1 Is there a Nice moduli space of Fano variieties

Remark. We work over \mathbb{C} . By "nice" we mean separated, proper, projective.

Definition 1.0.1. A variety is Fano if $-K_X$ is \mathbb{Q} -Cartier and ample.

Remark. The problem is that there are families $\mathfrak{X} \to C$ of Fanos such that $X_t \cong X$ for all $t \neq t_0$ with fixed X and $\mathfrak{X}_0 \cong X$. This seems to show that the moduli space is not separated.

For example \mathbb{P}^2 degenerates to a cone over a conic $\mathbb{P}(1,1,4)$ it can also degenerate to $\mathbb{P}(a^2,b^2,c^2)$ for $a^2+b^2+c^2=3abc$ (Manetti).

Remark. The same issue persists if we restrict to smooth Fanos.

Remark. The moduli stack of Fanos is "similar" to the moduli stack of vector bundles: very non-separated and has lots of specialization. Therefore we need a stability condition.

1.1 Kähler-Einstein metrics

Metrics with Ric(g) = g.

- (a) {Fano mfd with KE metric} is a metric space with Gromov-Hausdorff distance between compact metric spaces. Therefore, Moduli of KE Fan var. should be separated.
- (b) Donaldson-Sun: there exists a sequence X_k of KE Fano manifolds then it converges X_{∞} in GH distance so the moduli space of KE Fano var. should be proper.

1.1.1 The Yau-Tian-Donaldson Conjecture

Let X be a Fano variety. Then there exists a KE metric iff X is K-polystable.

This motivates the following conjecture.

1.1.2 K-moduli Conjecture

There exsits a proper moduli space of K-polystable Fano varieties and all connected components are projective.

Theorem 1.1.1 (Lots of People). (a) First fix $n \in \mathbb{N}^*$ and $v \in \mathbb{Q}_{>0}$. The moduli functor,

 $\mathcal{M}_{n,v}^{\mathrm{Kss}}(S) = \{ \text{flat family } \mathfrak{X} \to S \text{ of K-ss Fano var. with } \dim = n \text{ and vol} = (-K)^n = v \text{ satisfying Kollarity} \}$

is represented by an Artin stack of finite type.

- (b) \mathcal{M}^{Kss} admits a separated good moduli space M^{Kps} which is an algebraic space parametrizing K-polystable Fano varieties meaning there is a map $\mathcal{M}^{\text{Kss}} \to M^{\text{Kps}}$ which étale locally looks like $[\operatorname{Spec}(A)/G] \to \operatorname{Spec}(A^G)$.
- (c) Every proper subspace of M^{Kps} that parametrizes KE Fanos is projective.

Theorem 1.1.2 (Liu, Xu, -). (a) connected components of M^{Kps} are proper

(b) YTD holds for any Fany variety

1.1.3 Langton's Algorithm

For \mathcal{M}^{vb} moduli space of vector bundles. For $0 \in C$ consider family \mathcal{E}_t of vector bundles. Suppose that \mathcal{E}_t is s.s. for all $t \neq 0$.

However, if \mathcal{E}_0 is not s..s then consider the maximal destab. subbundle,

$$0 \longrightarrow \mathscr{F} \longrightarrow \mathscr{E}_0 \longrightarrow \mathscr{G}$$

Then let $\mathcal{E}' = \ker (\mathcal{E} \to \mathcal{G})$ then we get,

$$0 \longrightarrow \mathscr{G} \longrightarrow \mathscr{E}'_0 \longrightarrow \mathscr{F} \longrightarrow 0$$

stability improves. After finitely many steps get a semi-stable vector bundle.

1.1.4 K-Stability

Definition 1.1.3. We say that a Fano variety X is K-semistable "average divisor in $|-K_X|_{\mathbb{Q}}$ is log canonical". Formally, this means the following.

(a) if E is a divisor on some Y with $\pi: Y \to X$ birational then define the log discrepancy,

$$A_X(E) = 1 + \operatorname{ord}_E(K_{Y/X})$$

- (b) A pair (X, D) where $D \subset X$ is a divisor is called log canonical if $A_X(E) \ge \operatorname{ord}_E(\pi^*D)$ for all $E \subset Y$ over X.
- (c) the expected vanishing order (order of vanishing of an average divisor) $S_X(E)$ is defined as follows. Let m-basis type divisors,

$$D = \frac{1}{mN_m} \sum_{i=1}^{N_m} \{s_i = 0\} \sim_{\mathbb{Q}} -K_X$$

where s_1, \ldots, s_{N_m} is a basis of $H^0(-mK_X)$ then let,

$$S_m(E) = \sup \{ \operatorname{ord}_E(D) \mid D \text{ m-basis type} \}$$

Then we define,

$$S_X(E) = \lim_{m \to \infty} S_m(E)$$

(d) we say that X is K-semi-stable if $A_X(E) \geq S_X(E)$ for all $E \subset Y$ over X

if E is a divisor on some Y with $\pi: Y \to X$ birational then define the log discrepancy,

$$A_X(E) = 1 + \operatorname{ord}_E(K_{Y/X})$$

Then (X, D) where $D \subset X$ is a divisor is called log canonical if $A_X(E) \ge \operatorname{ord}_E(\pi^*D)$ for all $E \subset Y$ over X. Furthermore, the expected vanishing order (order of vanishing of an average divisor) $S_X(E)$ is

Finally, we defin