Assignment I

1. Show that for a single particle with constant was The equation of motion implies that

$$\frac{dT}{dt} = \vec{F} \cdot \vec{V}$$

2. Prove that the magnitud R & the center & mass from any arbitrary origin is given by an equation

- 3. A particle moves in the 2-y plane under the contraintthat its velocity vector is always directed towards a point on the x axis whose abscisse is a function of time: f(t). Show that for f(t) differentiable, but otherwise arbitrary, the constraint is non-holonomic.
- 4. Two points of mas m one joined by a rigid weightless rod of length t; the center of which is constrained to move on a circle of radius a. Set up the kinetic energy of the system in the generalised coordinates.
- 5. Show that the Lagrange equation $\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right) \frac{\partial T}{\partial \dot{q}_{j}} = Q_{j}$

Can also be written down as
$$\frac{\partial T}{\partial \dot{q}} - 2\frac{\partial T}{\partial \dot{q}} = 0$$
;

6. If L is a Lagrangian for a system with N degrees of freedom shahisfying the Lagrange equations, show by that

$$L' = L + \frac{dF}{dt}$$
 where $F = F(q_1, q_2, \dots q_N, t)$

(F is arbitrary but differentiable), also satisfies Lagrange equations q motion.

Comider a wheel that rolls on a plane without gliding. The wheel can not fall over. The radius of the wheel is a.

Find out the equation(s) of the contraint.

8.

Find the equilibrium

Condition for the lover of length

Le with a mass on at a

distance of 12 from the

bearing point, and with a

force F, acting vertically

upwound at its end as

shown.

Find out the equilibrium condition for the above.

10. A sphere moves in a tube that votates in the x-y plane about the 2 axis with constant angular velocity w.

Determine the equation 3 motion for x and solve it.

11. Find the vibration frequencies of a linear three atom Symmetric molecule A-B-A.