EENG 5170 Control and Mechatronics

Homework Assignment - 1

```
Q1 Use Matlab to find the roots of the following polynomials:

    Desktop ▶ Matlab assignment Lab 2 EENG5650

Code:
             Editor - C:\Users\kgaga\Desktop\Matlab assignment Lab 2 EENG5650\EENG_5170_HW_1.m
             EENG_5170_HW_1.m × EENG_5170_HW_2.m × EENG_5170_HW_3.m ×
                      clc %clear screen
             1
             2
                 口
                      %EENG 5170 HW Assignment 1
             3
                      % Q1. a
                      p1 =[2 -3 4 -1 3 0];%polynomial expression
             4
             5
                      r1 = roots(p1); %roots
             6
                      disp("Roots for P1 = ")
             7
                      disp(r1)
             8
             9
                      %01. b
            10
                      p2 =[-1,0,0,5,-1,0,10];%polynomial expression
                      r2 = roots(p2);%roots
            11
                      disp("Roots for P2 = ")
            12
            13
                      disp(r2)
            14
            15
                      %Q2
            10
           🌌 Editor - C:\Users\kgaga\Desktop\Matlab assignment Lab 2 EENG5650\EENG_5170_
Result:
             EENG_5170_HW_1.m × EENG_5170_HW_2.m × EENG_5170_HW_3.m
             1
                      clc %clear screen
             2
                  口
                      %EENG 5170 HW Assignment 1
             3
                     % Q1. a
             4
                      p1 =[2 -3 4 -1 3 0]; % polynomial expression
             5
                      r1 = roots(p1); %roots
             6
                      disp("Roots for P1 = ")
             7
                      disp(r1)
             8
             9
                      %01. b
            10
                      p2 =[-1,0,0,5,-1,0,10];%polynomial expression
            11
                      r2 = roots(p2);%roots
                      disp("Roots for P2 = ")
            12
            13
                      disp(r2)
           Command Window
             Roots for P1 =
                0.0000 + 0.0000i
                0.9602 + 1.0805i
                0.9602 - 1.0805i
               -0.2102 + 0.8208i
                -0.2102 - 0.8208i
             Roots for P2 =
                1.8265 + 0.0000i
                -0.9753 + 1.6199i
               -0.9753 - 1.6199i
                0.6180 + 0.9977i
```

0.6180 - 0.9977i -1.1119 + 0.0000i **Q2** Use Matlab to find the poles and zeros of the following transfer function:

Code:

Plot:

Code:

■ Desktop ► Matlab assignment Lab 2 EENG5650

Plot:

		S
& - tx	- k	-s 4co
4	s (s+1)(S+4)	
a) Closed loop transfer function.		
EGA) = R(y) -1965)	- RUS) -400	4(s) = (10) - EA(s)
= - <u>Y(s)</u> 2 <u>G(s)</u> <u>H(s)</u> = 1 R(s) 1 + G(s) H(s)		
Ru) 1+1	45) 4(5)	
; 4(5) = K		×
: 4(S) = K	+1)(544)	(5)(S+1)(B+4) + K
+	[c (s) (lb+1)(s+4):	15) = K RUS) = 53+552+45+ K
	- S(S+1) (FY)	RU1 53+552+45+12
b] Routh - Hwrwitz Stability Critelian		
	V	Ds) > S3+552+45+6
: Rotth Table	·	• -
3 ع	1 4	$C_1 = -\left[\begin{array}{c} \kappa - 20 \end{array} \right]$
2 S	5 K	<u> </u>
	20-K 0	25 (2)
	5	d, = 10 - K(20K)
	K	(2001
No Sign change in 1st column		
: 20-K >0 : K >0		
5: System is stable if		
0 < K < 90		

Simulink:

For k = 3: t = 40

Stable!

For k = 8 t = 40

Stable!

k = -2 t = 40

Not stable

K = 23 t = 40

Not stable

