- 1. (1) $Prob(s_1 \text{ is odd}) = \frac{1}{2}$
 - (2) $Prob(s_1 = 7) = \frac{1}{2}$
 - (3) $Prob(s_1 \ge 6) = \frac{2}{2} = 1$
 - (4) $Prob(s_1 \text{ is odd and } s_1 \ge 6) = \frac{1}{2}$
 - (5) $Prob(s_1 \text{ is odd or } s_1 \ge 6) = \frac{2}{2} = 1$
 - (6) $Prob(s_1 \text{ is odd given that } s_1 \geq 6) = \frac{1}{2}$
 - (7) $Prob(s_1 \text{ is odd}) = \frac{1}{2}$, and $Prob(s_2 \text{ is odd}) = \frac{1}{2}$.

Now s_1 and s_2 are chosen independently,

so Prob (both s_1 and s_2 are odd) = Prob (s_1 is odd) $\times Prob$ (s_2 is odd).

Hence Prob (both s_1 and s_2 are odd) = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

(8) By the principle of inclusion\exclusion,

 $Prob\left(s_{1} \text{ is odd} \text{ or } s_{2} \text{ is odd}\right) = Prob\left(s_{1} \text{ is odd}\right) + Prob\left(s_{2} \text{ is odd}\right) - Prob\left(\text{both } s_{1} \text{ and } s_{2} \text{ are odd }\right).$

Hence $Prob(s_1 \text{ is odd or } s_2 \text{ is odd}) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$

(9) Now s_1 and s_2 are chosen independently, so

 $Prob(s_1 \text{ is odd given that } s_2 \text{ is even}) = Prob(s_1 \text{ is odd}).$

Hence $Prob(s_1 \text{ is odd given that } s_2 \text{ is even}) = \frac{1}{2}$

- **2.** (1) $Prob(r_1 \text{ is odd}) = \frac{4}{8} = \frac{1}{2}$
 - (2) $Prob(r_1 = 6) = \frac{1}{8}$
 - (3) $Prob(r_1 > 6) = \frac{2}{8} = \frac{1}{4}$
 - (4) $Prob(r_1 \text{ is odd and } r_1 > 6) = \frac{1}{8}$
 - (5) $Prob(r_1 \text{ is odd or } r_1 > 6) = \frac{5}{8}$
 - (6) $Prob(r_1 \text{ is odd given that } r_1 > 6) = \frac{1}{2}$
 - (7) $Prob(r_1 \text{ is odd}) = \frac{1}{2}$, and $Prob(r_2 \text{ is odd}) = \frac{1}{2}$.

Now r_1 and r_2 are chosen independently,

so Prob (both r_1 and r_2 are odd) = $Prob(r_1 \text{ is odd}) \times Prob(r_2 \text{ is odd})$.

Hence Prob (both r_1 and r_2 are odd) = $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$

(8) By the principle of inclusion\exclusion,

 $Prob(r_1 \text{ is odd } \mathbf{or} \ r_2 \text{ is odd}) = Prob(r_1 \text{ is odd}) + Prob(r_2 \text{ is odd}) - Prob(\text{both } r_1 \text{ and } r_2 \text{ are odd }).$

Hence $Prob(r_1 \text{ is odd or } r_2 \text{ is odd}) = \frac{1}{2} + \frac{1}{2} - \frac{1}{4} = \frac{3}{4}$

(9) Now r_1 and r_2 are chosen independently, so

 $Prob(r_1 \text{ is odd given that } r_2 \text{ is even }) = Prob(r_1 \text{ is odd}).$

Hence $Prob(r_1 \text{ is odd given that } r_2 \text{ is even}) = \frac{1}{2}$

- **3.** (1) $Prob(t_1 \text{ is even}) = \frac{3}{7}$
 - (2) $Prob(t_1 = 7) = \frac{1}{7}$
 - (3) $Prob(t_1 \le 4) = \frac{4}{7}$
 - (4) $Prob(t_1 \text{ is even and } t_1 \le 4) = \frac{2}{7}$
 - (5) $Prob(t_1 \text{ is even or } t_1 \le 4) = \frac{5}{7}$
 - (6) $Prob(t_1 \text{ is even given that } t_1 \le 4) = \frac{2}{4} = \frac{1}{2}$
 - (7) $Prob(t_1 \text{ is even}) = \frac{3}{7}$, and $Prob(t_2 \text{ is even}) = \frac{1}{3}$.

Now t_1 and t_2 are chosen independently,

so Prob (both t_1 and t_2 are even) = Prob (t_1 is even) \times Prob (t_2 is even).

Hence Prob (both t_1 and t_2 are even) = $\frac{3}{7} \times \frac{1}{3} = \frac{1}{7}$

(8) By the principle of inclusion\exclusion,

 $Prob(t_1 \text{ is even}) = Prob(t_1 \text{ is even}) + Prob(t_2 \text{ is even}) - Prob(both t_1 \text{ and } t_2 \text{ are even}).$

Hence $Prob(t_1 \text{ is even or } t_2 \text{ is even}) = \frac{3}{7} + \frac{1}{3} - \frac{1}{7} = \frac{13}{21}$

(9) Now t_1 and t_2 are chosen independently, so

 $Prob(t_1 \text{ is even } \mathbf{given } \mathbf{that} \ t_2 \text{ is even }) = Prob(t_1 \text{ is even}).$

Hence $Prob(t_1 \text{ is even given that } t_2 \text{ is even}) = \frac{3}{7}$