

Predictive Simulation of Reaching to Moving Targets using Nonlinear Model Predictive Control

Naser Mehrabi, John McPhee Systems Design Engineering University of Waterloo

Outline

- ► Introduction
- Dynamic Modeling
 - ▶ Planar arm model
- ► Nonlinear Model Predictive Control
 - ▶ NMPC framework
 - Dynamic optimization
- ► Simulation Results
 - Prediction horizon effects
 - ► Trajectory tracking
 - Moving targets
- Conclusion and Future Work

Introduction

Forward Dynamics Simulations: A forward dynamics simulation is the solution (integration) of the differential equations that define the dynamics of a musculoskeletal model.

- 1. **Dynamic Optimization:** Dynamic optimizations find the optimal muscle activation patterns that result in an optimal motion by minimizing or maximizing a performance criterion.
- ▶ Input Parameterization e.g., Fourier function approximation Sharif Shouijeh et al. (2015)
- ▶ Optimal Control Problem e.g., Dynamic Programing

2. Optimal Feedback Control:

- ► Computed Muscle Control (CMC) Thelen et al. (2003)
- ▶ Iterative Linear Quadratic Gaussian (iLQG) Todorov et.al (2007)
- Nonlinear Model Predictive Control (NMPC) Mehrabi et al. (2016)

Planar Musculoskeletal Arm Model

Multibody Dynamic Model:

- 2 segment model (2-DOF):
 - Upper-arm
 - Fore-arm

Actuation:

• 6 skeletal muscles (Hilltype muscle model)

$$0 \le a_i \le 1$$

Limits:

Joint Limits

$$0 \le \theta_{\text{shoulder}}, \theta_{\text{elbow}} \le 180^{\text{o}}$$

Planar Arm Model

Planar Musculoskeletal Arm Model (Cont'd)

❖ Hill Muscle Model ^[1]:

Hill muscle model consists of:

- 1. Contractile Element (CE)
- 2. Parallel Element (PE)
- 3. Series Element (SE)

Total muscle force:

$$F_{TM}(t) = a(t)F_0^{\max}\{F_{PE}(L_M) + F_{CE}(L_M, V_M)\}\cos(\alpha_p)$$

where F_{CE} is the contractile element force and F_{PE} is the parallel element force. F_0^{max} is the maximum isometric muscle force and α_p is the muscle pennation angle.

[1] - A. Hill. The Heat of Shortening and the Dynamic Constants of Muscle. Proceedings of the Royal Society of London. Series B, Biological Sciences, 126(843):pp. 136|-195, 1938.

4 CMD 2016

Nonlinear Model Predictive Control

Principles of NMPC

Procedure:

- 1. Find the optimal dynamics based on the initial condition for a predefined prediction horizon
- 2. Apply the optimal inputs until the next sampling period
- 3. Measure the new states
- 4. Go to step 1

Objective function:

$$J = \Psi\left(t_0 + t_{ph}\right) + \int_{t_0}^{t_0 + t_{ph}} \psi\left(x(t), a(t)\right) dt$$

subject to: 0 < a(t) < 1

Optimal Control Problem

Optimal Control Problem: Find the joint torque functions of time that maximize performance

Different direct methods for solving an optimal control problem¹: Direct Methods Control Parameterization State & Control Parameterization Local Collocation Global Collocation Shooting Multiple-Shooting Pseudospectral Implicit/Explicit Orthogonal Collocation Methods Here!

Direct Collocation Method

Nonlinear constraints

Equations of motion are satisfied at all collocation points

$$\dot{x} = f(x, u, t), \qquad x(t_0) = x_0$$

$$g(x, u, t) = 0$$

Objective function

Objective function
$$:= \Phi(x(t_f), t_f) + \int_{t_0}^{t_f} \Psi(x(t), u(t), t) dt$$

Experiments

Optotrak Certus motion capture system (Northern Digital Inc.) was used to capture the reaching motion:

- ► Four active markers
- ► Sampling rate (30 Hz)

Experimental Protocols:

- Reaching 8 points spread evenly on a circle with radius of 20 cm
- Reaching to moving targets

Simulation Results

Reaching Objective Function:

$$J = \sum_{j=1}^{K} \left(q(\zeta(t_j) - \zeta_{des})^2 + r G^M(a(t_j)) \right), \text{ where } G^M = \frac{d}{dt} a^2$$

Reaching task on a plane. The hand moves from its original position to the marked position on its left

Prediction Horizon Variation

► The effect of prediction horizon on the elbow and shoulder angle variation in the reaching motion

UNIVERSITY OF WATERLOO

Prediction Horizon Variation

Optimal activations of flexor muscles

 $ACMD_{2016}$

Prediction Horizon Variation

► The effect of prediction horizon on the hand speed in the reaching motion

Trajectory Tracking

Target positions of the hand are located on a circle centered at the initial position of the hand and radius of 20 cm.

Reaching to a Moving Target

The hand is initially at rest at point O, and moves towards the target at point A. Then one second later, the target position suddenly moves to the point B.

Conclusion

- A planar musculoskeletal arm model was developed.
- A nonlinear model predictive controller was developed to simulate goal-oriented and predefined reaching motions.
- ▶ Predictive simulation of reaching to moving target has been performed.
- ▶ This purely predictive/mathematical simulation seems to capture reality.

Future Work

- ▶ Developing a real-time nonlinear model predictive control (NMPC) algorithm
- Developing upper-limb rehabilitation robot controllers based on the proposed controller
- Incorporating muscle synergy theory to NMPC to develop real-time simulations of more complicated motions such as gait

Sponsors:

Thank you for your attention

Direct Collocation Method

let's consider Lagrange polynomial approximation for states and control profiles.

State: K_x+1 degree polynomial with K_x collocation point

$$x^{K_{\chi}+1}(t) = \sum_{j=0}^{K_{\chi}} x_{ij} \, \phi_j(\tau), \quad \text{where} \quad \phi_j(\tau) = \prod_{\substack{k=0 \ k \neq j}}^{K_{\chi}} \frac{\tau - \tau_k}{\tau_j - \tau_k}, \begin{cases} t \in [\zeta_{i-1}, \zeta_i] \\ \tau \in [0, 1] \end{cases}$$

Control profile: K_u degree polynomial with K_u collocation point

$$u^{K_u}(t) = \sum_{j=1}^{K_u} u_{ij} \ \theta_j(\tau), \quad \text{where} \qquad \theta_j(\tau) = \prod_{\substack{k=1 \ k \neq j}}^{K_u} \frac{\tau - \tau_k}{\tau_j - \tau_k}, \begin{cases} t \in [\zeta_{i-1}, \zeta_i] \\ \tau \in [0, 1] \end{cases}$$

Direct Collocation Method (Cont'd)

Nonlinear constraints

Equations of motion are satisfied at all collocation points

$$M \dot{x}(t) = f(x(t), u(t), t),$$
 $x(t_0) = x_0$
 $g(x(t), u(t), t) = 0$

At each collocation point:

Res :=
$$M \sum_{j=0}^{K_x} x_{ij} \dot{\phi}_j(t_k) - \Delta \zeta_i f(x_{ik}, u_{ik}, t_{ik}), \begin{cases} i = 1, ..., NE \\ j = 0, ..., K \\ k = 1, ..., K \end{cases}$$

Objective function

Objective function
$$:= \Phi(x(t_f), t_f) + \int_{t_0}^T \Psi(x(t), u(t), t) dt$$