

Chapter 13: Query Optimization

- Introduction
- Transformation of Relational Expressions
- Catalog Information for Cost Estimation
- Statistical Information for Cost Estimation
- Cost-based optimization
- Choosing Evaluation Plans

Introduction

- Alternative ways of evaluating a given query
 - Equivalent expressions
 - Different algorithms for each operation

Introduction (Cont.)

An evaluation plan defines exactly what algorithm is used for each operation, and how the execution of the operations is coordinated.

Find out how to view query execution plans on your favorite database

Introduction (Cont.)

- Cost difference between evaluation plans for a query can be enormous
 - E.g. seconds vs. days in some cases
- Steps in cost-based query optimization
 - Generate logically equivalent expressions using equivalence rules
 - 2. Annotate resultant expressions to get alternative query plans
 - 3. Choose the cheapest plan based on estimated cost
- Estimation of plan cost based on:
 - Statistical information about relations. Examples:
 - number of tuples, number of distinct values for an attribute
 - Statistic estimation for intermediate results
 - to compute cost of complex expressions
 - Cost formulae for algorithms, computed using statistics

Transformation of Relational Expressions

- Two relational algebra expressions are said to be equivalent if the two expressions generate the same set of tuples on every legal database instance
 - Note: order of tuples is irrelevant
 - we don't care if they generate different results on databases that violate integrity constraints
- In SQL, inputs and outputs are multisets of tuples
 - Two expressions in the multiset version of the relational algebra are said to be equivalent if the two expressions generate the same multiset of tuples on every legal database instance.
- An equivalence rule says that expressions of two forms are equivalent
 - Can replace expression of first form by second, or vice versa

Equivalence Rules

1. Conjunctive selection operations can be deconstructed into a sequence of individual selections.

$$\sigma_{\theta_1 \wedge \theta_2}(E) = \sigma_{\theta_1}(\sigma_{\theta_2}(E))$$

2. Selection operations are commutative.

$$\sigma_{\theta_1}(\sigma_{\theta_2}(E)) = \sigma_{\theta_2}(\sigma_{\theta_1}(E))$$

3. Only the last in a sequence of projection operations is needed, the others can be omitted.

$$\Pi_{L_1}(\Pi_{L_2}(...(\Pi_{L_n}(E))...)) = \Pi_{L_1}(E)$$

4. Selections can be combined with Cartesian products and theta joins.

a.
$$\sigma_{\theta}(E_1 \times E_2) = E_1 \bowtie_{\theta} E_2$$

b.
$$\sigma_{\theta 1}(E_1 \bowtie_{\theta 2} E_2) = E_1 \bowtie_{\theta 1 \land \theta 2} E_2$$

Equivalence Rules (Cont.)

5. Theta-join operations (and natural joins) are commutative.

$$E_1 \bowtie_{\theta} E_2 = E_2 \bowtie_{\theta} E_1$$

6. (a) Natural join operations are associative:

$$(E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3)$$

(b) Theta joins are associative in the following manner:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \land \theta_3} E_3 = E_1 \bowtie_{\theta_1 \land \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

Equivalence Rules (Cont.)

- 7. The selection operation distributes over the theta join operation under the following two conditions:
 - (a) When all the attributes in θ_0 involve only the attributes of one of the expressions (E_1) being joined.

$$\sigma_{\theta 0}(\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta 0}(\mathsf{E}_1)) \bowtie_{\theta} \mathsf{E}_2$$

(b) When θ_1 involves only the attributes of E_1 and θ_2 involves only the attributes of E_2 .

$$\sigma_{\theta_1} \wedge_{\theta_2} (\mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2) = (\sigma_{\theta_1} (\mathsf{E}_1)) \bowtie_{\theta} (\sigma_{\theta_2} (\mathsf{E}_2))$$

Pictorial Depiction of Equivalence Rules

Equivalence Rules (Cont.)

- 8. The projection operation distributes over the theta join operation as follows:
 - (a) if θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = (\prod_{L_1} (E_1)) \bowtie_{\theta} (\prod_{L_2} (E_2))$$

- (b) Consider a join $E_1 \bowtie_{\theta} E_2$.
 - Let L_1 and L_2 be sets of attributes from E_1 and E_2 , respectively.
 - Let L_3 be attributes of E_1 that are involved in join condition θ , but are not in $L_1 \cup L_2$, and
 - let L_4 be attributes of E_2 that are involved in join condition θ , but are not in $L_1 \cup L_2$.

$$\prod_{L_1 \cup L_2} (E_1 \bowtie_{\theta} E_2) = \prod_{L_1 \cup L_2} ((\prod_{L_1 \cup L_3} (E_1)) \bowtie_{\theta} (\prod_{L_2 \cup L_4} (E_2)))$$

Equivalence Rules (Cont.)

9. The set operations union and intersection are commutative

$$E_1 \cup E_2 = E_2 \cup E_1$$

$$E_1 \cap E_2 = E_2 \cap E_1$$

- (set difference is not commutative).
- 10. Set union and intersection are associative.

$$(E_1 \cup E_2) \cup E_3 = E_1 \cup (E_2 \cup E_3)$$

 $(E_1 \cap E_2) \cap E_3 = E_1 \cap (E_2 \cap E_3)$

11. The selection operation distributes over \cup , \cap and -.

$$\sigma_{\theta} (E_1 - E_2) = \sigma_{\theta} (E_1) - \sigma_{\theta} (E_2)$$

and similarly for \cup and \cap in place of $-$

Also:
$$\sigma_{\theta}(E_1 - E_2) = \sigma_{\theta}(E_1) - E_2$$

and similarly for \cap in place of $-$, but not for \cup

12. The projection operation distributes over union

$$\Pi_{L}(E_{1} \cup E_{2}) = (\Pi_{L}(E_{1})) \cup (\Pi_{L}(E_{2}))$$

Transformation Example: Pushing Selections

- Query: Find the names of all instructors in the Music department, along with the titles of the courses that they teach
 - $\Pi_{name, \ title}(\sigma_{dept_name= \text{``Music''}} (instructor \bowtie (teaches \bowtie \Pi_{course \ id. \ title}(course))))$
- Transformation using rule 7a.
 - $\Pi_{name, \ title}((\sigma_{dept_name= \ "Music"}(instructor)) \bowtie (teaches \bowtie \Pi_{course \ id. \ title}(course)))$
- Performing the selection as early as possible reduces the size of the relation to be joined.

Example with Multiple Transformations

- Query: Find the names of all instructors in the Music department who have taught a course in 2009, along with the titles of the courses that they taught
 - $\Pi_{name, \ title}(\sigma_{dept_name= \text{``Music''} \land year = 2009} (instructor \bowtie (teaches \bowtie \Pi_{course \ id. \ title}(course))))$
- Transformation using join associatively (Rule 6a):
 - $\Pi_{name, \ title}(\sigma_{dept_name= \text{``Music''} \land gear = 2009}$ ((instructor \bowtie teaches) \bowtie $\Pi_{course \ id. \ title}$ (course)))
- Second form provides an opportunity to apply the "perform selections early" rule, resulting in the subexpression

$$\sigma_{dept_name = \text{``Music''}} (instructor) \bowtie \sigma_{vear = 2009} (teaches)$$

Multiple Transformations (Cont.)

(a) Initial expression tree

(b) Tree after multiple transformations

Transformation Example: Pushing Projections

- Consider: $\Pi_{name, \ title}(\sigma_{dept_name= \text{``Music''}}(instructor) \times teaches) \\ \bowtie \Pi_{course_id, \ title}(course))))$
- When we compute

```
\sigma_{dept\_name = "Music"} (instructor \bowtieteaches)
```

we obtain a relation whose schema is: (ID, name, dept_name, salary, course_id, sec_id, semester, year)

Push projections using equivalence rules 8a and 8b; eliminate unneeded attributes from intermediate results to get:

Performing the projection as early as possible reduces the size of the relation to be joined.

Join Ordering Example

For all relations r_1 , r_2 , and r_3 ,

$$(r_1 \bowtie r_2) \bowtie r_3 = r_1 \bowtie (r_2 \bowtie r_3)$$

(Join Associativity)

If $r_2 \bowtie r_3$ is quite large and $r_1 \bowtie r_2$ is small, we choose

$$(r_1 \bowtie r_2) \bowtie r_3$$

so that we compute and store a smaller temporary relation.

Join Ordering Example (Cont.)

Consider the expression

$$\Pi_{name, \ title}(\sigma_{dept_name= \text{``Music''}} (instructor) \bowtie teaches) \\ \bowtie \Pi_{course \ id, \ title} (course))))$$

■ Could compute $teaches \bowtie \Pi_{course_id, \ title}$ (course) first, and join result with

o_{dept_name= "Music"} (instructor)
but the result of the first join is likely to be a large relation.

- Only a small fraction of the university's instructors are likely to be from the Music department
 - it is better to compute

```
\sigma_{dept\_name= \text{``Music''}} (instructor)^{\bowtie} teaches first.
```


Enumeration of Equivalent Expressions

- Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression
- Can generate all equivalent expressions as follows:
 - Repeat
 - apply all applicable equivalence rules on every subexpression of every equivalent expression found so far
 - add newly generated expressions to the set of equivalent expressions
 Until no new equivalent expressions are generated above
- The above approach is very expensive in space and time
 - Two approaches
 - Optimized plan generation based on transformation rules
 - Space requirements reduced by sharing common sub-expressions
 - Time requirements are reduced by not generating all expressions
 - Special case approach for queries with only selections, projections and joins

Statistical Information for Cost Estimation

- n_r : number of tuples in a relation r.
- b_r : number of blocks containing tuples of r.
- \blacksquare I_r : size of a tuple of r.
- f_r : blocking factor of r i.e., the number of tuples of r that fit into one block.
- V(A, r): number of distinct values that appear in r for attribute A; same as the size of $\prod_A(r)$.
- If tuples of r are stored together physically in a file, then:

$$b_{r} = \left[\frac{n_{r}}{f_{r}}\right]$$

Histograms

Histogram on attribute age of relation person

- **Equi-width** histograms
- **Equi-depth** histograms

Selection Size Estimation

- $\sigma_{A=v}(r)$
 - $n_r / V(A,r)$: number of records that will satisfy the selection
 - Equality condition on a key attribute: size estimate = 1
- $\sigma_{A \le V}(r)$ (case of $\sigma_{A \ge V}(r)$ is symmetric)
 - Let c denote the estimated number of tuples satisfying the condition.
 - If min(A,r) and max(A,r) are available in catalog
 - $ightharpoonup c = 0 \text{ if } v < \min(A,r)$

$$c = n_r \cdot \frac{v - \min(A, r)}{\max(A, r) - \min(A, r)}$$

- If histograms available, can refine above estimate
- In absence of statistical information c is assumed to be $n_r/2$.

Size Estimation of Complex Selections

- The **selectivity** of a condition θ_i is the probability that a tuple in the relation r satisfies θ_i .
 - If s_i is the number of satisfying tuples in r, the selectivity of θ_i is given by s_i / n_r .
- **Conjunction:** $\sigma_{01 \land 02 \land \ldots \land 0n}$ (r). Assuming independence, estimate of tuples in the result is: $n_r * \frac{S_1 * S_2 * \ldots * S_n}{n_r^n}$
- **Disjunction**: $\sigma_{\theta_1 \vee \theta_2 \vee \ldots \vee \theta_n}(r)$. Estimated number of tuples:

$$n_r * \left(1 - \left(1 - \frac{S_1}{n_r}\right) * \left(1 - \frac{S_2}{n_r}\right) * \dots * \left(1 - \frac{S_n}{n_r}\right)\right)$$

Negation: $\sigma_{\neg \theta}(r)$. Estimated number of tuples:

$$n_{\rm r}$$
 – $size(\sigma_{\theta}(r))$

Estimation of the Size of Joins

- The Cartesian product $r \times s$ contains $n_r . n_s$ tuples; each tuple occupies $s_r + s_s$ bytes.
- If $R \cap S = \emptyset$, then $r \bowtie s$ is the same as $r \times s$.
- If $R \cap S$ is a key for R, then a tuple of s will join with at most one tuple from r
 - therefore, the number of tuples in $r \bowtie s$ is no greater than the number of tuples in s.
- If $R \cap S$ in S is a foreign key in S referencing R, then the number of tuples in $r \bowtie s$ is exactly the same as the number of tuples in s.
 - The case for $R \cap S$ being a foreign key referencing S is symmetric.

Estimation of the Size of Joins (Cont.)

If $R \cap S = \{A\}$ is not a key for R or S. If we assume that every tuple t in R produces tuples in $R \bowtie S$, the number of tuples in $R \bowtie S$ is estimated to be:

$$\frac{n_r * n_s}{V(A,s)}$$

If the reverse is true, the estimate obtained will be:

$$\frac{n_r * n_s}{V(A,r)}$$

The lower of these two estimates is probably the more accurate one.

- Can improve on above if histograms are available
 - Use formula similar to above, for each cell of histograms on the two relations

Size Estimation for Other Operations

- Projection: estimated size of $\prod_{A}(r) = V(A,r)$
- Aggregation : estimated size of $_{A}\mathbf{g}_{F}(r) = V(A,r)$
- Set operations
 - For unions/intersections of selections on the same relation: rewrite and use size estimate for selections
 - ▶ E.g. $\sigma_{\theta 1}$ (r) \cup $\sigma_{\theta 2}$ (r) can be rewritten as $\sigma_{\theta 1} \vee \theta 2$ (r)
 - For operations on different relations:
 - ightharpoonup estimated size of $r \cup s =$ size of r +size of s.
 - estimated size of $r \cap s$ = minimum size of r and size of s.
 - estimated size of r s = r.
 - All the three estimates may be quite inaccurate, but provide upper bounds on the sizes.
- Outer join:
 - Estimated size of $r \boxtimes s = size \ of \ r \boxtimes s + size \ of \ r$
 - Case of right outer join is symmetric
 - Estimated size of $r \times s = size \ of \ r \times s + size \ of \ r + size \ of \ s$

Estimation of Number of Distinct Values

Selections: $\sigma_{\theta}(r)$

- If θ forces A to take a specified value: $V(A, \sigma_{\theta}(r)) = 1$.
 - e.g., A = 3
- If θ forces A to take on one of a specified set of values: $V(A, \sigma_{\theta}(r)) = \text{number of specified values}.$
 - \bullet (e.g., $(A = 1 \ V A = 3 \ V A = 4)),$
- If the selection condition θ is of the form A op V estimated $V(A, \sigma_{\theta}(r)) = V(A, r) * s$
 - where s is the selectivity of the selection.
- In all the other cases: use approximate estimate of $min(V(A,r), n_{\sigma\theta(r)})$
 - More accurate estimate can be got using probability theory, but this one works fine generally

Estimation of Distinct Values (Cont.)

Joins: $r \bowtie s$

- If all attributes in A are from r estimated $V(A, r \bowtie s) = \min (V(A, r), n_{r \bowtie s})$
- If A contains attributes A1 from r and A2 from s, then estimated $V(A,r \bowtie s) =$

$$\min(V(A1,r)^*V(A2-A1,s), V(A1-A2,r)^*V(A2,s), n_{r \bowtie s})$$

 More accurate estimate can be got using probability theory, but this one works fine generally

Estimation of Distinct Values (Cont.)

- Estimation of distinct values are straightforward for projections.
 - They are the same in $\prod_{A(r)}$ as in r.
- The same holds for grouping attributes of aggregation.
- For aggregated values
 - For min(A) and max(A), the number of distinct values can be estimated as min(V(A,r), V(G,r)) where G denotes grouping attributes
 - For other aggregates, assume all values are distinct, and use V(G,r)

Cost Estimation

- Cost of each operator computed as described earlier
 - Need statistics of input relations
 - E.g. number of tuples, sizes of tuples
- Inputs can be results of sub-expressions
 - Need to estimate statistics of expression results
 - To do so, we require additional statistics
 - ▶ E.g. number of distinct values for an attribute

Choice of Evaluation Plans

- Must consider the interaction of evaluation techniques when choosing evaluation plans
 - choosing the cheapest algorithm for each operation independently may not yield best overall algorithm. E.g.
 - merge-join may be costlier than hash-join, but may provide a sorted output which reduces the cost for an outer level aggregation.
 - nested-loop join may provide opportunity for pipelining
- Practical query optimizers incorporate elements of the following two broad approaches:
 - 1. Search all the plans and choose the best plan in a cost-based fashion.
 - 2. Uses heuristics to choose a plan.

Cost-Based Optimization

- Consider finding the best join-order for $r_1 \bowtie r_2 \bowtie \ldots r_n$.
- There are (2(n-1))!/(n-1)! different join orders for above expression. With n = 7, the number is 665280, with n = 10, the number is greater than 176 billion!
- No need to generate all the join orders. Using dynamic programming, the least-cost join order for any subset of $\{r_1, r_2, \ldots r_n\}$ is computed only once and stored for future use.

Left Deep Join Trees

In **left-deep join trees**, the right-hand-side input for each join is a relation, not the result of an intermediate join.

(a) Left-deep join tree

(b) Non-left-deep join tree

Cost of Optimization

- With dynamic programming time complexity of optimization with bushy trees is $O(3^n)$.
 - With n = 10, this number is 59000 instead of 176 billion!
 - Space complexity is O(2ⁿ)
- If only left-deep trees are considered, time complexity of finding best join order with dynamic programming is $O(n \ 2^n)$
 - Space complexity remains at O(2ⁿ)
- Cost-based optimization is expensive, but worthwhile for queries on large datasets (typical queries have small n, generally < 10)

Heuristic Optimization

- Cost-based optimization is expensive, even with dynamic programming.
- Systems may use *heuristics* to reduce the number of choices that must be made in a cost-based fashion.
- Heuristic optimization transforms the query-tree by using a set of rules that typically (but not in all cases) improve execution performance:
 - Perform selection early (reduces the number of tuples)
 - Perform projection early (reduces the number of attributes)
 - Perform most restrictive selection and join operations (i.e. with smallest result size) before other similar operations.
 - Some systems use only heuristics, others combine heuristics with partial cost-based optimization.

Structure of Query Optimizers

- Many optimizers considers only left-deep join orders.
 - Plus heuristics to push selections and projections down the query tree
 - Reduces optimization complexity and generates plans amenable to pipelined evaluation.
- Heuristic optimization used in some versions of Oracle:
 - Repeatedly pick "best" relation to join next
 - Starting from each of n starting points. Pick best among these