Reserve Accumulation, Macroeconomic Stabilization and Sovereign Risk

Javier Bianchi¹ César Sosa-Padilla²

¹Minneapolis Fed

²University of Notre Dame & Princeton IES & NBER

The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

Motivation

Data: large holdings of int'l reserves, particularly for countries w/ currency pegs

Motivation

Data: large holdings of int'l reserves, particularly for countries w/ currency pegs

Traditional argument (Krugman, 79; Flood and Garber, 84):

- $\bullet~\text{Peg} \to \text{cannot}$ use seigniorage as source of revenue
- Reserves allow to sustain peg (even w/ primary deficits)
- Reseves are needed

Motivation

Data: large holdings of int'l reserves, particularly for countries w/ currency pegs

Traditional argument (Krugman, 79; Flood and Garber, 84):

- ullet Peg ightarrow cannot use seigniorage as source of revenue
- Reserves allow to sustain peg (even w/ primary deficits)
- Reseves are needed

Our paper:

 Theory based on the desirability to hold reserves to manage macroeconomic stability under sovereign risk concerns

A theory of reserve accum. based on macro stabilization and sovereign risk

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

Intuition:

Consider a negative shock that worsens the borrowing terms faced by a gov

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- ullet Under "fixed" and w/ nominal wage rigidity: $\downarrow c
 ightarrow$ recession ightarrow further $\downarrow c$

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- Under "fixed" and w/ nominal wage rigidity: $\downarrow c \rightarrow \text{recession} \rightarrow \text{further} \downarrow c$
- ullet Having reserves: gov. can smooth the $\downarrow c$ and mitigate the recession

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- Under "fixed" and w/ nominal wage rigidity: $\downarrow c \rightarrow \text{recession} \rightarrow \text{further} \downarrow c$
- ullet Having reserves: gov. can smooth the $\downarrow c$ and mitigate the recession
- Why not just borrow?

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- Under "fixed" and w/ nominal wage rigidity: $\downarrow c \rightarrow \text{recession} \rightarrow \text{further} \downarrow c$
- ullet Having reserves: gov. can smooth the $\downarrow c$ and mitigate the recession
- ullet Why not just borrow? These are precisely the states in which spreads \uparrow

A theory of reserve accum. based on macro stabilization and sovereign risk

Model of sovereign default and reserve accumulation w/ nominal rigidities

- Consider a negative shock that worsens the borrowing terms faced by a gov
- Optimal response: reduction in borrowing and consumption
- Under "fixed" and w/ nominal wage rigidity: $\downarrow c \rightarrow \text{recession} \rightarrow \text{further} \downarrow c$
- ullet Having reserves: gov. can smooth the $\downarrow c$ and mitigate the recession
- ullet Why not just borrow? These are precisely the states in which spreads \uparrow
- Reserves give a "hedge" against having to roll-over the debt in bad times and free up resources to mitigate the recession

This Paper – Take away

Key insight: when output is partly demand determined, larger gross positions help smooth aggregate demand, reduce severity of recessions and facilitate repayment

This Paper – Take away

Key insight: when output is partly demand determined, larger gross positions help smooth aggregate demand, reduce severity of recessions and facilitate repayment

Quantitatively: Macro-stabilization is essential to account for observed reserve levels

• Fixers hold 16% of GDP, floaters 7%

This Paper – Take away

Key insight: when output is partly demand determined, larger gross positions help smooth aggregate demand, reduce severity of recessions and facilitate repayment

Quantitatively: Macro-stabilization is essential to account for observed reserve levels

• Fixers hold 16% of GDP, floaters 7%

Policy: simple and implementable rules for res. accum. can deliver significant gains

Related Literature

Two main related branches of the literature:

Reserve accumulation: Aizenmann and Lee (2005); Jeanne and Ranciere (2011); Durdu, Mendoza and Terrones (2009); Alfaro and Kanczuk (2009), Bianchi, Hatchondo and Martinez (2018); Hur and Kondo (2016); Amador et al. (2018); Arce, Bengui and Bianchi (2019); Bocola and Lorenzoni (2018); Cespedes and Chang (2019)

Sovereign default models with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue (2018); Bianchi, Ottonello and Presno (2016); Arellano, Bai and Mihalache (2018); Bianchi and Mondragon (2018)

Related Literature

Two main related branches of the literature:

Reserve accumulation: Aizenmann and Lee (2005); Jeanne and Ranciere (2011); Durdu, Mendoza and Terrones (2009); Alfaro and Kanczuk (2009), Bianchi, Hatchondo and Martinez (2018); Hur and Kondo (2016); Amador et al. (2018); Arce, Bengui and Bianchi (2019); Bocola and Lorenzoni (2018); Cespedes and Chang (2019)

Sovereign default models with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue (2018); Bianchi, Ottonello and Presno (2016); Arellano, Bai and Mihalache (2018); Bianchi and Mondragon (2018)

Related Literature

Two main related branches of the literature:

Reserve accumulation: Aizenmann and Lee (2005); Jeanne and Ranciere (2011); Durdu, Mendoza and Terrones (2009); Alfaro and Kanczuk (2009), Bianchi, Hatchondo and Martinez (2018); Hur and Kondo (2016); Amador et al. (2018); Arce, Bengui and Bianchi (2019); Bocola and Lorenzoni (2018); Cespedes and Chang (2019)

Sovereign default models with nominal rigidities: Na, Schmitt-Grohe, Uribe and Yue (2018); Bianchi, Ottonello and Presno (2016); Arellano, Bai and Mihalache (2018); Bianchi and Mondragon (2018)

Main Elements of the Model

- Small open economy (SOE) with T NT goods:
 - Stochastic endowment for tradables y^T
 - Non-tradables produced with labor: $y^N = F(h)$
- Wages are downward rigid in domestic currency (SGU, 2016)
 - With fixed exchange rate, $\pi^*=0$ and L.O.P. \Rightarrow wages are rigid in tradable goods $w\geq \overline{w}$
- Government issues non-contingent long-duration bonds (b) and saves in one-period risk free assets (a), all in units of T
- Default entails one-period exclusion and utility loss $\psi_d(y^T)$
- Risk averse foreign lenders → "risk-premium shocks"

Households

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \{ u(c_{t}) \}$$

$$c = C(c^{T}, c^{N}) = [\omega(c^{T})^{-\mu} + (1 - \omega)(c^{N})^{-\mu}]^{-1/\mu}$$

Budget constraint in units of tradables

$$c_t^T + p_t^N c_t^N = y_t^T + \phi_t^N + w_t h_t^s - \tau_t$$

• ϕ_t^N : firms' profits; τ_t : taxes. No direct access to external credit.

Households

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t \{ u(c_t) \}$$

$$c = C(c^T, c^N) = [\omega(c^T)^{-\mu} + (1 - \omega)(c^N)^{-\mu}]^{-1/\mu}$$

Budget constraint in units of tradables

$$c_t^T + p_t^N c_t^N = y_t^T + \phi_t^N + w_t h_t^s - \tau_t$$

- ϕ_t^N : firms' profits; τ_t : taxes. No direct access to external credit.
- Endowment of hours \overline{h} , but $h_t^s < \overline{h}$ when $w \ge \overline{w}$ binds.

Households

$$\mathbb{E}_{0} \sum_{t=0}^{\infty} \beta^{t} \{ u(c_{t}) \}$$

$$c = C(c^{T}, c^{N}) = [\omega(c^{T})^{-\mu} + (1 - \omega)(c^{N})^{-\mu}]^{-1/\mu}$$

Budget constraint in units of tradables

$$c_t^T + p_t^N c_t^N = y_t^T + \phi_t^N + w_t h_t^s - \tau_t$$

- ϕ_t^N : firms' profits; τ_t : taxes. No direct access to external credit.
- Endowment of hours \overline{h} , but $h_t^s < \overline{h}$ when $w \ge \overline{w}$ binds.
- Optimality

$$p_t^N = \frac{1 - \omega}{\omega} \left(\frac{c_t^T}{c_t^N}\right)^{1 + \mu}$$

Firms

Maximize profits given by

$$\phi_t^N = \max_{h_t} p_t^N F(h_t) - w_t h_t$$

- p_t^N , w_t : price of non-tradables and wages in units of tradables
- Firms' optimality condition is

$$p_t^N F'(h_t) = w_t$$

Firms

Maximize profits given by

$$\phi_t^N = \max_{h_t} p_t^N F(h_t) - w_t h_t$$

- p_t^N , w_t : price of non-tradables and wages in units of tradables
- Firms' optimality condition is

$$p_t^N F'(h_t) = w_t$$

Equilibrium in the Labor Market

Assume: $F(h) = h^{\alpha}$ with $\alpha \in (0,1]$.

Optimality conditions imply:

$$\mathcal{H}(c^T, w) = \left[\frac{1 - \omega}{\omega} \frac{\alpha}{w}\right]^{1/(1 + \alpha \mu)} (c^T)^{\frac{1 + \mu}{1 + \alpha \mu}}$$

Equilibrium in the Labor Market

Assume: $F(h) = h^{\alpha}$ with $\alpha \in (0,1]$.

Optimality conditions imply:

$$\mathcal{H}(c^{\mathsf{T}}, w) = \left[\frac{1 - \omega}{\omega} \frac{\alpha}{w}\right]^{1/(1 + \alpha \mu)} (c^{\mathsf{T}})^{\frac{1 + \mu}{1 + \alpha \mu}}$$

Note: $\frac{\partial \mathcal{H}}{\partial c^T} > 0$

Equilibrium in the Labor Market

Assume: $F(h) = h^{\alpha}$ with $\alpha \in (0,1]$.

Optimality conditions imply:

$$\mathcal{H}(c^{\mathsf{T}}, w) = \left[\frac{1 - \omega}{\omega} \frac{\alpha}{w}\right]^{1/(1 + \alpha \mu)} (c^{\mathsf{T}})^{\frac{1 + \mu}{1 + \alpha \mu}}$$

Note: $\frac{\partial \mathcal{H}}{\partial c^T} > 0$

Equilib. employment
$$= \left\{ egin{array}{ll} \mathcal{H}(\pmb{c^T}, \overline{w}) & \text{for } w = \overline{w} \\ \hline \overline{h} & \text{for } w > \overline{w} \end{array} \right.$$

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta\left[1,(1-\delta),(1-\delta)^2,(1-\delta)^3,...\right]$
 - Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
 - price is q

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta [1, (1 \delta), (1 \delta)^2, (1 \delta)^3, ...]$
 - Law of motion for bonds $b_{t+1} = b_t(1-\delta) + i_t$
 - price is q
- Risk-free one-period asset which pays one unit of consumption
 - price is q_a

Asset/Debt Structure

- Long-term bond:
 - Bond pays $\delta [1, (1 \delta), (1 \delta)^2, (1 \delta)^3, ...]$
 - Law of motion for bonds $b_{t+1} = b_t(1 \delta) + i_t$
 - price is q
- Risk-free one-period asset which pays one unit of consumption
 - price is q_a
- Government's budget constraint if repay:

$$q_a a_{t+1} + b_t \delta = \tau_t + a_t + q_t \underbrace{(b_{t+1} - (1 - \delta)b_t)}_{i_t : \text{debt issuance}}$$

Government's budget constraint in default:

$$q_a a_{t+1} = \tau_t + a_t$$

• Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics
- Formulation follows Vasicek (77), constant r:

$$q_a = \mathbb{E}_{s'|s} m(s,s') = e^{-r}$$

- Competitive, deep-pocketed foreign lenders, subject to "risk-premium" shocks:
 - SDF: m(s, s') with $s = \{y^T, \nu\}$
- Not essential for the analysis, but helps to capture global factors and match spread dynamics
- Formulation follows Vasicek (77), constant r:

$$q_a = \mathbb{E}_{s'|s} m(s,s') = e^{-r}$$

• Bond price given by: $q = \mathbb{E}_{s'|s} \{ m(s,s')(1-d') [\delta + (1-\delta) q'] \}$

$$d' = \hat{d}(a', b', s'), \quad q' = q(a'', b'', s')$$

Recursive Problem

$$V(b, a, s) = \max_{d \in \{0,1\}} \{(1-d)V^{R}(b, a, s) + dV^{D}(a, s)\}$$

Recursive Problem

$$V(b, a, s) = \max_{d \in \{0,1\}} \left\{ (1 - d)V^{R}(b, a, s) + dV^{D}(a, s) \right\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ &\text{subject to} \\ c^{T} + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',s\right) \left(b' - (1-\delta)b\right) \\ &h \leq \mathcal{H}(c^{T},\overline{w}) \end{split}$$

Recursive Problem

$$V(b, a, s) = \max_{d \in \{0,1\}} \left\{ (1 - d)V^{R}(b, a, s) + dV^{D}(a, s) \right\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ &\text{subject to} \\ c^{T} + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',s\right) \left(b' - (1-\delta)b\right) \\ &h \leq \mathcal{H}(c^{T},\overline{w}) \end{split}$$

$$V(b, a, s) = \max_{d \in \{0,1\}} \left\{ (1 - d)V^{R}(b, a, s) + dV^{D}(a, s) \right\}$$

Value of repayment:

$$\begin{split} V^{R}\left(b,a,s\right) &= \max_{b',a',h \leq \overline{h},c^{T}} \left\{ u(c^{T},F(h)) + \beta \mathbb{E}_{s'|s} \left[V\left(b',a',s'\right) \right] \right\} \\ &\text{subject to} \\ c^{T} + q_{a}a' + \delta b &= a + y^{T} + q\left(b',a',s\right) \left(b' - (1-\delta)b\right) \\ &h \leq \mathcal{H}(c^{T},\overline{w}) \end{split}$$

 $\mathcal{H}(c^T,\overline{w}) o \text{summarizes implementability const. from labor mkt & wage rigidity}$

Value of default

- Total repudiation, utility cost of default, 1-period exclusion
- Keep a and choose a'

Value of default

- Total repudiation, utility cost of default, 1-period exclusion
- Keep a and choose a'

$$\begin{split} V^D\left(a,s\right) &= \max_{c^T,h \leq \overline{h},a'} \left\{ u\left(c^T,F(h)\right) - \psi_d\left(y^T\right) + \beta \mathbb{E}_{s'\mid s}\left[V\left(0,a',s'\right)\right] \right\} \\ &\text{subject to} \\ c^T + q_a a' &= y^T + a \\ h &\leq \mathcal{H}(c^T,\overline{w}) \end{split} \tag{ξ}$$

Perturbation: issue additional unit of debt to buy reserves. Keep \overline{c} . From tomorrow onward, optimal policy.

Perturbation: issue additional unit of debt to buy reserves. Keep \overline{c} . From tomorrow onward, optimal policy.

MU. benefit of borrowing to buy reserves
$$\underbrace{\left(\frac{q+\frac{\partial q}{\partial b'}i}{q_{a}-\frac{\partial q}{\partial a'}i}\right)}_{\text{Reserves bought}}\mathbb{E}_{s'\mid s}\left[u'_{T}+\xi'\mathcal{H}'_{T}\right]=\mathbb{E}_{s'\mid s}[1-d']\bigg\{\mathbb{E}_{s'\mid s,d'=0}\left[\delta+(1-\delta)q'\right]\mathbb{E}_{s'\mid s,d'=0}\left[u'_{T}+\xi'\mathcal{H}'_{T}\right]\\ +\underbrace{\mathbb{COV}_{s'\mid s,d'=0}\left(\delta+(1-\delta)q',u'_{T}+\xi'\mathcal{H}'_{T}\right)}\bigg\}$$

Perturbation: issue additional unit of debt to buy reserves. Keep \overline{c} . From tomorrow onward, optimal policy.

$$\underbrace{ \left(\frac{q + \frac{\partial q}{\partial b'} i}{q_a - \frac{\partial q}{\partial a'} i} \right)}_{\text{Reserves bought}} \mathbb{E}_{s'|s} \left[u'_T + \xi' \mathcal{H}'_T \right] = \mathbb{E}_{s'|s} [1 - d'] \left\{ \mathbb{E}_{s'|s,d'=0} \left[\delta + (1 - \delta) q' \right] \mathbb{E}_{s'|s,d'=0} \left[u'_T + \xi' \mathcal{H}'_T \right] \right. \\ \left. + \underbrace{\mathbb{COV}_{s'|s,d'=0} \left(\delta + (1 - \delta) q', u'_T + \xi' \mathcal{H}'_T \right)}_{\text{Model}} \right\}$$

Costs are lower in bad times: low q', high $u'_T + \xi' \mathcal{H}'_T \to \text{hedging benefit}$

Perturbation: issue additional unit of debt to buy reserves. Keep \overline{c} . From tomorrow onward, optimal policy.

$$\underbrace{\left(\frac{q+\frac{\partial q}{\partial b'}i}{q_{a}-\frac{\partial q}{\partial a'}i}\right)}_{\text{Reserves bought}}\mathbb{E}_{s'|s}\left[u'_{T}+\xi'\mathcal{H}'_{T}\right]}_{\mathbb{E}_{s'|s}\left[s'|s'|s',d'=0\right]} \left\{\mathbb{E}_{s'|s,d'=0}\left[\delta+(1-\delta)q'\right]\mathbb{E}_{s'|s,d'=0}\left[u'_{T}+\xi'\mathcal{H}'_{T}\right] + \underbrace{\mathbb{COV}_{s'|s,d'=0}\left(\delta+(1-\delta)q',u'_{T}+\xi'\mathcal{H}'_{T}\right)}_{}\right\}$$

Costs are lower in bad times: low
$$q'$$
, high $u'_T + \xi' \mathcal{H}'_T \to \text{hedging benefit}$

With 1-period debt (
$$\delta=1$$
): $\mathbb{COV}_{s'|s,d'=0}$ ($\delta+(1-\delta)q',u'_T+\xi'\mathcal{H}'_T$) = 0

Covariance: negative (macro-stabilitization hedging) and upward sloping

Benefits of reserve accumulation

We want to highlight two benefits of reserves:

- i. Higher reserves can reduce future unemployment.
- ii. Reserve accumulation may improve bond prices.

Benefits of reserve accumulation

We want to highlight two benefits of reserves:

- i. Higher reserves can reduce future unemployment.
- ii. Reserve accumulation may improve bond prices.

Exercise:

- Fix a point in the s.s. and a given level of consumption \overline{c} .
- Look at alternative a', and find b' that ensures $c = \overline{c}$.

Note: higher reserves reduce future unemployment

Borrowing to save may improve bond prices

Borrowing to save may improve bond prices

Intuition: Reserves increase V^R and V^D . If gov. is borrowing constrained (high unemployment), effect on V^R may dominate effect on V^D .

Results: default regions

Results: default regions

• Nominal rigidities **increase** default incentives

Results: default regions

- Nominal rigidities increase default incentives
- Gross positions matter for default incentives

Quantitative Analysis

- Calibrate to the average of a panel of 22 EMEs (1990–2015).
- Benchmark = economy with nominal rigidities.
- 1 model period = 1 year.

Quantitative Analysis – Functional forms

- Calibrate to the average of a panel of 22 EMEs (1990–2015).
- Benchmark = economy with nominal rigidities.
- 1 model period = 1 year.

Utility function:

$$u(c) = \frac{c^{1-\gamma} - 1}{1 - \gamma}$$
, with $\gamma \neq 1$

Utility cost of defaulting:

$$\psi_d(y^T) = \psi_0 + \psi_1 \log(y^T)$$

Tradable income process:

$$\log(y_t^T) = (1 - \rho)\mu_y + \rho\log(y_{t-1}^T) + \epsilon_t$$

with |
ho| < 1 and $\epsilon_t \sim \mathcal{N}(0, \sigma_\epsilon^2)$

Quantitative Analysis – Calibration

Parameter	Description	Value
r	Risk-free rate	0.04
α	Labor share in the non-tradable sector	0.75
β	Domestic discount factor	0.90
π_{LH}	Prob. of transitioning to high risk premium	0.15
π_{HL}	Prob. of transitioning to low risk premium	0.8
$\sigma_arepsilon$	Std. dev. of innovation to $log(y^T)$	0.045
ρ	Autocorrelation of $log(y^T)$	0.84
μ_{V}	Mean of $log(y^T)$	$-rac{1}{2}\sigma_{arepsilon}^{2}$
$\stackrel{\mu_{y}}{\delta}$	Coupon decaying rate	0.2845
$1/(1 + \mu)$	Intratemporal elast. of subs.	.44
γ	Coefficient of relative risk aversion	2.273
\overline{h}	Time endowment	1
	Parameters set by simulation	
ω	Share of tradables	0.4
ψ_{0}	Default cost parameter	3.6
ψ_1	Default cost parameter	22
κ_H	Pricing kernel parameter	15
\overline{W}	Lower bound on wages	0.98

Results - road map

- 1. Simulations moments.
- 2. Welfare exercises.
- 3. Simple, implementable reserve accumulation rules.
- 4. Inflation targeting variant.

Results: data and simulation moments

	Data	Model Benchmark
Targeted		
Mean debt (b/y)	45	44
Mean r_s	2.9	2.9
Δr_s w $/$ risk-prem. shock	2.0	2.0
Δ UR around crises	2.0	2.0
Mean y^T/y	41	41
Non-Targeted		
$\sigma(c)/\sigma(y)$	1.1	1.0
$\sigma(r_s)$ (in %)	1.6	3.1
$\rho(r_s, y)$	-0.3	-0.6
$\rho(c,y)$	0.6	1.0
Mean Reserves (a/y)	16	16
Mean Reserves/Debt (a/b)	35	35
$\rho(a/y, r_s)$	-0.4	-0.4

Results: data and simulation moments

	Data	Model Benchmark
Targeted		
Mean debt (b/y)	45	44
Mean r_s	2.9	2.9
Δr_s w $/$ risk-prem. shock	2.0	2.0
Δ UR around crises	2.0	2.0
Mean y^T/y	41	41
Non-Targeted		
$\sigma(c)/\sigma(y)$	1.1	1.0
$\sigma(r_s)$ (in %)	1.6	3.1
$\rho(r_s, y)$	-0.3	-0.6
$\rho(c,y)$	0.6	1.0
Mean Reserves (a/y)	16	16
Mean Reserves/Debt (a/b)	35	35
$\rho(a/y, r_s)$	-0.4	-0.4

Results: data and simulation moments

	Data	Model Benchmark	Model Flexible
Targeted			
Mean debt (b/y)	45	44	46
Mean r_s	2.9	2.9	3.0
Δr_s w $/$ risk-prem. shock	2.0	2.0	1.9
Δ UR around crises	2.0	2.0	0.0
Mean y^T/y	41	41	41
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.0	1.1
$\sigma(r_s)$ (in %)	1.6	3.1	2.9
$\rho(r_s, y)$	-0.3	-0.6	-0.8
$\rho(c,y)$	0.6	1.0	1.0
Mean Reserves (a/y)	16	16	7
Mean Reserves/Debt (a/b)	35	35	15
$\rho(a/y, r_s)$	-0.4	-0.4	-0.6

Welfare implications

 Nominal rigidities decrease welfare by around 0.9% and are costlier if cannot accumulate reserves

- Nominal rigidities decrease welfare by around 0.9% and are costlier if cannot accumulate reserves
- Having access to reserves is welfare improving, especially w/ nominal rigidities

• Policy discussion: what constitutes an "adequate" amount of reserves?

- Policy discussion: what constitutes an "adequate" amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables

- Policy discussion: what constitutes an "adequate" amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables
- Compare it against:
 - fully optimizing model
 - other reserve accumulation rules (Greenspan-Guidotti)

- Policy discussion: what constitutes an "adequate" amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables
- Compare it against:
 - fully optimizing model
 - other reserve accumulation rules (Greenspan-Guidotti)

$$a_{t+1} = \beta_0 + \beta_{debt} b_t + \beta_{spr} spread_t + \beta_{res} a_t + \beta_y y_t^T$$

- Policy discussion: what constitutes an "adequate" amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables
- Compare it against:
 - fully optimizing model
 - other reserve accumulation rules (Greenspan-Guidotti)

$$a_{t+1} = \beta_0 + \beta_{debt} b_t + \beta_{spr} spread_t + \beta_{res} a_t + \beta_y y_t^T$$

$$\beta_0 = 0.336, \ \beta_{debt} = 2.535, \ \beta_{spread} = -1.69, \beta_{res} = 0.422, \ \beta_y = 0.418.$$

Simple and implementable reserve accumulation rules

- Policy discussion: what constitutes an "adequate" amount of reserves?
- Explore the performance of a simple rule that is linear in the state variables
- Compare it against:
 - fully optimizing model
 - other reserve accumulation rules (Greenspan-Guidotti)

$$a_{t+1} = \beta_0 + \beta_{debt} b_t + \beta_{spr} spread_t + \beta_{res} a_t + \beta_y y_t^T$$

$$\beta_0 = 0.336, \ \beta_{debt} = 2.535, \ \beta_{spread} = -1.69, \beta_{res} = 0.422, \ \beta_y = 0.418.$$

1 p.p. increase in spreads, controlling for other factors, should lead to reserves declining 1.69% of mean (tradable) output (roughly 0.70% of GDP)

Simple and implementable reserve accumulation rules

	Benchmark	Rules	
		Best	Greenspan-
		Rule	Guidotti
Targeted			
Mean debt (b/y)	44	42	19
Mean r_s	2.9	2.8	2.4
Δr_s w $/$ risk-prem. shock	2.0	1.9	1.7
Δ UR around crises	2.0	2.0	1.8
Mean y^T/y	41	41	40
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.0	1.0	1.0
$\sigma(r_s)$ (in %)	3.1	3.0	2.7
$\rho(r_s, y)$	-0.6	-0.6	-0.7
$\rho(c, y)$	1.0	1.0	1.0
Mean Reserves (a/y)	16	15	6
Mean Reserves/Debt (a/b)	35	38	31
$\rho(a/y,r_{s})$	-0.4	-0.7	0.5
Reserves/S.T. liabilities	112	139	100
Welfare gain (vs. No-Reserves)	0.18	0.07	-0.22

Simple and implementable reserve accumulation rules

	Benchmark	Rules	
		Best	Greenspan-
		Rule	Guidotti
Targeted			
Mean debt (b/y)	44	42	19
Mean r_s	2.9	2.8	2.4
Δr_s w $/$ risk-prem. shock	2.0	1.9	1.7
Δ UR around crises	2.0	2.0	1.8
Mean y^T/y	41	41	40
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.0	1.0	1.0
$\sigma(r_s)$ (in %)	3.1	3.0	2.7
$\rho(r_s, y)$	-0.6	-0.6	-0.7
$\rho(c,y)$	1.0	1.0	1.0
Mean Reserves (a/y)	16	15	6
Mean Reserves/Debt (a/b)	35	38	31
$\rho(a/y,r_{s})$	-0.4	-0.7	0.5
Reserves/S.T. liabilities	112	139	100
Welfare gain (vs. No-Reserves)	0.18	0.07	-0.22

Inflation Targeting

Inflation Targeting

	Data	Model	
		Fixed	Inflation
		Exchange Rate	Targeting
Targeted			
Mean debt (b/y)	45	44	51
Mean r_s	2.9	2.9	2.8
Δr_s w/ risk-prem. shock	2.0	2.0	2.1
Δ UR around crises	2.0	2.0	0.5
Mean y^T/y	41	41	42
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.0	1.1
$\sigma(r_s)$ (in %)	1.6	3.1	3.0
$\rho(r_s, y)$	-0.3	-0.6	-0.7
$\rho(c,y)$	0.6	1.0	1.0
Mean Reserves (a/y)	16	16	12
Mean Reserves/Debt (a/b)	35	35	23
$\rho(a/y, r_s)$	-0.4	-0.4	-0.3

Inflation Targeting

	Data	Model	
		Fixed Inflat	
		Exchange Rate	Targeting
Targeted			
Mean debt (b/y)	45	44	51
Mean r_s	2.9	2.9	2.8
Δr_s w $/$ risk-prem. shock	2.0	2.0	2.1
Δ UR around crises	2.0	2.0	0.5
Mean y^T/y	41	41	42
Non-Targeted			
$\sigma(c)/\sigma(y)$	1.1	1.0	1.1
$\sigma(r_s)$ (in %)	1.6	3.1	3.0
$\rho(r_s, y)$	-0.3	-0.6	-0.7
$\rho(c,y)$	0.6	1.0	1.0
Mean Reserves (a/y)	16	16	12
Mean Reserves/Debt (a/b)	35	35	23
$\rho(a/y, r_s)$	-0.4	-0.4	-0.3

Key: some form of monetary inflexibility is enough to create demand for reserves

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices
- Aggregate demand effects essential to account for observed reserves in the data

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices
- Aggregate demand effects essential to account for observed reserves in the data
- Simple and implementable rules for res. accum. can deliver significant gains

- Provided a theory of reserve accum. for macro-stabilization and sovereign risk
- Reserves help reduce future unemployment risk and may improve bond prices
- Aggregate demand effects essential to account for observed reserves in the data
- Simple and implementable rules for res. accum. can deliver significant gains
- Agenda:
 - Equilibrium Multiplicity
 - Temptation to abandon pegs—how reserves can help

Massive holdings of international reserves, particularly for countries with fixed exchange rates

Over the past 20 years massive increase in reserves around the world, specially EMEs.

(from Amador, Bianchi, Bocola and Perri, 2018)

Reserve accumulation – Regressions

	Dependent variable: log(Reserves/y)				
	(1)	(2)	(3)	(4)	(5)
ERV	- 0.647 * (0.367)	- 0.656 ** (0.332)	- 0.662 ** (0.334)	- 0.281 * (0.152)	- 0.206 * (0.121)
$\log(Debt/y)$		0.245 (0.214)	0.250 (0.244)	0.349 (0.240)	0.324 (0.203)
ŷ			-0.069 (1.227)	1.158 (1.326)	1.389 (1.007)
log(Spread)				-0.155 (0.095)	-0.063 (0.093)
r ^{world}					-0.119*** (0.038)
Number of countries	22	22	22	22	22
Observations	459	459	458	314	314
R^2	0.02	0.04	0.04	0.12	0.24
F Statistic	7.28***	8.97***	6.53***	9.43***	18.24***

Note: All explanatory variables are lagged one period. \hat{y} is the cyclical component of GDP. All specifications include country fixed effects. Robust standard errors (clustered at the country level) are reported in parentheses. *p<0.1; **p<0.05; ***p<0.01.

Countries in our dataset

We use the IMF Classif. of Exch. Rate Arrangements (fixed =1 and 2)

We follow Kondo and Hur (2016) and focus on 22 EMEs:

Argentina	India	Poland
Brazil	Indonesia	Romania
Chile	Malaysia	Russia
China	Mexico	South Africa
Colombia	Morocco	South Korea
Czech Republic	Pakistan	Thailand
Egypt	Peru	Turkey
Hungary		

Foreign Investors' SDF – details

• Pricing kernel: a function of innovation to domestic income (ε) and a global factor $\nu=\{0,1\}$ (assumed to be independent)

$$m_{t,t+1} = e^{-r - \nu_t (\kappa \varepsilon_{t+1} + 0.5 \kappa^2 \sigma_{\varepsilon}^2)}, \quad \text{with} \quad \kappa \ge 0,$$

Foreign Investors' SDF – details

• Pricing kernel: a function of innovation to domestic income (ε) and a global factor $\nu=\{0,1\}$ (assumed to be independent)

$$m_{t,t+1} = e^{-r - \nu_t (\kappa \varepsilon_{t+1} + 0.5 \kappa^2 \sigma_{\varepsilon}^2)}, \quad \text{with} \quad \kappa \ge 0,$$

ullet Functional form + normality of arepsilon o constant short-term rate:

$$\mathbb{E}_{s'|s}m(s,s') = e^{-r} = q_a, \quad \text{with} \quad s = \{y^T, \nu\}$$

• Pricing kernel: a function of innovation to domestic income (ε) and a global factor $\nu=\{0,1\}$ (assumed to be independent)

$$m_{t,t+1} = e^{-r - \nu_t (\kappa \varepsilon_{t+1} + 0.5 \kappa^2 \sigma_{\varepsilon}^2)}, \text{ with } \kappa \ge 0,$$

ullet Functional form + normality of arepsilon o constant short-term rate:

$$\mathbb{E}_{s'|s}m(s,s') = e^{-r} = q_a, \quad \text{with} \quad s = \{y^T, \nu\}$$

- Bond price given by: $q = \mathbb{E}_{s'|s} \left\{ m(s,s')(1-d') \left[\delta + (1-\delta) q' \right] \right\}$
- \bullet Bond becomes a worse hedge if $\nu=1$ and gov. tends to default with low ε
 - \implies positive risk premium

Note: higher reserves reduce future unemployment

• Nominal rigidities **increase** spreads.

- Nominal rigidities **increase** spreads.
- Reserves decrease spreads, and more with nominal rigidities.

We'll compute **welfare costs** of 'moving' from a **baseline** economy to an **alternative** economy:

Welfare gain
$$= 100 \times \left[\left(\frac{(1-\gamma)(1-\beta)V_{baseline} + 1}{(1-\gamma)(1-\beta)V_{alternative} + 1} \right)^{1/(1-\gamma)} - 1 \right]$$

We'll compute **welfare costs** of 'moving' from a **baseline** economy to an **alternative** economy:

Welfare gain
$$= 100 imes \left[\left(\frac{(1-\gamma)(1-\beta)V_{baseline} + 1}{(1-\gamma)(1-\beta)V_{alternative} + 1} \right)^{1/(1-\gamma)} - 1 \right]$$

We're interested in studying:

- Costs of nominal rigidities
- Costs of not having access to reserves

To do this: define a "No-Reserves" economy (which can be under "fixed" or "flex").

Benchmark under fixed

Benchmark under flex

No-Reserves under fixed

No-Reserves under flex

 Eliminating nominal rigidities is welfare enhancing, and more so when reserve accumulation is not possible.

- Eliminating nominal rigidities is **welfare enhancing**, and more so when **reserve accumulation is not possible**.
- Being able to accumulate reserves is **welfare enhancing**, and more so under **fixed**.

Initial debt = Avg. in simulations. Initial reserves= zero.

Appendix – Inflation Targeting

Define price aggregator as

$$P\left(P^{T}, P^{N}\right) \equiv \left(\omega^{\frac{1}{1+\mu}} \left(P^{T}\right)^{\frac{\mu}{1+\mu}} + (1-\omega)^{\frac{1}{1+\mu}} \left(P^{N}\right)^{\frac{\mu}{1+\mu}}\right)^{\frac{1+\mu}{\mu}}.$$

- Instead of fixing e=1, gov. targets $P=\overline{P}>0$
- All this yields an exchange rate policy

$$e = \overline{P}/\mathcal{P}\left(c^{T}, h\right) \tag{1}$$

• Replace fixed *e* for (1).