TD d'électronique analogique Série N°:4

Les amplificateurs

EX_1 Amplificateur opérationnel

Les tensions d'alimentation sont $+V_{CC}=+15~V$ et $-V_{EC}=-15~V$. Les transistors bipolaires T_1 et T_2 sont identiques. Ils ont un gain en courant $\beta=100$. $R_B=0.56~M\Omega$, $R_C=2.7~k\Omega$, $R_E=2.7~k\Omega$

- a) Calculer les grandeurs de repos des transistors bipolaires T_1 et T_2 et la valeur de repos de la tension de sortie.
- b) Tracer le schéma équivalent du montage en basse fréquence.
- c) Calculer le gain en tension de mode différentiel A_d et le gain en tension de mode commun A_{mc}
- d) Calculer la résistance d'entrée de mode différentiel Red et la résistance de sortie Rs.

La tension d'alimentation est $+V_{DD} = +15 V$.

Les JFET T_1 et T_2 sont identiques. Leurs points de repos désirés sont définis par $V_{GS} = -1.1 \text{ V}$, $V_{DS} = 7 \text{ V}$ et $I_D = 1 \text{ mA}$ et ils ont une transconductance $g_m = 6 \text{ mS}$ pour ces points de repos.

 $R_G = 1 M\Omega$

- a) Calculer les résistances de polarisation R_D et R_S . Choisir des valeurs normalisées de la série E12 (1.0 1.2 1,5 1,8 2,2 2,7 3,3 3,9 4,7 5,6 6,8 8,2).
- b) Tracer le schéma équivalent du montage en basse fréquence.
- c) Calculer le gain en tension de mode différentiel A_d et le gain en tension de mode commun A_{mc}
- d) Calculer la résistance d'entrée de mode différentiel Red et la résistance de sortie Rs.

EX_2 Contre réaction

L'amplificateur de tension est caractérisé, en boucle ouverte, par un gain en tension A_{VRC} , = 11200, une résistance d'entrée R_{eBC} = 348 k Ω et une résistance de sortie R_{SRC} = 18 k Ω

 $R_1 = 8.2 \text{ k}\Omega$, $R_2 = 0.82 \text{ M}\Omega$

- a) Indiquer le type de la contre-réaction. Calculer le taux de contre-réaction B et le gain de boucle BA_{vbO} . Montrer qu'il y a bien une contre-réaction.
- b) Calculer le gain en tension en boucle fermée Aynr-
- c) Calculer la résistance d'entrée en boucle fermée $R_{\rm enr}$ et la résistance de sortie en boucle fermée $R_{\rm SBI}$.

EX 3 Ampli Op

Notation utilisée

Quand un montage comporte plusieurs circuits intégrés, les tensions d'entrée et de sortie d'un circuit intégré donné ont le même nombre en indice que le circuit intégré. Exemple : v_1^+ , v_i^- et v_{s_i} sont respectivement la tension d'entrée v^+ , la tension d'entrée v^- et la tension de sortie v_s du circuit intégré A_i .

1 - Amplificateur d'instrumentation

Un amplificateur d'instrumentation est un amplificateur différentiel intégré ayant un très grand taux de réjection de mode commun TRMC et une très grande résistance d'entrée de mode différentiel $R_{\rm ed}$. La résistance $R_{\rm G}$ fixe le gain en tension de mode différentiel $A_{\rm d}$.

Les amplificateurs opérationnels sont supposés parfaits.

 $R_1 = 100 \text{ k}\Omega$ $R_2 = 10 \text{ k}\Omega$ $R_G = 2 \text{ k}\Omega$

4 - Convertisseur tension-courant

Les amplificateurs opérationnels sont supposés parfaits.

 $R = 1 k\Omega$, $R_1 = 10 k\Omega$, $R_2 = 10 k\Omega$

Exprimer le courant de sortie i_s en fonction de la différence $v_{el} - v_{e2}$ des tensions d'entrée v_{el} et v_{e2} .

.5 - Convertisseur tension-courant de puissance

Les amplificateurs opérationnels sont supposés parfaits.

La tension d'entrée ve est une tension positive.

$$R = 10 \Omega$$
, $R_1 = 1 \Omega$, $R_2 = 1 \Omega$

Déterminer le courant de sortie is en fonction de la tension d'entrée ve.

.6 - Comparateur à fenêtre

Les comparateurs intégrés sont supposés parfaits.

2 - Amplificateur à grand gain en tension

L'amplificateur opérationnel est supposé parfait. $R_1 = 10 \text{ k}\Omega$ $R_2 = 100 \text{ k}\Omega$ $R_3 = 100 \text{ k}\Omega$ $R_4 = 1 \text{ k}\Omega$

Calculer le gain en tension Av.

.3 - Amplificateur soustracteur à très grandes résistances d'entrée

Les amplificateurs opérationnels sont supposés parfaits. $R = 10 \text{ k}\Omega \text{ k} = 10.$

Exprimer la tension de sortie vs en fonction des tensions d'entrée vel et vez-

