

INTRODUCTION

AVAILABLE TOOLS

GGENEALOGY

FUTURE OF GGENEALOGY

INTRODUCTION: WHAT IS GENEALOGY?

- Study of parent-child relationships
- Provides tools to better understand traits that arise in lineages
 - Desirable (disease resistance)
 - Undesirable (hemophilia)
- Can be represented visually

INTRODUCTION: WHAT IS GENEALOGY?

INTRODUCTION: MOTIVATION

Why do we want to develop and share genealogical visualization tools in R?

INTRODUCTION: R

OPEN-SOURCE

Academic statisticians
Package system

FLEXIBLE

C/C++ Shiny

CROSS-PLATFORM

Collaboration

GRAPHICS

Data visualization Interactive

INTRODUCTION

AVAILABLE TOOLS

GGENEALOGY

FUTURE OF GGENEALOGY

CURRENT TOOLS: APE

TITLE:

APE: Analyses of phylogenetics and

evolution in R language

AUTHOR:

Emmanuel Paradis

LATEST UPDATE:

May 29, 2015

CURRENT TOOLS: KINSHIP2

TITLE:

Kinship2: Pedigree functions

AUTHOR:

Terry Therneau Jason Sinnwell

LATEST UPDATE:

August 3, 2015

CURRENT TOOLS: OTHERS

TITLE:

Pedigree: Pedigree functions

AUTHOR:

Albart Coster

LATEST UPDATE:

November 3, 2013

Graph Drawing Software (GraphViz, Cytoscape)

INTRODUCTION

AVAILABLE TOOLS

GGENEALOGY

FUTURE OF GGENEALOGY

GGENEALOGY: EXAMPLE DATASET

- Soybean variety data collected from
 - Field trials
 - Genetic studies
 - USDA bulletins
- Data frame of 412 rows (parent-child relations)
- Each variety (230)
 - Developmental years
 - Copy number variants (CNV)
 - Single nucleotide polymorphisms (SNP)
 - Protein content and yield

GGENEALOGY: PLOT SHORTEST PATH

Fig. 1: The shortest path between varieties Tokyo and Narow is strictly composed of a unidirectional sequence of parent-child relationships.

Fig. 2: The shortest path between varieties Zane and Bedford is not strictly composed of unidirectional parent-child relationships, but have a cousin-like relationship.

```
pathTN <- getPath("Tokyo","Narow", ig,
sbTree)
plotPath(pathTN)
```

```
pathZB <- getPath("Zane","Bedford", ig,
sbTree)
plotPath(pathZB)
```

GGENEALOGY: PLOT PATH ON TREE

GGENEALOGY: PLOT PATH ON TREE

GGENEALOGY: PLOT GENERATIONS


```
plotAncDes("Lee", sbTree, mAnc = 6, mDes = 6, vCol = "blue")
```

GGENEALOGY: PLOT DISTANCE MATRIX

INTRODUCTION

AVAILABLE TOOLS

GGENEALOGY

FUTURE OF GGENEALOGY

FUTURE: GGENEALOGY

EXPANSION

- LARGER DATASETS
- INTERACTIVE GRAPHICS

TESTING

- BARLEY DATASET
- MATHEMATICS GENEALOGY PROJECT

SUBMISSION

- DEVTOOLS (PASS CRAN STANDARDS)
- ROXYGEN2 (DOCUMENTATION, HELP FUNCTIONS)

INTRODUCTION

AVAILABLE TOOLS

GGENEALOGY

FUTURE OF GGENEALOGY

CONCLUSION

VERSION UPDATE USER FEEDBACK

GGENEALOGY

GGBIO

REFERENCES

- 1) APE: analyses of phylogenetics and evolution in R language. E. Paradis and J. Claude and K. Strimmer. Bioinformatics. 20: 289-290 (2004).
- 2) Pedigree: Pedigree functions. Albart Coster (2013).
- 3) Kinship2: Pedigree functions. Terry Therneau and Jason Sinnwell (2015).
- 4) Graphviz: Graph visualization software (http://www.graphviz.org/).
- 5) Pedigrees of soybean cultivars released in the United States and Canada." Theodore Hyivitz, C.A. Newell, S.G. Carmer. College of Agriculture, University of Illinois at Urbana-Champaign (1977).
- 6) Mathematics Genealogy Project. Department of Mathematics, North Dakota State University (http://genealogy.math.ndsu.nodak.edu/).
- 7) Shiny: A web application framework for R (http://shiny.rstudio.com/).
- 8) Devtools: Tools to make developing R packages easier. Hadley Wickham and Winston Chang (2015).
- 9) Roxygen2: In-source documentation for R. Hadley Wickham, Peter Danenberg, Manuel Eugster (2014).
- 10) Ggbio: an R package for extending the grammar of graphics for genomic data. Tengfei Yin, Dianne Cook, and Michael Lawrence. Genome Biology. 13:8 (2012).

THANK YOU

DR. MICHELLE GRAHAM

MATH GENEALOGY PROJECT

SUSAN VANDERPLAS

DR. WILLIAM BEAVIS

YOU!

CONTACT

LINDSAY RUTTER LRUTTER@IASTATE.EDU

DR. DIANNE COOK
DICOOK@MONASH.EDU