Modele de constructie a multimii numerelor reale

Cum ne imaginam aceasta multime?

- colectia tuturor punctelor de pe axa reala
- colectia tuturor fractiilor zecimale

$$a_0, a_1 a_2 \dots a_n \dots, \quad a_0 \in \mathbb{Z}, a_n \in \{0, 1, \dots, 9\}, \forall n \in \mathbb{N}^*$$

Enumeram mai jos cateva modele de constructie a multimii numerelor reale.

a) cu ajutorul sirurilor de numere rationale (Cantor)

$$\mathbb{R} = \left\{ x \middle| \exists (q_n)_{n \in \mathbb{N}} \subseteq \mathbb{Q} \text{ sir convergent} : \lim_{n \to \infty} q_n = x \right\}$$

Ex.
$$q_0 = 1$$
, $q_1 = 1.4$, $q_2 = 1.41$, $q_3 = 1.414$, $q_4 = 1.4142$, ...

$$\lim_{n\to\infty} q_n = \sqrt{2}$$

Ex.

$$q_{n+1} = \frac{q_n}{2} + \frac{1}{q_n}, \quad \forall n \in \mathbb{N}, \ q_0 = 1.$$

b) cu ajutorul submultimilor de numere rationale (Dedekind)

O submultime $S \subseteq \mathbb{Q}$ se numeste sectiune (taietura) Dedekind daca

- 1. $\emptyset \neq S \neq \mathbb{Q}$
- 2. $\forall s \in S, t \in \mathbb{Q} \setminus S : s < t$
- 3. $\forall s_1 \in S, \exists s_2 \in S : s_1 < s_2$ (S nu admite un cel mai mare element).

Oricarei sectiuni S i se poate asocia un numar real unic x_S cu proprietatea

$$s < x_S \le t$$
, $\forall s \in S, t \in \mathbb{Q} \setminus S$.

Ex.
$$S = \{x \in \mathbb{Q} | x < 0\} \cup \{x \in \mathbb{Q} | x^2 < 2\}$$

$$S = (-\infty, \sqrt{2}) \cap \mathbb{Q}, \quad \mathbb{Q} \setminus S = [\sqrt{2}, \infty) \cap \mathbb{Q}$$
$$\mathbb{R} = \{x_S \mid S \subseteq \mathbb{Q} \text{ sectione} \}$$

c) cu ajutorul numerelor suprareale (Conway)

Fie L si R doua submultimi de numere deja construite (initial ambele sunt multimea vida).

Numar (suprareal). Forma algebrica $\{L|R\}$ defineste un numar (suprareal) daca niciun element din R nu este mai mic sau egal decat vreun element din L, adica

$$\nexists r \in R, \, \nexists l \in L : r < l.$$

Definim in continuare relatia de ordine intre doua numere (forme algebrice).

Relatia de ordine. Fie $x = \{X_L | X_R\}$ si $y = \{Y_L | Y_R\}$ doua forme algebrice. Definim

$$x \le y \Leftrightarrow \begin{cases} \nexists x_L \in X_L : y \le x_L \\ \nexists y_R \in Y_R : y_R \le x \end{cases}$$
$$x = y \Leftrightarrow (x \le y) \quad \text{si} \quad (y \le x)$$
$$x < y \Leftrightarrow (x \le y) \quad \text{si} \quad \text{not}(y \le x)$$

Relatia de ordine \leq este definita in mod minimal, incat ea sa implice ca

$$x_L < x < x_R, \quad \forall x_L \in X_L, \, \forall x_R \in X_R.$$
 (1)

Ex. $L = R = \emptyset \Rightarrow \{ \mid \} \stackrel{\text{not}}{=} 0$ este un numar. Mai mult, $0 \le 0$ si 0 = 0

 $L=\{0\}, R=\emptyset \Rightarrow \{0|\,\} \stackrel{\rm not}{=} 1$ este un numar. Mai mult, 0<1caci

$$0 \leq 1 \Leftrightarrow \{\,|\,\} \leq \{0|\,\} \Leftrightarrow \nexists x_L \in \emptyset : 1 \leq x_L, \quad \nexists y_R \in \emptyset : y_R \leq 0$$

$$\operatorname{not}(1 \le 0) \Leftrightarrow \operatorname{not}(\{0|\} \le \{|\}) \Leftrightarrow \exists x_L \in \{0\} : 0 \le x_L \quad \text{sau} \quad \dots$$

 $L = \{0\}, R = \{0\} \Rightarrow \{0|0\}$ nu este un numar!

Numar negativ. Fie $x = \{X_L | X_R\}$ un numar. Definim opusul sau

$$-x = \{-X_R| - X_L\},\,$$

unde s-a notat $-A = \{-a | a \in A\}.$

Aceasta definitie este sugerata de implicatia

$$x_L < x < x_R \Rightarrow -x_R < -x < -x_L$$
.

Ex. Evident -0 = 0.

$$L = \emptyset, R = \{0\} \Rightarrow \{ |0\} = -1. \text{ Mai mult}, -1 < 0 \text{ si } -1 < 1 \text{ (tema)}.$$

Putem forma acum alte numere $\{-1,0|\},\{-1|1\},\{1|\},\{0,1|\}$ etc.

Proprietati. Pentru orice numere $x = \{X_L | X_R\}, y = \{Y_L | Y_R\}$ si $z = \{Z_L | Z_R\}$ au loc urmatoarele proprietati

- 1) $x \le x$ (reflexivitatea)
- 2) Daca $x \le y$ si $y \le z \Rightarrow x \le z$ (tranzitivitatea)
- 3) $x \le y$ sau $y \le x$ (total ordonare)
- 4) $x < y \Leftrightarrow \operatorname{not}(y \le x)$
- 5) $x_L < x < x_R$, $\forall x_L \in X_L$, $\forall x_R \in X_R$ (conditia 1)
- 6) Daca $y < x \Rightarrow \{y, X_L | X_R\} = x$
- 7) Daca $x < y \Rightarrow \{X_L | y, X_R\} = x$

(demonstratiile se fac inductiv, prin reducere la absurd)

Ex.
$$1 = \{0\} = \{-1, 0\}$$
 si $0 = \{1\} = \{-1\} = \{-1\}$.

Notam $x = \{1|\}$, atunci

$$1 < x \Leftrightarrow \operatorname{not}(x \le 1) \Leftrightarrow \operatorname{not}(\{1\}) \le \{0\}) \Leftrightarrow \exists x_L \in \{1\} : 1 \le x_L \quad \text{sau} \quad \dots$$

Ce valoare atribuim lui x?

Adunarea numerelor. Fie $x = \{X_L | X_R\}, y = \{Y_L | Y_R\}$ doua numere. Definim

$$x + y = \{X_L + y, x + Y_L | X_R + y, x + Y_R \},\$$

unde s-a notat $a + B = \{a + b | b \in B\}$ si $A + b = \{a + b | a \in A\}$.

Definitia este sugerata de implicatiile

$$x_L < x < x_R \Rightarrow x_L + y < x + y < x_R + y$$

$$y_L < y < y_R \Rightarrow x + y_L < x + y < x + y_R$$

Se justifica imediat ca x + 0 = 0 + x = x (elementul neutru).

Ex. Revenim la numarul $x = \{1 | \}$.

$$1+1 = \{0|\} + \{0|\} = \{0+1, 1+0|\} = \{1|\} \stackrel{\text{not}}{=} 2.$$

In general, $\{n-1|\} = n \text{ si } \{|-(n-1)\} = -n, \forall n \in \mathbb{N}^*.$

Se obtin astfel toate numerele intregi.

Ex. Fie acum $x = \{0|1\}$. Se justifica (tema) ca 0 < x < 1 < x + 1.

$$x + x = \{0|1\} + \{0|1\} = \{0 + x, x + 0|1 + x, x + 1\} = \{x|x + 1\}$$
$$1 = \{0|\} = \{0|x + 1\} = \{0, x|x + 1\} = \{x|x + 1\}$$

Deci $x = \{0|1\} \stackrel{\text{not}}{=} \frac{1}{2}$.

Alte exemple $\{0|\frac{1}{2}\} = \frac{1}{4}$, $\{\frac{1}{4}|\frac{1}{2}\} = \{\frac{2}{8}|\frac{4}{8}\} = \frac{3}{8}$, etc.

Succesiv se formeaza toate numerele diadice $\frac{m}{2^n}$, $\forall n \in \mathbb{N}, m \in \mathbb{Z}$.

Varsta unui numar. Este numarul minim de iteratii v(x) necesar construirii numarului x, plecand de la elementul nul $0 = \{ \mid \}$.

Ex.
$$v(0) = 0$$
, $v(-1) = v(1) = 1$, $v(\frac{1}{2}) = v(2) = 2$, $v(\frac{1}{4}) = v(3) = 3$, ...

Alte numere se vor obtine aplicand acest procedeu de un numar transfinit de ori.

Ex. Fie $a_n = \frac{1}{2^2} + \frac{1}{2^4} + \ldots + \frac{1}{2^{2n}}$ si $b_n = \frac{1}{2} - \left(\frac{1}{2^3} + \frac{1}{2^5} + \ldots + \frac{1}{2^{2n+1}}\right)$, $\forall n \geq 1$. Se arata usor folosind analiza de liceu (tema) ca $(a_n)_{n\geq 1}$ si $(b_n)_{n\geq 1}$ sunt siruri de numere diadice care satisfac $a_n < \frac{1}{3} < b_n$, $\forall n \geq 1$ si $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \frac{1}{3}$. Astfel

$$\frac{1}{3} = \{a_1, a_2, \dots | b_1, b_2, \dots\}.$$

Analog se pot construi toate numerele rationale si toate numerele irationale, caci putem scrie

$$\sqrt{2} = \{1, \frac{5}{4}, \frac{11}{8}, \frac{45}{32}, \frac{181}{128}, \dots | \dots, \frac{363}{256}, \frac{91}{64}, \frac{23}{16}, \frac{3}{2}, 2\},\$$

unde numerele diadice din membrul drept se obtin succesiv prin metoda injumatatirii intervalului.

Astfel apar toate numerele reale.

Apoi

$$\{0, 1, 2, 3, \dots | \} \stackrel{\text{not}}{=} \omega.$$

Deci $v(\frac{1}{3}) = v(\sqrt{2}) = v(\omega) = \omega$, insa procedeul de constructie poate continua.

Proprietate (regula varstei). Fie doua numere x si $y = \{Y_L | Y_R\}$ cu proprietatile

- i) v(x) < v(y)
- ii) $y_L < x < y_R$, $\forall y_L \in Y_L$, $\forall y_R \in Y_R$, at unci x = y.

Ex. $\{\frac{1}{2}|2\} = 1$.

Inmultirea numerelor. Fie $x = \{X_L | X_R\}, y = \{Y_L | Y_R\}$ doua numere. Definim

$$xy = \{X_L y + xY_L - X_L Y_L, xY_R + X_R y - X_R Y_R | X_L y + xY_R - X_L Y_R, xY_L + X_R y - X_R Y_L \},$$

unde s-a notat $aB = \{ab | b \in B\}$, $Ab = \{ab | a \in A\}$, respectiv $AB = \{ab | a \in A, b \in B\}$.

Aceasta definitie este sugerata de implicatiile

$$x_{L} < x < x_{R}, y_{L} < y < y_{R} \Rightarrow \begin{cases} (x_{L} - x)(y - y_{L}) < 0 \Rightarrow x_{L}y + xy_{L} - x_{L}y_{L} < xy \\ (x - x_{R})(y_{R} - y) < 0 \Rightarrow xy_{R} + x_{R}y - x_{R}y_{R} < xy \\ (x_{L} - x)(y - y_{R}) > 0 \Rightarrow x_{L}y + xy_{R} - x_{L}y_{R} > xy \\ (x - x_{R})(y_{L} - y) > 0 \Rightarrow xy_{L} + x_{R}y - x_{R}y_{L} > xy \end{cases}$$

Operatiile de adunare si inmultire definite mai sus vor avea toate proprietatile uzuale.

"Surreal numbers" - a mathematical novelette by D.E.Knuth

https://math.ubbcluj.ro/~sberinde/info/Surreal_Numbers.pdf

Numerele suprareale au o interpretare combinatoriala interesanta.

Sa consideram jocul numit "Taierea Arbustilor" (Hackenbush), in care doi jucatori L si R elimina alternativ cate o ramura dintr-o configuratie de genul

cu respectarea urmatoarelor 3 reguli

- 1. jucatorul L elimina doar ce este cu aLbastru,
- 2. jucatorul R elimina doar ce este cu Rosu,
- 3. o structura desprinsa de sol este eliminata.

Jucatorul care se afla in imposibilitatea de a efectua o taietura pierde jocul. Care jucator are strategia sigura de castig, sau pe scurt, care jucator va castiga?

Asociem fiecarui joc o valuare (numar), dupa modelul de constructie al numerelor suprarereale,

$$x = \{X_L | X_R\},\,$$

unde X_L , respectiv X_R , noteaza multimea optiunilor de joc pentru fiecare jucator (adica valoarea jocului in urma efectuarii unei mutari proprii).

Jocul vid

P-----

are optiunile $X_L = X_R = \emptyset$, deci valoarea 0.

Iata mai jos cateva jocuri si valorile lor

Proprietati.

- 1) Un joc are valoare strict pozitiva daca va castiga jucatorul L (indiferent daca este la mutare sau nu), jocul are o valoare strict negativa daca va castiga jucatorul R (indiferent daca este la mutare sau nu), respectiv, jocul are valoarea zero daca castiga al doilea jucator aflat la mutare (indiferent daca este L sau R).
- 2) Suma valorilor a doua jocuri este egala cu valoarea jocului obtinut prin alaturarea celor doua configuratii.

Iata un exemplu

in care al doilea jucator are strategia de castig.

Alte jocuri si valorile lor

Iar acum un joc avand valoarea $\pi \approx 3.1415926...$, obtinut prin urmatoarea tehnica

conversia partii intregi: $3 \rightarrow 1 + 1 + 1 \rightarrow 111 \rightarrow LLL$

conversia punctului zecimal: $\cdot \to LR$

conversia partii zecimale: 0.1415926... \rightarrow 0.00100100001111111... \rightarrow 0.RRLRRLRRRRLLLLLL...

Concatem acum toate secventele de litere

 $\pi \to LLL\,LR\,RRLRRLRRRRLLLLLL...$

Construiti jocul cu valoarea $\frac{1}{3}$ (tema).

Tehnica de mai sus poate fi utilizata si pentru valori care sunt fractii zecimale finite. In acest caz, ultimul L din secventa se ignora.

Ex.
$$\frac{9}{8} = 1.125 \rightarrow L \quad LR \quad 0.RRL \rightarrow LLRRR$$