- The given MLP consists of an Input layer, one Hidden layer and an Output layer.
- The input layer has 4 neurons, the hidden layer has 2 neurons and the output layer has a single neuron.
- Train the MLP by updating the weights and biases in the network.
- Learning Rate = 0.8

<i>x</i> ₁	x_2	<i>x</i> ₃	.X ₄	O _{Desired}
1	1	0	1	1

1000	X ₁	X ₂	X ₃	X ₄	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
	1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

 Calculate Input and Output in the Input Layer Net Input and Output Calculation

Input layer	I_{j}	O _i
x_1	1	1
x_2	1	1
x_3	0	0
x_4	1	1

>	ζ,	X ₂	X ₃	X ₄	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
	1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

2. Calculate Net Input and Output in the Hidden Layer and Output Layer as

Unit _j	Net Input I _j	Output O _j
<u>x</u> ₅	$\begin{split} I_5 &= x_1 \times w_{15} + x_2 \times w_{25} + x_3 \times w_{35} + x_4 \times w_{45} + x_0 \times \theta_5 \\ I_5 &= 1 \times 0.3 + 1 \times -0.2 + 0 \times 0.2 + 1 \times 0.1 + 1 \times 0.2 = 0.4 \end{split}$	$O_5 = \frac{1}{1 + e^{-I_5}} \frac{1}{1 + e^{-0.4}} = 0.599$
<i>x</i> ₆	$\begin{split} I_6 &= x_1 \times w_{15} + x_2 \times w_{26} + x_3 \times w_{36} + x_4 \times w_{46} + x_0 \times \theta_6 \\ I_6 &= 1 \times 0.3 + 1 \times 0.4 + 0 \times -0.3 + 1 \times 0.4 + 1 \times 0.1 = 1.2 \end{split}$	$O_6 = \frac{1}{1 + e^{-l_6}} \frac{1}{1 + e^{-1.2}} = 0.769$
<i>x</i> ₇ .	$I_7 = O_5 \times w_{57} + O_6 \times w_{67} + x_0 \times \theta_7$ $I_7 = 0.599 \times -0.3 + 0.769 \times 0.2 + 1 \times -0.3 = -0.326$	$O_7 = \frac{1}{1 + e^{-l_7}} \frac{1}{1 + e^{0.326}} = 0.419$

X ₁	X ₂	X ₃	X ₄	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

3. Calculate Error = $O_{desired}$ – $O_{Estimated}$

So, error for this network is:

Error =
$$O_{desired} - O_7 = 1 - 0.419 = 0.581$$

So, we need to back propagate to reduce the error.

X	x ₂	X ₃	X ₄	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

Step 2: Backward Propagation

1. Calculate Error at each node

For each unit *k* in the output layer, calculate:

$$Error_k = O_k (1 - O_k) (O_{desired} - O_k)$$

For each unit in the hidden layer, calculate:

$$\operatorname{Error}_{j} = O_{j} (1 - O_{j}) \sum_{k} \operatorname{Error}_{k} w_{jk}$$

<i>X</i> ₁	X ₂	X ₃	X_4	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	$\theta_{\scriptscriptstyle{5}}$	θ_{6}	θ_{7}
1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

Error Calculation for Each Unit in the Output Layer and Hidden Layer

For Output Layer Unit _k	Error _k
x ₇	$Error_7 = O_7 (1 - O_7) (Y_n - O_7)$
	$= 0.419 \times (1 - 0.419) \times (1 - 0.419) = 0.141$
For Hidden Layer Unit _j	Error _,
x_6	Error ₆ = $O_6(1 - O_6) \sum_k \text{Error}_k w_{jk} = O_6(1 - O_6) \text{Error}_7 w_{67}$
	$= 0.769 (1 - 0.769) \times 0.2 \times 0.141 = 0.005$
x_5	Error ₅ = $O_5(1 - O_5) \sum_k \text{Error}_k w_{jk} = O_5(1 - O_5) \text{Error}_7 w_{57}$
	$= 0.599(1 - 0.599) \times 0.141 \times -0.3 = -0.0101$

X.	X ₂	X	3	X ₄	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
1	1	0)	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

2. Update weight using the below formula:

Learning rate $\alpha = 0.8$. $w_{ij} = w_{ij} + \infty \times \text{Error}_{j} \times O_{i}$ The updated weights and bias

		_
w _{ij}	$w_{ij} = w_{ij} + \infty \times \text{Error}_{j} \times O_{i}$	New Weight
w_{15}	$w_{15} = w_{15} + 0.8 \times \text{Error}_5 \times O_1$	0.292
	= 0.3 + 0.8 × -0.0101 × 1	
$w_{_{16}}$	$w_{16} = w_{16} + 0.8 \times \text{Error}_6 \times O_1$	0.104
	$= 0.1 + 0.8 \times 0.005 \times 1$	
w_{25}	$w_{25} = w_{25} + 0.8 \times \text{Error}_5 \times O_2$	-0.208
	= -0.2 + 0.8 × -0.0101 × 1	
w ₂₆	$w_{26} = w_{26} + 0.8 \times \text{Error}_6 \times \text{O}_2$	0.404
	$= 0.4 + 0.8 \times 0.005 \times 1$	

2. Update weight using the below formula: Learning rate $\alpha = 0.8$.

$$w_{ij} = w_{ij} + \infty \times \text{Error}_j \times O_i$$

The updated weights and bias

w_{ij}	$w_{ij} = w_{ij} + \infty \times \text{Error}_{j} \times O_{i}$	New Weight
w ₃₅	$w_{35} = w_{35} + 0.8 \times \text{Error}_5 \times O_3$	0.2
	$= 0.2 + 0.8 \times -0.0101 \times 0$	
$w_{_{36}}$	$w_{36} = w_{36} + 0.8 \times \text{Error}_6 \times O_3$	-0.3
	$-0.3 + 0.8 \times 0.005 \times 0$	
$w_{_{45}}$	$w_{45} = w_{45} + 0.8 \times \text{Error}_5 \times O_4$	0.092
	$= 0.1 + 0.8 \times -0.0101 \times 1$	
$w_{_{46}}$	$w_{46} = w_{46} + 0.8 \times \text{Error}_6 \times O_4$	0.404
	$= 0.4 + 0.8 \times 0.005 \times 1$	
w ₅₇	$w_{57} = w_{57} + 0.8 \times \text{Error}_7 \times O_5$	-0.232
	$= -0.3 + 0.8 \times 0.141 \times 0.599$	
w ₆₇	$w_{67} = w_{67} + 0.8 \times \text{Error}_7 \times O_6$	0.287
	$= 0.2 + 0.8 \times 0.141 \times 0.769$	

<i>X</i> ₁	X ₂	X ₃	X_4	W ₁₅	W ₁₆	W ₂₅	W ₂₆	W ₃₅	W ₃₆	W ₄₅	W ₄₆	W ₅₇	W ₆₇	θ_{5}	θ_{6}	θ_{7}
1	1	0	1	0.3	0.1	-0.2	0.4	0.2	-0.3	0.1	0.4	-0.3	0.2	0.2	0.1	-0.3

Update bias using the below formula:

$$\theta_j = \theta_j + \underline{\infty} \times \underline{\text{Error}}_j$$

θ_{j}	$\theta_j = \theta_j + \infty \times Error_j$	New Bias
$\theta_{\scriptscriptstyle 5}$	$\theta_5 = \theta_5 + \underline{\infty} \times \text{Error}_5$ $= 0.2 + 0.8 \times -0.0101$	0.192
$\theta_{\scriptscriptstyle 6}$	$\theta_6 = \theta_6 + \infty \times \text{Error}_6$ $= 0.1 + 0.8 \times 0.005$	0.104
θ_7	$\theta_7 = \theta_7 + \infty \times \text{Error}_7$ $= -0.3 + 0.8 \times 0.141$	-0.187

Iteration 2

Now, with the updated weights and biases:

 Calculate Input and Output in the Input Layer Net Input and Output Calculation

Input Layer	I_j	O _j
x_1		(1)
x_2	1	1
x_3	0	0
x ₄	1	1

2. Calculate Net Input and Output in the Hidden Layer and Output Layer

Net Input and Output Calculation in the Hidden Layer and Output Layer

Unit j	Net Input I _j	Output O _j
x_5	$I_5 = x_1 \times w_{15} + x_2 \times w_{25} + x_3 \times w_{35} + x_4 \times w_{45} + x_0 \times \theta_5$ $I_5 = 1 \times 0.292 + 1 \times -0.208 + 0 \times 0.2 + 1 \times 0.092 + 1 \times 0.192 = 0.368$	$O_5 = \frac{1}{1 + e^{-I_5}} = \frac{1}{1 + e^{-0.368}} = 0.591$
<i>x</i> ₆	$I_6 = x_1 \times w_{15} + x_2 \times w_{26} + x_3 \times w_{36} + x_4 \times w_{46} + x_0 \times \theta_6$ $I_6 = 1 \times 0.292 + 1 \times 0.404 + 0 \times -0.3 + 1 \times 0.404 + 1 \times 0.104 = 1.204$	$O_6 = \frac{1}{1 + e^{-I_6}} = \frac{1}{1 + e^{-1.204}} = 0.7692$
x ₇	$I_7 = O_5 \times w_{57} + O_6 \times w_{67} + x_0 \times \theta_7$ $I_7 = 0.591 \times -0.232 + 0.7692 \times 0.287 + 1 \times -0.187 = -0.326$	$O_7 = \frac{1}{1 + e^{-l_7}} = \frac{1}{1 + e^{0.1034}} = 0.474$

• The output we receive in the network at node 7 is 0.474

 Now, when we compare the error, we get in the previous iteration and in the current iteration,

- It is visible that the network has learnt and reduced the error by 0.055.
- Thus, the training is continued for a predefined number of epochs or until the training error is reduced below a threshold value.