Introdução

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

13 de junho de 2021

1 Introdução

Introdução

- **2** Memórias Transacionais
- **3** Arquiteturas
- 4 Escalonadores
- **5** LTMS
- **6** Experimentos
- Resultados
- 8 Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Memórias Transacionais **Arquiteturas** Experimentos

Conclusão

Introdução

Introdução

Motivação

- Programação Paralela;
- Memórias Transacionais:
- Escalonadores de Transações; e
- Arquiteturas NUMA.

Memórias Transacionais Arc

Arquiteturas Escalonadores

Introdução

Objetivos

- Projetar um escalonador de STM modular que considera a arquitetura utilizada, intitulado LTMS;
- Prototipar o escalonador LTMS, utilizando a biblioteca de STM TinySTM; e
- Análisar de desempenho do LTMS comparado a TinySTM utilizando o conjunto de benchmarks STAMP.

Conclusão

Características

Introdução

- Fornece abstração de código;
- Reuso de código; e
- Ausência de deadlocks.

Transações

- Atomicidade;
- · Consistência; e
- Isolamento.

Problemas

Introdução

- Somente reinicia a transação conflitante;
- Não evita que conflitos futuros aconteçam; e
- Em ambientes de alta contenção, tende a perder desempenho.

Memórias Transacionais

Arquiteturas

UMA

Introdução

- Uniform Memory access;
- Possui um único barramento de acesso à memória; e
- Único custo de acesso à memória.

NUMA

- Non-uniform Memory access;
- Possui mais de um barramento de acesso à memória; e
- O custo de acesso à memória é diferente conforme o núcleo utilizado.

Memórias Transacionais Arquiteturas

uiteturas Escalonadores

LTMS

Escalonadores

Introdução

Escalonadores de Transações

- Buscam reduzir os números de conflitos;
- Utilizam diferentes Heurísticas de escalonamento; e
- Serializa as transações conflitantes.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Conclusão

Escalonadores

Introdução

Classificação das técnicas

- Baseado em Heurística:
 - Feedback:
 - Predição;
 - · Reativo: e
 - Heurística Mista.
- Baseado em Modelo:
 - Aprendizado de Máquina;
 - Modelo Analítico: e
 - Modelo Misto.

Escalonadores

Introdução

Tabela: Comparativo entre os escalonadores apresentados

Escalonadores	LTMS	ATS	Shrink	LUTS	ProVIT	STMap	CAR-STM
Distribuição inicial de threads	Sim	Não	Não	Sim	Não	Não	Não
Coleta de dados por threads	Sim	Não	Sim	Não	Não	Sim	Não
Migração entre filas	Sim	Não	Não	Não	Não	Não	Sim
Avalia a arquitetura	Sim	Não	Não	Não	Não	Sim	Não
Técnica de escalonamento	Reativo	Feedback	Predição	Mista	Mista	Predição	Reativo

Memórias Transacionais **Arquiteturas Escalonadores**

LTMS

Estágios

- Inicialização do sistema;
- Coleta de dados em tempo de execução; e
- Migração de Threads.

11

Conclusão

LTMS

Introdução

Figura: Fluxograma do LTMS

Conclusão

Introdução

Inicialização do sistema

- · Criação de filas; e
- Distribuição das threads.

Heurísticas de Distribuição

- Sequential; e
- Chunks.

13

Memórias Transacionais **Arquiteturas** Escalonadores LTMS

LTMS - Heurísticas

Introdução

Experimentos

Resultados

Conclusão

Figura: Heurística Sequential

14

Memórias Transacionais Arquiteturas Esc

ras Escalonadores

Conclusão

LTMS - Heurísticas

Introdução

Figura: Heurística Chunks

Conclusão

Introdução

Coleta de dados em tempo de execução

- Aborts e Commits;
- Matriz de Comunicação; e
- Matriz de Endereços.

Memórias Transacionais

Experimentos

Conclusão

Introdução

Matriz de Comunicação

- Quantidade de comunicação entre pares de threads;
- Eventos de Comunicação; e
- 1 evento a cada 100 acessos.

Conclusão

LTMS - Matrizes

Introdução

Matriz de Endereços

- Endereço mais acessado entre pares de threads;
- Tabela Hash;
- Endereços de memória; e
- Quantidade de acessos recebidos.

Conclusão

Introdução

Migração de Threads

- Abort;
- Identificação; e
- Heurísticas de migração.

LTMS

Conclusão

LTMS - Filas e Threads

Introdução

Identificação das filas e threads

- Identificação das threads conflitantes; e
- Matriz de comunicação.

Conclusão

Threshold

Introdução

- Nível de contenção (Abort/Commit);
- Maior contenção;
- Menor contenção; e
- Limiar de 0.8 (80% de contenção).

Conclusão

LTMS - Heurísticas

Latency

Introdução

- Matriz de endereços;
- Nodos NUMA;
- Bancos de memória; e
- Latencia.

Memórias Transacionais Arquiteturas

Conclusão

Experimentos

Introdução

Aplicação

- TinySTM 1.0.5; e
- STMAP 0.9.10.

Arquitetura

- Intel Xeon E5-4650;
- 96 núcleos e 192 threads:
- 468Gb de memória RAM.

Memórias Transacionais Are

Conclusão

Experimentos

Testes

Introdução

- Cenários de threads:
 - 1, 2, 4, 8, 16, 32, 64, 128, 256, e 512;
- Heurísticas de Distribuição-Migração:
 - Sequential-Threshold;
 - · Chunks-Threshold;
 - · Sequential-Latency;
 - Chunks-Latency;
- TinySTM; e
- Baterias de 30 execuções.

Conclusão

Introdução

Benchmarks

- Bayes;
- Intruder;
- Kmeans; e
- · Labyrinth, Vacation, Yada.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Memórias Transacionais **Arquiteturas Escalonadores** Experimentos

Tempo de execução

Introdução

26

Resultados

Conclusão

Memórias Transacionais

Introdução

Arquiteturas

Experimentos

Conclusão

Tempo de execução

Memórias Transacionais

Introdução

Conclusão

Tempo de execução

Memórias Transacionais **Arquiteturas Escalonadores** Experimentos Resultados Conclusão

Aborts

Introdução

Memórias Transacionais **Escalonadores** Experimentos Resultados Conclusão

Aborts

Introdução

Memórias Transacionais

Arquiteturas

Experimentos

Conclusão

Aborts

Introdução

Conclusão

Introdução

Analise

- Aplicações com conjunto pequeno de leitura e escrita;
- Transação com tempo longo, médio, ou baixo;
- Contenção alta, média ou baixa;
- Redução de 96% no tempo de execução; e
- Redução de 99% na ocorrencia de aborts.

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Defesa de Mestrado

Memórias Transacionais

Arquiteturas

Escalonadores

MS

Experimentos

Conclusão

Conclusão

Introdução

Trabalhos futuros

- Novas Heurísticas de distribuição;
- Heurísticas de migração híbrida; e
- Impacto energético dos escalonadores de STM.

33

Introdução

Experimentos

Conclusão

LTMS - Lups Transactional Memory Scheduler: Um escalonador NUMA-Aware para STM.

Michael Alexandre Costa

Prof. Dr. André Rauber Du Bois (Orientador)

Mestrado em Computação Centro de Desenvolvimento Tecnológico Universidade Federal de Pelotas macosta@inf.ufpel.edu.br

13 de junho de 2021

