# FONAMENTS MATEMÀTICS D'ELECTRÒNICA DIGITAL

# Índex de conceptes

- Àlgebra de Boole: postulats i teoremes
- Funcions de commutació
- Portes lògiques
- Suma de productes i producte de sumes
- Minterms i Maxterms

Matemàtiques bàsiques per al disseny de sistemes digitals o

Formulisme matemàtic per operar les funcions de commutació

# Àlgebra de Boole

- Desenvolupada per Georges Boole al 1847 per problemes de lògica matemàtica
- Claude Shannon al 1939 l'aplica per primer cop a funcions de commutació

#### **DEFINICIONS**

- <u>Variable lògica</u>: variable que pot assolir únicament dos valors {(0,1), (L,H), (F,V)}
- Funció lògica: funció definida amb variables lògiques el resultat de la qual només pot assolir dos valors {(0,1), (L,H), (F,V)}
- <u>Àlgebra</u>: conjunt d'elements, S, format, com a mínim, per dos elements diferents, amb dues operacions internes, suma (+) i producte (•) (que anomenarem <u>suma lògica</u> i <u>producte lògic</u>). Els elements satisfan el principi de substitució.

# Àlgebra de Boole

# Satisfà una sèrie de postulats

I. La suma i el producte són operacions internes:

Si a, 
$$b \in S$$

- i) (a+b) ∈ S
- ii)  $(a \cdot b) \in S$
- II. Existeix un element neutre per a la suma "0" i un element neutre per al producte "1", tals que:
  - i) (a+0) = a
  - ii) (a.1) = a
- III. Les operacions suma i producte són commutatives:
  - i) a+b=b+a
  - ii)  $a \cdot b = b \cdot a$
- IV. Cada operació és distributiva respecte l'altra:
  - i)  $a \cdot (b+c) = a \cdot b + a \cdot c$
  - ii)  $a+(b\cdot c) = (a+b) \cdot (a+c)$
- V. Per a tot element de l'Àlgebra, a, existeix un element,  $\overline{a}$ , anomenat complement d'a, tal que:
  - i)  $a + \overline{a} = 1$
  - ii)  $\mathbf{a} \cdot \overline{\mathbf{a}} = 0$
- VI. Existeixen almenys dos elements a i b tals que a  $\neq$  b

# Comparació amb l'Àlgebra dels nombres reals

Si comparem aquests postulats amb els que defineixen l'Àlgebra dels nombres reals podem observar que:

- La llei associativa no és un postulat de l'Àlgebra de Boole, es pot deduir a partir dels postulats anunciats.
- II. La propietat distributiva de l'operació (+) respecte a l'operació (·) és vàlida en l'Àlgebra de Boole però no en la dels nombres reals
- III. En no haver-hi un element invers additiu o multiplicatiu, no es poden definir les operacions resta lògica i divisió lògica
- IV. El complement d'un element no es pot definir en l'Àlgebra ordinària
- V. Una Àlgebra de Boole pot estar definida per un nombre finit d'elements

Aquí només ens interessa l'exemple més senzill d'Àlgebra de Boole: l'àlgebra de 2 elements S={0,1}, amb els operadors: suma lògica i producte lògic definits com:

| A | В | A+B |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

| A | В | A·B |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 0   |
| 1 | 0 | 0   |
| 1 | 1 | 1   |

Per tal de satisfer el postulat 'v' resulta que:  $\overline{0} = 1$  i  $\overline{1} = 0$ 

L'operador SUMA LÒGICA rep el nom de funció OR L'operador PRODUCTE LÒGIC rep el nom de funció AND L'operador COMPLEMENT rep el nom de funció NOT



# Aquest àlgebra satisfà els següents teoremes:

<u>Teorema 0:</u> **Dualitat**. Cada propietat o teorema deduïble a partir dels postulats de l'Àlgebra de Boole continua sent vàlid si intercanviem entre si els operadors (+,•) i els elements neutres {0,1} (exemple: si es compleix que a+0=a, llavors a•1=a)

Teorema 1: (a) 
$$x + x = x$$
, (b)  $x \cdot x = x$ 

Demostració:
$$x + x = (x + x) \cdot 1$$
  
 $= (x + x) \cdot (x + \overline{x})$   
 $= x + (x \cdot \overline{x})$   
 $= x + 0$   
 $= x$ (Postulat IIb)  
(Postulat IVa)  
(Postulat IVb)  
(Postulat IIa)

Per dualitat resulta  $x \cdot x = x$ 

 $x + 1 = (x + 1) \cdot 1$ Demostració: (Postulat IIb) =  $(x+1)\cdot(x+\overline{x})$ (Postulat Va)  $= \mathbf{x} + (1 \cdot \overline{\mathbf{x}})$ (Postulat IVa)  $= x + \overline{x}$ (Postulat IIb) = 1(Postulat Va) Per dualitat resulta  $x \cdot 0 = 0$ (a)  $\overline{x} = x$ Teorema 3: (a) x + (y + z) = (x + y) + zTeorema 4: Propietat associativa (b)  $\mathbf{x} \cdot (\mathbf{y} \cdot \mathbf{z}) = (\mathbf{x} \cdot \mathbf{y}) \cdot \mathbf{z}$ (a)  $(x + y) = \overline{x} \cdot \overline{y}$ Teorema 5: De Morgan (b)  $(\overline{x \cdot y}) = \overline{x} + \overline{y}$ (a)  $x + x \cdot y = x$ Absorció Teorema 6: (b)  $x \cdot (x + y) = x$ 

Àlgebra de Boole

(a) x + 1 = 1, (b)  $x \cdot 0 = 0$ 

Teorema 2:

UNIVERSITAT DE

BARCELONA

**Disseny Digital Bàsic** 

# L'Àlgebra de Boole s'aplica a les funcions de commutació que es poden representar com circuits que contenen *commutadors*, etiquetats amb variables

A=0: Commutador obert

A=1: Commutador tancat

X=0: Circuit obert entre 1 i 2

X=1: Circuit tancat entre 1 i 2



**Funció de commutació**: aplicació de {0,1}n en {0,1}, representada com (4 possibilitats !!!):

- 1 Expressió algebraica:  $F(A,B,C) = A \cdot B + \overline{C}$
- 2 <u>Taula de veritat</u>: per una funció de n variables tenim una columna amb les 2<sup>n</sup> combinacions d'1 i 0 que es poden formar i un altre columna amb el valor de la funció per aquestes

entrades).

| ABC | F |
|-----|---|
| 000 |   |
| 001 |   |
| 010 |   |
| 011 |   |
| 100 |   |
| 101 |   |
| 110 |   |
| 111 |   |

 $2^n$  entrades

valors de la funció

# 3 Verbalització: expressió lingüística

L'alarma sonarà si no hi ha ningú dins i s'obre una finestra, o si s'engega el detector de fums

```
Funció = sonar l'alarma
variable A = hi ha algú o ningú
variable B = s'obre o no la finestra
variable C = hi ha fum o no
```

M'he de posar l'abric si fa fred i estic constipat, o ho diu la meva mare

```
Funció = posar-se l'abric
```

variable A = fa fred (o fa fred o no fa fred, no puc dir en fa una mica)

variable B = estic constipat o no

variable C = no diu res la mama o si ho diu

han de poder-se representar com funcions binàries!!

 Una funció de commutació no té una representació algebraica única

$$F(A,B,C) = /C + \overline{(/A+/B+/C)} + (A\cdot B\cdot/C) = A\cdot B + \overline{C}$$

- Dues funcions diferents tenen taules de veritat diferents.
- Per N variables hi ha 2<sup>2<sup>N</sup></sup> funcions de commutació.
  - Així per a 1 variable tenim 4 funcions possibles
  - Per 2 variables, 16 funcions possibles
  - Per 3 variables, 256 funcions possibles

| 1 Variable (x) | F <sub>0</sub> (x) | F <sub>1</sub> (x) | F <sub>2</sub> (x) | F <sub>3</sub> (x) |  |
|----------------|--------------------|--------------------|--------------------|--------------------|--|
| 0              | 0                  | 0                  | 1                  | 1                  |  |
| 1              | 0                  | 1                  | 0                  | 1                  |  |

#### Funcions de dues variables (16 possibles)

| ΑE  |     | <b>e</b> <sub>o</sub> <b>o</b> | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | F <sub>4</sub> | F <sub>5</sub> <b>B</b> | F <sub>6</sub> | F <sub>7</sub> OR | F <sub>8</sub> | F <sub>9</sub><br>XNOR | F <sub>10</sub> /B | F <sub>11</sub> | F <sub>12</sub> /A | F <sub>13</sub> | F <sub>14</sub> NAND | F <sub>15</sub> |
|-----|-----|--------------------------------|----------------|----------------|----------------|----------------|-------------------------|----------------|-------------------|----------------|------------------------|--------------------|-----------------|--------------------|-----------------|----------------------|-----------------|
| 0 0 | ) ( | 0                              | 0              | 0              | 0              | 0              | 0                       | 0              | 0                 | 1              | 1                      | 1                  | 1               | 1                  | 1               | 1                    | 1               |
| 0 1 | (   | 0                              | 0              | 0              | 0              | 1              | 1                       | 1              | 1                 | 0              | 0                      | 0                  | 0               | 1                  | 1               | 1                    | 1               |
| 1 ( | ) ( | 0                              | 0              | 1              | 1              | 0              | 0                       | 1              | 1                 | 0              | 0                      | 1                  | 1               | 0                  | 0               | 1                    | 1               |
| 1 1 | (   | 0                              | 1              | 0              | 1              | 0              | 1                       | 0              | 1                 | 0              | 1                      | 0                  | 1               | 0                  | 1               | 0                    | 1               |

#### Funcions més usades:

AND:  $F_1(A,B) = A \text{ and } B = A \cdot B = A \& B$ 

OR:  $F_7(A,B) = A \text{ or } B = A + B = A \mid B$ 

NAND:  $F_{14}(A,B) = /(A \cdot B) = \overline{(A \cdot B)}$ NOR:  $F_{8}(A,B) = /(A+B) = \overline{(A+B)}$ 

XOR:  $F_6(A,B) = A \oplus B$  (or exclusiva) (designaltat)

XNOR:  $F_9(A,B) = /(A \oplus B) = \overline{(A \oplus B)}$  (igualtat)

Totes les funcions poden ser expressades en termes dels operadors AND, OR, i NOT

$$f_{2} = A \cdot \overline{B}$$

$$f_{4} = \overline{A} \cdot B$$

$$f_{10} = \overline{B}$$

Conjunt complet d'operadors: conjunt d'operadors amb els quals es pot especificar qualsevol funció de commutació.

- 1. AND, OR, NOT
- 2. NAND
- 3. NOR

$$f_{11} = A + \overline{B}$$

$$f_{12} = \overline{A}$$

$$f_{13} = \overline{A} + B$$

. . .

$$f_6 = \overline{A} \cdot B + A \cdot \overline{B}$$

$$f_9 = A \cdot B + \overline{A} \cdot \overline{B}$$

<u>Portes lògiques digitals:</u> Circuits electrònics que realitzen les funcions bàsiques AND, OR, NAND, NOR, XOR, NOT, ...

Tenen diversos terminals d'entrada i un de sortida.

Aquests terminals poden assolir un dels dos valors específics 0 o 1.

Porta AND: F=A-B-C



Porta NAND: F=/(A-B-C)



Porta OR: F=A+B+C

Porta NOR: F=/(A+B+C)



**INVERSOR**: F=/A

Porta XOR: F=(A⊕B)



# 4 Exemple gràfic de funció de commutació



# Forma estàndard de les funcions lògiques

Literal: variable lògica o el seu complement (A,Ā,B,B, ...)

Terme producte: una sèrie de literals relacionats per l'operador lògic AND (A·B·C, Ā·D, Ā·B·F, ...).

<u>Terme suma:</u> una sèrie de literals relacionats per l'operador lògic OR (A+B+C, A+D, A+B+F, ...).

Terme normal o canònic: terme producte o suma que conté totes les variables de la funció un sol cop.

<u>Termes adjacents:</u> termes canònics entre els quals només varia el valor d'una variable (A+B+C i A+B+C, o, A-B-C i A-B-C). Aquest termes son bàsics per fer simplificacions de funcions.

Suma de productes: tota funció lògica es pot expressar com a suma de termes producte (SOP).

$$f(A, B, C, D) = (A \cdot C + B) \cdot (C \cdot D + \overline{D})$$

$$f = A \cdot C \cdot C \cdot D + A \cdot C \cdot \overline{D} + B \cdot C \cdot D + B \cdot \overline{D} = A \cdot C + B \cdot C \cdot D + B \cdot \overline{D}$$

Producte de sumes: tota funció lògica es pot expressar com a producte de termes suma (POS).

$$f = (A + B) \cdot (C + B) \cdot (C + \overline{D})$$

La implementació de qualsevol funció lògica sempre es pot fer a dos nivells com a suma de termes producte (SOP) o com a producte de termes suma (POS).

# Suma estàndard de productes: suma de termes producte on tots són canònics.

### Taula de veritat

$$\begin{split} \mathbf{f} &= \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{B} \cdot \overline{D} = \mathbf{A} \cdot \mathbf{C} \cdot (\mathbf{B} + \overline{B}) \cdot (\mathbf{D} + \overline{D}) + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} \cdot (\mathbf{A} + \overline{A}) + \mathbf{B} \cdot \overline{D} \cdot (\mathbf{A} + \overline{A}) \cdot (\mathbf{C} + \overline{C}) = \\ \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot$$

Producte estàndard de sumes: producte de termes suma on tots són canònics.

$$f = (A + B + C + D) \cdot (A + B + \overline{C} + D) \cdot (A + B + C + \overline{D}) \cdot (\overline{A} + \overline{B} + C + \overline{D})$$

Qualsevol funció de commutació de n variables es pot expressar com a suma estàndard de productes o com a producte estàndard de sumes.

| ABCD    | f |
|---------|---|
| 0000    | 0 |
| 0001    | 0 |
| 0010    | 0 |
| 0011    |   |
| 0100    | 1 |
| 0 1 0 1 | 0 |
| 0 1 1 0 | 1 |
| 0 1 1 1 | 1 |
| 1000    | 0 |
| 1001    | 0 |
| 1010    | 1 |
| 1011    | 1 |
| 1100    | 1 |
| 1 1 0 1 | 0 |
| 1110    | 1 |
| 1111    | 1 |

Minterm: terme producte canònic que dona un 1 lògic a la funció representada com a suma de productes.

<u>Maxterm:</u> terme suma canònica que dona un 0 lògic a la funció expressada com a producte de sumes.

### **MINTERMS**

## Combinació que dóna un 1 en S.O.P.

### **MAXTERMS**

$$\begin{split} M_{111} &= M_7 & 111 & \overline{X}_2 + \overline{X}_1 + \overline{X}_0 \\ M_{110} &= M_6 & 110 & \overline{X}_2 + \overline{X}_1 + \overline{X}_0 \\ M_{101} &= M_5 & 101 & \overline{X}_2 + X_1 + \overline{X}_0 \\ M_{100} &= M_4 & 100 & \overline{X}_2 + X_1 + X_0 \\ M_{011} &= M_3 & 011 & X_2 + \overline{X}_1 + \overline{X}_0 \\ M_{010} &= M_2 & 010 & X_2 + \overline{X}_1 + \overline{X}_0 \\ M_{001} &= M_1 & 001 & X_2 + \overline{X}_1 + \overline{X}_0 \\ M_{000} &= M_0 & 000 & X_2 + X_1 + \overline{X}_0 \end{split}$$

Combinació que dóna un 0 en P.O.S.

# Suma estàndard de productes: suma de termes producte on tots són canònics.

### Taula de veritat

$$\begin{split} \mathbf{f} &= \mathbf{A} \cdot \mathbf{C} + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{B} \cdot \overline{D} = \mathbf{A} \cdot \mathbf{C} \cdot (\mathbf{B} + \overline{B}) \cdot (\mathbf{D} + \overline{D}) + \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} \cdot (\mathbf{A} + \overline{A}) + \mathbf{B} \cdot \overline{D} \cdot (\mathbf{A} + \overline{A}) \cdot (\mathbf{C} + \overline{C}) = \\ \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \overline{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \mathbf{D} + \overline{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \overline{D} + \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{C} \cdot \overline{D} + \overline{A} \cdot$$

# Producte estàndard de sumes: producte de termes suma on tots són canònics.

$$f = (A + B + C + D) \cdot (A + B + \overline{C} + D) \cdot (A + B + C + \overline{D}) \cdot (\overline{A} + \overline{B} + C + \overline{D})$$

$$f(A,B,C,D) = \Sigma_m(4,6,7,10,11,12,14,15)$$
$$\Pi_M(0,1,2,3,5,8,9,13)$$

| ABCD    | f |
|---------|---|
| 0000    | 0 |
| 0001    | 0 |
| 0010    | 0 |
| 0011    |   |
| 0100    | 1 |
| 0 1 0 1 | 0 |
| 0 1 1 0 | 1 |
| 0 1 1 1 | 1 |
| 1000    | 0 |
| 1001    | 0 |
| 1010    | 1 |
| 1011    | 1 |
| 1100    | 1 |
| 1 1 0 1 | 0 |
| 1110    | 1 |
| 1111    | 1 |
|         |   |

| АВС                                       | f                |  |
|-------------------------------------------|------------------|--|
| 0 0 0<br>0 0 1<br>0 1 0<br>0 1 1<br>1 0 0 | 1<br>0<br>0<br>0 |  |
| 1 0 1<br>1 1 0<br>1 1 1                   | 1<br>0<br>1      |  |

Exemple: tenim un problema verbalitzat que hem passat a la següent taula de la veritat:

$$f = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) = 010 \quad 011 \quad 001 \quad 110$$

$$2 \quad 3 \quad 1 \quad 6 = \prod M(1, 2, 3, 6)$$

Les funcions representades com a suma de productes i com a producte de sumes són complementàries, els nombres que apareixen a la llista de minterms són els que falten a la llista de maxterms.



$$f = (A + \overline{B} + C) \cdot (A + \overline{B} + \overline{C}) \cdot (A + B + \overline{C}) \cdot (\overline{A} + \overline{B} + C) = 010 \quad 011 \quad 001 \quad 110$$

$$2 \quad 3 \quad 1 \quad 6 = \prod M(1, 2, 3, 6)$$

Les funcions representades com a suma de productes i com a producte de sumes són complementàries, els nombres que apareixen a la llista de minterms són els que falten a la llista de maxterms.