Introduction to Category Theory and Homological Algebra

Chapter 1

- 1. Show that in a concrete category surjections (injections) are epimorpisms (monomorphisms respectively).
- 2. Show that in a concrete category retractions (sections) are surjections (injections respectively).
- 3. Show that for a map f in a category the following are equivalent
 - (a) f is an isomorphism.
 - (b) f is an epimorphism and section.
 - (c) f is a monomorphism and retraction.
- 4. Analyze the following examples of an epimorphism (monomorphism) in a concrete category which is not surjective (injective respectively).
 - (a) Map $\mathbb{N} \to \mathbb{Z}$ in the category of monoids.
 - (b) Map $\mathbb{Z} \to \mathbb{Q}$ in the category of (commutative) rings.
 - (c) Covering map in the category of pointed, connected, locally path connected topological spaces.
 - (d) Map $\mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ in the category of divisible groups.
- 5. Show that in the category of sets the following conditions for a map f are equivalent
 - (a) f is a surjection.
 - (b) f is an epimorphism.
 - (c) f is a retraction.
- 6. Show that in the category of sets the following conditions for a map f are equivalent
 - (a) f is a injection.
 - (b) f is an monomorphism.
 - (c) f is a section.
- 7. Show that in the category of topological spaces epimorphisms are the same as surjections and monomorphisms are the same as injections.
- 8. Show that in the category of Hausdorff topological spaces epimorphisms are the same as dominant maps and monomorphisms are the same as injections.
- 9. Show that in the category of compact Hausdorff topological spaces epimorphisms are the same as surjections and monomorphisms are the same as injections.
- 10. Let R be a ring. Show that in the category of R-modules epimorphisms are the same as surjections and monomorphisms are the same as injections.
- 11. Show that in the category of groups epimorphisms are the same as surjections and monomorphisms are the same as injections.
- 12. Is image of a functor a subcategory?
- 13. Let $F: \underline{C} \to \underline{D}$ be a faithful functor. Show that if F(f) is an epimorphism (monomorphism), then f is epimorphism (monomorphism respectively).

- 14. Is there a functor $F: Grps \to Grps$ such that F(G) = Z(G) for any group G?
- 15. Show that map f is epimorphism (monomorphism) if and only if $h^A(f)$ ($h_A(f)$ respectively) is injective for any object A.
- 16. Are the following categories equivalent to their opposite categories
 - (a) the category of sets Sets,
 - (b) the category of binary relations Rel,
 - (c) the category of finite abelian groups *FinAb*?
- 17. Show that the center of a category is a commutative monoid.
- 18. Let G and H be groups. Find all functors from \underline{G} to \underline{H} and natural transformations between those functors.
- 19. For the following forgetful functors find left adjoint
 - (a) $U: \underline{Ab} \to Groups$,
 - (b) $U : \underline{Sets_*} \to \underline{Sets}$,
 - (c) $U: Rings_* \to Rings$,
 - (d) $U: Rings \to \underline{Mon}$ is taking multiplicative (additive) monoid of the ring,
 - (e) $U: \underline{CHaus} \to Top$,
 - (f) $U: \underline{Haus} \to Top$.
- 20. For the following forgetful functors find left and right adjoint
 - (a) $U: \underline{G-Sets} \to \underline{Sets}$,
 - (b) $U: Top \to \underline{Sets}$,
 - (c) $U: Groups \to \underline{Mon}$.