0.1 Some Classical Inequalities

In this section we study two classical Inequalities: Hardy's inequality and Fejer-Riesz inequality. The first inequality is an example of why H^p is a natural replacement of L^p for $p \leq 1$. The second inequality shows some geometry properties of conformal mappings.

0.1.1 Hardy's inequality

Theorem 0.1.1.1 (Hardy's inequality). Let $F(z) = \sum_{j=0}^{\infty} a_j z^j$ be in H^1 . Then:

$$\sum_{j=0}^{\infty} \frac{|a_j|}{j+1} \le C \|F\|_{H^1}$$

with a constant C independent of F.

Remark (notes on proof of theorem 0.1.1.1). We know the principal branch of the logarithm $\log z = \log r + i\theta$ where $z = re^{i\theta}$ with $|\theta| < \pi$. Thus $\operatorname{Im} \log 1 - z = \arg 1 - z$. It is easy to $\sec -\frac{\pi}{2} < \arg 1 - z < \frac{\pi}{2}$.

$$F(re^{it})u(re^{it}) = (\sum_{j=0}^{\infty} a_j (re^{it})^j)(\frac{i}{2} \sum_{j \neq 0} j^{-1} r^{|j|} e^{ijt})$$
$$= (\sum_{j=0}^{\infty} a_j r^j e^{ijt})(\frac{i}{2} \sum_{k \neq 0} k^{-1} r^{|k|} e^{ikt})$$

After taking integral, only j + k = 0 term does not vanish, thus:

$$\begin{split} \frac{1}{2\pi} \int_{-\pi}^{\pi} F(re^{it}) u(re^{it}) dt &= (\frac{i}{2} \sum_{j+k=0}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_j r^j e^{ijt} k^{-1} r^{|k|} e^{ikt} dt) \\ &= \frac{i}{2} \sum_{j+k=0}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_j r^{j+|k|} e^{i(j+k)t} k^{-1} dt \\ &= \frac{i}{2} \sum_{j=1}^{\infty} \frac{1}{2\pi} \int_{-\pi}^{\pi} a_j r^{2j} (-j)^{-1} dt \\ &= \frac{i}{2} \sum_{j=1}^{\infty} a_j r^{2j} (-j)^{-1} \\ &= -\frac{i}{2} \sum_{j=1}^{\infty} a_j j^{-1} r^{2j} \end{split}$$

The corollary 4.2 in book shows that if $F(e^{it})$ is absolutely continuous (equivalent to $F' \in H^1$), then $(\hat{F}(n))_n \in \ell^1$. But the converse is not true. $(\hat{F}(n))_n \in \ell^1$ only implies F extends to a continuous function on \bar{D}

Remark (Errata of Re H^1). Let g(t) be Re $F(e^{it}) = \sum_{j>0} a_j e^{ijt}$. Then

$$\begin{split} g(t) = & \frac{F(e^{it}) + \overline{F(e^{it})}}{2} \\ = & \frac{a_0 + \bar{a_0}}{2} + \sum_{j \geq 0} \frac{a_j}{2} e^{ijt} + \sum_{j \geq 0} \frac{\bar{a_j}}{2} e^{-ijt} \\ = & \frac{a_0 + \bar{a_0}}{2} + \sum_{j > 0} \frac{a_j}{2} e^{ijt} + \sum_{j < 0} \frac{\overline{a_{-j}}}{2} e^{ijt} \\ = & \frac{a_0 + \bar{a_0}}{2} + \sum_{j \neq 0} \hat{g}(j) e^{ijt} \end{split}$$

where $\hat{g}(j) = \frac{a_j}{2}$ for j > 0, $\hat{g}(j) = \frac{\overline{a_{-j}}}{2}$ for j > 0 and $\hat{g}(j) = \text{Re } a_0$. Thus $|a_j| = |\hat{g}(j)| + |\hat{g}(-j)|$. Substitute $|a_j|$ to $\sum_{j=1}^{\infty} \frac{|a_j|}{j} \le \pi \|F\|_{H^1}$. We have $\sum_{j \ne 0} \left| \frac{\hat{f}(j)}{j} \right| \le \pi \|f\|_{\text{Re } H^1}$

We have Re H^1 is a proper subspace of Re L^1 . And Hardy's inequality may be considered an extension to p=1 of Paley's inequality which says that for $f \in L^p$ with 1 :

$$\sum_{j=-\infty}^{\infty} \frac{\left|\hat{f}(j)\right|^p}{\left|j\right|^{p-2}} \le C_p \left\|F\right\|_p^p$$

Later we will see in \mathbb{R}^n this inequality can be extended to H^p for p < 1. And H^p for $p \le 1$ are natural substitutes of Lebesgue spaces L^p .

0.1.2 Fejer-Riesz inequality

Recall the final corollary in last section. Let F be a conformal map from D to interior domain bounded by a Jordan curve Γ . Then Γ is rectifiable if and only if $F' \in H^1$.

Theorem 0.1.2.1 (Fejer-Riesz inequality). Let $F \in H^p$, 0 , then

$$\int_{-1}^{1} |F(x)|^{p} dx \le \frac{1}{2} \int_{-\pi}^{\pi} |F(e^{it})|^{p} dt$$

To prove this theorem, we first prove the p=2 case. Then for $p \neq 2$ case, we factorize F(z) = B(z)H(z) and let $|G(z)|^2 = |H(z)|^p$ to reduce this case to p=2.

Here is a direct application of this inequality. Let F be the conformal map from D to interior domain bounded by a Jordan curve Γ . Then image of diameter of D has length at most half of length of Γ (corollary 4.6 in book).

Remark (notes on proof of corollary 4.6 in book). To prove that $\frac{1}{2}$ is the best constant in corollary 4.6 in book, we only need to show there is a conformal map from D to interior domain bounded by a rectifiable Jordan curve Γ , the constant $\frac{1}{2}$ can not be smaller. Let F(z) is a conformal map from D to rectangle $\{x+iy:|x|<1,|y|<\epsilon\}$ and F maps segment (-1,1) in D to segment (-1,1) in rectangle. It is easy to construct this map. The constant has to be at least $\frac{2}{4+4\epsilon}$. Let $\epsilon \to 0$ we conclude $\frac{1}{2}$ is the best constant.

Another usage of conformal mapping $F' \in H^1$ is following: F can be extended on \bar{D} and F is still conformal. More precisely, Let F be a conformal mapping from D to interior domain bounded by a rectifiable Jordan curve Γ . F is also conformal at almost every boundary point (corollary 4.7 in book).

Remark (notes on proof of corollary 4.7 in book). The step:

$$\frac{F(e^{it_0}) - F(z)}{e^{it_0} - z} - F'(e^{it_0}) = \frac{1}{e^{it_0} - z} \int_z^{e^{it_0}} (F'(\xi) - F'(e^{it_0})) d\xi \to 0$$

as $z \to e^{it_0}$ N.T. is by mean value theorem of integration.

I don't know why the tangent to Γ at the point $F(e^{it_0})$ happens for a.e. boundary point e^{it_0} .

The angle between γ and boundary in D is $\limsup z - e^{it_0} - t_0 - \frac{\pi}{2}$ and The angle between $F(\gamma)$ and boundary in F(D) is $\limsup F(z) - F(e^{it_0}) - t_0 - \arg \left(\frac{d}{dt}(F(e^{it}))|_{t=t_0}\right)$. Since F is conformal in D, to prove F is conformal in \bar{D} , we only need to prove the conformal map preserves angle on boundary. That is:

$$\lim_{z \to e^{it_0}} \arg(z - e^{it_0}) - t_0 - \frac{\pi}{2} = \lim_{z \to e^{it_0}} \arg(F(z) - F(e^{it_0})) - \arg(\frac{d}{dt}(F(e^{it}))|_{t=t_0})$$

We have $\frac{d}{dt}F(e^{it})|_{t=t_0} = ie^{it_0}F'(e^{it_0})$. Thus $\arg\left(\frac{d}{dt}(F(e^{it}))|_{t=t_0}\right) = \frac{\pi}{2} + t_0 + \arg F'(e^{it_0})$. So the equality is the same as:

$$\lim_{z \to e^{it_0}} \arg(z - e^{it_0}) = \lim_{z \to e^{it_0}} \arg(F(z) - F(e^{it_0})) - \arg F'(e^{it_0})$$

which is clearly if we take arg in both sides in $\lim_{z\to e^{it_0}} \frac{F(e^{it_0})-F(z)}{e^{it_0}-z} = F'(e^{it_0})$. We use $t_0 + \frac{\pi}{2}$ instead of $t_0 - \frac{\pi}{2}$ match to $\arg\left(\frac{d}{dt}(F(e^{it}))|_{t=t_0}\right)$ since they are in the same direction.