

Bruce M. Boghosian

Definition of sufficiency

Factorization theorems

Exponential form of pdf

Summary

Properties of Estimators

Factorization theorems for sufficiency

Bruce M. Boghosian

Department of Mathematics

Tufts University

- 1 Definition of sufficiency
- 2 Factorization theorems
- 3 Exponential form of pdf
- Summary

Definition of sufficiency

Bruce M. Boghosiar

Definition of sufficiency

theorems

Exponentia form of pdf Summary Recall the definition: Let $X_j = k_j$ for j = 1, ..., n be a random sample of size n from $p_X(k;\theta)$. The statistic $\hat{\theta} = h(X_1, ..., X_n)$ is *sufficient* for θ if the likelihood function $L(\theta)$ factors into the product of the probability distribution for $\hat{\theta}$ and constant that does not involve θ , i.e.,

$$L(\theta) = \prod_{j=1}^{n} p_X(k_j; \theta) = p_{\hat{\theta}}(\theta_e; \theta) \ b(k_1, \dots, k_n).$$

lacksquare For continuous random variables $Y_j=y_j$ for $j=1,\ldots,n$,

$$L(\theta) = \prod_{i=1}^n f_{\mathbf{Y}}(y_j; \theta) = f_{\hat{\theta}}(\theta_e; \theta) \ b(y_1, \dots, y_n).$$

- We used this definition for Bernoulli and binomial random variables, e.g.
- Problem: Sometimes it is difficult to figure out $p_{\hat{\theta}}$.

The second factorization criterion

Bruce M. Boghosian

Definition of sufficiency

Factorization theorems

Exponentia form of pd Summary ■ **Thm:** Let $X_j = k_j$ for j = 1, ..., n be a random sample of size n from the discrete pdf $p_X(k;\theta)$. The statistic $\hat{\theta}$ is sufficient for θ iff there are functions $g[h(k_1, ..., k_n); \theta]$ and $b(k_1, ..., k_n)$ such that

$$L(\theta) = \prod_{j=1}^{n} p_X(k_j; \theta) = g[h(k_1, \ldots, k_n); \theta] b(k_1, \ldots, k_n)$$

■ Statement for continuous r.v.s $Y_j = y_j$ for j = 1, ..., n,

$$L(\theta) = \prod_{i=1}^n f_Y(y_i; \theta) = g[h(y_1, \dots, y_n); \theta] b(y_1, \dots, y_n)$$

Tufts The second factorization criterion (continued)

Factorization theorems

Pf (for discrete case): First suppose that $\hat{\theta}$ is sufficient. Then, by definition, we can write

$$L(\theta) = p_{\hat{\theta}}(\theta_e; \theta) \ b(k_1, \dots, k_n),$$

which is of the desired form if we identify

$$g[h(k_1,\ldots,k_n);\theta]=p_{\hat{\theta}}(h(k_1,\ldots,k_n);\theta).$$

Next suppose that

$$L(\theta) = \prod_{i=1}^{n} p_X(k_i; \theta) = g[h(k_1, \ldots, k_n); \theta] b(k_1, \ldots, k_n)$$

■ We need to show that $g[h(k_1,...,k_n);\theta]$ can always be rewritten in terms of the pdf of $\hat{\theta}$.

The second factorization criterion (continued)

Bruce M. Boghosian

Definition of sufficiency

Factorization theorems

Exponentia form of pdi ■ Can we write $g[h(k_1,...,k_n);\theta]$ in terms of pdf of $\hat{\theta}$?

Let c be some possible value of $h(k_1, \ldots, k_n)$, and let $A = \left\{ \vec{k} \mid h(\vec{k}) = c \right\}$ be the inverse image of c, so we write $A = h^{-1}(c)$. Then

$$\therefore \quad p_{\hat{\theta}}(c;\theta) = \sum_{\vec{k} \in A} p_{\vec{\chi}}(\vec{k}) = \sum_{\vec{k} \in A} \prod_{j=1}^{n} p_{X_j}(k_j) = \sum_{\vec{k} \in A} g(c;\theta)b(\vec{k}) = g(c;\theta) \left[\sum_{\vec{k} \in A} b(\vec{k}) \right]$$

It follows that

$$g(c; \theta) = \frac{p_{\hat{\theta}}(c; \theta)}{\sum_{\vec{k} \in A} b(\vec{k})}$$

$$\therefore L(\theta) = p_{\hat{\theta}}(h(\vec{k}); \theta) \frac{b(\vec{k})}{\sum_{\vec{k} \in A} b(\vec{k})}$$

and hence $\hat{\theta}$ is sufficient by definition.

Tufts Sufficient estimators – Example 5

Factorization theorems

Show exponential distribution
$$f_Y(y) = \theta e^{-\theta y}$$
 is sufficient

Likelihood function is

$$L(\theta) = \prod_{j=1}^{n} \left(\theta e^{-\theta y_j} \right) = \theta^n \exp\left(-\theta n \overline{y} \right)$$

This is of the form

$$L(\theta) = g[h(y_1,\ldots,y_n);\theta] \ b(y_1,\ldots,y_n)$$

where we have defined

$$h(y_1, \dots, y_n) := \overline{y}$$

$$g(h; \theta) := \theta^n \exp(-\theta nh)$$

$$b(y_1, \dots, y_n) := 1.$$

Hence the exponential distribution is sufficient.

Exponential form of pdf

Bruce M. Boghosian

Definition o sufficiency

theorems

Exponential form of pdf

Summary

■ Thm.: Let $Y_1 = y_1, Y_2 = y_2, ..., Y_n = y_n$ be n independent random samples from a pdf of the general form

$$f_Y(y;\theta) = \exp \left[K(y)p(\theta) + S(y) + q(\theta)\right],$$

where θ is a parameter, and where the support of f does not depend on θ . Then the estimator

$$\hat{\theta}(\vec{y}) := \sum_{j=1}^n K(y_j),$$

which may or may not be unbiased for θ , is sufficient.

Proof of sufficiency

Bruce M. Boghosian

Definition o sufficiency

Factorization theorems

Exponential form of pdf

Summa

For pdf $f_Y(y; \theta) = \exp \left[K(y)p(\theta) + S(y) + q(\theta)\right]$,

$$L(\theta) = \prod_{j=1}^{n} f_{Y}(y_{j}; \theta) = \prod_{j=1}^{n} \exp \left[K(y_{j})p(\theta) + S(y_{j}) + q(\theta)\right]$$
$$= \exp \left[\sum_{j=1}^{n} K(y_{j})p(\theta) + \sum_{j=1}^{n} S(y_{j}) + nq(\theta)\right]$$

- This is of the form $L(\theta) = g[h(y_1, \ldots, y_n); \theta] \ b(y_1, \ldots, y_n)$
- where we have defined

$$h(y_1, \dots, y_n) := \sum_{j=1}^n K(y_j)$$
$$g(h; \theta) := hp(\theta) + nq(\theta)$$
$$b(y_1, \dots, y_n) := \exp\left[\sum_{j=1}^n S(y_j)\right]$$

Hence any pdf of this form is sufficient.

Sufficient estimators – Example 6

Exponential form of pdf

Show exponential distribution $f_Y(y) = \theta e^{-\theta y}$ is sufficient

- We can write $f_Y(y) = e^{-\theta y + \ln \theta}$
- In exponential form, $\exp [K(y)p(\theta) + S(y) + g(\theta)]$, where

$$K(y) := y$$

$$p(\theta) := -\theta$$

$$S(y) := 0$$

$$q(\theta) := \ln \theta.$$

Hence, once again, exponential distribution is sufficient.

Tufts Summary

- We have continued our study of sufficiency of estimators.
- We found three factorization theorems for proving sufficiency
 - Directly from definition (requires knowledge of $f_{\hat{a}}$).
 - Second factorization theorem
 - Exponential form