Inferência Bayesiana 1º Semestre de 2020

Lista de Exercícios 4

- 1. Considere uma amostra y_1, \ldots, y_n da distribuição Normal com média μ e variância $\sigma^2 = 1/\tau$ desconhecidas, e suponha que a priori a distribuição de (μ, τ) é especificada da seguinte forma: $\mu | \tau \sim N(\mu_0, 1/\lambda_0 \tau)$ e $\tau \sim \text{Gama}(\alpha_0, \beta_0)$, onde λ_0 , α_0 e β_0 são positivas.
- (a) Ache a distribuição a posteriori de $p(\mu, \tau|D)$ e as distribuições marginais $p(\mu|D)$ e $p(\tau|D)$.
- (b) Discuta neste contexto o uso da distribuição a priori $n\tilde{a}o$ informativa $p(\mu,\tau) \propto 1/\tau$. A distribuição a posteriori é própria? Qual é a relação da distribuição $p(\mu|D)$ e os resultados clássicos?
- **2.** Seja $n=(n_1,\ldots,n_k)$ um vetor aleatório com distribuição multinomial e densidade $p(n|\theta) \propto \prod_{i=1}^k \theta_i^{n_i}$, onde $\theta=(\theta_1,\ldots,\theta_k), \ \theta_i>0$ e $\sum_i \theta_i=1$. Considere a priori para θ uma distribuição de Dirichlet com parâmetro $\alpha=(\alpha_1,\ldots,\alpha_k)$, isto é $p(\theta) \propto \prod_{i=1}^k \theta_i^{\alpha_i}$.
- (a) Ache a distribuição a posteriori de θ .
- (b) Ache a distribuição a posteriori marginal de θ_1 .
- (c) No caso particular $\alpha = (0, 0, ..., 0)$ a distribuição a priori de θ é imprópria. Mostre que a distribuição a posteriori é própria se e somente se $n_i > 0$ para i = 1, 2, ..., k.
- 3. Na véspera do primeiro turno para a eleição de governador do DF de 2010, a Datafolha divulgou uma pesquisa indicando que, de 891 eleitores entrevistados que já tinham decidido em quem votar, Agnelo Queiroz tinha a preferência de 467, Weslian Roriz a de 315 e outros candidatos a de 109 eleitores. Formule um modelo para analizar esses dados. O interesse centra fundamentalamente em três perguntas: (a) a eleição poderia ser definida no primeiro turno? (b) O candidato Agnelo poderia ser eleito no primeiro turno? e (c) qual será a diferença na porcentagem dos votos validos entre os dois primeiros colocados?
- 4. Os dados a seguir mostram o resultado de 2 ensaios clínicos realizados nos anos 80 para estudar se o consumo diário de aspirina tem algum efeito na redução da taxa de mortalidade.

	Aspirina		Placebo	
	Pacientes $(n_{A,i})$	Mortes $(x_{A,i})$	Pacientes $(n_{P,i})$	Mortes $(x_{P,i})$
Ensaio 1	810	85	406	52
Ensaio 2	832	102	850	126

Assuma independência condicional tanto entre ensaios quanto entre os grupos placebo/aspírina dentro do ensaio e considere o modelo $x_{A,i}|\theta_{A,i}\sim$ Binomial $(n_{A,i};\theta_{A,i});\ x_{P,i}|\theta_{P,i}\sim$ Binomial $(n_{P,i};\theta_{P,i}).$

- (a) Construa uma dsitribuição a priori para o vetor de parametros $(\theta_{A,1}, \theta_{P,1}, \theta_{A,2}, \theta_{P,2})$. Explique.
- (b) Usando a priori da parte (a), estude se é razoavel concluir que o efeito neto da aspirina é maior no primeiro experimento do que no segundo (o efeito neto da aspirina

- no ensaio i é definida como $\eta_i = (\theta_{A,i} \theta_{P,i})$.
- (c) Usando a priori da parte (a), estude se é razoãvel concluir que o efeito bruto da aspirina é maior no primeiro do que no segundo experimento (o efeito bruto da aspirina no ensaio i é $\theta_{A,i}$).
- **5.** Assuma duas amostras condicionalmente independentes com $x_{11},\ldots,x_{1n_1}|\mu_1,\sigma_1^2\sim$ iid $\mathrm{N}(\mu_1,\sigma_1^2)$ e $x_{21},\ldots,x_{2n_2}|\mu_2,\sigma_2^2\sim$ iid $\mathrm{N}(\mu_2,\sigma_2^2)$. Suponha que a priori $p(\mu_1,\sigma_1^2,\mu_2,\sigma_2^2)\propto (\sigma_1^2\,\sigma_2^2)^{-1}$. Sejam s_1^2 e s_2^2 as variâncias amostrais. Mostre que a distribuição a posteriori de $(s_1^2/s_2^2)/(\sigma_1^2/\sigma_2^2)$ é F com (n_1-1) e (n_2-1) graús de libertade.
- **6.** Estude a seção 3.7 do texto de Gelman et al (analysis of a bioassay experiment) e faça o exercício 11 na pag. 92.