

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Technische Spezifikation im Fachübergreifendes Projekt

Sprachsteuerung eines Hauses

Autoren : Azim Izzudin Ramadhani Mubarak

Bashar Mustafa Kenneth Austin Reynaldo Domenico

Betreuer/in : Prof. Dr.-Ing. Christian Müller

Ort, Datum : Berlin, 14.06.2022

Technische SpezifikationSprachsteuerung eines Hauses

Inhaltsverzeichnis

Αt	bildu	ıngsverzeichnis	II
Τa	abelle	nverzeichnis	III
Ve	erzeic	hnis vorhandener Dokumente	V
1	Proz	zessüberblick	1
	1.1	Smarthome Workflow	1
	1.2	Sprachbefehl Workflow	2
	1.3	Update Workflow	
2	Tecl	hnische Spezifikation SW	4
	2.1	Überblick Komponenten	4
	2.2	Beschreibung der Implementierung	5
		2.2.1 OpenHABian auf Raspberry PI installieren	5
		2.2.2 MQTT	
		2.2.3 Geräte per MQTT verbinden	
	2.3	System Infrastruktur	8
3	Tec	hnische Spezifikation Konstruktion	9
	3.1	Baugruppen	
1	Mod	dul Ahhängigkeiten	10

Technische SpezifikationSprachsteuerung eines Hauses

Ш

Abbildungsverzeichnis

Abbildung 1: Der Smarthome Workflow	. 1
Abbildung 2: Der Sprachbefehl Workflow	. 2
Abbildung 3: Der Update Workflow	. 3
Abbildung 4: Komponentendiagramm	. 4
Abbildung 5: PuTTY konfigurieren	. 5
Abbildung 6: Flash via Etcher	. 6
Abbildung 7: Gerät wird mit Tuya-Convert konfiguriert	. 7
Abbildung 8: System Infrastruktur	. 8
Abbildung 9: Technische Zeichnung	. 9

Technische SpezifikationSprachsteuerung eines Hauses

Tabellenverzeichnis

abelle 1: Version Historie	IV
Fabelle 2: Relevante Dokumente	V
Fabelle 3: Komponente und Funktionen Verbindung	4
Fabelle 4: OpenHABian auf Raspberry PI Tabelle	
Fabelle 5: MQTT Tabelle	
Fabelle 6: Geräte per MQTT verbinden	7
Fabelle 7: Modul Abhängigkeiten	10

Technische Spezifikation

Sprachsteuerung eines Hauses

Copyright

© Sprachsteuerung eines Hauses

Die Weitergabe, Vervielfältigung oder anderweitige Nutzung dieses Dokumentes oder Teile davon ist unabhängig vom Zweck oder in welcher Form untersagt, es sei denn, die Rechteinhaber/In hat ihre ausdrückliche schriftliche Genehmigung erteilt.

Version Historie

Tabelle 1: Version Historie

Version	Datum	Verantwortlich	Änderung
0.1	07.06.2022	Kenneth	Initiale Dokumenterstellung
0.2	08.06.2022	Alle	Überblick und Workflow hinzugefügt
0.3	12.06.2022	Alle	Technische Spezifikation SW hinzugefügt
0.4	12.06.2022	Alle	Abbildung und Tabelle hinzugefügt
0.5	13.06.2022	Alle	Erweiterungen
0.6	14.06.2022	Kenneth	Letzte Überprüfung
1.0	14.06.2022	Kenneth	Abgabe

© HTW Berlin IV

Verzeichnis vorhandener Dokumente

Alle für die vorliegende Spezifikation ergänzenden Unterlagen müssen hier aufgeführt werden.

Tabelle 2: Relevante Dokumente

Dokument	Autor	Datum
Lastenheft-Gruppe-4.pdf	 Azim Izzudin Ramadhani Mubarak Bashar Mustafa Kenneth Austin Reynaldo Domenico 	26.04.2022
Projektplanung.mpp	Azim Izzudin Ramadhani MubarakBashar MustafaKenneth AustinReynaldo Domenico	24.05.2022
Pflichtenheft-Gruppe-4.pdf	 Azim Izzudin Ramadhani Mubarak Bashar Mustafa Kenneth Austin Reynaldo Domenico 	24.05.2022
Qualitätsicherung-Gruppe- 4.pdf	 Azim Izzudin Ramadhani Mubarak Bashar Mustafa Kenneth Austin Reynaldo Domenico 	14.06.2022

1 Prozessüberblick

In diesem Dokument wird das Design des Projekts "Sprachsteuerung eines Hauses" der Fachübergreifenden Projekte im SoSe 22 an der HTW Berlin spezifiziert.

Es wird ein Gerät entwickelt, das den Zugriff auf verschiedene "Smart Devices" nur mit Sprachsteuerung ermöglicht. Dieses Gerät besteht aus Software und Hardware. Für die Hardware wird es mit Komponenten hergestellt, die aus Mikrofon, Lautsprecher, Raspberry Pi, Gehäuse und LED bestehen. Die LED leuchtet auf, wenn ein Wort oder Code als "Wake Word" genannt, vom Benutzer gesagt wird. Das zeigt an, dass unser Gerät bereit ist, Befehle abzuhören. Das Mikrofon wird verwendet, um die Stimme des Benutzers zu erfassen und an den Mikrocontroller weiterzuleiten.

Der Raspberry Pi funktioniert hier als Mikrocontroller, in den wir alle Programme und Funktionen schreiben werden. Der Lautsprecher dient dazu, Feedback zu geben, dass der vom Lautsprecher erfasste Befehl ausgeführt werden kann oder nicht. Wenn der vom Benutzer gegebene Befehl erfolgreich ist, leuchten die gewünschten "Smart Devices" auf und handeln gemäß dem Befehl.

Um alle Komponenten abzudecken, verwenden wir ein Gehäuse, das mit 3D-Drucker gedruckt wird. Für die Software wird dieses Gerät, Rhasppy als Spracherkennung und openHab zum Implementieren des Befehls verwenden. Um die Verbindung zwischen Geräte und openHAB zu erschaffen wird mit MQTT Protokoll verwendet für die "Bindings"- Verbindung.

1.1 Smarthome Workflow

Abbildung 1: Der Smarthome Workflow

1.2 Sprachbefehl Workflow

Abbildung 2: Der Sprachbefehl Workflow

1.3 Update Workflow

Abbildung 3: Der Update Workflow

2 Technische Spezifikation SW

2.1 Überblick Komponenten

Abbildung 4: Komponentendiagramm

Tabelle 3: Komponente und Funktionen Verbindung

SW-Komponente	Erfasste Funktion aus dem Pflichtenheft
Web-Browser	F1: Befehl geben F6: Lautstärke anpassen
MQTT	F5: Feedback geben F7: Update
HTTPs-API	F7: Update F9: Haushaltgeräte verbinden
Datenbank	F2: Audio im Text umwandeln F4: Text im Audio umwandeln
Smart Geräte	F7: Update F8: WLAN verbinden
Sprachsteuerung	F2: Audio im Text umwandeln F3: Spracherkennung F4: Text im Audio umwandeln

2.2 Beschreibung der Implementierung

2.2.1 OpenHABian auf Raspberry PI installieren

Diese Funktion ist sehr wichtig, da sie von allen geplanten Funktionen benötigt wird. OpenHAB wird als zentraler Steuer und auch als Verbinder zwischen Geräten und Benutzern und auch in der Sprachsteuerung benötigt.

Tabelle 4: OpenHABian auf Raspberry PI Tabelle

#	Komponentendetail	Erforderliche Arbeiten
T1	OpenHABian image	Wird verwendet, um openHABian auf Raspberry PI zu installieren
T2	Fernbedienung	Wird verwendet, um Raspberry PI per ssh zu kontrollieren

T1: OpenHABian image

- Image wird verwendet, um openHABian auf Raspberry PI zu installieren
- Image muss erstmal auf SD-Karte geflasht werden
- Nach Flashen muss ein File mit Namen "ssh" erstellt werden
- File "ssh" wird für Desktop-Fernbedienung verwendet

T2: Desktop-Fernbedienung

- Diese Funktion wird verwendet, um Raspberry PI aus der Ferne zu kontrollieren
- PuTTY wird als Verbindung zwischen Raspberry PI und Laptop per ssh verwendet
- Um PuTTY zu verwenden, wird IP Address von Raspberry PI gefordert

Abbildung 5: PuTTY konfigurieren

Abbildung 6: Flash via Etcher

2.2.2 MQTT

Diese Funktion wird für die geplante Funktion benötigt, für die Verbindung zwischen Geräten und openHAB sein.

Tabelle 5: MQTT Tabelle

#	Komponentendetail	Erforderliche Arbeiten
Т3	openHAB	wird als zentraler Steuer verwendet
T4	MQTT Bindung	Wird als Verbinder zwischen meisten Geräten und openHAB verwendet

T3: openHAB

- openHAB ist der zentralen Steuer und auch als Verbinder zwischen Geräten und Benutzer*in
- openHAB-Konto wurde erstellt (Username="projekt2022", passwort="aldokece")
- openHAB bietet viele Bindungen zur Verbindung mit vielen Marken
- Bei diesem Sprint wird MQTT Bindung verwendet

T4: MQTT Bindung

- MQTT Bindung wird als Verbinder zwischen openHAB und Geräte verwendet, die ESP8266/ESP8258 Wifi Microchip nutzen
- Vor der Verwendung von MQTT Bindong muss Mosquitto zuerst auf Raspberry installiert werden

2.2.3 Geräte per MQTT verbinden

Diese Funktion wird für die geplante Funktion benötigt, die eine Verbindung zwischen Geräte und openHAB sein soll.

Tabelle 6: Geräte per MQTT verbinden

#	Komponentendetail	Erforderliche Arbeiten
T5	Smart Geräte	zu steuerndes Gerät
Т6	openHAB	wird als zentraler Steuer verwendet
T7	MQTT Bindung	Wird als Verbinder zwischen Geräte und openHAB verwendet

T5: Smart Geräte

- Smart Geräte sind Geräte mit der Möglichkeit einer Verbindung zum Internet
- Smart Geräte führen Aktionen basierend auf Befehle aus
- Nicht alle Smart Geräte können über MQTT verbunden werden.

T6: openHAB

- openHAB kann verbundene Gerät verwalten
- Dinge, die openHAB je nach Gerätetypen verwalten kann

T7: MQTT Bindung

- MQTT Bindung wird als Verbinder zwischen openHAB und Smart Geräte verwendet
- Einige Smart Geräte, die ESP8266/ESP8258 Wifi Microchip nutzen, aber nicht mit MQTT kompatibel sind, können mit Tuya-Convert kompatibel gemacht werden

Abbildung 7: Gerät wird mit Tuya-Convert konfiguriert

2.3 System Infrastruktur

Die wichtigste Infrastruktur in diesem Projekt ist openHAB als zentraler Steuer und auch als Verbinder zwischen Geräten und Benutzer*in. openHAB bietet viele Bindungen zur Verbindung mit vielen gängigen Geräten wie Samsung, Philips HUE, Bluetooth usw. In diesem Sprint haben wir die MQTT Bindung verwendet. In Sprint 2 werden wir weitere erforderliche Bindungen hinzufügen.

Abbildung 8: System Infrastruktur

3 Technische Spezifikation Konstruktion

3.1 Baugruppen

Abbildung 9: Technische Zeichnung

4 Modul Abhängigkeiten

Tabelle 7: Modul Abhängigkeiten

#	Name	Abhängig von
1	Raspberry Pi 4	Stromversorgung für die andere Module, wird durch das Ladekabel direkt mit Strom versorgt. Steuert und regelt alle Module.
2	ReSpeaker 4-Mics	Wird mit Raspberry Pi verbunden fürs Signal um Ein- & Ausschalten und auch um die Dateien zu tauschen. Wurde auch von Raspberry Pi 4 das Strom versorgt.
3	Ladekabel	Netzteil versorgt mit Strom
4	LED	Wird mit Raspberry Pi verbunden fürs Signal um Ein- & Ausschalten. Das Raspberry Pi 4 versorgt der Strom.