#### ANALISIS POLA PERGERAKAN DI KOTA DENPASAR

# Putu Alit Suthanaya dan Candra Maulidawati

Program Studi Teknik Sipil Universitas Udayana Email: suthanaya@unud.ac.id

ABSTRAK: Kota Denpasar kian berkembang dari kota kecil, kota besar dan bersama kabupaten disekitarnya membentuk Kota Metropolitan. Untuk mengantisipasi kebutuhan infrastruktur transportasi di masa mendatang, maka diperlukan untuk mengkaji pola pergerakannya. Pada penelitian ini dibuat dua pemodelan transportasi yaitu distribusi perjalanan (*trip distribution*) dan pemilihan rute (*trip assignment*). Tujuan dari penelitian ini adalah memprediksi distribusi perjalanan dan pembebanan lalu lintas pada jaringan jalan di Kota Denpasar di masa mendatang. Dalam penelitian ini dimodelkan dengan bantuan *software* Visum versi 15. Adapun metode yang digunakan untuk analisis distribusi perjalanan (*trip distribution*) dengan metode *doubly constrained* dan analisis pemilihan rute (*trip assignment*) dengan metode *equilibrium* assignment. Total distribusi perjalanan di Kota Denpasar di masa yang akan datang diprediksi sebesar pada tahun tahun 2033 sebesar 28.873.490 orang/hari (308.845.109 orang-km). Dari hasil prediksi distribusi perjalanan didapatkan hasil prediksi pembebanan lalu lintas tertinggi terdapat pada Jl. By Pass Ngurah Rai. Diperlukan untuk membangun jalan baru atau mengatasi masalah lalu lintas dengan skema *demand management* yaitu memberikan prioritas pada angkutan umum dan membatasi kepemilikan dan penggunaan kendaraan bermotor pribadi.

Kata kunci: pola pergerakan, four steps model, software Visum

#### ANALYSIS OF TRAVEL PATTERN IN DENPASAR CITY

Abstract: The city of Denpasar has been developed from a small city, a large city and then formed a metropolitan city with the surrounding regions. To anticipate the need of transport infrastructure in the future, it is required to study the travel pattern. In this research two transportation models were developed, i.e. trip distribution and trip assignment, the aim of this research is to predict the trip distribution and traffic load in Denpasar City's road network in the future and also to compare the trip distribution. The modeling in this research were made with Visum software version 15. The methods applied for trip distribution model was doubly constrainted method and trip assignment was based on equilibrium assignment method. It was predicted that the total trip distribution for Denpasar City in year 2033 are 28.873.490 persons/day (308.845.109 person-kms). The highest traffic load was found in Jl. By Pass Ngurah Rai. Its is required to build new road links or applying demand management by prioritising public transport and reduce the use of private motor vehicles.

**Keywords:** travel pattern, four steps model, Visum software

#### **PENDAHULUAN**

Kota Denpasar sebagai ibukota Provinsi Bali telah berkembang dari Kota Kecil, Kota Besar dan Bersama kabupaten-kabupaten membentuk disekitarnya telah Kota Metropolitan Sarbagita. Permasalahan transportasi kian kompleks dan telah terjadi kemacetan pada ruas-ruas jalan utama. Untuk mengantisipasi hal tersebut maka diperlukan perencanaan transportasi yang matang dan konsepsional serta perhatian dari pemerintah Kota Denpasar. Perencanaan dapat dilakukan dengan pemodelan transportasi 4 tahap. Dalam penelitian ini dilakukan pemodelan distribusi perjalanan (trip distribution) dan pemilihan rute (trip assignment) yang dibantu dengan software Visum versi 15. Tujuan dari penelitian ini adalah untuk memprediksi distribusi perjalanan di Kota Denpasar di masa mendatang, memprediksi pembebanan lalu lintas di masa mendatang.

Berbagai kajian terkait pola pergerakan telah dilakukan oleh beberapa peneliti. Yamane, dkk (2005) telah meneliti perilaku perjalanan di Kota Hiroshima, Jepang. Studi ini memperkenalkan indikator baru yang disebut Travel Behavior Array Pattern (TRAP). Ye, dkk (2013) menganalisis pola pergerakan permukiman di Kota Bersejarah Yangzhou, China. Mereka menemukan bahwa pola pergerakan di kota ini berbeda dengan kota-kota lainnya. Wang, dkk (2018)melakukan analisis pola perjalanan berdasarkan data rill lapangan dari rekaman video. Mereka mengklaim bahwa penggunaan data video menghasilklan estimasi pola perjalanan yang lebih efektif. Suthanaya (2018) mengkaji pola pergerakan dan kebutuhan pengembangan infrastruktur transportasi berkelanjutan di Kota Metropolitan Sarbagita. Chang dan Zhao-Cheng (2016) meneliti pola pergerakan di Kota Guangzhou, China berdasarkan kartu pintar (smart pengguna bus. Pola perjalanan dari setiap penumpang diamati dengan metode Density Based Spatial Clustering (DBSCAN).

## PEMODELAN POLA PERGERAKAN

Model merupakan alat bantu atau media untuk menyederhanakan suatu keadaan sebenarnya (realita) (Tamin, 2008). Dalam perencanaan transportasi, dipergunakan model grafis, statistik atau matematika. Pemodelan transportasi meliputi pemodelan bangkitan

perjalanan, distribusi, pemilihan moda dan pemilihan rute yang dikenal dengan empat tahap pemodelan. Hasil kajian menunjukkan bahwa sebagian besar jalan-jalan utama nilai derajat kejenuhannya sudah mendekati satu. Untuk mengantisipasi kebutuhan di masa mendatang, diperlukan untuk mengembangkan sistem angkutan umum massal, angkutan multimoda. teknologi dan membatasi penggunaan kepemilikan dan kendaraan bermotor pribadi.

# **Distribusi Perjalanan (Trip Distribution)**

Distribusi perjalanan (*trip distribution*) adalah penyaluran bangkitan perjalanan dari suatu zona ke sejumlah zona lainya yang dikenal dengan perjalanan antar zona. Adapun model yang digunakan yaitu dengan *doubly constrained* atau FCGR (*Fully Constrained Gravity Model*) dengan persamaan sebagai berikut:

$$Tid = Ai.Bd.Oi.Dd.f(Cid)$$
 (1)

Dimana:

Tid = banyaknya perjalanan antara zona i dan d (perjalanan/hari)

Ai = konstanta penyeimbang bangkitan

Bd = konstanta penyeimbang tarikan

Oi = jumlah perjalanan yang berasal dari zona asal i (perjalanan/hari)

Dd = jumlah perjalanan yang berasal dari zona tujuan d (perjalanan/hari)

f(Cid)= fungsi hambatan (impedance function)

Dengan syarat batas, sebagai berikut:

$$B_d = \frac{\sum_{d=1}^{N} (A_i \cdot o_i \cdot f_{(Cid)})}{\sum_{d=1}^{N} (A_i \cdot o_i \cdot f_{(Cid)})}$$
untuk semua d (2)

$$Ai = \frac{1}{\sum_{d=1}^{N} (B_d \cdot D_d \cdot f_{(Cid)})} untuk \text{ semua } I$$
 (3)

### Kalibrasi Model Gravitasi

Proses kalibrasi adalah proses menghitung parameter model dengan menggunakan data untuk kota tertentu, sehingga model *trip distribution* dari zona asal dan zona tujuan diusahakan sedekat mungkin dengan pola sebenarnya dari pergerakan tersebut pada *base year* (tahun dasar). Dalam metode ini fungsi hambatan yang digunakan adalah fungsi hambatan eksponensial negatif. Dengan mengetahui informasi [*Tid*] dan [*Cid*], dihitung nilai parameter model dengan menggunakan analisis regresi linear.

### **Pemilihan Rute (Trip Assignment)**

Pemilihan rute merupakan tahap terakhir dari pemodelan transportasi. Tujuannya adalah untuk mengalokasikan beban lalu lintas antar zona pada jaringan jalan. Output dari tahap ini adalah informasi beban lalu lintas pada jaringan jalan. Metode yang digunakan yaitu equilibrium assignment berdasarkan prinsip Wardrop (1952). Pada kondisi equilibrium, semua rute pilihan yang ada memiliki biaya perjalanan yang sama atau mencapai kondisi keseimbangan (user's equilibrium).

#### **METODE**

Data sekunder yaitu asal-tujuan perjalanan didapatkan dari hasil studi terdahulu (Mira, 2014) berupa matriks asal tujuan hasil observasi. Pada penelitian ini digunakan software Visum Versi 15. Menurut PTV Group Visum adalah program untuk perencanaan transportasi yang dibantu oleh komputer yang berfungsi untuk menganalisis merencanakan sistem transportasi, termasuk kebutuhan fasilitas untuk kendaraan pribadi dan transportasi publik, kebutuhan (demand) dan ketersediaan infrastrukturnya.

Main zone (zona utama) dimodelkan sebagai pembagian wilayah di Kota Denpasar (Kecamatan Denpasar Utara, Kecamatan Denpasar Barat, Kecamatan Denpasar Timur dan Kecamatan Denpasar Selatan). Main zone dibuat dengan penyesuaian batas-batas wilayah setiap kecamatan. Hasil pemodelan main zone dapat dilihat pada Gambar 1. Gambar 2 memperlihatkan Kota Denpasar dibagi atas 13 zona.

Node pada software Visum versi 15 menggambarkan persimpangan yang nantinya digunakan untuk menghubungkan link. Link pada software Visum versi 15 dimodelkan sebagai ruas jalan pada jaringan jalan seperti diperlihatkan pada Gambar 3.

Distribusi perjalanan berarti determinasi dari seluruh matrix demand per demand stratum dari produksi tarikan yang tersedia dari setiap zona dari data yang diperlukan, contoh: waktu perjalanan, biaya, dll (PTV Visum Manual, 2015). Distribusi perjalanan dihitung dari bantuan model gravitasi yang dapat diestimasikan sebelumnya. Dalam menghitung pemilihan rute digunakan model equilibrium assignment menggunakan software Visum Versi 15.

#### HASIL DAN PEMBAHASAN Distribusi Perjalanan Model Constrained Dengan Software Visum Versi

Berdasarkan hasil kalibrasi dengan fungsi hambatan eksponensial diperoleh nilai β=0.0964. Nilai β kemudian diinput ke dalam software Visum. Dengan memasukan nilai produksi dan tarikan pada tahun dasar dan tahun rencana pada demand strata. Model doubly constrained dipilih untuk memodelkan distribusi perjalanan. Diperoleh hasil prediksi distribusi perjalanan Orang/hari pada tahun rencana 2033 seperti diperlihatkan pada Tabel



Gambar 1. Main Zone



Gambar 2. Pembagian Zona pada Software Visum Versi 15



Gambar 3. Model Node dan Link

Tabel 1. Hasil Prediksi Distribusi Perjalanan Pada Tahun Dasar 2033 Berdasarkan *Software* Visum Versi 15 (Orang/hari)

| (Orang/narr) |         |         |          |        |        |         |        |        |         |         |        |        |        |          |          |    |
|--------------|---------|---------|----------|--------|--------|---------|--------|--------|---------|---------|--------|--------|--------|----------|----------|----|
| OD           | 1       | 2       | 3        | 4      | 5      | 6       | 7      | 8      | 9       | 10      | 11     | 12     | 13     | oi       | Oi       | Ei |
| 1            | 22232   | 73435   | 124476   | 3181   | 9509   | 12555   | 10836  | 4102   | 27104   | 8674    | 3259   | 1971   | 9071   | 310403   | 310403   | 1  |
| 2            | 95782   | 586002  | 736132   | 16075  | 42641  | 55678   | 62059  | 32535  | 184094  | 49177   | 15002  | 11245  | 63313  | 1949735  | 1949735  | 1  |
| 3            | 102668  | 465510  | 1151425  | 24341  | 56673  | 59291   | 53294  | 29549  | 247735  | 76365   | 21739  | 9500   | 50334  | 2348426  | 2348426  | 1  |
| 4            | 18459   | 71528   | 171272   | 6639   | 13270  | 12108   | 9013   | 4399   | 41826   | 17449   | 5878   | 1640   | 7886   | 381368   | 381368   | 1  |
| 5            | 43950   | 151100  | 317573   | 10568  | 36634  | 32948   | 21878  | 8708   | 70283   | 27911   | 12534  | 4154   | 17936  | 756175   | 756175   | 1  |
| 6            | 55832   | 189835  | 319677   | 9278   | 31702  | 68041   | 35890  | 10540  | 68859   | 24386   | 11744  | 7899   | 28019  | 861701   | 861701   | 1  |
| 7            | 152584  | 670014  | 909890   | 21870  | 66659  | 113647  | 151285 | 38752  | 211621  | 60893   | 22845  | 26963  | 118070 | 2565093  | 2565093  | 1  |
| 8            | 30702   | 186692  | 268128   | 5672   | 14100  | 17739   | 20596  | 16369  | 80823   | 19288   | 5113   | 3888   | 24290  | 693402   | 693402   | 1  |
| 9            | 213487  | 1111729 | 2365773  | 56766  | 119776 | 121963  | 118369 | 85060  | 1193973 | 259057  | 51326  | 21334  | 126805 | 5845418  | 5845418  | 1  |
| 10           | 65495   | 284702  | 699118   | 22703  | 45600  | 41406   | 32652  | 19461  | 248351  | 155648  | 24925  | 5842   | 30788  | 1676692  | 1676692  | 1  |
| 11           | 522978  | 1845578 | 4229235  | 162527 | 435144 | 423764  | 260314 | 109633 | 1045629 | 529671  | 336004 | 50426  | 213411 | 10164313 | 10164313 | 1  |
| 12           | 21859   | 95620   | 127742   | 3133   | 9968   | 19699   | 21236  | 5761   | 30039   | 8580    | 3485   | 8953   | 22268  | 378341   | 378341   | 1  |
| 13           | 47792   | 255764  | 321540   | 7160   | 20447  | 33197   | 44178  | 17100  | 84825   | 21484   | 7008   | 10579  | 71349  | 942423   | 942423   | 1  |
| dd           | 1393819 | 5987510 | 11741981 | 349914 | 902123 | 1012036 | 841600 | 381969 | 3535163 | 1258582 | 520862 | 164392 | 783538 | 28873490 |          |    |
| Dd           | 1393845 | 5987773 | 11741806 | 349896 | 902090 | 1012055 | 841673 | 381983 | 3535043 | 1258486 | 520813 | 164409 | 783620 |          | 28873490 |    |
| Ed           | 1       | 1       | 1        | 1      | 1      | 1       | 1      | 1      | 1       | 1       | 1      | 1      | 1      |          |          | 1  |

Berdasarkan Tabel 1 diperoleh hasil distribusi perjalanan berdasarkan *software* Visum Versi 15 pada tahun 2033 sebanyak 28.873.490 orang/hari.

# Garis Keinginan (Desire Line) Pada Tahun 2033 Berdasarkan Software Visum Versi 15

Perjalanan dari zona internal ke zona eksternal terbesar berasal dari zona 3 (Kelurahan Dauh Puri Kaja, Pemecutan Kaja, Padang Sambian Kaia. Peguyangan, Peguyangan Kangin, Peguyangan Kaja, Ubung dan Ubung Kaja) dengan tujuan ke zona 9 (perbatasan Ubung Kaja – Sempidi (Badung)) yaitu sebesar 247.735 perjalanan orang per hari seperti diperlihatkan pada Gambar 4. Perialanan dari zona eksternal ke zona internal terbesar berasal dari zona 11 (perbatasan Kesiman Kertalangu - Batubulan (Gianyar)) dengan

tujuan zona 3 (Kelurahan Dauh Puri Kaja, Pemecutan Kaja, Padang Sambian Kaja, Peguyangan, Peguyangan Kangin, Peguyangan Kaja, Ubung dan Ubung Kaja) sebesar 4.229.235 perjalanan orang per hari. Perjalanan terbesar dizona internal berasal dari perjalanan interzona di zona 3 (Kelurahan Dauh Puri Kaja, Pemecutan Kaja, Padang Sambian Kaja, Peguyangan, Peguyangan Kangin, Peguyangan Kaja, Ubung dan Ubung Kaja) sebesar 1.151.425 perjalanan orang per hari. Perjalanan terbesar di zona eksternal berasal dari perjalanan interzona di zona 9 (perbatasan Ubung Kaja – Sempidi (Badung)) sebesar 1.193.973 perjalanan orang per hari. Total distribusi perjalanan pada tahun dasar 2033 adalah 28.873.490 perjalanan orang per hari.



Gambar 4. Garis Keinginan (*Desire Line*) Hasil Prediksi *Software* Visum Versi 15 Tahun 2033 (orang/hari)

ISSN: 1411-1292 E-ISSN: 2541-5484

# Pembebanan Lalu Lintas Dengan Software Visum Versi 15

Pemodelan pemilihan rute menghasilkan pembebanan lalu lintas setiap *link* atau jalan yang menghubungkan setiap zona pada *software* Visum versi 15. Untuk mengetahui validitas data yang dihasilkan, maka dilakukan validasi dengan uji t (t-test). Volume 10 ruas jalan di Kota Denpasar divalidasi dengan volume 10 ruas jalan di Kota Denpasar berdasarkan *software* Visum versi 15, sebagaimana dapat dilihat pada Tabel 2.

Berdasarkan hasil perhitungan, nilai t hitung sebesar 1,2677 kemudian dibandingkan dengan t tabel dengan asumsi taraf kesalahan sebesar 5% dan df=8 sehingga didapat t tabel sebesar 2,306. Maka, nilai t hitung lebih kecil dari t-tabel (1,2677<2,306), sehingga Ho diterima dan Ha ditolak. Ini berarti bahwa data pembebanan lalu lintas hasil Visum versi 15 valid.

Tabel 2. Hasil Output t-test Volume Lalu Lintas

|     |                           | Volume          | Volume Berdasarka<br>Visum Versi 15<br>Pada Tahun 2013 |  |  |
|-----|---------------------------|-----------------|--------------------------------------------------------|--|--|
| No  | Nama Ruas Jalan           | (smp/jam)       |                                                        |  |  |
| 110 | Tunia Tuas valan          | Pada Tahun 2013 |                                                        |  |  |
|     |                           | rada ranun 2013 | (smp/jam)                                              |  |  |
| 1   | Jl. By Pass Gatot Subroto | 3.707,4         | 4.177,6                                                |  |  |
| 2   | Jl. PB Sudirman           | 3.350,4         | 2.473,9                                                |  |  |
| 3   | Jl. H.O.S Cokroaminoto    | 2.942,7         | 2.853,0                                                |  |  |
| 4   | Jl. Diponegoro            | 2.829,1         | 1.079,2                                                |  |  |
| 5   | Jl. Gajah Mada            | 2.558,6         | 1.502,0                                                |  |  |
| 6   | Jl. Teuku Umar            | 2.513,2         | 1.372,5                                                |  |  |
| 7   | Jl. Mahendradatta         | 2.308,3         | 4.454,9                                                |  |  |
| 8   | Jl. Teuku Umar Barat      | 1.642,6         | 2.183,9                                                |  |  |
| 9   | Jl. Hayam Wuruk           | 1.425,7         | 1.139,5                                                |  |  |
| 10  | Jl. Wr. Supratman         | 1.393           | 1.981,2                                                |  |  |
|     | Rata-rata                 | 2.467,1         | 2.321,8                                                |  |  |
|     | Simpangan Baku            | 790,8871        | 1.199,5109                                             |  |  |
|     | Varians                   | 625.502,4733    | 1.438.826,2963                                         |  |  |
|     | R                         | 0,              | ,4090                                                  |  |  |

Tabel 3. Estimasi Volume Jam Puncak Pada Tahun 2033 Berdasarkan Software Visum Versi 15

| No. | Nama Ruas Jalan         | Mobil (M) emp=1,0 |            | Sepeda Memp | . ,        | Angkuta<br>(AU) ei |            | Volume     | VJP       |
|-----|-------------------------|-------------------|------------|-------------|------------|--------------------|------------|------------|-----------|
|     |                         | M                 | M          | SM          | SM         | AU                 | AU         |            |           |
|     |                         | (kend/hari)       | (smp/hari) | (kend/hari) | (smp/hari) | (kend/hari)        | (smp/hari) | (smp/hari) | (smp/jam) |
| 1   | Jl. By Pass Ngurah Rai  | 99976             | 99976      | 397542      | 198771     | 20502              | 20502      | 319249     | 28732     |
| 2   | Jl. Imam Bonjol         | 146159            | 146159     | 273679      | 136840     | 8784               | 8784       | 291783     | 26260     |
| 3   | Jl. By Pass Gatsu       | 69220             | 69220      | 175048      | 87524      | 28863              | 28863      | 185607     | 16705     |
| 4   | Jl. Ahmad Yani          | 14961             | 14961      | 32832       | 16416      | 121355             | 121355     | 152732     | 13746     |
| 5   | Jl. Mahendradatta       | 23234             | 23234      | 77957       | 38979      | 63018              | 63018      | 125231     | 11271     |
| 6   | Jl. Raya Buluh Indah    | 29562             | 29562      | 18073       | 9037       | 69610              | 69610      | 108209     | 9739      |
| 7   | Jl. Diponegoro          | 26080             | 26080      | 133369      | 66685      | 659                | 659        | 93424      | 8408      |
| 8   | Jl. Pulau Kawe          | 62866             | 62866      | 35580       | 17790      | 12241              | 12241      | 92897      | 8361      |
| 9   | Jl. Raya Pemogan        | 59912             | 59912      | 23230       | 11615      | 16870              | 16870      | 88397      | 7956      |
| 10  | Jl. H.O.S Cokroaminoto  | 15835             | 15835      | 39980       | 19990      | 47928              | 47928      | 83753      | 7538      |
| 11  | Jl. Mahendradatta Utara | 3410              | 3410       | 7390        | 3695       | 68430              | 68430      | 75535      | 6798      |
| 12  | Jl. Kebo iwa            | 57496             | 57496      | 20949       | 10475      | 6416               | 6416       | 74387      | 6695      |
| 13  | Jl. Hasanudin           | 23140             | 23140      | 92077       | 46039      | 9                  | 9          | 69188      | 6227      |
| 14  | Jl. Teuku Umar          | 33492             | 33492      | 43446       | 21723      | 12257              | 12257      | 67472      | 6072      |
| 15  | Jl. Raya Puputan        | 24337             | 24337      | 79374       | 39687      | 235                | 235        | 64259      | 5783      |
| 16  | Jl. Raya Sesetan        | 14663             | 14663      | 68891       | 34446      | 3901               | 3901       | 53010      | 4771      |
| 17  | Jl. Teuku Umar Barat    | 4523              | 4523       | 54777       | 27389      | 16056              | 16056      | 47968      | 4317      |
| 18  | Jl. PB Sudirman         | 11903             | 11903      | 58318       | 29159      | 5551               | 5551       | 46613      | 4195      |
| 19  | Jl. Gn Agung            | 29562             | 29562      | 24129       | 12065      | 4382               | 4382       | 46009      | 4141      |
| 20  | Jl. Setiabudi           | 25127             | 25127      | 41160       | 20580      | 0                  | 0          | 45707      | 4114      |

Prediksi pembebanan lalu lintas menggunakan software Visum versi 15 menghasilkan volume kend per hari setiap ruas jalan yang dimodelkan. Untuk menghitung estimasi volume jam puncak digunakan 20 data volume kendaraan per hari yang diperoleh dari Visum versi 15 dikalikan ekivalen mobil penumpang (emp), kemudian hasil volume smp/hari dikalikan faktor-k sebesar 0.09 menjadikan volume satuan smp/jam. 20 ruas jalan dengan volume terbesar pada tahun perencanaan dapat dilihat pada Tabel 3. Dari Tabel 3 diperoleh bahwa volume terbesar pada tahun dasar hingga akhir tahun rencana terdapat pada ruas jalan By Pass Ngurah Rai dengan volume jam puncak pada tahun 2033 sebesar 28.732 smp/jam.

# Pemilihan Rute Pada Tahun Rencana 2033 Dengan Software Visum Versi 15

Berdasarkan hasil distribusi perjalanan per hari pada tahun dasar 2033 perjalanan dari eksternal ke internal terbesar berasal dari zona 11 ke zona 3 dan perjalanan internal ke eskternal terbesar berasal dari zona 3 ke zona 9. Dari hasil perjalanan tersebut ditentukan rute yang digunakan antara pasangan asal tujuan. Pemilihan rute untuk perjalanan yang berasal dari zona 11 ke zona 3 berdasarkan pengguna

transportasi pribadi (PrT) dapat memilih rute sebagaimana dapat dilihat pada Gambar 5 yaitu Jl. Raya Tohpati – Jl. By Pass Gatot Subroto, sedangkan pengguna transportasi publik (PuT) sebagaimana dapat dilihat pada Gambar 6 dapat memilih rute Jl. Raya Tohpati – Jl. By Pass Gatot Subroto. Pemilihan rute untuk perjalanan yang berasal dari zona 3 ke zona 9 berdasarkan pengguna transportasi pribadi (PrT) dapat memilih rute yaitu Jl. Mahendradatta Utara – Jl. H.O.S Cokroaminoto atau menggunakan rute Jl. By Pass Gatot Subroto - Jl. Raya Kebo Iwa, sedangkan pengguna transportasi publik (PuT) memilih rute yaitu Jl. By Pass Gatot Subroto -Jl. Padang Luwih atau Jl. By Pass Gatot Subroto – Jl. Kebo Iwa. Pada Gambar 5 terlihat bahwa volume kend/hari terbesar terjadi pada rute Jl. Sunset Road – By Pass Ngurah Rai, Jl. Sunset – Jl. Imam Bonjol dan ruas jalan yang terdapat diantara zona 3, zona 2 dan zona 1. Sedangkan pada Gambar 6 terlihat bahwa volume kend/hari terbesar terdapat pada rute Jl. Tohpati – Jl. Angantaka-Sibanggede – Jl. Ahmad Yani dan rute Jl. Mahendradatta – Jl. Buluh Indah – Jl. Mahendradatta Utara.



Gambar 5. Hasil *Trip Assignent* Transportasi Pribadi (PrT) Pada Tahun 2033



Gambar 6. Hasil Trip Assignent Transportasi Publik (PuT) Pada Tahun 2033

## **SIMPULAN**

Prediksi distribusi perjalanan di Kota Denpasar orang per hari berdasarkan software Visum versi 15 dengan metode doubly constrained pada masa yang mendatang diperoleh hasil yaitu pergerakan pada tahun 2033 sebesar 28.873.490 orang/hari. Prediksi pembebanan lalu lintas terbesar di masa yang mendatang pada jaringan jalan di Kota Denpasar berdasarkan software Visum versi 15 terjadi pada ruas jalan By Pass Ngurah Rai dengan total volume kendaraan pada tahun 2033 sebesar 518.020 orang/hari. Diperlukan pengembangan jalan di Kota Denpasar untuk mengantisipasi meningkatnya pergerakan dan perhatian bagi setiap ruas jalan khususnya 20 ruas jalan dengan volume tinggi sehingga jaringan jalan di Kota Denpasar tingkat pelayanannya dapat lebih efektif. Alternatif lainnya yaitu melalui penerapan demand management vaitu memberikan prioritas pada pengembangan sistem angkutan umum dan membatasi kepemilikan dan penggunaan kendaraan bermotor pribadi.

### **DAFTAR PUSTAKA**

Chang, Y.U. and Zhao-Cheng, H.E. 2016. Travel Pattern Recognition using Smart Card Data in Public Transit. International Journal of Emerging Engineering Research and Technology, Vol 4, Issue 7, pp. 6-13.

PTV Group. 2015. *PTV Visum 15 Manual*. PTV AG. Germany.

Suthanaya, P.A. 2008. Analysis of Travel Pattern and The Need to Develop Sustainable Transportation Infrastructure in Sarbagita Metropolitan area. MATEC Web of Conference 195, 04017, pp. 1-10.

Tamin, O. Z. 2008. *Perencanaan, Pemodelan dan Rekayasa Transportasi : Teori, Contoh Soal dan Aplikasi*. Penerbit ITB. Bandung.

Wang, Y., Xiao, Y., Xie, X., Chen, R. And Liu, H. 2018. Real-time Traffic Pattern Analysis Sparse Video and Inference with Surveillance Information. Proceedings of the Twenty Seventh International Joint Conference on Artificial Intelligence (IJCAI-18), pp. 3571-3577.

Wardrop, J.G. 1952. Some Theoretical Aspects of Road Traffic Research, Proceedings of the Institute of Civil Engineering. London.

Yamane, K., Fujiwara, A. And Zhang, J. 2005. Analysis of Travel Behavior Array Pattern from The Perspective of Transportation Policy. Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 91-106.

Ye, M., Yu, M., Guo, X., Liu, Y. and Li, Z. 2013. Analysis on Residents's Travel Activity Pattern in Historic Urban Areas: A Case Study of Historic Urban Area of Yangzhou, China. Mathematical Problems in Engineering, Vol. 2013, pp. 1-9.