ЛЕКЦИЯ № 6

Действия над линейными операторами. Обратный оператор. Ядро и образ линейного оператора.

1. Действия над линейными операторами

Пусть L-линейное пространство. \widehat{A} и \widehat{B} линейные операторы: $L \rightarrow L$, $\alpha \in \mathbb{R}$.

Определение.

- Суммой $\widehat{A} + \widehat{B}$ называется оператор, действующий по правилу: $(\widehat{A} + \widehat{B})\vec{x} = \widehat{A} \ \vec{x} + \widehat{B} \vec{x};$
- Произведением $\widehat{A} \cdot \widehat{B}$ называется оператор, действующий по правилу: $(\widehat{A} \cdot \widehat{B}) \, \vec{x} = \widehat{A}(\widehat{B} \, \vec{x});$
- Произведением $\alpha \widehat{A}$ называется оператор, действующий по правилу: $(\alpha \widehat{A}) \overrightarrow{x} = \alpha (\widehat{A} \overrightarrow{x}).$

Теорема 4._Определенные таким образом операторы $\widehat{A}+\widehat{B}$; $\widehat{A}\cdot\widehat{B}$, $\alpha\widehat{A}$ являются линейными операторами.

◄ Докажем для
$$\widehat{A} \cdot \widehat{B} = \widehat{C}$$
; $\widehat{C}(\alpha \vec{x} + \beta \vec{y}) - \widehat{A} \cdot \widehat{B}(\alpha \vec{x} + \beta \vec{y}$

$$\widehat{C}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A} \cdot \widehat{B}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A}(\widehat{B}(\alpha\vec{x} + \beta\vec{y})) = \widehat{A}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A}(\alpha\vec{x} + \beta\vec{y}) = \widehat{A}(\alpha\vec{x} + \beta\vec{y}) = \widehat$$

$$\widehat{A} (\alpha \widehat{B} \vec{x} + \beta \widehat{B} \vec{y}) = \alpha \widehat{A} \widehat{B} \vec{x} + \beta \widehat{A} \widehat{B} \vec{y};$$

$$\widehat{\mathbf{A}} \ (\alpha \, \widehat{\mathbf{B}} \vec{\mathbf{x}} + \beta \, \widehat{\mathbf{B}} \vec{\mathbf{y}}) = \alpha \, \widehat{\mathbf{A}} \, \widehat{\mathbf{B}} \vec{\mathbf{x}} + \beta \, \widehat{\mathbf{A}} \, \widehat{\mathbf{B}} \vec{\mathbf{y}} = \alpha \, \widehat{\mathbf{C}} \, \vec{\mathbf{x}} + \beta \, \widehat{\mathbf{C}} \hat{\mathbf{y}} \implies$$

$$\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}}$$
 — линейный оператор. \blacktriangleright

Теорема 5. Пусть линейные операторы \widehat{A} и \widehat{B} в конечномерном линейном пространстве L в базисе S имеют матрицы A и B соответственно. Тогда линейные операторы $\widehat{A} + \widehat{B}$; $\widehat{A} \cdot \widehat{B}$, $\alpha \widehat{A}$ имеют матрицы A+B, AB, αA соответственно.

◄ Докажем для $\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}} = \widehat{\mathbf{C}}$: Пусть $\overline{\mathbf{z}} = \widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}} \vec{\mathbf{x}}$; $\overline{\mathbf{y}} = \widehat{\mathbf{B}} \vec{\mathbf{x}}$; : $\overline{\mathbf{z}} = \widehat{\mathbf{A}} \overline{\mathbf{y}}$; Тогда

$$\overline{z} = \begin{pmatrix} z_1 \\ \cdots \\ z_n \end{pmatrix} = A \begin{pmatrix} y_1 \\ \cdots \\ y_n \end{pmatrix}$$
; где $\overline{y} = B\vec{x}; =>$

$$\overline{z} = \begin{pmatrix} z_1 \\ \dots \\ z_n \end{pmatrix} = A \cdot \left(B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} \right) = A B \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = >$$

линейный оператор $\widehat{\mathbf{A}} \cdot \widehat{\mathbf{B}}$ имеет матрицу AB. \blacktriangleright

$$3$$
адача. Вычислить: $\begin{pmatrix} cos \varphi & -sin \varphi \\ sin \varphi & cos \varphi \end{pmatrix}^n$

Решение. Рассмотрим матрицу $\binom{\cos\varphi - \sin\varphi}{\sin\varphi \cos\varphi}$ как матрицу линейного оператора — поворот на угол φ против часовой стрелки. Тогда $\binom{\cos\varphi - \sin\varphi}{\sin\varphi \cos\varphi}^n$ - это матрица оператора поворота на угол φ против часовой стрелки п раз, то есть поворота на угол $(n\varphi)$, а она равна $\binom{\cos(n\varphi) - \sin(n\varphi)}{\sin(n\varphi) \cos(n\varphi)} =$ $\binom{\cos\varphi - \sin\varphi}{\sin(n\varphi) \cos(n\varphi)}^n = \binom{\cos(n\varphi) - \sin(n\varphi)}{\sin(n\varphi) \cos(n\varphi)}$

2. Обратный оператор.

Определение. Оператор \widehat{A}^{-1} называется обратным к линейному оператору \widehat{A} , действующему в пространстве L, если $\widehat{A}\widehat{A}^{-1} = \widehat{A}^{-1}\widehat{A} = \overrightarrow{I}$, где \overrightarrow{I} -тождественный оператор ($\overrightarrow{I}\overrightarrow{x} = \overrightarrow{x}$).

Таким образом,
$$\widehat{A}(\widehat{A}^{-1}\vec{x}) = \widehat{A}^{-1}(\widehat{A}\vec{x}) = \vec{I}\vec{x} = \vec{x} \ \forall \vec{x} \in L$$

Если
$$\vec{y} = \hat{A}\vec{x} \implies \hat{A}^{-1}\vec{x} = \vec{y}$$
.

Теорема 6. Если \widehat{A} линейный оператор: $L \to L$ и \widehat{A}^{-1} существует, то \widehat{A}^{-1} линейный оператор и имеет матрицу A^{-1} .

1. Пусть
$$\overline{y}_1 = \widehat{A} \, \overline{x}_1; \, \overline{y}_2 = \widehat{A} \, \overline{x}_2;$$
 и так как $\widehat{A}^{-1} \exists; \, \overline{x_1} = \widehat{A}^{-1} \overline{y}_1; \, \overline{x_2} = \widehat{A}^{-1} \overline{y}_2;$

В силу линейности \hat{A}

$$\hat{A}(\alpha \overline{x}_1 + \beta \overline{x}_2) = \alpha \hat{A}(\overline{x}_1) + \beta \hat{A}(\overline{x}_2) = \alpha \overline{y}_1 + \beta \overline{y}_2;$$

Рассмотрим $\hat{A}^{-1}(\alpha \overline{y}_1 + \beta \overline{y}_2) = \alpha \overline{x}_1 + \beta \overline{x}_2 = \alpha \hat{A}^{-1}(\overline{y}_1) + \beta \hat{A}^{-1}(\overline{y}_2) => \hat{A}^{-1}$ линейный оператор

2. $\hat{A}\hat{A}^{-1} = \bar{I} => AA' = E - единичная матрица; где A'- матрица обратного оператора=> <math>A' = A^{-1}$

Теорема *(о прообразе нулевого вектора)*. Если линейный оператор \widehat{A} имеет обратный, то из равенства $\widehat{A}\vec{x}=\vec{0}$ следует, что $\vec{x}=\vec{0}$.

 \blacktriangleleft Из $\widehat{A}\overrightarrow{x} = \overrightarrow{0}$ следует, что $\widehat{A}^{-1}(\widehat{A}\overrightarrow{x}) = \widehat{A}^{-1}\overrightarrow{0} = \overrightarrow{0}$.

Так как $\forall \vec{x} \in L \ \hat{A}^{-1} \hat{A} \vec{x} = \hat{I} \vec{x} = \vec{x} \Rightarrow \vec{x} = \vec{0}.$

Определение. Линейный оператор \widehat{A} : $L \to L$ называется **взаимно однозначным**, если он два различных вектора \vec{x}_1 и \vec{x}_2 преобразует в различные векторы $\vec{y}_1 = \widehat{A}\vec{x}_1$ и $\vec{y}_2 = \widehat{A}\vec{x}_2$, . Другими словами, каждый вектор $\vec{y} \in L$ представляет собой образ единственного вектора $\vec{x} \in L$.

Определение. Оператор, у которого существует обратный, называется обратимым.

Теорема *(об обратном операторе)*. Линейный оператор $\widehat{A}: L \to L$ обратим тогда и только тогда, когда он взаимно однозначный.

Теорема 7 (критерий существования обратного оператора).

Пусть \widehat{A} линейный оператор: $L \rightarrow L$, \widehat{A}^{-1} существует \Leftrightarrow det $A \neq 0$

Примеры:

- 1) Нулевой оператор $\widehat{\boldsymbol{o}}:L\to L$ не имеет обратного.
- 2) Тождественный оператор $\hat{I}: L \to L$ имеет обратный, причем $\hat{I}^{-1} = \hat{I}$
- 3) Оператор $\widehat{A}: V_3 \to V_3$ гомотетия с коэффициентом k имеет обратный \widehat{A}^{-1} гомотетия с коэффициентом $\frac{1}{k}$.
- 4) Оператор \widehat{A} : $V_2 \to V_2$ поворот на угол φ против часовой стрелки имеет обратный \widehat{A}^{-1} : $V_2 \to V_2$ поворот на угол φ по часовой стрелки.
- 5) Оператор \widehat{A} : $V_3 \to V_3$ —проектирование на ось ОХ не имеет обратного.

3. Ядро и образ линейного оператора, их свойства.

Определение. Образом линейного оператора \widehat{A} называется множество $\operatorname{Im} \widehat{A}$ всех векторов L , таких что, для любого $\vec{y} \in \operatorname{Im} \widehat{A} \ \exists \vec{x} : \ \widehat{A}(\vec{x}) = \vec{y}$.

Определение . *Ядром линейного оператора* \widehat{A} называется множество $\operatorname{Ker}\widehat{A}$ всех векторов L , таких что, для любого $\overrightarrow{x} \in \operatorname{Ker}\widehat{A}$, $\widehat{A}(\overrightarrow{x}) = \overrightarrow{\mathbf{0}}$.

Пусть A - матрица линейного оператора \hat{A} в некотором базисе. Тогда $\ker \widehat{A}$ является решением однородной системы $A\vec{x}=\vec{0}$.

$$\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{x}_1 \\ \dots \\ \mathbf{x}_n \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

или
$$AX = O$$
, где $O = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$.

Теорема 8. Ядро и образ линейного оператора, действующего в L, являются линейными подпространствами пространства L.

 \blacksquare Пусть \vec{x}_1 , $\vec{x}_2 \in \text{Ker } \widehat{A} \Rightarrow \widehat{A}\vec{x}_1 = \widehat{A}\vec{x}_2 = \overrightarrow{0}$.

$$\widehat{A}(\alpha\vec{x}_1 + \beta\vec{x}_2) = \alpha\widehat{A}\vec{x}_1 + \beta\widehat{A}\vec{x}_2 = \vec{0} + \vec{0} = \vec{0} \implies \alpha\vec{x}_1 + \beta\vec{x}_2 \in \operatorname{Ker} \widehat{A}.$$

Следовательно, $\operatorname{Ker} \widehat{A}$ - линейное подпространство в L.

Пусть \vec{y}_1 , $\vec{y}_2 \in \text{Im } \widehat{A}$, тогда существуют прообразы этих векторов \vec{x}_1 , $\vec{x}_2 \in L$, такие что $\vec{y}_1 = \widehat{A}\vec{x}_1$, $\vec{y}_2 = \widehat{A}\vec{x}_2$.

$$\widehat{A}(\alpha \vec{x}_1 + \beta \vec{x}_2) = \alpha \widehat{A} \vec{x}_1 + \beta \widehat{A} \vec{x}_2 = \alpha \vec{y}_1 + \beta \vec{y}_2 \in \operatorname{Im} \widehat{A}.$$

Следовательно, Im \widehat{A} - линейное подпространство в L

Определение. **Рангом** $Rang \hat{A}$ линейного оператора \hat{A} называется размерность образа оператора:

$$Rang \widehat{A} = \dim \operatorname{Im} \widehat{A}.$$

Определение. **Дефектом Defect** \widehat{A} линейного оператора \widehat{A} называется размерность ядра оператора:

$$Defect \hat{A} = \dim \operatorname{Ker} \hat{A}.$$

Теорема 9. Ранг линейного оператора, действующего в линейном пространстве L совпадает с рангом его матрицы в каком либо базисе.

◄ Пусть в L задан базис S={ \overline{e}_1 ; ... \overline{e}_n }; запишем образы базисных векторов в матрицу A. r=Rg A равен числу л.н.з. столбцов, которое равно числу л.н.з. векторов из $\{\hat{A}\overline{e}_1,...\hat{A}\overline{e}_n\}$, которые и образуют базис Im $\hat{A}:\{\hat{A}\overline{e}_1,...\hat{A}\overline{e}_r\}$ => dim (Im \hat{A}) = Rang(\hat{A}) = r. ▶

<u>Утверждение.</u> Ранг и дефект линейного оператора не зависят от выбора базиса.

Теорема 10. *(о размерности ядра и образа оператора).* Если $\widehat{A}: L \to L$ - линейный оператор, то сумма размерностей образа и ядра оператора \widehat{A} равна размерности пространства L:

$$Rang \hat{A} + Defect \hat{A} = dim L.$$

Следствие. Если Ker $\widehat{A} = \{ \overrightarrow{0} \}$, то Im $\widehat{A} = L$ и наоборот.

Теорема 11. (критерии обратимости линейного оператора)

- 1) Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его матрица в каком-либо базисе невырожденная (det $A \neq 0$).
- **2)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его образ совпадает со всем пространством L. $\text{Im}\hat{A} = L$
- **3)** Линейный оператор \hat{A} , действующий в линейном пространстве L, обратим тогда и только тогда, когда его ядро тривиально, т.е. $\operatorname{Ker} \hat{A} = \{ \vec{0} \}.$

Следствие. Для того чтобы оператор \widehat{A} имел обратный \widehat{A}^{-1} необходимо и достаточно, чтобы $Rang\ \widehat{A}=\dim L$.

Примеры:

- 1) \widehat{A} в V_3 —поворот на угол φ : $\mathrm{Ker}\widehat{A}=\{\overrightarrow{0}\};\,\mathrm{Im}\widehat{A}=L;=>$ обратим
- **2**) \widehat{A} в V_3 оператор проектирование на ось ОХ: ${\rm Ker}\widehat{A} = \{\alpha \vec{j} + \beta \vec{k}\}; {\rm Im}\widehat{A} = \{\gamma \vec{i}\}; =>$ нет обратного оператора.

3)
$$\overrightarrow{A}\overrightarrow{x}$$
=($x_1+x_2-3x_3,2x_1-x_2+x_3,x_2+5x_3$): $R^3\to R^3$ матрица линейного оператора A: $\begin{pmatrix} 1 & 1 & -3 \\ 2 & -1 & 1 \\ 0 & 1 & 5 \end{pmatrix}$

 $\det A = -22 \neq 0 => \widehat{A}^{-1}$ существует. Его матрицей будет матрица, обратная

к матрице линейного оператора
$$\hat{A}$$
, т.е. $A^{-1} = \frac{-1}{22} \begin{pmatrix} -6 & -8 & -2 \\ -10 & 5 & -7 \\ 2 & -1 & -3 \end{pmatrix}$.

Найдем ядро линейного оператора \hat{A} . Решим систему $A\overline{x}=\overline{0}$.

$$\begin{pmatrix}
1 & 1 & -3 \\
2 & -1 & 1 \\
0 & 1 & 5
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
0
\end{pmatrix};$$

$$\begin{pmatrix}
1 & 1 & -3 \\
0 & -3 & 7 \\
0 & 1 & 5
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -5 & 3 \\
0 & 1 & 5 \\
0 & -3 & 7
\end{pmatrix}
\sim
\begin{pmatrix}
1 & -5 & 3 \\
0 & 1 & 5 \\
0 & 0 & 22
\end{pmatrix};$$

 $x_3 = 0; x_2 = 0; x_1 = 0.$ Ker $\hat{A} = \{(0,0,0)\} = \{\overline{0}\}$. Подтверждается вывод о том, что оператор обратим.

4) $\hat{A}(p(t)) = (t+2)p''(t) + p'(t)$ в пространстве P_2 многочленов степени не выше 2.

Найдем матрицу \hat{A} в каноническом базисе:

$$\begin{split} \hat{A}\overline{e}_0 &= (t+2) \cdot (1)'' + 0 = (0,0,0); \\ \hat{A}\overline{e}_1 &= (t+2) \cdot (t)'' + t' = 1 = (1,0,0); \\ \hat{A}\overline{e}_2 &= (t+2) \cdot (t^2)'' + (t^2)' = 2(t+2) + 2t = (4,4,0); \\ A &= \begin{pmatrix} 0 & 1 & 4 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \end{split}$$

 $\det A = 0 \Longrightarrow \widehat{A}^{-1}$ не существует

Чтобы найти ядро \hat{A} , решим однородную систему уравнений:

AX=O;
$$\begin{pmatrix} 0 & 1 & 4 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}; \text{ rang A=2; c=b=0; } a - \text{любое; X=(} a,0,0) = a;$$
 => Ker $\hat{A} = \{p(t) = a\}$

det A=0 => \hat{A}^{-1} не существует.