In multivariate statistics, distances refer to a single number that summarizes the difference between multivariate observations.

Distances can be defined for:

- Continuous Data
 - genetic distances
 - morphometric distances
- Categorical Data
 - molecular sequences
 - presence/absence data matrices

A distance matrix is always a square $n \times n$ matrix where n is the number of observations in the original dataset

Distance matrices

```
> Y <- cbind(rnorm(5), rnorm(5))</pre>
> Y
           [,1]
                       [,2]
[1,] -0.9974405 0.7915941
[2,] -1.1910216
                 0.5255575
[3,] 0.1125328
                 1.0194546
[4,] -0.4097550 -0.9344067
[5,] -0.6408180 -0.8975576
> dist(Y)
          1
                    2
                               3
                                          4
2 0.3290123
3 1.1331201 1.3939830
4 1.8233082 1.6558602 2.0224635
5 1.7263873 1.5257722 2.0597265 0.2339828
```

Clustering

Hierarchical clustering is the means by which distances are most often analysed. There are many slightly different methods. Here we will use WPGMA (Weighted pair-group method using averaging).

Clustering is used to classify

- species
- genetic groups
- types of communities
- soil types

Begin cluster example

```
> library(MASS)
> Z \leftarrow data.frame(mvrnorm(5, mu = c(1, 2), Sigma = matrix(c(1, 2), Sigma = ma
                             0.7, 0.7, 1), 2, 2)))
> names(Z) <- c("leg.length", "arm.length")</pre>
> Z
         leg.length arm.length
1 0.9768720 1.6961592
2 2.3320036 3.4629260
3 1.6416131 2.8530151
4 1.7877215 3.3636897
5 -0.6785844 0.4326824
> plot(Z, cex = 3)
> points(Z, pch = paste(1:5))
> D <- matrix(0, dim(Z)[1], dim(Z)[1])
> for (i in 1:dim(Z)[1]) for (j in i:dim(Z)[1]) {
                            points(Z[c(i, j), ], type = "1", 1ty = 2)
                            D[i, j] \leftarrow sqrt(sum((Z[i, ] - Z[j, ])^2))
                            D[j, i] \leftarrow D[i, j]
+ }
```

Cluster example: figure

Distance matrix

> D

Categorical-based distance

The most common distance measure is based on the proportion of shared states for categorical variables.

```
[1] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
> Dxy = 1 - sum(as.numeric(x == y))/length(x)
> Dxy
[1] 0.3333333
Performing clustering
```

On board, but to start

> D

[,1] [,2] [,3] [,4] [,5] [1,] 0.0000000 0.1487718 2.197707 1.138336 0.9400500 [2,] 0.1487718 0.0000000 2.049313 1.001752 0.9733489 [3,] 2.1977071 2.0493134 0.000000 1.272697 2.4587166 [4,] 1.1383355 1.0017516 1.272697 0.000000 1.8059823 [5,] 0.9400500 0.9733489 2.458717 1.805982 0.0000000

R implementation: dist

hclust

```
> h.obj <- hclust(D2, method = "average")</pre>
> plot(h.obj)
```

Cluster Dendrogram

D2 hclust (*, "average")

More interesting example

```
> distmat <- read.table("jc.dist", header = F)</pre>
> names(distmat) <- c("Gene", paste(distmat[, 1]))
> rownames(distmat) <- distmat[, 1]</pre>
```

- > distmat <- as.matrix(distmat[, -1])</pre>
- > dim(distmat)

[1] 29 29

> distmat[1:10, 1:10]

	D88262	D88261	D88260	TFRCHS5AAA	TFRCHS6A	TFRCHS3AAA	PEACHS1	GMACHS2
D88262	0.0000	0.0234	0.0217	0.1223	0.1283	0.1093	0.1073	0.2656
D88261	0.0234	0.0000	0.0217	0.1243	0.1344	0.1153	0.1123	0.2668
D88260	0.0217	0.0217	0.0000	0.1263	0.1375	0.1163	0.1153	0.2693
TFRCHS5AAA	0.1223	0.1243	0.1263	0.0000	0.0550	0.0831	0.1344	0.2607
TFRCHS6A	0.1283	0.1344	0.1375	0.0550	0.0000	0.0812	0.1314	0.2693
TFRCHS3AAA	0.1093	0.1153	0.1163	0.0831	0.0812	0.0000	0.1143	0.2439
PEACHS1	0.1073	0.1123	0.1153	0.1344	0.1314	0.1143	0.0000	0.2619
GMACHS2	0.2656	0.2668	0.2693	0.2607	0.2693	0.2439	0.2619	0.0000
GMGENE3	0.2619	0.2535	0.2644	0.2656	0.2595	0.2487	0.2607	0.0505

as.dist(distmat) hclust (*, "complete")