Семинар 28

Операционное исчисление

- **О.** Будем называть функцию f(t), определённую при $t \in \mathbb{R}$, оригиналом, если
 - 1) f(t) = 0 при t < 0;
 - 2) f(t) кусочно-непрерывная функция на любом конечном отрезке;
 - 3) $\exists M > 0$, $\exists a \in \mathbb{R}$: $|f(t)| \leq Me^{at}$ для всех $t \in \mathbb{R}$ (функция f(t) имеет ограниченную степень роста).

При этом точная нижняя грань a_0 всех таких чисел $a \in \mathbb{R}$, для которых $\exists M > 0$ такое, что выполняется неравенство $|f(t)| \leq Me^{at}$ для всех $t \in \mathbb{R}$, называется показателем роста функции f(t).

О. Если f(t) — оригинал, то функция $F(p) = \int_0^{+\infty} e^{-pt} f(t) \, dt$, где $p \in \mathbb{C}$, называется изображением функции f(t).

Этот интеграл также называется преобразованием Лапласа.

При Re $p > a_0$, где a_0 — показатель роста функции f(t), функция F(p) существует и является аналитической.

Обозначение: $f(t) \neq F(p)$.

Пример 1 (самостоятельно). Найти изображение функции Xевисай ∂a : $\theta(t) = \begin{cases} 0, & t < 0, \\ 1, & t \geq 0. \end{cases}$

Заметим, что функция является оригиналом, и её показатель роста $a_0 = 0$.

1

t
$$\theta(t) \stackrel{+\infty}{=} F(p) = \int_{0}^{+\infty} e^{-pt} dt = \frac{e^{-pt}}{-p} \Big|_{0}^{+\infty} = \frac{1}{p}, \text{ Re } p > 0.$$

$$Omsem: \theta(t) \stackrel{+}{=} \frac{1}{p}, \text{ Re } p > 0.$$

Свойства преобразования Лапласа

Пусть $f(t) \neq F(p), g(t) \neq G(p)$.

- 1°. Свойство линейности: $\alpha f(t) + \beta g(t) \neq \alpha F(p) + \beta G(p)$, $\alpha, \beta \in \mathbb{C}$.
- **2°.** Свойство подобия: $f(\alpha t) = \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right)$, $\alpha > 0$.
- **3°.** Изображение производной: f'(t) = pF(p) f(0+0), если функция f'(t) тоже является оригиналом.

Доказательство:

$$f'(t) = \int_{0}^{+\infty} e^{-pt} f'(t) dt = e^{-pt} f(t)|_{0}^{+\infty} + p \int_{0}^{+\infty} e^{-pt} f(t) dt = -f(0+0) + pF(p).$$

Если функция f''(t) также является оригиналом, то $f''(t) \neq p[pF(p) - f(0+0)] - f'(0+0)$, и т. д.

$$f''(t) = p[pF(p) - f(0+0)] - f'(0+0)$$
, и т. д.

- **4°.** Изображение первообразной: $\int_0^t f(\tau) d\tau = \frac{F(p)}{r}$.
- **5°.** Теорема о дифференцировании изображения: $(-t)^n f(t) = F^{(n)}(p), n \in \mathbb{N}$.

6°. Теорема смещения: $e^{p_0t}f(t) = F(p-p_0)$, $p_0 \in \mathbb{C}$.

7°. Изображение *свёртки*: $f(t) * g(t) \stackrel{\text{def}}{=} \int_0^t f(\tau)g(t-\tau)\,d\tau \neq F(p)G(p)$. **8**°. Теорема запаздывания: $f(t-t_0) \neq e^{-pt_0}F(p), t_0 \geq 0$.

Пример 2 (самостоятельно). Найти изображение функции $f(t) = e^{p_0 t} \theta(t)$, где $p_0 \in \mathbb{C}$. Функция f(t) является оригиналом, её показатель роста $a_0 = \text{Re } p_0$.

Поскольку $\theta(t) \neq F(p) = \frac{1}{n}$ (пример 1), то из свойства 6° получаем

$$f(t) = e^{p_0 t} \theta(t) \neq F(p - p_0) = \frac{1}{p - p_0}$$
, Re $p > \text{Re } p_0$.

Omsem: $e^{p_0 t} \theta(t) \stackrel{\cdot}{=} \frac{1}{n-n_0}$, Re $p > \text{Re } p_0$.

Пример 3 (самостоятельно). Найти изображение функции $f(t) = \sin \omega t \cdot \theta(t)$, где $\omega \in \mathbb{R}$.

Функция f(t) является оригиналом с показателем роста $a_0=0$. Поскольку $f(t)=\frac{e^{i\omega t}-e^{-i\omega t}}{2i}\cdot\theta(t)$ и $\theta(t) \stackrel{1}{=} \frac{1}{p}$, то по свойствам 1° и 6° получаем

$$f(t) \stackrel{d}{=} \frac{1}{2i} \left(\frac{1}{p - i\omega} - \frac{1}{p + i\omega} \right) = \frac{\omega}{p^2 + \omega^2}, \operatorname{Re} p > 0.$$

Omsem: $\sin \omega t \cdot \theta(t) = \frac{\omega}{n^2 + \omega^2}$, Re p > 0, $\omega \in \mathbb{R}$.

Пример 4 (дополнительный). Найти изображение функции

 $f(t) = \cos \omega t \cdot \theta(t)$, где $\omega \in \mathbb{R}$.

Функция f(t) является оригиналом с показателем роста $a_0 = 0$.

Поскольку $f(t) = \frac{e^{i\omega t} + e^{-i\omega t}}{2} \cdot \theta(t)$ и $\theta(t) = \frac{1}{n}$, то по свойствам 1° и 6° получаем

$$f(t) = \frac{1}{2} \left(\frac{1}{p - i\omega} + \frac{1}{p + i\omega} \right) = \frac{p}{p^2 + \omega^2}, \text{ Re } p > 0.$$

Omsem: $\cos \omega t \cdot \theta(t) = \frac{p}{n^2 + \omega^2}$, Re p > 0, $\omega \in \mathbb{R}$.

Пример 5 (самостоятельно). Найти изображение функции $f(t) = t^n \cdot \theta(t)$, где $n \in \mathbb{N}$.

Функция f(t) является оригиналом с показателем роста $a_0 = 0$.

По свойствам 1° и 5° получаем

$$f(t) = t^n \cdot \theta(t) = \frac{(-t)^n \cdot \theta(t)}{(-1)^n} = \frac{1}{(-1)^n} \left(\frac{1}{p}\right)^{(n)} = \frac{(-1)(-2) \dots (-n)}{(-1)^n p^{n+1}} = \frac{(-1)^n n!}{(-1)^n p^{n+1}} = \frac{n!}{n^{n+1}}, \text{ Re } p > 0.$$

Omeem: $t^n \cdot \theta(t) \stackrel{!}{=} \frac{n!}{n^{n+1}}$, Re p > 0, $n \in \mathbb{N}$.

Можно также показать, что

$$t^{\nu} \cdot \theta(t) \stackrel{.}{=} \frac{\Gamma(\nu+1)}{n^{\nu+1}}$$
, Re $p > 0, \nu > -1$.

Таблица основных изображений

$$\theta(t) \stackrel{!}{=} \frac{1}{p}, \text{ Re } p > 0.$$

$$e^{at} \cdot \theta(t) \stackrel{!}{=} \frac{1}{p-a}, \text{ Re } p > \text{Re } a.$$

$$\sin \omega t \cdot \theta(t) \stackrel{!}{=} \frac{\omega}{p^2 + \omega^2}, \text{ Re } p > 0, \omega \in \mathbb{R}.$$

$$\cos \omega t \cdot \theta(t) \stackrel{!}{=} \frac{p}{p^2 + \omega^2}, \text{ Re } p > 0, \omega \in \mathbb{R}.$$

$$t^n \cdot \theta(t) \stackrel{!}{=} \frac{n!}{p^{n+1}}, \text{ Re } p > 0, n \in \mathbb{N}.$$

$$t^{\nu} \cdot \theta(t) \stackrel{!}{=} \frac{\Gamma(\nu + 1)}{p^{\nu+1}}, \text{ Re } p > 0, \nu > -1.$$

Пример 6. Решите задачу Коши

$$\begin{cases} y'' + 2y' - 3y = e^{-t}, & t > 0; \\ y(0) = 0, & y'(0) = 1. \end{cases}$$

Требуется найти дважды дифференцируемую неизвестную функцию y(t) при $t \ge 0$.

Предположим, что y(t), y'(t), y''(t) — оригиналы. Тогда

$$y(t) \equiv Y(p)$$
.

$$y'(t) = pY(p) - y(0+0) = pY(p).$$

 $y''(t) = p(pY(p)) - y'(0+0) = p^2Y(p) - 1.$

$$e^{-t}\cdot\theta(t) \stackrel{.}{=} \frac{1}{p+1}.$$

(Мы продолжили функцию e^{-t} на область t < 0 нулём, чтобы она стала оригиналом.) Взяв преобразование Лапласа от левой и правой части дифференциального уравнения, получим

$$p^2Y - 1 + 2pY - 3Y = \frac{1}{p+1}.$$

После преобразования Лапласа дифференциальное уравнение перешло в алгебраическое. Из этого линейного алгебраического уравнения находится неизвестная функция Y(p):

$$(p^{2} + 2p - 3)Y = \frac{1}{p+1} + 1 = \frac{p+2}{p+1}.$$

$$Y(p) = \frac{p+2}{(p+1)(p^{2} + 2p - 3)}.$$

Теперь нужно восстановить по изображению оригинал. Для этого воспользуемся таблицей изображений. Но сначала нужно свести Y(p) к комбинации табличных изображений. Для этого разложим Y(p) на простейшие дроби:

$$Y(p) = \frac{p+2}{(p+1)(p-1)(p+3)} = \frac{A}{p+1} + \frac{B}{p-1} + \frac{C}{p+3}.$$

Неизвестные коэффициенты A, B, C проще всего найти методом вычёркивания. Умножив левую и правую часть тождества

$$\frac{p+2}{(p+1)(p-1)(p+3)} = \frac{A}{p+1} + \frac{B}{p-1} + \frac{C}{p+3}$$
Ha $p+1$

$$\frac{p+2}{(p-1)(p+3)} = A + (p+1)\left(\frac{B}{p-1} + \frac{C}{p+3}\right)$$

и положив p=-1, получим $-\frac{1}{4}=A$. Аналогично определяются $B=\frac{3}{8}$ и $C=-\frac{1}{8}$. Тогда $Y(p)=-\frac{1}{4}\cdot\frac{1}{p+1}+\frac{3}{8}\cdot\frac{1}{p-1}-\frac{1}{8}\cdot\frac{1}{p+3}$.

$$Y(p) = -\frac{1}{4} \cdot \frac{1}{p+1} + \frac{3}{8} \cdot \frac{1}{p-1} - \frac{1}{8} \cdot \frac{1}{p+3}$$

Из таблицы изображений видно, что такому изображению будет соответствовать оригинал

$$y(t) = -\frac{1}{4}e^{-t} \cdot \theta(t) + \frac{3}{8}e^{t} \cdot \theta(t) - \frac{1}{8}e^{-3t} \cdot \theta(t).$$

Тогда

$$y(t) = -\frac{e^{-t}}{4} + \frac{3}{8}e^{t} - \frac{e^{-3t}}{8}, \qquad t \ge 0.$$

Omeem:
$$y(t) = -\frac{e^{-t}}{4} + \frac{3}{8}e^t - \frac{e^{-3t}}{8}, \ t \ge 0.$$

Пример 7 (дополнительный). Решить интегральное уравнение

$$f(t) = \cos t + \int_{0}^{t} \sin(t - \tau) f(\tau) d\tau, \qquad t > 0.$$

Предполагая, что неизвестная функция f(t) является оригиналом и $f(t) \neq F(p)$, взяв преобразование Лапласа от левой и правой части уравнения, по свойствам 1° и 7°, используя таблицу изображений, получим

$$F(p) = \frac{p}{p^2 + 1} + \frac{F(p)}{p^2 + 1},$$

откуда $F(p) = \frac{1}{p}$, следовательно, $f(t) = \theta(t)$. При t > 0: f(t) = 1.

Omsem: f(t) = 1, t > 0.

Итак, преимущество операционного исчисления состоит в том, что оно позволяет сводить дифференциальные и интегральные уравнения (a также дифференциальные) к алгебраическим. Но тогда главная проблема состоит в том, чтобы по изображению восстановить оригинал. Если с помощью таблицы изображений и свойств преобразования Лапласа это сделать не удаётся, то надо использовать общую формулу для обратного преобразования Лапласа.

Обратное преобразование Лапласа (формула Меллина)

Если для изображения F(p) существует оригинал f(t), то он удовлетворяет равенству

$$\begin{array}{c|c}
\hline
p_{k} & & \\
\hline
0 & & \\
\hline
\end{array}$$

$$\begin{array}{c|c}
\frac{f(t-0)+f(t+0)}{2} = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{pt} F(p) dp \stackrel{\text{def}}{=} \\
& \\
\frac{1}{2\pi i} \cdot \lim_{A \to +\infty} \int_{\sigma-iA}^{\sigma+iA} e^{pt} F(p) dp,
\end{array}$$

где интеграл берётся (в смысле главного значения) по прямой Re $p = \sigma$, где $\sigma \in \mathbb{R}$ — такое, что при Re $p \ge \sigma$ функция F(p) является аналитической (не имеет особых точек, т. е. все конечные особые точки p_k расположены *слева* от прямой Re $p = \sigma$). Тогда от выбора числа σ интеграл не зависит.

В точках непрерывности f(t) имеем $f(t) = \frac{f(t-0)+f(t+0)}{2} = \frac{1}{2\pi i} \int_{\sigma-i\infty}^{\sigma+i\infty} e^{pt} F(p) dp$.

Пример 8. Найти по формуле Меллина оригинал для функции $F(p) = \frac{1}{p}$.

Рассмотрим интеграл в формуле Меллина:

$$\frac{1}{2\pi i}\int\limits_{\sigma-i\infty}^{\sigma+i\infty}e^{pt}F(p)\,dp=\frac{1}{2\pi i}\int\limits_{\sigma-i\infty}^{\sigma+i\infty}\frac{e^{pt}}{p}dp=\frac{1}{2\pi i}\cdot\lim_{A\to+\infty}\int\limits_{\sigma-iA}^{\sigma+iA}\frac{e^{pt}}{p}dp.$$
 Подынтегральная функция $\frac{e^{pt}}{p}$ имеет особую точку $p=0$ (полюс первого порядка), которая

должна остаться слева от контура интегрирования, поэтому здесь можно взять любое $\sigma > 0$.

Рассмотрим интеграл по конечному отрезку $\int_{\sigma-iA}^{\sigma+iA} \frac{e^{pt}}{p} dp$ $\sigma+iA$ стью L_A . При досполадает внутрь контура. По ость вычетов $\sigma+iA$ $\int\limits_{\sigma-iA}^{\sigma+iA} \frac{e^{pt}}{p} dp + \int\limits_{L_A}^{\sigma} \frac{e^{pt}}{p} dp = 2\pi i \cdot \mathrm{res}\left[\frac{e^{pt}}{p},0\right].$ и замкнём контур интегрирования левой полуокружностью L_A . При достаточно больших A особая точка p=0попадает внутрь контура. По основной теореме теории

$$\int_{\sigma-iA}^{\sigma+iA} \frac{e^{pt}}{p} dp + \int_{L_A} \frac{e^{pt}}{p} dp = 2\pi i \cdot \text{res}\left[\frac{e^{pt}}{p}, 0\right]. \tag{*}$$

Вычислим вычет в особой точке:

$$\operatorname{res}\left[\frac{e^{pt}}{p},0\right] = \frac{e^{pt}}{p'}\bigg|_{p=0} = \frac{e^{pt}}{1}\bigg|_{p=0} = 1.$$

Для окружности L_A справедлива лемма Жордана (один из её вариантов — для левой полуокружности).

Лемма Жордана для левой полуокружности. Пусть f(z) — однозначная аналитическая функция при $\left\{ |z| > R, \atop \operatorname{Re} z \leq \sigma, \right.$ и $f(z) = 0^* \left(\frac{1}{z^\delta} \right)$ при $z \to \infty$, где $\delta > 0$. Тогда

$$\lim_{A\to+\infty}\int_{L_A}e^{az}f(z)\,dz=0,$$

где L_A — левая полуокружность, изображённая на рисунке, и a>0.

Замечание. Для правой полуокружности надо потребовать a < 0.

Тогда по лемме Жордана

$$\lim_{A\to+\infty}\int\limits_{L_A}\frac{e^{pt}}{p}dp=0, \qquad t>0,$$

и, переходя в равенстве (*) к пределу при $A \to +\infty$, получаем

$$\int_{\sigma-i\infty}^{\sigma+i\infty} \frac{e^{pt}}{p} dp = 2\pi i.$$

Откуда

$$f(t) = \frac{1}{2\pi i} \int_{\sigma - i\infty}^{\sigma + i\infty} \frac{e^{pt}}{p} dp = 1, \qquad t > 0.$$

При t < 0 для применения леммы Жордана отрезок интегрирования надо замыкать правой полуокружностью, тогда внутри контура особых точек не будет, и мы получим

$$f(t) = 0, t < 0.$$

Окончательно имеем $f(t) = \theta(t)$. (В точке разрыва первого рода t = 0 функция однозначно не определяется; мы положили её равной 1 в этой точке.)

Ответ: $f(t) = \theta(t)$.

ДЗ 28.

- 1. Найти изображения функций:
 - a) $\cos^3 t \cdot \theta(t)$;
 - б) $\cos mt \cdot \cos nt \cdot \theta(t)$, где $m, n \in \mathbb{R}$;
 - B) $(t+1)\sin 2t \cdot \theta(t)$;
 - г) $\theta(t) \cdot \int_0^t \cos^2 \omega \tau \, d\tau$, где $\omega \in \mathbb{R}$; д) $e^{\alpha t} \cos^2 \beta t \cdot \theta(t)$, где $\alpha, \beta \in \mathbb{R}$;

 - e) $\theta(t) \cdot \int_0^t e^{t-\tau} \sin \tau \, d\tau$.
- 2. Найти оригиналы функций:
 - а) $\frac{1}{p^2(p^2+1)}$ по формуле Меллина;
 - б) $\frac{e^{-p}}{p^2} + 2\frac{e^{-2p}}{p^3} + 6\frac{e^{-3p}}{p^4}$ с помощью таблицы изображений и свойств преобразования Лапласа.
- 3. Используя преобразование Лапласа, решить задачи Коши:

a)
$$\begin{cases} y'' + 3y' = e^t, \ t > 0; \\ y(0) = 0, \ y'(0) = -1; \\ y(0) = 0, \ y'(0) = -\frac{1}{2}. \end{cases}$$

$$(y'' + y = 2\sin t, t > 0;$$

$$\begin{cases} y(0) = 0, \ y'(0) = -\frac{1}{2}. \end{cases}$$