

AUTOMATISATION DE L'ANALYSE D'IMAGES DE LA DIFFERENCIATION DES OLIGODENDROCYTES DANS LE CONTEXTE DE LA SCLEROSE EN PLAQUES.

AMMICHE Naïma 2022-2023

Introduction

Schéma représentant les étapes nécessaires pour obtenir les surnageants de cultures de trois conditions (A). Les étapes pour obtenir les images à analyser à partir de culture d'oligodendrocyte (B).

Comment automatiser la quantification des différents types cellulaires et la classification d'oligodendrocytes à partir d'image en nuance de gris ?

Matériels et méthodes

Objectif: Compter le nombre d'astrocytes et d'oligodendrocytes

ImageJ FIJI et Jupyter Notebook

ImageJ FIJI et Jupyter Notebook

Macro de comptage des astrocytes et oligodendrocytes

Prétraitement

Macro de comptage des astrocytes et oligodendrocytes

- Prétraitement
- Seuillage

Macro de comptage des astrocytes et oligodendrocytes

- Prétraitement
- Seuillage
- Traitement
- Mesure
- Sauvegarde

Analyse des données de comptage des astrocytes et oligodendrocytes

Macro de quantification

		Slice	Count	Total Area	Average Size	%Area
	0	GFAP	54	4770.761	88.347	1.899
	1	GFAP	39	3028.875	77.663	1.206
	2	GFAP	53	4351.315	82.100	1.732
	3	GFAP	49	3642.894	74.345	1.450
	4	GFAP	53	3257.870	61.469	1.297
		***	+++.		***	***
1	75	h+	141	15218.987	107.936	6.058
1	76	h+	129	13729.593	106.431	5.465
1	77	h+	118	13594.587	115.208	5.411
1	78	h+	115	12463.216	108.376	4.961
1	79	h+	126	15555.781	123.459	6.192

Pourcentage oligodendrocytes (O4) et astrocytes (GFAP)

- → Effet du traitement LPS, l'état pro inflammatoire le diminue le % d'oligodendrocytes et augmente % astrocytes chez les contrôles et patients.
- → Etat pro régénératif, les contrôles produisent des oligodendrocytes et les patients n'en produisent pas.

Pourcentage oligodendrocytes (O4) et astrocytes (GFAP)

- → Effet du traitement LPS, l'état pro inflammatoire le diminue le % d'oligodendrocytes et augmente % astrocytes chez les contrôles et patients.
- → Etat pro régénératif, les contrôles produisent des oligodendrocytes et les patients n'en produisent pas.

Objectif : Classer les oligodendrocytes en quatre classes en fonction de leurs morphologies

Oligodendrocyte immature

Oligodendrocyte mature

Les jonctions sont représentées (en violet), les terminaisons (en bleu) et les branches (en orange).

- Prétraitement
- Seuillage
- Traitement

Noyaux

- Prétraitement
- Seuillage
- Traitement
- Voronoï

Noyaux

- Prétraitement
- Seuillage
- Traitement
- Voronoï
- Addition et skeleton

- Prétraitement
- Seuillage
- Traitement
- Voronoï
- Addition et skeleton
- Plugin Analyze skeleton 2D/3D
- Sauvegarde

Analyse des données de classification des oligodendrocytes

Format DIB

Concaténer CSV

		# Branches	Junctions	# End- point voxels	# Junction voxels	# Slab voxels	Average Branch Length	# Triple points	# Quadruple points	Maximum Branch Length	Longest Shortest Path	spx	spy	spz
0	1	58	7	22	333	93	7.76	2	1	22.25	41.22	30.87	360.02	0
1	2	39	9	14	168	89	6.29	2	2	15.83	36.57	36.77	198.40	0
2	3	80	24	24	315	218	4.67	7	6	13.30	47.31	50.85	27.24	0
3	4	161	27	62	901	265	7.86	9	4	24.60	80.64	67.19	269.22	0
4	5	66	17	20	318	153	5.50	5	3	15.05	40.69	56.75	217.92	0
	100	22	22	100	-	325	***	1	3.00	***		***	-	
601	57	40	7	22	128	57	5.94	3	0	16.53	31.15	466.71	278.30	0
602	58	41	9	20	144	44	4.69	3	2	18.46	32.16	484.87	278.76	0
603	59	32	7	14	101	47	5.30	2	1	18.92	26.01	481.69	286.02	0
604	60	57	14	18	249	122	6.07	6	4	13.19	49.31	495.31	207.93	0
605	61	28	9	12	95	54	4.54	6	0	14.80	29.86	476.25	127.57	0

606 rows x 14 columns

Classification des oligodendrocytes en 4 classes

- Inférieur à 150 branches
- Entre 150 et 300 branches
- Entre 300 et 450 branches
- Supérieur à 450 branches

Classification des oligodendrocytes suivant leurs ramifications en 4 classes

- → Effet de LPS, % des oligodendrocytes avec moins de 150 branches diminue, % des oligodendrocytes entre 300 et 450 branches augmente.
- → Le % d'oligodendrocytes non différenciés est supérieur chez les patients comparés au contrôle indépendamment des conditions.

Classification des oligodendrocytes suivant leurs ramifications en 4 classes

- → Effet de LPS, % des oligodendrocytes avec moins de 150 branches diminue, % des oligodendrocytes entre 300 et 450 branches augmente.
- → Le % d'oligodendrocytes non différenciés est supérieur chez les patients comparés au contrôle indépendamment des conditions.

Conclusion

→ Une absence de régénération de la gaine de myéline causant ainsi une détérioration du SNC.

Merci pour votre attention