

BioGears: New Models and Capabilities

The Advantages of Continuous Model Development

17 MARCH 2020

Outline

- New model motivation
- Inflammation
 - Infection / Sepsis
 - Burn
 - Antibiotic Pharmacodynamics
- Cerebral Model expansion
- Whole Blood
- Models in development

Motivation

- BioGears model development is driven by:
 - Demonstrated past performance to JPC-1
 - BioGears Follow-On contract
 - Collaboration with medical simulation community
 - Virtual Heroes Division (VHD) at ARA
 - United States Army Institute of Surgical Research (USAISR)
 - University of Washington—WWAMI Institute for Simulation in Healthcare (WISH)
 - Advanced Modular Manikin (AMM)
 - User Buy-In
 - Outreach on Github

BioGears Inflammatory Response Model

A dynamic system that mediates response to thermal injury and infection

Applications

ADVANCED MODULAR MANIKIN ™

Inflammatory Response

- WBC = White blood cell count
- T = Temperature
- RR = Respiration rate
- NO = Nitric oxide
- D = Tissue Damage

Pain Sub-model

- Epi = Epinephrine
- RR = Respiration rate

Hypovolemia Response

- HR = Heart rate
- SVR = Systemic vascular resistance
- UO = Urine output
- BP = Blood pressure

Microcirculation Sub-model

- COP_{i/v} = Colloid osmotic pressure
- J_{w} = Fluid flux
- $J_{\Delta} = Albumin flux$
- R_H = Hydraulic resistance
- PS = Solute permeability

Treatment Options

🥟 Medication (antibiotics, pain meds, pressors)

Inflammation Model

Pathogen invasion and thermal trauma initiate the inflammatory response model

- Infection^[1-4]
 - Pathogen originates in tissue where it is combated by local immune mediators
 - Inflammation weakens tissue barrier integrity
 - Pathogen can enter circulation, leading to systemic inflammatory response (SIRS)
- Burn^[2,4]
 - Thermal trauma activates systemic inflammatory response
 - o Inflicts initial hit on global tissue health

Microcirculation Model

Inflammatory-mediated tissue damage causes fluid shift and relative hypovolemia

- BioGears models the cardiovascular system as a fluid circuit with compartments representing distinct regions (e.g. muscle, skin, liver)
- Each vascular compartment communicates with an interstitial compartment, transferring fluid and substances
- Filtered fluids and substances are returned to the vasculature via a lymph pathway (amount returned = amount filtered at steady state)

 σ = Membrane reflection coefficient

C_{i/v} = Interstitial / vascular compliance

- 1. Query volumetric flux (J_W) from BioGears circuit solver
- 2. For vascular (v) and interstial (i) compartments:
 - Calculate total plasma protein concentration (C_{pp}) from albumin concentration (C_A) assuming: [8]

$$C_{PP} = 1.6C_A$$

2. Calculate colloid osmotic pressure (COP) [8]

$$COP = 2.1 \cdot C_{pp} + 0.18 \cdot C_{pp}^2 + 0.009 \cdot C_{pp}^3$$

3. Calculate albumin flux $(J_{\Delta})^{[9]}$

$$J_{A} = J_{W} \cdot \left(1 - \sigma\right) \left(\frac{C_{A,v} - C_{A,i} \cdot \exp\left(-J_{W} \cdot \frac{\left(1 - \sigma\right)}{PS}\right)}{1 - \exp\left(-J_{W} \cdot \frac{\left(1 - \sigma\right)}{PS}\right)} \right)$$

4. Update J_W (function of COP, hydrostatic pressure, and R_H)

R_{pre/post} = Pre / post-capillary resistance

^{*} For more on lumped-parameter cardiopulmonary modeling, see refs [6, 7]

Antibiotic Pharmacodynamics Model

Assume that antibiotics act by decreasing the net bacterial growth rate^[10-11]

$$k_{net} = k_{max} - \frac{(k_{max} - k_{min}) \cdot (C_u / MIC)^{\delta}}{(C_u / MIC)^{\delta} - k_{min} / k_{max}}$$

- k_{net} = Net bacteria growth rate
- k_{max} = Bacteria growth rate in absence of antibiotic (set by model)
- k_{min} = Minimum growth rate imposed by antibiotic (< 0 \rightarrow bacteria death)
- C_{II} = Free antibiotic concentration
- MIC = Minimum inhibitory concentration (set in Infection Action)
- δ = Shape parameter
- Noteworthy Features
 - $C_{ij} = MIC \rightarrow k_{net} = 0$
 - Slow bacteria growth when C₁₁ < MIC
 - Bacteria death when C₁₁ > MIC
 - Users set k_{min} rather than an EC₅₀
 - This seems to be a more intuitive input

Demo: Action Initiation

- Infection Demonstration
 - Progression of three levels of infection ("Mild", "Moderate", "Severe")
 - · Antibiotic administration in a severely infected case
 - Fluid and pressor administration in a septic case
 - Setup:
 - Initiation requires a severity, bacteria MIC, and location (for future implementations when localized interactions are better modeled)

- Note: Infection scenarios are very long.
 - BioGears library includes infection simulations saved at various points throughout simulation
 - These saved states can be loaded into new scenarios
 - Useful for cases in which latter stages of infection are main interest of simulation (such as two treatment simulations to be shown)
- Burn Wound Demonstration
 - Progression of three burn wounds: 10%, 25%, and 40% TBSA
 - Fluid resuscitation and pain management in the 25% TBSA case
 - Setup:

Output: Infections of varying severities

Prolonged and excessive inflammation leads to symptoms of systemic inflammatory response syndrome (SIRS)*

* See McDaniel et al. 2019a [12] for more detail

Output: Septic Infection

Clinically-relevant markers for sepsis and septic shock diagnosis according to Sepsis-3^[11] definitions*

- Sepsis
 - Systolic blood pressure < 100 mmHg
 - Respiration rate > 22 (previous slide)
 - Renal organ failure assessment score
 - UO < 500 mL/day (0.34 mL/min) = 3
 - UO < 200 mL/day (0.14 mL/min) = 4</p>
- Septic Shock
 - MAP < 65 mmHg</p>
 - Serum lactate > 2.0 mmol/L

- SBP = Systolic blood pressure
- MAP = Mean arterial pressure
- SVR = Systemic vascular resistance
- UO = Urine output
- CO = Cardiac output
- SV = Stroke volume

* See McDaniel et al. 2019a [12] for more detail

Il rights received Applied Recearch Accordates Inc

entropies of Administration of December 1 and Decem

biogears^{**}

Output: Sepsis Treatment

Model demonstrates distinct outcomes depending on treatment strategy*

Administration of piperacillin/tazobactam. Plasma concentration (C_P) and area under curve (AUC) compared to values in literature^[14]. The antibiotic reduces the bacteria population, leading to reduction in inflammatory IL-6 population and improvement in tissue integrity.

Comparing two treatment strategies described in MacDonald^[15-16]. Left: Early goal directed therapy. Right: Early pressors, reduced fluids

^{*} See McDaniel et al. 2019a [12] for more detail

Output: Burns of Varying Severity

Large burns cause massive fluid shift that can lead to death*

- Blue = 25% TBSA
- Red = 40% TBSA

* See McDaniel et al. 2019b^[17] for more detail

Output: Burn Treatment

Burn size and volume resuscitation status (as indicated by UO) drive treatment*

A 25% TBSA burn treated with ketamine infusion (for pain) and administration of ringer's lactate solution (250 mL/hr initial infusion rate). Rate of fluids adjusted each hour according to resuscitation status. Treatment strategy derived from [18-20].

* See McDaniel et al. 2019b^[17] for more detail

Inflammation: Future Work

- Model variability
 - Patient inflammatory response parameters (e.g. up-regulation of IL-6 by TNF)
 - Bacteria characteristics (e.g. growth rate)
 - Initial infection levels (expand from "Mild", "Moderate", "Severe")
- Model of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)
- Tune fluid loss during burn
- Coagulopathy
- Define inflammatory mediators as BioGears Substance types
 - Improved spatial resolution
 - Drug-pathogen interactions at compartment-level
- Link hemorrhage model to inflammation cascade

Cerebral Model Expansion

Background

- Cerebral circuit previously implemented a three-element windkessel model
 - Additional pathway for interstitial space
- Traumatic Brain Injury action increased resistance on pre-capillary (R₁) and post-capillary (R₂) paths
- No autoregulation

Goals

- Increase fidelity of circuit for more accurate blood and oxygen tracking
- Introduce cerebral regulation to prioritize oxygen delivery to brain

Updated Cerebral Circuit

- Discretize brain sub-circuit to include:
 - Cerebral arteries (CA)
 - Cerebral capillaries (CP)
 - Cerebral veins (CV)
- The volume of each region responds to pressure changes (compliance paths)
- Intracranial pressure (ICP) determined by fluid stored in brain
- Cerebral blood flow (CBF) calculated according to total pressure drop and resistance across sub-circuit
- Large (R_L) and small artery (R_S) resistances are subject to auto-regulatory control (next slide)
- Some fluid flows into interstitial space as spinal fluid (SF₀) and returns to vasculature (SF₁)
- Circuit design and baseline parameters adapted from [21]

Cerebral Autoregulation

- Model assumptions^[22-23]
 - R₁ subject to first-order control via CPP
 - R_S subject to first-order control via CBF
 - $\rm R_L$ and $\rm R_S$ subject to first-order control via $\rm log(P_{CO2}) \rightarrow Reflects~pH$ dependence
 - The effects of CO₂ are attenuated by low CBF
 - R_L and R_S subject to first-order control via venous cerebral O₂ saturation
- Model outputs

 (τ) obtained from [23]

- R_1 resistance multiplier: Bounds = [0.8, 1.2]
- R_S resistance multiplier: Bounds = [0.75, 1.25]

Cerebral Model: Example Results

Traumatic Brain Injury

- Severity Input = 0.75
- Results follow trends reported in [24]

Effect of autoregulation

- Hemorrhage (initial bleeding rate = 100 mL/min) for 15 minutes
- Green = Cerebral autoregulation ON
- Black = Cerebral autoregulation OFF

Cerebral Model: Future Work

- No short-term work planned
- Long-term
 - Improve blood-gas tracking in brain to increase fidelity of feedback model
 - Possible integration with ARA TBI project

Whole Blood

- Background
 - Previous model
 - One substance compound: Blood
 - Constituent components
 - Hemoglobin
 - Oxyhemoglobin
 - Sodium
 - Albumin
 - Urea
 - Glucose
 - Triacylglyercols
 - Calcium
 - Creatinine
 - New model goals
 - Support ABO blood type definition for virtual patients
 - Support Rh factor definition for virtual patients
 - Distinguish between whole blood and plasma
 - Support transfusion action that checks for blood acceptor donor compatibility

I rights received Applied Recearch Associates Inc

biogears

Whole Blood

- New Substance Definitions
 - o Antigen A, B
 - Red Blood Cells, White Blood Cells, Platelets
 - Concentrations set according to standard literature values^[Boron]
- Rh Classification (Boolean)
 - Set to True (+) or False (-)
- No antibodies
 - Inferred by presence/absence of antigens

- Transfusion Action
 - Covered in detail in Multi-Trauma Presentation

Models in Development

- Advanced Stages: Integrated Nervous Model
 - Current
 - Feedback systems treated as separate entities
 - Response of one system does not inform the others
 - Proposed
 - Increase fidelity of existing baroreceptor and chemoreceptor models
 - Introduce new feedback mechanisms
 - Process all signals simultaneously

Models in Development

- Preliminary Stages—Long term goals
 - Updated Nutrient Kinetics model
 - Updated Insulin / Glucose regulation model

Acknowledgements

- Inflammation—Sepsis
 - Dr. Jon Keller (Pulmonary and Critical Care Medicine, WISH)
- Inflammation—Burn
 - Dr. Maria Serio-Melvin (USAISR)
 - Dr. Michael Rowland (USAISR)
 - Maj. Cassandra Bullock (USAISR)
- BioGears Team
 - Steven White
 - Austin Baird
 - Jenn Carter
 - Nathan Tatum
 - Lucas Marin

References

- 1. Dominguez-Huttinger, E., Boon, N.J., Clarke, T.B., and Tanaka, R.J. (2017). Mathematical modeling of *Streptococcus pneumoniae* colonization, invasive infection, and treatment. Front. Physiol. 8(115). doi: 10.3389/fphys.2017.00115
- 2. Chow, C.C., Clermont, G., Kumar, R., Lagoa, C., Tawadrous, Z., Gallo, D. et al. (2005). The acute inflammatory response in diverse shock states. Shock 24(1), 74-84. doi: 10.1097/01.shk.0000168526.97716.f3.
- Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., and Ermentrout, G.B. (2006). A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. J Theor Biol 242, 220-236.
- 4. Brown, B., Namas, R.A., Almahmoud, K., Zaaqoq, A., Sarkar, J., Barclay, D.A., et al. (2015). Trauma in silico: Individual-specific mathematical models and virtual clinical populations. Sci Transl Med, 7. doi: 10.1126/scitranslmed.aaa3636
- 5. Nieman, G., Brown, D., Sarkar, J., Kubiak, B., Ziraldo, C., Dutta-Moscato, J., et al. (2012). A two-compartment mathematical model of endotoxin-induced inflammatory and physiologic alterations in swine. Crit Care Med. 40(4), 1052-1063. doi:10.1097/CCM.0b013e31823e986a
- 6. Lu, K., Clark Jr., J.W., Ghorbel, F., Ware, D.L. and Bidani. A. (2001). A human cardiopulmonary system model applied to the analysis of the Valsalva maneuver. Am J Physiol Heart Circ Physiol. 281(6), H2661-79
- 7. Lu, K., Clark, J.W., Ghorbel, F., Robertson, C., Ware, D., Zwischenberger, J., and Bidani, A. (2004). Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model. Am J Physiol Heart Circ Physiol. 286(2), H584-601.
- 8. Mazzoni, M.C., Borgstrom, P., Arfors, K., and Intaglietta, M. (1988). Dynamic fluid distribution in hyperosmotic resuscitation of hypovolemic hemorrhage. Am. J. Physiol. 255, H629-H637.
- 9. Rippe, B. and Haraldsson, B. (1994). Transport of macromolecules across microvascular walls: the two-pore theory. Physiological Reviews 74 (1)
- 10. Ankomah, P. and Levin, B. R. (2014). Exploring the collaboration between antibiotics and the immune response in the treatment of acute, self-limiting infections. Proceedings of the National Academy of Sciences, 111(23), 8331-8338.
- 11. Regoes, R. R., Wiuff, C., Zappala, R. M., Garner, K. N., Baquero, F., & Levin, B. R. (2004). Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrobial agents and chemotherapy, 48(10), 3670-3676.
- 12. McDaniel, M., Keller, J.M., White, S., and Baird, A. (2019). A whole-body mathematical model of sepsis progression and treatment designed in the BioGears physiology engine. Front. Physiol. 10. doi: 10.3389/fphys.2019.01321
- 13. Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016). The third international consensus definitions for sepsis and septic shock (Sepsis-3). Jama, 315(8), 801-810.
- 14. Sorgel, F. and Kinzig, M. (1993). The chemistry, pharmacokinetics, and tissue distribution of piperacillin/tazobactam. Journal of Antimicrobial Chemotherapy, 31, Suppl. A, 39-60.
- L5. Macdonald, S.P., Taylor, D.M., Keijzers, G., Arendts, G., Fatovich, D.M., Kinnear, F.B., et al. (2017). REstricted Fluid REsuscitation in Sepsis-associated Hypotension (REFRESH): study protocol for a pilot randomised controlled trial. Trials, 18(1), 399. doi:10.1186/s13063-017-2137-7
- 16. Macdonald, S.P., Keijzers, G., Taylor, D.M., Kinnear, F., Arendts, G., Fatovich, D.M. et al. (2018). Restricted fluid resuscitation in suspected sepsis associated hypotension (REFRESH): a pilot randomised controlled trial. Intensive care medicine, 44(12), 2070-2078. doi: 10.1007/s0013
- 17. McDaniel, M. and Baird, A. (2019). A Full-Body Model of Burn Pathophysiology and Treatment Using the BioGears Engine. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 261-264. IEEE.
- 18. Candio, L.C., Powell, D., Adams, B., Bull, K., Keller, A., Gurney, J. et al. (2016). Management of burn wounds under prolonged field care. J. Special Operations in Medicine. 16, 87-98.
- 19. Driscol, I.R., Mann-Salinas, E., Boyer, N., Pamplin, J., Serio-Melvin, M, Salinas, J., et al. (2018). Burn casualty care in the deployed setting. Military Med. 83, 61-67.
- 20. Alvardo A., Chung, K., Cancio, L., and Wolf, S. (2009). Burn Resuscitation. Burns 35(1), 4-14.
- 21. Lu, K., Clark Jr, J. W., Ghorbel, F. H., Robertson, C. S., Ware, D. L., Zwischenberger, J. B., and Bidani, A. (2004). Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model. American Journal of Physiology-Heart and Circulatory Physiology, 286(2), H584-H601.
- 22. Ursino, M. and Lodi, C. A. (1998). Interaction among autoregulation, CO2 reactivity, and intracranial pressure: a mathematical model. American Journal of Physiology-Heart and Circulatory Physiology, 274(5), H1715-H1728.
- 23. Ursino, M. and Magosso, E. (2001). Role of tissue hypoxia in cerebrovascular regulation: a mathematical modeling study. Annals of biomedical engineering, 29(7), 563-574.
- 24. Steiner, L. A. and Andrews, P. J. D. (2006). Monitoring the injured brain: ICP and CBF. BJA: British Journal of Anaesthesia, 97(1), 26-38.

