A Modal Approach to the Space Time Dynamics of Cognitive Biomarkers

T. Griffith

Defense

May 20, 2021

Outline

1. Introduction & Motivation

- 2. A Dynamic Systems View of Brain Waves
- 3. System Identification of Brain Wave Modes Using EEG
 - 4. Modal Analysis of Brain Wave Dynamics
 - 5. Adaptive Unknown Input Estimators
 - 6. Reconstructing the Brain Wave Unknown Input
- 7. On the Observability of Matrix-Vector Dynamical Systems
 - 8. Conclusions

Introduction & Motivation

Fig 1. A Wholistic View of Brain Waves

Recent modeling work, however, using large-scale dynamical models on the human connectome, suggests that cortical flow patterns are multistable and exhibit phase-transitions. To study such phenomena, a dynamic analysis in which no assumptions about stationarity are made, is required.

Hindriks, Rikkert, et al. "Latency analysis of resting-state BOLD-fMRI reveals traveling waves in visual cortex linking task-positive and task-negative networks." Neuroimage 200 (2019): 259-274.

A cannonical approach:

True brain wave plant

$$\left\{ egin{aligned} \dot{x} &= Ax + Bu + v_x \ y &= Cx \end{aligned}
ight.$$

Modal brain wave plant

$$\left\{ egin{aligned} \dot{\eta} &= \Lambda \eta + V^{-1}Bu + V^{-1}v_x \ y &= CV\eta \end{aligned}
ight.$$

where $A, B, C, v_x, x, \text{ and } u$ are all unknown.

This level of uncertainty is an unsovled problem

Identify the plant:
$$\left\{ egin{array}{l} \dot{x}_m = A_m x \ y_m = C x_m \end{array}
ight.$$

Adaptive Unknown Input Brain Wave Estimator:

$$egin{cases} \dot{\hat{x}} &= ig(A_m + BL(t)Cig)\hat{x} + B\hat{u} + K_x e_y; \ \hat{y} &= C\hat{x}. \end{cases}$$

System Identification of Brain Wave Modes Using EEG

Identifying linear patterns

Identify the plant:
$$\left\{ egin{array}{l} \dot{x}_m = A_m x \ y_m = C x_m \end{array}
ight.$$

$$O = \left[egin{array}{c} C \ CA \ CA^2 \ dots \ CA^{s-1} \end{array}
ight] X_0$$

$$\hat{\Gamma}=U\Sigma^{1/2}~\hat{X}_0=S^{1/2}V^*$$

System Identification of Brain Wave Modes Using EEG

Identifying linear patterns

Identify the plant:
$$\left\{ egin{array}{l} \dot{x}_m = A_m x \ y_m = C x_m \end{array}
ight.$$

$$O = egin{bmatrix} C \ CA \ CA^2 \ dots \ CA^{s-1} \end{bmatrix} X_0$$

$$\hat{\Gamma}=U\Sigma^{1/2}~\hat{X}_0=S^{1/2}V^*$$

Analysis of Linear Brain Wave Modes

Table 1: Common OMA Brain Modes

16010 1. Common CWIT Brain Woodes				
	Frequency	Damping [%]	Complexity [%]	Shape Correl.
Alpha Mode 1	4.34 ± 0.03	8.20 ± 1.20	11.47 ± 17.59	0.97 ± 0.016
Beta Mode 2	21.83 ± 0.22	1.98 ± 2.63	$32.29 {\pm} 35.67$	0.96 ± 0.018
Gamma Mode 3	40.39 ± 0.26	11.87 ± 7.49	$12.42{\pm}16.88$	0.99 ± 0.010
Gamma Mode 4	44.19 ± 0.24	$2.52{\pm}1.39$	$2.93{\pm}5.69$	0.99 ± 0.012

Unknown Input Estimators

aUIO Performance

Classification

Quantum Observability

$$egin{aligned} \dot{
ho}(t) &= \sum_{k=1}^N p_k \dot{P}_k(t) \ &= -i[H
ho(t) -
ho(t)H] \ &= (-i)[H,
ho] \equiv (-i)L
ho \ y_i(t) &= ext{tr}(C_i
ho) \end{aligned}$$

$$y^{(k)}(0) = (C, A^k
ho_0)_{ ext{tr}} = (\underbrace{(A^*)^k C}_{\Theta_k},
ho_0)_{ ext{tr}}; \; k = 0, 1, \dots, N^2 - 1$$

