- ➤ Pole p₁ (p₂) is referred to as the pole of the input (output) circuit
- ➤ Also, $|\mathbf{p}_1| << |\mathbf{p}_2|$ ⇒ p_1 (p_2) is the DP (NDP) of the system
- > Matching coefficients:

$$p_{1} = -\frac{R_{S} + r_{\pi}}{R_{S} r_{\pi}} \frac{1}{C_{T}} = -\frac{1}{(R_{S} || r_{\pi}) [C_{\pi} + (1 + g_{m} R_{L}) C_{\mu}]}$$

$$p_{2} = -\frac{1}{R_{L} C_{M}'}$$

 \triangleright Obviously, $|p_1| \ll |p_2|$

- ightharpoonup Thus, using DPA: $f_H = |p_1|/(2\pi)$
- Applying this technique to the previous example, $f_H = 3.9$ MHz and NDP frequency = 156 MHz
 - Error of only 2.6% in f_H , but the ease of solution is much more
- Thus, this technique is quite popular in getting a quick estimate of f_H, even though the solution may not be exact
- Care: The gain in the multiplicative factor is that between the input and output terminals of the capacitor

- The Zero-Value Time Constant (ZVTC) Technique:
 - ➤ Gives information only about the DP of the system
 - > Suppresses all information regarding other poles and zeros
 - The ease of application of this technique is mind-boggling

- > Slightly less accurate
- > The maximum error can be as high as 22%
- Underestimates f_H
 - Far better than overestimation and eventually not achieving it
- > Applicable only for circuits that have a DP
 - Fortunately, almost all analog circuits of interest do have a DP

• The Algorithm:

- > Null all independent sources to the circuit
 - Short all independent voltage sources
 - Open all independent current sources
 - DO NOT TOUCH DEPENDENT SOURCES
- \triangleright Name the capacitors C_i (i = 1-n)
- ➤ Consider C₁ and assign zero values to all other capacitors (thus the name!)
 - Thus, except C_1 , all other capacitors will open out
- ► Determine the Thevenin Resistance (R_1^0) across the two terminals of C_1

- Find the time constant τ_1 associated with C_1 $\left(\tau_1 = R_1^0 C_1\right)$
- Repeat for all other capacitors, taking one at a time, and find all the rest of the time constants $(\tau_2, \tau_3, ..., \tau_n)$
- \triangleright Determine the *net time constant* τ_{net} by *summing up* all the *individual time constants*

$$\Rightarrow au_{\text{net}} = \sum_{i=1}^{n} au_{i}$$

Then the *Upper Cutoff Frequency* f_H is simply given by: $f_H = 1/(2\pi\tau_{net})$

- \triangleright Note: The capacitor contributing the largest time constant, in effect, determines f_H
- The technique suppresses all information regarding other poles and zeros
- ➤ Will present *several examples* to understand the *application* of this *technique*
- Some *topologies* will be appearing *frequently*, known as *Standard Forms*, which can be treated as *individual modules*, and the *results* can be used freely