

Álgebra y Geometría Analítica I

Sección 2.4- Grimaldi- pág. 114

- 1. Sean $p(x): x \leq 3$, q(x): x+1 impar, proposiciones abiertas en el universo de los enteros.
 - a) p(1) verdadero.

Puesto que si en p(x) reemplazamos el valor de x por 1, se obtiene $1 \le 3$ y esta afirmación es verdadera.

b) q(1) falso.

Puesto que si en q(x) reemplazamos el valor de x por 1, se obtiene 1+1=2 que no es impar.

c) $\neg p(3)$ falso.

Puesto que $p(3): 3 \le 3$ verdadero.

d) q(6) verdadero.

Puesto que q(6): 6+1=7 impar.

e) $p(7)\vee q(7)$ falso.

Puesto que $p(7): 7 \le 3$ falso y q(7): 7 + 1 = 8 falso.

f) $p(3) \land q(4)$ verdadero.

Puesto que p(3) : $3 \le 3$ verdadero y q(4) : 4+1=5 verdadero.

g) p(4) falso.

Puesto que p(4) : $4 \le 3$.

h) $\neg (p(-4) \lor q(-3))$ falso.

Puesto que $p(-4): -4 \le 3$ verdadero y q(-3): -3+1=-2 falso, entonces $(p(-4)\vee q(-3))$ verdadero.

i) $\neg p(-4) \land \neg q(-3)$ falso.

Puesto que como $p(-4): -4 \le 3$ verdadero y q(-3): -3+1=-2 falso, tenemos que $\neg p(-4)$ falso y $\neg q(-3)$ verdadero. Notar que i) es equivalente a h) utilizando la ley de De Morgan.

7. Para el universo de los enteros, consideramos las siguientes proposiciones abiertas,

p(x): x > 0

q(x): x es par

r(x): x es un cuadrado perfecto

s(x): x es (exactamente) divisible entre 4

t(x): x es (exactamente) divisible entre 5

a) iii) Si x es par, entonces x no es divisible entre 5.

Para escribir de forma simbólica la siguiente proposición debemos identificar que proposiciones de las dadas aparecen.

Como un primer paso podemos pensar :

Si x es par, entonces x no es divisible entre 5.

x es par corresponde a q(x) y x no es divisible entre 5 corresponde a $\neg t(x)$.

Por último, teniendo en cuenta el significado de la implicancia, podemos escribir la proposición de la siguiente manera

$$\forall x \, q(x) \to \neg t(x)$$

v) Existe al menos un entero par divisible entre 5.
Pensándolo de manera análoga al item iii), podemos escribir la proposición de la siguiente manera

$$\exists x \, q(x) \land t(x)$$

b) iii) Si x es par, entonces x no es divisible entre 5, o bien en forma simbólica $\forall x\, q(x) \to \neg t(x)$.

Esta proposición es **falsa**, puesto que existe x=10 tal que es par y es divisible entre 5.

v) Existe al menos un entero par divisible entre 5, o bien en forma simbólica $\exists x \, q(x) \land t(x)$.

Esta proposición es **verdadera**, por el mismo motivo que item iii), existe x=10 tal que es par y es divisible entre 5.

c)d) iii) $\forall x [s(x) \rightarrow \neg t(x)].$

Para todo entero, si x es divisible entre 4 entonces no es divisible entre 5. Esta proposición es **falsa**, por ejemplo x = 20 es divisible entre 4 y 5.

- 12. Sea p(x, y) : x divide a y, en el universo de para cada una de las variables x, y, es el conjunto de los enteros.
 - a) viii) $\exists y \, \forall x \, p(x,y)$ falso.

Puesto que para todo y existe x=0 entero, tal que 0 no divide a y. Por ejemplo si y=0 tenemos que 0 no divide a 0.

x) $\forall x \forall y \forall z \ [(p(x,y) \land p(y,z)) \rightarrow p(x,z)]$ verdadero.

Puesto que si x divide a y e y divide a z entonces por propiedad transitiva x divide a z. Esto es cierto puesto que,

Si x divide a y entonces $y = x.n_1$ donde $n_1 \in \mathbb{Z}$.

Si y divide a z entonces $z = y.n_2$ donde $n_2 \in \mathbb{Z}$.

Luego $z=y.n_2=x.n_1.n_2=x.n$ donde $n=n_1.n_2\in\mathbb{Z}$, con lo cual x divide a z.

18. c) $\forall x [p(x) \rightarrow q(x)].$

Debemos negar la siguiente proposición, es decir

$$\neg \forall x \ [p(x) \to q(x)]$$

Esto es equivalente a

$$\exists x \neg [p(x) \rightarrow q(x)]$$

Utilizando la equivalencia lógica vista para la implicancia,

$$\exists x \neg [\neg p(x) \lor q(x)]$$

quedando,

$$\exists x \neg \neg p(x) \land \neg q(x)$$

Por último, por doble negación, resulta

$$\exists x \, p(x) \land \neg q(x).$$