

Statistical Analysis

Master in Statistics and Information Management

Professor Ana Cristina Costa (ccosta@novaims.unl.pt)

HOMEWORK

LU4: POINT ESTIMATION

- **1.** Consider a population with distribution $N(\mu, \sigma)$ and a random sample $X_1, ..., X_n$ from this population.
 - a) Show that \bar{X} is a consistent estimator of μ .
 - b) Consider now two alternative estimators of μ , both unbiased, and their variances are the following:

$$\hat{\mu}_1 = \bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$$
 $\hat{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i$

$$\hat{\mu}_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X^{n-1}$$

$$V[\hat{\mu}_1] = \frac{1}{n}\sigma$$

$$V[\hat{\mu}_1] = \frac{1}{n}\sigma^2$$
 $V[\hat{\mu}_2] = \frac{1}{n-1}\sigma^2$

Show that $\hat{\mu}_1$ is more efficient than $\hat{\mu}_2$.

2. Consider a random sample X_1, X_2, \dots, X_n from some population with mean μ and variance σ^2 , and the following estimator of the mean of this population:

$$\hat{\mu} = 0.4X_1 + aX_3 + 0.3X_5 + 0.2X_n$$

- a) Find the value of a that makes $\hat{\mu}$ an unbiased estimator.
- **b)** Study $\hat{\mu}$ as to its consistency in mean square error.
- c) For a=0,1, compare $\hat{\mu}$ with the following alternative estimator as to the relative efficiency:

$$\tilde{\mu} = \frac{1}{8}(2X_1 + 5X_2 - 3X_3 + 4X_n)$$

3. Consider a population with Poisson distribution. In order to estimate λ , the following two estimators were considered based on a random sample $X_1, ..., X_n$ from this population:

$$\hat{\lambda} = \frac{\sum_{i=1}^{n} X_i}{n}$$
 and $\tilde{\lambda} = \frac{X_1 + X_n}{2}$

- a) Study the bias and the consistency of the estimator $\tilde{\lambda}$.
- **b)** Compare the efficiency of the two proposed estimators.

LU4: POINT ESTIMATION 2

4. Consider the following estimator of the variance of a normal population with mean μ and variance σ^2 :

$$\tilde{\sigma}^2 = \frac{\sum_{i=1}^n (X_i - \mu)^2}{n}$$

Taking into consideration that if Z₁, Z₂,...,Z_n are iid N(0, 1) then $\sum_{i=1}^{n} {Z_i}^2 \sim \chi_{(n)}^2$:

- a) Show that $\tilde{\sigma}^2$ is an unbiased estimator.
- **b)** Compare the efficiency of $\tilde{\sigma}^2$ with the efficiency of $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$.
- c) Show that $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \bar{X})^2$ is consistent.
- 5. Let X be the number of observed successes in a random sample of size n.
 - a) Show that the sample proportion of successes $\hat{P} = X/n$ is an unbiased estimator of the probability of success p.
 - **b)** Show that the sample proportion of failures $\hat{Q} = 1 X/n$ is an unbiased estimator of the probability of failure q.
- 6. Consider two independent random samples of sizes n_1 and n_2 from the same population, and the following estimators of the population mean μ :

$$\hat{\mu}_1 = \frac{\bar{X}_1 + \bar{X}_2}{2}$$
 and $\hat{\mu}_2 = \frac{1 + n_1 \bar{X}_1 + n_2 \bar{X}_2}{n_1 + n_2}$,

where \bar{X}_1 and \bar{X}_2 are the sample means of the first and second samples, respectively.

- a) Determine the bias of each of the estimators.
- **b)** Determine the variance of each of the estimators.

Assuming that $n_2 = kn_1$ and $k \ge 1$ is an integer:

- c) Compare the variance of the two estimators.
- **d)** Determine the mean squared error of each of the estimators.
- e) Compare the efficiency of the estimators when $n_1 = 10$, $n_2 = 40$ (k = 4) and $\sigma^2 = 1$.
- f) Show that both estimators are consistent in mean square error.

LU4: POINT ESTIMATION 3

SOLUTIONS

Question 2)

- a) a = 0.1
- b) $\hat{\mu}$ is not consistent in mean square error
- c) $\hat{\mu}$ is more efficient than $\tilde{\mu}$

Question 3)

- a) $\tilde{\lambda}$ is unbiased but not consistent
- b) If n < 2, $\tilde{\lambda}$ is more efficient than $\hat{\lambda}$;

if n=2, $\hat{\lambda}$ and $\tilde{\lambda}$ are equally efficient;

if n > 2, $\hat{\lambda}$ is more efficient than $\tilde{\lambda}$

Question 4)

b) $\tilde{\sigma}^2$ is more efficient than S^2

Question 6)

a) bias
$$(\hat{\mu}_1) = 0$$
; bias $(\hat{\mu}_2) = \frac{1}{n_1 + n_2}$

b)
$$V(\hat{\mu}_1) = \frac{\sigma^2}{4} \left(\frac{1}{n_1} + \frac{1}{n_2} \right); V(\hat{\mu}_2) = \frac{\sigma^2}{n_1 + n_2}$$

c) $\hat{\mu}_2$ is more efficient

d)
$$EQM(\hat{\mu}_1) = \frac{\sigma^2}{4} \left(\frac{1}{n_1} + \frac{1}{n_2} \right); EQM(\hat{\mu}_2) = \frac{(n_1 + n_2)\sigma^2 + 1}{(n_1 + n_2)^2}$$

e) Although biased, $\hat{\mu}_2$ is more efficient than $\hat{\mu}_1$ when k=4