

Science

Population structure and inference of demography

Anders Gonçalves da Silva
Population and landscape genomics workshop – Day 2
25 March 2014
CBA – ANU

Outline

- Ensure we all know what an allele, a genotype, a locus, and some other basic terminology.
- Define population genetic structure
- Explore some of the ways population genetic structure arises
- Use R to estimate population structure
- Use R to evaluate sampling strategies for population genetic structure studies

Question?

- What is the most important factor to consider when designing a sampling strategy for a population genetic structure study?
- Is it:
 - number of individual samples/site
 - number of sites, or
 - number of loci?

Some definitions

Allelic frequency

$$p = 0.6$$

$$q = 0.4$$

Genotypic frequency

	A	a
Α	0.36	
а	0.48	0.16

What is evolution?

Hardy-Weinberg Equilibrium

Allelic frequency:

p

q

Genotypic frequency under random mating

	Α	а
A	p^2	
а	2pq	q^2

Allele frequency does not change over time

- Is the partitioning of individuals into units that are largely homogenous in their allele frequencies.
- It is a departure from the our Hardy-Weinberg model assumptions.

How does PGS arise?

How do we measure PSG?

$$F = \frac{H_{exp} - H_{obs}}{H_{exp}}$$

Inbreeding...

- Excellent way of LOOSING heterozygotes...
- BUT...
- Has NO EFFECT on the allele frequency...

$$F = \frac{H_{exp} - H_{obs}}{H_{exp}}$$

Inbreeding...

- Excellent way of LOOSING heterozygotes...
- BUT...
- Has NO EFFECT on the allele frequency...

$$F = \frac{2pq - \frac{n_{het}}{n_{total}}}{2pq}$$

Wright's insight...

- Inbreeding is a form of NON-RANDOM MATING...
- A population divided in to n sub-populations, where individuals randomly mate within sub-populations, is also a from of NON-RANDOM MATING...
- Proposal:
 - If we have n sub-populations (where n is somewhere close to infinity), each with a finite number of individuals, we can expect the same pattern observed within sub-populations to emerge because of inbreeding should emerge across sub-populations.

Wright's insight...

■ Let us prove it in R...

Wright's equations

$$F_{IS} = rac{ar{H_S} - ar{H_I}}{ar{H_S}}$$
 Inbreeding effect
$$F_{ST} = rac{H_T - ar{H_S}}{H_T} \quad ext{Genetic drift effect}$$

$$F_{IT} = rac{H_T - ar{H_S}}{H_T} \quad ext{Combined effect}$$

Wright's equations

$$(1-F_{IT})=(1-F_{IS})(1-F_{ST})$$
Combined effect Genetic drift effect

Estimators of PGS

Wright 1930	Nei 1973	Weir and Cockerham 1984	Excoffier 1992	Hedrick 2005
F _{IS}	G_{IS}	f	$oldsymbol{\phi}_{IS}$	G' _{IS}
F _{ST}	G_{ST}	θ	$oldsymbol{\phi}_{ extsf{ST}}$	G' _{ST}
F _{IT}	G_{IT}	F	$oldsymbol{\Phi}_{IT}$	G' _{IT}

http://www.molecularecologist.com/2011/03/should-i-use-fst-gst-or-d-2/

ESTIMATING PGS IN R...

Further reading

- Waples, R. S. (1998). Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. *Journal of Heredity*, 89(5), 438–450. doi:10.1093/jhered/89.5.438
- Waples, R. S., & Gaggiotti, O. (2006). What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. *Molecular Ecology*, 15(6), 1419–1439.
- Whitlock, M. C., & McCauley, D. E. (1999). Indirect measures of gene flow and migration: F-ST not equal 1/(4Nm+1). Heredity, 82, 117–125.
- Lowe, W. H., & Allendorf, F. W. (2010). What can genetics tell us about population connectivity? *Molecular Ecology*, *19*(15), 3038–3051.
- Jost, L. (2008). G(ST) and its relatives do not measure differentiation.
 Molecular Ecology, 17(18), 4015–4026.

