Corollaire 21.6

Le déterminant d'une matrice triangulaire est égal au produit des coefficients diagonaux.

Démonstration

On le démontre par récurrence :

Initialisation : si n = 1

det(a) = a det(1) = a est bien égal au produit du (seul!) coefficient diagonal de la matrice.

Comme ce cas n'est pas très parlant, on traite aussi le cas où n=2.

$$\det \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = a \det \begin{pmatrix} 1 & b \\ 0 & c \end{pmatrix}$$
par linéarité par rapport à la première colonne.

 $\det\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = a \det\begin{pmatrix} 1 & b \\ 0 & c \end{pmatrix} \text{ par linéarité par rapport à la première colonne.}$ $\operatorname{Donc} \det\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = a \det\begin{pmatrix} 1 & 0 \\ 0 & c \end{pmatrix} \text{ en effectuant l'opération } C_2 \leftarrow C_2 - bC_1 \text{ qui laisse le déterminant inchangé d'après la propriété 21.5.}$

Enfin, à nouveau par linéarité, $\det \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = ac \det \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = ac \cot \det(I_2) = 1$ par définition.

 $H\acute{e}r\acute{e}dit\acute{e}$: on suppose que la propriété est vraie au rang $n \in \mathbb{N}^*$ donné et que $A \in \mathcal{M}_{n+1}(\mathbb{K})$ est triangulaire supérieure (la démonstration est similaire pour les matrices triangulaires inférieures).

$$\det(A) = a_{1,1} \det \begin{pmatrix} 1 & a_{1,2} & \cdots & a_{1,n+1} \\ 0 & a_{2,2} & \cdots & a_{2,n+1} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n+1,n+1} \end{pmatrix} = a_{1,1} \det \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & a_{2,2} & \cdots & a_{2,n+1} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & a_{n+1,n+1} \end{pmatrix}$$
en effec-

L'hypothèse de récurrence permet alors de conclure.

Ex. 21.3 (Cor.)

1) Vrai ou faux : soit A une matrice carré d'ordre $n \in \mathbb{N}^*$ dont on note $C_1, C_2, ..., C_n$ les colonnes. Alors

$$\det A = \det(C_1 - C_2|C_2 - C_3|...|C_{n-1} - C_n|C_n - C_1)$$

2) Calculer det $\begin{pmatrix} 1 & n & \cdots & n \\ n & 2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & n \\ n & \cdots & n & n \end{pmatrix}.$ 3) Calculer det $\begin{pmatrix} a_1 & a_1 & a_1 & \cdots & a_1 \\ a_1 & a_2 & a_2 & \cdots & a_2 \\ a_1 & a_2 & a_3 & \cdots & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \cdots & a_n \end{pmatrix}.$

II.3. Matrices inversibles : résumé

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Les propriétés suivantes sont équivalentes :

- 1) A est inversible;
- 2) $\exists B \in \mathcal{M}_n(\mathbb{K}), AB = I_n$;
- 3) $\exists B \in \mathcal{M}_n(\mathbb{K}), BA = I_n$;

- 4) l'application linéaire $\phi: \mathbb{K}^n \to \mathbb{K}^n$ canoniquement associée à A est bijective;
- 5) A est une matrice de passage entre deux bases de \mathbb{K}^n ;
- 6) $\forall W \in \mathbb{K}^n, AV = W$ admet une unique solution $V \in \mathbb{K}^n$;
- 7) $AV = 0_{\mathbb{K}^n}$ admet une unique solution $0_{\mathbb{K}^n} \in \mathbb{K}^n$;
- 8) rg(A) = n;
- 9) dim Ker(A) = 0.

II.4. Caractérisation des matrices inversibles

Théorème 21.7

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a l'équivalence :

$$A \in \mathrm{GL}_n(\mathbb{K}) \Leftrightarrow \det(A) \neq 0$$

Démonstration

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

A est inversible si et seulement si la famille de ses vecteurs colonnes est libre.

Pour démontrer la propriété il suffit donc de démontrer que

1) si la famille $(C_1, ..., C_n)$ est libre alors $\det(A) \neq 0$.

Supposons la famille $(C_1, ..., C_n)$ libre, c'est-à-dire rg(A) = n.

Alors l'algorithme du pivot de Gauss - sur les colonnes de A - appliqué à A conduit à une matrice diagonale possédant n pivots.

C'est-à-dire à une matrice diagonale dont aucun coefficient diagonal n'est nul.

Or les opérations élémentaires utilisées lors de l'algorithme du pivot de Gauss sont du type :

- $C_i \leftrightarrow C_j$ qui revient à multiplier le déterminant par -1;
- $C_i \leftarrow \lambda C_i + \mu C_j$ qui revient à multiplier le déterminant par $\lambda \neq 0$.

Le déterminant de A est donc non nul (puisque produit de scalaires non nuls).

2) si la famille $(C_1, ..., C_n)$ est liée alors $\det(A) = 0$.

Supposons la famille $(C_1,...,C_n)$ liée. L'un des vecteurs colonnes est donc combinaison

linéaire des autres vecteurs, par exemple $C_n = \sum_{i=1}^{n-1} \lambda_i C_i$.

Donc $\det(A) = \det\left(C_1|...|C_{n-1}|\sum_{i=1}^{n-1}\lambda_iC_i\right) = \det\left(C_1|...|C_{n-1}|0_{n,1}\right) = 0$ d'après la propriété 21.5.

Ex. 21.4

1) Calculer
$$\det \begin{pmatrix} x & 1 & \cdots & 1 \\ 1 & x & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & x \end{pmatrix}$$
.

- 2) Donner les valeurs de x pour lesquelles $A_x = \begin{pmatrix} x & 1 & \cdots & 1 \\ 1 & x & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & x \end{pmatrix}$ n'est pas inversible.
- 3) Dans les cas où A_x n'est pas inversible, calculer $\operatorname{Ker}(A_x)$ et $\operatorname{rg}(A_x)$.