

Norwegian University of Science and Technology

Department of Mathematical Sciences

Examination paper for TMA4145 Linear Methods
Academic contact during examination: Franz Luef Phone: 406 14 405
Examination date: 21.12.2017
Examination time (from-to): 09:00-13:00
Permitted examination support material: D:No written or handwritten material. Calculato Casio fx-82ES PLUS, Citizen SR-270X, Hewlett Packard HP30S
Other information: There are 5 problems on the exam and each problem counts for 20 points. All solutions should be stated in a precise and rigorous way, with any assumptions written down and arguments justified, except Problem 3.
Language: English
Number of pages: 3

Number of pages enclosed: 0

			Checked by:
Informasjon om trykking av eksamensoppgave			
Originalen er:			
1-sidig □ 2-sidig □	-		
sort/hvit □ farger □		Date	Signature
skal ha flervalgskjema □			

Problem 1

a) (1) Find the singular value decomposition for the matrix

$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix}.$$

(2) The linear system:

$$x_1 + x_2 - x_3 = 1$$
$$x_1 + x_2 - x_3 = 1$$

has infinitely many solutions. Determine the one with the minimal Euclidean norm $\|.\|_2$.

The linear system

$$x_1 + x_2 - x_3 = 1$$
$$x_1 + x_2 - x_3 = 2$$

has no solution. Determine the least squares solution of the linear system.

Hint: The pseudoinverse of the matrix related to the linear system might be useful.

b) Given a $n \times n$ -matrix A of rank n. Prove that A has a polar decomposition using the singular value decomposition of A. Hence, show that there exist an $n \times n$ unitary matrix W and a positive definite $n \times n$ matrix P such that A = WP.

Problem 2

a) Let T be the linear transformation T(x) = Ax on \mathbb{R}^3 for the matrix

$$A = \begin{pmatrix} 0 & 1/2 & 1/3 \\ 1/4 & 0 & 1/5 \\ 1/5 & \alpha & 0 \end{pmatrix},$$

where α is a real number.

- (1) Determine the operator norm of $T: (\mathbb{R}^3, \|.\|_1) \to (\mathbb{R}^3, \|.\|_1)$. Note that the result depends on the parameter α .
- (2) Determine those α 's such that T is a contraction on $(\mathbb{R}^3, \|.\|_1)$.
- **b)** Rewrite the linear system

$$3x_1 - \frac{3}{2}x_2 - x_3 = 1$$
$$-x_1 + 4x_2 - \frac{4}{5}x_3 = 2$$
$$-\frac{2}{5}x_1 - \frac{1}{2}x_2 + 2x_3 = 4$$

as a fixed point problem and show that one can use Banach's fixed point theorem to prove the existence of a solution. Compute the first three iterations

$$x^{(1)}, x^{(2)}, x^{(3)}$$
 for the starting point $x_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

Problem 3

- a) (1) Suppose $(X, ||.||_X)$ and $(Y, ||.||_Y)$ are normed spaces. Define the notions of a *continuous* and of a *Lipschitz continuous* function $f: X \to Y$.
 - (2) Let X be a vector space and T a linear map between the vector spaces $T: X \to X$. Define the notion of a T-invariant subspace of X.
 - (3) Let $(X, \|.\|)$ be a normed space X. Define the notion of a *dense subset* of X and define when X is *separable*.
 - (4) Let X be a vector space and $T: X \to X$ a linear transformation. Define the notion of a generalized eigenspace for an eigenvalue λ of T and the minimal polynomial of a $n \times n$ -matrix A.
 - (5) Define the notions of a *Cauchy sequence* and of *completeness* for normed space.
- **b)** Determine if the following statements are true or false and if the statement is not true, give a counterexample.
 - (1) Any linear map on a normed space is bounded.
 - (2) Any linear transformation on a finite-dimensional complex vector space has a non-trivial invariant subspace.
 - (3) The set of sequences with finitely many non-zero elements is dense in the space of bounded sequences ℓ^{∞} .

- (4) The orthogonal complement of any subset of an innerproduct space is closed.
- (5) The range of any bounded linear map on an infinite-dimensional vector space is closed.

Problem 4 For $a = (a_n)_{n \in \mathbb{N}} \in \ell^{\infty}$ we define the linear operator $T_a : \ell^2 \to \ell^2$ by $T_a(x_1, x_2, ...) = (a_1x_1, 0, a_3x_3, 0, ...)$ for $(x_n) \in \ell^2$.

- (1) Show that T_a is bounded on ℓ^2 .
- (2) Determine the operator norm of T_a .
- (3) Show that the range of T_a is closed.
- (4) Determine the orthogonal complement of $\ker(T_a)$.
- (5) Determine for which sequences $a \in \ell^{\infty}$ the operator T_a satisfies $T_a^2 = T_a$.

Problem 5 Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal system in a Hilbert space X and $(\alpha_n)_{n\in\mathbb{N}}$ a sequence of complex numbers.

Show that the series $\sum_{n\in\mathbb{N}} \alpha_n e_n$ converges in X if and only if $(\alpha_n)_{n\in\mathbb{N}} \in \ell^2$.