- Cwrs & -

Aritmetica - object de studiu: numerale no op, cu

Logica - obiectul de studiu: propositule sis operatule cu propositu

Aplicatii: > Bare de date

Verificarea de programe

Verificarea de hardware

Vou studia logica propositionalà

(anodelarea circutelor)

Logica de ordinul T

(verif. a programelor)

Logica propositionalà informalà

1 Logica propositionalà impormalà

propositie = o afirmatie naru este fie adevaratà,

fie falsa.

Ex: Sunt propositii:

Afarā plouă. (afirmatir falsă)

Hu plouă.

2+2=4

1+1=4

ΔP - *a* - : .la

Afarā plonā in este frig.

Na sunt propositie:
Plana?
Plouā!
Vara
11
Aceasta afirmatie este falsa. (paradox)
Propositii: - atomice: ru pot li descompuse in propositii ruai ruici.
Ex: Eu surit studenit.
compuse - conjunctie
Forma: Y to
Adevaratà când ambele prop.
componente sunt adevarate.
Ex: Afara ploua to este brig.
Afarà plonà, dar am unibrelà.
- disjunctii : Forma : P sau Y.
Adevarata când cel putin una

în alte contexte: La Go: sau exclusiv. Ex: Plouā sau este frig. → inuplicatii: Daca I, atunci Y. Ex: Daca plouai, atunci aduc urubrela. Daca Patunci 4 Ades Ades. Adex Fals Fals Fals Adev Adev Ader. Ex: Daca parmantul este plat, atuni 1+1=4. émplicatie materialà. Alte forme de implicatie: · Daca plona, Veste frig. · Truc la logica daca convat. consievent Daca Invat, atunci tree la logica

din cele dout prop. este adev.

Trec la logica doar daca invat. conservent.
antecedent Doca trec la logica, atunci (sigur) am inva
Ex: Jan umbrela door dacā plonā.
Echivalinta: L' daça in Jumai daça L.
≈ Acet
Y da ca Y is Y numai da ca Y " (== " ==)"
→ Hegatia: Hu q.
Hu este adevarat cà 9
Adevarata dacă in P este fals. număi dacă
sau - conectori logici Daca-atunci mu
Propositia atomicà: au poate li descompusa folosind conectori logici.
Ambiguitati:
Ex. Nu vorbesc in manianc.

2 Logica propozitională (formula)

Les linebaj formal: -> sintaxà (reguli de serier > semanticà (recui interpretà

Alfabet = 0 audtinue (finità) de sinuboluri.

Ex: X={0,13}, Y={a,b,c}

Curânt peste X = o secrența de 0 sau ruai aud sinuboluri diru alfabetul X.

Ex: 011000, 1, E-avandul vid

Alfabetul logicii propozitionale =

{ p, 2, r, p, 211 } - variabile prop

U { 7, V, \} - conectori logici

U { (,) }

Cuvinte peste alfabetul logicii prop:

(g v r) P2 p72(

Unele cuvinte represinta formule din logica

Sintaxa logicii propositionale: care sunt formule

LP - multimea de formule din logica prop.

La definità inductiv.

LP - <u>cea mai mica multirue</u> care respectà:

1. (CB): orice variabilà propositionalà (vàsulà
ca un curant de lungime 1) este
sn LP

Ex: pelP 2 elP

2. (CII) Dacā YELP, atunci 79 ELP (not.

Ex: din (CB) pelP (II) 7p ELP (II)

77p ELP =).

3. (CI2) Daca $Y_1 \in LP$, $Y_2 \in LP$, atunci $(Y_1 \land Y_2) \in LP$ (\mathring{A})

4. (CI3) Dava $Y_1 \in LP$, $Y_2 \in LP$, ahunci $(Y_1 \vee Y_2) \in LP$ (sau)

Ex: Din (CB), PELP CIL

2ELP

2ELP

7 (p v g) este obtinutà astfel:

3.
$$(p \vee g) \in UP \quad (CI3, \Psi_1 = p, \Psi_2 = 2)$$

[1.
$$p \in LP$$
 (CB)
2. $2 \in LP$ (CB)
3. $(p \vee 2) \in LP$ (CT3, $4 = p$, $4 = 2$)
4. $7(p \vee 2) \in LP$ (CT1, $4 = (p \vee 2)$)

Arborele de constructie pt 7 (prg)

Teruma de citire unica: Fiecare formula dine UP are un singur arbore de constructie.

Formule -> atomice : variabile propositionale

P, 2, r, P1, 5--
compuse : conjuncti , disjuncti , negatii

in fet. de conectorul prin

7(pvg) - regatie
(7pvg) - disjunctie ("sau")