

Tema Redes IPs

Boletín de Ejercicios Subnetting

Ejercicio 1

Dirección de red: 192.168.15.0

Necesidades:

- Sede A: 12 hosts
- Sede B: 30 hosts
- Sede C: 30 hosts

Para satisfacer estas necesidades, usaremos subredes con el siguiente desglose:

Subred para Sede A (12 hosts)

- Necesitamos al menos 14 direcciones (12 hosts + 1 red + 1 broadcast).
- Subred: 192.168.15.0/28
 - o Dirección de subred: 192.168.15.0
 - o Dirección de broadcast: 192.168.15.15
 - o Rango de hosts: 192.168.15.1 192.168.15.14

Subred para Sede B (30 hosts)

- Necesitamos al menos 32 direcciones (30 hosts + 1 red + 1 broadcast).
- Subred: 192.168.15.16/27
 - o Dirección de subred: 192.168.15.16
 - o Dirección de broadcast: 192.168.15.47
 - o Rango de hosts: 192.168.15.17 192.168.15.46

Subred para Sede C (30 hosts)

- Necesitamos al menos 32 direcciones (30 hosts + 1 red + 1 broadcast).
- Subred: 192.168.15.48/27
 - o Dirección de subred: 192.168.15.48
 - o Dirección de broadcast: 192.168.15.79
 - o Rango de hosts: 192.168.15.49 192.168.15.78

Explicación:

- 1. Determinamos el número de direcciones necesarias para cada sede.
- 2. Elegimos la máscara de subred adecuada para satisfacer esas necesidades.
- 3. Asignamos los rangos de direcciones correspondientes.

Ejercicio 2

Dirección de red: 192.168.55.0/24

Para crear 8 subredes:

- $/24 \rightarrow /27$ (3 bits para subredes, 5 bits para hosts)
- Nueva máscara de subred: 255.255.255.224

Número de subred	Dirección de subred	Primer ordenador	Último ordenador	Broadcast
1	192.168.55.0/27	192.168.55.1	192.168.55.30	192.168.55.31
2	192.168.55.32/27	192.168.55.33	192.168.55.62	192.168.55.63
3	192.168.55.64/27	192.168.55.65	192.168.55.94	192.168.55.95
4	192.168.55.96/27	192.168.55.97	192.168.55.126	192.168.55.127
5	192.168.55.128/27	192.168.55.129	192.168.55.158	192.168.55.159
6	192.168.55.160/27	192.168.55.161	192.168.55.190	192.168.55.191
7	192.168.55.192/27	192.168.55.193	192.168.55.222	192.168.55.223
8	192.168.55.224/27	192.168.55.225	192.168.55.254	192.168.55.255

Explicación:

- 1. Para obtener 8 subredes, necesitamos 3 bits adicionales para las subredes (2^3 = 8).
- 2. La máscara de subred cambia de /24 a /27 (255.255.255.224).
- 3. Calculamos los rangos de direcciones para cada subred dividiendo el espacio disponible.

Ejercicio 3

Determinar si las direcciones IP son válidas para redes comerciales:

Dirección IP	¿La dirección es válida?	¿Por qué?
150.100.255.255	No	Dirección de broadcast en una red clase B.
175.100.255.18	Sí	Es una dirección válida de host en una red clase B.
195.234.253.0	No	Dirección de red en una red clase C.
100.0.0.23	Sí	Es una dirección válida de host en una red clase A.
188.258.221.176	No	La dirección no es válida porque 258 no es un octeto válido.
127.0.0.1	No	Es la dirección de loopback usada para pruebas locales.
169.254.1.33	No	Es una dirección de enlace local (APIPA), no utilizada en redes comerciales.

Explicación:

- 1. Verificamos si la dirección es una dirección válida de host (no es dirección de red, de broadcast o una dirección reservada).
- 2. Comprobamos que cada octeto esté en el rango 0-255 y que la dirección no sea de loopback o APIPA.

Ejercicio 4

Dirección de red: 192.168.14.0

Para subredes con 15 hosts:

- Necesitamos al menos 16 direcciones (15 hosts + 1 red + 1 broadcast).
- Subred: 192.168.14.0/28 (Máscara: 255.255.255.240)

Número de subred	IP de subred	IP primer host	IP último host	IP de broadcast
1	192.168.14.0/28	192.168.14.1	192.168.14.14	192.168.14.15
2	192.168.14.16/28	192.168.14.17	192.168.14.30	192.168.14.31
3	192.168.14.32/28	192.168.14.33	192.168.14.46	192.168.14.47
4	192.168.14.48/28	192.168.14.49	192.168.14.62	192.168.14.63
5	192.168.14.64/28	192.168.14.65	192.168.14.78	192.168.14.79
6	192.168.14.80/28	192.168.14.81	192.168.14.94	192.168.14.95
7	192.168.14.96/28	192.168.14.97	192.168.14.110	192.168.14.111
8	192.168.14.112/28	192.168.14.113	192.168.14.126	192.168.14.127

Explicación:

- 1. Calculamos el número de direcciones necesarias (15 hosts + 1 dirección de red + 1 dirección de broadcast).
- 2. Elegimos la máscara de subred /28 que proporciona 16 direcciones por subred.
- 3. Dividimos el espacio de direcciones para obtener los rangos de direcciones para cada subred.

Ejercicio 5

Red: 192.141.27.0/28

Identificar direcciones de host válidas:

- Máscara: 255.255.255.240
- Rango de direcciones por subred: 16 direcciones (14 hosts)

Dirección IP	¿Es válida?
192.141.27.33	No
192.141.27.112	No
192.141.27.119	No
192.141.27.126	No
192.141.27.175	No
192.141.27.208	No

Explicación:

- 1. Comprobamos si las direcciones IP proporcionadas están dentro del rango de subredes /28.
- 2. Verificamos si las direcciones IP son de host válidas y no son direcciones de red o broadcast.

Ejercicio 6

Problema de comunicación entre host 1 y host 2:

Causa del problema

a) La máscara de subred del host 2 es incorrecta.

Explicación:

1. Si la máscara de subred es incorrecta, los hosts pueden parecer estar en diferentes subredes y no podrán comunicarse correctamente.

Ejercicio 7

Subred adicional para un nuevo enlace Ethernet:

Dirección de subred

c) 192.1.1.160/28

Explicación:

1. Seleccionamos la subred que proporciona el número adecuado de direcciones utilizables (14) con el menor desperdicio de direcciones.

Ejercicio 8

Máscaras de subred para departamentos:

Departamento	Máscara de subred	
Control de Calidad	c) 255.255.255.240	
Ventas	b) 255.255.255.224	

Explicación:

- 1. Control de Calidad necesita 10 direcciones, por lo que usamos una máscara /28 (16 direcciones).
- 2. Ventas necesita 28 direcciones, por lo que usamos una máscara /27 (32 direcciones).

Ejercicio 9

Direcciones de host no utilizadas:

Direcciones de host no utilizadas

f) 180

Explicación:

- 1. Calculamos el número de direcciones no utilizadas en los enlaces punto a punto cuando no se usa VLSM.
- 2. Sumamos las direcciones de host no utilizadas en los tres enlaces punto a punto.

Ejercicio 10

Máscara de subred para 2500 hosts en una red de clase B:

Máscara de subred

c) 255.255.248.0

Explicación:

- 1. Necesitamos al menos 2500 direcciones de host.
- 2. La máscara /21 (255.255.248.0) proporciona 2048 direcciones por subred.

Ejercicio 11

Subredes no pertenecientes a la misma red con máscara 255.255.224.0:

Subredes no pertenecientes

d) 172.16.63.51

Explicación:

- 1. Verificamos si las direcciones pertenecen a la misma subred basada en la máscara de subred proporcionada.
- 2. La dirección 172.16.63.51 no pertenece a la misma subred que las otras direcciones.

Ejercicio 12

Máscara de bits para VLSM:

Máscara de bits

b) /30

Explicación:

- 1. Seleccionamos la máscara de bits que proporciona el número adecuado de direcciones utilizables para el escenario de VLSM.
- 2. La máscara /30 proporciona 4 direcciones por subred (2 utilizables para hosts).

Ejercicio 16

Dirección IP: 172.17.111.0 máscara 255.255.254.0

Subredes y hosts válidos

b) 128 subnets with each 510 hosts

Explicación:

- 1. La máscara 255.255.254.0 permite 2^7 subredes (128) y 2^9 2 hosts por subred (510).
- 2. Calculamos el número de subredes y hosts válidos basándonos en la máscara de subred proporcionada.

Ejercicio 40

Conversión a decimal:

Conversión

Explicación:

- 1. Convertimos la dirección IP binaria proporcionada a su formato decimal equivalente.
- 2. Cada octeto binario se convierte a su valor decimal:
 - 00001010 → 10
 - 10101001 → 169
 - 00001011 → 11
 - 10001011 → 139

Tema Redes IPs 4