Távadók

Programozható irányítóberendezések és szenzorrendszerek

KOVÁCS Gábor gkovacs@iit.bme.hu

Érzékelők illesztése

Érzékelők kimenete

- Érzékelők általában feszültség kimenetűek
- Az értékeket esetenként messzire kell továbbítani

 Távadó (transmitter): egy folytonos (nem állásos) mért mennyiséget szabványos formában továbbító berendezés

Érzékelők, jelátalakítók és távadók

- Szabványos érzékelők esetében a távadó az illesztő kapcsolást is tartalmazza
 - Ellenállás-hőmérők
 - Hőelemek

Érzékelők, jelátalakítók és távadók

 Nem szabványos, de általános felépítésű, jól definiált kimenetű érzékelőknél a távadó nem tartalmazza a primer illesztő elektronikát (pl. erőmérő cellák)

Érzékelők, jelátalakítók és távadók

 Nem szabványosított, egyedi, gyártóspecifikus felépítésű érzékelőnél a jelátalakító, érzékelő és a megfelelő kimenetet biztosító egység együttesét nevezzük távadónak (pl. nyomástávadó)

Távadók lehetséges elemei

- Jelátalakító
- Elemi érzékelő
- Jelkondícionálás, konverzió
- Kompenzálás
- Kimeneti jelillesztés

Nyomástávadó

- Membrán
- Nyúlásmérő bélyeg
- Híd
- Illesztés

RTD távadó

- Híd
- Illesztés

Erőmérő cella távadó

Illesztés

Távadók fejlődése

Analóg távadók

- Jelillesztés
- Analóg kompenzáció
- Analóg kimenet
 - Kezdetben nincs egységes jeltartomány
 - Pneumatika: 3-15 psi
 - Kialakult: 4-20 mA-es áramjel

4-20 mA

- Áramjel
 - Zavarokra a feszültségjelnél jóval kevésbé érzékeny
 - Vezetékezés nem csökkenti az átfolyó áramot
- Élő nulla
 - Minimális mért értékhez nem 0, hanem 4 mA tartozik
 - Vezetékszakadás érzékelhető

4-20 mA

- Milyen mért érték tartozik egy áramjelhez?
- Csak a távadót és paramétereit ismerve tudjuk megmondani!
- Minden távadó saját mérési tartományát képzi le a 4-20 mA tartományra

-6 psid 0 barg 0.4 m −30°C 6 psid 4 barg 25 m 170°C

4(?) - 20(?) mA

- Előfordulhatnak a 4-20 mA tartományon kívüli jelek is
 - Méréshatáron kívüli értékek jelzése
 - Hibajelzés
- NAMUR NE43 szabvány

– AO-LL : 3.8 mA

— AO-HL : 20.5 mA

- A 4-20 mA tartományon kívüli értékek a mérési tartományon kívüli (alatti ill. feletti) értéket jelzik
- 3.6 mA alatti illetve 21 mA feletti értékek a távadó hibáját jelzik
- Gyártóspecifikus vagy konfigurálható beállítások

Lineáris karakterisztikájú távadók

 A távadó lineárisan képzi le mérési tartományát a 4-20mA jeltartományra

•
$$I = 4 + \frac{Y - Y_{min}}{Y_{max} - Y_{min}} \cdot 16 \text{ [mA]}$$

•
$$Y = Y_{min} + \frac{I-4}{16} \cdot (Y_{max} - Y_{min})$$

Lineáris karakterisztikájú távadók - példa

- Egy lineáris karakterisztikájú abszolút nyomástávadó mérési tartománya 3-7 bar. Mekkora nyomást érzékel, ha kimenetén 8mA-es áramot mérünk?
- A mérési tartomány hány %-át jelenti a 8mA-es érték? $I_{\%}=\frac{I-I_{min}}{I_{max}-I_{min}}=\frac{4}{16}=25\%$
- Arányos karakterisztika használata esetén a mért érték a tartomány ugyanezen %-os értékéhez tartozik: $Y_{\%} = I_{\%}$
- A mért érték:

$$Y = Y_{min} + Y_{\%}(Y_{max} - Y_{min}) = 3 + 0.25 \cdot 4$$

= **4 bar**

Egyéb karakterisztikák

Négyzetgyökös karakterisztika

•
$$I = 4 + \frac{16}{\sqrt{Y_{max} - Y_{min}}} \sqrt{Y - Y_{min}}$$
 [mA]

•
$$Y = Y_{min} + \frac{(I-4)^2}{256} (Y_{max} - Y_{min})$$

Logaritmikus karakterisztika

•
$$I = 4 + 16 \frac{\lg\left(\frac{Y}{Y_{min}}\right)}{\lg\left(\frac{Y_{max}}{Y_{min}}\right)}$$
 [mA]

$$\bullet \ \ Y = \left(\frac{Y_{max}}{Y_{min}}\right)^{\frac{I-4}{16}} \cdot Y_{min}$$

Kétvezetékes áramhurok

- Elemei:
 - (táv)Adó (transmitter)
 - Vevő (reveiver)
 - Tápegység (power supply)
- Egy hurkon belül több vevő, de csak egy adó lehet
- Tápegység és jel azonos vezetéken
- A hurok maximális hossza 2000 m

Adó

- Az áramot nem az adó állítja elő, hanem a tápegység – az adó az áramfelvételével befolyásolja a hurokban folyó áramot
- Áramgenerátor, ami az energiát a tápegységtől nyeri (V_S)

Analog Devices Circuit Note CN-0314 http://www.analog.com/CN0314

Vevő

- Passzív szereplő
- Kulcs az áram-feszültség átalakítás: precíziós ellenállás

$$-500\Omega \Rightarrow U = 2 - 10V$$

$$-250\Omega \Rightarrow U = 1 - 5V$$

$$-200\Omega \Rightarrow U = 0.8 - 4V$$

$$-100\Omega \Rightarrow U = 0.4 - 2V$$

Vevő bemenete - példa

- $R_1 = 100\Omega$
- $C_1 = 100$ nF (csillapítás)
- Z_1 : Zener-dióda (túlfeszültség-védelem)

Vevő áramkör

$$R_1 = 100\Omega$$
, $U_{max} = 10V \Rightarrow U_0 = 100 \cdot 4 \text{ mV} = 0.4V$, $G = \frac{10}{0.016 \cdot 100} = \frac{10}{16} = 0.625$

A visszacsatoló ágban elhelyezett osztónak köszönhetően a stabil 10V-os referenciafeszültség mellett kimeneti tartomány 0-5V.

Tápegység

- DC tápegység
- Feladata: az adó energiaellátása
 - Az adó által igényelt tápfeszültséget kell szolgáltatnia
 - A feszültséget csökkenti a vevő(k) és a vezetékezés ellenállása

Tápegység méretezése

- A tápegységnek energiát kell biztosítania
 - a távadó áramgenerátoron kívüli elektronikája számára
 - a 4-20mA-es áramjel számára
- Tápegység méretezése:

 $U_T \geq U_{S,Transmitter} + 20mA \cdot R_{Receiver} + 20mA \cdot R_{Wiring}$

 $U_{S,Transmitter}$: a tápegység minimális tápfeszültsége

 $R_{Receiver}$: a vevők belső ellenállásainak összege

 R_{Wiring} : a hurok vezetékezésének teljes ellenállása

Célszerű a minimálisan szükségesnél nagyobb fezsültségeű tápegységet alkalmazni.

Tápegység méretezése

Egy távadó adatlapján a tápfeszültség megengedett értéke $V_S=11-36$ V. A távadó körében két vevő helyezkedik el, egyenként 200Ω -os bemeneti ellenállással, az áramhurok vezetékezésének teljes ellenállása pedig 10Ω . Milyen feszültségű tápegységet kell használnunk?

$$U_T \ge 11 \text{V} + 2 \cdot 200 \Omega \cdot 20 \text{mA} + 10 \Omega \cdot 20 \text{mA}$$

 $U_T \ge 19.2 \text{ V}$

Távadó teljesítménye

- A távadó teljesítménye limitált
- Maximális felvehető áram 4 mA-nél (mérési tartomány túllépés megengedése esetén 3.8 mA-nél) kisebb
- Ha az adó 4 mA-nél több áramot venne fel, akkor 0 továbbítandó érték esetén is 4 mA felett lenne a hurokban folyó áram értéke

Távadó teljesítménye - példa

Egy távadó adatlapján a tápfeszültség megengedett értéke $V_S=11-36$ V, a távadó teljesíti a Namur NE43 szabvány szerinti 3.8-20.5 mA kimenetre vonatkozó előírásokat. Adjon becslést a távadó elektronikájának teljesítményfelvételére!

$$P < 11V \cdot 3.8 \text{mA} = 41.8 \text{mW}$$

Aktív adó

- A tápegység az adóban kap helyet
- Szenzor-távadóknál ritka
- Csak korlátozott terhelést képes kezelni (általában $R \leq 500\Omega$)

Távadók robbanásveszélyes környezetben

- 24V-os tápfeszültség mellett a 4-20mA-es távadók teljesítménye nem elég robbanás kialakulásához
- A távadóban nem alakulhat ki gyújtószikra
- Jeltartományból adódóan biztonságos eszközök: intrinsic safety

Gyújtószikramentes leválasztás

- A távadóban üzemszerűen nincsen a gyújtószikrához szükséges teljesítmény, ezt biztosítani kell meghibásodás (pl. rövidzár létrejötte) esetén is
- Távadó leválasztása: Zener-gát
 - Túláram ellen: áramkorlátozó ellenállás és biztosíték
 - Túlfeszültség ellen: Zener-diódák

Analóg kimenetű távadók típusai tápellátás szerint (ISA)

- 2-es típus: kétvezetékes
- 3-es típus: háromvezetékes
- 4-es típus: négyvezetékes

 Előny: távadó teljesítménye nem korlátozott

Analóg kimenetű digitális távadók

- Távadón belül digitális elektronika
 - Azonos pontosság olcsóbban
 - Kiegészítő funkciók
 - Komplex kompenzálási algoritmusok
- Kimenet: hagyományos analóg 4-20 mA áramjel

Burr-Brown (Texas Instruments) XTR108

- RTD és híd-távadó
- Digitális kalibráció és kompenzáló elektronika
- Analóg áramkimenet

Digitális működésű távadók funkciói

- Nullpont, mérési tartomány, kimeneti tartomány beállítása
- Beállítható korrekció és kompenzáció
- Szélsőértékek és státusz tárolása
- Öndiagnosztika

Digitális működésű távadók helyi interfésze

- Kijelző + nyomógombok
- Mért érték megjelenítése akár többféle mértékegységben
- Paraméterek beállítása

HART

- 1980-as évek vége, Rosemount Inc.
- Kommunikáció a digitális távadókkal a meglévő jelkapcsolatot felhasználva, az analóg áramhurok megtartása mellett
- 1993: HCF HART Communication Foundation
- Ma már a 8. változatnál jár

A HART protokoll rétegei

OSI réteg	HART			
Alkalmazási	HART parancsok			
Megjelenítési				
Viszonylati	Niama (mamilama ambélb			
Szállítási	Nem implementált			
Hálózati				
Adatkapcsolati	HART protokoll szabályok			
Fizikai	Bell 202 FSK			

HART fizikai réteg

- FSK a 4-20mA tetején
 - -1200Hz 1
 - 2200Hz 0
- Fázisfolytonos,
 0.5mA-es áramjel

HART fizikai réteg

- A jel DC átlaga nulla, úgyhogy nem ad egyenáramú komponenst az áramjelhez
- A spektrumok nem lapolódnak át
- A nem HART-képes eszközöknél szűrőt kell alkalmazni

HART kommunikáció

- Master-slave architektúra
 - Primary master
 - Secondary master
 - 1-15 slave
- Token passing arbitráció
- Alapesetben a slave eszközök csak a master kéréseire válaszolnak

HART burst mód

- A slave eszköz nem vár megszólításra
- Saját maga kezdeményezi az üzenetküldést
- Folyamatosan üzen, amikor lehetősége van rá
- Broadcast üzenet, mindenki megkapja

HART arbitráció

- Token passing
- Ciklikus
- Nem preemptív
- Determinisztikus
- $\approx 0.5s$ válaszidő

HART címzés

- Master: 1 bites cím
- Slave
 - Rövid címzés (polling address): 4 bites cím
 - Az adott hálózaton belül egyedi
 - A master által beállítható
 - 1-15
 - Egyedi címzés (unique identifier): 38 bites cím
 - Gyártó azonosító
 - Eszköztípus-azonosító
 - Sorozatszám

HART telegram: Master

DelimiterCímParancsÜzenethosszAdatCRC(1 byte)(1 v. 5 byte)(1 byte)(1 byte)(n byte)(1 byte)

- Delimiter
 - Címzési mód
 - Üzenettípus
- Cím: slave címe
- Parancs: kiadott parancskód
- Üzenethossz: további byte-ok száma CRC nélkül

HART telegram: Slave

Delimiter (1 byte)	Cím (1 v. 5 byte)	Parancs (1 byte)	Parancs specifikus válasz (1 byte)		Üzenet- hossz (1 byte)		CRC (1 byte)
-----------------------	-------------------------	---------------------	---	--	------------------------------	--	-----------------

- Cím: saját cím (ismétlés)
- Parancs: kiadott parancskód ismétlése
- · Parancs specifikus válasz: siker vagy hibakód
- Státusz: slave eszköz státusza (hiba, határérték-túllépés stb.)

HART parancsok

- Általános parancsok (universal commands)
 - 0-32 kódok
 - Minden HART eszköznek támogatnia kell
- Gyakori parancsok (common practice commands)
 - 33-127 kódok
 - A legtöbb, de nem minden HART eszköz támogatja
 - Minden ezeket támogató HART eszköznél ugyanazt a parancsot jelentik
- Eszköz specifikus parancsok (device-specific commands)
 - 128 feletti kódok
 - Más-más parancsot jelentenek az egyes eszközöknél

Általános HART parancsok

- Gyártó és eszköztípus kiolvasása
- Mért érték és mértékegység olvasása
- Áramkimenet és % olvasása
- 8 karakteres címke, 16 karakteres név, dátum írás/olvasás
- 32 karakteres üzenet írás/olvasás
- Polling address írás
- •

Gyakori parancsok

- Csillapítási idő írása
- Méréshatár írása
- Kalibráció (nulla, FS)
- Fix kimeneti áram beállítása
- Önteszt indítása
- Master reset
- Mért érték nullázása
- Mért érték egységének beállítása
- Átviteli függvény beállítása lineáris vagy négyzetgyökös
- Szenzor sorozatszám írása
- ...

Eszköz-specifikus parancsok

- Integrátor indítása, leállítása, nullázása
- Sűrűség beállítása (áramlásmérés)
- Mért érték kiválasztása (tömegáram, térfogatáram)
- Szabályozó paraméterek beállítása

•

HART – többváltozós távadók

- Egy távadóhoz több érzékelő tartozik akár
 256 mért érték
 - Nyomás
 - Hőmérséklet
 - **—** ...
- Ezek közül egy kerülhet a 4-20mA-es kimenetre
- A többi HART-on keresztül lekérdezhető

Digitális kimenetű távadók

- Kimenete digitális, buszra illeszkedik
- Terepi busz (részletesen a félév második felében)
 - Foundation Fieldbus
 - Profibus PA
 - AS-i
- Távadó tápellátása a buszon is történhet

Vezeték nélküli távadók

- Versengő szabványok
 - Wireless HART
 - ISA100 Wireless
 - ZigBee Plus
- Mesh architektúra a redundancia biztosítására
- Akár több száz méteres hatótáv
- Fejlett biztonsági megoldások
- Teljesen vezeték nélküli tápvezeték sincs!
 - Akkumulátoros táplálás
 - Periodikus kommunikáció
 - Power harvesting
 - Akár 10 év akkumulátoros élettartam

