Fourier Series

Digital Signal Processing

February 6, 2024

Sum of Cosine and Sine

Adding a cosine and sine with same frequency, results in another cosine with the same frequency, but **different amplitude** and **phase**.

$$A\cos(\omega_0 t) + B\sin(\omega_0 t) = C\cos(\omega_0 t - \phi),$$

where

$$C = \sqrt{A^2 + B^2}$$
, and $\phi = \operatorname{atan2}(B, A)$.

Sum of Cosine and Sine

$$A\cos(\omega_0 t) + B\sin(\omega_0 t) = C\cos(\omega_0 t - \phi),$$

$$A = 1, \quad B = 1, \quad \omega_0 = \pi.$$

So,

$$C=\sqrt{A^2+B^2}=\sqrt{2},\quad \text{and}\quad \phi=\mathrm{atan2}(B,A)=\frac{\pi}{4}.$$

Derivation (Optional)

Consider the sum of complex exponentials:

$$Ae^{i\omega_{0}t} + Be^{i(\omega_{0}t - \frac{\pi}{2})} = e^{i\omega_{0}t}(A + e^{-i\frac{\pi}{2}}B)$$

$$= e^{i\omega_{0}t}(A - iB)$$

$$= e^{i\omega_{0}t}\sqrt{A^{2} + B^{2}}e^{-i\phi}$$

$$= \sqrt{A^{2} + B^{2}}e^{i(\omega_{0}t - \phi)}$$

Taking real part of left side gives:

$$A\cos(\omega_0 t) + B\cos(\omega_0 t - \frac{\pi}{2}) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

Taking real part of right side gives:

$$\sqrt{A^2 + B^2} \cos(\omega_0 t - \phi)$$

Fourier Series

We can write (almost) any continuous periodic function, x(t), with period L, as a linear combination of cosines and sines:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{2\pi kt}{L}\right) + b_k \sin\left(\frac{2\pi kt}{L}\right) \right],$$

where a_k, b_k are constants.

Fourier Series

The constants are given by

$$a_k = \frac{2}{L} \int_0^L \cos\left(\frac{2\pi kt}{L}\right) x(t) dt,$$

$$b_k = \frac{2}{L} \int_0^L \sin\left(\frac{2\pi kt}{L}\right) x(t) dt,$$

Frequencies in the Fourier Series

If x(t) has period L, it's frequency is $\omega_0 = \frac{2\pi}{L}$.

Notice in the Fourier series for x(t), the frequencies are integer multiples, $k\omega_0=\frac{2\pi k}{L}$:

$$x(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k \cos\left(\frac{2\pi kt}{L}\right) + b_k \sin\left(\frac{2\pi kt}{L}\right) \right].$$

 ω_0 is called the **fundamental frequency**, and the $k\omega_0$ are called **harmonics**.

Harmonics of a Vibrating String

A vibrating string, with fixed endpoints, will move at a fundamental frequency and at integer multiples of that frequency.

These are called **harmonics** because they are in harmony with the fundamental frequency.

Discrete-Time Fourier Series

Now consider a discrete, periodic signal, x[n], with period L.

The discrete-time Fourier series just replaces the continuous variable, $t \in \mathbb{R}$, with the discrete variable, $n \in \mathbb{Z}$!

$$x[n] = \frac{a_0}{2} + \sum_{k=1}^{L-1} \left[a_k \cos\left(\frac{2\pi kn}{L}\right) + b_k \sin\left(\frac{2\pi kn}{L}\right) \right].$$

Discrete-Time Fourier Series

Replace integration with summation to get the constants:

$$a_k = \frac{2}{L} \sum_{n=0}^{L-1} \cos \left(\frac{2\pi kn}{L} \right) x[n],$$

$$b_k = \frac{2}{L} \sum_{n=0}^{L-1} \sin\left(\frac{2\pi kn}{L}\right) x[n].$$