WO 2005/014027 PCT/EP2004/007581

Verwendung von Chemokinen und diese enthaltende Pharmazeutische Zubereitungen

Die vorliegende Erfindung betrifft die Verwendung von Chemokinen und/oder ein Chemokin kodierenden Nucleinsäuren zur Rekrutierung mesenchymaler Vorläufer- und/oder Stammzellen in vivo und in vitro. Die vorliegende Erfindung betrifft außerdem diese Substanzen enthaltende pharmazeutische Zubereitungen, die vorzugsweise zur Rekrutierung von mesenchymalen Vorläufer- und/oder Stammzellen zum Gewebsaufbau bestimmt sind.

Gebiet der Erfindung

Die Osteoarthrose ist die häufigste Gelenkerkrankung weltweit. Im Verlauf dieser primär degenerativen Gelenkerkrankung kommt es zu einer schrittweisen lokalen Zerstörung der Gelenkoberfläche, der Degeneration des artikulären Knorpels. Die Folge sind Schmerzen und eine eingeschränkte Funktion und Beweglichkeit. Die Faktoren, welche die Entstehung einer Osteoarthrose beeinflussen, sind unter anderem das Alter, das Geschlecht, das Gewicht, Osteoporose, mechanische Überbeanspruchung, Fehlstellungen und Traumen.

Konventionelle orthopädische Therapieverfahren, wie "Debridement", "Gelenkshaving", "Microfracture" und "Drilling", sind oftmals nur unzureichend wirksam. Als letzte Konsequenz bleibt häufig nur ein rekonstruktiver Eingriff mit endoprothetischem Gelenkersatz. Alternative Verfahren zur Wiederherstellung von Gelenkknorpel oder auch von Knochen nutzen die Techniken des Tissue Engineering, der künstlichen Gewebezüchtung. Hierzu werden dem Patienten autologe Knorpelzellen oder mesenchymale Vorläufer- oder Stammzellen entnommen und in aufwendigen Zellkulturverfahren vermehrt. In einer zweiten Operation werden diese Zellen in den mit einem Periostlappen abgedeckten Defektbereich injiziert (ACT, Autologe Chondrozyten Transplantation) oder nach Verpackung in die Knorpel- (Chondrogenese) oder auch Knochenreifung (Osteogenese) fördernde dreidimensionale Biomaterialien in den Defekt eingebracht [siehe auch US-A- 5,891,455].

2

Neuere Methoden hingegen zielen auf die Regeneration von Defekten direkt im Gewebe, die in situ Regeneration, ab. Hierzu werden Biomaterialien in den Defekt eingebracht, welche mit biologisch aktiven Faktoren, wie Wachstums- und Differenzierungsfaktoren, Adhäsionsmolekülen, extrazellulären Matrixmolekülen und chemotaktischen Faktoren, versehen sind, um mesenchymale Zellen an den Defektort zu dirigieren und dort zur Regeneration des defekten Gewebes anzuregen.

Als chemotaktische Faktoren werden Proteine bezeichnet, die die Eigenschaft besitzen, humane Zellen bei der Migration zu unterstützen oder diese zur Migration anzuregen. Hierbei handelt es sich beispielsweise um extrazelluläre Matrixmoleküle und sezernierte Proteine, die im Gewebe diffundieren. Chemotaktische Faktoren umfassen eine Reihe von Proteinen wie Wachstums- und Differenzierungsfaktoren (beispielsweise aus der Transforming Growth Factor (TGF) Familie, der Bone Morphogenetic Protein (BMP) Familie, die Cartilage Derived Morphogenetic Proteins (CDMP), aus der Fibroblast Growth Factor (FGF) Familie, den Connective Tissue Growth Factor (CTGF), aus der Platelet Derived Growth Factor (PDGF) Familie, aus der Vascular Endothelial Growth Factor (VEGF) Familie, oder der Epidermal Growth Factor (EGF) Familie), extrazelluläre Matrixmoleküle (beispielsweise Osteopontin, Fibronectin, Hyaluronsäure, Heparin, Thrombospondin, Collagene, Vitronectin) und Chemokine (CCL, CXCL, CX3CL und XCL).

Die Verwendung von extrazellulären Matrixmolekülen (Osteopontin) und sezernierten Wachstums- und Differenzierungsfaktoren (cartilage derived morphogenetic protein) als chemotaktische Faktoren, die mesenchymale Zellen nicht nur zur Einwanderung in den Defekt, sondern gleichzeitig auch zum gewebespezifischen Reifen induzieren, ist in der DE 199 57 388A beschrieben. Matrixmoleküle diffundieren im Gewebe nicht, daher sind sie als demotaktische Faktoren nur bedingt geeignet. Einige der sezernierten Proteine haften an Matrixproteinen, was wiederum ihre Bewegungsfreiheit einschränkt. Sie haben jedoch auch einen differenzierenden Effekt. Erfolgt die Differenzierung zu früh, wird das Gewebe nicht am gewünschten Ort gebildet. Weiterhin ist keine Entkopplung von Rekrutierung und Differenzierung möglich. Die Wahl des chemotaktischen Faktors bestimmt auch den Differenzierungsvorgang.

Die bislang angewandten Verfahren erfordern daher zunächst die Gewinnung von autologen, Gewebe bildenden Zellen, die dem Patienten an dem Ort, an dem neues Gewebe (meist Knorpel oder Knochen) wieder aufgebaut werden soll, implantiert werden müssen. Die Gewinnung autologer Zellen ist jedoch zeitaufwändig und für den Patienten mindestens mit einer vorgeschalteten Biopsie, wenn nicht einer Operation zur Gewinnung des Zellmaterials verbunden.

Zusammenfassung der Erfindung

Die vorliegende Erfindung betrifft in einer ersten Ausführungsform die Verwendung eines Chemokins und/oder einer ein Chemokin kodierenden Nucleinsäure zur Herstellung einer pharmazeutischen Zubereitung. Vorzugsweise ist die pharmazeutische Zubereitung zur Rekrutierung mesenchymaler, vorzugsweise ortständiger mesenchymaler Vorläuferzellen vorzugsweise aus dem Knochenmark zum Gewebsaufbau bestimmt.

In einer zweiten alternativen Ausführungsform betrifft die Erfindung die Verwendung eines Chemokins und/oder einer ein Chemokin kodierenden Nucleinsäure zur Rekrutierung mesenchymaler, vorzugsweise ortsständiger mesenchymaler Vorläuferzellen aus dem Knochenmark in vitro.

Vorzugsweise ist das Chemokin ausgewählt aus der Gruppe, bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10, CXCL11, CXCL16, CXCL13, CXCL5, CXCL6, CXCL8, CXCL12, CCL2, CCL8, CCL13, CCL25, CCL3, CCL4, CCL5, CCL7, CCL14, CCL15, CCL16, CCL23, CX₃CL1, XCL1, XCL2, CCL1, CCL17, CCL22, CCL11, CCL24, CCL26, CXCL1, CXCL2, CXCL3, und CXCL7, stärker bevorzugt aus der Gruppe, bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10, CXCL11, CXCL16, CXCL13, und CXCL5, CXCL6, CXCL8, CXCL12, CCL2, CCL8, CCL13 und CCL25, am meisten bevorzugt aus der Gruppe, bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10, und CXCL11.

Es kann ein Chemokin oder eine Mischung von Chemokinen verwendet werden. Alternativ kann ein Chemokin-Fragment oder ein Chemokin-Derivat verwendet werden, das die Fähigkeit hat, an einen Chemokinrezeptor zu binden. In jedem Falle kann es sich um ein natürliches oder synthetisches Chemokin handelt.

Die ein Chemokin kodierende Nucleinsäure kann in Form von RNA, DNA, cDNA, oder ssDNA vorliegen und kann natürlichen oder synthetischen Ursprungs sein.

Vorzugsweise liegt die pharmazeutische Zubereitung in einer zur Injektion geeigneten Form vor. Sie kann zusätzlich enthalten:

- einen oder mehrere geeignete Hilfsstoffe;
- ein oder mehrere biologisch abbaubaren Polymeren;
- mindestens einen aktiven Wirkstoff, ausgewählt unter Differenzierungs- und Wachstumsfaktoren sowie Mischungen davon, wobei die Differenzierungs- und Wachstumsfaktoren vorzugsweise die Chondrogenese oder die Osteogenese induzieren, und Mischungen von 2 oder mehr derselben.

In einer dritten Ausführungsform betrifft die Erfindung eine pharmazeutische Zubereitung, enthaltend ein wie oben definiertes Chemokin.

In einer vierten Ausführungsform betrifft die Erfindung schließlich eine pharmazeutische Zubereitung, enthaltend eine wie oben definierte Nucleinsäure.

Kurze Beschreibung der Abbildungen

Abbildung 1: Nachweis der Expression der Chemokinrezeptoren in humanen mesenchymalen Stammzellen mittels RT-PCR.

Abbildung 2: Nachweis der dosisabhängigen Stammzellwanderung als Reaktion auf CXCL12.

Genaue Beschreibung der Ersindung

Erfindungsgemäß können Proteine der Familie der Chemokine zur Rekrutierung von mesenchymalen Vorläuferzellen, insbesondere mesenchymalen Stammzellen beispielsweise aus dem Knochenmark verwendet werden, wobei die Rekrutierung in vivo und in vitro erfolgen kann. Therapeutisch kann die Rekrutierung bei der Heilung von Gewebsdefekten, insbesondere pathogenetisch und/oder traumatisch und/oder altersbedingten Knorpeldefekten, Knorpelläsionen, Knochendefekten und -brüchen genutzt werden.

Das oder die Chemokine werden an einem bestimmten Ort zur Verfügung gestellt. Von hieraus baut sich aufgrund der Diffusion ein Konzentrationsgradient auf. Aufgrund dieses Konzentrationsgradienten werden die mesenchymalen Zellen an den jeweiligen Ort gelenkt, was als Rekrutierung bezeichnet wird. Der entsprechende Reiz an die Zellen wird durch Bindung der Chemokine an spezifische Chemokinrezeptoren vermittelt.

Die vorliegende Erfindung baut auf der Erkenntnis auf, dass humane oder tierische mesenchymalen Vorläufer- und Stammzellen über entsprechende Rezeptoren verfügen. Die Expression bzw. das Vorhandensein dieser Rezeptoren in humanen oder tierischen mesenchymalen Vorläufer- und Stammzellen ist in der wissenschaftlichen Literatur bisher nicht beschrieben und wird hierin belegt.

Ohne hieran gebunden sein zu wollen, wird davon ausgegangen, dass die mesenchymalen Vorläufer- und Stammzellen eben aufgrund der Expression dieser Rezeptoren auf Chemokine reagieren und somit aufgrund des Chemokinsignals wandern können. Das Ansprechverhalten und die Wanderungsgeschwindigkeit hängen dabei vermutlich von der Expressionshöhe des Rezeptors auf der jeweiligen Zelle ab. Die Liganden der am höchsten exprimierten Rezeptoren sind somit vermutlich diejenigen Chemokine, auf welche die mesenchymalen Vorläuferund Stammzellen am stärksten ansprechen.

Mit abnehmendem Expressionsniveau sinkt die Wahrscheinlichkeit, daß die Zellen auf die dem Chemokinrezeptor korrespondierenden Chemokine chemotaktisch reagieren und wandern. Die Wanderungseigenschaften der Vorläufer- und Stammzellen und das "Anlock"-

6

Potential der Chemokine wird erfindungsgemäß genutzt, um in situ mesenchymale, vorzugsweise sogar ortsständige Vorläufer- und Stammzellen zu einem bestimmten Ort, beispielsweise einem Defektort (z.B. einer Knorpelläsion) zu rekrutieren.

Chemokine sind Proteine (5-20 kDa), die eine wichtige physiologische Rolle bei einer Vielzahl von Prozessen wie der Hämatopoiese von Blutstammzellen und der Chemotaxis von Leukozyten spielen. Unter Chemotaxis wird die durch einen chemischen Reiz ausgelöste positive oder negative, in Richtung auf den Reiz hin bzw. von ihm fort erfolgende Bewegungsreaktion beweglicher Organismen oder Zellen, deren Zellmembran durch entsprechende "chemotaktische Stoffe" (Chemokine, Chemotaxine) aktiviert wird, verstanden. Diese Aktivierung wird durch einen korrespondierenden Zelloberflächenrezeptor (Chemokinrezeptor) vermittelt, an den das Chemokin bindet. Im Rahmen der vorliegenden Erfindung wird die zielgerichtet auf einen Defektort hin ausgelöste Chemotaxis bestimmter Zielzellen auch als "Rekrutierung" bezeichnet.

Die Aminosäuresequenzen aller Chemokine sind ähnlich und durch eine unveränderliche Anordnung von vier Cysteinen gekennzeichnet. Je nach Lage der ersten zwei Cysteine wird die Chemokinfamilie in vier Subfamilien unterteilt: CC-, CXC-, CX3C- und C-Chemokine, wobei die Vertreter der C-Subfamilie nur zwei Cysteine aufweisen (siehe Tabelle 1 unten). Eine detailliertere Darstellung findet sich in Murphy et al. (2000) "International union of pharmacology. XXII. Nomenclature of chemokine receptors," Pharmacol Rev 52:145-176, die hierin durch Bezugnahme aufgenommen ist. Im Folgenden wird zur Bezeichnung von bevorzugten, erfindungsgemäß zu verwendenden Chemokinen die von Murphy et al. dargestellte Nomenklatur herangezogen. Die Chemokine selbst werden als CCL, CXCL, CX3CL und XCL bezeichnet. Dabei steht "L" für Ligand. Neben den Nomenklaturnamen werden in der Literatur häufig auch Trivialnamen benutzt.

Die Chemokine und ihre Rezeptoren werden von einer großen Zahl hämatopoietischer und nicht hämatopoietischer Zellen exprimiert. Die Chemokinaktivität wird durch die Bindung an einen spezifischen G-Protein gekoppelten Rezeptor initiiert. Obwohl die meisten Untersuchungen bezüglich der Wirkungsweise von Chemokinen bisher an Leukozyten durchgeführt wurden, erstreckt sich ihre Funktion weit über die Leukozytenphysiologie.

7

Chemokinrezeptoren sind klassifiziert als Rezeptoren für CCL, CXCL, CX3CL und XCL und werden systematisch mit CCR, CXCR, CX3CR und XCR bezeichnet ("R" steht für Rezeptor) (siehe Tabelle 1 unten). Einige von ihnen können mehrere Chemokine einer Subfamilie binden. Die Aminosäuresequenzen der Chemokinrezeptoren sind untereinander zu 25-80% identisch und zu 25% identisch mit vielen anderen G-Protein gekoppelten Rezeptoren [Murphy et al. (2000) " International union of pharmacology. XXII. Nomenclature of chemokine receptors." Pharmacol Rev 52:145-176].

Der N-Terminus befindet sich auf der extrazellulären Seite der Membran und ist meistens glykolysiert, während sich der C-Terminus auf der zytoplasmatischen Seite befindet und phosphoryliert ist. Drei extrazelluläre Schleifen wechseln sich mit drei intrazellulären ab und verbinden sieben hydrophobe transmembrane Domänen. Ein Zweistufenmodel für die Rezeptoraktivierung wurde entwickelt: Die Chemokinbindung an den Rezeptor führt zuerst zu einer Konformationsänderung des Chemokins und daraufhin folgt die Aktivierung des Rezeptors durch den N-Terminus des Chemokins. Dabei wird an die α-Untereinheit des G-Proteins gebundenes GDP durch GTP ausgetauscht. Das G-Protein dissoziiert vom Rezeptor ab und löst im zytoplasmatischen Raum eine Kaskade biochemischer Reaktionen aus.

CC- und CXC-Rezeptoren wurden bei Monozyten, Lymphozyten, basophilen und eosinophilen Granulozyten sowie Chondrozyten nachgewiesen. Zur CC-Chemokinrezeptorfamilie
gehören elf CC-Rezeptoren (CCR1-CCR11). Sie weisen sieben charakteristische Sequenzabschnitte auf, die sie von den 6 Rezeptoren der CXCR-Familie (CXCR1-CXCR6) unterscheiden.

WO 2005/014027 PCT/EP2004/007581

Tabelle 1: Humane Chemokinrezeptoren und ihre Liganden

Chemokinrezeptor	Chemokin-Ligand
CCR1	CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, CCL14a, CCL14b, CCL15,
	CCL16, CCL23
CCR2	CCL2, CCL7, CCL8, CCL13
CCR3	CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL24, CCL26
CCR4	CCL3, CCL5, CCL17, CCL22
CCR5	CCL3, CCL4, CCL5, CCL8, CCL11, CCL13, CCL14
CCR6	CCL20
CCR7	CCL19, CCL21
CCR8	CCL1, CCL16
CCR9	CCL25
CCR10	CCL27, CCL28
CCR11	CCL2, CCL8, CCL13, CCL19, CCL21, CCL25
CXCR1	CXCL5, CXCL6, CXCL8
CXCR2	CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL8
CXCR3	CXCL9, CXCL10, CXCL11
CXCR4	CXCL12
CXCR5	CXCL13
CXCR6	CXCL16
XCR1	XCL1, XCL2
CX3CR1	CX3CL1

Die Erfinder haben in ihren Untersuchungen eine Abstufung der Expression der verschiedenen Chemokinrezeptoren auf mesenchymalen Zellen festgestellt. In der unten gegebenen Tabelle 3 ist diese Abstufung dargestellt. Hieraus ergibt sich wiederum der bevorzugte Einsatz der an die am häufigsten exprimierten Rezeptoren bindenden Chemokine im Rahmen der erfindungsgemäßen Verwendung.

Bevorzugt verwendet man die Chemokine der Nummern 1-39, vorzugsweise der Nummern 1-18, und besonders bevorzugt der Nummern 1-8 aus Tabelle 4. Diese können in Form der Chemokine, von deren Fragmenten und oder Derivaten aber auch in Form von einer ein Chemokin kodierenden Nucleinsäure (beispielsweise DNA, cDNA, RNA, ssDNA) verwendet werden. Unter einem Fragment eines Chemokins wird erfindungsgemäß ein Peptid verstanden, das eine Teilsequenz der Aminosäuresequenz des Chemokins umfasst. Unter einem Derivat eines Chemokins wird erfindungsgemäß ein Peptid oder Protein verstanden mit einer

Aminosäuresequenz, die sich durch Deletion, Substitution, Addition oder Punktmutation von der Aminosäuresequenz eines Chemokins ableitet. Wesentlich für geeignete Fragmente und/oder Derivate ist der Erhalt der Bindungsfähigkeit an den Chemokinrezeptor sowie vorzugsweise auch der Bindungsspezifizität.

Zur diagnostischen und/oder therapeutischen Verwendung wird eine das Chemokin und/oder eine das Chemokin kodierende Nucleinsäure enthaltende pharmazeutische Zubereitung nach herkömmlichen Verfahren hergestellt. Vorzugsweise ist die pharmazeutische Zubereitung zur Injektion bestimmt. Geeignete Verfahren zur Herstellung von Proteinen und Nucleinsäuren enthaltenden pharmazeutischen Zubereitungen sowie hierfür geeignete Hilfsstoffe sind bekannt und sollen hier nicht beschrieben werden. Das Design einer solchen Zubereitung liegt im Können des Fachmanns. Geeignet sind beispielsweise Injektionslösungen, Fibrinkleber, Substrate zu Transplantation, Matrices, Gewebe-Patches oder Nahtmaterialien.

Die Zubereitung wird nun zur Anwendung in den Gewebsdefekt wie einen Knochen- oder Knorpeldefekt eingebracht vorzugsweise mittels Injektion, eines Fibrinklebers, eines Substrats, einer Matrix oder eines Patches. Geeignete Substrate sind beispielsweise aus der DE 199 57 388 bekannt, die hierin durch Bezugnahme aufgenommen wird. Zur Anlockung von mesenchymalen Vorläufer- und/oder Stammzellen kann eine Verbindung zum Knochenmarksraum geschaffen werden. Nach Einwanderung der mesenchymalen Zellen in den Knochen- oder Knorpeldefekt bauen diese Zellen im Defekt ein den Defekt ausfüllendes und stabilisierendes Regeneratgewebe auf. Durch Zumischen von die Osteogenese oder Chondrogenese fördernden Wachstums- und Differenzierungsfaktoren kann der Aufbau des knöchernen oder knorpeligen Regeneratgewebes unterstützt werden.

Die Erfindung betrifft somit bevorzugt die Verwendung von Chemokinen zur Herstellung von pharmazeutischen Zubereitungen zum Rekrutieren von ortsständigen mesenchymalen Vorläuferzellen aus dem Knochenmark zur Regeneration von krankhaften oder traumatischen Gelenkdefekten, vorwiegend bei Arthrose.

Mesenchymale Vorläuferzellen und Stammzellen im Sinne der vorliegenden Erfindung sind Zellen, welche die Eigenschaft besitzen, sich in ein oder auch mehrere mesenchymale Gewebe zu entwickeln. Als Beispiele sein genannt: Knorpel mit Chondrocyten, Knochen mit Osteocyten, Sehnen mit Tenocyten, Bänder mit Tenocyten, Herzmuskel mit Cardiomyocyten, Bindegewebe mit Fibroblasten, fibröses Gewebe mit fibroblastoiden Zellen, neuronales Gewebe mit Astrozyten und Neuronen. Es kann sich bei den Vorläuferzellen also um Vorläuferzellen von Chondrozyten, Osteocyten, Tenocyten, Cardiomyocyten, Fibroblasten, fibroblastische Zellen, Astrozyten oder Neurone handeln. Beispielsweise kann es sich also bei den Vorläuferzellen um Vorläuferzellen/Stammzellen von Knorpelzellen handeln, die sich ausschließlich zu Knorpelzellen entwickeln, oder auch um Vorläuferzellen, die die Fähigkeit besitzen, sich in Knorpel- und Knochenzellen zu entwickeln, oder auch um Vorläuferzellen, die die Fähigkeit besitzen, sich in ausschließlich in Knochenzellen zu entwickeln.

Während der Anwendung werden die mesenchymalen Vorläuferzellen durch die in der Zubereitung enthaltenen Chemokine aus dem umliegenden gelenksnahen Gewebe, bevorzugt aus dem Knochenmark, "angelockt" und zum Defektort dirigiert. Dort verbleiben die mesenchymalen Vorläuferzellen und bilden im Knochendefekt ein knöchernes und im Knorpeldefekt ein knorpeliges Regeneratgewebe aus. Ein ähnliches Anlocken kann selbstredend auch in vitro zur Kultivierung entsprechender Zellen bspw. aus Biopsien genutzt werden.

Die Erfindung betrifft in einer bevorzugten Ausführungsform die Verwendung von Chemokinen zum Rekrutieren von mesenchymalen Stammzellen. Mesenchymale Stammzellen im Sinne der vorliegenden Erfindung sind mesenchymale Vorläuferzellen, welche die Fähigkeit besitzen sich in mehrere, wenigstens in zwei verschiedene mesenchymale Gewebe zu entwickeln.

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung die Verwendung von Chemokinen zum Rekrutieren von mesenchymalen Vorläufer- oder Stammzellen aus dem Knochenmark. Hierzu werden arthroskopisch kleine Kanäle vom Defektort des Knorpels in das dem Knorpel unterliegende Knochengewebe gebohrt, so daß eine Verbindung zwischen Defektort und Knochenmark entsteht. Das Einbringen von Chemokinen in den De-

fekt sorgt für ein Anlocken von mesenchymalen Vorläufer- oder Stammzellen, welche sich im Defekt ansiedeln und dort ein den Defekt verschließendes Regeneratgewebe ausbilden.

Alternativ kann die Verwendung von ein Chemokin kodierenden Nucleinsäuren vorgesehen sein. Vorteilhaft ist hier das Einbringen von RNA, DNA, cDNA oder ssDNA, welche von ortsständigen Zellen aufgenommen, abgelesen und als reifes Protein ausgeschüttet werden.

In einer weiteren bevorzugten Ausführungsform werden die zur Rekrutierung von mesenchymalen Vorläuferzellen verwendeten Chemokine mit biologisch abbaubaren Polymeren oder Biomaterialien gemischt. Biologisch abbaubare Polymere im Sinne der Erfindung sind diejenigen, vorzugsweise drei-dimensionalen Polymerstrukturen, welche auf Zellen keine toxischen Einflüsse ausüben, keine Immunreaktion hervorrufen und den Gewebeaufbau von Knorpel oder Knochen fördern. Das Einbringen von biologisch abbaubaren Polymeren mit Chemokinen in den zu schließenden Defekt führt zum Anlocken von mesenchymalen Vorläuferzellen, welche direkt in das Polymergewebe einwandern und dort eine drei-dimensionale Polymerstruktur zur optimalen Gewebereifung in Knorpel oder Knochen vorfinden. Beispiele für solche Polymere oder Biomaterialien sind Polylactid, Polyglycolid, Poly(lactid-glycolid), Polylysin, Polycaprolacton, Alginat, Agarose, Fibrin, Hyaluronsäure, Polysaccharide, Cellulose, Kollagene und Hydroxylappatit.

Die Chemokine können auch gemeinsam mit Wachstums- und Differenzierungsfaktoren in derselben (oder auch in getrennten Zubereitungen verabreicht) verwendet werden. Ganz besonders bevorzugt ist die gemeinsame Verwendung von Chemokin, Polymer und Wachstums- und Differenzierungsfaktoren. Das Einbringen solch eines Gemisches in den Defekt birgt den Vorteil, daß die angelockten mesenchymalen Vorläuferzellen neben der optimalen, die Gewebereifung bereits fördernden Polymerstruktur noch zusätzlich durch Wachstums- und Differenzierungsfaktoren zur Gewebereifung angeregt werden.

In einer bevorzugten Ausführungsform betrifft die vorliegende Erfindung die Verwendung von Chemokinen zusammen mit Wachstums- und Differenzierungsfaktoren, die die Knorpelreifung induzieren. Die Knorpelreifung induzierende Faktoren im Sinne der hier vorliegenden Erfindung sind Wachstums- und Differenzierungsfaktoren, die entwicklungsbiologisch eine

Vorläuferzelle zur Differenzierung und Reifung in einen chondrozytären Zelltyp oder eine reife Knorpelzelle zur Produktion von Knorpelmatrix anregen. Vorteilhaft ist hierbei die Verwendung von Mitgliedern der Familie der cartilage derived morphogenetic proteins (CDMP) und bone morphogenetic porteins (BMP), aber auch von Insulin.

In einer weiteren bevorzugten Ausführungsform betrifft die vorliegende Erfindung die Verwendung von Chemokinen zusammen mit Wachstums- und Differenzierungsfaktoren, die die Knochenreifung induzieren. Die Knochenreifung induzierende Faktoren im Sinne der hier vorliegenden Erfindung sind Wachstums- und Differenzierungsfaktoren, die entwicklungsbiologisch eine Vorläuferzelle zur Differenzierung und Reifung in einen knöchernen Zelltyp oder eine reife Knochenzelle zur Produktion von Knochenmatrix anregen. Vorteilhaft ist hierbei die Verwendung von Mitgliedern der Familie der bone morphogenetic porteins (BMP), besonders bevorzugt die Mitglieder BMP-2 und BMP-7.

Die Erfindung soll anhand der folgenden Beispiele veranschaulicht werden. Diese sollen jedoch die Erfindung nicht einschränken.

Beispiele

Beispiel 1

Isolierung und Kultivierung humaner mesenchymaler Stammzellen

Die Isolierung humaner mesenchymaler Stammzellen (MSC) wurde nach einem bereits beschriebenen Protokoll zur Gewinnung von MSC aus dem Knochenmark wie folgt durchgeführt:

Maximal 3 ml Knochenmarkspunktat werden mit 10 ml PBS gemischt und für 10 Min. und 310 g bei Raumtemperatur zentrifugiert. Das Zellpellet wird resuspendiert und erneut mit PBS (8000mg/l NaCl, 200mg/l KCl, 1150mg/l Na₂HPO₄, 200mg/l KH₂PO₄) gewaschen. Die Zellen werden in 20 ml DME-Medium (mit 10-20% FBS, 2% HEPES, 4 mM L-Glutamin, 100 U/ml Penicillin, 100 μg/ml Streptomycin) aufgenommen. Je 5 ml dieser Zellsuspension werden auf 20 ml eines Percoll-Dichtegradienten der Dichte 1,073 g/ml gegeben. Die Zellen werden bei 900 g für 32 Min. zentrifugiert.

Die obere Phase wird in ein neues Zentrifugenröhrchen überführt. Nach Zugabe des 2,5fachen Volumens PBS erfolgt erneut eine Zentrifugation bei 310 g für 6 Minuten. Das Zellpellet wird in DME-Medium aufgenommen.

1,5*10⁵-3,5*10⁵ Zellen/cm² werden zur Kultur in eine Zellkulturflasche geben und bei 37⁰C, 5% CO₂ in DME-Medium (Biochrom AG, Berlin, Katalog Nr. FG0415, Dulbeccos Modifiziertes Eagle Medium mit 3,7g/l NaHCO₃, 1,0g/L D-Glucose) inkubiert. Der erste Mediumwechsel erfolgt nach 72 Stunden, dann alle 3-4 Tage. Die so isolierten Zellen wachsen nach 2-3 Wochen konfluent und werden dann mittels Trypsinieren in einer Zelldichte von 6.000 Zellen/cm² Kulturoberfläche in ein neues Kulturgefäß überführt (Passage 1). Nach circa einer Woche werden die Zellen erneut trypsinisiert (Passage 2).

Die Homogenität der erhaltenen Kultur humaner mesenchymaler Stammzellen wird mittels FACS-Analyse verifiziert, wobei die Oberflächenantigene Endoglin und ALCAM nachzuweisen und die Oberflächenantigene CD34, CD 45 und CD 14 nicht nachzuweisen sind. Dies wurde bestätigt.

Beispiel 2

Genexpressionsanalyse zum Nachweis der Chemokinrezeptoren

Die isolierten, expandierten und überprüften humanen mesenchymalen Stammzellen exprimieren Chemokinrezeptoren. Dies wurde mittels RT-PCR bei mehreren humanen Patienten (n=3) wie folgt nachgewiesen:

a. Isolation der Gesamt-RNA

Für das Isolieren der Gesamt-RNA wird Tri Reagent LS™ eingesetzt. Die MSC werden bis zur Konfluenz kultiviert. Nach Verwerfen des Zellkulturmediums wird zur Lyse der Zellen der Zellrasen mit 0,4 ml Tri Reagent LS™ pro 10 cm² Wachstumsfläche überschichtet. Das Lysat wird in ein steriles Reaktionsgefäß überführt und für 5 Minuten bei Raumtemperatur (RT) inkubiert. Das Lysat wird mit 0,1 ml Brom-Chlor-Propan (BCP) pro 0,75 ml Tri Reagent LS™ versetzt, für 15 Sekunden geschüttelt und für 10 Minuten bei RT inkubiert. Eine anschließende Zentrifugation für 15 Minuten bei 4°C und 12000 g führt zur Phasentrennung.

Die wässrige Phase ist in 200 μl Aliquots abzunehmen und in ein Reaktionsgefäß zu überführen. Die RNA-Lösung wird mit 0,5 ml Isopropanol pro 0,75 ml Tri Reagent LSTM versetzt und für mindestens 7 Minuten bei -20°C belassen. Die gefällte RNA wird durch Zentrifugation für 8 Minuten bei 4°C und 12000 g pelletiert. Das resultierende RNA-Pellet ist mit 70% EtOH zu waschen, an der Luft zu trocknen und in 20 μl DEPC-H₂O aufzunehmen. Zur Lösung des Pellets wird es für 10 Minuten auf 55°C erhitzt. Der Gehalt an isolierter Gesamt-RNA wird durch eine photometrische Messung bestimmt.

b. cDNA-Synthese:

Zur cDNA-Synthese werden 5 μg Gesamt-RNA in 10 μl DEPC-H₂O eingesetzt und mit 1 μl Oligo-(dT)12-18 Primern (je einem upper und einem lower Primer wie in Tabelle 2 angegeben) versetzt, um für 10 Min. bei 70°C denaturiert zu werden. Nach der Denaturierung wird der Reaktionsansatz auf Eis gelagert und mit 4μl 5x Puffer (0,25 M Tris/HCl, pH 8,3; 0,375 M KCl; 15 mM MgCl₂), 2 μl 0,1 M DTT, 1 μl dNTP (je 10 mM) und 0,4 μl RNase Inhibitor versetzt. Nach einer Inkubationszeit von 2 Min. bei 37°C wird der Reaktionsansatz mit 1 μl SuperScriptTM Rerverser Transkriptase versehen, um für weitere 60 Minuten bei 37°C inkubiert zu werden. Nach der Zugabe von 40 μl TE (10/1, pH 7,8) wird das Enzym für 10 Min. bei 92°C inaktiviert. Für die RT-PCR Reaktionen werden 2,0 μl cDNA eingesetzt.

Als Standard werden pro PCR-Reaktion 1 µl cDNA eingesetzt. Zu der cDNA werden in einem PCR-Reaktionsgefäß 2 µl 10x PCR-Puffer, 2 µl 25 mM MgCl₂, 0,2 µl 10 mM dNTPs, 1 µl 5 nM Primer (Tabelle 2) und 0,5 U Taq DNA Polymerase gegeben und mit H₂O auf ein Endvolumen von 20 µl aufgefüllt. Ein Standardreaktionszyklus geht von einer Denaturierung bei 95°C für 1 Min., einer Hybridisierung der Primer bei einer für die Primer spezifischen Temperatur (T_{sn}) für 15 Sek. und einer DNA-Synthesereaktion bei 72°C für 15 Sek. aus. Dieser Zyklus wird insgesamt 35 mal wiederholt. Abschließend läßt man den Ansatz für 3 Min. bei 72°C. Die PCR-Produkte werden mittels Gelelektrophorese aufgetrennt. Die DNA-Fragmente wurden aus dem Gel eluiert und in den Vektor pGEM-T Easy (Promega) kloniert. Nach Amplifizieren in E. coli wurde das entsprechende Plasmid isoliert und zum Nachweis, daß mittels der in Tabelle 2 verwendeten Oligonukleotide die korrespondierenden Chemokinrezeptoren amplifiziert wurden, sequenziert und durch Vergleich mit der bekannten Sequenz bestätigt.

Tabelle 2: Oligonukleotide zum Nachweis der Expression humaner Chemokinrezeptoren

Rezeptor	Identifier EMBL Nucleotide Sequence Database	Amplifikatlänge (Basenpaare)	Oligonukleotidsequenz (5` > 3`)
ccrl upper	NM_001295	129	GAGCCAATCAGTAGCCAGCATCT
ccrl lower	NM_001295		GTTCCCCCATTTCTATTTCTCGTT
ccr2 upper	NM_000647	173	CTCCCTGAAGTAAGCAAAGAC
ccr2 lower	NM_000647		CCATGTGGCCTGAAAGTAG
ccr3 upper	NM_178329	148	GGCAGATACATCCCATTCCTTC
ccr3 lower	NM_178329		GGTTGCTTCATCTCCTTGGTCCTT
ccr4 upper	X85740	91	CAGGGCCTTTTTGTGCTC
ccr4 lower	X85740		CATGGTGGACTGCGTGTAAGAT
ccr5 upper	NM_000579	160	AGGAGGAGGTATTCGTAAGG
ccr5 lower	NM_000579		TTCAAGGGTTTCTCCAATCTG
ccr6 upper	NM_031409	86	TGGTTACAGCACAAAATGATGG
ccr6 lower	NM 031409		TTGCCTAAAATGAGTGATGTGTTG
ccr7 upper	NM 001838	194	GCCGCCTAAAAGCACACTCATCC
ccr7 lower	NM 001838		TTCCCTTGTCCTCTCCCATCC
ccr8 upper	NM 005201	198	TGCAGCCAAATCTTCAACTACC
ccr8 lower	NM 005201		AAACCTTTCACACCCACACCTT
ccr9 upper	NM 031200	151	AGCCTTGGCCCTGTTGTA
ccr9 lower	NM 031200		TGCCCATATCTGCTCACTGTA
ccr10 upper	NM 016602	118	GCCCGCCTTTCTTCCTGCTCA
ccr10 lower	NM 016602		CCACCTACTCCCCTTTCCCACGAC
ccr11 upper	NM 016557	90	CTCTGCCTTTTGCTTGGATACATA
ccr11 lower	NM 016557		CACGGCGTCTGAGATTTGAGTT
cxcr1 upper	NM 000634	177	CCGTGCTTGTCCCTGTGG
cxcr1 lower	NM 000634		CTGTGCCTCAAGAGACTGTTC
cxcr2 upper	NM_001557	146	AGTTTATGATTCCACCTACA
exer2 lower	NM_001557		TTCAACATCCTAAACATAAA
cxcr3 upper	NM_001504	. 140	GTGGCCGAGAAAGCAGGGTAGACG
cxcr3 lower	NM_001504		CAGGCGCAAGAGCAGCATCCACAT
cxcr4 upper	NM_003467	141	GATCCCTGCCCTCCTGACTAT
cxcr4 lower	NM_003467		AGGCCAACCATGATGTGCTGAAAC
cxcr5 upper	NM_032966	170	CCGGATCCTGGGTGGTCTG
cxcr5 lower	NM_032966		CCGCCGGGTTTGATTGAT
cxcr6 upper	NM_006564	119	GACTTTCCTTCCATCTCCA
cxcr6 lower	NM_006564	·	GGCCGTGCTCACCTCTTCA
Cx3cr upper	NM_001337	169	TAGGCCAAGTTTGTATCAGGTG
Cx3cr lower	NM_001337		GTGTGGCATTTGTTTTGTGTAA
xcr upper	NM_005283	181	AGCTCATCTTCGCCATCGTG
xcr lower	NM_005283	<u> </u>	ACCGGGTTAAAGCAGCAGTG

Die für mehrere Patienten (n=3) durchgeführten Expressionsanalysen von humanen mesenchymalen Stammzellen aus dem Knochenmark im Hinblick auf die Präsenz von humanen Chemokinrezeptoren (Abbildung 1) ergaben eine hohe Expression der Rezeptoren 1-9, eine mittlere Expression der Rezeptoren 10-17 und eine schwache Expression der Rezeptoren 18-19 (Tabelle 3).

Tabelle 3: Expression und Expressionsniveau von Chemokinrezeptoren in humanen mesenchymalen Stammzellen

Reihenfolge Expressions- höhe	Rezeptor	Liganden
1	CCR7	CCL19, CCL21
2	CCR10	CCL27, CCL28
3	CCR6	CCL20
4	CXCR3	CXCL9, CXCL10, CXCL11
5	CXCR6	CXCL16
6	CXCR5	CXCL13
7	CXCRI	CXCL5, CXCL6, CXCL8
8	CXCR4	CXCL12
9	CCR11	CCL2, CCL8, CCL13, CCL19, CCL21, CCL25
10	CCRI	CCL3, CCL4, CCL5, CCL7, CCL8, CCL13, CCL14a, CCL14b, CCL15, CCL16, CCL23
11	CCR9	CCL25
12	CX3CR	CX3CL1
13	XCR	XCL1, XCL2
14	CCR8	CCL1, CCL16
15 ·	CCR4	CCL3, CCL5, CCL17, CCL22
16	CCR5	CCL3, CCL4, CCL5, CCL8, CCL11, CCL13, CCL14
17	CCR3	CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL15, CCL24, CCL26
18	CXCR2	CXCL1, CXCL2, CXCL3, CXCL5, CXCL7, CXCL8
19	CCR2	CCL2, CCL7, CCL8, CCL13

Die differierenden Expressionshöhen legen Nahe, daß hierbei die Liganden der am höchsten exprimierten Rezeptoren diejenigen Chemokine sind, auf welche die mesenchymalen Stammzellen am Stärksten ansprechen und wandern. Mit abnehmendem Expressionsniveau sinkt die Wahrscheinlichkeit, daß die Stammzellen auf das dem Chemokinrezeptor korrespondierende Chemokine chemotaktisch reagieren und wandern. Hiervon ausgehend ergibt sich, daß sich humane mesenchymale Stammzellen am Stärksten durch Stimulieren mit Chemokin-Nr. 1, abnehmend zu Chemokin-Nr. 39 der Tabelle 4, aktivieren und in situ rekrutieren lassen.

Tabelle 4: Chemokine zur in situ Rekrutierung von mesenchymalen Vorläuferzellen

Ńr.	Chemokin	Referenzsequenz (EMBL Nucleotide Sequence Database)	Trivial- name
1	CCL19	NM_006274	MIP-3ß
2	CCL21	NM_002989	6Ckine
3	CCL27	NM_006664	CTACK
4	CCL28	NM_148672	MEC
5	CCL20	NM_004591	MIP-3α
6	CXCL9	NM_002416	Mig
7	CXCL10	NM_001565	IP-10
8	CXCL11	NM_005409	I-TAC
9	CXCL16	NM_022059	·
10	CXCL13	NM 006419	BCA-I
11	CXCL5	NM_002994	ENA-78
12	CXCL6	NM_002993	GCP-2
13	CXCL8	NM 000584	IL-8
14	CXCL12	NM_000609	SDF-1a
15	CCL3	NM_002983	MIP-1a
16	CCL4	NM 002984	MIP-18
17	CCL5	NM 002985	RANTES
18	CCL7	NM_006273	MCP-3
19	CCL8	NM_005623	MCP-2
20	CCL13	NM_005408	MCP-4

Nr.	Chemokin	Referenzsequenz (EMBL Nucleotide Sequence Database)	Trivialnamė
21	CCL14	NM 004166	HCC-1
22	CCL15	NM 004167	HCC-2
23	CCL16	NM 004590	HCC-4
24	CCL23	NM 005064	MPIF-1
25	CCL25	NM 005624	TECK
26	CX3CL1	NM 002996	Fractalkine
27	XCL1	NM_002995	Lymphotac- tin
28	XCL2	NM_003175	SCM-1B
29	CCL1	NM_002981	I-309
30	CCL17	NM_002987	TARC
31	CCL22	NM_002990	MDC
32	CCL11	NM_002986	Eotaxin
33	CCL24	NM_002991	Eotaxin-2
34	CCL26	NM_006072	Eotaxin-3
35	CXCLI	NM 001511	GRO _a
36	CXCL2	NM_002089	GROß
37	CXCL3	NM_002090	GROy
38	CXCL7	NM_002704	NAP-2
39	CCL2	NM_002982	MCP-1

Beispiel 3

Zur Behandlung einer ausgeprägt arthrotisch deformierten Gelenkoberfläche werden zunächst durch multiple feine Bohrungen (1-2 mm) kleine Verbindungskanäle zwischen dem Knochenmarksraum und der Gelenkshöhle hergestellt. Darauf folgend wird ein wolleartiges Polymerkonstrukt (Polyglykolid), kombiniert mit Hyaluronsäure und chemotaktische wirkenden Chemokin (CCL19), mit Fibrin- oder Acrylkleber über die Gelenkfläche geklebt und angepasst.

Beispiel 4:

Zur Behandlung der Gelenkfläche aus Beispiel 3 mit einer Defektgröße von 6 cm² wird nach Herstellung der Öffnungen in den Markraum 1.2 ml Fibrinkleber mit 1000 ng Wachstumsfaktor (cartilage derived morphogenetic protein) und 2000 ng Chemokin (CXCL9) in den

Knorpeldefekt eingebracht und durch die gleichzeitige Zugabe von 100 μ l Thrombin verfestigt.

Beispiel 5

Chemotaktische Aktivität des Chemokins CXCL12 (SDF-1a) auf mesenchymale Stammzellen des Knochenmarks 0

Die isolierten, expandierten und überprüften humanen mesenchymalen Stammzellen zeigen eine dosisabhängige chemotaktische Aktivität gegenüber dem Chemokin CXCL12 (SDF-1α). Dies wurde mittels eines 96-Multiwell Chemotaxis Tests nachgewiesen. Die hierin verwendeten 96-Multiwell Chemotaxis Platten bestehen aus einem oberen und einem unteren Teil einer Vertiefung (Well), die durch eine permeable Polycarbonatmembran (Porendurchmesser 8μm) getrennt werden. Das im unteren Teil eingebrachte CXCL12 erzeugt über die Membran einen Konzentrationsgradienten, aktivierte Zellen aus dem oberen Teil der Vertiefung bzw. des Wells migrieren in die Membran und in den unteren Teil der Vertiefung (des Wells). Der Nachweis erfolgt wie folgt:

Die Zellen werden zunächst in normalem DMEM Kulturmedium kultiviert. Etwa 22 Stunden vor dem Test wird das Kulturmedium entfernt, die Zellen mit PBS gewaschen und bis zum Test in serumfreiem Diätmedium (DME-Medium, enthält 1,0 g/l Glucose, 0,2% bovines Serumalbumin, 2 mM L-Glutamin; 100 U/ml Penicillin; 100 μg/ml Streptomycin) gehalten. Direkt vor Beginn des Tests werden die Zellen trypsiniert, die Zellzahl und Vitalität bestimmt und erneut in Diätmedium aufgenommen. Es werden 3x10⁴ Zellen in 40 μl Diätmedium pro oberer Vertiefung (oberem Well) einer 96-Wellplatte eingesetzt.

Zur Bestimmung der dosisabhängigen chemotaktischen Aktivität von CXCL12 (SDF-1 α) wird dies in verschiedenen Konzentrationen (1-500 nM) zum Diätmedium gegeben und 35 μ l dieses Mediums als Triplet in das untere Well gegeben. Als Kontrollansätze werden zum einen $3x10^4$ Zellen in 40 μ l Diätmedium pro oberen Well und 30 μ l serumhaltiges Kulturmedium ohne Chemokin im unteren Well (Positivkontrolle) und zum anderen $3x10^4$ Zellen in 40 μ l Diätmedium pro oberen Well und 30 μ l Diätmedium ohne Chemokin im unteren Well (Negativkontrolle) eingesetzt. Die 96-Well Chemotaxis Platten werden für 20 Stunden bei

19

37°C unter 5% CO2 Atmosphäre inkubiert. Die Oberseite des Filters (nicht migrierte Seite) wird abgewischt, um die nicht migrierten Zellen zu entfernen. Die Zellen auf der Unterseite des Filters (migrierte Zellen) werden für 3 min. mit eiskaltem Ethanol/Aceton (1:1 v/v) fixiert und mit dem Schnellfärbesystem Hemacolor® der Firma Merck angefärbt. Die Membran wird feucht gehalten und drei repräsentative Fotofelder pro Well ausgezählt. Vorher wird bei geringerer Vergrößerung die Verteilung der Zellen in dem jeweiligen Well beurteilt.

Diese Untersuchungen von humanen mesenchymalen Stammzellen aus dem Knochenmark im Hinblick auf die chemotaktische Aktivität von CXCL12 (SDF-1α) ergaben als einen dosisabhängigen Effekt dieses Chemokins auf humane mesenchymalen Stammzellen. Dies ist in Fig. 2 gezeigt. Die höchste gemessene Antwort der Zellen wurde bei einer Konzentration von etwa 500 nM gemessen. Ab einer Konzentration von etwas unter 100 nM entspricht die Zahl gewanderter Zellen etwa der Zahl in der Negativkontrolle gewanderter Zellen. Dies belegt die erfindungsgemäße Rekrutierungswirkung von Chemokinen auf mesenchymale Vorläuferzellen des Knochenmarks in signifikanter Weise.

Patentansprüche:

- Verwendung eines Chemokins und/oder einer ein Chemokin kodierenden Nucleinsäure zur Herstellung einer pharmazeutischen Zubereitung.
- 2. Verwendung nach Anspruch 1, worin die pharmazeutische Zubereitung zur Rekrutierung mesenchymaler, vorzugsweise ortsständiger mesenchymaler Vorläuferzellen und/oder Stammzellen zum Gewebsaufbau bestimmt ist.
- 3. Verwendung eines Chemokins und/oder einer ein Chemokin kodierenden Nucleinsäure zur Rekrutierung mesenchymaler, vorzugsweise ortsständiger mesenchymaler Vorläuferzellen und/oder Stammzellen in vitro.
- 4. Verwendung nach Anspruch 1, 2 oder 3, worin das Chemokin ausgewählt ist aus der Gruppe, bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10, CXCL11, CXCL16, CXCL13, CXCL5, CXCL6, CXCL8, CXCL12, CCL2, CCL8, CCL13, CCL25, CCL3, CCL4, CCL5, CCL7, CCL14, CCL15, CCL16, CCL23, CX3CL1, XCL1, XCL2, CCL1, CCL17, CCL22, CCL11, CCL24, CCL26, CXCL1, CXCL2, CXCL3 und CXCL7.
- Verwendung nach Anspruch 4, worin das Chemokin ausgewählt ist aus der Gruppe, bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10, CXCL11, CXCL16, CXCL13, CXCL5, CXCL6, CXCL8, CXCL12, CCL2, CCL8, CCL13 und CCL25.
- Verwendung nach Anspruch 5, worin das Chemokin ausgewählt ist aus der Gruppe,
 bestehend aus CCL19, CCL21, CCL27, CCL28, CCL20, CXCL9, CXCL10 und
 CXCL11.

- 7. Verwendung nach einem der vorstehenden Ansprüche, worin eine Mischung von Chemokinen verwendet wird.
- 8. Verwendung nach einem der vorstehenden Ansprüche, worin ein Chemokin-Fragment oder ein Chemokin-Derivat verwendet wird, das die Fähigkeit hat, an einen Chemokinrezeptor zu binden.
- 9. Verwendung nach einem der vorstehenden Ansprüche, worin es sich um ein natürliches oder synthetisches Chemokin handelt.
- 10. Verwendung nach Anspruch 1, worin die ein Chemokin kodierende Nucleinsäure in Form von RNA, DNA, cDNA, oder ssDNA.
- 11. Verwendung nach Anspruch 1, worin die ein Chemokin kodierende Nucleinsäure natürlichen oder synthetischen Ursprungs ist.
- 12. Verwendung nach einem der vorstehenden Ansprüche, worin die mesenchymalen Vorläuferzellen mesenchymale Stammzellen sind, die vorzugsweise aus dem Knochenmark rekrutiert werden.
- 13. Verwendung nach Anspruch 1, worin die pharmazeutische Zubereitung in einer zur Injektion geeigneten Form vorliegt.
- 14. Verwendung nach Anspruch 13, worin die pharmazeutische Zubereitung zusätzlich enthält:
 - einen oder mehrere geeignete Hilfsstoffe,
 - ein oder mehrere biologisch abbaubare Polymere,
 - mindestens einen aktiven Wirkstoff, ausgewählt unter Differenzierungs- und Wachstumsfaktoren sowie Mischungen davon,

und Mischungen von 2 oder mehr derselben.

22

- 15. Verwendung nach Anspruch 3 in Kombination mit einem aktiven Wirkstoff, ausgewählt unter Differenzierungs- und Wachstumsfaktoren sowie Mischungen davon.
- 16. Verwendung nach Anspruch 14 oder 15, wobei die Differenzierungs- und Wachstumsfaktoren die Chondrogenese oder die Osteogenese induzieren.
- 17. Pharmazeutische Zubereitung, enthaltend ein wie in einem der Ansprüche 4 bis 9 definiertes Chemokin.
- 18. Pharmazeutische Zubereitung, enthaltend eine wie in einem der Ansprüche 10 oder 11 definierte Nucleinsäure.
- 19. Pharmazeutische Zubereitung nach Anspruch 17 oder 18, die zusätzlich enthält:
 - einen oder mehrere geeignete Hilfsstoffe,
 - ein oder mehrere biologisch abbaubare Polymere,
 - mindestens einen aktiven Wirkstoff, ausgewählt unter Differenzierungs- und Wachstumsfaktoren sowie Mischungen davon,

und Mischungen von 2 oder mehr derselben.

20. Pharmazeutische Zubereitung nach Anspruch 17 oder 18, die vorliegt in Form einer Injektionslösung, Fibrinkleber, eines Substrates zur Transplantation, einer Matrix, eines Gewebe-Patches oder Nahtmaterial.

Figur 1

Figur 2

INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
1PC 7 A61K38/19 A61K31/7088 A61P19/02 A61L17/00 A61L24/00

A61P19/08

A61L15/44

Relevant to claim No.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K A61P A61L

Category ° Citation of document, with indication, where appropriate, of the relevant passages

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SCISEARCH

X	DE 199 57 388 A (SITTINGER MICHAE SCHULTZ OLAF (DE)) 13 June 2001 (2001-06-13) cited in the application column 1, line 15 - column 5, lir		1,2, 4-14, 16-20
X	WO 03/015803 A (SITTINGER MICHAEL CHRISTIAN (DE); TRANS TISSUE TECH GMB) 27 February 2003 (2003-02-27 page 10, line 13 - page 14, line claims 12-19	INÓLOGIES ')	1-9, 12-17, 19,20
X	WO 01/94420 A (ITESCU SILVIU; UN COLUMBIA (US)) 13 December 2001 (2001-12-13) page 36, line 30 - page 37, line page 40, line 18 - page 41, line 28	1	1-15, 17-20
X Furt	her documents are listed in the continuation of box C.	X Patent family members are listed	in annex.
"A" docume consider filling of the column which citation other "P" docume there were also and the column other the column column other the col	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the international date of the may throw doubts on priority claim(s) or is cited to establish the publication date of another or or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	"T" later document published after the interest or priority date and not in conflict with cited to understand the principle or the invention "X" document of particular relevance; the cannot be considered novel or cannot involve an inventive step when the document of particular relevance; the cannot be considered to involve an indocument is combined with one or ments, such combination being obvious the art. "&" document member of the same patent	the application but early underlying the claimed invention to considered to current is taken alone claimed invention ventive step when the one other such docuus to a person skilled
Date of the	actual completion of the international search	Date of mailing of the international sea	arch report
2	9 October 2004	23/11/2004	
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018	Authorized officer Markopoulos, E	

INTERNATIONAL SEARCH REPORT

		.t
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	HATTORI KOICHI ET AL: "The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1." LEUKEMIA & LYMPHOMA. APR 2003, vol. 44, no. 4, April 2003 (2003-04), pages 575-582, XP009039097 ISSN: 1042-8194 page 575 - page 578	1-20
A	MURPHY P M ET AL: "International union of pharmacology. XXII. Nomenclature for chemokine receptors" PHARMACOLOGICAL REVIEWS 2000 UNITED STATES, vol. 52, no. 1, 2000, pages 145-176, XP002303211 ISSN: 0031-6997 cited in the application page 146 - page 155; tables 2,3	1-20

INTERNATIONAL SEARCH REPORT

International Application No
international Application No T/EP2004/007581

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
DE 19957388	A	13-06-2001	DE AU CN WO EP US US	19957388 A1 2001601 A 1424916 T 0137858 A1 1231932 A1 2004028717 A1 6602294 B1	13-06-2001 04-06-2001 18-06-2003 31-05-2001 21-08-2002 12-02-2004 05-08-2003
WO 03015803	Α	27-02-2003	DE WO EP	10139783 C1 03015803 A1 1418927 A1	17-04-2003 27-02-2003 19-05-2004
WO 0194420	A	13-12-2001	AU CA EP JP WO	7533901 A 2412436 A1 1290033 A1 2004509847 T 0194420 A1	17-12-2001 13-12-2001 12-03-2003 02-04-2004 13-12-2001

INTERNATIONALER RECHERCHENBERICHT

A. KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES IPK 7 A61K38/19 A61K31/7088 A61P19/02

A61L17/00

A61L24/00

A61P19/08

A61L15/44

Nach der internationalen Patentidassifikation (iPK) oder nach der nationalen Klassifikation und der iPK

B. RECHERCHIERTE GEBIETE

Recherchlerter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)

A61K A61P A61L

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data, PAJ, MEDLINE, BIOSIS, EMBASE, CHEM ABS Data, SCISEARCH

Kategorie®	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe	der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 199 57 388 A (SITTINGER MICHAEI SCHULTZ OLAF (DE)) 13. Juni 2001 (2001-06-13) in der Anmeldung erwähnt Spalte 1, Zeile 15 - Spalte 5, Ze		1,2, 4-14, 16-20
X	WO 03/015803 A (SITTINGER MICHAEL CHRISTIAN (DE); TRANS TISSUE TECH GMB) 27. Februar 2003 (2003-02-27 Seite 10, Zeile 13 - Seite 14, Ze Ansprüche 12-19	NOLOGIES)	1-9, 12-17, 19,20
X	WO 01/94420 A (ITESCU SILVIU; UN COLUMBIA (US)) 13. Dezember 2001 (2001-12-13) Seite 36, Zeile 30 - Seite 37, Ze Seite 40, Zeile 18 - Seite 41, Ze Anspruch 28	ile 1	1-15, 17-20
X Wei	itere Veröffentlichungen sind der Fortsetzung von Feld C zu nehmen	X Slehe Anhang Patentfamilie	
*Besonder *A* Veröffe aber *E* älleres Anme *L* Veröffe schel ander soll to ausg *O* Veröff eine *P* Veröffe	re Kategorien von angegebenen Veröffentlichungen : antilichung, die den aligemeinen Stand der Technik definiert, nicht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen bledatum veröffentlicht worden ist entilichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- enen zu lassen, oder durch die das Veröffentlichungsdatum einer ren im Recherchenbericht genannten Veröffentlichung belegt werden der die aus einem anderen besonderen Grund angegeben ist (wie erführt) entilichung, die sich auf eine mündliche Offenbarung, Benutzung, eine Ausstellung oder andere Maßnahmen bezieht	"T" Spätere Veröffentlichung, die nach dem oder dem Prioritätsdatum veröffentlich Anmeldung nicht kolitidiert, sondern nu Erfindung zugrundellegenden Prinzips Theorie angegeben ist "X" Veröffentlichung von besonderer Bedei kann allein aufgrund dieser Veröffentlierlinderischer Tätigkeit beruhend betre "Y" Veröffentlichung von besonderer Bedei kann nicht als auf erfinderischer Tätig werden, wenn die Veröffentlichung mit Veröffentlichungen dieser Kategorie in diese Verbindung für einen Fachmann "&" Veröffentlichung, die Mitglied derseiber	I worden ist und mit der rzum Verständnis des der oder der ihr zugrundellegenden utung; die beanspruchte Erfindung nicht als neu oder auf achtet werden utung; die beanspruchte Erfindung wit berühend betrachtet einer oder mehreren anderen Verbindung gebracht wird und nahellegend ist
Datum des	Abschlusses der Internationalen Recherche	Absendedatum des Internationalen Re	cherchenberichts
2	29. Oktober 2004	23/11/2004	
Name und	Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel (-231-70) 340-2040, Tv. 31 551 epo pl	Bevollmächtigter Bediensteter	
l	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Markopoulos, E	

INTERNATIONALER RECHERCHENBERICHT

			4/00/361
	ung) ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht komm	enden Telle	Betr. Anspruch Nr.
X	HATTORI KOICHI ET AL: "The regulation of hematopoietic stem cell and progenitor mobilization by chemokine SDF-1." LEUKEMIA & LYMPHOMA. APR 2003, Bd. 44, Nr. 4, April 2003 (2003-04), Seiten 575-582, XP009039097 ISSN: 1042-8194 Seite 575 - Seite 578		1-20
A	Seite 575 - Seite 578 MURPHY P M ET AL: "International union of pharmacology. XXII. Nomenclature for chemokine receptors" PHARMACOLOGICAL REVIEWS 2000 UNITED STATES, Bd. 52, Nr. 1, 2000, Seiten 145-176, XP002303211 ISSN: 0031-6997 in der Anmeldung erwähnt Seite 146 - Seite 155; Tabellen 2,3		1-20

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeici	1en
T/EP2004/00	7581

Im Recherchenbericht angeführtes Patentdokument			Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE	19957388	A	13-06-2001	DE AU CN WO EP US US	19957388 A1 2001601 A 1424916 T 0137858 A1 1231932 A1 2004028717 A1 6602294 B1	13-06-2001 04-06-2001 18-06-2003 31-05-2001 21-08-2002 12-02-2004 05-08-2003
WO	03015803	A	27-02-2003	DE WO EP	10139783 C1 03015803 A1 1418927 A1	17-04-2003 27-02-2003 19-05-2004
WO	0194420	Α	13-12-2001	AU CA EP JP WO	7533901 A 2412436 A1 1290033 A1 2004509847 T 0194420 A1	17-12-2001 13-12-2001 12-03-2003 02-04-2004 13-12-2001