

Modélisation prédictive du défaut de paiement en gestion du risque de crédit

Lamarana DIALLO

Sommaire

Sommaire

Présentation des données et échantillonage	1
Présentation des données	2
Exploration des variables qualitatives	3
Exploration des variables quantitatives	4
Sélection de variables	5
Famille des retards de paiement	6
Famille des soldes	7
Famille des achats	7
Famille des ratios d'utilisations de la carte	3
Corrélation entre variables sélectionnées	9
Catégorisation des prédicteurs	J
Traitement de données manquantes	1
Regroupement de modalités des variables qualitatives	1
Discrétisation des variables quantitatives	2
Modélisation et analyse des résultats	4
Méthode de modélisation utilisée	4
Échantillonnage	4
Estimation du modèle	ŏ
Evaluation du modèle & sélection de variables	ô
Equation du modèle	7
Conclusion 18	3

Introduction

Le projet consiste à modéliser des données sur des détenteurs de cartes de crédit d'une institution financière Nord- Américaine. L'objectif principal de la modélisation consiste à estimer la probabilité qu'un détenteur d'une carte de crédit ne parvient pas à payer son solde dû (défaut de paiement) dans un futur horizon de 12 mois après la date de collecte des différentes caractéristiques du modèle. Un client est considéré être en défaut de paiement si l'une au moins des conditions suivantes est vérifiée pendant la période visée (12 mois après une date donnée qui a servi à collecter les variables):

- Retard de paiement de 90 jours ou plus ;
- Faillite
- Radiation;

Il faut mentionner que c'est une modélisation d'une clientèle déjà détentrice de cartes de crédit (l'institution financière dispose assez d'informations en termes de comportement : ce sont les différentes variables décrivant cette clientèle). Ainsi, la modélisation consistera à prédire le comportement d'un détenteur dans un futur horizon de 12 mois en se basant sur son comportement actuel et passé. Le modèle résultant est donc un modèle comportemental qui permettra de suivre, dans le temps, le comportement des détenteurs de cartes de crédit en termes de capacités de remboursement du solde dû à la date exigée par l'institution financière.

Présentation des données et échantillonage

Présentation des données

Dans cette section, nous présentons une vue d'ensemble des données. Notre table de données des détenteurs de cartes de crédit contient au total 24877 observations (détenteurs) décrits par 33 variables (30 variables quantitatives et 3 variables qualitatives) représentant :

- les montants des achats et des avances de fonds ;
- les montants des soldes ;
- les montants des paiements effectués sur le solde de la carte ;
- les ratios d'utilisation de la carte ;
- les retards de paiements du solde de la carte ;
- quelques informations sociodémographiques (âge, statut matrimonial, ...);
- etc.

Les variables présentant les informations sociodémographiques sont extraites en date d'observation (informations en date d'extraction des données). Toutes les autres variables ont été considérées suivant plusieurs historiques : mois courant (date d'extraction des données), 6 derniers mois et 12 derniers mois avant la date d'extraction des données. Ainsi, cela permet d'avoir des informations du « Présent » (mois courant) et du « Passé » (historiques).

Dans le cadre de ce travail, l'horizon de prédiction considérée est de 12 mois après la date d'observation des différentes caractéristiques d'un client. Ainsi, la variable à modéliser est construite en tenant compte de cet horizon de prédiction. La variable à modéliser est une variable binaire ayant deux(2) modalités:

- 0 : le client n'a jamais été en défaut de paiement du solde de sa carte de crédit pendant toute la période des 12 mois après la date d'extraction des données ;
- 1 : le client a été en défaut de paiement au moins une fois dans la période des 12 mois après la date d'extraction des données.

Valeurs réelles	Nombre	Pourcentage
0	24167	97.15%
1	710	2.85%
Total	24877	100%

Table 1.1: Variable defaut_paiement

Figure 1.1: Distribution variable défaut de paiement

Ces résultats montrent que cette clientèle présente un taux de défaut de paiement de 2.85% (évènement rare!).

Exploration des variables qualitatives

Statut compte

Valeurs réelles	Nombre	Pourcentage
0	23501	94.5%
P	1376	5.5%

Table 1.2: Variable statut_compte

Statut matrimoniale client

Valeurs réelles	Nombre	Pourcentage
0	1227	4.93%
1	4194	16.86%
2	2035	8.18%
3	191	0.77%
4	450	1.81%
5	1430	5.75
Manquantes	15350	61.7%

Table 1.3: Variable statut_matrimonial_client

Type de résidence

Valeurs réelles	Nombre	Pourcentage
0	3912	15.73%
P	4282	17.21%
R	2269	9.12%
Manquantes	14414	57.94%

Table 1.4: Variable type_residence

Exploration des variables quantitatives

Variable	Manquantes	Minimum	Médiane	Moyenne	Maximum
Anciennete_compte	0	0	3	3.14	6
retard_courant	0	0	0	0.05	3
retard_min_6derniers_mois	20	-997	0	-137.01	1
retard_max_6derniers_mois	20	-997	0	-136.94	3
retard_min_12derniers_mois	20	-997	0	-137.01	1
retard_max_12derniers_mois	20	-997	0	-136.94	3
solde_courant	0	-5121.71	0	287.38	19944.64
solde_courant_pct_max1to6m	0	-999	-999	-625.161	342448.2
solde_courant_pct_max1to12m	0	-999	-999	-625.16	342448.2
solde_courant_pct_moy1to6m	0	-6.10 ⁴	-9.10^2	4.10^2	2.10^{7}
solde_courant_pct_moy1to12m	0	-6.10 ⁴	-9.10^2	4.10^2	2.10^{7}

pct_utilisation_courant	0	-506.57	0	14.93	549.5
pct_utilisation_min_1to6m	20	-9988	0	-135.3	218.06
pct_utilisation_min_1to12m	20	-9988	0	-135.3	218.06
pct_utilisation_max_1to6m	20	-997	0	-120.5	365.75
pct_utilisation_max_1to12m	20	-997	0	-120.5	365.75
pct_utilisation_moy_1to6m	0	-2497	0	-128.25	218.06
pct_utilisation_moy_1to12m	0	-2497	0	-128.25	218.06
achats_courant	0	0	0	167.14	21801.65
achats_courant_pct_moy_1to6m	0	-9.10^2	-9.10 ²	-5.102	1.10^{6}
achats_courant_pct_moy_1to12m	0	-9.10^2	-9.10 ²	-5.102	$1.37.10^6$
avances_courant	0	0	0	23.66	18807.94
paiements_courant	0	0	0	182	15107.59
solde_courant_autres	0	0	286.41	1272.38	48828.19
solde_total_courant	0	-2708.39	755.91	1559.76	62843.81
solde_courant_autres_pct_limite	0	-999	6.57	-159.29	110672
age_client	14414	16	36	38.8	90
score_actuel_compte	0	34.26	990.37	980.64	999.3

Table 1.6: Exploration des variables quantitatives

La proportion des données manquantes est relativement marginale à l'exception de la variable age_client. Cette forte proportion de données manquantes au niveau de cette variable est probablement due à une lacune au niveau du croisement des données (en effet, le système de données contenant les informations sociodémographiques du client est différent de celui contenant les informations financières). Le traitement des données manquantes sera présenté ci-dessous selon la variable.

Sélection de variables

Dans cette partie, nous allons faire une étude de corrélation entre variables. Cette analyse sera effectuée sur les différentes familles de variable qui sont :

- Famille de variables présentant les retards de paiement du solde de la carte de crédit;
- Famille de variables présentant les soldes;

- Famille de variables présentant les montants des achats effectués à l'aide de la carte de crédit;
- Famille de variables présentant les ratios d'utilisation de la carte de crédit.

Famille des retards de paiement

L'analyse de corrélation de la famille de variables présentant les retards de paiement du solde de la carte de crédit permet d'avoir le graphiques suivants :

Figure 1.2: Corrélation famille des retards de paiement

Sur le graphique de corrélation, nous pouvons remarqué quatre variables qui parfaitement corrélées:

- retard_min_6derniers_mois;
- retard_max_6derniers_mois;
- retard_min_12derniers_mois;
- retard max 12derniers mois.

Après analyse, nous avons choisi de sélectionner seulement la variable **retard_min_6derniers_mois** présentant le nombre minimum de jours de retard de paiement du solde de la carte de crédit au cours des 6 derniers mois précédant la date d'extraction des différentes variables.

Famille des soldes

L'analyse de corrélation de cette famille de variables permet d'obtenir le graphique suivant :

Figure 1.3: Corrélation famille des soldes

Le résultat montre un forte corrélation entre les variables **solde_courant_pct_max1to12m** et **solde_courant_pct_max1to6m**, mais entre les variables **solde_courant_pct_moy1to6m** et **solde_courant_pct_moy1to12m**. Dans cette famille de variable, nous allons conserver les variables solde_courant_pct_moy1to6m et solde_courant_pct_max1to12m ainsi que les autres variables non corrélées.

Famille des achats

L'analyse de cette famille donne les résultats suivants :

Figure 1.4: Corrélation famille des achats

Dans ce graphique de corrélation, on voit que les variables **achats_courant_pct_moy_1to6m** et **achats_courant_pct_moy_1to12m**. Nous allons garder la variable achats_courant_pct_moy_1to6m en plus de la variable achats_courant qui n'est pas en corrélation avec les autres variables de la famille.

Famille des ratios d'utilisations de la carte

Lors de l'analyse de corrélation de la famille des ratios d'utilisations de la carte de crédit, nous avons remarqué que les variables sont parfaitement corrélées comme on peut le voir sur le graphique suivant.

Figure 1.5: Corrélation famille des ratio d'utilisations de la carte

En premier lieu, nous avons décidé d'enlever toute les variables portant sur un historique de 12 mois. Puis, après une seconde analyse de corrélation, nous avons décidé d'enlever les variables pct_utilisation_min_1to6m et pct_utilisation_max_1to6m et de sélectionner la variable pct_utilisation_moy_1to6m (moyenne sur le ratio d'utilisation au cours des 6 derniers mois) car celle-ci est plus informative (elle intègre les variables pct_utilisation_min_1to6m et pct_utilisation_max_1to6m).

Corrélation entre variables sélectionnées

Une nouvelle étude de corrélation entre les différentes variables sélectionnées permet d'avoir le graphique ci-dessous.

Figure 1.6: Corrélation des variables sélectionnées

Le graphique montre que les variables achats_courant_pct_moy_1to6m et solde_courant_pct_max1to12m sont parfaitement corrélées. De même, les variables retard_min_6derniers_mois et pct_utilisation_moy_1to6m sont parfaitement corrélées aussi. Nous allons conserver les variables achats_courant_pct_moy_1to6m et pct_utilisation_moy_1to6m pour la suite du projet.

Catégorisation des prédicteurs

Certains algorithmes de modélisation (comme la régression logistique) recommandent fortement de procéder à une catégorisation des variables candidates à l'estimation du modèle. La catégorisation consiste à :

• regrouper des modalités d'une variable qualitative : le regroupement peut se faire selon le profil des différentes modalités (ressemblance du taux de la variable à modéliser au niveau de ces modalités) ou pour des raisons d'affaires (regroupement selon des stratégies d'affaires d'une organisation) ;

• discrétiser une variable quantitative (selon la cible ou raisons d'affaires, pour les mêmes raisons que ci-dessus).

Pour la discrétisation des variables quantitatives, une relation monotone croissante ou décroissante avec la variable à modéliser est généralement recherchée pour une logique d'interprétation. Des relations du type \cap ou \cup sont aussi acceptées car elles indiquent une monotonie décroissante ou croissante jusqu'à un certain niveau (jusqu'à une certaine modalité) et la situation s'inverse pour la suite. Il faut préciser que les modalités obtenues après la discrétisation d'une variable quantitative respectent un certain ordre. Cependant, ce type de relation n'est pas recherché pour une variable qualitative car il n'y a pas d'ordre au niveau des modalités.

Traitement de données manquantes

Dans le cadre de ce projet, les données manquantes ont été analysées cas par cas. Selon leur profil relativement à la variable à modéliser(ici défaut de paiement) et leur proportion, nous les avons isolé dans une catégorie à part ou regroupement avec une autre catégorie si la ressemblance du profil de défaut de paiement (taux de défaut) le justifie.

Regroupement de modalités des variables qualitatives

Variable statut_compte

Cette variable présente deux modalités ayant un profil distinct (voir tableau ci-dessous avec le croisement avec la variable à modéliser). Elle présente le statut du compte du client ($\mathbf{0}$: compte opérationnel et \mathbf{P} compte potentiellement opérationnel). Elle n'a aucune donnée manquante. Cette catégorisation a été maintenue (catégorie $\mathbf{1} = \mathbf{0}$ et catégorie $\mathbf{2} = \mathbf{P}$).

		Défau	t paiement	Total	
		0	1	Total	
	О	22990	511	23501	
statut compte	Р	1177	199	1376	
Total		24167	710	24877	

Table 1.7: croisement des variables statut_compte et defaut_paiement

Sur ce tableau, on observe que le taux de défaut est plus élevé au niveau des comptes potentiellement opérationnels (14.46%) contre 2.17% pour les comptes opérationnels.

Variable type_residence_client

Cette variable a trois modalités ayant un profil distinct (voir tableau ci-dessous avec le croisement avec la variable à modéliser). Elle présente le type de résidence du client. Elle enregistre une proportion de données manquantes dépassant les 50% (le client refuse de déclarer son type de résidence et l'institution financière n'exige pas cette information). Ainsi, les données manquantes ont été isolées dans une catégorie à part.

		Défaut paiement		Total
		0	1	Total
	О	3828	84	3912
type résidence client	Р	4174	108	4282
	R	2154	115	2269
	Manquantes	14011	403	14414
Total		24167	710	24877

Table 1.8: croisement des variables type_residence_client et defaut_paiement

Variable statut_matrimoniale_client

C'est une variable qualitative qui a plusieurs modalités ayant un profil distinct (voir tableau cidessous avec le croisement avec la variable à modéliser). Elle présente le statut matrimonial du client (Marié, Célibataire, Conjoint de fait, ...). Elle enregistre une proportion de données manquantes dépassant les 60% (le client refuse de déclarer son statut matrimonial et l'institution financière n'exige pas cette information). Ainsi, les données manquantes ont été isolées dans une catégorie à part.

		Défau	Total	
		0	1	Total
	0	1186	41	1227
	1	4041	153	4194
	2	2002	33	2035
statut matrimoniale	3	188	3	191
	4	438	12	450
	5	1387	43	1430
	Manquantes	14925	425	15350
Total		24167	710	24877

Table 1.9: croisement des variables statut_matrimonial_client et defaut_paiement

Discrétisation des variables quantitatives

Dans cette partie, nous présentons la discrétisation des variables quantitatives.

Variable retard_courant

L'analyse du taux de défaut des modalités de la variable permet de les regrouper en deux classe : ceux qui n'ont jamais étaient en retard et ceux qui ont accusé au moins un retard dans leurs paiements.

		Défaut paiement		Total
		0	1	Total
	Catégorie 1 : ≤ 0	24089	633	24722
retard courant	Catégorie $2:>0$	78	77	155
Total		24167	710	24877

Table 1.10: croisement des variables retard_courant et defaut_paiement

Variable achats_courant

L'analyse de la distribution de cette variable avec le *taux de défaut* permet de la catégoriser comme suit:

		Défau	t paiement	Total
		0	1	Total
	Catégorie 1 : ≤ 98.58	18831	551	19382
	Catégorie 2 :]98.58 , 255.29]	1773	59	1832
achats courant	Catégorie 3 :]255.59 , 593.78]	1779	52	1831
	Catégorie $4:>593.78$	1784	48	1832
	Total	24167	710	24877

Table 1.11: croisement des variables achats_courant et defaut_paiement

Variable paiements_courant

L'analyse de la distribution de cette variable avec le taux de défaut donne le tableau suivant:

		Défaut paiement		Total
		0	1	Iotai
paiements courant	Catégorie 1 : ≤ 80	16019	481	16500
	Catégorie 2 :]80 , 169.21]	2658	81	2739
	Catégorie 3 :]169.21 , 399.91]	2727	92	2819
	Catégorie $4:>399.91$	2763	56	2819
Total		24167	710	24877

Nous avons procédé de la même manière avec les autres variables.

Modélisation et analyse des résultats

Méthode de modélisation utilisée

La régression logistique est très appropriée pour modéliser des réponses binaires du type «Oui/Non». Elle présente plusieurs avantages, parmi lesquels :

- presque pas d'hypothèses sur les données (ce qui est très pratique à cause du volume de données de plus en plus important et donc de plus en plus exigeant en termes de vérification de certaines hypothèses statistiques);
- coefficients estimés aisément interprétables;
- la discrétisation des variables quantitatives permet de contourner la problématiques des données extrêmes (les données extrêmes sont intégrées dans une catégorie et du coup leur effet devient moins sensible au modèle) et manquantes (les données manquantes peuvent être regroupées dans une catégorie à part si leur proportion est assez acceptable et si leur profil relativement à la variable réponse est très différent de celui des autres modalités de la variable considérée);
- l'équation du modèle est aisément transférable d'un logiciel à un autre pour les besoins de scoring sur de nouvelles données ;
- Etc.

Échantillonnage

En modélisation prédictive, il est primordial d'effectuer l'échantillonnage. Ainsi nous séparons notre table principale en deux échantillons :

- 70% pour l'échantillon d'apprentissage
- 30% pour l'échantillon de test

Nous allons estimer le modèle sur les données d'apprentissage, puis évaluer la performance avec l'échantillon de test.

Estimation du modèle

Comme indiqué précédemment, nous utilisons la régression logistique pour modéliser notre modèle. Nous avons 14 variables candidates à l'estimation du modèle. L'estimation du modèle permet d'avoir les résultats résumés dans le tableau suivant:

Variables	catégories	Coefficients
statut_compte	statut_compte_1	-0.518511
statut_compte	statut_compte_2	0.518738
	type_residence_1	-0.270888
type_residence	type_residence_2	-0.103081
	type_residence_4	0.374197
	statut_matrimonial_1	0.065567
statut_matrimoniale	statut_matrimonial_3	-0.158473
	statut_matrimonial_5	0.093133
retard_courant	retard_courant_1	-0.813538
retard_courant	retard_courant_2	0.813766
	age_client_1	0.234252
age_client	age_client_2	-0.168252
age_enent	age_client_3	-0.451871
	age_client_9	0.386099
	Anciennete_compte_1	0.243254
anciennete_compte	Anciennete_compte_2	-0.085427
	Anciennete_compte_4	-0.157599
	solde_cour_autres_pct_lmte_1	-0.326695
solde_courant_autres_pct_limites	solde_cour_autres_pct_lmte_2	-0.355608
soide_courant_autres_pct_immtes	solde_cour_autres_pct_lmte_3	0.097321
	solde_cour_autres_pct_lmte_4	0.585211
	solde_courant_1	-0.809558
solde courant	solde_courant_2	-0.312736
Soldo_codiant	solde_courant_3	0.393824

	solde_courant_4	0.728697
	achats_courant_1	0.026454
achats_courant	achats_courant_2	0.026120
	achats_courant_3	-0.052346
	achats_cour_pct_moy_1	0.256414
achats_courant_pct_moy_1to6m	achats_cour_pct_moy_2	-0.276224
	achats_cour_pct_moy_4	0.020038
solde_courant_autres	solde_courant_autres_1	0.111851
	solde_courant_autres_2	0.058708
	solde_courant_autres_4	-0.170331
	avances_courant_1	-0.554083
avances courant	avances_courant_2	0.283039
avances_courant	avances_courant_3	0.135634
	avances_courant_4	0.135638
paiements_courant	paiements_courant_1	0.416840
	paiements_courant_3	0.014987
	paiements_courant_4	-0.431599
	pct_util_moy_1	-0.431599
pct_utilisation_moy_1to6m	pct_util_moy_3	-0.081084
	pct_util_moy_4	0.462883

Table 1.13: Résultats estimation du modèle

La valeur de la constante(intercept) est égale à -2.752.

Evaluation du modèle & sélection de variables

L'évaluation du modèle sur les données de test a permis d'avoir une précision (accuracy) de 97%.

La sélection de variable avec la fonction ${\tt RFECV}$ par validation croisée de ${\tt scikit}$ ${\tt learn}$ permet d'avoir le graphique suivant.

Sélection de variable par validation croisée

Figure 1.7: Sélection de variable par validation croisée

Comme le montre le graphique, l'algorithme de la sélection de variable retient **9 variables**. Une nouvelle estimation sur ces variables sélectionnées donne les résultats suivants.

Variables	catégories	coefficients
statut_compte	statut_compte_2	1.234280
retard courant	retard_courant_1	-0.877050
retard_courant	retard_courant_2	0.876939
solde_courant_autres_pct_limite	solde_cour_autres_pct_lmte_4	0.762232
solde courant	solde_courant_3	0.934162
solde_courant	solde_courant_4	1.144191
avances_courant	avances_courant_1	-0.753689
paiements_courant	paiements_courant_4	-0.904899
pct_util_moy	pct_util_moy_4	0.743853

Table 1.15: Estimation des variables sélectionnées

Equation du modèle

À partir des coefficients estimés au niveau de chacune des modalités des différentes variables retenues du modèle final, il est aisé d'écrire l'équation du modèle. C'est cette équation qui va être

utilisée pour les besoins de *scoring* sur de nouvelles données afin de prédire la probabilité de faire défaut de paiement dans un futur horizon de 12 mois après la date d'observation des différentes caractéristiques (variables) du modèle.

En considérant β_i le paramètre de la variable x_i , alors le score se calcul comme suit :

$$score = \beta_0 + \sum \beta_i x_i$$

où β_0 est la constante à l'origine.

La probabilité prédite est donnée par l'équation suivante.

$$proba = \frac{\exp^{score}}{1 + \exp^{score}}$$

Cette équation pourra être intégrée dans une application pour automatiser le calcul du score de chaque client et prédire la probabilité de défaut de paiement pour un nouveau client.

Conclusion

Ce présent projet avait pour objectif de développer un modèle de Credit Scoring permettant de prédire la probabilité de défaut de paiement des nouveaux demandeurs de crédit. Pour cela, nous avons commencé par présenter les données sur lesquelles nous avons travaillé dans ce projet. L'étude de corrélation pour les différentes familles de variables a permis de faire des sélections. L'estimation du modèle a montré une précision intéressante sur l'échantillon de test, ce qui laisse présager que notre modèle répond bien sur de nouvelles données. L'équation du modèle permet de calculer le score de chaque client et prédire la probabilité du défaut de paiement pour un nouveau client. En somme, ce projet m'a permis de mettre en oeuvre mes connaissances sur la régression logistique avec la librairie scikit-learn de python.