$\Pi\Lambda H30$

ΕΝΟΤΗΤΑ 1: ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Μάθημα 1.2: Ιεραρχία Συναρτήσεων Πολυπλοκότητας

Δημήτρης Ψούνης

ПЕРІЕХОМЕНА

Α. Σκοπός του Μαθήματος

Β.Θεωρία

- 1. Λογάριθμοι
 - 1. Ορισμός Λογαρίθμου
 - 2. Δυαδικοί Λογάριθμοι
 - 3. Ιδιότητες Λογαρίθμων
 - 4. Γραφική Παράσταση της συνάρτησης f(x)=log x
 - 5. Διπλός και Τριπλός Λογάριθμος

Γ. Μεθοδολογία Ασκήσεων

- 1. Σύνοψη Ιδιοτήτων Λογαρίθμων
- 2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας
- Δ. Σύνοψη Επιδιωκώμενα Αποτελέσματα
- Ε.Ασκήσεις

Α. Σκοπός του Μαθήματος

Οι στόχοι του μαθήματος είναι:

Επίπεδο Α

- > Να θυμηθούμε όλες τις ιδιότητες λογαρίθμων
- Να μάθουμε μία μεθοδολογία μέσω της οποίες μπορούμε να ιεραρχούμε συναρτήσεις πολυπλοκότητας.

Επίπεδο Β

> (-)

Επίπεδο Γ

> (-)

1. Λογάριθμοι

1. Ορισμός Λογαρίθμου

Ο <u>λογάριθμος</u> ενός αριθμού a με βάση τον αριθμό b, ορίζεται ως ο αριθμός στον οποίον αν υψώσουμε το b παίρνουμε το a.

$$x = \log_b a \qquad \alpha \nu \nu \qquad b^x = a$$

Με απλά λόγια για να υπολογίσουμε τον $\log_b a$ αρκεί να υπολογίσουμε σε ποια δύναμη πρέπει να υψώσουμε το b για να πάρουμε το a.

Παραδείγματα:

$$\log_{2} 8 = 3 \qquad \alpha \varphi o \acute{v} \qquad 2^{3} = 8$$

$$\log_{3} 81 = 4 \qquad \alpha \varphi o \acute{v} \qquad 3^{4} = 81$$

$$\log_{5} 125 = 3 \qquad \alpha \varphi o \acute{v} \qquad 5^{3} = 125$$

$$\log_{1/4} 1/16 = 2 \qquad \alpha \varphi o \acute{v} \qquad \left(\frac{1}{4}\right)^{2} = \frac{1^{2}}{4^{2}} = \frac{1}{16}$$

1. Λογάριθμοι

2. Δυαδικοί Λογάριθμοι

- Στην ΠΛΗ30, αν δεν καθορίζεται η βάση του λογαρίθμου, θα εννοείται ότι η βάση είναι το 2, άρα θα αναφερόμαστε σε δυαδικούς λογάριθμους
- ightharpoonup Έτσι στο εξής εννοείται: $\log x = \log_2 x$
- > Ας δούμε τους δυαδικούς λογάριθμους κάποιων φυσικών αριθμών:

X	$\log X$
1	log1=0
2	log2=1
4	log4=2
8	log8=3
16	log16=4
32	log32=5
64	log64=6
•••	
1024	log1024=10

\mathbf{X}	$\log X$
2048	log2048=11
4096	log4096=12
8192	log8192=13
•••	
2 ²⁰	log2 ²⁰ =20
230	log2 ³⁰ =30
240	log2 ⁴⁰ =40
•••	

1. Λογάριθμοι

- 3. Ιδιότητες των Λογαρίθμων (Δυνάμεις σε Λογάριθμους)
 - > Ήδη από την προηγούμενη διαφάνεια είναι σαφές ότι ισχύει:

$$\log_b a^K = K \log_b a$$

- > Δηλαδή ο εκθέτης του αριθμού «πέφτει» μπροστά από τον λογάριθμο.
- > Προσέξτε ότι ενδέχεται ο λογάριθμος να είναι υψωμένος σε κάποια δύναμη:

$$\log_b a)^X$$

Τότε αυτό θα το αναπαριστούμε και ως εξής:

$$\log_b^X a$$

- > Και προσοχή ότι ο εκθέτης αυτός ΔΕΝ «πέφτει».
- Συνοψίζοντας:

$$\begin{vmatrix} \log_b a^K = K \log_b a \\ \log_b^X a = (\log_b a)^X \end{vmatrix}$$

και ειδικά για δυαδικούς λογάριθμους:

$$\log a^{K} = K \log a$$
$$\log^{X} a = (\log a)^{X}$$

1. Λογάριθμοι

- 3. Ιδιότητες των Λογαρίθμων (Αλλαγή Βάσης)
 - Μια σημαντική ιδιότητα, χρήσιμη όταν έχουμε να υπολογίσουμε κάποιον λογάριθμο με «περίεργη» βάση, είναι η ακόλουθη:

$$\log_b a = \frac{\log_c a}{\log_c b}$$

- Η ιδιότητα αυτή είναι πολύ χρήσιμη όταν η βάση και ο ίδιος ο αριθμός είναι δύναμη του 2.
- Παραδείγματα:

$$\log_8 32 = \frac{\log_2 32}{\log_2 8} = \frac{5}{3} = 1.66$$

$$\log_{64} 2048 = \frac{\log 2048}{\log 64} = \frac{11}{6} = 1.83$$

$$\log_9 27 = \frac{\log_3 27}{\log_3 9} = \frac{3}{2} = 1.5$$

1. Λογάριθμοι

- 3. Ιδιότητες των Λογαρίθμων (Λογάριθμος Γινομένου και Κλάσματος)
 - Ισχύουν και οι εξής δύο ιδιότητες:

$$\log_b(xy) = \log_b x + \log_b y$$
$$\log_b \frac{x}{y} = \log_b x - \log_b y$$

> Και ειδικά για δυαδικούς λογάριθμους:

$$\log(xy) = \log x + \log y$$
$$\log \frac{x}{y} = \log x - \log y$$

- Μεγάλη προσοχή με την παρενθετοποίηση. Ο λογάριθμος έχει πεδίο εφαρμογής:
 - > Είτε την παράσταση που είναι μέσα στις παρενθέσεις
 - Είτε το άμεσα επόμενο στοιχείο αν δεν υπάρχουν παρενθέσεις
 - ightharpoonup Προσοχή λοιπόν: $\log_b xy = (\log_b x) \cdot y$ άρα $\log_b xy \neq \log_b (xy)$

1. Λογάριθμοι

- 3. Ιδιότητες των Λογαρίθμων (Εκφραση ως δύναμη)
 - > Έχουμε και την εξής (πολύ σημαντική) ιδιότητα

$$b^{\log_b x} = x$$

Εφαρμογές:

$$5^{\log_5 n^2} = n^2$$

$$10^{\log_{10}(n+\sqrt{n})} = n + \sqrt{n}$$

- Η ιδιότητα αυτά θα μας φανεί ιδιαίτερα χρήσιμη όταν θα ιεραρχήσουμε συναρτήσεις πολυπλοκότητας, όπου θα εκφράζουμε τις συναρτήσεις ως εκθετικές με βάση 2.
 - Παραδείγματα:

$$n^{2} = 2^{\log n^{2}}$$

$$4^{n} = 2^{\log 4^{n}} = 2^{n\log 4} = 2^{2n}$$

1. Λογάριθμοι

- 4. Γραφική Παράσταση της f(x)=log x
 - Στην ΠΛΗ30 μελετάμε την συμπεριφορά συναρτήσεων ασυμπτωτικά (στο άπειρο)
 - ➢ Ας ρίξουμε μια ματιά στην γραφική παράσταση της f(x)=log x:

- Παρατηρούμε ότι:
 - Η f(x) αυξάνει πολύ αργά (άρα είναι μικρότερη από οποιαδήποτε πολυωνυμική συνάρτηση).
 - > Ωστόσο ασυμπτωτικά πρέπει να γνωρίζουμε ότι τείνει στο άπειρο.

www.psounis.gr

Β. Θεωρία

1. Λογάριθμοι

5. Διπλός και Τριπλός Λογάριθμος

> Θα συναντήσουμε και τις εξής συναρτήσεις:

$$f_1(n) = \log \log n$$

$$f_2(n) = \log \log \log n$$

Ως συντομογραφίες αντίστοιχα των συναρτήσεων:

$$f_1(n) = \log(\log n)$$

$$f_2(n) = \log(\log(\log n))$$

Έτσι π.χ. έχουμε:

$$log(log 256) = log(8) = 3$$

 $log(log 16)) = log(log 4) = log(2) = 1$

Για τις οποίες θα πρέπει να γνωρίζουμε:

$$\log\log\log n < \log\log n < \log n$$

> Αλλα και ότι ασυμπτωτικά τείνουν επίσης στο άπειρο

1. Συνοψη Ιδιοτήτων Λογαρίθμων

	Με βάση το b	Με βάση το 2
Ορισμός	$x = \log_b a \alpha vv b^x = a$	$x = \log a \alpha vv 2^x = a$
Λογάριθμος Γινομένου	$\log_b(xy) = \log_b x + \log_b y$	$\log(xy) = \log x + \log y$
Λογάριθμος Κλάσματος	$\log_b \frac{x}{y} = \log_b x - \log_b y$	$\log \frac{x}{y} = \log x - \log y$
Αλλαγή Βάσης	$\log_b a = \frac{\log_c a}{\log_c b}$	$\log a = \frac{\log_c a}{\log_c 2}$
Δυναμη στον αριθμό	$\log_b a^K = K \log_b a$	$\log a^K = K \log a$
Δύναμη στον λογάριθμο	$\log_b^X a = (\log_b a)^X$	$\log^X a = (\log a)^X$
Έκφραση ως Δύναμη	$b^{\log_b x} = x$	$2^{\log x} = x$

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

- > Συνήθης εκφώνηση εξετάσεων:
 - Ιεραρχήστε σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας τις παρακάτω συναρτήσεις
 - > Και μας δίνουν 5-6 συναρτήσεις.
- Στην περίπτωση αυτή ακολουθούμε μία στανταρ μεθοδολογία που συνίσταται στα εξής βήματα:
 - 1. Βρίσκουμε το Θ(.) των συναρτήσεων αν απαιτείται.
 - Αν οι συναρτήσεις μπορούν να ταξινομηθούν (δηλαδή δεν υπάρχει κάποια απροσδιόριστη συνάρτηση) δίνουμε την ιεραρχία τους, αλλιώς προχωράμε στο βήμα 2
 - 2. Εκφράζουμε ΟΛΕΣ τις συναρτήσεις ως εκθετικές με βάση το 2, χρησιμοποιώντας την ιδιότητα $x = 2^{\log x}$
 - 3. Κάνουμε πράξεις στους εκθέτες των συναρτήσεων (συνήθως ιδιότητες λογαρίθμων)
 - 4. Συγκρίνουμε τους εκθέτες των συναρτήσεων και μεταφέρουμε το αποτέλεσμα στις αρχικές συναρτήσεις

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

1.Εύρεση του Θ(.)

- Στο προηγούμενο μάθημα είδαμε πως μπορούμε να εξάγουμε το Θ(.) μιας συνάρτησης.
 - Για την εξαγωγή του Θ(.) απαιτείται να έχουμε «καθαρά αθροίσματα» δηλαδή θα πρέπει για να αποφανθούμε να ακολουθήσουμε τις εξής συστάσεις:
 - Να κάνουμε τα ριζικά δυνάμεις.
 - Να κάνουμε τις όποιες πράξεις δυνάμεων υπάρχουν.
 - Να υπολογίσουμε τα κλάσματα αριθμών και να τα εκφράσουμε ως δεκαδικούς αριθμούς.
 - Να κάνουμε τις όποιες επιμεριστικές ιδιότητες.
- ▶ ΠΡΟΣΟΧΗ! Η εύρεση του Θ(.) είναι προαιρετική. Δηλαδή:
 - Αν καμία συνάρτηση δεν έχει αθροίσματα όρων ή δεν υπάρχουν σταθερές πολλαπλασιασμένες με τις συναρτήσεις, το βήμα αυτό παραλείπεται!
 - Ωστόσο, αν έστω μία συνάρτηση απαιτεί την εύρεση του Θ(.), τότε
 ΥΠΟΧΡΕΩΤΙΚΑ θα πρέπει να πάρουμε Θ(.) σε όλες τις συναρτήσεις.

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

1.Εύρεση του Θ(.)

Ας το δούμε με ένα παράδειγμα:

Ιεραρχήστε σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας τις παρακάτω συναρτήσεις:

$$f_1(n) = \sqrt{n^6} + 5n(n+1)$$

 $f_2(n) = 4n^{\log n}$
 $f_3(n) = n^2 + 2 \cdot 5^n$

 Παρατηρούμε ότι έχουμε αθροίσματα και σταθερές πολ/νες με τις συναρτήσεις, άρα ξεκινάμε στην απάντηση με την εύρεση του Θ(.)

Απάντηση:

$$f_1(n) = \sqrt{n^6} + 5n(n+1) = n^{\frac{6}{2}} + 5n^2 + 5n = n^3 + 5n^2 + 5n = \Theta(n^3)$$

$$f_2(n) = 4n^{\log n} = \Theta(n^{\log n})$$

$$f_3(n) = n^2 + 2 \cdot 5^n = \Theta(5^n)$$

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

2.Εκθετικές με βάση το 2

- Αν στις συναρτήσεις που έχουμε μεσα στο Θ(.) έχουμε ΕΣΤΩ ΜΙΑ απροσδιόριστη συνάρτηση τότε εκφράζουμε ΟΛΕΣ τις συναρτήσεις (ΠΡΟΣΟΧΗ! Ότι έχει βγει στο Θ(.)) ως εκθετικές με βάση το 2.
 - > Ας δούμε την εξέλιξη της απάντησης στο προηγούμενο παράδειγμα:

Εκφράζουμε τις συναρτήσεις ως εκθετικές με βάση το 2:

$$f_1$$
: $n^3 = 2^{\log(n^3)}$
 f_2 : $n^{\log n} = 2^{\log(n^{\log n})}$
 f_3 : $5^n = 2^{\log(5^n)}$

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

3.Πράξεις στους εκθέτες των συναρτήσεων

- Έπειτα απομονώνουμε τους εκθέτες των συναρτήσεων και κάνουμε τις πράξεις των λογαρίθμων που έχουν εμφανιστεί σε αυτούς.
- > Στόχος και πάλι είναι να έχουμε καθαρά αθροίσματα και να έχουν πέσει όλες οι δυναμεις που είναι στους αριθμούς των λογαρίθμων
 - > Στο παράδειγμα που μελετάμε

Για τους εκθέτες έχουμε:

$$f_1: \log(n^3) = 3 \log n$$

 $f_2: \log(n^{\log n}) = \log n \cdot \log n = (\log n)^2 = \log^2 n$
 $f_3: \log(5^n) = n \cdot \log 5 = 2{,}32n$

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

4.Σύγκριση των εκθετών

- Τελικά βάζουμε σε μία αύξουσα σειρά τους εκθέτες των συναρτήσεων, αφού μετά τις πράξεις θα έχουν μετατραπεί σε μία από τις γνωστές μορφές. Βασικό οδηγό στοιχείο για να αποφανθούμε είναι ο πίνακας με τις γνωστές μορφές συναρτήσεων πολυπλοκότητας.
 - Προσοχή!!! Αν η παράσταση που έχει προκύψει είναι περίπλοκη (με την έννοια ότι έχουν προκύψει γινόμενα ή/και αθροίσματα, τότε:
 - > Εντοπίζουμε τον μεγαλύτερο όρο από όσους είναι στην παράσταση
 - Αν παραπάνω από μία συναρτήσεις έχουν τον ίδιο μεγαλύτερο όρο, τότε αποφασίζουμε ποια είναι μεγαλύτερη από αυτές:
 - ightharpoonup κοιτώντας τον αμέσως επόμενο όρο με τον οποίο είναι πολλαπλασιασμένη η συνάρτηση. Π.χ: $5n < 6n < n \log n$
 - ightharpoonup Αν έχουμε και πάλι ισοπαλία, τότε κοιτάμε και τον επόμενο όρο του αθροίσματος. Π.χ.: $2n+4<2n+\log n$
 - Στο βήμα αυτό, οι σταθερές έχουν σημασία! Άρα δεν παραλείπεται κανένας από τους όρους που έχουν προκύψει.

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

4.Σύγκριση των εκθετών

Για την απόφαση της ιεραρχίας χρειαζόμαστε από την θεωρία ότι

ΣΤΑΘΕΡΕΣ < ΛΟΓΑΡΙΘΜΙΚΕΣ < ΠΟΛΥΩΝΥΜΙΚΕΣ < ΕΚΘΕΤΙΚΕΣ < ΥΠΕΡΕΚΘΕΤΙΚΕΣ

$$T(n) = \Theta(1)$$

$$T(n) = \Theta(1)$$
 $T(n) = \Theta(\log^k n)$ $T(n) = \Theta(n^k)$

$$T(n) = \Theta(n^k)$$

$$T(n) = \Theta(a^n)$$

$$T(n) = \Theta(n!)$$

$$T(n) = \Theta(n^n)$$

Όπου έχουμε πλέον πιο αναλυτικά:

	Μορφή Συναρτήσεων	Σχόλια
ΣΤΑΘΕΡΕΣ	Θ(1)	
ΛΟΓΑΡΙΘΜΙΚΕΣ	$\log\log n < \log n < \log^K n$	Το K>1 σταθερά «καθαρό» n
ΠΟΛΥΩΝΥΜΙΚΕΣ	$n < n^2 < n^3 < < n^K$	Το Κ σταθερά «καθαρό» n
ΕΚΘΕΤΙΚΕΣ	$a^n < < 2^n < 3^n < < b^n$	1 <a<2, α,β:="" σταθερές<br="">«καθαρό» n</a<2,>
ΥΠΕΡΕΚΘΕΤΙΚΕΣ	$n! < n^n$	«καθαρό» n

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

4.Σύγκριση των εκθετών

> Έτσι κλείνουμε το παράδειγμα που μελετάμε ως εξής:

Ισχύει:

$$3\log n < \log^2 n < 2.32n$$

Άρα έπεται:

$$f_1 < f_2 < f_3$$

2. Ιεραρχία Συναρτήσεων Πολυπλοκότητας

> Ας δούμε τώρα πως πρέπει να είναι η απάντησή μας στις εξετάσεις:

Απάντηση:

$$f_1(n) = \sqrt{n^6} + 5n(n+1) = n^{\frac{6}{2}} + 5n^2 + 5n = n^3 + 5n^2 + 5n = \Theta(n^3)$$

$$f_2(n) = 4n^{\log n} = \Theta(n^{\log n})$$

$$f_3(n) = n^2 + 2 \cdot 5^n = \Theta(5^n)$$

Εκφράζουμε τις συναρτήσεις ως εκθετικές με βάση το 2:

$$f_1$$
: $n^3 = 2^{\log(n^3)}$
 f_2 : $n^{\log n} = 2^{\log(n^{\log n})}$
 f_3 : $5^n = 2^{\log(5^n)}$

Για τους εκθέτες έχουμε:

$$f_1: \log(n^3) = 3 \log n$$

 $f_2: \log(n^{\log n}) = \log n \cdot \log n = (\log n)^2 = \log^2 n$
 $f_3: \log(5^n) = n \cdot \log 5 = 2{,}32n$

 $\log n < \log^2 n < 2,32n$

Άρα έπεται: $f_1 < f_2 < f_3$

Ε. Ασκήσεις Ασκηση Κατανόησης 1

- Υπολογίστε τους ακόλουθους λογαρίθμους χωρίς την χρήση υπολογιστή. Αν δεν μπορείτε να τον υπολογίσετε ακριβώς, εκτιμήστε μεταξύ ποιων δύο φυσικών αριθμών ανήκει ο λογάριθμος
 - $1.\log_5 25$
 - $2.\log_4 64$
 - 3.log₈ 64
 - 4.log 7
 - 5.log 45
 - 6.log₃ 62
 - $7.\log_4 33$
 - $8.\log_9 80$
 - $9.\log_{6} 244$

Ε. Ασκήσεις Ασκηση Κατανόησης 2

- > Υπολογίστε τους ακόλουθους λογάριθμους κάνοντας αλλαγή βάσης:
 - $1.\log_{128} 32$
 - $2.\log_4 512$
 - 3.log₉ 27
 - $4.\log_4 1/2$

Ε. Ασκήσεις Εφαρμογή 1

Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας:

$$f_1(n) = 1.5n^{\log n}$$

$$f_2(n) = 10\log^{\log n} n$$

$$f_3(n) = 0.005\log^n n$$

$$f_4(n) = 1.15n^n$$

Ε. Ασκήσεις Εφαρμογή 2

Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας:

$$f_1(n) = 8\log^n n + 4n^{\log n}n$$

$$f_2(n) = 10(n^5 + n^2) + n^6$$

$$f_3(n) = n^2 \cdot n^5 + n^7$$

$$f_4(n) = \log^4 n^n$$

Ε. Ασκήσεις Εφαρμογή 3

Ιεραρχήστε τις παρακάτω συναρτήσεις σε αύξουσα σειρά ασυμπτωτικής πολυπλοκότητας:

$$f_1(n) = 3^{\sqrt{n}}$$

$$f_2(n) = \log(n^{\sqrt{n}})$$

$$f_3(n) = 2^{\log n}$$

$$f_4(n) = (\sqrt{n^5})^n$$