TOPOLOGÍA I. Examen del Tema 1

- Grado en Matemáticas -Curso 2011/12

Nombre:

Razonar todas las respuestas

1. Sea X un conjunto y $A \subset X$. Se define una topología mediante

$$\tau = \{O \subset X; A \subset O\} \cup \{\emptyset\}.$$

- (a) Probar que $\beta = \{\{x\} \cup A; x \in X\}$ es una base de τ .
- (b) Si $B \subset X$, hallar el interior y la adherencia de B.
- (c) ¿Qué topología conocida es $\tau_{|A}$?
- 2. Para X = [-1, 1], probar que $\tau = \{O \subset X; 0 \notin O\} \cup \{O \subset X; (-1, 1) \subset O\}$ es una topología en X. Hallar una base de entornos para $x \in X$ con el menor número de entornos. Hallad el interior y adherencia del conjunto A = [0, 1].
- 3. Sea $A = [0,1) \cup (2,3) \cup \{5\}$ con la topología usual.
 - (a) Estudiar si $\{5\}$ y (2,3) son abiertos o cerrados en A.
 - (b) Hallar el interior y la adherencia en A de (0, 1).
 - (c) Probar que $\{\{5\}\}$ es una base de entornos de x=5 en A.

Soluciones

1. Sea X un conjunto y $A \subset X$. Se define una topología mediante

$$\tau = \{ O \subset X; A \subset O \} \cup \{\emptyset\}.$$

- (a) Probar que $\beta = \{\{x\} \cup A; x \in X\}$ es una base de τ . Los conjuntos son abiertos ya que contienen a O. Por otro lado, si $O \in \tau$ y $x \in O$, entonces $\{x\} \cup A \subset O$ ya que $A \subset O$. Por tanto, $x \in \{x\} \cup A \subset O$.
- (b) Si B ⊂ X, hallar el interior y la adherencia de B.
 El interior de B es el mayor conjunto abierto dentro de B. En particular, int(B) ⊂ A. Si B ⊃ A, entonces B es abierto y coincide con su interior. En caso contrario, int(B) = Ø ya que si no, A ⊂ int(B) ⊂ B, lo cual no es posible.

Los conjuntos cerrados F son aquéllos tales que $A \subset X - F$ o F = X, es decir, $F \subset X - A$ o F = X. Ya que \overline{B} es el menor cerrado que contiene a B, si $B \subset X - A$, entonces $\overline{B} = B$. En caso contrario, es decir, si $B \not\subset X - A$, entonces $\overline{B} = X$.

(c) ¿Qué topología conocida es $\tau_{|A}$?

$$\tau_{|A} = \{O \cap A; O \in \tau\} \cup \{\emptyset\} = \{A\} \cup \{\emptyset\}.$$

Por tanto, $\tau_{|A}$ es la topología trivial de A.

2. Para X = [-1, 1], probar que $\tau = \{O \subset X; 0 \notin O\} \cup \{O \subset X; (-1, 1) \subset O\}$ es una topología en X. Hallar una base de entornos para $x \in X$ con el menor número de entornos. Hallad el interior y adherencia del conjunto A = [0, 1].

A los abiertos de la primera familia los llamaremos del primer tipo y los de la segunda, del segundo tipo. El conjunto vacío está en τ por definición y por otro lado, X pertenece al del segundo tipo.

Sea $\{O_i\}_{i\in I}\subset \tau$. Si alguno de los abiertos, llamado O_{i_0} , es del segundo tipo, entonces

$$(-1,1) \subset O_{i_0} \subset \cup_{i \in I} O_i,$$

luego la unión es del segundo tipo. En caso contrario, es decir, si todos son del primer tipo, entonces ningún abierto contiene a x=0 y menos aún, la unión de todos.

Sea $O_1, O_2 \in \tau$. Es evidente que si los dos son del primer tipo, la intersección no contiene a x = 0; que si los dos son del segundo tipo, ambos contienen a (-1,1), y por tanto, también la intersección. Finalmente, si O_1 es del primer tipo y O_2 del segundo, entonces $0 \notin O_1$ y por tanto, $0 \notin O_1 \cap O_2$.

Una base de entornos de x es:

$$\beta_x = \begin{cases} \{(-1,1)\} & \text{si } x = 0\\ \{\{x\}\} & \text{si } x \neq 0 \end{cases}$$

Es evidente que en ambos casos, los conjuntos son abiertos, luego entornos de todos sus puntos. Por otro lado, si U es un entorno de 0, existe $O \in \tau$ tal que $0 \in O \subset U$. Entonces O contiene al 0, luego tiene que ser del segundo tipo, en particular, $(-1,1) \subset O$, probando que $0 \in (-1,1) \subset U$. Si $x \neq 0$ y U es un entorno suyo, entonces $x \in \{x\} \subset U$.

El conjunto (0,1] es abierto porque no tiene a x=0. Veamos si 0 es interior a A. En tal caso, $(-1,1) \subset A$, ya que (-1,1) es el elemento de la base de entornos de x=0. Como esto no es posible, int(A)=(0,1]. Para la adherencia, si $x \notin A$, entonces $x \neq 0$, luego $\{x\} \cap A = \emptyset$ y así no es adherente. Esto dice que $\overline{A} = A$ (también A es cerrado ya que su complementario, que es [-1,0), es abierto (del primer tipo)).

- 3. Sea $A = [0,1) \cup (2,3) \cup \{5\}$ con la topología usual.
 - (a) Estudiar si {5} y (2,3) son abiertos o cerrados en A.
 El conjunto {5} es abierto y cerrado en A ya que {5} = (4,6) ∩ A = [4,6] ∩ A y (4,6) y [4,6] son abiertos y cerrados de ℝ, respectivamente.
 El conjunto (2,3) es abierto y cerrado en A ya que (2,3) = (2,3) ∩ A = [2,3] ∩ A y (2,3) y [2,3] son abiertos y cerrados de ℝ, respectivamente.
 - (b) Hallar el interior y la adherencia en A de (0,1). El conjunto (0,1) es abierto en A: $(0,1)=(0,1)\cap A$, luego coincide con su interior. Por otro lado, [0,1) es cerrado en A ya que $[0,1)=[0,1]\cap A$ y [0,1] es cerrado de \mathbb{R} . En particular, la adherencia de (0,1) en A está

contenida en [0,1). Finalmente, x=0 es adherente a A ya que una base de entornos de 0 en A es $\{[0,\epsilon); 0<\epsilon<1\}$ pues $[0,\epsilon)=(-\epsilon,\epsilon)\cap A$ y $\{(-\epsilon,\epsilon); 0<\epsilon<1\}$ es una base de entornos de x=0 en \mathbb{R} . Por tanto la adherencia del conjunto es [0,1).

(c) Probar que $\{\{5\}\}$ es una base de entornos de x=5 en A. Ya se ha visto que $\{5\}$ es un abierto en A, luego un entorno de x=5 en A. Como todo entorno de 5 en A debe contener a x=5, en particular, $\{5\}$ está contenido en dicho entorno. Otra forma es: una base de entornos de x=5 en la topología usual de \mathbb{R} es $\{(5-\epsilon,5+\epsilon);0<\epsilon<1\}$. Por tanto, una base de entornos de 5 en A es

$$\{(5 - \epsilon, 5 + \epsilon) \cap A; 0 < \epsilon < 1\} = \{\{5\}\}.$$