

UC Berkeley EECS
Lecturer
Gerald Friedland

The Beauty and Joy of Computing

Lecture #11 Recursion II

RECURSIVE DRAWING

Toby Shachman created this amazing spatial programming language called "Recursive Drawing" that allows you to create drawings (even recursive ones) without typing a line of code. It's a great example of a next-generation interface...

recursivedrawing.com

How the Computer Works ... n!

Factorial(n) = n! Inductive definition:

- Let's act it out...
 - "contractor" model
 - **5!**

n	n!
0	1
1	1
2	2
3	6
4	24
5	120

Friedland

Order of growth of # of calls of n!

- a) Constant
- b) Logarithmic
- Linear
- d) Quadratic
- e) Exponential

How the Computer Works ... fib(n)

Inductive definition:

- Let's act it out...
 - "contractor" model
 - fib(5)

	-		
	æ	-	-
	Ti	• 1	n
		_	, , ,

0	0
1	1
2	1
3	2
4	3
5	5

Let's now: trace... (gif from Ybungalobill@wikimedia)

Friedland

fib

report

Order of growth of # of calls of fib(n)

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist <u>Mario Merz</u> for an environmental art project. (Wikipedia)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Counting Change (thanks to BH)

Given coins {50, 25, 10, 5, 1} how many ways are there of making change?

```
2 (N, 5P)
```

4 (D, 2N, N5P, 10P)

- 15

• 6 (DN, D5P, 3N, 2N5P,

```
+Count+Change+ amount + Using + coins :
                                                  1N10P, 15P)
     amount < 0 or empty? coins
                                              100?
report 0
   amount = 0
report 1
       Count Change amount Using all but first of coins
report
                     amount | - item (1 → of coins
       Count Change
                                                     Using coins
```


bjc

Call Tree for "Count Change 10 (10 5 1)"

"I understood Count Change"

- a) Strongly disagree
- b) Disagree
- c) Neutral
- d) Agree
- e) Strongly agree

img4.joyreactor.com/pics/post/drawing-recursion-girl-275624.jpeg

Friedland

Summary

- It's important to understand the machine model
- It's often the cleanest, simplest way to solve many problems
 - Esp those recursive in nature!
- Recursion is a very powerful idea, often separates good from great (you're great!)

Menger Cube by Dan Garcia

