The "value" form of SVD is expressed in equation 7.

$$\mathbf{X}\hat{\mathbf{v}}_i = \sigma_i \hat{\mathbf{u}}_i$$

The mathematical intuition behind the construction of the matrix form is that we want to express all n "value" equations in just one equation. It is easiest to understand this process graphically. Drawing the matrices of equation 7 looks likes the following.

$$\begin{bmatrix} --- m - - \\ n \\ | \end{bmatrix} X \begin{bmatrix} | \\ m \\ | \end{bmatrix} = \begin{bmatrix} positive \\ number \end{bmatrix} \begin{bmatrix} | \\ n \\ | \end{bmatrix}$$

We can construct three new matrices V, U and Σ . All singular values are first rank-ordered $\sigma_{\tilde{1}} \geq \sigma_{\tilde{2}} \geq \ldots \geq \sigma_{\tilde{r}}$, and the corresponding vectors are indexed in the same rank order. Each pair of associated vectors $\hat{\mathbf{v}}_i$ and $\hat{\mathbf{u}}_i$ is stacked in the i^{th} column along their respective matrices. The corresponding singular value σ_i is placed along the diagonal (the ii^{th} position) of Σ . This generates the equation $\mathbf{X}V = U\Sigma$, which looks like the following.

The matrices V and U are $m \times m$ and $n \times n$ matrices respectively and Σ is a diagonal matrix with a few non-zero values (represented by the checkerboard) along its diagonal. Solving this single matrix equation solves all n "value" form equations.

FIG. 4 How to construct the matrix form of SVD from the "value" form.