רגרסיה ומודלים לינאריים 52320 תשע"ה 13.05.2015 בוחן 13.05.2015

בבוחן שאלות אמריקאיות ושאלות פתוחות.

משקל כל שאלה הוא 25 נקודות כך שמספר הנקודות הכולל הוא 125. בכל מקרה, ציון הבוחן הוא 100 לכל היותר. שימו לב שהשאלות הן בדרגת קושי שונה כך שמומלץ לא להתעכב יתר על המידה על שאלה מסויימת. אנא הקפידו על ההנחיות הבאות:

- כתבו את ת.ז. (לא את השם!) בראש כל עמוד של טופס הבחינה.
 - אין לצרף לטופס דפים נוספים.
 - אין לתלוש דפים מטופס הבחינה.

לתשומת לבכם לגבי השאלות הפתוחות:

- תשובה סופית ללא דרך לא תזכה בניקוד כלשהו (ציון 0).
- בשאלות הפתוחות יש לכתוב את הפתרון רק במקום המוקצה לכך, מעל לכל קו כתבו שורה אחת בלבד בכתב יד קריא. (השאלות נכתבו כך שניתן לכתוב פתרון תמציתי לכל סעיף).
- מגבלת המקום תאכף באופן קפדני. פתרונות אשר יחרגו מהמקום המותר, יהיו בכתב קטן מכדי שיהיה קריא, ו/או יכללו יותר משורת כתב אחת לכל קו לא ייבדקו.
 - מומלץ מאוד לפתור תחילה את השאלה במחברת הטיוטה ולהעתיק את עיקר הפתרון אל הטופס רק לאחר בדיקה. חומר עזר מותר: מחשבון.

משך הבוחן: שעה

בהצלחה!

סימונים: נכתוב משתנים בכתיב וקטורי, כאשר x,y,... הם וקטורי עמודה. x מסמן את האיבר ה־i של וקטור x ו־i מסמן את באורך x מסמן את באורך x באורך x באורך x באורך x המכוצע של וקטור x עבור שני וקטורים x באורך x המכוצע של וקטור x באורך x באורך x המכוצע של וקטור x המכוצע של היא באורך x באורך x המכוצע של וקטור x המכוצע של היא באורך x היא באורך x המכוצע של היא באורך x היא באורך x היא באורך x המכוצע של היא באורך x היא באורך x היא באורך x המכוצע של היא באורך x היא באורך

עבור מודל זה עבור ($x_1,y_1),...,(x_n,y_n)$ עבור עבור $y_i=\beta_0+\beta_1x_i+\epsilon_i$ עבור עבור חותך: עבור מודל לרגרסיה פשוטה עם חותך: אינת לכתיבה בצורות הבאות: בצורות הבאות: אונת לכתיבה בצורות הבאות: אונת לכתיבה בצורות הבאות: אונת לכתיבה בצורות הבאות: אונת לכתיבה בצורות הבאות: עבור מודל זה שגיאת הרבועים הפחותים אונת לכתיבה בצורות הבאות: עבור מודל זה שגיאת הרבועים הפחותים אונת לכתיבה בצורות הבאות: עבור מודל זה שגיאת הרבועים הפחותים אונת לכתיבה בצורות הבאות:

בובו למקדמים הם:
$$SSE = \left(y - \hat{\beta}_0 - \hat{\beta}_1 x\right)^T \left(y - \hat{\beta}_0 - \hat{\beta}_1 x\right) = (y - \bar{y})^T (y - \bar{y}) - \hat{\beta}_1^2 (x - \bar{x})^T (x - \bar{x})$$
$$\hat{\beta}_1 = \frac{(x - \bar{x})^T (y - \bar{y})}{(x - \bar{x})^T (x - \bar{x})}, \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

- הגדלים אילו השגיאות. אילו הפשוטה פ $e=y-\hat{y}$ וקטור התחזיות ויהיה \hat{y} וקטור לעיל, יהיה לעיל, יהיה \hat{y} וקטור השגיאות. אילו מהגדלים $\sum_{i=1}^n e_i, \, \sum_{i=1}^n x_i e_i, \, \sum_{i=1}^n y_i e_i$ הבאים תמיד שווים לאפס?
 - (א) כולם
 - ב) אף אחד
 - $\sum_{i=1}^n e_i, \sum_{i=1}^n x_i e_i$ (ג)
 - $\sum_{i=1}^n e_i$ רך (ד)
 - $\sum_{i=1}^n y_i e_i, \sum_{i=1}^n x_i e_i$ ה) רק
 - (ו) אף אחת מהתשובות לעיל אינה נכונה

פתרון:

תשובה (c) היא הנכונה. ראינו בכיתה ובתרגיל ש $\sum_{i=1}^n e_i = \sum_{i=1}^n x_i e_i = 0$ לעומת את הנתונים הבאים למקדמי . $\sum_{i=1}^n e_i = \sum_{i=1}^n x_i e_i = 0$ למקד הבחותים למקדמי . אומדי הרבועים הפחותים למקדמי $x_1=0,x_2=0,x_3=1;y_1=0,y_2=1,y_3=0.5$ בור $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ ולכן $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ ולכן $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ ולכן $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ הרגרסיה המתקבלים הם $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ כלומר $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ ולכן $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ הרגרסיה המתקבלים הם $\hat{\beta}_0=0.5,\hat{\beta}_1=0$ הרגרסים המתקבלים הם $\hat{\beta}_0=0.5,\hat{\beta}_1=0.5$ הרגרסים המתקבלים ה

 $:(x_{1},y_{1}),...,(x_{n},y_{n})$ נניח עבור נתונים כל הסכומים כל נתונים כעת כי נתונים .2

$$S_x = \sum_{i=1}^n x_i = 6.1, \ S_y = \sum_{i=1}^n y_i = 42.6, \ S_{xx} = x^T x = 16.45, \ S_{yy} = y^T y = 99.02, \ S_{xy} = x^T y = 21.01, \ n = 20$$

. עבור היכחונים עבור עבור מודל את אבור את היכונים אלעיל. אבור את היכונים את היכונים את את אבור את היכונים אלעיל

פתרוז:

 \hat{eta}_1 נחשב תחילה את \hat{eta}_1 ונקבל

$$\hat{\beta}_1 = \frac{(x - \bar{x})^T (y - \bar{y})}{(x - \bar{x})^T (x - \bar{x})} = \frac{x^T y - \bar{x}S_y - \bar{y}S_x + n\bar{x}\bar{y}}{x^T x - 2\bar{x}S_x + n\bar{x}^2} = \frac{S_{xy} - \frac{1}{n}S_x S_y}{S_{xx} - \frac{1}{n}S_x^2} = \frac{nS_{xy} - S_x S_y}{nS_{xx} - S_x^2} = \frac{20 \times 21.01 - 6.1 \times 42.6}{20 \times 16.45 - 6.1^2} = 0.550$$

 $\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = \frac{42.6}{20} - 0.550 \times \frac{6.1}{20} = 1.962 : 3.962$ בעת נציב ונחשב את $\hat{\beta}_0$ ונקבל: $\hat{\beta}_0$ והשגיאה הרבועית היא: $SSE = (y - \bar{y})^T (y - \bar{y}) - \hat{\beta}_1^2 (x - \bar{x})^T (x - \bar{x}) = S_{yy} - \frac{1}{n} S_y^2 - \hat{\beta}_1^2 \left(S_{xx} - \frac{1}{n} S_x^2 \right) = 99.02 - \frac{42.6^2}{20} - 0.550^2 \left(16.45 - \frac{6.1^2}{20} \right) = 3.869$

בועים אומד זה אומד הרכותים ($x_1,y_1),...,(x_n,y_n)$ עבור עבור $y_i=\gamma_1x_i+\epsilon_i$ זה אומד הרבועים (גדיר כעת מודל בערים הוכיחו $y_i=\gamma_1x_i+\epsilon_i$ אומד הרבועים (גדיר כעת מודל בערים הוביעים יאוה ל- $\frac{x^Ty}{x^Tx}$ שווה ל- $\frac{x^Ty}{x^Tx}$

פתרון:

נחשב את השגיאה הרבועית כפונקציה של הפרמטר γ_1 ונקבל:

$$F(\gamma_1) = e^T e = (y - \gamma_1 x)^T (y - \gamma_1 x) \tag{1}$$

:כעת נגזור לפי γ_1 ונקבל

$$F'(\gamma_1) = \left(\sum_{i=1}^n (y_i - \gamma_1 x_i)^2\right)' = 2\sum_{i=1}^n (y_i - \gamma_1 x_i)(-x_i) = 0$$
 (2)

נעביר אגפים ונקבל:

$$\sum_{i=1}^{n} x_i y_i = \gamma_1 \sum_{i=1}^{n} x_i^2 \Rightarrow \gamma_1 = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} = \frac{x^T y}{x^T x}$$
 (3)

גזירה שניה מראה כי מדובר במינימום:

$$F''(\gamma_1) = \left(2\sum_{i=1}^n (y_i - \gamma_1 x_i)(-x_i)\right)' = 2\sum_{i=1}^n x_i^2 > 0$$
(4)

לכן זהו מינימום מקומי. מכיוון שזהו המינימום היחיד והפונקציה לא חסומה כאשר $\gamma_1 \to \pm \infty$ אז זה חייב להיות המינימום הכלורלי

	תעודת זהות:	1 בוחן 52320	קורס 0
החותך עו	של $\hat{y_i}=\hat{\gamma}_1x_i$ כאשר כאשר אבור המודל בלי בלי ברי המודל הרבועית $\hat{y_i}=\hat{\gamma}_1x_i$ כאשר כאשר באור המודל בלי 2 לעיל	חשבו את ערכו הנתונים בשאלה	.4 I
		פתרון:	
זרך להביי	פי הנוסחא לעיל, ונקבל: $\hat{\gamma}_1=rac{S_{ ext{xy}}}{S_{ ext{xx}}}=rac{21.01}{16.45}=1.278$ פי הנוסחא לעיל, ונקבל: הרבועית, נצט הגדלים הנתונים לנו.		
$SSE_1 = \epsilon$	$e^{T}e = (y - \hat{\gamma}_{1}x)^{T}(y - \hat{\gamma}_{1}x) = y^{T}y - 2\hat{\gamma}_{1}y^{T}x + \hat{\gamma}_{1}^{2}x^{T}x = 99.02 - 2 \times 1.278 \times 21.01 + 1.278^{2} \times 1.01 + 1.2$	<16.45 = 72.19 (5)	
		_	

- את השגיאה אותך עבור במודל עם חותך את השגיאה ביסמן ב־ SSE_1 את השניה, עבור רגרסיה לינארית פשוטה, נסמן ב־ SSE_1 את השובה הנכונה במודל ללא חותך עבור **אותם הנתונים**. סמנו את התשובה הנכונה
 - ויון חזק אי בהם מקרים אי $SSE_1 \leq SSE$ אי תמיד
 - וישן חזק אי בהם מקרים אי $SSE_1 \geq SSE$ בהם (ב)
 - $SSE_1 = SSE$ (ג)
 - (ד) אף אחת מהתשובות לעיל איננה נכונה

פתרון:

תשובה (b) היא הנכונה - במודל ללא חותך אנחנו עושים התאמה למודל עם פרמטר אחד פחות. לכן טיב ההתאמה לא יכול להשתפר. עבור כל ערך של $\hat{\gamma}_1$ במודל ללא חותך ניתן לקבל בדיוק את אותו מודל, ולכן אותה שגיאה ריבועית, אם נבחר להשתפר. עבור כל ערך של $\hat{\gamma}_1$ במודל עם החותך. בניסוח מתמטי:

$$SSE = min_{\beta_0, \beta_1 \in \mathbb{R}} (y - \beta_0 - \beta_1 x)^T (y - \beta_0 - \beta_1 x)^T \le min_{\beta_1 \in \mathbb{R}} (y - 0 - \beta_1 x)^T (y - 0 - \beta_1 x)^T = min_{\gamma_1 \in \mathbb{R}} (y - \gamma_1 x)^T (y - \gamma_1 x)^T = SSE_1$$
(6)