システム工学 レポート課題 (12/26 出題分 解答例)

長江 剛志

東北大学大学院工学研究科 技術社会システム専攻

(nagae@tohoku.ac.jp)

23 Jan, 2017 (ver1.0)

レポート課題1(1)

1. 次の線形計画問題の 等式標準形 を書き下せ. ただし、それぞれの制約に対する スラック変数 を r_1, r_2 とすること.

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} x_1 + 4x_2 + 3x_3$$

$$\text{s.t.} \quad x_1 + x_2 + x_3 \le 12$$

$$-2x_1 + 4x_2 + 4x_3 \le 36$$

$$x_1, \quad x_2, \quad x_3 \ge 0$$

2. 1. で得られた 等式標準形 に対して, $x_B = (r_1, r_2)$ を 基底変数 (被説明変数), $x_N = (x_1, x_2, x_3)$ を 非基底変数 (説明変数) とする辞書 の 行列表現 を書き下せ.

レポート課題1(2)

- で得られた辞書に対して,以下の順に 基底変数 と 非基底 変数 を入れ替えた時,それぞれのステップで得られる 辞書 を 書き下せ.
 - 3.1 基底変数 r_1 と 非基底変数 x_1 を入れ替える.
 - 3.2 基底変数 r_2 と 非基底変数 x_2 を入れ替える.
- 4. 2. で得られた辞書に対して,以下の順に <mark>基底変数</mark> と **非基底 変数** を入れ替えた時,それぞれのステップで得られる **辞書** を書き下せ.
 - 4.1 基底変数 r_1 と 非基底変数 x_1 を入れ替える.
 - 4.2 基底変数 r_2 と 非基底変数 x_3 を入れ替える.
 - 4.3 基底変数 x_3 と 非基底変数 x_2 を入れ替える.
- 3. の最後に得られた 辞書 と 4. の最後に得られた 辞書 との間にはどのような関係があるか説明せよ.

レポート課題1(解答例)(1)

1. 次の線形計画問題の 等式標準形 を書き下せ. ただし、それぞれの制約に対する スラック変数 を r_1, r_2 とすること.

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} x_1 + 4x_2 + 3x_3$$

$$\text{s.t.} \quad x_1 + x_2 + x_3 \le 12$$

$$-2x_1 + 4x_2 + 4x_3 \le 36$$

$$x_1, \quad x_2, \quad x_3 \ge 0$$

等式標準形は,

$$\min_{\substack{x_1, x_2, x_3, r_1, r_2 \\ s.t.}} -x_1 - 4x_2 - 3x_3 = -z$$

$$s.t. \quad x_1 + x_2 + x_3 + r_1 = 12$$

$$-2x_1 + 4x_2 + 4x_3 + r_2 = 36$$

$$x_1, \quad x_2, \quad x_3 \quad r_1, \quad r_2 \ge 0$$

レポート課題1(解答例)(2)

2. 1. で得られた 等式標準形 に対して, $x_B = (r_1, r_2)$ を 基底変数 (被説明変数), $x_N = (x_1, x_2, x_3)$ を 非基底変数 (説明変数) とする辞書 の 行列表現 を書き下せ.

	x_1	x_2	x_3	-1
$-r_1$	1	1	1	16
$-r_2$	-2	4	4	36
-z	-1	-4	-3	0

- 3. 2. で得られた辞書に対して,以下の順に <mark>基底変数</mark> と **非基底 変数** を入れ替えた時,それぞれのステップで得られる <mark>辞書</mark> を書き下せ.
 - 3.1 基底変数 r_1 と 非基底変数 x_1 を入れ替える.

			x_3						x_3	
$-r_1$	1*	1	1	16		$-x_1 \\ -r_2$	1	1	1	12
$-r_2$	-2	4	4	36	\Rightarrow	$-r_2$	2	6	6	60
-z	-1	-4	-3	0	_	-z	1	-3	-2	12

レポート課題1(解答例)(3)

3.2 基底変数 r_2 と 非基底変数 x_2 を入れ替える.

- で得られた辞書に対して,以下の順に 基底変数 と 非基底 変数 を入れ替えた時,それぞれのステップで得られる 辞書 を 書き下せ.
 - 1.1 基底変数 r_1 と 非基底変数 x_1 を入れ替える.

レポート課題1(解答例)(4)

1.2 基底変数 r_2 と 非基底変数 x_3 を入れ替える.

1.3 基底変数 x_3 と 非基底変数 x_2 を入れ替える.

レポート課題1(解答例)(5)

3. の最後に得られた 辞書 と 4. の最後に得られた 辞書 との間にはどのような関係があるか説明せよ.

いずれの方法で得られた辞書も, 基底変数を (x_1,x_2) , 非基底変数を (r_1,r_2,x_3) とするもので, そ の内容は全く同じである (一方の第 2 列と第 3 列を入れ替えれば他方と完全に一致する).

レポート課題2

以下の問題を 単体法 で解け.

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} x_1 + x_2 + 2x_3 = z$$

$$x_2 + 2x_3 \le 3$$

$$- x_1 + 3x_3 \le 2$$

$$2x_1 + x_2 + x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

レポート課題 2 (解答例) (1)

以下の問題を 単体法 で解け.

$$\max_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} x_1 + x_2 + 2x_3 = z$$

$$x_2 + 2x_3 \le 3$$

$$- x_1 + 3x_3 \le 2$$

$$2x_1 + x_2 + x_3 \le 1$$

$$x_1, x_2, x_3 \ge 0$$

この問題の等式標準形は,

$$\min_{\substack{x_1, x_2, x_3 \\ \text{s.t.}}} - x_1 - x_2 - 2x_3 = -z$$
s.t.
$$x_2 + 2x_3 + r_1 = 3$$

$$- x_1 + 3x_3 + r_2 = 2$$

$$2x_1 + x_2 + x_3 + r_3 = 1$$

$$x_1, x_2, x_3, r_1, r_2, r_3 \ge 0$$

と表される.

レポート課題 2 (解答例) (2)

この等式標準形に対して、基底変数を $x_B = (r_1, r_2, r_3)$ 、非基底変数 を $x_N = (x_1, x_2, x_3)$ とする 辞書 は

	x_1	x_2	x_3	-1
$-r_1$	0	1	2	3
$-r_2$	-1	0	3	2
$-r_3$	2	1	1	1
-z	-1	-1	-2	0

と行列表現できる. これを初期辞書とした単体法の適用例を示す.

レポート課題 2 (解答例) (3)

まず,目的関数の係数が負であるような非基底変数 (ここでは, x_1,x_2,x_3) のうち,第 1 列の x_1 を候補に選んだとしよう. この時,第 1 列で正の要素を持つのは x_3 に対応する第 3 行のみ.

非基底変数 x_1 と基底変数 r_3 を入れ替えるピボット演算を行なえば,基底変数を (r_1,r_2,x_1) , 非基底変数を (r_3,x_2,x_3) とする新たな辞書を得る:

	$ x_1 $	x_2	x_3	-1			r_3	x_2	x_3	-1
$-r_1$	0	1	2	3		$-r_1$	0	1	2	3
$-r_2$	-1	0	3	2	\Rightarrow	$-r_2$	1/2	1/2	7/2	5/2
$-r_3$	2*	1	1	1		$-x_1$	1/2	1/2	1/2	1/2
-z	-1	-1	-2	0	-	-z	1/2	-1/2	-3/2	1/2

レポート課題 2 (解答例) (4)

次に、この新しい辞書において、目的関数の係数が負であるような非基底変数 (ここでは x_2,x_3) のうち、 x_2 を候補に選んだとしよう、このとき、候補 x_2 に対応する第 2 列については、どの行も正の要素 (1,1/2,1/2) を持つ、そこで、そのそれぞれと一番右の列の定数 (3,5/2,1/2) との比 (3/1,5/1,1) が最小となる第 3 行に対応する基底変数 x_1 を候補とする.

非基底変数 x_2 と基底変数 x_1 を入れ替えるピボット演算を行なえば,これにより,基底変数を (r_1,r_2,x_2) , 非基底変数を (r_3,x_1,x_3) とする新たな辞書を得る:

	r_3	x_2	x_3	-1			r_3	x_1	x_3	-1
$-r_1$	0	1	2	3		$-r_1$	-1	-2	1	2
$-r_2$	1/2	1/2	7/2	5/2	\Rightarrow	$-r_2$	0	-1	3	2
$-x_1$	1/2	1 $1/2$ $1/2*$	1/2	1/2		$-x_2$	1	2	1	1
-z	1/2	-1/2	-3/2	1/2		-z	1	1	-1	1

レポート課題 2 (解答例) (5)

新しい辞書において,目的関数の係数が負であるような非基底変数は x_3 のみであるから,これを候補とする.候補に対応する第3列については,どの行も正の要素(1,3,1)を持つ.そこで,そのそれぞれと一番右の列の定数(2,2,1)との比(2/1,2/3,1/1)が最小となる第2行に対応する基底変数 x_2 を候補とする.

非基底変数 x_3 と基底変数 r_2 を入れ替えるピボット演算を行なえば、これにより、基底変数を (r_1,x_3,x_2) 、非基底変数を (r_3,x_1,r_2) とする新たな辞書を得る:

		x_1							r_2	
					_	$-r_1$	-1	-5/3	-1/3	4/3
$-r_2$	0	-1	3*	2	\Rightarrow	$-x_3$	0	-1/3	1/3	2/3
$-x_2$	1	2	1	1		$-x_2$	1	7/3	-1/3	1/3
$\overline{-z}$	1	1	-1	1	-	-z	1	2/3	1/3	5/3

レポート課題 2 (解答例) (6)

この辞書は、目的関数の係数と右辺の定数がいずれも非負であるため、それに対応する最適化問題が、非基底変数 (r_3,x_1,r_2) の値を0とする 自明な解を持つ、この時の基底変数および元の目的関数の値は、 $(\overline{r_1},x_3^*,x_2^*,z^*)=(4/3,2/3,1/3,5/3)$ と得られる.

従って, 最適解 は $(x_1^*, x_2^*, x_3^*) = (0, 1/3, 2/3)$, 最適値 は $z^* = 5/3$ である.