Cinética Química

- Estuda a velocidade das reações químicas
- Consumo de Reagente → V = -∆[Reagente] / Δt
- Formação de Produto → V = Δ[Produto] / Δt

Velocidade Instantânea:

 V_{Instantânea} = -d[Reagente] / dt (Diferencial do consumo de reagentes em função do tempo → Inclinação da reta em um determinado ponto)

Velocidade Média:

• $V_{Média} = -\Delta[Reagente] / \Delta t$ (Média entre dois pontos em função do tempo)

Lei da Velocidade:

- Determinada experimentalmente
- Não depende dos coeficientes estequiométricos

$$A + B + C \rightarrow D + E$$

$$V = k \cdot [A]^a [B]^b [C]^c$$

- Sendo k = constante de velocidade
- "a", "b", "c" = Ordem de reação em relação a um respectivo reagente
 (Determinados experimentalmente)
- Ordem Global da reação → OG = a + b + c

Lei Integrada da Velocidade:

Reações de Ordem Zero:

- A concentração dos reagentes não influência na velocidade da reação (Lei de Velocidade → V = k)
- Advinda da Lei da Velocidade → Lei Integrada de Velocidade para reações de Ordem Zero:

$$[A] = [A]_0 - kt$$

Reações de Primeira Ordem:

- A concentração dos reagentes influencia na velocidade da reação
- Advinda da Lei de Velocidade → Lei Integrada de Velocidade para reações de Primeira Ordem:

$$ln [A] = ln [A]_0 - kt$$

Reações de Segunda Ordem:

- A concentração dos reagentes influencia na velocidade da reação
- Advinda da Lei de Velocidade → Lei Integrada da Velocidade para reações de Segunda Ordem:

$$1/[A] = 1/[A]_0 + kt$$

Tempo de Meia Vida:

- Tempo necessário para que a concentração inicial de um composto caia pela metade
- Definição → [A] = [A₀] / 2

Reações de Ordem Zero:

Aplicando a Definição na Lei Integrada obtemos:

$$t_{1/2} = [A]_0/2 k$$

Reações de Primeira Ordem:

• Aplicando a Definição na Lei Integrada obtemos:

$$t_{1/2} = \ln 2 / k$$

Reações de Segunda Ordem:

• Aplicando a Definição na Lei Integrada obtemos:

$$t_{1/2} = 1 / k[A]_0$$

$A \rightarrow B$	Ordem 0	Ordem 1	Ordem 2
Equação	$-\frac{d[A]}{dt} = k$	$-\frac{d[A]}{dt} = k[A]$	$-\frac{d[A]}{dt} = k[A]^2$
Constante (unidade)	Mol s ⁻¹	s ⁻¹	Mol^{-1} s ⁻¹
Equação integrada	$[A] = [A]_0 - kt$	$[A] = A_0 e^{-kt}$	$\frac{1}{[A]} = \frac{1}{[A]_0} + kt$
linearização	[A] x t	$ln[A] \times t$	$\frac{1}{[A]}$ x t
Relação entre a inclinação da reta e a constante de velocidade	k = - (inclinação da reta)	k = - (inclinação da reta)	k = (inclinação da reta)
Meia vida	$t_{1/2} = \frac{[A]_{o}}{2k}$	$t_{1/2} = \frac{\ln 2}{k}$	$\mathbf{t}_{1/2} = \frac{1}{[A]_0 k}$

Equação de Arrhenius:

- Para que uma reação ocorra é necessário que os reagentes tenham uma energia mínima
- Depende da Temperatura

OBS: Modelo das Colisões → As moléculas precisam colidir efetivamente para que possam reagir; Fatores que alteram a velocidade → Concentração, Temperatura, Superfície de contato, Pressão, Catalisador (Influencia na energia mínima necessária para que a reação ocorra)

$$k = A \cdot e^{-Ea/RT}$$

- Sendo: k = Constante de velocidade
- A = Fator pré-exponencial (Leva em consideração colisões efetivas)

- Ea = Energia de ativação (Energia mínima para que a reação ocorra)
- R = Constante dos gases
- T = Temperatura absoluta

Linearização:

• Equação Linearizada:

$$ln(1/t) = ln A - Ea/R \cdot 1/T$$

OBS: Gráficos com eixos diferentes resultam em coeficientes angulares também diferentes (Apresentado nos gráficos)