The Resurgence of the Linear Optics Interferometer — Recent Advances & Applications

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

Si-Hui Tan^{1, *} and Peter P. Rohde^{2, †}

(Dated: January 9, 2017)

Contents

IIntroduction

IMathematical background

IDptical encoding of quantum information

ASingle-photons 1Polarisation 2Dual-rail

3.Time-bins BContinuous-variables 1.Coherent states

2Squeezed states

IV fficient circuit decompositions of linear optics

networks

VExperimental implementationAState preparation
1 Single-photons

2Bell pairs
3Coherent states
4Squeezed states

BLinear optics networks

1Bulk-optics
2.Waveguides
3.Time-bins
CMeasurement
1Photodetection

2Homodyning

VApplications for linear optics interferometry

ALinear optics quantum computation

BBoson-sampling CQuantum metrology

DEncrypted quantum computation

VIIIate of the art

VCblnclusion

Acknowledgments

I. INTRODUCTION

Si-Hui can colour code things she adds like this And Peter can do it like this

Let's add comments and questions like this

II. MATHEMATICAL BACKGROUND

Mathematical representation for LO networks, and very basic background on quantum optics

A idealized single photon in a quantum interferometer is described by its creation operator $\hat{a}_{j,\alpha}^{\dagger}$, where j is the path label and α is a quantum number that describes any internal degrees of freedom of the photon. The creation and annihilation operators satisfy the bosonic comutator relationship $[\hat{a}_{j,\alpha},\hat{a}_{k,\beta}^{\dagger}] = \delta_{j,k}\delta_{\alpha,\beta}$. When multiple photons are present, they experience quantum interference when both quantum labels are the same.

A linear optical interferometer

III. OPTICAL ENCODING OF QUANTUM INFORMATION

A. Single-photons

- 1. Polarisation
- 2 2. Dual-rail
 - 3. Time-bins
- 2 B. Continuous-variables
 - 1. Coherent states
 - 2. Squeezed states

IV. EFFICIENT CIRCUIT DECOMPOSITIONS OF LINEAR OPTICS NETWORKS

Discuss the Reck et al. decomposition

¹Singapore University of Technology and Design, 8 Somapah Road, Singapore

²Centre for Quantum Software & Information (CQSI), Faculty of Engineering & Information Technology, University of Technology Sydney, NSW 2007, Australia

^{*}sihui_tan@sutd.edu.sg

[†]dr.rohde@gmail.com; URL: http://www.peterrohde.org

V. EXPERIMENTAL IMPLEMENTATION

A. State preparation

- 1. Single-photons
- 2. Bell pairs
- 3. Coherent states
- 4. Squeezed states

B. Linear optics networks

- 1. Bulk-optics
- 2. Waveguides
- 3. Time-bins

Discuss fibre-loop architecture

C. Measurement

1. Photodetection

Discuss number-resolved and bucket detectors, multiplexed detection, APDs, current micropillar detectors

2. Homodyning

VI. APPLICATIONS FOR LINEAR OPTICS INTERFEROMETRY

- A. Linear optics quantum computation
- B. Boson-sampling
- C. Quantum metrology

Discuss NOON states - Heisenberg limited Discuss MORDOR scheme

D. Encrypted quantum computation

VII. STATE OF THE ART

Discuss where experiments are at at the moment

VIII. CONCLUSION

Acknowledgments

P.P.R. is funded by an ARC Future Fellowship (project FT160100397).