振り返りと導入

前回は最小次元実現の間のアファイン変換について調べた。本稿では次のことを行う:

- 指数型分布族自体に構造を入れる。
- Amari-Chentsov テンソルおよび α-接続を定義する。

1 指数型分布族の構造

本節では、指数型分布族にいくつかの構造を定め、さらに Amari-Chentsov テンソルおよび α -接続の定義を行う。 以降、本節では X を可測空間、 $\mathcal{P} \subset \mathcal{P}(X)$ を X 上の指数型分布族とする。また、0606_資料.pdf 定義 0.1, 0.2 で 定めた写像や真パラメータ空間の記号「 $P_{(V,T,\mu)}$ 」「 $\Theta_{(V,T,\mu)}^{\mathcal{P}}$ 」をよく用いる。さらに次の記号を定義しておく:

定義 1.1. \mathcal{P} の最小次元実現 (V,T,μ) に対し、 $P_{(V,T,\mu)}|_{\Theta^{\mathcal{P}}_{(V,T,\mu)}}$ の逆写像 $\mathcal{P}\to\Theta^{\mathcal{P}}_{(V,T,\mu)}$ を $\theta_{(V,T,\mu)}$ と書くことにする。

1.1 多様体構造と平坦アファイン接続

命題-定義 1.2 (\mathcal{P} が開であること). 指数型分布族 \mathcal{P} に関し、次は同値である:

- (1) ある最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ は V^{\vee} で開である。
- (2) すべての最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ は V^{\vee} で開である。

P がこれらの同値な 2 条件をみたすとき、P は**開 (open)** であるという。

証明 (1) \Rightarrow (2) は、 $0606_{\frac{1}{2}}$ 料.pdf 系 1.13 より、最小次元実現の真パラメータ空間がアファイン変換で写り合うことから従う。(2) \Rightarrow (1) は最小次元実現が存在することから従う。

以降、本節ではPは開とする。

命題-定義 1.3 (\mathcal{P} の自然な多様体構造). \mathcal{P} 上の多様体構造 \mathcal{U} であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 \mathcal{U} は全単射 $\theta_{(V,T,\mu)}$ により $\Theta_{(V,T,\mu)}^{\mathcal{P}}$ から \mathcal{P} 上に誘導された 多様体構造に一致する。

このUをPの自然な多様体構造という。

証明 Step 1: U の一意性 U の存在を仮定すれば、最小次元実現をひとつ選ぶことで U が決まるから、U は一意である。

Step 2: \mathcal{U} の存在 最小次元実現 (V,T,μ) をひとつ選び、 $\theta \coloneqq \theta_{(V,T,\mu)}$ とおき、 θ により $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ から \mathcal{P} 上に誘導された多様体構造を \mathcal{U} とおく。この \mathcal{U} が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' \coloneqq \theta_{(V',T',\mu')}$ とおき、 \mathcal{U}' を θ' により $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ から \mathcal{P} 上に誘導された多様

体構造とするとき、恒等写像 $id: (\mathcal{P}, \mathcal{U}) \to (\mathcal{P}, \mathcal{U}')$ が微分同相となることである。これは図式

$$(\mathcal{P}, \mathcal{U}) \xrightarrow{\mathrm{id}} (\mathcal{P}, \mathcal{U}')$$

$$\theta \downarrow \qquad \qquad \downarrow \theta'$$

$$\Theta^{\mathcal{P}}_{(V,T,\mu)} \xrightarrow{F} \Theta^{\mathcal{P}}_{(V',T',\mu')}$$

$$(1.1)$$

の可換性と、 θ , θ' ,F が微分同相であることから従う。ただしF とは、0606_資料.pdf 系 1.13 より一意に存在するアファイン変換 $V^{\vee} \to V^{\vee}$ の制限である。

以降、本節ではPに自然な多様体構造が定まっているものとする。

命題-定義 1.4 (\mathcal{P} 上の自然な平坦アファイン接続). \mathcal{P} 上の平坦アファイン接続 ∇ であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ とおくと、 ∇ は $\nabla = \theta^*_{(V,T,\mu)}\widetilde{\nabla}$ をみたす。

この ∇ を \mathcal{P} 上の**自然な平坦アファイン接続**という。

証明には次の補題を用いる。

補題 1.5 (アファイン変換によるアファイン接続の引き戻し). V,V' を有限次元 \mathbb{R} -ベクトル空間、 $F:V\to V'$ をアファイン変換、 ∇,∇' をそれぞれ V,V' 上の標準的な平坦アファイン接続とする。このとき $F^*\nabla'=\nabla$ が成り立つ。

証明 資料末尾の付録に記した。

命題-定義 1.4 の証明 Step 1: ∇ の一意性 ∇ の存在を仮定すれば、最小次元実現をひとつ選ぶことで ∇ が決まるから、∇ は一意である。

<u>Step 2: ∇ の存在</u> 最小次元実現 (V,T,μ) をひとつ選び、 $\theta \coloneqq \theta_{(V,T,\mu)}$ 、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ 、 $\nabla \coloneqq \theta^*\widetilde{\nabla}$ と定める。この ∇ が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' \coloneqq \theta_{(V',T',\mu')}$ 、 $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}'$ とおくとき、 $\theta^*\widetilde{\nabla} = \theta'^*\widetilde{\nabla}'$ が成り立つことである。そこで、 $\mathbf{0606}$ _資料.pdf 系 1.13 より一意に存在するアファイン変換 $V^\vee \to V'^\vee$ を F とおくと、

$$\theta'^*\widetilde{\nabla}' = \theta^* F^*\widetilde{\nabla}' \quad (F \ \ \ \ \ \ \theta, \theta' \ \ \ \ \)$$
 (1.2)

$$=\theta^*\widetilde{\nabla} \quad (\text{Amb } 1.5) \tag{1.3}$$

が成り立つ。したがって $\theta^*\widetilde{\nabla} = \theta'^*\widetilde{\nabla}'$ が示された。よって ∇ は命題-定義の主張の条件をみたす。

以降、本節では ρ に自然な平坦アファイン接続 ∇ が定まっているものとする。

1.2 Fisher 計量

命題-定義 1.6 (\mathcal{P} 上の Fisher 計量). \mathcal{P} 上の Riemann 計量 g であって次をみたすものがただひとつ存在する:

• \mathcal{P} の任意の最小次元実現 (V,T,μ) に対し、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の Fisher 計量を \widetilde{g} とおくと、 $g=\theta^*_{(V,T,\mu)}\widetilde{g}$ が成り立つ。

これを \mathcal{P} 上の Fisher 計量という。

証明には次の補題を用いる。

補題 1.7. $(V,T,\mu),(V',T',\mu')$ を $\mathcal P$ の最小次元実現とし、 $\theta \coloneqq \theta_{(V,T,\mu)},\ \theta' \coloneqq \theta_{(V',T',\mu')}$ とおき、 $\Theta^{\mathcal P}_{(V,T,\mu)},\ \Theta'_{(V',T',\mu')}$ 上の Fisher 計量をそれぞれ g,g' とおき、 $\mathbf 0606$ _資料.pdf 定理 1.12 より一意に存在する線型同型写像 $V\to V'$ を L とおく。このとき、各 $p\in\mathcal P$ に対し $g_{\theta(p)}=(L\otimes L)(g'_{\theta'(p)})$ が成り立つ。

証明 L は T'(x) = L(T(x)) + const. μ -a.e.x をみたし、また各 $p \in \mathcal{P}$ に対し $g_{\theta(p)} = \text{Var}_p[T]$, $g'_{\theta'(p)} = \text{Var}_p[T']$ が 成り立つから、期待値と分散のペアリングの命題 (0523_資料.pdf 命題 1.1) と同様の議論により補題の主張の 等式が成り立つ。

命題-定義 1.6 の証明 Step 1: g の一意性 g の存在を仮定すれば、最小次元実現をひとつ選ぶことで g が決まるから、g は一意である。

Step 2: g の存在 最小次元実現 (V,T,μ) をひとつ選び、 $\theta \coloneqq \theta_{(V,T,\mu)}$ 、 $\Theta^{\mathcal{P}}_{(V,T,\mu)}$ 上の Fisher 計量を \widetilde{g} とおき、 $g \coloneqq \theta^*\widetilde{g}$ と定める。この g が求めるものであることを示せばよい。示すべきことは、 (V',T',μ') を最小次元実現とし、 $\theta' \coloneqq \theta_{(V',T',\mu')}$ 、 $\Theta^{\mathcal{P}}_{(V',T',\mu')}$ 上の Fisher 計量を \widetilde{g}' とおいて、 $\theta^*g = \theta'^*g'$ が成り立つことである。そこで 0606_資料.pdf 定理 1.12 より一意に存在する線型同型写像 $V \to V'$ を L とおくと、各 $p \in \mathcal{P}$, $u,v \in T_p\mathcal{P}$ に対し

$$(\theta^* g)_p(u, v) = g_{\theta(p)}(d\theta_p(u), d\theta_p(v)) \tag{1.4}$$

$$= \langle g_{\theta(p)}, d\theta_p(u) \otimes d\theta_p(v) \rangle \tag{1.5}$$

$$= \left\langle (L \otimes L) g'_{\theta'(p)}, d\theta_p(u) \otimes d\theta_p(v) \right\rangle \quad (\text{#\textbf{1.7}}) \tag{1.6}$$

$$= \left\langle g'_{\theta'(p)}, {}^{t}L \circ d\theta_{p}(u) \otimes {}^{t}L \circ d\theta_{p}(v) \right\rangle \tag{1.7}$$

$$= \left\langle g'_{\theta'(p)}, d({}^{t}L \circ \theta)_{p}(u) \otimes d({}^{t}L \circ \theta)_{p}(v) \right\rangle \tag{1.8}$$

$$= \left\langle g'_{\theta'(p)}, d\theta'_p(u) \otimes d\theta'_p(v) \right\rangle \quad (L \, \succeq \, \theta, \theta' \, \text{の関係}) \tag{1.9}$$

$$=g_{\nu}'(d\theta_{\nu}'(u),d\theta_{\nu}'(v)) \tag{1.10}$$

$$= (\theta'^* g')_v(u, v) \tag{1.11}$$

が成り立つ。したがって $\theta^*g = \theta'^*g'$ が示された。よって g は命題-定義の主張の条件をみたす。

以降、本節では \mathcal{P} に Fisher 計量g が定まっているものとする。

1.3 Amari-Chentsov テンソルと α-接続

定義 1.8 (Amari-Chentsov テンソル). \mathcal{P} 上の (0,3)-テンソル場 S を $S := \nabla g$ で定め、これを \mathcal{P} 上の Amari-Chentsov \mathcal{P} 上の (1,2)-テンソル場 A を次の関係式により定める:

$$g(A(X,Y),Z) = S(X,Y,Z) \quad (\forall X,Y,Z \in \Gamma(T\mathcal{P})) \tag{1.12}$$

以降、「Amari-Chentsov テンソル」を「AC テンソル」と略記することがある。

以降、本節ではPに Amari-Chentsov テンソルSが定まっているものとする。

命題 1.9 (AC テンソルの成分). (V,T,μ) を \mathcal{P} の最小次元実現、 $\Theta^{\mathcal{P}} := \Theta^{\mathcal{P}}_{(V,T,\mu)}$, $\theta := \theta_{(V,T,\mu)}$ 、 (V,T,μ) の対数分配関数を ψ とおく。このとき、 \mathcal{P} 上の任意の ∇ -アファイン座標 $x := (x^1,\ldots,x^m)$: $\mathcal{P} \to \mathbb{R}^m$ に対し、 $\varphi := (\varphi^1,\ldots,\varphi^m) := x \circ \theta^{-1} : \Theta^{\mathcal{P}} \to \mathbb{R}^m$ とおくと、S の成分は

$$S_{ijk}(p) = \frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k}(\theta(p)) = E_p \left[(T_i - E_p[T_i])(T_j - E_p[T_j])(T_k - E_p[T_k]) \right]$$
(1.13)

をみたす。ただし T_i $(i=1,\ldots,m)$ とは、同一視 $V=V^{\vee\vee}=T_{\theta(p)}^{\vee}\Theta^{\mathcal{P}}$ により $d\varphi^i$ $(i=1,\ldots,m)$ を V の基底とみなしたときの T の成分である。

証明 左側の等号と右側の等号についてそれぞれ示す。

<u>Step 1: 左側の等号</u> $\Theta^{\mathcal{P}}$ 上の標準的な平坦アファイン接続を $\widetilde{\nabla}$ とおき、 ψ の定める $\Theta^{\mathcal{P}}$ 上の Fisher 計量を \widetilde{g} とおくと、

$$S\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right) = \left(\nabla_{\frac{\partial}{\partial x^{i}}}g\right)\left(\frac{\partial}{\partial x^{j}}, \frac{\partial}{\partial x^{k}}\right) \tag{1.14}$$

$$= \left(\left(\theta^* \widetilde{\nabla} \right)_{\frac{\partial}{\partial x^i}} (\theta^* \widetilde{g}) \right) \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right) \tag{1.15}$$

$$= \left(\theta_*^{-1} \left(\widetilde{\nabla}_{\theta_* \frac{\partial}{\partial x^i}} \widetilde{g} \right) \right) \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^k} \right) \tag{1.16}$$

$$= \left(\widetilde{\nabla}_{\theta_* \frac{\partial}{\partial x^i}} \widetilde{g}\right) \left(d\theta \left(\frac{\partial}{\partial x^j} \right), d\theta \left(\frac{\partial}{\partial x^k} \right) \right) \tag{1.17}$$

$$= \left(\widetilde{\nabla}_{\frac{\partial}{\partial \varphi^{i}}}\widetilde{g}\right) \left(\frac{\partial}{\partial \varphi^{j}}, \frac{\partial}{\partial \varphi^{k}}\right) \tag{1.18}$$

$$= \left(\frac{\partial}{\partial \varphi^{i}} \left(\frac{\partial^{2} \psi}{\partial \varphi^{l} \partial \varphi^{n}}\right) d\varphi^{l} d\varphi^{n}\right) \left(\frac{\partial}{\partial \varphi^{j}}, \frac{\partial}{\partial \varphi^{k}}\right) \quad (\varphi \ \text{は} \ \widetilde{\nabla} - \mathcal{P} \ \mathcal{P}$$

$$=\frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k} \tag{1.20}$$

となるから、命題の主張の左側の等号が従う。

Step 2: 右側の等号 「 E_p 」の下付きのpを省略して書けば、直接計算より

$$E[(T_i - E[T_i])(T_i - E[T_i])(T_k - E[T_k])]$$
(1.21)

$$= E[T_i T_j T_k] - E[T_i] E[T_j T_k] - E[T_j] E[T_k T_i] - E[T_k] E[T_i T_i] + 2E[T_i] E[T_i] E[T_k]$$
(1.22)

が成り立つ。一方、 $\lambda\coloneqq\exp\psi$ とおき、 $\frac{\partial}{\partial\varphi^i}$ を ∂_i と略記すれば、直接計算より

$$\frac{\partial^3 \psi}{\partial \varphi^i \partial \varphi^j \partial \varphi^k} = \partial_i \partial_j \partial_k \log \lambda \tag{1.23}$$

$$=\frac{\partial_{i}\partial_{j}\partial_{k}\lambda}{\lambda}-\frac{(\partial_{i}\lambda)(\partial_{j}\partial_{k}\lambda)}{\lambda^{2}}-\frac{(\partial_{j}\lambda)(\partial_{k}\partial_{i}\lambda)}{\lambda^{2}}-\frac{(\partial_{k}\lambda)(\partial_{i}\partial_{j}\lambda)}{\lambda^{2}}+2\frac{(\partial_{i}\lambda)(\partial_{j}\lambda)(\partial_{k}\lambda)}{\lambda^{3}}$$
(1.24)

が成り立つ。この右辺を $0516_$ 資料.pdf 系 2.4 により期待値の形で表せば式 (1.22) に一致するから、命題の主張の右側の等号が従う。

定義 1.10 (α -接続). $\alpha \in \mathbb{R}$ とする。 \mathcal{P} 上のアファイン接続 $\nabla^{(\alpha)}$ を次の関係式により定める:

$$g(\nabla_X^{(\alpha)}Y,Z) = g(\nabla_X^{(g)}Y,Z) - \frac{\alpha}{2}S(X,Y,Z) \qquad (X,Y,Z \in \Gamma(T\mathcal{P}))$$
 (1.25)

この $\nabla^{(\alpha)}$ を (g,S) の定める α -接続 (α -connection) という。とくに $\alpha=1,-1$ の場合をそれぞれ e-接続 (e-connection)、m-接続 (m-connection) という。

命題 1.11 ($\nabla^{(g)}$, $\nabla^{(a)}$ の AC テンソルによる表示). $\boldsymbol{\mathcal{P}}$ 上の任意の ∇ -アファイン座標に関し、 $\nabla^{(g)}$ および $\nabla^{(a)}$ の接続係数は次をみたす:

(1)

$$\Gamma^{(g)}{}^{k}_{ij} = \frac{1}{2} A^{k}_{ij}, \quad \Gamma^{(g)}{}_{ijk} = \frac{1}{2} S_{ijk}$$
 (1.26)

(2) すべての $\alpha \in \mathbb{R}$ に対し

$$\Gamma^{(\alpha)}{}^{k}_{ij} = \frac{1-\alpha}{2} A^{k}_{ij}, \quad \Gamma^{(\alpha)}{}_{ijk} = \frac{1-\alpha}{2} S_{ijk}$$

$$\tag{1.27}$$

とくに $\alpha=1$ のとき $\Gamma^{(1)}{}^{k}_{ij}=0$, $\Gamma^{(1)}{}_{ijk}=0$ である。

証明 (1) (1.26) の左側の等式は

$$\Gamma^{(g)}{}_{ij}^{k} = \frac{1}{2}g^{kl}\left(\partial_{i}g_{jl} + \partial_{j}g_{li} - \partial_{l}g_{ij}\right) \tag{1.28}$$

$$= \frac{1}{2} g^{kl} \left(S_{ijl} + S_{jli} - S_{lij} \right) \quad (\text{命題 1.9})$$
 (1.29)

$$=\frac{1}{2}g^{kl}S_{ijl} \tag{1.30}$$

$$= \frac{1}{2} A_{ij}^k \tag{1.31}$$

より従う。gで添字を下げて(1.26)の右側の等式も従う。

 $\underline{(2)}$ α -接続の定義より $\Gamma^{(\alpha)}{}_{ijk} = \Gamma^{(g)}{}_{ijk} - \frac{\alpha}{2} S_{ijk}$ だから、(1) とあわせて (1.27) の左側の等式が従う。g で添字を下げて (1.26) の右側の等式も従う。

命題 1.12 (捩率と曲率の AC テンソルによる表示). $\mathcal P$ 上の任意の ∇ -アファイン座標に関し、 $\nabla^{(\alpha)}$ の捩率テンソル $T^{(\alpha)}$ および (1,3)-曲率テンソル $R^{(\alpha)}$ の成分表示は次をみたす:

(1) すべての $\alpha \in \mathbb{R}$ に対し

$$T^{(\alpha)}_{ij}^{k} = 0 \tag{1.32}$$

(2) すべての $\alpha \in \mathbb{R}$ に対し

$$R^{(\alpha)}{}^{l}_{ijk} = \frac{1 - \alpha}{2} \left(\partial_i A^l_{jk} - \partial_j A^l_{ik} \right) + \left(\frac{1 - \alpha}{2} \right)^2 \left(A^m_{jk} A^l_{im} - A^m_{ik} A^l_{jm} \right)$$
 (1.33)

とくに $\alpha = 1$ のとき $R^{(1)}_{ijk}^{l} = 0$ である。

証明 (1)

$$T^{(\alpha)}{}_{ij} = \Gamma^{(\alpha)}{}^k_{ij} - \Gamma^{(\alpha)}{}^k_{ji} \tag{1.34}$$

$$= \frac{1-\alpha}{2} A_{ij}^k - \frac{1-\alpha}{2} A_{ji}^k \quad (\text{命題 1.11(2)})$$
 (1.35)

$$= 0 \quad (A_{ij}^k = A_{ji}^k) \tag{1.36}$$

より従う。

<u>(2)</u>

$$R^{(\alpha)}{}^{l}_{ijk} = \partial_i \Gamma^{(\alpha)}{}^{l}_{jk} - \partial_j \Gamma^{(\alpha)}{}^{l}_{ik} + \Gamma^{(\alpha)}{}^{m}_{jk} \Gamma^{(\alpha)}{}^{l}_{im} - \Gamma^{(\alpha)}{}^{m}_{ik} \Gamma^{(\alpha)}{}^{l}_{jm}$$

$$\tag{1.37}$$

$$= \frac{1 - \alpha}{2} \left(\partial_i A^l_{jk} - \partial_j A^l_{ik} \right) + \left(\frac{1 - \alpha}{2} \right)^2 \left(A^m_{jk} A^l_{im} - A^m_{ik} A^l_{jm} \right) \quad (\text{fill 1.11(2)})$$
 (1.38)

より従う。

今後の予定

- 具体例: 有限集合上の full support な確率分布の族
- 具体例: 正規分布族

参考文献

[Ama16] Shun-ichi Amari, **Information Geometry and Its Applications**, Applied Mathematical Sciences, vol. 194, Springer Japan, Tokyo, 2016 (en).

A 付録

事実 A.1 (ベクトル場の押し出しと関数). M,N を (有限次元実 C^{∞}) 多様体、 $F:M\to N$ を微分同相写像とする。このとき、次が成り立つ:

- (1) 任意の $f \in C^{\infty}(M)$ に対し $F_*(fX) = f \circ F^{-1}F_*X$ が成り立つ。
- (2) 任意の $g \in C^{\infty}(N)$ に対し $((F_*X)g) \circ F = X(g \circ F)$ が成り立つ。

事実 A.2 (アファイン変換によるベクトル場の押し出し). V,V' を m 次元 \mathbb{R} -ベクトル空間、 ∂_i,∂_i' $(i=1,\ldots,m)$ をそれぞれ V,V' の基底をベクトル場とみなしたもの、 $F:V\to V'$ をアファイン変換とし、 ∂_i,∂_i' に関する F の行列表示を $(a_i^i)_{i,j}$ とする。このとき、 $F_*\partial_j=a_i^j\partial_i'$ が成り立つ。

補題 1.5 の証明 ∂_i , ∂_i' $(i=1,\ldots,m)$ をそれぞれ V,V' の基底をベクトル場とみなしたものとし、 ∂_i , ∂_i' に関する F の行列表示を $(a_i^i)_{i,j}$ とおき、その逆行列を $(\widetilde{a_i^i})_{i,j}$ とおく。任意の $X=X^i\partial_i$, $Y=Y^i\partial_i\in\Gamma(TV)$ に対し

$$(F^*\nabla')_X Y = F_*^{-1} \left(\nabla'_{F_*X} F_* Y \right) \tag{A.1}$$

$$=F_*^{-1}\left(\nabla'_{F_*(X^i\partial_j)}F_*(Y^j\partial_j)\right) \tag{A.2}$$

$$= F_*^{-1} \left(\nabla'_{X^i \circ F^{-1} F_* \partial_j} (Y^j \circ F^{-1} F_* \partial_j) \right) \quad (\text{\mathbb{P}} \times \text{$A.1$} (1))$$
(A.3)

$$= F_*^{-1} \left(\nabla'_{X^i \circ F^{-1} \, a_i^k \partial_k'} (Y^j \circ F^{-1} \, a_j^l \partial_l') \right) \quad (\text{\mathbb{F}} \times \text{$A.2$})$$
(A.4)

$$=F_*^{-1}\left(X^i\circ F^{-1}\,a_i^k\,a_j^l\nabla'_{\partial'_k}(Y^j\circ F^{-1}\partial'_l)\right) \tag{A.5}$$

$$=F_*^{-1}\left(X^i\circ F^{-1}\,a_i^k\,a_j^l\partial_k'(Y^j\circ F^{-1})\partial_l'\right)\quad (基底\,\partial_i'\,の定める座標は\,\nabla'-アファイン) \tag{A.6}$$

$$= F_{*}^{-1} \left(X^{i} \circ F^{-1} a_{i}^{k} a_{j}^{l} ((F_{*}^{-1} \partial_{k}^{\prime}) Y^{j}) \circ F^{-1} \partial_{l}^{\prime} \right) \quad (\text{$\mathbb{F}$$\sharp A.1 (2)})$$

$$= X^{i} a_{i}^{k} a_{i}^{l} (F_{*}^{-1} \partial_{k}^{\prime}) (Y^{j}) F_{*}^{-1} \partial_{l}^{\prime} \quad (\$ \not \in \mathbf{A.1} (1))$$
(A.8)

$$= X^{i} a_{i}^{k} a_{i}^{l} \widetilde{a}_{k}^{m} \partial_{m} (Y^{j}) \widetilde{a}_{l}^{n} \partial_{n} \quad (\$\sharp \mathbf{A.2})$$
(A.9)

$$=X^{i}\partial_{i}(Y^{j})\partial_{i} \tag{A.10}$$

$$=\nabla_X Y \tag{A.11}$$

となる。よって $F^*\nabla' = \nabla$ が成り立つ。