COM SCI 132 Week 6

Aidan Jan

May 13, 2024

LR Parsing

Review

Recall that

- For a grammar G, with start symbol S, any string α such that $S \Rightarrow^* \alpha$ is called a sentential form
- If $\alpha \in V_t^*$, then α is called a sentence in L(G)
- Otherwise it is just a sentential form (not a sentence in L(G))
- A left-sentential form is a sentential form that occurs in the leftmost derivation of some sentence.
- A right-sentential form is a sentential form that occurs in the rightmost derivation of some sentence.

Bottom-up parsing

The goal: Given an input string w and a grammar G, construct a parse tree by starting at the leaves and working to the root.

The parser repeatedly matches a *right sentential* form from the language against the tree's upper frontier. At each match, it applies a *reduction* to build on the frontier:

- each reduction matches an upper frontier of the partially built tree to the RHS of some production
- each reduction adds a node on top of the frontier

The final result is a rightmost derivation, in reverse.

Example

Consider the grammar:

1 | S -> aABe

2 | A -> Abc

3 | | ъ

4 | B -> d

and the input string abbcde.

Prod'n	Sentential Form			
3	a b bcde			
2	a Abc de			
4	aA d e			
1	aABe			
-	S			

The trick appears to be scanning the input and finding valid sentential forms.

Handles

What are we trying to find?

• A substring α of the tree's upper frontier that matches some production $A \to \alpha$ where reducing α to A is one step in the reverse of a rightmost derivation.

We call such a string a handle. Formally:

- a handle of a right-sentential form γ is a production $A \to \beta$ and a position in γ where β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ .
- (i.e., if $S \Rightarrow_{rm}^* \alpha Aw \Rightarrow_{rm} \alpha \beta w$, then $A \to \beta$ in the position following α is a handle of $\alpha \beta w$)

Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols.

The handle $A \rightarrow \beta$ in the parse tree for $\alpha \beta w$

Theorem:

• If G is unambiguous then every right-sentential form has a unique handle.

Proof: (by definition)

- 1. G is unambiguous \Rightarrow rightmost derivation is unique
- 2. \Rightarrow a unique production $A \rightarrow \beta$ applied to take γ_{i-1} to γ_1
- 3. \Rightarrow a unique position k at which $A \rightarrow \beta$ is applied
- 4. \Rightarrow a unique handle $A \rightarrow \beta$

Example

				Prod'n.	Sentential Form
1	(goal)	::=	(expr)	_	(goal)
2	(expr)	::=	$\langle \exp r \rangle + \langle \text{term} \rangle$	1	(expr)
3	` ' '		⟨expr⟩ – ⟨term⟩	3	$\overline{\langle \text{expr} \rangle} - \langle \text{term} \rangle$
4		i	(term)	5	$\overline{\langle \text{expr} \rangle - \langle \text{term} \rangle} * \langle \text{factor} \rangle$
5	(term)	::=	(term) * (factor)	9	$\langle \exp r \rangle - \overline{\langle term \rangle * \underline{id}}$
6			⟨term⟩/⟨factor⟩	7	⟨expr⟩ − ⟨factor⟩ * id
7		İ	(factor)	8	$\langle \exp r \rangle - \underline{\operatorname{num} * id}$
8	(factor)	::=	num	4	$\langle \text{term} \rangle - \text{num} * \text{id}$
9			id	7	$\frac{1}{\langle \text{factor} \rangle} - \text{num} * \text{id}$
				9	$\overline{id - num * id}$

Handle-pruning

The process to construct a bottom-up parse is called *handle-pruning*. To construct a rightmost derivation

$$S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n = w$$

we set i to n and apply the following simple algorithm:

```
for i = n downto 1  \text{find the handle } A_i \to \beta_i \text{ in } \gamma_i   \text{replace } \beta_i \text{ with } A_i \text{ to generate } \gamma_{i-1}
```

This takes 2n steps, where n is the length of the derivation

Stack Implementation

One scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser. Shift-reduce parsers use a stack and an $input\ buffer$

- 1. initialize stack with \$
- 2. Repeat until the top of the stack is the goal symbol and the input token is \$
 - (a) find the handle
 - if we don't have a handle on top of the stack, shift an input symbol onto the stack
 - (b) prune the handle

if we have a handle $A \to \beta$ on the stack, reduce.

- i. pop $|\beta|$ symbols off the stack
- ii. push A onto the stack

Example

	Stack	Input	Action
	\$	$\mathtt{id} - \mathtt{num} * \mathtt{id}$	shift
	\$ <u>id</u>	$-\operatorname{\mathtt{num}} * \operatorname{\mathtt{id}}$	reduce 9
1/(cosl) ::- /over\	\$\langle factor \rangle	$-\operatorname{\mathtt{num}} * \operatorname{\mathtt{id}}$	reduce 7
$1 \langle \text{goal} \rangle ::= \langle \text{expr} \rangle$	\$\langle term	$-\operatorname{\mathtt{num}} * \operatorname{\mathtt{id}}$	reduce 4
$ \begin{array}{ccc} 2 \langle \exp r \rangle & ::= \langle \exp r \rangle + \langle \operatorname{term} \rangle \\ 3 \langle \exp r \rangle - \langle \operatorname{term} \rangle \end{array} $	$\sqrt{\langle expr \rangle}$	$-\mathtt{num}*\mathtt{id}$	shift
4 \(\lambda\text{term}\rangle\)	\$⟨expr⟩ −	num * id	l
$5 \langle \text{term} \rangle ::= \langle \text{term} \rangle * \langle \text{factor} \rangle$	$(\exp r) - \underline{\text{num}}$		reduce 8
6 \langle \term\/\langle \factor\	$(\exp - \underline{\langle factor \rangle})$		reduce 7
7 \(\frac{\tan}{\tan}\) \(\frac{\tan}{\tan}\)	$(\exp - \langle term \rangle)$		shift
8 (factor) ::= num	$(\exp - \langle term \rangle *$		shift
9 id	$(\exp - \langle term \rangle * \underline{id})$		reduce 9
	$(\exp - (term) * (factor)$		reduce 5
	$\frac{\text{expr}}{-\langle \text{term} \rangle}$		reduce 3
	\$\langle expr \rangle		reduce 1
	$\sqrt{\operatorname{goal}}$		accept

- 1. Shift until top of stack is the right end of a handle
- 2. Find the left end of the handle and reduce

For this example: 5 shifts + 9 reduces + 1 accept

Shift-reduce parsing

Shift-reduce parsers are simple to understand

A shift-reduce parser has just four canonical actions:

- 1. shift next input symbol is shifted onto the top of the stack
- 2. reduce right end of handle is on top of the stack; locate left end of handle within the stack; pop handle off stack and push appropriate non-terminal LHS
- 3. accept terminate parsing and signal success
- 4. error call an error recovery routine

The key problem: to recognize handles (not covered in this course).

LR(k) Grammars

Informally, we say that a grammar G is LR(k) if, given a rightmost derivation

$$S = \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \cdots \Rightarrow \gamma_n = w$$

we can, for each right-sequential form in the derivation,

- 1. isolate the handle of each right-sequential form, and
- 2. determine the production by which to reduce

by scanning γ_i from left to right, going at most k symbols beyond the right end of the handle of γ_i . Formally, a grammar G is LR(k) if and only if:

- 1. $S \Rightarrow_{rm}^* \alpha Aw \Rightarrow_{rm} \alpha \beta w$, and
- 2. $S \Rightarrow_{rm}^* \gamma Bx \Rightarrow_{rm} \alpha \beta y$, and
- 3. $FIRST_k(\mathbf{w}) = FIRST_k(\mathbf{y}) \Rightarrow \alpha A \mathbf{y} = \gamma B \mathbf{x}$

i.e., Assume sentential forms $\alpha\beta w$ and $\alpha\beta y$ with common prefix $\alpha\beta$ and common k-symbol lookahead $\text{FIRST}_k(y) = \text{FIRST}_k(w)$, such that $\alpha\beta w$ reduces to αAw and $\alpha\beta y$ reduces to γBx . But, the common prefix means $\alpha\beta y$ also reduces to αAy , for the same result. Thus $\alpha Ay = \gamma Bx$

Why Study LR Grammars?

LR(1) grammars are often used to construct parsers. We call these parsers LR(1) parsers.

- everyone's favorite parser
- virtually all context-free programming language constructs can be expressed in an LR(1) form
- LR grammars are the most general grammars parsable by a deterministic, bottom-up parser
- efficient parsers can be implemented for LR(1) grammars
- LR parsers detect an error as soon as possible in a left-to-right scan of the input
- LR grammars describe a proper superset of the languages recognized by predictive (i.e., LL) parsers
 - LL(k): recognize use of a production $A \to \beta$ seeing first k symbols of β
 - LR(k): recognize occurrence of β (the handle) having seen all of what is derived from β plus k symbols of lookahead.

Left Versus Right Recursion

Right Recursion:

- needed for termination in predictive parsers
- requires more stack space
- right associative operators

Left recursion:

- works fine in bottom-up parsers
- limits required stack space
- left associative operatives

Rule of thumb:

- right recursion for top-down parsers
- left recursion for bottom-up parsers

Parsing Review

- R. descent: A hand coded recursive descent parser directly encodes a grammar (typically an LL(1) grammar) into a series of mutually recursive procedures. It has most of the linguistic limitations of LL(1).
- LL(k): An LL(k) parser must be able to recognize the use of a production after seeing only the first k symbols of its right hand side.
- LR(k): An LR(k) parser must be able to recognize the occurrence of the right hand side of a production after having seen all that is derived from that right hand side with k symbols of lookahead.
- Dilemmas:
 - LL dilemma: pick $A \rightarrow b$ or $A \rightarrow c$?
 - LR dilemma: pick $A \to b$ or $B \to b$?