Appunti di Algebra A.A. 2022/2023

1 Introduzione

1.1 Relazioni

Una **relazione** é un sottoinsieme del prodotto cartesiano di due o piú insiemi. Una relazione su A é un sottoinsieme di $A \times A$.

 a_1 é in relazione con a_2 e si scrive a_1Ra_2 .

Def. Una relazione é di equivalenza se rispetta le seguenti proprietá:

Riflessiva: $aRa \ \forall a \in A \ (\text{ogni elemento} \ \acute{\text{e}} \ \text{in relazione} \ \text{con se stesso})$

Simmetrica: $a_1Ra_2 \implies a_2Ra_1 \ \forall a_1, a_2 \in A$

Transitiva: $a_1Ra_2 \wedge a_2Ra_3 \implies a_1Ra_3$

1.2 Funzioni/Applicazioni

```
f: X \to Y
```

```
f iniettiva: \forall x_1, x_2 \in X, f(x_1) = f(x_2) \implies x_1 = x_2

f suriettiva: \forall y \in Y, \exists x \in A : y = f(x)

f biettiva: \forall y \in Y, \exists! x \in A : y = f(x)
```

1.3 Insiemi numerici

L'insieme dei numeri razionali $\mathbb Q$ introduce gli inversi del prodotto (es. $3 \to \frac{1}{3}$). L'insieme dei numeri reali $\mathbb R$ introduce limiti, radici e altri valori.

L'insieme dei numeri complessi \mathbb{C} introduce le radici di indice pari di numeri negativi tramite l'unità immaginaria i e i suoi multipli. Un numero complesso é esprimibile in forma polare come a+ib, con $a,b\in R$.

1.4 Campi

 $(K,+,\cdot)$ é un campo se:

```
+, · sono associative (a+(b+c)=(a+b)+c), commutative (a+b=b+a) e distributive (a(b+c)=ab+ac)
```

esistono elementi **neutri** (0 per la somma (a + 0 = a), 1 per il prodotto $(a \cdot 1 = a)$) e **opposti** (-a per la somma (a - a = 0), x^{-1} per il prodotto $(x \cdot x^{-1} = 1)$), che restituscono il valore neutro

Alcuni insiemi campi sono $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.

1.4.1 Campi finiti

Dato un numero intero $n \geq 0$, definiamo su \mathbb{Z} la relazione di equivalenza

$$a \equiv b(n) \iff \exists k \in Z : a - b = k \cdot n$$

essa rispetta tutte e 3 le proprietá elencate sopra.

Definiamo $[b] = \{a \in Z : a \equiv b(n)\} \in Z_n = \{[0], [1], ..., [n-1]\}.$ Es. in $Z_2 = \{[0], [1]\}, [0]$ sono i numeri pari, [1] quelli dispari.

Definiamo su \mathbb{Z}_n le operazioni:

$$[a] + [b] = [a + b], [a] \cdot [b] = [a \cdot b]$$

Es. Possiamo scrivere, con la notazione dei campi finiti, il prodotto tra numeri interi:

Dato
$$Z_2$$
: $[0] \cdot [0] = [0], [0] \cdot [1] = [0 \cdot 1] = [0], [1] \cdot [1] = [1 \cdot 1] = [1].$

 Z_n é un campo \iff n é **primo**. Se n non é primo, non esisterá l'inverso di un fattore di n, ovvero non esisterá nessuna classe di elementi che se moltiplicata con la classe del fattore restituisca classe 1.

2 Spazi vettoriali

Uno spazio vettoriale definito su un campo K é un insieme V con due operazioni:

$$+: V \times V \to V \ (v_1, v_2) \to v_1 + v_2$$

 $\cdot: K \times V \to V \ (a, v \to av)$

che verificano le seguenti proprietá: + é commutativa, associativa, con elem. neutri (vettore nullo) e opposti (-v), · é associativa, distribuitiva rispetto alla somma e con elemento neutro.

Per ogni campo K, K^n é uno spazio vettoriale su K. $K^n = \{(x_1, x_2, ..., x_n), x_i \in K, \forall i = 1, ..., n\}$ $v = (x_1, x_2, ..., x_n), u = (y_1, y_2, ..., y_n)$ $v + u = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)$ $av = (ax_1, ax_2, ..., ax_n), a \in K$

2.1 Sottospazi vettoriali

Un sottoinsieme non vuoto (contenente almeno il vettore nullo) $U \subseteq V$ (spazio vettoriale su K) é un **sottospazio vettoriale** (SSV) di V se é **chiuso** rispetto alle sue operazioni, cioé:

- $\bullet \ \forall v_1, v_2 \in U \to v_1 + v_2 \in U$
- $\forall v_1 \in U, a \in K, a \cdot v_1 \in U$

Esempio: $V=R^2$ spazio vettoriale su R, $U=\{(x,y)\in R^2:y=2x\}$. É un SSV?

Se $v_1, v_2 \in U : v_1 = (x_1, y_1) \to y_1 = 2x_1, v_2 = (x_2, y_2) \to y_2 = 2x_2$ $v_1 + v_2 = (x_1 + x_2, 2x_1 + 2x_2) \to (x_1 + x_2, 2(x_1 + x_2)) \implies v_1 + v_2 \in U$. Inoltre, $\forall a \in R, a \cdot v_1 = a(x_1, 2ax_1) \implies a \cdot v_1 \in U$. Quindi, U é un SSV di V.

Graficamente, significa che la somma di qualsiasi coppia di vettori presenti sulla retta y=2x é un vettore sempre giacente su questa retta, cosí come il prodotto di qualsiasi vettore giacente sulla retta per un qualsiasi scalare é un vettore sempre giacente su questa retta.

U é un SSV di $V \iff \forall u_1, u_2 \in U, \forall a_1, a_2 \in K$. Dimostrazione:

- \Rightarrow : se Ué un SSV di V e $u_1,u_2\in U\implies a_1u_1,a_2u_2\in U\implies a_1u_1+a_2u_2$
- \Leftarrow : se $a_1u_1+a_2u_2\in U \forall a_1,a_2\in K$, in particolare: prendendo $a_1=1,a_2=1,u_1+u_2\in U$, prendendo a_1 qualsiasi e $a_2=0,a_1u_1\in U$

2.2 Combinazione lineare

Dati $v_1, v_2, \ldots, v_n \in V$, diciamo che $v \in V$ é una **combinazione lineare** di v_1, v_2, \ldots, v_n se $\exists a_1, a_2, \ldots, a_n \in K : v = a_1v_1 + a_2v_2 + \cdots + a_nv_n$, quindi se v é esprimibile come la somma di tutti i vettori di V moltiplicati per un corrispettivo scalare.

Per quanto osservato sopra, U é un SSV \iff contiene tutte le combinazioni lineari di tutti i suoi elementi. Non esiste una combinazione lineare u degli elementi di U che non sia $\in U$.

Esempio: $V = R^2$, $v_1 = (1,0)$, $v_2 = (0,1)$, $v_3 = (3,-2)$. $v_3 = 3v_1 - 2v_2$ quindi v_3 é combinazione lineare di v_1, v_2 . Altro esempio: $u_1 = (2,0)$, $u_2 = (-1,0)$, $u_3 = (3,-2)$. u in questo caso non é combinazione lineare di u_1, u_2 perché non é possibile ottenere la seconda coordinata -2 essendo 0 in entrambi.

2.3 Span

Un SSV U di V é **generato** da $\{v_1, \ldots, v_n\}$ se ogni elemento $u \in U$ é combinazione lineare di v_1, \ldots, v_n , cioé se $\forall u \in U, \exists a_1, \ldots, a_n \in K : u = a_1v_1 + \cdots + a_nv_n$. U é lo **span** di $\{v_1, \ldots, v_n\}$ ed é scritto $U = \langle v_1, \ldots, v_n \rangle$. Si noti che

l'insieme contiene infiniti elementi, siccome infinite sono le combinazioni lineari ottenibili $(a_1, \ldots, a_n \in R)$.

```
Esempio: V = R^4 = \{(x, y, z, w), x, y, z, w \in R\}, v_1 = (2, 0, 0, 0), v_2 = (0, 1, -1, 0). Il sottospazio generato da v_1, v_2 é \langle v_1, v_2 \rangle = \{a_1v_1 + a_2v_2, a_1, a_2 \in R\} = (2a_1, 0, 0, 0) + (0, a_2, -a_2, 0) = (2a_1, a_2, -a_2, 0) = \{(x, y, z, w) \in R^4 : y + z = 0, w = 0\}. Altro esempio: V = R[x], \langle x^2, x, 1 \rangle = \{ax^2 + bx + c, a, b, c \in R\} = \{ \text{ tutti i polinomi di grado } \leq 2\} (con a = 0 il grado \leq 2).
```

2.4 Indipendenza lineare

Un insieme di vettori $\{v_1, \ldots, v_n\}$ é linearmente indipendente se nessun vettore é la combinazione lineare degli altri vettori dell'insieme, ovvero se l'unica combinazione lineare di v_1, \ldots, v_n che restituisce il vettore nullo é quella con tutti i coefficienti $a_1, \ldots, a_n \in K = \vec{0}$. Questo perché se un vettore é combinazione lineare di un insieme di vettori (es. $v_3 = 2v_1 + 4v_2$), basta dare i giusti coefficienti $(a_1 = 2, a_2 = 4, a_3 = -1)$ per fare in modo che si annullino e mettere i coefficienti degli altri vettori a 0.

Un insieme di vettori é **linearmente dipendente** se non é linearmente indipendente. Non é peró detto che ogni vettore apparentenente a un insieme linearmente dipendente sia combinazione lineare di altri (es. $v_1 = (1,0), v_2 =$ $(2,0), v_3 = (0,1) \rightarrow v_2 = 2v_1$ ma v_3 non é combinazione lineare di v_1, v_2), é sufficiente che una coppia di vettori sia ricavabile l'una dall'altra per rendere tutto l'insieme linearmente dipendente.

2.4.1 Equivalenza delle definizioni di indipendenza lineare

- 1. Nessun vettore tra v_1, \ldots, v_n é combinazione lineare degli altri
- 2. Se $a_1v_1 + \cdots + a_nv_n = 0 \implies a_1 = 0, \dots, a_n = 0$

Se la 1 é falsa, $\exists v_i$ (supponiamo per semplicitá sia v_1) che é combinazione lineare degli altri, quindi $v_1 = a_2v_2 + \cdots + a_nv_n \iff v_1 - a_2v_2 - \cdots - a_nv_n = 0 \implies$ la 2 é anch'essa falsa perché i coefficienti non sono per forza tutti 0 (sicuramente $a_1 = 1$).

Se la 2 é falsa significa che $\exists a_1, \ldots, a_n$ con almeno un $a_i \neq 0$: $a_1v_1 + \cdots + a_nv_n = 0$, allora $v_i = \frac{a_1}{a_i}v_1 + \cdots + \frac{a_n}{a_i}v_n \implies$ la 1 é anch'essa falsa siccome v_i é combinazione lineare degli altri.

3 Base

Sia V uno spazio vettoriale su K, $\{v_1, \ldots, v_n\}$ é una base di V se $\{v_1, \ldots, v_n\}$ é indipendente e genera V.

Ad esempio, per $V = R^2, \{(1,0), (0,1)\}$ é indipendente e genera R^2 , quindi é

una base, mentre $\{(1,0),(0,1),(1,1)\}$ genera \mathbb{R}^2 ma é lineramente dipendente, quindi non é una base.

3.1 Teorema. Ogni vettore dello spazio vettoriale si scrive in modo univoco come combinazione lineare dei vettori di una base

Teorema. B é una base di uno spazio vettoriale V su un campo $K \iff \forall v \in V, \exists ! a_1, \ldots, a_n \in K : v = a_1v_1 + \ldots a_nv_n$ (ogni vettore dello spazio si scrive in modo univoco come combinazione lineare degli altri). In questo caso, a_1, \ldots, a_n sono detti le **coordinate** di v nella base B.

Dimostrazione.

• 1. \implies 2

Sia B una base, $v \in V$. Poiché B genera V (per ipotesi é una base), $\exists a_1, \ldots, a_n : v = a_1v_1 + \cdots + a_nv_n$. Per mostrare l'unicitá dei coefficienti, supponiamo $\exists b_1, \ldots, b_n : v = b_1v_1 + \cdots + b_nv_n$.

$$\begin{cases} v = a_1 v_1 + \dots + a_n v_n \\ v = b_1 v_1 + \dots + b_n v_n \end{cases} \begin{cases} v - v = (a_1 v_1 + \dots + a_n v_n) - (b_1 v_1 + \dots + b_n v_n) \\ 0 = v_1 (a_1 - b_1) v_1 + \dots + (a_n - b_n) v_n \end{cases}$$

Poiché B é linearmente indipendente $\implies a_1-b_1=\cdots=a_n-b_n=0$, cioé $a_1=b_1,\ldots,a_n=b_n$

 \bullet 2 \Longrightarrow 1

Per ipotesi, $\forall v \in V, \exists ! a_1, \ldots, a_n \in K : v = a_1v_1 + \cdots + a_nv_n$. Da questo, possiamo dedurre che B genera V. Inoltre, sapendo che il vettore nullo é sempre ottenibile come combinazione lineare in cui tutti i coefficienti $a_1, \ldots, a_n \in K$ sono uguali a 0, sfruttando la loro unicitá, ció implica che $0v_1 + \cdots + 0v_n = \vec{0}$, ovvero che B é linearmente indipendente. B genera V ed é linearmente indipendente $\Longrightarrow B$ é una base.

3.2 Base canonica

Sia K^n spazio vettoriale di dimensione n del campo K. Si definisce l'insieme di vettori $e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, 0, \dots, 1)$ base canonica di K^n . In generale, é un insieme di vettori e_1, \dots, e_n dove l'*i*-esimo vettore ha la *i*-esima componente a 1 e tutte le altre a 0.

Ad esempio, la base canonica di R^3 é $\{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}$. La base canonica per l'insieme dei polinomi di grado $\leq k$ é $\{1, x, x^2, \dots, x^k\}$.

3.3 Estrazione e completamento a una base

Sia X un insieme di vettori che genera V: estrarre una base da X significa trovare $B \subseteq X$ che sia una base di V.

Ad esempio, $X = \{v_1 = (1,0), v_2 = (1,1), v_3 = (0,1)\}, B = \{v_1, v_3\}$ é una base estratta da X.

Sia X un insieme <u>linearmente indipendente</u> in V: **completare** X ad una base di V significa trovare un insieme di vettori da aggiungere ad X in modo da ottenere una base.

Ad esempio, $X = \{v_1 = (1,0,0), v_2 = (2,0,0)\}$. X non genera R^3 perché $\langle X \rangle = \{(x,y,z) \in R^3 : z = 0$. Per completare X a una base di R^3 basta aggiungere un vettore linearmente indipendente dagli altri due e che abbia $z \neq 0$, ad esempio aggiungendo $v_3 = (0,0,1)$ si ottiene la base canonica.

In generale: sia V spazio vettoriale di dimensione d su un campo K:

- ogni insieme linearmente indipendente in V contiene k elementi, $k \leq d$; puó essere completato a una base di V aggiungendo d-k elementi in modo opportuno (senza rendere l'insieme linearmente dipendente)
- ogni insieme che genera V contiene g elementi, $g \ge d$; possiamo estrarre una base rimuovendo opportunamente g d elementi

3.4 Teorema. Numero di elementi di una base

Teorema. Tutte le basi di uno spazio vettoriale V su un campo K hanno lo **stesso numero di elementi** e tale numero é detto la **dimensione** di V. La dimensione puó anche essere pensata come il numero di direzioni linearmente indipendenti sufficienti per potersi muovere in tutto lo spazio vettoriale. Ad esempio, $V = K^n$ ha base canonica $\{e_1, \ldots, e_n\}$ composta da n elementi, quindi qualunque base di K^n ha n elementi $(dim(K^n) = n)$.

Ad esempio, $V = R[x] = \{\text{polinomi}\}\ \text{ha una base}\ \{1, x, x^2, \dots\} \implies dim(R[x]) = \infty$, mentre $U_n = \{p(x) \in R[x] : p(x) \text{ ha grado} \leq n\}$ é un sottospazio di V che ha base $\{1, x, x^2, \dots, x^n\}$ con n+1 elementi, quindi $dim(U_n) = n+1$.

3.5 Forma cartesiana e parametrica

Sia U sottospazio vettoriale di dimensione d in uno spazio vettoriale di dimensione $n(d \le n)$. Posso esprimere U in 2 forme:

- forma cartesiana: U é identificato in K^n da n-d equazioni tra loro linearmente indipendenti
- \bullet forma parametrica: U é espresso in funzione di d parametri

Ad esempio, $V = R^4, U = \{(x,y,z,w) \in R^4 : x = 2y, y = 3z, w = 0\}$ (forma cartesiana), oppure $U = \{(6t,3t,t,0), t \in R\}$ (forma parametrica). In questo caso, U ha dimensione 1, siccome posso scegliere solamente 1 parametro: una volta scelto, gli altri ne derivano di conseguenza. Ogni equazione (linearmente indipendente), nella forma cartesisana, toglie 1 grado di libertá.

3.5.1 Cambio di forma

- da cartesiana a parametrica: si usano le equazioni per espliticare n-d coordinate in funzione delle altre.
 - Ad esempio, dato $\{(x,y,z)\in R^3: x+2y-z=0\}$, risolvo z=x+2y, quindi se $x=t,y=s\implies z=t+2s$, che in forma cartesiana diventa $\{(t,s,t+2s),t,s\in R\}$
- da parametrica a cartesiana: si risolve il sistema. Ad esempio, $\{(t, -2t, s, t+2s), t, s \in R:$

$$\begin{cases} x = t \\ y = -2t \\ z = s \\ w = t + 2s \end{cases} \begin{cases} x = t \\ 2x + y = 0 \\ z = s \\ x + 2z - w = 0 \end{cases} (2I + II)$$
 (2)

$$= \{(x, y, z, w) \in R^4 : 2x + y = 0 \land x + 2z - w = 0\}$$

3.6 Intersezione e unione di sottospazi vettoriali

Osservazione. La forma cartesiana facilita l'<u>intersezione dei sottospazi vettoriali,</u> mentre la forma parametrica risulta piú comoda per <u>trovare le basi</u> di uno spazio.

Ad esempio, $U = \{(t, -2t, s, t + 2s), t, s \in R\} = \{(t, -2t, 0, t) + (0, 0, s, 2s), t, s \in R\} = \{t(1, -2, 0, 1) + s(0, 0, 1, 2), t, s \in R\}.$ $v_t = (1, -2, 0, 1), v_s = (0, 0, 1, 2).$ $\{tv_t + sv_s, t, s \in R\} = \langle v_t, v_t \rangle \implies v_t, v_s$ generano U e sono linearmente indipendenti $\implies v_t, v_s$ sono una base di U.

Proposizione. L'intersezione di sottospazi vettoriali é anch'esso un sottospazio vettoriale.

Dimostrazione. Sia V uno spazio vettoriale su un campo K e siano U,W sottospazi vettoriali di V. $U \cap W = \{v \in V : v \in U, v \in W\}$.

Vogliamo mostrare che se $\forall v_1, v_2 \in U \cap W, v_1 + v_2 \in U \cap W$: in effetti, sapendo che $v_1, v_2 \in U, v_1, v_2 \in W$ e che U e W sono dei sottospazi, $v_1 + v_2 \in U, v_1 + v_2 \in W \implies v_1 + v_2 \in U \cap W$.

Al contrario, l'unione di sottospazi non sempre é un sottospazio. Ad esempio, in $V = R^2$, $U = \{(x,y) \in R^2 : x = 0\} = \{(0,t), t \in R\}, W = \{(x,y) \in R^2 : y = 0\} = \{(x,y) \in R^2 : y = 0\} = \{s,0), s \in R\}.$ $e_1 = (1,0) \in W, e_2 = (0,1) \in U \implies e_1, e_2 \in U \cup W \text{ ma } e_1 + e_2 = (1,1) \notin U, \notin W \implies e_1 + e_2 \notin U \cup W.$

4 Somma di sottospazi

Dato uno spazio vettoriale V su un campo K, dati due sottospazi vettoriali U, W, la **somma** dei sottospazi U e W é il sottospazio

$$U + W = \{u + w, u \in U, w \in W\}$$

$$U+W$$
 é un sottospazio di V perché $(u+w)+(w+w')=\underbrace{u+w}_{\in U}+\underbrace{w+w}_{\in W}$ $(\in U+W).$ Analogamente, $\forall a\in K, a(u+w)=\underbrace{au}_{\in U}+\underbrace{aw}_{\in W}$ $(\in U+W).$

4.1 Formula di Grassman

Siano U, W sottospazi vettoriali di V:

$$dim(U+W) = dim(U) + dim(W) - dim(U \cap W)$$

Intuitivamente, questa formula ricorda il modo di contare gli elementi appartenenti a due insiemi A e B: elementi in A + elementi in B - elementi in $A \cap B$ siccome li ho giá contati negli elementi di A.

Idea alla base della dimostrazione:

Scelgo una base v_1, \ldots, v_k di $U \cap W$ $(dim(U \cap W) = k)$ e la completo a una base $v_1, \ldots, v_k, u_1, \ldots, u_m$ di U (dim(U) = k + m) e a una base $v_1, \ldots, v_k, w_1, \ldots, w_l$ di W (dim(W) = k + l).

Si puó dimostrare che $v_1, \ldots, v_k, u_1, \ldots, u_m, w_1, \ldots, w_l$ é una base di U+W, quindi $dim(U+W) = k+l+m = dim(U)+dim(W)-dim(U\cap W) = (k+l)+(k+m)-k$.

4.2 Somma diretta

Sia U, W sottospazi vettoriali di V, allora U e W formano **somma diretta** se $U \cap W = \{\vec{0}\}$. Scriviamo $U \oplus W$ al posto di U + W.

4.2.1 Implicazioni

Sia V spazio vettoriale, siano U,W sottospazi vettoriali di V tali che $V=U\oplus W,$ allora

$$\forall v \in V, \exists ! u \in U, w \in W : v = u + w$$

ovvero ogni vettore v di V si scrive in modo unico come somma di un vettore $u \in U$ e $w \in W$.

Dimostrazione. Sappiamo che:

- 1. V = U + W
- 2. $U \cap W = \{\vec{0}\}\$

Per la 1, ogni vettore v di V si scrive come somma di un vettore $u \in U$ e $w \in W$ $(\forall v \in V, \exists u \in U, w \in W : v = u + w).$

Per mostrarne l'unicitá, supponiamo si possa scrivere anche come somma di altri due vettori $u\prime + w\prime, u\prime \in U, w\prime \in W.$

Quindi,
$$v=u+w=u\prime+w\prime\iff\underbrace{u-u\prime}_{\in U}=\underbrace{w\prime-w}_{\in W}\implies\in U\cap W.$$
 Per la 2,

$$U \cap W = \{\vec{0}\}$$
, quindi $u - u' = \vec{0} \iff u = u', w' - w = \vec{0} \iff w = w'$.

4.2.2 Esempio

 $R^2 = U \oplus W$, $U = \{(x,y) \in R^2 : y = 0\}$, $W = \{(x,y) \in R^2 : x = 0\}$ (assi cartesiani): ogni vettore in R^2 si scrive in modo unico come somma di $u \in U, w \in W$.

5 Applicazioni lineari

Siano U, V spazi vettoriali su K. Un'applicazione lineare $f: V \to U$ é **lineare** se é compatibile con le operazioni di V e U, ovvero se:

- $\forall v_1, v_2 \in V, f(v_1 + v_2) = f(v_1) + f(v_2)$
- $\forall v \in V, \forall a \in K, f(av) = af(v)$

equivalentemente, $\forall v_1, v_2 \in V, \forall a_1, a_2 \in K, f(a_1v_1 + a_2v_2) = a_1f(v_1) + a_2f(v_2)$ (coimplica 1 e 2).

5.1 Nucleo e immagine

Sia $f: V \to U$ applicazione lineare:

nucleo di
$$f$$
: Ker $f = \{v \in V : f(v) = \vec{0}\}$

immagine di
$$f$$
: Im $f = \{u \in U : \exists v \in V : u = f(v)\}$

5.1.1 Nucleo e immagine sottospazi vettoriali

- 1. Ker é un sottospazio vettoriale di V
- 2. Im é un sottospazio vettoriale di ${\cal U}$

Dimostrazione:

- 1. siano $v_1, v_2 \in \text{Ker } f$ $(f(v_1) = f(v_2) = \vec{0})$, dobbiamo mostrare che anche $v_1 + v_2 \text{ Ker } f$: $f(v_1 + v_2) = f(v_1) + f(v_2) = \vec{0} + \vec{0} = \vec{0}$ (ragionamento analogo per lo scalare)
- 2. siano $u_1, u_2 \in \text{Im } f \ (\exists v_1, v_2 \in V : u_1 = f(v_1), u_2 = f(v_2)),$ devo mostrare che anche $u_1 + u_2 \in \text{Im } f$:

$$f(v_1 + v_2) = f(v_1) + f(v_2) = u_1 + u_2 \in \text{Im } f$$
, ovvero $\exists v_1 + v_2 \in V : u_1 + u_2 = f(v_1 + v_2)$ (ragionamento analogo per lo scalare)

5.2 Iniettivitá e suriettivitá

Sia $f: V \to U$ applicazione lineare:

- $f \in \mathbf{suriettiva} \iff \operatorname{Im} f = U \ (\forall u \in U, \exists v \in V : u = f(v))$
- $f \in \mathbf{iniettiva} \iff \operatorname{Ker} f = \{\vec{0}\} \ (\forall v_1, v_2, v_1 \neq v_2, f(v_1) \neq f(v_2))$

5.2.1 Dimostrazione dell'iniettivitá

- 1 \Longrightarrow 2 Poiché f é lineare, $f(\vec{0}) = f(v v) = f(v) f(v) = \vec{0}$ (il vettore nullo viene mandato nel vettore nullo). Siccome f é iniettiva, se $v \neq \vec{0}$, $f(v) \neq f(\vec{0})$ (solamente il vettore nullo viene mandato nel vettore nullo), quindi Ker $f = \{\vec{0}\}$
 - 2 \Longrightarrow 1 Siano $v_1, v_2 \in V : f(v_1) = f(v_2)$, devo mostrare che $v_1 = v_2$. Dalla 2, $f(v_1 - v_2) = f(v_1) - f(v_2) = \vec{0}$, ovvero $v_1 - v_2 \in \text{Ker } f$, ma $\text{Ker } f = \{\vec{0}\}$, quindi $v_1 - v_2 = \vec{0} \iff v_1 = v_2$, ovvero $f \in \text{iniettiva}$

5.3 Teorema del rango

Sia $f: V \to U$ applicazione lineare:

$$dim(V) = dim(\operatorname{Ker} f) + dim(\operatorname{Im} f)$$

5.3.1 Dimostrazione

Sia v_1, \ldots, v_k base di Ker f (dim(Ker f) = k), la completo a una base $v_1, \ldots, v_k, v_{k+1}, \ldots, v_n$ di V (dim(V) = n).

Avendo una base di V, so che $\forall v \in V, \exists ! a_1, \dots, a_n \in K : v = a_1v_1 + \dots + a_nv_n$. Poiché f é lineare, $f(a_1v_1 + \dots + a_nv_n) = \underbrace{a_1v_1 + \dots a_kv_k}_{\in \operatorname{Ker} f} + a_{k+1}v_{k+1} + \dots + a_nv_n$.

Questo significa che ogni vettore v di V si scrive come combinazione lineare di v_{k+1}, \ldots, v_n , ovvero $\{v_{k+1}, \ldots, v_n\}$ é una base di $\operatorname{Im} f$ $(\dim(\operatorname{Im} f = n - k))$. Infine, unendo i pezzi, ottengo $\dim(V) = n = \dim(\operatorname{Ker} f) + \dim(\operatorname{Im} f) = k + n - k$.

5.4 Rapporto tra dimensione e iniettivitá/suriettivitá

- 1. se dim(V) > dim(U), allora f non puó essere iniettiva
- 2. se dim(V) < dim(U), allora f non puó essere suriettiva
- 3. se dim(V) = dim(U), allora f iniettiva \iff f suriettiva

5.4.1 Dimostrazione

- $1. \ \dim(\operatorname{Im} f) \leq \dim(U) < \dim(V) \qquad = \qquad \dim(\operatorname{Im} f) + \dim(\operatorname{Ker} f) \iff \\ \operatorname{teorema\ del\ rango} \\ \dim(\operatorname{Im} f) < \dim(\operatorname{Im} f) + \dim(\operatorname{Ker} f) \iff \dim(\operatorname{Ker} f) > 0 \implies \operatorname{Ker} f \neq \\ \{\vec{0}\} \ (f \ \operatorname{non\ \acute{e}\ iniettiva})$
- 2. $dim(\operatorname{Im} f) + dim(\operatorname{Ker} f) < dim(U) \implies dim(\operatorname{Im} f) \neq dim(U) \ (dim(\operatorname{Ker} f) \geq 0)$, quindi f non é suriettiva perché non é = U
- 3. dim(Ker f)+dim(Im f)=dim(V)=dim(U). Se f é iniettiva, $dim(\text{Ker }f)=0\iff dim(\text{Im }f)=dim(U)$