Question #1

Buck Converter DCM

Conditions

$$V_g = 5[V]$$

$$R_{load} = 4[\Omega]$$

$$freq = 250[kHz]$$

$$L = 2.2[\mu H]$$

$$C = 47[\mu F]$$

$$K = \frac{2L}{RT_s}$$

Problems

아래 회로가 DCM으로 동작할 때 왼쪽의 조건을 고려하여 문제를 푸시오

- 1) $K_{crit}(D)$ & 입출력 관계식 V/V_g
- 2) $D_1 = 0.3$ 일때 출력전압 V 계산
- 3) 2)의 결과를 PSIM simulation 결과와 비교
- 4) PSIM simulation으로 인덕터 리플 전류 Δi_L , 평균전류 I, 시간 D_3 확인

$$J_{L} = \frac{V}{R} = \frac{DVg}{R} \cdots 0$$

$$\Delta \dot{l}_{L} = \frac{(V_{g} - V)}{9L} \text{ DT}_{S} \qquad V = DVg$$

$$= \frac{V_{g} \text{ DP}' \text{ T}_{S}}{2L} \qquad V = Vg \frac{P_{1}}{P_{1} + P_{2}}$$

$$\frac{2L}{RT_{S}} < P' \qquad k_{crit} = D' \qquad \lambda_{L}H_{2} = \lambda_{C}(t) + \frac{V}{R}$$

$$\lambda_{L}H_{3} = \lambda$$

Triangular : VTRI1		×
Parameters Color		
Triangular-wave voltage	source	Help
		Display
Name	VTRI1	
V_peak_to_peak	1	
Frequency	250k	▼ •
Duty Cyde	1	
DC Offset	-0	
Tstart	0	
Phase Delay	0	

Measure				
:	X1	X2	Δ	Average
Time	9.69222e-02	9.69244e-02		
V(R1)	2.16853e+00	2.14896e+00	-1.95726e-02	2.15919e+00

$Average\ V_{out} = 2.1519[V]$

Me	easure				
:		X1	X2	Δ	Average
	Time	9.86748e-02	9.86760e-02	1.20358e-06 🖺	
	I(L1)	217 000220 00	-7.53132e-06	-2.77646e-03	

$$D_3 = X2 - X1 = 1.2 * 10^{-6} = 1.2[\mu s]$$

Measure				
:	X1	X2	Δ	Average
Time	3.300120 02		2.80000e-06 🖺	
I(L1)		-7.51737e-06		4.38583e-01

$$I_L = 0.43858[A]$$

$$\Delta i_L = 1.55397[A]$$

Question #2

Buck converter DCM

Problems

Question #1에 대해 PSIM의 Parameter Sweep을 이용하여 (Duty를 변경하여) CCM에서 DCM으로 변경되는

구간을 확인하시오 (DCM: $\Delta i_L > I$)

				Help
Name	Start	End	Increment	Enabled
X Duty	0.125	0.925	0.2	·
x l				- マ

 $K_{crit} = (1 - D) = 0.275$ 가 되는 지점인 I(L1)04부터 CCM 모드가 시작되는 것을 확인

Question #3

Boost Converter DCM

Conditions

$$V_g = 100[V]$$

$$R_{load} = 100[\Omega]$$

$$freq = 5[kHz]$$

$$L = 1[mH]$$

$$C = 100[\mu F]$$

$$K = \frac{2L}{RT_s}$$

Problems

아래 회로가 DCM으로 동작할 때 왼쪽의 조건을 고려하여 문제를 푸시오

- 1) $K_{crit}(D)$ & 입출력 관계식 V/V_g
- 2) $D_1 = 0.25$ 일때 출력전압 V 계산
- 3) 2)의 결과를 PSIM simulation 결과와 비교
- 4) PSIM simulation으로 인덕터 리플 전류 Δi_L , 평균전류 I, 시간 D_3 확인

$$\frac{2L}{RT_S} > p'^2 p$$
 $p = \frac{2L}{RT_S}$

$$Kert(D) = DD^{2}$$

Q
$$V_{c}(t) = V_g - V$$

 $\hat{J}_c(t) = \hat{J}_c(t) - \frac{V}{R}$

$$P_1Vg + D_2(Vg-V) = 0$$

$$V = \frac{(D_1 + D_2)V_g}{D_2}$$

$$j_{\text{peak}} = \frac{V_9}{L} D_1 T_S$$
 Average Diode Current $v_{\text{peak}} = \frac{V_9}{L} D_1 T_S$ $v_{\text{peak}} = \frac{V_9}{L} D_1 T_S$

Dits Date Date
$$S_{a}^{T_{s}}$$
 is let $S_{a}^{T_{s}}$ is $S_{a}^{T_{s$

$$D_{2}V = D_{1}V_{g} + D_{2}V_{g}$$

$$D_{2}(V - V_{g}) = D_{1}V_{g}$$

$$D_{2} = \frac{D_{1}V_{g}}{V - V_{g}}$$

$$V^{2} - VV_{g} - \frac{V_{g}^{2}D_{1}^{2}}{K} = 0$$

$$V = (+\sqrt{I + 4D_{1}^{2}/K})$$

$$\frac{V}{V_0} = \frac{1 \pm \sqrt{1 + 4 - 0.25^2}}{2} = 1.4354$$

Triangular : VTRI1		×
Parameters Color		
Triangular-wave voltage	source	Help
		Display
Name	VTRI1	
V_peak_to_peak	1	
Frequency	5k	▼ •
Duty Cyde	1	
DC Offset	0	
Tstart	0	
Phase Delay	0	

Measure				
:	X1	X2	Δ	Average
Time	9.64500e-02		1.15758e-04 🖺	
I(L1)	4.99940e+00	0.00000e+00	-4.99940e+00	2.47899e+00

$$I_L = 1.915[A]$$

$$\Delta i_L = 5[A]$$

Measure				
:	X1	X2	Δ	Average
Time	9.65648e-02	9.65999e-02		
I(L1)	0.00000e+00	0.00000e+00	0.00000e+00	0.00000e+00

$$D_3 = 0.351[\mu s]$$

Measure				
:	X1	X2	Δ	Average
Time	9.75316e-02		1.18400e-04 🖺	
V(R1)	1.44109e+02			

 $V_R = 143.47[V]$

 $I(L_1)01, D = 0.1로$ CCM으로 동작 $I(L_2)02, D = 0.3$ 로 DCM으로 동작 $I(L_3)03, D = 0.5$ 로 DCM으로 동작 $I(L_4)014$ D = 0.7로 CCM으로 동작

왜 boost는 CCM과 DCM이 섞여서 나오는가?

K = 0.1을 기준으로 Duty에 따라 CCM으로 동작하다가 DCM으로 동작하다 다시 CCM으로 동작한다.

즉 boost converter는 buck converte와 달리 K_{crit} 는 $D(1-D)^2$ 로 3차 방정식이므로 K값을 기준으로 두 번 바뀌기 때문이다.

