TECHNICAL UNIVERSITY OF CRETE

DIPLOMA THESIS

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

Author:

Thesis Committee:

Christos Spyridakis

Prof. Apostolos Dollas (Supervisor) Asst. Prof. Eftychios Koutroulis Asst. Prof. Panagiotis Partsinevelos

A thesis submitted in fulfillment of the requirements for the diploma of Electrical and Computer Engineer in the

School of Electrical and Computer Engineering Microprocessor and Hardware Laboratory

November 29, 2020

TECHNICAL UNIVERSITY OF CRETE

Abstract

School of Electrical and Computer Engineering

Electrical and Computer Engineer

Design and Implementation of a Low Cost Embedded System for Localization of Drones Flying in Swarms

by Christos Spyridakis

TODO ...

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

Περίληψη

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών

Σχεδίαση και Υλοποίηση Ενσωματωμένου Συστήματος Χαμηλού Κόστους για Εύρεση Θέσης μη Επανδρωμένων Αεροσκαφών που Πετούν σε Σχηματισμό

από τον Χρήστο ΣΠΥΡΙΔΑΚΗ

TODO ...

Acknowledgements

TODO

Contents

A	bstract	iii
\mathbf{A}	bstract	v
\mathbf{A}	cknowledgements	vii
C	ontents	ix
Li	ist of Figures	xi
Li	ist of Tables	xiii
Li	ist of Algorithms	xv
P	hysical Constants	xvii
Li	ist of Symbols	xix
Li	ist of Abbreviations	xxi
1	Introduction1.1 Unmanned aerial vehicles1.2 Motivation1.3 Scientific Goals and Contributions1.4 Thesis Outline	. 5 . 5
2	Theoretical Background	7
3	Related Work 3.1 Thesis Approach	. 9
4	Design Features and Implementation	11
5	Applications and Usage Examples	13
6	Experiments and Results	15

7 Co	onclusions and Future Work	17
Refer	rences	19

List of Figures

1.1	UAV Examples															٠
1.2	UAV principal axe															4

List of Tables

1.1	Κατηγοριοποίηση	των UAV	βάση της	δομή τους	[8].				2
-----	-----------------	---------	----------	-----------	------	--	--	--	---

List of Algorithms

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}} \; (\mathrm{exact})$

xix

List of Symbols

a distance m

 ω angular frequency rad

xxi

List of Abbreviations

MCU Micro Controller Unit

MPU Micro Processor Unit

UAV Unmanned Aerial Vehicle

VTOL Vertically Hover, Take-off, and Land

ESC Electronic Speed Control

IMU Intertial Measurement Unit

GPS Global Positioning System

FPV First Person View

WSN Wireless Sensor Networks

UGV Unmanned Ground Vehicle

MAV Micro Aerial Vehicle

USV Unmanned Surface Vehicle

UAS Unmanned Aircraft System

ISR Intelligence, Surveillance, and Reconnaissance

UCAV Unmanned Combat Aerial Vehicle

Dedicated to those people who have helped me be the person I am today...

Introduction

"Alone we can do so little, together we can do so much"

Hellen Keller

Τα τελευταία χρόνια η ανάπτυξη της επιστήμης έχει επιφέρει την απόκτηση των τεχνολογικών επιτευγμάτων από το ευρύ κοινό με ένα πολύ οικονομικό αντίτιμο. Αυτό σημαίνει ότι ο καθένας πολύ εύκολα μπορεί να έχει στην κατοχή του ακόμα και προϊόντα τα οποία θεωρούνται state-of-the-art χωρίς να χρειάζεται να δαπανήσει μεγάλα ποσά. Το ίδιο φυσικά, συμβαίνει και με τον κλάδο των drone και την - κατά επέκταση - χρήση αυτών · ακόμα και για ψυχαγωγικό σκοπό.

Κατά το τέλος του έτους 2019 μόνο στις Ηνωμένες Πολιτείες της Αμερικής υπήρχαν πάνω από 990 χιλιάδες εγγεγραμμένοι χειριστές drone με πάνω από 1.32 εκατομμύρια drone ψυχαγωγικού χαρακτήρα να χρησιμοποιούνται [1]. Ενώ μέχρι το 2025 υπολογίζεται ότι το μέγεθος αγοράς των υπηρεσιών drone θα κοστολογείται στα 63.6 εκατομμύρια δολάρια [2].

Φυσικά η χρήση τους δεν περιορίζεται μόνο στην ψυχαγωγία, εταιρίες όπως η Απαzon έχουν αποκτήσει ήδη τα απαραίτητα πιστοποιητικά και εγκρίσεις και σκοπεύουν να χρησιμοποιήσουν drone για παράδοση των δεμάτων [3] αρκετά σύντομα, καθώς προς το παρόν η διαδικασία βρίσκεται σε στάδιο δοκιμών. Συνεπώς είναι εύκολο να κατανοηθεί ότι ο συγκεκριμένος κλάδος πρόκειται να έχει ακόμα μεγαλύτερη άνθιση, με αρκετά μεγάλο ερευνητικό ενδιαφέρον να του αναλογεί.

Με την αύξηση των drone και την αύξηση των εφαρμογών, υπάρχει η ανάγκη συνεργασίας και η δημιουργία drone swarms για την επιτυχή ολοκλήρωση των στόχων που έχουν οριστεί. Όμως για να καταφέρουν τα drone να συνεργαστούν χρειάζεται πρώτα να μπορούν να ξεπεράσουν τα προβλήματα τα οποία υπάρχουν.

1.1 Unmanned aerial vehicles

Είναι σημαντικό από τα πρώτα βήματα, να έχει γίνει κατανοητό με τον όρο drone σε τι παραπέμπουμε - όπως επίσης πότε θεωρείται ότι ένα σμήνος από drone πετάει σε σχηματισμό (drone swarm).

Όταν αναφερόμαστε στον όρο Unmanned aerial vehicle (UAV) ή απλούστερα drone κάνουμε αναφορά για ένα μη επανδρωμένο ιπτάμενο αεροσκάφος το οποίο ελέγχεται είτε απομακρυσμένα από έναν άνθρωπο, είτε είναι τελείως αυτόνομο. Τα UAV μαζί με ένα σταθμό βάσης και την από κοινού επικοινωνίας του σταθμού - drone, δημιουργούν αυτό που ονομάζουμε Unmanned aircraft system (UAS) [4] [5].

Η πρώτη εμφάνιση των UAV έγινε κατά το 1849 στα πλαίσια μάχης, ενώ οι πρώτες καινοτομίες πάνω σε αυτά ξεκίνησαν ήδη από τις αρχές του 20ου αιώνα. Το 2013 τουλάχιστον 50 χώρες χρησιμοποιούσαν UAVs για κάποιον σκοπό, με μερικές από αυτές φυσικά να σχεδιάζουν τα δικά τους [5]. Αυτήν την στιγμή υπάρχουν πάνω από 1000 διαφορετικά μοντέλα UAV που χρησιμοποιούνται ανά τον κόσμο, με τα περισσότερα από αυτά να μην έχουν ψυχαγωγικό χαρακτήρα [6].

Είναι λοιπόν ξεκάθαρο ότι το πλήθος των drone είναι τόσο μεγάλο, λόγω των διαφορετικών αναγκών - και ότι κάποια έχουν καλύτερα αποτελέσματα από ότι άλλα σε συγκεκριμένες αποστολές. Για αυτό, έχουν γίνει ήδη προσπάθειες για την κατηγοριοποίηση των UAVs σύμφωνα με τα διάφορα χαρακτηριστικά που μπορεί να έχουν. Ενδεικτικά με βάση το μέγεθος, την αυτονομία, το βάρος ή το μηχανολογικό σχεδιασμό των UAV είναι μερικές από τις υπάρχουσες [4] [7] [8]. Στο Table 1.1 υπάρχει μία απλουστευμένη κατηγοριοποίηση η οποία προτάθηκε από τους συγγραφείς του [8] σύμφωνα με τη βασική μηχανολογική δομή που μπορεί να έχει ένα drone καθώς και τα πλεονεκτήματα της κάθε δομής.

TABLE 1.1: Κατηγοριοποίηση των UAV βάση της δομή τους [8].

Drones	Main features
Fixed-Wing	long endurance and fast flight speed
Fixed-Wing Hybrid	VTOL and long endurance flight
Single Rotor	VTOL, hover, and long endurance flight
Multirotor	VTOL, hover, and short endurance flight

FIGURE 1.1: UAV Examples

Τυπικά τα Fixed-Wing drones είναι αρκετά ακριβά, χρειάζονται εξειδικευμένους χειριστές για να λειτουργήσουν, όπως επιπλέον και περισσότερο χώρο για την απογείωση και την προσγείωση. Είναι ιδανικά για εφαρμογές που χρειάζεται να καλύψουμε μεγάλες περιοχές και συχνά έχουν αυτονομία τουλάχιστον μερικών ωρών. Για αυτούς τους λόγους χρησιμοποιούνται κυρίως από κυβερνήσεις, στρατιωτικές μονάδες ή επιχειρήσεις για την γρήγορη επίβλεψη μεγάλων εκτάσεων [9].

Τα Fixed-Wing Hybrid προσπαθούν να λύσουν τα μειονεχτήματα που έχουν τα Fixed-Wing drones, την μη ικανότητα δηλαδή για Vertically Hover, Take-off, and Land (VTOL) όμως είναι ακόμα σε αρχικά στάδια [8].

Τα Single Rotor είναι επίσης αρκετά ακριβά, πολύπλοκα μηχανολογικά μηχανήματα, που δέχονται πολλούς κραδασμούς, απαιτούν εξειδικευμένους χειριστές όμως μπορούν να μεταφέρουν αρκετά βαριά payloads, θετικό στην χρήση τους ότι μπορούν να πραγματοποιήσουν VTOL [8].

Τα Multirotor είναι ίσως τα πιο ευρέως διαδεδομένα. Καθώς είναι τα πιο οικονομικά από τα παραπάνω και εύκολο να κατασκευαστούν. Μπορούν να βρεθούν στο εμπόριο με διάφορο πλήθος από έλικες και είναι το κύριο είδος που χρησιμοποιείται από ερασιτέχνες ή χομπίστες για λόγους αναψυχής [8].

Στο Figure 1.1 δίνονται κάποια ενδεικτικά παραδείγματα UAVs με βάση την κατηγοριοποίηση του Table 1.1. Φυσικά αυτή η κατηγοριοποίηση δεν περιλαμβάνει όλα τα είδη drone, είναι όμως ικανοποιητική για να γίνουν ξεκάθαρα δύο βασικές ιδέες. Αρχικά ανάλογα με την εφαρμογή που μας ενδιαφέρει, θα πρέπει να επιλέξουμε την χρήση του πλέον κατάλληλου τύπου drone. Όπως επίσης με βάση την επιλογή του συγκεκριμένου τύπου - αυτόματα έχουμε να διαχειριστούμε τα πλεονεκτήματα ή τα μειονεκτήματα που έχει.

Σε περίπτωση που μας ενδιαφέρει, οι συγγραφείς του [7] παρουσιάζουν με εκτενέστερο τρόπο διάφορες κατηγοριοποιήσεις και είδη drone τα οποία δεν εμπίπτουν στα πλαίσια αυτής της διπλωματικής και κυμαίνονται από smart dust, bio-drones, hybrid drones και άλλα πολλά.

Σε όποια από τις κατηγορίες και αν αντιστοιχεί ένα drone από την στιγμή που είναι ένα ιπτάμενο αντικείμενο, θα πρέπει να έχει την δυνατότητα να κινείται - φυσικά - στον αέρα. Στο Figure 1.2 παρουσιάζονται στους 3 άξονες, οι βαθμοί ελευθερίας κίνησης ενός UAV [10] καθώς και το όνομα που δίνεται στην κίνηση ανάλογα με τον άξονα που πραγματοποιείται.

FIGURE 1.2: UAV principal axes: URL

Ζούμε σε μία ψηφιακή εποχή, όπου έξυπνες συσκευές γεμάτες με αισθητήρες βρίσκονται γύρω μας. Τέτοια τεχνολογικά επιτεύγματα όπως τα drones είναι επίσης εξοπλισμένα με Micro Controller Units (MCU) [11] ή Micro Processor Units (MPU) [12] για τον έλεγχο τους, ενώ δεν θα μπορούσαν να μην περιλαμβάνουν πλέον και ένα μεγάλο πλήθος και εύρος διαφορετικών τύπων sensors on-board. Με δύο από τους πιο σημαντικούς να είναι το Electronic Speed Control (ESC) [13] και το Inertial

1.2. Motivation 5

Measurement Unit (IMU) [14] τα οποία χρησιμοποιούνται ώστε το drone να μπορεί να διατηρεί μία σταθερή και ελεγχόμενη πτήση [8]. Εκτός από αυτούς βέβαια, ένα drone μπορεί να διαθέτει Global Positioning System (GPS), camera για λήψη οπτικού υλικού ή ελέγχου μέσω First Person View (FPV), Obstacle avoidance sensors ή ακόμα και άλλους. Με κύριο περιορισμό τα αισθητήρια όργανα να βρίσκονται στο εύρος βάρος του payload που μπορεί να μεταφέρει το drone.

Σε αυτό το section πραγματοποιήθηκε μία πρώτη οριοθέτηση του όρου drone, παρόλα αυτά δεν αναφέρθηκαν λόγοι ύπαρξης τους καθώς και εφαρμογές τους. Η ύπαρξης των swarms είναι ουσιαστικά η κάλυψη των αναγκών από των individual drones σε μεγαλύτερη κλίμακα, για αυτό μερικές από τις εφαρμογές των drone βρίσκονται στο Section 1.2.

1.2 Motivation

Ξεχινώντας από τα individual drones, αξίζει να σημειωθεί ότι το Πολυτεχνείο Κρήτης έχει ένα ενεργό ερευνητικό ιστορικό στον τομέα των αεροχημάτων. Το SenseLab στο οποίο υπεύθυνος καθηγητής είναι ο κύριος Παρτσινέβελος της Σχολής Μηχανικών Ορυκτών Πόρων να είναι ένα από αυτά - και μάλιστα με πολλαπλές διακρίσεις σε διεθνείς διαγωνισμούς [15] [16].

Στην φύση

Papers

[17] [18] [19] [20]

Links

[21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41]

1.3 Scientific Goals and Contributions

Όπως μπορεί να γίνει εύκολα αντιληπτό η γνώση της σχετικής θέσης ενός UAV σε σχέση με τα υπόλοιπα του σμήνους, είναι αρκετά σημαντικό για ένα πολύ μεγάλο πλήθος εφαρμογών. Σκοπός της συγκεκριμένης διπλωματικής εργασίας είναι να γίνει η απαραίτητη ερευνητική αναζήτηση, ώστε να επιτευχθεί ο σχεδιασμός καθώς και η υλοποίηση ενός ενσωματωμένου συστήματος - το οποίο να είναι σε θέση με όσο το

δυνατόν πιο οιχονομικό τρόπο να υπολογίζει την θέση των μεμονωμένων αεροχημάτων όταν αυτά πετούν σε σχηματισμό.

1.4 Thesis Outline

- Chapter 2 Theoretical Background: Σε αυτό το κεφάλαιο παρουσιάζεται το απαραίτητο μαθηματικό υπόβαθρο, καθώς και βασικές μεθοδολογίες εύρεσης τοποθεσία, που προέρχονται από τον τομέα των Wireless Sensor Networks (WSN).
- Chapter 3 Related Work: Στην συγκεκριμένη ενότητα γίνεται μία συνοπτική αναφορά σε τεχνικές που χρησιμοποιούν ήδη τα drones για την εύρεσης θέσης μέσα στα swarms.
- Chapter 4 Design Features and Implementation: Σε αυτό το σημείο παρουσιάζεται η διαδικασία σχεδιασμού του ενσωματωμένου συστήματος.
- Chapter 5 Applications and Usage Examples:
- Chapter 6 Experiments and Results: Στο παρόν κεφάλαιο παρουσιάζονται οι απαραίτητοι έλεγχοι που έγιναν για την επαλήθευση της ορθής λειτουργίας του συστήματος.
- Chapter 7 Conclusions and Future Work: Στο συγκεκριμένο κεφάλαιο παρουσιάζονται τα τελικά συμπεράσματα τα οποία βγήκαν από το σύνολο της διπλωματικής καθώς και κάποιες από τις πιθανές μελλοντικές εξελίξεις της.

Theoretical Background

"Let no one ignorant of geometry enter"

Plato

Related Work

"This is where technology is now, imagine where we can go in the future"

Timothy Chung

3.1 Thesis Approach

This should be the last section

Design Features and Implementation

Applications and Usage Examples

Experiments and Results

Conclusions and Future Work

References

- [4] Suraj G Gupta, Dr Ghonge, Pradip M Jawandhiya, et al. "Review of unmanned aircraft system (UAS)". In: International Journal of Advanced Research in Computer Engineering & Technology (IJARCET) Volume 2 (2013). URL: http://refhub.elsevier.com/S0376-0421(16)30134-8/sbref2.
- [7] M. Hassanalian and A. Abdelkefi. "Classifications, applications, and design challenges of drones: A review". In: *Progress in Aerospace Sciences* 91 (2017), pp. 99-131. ISSN: 0376-0421. DOI: https://doi.org/10.1016/j.paerosci. 2017.04.003. URL: http://www.sciencedirect.com/science/article/pii/S0376042116301348.
- [8] Anam Tahir et al. "Swarms of Unmanned Aerial Vehicles A Survey". In: Journal of Industrial Information Integration 16 (2019), p. 100106. ISSN: 2452-414X. DOI: https://doi.org/10.1016/j.jii.2019.100106. URL: http://www.sciencedirect.com/science/article/pii/S2452414X18300086.
- [17] S. Milani and A. Memo. "Impact of drone swarm formations in 3D scene reconstruction". In: (2016), pp. 2598–2602. DOI: 10.1109/ICIP.2016.7532829.
- [18] Axel Bürkle, Florian Segor, and Matthias Kollmann. "Towards Autonomous Micro UAV Swarms". In: *Journal of Intelligent & Robotic Systems* 61.1 (2011), pp. 339–353. ISSN: 1573-0409. DOI: 10.1007/s10846-010-9492-x. URL: https://doi.org/10.1007/s10846-010-9492-x.
- [19] Eleftheria Mitka and Spyros Mouroutsos. "Classification of Drones". In: American Journal of Engineering research 6 (July 2017), pp. 36–41.
- [20] J. P. Desai, J. P. Ostrowski, and V. Kumar. "Modeling and control of formations of nonholonomic mobile robots". In: *IEEE Transactions on Robotics and Automation* 17.6 (2001), pp. 905–908. DOI: 10.1109/70.976023.

External Links

- [1] Matt Satell. *Ultimate List of Drone Stats for 2020*. July 2020. URL: https://www.phillybyair.com/blog/drone-stats/ (visited on 11/2020).
- [2] Business Insider Intelligence. Drone market outlook: industry growth trends, market stats and forecast. Mar. 2020. URL: https://www.businessinsider.com/drone-industry-analysis-market-trends-growth-forecasts (visited on 11/2020).
- [3] Concepción de León. Drone Delivery? Amazon Moves Closer With F.A.A. Approval. Aug. 2020. URL: https://www.nytimes.com/2020/08/31/business/amazon-drone-delivery.html (visited on 11/2020).
- [5] Unmanned aerial vehicle. URL: https://en.wikipedia.org/wiki/Unmanned_aerial_vehicle (visited on 11/2020).
- [6] List of unmanned aerial vehicles. URL: https://en.wikipedia.org/wiki/List_of_unmanned_aerial_vehicles (visited on 11/2020).
- [9] A Guide to Fixed Wing Drones. URL: https://www.coptrz.com/a-guide-to-fixed-wing-drones/ (visited on 11/2020).
- [10] Aircraft principal axes. URL: https://en.wikipedia.org/wiki/Aircraft_principal_axes (visited on 11/2020).
- [11] *Microcontroller*. URL: https://en.wikipedia.org/wiki/Microcontroller (visited on 11/2020).
- [12] *Microprocessor*. URL: https://en.wikipedia.org/wiki/Microprocessor (visited on 11/2020).
- [13] Electronic speed control. URL: https://en.wikipedia.org/wiki/Electronic_speed_control (visited on 11/2020).
- [14] Inertial measurement unit. URL: https://en.wikipedia.org/wiki/ Inertial_measurement_unit (visited on 11/2020).
- [15] SenseLAB Research. URL: http://senselab.tuc.gr/ (visited on 11/2020).
- [16] TUC Researcher's Night 2020: Drones, Satellites, and more ... Nov. 2020.

 URL: https://www.youtube.com/watch?v=9ZZW-XQKGlw&feature=youtu.

 be&fbclid=IwAR2VdxWuFOwiCbEdEGJcBDxapixuPtExsViDCoBEPQLnU8YQLg3hGRBn47w

 (visited on 11/2020).

22 External Links

[21] Kargu - The Kamikaze Drones Getting Ready For The Swarm Operation. July 2019. URL: https://www.youtube.com/watch?v=3d28APIfwSI (visited on 11/2020).

- [22] Drone Swarms: The Buzz of the Future. Nov. 2015. URL: https://www.youtube.com/watch?v=0so5Fc6B7W4 (visited on 11/2020).
- [23] Controlling Robotic Swarms. Dec. 2014. URL: https://www.youtube.com/watch?v=stzQNjtDgOg (visited on 11/2020).
- [24] A Swarm of Nano Quadrotors. Pennsylvania, Jan. 2012. URL: https://www.youtube.com/watch?v=YQIMGV5vtd4 (visited on 11/2020).
- [25] Formation Control of Robotic Swarms Using Brain Interface. Arizona, May 2016. URL: https://www.youtube.com/watch?v=BymnXeuSLcY (visited on 11/2020).
- [26] Malek Murison. The Potential of Drone Swarms. Apr. 2019. URL: https://blog.dronebase.com/the-potential-of-drone-swarms (visited on 11/2020).
- [27] Triangulating Unknown Environments using Robot Swarms. Apr. 2013. URL: https://www.youtube.com/watch?v=V5vpwVFMPqs (visited on 11/2020).
- [28] How Intel Made Its World Record-Breaking Drone Show. July 2018. URL: https://www.youtube.com/watch?v=zdLjoqa_oUs (visited on 11/2020).
- [29] Ford Motor Company | Firefly Drone Shows. Aug. 2019. URL: https://www.youtube.com/watch?v=Bdsr1cojSxo (visited on 11/2020).
- [30] Mr. Scott Wierzbanowski. Collaborative Operations in Denied Environment (CODE) (Archived). URL: https://www.darpa.mil/program/collaborative-operations-in-denied-environment (visited on 11/2020).
- [31] Drone Swarms: A Transformational Technology. May 2020. URL: https://www.aerodefensetech.com/component/content/article/adt/features/articles/36813 (visited on 11/2020).
- [32] Swarm robotics. URL: https://en.wikipedia.org/wiki/Swarm_robotics (visited on 11/2020).
- [33] Military robot. URL: https://en.wikipedia.org/wiki/Military_robot (visited on 11/2020).
- [34] Unmanned combat aerial vehicle. URL: https://en.wikipedia.org/wiki/ Unmanned_combat_aerial_vehicle (visited on 11/2020).
- [35] List of unmanned aerial vehicle applications. URL: https://en.wikipedia.org/wiki/List_of_unmanned_aerial_vehicle_applications (visited on 11/2020).

External Links 23

[36] Optimized flocking of autonomous drones in confined environments. July 2018. URL: https://www.youtube.com/watch?v=E4XpyG4eMKE (visited on 11/2020).

- [37] An autonomous swarm of flying robots. Feb. 2014. URL: https://www.youtube.com/watch?v=W7yJx IY9Mg (visited on 11/2020).
- [38] Drone Swarm performance and applications. 6. URL: https://www.embention.com/news/drone-swarm-performance-and-applications/ (visited on 11/2020).
- [39] Zachary Kallenborn. The Era of the Drone Swarm Is Coming, and We Need to Be Ready for It. 10. URL: https://mwi.usma.edu/era-drone-swarm-coming-need-ready/ (visited on 11/2020).
- [40] Lt Gen Balli Pawar (retd). DRONE SWARM TECHNOLOGY AND ITS IMPACT ON FUTURE WARFARE. 5. URL: https://thedailyguardian.com/drone-swarm-technology-and-its-impact-on-future-warfare/(visited on 11/2020).
- [41] Zachary Kallenborn and Philipp C. Bleek. Drones of Mass Destruction: Drone Swarms and the Future of Nuclear, Chemical, and Biological Weapons.
 2. URL: https://warontherocks.com/2019/02/drones-of-mass-destruction-drone-swarms-and-the-future-of-nuclear-chemical-and-biological-weapons/ (visited on 11/2020).