第一次作业参考答案

By 朱映

注意事项:第一次作业很多同学出现了以下问题,考虑到是第一次作业不作过多要求,但在之后的作业中请注意。

- 1. 推导时没有给出每一步的依据。请在之后的每次作业中,涉及到推导的部分**给出依据**;用到书上或者PPT上**没有的请给出详细证明。**
- 2. 真值表法验证时只有单位变元和最终结果ß。对于比较简单的公式可以这样写,但对于比较复杂的公式必须写出其组件的值进行判断,比如本次作业1.2. **可以不完全写出各个组件但不能一步到位。**
- 3. 逻辑符号间强弱错误。运算符(联结词)结合力强弱顺序为:¬, ∧, ∨, →, ↔。注意⇔不是运算符!

1. 用真值表法判定以下公式类型。

1. $\neg(P \land Q \rightarrow Q)$

P	Q	$P \wedge Q$	$P \wedge Q o Q$	$\lnot (P \land Q ightarrow Q)$
0	0	0	1	0
0	1	0	1	0
1	0	0	1	0
1	1	1	1	0

所以是不可满足公式。

2. $(P \rightarrow (P \lor Q)) \lor (P \rightarrow R)$

P	Q	R	$P \lor Q$	P o R	$(P \to (P \lor Q))$	(P ightarrow (P ee Q)) ee (P ightarrow R)
0	0	0	0	1	1	1
0	0	1	0	1	1	1
0	1	0	0	1	1	1
0	1	1	0	1	1	1
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	1	0	1	1
1	1	1	1	1	1	1

所以是可满足公式。上表不一定写完整,但是最后结果至少出现一个0和一个1.

3. $(P \lor Q) \to (P \land R)$

P	Q	R	$P \lor Q$	$P \wedge R$	$(P\vee Q)\to (P\wedge R)$
0	0	0	0	0	1
0	0	1	0	0	1
0	1	0	1	0	0
0	1	1	1	0	0
1	0	0	1	0	0

P	Q	R	$P \lor Q$	$P \wedge R$	$(P \vee Q) \to (P \wedge R)$
1	0	1	1	1	1
1	1	0	1	0	0
1	1	1	1	1	1

所以是可满足公式。上表不一定写完整,但是最后结果至少出现一个0和一个1.

2. 设公式 A=P o Q, $B=P\wedge \neg Q$,用真值表验证公式 A 和 B 适合德摩根律: $\neg (A\vee B)\Leftrightarrow \neg A\wedge \neg B$

P	Q	A	B	A ee B	$ eg(A \lor B)$	$ eg A \wedge eg B$
0	0	1	0	1	0	0
0	1	1	0	1	0	0
1	0	0	1	1	0	0
1	1	1	0	1	0	0

从表中可见 A和 B适合德摩根律。

3. 用等值演算求证:

1.
$$P o (Q o R) \Leftrightarrow (P \wedge Q) o R$$
. 证明:

$$P \rightarrow (Q \rightarrow R)$$
 会 $\neg P \lor (Q \rightarrow R)$ E14(或蕴涵等值式) 会 $\neg P \lor (\neg Q \lor R)$ E14 会 $(\neg P \lor \neg Q) \lor R$ E6(或 \lor 的结合律) 会 $\neg (\neg P \lor \neg Q) \rightarrow R$ E14 会 $(P \land Q) \rightarrow R$ 德摩根律

2.
$$(\neg P \wedge (\neg Q \wedge R)) \vee (Q \wedge R) \vee (P \wedge R) \Leftrightarrow R$$
证明:

$$(\neg P \wedge (\neg Q \wedge R)) \vee (Q \wedge R) \vee (P \wedge R)$$

$$\Leftrightarrow (\neg P \wedge (\neg Q \wedge R)) \vee ((P \vee Q) \wedge R)$$
 E8 (或 \ 在 \ \ 上 的 分配律)
$$\Leftrightarrow ((\neg P \wedge \neg Q) \wedge R) \vee ((P \vee Q) \wedge R)$$
 E7 (或 \ 的 结合律)
$$\Leftrightarrow (\neg (P \vee Q) \wedge R) \vee ((P \vee Q) \wedge R)$$
 德摩根律
$$\Leftrightarrow R$$
 E8