1º Cuatrimestre 2023

PARTE II. INTRODUCCIÓN AL TRABAJO EXPERIMENTAL: calibración del material volumétrico

1 Objetivos:

Los objetivos de este primer trabajo de laboratorio principalmente era como titulo del trabajo, la calibración del material volumétrico. Además de este había otros objetivos como:

- conocer la diferencia entre exactitud y precisión

- Familiarizarnos con algunos elementos del laboratorio

2 Tabla de datos: Medida de 10 ml con diferente material volumétrico de vidrio.

Material Vaso precipitado				
Temp (°C) 27				
δ H ₂ O	0,99659 g/cm ³			
N	m _i (g)	V _i (mI)		
1	9,845	9,879		
2	8,954	8,985		
3	8,835	8,865		
4	8,775	8,805		
5	8,821	8,851		
6	9,108	9,139		
7	9,867	9,901		
8	9,149	9,180		
9	8,620	8,649		
10	9,303	9,335		
Media (V)		9,159		
Desv. (s)		0,353		

Material Pipeta aforada				
Temp (°C) 27				
δ H ₂ O 0,99659 g/cm ³				
N	<i>m</i> _i (g)	V _i (ml)		
1	9,966	10,000		
2	9,927	9,961		
3	9,975	10,009		
4	9,873	9,906		
5	9,990	10,024		
6	9,944	9,978		
7	9,960	9,994		
8	9,986	10,020		
9	9,998	10,032		
10	9,995	10,029		
Media (V)		9,995		
Desv. (s)		0,0376		

Material Probeta				
Temp (°C) 27				
δ H ₂ O 0,99659 g/cm ³				
N	<i>m</i> _i (g)	V _i (ml)		
1	9,116	9,147		
2	9,261	9,292		
3	9,309	9,340		
4	9,154	9,185		
5	9,374	9,406		
6	9,594	9,627		
7	9,570	9,603		
8	9,339	9,371		
9	9,626	9,659		
10	9,619	9,652		
Media (V)		9,428		
Desv. (s)		0,195		

Material Pipeta graduada				
Temp (°C)		27		
δ H ₂ O 0,99659 g/cm ³				
N	m _i (g)	V _i (mI)		
1	9,729	9,762		
2	9,649	9,682		
3	9,810	9,844		
4	9,820	9,854		
5	9,841	9,875		
6	9,919	9,953		
7	9,832	9,866		
8	9,552	9,585		
9	9,790	9,823		
10	9,787	9,820		
Media (V)		9,806		
Desv. (s)		0,106		

1º Cuatrimestre 2023

3 Gráficas de distribución.

4 Comparación gráfica de precisión y exactitud del material utilizado ($\overline{V} \pm s$)

Código de colores:

5 Observaciones

6 Conclusiones

Concluimos de este primer trabajo de la materia que para medir mas preciso y exacto el mejor material para hacerlo es la pipeta aforada, ya que tiene una desviación estándar menor, esto debido en la forma que esta compuesta. Esto lo hace hace un elemento mas preciso y exacto que el resto por lo cual es ideal para medir volúmenes. El vaso precipitado seria el caso contrario a este debido a su poca precisión y exactitud, con una desviación estándar alta comparada a la pipeta aforada.

7 Bibliografía

- Daniel C. Harris, Análisis Químico Cuantitativo. Editorial Reverte, 3ra. Edición (6ta. ed. inglés), 2006.
- Química, R. Chang. McGraw-Hill, 12va. ed, 2017.
- "Introducción al trabajo experimental"
- "Material de Laboratorio"