1. Prove that the closed interval [0, 1] is connected.

Solution

Suppose [0,1] is not connected. Then $[0,1] = A \cup B$ for two nonempty sets A, B such that $A \cap \overline{B} = \overline{A} \cap B = \emptyset$. Suppose, without loss of generality, that $0 \in A$ and $1 \in B$. Let

$$x = \sup A$$
.

Since $A \subset [0,1]$ is contained in a closed set, $x \in [0,1]$. Now certainly $x \in \overline{A}$, for otherwise x could not be a least upper bound for A. Hence $x \notin B$, since $\overline{A} \cap B = \emptyset$, so $x \in A$, since $x \in A \cup B$, thus $x \notin \overline{B}$, since $A \cap \overline{B} = \emptyset$. Hence there exists a neighborhood $U \subset [0,1]$ of x disjoint from B. Thus $U \subset A$. Since $1 \in B$ and $x \notin B$, x < 1. But then any neighborhood within [0,1] of x contains points greater than x, hence some $y \in U \subset A$ is such that y > x. This contradicts the construction of x as the least upper bound for A, and we conclude that [0,1] is connected.

2. Show that the set \mathbb{Q} of rational numbers in \mathbb{R} is not expressible as the intersection of a countable collection of open subset of \mathbb{R} .

Solution

Suppose $\bigcap_n E_n = \mathbb{Q}$ for some countable sequence $\{E_n\}$ of open subsets of \mathbb{R} . Each E_n must be dense in \mathbb{R} , since their intersection $\mathbb{Q} \subset E_n$ is dense in \mathbb{R} . Enumerate the elements of \mathbb{Q} by x_n , and set $F_n = \mathbb{R} \setminus \{x_n\}$. Then each F_n is also open and dense in \mathbb{R} , hence by the Baire Category Theorem,

$$\left(\bigcap_{n} E_{n}\right) \cap \left(\bigcap_{n} F_{n}\right)$$

must be dense in \mathbb{R} , as it is a countable intersection of dense open sets in a complete metric space. Yet the intersection above is empty, hence certainly not dense in \mathbb{R} , a contradiction. It follows that \mathbb{Q} cannot be expressed as the intersection of a countable collection of open subsets of \mathbb{R} .

3. Suppose that X is a compact metric space (in the covering sense of the word compact). Prove that every sequence $\{x_n : x_n \in X, n = 1, 2, 3, ...\}$ has a convergent subsequence. (Prove this directly. Do not just quote a theorem.)

Solution

Suppose that for each $y \in X$, there exists an $\epsilon = \epsilon_y > 0$ such that $B(y; \epsilon_y)$ contains only finitely many points of $\{x_n\}$. The family $\{B(y; \epsilon_y)\}_{y \in X}$ is an open cover of X, hence contains some finite subcover $\{B(y_i; \epsilon_{y_i})\}_{i=1}^m$ by compactness of X. Every x_n must lie within some $B(y_i; \epsilon_{y_i})$, thus, as there are only finitely many of the $B(y_i; \epsilon_{y_i})$'s, and each contains finitely many of the x_n 's, there must be only finitely many of the x_n 's, a contradiction. It follows that there exists some $y^* \in X$ such that $B(y^*; \epsilon)$ contains infinitely points of $\{x_n\}$ for all $\epsilon > 0$.

We construct a convergent subsequence of $\{x_n\}$ converging to y^* as follows. Select $x_{n_j} \in B(y^*; 1/j)$ from $\{x_n\} \cap B(y^*; 1/j)$ and such that $n_j < n_{j+1}$, which is always possible due to the infinitude of the intersection for all $j = 1, 2, \ldots$. Then $d(y^*, x_{n_j}) < 1/j \to 0$ as $j \to \infty$, hence $x_{n_j} \to y^*$ and $\{x_{n_j}\}_{j=1}^{\infty}$ is a convergence subsequence of $\{x_n\}$.

- 4. (a) Define uniform continuity of a function $F: X \to \mathbb{R}$, X a metric space.
 - (b) Prove that a function $f:(0,1)\to\mathbb{R}$ is the restriction to (0,1) of a continuous function $F:[0,1]\to\mathbb{R}$ if and only if f is uniformly continuous on (0,1).

Solution

- (a) F is uniformly continuous if for every $\epsilon > 0$, there exists a $\delta > 0$ such that $|F(x) F(y)| < \epsilon$ whenever $x, y \in X$ with $d(x, y) < \delta$.
- (b) Suppose $f:(0,1)\to\mathbb{R}$ is the restriction to (0,1) of a continuous function $F:[0,1]\to\mathbb{R}$. Then F is uniformly continuous (since [0,1] is compact), from which the uniform continuity of f follows immediately.

Now suppose that f is uniformly continuous on (0,1). Let δ_n be such that |f(x) - f(y)| < 1/n whenever $x, y \in (0,1)$ with $|x-y| < \delta_n$, and further ensure that $\delta_n \le \delta_{n+1}$. Set $x_n = \delta_n/2$. Then for n, m > N, $x_n, x_m \in (0, \delta_N)$, hence $|f(x_n) - f(x_m)| < 1/N$, which shows that $\{f(x_n)\}$ is a Cauchy sequence. Since \mathbb{R} is complete, the limit exists and we can set $a = \lim_{n \to \infty} f(x_n)$.

Now given an $\epsilon > 0$, there exists a $\delta > 0$ such that $|f(x) - f(y)| < \epsilon$ whenever $x, y \in (0, 1)$ with $|x - y| < \delta$. Now if $x \in (0, \delta)$, there exists an $x_n \in (0, \delta)$ such that $|a - f(x_n)| < \epsilon$, hence $|a - f(x)| < |a - f(x_n)| + |f(x_n) - f(x)| < 2\epsilon$, showing that, indeed $a = \lim_{x \to 0} f(x)$. Similarly, we can set $b = \lim_{x \to 1} f(x)$, and define $F : [0, 1] \to \mathbb{R}$ by

$$F(x) = \begin{cases} a, & x = 0 \\ f(x), & 0 < x < 1 \\ b, & x = 1 \end{cases}$$

Evidently, F is continuous on [0,1], by construction, and f is the restriction of F to (0,1).

5. State some reasonable conditions under which a function $f: \mathbb{R}^2 \to \mathbb{R}$ satisfies

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right)$$

everywhere on \mathbb{R}^2 and prove this equality under the conditions you give.

Solution

(F01.5)

6. Suppose $f: \mathbb{R}^3 \to \mathbb{R}$ is a continuously differentiable function with grad $f \neq \vec{0}$ at $\vec{0}$ ($\vec{0} = (0,0,0)$ in \mathbb{R}^3). Show that there are two continuously differentiable functions $g: \mathbb{R}^3 \to \mathbb{R}$, $h: \mathbb{R}^3 \to \mathbb{R}$ such that the function

$$(x, y, z) \mapsto (f(x, y, z), g(x, y, z), h(x, y, z))$$

from \mathbb{R}^3 to \mathbb{R}^3 is one-to-one on some neighborhood of $\vec{0}$.

Solution

Without loss of generality, suppose $\frac{\partial f}{\partial x} \neq 0$ at 0. Set h(x,y,z) = y and g(x,y,z) = z. Set

$$F(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z));$$

then

$$F'(x,y,z) = \begin{pmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} & \frac{\partial f}{\partial z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

is nonsingular at 0, hence the Inverse Function Theorem guarantees open sets U and V of \mathbb{R}^3 with $0 \in U$, $F(0) \in V$, F is one-to-one on U, and F(U) = V.

7. Suppose $F: \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable and that the Jacobian matrix of F is everywhere nonsingular. Suppose also that $F(\vec{0}) = \vec{0}$ and that $||F((x,y))|| \ge 1$ for all (x,y) with ||(x,y)|| = 1.

Prove that $F(\{(x,y): ||(x,y)|| < 1\}) \supset \{(x,y): ||(x,y)|| < 1\}.$

(Hint: Show, with $U = \{(x,y) : ||(x,y)|| < 1\}$, that $F(U) \cap U$ is both open and closed in U.)

Solution

(W02.7)

8. Let V be a finite dimensional real vector space. Let $W \subset V$ be a subspace and $W^{\circ} = \{f : V \to \mathbb{F} | f = 0 \text{ on } W\}$. Prove that

$$\dim(V) = \dim(W) + \dim(W^{\circ}).$$

Solution

We show an isomorphism between W° and $(V/W)^{*}$. Given $f \in W^{\circ}$, define $L \in (V/W)^{*}$ by

$$L\{x\} = f(x),$$

where $\{x\}$ is the equivalence class in V/W of x. It follows from the fact that $f \in W^{\circ}$ that L is well-defined, hence this defines a homomorphism from W° to $(V/W)^{*}$. Conversely, given $L \in (V/W)^{*}$, define $f \in V^{*}$ by

$$f(x) = L\{x\}$$

for $x \in V$. Since $L\{x\} = 0$ for any $x \in W$, it follows that, in fact, $f \in W^{\circ}$, hence this defines a homomorphism from $(V/W)^*$ to W° . Thus $W^{\circ} \cong (V/W)^*$, and isomorphic vector spaces have equal dimension. Therefore,

$$\dim(V) = \dim(W) + \dim(V/W) = \dim(W) + \dim((V/W)^*) = \dim(W) + \dim(W^\circ).$$

9. Find the matrix representation in the standard basis for either rotation by an angle θ in the plane perpendicular to the subspace spanned by the vectors (1, 1, 1, 1) and (1, 1, 1, 0) in \mathbb{R}^4 .

(You do not have to multiply the matrices out but must compute any inverses.)

Solution

Let

$$B_T = \begin{pmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & 0 & -\frac{2}{\sqrt{6}} \\ 0 & 1 & 0 & 0 \end{pmatrix}.$$

Then regarding the columns of B_T as an orthonormal basis, the matrix representation of T in this basis is

$$[T]_{B_T} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos\theta & \sin\theta \\ 0 & 0 & -\sin\theta & \cos\theta \end{pmatrix},$$

so the matrix representation of T in the standard basis is

$$T = B_T[T]_{B_T}B_T^{-1} = B_T[T]_{B_T}B_T^t.$$

10. Let V be a complex inner product space and W a finite dimensional subspace. Let $v \in V$. Prove that there exists a unique vector $v_W \in W$ such that

$$||v - v_W|| \le ||v - w||$$

for all $w \in W$. Deduce that equality holds if and only if $w = v_W$.

Solution

Let $\{e_1,\ldots,e_k\}$ be an orthonormal basis of W with respect to the inner product of V, and set

$$v_W = \sum_{i=1}^k (v, e_i) e_i.$$

Then for any $w = \sum_{i} w_i e_i \in W$,

$$||v - w||^{2} = (v - w, v - w)$$

$$= (v, v) + (w, w) - (v, w) - (w, v)$$

$$= ||v||^{2} + \sum_{i} |w_{i}|^{2} - \sum_{i} \overline{w_{i}}(v, e_{i}) - \sum_{i} w_{i}(e_{i}, v)$$

$$= ||v||^{2} + \sum_{i} \left(|w_{i}|^{2} - \overline{w_{i}}(v, e_{i}) - w_{i}(v, e_{i}) \right)$$

In particular,

$$||v - v_W||^2 = ||v||^2 - \sum_i |(v, e_i)|^2,$$

hence

$$||v - w||^{2} - ||v - v_{W}||^{2} = \sum_{i} \left(|w_{i}|^{2} + |(v, e_{i})|^{2} - \overline{w_{i}}(v, e_{i}) - w_{i}\overline{(v, e_{i})} \right)$$

$$= \sum_{i} \left(w_{i} - (v, e_{i}) \right) \left(\overline{w_{i}} - \overline{(v, e_{i})} \right)$$

$$= \sum_{i} |w_{i} - (v, e_{i})|^{2}$$

$$\geq 0$$

for all $w \in W$, with equality if and only if $w_i = (v, e_i)$ for each $i = 1, \ldots, k$.

11. Let V be a finite dimensional real inner product space and $T, S : V \to V$ two commuting hermitian linear operators. Show that there exists an orthonormal basis for V consisting of vectors that are simultaneously eigenvectors of T and S.

Solution

Let $\{\lambda_i\}_{i=1}^k$ be the eigenvectors of S, and consider the eigenspaces $E_i = \ker(S - \lambda_i I)$, $i = 1, \ldots, k$. Note that each pair of eigenspaces are orthogonal, since S is self-adjoint; indeed, the Spectral Theorem for self-adjoint matrices allows us to decompose V as

$$V = \bigoplus_{i} E_{i}.$$

Now for $x \in E_i$, $Sx = \lambda_i x$, so $S(Tx) = T(Sx) = T(\lambda_i x) = \lambda_i(Tx)$, hence $Tx \in E_i$ as well. Thus T is invariant on each of the subspaces E_i , so the restriction of T to E_i is a linear, self-adjoint operator. The Spectral Theorem for self-adjoint matrices then allows us to choose an orthonormal basis for E_i of eigenvectors of T, which also happen to be eigenvectors of S since they belong to E_i . Applying the Spectral Theorem to each restriction to E_i of T thus allows us to find an orthonormal basis for all of V of eigenvectors of both S and T.