SORU 1 (25 Puan)

İŞİN ADI	SÜRESİ	ÖNCELİ
1	60	
2	30	1
3	70	2
4	120	1
5	120	4
6	120	2,5
7	90	2,5
8	120	2,5
9	120	6,8
10	90	6,8
11	30	6,8
12	120	6,8
13	60	9
14	30	13
15	90	5
16	180	15
17	90	15
18	90	16,17
19	15	7.10.12.14.18

G&E şirketi 47.000 kişilik bir stadyum inşa etmeyi planlamaktadır. İnşaat 1 haziranda başlamak ve 2015 sezonuna yetişmek zorundadır. Kontrata 1 nisandan sonra gecikecek her bir gün için 50.000\$ ceza vardır maddesi eklenmiştir. Bu proje için şirketin sahibi olan Ben Keith 2.000.000\$ bütçe ayırmıştır. Firmaya bu projeyi almasını önerirmisiniz? Projenin süresini ve kritik yolunu belirleyiniz.

SORU 2 (25 Puan)

	1	2	3	4	Yanda Do matrisi verilmiştir. Buna göre diğer D ve S matrislerini
1	0	6	×	4	oluşturunuz.
2	6	0	7	∞	
3	∞	7	0	∞	
4	10	8	3	0	

SORU 3(15 Puan)

Yandaki şekilde Euler yolu ve halkası var mıdır? neden?

SORU 4(10 Puan)

Yandaki graf nasıl bir graftır? Neden?

SORU 5 (25 Puan)

	Antalya	Hatay	ABC şirketinin İstanbul, Ankara ve İzmir'de üç adet fabrikası vardır ve bu noktalardan Antalya ve Hatay'da iki dağıtım merkezine sevkiyat
İstanbul	600	900	yapmayı planlamaktadır. Fabrikaların kapasiteleri sırasıyla 750, 500 ve 450 iken depo ihtiyaçları 1000 ve 700'dir. Noktalar arası taşıma
Ankara	450	600	maliyetleri, mesafe ile doğru orantılı olduğu için maliyetler noktalar arası yaklaşık mesafeler olarak belirtilmiştir. Noktalar arası maliyetler
İzmir	300	800	aşağıdaki tabloda verilmiştir. VAM metodunu kullanarak Minimum maliyetli taşıma düzenini belirleyiniz.

Cevap 2:

Cevap 3:

Tek dereceli düğüm sayısı 2den fazla olduğu için Euler yolu ya da halkası yoktur

Cevap 4: K6 tam grafidir.

Cevap 5:

Tablo2.5 depo-fabrika mesafeleri

	Antalya	Hatay
İstanbul	600	900
Ankara	450	600
İzmir	300	800

Tablo 2.6 Transport modeli başlangıç çözümü

Arz Talep		1000	650	
		Antalya	Hatay	
750	İstanbul	600	900	900-600=300
500	Ankara	450	600	600-450=150
400	İzmir	300	800	800-300=500
		450-300=150	800-600=200	

Vogel metodu çerçevesinde ilk önce satır ve sütunların en düşük iki hücresinin maliyet farkı bulunmaktadır. Bu değerler tablonun en alt satırına ve en sağ sütununa eklenmektedir. Bu tabloda 3.satırda en düşük maliyetli hücre olan Antalya-İzmir hücresine maksimum Min(400,1000) olan, 400 birim atama yapılmaktadır.Bu değer satır ve sütundan çıkarılmakta ve 0 değeri, alan satır silinerek tablo 2.7 oluşturulmaktadır.Bu şekilde İzmir şehrinin talebi karşılanmakta ve bu şehirle ilgili başka bir işlem problem çözümünde yer almamaktadır. İzmir şehrinin 400 birimlik ihtiyacı Antalya tarafından karşılanması gerçekleşirilmektedir.

Tablo2.7 Transport modeliçözümü 1.iterasyon

arz talep		600	650	
		Antalya	Hatay	
750	İstanbul	600	300	900-600=300
500	Ankara	450	600	600-450=150
0	İzmir	300 400	800	800-300=500
		450-300=150	800-600=200	

Tablo2.8 Transport modeli 2.iterasyon

Arz				
Talep		600	650	
		Antalya	Hatay	
750	İstanbul	600	900	900-600=300
500	Ankara	450	600	600-450=150
0	İzmir	300 400	800	0
		600-450=150	900-600=300	

Bu tabloda eşit maliyet farklı iki satır ve sütun mevcuttur. Bu noktada seçimi rastsal olarak yapıyor ve 1. satırı seçeriz. Bu satırda en düşük değer olan Antalya-İstanbul hücresi seçerek maksimum yüklemeleri gerçekleştiririz. Daha sonra bu değerleri satır ve sütunlardan çıkararak değeri 0 olan sütunu sıfırlarız. Bu durumda tablo 2.9 oluşmaktadır.

Tablo2.9 transport modeli 3.iterasyon

Arz talep		0	650	
		Antalya	Hatay	
150	İstanbul	600 600	900	900-600=300
500	Ankara	450	600	600-450=150
0	İzmir	300 400	800	0
		650-450=150	900-600=300	

Son olarak tek sütun kaldığı için en düşük maliyetli olan hücreye yani Ankara-Hatay hücresine maksimum olan 500 değeri atarız ve son hücreye de ihtiyaç duyulan son atamayı yaparak problemin çözümünü gerçekleştiririz ve tablo 2.10 oluşmaktadır

Tablo 2.10 transport modeli 4.iterasyon

Arz talep		0	0	
		Antalya	Hatay	
0	İstanbul	600 600	900 150	0
0	Ankara	450	600 500	0
0	İzmir	300 400	800	0
		0	0	