Numerical Optimization Lab 02: Steepest Descent

Francesco Della Santa

Abstract

In this lesson, we will learn to implement the steepest descent optimization method.

1 Introduction

Create a working folder where you will save all the files for this and the future Numerical Optimization laboratories; then, download from the web page of the course the file test_functions.mat. Save the file in the working folder previously created for the laboratories.

2 Exercises

Exercise 1 (Steepest Descent Implementation). Write a Matlab function $steepest_descent.m$ that implement the $steepest_descent$ optimization method (see Appendix A) and that takes the following inputs and outputs.

INPUTS:

- x0: a *column vector* of n elements representing the starting point for the optimization method;
- **f:** a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $f(\boldsymbol{x})$, where $f: \mathbb{R}^n \to \mathbb{R}$ is the loss function that have to be minimized;
- gradf: a function handle variable that, for each column vector $\boldsymbol{x} \in \mathbb{R}^n$, returns the value $\nabla f(\boldsymbol{x})$ as a column vector, where $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$ is the gradient of f;
- alpha: a real scalar value characterizing the step length of the optimization method;
- kmax: an integer scalar value characterizing the maximum number of iterations of the method:
- tolgrad: a real scalar value characterizing the tolerance with respect to the norm of the gradient in order to stop the method.

OUTPUTS:

- xk: the last vector $x_k \in \mathbb{R}^n$ computed by the optimization method before it stops;
- fk: the value $f(x_k)$;
- gradfk_norm: the euclidean norm of $\nabla f(x_k)$;
- k: index value of the last step executed by the optimization method before stopping;
- **xseq:** a matrix/vector in $\mathbb{R}^{n \times k}$ such that each column j is the j-th vector $\mathbf{x}_j \in \mathbb{R}^n$ generated by the iterations of the method.

Once you have written the function, test it using the data inside the file *test_functions.mat* and plot together:

- ullet the loss f (given in $test_functions.mat$) using the Matlab function contour;
- \bullet the sequence xseq.

A Steepest Descent

Let the function $f: \mathbb{R}^n \to \mathbb{R}$ be given. The steepest descent method is an iterative optimization method that, starting from a given vector $\boldsymbol{x}_0 \in \mathbb{R}^n$, computes a sequence of vectors $\{\boldsymbol{x}_k\}_{k \in \mathbb{N}}$ characterized by

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \alpha \boldsymbol{p}_k \,, \quad \forall \ k \ge 0 \,, \tag{1}$$

where the descent direction p_k is the steepest one, i.e. $p_k = -\nabla f(x_k)$, and the step length factor $\alpha \in \mathbb{R}$ is arbitrarily chosen.