Структура кольца

Содержание

81	два закона композиции на множестве	T
§2	Примеры колец	2
§3	Кольцо многочленов	2

§1. Два закона композиции на множестве

NtB 1.1. Пусть на множестве M задано два всюду определенных закона композиции, которые мы обозначим через \circ и *.

Опр. 1.1. Закон композиции \circ называется **дистрибутивным слева** относительно закона *, если для любых элементов $x,y,z\in M$ имеет место равенство

$$x \circ (y * z) = (x \circ y) * (x \circ z).$$

NtB 1.2. Соответственно, дистрибутивность справа означает выполнение следующего равенства:

$$\forall x, y, z \in M \quad (y * z) \circ x = (y \circ x) * (z \circ x).$$

Если закон дистрибутивен и слева и справа, то он называется **двояко дистри-бутивным**.

Пример 1.1. Если в M существует *нейтральный элемент* e относительно * и \circ двояко дистрибутивен относительно *, тогда элемент e является *поглощающим* относительно закона \circ :

$$x\circ y=x\circ (e*y)=(x\circ e)*(x\circ y)=e*(x\circ y).$$

NtB 1.3. Вообще говоря, из выведенного равенства не следует, что $(x \circ e) = e$, так как не доказано свойство всеобщности - мы показали лишь, что это верно для подмножества M_z композиций вида $z = x \circ y$. Чтобы $M_z = M$ достаточно потребовать существования групповой структуры на M относительно закона \circ .

Опр. 1.2. Кольцом R называется множество замкнутое относительно двух согласованно заданных на нем бинарных операций (обычно обозначаемых через + и \cdot), удовлетворяющих следующим требованиям:

- R абелева группа относительно "+" (0 нейтральный элемент);
- R коммутативный моноид относительно "·" (1 нейтральный элемент);
- Законы + и · согласованы ("·" дистрибутивен относительно "+"):

$$x \cdot (y+z) = x \cdot y + x \cdot z.$$

§2. Примеры колец

Пример 2.1. Примеры колец:

(а) Нулевое кольцо:

$$R: \quad 0=1 \quad \Rightarrow \quad \forall x \in R \quad x=1 \cdot x=0 \cdot x=0.$$

(б) Целые числа:

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \dots, \pm m, \dots\}.$$

(в) Пифагорово кольцо:

$$\mathbb{Z}[\sqrt{2}] = \left\{ x + \sqrt{2}y : \quad x, y \in \mathbb{Z} \right\}. \tag{1}$$

(г) Кольцо \mathbb{Z}_m вычетов по модулю $m \in \mathbb{Z}$:

$$x \equiv y \mod m, \quad y \in \{0, 1, \dots, m - 1\}.$$

§3. Кольцо многочленов

Опр. 3.1. Многочленом от одной переменной с коэффициентами из кольца R будем называть формальную бесконечную сумму следующего вида:

$$p(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + \ldots,$$

где отличны от нуля только *некоторые* коэффициенты $a_0, a_1, a_2, \ldots \in R$, а x является формальной переменной.

NtB 3.1. Операции на множестве многочленов R[x] определяются стандартно и *индуцируют* на нем структуру кольца, при этом

$$\theta(x) = 0, \quad 1(x) = 1.$$

Делимость многочленов

Опр. 3.2. Говорят, что многочлен p(x) делится на многочлен q(x) (пишут $p \ \vdots \ q)$, если существует такой многочлен g(x), что $p(x) = g(x) \cdot q(x)$.

Лемма 3.1. Свойства делимости многочленов:

- ullet если $p(x) \stackrel{.}{:} q(x)$ и $q(x) \stackrel{.}{:} r(x)$, тогда $p(x) \stackrel{.}{:} r(x)$;
- nycmv $p(x), q(x) \vdots g(x), morda$

$$\forall a(x), b(x) \in R[x]$$
 $a(x)p(x) + b(x)q(x) \stackrel{.}{:} g(x)$

Опр. 3.3. Два многочлена p(x) и q(x) называются **ассоциированными**, если $p(x) = \alpha \cdot q(x)$, где $\alpha \in R, \ \alpha \neq 0$.

NtB 3.2. Тот факт, что p(x) и q(x) ассоциированы обозначают $p(x) \sim q(x)$.

Лемма 3.2. Пусть $p(x) \stackrel{.}{:} q(x) \ u \ q(x) \stackrel{.}{:} p(x)$, тогда $p(x) \sim q(x)$.

Степень многочлена

Опр. 3.4. Степенью $\deg(p)$ многочлена $p \in R[t]$ называется максимальный номер его ненулевого коэффициента. Если $\deg p = n \in \mathbb{N}_0$ то коэффициент a_n называется **старшим коэффициентом** многочлена p.

NtB 3.3. Для нулевого многочлена $\theta(t)$ положим $\deg(\theta) = -\infty$.

Лемма 3.3. Пусть $p, q \in R[x]$ тогда имеют место следующие свойства:

$$\deg(pq) = \deg(p) + \deg(q), \quad \deg(p+q) \leqslant \max\left\{\deg(p), \deg(q)\right\}.$$

Лемма 3.4. Свойства степени при делении многочленов:

- $ecnu f : g, f, g \neq 0 \Rightarrow \deg(f) \geqslant \deg(g);$
- $ecnu f : g, \quad \deg(f) = \deg(g) \Rightarrow f \sim g.$

Лемма 3.5. Пусть $p, q \in R[x]$, причем $q \neq 0$, тогда существуют единственные $g, r \in R[x]$, такие что

$$p(x) = g(x)q(x) + r(x), \quad \deg(r) < \deg(q).$$

Опр. 3.5. Многочлен $r(x) \in R[x]$ называется **остатком от деления** многочлена p(x) на многочлен q(x).

Корень многочлена

Опр. 3.6. Корнем многочлена $p(x) \in R[x]$ кратности m называется число $x_0 \in R$, такое что

$$p(x) : (x - x_0)^m, \quad p(x) \not\mid (x - x_0)^{m+1}.$$

Теорема 3.1. Остаток от деления $p(x) \in R[x]$ на $(x-x_0)$ равен $f(\alpha)$

Доказательство. По теореме от делении с остатком имеем:

$$p(x) = (x - x_0)g(x) + r(x), \quad \deg(r) \le \deg(x - x_0) = 1$$

Следовательно, $r(x) = r \in R$ и

$$p(x_0) = 0 \cdot g(x) + r = r.$$

NtB 3.4. Если x_0 - корень многочлена p(x) тогда $p(x_0) = 0$.