Predicción del incio y plena floración

Método del Coeficiente de Regresión

Cálculo de la temperatura base óptima utilizando el Método del Coeficiente de Regresión (Yang et al., 1995)

Ecuación para el Coeficiente de Regresión

El coeficiente de regresión b se calcula usando la fórmula:

$$b = \frac{n\sum_{i=1}^{n} GDD_{i}T_{i} - \sum_{i=1}^{n} T_{i}\sum_{i=1}^{n} GDD_{i}}{n\sum_{i=1}^{n} T_{i}^{2} - \left(\sum_{i=1}^{n} T_{i}\right)^{2}}$$

Donde:

- GDD_i es el total de Grados-Día Acumulados para cada observación.
- T_i es la temperatura promedio para cada observación.
- n es el número total de observaciones.

Ecuación para la Temperatura Base

La temperatura base (T_b) se calcula usando la ecuación:

$$T_b = \frac{\sum_{i=1}^{n} T_i \sum_{i=1}^{n} d_i T_i - n \sum_{i=1}^{n} d_i T_i^2}{\sum_{i=1}^{n} d_i \sum_{i=1}^{n} T_i - n \sum_{i=1}^{n} d_i T_i}$$

Donde:

- d_i es el número de días de cada observación.
- n es el número total de observaciones.

```
##
     BaseTemp
                     R2
                             RMSE
## 1
            2 0.7763456 31.881403
## 2
            4 0.7920509 25.381047
## 3
            6 0.8026632 19.785830
            8 0.7802426 15.335948
## 4
## 5
           10 0.7453118 10.635498
           12 0.7888871 6.496708
## 6
                      R2
##
     BaseTemp
                             RMSE
## 1
            2 0.20256566 42.18102
            4 0.18367005 36.09146
## 2
## 3
            6 0.15451213 30.90720
            8 0.08010361 26.86733
## 5
           10 0.01676295 22.57710
## 6
           12 0.02526852 18.85202
```

Temperatura base óptima para inicio de floración

[1] 6

Temperatura base óptima para plena floración

[1] 2

Gráfico con predicciones y datos puntuales para cada año

- Inicio de floración (10%) con 789.40 grados-día acumulados y Temperatura base de 6°C a partir del 1 de agosto
- Plena floración (%máx) con 1341.36 grados-día acumulados y Temperatura base de 2°C a partir del 1 de agosto