Unit 2 - Atoms and Bonds

Sunday, January 29, 2017 10:40 AM

Atoms.

Unit of energy lev = 1.602×10⁻¹⁹ J & energy gained accelerating election through 1 volt.

Electron configuration

From https://en.wikipedia.org/wiki/Electron-configuration

Periodic Table

http://www.ptable.com/ http://www.ptable.com/#Orbital

Without consulting Figure 2.6 or Table 2.2, determine whether each of the electron configurations given below is an inert gas, a halogen, an alkali metal, an alkaline earth metal, or a transition metal. Justify your choices.

- (a) $1s^22s^22p^63s^23p^63d^74s^2$.
- **(b)** $1s^22s^22p^63s^23p^6$.
- (c) $1s^22s^22p^5$.
- (d) $1s^22s^22p^63s^2$.
- (e) $1s^22s^22p^63s^23p^63d^24s^2$.
- (f) $1s^22s^22p^63s^23p^64s^1$.

30

Bonds. Ionic Solids.

Madelung constant

From < https://en.wikipedia.org/wiki/Madelung constant>

Phys 226 Class Notes Page 2

Covalent solids.

Lewis structure

From < https://en.wikipedia.org/wiki/Lewis_structure>

Metalic Solids.

Secondary bonding.

hydrogen bonding

van der Waals bouding - induced dipole-induced dipole

Bond strengths & melting points.

Table 2.3 Bonding Energies and Melting Temperatures for Various Substances

Bonding Type	Substance	Bonding Energy		Melting
		kJ/mol (kcal/mol)	eV/Atom, Ion, Molecule	Temperature (°C)
Ionic	NaCl	640 (153)	3.3	801
	MgO	1000 (239)	5.2	2800
Covalent	Si	450 (108)	4.7	1410
	C (diamond)	713 (170)	7.4	>3550
Metallic	Hg	68 (16)	0.7	-39
	Al	324 (77)	3.4	660
	Fe	406 (97)	4.2	1538
	W	849 (203)	8.8	3410
van der Waals	Ar	7.7 (1.8)	0.08	-189
	Cl_2	31 (7.4)	0.32	-101
Hydrogen	NH_3	35 (8.4)	0.36	-78
	H ₂ O	51 (12.2)	0.52	0