# Moving Beyond Linearity

The truth is never linear! Or almost never!

But often the linearity assumption is good enough.

When its not ...

- polynomials,
- step functions,
- splines,
- local regression, and
- generalized additive models

offer a lot of flexibility, without losing the ease and interpretability of linear models.

### Polynomial Regression

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \beta_3 x_i^3 + \ldots + \beta_d x_i^d + \epsilon_i$$

#### Degree-4 Polynomial



#### Details

- Create new variables  $X_1 = X$ ,  $X_2 = X^2$ , etc and then treat as multiple linear regression.
- Not really interested in the coefficients; more interested in the fitted function values at any value  $x_0$ :

$$\hat{f}(x_0) = \hat{\beta}_0 + \hat{\beta}_1 x_0 + \hat{\beta}_2 x_0^2 + \hat{\beta}_3 x_0^3 + \hat{\beta}_4 x_0^4.$$

- Since  $\hat{f}(x_0)$  is a linear function of the  $\hat{\beta}_{\ell}$ , can get a simple expression for *pointwise-variances*  $\operatorname{Var}[\hat{f}(x_0)]$  at any value  $x_0$ . In the figure we have computed the fit and pointwise standard errors on a grid of values for  $x_0$ . We show  $\hat{f}(x_0) \pm 2 \cdot \operatorname{se}[\hat{f}(x_0)]$ .
- We either fix the degree d at some reasonably low value, else use cross-validation to choose d.

#### Details continued

 Logistic regression follows naturally. For example, in figure we model

$$\Pr(y_i > 250 | x_i) = \frac{\exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}{1 + \exp(\beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_d x_i^d)}.$$

- To get confidence intervals, compute upper and lower bounds on on the logit scale, and then invert to get on probability scale.
- Can do separately on several variables—just stack the variables into one matrix, and separate out the pieces afterwards (see GAMs later).
- Caveat: polynomials have notorious tail behavior very bad for extrapolation.
- Can fit using  $y \sim poly(x, degree = 3)$  in formula.

### Step Functions

Another way of creating transformations of a variable — cut the variable into distinct regions.

$$C_1(X) = I(X < 35), \quad C_2(X) = I(35 \le X < 50), \dots, C_3(X) = I(X \ge 65)$$

#### Piecewise Constant



### Step functions continued

- Easy to work with. Creates a series of dummy variables representing each group.
- Useful way of creating interactions that are easy to interpret. For example, interaction effect of Year and Age:

$$I({\tt Year} < 2005) \cdot {\tt Age}, \quad I({\tt Year} \geq 2005) \cdot {\tt Age}$$

would allow for different linear functions in each age category.

- In R: I(year < 2005) or cut(age, c(18, 25, 40, 65, 90)).
- Choice of cutpoints or *knots* can be problematic. For creating nonlinearities, smoother alternatives such as *splines* are available.

### Piecewise Polynomials

 Instead of a single polynomial in X over its whole domain, we can rather use different polynomials in regions defined by knots. E.g. (see figure)

$$y_i = \begin{cases} \beta_{01} + \beta_{11}x_i + \beta_{21}x_i^2 + \beta_{31}x_i^3 + \epsilon_i & \text{if } x_i < c; \\ \beta_{02} + \beta_{12}x_i + \beta_{22}x_i^2 + \beta_{32}x_i^3 + \epsilon_i & \text{if } x_i \ge c. \end{cases}$$

- Better to add constraints to the polynomials, e.g. continuity.
- Splines have the "maximum" amount of continuity.



# Linear Splines

A linear spline with knots at  $\xi_k$ , k = 1, ..., K is a piecewise linear polynomial continuous at each knot.

We can represent this model as

$$y_i = \beta_0 + \beta_1 b_1(x_i) + \beta_2 b_2(x_i) + \dots + \beta_{K+1} b_{K+1}(x_i) + \epsilon_i,$$

where the  $b_k$  are basis functions.

$$b_1(x_i) = x_i$$
  
 $b_{k+1}(x_i) = (x_i - \xi_k)_+, \quad k = 1, \dots, K$ 

Here the  $()_+$  means positive part; i.e.

$$(x_i - \xi_k)_+ = \begin{cases} x_i - \xi_k & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$



# Cubic Splines

A cubic spline with knots at  $\xi_k$ , k = 1, ..., K is a piecewise cubic polynomial with continuous derivatives up to order 2 at each knot.

Again we can represent this model with truncated power basis functions

$$y_{i} = \beta_{0} + \beta_{1}b_{1}(x_{i}) + \beta_{2}b_{2}(x_{i}) + \dots + \beta_{K+3}b_{K+3}(x_{i}) + \epsilon_{i},$$

$$b_{1}(x_{i}) = x_{i}$$

$$b_{2}(x_{i}) = x_{i}^{2}$$

$$b_{3}(x_{i}) = x_{i}^{3}$$

$$b_{k+3}(x_{i}) = (x_{i} - \xi_{k})_{+}^{3}, \quad k = 1, \dots, K$$

where

$$(x_i - \xi_k)_+^3 = \begin{cases} (x_i - \xi_k)^3 & \text{if } x_i > \xi_k \\ 0 & \text{otherwise} \end{cases}$$



# Natural Cubic Splines

A natural cubic spline extrapolates linearly beyond the boundary knots. This adds  $4=2\times 2$  extra constraints, and allows us to put more internal knots for the same degrees of freedom as a regular cubic spline.



Fitting splines in R is easy: bs(x, ...) for any degree splines, and ns(x, ...) for natural cubic splines, in package splines.

#### **Natural Cubic Spline**



### Knot placement

- One strategy is to decide K, the number of knots, and then place them at appropriate quantiles of the observed X.
- A cubic spline with K knots has K+4 parameters or degrees of freedom.
- A natural spline with K knots has K degrees of freedom.



Comparison of a degree-14 polynomial and a natural cubic spline, each with 15df.

ns(age, df=14) poly(age, deg=14)

# Smoothing Splines

This section is a little bit mathematical



Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

• The first term is RSS, and tries to make g(x) match the data at each  $x_i$ .

# Smoothing Splines

This section is a little bit mathematical



Consider this criterion for fitting a smooth function g(x) to some data:

$$\underset{g \in \mathcal{S}}{\text{minimize}} \sum_{i=1}^{n} (y_i - g(x_i))^2 + \lambda \int g''(t)^2 dt$$

- The first term is RSS, and tries to make g(x) match the data at each  $x_i$ .
- The second term is a roughness penalty and controls how wiggly g(x) is. It is modulated by the tuning parameter  $\lambda > 0$ .
  - The smaller  $\lambda$ , the more wiggly the function, eventually interpolating  $y_i$  when  $\lambda = 0$ .
  - As  $\lambda \to \infty$ , the function g(x) becomes linear.

# Smoothing Splines continued

The solution is a natural cubic spline, with a knot at every unique value of  $x_i$ . The roughness penalty still controls the roughness via  $\lambda$ .

#### Some details

- Smoothing splines avoid the knot-selection issue, leaving a single  $\lambda$  to be chosen.
- The algorithmic details are too complex to describe here. In R, the function smooth.spline() will fit a smoothing spline.
- The vector of n fitted values can be written as  $\hat{\mathbf{g}}_{\lambda} = \mathbf{S}_{\lambda} \mathbf{y}$ , where  $\mathbf{S}_{\lambda}$  is a  $n \times n$  matrix (determined by the  $x_i$  and  $\lambda$ ).
- The effective degrees of freedom are given by

$$df_{\lambda} = \sum_{i=1}^{n} {\{\mathbf{S}_{\lambda}\}_{ii}}.$$

# Smoothing Splines continued — choosing $\lambda$

We can specify df rather than λ!
 In R: smooth.spline(age, wage, df = 10)

• The leave-one-out (LOO) cross-validated error is given by

$$RSS_{cv}(\lambda) = \sum_{i=1}^{n} (y_i - \hat{g}_{\lambda}^{(-i)}(x_i))^2 = \sum_{i=1}^{n} \left[ \frac{y_i - \hat{g}_{\lambda}(x_i)}{1 - \{\mathbf{S}_{\lambda}\}_{ii}} \right]^2.$$

In R: smooth.spline(age, wage)

#### **Smoothing Spline**



### Local Regression

#### **Local Regression**



With a sliding weight function, we fit separate linear fits over the range of X by weighted least squares.

See text for more details, and loess() function in R.

#### Generalized Additive Models

Allows for flexible nonlinearities in several variables, but retains the additive structure of linear models.

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \cdots + f_p(x_{ip}) + \epsilon_i.$$

$$\begin{cases} & & \text{HS HS} & \text{«Coll Coll Noll Noll Poly of the property of the propert$$

#### GAM details

• Can fit a GAM simply using, e.g. natural splines:

```
lm(wage \sim ns(year, df = 5) + ns(age, df = 5) + education)
```

- Coefficients not that interesting; fitted functions are. The previous plot was produced using plot.gam.
- Can mix terms some linear, some nonlinear and use anova() to compare models.
- Can use smoothing splines or local regression as well:

$$\texttt{gam}(\texttt{wage} \sim \texttt{s}(\texttt{year}, \texttt{df} = \texttt{5}) + \texttt{lo}(\texttt{age}, \texttt{span} = .\texttt{5}) + \texttt{education})$$

• GAMs are additive, although low-order interactions can be included in a natural way using, e.g. bivariate smoothers or interactions of the form ns(age,df=5):ns(year,df=5).

#### GAMs for classification

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + f_1(X_1) + f_2(X_2) + \dots + f_p(X_p).$$



 $gam(I(wage > 250) \sim year + s(age, df = 5) + education, family = binomial)$