ELETRÓNICA DIGITAL E CIRCUITOS 2018

Exame de época normal, 9 de janeiro de 2019

Este exame contém 8 grupos de problemas, cada um com 2 problemas. Em cada grupo, <u>deverá resolver apenas 1</u> <u>problema</u>. Os dois tipos de problemas (A, B) em cada grupo têm as seguintes cotações: **A = 2.0 valores** (total = 16.0 valores); **B = 2.5 valores** (total = 20.0 valores). Na página 3, é fornecida informação adicional.

GRUPO 1

1A. [2.0 valores]

- a) Converta o número octal (345.103)₈ para o sistema decimal.
- b) Calcule o complemento de dois do número binário 11011101.
- c) Codifique em BCD o decimal 479.081.

1B. [2.5 valores]

- a) Converta o número decimal 812.209 para o sistema octal.
- **b)** Calcule a subtração 01101011 10101110 usando aritmética de complemento de dois e apresentando o resultado em notação de sinal.
- c) Codifique em BCD o octal (6572.524)₈.

GRUPO 2

2A. [2.0 valores]

- a) Simplifique a expressão lógica $Y = A\overline{B}C + \overline{B}C + \overline{C}$ recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute diretamente a função $F=\overline{A\overline{B}\overline{C}+A\overline{B}C}+\overline{A}\overline{C}$ com portas lógicas AND, OR e NOT.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.

2B. [2.5 valores]

- a) Simplifique a expressão lógica $Y = \overline{(A+B)}\overline{C} + \overline{A}\overline{B}C$ recorrendo às regras da lógica Booleana; indique todos passos de resolução.
- **b)** Desenhe um circuito lógico que execute a função $F=A\bar{B}\bar{C}+A\bar{C}+B\bar{C}D+\bar{A}BD$ recorrendo, apenas, a portas lógicas NAND.
- c) Determine a função Booleana do circuito lógico da figura ao lado, na forma de soma de produtos.

GRUPO 3

3A. [2.0 valores]

Um circuito lógico tem uma entrada de 3 bits (A, B, C). A sua saída Y vale 0 quando o equivalente decimal é 3 ou 5 e vale 1 nos restantes casos.

- a) Escreva a tabela de verdade do circuito.
- b) Obtenha a expressão lógica simplificada usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

3B. [2.5 valores]

Uma função lógica F tem uma entrada de 4 bits. F assume o valor 1 quando a soma (decimal) dos 2 bits mais significativos é superior à soma dos 2 bits menos significativos. F vale 0 quando a soma (decimal) dos 2 bits mais significativos é igual à soma dos 2 bits menos significativos. Nos restantes casos, o valor de F é irrelevante.

- a) Escreva a tabela de verdade da função F.
- b) Obtenha a expressão lógica simplificada de F usando um mapa de Karnaugh.
- c) Desenhe o circuito lógico simplificado.

GRUPO 4

4A. [2.0 valores]

Considere o seguinte circuito multiplexador:

- a) Obtenha a tabela de verdade Y(A, B, C).
- **b)** Implemente a função Y(A, B, C) usando um multiplexador 4:1 e porta(s) lógica(s).

4B. [2.5 valores]

Considere a seguinte expressão lógica: $Y = AB\bar{C} + \bar{A}\bar{B}\bar{C} + \bar{A}B\bar{C} + A\bar{B}\bar{C}$.

- a) Implemente a expressão dada usando um multiplexador 2:1 e porta(s) lógica(s).
- b) Implemente a expressão dada usando um descodificador e uma porta OR.

GRUPO 5

5A. [2.0 valores]

Um código faz corresponder a cada dígito decimal $n=0,1,\cdots,9$ a soma dos dígitos pares até n se n for par e a soma dos dígitos ímpares até n se n for ímpar; o resultado de cada soma é convertido para código binário de5 bits.

- a) Obtenha a tabela de verdade deste código.
- b) Desenhe o correspondente circuito codificador.

5B. [2.5 valores]

Desenhe um circuito lógico que deteta se um número X de 4 bits satisfaz a condição $(X)_{10} \ge (11)_{10} \text{ OR } (X)_{10} \le (7)_{10}$, usando comparadores de magnitude de 4 bits como o esquematizado ao lado e portas lógicas.

GRUPO 6

6A. [2.0 valores]

Desenhe um circuito ROM que gera as seguintes funções Booleanas.

 $Y_0 = A \bar{B} \bar{C} + A B \bar{C} + \bar{A} B \bar{C}$, $Y_1 = \bar{A} \bar{B} C$, $Y_2 = A \bar{B} C + \bar{A} \bar{B} \bar{C} + A B \bar{C}$, $Y_3 = \bar{A} B C + A B \bar{C} + A \bar{B} \bar{C}$ Determine a informação armazenada na ROM.

6B. [2.5 valores]

Desenhe e configure um multiplicador binário 2×2 que calcule $2 \times 3 + 1$, usando somadores completos e portas AND.

GRUPO 7

7A. [2.0 valores]

Considere o seguinte circuito sequencial composto por quatro flip-flops D.

- a) Deduza a tabela de estados do circuito.
- **b)** Trace as formas de onda dos sinais Q_0 , Q_1 , Q_2 e Q_3 , supondo o estado inicial 0000.

7B. [2.5 valores]

Converta um flip-flop T num flip-flop JK.

GRUPO 8

8A. [2.0 valores]

Desenhe um circuito contador síncrono mod-4 com flip-flops D que seja capaz de gerar a sequência "1011".

8B. [2.5 valores]

Desenhe um circuito contador assíncrono mod-3 decrescente, usando flip-flops D. Inclua os circuitos descodificadores de cada estado do contador. Trace as formas de onda de saída.

Informação	adicio	nal				
Tabelas de verdade de vários flip-flops:	S	R	Q _{n+1}	J	K	Q _{n+1}
	0	0	Qn	0	0	Qn
	0	1	0	0	1	0
	1	0	1	1	0	1
	1	1	?	1	1	Qn'
	D	D Q _{n+1}		Т	Q _{n+1}	
	0		0	0		Q _n
	1		1	1		Q _n '