MathStatClub PROBLEM OF THE MONTH November 2012

Let the line y = mx + b intersect the parabola $y = kx^2$ at two points A and B. Let C be the point on the parabolic arc AB that is furthest from the line y = mx + b.

Find the ratio of the area of the region bounded by the parabola and the line, and the area of the triangle ABC.

- ♣ Please **Submit** your solution to
 - o <u>Dr. Tirtha Timsina</u>, <u>ttimsina@gsu.edu</u> or
 - o <u>Dr. Christian Avart</u>, <u>cavart@gsu.edu</u>

before the deadline: Friday, November 30th, 7:00PM.

♣ The WINNER will be awarded with a \$15 gift certificate and will be announced in the NEXT issue.

Problem of the last month: Given two sets A and B, the symmetric difference $A\Delta B$ is defined by the union of A\B and B\A. For any $n\geq 2$, let $A_1,A_2...A_n$ be n finite subsets of the integers. Show that $A_1\Delta A_2...\Delta A_n$ is the set consisting of the integers contained in exactly an odd number of the sets A_i , $1\leq i\leq n$.

Solution: We prove it by induction. It is clearly true for n=2. Now if $N = A_1 \Delta A_2 \Delta A_n \Delta a_{n+1}$ we can write $N = P \Delta A_{n+1}$. We then see that an element x belongs to N is it either belongs to P and not A_{n+1} or it belongs to A_{n+1} and not P. In either case, by the induction hypothesis we see that x belongs to N if and only if it belongs to an odd number of the A_i 's.

Winner: Joseph Moravitz