Perception: Rotations and Translations

Kostas Daniilidis

Transformation between camera and world coordinate systems

Red for X-Axis
Green for Y-Axis
Blue for Z-Axis

Remember RGB is XYZ

$$^{c}P = {^{c}R_w} {^{w}P} + {^{c}T_w}$$

Point *P* can be expressed with respect to "w" or "c" coordinate frames

$$^{c}P = {^{c}R_{w}}^{w}P + {^{c}T_{w}}$$

What is the geometric meaning of the rotation ${}^{c}R_{w}$ and the translation ${}^{c}T_{w}$?

What is the geometric meaning of the translation cT_w ? This is easy to see if we set wP to zero.

Then, ${}^{c}P = {}^{c}R_{w} + {}^{c}T_{w}$ is the vector from camera origin to world origin:

What is the geometric meaning of the rotation cR_w ? Let the rotation matrix be written as 3 orthogonal column vectors:

Let us set ${}^wP = (1,0,0)$ and imagine ${}^cT_w = 0$. Then ${}^cP = r_1$ which means that the rotation columns are the world axis expressed in the camera coordinate system.

Let us look at the simple example:

How does the rotation matrix read?

What about the translation:

We have to make sure that the 3x3 matrix is a rotation matrix, Which means $R^TR=I$ and det(R) =1.

Now imagine one more coordinate frame: a body frame with axes corresponding to roll (X_b) , pitch (Y_b) , yaw (Z_b) angles.

The easiest way to transform between coordinate systems is to use 4x4 matrices:

Then we just concatenate the 4x4 matrices

$$^wM_b = {^wM_c}^cM_b$$

What about the inverse transformation?

$$^wM_c=\left(egin{array}{ccc} ^cR_w^T & -^cR_w^T{}^cT_w \ 0 & 0 & 1 \end{array}
ight)$$

Alternative interpretation as a sequence of motions:

1. The camera frame first translates to the world

2. The camera frame rotates 90 degrees around x

A3. The camera frame rotates 180 degrees around z

How do we compose these motions? Golden rule: when we move coordinate frames and we refer to the most recent coordinate frame we always postmultiply!

$$\begin{array}{rcl}
{}^{c}M_{w} & = & TR_{x,90}R_{z,180} \\
 & = & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 10 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\
 & = & \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 5 \\ 0 & -1 & 0 & 10 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$