

Data Science in Medicine Lecture 9: Course Outro

Dr Areti Manataki

Usher Institute
The University of Edinburgh

Why this course?

Preparing for the new era of data-intensive medicine

- Growing volume of data in medicine, healthcare and the life sciences
- Useful for your future studies:
 - Intercalation in Year 3
 - Research project in Year 5
- Useful for your future career:
 - Making sense of research findings
 - Doing research, which will most probably involve data
 - Understanding and improving the health of your patients and the way care is provided

Preparing for the new era of data-intensive medicine

Publications associated with big data in healthcare. The numbers of publications in PubMed are plotted by year

Preparing for the new era of data-intensive medicine

What have we learnt?

Data Science in Medicine – in a nutshell

How can we represent and interpret medical data?

Hands-on, practical experience

Topics covered:

- Statistical analysis of biomedical data
- Relational databases for medicine and healthcare
- Medical ontologies and graph data
- Epidemiology

Part 1: Statistical analysis of data

- Data scales
- Summary statistics
- Visualising data
- Hypothesis testing

Summary statistics

Measures of central tendency

$$\mu = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{69 + 70 + 86 + 42 + 54 + 79 + 69}{7} = \frac{469}{7} = 67$$

Measures of dispersion

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} = \sqrt{\frac{(69 - 67)^2 + (70 - 67)^2 + (86 - 67)^2 + (42 - 67)^2 + (54 - 67)^2 + (79 - 67)^2 + (69 - 67)^2}{7}}$$

$$= \sqrt{188} = 13.71$$

Visualising data

- Qualitative data: bar charts, pie charts
- Quantitative data: histograms, box plots
- Bivariate: scatter plots, line graphs

Hypothesis testing

- Correlation between numerical variables
- Association between categorical variables
- Comparing the mean of a sample to a population with a known mean
- Comparing the means of two samples that were independently drawn

Example: correlation between two numerical variables

Weekly hours of study	Grades
8	75
7.4	70
8.3	86
6.2	48
6.3	54
7	62
8.8	87
6.1	49

Example: correlation between two numerical variables

- $\rho_{x,y} \simeq 0.988$
- Hypothesis testing:
 - H0: There is no correlation between weekly hours of study and final exam grades in Statistics.
 - H1: There is a correlation between weekly hours of study and final exam grades in Statistics

ρ	p = 0.10	p = 0.05	p = 0.01	p = 0.001
N = 7	0.669	0.754	0.875	0.951
N = 8	0.621	0.707	0.834	0.925
N = 9	0.582	0.666	0.798	0.898
N = 10	0.549	0.632	0.765	0.872

Analysing data with R

Part 2: Relational databases

Employee

	nin	name	email
ı	SK728468L	Kate Taylor	k.taylor@example.com
ł	SJ547632B	John Smith	j.smith@example.com
ı	JG623526A	Peter Ross	p.ross@example.com
l	AB213672C	Paul Martin	p.martin@example.com

Works_In

nin	did	since
AB213672C	60	2003
(SJ547632B)	51	1996

Department

did	dname	budget
51	Information Technology	80,000
56	Human Resources	50,000
60	Accounting	40,000

Part 2: Relational databases

- How to build a database: Relational model
- How to query a database: SQL

Relational model

Student


```
CREATE TABLE Takes (
    mn CHAR(8),
    cid CHAR(20),
    PRIMARY KEY (mn, cid),
    FOREIGN KEY (mn) REFERENCES Student,
    FOREIGN KEY (cid) REFERENCES Course
)
```

SQL querying

Student

SELECT *
FROM Student
WHERE age > 19

Course

	cid	title	credits
	dbs	Database Systems	20
H	inf1	Informatics 1	10
	sls	Scottish Legal System	10
	lalg	Linear Algebra	10

```
SELECT S.email
FROM Student S, Takes T, Course C
WHERE S.mn = T.mn
   AND T.cid = C.cid
   AND C.title = 'Medical Informatics'
```

Part 3: Medical ontologies and graph data

- Graph databases follow an alternative data representation approach to relational databases.
- The objective here is to easily integrate data.

Part 4: Epidemiology

- Measuring the occurrence of disease
- Evaluating treatment and prognosis
- Assessing risk of disease
- Determining cause and reporting research

Disease prevalence

MEASURING THE OCCURRENCE OF DISEASE IN EPIDEMIOLOGY

1. Prevalence of disease

- Very simple measure
- Cross-sectional study results in prevalence estimates
- It can not be smaller than 0% or greater than 100%
- In theory, it is calculated as:

What could possibly be more simple than prevalence?

DIFFERENT WAYS TO EXPRESS THE MEASURED PREVALENCE IN A SAMPLE

- Point prevalence: study can be conducted over a period of few months, but the result is still "point prevalence" – from the perspective of EACH SUBJECT, the information is on one point in time only, and counts only those with active symptoms of disease at that point in time;
- 2. Period prevalence: if we asked about presence of active symptoms within the past e.g. 6 months or 3 years;
- Lifetime prevalence: if we asked whether there were ever any symptoms of schizophrenia, regardless of the status of disease in the present (e.g. medication or remission);
- 4. Lifetime morbid risk: if we followed everyone in the sample until they die, and then added all further new cases to the already noted lifetime prevalence

Next steps, if of interest

- Explore real data and practise further
 - WHO COVID-19 data: https://covid19.who.int/
 - Public Health Scotland open data: https://www.opendata.nhs.scot/
 - NHS England data: https://data.england.nhs.uk/
- Develop further skills in R programming
 - HealthyR book: https://argoshare.is.ed.ac.uk/healthyr_book/
 - Free online courses on Coursera, edX, Datacamp and other platforms

Next steps, if of interest

- Engage with the Data-Driven Innovation programme
 - Innovative training
 - World-class data infrastructure

- Free online course: Data Science in Stratified Healthcare and Precision Medicine
 - 5 weeks, self-paced, free
 - 11,900+ learners worldwide
 - https://www.coursera.org/learn/datascimed/

Thank you!

Time to play!

Enter our kahoot.it quiz to win a place in the DSM "Hall of Fame"