A Guarded Syntactic Model of Gradual Dependent Types

Joey Eremondi April 18, 2022

Overview

Two Problems

Two Problems

Implementing Gradual Dependent Types

Two Problems

- Implementing Gradual Dependent Types
- · Denotational Semantics + Metatheory

Two Problems

- Implementing Gradual Dependent Types
- · Denotational Semantics + Metatheory

One Soution

Two Problems

- Implementing Gradual Dependent Types
- · Denotational Semantics + Metatheory

One Soution

 Approximate Normalization + Translation to Static Dependent Types

Implementing Gradual Dependent Types

Long-term goal: gradual types in a full-scale dependent language

Long-term goal: gradual types in a full-scale dependent language

Long-term goal: gradual types in a full-scale dependent language

Machinery

· Many parts to dependent type checking and compilation

Long-term goal: gradual types in a full-scale dependent language

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons

Long-term goal: gradual types in a full-scale dependent language

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - Unification/inference

Long-term goal: gradual types in a full-scale dependent language

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - · Unification/inference
 - · Code generation/optimization

Long-term goal: gradual types in a full-scale dependent language

- Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - · Unification/inference
 - Code generation/optimization
- · Want to avoid re-implementing as much of this as possible

Long-term goal: gradual types in a full-scale dependent language

Machinery

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - Unification/inference
 - Code generation/optimization
- · Want to avoid re-implementing as much of this as possible

Efficiency

Long-term goal: gradual types in a full-scale dependent language

Machinery

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - Unification/inference
 - · Code generation/optimization
- · Want to avoid re-implementing as much of this as possible

Efficiency

· Normalizing/comparing types is expensive

Long-term goal: gradual types in a full-scale dependent language

Machinery

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - Unification/inference
 - · Code generation/optimization
- · Want to avoid re-implementing as much of this as possible

Efficiency

- Normalizing/comparing types is expensive
- · Want to leverage existing techniques

Long-term goal: gradual types in a full-scale dependent language

Machinery

- · Many parts to dependent type checking and compilation
 - Compile-time evaluation for comparisons
 - Unification/inference
 - · Code generation/optimization
- · Want to avoid re-implementing as much of this as possible

Efficiency

- Normalizing/comparing types is expensive
- Want to leverage existing techniques
 - E.g. Idris: experimental normalization by compilation to ChezScheme

Compile gradual dependent types to static dependent types without changing the static core language

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

Challenge: Effects in gradual language

· Gradual languages: two effects

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

- · Gradual languages: two effects
 - · Failure just model as special value in gradual language

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

- · Gradual languages: two effects
 - · Failure just model as special value in gradual language
 - · Non-termination

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

- · Gradual languages: two effects
 - · Failure just model as special value in gradual language
 - · Non-termination
- Dependent languages restricted in how non-termination is used

Compile gradual dependent types to static dependent types without changing the static core language

· Can use existing normalization, unification, etc.

- · Gradual languages: two effects
 - · Failure just model as special value in gradual language
 - · Non-termination
- Dependent languages restricted in how non-termination is used
 - Ensures consistency and decidablity of type checking

Definitions marked as "partial"

Are not checked for termination/productivity

- Are not checked for termination/productivity
- Allows

- Are not checked for termination/productivity
- Allows
 - · General recursion

- Are not checked for termination/productivity
- Allows
 - General recursion
 - Non-positive datatypes

Definitions marked as "partial"

- Are not checked for termination/productivity
- · Allows
 - · General recursion
 - Non-positive datatypes

At compile-time

Definitions marked as "partial"

- Are not checked for termination/productivity
- Allows
 - General recursion
 - Non-positive datatypes

At compile-time

Can hide implementations so partial functions never normalized

Definitions marked as "partial"

- Are not checked for termination/productivity
- Allows
 - General recursion
 - Non-positive datatypes

At compile-time

- Can hide implementations so partial functions never normalized
- Conservative: some equivalent partial-terms may rejected as non-equal

Definitions marked as "partial"

- Are not checked for termination/productivity
- Allows
 - · General recursion
 - Non-positive datatypes

At compile-time

- Can hide implementations so partial functions never normalized
- Conservative: some equivalent partial-terms may rejected as non-equal
 - need to normalize to see that are equal

The Idris model of Non-termination

Definitions marked as "partial"

- Are not checked for termination/productivity
- Allows
 - General recursion
 - Non-positive datatypes

At compile-time

- Can hide implementations so partial functions never normalized
- Conservative: some equivalent partial-terms may rejected as non-equal
 - need to normalize to see that are equal
- Ensures type-checking terminates

Ad-hoc, hard to reason about

Ad-hoc, hard to reason about

• e.g. it's hard to prove that every gradual program's translation is well-typed

Ad-hoc, hard to reason about

- e.g. it's hard to prove that every gradual program's translation is well-typed
 - · Need to reason about internal details of normalizer

Ad-hoc, hard to reason about

- e.g. it's hard to prove that every gradual program's translation is well-typed
 - Need to reason about internal details of normalizer
- Want formalism of Idris-style non-termination, so can prove translation proves

Ad-hoc, hard to reason about

- e.g. it's hard to prove that every gradual program's translation is well-typed
 - Need to reason about internal details of normalizer
- Want formalism of Idris-style non-termination, so can prove translation proves

We will use Guarded Type Theory as a theoretical model of Idris

Ad-hoc, hard to reason about

- e.g. it's hard to prove that every gradual program's translation is well-typed
 - · Need to reason about internal details of normalizer
- Want formalism of Idris-style non-termination, so can prove translation proves

We will use Guarded Type Theory as a theoretical model of Idris

 Lets us formalize the notion of "this value not normalized at compile time"

Ad-hoc, hard to reason about

- e.g. it's hard to prove that every gradual program's translation is well-typed
 - Need to reason about internal details of normalizer
- Want formalism of Idris-style non-termination, so can prove translation proves

We will use Guarded Type Theory as a theoretical model of Idris

- Lets us formalize the notion of "this value not normalized at compile time"
- · More on this later

How can we prevent non-termination during compile time normalization?

How can we prevent non-termination during compile time normalization?

Separate semantics for compile-time and run-time normalization

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts \langle ? \Leftarrow (? \rightarrow ?) \rangle **f**

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts \langle ? \Leftarrow (? \rightarrow ?) \rangle **f**
 - Approx: reduces to $\lambda x. f$?

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts $\langle ? \leftarrow (? \rightarrow ?) \rangle f$
 - Approx: reduces to $\lambda x. f$?

Translation:

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts $\langle ? \leftarrow (? \rightarrow ?) \rangle f$
 - Approx: reduces to λx . f?

Translation:

• Model approx. ? as strictly-positive $Unk = (1 \rightarrow Unk) + (Unk \times Unk) \dots$

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts $\langle ? \leftarrow (? \rightarrow ?) \rangle f$
 - Approx: reduces to λx . f?

Translation:

- Model approx. ? as strictly-positive $Unk = (1 \rightarrow Unk) + (Unk \times Unk) \dots$
- · Full translation produces pairs of approximate and exact

How can we prevent non-termination during compile time normalization?

- Separate semantics for compile-time and run-time normalization
- Only difference: casts $\langle ? \leftarrow (? \rightarrow ?) \rangle f$
 - Approx: reduces to λx . **f**?

Translation:

- Model approx. ? as strictly-positive $Unk = (1 \rightarrow Unk) + (Unk \times Unk) \dots$
- Full translation produces pairs of approximate and exact
- · Type computations only use approximate part

Semantics _____

The Other Side: Denotational

Broad Motivation

Do gradual dependent types mean anything? Do they make sense?

Broad Motivation

Do gradual dependent types mean anything? Do they make sense?

What kind of reasoning principles hold for gradual dependent types?

Broad Motivation

Do gradual dependent types mean anything? Do they make sense?

What kind of reasoning principles hold for gradual dependent types?

What kind of guarantees can we give the programmer?

Fire Triangle: Can't have all of:

Fire Triangle: Can't have all of:

Conservatively extend CIC

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization

Fire Triangle: Can't have all of:

- · Conservatively extend CIC
- Strong normalization
- EP-pairs

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization
- EP-pairs

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization
- EP-pairs

But can get what we really want:

Conservatively extend CIC

Fire Triangle: Can't have all of:

- · Conservatively extend CIC
- Strong normalization
- EP-pairs

- Conservatively extend CIC
- Decidable type-checking

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization
- EP-pairs

- Conservatively extend CIC
- Decidable type-checking
- Weak canonicity

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization
- EP-pairs

- Conservatively extend CIC
- · Decidable type-checking
- Weak canonicity
- Gradual Guarantees + other properties

Fire Triangle: Can't have all of:

- Conservatively extend CIC
- Strong normalization
- EP-pairs

But can get what we really want:

- Conservatively extend CIC
- · Decidable type-checking
- Weak canonicity
- · Gradual Guarantees + other properties

Need Approx. Normalization for decidable type-checking

Want to prove that approximate normalization is terminating

Want to prove that approximate normalization is terminating

GDTL approach doesn't scale to inductives

Want to prove that approximate normalization is terminating

GDTL approach doesn't scale to inductives

Want to prove the GGs for Approx. Normalization

Want to prove that approximate normalization is terminating

GDTL approach doesn't scale to inductives

Want to prove the GGs for Approx. Normalization

GDTL Approach to errors was wrong

Want to prove that approximate normalization is terminating

GDTL approach doesn't scale to inductives

Want to prove the GGs for Approx. Normalization

- GDTL Approach to errors was wrong
- GCIC approach simulation-based, complex

Want to prove that approximate normalization is terminating

GDTL approach doesn't scale to inductives

Want to prove the GGs for Approx. Normalization

- GDTL Approach to errors was wrong
- GCIC approach simulation-based, complex
 - · Even more complex when add approximation

Theorems that show that gradual dependent types behave as expected

• EP-Pairs, or a version of them

- EP-Pairs, or a version of them
 - Not needlessly producing?

- · EP-Pairs, or a version of them
 - · Not needlessly producing?
- Weak canonicity

- · EP-Pairs, or a version of them
 - · Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types

- · EP-Pairs, or a version of them
 - · Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types
- Preservation of static propositional equalities

- EP-Pairs, or a version of them
 - Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types
- Preservation of static propositional equalities
 - · i.e. equal static values are equal in the model

- EP-Pairs, or a version of them
 - Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types
- Preservation of static propositional equalities
 - · i.e. equal static values are equal in the model
 - · Weaker version of full-abstraction

Theorems that show that gradual dependent types behave as expected

- · EP-Pairs, or a version of them
 - · Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types
- Preservation of static propositional equalities
 - · i.e. equal static values are equal in the model
 - · Weaker version of full-abstraction

Often need some sort of logical relation

Theorems that show that gradual dependent types behave as expected

- EP-Pairs, or a version of them
 - · Not needlessly producing?
- Weak canonicity
 - Nothing gets stuck from gradual types
- Preservation of static propositional equalities
 - · i.e. equal static values are equal in the model
 - · Weaker version of full-abstraction

Often need some sort of logical relation

If syntactic model is in consistent calculus, then can prove these things in the target theory itself (unlike $GCIC^{\mathcal{G}}$)

Model Approximate Normalization in Type Theory (MLTT?)

Model Approximate Normalization in Type Theory (MLTT?)

· Proves that all terms halt

Model Approximate Normalization in Type Theory (MLTT?)

- · Proves that all terms halt
- · Decidable type-checking

Model Approximate Normalization in Type Theory (MLTT?)

- · Proves that all terms halt
- Decidable type-checking

Model exact execution in Guarded Type Theory

Model Approximate Normalization in Type Theory (MLTT?)

- · Proves that all terms halt
- Decidable type-checking

Model exact execution in Guarded Type Theory

 Consistent logic for describing (potentially) non-terminating terms

Model Approximate Normalization in Type Theory (MLTT?)

- · Proves that all terms halt
- · Decidable type-checking

Model exact execution in Guarded Type Theory

- Consistent logic for describing (potentially) non-terminating terms
- · Gives non-positive datatypes, can model? exactly

Model Approximate Normalization in Type Theory (MLTT?)

- · Proves that all terms halt
- · Decidable type-checking

Model exact execution in Guarded Type Theory

- Consistent logic for describing (potentially) non-terminating terms
- Gives non-positive datatypes, can model? exactly

Then can prove things about the language using the model

Introduces:

• A "later" modality $ho: \mathit{Type} \to \mathit{Type}$

- A "later" modality $ho: \mathit{Type} \to \mathit{Type}$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- Arbitrary guarded fixed-points:

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- · Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \to A) \to A$

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \rightarrow \triangleright A$ and $app: \triangleright (A \rightarrow B) \rightarrow \triangleright A \rightarrow \triangleright B$
- · Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \to A) \to A$
 - · lob: fix f = f(next(fix f)) (but not definitionally)

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- · Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \rightarrow A) \rightarrow A$
 - · lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter \triangleright : $\triangleright Type \rightarrow Type$ (to make recursive types)

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \rightarrow A) \rightarrow A$
 - lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter $\triangleright : \triangleright Type \rightarrow Type$ (to make recursive types)
- Can be used to make a "lifting monad" $L A = A + \triangleright (L A)$

Introduces:

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \to A) \to A$
 - lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter $\triangleright : \triangleright Type \rightarrow Type$ (to make recursive types)
- Can be used to make a "lifting monad" $L A = A + \triangleright (L A)$

Gives us:

Introduces:

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \to \triangleright A$ and $app: \triangleright (A \to B) \to \triangleright A \to \triangleright B$
- Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \rightarrow A) \rightarrow A$
 - lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter $\triangleright : \triangleright Type \rightarrow Type$ (to make recursive types)
- Can be used to make a "lifting monad" $L A = A + \triangleright (L A)$

Gives us:

Non-positive inductive datatypes

Introduces:

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \rightarrow \triangleright A$ and $app: \triangleright (A \rightarrow B) \rightarrow \triangleright A \rightarrow \triangleright B$
- Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \rightarrow A) \rightarrow A$
 - lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter $\triangleright : \triangleright Type \rightarrow Type$ (to make recursive types)
- Can be used to make a "lifting monad" $L A = A + \triangleright (L A)$

Gives us:

- Non-positive inductive datatypes
- · General recursion, but only behind modality

Introduces:

- A "later" modality \triangleright : $Type \rightarrow Type$
- Operators $next: A \rightarrow \triangleright A$ and $app: \triangleright (A \rightarrow B) \rightarrow \triangleright A \rightarrow \triangleright B$
- Arbitrary guarded fixed-points:
 - $fix: (\triangleright A \to A) \to A$
 - lob: fix f = f(next(fix f)) (but not definitionally)
- Type lifter \triangleright : $\triangleright Type \rightarrow Type$ (to make recursive types)
- Can be used to make a "lifting monad" $L A = A + \triangleright (L A)$

Gives us:

- Non-positive inductive datatypes
- · General recursion, but only behind modality

Consistent: model in Topos of Trees

Universe à la Tarski

- Data-type of "codes" \mathbb{C}_ℓ : Type

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Universe à la Tarski

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Syntactic Model

Universe à la Tarski

- Data-type of "codes" $\mathbb{C}_\ell:\mathit{Type}$
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Syntactic Model

· Type semantics $\mathcal{T}[\![\mathbf{T}]\!]:\mathbb{C}_\ell$

A Model in Guarded Type Theory

Universe à la Tarski

- Data-type of "codes" $\mathbb{C}_\ell:\mathit{Type}$
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Syntactic Model

- · Type semantics $\mathcal{T}[\![\mathbf{T}]\!]:\mathbb{C}_\ell$
- \cdot Expression semantics: if t:T then

$$t: (El_{approx} \mathcal{T}[\![\mathbf{T}]\!]) \times (L (El_{exact} \mathcal{T}[\![\mathbf{T}]\!]))$$

A Model in Guarded Type Theory

Universe à la Tarski

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Syntactic Model

- · Type semantics $\mathcal{T}[\![\mathbf{T}]\!]:\mathbb{C}_\ell$
- Expression semantics: if t:T then

$$t: (El_{approx} \mathcal{T}[\![\mathbf{T}]\!]) \times (L (El_{exact} \mathcal{T}[\![\mathbf{T}]\!]))$$

• Functions : $El_{exact} \mathcal{T}[\![(\mathbf{x}:\mathbf{T_1}) \to \mathbf{T_2}]\!] = El_{exact} \mathcal{T}[\![\mathbf{T_1}]\!] \to L (El_{exact} \mathcal{T}[\![\mathbf{T_2}]\!])$

A Model in Guarded Type Theory

Universe à la Tarski

- Data-type of "codes" \mathbb{C}_ℓ : Type
- "Elements-of" interpretations
 - $El_{approx}: \mathbb{C}_{\ell} \to Type$
 - $El_{exact}: \mathbb{C}_{\ell} \to Type$

Syntactic Model

- · Type semantics $\mathcal{T}[\![\mathbf{T}]\!]:\mathbb{C}_\ell$
- \cdot Expression semantics: if t:T then

$$t: (El_{approx} \mathcal{T}[\![\mathbf{T}]\!]) \times (L (El_{exact} \mathcal{T}[\![\mathbf{T}]\!]))$$

- Functions : $El_{exact} \mathcal{T}[\![(\mathbf{x}:\mathbf{T_1}) \to \mathbf{T_2}]\!] = El_{exact} \mathcal{T}[\![\mathbf{T_1}]\!] \to L (El_{exact} \mathcal{T}[\![\mathbf{T_2}]\!])$
 - · Allows for non-termination

•
$$Unk = fix (\lambda(x : \triangleright Type).(Unk \times Unk) + (\triangleright X \rightarrow L Unk) + ...)$$

- $Unk = fix (\lambda(x : \triangleright Type).(Unk \times Unk) + (\triangleright X \rightarrow L Unk) + \ldots)$
- Have $\theta : \triangleright A \to L A$

- · $Unk = fix (\lambda(x : \triangleright Type).(Unk \times Unk) + (\triangleright X \rightarrow L Unk) + ...)$
- Have $\theta : \triangleright A \to L A$
- Then write $cast: (c_1 \ c_2 : \mathbb{C}_{\ell}) \to El_{exact} \ c_1 \to (El_{exact} \ c_2)$

- · $Unk = fix (\lambda(x : \triangleright Type).(Unk \times Unk) + (\triangleright X \rightarrow L Unk) + ...)$
- Have $\theta : \triangleright A \to L A$
- Then write $cast: (c_1 \ c_2: \mathbb{C}_{\ell}) \to El_{exact} \ c_1 \to (El_{exact} \ c_2)$
- Have $f \colon \mathit{Unk} \to \mathit{L}\ \mathit{Unk}$ is cast to $\lambda(x \colon \triangleright \mathit{Unk}) \to f >> = (\theta\ x)$

Straightforward mapping of GTT to partial Idris

Straightforward mapping of GTT to partial Idris

• fix becomes general recursion

Straightforward mapping of GTT to partial Idris

- fix becomes general recursion
- Guarded non-positive types just turn into partial non-positive types

Straightforward mapping of GTT to partial Idris

- fix becomes general recursion
- Guarded non-positive types just turn into partial non-positive types

```
fix f = f(next(fix f)) is not definitional in GTT:
```

Straightforward mapping of GTT to partial Idris

- · fix becomes general recursion
- Guarded non-positive types just turn into partial non-positive types

fix f = f(next(fix f)) is not definitional in GTT:

 Know that type derivation never relies on normalizing non-terminating functions

Straightforward mapping of GTT to partial Idris

- fix becomes general recursion
- Guarded non-positive types just turn into partial non-positive types

fix f = f(next(fix f)) is not definitional in GTT:

- Know that type derivation never relies on normalizing non-terminating functions
- So neither does Idris typing

Start with syntactic model

Start with syntactic model

Show that each reduction produces an equal value in the model

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

· Related types have a Galois Connection

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

- Related types have a Galois Connection
- · Related equality witnesses are as precise as the endpoints

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

- · Related types have a Galois Connection
- · Related equality witnesses are as precise as the endpoints
- Related functions produce related results

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

- · Related types have a Galois Connection
- Related equality witnesses are as precise as the endpoints
- Related functions produce related results

Soundness: Syntactic Precision implies Semantic Precision

Start with syntactic model

Show that each reduction produces an equal value in the model

Logical Relation for semantic precision in the model

- · Related types have a Galois Connection
- Related equality witnesses are as precise as the endpoints
- Related functions produce related results

Soundness: Syntactic Precision implies Semantic Precision

GGs as corollary