O szukaniu szczęścia w niepewnym świecie: procesy decyzyjne Markowa

Paweł Rychlikowski

Instytut Informatyki UWr

30 kwietnia 2019

Papier, nożyce, kamień

Żródło: Wikipedia

Macierz wypłat

Max/Min	Papier	Nożyce	Kamień
Papier	0	+1	-1
Nożyce	-1	0	+1
Kamień	+1	-1	0

Papier, nożyce, kamień

Pewne rzeczy, o których mówiliśmy tydzień temu, są wyraźnie widoczne dla gry papier-nożyce-kamień.

- Dla każdej strategii jest optymalna stała odpowiedź:
 Mój przeciwnik gra losowo, ale z przewagą kamienia zatem ja
 daję zawsze papier
- 2. Optymalna strategia jest mieszana (w tej grze każde z $p=\frac{1}{3}$)
- 3. Znajomość optymalnej strategii mieszanej gracza A, nie daje żadnej przewagi graczowi B (i odwrotnie)

Papier, nożyce, kamień – uwagi końcowe

- Istnieją zawody w PNK, ktoś w nich wygrywa
- Co ciekawe: niektórzy istotnie częściej!

Kluczowe sposrzeżenie

Który człowiek (nie dysponując kostką do gry), przegrawszy 3 razy z rzędu jako papier pokaże papier?

Wyobraźmy sobie turniej, w którym gra N ludzi i K programów. Mecz to wiele tur. Jak napisać taki program?

Macierz wypłat Zmyłka i Zgadywacza. Przypomnienie

Nasza gra:

```
Zg/Zm 1 palec 2 palce
1 palec 2 -3
2 palce -3 4
```

Optymalna strategia:

- Zmyłek: trochę częściej 1 palec (bo jak wygra, to więcej)
- Zgadywacz: trochę częściej 1 palec (bo Zmyłek daje go częściej)

Policzyliśmy, że trochę częściej = z prawdopowobieństwem $\frac{7}{12}$

Twierdzenie von Neumana. Przypomnienie

Twierdzenie, von Neuman, 1928

Dla każdej jednoczesnej gry dwuosobowej o sumie zerowej ze skończoną liczbą akcji mamy:

$$\max_{\pi_A} \min_{\pi_B} V(\pi_A, \pi_B) = \min_{\pi_B} \max_{\pi_A} V(\pi_A, \pi_B)$$

dla dowolnych mieszanych polityk π_A , π_B .

Gry wieloturowe

- Można o grze wieloturowej myśleć jako o grze jednoturowej
- Gracze na sygnał kładą przed sobą opis strategii (program)

Uwaga

Optymalną strategią jest MinMax (ExpectMinMax w grach losowych). Ale wiedząc o strategii gracza różnej od optymalnej możemy oczywiście ugrać więcej.

Co pomijamy

- Gry o sumie niezerowej, w których dochodzi możliwość kooperacji.
- Punkt równawagi Nasha (jest zawsze para strategii, że żaden gracz nie chce jej zmienić, wiedząc, że ten drugi nie zmienia).
- Agent musi zdecydować, czy ma być miły dla innego agenta (i budować reputację przy wielu rozgrywkach, słynny dylemat więźnia).

Procesy decyzyjne Markowa (MDP)

- Coś pomiędzy grami a zwykłym zadaniem przeszukiwania.
- a jednocześnie krok w stronę uczenia ze wzmocnieniem

... o szukaniu szczęścia w niepewnym świecie ...

MDP a przeszukiwanie

Standardowe przeszukiwanie

Znamy mechanikę świata i wiemy, że akcja w stanie da nam konretny rezultat (inny stan).

MDP

Znamy mechanikę świata i wiemy, że akcja w stanie da nam pewien rozkład prawdopodobieństwa na następnych stanach.

Nie wiemy, co dokładnie się stanie, ale wiemy co **może** się stać i z jakim prawdopodobieństwem.

Własność Markowa

- Przyszłość zależy od ostatniego stanu.
- Nie zależy od historii...
- Chyba, że jej fragment (o długości N) uznamy za część stanu.

Uwaga na wulkany (1)

- Dobrze omawia się MDP na prostych światach na prostokątnej kratce.
- I od takich modeli zaczniemy.

Generalnie myślimy na początku o przestrzeni stanów na tyle małej, że nie będzie kłopotów z pamiętaniem różnych wartości dla każdego stanu.

Uwaga na wulkany (2)

Volcano crossing

	-50	20
	-50	
2		

CS221 / Autumn 2017 / Liang & Ermon

Mechanika świata wulkanów

	-50	20
	-50	
2		

- Możliwe 4 akcje (UDLR)
- W normalnym przypadku efekt oczywisty (próba wyjścia poza planszę oznacza pozostanie na polu)
- Z prawdopodobieństwem p możemy się poślizgnąć, wówczas poruszamy się w losowym kierunku.
- Dojście do pola z liczbą kończy grę (i odpowiednią dostajemy wypłatę).

Inny przykład. Gra w kości

Uwaga

Nagroda może być przydzielana w sposób ciągły, nie tylko w stanie końcowym.

- Mamy dwie opcje: pozostanie albo rezygnacja.
- rezygnacja oznacza wypłatę 10\$
- pozostanie to wypłata 4\$ po której rzucamy kostką.
- Interpretacja wyniku:
 - 1,2 koniec gry
 - 3,4,5,6 gramy dalej

Pytanie

Ile mamy stanów? Odpowiedź: 2

Dla gry w kości

- 1 stan z decyzją, dwie polityki (schemat na tablicy).
- Możemy policzyć oczekiwaną wartość dla każdej:
 - rezygnacja 10
 - pozostanie (na tablicy)

MDP – formalna definicja

Definicja

Markowowski proces decyzyjny (MDP) zawiera następujące składowe:

- 1. S (skończony) zbiór stanów
- 2. Stan startowy, $s_{\text{start}} \in S$
- 3. Actions(s) zbiór możliwych akcji w stanie s
- 4. T(s,a,s') prawdopodobieństwo przejścia z s do s' w wyniku akcji a
- 5. Reward(s,a,s') nagroda (wypłata) związana z tym przejściem
- 6. IsEnd(s) czy stan jest końcowy?
- 7. Discount factor, $0<\gamma\leq 1$ sprawia, że nagrody w przyszłości cieszą mniej.

MDP – komentarz do definicji

- Można też myśleć, że dla pary (s, a) mamy rozkład prawdopodobieństw po parach (nowy-stan, nagroda).
- Nagroda może być pozytywna bądź negatywna

Uwaga

Oczywiście MDP jest ogólniejsze niż zadanie przeszukiwania (bo wystarczy przypisać niektórym rezultatom p-stwo 1, reszcie 0 i mamy zwykłe zadanie przeszukiwania)

Czym jest rozwiązanie MDP?

- Przypominamy: rozwiązaniem zadania przeszukiwania jest ciąg akcji (ale to nie tu nie działa, bo?)
 - (wyniki akcji są niedeterministyczne, więc nie wystarczy podać jednego ciągu akcji)
- Rozwiązanie: agent musi wiedzieć, co zrobić w każdym stanie.

Polityka

Definicja 1

Polityką deterministyczną nazwiemy funkcję, która każdemu stanowi przypisuje akcję (możliwą w tym stanie).

Definicja 2

Polityką nazwiemy funkcję, która każdemu stanowi przypisuje rozkład prawdopodobieństwa na akcjach (możliwych w tym stanie).

Wartościowanie polityki

- Gdy używamy polityki, otrzymujemy ciąg stanów, akcji i nagród
- Dla takiej ścieżki możemy zsumować nagrody, otrzymując użyteczność dla tej ścieżki
- Wartością polityki jest oczekiwana użyteczność polityki (tzn. wartość oczekiwana zmiennej losowej wyrażającej użyteczność takiej ścieżki)

Discounting

- Realizując politykę, otrzymaliśmy ciąg stanów, nagród i akcji
 - $s_0, a_1, r_1, s_1, a_2, r_2, s_2, \ldots, s_n, a_{n+1}, r_{n+1}, s_{n+1}, \ldots$
- Nagroda po uwzględnieniu zniżek:

$$r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \dots$$

- Widzimy że:
 - ullet Dla $\gamma=1$ po prostu sumujemy nagrody cząstkowe
 - Dla $0<\gamma<1$ mamy możliwość mówienia o wartości nieskończonych ciągów akcji.

Uwaga o γ

- Zwróćmy uwagę, że discounting ma sens również w przypadku, gdy nagroda wypłacana jest jedynie w stanie końcowym.
- Jeżeli wypłata jest tylko w ostatnim stanie, to:
 - a) Agent, który wygrywa (R > 0) woli dostać ją wcześniej,
 - b) agent, który przegrywa (R < 0) woli dostać ją później.

Przyśpieszanie zwycięstwa i opóźnianie porażki jest "sensownym" zachowaniem.

Wartość polityki

Definicja

Wartość $V_{\pi}(s)$ jest oczekiwaną użytecznością dla agenta startującego w stanie s i działającego zgodnie z polityką π

Definicja

Wartość $Q_{\pi}(s,a)$ jest oczekiwaną użytecznością dla agenta startującego w stanie s, wykonującego w tym stanie akcję a i **dalej** działającego zgodnie z polityką π

Źródło: CS221 / Autumn 2017 / Liang & Ermon

Zależności pomiędzy V i Q

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') (\text{Reward}(s, a, s') + \gamma V_{\pi}(s'))$$

Algorytm: policy evaluation

Napiszmy rekurencyjny wzór dla wartości V (przy zadanej polityce)

•

$$V_{\pi}(s) = \sum_{s'} T(s, \pi(s), s') (\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}(s'))$$

- Mamy układ równań (liniowych), który można rozwiązywać standardowymi metodami.
- Równań jest tyle co stanów (czyli potencjalnie sporo)

Algorytm: policy evaluation (2)

Możemy ten wzór zmodyfikować, mówiąc: zamiast nieznanego V po prawej stronie weźmiemy poprzednie przybliżenie V:

$$V_{\pi}^{(t+1)}(s) = \sum_{s'} T(s,\pi(s),s') (\mathsf{Reward}(s,\pi(s),s') + \gamma V_{\pi}^{(t)}(s'))$$

Algorytm: policy evaluation (3)

- 1. Zainicjuj $V_{\pi}^{(0)}(s) \leftarrow 0$, dla wszystkich s
- 2. Powtarzaj dla $t = 1, ..., t_{PE}$
 - Powtarzaj dla każdego stanu s

$$V_{\pi}^{(t+1)}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') (\mathsf{Reward}(s, \pi(s), s') + \gamma V_{\pi}^{(t)}(s'))$$

Uwagi implementacyjne

- ullet Kończymy, gdy dla każdego stanu zmiana mniejsza niż arepsilon
- Oczywiście nie musimy pamiętać całej historii, tylko dwa ostatnie jej elementy (stany zmieniane i poprzednie)

Złożoność

 $O(t_{PE}SS')$, gdzie S to liczba stanów, a S' (maksymalna) liczba stanów z niezerową T(s,a,s').

Polityka optymalna

 Interesuje nas wyznaczanie polityki (a nie tylko ocenianie jej wartości.

Definicja

Optymalną wartością stanu $V_{opt}(s)$ jest maksymalna wartość stanu (ze względu na wszystkie polityki).

Rekurencja dla polityki optymalnej

Jaka polityka jest optymalna? Taka, która wybiera stany o optymalnej wartości

• Przypominamy, dla każdej polityki mamy:

$$Q_{\pi}(s, a) = \sum_{s'} T(s, a, s') (\text{Reward}(s, a, s') + \gamma V_{\pi}(s'))$$

• Dla polityki optymalnej: $V_{\text{opt}}(s) = \max_{a \in \text{Actions}(s)} Q_{\text{opt}}(s, a)$

Możemy podstawić do drugiego wzoru wzór na Q_{π} dla $\pi=$ opt.

$$V_{\mathsf{opt}}(s) = \max_{a \in \mathsf{Actions}(\mathsf{s})} \sum_{s'} T(s, a, s') (\mathsf{Reward}(s, a, s') + \gamma V_{\mathsf{opt}}(s'))$$

Algorytm Iteracji wartości – Bellman, 1957

Polityka optymalna (do poprzedniego slajdu)

$$\pi_{\text{opt}}(s) = \arg\max_{a \in Actions(s)} Q_{\text{opt}}(s, a)$$

Nasz wzorek zmieniony na wersję do iterowania

$$V_{\text{opt}}^{(t+1)}(s) = \max_{a \in \mathsf{Actions}(s)} \sum_{s'} T(s, a, s') (\mathsf{Reward}(s, a, s') + \gamma V_{\text{opt}}^{(t)}(s'))$$

Algorytm Bellmana (value iteration)

- Mamy dodatkową pętlę wybierającą optymalną akcję (zamiast akcji danej przez politykę)
- Reszta bez zmian, tak jak w policy evaluation.

Warunki zbieżności

Algorytm jest zbieżny, jeżeli zachodzi któryś z warunków

- \bullet $\gamma < 1$
- Graf MDP jest acykliczny

Uwaga

W tym ostatnim przypadku wymagana jest jedna iteracja, w której stany przeglądane są w odwrotnym porządku topologicznym (wyjaśnienie na tablicy)

Uwaga

Zwróćmy uwagę na to ci się dzieje, jeżeli $\gamma=1$ i mamy cykl. Dla niezerowych nagród na krawędziach cyklu wartość oczekiwana może być nieokreślona