Homework 11

Andrei Tumbar

04-14-2021

Exercise 34

 \mathbf{a}

The critical path on this circuit is from A or B on the first adder to C_{out} followed by C_{in} to S on the second adder. The propagation delay of the flip-flops as well as their hold times are also taken into account.

$$T_c = 35 + 30 + 25 + 20$$

= $35ps + 25ps + 20ps + 10ps = 110ps$
 $F = 9.09GHz$

b

$$T_c = 35 + 30 + 25 + 20 + t_{skew}$$

 $1/8GHz = 125ps$
 $t_{skew} = 125ps - 110ps = 15ps$

 \mathbf{b}

The flip flops have a minimum hold time of 10ps. The earliest the output can begin to change is the sum of the FF_{cd} and the $Adder_{min-cd}$ which is:

$$CD_{min} = 21ps + 15ps = 35ps$$

Therefore the max skew for a holdtime violation is:

$$Skew_{max} = 35ps - 10ps = 25ps$$

Exercise 35

 \mathbf{a}

$$40MHz = 25ns$$

 $25ns = 0.61x + 0.72ns + 0.53ns$
 $x = 38.93 = 38CLBs$

 \mathbf{b}

The hold time is 0ns so the maximum clock skew is the clock period of 25ns.

Exercise 40

Given that the metastablity detector M has a low enough propagation time, this circuit would never produce a metastable result. This setup time would need to be low enough to satify this equation:

$$T_c \ge FF_{setup} + 2 * FF_{prop} + M_{prop}$$

The FF propagation time must be multiplied by 2 so that the D2 signal has time to reset when the metastable detector asynchronously resets the first flip-flop.