

Jyoti and Bhupat Mehta School of Health Science and Technology Indian Institute of Technology, Guwahati 781039 Guwahati, Assam, India

Smart bed for pressure ulcers (bedsores) prevention

Sharvani Pokala, K S Ranjith Kumar, Sai Hari Hara Sudheshna Chunduru, Rushikesh Khot

Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, India

Motivation

- Bedsores, caused by prolonged pressure on the skin, are a serious healthcare challenge, leading to severe complications.
- They are often prominent in bedridden or immobile individuals.
- Pressure ulcers significantly increase healthcare costs by demanding prolonged hospitalization, advanced wound care, and manual intervention.
- This highlights the need for automated systems that enhance circulation and reduce time, labor, and costs.

Figure: Stages of pressure ulcers

Figure: Prevalence of Pressure ulcers

State of the art technologies available

Paper Title	Disadvantage
IoT-Based Healthcare Monitoring System: Bedsores Prevention	Requires constant monitoring.
	Dependent on internet connectivity
Evaluation of commodity force sensor for building low-cost bed sore	• Can't decide the movements of the patient.
prevention mat.	Requires manual intervention.
Medical Robotic Bed to Prevent Pressure Sores	Expensive due to robotic implementation
Wearable Preventive Pressure Ulcer System Using Embroidered	Not effective for existing severe ulcers.
Textile Electrodes	

Figure: Wired sensor mat

Figure: Robotic bed

Core technological idea

Segment of the	Weight distribution	Force distribution	Approximate area (m²)	Pressure distribution	Initial pressure	Final pressure	Radius of capillary	Length of	Relative blood
body	(for 70kg model)	(Kgs)		(F/A) (kPa)	(kPa)	(kPa)	(m)	capillary (m)	Flow (ml/sec)
Head and neck	5.3	4.86	0.015	3.177	4.266	3.177	0.0000075	0.001	-4.86*10 ⁻
Upper back	13.5	16.79	0.040	4.116	4.266	4.116	0.0000075	0.001	-6.70*10 ⁻
Lumbar and pelvic	21.02	21.64	0.165	1.286	4.266	1.286	0.0000075	0.001	-1.33*10
Thighs	8.8	18.71	0.030	6.115	4.266	6.115	0.0000075	0.001	8.25*10-1
Calf	2.5	7.42	0.035	2.079	4.266	2.079	0.0000075	0.001	-9.76*10 ⁻
Feet	0.89	0.27	0.005	0.529	4.266	0.529	0.0000075	0.001	-1.66*10 ⁻

Figure: Weight distribution at risk points

Factors	Normal range	Micro vibrations	Lateral movement	
		(Moderate risk category)	(High risk category)	
Pressure (mmHg)	<32 mmHg	32 – 50 mmHg for >30 min	>50 mmHg for >15 min	
Temperature (°C)	< or = 35 °C	35 – 38 °C	>38 °C	
Humidity (%)	30 - 60 %	60 – 75%	>75%	

Figure: Threshold parameters

Implementation & Achievements

START

HARDWARE INITIALIZATION

SENSOR NETWORK SETUP

SD CARD INITIALIZATION

MAIN LOOF

FOR EACH SENSOR (1-6)

LOG DATA TO SD CARD

RISK ASSESSMENT

5 SECOND DELAY

TRIGGER VIBRATION

TRIGGER SERVO+MOTOR

a

Rib cage

Figure: Key pressure points on

different segments of the body

Figure: Circuit diagram for the prototype

Figure	: Vibration mo	otor
	Segment of the body	

Voltage rating (V)	3 V DC	12 V DC
Current rating (mA)	80 to 120	66
Rated speed (rpm)	10,000	12,500
Frequency (Hz)	166.6	208.3
Diameter (m)	0.01	0.08
Width (m)	0.0034	0.0034
Weight (Kg)	0.001	0.0008
Eccentricity (m)	0.002	0.0012

ERM Coin motor

Precision micro driver

ERM coin motors Precision micro drivers Force (N) required required 47.7 22 5 Head and neck 164.7 75 16 Upper back 97 20 Lumbar and pelvic 212.3 Thighs 184 84 18

Figure: Vibration motors required after calculations

Reflection & Conclusion

- Gained hands-on experience in developing a smart bed prototype using tools like KiCAD, Fusion 360, and ESP32 with MicroPython, integrating electronics and mechanical components effectively.
- Addressed a critical healthcare issue—pressure ulcer prevention —by designing a solution that combines sensor data, threshold analysis, and targeted vibration therapy to improve patient outcomes.
- Learned to select and interface electronic components based on power and functionality, and performed circuit assembly, debugging, and testing in a lab environment.
- Gained experience working in interdisciplinary teams combining biomedical engineering, design, and clinical application perspectives.

Outlook

- Apply patient-specific data to train ML models for tailored prevention.
- Develop a user interface (UI) to display real-time data and generate analytical plots for insights.
- Enhance therapeutic outcomes by integrating antimicrobial patches at targeted pressure points
- Optimize ergonomic support to maximize comfort and efficacy.

References

- Kaewjamnong, S., & Hongwitayakorn, A. (2021). Evaluation of a commodity force sensor for building a low-cost bedsore prevention mat. Science, Engineering and Health Studies, 21020003-21020003. DOI: https://doi.org/10.14456/sehs.2021.13
- Palumbo, F., Barsocchi, P., Furfari, F., & Ferro, E. (2013). AAL middleware infrastructure for green bed activity monitoring. Journal of Sensors, 2013(1), 510126. DOI: https://doi.org/10.1155/2013/510126
- Seon, M., Lee, Y., & Moon, C. (2021). Medical robotic bed to prevent pressure sores. Applied Sciences, 11(18), 8459. DOI: https://doi.org/10.3390/app11188459