ST1131 Assignment II: Statistical Report

Name: Lai Zheyuan | Student ID: A0287898U

Background: In this report, the aim is to explore the dataset about the house selling price in Oregon and purpose a linear regression model for the response variable – house price, to discover which factor(s) may influent the price of a house.

Tools Used: Use **RStudio** to analyze the provided dataset *house_selling_prices_OR.csv*, fit the linear models, and plot scatterplots, boxplots, residual plots, and QQ plots.

Part I – Explore the Variables

- Summarize the Variables
 - Ouantitative Variables

Var/Stats	Min	1 st Qu.	Median	Mean	3 rd Qu.	Max
HP.in.thousand	13.0	200.0	242.5	267.5	300.0	887.2
House.Size	648	1710	2303	2551	3098	11239
Acres	0.000	0.130	0.190	0.533	0.320	5.820
Lot.Size	0	5663	8276	23217	13939	253519
Bedrooms	0.00	3.00	3.00	3.08	3.00	8.00
T.Bath	0.000	1.500	2.000	2.025	2.500	4.000
Age	1.00	11.75	34.00	34.75	51.00	107.00

Key findings: There are outliers in each variable.

- Categorical Variables
 - *Garage*: (1=yes: 153; 0=no: 47)
 - *Condition*: (0=good: 174; 1=not good: 26)
 - Age. Category: (Old: 37; Medium: 72; New: 78; Very Old: 13)
- Check the association between response variable and one explanatory variable.

Key findings: *House.Size* and *Age.Category* can a regressor; *Acres*, *Lot.Size*, *Garage*, *Condition*, and *Age* cannot be a regressor; *Bedrooms* and *T.Bath* may be a regressor.

Part II - Building Model

Model M1: consider *House.Size* and *Age.Category* as regressors, as purposed in Part I. The model is Price = 97.37 + 0.06 * size + 29.36 * I(Age.Category = N) - 19.84 * I(Age.Category = 0) + 31.30 * I(Age.Category = V0).

Result of t-test of each regressor:

- p-value of *House.Size* is very small => very significant
- p-value of $Age.CategoryN = 0.0287 \Rightarrow$ not very significant
- p-value of Age. Category $O = 0.22 \Rightarrow$ not significant
- p-value of *Age. Category VO* = 0.199 => not significant

So, the regressor *Age. Category* is not significant.

There are several outliers (index = 70, 98, 127, 130) with no influential points.

Check the residual plots:

From Plot 1, the points are not scatter randomly around 0, and some falls outside of (-3, 3). The slight funnel shape implies that the constant variance assumption is somewhat violated. From Plot 2 and Plot 3, the standard residuals are not distributed normally.

From the above evidence, model M1 is not adequate, we need to change the model by removing *Age.Category* variable, which is not significant from previous t-test.

Model M2: exclude *Age.Category*, use only *House.Size* as regressor. The model is Price = 97.997 + 0.066 * Size

Regressor *House. Size* is significant given the small p-value.

There are several outliers (index = 70, 98, 127, 130) and one influential point (index = 127).

Check the scatterplot and residual plots:

From the plots, we can conclude that the standard residuals are not normally distributed, and the funnel shape in scatterplot and SR against prediction imply non-constant variance.

From the above evidence, M2 is not adequate, need to remove the influential point (index=127).

Model M3: remove the influential point and rebuild the model using *House.Size* as regressor. The model is Price = 75.86 + 0.076 * Size

Check the residual plots:

Results are similar to M2, SRs are not normally distributed, and variance is not constant. From the above evidence, M3 is not adequate, we need to add regressor(s).

Model M4: use *House.Size*, *Bedrooms* and *T.Bath* as regressors. The model is Price = 30.32 + 0.06 * Size - 8.54 * Bedrooms + 54.40 * T. Bath

Result of t-test for each regressor:

- p-value of *House.Size* is very small => very significant
- p-value of *Bedrooms* = 0.1596 => not significant
- p-value of *T.Bath* is very small => very significant

From the above evidence, M4 is not adequate since regressor *Bedrooms* is not significant.

Model M5: Delete *Bedrooms*, use *House.Size* and *T.Bath* as regressors. The model is Price = 19.86 + 0.06 * Size + 46.66 * T.Bath

Result of t-test for each regressor:

- p-value of *House.Size* is very small => very significant
- p-value of *T.Bath* is very small => very significant

The regressors in this model are all significant.

There are several outliers (index = 70, 98, 171) with no influential points.

Check the residual plots:

From Plot 1 and Plot 2, standard residuals are nearly normally distributed despite some minor outliers, and Plot 3 implies that the constant variance assumption is satisfied.

Therefore, we conclude that Model M5 is adequate, so M5 is the final model.

Final Model: The final model considers *House.Size* and *T.Bath* as regressors and exclude influential point (index= 127), and the model can be represented by:

House.
$$Price = 19.86 + 0.06 * House. Size + 46.66 * T. Bath$$

Model interpretation: Both increase in *House.Size* and *T.Bath* will cause the response variable *HP.in.thousand* to increase linearly.