Unlimited Attempts Allowed

4/17/2024

∨ Details

Use Tree Structures to create an object-oriented program (OOP), a menu-driven Grade Book of your course grade, and store the information in the data files.

I am looking for your best effort to demonstrate your understanding of the data structures. You need to use Tree structures, B-Trees, maps, or hashtable, and you may also use the classes that we have learned this semester.

Lab 5 Grade Book using B-Trees 5/13/2024

Attempt 1

 \bigcap_{N}^{lr}

in Progress

NEXT UP: Submit Assignment

1) Class Participation: 10%

2) Quizzes: 10%3) Labs: 30%

4) Midterm: 20% 5) Final Exam: 30%

GRADING SCALE:

A = 90-100

B = 80-89

C = 65-79

D = 55-64

F = < 55

- To calculate the percentage of each group multiply by its weight (percentage) and add all the groups together, then divide by the sum of the weights.
- To calculate the percentage of each group, the sum of the total points divided by the possible points multiplied by 100.

Your data structures and data requirements:

GroupId Section	Description W	/eight(%)
1 CS-124-01	Assignments	10
2 CS-124-01	Quizzes	10
3 CS-124-01	Labs	30
4 CS-124-01	Midterm	20
5 CS-124-01	Final Exam	30
	1	

ld Group	Id Description	Start Date	End Date	Possible Points P	oints
1	1 Classes and Inheritance	2/5/2024 0:00:01	2/8/2024 11:59:00	5	0
2	1 Classes and Inheritance - In class Assignment	2/8/2024 0:00:01	2/8/2024 11:59:00	10	0
3	1 Class Overloading etc.	2/5/2024 0:00:01	2/8/2024 11:59:00	5	0
4	1 Class Overloading - In class Assignment	2/9/2024 0:00:01	2/9/2024 11:59:00	10	0
5	1 Data Structures and Algorithms	2/8/2024 0:00:01	2/22/2024 11:59:00	5	0

The root node (Spring 2024 CS-124-01 or 03):

- ----Chapter 1 Classes
- ----Chapter 2 Overloading etc.
- ----Chapter 3 Data Structures and Algorithms
- ----Chapter 4 Arrays and Vectors
- ----Chapter 5 List and Template,
- ----Chapter 6 Linked List Stacks Queues
- ----Chapter 7 Sorting and Searching
- ----Chapter 8 Maps Hash Tables, etc.
- ----Chapter 9 Tree
- ----Chapter 10 B-Trees
- ----ZyBooks Participation
- +Quizzes
- ----Quiz 1

. . .

```
+Labs
----Lab 1 Basic Class Structures
...
+Midterm
----Midterm Part 1
...
+Final Exam
----Final Exam Part 1
```

2) Data files and data for your trees

- grade-scale.csv
 - o grade-scale.csv (https://ohlone.instructure.com/courses/29469/files/5266900?wrap=1) ↓
 (https://ohlone.instructure.com/courses/29469/files/5266900/download?download_frd=1)
- · assignment-data.csv
 - <u>assignment-data.csv (https://ohlone.instructure.com/courses/29469/files/5267430?wrap=1)</u> ↓
 (https://ohlone.instructure.com/courses/29469/files/5267430/download?download_frd=1)
- course-data.csv
 - o course-data.csv (https://ohlone.instructure.com/courses/29469/files/5267431?wrap=1) ↓ (https://ohlone.instructure.com/courses/29469/files/5267431/download?download_frd=1)
- · faculty-data.csv
 - <u>faculty-data.csv</u> (https://ohlone.instructure.com/courses/29469/files/5267432?wrap=1)_ ↓ (https://ohlone.instructure.com/courses/29469/files/5267432/download?download_frd=1)

We will be working together in class the B-Trees classes implementing the tree interface template using an underlying binary tree representation.

** The only requirement is to populate the assignment-data.csv into the BinarySearchTree. For any other list, you may use any classes or lists **we have learned this semester to structure your program.**

Example:

template <typename T>

class BinarySearchTree

or

template <typename T>

class BinaryTree

template <typename T>

class Tree

- This first record is the root node.
- All other records are sub_tree use root.add_subtree(Assignment)

Note: Be sure to test your binary tree demo works with the "template <typename T>"

3) Implement the classes using the tree interface using an underlying binary tree representation.

See your in-class assignment tree.h and binaryTree.h

- 4) Implement your menu to include the following operations
- doList display all data from the root of the tree.
- · doView view individual assignment and view group of assignments in rows and columns
- doAdd add to tree.
- doEdit edit any fields
- doRemove remove a node from the tree
- calculateGrade Implement your grade and display.
- doSave save data to .csv file
- 5) Be sure to use <iomanip> to format your output and follow the coding guidelines.
- ***The rubrics will be the same as previous lab assignments and the evidence of your understanding of the concepts covered in class.
- * For submission, please attach a screenshot of your output (i.e. Lab 5-<your name>.jpg) file and zip all sources: Lab 5-<your name>.cpp and .h files.

Choose a submission type

Submit Assignment