., n\}$ unchanged.

Theorem: Every element of S_n can be written as a (finite) product of (pairwise) disjoint cycles.

Proof: Here's how (let $\sigma \in S_n$):

- 0. Start with the empty product
- 1. If all elements of $\{1, 2, \dots, n\}$ are already mentioned in the pairwise product so far, stop.
- 2. Otherwise, find the smallest $a \in \{1, 2, ..., n\}$ nod mentioned so far, and compute $\sigma(a)$, $\sigma^2(a)$, ... until you get $\sigma^m(a) = a$ the first time. Then, add the cycle $(a\sigma(a)\sigma^2(a))$ to the list. Go back to step 1.
- 3. Optional last step: cancel out all 1-cycles.