МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения» Тема: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студентка гр. 8304	Николаева М. А.
Преподаватель	Кирьянчиков В. А

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm paвh}=10$, СКО $s_{\rm paвh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\rm эксп} = s_{\rm эксп} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(\pi/2),$ $s_{\rm pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

- 4. Если B > n, оценить значения средних времен X_j , $j = n + 1, n + 2 \dots, n + k$ до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 1.

Таблица 1 – Равномерное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	0.018	1.464	1.473	1.69	2.391	2.585	3.227	3.832	4.368	4.933
i	11	12	13	14	15	16	17	18	19	20
X_i	7.244	7.567	7.969	9.216	11.011	11.305	11.312	12.552	13.007	13.504
i	21	22	23	24	25	26	27	28	29	30
X_i	14.53	14.57	15.433	15.627	16.91	17.066	17.624	18.204	18.83	19.445

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=20.76$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 20.76>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 2.

Таблица 2 – Расчёт значений функций для равномерного распределения (100%).

m	31	32	33	34	35
$f_n(m)$	3.9949	3.0273	2.5585	2.2555	2.0349
g(m,A)	2.9296	2.6689	2.4509	2.2658	2.1067
$ f_n(m)-g(m,A) $	1.0653	0.3584	0.1076	0.0103	0.0718

Минимум разности достигается при m=34. Первоначальное количество ошибок B=m-1=33. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00758$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 3}.$

Таблица 3 — Расчет времени обнаружения следующих ошибок для равномерного распределения (100%).

j	31	32	33
X_j (дней)	43.97	65.96	131.92

Было рассчитано время до завершения тестирования $t_k = 241.86$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 540.76$ дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 4.

i	1	2	3	4	5	6	7	8
X_i	0.499	1.934	2.071	3.268	5.93	6.717	7.578	8.332
i	9	10	11	12	13	14	15	16
X_i	9.105	9.235	9.627	9.738	10.199	11.895	12.899	13.397
i	17	18	19	20	21	22	23	24
Χ.	13 409	13 565	14 277	14 348	16 165	16 422	17 808	18 968

Таблица 4 — Равномерное распределение, n = 24 (80%).

Формула коэффициента: $A = \frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i} = 15.82$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 15.82 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 5.

Таблица 5 – Расчёт значений функций для равномерного распределения (80%).

m	25	26	27	28	29	30	31
$f_n(m)$	3.7759	2.8159	2.3544	2.0581	1.8438	1.6783	1.5449
g(m,A)	2.6139	2.3572	2.1464	1.9702	1.8207	1.6923	1.5809
$ f_n(m) - g(m,A) $	1.162	0.4587	0.208	0.0879	0.0231	0.014	0.036

Минимум разности достигается при m=30. Первоначальное количество ошибок B=m-1=29. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00684$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1, n+2..., n+k. Результат представлен в таблице 6.

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения (80%).

j	25	26	27	28	29
X_j (дней)	29.24	36.55	48.73	73.09	146.18

Было рассчитано время до завершения тестирования $t_k=333.78$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=581.17$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20]. Массив был упорядочен по возрастанию. Результаты представлены в таблице 7.

Таблица 7 – Равномеч	оное распределение, <i>п</i>	_	18 ((60%).
----------------------	------------------------------	---	------	--------

i	1	2	3	4	5	6	7	8	9
X_i	0.861	2.238	2.553	2.565	2.904	3.543	4.335	5.056	5.378
i	10	11	12	13	14	15	16	17	18
X_i	6.293	8.428	9.843	10.004	10.994	15.424	16.384	17.737	18.67

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 13.04$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13.04 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 8.

Таблица 8 – Расчёт значений функций для равномерного распределения (60%).

m	19	20	21
$f_n(m)$	3.4951	2.5477	2.0977
g(m,A)	3.019	2.5851	2.2605
$ f_n(m)-g(m,A) $	0.4761	0.0374	0.1628

Минимум разности достигается при m=20. Первоначальное количество ошибок B=m-1=19. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01805$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 9}.$

Таблица 9 — Расчет времени обнаружения следующих ошибок для равномерного распределения (60%).

j	19
X_j (дней)	55.4

Было рассчитано время до завершения тестирования $t_k = 55.4$ дней.

Было рассчитано общее время тестирования $t_{\text{обш}} = 198.6$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=-ln(t)/b. Массив был упорядочен по возрастанию. Результаты представлены в таблице 10.

Таблица 10 – Экспоненциальное распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	1.12	1.177	1.708	1.887	2.705	2.837	3.175	4.432	5.158	5.344
i	11	12	13	14	15	16	17	18	19	20
X_i	6.07	6.992	7.722	7.853	9.039	9.289	9.65	9.65	10.079	10.272
i	21	22	23	24	25	26	27	28	29	30
X_i	11.026	11.30	12.31	13.056	15.512	19.038	20.025	20.025	20.636	29.565

Формула коэффициента: $A=\frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i}=21.24$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 21.24>15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 11.

Таблица 11 — Расчёт значений функций для экспоненциального распределения (100%).

m	31	32	33	34
$f_n(m)$	3.995	3.027	2.5585	2.2555
g(m,A)	3.073	2.7875	2.5505	2.3507
$ f_n(m) - g(m, A) $	0.922	0.2395	0.008	0.0952

Минимум разности достигается при m=33. Первоначальное количество ошибок B=m-1=32. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00884$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 12}.$

Таблица 12 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (100%).

j	31	32
X_j (дней)	56.59	113.17

Было рассчитано время до завершения тестирования $t_k = 169.76$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 458.41$ дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 13.

Таблица 13 – Экспоненциальное р	распределение, $n =$	24 (80%).
---------------------------------	----------------------	-----------

i	1	2	3	4	5	6	7	8
X_i	0.801	0.998	1.233	1.9	2.536	2.824	3.12	4.095
i	9	10	11	12	13	14	15	16
X_i	4.494	5.499	5.534	5.816	5.888	7.572	9.467	9.467
i	17	18	19	20	21	22	23	24
X_i	9.676	9.702	10.906	12.588	12.658	18.202	18.773	34.112

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 17.77$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 17.77 > 12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 14.

Таблица 14 — Расчёт значений функций для экспоненциального распределения (80%).

m	25	26	27
$f_n(m)$	3.776	2.816	2.354
g(m,A)	3.3178	2.9149	2.5992
$ f_n(m)-g(m,A) $	0.4582	0.0989	0.2452

Минимум разности достигается при m=26. Первоначальное количество ошибок B=m-1=25. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.014732$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1,n+2...,n+k. Результат представлен в таблице 15.

Таблица 15 — Расчет времени обнаружения следующих ошибок для экспоненциального распределения (80%).

j	25
X_j (дней)	67.88

Было рассчитано время до завершения тестирования $t_k = 67.88$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 265.74$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Массив был упорядочен по возрастанию. Результаты представлены в таблице 16.

Таблица 16 – Экспоненциальное распределение, n=18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	0.419	0.943	1.532	2.009	2.083	2.588	2.627	4.716	5.709
i	10	11	12	13	14	15	16	17	18
X_i	7.012	7.052	7.508	10.556	11.94	12.448	13.783	19.105	33.814

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 13.93$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 13.93 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 17.

Таблица 17 — Расчёт значений функций для экспоненциального распределения (60%).

m	19	20
$f_n(m)$	3.495	2.547
g(m,A)	3.5485	2.9641
$ f_n(m) - g(m, A) $	0.0535	0.4171

Минимум разности достигается при m=19. Первоначальное количество ошибок B=m-1=18. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.02433$.

Условие B > n не выполняется.

Было рассчитано общее время тестирования $t_{\text{общ}} = 145.84$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2*ln(t)). Массив был упорядочен по возрастанию. Результаты представлены в таблице 18.

Таблица 18 – Релеевское распределение, n = 30 (100%).

i	1	2	3	4	5	6	7	8	9	10
X_i	3.137	3.862	3.991	5.254	5.522	5.566	6.11	6.208	6.703	7.12
i	11	12	13	14	15	16	17	18	19	20
X_i	7.954	8.416	9.23	9.638	9.803	10.625	10.727	10.919	11.023	11.038
i	21	22	23	24	25	26	27	28	29	30
X_i	12.01	12.33	13.056	13.535	14.134	14.961	17.057	18.116	18.303	19.208

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 19.19$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.19 > 15.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 19.

Таблица 19 – Расчёт значений функций для релеевского распределения (100%).

m	31	32	33	34	35	36	37	38	39	40
$f_n(m)$	3.99	3.02	2.55	2.25	2.035	1.863	1.725	1.609	1.51	1.42
g(m,A)	2.54	2.34	2.17	2.03	1.89	1.78	1.68	1.595	1.514	1.44
$ f_n(m)-g(m,A) $	1.45	0.68	0.39	0.22	0.145	0.083	0.045	0.014	0.004	0.02

Минимум разности достигается при m=39. Первоначальное количество ошибок B=m-1=38. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.004957$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 20}.$

Таблица 20 – Расчет времени обнаружения следующих ошибок для релеевского распределения (100%).

j	31	32	33	34	35	36	37	38
X_j (дней)	25.2	28.8	33.6	40.4	50.4	67.2	100.9	201.8

Было рассчитано время до завершения тестирования $t_k = 548.3$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 853.88$ дней.

80% входных данных.

Был сгенерирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 21.

Таблица 21 – Релеевское распределение, n=24 (80%).

i	1	2	3	4	5	6	7	8
X_i	1.907	2.64	3.936	4.152	4.627	6.43	6.648	6.865
i	9	10	11	12	13	14	15	16
X_i	8.921	10.166	10.756	11.831	12.044	12.044	12.928	13.756
i	17	18	19	20	21	22	23	24
X_i	14.768	15.638	15.778	17.021	17.397	21.614	22.237	23.007

Формула коэффициента: $A=\frac{\sum_{i=1}^n iX_i}{\sum_{i=1}^n X_i}=16.09$. Условие сходимости $A>\frac{n+1}{2}$ выполнено: 16.09>12.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 22.

Таблица 22 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30
$f_n(m)$	3.776	2.816	2.354	2.058	1.844	1.678
g(m,A)	2.692	2.42	2.198	2.014	1.858	1.725
$ f_n(m)-g(m,A) $	1.084	0.396	0.156	0.044	0.013	0.047

Минимум разности достигается при m=29. Первоначальное количество ошибок B=m-1=28. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0067$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 23}.$

Таблица 23 – Расчет времени обнаружения следующих ошибок для релеевского распределения (80%).

j	25	26	27	28
X_j (дней)	37.28	49.7	74.56	149.1

Было рассчитано время до завершения тестирования $t_k = 310.66$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 587.77$ дней.

60% входных данных.

Был сгенерирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c=8.0. Массив был упорядочен по возрастанию. Результаты представлены в таблице 24.

Таблица 24 – Релеевское распределение, n = 18 (60%).

i	1	2	3	4	5	6	7	8	9
X_i	1.608	2.372	3.246	3.495	5.625	6.662	6.662	7.346	8.509
i	10	11	12	13	14	15	16	17	18
X_i	10.294	11.846	12.295	13.019	14.048	14.112	15.992	16.985	18.256

Формула коэффициента: $A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 12.25$. Условие сходимости $A > \frac{n+1}{2}$ выполнено: 12.25 > 9.5.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$. Результаты расчета приведены в таблице 25.

Таблица 25 – Расчёт значений функций для релеевского распределения (60%).

m	19	20	21	22	23
$f_n(m)$	3.495	2.548	2.098	1.812	1.607
g(m,A)	2.666	2.322	2.057	1.846	1.674
$ f_n(m)-g(m,A) $	0.829	0.226	0.041	0.034	0.067

Минимум разности достигается при m=22. Первоначальное количество ошибок B=m-1=21. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01071$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1,n+2...,n+k. Результат представлен в таблице 26.

Таблица 26 – Расчет времени обнаружения следующих ошибок для релеевского распределения (60%).

m	19	20	21
X_j (дней)	31.11	46.67	93.34

Было рассчитано время до завершения тестирования $t_k = 171.13$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 343.45$ дней.

4. Результаты расчетов.

В таблицах 27 и 28 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 27 – Оценка первоначального числа ошибок.

n	Входные	Распределение					
	данные, %	Равномерное	Экспоненциальное	Релеевское			
30	100	33	32	38			
24	80	29	25	28			
18	60	19	18	21			

Таблица 28 – Оценка полного времени проведения тестирования.

n	Входные	Распределение					
	данные, %	Равномерное	Экспоненциальное	Релеевское			
30	100	540.8	458.4	853.9			
24	80	581.2	265.7	587.8			
18	60	198.6	145.8	343.5			

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Это связано с тем, что модель Джелинского-Моранды основана на предположении о том, что время до следующего отказа программы распределено экспоненциально. Относительно релеевского распределения, равномерное показывает лучшие результаты.

Выводы.

В ходе выполнения данной работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелински-Морданы, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Как можно отметить, исходя из результатов исследования, лучшие результаты показал экспоненциальный закон распределения, что подтверждает предположению модели Джелински-Морданы о том, что время до следующего отказа программы распределено экспоненциально.