Turing Machines, part IV

The Definition of Algorithm

In last lecture, we saw several variants of TMs

- Multi-Tape TMs
- Nondeterministic TMs
- Enumerators

And established that they were equivalent to standard TM

- Many other models of general purpose computation have been proposed
- Some are very much like TMs, but others are quite different
- All share the essential feature of TMs namely, unrestricted access to unlimited memory – distinguishing them from weaker models such as FA
- Remarkably, all models with that feature turn out to be equivalent in power, so long as they satisfy reasonable requirements (e.g. the ability to perform only a finite amount of work in a single step)
- This phenomenon is analogous to "equivalence of programming languages"
- This analogy has profound implication definition of algorithm -- the subject of today's lecture

What is an algorithm?

- Intuitively, an algorithm is a collection of simple instructions for carrying out some task
- The notion is much much older than Computer Science
 - Gaussian method (18th century)
 - Euclid's method for greatest common divisor (c. 300 BC)
 - Finding prime numbers
- The intuitive notion is insufficient for gaining a deeper understating of algorithms – precise definition had to wait until the 20th century

Carl Fredich Gauss (1777—1855)

Eukleides of Alexandrai (mid-4th century BC – mid-3rd century BC)

What is an algorithm?

Hilbert's problems

- In 1900, Hilbert posed 23 mathematical problems as challenges for the coming century
- His 10th problem was to devise a procedure (an algorithm) that tests whether a polynomial has an integral root
- Example of polynomial:

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

- We know today no algorithm exists for this task
- The intuitive understanding of algorithms (that the 19th century mathematicians had at the time) was insufficient for showing such impossibility result
- Proving impossibility (negative) result requires precise definition of algorithm

Portrait of David Hilbert in the 1900s

What is an algorithm?

- Hilbert's problems
 - In 1900, Hilbert posed 23 mathematical problems as challenges for the coming century
 - His 10th problem was to devise a procedure (an algorithm) that tests whether a polynomial has an integral root
- We know today no algorithm exists for this task
- The intuitive understanding of algorithms (that the 19th century mathematicians had at the time) was insufficient for showing such impossibility result
- Proving impossibility (negative) result requires precise definition of algorithm
- That definition came in 1936 Church-Turing thesis, which basically states that

Intuitive notion of algorithms equals

Turing machine algorithms

Portrait of David Hilbert in the 1900s

Alan Turing (1912--1954)

Alonzo Church (1903--1995)

Turing Machines

λ-calculus

Digging deeper into Hilbert's 10th problem

- Let us phrase the problem in our terminology
 Let D = {p | p is a polynomial with an integral root}
- Hilbert in essence asked whether D is decidable
- The answer is negative
- In contrast, we show that it is Turning-recognizable
- Before doing so, let us first consider a simpler problem
 Let D₁ = {p | p is a polynomial over a single variable x with an integral root}

Digging deeper into Hilbert's 10th problem

Here is a TM M₁ that recognizes D₁

 M_1 = "on input : where p is a polynomial over the variable x.

- Evaluate p with x set successively to the values 0,1,-1,2,-2,3,-3,.... If at any point the polynomial evaluates to zero, *accept*."
- If p has an integral root, M₁ eventually will find it and accept. If p does not have an integral root, M₁ will run forever.
- For the multivariable case, we can present a similar TM M that recognizes D.
- Both M₁ and M are recognizers but not deciders.
- We can convert M₁ to be decider for D₁ because we can calculate bounds within which the roots of a single variable polynomial must lie and restrict the search to these bounds.
- There is a result (Matijasevic, 1970) that shows that calculating such bounds for multivariable polynomials is impossible.

Turning point

- We have come to a turning point in our study of theory of computation
- We will continue to speak of Turing machines, but our real focus from now on is on algorithms
- TM merely serves as a precise model for the definition of algorithms
- We will rely on high-level description of TM algorithms and follow a certain format and notation
 - The input to a TM is always a string
 - If we want to provide an input other than a string as input, we first represent –
 encode -- that object as a string. This is always possible.
 - Our notation for encoding an object O into its representation as a string is <O>
 - If we have several objects O₁, O₂, ..., O_k, we denote their encodings into a single string <O₁, O₂, O₃, ..., O_k>
 - The encoding can be done in many reasonable ways, and it doesn't matter which one we pick.
 - TM algorithms will be described as indented segments of text within quotes.
 - The algorithms are broken into stages, each potentially involving many steps.

Example

 Let A be the language consisting of all strings representing undirected graphs that are connected. That is,

A = {<G> | G is a connected undirected graph}

 The following (next slide) is a high-level description of a TM M that decides A

TM that decides A

- M = "On input $\langle G \rangle$, the encoding of a graph G:
 - 1. Select the first node of G and mark it.
 - 2. Repeat the following stage until no new nodes are marked:
 - **3.** For each node in *G*, mark it if it is attached by an edge to a node that is already marked.
 - **4.** Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

A graph G and its encoding <G>

$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))