ZÁKLADY POČÍTAČOVÝCH SYSTÉMOV

LETNÝ SEMESTER 2019/2020

Obsah

§ :	3 Úvod do sietí	. 1
	§ 3.1 Spôsoby pripojenia	1
	§ 3.2 Kapacita siete	1
	§ 3.3 Server	1
	§ 3.4 Paket	1
	§ 3.5 Megabajt vs Megabit	1
	§ 3.6 Rozdelenie sieti podľa veľkosti	2
	§ 3.7 Model OSI	2
	§ 3.8 Internet Protocol (IP)	2
	§ 3.9 Počítanie IPv4 adries	3
	§ 3.9.1 Príklad	3
ş٠	4 Základná doska, zdroj	4
	§ 4.1 Základná doska	4
	§ 4.2 Počítačový zdroj	5
§!	5 USB PCL PCe	6
	§ 5.1 USB 2 (Universal Serial Bus)	6
	§ 5.1.1 USB proces	6
	§ 5.2 USB 3	7
	§ 5.3 USB C	7
	§ 5.4 Krútená dvojlinka (Twisted Two Pair)	7
	§ 5.5 Round-Trip Time (RTT)	7
	§ 5.6 PCI zbernica (Periperal Component Interconnect)	8
	§ 5.6.1 PCI-X (Peripheral Component Interconnect eXtended)	8
	§ 5.6.2 PCIe (Peripheral Component Interconnect Express)	
	8 5 7 Accelerated Graphics Port	8

§ 6 Procesor, chladenie	9
§ 6.1 Chladenie procesora	9
§ 6.1.1 Heat pipe	9
§ 6.2 CPU (Centra Processing Unit)	9
§ 6.2.1 Mikroprocesor	10
§ 6.2.2 Dual Core verzus Dual procesorový systém	10
§ 6.3 Kódy na detekciu chýb pri prenose dát	11
§ 7 Skriptovanie	
§ 8.1 North Bridge a South Bridge	15
§ 8.2 Von Neumannova a Harvardská architektúra počítača	15
§ 8.2.1 Radič (controller)	16
§ 8.2.2 Aritmeticko-logická jednotka (ALU)	16
§ 8.2.3 Pamäť počítača – Von Neumann	16

§ 3 Úvod do sietí

- (1) Access point: miesto na ktoré sa pripája (Access point môže byť router napríklad)
- (2) **Smerovač** (switch): zariadenie na smerovanie toku dát (niečo ako predlžovačka akurát pre internet)

§ 3.1 Spôsoby pripojenia

- (1) drôtový kábel
- (2) bezdrôtová WiFi
- (3) satelitná 3G, 4G, ..

§ 3.2 Kapacita siete

(1) maximálny prenosový potenciál. Udáva sa ako download/upload

§ 3.3 Server

(1) doslova **počítač** ktorý je stavaný na neustálu **prevádzku na sieti**. Sú na nej uložene stránky, aplikácie a podobne..

§ 3.4 Paket

- (1) po sieti sa data **posielajú** vo forme paketu
- (2) je výhodnejšie rozdeliť jeden súbor na viac malých a posielať ho akoby po častiach
- (3) výhodou je, že keby je poslaný paket chybný (čo sa môže stáť úplne bežne) nič sa nedeje,

paket sa pošle znova a keďže má minimálnu veľkosť, tak si to užívateľ ani nevšimne

(4) ak by si teda posielal veľký súbor z vnútornej siete, tak by si zabil celú linku, takto sa dátový tok rozdelí na pakety a do vonkajšej siete prebiehajú postupne

(5) obr. = vnútorné rozdelenie pa	4K (2111

Header	Sender's IP address Receiver's IP address Protocol Packet number	96 bits	
Payload	Data 896 bits		
Trailer	Data to show end of packet Error correction	32 bits	

§ 3.5 Megabajt vs Megabit

- (1) Megabajt je MB (v tom sa väčšinou udáva veľkosť sťahovania)
- (2) vzťah medzi týmito dvoma jednotkami je veľmi podstatný pre dorozumenie v informatike pretože tento pojem je často zamieňaný
- (3) 1 megabajt (MB) = 8 megabitov (Mb)

§ 3.6 Rozdelenie sieti podľa veľkosti

- (1) **PAN** ⇒ Personálna, keď si pripojíš slúchadla na telefón
- (2) LAN ⇒ Lokálna, proste LANka napríklad viac zosietovaných notebookov v jednej miestnosti
- (3) MAN ⇒ Metropolitná (prepojenie mesta)
- (4) WAN ⇒ Svetová sieť

§ 3.7 Model OSI

- (1) logické rozdelenie rôznych vrstiev sieti
- (2) základný a rozšírený model OSI

§ 3.8 Internet Protocol (IP)

- (1) základom IP protokolu je IP adresa
 - a) IPv4 192.168.131.205, 32-bitové číslo v podstate existuje viac než 4 miliardy (4 294 967 296) možných adries.
 - b) IPv6 rozšírenie IPv4, vzniklo preto, lebo počet možných IPv4 adries už nie je dostačujúci

§ 3.9 Počítanie IPv4 adries

- (1) dekadický tvar IP adresy, je možné jednoducho zapísať v binárnom tvare (1 a 0)
- (2) postup krokov pre určenie druhov IP adries :
- (3) adresa siete (pokiaľ nemám zadané)
 - a) zvolím si IP počítača, ktorý je v danej sieti
 - b) zistím Masku: 32b číslo
 - c) spravím binárny súčin týchto dvoch adries
- (4) **maska** je jednoduchá adresa, ktorá sa skladá z jednotiek, ktoré idú z ľava doprava.. ak ich raz preruší nulový bit, viac jednotiek už nenasleduje
- (5) maska sa bežne zapisuje **dekadicky** (v desiatkovej sústave) ⇒ /22, /18, ... atd ⇒ toto číslo nám udáva počet bitov, ktoré sú aktívne ⇒ stav 1

§ 3.9.1 Príklad

- adresa PC: 192.168.16.33
- jednotlivé oktety :

192: 1100 0000

168: 1010 0000

16:00010000

33: 0010 0001

• maska / 18:

255. 192. 0

1111 1111 1111 1111 1100 0000 0000 0000

adresu siete teda vypočítame ako logický resp. binárny súčin týchto dvoch adries (PC & Maska):

1100 0000 1010 0000 0001 0000 0010 0001 (Adresa PC v binárnom tvare)

1111 1111 1111 1110 0000 0000 0000 (Maska v binárnom tvare)

1100 0000 1010 0000 0000 0000 0000 0000

192. 168. 0. 0/18

⇒ je finálna adresa siete s maskou /18

§ 4 Základná doska, zdroj

§ 4.1 Základná doska

- a) ATX
- b) Micro-ATX
- c) Mini-ITX

(2) definuje

- a) výkonové možnosti počítača
- b) možnosti rozšíriteľnosti
- c) konektivitu počítača (typ procesora)

(3) skladá sa z rôznych častí

- a) napájací konektor
- b) socket procesora
- c) kondenzátory (také valčeky) a cievky, sú súčasťou obvodov ktoré umožňujú zmenu napájacieho napätia pre procesor -> pretaktovanie
- d) chladenie
- e) doplnkový napájací port
- f) konektor na ventilátor procesora (4 piny)
- g) back-panelové konektory (USB, audio, internetová sieť...)
- h) sloty pre pripojenie RAM pamäte
- i) AGP slot
- j) PATA konektory na pripojenie starých harddiskov (disketová mechanika..)
- k) SATA konektory na pripojenie novších harddiskov
- l) PCI a PCIe sloty na pripojenie rôznych kariet (grafická, sieťová, zvuková..)
- m) piny na pripojenie LED diód a tlačidiel
- n) baterka na udržanie nastavení BIOSu
- o) south bridge a north bridge, slúžia ako interface smerom k procesoru

§ 4.2 Počítačový zdroj

- (1) konvertor striedavého napätia na jednosmerné (3.3, 5 a 12V)
- (2) notebookový zdroj dodáva len jeden druh napätia, napr. 19V
- (3) na zadnom paneli má ventilátor, vypínač a konektor na napájací kábel tieto časti vidno
- (4) z druhej strany doňho vedú zväzky káblov
 - a. **žltý** 12V
 - b. **čierny** zem
 - c. **oranžový** 3.3V
 - d. červený 5V
- (5) konektor sa vkladá do základnej dosky, dá sa vložiť len jedným smerom
- (6) doska môže mať 20 alebo 24 pinový napájací konektor, a tak isto zdroj môže mať tiež 20 alebo 24 pinový konektor – všetky možnosti zapojenia spolu fungujú
- (7) **4 pinový káblik** zo zdroja s dvoma žltými a dvoma čiernymi káblikmi k procesoru vie priniesť dodatočných 24V (pre náročnejšie aplikácie)
- (8) napájací **konektor pre ventilátor** farby káblov a napätia sa nezhodujú, má 4 piny: napájanie, zem, tachometrický signál (informácie o otáčkach ventilátora) a kontrolný pin (zmena otáčok)

§ 5 USB PCL PCe

§ 5.1 USB 2 (Universal Serial Bus)

- (1) 4 konektory (4 piny)
 - a) pin 1: červený, 5V
 - b) pin 2: biely, data –
 - c) pin 3: **zelený**, data +
 - d) pin 4: čierny, uzemnenie

- (2) napr. typy USB A, USB B (pripojenie tlačiarne), USB 2 (obojstranné, na vysokorýchlostné prepojenie dvoch počítačov, má v strede konvertor)
- (3) univerzálna zbernica, USB štandard podporuje až 127 zariadení (až v 7 úrovniach USB hub-ov)
- (4) USB hub (s napájaním / bez)

§ 5.1.1 USB proces

- (1) **štart** USB hostiteľa (host)
- (2) zistenie pripojených USB zariadení
- (3) pripojeným zariadeniam host priradí adresy (enumeration)
- (4) zistenie hostom aké typy data transferov tieto zariadenia vyžadujú
 - a) control konfigurácia zariadenia po jeho pripojení
 - b) **interrupt** typ prenosu, kedy sú prenášané malé údaje s dôrazom na skoré doručenie (myška, klávesnica..)
 - c) **bulk** prenos čo najväčšieho množstva dát čo najrýchlejšie (typycký prenos, napr. tlačiareň)
 - d) isochronous prenos dát citlivých na zachovanie časovania (realtime video z kamery)
- (5) zisťovanie **požiadaviek** na šírku prenosového pásma
- (6) pri požiadavkách vyšších než je 90% pásma celého USB prenosu, host **odmietne** obslúženie ďalších zariadení

§ 5.2 USB 3

- (1) má akúsi nadstavbu nad 4 pinmi (oproti USB 2) **5 pinov**
- (2) má (preto) oveľa vyššiu rýchlosť prenosu
- (3) väčšia šírka pásma, používa dve jednosmerné cesty, ktoré fungujú zvlášť (dva piny pre prijímanie a dva pre odosielanie)
- (4) USB 2 ide zapojiť do USB 3 konektoru (spätná kompatibilita)
- (5) tok 8 bitov zakódovaných v 10 b (zabezpečenie bezchybnosti prenosu – na detekciu chýb sa využívajú rôzne kódy, napr. paritný kód alebo check-sum)

§ 5.3 USB C

- (1) obojstranný konektor
- (2) piny sú ako keby duálne
- (3) obojsmerné napájanie

§ 5.4 Krútená dvojlinka (Twisted Two Pair)

- (1) ekonomicky náročnejšie, ale menej náchylný na rušenie z vonka
- (2) keď pôsobí nejaké elektrické rušenie na paralelný pár, na jeden drôt pôsobí viac a na dlhej vzdialenosti sa tam naindukuje veľký rozdiel medzi nimi môže to pôsobiť ako rušivá informácia pri čítaní
- (3) oproti tomu na **krútenej dvojlinke** sa striedajú, a teda sa na nich indukuje striedavo a na konci medzi nimi nie je rozdiel a nenachádza sa tu (taká) rušivá informácia

§ 5.5 Round-Trip Time (RTT)

(1) Máme dza uzly, A a B – uzol A vyšle informáciu do uzla B, a trvá to nejaký čas. Potom v uzle B prechádza nejaké spracovanie, vytvorí odpoveď, a tú potom pošle uzlu A. Čas, za ktorý

prebehne celý tento prenos sa nazýva round-trip time.

(2) pre výpočet sa využíva vzorec **s = v * t** (dráha= rýchlosť * čas)

§ 5.6 PCI zbernica (Periperal Component Interconnect)

- (1) starší typ zbernice, ktorý sa už dnes nepoužíva
- (2) **zdieľaný typ** zbernice
- (3) šírka 32 bitov (32 vodičov nad sebou prepája procesor s ostatnými komponentami – nie jedným, lebo je zdieľaná)
- (4) prístup na zbernicu riadi master určuje, kto bude kedy vysielať dáta
 - a) k zbernici pristupuje iba jednosmerne first party DMA – masterom sa stáva niektoré zo zariadení (procesor, grafická karta...)

- b) existuje aj third party DMA prístup riadi špecializovaný DMA controller
- (5) frekvencia sa prispôsobuje najpomalšiemu zariadeniu, ktoré je do zbernice zapojené (aby spolu vedeli komunikovať)
- (6) nezávisí, aký typ **procesora** je pripojený (AMD, Intel..) podporuje štandardizovaný formát

§ 5.6.1 PCI-X (Peripheral Component Interconnect eXtended)

- (1) serverové aplikácia, aplikácia náročné na šírku pásma
- (2) väčšia dĺžka oproti PCI a 4x rýchlejšia

§ 5.6.2 PCIe (Peripheral Component Interconnect Express)

- (1) nie je kompatibilná s PCI zbernicou
- (2) nie je zdieľaná podporuje full-duplex komunikáciu medzi dvomi koncovými bodmi bez závislosti na zariadeniach pripojených do iných PCIe slotov
 - a) simplex (napr. autorádio) vysielač vysiela smerom k prijímaču signál, je to jednosmerný
 - b) **duplex** je obojsmerný prenos informácie (dva počítače v sieti)
 - c) **full-duplex** zariadenia môžu naraz odosielať aj prijímať dáta
 - d) half-duplex zariadenia sú prepojené, ale jedno vždy počúva a druhé prijíma, neodosielajú odrazu
- (3) vodiče teda nie sú paralelné, ale sériové
- (4) 4 piny pre jednu signálovú linku
- (5) point-to-point spojenie paketového charakteru jedno zariadenie je pripojené práve na jednu linku
- (6) nahrádza PCI, PCI-X aj AGP, má vyššiu dátovú priepustnosť
- (7) viacero generácií (Gen 2, Gen 3...) a fyzických prevedení (x1, x4, x8, x16...)

§ 5.7 Accelerated Graphics Port

- (1) ďalší typ zbernice
- (2) slúžil výhradne na pripojenie grafickej karty ku základnej doske
- (3) vznikol pre potreby 3D grafiky potreba prenosu vysokých dátových tokov
- (4) nezdieľa pripojenie procesoru s ďalšími zariadeniami
- (5) adresovacia a dátová časť zbernice sú oddelené

§ 6 Procesor, chladenie

§ 6.1 Chladenie procesora

- (1) **aktívna** súčasť chladič na vrchu, ktorý sa prikladá na procesor, pripína sa k základnej doske **sponou**
- (2) chladiť sa dá aj inak, napríklad tekutým dusíkom, olejom (nie priamo vodou jedine v rúrkach)
- (3) dôležité je pripevnenie procesora k základne doske (správny spôsob nie napr. tavnou pištolou)

§ 6.1.1 Heat pipe

- (1) medené rúrky, ktoré odvádzajú teplo
- (2) kvapalina na spodnej časti zbiera teplo, kým sa nedostane do stavu že sa vyparuje – premieňa sa na **paru**, cestuje do chladiča, teplo sa uvoľňuje a para kondenzuje na vodu a vracia sa do nádobky, kde zbiera teplo = okruh
- (3) v trubkách môže byť ako médium aj napr. amoniak, alkohol alebo etanol

§ 6.2 CPU (Centra Processing Unit)

- (1) **procesor** = mozog počítača
- (2) výpočtový stroj, ktorý na základe inštrukcii (a operandov) vykonáva operácie
- (3) inštrukcie sú vo forme numerických strojových kódov
- (4) stavba a funkcionalita
 - a) **blackbox** pripojený na adresnú **smernicu** a dátovú smernicu
 - b) po **adresnej smernici** behajú adresy, po **dátovej smernici** dáta
 - dáta vstúpia do procesora (vstúpia dve operandy a inštrukcie čo sa s nimi má stať)
 - d) inštrukčný **dekodér** ich dekóduje a dáva informáciu ALU, čo má s operandami spraviť
 - e) **registre** sú také mikro pamäte a napríklad načítajú operandy, zapisujú sa do nich výsledky
 - f) tie potom idú na dátovú smernicu a zapisujú sa do pamäte
- (5) procesor vo všeobecnosti je pripojený na **adresnú zbernicu**, **dátovú zbernicu** a nachádza sa tu aj **kontrolná** zbernica takto komunikuje s pamäťou, vstupnými a výstupnými obvodmi.. = jednoduchý model počítača (**dôležité!**)

§ 6.2.1 Mikroprocesor

- (1) zminiaturizované CPU (CPU môže byť aj veľmi veľké)
- (2) vznikol spojením ALU a radiča do jedného čipu
- (3) skladá sa z viacerých funkčných blokov (control unit, arithmetic logic unit, registre)
- (4) existujú 4 základné architektúry
 - a) CISC (Complex Instruction Set Computer) má komlexný set inštrukcií s mnohými módmi adresovania, používa separovanú mikroprogamovaciu jednotku s kontrolnou pamäťou na implementovanie týchto komplexných inštrukcií, je to jednoduchý kompilovací dizajn, výpočty sú pomalšie ale presné, dekódovanie inštrukcií je náročné a exekučný čas je dlhý
 - b) **RISC** (Reduced Instruction Set Computer) **neobsahuje** všetky inštrukcie (špecializovaný na niečo konkrétne) a má menej módov adresovania, je to **komplexný** kompilovací dizajn, výpočty sú **kratšie** a **presné**, dekódovanie je jednoduché a exekučný čas je **krátky**
 - c) **MISC** (Minimum Instruction Set Computer) snaha o používanie inštrukcií bez operandov (s minimom), má nižšie nároky na rýchlosť pamäte
 - d) **VLIW** (Very Long Instruction Word) práva naopak pracujú s veľmi dlhými inštrukciami a majú vysoké nároky na pamäť

§ 6.2.2 Dual Core verzus Dual procesorový systém

- (1) Dual procesorový systém má dva samostatné CPU čipy (procesory)
- (2) Dual Core procesor je procesor, v ktorom sú dve výpočtové jadrá na jednom CPU čipe
- (3) tak isto to funguje s Guad procesorovým systémom a Guad Core procesorom
- (4) nie všetky programy vedia využívať dvoj a viac procesorové architektúry
- (5) **orientáciu procesora** v pätici je možné určiť značkou na procesore, výrezom, chýbajúcimi nožičkami...
- (6) dakedy sa procesor do dosky vtláčal, potom vznikli také, ktoré sa zaťahovali páčkami a tie je možné odobrať (ľahšie)

§ 6.3 Kódy na detekciu chýb pri prenose dát

- (1) paritný kód (1001 1100 -> 1001 1100 **0**)
 - a) je to jednoduchý kontrolný súčet určený pre ochranu integrity jedného dátového slova (obvykle 8-bitov, t. j. 1 byte)
 - b) parita je obvykle jeden bit, ktorý sa pripája k dátovému slovu, a vyjadruje, či je počet logických jednotiek v dátovom slove párny alebo nepárny
 - c) **môže byť teda párna alebo nepárna parita** k užitočnému kódu pridáme jednu paritu tak, aby celkový počet jednotiek bol párny
 - d) **spočítame počet jednotiek,** ak je párny pridáme **nulu**, v nepárnej parite pridáme **jednotku**
 - e) chyby nedokáže opraviť, ale najprimitívnejší možný kód vie **detekovať jednu chybu** (párny / nepárny počet)
 - f) napríklad vysielač aj prijímač vedia, že sa **používa nepárna parita**, čiže keď príde slovo s **párnym** počtom jednotiek vieme, že sa niekde stala **chyba** vyžiadanie informácia nanovo
- (2) ďalší typ kódu používa **10 bitové slová**, a tento vie opraviť až dve chyby
 - a) systém vie, aké používa slová: 00000 00000, 00000 11111, 11111 00000, 11111 11111
 - b) keď mu príde pokazené slovo, napr. 11000 00000, vie určiť, na ktoré správne sa najviac podobá

(3) chceck-sum

a) prepočet podľa hodnôt ASCI kódu (ako hash)

§ 7 Skriptovanie

- 1. výpis používateľov v systéme
 - rozdelenie výpisu podla -d delimitera (nejaké znamienko)
 - určenie správnej hodnoty (f1 : f2 : f3...)
 - | spájanie príkazov

```
> cat /etc/passwd | cut -d": " -f1
```

2. výpis zoznamu používateľských skupín

```
> cat/etc/group | cut -d":"-f1
```

- 3. výpis process ID procesov zadaného používateľa
 - výpis len riadkov, ktoré obsahujú slovo debian (napr.)

```
> ps -aux | grep "debian"
```

• zlúčenie medzier dokopy aby ich delimiter správne chápal

• vyselektovanie 1 a 2 stĺpca podľa medzery

• keď to vypisuje ešte niečo čo by nemalo (napr. root)

- 4. výpis názvov súborov v adresári s nejakými určitými oprávneniami
 - práva = read, write, execute
 - _____ (-rwerwerwe)
 - _ (typ: d = adresár, pomlčka = súbor, l = odkaz) _ _ (vlastník) _ _ (skupina) _ _ (vš. ostatní)
 - ak chceme vyselektovať w práva skupiny w bude na 6 pozicií => "^.....w" (bodky = hocijaký znak)

zjednotíme medzery aby sme mohli použiť cut

• vyberieme správny stĺpec

- 5. výpis textu odkazu nejakej stránky TO CO CHCEME < /a>
 - stiahneme html z webu a dáme ho vypísať, vyberieme <a href=" "
 - > wget -O- stranka.sk | grep "a href"
 - odfiltrujeme html (TO CO CHCEME < /a>)
 - > wget -O- stranka.sk | grep "a href" | cut -d">" -f2
 - zbavíme sa poslednej zátvorky čo zostala (slovo</a)
 - > wget -O- stranka.sk | grep "a href" | cut -d"> " -f2 | cut -d"<" -f1
 - alebo najlepšia metóda s regulárnym výrazom, .* reprezentuje hocikoľko hocijakých znakov, teda nájdeme presne len linky
 - > wget -O- stranka.sk | grep -Eo "a href=.*>.* | cut -d">" -f2 | cut -d"<" -f1

	zápis	ois názov popis		príklad	
	cat			výpis obsahu súboru	cat /etc/passwd
	cd		change directory		
С	cut		cut	výpis len určitých znakov	
		-d" "	-d "delimiter" -f(cislo)		cut -d">" -f2 cut -d"<" -f1
	grep			hladanie stringu, napríklad pre výpis	grep "^znak"
		-w	úplná zhoda (pomaranc !=		
			pomarance) ignorovanie rozdielov velké/malé		
		-i	písmená, atd		
G		-v	na nezahrnutie slova (grep "slovo1" grep -v "slovo2")		
		-Eo	regulárny výraz (?)		grep -Eo "a href=.*>.*
	groupadd		3 , , , , ,	pridaj skupinu	g , , , , , , , , , ,
	groupdel	-f	force (?)		
	groups			výpis skupín v systéme	
	chmod			zmena oprávnení súboru	chmod g+rw
СН	chown		change ownership	zmeniť vlastníctvo	sudo chown (povodny vlastnik): (novy) (subor
	ls		list directory content	výpis obsahu adresáru	ls /(priecinok)
			zoznam vš. súborov, ktoré sa		
		-la	nachádzajú v danom adresári (kombinácia -l + -a)		
1		-lh	zrozumitelné čítanie		
		-a	aj skryté súbory		
		-1	subory, priecinky, velkost, prava,		
			majitel		
M	man mkdir		manual make directory	manuál vytvorenie priecinku	
N	nano		make directory	textový editor v linuxe	
	passwd			zmeň heslo	sudo passwd (uzivatel)> spyta sa na heslo
	ps		report current proccesses	vypíše momentálne spustené procesy	, , , ,
_		-е	všetky procesy štandardným		
Р			syntaxom		an and Lance Heissell
		-aux	aj používateľov a command	vypíše priečinok, v ktorom sa človek nachádza, aj s	ps -aux grep "nieco"
	pwd			obsahom	
R	rm	-rf	vynútné vymazanie priečinka aj s obsahom		
s	stat		štatistika o súbore (počet slov)		
3	su			zmena používateľa	su -(uzivatel)
	touch			vytvorenie súboru	touch (subor.pripona)
	tr		translate or delete chars	zlúčenie/vymazanie znakov (napr pre delimiter)	
Т		-s " "	nahradenie vela uvedených znakov len jedným takým (tr -s "znak"
			vvvvv -> v)		
		-d	delete		
	useradd			pridaj usera	sudo useradd (username)
U	userdell	-f	force (?)		sudo userdell -f (meno)
.,	usermod	-g	pridanie užívateľov do skupiny	adhan dia man	usermod -g (skupina) (uzivatel)
V	vim		word count	editor ako nano	
w	WC		non interactive net downloader	stiahnutie html súboru	
v	wget	-0-	výpis na obrazovku	Suamude num suboru	wget -O- stranka.sk grep "a href"
			V J PIO TIU ODI UZOVIKU		Most o straintaist Bieb a mei

§ 8 Počítačová architektúra

§ 8.1 North Bridge a South Bridge

- (1) North Bridge (memory controller hub)
 - a) zabezpečuje vysokorýchlostné prepojenie komponentov
 - b) využíva **FSB** (Front-Side Bus) základná zbernica v počítači
 - c) pripojené CPU, AGP, PCI-e, RAM, Ethernet (v serveroch)
 - d) do AGP alebo PCI expres sa ďalej cez grafickú kartu zapája monitor
- (2) **South Bridge** (I/O controller hub)
 - a) nižšie dátové rýchlosti
 - b) pripojené **BIOS**, **I/O**, **PCI**, **USB**, **IDE** (Integrated Drive Electronics), **SATA** (Serial Advanced Technology Attachement), **audio**, **EIDE**, **ISA**
 - c) do IDE alebo SATA sa pripája harddisk, cez USB a I/O vstupno-výstupné zariadenia

§ 8.2 Von Neumannova a Harvardská architektúra počítača

- (1) najnákladnejší rozdiel je rozdelenie pamäte
 - a) vo Von Neumannovej koncepcii je RAM jednotná pre program a pre dáta
 - b) v Harvardskej je pamäť pre dáta oddelená od pamäte pre program
- (2) vo **Von Neumannovom** počítači je aj program reprezentovaný pomocou dát
 - a) je teda programovateľný, ale v jednom čase pristupuje buď k dátam alebo k programu (nie oboje)
 - b) je teda **pomalší ako Harvard**
- (3) **Harvardská** má oddelenú pamäť pre dáta od pamäti pre program
 - a) teda práca celého počítača je **zrýchlená** je možné čítať inštrukcie a dáta **odrazu**
 - b) typická pre mikroradiče
 - c) pamäť pre dáta a pre program môžu byť vyrobené odlišnou technológiou

§ 8.2.1 Radič (controller)

- (1) centrálny prvok architektúry (oboch)
- (2) riadi všetky časti počítača
- (3) riadi na základe programu uloženého v
 - a) **operačnej** pamäti (Von Neumann)
 - b) inom type pamäti (Harvard)
- (4) spracováva jednu inštrukciu za druhou, a podľa nich riadi ostatné časti počítača dekóduje inštrukcie a zabezpečuje, aby do ALU prichádzali správne operandy
 - a) ktoré dáta sa majú prečítať z pamäti dát
 - b) aký údaj sa pošle na spracovanie do ALU
 - c) akú operáciu má ALU vykonať
 - d) určuje kam ALU zapisuje výsledky výpočtov

§ 8.2.2 Aritmeticko-logická jednotka (ALU)

- (1) slúži na vykonávanie základných výpočtov s operandami, ktoré sú načítané z operačnej pamäte (alebo pamäte v Harv.)
 - a) súčet, rozdiel, bitový súčet, bitový súčin, bitový posun, bitové rotácie
 - b) niektoré ALU robia aj zložitejšie operácie
- (2) vlastnosti ALU určujú aj vlastnosti počítača (64bit / 32bit)

§ 8.2.3 Pamäť počítača – Von Neumann

- (1) slúži na uchovávanie údajov, s ktorými prebiehajú výpočty
 - a) dočasné = volatilná pamäť (napr. RAM)
 - b) trvalé = nevolatilná pamäť (napr. harddisk) po odpojení napájania sa údaje nestratia
- (2) uchováva aj programy, inštrukcie, operačné kódy načítavané do radiča
- (3) **hierarchicky** sa radí podľa veľkosti a rýchlosti
- (4) druhy:
 - a) **akumulátor a registre** nízko kapacitné, ale veľmi rýchle
 - b) vyrovnávacia pamäť (cache) na procesore
 - c) **operačná pamäť** (RAM)
 - d) pevný disk, páskové pamäte

Registre

- (1) malé bloky pamäte priamo na CPU
- (2) veľkosť = zopár bajtov
- (3) obsahujú dáta, ku ktorým CPU (alebo ALU) vie priamo pristupovať
- (4) napr. Intel Core i7 procesor má 8 (32bit) alebo 16 (64bit) registrov

RAM pamäť

- (1) dočasné uchovávanie údajov
- (2) **rýchlosť** je daná
 - a) frekvenciou zbernice
 - b) **šírkou** zbernice (násobia sa spolu)
- (3) obsahuje OS a aplikácie počas ich behu
- (4) typy delia sa podľa toho akým spôsobom a koľko súčiastok je použitých na uloženie 1bitu
 - a) statické (SRAM)
 - nepotrebujú obnovovanie informácie v bunke

•

- b) **dynamické** (DRAM)
 - najpoužívanejšie
 - cyklické obnovovanie informácie v bunkách pamäte (nevýhoda, pri obnovovaní informáciu nemožno prepisovať...)
 - sú **jednoduché na výrobu** (1 tranzistor a 1 kondenzátor)
 - delia sa na **asynchrónne** (reaguje okamžite na vstup) a **synchrónne** (synch. so zbernicou PC, spoločný hodinový signál)

Virtuálna pamäť (časť RAM)

- (1) keď má RAM **málo miesta**, údaje sa ukladajú na HDD (cacheovanie) ale rýchlosť HDD je oveľa nižšia ako RAM -> vykonávanie programu je **pomalšie**
- (2) vyhradená časť HDD...
- (3) vo Windowse uložená ako samostatný súbor pagefile.sys, v Linuxe na samostatnej partícií
- (4) niektoré bloky vykonávaného programu nie sú prítomné v RAM, ale na pevnom disku

Vyrovnávacia pamäť (cache)

- (1) je **rýchlejšia** ako RAM, ale má oveľa menšie kapacity
- (2) relatívne **malá** pamäť (> 1% RAM) určená pre informácie, ktoré bude CPU pravdepodobne potrebovať
- (3) úrovne
 - a) **Level 1** čo najrýchlejší prístup k často používaným dátam, skladá sa z **dátovej** a **inštrukčnej** vyrovnávacej pamäte
 - b) Level 2 vyššia kapacita ako L1 ale nižšia rýchlosť, tiež môže byť rovnako rozdelená
 - c) Level 3
- (4) typy podľa (ne)kopírovania dát v L1 do L2..
 - a) **exkluzívny**
 - b) inkluzívny
- (5) spôsoby zdieľania cache sú rôzne