

相对原子质量

	口 朔: Date:	ា ម្រៈ Time:	姓名: Name:		
初露	锋芒				
1. 对 HD 说法	正确的是()			
A. 是单质	B. 是化	比合物 C. 是	ł混合物 D	. 无法确定	
2. 下列原子中。	中子数最多的是 ()			
A. $^{239}_{94}W$	B. $\frac{235}{92}\lambda$	$C.$ $\frac{23}{9}$	$D. \frac{234}{91}$	Z	
		(等于其他各层电子总			
A. Mg	B. S	C. Na	D. Ar		
4. 已知氮原子的	的质量数是 14,则在	E NH₃D⁺中,电子数、	质子数、中子数之	.比为 ()	
A. 10:7:11	B. 11:1	11:8 C. 10	D:11:8 D	. 11:10:8	
5. 某元素 A 的	(· 微粒结构示意图为	+x 2 8 , 若该微粒是	原子,则 X 等于	,若 X 等于 8 时	计,该微粒的 /
号为。					
6.Na、Na⁺的结	· 阿尔意图分别为		_。上述两种微粒的	最外层电子分别在_	
		定性 NaNa+(填			

根深蒂固

一、相对原子质量

1. 概念:

相对原子质量是以一个碳-12 原子($^{12}_6C$)质量的 1/12 作为标准,任何一个原子的真实质量跟一个碳-12 原子质量的 1/12 的比值,称为该原子的相对原子质量。

相对原子质量是一个比值,其符号为 Ar,在 SI 制中单位为 1,通常省略。

2	同位素的	和4H AH B	写之氏	昌
<i>Z</i> .	吲仫系的	化日入17人	以丁贝	里

同位素的相对原子质量是	
 计算公式 :	
注意:	

(1) 同位素的相对原子质量表示特定原子的相对质量,不表示元素的相对原子质量。例如,一个 17 Cl

原子的质量是 $5.80693 \times 10^{-26} \text{kg}$,一个 ^{12}C 原子的质量的 1/12 是 $1.6606 \times 10^{-27} \text{kg}$,则 ^{35}Cl 相对原子质量

$$=\frac{5.80693\times10^{-26}}{1.6606\times10^{-27}}=34.96887\ .$$

(2) 同位素的相对原子质量≈该同位素的质量数。

3. 元素的相对原子质量

元素的相对	原子质量是
计算公式:	
(式中 A ₁ 、	A ₂ ······为同位素的相对原子质量, a ₁ %、a ₂ %······为同位素的丰度)

注意:

氯元素有两种同位素,这两种同位素的相对原子质量分别为 34.969 与 36.966, 丰度分别为 75.77% 与 24.23%, 因此氯元素的相对原子质量计算如下:

34.969×75.77%+36.966×24.23%=35.453

4.	元麦	的	沂化	以相对	原子	乕瞐
т.	ノロボ	ш:л	<i>.</i>	スリロハコ	<i>1</i> 2N 1	////

元素的近似相对原子质量是
计算公式:

元素的近似相对原子质量计算公式在形式上与元素的相对原子质量计算公式相同,但是公式中的 A_1 、 A_2 ……表示各同位素的质量数,由于质量数与同位素的相对原子质量比较接近,因此在化学计算中,可用元素的质量数近似代替元素的相对原子质量。

注意:

(1) 将两种氯的同位素的相对原子质量,替换成质量数35与37,就可求得氯元素的近似相对原子质量:

 $35 \times 75.77\% + 37 \times 24.23\% = 35.485$

- (2) 氯元素的相对原子质量 35.453 与氯元素的近似相对原子量 35.485 是非常接近的。
- (3) 课本附录的国际相对原子质量表为元素的相对原子质量,而不是同位素的相对原子质量。

【练一练】

关于氯元素的各种天然同位素的相对原子质量等数据如下表:

³⁵ Cl	34.969	75.77%	³⁵ C1	35	75.77%
³⁷ Cl	36.966	24.23%	³⁷ Cl	37	24.23%
平均	3:	5.453	平均	35.4	85

试回答下列问题:

- (1) 34.969 是表示
- (2) 35.453 是表示
- (3) 35 是表示
- (4) 35.485 是表示
- (5) 24.23%是表示;
- (6) 列出计算 35.453 的算式: ;
- (7) 列出计算 35.485 的算式:

十字交叉法计算的式子如下:

 $n_1: M_1 \ M_2 - M$ $M_2 - M$ $n_2: M_2 \ M - M_1$ $n_1/n_2 = (M_2 - \overline{M})/(\overline{M} - M_1)$

二、十字交叉法

十字交叉法是进行二组分混合物平均量与组分计算的一种简便方法。凡可按 $M_1n_1+M_2n_2=\overline{M}$ (n_2+n_2) 计算的问题,均可按十字交叉法计算。

式中,M表示混合物的某平均量, M_1 、 M_2 则表示两组分对应的量。如M表示平均相对分子质量, M_1 、 M_2 则表示两组分各自的相对分子质量, n_1 、 n_2 表示两组分在混合物中所占的份额, n_1 : n_2 在大多数情况下表示两组分的物质的量之比,有时也可以是两组分的质量之比,判断时关键看 n_1 、 n_2 表示混合物中什么物理量的份额,如物质的量、物质的量分数、体积分数,则 n_1 : n_2 表示两组分的物质的量之比;如质量、质量分数、元素质量百分含量,则 n_1 : n_2 表示两组分的质量之比。

1. 宜用范围:

- (1) 根据二元混合物的平均分子量,求两元的物质的量之比,若为气体也即体积之比。
- (2)根据只含2种同位素的元素的平均原子量,求两种同位素原子的个数比或物质的量之比或在自然界 中的百分含量(也称作丰度)

2. 题目中运用:

(1) 若题目要求两种同位素原子的质量之比,可先用十字交叉法求出物质的量之比后,再分别乘以各原 子的摩尔质量。

$$\frac{\mathbf{m}_{\mathrm{A}}}{\mathbf{m}_{\mathrm{B}}} = \frac{\mathbf{n}_{\mathrm{A}} \cdot \mathbf{M}_{\mathrm{A}}}{\mathbf{n}_{\mathrm{B}} \cdot \mathbf{M}_{\mathrm{B}}} = \frac{(\mathbf{M}_{\mathrm{B}} - \overline{\mathbf{M}}) \cdot \mathbf{M}_{\mathrm{A}}}{(\overline{\mathbf{M}} - \mathbf{M}_{\mathrm{A}}) \cdot \mathbf{M}_{\mathrm{B}}}$$

(2) 若提供的是两种同位素原子的质量分数 A%、B%, 要求元素的平均原子量,则可用如下列关系直接 求解.

$$\overline{M} = \frac{m_{\text{B}}}{n_{\text{B}}} = \frac{100}{\frac{A'}{M_A} + \frac{B'}{M_B}} \text{g/mol}$$

【练一练】

某元素 R 有两种同位素 10 R 与 11 R,已知 R 元素的近似相对原子质量为 10 8,该元素的两种同位素原 子的物质的量之比为 (

A. 1: 3 B. 1: 4 C. 1: 5 D. 2: 3

三、物质的量的计算

1. 物质的量

物质的量是用来描述微粒集体的物理量,是国际单位制中七个基本物理量之一,是一个整体名词,用符号 表示。物质的量是一个专用名词,不同于物质的质量,也不同于物质的数量,不单纯只有数目或质量 的含义,是一个特殊的物理量。摩尔是物质的量的单位,简称摩,用符号表示。 ,可用 来表示,其值等于 。 阿伏伽德罗常数是指 物质的量=<u>(____</u>) 阿伏伽德罗常数

摩尔和其他基本计量单位一样,有倍数单位和分数单位

1kmol= mol 1mol= mmol

2. 摩尔质量

摩尔质量是指1摩尔物质所具有的质量.

摩尔用符号 表示,常用单位是 。

摩尔质量(以 g/mol 为单位)在数值上等于该物质的相对分子质量。

摩尔质量与物质的量之间有如下关系

物质的量 (n) = (

3. 平均摩尔质量

平均摩尔质量是指混合物的摩尔质量,即1摩尔混合物的平均质量称为该混合物的平均摩尔质量,可 用 \overline{M} 表示,单位: g/mol。

若混合物由多种物质 $A \times B \times C \dots$ 组成,物质的量分别为 $n(A) \times n(B) \times n(C) \dots$ 则有:

$$\overline{M} = \frac{n(A) \cdot M \quad (A) + n(B) \cdot M \quad (B) + n(C) \cdot M \quad (C) + \cdots}{n(A) + n(B) + n(C) + \cdots}$$

$$= M \quad (A) \times \frac{n(A)}{n(A) + n(B) + n(C) + \cdots} + \frac{n(B)}{n(A) + n(B) + n(C) + \cdots} + \cdots$$

$$+ \frac{n(C)}{n(A) + n(B) + n(C) + \cdots} + \cdots$$

則 $\overline{M} =$

式中 A%, B%, C%……分别表示 A、B、C……的物质的量分数。

4. 物质的量、物质的质量、摩尔质量、微粒数目间的关系如下:

【练一练】

1. 下列物质中,物质的量最多的是 ()

A. 4℃时 10mL 的水 B. 0.8 克硫酸 C. N_A 个氧分子 D. 54g 铝单质

2. 36 克的 H_2O 和 20 克的 D_2O 所含质子数之比为 , 分子中所含中子数之比为 , 所 含 氧 原子之比是____。

枝繁叶茂

	1: 相对原 动 动 动 动 动 动 动 动 动 动		¹¹ B,硼元素的相对	原子量 10.8,则	硼 ¹⁰ B 所占的质量分)数为 ()
A.	20%	B. 80%	C. 小于 20%	D. 无法	确定	
变式 1: (铜有两种天然	対同位素 ⁶³ Cu 和	⁶⁵ Cu,铜的相对原子	之质量为 63.5,「	则 ⁶³ Cu 原子占的原子	子个数百分比是
Α.	20%	B. 25%	C. 30%	⁄o	D. 75%	
变式 2: 量分数 <i>)</i>		丙种同位素,可分)	≻别表示为 ⁸⁵ R 和 ⁸⁷ F	R,若 R 的近似	相对原子质量为 85.5	5 则 ⁸⁵ R 原子的质
Α.	75%	B. 25%	C. 74.6%	D. 64.7	%	
			种质量数分别为 191 (¹⁹¹ Ir: ¹⁹³ Ir)应为		素,而铱的近似平均]相对原子质量为
Α.	61:39	B. 39:61	C. 1:1		D. 39:11	
	天然碳元素的	的相对原子质量为	y 12.01,若在自然界	P碳元素有 ¹² ℃、	¹³ C 两种同位素,贝	則 ¹² C 与 ¹³ C 的质
Α.	等于1:99	B. 大于 9	9: 1 C. 等于	于 99: 1	D. 小于 99: 1	
		寸分子质量为 M, 勺原子个数比为_		两种同位素原于	子 ^a X 和 ^b X(a>b),	则 ^a X 和 ^b X 两和
			子单质分子共有三种	,其相对分子质	质量分别为 70、72、	74,它们的物质
			其质量数分别为	。各同位	素所占的原子个数百	百分数分别为
		目对分子质量是_	o			
此三种阜		量之比为 1: 1: 2	(分子有三种,其相) 1. 由此推断以下结		为 158、160、162, : ()	在天然单质中,
		素质量数为 80 179 的同位素原-	子占原子总数的 1/2			

D. 此元素单质的平均相对分子质量为 160

A. ag/mol

变式	2:	氯	只有	ī ³⁵ C	1和 ³⁷	Cl 两	种稳	定同	目位素	,它们	门在氯	貳气	中的]原子	一数之[北为	3: 1.	则相	对分	子质量	量为 7	0, 72,
					比可能)													
	A.	5:	2:	1		В.	5:	2:	2		C.	9:	3:	1		D.	9: 3	: 4				
【方	「法:	提炼	东】																			
	元素	素的	相多	付原-	子质量	为该	元素	各科	中核素	的相	对原子	子质	量的	7平均	自值。元	- 由于	质量	数与同	司位方	素的相	目对原	子质量
															5相对,							
																		具有	a ₁ X-	⊦a ₂ Y=	a(X+	Y)的关
																					•	与Y的
												17										所得的
含义	如了	F:	1)	当 a _i :	为质量	分数	时,	$\frac{X}{y}$	川为原	量之	比; (2)当	a _i 3	为相》	付原子	质量	或相又	 分子	一质量	赴时 ,	$\frac{X}{}$ \mathbb{N}	为分子
或原								V													V	
知识	点	2:	物	质的	勺量的	讨计第	Ĭ															
题型	1:	分	子、	原	产、中	子、原	质子.	、电	子个	数的图	 											
【例	1】	下	列余	双述中	中错误	的是	()													
	Α.	H_2	SO ₄	的摩	[尔质]	量是9	98				B.	3m	olN()和	2molN	IO ₂ 倉	原子	数相同	司			
	C.	等点	质量	量的(O ₂ 和()3 所含	含氧原	原子-	个数	泪同	D.	物点	质的	量的	CO 利	ГСО	2中所	含碳质	原子	数相等		
.																						
					凤原子)	·										
					2:1 的		\square O_2			В.	_		_		_ ~_							
	C.	128	gNC) 和 !	9.8gH ₂	2SO ₄				D.	物质	〔的〕	量相	间的	O ₃ 和	O_2						
变式	2:	判	断门	「列训	总法是	否正码	角															
	(1) 柞	示准	状况	上下,1	l4g 氮	气含	有自	内核夕	ト电子	数为	5N	\)							
	(2) 1	8gI	O ₂ O ¹	中含有	的质	子数	目为	J 10N	(A)										
	(3) 0).1n	nol 81	Br 原-	子中含	中于	ご数え	为 3.5	×6.02	×10 ²³	()								
	(1	\ 0	. D	o	小人士	54 da 7	ておたゝ	L 53	т (
	(4	·) 9	gD ₂	2O +	含有	切吧刀	一致力	J 21	NA ()											
题型	2:	与	Na	相关	值的	 																
【例	2]	mg	氢	气含	有 n ′	个 氢原	〔子,	则阝	可伏力	1德罗	常数	(N	A) ;	为	()						
	Α.				В					n/m												
		11			Б	- 11			Ο.	11/111			ט	. 411								
K	1	/ 111	甲 -	_ 人 怎	f 百 <i>二</i> .	的医耳	皇 4	0.00	回复	的麻	5 医毛	를 꾸-	(N T	* 丰-	示阿伏	An ⁄赤	四 告 *	h 65 米	r估 \	(`	`	

C. a/N_A g/mol

B. aN_A g/mol

D. N_A/a g/mol

变式 2: 已知 1gN ₂ 含	îm 个分子,则阿伏伽德	总罗常数为 (
A. m/28	B. m/14	C. 14m	D. 28m	
题型 3:综合				
【例3】重水的组成	为 D ₂ O,则			
(1) 0.2mol 重水中行	含中子数为。			
	 行的物质的量为	o		
(3) 100 个重水分子	产和 100 个普通水分子的]质量之比为	_,电子数之比为。	
变式1:核内中子数	为 N 的 R ²⁺ 离子,质量数	数为 A,则 ng 它的氧值	化物中所含质子的物质的量是	mol
变式 2: 判断下列说	法是否正确:			
(1) 14g氮气口	中含有 7NA 个电子 (
(2) 20g重水	(D ₂ O) 中含有的电子数	(为 10N _A (
(3) 常温常压-	下,4g 氦气所含有的中-	子数目为 4N。)	
	下 22.4 L H ₂ 中含中子数;			
(サノ 4/11年代)に	22. 7 L 11 ₂ E F J 3 0	79 21 1 A		
知识点 3: 同位素	相互组合的种类问题	Ţ		
【例1】已知自然界	氧的同位素有 ¹⁶ O、 ¹⁷ O	、 ¹⁸ O,氢的同位素有	H、D、T, 从水分子的原子组成为	
界的水一共有	种。			
成的二氧化碳分子中	, 其相对分子质量最多	有 ()	中同位素 : ¹⁶ O、 ¹⁷ O、 ¹⁸ O,由这六	、种微粒构
A. 18 柙	B. 6种	C. 7 柙	D. 12 种	
	有 3 种同位素: ¹ H、 ² H 1种水中分子量有		位素: ¹⁶ O、 ¹⁷ O、 ¹⁸ O,那么水的和	中类最多有

瓜熟蒂落

1.	找国	1科学工作者在世界上首先	E发现铂的一种新同位素 $\frac{20}{8}$ Pt,卜列说法中止确的是 ()	
	A.	²⁰² Pt 相对原子质量为 20	2	
	В.	^{20 2} Pt 的原子质量为 202		
	C.	铂元素的质量数为 202		
	D.	202Pt 的原子核内有 124~	个中子	
2.	国际	元素相对原子质量表上查	f得 C 是 12.01, 这是指碳的 ()	
	A.	质量数	B. 相对原子质量	
	C.	同位素的相对原子质量	D. 平均相对原子质量	
3.	某元	E素的相对原子质量为 101	.1,其原子的核电荷数为 44,下列说法正确的是 ()	
	Α.	此元素原子质量数为 10		
	В.	此元素原子有 44 个电子		
	C.	此元素原子核内有 57 个	中子	
	D.	1mol 此元素的一种原子	的质量为 101.1g	
4.	1993	3年8月国际原子量委员会	会确认我国张青莲教授测定的锑原子量(127.760)为标准原子量,已知锑有	两
种	以上	天然同位素,则 127.760 🤊	륃 ()	
	A.	按照锑的各种天然同位为	素的质量数与这些同位素所占的原子百分比计算出来的平均值	
	В.	按照锑的各种天然同位義	委的原子量与这些同位素所占的原子百分比计算出来的平均值	
	C.	一个锑原子的质量是它与	同 12℃ 原子质量的 1/12 的比值	
	D.	锑元素的质量是它与 ¹² 0	原子质量的 1/12 的比值	
5.	某元	法素天然同位素原子 A 中共	共有 96 个微粒,其中 36 个微粒不带电,A 的相对原子质量接近()	
	A.	36 B. 30	C. 66 D. 60	
6.	原子	产序数为 47 的银元素有两	种同位素,它们的原子百分比近似相等。已知银元素的近似相对原子质量	为
10	8,则	每种同位素原子里的中寸	一 数分别为 (
	Α.	109和107 B. 5	7和63 C. 58和68 D. 60和62	

7.	铜有天然同位素 ^{6,3} Cu 和 ^{6,5} Cu, 参考铜的相对原子质量 63.5, 估算 ^{6,3} Cu 的质量分数约为%	
	A. 20 B. 25 C. 66.7 D. 75	
8.	下列叙述中正确的是 ()	
	A. 含有相同质子数的微粒,一定是同种元素的原子或离子	
	B. 电子数相同的原子,一定是同种元素的原子	
	C. 质子数和电子数都相同的微粒,可能是分子和离子	
	D. 含有不同中子数的微粒一定属于同位素	
9.	元素 X 形成的气态 X_2 分子共有 3 种,其相对分子质量依次为 70 、 72 、 74 ,此 3 种分子的物质的量之比	七为
9:	6: 1,据此,下列说法正确的是 ()	
	A. X有3种同位素	
	B. 其中一种同位素的质量为 36	
	C. X ₂ 的平均相对分子质量为 72	
	D. 质量数为 35 的同位素的原子百分数为 75%	
10	. 某原子的质子数为 \mathbf{Z} ,中子数为 \mathbf{N} 。 $\mathbf{N}_{\mathbf{A}}$ 为阿伏伽德罗常数,下列说法正确的是 ()	
	A. 该元素的相对原子质量为 N+Z	
	B. 该元素的近似相对分子质量为 N+Z	
	C . 该元素一个原子的质量近似为($N+Z$) / N_A	
	D. 该原子的质量数为 N+Z	
11.	. 在一定条件下,完全分解下列某化合物 2g,产生氧气 1.6g,此化合物是 ()	
	A. ${}^{1}H_{2}^{1}{}^{6}O$ B. ${}^{2}H_{2}^{1}{}^{6}O$ C. ${}^{1}H_{2}^{1}{}^{8}O$ D. ${}^{2}H_{2}^{1}{}^{8}O$	
12	. 某原子核内的质子数为 m, 中子数为 n, 则下述论断正确的是 ()	
	A. 原子核内中子的总质量小于质子的总质量	
	B. 该原子的质量数等于 m - n	
	C. 该元素的相对原子质量近似等于 m+n	
	D. 该原子的相对原子质量近似等于 m+n	

13. 日本福岛第一核电站发生严重的核转	區射泄漏,日本政府向核电站附近居民发放碘片(127I),以降低放射性								
碘对人体的伤害,已知放射性碘(¹³¹ I)的核电荷数为53,则下列说法正确的是 ()									
A. ¹²⁷ I 与 ¹³¹ I 互为同素异形体	A. ¹²⁷ I 与 ¹³¹ I 互为同素异形体								
B. ¹³¹ I 和 ¹³¹ Xe 互为同位素	B. ¹³¹ I 和 ¹³¹ Xe 互为同位素								
C. 131 I 原子的中子数为 78	C. ¹³¹ I 原子的中子数为 78								
D. ¹²⁷ I 原子和 ¹³¹ I 原子的相对原子原	D. 127 I 原子和 131 I 原子的相对原子质量相同								
14. 某元素原子的质量数为 A, 它的阴隔	离子 X^{n-} 核外有 x 个电子, w 克这种元素的原子核内中子数为(
)									
A. $\frac{A(A-x+n)}{w}$ mol	B. $\frac{w(A+x-n)}{A}mol$								
C. $\frac{w(A-x+n)}{4}mol$	D. $\frac{w(A-x-n)}{A}mol$								
A	A								
15. "神舟七号"的燃料是氢化锂三兄弟	- LiH、LiD、LiT. 其中 Li 的质量数为 7, 对这三种物质的下列说								
法正确的是 ()									
A. 质子数之比为 1: 2: 3	B. 中子数之比为 1: 1: 1								
C. 摩尔质量之比为 8: 9: 10	D. 化学性质不相同								
16. 某元素的原子形成的离子可表示为"	Zx'',下列说法正确的是()								
A. $_{b}^{a}x^{n}$ 含有的中子数为 b									
B. ^a _b x ⁿ 含有的电子数为 a - n									
C. X 原子的质量数为 a+b									
D. 一个 X 原子的质量约为 $\frac{a}{6.02 \times 10}$	$\frac{1}{2}$ g								
17. 自然界中氯化钠是由 ²³ 11 Na 与 ³⁵ 17 Cl	和 37 ₁₇ Cl 所构成的. 已知氯元素的相对原子质量是 35.5 ,则 11.7 g 氯化								
钠中,含 ³⁷ 17Cl 的质量为 ()									

A. 1.5g B. 1.65g C. 1.75g D. 1.85g

	A. ²³² Th 转换成 ²³³ U 是化学变化
	B. ²³⁰ Th 和 ²³² Th 的化学性质几乎完全相同
	C. Th 元素的质量数是 232
	D. Th 元素的相对原子质量是 231
19.	阴离子 X^n 含中子 N 个, X 的质量数为 A ,则 mgX 元素的气态氢化物中含质子的物质的量是(
	A. $\frac{A}{M}(n-N)mol$ B. $\frac{m}{A+N}(n+N)mol$ C. $\frac{m}{A+n}(A-N+n)mol$ D. $\frac{A}{m+N}(m+n)mol$
20.	下列说法中不正确的是()
	①质子数相同的微粒一定属于同一种元素
	②同位素的性质几乎相同
	③质子数相同,电子数也相同的两种微粒,不可能是一种分子和一种离子
	4 电子数相同的微粒不一定是同一种元素
	⑤某元素一种同位素原子的质子数为 m,中子数为 n,不能由此确定该元素的相对原子质量.
	A. 23 B. 124 C. 12 D. 345
21.	标准状况下,下列关于等质量 H_2 、 D_2 、 T_2 (H 、 D 、 T 分别为氕、氘、氚)三种气体的叙述不正确的是
	A. 相对分子质量之比 1: 2: 3 B. 质子数之比 2: 3: 6
	C. 中子数之比 0: 3: 4 D. 体积之比 6: 3: 2
22.	许多元素有多种核素,如氧元素存在 $^{16}8$ O、 $^{17}8$ O、 $^{18}8$ O 三种核素,氢元素有 $^{1}1$ H、 $^{2}1$ H、 $^{3}1$ H 三种原子,下
列访	总法正确的是 ()
	A. 由 $^{16}8$ O、 $^{1}1$ H、 $^{2}1$ H 三种核素最多可能组成 4 种水分子
	B. $10.0g$ 由 2_1 H、 ${}^{16}_8$ O 组成的水分子其中含质子数为 $5N_A$
	C. $10.0g$ 由 ${}^{3}{}_{1}$ H、 ${}^{16}{}_{8}$ O 组成的水分子其中含中子数为 $5N_{A}$
	D. 由 3 ₁ H 和 16 ₈ O 两种核素组成的水分子,其摩尔质量为 18

18. 230 Th 和 232 Th 是钍的两种同位素, 232 Th 可以转化成 233 U. 下列有关说法正确的是 ()

1,下列判断正确的是 ()(双选)

	٨	M 元素有	デュ手 曲	同位法	Ė.											
						NV. N. a	-									
		3. M的 1 种同位素原子的质量数为 36														
	C.	质量数为	7 35 貸	的同位为	素所占的	り原子を	计数为	75%								
	D.	M ₂ 的平均	匀相对	付分子原	质量为7	1										
24.	氯ラ	元素在自然		i ³5C1 ₹	和 ³⁷ C1 丙	丙种同 位	立素,	在计算式	34.96	69×75.77	7%+36.	.966×2	4.23%=3	35.453 中	()
	A.	75.77%表	表示 35	iCl 的原	质量分数	[
	В.	24.23%表	表示 35	C1 的非	上度											
	C.	35.453 表	示氯	元素的	力相对原	子质量										
	D.	36.966 表	示 37	Cl 的质	5量数											
25.	某テ	元素 1 个原	京子的]质量是	ag, ∫	ス知 1 ′	↑ ¹² C J	原子的质:	量为1	g, N _A	表示阿	「伏加 征		,则下 歹	刊各式中	⋾能
表示	卡该 原	原子的相双	讨原子	² 质量数	数值的是	<u>!</u> ()									
				(1) $\frac{a}{}$	<u>.</u>	12a	3)aN4	$\textcircled{4}\frac{12b}{a}$								
		0.0			A											
	A.	12		В. (1	1)(4)	C	. (2)(4)	D.	23						
26.		在高温下		_							<u>!</u> ()			
	A.	$\frac{24b}{a-b}$		B. $\frac{a}{a}$	$\frac{48b}{1-b}$	C	$\frac{a-}{24}$	$\frac{b}{b}$	D.	$\frac{48b}{a-2b}$						
27.	某え	元素气态氢	氢化物	加的化学	学式为 F	CH3, 它	Z的最高	高价氧化4	物中台	含氧 74%	6,则]	R的相	对原子	质量为())
	Α.	7	В.	14	C.	31	D.	75								
		,	2.				2.	, 0								
28.	某え	元素 X 的:	最高的	介氧化物	物的分子	子式为:	X_2O_5 ,	在它的 ^左	[态氢	化物中	含氢 3.	.85%,	则该元	素的相对	原子质	量
为	()														
	Α.	14	В.	31	C.	74.9	D.	121.8								
20	1000 包	言 彗星上破	是的西	i 种同石	☆麦 12℃	和 13℃	的原子	个粉レキ	165.	1 而糾		2~和1	□3℃ 的百	子个粉目	火为 80.	1
		_{罗马生工物} 炭元素的原												. 」 双 儿	1/J U7:	1,
بدالم المار	N_L_1	火ノし お ロリル	17 1	17.1 小/ 5	主化 12.1	J11, 刀	HAPIE	#ヨ生上1	ツベノロえ	r III) III J	4日 ~1 ル	《里疋	()			

23. 某元素 M 所形成的气态分子 M_2 有 3 种,其相对分子质量分别为 70、72、74,它们物质的量之比是 9: 6:

A. 12.000 B. 12.009 C. 12.015 D. 12.980

30.	元素在自然界有 35Cl 和 31Cl 两种同位素,在以下关于计算式说法中正确的是:
34.9	69x75.77%+36.966x24.23%=35.453 ()
	A. 75.77%表示 15Cl 的质量分数
	B. 24.23%表示 35Cl 的浓度
	C. 36.966 表示 37Cl 的质量数
	D. 35.453 表示氯元素的相对原子质量
31.	氯元素在自然界有 ³⁵ Cl 和 ³⁷ Cl 两种同位素,在计算式 34.969×75.77%+36.966×24.23%=35.453 中(
	A. 75.77%表示 ³⁵ Cl 的质量分数
	B. 35.5 表示氯元素的近似相对原子质量
	C. 24.23%表示 35Cl 的丰度
	D. 36.966 表示 ³⁷ Cl 的质量数
32.	已知 1.505×10^{23} 个 X 气体分子的质量为 $8g$,则 X 气体的相对分子质量是 ()
	A. 16 B. 32 C. 64g/mol D. 32g/mol
33.	某元素 R 的最高价氧化物的化学式为 R_2O_5 ,已知其气态氢化物含氢 8.8% ,则元素 R 的相对原子质量为
	A. 14 B. 28 C. 31 D. 35.5
34.	由 ¹² C、 ¹⁴ C、 ¹⁶ O、 ¹⁷ O、 ¹⁸ O 组成的 CO ₂ 分子的相对分子质量有 ()
	A. 6种 B. 7种 C. 11种 D. 12种
35.	1 个 H ₂ SO ₄ 分子含有个 H 原子,则 1mol H ₂ SO ₄ 含有molH 原子,个 H 原
子。	1 个 H ₂ O 分子含有个质子, 0.5mol H ₂ O 含有mol 质子,个质子, 通常含有
	mol 中子。0.15molT ₂ O 中含有mol 质子,mol 中子。17 克 H ₂ S 所含的 H 原子跟
	克 HCl 的 H 原子相同。
36.	Y 元素 1 个原子的质量是 m 克, X 元素的原子量为 A ; 化合物 X_2Y_3 的式量的 M ,则 wgX_2Y_3 中含有 Y 的
原子	·数是。
	A、B两元素相对原子质量之比为7:2,由它们组成的化合物中,A、B两元素的质量之比为21:8,则这中元素形成的化合物的化学式是。
1.4.1	V
38.	已知 a mol O_2 分子中含有 b 个电子,则阿伏伽德罗常数可表示为。

39.	若一个 12C 原子的质量为 ag	, —	个 X 原子的质量为 bg ,	阿伏伽德罗常数用 N _A 表示,	则X的摩尔质量
为	或。	o			

40. 某元素 E 的相对原子质量近似为 M,有质量数分别为 m 和 n 的两种原子,则 m E 和 n E 在自然界中的原子数比约为_____。

