Propensity Score Diagnostics

Lucy D'Agostino McGowan

Wake Forest University

2021-09-01 (updated: 2022-06-07)

Checking balance

Love plots (Standardized Mean Difference)

ECDF plots

Standardized Mean Difference (SMD)

$$d = rac{ar{x}_{treatment} - ar{x}_{control}}{\sqrt{rac{s_{treatment}^2 + s_{control}^2}{2}}}$$

```
library(smd)
library(tidyverse)

df %>%
    # w is optional
    summarise(smd = smd(confounder_1, exposure, w = wts)$estimate)
```


Calculate standardized mean differences

2

Calculate standardized mean differences

```
smds <- df %>%
summarise(
   across(
      c(confounder_1, confounder_2, ...),
      list(
      unweighted = ~smd(.x, exposure)$estimate,
      weighted = ~smd(.x, exposure, wts)$estimate
   )
   )
)
```

2 Calculate standardized mean differences

```
smds <- df %>%
summarise(
  across(
    c(confounder_1, confounder_2, ...),
    list(
       unweighted = ~smd(.x, exposure)$estimate,
       weighted = ~smd(.x, exposure, wts)$estimate
    )
  )
)
)
```

3

Pivot the SMDs into tidy format

```
plot_df <- smds %>%
  pivot_longer(
    everything(),
    values_to = "SMD",
    names_to = c("variable", "Method"),
    names_sep = "_"
)
```

3 Pivot the SMDs into tidy format

```
plot_df <- smds %>%
  pivot_longer(
    everything(),
    values_to = "SMD",
    names_to = c("variable", "Method"),
    names_sep = "_"
)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```



```
ggplot(
  data = plot_df,
  aes(x = abs(SMD), y = variable, group = Method, color = Method)
) +
  geom_line(orientation = "y") +
  geom_point() +
  geom_vline(xintercept = 0.1, color = "black", size = 0.1)
```

Love plot

Your turn 1

1 Create a Love Plot for the propensity score weighting you created in the previous exercise

10:00

ECDF

For continuous variables, it can be helpful to look at the **whole** distribution pre and post-weighting rather than a single summary measure


```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = \#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom line(data = ecdf 0, aes(x = wt71, y = cum pct), color = \frac{1}{5}
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```

```
ecdf 1 <- df %>%
  filter(qsmk == 1) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ecdf 0 <- df %>%
  filter(qsmk == 0) %>%
  arrange(wt71) %>%
  mutate(cum pct = cumsum(w ate) / sum(w ate))
ggplot(ecdf_1, aes(x = wt71, y = cum_pct)) +
  geom line( color = "#5DB854") +
  geom_line(data = ecdf_0, aes(x = wt71, y = cum_pct), color = "#515
  xlab("Weight in Kg in 1971") +
  ylab("Proportion <= x")</pre>
```


Your turn 2

- 1 Create an unweighted ECDF
 examining the smokeyrs confounder
 for those that quit smoking and
 those that did not
- Create a weighted ECDF examining the smokeyrs confounder

10:00

Bonus! Weighted Tables in R

Weighted Tables in R

Create a "design object" to incorporate the weights

```
library(survey)

svy_des <- svydesign(
  ids = ~ 1,
  data = df,
  weights = ~ wts,
  strata = ~ x
)</pre>
```

Weighted Tables in R

2

Pass to gtsummary::tbl_svysummary()

```
library(gtsummary)
tbl_svysummary(svy_des, by = x) %>%
  add_difference(everything() ~ "smd")
  # modify_column_hide(ci) to hide CI column
```

Characteristic	$0, N = 1,565^{1}$	1 , N = 1,561 ¹	Difference ²
WEIGHT IN KILOGRAMS IN 1971	69 (60, 80)	69 (59, 79)	0.01
0: WHITE 1: BLACK OR OTHER IN 1971			0.01
0	1,359 (87%)	1,352 (87%)	
1	206 (13%)	209 (13%)	
AGE IN 1971	43 (33, 52)	43 (33, 53)	-0.01
0: MALE 1: FEMALE			0.00
0	764 (49%)	764 (49%)	
1	802 (51%)	797 (51%)	
NUMBER OF CIGARETTES SMOKED PER DAY IN 1971	20 (10, 25)	20 (10, 30)	0.02
YEARS OF SMOKING	24 (15, 33)	24 (14, 33)	0.00
IN RECREATION, HOW MUCH EXERCISE? IN 1971, 0:much exercise,1:moderate exercise,2:little or no exercise			0.04
0	302 (19%)	294 (19%)	
1	665 (42%)	691 (44%)	
2	599 (38%)	576 (37%)	
IN YOUR USUAL DAY, HOW ACTIVE ARE YOU? IN 1971, 0:very active, 1:moderately active, 2:inactive			0.03
0	700 (45%)	684 (44%)	
1	718 (46%)	738 (47%)	
2	147 (9.4%)	138 (8.9%)	
w_ate	1.31 (1.21, 1.48)	4.22 (3.19, 5.59)	-1.8
¹ Median (IQR); n (%)			
² Standardized Mean Difference			