

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MATHEMATICS

18MAB101T Calculus and Linear Algebra

ONTI IV	UNIT	- IV
---------	------	------

		ONTI	
		Tutorial Sheet -1	Answers
1.	Find the radio	us of the curve $y = e^x$ at $(0, 1)$	$ \rho = 2\sqrt{2} $
2.	Find the radius of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ on the curv $\sqrt{x} + \sqrt{y} = 1$.		$ \rho = 1/\sqrt{2} $
3.	Show that the radius of curvature at any point of the catenar $y = c \cosh(x/c)$ is y^2/c . Also find ρ at $(0, c)$.		$\rho = C$
4.	Find the radio	as of curvature at the point (c, c) on the curve $xy = c^2$	$ \rho = c\sqrt{2} $
5.	Find ρ at an	y point $P(at^2, 2at)$ on the parabola $y^2 = 4ax$.	$\rho = 2a(1+t^2)^{3/2}$
6.		as of curvature at any point $x = a\cos^3 \theta$, $y = a\sin^3 \theta$ of $y = a\sin^3 \theta$ of $y = a\sin^3 \theta$. Also show that $y = a\cos^3 \theta$, $y = a\sin^3 \theta$ of $y = a\sin^3 \theta$.	$\rho = 3a\sin 2\theta/2$
7.	$x = ae^{\theta} (\sin \theta)$	the radius of curvature at any point of the curve $(-\cos\theta)$, $y = ae^{\theta}(\sin\theta + \cos\theta)$ is twice the radistance of the tangent at the point from the origin.	
8.		ne radius of curvature at any point of the cycloid θ), $y = a(1 - \cos \theta)$ is $4a \cos \frac{\theta}{2}$.	
9.	by the line y	θ), $y = a(1 - \cos \theta)$ to its centre of curvature is bisected = 2a.	
10.	Find the circle point $\left(\frac{a}{4}, \frac{a}{4}\right)$	the of curvature of the curvature $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at the .	$\left(x - \frac{3a}{4}\right)^2 + \left(y - \frac{3a}{4}\right)^2 = \frac{a^2}{2}$