Cross Validation

Ritvij Bharat Private Limited

- Is there a way we can achieve the following:
 - Train on ALL the data
 - Evaluate on ALL the data?

Ritvij Bharat Private Limited

Consider this dataset:

	oo y ee		
Area m ²	Bedrooms	Bathrooms	Price
200	3	2	\$500,000
190	2	1	\$450,000
230	3	3	\$650,000
180	1	1	\$400,000
210	2	2	\$550,000

Consider training vs testing:

HUB Div	yaSar X pa	ark, IIT F	koo y ee
x ₁	X ₂	\mathbf{x}_3	y
x ¹ ₁	x_1^1	x_{1}^{1}	y_1
x ² ₁	x ² ₁	x ² ₁	y ₂
x_{1}^{3}	x ³ ₁	x ³ ₁	y ₃
x ⁴ ₁	x ⁴ ₁	x ⁴ ₁	y_4
x ⁵ ₁	x ⁵ ₁	x ⁵ ₁	y ₅

TRAIN

TEST

Now we can represent full data and splits:

Split data into K equal parts:

and

Ritvij Bharat Private Limited

Mastering Machine Learning with Python

- 1/K left as test set
- Train model and get error metric for split:

Repeat for another 1/K split

And again

Do it for all possible splits

Get average error

Led by: Shreyas Shukla

37

MEAN ERROR

Average error is the expected performance

Led by: Shreyas Shukla

38

MEAN ERROR

Mastering Machine Learning with Pythor

- We were able to train on all data and evaluate on all data!
- Better sense of true performance across multiple potential splits.
- What is the cost of this?
 - We have to repeat computations K number of times!
- Common choice for K is 10 so each test set is 10% of your total data.
- Largest K possible would be K equal to the number of number of rows.
 - This is known as **leave one out** cross validation.

Hold-Out Test Set: Train | Validation Split | Test

Regularization for Linear Regression

Jupiter Exercise

Ridge Regression

- Help reduce the potential for overfitting to the training data.
- Adds a penalty term to the error based on the squared value of the coefficients.
- Ridge Regression is a regularization method for Linear Regression.

General formula for the regression line:

iHUB DivyaSampark, IIT Roorkee and

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

These Beta coefficients were solved by minimizing the residual sum of squares (RSS).

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

We could substitute our regression equation for \hat{y} :

iHUB DivyaSampark, IIT Roorkee

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
=
$$\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$$

Summarize RSS:

iHUB DivvaSamnark IIT Roorkee

$$RSS = \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2$$

- Ridge Regression adds a **shrinkage penalty**
- Ridge Regression seeks to minimize this entire error term **RSS** + **Penalty**.
- **Shrinkage penalty** based off the squared coefficient:
- Shrinkage penalty has a tunable lambda parameter which determines how severe the penalty is. Theoretically, it can be any value from 0 to positive infinity.

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Thought experiment

Split the dataset into a training set and test set:

Mastering Machine Learning with Pythor

- Now we can fit on the training data to produce the line: $\hat{y} = \beta_1 x + \beta_0$
- Regardless of RSS or Ridge error, we're still trying to create a line: $\hat{y} = \beta_1 x + \beta_0$
- The only difference would be the coefficients found.

Mastering Machine Learning with Python

- Our fitted $\hat{\mathbf{y}} = \beta_1 \mathbf{x} + \beta_0$
- Appears to have over fit to training data.

This means we have high **variance**.

Could we introduce a little more **bias** to significantly **reduce** variance?

- Would adding the penalty term help generalize with more **bias**?
- Adding bias can help generalize $\hat{y} = \beta_1 x + \beta_0$

- Let's imagine trying to reduce the Ridge Regression error term:
- There is λ and the squared slope coefficient.

Assume $\lambda = 1$

Then essentially, we're trying to minimize is the beta coefficient and the beta coefficient squared.

This punishes a large slope for $\hat{y} = \beta_1 x + \beta_0$

iHUB DivyaSampark
$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Rity Bharat Pivane Led by Shreyas Shakla

For single feature this lowers slope at the cost of some additional bias.

Generalize better to unseen data

- Consider overfitting to training set
- An increase in X results in a greater y response:

Mastering Machine Learning with Python

- Compare to a more generalized model that used Ridge Regression
- Same feature change does not produce as much y response:

Same feature change does not produce as much y response

Ridge Regression

- Trying to minimize a squared Beta term leads us to punish larger coefficients.
- In the case of a single feature, a larger Beta means a steeper sloped line.

• A steeper sloped line would mean more response per increase in X

value.

Again, in the case of a single feature that larger beta means a steeper sloped line and that would would mean more response per increase in X value.

Mastering Machine Learning with Pythor

- What about the lambda term?
- We simply use cross-validation to explore multiple lambda options and then choose the best one!

Error
$$=\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Ridge Regression

Important Notes

- Sklearn refers to lambda as alpha
- For cross validation metrics, sklearn uses a "scorer object". All scorer objects follow the convention that **higher** return values are **better** than lower return values.
- For example, obviously higher accuracy is better.
- But higher RMSE is actually worse!
- So Scikit-Learn fixes this by using a negative RMSE as its scorer metric. \checkmark

Error
$$= \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- This allows for uniformity across all scorer metrics, even across different tasks types.
- The same idea of uniformity across model classes applies to referring to the penalty strength parameter as alpha.

Ritvij Bharat Private Limited

Lasso Regression L1 Regularization

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

L1 adds a penalty which is equal to the **absolute value** of the magnitude of coefficients.

How is it different from L2?

- Limits the size of the coefficients.
- Can yield sparse models where some coefficients can become zero.

- LASSO can make some of the coefficients to be zero when the tuning parameter λ is sufficiently large.
- As a result, Models generated from the LASSO are generally much easier to interpret.

- LassoCV operates on checking a number of alphas within a range, instead of providing the alphas directly.
- Let's explore the results of LASSO in Python and Scikit-Learn!

Elastic Net

L1 and L2 Regularization

- We know Lasso is able to shrink coefficients to zero, but we haven't taken a deeper dive into how or why that is.
- This ability becomes more clear when learning about elastic net
- Elastic net combines L1 and L2

There is some sum **s** which allows to rewrite the penalty as a requirement:

$$\underset{\beta}{\text{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} |\beta_j| \le s$$

and

minimize
$$\left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \le s,$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \le s$$

subject to
$$\sum_{j=1}^{P} \beta_j^2 \le s,$$

- Simple thought experiment:
 - A simple equation: $\circ \hat{y} = \beta_1 x_1 + \beta_2 x_2$

$$\circ \hat{\mathbf{y}} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2$$

 We know that regularization can be expressed as an additional requirement that RSS is subject to.

- Thought experiment:
 - A simple equation:

$$\circ \hat{\mathbf{y}} = \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 \text{ Sampark, IIT Roorkee}$$

- L1 constrains the sum of absolute values. $\sum |\beta|$
- L2 constrains the sum of squared values. $\sum \beta^2$
- There is some sum s that the penalty is less than.

- For two features: $\hat{y} = \beta_1 x_1 + \beta_2 x_2$
- Lasso Regression Penalty: $|\beta_1| + |\beta_2| \le s$
- Ridge Regression Penalty:

$$\beta_{2} + \beta_{2} \leq s$$

- Elastic Net seeks to improve on both L1 and L2 Regularization by combining them
- Here we seek to minimize RSS and **both** the squared and absolute value terms
- Notice there are **two** distinct lambda values for each penalty:

$$\begin{aligned} \mathbf{Error} &= \sum_{i=1}^n \left(y_i - \beta_0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 + \lambda_1 \!\! \sum_{j=1}^p \beta_j^2 \, + \lambda_2 \!\! \sum_{j=1}^p |\beta_j| \\ & \mathsf{Led} \; \mathsf{by} : \mathsf{Shreyas} \; \mathsf{Shukla} \end{aligned}$$

We can express this as a ratio between L1 and L2:

iHUB DivyaSampark, IIT Roorkee and

Ritvij Bharat Private Limited

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$

Simplified notation:

iHUB DivyaSampark, IIT Roorkee

$$\hat{eta} \equiv rgmin(\|y-Xeta\|^2 + \lambda_2\|eta\|^2 + \lambda_1\|eta\|_1)$$

Let's explore how to perform Elastic Net with Python and Scikit-learn!

Ritvii Bharat Private Limited

$$\frac{\sum_{i=1}^{n} (y_i - x_i^J \hat{\beta})^2}{2n} + \lambda \left(\frac{1 - \alpha}{2} \sum_{j=1}^{m} \hat{\beta}_j^2 + \alpha \sum_{j=1}^{m} |\hat{\beta}_j| \right)$$