ЛЬВІВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ІВАНА ФРАНКА

Факультет прикладної математики та інформатики

Кафедра дискретного аналізу та інтелектуальних систем

Звіт з дисципліни "Теорія ймовірності та математична статистика"

ІНДИВІДУАЛЬНЕ ЗАВДАННЯ № 3

Виконала:

Постановка задачі

- 1. За даними кореляційної таблиці обчислити умовні середні $y_{xi}(i=1,\dots,k)$.
- 2. Побудувати поле кореляції, тобто нанести на нього точки $M_i(x_i; y_{xi})$ на координатну площину. На основі цього зробити припущення про вигляд функції регресії.
- 3. В залежності від вигляду функції регресії скласти відповідну систему рівнянь. Розв'язати її і знайти невідомі параметри вибраної функції регресії.
- 4. Записати рівняння кривої регресії Y на X: $y_{xi} = f(x)$ та побудувати її графік.
- 5. Обчислити дисперсію величини Y відносно кривої регресії Y на X.
- 6. Визначити суму квадратів відхилень умовних середніх від значень функції регресії.

Короткі теоретичні відомості

Результати спостережень залежності між двома величинами X та Y, що мали частоти появи n_{ij} записують у вигляді кореляційної таблиці:

Y X	\mathbf{x}_1	X ₂	 Xi	 $\mathbf{x}_{\mathbf{k}}$	m _j
\mathbf{y}_1	n ₁₁	n ₂₁	 n _{il}	 n _{k1}	m_1
y_2	n ₁₂	n ₂₂	 n _{i2}	 n _{k2}	m_2
y _j	n _{1j}	n_{2j}	 n _{ij}	 n_{kj}	m _j
y_1	n_{1l}	n_{2l}	 n_{il}	 n_{kl}	m_l
n _i	n_1	n_2	 n _i	 n _k	n

За даними цієї таблиці обчислюємо умовні середні $y_{xi}(i=1,...,k)$:

$$\overline{y_{x_1}} = \frac{y_1 n_{11} + y_2 n_{12} + \ldots + y_l n_{1l}}{n_1}, \quad \overline{y_{x_2}} = \frac{y_1 n_{21} + y_2 n_{22} + \ldots + y_l n_{2l}}{n_2}, \ldots,$$

$$\overline{y_{x_i}} = \frac{y_1 n_{i1} + y_2 n_{i2} + \ldots + y_l n_{il}}{n_i}, \ldots, \overline{y_{x_k}} = \frac{y_1 n_{k1} + y_2 n_{k2} + \ldots + y_l n_{kl}}{n_k}$$

Для визначення вигляду функції регресії будують точки $(x_i; y_x)$ і за їх розміщенням роблять висновок про приблизний вигляд функції регресії. Вона може мати вигляд наступних кореляцій.

1. Параболічна кореляція.

$$f(x) = ax^2 + bx + c,$$

де a, b та c - невідомі параметри, які можна знайти за системою рівнянь

$$\begin{cases} \left(\sum_{i=1}^{k} n_{i}x_{i}^{4}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}^{3}\right)b + \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)c = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}x_{i}^{2}; \\ \left(\sum_{i=1}^{k} n_{i}x_{i}^{3}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)b + \left(\sum_{i=1}^{k} n_{i}x_{i}\right)c = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}x_{i}; \\ \left(\sum_{i=1}^{k} n_{i}x_{i}^{2}\right)a + \left(\sum_{i=1}^{k} n_{i}x_{i}\right)b + nc = \sum_{i=1}^{k} n_{i}\overline{y}_{x_{i}}. \end{cases}$$

2. Гіперболічна кореляція.

$$\overline{y}_x = \frac{a}{x} + b,$$

, де а та b - невідомі параметри, які можна знайти системою рівнянь

$$\begin{cases}
a \sum_{i=1}^{k} \frac{1}{x_i} n_i + bn = \sum_{i=1}^{k} \overline{y}_{x_i} n_i; \\
a \sum_{i=1}^{k} \frac{1}{x_i^2} n_i + b \sum_{i=1}^{k} \frac{1}{x_i} n_i = \sum_{i=1}^{k} \frac{1}{x_i} \overline{y}_{x_i} n_i.
\end{cases}$$

3. Показникова кореляція.

 $y_x = ba^x$, де а та b - невідомі параметри, які можна знайти системою рівнянь

$$\begin{cases} \lg a \sum_{i=1}^{k} n_i x_i + n \lg b = \sum_{i=1}^{k} n_i \lg \overline{y}_{x_i}; \\ \lg a \sum_{i=1}^{k} n_i x_i^2 + \lg b \sum_{i=1}^{k} n_i x_i = \sum_{i=1}^{k} n_i x_i \lg \overline{y}_{x_i}. \end{cases}$$

4. Коренева кореляція.

 $\overline{y}_x = a\sqrt{x} + b$, де а та b - невідомі параметри, які можна знайти системою рівнянь

$$\begin{cases} a \sum_{i=1}^{k} n_i \sqrt{x_i} + bn = \sum_{i=1}^{k} \overline{y}_{x_i} n_i; \\ a \sum_{i=1}^{k} n_i x_i + b \sum_{i=1}^{k} n_i \sqrt{x_i} = \sum_{i=1}^{k} n_i \overline{y}_{x_i} \sqrt{x_i}. \end{cases}$$

За побудованою кривою регресії можна оцінити відхилення значень випадкової величини Y від кривої регресії y_x , а саме

дисперсію
$$\sigma^2 = \frac{\Delta}{n}$$
, де
$$\Delta = n_{11}[y_1 - f(x_1)]^2 + n_{21}[y_1 - f(x_2)]^2 + \dots + n_{k1}[y_1 - f(x_k)]^2 + \dots + n_{12}[y_2 - f(x_1)]^2 + n_{22}[y_2 - f(x_2)]^2 + \dots + n_{k2}[y_2 - f(x_k)]^2 + \dots + n_{1l}[y_l - f(x_1)]^2 + n_{2l}[y_l - f(x_2)]^2 + \dots + n_{kl}[y_l - f(x_k)]^2.$$

та суму квадратів відхилень

$$\delta^{2} = \sum_{i=1}^{k} \delta_{i}^{2} n_{i} = \sum_{i=1}^{k} |\overline{y_{x_{i}}} - f(x_{i})|^{2} n_{i}$$

Програмна реалізація

Реалізувала програму мовою С# в середовищі Visual Studio. Для реалізації використовувала Windows Forms компоненти та бібліотеку Math.NET Numerics для розв'язання системи лінійних рівнянь.

Отримані результати

	Y X	2	3	5	8	10	11	13
	3						19	2
	4				3	31	2	
6.	6			1	16	3		
	8		2	21	4			
	10	3	31	5				
	12	30	2					

Згідно з таблицею варіанту 6 знайшла середні ухі :

y[2] = 11,818

y[3] = 10

y[5] = 8,296

y[8] = 6,087

y[10] = 4,176

y[11] = 3,095

y[13] = 3

та графік 1 вигляду

Припустивши, що це гіперболічна кореляція, склала відповідну систему рівнянь

/41,905a + 175b = 1492

14,104a + 41,905b = 436,443

Звідси, знаходимо а та b:

Рівняння кривої регресії Y на X: $y_x = \frac{19,4549701}{x} + 3,86708274$

3 цього рівняння знайшла середні у_х:

$$y[2] = 13,595$$

$$y[3] = 10,352$$

$$y[5] = 7,758$$

$$y[8] = 6,299$$

$$y[10] = 5,813$$

$$y[11] = 5,636$$

$$y[13] = 5,364$$

та графік 2 вигляду

Графіки 1 та 2 на одній координатній площині для порівняння

Обчислила дисперсію величини Y відносно кривої регресії Y на X.

$$\sigma^2 = 2,61043286624728$$

Визначити суму квадратів відхилень умовних середніх від значень функції регресії.

$$\delta^2 = 343,874180248822$$

Висновки

В ході виконання індивідуального завдання 3 я навчилась обчислювати умовні середні у_{хі} за даними кореляційної таблиці, будувати поле кореляції, на основі якого робити припущення про вигляд функції регресії, знаходити невідомі параметри вибраної функції, записувати рівняння кривої регресії, обчислювати дисперсію величини Y відносно кривої регресії Y на X та визначати суму квадратів відхилень умовних середніх від значень функції регресії.