MCMC strategies for Task-Specific Region Partition Problem

Hua WeiCollege of IST, Penn State University

Learning Task-Specific City Region Partition

Task: Crime Prediction

Given:

- tract features and crime number in 2010
- tract features in 2011
- Communities consist of tracts

Task:

predict crime number for every community in 2011

Easy solution:

- Aggregate tract-level data into community-level features and crime number as training data
- Fit regression model

Left: crime prediction error at community level.

Right: community #6 is an outlier.

Learning Task-Specific City Region Partition

Explain the crime prediction error.

The eastside of Community #6 is different from others.

Question:

How do we obtain appropriate partitions?

(a) Census tracts of community #6.

(b) Tract similarity.

Appropriate partitions are needed!

- Misalignment problem: different observations are not in the same scale.
 - Crime reports at point level, demographics at block level.
- The existing administrative boundaries are human-defined and static.
 - Chicago administrative boundaries are defined by university scholars and keep being used for over 100 years.
- Task dependent partition: for different prediction tasks, the partition may not be the same.
 - In State College the Beaver stadium is a hotspot for traffic but not for crime incidents.

Problem definition: task-specific region partition

Input:

- Target property observed at tract level: y.
- Other properties (e.g., demographics) available for all tracts: x.
- Spatial adjacency of all tracts: **G**.

Output:

- Partition tracts into community areas with **Y** and **X**, such that

Given a fixed partition Z, the optimal task function f can be easily learned.

The challenge lies in searching through the partition space.

```
\arg\min_{\mathcal{Z},f}\sum_{j=1}^{m}\left(||Y_{j}-f(X_{j})||_{2}+G(Z_{j})\right) \quad \text{(Eq. 1)} \quad \mathcal{Z}: \text{ partition.} \quad f: \text{ task function on community} \\ \text{(mapping from tracts to community)} \quad \text{(regression model, etc.)} Task prediction error
```

A partition over City T is denoted as $Z = \{Z1, Z2, \dots, Zm\}$, satisfying the following:

(1) (subset) $\forall j, Zj \subset T$; (2) (non-overlapping) $\forall p,q, Zp \cap Zq = \emptyset$, (3) (completeness) $U\{Zj\} = T$;

variance of population

(4) (spatial-continuity) $\forall j$, Pj defines a polygon with exact one connected component.

This problem is challenging

- It's difficult to calculate the maximum likelihood of objective function.
 - a. Gradients on discrete variables are non available.
 - b. Region properties (features and target variable) and model coefficients are high dimensional
 - c. region properties change simultaneously when we change the region partition
 - d. Complicated constraints should be met.
- 2. It is a NP-hard combinatorial optimization problem.
 - a. Brute Force Solution: Enumerate all the possible combinations
 - O(M^N) M is the number of tracts, N is the number of communities

Solution: Techniques like Simulated Annealing to approximate global optimization

- Approximate the global optimum with the Markov Chain Monte Carlo (MCMC) method

Markov Chain Monte Carlo (Metropolis-Hastings)

Motivation: Obtaining a sequence of random samples from a distribution for which direct sampling is difficult. It constructs a Markov chain that will ultimately converge through stochastic sampling. We only **care about the last state**.

In our case:

- state space is all possible partitions Z
- quality measure $\mathcal{F}(Z)$, a partition Z with lower value is more likely to be optimal
- proposal function q(Z'|Z), defines the transition probability
- p(Z) is the Boltzmann distribution $p(Z) = rac{e^{-\mathcal{F}(\mathcal{Z})/T}}{P}$
- Stopping criteria:
 - \circ Number of iterations/the standard deviation of $\mathcal{F}(Z)$

Algorithm 1 MCMC method to search Z.

```
1: Z ← Z<sub>0</sub>
```

2: while not satisfies stopping criteria do

3: Sample
$$u \leftarrow \mathcal{U}_{[0,1]}$$

4: Sample
$$Z' \leftarrow q(Z'|Z)$$

5:
$$\gamma = \min \left[1, \frac{p(Z')q(Z|Z')}{p(Z)q(Z'|Z)} \right]$$

6: if
$$u < \gamma$$
 then

7:
$$Z \leftarrow Z'$$

8: end if

9: end while

Naive MCMC

- Start from administrative boundary
- Randomly select one tract to flip its assignment.
- Decide whether to accept the new partition with training error on prediction task f.

$$q(\mathcal{Z}'|\mathcal{Z}) = q(\mathcal{Z}|\mathcal{Z}') = rac{1}{|\mathcal{T}_b|\cdot|Adjacent(t_i)|}$$

$$\gamma = \min[1, rac{p(\mathcal{Z}')}{p(\mathcal{Z})}]$$

Flip the assignment of a tract.

This could last a long time - since it's randomly select one tract to flip

Guided MCMC - Softmax MCMC

- Start from administrative boundary
- Select tract from Community with the highest prediction error (according to a softmax function), then flip its assignment.
- Decide whether to accept the new partition with training error on prediction task f.

$$egin{aligned} Q(Z_j) &= rac{\exp(||Y_j - f(X_j)||_2)}{\sum_{k=1}^m \exp(||Y_k - f(X_k)||_2)} \ q(\mathcal{Z}'|\mathcal{Z}) &= rac{Q(Z_j)}{|Z_j \cap \mathcal{T}_b| \cdot |Adjacent(t_i)|} \end{aligned}$$

Flip the assignment of a tract *T*2.

Tract *T2* is selected because the green community has the highest prediction error.

MCMC with reinforcement learning (RL)

- Start from administrative boundary
- Instead of pre-define sampling strategy, learn where to sample with RL, then flip its assignment.

At each step *t* the agent:

- Executes action *At*
- Receives observation *Ot*
- Receives scalar reward Rt

Tract T3 is selected because based on past experience, T3 is more likely to decrease \mathcal{F} most

MCMC with reinforcement learning (RL)

- Start from administrative boundary
- Instead of pre-define sampling strategy, learn where to sample with RL, then flip its assignment.

Challenges:

- Huge state space
- Large and dynamic action space
- Training overhead is high

Learning

$$Q(\mathcal{Z},\langle t^k, \mathcal{Z}^k \rangle) = \Delta \mathcal{F} + \delta \cdot \sum_{a \in \{\langle t^{k+1}, \mathcal{Z}^{k+1} \rangle\}} Q(\mathcal{Z}', a)$$

Q is a neural network δ is set to 0

- z: current partition state
- <t, Z> : action (a tract to flip)
- Sampling: $\arg \max_{t \in \mathcal{I}} Q(\mathcal{Z}, \langle t, Z \rangle)$

 $\langle t, Z \rangle$)

Take the max of 30 random samples

Results

Method	MAE	
	Crime	House price
Admin	1715.91	31.29
Agglomerative	72201.00	50.34
K-means	2887.83	32.40
Spectral	1440.57	29.66
Naive	1073.42(81.93)	25.73(2.76)
Softmax	1041.68(76.75)	27.13(2.98)
DQN	746.13 (154.19)	25.16 (1.30)

Clustering first, then do prediction

MAE of two prediction tasks.

Dataset:

[1] https://data.cityofchicago.org/

[2] https://www.zillow.com/

Convergence of three proposed methods.

Case study: Community #6

Community #6 from administrative boundary

DQN partition around Community #6

Zillow's self-defined region (Zillow.com: real estate website)

The green star marks the location of **Belmont Harbor** (one of Chicago's largest boating areas).

DQN community #7: contain leisure destinations such as the Lincoln Park Zoo, and numerous beach areas.

Suggestions?