Computer Science Track Core Course Linear programming — part 2

Martin Dvorak IST Austria Kolmogorov group

2021-06-10

Linear program

Definitions

We are given an input $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$ and we search for $\mathbf{x} \in \mathbb{Q}^n$ that optimizes...

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} \ge b$

minimize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} > \mathbf{0}$

maximize
$$c'x$$

s.t. $Ax = b$
where $x > 0$

maximize c'x

s.t. Ax < b

Integer linear program

Definitions

We are given an input $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$ and we search for $\mathbf{x} \in \mathbb{Z}^n$ that optimizes...

minimize
$$c'x$$

s.t. $Ax \ge b$

minimize
$$c' \mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} > \mathbf{0}$

s.t.
$$Ax \leq b$$

maximize c'x

maximize
$$c'\mathbf{x}$$
 s.t. $A\mathbf{x} = b$ where $\mathbf{x} \ge \mathbf{0}$

Separating points

We are searching for a line y = ax + b that separates "disks" (top)

from "squares" (bottom).

Variables: $a \leq 0$, $b \leq 0$

Point (x_1, y_1) above the line: $x_1 \cdot a + b \le y_1$

Point (x_2, y_2) below the line: $x_2 \cdot a + b \ge y_2$

Objective: minimize 0

"disk"

"square"

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \leq 0$, $b \leq 0$; $\forall i : p_i \in \{0, 1\}$

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$ Point (x_1, y_1) above the line:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$

Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \leq y_1$

"disk"

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0, 1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i > y_2$ "square"

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective:

Separating points partially

We are searching for a line y = ax + b that separates given points — "disks" (top) from "squares" (bottom) — with as few exceptions as possible.

Let us ignore all vertical and nearly-vertical solutions.

M is a very large integer.

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Separating points partially

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Separating points partially

Variables: $a \le 0$, $b \le 0$; $\forall i : p_i \in \{0,1\}$ Point (x_1, y_1) above the line: $x_1 \cdot a + b - M \cdot p_i \le y_1$ "disk" Point (x_2, y_2) below the line: $x_2 \cdot a + b + M \cdot p_i \ge y_2$ "square" Objective: minimize $\sum_i p_i$

Unfortunately, there is no general algorithm for solving ILP in polynomial time

Separating points partially

```
Variables: a \le 0, b \le 0; \forall i : p_i \in \{0,1\}
Point (x_1, y_1) above the line: x_1 \cdot a + b - M \cdot p_i \le y_1 "disk"
Point (x_2, y_2) below the line: x_2 \cdot a + b + M \cdot p_i \ge y_2 "square"
Objective: minimize \sum_i p_i
```


Unfortunately, there is no general algorithm for solving ILP in polynomial time (we don't know any such algorithm — but most importantly, it cannot exist unless P = NP).

Separating points partially

```
Variables: a \le 0, b \le 0; \forall i : p_i \in \{0,1\}
Point (x_1, y_1) above the line: x_1 \cdot a + b - M \cdot p_i \le y_1 "disk"
Point (x_2, y_2) below the line: x_2 \cdot a + b + M \cdot p_i \ge y_2 "square"
Objective: minimize \sum_i p_i
```


Unfortunately, there is no general algorithm for solving ILP in polynomial time (we don't know any such algorithm — but most importantly, it cannot exist unless P = NP).

Does it mean, however, that our problem cannot be solved in polynomial time?

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_i, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_i, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• We say that $y \in V$ is an affine combination of x_1, \ldots, x_n if:

$$\exists \alpha_i, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i = 1 \wedge \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

Definition

Let V be a vector space over F. Consider vectors $\mathbf{x_1}, \dots, \mathbf{x_n} \in V$.

• We say that $y \in V$ is a linear combination of x_1, \ldots, x_n if:

$$\exists \alpha_i, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• We say that $y \in V$ is an affine combination of x_1, \ldots, x_n if:

$$\exists \alpha_i, \ldots, \alpha_n \in F : \sum_{i=1}^n \alpha_i = 1 \land \sum_{i=1}^n \alpha_i \mathbf{x_i} = \mathbf{y}$$

• Suppose now that F is a totally ordered field. Denote the set of $\varphi \in F$ such that $\varphi \geq 0$ by the symbol F_0^+ . We say that $\mathbf{y} \in V$ is a convex combination of $\mathbf{x}_1, \ldots, \mathbf{x}_n$ if:

$$\exists \alpha_i, \dots, \alpha_n \in F_0^+: \sum_{i=1}^n \alpha_i = 1 \land \sum_{i=1}^n \alpha_i \mathbf{x}_i = \mathbf{y}$$

Example

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ?
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ?
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ? ∞

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ? ∞
- Affinely independent vectors in \mathbb{C}^d over \mathbb{R} ?
- Linearly independent vectors in \mathbb{R}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ? ∞
- Affinely independent vectors in \mathbb{C}^d over \mathbb{R} ? 2d+1
- Linearly independent vectors in \mathbb{R}^d over \mathbb{Q} ?

Let $d \in \mathbb{Z}$ such that $d \geq 2$.

 ∞

- Linearly independent vectors in \mathbb{Z}_2^d over \mathbb{Z}_2 ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{C} ? d+1
- Convexly independent vectors in \mathbb{Q}^d over \mathbb{Q} ?
- Affinely independent vectors in \mathbb{C}^d over \mathbb{R} ? 2d+1
- Linearly independent vectors in \mathbb{R}^d over \mathbb{Q} ?

Basic properties

 $\{\mathsf{convex}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{affine}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{linear}\;\mathsf{combin.}\}$

Basic properties

```
\{\mathsf{convex}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{affine}\;\mathsf{combin.}\}\;\subseteq\;\{\mathsf{linear}\;\mathsf{combin.}\}
```

Let V be a vector space and $X \subseteq V$.

- X is convexly dependent. $\implies X$ is affinely dependent. $\implies X$ is linearly dependent.
- X is linearly independent. $\implies X$ is affinely independent. $\implies X$ is convexly independent.

Basic properties

```
\{convex\ combin.\}\subseteq \{affine\ combin.\}\subseteq \{linear\ combin.\}
```

Let V be a vector space and $X \subseteq V$.

- X is convexly dependent. $\implies X$ is affinely dependent. $\implies X$ is linearly dependent.
- X is linearly independent. ⇒ X is affinely independent.
 ⇒ X is convexly independent.

Let us have a matrix $A \in F^{m \times n}$ and a vector $b \in F^m$. We search for a solution $x \in F^n$.

- Ax = 0: Any linear combination of solutions is a solution.
- Ax = b: Any affine combination of solutions is a solution.
- $Ax \le b$: Any convex combination of solutions is a solution. In this example, F must be a totally ordered field.

Definition and exercises

Def. Let V be a vector space over a totally ordered field. Consider a set $X \subseteq V$. We define a convex hull of X as:

 $\mathsf{conv}(X) = \{ \mathbf{y} \in V \mid \mathbf{y} \text{ is a convex combin. of some } \mathbf{x}_1, \mathbf{x}_2, \ldots \in X \}$

Definition and exercises

Def. Let V be a vector space over a totally ordered field. Consider a set $X \subseteq V$. We define a convex hull of X as:

$$conv(X) = \{ \mathbf{y} \in V \mid \mathbf{y} \text{ is a convex combin. of some } \mathbf{x_1}, \mathbf{x_2}, \ldots \in X \}$$

Ex. Prove this set identity:

$$conv(conv(X)) = conv(X)$$

Definition and exercises

Def. Let V be a vector space over a totally ordered field. Consider a set $X \subseteq V$. We define a convex hull of X as:

$$conv(X) = \{ \mathbf{y} \in V \mid \mathbf{y} \text{ is a convex combin. of some } \mathbf{x}_1, \mathbf{x}_2, \ldots \in X \}$$

Ex. Prove this set identity:

$$conv(conv(X)) = conv(X)$$

Ex. Let $v \in V$. If $M \subseteq V$, we define M + v as $\{m + v \mid m \in M\}$. Prove this set identity:

$$conv(X) + v = conv(X + v)$$

Definition and exercises

Def. Let V be a vector space over a totally ordered field. Consider a set $X \subseteq V$. We define a convex hull of X as:

$$conv(X) = \{ \mathbf{y} \in V \mid \mathbf{y} \text{ is a convex combin. of some } \mathbf{x}_1, \mathbf{x}_2, \ldots \in X \}$$

Ex. Prove this set identity:

$$conv(conv(X)) = conv(X)$$

Ex. Let $v \in V$. If $M \subseteq V$, we define M + v as $\{m + v \mid m \in M\}$. Prove this set identity:

$$\operatorname{conv}(X) + v = \operatorname{conv}(X + v)$$

Ex. Express a d-dimensional simplex (triangle, tetrahedron,...) as:

- A convex hull of d+1 points.
- An intersection of d+1 closed half-spaces.

Polyhedral vertices

Equivalent formulations

Def. Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$ where $m \geq n$. Consider a set $P \subseteq \mathbb{R}^n$ defined by $P = \{\mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} \leq b\}$, that is, a polyhedron. Let $\mathbf{p} \in P$. The following conditions are equivalent formulations of \mathbf{p} being a vertex of the polyhedron P.

- No vector $\mathbf{y} \neq \mathbf{0}$ satisfies both $\mathbf{p} + \mathbf{y} \in P$ and $\mathbf{p} \mathbf{y} \in P$.
- We have $\mathbf{p} \notin \text{conv}(P \setminus \{\mathbf{p}\})$.
- There exists a hyperplane H of dimension n-1 such that $P \cap H = \{\mathbf{p}\}.$
 - Recall that $H = \{ \mathbf{x} \in \mathbb{R}^n \mid h'\mathbf{x} = r \}$ for some $h \in \mathbb{R}^n$, $r \in \mathbb{R}$.
- There is a cost vector $c \in \mathbb{R}^n$ such that \mathbf{p} is the unique maximum of the corresponding cost function, that is, $\forall \mathbf{x} \in (P \setminus \{\mathbf{p}\})$ we have $c'\mathbf{p} > c'\mathbf{x}$.
- There are n linearly independent constraints tight (=) at \mathbf{p} .
- Ex. Prove their equivalence.

Thanks for your attention!

Questions?