Prüfung zur Vorlesung Mathematik II Frühjahrssemester 2009 Musterlösungen

5. Juni 2009

AUFGABE 1

Teil 1

(i) a)
$$MN\underline{u} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}$$

b)
$$N^{\mathsf{T}}N = \begin{pmatrix} 3 & 2 \\ 2 & 2 \end{pmatrix}$$

(ii)
$$X = P^{-1}Q^{-1}RQ^{-1}$$

$$Y^{-1} = R^{-1}Q^{-1}P$$

M ist eine (3×3) -Matrix, N ist eine (3×2) -Matrix und \underline{u} ist ein Vektor $\in \mathbb{R}^2$, d.h. eine (2×1) -Matrix. Daher ist das Ergebnis eine (3×1) -Matrix, d.h. ein Vektor $\in \mathbb{R}^3$.

Eine Matrix lässt sich immer mit ihrer Transponierten multiplizieren. N^T ist eine (2×3) -Matrix und $N^\mathsf{T} N$ ist somit eine (2×2) -Matrix.

$$PXQ = Q^{-1}R \Leftrightarrow P^{-1}(PXQ)Q^{-1} = P^{-1}(Q^{-1}R)Q^{-1}$$

 $PY=QR\Leftrightarrow P^{-1}PY=P^{-1}QR\Leftrightarrow Y=P^{-1}QR$ Da $P,\ Q$ und R invertier bar sind, ist P^{-1} und damit auch Y invertier bar.

$$\Rightarrow Y^{-1} = (P^{-1}QR)^{-1} = R^{-1}Q^{-1}P$$

Teil 2

(i) Wir berechnen die Inverse von C mit dem Gauss-Algorithmus.

2	-4	0	1	0	0	: 2		
						$+4Z_{3}$		
0	0	-1	0	0	1	$\cdot (-1)$		
1	-2	0	1/2	0	0	$+2Z_2$		$C^{-1} = \begin{pmatrix} 1/2 & 2 & 8 \\ 0 & 1 & 4 \\ 0 & 0 & -1 \end{pmatrix}$
			0				\Longrightarrow	$C^{-1} = \begin{bmatrix} 0 & 1 & 4 \end{bmatrix}$
0	0	1	0	0	-1			$\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$
1	0	0	1/2	2	8			
0	1	0	0	1	4			
0	0	1	0	0	-1			

Das Ergebnis kann nachgeprüft werden indem man zeigt, dass $CC^{-1} = I$.

- (ii) a) A ist eine (3×5) -Matrix und B eine (3×3) -Matrix. Also ist die Matrix BA eine (3×5) -Matrix. Daraus folgt, dass das LGS $BA\underline{x} = \underline{0}$ m = 3 Gleichungen und n = 5 Unbekannte hat, d.h. $\underline{x} \in \mathbb{R}^5$.
 - b) Ausgehend von dim L=2 und der Gleichung dim L=n-r(BA) folgt, dass 2=5-r(BA) und somit r(BA)=3. Daher ist $BA\underline{x}=\underline{b}$ für jede rechte Seite lösbar, denn BA hat vollen Zeilenrang.
 - c) Da B regulär ist und \underline{x} das LGS $BA\underline{x} = \underline{0}$ löst, löst \underline{x} auch das LGS $B^{-1}BA\underline{x} = B^{-1}\underline{0}$, also $A\underline{x} = \underline{0}$. Daher gilt $r(A) = n \dim L = 5 2 = 3$.

Musterlösungen FS 09

AUFGABE 2

Teil 1

(i) Seien
$$A = \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1+s \end{pmatrix}, \quad \underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \quad \text{und} \quad \underline{b} = \begin{pmatrix} 1 \\ 1 \\ -6 \end{pmatrix},$$

dann lässt sich das LGS schreiben als $A\underline{x} = \underline{b}$.

(a)
$$s = -1$$

Für s=-1 hat das LGS keine Lösung, da für diesen Wert die dritte Gleichung 0=-6 ergibt, was ein Widerspruch ist.

Für $s \neq -1$ hat die Matrix A vollen Zeilenrang, d.h. r(A)=3. Daraus folgt, dass die Lösungsmenge nicht die Dimension 2 haben kann, denn

(c)
$$s \neq -1$$

$$\dim L = n - r(A) = 4 - 3 = 1.$$

(ii)
$$\underline{x} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ -2 \end{pmatrix} + t \begin{pmatrix} -3 \\ -2 \\ 1 \\ 0 \end{pmatrix}, \quad t \in \mathbb{R}$$

Aus der dritten Gleichung folgt $x_4 = -2$.

Aus der zweiten Gleichung folgt $x_3 = t$ und $x_2 = 1 - 2t$ mit $t \in \mathbb{R}$.

Aus der erste Gleichung folgt $x_1 = 3 - 3t$.

Teil 2

Sei A die Matrix, deren Spalten die Vektoren von X sind. Dann ist A^{T} die Matrix, deren Zeilen die Vektoren von X sind.

(i) Variante 1 ($\ddot{u}ber\ r(A)$):

$$A = \begin{pmatrix} 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \end{pmatrix} \implies \begin{array}{c} 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & 1 \\ 1 & 0 & 0 & 2 \\ \hline 0 & 1 & 0 & 1 \\ \hline 1 & -1 & 1 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 1 & -1 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline \end{array} \implies r(A) = 3$$

Die Basis B muss also aus drei linear unabhängigen Vektoren bestehen, zum Beispiel die ersten drei

$$B = \left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} -1\\-1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} \right\}.$$

FS 09 Musterlösungen

Variante 2 (über $r(A^{\mathsf{T}})$):

$$A^{\mathsf{T}} = \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ -1 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 2 & 1 \end{pmatrix} \implies \begin{pmatrix} 1 & 1 & 1 & 0 \\ -1 & -1 & 0 & 1 \\ 1 & 1 & 2 & 1 & -Z_1 \\ \hline 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 0 \\ \hline 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ \hline \end{pmatrix} \implies r(A^{\mathsf{T}}) = 3$$

Die ersten 3 Zeilen sind linear unabhängig und die vierte ist überflüssig. Da die Operationen im obigen Gauss-Algorithmus nur Linearkombinationen von Zeilen bilden, bleiben alle Zeilen in L enthalten. Eine mögliche Basis ist somit

$$B = \left\{ \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}.$$

(ii) $\underline{x} = \underline{u} + \underline{v}$ und $y = \underline{u} - \underline{v}$ sind eine Basis von \mathbb{R}^2 , wenn sie linear unabhängig sind. Dies ist erfüllt, wenn die Gleichung $\lambda \underline{x} + \mu \underline{y} = \underline{0}$ die einzige Lösung $\lambda = \mu = 0$ hat.

$$\underline{0} = \lambda \underline{x} + \mu \underline{y} = \lambda(\underline{u} + \underline{v}) + \mu(\underline{u} - \underline{v}) = (\lambda + \mu)\underline{u} + (\lambda - \mu)\underline{v}$$

Da \underline{u} und \underline{v} linear unabhängig sind, gilt

$$\begin{cases} \lambda + \mu = 0 \\ \lambda - \mu = 0 \end{cases} \implies \lambda = \mu = 0.$$

Daraus folgt, dass \underline{x} und y linear unabhängig sind und eine Basis von \mathbb{R}^2 bilden.

AUFGABE 3

Teil 1

(i) a)

Die Determinante der Matrix ist

$$\det\begin{pmatrix} 0 & 0 & 0 & 1\\ \alpha & \lambda & \varrho & 1\\ \beta & \mu & \phi & 1\\ \gamma & \nu & \psi & 1 \end{pmatrix} = -1 \cdot \det(C^{\mathsf{T}}) = -1 \cdot \det C \neq 0.$$

Somit hat die Matrix den vollen Rang von 4.

Wird ein Vielfaches einer Zeile zu einer anderen addiert, so ändert sich die Determinante nicht.

$$\det \begin{pmatrix} \lambda - \alpha & \mu - \beta & \nu - \gamma \\ \lambda & \mu & \nu \\ \varrho & \phi & \psi \end{pmatrix} = \det \begin{pmatrix} -\alpha & -\beta & -\gamma \\ \lambda & \mu & \nu \\ \varrho & \phi & \psi \end{pmatrix}$$
$$= -1 \cdot \det(C) = -2$$

Musterlösungen FS 09

- Jede Linearkombination von Lösungen \underline{x}_1 und \underline{x}_2 eines homogenen LGS $A\underline{x} = \underline{0}$ ist wieder eine Lösung, da $A(\lambda_1\underline{x}_1 + \lambda_2\underline{x}_2) = \lambda_1A\underline{x}_1 + \lambda_2A\underline{x}_2 = \underline{0}$.
- Eine Matrix ist regulär, falls ihre Determinante ungleich null ist. Die Determinante einer Matrix und ihrer Transponierten sind gleich, daher ist A^{T} regulär genau dann wenn A regulär ist.
- Gegenbeispiel: $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \text{ sind reguläre}$ Matrizen. Das LGS $(A+B)\underline{x} = \underline{b} \text{ mit } \underline{b} \neq \underline{0} \text{ hat}$ jedoch keine Lösung, da $(A+B)\underline{x} = \underline{0}$.
- Eine Matrix ist symmetrisch wenn sie gleich ihrer Transponierten ist.

$$(A^{\mathsf{T}}(-A))^{\mathsf{T}} = (-A)^{\mathsf{T}}(A^{\mathsf{T}})^{\mathsf{T}} = -A^{\mathsf{T}}A = A^{\mathsf{T}}(-A)$$

• Gegenbeispiel: $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{pmatrix}$ Dises LGS hat keine Lösung für $b_4 \neq 0$.

Teil 2

$$\det A = \det \begin{pmatrix} 0 & 16 & 4 & -2 \\ -1 & 2 & 0 & 1 \\ 0 & 32 & 4 & -4 \\ 0 & -16 & -4 & 3 \end{pmatrix} = (-1) \cdot (-1) \cdot \det \begin{pmatrix} 16 & 4 & -2 \\ 32 & 4 & -4 \\ -16 & -4 & 3 \end{pmatrix}$$

$$= 16 \cdot 4 \cdot \det \begin{pmatrix} 1 & 1 & -2 \\ 2 & 1 & -4 \\ -1 & -1 & 3 \end{pmatrix} = 64 \cdot \det \begin{pmatrix} 1 & 1 & -2 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = -64$$

$$\det B = \det \begin{pmatrix} -1 & 12 & 14 & 6 \\ 0 & -1 & 3 & 8 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & -1 \end{pmatrix} = (-1) \cdot (-1) \cdot 1 \cdot (-1) = -1$$

$$\det \begin{pmatrix} \left(\frac{1}{2}A\right)^{-1}B\right) = \det(2A^{-1}B) = 2^4 \frac{1}{\det(A)} \det(B) = 16 \cdot \frac{1}{-64} \cdot (-1) = \frac{1}{4}$$

$$\det(B^{-1} - BB^{-1}) = \det((I - B)B^{-1}) = \det(I - B) \cdot \det(B^{-1})$$

$$= \det \begin{pmatrix} 2 & -12 & -14 & -6 \\ 0 & 2 & -3 & -8 \\ 0 & 0 & 0 & -4 \\ 0 & 0 & 0 & 2 \end{pmatrix} \cdot \frac{1}{\det B} = 0 \cdot (-1) = 0$$

Musterlösungen FS 09

AUFGABE 4

Teil 1

a)
$$\frac{1}{4}\sin(2x-1) + C$$

b)
$$\frac{2}{9}(3x+2)^{\frac{3}{2}} + C$$

c)
$$-\frac{1}{4}e^{1-2x^2} + C$$

$$\frac{1}{2}(\ln x)^2 + C$$

Da $\frac{d}{dx}\sin(2x-1) = 2\cos(2x-1)$.

$$\int \sqrt{3x+2} dx = \int (3x+2)^{\frac{1}{2}} dx = \frac{2}{3} \cdot \frac{1}{3} \cdot (3x+2)^{\frac{3}{2}} + C$$

Mit der Substitution $u=1-2x^2$ und d $u=-4x\mathrm{d}x$ erhält man $\int x\,e^{1-2x^2}\mathrm{d}x=\int -\frac{1}{4}e^u\mathrm{d}u=-\frac{e^u}{4}+C$. Durch Einsetzen von $u=1-2x^2$ erhält man das Ergebnis.

Mit der Substitution $u = \ln x$ und $du = \frac{1}{x}dx$ erhält man $\int \frac{\ln x}{x} dx = \int u du = \frac{u^2}{2} + C$. Durch Rücksubstitution ergibt sich das Ergebnis.

Teil 2

(i)
$$\int_{1}^{4} \int_{1}^{4} \left(1 + \frac{e^{\sqrt{x}}}{\sqrt{x}} \right) dx dy = \left(\int_{1}^{4} dy \right) \left(\int_{1}^{4} 1 + \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \right) = \left[y \right]_{1}^{4} \cdot \left(\left[x \right]_{1}^{4} + \int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \right) \\
= 3 \cdot \left(3 + \int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx \right)$$

Die Substitution $u = \sqrt{x}$ und $du = \frac{1}{2} \frac{1}{\sqrt{x}} dx$ ergibt

$$\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} dx = \int_{u(1)=1}^{u(4)=2} 2e^{u} du = [2e^{u}]_{1}^{2} = 2e^{2} - 2e.$$

Daraus folgt das Ergebnis

$$\int_{1}^{4} \int_{1}^{4} \left(1 + \frac{e^{\sqrt{x}}}{\sqrt{x}} \right) dx dy = 3(3 + 2e^{2} - 2e).$$

(ii)
$$F(x) = \int_{x}^{4} e^{(-t^{2})} dt = \int_{4}^{x} -e^{(-t^{2})} dt$$

Nach dem Hauptsatz der Differential- und Integralrechnung folgt

$$F'(x) = -e^{(-x^2)}.$$

(iii)
$$\left| \int_{a}^{b} (f(x) + g(x)) dx \right| = \left| \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \right|$$
$$\leq \left| \int_{a}^{b} f(x) dx \right| + \left| \int_{a}^{b} g(x) dx \right|$$
$$\leq \int_{a}^{b} |f(x)| dx + \int_{a}^{b} |g(x)| dx$$