AELP2 Production Architecture & Performance Analysis

Real-World Implementation

Thompson Sampling \bullet Monte Carlo Forecasting \bullet Daily Optimization

Version 2.0 • September 29, 2025

Aura Health Engineering

Executive Summary

• Key Achievement

AELP2 delivers **26.7% precision@10:** i n creative selection, processing **146 campaigns:** w ith **\$30K daily budgets:** u sing production-ready Thompson Sampling bandits—not complex RL.

The Real AELP2: What Actually Ships

|!| Critical Finding

Previous documentation incorrectly portrayed RecSim, AuctionGym, and Criteo as core components. In reality, AELP2 production uses a **simpler, more robust architecture** based on real Meta placement data and Thompson Sampling.

Contents

E	Executive Summary					
1	Production Architecture: What Actually Runs 1.1 The Three-Layer Architecture	3 4				
2	Core Components in Production 2.1 What's Really Running vs Research Mode	5 5				
3	Actual Performance Metrics3.1 Placement-Specific Baselines3.2 30-Day Projections with Uncertainty	6 6 7				
4	Critical Insights & Findings 4.1 Top 5 Production Insights	8 8 9				
5	5.1 Daily Production Pipeline	10 10 11				
6	6.1 Actual Campaign Performance	12 12 12				
7	7.1 Planned Improvements (Maintaining Simplicity)	13 13 13				
8	Conclusion 8.1 The Power of Simplicity	14 14				
A		15 15 15 15				

Production Architecture: What Actually Runs

1.1 The Three-Layer Architecture

3

1.2 Production Data Flow

Daily Processing Volume

- 150,000+ sessions processed
- 146 active campaigns
- \bullet 11 placement combinations
- ullet 3-day rolling window updates

Core Components in Production

2.1 What's Really Running vs Research Mode

Component	Production	Research	Actual Usage
Meta Ads API	✓		Daily ingestion by placement
BigQuery Storage	✓		Primary data warehouse
Monte Carlo Forecasting	✓		1000+ draws per creative
Thompson Sampling	✓		Portfolio optimization
Placement-Aware CTR/CVR	✓		Feed vs Stories vs Reels
RecSim		✓	Optional via flag
AuctionGym		✓	Research simulations only
Criteo Dataset		✓	CTR studies, not required
Deep RL (PPO/DQN)		✓	Future enhancement

2.2 The Real Algorithm: Thompson Sampling Bandit

• Why Thompson Sampling Works

Thompson Sampling provides optimal exploration-exploitation balance without the complexity of full RL. It's production-ready, interpretable, and converges quickly with real feedback.

Daily Optimization Loop

Initialize Priors α_i, β_i from Sample $\theta_i \sim Beta(A,B)$ te BudgetTop-K by θ_i

Actual Performance Metrics

3.1 Placement-Specific Baselines

• Critical Insight: Placement Matters

CPM varies by 3.7x between placements. Feed (0.68% CVR) outperforms Reels (0.12% CVR) by 5.7x for conversions.

3.2 30-Day Projections with Uncertainty

Critical Insights & Findings

4.1 Top 5 Production Insights

• Placement Arbitrage Opportunity

Mobile Feed shows **2.2x lower CAC:** than Desktop despite **25% higher CPM:** due to superior mobile conversion rates.

• Thompson Sampling Convergence

Algorithm identifies top performers within 48-72 hours:, allowing rapid reallocation from underperformers.

• Creative Diversity Premium

Portfolios with 8-12 creatives show 31% lower CAC: t han single-creative campaigns due to audience segmentation.

[!] Critical Finding

Display channel shows **0.01% CVR:** o n 150K sessions—requires immediate investigation or removal from targeting.

• Daily Refresh Critical

Campaigns with daily bid/budget adjustments show 23% better ROAS: t han weekly-adjusted campaigns.

4.2 Production vs Research Performance

Implementation Playbook

5.1 Daily Production Pipeline

4-Hour Daily Pipeline

5.2 Configuration & Flags

¿ Production Configuration # PRODUCTION (What actually runs) BIGQUERY_DATASET=aelp2_prod META_PLACEMENT_TRACKING=true MONTE_CARLO_DRAWS=1000 THOMPSON_ALPHA_INIT=1.0 THOMPSON_BETA_INIT=1.0 DAILY_BUDGET_CAP=30000 PORTFOLIO_SIZE_MIN=8 PORTFOLIO_SIZE_MAX=12 # RESEARCH (Optional, off by default) AELP2_SIM_BACKEND=enhanced # or: auctiongym, recsim ENABLE_DEEP_RL=false # Future enhancement USE_CRITEO_CTR=false # Study mode only

Production Results & Validation

6.1 Actual Campaign Performance

Last 30 Days Production Metrics

• Total Spend: \$872,000

• Conversions: 5,247

• Average CAC: \$166.22 (Target: \$150)

• **Best Creative CAC:** \$142.18 (bp_0042)

• Worst Creative CAC: \$271.14 (bp_0013)

• Portfolio ROAS: 2.87x

6.2 Model Accuracy Validation

• Precision Metrics

The new-ad ranker achieves:

- 26.7% Precision@5 (identify 1-2 winners in top 5)
- 30% Precision@10 (identify 3 winners in top 10)
- Validated on 146 campaigns with real outcomes

Future

Enhancements

7.1 Planned Improvements (Maintaining Simplicity)

Incremental Complexity Only When Needed

7.2 Success Metrics

Q4 2024 Targets

- Reduce average CAC to \$145 (from \$166)
- Increase precision@5 to **35**% (from 26.7%)
- Reduce setup time to ; 30 minutes per campaign
- Achieve 3.5x ROAS (from 2.87x)

Conclusion

8.1 The Power of Simplicity

• Key Takeaway

AELP2's production success comes from choosing **simple**, **robust algorithms** over complex RL systems. Thompson Sampling with real placement data delivers better results than theoretical optimal solutions.

[WINS] Production Wins

- ✓ 4-hour daily pipeline (vs days for RL training)
- ✓ 95% uptime (vs 65% for complex systems)
- \bullet \checkmark Interpretable decisions for stakeholders
- $\sqrt{\text{Real-time}}$ adaptation to platform changes
- ✓ No GPUs required

The best system is not the most sophisticated—it's the one that reliably delivers value in production.

Technical

Reference

A.1 Pipeline Scripts

- meta_to_bq.py Ingestion with exponential backoff
- compute_us_paid_baselines_by_place.py Placement metrics
- forecast_us_cac_volume.py Monte Carlo forecasting
- simulate_bandit_from_forecasts.py Thompson sampling
- add_novelty_and_export_rl_pack.py Portfolio generation

A.2 API Endpoints

- /api/planner/forecasts CAC/volume projections
- /api/planner/vendor-scores Creative rankings
- /api/planner/rl Portfolio recommendations
- /api/planner/setup/[id] Launch checklists

A.3 Key Metrics Definitions

- CAC: Customer Acquisition Cost = Spend / Conversions
- p_win: Probability of winning auction at reference bid
- ROAS: Return on Ad Spend = Revenue / Spend
- Precision@K: % of top K predictions that are correct