УДК 622

ЭКСПРЕСС-МЕТОД ОЦЕНКИ КОНСОЛИДИРУЮЩИХ СВОЙСТВ БУРОВЫХ РАСТВОРОВ ПО ПОКАЗАТЕЛЮ ПРЕДЕЛЬНОЙ ПРОЧНОСТИ НА СЖАТИЕ (осж, г/см²)

EXPRESS METHOD OF EVALUATING THE CONSOLIDATION PROPERTIES PROPERTIES OF DRILLING FLUIDS BY THE INDEX OF ULTIMATE COMPRESSIVE STRENGTH COMPRESSIVE STRENGTH (σ_{CX} , g/sm²)

Филиппов Е.Ф.

кандидат технических наук, заместитель директора ООО «НПО «Химбурнефть»

Мойса Ю.Н.

кандидат химических наук, директор ООО «НПО «Химбурнефть»

Аннотация. Представлена методика количественной оценки селективных свойств буровых растворов, обеспечивающих консолидацию (крепление) слабосвязанных фрагментов горных пород в процессе бурения скважин.

Ключевые слова: буровые растворы, селективные свойства, консолидация слабосвязанных фрагментов, бурение скважин.

Filippov E.F

Candidate of Technical Sciences, Deputy Director of NPO Khimburneft, Ltd.

Mojsa Yu.N

Candidate of Chemical Sciences, Director of NPO Khimburneft, Ltd.

Annotation. The paper presents a methodology for quantitative assessment of selective properties of drilling fluids, providing consolidation (anchoring) of weakly bonded rock fragments in the process of drilling wells.

Keywords: drilling fluids, selective properties, consolidation of weakly bonded fragments, drilling wells.

езультаты физико-химического и гео-механического воздействия буровых растворов на вскрываемый разрез обуславливаются не только упорядоченной ориентировкой зёрен и кристаллов глинистых минералов, но также слоистостью и трещиноватостью естественного залегания горных пород. Для наклонно-направленного бурения учет структурно-текстурных факторов особенно значим, поскольку в процессе углубления ось ствола скважины существенно меняет свою ориентацию относительно напластования горных пород. Наибольшая опасность нарушения устойчивости стенок скважины возникает в случае совпадения оси скважины с плоскостями напластования пород. При этом следует учитывать как зенитные, так и азимутальные отклонения ствола скважины относительно напластования пород. Наращивание ингибирующих, антидиспергирующих или гидрофобизирующих свойств буровых растворов не исключает физико-механических причин осыпания фрагментов пород, отделенных прослойками пониженного сцепления от монолита горного разреза. Породы такого типа осыпаются сразу при вскрытии в виде оскольчатых фрагментов без признаков увлажнения.

Простое повышение плотности бурового раствора не всегда может способствовать предотвращению осложнений такого рода. Более того, резкое увеличение плотности бурового раствора при совпадении оси скважины с ориентированными трещинами или интервалами пониженного сцепления способно вызвать скалывание или отрыв пород за счет тангенциальной составляющей эллипсоида деформационных сил. Исходя из гео-механических и физико-химических особенностей вскрываемых пород в буровом растворе необходимо формировать консолидирующие (крепящие) свойства, оцениваемые по показателю предельной прочности на сжатие $(\sigma_{\text{сж}}, \Gamma / \text{см}^2)$.

Методически для количественной оценки показателя предельной прочности на сжатие $(\sigma_{\text{Cж}}, \ r\ /\ \text{cm}^2)$ целесообразно использовать керновый материал из конкретной зоны осложнений. Образец керна измельчают и рассеиванием на виброустановке отбирают узкую фракция частиц в диапазоне примерно 1–2 мм. Подготовленный таким способом керновый материал помещают в специальную формовочную камеру, через штуцер которой прокачивают 300–500 мл исследуемого бурового раствора. В результате взаимодействия компонентов бурового раствора с частицами горной породы формируется исследуемый образец. Образец извлекают из формовочной камеры и подвергают вертикальной (сжимающей) нагрузке до полного разрушения. Величину предельной прочности на сжатие $(\sigma_{\text{сж}})$ рассчитывают по следующей формуле:

де Р – вертикальная нагрузка, г; S – площадь основания образца, см².

Поскольку геометрические размеры сформированных образцов имеют стандартные размеры, формируются из одинаковых частиц горной породы в идентичных условиях, то величина предельной прочности на сжатие характеризует консолидирующую способность исследуемого бурового раствора.

В таблице представлены технологические показатели свойств буровых растворов, получаемые обработкой глинистой суспензии консолидирующими составами, где АКК – алюмокалиевые квасцы, ЖАК – железоаммонийные квасцы, СА – сульфат алюминия.

Таблица — Трансформация показателей свойств модельного бурового раствора при обработке консолидирующими составами

Составы консолидации	Технологические показатели						Кратность роста
	УВ, с	СНС, дПа	Ф, см ³	УЭС, Ом · м	По, см/ч	σ _{сж} , г/см ²	σ_{cx} ,
Исходный раствор	38	40 / 60	5,5	1,2	6,8	19,0	1,0
0,6 % AKK / MgO	48	24 / 45	5,4	0,4	3,0	22,2	1.2
1,5 % AKK / MgO	41	18 / 27	3,0	0,3	2,0	60,5	3,2
2,0 % AKK / MgO	37	21 / 33	3,0	0,3	2,4	62,2	3,3
0,6 % ЖАК / CaO	40	18 / 30	4,2	0,5	2,7	20,1	1,1
1,5 % ЖАК / CaO	37	12 / 24	3,8	0,4	2,5	54,3	2,8
2,0 % ЖАК / CaO	35	15 / 33	3,5	0,4	2,4	61,3	3,2
0,6 % CA / CaO	56	54 / 99	5,0	0,3	2,6	21,2	1,1
1,5 % CA / CaO	40	57 / 90	3,2	0,3	2,5	62,5	3,3
2,0 % CA / CaO	43	60 / 99	3,0	0,2	2,3	64,2	3,4
0,6 % AKK / CaO	32	27 / 37	3,0	0,4	2,6	22,3	1,2
1,5 % AKK / CaO	42	21 / 45	3,0	0,4	2,0	46,1	2,4
2,0 % AKK / CaO	37	21 / 39	4,5	0,3	2,5	59,6	3,1

Как следует из представленных данных фильтрационные, ингибирующие, электрометрические и структурно-механические показатели не характеризуют количественно способность исследованных буровых растворов повышать прочность сцепления фрагментов горной породы. Для оценки эффективности конкретного консолидирующего реагента в исследуемых буровых растворах рассчитывают относительные коэффициенты консолидации (Кконс). Данный показатель характеризует кратность роста поверхностных сил сцепления между фрагментами горной породы исключительно за счет консолидирующей эффективности исследуемого реагента в конкретной системе бурового раствора.

Анализ имеющегося промыслового материала показывает, что стабилизация ствола скважины в осыпающихся интервалах обеспечивается консолидирующей способностью промывочной жидкости по показателю предельной прочности на сжатие (σ_{cx}) на уровне 40–60 г / см².

Таким образом, количественная оценка свойств буровых растворов по показателю предельной прочности на сжатие ($\sigma_{\text{сж}}$, г / см²) обеспечивает решение следующих задач:

- Метрологический контроля консолидирующей способности промывочной жидкости в процессе бурения скважины;
 - Классификацию используемых систем буровых растворов по консолидирующей способности;
- Научно-методическое обоснование выбора типа бурового раствора при разработке проектной документации.

Литература:

1. Филиппов Е.Ф., Мойса Ю.Н., Бугаев К.А. Механизмы управления устойчивостью горных пород при бурении // ГеоИнжиниринг, АНТЖ. – 2013. – № 2. – С. 86–90.

References:

1. Filippov E.F., Moisa Y.N., Bugaev K.A. Mechanisms of rock stability control during drilling // GeoEngineering, ANTZh. – 2013. – № 2. – P. 86–90.