Uvoz podatkov

In []	11: [!head	tabela-zivil.dat

#vrednosti	za	100g	vsakega	zivila				
<pre>#zivilo energij] Ca[mg]</pre>	Fe[mg]	mascobe Vitamin	C[mg]	Kalij[m	J -	Natrij[J -	- 3
Ovseni_kosmici 4 286	369	6.1	64	15.5	54	4.7	0	35
Jabolko 52	0.17	13.81	0.26	6	0.12	4.6	107	1
Pomfri 93 1	12	21.55	1.96	5	0.35	12.8	391	24
Govedina 5 66	254	20	0	17.17	18	1.94	0	29
Svinjina 2 65	236	17.99	0	17.18	15	1.05	0.7	30
Piscanec 9 68	114	1.65	0	23.2	12	0.73	0	23
Mleko 60	3.25	4.52	3.22	113	0.03	0	113	40
Sir_edamec 8 965	357	27.8	1.43	24.99	731	0.44	0	18

In [2]: import pandas as pd

In [28]: import numpy as np

In [3]: fajl = !ls *.dat
fajl

Out[3]: ['tabela-zivil.dat']

```
In [4]: zivila = pd.read_table(fajl[0], skiprows=1, sep="\t")
    print("Imamo kak manjkajoč podatek?")
    print(zivila.isna().any())
    zivila.head()
```

Imamo kak manjkajoč podatek? #zivilo False energija[kcal] False mascobe[g] False ogljikovihidrati[g] False False proteini[g] False Ca[mg] Fe[mg] False VitaminC[mg] False Kalij[mg] False Natrij[mg] False dtype: bool

Out[4]:

		#zivilo	energija[kcal]	mascobe[g]	ogljikovihidrati[g]	proteini[g]	Cal
ſ	0	Ovseni_kosmici	369	6.10	64.00	15.50	54
	1	Jabolko	52	0.17	13.81	0.26	6
	2	Pomfri	93	12.00	21.55	1.96	5
ſ	3	Govedina	254	20.00	0.00	17.17	18
ſ	4	Svinjina	236	17.99	0.00	17.18	15

Prvi scenarij:

" Minimiziraj količino kalorij, če je priporočen minimalni dnevni vnos 70 g maščob, 310 g ogljikovih hidratov, 50 g proteinov, 1000 mg kalcija ter 18 mg železa. Upoštevaj tudi, da naj dnevni obroki količinsko ne presežejo dveh kilogramov hrane."

In [26]: from scipy.optimize import linprog

```
In [80]: c = zivila["energija[kcal]"]
          b_ub = np.array([
              -70,
               -310,
               -50,
               -1000,
               -18,
              20
          ])
          A = np.array([
              -zivila["mascobe[g]"],
              -zivila["ogljikovihidrati[g]"],
              -zivila["proteini[g]"],
-zivila["Ca[mg]"],
-zivila["Fe[mg]"],
              np.ones((len(zivila)))
          ])
          X = linprog(c, A_ub = A, b_ub = b_ub)
               fun: 1288.991841997811
Out[80]:
           message: 'Optimization terminated successfully.'
               nit: 14
             slack: array([ 0.
                                                          , 47.6545134 ,
                                                                             0.
                   55.13152445,
                                   0.
                                              ])
            status: 0
           success: True
                  x: array([ 0.
                                              0.
                                                              0.17491782,
                                                                              0.
                                   Θ.
                    0.
                                                   0.
                                                                  0.
                                                                  0.
                    0.
                                   0.
                                                   0.
                                   0.
                                                   0.
                    0.
                                                                  0.
                                   0.
                                                   0.
                    0.
                                                                  0.
                    0.
                                   0.
                                                   0.
                                                                  0.
                    0.
                                   0.
                                                   0.
                                                                  0.
                                                   0.
                    Θ.
                                   0.
                                                                  0.
                    0.
                                                   0.
                                                                  0.
                                   0.
                    Θ.
                                   0.
                                                   0.
                                                                  0.
                                   0.56219264,
                                                                  4.95627636,
                    0.
                                                   0.
                   14.30661317,
                                                   0.
                                                                  0.
                                   Θ.
                                                                             ])
In [81]: sum(X.x)
```

Out[81]: 19.99999999999996

Definiramo funkcijo, ki nam bo lepo izpisala rezultat

```
In [135]: def izpisi2(x, zivila=zivila["#zivilo"]):
    print("Vrednost optimizirane funkcije: ", x.fun)
    df = pd.DataFrame(data={"Živilo": zivila, "Količina[kg]": 0.1*x.x}).s
    ort_values("Količina[kg]", ascending=False)
        filter = df["Količina[kg]"] != 0
        return df[filter].style.bar(subset=["Količina[kg]"], color='#d65f5f')
        .hide_index()
    def izpisi(x, zivila=zivila["#zivilo"]):
        print("Vrednost optimizirane funkcije: ", x.fun)
        df = pd.DataFrame(data={"Živilo": zivila, "Količina[kg]": 0.1*x.x}).s
    ort_values("Količina[kg]", ascending=False)
        filter = df["Količina[kg]"] != 0
        return df[filter]
    izpisi2(X)
```

Vrednost optimizirane funkcije: 1288.991842

Out[135]: ____

Živilo	Količina[kg]
Sol	1.43066
Kakav	0.495628
Marmelada	0.0562193
Pomfri	0.0174918

```
In [75]: zivila[zivila["#zivilo"] == "Sol"]
```

Out[75]:

	#zivilo	energija[kcal]	mascobe[g]	ogljikovihidrati[g]	proteini[g]	Ca[mg]
44	Sol	0	0.0	0.0	0.0	24

Drugi scenarij:

"Upo $\dot{}$ stevate lahko $\dot{}$ se minimalne vnose za vitamin C (60 mg), kalij (3500 mg) in sprejemljiv interval za natrij (500 mg - 2400 mg), ki so tudi na voljo v tabeli"

popravim A in b

```
In [83]: c = zivila["energija[kcal]"]
           b_ub = np.array([-70, -310, -50, -1000, -18, 20, -60, -3500, 2400, -500])
           A = np.array([
               -zivila["mascobe[g]"],
               -zivila["ogljikovihidrati[g]"],
               -zivila["proteini[g]"],
               -zivila["Ca[mg]"],
               -zivila["Fe[mg]"],
               np.ones((len(zivila))),
               -zivila["VitaminC[mg]"],
               -zivila["Kalij[mg]"],
               zivila["Natrij[mg]"],
               -zivila["Natrij[mg]"]
           ])
           X2 = linprog(c, A_ub = A, b_ub = b_ub)
 Out[83]:
                fun: 1297.2737079300357
           message: 'Optimization terminated successfully.' nit: 37
              slack: array([
                                                  0.
                                                                  51.74546704,
                     54.63526427,
                                                                   , 4699.48779986,
                                                        Θ.
                      0.
                                    1900.
                                                  ])
             status: 0
            success: True
                  x: array([ 0.
                                              0.
                                                                            0.
                                                             0.
                                   Θ.
                                                  0.
                    0.
                                                                 0.
                                                  0.
                    0.
                                   0.
                                                                 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                                   0.79670773,
                    0.
                                                  0.
                                                                 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                    0.
                                   0.
                                                  0.
                                                                 0.
                    Θ.
                                   0.
                                                  Θ.
                                                                 0.
                                   0.
                                                  0.
                                                                 0.
                    Θ.
                    0.96621125,
                                   0.
                                                  0.
                                                                 0.
                                   0.2973317 ,
                                                                 5.08939512,
                                                  0.
                                                  0.
                    0.04362114,
                                  12.80673307,
                                                                 0.
                                                                            ])
In [110]: izpisi(X2)
          Vrednost optimizirane funkcije: 7.43766292266
```

Out[110]:

I		Živilo	Količina[kg]
	17	Solata	1.15693
	41	Marmelada	0.490572
	15	Fizol	0.245238
	8	Kruh_bel	0.102225
	37	Puran	0.00503298

Tretji scenarij:

Kako se rezultat razlikuje, `ce zahtevamo minimalno 2000 kcal in namesto energije minimiziramo vnos ma`s`cob?

Najprej brez drugih vezi:

Vrednost optimizirane funkcije: -0.0

/home/peter/anaconda3/lib/python3.6/site-packages/pandas/io/formats/style.
py:960: RuntimeWarning: divide by zero encountered in double_scalars
 zero_normed = width * (0 - s.min()) / (s.max() - s.min())

Out[111]:

	Živilo	Količina[kg]
42	Med	0.657895

Haha, zakon... OK, pa če upoštevamo še use ostale vezi ka sm jih jemu prej?

```
In [112]: c = zivila["mascobe[g]"]
              b_ub = np.array([-310],
                                       -50,
                                       -1000,
                                       -18,
                                       20,
                                       -60,
                                       -3500,
                                      2400,
                                       -500,
                                       -2000
                                     ])
              A = np.array([
                   -zivila["ogljikovihidrati[g]"],
-zivila["proteini[g]"],
-zivila["Ca[mg]"],
-zivila["Fe[mg]"],
np.ones((len(zivila))),
                    -zivila["VitaminC[mg]"],
-zivila["Kalij[mg]"],
                    zivila["Natrij[mg]"],
                    -zivila["Natrij[mg]"],
                    -zivila["energija[kcal]"]
              ])
              X4 = linprog(c, A_ub = A, b_ub = b_ub)
              izpisi(X4)
```

Vrednost optimizirane funkcije: 7.43766292266

Out[112]:

	Živilo	Količina[kg]
17	Solata	1.15693
41	Marmelada	0.490572
15	Fizol	0.245238
8	Kruh_bel	0.102225
37	Puran	0.00503298

5 del; omejitev količine posameznih živil

Postopam enako, le da dodam še enotske vektorje v prostoru živil in v b_up dodam normalnejšo količino.

```
In [116]: d = len(zivila)
kopija = zivila.copy()

for i, hr in enumerate(kopija["#zivilo"].values):
    kopija[hr] = np.zeros(d)
    kopija[hr][i] = 1
```

/home/peter/anaconda3/lib/python3.6/site-packages/ipykernel_launcher.py:6:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy

```
In [134]: c = zivila["energija[kcal]"]
           b_ub = np.array([-70,
                               -310,
                               -50,
                               -1000,
                               -18,
                               20,
                               -60,
                               -3500,
                               2400,
                               -500,
                               #-2000,
                               1, #Solata v enotah 100g
                               0.5, #Marmelada
                               2,
                               1,
                               2,
                               2,
                               1,
                              4,
                             4,
                               0.1,
                              3,
                              2,
                              1
                              ])
           A = np.array([
                -zivila["mascobe[g]"],
                -zivila["ogljikovihidrati[g]"],
                -zivila["proteini[g]"],
                -zivila["Ca[mg]"],
                -zivila["Fe[mg]"],
                np.ones((len(zivila))),
                -zivila["VitaminC[mg]"],
                -zivila["Kalij[mg]"],
                zivila["Natrij[mg]"],
                -zivila["Natrij[mg]"],
                #-zivila["energija[kcal]"],
zivila["Solata"],
zivila["Marmelada"],
                zivila["Pomaranca"],
                zivila["Zelje"],
                zivila["Brokoli"],
                zivila["Strocji_fizol"],
zivila["Korenje"],
                zivila["Kruh bel"],
                zivila["Radenska"],
                zivila["Kakav"],
                zivila["Pomfri"],
                zivila["Jagode"],
                zivila["Paprika"]
           ])
           X5 = linprog(c, A_ub = A, b_ub = b_ub)
           izpisi2(X5)
```

Vrednost optimizirane funkcije: 1658.92854735

Out[134]:

	Živilo	Količina[kg]
2	Pomfri	0.3
29	Brokoli	0.2
36	Pomaranca	0.2
21	Jagode	0.2
34	Strocji_fizol	0.2
45	Radenska	0.192389
8	Kruh_bel	0.131007
24	Torta	0.112841
32	Paprika	0.1
33	Korenje	0.1
17	Solata	0.1
18	Zelje	0.1
41	Marmelada	0.0275023
7	Sir_edamec	0.0260315
43	Kakav	0.01
44	Sol	0.000228716

Part 7: Nizko-OH dieta

minimiziram OH intake ob omejitvi 2000kcal The Dietary Guidelines for Americans by the United States Department of Agriculture (USDA) recommends three healthy patterns of diet, summarized in table below, for a 2000 kcal diet.[10]

```
In [140]: c = zivila["ogljikovihidrati[g]"]
          b_ub = np.array([-70, -50, -1000, -18, 20, -60, -3500, 2400, -500])
          A = np.array([
               -zivila["mascobe[g]"],
               -zivila["proteini[g]"],
               -zivila["Ca[mg]"],
               -zivila["Fe[mg]"],
               np.ones((len(zivila))),
               -zivila["VitaminC[mg]"],
               -zivila["Kalij[mg]"],
               zivila["Natrij[mg]"],
               -zivila["Natrij[mg]"]
           ])
           b_eq = [2000]
          A_eq = [zivila["energija[kcal]"]]
          X7 = linprog(c, A_ub = A, b_ub = b_ub)
          izpisi2(X7)
```

Vrednost optimizirane funkcije: 2.03137771937

Out[140]:

Živilo	Količina[kg]
Postrv	1.92489
Paprika	0.0274526
Skusa_soljena	0.0269328
Sir_edamec	0.0207253

Vidimo, da bo potrebno omejiti živila:

```
In [139]: c = zivila["ogljikovihidrati[g]"]
            b_ub = np.array([-70, -50, -1000, -18, 20, -60, -3500, 2400, -500, 6, 1, 0.5, 2, 1)
            \overline{,2},2,1,4,4,0.1,3,2,1,6]
            A = np.array([
                 -zivila["mascobe[g]"],
                 -zivila["proteini[g]"],
                 -zivila["Ca[mg]"],
                 -zivila["Fe[mg]"],
                np.ones((len(zivila))),
                 -zivila["VitaminC[mg]"],
                -zivila["Kalij[mg]"],
                zivila["Natrij[mg]"],
                 -zivila["Natrij[mg]"],
                zivila["Postrv"],
                 zivila["Solata"],
                zivila["Marmelada"],
zivila["Pomaranca"],
zivila["Zelje"],
zivila["Brokoli"],
                zivila["Strocji_fizol"],
zivila["Korenje"],
                 zivila["Kruh_bel"],
                 zivila["Radenska"],
                 zivila["Kakav"],
                 zivila["Pomfri"],
                 zivila["Jagode"],
                 zivila["Paprika"],
                 zivila["Svinjina"]
            ])
            b_eq = [2000]
            A_eq = [zivila["energija[kcal]"]]
            X7 = linprog(c, A_ub = A, b_ub = b_ub)
            izpisi2(X7)
```

Vrednost optimizirane funkcije: 2.81102423971

Out[139]:

Živilo	Količina[kg]
Postrv	0.6
Svinjina	0.6
Radenska	0.4
Govedina	0.286937
Sir_edamec	0.0694068
Paprika	0.0287738
Skusa_soljena	0.0148825

Paleo dieta

```
""" EAT
   Grass-fed meats
   Fish/seafood
   Fresh fruits
   Fresh vegetables
   Eggs
   Nuts
   Seeds
   Healthy oils (olive, walnut, flaxseed, macadamia, avocado, coconut)
DON'T EAT
   Cereal grains
   Legumes (including peanuts)
   Dairy
   Refined sugar
   Potatoes
   Processed foods
   Overly salty foods
   Refined vegetable oils
   Candy/junk/processed food
""" vir: https://ultimatepaleoguide.com/paleo-diet-food-list/ (https://ultimatepaleoguide.com/paleo-diet-
food-list/)
    In [ ]:
```