Common Graph Theory Terminology

Notation	Name	Definition	Example
G=(V,E)	Graph	A <i>graph</i> G consists of a finite non-empty set V of <i>vertices</i> and a set E of 2-element subsets of V called <i>edges</i> .	Example: a graph
u~v	Adjacency	Given, $u,v \in V$. If $\{u,v\}=e$ is an edge in G, we say u is <i>adjacent</i> to v .	$\begin{array}{c} u \\ w \\ y \\ \end{array}$ Example: u~v in G
$N(v)$, or $N_G(v)$	Neighborhood	The set of vertices adjacent to u is called the <i>neighborhood</i> of v.	^
$N_G[v]$	Closed Neighborhood	The <i>closed neighborhood</i> of v is $N(v) \cup \{v\}$.	
H⊆G	subgraph	A graph H is said to be a <i>subgraph</i> of G if $V(H)\subseteq V(G)$ and $E(H)\subseteq E(G)$.	$\begin{array}{c} u \\ w \longrightarrow v \\ \text{Example: subgraph of G} \end{array}$
	Spanning subgraph	A subgraph is said to be <i>spanning</i> if V(H)=V(G).	$\begin{array}{c} u \\ w \\ y \\ \hline \end{array}$ Example: spanning subgraph of G
	Induced subgraph	A subgraph is said to be <i>induced</i> if $\forall u,v \in V$, if $\{u,v\} \in E(G)$ then $\{u,v\} \in E(H)$.	$\begin{array}{c c} & & & v \\ & & & v \\ & & & x \\ & & & & \\ & & & & \\ & & & &$
K _n where V =n	Complete Graph	A graph G is said to be <i>complete</i> if $\forall u,v \in V(G)$, $\{u,v\} \in E(G)$.	
	clique	A <i>clique</i> is a subgraph that is isomorphic to a complete graph.	
P_n where $ V =n$	path	A path is a graph P=(V,E) where V(P)= $\{p_1, p_n\}$ and E(P)= $\{\{p_i, p_{i+1}\}: 1 \le i \le n-1\}.$	Example: P ₄
C _{n.} where V =n	cycle	A <i>cycle</i> is a path with the additional edge $\{p_n, p_1\}$.	Example: C ₅
	bipartite	A graph is <i>bipartite</i> if there exists S⊆V s.t. there are no edges between vertices in S and there are no edges between verties of V\S. Equivalently, a graph is bipartite if it does not contain any odd cycles.	

Notation	Name	Definition	Example
$K_{n,m}$ where $ S $ =n and $ V \setminus S $ =m	Complete bipartite	A complete bipartite graph is a bipartite graph where $\forall u \in S$ and $\forall v \in V \setminus S \{u,v\} \in E$.	Example: K _{3,3}
	connected	A graph is said to be <i>connected</i> if $\forall u,v \in V$ there is a path $P \subseteq G$ such that $u,v \in P$. If this is not the case the graph is said to be <i>disconnected</i> .	Example: disconnected
	component	A component is a maximal connected subgraph.	Example: graph with 3 components
d _G (u,v) or d(u,v)	distance	Let G be a connected graph. For $u,v \in V(G)$, the distance between u and v is the number of edges of the shortest path that contains u and v.	$\begin{array}{c} u \\ v \\ y \\ \end{array}$ Example: $d(u,y)=2$.
deg(v)	degree	The <i>degree</i> of a vertex v in G is the number of edges incident to v in G.	$v \longrightarrow v$
$\Delta(G)$	Max degree	$\Delta(G)=\max\{\deg(v):v\in V(G)\}$	
δ(G)	Min degree	$\delta(G)=\min\{\deg(v):v\in V(G)\}$	Example: $deg(v)=4$, $\Delta(G)=4$, $\delta(G)=2$
	r-regular	A graph G is said to be <i>r-regular</i> if every vertex of G has degree r. That is, $\Delta(G)=\delta(G)$.	Example: $\Delta(G)=\delta(G)=3$
	bridge	An edge e is said to be a <i>bridge</i> if G\e has more components than G.	Example: has one bridge
	tree	A <i>tree</i> is a connected graph T that contains no cycles as subgraphs.	v
			$y \bullet x$ Example: a tree
	claw-free	A graph is said to be <i>claw-free</i> if it does not contain an induced subgraph isomorphic to $K_{1,3}$.	$\begin{array}{c} u \\ w \\ y \\ \end{array}$
	planar	A graph is said to be <i>planar</i> if it can be drawn on the plane without crossing edges.	Example: not claw-free Example: not a planar graph

Notation	Name	Definition	Example
cr(G)	Crossing number	The crossing number of a graph is the lowest number of edge crossings in a plane drawing of the graph.	
G^{c} or \overline{G}	Graph Complement	The complement of a graph $G=(V,E)$ is a graph $G^{c}=(V,E')$ where $E \cup E' = E(K_n)$ and $E \cap E' = \emptyset$.	
	Independent set	An independent set of a graph $G=(V,E)$ is a set $S\subseteq V$ where $\forall u,v\in S, \{u,v\}\notin E$.	Example: an independent set
α(G)	Independence number	The <i>independence number</i> of a graph G is the size of the largest independent set of G.	
	Dominating set	A dominating set of a graph $G=(V,E)$ is a set $S\subseteq V$ where $\forall v \in V \setminus S$, $\exists u \in S$ s.t. u is adjacent to v .	Example: a dominating set
γ(G)	Domination number	The <i>domination number</i> of a graph G is the size of the smallest dominating set.	
	coloring	An <i>s-coloring</i> of a graph G, is a function c: $V \rightarrow \{1,, s\}$.	
	Proper coloring	A coloring c of a graph G is <i>proper</i> , if vertices v, if u is adjacent to v, $c(u)\neq c(v)$.	
χ(G)	Chromatic number	χ(G)=min{s : G has a proper s-coloring}	