# Exploratory analysis of innovation data in 4.0 industry in two Italian provinces

Topics in Statistical Learning

Ekaterina Kirillova Kevin Pirazzi

#### **CONTENTS**

- 1. Introduction
- 2. Methods
- 3. Results
- 4. Conclusions





# Introduction

Presenting the data

#### **Industry 4.0**

New phase in the Industrial Revolution that focuses heavily on interconnectivity, automation, machine learning, and real-time data



#### **RESEARCH TARGET:**

Assessment of the implementation of the technologies from Industry 4.0 in Italy

#### **HYPOTHESIS:**

The company is likely to be investing into the technologies from Industry 4.0, if there is evidence of increase in assets and the high return on assets.



#### **INITIAL DATASET**

224 mechatronics enterprises

Data from Balance Sheets, 2013 - 2019

- 7. Revenues
  - 2. Yearly results
- Return on Assets (ROA)
- 4. Intangibles Assets
- 5. Total Assets
- 6. High ROA (0 or 1)

## **Data Descriptive Statistics**

Removed from dataset for the analysis

Only utilized in logistic regression Variable assumes values: 0,1

|                  | _                |                |                |                  |                              |                 | •             |
|------------------|------------------|----------------|----------------|------------------|------------------------------|-----------------|---------------|
| Firm             | Province         | Revenue        | Results        | ROA              | Immobilizzazioni_Immateriali | Assets          | HIGH_ROA      |
| Length: 202      | Length:202       | Min. : 76      | Min. :-14893.0 | Min. :-0.25000   | Min. : 9.0                   | Min. : 832      | Min. :0.000   |
| Class :character | Class :character | 1st Qu.: 1961  | 1st Qu.: 31.5  | 1st Qu.: 0.03000 | 1st Qu.: 264.2               | 1st Qu.: 25714  | 1st Qu.:0.000 |
| Mode :character  | Mode :character  | Median : 4464  | Median : 131.5 | Median : 0.06000 | Median : 773.5               | Median : 66252  | Median :1.000 |
|                  |                  | Mean : 21541   | Mean : 956.6   | Mean : 0.06614   | Mean : 4267.4                | Mean : 1144106  | Mean :0.505   |
|                  |                  | 3rd Qu.: 10266 | 3rd Qu.: 367.0 | 3rd Qu.: 0.10000 | 3rd Qu.: 2514.8              | 3rd Qu.: 209223 | 3rd Qu.:1.000 |
|                  |                  | Max. :877983   | Max. : 52558.0 | Max. : 0.30000   | Max. :234946.0               | Max. :132094717 | Max. :1.000   |

#### **Normalized Data**

**Regular Data** 

| Revenue         | Results         | ROA              | Immobilizzazioni_Immaterial | Assets           |  |
|-----------------|-----------------|------------------|-----------------------------|------------------|--|
| Min. :-0.2702   | Min. :-3.0299   | Min. :-4.18537   | Min. :-0.2396               | Min. :-0.12163   |  |
| 1st Qu.:-0.2464 | 1st Qu.:-0.1768 | 1st Qu.:-0.47844 | 1st Qu.:-0.2252             | 1st Qu.:-0.11899 |  |
| Median :-0.2149 | Median :-0.1577 | Median :-0.08127 | Median :-0.1966             | Median :-0.11467 |  |
| Mean : 0.0000   | Mean : 0.0000   | Mean : 0.00000   | Mean : 0.0000               | Mean : 0.00000   |  |
| 3rd Qu.:-0.1419 | 3rd Qu.:-0.1127 | 3rd Qu.: 0.44829 | 3rd Qu.:-0.0986             | 3rd Qu.:-0.09946 |  |
| Max. :10.7794   | Max. : 9.8643   | Max. : 3.09610   | Max. :12.9778               | Max. :13.93194   |  |

#### **Data Modifications**

- Averages were computed for the six years period in order to obtain a unique value for each one of the variables utilized as part of our analysis.
- In XLS file (prior to input): we removed the companies with no observations for at least one year for each one of the variables.
- Input obtained → 202 lines or companies which we analyzed further.



# **METHODS**

Methodologies Utilized

#### **METHODOLOGIES**



#### Clustering

Cluster Analysis is conducted in order to group observations into similar groups based on their similarity

- Based on different types of distances
- Other unsupervised methods → K-Clustering
  - Each observation is part of k-numbers of cluster centroid
  - Minimizing within cluster euclidean distance (Euclidean Distances ). Below the objective function of k-means:

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2 = rg\min_{\mathbf{S}} \sum_{i=1}^k |S_i| \operatorname{Var} S_i$$

#### **PCA**

- In order to reduce the dimensions (into uncorrelated PCs ) → PCA analysis.
- PCA maximizes variance and reduces dimensions in an attempt to minimize information loss
  - Under a new re-centered coordinate system
  - Can include a rotation in the data
- The principal components have correlations to the variables within the data

#### **Logistic Regression**

Binary Logistic Regression Model → outcomes (0,1)

The log-odds are the linear combination of one or more independent variables (predictors). Binary logistic regression is used to predict the odds of being a case based on the values of the independent variables (predictors). The odds are defined as the probability that a particular outcome is a case divided by the probability that it is a non-instance.

$$\ell = \log_b rac{p}{1-p} = eta_0 + eta_1 x_1 + eta_2 x_2$$



# **RESULTS**

Analysis is based on the first part of the course

## Clustering - Choice of Cluster #



```
> NbClust(Book5, distance = "euclidean", method = "complete", index='hartigan')
SAll.index
116.4681 43.3892 72.6613 38.9763 17.2499 120.2485
           11 12 13
15.9914 20.4244 98.8327 67.7616 16.3543 9.6411
     15
  14
              Hartigan Index identifies 8
28.4875 8.7063
              clusters
$Best.nc
Number clusters Value Index
  8.0000
         104.2571
$Best.partition
[1] 1232244445444444444647444
[126] 44844744444484744444444444
[151] 474444744744874444444444
[176] 4444444444484744744444444
[201] 8 8
```

# Clustering (5) - Visual Representation

 In this slide the visual representation of how a 5(k-clusters) visualization looks like



# Clustering (8) - Visual Representation



**Silhouette** = Method of matching ranging -1 to +1 → The higher the better match of clusters

**5**: 0.4042018356126361 **8**: 0.4040726333291286





#### PCA - Choice of PCA #

- Utilizing the elbow method we obtain 2 PCs (top right)
- Utilizing cumulative explained variance (>80%) we obtain just above 2 PCs (bottom right)
- For the purpose of this exercise we decided to utilize 2 PCs



#### **PCA - Visual Representation**





#### **PCA - Factor Loadings**

In this slide the factor loadings are presented

- What is it? Correlation between Factors and PCs
- Why is it used? To understand which variables are most strongly correlated with each component

| Factors                       | PC1        | PC2         |  |  |
|-------------------------------|------------|-------------|--|--|
| Revenue                       | -0.5900331 | 0.02583083  |  |  |
| Results                       | -0.5547107 | -0.19413409 |  |  |
| ROA                           | -0.1122168 | -0.70330804 |  |  |
| Immobilizzazioni_Imma teriali | -0.5597218 | 0.14486705  |  |  |
| Assets                        | -0.1351886 | 0.66784434  |  |  |

<sup>\*</sup> above are highlighted the most strongly correlated variables to each component

# 04

# CONCLUSIONS

#### **Conclusions**

- We identified 5-8 clusters based on similarity
  - Different combinations of company size, results and innovative capability

| Cluster Number       | ~     | Revenue   Results   ROA |         | ▼ Immobilizz ▼ Assets ▼ |         | Cluster Num Revenue | Results     | ROA       | Immobilizza | ız Assets |           |
|----------------------|-------|-------------------------|---------|-------------------------|---------|---------------------|-------------|-----------|-------------|-----------|-----------|
|                      | 2     | 719.857                 | 48.830  | 0,15                    | 142.809 | 4.834.128           | 2 Very High | Very high | Very High   | Very High | High      |
|                      | 4     | 100.015                 | - 583   | -                       | 49.261  | 132.094.717         | 4 High      | Very Low  | Medium      | High      | Very High |
|                      | 3     | 8.500                   | - 285 - | 0,05                    | 1.836   | 132.577             | 3 Medium    | Low       | Low         | Medium    | Medium    |
|                      | 5     | 5.007                   | 619     | 0,15                    | 1.075   | 28.964              | 5 Low       | High      | Very High   | Low       | Very Low  |
|                      | 1     | 3.659                   | 112     | 0,06                    | 611     | 75.796              | 1 Very Low  | Medium    | Medium      | Very Low  | Low       |
| *based on cluster me | dians | _                       |         |                         |         |                     |             |           |             |           |           |

- **We identified 2 principal components,** which are most strongly correlated to (please see below):
  - Dim 1: Assets, ROA
  - Dim 2: Revenue, Imm\_Immateriali, Results
- **We also ran an analysis of Logistic regression** but this was not statistically significant due to p-value not statistically significant at alpha 0.05

# Thank you for your attention