Deep Learning: Perceptron – Learning Algorithm

Course Instructor:

Dr. Bam Bahadur Sinha
Assistant Professor
Computer Science & Engineering
National Institute of Technology
Sikkim

Perceptron

Learning Algorithm

(General Working Structure)

Initialise w_1, w_2, b

Iterate over data:

$$\mathscr{L} = compute_loss(x_i)$$

 $update(w_1, w_2, b, \mathscr{L})$

till satisfied

Weight	Screen size	Like
0.19	0.64	1
0.63	0.87	1
0.33	0.67	0
1	0.88	0

Learning Algorithm

What does perceptron learning algorithm looks like?

$$\hat{y} = 1 ext{ (if } \sum_{i=0}^n w_i x_i \geq 0)$$
 $\hat{y} = 0 ext{ (otherwise)}$

$$\hat{y} = 1 \text{ (if } \mathbf{w}.\mathbf{x} \geq 0)$$

 $\hat{y} = 0 \text{ (otherwise)}$

Stepwise explanation of Perceptron Learning Algorithm

Algorithm: Perceptron Learning Algorithm

```
P \leftarrow inputs with label 1;
N \leftarrow inputs with label o;
Initialize w randomly;
while !convergence do
   Pick random \mathbf{x} \in P \cup N;
   if x \in P and \sum_{i=0}^{n} w_i * x_i < 0 then
       \mathbf{w} = \mathbf{w} + \mathbf{x};
   end
   if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \ge 0 then
       \mathbf{w} = \mathbf{w} - \mathbf{x};
   end
end
//the algorithm converges when all the inputs are
  classified correctly
```

Will this algorithm always work?

Will this algorithm always work?

(2) Only if the data is linearly separable

Perceptron Algorithm will always work for a linearly separable data

Definition

Two sets P and N of points in an n-dimensional space are called absolutely linearly separable if (n+1) real number exists such that every point (x1, x2, x3, ...xn) belongs to P satisfies $\sum (i=1 \text{ to } n)$ wi*xi>w0 and every point (x1, x2, ..., xn) belongs to N satisfies $\sum wi*xi< w0$

Proposition

If the sets P and N are finite and linearly separable, the perceptron learning algorithm will converge in a finite number of steps.

Evaluation

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight	0.19	0.63	0.33	1	0.36	0.66	0	0.70	0.48
Screen size	0.64	0.87	0.67	0.88	0.7	0.91	0	1	0.47
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery	0.36	0.51	0.36	1	0.34	0.67	0	0.57	0.43
Price	0.09	0.63	0.41	0.19	0.06	0	0.72	0.94	1
Like (y)	1	0	1	0	1	1	0	1	0

1	0	0	1
0.23	0.34	0.44	0.54
0.74	0.93	0.34	0.42
0	1	0	0
1	0	0	0
0	0	1	0
1	1	1	0
1	1	1	0
0	0	1	0
0	1	0	0
0	1	1	0

$$\hat{y} = (\sum_{i=1}^n w_i x_i \geq b)$$
 $loss = \sum_i \mathbf{1}_{(y_i! = \hat{y_i})}$

$$loss = \sum_{i} \mathbf{1}_{(y_i! = \hat{y_i})}$$

Summary of Perceptron Model

-8.5 -1.7 ... 9.0

-0.4 6.7 ... 4.7

Boolean

text/

no-text

Accuracy = Number of correct predictions
Total number of predictions

Implementation of the Perceptron Model