Unidad 5. Funciones exponenciales, logarítmicas y trigonométricas

Composición de funciones

Página 136

1 Si $f(x) = x^2 - 5x + 3$ y $g(x) = x^2$, obtén las expresiones de f[g(x)] y g[f(x)].

Halla f[g(4)] y g[f(4)].

$$f[g(x)] = f[x^2] = x^4 - 5x^2 + 3$$

$$g[f(x)] = g[x^2 - 5x + 3] = (x^2 - 5x + 3)^2 = x^4 - 10x^3 + 31x^2 - 30x + 9$$

$$f[g(4)] = 179; g[f(4)] = 1$$

2 Si $f(x) = \sqrt{x}$ y g(x) = x + 4, obtén las expresiones de $f \circ g$, $g \circ f$, $f \circ f$ y $g \circ g$.

Halla el valor de estas funciones en x = 0 y x = 5.

$$f \circ g(x) = f(x+4) = \sqrt{x+4}$$

$$g \circ f(x) = g(\sqrt{x}) = \sqrt{x} + 4$$

$$f \circ f(x) = f(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$

$$g \circ g(x) = g(x+4) = x+4+4 = x+8$$

$$f \circ g(0) = \sqrt{4} = 2$$
 $f \circ g(5) = \sqrt{5+4} = 3$

$$g \circ f(0) = 4$$
 $g \circ f(5) = \sqrt{5} + 4$

$$f \circ f(0) = 0 \qquad \qquad f \circ f(5) = \sqrt[4]{5}$$

$$g \circ g(0) = 8 \qquad \qquad g \circ g(5) = 13$$

Función inversa o recíproca de otra

Página 137

- 1 ¿Verdadero o falso?
 - a) La función recíproca de y = x es $y = \frac{1}{x}$.
 - b) Cada una de las funciones y = x, $y = \frac{1}{x}$ es recíproca de sí misma.

- c) La inversa de $y = \frac{9}{x}$, $x \in [3, 9]$ es $y = \frac{9}{x}$, $x \in [1, 3]$.
- d) Si una función es creciente, su recíproca es decreciente.
- a) Falso. Las gráficas de esas funciones no son simétricas respecto de la bisectriz del primer cuadrante, puesto que una es recta y la otra es curva.
- b) Verdadero. Si f(x) = x y calculamos $f \circ f(x) = f[f(x)] = f(x) = x$, vemos que f es recíproca de sí misma.
 - Análogamente, si $g(x) = \frac{1}{x}$ y calculamos $g \circ g(x) = g[g(x)] = g(\frac{1}{x}) = \frac{1}{1/x} = x$, vemos que g es recíproca de sí misma.
- c) Verdadero. Podemos comprobarlo en el gráfico. La gráfica verde es simétrica, respecto de la bisectriz del primer cuadrante, de la gráfica roja.
- d) Falso. Por ejemplo, la recíproca de la función $f(x) = x^2$, $x \ge 0$, es la función $f(x) = \sqrt{x}$, $x \ge 0$, y ambas son crecientes.
- **2** Representa y = 2x, $y = \frac{x}{2}$ y comprueba que son inversas.

3 Comprueba que hay que descomponer $y = x^2 - 1$ en dos ramas para hallar sus inversas. Averigua cuáles son.

a)
$$y = x^2 - 1$$
 si $x \ge 0$

$$y^{-1} = \sqrt{x+1}$$

b)
$$y = x^2 - 1$$
 si $x < 0$

$$y^{-1} = -\sqrt{x+1}$$

4 Comprueba que la función recíproca de y = 2x + 4 es $y = \frac{1}{2}x - 2$.

Llamemos
$$f(x) = 2x + 4$$
 y $g(x) = \frac{1}{2}x - 2$

$$f \circ g(x) = f[g(x)] = f(\frac{1}{2}x - 2) = 2(\frac{1}{2}x - 2) + 4 = x$$

$$g \circ f(x) = g[f(x)] = g(2x + 4) = \frac{1}{2}(2x + 4) - 2 = x$$

Luego $g = f^{-1}$.

Página 138

5 Halla la expresión analítica de la función inversa de:

a)
$$f(x) = \frac{x-5}{2}, x \in [3, 13]$$

b)
$$g(x) = \frac{2-x}{3}, x \in [-7, 14]$$

a)
$$y = \frac{x-5}{2} \to x = \frac{y-5}{2} \to y = 2x + 5$$

$$f(3) = \frac{3-5}{2} = -1$$
; $f(13) = \frac{13-5}{2} = 4$

Por tanto,
$$f^{-1}(x) = 2x + 5$$
, $x \in [-1, 4]$

b)
$$y = \frac{2-x}{3} \rightarrow x = \frac{2-y}{3} \rightarrow y = 2-3x$$

$$g(-7) = \frac{2 - (-7)}{3} = 3; \ g(14) = \frac{2 - 14}{3} = -4$$

Por tanto,
$$g^{-1}(x) = 2 - 3x$$
, $x \in [-4, 3]$

6 La función $y = x^2 - 2x$ tiene dos ramas: una decreciente para $x \le 1$, y otra creciente para $x \ge 1$.

Exprésala como dos funciones $f_1(x)$ y $f_2(x)$ y halla la función inversa de cada una de ellas.

$$y = f_1(x) = x^2 - 2x, \ x \le 1$$

$$y = f_2(x) = x^2 - 2x, \ x \ge 1$$

$$f_1(1) = f_2(1) = -1$$

Ahora calculamos sus inversas:

$$y = x^2 - 2x \rightarrow x = y^2 - 2y \rightarrow y^2 - 2y - x = 0 \rightarrow y = \frac{2 \pm \sqrt{4 + 4x}}{2} = \frac{2 \pm 2\sqrt{1 + x}}{2} = 1 \pm \sqrt{1 + x}$$

Por tanto:

- La inversa de $y = f_1(x) = x^2 2x$, $x \le 1$ es $y = 1 \sqrt{1+x}$, $x \ge -1$
- La inversa de $y = f_2(x) = x^2 2x$, $x \ge 1$ es $y = 1 + \sqrt{1+x}$, $x \ge -1$

Funciones exponenciales

Página 140

- 1 La masa de madera de un bosque aumenta en un 40% cada 100 años. Si tomamos como unidad de masa vegetal (biomasa) la que había en el año 1800, que consideramos instante de partida, y como unidad de tiempo 100 años, la función $M = 1,4^t$ nos da la cantidad de masa vegetal, M, en un instante cualquiera, t, expresado en siglos a partir de 1800 (razona por qué).
 - a) Averigua cuándo habrá una masa de madera triple que en 1800 $(1,4^t = 3)$ y cuándo había la tercera parte. Observa que los dos periodos de tiempo son iguales.
 - b) Calcula la cantidad de madera que habrá, o había, en 1900, 1990, 2000, 1600 y 1550.

$$M = 1,4^t$$

a) • Buscamos el valor de t para el cual $1,4^t = 3$:

$$1,4^{t} = 3 \rightarrow ln (1,4)^{t} = ln (3) \rightarrow t ln (1,4) = ln (3) \rightarrow t = \frac{ln 3}{ln 1.4} \approx 3,27$$

Cuando pasen $3,27 \cdot 100 = 327$ años, se habrá triplicado la masa de madera. Esto es, en el año 1800 + 327 = 2127.

• Buscamos el valor de t para el cual $1,4^t = \frac{1}{3} = 3^{-1}$:

$$1,4^{t} = 3^{-1} \rightarrow ln (1,4)^{t} = ln (3)^{-1} \rightarrow t ln (1,4) = -ln (3) \rightarrow t = -\frac{ln 3}{ln 1,4} \approx -3,27$$

Hace $3,27 \cdot 100 = 327$ años, había la tercera parte de masa de madera. Esto es, en el año 1800 - 327 = 1473.

b)
$$1900 \rightarrow t = 1 \rightarrow M = 1,4^1 = 1,4$$

1990
$$\rightarrow t = \frac{1990 - 1800}{100} = 1,9 \rightarrow M = 1,4^{1,9} \approx 1,90$$

$$2000 \rightarrow t = \frac{2000 - 1800}{100} = 2 \rightarrow M = 1,4^2 = 1,96$$

$$1600 \rightarrow t = \frac{1600 - 1800}{100} = -2 \rightarrow M = 1,4^{-2} \approx 0,51$$

1550
$$\rightarrow t = \frac{1550 - 1800}{100} = -2,5 \rightarrow M = 1,4^{-2,5} \approx 0,43$$

2 Comprueba que, en el ejemplo anterior referente a la desintegración de una cierta sustancia radiactiva, $M = m \cdot 0.76^t$ (t expresado en miles de años), el *periodo de semidesintegración* (tiempo que tarda en reducirse a la mitad la sustancia radiactiva) es de, aproximadamente, 2500 años.

Para ello, comprueba que una cantidad inicial cualquiera se reduce a la mitad (aproximadamente) al cabo de 2500 años (t = 2,5).

$$M = m \cdot 0.76^t$$

Si
$$t = 0 \rightarrow M = m \cdot 0,76^{0} = m$$

Si $t = 0,25 \rightarrow M = m \cdot 0,76^{2,5} \approx m \cdot 0,5 = \frac{m}{2}$

La cantidad inicial se ha reducido (aproximadamente) a la mitad en 2500 años.

4 Funciones logarítmicas

Página 141

1 ¿Verdadero o falso?

La función recíproca de $y = 2^x$, x > 0 es $y = log_2 x$, x > 1.

Falso. La función recíproca de $y=2^x, x>0$ es $y=log_2 x, x>0$.

2 Halla la función recíproca de:

$$y = log_2 x, x \in [8, 32]$$

La función recíproca es $y = 2^x$, $x \in [3, 5]$.

Ejercicios y problemas resueltos

Página 146

1. Composición de funciones

Hazlo tú. Halla $f \circ g$ y $g \circ f$ siendo $f(x) = 3x^2 - 5$ y $g(x) = \sqrt{2x - 1}$.

$$f \circ g(x) = f[g(x)] = f(\sqrt{2x-1}) = 3(\sqrt{2x-1})^2 - 5 = 3(2x-1) - 5 = 6x - 8$$

$$g \circ f(x) = g[f(x)] = g(3x^2 - 5) = \sqrt{2(3x^2 - 5) - 1} = \sqrt{6x^2 - 11}$$

2. Reconocer funciones compuestas

Hazlo tú. A partir de las funciones f, g, h aquí definidas, obtén:

$$f(x) = 1 + 2^x$$

$$f(x) = 1 + 2^{x}$$
 $g(x) = \sqrt{x^{2} + 1}$ $h(x) = \frac{1}{x^{2}}$

$$h(x) = \frac{1}{x^2}$$

a)
$$q(x) = \sqrt{(1+2^x)^2+1}$$

b)
$$r(x) = \frac{1}{x^2 + 1}$$

a)
$$q(x) = (g \circ f)(x) = g[f(x)] = g(1 + 2^x) = \sqrt{(1 + 2^x)^2 + 1}$$

b)
$$r(x) = (h \circ g)(x) = h[g(x)] = h(\sqrt{x^2 + 1}) = \frac{1}{(\sqrt{x^2 + 1})^2} = \frac{1}{x^2 + 1}$$

3. Función inversa de otra

Hazlo tú. Obtén la función inversa de:

a)
$$p(x) = 3^{x-2}$$

$$b) q(x) = log_2(x+1)$$

c)
$$r(x) = \frac{2}{x+4}$$

a)
$$y = 3^{x-2} \rightarrow x = 3^{y-2} \rightarrow log_3 \ x = y-2 \rightarrow y = 2 + log_3 \ x \rightarrow p^{-1}(x) = 2 + log_3 \ x$$

b)
$$y = log_2(x+1) \rightarrow x = log_2(y+1) \rightarrow 2^x = y+1 \rightarrow y = 2^x - 1 \rightarrow q^{-1}(x) = 2^x - 1$$

c)
$$y = \frac{2}{x+4} \rightarrow x = \frac{2}{y+4} \rightarrow y+4 = \frac{2}{x} \rightarrow y = \frac{2}{x}-4 \rightarrow r^{-1}(x) = \frac{2-4x}{x}$$

Página 147

4. Gráficas de funciones exponenciales y logarítmicas

Hazlo tú. Representa:

a)
$$y = 2^x - 1$$

b)
$$y = 2^{x+3}$$

c)
$$y = log_2(x-2)$$

$$\mathbf{d})\,y=\log_2\,(-x)$$

a) Se obtiene desplazando $y = 2^x$ una unidad hacia abajo.

b) Se obtiene desplazando $y = 2^x$ tres unidades hacia la izquierda.

c) Se obtiene trasladando la función $y = log_2 x$ dos unidades a la izquierda.

d) Es la simétrica de la función $y = log_2 x$ respecto del eje Y.

6. Función logarítmica

Hazlo tú. Halla $a \ y \ b$ para que la gráfica de la función $y = -2 + log_b (x + a)$ pase por $(1, 0) \ y (-1, -1)$.

- Pasa por (1, 0) \rightarrow 0 = -2 + log_b (1 + a) \rightarrow log_b (1 + a) = 2 \rightarrow 1 + a = b^2
- Pasa por (-1,-1) \rightarrow $-1=-2+log_b$ (-1+a) \rightarrow log_b (-1+a)=1 \rightarrow -1+a=b

Resolvemos el sistema:

$$\begin{array}{c} a = b^2 - 1 \\ a = b + 1 \end{array} \} \rightarrow b^2 - 1 = b + 1 \rightarrow b^2 - b - 2 = 0 \rightarrow b = -1, \ b = 2$$

El resultado b = -1 no tiene sentido porque la base de un logaritmo no puede ser negativa.

Si
$$b = 2 \rightarrow a = 3 \rightarrow \text{La función es } y = -2 + log_2(x + 3).$$

Página 148

7. Grados y radianes

Hazlo tú.

- a) Expresa en radianes 150°, 180° y 240°.
- b) Expresa en grados $\frac{3\pi}{2}$ rad y $\frac{5\pi}{4}$ rad.

a)
$$150^{\circ} = 5 \cdot 30^{\circ} = 5 \cdot \frac{\pi}{6} \text{ rad} = \frac{5\pi}{6} \text{ rad}$$

$$180^{\circ} = \pi \text{ rad}$$

$$240^{\circ} = 8 \cdot 30^{\circ} = 8 \cdot \frac{\pi}{6} \text{ rad} = \frac{4\pi}{3} \text{ rad}$$

b)
$$\frac{3\pi}{2}$$
 rad = $\frac{3}{2} \cdot 180^{\circ}$ = 270°

$$\frac{5\pi}{4}$$
 rad = $\frac{5}{4} \cdot 180^{\circ}$ = 225°

8. Función seno

Hazlo tú. Representa la función:

$$y = 2 sen x$$

Esta es la gráfica de la función seno estirada al doble en el sentido vertical.

9. Función coseno

Hazlo tú. Representa la función:

$$y = sen\left(x - \frac{\pi}{2}\right)$$

Esta es la gráfica de la función seno desplazada $\frac{\pi}{2}$ unidades a la derecha.

Ejercicios y problemas guiados

Página 149

1. Función inversa

Esta es la gráfica de la función $f(x) = 2 - x^2$, $x \le 0$

- a) Dar su dominio de definición y su recorrido.
- b) Representar su función inversa.
- c) Hallar la expresión analítica de $f^{-1}(x)$.
- a) Dominio de $f = (-\infty, 0]$ Recorrido de $f = (-\infty, 2]$

2. Interés compuesto

Depositamos en un banco 5000 € al 4,8 % anual con pago trimestral de intereses.

- a) ¿Cuál será el capital acumulado al cabo de 3 años?
- b) Escribir la función que nos dice en cuánto se transforma ese capital al cabo de t años.
- a) $i = \frac{4,8}{100} \rightarrow i_t = \frac{4,8}{400} = 0,012 \rightarrow \text{ Índice de variación trimestral} = 1 + 0,012 = 1,012$

Como 3 años son 12 trimestres, $C_{\text{final}} = 5000 \cdot 1,012^{12} = 5769,50 \in$

b) Como t años tienen 4t trimestres, la función que nos da el capital final es:

$$f(t) = 1000 \cdot 1,012^{4t} = 1000 \cdot (1,012^4)^t = 1000 \cdot 1,049^t$$

3. Depreciación

Una máquina que costó 20 000 € se deprecia a un ritmo del 10 % anual.

- a) ¿Cuál será su valor dentro de 4 años?
- b); Cuántos años tienen que pasar para que su valor sea de 12 000 €?
- c) Escribir la función que da el número de años que deben pasar para llegar a un valor x.
- a) El índice de variación de una depreciación del 10 % es $1 \frac{10}{100} = 0.9$.

Al cabo de 4 años el valor será $5\,000 \cdot 0.9^4 = 3\,280.50$ €.

b) La función que nos da el valor depreciado es $f(t) = 5000 \cdot 0.9^{t}$.

Ahora resolvemos la ecuación:

$$12\,000 = 20\,000 \cdot 0,9^t \, \rightarrow \, \frac{12\,000}{20\,000} = 0,9^t \, \rightarrow \, 0,6 = 0,9^t \, \rightarrow \, \log \, 0,6 = t \log \, 0,9 \, \rightarrow \, t = \frac{\log \, 0,6}{\log \, 0,9} = 4,85$$

Por tanto, tienen que pasar 5 años.

c)
$$x = 20\,000 \cdot 0.9^t \rightarrow \frac{x}{20\,000} = 0.9^t \rightarrow \log \frac{x}{20\,000} = t \log 0.9 \rightarrow t = \frac{\log \frac{x}{20\,000}}{\log 0.9} \rightarrow t = \frac{\log x - \log 20\,000}{\log 0.9}$$

4. Función logística

La función

$$f(x) = \frac{12\ 000}{1 + 499(1,09^{-x})}$$

da las ventas totales de un videojuego x días después de su lanzamiento. ¿En qué día se llegó a 6 000 juegos vendidos?

Tenemos que hallar el valor de x tal que:

$$\frac{12\,000}{1+499\,(1,09^{-x})} = 6\,000 \ \to \ \frac{12\,000}{6\,000} = 1+499(1,09^{-x}) \ \to \ 2-1 = 499(1,09^{-x}) \ \to \ \frac{1}{499} = 1,09^{-x}$$

Tomando logaritmos y despejando:

$$\frac{\log 499}{\log 1,09} = x \rightarrow x = 72 \text{ días}$$

Ejercicios y problemas propuestos

Página 150

Para practicar

Composición de funciones

1 Dadas las funciones f(x) = x + 3 y $g(x) = 2x^2$, halla:

a)
$$f[g(2)]$$

b)
$$g[f(-4)]$$

c)
$$f[g(x)]$$

a)
$$f[g(2)] = f(2 \cdot 2^2) = f(8) = 8 + 3 = 11$$

b)
$$g[f(-4)] = g(-4 + 3) = g(-1) = 2 \cdot (-1)^2 = 2$$

c)
$$f[g(x)] = f(2x^2) = 2x^2 + 3$$

d)
$$g[f(x)] = g(x+3) = 2(x+3)^2 = 2x^2 + 12x + 18$$

2 Considera las funciones f y g definidas por $f(x) = x^2 + 1 y g(x) = \frac{1}{x}$. Calcula:

a)
$$(f \circ g)$$
 (2)

b)
$$(g \circ f)$$
 (-3)

c)
$$(g \circ g)(x)$$

$$\mathbf{d}$$
) $(f \circ g)(x)$

a)
$$(f \circ g)(2) = f[g(2)] = f(\frac{1}{2}) = (\frac{1}{2})^2 + 1 = \frac{5}{4}$$

b)
$$(g \circ f) (-3) = g[f(-3)] = g[(-3)^2 + 1] = g(10) = \frac{1}{10}$$

c)
$$(g \circ g)(x) = g[g(x)] = f(\frac{1}{x}) = \frac{1}{\frac{1}{x}} = x$$

d)
$$(f \circ g)(x) = f[g(x)] = f(\frac{1}{x}) = (\frac{1}{x})^2 + 1 = \frac{1+x^2}{x^2}$$

3 Si f(x) = 2x + 3 y $g(x) = x^2 - 2x$, obtén la expresión de las siguientes funciones:

a)
$$f \circ g$$

$$\mathbf{b}) g \circ f$$

c)
$$f \circ f$$

$$\mathbf{d}$$
) $\mathbf{g} \circ \mathbf{g}$

a)
$$f \circ g(x) = f[g(x)] = f(x^2 - 2x) = 2(x^2 - 2x) + 3 = 2x^2 - 4x + 3$$

b)
$$g \circ f(x) = g[2x + 3] = (2x + 3)^2 - 2(2x + 3) = 4x^2 + 8x + 3$$

c)
$$f \circ f(x) = f(2x+3) = 2(2x+3) + 3 = 4x + 9$$

d)
$$g \circ g(x) = g(x^2 - 2x) = (x^2 - 2x)^2 - 2(x^2 - 2x) = x^4 - 4x^3 + 2x^2 + 4x$$

4 Dadas las funciones f(x) = 3x + 2 y $g(x) = \sqrt{x}$, halla:

a)
$$(f \circ g)(x)$$

b)
$$(g \circ f)(x)$$

c)
$$(g \circ g)(x)$$

a)
$$(f \circ g)(x) = f[g(x)] = f(\sqrt{x}) = 3\sqrt{x} + 2$$

b)
$$(g \circ f)(x) = g[f(x)] = g(3x + 2) = \sqrt{3x + 2}$$

c)
$$(g \circ g)(x) = g[g(x)] = g(\sqrt{x}) = \sqrt{\sqrt{x}} = \sqrt[4]{x}$$

5 Dadas las funciones

$$f(x) = x^2 + 1$$
 $g(x) = \frac{3}{x-2}$ $h(x) = \sqrt{x-3}$

c) $f \circ h$

obtén las expresiones de:

a)
$$f \circ g$$
 b) $g \circ f$

d)
$$g \circ h$$
 e) $h \circ f$ f) $h \circ g$

Halla, si es posible, el valor de las funciones obtenidas en x = 5 y en x = 0.

a)
$$f \circ g(x) = f[g(x)] = f\left(\frac{3}{x-2}\right) = \left(\frac{3}{x-2}\right)^2 + 1 = \frac{9}{(x-2)^2} + 1 = \frac{x^2 - 4x + 13}{(x-2)^2}$$

$$f \circ g(5) = \frac{5^2 - 4 \cdot 5 + 13}{(5 - 2)^2} = 2$$

$$f \circ g(0) = \frac{0^2 - 4 \cdot 0 + 13}{(0 - 2)^2} = \frac{13}{4}$$

b)
$$g \circ f(x) = g[f(x)] = g(x^2 + 1) = \frac{3}{x^2 + 1 - 2} = \frac{3}{x^2 - 1}$$

$$g \circ f(5) = \frac{3}{5^2 - 1} = \frac{1}{8}$$

$$g \circ f(0) = \frac{3}{0^2 - 1} = -3$$

c)
$$f \circ h(x) = f[h(x)] = f(\sqrt{x-3}) = (\sqrt{x-3})^2 + 1 = x-2$$

$$f \circ h(5) = 5 - 2 = 3$$

$$f \circ h(0) = 0 - 2 = -2$$

d)
$$g \circ h(x) = g[h(x)] = g(\sqrt{x-3}) = \frac{3}{\sqrt{x-3}-2}$$

$$g \circ h(5) = \frac{3}{\sqrt{5-3}-2} = \frac{3}{\sqrt{2}-2}$$

$$g \circ h(0)$$
 no existe.

e)
$$h \circ f(x) = h[f(x)] = h(x^2 + 1) = \sqrt{x^2 + 1 - 3} = \sqrt{x^2 - 2}$$

$$h \circ f(5) = \sqrt{5^2 - 2} = \sqrt{23}$$

$$h \circ f(0)$$
 no existe.

f)
$$h \circ g(x) = h[g(x)] = h\left(\frac{3}{x-2}\right) = \sqrt{\frac{3}{x-2} - 3} = \sqrt{\frac{-3x+9}{x-2}}$$

$$h \circ g(5)$$
 no existe.

$$h \circ g(0)$$
 no existe.

6 Con las funciones $f(x) = \frac{1}{x^2}$ y g(x) = x - 2, hemos obtenido por composición las funciones $p(x) = \frac{1}{(x-2)^2}$ y $q(x) = \frac{1}{x^2} - 2$. Indica cuál de estas expresiones corresponde a $f \circ g$ y cuál a $g \circ f$.

$$(f \circ g)(x) = f[g(x)] = f(x-2) = \frac{1}{(x-2)^2} = p(x)$$

$$(g \circ f)(x) = g[f(x)] = g\left(\frac{1}{x^2}\right) = \frac{1}{x^2} - 2 = q(x)$$

7 Explica cómo a partir de las funciones

$$f(x) = 2^{x-1}$$

$$g(x) = \sqrt{x} + 2$$

$$f(x) = 2^{x-1}$$
 $g(x) = \sqrt{x} + 2$ $h(x) = \frac{1}{x-3}$

se pueden obtener estas otras:

a)
$$m(x) = 2^{\sqrt{x}+1}$$

b)
$$n(x) = \sqrt{2^{x-1}} + 2$$

b)
$$n(x) = \sqrt{2^{x-1}} + 2$$
 c) $p(x) = \sqrt{\frac{1}{x-3}} + 2$

$$d) q(x) = 2^{\frac{4-x}{x-3}}$$

$$e) \ r(x) = \frac{1}{\sqrt{x} + 1}$$

e)
$$r(x) = \frac{1}{\sqrt{x+1}}$$
 f) $s(x) = \frac{1}{\sqrt{2^{x-1}}-1}$

a)
$$m(x) = f \circ g(x) = f[g(x)] = f(\sqrt{x} + 2) = 2^{\sqrt{x} + 2 - 1} = 2^{\sqrt{x} + 1}$$

b)
$$n(x) = g \circ f(x) = g[f(x)] = g(2^{x-1}) = \sqrt{2^{x-1}} + 2$$

c)
$$p(x) = g \circ h(x) = g[h(x)] = g(\frac{1}{x-3}) = \sqrt{\frac{1}{x-3}} + 2$$

d)
$$q(x) = f \circ h(x) = f[h(x)] = f(\frac{1}{x-3}) = 2^{\frac{1}{x-3}-1} = 2^{\frac{4-x}{x-3}}$$

e)
$$r(x) = h \circ g(x) = h[g(x)] = h(\sqrt{x} + 2) = \frac{1}{\sqrt{x} + 2 - 3} = \frac{1}{\sqrt{x} - 1}$$

f)
$$s(x) = h \circ g \circ f(x) = h \circ g[f(x)] = h \circ g(2^{x-1}) = h(\sqrt{2^{x-1}} + 2) = \frac{1}{\sqrt{2^{x-1}} + 2 - 3} = \frac{1}{\sqrt{2^{x-1}} - 1}$$

8 Considera estas funciones:

$$f(x) = x - 5$$

$$g(x) = \sqrt{x}$$

$$f(x) = x - 5$$
 $g(x) = \sqrt{x}$ $h(x) = \frac{1}{x + 2}$

Explica cómo, a partir de f, g y h, se pueden obtener, por composición, p, q y r:

$$p(x) = \sqrt{x-5}$$
; $q(x) = \sqrt{x}-5$; $r(x) = \frac{1}{\sqrt{x}+2}$

$$(g \circ f)(x) = g[f(x)] = g(x-5) = \sqrt{x-5} = p(x)$$

$$(f \circ g)(x) = f[g(x)] = f(\sqrt{x}) = \sqrt{x} - 5 = q(x)$$

$$(h \circ g)(x) = h[g(x)] = h(\sqrt{x}) = \frac{1}{\sqrt{x} + 2} = r(x)$$

Función inversa de otra

9 Dada $f(x) = 1 + \sqrt{x}$, halla $f^{-1}(x)$. Representa $f y f^{-1} y$ comprueba su simetría respecto de

$$y = 1 + \sqrt{x} \rightarrow x = 1 + \sqrt{y} \rightarrow (x - 1)^2 = y \rightarrow f^{-1}(x) = (x - 1)^2$$

10 Halla la función inversa de las siguientes funciones:

$$a) y = 3x - 2$$

b)
$$y = \frac{x+3}{2}$$

c)
$$y = \sqrt{2x+1}$$

d)
$$y = 1 + 2$$

e)
$$\gamma = 2 + \log_3 x$$

f)
$$y = 4 - x^2, x \ge 0$$

a)
$$y = 3x - 2 \rightarrow x = 3y - 2 \rightarrow y = \frac{x + 2}{3}$$

b)
$$y = \frac{x+3}{2} \rightarrow x = \frac{y+3}{2} \rightarrow y = 2x-3$$

c)
$$y = \sqrt{2x+1} \rightarrow x = \sqrt{2y+1} \rightarrow y = \frac{x^2-1}{2}$$

d)
$$y = 1 + 2^x \rightarrow x = 1 + 2^y \rightarrow y = log_2(x - 1)$$

e)
$$y = 2 + log_3 x \rightarrow x = 2 + log_3 y \rightarrow y = 3^{x-2}$$

f)
$$y = 4 - x^2$$
, $x > 0 \rightarrow x = 4 - y^2 \rightarrow y = \sqrt{4 - x}$, $x \le 4$

11 Representa gráficamente la función inversa en cada caso:

Hacemos una simetría respecto de la bisectriz del primer cuadrante para dibujar la función inversa.

12 Comprueba si cada par de funciones son una inversa de la otra. Para ello calcula $f \circ f^{-1}$ o bien $f^{-1} \circ f$:

a)
$$f(x) = \frac{1}{x+2}$$
; $f^{-1}(x) = \frac{1}{x} - 2$

b)
$$f(x) = \sqrt{2x+3}$$
; $f^{-1}(x) = \frac{x^2+2}{3}$

c)
$$f(x) = 1 + log_2 \frac{x}{3}$$
; $f^{-1}(x) = 3 \cdot 2^{x-1}$

a)
$$f \circ f^{-1}(x) = f[f^{-1}(x)] = f\left(\frac{1}{x} - 2\right) = \frac{1}{\frac{1}{x} - 2 + 2} = x$$

b)
$$f^{-1} \circ f(x) = f^{-1} [f(x)] = f(\sqrt{2x+3}) = \frac{(\sqrt{2x+3})^2 + 2}{3} = \frac{2x+5}{3}$$

En este caso no es verdad que las funciones sean recíprocas. $f^{-1}\,$ es incorrecta.

c)
$$f \circ f^{-1}(x) = f[f^{-1}(x)] = f\left(1 + \log_2 \frac{x}{3}\right) = 3 \cdot 2^{1 + \log_2[(x/3) - 1]} = 3 \cdot 2^{\log_2(x/3)} = 3 \cdot \frac{x}{3} = x$$

13 Considera la función $y = \sqrt{x+2}, x \in [-2, 7]$.

- a) ¿Cuál es su recorrido?
- b) Obtén su función inversa y determina el dominio de definición y el recorrido de esta.
- a) Como la función es creciente, calculamos los valores en los extremos del intervalo.

$$x = -2 \rightarrow y = \sqrt{-2 + 2} = 0$$

$$x = 7 \rightarrow y = \sqrt{7 + 2} = 3$$

El recorrido es el intervalo [0, 3].

b)
$$y = \sqrt{x+2} \rightarrow x = \sqrt{y+2} \rightarrow y = x^2 - 2$$
, $x \in [0, 3]$ es la función inversa.

Su dominio es el intervalo [0, 3] y el recorrido es el intervalo [-2, 7].

Funciones exponenciales y logarítmicas

14 Representa estas funciones a partir de la gráfica de $y = 2^x$:

a)
$$y = 2^{x+2}$$

b)
$$y = 2^x - 3$$

c)
$$y = 2^{x/2}$$

$$\mathbf{d}) y = \left(\frac{1}{2}\right)^{x+1}$$

e)
$$y = 1 - 2^x$$

$$f) y = 2^{2-x}$$

a) Es la gráfica de la función $y = 2^x$ desplazada dos unidades a la izquierda.

b) Es la gráfica de la función $y = 2^x$ desplazada tres unidades hacia abajo.

c) Es la gráfica de la función $y = 2^x$ estirada al doble en el sentido horizontal.

d) Es la simétrica respecto al eje Y de la gráfica de la función $y = 2^x$, y desplazada tres unidades a la izquierda.

e) Es la simétrica respecto al eje X de la gráfica de la función $y = 2^x$, y desplazada una unidad hacia arriba.

f) Es la simétrica respecto al eje Y de la gráfica de la función $y = 2^x$, y desplazada dos unidades hacia la derecha.

15 Representa las siguientes funciones a partir de la gráfica de $y = log_2 x$:

a)
$$y = 1 + log_2 x$$

$$\mathbf{b})\,y=\log_2\,(x-1)$$

c)
$$y = 2 - \log_2 x$$

$$\mathbf{d}) y = \log_2(-x)$$

16 Con ayuda de la calculadora, representa estas funciones:

a)
$$y = 3 \cdot 0.8^x$$

b)
$$y = (1/2) \cdot 1,8^x$$

c)
$$y = ln(2x)$$

$$d) y = ln (x + 1)$$

Página 151

17 Asocia a cada una de las siguientes expresiones la gráfica que le corresponde:

a)
$$y = \ln x$$

b)
$$y = 2^{1-x}$$

c)
$$y = e^x$$

d)
$$y = -log_2 x$$

e)
$$y = -(1/2)^x$$

f)
$$y = log_2(x+3)$$

$$a) \rightarrow V \quad b) \rightarrow 1$$

c)
$$\rightarrow$$
 VI

$$d) \rightarrow I$$

$$d) \, \rightarrow \, I \quad e) \, \rightarrow \, II \quad f) \, \rightarrow \, III$$

18 Comprueba que las gráficas de $y = 3^x$ e $y = \left(\frac{1}{3}\right)^x$ son simétricas respecto al eje *OY*.

19 Haz una tabla de valores de la función $y = 3^x$. A partir de ella, representa la función $y = log_3 x$.

	x	-2	-1	0	1	2
;	3 ^x	1/9	1/3	1	3	9

	х	1/9	1/3	1	3	9
	log ₃ x	-2	-1	0	1	2

20 ¿Cuál es el dominio de $y = log_2 (2 - x)$? Represéntala.

$$2-x>0 \rightarrow Dom = (-\infty, 2)$$

■ Funciones trigonométricas

21 Representa estas funciones:

a)
$$y = 1 + sen x$$

b)
$$y = -\cos x$$

22 Asocia a cada una de las siguientes funciones, la gráfica que le corresponde:

a)
$$y = cos 2x$$

b)
$$y = -sen x$$

c)
$$y = 2sen x$$

$$d) y = 1 + \cos x$$

- a) \rightarrow (II)
- b) \rightarrow \bigcirc
- c) \rightarrow (IV)
- $d) \rightarrow (III)$

Para resolver

23 Halla la función inversa de las siguientes funciones y di, en cada caso, su dominio de definición:

a)
$$y = \frac{3}{x+2}$$

$$b) y = \frac{1}{\sqrt{x-3}}$$

c)
$$y = 1 + \frac{2}{x}$$

d)
$$y = \sqrt{x^2 + 4}$$
, $x \ge 0$ e) $y = 2x^3 - 1$

e)
$$y = 2x^3 - 1$$

f)
$$y = x^2 - 4, x \le 0$$

a)
$$y = \frac{3}{x+2} \rightarrow x = \frac{3}{y+2} \rightarrow y+2 = \frac{3}{x} \rightarrow y = \frac{3}{x} - 2$$

Por tanto,
$$f^{-1}(x) = \frac{3}{x} - 2$$
, $x \ne 0$

b)
$$y = \frac{1}{\sqrt{x-3}} \rightarrow x = \frac{1}{\sqrt{y-3}} \rightarrow y - 3 = \frac{1}{x^2} \rightarrow y = \frac{1}{x^2} + 3$$

Por tanto,
$$f^{-1}(x) = \frac{1}{x^2} + 3$$
, $x \ne 0$

c)
$$y = 1 + \frac{2}{x} \rightarrow x = 1 + \frac{2}{y} \rightarrow x - 1 = \frac{2}{y} \rightarrow y = \frac{2}{x - 1}$$

Por tanto,
$$f^{-1}(x) = \frac{2}{x-1}, \ x \neq 1$$

d)
$$y = \sqrt{x^2 + 4} \rightarrow x = \sqrt{y^2 + 4} \rightarrow x^2 = y^2 + 4 \rightarrow y = \pm \sqrt{x^2 - 4}$$

Por tanto,
$$f^{-1}(x) = \sqrt{x^2 - 4}, \ x \ge 2$$

e)
$$y = 2x^3 - 1 \rightarrow x = 2y^3 - 1 \rightarrow x + 1 = 2y^3 \rightarrow y = \sqrt[3]{\frac{x+1}{2}}$$

Por tanto,
$$f^{-1}(x) = \sqrt[3]{\frac{x+1}{2}}, x \in \mathbb{R}$$

f)
$$y = x^2 - 4 \rightarrow x = y^2 - 4 \rightarrow x + 4 = y^2 \rightarrow y = \pm \sqrt{x + 4}$$

Por tanto,
$$f^{-1}(x) = -\sqrt{x+4}, \ x \ge -4$$

24 Representa y halla la función inversa en cada caso.

a)
$$y = 3 + 2^{x-1}$$

b)
$$y = 0.2 \cdot 2^{3-x}$$

c)
$$\gamma = 1.8 \cdot 5^{0.2x}$$

d)
$$y = 1 + log_2(x + 4)$$

$$e) y = ln (3x + 2)$$

f)
$$y = 2.5 \cdot e^{-x/2}$$

a)
$$y = 3 + 2^{x-1} \rightarrow x = 3 + 2^{y-1} \rightarrow x - 3 = 2^{y-1} \rightarrow y = log_2(x-3) + 1$$

$$f^{-1}(x) = log_2(x-3) + 1$$

b)
$$y = 0.2 \cdot 2^{3-x} \rightarrow x = 0.2 \cdot 2^{3-y} \rightarrow \frac{x}{0.2} = 2^{3-y} \rightarrow y = 3 - \log_2 (5x)$$

 $f^{-1}(x) = 3 - \log_2 (5x) = 3 - \log_2 5 - \log_2 x$

c)
$$y = 1.8 \cdot 5^{0.2x} \rightarrow x = 1.8 \cdot 5^{0.2y} \rightarrow \frac{x}{1.8} = 5^{0.2y} \rightarrow \log_5 \frac{x}{1.8} = 0.2y \rightarrow y = 5\log_5 \frac{x}{1.8}$$

 $f^{-1}(x) = 5\log_5 \frac{x}{1.8} = 5(\log_5 x - \log_5 1.8)$

d)
$$y = 1 + log_2(x + 4) \rightarrow x = 1 + log_2(y + 4) \rightarrow$$

 $\rightarrow x - 1 = log_2(y + 4) \rightarrow y = 2^{x - 1} - 4$
 $f^{-1}(x) = 2^{x - 1} - 4$

e)
$$y = ln(3x + 2) \rightarrow x = ln(3y + 2) \rightarrow e^x = 3y + 2 \rightarrow y = \frac{e^x - 2}{3}$$

 $f^{-1}(x) = \frac{e^x - 2}{3}$

f)
$$y = 2.5 \cdot e^{-x/2} \rightarrow x = 2.5 \cdot e^{-y/2} \rightarrow \frac{x}{2.5} = e^{-y/2} \rightarrow y = -2\ln\left(\frac{x}{2.5}\right)$$

 $f^{-1}(x) = -2\ln\left(\frac{x}{2.5}\right) = -2(\ln x - \ln 2.5)$

25 La gráfica de una función exponencial del tipo $y = ka^x$ pasa por los puntos (0; 0,5) y (1; 1,7).

Calcula k y a, y representa la función.

Pasa por el punto $(0; 0.5) \rightarrow 0.5 = k \cdot a^0 \rightarrow k = 0.5$

Pasa por el punto (1; 1,7)
$$\rightarrow$$
 1,7 = 0,5 · $a^1 \rightarrow a = \frac{1,7}{0,5} = 3,4$

La función es $y = 0.5 \cdot 3.4^x$.

- **26** Los puntos (1; 1,2) y (2; 0,48) pertenecen a la gráfica de la función $y = k \cdot a^x$.
 - a) Calcula k y a.
 - b) Halla el valor de x para el cual y = 120.
 - a) Pasa por el punto (1; 1,2) \rightarrow 1,2 = $k \cdot a$

Pasa por el punto (2; 0,48) \rightarrow 0,48 = $k \cdot a^2$

Dividiendo la segunda ecuación entre la primera obtenemos que $a = \frac{0.48}{1.2} = 0.4$ y k = 3.

La función es $y = 3 \cdot 0.4^x$.

b)
$$120 = 3 \cdot 0.4^x \rightarrow 40 = 0.4^x \rightarrow x = \frac{\log 40}{\log 0.4} = -4.026$$

- 27 La gráfica de la función logarítmica $y = -2 + log_b(x + a)$ corta a los ejes de coordenadas en los puntos (0, -2) y (8, 0).
 - a) Calcula a y b.
 - b) ¿Para qué valor de x es y = 3?

a) Pasa por
$$(0, -2) \rightarrow -2 = -2 + \log_h a \rightarrow \log_h a = 0 \rightarrow a = 1$$

Pasa por
$$(8, 0) \rightarrow 0 = -2 + \log_b 9 \rightarrow \log_b 9 = 2 \rightarrow b = 3$$

Luego $y = -2 + log_3 (x + 1)$.

b)
$$3 = -2 + log_3(x + 1) \rightarrow 5 = log_3(x + 1) \rightarrow x = 242$$

- **28** La función $y = a + b \ln x$ pasa por los puntos (e, 5) y (1/e, -1).
 - a) Calcula a y b.
 - b) ; Cuál es su función inversa?

a) Pasa por
$$(e, 5) \rightarrow 5 = a + b \ln e \rightarrow a + b = 5$$

Pasa por
$$\left(\frac{1}{e}, -1\right) \rightarrow -1 = a + b \ln \left(\frac{1}{e}\right) \rightarrow a - b = -1$$

$$\begin{vmatrix} a+b=5 \\ a-b=-1 \end{vmatrix}$$
 $a = 2, b = 3 \rightarrow y = 2 + 3\ln x$

b)
$$y = 2 + 3 \ln x \rightarrow x = 2 + 3 \ln y \rightarrow \frac{x-2}{3} = \ln y \rightarrow y = e^{(x-2)/3}$$

29 La función $y = \frac{5}{9}(x - 32)$ convierte grados Fahrenheit en grados centígrados. Halla la función para convertir grados centígrados en grados Fahrenheit.

La función pedida es la función inversa de la dada.

$$y = \frac{5}{9}(x - 32) \rightarrow x = \frac{5}{9}(y - 32) \rightarrow \frac{9}{5}x = y - 32 \rightarrow y = \frac{9}{5}x + 32$$

La función que convierte grados centígrados en grados Fahrenheit es $y = \frac{9}{5}x + 32$.

30 Esta gráfica representa la variación de un movimiento que se repite periódicamente.

- a) Represéntala en el intervalo [0, 10].
- b) Calcula f(7), f(10) y f(20).

b)
$$f(7) = 1$$
; $f(10) = 2$, $f(20) = 0$

31 Un cultivo de bacterias crece según la función $y = 1 + 2^{x/10}$ (y: miles de bacterias, x: horas). ¿Cuántas había en el momento inicial? ¿Y al cabo de 10 horas? ¿Cuánto tardarán en duplicarse?

En el momento inicial, $x = 0 \rightarrow y = 2$, había dos mil bacterias.

Al cabo de 10 horas, $x = 10 \rightarrow y = 1 + 2^{10/10} = 3$, había tres mil bacterias.

Para que se dupliquen las que había en el momento inicial debe ser y = 4:

$$4 = 1 + 2^{x/10} \rightarrow 2^{x/10} = 3 \rightarrow log_2 \ 3 = \frac{x}{10} \rightarrow x = 10 \cdot log_2 \ 3 = 15,85 \text{ horas}$$

Página 152

- 32 La concentración de un fármaco en sangre viene dada por $y = 100 \cdot (0.94)^t$ (y en mg, t en h).
 - a) Di cuál es la dosis inicial y la cantidad de ese fármaco que tiene el paciente al cabo de 3 horas.
 - b) Representa la función.
 - c) Si queremos que la concentración no baje de 60 mg, ¿al cabo de cuánto tiempo tendremos que inyectarle de nuevo?

a) Dosis inicial:
$$t = 0 \rightarrow y = 100 \text{ mg}$$

Al cabo de tres horas:

$$t = 3 \rightarrow y = 100 \cdot 0.94^3 = 83.06 \text{ mg}$$

c)
$$60 = 100 \cdot 0.94^t \rightarrow t = \frac{\log 0.6}{\log 0.94} = 8.26$$

Habrá que inyectarle al cabo de 8 h 15 min, aproximadamente.

- 33 La cantidad de material radiactivo que queda al cabo de t años en una muestra de 75 gramos, se puede calcular mediante la ecuación $C(t) = 75(0,62)^t$.
 - a) ¿Cuántos años tienen que transcurrir para que queden 10 gramos de material radiactivo?
 - b) Representa la función.

a)
$$10 = 75 \cdot 0.62^t \rightarrow t = \frac{\log \frac{10}{75}}{\log 0.62} = 4.2$$

Deben pasar 4,2 años.

b)
$$y = 75 \cdot 0.62^x$$

34 Un alumno de un curso de psicología sabe que el porcentaje de conocimientos que recordará t meses después de acabar el curso, se puede calcular mediante la función:

$$R(t) = 94 - 46.8 \log(t - 1)$$

- a) Calcula el porcentaje que recordará 6 meses después de terminar el curso.
- b) Representa la función.

a)
$$R(6) = 94 - 46.8 \log 5 = 61.3$$

Después de 6 meses recordará un 61,3 % de sus conocimientos.

- Sabemos que la presión amosférica varía con la altura. La ecuación $h(x) = 41,97(0,996)^x$ nos da la altura de una montaña, en kilómetros, si conocemos la presión atmosférica, x, en milibares.
 - a) Si en la cima del Everest la presión es de 389 milibares, ¿cuál es la altura del Everest?
 - b) ¿Cuál será la presión en la cima de una montaña de 3 500 metros de altura?

a)
$$h(389) = 41,97 \cdot 0,996^{389} = 8,827$$

El Everest tiene, aproximadamente, 8827 m de altura.

b)
$$3.5 = 41.97 \cdot 0.996^x \rightarrow x = 620$$
 milibares

- **36** La función $y = 80 \cdot 2^{-0.4t}$ nos da la cantidad (en gramos) de estroncio radiactivo en una muestra de agua en el instante t (en años).
 - a) ¿Qué cantidad habrá al cabo de 10 años?
 - b) ¿Cuándo la cantidad actual se habrá reducido al 50%?

a)
$$t = 10 \rightarrow y = 80 \cdot 2^{-4} = 5 \text{ g}$$

Al cabo de 10 años habrá 5 g de estroncio radiactivo.

b) En el instante actual la muestra tiene 80 g de estroncio radiactivo. Por tanto, para que se reduzca a la mitad,

$$40 = 80 \cdot 2^{-0.4x} \rightarrow \frac{1}{2} = 2^{-0.4x} \rightarrow x = 2.5$$

Deben pasar 2,5 años.

57 El número de ejemplares que se venden de un libro depende del dinero que se dedica a su publicidad. La función que da esta relación es:

$$y = 2 + 0.5 \ln (x + 1)$$
; x en miles de euros, y en miles

- a) Calcula cuántos ejemplares se venden si se invierten 20 000 € en publicidad.
- b) ¿Cuánto habrá que invertir para vender 5 000 libros?

a)
$$x = 20 \rightarrow y = 2 + 0.5 \ln 21 = 3.522$$

Se venderán 3522 libros.

b)
$$5 = 2 + 0.5 \ln(x + 1) \rightarrow 3 = 0.5 \ln(x + 1) \rightarrow 6 = \ln(x + 1) \rightarrow x = e^6 - 1 = 402,42879$$

Se deben invertir 402 429 €.

38 Un capital de 10 000 € se deposita en un banco al 6 % de interés anual con pago mensual de intereses. Escribe la función que nos dice en cuánto se transforma ese capital en *m* meses. Calcula cuánto tarda en duplicarse el capital.

$$i = \frac{6}{100} \rightarrow i_m = \frac{6}{1200} = 0,005 \rightarrow \text{Índice de variación mensual} = 1,005$$

El capital final al cabo de m meses es $C(m) = 10\,000 \cdot 1,005^m$

$$20\,000 = 10\,000 \cdot 1,005^m \rightarrow 2 = 1,005^m \rightarrow m = \frac{\log 2}{\log 1,005} = 138,98$$

Por tanto, deben pasar 139 meses para que el capital inicial se duplique.

- **39** La población mundial ha crecido de forma exponencial desde 1650. La función $P(t) = 0.5 \cdot e^{0.0072t}$, t en años, P(t) en miles de millones, nos da una buena aproximación de la población mundial hasta 2015.
 - a) ¿Cuál era la población mundial en 1920?
 - b) Estima la población mundial en 2020, suponiendo que el crecimiento se mantenga estable.
 - a) El año 1650 se corresponde con $t = 0 \rightarrow$ El año 1920 se corresponde con t = 1920 1650 = 270.

$$P(270) = 0.5 \cdot e^{0.0072 \cdot 270} = 3.493$$
 miles de millones de personas

b) El año 2020 se corresponde con t = 2020 - 1650 = 370.

La población estimada es $P(370) = 0.5 \cdot e^{0.0072 \cdot 370} = 7.177$ miles de millones de habitantes.

- 40 El carbono 14 sirve para calcular la edad de los fósiles y otros objetos. La fórmula que se utiliza es $C = C_0 \cdot e^{-t \ln 2/5730}$, donde C_0 es la cantidad de carbono 14 que tenía el fósil cuando se formó y C la cantidad que tendrá dentro de t años.
 - a) Si en un cierto fósil C_0 = 500 g, ¿cuántos gramos de carbono 14 tendrá dentro de 2000 años?
 - b) Se llama periodo de semidesintegración al tiempo necesario para que la cantidad inicial se reduzca a la mitad. Calcula el periodo de semidesintegración del carbono 14.
 - a) Al cabo de 2000 años, $C = 500 \cdot e^{-2000 \cdot \ln 2/5730} = 392,6$ g de carbono 14.

b)
$$\frac{C_0}{2} = C_0 \cdot e^{-t \cdot \ln 2/5730} \rightarrow e^{t \cdot \ln 2/5730} = 2 \rightarrow \frac{t \ln 2}{5730} = \ln 2 \rightarrow t = 5730$$
 años

- **41** El precio de un automóvil deportivo es de 24 000 €. Sabemos que se deprecia a un ritmo de un 12 % anual.
 - a) ¿Qué función da el valor del coche al cabo de t años?
 - b) ¿Cuándo llegará a la mitad del valor inicial?
 - a) Una depreciación del 12 % anual se corresponde con un índice de variación I = 1 0.12 = 0.88.

La función que da el valor del coche es $V(t) = 24\,000 \cdot 0.88^t$.

b)
$$12\,000 = 24\,000 \cdot 0.88^t \rightarrow 0.5 = 0.88^t \rightarrow t = \frac{\log 0.5}{\log 0.88} = 5.42$$

Deben pasar 5,42 años para que su valor se reduzca a la mitad.

- 42 Invertimos 20 000 € al 4,8 % anual en una cuenta que se capitaliza semestralmente.
 - a) Escribe la función que nos da el dinero que tendremos en la cuenta al cabo de t años.
 - b) ;Cuánto tiempo tiene que pasar para que el capital inicial aumente un 50 %?

a)
$$i = \frac{4.8}{100} \rightarrow i_s = \frac{4.8}{200} = 0.024 \rightarrow \text{ Índice de variación semestral} = 1.024$$

Como un año tiene 2 semestres, la función es $C(t) = 20\,000 \cdot 1,024^{2t}$.

b) Si el capital inicial aumenta un 50 %, pasará de 20 000 a 30 000 €.

$$30\,000 = 20\,000 \cdot 1,024^{2t} \rightarrow 1,5 = 1,024^{2t} \rightarrow t = \frac{\log 1,5}{2\log 1,024} = 8,55 \text{ años}$$

Como la capitalización es semestral, deberán pasar 9 años.

43 El número de recetas para medicamentos genéricos emitidas por los médicos del servicio de salud de una comunidad autónoma ha crecido exponencialmente desde 2005. La función es del tipo $f(t) = k e^{at}$. Calcula $k \ y \ a$ sabiendo que en 2005 (t = 0) se emitieron 6,52 miles de recetas y en el 2008 fueron 9,84 miles. ¿En qué año se llegará a 50 miles de recetas?

Pasa por
$$(0; 6,52) \rightarrow 6,52 = k$$

Pasa por
$$(3; 9,84) \rightarrow 9,84 = 6,52 \cdot e^{3a} \rightarrow \frac{9,84}{6,52} = e^{3a} \rightarrow a = \frac{\ln \frac{9,84}{6,52}}{3} = 0,1372$$

Por tanto, $f(t) = 6.52 \cdot e^{0.1372t}$

$$50 = 6,52 \cdot e^{0,1372t} \to \frac{50}{6,52} = e^{0,1372t} \to t = \frac{\ln \frac{50}{6,52}}{0,1372} = 14,85$$

Después de 15 años, es decir, en 2020, se superarán ligeramente las 50 000 recetas.

- 44 Un estudio de la policía refleja que el número de robos en viviendas, por año, en una ciudad, decrece según una función del tipo $N(t) = A B \cdot log(t + 2)$. Sabemos que en el año 2000, que es cuando se inició el estudio, el número de robos fue de 520 y en el año 2003 fueron 476.
 - a) Determina A y B.
 - b) Calcula el número de robos que se esperan en 2020.

a)
$$N(0) = 520 \rightarrow 520 = A - B \cdot log 2$$

$$N(3) = 476 \rightarrow 476 = A - B \cdot \log 5$$

Restando las ecuaciones obtenemos:

$$44 = B(\log 5 - \log 2) \ \rightarrow \ B = \frac{44}{\log 5 - \log 2} = 110.6 \ \rightarrow \ A = 476 + \frac{44}{\log 5 - \log 2} \cdot \log 5 = 553.3$$

$$N(t) = 553.3 - 110.6 \cdot log(t+2)$$

b) El año 2020 se corresponde con t = 20.

$$N(20) = 553.3 - 110.6 \cdot log 22 \approx 405$$

En el año 2020 se esperan unos 405 robos.

45 Un cultivo de bacterias comienza con 100 células. Media hora después hay 435. Si ese cultivo sigue un crecimiento exponencial del tipo $y = ke^{at}$ (t en minutos), calcula k y a y representa la función. ¿Cuánto tardará en llegar a 5 000 bacterias?

$$y = ka^t$$

$$t = 0, \ \gamma = 100 \rightarrow 100 = k \cdot a^0 \rightarrow k = 100$$

$$t = 30, \ y = 435 \rightarrow 435 = 100 \cdot a^{30} \rightarrow a^{30} = 4,35 \rightarrow a = 4,35^{1/30} \rightarrow a = 1,05$$

La función es
$$y = 100 \cdot 1,05^x$$
.

Si
$$\gamma = 5000 \rightarrow 5000 = 100 \cdot 1,05^x$$

$$50 = 1,05^x \rightarrow x = \frac{\log 50}{\log 1,05} \approx 80 \text{ min}$$

Tardará 80 minutos, aproximadamente.

Página 153

46 Una taza de café recién hecho está a 75 °C. Después de 3 minutos en una habitación a 21 °C, la temperatura del café ha descendido a 64 °C. Si la temperatura T del café en cada instante t viene dada por la expresión $T = A e^{kt} + 21$, calcula A y k y representa la función.

¿Cuánto tendremos que esperar para que la temperatura del café sea de 45 °C?

Por los datos del problema, la función temperatura pasa por los puntos (0, 75) y (3, 64), luego:

$$75 = A \cdot e^{k \cdot 0} + 21 \rightarrow A = 54$$

$$64 = 54 \cdot e^{k \cdot 3} + 21 \rightarrow e^{3k} = \frac{43}{54} = 0,796 \rightarrow k = \frac{\ln 0,796}{3} = -0,076$$

Por tanto, $T = 54 \cdot e^{-0.076t} + 21$

Si la temperatura del café es de 45°, entonces:

$$45 = 54 \cdot e^{-0.076t} + 21 \rightarrow e^{-0.076t} = \frac{24}{54} = 0,444 \rightarrow t = \frac{\ln 0,444}{-0.076} = 10,7 \text{ minutos}$$

Debemos esperar 10 minutos 42 segundos para que alcance los 45°.

- 47 Un estudio demográfico estima que la población de un barrio va a crecer según la función $y = \frac{10\,000}{1 + ke^{-0.2t}}$ (t, años; y, número de habitantes).
 - a) El barrio tiene, actualmente, 1250 habitantes. Halla k.
 - b) Calcula cuál será la población dentro de 10 años.

a) Pasa por el punto
$$(0, 1250) \rightarrow 1250 = \frac{10000}{1+k} \rightarrow k = \frac{10000}{1250} - 1 = 7$$

b)
$$t = 10 \rightarrow y = \frac{10000}{1 + 7 \cdot e^{-0.2 \cdot 10}} \approx 5135$$

Dentro de 10 años habrá unos 5 135 habitantes.

Cuestiones teóricas

- **48** Dada la función $y = a^x$, contesta:
 - a) ;Puede ser negativa la y? ;Y la x?
 - b) ¿Para qué valores de a es decreciente?
 - c) ¿Cuál es el punto por el que pasan todas las funciones del tipo $y = log_a x$?
 - d) ¿Para qué valores de x se verifica $0 < a^x < 1$ siendo a > 1? ¿Y si 0 < a < 1?
 - a) La y no puede ser negativa por ser una potencia de base positiva.

La x sí puede ser negativa porque el dominio de la función es todo \mathbb{R} .

- b) Si 0 < a < 1, la función es decreciente.
- c) Todas pasan por el punto (1, 0), ya que $x = 1 \rightarrow y = log_a 1 = 0$.
- d) Para valores de x negativos se cumple que $0 < a^x < 1$ si a > 1.

Si 0 < a < 1, se cumple que $0 < a^x < 1$, cuando x > 0.

49 Si $f(x) = 2^x$ y $g(x) = log_2 x$, ¿cuál es la función $(g \circ f)(x)$? ¿Y $(f \circ g)(x)$?

$$(g \circ f)(x) = g[f(x)] = g(2^x) = log_2(2^x) = x$$

$$(f \circ g)(x) = f[g(x)] = f(log_2 x) = 2^{log_2 x} = x$$

- **50** Considera las funciones y = sen x, y = cos x e y = tg x.
 - a) ¿Cuál es su periodo?
 - b) Di cuál es el dominio de definición de cada una.
 - c) ¿Entre qué valores varían?
 - a) Las dos primeras funciones son periódicas de periodo 2π . La tercera es periódica de periodo π .
 - b) El dominio de las dos primeras es R.

El dominio de la función tangente es $\mathbb{R} - \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

- c) Las funciones *seno* y *coseno* toman valores comprendidos entre –1 y 1. El recorrido de la función tangente es |R.
- 51 Justifica cuál de las siguientes funciones es la función inversa de $y = 3^x 2$.

a)
$$y = 2 + log_3 x$$

b)
$$y = \sqrt[3]{x+2}$$

c)
$$\gamma = log_3 (x + 2)$$

La función del apartado c) es la función inversa de la dada.

Si llamamos $f(x) = 3^{x} - 2$ y $f^{-1}(x) = log_{3}(x + 2)$, entonces:

$$(f \circ f^{-1}) \ (x) = f[f^{-1}(x)] = f[log_3 \ (x+2)] = 3^{log_3 \ (x+2)} - 2 = x + 2 - 2 = x$$

$$(f^{-1} \circ f)(x) = f^{-1}[f(x)] = f^{-1}(3^{x} - 2) = log_{3}(3^{x} - 2 + 2) = log_{3}(3^{x}) = x$$

52 Estas gráficas corresponden a funciones del tipo $y = ka^x$ o $y = k \log_a x$ con a > 1. Identificalas e indica en cada caso si k > 0 o k < 0.

- 1) Es de la forma $y = ka^x \text{ con } k > 0$.
- 2) Es de la forma $y = k \log_a x$ con k < 0.
- 3) Es de la forma $y = k \log_a x$ con k > 0.
- 4) Es de la forma $y = ka^x \text{ con } k < 0$.

Autoevaluación

- **1** Dadas $f(x) = \sqrt{x+1}$, $g(x) = \frac{1}{x-3}$, halla:
 - a) f[g(2)]
- b) g[f(15)]
- c) $f \circ g$

d) $g^{-1}(x)$

a)
$$f[g(2)] = f(-1) = 0$$

b)
$$g[f(15)] = g(4) = 1$$

c)
$$(f \circ g)(x) = f[g(x)] = f(\frac{1}{x-3}) = \sqrt{\frac{1}{x-3} + 1} = \sqrt{\frac{x-2}{x-3}}$$

d)
$$y = \frac{1}{x-3} \rightarrow x = \frac{1}{y-3} \rightarrow y = 3 + \frac{1}{x}$$

2 Representa la gráfica de la función inversa de y = f(x).

La función $f^{-1}(x)$ es simétrica a f(x) respecto a la recta y = x. Así:

3 La gráfica de una función $y = a + b \log_2 (x + 2)$ pasa por los puntos (0, 1) y (2, 0). Halla a y b y justifica si se trata de una función creciente o decreciente.

Pasa por
$$(0, 1) \to 1 = a + b \log_2 2 \to 1 = a + b$$

Pasa por
$$(2, 0) \rightarrow 0 = a + b \log_2 4 \rightarrow 0 = a + 2b$$

$$\begin{vmatrix} a+b=1 \\ a+2b=0 \end{vmatrix} \rightarrow a=2, b=-1$$

$$y = 2 - log_2(x+2)$$

Se trata de una función decreciente porque su gráfica es el resultado de aplicar dos traslaciones a la función que se obtiene haciendo la simétrica de $y = log_2 x$ respecto del eje X.

4 El precio de una furgoneta baja un 8 % cada año. Si costó 18 000 €, ¿cuánto tardará en reducirse a la mitad?

El índice de variación anual es 1 - 0.08 = 0.92.

Si x son los años transcurridos, la función que describe el precio de la furgoneta es $y = 18\,000 \cdot 0.92^x$.

La mitad de su precio es 9 000 €. Por tanto:

$$9\,000 = 18\,000 \cdot 0.92^x \rightarrow 0.5 = 0.92^x \rightarrow x = \frac{\log 0.5}{\log 0.92} = 8.31$$

Tardará 8 años y casi 4 meses en reducirse el precio a la mitad.

5 Un cultivo de bacterias comienza con 50 células. Dos horas después hay 162. Si ese cultivo crece de forma exponencial según una función $y = ke^{at}$ (t en horas) calcula k y a. ¿Cuánto tardará en llegar a 5 000 bacterias?

$$\begin{cases} t = 0 \\ y = 50 \end{cases} \rightarrow 50 = k$$

La función es $y = 50e^{0.588t}$.

Llegará a 5 000 bacterias cuando:

$$5000 = 50e^{0.588t} \rightarrow 100 = e^{0.588t} \rightarrow t = \frac{\ln 100}{0.588} = 7.8$$

Al cabo de 7 horas y 48 minutos, desde el inicio del cultivo, llegará a las 5 000 bacterias.

6 Representa estas funciones:

a)
$$y = 1.5 \cdot 2^x - 3$$

b)
$$\gamma = 2 + ln (x + 1)$$

Halla la función inversa en cada caso.

$$y = 1.5 \cdot 2^{x} - 3 \rightarrow x = 1.5 \cdot 2^{y} - 3 \rightarrow y = log_{2} \frac{x+3}{1.5}$$

La función inversa es $y = log_2 \frac{x+3}{1,5}$

$$y = 2 + ln(x + 1) \rightarrow x = 2 + ln(y + 1) \rightarrow y = e^{x-2} - 1$$

La función inversa es $y = e^{x-2} - 1$.

7 Asocia a esta gráfica una de las siguientes expresiones y di cuál es su periodo:

- a) $y = \cos x$
- b) $y = \cos 2x$
- c) $y = 2\cos x$

Completa estos puntos para que pertenezcan a la función $y = 2 \cos x$: $(5\pi/6, ...)$, $(4\pi/3, ...)$, $(-\pi/4, ...)$. Represéntala en el intervalo $[0,2\pi]$.

La gráfica corresponde a la función b), y = cos 2x.

Su periodo es $\frac{5\pi}{4} - \frac{\pi}{4} = \frac{4\pi}{4} = \pi$.

Los puntos buscados son; $\left(\frac{5\pi}{6}, \frac{1}{2}\right)$, $\left(\frac{4\pi}{3}, -\frac{1}{2}\right)$, $\left(-\frac{\pi}{4}, 0\right)$