# Deep Recurrent Factor Models ACM40960 Projects in Mathematical Modelling

Alissia Hrustsova (22205442) & Maxmimilian Kuttner (22205441)

2023-08-17

# **Agenda**

- ► Introduction
- Objectives
- ► Results
- References



## **Stock Returns: Definition and Computation**

- Stock returns measure the change in value of an investment over a period of time
- The mathematical definition of returns is

$$Return(t) = \frac{Price(t) - Price(t-1)}{Price(t-1)},$$

where Price refers to the 'Closing Price' of a particular time period.

- ► 'Classical' research in *Quantitative Finance* is mainly interested in modelling **monthly returns**
- Monthly returns are often used by banks, hedge funds or other industry participants to inform their decision making process

## **Stock Return Prediction in Quantitative Finance**

- Research works in Quantitative Finance try to model the statistical behavior of returns
- Accurate predictions of returns of stocks or stock-market indices are vital
- Industry professionals, like portfolio managers, rely on statistical models.
- ► A popular approach to forecasting returns are **Factor Models**

#### **Factor Models**

- are quantitative frameworks used to explain and predict the returns of financial assets.
- are based on the idea that a small number of underlying factors drive the variation in asset returns.
- assume a linear relationship between factors and stock returns

# Classic Example: Fama-French Three-Factor Model

$$R_{i,t} - R_{f,t} = \alpha_i + \beta_{i,M} \cdot (R_{M,t} - R_{f,t}) + \beta_{i,SMB} \cdot SMB_t + \beta_{i,HML} \cdot HML_t + \varepsilon_{i,t}$$

- 1. Market Risk Factor (RM-RF): Represents the excess return of the market portfolio over the risk-free rate.
- Size Factor (SMB Small Minus Big): Reflects the historical outperformance of small-cap stocks compared to large-cap stocks.
- Value Factor (HML High Minus Low): Represents the historical tendency of value stocks (stocks with low price-to-book ratios) to outperform growth stocks (stocks with high price-to-book ratios).

## **Disadvantages of classical Factor Model**

While classical factor models have been widely used in quantitative finance, they come with certain limitations. To name 2 major ones:

- Linearity Assumption: Classical models assume linear relationships between factors and asset returns, which may not capture complex non-linear interactions or effects.
- Lack of Time-Dependent Effects: Classical models often overlook time-varying relationships and fail to account for changing market dynamics over time, even though recent research shows that time dependence is important - see Neuhierl et al. (2023)

## New Idea: Deep Recurrent Factor Models

- ▶ Deep Recurrent Factor Model is a term coined by Nakagawa et al. (2019).
- ► The authors challenge the idea of linear factor models to predict stock returns
- ► The authors use Long-Short-Term Memory networks (LSTM) in conjunction with layer-wise-relevance propagation (LRP) to construct a time-varying factor model that outperforms equivalent linear models, whilst providing insights into the relevance of particular factors in the prediction.

## Why should Finance care?

- ► Linear models are often employed due to their simplicity, but not necessarily due to their predictive performance
- Neural networks are often considered black box algorithms in the context of stock return predictions, which has led to their limited adoption
- Interpretability of neural networks is a significant concern in finance, where understanding the factors and variables driving predictions is crucial for
  - decision-making,
  - risk assessment and
  - regulatory compliance

...LRP makes neural networks more explainable and could foster adoptation in quantitative investing, portfolio management and asset pricing, whilst providing superior predictive performance

# **Objectives**

# **Objectives**

The objectives of the project can be separated into:

- ► Research Objectives
- ► Technical Objectives

**Project: Objectives** 

#### **Research Objectives**

- ▶ Replicate the approach used in Nakagawa et al. (2019) to predict stock returns of the SP500 stock-market index.
- ► Analyse whether Deep Recurrent Factor Models provide a better predictive performance than linear models.
- ▶ Analyse the importance of factors through LRP.

**Project: Objectives** 

#### **Technical Objectives**

- Build classes and methods on top of Keras and Tensorflow to render LRP possible for deep LSTM networks.
- Do so by not interfering with typical Keras workflow
- Make classes and methods openly available and for others to re-use

## **Results and Outcomes**

### Results: LRP for Deep LSTM Networks

- ▶ We implemented LRP rules and algorithms according to
  - Arras et al. (2017) and
  - Arjona-Medina et al. (2019)
- We made the classes and methods available on Github for easy download and use:



- We fitted a linear model and a deep recurrent factor model to returns of SP500 stock market index
- ➤ We compared the models predictive performance over the time frame 1991-2021
- ► We tried multiple network architectures, which almost always were superior to the linear model
- ► Numerical Results¹:

| Model                       | MSE    | RMSE   |
|-----------------------------|--------|--------|
| Linear Model                | 1.3338 | 1.1549 |
| Deep Recurrent Factor Model | 0.9865 | 0.9932 |

<sup>&</sup>lt;sup>1</sup>For the full analysis and a complete list of the results for different architectures (incl. regularisation + dropout) we refer to the GitHub repository.

#### Linear vs. Deep Recurrent Factor Model



Figure 1: Deep Recurrent Factor Model (Left), Linear Model (Right)

#### **Factor Relevance across time**



Figure 2: Relevance Scores of features over time

... after grouping the features according to the factor categories Risk, Quality, Momentum, Value and Size

we get:



Figure 3: Relevance Scores of factors over time

... we smoothed the curves by computing simple moving averages of the 5 time series:



**Figure 4:** Relevance Scores of factors over time (MA)

 $\dots$  we computed the median absolute relevance for each factor group:





#### **Areas for Further Research**

- ► New LRP rules
- ► Try out different subsets of factors
- ► Try out different network architectures
- Analyse relevance across time

#### References

- Arjona-Medina, Jose A, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter, and Sepp Hochreiter. 2019. "Rudder: Return Decomposition for Delayed Rewards." *Advances in Neural Information Processing Systems* 32.
- Arras, Leila, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek. 2017. "Explaining Recurrent Neural Network Predictions in Sentiment Analysis." arXiv Preprint arXiv:1706.07206.
- Nakagawa, Kei, Tomoki Ito, Masaya Abe, and Kiyoshi Izumi. 2019. "Deep Recurrent Factor Model: Interpretable Non-Linear and Time-Varying Multi-Factor Model." arXiv Preprint arXiv:1901.11493.
- Neuhierl, Andreas, Otto Randl, Christoph Reschenhofer, and Josef Zechner. 2023. "Timing the Factor Zoo." *Available at SSRN*.