

DHBW Stuttgart

Datenbanken I Kapitel 3 – Der logische Datenbankentwurf (relationales Modell)

Modul: T3INF2004

Hinweis

Nutzungshinweis:

Diese Unterlagen dürfen ausschließlich von Mitgliedern (das sind Studierende, Bedienstete) der Dualen Hochschule Baden-Württemberg Stuttgart eingesetzt werden. Eine Weitergabe an andere Personen oder Institutionen ist untersagt.

Definition einer Relation

Definition:

- Eine n-stellige Relation R ist eine Teilmenge des kartesischen Produkts $M_1 \times M_2 \times \dots \times M_n$. $R \subseteq \{M_1 \times M_2 \times \dots \times M_n\}$
- ➤ Die Wertebereiche M_i heißen Domänen. Domänen sind atomar, d.h. keine zusammengesetzten und oder mengenwertigen Datentypen.

$$R \subseteq D_1 \times D_2 \times \dots \times D_n$$

Mitarbeiter \subseteq string x string x x string x string

- Fin Element r aus R mit r = $(a_{1,} a_{2,} a_{3...} a_{n)}$ mit $a_{i} \in M_{i}$ für i=1,....n heißt
- > Die Anzahl n dieses Bereichs wird als......der Relation bezeichne..

Relationenschemata

Die Menge alle Attribute einer Relation (vo	on n Domänen) ist das
der Relation	·

Man unterscheidet:

- > Einer Instanz R
- > Einem Schema [R]

Eine Relationenschema wird folgendermaßen definiert:

[R]: {[]}	
-----------	--

Beispiel:

Mitarbeiter: {[Nachname: string, Vorname: string, Eintrittsjahr: integer...]}

Relationenschemata

Ausprägung entspricht dem Zustand einer Tabelle entspricht dem									
Mitarbeit 1 Hans 2 Rita	Müller			01.07.20 1.11.200		PR DBA	3200 3800		

Primärschlüssel:

Mitarbeiter: {[Pers-Nr: integer, Nachname: string, Vorname: string, Eintrittsjahr: integer...]}

Mit diesem Schlüssel muss eine Tupel aus der Relation eindeutig sein.

Das Kartesische Produkt

M1	M2	М3	M4	M5	
Nachname(Nn)	Vorname(Vn)	Eintrittsjahr(EJ)	Geschlecht(G)	Skill(Sk)	• • •
Müller	Hans	2001	m	PR	
Schulze	Rita	2007	W	DBA	
Maier	Werner	2010	m	Test	
Schwarz	Karin	2005	W	PR	

 $R \subseteq N$ achname $x \in X$ Skill string $x \in X$ strin

Das Kartesische Produkt von Mengen

M1	M2	М3	M4	M5
Nachname(Nn)	Vorname(Vn)	Eintrittsjahr (EJ)	Geschlecht (G)	Skill(Sk)
Müller	Hans	2001	m	PR
Schulze	Rita	2007	W	DBA
Maier	Werner	2010	m	Test
Schwarz	Karin	2005	W	PR

Kartesisches Produkt bilden:

Müller, Hans, 2001, m, PR ——

Müller, Hans, 2001, m, DBA

Müller, Hans, 2001, m, Test

Müller, Hans, 2001,w, PR

Schwarz, Karin, 2005,w, PR

Die Beispielrelation besteht aus der leeren

Menge Elementen.

Der Grad der Relation ist ..

Von der Relation zur Tabelle

Mitarbeiter Softwarehaus Name der Relation

	Pers-Nr	Vorname	Nachname	Geschlecht	Geb Name	Eintritts- Datum	Skill	Gehalt- Stufe	_	
	1	Hans	Müller	m	NULL	1.07.2001	PR	It2		
	2	Rita	Schulze	W	NULL	1.11.2007	DBA	It3		_
	3	Werner	Maier	m	NULL	1.01.2010	Test	It2		
Tupel <	4	Karin	Schwarz	w	Klein	1.03.2005	PR	It2	>	
					Attribut wert	-	Attribu	t		

- Mit der Pers-Nr. kann ein Tupel eindeutig identifiziert werden und heißt daher
- ➤ Der Wert "NULL" bezeichnet einen Attributwert welcher nicht definiert ist

Unterschiede zwischen Tabellen und Relationen

- 1. Keine zwei der n-Tupel einer Relation sind identisch, dies bedeutet, dass keine zwei identischen Zeilen existieren.
- 2. Die der n-Tupel einer Relation ist nicht bestimmt, d.h. die der Zeilen ist nicht vorgegeben.
- 3. Auch die Reihenfolge der Attribute einer Relation ist ohne Bedeutung, daher spielt auch die Folge der Spalten keine Rolle.
- 4. Jeder Attributwert in einer Relation ist elementar. Es sind keine von Werte zulässig.

Umsetzung ERM ⇒RM

Elemente im ERM

- > Entitäts-Typen
- > Beziehungs-Typen
- > Attribute

Elemente im RM

Umsetzung von Entitäts-Typen

Softwarehaus

Mitarbeiter Kurse	
Abteilung	
Sekretar- Mitarbeiter Führungs- kraft Führungs- kraft Leistung	
Kunden Auftrag	
Mitarbeiter: {[Pers-Nr: integer, Nachname: string, Vorname: string, Eintrittsjahr: integer,]}	
Kurs: {[]}	
Kunden: {[
]}	
Projekt: {[]}
Projektleiter: {[Pers-Nr: integer, Nachname: string, Vorname: string,	
Status: string,]}	

Umsetzung von Entitäts-Typen

Schwacher Entitätstyp

- Primärschlüssel von Auftrag setzt sich aus und Auftragsnummer zusammen.
- > Es kann aber auch eine eindeutigevergeben werden.

Umsetzung von Beziehungs-Typen

Im RM können auch Beziehungen zwischen zwei Relationen auftreten, aber maximal zwischen zwei Relationen.

- ➤ Alle können zu Relationen gemacht werden
- Wir bilden die Relation "leitet" und verwenden als Attribute die beiden der beteiligten Entitäts-Typen

leitet: {[_.....]}

1:N Beziehungen

- Wir können dieses Modell in drei Relationen darstellen.
- ➤ Welches ist nun der Schlüssel in der Relation "leiten"?

Funktion: *leitet*:

> Projekt-Nr reicht aus, um Projektleiter zu identifizieren

leitet: {[Pers-Nr: integer, _____]}

Regel für 1:1, 1:N und N:1 Beziehungen:

Relationen mit gleichem Schlüssel können werden

1:N Beziehungen

Fremdschlüssel

Projekt- <u>Nr</u>	Bezeichnung	Beginn	Ende	Ges_Std Plan	Ges_Std _Ist	geleitet _von
4711	Fahrzeugversuchssystem für Firma WMB	15.3.2015	15.3.2015	1350	1130	2
3050	Erweiterung Personal- Datenbank Firma Kleinert	13.5.2018	NULL	NULL	NULL	3
2020	Schnittstellen zwischen Produktion und Verkauf erstellen	1.2.2018	NULL	850		2
1234	Erweiterung interne Datenbank für unser Softwarehaus	1.4.2017	31.12.2017	260	355	1

Primärschlüssel

Beziehung

Pers-	Vorname	Nachname	
1	Hans	Müller	
2	Rita	Schulze	
3	Werner	Maier	
4	Karin	Schwarz	

Rekursive 1:N-Beziehung

Pers-	Vorname	Nachname	Geschl	Geb-	Eintritts-	Chef_
Nr				Name	Datum	Nr
1	Hans	Müller	m	NULL	1.7.2001	8
2	Rita	Schulze	W	NULL	1.11.2007	8
3	Werner	Maier	m	NULL	1.1.2010	1
4	Karin	Schwarz	W	Klein	1.3.2005	2
5	Manfred	Klein	m	NULL	13.5.2015	1
6	Edith	Franz	W	Schmid	1.1.2013	2
7	Paul	Kunze	m	NULL	1.10.2012	8
8	Tim	Höttges	M	NULL	1.1.1999	NULL

1:1-Beziehung

Wie sehen die Relationen aus?

Mitarbeiter: {[Pers-Nr: integer, Nachname: string, Vorname: string, Eintrittsjahr: integer, ...]}

Wir haben zwei Optionen den Primärschlüssel für Relation *leiten* zu wählen.

Opt1: *Mitarbeiter:* {[<u>Pers-Nr: integer</u>, Nachname: string, Vorname: string, Eintrittsjahr: integer, ..., leitet_Abt: string]}

(......)

Abteilung: {[<u>Abt Bez kurz: string</u>, Abt_Bez_lang: string, Standort: string, . . .]}

1:1-Beziehung

Welche wählen wir?

Dazu muss die (min,max)-Notation herangezogen werden. Warum?

1:1-Beziehung

Fehlende(NULL-Werte) sollen vermieden werden

Abteilung: {[<u>Abt_Bez_kurz: string</u>, Abt_Bez_lang: string, Standort: string,...]}

Opt2: Mitarbeiter: {[Pers-Nr: integer, Nachname: string, Vorname: string,

Eintrittsjahr: integer, ...]}

Abteilung: {[Abt_Bez_kurz: string, Abt_Bez_lang: string, Standort:

- ➤ Keine generelle Abbildungsvorschrift im RM
- > Es sind mehrere Optionen zur Umsetzung möglich

1. Möglichkeit

Pers- Nr	Vorname	Nachname	Geschl	Geb- Name	Eintritts- Datum	Std- Satz	Projekt- erfahrung	MA- Art	Weiter Attribute
1	Hans	Müller	m	NULL	1.7.2001	70	5	PRMA	
	пань	Mullel	m	NULL	1.7.2001	70	5	PKWA	• • •
2	Rita	Schulze	W	NULL	1.11.2007	60	10	PRMA	
3	Werner	Maier	m	NULL	1.1.2010	50	7	PRMA	
4	Karin	Schwarz	W	Klein	1.3.2005	70	4	PRMA	
5	Manfred	Klein	m	Null	13.5.2015	NULL	NULL	Sekr	
6	Edith	Franz	W	Schmid	1.1.2013	NULL	NULL	Sekr	•••
7	Paul	Kunze	m	NULL	1.10.2012	NULL	NULL	Finaz	

- Alle spezialisierten Relationen wurden in einerzusammengefasst
- > Das Attribut ist der Hinweis auf den spezialisierten Entitäts-Typ
- Viele Felder in der zusammengefassten Relation

2. Möglichkeit

Mitarbeiter

Pers- Nr	Vorname	Nachname	Geschl	Geb-Name	Eintritts- Datum
1	Hans	Müller	m	NULL	1.7.2001
2	Rita	Schulze	W	NULL	1.11.2007
3	Werner	Maier	m	NULL	1.1.2010
4	Karin	Schwarz	W	Klein	1.3.2005
5	Manfred	Klein	m	NULL	13.5.2015
6	Edith	Franz	W	Schmid	1.1.2013
7	Paul	Kunze	m	NULL	1.10.2012

Projekt-Mitarbeiter

Pers	Std-Satz	Projekt-
-Nr		erfahrung
1	70	5
2	60	10
3	50	7
4	70	4

Sekretariats-MA

Pers-	Sach-	Berufs-
Nr	gebiet	erfahrung
5	Produktion	4
6	Vertrieb	19

Finanzb-MA

Pers-	Projekt-	Spezial-
Nr	Controling	erfahrung
7	Ja	Steuerrecht

Mitarbeiter

Pers- Nr	Vorname	Nachname	Geschl	Geb-Name	Eintritts- Datum
1	Hans	Müller	m	NULL	1.7.2001
2	Rita	Schulze	W	NULL	1.11.2007
3	Werner	Maier	m	NULL	1.1.2010
4	Karin	Schwarz	W	Klein	1.3.2005
5	Manfred	Klein	m	Null	13.5.2015
6	Edith	Franz	W	Schmid	1.1.2013
7	Paul	Kunze	m	NULL	1.10.2012

70

Projekt-Mitarbeiter

3. Möglichkeit

Projekt-Mitarbeiter

Pers-	Vorname	Nachname	Geschl	Geb-	Eintritts-	Std-	Projekt-
Nr				Name	Datum	Satz	erfahrung
1	Hans	Müller	m	NULL	1.7.2001	70	5
2	Rita	Schulze	W	NULL	1.11.2007	60	10
3	Werner	Maier	m	NULL	1.1.2010	50	7
4	Karin	Schwarz	W	Klein	1.3.2005	70	4

Sekretariats-MA

Pers-	Vorname	Nachname	Geschl	Geb-	Eintritts-	Sach-	Berufs-
Nr				Name	Datum	gebiet	erfahrung
5	Manfred	Klein	m	NULL	13.5.2015	Produktion	4
6	Edith	Franz	W	Schmid	1.1.2013	Vertrieb	9

Finanzb-MA

Pers-	Vorname	Nachname	Geschl	Geb-	Eintritts-	Spezial-	Projekt-
Nr				Name	Datum	erfahrung	controler
7	Paul	Kunze	m	NULL	1.10.2012	Steuerrecht	Ja

1. Möglichkeit
Alle Spezialisierungen in einer zusammenfassen
Vorteil:
Wenig Relationen, schneller Zugriff
Nachteil:
Eventuell viele Attributwerte sind NULL und dies bläht die Relation auf
2. Möglichkeit Spezialisierung in eigenen Relationen nur mit den Attributen Nachteil:
Vollständige Informationen nur über Join möglich, langsamer Zugriff
3. Möglichkeit Alle Spezialisierungen
Modellierung geht verloren, Suche in verschiedenen Tabellen erforderlich

M:N-Beziehung

besucht_Kurs:

.....

Pers-Nr	Kurs-Nr	
2	1312	17.1.2018
4	4711	13.5.2108
1	1312	25.10.2018

......

M:N-Beziehung

Mitarbeiter

Pers- Nr	Vorname	Nachname	Geschl	Geb-Name	Eintritts- Datum
1	Hans	Müller	m	NULL	1.7.2001
2	Rita	Schulze	W	NULL	1.11.2007
3	Werner	Maier	m	NULL	1.1.2010
4	Karin	Schwarz	W	Klein	1.3.2005
5	Manfred	Klein	m	Null	13.5.2015
6	Edith	Franz	W	Schmid	1.1.2013
7	Paul	Kunze	m	NULL	1.10.2012

Kurs

Kurs-Nr	Bezeichung	Institut
1312	C#-Programmierung	Lern-Fix GmbH
1520	Datenbank-Entwurf Methoden	Besser Lernen
4711	Datenbank Administration	IT-Training GmbH

besucht_Kurs

Pers-Nr	Kurs-Nr	Termin
2	1312	17.1.2018
4	4711	13.5.2108
1	1312	25.10.2018

Grobe Regel für die Umsetzung

- 1. Alle Entitäten werden Relationen
- 2. Alle Beziehungen werden Relationen
- Bei 1:N und N:1 Beziehungs-Relationen k\u00f6nnen deren Attribute mit der N-Relation zusammengezogen werden.
 Der Prim\u00e4rschl\u00fcssel (der 1-Relation) wird dann zum Fremdschl\u00fcssel
- 4. Bei 1:1 Relationen erfolgt die Zusammenfassung so, dass möglichst wenig NULL-Werte entstehen
- 5. Aus M:N Beziehungen werden eigenständige (Beziehungs-) Relationen erstellt

Daten- und Referentielle Integrität

- ➤ Alle Daten im DBMS müssen konsistent abgespeichert werden
- ➤ Dies sind die semantischen Integritätsbedingungen, welche aus der Eigenschaft der modellierten Miniwelt abgeleitet werden können
- > Keine Mehrdeutigkeiten oder widersprüchlichen Sachverhalte
- Die Konsistenzüberwachung wirdoder Beziehungsintegrität genannt
- Der Fremdschlüsselwert darf sich immer nur auf einen Primärschlüsselwert von beziehen

Projekt- Nr	Bezeichnung	Beginn	Ende	Ges_Std Plan	Ges_Std _lst	geleitet _von
5505	Fuhrparkverwaltung der Niederlassung Rogge	NULL	NULL	1800	NULL	

Ende Kapitel 3

