PROCESS RESEARCH OF NON-Cz MATERIAL

WESTINGHOUSE ELECTRIC CORP.

Robert B. Campbell

Contract Information

OBJECTIVE: INVESTIGATE HIGH-RISK, HIGH PAY-OFF IMPROVEMENTS TO WESTINGHOUSE BASELINE SEQUENCE

TIME PERIOD: JANUARY 1985 - AUGUST 1985

Contract Tasks

- INVESTIGATE EXCIMER LASER DRIVE OF LIQUID DOPANTS IN DENDRITIC WEB SILICON
- CONDUCT PROCESS SENSITIVITY STUDIES
- DEVELOP COST ANALYSIS (FORMAT A's)
- INVESTIGATE OTHER ADVANCED TECHNIQUES FOR JUNCTION FORMATION

Potential Benefits

- FEWER PROCESSING STEPS
- MORE RAPID PROCESSING
- LESS COSTLY PROCESSING
- MORE UNIFORM CELL PARAMETERS

(2

PROCESS DEVELOPMENT

The Killering was

Junction Formation Using an Excimer Laser

APPROACH

HEAT SURFACES OF WEB WITH LASER TO DIFFUSE LIQUID DOPANTS

CONDITIONS

WAVELENGTH - 3080 nM
POWER INPUT TO WEB - 0.5 to 2.5 Joules/cm²

EXPERIMENT

DRIVE B, P, AND AL INTO BOTH N-TYPE AND P-TYPE WEB
LASER PROCESSING CARRIED OUT AT SPECTRA TECHNOLOGY, BELLEVUE, WA,

Results: Excimer Laser

JUNCTION CHARACTERISTICS

 N^+N OR N^+P (PHOS. DOPED) Co = $10^{19}/cm^2$ X_j = 0.2 - 0.25 μ m P^+N OR P^+P (B DOPED) ESSENTIALLY NO JUNCTION P^+P (AL DOPED) ESSENTIALLY NO JUNCTION

CELL PROPERTIES

P TYPE WEB, n_{max} = 9.6% - DUE TO HIGH RESISTANCE BACK CONTACT (BOTH B & AL BSF)

N TYPE WEB, n_{max} <1% - POOR B DOPED EMITTER

- ANNEALING UP TO 800°C IMPROVES CELL PROPERTIES
- NO CROSS-CONTAMINATION NOTED
- CRYSTAL PAIRS PROCESSED BASELINE SEQUENCE A = 14x (TOTAL LIQUID SYSTEM)

Sample 18A, p-Base Web, Al BSF 1.5 J/cm²

Sample 14B, p-Base Web, Boron BSF 2.0 J/cm²

Summary of Data

PROCESS.	AVG. EFF.
1. WESTINGHOUSE BASELINE - DIFFUSION WITH TOTAL LIQUID SYSTEM (P100 & B150)	14.0
2. P100 FRONT JUNCTION - LASER DRIVL B150 BACK JUNCTION - DIFFUSED	13.2
3. P100 FRONT JUNCTION - DIFFUSED B150 BACK JUNCTION - LASER DRIVE	10.0
4. P100 FRONT JUNCTION - DIFFUSED B150 BACK JUNCTION - LASER DRIVE BACK SURFACE DAMAGED	11.0
5. P100 FRONT JUNCTION - LASER DRIVE B150 BACK JUNCTION - LASER DRIVE	8.6
6. P100 FRONT JUNCTION - LASER DRIVE B150 BACK JUNCTION - LASER DRIVE ANNEAL 700°C - 1 HR IN N ₂	9.6

Dark I-V Data on Selected Cells

	ocess and Cell ID	Eff.	Rs (ncm²)	Rsh (K pcm²)	J01 <u>(A/cm²)</u>	J02 <u>(A/cm²)</u>	Diffusion Length* (µm)
11-1	Total laser process + 700°C anneal	10.1	.68	22	4.7 x 10 ⁻¹¹	1.8 x 10 ⁻⁶	26
12-2	Total laser process	8.1	.88	6	1.5 x 10 ⁻¹⁰	6.4 x 10 ⁻⁶	19
68-1	Laser drive front junc- tion, dif- fused BSF	13.2	.68	1.0	1.3 x 10 ^{-]1}	2.5 x 10 ⁻⁶	36

Front Junction Dopant - P100 Back Junction Dopant - 8150

^{*}In measured by surface photovoltage technique.

Conclusions: Excimer Laser Processing

- FRONT JUNCTION (PHOSPHORUS DIFFUSED) SATISFACTORY FOR SOLAR CELLS.
- BACK JUNCTION SHALLOW DUE TO SLIGHT PENETRATION OF BORON OR ALUMINUM.
 RESULTS IN HIGH SERIES RESISTANCE IN CELLS.
- FURTHER TESTS TO BE CARRIED OUT ON LOW RESISTIVITY MATERIAL.

Junction Formation Using a Directed Heat Source

- WEB STRIPS COATED WITH LIQUID DOPANTS (BOTH SIDES) AND
 HEATED IN A TUNGSTEN-HALOGEN FLASH LAMP
- NOMINAL TIME 15 SEC.
 NOMINAL TEMPERATURE 1100°C
- JUNCTIONS FORMED SIMULTANEOUSLY ON BOTH SIDES OF WEB STRIP
- N⁺PP⁺ AND P⁺NN⁺ CELLS FABRICATED
- NO CROSS-CONTAMINATION NOTED
- WORK CARRIED OUT COURTESY OF AG ASSOCIATES, PALO ALTO, CA

Heat Pulse Temperature-Time Profile

AG Associates 1052 Elwell Ct. Palo Alto, CA 94303 415-961-6823

ORIGINAL PACE IS OF POOR QUALITY

Heat Pulse Simultaneous Junction Formation

Heat Pulse Simultaneous Junction Formation

Simultaneous Junction Formation Using Heat Pulse: Representative Data

CELL ID	COND. TYPE	Res (Ωcm)	Voc(V)	$Jsc \left(\frac{mA}{cm^2}\right)$	<u>FF</u>	EFF.	COMMENTS
8A	Р	4	.497	23.8	.76	9.0	AS DIFFUSED
8B	Р	4	.541	29.1	.78	12.3	800°C ANNEAL
6A	N	1	.556	24.9	.78	10.8	AS DIFFUSED
6B	N	1	.578	30.5	.75	13.2	800°C ANNEAL
7A	N	1	.561	26.6	.79	11.8	AS DIFFUSED
7B	N	1	.601	32.9	.77	15.0	800°C ANNEAL

Dark I-V Data

SAMPLE	TREATMENT	$J_{02} \left(\frac{A}{cm^2}\right)$	Ln (µm)
7A	AS TREATED	6.6 x 10 ⁻¹²	63
7B	ANNEALED 800°C	1.4 x 10 ⁻¹²	320

N-TYPE SAMPLES FROM SAME WEB CRYSTAL

Conclusions: Directed Heat-Source Junction Formation

- SIMULTANEOUS DIFFUSION POSSIBLE WITHOUT CROSS-CONTAMINATION
- ANNEALING REQUIRED AFTER JUNCTION FORMATION TO ACHIEVE HIGHEST EFFICIENCY
- A DETAILED STUDY REQUIRED TO OPTIMIZE HEAT PULSE PARAMETERS (TIME/TEMP/COOLING RATE)