

CLASE DE PROBLEMAS N°4: Enlace

1) Calcular la diferencia de electronegatividad e identificar el tipo de enlace presente entre los átomos de los siguientes compuestos:

a- Na₂S b- Li₂O

d- OF₂

- 2) Ordenar los siguientes compuestos en orden creciente de carácter iónico de sus enlaces: NaCl, KBr, MgF₂,, HI, CaS. Consultar para ello la tabla de electronegatividades.
- 3) Explique mediante diagramas la presencia o no de momento dipolar en las siguientes moléculas (analice polaridad de enlace y polaridad molecular):

a- HCl

e- BF₃ (sim. trigonal plana)

b- SO₂ (simetría angular)

f- F₂

c- GaN

c- CO₂ (simetría lineal)

g- NH3 (sim. piramidal triangular)

d- CCl₄ (simetría tetraédrica)

h- SH₂ (sim. angular)

- 4) A pesar de la mayor diferencia de electronegatividades entre los átomos en la molécula de $BeCl_2$ (g), ésta no tiene momento dipolar, mientras que el SCl_2 (g) sí lo tiene. Explique esta diferencia.
- 5) Para los siguientes compuestos, compare el porcentaje de carácter iónico en el enlace H-A (A: halógeno), considerando que las cargas parciales están centradas en el H y el halógeno. Interprete sus resultados en términos de la tabla periódica.

Long. enlace (A°)	μ (D)	
0.92	1.91	
1.41	0.79	
1.61	0.38	
1.27	1.03	
	0.92 1.41 1.61	0.92 1.91 1.41 0.79 1.61 0.38

6) La energías de enlace promedio para las siguientes moléculas son:

F₂ 159 KJ/mol

O₂ 498 KJ/mol

N₂ 946 KJ/mol

Justifique estas diferencias en función del orden de enlace.

- 7) Escribir las configuraciones electrónicas y calcular los órdenes de enlace para cada una de las siguientes especies:
- a- Li₂

b- Ne₂

c- N22-

 $d - C_2^{2+}$

- 8) Los iones O_2^- , O_2^{2-} y O_2^+ , se encuentran en diversos compuestos.
- a- Ordenar estos tres iones del oxígeno en orden creciente de longitud de enlace.
- b- ¿Cuál de las tres especies posee mayor energía de enlace?. Justifique.
- 9) a- Realizar el diagrama de orbitales moleculares para las siguientes especies y calcular el orden de enlace para cada una de ellas.

i. NO⁺

ii. NO

iii. CN

- b- Escriba las funciones de onda correspondientes a los orbitales $\sigma_s^{\ b}$ y $\sigma_z^{\ x}$.
- 10) ¿Qué clases de fuerzas de atracción intermolecular hay que vencer para:
 - a- fundir el hielo?.
 - b- fundir el NaCl?.
 - c- evaporar metanol?.
 - d- sublimar I₂?.
 - e- evaporar una solución acuosa de una sal?.
- 11) ¿Qué tipo de fuerzas intermoleculares existen entre los siguientes pares de sustancias:

- 12) ¿Cuál de las siguientes especies puede formar enlaces por puente de hidrógeno con el agua? $CH_{4,}$, F^{-} , HCOOH, Na^{+}
- 13) Fundamentar la diferencia observada en los puntos de ebullición encontrados para las siguientes especies:

Sustancia	T eb (°C)	μ (D)
CH ₄	-161	0
SH₂	-60.7	0.97
H₂O	100	1.85