3.3.8; Prove for positive definite matrix A, A^{-1} is positive definite. $AA^{-1} = AA^{-1} = AA^{-1} = AAA^{-1}$ $A(A^{-1}) = A(A^{-1})^{T} \Rightarrow A(A^{-1})^{T} = AA(A^{-1})^{T}$ $A^{-1} = (A^{-1})^{T} = AA(A^{-1})^{T}$ $A^{-1} = A^{-1}$ $A^{-1} = A^{-1}$

If A is positive definite, $\lambda > 0$ for all eigenvalues $\lambda = 0$ for all eigenvalues of $\lambda = 0$ are of the form $\lambda = 0$, all eigenvalues of $\lambda = 0$ are also positive,

Thus $\lambda = 0$ is positive definite.