Sergio Garcia Tapia

Numerical Linear Algebra, Lloyd Trefethen and David Bau III

Lecture 7: QR Factorization

June 23, 2024

Lecture 7: QR Factorization

Exercise 1. Consider again the matrices A and B of Exercise 6.4.

- (a) Using any method you like, determine (on paper) a reduced QR factorization $A = \hat{Q}\hat{R}$ and a full qr factorization A = QR.
- (b) Again, using any method you like, determine reduced and full QR factorizations $B = \hat{Q}\hat{R}$ and B = QR.

Solution:

(a) Matrix A is

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Let $a_1 = (1,0,1)^*$ and $a_2 = (0,1,0)^*$. We proceed by using the Gram Schmidt Orthogonalization Procedure. Since $r_{11} = ||a_1||_2 = \sqrt{2}$, we define $q_1 = \frac{1}{\sqrt{2}}a_1$. For q_2 , we get

$$q_2 = \frac{a_2 - r_{12}q_1}{r_{22}}$$

where

$$r_{12} = q_1^* a_2 = \frac{1}{\sqrt{2}} \langle (1, 0, 1)^*, (0, 1, 0) \rangle = 0$$

Hence $r_{12} = 0$. Meanwhile, we have

$$a_2 - r_{12}q_1 = (0, 1, 0) - 0 \cdot q_1 = (0, 1, 0)$$

We see that $r_{22} = ||a_2 - r_{12}q_1|| = ||a_2|| = 1$. Thus the reduced QR factorization is

$$\hat{Q} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{2}} & 0 \end{bmatrix} \quad \hat{R} = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0\\ 0 & 1 \end{bmatrix}$$

As expected, \hat{Q} has orthonormal columns, and \hat{R} is upper-triangular. To obtain the full factorization, we add a row of 0's to \hat{R} to get R. To pass from \hat{Q} to Q, we append any column that is orthonormal to those in \hat{Q} . If $q_3 = (q_{13}, q_{23}, q_{33})$ is such a column, it must satisfy:

$$0 = q_1^* q_3 = \frac{1}{\sqrt{2}} \langle (1, 0, 1), (q_{13}, q_{23}, q_{33}) \rangle = \frac{1}{\sqrt{2}} (q_{13} + q_{33})$$
$$0 = q_2^* q_3 = \langle (0, 1, 0), (q_{13}, q_{23}, q_{33}) \rangle = q_{23}$$

Hence, $q_{23} = 0$, and $q_{13} = -q_{33}$. If we set $q_{33} = \frac{1}{\sqrt{2}}$, then $a_{13} = -\frac{1}{\sqrt{2}}$. Now

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{bmatrix} \qquad R = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

(b) Matrix B is

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Set $b_1 = (2,0,1)^*$. Then $r_{11} = ||b_1||_2 = \sqrt{5}$, and $q_1 = \frac{1}{\sqrt{5}}b_1$. Next, we set $b_2 = (0,1,0)$, and compute

$$r_{12} = q_1^* b_2 = \frac{1}{\sqrt{5}} \langle (2, 0, 1), (0, 1, 0) \rangle = 0$$

$$v_2 = b_2 - r_{12} q_2$$

$$= b_2 - 0 \cdot q_2$$

$$= b_2$$

$$\|v_2\|_2 = \|b\|_2 = 1$$

$$q_2 = \frac{v_2}{\|v_2\|} = \frac{b_2}{\|b_2\|_2} = b_2$$

Therefore the reduced QR factorization is

$$\hat{Q} = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0\\ 0 & 1\\ \frac{1}{\sqrt{5}} & 0 \end{bmatrix} \qquad \hat{R} = \begin{bmatrix} \sqrt{5} & 0\\ 0 & 1 \end{bmatrix}$$

If we set $q_3 = \frac{1}{\sqrt{5}}(-2,0,1)$, then the full QR factorization is

$$Q = \begin{bmatrix} \frac{2}{\sqrt{5}} & 0 & -\frac{2}{\sqrt{5}} \\ 0 & 1 \\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix} \qquad R = \begin{bmatrix} \sqrt{5} & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Exercise 2. Let A be the matrix with the property that columns $1, 3, 5, 7, \ldots$ are orthogonal to columns $2, 4, 6, 8, \ldots$ In a reduced QR factorization $A = \hat{Q}\hat{R}$, what special structure does \hat{R} possess? You may assume that A has full rank.

Solution: Suppose we applied the Gram Schmidt Orthogonalization Procedure to the columns of A. Since we are assuming that A has full rank, we know that its columns are nonzero, and hence they all have a nonzero norm. We begin by setting $q_1 = \frac{a_1}{\|a_1\|_2}$. Since a_1 is orthogonal to a_2 , we find that

$$r_{12} = q_1^* a_2 = \frac{1}{\|a_1\|_2} a_1^* a_2 = 0$$

Thus,

$$q_2 = \frac{a_2 - r_{12}q_1}{r_{22}} = \frac{a_2}{r_{22}}$$

Here, $r_{22} = ||a_2||_2$. Next, note that $r_{13} = q_1^* a_3$, and $r_{23} = q_2^* a_3 = 0$. Thus,

$$q_3 = \frac{a_3 - r_{13}q_1 - r_{23}q_2}{r_{33}} = \frac{a_3 - r_{13}q_1}{r_{33}}$$

Proceeding this way, we see that \hat{R} is an upper-triangular matrix with a checkered pattern. That is, given any upper-triangular entry, its four neighboring entries are always 0. That is, the entry above, below, left, and right of $r_{ij} = 0$, where $i \leq j$.

Exercise 3. Let A be an $m \times m$ matrix, and let a_j be its jth column. Give an algebraic proof of Hadamard's inequality:

$$|\det A| \le \prod_{j=1}^m ||a_j||_2$$

Also, give a geometric interpretation of this result, making use of the fact that the determinant equals the volume of a parallelepiped.

Solution:

Proof. Suppose A is nonzero, and let Q and R be the components of a QR factorization of A. This means that A = QR, where Q has orthonormal columns, and R is upper-triangular. The fact that Q has orthonormal means that it is unitary, and hence $Q^* = Q^{-1}$. By Theorem 5.4, the singular values of Q are the eigenvalues of Q^*Q , and since $Q^*Q = Q^{-1}Q = I$, this implies that all of the singular values of Q are 1. By Theorem 5.6, we know that $|\det(Q)|$ is the product of its singular values, and hence, $|\det(Q)| = 1$.

Since R is upper-triangular, its determinant is the product of its diagonal entries. On the other hand, we know that

$$a_j = \sum_{i=1}^j r_{ij} q_i$$

and since the list q_1, \ldots, q_j is orthonormal, we get

$$||a_j||_2 = \sqrt{\sum_{i=1}^j r_{ij}^2} = \sqrt{r_{1j}^2 + \dots + r_{j-1,j}^2 + r_{jj}^2} \ge |r_{jj}|$$

Now using the fact the determinant of a product is a product of the determinants, we get

$$|\det(A)| = |\det(QR)|$$

$$= |\det(Q) \cdot \det(R)|$$

$$= |\det(Q)| \cdot |\det(R)|$$

$$= |\det(R)|$$

$$= \left|\prod_{j=1}^{m} r_{jj}\right|$$

$$= \prod_{j=1}^{m} |r_{jj}|$$

$$\leq \prod_{j=1}^{m} |a_{j}|_{2}$$

This implies that the volume of the parallelpiped determined by the vectors corresponding to the columns of A does not exceed the product of the lengths of these vectors.

Exercise 4. Let $x^{(1)}$, $y^{(1)}$, $x^{(2)}$, and $y^{(2)}$ be nonzero vectors in \mathbb{R}^3 with the property that $x^{(1)}$ and $y^{(1)}$ are linearly independent, and so are $x^{(2)}$ and $y^{(2)}$. Consider the two planes in \mathbb{R}^3 ,

$$P^{(1)} = \langle x^{(1)}, y^{(1)} \rangle, \quad P^{(2)} = \langle x^{(2)}, y^{(2)} \rangle$$

Suppose we wish to find a nonzero vector $v \in \mathbb{R}^3$ that lies in the intersection $P = P^{(1)} \cap P^{(2)}$. Devise a method for solving this problem by reducing it to the computation of the QR factorization of three 3×2 matrices.

Solution: Let $A \in \mathbb{R}^{3\times 2}$ be the matrix whose columns are $x^{(1)}$ and $y^{(1)}$, and let $B \in \mathbb{R}^{3\times 2}$ be the matrix whose columns are $x^{(2)}$ and $y^{(2)}$. Then

$$P^{(1)} = \operatorname{range}(A) \quad P^{(2)} = \operatorname{range}(B) \quad P = \operatorname{range}(A) \cap \operatorname{range}(B)$$

Let $A = \hat{Q}_A \hat{R}_A$ be the reduced QR factorization of A and $B = \hat{Q}_B \hat{R}_B$ be the QR factorization of B, where $q_{A,1}$, $q_{A,2}$ are the orthonormal columns of Q_A and $q_{B,1}$, $q_{B,2}$ are the orthonormal columns of Q_B , with $\langle x^{(1)}, y^{(1)} \rangle = \langle q_{A,1}, q_{A,2} \rangle$ and $\langle x^{(2)}, y^{(2)} \rangle = \langle q_{B,1}, q_{B,2} \rangle$. We can extend an orthonormal basis of \mathbb{R}^3 by appending a vector $q_{A,3}$ to the list consisting of the columns of \hat{Q}_A . Similarly, we can append $q_{B,3}$ to the list consisting of the columns of \hat{Q}_B .

Note that $q_{A,3}$ is orthogonal to $\langle q_{A,1}, q_{A,2} \rangle$ and $q_{B,3}$ is orthogonal to $\langle q_{B,1}, q_{B,2} \rangle$. Let $C \in \mathbb{R}^{3 \times 2}$ be the matrix whose columns are $q_{A,3}$ and $q_{B,3}$, and let $C = \hat{Q}_C \hat{R}_C$ be the QR factorization of C.

Let $C = \hat{Q}_C \hat{R}_C$ be the reduced QR factorization of C:

• If C has linearly dependent columns, the \hat{Q}_C will have a single column, otherwise it will have two. In either case, extend the list of orthonormal columns of \hat{Q}_C to a basis of \mathbb{R}^3 , and take the third vector, calling it v. Then v has the property that it

is orthogonal to the first two columns. Suppose for a moment that the columns of C were linearly independent. Since $q_{A,3}$ is a basis for $\operatorname{range}(A)^{\perp}$ and $q_{B,3}$ is a basis for $\operatorname{range}(B)^{\perp}$, and v is orthogonal to both, we see that $v \in (\operatorname{range}(A)^{\perp})^{\perp} = \operatorname{range}(A)$, and $v \in (\operatorname{range}(B)^{\perp})^{\perp} = \operatorname{range}(B)$. Hence, $v \in \operatorname{range}(A) \cap \operatorname{range}(B)$, as we set out to show.

• If the columns were linearly dependent, then this implies that $q_{A,3}$ and $q_{B,3}$ are linearly dependent, meaning they are scalar multiples of one another. In this case, either $q_{A,3}$ or $q_{B,3}$ is the first column of \hat{Q}_C , and nevertheless, v is perpendicular to it by construction.

Hence, the three 3×2 matrices to which we apply QR factorization are A, after which we save the third column $q_{A,3}$ of Q_A , then B, after which we save the third column $q_{B,3}$ of Q_B , and C, the matrix consisting of $q_{A,3}$ and $q_{B,3}$. Then v is the third column of Q_C in the full QR factorization of C.

Exercise 5. Let A be an $m \times n$ matrix $(m \ge n)$, and let $A = \hat{Q}\hat{R}$ be a reduced QR factorization.

- (a) Show that A has rank n if and only if all the diagonal entries of \hat{R} are nonzero.
- (b) Suppose \hat{R} has k nonzero diagonal entries for some k with $0 \le k < n$. What does this imply about the rank of A? Exactly k? At least k? At most k? Give a precise answer, and prove it.

Solution:

(a) *Proof.* By Equation (7.8), the diagonal entries of \hat{R} satisfy

$$|r_{jj}| = \left\| a_j - \sum_{i=1}^j r_{ij} q_i \right\|_2$$

Note that the span of q_1, \ldots, q_{j-1} is equivalent to the span of a_1, \ldots, a_{j-1} by construction. Therefore, the equation above implies that the vector whose norm is $|r_{jj}|$ belongs to the span of $a_1, \ldots, a_{j-1}, a_j$, meaning that it is a linear combination of the. The matrix A has full rank n if and only if the columns a_1, \ldots, a_n is linearly independent, which is if and only if a_1, \ldots, a_j is linearly independent for every $j \in \{1, \ldots, n\}$. This happens if and only if no linear combination of them yields the 0 vector, which in turn implies that the vector whose 2-norm we are computing above can never be zero, and hence $|r_{jj}| \neq 0$.

As an alternative proof, Suppose that $\hat{U}\hat{\Sigma}V^*$ is a reduced SVD of A, where \hat{U} is $m \times n$, $\hat{\Sigma}$ is $n \times n$, and V^* is $n \times n$. Then

$$A = \hat{U}\hat{\Sigma}V^*$$
$$\hat{Q}\hat{R} = \hat{U}\hat{\Sigma}V^*$$
$$\hat{R} = (\hat{Q}^*\hat{U})\hat{\Sigma}\hat{V}^*$$

Since \hat{Q}^* and \hat{U} are unitary, their product is also unitary. Therefore, the equation above is an SVD of \hat{R} . This implies that the singular values of A, which are the diagonal entries in $\hat{\Sigma}$, are precisely the singular values of \hat{R} . In particular, since A the rank of A is n, all of its singular values are nonzero, and hence all of the singular values of R are nonzero. This occurs if and only if all the eigenvalues of R are nonzero, which are the diagonal entries of R because R is upper-triangular.

(b) *Proof.* I will prove that the rank of A is at least k, and show an example to conclude that it may not necessarily be equal to k.

Suppose that entries $r_{i_1i_1}, \ldots, r_{i_k,i_k}$ on the diagonal of \hat{R} are nonzero, where $i_1, \ldots, i_k \in \{1, \ldots, n\}$, with $i_1 < \cdots < i_k$ and such that no diagonal entry r_{jj} is zero for $j < i_k$. Let a_j denote the jth column of A, and q_j denotes the jth column of \hat{Q} . Then a_{i_1}, \ldots, a_{i_k} is a linearly independent list. Since the span of the a_j 's equals the span of the q_j 's, this means that a linear combination of the a_j 's is a linear combination of the q_j 's. Then the coefficient of a_{ik} is precisely the coefficient of q_{ik} in this combination because a_{ik} is the only vector in the list a_{i_1}, \ldots, a_{i_k} depending on q_{i_k} . Suppose that such a linear combination resulted in 0. If the coefficient of q_{i_k} were nonzero, then q_{i_k} would be a linear combination of $q_{i_1}, \ldots, q_{i_{k-1}}$, which is impossible because the latter list is orthonormal. Hence the coefficient of q_{i_k} and hence a_{i_k} must be 0. In a similar fashion, we conclude that the rest of the coefficients are also 0, implying that a_{i_1}, \ldots, a_{i_k} is a linearly independent list, and hence that rank $(A) \geq k$.

To show that it need not be exactly k, its enough to provide an example. Suppose $A \in \mathbb{R}^{m \times n}$ and the columns of A are $e_1, \ldots, e_{n-2}, 0, e_{n-1}$. Then in the QR factorization, we have $q_j = e_j$ for $1 \le j \le n-2$. When we reach step j-1, get $r_{j-1,j-1} = 0$, so we must arbitrarily pick an orthonormal vector. Suppose we choose $q_{j-1} = e_{j-1}$. When we go on to step j, we find that e_{j-1} is already in the span of q_1, \ldots, q_{j-1} . Thus we get

$$r_{ij} = q_i^* a_j = q_i^* e_{j-1} = q_i q_{j-1} = \begin{cases} 0 & i < j-1 \\ 1 & i = j-1 \end{cases}$$
$$|r_{jj}| = \left\| a_j - \sum_{i=1}^{j-1} r_{ij} q_i \right\|_2$$
$$= \|e_{j-1} - q_{j-1}\| = 0$$

Hence $r_{jj} = 0$. In other words, the matrix \hat{R} has n-2 nonzero entries, but the rank of A is n-1. Hence, we can only conclude that $\operatorname{rank}(A) \geq k$, where k is the number of nonzero entries in the diagonal of \hat{R} .