Chomsky Normal Form (of CFGs)

Previous two lectures

- Introduced context free grammars and CFLs
- Formal definition of CFGs
- Examples of CFGs
- Designing CFGs
 - Four techniques:
 - Break down into simpler pieces
 - 2. Use DFAs if language at hand is regular
 - 3. Handle links $(R \rightarrow uRv)$
 - Handle recursion (e.g. G_4 : arithmetic expression)
 - Ambiguity
- Today: Chomsky normal form

Chomsky Normal Form

DEFINITION 2.8

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$A \to BC$$

 $A \to a$

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

Chomsky Normal Form

Theorem: Any context-free language is generated by a context-free grammar in Chomsky normal form.

Proof Idea: We can convert any grammar G into CNF

The Conversion procedure (overview):

The conversion has several stages wherein rules that violate the conditions are replaced with equivalent ones that are satisfactory.

- First, we add a new start variable
- Then, we eliminate all ε-rules of the form A → ε
- We also eliminate all **unit rules** of the form $A \rightarrow B$
- In both cases, we patch up the grammar to be sure that it still generates the same language
- Finally, we convert the remaining rules into the proper form

The conversion procedure: details

- 1. First, we add a **new start variable** S_0 and the rule $S_0 \rightarrow S$, where S was the original start variable. (This change guarantees that the start variable doesn't occur on the RHS of the rule).
- We take care of all ε-rules.
 - a) We remove an ε -rule $A \to \varepsilon$, where A is not the start variable.
 - b) Then for each occurrence of A on the RHS of a rule, we add a new rule with that occurrence deleted. In other words, if R → uAv is a rule in which u and v are strings of variables and terminals, we add rule R → uv.

We do so for each occurrence of an A, so the rule $R \rightarrow uAvAw$ causes us to add

```
R \rightarrow uvAw,
```

 $R \rightarrow uAvw$, and

 $R \rightarrow uvw$.

If we have the rule $R \to A$, we add $R \to \epsilon$ unless we had previously removed the rule $R \to \epsilon$. We repeat these steps until we eliminate all ϵ -rules not involving the start variable

The conversion procedure: details

- We handle all unit rules.
 - a) We remove a unit rule $A \rightarrow B$.
 - b) Then whenever a rule $B \to u$ appears, we add the rule $A \to u$ unless this was a unit rule previously removed. As before, u is a string of variables and terminals.

We repeat these steps until we eliminate all unit rules.

- 4. We convert all remaining rules into the proper form.
 - a) We replace each rule $A \to u_1 u_2 u_k$, where $k \ge 3$ and each u_i is a variable or terminal symbol, with the rules $A \to u_1 A_1$ $A_1 \to u_2 A_2$ $A_2 \to u_3 A_3$, ..., $A_{k-2} \to u_{k-1} u_k$.

 The A_i 's are new variables.
 - b) We replace any terminal u_i in the preceding rule(s) with the new variable U_i and add the rule $U_i \rightarrow u_i$

4

Example 1

Convert the grammar G₆ given below into CNF

$$S o ASA \mid aB$$

 $A o B \mid S$
 $B o b \mid \varepsilon$

1. The original CFG G_6 is shown on the left. The result of applying the first step to make a new start variable appears on the right.

$$egin{array}{lll} S
ightarrow ASA \mid \mathtt{a}B & S_0
ightarrow S \ A
ightarrow ASA \mid \mathtt{a}B \ A
ightarrow B \mid S \ B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} & B
ightarrow \mathtt{b} \mid oldsymbol{arepsilon} \end{array}$$

Note: In this step and subsequent steps, Rules shown in **bold** have just been added. Rules shown in grey have just been removed.

2. Remove ε -rules $B \to \varepsilon$, shown on the left, and $A \to \varepsilon$, shown on the right.

$$S_0 o S$$

 $S o ASA \mid aB \mid a$
 $A o B \mid S \mid \varepsilon$
 $B o b \mid \varepsilon$

$$S_0 o S$$
 $S o ASA \mid \mathtt{a}B \mid \mathtt{a} \mid SA \mid AS \mid S$
 $A o B \mid S \mid \varepsilon$
 $B o \mathtt{b}$

3a. Remove unit rules $S \to S$, shown on the left, and $S_0 \to S$, shown on the right.

$$S_0 \to S \\ S \to ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \mid \mathsf{S} \\ A \to B \mid S \\ B \to \mathsf{b}$$

$$S_0 \to S \mid ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ S \to ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ A \to B \mid S \\ B \to \mathsf{b}$$

$$S \to ASA \mid \mathsf{a}B \mid \mathsf{a} \mid SA \mid AS \\ A \to B \mid S \\ B \to \mathsf{b}$$

3b. Remove unit rules $A \to B$ and $A \to S$.

$$S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$$
 $S_0
ightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S
ightarrow ASA \mid aB \mid a \mid SA \mid AS$ $S
ightarrow B \mid S \mid B \mid ASA \mid B \mid a \mid SA \mid AS$ $S
ightarrow B
ightarrow B
ightarrow B$

4. Convert the remaining rules into the proper form by adding additional variables and rules. The final grammar in Chomsky normal form is equivalent to G_6 . (Actually the procedure given in Theorem 2.9 produces several variables U_i and several rules $U_i \rightarrow a$. We simplified the resulting grammar by using a single variable U and rule $U \rightarrow a$.)

$$S_0
ightarrow AA_1 \mid UB \mid$$
 a $\mid SA \mid AS$
 $S
ightarrow AA_1 \mid UB \mid$ a $\mid SA \mid AS$
 $A
ightarrow$ b $\mid AA_1 \mid UB \mid$ a $\mid SA \mid AS$
 $A_1
ightarrow SA$
 $U
ightarrow$ a
 $B
ightarrow$ b

Convert the grammar G₇ given below into CNF

$$S \to 0R0|1R1|\epsilon$$

$$R \to 0R|1R|\epsilon$$

Original grammar:

Create new start symbol:

Remove epsilon rules:

- We remove an ε-rule $A \rightarrow ε$, where A is not the start variable.
- b) Then for each occurrence of A on the RHS of a rule, we add a new rule with that occurrence deleted. In other words, if $R \rightarrow uAv$ is a rule in which u and v are strings of variables and terminals, we add rule $R \rightarrow uv$.

$$S \rightarrow 0R0|1R1|\epsilon$$

 $R \rightarrow 0R|1R|\epsilon$

$$S_0 \rightarrow S$$

 $S \rightarrow 0R0|1R1|\epsilon$
 $R \rightarrow 0R|1R|\epsilon$

$$S_0 \rightarrow S|\epsilon$$

 $S \rightarrow 0R0|1R1$
 $R \rightarrow 0R|1R|0|1$

We remove a unit rule $A \rightarrow B$.

b) Then whenever a rule B → u appears, we add the rule A → u unless this was a unit rule previously removed.
 As before, u is a string of variables and terminals.

Remove unit rules:

$$S_0 \rightarrow 0R0|1R1|\epsilon$$

 $S \rightarrow 0R0|1R1$
 $R \rightarrow 0R|1R|0|1$

- We replace each rule $A \rightarrow u_1 u_2 u_k$, where $k \ge 3$ and each u_i is a variable or terminal symbol, with the rules $A \rightarrow u_1 A_1 \quad A_1 \rightarrow u_2 A_2 \quad A_2 \rightarrow u_3 A_3, \ldots, \quad A_{k-2} \rightarrow u_{k-1} u_k$. The A_i 's are new variables.
- b) We replace any terminal u_i in the preceding rule(s) with the new variable U_i and add the rule $U_i \rightarrow u_i$

Convert the remaining rules by adding additional variables and rules:

$$S_0 \rightarrow XZ|YO|\epsilon$$

$$R \rightarrow ZR|OR|0|1$$

$$X \rightarrow ZR$$

$$Y \rightarrow OR$$

$$O \rightarrow 1$$

$$Z \rightarrow 0$$

Addendum

- Homework 5
- Return midterm1 papers