Instituto Tecnológico de Aeronáutica

Divisão de Engenharia Aeronáutica e Aeroespacial

Transferência Terra-Marte utilizando a metodologia de patched-conics

Nomes:

Felipe de Castro Silva¹ Mateus de Castro Silva¹ Francisco Matheus¹ Professor:
Dra. Maisa de Oliveira
Terra

Turma:

Aesp20

Disciplina: MVO-41

17 de junho de 2019 São José dos Campos, Brasil

¹ Graduandos em Engenharia Aeroespacial no Instituto Tecnológico de Aeronáutica

Sumário

1	Intr	roduçã	0	5	
2	Metodologia				
	2.1	Consid	derações iniciais	6	
			Sphere of influence - SOI		
		2.1.2	Corpo de massa desprezível em órbita kepleriana	6	
	2.2		ção do problema		
	2.3	Desen	volvimento da solução	7	
		2.3.1	Transferência de Hohmann	7	
			Patched-conics simplificada		
3	Res	ultado	s e Análises 1	C	
	3.1	Transf	ferência de Hohmann	.(
			ed-conics simplificada		
			ões alternativas		
4	Cor	nclusão	e comentários finais	9	

Lista de Figuras

1	Trajetória primária a ser obtida para a Transferência de Hohmann.	
	Retirado de [4]	8
2	Trajetória aprimorada a ser estudada para aplicação da técnica de	
	patched-conics.	9

Lista de Tabelas

1	Variações de velocidade necessárias para Transferência Hohmann	10
2	Duração da órbita de transferência	10
3	Módulos das variações de velocidade em cada ponto crítico	11
4	Tempo de duração das órbitas	11
5	Resultados alternativos para órbita projetada	12

1 Introdução

O problema de transferência interplanetária é uma questão muito discutida e provém de desde antes dos planos preliminares para ida à lua. Dentre as diversas formas de projetas órbitas para tal missão, temos a aproximação *Patched conic* ou *Two Body approximation* que, em astrodinâmica, consiste em um método para simplificar o cálculo de trajetórias de uma espaçonave em um ambiente de múltiplos corpos, portanto, mais complexo que um de 2 corpos tradicional.

A estratégia utilizada é reduzir um complicado problema *N-body* (de N corpos) em múltiplos problemas de 2 corpos, para os quais as soluções são as bem definidas seções cônicas das órbitas de Kepler. Isso é feito através do conceito de esfera de influência. Assim, a Esfera de Influência (SOI), no contexto de Mecânica Orbital, consiste na região esférica ao redor de um corpo celestial onde a influência gravitacional principal em um objeto orbitando é esse corpo celestial.

Esse conceito é comumente usado para descrever áreas no Sistema Solar onde planetas dominam as órbitas de objetos como luas, apesar da presença do Sol, corpo muito mais massivo. Na aproximação *Patched conic*, usada na estimativa de trajetórias de corpos se movendo entre as vizinhanças de corpos de diferentes massas usando uma aproximação de 2 corpos, ou seja, com elipses e hipérboles, o SOI é tomado como a fronteira onde a trajetória é trocada, com a mudança de qual corpo mais influencia na trajetória.

2 Metodologia

2.1 Considerações iniciais

2.1.1 Sphere of influence - SOI

A equação geral que descreve o raio da esfera de influência r_{SOI} de um planeta é dado, segundo as referências [1] e [3]:

$$r_{SOI} \approx a \left(\frac{m}{M}\right)^{2/5}$$
 (1)

onde a é o semieixo maior do menor dos corpos (geralmente um planeta) orbitando o maior corpo (geralmente o Sol); m e M são as massas do menor e do maior objetos, respectivamente.

No uso da aproximação *patched conics*, uma vez que um corpo deixe a esfera de influência do planeta, é considerado **apenas** o potencial gravitacional do Sol, até que esse corpo entre na esfera de influência de outro planeta.

No entanto, a esfera de influência não é, de fato, uma esfera perfeita. Assim, a distância para o SOI depende também, segundo [3], da distância angular θ do corpo massivo, nos gerando uma fórmula dada por:

$$r_{SOI}(\theta) \approx a \left(\frac{m}{M}\right)^{2/5} \frac{1}{\sqrt[10]{1 + 3\cos^2(\theta)}}$$
 (2)

Tomando a média para todas as direções, teremos:

$$\overline{r_{SOI}} = 0.9431a \left(\frac{m}{M}\right)^{2/5} \tag{3}$$

que foi a equação usada para todos os cálculos pertinentes deste trabalho.

2.1.2 Corpo de massa desprezível em órbita kepleriana

Pela terceira Lei de Kepler, para corpos que orbitam um outro corpo de massa muito maior em órbitas circulares ou elípticas, o quadrado do período T é proporcional ao cubo do semieixo maior a. Se o corpo central tiver massa M, então o período orbital pode ser calculado através de:

$$T = 2\pi \sqrt{\frac{a^3}{\mu}} \tag{4}$$

Analogamente, temos os resultados notáveis para as grandezas envolvidas na descrição de órbitas keplerianas, tais como a velocidade

$$v = \sqrt{2\mu \frac{-1}{2a} + \frac{1}{r}} \tag{5}$$

onde $\mu \approx GM$, sendo G a constante da gravitação universal e M a massa do corpo massivo em torno do qual a espaçonave realiza órbita em um contexto 2C (dois corpos). Tais equação serão as adotadas ao longo das análises e resoluções vindouras neste trabalho, uma vez que está se considerando uma análise de N-corpos simplificada em vários trechos de interações entre 2 corpos.

2.2 Descrição do problema

Como problema preliminar para análise da transferência a que nos propomos a estudar, vamos adotar o exercício 7.2 de [2], como listado a seguir.

Considere uma transferência Hohmann Terra-Marte usando a técnica de patchedconics.

- a) Calcular o módulo do Δv (em EMOS) real para a saída da partida tangencialmente a partir de uma órbita estacionada circular na Terra de raio de 1,1 raios da Terra e termina em uma órbita circular ao redor de Marte com raio de 1,3 raios de Marte. Assuma que todas as órbitas são coplanares.
- b) Determinar o ângulo necessário entre o ponto de partida na Terra em órbita e a linha do Sol-Terra. Desenhe a geometria.
 - c) Determine o raio de mira exigido em Marte em unidades de raios de Marte.

2.3 Desenvolvimento da solução

Partindo do enunciado apresentado, mas não se restringindo a ele, temos como traçar algumas estimativas iniciais para nosso projeto de órbita no que tange à completude do nosso modelo. Pretende-se nesse sentido, avançar em complexidade de resolução com incrementos dependentes do modelo anterior.

2.3.1 Transferência de Hohmann

Como estimativa inicial, temos a resolução do problema por transferência de Hohmann, partindo de órbita circular de raio r_{ST} (distância Sol-Terra) em torno do Sol e chegando a uma órbita circular externa de raio r_{SM} (distância Sol-Marte) através de uma órbita elíptica de transferência. A representação ilustrativa do modelo está apresentada na Figura 1, a azul é a de partida, a amarela, a de transferência; e a vermelha, a de chegada. Os pontos 1 e 3 são, respectivamente, os pontos de incremento de velocidade Δv_1 e Δv_2 .

Figura 1: Trajetória primária a ser obtida para a Transferência de Hohmann. Retirado de [4].

Os resultados obtidos a partir desta análise estão expostos na Seção 3.1 e o código utilizado pode ser conferido na Seção 4.

2.3.2 Patched-conics simplificada

Como próximo passo, temos a análise levando em consideração órbitas de estacionamento de saída e de chegada e, inevitavelmente, a massa de cada planeta nos cálculos de órbitas de saída e de chegada da Terra e à Marte respectivamente.

A ilustração da órbita a ser projetada nesta fase pode ser conferida na Figura 2. A letra T representa o planeta Terra e M, Marte. Nesta, as órbitas pontilhadas em preto são as órbitas da Terra (circunferência interna) e de Marte (circunferência externa) em torno do Sol. As circunferências tracejadas azul e vermelho são as respectivas esferas de influência dos planetas (SOI) e os pontos destacados, as posições de incremento de velocidade para mudança de órbita.

Todas as órbitas foram consideradas coplanares; os impulsos, tangenciais; as datas de lançamento favoráveis (considerando que os corpos celeste estariam na posição que favorece a execução da órbita projetada para o momento de chegada da espaçonave/sonda nos mesmos).

Nesta abordagem, o ponto A refere-se à partida da Terra, onde a espaçonave encontra-se inicialmente realizando uma órbita circular de estacionamento de raio $r_{TA} = R_T + h_0$, onde R_T é o raio da Terra e h_0 a altitude requerida (potencialmente

definida como constante de projeto). A espaçona vai, então, percorrer o arco de elipse AB como forma de órbita de transferência até a potencial SOI da Terra, onde, no ponto B (caracterizado por $r_TB = SOI_{Terra}$, toma um incremento de velocidade que a colocará em uma órbita elíptica em torno do Sol.

Após percorrer um dos arcos BC e chegar ao ponto C (caracterizado por $r_{SC} = r_{SM} + SOI_{Marte}$), onde sofrerá uma nova variação de velocidade a fim de reduzir sua energia para ser capturada (gravitational capture) por Marte (dado que encontra-se essencialmente dentro de sua esfera de influência, a captura considerar-se-á possível) através de uma de transferência elíptica que a levará até a órbita final desejada, com altitude h_f a partir de Marte.

Figura 2: Trajetória aprimorada a ser estudada para aplicação da técnica de *patched-conics*.

3 Resultados e Análises

3.1 Transferência de Hohmann

A respeito dos resultados obtidos através do uso dos códigos numéricos presentes no Apêndice A, as tabelas 1 e 2 mostram os resultados obtidos referentes à transferência Hohmann, um dos passos da metodologia descrita nesse trabalho.

Tabela 1: Variações de velocidade necessárias para Transferência Hohmann.

Ponto	$\Delta v \; [\mathrm{km/s}]$
1	2,94
3	$2,\!65$
TOTAL	5,59

Tabela 2: Duração da órbita de transferência.

Órbita	Tempo de voo [meses]	
1-3	8,63	
TOTAL	8,63	

3.2 Patched-conics simplificada

Os resultados obtidos através do uso dos códigos numéricos presentes no Apêndice A, as tabelas 3 e 4 mostram os resultados obtidos referentes à toda transferência obtida. Assim, temos dois resultados principais de fundamental impacto numa análise preliminar de uma missão como essa proposta, sendo elas o tempo total de viagem e Δv total necessário.

Outra análise possível seria obter quanto de propelente percentualmente a massa total da aeronave seria necessário para completar uma missão como essa, tomando como base a Equação de foguete de Tsiolkovski, conforme [6]:

$$\frac{\Delta m}{m} = 1 - e^{\frac{-\Delta V_{total}}{I_{sp}g_0}} \tag{6}$$

Onde: g_0 é dado como sendo $9.81 \times 10^{-3} \ km/s^2$; e I_{sp} é usado o valor de 225 s, conforme o motor híbrido de AHH visto em [7], ou 999 s, conforme valores obtidos do programa NASA CEA para um motor feito de 67% perclorato de amônio, 10% HTPB, 18% alumínio, e 5% de plastificante e agente de cura. Dessa forma, para o primeiro caso, teríamos um valor de 98% em massa de propelente para a massa total, e, no segundo caso, 71% em massa.

Vemos, portanto, que uma viagem interplanetária entre Terra e Marte numa primeira abordagem *Patched conics* se dá numa unidade de tempo consideravelmente longa, expondo possíveis tripulantes a problemas como radiação, por exemplo, além de necessitar de motores muito eficientes que permitam a viabilidade da missão.

Tabela 3: Módulos das variações de velocidade em cada ponto crítico.

Ponto	$ \Delta v \text{ [km/s]}$
A	3,08
В	2,74
\mathbf{C}	4,79
D	1,27
TOTAL	11,88

Tabela 4: Tempo de duração das órbitas.

Órbita	Tempo de voo [meses]
AB	0,55
BC	8,67
CD	0,84
TOTAL	10,06

3.3 Variações alternativas

Pode-se obter mais resultados para a análise mudando, simplesmente, os pontos B e C de saída e entrada, respectivamente, às esferas de influência da Terra e de Marte, como pode-se ver na Figura 2. Dessa forma, acham-se os resultados alternativos presentes na Tabela 5, onde os campos + e - indicam o novo posicionamento quanto aos pontos B e C em relação às respectivas esferas de influência a que pertencem. Desta forma, pro exemplo, o primeiro calculo foi feito considerando os pontos como mais equidistantes possível do Sol, portanto, na tabela, eles estão referidos como + e +, dentre as possibilidade de estar na intersecção da linha Terra-Sol ou Marte-Sol com distância maior (+) ou menor (-) em relação ao Sol.

Tal distinção causa uma pequena diferença nos impulsos e consequentes tempo de voo das órbitas, uma vez que a atração gravitacional age de forma diferente em cada uma das configurações. Como já era de se esperar, a tendência do aumento no impulso total necessário é compensado pela redução do tempo de voo.

Estas modificações são facilmente implementadas uma vez que todos os impulsos continuam sendo tangenciais e as características das órbitas mudam uniformemente,

uma vez que todos os pontos de interesse estão alinhas e as distâncias podem ser tomadas escalarmente (sem considerar a diferença de direção potencialmente presente em uma análise mais completa).

Alternativa	r_{SB}	r_{SC}	$\Delta v_{TOTAL} \ [\mathrm{km/s}]$	Tempo de voo [meses]
1	+	+	11,88	10,06
2	+	-	11,93	10,03
3	-	+	12,07	10,01
4	-	-	12,12	9,97

Tabela 5: Resultados alternativos para órbita projetada

4 Conclusão e comentários finais

Acredita-se que a análise feita por este trabalho apresenta reconhecimento de algumas das grandezas e dificuldade envolvidas no projeto de órbitas de transferência interplanetária, sendo um bom estudo preliminar para analisar gastos das mesmas. Uma vez tendo conhecimento das análises simplificadas, pode-se propor mudanças a fim de melhorar o modelo e buscar trajetórias e soluções mais otimizadas. Embora a técnica utilizada de *patched-conics* não modele pontos lagrangeanos e não seja uma boa aproximação em alguns casos [5], ela apresenta uma boa aproximação para transferências interplanetárias.

Sugestões para análises posteriores incrementais a este trabalho podem incluir a consideração de órbitas hiperbólicas para fuga das esferas de influência, bem como a consideração e análise de impulsos não-tangenciais na busca de soluções melhores (potencialmente mais econômicas) para o problema, onde poder-se-ia explorar uma gama maior de possibilidades de arcos de cônica a comporem a trajetória. Tais análises podem ser feitas através de algoritmos derivados da solução do Problema de Lambert e do conseguinte Teorema de Lambert [8] combinado com algoritmos evolutivos, por exemplo, para busca eficiente de otimização de parâmetros, e ficam como sugestão para implementações em trabalhos futuros, tanto desta quanto de turmas vindouras.

Apêndice A

Códigos

Transferência de Hohmann

```
1 % Dados
    g = 6.67408e - 20; %km3 kg - 1 s - 2
    m_{sol} = 1.98892e30; %kg
             r_st = 1.496e8; %km;
    6 \text{ r_sm} = 2.279e8; %km
               % Definicoes
             mi_sol = G*m_sol;
             v = @(mi, r, a) (2*mi*(-1/(2*a)+1/r))^0.5;
             t_{-}voo = @(mi, a) 2*pi*(a^3/mi)^0.5;
14 % Velocidades notaveis
15 % Em relacao a Terra
v_1 antes = v(mi_sol, r_st, r_st);
v_1-depois = v(mi_sol, r_st, (r_st+r_sm)/2);
v_3-antes = v(mi_sol, r_sm, (r_st+r_sm)/2);
                v_3-depois = v(mi_sol, r_sm, r_sm);
20
             % Tempos de voo
             t_13 = t_voo(mi_sol, (r_st+r_sm)/2)/2;
             % Resultados
dv_1 = v_1depois - v_1antes;
                dv_3 = v_3_{depois} - v_3_{antes};
\Delta_v = \Delta_v 
tempo_total = t_13;
30 tempo_total = tempo_total/3600/24/30
```

Patched-conics simplificada

```
1 % Dados
_{2} G = 6.67408e-20; %km3 kg-1 s-2
3 m_terra = 5.972e24; %kg
4 \text{ m\_sol} = 1.98892e30; %kg
5 m_marte = 6.39e23; %kg
7 R_t = 6.371e3; %km
8 R_m = 3.389e3; %km
r_st = 1.496e8; %km;
r_sm = 2.279e8; %km
13 % Definicoes
14 mi_terra = G*m_terra;
15 mi_sol = G*m_sol;
16 mi_marte = G*m_marte;
17
18 v = 0 (mi, r, a) (2*mi*(-1/(2*a)+1/r))^0.5;
19 soi = @(a, m, M) 0.9431*a*(m/M)^(2/5);
 t_{voo} = @(mi, a) 2*pi*(a^3/mi)^0.5;
21
22 % Parametros de projeto
h_0 = 0.1*R_t; % Altitude da orbita de saida
h_f = 0.3 \times R_m; % Altitude da orbita de chegada
25
26 \text{ r_ta} = \text{R_t + h_o};
r_{t} = soi(r_{st}, m_{terra}, m_{sol});
r_sb = r_st + soi(r_st, m_terra, m_sol);
r_sc = r_sm + soi(r_sm, m_marte, m_sol);
30 \text{ r_mc} = soi(r_sm, m_marte, m_sol);
31 \text{ r-md} = R_m + h_f;
33 % Velocidades notaveis
34 % Em relacao a Terra
v_a1 = v(mi_terra, r_ta, r_ta);
v_a2 = v(mi_terra, r_ta, (r_ta+r_tb)/2);
v_b1 = v(mi_terra, r_tb, (r_ta+r_tb)/2);
38 % Em relacao ao Sol
v_b1 = v_b1 + v(mi_sol, r_st, r_st);
v_b2 = v(mi_sol, r_sb, (r_sb+r_sc)/2);
v_c1 = v(mi_sol, r_sc, (r_sb+r_sc)/2);
```

```
42 % Em relacao a Marte
v_c1 = v_c1 - v(mi_sol, r_sm, r_st);
v_c2 = v(mi_marte, r_mc, (r_mc+r_md)/2);
v_d1 = v(mi_marte, r_md, (r_mc+r_md)/2);
v_d2 = v(mi_marte, r_md, r_md);
47
48 % Tempos de voo
49 \text{ t_a} = \text{t_voo}(\text{mi\_terra}, (\text{r_ta+r_tb})/2) / 2 / 3600/24/30;
t_b = t_voo(mi_sol, (r_sb+r_sc)/2) / 2 / 3600/24/30;
t_c = t_voo(mi_marte, (r_mc+r_md)/2) / 2 / 3600/24/30;
53 % Resultados
54 \, dv_a = v_a2 - v_a1
55 \text{ dv_b} = \text{v_b2} - \text{v_b1}
56 \text{ dv_c} = \text{v_c2} - \text{v_c1}
57 \, dv_d = v_d2 - v_d1
58
59 \Delta_v_total = dv_a + dv_b + dv_c + dv_d
60 tempo_total = t_a + t_b + t_c;
61 tempo_total = tempo_total/3600/24/30
```

Referências

- [1] CURTIS, H. Orbital Mechanics for Engineering Students. Elsevier Aeroespace Engineering Series, Oxford, 2005.
- [2] PRUSSING, J.; CONWAY, B. *Orbital Mechanics*. Oxford University Press, Second Edition.
- [3] SPHERE of influence (astrodynamics). In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2019. Disponível *aqui*. Acesso em: 16 jun. 2019.
- [4] HOHMANN transfer orbit. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2019. Disponível *aqui*. Acesso em: 16 jun. 2019.
- [5] PATCHED conic approximation. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2017. Disponível *aqui*. Acesso em: 16 jun. 2019.
- [6] EQUAÇÃO de foguete de Tsiolkovski. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2018. Disponível *aqui*. Acesso em: 16 jun. 2019.
- [7] CARANDE, F.C.J. *Motor Foguete de Combustível Sólido*. Dissertação para obtenção do Grau de Mestre em Engenharia Aeronáutica. Covilhã, Junho de 2011.
- [8] LAMBERT'S problem. In: WIKIPÉDIA: a enciclopédia livre. Wikimedia, 2019. Disponível *aqui*. Acesso em: 16 jun. 2019.