Rényi relative entropies and noncommutative L_p -spaces

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Bedlewo, July 2018

Classical Rényi relative α -entropies

For p,q probability measures over a finite set X, $0<\alpha \neq 1$:

$$D_{\alpha}(p||q) := \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$$

- unique family of divergences satisfying a set of postulates
- lacktriangle relative entropy as a limit lpha o 1
- fundamental quantities appearing in many information theoretic tasks

Quantum extensions of Rényi relative α -entropies

 ρ, σ density matrices, $0 < \alpha \neq 1$

Standard:

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \left(\operatorname{Tr} \rho^{\alpha} \sigma^{1 - \alpha} \right)$$

D. Petz, Rep. Math. Phys., 1984

Sandwiched:

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}} \rho \sigma^{\frac{1 - \alpha}{2\alpha}} \right)^{\alpha} \right]$$

M. Müller-Lennert et al., J. Math. Phys., 2013

M. M. Wilde et al., Commun. Math. Phys., 2014

What is a "good" divergence?

Divergence \equiv a measure of statistical "dissimilarity" of two states

Properties

- ▶ strict positivity: $D(\rho \| \sigma) \ge 0$ and $D(\rho \| \sigma) = 0$ iff $\rho = \sigma$
- data processing inequality:

$$D(\rho \| \sigma) \ge D(\Phi(\rho) \| \Phi(\sigma))$$

for any quantum channel Φ

► + other

Operational significance

 relation to performance of some procedures in information theoretic tasks

Quantum Rényi relative α -entropies

Standard version D_{α} :

Properties¹

- lacktriangle similar to classical, but not for all values of lpha
- ▶ data processing inequality only for $\alpha \in (0,2]$

Operational significance^{2,3}

known only for $\alpha \in (0,1)$: error exponents in quantum hypothesis testing

¹D. Petz, Rep. Math. Phys., 1984

²K. M. R. Audenaert et al., Commun. Math. Phys., 2008

³F. Hiai, M. Mosonyi, and T. Ogawa, *J. Math. Phys.*, 2008 ← ■ → ← ■ → ● ◆ ○ ○

Quantum Rényi relative α -entropies

Sandwiched version \tilde{D}_{α} :

Properties⁴

- lacktriangle again similar to classical, but not for all lpha
- \blacktriangleright data processing inequality with respect to quantum channels, but only for $1/2 \leq \alpha \neq 1$

Operational significance⁵

 \blacktriangleright known only for $\alpha>1$ strong converse exponents in quantum hypothesis testing

⁴R. L. Frank and E. H. Lieb, J. Math. Phys., 2013

⁵M. Mosonyi, and T. Ogawa, Commun. Math. Phys., 2017

Quantum relative entropy as limit value

For both D_{α} and \tilde{D}_{α} , the quantum (Umegaki) relative entropy appears as a limit for $\alpha \to 1$:

$$\lim_{\alpha \to 1} D_{\alpha}(\rho \| \sigma) = \lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma)$$
$$= D_{1}(\rho \| \sigma) := \operatorname{Tr} \rho(\log(\rho) - \log(\sigma))$$

▶ a significant quantity in quantum information theory

Extension to von Neumann algebras

 ho,σ normal states on a von Neumann algebra ${\mathcal M}$

Standard: uses relative modular operator

$$D_{lpha}(
ho\|\sigma) = rac{1}{lpha-1}\log\langle\,\xi_{\sigma},\Delta^{lpha}_{
ho,\xi_{\sigma}}\xi_{\sigma}\,
angle$$

D. Petz, Publ. RIMS, Kyoto Univ., 1985

- ▶ standard form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$, $\xi_{\sigma} \in \mathcal{H}^+$ vector representative
- ▶ good properties for $\alpha \in (0,2]$
- error exponents in quantum hypothesis testing⁶

Extension to von Neumann algebras

Sandwiched: uses weighted L_p -norms

$$\tilde{D}_{\alpha}(
ho\|\sigma) = \frac{1}{lpha - 1} \log \|\eta(
ho)\|_{
ho, \sigma}^{
ho},$$

where $\|\cdot\|_{p,\sigma}$ is the

- ▶ Araki-Masuda L_p -norm and $p = 2\alpha$, $\alpha \in (1/2, 1) \cup (1, \infty)^7$ (Araki-Masuda divergences)
- Kosaki L_p -norm and $p = \alpha > 1^8$

Operational significance

Conjecture: strong converse exponents

⁸AJ, arXiv:1609.08462, to appear in Ann. H. Poincaré, 2018 (≥) (≥) (≥) (∞)

⁷M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018

Haagerup L_p -spaces

For $1 \leq p \leq \infty$, $L_p(\mathcal{M})$ - Haagerup L_p -space:

- Banach space of (unbounded) operators;
- duality, Hölder inequality, ...;
- $\blacktriangleright \mathcal{M} \simeq L_{\infty}(\mathcal{M});$
- ▶ the predual $\mathcal{M}_* \simeq L_1(\mathcal{M})$: $\rho \mapsto h_\rho$, $\operatorname{Tr} h_\rho = \rho(1)$;
- $L_2(\mathcal{M})$ a Hilbert space: $\langle h, k \rangle = \operatorname{Tr} k^* h$

Standard form:
$$(\lambda(\mathcal{M}), L_2(\mathcal{M}), J, L_2(\mathcal{M})^+)$$
:

$$\lambda(x)h=xh,\ Jh=h^*,\qquad x\in\mathcal{M},\ h\in L_2(\mathcal{M}).$$

 $h_{
ho}^{1/2}$ - (unique) vector representative of $ho\in\mathcal{M}_*^+$ in $L_2(\mathcal{M})^+.$

Kosaki L_p -spaces with respect to a faithful normal state

Let σ be a faithful normal state. We use complex interpolation:

continuous embedding

$$\mathcal{M} \to L_1(\mathcal{M}), \quad x \mapsto h_{\sigma}^{1/2} x h_{\sigma}^{1/2}$$

interpolation spaces

$$L_p(\mathcal{M}, \sigma) := C_{1/p}(\mathcal{M}, L_1(\mathcal{M}))$$
 with norm $\|\cdot\|_{p,\sigma}, \quad 1 \leq p \leq \infty$

• for 1/p + 1/q = 1, the map

$$i_p: L_p(\mathcal{M}) \to L_1(\mathcal{M}), \qquad k \mapsto h_{\sigma}^{1/2q} k h_{\sigma}^{1/2q}$$

is an isometric isomorphism of $L_p(\mathcal{M})$ onto $L_p(\mathcal{M}, \sigma)$.

A definition of \tilde{D}_{α} , $\alpha > 1$

Extension to non-faithful σ : by restriction to support $s(\sigma) = e$

$$L_p(\mathcal{M},\sigma)=\{h\in L_1(\mathcal{M}),\ h=ehe\in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

For normal states ρ , σ and $1 < \alpha < \infty$:

$$ilde{D}_{lpha}(
ho\|\sigma) = \left\{egin{array}{ll} rac{lpha}{lpha-1}\log(\|h_
ho\|_{lpha,\sigma}) & ext{if } h_
ho \in L_lpha(\mathcal{M},\sigma) \ & \infty & ext{otherwise}. \end{array}
ight.$$

Properties of \tilde{D}_{α} , $\alpha > 1$

- **Extension**: for density matrices, \tilde{D}_{α} coincides with the sandwiched Rényi relative entropy
- ► Strict positivity:

$$\tilde{D}_{\alpha}(\rho\|\sigma) \geq 0$$
, with equality if and only if $\rho = \sigma$.

▶ Monotonicity: if $\rho \neq \sigma$ and $\tilde{D}_{\alpha}(\rho \| \sigma) < \infty$, then

$$\alpha' \mapsto \tilde{D}_{\alpha'}(\rho \| \sigma)$$
 is strictly increasing for $\alpha' \in (1, \alpha]$.

▶ Order relations: extension to \mathcal{M}_*^+ satisfies: if $\rho_0 \leq \rho$ and $\sigma_0 \leq \sigma$, then

$$\tilde{D}_{\alpha}(\rho_0 \| \sigma) \leq \tilde{D}_{\alpha}(\rho \| \sigma), \quad \tilde{D}_{\alpha}(\rho \| \sigma_0) \geq \tilde{D}_{\alpha}(\rho \| \sigma).$$

▶ Joint lower semicontinuity on \mathcal{M}_*^+

Properties of \tilde{D}_{α} , $\alpha > 1$

▶ Generalized mean: if $\rho = \rho_1 \oplus \rho_2$, $\sigma = \sigma_1 \oplus \sigma_2$, then

$$\begin{split} \exp\{(\alpha-1)\tilde{D}_{\alpha}(\rho\|\sigma)\} &= \exp\{(\alpha-1)\tilde{D}_{\alpha}(\rho_1\|\sigma_1)\} \\ &+ \exp\{(\alpha-1)\tilde{D}_{\alpha}(\rho_1\|\sigma_1)\}. \end{split}$$

▶ Joint quasi-convexity: $(\rho, \sigma) \mapsto \exp\{(\alpha - 1)\tilde{D}_{\alpha}(\rho, \sigma)\}$ is jointly convex.

Relation to the standard version D_{α}

For
$$s(\rho) \leq s(\sigma)$$
, $p > 1$,

$$\rho(1)^{1-p} \|\Delta_{\rho,\sigma}^{1-1/2p} h_\sigma^{1/2}\|_2^{2p} \leq \|h_\rho\|_{p,\sigma}^p \leq \|\Delta_{\rho,\sigma}^{p/2} h_\sigma^{1/2}\|_2^2.$$

(the upper bound is an extension of the Araki-Lieb-Thirring inequality ^{9,10}). Using this, we obtain:

For normal states $\rho, \sigma, \alpha > 1$:

$$D_{2-1/\alpha}(\rho\|\sigma) \leq \tilde{D}_{\alpha}(\rho\|\sigma) \leq D_{\alpha}(\rho\|\sigma).$$

¹⁰M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018

⁹H. Kosaki, *Proc. Amer. Math. Soc.*, 1992

Limit values

$$\lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = D_{1}(\rho \| \sigma)$$
$$\lim_{\alpha \to \infty} \tilde{D}_{\alpha}(\rho \| \sigma) = \tilde{D}_{\infty}(\rho \| \sigma)$$

Araki relative entropy:

$$D_1(
ho\|\sigma) = \left\{egin{array}{ll} \langle\ h_
ho^{1/2}, \log(\Delta_{
ho,\sigma}) h_
ho^{1/2}
angle, & ext{if } s(
ho) \leq s(\sigma) \ \infty & ext{otherwise} \end{array}
ight.$$

relative max entropy:

$$\tilde{D}_{\infty}(\rho\|\sigma) := \inf\{\lambda > 0, \ \rho \le 2^{\lambda}\sigma\}$$

Positive trace-preserving maps

- $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ positive, trace-preserving. Let $\sigma_0 = \Phi(\sigma)$.
 - ▶ Φ is a contraction $L_1(\mathcal{M}) \to L_1(\mathcal{N})$.
 - $\Phi(h_\sigma^{1/2}xh_\sigma^{1/2})=h_{\sigma_0}^{1/2}yh_{\sigma_0}^{1/2}$ for some $y\in\mathcal{N}$ and

$$\Phi_{\rho}^*: x \mapsto y$$

is a positive unital normal map $\mathcal{M} o \mathcal{N}$ - Petz dual 11

- Φ restricts to a contraction $L_{\infty}(\mathcal{M}, \sigma) \to L_{\infty}(\mathcal{N}, \sigma_0)$.
- By Riesz-Thorin:

 Φ restricts to a contraction $L_p(\mathcal{M}, \sigma) \to L_p(\mathcal{N}, \sigma_0)$ for all $1 \le p \le \infty$.

¹¹D. Petz, Quart. J. Math. Oxford, 1988

Data processing inequality

For $\alpha > 1$, normal states ρ , σ , positive, trace-preserving Φ :

$$\tilde{D}_{\alpha}(\rho \| \sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma))$$

Consequently, by the limit $\alpha \to 1$:

For normal states ρ , σ ,

$$D_1(\rho \| \sigma) \ge D_1(\Phi(\rho) \| \Phi(\sigma))$$

holds for any positive trace-preserving map Φ .

first observed for $\mathcal{M}=\mathcal{B}(\mathcal{H}),\ \mathcal{H}$ separable, by A. Müller-Hermes, D. Reeb, Ann. H. Poincaré, 2017

The Araki-Masuda norms

The Araki-Masuda L_p -norm:

▶ for $2 \le p \le \infty$, $\xi \in L_2(\mathcal{M})^+$,

$$\|\xi\|_{p,\sigma}^{\mathit{AM}} = \sup_{\omega \in \mathcal{M}_+^+, \omega(1) = 1} \|\Delta_{\omega,\sigma}^{1/2 - 1/p} \xi\|_2$$

if $s(\omega_{\xi}) \leq s(\sigma)$ and is infinite otherwise

• for $1 \le p < 2$,

$$\|\xi\|_{\rho,\sigma}^{AM} = \inf_{\omega \in \mathcal{M}_*^+, \omega(1) = 1, s(\omega) \geq s(\omega_{\mathcal{E}})} \|\Delta_{\omega,\sigma}^{1/2 - 1/p} \xi\|_2$$

The Araki-Masuda norms

- ▶ can be defined for any *-representation of $\mathcal M$ on a Hilbert space $\mathcal H$ and any vector $\xi \in \mathcal H$
- depends only on the vector state

$$\omega_{\xi} = \langle \cdot \xi, \xi \rangle$$

• duality relation: for 1/p + 1/q = 1

$$|\langle \eta, \xi \rangle| \le \|\eta\|_{p,\sigma}^{AM} \|\xi\|_{q,\sigma}^{AM}, \qquad \xi, \eta \in \mathcal{H}$$

• if $1 , there is a (unique) element <math>\eta_0 \in \mathcal{H}$ such that $\|\eta_0\|_{q,\sigma}^{AM} = 1$ and

$$\langle \eta, \eta_0 \rangle = \|\eta\|_{p,\sigma}^{AM}$$

The Araki-Masuda divergences

Our setting: the standard form $(\lambda(\mathcal{M}), L_2(\mathcal{M}), *, L_2(\mathcal{M})^+)$:

For normal states
$$ho$$
, σ and $lpha \in [1/2,1) \cup (1,\infty)$:
$$\tilde{D}^{AM}_{\alpha}(\rho\|\sigma) = \frac{2\alpha}{\alpha-1}\log(\|h^{1/2}_{\rho}\|^{AM}_{2\alpha,\sigma})$$

$ilde{D}_{\!lpha}$ and $ilde{D}_{\!lpha}^{AM}$

▶ For $1 < \alpha < \infty$:

$$\tilde{D}_{\alpha}(
ho\|\sigma) = \tilde{D}_{lpha}^{AM}(
ho\|\sigma)$$

lacksquare For 1/2<lpha<1: $h_{\sigma}^{rac{1-lpha}{2lpha}}h_{
ho}^{1/2}\in \mathit{L}_{2lpha}(\mathcal{M})$ and

$$\tilde{D}_{\alpha}(\rho\|\sigma) := \tilde{D}_{\alpha}^{AM}(\rho\|\sigma) = \frac{2\alpha}{\alpha - 1} \log \|h_{\sigma}^{\frac{1 - \alpha}{2\alpha}} h_{\rho}^{1/2}\|_{2\alpha}$$

Data processing inequality for \tilde{D}_{α} , $\alpha \in [1/2, 1)$

We have to assume that $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ is trace preserving and completely positive (= a quantum channel).

- ▶ Stinespring representation: $\Phi^* = T^*\pi(\cdot)T$, π a normal *-representation, T isometry
- if $\rho = \omega_{\eta}$, DPI for is equivalent to

$$\|T\eta\|_{2\alpha,\Phi(\sigma)}^{AM} \ge \|\eta\|_{2\alpha,\sigma}^{AM}$$

for $\alpha \in [1/2, 1)$ and

$$\|T\eta\|_{2\alpha,\Phi(\sigma)}^{AM} \le \|\eta\|_{2\alpha,\sigma}^{AM}$$

for $\alpha > 1$.

Data processing inequality for \tilde{D}_{α} , $\alpha \in [1/2, 1)$

Let $p=2\alpha$, 1/p+1/q=1. Let $\eta_0\in\mathcal{H}$ be such that $\|\eta_0\|_{q,\sigma}^{AM}=1$ and $\|\eta\|_{p,\sigma}^{AM}=\langle\,\eta,\eta_0\,\rangle$, then

$$\|\eta\|_{\rho,\sigma}^{AM} = \langle T\eta, T\eta_0 \rangle \le \|T\eta\|_{\rho,\Phi(\sigma)}^{AM} \|T\eta_0\|_{q,\Phi(\sigma)}^{AM}$$
$$\le \|T\eta\|_{\rho,\Phi(\sigma)}^{AM}$$

since $||T\eta_0||_{\alpha,\sigma}^{AM} \leq 1$ by DPI for $\alpha > 1$.

Sufficient (reversible) channels

Let

- $lackbox{\Phi}: L_1(\mathcal{M})
 ightarrow L_1(\mathcal{N})$ be a channel
- ρ, σ normal states, with $s(\rho) \leq s(\sigma)$.

Definition

 Φ is sufficient with respect to $\{\rho,\sigma\}$ if there exists a recovery map:

a channel $\Psi: L_1(\mathcal{N}) \to L_1(\mathcal{M})$, such that

$$\Psi \circ \Phi(h_{\rho}) = h_{\rho}, \qquad \Psi \circ \Phi(h_{\sigma}) = h_{\sigma}.$$

Characterizations of sufficient channels

► Universal recovery map:

Let
$$\Phi_{\sigma} := (\Phi_{\sigma}^*)_*$$
 (Petz dual), then $\Phi_{\sigma} \circ \Phi(h_{\sigma})$.

 Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

$$\Phi_{\sigma}\circ\Phi(h_{\rho})=h_{\rho}$$

D. Petz, Quart. J. Math. Oxford, 1988

A conditional expectation:

There exists a conditional expectation $E:\mathcal{M}\to\mathcal{M}$ such that $\sigma\circ E=\sigma$ and Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

$$\rho \circ E = \rho$$
.

Characterization of sufficient channels by divergences

A divergence D characterizes sufficiency if

$$D(\Phi(\rho)\|\Phi(\sigma)) = D(\rho\|\sigma) < \infty$$

implies that Φ is sufficient with respect to $\{\rho, \sigma\}$.

The following divergences characterize sufficiency:

- ▶ D₁ (Araki relative entropy)
- ▶ D_{α} for $\alpha \in (0,1)$ (standard Rényi relative entropies)

D. Petz, *Commun. Math. Phys.*, 1986 AJ, D. Petz, *IDAQP*, 2006

Characterizations of sufficient channels by $ilde{\mathcal{D}}_{lpha}$

The sandwiched Rényi relative entropies \tilde{D}_{α} characterize sufficiency, for $\alpha \in (1/2,1) \cup (1,\infty)$.

AJ, arXiv:1609.08462, to appear in Ann. H. Poincaré, 2018 AJ, arXiv:1707.00047

▶ For $\alpha > 1$: the assumption

$$\tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = \tilde{D}_{\alpha}(\rho\|\sigma) < \infty \implies$$

 $h_{\rho} \in L_{\alpha}(\mathcal{M}, \sigma)$ and Φ is a contraction preserving its norm;

▶ For $\alpha \in (1/2,1)$: Stinespring representation, duality relations.

The case $\alpha = 2$

An easy proof for \tilde{D}_2 :

- ▶ $L_2(\mathcal{M}, \sigma)$ is a Hilbert space
- Φ_{σ} is the adjoint of $\Phi: L_2(\mathcal{M}, \sigma) \to L_2(\mathcal{N}, \Phi(\sigma))$

By well known properties of contractions on Hilbert spaces:

$$\Phi_{\sigma} \circ \Phi(h_{\rho}) = h_{\rho}.$$

The case $\alpha > 1$: Two lemmas

Let τ be a normal state, $s(\tau) \leq s(\sigma)$. Put

$$h_{\tau}(z) = h_{\sigma}^{(1-z)/2} h_{\tau}^{z} h_{\sigma}^{(1-z)/2}, \quad 0 \le Re(z) \le 1,$$

 $h_{\tau}(1/p) \in L_p(\mathcal{M}, \sigma) \text{ for } p > 1.$

If $\|\Phi(h_{\tau}(1/p))\|_{p,\Phi(\sigma)} = \|h_{\tau}(1/p)\|_{p,\sigma}$ for some $p = p_0 > 1$, then the equality holds for all p > 1.

Let $h_{\rho}=th_{\tau}(1/p),\ p>1,\ t>0.$ Then Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if it is sufficient with respect to $\{\tau,\sigma\}$.

The case $\alpha > 1$: Proof

By assumption,

- $h_{
 ho}=th_{ au}(1/lpha)$ for some t>0 and a normal state au

Then

$$\|\Phi(h_{\tau}(1/2))\|_{2,\Phi(\sigma)} = \|h_{\tau}(1/2)\|_{2,\sigma} \\ \Longrightarrow$$

- ▶ Φ is sufficient with respect to $\{\xi, \sigma\}$, $h_{\xi} = sh_{\tau}(1/2)$ \Longrightarrow
- $lackbox{ } \Phi$ is sufficient with respect to $\{ au,\sigma\}$ \Longrightarrow
- Φ is sufficient with respect to $\{\rho, \sigma\}$.

The case $\alpha \in (1/2,1)$

Proof: Put $p := 2\alpha > 1$.

 $h_{\sigma}^{1/p-1/2}h_{\rho}^{1/2}\in L_p(\mathcal{M})$, so that

$$h_{\sigma}^{1/p-1/2}h_{\rho}^{1/2}=h_{\tau}^{1/p}u$$

for some $au \in \mathcal{M}_*^+$ and $u \in \mathcal{M}$ (polar decomposition)

• put $\eta = h_{\rho}^{1/2}$, $\eta_0 = h_{\sigma}^{1/p-1/2} h_{\tau}^{1/q} \tau(1)^{-1/q}$, then

$$\begin{split} \|\eta\|_{\rho,\sigma}^{AM} &= \langle\,\eta,\eta_0\,\rangle \leq \|T\eta\|_{\rho,\Phi(\sigma)}^{AM} \|T\eta_0\|_{q,\Phi(\sigma)}^{AM} \\ &\leq \|T\eta\|_{\rho,\Phi(\sigma)}^{AM} = \|\eta\|_{\rho,\sigma}^{AM} \end{split}$$

so that

$$\|T\eta_0\|_{q,\Phi(\sigma)}^{AM} = \|\eta_0\|_{q,\sigma}^{AM} (=1)$$

The case $\alpha \in (1/2,1)$

this implies

$$ilde{D}_{lpha^*}(\Phi(\omega)\|\Phi(\sigma)) = ilde{D}_{lpha^*}(\omega\|\sigma) < \infty$$

for
$$\omega = \omega_{\eta_0}$$
 and $\alpha^* = q/2 > 1$

- ▶ hence Φ is sufficient with respect to $\{ω, σ\}$, and also $\{τ, σ\}$ since $h_ω = th_τ(1/α^*)$
- we infer $\rho \circ E = \rho$ from

$$h_{\sigma}^{1/p-1/2}h_{\rho}^{1/2}=h_{\tau}^{1/p}u.$$

