第一章 各式的国际单位制与高斯单位制形式:

国际单位制		高斯单位制	
$ \oint_{S} \mathbf{D} \cdot d\mathbf{s} = \iiint_{\mathbf{u}} \rho d\mathbf{v} $	(1-7)	$\oint_{S} \mathbf{D} \cdot ds = 4\pi \iiint_{V} \rho dV$	(1-7)
$ \oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0 $	(1 – 8)	$\oint_{S} \mathbf{B} \cdot d\mathbf{s} = 0$	(1-8)
$\oint_{L} \mathbf{E} \cdot dl = -\iint_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot$	ds $(1-9)$	$\oint_{L} \mathbf{E} \cdot dl = -\frac{1}{c} \iint_{s} \frac{\partial \mathbf{B}}{\partial t} \cdot ds$	(1-9)
$\oint_{\mathbf{L}} \mathbf{H} \cdot dl = \iint_{\mathbf{S}} \left(\mathbf{J} + \frac{\partial \mathbf{D}}{\partial t} \right) \cdot ds (1 - 10)$		$\oint_{\mathcal{L}} \mathbf{H} \cdot dl = \frac{4\pi}{c} \iint_{\mathcal{S}} \left(\mathbf{J} + \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t} \right) \cdot ds (1 - 10)$	
$\nabla \cdot \mathbf{D} = \rho$	(1 – 11)	$\nabla \cdot \mathbf{D} = 4\pi \rho \tag{1}$	1 – 11)
$\nabla \cdot \mathbf{B} = 0$	(1 – 12)	$\nabla \cdot \mathbf{B} = 0 \tag{1 -}$	- 12)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	(1 – 13)	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} $ (1)	- 13)
$\nabla \times \mathbf{H} = \mathbf{J} + \frac{\partial \mathbf{D}}{\partial t}$	(1 – 14)	$\nabla \times \mathbf{H} = \frac{4\pi}{c} \left(\mathbf{J} + \frac{1}{4\pi} \frac{\partial \mathbf{D}}{\partial t} \right)$	(1 – 14)
$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial \mathbf{t}}$	(1 – 18)	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial \mathbf{t}}$	(1 – 18)
$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial \mathbf{t}}$	(1 – 19)	$\nabla \times \mathbf{H} = \frac{1}{c} \frac{\partial \mathbf{D}}{\partial \mathbf{t}}$	(1 – 19)
$\nabla \cdot \mathbf{D} = 0$	(1-20)	$\nabla \cdot \mathbf{D} = 0$	(1-20)
$\nabla \cdot \mathbf{B} = 0$	(1 – 21)	$\nabla \cdot \mathbf{B} = 0$	(1 – 21)
$\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial}{\partial \mathbf{t}} \nabla \times \mathbf{B} = -\mu \frac{\partial}{\partial \mathbf{t}} \nabla \times \mathbf{H}$ $(1 - 22)$		$\nabla \times (\nabla \times \mathbf{E}) = -\frac{1}{c} \frac{\partial}{\partial \mathbf{t}} \nabla \times \mathbf{E}$	$\mathbf{B} = -\frac{\mu}{c} \frac{\partial}{\partial \mathbf{t}} \nabla \times \mathbf{H}$
(1 – 22)		(1 – 22)	
$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$	(1 – 25)	$\nabla^2 \mathbf{E} - \frac{\varepsilon \mu}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$	(1-25)

$\varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} + \sigma \mu \frac{\partial \mathbf{E}}{\partial t} = \nabla^2 \mathbf{E} (1 - 30)$	$\frac{\varepsilon\mu}{c^2}\frac{\partial^2 \mathbf{E}}{\partial t^2} + \frac{4\pi\sigma\mu}{c^2}\frac{\partial \mathbf{E}}{\partial t} = \nabla^2 \mathbf{E} \qquad (1 - 30)$	
$W = \frac{dW}{dv} = W_e + W_m = \frac{1}{2} \varepsilon \mathbf{E} ^2 + \frac{1}{2} \mu \mathbf{H} ^2$	$W = \frac{dW}{dv} = W_e + W_m = \frac{1}{8\pi} \varepsilon \mathbf{E} ^2 + \frac{1}{8\pi} \mu \mathbf{H} ^2$	
(1 – 53)	(1 – 53)	
$W = n^2 \left \mathbf{E} \right ^2 \tag{1 - 54}$	$W = \frac{1}{4\pi} n^2 \mathbf{E} ^2 \tag{1-54}$	
$S = n \mathbf{E} ^2 \tag{1-55}$	$S = \frac{c}{4\pi} n \mathbf{E} ^2 \tag{1-55}$	
$\mathbf{S} = \mathbf{E} \times \mathbf{H} \qquad (1 - 58)$	$\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} \qquad (1 - 58)$	
$S_{av} = \frac{1}{T} \int_0^T \left \mathbf{E} \times \mathbf{H} \right dt = \frac{1}{2} E_0 H_0 = \frac{1}{2} Re \left(EH^* \right)$	$S_{av} = \frac{1}{T} \int_0^T \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} dt = \frac{c}{8\pi} E_0 H_0 = \frac{c}{8\pi} Re(EH^*)$	
(1 – 59)	(1 – 59)	
$\mathbf{S} = \mathbf{E} \times \mathbf{H} = N[\mathbf{E} \times (\mathbf{k} \times \mathbf{E})] = N \mathbf{E} ^2 \mathbf{k}$	$\mathbf{S} = \frac{c}{4\pi} \mathbf{E} \times \mathbf{H} = \frac{c}{4\pi} N[\mathbf{E} \times (\mathbf{k} \times \mathbf{E})] = \frac{cN}{4\pi} \mathbf{E} ^2 \mathbf{k}$	
(1 – 60)	(1-60)	
$S_{av} = \frac{1}{T} \int_{0}^{T} S dt = \frac{N}{T} \int_{0}^{T} E_{0} ^{2} \cos^{2}(\omega t + a) dt = \frac{N}{2} E_{0} ^{2}$	$S_{av} = \frac{1}{T} \int_0^T \mathbf{S} dt = \frac{cN}{4\pi T} \int_0^T \left \mathbf{E}_0 \right ^2 \cos^2(\omega t + a) dt = \frac{cN}{8\pi} \left \mathbf{E}_0 \right ^2$	
(1 – 61)	(1 – 61)	