Identification and Estimation of Auction Models with Dual Risk-Averse Bidders

May 2025

Can firms be risk averse?

• Huge expenditures on (re-)insurance, hedging, "risk management"

• Compelling structural evidence, most notably in the auctions literature

Bolotnyy and Vasserman, 2023; Luo and Takahashi, Forthcoming; Kim, 2024

• Nevertheless, IO economists are often reluctant to relax risk neutrality

Risk aversion and profit maximization

- One reason: EU models require a departure from profit maximization
 - Profit maximization presupposes a constant marginal utility of wealth
- Yaari (1987) sought to address this tension with dual risk aversion
 - Risk aversion is generated by probability distortion (like in VaR/CVaR)
 - The marginal utility of wealth (read: profits) remains constant
- Widely known, but no prior applications in empirical Bayesian games

This paper: estimate an auction model with dual risk aversion

1. Characterize BNE of first- and second-price auctions

2. Dual counterpart to classic identification results (Guerre, Perrigne, Vuong, 2009)

3. Estimation framework leveraging parallel FPA/SPA bidding

4. Application to USFS timber auctions

Related literature

1. Empirical models of auctions relaxing risk-neutrality

• EU models: Bajari and Hortacsu, 2005; Guerre Perrigne Vuong, 2009; Lu and Perrigne, 2008; Campo et al, 2011; Fang and Tang, 2014; Bolotnyy and Vasserman, 2023; Chen, Gentry, Li, Lu, 2025; Luo and Takahashi, Forthcoming. Non-EU models: Aryal et al, 2018

2. Mechanism design with constant risk aversion

• Gershkov, Moldovanu, Strack, Zhang (2022, 2023a, 2023b)

3. Rank-dependent utility models

• Experiments: Goeree, Holt, Palfrey, 2002; Armantier and Treich, 2009. Consumer choice: Ciccheti and Dubin, 1994; Barseghyan et al., 2013

1. Theoretical framework

2. Identification

3. Estimation

4. Application: USFS Timber Sales

5. Conclusion

Preferences

- x is a random variable on $[0, \bar{x}]$ drawn from $H_x(\cdot)$
- Begin with a rank-dependent utility model (Quiggan, 1982),

$$U(x) = \int_0^{\bar{x}} u'(s) \cdot g(1 - H_x(s)) ds$$

- $u(\cdot)$ is a standard vN-M utility function, while $g:[0,1] \to [0,1]$ is a cdf
- Three special cases:

	$u\left(\cdot\right)$	$g(\cdot)$
Risk-neutrality	Identity	Identity
EU risk-aversion	Concave	Identity
Dual risk-aversion	Identity	Convex

Auction game: key results

- A seller is endowed with a single indivisible good
- *I* symmetric potential bidders with private values $v_i \sim F(\cdot)$
- We characterize monotone, symmetric BNE in the case of dual risk-aversion:

Proposition

- 1. In a SPA with reserve price r, the optimal strategy is $\beta(v_i) = v_i$ if $v_i \ge r$.
- 2. *In a FPA with reserve price r, the optimal strategy is to bid:*

$$\beta(v_i) = v_i - \frac{\int_r^{v_i} g(F^{I-1}(s)) ds}{g(F^{I-1}(v_i))}$$

if $v_i \ge r$. Moreover, $\beta(v_i)$ is greater than the risk-neutral optimal bid.

Discussion

- Auction design implications broadly similar to the EU case
 - Failure of revenue equivalence in favor of FPA
 - Key difference: optimal mechanism entails full-insurance (Gershkov et al 2022)
- In Li, Lu, O'Keefe (2025), we study optimal reserve prices
 - Risk-neutral seller with valuation v_0 , dual risk averse buyers:

SPA:
$$v_0 = r^* - (r^*)^{-1} (1 - F(r^*))$$

FPA: $v_0 = r^* - \left[F(r^*)^{I-1} f(r^*) \right]^{-1} \int_{r^*}^{\bar{v}} \frac{g\left(F(r^*)^{I-1} \right)}{g\left(F(s)^{I-1} \right)} F(s)^{I-1} f(s) ds$

9/42

1. Theoretical framework

2. Identification

3. Estimation

4. Application: USFS Timber Sales

5. Conclusion

Optimal bidding in FPA

• For a bidder with valuation v_i , the optimal bid b_i satisfies:

$$v_{i} = b_{i} + \frac{1}{I - 1} \cdot \frac{Q(b_{i})}{q(b_{i})} \left\{ \frac{Q^{I-1}(b_{i}) \cdot g'(Q^{I-1}(b_{i}))}{g(Q^{I-1}(b_{i}))} \right\}^{-1}$$

• Q is the equilibrrum distribution of bids, and q its density

- Problem: $g(\cdot)$ and $F(\cdot)$ are not separately identified from FPA bids alone
 - Analagous to non-identification of $[u(\cdot), F(\cdot)]$ in the EU model (GPV09)

Two identification strategies

- 1. Exogenous variation in *I* (GPV09)
 - $b(\alpha)$ varies with I, but $v(\alpha)$ does not (similar to GPV09)
 - Can accommodate endogenous *I* with an instrument

- 2. Second price auction data (Lu and Perrigne, 2008)
 - \bullet *F* is identified from the distribution of (winning) SPA bids

- 1. Theoretical framework
- 2. Identification
- 3. Estimation
- 4. Application: USFS Timber Sales
- 5. Conclusion

Estimation with SPA bids

• By integrating over quantiles (Liu Lou 2017, Luo Wan 2018), we obtain:

$$\hat{g}\left(\alpha\right) = \exp\left(-\int_{\log \hat{b}\left(\alpha^{1/(l-1)}\right)}^{\log \hat{b}\left(1\right)} \left[\frac{1}{\hat{\psi}\left(u\right) - u}\right] \cdot du\right)$$

- $\psi\left(\cdot\right)\equiv F^{-1}\left(Q\left(\cdot\right)\right)$ is the statistical mapping from bids to values
- Tuning-parameter free if bid ECDFs are used

• In practice, we use a sieve-based estimator (Chen, 2007) to ensure $g'(\cdot) > 0$

Monte Carlo simulations

Testing framework

1. Specification tests

- Dual utility \Rightarrow pseudo-true $g(\cdot, I)$ is invariant to I for all $\alpha \in [0, 1]$
- EU \Rightarrow pseudo-true $u(\cdot, I)$ is invariant to I for all final wealths

2. Testing for risk aversion

• Dual utility \Rightarrow test for convexity of $g(\cdot)$ using Fang and Seo (2021)

- 1. Theoretical framework
- 2. Identification
- 3. Estimation
- 4. Application: USFS Timber Sales
- 5. Conclusion

Estimated distortion functions

- Null of convexity not rejected in either sample by Feng and Seo (2021) test
- Complements prior work using EU models (Lu and Perrigne, 2008, Campo et al, 2011)

Revenue comparison and optimal reserves

	SPA		FPA: Risk Neutral		FPA: NEU		FPA: EU	
	I=2	I=3	I=2	I=3	I=2	I=3	I=2	I=3
Revenue ($r = 0$)	35,777	49,107	35,665	48,657	39,360	62,496	44,436	67,678
	(1,145)	(2,786)	(1,139)	(2,723)	(1,791)	(5,825)	(8,150)	(8,530)
Revenue ($r = r^*$)	42,553	54,598	42,048	54,452	44,648	64,611	-	-
	(2,024)	(3,598)	(2,053)	(3,583)	(1,718)	(4,569)	-	-
Optimal Reserve r^*	55,029	60,726	55,029	60,726	51,074	55,048	-	-
	(14,489)	(25,045)	(14,489)	(25,045)	(11,353)	(30,690)	-	-

• Risk-neutral model: (1) overstates r^* by $\approx 10\%$; (2) understates benefits of FPA

- 1. Theoretical framework
- 2. Identification
- 3. Estimation
- 4. Application: USFS Timber Sales
- 5. Conclusion

Conclusion

We show how to estimate an auction model with dual risk averse bidders

Appealing for applications in which bidders are profit-maximizing firms

- No more demanding than the EU case, and indeed more tractable
 - Closed form bidding strategies ⇒ simplified counterfactuals
 - Optimal mechanism can be quantified in some cases (Gershkov et al 2022)

Thank you!

Questions/comments: matthew.okeefe@vanderbilt.edu