4722 Core Mathematics 2

1 (i) $\int (x^3 + 8x - 5) dx = \frac{1}{4}x^4 + 4x^2 - 5x + c$	M1		Attempt integration – increase in power for at least 2 terms
3	A1		Obtain at least 2 correct terms
	A1	3	Obtain $\frac{1}{4}x^4 + 4x^2 - 5x + c$ (and no integral sign or dx)
(ii) $\int 12x^{\frac{1}{2}} dx = 8x^{\frac{3}{2}} + c$	B1		State or imply $\sqrt{x} = x^{\frac{1}{2}}$
	M1		Obtain $kx^{\frac{3}{2}}$
	A1	3	Obtain $8x^{\frac{3}{2}} + c$ (and no integral sign or dx)
			(only penalise lack of $+ c$, or integral sign or dx once)
		6	
2 (i) $140^{\circ} = 140 \times \frac{\pi}{180}$	M1		Attempt to convert 140° to radians
$=\frac{7}{9}\pi$	A1	2	Obtain $\frac{7}{9}\pi$, or exact equiv
(ii) are $AB = 7 \times \frac{7}{9} \pi$	M1		Attempt arc length using $r\theta$ or equiv method
= 17.1	$A1\sqrt{}$		Obtain 17.1, $\frac{49}{9}$ π or unsimplified equiv
chord $AB = 2 \times 7 \sin \frac{7}{18} \pi = 13.2$	M1		Attempt chord using trig. or cosine or sine rules
hence perimeter = 30.3 cm	A1	4	Obtain 30.3, or answer that rounds to this
		6	
3 (i) $u_1 = 23^1/_3$	B1	_	State $u_1 = 23^1/_3$
$u_2 = 22^2/_3$, $u_3 = 22$	B1	2	State $u_2 = 22^2/_3$ and $u_3 = 22$
(ii) $24 - \frac{2k}{3} = 0$ k = 36	M1 A1	•	Equate u_k to 0 Obtain 36
κ – 30	A1		
(iii) $S_{20} = \frac{20}{2} \left(2 \times 23 \frac{1}{3} + 19 \times \frac{-2}{3} \right)$	M1		Attempt sum of AP with $n = 20$
= 340	A1	•	Correct unsimplified S_{20}
	A 1	3	Obtain 340
		7	
4 $\int_{2}^{2} (x^4 + 3) dx = \left[\frac{1}{5} x^5 + 3x \right]_{-2}^{2}$	M1		Attempt integration – increase of power for at least 1 term
-2	A1		Obtain correct $\frac{1}{5}x^5 + 3x$
$= \left(\frac{32}{5} + 6\right) - \left(\frac{-32}{5} - 6\right)$	M1		Use limits (any two of -2, 0, 2), correct order/subtraction
$=24\frac{4}{5}$	A1		Obtain $24\frac{4}{5}$
area of rectangle = 19 x 4	B1		State or imply correct area of rectangle
hence shaded area = $76 - 24\frac{4}{5}$	M1		Attempt correct method for shaded area
$=51\frac{1}{5}$	A1	7	Obtain $51\frac{1}{5}$ aef such as 51.2 , $\frac{256}{5}$
OR Area = $19 - (x^4 + 3)$	M1		Attempt subtraction, either order
Area = $19 - (x^4 + 3)$ = $16 - x^4$	A 1		Obtain $16 - x^4$ (not from $x^4 + 3 = 19$)
$\int_{-2}^{2} \left(16 - x^4 \right) dx = \left[16x - \frac{1}{5}x^5 \right]_{-2}^{2}$	M1		Attempt integration
-2	A1		Obtain $\pm \left(16x - \frac{1}{5}x^5\right)$

$$= (32 - \frac{32}{5}) - (-32 - \frac{-32}{5})$$
$$= 51 \frac{1}{5}$$

M1 Use limits – correct order / subtraction

A1 Obtain $\pm 51\frac{1}{5}$

A1 Obtain $51\frac{1}{5}$ only, no wrong working

7

5 (i)
$$\frac{TA}{\sin 107} = \frac{50}{\sin 3}$$

 $TA = 914 \text{ m}$

M1 Attempt use of correct sine rule to find *TA*, or equiv

A1 2 Obtain 914, or better

(ii)
$$TC = \sqrt{914^2 + 150^2 - 2 \times 914 \times 150 \times \cos 70}$$

M1 Attempt use of correct cosine rule, or equiv, to find *TC*

= 874 m

A1 $\sqrt{}$ Correct unsimplified expression for TC, following their (i)

A1 3 Obtain 874, or better

(iii) dist from
$$A = 914 \times \cos 70 = 313 \text{ m}$$

beyond C , hence 874 m is shortest dist

M1 Attempt to locate point of closest approach A1 2 Convincing argument that the point is beyond C,

or obtain 859, or better

SR B1 for 874 stated with no method shown

perp dist = $914 \times \sin 70 = 859 \text{ m}$

7

6 (i)
$$S_{\infty} = \frac{20}{1-0.9}$$
 = 200

OR

M1 Attempt use of $S_{\infty} = \frac{a}{1-r}$

A1 **2** Obtain 200

(ii)
$$S_{30} = \frac{20(1 - 0.9^{30})}{1 - 0.9}$$

= 192

M1 Attempt use of correct sum formula for a GP, with n = 30

A1 2 Obtain 192, or better

(iii)
$$20 \times 0.9^{p-1} < 0.4$$

 $0.9^{p-1} < 0.02$

B1 Correct $20 \times 0.9^{p-1}$ seen or implied

$$(p-1)\log 0.9 < \log 0.02$$

M1 Link to 0.4, rearrange to $0.9^k = c$ (or >, <), introduce logarithms, and drop power, or equiv correct method

$$p - 1 > \frac{\log 0.02}{\log 0.9}$$

M1 Correct method for solving their (in)equation

p > 38.1 hence p = 39

A1 4 State 39 (not inequality), no wrong working seen

8

7 (i)
$$6k^2a^2 = 24$$

 $k^2a^2 = 4$

M1* Obtain at least two of 6, k^2 , a^2 M1dep* Equate $6k^m a^n$ to 24

 $k^2 a^2 = 4$ $ak = 2 \quad \mathbf{A.G.}$

A1 3 Show ak = 2 convincingly – no errors allowed

Attempt $4 \times k \times a^3$, following their a and k (allow if still in

(ii)
$$4k^3a = 128$$

 $4k^3(\frac{2}{k}) = 128$

B1 State or imply coeff of x is $4k^3a$ M1 Equate to 128 and attempt to eliminate a or k

 $4k^{3}\left(\frac{2}{k}\right) = 128$

A1 Obtain k = 4

 $k^2 = 16$ k = 4, $a = \frac{1}{2}$

A1 **4** Obtain $a = \frac{1}{2}$

SR B1 for $k = \pm 4$, $a = \pm \frac{1}{2}$

(iii)
$$4 \times 4 \times \left(\frac{1}{2}\right)^3 = 2$$

M1

terms of a, k) A1 **2** Obtain 2 (allow $2x^3$)

9

8 (a)(i) $\log_a xy = p + q$	B1	1	State $p + q$ cwo
(ii) $\log_a \left(\frac{a^2 x^3}{y} \right) = 2 + 3p - q$	M1		Use $\log a^b = b \log a$ correctly at least once
	M1		Use $\log \frac{a}{b} = \log a - \log b$ correctly
	A1	3	Obtain $2 + 3p - q$
(b)(i) $\log_{10} \frac{x^2-10}{x}$	B1	1	State $\log_{10} \frac{x^2 - 10}{x}$ (with or without base 10)
$(ii) \log_{10} \frac{x^2 - 10}{x} = \log_{10} 9$	B1		State or imply that $2 \log_{10} 3 = \log_{10} 3^2$
$\frac{x^2 - 10}{x} = 9$	M1		Attempt correct method to remove logs
$x^2 - 9x - 10 = 0$	A1		Obtain correct $x^2 - 9x - 10 = 0$ aef, no fractions
(x-10)(x+1) = 0 x = 10	M1 A1	5	Attempt to solve three term quadratic Obtain $x = 10$ only
	[10	
9 (i) $f(1) = 1 - 1 - 3 + 3 = 0$ A.G.	B1		Confirm $f(1) = 0$, or division with no remainder shown, or matching coeffs with $R = 0$
$f(x) = (x - 1)(x^2 - 3)$	M1 A1		Attempt complete division by $(x - 1)$, or equiv Obtain $x^2 + k$
	A1 A1		Obtain $x + k$ Obtain completely correct quotient (allow $x^2 + 0x - 3$)
$x^2 = 3$	M1		Attempt to solve $x^2 = 3$
$x = \pm \sqrt{3}$	A1	6	Obtain $x = \pm \sqrt{3}$ only
(ii) $\tan x = 1, \sqrt{3}, -\sqrt{3}$	В1√		State or imply $\tan x = 1$ or $\tan x = $ at least one of their roots from (i)
$\tan x = \sqrt{3} \Rightarrow x = \pi/3, 4\pi/3$	M1		Attempt to solve $\tan x = k$ at least once
$\tan x = -\sqrt{3} \Rightarrow x = \frac{2\pi}{3}, \frac{5\pi}{3}$	A1		Obtain at least 2 of $\pi/3$, $2\pi/3$, $4\pi/3$, $5\pi/3$ (allow degs/decimals)
$\tan x = 1 \Rightarrow x = {\pi/4}, {5\pi/4}$	A1		Obtain all 4 of $\pi/_3$, $2\pi/_3$, $4\pi/_3$, $5\pi/_3$ (exact radians only)
	B1 B1	6	Obtain $\pi/4$ (allow degs / decimals) Obtain $5\pi/4$ (exact radians only)
	Di	Ū	SR answer only is B1 per root, max of B4 if degs / decimals
	[12	