- * Announcement:

 O Clobber policy
 - Only final con clothen the midtern (one-directional)
- @ Midtern grading by the end of this week
- D HW7 : 10/12~ 10/19
- @ Quit 5: Chapter 5.4~5.6

STAT 88: Lecture 20

After today's lecture ~> HW7 01,02

Contents

Section 6.1: Variance and Standard Deviation

Section 6.2: Simplifying the Calculation

Warm up: Let the distribution of X be:

x	l	ત	3
(x-µx)*	(1.1)	(o'1) ₃	(0-9)
P(X=x)	٥.٦	0.5	8.3

- (a) Find $\mu_X = E(X)$.
- (b) Find the distribution of $(X \mu)^2$ in table.
- (c) Find $E((X \mu)^2)$.

(a)
$$E(x) = 1 (0.2) + 2 (0.5) + 3 (0.5)$$

= 2.1

(b) --

$$(c) \ E(x-y)^{2} = (1.1)^{2} \cdot (az) + (ay)^{2} \cdot (as) + (a-9)^{2} \cdot (as)$$

$$(ar(x))$$

6.1. Variance and Standard Deviation < Standard

Expectation: Center of a distribution

Standard average spread of a distribution

deviation about the content

Variance Let X be a random variable and let $\mu_X = E(X)$. Define $D = X - \mu_X$, the deviation from the expected value. Note $E(D) = E(X - \mu_X) = 0$.

We define a measure called the <u>variance</u> of X by

ed the variance of
$$X$$
 by
$$Var(X) = E(D^2) = E((X - \mu)^2).$$

We saw how to calculate this in the warm up. Note that the units of X are squared.

Standard deviation

$$\mathrm{SD}(X) = \sqrt{\mathrm{Var}(X)} = \sqrt{E((X - \mu)^2)}.$$

Interpretation: "SD(X)" is roughly the "average" variation from the center.

Ex:

Calculate (1) E(Y) (2) Var(Y) (3) SD(Y).

(1)
$$E(T) = 3*(0.55) + 4 \cdot (0.1) + 5 \cdot (0.35)$$

= 3.8

$$= (0.8)^{2} \cdot (0.55) + (0.1) + (1.2)^{2} \cdot (0.35)$$

$$= 0.86$$
(7) $V(x) = E((x-w_{x})^{2})$

In Python:

variance_table_Y

у	(y - E(Y))**2	P(Y = y)	
3	0.64	*	0.55
4	0.04	*	0.1
5	1.44	*	0.35

0.9273618495495703

Picture:

E(Y) = 3.8

Compare with

Example: About 300 Stat 88 students at UC Berkeley, were asked how many college mathetmatics courses they had taken other than Stat 88. The average number of courses was about 1.1; the SD was about 1.5. Would the histogram for the data look-like (i), (ii), or (iii)?

(|||) (|||

6.2. Simplifying the Calculation

Linear Transformations

Celsius-Fahrenheit conversion:

$$Y = (9/5) \cdot X + 32.$$

How does $SD(\mathbf{Y})$ compare to $SD(\mathbf{X})$?

(X)02 = (d+x)02

Q>0Q(QX) = QQ(X)

a(0), $SD(\alpha X) = |\alpha| SD(X)$

$$\operatorname{SD}(aX + b) = |a|\operatorname{SD}(X),$$

$$\operatorname{Var}(aX + b) = a^{2}\operatorname{Var}(X).$$

Hence if Y = (9/5)X + 32, then

$$SD(Y) = (9/5) \cdot SD(X).$$

A Different Way of Calculating Variance An algebraic simplification for calculating variance:

$$Var(X) = E((X - \mu_X)^2)$$

$$= E(x^2 - 2\mu_X X + \mu_X^2)$$

$$= E(x^2) - E(2\mu_X X) + E(\mu_X^2)$$

$$= E(x^2) - 2\mu_X E(x) + \mu_X^2$$

$$= E(x^2) - 2\mu_X^2 + \mu_X^2$$

$$= E(x^2) - \mu_X^2$$

$$= E(x^2) - \mu_X^2$$

$$= E(x^2) - \mu_X^2$$

 $\underline{\text{Ex:}}$

y²-	9	16	25
y	3	4	5
P(Y = y)	0.55	0.1	0.35

Find
$$Var(Y) = E(Y^2) - E(Y)^2$$
.
 $E(Y) = 3.8$
 $E(Y^2) = 9 \cdot (0.5S) + 16 \cdot (0.1) + 25 \cdot (0.3S)$
 $= 15.3$
 $V(0r(Y)) = 15.3 - (3.8)^2 = 0.86$

Example: (Exercise 6.5.5) Let $p \in (0,1)$ and let X be the number of spots showing on a flattened die that shows its six faces according to the following chances:

•
$$P(X = 1) = P(X = 6)$$

• $P(X = 2) = P(X = 3) = P(X = 4) = P(X = 5)$
• $P(X = 1 \text{ or } X = 6) = p$ $\Rightarrow P(X = 1)?$
• $P(X = 1) + P(X = 6)$
Find $SD(X)$. $\Rightarrow P(X = 1) = \frac{1}{2}$ $\Rightarrow P(X = 1) = \frac{1}{2}$
• $P(X = 1) + P(X = 6)$
• $P(X = 1) + P(X = 6)$
Find $SD(X)$. $\Rightarrow P(X = 1) = \frac{1}{2}$
• $P(X = 1) = \frac{1}{2}$
•