Clinton Hawkes

CS-225: Discrete Structures in CS

Homework 1, Part 2

Exercise Set 2.1 # 22, 42, 45; Exercise Set 2.2 # 11, 13.b, 15, 20, 38, 41, 43, 45

22.

p	q	r	(q ∨ r)	(p ∧ q)	(p ∧ r)	$p \wedge (q \vee r)$	$(p \land q) \lor (p \land r)$
T	Т	Т	Т	Т	Т	Т	T
T	Т	F	Т	Т	F	Т	Т
Т	F	Т	T	F	Т	Т	Т
Т	F	F	F	F	F	F	F
F	Т	Т	Т	F	F	F	F
F	Т	F	Т	F	F	F	F
F	F	Т	Т	F	F	F	F
F	F	F	F	F	F	F	F

These two statement forms produce the same truth values, so this means they are logically equivalent. (Also, this is an example of the distributive law)

42.

p	q	r	¬p	(q ∧ r)	$(\neg p \land q)$	¬q	$((\neg p \land q) \land (q \land r))$	$((\neg p \land q) \land (q \land r)) \land \neg q$
T	Т	Т	F	Т	F	F	F	F
Т	Т	F	F	F	F	F	F	F
T	F	Т	F	F	F	T	F	F
T	F	F	F	F	F	T	F	F
F	Т	Т	Т	Т	Т	F	Т	F
F	Т	F	Т	F	Т	F	F	F
F	F	Т	Т	F	F	T	F	F
F	F	F	Т	F	F	Т	F	F

This is a contradiction, because the truth values for the statement form are false for every possible input.

45. Let p = Bob Double Major, q = Ann Double Major and r = Ann Math Major

p	q	r	(p ∧ r)	(p ∧ q)	¬q	$\neg(p \land q)$	$(p \wedge r) \wedge \neg q$	$\neg (p \land q) \land (p \land r)$
T	Т	Т	T	Т	F	F	F	F
T	Т	F	F	Т	F	F	F	F
Т	F	Т	T	F	Т	Т	Т	Т
Т	F	F	F	F	Т	Т	F	F
F	Т	Т	F	F	F	Т	F	F
F	Т	F	F	F	F	Т	F	F
F	F	Т	F	F	Т	Т	F	F
F	F	F	F	F	Т	Т	F	F

Because the statement forms of these two statements produce the same truth values, we conclude that the statements are logically equivalent.

11.

p	q	r	(q → r)	(p ^ q)	$(p \rightarrow (q \rightarrow r)$	$((p \land q) \rightarrow r)$	$(p \rightarrow (q \rightarrow r) \leftrightarrow ((p \land q) \rightarrow r)$
Т	Т	Т	Т	Т	Т	T	Т
T	Т	F	F	Т	F	F	Т
T	F	Т	Т	F	T	T	Т
T	F	F	Т	F	Т	T	Т
F	Т	Т	Т	F	Т	T	Т
F	Т	F	F	F	T	T	Т
F	F	T	Т	F	T	T	T
F	F	F	Т	F	Т	Т	Т

13. b)

p	q	¬q	(p → q)	$\neg(p \rightarrow q)$	p ^ ¬q
T	Т	F	Т	F	F
T	F	Т	F	Т	Т
F	Т	F	Т	F	F
F	F	Т	Т	F	F

Both statement forms produce the same truth values, so these statement forms are logically equivalent.

p	q	r	$(q \rightarrow r)$	(p → q)	$(p \rightarrow (q \rightarrow r)$	$((p \rightarrow q) \rightarrow r)$
T	Т	Т	Т	Т	Т	Т
T	Т	F	F	Т	F	F
Т	F	Т	Т	F	T	Т
Т	F	F	Т	F	T	Т

We know that both statement forms will be true if their first component is false, and the first component will be false if p is false, so we only need to look at the table where p is true. Since both statement forms produce the same truth values, they are logically equivalent.

20.

- a) P is square and P is not a rectangle.
- b) Today is New Years Eve and tomorrow is not January.
- c) The decimal expansion of r is terminating and r is not rational.
- d) n is prime and n is neither odd nor 2.
- e) x is non-negative and x is neither positive nor 0.
- f) Tom is Ann's father and either Jim is not her uncle or Sue is not her aunt.
- g) n is divisible by 6 and either n is not divisible by 2 or n is not divisible by 3.
- 38. If it doesn't rain, then Ann will go.
- 41. If I have two 45 degree angles, then this triangle is a right triangle.
- 43. If Jim passes the course, then Jim does his homework regularly.
- 45. If the computer program is correct, then it did not produce error messages during translation.