Rmxprt and equivalent circuit models Torque-Speed Characteristics

Rmxprt and equivalent circuit models Torque-Speed Characteristics

3-phase combined and 6-phase machines Torque-Speed Characteristics

If there is no phase difference between the machines of ABC and XYZ, our circuit parameters change as given below.

Combined 3-phase series model	Combined 3-phase parallel model	Six-phase model
(Per phase equivalent)	(Per phase equivalent)	(Per phase equivalent)
		• •
$2R_1$	R_1	R_1
	$\frac{R_1}{2}$	
$2R_2$	$\frac{R_2}{2}$	R_2
	2	
$2X_1$	X_1	X_1
	2	
$2X_2$	X_2	X_2
	2	
$2X_m$	X_m	X_m
	2	
$2R_C$	R_C	R_C
	2	

1 x 3-phase parallel

2 x 3-phase

2 x 3-phase

We have actually 30-deree phase difference at the induced voltage. It means that actually distribution factor should become involved.

Where,

 r_1 = stator winding resistance

 x_1 = stator winding leakage reactance

 r_c = resistance-representing core losses

 x_m = magnetising reactance

 r_2 '= rotor winding resistance referred to the primary

 x_2' = rotor winding reactance referred to the primary

We have actually 30-deree phase difference at the induced voltage. It means that actually distribution factor should become involved.

Where,

 r_1 = stator winding resistance

 x_1 = stator winding leakage reactance

 r_c = resistance-representing core losses

 x_m = magnetising reactance

 r_2 '= rotor winding resistance referred to the primary

 x_2' = rotor winding reactance referred to the primary

Resistance Calculation in Induction Motor

$$R = L \frac{\rho}{A}$$

Combined 3-phase series	Combined 3-phase parallel	Six-phase model
model	model	(Per phase equivalent)
(Per phase equivalent)	(Per phase equivalent)	
$2R_1$	R_1	R_1
	2	
$2R_1$	R_1	R_1
	2	

Stator Rotor Turns Ratio

$$Turns \ ratio = \frac{rotor \ turns / phase}{stator \ turns / phase} \cdot \frac{k_{wr}}{k_{ws}} |$$

$$k_w = k_d k_p = \frac{\sin\left(\frac{q\lambda}{2}\right)}{q\sin\left(\frac{\lambda}{2}\right)} \cos\left(\frac{\alpha}{2}\right)$$

Combined 3-phase series model	Combined 3-phase parallel model	Six-phase model
(Per phase equivalent)	(Per phase equivalent)	(Per phase equivalent)
$0.9659 k_{ws}$	$0.9659 \ k_{ws}$	k_{ws}
$0.9659 k_{wr}$	$0.9659 k_{wr}$	l _r
0.9039 K _W r	0.9039 k _{wr}	κ_{wr}

Stator Rotor Turns Ratio

$$Turns \ ratio = \frac{rotor \ turns / phase}{stator \ turns / phase} \cdot \frac{k_{wr}}{k_{ws}} |$$

$$k_w = k_d k_p = \frac{\sin\left(\frac{q\lambda}{2}\right)}{q\sin\left(\frac{\lambda}{2}\right)} \cos\left(\frac{\alpha}{2}\right)$$

Combined 3-phase series model	Combined 3-phase parallel model	Six-phase model
(Per phase equivalent)	(Per phase equivalent)	(Per phase equivalent)
$0.9659 k_{ws}$	$0.9659 \ k_{ws}$	k_{ws}
$0.9659 k_{wr}$	$0.9659 k_{wr}$	l _r
0.9039 K _W r	0.9039 k _{wr}	κ_{wr}

Cage Rotor Parameters

$$R_{2}' = \frac{Q_{2} i_{b}^{2} R_{ber}}{m_{s} i_{2}^{\otimes 2}} = \frac{4m_{s} (N_{s}.k_{ws})^{2}}{Q_{2}}.R_{ber}$$

Combined 3-phase series model	Combined 3-phase parallel model	Six-phase model
(Per phase equivalent)	(Per phase equivalent)	(Per phase equivalent)
$(k_{ws}^2)2R_2' = 0.933x2xR_2'$	$\frac{(k_{WS}^2)R_2'}{2} = 0.933 \frac{R_2'}{2}$	R_2'
	${2} = 0.933 {2}$	_
$(k_{ws}^2)2X_2' = 0.933x2xX_2'$	$(k_{\rm ws}^2)X_2'$	X_2'
(1000)=112 013 000=1112	$\frac{(k_{WS}^2)X_2'}{2} = 0.933 \frac{X_2'}{2}$	

Magnetizing Reactance

$$X_m = \frac{phase\ voltage}{magnetizing\ current}$$

Combined 3-phase series model	Combined 3-phase parallel model	Six-phase model
(Per phase equivalent)	(Per phase equivalent)	(Per phase equivalent)
$k_{ws}2R_2' = 0.9659x2xX_m'$	1, v' v'	V'
$\kappa_{WS} 2 \kappa_2 = 0.9039 \times 2 \times \kappa_m$	$\frac{k_{ws} X_m'}{2} = 0.9659 \frac{X_m'}{2}$	X_m'
	2	