Example 4: S_1^2 and S_2^2 are sample variances observed from two independent samples of sizes $n_1 = 30$ and $n_2 = 25$, taken from two different populations, each being normally distributed. That is, $X_1 \sim Norm(\mu_1, \sigma_1^2)$, and $X_2 \sim Norm(\mu_2, \sigma_2^2)$. If $\sigma_1^2 = 3\sigma_2^2$, find the value b such that

$$P\left(\frac{S_1^2}{S_2^2} < b\right) = 0.95$$

$$P\left(\frac{S_1^2}{S_1^2} < b\right) = 0.95$$

$$P\left(\frac$$