Геометрия и топология.

Лектор — Евгений Анатольевич Фоминых Создатель конспекта — Глеб Минаев *

TODOs

Содержание

1	Алгебраическая топология	1
	1.1 Фундаментальная группа	1
	Литература:	
	• Виро О.Я., Иванов О.А., Нецветаев Н.Ю., Харламов В.М., "Элементарная топологиз М.:МЦНМО, 2012.	я",
	• James Munkres, "Topology".	

1 Алгебраическая топология

1.1 Фундаментальная группа

Определение 1. Ретракция — непрерывное отображение $f: X \to A$, где A — подпространство X, что $f|_A = \mathrm{Id}_A$.

Если существует ретракция $f: X \to A$, то A называется ретрактом пространства X.

Π ример 1.

- 1. Всякое одноточечное подмножество является ретрактом.
- 2. Никакое двухточечное подмножество прямой не является ретрактом.

Теорема 1. Пусть дано подпространство A пространства X. TFAE

- 1. A pempakm X.
- 2. всякое непрерывное отображение $g:A \to Y$ продолжается до непрерывного отображения $X \to Y$.

 $^{^*}$ Оригинал конспекта расположен на GitHub. Также на GitHub доступен репозиторий с другими конспектами.

Доказательство. Пусть A — ретракт. Тогда есть ретракция $\rho: X \to A$, а значит $g \circ \rho$ — продолжение g на X.

С другой стороны, если всякое непрерывное $g:A\to Y$ продолжимо до непрерывного $X\to Y$, то ретракцию A можно получить как продолжение $\mathrm{Id}_A:A\to A$.

Лемма 2. Пусть дано подпространство A пространства X и точка $x \in A$. Если $\rho: X \to A$ — ретракция, a in : $A \to X$ — включение (тождественное отображение), то $\rho_{\star}: \pi_1(X,x) \to \pi_1(A,x)$ — сюръекция, a in $_{\star}: \pi_1(A,x) \to \pi_1(X,x)$ — инъекция.

Доказательство. $\rho \circ \text{in} = \text{Id}_A$. Следовательно $(\rho \circ \text{in})_{\star} = \rho_{\star} \circ \text{in}_{\star} = \text{Id}_{\star} = \text{Id}$, откуда следует, что ρ_{\star} — сюръекция, а in_{\star} — инъекция.

Теорема 3 (Борсука). *Не существует ретракции* $D^n \to S^{n-1}$.

Доказательство в размерности 2. Предположим противное. Пусть $\rho: D^2 \to S^1$ — ретракция, $x \in S^1$. Из леммы 2 следует, что $in_*: \pi_1(S^1) \to \pi_1(D^2)$ должно быть инъекцией. Но $\pi_1(S^1) = \mathbb{Z}$, а $\pi_1(D^2) = \{0\}$. А инъекции $\mathbb{Z} \to \{0\}$ не существует — противоречие.

Замечание 1. На самом деле рассуждение работает в любой размерности. Только вместо π_1 надо взять π_{n-1} . Там опять же окажется, что лемма верна, $\pi_{n-1}(D^n)$ тривиальна, а $\pi_{n-1}(S^{n-1})$ — содержит $\mathbb Z$ как подгруппу.

Определение 2. Точка $a \in X$ называется неподвижной точкой отображения $f: X \to X$, если f(a) = a.

Пространство X, говорят, обладает свойством неподвижной точки, если всякое непрерывное отображение $f: X \to X$ имеет неподвижную точку.

 $\Pi pumep \ 2. \ [a;b]$ обладает свойством неподвижной точки.

Теорема 4 (Брауэра). Любое непрерывное отображение $f: D^n \to D^n$ имеет неподвижную точку.

Доказательство в размерности 2. Предположим противное, $f(x) \neq x$ для всех $x \in D^2$. Построим $g: D^2 \to S^1$ как пересечение открытого луча $(f(x); x; \infty)$ и S^1 . Несложно удостовериться, что для всех точек x, что $f(x) \neq x$, функция g определена и непрерывна в некоторой окрестности x. Это противоречит теореме Борсука.

Замечание 2. В точности также это можно доказать для любой размерности, но потребуется теорема Борсука большей размерности.

Определение 3. X и Y называются гомотопически эквивалентными (и пишут $X \sim Y$), если существуют непрерывные отображения $f: X \to Y$ и $g: Y \to X$ такие, что $g \circ f \sim \operatorname{Id}_X$ и $f \circ q \sim \operatorname{Id}_Y$.

Такие f и g называются гомотопически обратными отображениями. При этом каждое из них называется гомотопической эквивалентностью.

 $\Pi pumep \ 3. \ \mathbb{R}^n$ гомотопически эквивалентно $\{0\}$.

Определение 4. Ретракция $f: X \to A$ называется *деформационной ретракцией*, если её композиция с включением in : $A \to X$ гомотопна тождественному отображению, т.е.

in
$$\circ f \sim \mathrm{Id}_X$$
.

Если существует деформационная ретракция X на A, то A называется $\partial e \phi o p мационным ретрактом пространства <math>X$.

Теорема 5. Деформационная ретракция — гомотопическая эквивалентность.

Доказательство. Действительно, если $f:X\to A$ — деформационная ретракция, а in : $A\to X$ включение, то $f\circ$ in $=\mathrm{Id}_A\sim\mathrm{Id}_A$ и

$$in \circ f \sim Id_A$$

по оперделению деформационной ретракции. Следовательно f и in — гомтопически обратные друг другу деформационные ретракции.

Следствие 5.1. Деформационные ретракты гомотопически эквивалентны своим исходным пространствам.

 Π ример 4.

- 1. S^{n-1} деформационный ретракт $\mathbb{R}^n \setminus \{0\}$.
- 2. S^1 деформационный ретракт ленты Мёбиуса и кольца $(S^1 \times [0;1])$.
- 3. Букет n окружностей и окружность с n радиусами деформационный ретракт плоскости без n точек.
- 4. Букет двух окружностей деформационный ретракт тора с дыркой.

Теорема 6. Гомотопическая эквивалентность — "отношение эквивалентности" между топологическими пространствами.

Доказательство.

- **Рефлексивность.** Очевидна, так как Id является деформационным ретрактом $X \to X$.
- Симметричность. Если $X \sim Y$, то есть $f: X \to Y$ и $g: Y \to X$, что $g \circ f \sim \mathrm{Id}_X$ и $f \circ g \sim \mathrm{Id}_Y$. Тогда $Y \sim X$.
- Транзитивность. Пусть $X \sim Y \sim Z$. Тогда имеются $f: X \to Y, g: Y \to X, h: Y \to Z$ и $i: Z \to Y$, что $g \circ f \sim \operatorname{Id}_X, f \circ g \sim \operatorname{Id}_Y, i \circ h \sim \operatorname{Id}_Y, h \circ i \sim \operatorname{Id}_Z$. Следовательно

$$(g \circ i) \circ (h \circ f) = g \circ (i \circ h) \circ f \sim g \circ \operatorname{Id}_{Y} \circ f = g \circ f \sim \operatorname{Id}_{X}$$

И

$$(h \circ f) \circ (g \circ i) = h \circ (f \circ g) \circ i \sim h \circ \mathrm{Id}_Y \circ i = h \circ i \sim \mathrm{Id}_Z.$$

Следовательно $(h \circ f)$ и $(g \circ i)$ — гомотопически обратные гомотопические эквивалентности. Значит $X \sim Z$.

П

Определение 5. Класс пространств, гомотопически эквивалентных данному X, называется гомотопическим типом. Свойства (характеристики) топологических пространств, одинаковые у гомотопически эквивалентных, — гомотопические свойства (гомотопические инварианты).

Упражнение 1. Число компонент (линейной) связности — гомотопический инвариант.

Теорема 7. Пусть X и Y — гомотопно эквивалентные поверхности, a f : $X \to Y$, g : $Y \to X$ — гомотопически обратные гомотопические эквивалентности. Пусть также фиксирована $x_0 \in X$. Тогда

$$\pi_1(X, x_0) \simeq \pi_1(Y, f(x_0)).$$

Доказательство.

Лемма 7.1. Пусть $f,g:X\to Y$ — непрерывные отображения, а $H:X\times [0;1]\to Y$ — гомотопия между f и g. Пусть также даны $x_0\in X,\ y_0:=f(x_0),\ y_1:=g(x_0)$ и путь $\gamma(t):=H(x_0,t)$ из y_0 в y_1 . Обозначим за T_γ — сопряжение по пути γ , т.е. $T_\gamma(\alpha)=\gamma^{-1}\alpha\gamma$. Тогда

$$f_{\star} = T_{\gamma} \circ g_{\star}.$$

Доказательство. Условие равенства функций $f_{\star} = T_{\gamma} \circ g_{\star}$ означает, что для всякого $\alpha \in \Omega(X,x_0)$

$$f_{\star}([\alpha]) = T_{\gamma}(g_{\star}([\alpha])).$$

Последнее значит, что

$$[f \circ \alpha] = [\gamma^{-1}(g \circ \alpha)\gamma],$$

или говоря иначе,

$$f \circ \alpha \sim \gamma^{-1}(g \circ \alpha)\gamma$$
.

При этом заметим, что

$$f \circ \alpha = H(\alpha(s), 0), \qquad g \circ \alpha = H(\alpha(s), 1).$$

Рассмотрим

$$F:[0;1]^2\to X\times [0;1], (s,t)\mapsto (\alpha(s),t).$$

Несложно видеть, что

$$F(s,0) = (\alpha(s),0), \qquad F(s,1) = (\alpha(s),1), \qquad F(0,t) = F(1,t) = (x_0,t).$$

Таким образом

$$(H \circ F)(s,0) = f \circ \alpha, \qquad (H \circ F)(s,1) = g \circ \alpha, \qquad (H \circ F)(0,t) = F(1,t) = \gamma.$$

Зафиксируем в $[0;1]^2$ линейные пути $\varphi:(0,0)\mapsto(1,0)$ и $\psi:(0,0)\mapsto(0,1)\mapsto(1,1)\mapsto(1,0)$. Несложно видеть, что

$$H \circ F \circ \varphi = f \circ \alpha, \qquad H \circ F \circ \psi = \gamma^{-1}(g \circ \alpha)\gamma.$$

При этом $[0;1]^2$ выпукло, значит есть гомотопия G, переводящая φ в γ . В таком случае $H \circ F \circ G$ — гомотопия, переводящая $f \circ \alpha$ в $\gamma^{-1}(g \circ \alpha)\gamma$.

Заметим, что $g \circ f$ гомотопно Id_X . Значит в контексте x_0 и $\pi_1(X,x_0)$ есть некоторое сопряжение T_γ , что

$$T_{\gamma} \circ (g \circ f)_{\star} = (\mathrm{Id}_X)_{\star} = \mathrm{Id}.$$

При этом T_{γ} есть изоморфизм групп (биекция). Это в частности означает, что $g_{\star} \circ f_{\star}$ является биекцией. Отсюда следует, что g_{\star} инъективно, а f_{\star} сюръективно.

Повторяя рассуждения в обратную сторону, получаем, что f_{\star} и g_{\star} являются биекциями. Поэтому

$$\pi_1(X, x_0) \simeq \pi_1(Y, f(x_0)).$$

Следствие 7.1. f_{\star} (кроме того, что индуцирует биекцию из множеств компонент линейной связности X и их фундаментальных групп в множества тех же y(Y) индуцирует изоморфизмы фундаментальных групп компонент линейной связности X.

Следствие 7.2. Если X линейно связно (а тогда Y тоже), то $\pi_1(X) \simeq \pi_1(Y)$.

Определение 6. Топологическое пространство X стягиваемо, если гомотопически эквивалентно точке.

Лемма 8. *TFAE*

- 1. Х стягиваемо.
- 2. Id_X гомотопно константному отображению.
- 3. Некоторая точка деформационный ретракт.
- 4. Всякая точка деформационный ретракт.

Пример 5. Например, стягиваемы следующие пространства.

- $1. \mathbb{R}^n.$
- 2. Выпуклые множества.
- 3. Звёздные множества.
- 4. Деревья.

Лемма 9. Пусть $h: S^1 \to X$ — непрерывное отображение. TFAE

- 1. h гомотопно постоянному отображению.
- 2. h продолжается до непрерывного отображения $D^2 \to X$.
- 3. h_{\star} тривиальный гомоморфизм.

Доказательство.

- $1\Rightarrow 2)$ Существует гомотопия H между h и константным отображением. Это значит, что $H: S^1\times [0;1]\to X$ непрерывно, и $H(x,1)={\rm const.}$ Это значит, что пространство $S^1\times [0;1]$ можно склеить по множеству $S^1\times \{1\}$ (так как на нём H константна) и H переопределится в некоторую функцию H'. При этом множество-прообраз H' гомеоморфно $D^2.$ Следовательно можно считать, что $H':D^2\to X.$ При этом H' является доопределением, так как $H'|_{S^1}=H|_{S^1\times \{0\}}=h.$
- $2\Rightarrow 1)$ Пусть h продолжена до H на D^2 . Тогда определим

$$G:S^1\times [0;1]\to X, (\alpha,r)\mapsto H(re^{\alpha i}).$$

Несложно видеть, что G — гомотопия между h и константным отображением.

 $1 \Leftrightarrow 3$) Если h_{\star} является тривиальным гомоморфизмом фундаментальных групп, то $h = h \circ \alpha \sim$ const, где α — один оборот по окружности, т.е. h гомотопно константному отображению. Если h гомотопно постоянному отображению, то $\alpha \circ h = h \sim \text{const}$, т.е. $f_{\star}([\alpha]) = e$. При этом $[\alpha]$ порождает группу $\pi_1(S^1)$. Следовательно, h_{\star} — тривиальный гомоморфизм.

Теорема 10 (основная теорема алгебры). Всякий многочлен из $\mathbb{C}[z]$ положительной степени имеет корень.

Доказательство. WLOG нам дан многочлен

$$z^n + a_{n-1}z^{n-1} + \dots + a_0z^0.$$

Также WLOG $|a_{n-1}| + \cdots + |a_0| < 1$, так как если сделать замену z = y/c, то задача сведётся к многочлену

$$y^n + ca_{n-1}y^{n-1} + \dots + c^n a_0.$$

В таком случае

$$|a_{n-1}| + \dots + |a_0| = |c||a_{n-1}| + \dots + |c|^n|a_0|.$$

Значит можно взять достаточно маленькое значение |c|>0, и тогда полученная сумма будет меньше 1.

Предположим противное, т.е. у данного многочлена нет корней. Тогда функция

$$f: \mathbb{C} \to \mathbb{C}, z \mapsto z^n + a_{n-1}z^{n-1} + \dots + a_0z^0$$

непрерывна и имеет область значений $\mathbb{C} \setminus \{0\}$. Следовательно, поскольку f определена D^2 , то $f|_{S^1}$ гомотопна постоянному отображению.

Определим функцию

$$g: S^1 \to \mathbb{C} \setminus \{0\}, z \mapsto z^n$$

и функцию

$$H: S^1 \times [0;1] \to \mathbb{C}, z \mapsto z^n + t(a_{n-1}z^{n-1} + \dots + a_0z^0).$$

Заметим, что

$$|H(z,t)| \ge |z^n| - |t|(|a_{n-1}||z|^{n-1} + \dots + |a_0||z|^0) \ge 1 - (|a_{n-1}| + \dots + |a_0|) > 0,$$

т.е. $H \neq 0$. Следовательно, H является гомтопией между f и g в $\mathbb{C} \setminus \{0\}$. Таким образом f гомотопно g и константной функции. При этом g не гомотопно константной функции, так как определяет n оборотов по окружности, что не является тривиальным гомоморфизмом $\pi_1(\mathbb{C} \setminus \{0\}) \simeq \pi_1(S^1)$ на себя — противоречие.

Теорема 11 (Борсука-Улама). Для любой непрерывной функции $f: S^n \to \mathbb{R}^n$ существует точка $x \in S^n$ такая, что f(-x) = f(x).

Доказательство для размерности 1. Функция $\varphi: S^1 \to \mathbb{R}^1, x \mapsto f(x) - f(-x)$ определена на компакте, значит множество её значений есть отрезок. При этом φ нечётна, значит это отрезок с серединой в 0. Таким образом в какой-то точке φ принимает 0, т.е. в этой точке f(x) = f(-x).

Доказательство для размерности 2. Предположим противное, т.е. $f(x) \neq f(-x)$ ни в какой точке. Тогда можно определить функцию

$$g: S^2 \to S^1, \frac{f(x) - f(-x)}{|f(x) - f(-x)|}.$$

Понятно, что q нечётна и непрерывна.

Рассмотрим нативные проекции $p_1: S^1 \to \mathbb{R}P^1$ и $p_2: S^2 \to \mathbb{R}P^2$. Поскольку g нечётна, то $p_1 \circ g$ чётна, а значит $\varphi := p_1 \circ g \circ p_2^{-1}$ определена. При этом $\pi_1(\mathbb{R}P^2) = \mathbb{Z}_2$, а $\pi_1(\mathbb{R}P^1) = \mathbb{Z}$. Т.е. не существует нетривиальных гомоморфизмов $\mathbb{Z}_2 \to \mathbb{Z}$. Таким образом φ_\star тривиален.

Пусть α — нетривиальная петля в $\mathbb{R}P^2$. Тогда при помощи p_2 её можно поднять в путь $\widetilde{\alpha}$. При этом из нетривиальности α следует, что концы $\widetilde{\alpha}$ не совпадают, а являются противоположными. Следовательно $g \circ \widetilde{\alpha}$ — путь с противоположными концами. Но в таком случае $p_1 \circ g \circ \widetilde{\alpha}$ является нетривиальной петлёй в $\mathbb{R}P^1$. Т.е. φ_{\star} отправил не нейтральный элемент в не нейтральный. Следовательно, φ_{\star} нетривиален — противоречие.

Определение 7. *Клеточное пространство* (также "*клеточный комплекс*", "CW-комплекс" (closure-finiteness + weak topology)) размерности n определяется по индукции следующим образом.

- Клеточное пространство размерности 0 дискретное пространство.
- Клеточное пространство размерности $n \in N$ топологическое пространство X, которое может быть получено (с точностью до гомеоморфизма) из клеточного пространства Y размерности k < n приклеиванием набора $\{D_i^n\}_{i \in I}$ копий диска D^n по непрерывным отображениям $\varphi_i : \partial D_i^n \to Y$, где ∂D_i^n краевая сфера D_i^n .

Kлеточное разбиение (клеточная структура) — конкретный способ представить X в таком виде, вместе с аналогичным представлением Y и так далее до размерности 0. Клетки — внутренности приклеиваемых дисков, а также точки исходного 0-мерного пространства.

Определение 8 (другое). *Клеточное разбиение* хаусдорфова пространства X — это следующая структура:

- X разбито на подмножества e_i ($i \in I$) (клетки). Каждой клетке приписано число из $\mathbb{N} \cup \{0\}$ (размерность), клетка размерности n гомеоморфна открытому шару в \mathbb{R}^n . В частности, 0-мерные клетки точки. Размерность клетки часто обозначают верхним индексом: e_i^n .
- Для каждой клетки e_i^n есть приклеивающее отображение $\varphi_i: D^n \to X$ такое, что сужение φ_i^n на открытый шар гомеоморфизм на e_i и $\varphi_i^n(\partial D^n)$ содержится в конечном объединении клеток меньшей размерности.
- Множество $A \subseteq X$ замкнуто тогда и только тогда, когда его пересечение с замыканием любой клетки замкнуто.

Определение 9. Клеточный комплекс называют

- конечным, если клеток конечное количество. (Равносильно компактности.)
- локально конечным, если клетки образуют локально конечное покрытие.
- *конечномерным*, если размерности клеток ограничены; при этом максимальная размерность клетки называется размерностью пространства.

Определение 10. Пусть X — клеточное пространство с зафиксированным клеточным разбиением. Его k-мерный остов — объединение всех клеток размерности не больше k. Обозначение: $\operatorname{sk}_k(X)$ или X_k .

Замечание. Остовы вложены друг в друга: $X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_n = X$.

Пример 6. Граф — 1-мерное клеточное пространство.

Замечание. Для упрощения доказательств будем в основном рассматривать только конечные или локально конечные графы (граф локально конечен, если степень каждой вершины конечна).

Теорема 12. Пусть Γ — граф, X — топологическое пространство. Тогда отображение f: $\Gamma \to X$ непрерывно тогда и только тогда, когда его сужение на каждое (замкнутое) ребро графа непрерывно.

Доказательство. В локально конечном графе его множество ребер — локально конечное замкнутое покрытие. А такие покрытия — фундаментальны.

 $\Pi pumep$ 7 (клеточное разбиение сферы). S^n имеет клеточное разбиение из двух клеток: одной 0-мерной и одной n-мерной. Диск D^n приклеивается к точке по единственному возможному отображению из S^{n-1} в эту точку.

Пример 8 (клеточное разбиение тора). Рассмотрим тор, склеенный из квадрата. Все вершины склеиваются в одну, это 0-мерная клетка. Стороны склеиваются в две петли, это 1-мерные клетки. Квадрат, приклеиваемый к этому букету окружностей — 2-мерная клетка.

Теорема 13. Фундаментальная группа букета п окружностей — свободная группа с п образующими (обозначение: F_n). В качестве свободных образующих можно взять однократные обходы окружностей букета.

Доказательство. Пусть B — букет окружностей, b_0 — его выделенная точка, $\alpha_1, \ldots, \alpha_n \in \Omega(B, b_0)$ — петли, соответствующие окружностям букета. Построим универсальное накрытие $p: T \to B$, где T — некоторое бесконечное дерево.

Построение T: Вершины — несократимые слова из букв $x_1, \ldots, x_n, x_1^{-1}, \ldots, x_n^{-1}$. (Они же — элементы свободной группы F_n с образующими x_1, \ldots, x_n .) Соединяем ориентированным ребром два элемента группы, если они отличаются умножением справа на x_i (или x_i^{-1}).

Построение $p: T \to B$: Все вершины отображаем в b_0 . Ребро между вершинами p и q, где $q = px_i$, отображаем в α_i согласно направлению обхода.

Покажем, что p — накрытие. В силу локальной конечности T отображение p непрерывно. При этом у всякой точки отличной от b_0 есть окрестность-интервал, находящийся строго внутри петли α_i , а значит p для всякого прообраза этой точки задаёт гомеоморфизм с окрестностью выбранного прообраза. При этом у b_0 по аналогии есть окрестность-крест, которая тоже гомеоморфна по p окрестностям-крестам прообраза b_0 . Это и значит, что p — накрытие.

T, как всякое дерево, стягиваемо. Следовательно, односвязно. Таким образом $\pi_1(T,e)$ тривиальна. При этом путь $\alpha_{i_1}^{\varepsilon_1} \dots \alpha_{i_k}^{\varepsilon_k}$ поднимается до пути $x_{i_1}^{\varepsilon_1} \dots \alpha_{i_k}^{\varepsilon_k}$ (не зависимо от начальной точки), а значит фундаментальная группа B равна F_n .

Определение 11. Клеточное подпространство клеточного пространства X — замкнутое множество $Y \subseteq X$, состоящее из целых клеток.

Теорема 14 (без доказательства). Пусть X- клеточное пространство, $Y\subseteq X-$ клеточное подпространство, Z- топологическое пространство, $f:X\to Z-$ непрерывное отображение, $H_0:Y\times [0;1]\to Z-$ гомотопия, $H_0(\cdot,0)=f|_Y$. Тогда существует гомотопия $H:X\times [0;1]\to Z$, продолжающая H_0 и такая, что $H(\cdot,0)=f$.

Лемма 15. Пусть Γ — локально конечный граф, $T \subseteq \Gamma$ — стягиваемый подграф. Тогда существует непрерывное $h : \Gamma \to \Gamma$ такое, что

- $h|_T = \text{const},$
- $h \sim \mathrm{Id}_{\Gamma}$,
- существует гомотопия H между h и Id_{Γ} , что при всех $t \in [0;1]$ верно $H(T,t) \subseteq T$.

Доказательство. Так как T стягиваемо, существует гомотопия $H_0: T \times [0;1] \to T$ такая, что $H_0(\cdot,0) = \mathrm{Id}_T$. Обозначим $M_0 = T \times [0;1]$.

Цель: построить $H: \Gamma \times [0;1] \to \Gamma$ такое, что $H(\cdot,0) = \mathrm{Id}_{\Gamma}$ и $H(\cdot,1)|_{T} = \mathrm{const.}$

Сначала продолжим H_0 до $H_1: M_1 \to \Gamma$, где $M_1 = M_0 \cup (\Gamma \times \{0\})$ и $H_1(\cdot, 0) = \mathrm{Id}_{\Gamma}$.

Пусть V — множество вершин $\Gamma \setminus T$. Продолжим H_1 до $H_2: M_2 \to \Gamma$, где $M_2 = M_1 \cup (V \times [0;1])$ и $H_2(v,t) = H_1(v,0) = v$ для всех $v \in V$ и $t \in [0;1]$. Итак, мы определили отображение на множестве $M_2 = (\Gamma \times \{0\}) \cup ((T \cup V) \times [0;1])$.

Легко видеть, что существует ретракция $\psi: \Gamma \times [0;1] \to M_2$ (она строится отдельно на произведении каждого ребра и [0;1]). Определим $H=H_2\circ \psi$ и $h=H(\cdot,1)$.

Теорема 16. Пусть Γ — локально конечный граф, а $T \subseteq \Gamma$ — стягиваемый подграф. Тогда $\Gamma/T \sim \Gamma$.

Доказательство. Пусть $h: \Gamma \to \Gamma$ — отображение из леммы. Т.к. $h|_T = \text{const}$, то h пропускается через факторпространство: т.е. существует непрерывное $f: \Gamma/T \to \Gamma$, т.ч. $h = f \circ p$, где $p: \Gamma \to \Gamma/T$ — проекция факторизации.

Покажем, что отображения p и f гомотопически обратны. По лемме существует гомотопия $H: \Gamma \times [0;1] \to \Gamma$, т.ч. $H(\cdot,0) = \mathrm{Id}_{\Gamma}, \, H(\cdot,1) = h, \, H(T,t) \subseteq T$ при всех t. Поэтому $f \circ p = h \sim \mathrm{Id}_{\Gamma}$.

Осталось показать, что $p \circ f \sim \mathrm{Id}_{\Gamma/T}$. Зададим $R : \Gamma \times [0;1] \to \Gamma/T$ так: $R(\cdot,t) = p \circ H(\cdot,t)$. Тогда R — гомотопия: $R(\cdot,0) = p \circ H(\cdot,0) = p$, $R(\cdot,1) = p \circ H(\cdot,1) = p \circ h$.

Так как $H(T,t) \subseteq T$, $R(\cdot,t)|_T = \text{const}$, значит $R(\cdot,t)$ пропускается через факторизацию, т.е. есть $G: \Gamma/T \times [0;1] \to \Gamma/T$, т.ч. $R(\cdot,t) = G(\cdot,t) \circ p$.

Это и есть искомая гомотопия между $G(\cdot,0)=\mathrm{Id}_{\Gamma/T}$ и $G(\cdot,1)=p\circ f$. (Пояснение: $G(\cdot,1)\circ p=R(\cdot,1)=p\circ h=p\circ f\circ p$, т.е. $G(\cdot,1)=p\circ f$.)

Следствие 16.1. Связный граф с n вершинами u m ребрами гомотопически эквивалентен букету m-n+1 окружностей (или точке, если m-n+1=0).

Следствие 16.2. Фундаментальная группа связного графа с n вершинами и m ребрами — свободная группа с m-n+1 образующими.

Теорема 17. Пусть Y — топологическое пространство, X получается приклеиванием κY диска D^2 по непрерывному отображению $\widehat{\alpha}: S^1 \to Y$. Обозначим за $\alpha(t) := \widehat{\alpha}(e^{2\pi it})$, а за $x_0 = \alpha(0) = \alpha(1)$. Тогда

$$\pi_1(X, x_0) \simeq \pi_1(Y, x_0) / N([\alpha]),$$

где $N([\alpha])$ — нормальное замыкание элемента $[\alpha]$ фундаментальной группы $\pi_1(Y,x_0)$.

Доказательство. Переформулировка: Пусть in : $Y \to X$ — включение и in_{*} : $\pi_1(Y, x_0) \to \pi_1(X, x_0)$ — индуцированный гомоморфизм. Докажем, что in_{*} — сюръекция, а $\operatorname{Ker}(\operatorname{in}_*) = N([\alpha])$. Из этого будет следовать теорема.

 $\widehat{\alpha}$ очевидно продолжается до непрерывного отображения $D^2 \to X$, сужение которого на внутренность диска — гомеоморфизм. Поэтому далее на $X \setminus Y$ будем смотреть как на открытый диск.

Пусть q — центр диска $X\setminus Y$. Тогда $X\setminus \{q\}\sim Y$ (деформационная ретракция) и $\pi_1(Y,x_0)=\pi_1(X\setminus \{q\},x_0)$.

Сюръективность in_{*} равносильна утверждению: любая петля $\beta \in \Omega(X, x_0)$ гомотопна петле, содержащейся в $X \setminus \{q\}$.

Утверждение про петлю β доказывается аналогично теореме об односвязности сфер: малым шевелением петля β переводится в гомотопную петлю, которая вблизи q состоит из отрезков. Еще одним малым шевелением сделаем, чтобы отрезки обходили q.

Покажем, что $N([\alpha]) \subseteq \operatorname{Ker}(\operatorname{in}_{\star})$. Т.к. $\widehat{\alpha}$ продолжается до непрерывного отображения $D^2 \to X$, то $\widehat{\alpha}$ гомотопно постоянному отображению. Следовательно, $[\alpha] \in \operatorname{Ker}(\operatorname{in}_{\star})$. Итак, $N([\alpha])$ — пересечение всех нормальных подгрупп, содержащих $[\alpha]$, а $\operatorname{Ker}(\operatorname{in}_{\star})$ — нормальная подгруппа.

Осталось доказать $\mathrm{Ker}(\mathrm{in}_{\star}) \subseteq N([\alpha])$. Пусть $\gamma \in \Omega(Y, x_0)$ — такая петля, что $[\gamma] \in \mathrm{Ker}(\mathrm{in}_{\star})$. Построим в $X \setminus \{q\}$ такую последовательность петель $\gamma_0, \gamma_1, \ldots, \gamma_n$, где $\gamma_0 = \mathrm{const}, \gamma_n = \gamma$, что

каждый элемент $[\gamma_{i+1}]$ получается из элемента $[\gamma_i]$ умножением на элемент из $N([\alpha])$. Из этого будет следовать $[\gamma] \in N([\alpha])$, т.к. $[\gamma_0] = e$.

Т.к. $\operatorname{in}_{\star}([\gamma]) = [\gamma]_X = 0$, то γ стягиваема в X. Т.е. существует такая гомотопия $H:[0;1] \times [0;1] \to X$, что: $H(s,0) = \gamma(s)$, $H(0,t) = H(1,t) = H(s,1) = x_0$.

Покроем X открытыми множествами $U=X\setminus Y$ и $V=X\setminus \{q\}$ и применим лемму Лебега для отображения H. Получим такое $\delta>0$, что H-образ любого δ -шара в $[0;1]^2$ содержится в U или V. Разобьём K на квадратики со стороной меньше $\delta/2$, будем называть сеткой объединение их сторон.

Малым шевелением H сделаем так, что образ сетки не задевает q, сохраняя свойство, что образ всякого квадратика (с границей) лежит либо в U, либо в V, и не меняя значений на границе H. Для этого сначала пошевелим H так, что q не попадает в узлы. Затем выпрямляем образы сторон сетки, лежащие в $X \setminus Y$. И на конец в каждом квадратике с поправленной стороной продолжаем отображение с границы квадрата на внутренность (лемма о продолжении отображения с окружности на диск).

Строим в $X \setminus \{q\}$ последовательность петель γ_N , γ_{N-1} , ..., $\gamma_0 = \text{const}$, где каждая $\gamma_i - H$ -образ ломаной на сетке (см. рисунок), отличающейся от предыдущей на один квадратик.

Докажем, что в группе $\pi_1(Y, x_0)$ элементы $[\gamma_i]$ и $[\gamma_{i+1}]$ отличаются умножением на элемент из $N([\alpha])$. Запишем пути γ_i и γ_{i+1} в виде: $\gamma_i = uv_1w$, $\gamma_{i+1} = uv_2w$, где u, v_1, v_2, w — пути, u и w — общие части γ_i и γ_{i+1} , а v_1 и v_2 — отличающиеся участки. Тогда $\gamma_{i+1} \sim uv_2v_1^{-1}u^{-1}\gamma_i$. Т.е. $[\gamma_i]$ и $[\gamma_{i+1}]$ отличаются умножением на $[uv_2v_1^{-1}u^{-1}]$. Всё классы гомотопности — в пространстве $X \setminus \{q\}$.

Осталось доказать, что $[uv_2v_1^{-1}u^{-1}] \in N([\alpha])$. Обозначим $\beta = v_2v_1^{-1}$, в новых обозначениях надо доказать, что $[u\beta u^{-1}] \in N([\alpha])$. Петля β — образ границы маленького квадратика, а значит содержится и стягиваема либо в $X \setminus Y$, либо в $X \setminus \{q\}$.

Если β стягиваема в $X \setminus \{q\}$, то $u\beta u^{-1}$ тоже. Следовательно, $[u\beta u^{-1}]$ — единица группы $\pi_1(X \setminus \{q\}, x_0)$, и тогда $[u\beta u^{-1}] \in N([\alpha])$.

Если β содержится в $X \setminus Y$, то она — часть сетки, и поэтому не проходит через q. Подкруткой в диске и радиальной проекцией β переводится в петлю $\beta_1 = \widehat{\alpha} \circ \theta$, где $\theta \in \Omega(S_1, (1, 0))$. Это реализуется гомотопией, определенной на всём $X \setminus \{q\}$; при этой гомотопии u переходит в некоторую петлю $u_1 \in \Omega(Y, x_0)$. Значит петля $u\beta u^{-1}$ гомотопна произведению петель $u_1\beta_1u_1^{-1}$. Осталось доказать, что $[u_1\beta_1u_1^{-1}] \in N([\alpha])$. θ гомотопна k-кратному обходу окружности (для некоторого $k \in Z$). Следовательно, $\beta_1 \sim \alpha^k$. Тогда $[u_1\beta_1u_1^{-1}] = [u_1\alpha^ku_1^{-1}] = [u_1\alpha u_1^{-1}]^k \in N([\alpha])$.

Следствие 17.1. Если
$$\pi_1(Y) = \langle f_1, \dots, f_n \mid w_1(\overline{f}), \dots, w_k(\overline{f}) \rangle$$
, $a [\alpha] = w_{k+1}(\overline{f})$, то
$$\pi_1(X) = \langle f_1, \dots, f_n \mid w_1(\overline{f}), \dots, w_{k+1}(\overline{f}) \rangle.$$

 Π ример 9. Тор — это букет из двух окружностей, на которую наклеили 2-клетку. Поэтому фундаментальная группа тора — $\langle a,b \mid aba^{-1}b^{-1}\rangle = \mathbb{Z}^2$.

Теорема 18.