EXERCICE N°1 Reconnaître une fonction affine

VOIR LE CORRIGÉ

Parmi les fonctions suivantes, préciser celles qui sont affines, puis, pour ces dernières, donner le coefficient directeur m et l'ordonnée à l'origine p des droites représentant ces fonctions.

1)
$$x \mapsto -2x+1$$

2)
$$x \mapsto (2+x)(2x-1)$$
 3) $x \mapsto \frac{2x}{3}$

$$3) \qquad x \mapsto \frac{2x}{3}$$

$$4) \qquad x \mapsto \frac{1-2x}{3}$$

$$5) \qquad x \mapsto \frac{2}{3x}$$

6)
$$x \mapsto x - (2x + 1)$$

EXERCICE N°2 Maîtriser les bases

VOIR LE CORRIGÉ

On considère la fonction affine

- Calculer l'image de 5 par f1)
- 2) Calculer f(-2)
- 3) Quelle est l'ordonnée à l'origine de la droite qui représente cette fonction ?
- 4) Quel est son coefficient directeur?

EXERCICE N°3 Tracer la représentation d'une fonction affine

VOIR LE CORRIGÉ

Représenter, dans un même repère, les fonctions affines définies par les expressions suivantes.

$$f(x)=3x-2$$

$$g(x) = -3x + 2$$

$$h(x)=1$$

EXERCICE N°4 Déterminer graphiquement l'expression d'une fonction affine voir le corrigé On donne le repère orthonormé (O; I; J)

Droite	Coefficient directeur	Ordonnée à l'origine	Fonction associée
			$x \mapsto -2x+1$
			$x \mapsto 3x - 3$
			$x \mapsto -\frac{3}{4}x$
			<i>x</i> →

EXERCICE N°1 Reconnaître une fonction affine (Le corrigé) RETOUR À L'EXERCICE 1

Parmi les fonctions suivantes, préciser celles qui sont affines, puis, pour ces dernières, donner le coefficient directeur m et l'ordonnée à l'origine p des droites représentant ces fonctions.

1)
$$x \mapsto -2x+1$$

2)
$$x \mapsto (2+x)(2x-1)$$
 3) $x \mapsto \frac{2x}{3}$

$$3) \qquad x \mapsto \frac{2x}{3}$$

$$4) \qquad x \mapsto \frac{1-2x}{3}$$

$$5) \qquad x \mapsto \frac{2}{3x}$$

5)
$$x \mapsto \frac{2}{3x}$$
 6) $x \mapsto x - (2x+1)$

Fonction	1	2	3	4	5	6
Affine ?	OUI	NON	OUI	OUI	NON	OUI
m	-2	X	<u>2</u> 3	$-\frac{2}{3}$	X	-1
p	1	X	0	<u>1</u> 3	X	-1

 $⁽²⁺x)(2x-1) = 4x-2+2x^2-x = 2x^2+3x-2$ (le terme en x^2 est non nul donc la fonction n'est pas affine)

Pour 6)
$$x-(2x+1) = x-2x-1 = -x-1$$

Pour 3) La fonction est même linéaire.

[•] Pour 5) $x \mapsto \frac{2}{3x}$ (On parlera plus tard de fonction « inverse »)

EXERCICE N°2 Maîtriser les bases (Le corrigé)

RETOUR À L'EXERCICE 2

On considere la fonction affine $f: \begin{cases} \mathbb{R} \mapsto \mathbb{R} \\ x \mapsto 2x - \end{cases}$

1) Calculer l'image de 5 par f.

$$f(5) = 2 \times 5 - 1$$

$$f(5) = 9$$

2) Calculer f(-2)

$$f(-2) = 2 \times (-2) - 1$$

$$f(-2) = -5$$

3) Quelle est l'ordonnée à l'origine de la droite qui représente cette fonction ?

Souvenez-vous : une fois développée et réduite, l'expression d'une fonction affine est de la forme mx+p et p est l'ordonnée à l'origine.

Ici m=2 et p=-14) Quel est son coefficient directeur?

Son coefficient directeur vaut | 2 | .

Souvenez-vous : une fois développée et réduite, l'expression d'une fonction affine est de la forme m x + p et m est le coefficient directeur.

Ici
$$m=2$$
 et $p=-1$

EXERCICE N°3 Tracer la représentation d'une fonction affine (Le corrigé)

RETOUR À L'EXERCICE 3

Représenter, dans un même repère, les fonctions affines définies par les expressions suivantes.

$$f(x)=3x-2$$

$$g(x) = -3x + 2$$

$$h(x)=1$$

Pour tracer une droite, il suffit d'en connaître deux points.

Or, un point appartient à une droite si et seulement si ses coordonnées vérifient l'équation de cette droite.

• Pour f(x)

La droite qui réprésente la fonction affine f a pour équation (réduite) y = f(x), c'est à dire : y = 3x-2

Pour obtenir les coordonnées d'un point sur cette droite, il suffit de CHOISIR une abscisse x et de CALCULER son ordonnée y=f(x)=3x-2

Par exemple:

On choisit x=0 et on calcule $y=f(0)=3\times 0-2=-2$.

On obtient alors le point de coordonnées (0; -2)

Comme il nous faut deux points, on choisit une deuxième valeur pour x, par exmple, x=2 et on calcule $y=f(2)=3\times 2-2=4$

On obtient alors le point de coordonnées (2; 4)

Il n'y a plus qu'à placer ces points dans le plan et tracer la droite qui passe par ces derniers.

On peut résumer cela sous la forme d'un tableau :

Pour 1)			Pour 2)		
X	0	2	x	0	-1
y = f(x)	-2	4	y=g(x)	2	5
Point	A(0; -2)	B(2;4)	Point	C(0; 2)	D(-1;5)

Pour 3)

Il suffit de tracer, la droite parallèle à l'axe des abscisse et passant par le point J(0; 1).

On pourrait utiliser la même méthode que pour 1) et 2). Comme y=h(x)=1, n'importe quelle valeur pour x donnera y=1.

Le point J(0; 1) a juste le mérite de se trouver sur l'axe des ordonnées...

Tous les calculs étant faits, il n'y a plus qu'à placer les points cités et tracer les droites demandées.

EXERCICE N°4 Déterminer graphiquement l'expression d'une fonction affine (Le corrigé) RETOUR À L'EXERCICE 4

On donne le repère orthonormé (O; I; J)

Droite	Coefficient directeur	Ordonnée à l'origine	Fonction associée
(d_4)	-2	1	$x \mapsto -2x+1$
(d_2)	3	-3	$x \mapsto 3x - 3$
(d_3)	$-\frac{3}{4}$	0	$x \mapsto -\frac{3}{4}x$
(d_1)	$\frac{2}{3}$	-2	$x \mapsto \frac{2}{3} - 2$

Pour (d_1) :

L'ordonnée à l'origine (-2) se lit directement sur le graphique (comme pour les trois autres...)

Le coefficient directeur s'obtient par lecteure graphique également...

On cherche deux points de (d_1) dont la lecture des coordonnées est facile. Par exemple on monte de 2

(3; 0) et (6; 2), on sait alors que
$$m = \frac{2-0}{6-3} = \frac{2}{3} = \frac{2}{3}$$

Quand on avance de 3