

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

ALGEBRA.

433. Proposed by B. J. BROWN, student at Drury College.

Prove that, if all the quantities, a, b, etc., are real, then all the roots of the equations

$$\begin{vmatrix} a-x & h \\ h & b-x \end{vmatrix} = 0, \qquad \begin{vmatrix} a-x & h & g \\ h & b-x & f \\ g & f & c-x \end{vmatrix} = 0$$

are real; and generalize the proposition.

434. Proposed by S. A. JOFFE, New York City.

Express the "difference of zero," $\Delta^n 0^{n+1}$, in the form, $C_1(n+2)! - C_2(n+1)!$, where C_1 and C_2 are numerical coefficients independent of n.

435. Proposed by C. N. SCHMALL, New York City.

Show that $(e-1) - \frac{1}{2}(e-1)^2 + \frac{1}{3}(e-1)^3 - \cdots = 1$, where e is the Naperian base of logarithms.

GEOMETRY.

463. Proposed by B. J. BROWN, student at Drury College.

If μ and ν are the parameters of the two confocal conics through any point on the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1,$$

show that $\mu + \nu + a^2 + c^2 = 0$, along a central circular section.

464. Proposed by FRANK R. MORRIS, Glendale, Calif.

The sum of the hypotenuse and one side of a right triangle is 100 feet. A point on the hypotenuse is 10 feet from each of the sides. Find the length of the hypotenuse correct to the third decimal place.

465. Proposed by ROGER A. JOHNSON, Western Reserve University.

Let C be a fixed circle, A a point outside it. Let AT and AT' be the tangents from A to the circle, touching the latter at T and T'. Let two secants be drawn through A, cutting the circle at P, Q and R, S respectively. Let PR and QS meet at X, PS and QR meet at Y. Prove by elementary methods that for all positions of the secants, X and Y lie on the line TT'.

CALCULUS

383. Proposed by WILLIAM CULLUM, Albion, Mich.

Find the area of the curved surface of a right cone whose base is the asteroid, $x^{2/3} + y^{2/3} = a^{2/3}$, and whose altitude is h.

From Townsend and Goodenough's First Course in Calculus, p. 288, Ex. 11.

Note.—Among other methods, find the required area by means of the formula

$$\int \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dx dy.$$
 Editors.

384. Proposed by JOSEPH B. REYNOLDS, Lehigh University.

In what time will a sum of money double itself at 6 per cent. interest per annum if compounded at indefinitely short intervals?

385. Proposed by H. B. PHILLIPS, Massachusetts Institute of Technology.

If f(x) is continuous between a and x, show that

$$\lim_{n \to \infty} \frac{n!}{(x-a)^n} \int_a^x \cdots \int_a^x f(x) dx^n = f(a).$$