Principles of Abstract Interpretation MIT press

Ch. 11, Galois Connections and Abstraction

Patrick Cousot

pcousot.github.io

PrAbsInt@gmail.com github.com/PrAbsInt/

These slides are available at http://github.com/PrAbsInt/slides/slides/slides-11--Galois-connections-PrAbsInt.pdf

Chapter 11

Ch. **11**, Galois Connections and Abstraction

Galois connections

■ Given posets $\langle C, \sqsubseteq \rangle$ (the concrete domain) and $\langle \mathcal{A}, \preccurlyeq \rangle$ (the abstract domain), the pair $\langle \alpha, \gamma \rangle$ of functions $\alpha \in C \to \mathcal{A}$ (the lower adjoint or abstraction) and $\gamma \in \mathcal{A} \to C$ (the upper-adjoint or concretization) is a Galois connection (GC) if and only if

$$\forall P \in \mathcal{C} : \forall \overline{P} \in \mathcal{A} : \alpha(P) \leq \overline{P} \Leftrightarrow P \sqsubseteq \gamma(\overline{P})$$
 (11.1)

which we write

$$\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$$
.

en.wikipedia.org/wiki/Galois_connection

Example: homomorphic/partitioning abstraction

- Let C and A be sets, $h \in C \to A$
- $\gamma_h(\overline{S}) \triangleq \{e \in C \mid h(e) \in \overline{S}\}$
- $\langle \wp(C), \subseteq \rangle \xrightarrow{\gamma_h} \langle \wp(A), \subseteq \rangle$

Example: homomorphic/partitioning abstraction

- Let C and A be sets, $h \in C \to A$
- $\alpha_h(S) \triangleq \{h(e) \mid e \in S\}$
- $\gamma_h(\overline{S}) \triangleq \{e \in C \mid h(e) \in \overline{S}\}$
- $\bullet \langle \wp(C), \subseteq \rangle \xrightarrow{\gamma_h} \langle \wp(A), \subseteq \rangle$

Proof

$$\alpha_h(S) \subseteq \overline{S}$$

$$\Leftrightarrow$$
 $\{h(e) \mid e \in S\} \subseteq \overline{S}$

$$\Leftrightarrow \forall e \in S . h(e) \in \overline{S}$$

$$\Leftrightarrow$$
 $S \subseteq \{e \in C \mid h(e) \in \overline{S}\}$

$$\Leftrightarrow S \subseteq \gamma_h(\overline{S})$$

$$\{\mathsf{def.}\ \alpha_h\}$$

$$\{\mathsf{def.}\ \gamma_h\}$$
 \square

Duality in order theory

- The order properties for ⊆, ⊥, ⊤, □, max, □, min, etc. are valid for the dual ⊒, ⊤, ⊥, □, min, □, max, etc.
- Intuition:

Dual of a Galois connection

■ The dual of a Galois connection $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ is the Galois connection $\langle \mathcal{A}, \preccurlyeq \rangle$

$$\preccurlyeq \rangle \stackrel{\alpha}{\longleftrightarrow} \langle C, \sqsubseteq \rangle$$

Dual of a Galois connection

■ The dual of a Galois connection $\langle \mathcal{C}, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ is the Galois connection $\langle \mathcal{A}, \preccurlyeq \rangle \stackrel{\alpha}{\longleftarrow} \langle \mathcal{C}, \sqsubseteq \rangle$

Proof
$$\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$$

 $\Leftrightarrow \alpha(x) \preccurlyeq y \Leftrightarrow x \sqsubseteq \gamma(y)$
 $\alpha(x) \succcurlyeq y \Leftrightarrow x \sqsupseteq \gamma(y)$
 $\Leftrightarrow \gamma(y) \sqsubseteq x \Leftrightarrow y \preccurlyeq \alpha(x)$
 $\Leftrightarrow \gamma(x) \sqsubseteq y \Leftrightarrow x \preccurlyeq \alpha(y)$
 $\Leftrightarrow \langle \mathcal{A}, \preccurlyeq \rangle \xrightarrow{\alpha} \langle C, \sqsubseteq \rangle$

(def. Galois connection for all $x \in C$ and $y \in A$)

(dual statement)

(inverse order $x \supseteq y \Leftrightarrow y \sqsubseteq x$)

(dummy variable renaming)

(def. Galois connection)

Dual of a Galois connection

■ The dual of a Galois connection $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ is the Galois connection $\langle \mathcal{A}, \preccurlyeq \rangle \stackrel{\alpha}{\longleftarrow} \langle C, \sqsubseteq \rangle$

Proof
$$\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \mathcal{A}, \preccurlyeq \rangle$$
 $\Leftrightarrow \alpha(x) \preccurlyeq y \Leftrightarrow x \sqsubseteq \gamma(y)$ (def. Galois connection for all $x \in C$ and $y \in \mathcal{A}$) $\alpha(x) \succcurlyeq y \Leftrightarrow x \sqsupseteq \gamma(y)$ (dual statement) $\Leftrightarrow \gamma(y) \sqsubseteq x \Leftrightarrow y \preccurlyeq \alpha(x)$ (inverse order $x \sqsupset y \Leftrightarrow y \sqsubseteq x$) $\Leftrightarrow \gamma(x) \sqsubseteq y \Leftrightarrow x \preccurlyeq \alpha(y)$ (dummy variable renaming) $\Leftrightarrow \langle \mathcal{A}, \preccurlyeq \rangle \stackrel{\alpha}{\longleftrightarrow} \langle C, \sqsubseteq \rangle$ (def. Galois connection)

- Dualization of a statement involving Galois connections consists in exchanging the adjoints
- If an adjoint has a property, its adjoint has the dual property

Lemma 1 If
$$\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$$
 then α is increasing.

Proof Assume $P \sqsubseteq P'$. By $\alpha(P') \preccurlyeq \alpha(P')$ we have $P' \sqsubseteq \gamma(\alpha(P'))$ so $P \sqsubseteq \gamma(\alpha(P'))$ by transitivity hence $\alpha(P) \preccurlyeq \alpha(P')$ by definition of a GC, proving that α is increasing. \square

Lemma 2 If
$$\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$$
 then γ is increasing.

Proof By duality (increasing is self-dual so the dual of " α is increasing" is " γ is increasing").

■ In a Galois connection $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ we have $\alpha \circ \gamma \circ \alpha = \alpha$

■ In a Galois connection $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ we have $\alpha \circ \gamma \circ \alpha = \alpha$

Proof For all $x \in C$ and $y \in \mathcal{A}$,

$$-\alpha(x) \leq \alpha(x)$$

$$\Rightarrow x \sqsubseteq y(\alpha(x))$$

$$\Rightarrow \alpha(x) \leq \alpha(\gamma(\alpha(x)))$$

$$\gamma(y) \sqsubseteq \gamma(y)$$

$$\Rightarrow \alpha(\gamma(y)) \leq y$$

$$\Rightarrow \alpha(\gamma(\alpha(x))) \leq \alpha(x)$$

$$\alpha(x) = \alpha(\gamma(\alpha(x)))$$

$$\alpha$$
 increasing β

7 for
$$v = \alpha(x)$$

■ In a Galois connection $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ we have $\alpha \circ \gamma \circ \alpha = \alpha$

Proof For all $x \in C$ and $y \in \mathcal{A}$,

• The dual is $\gamma \circ \alpha \circ \gamma = \gamma$.

Uniqueness of adjoints

• Lemma 3 In a Galois connection one adjoint uniquely determines the other.

Uniqueness of adjoints

• **Lemma 3** In a Galois connection one adjoint uniquely determines the other.

Proof Observe that $\forall P \in \mathcal{C}$. $\alpha(P) = \sqcap \{\overline{P} \mid \alpha(P) \leq \overline{P}\}$ So, by definition of a GC, $\alpha(P) = \sqcap \{\overline{P} \mid P \sqsubseteq \gamma(\overline{P})\}$ *i.e.* γ uniquely determines α .

Dually α uniquely determines γ since $\forall \overline{P} \in \mathcal{A}$. $\gamma(\overline{P}) = \sqcup \{P \mid \alpha(P) \leq \overline{P}\}.$

П

Uniqueness of adjoints

Lemma 3 In a Galois connection one adjoint uniquely determines the other.

Proof Observe that $\forall P \in \mathcal{C}$. $\alpha(P) = \sqcap \{\overline{P} \mid \alpha(P) \leq \overline{P}\}$ So, by definition of a GC, $\alpha(P) = \sqcap \{\overline{P} \mid P \sqsubseteq \gamma(\overline{P})\}$ *i.e.* γ uniquely determines α .

Dually α uniquely determines γ since $\forall \overline{P} \in \mathcal{A}$. $\gamma(\overline{P}) = \sqcup \{P \mid \alpha(P) \leq \overline{P}\}.$

- This lemma is useful in situations where only one adjoint is defined explicitly since then the other is also uniquely determined.
- Note: for given concrete and abstract partial orders

П

Galois retraction

- If $\langle \mathcal{C}, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$ then
 - α is surjective, if and only if
 - γ is injective, if and only if
 - $\forall \overline{P} \in \mathcal{A} . \alpha \circ \gamma(\overline{P}) = \overline{P}.$
- This is denoted $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow_{\alpha}} \langle \mathcal{A}, \prec \rangle$ and called a Galois retraction (Galois surjection, insertion, etc.).

(see solution to Exercise 11.49 in the book).

Counter-example

Not a retraction

Equivalent definition of Galois connections

- $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ if and only if $\alpha \in C \to \mathcal{A}$ and $\gamma \in \mathcal{A} \to C$ satisfy
 - (1) α is increasing;
 - (2) γ is increasing;
 - (3) $\forall x \in C$. $x \sqsubseteq \gamma \circ \alpha(x)$ (i.e. $\gamma \circ \alpha$ is extensive)
 - (4) $\forall y \in \mathcal{A}$. $\alpha \circ \gamma(y) \leq y$ (i.e. $\alpha \circ \gamma$ is reductive)

α preserves existing lubs (I)

Lemma 4 If $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ then α preserves lubs that may exist in C *i.e.* let \sqcup be the partially defined lub for \sqsubseteq in C and Υ be the partially defined lub for \preccurlyeq in \mathcal{A} . Let $S \in \wp(C)$ be any subset of C.

If $\sqcup S$ exists in C then the upper bound $\bigvee \{\alpha(e) \mid e \in S\}$ exists in C and is equal to $\alpha(\mid S)$.

α preserves existing lubs (1)

Lemma 4 If $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \mathcal{A}, \preccurlyeq \rangle$ then α preserves lubs that may exist in C *i.e.* let \sqcup be the partially defined lub for \sqsubseteq in C and \lor be the partially defined lub for \preccurlyeq in \mathcal{A} . Let $S \in \wp(C)$ be any subset of C. If |S| exists in C then the upper bound $\bigvee \{\alpha(e) \mid e \in S\}$ exists in C and is equal to $\alpha(|S)$.

- **Proof** $\alpha(|S)$ is an upper bound of $\alpha(S)$
 - By existence and definition of the lub |S|, we have $\forall e \in S \cdot e \subseteq |S|$
 - So $\alpha(e) \leq \alpha(|S|)$ since α is increasing.
 - It follows that $\alpha(|S|)$ is an upper bound of $\alpha(S) \triangleq \{\alpha(e) \mid e \in S\}$.

α preserves existing lubs (II)

- $\alpha(\bigsqcup S)$ is the *least* upper bound of $\alpha(S)$
 - Let u be any upper bound of this set $\{\alpha(e) \mid e \in S\}$
 - $\forall e \in S . \alpha(e) \leq u$ by def. upper bound.
 - By definition of a GC, $\forall e \in S . e \sqsubseteq \gamma(u)$.
 - So $\gamma(u)$ is an upper bound of S.
 - By existence and definition of the lub $\bigsqcup S$, $\bigsqcup S \sqsubseteq \gamma(u)$
 - By definition of a GC, $\alpha(\bigsqcup S) \leq u$
 - This implies that $\alpha(\sqsubseteq S)$, which exists since α is a total function, is the lub of $\alpha(S) \triangleq \{\alpha(e) \mid e \in S\}$ denoted $\forall \alpha(S)$.

By duality γ preserves existing meets

Abstraction of complete lattices

■ If $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ and $\langle C, \sqsubseteq, \sqcup \rangle$ is a complete lattice then $\langle \alpha(C), \preccurlyeq, \vee \rangle$ is a complete lattice.

Abstraction of complete lattices

■ If $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ and $\langle C, \sqsubseteq, \sqcup \rangle$ is a complete lattice then $\langle \alpha(C), \preccurlyeq, \vee \rangle$ is a complete lattice.

Proof We have $\langle C, \sqsubseteq \rangle \xrightarrow{\varphi} \langle \alpha(C), \preccurlyeq \rangle$. Define $\gamma(S) \triangleq \alpha(\bigsqcup(\gamma(S)))$.

(1) γ is an upper bound. If $e \in S \subseteq \alpha(C)$ then $\Rightarrow \gamma(e) \in \gamma(S) \qquad \qquad \text{(since } e \in S \text{)}$ $\Rightarrow \gamma(e) \sqsubseteq \bigsqcup \gamma(S) \qquad \text{(def. lub in complete lattice } \langle C, \sqsubseteq, \sqcup \rangle \text{)}$ $\Rightarrow e = \alpha(\gamma(e)) \preccurlyeq \alpha(\sqsubseteq \gamma(S)) = \gamma(S) \qquad \qquad \text{(a.s. } \gamma = 1, \alpha \text{ increasing, def. } \gamma \text{)}$

Abstraction of complete lattices

■ If $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftarrow}} \langle \mathcal{A}, \preccurlyeq \rangle$ and $\langle C, \sqsubseteq, \sqcup \rangle$ is a complete lattice then $\langle \alpha(C), \preccurlyeq, \curlyvee \rangle$ is a complete lattice.

Proof We have $\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \alpha(C), \preccurlyeq \rangle$. Define $\gamma(S) \triangleq \alpha(\bigsqcup(\gamma(S)))$.

(1) \forall is an upper bound. If $e \in S \subseteq \alpha(C)$ then

$$\Rightarrow \gamma(e) \in \gamma(S)$$

$$\{ \text{since } e \in S \}$$

$$\Rightarrow \gamma(e) \sqsubseteq | \gamma(S)$$

(def. lub in complete lattice
$$\langle C, \sqsubseteq, \sqcup \rangle$$
)

$$\Rightarrow e = \alpha(\gamma(e)) \leq \alpha(\square \gamma(S)) = \bigvee S$$

$$\alpha \circ \gamma = 1$$
, α increasing, def. γ

(2) \forall is the lub. Assume $\forall e \in S . e \leq u$ (u is an upper bound).

$$\Rightarrow \forall e \in S . \gamma(e) \sqsubseteq \gamma(u)$$

$$\gamma$$
 increasing

$$\Rightarrow \bigsqcup \gamma(S) = \bigsqcup_{e \in S} \gamma(e) \sqsubseteq \gamma(u)$$

(def. lub in complete lattice
$$\langle C, \sqsubseteq, \sqcup \rangle$$
)

$$\Rightarrow \bigvee S = \alpha(\bigsqcup^{\circ} \gamma(S)) \leq u$$

lub-preserving α

Lemma 5 If α preserves existing lubs and $\gamma(y) \triangleq \bigsqcup \{x \in C \mid \alpha(x) \leq y\}$ is well-defined then $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preceq \rangle$.

lub-preserving α

Lemma 5 If α preserves existing lubs and $\gamma(y) \triangleq \bigsqcup \{x \in C \mid \alpha(x) \leq y\}$ is well-defined then $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{A}, \preceq \rangle$.

Definition of a closure operator

- Let $\langle \mathcal{P}, \sqsubseteq \rangle$ be a poset. By def., $\rho \in \mathcal{P} \to \mathcal{P}$ is an upper closure operator if and only if
 - ρ is increasing $(\forall x, y \in \mathcal{P} : x \sqsubseteq y \Rightarrow \rho(x) \sqsubseteq \rho(y))$
 - ρ is idempotent $(\rho \circ \rho = \rho)$
 - ρ is extensive $(\forall x \in \mathcal{P} . x \sqsubseteq \rho(x))$

Definition of a closure operator

- Let $\langle \mathcal{P}, \sqsubseteq \rangle$ be a poset. By def., $\rho \in \mathcal{P} \to \mathcal{P}$ is an upper closure operator if and only if
 - ρ is increasing $(\forall x, y \in \mathcal{P} : x \sqsubseteq y \Rightarrow \rho(x) \sqsubseteq \rho(y))$
 - ρ is idempotent $(\rho \circ \rho = \rho)$
 - ρ is extensive $(\forall x \in \mathcal{P} : x \sqsubseteq \rho(x))$

Examples of closure operators

- Example: reflexive transitive closure r^* of a relation $r \in \wp(S \times S)$
- Counter-example: transitive closure r^+ of a non-reflexive relation $r \in \wp(S \times S)$, not extensive, not idempotent
- The dual is a lower closure operator (increasing, idempotent, and reductive $\forall x \in \mathcal{P} . \rho(x) \sqsubseteq x$)

Galois connection and closure operators (I)

 $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow_{\alpha}} \langle \mathcal{A}, \preceq \rangle$ is a Galois connection then $\gamma \circ \alpha$ is an upper closure operator (so, by duality, $\alpha \circ \gamma$ is a lower closure operator)

- α and γ so their composition $\gamma \circ \alpha$ are increasing
- $\gamma \circ \alpha$ is extensive
- $\gamma \circ \alpha \circ \gamma \circ \alpha = \gamma \circ \alpha$ proving idempotence

Galois connection and closure operators (II, Exercise 11.50)

If $\langle \mathcal{P}, \sqsubseteq \rangle$ is a poset, $\rho \in \mathcal{P} \to \mathcal{P}$ is an upper closure operator then $\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{1} \langle \rho(\mathcal{P}), \sqsubseteq \rangle$.

Galois connection and closure operators (II, Exercise 11.50)

If $\langle \mathcal{P}, \sqsubseteq \rangle$ is a poset, $\rho \in \mathcal{P} \to \mathcal{P}$ is an upper closure operator then $\langle \mathcal{P}, \sqsubseteq \rangle \xleftarrow{1} \langle \rho(\mathcal{P}), \sqsubseteq \rangle$.

Proof For any $x \in \mathcal{P}$, $\overline{y} \in \rho(\mathcal{P})$,

$$\rho(x) \sqsubseteq \overline{y}$$

$$\Leftrightarrow \rho(x) \sqsubseteq \rho(y)$$

$$\Leftrightarrow x \sqsubseteq \rho(y)$$

$$((\Rightarrow) \quad x \sqsubseteq \rho(x) \text{ and transitivity}$$

$$(\Leftarrow) \quad \rho(x) \sqsubseteq \rho(p(y)) = \rho(y), \ \rho \text{ increasing and idempotent}$$

$$\Leftrightarrow x \sqsubseteq \overline{y}$$

$$\Leftrightarrow x \sqsubseteq \mathbb{I}(\overline{y})$$

$$? \text{def. identity } \mathbb{I}$$

 $\rho \in \mathcal{P} \to \rho(\mathcal{P})$ obviously surjective.

Using closure operator instead of Galois connections

- So the image of a complete lattice by a closure operator is a complete lattice
- $\langle C, \sqsubseteq \rangle \stackrel{\gamma}{\longleftarrow_{\alpha}} \langle \mathcal{A}, \preceq \rangle$ implies $\langle C, \sqsubseteq \rangle \stackrel{\mathbb{I}}{\longleftarrow_{\gamma \circ \alpha}} \langle \gamma \circ \alpha(C), \sqsubseteq \rangle$ so we can reason only in the concrete using the closed concrete properties $\gamma \circ \alpha(C)$ for abstraction
- The encoding of abstract properties in the abstract domain $\langle \mathcal{A}, \preceq \rangle$ is lost!

Sound abstraction

- Assume $\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$
- We say that $\overline{P} \in \mathcal{A}$ is a *sound abstraction* of $P \in \mathcal{C}$ if and only if $P \sqsubseteq \gamma(\overline{P})$

or equivalently

$$\alpha(P) \preceq \overline{P}$$

- Example, sign: $\{0\} \subseteq \gamma_{\pm}(=0) \subseteq \gamma_{\pm}(\geqslant 0) \subseteq \gamma_{\pm}(\top_{\pm})$. >0 is not a sound abstraction of $\{0\}$.
- Since $\langle C, \sqsubseteq \rangle \stackrel{1}{\longleftarrow \rho} \langle \rho(C), \sqsubseteq \rangle$ with $\rho = \gamma \circ \alpha$, $P \in C$ is over-approximated by any $\rho(\overline{P})$ such that $P \sqsubseteq \rho(\overline{P})$ (*i.e.* over-approximations are restricted to the abstract domain $\rho(C)$)

Examples of sound abstractions

property	sound abstractions
{1, 42}	≥0 and T±
{0}	$\leqslant 0$, $\geqslant 0$, and $\top_{\!\scriptscriptstyle{\pm}}$

Better abstraction

- Assume $\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$
- Let $\overline{P}_1, \overline{P}_2 \in \mathcal{A}$ be sound abstractions of the concrete property $P \in \mathcal{C}$.
- We say that \overline{P}_1 is better/more precise/stronger/less abstract than \overline{P}_2 if and only if $\overline{P}_1 \preccurlyeq \overline{P}_2$.

Best abstraction

- Assume $\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$
- Then $\alpha(P)$ is the best/most precise/strongest/least abstract property which is a sound abstraction of the concrete property P.

Proof

- $\alpha(P)$ is a sound abstraction of P since $P \subseteq \gamma(\alpha(P))$.
- $\alpha(P)$ is the least sound abstraction of P since $\alpha(P) = \bigcap \{\overline{P} \mid P \sqsubseteq \gamma(\overline{P})\}.$

Examples of best abstractions

$$\langle \overline{\mathbb{P}^{\pm}}, \sqsubseteq^{\pm} \rangle = \langle 0 \rangle$$

$$\langle \overline{\mathbb{P}^{\pm}}, \sqsubseteq^{\pm} \rangle = \langle 0 \rangle$$

$$\downarrow 0$$

$$\downarrow$$

property	sound abstractions	best abstraction	
{1, 42}	≥0 and T±	≥0	
{0}	$\leqslant 0$, $\geqslant 0$, and $\top_{\!\scriptscriptstyle{\pm}}$	none	

■ There is no Galois connection between $\langle \wp(\mathbb{Z}), \subseteq \rangle$ and $\langle \overline{\mathbb{P}^{\pm}}, \sqsubseteq^{\pm} \rangle$.

Combination of Galois connections

Composition of Galois connections

Galois connections pairs

$$\bullet \ \ \, \mathsf{Let} \,\, \langle \mathcal{C}_1, \, \sqsubseteq_1 \rangle \xrightarrow[\alpha_1]{\gamma_1} \langle \mathcal{A}_1, \, \preccurlyeq_1 \rangle \,\, \mathsf{and} \,\, \langle \mathcal{C}_2, \, \sqsubseteq_2 \rangle \xrightarrow[\alpha_2]{\gamma_2} \langle \mathcal{A}_2, \, \preccurlyeq_2 \rangle;$$

$$\bullet$$
 $\langle C_1 \times C_2, \stackrel{.}{\sqsubseteq} \rangle \xrightarrow{\gamma} \langle \mathcal{A}_1 \times \mathcal{A}_2, \stackrel{.}{\lessdot} \rangle$, where

- $\alpha(\langle x, y \rangle) = \langle \alpha_1(x), \alpha_2(y) \rangle$,
- $\gamma(\langle \overline{x}, \overline{y} \rangle) = \langle \gamma_1(\overline{x}), \gamma_2(\overline{y}) \rangle$, and
- **i** and **i** are componentwise.

Higher-order Galois connections

■ Let
$$\langle C_1, \sqsubseteq_1 \rangle \xrightarrow{\gamma_1} \langle \mathcal{A}_1, \preccurlyeq_1 \rangle$$
 and $\langle C_2, \sqsubseteq_2 \rangle \xrightarrow{\gamma_2} \langle \mathcal{A}_2, \preccurlyeq_2 \rangle$;

- \bullet $\alpha = f \mapsto \alpha_2 \circ f \circ \gamma_1$, and

$$\begin{array}{ccc}
\mathcal{A}_1 & & \overline{f} & \\
\gamma_1 \left(\begin{array}{c} \gamma_1 & & \gamma_2 \\ & f & \end{array} \right) \alpha_1 & & \gamma_2 \left(\begin{array}{c} \gamma_2 \\ & \gamma_2 \end{array} \right) \alpha_2
\end{array}$$

Conclusion on abstraction by Galois connections

- We can represent abstract program properties by posets and establish the correspondence with the concrete properties using a Galois connection.
- The concrete order structure is preserved in the abstract and inversely.
- Otherwise stated concrete and abstract implications coincide up to the Galois connection.
- So proofs in the abstract domain $\langle \mathcal{A}, \preccurlyeq \rangle$ using the abstract implication/order \preccurlyeq is valid in the concrete $\langle \mathcal{C}, \sqsubseteq \rangle$ for \sqsubseteq , up to this GC.

Logical relation, and Tensor products

Logical relation (Definition 11.78)

A relation $\Vdash \in \wp(C \times \mathcal{A})$ between complete lattices $\langle C, \sqsubseteq, \bigsqcup \rangle$ and $\langle \mathcal{A}, \preccurlyeq, \bigwedge \rangle$ is a *logical relation* if and only if

(1)
$$(P \sqsubseteq P' \land P' \Vdash \overline{P}' \land \overline{P}' \preccurlyeq \overline{P}) \Rightarrow (P \Vdash \overline{P});$$

(2)
$$(\forall i \in \Delta . P_i \Vdash \overline{P}) \Rightarrow \bigsqcup_{i \in \Lambda} P_i \Vdash \overline{P};$$

(3)
$$(\forall i \in \Delta . P \Vdash \overline{P}_i) \Rightarrow P \Vdash \bigwedge_{i \in \Lambda} \overline{P}_i$$
.

en.wikipedia.org/wiki/Logical relations

Tensor product (Definition 11.79)

■ The *tensor product* $\langle C, \sqsubseteq \rangle \otimes \langle \mathcal{A}, \preccurlyeq \rangle$ of two complete lattices $\langle C, \sqsubseteq \rangle$ and $\langle \mathcal{A}, \preccurlyeq \rangle$ is $\langle C, \sqsubseteq \rangle \otimes \langle \mathcal{A}, \preccurlyeq \rangle \triangleq \{ \Vdash \in \wp(C \times \mathcal{A}) \mid \Vdash \text{ is a logical relation} \}$

Soundness relation

- Let $\langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle$
- The relation

$$P \Vdash \overline{P} \triangleq P \sqsubseteq \gamma(\overline{P}) = \alpha(P) \preccurlyeq \overline{P}$$

is a logical relation called the soundness relation.

Mathematical equivalence of Galois connections and logical relations

- Let $\langle C, \sqsubseteq \rangle$ and $\langle \mathcal{A}, \preccurlyeq \rangle$ be complete lattices.
- $\bullet \ \langle C, \sqsubseteq \rangle \xrightarrow{\gamma} \langle \mathcal{A}, \preccurlyeq \rangle \text{ if and only if } \Vdash \in \langle C, \sqsubseteq \rangle \otimes \langle \mathcal{A}, \preccurlyeq \rangle.$

Example

Galois connection

Logical soundness relation

$$\begin{array}{cccc} P \Vdash \overline{P} & \triangleq & P \sqsubseteq \gamma(\overline{P}) & = & \alpha(P) \lessdot \overline{P} \\ \alpha(P) & \triangleq & \bigwedge \{\overline{P} \mid P \Vdash \overline{P}\} \\ \gamma(\overline{P}) & \triangleq & \bigsqcup \{P \mid P \Vdash \overline{P}\} \end{array}$$

Conclusion

- Closure operators formalize approximation in the complete lattice of properties (good for mathematicians)
- Galois connections add the possibility to reason on an encoding of the abstract properties (good for computer scientists who have to represent information in their machines)
- Galois connections are used everywhere in abstract interpretation and this Chapter 11, "Galois Connections and Abstraction" should be studied carefully.
- Many complements, examples, exercises, and references in the book.

Home work

The End, Thank you