Distribution stuff compendium

July 7, 2025

Distribution	Support	p.m.f. $P(X = x)$	$\mathbf{c.d.f.}\ F(x)$
Bernoulli(p)	{0,1}	$p^x(1-p)^{1-x}$	$1_{x\geqslant 1}p + 1_{0\leqslant x<1}(1-p)$
Binomial (n, p)	$\{0,\ldots,n\}$	$\binom{n}{x}p^x(1-p)^{n-x}$	$\sum_{k=0}^{\lfloor x\rfloor} \binom{n}{k} p^k (1-p)^{n-k}$
Geometric (p) (shift-1)	$\{1,2,\dots\}$	$(1-p)^{x-1}p$	$1-(1-p)^{\lfloor x\rfloor}$
Negative Binomial (r, p)	$\{0,1,\dots\}$	\ \ \ \ /	$1 - B_p([x] + 1, r)$ (B _p = regularized Beta)
$Poisson(\lambda)$	$\{0,1,\dots\}$	$e^{-\lambda} \frac{\lambda^x}{x!}$	$e^{-\lambda} \sum_{k=0}^{\lfloor x \rfloor} \frac{\lambda^k}{k!}$
${\rm Hypergeometric}(N,K,n)$	$\{0,\ldots,n\}$	$\frac{\binom{K}{x}\binom{N-K}{n-x}}{\binom{N}{n}}$	$\sum_{k=0}^{\lfloor x\rfloor} \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$
Discrete Uniform(a:b)	$\{a,a+1,\ldots,b\}$	$\frac{1}{b-a+1}$	$\frac{\lfloor x \rfloor - a + 1}{b - a + 1} \ 1_{x \geqslant a}$

Table 1: Common discrete distributions. Here $\mathbf{1}_A$ is the indicator of event A.

1 Useful Identities

1.1 Normal

Conditional distributions for MVN. Relationship between conditional distributions (mean) and OLS. If mean 0, then $E[Y|Z] = \frac{EYZ}{EZ^2}Z$, ala $Z(Z^TZ)^{-1}Z^TY$ add this

1.2 Cauchy

"Sample median is a better estimator than sample mean". Sample mean is consistent, sample mean is not.

1.3 Exponential

"Sum of independent exponential with the same rate parameter is Gamma". If $X_i \sim Expo(\lambda)$, then:

$$\sum_{i=1}^n X_i \sim \Gamma(n,\lambda).$$

If $X_i \sim Laplace(\mu, \theta)$, then $Y_i = \frac{|X_i - \mu|}{\theta} \sim Expo(1)$.

Distribution	Support	$\mathbf{p.d.f.}f(x)$	$\mathbf{c.d.f.}\ F(x)$
Uniform (a, b)	(a, b)	$\frac{1}{b-a}$	$\frac{x-a}{b-a}, \ a < x < b$
Exponential(λ)	$(0,\infty)$	$\lambda e^{-\lambda x}$	$1-e^{-\lambda x}$
Gamma(α , θ)	$(0,\infty)$	$rac{x^{lpha-1}e^{-x/ heta}}{\Gamma(lpha) heta^lpha}$	$\frac{\gamma(\alpha, x/\theta)}{\Gamma(\alpha)}$ (γ = lower incomplete Γ)
χ_k^2	$(0,\infty)$	$rac{x^{k/2-1}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$	$P(k/2, x/2)$ (regularized Γ)
$Normal(\mu, \sigma^2)$	$(-\infty,\infty)$	$\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$	$\Phi\left(\frac{x-\mu}{\sigma}\right)$ (Φ = standard normal c.d.f.)
$\operatorname{Lognormal}(\mu,\sigma)$	$(0,\infty)$	$\frac{1}{x\sigma\sqrt{2\pi}}\exp\left[-\frac{(\ln x - \mu)^2}{2\sigma^2}\right]$	$\Phi\left(\frac{\ln x - \mu}{\sigma}\right)$
Student- $t(v)$	$(-\infty,\infty)$	$\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu\pi}\Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{x^2}{\nu}\right)^{-(\nu+1)/2}$	$\frac{1}{2} + x \frac{{}_{2}F_{1}\left(\frac{1}{2}, \frac{v+1}{2}; \frac{3}{2}; -\frac{x^{2}}{v}\right)}{\sqrt{v\pi} B\left(\frac{v}{2}, \frac{1}{2}\right)} $ (symmetric)
Cauchy(x_0 , γ)	$(-\infty,\infty)$	$\frac{1}{\pi\gamma\left[1+((x-x_0)/\gamma)^2\right]}$	$\frac{1}{\pi}\arctan\left(\frac{x-x_0}{\gamma}\right)+\frac{1}{2}$
Laplace (μ, b)	$(-\infty,\infty)$	$\frac{1}{2b}\exp\!\left(-\frac{ x-\mu }{b}\right)$	$\begin{cases} \frac{1}{2} \exp\left(\frac{x-\mu}{b}\right), & x < \mu, \\ 1 - \frac{1}{2} \exp\left(-\frac{x-\mu}{b}\right), & x \geqslant \mu, \end{cases}$
Weibull (k, λ)	$(0,\infty)$	$\frac{k}{\lambda} \left(\frac{x}{\lambda} \right)^{k-1} e^{-(x/\lambda)^k}$	$1-e^{-(x/\lambda)^k}$
$Pareto(x_m, \alpha)$	(x_m,∞)	$rac{lpha x_m^lpha}{x^{lpha+1}}$	$1-\left(\frac{x_m}{x}\right)^{\alpha}$
$Beta(\alpha, \beta)$	(0, 1)	$\frac{x^{\alpha-1}(1-x)^{\beta-1}}{\mathrm{B}(\alpha,\beta)}$	$I_x(\alpha, \beta)$ $(I_x = \text{regularized Beta})$
Rayleigh(σ)	$(0,\infty)$	$\frac{x}{\sigma^2}\exp\!\left(-x^2/(2\sigma^2)\right)$	$1 - \exp(-x^2/(2\sigma^2))$
Triangular (a, c, b)	(a, b)	$\frac{2(x-a)}{(b-a)(c-a)} 1_{a \leqslant x < c} + \frac{2(b-x)}{(b-a)(b-c)} 1_{c \leqslant x < b}$	piecewise quadratic (integral of pdf)

Table 2: Common continuous distributions. Special-function notation follows standard texts.

1.4 Uniform

$$U_{(k)} \sim Beta(k, n + 1 - k)$$

- log $U \sim Exp(1)$

1.5 Cauchy

$$X \sim Cauchy \implies 1/X \sim Cauchy$$
.

2 Conjugate Priors

3 Identities

3.1 Convolution

Discrete:

$$P(Z = z) = \sum_{k=-\infty}^{\infty} P(X = k)P(Y = z - k)$$

Table 3: Effect of multiplying a random variable by a positive constant c>0

√ /×	Distribution X	Shape-only pdf/pmf	Law of cX	Notes
/	Exponential $\text{Exp}(\lambda)$	$\lambda e^{-\lambda x}, \ x > 0$	$cX \sim \operatorname{Exp}(\lambda/c)$	Pure scale family
/	Gamma $\Gamma(k,\theta)$	$\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}$	$cX \sim \Gamma(k, c\theta)$	Includes χ^2 , Erlang
/	Weibull Wei (k, λ)	$\frac{\Gamma(k)\theta^k}{rac{k}{\lambda}(x/\lambda)^{k-1}}e^{-(x/\lambda)^k}$	$cX \sim \text{Wei}(k, c\lambda)$	Shape k unchanged
1	Log-normal $\mathcal{LN}(\mu, \sigma^2)$	λ	$cX \sim \mathcal{LN}(\mu + \ln c, \sigma^2)$	Scaling shifts log-mean
/	Pareto Par (α, x_m)	$\frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, \ x > x_m$	$cX \sim \operatorname{Par}(\alpha, cx_m)$	Heavy-tailed example
1	Normal $\mathcal{N}(\mu, \sigma^2)$	λ	$cX \sim \mathcal{N}(c\mu,c^2\sigma^2)$	Locationscale family
1	Student- $t_{\nu}(0,\sigma)$		$cX \sim t_{\nu}(0, c\sigma)$	Same d.f. v
1	Cauchy Cauchy(μ , γ)		$cX \sim \text{Cauchy}(c\mu, c\gamma)$	Stable, heavy tail
1	Uniform $\mathcal{U}(0,\theta)$	$1/\theta$	$cX \sim \mathcal{U}(0, c\theta)$	Classic scale
1	Inverse-Gamma		Multiply the scale parameter by $\it c$	Same pattern as Gamma family
×	Poisson $\operatorname{Poi}(\lambda)$	$\frac{e^{-\lambda}\lambda^k}{k!}$	cX not integer-valued \Rightarrow not Poisson	Closed under addition, not scaling
×	Binomial / Bernoulli	π.	Support $\{0,, n\}$ broken by c	Sums, not scaling, stay in family
×	Geometric / Negative-Binomial		Same integer-support issue	
×	Beta Beta (α, β)		Lives on $(0, 1)$; cX usually leaves interval	
×	Discrete uniform on $\{1, \dots, n\}$		Breaks discreteness unless c integer	

 $Continuous.\ CDF:$

$$H(z)\int_{-\infty}^{\infty}F(z-t)g(t)dt=\int_{-\infty}^{\infty}G(t)f(z-t)dt$$

Density:

$$f_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z - x) dx.$$

3.2 Characteristic functions

Table 4: Conjugate priorposterior relationships after *n* observations $\mathbf{x} = (x_1, \dots, x_n)$

Likelihood (parameter)	$f(x \mid \theta)$	Conjugate prior $\pi(\theta)$	Posterior hyper-parameters
Bernoulli/Binomial (m)	$\binom{m}{x}p^x(1-p)^{m-x}$	Beta (α, β) $\pi(p) = \frac{p^{\alpha-1}(1-p)^{\beta-1}}{B(\alpha, \beta)}$	$\alpha' = \alpha + \sum_i x_i, \ \beta' = \beta + nm - \sum_i x_i$
Negative-Binomial (r)	$\binom{x+r-1}{x}(1-p)^r p^x$	same Beta (α, β)	$\alpha' = \alpha + rn, \ \beta' = \beta + \sum_i x_i$
Poisson	$\frac{e^{-\lambda}\lambda^x}{x!}$	Gamma(α, β) $\pi(\lambda) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} e^{-\beta \lambda}$	$\alpha' = \alpha + \sum_i x_i, \ \beta' = \beta + n$
Exponential (rate)	$\lambda e^{-\lambda x}$	same $Gamma(\alpha, \beta)$	$\alpha' = \alpha + n, \ \beta' = \beta + \sum_i x_i$
Exponential (scale) θ	$\theta^{-1}e^{-x/\theta}$	Inv- $\Gamma(\alpha, \beta)$ $\pi(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-\alpha-1} e^{-\beta/\theta}$	$\alpha' = \alpha + n, \ \beta' = \beta + \sum_i x_i$
Gamma (k known, scale) θ	$\frac{x^{k-1}e^{-x/\theta}}{\Gamma(k)\theta^k}$	same Inv– $\Gamma(\alpha,\beta)$	$\alpha' = \alpha + nk, \ \beta' = \beta + \sum_i x_i$
Gamma (k known, rate) β	$\frac{\beta^k x^{k-1} e^{-\beta x}}{\Gamma(k)}$	Gamma(α , η) (hyper-rate η)	$\alpha' = \alpha + nk, \ \eta' = \eta + \sum_i x_i$
Gamma (β fixed, shape) α	$\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$	$\pi(\alpha) \propto a^{\alpha-1} \left[\Gamma(\alpha)\right]^{-b}$	$a' = a \prod_i x_i, \ b' = b + n$
Multinomial (K)	$\frac{n!}{\prod_k x_k!} \prod_{k=1}^K p_k^{x_k}$	Dirichlet($\boldsymbol{\alpha}$) $\pi(\mathbf{p}) = \frac{\Gamma(\alpha_0)}{\prod_k \Gamma(\alpha_k)} \prod_{k=1}^K p_k^{\alpha_k - 1}$	$\alpha_k' = \alpha_k + x_k, \ k = 1:K$
Normal (σ^2 known)	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	$\mathcal{N}(\mu_0, \sigma_0^2)$ $\pi(\mu) = \frac{1}{\sqrt{2\pi\sigma_0^2}} e^{-\frac{(\mu - \mu_0)^2}{2\sigma_0^2}}$	$\sigma_n^2 = (\sigma_0^{-2} + n\sigma^{-2})^{-1}, \mu' = \sigma_n^2(\mu_0\sigma_0^{-2} + n\overline{x}\sigma^{-2})$
Normal (μ known)		same Inv– $\Gamma(\alpha,\beta)$	$\alpha' = \alpha + \frac{n}{2}, \ \beta' = \beta + \frac{1}{2} \sum_{i} (x_i - \mu)^2$
Normal (both unknown)		\mathcal{N} -Inv- Γ $(\mu_0, \lambda, \alpha, \beta)$	$\begin{array}{l} \lambda'=\lambda+n, \ \mu'=\frac{\lambda\mu_0+n\overline{x}}{\lambda+n}, \ \alpha'=\alpha+\frac{n}{2}\\ \beta'=\beta+\frac{1}{2}\sum_i(x_i-\overline{x})^2+\frac{1}{2(\lambda+n)} \end{array}$

Table 5: Characteristic functions $\varphi_X(t) = \mathbb{E}\left[e^{itX}\right]$ of selected distributions

Distribution (common parameterizations)	Characteristic function $\varphi_X(t)$	
Bernoulli(p)	$1 - p + pe^{it}$	
Binomial (n, p)	$\left(1-p+pe^{it}\right)^n$	
$Poisson(\lambda)$	$\exp(\lambda(e^{it}-1))$	
Geometric(p), support $\{0, 1, \dots\}$	$\frac{p e^{it}}{1 - (1 - p)e^{it}}, (1 - p)e^{it} < 1$	
Negative Binomial (r, p) , failures r before r -th success	$\left(\frac{p}{1-(1-p)e^{it}}\right)^r$	
Discrete Uniform $\{a, \dots, b\}$	$\frac{e^{ita} \left(1 - e^{it(b-a+1)}\right)}{(b-a+1)\left(1 - e^{it}\right)}$	
Normal(μ , σ^2)	$\exp(it\mu - \frac{1}{2}\sigma^2t^2)$	
Exponential(λ) (rate)	$\frac{\lambda}{\lambda - it}$	
Gamma (k, θ) (shapescale)	$(1-it heta)^{-k} \ (1-it/eta)^{-lpha}$	
or Gamma (α, β) (shaperate)		
Chisquare(v)	$(1-2it)^{-\nu/2}$	
Uniform (a, b)	$\frac{e^{itb} - e^{ita}}{it(b-a)}$	
Laplace (μ, b)	$e^{it\mu} \left(1 + b^2 t^2\right)^{-1}$	
Cauchy(μ , γ)	$\exp(it\mu - \gamma t)$	
$Logistic(\mu, s)$	$e^{it\mu} \frac{\pi st}{\sinh(\pi st)}$	
Student $t(v)$	$\frac{\left(\sqrt{\nu} t \right)^{\nu/2}K_{\nu/2}\left(\sqrt{\nu} t \right)}{2^{\nu/2-1}\Gamma(\nu/2)} \qquad (K_{\nu/2} = \text{modified Bessel})$	
Beta (α, β)	$_{1}F_{1}(\alpha; \alpha + \beta; it)$ (confluent hypergeometric)	
$LogNormal(\mu, \sigma^2)$	$\exp(it\mu - \frac{1}{2}\sigma^2t^2) _1F_1\left(\frac{it}{2}; \frac{1}{2}; \frac{\sigma^2t^2}{2}\right)$	
Cauchy (x_0 location, $\gamma > 0$ scale)	$\exp(x_0it - \gamma t)$	