PCT

世界知的所有権機関 国際事務局 特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6

C07D 213/89, 213/82, 239/26, 239/34, 239/42, 237/24, 239/52, A01N 43/54, 43/40, 43/58

(11) 国際公開番号

WO99/44992

(43) 国際公開日

1999年9月10日(10.09.99)

(21) 国際出願番号

PCT/JP99/01048

A1

JP

JP

(22) 国際出願日

1999年3月4日(04.03.99)

(30) 優先権データ

特願平10/53485 特願平10/165661

1998年3月5日(05.03.98) 1998年6月12日(12.06.98)

特願平10/268025

1998年9月22日(22.09.98)

(71) 出願人 (米国を除くすべての指定国について)

(NISSAN CHEMICAL INDUSTRIES, LTD.)[JP/JP]

〒101-0054 東京都千代田区神田錦町3丁月7番地1 Tokyo, (JP)

(72) 発明者;および

日産化学工業株式会社

(75) 発明者/出願人 (米国についてのみ)

秋山茂明(AKIYAMA, Shigeaki)[JP/JP]

近藤康夫(KONDO, Yasuo)[JP/JP]

安達倫明(ADACHI, Michiaki)[JP/JP]

水越隆司(MIZUKOSHI, Takashi)[JP/JP]

〒274-8507 千葉県船橋市坪井町722番地1

日産化学工業株式会社 中央研究所内 Chiba, (JP)

渡邊重臣(WATANABE, Shigeomi)[JP/JP]

秋吉千秋(AKIYOSHI, Chiaki)[JP/JP]

大木 亨(OHKI, Tooru)[JP/JP]

中平国光(NAKAHIRA, Kunimitsu)[JP/JP]

〒349-0218 埼玉県南埼玉郡白岡町大字白岡1470

日産化学工業株式会社 生物科学研究所内 Saitama, (JP)

(74) 代理人

弁理士 小川利春,外(OGAWA, Toshiharu et al.)

〒101-0042 東京都千代田区神田東松下町38番地

鳥本鋼業ビル Tokyo, (JP)

(81) 指定国 AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG), ARIPO特許 (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM)

添付公開書類

国際調査報告書

ANILIDE COMPOUNDS AND HERBICIDE

(54)発明の名称 アニライド化合物及び除草剤

(57) Abstract

Compounds represented by formula (I) or salts thereof, which are useful as a herbicide, wherein ring Z represents 3,4-substituted pyridine, pyrimidine, or pyrazine which are optionally substituted with alkyl, etc.; R3 represents H, C1.6 alkyl, (substituted) phenylalkyl, etc.; R⁴ represents H, halogeno, nitro, cyano, C₁₋₆ alkyl, etc.; and X represents alkoxycarbonyl, alkylaminoaminocarbonyl, cyano, alkylcarbonyl,

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

[式中、環 Z は、3,4-置換ピリジン、ピリミジン、ピラジンであり、 これらは、さらにアルキル等で置換されていてもよく、R³は、H、 Cı~Ceアルキル、(置換)フェニルアルキル等、R¹は、H、ハロゲ ン、ニトロ、シアノ、Ci~Coアルキル等、Xはアルコキシカルボニ ル、アルキルアミノアミノカルボニル、シアノ、アルキルカルボニ ル、(置換)オキサジアゾリル等を示す。〕で表される化合物または その塩は、除草剤として有用である。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

```
アラブ首長国連邦
アルバニア
アルメニア
オーストリア
オーストラリア
アゼルバイジャン
ボニア・ヘルツェゴビナ
バルバドー
                                                                                                                 DESIRABDEHMNWRRUDELIN
 AL
AM
AU
AZ
BB
BB
BB
BB
BB
                                                                                                            KZCIKRSTUVCD MMG MK
                                                                                                                                                                          スーダン
スウェーデン
シンガポール
スロヴェニア
スログア・レオネ
シャ
                                                                                                                                                                   SESG
                                                                                                                                                                  BBRYAFGHIMNRUYZEK
                                                                                                                                                                 TTT AGSZNU
                                                                                                                                                                          トルックー・・・
トルコ
トリニダッド・トバゴ
ウクライナ
ウガンダ
                                                                                                           MIN MW MELOZLTOU PROURU
                                                                                                                                                                         リカリンタ
米式 ペキスタン
ウグィニゴース タン
ユーアンパン
南アンパブス
デンパブス
```

明細書

アニライド化合物及び除草剤

技術分野

本発明は、アニライド化合物及びそれを有効成分として含有する除草剤に関するものである。

背景技術

従来から、重要作物、例えば大豆、トウモロコシ、小麦、棉、イネ、ビート等を雑草害から守り、これらの重要作物の生産性を高める為に多くの除草剤が実用化されてきたが、依然として既存の薬剤は求められる機能をすべて満たしているものではない。

ところで、特開昭63-198670号公報には、ある種のピリミジン-5-カルボン酸アニライド化合物が、植物成長抑制作用を有することが開示されている。しかし、ピリミジン環4位の置換基として、例えばエステル基、アミド基、シアノ基、アシル基などを有するピリミジン-5-カルボン酸アニライド化合物に関しては、開示されていない。

また、特開平9-323974号公報には、ある種のピリジン3-カルボン酸アニライド化合物が除草作用を有することが開示されている。しかし、ピリジン環2位の置換基として、水素原子、アルキル基、アルコキシ基、アルキルチオ基などを有するピリジン3-カルボン酸アニライド化合物に関しては開示されていない。

発明の開示

本発明者らは、新規な酸アニライド化合物の除草作用について鋭意検討した結果、下記式で示される本発明化合物が優れた除草作用を有することを見出し、本発明を完成するに至った。

即ち、本発明は式(I):

$$Z_{2}$$

$$Z_{1}$$

$$Z_{1}$$

$$Z_{3}$$

$$Z_{4}$$

$$X$$

$$R^{4}$$

$$(1)$$

[式中、 $=Z^1 \sim Z^4 = tt = C (R^2) - C (R^{22}) = N - N = = C (R^2) - N$ $=C (R^1) - C (R^{23}) = = C (R^2) - N (\to O) = C (R^1) - C (R^{23})$ $= = C (R^2) - N = C (R^1) - N = = C (R^2) - N = N - C (R^{23}) = = N - N = C (R^1) - C (R^{23}) = X$ $= N - N = C (R^1) - C (R^{23}) = Xtt = N - C (R^{22}) = N - C (R^{23}) = X$ 表わし、

R¹, R², R²²及びR²³は同一でも相異なっていてもよく、水素原子、C₁~C 6アルキル基、C3~C6シクロアルキル基、C1~C6ハロアルキル基、C3~C6ハ ロシクロアルキル基、C2~C6アルケニル基、C2~C6ハロアルケニル基、C2~ C6アルキニル基、C2~C6ハロアルキニル基、Aで置換されていてもよいフェニ ル基、フェニル基がAで置換されていてもよいフェニルCュ~Cュアルキル基、フ ェニル基がAで置換されていてもよいフェニルC₂~C₄アルケニル基、フェニル 基がAで置換されていてもよいフェニルC₂~Cィアルキニル基、ハロゲン原子、 シアノ基、Cı~CgアルコキシCı~Cgアルキル基、Cı~CgハロアルコキシC ı~C。アルキル基、Cı~C。アルコキシCı~C。ハロアルキル基、Cı~C。ハロ アルコキシC1~C6ハロアルキル基、C1~C6アルキルチオC1~C6アルキル基、 $C_1 \sim C_6$ ハロアルキルチオ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ ハロアルキル基、Cı~CgハロアルキルヂオCı~Cgハロアルキル基、-COzR ⁷基、- (C (R⁵) R⁶) - CO₂R⁷基、- (C (R⁵) R⁶) 2-CO₂R⁷基、-(C (R⁵) R⁶) 3-CO₂R⁷基、- (C (R⁵) R⁶) 4-CO₂R⁷基、-CN基、 - (C (R⁵) R⁶) - C N 基、 - (C (R⁵) R⁶) 2 - C N 基、 - (C (R⁵) R 6) 3-CN基、- (C (R5) R6) 4-CN基、-N (R6) R8基、- (C (R 5) R6) -N(R8) R9基、-(C(R5) R6) 2-N(R6) R9基、-(C(R 5) R 6) 3-N (R 8) R 9基、- (C (R 5) R 6) 4-N (R 8) R 9基、-L-R

「⁰基、C₁~C₆アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキルカルボニル基、C₁~C₆ジアルキルカルバモイル基、C₁~C₆ジアルキルスルファモイル基を表わし、

R³は水素原子、Cı~C6アルキル基、フェニル基がAで置換されていても良いフェニルCı~C4アルキル基、Cı~C6アルキルカルボニル基、フェニル基がAで置換されていてもよいベンゾイル基、Cı~C6アルコキシCı~C6アルキル基又はCı~C6アルコキシカルボニル基を表わし、

Aは水素原子、ハロゲン原子、ニトロ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ ハロアルコキシ基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、 $C_1 \sim C_4$ アルキルカルボニルアミノ基、 $C_1 \sim C_4$ アルコキシカルボニルアミノ基、 $C_1 \sim C_6$ アルキルチオ基及び $C_1 \sim C_6$ アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

 R^4 は水素原子、ハロゲン原子、ニトロ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルキルカルボニル基、 $C_1 \sim C_6$ アルキルカルボニルを、 $C_1 \sim C_4$ アルコキシカルボニルアミノ基、 $C_1 \sim C_4$ アルコキシカルボニルアミノ基、 $C_1 \sim C_6$ アルキルチオ基及び $C_1 \sim C_6$ アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R 5及びR 6は同一でも相異なっていてもよく、水素原子又はC 1~C 1アルキル基を表わし、

R⁷は水素原子、C₁~C₆アルキル基又はC₁~C₆シクロアルキル基を表わし、R⁸及びR⁹は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルキル基、C₂~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀シクロアルキル基、C₃~C₁₀ハロシクロアルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₄アルカルボニル基、C₁~C₄アルコキシカルボニル基、C₁~C₄アルコキシカルボニル基、C₁~C₄アルコキシカルボニル基、フェニル基がAで置換されていてもよいフェニ

ルC₁~C₄アルキルカルボニル基、シアノ基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキニル基、C₁~C₄アルキルスルホニル基又はC₁~C₄ジアルキルスルファモイル基を表わし、

R*及びR*は結合する窒素原子とともに3~9員環を形成していてもよく、1若しくは2の酸素原子又は1若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

Lは酸素原子又はイオウ原子を表わし、

 R^{10} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_1 \sim C_6$ シクロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ ハロアルケニル基、 $C_2 \sim C_6$ アルキニル基、 $C_1 \sim C_4$ アルキニル基、 $C_1 \sim C_4$ アルキール基、 $C_1 \sim C_4$ アルキルチオ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$ アルキルチオ $C_1 \sim C_4$ アルキル基、 $C_1 \sim C_4$

Xは $-CO-L-R^{11}$ 基、-C(=L) N (R^{12}) R^{13} 基、-C (=L) -N (R^{12}) $-OR^{13}$ 基、-C (=L) N (R^{14}) -N (R^{12}) R^{13} 基、-C (=L) N (R^{15}) $-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (C (R^{16}) R^{17}) - (C (R^{16}) R^{17}) $-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (C (R^{16}) R^{17}) $_2-CO_2R^{18}$ 基、-C (=L) N (R^{15}) - (=L) N (=L) =L) N (=L) N (=L) =L) N (=L) =L) =L0 =L1 (=L1) =L2 =L3 (=L2) =L3 (=L3) =L4 (=L3) =L4 (=L4) =L5 =L5 (=L4) =L6 =L7 (=L4) =L8 =L9 (=L1) =L9 (=L1) =L9 (=L1) =L1 (=L2) =L1 (=L2) =L1 (=L3) =L1 (=L3) =L1 (=L4) =L4 (=L4) =L4

を表わし、

 R^{11} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_3 \sim C_6$ シクロアルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ ハロアルケニル基、 $C_2 \sim C_6$ アルキニル基、 $C_2 \sim C_6$ ハロアルキニル基、Aで置換されていてもよいフェニル基、フェニル基がAで置換されていてもよいフェニル $C_1 \sim C_4$ アルキル基又は $C_1 \sim C_6$ アルコキシカルボニル $C_1 \sim C_4$ アルキル基を表わし、

R¹², R¹³, R¹⁴及びR¹⁵は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₁~C₁₀ハロアルキル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀ハロアルキル基、C₁~C₁₀ハロアルキル基、C₁~C₁₀ハロシクロアルキル基、ヒドロキシC₁~C₁₀アルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₄アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキルカルボニル基、シアノ基、Aで置換されていても良いフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキール基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキール基、C₁~C₄アルキルスルホニル基又はC₁~C₄ジアルキルスルファモイル基を表わし、

R¹²及びR¹³は結合する窒素原子又は酸素原子とともに3~9員環を形成していてもよく、1若しくは2の酸素原子又は若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

R¹6及びR¹7は同一でも相異なっていてもよく、水素原子、C₁~C₄アルキル

基、Aで置換されていてもよいフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基又はC₁~C₄アルキルチオC₁~C₄アルキル基を表わし、

R 16及びR 17は結合する炭素原子とともに 4~9 員環を形成していてもよく、R 18は水素原子又はC1~C1アルキル基を表わし、

R¹⁹は水素原子、C₁~C₆アルキル基、C₃~C₆シクロアルキル基、C₁~C₆ハロアルキル基、C₂~C₆アルケニル基、C₂~C₆アルキニル基、Aで置換されていてもよいフェニル基又はフェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基を表わし、

 R^{20} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ アルキル基を表わし、

GはG(a), G(b), G(c)又はG(d)のいずれかの構造

を表わし、

R²¹は水素原子、C₁~C₆アルキル基又はC₁~C₆シクロアルキル基を表わす。]で示される新規なアニライド化合物(以下、本発明化合物を称す)及びその塩、そしてそれらを有効成分として含有することを特徴とする農薬、特に除草剤に関するものである。但し、以上の化合物に光学異性体、ジマステレオマー、幾何異性体が存在する場合は、それぞれの混合物及び単離された双方を包含する。発明を実施するための最良の形態

本発明のアニライド化合物の一般式(I) において、 $=Z^1\sim Z^4=$ の結合様式 としては、=C(R²)-C(R²²)=N-N=、=C(R²)-N=C(R¹)-

 $C(R^{23}) = = (R^2) - N(\rightarrow 0) = C(R^1) - C(R^{23}) = = (R^2) - N = C(R^1) - N = (R^2) - N = N - C(R^{23}) = (R^1) - N = (R^1) - C(R^{23}) = (R^2) - N = N - C(R^{23}) = (R^1) - C(R^{23}) = (R^2) - N = C(R^2) = (R^2) - C(R^{23}) = (R^2) - C(R^2) = (R^2) - C(R^2) = (R^2) - N = C(R^2) - N = C(R^2) = (R^2) - N = C(R^2) = (R^2) - N = C(R^2) = (R^2) - C(R^2) = (R^2) - N = C(R^2) = (R^2) - C(R^2) =$

R¹, R², R²²及びR²³としては、水素原子、メチル基、エチル基、プロピル 基、iープロピル基、iーブチル基、tーブチル基、シクロプロピル基、シクロ ペンチル基、シクロヘキシル基、トリクロロメチル基、トリフルオロメチル基、 ジフルオロメチル基、ジフルオロクロロメチル基、フルオロメチル基、フルオロ エチル基、トリフルオロエチル基、フルオロプロピル基、ビニル基、アリル基、 クロチル基、メタリル基、3-クロロアリル基、エチニル基、プロパルギル基、 1-メチルプロパルギル基、3-メチルプロパルギル基、3-クロロプロパルギ ル基、フェニル基、ベンジル基、2-フェニルエチル基、1-フェニルエチル基、 スチリル基、シンナミル基、2-フェニルエチニル基、塩素原子、臭素原子、フ ッ素原子、シアノ基、メトキシメチル基、エトキシメチル基、メトキシエチル基、 エトキシエチル基、メトキシジフルオロメチル基、メチルチオメチル基、エチル チオメチル基、メチルチオジフルオロメチル基、アセチル基、ベンゾイル基、ジ メチルカルバモイル基、メタンスルホニル基、エタンスルホニル基、ジメチルス ルファモイル基、ピロリジノ基、ピペリジノ基、ヘキサメチレンイミノ基又はモ ルホリノ基が挙げられ、好ましくは水素原子、メチル基、エチル基、プロピル基、 i -プロピル基、i -ブチル基、シクロプロピル基、トリフルオロメチル基、ジ フルオロメチル基、フェニル基、塩素原子、フッ素原子、シアノ基、メトキシメ チル基、メチルチオメチル基、メタンスルホニル基又はピロリジノ基が挙げられ る。

R³としては水素原子、メチル基、エチル基、イソプロピル基、ベンジル基、アセチル基、ピバロイル基、ベンゾイル基、4ーメトキシベンゾイル基、メトキシメチル基、エトキシメチル基、メトキシカルボニル基又はエトキシカルボニル基が挙げられ、好ましくは、水素原子、ピバロイル基、4ーメトキシベンゾイル基

又はエトキシカルボニル基が挙げられる。

Aとしては、水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、iーブチル基、トリクロロメチル基、トリフルオロメチル基、ジフルオロメトロメチル基、メトキシ基、エトキシ基、トリフルオロメトキシ基、ジフルオロメトキシ基、メトキシカルボニル基、エトキシカルボニル基、フェニル基、フェノキシ基、ベンジル基、アセチルアミノ基、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられ、好ましくは水素原子、塩素原子、フッ素原子、シアノ基、メチル基、エチル基、トリフルオロメチル基、メトキシ基又はメチルチオ基が挙げられる。

Aの置換位置としては、フェニル基が結合した位置に対して2位、3位又は4位が挙げられ、好ましくは、2位又は4位が挙げられる。

Aの置換する数としては1ないし5の整数が挙げられ、好ましくは1,2又は3が挙げられる。

1置換のR¹としては、例えば水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、tープチル基、トリクロロメチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシ基、エトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、メトキシカルボニル基、エトキシカルボニル基、アセチル基、フェニル基、フェノキシ基、ベンジル基、アセチルアミノ基、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられ、好ましくは、水素原子、塩素原子、フッ素原子、臭素原子、ヨウ素原子、ニトロ基、シアノ基、メチル基、エチル基、プロピル基、iープロピル基、tーブチル基、トリフルオロメチル基、ジフルオロメチル基、メトキシカルボニル基、エトキシカルボニル基、アセチル基、フェノキシ基、ベンジル基、アセチルアミノ基、メトキシカルボニルと、アセチルアミノ基、メトキシカルボニルアミノ基、メチルチオ基又はメタンスルホニル基が挙げられる。

またR'の置換位置としてはアニライド結合に対して2位、3位又は4位が挙げ

られ、好ましくは2位又は4位が挙げられる。

2置換ないし5置換のR¹としては例えば以下に示すものが挙げられる。

Me
$$\longrightarrow$$
 Me \longrightarrow NHCOMe \longrightarrow Me \longrightarrow Me \longrightarrow NHCO₂Me \longrightarrow Me \longrightarrow Me \longrightarrow Me \longrightarrow Me \longrightarrow NHCO₂Me \longrightarrow Me \longrightarrow Me

$$F_3C$$
 F_3C
 F_3C

またR⁺の置換位置としては、アニライド結合に対して2,6-位、2,3-位、2,5-位、2,3,6-位、2,3,5-位、2,4,6-位または2,3,4,6-位が挙げられ、好ましくは2,6位、2,3-位、2,5-位、2,3,6-位又は2,4,6位が挙げられる。

R³及びR⁶としては、水素原子、メチル基、エチル基又はイソプロピル基が挙げられ、好ましくは水素原子又はメチル基が挙げられる。

R'としては、水素原子、メチル基、エチル基、プロピル基、シクロプロピル基 又はシクロペンチル基が挙げられ、好ましくはメチル基又はエチル基が挙げられる。

R®及びR®としては、水素原子、メチル基、エチル基、プロビル基、ビニル基、アリル基、メタリル基、クロチル基、エチニル基、プロバルギル基、1ーメチルプロバルギル基、3ーメチルプロバルギル基、トリクロロメチル基、ジフルオロメチル基、ジフルオロクロロメチル基、トリフルオロエチル基、3ークロロアリル基、3ークロロプロバルギル基、シクロプロピル基、シクロペンチル基、2、2ージクロロシクロプロピル基、メトキシメチル基、エトキシメチル基、メトキシエチル基、エトキシメチル基、メチルチオメチル基、アセチル基、プロピオニル基、メトキシカルボニル基、エトキシカルボニル基、ベンゾイル基、シアノ基、ベンジル基、1ーフェニルエチル基、スチリル基、シンナミル基、3ーフェニルプロバルギル基、メタンスルホニル基、エチルスルファモイル基が挙げられ、好ましくは水素原子、メチル基、エチル基、アリル基、プロバルギル基、アセチル基、エトキシカルボニル基又はジメチルスルファモイル基が挙げられ、好ましくは水素原子、メチル基、エチル基、アリル基、プロバルギル基、アセチル基、エトキシカルボニル基又はメタンスルホニル基が挙げられる。

Lとしては、酸素原子又はイオウ原子が挙げられ、好ましくは酸素原子が挙げられる。

R¹⁰としては、水素原子、メチル基、エチル基、イソプロピル基、ジフルオロメチル基、トリフルオロメチル基、ジフルオロブロモメチル基、シクロプロピル基、アリル基、3-クロロアリル基、プロパルギル基、3-メチルプロパルギル基、1-メチルプロパルギル基、3-クロロプロパルギル基、メトキシメチル基、エトキシメチル基、メチルチオメチル基、エトキシメチル基、メチルチオメチル基、

メトキシカルボニルメチル基、エトキシカルボニルメチル基、フェニル基、ベンジル基、シアノメチル基、シアノエチル基又はジメチルカルバモイルメチル基が挙げられ、好ましくは水素原子、メチル基、エチル基、ジフルオロメチル基、トリフルオロメチル基、アリル基、プロパルギル基又はメトキシメチル基が挙げられる。

R¹¹としては、水素原子、メチル基、エチル基、トリクロロメチル基、トリフルオロメチル基、トリフルオロエチル基、シクロプロピル基、アリル基、プロパルギル基、フェニル基、ベンジル基又はエトキシカルボニルメチル基が挙げられ、好ましくは、水素原子、メチル基又はエチル基が挙げられる。

R 12及びR 13としては、水素原子、メチル基、エチル基、プロピル基、 i ープ ロピル基、ブチル基、iーブチル基、sーブチル基、tーブチル基、ペンチル基、 ヘキシル基、ヘプチル基、オクチル基、アリル基、メタリル基、クロチル基、3 ーメチルー2ーブテニル基、1ーメチルー2ープロペニル基、1, 1ージメチル プロペニル基、プロパルギル基、1-メチルプロパルギル基、1,1-ジメチル プロパルギル基、2-ブチニル基、ホモプロパルギル基、ジフルオロメチル基、 トリフルオロエチル基、クロロエチル基、クロロプロピル基、プロモプロピル基、 フルオロプロピル基、2-クロロアリル基、3-クロロアリル基、3,3-ジク ロロアリル基、3-クロロプロパルギル基、シクロプロピル基、シクロブチル基、 シクロペンチル基、シクロヘキシル基、シクロヘプチル基、2,2ージクロロシ クロプロピルメチル基、ヒドロキシエチル基、3ーヒドロキシプロピル基、メト キシメチル基、エトキシメチル基、メトキシエチル基、エトキシエチル基、メチ ルチオメチル基、アセチル基、プロピオニル基、ピバロイル基、メトキシカルボ ニル基、エトキシカルボニル基、ベンゾイル基、4-メトキシベンゾイル基、シ アノ基、フェニル基、ベンジル基、4-メトキシベンジル基、1-フェニルエチ ル基、2-フェニルエチル基、スチリル基、シンナミル基、2-フェニルエチニ ル基、3-フェニルプロパルギル基、メチルスルホニル基、エチルスルホニル基、 ジメチルスルファモイル基、テトラヒドロフルフリル基又はテトラヒドロチエニ ル基が挙げられ、好ましくは水素原子、メチル基、エチル基、プロピル基、ブチ ル基、イソブチル基、シクロペンチル基、アリル基又はプロパルギル基が挙げら

れる。

 R^{12} と R^{13} が一緒になったものとしてはー(CH_2)」-基、一(CH_2)5-基、ー(CH_2)6-基、ー(CH_2)2-基又はー(CH_2)2-基プはー(CH_2)2-基が挙げられる。

R¹⁴としては、水素原子、メチル基、エチル基、イソプロピル基、アリル基、フェニル基又はベンジル基が挙げられ、好ましくは、水素原子、イソプロピル基 又はアリル基が挙げられる。

 R^{15} としては、水素原子、メチル基又はエチル基が挙げられ、好ましくは水素原子が挙げられる。

R¹⁶及びR¹⁷としては、水素原子、メチル基、エチル基、イソプロピル基、フェニル基、ベンジル基又はメチルチオエチル基が挙げられ、好ましくは水素原子、メチル基、エチル基又はイソプロピル基が挙げられる。

 R^{16} 及び R^{17} が一緒になったものとしては、 $-(CH_2)_4$ - 基または $-(CH_2)_5$ - 基が挙げられる。

 R^{18} としては、水素原子、メチル基又はエチル基が挙げられ、好ましくはメチル基又はエチル基が挙げられる。

R¹⁹としては水素原子、メチル基、エチル基、トリフルオロメチル基、トリクロロメチル基、アリル基、プロパルギル基、フェニル基又はベンジル基が挙げられ、好ましくは水素原子又はメチル基が挙げられる。

R²⁰としては、水素原子、メチル基、エチル基、プロピル基、イソブチル基、アリル基、3-クロロアリル基、プロバルギル基、シアノメチル基、メトキシメチル基又はメチルチオメチル基が挙げられ、好ましくは水素原子、メチル基、エチル基又はアリル基が挙げられる。

Gとしては、G (a)、G (b)、G (c) 又はG (d)

のいずれかの基が挙げられる。

R²¹としては水素原子、メチル基、エチル基、シクロプロピル基又はターシャリープチル基が挙げられる。

本発明化合物は、たとえばスキーム $1\sim9$ に示す方法によって合成することが出来る。スキーム $1\sim9$ の R^1 , R^2 , R^3 , R^4 , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{22} , R^{23} , G、Lはそれぞれ前記と同様の意味を表わし、またLeはハロゲン基を表わし、Qは0, 1, 2、または3を表わす。

(スキーム1)

化合物 (II) から化合物 (III) への加水分解反応で使用出来る溶媒としては例えばメタノール、エタノールなどのアルコール類、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはメタノール、エタノールなどのアルコール類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

加水分解の触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基類、塩酸、硫酸等の鉱酸類が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムを使用することが出来る。これらの触媒の使用量は、化合物 (II) に対して 0.1~等モルないし過剰モルを使用するのが良く、好ましくは 2~2.5倍モル使用するのが良い。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段に より精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来 る。

化合物 (II) のピリミジンー4, 5ージカルボン酸ジエステルは、例えば<u>J. Chem. Soc.</u>, Perkin Transl, <u>1980</u>, 1667-1670; <u>J. Heterocycl. Chem.</u>, <u>14</u>, 695-696 (1977) <u>J. Heterocycl. Chem.</u>, <u>2</u>, 202-204 (1965) <u>又はTetrahedron Letters</u>、<u>39</u>, 3853 (1998) 等を参考にして合成することが出来る。

化合物 (III) から化合物 (IV) への脱水閉環反応で使用出来る溶媒としては、反応の進行を阻害しないものが良く、例えばジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、N, Nージメチルホルムアミド等の非プロトン性極性溶媒類、酢酸、トリフルオロ酢酸等の有機酢酸を使用することが出来る。また以下に例示する脱水剤をそのまま溶媒として用いてもよい。

脱水剤としては例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、ジシクロヘキシルカルボジイミド等の脱水剤を使用することが出来、その使用量は化合物 (III) に対して等モルないし過剰モル使用することが出来、また溶媒として用いてもよい。反応温度は室温ないしは溶媒の沸点域から選択すれば良く、反応時間は反応温度、反応規模により一定しないが、数分ないし48時間の範囲で行えば良い。好ましくは30分から5時間の範囲が良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのまま次の反応に供してもよい。

化合物(IV)から化合物(V)のアニライド化合物への合成反応で使用出来る 溶媒としては、例えば化合物(II)から化合物(III)への合成反応で例示した。 溶媒の他に必要に応じてピリジンも使用することが出来る。

反応は化合物 (IV) に対し化合物 (VII) のアニリン化合物を等モルないし過剰 モル使用することが出来る。好ましくは等モルないし 2 倍モルの範囲である。ま たアニリン化合物の塩を用いてもよい。使用出来る塩基としては、例えば化合物 (II) から化合物 (III) への合成反応で例示した無機塩基類の他に、例えば水素 化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセンなどの有機塩基類、ナトリウムメトキシドなどのアルコキシド類を加えて反応を行ってもよい。

反応温度は-10℃ないし不活性溶媒の沸点域から適宜選択すれば良く、好ま しくは0℃ないし150℃の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのまま次の反応に供してもよい。

化合物 (V) から化合物 (VI) への脱水閉環反応は、先に化合物 (III) から化合物 (IV) への脱水閉環反応に関して例示した条件に準じて、同様に反応を行うことが出来る。

また化合物 (VI) から化合物 (I) への合成反応については、先に化合物 (I V) から化合物 (V) への反応に関して例示した条件に準じて行い、目的化合物である (I) へと導くことが出来る。

スキーム2

(スキーム2)

ピリミジンー4,5ージカルボン酸-6-モノエステル (IX) をハロゲン化して酸ハライド (X) とし、次いでアニリン化合物 (VII) と反応させてアニライド化合物 (XI) とする。これを加水分解することにより、スキーム1の化合物 (V) へと導くことが出来る。

化合物(IX)から化合物(X)へのハロゲン化で使用出来る不活性溶媒としては、反応の進行を阻害しないものが良く、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、ベンゼン、トルエンなどの芳香族炭化水素類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。さらに以下に例示するハロゲン化剤をそのまま溶媒として用いても良い。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

用いるハロゲン化剤としては、例えば塩化チオニル、オキシ塩化リン、シュウ酸ジクロロ、3塩化リン又は5塩化リンなどが挙げられ、好ましくは塩化チオニルが挙げられる。

化合物 (IX) のピリミジンー4, 5ージカルボン酸ー6ーモノエステルは、例えば<u>J. Chem. Soc.</u>, Perkin Transl, <u>1980</u>, 1667-1670; <u>J. Heterocycl. Chem.</u>、<u>14</u>, 695-696(1977) <u>J. Heterocycl. Chem.</u>, <u>2</u>, 202-204(1965) 又は<u>Tetrahedron Letters</u>, <u>39</u>, 3853(19

98) 等を参考にして合成することが出来る。

化合物(X)から化合物(XI)の反応で使用出来る不活性溶媒としては、例えばスキーム2の化合物(IX)から化合物(X)への合成反応で例示した溶媒の他にピリジン類も使用することが出来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

反応は化合物 (X) に対し、アニリン (VII) を等モルないし過剰モル使用することが出来る。好ましくは等モルないし 2 倍モルの範囲である。また適当な塩基を用いて反応を行っても良い。

使用出来る塩基としては、例えば化合物 (II) から化合物 (III) への合成反応で例示した無機塩基類の他に、例えば水素化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8ージアザビシクロ [5,4,0]-7ーウンデセンなどの有機塩基類、ナトリウムメトキシドなどのアルコキシド類を加えて反応を行ってもよい。

反応は化合物 (X) に対し、塩基を等モルないし過剰モル使用することが出来る。好ましくは等モルないし 2 倍モルの範囲である。

化合物 (XI) から化合物 (V) への加水分解反応においては、例えばスキーム 1 の化合物 (II) から化合物 (III) への加水分解で用いた条件で同様に反応を行 うことが出来る。また目的物は必要に応じて抽出、再結晶、カラムクロマトグラ フィー等の精製手段により精製出来る。

(スキーム3)

スキーム 2 で用いた酸ハライド(X)をアミノ化し化合物(XII)とし、次いで脱水することによりニトリル化合物(XIII)とする。これを加水分解してカルボン酸(XIV)とし、ハロゲン化、アニリンとの縮合反応により、本発明化合物($IX=CN,Z^1=C(R^2),Z^2=N,Z^3=C(R^1),Z^4=N,R^3=H$ の場合)へ導くことが出来る。

化合物 (X) から化合物 (XII) へのアミノ化反応は、例えばスキーム2の化合物 (X) から化合物 (XI) への反応に用いた条件で、同様に反応を行うことが出

来る。反応は化合物(X)に対してアンモニアを等モルないし過剰モル使用することが出来る。好ましくは等モルないし、3倍モルの範囲である。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。化合物(XII)から化合物(XIII)への脱水反応は、例えばスキーム1の化合物(II)から化合物(IV)への脱水反応に用いた条件で、同様に反応を行うことが出来る。

また上の反応で例示した脱水剤の他に、3塩化リン、5塩化リン等のハロゲン化リン類、パラトルエンスルホン酸等の有機酸類又は塩酸、硫酸等の鉱酸類を用いてもよい。その使用量は化合物 (XI) に対して等モルないし過剰モル使用することが出来る。また脱水剤をそのまま溶媒として使用することも出来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来る。

また、化合物(XIII)から化合物(XIV)への加水分解反応については、例えばスキーム1の化合物(II)から化合物(III)への加水分解で用いた条件で反応を行うことが出来る。

更に、化合物 (XIV) から本発明化合物 1 への合成反応についても、例えばスキーム 2 の化合物 (IX) から化合物 (XI) への合成反応に用いた条件で、同様に反応を行うことが出来る。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来る。

スキーム4

(スキーム4)

ピリジンカルボン酸無水物(XVI)をアニリン化合物(VII)と反応させ、アニライド化合物(XVII)とし、脱水閉環してN-フェニルイミド体(XVIII)とする。次いで各種の求核試剤(VIII)と反応させて、本発明化合物($1:X=COL-R^{11}$, $CON(R^{12})$ R^{13} , $CON(R^{12})$ $-OR^{13}$, $CON(R^{14})$ $-N(R^{12})$ R^{13} , $(-CON(R^{15}))$ $-[C(R^{16})]$ R^{17}] $Q-O_2R^{16}$ 又は-CONH-G, $Z^1=C(R^2)$, $Z^2=N$, $Z^3=C(R^1)$, $Z^4=CH$, $R^3=H$ の場合)へ導くことが出来る。

化合物(XVI)から化合物(XVII)のアニライド化合物への合成反応においては、例えばスキーム 1 の化合物(IV)から化合物(V)への合成反応で用いた条件で同様に反応を行うことが出来る。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製出来るが、目的物を単離せず、 そのままの反応に供してもよい。

また化合物(XVII)から目的化合物(I)への合成反応についても、スキーム 1の化合物(V)から目的化合物(I)への反応に関して例示した条件に準じて、 同様に反応を行うことが出来る。

 $Z = -\Delta 5$ $\begin{array}{c} -\text{CON}(R^{15})^{-1}[\text{C}(R^{16})R^{17}]_{Q} \cdot \text{CO}_{2}R^{18} \text{ or } \\ -\text{CONH-G} \\ Z^{1} = \text{CH, } Z^{2} = \text{N, } Z^{3} = \text{C}(R^{1}), Z^{4} = \text{CH } \text{ or } \\ Z^{1} = \text{C}(R^{2}), Z^{2} = \text{N, } Z^{3} = \text{CH, } Z^{4} = \text{CH} \\ R^{3} = \text{H} \end{array}$

(スキーム5)

N-フェニルイミド体 (XVIII, R'=R'=H)を酸化剤と反応させてN-オキシド化合物(XIX)とし、次いでハロゲン化剤と反応させることにより、ハロゲン 化体(XX)を得る。化合物(XX)を各種の求核試剤と反応させることにより化合 物(XVIII)とし、引き続き求核試剤(VIII)との反応により、本発明化合物(1 $: X h^{s} - COL - R^{11}, CON (R^{12}) R^{13}, CON (R^{12}) - OR^{13}, CON$ $(R^{14}) - N (R^{12}) R^{13}$, $(-CON (R^{15}) - [C (R^{16}) R^{17}] \circ -CO_2$ $R^{18}ZII-CONH-G$, $Z^{1}=CH$, $Z^{2}=N$, $Z^{3}=C$ (R^{1}) , $Z^{4}=CHZII$ $Z^{1}=C$ (R^{2}) , $Z^{2}=N$, $Z^{3}=CH$, $Z^{4}=CH$ の場合) へ導くことが出来る。 化合物 (XVIII, R¹=R²=H) から化合物 (XIX) への酸化反応で使用出来る 溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素等のハロゲン 化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニ トリル、N,N-ジメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエ ーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオ 口酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、 好ましくは、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、又は、 酢酸、トリフルオロ酢酸等の有機酸類が挙げられる。これらの溶媒は単独あるい は混合して使用することも出来る。使用する酸化剤としては、例えば過酢酸、m ークロロ過安息香酸等の有機過酸化物又は過酸化水素等の過酸化物を使用するこ とが出来る。酸化剤の使用量は化合物(XVIII,R¹=R²=H)に対して等モルないし過剰 モルを使用するのが良く、好ましくは等モルから1.5倍モル使用するのが良い。 また必要に応じて、酸や塩基を加えて反応を行うことが出来る。使用する酸と しては、例えば塩酸、硫酸などの鉱酸類、酢酸、トリフルオロ酢酸などの有機酸 類が挙げられる。また塩基としては例えば水酸化ナトリウム、水酸化カリウム、 炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム又は炭酸水素カリウム等の 無機塩基類が挙げられる。

反応温度は-10℃から不活性溶媒の沸点までの間から選択すれば良く、好ま しくは0℃から室温で行うのがよい。

反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の

範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマトグラフィー等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XIX)から化合物(XX)へのハロゲン化において使用出来る溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N、Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルムが挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。また、無溶媒で反応を行ってもよい。

使用するハロゲン化剤としては、例えば塩化スルフリル、三塩化リン、オキシ 塩化リン又は五塩化リンが挙げられ、好ましくはオキシ塩化リンが挙げられる。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段に より精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来 る。

化合物(XX)から化合物(XVIII)への求核試剤との反応で使用出来る溶媒としては、例えばメタノール、エタノール等のアルコール類、ジクロロメタン、クロロホルム、四塩化炭素等のハロゲン化炭化水素類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはN, Nージメチルホルムアミドが挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

反応は化合物(XX)に対し求核試剤を等モルないし過剰モル使用することが出来る。好ましくは等モルないし2倍モルの範囲である。使用出来る塩基としては、

例えばスキーム1の化合物 (II) から化合物 (III) への合成反応で例示した無機塩基類の他に、例えば水素化ナトリウムなどの水素化金属類、ピリジン、トリエチルアミン、1,8-ジアザビシクロ [5,4,0]-7-ウンデセンなどの有機塩基類、ナトリウムメトキシドなどのアルコキシド類を加えて反応を行ってもよい。

反応温度は−10℃ないし不活性溶媒の沸点域から適宜選択すれば良く、好ま しくは0℃ないし150℃の範囲で行えば良い。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により目的化合物を精製出来るが、目的物を単離せず、そのままの反応に供してもよい。

また化合物(XVIII)から化合物(I)への合成反応については、スキーム1の化合物(IV)から化合物(V)への反応に関して例示した条件に準じて行い、目的化合物である(I)へと導くことが出来る。

$$R^{22}$$
 R^{2} $R^$

(スキーム6)

ピリダジンー3, 4-ジカルボン酸ジエステル(XXI)を加水分解し、ジカルボン酸(XXII)とした後、ジカルボン酸無水物(XXIII)とする。次いでアニリン化合物(VII)と反応させてアニライド化合物(XXIV)とし、再び脱水開環させてN-フェニルイミド体(XXV)とする。最後に各種の求核試剤(VIII)と反応させて、本発明化合物(I: $X=COL-R^{11}$ 、 $CON(R^{12})R^{13}$ 、 $CON(R^{21})-O-R^{13}$ 、 $CON(R^{14})-N(R^{12})R^{13}$ 、 $CON(R^{15})-[C(R^{16})R^{17}]$ 。 $-CO^2R^{18}$ 又は-CONH-G、 $Z^1=C(R^2)$, $Z^2=C(R^{22})$ 、 $Z^3=N$ 、 $Z^4=N$ の場合)へ導くことが出来る。

化合物(XXI)から化合物(XXII)への加水分解反応で使用出来る溶媒としては例えばメタノール、エタノールなどのアルコール類、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはメタノール、エタノールなどのアルコール類が挙げられる。これらの溶媒は単独あるいは混合して使用することも出来る。

加水分解の触媒としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等の無機塩基類、塩酸、硫酸等の鉱酸類が挙げられ、好ましくは水酸化ナトリウム、水酸化カリウムを使用することが出来る。これらの触媒の使用量は、化合物(XXI)に対して0.1~等モルないし過剰モルを使用するのが良く、好ましくは2~2.5倍モル使用するのが良い。

反応温度は−10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段に より精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来 る。 化合物(XXI)は、たとえば<u>J. Heterocyclic Chem.</u>、<u>27</u>, 579 (1990) などを参考にして合成することが出来る。

化合物(XXII)から化合物(XXIII)への脱水閉環反応で使用出来る溶媒としては、たとえばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、たとえば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミドなどが挙げられ、好ましくは塩化チオニルが挙げられる。

これらの試薬の使用量としては、化合物(XXII)に対して等モルないし過剰モルが好ましく、等モルないし2.5当量がさらに好ましい。また、それ自体を溶媒として用いてもよい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定しないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段により精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来る。

化合物(XXIII)から化合物(XXIV)への反応で使用出来る溶媒としては、たとえばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

反応は化合物(XXIII)に対し、化合物(VII)のアニリン化合物を好ましくは等モ

ルないし過剰モル、より好ましくは等モルないし2当量を使用して行うことが出 来る。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留等の単離手段に より精製出来るが、特に精製を行なわず、そのまま次の反応に供することも出来 る。

化合物(XXIV)から化合物(I)への合成反応においては、たとえばスキーム I の化合物(V)から化合物(I)への合成反応で用いた条件で同様に反応を行うことが出来る。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製することが出来る。

$$R^{1} \xrightarrow{N \to N} R^{4} \xrightarrow{HN(R^{12})R^{13}} R^{1} \xrightarrow{N \to N} NH \xrightarrow{R^{4}} R^{4}$$
(XXVI)
$$/I: X = CON(R^{12})R^{13} \setminus R^{13}$$

$$Z = CON(R^{12})R^{13}$$

 $Z^1, Z^2 = N$
 $Z^3 = C(R^1), Z^4 = C(R^{23})$

(スキーム7)

スキーム 6 に従って合成したアニライド化合物(XXVI)と各種のアミンと脱水縮合させることにより、本発明化合物($I:X=CON(R^{12})R^{13},Z^1,Z^2=N,Z^3=C(R^1),Z^4=C(R^{23})$ の場合)へ導くことが出来る。

化合物(XXVI)から化合物(I)への反応で使用出来る溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベン

ゼン、トルエン、キシレンなどの芳香族炭化水素類、アトセニトリル、N, N-ジメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミド、1- (3-ジメチルアミノプロピル) -3-エチルカルボジイミドなどが挙げられ、好ましくは1-(3-ジメチルアミノプロピル) -3-エチルカルボジイミドが挙げられる。

これらの試薬の使用量としては、化合物(XXVI)に対して過剰モルが好ましく、 等モルないし2当量がさらに好ましい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマ トグラフィー等の単離手段により精製出来る。

(スキーム8)

化合物(XXVII)から化合物(I)への合成反応については、先に例示したスキーム1の条件に準じて行い、目的化合物(I)へと導くことが出来る。

反応終了後、目的物を単離し、必要に応じて再結晶、蒸留、カラムクロマトグラフィー等の精製手段により、目的化合物を精製出来る。

化合物(XXVII)のピリダジン-3, 4-ジカルボン酸は、例えば \underline{J} . \underline{Hete} $\underline{rocyclic}$ Chem. 、 $\underline{30}$, 1597 (1993) 等を参考にして合成することが出来る。

$$R^{22}$$
 NH R^4 HN(R^{12}) R^{13} R²² N NH R^4 (VIII) R²³ (XXXI)
$$\begin{pmatrix} I: X = CON(R^{12})R^{13} \\ Z^1 = N, Z^2 = C(R^{22}) \\ Z^3 = N, Z^4 = C(R^{23}), R^3 = H \end{pmatrix}$$

(スキーム9)

スキーム1の方法に従い合成したアニライド化合物(XXXI)を各種の求核試剤

(VIII) と脱水縮合し、本目的化合物(1:Xが $CON(R^{12})R^{13})、<math>Z^{1}=N$, $Z^{2}=C(R^{22})$, $Z^{3}=N$, $Z^{4}=C(R^{23})$, $R^{3}=H$ の場合)へ導くことが出来る。

化合物(XXXI)から化合物(I)への反応で使用出来る溶媒としては、例えばジクロロメタン、クロロホルム、四塩化炭素などのハロゲン化炭化水素類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、アセトニトリル、N, Nージメチルホルムアミド等の極性非プロトン溶媒類、ジエチルエーテル、テトラヒドロフラン、ジオキサンなどのエーテル類、酢酸、トリフルオロ酢酸等の有機酸類、アセトン、メチルエチルケトンなどのケトン類が挙げられ、好ましくはジクロロメタン、クロロホルム、ベンゼン、トルエン又はキシレンが挙げられる。

脱水剤としては、例えば無水酢酸、トリフルオロ酢酸無水物、塩化チオニル、オキシ塩化リン、5塩化リン、ジシクロヘキシルカルボジイミド、1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミドなどが挙げられ、好ましくは1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミドが挙げられる。

これらの試薬の使用量としては、化合物 (XXXI) に対して過剰モルが好ましく、 等モルないし2当量がさらに好ましい。

反応温度は-10℃から不活性溶媒の沸点域から選択すれば良く、好ましくは 室温~120℃で行うのが良い。反応時間は反応温度、反応規模等により一定し ないが、数分ないし48時間の範囲で行えば良く、好ましくは30分から5時間 で行うのが良い。また目的物は必要に応じて抽出、再結晶、蒸留、カラムクロマ トグラフィー等の単離手段により精製出来る。

以下に本発明化合物及び中間体の合成例を実施例として具体的に述べるが、本 発明はこれらによって限定されるものではない。

(実施例1)

[1-1]

2-メチルピリミジン-4, 5-ジカルボン酸の合成

2-メチルピリミジンー4, 5-ジカルボン酸ジエチル8. 5g(35.7mmol) を水酸化ナトリウム3. 3g(82.5mmol) のエタノール (40ml) 一水 (40ml) 混合溶液中で3時間加熱還流した。反応液を放冷した後、濃塩酸を加え酸性溶液とし、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄後、無水硫酸ナトリウムで乾燥し、減圧下で溶媒を留去した。得られた結晶をジエチルエーテルで洗浄し、減圧下で乾燥することにより2-メチルピリミジンー4, 5-ジカルボン酸1. 95g(10.7mmol) を得た。融点260.0 \mathbb{C} \leq

(1-2)

2-メチルピリミジン-4, 5-ジカルボン酸無水物の合成

2-メチルピリミジンー4,5-ジカルボン酸1.8g(9.9mmol)を無水酢酸20ml中で130~135℃に加熱し、1.5時間撹拌した。放冷後、反応液から溶媒を減圧留去し、残渣にジエチルエーテルを加え、析出した結晶を濾過、乾燥することにより、2-メチルピリミジンー4,5-ジカルボン酸無水物1.2g(7.3mmol)を得た。なお得られた無水物は、そのまま次の反応に用いた。

[1-3]

2-メチル-4-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル)

ピリミジンー5-カルボン酸の合成

2-メチルピリミジンー4, 5-ジカルボン酸無水物 0.6 g(3.7 mm o 1)及びジクロロメタン 1.5 m 1 の溶液に 3- クロロー2, 6-ジエチルアニリン 0.7 g(3.8 mm o 1)をジクロロメタン 5 m 1 に溶かした溶液を室温下で加え、その後 1 時間撹拌した。反応液に水 5.0 m 1 及び濃塩酸 1 m 1 を加え、クロロホルムで抽出し、無水硫酸ナトリウムで乾燥した。その後溶媒を減圧留去し、残渣にジエチルエーテルを加え、析出した結晶を濾過し、乾燥することにより、2-メチルー4-(3-クロロー2, 6-ジエチルフェニル)アミノカルボニルピリミジン-5-カルボン酸 0.8 g(2.3 mm o1)を得た。融点 2.16-2.1.8 1.50

[1-4]

2-メチル-N- (3-クロロー2, 6ジエチルフェニル) ピリミジンー4, 5-ージカルボキシイミドの合成

2-xチルー $4-(3-\rho \Box \Box -2, 6-\tilde{\upsilon}$ エチルフェニルアミノカルボニル)ピリミジンー5-カルボン酸0.5g(1.4mmol)、酢酸ナトリウム0.1g(1.2mmol)及び無水酢酸10mlの混合物を110 \mathbb{C} に加熱し、1時間撹拌した。減圧下で溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加

え、酢酸エチルで抽出し、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。 溶媒を留去し、そのまま次の反応に用いた。

[1-5]

2-メチルー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー4-カルボン酸i-ブチルアミド(化合物No. 1-1)の合成

[1-4]で得られた2-メチル $-N-(3-\rho$ ロロ-2, 6-ジエチルフェニル)ピリミジン-4, 5-ジカルボキシイミドをジオキサン10 m 1 に溶かし、そこにイソブチルアミン0. 11 g (1.5 m m o 1) を加え、室温で一晩撹拌した。反応終了後、溶媒を減圧下で留去し、シリカゲルカラムクロマトグラフィー(酢酸エチル)により精製した。溶媒を減圧下で留去し、ジエチルエーテルで結晶を洗浄し減圧下で乾燥することにより、2-メチル $-5-(3-\rho$ ロロ-2, 6-ジエチルフェニルアミノカルボニル)ピリミジン-4-カルボン酸イソブチルアミド0. 15 g (0. 37 m m o 1) を得た。

融点160-162℃

(実施例2)

(2-1)

2-メチルチオピリミジン-4, 5-ジカルボン酸ジエチルの合成

$$\begin{pmatrix} SMe \\ H_2N & NH \end{pmatrix}_2 \cdot H_2SO_4 \qquad MeS & N & CO_2Et$$

硫酸メチルイソチオ尿素 8. 63g (31 mm o l) のエタノール 120 m l 懸濁溶液に28%ナトリウムメトキシドのメタノール溶液12.2g(63.2 mmol)を加え、室温で30分間撹拌した。その後、この懸濁溶液にエトキシ メチレンオキサル酢酸ジエチル15g(61mmol)を加え、室温で1晩撹拌 した。反応終了後、大部分のエタノールを減圧下留去し、これに水を加え、クロ ロホルムで抽出した。クロロホルム層を希塩酸及び飽和食塩水で洗浄し、無水硫 酸ナトリウムで乾燥した。溶媒を減圧留去することにより2-メチルチオピリジ ンー4, 5ージカルボン酸ジエチル14. 97g(55mmol)を得た。この ジエステル体は、そのまま次の反応に用いた。

$$(2-2)$$

2ーメチルチオピリミジンー4,5ージカルボン酸の合成

〔2-1〕で得られた2-メチルチオピリミジン-4,5-ジカルボン酸ジエ チル14.92g(55mmol)のエタノール120ml溶液にNaOH/H 20 [4.44g (111mmol) / 80ml] を加え、室温で1.5時間撹拌 した。反応終了後、大部分のエタノールを減圧留去し不溶物を減圧濾過した。濾 液(水溶液)にpH1になるまで濃塩酸を加え、酢酸エチルにより抽出した。酢 酸エチル層を飽和食塩水により洗浄し、硫酸マグネシウムにより乾燥した後、溶 媒を減圧留去した。析出した結晶を、ジエチルエーテルで洗浄し、減圧濾過、乾

燥することにより、2-メチルピリミジンー4, 5-ジカルボン酸の白色結晶7. 2 1 g $(34 \, \text{mmol})$ を得た。

融点 181-184℃分解

(2-3)

2-メチルチオピリミジン-4,5-ジカルボン酸無水物の合成

2ーメチルチオピリミジンー4,5ージカルボン酸2g(9.3mmol)の無水酢酸20ml溶液を、120℃(オイルバス温度)で1時間加熱撹拌した。反応液から過剰の無水酢酸及び酢酸を減圧留去して、2ーメチルチオピリミジンー4,5ージカルボン酸無水物を得た。このジカルボン酸無水物は精製することなく次の反応に用いた。

(2-4)

2-メチルチオー4-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル)ピリミジン-5-カルボン酸の合成

[2-3] で得られた、2-メチルチオピリミジン-4,5-ジカルボン酸無水物にTHF20ml及び3-クロロ-2,6-ジエチルアニリン1.72g (9.4mmol)を加え(発熱)室温で2時間撹拌した。反応終了後減圧下で

溶媒を留去し、水及び濃塩酸を加えpH1~2とした。酢酸エチルにより抽出し、 有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥した後、溶媒を減圧留去し た。析出した結晶をジエチルエーテルで洗浄し、減圧濾過、乾燥することにより 2-メチルチオー4-(3-クロロー2,6-ジエチルフェニルアミノカルボニ ル) ピリミジンー5ーカルボン酸1.79g(4.7mmol)を得た。

融点 214-218℃ (分解)

[2-5]

2-メチルチオーN- (3-クロロー2, 6-ジエチルフェニル) ピリミジン - 4 , 5 - ジカルボキシイミドの合成

2-メチルチオー4-(3-クロロー2,6-ジエチルフェニルアミノカルボ ニル) ピリミジンー5ーカルボン酸1g(2.6mmol)、酢酸ナトリウム0. 1g(1.2mmol)及び無水酢酸50mlの混合液を130℃(オイルバス 温)で1時間加熱撹拌した。反応終了後、過剰の無水酢酸を減圧留去し酢酸エチ ルを加えた。これを飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、 硫酸マグネシウムで乾燥した後、溶媒を減圧留去した。残渣をヘキサンにて結晶 化し、減圧濾過、乾燥することにより2-メチルチオーN- (3-クロロ-2, 6 - ジエチルフェニル) ピリミジンー 4, · 5 - ジカルボキシイミド 0.89 g (2.5mmol)を得た。

融点 141-143℃

(2-6)

2-メチルチオー5- (3-クロロー2, 6-ジエチルフェニルアミノカルボ ニル) ピリミジンー4ーカルボン酸 i ープチルオキシアミド (化合物No. 1-

2ーメチルチオーNー(3ークロロー2,6ージエチルフェニル)ピリミジンー4,5ージカルボキシイミド0.71g(2mmol)、Oーイソブチルヒドロキシアミン塩酸塩0.25g(2mmol)及びDMF10mlの混合液にカリウムーtertーブトキシド0.45g(4mmol)を加え、室温で2時間撹拌した。反応液を氷水に注ぎ濃塩酸を加え、pH2とした。クロロホルムにより抽出し、有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥、溶媒を減圧留去した。TLC分取(ヘキサン:酢酸エチル=3:1)により精製した。溶媒留去により析出した結晶をヘキサンージエチルエーテル混合溶液で洗浄し、減圧濾過、乾燥することにより2ーメチルチオー5ー(3ークロロー2,6ージエチルフェニルアミノカルボニル)ピリミジンー4ーカルボン酸iーブチルオキシアミド70mg(0.16mmol)を得た。

融点 174-176℃

(実施例3)

2-メチルチオー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー4-カルボン酸i-プロピルヒドラジド(化合物 No. 1-13)の合成

イソプロピルヒドラジン 0.2g(2.7mmol)、ジオキサン 10ml 及び 2- メチルチオーN-(3- クロロー 2 、6- ジエチルフェニル)ピリミジンー 4 、5- ジカルボキシイミド 0.5g(1.4mmol) の混合溶液を室温で1 晩撹拌した。反応終了後溶媒及び過剰のイソプロピルヒドラジンを減圧留去し、TLC 分取(n キサン:酢酸エチル=1:1)により精製した。得られた結晶を、n キサンージエチルエーテルの混合溶媒で洗浄し、減圧濾過、乾燥することにより、n とリミジンーn の混合溶媒で洗浄し、減圧減過、乾燥することにより、n の n とリミジンーn の n の

融点 161-163℃

(実施例4)

 $3-(3-\rho \Box \Box -2, 6-\tilde{\upsilon} エチルフェニルアミノカルボニル) ピリジンー <math>4-$ カルボン酸 $i-\tilde{\upsilon} + \lambda$ アミド (化合物 No. 2-1) の合成

イソプチルアミン 0.18g(2.5mmol)、ジオキサン 15ml 及び $N-(3-\rho uu-2,6-$ ジエチルフェニル)ピリジン -3 、4- ジカルボキシイミド 0.5g(1.6mmol) の混合液を室温で 2 日間撹拌した。反応終了後溶媒及び過剰のイソプチルアミンを減圧留去し、ジエチルエーテルで結晶化させ、減圧濾過、乾燥することにより、 $3-(3-\rho uu-2,6-$ ジェチルフェニルアミノカルボニル)ピリジン -4- カルボン酸 i- ブチルアミド 0.5g(1.3mmol) を得た。

融点 183-186℃

(実施例5)

[5-1]

N-(3-200-2,6-3) パー (3-200-2) ピリジンー 3,4-3 ポージカルボキシイミド 1-3 オーナイドの合成

N-(3-クロロ-2,6-ジエチルフェニル)ピリジンー4,5-ジカルボキシイミド1.5gをクロロホルム15mlに溶解し、次いで3-クロロ過安息香酸1.7gを加え還流下5時間反応を行った。反応終了後、反応溶液を室温に戻した後酢酸エチルを加え有機層を飽和重ソウ水で3回洗浄し、硫酸マグネシウムで乾燥し、減圧下に濃縮し、得られた残留物にジエチルエーテルを加え、注意深く撹拌すると結晶が析出し、これを濾別することにより目的物0.85gを得た。これはそのまま次の反応に用いた。

(5-2)

6-クロロ-N-(3-クロロ-2、6-ジエチルフェニル)ピリジン-3、4-ジカルボキシイミドの合成

N-(3-クロロ-2, 6-ジエチルフェニル) ピリジン-3, 4-ジカルボキシイミド-1-オキサイド500mgをオキシ塩化リン5mlに溶解し、徐々に加熱を行い、還流下に3時間反応を行った。反応終了後、反応溶液を室温に戻した後、減圧下に過剰のオキシ塩化リンを留去した後、残留物に酢酸エチルを加

え有機層を注意深く飽和重ソウ水で洗浄し、硫酸マグネシウムで乾燥し、減圧下に濃縮した。得られた結晶を少量のジエチルエーテルで洗浄することにより、目的物 5 0 0 m g を得た。これはそのまま次の反応に用いた。

[5-3]

6-メチルチオ-N-(3-クロロ-2, 6-ジエチルフェニル)ピリジン-3, 4-ジカルボキシイミドの合成

6-クロローN-(3-クロロー2,6-ジエチルフェニル)ピリジンー3,4-ジカルボキシイミド500mgをジメチルホルムアミド3mlに溶解した溶液に、メチルメルカプタンナトリウム水溶液(15%水溶液、0.75ml)を0℃でゆっくり加え、1時間反応を行い、原料化合物の消失を確認した後、水を加え、酢酸エチルで反応系より目的物を抽出し、無水硫酸マグネシウムで乾燥後、減圧下に溶媒を留去し、得られた残渣を少量のエーテルで洗浄することにより目的物300mgを得た。これはそのまま次の反応に用いた。

[5-4]

6-メチルチオー3-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)-ピリジンー4-カルボン酸 i-プチルアミド(化合物 N o. 2-2)の合成

6-メチルチオーN-(3-クロロー2, 6-ジエチルフェニル)ピリジンー3, 4-ジカルボキシイミド300 mg をジオキサン3 m 1 に溶解し、該溶液にi-ブチルアミン125 mg を加えて、室温下に12時間反応を行った。反応終了後、反応液を減圧下に留去し、得られた残渣を酢酸エチル/n-ヘキサンを溶離剤とするシリカゲルカラムクロマトグラフィーで精製することにより、白色結晶として目的物 180 mg を得た。

融点 238-242℃

(実施例6)

[6-1]

3- (3-クロロー2, 6-ジエチルフェニルアミノカルボニル) ピリダジンー 4-カルボン酸の合成

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

ピリダジン-3, 4ージカルボン酸1.4g(8.3 mmol)をベンゼン20mlに懸濁し、塩化チオニル10mlを加え1時間加熱還流した。放冷後、減圧下で溶媒を留去し、ピリダジン-3, 4ージカルボン酸無水物を得た。

ついで、このものをジクロロメタン30mlに溶解し、水冷下で3-クロロ-2,6-ジエチルアニリン1g(5.4mmol)を滴下した。

この反応混合物を室温で一晩攪拌した後、10%塩酸に注ぎ込み、クロロホルムにて抽出した。クロロホルム層を飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥させた後、減圧下で溶媒を留去した。

得られた結晶をヘキサンーエーテルの混合溶媒にて洗浄し、濾取して乾燥させることにより、目的とする $3-(3-\rho uu-2, 6-i x + u y +$

融点 166-172℃ (分解)

(6-2)

4 - (3 - クロロー 2 , 6 - ジエチルフェニルアミノカルボニル) ピリダジンー 3 - カルボン酸イソブチルアミド(化合物 N o . 4 - 1)の合成

ついでこのものをジオキサン10mlに溶解し、10mlのジオキサンに溶解

融点 127-129℃

(実施例7)

3-(3-クロロ-2, 6-ジエチルフェニルアミノカルボニル) ピリダジン-4-カルボン酸イソブチルアミド (化合物 No. 5-1) の合成

 $3-(3-\rho \Box \Box -2, 6-i \Box x + \nu \Box x = \nu z = \lambda \nu x = \lambda \nu z = \lambda \nu$

[8-1]

ピリダジンー4, 5ージカルボン酸無水物の合成

$$\begin{array}{c}
N \\
N \\
CO_2H
\end{array}$$

ピリダジンー4, 5ージカルボン酸1gとDCC1. 23gをTHF20ml に溶解し、一晩室温にて攪拌した。反応終了後、反応液を濾過し、それ以上精製 することなく濾液を次の反応に供した。

[8-2]

4- (3-クロロ-2, 6-ジエチルフェニルアミノカルボニル) ーピリダジ ン-5-カルボン酸の合成

前述濾液に3-クロロー2, 6-ジエチルアニリン1.1gを加え、室温でー 晩攪拌した。反応終了後、反応液を濾過、結晶をジエチルエーテルで洗浄し、粗 結晶として1.3gを得た。それ以上精製することなく次の反応に供した。

[8 - 3]

N-(3-クロロ-2, 6-ジェチルフェニル) ピリダジンー4, <math>5-ジカルボキシイミドの合成

前述粗結晶 0.65 g と D C C 0.4 g を T H F 10 m 1 に溶解し、室温で一晩攪拌した。反応終了後、反応液を濾過し、濾液を濃縮後カラムクロマトグラフィー(ヘキサン:酢酸エチル、4:1)に供し、目的物 500 m g を得た。融点 $148\sim150$ \mathbb{C})

[8 - 4]

 $4-(3-\rho \Box \Box -2, 6-\tilde{\upsilon} エチルフェニルアミノカルボニル) ピリダジン <math>-5-$ カルボン酸 $i-\tilde{\upsilon} チルアミド(化合物 No. 6-1)$ の合成

N-(3-000-2,6-5) パークロロー2,6-5 エチルフェニル)ピリダジンー4,5-5カルボキシイミド0.25 gとイソプチルアミン0.12 gをジオキサン10 mlに溶解し、室温にて一晩攪拌した。反応終了後反応液を濃縮し、ジエチルエーテルで洗浄し目的物を0.25 g得た。融点 $1.7.7\sim1.80$ で (実施例9)

2-メチルチオー6-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)ピリミジンー5-カルボン酸i-ブチルアミド(化合物No. 8-1)の合成

2-xチルチオー $6-(3-\rho \Box \Box -2, 6-i)$ エチルフェニルアミノカルボニル)ピリミジンー5-カルボン酸0.5g(1.3mmol)、イソプチルアミン0.15g(2mmol)、4ージメチルアミノピリジン(触媒量)及びトルエン10mlの混合液を70 Cに加熱した。そこに1-エチルー3-(3-i)メチルアミノプロピル)ーカルボジイミド塩酸塩(WSC)0.5g(2.6mmol)を加え、1時間撹拌した。反応液を室温になるまで放置した後、希塩酸水溶液に注ぎクロロホルムにて抽出した。 $NaSO_4$ にて乾燥後減圧下で溶媒を留去した。シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル=3:2)により精製した後結晶化(ヘキサン、ジエチルエーテル)し、減圧濾過、乾燥することによって(化合物No.8-1)を0.13g得た。融点179-183 C(実施例10)

[10-1]

2-メチルー6-t-ブチルー5-メトキシカルボニルー4-ピリミジンカルボン酸クロライドの合成

2-メチルー6-tープチルー5-メトキシカルボニルー4-ピリミジンカルボン酸 5 g(2 2 mm o 1)、塩化チオニル 5 g(4 2 mm o 1)及びベンゼン 5 0 m 1 の混合物を、1 時間加熱還流した。室温まで放置した後、過剰の塩化チ

オニル及び溶媒を減圧下で留去することにより、2-メチル-6-t-ブチル-5-メトキシカルボニル-4-ピリミジンカルボン酸クロライドの粗物を油状物として得た。得られたピリミジンカルボン酸クロライドは、そのまますぐに次の反応に用いた。

[10-2]

2-メチル-6-t-ブチル-4-(2,6-ジエチル-3-クロロフェニル アミノカルボニル)-5-ピリミジンカルボン酸メチルエステルの合成

[10-1] で得られた 2-メチルー6-tーブチルー5-メトキシカルボニルー4-ピリミジンカルボン酸クロライドのジクロロメタン($50\,m$ l)溶液を氷水で冷却し、そこに、2, 6-ジエチルー3-クロロアニリン5g($27\,m$ m ol)、トリエチルアミン3g($30\,m$ mol)及びジクロロメタン $20\,m$ lの混合物をゆっくり加え、室温までもどし室温で3時間撹拌した。

その後反応液を希塩酸水溶液及び、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧留去した。シリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=1:1)により上記化合物の粗物 9.3 gを油状物として得た。得られた粗物は、それ以上精製せず次の反応に用いた。

(実施例10-3)

2-メチル-6-t-ブチル-4-(2,6-ジエチル-3-クロロフェニル)アミノカルボニル-5-ピリミジンカルボン酸の合成

(実施例10-2)で得られた2-メチルー6-tert-ブチルー4-(2,6-ジエチルー3-クロロフェニル)アミノカルボニルー5-ピリミジンカルボン酸メチルエステルの粗物9.3gのエタノール(20ml)溶液に、水酸化ナトリウム1g(23mmol)の水溶液30mlを加え、室温で15時間攪拌した。その後減圧下で大部分のエタノールを留去し、残った水溶液をクロロホルムで洗浄した。水溶液に濃塩酸を加え、pH2とし、酢酸エチルで抽出し、有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残査をエチルエーテルーへキサン溶液にて結晶化し、減圧濾過乾燥することによって上記ピリミジンカルボン酸を2.8g(6.9mmol)得た。融点142~144℃分解

[10-4]

2-メチルー6-t-プチルーN(3-クロロー2,6-ジエチルフェニル) ピリミジンー4,5-ジカルボキシイミドの合成

2-メチル-6-t-ブチル-4-(2,6-ジエチル-3-クロロフェニル)アミノカルボニル-5-ピリミジンカルボン酸2.4g(5.9mmol)、酢酸ナトリウム(触媒量)及び無水酢酸20mlの混合物を110℃に加熱下、45分間攪拌した。減圧下で溶媒を留去し、クロロホルムを加えた。クロロホル

ム溶液を、飽和炭酸水素ナトリウム溶液にゆっくり注ぎ、30分間攪拌した。クロロホルム層と水層を分離し、水層をクロロホルムにて抽出し、前のクロロホルム層と合わせて、飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。溶媒を減圧留去し、エチルエーテルーへキサン混合溶液を加え、不溶物を除去した。溶媒を減圧留去することによって、イミド体を1.8g(4.7mmol)得た。これはそのまま次の反応に用いた。

[10-5]

2-メチルー5-(3-クロロー2, 6-ジエチルフェニルアミノカルボニル)-6-t-ブチルピリミジンー4-カルボン酸i-ブチルアミド(化合物N o. 3-29)の合成

イミド体 0.6g(1.6mmol) の1.4-ジオキサン(20ml) 溶液にイソプチルアミン 0.2g(2.7mmol) を加え、室温で 2 時間 攪拌した。過剰のアミン及び溶媒を減圧留去し、析出した結晶をエチルエーテルで洗浄し、減圧下で乾燥させることにより、目的化合物を 0.4g(0.9mmol) 得た。融点 217~219 \mathbb{C} (分解)

前記実施例に準じて合成した本発明化合物の構造式と物性を前記実施例を含め、 それぞれ第1表~第8表に示す。 [第1表]

$$R^1$$
 N X R^4

表 1

化合物 N o.	R 1	X	R 4	物性値
1 – 1	Н	CONH i Bu	2-Me-3-C1	mp181-182℃
1 – 2	Me	CO ₂ H	2, 6-Et 2-3-C1	mp155-157℃
1 - 3	Me	CO₂Me	2, 6-Et ₂ -3-Cl	mp165-168℃
1 - 4	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp160-162℃
1 - 5	i-Pr	CONHiBu	2-Me-3-C1	mp190-194℃
1 - 6	i-Pr	CONHcPen	2-Me-3-C1	mp170-172℃
1 - 7	i-Pr	CONHiBu	2, 6-Et ₂ -3-Cl	mp126-129℃
1 – 8	i-Pr	CONHcPen	2, 6-Et ₂ -3-Cl	mp 87- 90℃
1 - 9	SMe	CONHiBu	2, 6-Et ₂ -3-Cl	mp134-135℃
1 - 1 0	SMe	CONHcPen	2, 6-Et ₂ -3-Cl	mp121-123℃
1 - 1 1	SMe	CONH i Bu	2-Me-3-C1	mp168-169℃
$1 - 1 \ 2$	SMe	CONHcPen	2-Me-3-C1	mp163-167℃
$1 - 1 \ 3$	SMe	CONHNHiPr	2, 6-Et ₂ -3-Cl	mp161-163℃
$1 - 1 \ 4$	SMe	CONHO i Bu	2, 6-Et 2-3-C1	mp174-176℃
1 - 15	SMe	CONHiBu	2-Me-5-C1	mp205-210℃
1 - 16	Ph	CONHiBu	2, 6-Et ₂ -3-Cl	mp188-192℃
-17	Ph	CONHcPen	2, 6-Et ₂ -3-C1	mp207-210℃
-18	Ph	CONH i Bu	2-Me-3-C1	mp230-234℃
-19	Ph	CONHcPen	2-Me-3-C1	mp239-241℃
-20	Ph	CONHNHiPr	2, 6-Et ₂ -3-Cl	mp195-198℃
-21	OMe	CONHiBu	2, 6-Et ₂ -3-Cl	mp165-170℃
-22	0E t	CONH i Bu	2, 6-Et ₂ -3-Cl	mp150-153℃
-23	Me ₂ N	CONH i Bu	2-Me-3-C1	mp203-205℃

表 2

化合物 N o.	R'	X	R 4	物性值
1 – 2 4	Me ₂ N	CONHcPen	2-Me-3-C1	mp174-175℃
1 - 25	Me₂N	CONH i Bu	2, 6-Et ₂ -3-Cl	mp150-151℃
1 - 2 6	Me ₂ N	CONHcPen	2, 6-Et ₂ -3-Cl	mp131-133℃
1 - 27	i BuNH	CONH i Bu	2, 6-Et ₂ -3-Cl	mp228-232℃
1 - 2 8	MeSO ₂	CONH i Bu	2, 6-Et ₂ -3-Cl	mp177-180℃
1 - 2 8	MeNH	CONHiBu	2, 6-Et ₂ -3-Cl	mp180-191℃
1 - 29	SCH ₂ CO ₂ Et	CONHiBu	2, 6-Et ₂ -3-Cl	mp164-167℃
1 - 3 0	OCH2CO2Et	CONHiBu	2, 6-Et 2-3-Cl	mp161-163℃
$1 - 3 \ 1$	SMe	CONHG(b)	2, 6-Et ₂ -3-Cl	mp178-181℃
$1 - 3 \ 2$	SMe	CONHCH(Me)Ph	2, 6-Et 2-3-Cl	mp170-171℃
$1 - 3 \ 3$	0Ph	CONHiBu	2, 6-Et ₂ -3-Cl	mp165-167℃
$1 - 3 \ 4$	SMe	CONH (CH ₂) ₂ OH	2, 6-Et ₂ -3-Cl	mp185-188℃
$1 - 3 \ 5$	MeSO2NH	CONHiBu	2, 6-Et ₂ -3-Cl	mp200℃<(dec)
1 - 3 6	F	CONH i Bu	2, 6-Et ₂ -3-Cl	mp150-152℃
1 - 3 7	Me	CONHcPen	2, 6-Et ₂ -3-Cl	mp164-166℃
1 - 3 8	Me₂N	CONH(CH ₂) ₂ OH	2-Me-3-C1	mp142-144℃
1 - 3 9	EtSO ₂ NMe	CONHiBu	2, 6-Et ₂ -3-Cl	mp180-183℃
1 - 4 0	0Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp200-202℃
-41	$0CH_2C \equiv CH$	CONH i Bu	2, 6-Et ₂ -3-Cl	mp168-169℃
-42	OCH ₂ CF ₃	CONHiBu	2, 6-Et ₂ -3-Cl	mp156-159℃
-43 OPh(4-CF ₃ -2-C1)	CONHiBu	2, 6-Et ₂ -3-Cl	mp187-189℃
-44	c-Pr	CONH i Bu	2,6-Et ₂ -3-Cl	mp174-176℃
-45	c-Pr	CONHcPen	2, 6-Et ₂ -3-Cl	mp148-150℃

表 3

化合物No	. R'	X	R ¹	物性値
1 - 4 6	CN	CONH i Bu	2, 6-Et 2-3-Cl	mp217-219℃
1 - 47	c-Pr	CONHiBu	2-Me-3-C1	mp156-158℃
1 - 4 8	c-Pr	CONHcPen	2-Me-3-C1	mp167-169℃
1 - 4 9	Me	CONHcPr	2, 6-Et 2-3-Cl	mp205-206℃
1 - 5 0	(CH ₂) ₄ N	CONH i Bu	2, 6-Et 2-3-Cl	mp154-156℃
1 - 5 1	Et 2N	CONHiBu	2, 6-Et 2-3-C1	mp176-178℃
1 - 5 2	$(CH_2)_3N$	CONHiBu	2, 6-Et 2-3-Cl	mp187-190℃
1 - 5 3	MeS	CONHiBu	2, 6-Et 2	mp164-167℃
1 - 5 4	MeS	CONHcPen	2, 6-Et 2	mp175-177℃
1 - 5 5	MeS	CONHiBu	2-F-4-C1	mp172-174℃
1 - 56	MeS	CONHcPen	2-F-4-C1	mp195-197℃
1 - 57	F(CH ₂) ₂ 0	CONHiBu	2, 6-Et 2-3-Cl	mp151-153℃
1 - 5 8	C1 (CH ₂) ₂ 0	CONHiBu	2, 6-Et 2-3-Cl	mp136-138℃
1 - 59	c-PrNH	CONHiBu	2, 6-Et ₂ -3-Cl	mp214-216℃
1 - 6 0	PhCH ₂ O	CONHiBu	2, 6-Et 2-3-Cl	mp143-145℃
1 - 6 1	(EtO) 2CHCH2NH	CONHiBu	2, 6-Et 2-3-Cl	mp196-198℃
1 - 6 2	Pr	CONHiBu	2, 6-Et 2-3-Cl	mp130-133℃
1 - 63	Pr	CONHiBu	2-Me-3-C1	mp148-150℃
1 - 6 4	Pr	CONHcPen ·	2-Me-3-C1	mp160-162℃
1 - 65	Et	CONHiBu	2, 6-Et ₂ -3-C1	mp146-148℃
1 - 6 6	Et	CONHcPen	2, 6-Et ₂ -3-Cl	mp135-138℃
1 - 6 7	Et	CONHiBu	2-Me-3-C1	mp145-147℃
1 - 6 8	Et	CONHcPen	2-Me-3-C1	mp159-160℃

表 4

化合物 N	o. R 1	X	R ¹	物性値
1 - 6 9	tBu	CONH i Bu	2, 6-Et 2-3-Cl	mp148-150℃
1 - 70	tBu	CONHcPen	2,6-Et ₂ -3-Cl	mp155-157℃
1 - 7 1	tBu	CONHcPen	2-Me-3-Cl	mp229-231℃
1 - 72	tBu	CONHcPen	2-Me-3-C1	mp214-217℃
1 - 7 3	CF ₃	CONH i Bu	2, 6-Et ₂ -3-Cl	mp210-212℃
1 - 74	CF ₃	CONHcPr	2, 6-Et 2-3-Cl	mp261-262℃
1 - 75	CF ₃	CONHiBu	2-Me-3-C1	mp198-200℃
1 - 76	CF ₃	CONHcPen	2-Me-3-C1	mp233-234℃
1 - 77	CF ₃	CONHcPen	2, 6-Et ₂ -3-Cl	mp217-219℃
1 - 7 8	CF ₃	CONHCH 2 CH=CH 2	2, 6-Et 2-3-Cl	mp234-236℃
1 - 7 9	CF ₃	CONHCH ₂ C≡CH	2,6-Et ₂ -3-Cl	mp234℃

[第2表]

表 5

化合物No.	R'	R²	R 23	X	R ⁴	物性値
2 - 1	Н	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp183-186℃
2 - 2	MeS	Н	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp238-242℃
2 - 3	Me	Н	MeO	CONH i Bu	2-Me-3-C1	mp173-175℃
2 - 4	Cl	Н	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp235-237℃
2 - 5	Me₂N	Н	Н	CONHiBu	2, 6-Et 2-3-C1	mp222-224℃
2 - 6	MeO	Н	Н	CONHiBu	2, 6-Et 2-3-C1	mp258-260℃
2 - 7	Н	Me₂N	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp212-214℃
2 - 8	MeS0	Н	H	CONHiBu	2, 6-Et ₂ -3-Cl	mp205-206℃
2 - 9	Н	ОН	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp259-262℃
2 - 10	Me	Н	MeO	CONHiBu	2, 6-Et ₂ -3-Cl	mp235-237℃
2 - 1 1	Н	OH	Н	CONHcPen	2, 6-Et 2-3-Cl	mp227-239℃
$2 - 1 \ 2$	Н	MeS	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp247-250℃
$2 - 1 \ 3$	Н	MeS	Н	CONHcPen	2, 6-Et 2-3-Cl	mp228-230℃
2 - 1 4	CN	Н	Н	CONHiBu	2, 6-Et 2-3-Cl	mp242-243℃

[第3表]

$$\begin{array}{c|c}
R^2 & O & H \\
N & N & X
\end{array}$$

表 6

化合物No. R ¹		R ²	X	R ⁴	物性値
3 – 1	Me	Me	CONHcPen	2, 6-Et 2-3-C1	mp249-253℃
3 - 2	Me	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp245-247℃
3 - 3	Me	Me	CONHiBu	2-Me-3-C1	mp197-200℃
3 - 4	Me	Me	CONHcPen	2-Me-3-C1	mp180-182℃
3 - 5	Me	Et	CONHiBu	2, 6-Et ₂ -3-Cl	mp235-238℃
3 - 6	Me	Et	CONHiBu	2-Me-3-Cl	mp210-212℃
3 - 7	Me	Et	CONHcPen	2-Me-3-C1	mp225-227℃
3 – 8	Me	Et	CONHcPen	2, 6-Et ₂ -3-Cl	mp221-224℃
3 - 9	Me	Ph	CONHiBu	2, 6-Et ₂ -3-Cl	mp241-243℃
$3 - 1 \ 0$	Me	Ph	CONHcPen	2, 6-Et ₂ -3-Cl	mp253-256℃
$3 - 1 \ 1$	Me	Ph	CONHiBu	2-Me-3-C1	mp210-214℃
$3 - 1 \ 2$	Me	Ph	CONHcPen	2-Me-3-C1	mp227-229℃
$3 - 1 \ 3$	Et	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp235-238℃
3 - 1 4	Et	Me	CONHcPen	2, 6-Et ₂ -3-Cl	mp238-242℃
3 - 15	Et	Me	CON(CH ₂) ₄	2, 6-Et ₂ -3-Cl	mp172-174℃
3 - 16	Me	iPr	CONHiBu	2, 6-Et ₂ -3-Cl	mp230-233℃
3 - 17	Me	Ph (2-F)	CONHiBu	2, 6-Et ₂ -3-Cl	mp210-212℃
3 – 1 8	Me	Ph(2-F)	CONHcPen	2, 6-Et 2-3-Cl	mp208-210℃
3 - 19	Н	Me	CONHiBu ·	2, 6-Et 2-3-Cl	mp250-252℃
$3 - 2 \ 0$	Н	Me	CONHcPen	2, 6-Et ₂ -3-Cl	mp232-235℃
3 - 2 1	Н	Me	CONHiBu	2-Me-3-C1	mp209-212℃
$3 - 2 \ 2$	Н	Me	CONHcPen	2-Me-3-Cl	mp218-220℃
3 - 2 3	Me	CF ₃	CONHiBu	2, 6-Et ₂ -3-Cl	mp285-288℃

表 7

化合物No.	R '	R ²	Х	R ⁴	物性値
3 - 2 4	Ме	CF ₃	CONHcPen	2, 6-Et ₂ -3-Cl	mp280-285℃
3 - 25	Me	Pr	CONHiBu	2-Me-3-C1	mp204-205.5℃
3 - 26	Me	Pr	CONHcPen	2-Me-3-C1	mp207-209℃
3 - 27	Me	Pr	CONHiBu	2, 6-Et ₂ -3-Cl	mp254-255℃
3 - 2 8	Me	Pr	CONHcPen	2, 6-Et ₂ -3-Cl	mp251-252℃
3 - 29	Me	t –Bu	CONHiBu	2, 6-Et ₂ -3-Cl	mp217-219℃
$3 - 3 \ 0$	Me	t-Bu	CONHcPen	2, 6-Et ₂ -3-Cl	mp207-210℃
3 - 3 1	Me	t-Bu	CONHPr	2, 6-Et ₂ -3-Cl	mp214-216℃
$3 - 3 \ 2$	CF ₃	Me	CONHiBu	2, 6-Et ₂ -3-Cl	mp249-251℃
$3 - 3 \ 3$	CF ₃	Me	CONHcPen	2, 6-Et ₂ -3-Cl	mp245-247℃
$3 - 3 \ 4$	CF ₃	Me	CON(CH ₂) ₄	2, 6-Et ₂ -3-Cl	mp228-230℃
$3 - 3 \ 5$	Me	Me	CONHMe	2, 6-Et ₂ -3-Cl	mp279-280℃
3 - 36	Me	Me	CONHEt	2, 6-Et ₂ -3-Cl	mp279-280℃
3 - 37	Me	Me	CONHPr	2, 6-Et 2-3-C1	mp277-278℃
3 – 3 8	Me	CF ₃	CON(CH ₂) ₄	2, 6-Et 2-3-Cl	mp247-250℃
3 - 39	Me ⁻	MeOCH₂	CONH i Bu	2, 6-Et 2-3-C1	mp220-222℃
$3 - 4 \ 0$	Me	MeOCH ₂	CONHiBu	2-Me-3-C1	mp197-200℃

[第4表]

表8

化合物 N o .	R ²	X	R *	物性値
4 - 1	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp127-129℃
1 - 2	Н	CONHcPen	2, 6-Et ₂ -3-C1	mp127-129 ℃ mp120-121 ℃
1 – 3	Н	CONHiBu	2-Et-6-Me	mp153-156℃
1 — 4	Н	CON(Me) iBu	2-Me-3-C1	mb103-111℃

[第5表]

表 9

化合物No	. R'	R 23	Х	R 4	物性値
5 – 1	Н	Н	CONHiBu	2, 6-Et 2-3-Cl	mp135-137℃

[第6表]

表10

化合物 N	o. R ²	R 23	Х	R ⁴	物性値
6-1 $6-2$ $6-3$ $6-4$ $6-5$	Н Н Н Н	Н Н Н Н	CONHiBu CONHcPen CONHiBu CONHcPen CONHiBu	2, 6-Et 2-3-C1 2, 6-Et 2-3-C1 2-Me-3-C1 2-Me-3-C1 2-Et-6-Me	mp177-180℃ mp145-150℃ mp189-190℃ mp164-166℃ mp205-207℃

[第7表]

表 1 1

化合物 N o . ————	R 1	R ²	R ^{2 3}	X	R 4	物性値
7 – 1	Н	Н	Н	CONH i Bu	2, 6-Et ₂ -3-Cl	mp204-206℃

[第8表]

表12

化合物No.	R 2 2	R 23	Х	R 4	物性値
8 – 1	MeS	Н	CONHiBu	2, 6-Et ₂ -3-Cl	mp179-183℃

前記スキームあるいは実施例に準じて合成される本発明化合物群を、前記実施 例で合成した化合物も含めて第9表~第14表に例示するが、本発明はこれらに 限定されるものではない。

なお、第9表~第14表の表中、Ph (R⁴) は以下に示す構造を表わす。

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{$$

$$F_3C$$
 F_3C
 F_3C

NHCOMe

Et
$$F$$
, Et F

または

Me

[第9表]

表13

R¹

H, Me, Et, Pr, i-Pr, c-Pr, CF3, MeSCH2, CF3CH2, MeOCH2, Ph, Me2NCH2, F, Cl, Br, CN, MeSO2, MeO,

EtO、CHF2O、CF3O、PhO、MeS、EtS、CHF2S、CF3S、PhS、Me2N、Et2N、(CH2) 4N、(CH2) 5N

[第10表]

$$\begin{array}{c|cccc}
R^2 & O \\
N & NH-Ph(R^4)
\end{array}$$
 $\begin{array}{c|cccc}
N & NH-Ph(R^4) \\
N & N(R^{12})R^{13} \\
L & N
\end{array}$

表14

R ²	L	R 1 2	R 13
Н	0	Н	Н
Н	0	M e	Н
H	O	E t	Н
H	O	Pr	Н
H	0	i — P r	Н
Н	0	B u	Н
H	0	s - B u	Н
H	O	i — B u	Н
H	O	t - B u	Н
H	O	Pen	Н
H	O	Нех	Н
H	O	Нер	Н
Н	Ο	$C H_2 C H = C H_2$	Н
Н	O	$CH_2C(Me) = CH_2$	Н
Н	O	$C H_2 C H = C H M e$	Н
H	O.	$C H_2 C H = C M e_2$	Н
H	Ο	$CH (Me) CH = CH_2$	Н
H	Ο	C (Me) $_2$ CH = CH $_2$	Н
H	O	$C H_2 C \equiv C H$	Н
Н	Ο	$C H_2 C \equiv C M e$	Н
Н	Ο	$CH (Me) C \equiv CH$	Н
Н	Ο	C (Me) $_2$ C \equiv C H	Н
Н	0	$(C H_2)_2 C \equiv C H$	Н

表15

R ²	L	R 1 2	R 13	
Н	0	CH ₂ CF ₃	Н	
H	О	(CH ₂) ₂ C ₁	Н	
Н	O	(CH ₂) ₃ C ₁	Н	
Н	0	(CH ₂) ₃ B _r	Н	
Н	O	(CH ₂) ₃ F	Н	
Н	O	$CH_2CH=CHCI$	Н	
H	0	$CH_2CH=CCI_2$	Н	
Н	0	c - P r). H	
Н	O	c — B u	H	
H	O	c - P e n	Н	
Н	O	с-Нех	Н	
H	0	с — Нер	Н	
Н	0	CH ₂ OH	Н	
H	Ο	(CH ₂) ₂ OH	Н	
H	Ο	CH ₂ OM e	Н	
H	0.	CH2OEt	Н.	
Н	0	(CH ₂) ₂ OM e	Н	
Н	0	(CH ₂) ₂ OE t	Н	
H	0	(CH ₂) ₃ OM e	Н	
Н	O	(CH ₂) ₃ OE t	H	
Н	O	C H ₂ S M e	Н	
Н	O	CN	Н	
H	O	Ρh	Н	

表16

R²	L	R 1 2	R 13
Н	0	C H 2 P h (4 − O M e)	Н
Н	О	CH (Me) Ph	Н
Н	О	$(CH_2)_2Ph$	Н
Н	О	CH = CHPh	Н
Н	O	$CH_2CH=CHPh$	Н
Н	0	$C \equiv C P h$	Н
Н	O	$C H_2 C \equiv C P h$	Н
Н	0	G (a)	Н
Н	O	G (b)	Н
Н	. 0	G (c)	Н
Н	O	G (d)	Н
Н	0	Ме	M e
H	O	E t	M e
H	O	Pr	Ме
H	O	i - P r	Ме
Н	O.	B u	M e
Н	Ο	s — B u	M e
Н	Ο	i – B u	Ме
H	O	t - B u	Ме
Н	0	Pen	Ме
Н	0	Нех	Ме
Н	0	Нер	M e

表 17

R ²	L	R 1 2	R 13
Н	0	$C H_2 C H = C H_2$	Ме
H	Ο	$CH_2C(Me) = CH_2$	Ме
Н	О	$C H_2 C H = C H M e$	Ме
Н	O	$C H_2 C H = C M e_2$	Ме
Н	O	$CH (Me) CH = CH_2$	Ме
H	O	C (Me) $_2$ CH=CH $_2$	Ме
H	O	$C H_2 C \equiv C H$	Ме
H	Ο	$C H_2 C \equiv C M e$	Ме
Н	O	$CH (Me) C \equiv CH$	Ме
H	Ο	$C (Me) _{2}C \equiv CH$	Ме
H	O	$(C H_2)_2 C \equiv C H$	Ме
H	O	CH_2CF_3	Ме
Н	Ο	$(CH_2)_2CI$	Ме
Н	Ο	$(CH_2)_3Cl$	Ме
H	Ο	$(CH_2)_3B_r$	Ме
H	Ο.	(CH ₂) ₃ F	Ме
Н	O	$CH_2CH=CHC_1$	Ме
Н	0	$CH_2CH=CC_{12}$	Ме
H	Ο	c - P r	Ме
Н	O	с — В u	Ме
H	Ο	c — P e n	M e
H	O	с—Нех	Ме
Н	0	с—Нер	Ме

表18

R ²	L	R 12	R 13	
Н	0	C H 2 O H	Ме	
Н	O	(CH ₂) ₂ OH	Ме	
Н	O	CH ₂ OM e	Ме	
Н	0	CH ₂ OE t	Ме	
Н	Ο	(CH ₂) ₂ OMe	M e	
H	0	(CH ₂) ₂ OE t	M e	
H	Ο	(CH ₂) ₃ OM e	Ме	
H	Ο	(CH ₂) ₃ OE t	Ме	
H	O	CH ₂ SMe	Ме	·
H	Ο	CN	Ме	
H	O	Ph	Ме	
Н	O	$CH_{2}Ph(4-OMe)$	M e	
H	Ο	CH (Me) Ph	Ме	
H	Ο	(CH ₂) ₂ Ph	M e	
H	Ο	CH = CHPh	M e	
H	O	$CH_2CH=CHPh$	Ме	
Н	Ο	$C \equiv C P h$	Ме	
Н	O	$C H_2 C \equiv C P h$	Ме	
H	Ο	G (a)	Ме	
Н	O	G (b)	Ме	
H	Ο	G (c)	Ме	
Н	0	G (d)	Ме	

表19

R ²	L	R 1 2	R 13
Н	0	E t	E t
H	0	Pr	E t
H	O	i – P r	Εt
H	O	B u	E t
H	0	s – B u	E t
Н	0	i – B u	E t
H	0	t - B u	E t
H	O	P e n	E t
Н	O	Нех	E t
H	0	Нер	Εt
H	0	$CH_2CH=CH_2$	Εt
H	Ο	CH_2C (Me) = CH_2	E t
H	O	$CH_2CH=CHMe$	E t
H	O	$C H_2 C H = C M e_2$	E t
Н	Ο	$CH (Me) CH = CH_2$	E t
H	Ο	$C (Me) _{2}CH = CH_{2}$	E t
Н	O	$C H_2 C \equiv C H$	E t
Н	O	$C H_2 C \equiv C M e$	E t
Н	O	$CH (Me) C \equiv CH$	E t
Н	0	$C (Me)_2 C \equiv CH$	E t
H	0	$(C H_2)_2 C \equiv C H$	E t
Н	0	CH2CF3	E t

表20

R 2	L	R 12	R 13
Н	0	(CH ₂) ₂ C1	E t
Н	0	$(CH_2)_3Cl$	E t
H	Ο	$(CH_2)_3B_r$	E t
Н	Ο	(CH ₂) ₃ F	E t
Н	O	$CH_2CH=CHC1$	E t
Н	0	$CH_2CH=CC_{12}$	Εt
H	Ο	c - P r	Εt
H	0	c - B u	E t
H	O	c-Pen	E t
H	O	с—Нех	E t
H	O	с-Нер	E t
Н	O	CH ₂ OH	E t
Н	O	(CH ₂) ₂ OH	Εt
Н	O	CH ₂ OM e	E t
H	Ο	CH ₂ OE t	Εt
Н	0	(CH ₂) ₂ OM e	E t
H	O	(CH ₂) ₂ OE t	E t
Н	O	(CH ₂) ₃ OM e	E t
Н	O	(CH ₂) ₃ OE t	E t
Н	Ο	CH ₂ SM _e	Εt
Н	Ο	CN	Εt
H	Ο	Ρh	Εt
Н	0	CH ₂ Ph (4-OMe)	E t

表21

R ²	L	R 1 2	R 13
Н	0	CH (Me) Ph	E t
Н	0	(CH ₂) ₂ Ph	E t
Н	0	CH = CHPh	E t
Н	0	$CH_2CH=CHPh$	E t
H	0	$C \equiv C P h$	E t
Н	0	$C H_2 C \equiv C P h$	E t
H	0	G (a)	E t
H	O	G (b)	E t
H	O	G (c)	E t
H	Ο	G (d)	E t
H	0	Pr	$C H_2 C H = C H_2$
H	0	i - P r	$C H_2 C H = C H_2$
H	0	B u	$C H_2 C H = C H_2$
Н	O	s - B u	$C H_2 C H = C H_2$
H	0	i – B u	$C H_2 C H = C H_2$
H	Ο.	t – B u	$C_1H_2C_1H_2=C_1H_2$
H	O	Pen	$C H_2 C H = C H_2$
Н	О	Нех	$C H_2 C H = C H_2$
Н	Ο	Нер	$C H_2 C H = C H_2$
Н	0	$C H_2 C H = C H_2$	C H 2 C H = C H 2

表 2 2

R ²	L	R ' 2	R 13
Н	0	CH_2C (Me) = CH_2	$CH_2CH=CH_2$
H	O	$CH_2CH=CHMe$	$C H_2 C H = C H_2$
Н	О	$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
Н	O	$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
H	Ο	C (Me) $_2$ CH = CH $_2$	$C H_2 C H = C H_2$
H	O	$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
H	Ο	$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
H	Ο	$CH (Me) C \equiv CH$	$C H_2 C H = C H_2$
Н	O	C (Me) $_2$ C \equiv C H	$C H_2 C H = C H_2$
Н	0	$(C H_2)_2 C \equiv C H$	$C H_2 C H = C H_2$
H	O	CH_2CF_3	$C H_2 C H = C H_2$
Н	O	$(CH_2)_2Cl$	$C H_2 C H = C H_2$
H	0	$(CH_2)_3Cl$	$C H_2 C H = C H_2$
H	0	$(CH_2)_3Br$	$C H_2 C H = C H_2$
H	O	$(CH_2)_3F$	$C H_2 C H = C H_2$
H	0.	$CH_2CH=CHCI$	$C H_2 C H = C H_2$
H	O	$CH_2CH=CCI_2$	$C H_2 C H = C H_2$
Н	0	c-Pr	$C H_2 C H = C H_2$
Н	0	c - B u	$C H_2 C H = C H_2$
Н	О	с—Реп	$C H_2 C H = C H_2$
Н	O	с—Нех	$C H_2 C H = C H_2$
Н	O	с-Нер	$C H_2 C H = C H_2$
Н	O	C H ₂ O H	$C H_2 C H = C H_2$

表23

			والمنافذة المنافذة المنافذة والمنافذة والمنافذ
R ²	L	R 12	R 13
Н	0	(CH ₂) ₂ OH	$C H_2 C H = C H_2$
H	0	CH ₂ OM e	$C H_2 C H = C H_2$
H	0	CH ₂ OE t	$C H_2 C H = C H_2$
Н	O	(CH ₂) ₂ OMe	$C H_2 C H = C H_2$
Н	Ο	(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
H	O	(CH ₂) ₃ OM e	$C H_2 C H = C H_2$
H	O	$(CH_2)_3OEt$	C H 2 C H = C H 2
Н	O	CH ₂ SMe	$C H_2 C H = C H_2$
Н	O	CN	$C H_2 C H = C H_2$
Н	0	Ρh	$C H_2 C H = C H_2$
Н	0	$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
Н	O	CH (Me) Ph	$C H_2 C H = C H_2$
Н	O	$(CH_2)_2Ph$	$C H_2 C H = C H_2$
Н	O	CH = CHPh	$C H_2 C H = C H_2$
Н	0	$CH_2CH=CHPh$	$C H_2 C H = C H_2$
Н	Ο.	$C \equiv C P h$	$C H_2 C H = C H_2$
Н	O	$CH_2C \equiv CPh$	$C H_2 C H = C H_2$
Н	O	G (a)	$C H_2 C H = C H_2$
Н	0	G (b)	$C H_2 C H = C H_2$
Н	O	G (c)	$C H_2 C H = C H_2$
Н	O	G (d)	$C H_2 C H = C H_2$
Н	O	Н	СОМе
Н	O	M e	СОМе

表 2 4

R ²	L	R 12	R 13
			
Н	0	E t	СОМе
Н	0	Pr	СОМе
Н	O	i - P r	СОМе
Н	0	B u	СОМе
H	0	s — B u	СОМе
Н	0	i - B u	СОМе
Н	0	t – B u	СОМе
Н	O	Pen	СОМе
Н	O	Нех	СОМе
Н	O	Нер	СОМе
H	O	$C H_2 C H = C H_2$	СОМе
Н	O	$C H_2 C (M e) = C H_2$	СОМе
H	0	$CH_2CH=CHMe$	СОМе
Н	0	$C H_2 C H = C M e_2$	СОМе
Н	0	$CH (Me) CH = CH_{2}$	СОМе
H	0.	C (Me) $_2$ CH = CH $_2$	C.OM e
H	Ο	$C H_2 C \equiv C H$	СОМе
H	O.	$C H_2 C \equiv C M e$	СОМе
Н	O	$CH (Me) C \equiv CH$	СОМе
Н	O	$C (Me) _{2}C \equiv CH$	СОМе
Н	O	$(C H_2)_2 C \equiv C H$	СОМе
Н	O	CH ₂ CF ₃	СОМе
H	0	(CH ₂) ₂ CI	СОМе

表25

R ²	L	R 12	R 13
Н	O	(CH ₂) ₃ Cl	СОМе
Н	Ο	$(CH_2)_3B_r$	СОМе
H	O	$(CH_2)_3F$	СОМе
H	O	$CH_2CH=CHCI$	СОМе
H	O	$CH_2CH=CCl_2$	СОМе
H	O	c-Pr	СОМе
Н	Ο	с — В и	СОМе
Н	O	c-Pen	СОМе
Н	O	с—Нех	СОМе
H	O	$c-H\ e\ p$	СОМе
H	O	CH ₂ OH	СОМе
Н	Ο	(CH ₂) ₂ OH	СОМе
Н	0	CH ₂ OM e	СОМе
H	O	CH ₂ OE t	СОМе
Н	О	$(CH_2)_2OMe$	СОМе
H	Ο.	$(CH_2)_2OEt$	СОМе
H	O	$(CH_2)_3OMe$	СОМе
Н	0	(CH ₂) ₃ OE t	СОМе
Н	O	CH ₂ SM _e	СОМе
Н	O	CN	СОМе
Н	Ο	Ph	СОМе
Н	Ο	$CH_2Ph(4-OMe)$	СОМе
Н	0	CH (Me) Ph	СОМе

表 2 6

R ²	L	R 12	R 13
Н	0	(CH ₂) ₂ P _h	СОМе
H	0	CH = CHPh	СОМе
Н	О	$C H_2 C H = C H P h$	СОМе
H	0	$C \equiv C P h$	СОМе
H	0	$C H_2 C \equiv C P h$	СОМе
H	0	G (a)	СОМе
H	Ο	G (b)	СОМе
H	0	G (c)	СОМе
Н	0	G (d)	СОМе
Н	0	H	CO-t-Bu
H	O	M e	CO-t-Bu
H	Ο	E t	CO-t-Bu
H	О	Pr	CO-t-Bu
H	O	i - P r	CO-t-Bu
H	O	B u	CO-t-Bu
Н	Ο.	s - B u	CO-t-Bu
H	Ο	i — B u	CO-t-Bu
H	Ο	t - B u	CO-t-Bu
Н	O	Pen ·	CO-t-Bu
Н	O	Нех	CO-t-Bu
Н	0	Нер	CO-t-Bu
Н	Ο	$C H_2 C H = C H_2$	CO-t-Bu
H	0	$C H_2 C (Me) = C H_2$	CO-t-Bu

表 2 7

R ²	L	R 1 2	R 13
Н	0	C H 2 C H = C H M e	C O - t - B u
H	Ο	$C H_2 C H = C M e_2$	CO-t-Bu
H	O	$CH (Me) CH = CH_2$	CO-t-Bu
Н	O	C (Me) $_2$ C H = C H $_2$	CO-t-Bu
H	Ο	$C H_2 C \equiv C H$	CO-t-Bu
H	O	$C H_2 C \equiv C M e$	CO-t-Bu
H	Ο	$CH (Me) C \equiv CH$	CO-t-Bu
H	0	C (Me) $_{2}$ C \equiv CH	CO-t-Bu
H	O	$(C H_2)_2 C \equiv C H$	CO-t-Bu
Н	O	CH_2CF_3	CO-t-Bu
Н	O	(CH ₂) ₂ C ₁	CO-t-Bu
H	O	(CH ₂) ₃ C1	CO - t - Bu
H	Ο	$(CH_2)_3Br$	CO-t-Bu
H	O	$(CH_2)_3F$	CO - t - Bu
H	Ο	$CH_2CH=CHCI$	CO - t - Bu
H	Ο.	$CH_2CH=CCI_2$	C.O - t - B u
Н	0	c - P r	CO - t - Bu
Н	O	c — B u	CO - t - Bu
H	0	c - P e n	CO - t - Bu
Н	Ο	с—Нех	CO-t-Bu
Н	O	с—Нер	CO-t-Bu
H	O	C H 2 O H	CO-t-Bu
Н	0	(CH ₂) ₂ OH	C O - t - B u

表28

R ²	L	R ' 2	R 13
Н	0	СН ₂ ОМе	C O - t - B u
Н	0	CH ₂ OE t	CO-t-Bu
H	O	(CH ₂) ₂ OM e	CO-t-Bu
Н	0	(CH ₂) ₂ OE t	CO-t-Bu
H	Ο	(CH ₂) ₃ OM e	CO-t-Bu
Н	Ο	(CH ₂) ₃ OE t	CO - t - Bu
Н	Ο	CH ₂ SMe	CO-t-Bu
Н	Ο	CN	CO - t - Bu
Н	O	Ρh	CO - t - Bu
Н	O	$CH_2Ph(4-OMe)$	CO-t-Bu
H	O	CH (Me) Ph	CO - t - Bu
Н	O	$(CH_2)_2Ph$	CO - t - Bu
H	О	CH = CHPh	CO - t - Bu
H	O	$CH_2CH=CHPh$	CO - t - Bu
H	Ο	$C \equiv C P h$	CO - t - Bu
H	O.	$C H_2 C \equiv C P h$	CO - t - Bu
Н	Ο	G (a)	CO - t - Bu
Н	Ο	G (b)	CO-t-Bu
H	O	G (c)	CO - t - Bu
Н	O	G (d)	CO - t - Bu
Н	Ο	Н	COPh (4-OMe)
Н	O	Ме	COPh (4-OMe)
H	0	E t	COPh (4-OMe)

表29

R ²	L	R 1 2	R 13
Н	0	Рг	COPh (4-OMe)
H	0	i - P r	COPh (4-OMe)
H	0	Ви	COPh (4-OMe)
Н	0	s – B u	$\begin{array}{c} \text{COPh} & (4-\text{OMe}) \\ \text{COPh} & (4-\text{OMe}) \end{array}$
H	O	i – B u	$\begin{array}{c} \text{COPh} & (4-\text{OMe}) \\ \text{COPh} & (4-\text{OMe}) \end{array}$
Н	O	t – B u	
Н	0	Pen	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \text{COPh} & (4 - \text{OMe}) \end{array}$
H	O	Нех	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \text{COPh} & (4 - \text{OMe}) \end{array}$
H	O	Нер	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \text{COPh} & (4 - \text{OMe}) \end{array}$
H	0	$CH_2CH=CH_2$	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \text{COPh} & (4 - \text{OMe}) \end{array}$
H	0	$CH_2C (Me) = CH_2$	$\begin{array}{c} COPh & (4-OMe) \\ COPh & (4-OMe) \end{array}$
H	O	$CH_2CH=CHM_e$	COPh(4-OMe)
H	0	$CH_2CH=CMe_2$	COPh (4-OMe) COPh (4-OMe)
Н	O	$CH (Me) CH = CH_2$	
Н	Ο	$C (Me)_2 CH = CH_2$	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \end{array}$
H	0.	$C H_2 C \equiv C H$	$\begin{array}{c} \text{COPh} & (4 - \text{OMe}) \\ \text{COPh} & (4 - \text{OMe}) \end{array}$
H	O	$CH_2C \equiv CMe$	$\begin{array}{c} COPh & (4-OMe) \\ \end{array}$
H	O	$CH (Me) C \equiv CH$	COPh(4-OMe)
H	0	$C (Me)_2 C \equiv CH$	COPh(4-OMe)
-1	O	$(C H_2)_2 C \equiv C H$	COPh (4-OMe)
Ŧ	O	CH ₂ CF ₃	COPh(4-OMe)
ł	О	(CH ₂) ₂ C 1	COPh(4-OMe)
[O	(CH ₂) ₃ C ₁	COPh (4-OMe) COPh (4-OMe)

表30

			<u> </u>
R ²	L	R 1 2	R 1 3
Н	0	(CH ₂) ₃ B r	COPh (4-OMe)
H	О	(CH ₂) ₃ F	COPh(4-OMe)
H	O	$CH_2CH=CHCI$	COPh (4-OMe)
H	Ο	$CH_2CH=CCl_2$	COPh(4-OMe)
Н	Ο	c-P r	COPh(4-OMe)
H	Ο	c - B u	COPh(4-OMe)
H	0	c-Pen	COPh (4-OMe)
H	O	с — H е х	COPh(4-OMe)
H	O	с-Нер	COPh(4-OMe)
Н	O	C H 2 O H	COPh(4-OMe)
H	Ο	(CH ₂) ₂ OH	COPh(4-OMe)
H	O	CH ₂ OM e	COPh (4-OMe)
H	Ο	CH ₂ OE t	COPh (4-OMe)
Н	Ο	(CH ₂) ₂ OMe	COPh (4-OMe)
H	O	(CH ₂) ₂ OE t	COPh(4-OMe)
H	Ο.	(CH ₂) ₃ OM e	C.OPh (4-OMe)
Н	O	(CH ₂) ₃ OE t	COPh (4-OMe)
Н	O	CH ₂ SMe	COPh (4-OMe)
Н	О	C N	COPh (4-OMe)
Н	O	Ph	COPh (4-OMe)
H	Ο	$CH_2Ph(4-OMe)$	COPh (4-OMe)
H	Ο	CH (Me) Ph	COPh (4-OMe)
H	0	$(CH_2)_2Ph$	COPh (4-OMe)

表31

R ²	L	R 1 2	R 13
Н	0	CH = CHPh	COPh (4-OMe)
Н	Ο	$C H_2 C H = C H P h$	COPh (4-OMe)
Н	Ο	$C \equiv C P h$	COPh (4-OMe)
H	Ο	$C H_2 C \equiv C P h$	COPh (4-OMe)
H	O	G (a)	COPh (4-OMe)
H	O	G (b)	COPh (4-OMe)
H	Ö	G (c)	COPh (4-OMe)
H	Ο	G (d)	COPh (4-OMe)
Н	О	H	CO ₂ M e
Н	O	M e	CO ₂ M e
H	О	E t	CO ₂ M e
Н	Ο	Рr	CO2Me
H	O	i - P r	C O ₂M e
H	O	B u	C O ₂M e
H	Ο	s - B u	C O ₂M e
Ĥ	Ο.	i — B u	C O ₂M e
H	О	t — B u	C O ₂M e
Н	O	P e n	C O ₂M e
Н	Ο	Нех	C O ₂M e
Н	O	Нер	C O ₂M e
Н	Ο	$C H_2 C H = C H_2$	CO ₂ M e
Н	O	$C H_2 C (M e) = C H_2$	C O ₂M e
H	0	$C H_2 C H = C H M e$	CO ₂ M e

表32

R ²	L	R 1 2	R 13
Н	0	$C H_2 C H = C M e_2$	C O₂M e
H	0	$CH (Me) CH = CH_2$	C O₂M e
Н	0	$C (Me) _{2}CH = CH_{2}$	C O₂M e
Н	0	$C H_2 C \equiv C H$	CO ₂ M e
Н	0	$C H_2 C \equiv C M e$	C O₂M e
Н	0	$CH (Me) C \equiv CH$	C O₂M e
Н	Ο	$C (Me)_2 C \equiv CH$	CO ₂ M e
Н	Ο	$(C H_2)_2 C \equiv C H$	C O ₂M e
Н	O	CH ₂ CF ₃	C O ₂M e
Н	O	$(CH_2)_2Cl$	C O ₂M e
H	O	$(CH_2)_3Cl$	C O ₂M e
H	O	$(CH_2)_3Br$	C O ₂M e
H	O	$(CH_2)_3F$	C O ₂M e
H	O	$CH_2CH=CHCI$	C O ₂M e
H	Ο	$CH_2CH=CCI_2$	C O ₂M e
Н	0.	c - P r	C O₂M e
Н	Ο	c — B u	C O ₂M e
Н	O	c-Pen	C O ₂M e
Н	0	c-Hex	C O ₂M e
Н	Ο	с—Нер	C O ₂M e
Н	Ο	C H 2 O H	C O ₂M e
Н	O	(CH ₂) ₂ OH	C O ₂M e
Н	0	CH2OMe	CO ₂ M e

表33

R ²	L	R 1 2	R 13
Н	0	CH2OE t	C O ₂M e
Н	Ο	(CH ₂) ₂ OM e	C O₂M e
Н	0	(CH ₂) ₂ OE t	CO ₂ M e
H	Ο	(CH ₂) ₃ OM e	CO ₂ M e
H	0	(CH ₂) ₃ OE t	CO ₂ M e
H	0	CH ₂ SMe	CO2Me
H	Ο	CN	C O ₂M e
Н	O	P h	C O₂M e
H	O	CH_2Ph (4-OMe)	C O₂M e
H	O	CH (Me) Ph	C O₂M e
H	O	$(CH_2)_2Ph$	C O₂M e
H	Ο	CH = CHPh	C O₂M e
H	O	$C H_2 C H = C H P h$	C O₂M e
H	O	$C \equiv C P h$	CO ₂ M e
Н	O	$C H_2 C \equiv C P h$	CO ₂ M e
Н	O.	G (a)	C.O ₂ M e
H	О	G (b)	C O ₂M e
Н	O	G (c)	CO ₂ M e
H	O	G (d)	C O ₂M e
H	O	Н	S O ₂M e
H	0	Ме	S O 2M e
H	Ο	E t	S O ₂M e
H	0	Рr	S O₂M e

表34

R²	L	R 12	R 13
Н	0	i — P r	S O 2M e
Н	O	Вu	SO ₂ M e
Н	O	s – B u	SO ₂ M e
Н	0	i – B u	SO ₂ M e
Н	O	t – B u	SO ₂ M e
H	O	Pen	SO ₂ M e
Н	0	Неж	SO ₂ M e
H	0	Нер	SO ₂ M e
H	0	$C H_2 C H = C H_2$	SO ₂ M e
H	0	$C H_2 C (M e) = C H_2$	SO ₂ M e
H	0	$CH_2CH=CHMe$	SO ₂ M e
Н	Ο	$C H_2 C H = C M e_2$	SO ₂ M e
Н	Ο	CH (Me) CH = CH2	SO ₂ M e
Н	0	C (Me) $_2$ CH = CH $_2$	S O 2M e
Н	Ο	$C H_2 C \equiv C H$	SO ₂ M e
Н	0.	$C H_2 C \equiv C M e$	SO ₂ M e
Н	0	$CH (Me) C \equiv CH$	SO ₂ M e
Н	0	$C (Me)_2 C \equiv CH$	SO ₂ M e
Н	0	$(C H_2)_2 C \equiv C H$	SO ₂ M e
H	0	CH ₂ CF ₃	SO ₂ M e
H	0	$(CH_2)_2CI$	SO₂Me
H	Ο	(CH ₂) ₃ CI	S O₂M e
Н	0	(CH ₂) ₃ B r	S O₂M e

表 3 5

R ²	L	R 1 2	R 13
Н	О	(CH ₂) ₃ F	S O₂M e
H	O	$CH_2CH=CHCI$	S O₂M e
H	O	$CH_2CH=CCI_2$	S O 2M e
Н	О	c-Pr	SO ₂ M e
Н	O	c - B u	S O₂M e
H	O	с-Реп	S O₂M e
Н	0	c-Hex	S O₂M e
Н	Ο	с—Нер	S O 2M e
H	Ο	C H 2 O H	SO ₂ M e
H	О	$(CH_2)_2OH$	SO ₂ M e
H	O	CH ₂ OM _e	S O₂M e
H	O	CH ₂ OE t	S O₂M e
H	O	(CH ₂) ₂ OM e	S O₂M e
H	O	(CH ₂) ₂ OE t	SO ₂ M e
H	O	$(CH_2)_3OMe$	SO ₂ M e
H	Ο.	$(CH_2)_3OEt$	S O₂M e
H	O	CH2SMe	S O₂M e
-1	О	CN	S O₂M e
ł	Ο	Ph .	SO ₂ M e
I	Ο	$CH_2Ph(4-OMe)$	
I	O	CH (Me) Ph	S O 2M e
[O	(CH ₂) ₂ Ph	S O₂M e
•	O	CH = CHPh	S O₂M e

127

表36

R ²	L	R 12	R 13
Н	0	$CH_2CH=CHPh$	S O 2M e
H	O	$C \equiv C P h$	SO ₂ M e
H	O	$C H_2 C \equiv C P h$	S O 2 M e
Н	Ο	G (a)	SO ₂ M e
H	Ο	G (b)	S O 2M e
Н	O	G (c)	SO ₂ M e
H	Ο	G (d)	SO ₂ M e
Ме	O	Н	H
Ме	O	M e	H
Ме	O	E t	H
Мe	Ο	Pr	Н
Ме	Ο	i - P r	Н
Ме	O	B u	Н
Мe	O	s – B u	Н
Мe	O	i — B u	Н
Ме	O.	t - B u	H.
Ме	O	Pen	Н
Ме	0	Нех	Н
Ме	0	Нер	Н
Ме	0	$C H_2 C H = C H_2$	Н
Ме	0	$C H_2 C (M e) = C H_2$	Н
Ме	0	$C H _{2} C H = C H M e$	H
Ме	0	$C H_2 C H = C M e_2$	Н

表37

R ²	L	R 12	R 13	
Ме	0	CH (Me) CH=CH	₂ H	
Мe	O	$C (Me)_2 CH = CH_2$	H	
Ме	O	$C H_2 C \equiv C H$	Н	
Ме	0	$C H_2 C \equiv C M e$	н	
Ме	Ο	CH (Me) C≡CH	Н	
Ме	O	C (Me) $_2$ C \equiv C H	H	
Ме	0	$(CH_2)_2C\equiv CH$	H	
Ме	Ο	CH ₂ CF ₃	Н	
Ме	O	(CH ₂) ₂ C ₁	Н	
M e	Ο	(CH ₂) ₃ C1	Н	
Ме	Ο	(CH ₂) ₃ B _r	Н	
Ме	O	$(CH_2)_3F$	Н	
M e	Ο	$CH_2CH=CHCI$	Н	
Ме	O	$CH_2CH=CCI_2$	Н	
Ме	O	c - P r	H	
Ме	Ο.	c – B u	Н	
Ме	O	c - P e n	Н	
Ме	O	с-Нех	Н	
Ме	О	с—Нер	Н	
Ме	O	C H ₂ O H	Н	
Иe	O	(CH ₂) ₂ OH	Н	
Иe	О	CH ₂ OM e	Н	
∕l e	0	CH ₂ OE t	Н	

表38

R²	L	R 1 2	R 13
M e	0	(CH ₂) ₂ OM e	Н
Ме	0	(CH ₂) ₂ OE t	Н
Ме	0	$(CH_2)_3OMe$	Н
Ме	O	(CH ₂) ₃ OE t	Н
Ме	0	CH ₂ SMe	H
Ме	0	CN	H
Ме	0	Ph	Н
Ме	0	$CH_2Ph(4-OMe)$	H
Ме	0	CH (Me) Ph	H
Ме	0	(CH ₂) ₂ Ph	H .
Ме	0	CH = CHPh	Н
Ме	0	$CH_2CH=CHPh$	Н
Ме	Ο	$C \equiv C P h$	Н
Ме	0	$C H_2 C \equiv C P h$	Н
Ме	0	G (a)	Н
Ме	0.	G (b)	Н
M e	0	G (c)	Н
Ме	0	G (d)	Н
Ме	0	M e	M e
Ме	0	Εt	Ме
Ме	0	Pr	Ме
Ме	0	i - P r	M e

表39

R ²	L	R 1 2	R 13
Ме	O	B u	Ме
M e	O	s - B u	M e
Ме	O	i — B u	M e
Ме	O	t - B u	M e
Мe	O	P e n	M e
Ме	O	Нех	M e
M e	O	Нер	M e
Ме	Ο	$C H_2 C H = C H_2$	Ме
Ме	О	$C H_2 C (M e) = C H_2$	Ме
Ме	O	$C H_2 C H = C H M e$	M e
Ме	O	$C H_2 C H = C M e_2$	M e
Ме	O	$CH (Me) CH = CH_2$	M e
Ме	О	C (Me) $_2$ CH = CH $_2$	M e
Ме	Ο	$C H_2 C \equiv C H$	M e
Ме	O	$C H_2 C \equiv C M e$	M e
Ме	O.	$CH (Me) C \equiv CH$	M. e
M e	O	$C (Me)_2 C \equiv CH$	M e
M e	O	$(C H_2)_2 C \equiv C H$	M e
Ме	0	CH2CF3	M e
Ме	0	(CH ₂) ₂ C ₁	M e
M e	Ο	(CH ₂) ₃ Cl	M e
Ме	O	(CH ₂) ₃ B r	M e
Ме	0	(CH ₂) ₃ F	Ме

表40

R ²	L	R 1 2	R 13	
M e	0	C H 2 C H = C H C 1	M e	
M e	Ο	$CH_2CH=CCI_2$	Ме	
Ме	O	c - P r	Ме	
Ме	O	c - B u	M e	
M e	O	c-Pen	M e	
Ме	Ο	c-Hex	Ме	
Ме	O	с—Нер	M e	
M e	Ο	CH ₂ OH	M e	
Ме	O	$(CH_2)_2OH$	M e	
M e	O	CH2OMe	Ме	
M e	O	CH ₂ OE t	Ме	
M e	Ο	(CH ₂) ₂ OM e	Ме	
M e	O	(CH ₂) ₂ OE t	Ме	
Ме	O	$(CH_2)_3OMe$	Ме	
Мe	O	$(CH_2)_3OEt$	Ме	
Ме	Ο.	CH ₂ SMe	M e	
Me.	O	CN	Ме	
M e	O	Ρh	M e	
M e	O	$CH_2Ph(4-OMe)$	Ме	
Ме	Ο	CH (Me) Ph	M e	
Ме	Ο	(CH ₂) ₂ Ph	Ме	
Ме	Ο	CH = CHPh	Ме	
Ме	0	$CH_2CH=CHPh$	Ме	

表 4 1

R ²	L	R 1 2	R 13
Ме	0	$C \equiv C P h$	Ме
Ме	0	$C H_2 C \equiv C P h$	M e
Ме	0	G (a)	Ме
Ме	0	G (b)	M e
Ме	Ο	G (c)	M e
Ме	O	G (d)	M e
Ме	O	E t	E t
Ме	O	Pr	E t
Ме	Ο	i — P r	E t
Ме	O	B u	E t
Ме	O	s - B u	E t
Ме	O	i — B u	E t
Ме	O	t — B u	E t
Ме	O	Pen	E t
Ме	Ο	Нех	E t
Ме	Ο.	Нер	E t
Ме	O	$C H_2 C H = C H_2$	E t
Ме	O	$C H_2 C (M e) = C H_2$	E t
Ме	O	$C H_2 C H = C H M e$	E t
Ме	O	$C H_2 C H = C M e_2$	E t
Ме	O	CH (Me) CH = CH2	E t

表 4 2

R ²	L	R 1 2	R 13
Ме	0	C (Me) $_2$ C H = C H $_2$	E t
Ме	Ο	$C H_2 C \equiv C H$	E t
Ме	Ο	$C H_2 C \equiv C M e$	E t
Ме	Ο	$CH (Me) C \equiv CH$	E t
Ме	Ο	C (Me) $_2$ C \equiv C H	E t
Ме	O	$(C H_2)_2 C \equiv C H$	E t
Ме	O	CH2CF3	E t
Ме	Ο	(CH ₂) ₂ C ₁	E t
Ме	Ο	$(CH_2)_3Cl$	E t
Ме	Ο	(C H ₂) ₃ B r	E t
Ме	Ο	(CH ₂) ₃ F	E t
Ме	Ο	$CH_2CH=CHCI$	E t
Ме	Ο	$CH_2CH=CCl_2$	E t
Ме	Ο	c — P r	E t
Ме	Ο	c - B u	E t
Ме	Ο.	c-P e n	E.t
Ме	Ο	c-Hex	E t
Ме	O	$c-H\ e\ p$	Εt
M e	Ο	CH ₂ OH	E t
M e	O	(CH2) 2OH	E t
M e	O	CH ₂ OM e	E t
Ме	О	CH ₂ OE t	Εt
Ме	0	(CH ₂) ₂ OM e	E t

表 4 3

R ²	L	R 12	R 13
Ме	0	(CH ₂) ₂ OE t	E t
Ме	O	(CH ₂) ₃ OM e	E t
M e	0	(CH ₂) ₃ OE t	E t
Ме	O	CH ₂ SMe	E t
Ме	O	CN	E t
Ме	O	P h	E t
Ме	O	$CH_2Ph(4-OMe)$	E t
Ме	O	CH (Me) Ph	E t
Ме	O	(CH ₂) ₂ Ph	Εt
Ме	O	CH = CHPh	E t
Ме	O	$C H_2 C H = C H P h$	E t
Ме	O	$C \equiv C P h$	E t
Ме	O	$C H_2 C \equiv C P h$	E t
Ме	О	G (a)	Εt
Ме	O	G (b)	E t
Ме	O.	G (c)	Εt
Ме	O	G (d)	E t
Ме	O	Pr	$C H_2 C H = C H_2$
Ме	О	i – Pr	$CH_2CH=CH_2$
Ме	O	B u	$C H_2 C H = C H_2$

表 4 4

R ²	L	R 1 2	R 13
Ме	0	s – B u	C H 2 C H = C H 2
Ме	Ο	i — B u	$C H_2 C H = C H_2$
Ме	Ο	t - B u	$C H_2 C H = C H_2$
Ме	O	P e n	$C H_2 C H = C H_2$
M e	O	Нех	$C H_2 C H = C H_2$
M e	O	Нер	$CH_2CH=CH_2$
Ме	O	$C H_2 C H = C H_2$	$CH_2CH=CH_2$
Ме	O	$C H_2 C (M e) = C H_2$	$C H_2 C H = C H_2$
Ме	Ο	$C H_2 C H = C H M e$	$C H_2 C H = C H_2$
M e	O	$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
Ме	O	$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
Ме	Ο	C (Me) $_2$ CH=CH $_2$	$C H_2 C H = C H_2$
M e	O	$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
M e	O	$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
M e	O	$C H (M e) C \equiv C H$	$CH_2CH=CH_2$
M e	0.	$C (Me)_2 C \equiv CH$	$C H_2 C H = C H_2$
Ме	Ο	$(C H_2)_z C \equiv C H$	$C H_2 C H = C H_2$
Ме	O	CH ₂ CF ₃	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₂ C ₁	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₃ C ₁	$C H_2 C H = C H_2$
Ме	O	$(CH_2)_3B_r$	$C H_2 C H = C H_2$
Ме	Ο	(CH ₂) ₃ F	$C H_2 C H = C H_2$
Ме	Ο	$C H_2 C H = C H C I$	$C H_2 C H = C H_2$

表 4 5

R ²	L	R 1 2	R 13
Ме	O	$C H _{2} C H = C C I _{2}$	$C H_2 C H = C H_2$
Ме	Ο	c - P r	$C H_2 C H = C H_2$
Ме	Ο	c - B u	$C H_2 C H = C H_2$
Ме	O	c-P e n	$C H_2 C H = C H_2$
Ме	O	c - H e x	$C H_2 C H = C H_2$
Ме	0	с—Нер	$C H_2 C H = C H_2$
Ме	Ο	C H 2 O H	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₂ OH	$C H_2 C H = C H_2$
Ме	O	CH ₂ OM e	$C H_2 C H = C H_2$
Ме	Ο	CH ₂ OE t	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₂ OM e	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
Ме	O	$(CH_2)_3OMe$	C H 2 C H = C H 2
Ме	O	(CH ₂) ₃ OE t	$C H_2 C H = C H_2$
Ме	O	CH ₂ SM e	$C H_2 C H = C H_2$
Ме	0	CN	$C H _{2}C H = C H _{2}$
Ме	Ο	P h	$C H_2 C H = C H_2$
Ме	Ο	$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
Ме	Ο	CH (Me) Ph	$C H_2 C H = C H_2$
Ме	O	(CH ₂) ₂ Ph	C H 2 C H = C H 2
Ме	O	CH = CHPh	$C H_2 C H = C H_2$
Ме	0	C H C H C H P h	$C H_2 C H = C H_2$
Ме	0	$C \equiv C P h$	$C H_2 C H = C H_2$

表 4 6

R 2	L	R 1 2	R 13
Ме	O	$CH_2C \equiv CPh$	$CH_2CH=CH_2$
M e	O	G (a)	$C H_2 C H = C H_2$
Ме	O	G (b)	$C H_2 C H = C H_2$
M e	O	G (c)	$C H_2 C H = C H_2$
Ме	O	G (d)	$C H_2 C H = C H_2$
Ме	O	Н	COM e
Ме	Ο	M e	СОМе
Ме	O	E t	СОМе
Ме	Ο	Pr	СОМе
Ме	O	i - P r	СОМе
M e	Ο	Вu	СОМе
Ме	O	s - B u	СОМе
Ме	Ο	i - B u	СОМе
Ме	O	t - B u	СОМе
Ме	O	Pen	СОМе
M e	Ο.	Нех	СОМе
Ме	O	Нер	СОМе
И́е	Ο	$C H_2 C H = C H_2$	СОМе
Ие	Ο	$CH_2C (Me) = CH_2$	СОМе
Лe	O	$CH_2CH=CHMe$	СОМе
1 e	Ο	$CH_2CH=CMe_2$	СОМе
l e	Ο	$CH (Me) CH = CH_2$	СОМе
l e	O	C (Me) $_2$ C H = C H $_2$	СОМе

表 4 7

R ²	L	R 12	R 13	
M e	0	$C H_2 C \equiv C H$	СОМе	
Мe	Ο	$C H_2 C \equiv C M e$	СОМе	
Ме	O	$CH (Me) C \equiv CH$	СОМе	
M e	Ο	C (Me) $_2$ C \equiv C H	СОМе	
Ме	Ο	$(C H_2)_2 C \equiv C H$	СОМе	
Ме	Ο	CH_2CF_3	СОМе	
M e	Ο	(CH ₂) ₂ C ₁	СОМе	
M e	O	(CH ₂) ₃ C ₁	СОМе	
Ме	O	$(CH_2)_3B_r$	СОМе	
M e	O	$(CH_2)_3F$	СОМе	
Ме	O	$CH_2CH=CHC\mathring{1}$	СОМе	
Ме	O	$CH_2CH=CCI_2$	СОМе	
Ме	Ο	c-Pr	СОМе	
Ме	O	c — B u	СОМе	
Ме	O	c - P e n	СОМе	
Ме	Ο.	с—Нех	СОМе	
Ме	Ο	с-Нер	СОМе	
M e	0	C H ₂ O H	СОМе	
M e	O	(CH ₂) ₂ OH	СОМе	
M e	O	CH ₂ OM _e	СОМе	
M e	Ο	CH ₂ OE t	СОМе	
Ме	Ο	(CH ₂) ₂ OM e	СОМе	
Ме	O	(CH ₂) ₂ OE t	СОМе	

表48

R ²	L	R 12	R 13
M e	0	(CH ₂) ₃ OM e	СОМе
Ме	Ο	(CH ₂) ₃ OE t	СОМе
Ме	0	CH ₂ SMe	СОМе
Ме	Ο	CN	СОМе
Ме	0	Ρh	СОМе
Ме	0	$CH_2Ph(4-OMe)$	СОМе
Ме	Ο	CH (Me) Ph	СОМе
Ме	Ο	$(CH_2)_2Ph$	СОМе
Ме	Ο	CH = CHPh	СОМе
Ме	Ο	$CH_2CH=CHPh$	СОМе
Ме	O	$C \equiv C P h$	СОМе
Ме	Ο	$C H_2 C \equiv C P h$	СОМе
Ме	Ο	G (a)	СОМе
Ме	Ο	G (b)	СОМе
Ме	Ο	G (c)	СОМе
Ме	0.	G (d)	COM e
Ме	O	Н	CO-t-Bu
Ме	O	M e	CO - t - Bu
Ме	Ο	E t	CO-t-Bu
Ме	Ο	Pr	CO-t-Bu
Ме	Ο	i - P r	CO-t-Bu
Ме	O	B u	CO - t - Bu
Ме	0	s – B u	CO - t - Bu

表49

R ²	L	R 1 2	R ^{1 3}
Ме	0	i — B u	C O - t - B u
Ме	0	t - B u	CO - t - Bu
Ме	Ο	Pen	CO - t - Bu
Ме	Ο	Нех	CO - t - Bu
Ме	Ο	Нер	CO-t-Bu
Ме	0	$C H_2 C H = C H_2$	CO - t - Bu
Ме	Ο	$C H_2 C (M e) = C H_2$	CO-t-Bu
Ме	O	$C H_2 C H = C H M e$	CO - t - Bu
M e	O	$CH_2CH=CMe_2$	CO-t-Bu
M e	O	$CH (Me) CH = CH_2$	CO-t-Bu
M e	. 0	C (Me) $_2$ CH = CH $_2$	CO-t-Bu
Ме	Ο	$C H_2 C \equiv C H$	CO - t - Bu
Ме	Ο	$C H_2 C \equiv C M e$	C O - t - B u
Ме	O	$CH (Me) C \equiv CH$	CO - t - Bu
Ме	O	$C (Me)_2 C \equiv CH$	CO - t - Bu
Ме	Ο.	$(C H_2)_2 C \equiv C H$	CO - t - Bu
Ме	O	CH ₂ CF ₃	CO - t - Bu
Ме	O	(CH ₂) ₂ C ₁	CO - t - Bu
M e	O	(CH ₂) ₃ C 1	CO - t - Bu
Ме	O	(CH ₂) ₃ B r	CO - t - Bu
M e	Ο	(CH ₂) ₃ F	CO-t-Bu
M e	Ο	$CH_2CH=CHCI$	CO-t-Bu
Ме	0	$C H_2 C H = C C I_2$	CO-t-Bu

表50

R²	L	R 1 2	R 13
Ме	0	c - P r	C O – t – B u
Ме	О	c — B u	CO-t-Bu
Ме	Ο	c — P e n	CO-t-Bu
Ме	Ο	с-Нех	CO-t-Bu
Ме	0	с—Нер	CO - t - Bu
Ме	O	CH ₂ OH	CO-t-Bu
Ме	Ο	(CH ₂) ₂ OH	CO-t-Bu
Ме	O	CH2OMe	CO-t-Bu
M e	Ο	CH ₂ OE t	CO-t-Bu
Ме	Ο	(CH ₂) ₂ OM e	CO-t-Bu
Ме	Ο	(CH ₂) 2OE t	CO-t-Bu
Ме	Ο	$(CH_2)_3OMe$	CO-t-Bu
Ме	O	$(CH_2)_3OEt$	CO - t - Bu
Ме	O	CH ₂ SMe	CO - t - Bu
Ме	Ο	CN	CO-t-Bu
M e	0.	P h	CO-t-Bu
Ме	O	$CH_2Ph(4-OMe)$	CO - t - Bu
Ме	Ο	CH (Me) Ph	CO - t - Bu
Ме	O	(CH ₂) ₂ Ph	CO-t-Bu
Ме	Ο	CH = CHPh	CO-t-Bu
Ме	O	$CH_2CH=CHPh$	CO - t - Bu
Ме	Ο	$C \equiv C P h$	CO-t-Bu
Ме	0	$C H_2 C \equiv C P h$	CO - t - Bu

表51

R²	L	R 1 2	R 13
Ме	0	G (a)	C O – t – B u
Ме	Ο	G (b)	CO-t-Bu
Ме	Ο	G (c)	C O – t – B u
Ме	Ο	G (d)	C O – t – B u
Ме	О	Н	COPh (4-OMe)
Ме	O	Ме	COPh(4-OMe)
Ме	O	E t	COPh(4-OMe)
M e	O	Pr	COPh(4-OMe)
Ме	О	i - P r	COPh(4-OMe)
Ме	Ο	Вu	COPh(4-OMe)
Ме	Ο	s – B u	COPh(4-OMe)
Ме	O	i – B u	COPh(4-OMe)
Ме	Ο	t - B u	COPh(4-OMe)
M e	О	Pen	COPh (4-OMe)
Ме	O	Нех	COPh (4-OMe)
Ме	Ο.	Нер	COPh (4-OMe)
M e	Ο	$C H_2 C H = C H_2$	COPh(4-OMe)
M e	O	CH_2C $(Me) = CH_2$	COPh(4-OMe)
Ме	O	$CH_2CH=CHMe$	COPh(4-OMe)
Ме	O	$CH_2CH=CMe_2$	
Ме	O	$CH (Me) CH = CH_2$, , , ,
M e	O	C (Me) $_2$ C H = C H $_2$	
Ме	0	$C H_2 C \equiv C H$	COPh (4-OMe)

表52

R ²	L	R 1 2	R 13
Ме	O	$C H_2 C \equiv C M e$	COPh (4-OMe)
Ме	O	$CH (Me) C \equiv CH$	COPh(4-OMe)
Ме	O	$C (Me)_2 C \equiv CH$	COPh (4-OMe)
Ме	O	$(C H_2)_2 C \equiv C H$	COPh (4-OMe)
M e	Ο	CH ₂ CF ₃	COPh (4-OMe)
M e	O	(CH ₂) ₂ C ₁	COPh(4-OMe)
Ме	Ο	(CH ₂) ₃ C ₁	COPh (4-OMe)
Ме	O	$(CH_2)_3B_r$	COPh (4-OMe)
Ме	O	$(C H_2)_3 F$	COPh(4-OMe)
Ме	O	$CH_2CH=CHCI$	COPh (4-OMe)
M e	О	$CH_2CH=CCl_2$	COPh (4-OMe)
M e	O	c-Pr	COPh(4-OMe)
Ме	O	c — B u	COPh (4-OMe)
Ме	O	c-Pen	COPh (4-OMe)
Ме	O	c-Hex	COPh (4-OMe)
M e	Ο.	с—Нер	COPh (4-OMe)
M e	Ο	CH ₂ OH	COPh (4-OMe)
M e	Ο	(CH ₂) ₂ OH	COPh (4-OMe)
M e	Ο	CH ₂ OM _e	COPh (4-OMe)
Ме	O	CH2OEt	COPh (4-OMe)
Ме	O	(CH ₂) ₂ OM _e	COPh (4-OMe)
Ме	O	(CH ₂) ₂ OE t	COPh (4-OMe)
Ме	0	(CH ₂) ₃ OM e	COPh (4-OMe)

表53

R ²	L	R 1 2	R 1 3
Ме	0	(CH ₂) ₃ OE t	COPh (4-OMe)
M e	Ο	CH ₂ SMe	COPh (4-OMe)
Ме	О	CN	COPh (4-OMe)
Ме	O	Ρh	COPh (4-OMe)
Ме	Ο	$CH_2Ph(4-OMe)$	COPh (4-OMe)
Ме	O	CH (Me) Ph	COPh (4-OMe)
Ме	Ο	$(CH_2)_2Ph$	COPh (4-OMe)
Ме	O	CH = CHPh	COPh (4-OMe)
Ме	O	$C H_2 C H = C H P h$	COPh (4-OMe)
Ме	O	$C \equiv C P h$	COPh (4-OMe)
Ме	O	$C H_2 C \equiv C P h$	COPh (4-OMe)
Ме	O	G (a)	COPh (4-OMe)
Ме	О	G (b)	COPh (4-OMe)
Ме	Ο	G (c)	COPh (4-OMe)
Ме	Ο	G (d)	COPh(4-OMe)
Ме	Ο.	H .	C O ₂M e
Ме	Ο	Ме	C O ₂M e
Ме	O	E t	C O₂M e
Ме	O	Pr	CO ₂ M e
M e	O	i - P r	C O ₂M e
M e	Ο	Вu	C O ₂M e
M e	Ο	s - B u	C O 2M e
Ме	0	i — B u	CO ₂ M e

表54

R ²	L	R 12	R 13
Ме	0	t – B u	C O₂M e
Ме	0	Pen	C O ₂M e
Ме	O	Нех	C O ₂M e
Ме	0	Нер	C O₂M e
Ме	O	$C H_2 C H = C H_2$	C O ₂M e
Ме	O	$CH_2C(Me) = CH_2$	C O₂M e
Ме	O	$CH_2CH=CHMe$	C O ₂M e
Ме	0	$C H_2 C H = C M e_2$	C O ₂M e
Ме	O	$CH (Me) CH = CH_2$	C O ₂M e
Ме	O	C (Me) $_2$ C H = C H $_2$	C O ₂M e
Ме	O	$C H_2 C \equiv C H$	C O ₂M e
Ме	Ο	$C H_2 C \equiv C M e$	C O ₂M e
Ме	O	$CH (Me) C \equiv CH$	C O₂M e
Ме	O	C (Me) $_2$ C \equiv C H	C O ₂M e
Ме	O	$(C H_2)_2 C \equiv C H$	C O ₂M e
Ме	Ο.	CH ₂ CF ₃	CO₂Me.
Ме	O	(CH ₂) ₂ CI	C O ₂M e
Ме	O	(CH ₂) ₃ C l	C O ₂M e
Ме	O	(CH ₂) ₃ B r	C O ₂M e
Ме	O	(CH ₂) ₃ F	C O ₂M e
Ме	0	$CH_2CH=CHCI$	C O₂M e
Ме	0	$C H_2 C H = C C I_2$	C O ₂M e
Ме	0	c - P r	C O ₂M e

表55

R²	L	R 12	R 13
Ме	0	c — B u	CO2Me
Ме	0	c - P e n	C O ₂M e
Ме	O	c - H e x	C O ₂M e
Ме	0	с-Нер	C O ₂M e
Ме	0	CH ₂ OH	C O ₂M e
Ме	0	(CH ₂) ₂ OH	C O ₂M e
Ме	Ο	CH_2OMe	C O ₂M e
Ме	O	CH2OE t	CO ₂ M e
Ме	O	$(CH_2)_2OMe$	C O₂M e
Ме	0	(CH ₂) ₂ OE t	C O₂M e
Ме	0	(CH ₂) ₃ OM e	C O ₂M e
Ме	O	(CH ₂) ₃ OE t	C O ₂M e
Ме	O	CH ₂ SM e	C O ₂M e
Ме	O	CN	C O ₂M e
Ме	O	Ph	C O ₂M e
Ме	0.	$CH_2Ph(4-OMe)$	C O ₂M e
M e	Ο	CH (Me) Ph	C O ₂M e
Ме	O	$(CH_2)_2Ph$	C O ₂M e
Ме	O	CH = CHPh	C O₂M e
Ме	O	$CH_2CH=CHPh$	C O ₂M e
Ме	O	$C \equiv C P h$	C O ₂M e
Ме	0	$C H_2 C \equiv C P h$	C O ₂M e
Ме	0	G (a)	C O ₂M e

表56

R ²	L	R 1 2	R 13
Ме	0	G (b)	C O ₂M e
Ме	O	G (c)	C O ₂M e
Ме	O	G (d)	C O ₂M e
M e	О	Н	S O 2M e
M e	Ο	Ме	S O₂M e
Ме	O	E t	S O 2M e
Ме	O	Pr	S O 2M e
Ме	O	i - P r	S O ₂M e
Ме	Ο	B u	S O 2M e
Ме	Ο	s - B u	S O 2M e
M e	Ο	i — B u	S O 2M e
Ме	Ο	t - B u	SO ₂ M e
Ме	O	Pen	S O₂M e
M e	Ο	Нех	SO₂Me
Ме	Ο	Нер	SO₂Me
Ме	Ο.	$CH_2CH=CH_2$	S O₂M e
M e	Ο	$CH_2C (Me) = CH_2$	S O₂M e
M e	Ο	$CH_2CH=CHMe$	S O₂M e
M e	Ο	$C H_2 C H = C M e_2$	S O₂M e
Ме	Ο	$CH (Me) CH = CH_2$	
Ме	Ο	0 (24) ====	S O 2M e
Ме	О	$C H_2 C \equiv C H$	S O₂M e
Ме	Ο	$C H_2 C \equiv C M e$	S O₂M e

表 5 7

R ²	L	R 12	R 13
Ме	0	$CH (Me) C \equiv CH$	S O 2M e
Ме	Ο	$C (Me) _{2}C \equiv CH$	SO₂Me
Ме	O	$(C H_2)_2 C \equiv C H$	S O₂M e
Ме	O	CH2CF3	S O₂M e
Ме	О	(CH ₂) ₂ Cl	S O₂M e
Ме	O	$(CH_2)_3Cl$	S O₂M e
Ме	O	$(CH_2)_3Br$	SO₂Me
Ме	0	$(CH_2)_3F$	S O₂M e
Ме	Ο	$CH_2CH=CHCI$	SO ₂ M e
Ме	0	$CH_2CH=CCl_2$	SO ₂ M e
Ме	O	c-Pr	S O₂M e
Ме	Ο	c - B u	S O₂M e
Ме	Ο	c — P e n	S O ₂M e
Ме	O	с-Нех	SO₂Me
Ме	O	с-Нер	S O ₂M e
Ме	O	C H 2 O H	S O₂M e
Ме	Ο	$(CH_2)_2OH$	S O₂M e
Ме	Ο	CH2OMe	S O ₂M e
Ме	O	CH ₂ OE t	S O ₂M e
Ме	Ο	(CH ₂) ₂ OM e	S O₂M e
Ме	O	$(CH_2)_2OEt$	S O₂M e
Ме	Ο	(CH ₂) ₃ OM e	S O 2M e
Ме	O	(CH ₂) 3OE t	S O 2M e

表58

R ²	L	R 1 2	R 13
M e	0	CH ₂ SMe	S O 2M e
Ме	Ο	C N	S O 2 M e
Ме	Ο	P h	S O 2M e
Ме	O	CH ₂ Ph (4-OMe)	S O 2 M e
Ме	O	CH (Me) Ph	SO ₂ M e
M e	0	$(CH_2)_2Ph$	S O ₂M e
Ме	0	CH = CHPh	S O 2M e
Ме	O	$CH_2CH=CHPh$	S O₂M e
M e	O	$C \equiv C P h$	S O₂M e
Ме	Ο	$CH_2C \equiv CPh$	S O 2M e
Ме	O	G (a)	SO ₂ M e
Ме	O	G (b)	S O₂M e
Ме	0	G (c)	S O₂M e
Ме	Ο	G (d)	S O₂M e
Н	O	- (CH ₂) ₃ -	
Н	0.	- (CH ₂) ₄ -	
Н	0	- (CH ₂) ₅ -	
Н	O	- (CH ₂) ₆ -	
Н	O	- (CH ₂) ₇ -	
H	O	- (CH ₂) ₂ -O- (CH ₂)) "—
Н	O	- (CH2)2 - S - (CH2)	
Иe	O	$- (C H_2)_{3} -$	2
Ле	O	- (CH ₂) ₄ -	

表59

R ²	L	R 1 2	R 13
Ме	0	- (CH ₂) ₅ -	
M e	Ο	- (CH ₂) ₆ -	
Ме	Ο	- (CH ₂) ₇ -	
M e	O	$- (CH_2)_2 - O - (CH_2)_2$	[2] 2—
Ме	O	$- (CH_2)_2 - S - (CH_2)_2$	[2] 2—
Н	S	Н	Н
Н	S	Ме	Н
Н	S	E t	Н
Н	S	Ρr	Н
Н	S	i - P r	Н
H	S	B u	Н
Н	S	s - B u	Н
Н	S	i — B u	Н
H	S	t — B u	Н
Н	S	P e n	Н
H	S	Нех	Н
Н	S	Нер	Н
Н	S	$C H_2 C H = C H_2$	Н
H	S	$C H_2 C (M e) = C H_2$	Н
Н	S	$C H_2 C H = C H M e$	Н
Н	S	$C H_2 C H = C M e_2$	Н
Н	S	$CH (Me) CH = CH_2$	Н
Н	S	C (Me) $_2$ CH = CH $_2$	Н

表60

R²	L	R 1 2	R 13
Н	S	$C H_2 C \equiv C H$	Н
Н	S	$C H_2 C \equiv C M e$	Н
Н	S	$CH (Me) C \equiv CH$	Н
Н	S	$C (Me)_2 C \equiv CH$	Н
Н	S	$(C H_2)_2 C \equiv C H$	Н
Н	S	CH ₂ CF ₃	Н
Н	S	(CH ₂) ₂ Cl	Н
Н	S	(CH ₂) ₃ Cl	Н
Н	S	$(CH_2)_3Br$	Н
Н	S	$(CH_2)_3F$	H
Н	S	$CH_2CH=CHC1$	Н
Н	S	$C H_2 C H = C C I_2$	Н
Н	S	c-Pr	Н
Н	S	c — B u	Н
H	S	c-Pen	Н
H	S	с—Нех	Н
Н	S	с—Нер	Н
Н	S	C H 2 O H	Н
Н	S	(CH ₂) ₂ OH	Н
Н	S	CH ₂ OM e	Н
Н	S	CH ₂ OE t	Н
Н	S	$(CH_2)_2OMe$	Н
Н	S	(CH ₂) ₂ OE t	Н

表 6 1

R ²	L	R 12	R 13
Н	S	(CH ₂) 3OM e	Н
Н	S	(CH ₂) ₃ OE t	Н
H	S	C H₂SMe	Н
Н	S	CN	Н
H	S	P h	H
H	S	$CH_2Ph(4-OMe)$	Н
H	S	CH (Me) Ph	Н
H	S	$(CH_2)_2Ph$	Н
Н	S	CH = CHPh	Н
H	S	$CH_2CH=CHPh$	Н
H	S	$C \equiv C P h$	Н
Н	S	$CH_2C \equiv CPh$	Н
Н	S	G (a)	Н
H	S	G (b)	Н
Н	S	G (c)	Н
Н	S	G (d)	Н
Ме	S	Н	Н
Мe	S	Ме	Н
Ме	S	Εt	Н
Ме	S	Рr	Н
Ме	S	i - P r	Н
Ме	S	Вu	Н
М е	S	s — B u	H .

表62

R ²	L	R 1 2	R 13
Ме	S	i — B u	Н
Ме	S	t — B u	Н
Ме	S	Pen	Н
Ме	S	Нех	Н
Ме	S	Нер	Н
Ме	S	$C H _{2} C H = C H _{2}$	Н
Ме	S	$C H_2 C (M e) = C H_2$	Н
Ме	S	$CH_2CH=CHMe$	Н
Ме	S	$C H_2 C H = C M e_2$	Н
Ме	S	$CH (Me) CH = CH_2$	Н
Ме	S	C (Me) $_2$ CH = CH $_2$	Н
Ме	S	$C H_2 C \equiv C H$	Н
Ме	S	$C H_2 C \equiv C M e$	Н
Ме	S	$CH (Me) C \equiv CH$	Н
Ме	S	C (Me) $_2$ C \equiv C H	Н
Ме	S	$(C H_2)_2 C \equiv C H$	Н
Ме	S	CH ₂ CF ₃	Н
Ме	S	$(CH_2)_2CI$	Н
Ме	S	(CH ₂) ₃ C I	Н
Ме	S	(CH2) ₃ B r	Н
Ме	S	$(CH_2)_3F$	H
Ме	S	$C H_2 C H = C H C I$	Н
Ме	S	$C H_2 C H = C C I_2$	Н

表 6 3

R ²	L	R 12	R 1 3
Ме	S	c - P r	Н
Ме	S	c - B u	Н
Ме	S	c — P e n	Н
Ме	S	с—Нех	Н
Ме	S	с—Нер	H
Ме	S	C H 2 O H	Н
Ме	S	$(C H_2)_2 O H$	Н
Ме	S	CH2OMe	Н
Ме	S	CH ₂ OE t	Н
Ме	S	$(CH_2)_2OMe$	Н
Ме	S	$(CH_2)_2OEt$	Н
Ме	S	$(CH_2)_3OMe$	Н
Ме	S	$(CH_2)_3OEt$	Н
Ме	S	CH ₂ SMe	Н
Ме	S	C N	Н
Ме	S	Ph	Н.
Ме	S	$CH_2Ph(4-OMe)$	Н
Ме	S	CH (Me) Ph	Н
Ме	S	$(CH_2)_2Ph$	Н
Ме	S	CH = CHPh	Н
Ме	S	$C H_z C H = C H P h$	Н
Ме	S	$C \equiv C P h$	Н
Ме	S	$C H_2 C \equiv C P h$	Н

表64

R ²	L	R 12	R 13
——— М е	S	G (a)	H
M e	S	G (b)	Н
Ме	S	G (c)	Н
M e	S	G (d)	Н
Н	S	- (C	CH ₂) ₃ -
H	S	- (C	(H ₂) ₄ -
Н	S	- (C	H ₂) ₅ —
Н	S	- (C	H ₂) ₆ —
Н	S	- (C	H ₂) ₇ -
Н	S	- (CH ₂) ₂ -	O- (CH ₂) ₂ -
H	S	- (CH ₂) ₂ -	S - (C H ₂) ₂ -
M e	S	- (C	H ₂) ₃ -
M e	S	- (C	H ₂) ₄ -
M e	S	- (C	H ₂) ₅ -
Ме	S	- (C	H ₂) ₆ —
M e	S	- (C	H ₂) ₇ —
Ме	S	- (CH ₂) ₂ -	O - (C H ₂) ₂ -
M e	S	- (CH ₂) ₂ -	S - (C H ₂) ₂ -

(第11表)

$$\begin{array}{c|c} Me_2N & O \\ N & NH-Ph(R^4) \\ Me & N & N(R^{12})R^{13} \end{array}$$

OMe

表65

R 12	R 13	
Н	Н	
M e	H	,
E t	Н	
Pr	Н	
i - Pr	Н	
Вu	Н	
s - B u	Н	
i - B u	Н	
t - B u	Н	
Pen	Н	
Нех	Н	
Нер	Н	
$CH_2CH=CH_2$	Н	
$C H_2 C (M e) = C H_2$	H	
$CH_2CH=CHMe$	Н	
$CH_2CH=CMe_2$	Н	
$CH (Me) CH = CH_2$	Н	
$C (Me)_2 CH = CH_2$	Н	
$CH_2C \equiv CH$	Н	
$CH_2C \equiv CMe$	Н	
$CH (Me) C \equiv CH$	Н	
$(Me)_2 C \equiv CH$	Н	
$C H_2$) $_2 C \equiv C H$	Н	

表66

R 12	R 1 3	
CH2CF3	Н	
(CH ₂) ₂ C 1	Н	
(CH ₂) ₃ C 1	Н	
(CH ₂) ₃ B _r	Н	
$(CH_2)_3F$	Н	
$CH_2CH=CHC1$	H	
$C H_2 C H = C C I_2$	Н	
c - P r	Н	
c - B u	Н	
c-Pen	Н	
$c-H\ e\ x$	Н	
с-Нер	Н	
CH2OH	H	
(CH ₂) ₂ OH	Н	
CH ₂ OM e	H	
CH ₂ OE t	Н	
(CH ₂) ₂ OMe	Н	
(CH ₂) ₂ OE t	Н	
(CH ₂) ₃ OM e	Н	
(CH ₂) ₃ OE t	Н	
CH₂SMe	Н	
CN	Н	
^o h	Н	

表67

R 12	R 13	
CH ₂ Ph (4-OMe)) н	
CH (Me) Ph	Н	
$(CH_2)_2Ph$	Н	
CH = CHPh	Н	
$CH_2CH=CHPh$	Н	
$C \equiv C P h$	Н	
$C H_2 C \equiv C P h$	Н	
G (a)	Н	
G (b)	Н	
G (c)	Н	
G (d)	Н	
<i>Л</i> е	Ме	
C t	Ме	
r	Ме	
- P r	Ме	
u	Ме	
- В u	Ме	
-В u	Ме	
— В u	Ме	
e n	Ме	
e x	Ме	
ер	Ме	

表68

R 12	R 13	
$C H_2 C H = C H_2$	Ме	
$C H_2 C (M e) = C H_2$	Ме	
$CH_2CH=CHMe$	Ме	
$CH_2CH=CMe_2$	Ме	
CH (Me) $CH = CH2$	Ме	
$C (Me)_2 CH = CH_2$	Ме	
$C H_2 C \equiv C H$	Ме	
$C H_2 C \equiv C M e$	Ме	
$CH (Me) C \equiv CH$	Ме	
C (Me) $_{2}$ C \equiv C H	Ме	
$(C H_2)_2 C \equiv C H$	Ме	
CH ₂ CF ₃	Ме	
(CH ₂) ₂ C ₁	Ме	
(CH ₂) ₃ C	Ме	
$(CH_2)_3Br$	Ме	
(CH ₂) ₃ F	Ме	
$CH_2CH=CHCI$	Ме	
$CH_2CH=CCI_2$	Ме	
c - P r	Ме	
c - B u	Ме	
c-Pen	Ме	
с — Нех	Ме	
с—Нер	Ме	

表69

R 12	R 13	
C H 2 O H	M e	
(CH ₂) ₂ OH	M e	
CH ₂ OM e	M e	
CH ₂ OE t	M e	
(CH ₂) ₂ OM e	Me.	
(CH ₂) ₂ OE _t	M e	
(CH ₂) ₃ OM e	M e	
(CH ₂) ₃ OE t	Ме	
C H₂SMe	M e	
CN	M e	
Ρh	M e	
$CH_2Ph(4-OMe)$	M e	
CH (Me) Ph	M e	
(CH ₂) ₂ Ph	M e	
CH = CHPh	M e	
$C H_2 C H = C H P h$	Ме	
$C \equiv C P h$	M e	
$C H_2 C \equiv C P h$	Ме	
G (a)	M e	
G (b)	M e	
G (c)	M e	
G (d)	Ме	

表70

R 1 2	R 13
E t	E t
Рr	E t
i - P r	E t
B u	E t
s - B u	E t
i – B u	E t
t - B u	E t
P e n	E t
Нех	E t
Нер	E t
$C H_2 C H = C H_2$	E t
$C H_2 C (M e) = C H_2$	E t
$C H_2 C H = C H M e$	E t
$C H_2 C H = C M e_2$	E t
$CH (Me) CH = CH_2$	E t
$C (Me)_2 CH = CH_2$	E t
$C H_2 C \equiv C H$	E t
$C H_2 C \equiv C M e$	E t
$CH (Me) C \equiv CH$	E t
C (Me) $_{2}$ C \equiv C H	E t
$(C H_2)_2 C \equiv C H$	E t
CH2CF3	E t

表71

R 12	R 13	
(CH ₂) ₂ C 1	Εt	
(CH ₂) ₃ Cl	Εt	
(CH ₂) ₃ B r	Εt	
(CH ₂) ₃ F	Εt	
$CH_2CH=CHCI$	Εt	
$CH_2CH=CCI_2$	Εt	
c - P r	Εt	
c - B u	Εt	
c-Pen	Εt	
$c-H\ e\ x$	Εt	
с—Нер	Εt	
CH ₂ OH	Εt	
(CH ₂) ₂ OH	Εt	
CH ₂ OM e	Εt	
CH ₂ OE t	Εt	
(CH ₂) ₂ OM _e	Εt	
(CH ₂) ₂ OE t	Εt	
(CH ₂) ₃ OM e	Εt	
$(CH_2)_3OEt$	Εt	
CH2SMe	Εt	
CN	Εt	
Ph	Εt	
CH ₂ Ph (4-OMe)	E t	

表72

	والمراب
R 12	R 13
CH (Me) Ph	E t
(CH ₂) ₂ Ph	E t
CH = CHPh	E t
$CH_2CH=CHPh$	E t
$C \equiv C P h$	E t
$CH_2C \equiv CPh$	E t
G (a)	E t
G (b)	E t
G (c)	E t
G (d)	E t
Pr	$C H_2 C H = C H_2$
i - P r	$C H_2 C H = C H_2$
Вu	$C H_2 C H = C H_2$
s – B u	$C H_2 C H = C H_2$
i - B u	$C H_2 C H = C H_2$
t - B u	$C H_2 C H = C H_2$
Pen	$C H_2 C H = C H_2$
Нех	$C H_2 C H = C H_2$
Нер	$C H_2 C H = C H_2$
$C H_2 C H = C H_2$	$C H_2 C H = C H_2$

表73

R 12	R 13
CH_2C (Me) = CH_2	$C H _{2} C H = C H _{2}$
$C H_2 C H = C H M e$	$C H_2 C H = C H_2$
$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
$C (Me)_2 CH = CH_2$	$C H_2 C H = C H_2$
$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
$C H_z C \equiv C M e$	$C H_2 C H = C H_2$
$CH (Me) C \equiv CH$	$C H_2 C H = C H_2$
$C (Me) _{2}C \equiv CH$	$C H_2 C H = C H_2$
$(C H_2)_2 C \equiv C H$	$C H_2 C H = C H_2$
CH ₂ CF ₃	$C H_2 C H = C H_2$
(CH ₂) ₂ C ₁	$C H_2 C H = C H_2$
(CH ₂) ₃ Cl	$C H_2 C H = C H_2$
(CH ₂) ₃ Br	$C H_2 C H = C H_2$
(CH ₂) ₃ F	$C H_2 C H = C H_2$
$CH_2CH=CHCI$	$C H_2 C H = C H_2$
C H 2 C H = C C I 2	$C H_2 C H = C H_2$
c - P r	$C H_2 C H = C H_2$
c - B u	$C H_2 C H = C H_2$
c-P e n	$C H_2 C H = C H_2$
c-Hex	$C H_2 C H = C H_2$
с-Нер	$C H_2 C H = C H_2$
C H 2 O H	$C H_2 C H = C H_2$

表74

R 12	R 13
(CH ₂) ₂ OH	C H 2 C H = C H 2
CH ₂ OM e	$C H_2 C H = C H_2$
CH2OE t	$C H_2 C H = C H_2$
(CH ₂) ₂ OMe	$C H_2 C H = C H_2$
(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
(CH ₂) ₃ OM e	$C H_2 C H = C H_2$
(CH ₂) ₃ OE t	$C H_2 C H = C H_2$
CH ₂ SMe	$C H_2 C H = C H_2$
CN	$C H_2 C H = C H_2$
P h	$C H_2 C H = C H_2$
$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
CH (Me) Ph	$C H_2 C H = C H_2$
$(CH_2)_2Ph$	$C H_2 C H = C H_2$
CH = CHPh	$C H_2 C H = C H_2$
$CH_2CH=CHPh$	$C H_2 C H = C H_2$
$C \equiv C P h$	$C H_2 C H = C H_2$
$C H_2 C \equiv C P h$	$C H_2 C H = C H_2$
G (a)	$C H_2 C H = C H_2$
G (b)	$C H_2 C H = C H_2$
G (c)	$C H_2 C H = C H_2$
G (d)	$C H_2 C H = C H_2$
- (CH ₂) ₃ -	
- (CH ₂) ₄ -	

表 75

R 1 2

R 13

$$- (CH_2)_2 - O - (CH_2)_2 -$$

$$- (CH2)2 - S - (CH2)2 -$$

(第12表)

-NH-Ph(R⁴)

表76

R 12	R 13	
E t	Н	
Pr	H	
i - P r	Н	
Вu	Н	
s - B u	Н	
i - B u	Н	
t - B u	Н	
Pen	Н	
Нех	Н	
$CH_2CH=CH_2$	Н	
$C H_2 C \equiv C H$	Н	
$CH (Me) C \equiv CH$	Н	
$C (Me)_2 C \equiv CH$	Н	
$(CH_2)_2C \equiv CH$	Н	
$:-P_r$	Н	
-Pen	Н	
-H е x	Н	
- (CH ₂) ₃ -		
- (CH ₂) ₄ -		
- (CH ₂) ₅ -		
$-(CH_2)_{6}-$		
$(CH_2)_2 - O - (CH$	2) 2—	
$(CH_2)_2 - S - (CH_2)_2$	2) 2—	

[第13表]

$$R^2$$
 O NH-Ph(R^4)

 R^1 NHCH₂CO₂Me

 R^1 NHCH₂CO₂Et

 R^2 O NH-Ph(R^4)

 R^4 NHCH₂CO₂Me

 R^4 NHCH(Me)CO₂Me

 R^4 NH-Ph(R^4)

 R^4 NH-Ph(R^4)

$$R^2$$
 O $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$ $NH-Ph(R^4)$

表77

R '	R ²	
Н	II	
M e	H	
E t	H H	
CF ₃	Н	
CF_3CH_2	Н	
МеО	Н	
EtO	Н	
CHF2O	Н	
MeS	Н	
EtS	Н	
Me ₂ N	Н	
CN	Н	
MeOCH2	Н	
MeSCH2	Н	
Н	Ме	
Ме	M e	
E t	Ме	
CF ₃	Ме	
CF ₃ CH ₂	Ме	
M e O	M e	
E t O	Ме	
CHF ₂ O	Ме	
M e S	Ме	

夷	7	Я
ゝ		v

R ¹	R²	
E t S	M e	
Me 2 N	M e	
CN	IVI C	
MeOCH2	Ме Ме	
MeSCH ₂	177. C	

[第14表]

表79

R 1	

H, Me, Et, MeO, EtO, MeS, EtS, Me2N, CF3, CN

[第15表]

表80

R 12	R 13
Н	Н
M e	Н
E t	Н
Pr	Н
i - P r	Н
Вu	Н
s - B u	H
i – B u	Н
t - B u	Н .
Pen	Н
Нех	Н
Нер	Н
$C H_2 C H = C H_2$	Н
$CH_2C (Me) = CH_2$	Н
$CH_2CH=CHMe$	Н
$CH_2CH=CMe_2$	Н
$CH (Me) CH = CH_2$	Н
C (Me) $_2$ C H = C H $_2$	Н
$C H_2 C \equiv C H$	H ·
$C H_2 C \equiv C M e$	Н
$CH (Me) C \equiv CH$	Н
C (Me) $_2$ C \equiv CH	Н
$(CH_2)_2C\equiv CH$	Н

表81

R 1 2	R 13			-
CH ₂ CF ₃	Н			
(CH ₂) ₂ C ₁	Н			
(CH ₂) ₃ C 1	Н			
(CH ₂) ₃ B r	Н			
(CH ₂) ₃ F	Н			
$CH_2CH=CHCI$	Н			
$C H_2 C H = C C I_2$	Н			
c - P r	Н			
c - B u	Н		•	
c-Pen	Н			
$c-H\ e\ x$	Н			
c-Hep	Н			
C H 2 O H	Н			
(CH ₂) ₂ OH	Н			
CH ₂ OM e	Н	·		
CH ₂ OE t	H			
(CH ₂) ₂ OM e	Н			
(CH ₂) ₂ OE t	Н			
(CH ₂) ₃ OM e	Н			
(CH ₂) ₃ OE t	Н			
CH₂SMe	Н			
CN	Н			
P h	Н			

表 8 2

R 12	R 13	
CH ₂ Ph (4-OM	е) Н	
CH (Me) Ph	Н	
$(CH_2)_2P_h$	Н	
CH = CHPh	Н	
$CH_2CH=CHPh$	Н	
$C \equiv C P h$	Н	
$CH_2C \equiv CPh$	Н	
(a)	Н	
(b)	Н	
(c)	Н	
(d)	Н	
e	Ме	
t	Ме	
r	Ме	
-Pr	Ме	
· ·	Ме	
B u	Ме	
B u	M e	
Вu	M e	
n	Ме	
X	Ме	
D	Ме	

表83

R 12	R 13	
C H 2 C H = C H 2	M	
$CH_2C(Me) = CI$	Me Ha Ma	
$CH_2CH=CHMe$		
$CH_2CH=CMe_2$	М е М е	
CH (Me) CH = C		
$C (Me) _{2}CH = CH$		
CH ₂ C≡CH	² Me Me	
$CH_2C \equiv CM_e$	ме Ме	
$H (Me) C \equiv CH$	ме Ме	
$(Me)_2C \equiv CH$		·
CH_2) $_2C \equiv CH$	M e	
H ₂ CF ₃	Ме Ме	
CH ₂) ₂ C ₁		
CH ₂) ₃ C ₁	M e	
CH ₂) ₃ B _r	M e	
$(H_2)_3F$	M e	
2CH=CHC1	M e	
$_{2}CH=CCI_{2}$	Ме	
Pr	Ме	
Bu	M e	
e n	M e	
I е х	M e	
ер	Ме	
- P	Ме	

表84

R 12	R 13
C H 2 O H	M e
(CH ₂) ₂ OH	M e
CH ₂ OM e	M e
CH ₂ OE t	Ме
(CH ₂) ₂ OM e	Ме
(CH ₂) ₂ OE t	M e
(CH ₂) ₃ OM e	M e
$(CH_2)_3OEt$	Ме
CH ₂ SMe	M e
CN	Ме
P h	Ме
$CH_2Ph(4-OMe)$	M e
CH (Me) Ph	Ме
(CH ₂) ₂ Ph	M e
CH = CHPh	M e
$C H_2 C H = C H P h$	Ме
$C \equiv C P h$	M e
$C H_2 C \equiv C P h$	M e
G (a)	M e
G (b)	Ме
G (c)	M e
G (d)	M e

表85

R 1 2	R 13
E t	E 4
Pr	E t
i – P r	E t
B u	E t
s - B u	E t
i – B u	E t
t – B u	E t
Pen	E t
Нех	E t
Нер	E t
$C H_2 C H = C H_2$	Et
	E t
$CH_2C (Me) = CH_2$	E t
$C H_2 C H = C H M e$	E t
$C H_2 C H = C M e_2$	E t
$CH (Me) CH = CH_2$	E t
$C (Me) _{2}CH = CH_{2}$	E t
$C H_2 C \equiv C H$	E t
$C H_2 C \equiv C M e$	E t
$CH (Me) C \equiv CH$	E t
C (Me) $_2$ C \equiv C H	E t
$(C H_2)_2 C \equiv C H$	E t
CH ₂ CF ₃	E t

表86

R 1 2	R 13	
(CH ₂) ₂ CI	E t	
(CH ₂) ₃ Cl	E t	
(CH ₂) ₃ B r	E t	
(CH ₂) ₃ F	E t	
$CH_2CH=CHCI$	E t	
$CH_2CH=CCl_2$	E t	
c - P r	E t	
c - B u	E t	
c - P e n	E t	
с—Нех	E t	
с—Нер	E t	
C H 2 O H	E t	
(CH ₂) ₂ OH	E t	
СН2ОМе	E t	
CH2OE t	E t	
(CH ₂) ₂ OM e	E t	
(CH ₂) ₂ OE t	E t	
$(CH_2)_3OMe$	E t	
$(CH_2)_3OEt$	E t	
CH ₂ SMe	E t	
CN	E t	
P h	E t	
$CH_2Ph(4-OMe)$	E t	

表87

R 1 2	R 13	
CH (Me) Ph	E t	
(CH ₂) ₂ Ph	E t	
CH = CHPh	E t	
$C H_2 C H = C H P h$	E t	
$C \equiv C P h$	E t	
$C H_2 C \equiv C P h$	E t	
G (a)	E t	
G (b)	E t	
G (c)	E t	
G (d)	E t	
Pr	$C H_2 C H = C H_2$	
i - P r	$C H_2 C H = C H_2$	
Вu	$C H_2 C H = C H_2$	
s - B u	$C H_2 C H = C H_2$	•
i - B u	$C H_2 C H = C H_2$	
t - B u	$C H_2 C H = C H_2$	
Pen	$C H_2 C H = C H_2$	
Нех	$C H_2 C H = C H_2$	
Нер	$C H_2 C H = C H_2$	
C H 2 C H = C H 2	$C H_2 C H = C H_2$	

表88

R 12	R 13
$C H_2 C (M e) = C H_2$	$C H_2 C H = C H_2$
$CH_2CH=CHMe$	$C H_2 C H = C H_2$
$C H_2 C H = C M e_2$	$C H_2 C H = C H_2$
$CH (Me) CH = CH_2$	$C H_2 C H = C H_2$
C (Me) $_2$ CH = CH $_2$	$C H_2 C H = C H_2$
$C H_2 C \equiv C H$	$C H_2 C H = C H_2$
$C H_2 C \equiv C M e$	$C H_2 C H = C H_2$
$CH (Me) C \equiv CH$	$C H_2 C H = C H_2$
C (Me) $_2$ C \equiv C H	$C H_2 C H = C H_2$
$(C H_2)_2 C \equiv C H$	$C H_2 C H = C H_2$
CH ₂ CF ₃	$C H_2 C H = C H_2$
(CH ₂) ₂ Cl	$C H_2 C H = C H_2$
$(CH_2)_3Cl$	$C H_2 C H = C H_2$
$(CH_2)_3Br$	$C H_2 C H = C H_2$
$(CH_2)_3F$	$C H_2 C H = C H_2$
$CH_2CH=CHCI$	$C H_2 C H = C H_2$
$C H_2 C H = C C I_2$	$C H_2 C H = C H_2$
c-P r	$C H_2 C H = C H_2$
c - B u	$C H_2 C H = C H_2$
c-Pen	$C H_2 C H = C H_2$
c-Hex	$C H_2 C H = C H_2$
с—Нер	$CH_2CH=CH_2$
C H 2 O H	CH ₂ CH=CH ₂

表89

R 12	R 13
(CH ₂) ₂ OH	C H 2 C H = C H 2
CH2OMe	$C H_2 C H = C H_2$
CH2OE t	$C H_2 C H = C H_2$
(CH ₂) ₂ OM e	$C H_2 C H = C H_2$
(CH ₂) ₂ OE t	$C H_2 C H = C H_2$
(CH ₂) ₃ OM e	$C H_2 C H = C H_2$
(CH ₂) ₃ OE t	$C H_2 C H = C H_2$
CH ₂ SMe	$C H_2 C H = C H_2$
CN	$C H_2 C H = C H_2$
Ph	$C H_2 C H = C H_2$
$CH_2Ph(4-OMe)$	$C H_2 C H = C H_2$
CH (Me) Ph	$C H_2 C H = C H_2$
(CH ₂) ₂ Ph	$C H_2 C H = C H_2$
CH = CHPh	$C H_2 C H = C H_2$
$CH_2CH=CHPh$	$C H_2 C H = C H_2$
$C \equiv C P h$	$C H_2 C H = C H_2$
$C H_2 C \equiv C P h$	$C H_2 C H = C H_2$
G (a)	$C H_2 C H = C H_2$
G (b)	$C H_2 C H = C H_2$
G (c)	$C H_2 C H = C H_2$
G (d)	$C H_2 C H = C H_2$
Н	СОМе
M e	СОМе

表90

R 1 2	R 13
Εt	СОМе
Pr	СОМе
i - P r	СОМе
B u	СОМе
s – B u	СОМе
i – B u	СОМе
t - B u	СОМе
Pen	СОМе
Нех	СОМе
Нер	СОМе
$C H_2 C H = C H_2$	СОМе
$C H_2 C (M e) = C H_2$	СОМе
$C H_2 C H = C H M e$	СОМе
$C H_2 C H = C M e_2$	СОМе
$CH (Me) CH = CH_2$	СОМе
C (Me) $_2$ C H = C H $_2$	СОМе
$C H_2 C \equiv C H$	СОМе
$C H_2 C \equiv C M e$	СОМе
$C H (M e) C \equiv C H$	СОМе
C (Me) $_2$ C \equiv C H	СОМе
$(CH_2)_2C\equiv CH$	СОМе
CH ₂ CF ₃	СОМе
(CH ₂) ₂ C ₁	СОМе

表91

R 1 2	R 13	
(CH ₂) ₃ C l	СОМе	
(CH ₂) ₃ Br	СОМе	
(CH ₂) ₃ F	СОМе	
$CH_2CH=CHCI$	СОМе	
$CH_2CH=CCl_2$	СОМе	
c-Pr	СОМе	
c - B u	СОМе	
c-Pen	СОМе	
c-Hex	СОМе	
c-H e p	СОМе	
C H ₂ O H	СОМе	
(CH ₂) ₂ OH	СОМе	
CH ₂ OM e	СОМе	
CH2OEt	СОМе	
(CH ₂) ₂ OMe	СОМе	
(CH ₂) ₂ OE t	СОМе	
(CH ₂) ₃ OM e	СОМе	
(CH ₂) ₃ OE t	СОМе	
CH ₂ SMe	СОМе	
CN	СОМе	
Ph	СОМе	
CH ₂ Ph (4-OMe)	СОМе	
CH (Me) Ph	СОМе	

表92

R 12	R 13	
(CH ₂) ₂ Ph	СОМе	
CH = CHPh	СОМе	
$CH_2CH=CHPh$	СОМе	
$C \equiv C P h$	СОМе	
$C H_2 C \equiv C P h$	СОМе	
G (a)	СОМе	
G (b)	СОМе	
G (c)	СОМе	
G (d)	СОМе	
Н	CO-t-Bu	
M e	CO - t - Bu	
E t	CO-t-Bu	
Pr	CO-t-Bu	
i - P r	CO - t - Bu	
Bu	CO - t - Bu	
s - B u	CO - t - Bu	
i -B u	CO - t - Bu	
t - B u	CO-t-Bu	
Pen	CO - t - Bu	
Нех	CO-t-Bu	
Нер	CO - t - Bu	
$C H_2 C H = C H_2$	CO - t - Bu	
$C H_2 C (M e) = C H_2$	CO-t-Bu	

表93

R 1 2	R 13	
$CH_2CH=CHMe$	C O – t – B u	
$CH_2CH=CMe_2$	CO-t-Bu	
$CH (Me) CH = CH_2$		
C (Me) $_2$ C H = C H $_2$	CO - t - Bu	
$C H_2 C \equiv C H$	CO - t - Bu	
$C H_2 C \equiv C M e$	CO - t - Bu	
$CH (Me) C \equiv CH$	CO-t-Bu	
C (Me) $_2$ C \equiv CH	CO - t - Bu	
$(C H_2)_2 C \equiv C H$	CO - t - Bu	
CH ₂ CF ₃	CO - t - Bu	
(CH ₂) ₂ C ₁	CO-t-Bu	
(CH ₂) ₃ C I	CO-t-Bu	
$(CH_2)_3B_r$	CO-t-Bu	
(CH ₂) ₃ F	CO-t-Bu	
$CH_2CH=CHCI$	CO-t-Bu	
$C H_2 C H = C C I_2$	CO - t - Bu	
c - P r	CO-t-Bu	
c - B u	CO - t - Bu	
c-Pen	$CO - t - B \cdot u$	
с—Нех	CO - t - Bu	
с—Нер	CO-t-Bu	
C H 2 O H	CO-t-Bu	
(CH ₂) ₂ OH	CO - t - Bu	

表94

R 1 2	R 13
CH ₂ OM e	C O - t - B u
CH ₂ OE t	CO-t-Bu
$(CH_2)_2OMe$	CO - t - Bu
(CH ₂) ₂ OE t	CO-t-Bu
(CH ₂) ₃ OM e	CO - t - Bu
(CH ₂) ₃ OE t	CO-t-Bu
CH ₂ SMe	CO-t-Bu
CN	CO - t - Bu
P h	CO - t - Bu
$CH_2Ph(4-OMe)$	CO - t - Bu
CH (Me) Ph	CO-t-Bu
(CH ₂) ₂ Ph	CO-t-Bu
CH = CHPh	CO-t-Bu
$C H_2 C H = C H P h$	CO-t-Bu
$C \equiv C P h$	CO - t - Bu
$CH_2C \equiv CPh$	CO-t-Bu
G (a)	CO-t-Bu
G (b)	CO - t - Bu
G (c)	C O - t - B u
G (d)	CO - t - Bu
Н	COPh(4-OMe)
M e	COPh (4-OMe)
E t	COPh (4-OMe)

表95

R 12	R 13
Рr	COPh (4-OMe)
i — P r	COPh (4-OMe)
Вu	COPh(4-OMe)
s - B u	COPh (4-OMe)
i – B u	COPh (4-OMe)
t – B u	COPh (4-OMe)
Pen	COPh (4-OMe)
Нех	COPh (4-OMe)
Нер	COPh (4-OMe)
$C H_2 C H = C H_2$	COPh (4-OMe)
$C H_2 C (M e) = C H_2$	COPh (4-OMe)
$C H_2 C H = C H M e$	COPh(4-OMe)
$C H_2 C H = C M e_2$	COPh (4-OMe)
$CH (Me) CH = CH_2$	COPh (4-OMe)
C (Me) $_2$ C H = C H $_2$	COPh (4-OMe)
$C H_2 C \equiv C H$	COPh (4-OMe)
$C H_2 C \equiv C M e$	COPh (4-OMe)
$C H (M e) C \equiv C H$	COPh (4-OMe)
C (Me) $_2$ C \equiv C H	COPh (4-OMe)
$(C H_2)_2 C \equiv C H$	COPh (4-OMe)
CH ₂ CF ₃	COPh (4-OMe)
(CH ₂) ₂ C ₁	COPh (4-OMe)
(CH ₂) ₃ Cl	COPh (4-OMe)

表96

R 1 2	R 1 3
(CH ₂) ₃ B r	COPh (4-OMe)
$(CH_2)_3F$	COPh (4-OMe)
$CH_2CH=CHCI$	COPh (4-OMe)
$CH_2CH=CCl_2$	COPh(4-OMe)
c-Pr	COPh(4-OMe)
c - B u	COPh (4-OMe)
c - P e n	COPh (4-OMe)
с-Нех	COPh (4-OMe)
с-Нер	COPh(4-OMe)
CH ₂ OH	COPh (4-OMe)
(CH ₂) ₂ OH	COPh (4-OMe)
CH ₂ OM _e	COPh (4-OMe)
CH2OEt	COPh(4-OMe)
(CH ₂) ₂ OMe	COPh (4-OMe)
(CH ₂) ₂ OE t	COPh (4-OMe)
(CH ₂) ₃ OM _e	Ç O P h (4 – O M e)
(CH ₂) ₃ OE t	COPh(4-OMe)
C H₂S M e	COPh(4-OMe)
CN	COPh (4-OMe)
P h	COPh(4-OMe)
$CH_2Ph(4-OMe)$	
0.77 (5.5.)	COPh (4-OMe)
(CH ₂) ₂ P h	COPh (4-OMe)

表97

R 1 2	R 1 3
CH = CHPh	COPh (4-OMe)
$CH_2CH=CHPh$	COPh (4-OMe)
$C \equiv C P h$	COPh (4-OMe)
$C H_2 C \equiv C P h$	COPh (4-OMe)
G (a)	COPh (4-OMe)
G (b)	COPh (4-OMe)
G (c)	COPh (4- OMe)
G (d)	COPh (4-OMe)
Н	CO ₂ M e
M e	C O ₂M e
E t	C O₂M e
Рr	C O ₂M e
i - P r	C O ₂M e
B u	C O ₂M e
s – B u	C O 2M e
i — B u	C O ₂M e
t -B u	C O₂M e
Pen	C O ₂M e
Нех	CO ₂ M e
Нер	C O ₂M e
$C H_2 C H = C H_2$	CO ₂ M e
$C H_2 C (Me) = C H_2$	C O ₂M e
$C H_2 C H = C H M e$	CO ₂ M e

表98

	R 1 2	R 13
	$C H_2 C H = C M e_2$	C O ₂M e
	$CH (Me) CH = CH_2$	C O ₂M e
	C (Me) $_2$ CH = CH $_2$	CO ₂ M e
	$C H_2 C \equiv C H$	CO ₂ M e
	$C H_2 C \equiv C M e$	CO ₂ M e
	$CH (Me) C \equiv CH$	CO ₂ M e
	$C (Me)_2 C \equiv CH$	CO ₂ M e
	$(CH_2)_2C\equiv CH$	CO ₂ M e
	CH ₂ CF ₃	CO ₂ M e
	(CH ₂) ₂ C ₁	CO ₂ M e
	(CH ₂) ₃ Cl	C O ₂M e
	$(CH_2)_3Br$	CO ₂ M e
	$(CH_2)_3F$	CO ₂ M e
	$CH_2CH=CHCI$	CO ₂ M e
	$CH_2CH=CCI_2$	CO ₂ M e
	c - P r	CO ₂ M e
	c — B u	CO ₂ M e
	c — P e n	CO ₂ M e
	с—Нех	CO ₂ M e
	с—Нер	C O₂M e
	C H 2 O H	C O ₂M e
	(CH ₂) ₂ OH	C O ₂M e
(CH2OMe	C O₂M e
-		

表99

R 12	R 13	
CH ₂ OE t	C O ₂M e	
(CH ₂) ₂ OM _e	C O ₂M e	
(CH ₂) ₂ OE t	CO ₂ M e	
$(CH_2)_3OMe$	C O ₂M e	
(CH ₂) ₃ OE t	CO ₂ M e	
CH ₂ SM _e	CO ₂ M e	
CN	CO ₂ M e	
Ρh	C O ₂M e	
$CH_{2}Ph(4-OMe)$	C O₂M e	
CH (Me) Ph	C O₂M e	
$(CH_2)_2Ph$	C O ₂M e	
CH = CHPh	C O ₂ M e	
$CH_2CH=CHPh$	CO ₂ M e	
$C \equiv C P h$	CO ₂ M e	
$C H_2 C \equiv C P h$	C O ₂M e	
G (a)	CO ₂ M e	
G (b)	CO ₂ M e	
G (c)	CO ₂ M e	
G (d)	CO ₂ M e	
ł	SO ₂ Me	
∕l e	S O ₂M e	
E t	S O ₂M e	
r	S O ₂M e	

表100

R 12	R 13	
i – P r	S O ₂M e	
B u	S O ₂M e	
s – B u	S O ₂M e	
i – B u	S O ₂M e	
t - B u	SO ₂ M e	
Pen	S O ₂M e	
Нех	S O 2M e	
Нер	S O 2M e	
$C H_2 C H = C H_2$	SO ₂ M e	
$C H_2 C (M e) = C H_2$	SO ₂ M e	
$C H_2 C H = C H M e$	SO ₂ M e	
$C H_2 C H = C M e_2$	SO ₂ M e	
$CH (Me) CH = CH_2$	S O₂M e	
$C (Me)_2 CH = CH_2$	S O₂M e	
$C H_2 C \equiv C H$	S O ₂M e	
$C H_2 C \equiv C M \dot{e}$	SO ₂ M e	
$CH (Me) C \equiv CH$	SO ₂ M e	
$C (Me)_2 C \equiv CH$	S O ₂M e	
$(C H_2)_2 C \equiv C H$	SO ₂ M e	
CH ₂ CF ₃	SO ₂ M e	
(CH ₂) ₂ C ₁	S O ₂M e	
(CH ₂) ₃ C l	S O ₂M e	
(CH ₂) ₃ B r	S O 2M e	

表101

R 12	R 13
(CH ₂) ₃ F	S O ₂M e
$C H_2 C H = C H C I$	S O₂M e
$C H_2 C H = C C I_2$	S O 2M e
c - P r	S O ₂M e
c-Bu	S O ₂M e
c - P e n	S O₂M e
c-Hex	S O ₂M e
с-Нер	S O ₂M e
C H 2 O H	SO ₂ M e
(CH ₂) ₂ OH	SO ₂ M e
CH ₂ OMe	SO ₂ M e
CH ₂ OE t	SO ₂ M e
(CH ₂) ₂ OM e	SO ₂ M e
(CH ₂) ₂ OE t	SO ₂ M e
$(CH_2)_3OMe$	SO ₂ M e
$(CH_2)_3OE^{\dagger}t$	SO ₂ M e
CH ₂ SMe	SO ₂ M e
CN	SO ₂ M e
P h	SO ₂ M e
$CH_2Ph(4-OMe)$	SO ₂ M e
CH (Me) Ph	SO ₂ M e
(CH ₂) ₂ Ph	SO ₂ M e
CH = CHPh	SO ₂ M e

表102

R 12	R 13	
$CH_2CH = CHPh$ $C \equiv CPh$ $CH_2C \equiv CPh$ $G(a)$ $G(b)$ $G(c)$ $G(d)$	SO ₂ M e	

[第16表]

表103

R 1 2	R 13	
Н	Н	
Н	Ме	
Н	E t	
Н	i - P r	
Н	i - B u	
Н	$C H_2 C H = C H_2$	
Н	CH ₂ Ph	
M e	Ме	
M e	E t	

[第17表]

表104

R 12	R 13	R 14
M e	Н	
E t		Н
i - P r	Н	Н
Н	H	Н
Н	Н	Ме
Н	Н	Εt
M e	Н	i – P r
	Ме	Н
$-(CH_2)_4-$		
- (CH ₂) ₅ -		Н
$(CH_2)_2 - O - (CH_2)_2 -$		H
[e		H
O 2 E t	H	Ме
	Н	Н

第9表~第17表中、「c-」とあるのはシクロを、「i-」とあるのはイソを、「s-」とあるのはセカンダリーを、「t-」はとあるのはターシャリーを、Meはメチル基を、Etはエチル基を、Prはプロピル基を、Buはブチル基を、Penはペンチル基を、Hexはヘキシル基を、Hepはヘプチル基を、Phは 00 に、それぞれ前述の構造を表わす。

本発明化合物のあるものは畑地、非耕地用除草剤として、土壌処理、茎葉処理のいずれの処理方法に於いても、イヌホウズキ(<u>Solanum nigrum</u>)、チョウセンアサガオ(<u>Datura stramonium</u>)等に代表されるナス科(Solanaceae)雑草、イチビ(<u>Abutilon theophrasti</u>)、アメリカキンゴジカ(<u>Sida spinosa</u>)等に代表されるアオイ科(<u>Malvaceae</u>)雑草、マルバアサガオ(<u>Ipomoea purpurea</u>)等のアサガオ類(<u>Ipomoea spps.</u>)やヒルガオ類(<u>Calystegia</u> spps.)等に代表されるヒル

ガオ科 (Convolvulaceae) 雑草、イヌビユ(<u>Amaranthus lividus</u>)、アオビユ (<u>Amaranthus retroflexus</u>) 等に代表されるヒユ科 (Amaranthaceae)雑草、オナ モミ(<u>Xanthium pensylvanicum</u>)、ブタクサ(<u>Ambrosia artemisiaefolia</u>)、ヒ マワリ(<u>Helianthus annuus)</u>、ハキダメギク(<u>Galinsoga ciliata)</u>、セイヨウト ゲアザミ(<u>Cirsium arvense)</u>、ノボロギク(<u>Senecio vulgaris</u>)、ヒメジョン (<u>Erigeron_annus</u>) 等に代表されるキク科 (Compositae) 雑草、イヌガラシ (<u>Ro</u> <u>rippa indica</u>) 、ノハラガラシ(<u>Sinapis arvensis</u>)、ナズナ(<u>Capsella Bursa</u> <u>pastoris</u>) 等に代表されるアプラナ科(Cruciferae)雑草、イヌタデ(<u>Polygonu</u> <u>m Blumei</u>) 、ソバカズラ(<u>Polygonum convolvulus)</u>等に代表されるタデ科(Poly gonaceae) 雑草、スベリヒユ(<u>Portulaca oleracea</u>)等に代表されるスベリヒユ 科 (Portulacaceae)雑草、シロザ (<u>Chenopodium album)</u>、コアカザ (<u>Chenopodiu</u> m ficifolium) 、ホウキギ (Kochia scoparia)等に代表されるアカザ科 (Chenop odiaceae) 雑草、ハコベ (<u>Stellaria media)</u>等に代表されるナデシコ科 (Caryop hyllaceae)雑草、オオイヌノフグリ(<u>Veronica persica</u>)等に代表されるゴマノ ハグサ科(Scrophulariaceae)雑草、ツユクサ(<u>Commelina communis</u>)等に代表 されるツユクサ科 (Commelinaceae)雑草、ホトケノザ (<u>Lamium amplexicaule)</u>、 ヒメオドリコソウ (<u>Lamium purpureum</u>) 等に代表されるシソ科 (Labiatae) 雑草、 コニシキソウ(<u>Euphorbia supina</u>)、オオニシキソウ(<u>Euphorbia maculata</u>)等 に代表されるトウダイグサ科 (Euphorbiaceae)雑草、ヤエムグラ (<u>Galium spuri</u> <u>um</u>)、アカネ(<u>Rubia akane</u>)等に代表されるアカネ科(Rubiaceae)雑草、スミレ (<u>Viola mandshurica)</u>等に代表されるスミレ科 (Violaceae)雑草、アメリカツノ クサネム (<u>Sesbania exaltata)</u>、エビスグサ (<u>Cassia obtusifolia</u>) 等に代表さ れるマメ科 (Leguminosae)雑草等の広葉雑草 (Broad leaved weeds) 、野生ソル ガム(<u>Sorgham bicolor)</u>、オオクサキビ(<u>Panicum dichotomiflorum)</u>、ジョンソ ングラス(<u>Sorghum halepense)</u>、イヌビエ(<u>Echinochloa crus gall</u>i var. <u>cru</u>s __galli) 、ヒメイヌビエ <u>(Echinochloa crus_gal</u>li var<u>. praticol</u>a)、栽培ビエ (<u>Echinochloa utilis</u>) 、メヒシバ(<u>Digitaria adscendens</u>)、カラスムギ(<u>Av</u> <u>enafatua</u>)、オヒシバ (<u>Eleusine indica)</u>、エノコログサ (<u>Setaria viridis)</u>、 スズメノテッポウ(<u>Alopecurus aegualis)</u>等に代表されるイネ科雑草(Graminac

eous weeds)、ハマスゲ(<u>Cvperus rotundus. Cvperus esculentus</u>)等に代表されるカヤツリグサ科雑草(Cyperaceous weeds)等の各種畑地雑草(Cropland weeds)に低薬量で高い殺草力を有する。

又、水田用除草剤として湛水下の土壌処理及び茎葉処理のいずれの処理方法に 於いても、ヘラオモダカ(<u>Alisma canaliculatum</u>)、オモダカ(<u>Sagittaria tri</u> <u>folia</u>)、ウリカワ(<u>Sagittaria pygmaea</u>)等に代表されるオモダカ科(Alismata ceae) 雑草、タマガヤツリ(<u>Cvperus difformis)</u>、ミズガヤツリ(<u>Cvperus sero</u> <u>tinus</u>)、ホタルイ(<u>Scirpus juncoides</u>)、クログワイ(<u>Eleocharis kuroguwai</u>) 等に代表されるカヤツリグサ科(Cyperaceae)雑草、アゼナ(<u>Lindernia pyxida</u> <u>ria)</u>等に代表されるゴマノハグサ科(Scrothulariaceae)雑草、コナギ(<u>Monoc</u> <u>horia vaginalis)</u>等に代表されるミズアオイ科 (Potenderiaceae) 雑草、ヒルム シロ (<u>Potamogeton distinctus</u>) 等に代表されるヒルムシロ科 (<u>Potamogetonace</u> ae) 雑草、キカシグサ (<u>Rotala indica)</u>等に代表されるミソハギ科 (Lythracea e) 雑草、タイヌビエ(<u>Echinochloa oryzicola)</u>、ヒメタイヌビエ(<u>Echinochloa</u> crus galli var. formosensis)、イヌビエ (Echinochloa crus galli var. cru s galli) 雑草等、各種、水田雑草 (Paddy weeds)に低薬量で高い殺草力を有する。 さらに本発明化合物のあるものは、重要作物であるイネ、コムギ、オオムギ、 ソルゴー、落花生、トウモロコシ、大豆、棉、ビート等に対して高い安全性を有 する。

本発明化合物を除草剤として施用するにあたっては、一般には適当な担体、例えばクレー、タルク、ベントナイト、尿素、硫酸アンモニウム、クルミ粉、珪藻土、ホワイトカーボン等の固体担体あるいは水、アルコール類(イソプロパノール、ブタノール、エチレングリコール、ベンジルアルコール、フルフリルアルコール等)、芳香族炭化水素類(トルエン、キシレン、メチルナフタレン等)、エテル類(アニソール等)、植物油(大豆油、綿実油等)、ケトン類(シクロヘキサノン、イソホロン等)、エステル類(酢酸プチル等)、酸アミド類(Nーメチルピロリドン等)又はハロゲン化炭化水素類(クロロベンゼン等)などの液体担体と混用して適用することができ、所望により界面活性剤、乳化剤、分散剤、浸透剤、展着剤、増粘剤、凍結防止剤、固結防止剤、安定剤などを添加し、液剤、

乳剤、水和剤、ドライフロアブル剤、フロアブル剤、粉剤、粉剤等任意の剤型に て実用に供することが出来る。

また、本発明化合物は必要に応じて製剤又は散布時に他種の除草剤、各種殺虫剤、殺ダニ剤、殺線虫剤、殺菌剤、植物生長調節剤、共力剤、肥料、土壌改良剤などと混合施用してもよい。

特に他の農薬と混合施用することにより、施用薬量の減少による低コスト化、混合薬剤の相乗作用によるスペクトラムの拡大や、より高い除草効果が期待出来る。この際、同時に複数の公知農薬との組み合わせも可能である。本発明化合物と混合使用する農薬の種類としては、例えば、ファーム・ケミカルズ・ハンドブック(Farm Chemicals Handbook)1998年版に記載されている化合物などがある。

本発明化合物の施用薬量は適用場面、施用時期、施用方法、気象条件、製剤形態、土壌条件、栽培作物等により差異はあるが一般には有効成分量としてヘクタール(ha)当たり0.0001~10kg程度、好ましくは0.001~5kg程度が適当である。

次に具体的に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、これらのみに限定されるものではない。なお、以下の配合例において「部」は重量部を意味する。

本発明化合物を使用するにあたっては、通常適当な固体担体又は液体担体と混合し、更に所望により界面活性剤、浸透剤、展着剤、増粘剤、凍結防止剤、結合剤、固結防止剤、崩壊剤、消泡剤、防腐剤及び分解防止剤等を添加して、液剤、乳剤、水和剤、水溶剤、顆粒水和剤、顆粒水溶剤、懸濁剤、乳濁剤、サスポエマルジョン、マイクロエマルジョン、粉剤、粒剤及びゲル剤等任意の剤型の製剤にて実用に供することが出来る。また、省力化及び安全性向上の観点から、上記任意の剤型の製剤を水溶性包装体に封入して供することも出来る。なお必要に応じて、製剤又は散布時に複数の他の除草剤、殺虫剤、殺菌剤、植物生長調整剤、肥料等と混合使用することも可能である。

固体担体としては、例えば石英、カオリナイト、パイロフィライト、セリサイト、タルク、ベントナイト、酸性白土、アタパルジャイト、ゼオライト及び珪藻

土等の天然鉱物質類、炭酸カルシウム、硫酸アンモニウム、硫酸ナトリウム及び 塩化カリウム等の無機塩類、合成珪酸ならびに合成珪酸塩が挙げられる。

液体担体としては、例えばエチレングリコール、プロピレングリコール及びイソプロパノール等のアルコール類、キシレン、アルキルベンゼン及びアルキルナフタレン等の芳香族炭化水素類、ブチルセロソルブ等のエーテル類、シクロヘキサノン等のケトン類、γーブチロラクトン等のエステル類、Nーメチルピロリドン及びNーオクチルピロリドン等の酸アミド類、大豆油、ナタネ油、綿実油及びヒマシ油等の植物油ならびに水が挙げられる。

これら固体及び液体担体は、単独で用いても2種以上を併用してもよい。

界面活性剤としては、例えばポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンポリオキシプロピレンブロックコポリマー、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル及びポリオキシエチレンルビタン脂肪酸エステル等のノニオン性界面活性剤、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、リグニンスルホン酸塩、アルキルスルホコハク酸塩、ナフタレンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸のホルマリン縮合物の塩、アルキルナフタレンスルホン酸のホルマリン縮合物の塩、ポリオキシエチレンアルキルアリールエーテル硫酸及び燐酸塩、ポリオキシエチレンアルキルアリールエーテル硫酸及び燐酸塩、ポリオキシエチレンスルホン酸塩等のアニオン性界面活性剤、アルキルアミン塩及びアルキル4級アンモニウム塩等のカチオン性界面活性剤ならびにアミノ酸型及びベタイン型等の両性界面活性剤が挙げられる。

これら界面活性剤の含有量は、特に限定されるものではないが、本発明の製剤 100重量部に対し、通常0.05~20重量部の範囲が望ましい。また、これら界面活性剤は、単独で用いても2種以上を併用してもよい。

次に本発明化合物を用いる場合の製剤の配合例を示す。但し本発明の配合例は、 これらのみに限定されるものではない。なお、以下の配合例において「部」は重 量部を意味する。

〔水和剤〕

本発明化合物

0.1~80部

固体担体

5~98.9部

界面活性剤

1~10部

その他

0~ 5部

その他として、例えば固結防止剤、分解防止剤等があげれらる。

[乳 剤]

本発明化合物

0.1~30部

液体担体

45~95部

界面活性剤

4. 9~15部

その他

0~10部

その他として、例えば展着剤、分解防止剤等が挙げられる。

〔懸濁剤〕

本発明化合物

0.1~70部

液体担体

15~98.89部

界面活性剤

1~12部

その他

0.01~30部

その他として、例えば凍結防止剤、増粘剤等が挙げられる。

〔顆粒水和剤〕

本発明化合物

0.1~90部

固体担体

0~98.9部

界面活性剤

1~20部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

〔液 剤〕

本発明化合物

0.01~70部

液体担体

20~99.99部

その他

0~10部

その他として、例えば凍結防止剤、展着剤等が挙げられる。

〔粒 剤〕

本発明化合物

0:01~80部

固体担体

10~99.99部

その他

0~10部

その他として、例えば結合剤、分解防止剤等が挙げられる。

〔粉 剤〕

本発明化合物

0.01~30部

固体担体

65~99.99部

その他

0~5部

その他として、例えばドリフト防止剤、分解防止剤等が挙げられる。

使用に際しては上記製剤を水で $1\sim10000$ 倍に希釈して又は希釈せずに、有効成分が $1\sim2$ クール (ha) 当たり $0.001\sim50$ kg、好ましくは $0.01\sim10$ kgになるように散布する。

製剤例

次に具体的に本発明化合物を有効成分とする農薬製剤例を示すがこれらのみに 限定されるものではない。なお、以下の配合例において「部」は重量部を意味す る。

〔配合例1〕水和剤

本発明化合物 No. 1

20部

パイロフィライト

74部

ソルポール5039

4 部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株) 商品名)

カープレックス#80D

2部

(合成含水珪酸:塩野義製薬 (株) 商品名)

以上を均一に混合粉砕して水和剤とする。

〔配合例2〕乳 剤

本発明化合物 No. 1-1

5 部

キシレン

75部

Nーメチルピロリドン

15部

ソルポール2680

5 部

(非イオン性界面活性剤とアニオン性界面活性剤との混合物:東邦化学工業 (株) 商品名)

以上を均一に混合して乳剤とする。

〔配合例3〕懸濁剤(フロアブル剤)

本発明化合物 No. 1-1

25部

アグリゾール S - 710

10部

(非イオン性界面活性剤:花王(株)商品名)

ルノックス10000

0.5部

(アニオン性界面活性剤:東邦化学工業(株)商品名)

キサンタンガム

0.2部

水

64.3部

以上を均一に混合した後、湿式粉砕して懸濁剤とする。

〔配合例4〕 顆粒水和剤(ドライフロアブル剤)

本発明化合物No. 1-1

75部

ハイテノールNE 15

5 部

(アニオン性界面活性剤:第一工業製薬(株)商品名)

バニレックスN

10部

(アニオン性界面活性剤:日本製紙(株)商品名)

カープレックス#80D

10部

(合成含水珪酸:塩野義製薬(株)商品名)

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で 造粒し、乾燥して顆粒水和剤とする。

〔配合例5〕粒 剤

本発明化合物No. 1-1

5部

ベントナイト

50部

タルク

45部

以上を均一に混合粉砕した後、少量の水を加えて攪拌混合し、押出式造粒機で 造粒し、乾燥して粒剤とする。 〔配合例6〕粉 剤

本発明化合物 No. 1-1

3部

カープレックス#80D

0.5部

(合成含水珪酸:塩野義製薬 (株) 商品名)

カオリナイト

95部

リン酸ジイソプロピル

1. 5部

以上を均一に混合粉砕して粉剤とする。

使用に際しては上記水和剤、乳剤、フロアブル剤、粒状水和剤は水で50~1 000倍に希釈して、有効成分が1ヘクタール(ha)当たり0.001~1 0 k g になるように散布する。

次に、本発明化合物の除草剤としての有用性を以下の試験例において具体的に 説明する。

〔試験例-1〕湛水条件における雑草発生前処理による除草効果試験

内径3.2cm、深さ9cmの円筒形プラスチックカップ中に沖積土壌を入れ た後、水を入れて混和し、水深4cmの湛水条件とする。上記のポットに2葉期 のイネを移植し、更にノビエ、ホタルイ、コナギの種子を混播した。ポットを2 5~30℃の温室内において植物を育成し、播種後1日目に水面へ所定の薬量に なるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目 に各種雑草に対する除草効果及びイネに及ぼす影響について下記の判定基準に従 い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。 結果を第18表に示す。

なお、各表中のNo. は実施例に記載した化合物 No. に対応し、記号は次の 意味を示す。

A:ノビエ、B:ホタルイ、C:コナギ、a:イネ

判定基準

- 5…殺草率90%以上(ほとんど完全枯死)
- 4 … 殺草率 7 0 %以上 9 0 %未満
- 3 … 殺草率 4 0 %以上 7 0 %未満
- 2 … 殺草率 2 0 %以上 4 0 %未満

1…殺草率5%以上20%未満

0…殺草率5%未満(ほとんど効果なし)

〔試験例-2〕湛水条件における雑草発生後処理による除草効果試験

内径3.2 cm、深さ9 cmの円筒形プラスチックカップ中に沖積土壌を入れた後、水を入れて混和し、水深4 cmの湛水条件とする。上記のポットにノビエ、ホタルイ、コナギの種子を混播した。ポットを25~30℃の温室内において植物を育成し、播種後14日目に水面へ所定の薬量になるように、配合例に準じて調製した本発明化合物を処理した。処理後3週間目に各種雑草に対する除草効果について試験例−1の判定基準に従い目視により調査した。結果を第19表に示す。なお、各表中のNo.は実施例に記載した化合物No.に対応し、記号は次の意味を示す。

A:ノビエ、B:ホタルイ、C:コナギ

〔試験例-3〕土壌処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土 壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブ タクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモ ロコシ、ダイズ、ワタ、コムギ、ビートの種子を混播、約1.5cm覆土した後、 所定の薬量になるように、配合例に準じて調製した本発明化合物を土壌表面へ均 ーに散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ぼ す影響について試験例-1の判定基準に従い目視により調査した。0は影響なし、 5は完全枯死を示す5段階評価である。結果を第20表に示す。

なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

D: $extbf{X}$ $extbf{E}$: $extbf{X}$: $extbf{D}$: $extbf{X}$: $extbf{E}$: $extbf{X}$: $extbf{Y}$: $extbf{D}$: $extbf{X}$: $extbf{Y}$: $extbf{X}$: $extbf{X}$

〔試験例-4〕茎葉処理による除草効果試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土

壌を入れ、メヒシバ、エノコログサ、カラスムギ、ブラックグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オオイヌノフグリ、ハコベ、トウモロコシ、ダイズ、ワタ、コムギ、ビートの種子を混播、約1.5cm覆土した後、25~30℃の温室において植物を14日間育成し、所定の薬量になるように、配合例に準じて調製した本発明化合物を茎葉部へ均一に散布した。薬液散布後3週間日に各種雑草に対する除草効果及び作物に及ぼす影響について試験例−1の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第21表に示す。

なお、各表中のNo. は実施例に記載した化合物No. に対応し、記号は次の意味を示す。

D: メヒシバ、E: エノコログサ、F: カラスムギ、G: ブラックグラス、H: イチビ、I: ブタクサ、J: アオゲイトウ、K: シロザ、L: イヌタデ、M: オイヌノフグリ、N: ハコベ、b: トウモロコシ、c: ダイズ、d: ワタ、e: コムギ、f: ビート

〔試験例-5〕土壌処理による除草効果比較試験

縦33cm、横33cm、深さ8cmのプラスティック製箱に殺菌した洪積土壌を入れ、メヒシバ、エノコログサ、シャターケーン、カップグラス、イチビ、ブタクサ、アオゲイトウ、シロザ、イヌタデ、オナモミ、アメリカアサガオ、チョウセンアサガオ、アメリカツナクサネム、トウモロコシ、ダイズ、ワタの種子を混播、約1.5cm覆土した後、所定の薬量になるように、配合例に準じて調製した本発明化合物を土壌表面へ均一に散布した。薬液散布後3週間目に各種雑草に対する除草効果及び作物に及ぼす影響について試験例-1の判定基準に従い目視により調査した。0は影響なし、5は完全枯死を示す5段階評価である。結果を第22表に示す。

なお、表中の化合物 A は本発明化合物 N o . 1 - 1 を、化合物 B は特願平 9 - 3 2 3 9 7 4 号公報に記載の化合物 N o . 2 3 3 を表わし、記号は次の意味を示す。 D : メヒシバ、E : エノコログサ、O : シャターケーン、P : カップグラス、H : イチビ、I : ブタクサ、J : アオゲイトウ、K : シロザ、L : キハマスゲ、Q : オナモミ、R : アメリカアサガオ、S : チョウセンアサガオ、T : アメリカツ

ナクサネム、b:トウモロコシ、c:ダイズ、d:ワタ

[第18表]

						
化合物	菜量			_		
No.	g / a	A 	В	C	a	
1 – 1	2. 52	5	4	5	0	
1 - 3	0.64	5	5	5	1	
1 - 4	0.64	5	5	5	1	
1 - 5	2.52	5	5	5	0	
1 - 6	2. 52	5	5	5	0.	
1 - 7	2. 52	5	5	5	0	
1 - 8	2.52	5	5	5	0	
1 - 9	2.52	5	5	5	1	
1 - 1 0	0.64	5	5	5	3	
1 - 1 1	0.64	5	5	5	3	
1-12	0.64	5	5	5	2	
1 – 1 3	2.52	5	2	5	0	
1 - 1 4	2.52	5	1	.5	0	
1 - 1 5	0.64	5	4	5	0	
1 - 16	2. 52	5	1	1	0	
1 - 1 7	2. 52	5 ·	4	4	0	
1 - 2 0	2. 52	4	3	1	0	
1 - 2 1	0.64	5	5	5	3	
1 - 2 2	0.64	5	5	5	1	
1 - 3 2	0.64	1	0	2	0	
$1 - 3 \ 3$	0.64	5	1	5	0	

表106

化合物 N o .	薬量 g / a	A	В	С	a	
1, 0.	g / a	A			a	
1 - 3 4	0.64	5	3	5	1	
1 - 3 5	0.64	3	2	3	0	
1 - 36	2. 52	4	0	4	0	
1 - 37	0.64	5	5	5	4	
1 - 39	0.64	4	0	4	0	
1 - 4 1	0.64	5	0	5	0	
1 - 4 2	2.52	5	4	5	0	
1 - 4 4	0.64	5	4	5	0	
1 - 45	0.64	5	5	5	0	
1 - 46	0.64	5	2	5	0	
1 - 47	2. 52	5	5	5	0	
1 - 4 8	0.64	5	3	5	0	
1 - 49	0.64	5	5	5	4	
1 - 50	0.64	5	3	5	0	
1 - 5 1	2.52	5	3	5	0	
1 - 5 2	0.64	3	5	5	0	
$1 - 5 \ 3$	0.64	5	5	5	0	
1 - 54	0.64	5 ·	5	5	5	
1 - 57	0.64	5	4	5	0	
1 - 5 8	2.52	5	5	5	· 1	
1 - 59	2.52	4	3	4	0	
1 - 6 0	0.64	5	5	5	0	

表107

化合物	楽量					
No.	g / a	Α	В	С	a	
1 - 6 1	2. 52	1	1	4		
1 - 62	0.64	5	5	5	0	
$1 - 6 \ 3$	2. 52	4	0	5	0	
1 - 6 4	2. 52	5	4	5	0	
1 - 65	2. 52	5	5	5	0	
1 - 6 6	2. 52	5	5	5	5 5	
1 - 67	2. 52	5	5	5	1	
1 - 6 8	2. 52	5	5	5	3	
1 - 69	2. 52	0	0	4	0	
1 - 70	2. 52	2	4	5	0	
1 - 71	2. 52	0	0	1	0	
-72	2. 52	2		0	0	,
-73	2. 52	5	5	5	1	\
- 1	2. 5 2	3	0	5	0	
- 2	0.64	5	3	5	1	
- 3	2 0	5	5	5	0	
- 4	2. 5 2	5	5	5	0	
- 5	2. 5 2	5 ·	4	5	0	
- 6	2. 52	5	4	5	0	
- 7	18.0	5	5	5	5	
- 8	2. 52	3	0	4	0	
- 9	2. 5 2	3	3	5	0	

表108

化合物	菜量					
No.	g/a	Α	В	С	a	
2 - 1 0	2. 52	2	4	5	0	
2-11	1 0	5	5	5	4	
2 - 1 2	1 0	4	3	5	0	
$2 - 1 \ 3$	1 0	5	5	5	0	
2-14	1 0	4	4	5	3	
3 - 1	2. 52	5	5	5	5	
3 - 2	2. 52	5	5	5	5	
3 - 3	2. 52	5	5	5	4	
3 - 4	2. 52	5	5	5	5	
3 - 5	2.52	5	5	5	5	
3 - 6	2.52	5	5	5	5	
3 - 7	2.52	5	5	5	5	
3 – 8	2. 52	5	5	5	5	
3 - 9	2. 52	5	5	5	4	
3 - 1 0	2. 52	5	5	.5	4	
3 - 1 1	2. 52	5	5	5	4	
3 - 1 2	2.52	5	5	5	2	
3 - 1 3	2. 52	5 ·	5	5	5	
$3 - 1 \ 4$	2. 52	5	5	5	5	
3 - 1 5	2. 52	5	5	5	5	
3 - 1 6	1 0	5	5	5	2	
3 - 1 7	1 0	5	5	5	5	

表109

化合物	薬量				
N o .	g / a	A	В	С	a
3 – 1 8	1 0	5	5	5	4
3 - 19	1 0	5	5	5	2
$3 - 2 \ 0$	1 0	5	5	5	4
3 - 2 1	1 0	5	5	5	1
$3 - 2 \ 2$	1 0	5	5	5	2
$3 - 2 \ 3$	2. 52	4	5	5	0
$3 - 2 \ 4$	2. 52	4	5	5	1
4 - 1	2 0	5	5	5	0
4 - 2	1 0	5	5	5	5
4 - 3	2. 52	3	0	3	1
4 - 4	1 0	3	1	2	2
5 – 1	1 0	5	4	5	3
6 - 1	2. 5 2	2	2	5	0
6 - 2	2. 52	2	3	5	0
6 - 3	1 0	5	1	5	1
6 - 4	1 0	5	3	5	4
5 - 5	1 0	1	0	1	1
7 — 1	1 0	1 .	3	5	2

[第19表]

					,
化合物	菜量				
No.	g/a	Α	В	С	
1 – 1	2. 52	0	0	5	
1 – 3	0.64	5	5	5	
1 - 4	0.64	5	5	5	
1 - 6	2.52	5	1	4	
1 - 7	2. 52	5	3	4	
1 - 8	2.52	5	5	5	
1 - 9	2. 52	5	0	5	
1 - 1 0	0.64	5	0	5	
$1 - 1 \ 1$	0.64	5	0	4	
1 - 1 2	0.64	5	0	4	
1 - 1 3	2. 52	5	4	5	
$1 - 1 \ 4$	2.52	2	2	3	
1 - 1 5	0.64	4	3	3	
1 - 17	2. 52	2	1	1	
1 - 2 1	0.64	5	5	5	
1 - 2 2	0.64	5	3	5	
$1 - 3 \ 4$	0.64	4 .	3	5	
1 - 3 5	0.64	3	0	0	
1 - 3 7	0.64	5	3	5	
1 - 4 1	2. 52	5	4	5	
1 - 4 4	2. 52	4	2	3	
1 - 4 5	0.64	5	3	4	

表111

化合物	楽量			
N o .	g / a	Α	В	С
1 - 4 6	2. 52	4	3	3
1 - 47	2. 52	5	3	4
1 - 4 8	2.52	5	4	5
1 - 49	0.64	5	4	4
1 - 50	2. 52	3	0	0
1 - 51	2. 52	3	0	0
$1 - 5 \ 2$	2. 52	3	3	0
$1 - 5 \ 3$	0.64	5	4	5
1 - 5 4	0.64	5	3	5
1 - 57	2. 52	4	_	4
1 - 60	2.52	4	_	3
1 - 6 2	2. 52	1		4
1 - 6 4	2.52	2		1
1 - 65	2. 52	5	_	4
1 - 6 6	2. 52	5	_	. 5
1 - 67	2. 52	5	3	4
1 - 6 8	2.52	5	3	4
$1 - 7 \ 3$	1 0	5 ·	4	4
2 - 1	2. 52	0	0	5
2 - 2	2.52	5	3	5
2 - 3	2 0	5	3	5
2 - 4	2. 52	3	_	5

表112

れ合物 薬量 No. g/a A B C 2-5 10 5 4 5 2-6 10 4 2 5 2-7 17.96 5 2 4 2-8 10 3 0 3 2-9 2.52 0 0 1 2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 4 5 3-3 2.52 5 4 5 3-6 2.52 5 4 5 3-7 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 4 3-9 2.52 5 4 3-9 2.52 5 5 5 3-10 2.52 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 3-12 2.52 5 4 3-13 2.52 5 4 5 3-13 2.52 5 5 5				·	
2-5 10 5 4 5 2-6 10 4 2 5 2-7 17.96 5 2 4 2-8 10 3 0 3 2-9 2.52 0 0 1 2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-2 2.52 5 4 5 3-4 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 4 4 3-5 2.52 5 4 4 3-7 2.52 5 4 4 <td< td=""><td>化合物</td><td>菜量</td><td></td><td></td><td></td></td<>	化合物	菜量			
2-6 10 4 2 5 2-7 17.96 5 2 4 2-8 10 3 0 3 2-9 2.52 0 0 1 2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-2 2.52 5 4 5 3-4 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 <	No.	g/a	Α	В	С
2-6 10 4 2 5 2-7 17.96 5 2 4 2-8 10 3 0 3 2-9 2.52 0 0 1 2-11 10 0 0 2 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 3 5 3-4 2.52 5 4 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4	2 - 5	1 0	5	4	 5
2-7 17.96 5 2 4 2-8 10 3 0 3 2-9 2.52 0 0 1 2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 3 5 3-5 2.52 5 4 5 3-6 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	2 - 6	1 0	4	2	
2-9 2.52 0 0 1 2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 4 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 4 4 3-12 2.52 5 4 5	2 - 7	17.96	5	2	
2-11 10 5 3 4 2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 4 4 3-12 2.52 5 4 5	2 - 8	1 0	3	0	3
2-12 10 0 0 2 2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 4 4 3-12 2.52 5 4 5	2 - 9	2. 52	0	0	1
2-13 10 0 0 3 2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 4 3-12 2.52 5 4 5	2 - 1 1	1 0	5	3	4
2-14 10 0 4 3 3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 5 3-10 2.52 5 4 4 3-12 2.52 5 4 5	$2 - 1 \ 2$	1 0	0	0	2
3-1 2.52 5 5 5 3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	$2 - 1 \ 3$	1 0	0	0	3
3-2 2.52 5 3 5 3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 5 3-12 2.52 5 4 5	$2 - 1 \ 4$	1 0	0	4	3
3-3 2.52 5 4 5 3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	3 – 1	2. 52	5	5	5
3-4 2.52 5 4 5 3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	3 - 2	2. 52	5	3	5
3-5 2.52 5 3 5 3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	3 - 3	2. 52	5	4	5
3-6 2.52 5 4 4 3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	3 - 4	2. 5 2	5	4	5
3-7 2.52 5 4 4 3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5 3-13 2.52 5 4 5	3 - 5	2. 5 2	5	3	5
3-8 2.52 5 3 4 3-9 2.52 5 5 4 3-10 2.52 5 5 5 3-11 2.52 5 4 4 3-12 2.52 5 4 5	3 – 6	2. 52	5	4	4
3-9 2. 5 2 5 · 5 4 3 - 1 0 2. 5 2 5 4 4 4 5 3 - 1 2 2. 5 2 5 4 5 5 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	3 - 7	2. 52	5	4	4
3-10 2. 52 5 5 5 5 3 -11 2. 52 5 4 5 5 3 -12 2. 52 5 4 5	3 – 8	2. 5 2	5	3	4
3-11 2.52 5 4 4 3-12 2.52 5 4 5		2.52	5 ·	5	4
3-12 2.52 5 4 5	$3 - 1 \ 0$	2.52	5	5	5
2-12	3 - 1 1	2.52	5	4	4
3-13 2. 52 5 2	3 - 1 2	2.52	5	4	5
- , , , , , , , , , , , , , , , , , , ,	3 - 1 3	2. 52	5	3	5

表113

						
化合物	薬量					
No.	g/a	Α	В	С		
3-14	2. 52	5	3	5		
3 - 1 5	2.52	5	4	5		
3 - 1 6	1 0	5	4	5		
3 - 17	1 0	5	4	5		
3 - 1 8	1 0	5	4	5		
3 - 19	1 0	5	5	5		
3 - 20	1 0	5	5	5		
3 - 2 1	1 0	5	5	4		
$3 - 2 \ 2$	1 0	5	5	4		
$3 - 2 \ 3$	2.52	3	2	3		
$3 - 2 \ 4$	2.52	2	2	4		
4 - 1	2 0	5	4	5		
4 - 2	1 0	5	5	5		
5 – 1	1 0	4	4	4		
6 - 1	1 0	1	0	3		
6 - 2	1 0	0	0	4		
6 - 3	1 0	0	0	3		
6 – 4	1 0	3 .	0	3		
7 - 1	1 0	1	2	2		

[第20表]

化合物 No.	薬量 g/a	D	E	F	G	Н	I	J	K	L	М	N	b	С	d	e	f
1-1	6.3	5	5	0	l	5	5	0	5	3	0	0	1	0	0	0	1
1-3	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
1-4	1.6	5	5	5	5	5	5	5	5	5	5	5	4	0	0	5	5
1-5	6.3	5	5	5	5	0	4	2	5	5	5	5	0	0	0	4	4
1-6	6.3	5	5	5	5	2	5	5	5	5	5	5	1	0	0	4	5
1-7	6.3	5	5	2	5	5	5	5	5	5	5	5	4	1	0	1	5
1-8	6.3	5	5	3	-	4	5	5	5	5	-	5	1	0	3	1	5
1-9	1.6	5	5	1	1	5	4	5	5	5	4	5	0	1	1	0	5
1-10	1.6	5	5	1	2	5	5	5	5	5	4	5	0	0	0	0	5
1-11	1.6	5	5	0	3	5	5	5	5	5	5	4	0	0	0	0	.5
1-12	1.6	5	5	-	1	5	4	5	5	5	5	0	0	0	0	0	5
1-13	6.3	0	0	0	0	2	0	4	4	0	0	-	0	0	0	0	0
1-14	6.3	0	4	0	0	0	0	3	5	0	5	4	0	0	0	0	5
1-15	6.3	5	5	0	0	4	4	5	5	5	0	0	. 0	0	0.	0	1
1-16	6.3	5	4	1	1	0	2	5	5	5	1	5	2	1	0	0	5
1-17	6.3	2	0	0	0	0	4	3	4	0	3	5	0	1	0	0	5
1-19	6.3	0	0	0	0	0	0	0 .	2	4	-	5	0	0	0	0	5
1-20	6.3	0	0	0	0	0	0	4	5	3	0	1	0	0	0	0	0
1-21	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
1-22	1.6	5	5	_	5	5	4	5	5	5	5	5	2	0	0	0	5
1-33	6.3	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0
1-34	6.3	5	5	3	2	5	4	4	5	5	0	5	3	1	1	0	5

表	1	1	5
~	•	-	v

化合物 N o .			D	E	F	G	Н	Ι	J	К	L	М	N	b	(d	e	f
1–35	6.3	4	4 4	4]	l]	. 5	5 5	5 2	2 (5	1	5	5	0	0	2		2	
1-36	6.3	() (5 () (0	0) () () (0	0	0	0	0	0	0		
1-37	1.6		5 5	5 3	5	5 5	5	5 5	5 5	5 ;	5	5	5	2	0	0	0	5	
1-38	6.3	() -		_	0	0	_				_	5	0	0	0	0	0	
1-39	6.3	0) 2	? –	-	4	4	5	_	. 5	5	1	1	0	0	0	0	5	
1-40	25	1	2	-	0	0	4	0	_	. 5	5 ;	5 ;	5 (0	0	0	0	5	
1-41	1.6	2	5	0	-	5	4	5	_	5	; ;	5 5	5 .	l	0	0	0	5	
1-42	6.3	0	2	5	0	2	3	5	_	0	5	5 5	5 ()	0	0	0	5	
1-44	6.3	3	5	0	2	5	5	5	_	5	3	3 5	5 () (0	0	0	3	
1-45	6.3	4	5	3	4	5	5	5	-	5	5	5 5	1	. ()	0	0	5	
1-46	1.6	5	5	0	0	3	5	5	-	5	5	. 5	0) ()	0	0	0	
1-47	6.3	5	5	0	4	0	5	5	_	5	5	0	0	()	0	0	0	
1-48	6.3	5	5	4	4	1	5	4	-	5	5	5	0	()	0	0	5	
1-49	1.6	5	5	5	5	5	5	5	5	5	5	5	5	3	}	2	5	5	
1-50	6.3	0	1	2	5	0	2	2	0	-	5	5	0	0)	0	0	5	
1-51	6.3	3	4	0	0	0	0	2	5	_	0	5	0	0		0	0	0	
1–52	6.3	1	5	0	-	0	2	4	5	5	0	0	0	0	(0	0	0	
1-53	1.6	5	5	1	-	5	2	5 ·	5	5	3	0	4	0	()	0	2	
1-54	1.6	5	5	4	5	5	4	5	5	3	3	5	3	1	2	2	0	5	
1-56	6.3	1	4	0	0	0	0	0	5	5	0	0	0	0	(0	0	
1-57	6.3	4	-	2	5	5	5	5	5	5	5	5	4	0]		1	5	
1-58	6.3	4	3	0	3	1	3	5	5	5	4	5	0	0	0			5	

		_
AY.		ก

_																		
	化合物	菜量	_	_	_			_	_		_	••		_		-		
	No.	g/a	D	E	F	G	H	I	J	K	L	M	N 	b	С	d	е	f
	1-59	6.3	2	5	0	0	1	0	2	5	5	0	5	2	0	0	0	5
	1-60	6.3	2	1	3	5	4	_	5	5	5	1	4	0	0	0	0	5
	1-61	6.3	0	0	0	0	0	1	3	3	5	2	1	0	0	0	0	0
	1-62	6.3	5	5	4	0	2	2	4	5	_	5	5	0	0	0	0	5
	1-63	6.3	5	5	0	4	3	2	5	5	5	5	5	2	0	0	1	5
	1-64	6.3	5	5	1	4	5	4	4	5	5	5	4	1	0	0	1	5
	1-65	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	5	5
	1-66	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	5
	1-67	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	5	5
	1-68	6.3	5	5	5	5	5	5	5	5	5	5	5	5	3	3	4	5
	1-69	6.3	0	0	0	0	1	0	0	-	0	0	0	0	0	0	0	0
	1-70	6.3	0	0	0	0	1	1	0	0	3	0	0	0	0	0	0	0
	1-73	25	5	5	l	4	5	4	5	5	5	5	4	3	1	3	0	5
	2-1	6.3	1	1	1	0	5	5	0	5	3	4	4	0	0	0	0	5
	2-2	6.3	4	5	0	4	5	5	4	5	0	5	5	0	0	0	0	3
	2-3	50	5	5	5	5	5	5	5	5	5	5	5	4	0	1	1	5
	2-4	6.3	4	5	1	2	5	5	5	-	4	5	5	3	0	2	0	5
	2-5	6.3	3	4	1	1	5	5	5.	-	5	5	5	0	0	4	0	4
	2-6	6.3	0	-	2	1	1	2	0		0	5	5	0	0	0	0	5
	2-7	44.9	5	5	5	5	5	5	5	5	5	5	5	4	0	0	4	5
	2-8	6.3	0	2	-	0	2	5	2	4	_	5	5	0	0	0		5
	2-9	6.3	0	2	0	0	1	3	2	5	5	2	4	0	0	0	0	5

主	1	1	7
坔	1	1	- (

化合物 N o .	n 薬量 g/a		D	Е	F	G	Н	Ι	J	K]	L	М	N	b	С	ď		e f
2-10	6.3	() () () _	. ()]	. ()	5	2	0	1) (0	0	0	0
2-11	25	4	1 4	3	3	5	5 5	5 5	5 !	5	5	5	4	. 5	5 2	2 :	2	3	5
2-12	25	2	2 2	0	2	5	4	. 4		4	4	5	5	2	: () (0	1	5
2-13	25	4	4	0	0	5	5	5	5 5	5	4	5	5	3	() :	1	2	5
2-14	25	4	1	0	0	5	3	4	. 5	5	5	4	4	0	C) ()	0	2
3-1	1.6	5	5	3	5	5	5	5	. 5	5	5	5	5	5	0) ()	1	5
3–2	6.3	5	5	2	4	5	5	3	5	5	5	5	5	3	2	3	}	2	5
3–3	6.3	5	5	5	5	5	5	5	5	•	5	5	5	5	4	5	,	5	5
3-4	6.3	5	5	3	5	5	5	5	5	,	5	5	5	5	4	5		3	5
3–5	6.3	5	5	1	2	5	5	5	5		5	5	5	5	1	2	١.	_	5
3-6	6.3	5	5	5	5	5	5	5	5		5	5	5	5	3	3	į	5	5
3-7	6.3	5	5	5	5	5	5	5	5	į	5	5	5	5	4	5	Ę	5	5
3-8	6.3	5	5	1	1	5	5	5	5	į	5	3	4	5	1	1]	i	5
3–9	6.3	4	4	_	2	4	3	5	5	4	1	5	5	0	0	0	()	5
3-10	6.3	5	5	2	5	5	5	5	5	Ę	5	5	5	.1	0	3	. 1	l	5
3–11	6.3	5	4	5	5	5	5	4	5	4	ļ	5	4	2	0	1	4		5
3–12	6.3	4	4	4	5	5	4	3	5	5	;	5	5	3	1	2	4		5
3-13	6.3	5	5	4	5	5	5	5	5	5	,	5	5	5	2	3	3		5
3–14	6.3	5	5	5	4	5	5	5	5	5		5	5	5	1	3	3		5
3-15	6.3	5	5	4	5	5	5	4	5	5		5	5	5	3	5	3		5
3-16	25	5	5	2	4	5	5	5	5	5	ļ	5	5	4	1	3	1		5
3-17	25	5	5	4	3	5	5	5	5	5		5		1	2	5	2		5

表	1	1	Я
ユヘ			·O

化合物	薬量					-											
No.	g/a		D	E	F	G	H	I	J	K	L	M	N	b	С	d	e f
3-18	25		5 5	5 3	3 2	? 5	5	5 5	5 5	5 5	5 5	5 5	5 3	3 2	2 4	1 3	5
3-19	25	5	5 5	5 5	4	5	5	4	5	, _	. 5	5 5	5 4	. () 2	? 4	
3-20	25	5	5 5	4	4	5	5	5	5		- 5	- 5	5 4)]	4	
3-21	2 5	5	5	4	4	5	5	5	5	5	5	5	4	1	1		5
3-22	25	5	5	4	5	5	5	5	5	5	5	5	4	1	1	_	5
3-23	6.3	4	3	0	0	5	2	4	4	4	1	1	0				5
3-24	6.3	4	1	0	0	5	3	5	5	5	1	1	0		0		2
4-1	50	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5	5
4-2	25 ·	5	5	5	5	5	5	5	_	5	5	5	5	2	5	5	5
4-3	6.3	1	1	0	0	3	2	1	5	_	1	2	0	1	1	0	2
4-4	25	4	3	0	0	2	2	0	4	5	3	4	0	0	0	0	4
5-1	25	4	4	1	2	5	5	4	5	4	5	5	2	0	0	1	5
6-1	6.3	2	1	0	0	5	1	3	5	_	1	5	0	0	0	0	5
6-2	6.3	0	0	0	0	3	5	1	5	1	5	5	0	0	0	0	5
6-3	25	5	4	1	4	5	4	4	5	5	5	5	1	1	1	0	5
6-4	25	5	4	0	3	5	5	5	5	5	5	4	4	1	0	0	5
6-5	25	2	2	0	0	4	3	3	4	0	2	5	0	0	0	0	5
7-1	25	1	0	0	0	3	4	3 ·		_	4	4	0	0	0	0	2

[第21表]

						_											
化合 N o			D	E	F	G	Н	I	J	K	L	М	N	b	С	d	e f
1-1	6.3		1 (5]	 l 2) [
1-3	1.6																-
1-4	1.6	5														5 5	-
1-5	6.3	5															_
1-6	6.3	5									_			_			
1-7	6.3	4														_	•
1-8	6.3	4	4											3			_
1-9	1.6	5	5	4	4	5											_
1-10	1.6	5	5	3	4	5	5	5	5			5	1	3			5
1-11	1.6	5	5	2	4	5	5	5	5	5	5	5	1	2		0	5
1-12	1.6	5	5	5	5	5	5	5	5	5	5	5	2	3	5	2	5
1-13	6.3	4	4	1	2	5	5	5	5	5	5	5	0	2	5	0	5
1-14	6.3	3	5	1	3	5	5	5	5	5	5	5	2	2	4	1	5
1-15	6.3	4	4	1	.1	5	3	3	5	3	2	1	1	0	0	0	0
1-16	6.3	0	0	3	2	2	3	3	5	3	5	5	1	0	0	1	2
1-17	6.3	0	0	1	3	0	3	3	5	2	5	5	0	0	0	0	5
1-18	6.3	0	0	1	1	3	0	0 .	2	_	4	5	0	0	0	0	1
1-19	6.3	0	0	1	2	0	1	2	2	1	0	5	0	0	0	0	1
1-20	1.6	1	2	1	1	4	3	4	4	4	5	5	2	0	0	0	3
1-21	1.6	5	5	5	5	5	5	5	5	5	5	5	5	2	4	2	3
1-22	1.6	5	5	1	2	5	5	5	5	5	5	5	1	1	3	0	3
1-32	6.3	0	0	0	0	0	0	0	0	0	0	3	0	1	0	0	2

化合物 N o .	薬量 g/a	D	E	F	G	Н	Ι	J	K	L	М	N	b	c	d	e	: f
1-33	6.3	4	4	1	1	5	5	3	5	2	3	5	2	0	0	_	0
1-34	1.6	5	5	1	1	5	5	4	5	5	5	4	2	4	5	_	4
1-35	6.3	4	4	1	1	5	5	2	5	1	5	.5	0	0	2	_	2
1-36	6.3	1	1	1	2	5	5	4	5	3	5	5	0	0	1	0	1
1-37	1.6	5	5	5	5	5	5	5	5	5	5	5	2	5	5	0	5
1-38	1.6	2	2	2	1	5	2	3	5	3	5	5	0	0	5	0	1
1-39	6.3	2	2	4	2	5	5	5		4	5	5	l	3	2	0	0
1-40	6.3	0	1	1	4	5	5	5	-	2	5	4	0	0	4	0	1
1-41	1.6	5	5	4	4	5	5	5	-	5	5	5	3	5	5	3	5
1-42	6.3	2	3	1	4	5	5	5	-	5	5	5	0	-	1	0	2
1-43	6.3	0	0	0	0	4	4	1	-	2	0	1	0	0	0	0	1
1-44	6.3	2	5	2	2	5	5	4	-	5	-	4	1	1	2	1	0
1-45	1.6	2	3	2	0	5	5	5	-	5	5	5	0	0	5	0	1
1-46	6.3	5	5	2	2	5	5	2	-	5	5	2	1	1	1	-	1
1-47	1.6	3	5	2	3	5	4	4	-	5	5	2	.0	1	1	. 0	1
1-48	1.6	4	5	2	3	5	5	4	-	5	4	3	0	1	5	0	4
1-49	1.6	5	5	5	5	5	5	5	5	5	5	5	4	5	5	1	5
1-50	1.6	1	5	2	2	4	5	5 ·	5	2	5	5	0	0	2	0	5
1-51	1.6	2	2	0	1	4	5	4	4	4	5	5	0	0	0	0	0
1-52	6.3	1	1	0	0	5	5	4	5	-	3	5	0	1	1	0	0
1-53	1.6	4	4	1	3	5	-	4	5	5	5	5	1	1	2	0	1
1-54	1.6	5	5	3	5	5	5	5	5	5	5	5	2	1	5	0	2

#	3	1	1
বহ	1		7

化合物																			
No.	g/a 		D	E	F	G	H 	I	J	K	L	M	N	l	b	С	d	e f	
1-55	6.3	() ()]	.]	5	5 2	? 4	ļ !	5 .	2	4	4	1	0	2	: 0	2	
1-56	6.3	2	2 2	2 0	0	0)]	. 2	? :	5 (0	_	0	0	0	0	0	5	
1-57	1.6	2	? -	- 0	3	5	5	5 5	5 5	5 !	5	5	5	0	1	4	0	5	
1-58	1.6	1	. 0	4	5	5	5	5	5	5 5	5	5	5	0	0	5	0	5	
1-59	6.3	4	5	3	0	5	5	5	5	5 5	5 .	5	5	2	1	5	0	5	
1-60	6.3	1	-	1	2	5	5	5	5	5	5 !	5	5	2	0	5	0	5	
1-61	6.3	1	1	0	0	0	1	2	5	1		1 .	3	0	0	0	0	2	
1-62	1.6	2	-	2	0	5	3	5	5	5		5 !	5	0	1	5	0	5	
1-63	6.3	4	4	2	5	5	5	2	5	3	5	5 5	5 .	1	1	1	1	5	
1-64	6.3	5	5	1	4	5	4	4	5	5	5	, 4	£ ;	l	0	0	1	5	
1-65	6.3	5	5	5	5	5	5	5	5	5	5	, ,	5 5	5	4	5	5	5	
1-66	6.3	5	5	5	5	5	5	5	5	5	5		5 5	5	5	5	5	5	
1-67	6.3	5	5	5	5	5	5	5	5	5	5	5	; 5	;	4	5	5	5	
1-68	6.3	5	5	5	5	5	5	5	5	5	5	5	5		4	5	5	5	
1-69	6.3	0	0	0	0	0	1	0	4	0	0	0	0	,	0	0	0	0	
1-70	6.3	0	0	0	0	2	2	1	2	1	1	4	0		0	0	0	1	
1-73	25	5	5	l	4	5	4	5	5	5	5	4	3		1	3	0	5	
2-1	1.6	4	4	1	1	5	5	4 ·	5	4	5	5	2		2	3	0	2	
2-2	6.3	4	4	3	3	5	5	4		5		5				5	1	5	
2-3	50	5	5	5	5	5	5	5	5	5	5	5	1			4		2	
2-4	6.3	4	5	2	3	5	5		_	5	5		1			5		2	
2-5	6.3	1	4	2	3	5	5	5	5		5	5						5	

表122

化合物 N o .	東量 g/a		D	Е	F	G	Н	I	J	K	L	М	N	b	с	d	e f
2-6	6.3		3 4	1	1	- 5		3	-	3	5	4	. 0)]		 5 0	3
2-7	44.9	5	5 5	5	5	5	5	5	5	5	5	5	4	. 2			
2-8	6.3	2	2	1	2	4	5	2	5	5	2	5	0	0	0	0	
2-9	6.3	2	5	1	0	5	5	4	5	5	2	5	0	0	1	0	
2-10	6.3	1	3	0	3	4	5	3	5	5	5	5	0	0	2	0	5
2-11	25	3	4	4	5	5	5	4	5	5	5	5	4	2	2	3	5
2-12	25	1	1	1	1	5	5	2	5	4	4	5	1	1	2	1	5
2-13	25	2	1	1	1	5	5	3	5	4	4	5	3	3	2	1	5
2-14	25	3	2	0	0	5	4	3	5	2	4	5	0	2	2	0	5
3–1	1.6	5	5	5	5	5	5	5	5	5	5	5	5	5	5	2	5
3-2	6.3	5	5	2	4	5	5	3	. 5	5	5	5	3	2	3	2	5
3–3	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3–4	6.3	5	5	4	5	5	5	5	5	5	5	5	5	5	5	3	5
3–5	6.3	5	5	2	3	5	5	2	5	3	5	5	3	2	3	2	5
3–6	6.3	5	5	5	.5	5	5	3	5	5	5	5	4	4	3	4	5
3-7	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	4	4	5
3-8	6.3	4	4	1	4	5	5	3	5	5	3	5	4	2	2	1	5
3–9	6.3	5	5	2	.1	5	5	5 ·	5	5	5	5	2	2	5	0	5
3-10	6.3	4	4	3	3	5	5	5	5	5	5	5	3	4	5	2	5
3-11	6.3	5	5	5	5	5	5	5	5	5	5	5	5	4	5	5	5
3-12	6.3	5	5	5	5	5	5	5	5	5	5	5	4	4	5	5	5
3-13	6.3	5	5	4	5	5	5	5	5	5	5	5	5	4	5	4	5

化合物 N o .			D	E	F	G	Н	I	J	К	L	М	ì	1	b	С	d	e	f
3-14	6.3	,	5	5 4	4 !	5 5	5 (5	 5	5	5	5	5	4		 !!	5	4 !	 -5
3-15	6.3	;	5	5	5 5	5 5	5 5	5 :	5	5	5	5	5	5	5				5
3-16	25	;	5 :	5 4	1 3	3 5	5 4		1 !	5	5	5	5	4				·	
3-17	25	Ę	5 5	5 2	? 4	. 5	5 5	5 5	5	5	5	5	5	4	5				
3–18	25	5	5 5	5 5	5 5	5 5	5	5 5	5 5	5	5	5	5	3	5	_			
3-19	25	5	5 5	5 4	3	5	5	4	. 5	5 ;	5	5	5	4	3				
3-20	25	5	5 5	4	4	5	5	5	5 5	; ;	5	5	5	4	2	_		_	
3-21	25	5	5	4	4	5	5	4	5		5 ;	5	5	4	4	4			
3-22	25	5	5	5	5	5	5	4	5	5	5 ;	5	5	5	3	5		-	
3-23	6.3	3	3	0	0	5	3	4	5	3	} ;	l .	4	1	1	1	0	5	
3-24	6.3	3	2	0	0	5	3	4	4	5	5 2	2 :	2	1	1	1	0	5	
4-1	50	5	5	5	5	5	5	5	5	5	. 5	; ;	5	5	5	5	5	5	
4-2	25	5	5	5	5	5	5	5	_	5	5	; ;	5	5	5	5	4	5	
4-3	6.3	2	1	0	1	5	2	3	5	_	5		<u>;</u>	1	3	5	1	4	
4-4	25	4	2	0	1	5	3	3	5	4	5	5	; .;	2	2	4	1	5	
5–1 .	25	5	4	1	4	5	5	5	5	5	5	5		1	3	5	1	5	
6-1	6.3	1	1	1	2	5	5	5	5	_	5	5		ì	3	5	1	5	
6-2	6.3	1	1	1	3	5	5	3 ·	5	5	5	5	2	2	3	5	1		
6-3	25	4	4	2	4	5	4	4	5	4	5	5]		2	5	0	5	
6-4	25	4	4	2	5	5	5	5	5	5	5	5	2)	3	5	1	5	
6-5	25	1	l	0	0	4	4	1	4	1	1	5	l		2	2	0	5	
7-1	25	2	1	0	0	5	5	4	5	3	5	5	0			1	1	5	

[第22表]

表124

化合物 薬量

No. g/a DEOPHIJKLQRSTbcd

A 0.4 5 5 5 5 5 0 0 5 0 0 0 0 5 1 0 0

B 0.4 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4

請求の範囲

1. 式(I):

$$Z_{2} \xrightarrow{Z_{1}} X_{N} \xrightarrow{R^{3}} R^{4}$$

$$Z_{3} \xrightarrow{Z_{4}} X$$
(I)

[式中、 $=Z^{1}\sim Z^{4}=$ は $=C(R^{2})-C(R^{22})=N-N=$ 、 $=C(R^{2})-N$ $=C(R^{1})-C(R^{23})=$ 、 $=C(R^{2})-N(\to O)=C(R^{1})-C(R^{23})=$ 、 $=C(R^{2})-N=C(R^{1})-N=$ 、 $=C(R^{2})-N=N-C(R^{23})=$ 、 $=N-N=C(R^{1})-C(R^{23})=$ 又は $=N-C(R^{2})=N-C(R^{23})=$ を表わし、

R¹, R², R²²及びR²³は同一でも相異なっていてもよく、水素原子、Cı~C 。アルキル基、C₃~C。シクロアルキル基、C₁~C。ハロアルキル基、C₃~C。ハ ロシクロアルキル基、C2~C6アルケニル基、C2~C6ハロアルケニル基、C2~ C₆アルキニル基、C₂~C₆ハロアルキニル基、Aで置換されていてもよいフェニ ル基、フェニル基がAで置換されていてもよいフェニルCı∼Cィアルキル基、フ ェニル基がAで置換されていてもよいフェニルC2~C4アルケニル基、フェニル 基がAで置換されていてもよいフェニルC₂~C₁アルキニル基、ハロゲン原子、 シアノ基、Cı~C6アルコキシCı~C6アルキル基、Cı~C6ハロアルコキシC ı~C。アルキル基、Cı~C。アルコキシCı~C。ハロアルキル基、Cı~C。ハロ アルコキシCı~C6ハロアルキル基、Cı~C6アルキルチオCı~C6アルキル基、 $C_1 \sim C_6$ ハロアルキルチオ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ ハロアルキル基、Cı~CcハロアルキルチオCı~Ccハロアルキル基、一CO2R ⁷基、- (C (R⁵) R⁶) - C O ₂ R ⁷基、- (C (R⁵) R⁶) ₂ - C O ₂ R ⁷基、-(C(R⁵) R⁶) 3-CO2R⁷基、-(C(R⁵) R⁶) 1-CO2R⁷基、-CN基、 - (C (R⁵) R⁶) - C N基、- (C (R⁵) R⁶) 2-C N基、- (C (R⁵) R 6) 3-CN基、- (C(R5) R6) 1-CN基、-N(R8) R9基、-(C(R

 5) R^6) -N (R^8) R^9 基、- (C (R^5) R^6) $_2$ -N (R^8) R^9 基、- (C (R^8) R^9 基、- (C (R^8) R^9 基、- (R^8) R^9 R^9

R³は水素原子、Cı~C₆アルキル基、フェニル基がAで置換されていても良いフェニルCı~C₄アルキル基、Cı~C₆アルキルカルボニル基、フェニル基がAで置換されていてもよいベンゾイル基、C₁~C₆アルコキシC₁~C₆アルキル基又はC₁~C₆アルコキシカルボニル基を表わし、

Aは水素原子、ハロゲン原子、ニトロ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、 $C_1 \sim C_4$ アルキルカルボニルアミノ基、 $C_1 \sim C_4$ アルコキシカルボニルアミノ基、 $C_1 \sim C_6$ アルキルチオ基及び $C_1 \sim C_6$ アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

 R^4 は水素原子、ハロゲン原子、ニトロ基、シアノ基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルコキシカルボニル基、 $C_1 \sim C_6$ アルキルカルボニル基、フェニル基、フェノキシ基、ベンジル基、 $C_1 \sim C_4$ アルキルカルボニルアミノ基、 $C_1 \sim C_4$ アルキシカルボニルアミノ基、 $C_1 \sim C_6$ アルキルチオ基及び $C_1 \sim C_6$ アルキルスルホニル基から選ばれる同一又は相異なった1以上の基を表わし、

R⁵及びR⁶は同一でも相異なっていてもよく、水素原子又はC₁~C₄アルキル基を表わし、

 R^7 は水素原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ シクロアルキル基を表わし、 R^8 及び R^9 は同一でも相異なっていてもよく、水素原子、 $C_1 \sim C_{10}$ アルキル基、 $C_2 \sim C_{10}$ アルケニル基、 $C_2 \sim C_{10}$ アルキニル基、 $C_1 \sim C_{10}$ ハロアルキル基、 $C_2 \sim C_{10}$ ハロアルキニル基、 $C_3 \sim C_{10}$ シクロアルキル基、 $C_3 \sim C_{10}$ ンクロアルキル基、 $C_3 \sim C_{10}$ ハロシクロアルキル基、 $C_3 \sim C_1 \sim C_6$ アルキル基、

 $C_1 \sim C_6 r$ ルキルチオ $C_1 \sim C_6 r$ ルキル基、 $C_1 \sim C_4 r$ ルキルカルボニル基、 $C_1 \sim C_4 r$ ルコキシカルボニル基、フェニル基がAで置換されていてもよいフェニル $C_1 \sim C_4 r$ ルキルカルボニル基、シアノ基、フェニル基がAで置換されていてもよいフェニル $C_1 \sim C_4 r$ ルキル基、フェニル基がAで置換されていてもよいフェニル $C_1 \sim C_4 r$ ルケニル基、フェニル基がAで置換されていてもよいフェニル $C_1 \sim C_4 r$ ルキニル基、 $C_1 \sim C_4 r$ ルキルスルホニル基又は $C_1 \sim C_4 r$ ルキルスルホニル基又は $C_1 \sim C_4 r$ ルキルスルファモイル基を表わし、

R⁸及びR⁹は結合する窒素原子とともに3~9員環を形成していてもよく、1若しくは2の酸素原子又は1若しくは2の硫黄原子を含む5~8員環を形成していてもよく、

しは酸素原子又はイオウ原子を表わし、

 R^{10} は水素原子、 $C_1 \sim C_6 7$ ルキル基、 $C_1 \sim C_6 \Lambda$ ロアルキル基、 $C_1 \sim C_6 \lambda$ クロアルキル基、 $C_2 \sim C_6 7$ ルケニル基、 $C_2 \sim C_6 7$ ルケニル基、 $C_2 \sim C_6 \Lambda$ ロアルケニル基、 $C_2 \sim C_6 7$ ルキル基、 $C_1 \sim C_4 7$ ルキル基、 C_1

Xは $-CO-L-R^{11}$ 基、-C (=L) N (R^{12}) R^{13} 基、-C (=L) -N (R^{12}) $-OR^{13}$ 基、-C (=L) N (R^{14}) -N (R^{12}) R^{13} 基、-C (=L) N (R^{15}) $-CO_2R^{18}$ 基、-C (=L) N (R^{15}) $-(C(R^{16})R^{17})-CO_2R^{18}$ 基、-C (=L) N (R^{15}) $-(C(R^{16})R^{17})_2-CO_2R^{18}$ 基、-C (=L) N (R^{15}) $-(C(R^{16})R^{17})_3-CO_2R^{18}$ 基、 $-C(R^{19})=N-O-R^{20}$ 基、-C (=L) NH-G基、シアノ基、 $-CO-R^{19}$ 基、J (a) 、J (b) 、J (c) 又は J (d)

を表わし、

R¹¹は水素原子、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、C₃~C₆シ クロアルキル基、C₂~C₆アルケニル基、C₂~C₆ハロアルケニル基、C₂~C₆ アルキニル基、C₂~C₆ハロアルキニル基、Aで置換されていてもよいフェニル 基、フェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基又はC₁~C₆アルコキシカルボニルC₁~C₄アルキル基を表わし、

R¹², R¹³, R¹⁴及びR¹⁵は同一でも相異なっていてもよく、水素原子、C₁~C₁₀アルキル基、C₂~C₁₀アルケニル基、C₂~C₁₀アルキニル基、C₁~C₁₀ハロアルケニル基、C₂~C₁₀ハロアルキニル基、C₁~C₁₀ハロアルキル基、C₂~C₁₀ハロアルキニル基、C₃~C₁₀シクロアルキル基、C₃~C₁₀ハロシクロアルキル基、ヒドロキシC₁~C₁₀アルキル基、C₁~C₆アルコキシC₁~C₆アルキル基、C₁~C₆アルキルチオC₁~C₆アルキル基、C₁~C₆アルキルカルボニル基、C₁~C₆アルキルカルボニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキルカルボニル基、シアノ基、Aで置換されていても良いフェニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルキル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルケニル基、フェニル基がAで置換されていてもよいフェニルC₁~C₁アルケニル基、C₁~C₁アルキルスルホニル基又はC₁~C₁ジアルキルスルファモイル基を表わし、

R 12及びR 13は結合する窒素原子又は酸素原子とともに 3~9 員環を形成していてもよく、1 若しくは 2 の酸素原子又は若しくは 2 の硫黄原子を含む 5~8 員環を形成していてもよく、

R¹⁶及びR¹⁷は同一でも相異なっていてもよく、水素原子、C₁~C₁アルキル基、Aで置換されていてもよいフェニル基、フェニル基がAで置換されていても

よいフェニルC₁~C₄アルキル基又はC₁~C₄アルキルチオC₁~C₄アルキル基を表わし、

R¹⁶及びR¹⁷は結合する炭素原子とともに4~9員環を形成していてもよく、R¹⁸は水素原子又はC₁~C₄アルキル基を表わし、

R¹⁹は水素原子、C₁~C₆アルキル基、C₃~C₆シクロアルキル基、C₁~C₆ハロアルキル基、C₂~C₆アルケニル基、C₂~C₆アルキニル基、Aで置換されていてもよいフェニル基又はフェニル基がAで置換されていてもよいフェニルC₁~C₄アルキル基を表わし、

 R^{20} は水素原子、 $C_1 \sim C_6$ アルキル基、 $C_2 \sim C_6$ アルケニル基、 $C_2 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルキニル基、シアノ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ アルキルチオ $C_1 \sim C_6$ アルキル基を表わし、

GはG(a), G(b), G(c)又はG(d)のいずれかの構造

を表わし、

 R^{2} は水素原子、 $C_1 \sim C_6$ アルキル基又は $C_1 \sim C_6$ シクロアルキル基を表わす。]

で示される化合物、及びその塩。

2. = Z '~ Z '= が = C (R ') - N = C (R ') - N = の結合様式を表わし、

 R^1 が $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、Aで置換されていてもよいフェニル基、ハロゲン原子、シアノ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_6$ アルコキシ基、 $C_1 \sim C_6$ アルカニル基又は $C_2 \sim C_6$ アルキニル基を表わし、

 R^2 が水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ ハロアルキル基、 $C_3 \sim C_6$ シクロアルキル基、 $C_1 \sim C_6$ アルコキシ $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ

C₁~C₆アルキル基、ハロゲン原子、シアノ基、-N (R⁸) R⁹基、-L-R¹⁹ 基又はAで置換されていてもよいフェニル基を表わし、

R³が水素原子を表わし、

R⁺が同一でも相異なっていてもよく、水素原子、C₁~C₆アルキル基、C₁~C₆ハロアルキル基、ハロゲン原子、C₁~C₆アルコキシ基又はC₁~C₆ハロアルコキシ基を表わし、

Xが-C (= O) N (R^{12}) R^{13} 基 (R^{12} 及び R^{13} は同一でも相異なっていてもよく、水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルケニル基、 $C_1 \sim C_6$ アルキニル基又は $C_3 \sim C_6$ シクロアルキル基を表わす。)、-C (= O) N (R^{12}) $-OR^{13}$ 基又は、-C (= O) -N (R^{14}) -N (R^{12}) R^{13} 基を表わす請求項1記載の化合物。

3. = $Z^1 \sim Z^4 = \vec{m} = C(R^2) - N = C(R^1) - C(R^2^3) = の結合様式を表わし、$

 R^2 が水素原子、 $C_1 \sim C_6$ アルキル基、ハロゲン原子、シアノ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_6$ アルコキシ基又は-N (R^8) R^9 基(R^8 及び R^9 は同一でも相異なっていてもよく、水素原子又は $C_1 \sim C_6$ アルキル基を表わす。)を表わし、

R¹及びR²³が同一でも相異なっていてもよく、水素原子、ハロゲン原子、C₁~C₀アルコキシ基又はC₁~C₀アルキル基を表わし、

Xが-C(=O) N(R¹²) R¹³基を表わす請求項1記載の化合物。

4. = Z¹~Z¹=が=C(R²)-C(R²²)=N-N=の結合様式を表わし、

 R^2 及び R^{22} が同一でも相異なっていてもよく、水素原子、 $C_1 \sim C_6$ アルキル基、ハロゲン原子、シアノ基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_6$ アルコキシ基又は $-N(R^8)R^9$ 基(R^8 及び R^9 は同一でも相異なっていてもよく、水素原子又は $C_1 \sim C_6$ アルキル基を表わす。)を表わし、

Xが-C (=O) N (R^{12}) R^{13} 基を表わす請求項1記載の化合物。

5. R^1 が水素原子、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキル基、 $C_1 \sim C_6$ アルキルチオ基、 $C_1 \sim C_6$ アルコキシ基又は $-N(R^8)R^9$ 基を表わす請求項 2 記載の化合物。

- 6. R¹がメチル基、トリフルオロメチル基、メチルチオ基、メトキシ基、エトキシ基、シアノ基又はジメチルアミノ基を表わす、請求項5記載の化合物。
- 7. 請求項1記載の化合物を含有することを特徴とする農薬。
- 8. 請求項1記載の化合物を含有することを特徴とする除草剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP99/01048

A CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ C07D213/89, C07D213/82, C07D239/26, C07D239/34, C07D239/42, C07D237/24, C07D239/52, A01N43/54, A01N43/40, A01N43/58						
According (According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELD	S SEARCHED					
Minimum o Int.	Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁶ C07D213/00-89, C07D239/00-52, C07D237/00-24, A01N43/00-58					
Documenta	tion searched other than minimum documentation to th	e extent that such documents are include	d in the fields searched			
	2-2					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) REGISTRY (STN), CAPLUS (STN), WPIDS (STN)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
Х	EP, 422456, A2 (BASF A.G.), 17 April, 1991 (17. 04. 91)	(Family: none)	1-8			
A	JP, 9-323974, A (Nihon Nohya 16 December, 1997 (16. 12. 9		1-8			
	& EP, 799825, A1 & US, 584					
A	JP, 1-180804, A (Daicel Chemical Industries,Ltd.), 18 July, 1989 (18. 07. 89) (Family: none)		1-8			
Х	Chemical Abstracts, Abstract No. 115:49341 HUSSEIN, S.H.; AHMED, B.A.; AL-KATTAN, W.T.; AL-RAWI, J.M.A. A new metod for the synthesis of N,N'- disubstituted picolinic amides. Asian J. Chem., Vol. 3, No. 1, p.52-57 (1991)		1, 3			
	See Registry No. 94301-64-1 pyridinedicarboxanilide), 1 bis(4-ethylphenyl)-3,4-pyri 134852-19-0(N,N'-bis(2,5-di pyridine-dicarboxamide)	34852-18-9(N,N'- .dine-dicarboxamide),				
X Furthe	er documents are listed in the continuation of Box C.	See patent family annex.				
"A" docume conside "E" earlier docume cited to special "O" docume means "P" docume	categories of cited documents: ent defining the general state of the art which is not red to be of particular relevance document but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is e establish the publication date of another citation or other reason (as specified) ent referring to an oral disclosure, use, exhibition or other ent published prior to the international filing date but later than ority date claimed	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
	actual completion of the international search (ay, 1999 (24. 05. 99)	Date of mailing of the international search report 8 June, 1999 (08. 06. 99)				
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP99/01048

C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the releva	Relevant to claim No.	
х	CHIMICHI, S.; NESI, R.; NERI, M. Pyridazi dicarboxylic anhydride: vesatile synthon in preparation of 1,3,7,8-tetraazaspiro[4.5] derivatives with nitrogen 1,3-binucleophic Chem. Soc., Perkin Trans. I, No. 11, p.24 (1984)	for the decane-	1
X	OHTA, H.; SUZUKI, S.; WATANABE, H; JIKIHA MATSUYA, K.; WAKABAYASHI, K. Structure—accelationship of cyclic imide herbicides. substituted phenyl—3,4,5,6—tetrahydro—pht and related compounds. Agric. Biol. Chem., No. 4, p.745—751 (1976)	ctivity I.N- halimides	1 7, 8
			7

A. 発明の属 Int.Cl. 6 CO71 A01N43/40, A01	する分野の分類(国際特許分類(IPC)) p213/89, C07D213/82, C07D239/26, C07D239/34, C07D N43/58	0239/42, C07D237/24, C07D239/52, A01N4	3/54,
B. 調査を行	った分野		
調査を行った最	小限資料(国際特許分類(IPC))	3 /0058	
Int. Cl. 6 CO7	D213/00-89, C07D239/00-52, C07D237/00-24, A01N4	3/00-36	
最小限資料以外	の資料で調査を行った分野に含まれるもの		
		The state of the s	
国際調査で使用 PECISTRY (S	引した電子データベース(データベースの名称、記TN),CAPLUS(STN),WPIDS(STN)	間査に使用した用語)	
KEOTOTKI (S	ny, ou box(on, y, w see (see)		
	ると認められる文献		関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	きは、その関連する箇所の表示	請求の範囲の番号
X	EP, 422456, A2(BASF A. G.) 17.4月.199	·	1-8
	ファミリーなし		
A	JP, 9-323974, A(日本農薬株式会社) 1	6. 12月. 1997 (16. 12. 97)	1-8
	&EP, 799825, A1 &US, 5843868, A		
	JP, 1-180804, A(ダイセル化学工業株	:式 全 社)	1-8
A	18.7月.1989(18.07.89)		
	ファミリーなし		
C a um a Atr	ナール かおば阿米キャブルス	□ パテントファミリーに関する別	川紙を参照。
	きにも文献が列挙されている。 		
* 引用文献	のカテゴリー 連のある文献ではなく、一般的技術木準を示す	の日の後に公表された文献 「T」国際出願日又は優先日後に公表	された文献であって
も の		て出願と矛盾するものではなく 論の理解のために引用するもの	、発明の原理又は埋
「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの		「x」特に関連のある文献であって、	当該文献のみで発明
「1.」優先権主張に疑義を提起する文献又は他の文献の発行		の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以	
日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)		上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの	
「O」口頭に	よる開示、使用、展示等に言及する文献 4顧日前で、かつ優先権の主張の基礎となる出願	よって進歩性かないと考えられ 「&」同一パテントファミリー文献	,5 8 W
			16 00
国際調査を完	E了した日 24.05.99	国際調査報告の発送日 () 8.()6.9 9
1=3 GM =512 - A - 1/4 S	日の女 秋 ひてく ホ 丁 牛	特許庁審査官(権限のある職員)	4P 9164
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP)		齋藤 恵	fi
1	郵便番号100-8915 5数千代用区需が関ニエ目4番3号	電話番号 03-3581-1101	内線 3490

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番
X	Chmical Abstracts, Abstract No. 115:49341 HUSSEIN, S. H.; AHMED, B. A.; AL-KATTAN, W. T.; AL-RAWI, J. M. A. A new method for the synthesis of N, N'-disubstituted picolinic amides. Asian J. Chem., Vol. 3, No. 1, p. 52-57(1991)	1, 3
	See Registry No. 94301-64-1(3, 4-pyridinedicarboxanilide), 134852-18-9(N, N'-bis(4-ethylphenyl)-3, 4-pyridinedicarboxamide), dicarboxamide), 134852-19-0(N, N'-bis(2, 5-dimethoxyphenyl)-3, 4-pyridinedicarboxamide)	
Х	CHIMICHI, S.; NESI, R.; NERI, M. Pyridazine-4, 5-dicarboxylic anhydride:vesatile synthon for the preparation of 1, 3, 7, 8-tetraazaspiro[4.5]decane-derivatives with nitrogen 1, 3-binucleopholes. J. Chem. Soc., Perkin Trans. I, No. 11, p. 2491-2495 (1984)	1
X	OHTA, H.; SUZUKI, S.; WATANABE, H.; JIKIHARA, T.; MATSUYA, K.; WAKABAYASHI, K. Structure-activity reraltionship of cyclic imide herbicides. I. N-substituted phenyl-3, 4, 5, 6-tetrahydro-phthalimides and related compounds. Agric. Biol. Chem., Vol. 40, No. 4, p. 745-751 (1976)	7,8