

Aircraft Classifications

Dr. Antonio A. Trani Associate Professor Department of Civil Engineering

Virginia Tech

FAA Airport Design Group Classification

FAA Aircraft Design Group Classification Used in Airport Geometric Design.

Design Group	Wingspan (ft)	Example Aircraft
I	< 49	Cessna 152-210, Beechcraft A36
II	49 - 78	Saab 2000, EMB-120, Saab 340, Canadair RJ-100
III	79 - 117	Boeing 737, MD-80, Airbus A-320
IV	118 - 170	Boeing 757, Boeing 767, Airbus A-300
V	171 - 213	Boeing 747, Boeing 777, MD-11, Airbus A-340
VI	214 - 262	A3XX-200 or VLCA (planned)

Virginia Tech 2 of 18

FAA design group criteria is useful to size runways, taxiways, apron areas, and protection areas around the landing area.

VLCA on Design Group VI Runway

VLCA on Design Group VI Taxiway

Virginia Tech 3 of 18

ICAO Airport Design Group Classification

Design Group	Wingspan (m)	Gear Width (m)	Example Aircraft
A	< 15	< 4.5	All single engine aircraft, Some business jets
В	15 to < 24	4.5 to < 6	Commuter aircraft, Large Business jets (EMB-120, Saab 2000, Saab 340, etc.)
С	24 to < 36	6 to < 9	Medium range transports (B727, B737, MD-80, A320)
D	36 to < 52	9 to < 14	Heavy transports (B757, B767, A300)
Е	52 to < 65	9 to < 14	Heavy transport aircraft (Boeing 747, L-1011, MD-11, DC-10)

Virginia Tech 4 of 18

ATC Approach Speed Classification

Group	Approach Speed (knots)	Example Aircraft
A	< 91	All single engine aircraft, Beechcraft Baron 58,
В	91-120	Business jets and commuter aircraft (Beech 1900, Saab 2000, Saab 340, Embraer 120)
С	121-140	Med. and Short Range Transports (Boeing 727, B737, MD-80, A320, F100, B757, etc.)
D	141-165	Heavy transports (Boeing 747, L-1011, MD-11, DC- 10, A340, A300)
Е	> 166	BAC Concorde and military aircraft

Virginia Tech 5 of 18

Aircraft Wake Vortex Classification

Group	Takeoff Gross Weight (lb)	Example Aircraft
Small	< 41,000	All single engine aircraft, light twins, most business jets and commuter aircraft
Large	41,000-255,000	Large turboprop commuters, short and medium range transport aircraft (MD-80, B737, B727, A320, F100, etc.)
Heavy	> 255,000	Boeing 757, Boeing 747, Douglas DC-10, MD-11, Airbus A-300, Airbus A-340, Lockheed L-1011

Virginia Tech 6 of 18

The Wake Vortex Phenomena

- Resulting from the generation of lift around a three dimensional wing
- Wake vortex tangential speeds can reach up to 70 m/s (beyond the FAR Part 25 certification criteria of commercial aircraft)

Virginia Tech 7 of 18

Parameter	Remarks	
Passenger Capacity	650 passengers in a three-class layout plus crew	
Desired Range	13,000 Kilometers with 1.50 hour reserve	
Speed	Mach 0.85 at 11.0 km	
Runway Length	Use of conventional runways (i.e., 3,300 m at MTOW	
	and Sea Level ISA)	

Virginia Tech 8 of 18

Virginia Tech 9 of 18

Wake Vortex Equations

$$=\frac{4mg}{Vb}$$

where, is the vortex circulation (in m^2/s), mg is the gross weight of the wake generating aircraft (N.), is the air density (kg/m^3), V is the true airspeed (m/s), and b is the aircraft wingspan (m).

$$V_t = \frac{-y^2}{2 y} \left[1 - e^{\frac{-y^2}{4t}} \right]$$

where, V_t is the tangential velocity right or left from vortex core (m./sec.), y is the spanwise coordinate measured from the vortex core location, is the vortex decay value which has been found to be dependent upon the strength of the circulation, and t is the time behind the wake generating aircraft (in seconds).

Virginia Tech 10 of 18

Virginia Tech 11 of 18

Virginia Tech 12 of 18

Small Aircraft

Single-Engine GA

Twin-Engine GA

Cessna 172 (Skyhawk)

Beechcraft 58TC (Baron)

Beechcraft A36 (Bonanza)

Cessna 421C (Golden Eagle)

13 of 18 Virginia Tech

Virginia Tech 14 of 18

Virginia Tech 15 of 18

Virginia Tech 16 of 18

Virginia Tech 17 of 18

Virginia Tech 18 of 18