Skip

• Execution of skip does not have any effect.

$$[\emptyset \Leftarrow q]$$
 of the squivalent to $[\emptyset \Rightarrow \emptyset]$

 $[] \begin{tabular}{ll} \label{eq:continuity} $\text{tint: } y, x$ $$ \textbf{int: } \\ \{1 \le x\} \\ \end{tabular}$

• Weakest precondition: wp.skip. $Q \equiv Q$

• Example

Assignment

• Any change of state is due to the execution of an assignment statement.

$$\mathcal{H} =: x$$

replaces the value of x by the value of E.

$$[(\mathcal{A} =: x) \mathcal{Q} \land \mathcal{A}. \mathsf{Abb} \Leftarrow \mathcal{A}]$$
 of the squivalent to $[\mathcal{A} := \mathcal{A}]$

Here def. E is defined for which values of its variables in E is defined.

$$0 \neq d = (d \text{ bom } n).$$
 Jəb

• Weakest precondition

$$[(\mathcal{A} =: x) \mathcal{Q} \land \mathcal{A}.\mathbf{feb} \equiv \mathcal{Q}.(\mathcal{A} =: x).qw]$$

\forall

Catenation

• Catenation allows us to describe sequence of actions.

$$L$$
: S

S is executed after which T is executed.

$$\{\emptyset\}T\{A\}$$
 bas $\{A\}S\{T\}$. $A = \{A\}T\{A\}$ and $\{A\}T\{A\}$

• Weakest precondition

$$[(\mathcal{Q}.T.qw).S.qw \equiv \mathcal{Q}.(T;S).qw]$$

i.e., semi-colon corresponds to function composition.

• Prove

$$[\log a, b, \log a, b];$$

$$var a, b : bool;$$

$$(a \equiv b) \land (b \equiv b)$$

$$a \equiv b =: b$$

$$a \equiv b =: b$$

$$\{(A \equiv b) \land (B \equiv b)\}$$

- Hint: Compute the weakest preconditions backwards.

Selection

$$\mathbf{h} \ n.S \leftarrow n.A \ [] \ \cdots \ [] \ 0.S \leftarrow 0.A \ \mathbf{li}$$

мреге

- B.i: a boolean expression (a guard)
- Si: a statement
- $B.i \rightarrow S.i$: a guarded command
- 1. All guards B_i are evaluated.
- 2. If none of the guards evaluates to true then execution aborts, otherwise one of the guards that has the value true is chosen non-deterministically and the corresponding statement is executed.

An Example

Derive a statement S that satisfies

$$|[$$

$$\{ \text{funi} : z \text{ `h '} x \text{ inf} \}$$

$$\{ \text{fune} \}$$

$$|[$$

where max is defined by

$$\emptyset \leq z \wedge x \leq z \wedge (\emptyset = z \wedge x = z) \equiv \emptyset \text{ xem } x = z$$

We conclude that z := x is a candidate for S. As a precondition we can have

$$(x=:z)(y \le z \land x \le z \land (y=z \lor x=z))$$

$$\{ \text{ substitution } \} \equiv$$

$$\{ \text{ calculus } \} \equiv$$

$$\{ \text{ calculus } \}$$

 $x =: z \leftarrow h \leq x$

Symmetrically,

oS

$$hbegin{aligned}
\hbar =: z \leftarrow x \leq \hbar
 \end{aligned}$$

si S to noitinhab ant os

$$\mathbf{h} \ \mathbf{v} =: \mathbf{z} \leftarrow \mathbf{x} \leq \mathbf{v} \ [] \ \mathbf{x} =: \mathbf{z} \leftarrow \mathbf{v} \leq \mathbf{x} \ \mathbf{i}$$

Formulation of Selection Statement

$$\{\mathcal{O}\}$$
if $B_0 \rightarrow S_0 []$ $B_1 \rightarrow S_1$ if $\{Q\}$

ot talisviups si

1.
$$[P \to B_0 \lor B_1]$$
 and $P \land B_1 \rbrace S_1 \lbrace Q \rbrace$ and $P \land B_1 \rbrace S_1 \lbrace Q \rbrace$

• Examples

.
$$\{1 = x\}$$
i $1 + x =: x \leftarrow \exists x + 1$ $[1 + x =: x \leftarrow \exists x + 1]$ $[1 + x =: x \leftarrow \exists x + 1]$

Weakest Precondition for Selection

Repetition

bo
$$n.2 \leftarrow n.4$$
 [] \cdots [] $0.2 \leftarrow 0.4$ **ob**

1. All guards B_i are evaluated.

2. If none of the guards evaluates to true then execution *skip*, otherwise one of the guards that has the value true is chosen *non-deterministically* and the corresponding statement is executed, after which the repetition is executed again.

Formulation of Repetition Statement

$$\{P\}$$
 do $B_0 \rightarrow S_0 [] B_1 \rightarrow S_1 \text{ od}\{Q\}$

of the sale of the

$$\{P\}$$

$$\mathbf{f} \quad \{P\}$$

zi tsaT

{Ø}

$$\{P\} \label{eq:continuous} \{P\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1)\} \text{skip} \{Q\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1)\} \text{skip} \{Q\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1)\} \text{skip} \{Q\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1)\} \text{skip} \{Q\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1)\} \text{skip} \{Q\} \ \text{if } (\neg B_0 \land \neg B_1) \rightarrow \{P \land (\neg B_0 \land \neg B_1) \land \neg B_1 \land \neg B$$

os

səilqmi

bns
$$[\mathcal{Q} \leftarrow (\mathbf{1}B - \wedge \mathbf{0}B -) \wedge \mathbf{4}]$$
 (i) $\{P \wedge B_0\}_{0}$ and $\{P \wedge B_1\}_{0}$ sind $\{P \wedge B_1\}_{0}$

$$\{A\}_1 S\{A \land A\}$$
 band $\{A \land B_1\}_2 \{A\}$ (ii)

 $\{P\}$ do $B_0 \rightarrow S_0 [] B_1 \rightarrow S_1 \text{ od}\{Q\}$

provided that this repetition terminates.

Note: A predicate P that satisfies (ii) is called an invariant of **do** $B_0 \rightarrow S_0$ [] $B_1 \rightarrow S_1$ **od**.

An Example

Prove that

$$\cot x,y:\inf;$$

$$\cot x \cdot y=\inf;$$

$$\tan x \cdot y=\inf x \cdot y=1$$

$$\cot x \cdot y=1$$

where $X \operatorname{\mathbf{gcd}} Y$ denotes the greatest common divisor of X and Y.

Proof Sketch.

• Define an invariant P as

$$P: X>0 \land y>0 \land x \text{ gcd } y=X \text{ gcd } Y$$
 satisfying $x=X \land y=Y \land y>0 \Rightarrow Y$.

• Prove:

$$\{a\}x - h =: h\{(x < h) \lor a\} - \{a\}x - x =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x - h =: x\{(h < x) \lor a\} - \{a\}x -$$

• Show the termination of the repetition.

- Let t = x + y. $t \ge 0$ and t decreases in each step of repetition.

Exercises

Problem 2

The following problem may be used to compute (non-deterministically)

natural numbers x and y such that x * y = N. Prove:

$$\label{eq:continuous} \begin{array}{c} \text{; bin}: N, y, x, q \text{ rev} \\ 1, 1, 1 - N =: y, x, q \{1 \leq N\} \\ 1, 1, 1 - N =: y, x, q \{1 \leq N\} \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ 0 \neq q \text{ ob}; \\ \{q + y * x = N\} \\ \{q + y *$$