MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott pontszám a mellette levő téglalapba kerül.
- **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- Hiányos/hibás megoldás esetén kérjük, hogy az egyes részpontszámokat is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- Ha a megoldásban számolási hiba, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel, mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- Ha a megoldási útmutatóban zárójelben szerepel egy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- Egy feladatra adott többféle megoldási próbálkozás közül **csak egy** (a magasabb pontszámú) **értékelhető**.
- A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

	igaz	hamis
A		*
В	*	
C	*	

Ha a vizsgázó egy állítás betűjele mellé mindkét mezőbe tesz jelet, akkor arra nem jár pont, hacsak a szöveges magyarázatban nem fogalmazza meg a helyes választ.

1. a)		
Az A állítás hamis,	1 pont	A táblázatban jelölt jó válaszért jár az 1 pont.
mert van a négyszögnek derékszöge. Például az <i>SRQ</i> szög,	1 pont	
mert $\overrightarrow{RQ}(7; 1)$ és $\overrightarrow{RS}(1; -7)$,	1 pont	
ezért $\overrightarrow{RQ} \cdot \overrightarrow{RS} = 0$, és így a négyszög R -nél lévő szöge derékszög.	1 pont	
Összesen:	4 pont	

1. b)		
A B állítás igaz ,	1 pont	A táblázatban jelölt jó válaszért jár az 1 pont.
mert a <i>PQRS</i> négyszögben az <i>R</i> csúccsal szemközti <i>P</i> csúcsnál lévő szög is derékszög,	1 pont	
ugyanis \overrightarrow{PQ} (-2; 4) és \overrightarrow{PS} (-8; -4), ezért $\overrightarrow{PQ} \cdot \overrightarrow{PS} = 0$.	1 pont	
Így a <i>PQRS</i> négyszög szemközti szögeinek összege 180° (a húrnégyszög tételének megfordítása miatt), tehát a négyszög húrnégyszög.	1 pont	
Összesen:	4 pont	

1. c)		
A C állítás igaz ,	1 pont	A táblázatban jelölt jó válaszért jár az 1 pont.
Mert ha lenne a négyszögnek szimmetriacentruma, akkor a $PQRS$ négyszög paralelogramma lenne. Ehhez például az kellene, hogy az $\overrightarrow{RQ}(7; 1)$ és a $\overrightarrow{PS}(-8; -4)$ vektorok ellentett vektorok legyenek.	2 pont	
Ez csakis úgy teljesülne, ha az egyik oldalvektor koordinátái –1-szeresei a másik vektor koordinátáinak. Ez viszont nem teljesül.	2 pont	
Összesen:	5 pont	

2. a)		
Mivel $x^3 - 3x = (x + \sqrt{3})x(x - \sqrt{3}),$		
ezért f zérushelyei lehetnek:	3 pont	Zérushelyenként 1 pont.
$x_1 = -\sqrt{3}$; $x_2 = 0$; $x_3 = \sqrt{3}$.		
Az egyenlet mindhárom gyöke eleme az f		
értelmezési tartományának, ezért mindegyik	1 pont	
zérushely.		
Összesen:	4 pont	

2. b)			
Az f a teljes értelmezési tartományának belső pontjaiban differenciálható függvény, ezért a monotonitás megállapítása és a szélsőértékek megkeresése az első derivált előjelvizsgálatával történhet.	1 pont	Ha ezek a gondolatok csak a megoldás menetéből derülnek ki, akkor is jár az 1 pont.	
$f'(x) = 3x^2 - 3.$	1 pont		
Az első derivált értéke nulla, ha $x = -1$ vagy $x = 1$.	1 pont	Csak mindkét érték megadása esetén jár az 1 pont.	
Ezek az x értékek az értelmezési tartomány elemei. Készítsünk táblázatot az f ' előjel-			

Ezek az x értékek az értelmezési tartomány elemei. Készítsünk táblázatot az f' előjelviszonyai alapján az f menetének meghatározásához:

x	-2.5 < x < -1	x = -1	-1 < x < 1	<i>x</i> = 1	1 < x < 2,5
f'	pozitív	0	negatív	0	pozitív
f	növekvő	f(-1) = 2	csökkenő	f(1) = -2	növekvő

Összesen:	6 pont	
A monotonitás megállapítása a táblázat helyes kitöltése alapján.	3 pont	Megadható a 3 pont akkor is, – ha hibás, de két zérushellyel rendelkező deriváltfüggvénnyel dolgozik helyesen; – ha a szűkített értelmezési tartományt nem veszi figyelembe.

Ha a vizsgázó pontonkénti ábrázolás után a grafikonról jól leolvassa a függvény menetét, a táblázatért járó 3 pontból 1 pontot kapjon.

Ha az ábrázolásnál hivatkozik a függvény folytonosságára, további 1 pont jár.

2. c)		
Az f helyi maximumot vesz fel az $x = -1$ helyen,	1 pont	A vizsgázó a közölt
a helyi maximum értéke $f(-1) = 2$.	1 point	megoldas utolso 4 pontjat
Az f helyi minimumot vesz fel az $x = 1$ helyen, a	1 pont	akkor is megkaphatja, ha
helyi minimum értéke $f(1) = -2$.	1 pont	uz j szeisberteketnek
Mivel $f(-2,5) = -8,125$,	1 pont	minőségét a helyesen (és
a legkisebb függvényérték –8,125.	1 pont	indokidssai) eikesztiett
Mivel $f(2,5) = 8,125$, ezért a legnagyobb	1 nont	grafikon alapján állapítja
függvényérték 8,125.	1 pont	meg.
Összesen:	4 pont	

3. első megoldás		
Az első egyenlet alapján y tetszőleges és $x > 3$.	1 pont*	
A második alapján y tetszőleges és $x > 3$ vagy $x < 1$.	1 pont*	
Az egyenletrendszer gyökeit tehát az $y \in \mathbf{R}$ és $x > 3$		
feltétel mellett keressük.		
Ekkor az első egyenletből $y = \lg(x-3)$.	1 pont	
Amit a második egyenlet jobb oldalán y helyére írva	1 .	
$\lg(x^2 - 4x + 3) = 2\lg(x - 3) + \lg 10,$	1 pont	
azaz $\lg(x^2 - 4x + 3) = \lg 10(x - 3)^2$.	1 pont	
A logaritmusfüggvény monotonitása miatt $(x^2 - 4x + 3) = 10(x - 3)^2$.	1 pont	A monotonitásra való hivatkozás nélkül is jár az l pont. A másodfokú egyenlet felírásáért összesen 4 pont jár.
A bal oldal szorzattá alakítva $(x-3)(x-1) = 10(x-3)^2$,	1 pont	
Mivel $x > 3$, ezért $-9x + 29 = 0$,	1 pont	
innen $x = \frac{29}{9} (= 3, 2)$	1 pont	A kerekített érték felírása esetén is jár a pont.
és $y = \lg \frac{2}{9} (\approx -0.653)$.	1 pont	
Az egyenletrendszer megoldása: $x = \frac{29}{9}$ és $y = \lg \frac{2}{9}$.	1 pont	
Összesen:	11 pont	

Ha csak mechanikusan oszt mindkét oldalon x-3-mal, s azért kapja meg a jó megoldást, mert a másik az nem lehet, akkor legfeljebb 8 pontot kapjon.

3. második megoldás			
Ha a második egyenletből indulunk, akkor felhasználva, hogy csak pozitív számnak van logaritmusa, a másodfokú kifejezés pozitív. Ez a két gyök között nem teljesül, így a feltétel: $x > 3$ vagy $x < 1$, és y tetszőleges valós szám.	2 pont*		
Az egyenlet pedig $x^2 - 4x + 3 = 10 \cdot 10^{2y}$.	1 pont		
Az első egyenlet négyzete $10^{2y} = (x-3)^2$.	1 pont		
A kettőt egybevetve kapjuk, hogy: $10(x-3)^2 = x^2 - 4x + 3,$	1 pont	_	egyenlet összesen
rendezve: $9x^2 - 56x + 87 = 0$.	1 pont		
Ennek gyökei: 3 és $\frac{29}{9}$.	2 pont		
A 3 nem ad megoldást.	1 pont		
Az $x = \frac{29}{9}$ értékét az első egyenletbe helyettesítve kapjuk, hogy $y = \lg \frac{2}{9}$.	1 pont		
Az egyenletrendszer megoldása: $x = \frac{29}{9}$ és $y = \lg \frac{2}{9}$.	1 pont		
Összesen:	11 pont		

^{1.} A *-gal jelölt pontok járnak akkor is mindkét megoldásban, ha a vizsgázó az egyenletekbe történő behelyettesítéssel ellenőriz (egyenletenként az ellenőrzésért 1-1 pont jár).

^{2.} Nem adható az ellenőrzésért pont, ha a hamis vagy a rossz gyököt nem szűri ki a behelyettesítéssel.

4. a) első megoldás		
Az első sorozatban az első tagtól kezdve felírjuk a		
tagok 11-gyel való osztás maradékát:	1 pont	
5; 4; 1; 3; 9; 5;		
A maradékok ciklikusan ismétlődnek (hiszen mindig	1 nont	
3-mal szorzunk).	1 pont	
Tehát minden ötös ciklusban az 1-es maradék	1 nont	
egyszer fordul elő.	1 pont	
A 110. tagig 22 ciklus van.	1 pont	
T 1 (22 (0.2) 1 (1 () (")	2	
Tehát $\frac{22}{110}$ (= 0,2) a kérdezett valószínűség.	2 pont	
Összesen:	6 pont	

4. a) második megoldás		
Az első sorozatban az első tagtól kezdve felírjuk a		
tagok 11-gyel való osztás maradékát:	1 pont	
5; 4; 1; 3; 9; 5;		
A maradékok ciklikusan ismétlődnek (hiszen mindig	1 nont	
3-mal szorzunk).	1 pont	
Minden ötödik tag 1-es maradékot ad,	2 pont	
tehát a valószínűség $\frac{1}{2}$.	2 mont	
tenat a valuszinuseg – .	2 pont	
Összesen:	6 pont	

4. b)		
A számtani sorozatban az első tagtól kezdve felírjuk		Ezúttal a ciklus hosszabb
a tagok 11-gyel való osztás maradékát:	1 pont	lesz, mivel a 3 relatív
5; 8; 0; 3; 6; 9; 1; 4; 7; 10; 2;		prím a 11-hez, ennek
Ettől kezdve ismétlődik: 5; 8; 0,	1 pont	többszörösei minden
tehát 11 a ciklushossz.	1 pont	lehetőséget lefednek, azaz 11 hosszú lesz a ciklus.
Egy ciklusban egy kedvező eset van.	1 pont	
Mivel 10 ciklus van a 110. tagig, és mindegyikben egy darab 1-es van,	1 pont	
így a keresett valószínűség: $\frac{10}{110} = \frac{1}{11}$.	2 pont	
Összesen:	7 pont	

II.

5. a)

Jelölje x azt az időt (órában), amennyi idő alatt Panni egyedül begépelte volna a kéziratot, y pedig azt, amennyi alatt Kati végezte volna el ugyanezt a munkát egyedül.

Panni szerdán *t* órát fordított a gépelésre.

Foglaljuk táblázatba a szövegből kiolvasható adatokat:

	a teljes munka	1 óra alatti	gépelésre fordított idő (h)
	elvégzése (h)	teljesítmény	kedden
Panni	x	$\frac{1}{x}$	6
Kati	у	$\frac{1}{y}$	4
együtt	12	1/12	

A táblázat helyes kitöltése.	3 pont*	Oszloponként 1-1 pont.
Mindezekből tudhatjuk a munka elvállalásakor: $\frac{1}{x} + \frac{1}{y} = \frac{1}{12};$	1 pont	Ha a táblázatos kitöltés helyett a vizsgázó az egyenleteket írja fel, a *-gal jelölt 3 pontot 2+1 bontásban akkor
a keddi nap végén: $\frac{6}{x} + \frac{4}{y} = \frac{2}{5};$	2 pont	adjuk hozzá az 1+2 pon- tokhoz. Maximum 5 pont
A két egyenletből $x = 30$ (óra) y = 20 (óra).	2 pont	
A feladat feltételeinek megfelelően Panni 30 óra, Kati 20 óra alatt végzett volna egyedül a munkával.	1 pont	
Összesen:	9 pont	

5. b)		
Szerdán Panni t , Kati $t - \frac{1}{2}$ órát gépelt.	1 pont	
Szerda délután, a munka befejezésekor		
$\frac{t}{30} + \frac{t - \frac{1}{2}}{20} = \frac{3}{5}.$	2 pont	A pontszám nem bont- ható.
t = 7,5 (óra).	1 pont	
Panni fél óráig ebédelt, ezért a gépelésre fordított 7,5 óra 8 óra "munkaidőre" változik. Kati szerdán 7,5 – 0,5 = 7 órát gépelt, és egy órával több (vagyis 8 óra) volt a "munkaideje".	2 pont	
Szerdán 9 órakor kezdtek, és mindketten 8 óra "munkaidő" után fejezték be a gépelést, vagyis 17 órára lettek készen a kézirattal.	1 pont	
Összesen:	7 pont	

6. a)		
Annak a valószínűsége, hogy a 8 vizsgált személy		
közül pontosan kettő színtévesztő (binomiális		
modell): $p = {8 \choose 2} \cdot 0.04^2 \cdot 0.96^6$,	2 pont	
$p \approx 0.035$.	1 pont	
Összesen:	3 pont	
Ha a vizsgázó a 6. a) feladatot a hipergeometrik	kus model	lt alkalmazva oldja meg,
a következő a pontozás:		
N elemszám esetén a pontosan két színtévesztő		
kiválasztásának a valószínűsége:		
$p = \frac{\binom{0.04N}{2} \cdot \binom{0.96N}{6}}{\binom{N}{8}}$	2 pont	
Ha a vizsgázó választ konkrét N értékeket	1	
(N = 100, 1000) és p -t jól kiszámolja	1 pont	
Összesen:	3 pont	

nem jár!

6. b) első megoldás		
Az az eset, hogy a 8 vizsgált személy közül legalább 2 színtévesztő van, azt jelenti, hogy 2 vagy több a színtévesztők száma.	1 pont	A részpontszámok
Egyszerűbb a kérdezett esemény komplementerével számolni, vagyis azt vizsgálni, mennyi annak a valószínűsége, hogy legfeljebb 1 színtévesztő van a 8 ember között. Ezt két kizáró esemény valószínűségének összegeként számíthatjuk.	1 pont	akkor is adhatók, ha nem ennyire részletezők, de a leírásból világosan követhető a közölt gondolatmenet.
A pontosan 0 színtévesztő valószínűsége: $p_0 = 0.96^8 (\approx 0.7214)$.	1 pont	
A pontosan 1 színtévesztő valószínűsége: $p_1 = \binom{8}{1} \cdot 0.04^1 \cdot 0.96^7 (\approx 0.2405).$	1 pont	
Tehát a $P(\text{színtévesztők száma} \le 1) =$ = $p_0 + p_1 \approx 0.962$.	2 pont	
Ekkor a komplementer esemény valószínűsége 0,038.	1 pont	
Tehát 0,038 a valószínűsége annak, hogy legalább két személy színtévesztő.	1 pont	
Összesen:	8 pont	
A közbülső számítások során végzett kerekítésekből eredő pontatlanságért ne vonjunk le pontot! Ha a végeredményt nem három tizedes jegyre kerekítve adja meg, az utolsó pont		

6. b) második i	negoldás			
A legalább két fő	, C		1 pont	
2, 3, 4, 5, 6, 7, 8	ehet köztük színtévesztő.	•	1 point	
<u> </u>	valószínűségei binomiális	S		
eloszlással számí	thatók:			Szöveges indoklás nélkül
$p(k) = \binom{8}{k} \cdot 0.04^k$	$p(k) = \binom{8}{k} \cdot 0.04^k \cdot 0.96^{8-k}.$		1 pont	is jár az 1 pont.
A valószínűségek	értékei:			A binomiális eloszlás
2 színtévesztő	0,0351		tagjainak kiszámításakor	
3 színtévesztő	0,0029		hibás számolásért	
4 színtévesztő	0,0001522			legfeljebb 2 pontot
5 színtévesztő	0,000005073		4 pont	veszítsen. Ha említést tesz
6 színtévesztő	0,0000001057			arról, hogy k=5-től elhanyagolhatóak a
7 színtévesztő	0,00000000126			
8 színtévesztő	0,00000000000655			tagok, akkor is jár a
				4 pont.
(és mivel ezek az	események diszjunktak,	ezért) ezek	1 nont	
a valószínűségek összeadódnak.		1 pont		
A keresett valósz	ínűség 0,038.		1 pont	
		Összesen:	8 pont	

A hipergeometrikus modell alkalmazásával:		
Vagy a komplementer eseménnyel dolgozik, vagy n = 2-től 8-ig összegzi a felírható valószínűségeket	5 pont	
Konkrét N-re kiszámolja a kért valószínűségeket	2 pont	
Indokolja valamilyen formában N konkrét választását	1 pont	
Összesen:	8 pont	

A közbülső számítások során végzett kerekítésekből eredő pontatlanságért ne vonjunk le pontot! Ha a végeredményt nem három tizedes jegyre kerekítve adja meg, az utolsó pont nem jár!

6. c)		
Ha lehetséges lenne, akkor összesen 6 férfival fogtak volna kezet a nők.	1 pont	
Ezeket a "férfi ötösöket" $\binom{6}{5}$ = 6-féleképpen lehet	1 pont	
kiválasztani.		
Mivel 9 nő van, ezért a feltétel szerint kellene legalább 9 különböző férfi ötös.	2 pont	
Nem lehetséges, hogy volt két olyan férfi is, aki senkivel sem fogott kezet, mert ellentmondásra jutottunk.	1 pont	
Összesen:	5 pont	

Közöljük a feladatlapon szereplő táblázatot, a hiányzó adatok beírásával:

város	fizető nézők száma	egy jegy ára (Ft)	bevétel a jegyeladásból (ezer Ft)
Debrecen	12350	(1200)	14820
Győr	8760	(1400)	12264
Kecskemét	13920	1600	22272
Miskolc	9970	1500	14955
Pécs	11850	1300	15405

A táblázatban szereplő zárójeles számok kiszámítása nem szükséges a feltett kérdések megválaszolásához.

7. a)		
Kecskeméten 13920, Pécsett 11850 fizető néző volt.	2 pont	Ha csak a táblázatban szerepel, akkor is jár a 2 pont.
A legtöbb fizető néző Kecskeméten volt.	1 pont	
Összesen:	3 pont	

7. b)		
Az öt városban összesen 56850 fizető néző volt.	1 pont	
Miskolcon a jegyeladásból 14955 ezer Ft bevétel származott.	1 pont	
Az öt városban az összes bevétel 79716 ezer Ft volt.	1 pont	
Az átlagos jegyár $\frac{79716000}{56850}$, azaz 1402 Ft volt.	1 pont	
Összesen:	4 pont	

7. c)					
Bea becslése: 50000 fő, ennek 10%-a 5000 fő. Ha a tényleges nézőszám Budapesten b , ekkor (1) $45000 \le b \le 55000$.	1 pont				
Peti becslése 60000 fő, ha a tényleges nézőszám Prágában p , ennek 10%-a 0,1 p , ekkor (2) 0,9 $p \le 60000 \le 1,1p$.	2 pont	Ha itt a becslés százalékával írja fel az egyenlőtlenséget, legfel-			
Innen (3) $54546 \le p \le 66666$.	1 pont	jebb 1 pont adható.			
A legnagyobb eltérés akkor van a két nézőszám között, ha $b = 45000$ és $p = 66666$. Ekkor az eltérés $p - b = 21666$ fő.	1 pont				
A nézőszámok közötti lehetséges legnagyobb eltérés ezresekre kerekített értéke 22 ezer fő.	1 pont				
Összesen:	6 pont	Ha nyílt intervallumokkal dolgozik, akkor csak l pontot veszítsen.			

7. d)		
A <i>b</i> -re kapott (1) és a <i>p</i> -re kapott (3) reláció miatt az azonos <i>b</i> és <i>p</i> értékeket a [45000; 55000] és az [54546; 66666] intervallumok közös egész elemei adják.	1 pont	A részpontszámok akkor is adhatók, ha nem ennyire részletező a gondolatmenet.
Tehát $b = p$, ha mindkét nézőszám ugyanazon eleme az [54546; 55000] intervallumnak.	1 pont	Egy számpéldával meg- mutathatja állítása he- lyességét.
Mindezekből következik, hogy lehetséges, hogy a két fővárosban azonos számú néző hallgatta a GAMMA együttest.	1 pont	Ha az ezresekre kerekitett nézőszámmal felírt intervallumokat hason- lítja össze ([45 000; 55 000] és [55 000; 67 000]), akkor 2 pontot kap.
Összesen:	3 pont	

3. a)										
			<i>y</i> 4							
						+			Н	
			1			+			H	
			1 -							
		ackslash		1	_/				x	
		\forall			\mathcal{F}					
		,								

$x \mapsto \begin{cases} x^2 - 2x - 3, & \text{ha } x \ge 0 \\ x^2 + 2x - 3, & \text{ha } x < 0 \end{cases}$	1 pont	
$x \mapsto \begin{cases} (x-1)^2 - 4, & \text{ha } x \ge 0 \\ (x+1)^2 - 4, & \text{ha } x < 0 \end{cases}$	1 pont	
A grafikon két összetevőjének ábrázolása transzformációval.		Ez a 2 pont nem jár, ha pontonként ábrázol.
A függvény képe a megadott intervallumon	2 pont	I pont az összetevők helyes összefésülése, I pont az értelmezési tartomány
Összesen:	6 pont	

8. b)		
Összetett függvényhez a 3 függvény közül 2-t kell kiválasztani a sorrendre való tekintettel, ezt 6-féleképpen lehet megtenni.	1 pont	Az l pont akkor is adható, ha csak a későbbiek során derül ki, hogy ezt a gondolatot helyesen használja a vizsgázó.
Soroljuk fel a 2 különböző függvényből képezhetőket! A $(g \circ f)$ -et megadtuk. A továbbiak: $(f \circ g)(x) = f(g(x)) = (x-3)^2 - 2(x-3) - 3 =$ $= x^2 - 8x + 12$.	1 pont	
$(h \circ f)(x) = h(f(x)) = x^2 - 2x - 3 .$	1 pont	
$(f \circ h)(x) = f(h(x)) = x ^2 - 2 x - 3 = x^2 - 2 x - 3.$	1 pont	
$(g \circ h)(x) = g(h(x)) = x - 3.$	1 pont	
$(h \circ g)(x) = h(g(x)) = x - 3 .$	1 pont	
Összesen:	6 pont	

8. c)			
Egy egyszerű példa:			
$p(x) = x + c \text{ \'es } t(x) = x - c$		1 pont	
(ahol <i>c</i> nullától különböző konstans)			
$(p \circ t)(x) = (x+c)-c = x$		1 pont	
$(t \circ p)(x) = (x - c) + c = x$		1 pont	
Tehát $(p \circ t)(x) = (t \circ p)(x)$.		1 pont	
			Ha a függvénykonstruk-
	••		ció helyes, de értelmezési
	Összesen:	4 pont	tartományokra nem
			gondol, legfeljebb 3 pont
			adható.

9. a)		
A' A' B' A A A B	C	
Áttekinthető ábra az adatok feltüntetésével.	2 pont	Ha a feladatot helyesen, de hiányos ábrával oldja meg, akkor is jár a 2 pont.
Jelöljük a téglatest AD élének hosszát a -val! Mivel a $D'DA$ háromszög egyenlő szárú derékszögű háromszög: $DA = DD' = a$ és $AD' = a\sqrt{2}$.	1 pont	
A téglatestnek tehát 8 db éle a hosszúságú (négyzetes oszlop). Az ABB ' derékszögű háromszög oldalai rendre: $BB' = a$; $AB = \frac{a}{\sqrt{3}}$; $AB' = \frac{2a}{\sqrt{3}}$.	1 pont	
A téglatest $A'B'$ élére illeszkedő két lapja egybevágó, ezért $AB' = B'D' = \frac{2a}{\sqrt{3}}.$ Az $AB'D'$ háromszög egyenlő szárú.	1 pont	
A keresett $B'AD' \Leftarrow \alpha$ az alapon fekvő egyik szög, ennek koszinuszát például a koszinusz függvénnyel a $B'FA$ derékszögű háromszögből (F pont az AD' alap felezőpontja), vagy az $AB'D'$ háromszögből koszinusz-tétellel számíthatjuk ki: $\cos \alpha = \frac{\sqrt{6}}{4} (\approx 0,6124).$ Összesen:	1 pont	

9. b)		
Mivel az AB'A'D' tetraédert úgy kaptuk, hogy a téglatest A' csúcsába befutó három (egymásra merőleges) élének végpontjait összekötöttük ezzel az A' csúccsal, a tetraéder térfogatát megkaphatjuk, ha az AA'D' lapot tekintjük a tetraéder alaplapjának és az erre a lapra merőleges A'B' élt a tetraéder magasságának.	1 pont	Helyes számolás által tükrözött jó gondolat- menet esetén is jár az l pont.
$T_{AA'D'} = \frac{AA' \cdot A'D'}{2} = \frac{a \cdot a}{2} = \frac{a^2}{2};$ $m = A'B' = \frac{a}{\sqrt{3}}; \text{ innen}$	1 pont	
$V = \frac{T_{AA'D'} \cdot A'B'}{3} = \frac{1}{3} \cdot \frac{a^2}{2} \cdot \frac{a}{\sqrt{3}} = \frac{a^3 \cdot \sqrt{3}}{18} .$	1	
A téglatest (négyzetes oszlop) legrövidebb éle AB $(=A'B') = \frac{a}{\sqrt{3}} = 10$, innen $a = 10\sqrt{3}$.	1 pont	
Ezt az értéket a térfogat képletében az <i>a</i> helyére írva V = 500 adódik. Az <i>AB'A'D'</i> tetraéder térfogata 500 (térfogategység).	1 pont	
Összesen:	4 pont	

9. c)		
Az $AA'D'$ és az $AB'D'$ síkok hajlásszögét (φ -t) az AD' metszésvonaluk egy pontjában állított merőlegesek szöge adja meg. $Az \ AB'A'D'$ tetraéder AD' élére illeszkedő két lapja egyenlő szárú háromszög a közös AD' alapon, ezért a metszésvonalon az F pont legyen az AD' él felezőpontja. Ekkor $\varphi = A'FB' \checkmark$.	1 pont	Két sík hajlásszögének jó értelmezéséért (akár ábrán is) l pont jár.
A B'A'F háromszög A'-ben derékszögű, mert az A'B' él a tetraéder magassága, ezért merőleges az AA'D' alaplap minden egyenesére, így az A'F-re is.	1 pont	
$A'B' = \frac{a}{\sqrt{3}};$ Az $AA'D'$ egyenlő szárú derékszögű háromszögben az $A'F$ magasság az AD' átfogó felével egyenlő, vagyis $A'F = \frac{AD'}{2} = \frac{a \cdot \sqrt{2}}{2} \left(= \frac{a}{\sqrt{2}} \right).$	1 pont	
$ \operatorname{tg} \varphi = \frac{A'B'}{A'F} = \frac{\frac{a}{\sqrt{3}}}{\frac{a}{\sqrt{2}}} = \sqrt{\frac{2}{3}} \ (\approx 0.8165). $	1 pont	
Innen $\varphi \approx 39,23^{\circ}$. Összesen:	2 pont 6 pont	