## Gaussian Elimination: Matrix form AX=b

**Example:** 2x + y + z = 5, 4x - 6y = -2, -2x + 7y + 2z = 9.

Note that the last column is the RHS column vector b.

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 4 & -6 & 0 & | & -2 \\ -2 & 7 & 2 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 8 & 3 & | & 14 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

## Gaussian Elimination: Matrix form AX=b

**Example:** 2x + y + z = 5, 4x - 6y = -2, -2x + 7y + 2z = 9.

Note that the last column is the RHS column vector b.

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 4 & -6 & 0 & | & -2 \\ -2 & 7 & 2 & | & 9 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 8 & 3 & | & 14 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} 2 & 1 & 1 & | & 5 \\ 0 & -8 & -2 & | & -12 \\ 0 & 0 & 1 & | & 2 \end{pmatrix}$$

The last matrix corresponds to z = 2, -8y - 2z = -12, 2x + y + z = 5.

The last matrix corresponds to

$$z = 2$$
,

$$-8y - 2z = -12$$
,

$$2x + y + z = 5$$
. Solving this gives  $z = 2, y = 1, x = 1$ .

The last matrix corresponds to

$$z = 2$$
,

$$-8y - 2z = -12$$
,

$$2x + y + z = 5$$
. Solving this gives  $z = 2, y = 1, x = 1$ .

## Gaussian Algorithm

#### For Row Echelon Form

- 1. Find the leftmost nonzero column.
- 2. Select a nonzero entry in that column (pivot). Bring it on top by interchanging rows
- 3. Use Elementary row operations to make all entries below that nonzero entry 0.
- 4. Ignore that row and columns before (including of leading entry) above found column. Apply steps 1-3 for remaining submatrix. Go on till all rows are exhausted.

## Gaussian Algorithm

#### For Row Echelon Form

- 1. Find the leftmost nonzero column.
- 2. Select a nonzero entry in that column (pivot). Bring it on top by interchanging rows
- 3. Use Elementary row operations to make all entries below that nonzero entry 0.
- Ignore that row and columns before (including of leading entry) above found column. Apply steps 1-3 for remaining submatrix. Go on till all rows are exhausted.
  - For Reduced Row Echelon Form
- 5. Make all leading entries 1 by elementary row operation  $(R_i \rightarrow cR_i)$
- 6. Make all entries in a column above leading 1 zero by elementary row operation  $(R_i \rightarrow R_i cR_i)$

$$A = \left[ \begin{array}{rrrr} 0 & 3 & -6 & 6 \\ 3 & -7 & 8 & -5 \\ 3 & -9 & 12 & -9 \end{array} \right]$$

## Reduced Row Echelon Form (RREF) of A is

$$A' = \left[ \begin{array}{rrrr} 1 & 0 & -2 & 3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

$$A = \left[ \begin{array}{rrrr} 0 & 3 & -6 & 6 \\ 3 & -7 & 8 & -5 \\ 3 & -9 & 12 & -9 \end{array} \right]$$

## Reduced Row Echelon Form (RREF) of A is

$$A' = \left[ \begin{array}{rrrr} 1 & 0 & -2 & 3 \\ 0 & 1 & -2 & 2 \\ 0 & 0 & 0 & 0 \end{array} \right]$$

### Theorem

- 1. A linear system is inconsistent if and only if REF or RREF of its augmented matrix has a row of the form  $0\ 0\ \cdots\ 0$  b, for some nonzero b.
- 2. A linear system is has unique solution if and only if no. of nonzero rows and no. of columns of REF or RREF of its augmented matrix are same.

Triangular factorization: A = LU Given a square matrix A, we can find L a lower Triangular matrix with 1s on the diagonal and U upper Triangular matrix such that A = LU.

For 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
,  $L = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$  and  $U = \begin{bmatrix} 1 & 2 \\ 0 & 2 \end{bmatrix}$ 

# Calculation of $A^{-1}$ : Gauss-Jordan Method

Let  $AA^{-1} = I$ If  $X_1$  is a first column of  $A^{-1}$  then  $AX_1 = e_1$ , where  $e_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$ . We can use Gaussian Elimination to find  $X_1$ —first column of  $A^{-1}$ .

## Calculation of $A^{-1}$ : Gauss-Jordan Method

Let  $AA^{-1} = I$ 

If  $X_1$  is a first column of  $A^{-1}$  then  $AX_1 = e_1$ , where  $e_1 = \begin{bmatrix} 1 & 0 & \cdots & 0 \end{bmatrix}^T$ .

We can use Gaussian Elimination to find  $X_1$ -first column of  $A^{-1}$ .

Let 
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 8 \end{bmatrix}$$
.

Consider

$$[A|I] = \left[ \begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 3 & 8 & 0 & 1 \end{array} \right]$$

Perform elementary row operations on [A|I] to convert A into I. Then I will change to  $A^{-1}$ .

### Vectors in $\mathbb{R}^n$ :

 $\left[\begin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_n \end{array}\right]$ 

where  $a_1, a_2, \ldots, a_n \in \mathbb{R}$ .

 $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$  is a vector in  $\mathbb{R}^2$ .

 $\left[\begin{array}{c}2\\3\\0\end{array}\right] \text{ is a vector in }\mathbb{R}^3.$ 

Vector addition and scalar multiplication are done like matrices.

### Algebraic Properties of $\mathbb{R}^n$

For all  $\mathbf{u}$ ,  $\mathbf{v}$ ,  $\mathbf{w}$  in  $\mathbb{R}^n$  and all scalars c and d:

(i) 
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

(ii) 
$$(u + v) + w = u + (v + w)$$

(iii) 
$$u + 0 = 0 + u = u$$

(iv) 
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$
,  
where  $-\mathbf{u}$  denotes  $(-1)\mathbf{u}$ 

$$(\mathbf{v}) \ c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

(vi) 
$$(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

(vii) 
$$c(d\mathbf{u}) = (cd)\mathbf{u}$$

(viii) 
$$1\mathbf{u} = \mathbf{u}$$

### Linear Combinations

Consider a linear system

$$x_2 - 4x_3 = 8$$
$$2x_1 - 3x_2 + 2x_3 = 1$$
$$5x_1 - 8x_2 + 7x_3 = 1$$

It can be written as

$$x_1 \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ -3 \\ -8 \end{bmatrix} + x_3 \begin{bmatrix} -4 \\ 2 \\ 7 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 1 \end{bmatrix}$$

LHS of = is called linear combination of

$$u = \begin{bmatrix} 0 \\ 2 \\ 5 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -3 \\ -8 \end{bmatrix} \& w = \begin{bmatrix} -4 \\ 2 \\ 7 \end{bmatrix}$$

Above equation is called vector equation.

A linear system AX = b is same as  $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$  where  $C_i$  is  $i^{th}$  column of A.

A linear system AX = b is same as  $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$  where  $C_i$  is  $i^{th}$  column of A.

### Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

A linear system AX = b is same as  $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$  where  $C_i$  is  $i^{th}$  column of A.

### Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

Hence we need to study linear combination of columns of A.

A linear system AX = b is same as  $x_1C_1 + x_2C_2 + \cdots + x_nC_n = b$  where  $C_i$  is  $i^{th}$  column of A.

### Theorem

AX = b has a solution if and only if b is a linear combination of columns of A.

Hence we need to study linear combination of columns of A. Column space of A= set of all linear combinations of columns of A.

$$Col(A) = \{x_1 C_1 + x_2 C_2 + \dots + x_n C_n | x_i \in \mathbb{R} \text{ for all } i\}$$

 $\therefore$  AX = b has a solution iff  $b \in Col(A)$ .

If  $v_1, v_2, ..., v_p \in \mathbb{R}^n$ , then Span  $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$ , the set of all linear combinations of  $v_1, v_2, ..., v_p$ .

If  $v_1, v_2, ..., v_p \in \mathbb{R}^n$ , then Span  $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$ , the set of all linear combinations of  $v_1, v_2, ..., v_p$ . Let

$$u = \left[ \begin{array}{c} 2 \\ 3 \end{array} \right], v = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right]$$

Span 
$$\{v\} = \{c.v | c \in \mathbb{R}\} = \{\begin{bmatrix} c \\ 0 \end{bmatrix} | c \in \mathbb{R}\}$$

If  $v_1, v_2, ..., v_p \in \mathbb{R}^n$ , then Span  $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$ , the set of all linear combinations of  $v_1, v_2, ..., v_p$ . Let

$$u = \left[ \begin{array}{c} 2 \\ 3 \end{array} \right], v = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right]$$

Span  $\{v\} = \{c.v | c \in \mathbb{R}\} = \{\begin{bmatrix} c \\ 0 \end{bmatrix} | c \in \mathbb{R}\}$  Let  $u \in \mathbb{R}^n$ . Then  $span\{u\} = \{x.u | x \in \mathbb{R}\}.$ 

Geometrically it is a line passing through origin and point u. Let  $u, v \in \mathbb{R}^2$ . Then  $span\{u, v\} = \{x.u + y.v | x, y \in \mathbb{R}\}$   $\blacksquare$ 

Geometrically, what will it be?

x 1/4 1/5 = P [ 3 0 | pr] - 3 | pr - 3 pr | 2 pr | 2 pr - 3 pr | 2 pr |

If  $v_1, v_2, ..., v_p \in \mathbb{R}^n$ , then Span  $\{v_1, v_2, ..., v_p\} = \{c_1v_1 + c_2v_2 + ... + c_pv_p | c_1, c_2, ..., c_p \in \mathbb{R}\}$ , the set of all linear combinations of  $v_1, v_2, ..., v_p$ . Let

$$u = \left[ \begin{array}{c} 2 \\ 3 \end{array} \right], v = \left[ \begin{array}{c} 1 \\ 0 \end{array} \right]$$

Span  $\{v\} = \{c.v | c \in \mathbb{R}\} = \{\begin{bmatrix} c \\ 0 \end{bmatrix} | c \in \mathbb{R}\}$  Let  $u \in \mathbb{R}^n$ . Then  $span\{u\} = \{x.u | x \in \mathbb{R}\}.$ 

Geometrically it is a line passing through origin and point u.

Let  $u, v \in \mathbb{R}^2$ . Then  $span\{u, v\} = \{x.u + y.v | x, y \in \mathbb{R}\}.$ 

Geometrically, what will it be?

For a matrix A,

$$Col(A) := span\{C_1, C_2, \dots, C_n\} \subseteq \mathbb{R}^m$$

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

The equation Ax = b has a solution if and only if b is a linear combination of the columns of A.

### **Theorem**

Let A be an  $m \times n$  matrix. Then the following statements are logically equivalent

- 1. For each  $b \in \mathbb{R}^m$ , the equation AX = b has a solution.
- 2. Each  $b \in \mathbb{R}^m$ , is a linear combination of the columns of A.
- 3.  $Col(A) = \mathbb{R}^m$ .
- 4. A has a pivot position in every row.

## Homogeneous Linear System

The homogeneous equation AX = 0 has a nontrivial solution if and only if the REF(A) has at least one free variable. Suppose augmented form [A|0] is

$$\begin{bmatrix} 3 & 5 & -4 & 0 \\ -3 & -2 & 4 & 0 \\ 6 & 1 & -8 & 0 \end{bmatrix} \xrightarrow{R_1 \to R_2 \to R_1} \xrightarrow{R_2 \to R_1} \xrightarrow{R_1 \to R_2} \xrightarrow{R_2 \to R_1} \xrightarrow{R_1 \to R_2} \xrightarrow{R_2 \to R_2} \to$$

R3-3R2 [3] 5-4100 [3] 000 [0]

2, 22 one dependent vonable.

a sol" to AX:

37, = 0, 370, +57, -47, =

IIIT Vadodara

MA101: Linear Algebra and Matrices

## Homogeneous Linear System

The homogeneous equation AX = 0 has a nontrivial solution if and only if the REF(A) has at least one free variable.

Suppose augmented form [A|0] is

$$\begin{bmatrix}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 3 & -3 & 7 \\ 0 & 1 & -4 & 5 \end{bmatrix}$$

s.1~ space for AX= 0 is span {U,V}

## Non homogeneous linear system

### **Theorem**

Suppose the equation Ax = b is consistent for some given b, and let p be a solution (i.e., Ap = b). Then the solution set of Ax = b is the set of all vectors of the form  $w = p + v_h$ , where  $v_h$  is any solution of the homogeneous equation Ax = 0.

AP=b Led q be any solv to Ax=b  $Aq^{-b}$   $A(q-p)=0, q-p \in Sil^{n}(AX=0)$   $A(P-q)=0, q-p \in Sil^{n}(AX=0)$   $q \in P+Vh$ 

## Non homogeneous linear system

#### **Theorem**

Suppose the equation Ax = b is consistent for some given b, and let p be a solution (i.e., Ap = b). Then the solution set of Ax = b is the set of all vectors of the form  $w = p + v_h$ , where  $v_h$  is any solution of the homogeneous equation Ax = 0.

# WRITING A SOLUTION SET (OF A CONSISTENT SYSTEM) IN PARAMETRIC VECTOR FORM

- 1. Row reduce the augmented matrix to reduced echelon form.
- 2. Express each basic variable in terms of any free variables appearing in an equation.
- 3. Write a typical solution  $\mathbf{x}$  as a vector whose entries depend on the free variables, if any.
- **4.** Decompose **x** into a linear combination of vectors (with numeric entries) using the free variables as parameters.

Write down the solutions of AX = 0 in parametric form where  $A = \begin{bmatrix} 1 & -4 & -2 & 0 & 3 & -5 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$   $X_5 = 4X_6$  AX = 0 AX

MA101: Linear Algebra and Matrices

IIIT Vadodara

# Chemical Equations

Consider a chemical reaction of propane gas with oxygen to form carbon dioxide and water.

$$x_1 C_3 H_8 + x_2 O_2 = x_3 C O_2 + x_4 H_2 O$$
, where  $x_i$  are the no. of molecules

$$x_1 \begin{bmatrix} 3 \\ 6 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 2 \end{bmatrix} - x_3 \begin{bmatrix} 0 \\ 2 \end{bmatrix} - x_4 \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

# Network flow

