

What is claimed is:

1 1. A method for wireless communication, comprising:
2 determining a first downlink transmission beam and a second downlink
3 transmission beam based on a received user-derived signal, the first downlink transmission
4 beam being substantially uncorrelated with the second downlink transmission beam, the
5 first downlink transmission beam being associated with a portion within a first sector, the
6 second downlink transmission beam being associated with a portion within a second
7 sector;

8 diversity encoding a first signal to produce a first diversity-encoded signal;
9 diversity encoding a second signal to produce a second diversity-encoded signal;
10 sending the first diversity-encoded signal over the first downlink transmission
11 beam; and
12 sending the second diversity-encoded signal over the second downlink
13 transmission beam.

1 2. The method of claim 1, wherein:
2 the first signal and the second signal are diversity encoded so that an associated
3 decoder error rate is less than a decoder error rate for one diversity-encoded signal.

1 3. The method of claim 1, wherein the first sector substantially corresponds to the
2 second sector.

1 4. The method of claim 1, wherein the first sector differs from the second sector.

1 5. The method of claim 1, wherein:
2 the received user-derived signal includes a first component and a second
3 component, the first component of the received user-derived signal being received on a
4 first antenna array, the second component of the received user-derived signal being
5 received on a second antenna array, the first antenna array differs from the second antenna
6 array.

T05WTTA322Z8660

1 6. The method of claim 1, wherein:
2 the received user-derived signal includes a first component and a second
3 component, the first component of the received user-derived signal being received on a
4 first antenna array, the second component of the received user-derived signal being
5 received on a second antenna array, the first antenna array substantially corresponds to the
6 second antenna array.

1 7. The method of claim 1, wherein:
2 the first downlink transmission beam is associated with a first polarization, the
3 second downlink transmission beam is associated with a second polarization substantially
4 orthogonal to the first polarization.

1 8. The method of claim 7, wherein:
2 the first sector substantially corresponds to the second sector, and
3 the portion within the first sector substantially corresponds to the portion within
4 the second sector.

1 9. The method of claim 7, wherein:
2 the portion within the first sector differs from the portion within the second sector.

1 10. The method of claim 1, wherein:
2 the portion within the first sector overlaps, at least partially, with the portion within
3 the second sector.

1 11. The method of claim 1, wherein:
2 the first downlink transmission beam is sent from a first antenna array, and
3 the second downlink transmission beam is sent from a second antenna array.

1 12. The method of claim 1, wherein:
2 the first downlink transmission beam is sent during a first time period, and
3 the second downlink transmission beam is sent during a second time period that
4 overlaps, at least partially, with the first time period.

105077-2278600

1 13. The method of claim 1, wherein:

2 the first downlink transmission beam is associated with a first frequency range, the
3 second downlink transmission beam is associated with a second frequency range at least a
4 portion of which is different from the first frequency range.

1 14. The method of claim 1, wherein:

2 the first downlink transmission beam is associated with a first uplink multipath
3 from a plurality of uplink multipaths associated with a first user, the second downlink
4 transmission beam is associated with a second uplink multipath from the plurality of
5 uplink multipaths, the first uplink multipath and the second uplink multipath being no less
6 optimal than the remaining uplink multipaths from the plurality of uplink multipaths.

1 15. The method of claim 1, wherein the diversity encoding further includes:

2 multiplexing a first pilot signal and an information signal to produce a first
3 multiplexed signal;
4 spreading and scrambling the first multiplexed signal to produce a first
5 spread/scrambled signal; and
6 modifying the first spread/scrambled signal based on a first feedback signal.

1 16. The method of claim 15, wherein the diversity encoding further includes:

2 multiplexing a second pilot signal and the information signal to produce a second
3 multiplexed signal;
4 spreading and scrambling the second multiplexed signal to produce a second
5 spread/scrambled signal; and
6 modifying the second spread/scrambled signal based on a second feedback signal.

1 17. The method of claim 1, wherein the determining includes:

2 identifying a first multipath component and a second multipath component of the
3 received user-derived signal for a first user, the first multipath component and the second
4 multipath component being no less optimal than remaining multipath components of the
5 received user-derived signal for the first user;

T05577-22728660

6 identifying a first angular arrival range and a second angular arrival range based on
7 the first multipath component and the second multipath component, respectively; and
8 defining the first downlink transmission beam and the second downlink
9 transmission beam based on the first angular arrival range and the second angular arrival
10 range.

1 18. The method of claim 1, wherein the first signal and the second signal are
2 diversity encoded based on the received user-derived signal.

1 19. The method of claim 1, wherein the first signal and the second signal are
2 diversity encoded based on at least one characteristic of the received user-derived signal
3 from the group of: a signal quality, a data rate, a signal strength, and a signal cross-
4 correlation property.

1 20. The method of claim 1, wherein:
2 the received user-derived signal includes a first component and a second
3 component, the first component of the received user-derived signal being associated with
4 its own multipath, the second component of the received user-derived signal being
5 associated with its own multipath;

6 the diversity encoding the first signal includes:
7 determining a complex gain associated with the first diversity signal based
8 on feedback information associated with the first component of the received user-
9 derived signal; and

10 the diversity encoding the second signal includes:
11 determining a complex gain associated with the second diversity signal
12 based on feedback information associated with the second component of the
13 received user-derived signal.

1 21. The method of claim 1, wherein the first diversity-encoded signal is associated
2 with its own diversity code, the second diversity-encoded signal is associated with its own
3 diversity code that is separable from the diversity code associated with the first diversity-
4 encoded signal.

TUESDAY, 22/06/00

- 1 22. A method for wireless communication for a first user, comprising:
2 receiving a first diversity-encoded signal from a first downlink transmission beam;
3 and
4 receiving a second diversity-encoded signal from a second downlink transmission
5 beam, the first downlink transmission beam being substantially uncorrelated with the
6 second downlink transmission beam, the first downlink transmission beam being
7 associated with a portion of a first sector, the second downlink transmission beam being
8 associated with a portion of a second sector.
- 1 23. The method of claim 22, further comprising:
2 sending a user-derived signal,
3 the portion within the first sector being based on a first component of a received
4 user-derived signal, the first component of the received user-derived signal being
5 associated with a first multipath, and
6 the portion within the second sector being based on a second component of the
7 received user-derived signal, the second component of the received user-derived signal
8 being associated with a second multipath.
- 1 24. The method of claim 22, wherein:
2 the first downlink transmission beam is associated with a first polarization, the
3 second downlink transmission beam is associated with a second polarization substantially
4 orthogonal to the first polarization.
- 1 25. The method of claim 24, wherein:
2 the first sector substantially corresponds to the second sector, and
3 the portion within the first sector substantially corresponds to the portion within
4 the second sector.
- 1 26. The method of claim 22, wherein:
2 the portion within the first sector differs from the portion within the second sector.

- 1 27. The method of claim 22, wherein:
2 the portion within the first sector overlaps, at least partially, with the portion within
3 the second sector.
- 1 28. The method of claim 22, wherein:
2 the first downlink transmission beam is sent from a first antenna array, and
3 the second downlink transmission beam is sent from a second antenna array.
- 1 29. The method of claim 22, wherein:
2 the first downlink transmission beam is sent during a first time period, and
3 the second downlink transmission beam is sent during a second time period that
4 overlaps, at least partially, with the first time period.
- 1 30. The method of claim 22, wherein:
2 the first downlink transmission beam is associated with a first frequency range, the
3 second downlink transmission beam is associated with a second frequency range at least a
4 portion of which is different from the first frequency range.
- 1 31. The method of claim 22, wherein:
2 the first downlink transmission beam is associated with a first uplink multipath
3 from a plurality of uplink multipaths associated with the first user, the second downlink
4 transmission beam is associated with a second uplink multipath from the plurality of
5 uplink multipaths, the first uplink multipath and the second uplink multipath being no less
6 optimal than the remaining uplink multipaths from the plurality of uplink multipaths.
- 1 32. The method of claim 22, wherein the first diversity-encoded signal and the
2 second diversity-encoded signal have been diversity encoded based on a previous user-
3 derived signal from the first user.
- 1 33. The method of claim 22, wherein the first diversity-encoded signal and the
2 second diversity-encoded signal have been diversity encoded based on at least one
3 characteristic of a previous user-derived signal from the group of: a signal quality, a data
4 rate, a signal strength, and a signal cross-correlation property.

105574-2272860

1 34. The method of claim 22, further comprising:
2 sending an uplink signal, a first component of the uplink signal being associated
3 with its own multipath, a second component of the uplink signal being associated with its
4 own multipath;

5 the first diversity-encoded signal having its own complex gain based on feedback
6 information associated with the first component of the uplink signal; and

7 the second diversity-encoded signal having its own complex gain based on
8 feedback information associated with the second component of the uplink signal.

1 35. The method of claim 22, wherein the first diversity-encoded signal is associated
2 with its own diversity code, the second diversity-encoded signal is associated with its own
3 diversity code that is separable from the diversity code associated with the first diversity-
4 encoded signal.

1 36. An apparatus, comprising:
2 a searcher, the searcher being configured to identify a received user-derived signal;
3 a beam controller coupled to the searcher;

4 a first transmit beam switch coupled to the beam controller;
5 a second transmit beam switch coupled to the beam controller;
6 a diversity coder coupled to the first transmit beam switch and the second transmit
7 beam switch, the diversity coder configured to send a first diversity encoded signal to the
8 first transmit beam switch based on the received user-derived signal and to send a second
9 diversity encoded signal to the second transmit beam switch based on the received user-
10 derived signal; and

11 an antenna array coupled to the first transmit beam switch and the second
12 transmit beam switch, the antenna array configured to define a first downlink transmission
13 beam and a second downlink transmission beam, the first downlink transmission beam
14 being associated with a portion within a first sector, the second downlink transmission
15 beam being associated with a portion within a second sector, the first downlink
16 transmission beam being substantially uncorrelated to the second downlink transmission
17 beam, the first downlink transmission beam being associated with the first diversity-

F05774-22278660

18 encoded signal, the second downlink transmission beam being associated with the second
19 diversity-encoded signal.

1 37. The apparatus of claim 36, wherein the first sector substantially corresponds to
2 the second sector.

1 38. The apparatus of claim 36, wherein the first sector differs from the second sector.

1 39. The apparatus of claim 36, wherein the diversity coder includes:
2 a first multiplexer configured to receive a first pilot signal and an information
3 signal to produce a multiplexed signal;
4 a first spread/scramble module coupled to the first multiplexer, the first
5 spread/scramble module configured to receive the multiplexed signal associated with the
6 first multiplexer, the first spread/scramble module configured to produce a
7 spread/scrambled signal; and

8 a first complex-gain multiplier coupled to the first spread/scramble module, the
9 first complex-gain multiplier configured to receive the spread/scrambled signal associated
10 with the first spread/scramble module and a first feedback signal.

1 40. The apparatus of claim 39, wherein the diversity coder further includes:
2 a second multiplexer configured to receive a second pilot signal and the
3 information signal to produce a multiplexed signal;
4 a second spread/scramble module coupled to the second multiplexer, the second
5 spread/scramble module configured to receive the multiplexed signal associated with the
6 second multiplexer, the second spread/scramble module configured to produce a
7 spread/scrambled signal; and
8 a second complex-gain multiplier coupled to the second spread/scramble module,
9 the second complex-gain multiplier configured to receive the spread/scrambled signal
10 associated with the second spread/scramble module and a second feedback signal.

1 41. The apparatus of claim 36, wherein the diversity coder further includes:
2 a space-time coder configured to receive an information signal and configured to
3 send a first space-time coded signal and a second space-time coded signal, the first space-
4 time coded signal being orthogonal to the second space-time coded signal;
5 a first spread/scramble module configured to receive the information signal and
6 configured to send a spread/scrambled signal; and
7 a second spread/scramble module configured to receive the space-time coded
8 signal and configured to send a spread/scrambled signal.

1 42. The apparatus of claim 36, wherein:
2 the searcher is configured to receive the received user-derived signal including a
3 first component and a second component,
4 the antenna array includes a first portion and a second portion, the first component
5 of the received user-derived signal being received from a first user-derived reception beam
6 on the first portion of the antenna array, the second component of the received user-
7 derived signal being received from a second user-derived reception beam on the second
8 portion of the antenna array, the first user-derived reception beam differs from the second
9 user-derived reception beam, the first portion of the antenna array differs from the second
10 portion of the antenna array.

1 43. The apparatus of claim 36 wherein:
2 the searcher is configured to receive the received user-derived signal including a
3 first component and a second component,
4 the antenna array includes a first portion and a second portion, the first component
5 of the received user-derived signal being received from a first user-derived reception beam
6 on the first portion of the antenna array, the second component of the received user-
7 derived signal being received from a second user-derived reception beam on the second
8 portion of the antenna array, the first user-derived reception beam substantially
9 corresponds to the second user-derived reception beam, the first portion of the antenna
10 array substantially corresponds to the second portion of the antenna array.

F05177-2022/8660

1 44. The apparatus of claim 36, wherein:
2 the first downlink transmission beam is associated with a first polarization, the
3 second downlink transmission beam is associated with a second polarization substantially
4 orthogonal to the first polarization.

1 45. The apparatus of claim 44, wherein:
2 the first sector substantially corresponds to the second sector, and
3 the portion within the first sector substantially corresponds to the portion within
4 the second sector.

1 46. The apparatus of claim 36, wherein:
2 the portion within the sector associated with the first downlink transmission beam
3 differs from the portion within the sector associated with second downlink transmission
4 beam.

1 47. The apparatus of claim 36, wherein:
2 the portion within the sector associated with the first downlink transmission beam
3 overlaps, at least partially, with the portion within the sector associated with second
4 downlink transmission beam.

1 48. The apparatus of claim 36, wherein:
2 the antenna array includes a first portion and a second portion,
3 the first downlink transmission beam is sent from the first portion of the antenna
4 array, and
5 the second downlink transmission beam is sent from the second portion of the
6 antenna array.

1 49. The apparatus of claim 36, wherein:
2 the first downlink transmission beam is sent during a first time period, and the
3 second downlink transmission beam is sent during a second time period that overlaps, at
4 least partially, with the first time period

TO5994-22778660

1 50. The apparatus of claim 36, wherein:
2 the first downlink transmission beam is associated with a first frequency range, the
3 second downlink transmission beam is associated with a second frequency range at least a
4 portion of which is different from the first frequency range.

1 51. The apparatus of claim 36, wherein:
2 the first downlink transmission beam is associated with a first uplink multipath
3 from a plurality of uplink multipaths associated with a first user, the second downlink
4 transmission beam is associated with a second uplink multipath from the plurality of
5 uplink multipaths, the first uplink multipath and the second uplink multipath being no less
6 optimal than the remaining uplink multipaths from the plurality of uplink multipaths.

1 52. The apparatus of claim 36, wherein:
2 the searcher is configured to identify a first multipath component and a second
3 multipath component of the received user-derived signal for a first user, the first multipath
4 component and the second multipath component being no less optimal than remaining
5 multipath components of the received user-derived signal for the first user; and
6 the beam controller being configured to define the first downlink transmission
7 beam and the second downlink transmission beam based on the first angular arrival range
8 and the second angular arrival range.

1 53. The apparatus of claim 36, wherein the diversity coder is configured to encode a
2 first signal and a second signal based on a received user-derived signal to produce the first
3 diversity-encoded signal and the second diversity-encoded signal.

1 54. The apparatus of claim 36, wherein the diversity coder is configured to encode a
2 first signal and a second signal based on at least one characteristic of the received user-
3 derived signal from the group of:
4 a signal quality, a data rate, a signal strength and a signal cross-correlation
5 property,
6 to produce the first diversity-encoded signal and the second diversity-encoded signal.

105574-22778600

1 55. The apparatus of claim 36, wherein:

2 the searcher is configured to receive the received user-derived signal, the received
3 user-derived signal includes a first component and a second component, the first
4 component of the received user-derived signal is associated with its own multipath, the
5 second component of the received user-derived signal being associated with its own
6 multipath;

7 the diversity coder is configured to:

8 determine a complex gain associated with the first diversity signal based on
9 feedback information associated with the first component of the received user-
10 derived signal; and

11 determine a complex gain associated with the second diversity signal based
12 on feedback information associated with the second component of the received
13 user derived signal.

1 56. The apparatus of claim 36, wherein the first diversity-encoded signal is
2 associated with its own diversity code, the second diversity-encoded signal is associated
3 with its own diversity code that is separable from the diversity code associated with the
4 first diversity encoded signal.

405747-22748660