

TMT4320 Nanomaterials, fall 2015

EXERCISE 4

Guidance: Wednesday 16th September, 18:15-20:00, H3

Due date: Friday 18th September, 14:00, boxes outside R7 or in It's

learning

PROBLEM 1

The energy ΔG of a nucleus of a new phase of size r appearing in a homogeneous mixture can be described as a sum of a volume term and a surface term:

$$\Delta G = \Delta \mu_V + \Delta \mu_S = \frac{4}{3} \pi r^3 \Delta G_V + 4 \pi r^2 \gamma$$

where ΔG_V is the change of Gibbs energy per unit volume of the solid phase and γ is the surface energy. Use this equation to derive expressions for the critical size of a stable nucleus (r^*) and the critical energy (energy barrier for nucleation, ΔG^*) as functions of ΔG_V and γ .

PROBLEM 2

a) Use Figure 1 below to explain in your own words (not copy paste from a book) the concept of nucleation and growth in the transition from a single phase to two phases, for instance the formation of solid nanoparticles in a solution. Fill in the appropriate axes, areas and limits.

b) What is the main difference between nucleation-and-growth and spinodal decomposition?

c) In Figure 2 below, which of the two lines A-B and C-D represents nucleation-and-growth and which line represents spinodal decomposition? Assume the material is quenched.

Figure 2. Phase diagram of a system with order parameter ϕ . *T*: temperature. *Black curve*: boundary for coexistence of the two phases (binodal curve). *Grey curve*: spinodal curve.

d) During the transition from the homogeneous phase to the spinodal region of the two-phase region, is it possible to observe nucleation-and-growth? Explain how and why.

PROBLEM 3

- a) Draw the molecular structure of a cationic surfactant, an anionic surfactant and a non-ionic surfactant and name the three surfactants.
- b) What is the difference between a micelle and a reverse micelle? Draw the two structures.
- c) How can reverse micelles be used for synthesis of nanoparticles? As an example, explain how you would produce cobolt (Co) nanoparticles if you have these compounds available: Water, hexane, CoCl₂, NaBH₄, and Na(AOT) (sodium bis(2-ethylhexyl)-sulfosuccinate).
- d) How can we control the size of nanoparticles synthesized in reverse micelles?