AIOps智能化数据体系的构建和应用

孟静磊孙长辉/字节跳动可观测基础设施团队

精彩继续! 更多一线大厂前沿技术案例

❷北京站

全球人工智能与机器学习技术大会

时间: 2021年11月5-6日 地点: 北京·国际会议中心

扫码查看大会详情>>

❷ 深圳站

时间: 2021年11月12-13日

地点: 深圳・大中华喜来登酒店

扫码查看大会 详情>>

❷ 深圳站

全球大前端技术大会

时间: 2021年11月19-20

地点: 深圳・大中华喜来登酒店

扫码查看大会 详情>>

团队介绍-字节跳动可观测基础设施团队

- · 隶属于字节跳动--基础架构部
- 覆盖字节跳动后端可观测性数据源(指标,调用链路,目志,事件)
- 提供监控、链路分析、目志检索、报警、排障归因等能力
- ·提供一站式的后端可观测性平台

可观测性平台

可观测性是基于"事先未定义"的模式的探索来帮助团队有效"调试"其系统

希望被回答的问题

- 服务部署是否合理,是否有很多跨机房流量?
- 服务调用链深度是多少,有没有优化空间?
- 针对海量服务黄金指标,报警太多怎么办?
- 服务出错了,是资源负载?下游问题?发布变更?

目录

- 智能化数据体系构建的重要性和挑战
- ·智能化场景(成本运营、智能报警&归因修复)
- 智能化数据体系构建实践
- 智能化数据体系未来展望

智能运维实施关键技术

- 数据是基础和关键
- ✓接人
- ✓计算
- ✓存储
- ✓管理和治理
- ✓分析
- ✓建模

数据化智能体系一业务挑战(1)

· 服务集群:

200K+

• 全网装机量:

几十万

· AB实验:

日均1K

· 服务发布:

日均15K

1/3总量 • 在线微服务装机量:

目均3K · mesh流量调度:

· 配置变更:

· 离线大数据装机量: 1/3总量

• 引流操作:

· 总微服务实例数:

日均4K

日均35K

10M+

今日头条

抖音

抖音火山版

西瓜视频

懂车帝

GoGoKid

皮皮虾

飞书

Faceu激萌

轻颜相机

数据化智能体系一业务挑战(2)

· 后端主流语言: 4种 · RPC框架: 10+

用户中心QPS: 20M+ 抖音feed调用服务: 500

· 抖音feed链路深度: >50 · 用户中心容器数量: 20K

·用户中心P99延迟: 10 ms · 抖音feed调用服务接口: 700

数据化智能体系一数据挑战

- · 业务多样,数据来源多
- 架构庞大
- 技术演进频繁

目录

- · 智能化数据体系构建的重要性和挑战
- ·智能化场景(成本运营、智能报警&归因修复)
- 智能化数据体系构建实践
- 智能化数据体系未来展望

场景: 智能运营

· 带宽: 跨机房流量过大&服务链路调用深度过深

场景: 智能运营

· 性能: 服务单核QPS过低

场景: 智能报警

- ·海量业务黄金指标告警,指标类型多样
- · 告警规则多,维护固定阈值成本高
- ·各个业务线SLO要求不一
- 对于周期性指标,早晚高峰阈值不固定

场景: 智能报警

- 自适应阈值,不用手动配置阈值
- · 灵活调整敏感度
- 过滤抖动
- · 使用智能引擎之后,原始报警抑制比例 50%~80%
- ·报警通知抑制比例最高为70%

场景: 归因修复

- ·问题平均修复时间MTTR高
- ✓单服务容器运行时问题
- ✓服务黄金指标异常问题
- ✓服务上下游关联问题

场景: 归因修复

- · 针对服务单实例的诊断每天 10W次左右
- · 迁移成功次数在1K次左右

目录

- 智能化数据体系构建的重要性和挑战
- ·智能化场景(成本运营、智能报警&归因修复)
- 智能化数据体系构建实践
- 智能化数据体系未来展望

构建: 数据来源

- 时序数据
- 日志数据
- 调用链数据
- · 事件&CMDB

构建: 数据分层&串联

- 业务数据
- 应用数据
- 中间件数据
- 容器数据
- 宿主机数据

构建: 数据分类

· 性能数据: 延迟,流量

· 质量数据: SLO, 稳定性指标, 错误率, 跨机房流量, 调用链深度

·运行时数据:运行时指标(GC,OOM,panic),错误日志

· 事件: 报警,发布,AB测试,硬件故障

构建: 数据建模一规范

- 基础术语统一
- ✓物理属性
- ✓网络属性
- ✓ 代码/服务属性
- ✓程序运行时属性
- ✓ 统计属性
- ✓时间属性

构建: 数据建模一主题划分

微服务黄金指标 RED & 运行时指标	microservice	微服务的延迟、错误率、流量以及 GC & GoRoutine 指标
微服务容器负载	containerLoad	微服务的容器负载 (CPU usage, Memory usage, Network, DisklO)
链路分析	tracing	链路的深度 & 最大贡献率的节点
服务 代码热点	hotspot	服务在性能快照下的代码热点

构建: 数据建模 - 分层建模

视图	质量视图 性能视图
聚合层	产品线聚合 时间聚合
基础数据	dim psm glaxy tce ms dwd rpc runtime dockerlodad tracing cross dc libra usage
	ods metrics trace libra
数据ETL	数据清洗、字段对齐、脏数据处理、基础聚合
底层数据源	rpc runtime dockerload span call event func usge libra usage metrics trace libra

构建:数据建模一样本库数据

- ·以单次诊断ID串联
- 服务链路上的多个服务 共同构成现成数据

构建: 策略算法一异常检测

· 离线训练(增量训练)

- ✓ 历史数据生成模型
- ✓近期数据更新模型
- ·在线检测
- ✓ 异常检测
- ✓时序预测
- 算法评估
- ✓用户反馈
- ✓指标统计

构建: 策略算法-异常检测

· 从技术角度: 主流程

· 从业务角度: 特定异常

算法: 平稳时序异常检测-ARIMA

优点

- 模型简单
- · 只需要内生变量, 无需手 动调参

缺点

- 要求时序是平稳的
- 本质上只能捕捉线性关系

算法: 无趋势周期检测算法SR

优点:

· 模型简单,适合于在线检测,对于无趋势周期性数据检测效果较好

缺点:

• 对算法的参数设置要求高

算法: 异常模式识别

突变恢复(Spike)

时间窗口内突变并且恢复(包括向上/向下突变 后快速恢复)

构建: 策略算法一归因修复

构建: 策略算法—可编辑的工作流

- 可编辑工作流
- 静态拓扑沉淀专家知识
- · 原子能力节点化(异常 检测,关联分析,维度 下钻)
- 输入输出标准化
- 支持原子工作流(工作流)流原子化)

算法: 微服务异常智能定界方案

- 异常检测
- 维度下钻
- 因果推断

目录

- 智能化数据体系构建的重要性和挑战
- ·智能化场景(成本运营、智能报警&归因修复)
- 智能化数据体系构建实践
- 智能化数据体系总结和未来展望

总结

- 多层次、类别数据的串联是基础
- 按照业务场景对数据规范化建模是关键
- 成本运营
- ✓ 解决跨机房带宽问题
- ✓解决服务单核QPS过低问题
- 智能运维
- ✓智能报警解决海量服务、指标的报警风暴问题
- ✓ 归因分析解决服务单实例故障&上下游归因定界问题

未来展望(1)数据流

- · 构建实时(近实时)的数据流
- 预聚合前置到存储,加速计算
- · 吞吐量大 VS. 查询效率高: Lambda架构统一存储

未来展望(2)数据平台化(开放赋能)

- ·Schema和权限管控
- · 按需构建Data Cube
- 自定义归因诊断修复流程

未来展望(3)算法离线仿真环境构建

- 环境隔离
- 数据回放
- 模型评估和反馈

Q&A

有任何问题也可以个人微信离线交流

为一线互联网公司核心技术人员提供优质内容

☑ TGO专访

☑ 技术干货

☑ 每周精要

☑ 行业趋势

THANKS

软件正在改变世界 SOFTWARE IS CHANGING THE WORLD

