8- Trigonometria e Funções Trigonométricas

Trigonometria no Triângulo Retângulo

Triângulo Retângulo

Um triângulo é **retângulo** quando um de seus ângulos internos é reto.

Nomenclatura:

- a = hipotenusa
- b e c = catetos

Teorema de Pitágoras:

O quadrado da hipotenusa é igual a soma dos quadrados dos catetos, ou seja,

$$a^2 = b^2 + c^2.$$

Razões trigonométricas no triângulo retângulo

Considere o triângulo retângulo a seguir.

Fixado um ângulo agudo \hat{B} , temos as relações a seguir:

$$sen \hat{B} = \frac{cateto \ oposto \ a \ \hat{B}}{hipotenusa} = \frac{b}{a}$$

$$\cos \hat{B} = \frac{cateto \ adjacente \ a \ \hat{B}}{hipotenusa} = \frac{c}{a}$$

$$tg \, \hat{B} = \frac{cateto \ oposto \ a \ \hat{B}}{cateto \ adjacente \ a \ \hat{B}} = \frac{b}{c}$$

Observações:

(1) Seno, Cosseno e Tangente de ângulos complementares

Consideremos os ângulos \hat{A} , \hat{B} e \hat{C} de um triângulo retângulo.

$$\begin{cases} \hat{A} + \hat{B} + \hat{C} = 180^{\circ} \\ \hat{A} = 90^{\circ} \end{cases} \Rightarrow \begin{cases} \hat{B} + \hat{C} = 90^{\circ} \\ (\hat{B} \text{ e } \hat{C} \text{ são complementares}) \end{cases}$$

Temos que:

(i)
$$sen \hat{B} = \frac{b}{a} e cos \hat{C} = \frac{b}{a} \Rightarrow sen \hat{B} = cos \hat{C}$$

(ii)
$$sen \ \hat{C} = \frac{c}{a} e \cos \hat{B} = \frac{c}{a} \Rightarrow sen \ \hat{C} = cos \ \hat{B}$$

(iii)
$$tg \ \hat{B} = \frac{b}{c} e \ tg \ \hat{C} = \frac{c}{b} \Rightarrow \boxed{tg \ \hat{B} = \frac{1}{\operatorname{tg} \hat{C}}} e \boxed{tg \ \hat{C} = \frac{1}{\operatorname{tg} \hat{B}}}$$

(2) Relação entre seno, cosseno e tangente

Considere o triângulo retângulo a seguir.

Vimos que:

$$sen \hat{B} = \frac{b}{a}$$

$$\cos \hat{B} = \frac{c}{a}$$

•
$$tg \hat{B} = \frac{b}{c}$$

Logo,

$$\frac{\operatorname{sen}\widehat{B}}{\cos\widehat{B}} = \frac{\frac{b}{a}}{\frac{c}{a}} = \frac{b}{a} \cdot \frac{a}{c} = \frac{b}{c} = \operatorname{tg}\widehat{B}.$$

Desse modo, obtemos a relação: $| \operatorname{tg} \widehat{B} = \frac{\operatorname{sen} \widehat{B}}{\cos \widehat{B}}$.

$$tg\,\widehat{B} = \frac{sen\widehat{B}}{\cos\widehat{B}}$$

Relação Fundamental da Trigonometria

Considere o triângulo retângulo ABC da figura a seguir.

Temos que:

$$sen \hat{B} = \frac{b}{a} \Rightarrow b = a \cdot sen \hat{B}$$

$$\cos \hat{B} = \frac{c}{a} \Rightarrow c = a \cdot \cos \hat{B}$$

Pelo Teorema de Pitágoras, segue que:

$$a^{2} = b^{2} + c^{2} \Rightarrow a^{2} = (a \cdot sen \hat{B})^{2} + (a \cdot \cos \hat{B})^{2}$$
$$\Rightarrow a^{2} = a^{2} \cdot sen^{2} \hat{B} + a^{2} \cdot \cos^{2} \hat{B}$$
$$\Rightarrow 1 = sen^{2} \hat{B} + \cos^{2} \hat{B}$$

Portanto, obtemos a relação fundamental

$$sen^2 \hat{B} + \cos^2 \hat{B} = 1.$$

Exemplos

(1) Considere o triângulo retângulo ao lado. Calcule:

(a) $sen \hat{B}$

 (\mathbf{d}) sen \hat{C}

(b) $\cos \hat{B}$

(e) $\cos \hat{C}$

(c) $tg \hat{B}$

 $(\mathbf{f}) tg \hat{C}$

- (2) Num triângulo ABC reto em A, determine as medidas dos catetos, sabendo que a hipotenusa vale 50 e $sen \hat{B} = \frac{4}{5}$.
- (3) Sendo x um ângulo agudo tal que $sen x = \frac{4}{5}$, determine tg x.

Razões trigonométricas dos Ângulos Notáveis

Vamos obter as razões trigonométricas dos ângulos de 30°, 45° e 60°.

(1) Ângulos de 30° e 60°

Considere o triângulo equilátero ABC de lado l e altura AH = h.

Temos que:

- $BH = HC = \frac{l}{2} \in B\hat{A}H = C\hat{A}H = 30^{\circ}$
- Pelo Teorema de Pitágoras no triângulo AHC, obtemos:

$$h^2 + \left(\frac{l}{2}\right)^2 = l^2 \Rightarrow h^2 = l^2 - \frac{l^2}{4} \Rightarrow h^2 = \frac{3l^2}{4} \Rightarrow h = \frac{l\sqrt{3}}{2}.$$

Desse modo:

•
$$sen 30^{\circ} = \frac{\frac{1}{2}}{1} = \frac{1}{2}$$
 • $sen 60^{\circ} = \frac{\sqrt{3}}{2}$

•
$$\cos 30^\circ = \frac{h}{l} = \frac{\frac{l\sqrt{3}}{2}}{l} = \frac{\sqrt{3}}{2}$$
 \Rightarrow • $\cos 60^\circ = \frac{1}{2}$

•
$$tg 30^{\circ} = \frac{\frac{1}{2}}{h} = \frac{\frac{l}{2}}{\frac{l\sqrt{3}}{2}} = \frac{l}{2} \cdot \frac{2}{l\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$
 • $tg 60^{\circ} = \sqrt{3}$

(2) Ângulo de 45°

Considere o triângulo retângulo isósceles ABC de catetos l e hipotenusa a.

Pelo Teorema de Pitágoras:

$$a^2 = l^2 + l^2 \Rightarrow a^2 = 2l^2 \Rightarrow a = l\sqrt{2}.$$

Assim:

•
$$sen 45^{\circ} = \frac{l}{l\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

•
$$\cos 45^\circ = \frac{l}{l\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

•
$$tg 45^{\circ} = \frac{l}{l} = 1$$

Em resumo:

Ângulo Razão	30°	45°	60°
sen	<u>1</u> 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	√ <u>3</u> 2	$\frac{\sqrt{2}}{2}$	1/2
tg	<u>√3</u> 3	1	√3

Exercícios

- (1) Uma escada de 6 m está apoiada em uma parede e forma com o solo um ângulo de 60°. Qual é a altura atingida pelo ponto mais alto da escada? Qual é a distância do pé da escada à parede?
- (2) Determine o perímetro do paralelogramo ABCD.

(3) Em um trecho de rio em que as margens são paralelas, um morador, à beira de uma das margens, avista um farol, situado à beira da outra margem, sob um ângulo de 45°. Caminhando 1400 m no sentido indicado pela seta na figura, ele passa a mirar o farol sob um ângulo de 60°. Obtenha a largura do rio nesse trecho.

Trigonometria em triângulos quaisquer

Lei dos Senos: Em qualquer triângulo ABC, as medidas dos lados são proporcionais aos senos dos ângulos opostos, ou seja,

$$\frac{a}{\operatorname{sen} \hat{A}} = \frac{b}{\operatorname{sen} \hat{B}} = \frac{c}{\operatorname{sen} \hat{C}}.$$

Lei dos Cossenos: Em qualquer triângulo ABC, o quadrado da medida de um lado é igual à soma dos quadrados das medidas dos outros dois lados menos duas vezes o produto das medidas desses lados pelo cosseno do ângulo que eles formam.

•
$$a^2 = b^2 + c^2 - 2bc \cdot \cos \widehat{A}$$

•
$$b^2 = a^2 + c^2 - 2ac \cdot \cos \widehat{B}$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos \widehat{C}$$

Exemplos

(1) Calcule o valor de x na figura a seguir.

(2) No quadrilátero ABCD a seguir sabe-se que AB = 1 cm, AD = 2 cm, o ângulo $A\widehat{B}C$ mede 120° e que o segmento \overline{CD} é perpendicular aos segmentos \overline{AD} e \overline{BC} . Determine o comprimento do segmento \overline{BD} .

120°

Arcos e Ângulos

Medida de Ângulos

Dado um ângulo $a\hat{O}b$, consideremos uma circunferência de centro O e raio r. Sejam A e B os pontos onde os lados do ângulo $a\hat{O}b$ intersectam a circunferência.

Deste modo a cada ângulo $a\hat{O}b$ corresponde um arco de circunferência \widehat{AB} e vice-versa.

Convencionando que a um ângulo central unitário corresponde um arco unitário, segue que as medidas do ângulo $a\hat{O}b$ e do arco correspondente \widehat{AB} são iguais. Assim, definimos a medida de um ângulo como sendo a medida do seu arco correspondente.

As unidades de medida de um arco (ou de um ângulo) mais utilizadas são o grau e o radiano:

- O grau (°) é um arco unitário igual a $\frac{1}{360}$ da circunferência que contém o arco a ser medido.
- O radiano (rad) é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido.

Quando queremos medir em radianos um ângulo $a\hat{O}b$, devemos construir uma circunferência de centro O e raio r e verificar quantos radianos mede o arco correspondente \widehat{AB} , isto é, calcular o quociente entre o comprimento l do arco \widehat{AB} pelo raio r da circunferência.

Por exemplo, se um ângulo central $a\hat{O}b$ determina numa circunferência de raio r=5 cm e um arco \widehat{AB} de comprimento l=8 cm, então a medida de $a\hat{O}b$ é

$$\alpha = \frac{l}{r} = \frac{8}{5} = 1,6 \text{ rad.}$$

Como o comprimento de uma circunferência de raio r é $2\pi r$, então, há na volta completa 2π radianos. Assim, podemos estabelecer a correspondência entre graus e radianos:

$$2\pi \text{ rad} = 360^{\circ} \text{ ou } \pi \text{ rad} = 180^{\circ}.$$

Exercícios

Calcule o comprimento de um arco \widehat{AB} definido em uma circunferência de raio 6 cm por um ângulo central AOB de medida 1,5 rad.

- Um atleta A desenvolve, numa pista circular de raio 500 m, a velocidade constante de 8 km/h. Determine, **(2)** em radianos, a medida do arco descrito, bem como seu comprimento, após 15 minutos de percurso.
- Exprima em graus:

a)
$$\frac{\pi}{6}$$
 rad

b)
$$\frac{2\pi}{3}$$
 rad

c)
$$\frac{5\pi}{6}$$
 rad

a)
$$\frac{\pi}{6}$$
 rad b) $\frac{2\pi}{3}$ rad c) $\frac{5\pi}{6}$ rad d) $\frac{11\pi}{3}$ rad e) $\frac{3\pi}{5}$ rad

e)
$$\frac{3\pi}{5}$$
 rad

- Exprima em radianos:
 - a) 60° b) 36°

c) 135°

d) 240°

e) 270°

Circunferência Trigonométrica

Tomemos sobre um plano um sistema cartesiano ortogonal u0v. Consideremos a circunferência λ de centro 0 e raio r=1.

Vamos associar a cada número real x um único ponto P da circunferência λ do seguinte modo:

- (i) Se x = 0, então P coincide com o ponto A = (1, 0).
- (ii) Se x > 0, então realizamos a partir de A um percurso de comprimento x, no sentido anti-horário, e marcamos P como ponto final do percurso.
- (iii) Se x < 0, então realizamos a partir de A um percurso de comprimento |x|, no sentido horário, e marcamos P como ponto final do percurso.

A circunferência λ definida acima, com origem em A, é chamada de ciclo ou circunferência trigonométrica.

Observe que o comprimento do ciclo trigonométrico é igual a 2π , pois o seu raio é r=1.

Se o ponto P está associado ao número x, dizemos que P é a imagem de x no ciclo. Assim, por exemplo, temos:

a imagem de $\frac{\pi}{2}$ é B

a imagem de $-\frac{\pi}{2}$ é B'

a imagem de π é A'

a imagem de $-\pi$ é A'

a imagem de $\frac{3\pi}{2}$ é B'

a imagem de $-\frac{3\pi}{2}$ é B

Note que, se P é a imagem do número x_0 , então P também é a imagem dos números:

$$x_0$$
, $x_0 + 2\pi$, $x_0 + 4\pi$, $x_0 + 6\pi$, ...

e também de:

$$x_0 - 2\pi$$
, $x_0 - 4\pi$, $x_0 - 6\pi$, ...

Em resumo, P é imagem dos elementos do conjunto

$$\{x \in \mathbb{R}: x = x_0 + 2k\pi, k \in \mathbb{Z}\}.$$

Dois números reais x_1 e x_2 que possuem a mesma imagem no ciclo trigonométrico são chamados de **côngruos**.

Observe também que os eixos coordenados u e v dividem o ciclo trigonométrico em quatro partes, denominadas quadrantes. Assim, dado $x \in \mathbb{R}$, dizemos que:

$$x$$
 está no 1º quadrante $\Leftrightarrow 0 + 2k\pi \le x \le \frac{\pi}{2} + 2k\pi$, com $k \in \mathbb{Z}$;

$$x$$
está no 2º quadrante $\Leftrightarrow \frac{\pi}{2} + 2k\pi \leq x \leq \pi + 2k\pi,$ com $k \in \mathbb{Z};$

$$x$$
 está no 3° quadrante $\Leftrightarrow \pi + 2k\pi \le x \le \frac{3\pi}{2} + 2k\pi$, com $k \in \mathbb{Z}$;

$$x$$
 está no 4º quadrante $\Leftrightarrow \frac{3\pi}{2} + 2k\pi \le x \le 2\pi + 2k\pi$, com $k \in \mathbb{Z}$.

Exercícios

- (1) Construa um ciclo trigonométrico e marque os pontos correspondentes aos números reais $0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{6}$ e $\frac{11\pi}{6}$.
- (2) A que quadrante pertence o ponto associado a cada número real a seguir: $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{5\pi}{3}$, $\frac{4\pi}{3}$, $\frac{3\pi}{5}$, $\frac{6\pi}{7}$, $\frac{13\pi}{6}$, $\frac{15\pi}{4}$, $\frac{2\pi}{5}$, $\frac{5\pi}{4}$ e 5?
- (3) Nas figuras abaixo aparecem os pontos $P \in P'$ como extremidades dos arcos α . Apresente a expressão geral de α para cada um desses casos.

Funções Trigonométricas

Função Periódica

Um função $f: X \subset \mathbb{R} \to \mathbb{R}$ é **periódica** quando existe um número positivo p tal que f(x+p) = f(x), para qualquer $x \in X$. O menor valor de p é chamada de **período** de f.

Função Seno

Dado um número real x, seja P sua imagem no ciclo trigonométrico. Denominamos **seno** de x a ordenada $\overline{OP_1}$ do ponto P em relação ao sistema uOv, e indicamos por **sen** x.

Definimos a **função seno** como a função f que associa a cada número real x o número real $y = \operatorname{sen} x$ e indicamos por:

 $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \operatorname{sen} x$.

Gráfico da função seno

Propriedades:

- (1) $D_f = \mathbb{R}$
- (2) Im(f) = [-1,1]
- (3) Positiva: 1º e 2º quadrantes Negativa: 3º e 4º quadrantes
- (4) Crescente: 1º e 4º quadrantes Decrescente: 2º e 3º quadrantes
- (5) $f(x) = \operatorname{sen} x$ é periódica de período 2π , ou seja, $\operatorname{sen}(x + 2\pi) = \operatorname{sen}(x), \forall x \in \mathbb{R}$
- (6) $f(x) = \operatorname{sen} x \text{ \'e impar, isto \'e, } \operatorname{sen}(-x) = -\operatorname{sen}(x), \forall x \in \mathbb{R}$

Função Cosseno

Dado um número real x, seja P sua imagem no ciclo trigonométrico.

Denominamos **cosseno** de x a abscissa $\overline{OP_2}$ do ponto P em relação ao sistema uOv, e indicamos por $\cos x$.

Definimos a **função cosseno** como a função f que associa a cada número real x o número real $y = \cos x$ e indicamos por:

$$f: \mathbb{R} \to \mathbb{R}$$
 definida por $f(x) = \cos x$.

Gráfico da função cosseno

Propriedades:

- (1) $D_f = \mathbb{R}$
- (2) Im(f) = [-1,1]
- (3) Positiva: 1º e 4º quadrantes Negativa: 2º e 3º quadrantes
- (4) Crescente: 3º e 4º quadrantes Decrescente: 1º e 2º quadrantes
- (5) $f(x) = \cos x$ é periódica de período 2π , ou seja, $\cos(x + 2\pi) = \cos(x)$, $\forall x \in \mathbb{R}$
- (6) $f(x) = \cos x \in \text{par}$, isto $\in \text{cos}(-x) = \cos(x)$, $\forall x \in \mathbb{R}$

Função Tangente

Dado um número real x, em que $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

Seja P sua imagem no ciclo trigonométrico. Considere a reta \overline{OP} e seja T sua intersecção com o eixo das tangentes. Denominamos **tangente** de x a medida do segmento \overline{AT} , e indicamos por $\operatorname{tg} x$.

Definimos a **função tangente** como a função f que associa a cada número real x, com $x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$, o número real $y = \operatorname{tg} x$ e indicamos por:

$$f: X \subset \mathbb{R} \to \mathbb{R}$$
 definida por $f(x) = \operatorname{tg} x$,

$$X = \left\{ x \in \mathbb{R} : x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}.$$

Observação: Se $x = \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$, então a reta \overrightarrow{OP} é paralela ao eixo das tangentes. Neste caso, não existe intersecção entre as duas retas e, logo, a tangente não está definida.

Gráfico da função tangente

Propriedades:

(1)
$$D_f = \left\{ x \in \mathbb{R}: x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z} \right\}$$

- (2) $Im(f) = \mathbb{R}$
- (3) Positiva: 1º e 3º quadrantes Negativa: 2º e 4º quadrantes
- (4) Sempre crescente
- (5) tg(x) é periódica de período π , ou seja, $tg(x+\pi)=tg(x), \forall x\in D_f$
- (6) tg(x) é impar, isto é, tg(-x) = -tg(x), $\forall x \in D_f$

Exercícios

(1) Determine o período, a imagem e faça o gráfico das funções dadas a seguir.

(a)
$$f(x) = 2sen(x)$$

Solução: Vamos construir uma tabela em três etapas:

- 1°) atribuímos valores a x;
- 2°) associamos a cada x o valor de sen x;
- 3°) multiplicamos sen x por 2.

Assim, obtemos cinco pontos do gráfico de f, representado a seguir.

х	sen x	у	х	sen x	у	х	sen x	у
0			0	0		0	0	0
$\frac{\pi}{2}$			<u>π</u>	1		<u>π</u> 2	1	2
π			π	0		π	0	0
<u>3π</u> 2			$\frac{3\pi}{2}$	-1		<u>3π</u> 2	-1	-2
2π			2π	0		2π	0	0

$$Im(f) = [-2, 2]$$

 $p(f) = 2\pi - 0 = 2\pi.$

(b)
$$f(x) = sen(2x)$$

Solução: Vamos construir uma tabela em três etapas:

- 1°) atribuímos valores a t = 2x;
- 2°) calculamos o valor de $y = \operatorname{sen} t$;
- 3°) calculamos o valor de x.

Assim, obtemos cinco pontos do gráfico de f, representado a seguir.

х	t = 2x	у
	0	
	$\frac{\pi}{2}$	
	π	
	<u>3π</u> 2	
	2π	

х	t = 2x	у
	0	0
	<u>π</u> 2	1
	π	0
	<u>3π</u> 2	-1
	2π	0)

x	t = 2x	у
0	0	0
$\frac{\pi}{4}$	<u>π</u> 2	1
$\frac{\pi}{2}$	π	0
$\frac{3\pi}{4}$	<u>3π</u> 2	-1
π	2π	0)

$$Im(f) = [-1, 1]$$

 $p(f) = \pi - 0 = \pi.$

$$(\mathbf{c}) f(x) = 1 + sen(x)$$

Solução: Vamos construir uma tabela em três etapas:

- 1°) atribuímos valores a x;
- 2°) calculamos o valor de sen x;
- 3°) calculamos o valor de y = 1 + sen x.

Assim, obtemos cinco pontos do gráfico de f, representado a seguir.

х	sen x	у	х	sen x	у
0			0	0	
$\frac{\pi}{2}$			$\frac{\pi}{2}$	1	
π			π	0	
$\frac{3\pi}{2}$			$\frac{3\pi}{2}$	-1	
2π			2π	0	

х	sen x	у
0	0	1
$\frac{\pi}{2}$	1	2
π	0	1
<u>3π</u> 2	-1	0
2π	0	1

$$Im(f) = [0, 2]$$

 $p(f) = 2\pi - 0 = 2\pi.$

(d)
$$f(x) = sen\left(x - \frac{\pi}{4}\right)$$

Solução: Vamos construir uma tabela em três etapas:

- 1°) atribuímos valores a $t = x \frac{\pi}{4}$;
- 2°) calculamos os valores de $y = sen\left(x \frac{\pi}{4}\right)$;
- 3°) calculamos os valores de x.

Assim, obtemos cinco pontos do gráfico de f, representado a seguir.

х	$t = x - \frac{\pi}{4}$	у	х	$t = x - \frac{\pi}{4}$	у	х	$t = x - \frac{\pi}{4}$	у
	0			0	0	$\frac{\pi}{4}$	0	0
	$\frac{\pi}{2}$			$\frac{\pi}{2}$	1	<u>3π</u> 4	$\frac{\pi}{2}$	1
	π			π	0	<u>5π</u> 4	π	0
	<u>3π</u> 2			<u>3π</u> 2	-1	$\frac{7\pi}{4}$	<u>3π</u> 2	-1
	2π			2π	0	$\frac{9\pi}{4}$	2π	0

$$Im(f) = [-1, 1]$$

$$p(f) = \frac{9\pi}{4} - \frac{\pi}{4} = 2\pi.$$

(e)
$$f(x) = 1 + 3sen\left(\frac{x}{2} + \pi\right)$$

Solução:

De modo análogo aos itens anteriores, construímos a tabela ao lado.

Com os cinco pontos obtidos, traçamos o gráfico de f, representado a seguir.

x	$t = \frac{x}{2} + \pi$	sen t	3sen t	у
-2π	0	0	0	1
$-\pi$	$\frac{\pi}{2}$	1	3	4
0	π	0	0	1
π	$\frac{3\pi}{2}$	-1	-3	-2
2π	2π	0	0	1

$$Im(f) = [-2, 4]$$

 $p(f) = 2\pi - (-2\pi) = 4\pi.$

(2) Sendo a, b, c e d números reais positivos, determinar a imagem e o período da função $f: \mathbb{R} \to \mathbb{R}$ dada por f(x) = a + bsen(cx + d).

Solução: Fazendo t = cx + d, quando x percorre \mathbb{R} , t percorre \mathbb{R} (pois a função afim t = cx + d é sobrejetora) e, em consequência, $sen\ t$ percorre o intervalo [-1,1]. Logo, $b \cdot sen\ t$ percorre o intervalo [-b,b] e, então, $y = a + bsen\ t$ percorre o intervalo [a-b,a+b]. Portanto, a imagem de f é dada por

$$Im(f) = [a - b, a + b].$$

Para que t complete um período é necessário que t varie de 0 a 2π , então:

$$t = 0 \Rightarrow cx + d = 0 \Rightarrow x = -\frac{d}{c},$$

$$t = 2\pi \Rightarrow cx + d = 2\pi \Rightarrow x = \frac{2\pi}{c} - \frac{d}{c},$$

portanto, o período de
$$f$$
 é dado por $p(f) = \left(\frac{2\pi}{c} - \frac{d}{c}\right) - \left(-\frac{d}{c}\right) = \frac{2\pi}{c}$.

Resumo de cada parâmetro em y = a + bsen(cx + d)

- $a \rightarrow \text{deslocamento vertical (altera a imagem)}$
- $b \to \text{amplitude (altera a imagem)}$
- $c \rightarrow \text{altera o período}$
- $d \rightarrow deslocamento horizontal$

(3) Utilize redução ao primeiro quadrante para obter os valores de:

- (a) $sen \frac{3\pi}{4}$
- (b) $sen \frac{7\pi}{6}$
- (c) $sen \frac{5\pi}{3}$
- (d) $\cos \frac{2\pi}{3}$
- (e) $cos \frac{4\pi}{3}$
- (f) $cos \frac{11\pi}{6}$

Observações:

(i) Relação fundamental I Seja x um arco do 1º quadrante. Aplicando o teorema de Pitágoras no triângulo OPP₂, temos:

$$(\operatorname{sen} x)^2 + (\cos x)^2 = (\operatorname{OP})^2$$
, ou seja,

$$\text{sen}^2 x + \cos^2 x = 1$$
, válida para $\forall x \in \mathbb{R}$

Mesmo que x não seja arco do 1° quadrante, vale a relação fundamental I.

Assim, dado o seno de um arco qualquer, é possível, por meio da relação fundamental I, obter o cosseno desse mesmo arco, e vice-versa.

Exemplo:

Dado cos x = $\frac{5}{13}$, com $\frac{3\pi}{2}$ < x < 2π , para obter sen x aplicamos a relação fundamental I:

Como x está no quarto quadrante, temos sen x < 0. Assim, podemos escrever sen x = $-\frac{12}{13}$.

(ii) Relação fundamental II

Seja um arco de x rad com extremidade X. Observando a figura, temos:

$$OX' = cos x$$

 $X'X = sen x$
 $AT = tg x$
 $OX = 1(raio)$

Os triângulos retângulos OX'X e OAT são semelhantes, pois possuem um ângulo agudo comum. Assim, podemos escrever:

$$\frac{OX'}{OA} = \frac{XX'}{AT} \Rightarrow \frac{\cos x}{1} = \frac{\sin x}{tg x} \Rightarrow tg x = \frac{\sin x}{\cos x} ,$$

válida para $\forall x \in \mathbb{R} | x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$.

(iii) Além das funções seno, cosseno e tangente, também são definidas outras três funções trigonométricas básicas:

$$\sec x = \frac{1}{\cos x}$$

Domínio: $x \neq \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots$

Imagem: $y \le -1$ ou $y \ge 1$

Período: 2π

$$cossec \ x = \frac{1}{\operatorname{sen} x}$$

Domínio: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Imagem: $y \le -1$ ou $y \ge 1$

Período: 2π

Domínio: $x \neq 0, \pm \pi, \pm 2\pi, \dots$

Imagem: $-\infty < y < \infty$

Período: π

Algumas Identidades Trigonométricas

$$sen^{2}(x) + cos^{2}(x) = 1$$
 (Relação Trigonométrica Fundamental)

$$\begin{aligned} 1 + \operatorname{tg}^2(x) &= \sec^2(x) \\ \operatorname{sen}(x + y) &= \operatorname{sen}(x) \cos(y) + \operatorname{sen}(y) \cos(x) \\ \cos(x + y) &= \cos(x) \cos(y) - \operatorname{sen}(y) \operatorname{sen}(x) \\ \operatorname{sen}(2x) &= 2 \operatorname{sen}(x) \cos(x) \\ \operatorname{sen}^2(x) &= \frac{1 - \cos(2x)}{2} \\ \operatorname{sen}(x) + \operatorname{sen}(y) &= 2 \operatorname{sen}\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right) \\ \cos(x) + \cos(y) &= 2 \cos\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right) \\ \operatorname{sen}(x + \frac{\pi}{2}) &= \cos(x) \end{aligned}$$