1

ASSIGNMENT 2

KOLLI RAVI

1 Problem

3 ANSWER

Option C is the valid answer.

_ _ _ _ _ _

If A is a square matrix such that $A^2 = A$, then $(I + A)^3 - 7A$ is equal to

(A) A

(B) I - A

(C) I

(D) 3A

2 solution

Given
$$A^2 = A \implies A^2 - A = 0$$

Let λ is the eigen value then theevery eigen value satisfies its very own characteristic equation

$$\implies \lambda^2 = \lambda \ (2.0.1)$$

$$\lambda^2 - \lambda = 0 \ (2.0.2)$$

Then $(I + A)^3 - 7A$ can be written as $(I + \lambda)^3 - 7\lambda$

$$(1+\lambda)^3 - 7\lambda = 1^3 + \lambda^3 + 3(1^2)\lambda + 3\lambda^2(1) - 7\lambda$$
(2.0.3)

we know that

$$I^3 = I^2 = I = 1 (2.0.4)$$

$$= 1 + \lambda^3 + 3(1)\lambda + 3\lambda^2(1) - 7\lambda \tag{2.0.5}$$

$$= 1 + \lambda^3 + 3\lambda + 3\lambda^2 - 7\lambda \tag{2.0.6}$$

$$=1+(\lambda^2\lambda)+3\lambda+3\lambda-7\lambda \tag{2.0.7}$$

$$= 1 + (\lambda \lambda) - \lambda \tag{2.0.8}$$

$$= 1 + \lambda^2 - \lambda \tag{2.0.9}$$

From the equation (2.0.2) $\lambda^2 - \lambda = 0$

$$= 1+0$$
 (2.0.10)

$$= 1$$
 (2.0.11)