EE24BTECH11047 - Niketh Prakash Achanta

Question: Find the equation of the normal to the curve $x^2 = 4y$ that passes through the point (1,2).

Solution

Theoretical solution:

The equation of the curve is

$$x^2 = 4y. (0.1)$$

1

Step 1: Slope of the tangent Differentiating $(x^2 = 4y)$ with respect to x, we get:

$$2x = 4\frac{dy}{dx},\tag{0.2}$$

$$\frac{dy}{dx} = \frac{x}{2}. ag{0.3}$$

Thus, the slope of the tangent at a point (x_1, y_1) is:

slope of tangent =
$$\frac{x_1}{2}$$
. (0.4)

Step 2: Slope of the normal The slope of the normal, being the negative reciprocal of the slope of the tangent, is:

slope of normal =
$$-\frac{2}{x_1}$$
. (0.5)

Step 3: Equation of the normal The equation of the normal passing through (x_1, y_1) is:

$$y - y_1 = -\frac{2}{x_1}(x - x_1),\tag{0.6}$$

$$x_1y - x_1y_1 = -2(x - x_1),$$
 (0.7)

$$x_1 y + 2x = 2x_1 + x_1 y_1. (0.8)$$

Step 4: Using the condition that the normal passes through (1, 2) Substitute

(x = 1, y = 2) into the normal equation:

$$x_1(2) + 2(1) = 2x_1 + x_1y_1,$$
 (0.9)

$$2x_1 + 2 = 2x_1 + x_1 \left(\frac{x_1^2}{4}\right),\tag{0.10}$$

$$2 = \frac{x_1^3}{4},\tag{0.11}$$

$$x_1^3 = 8,$$
 (0.12)

$$x_1 = 2. (0.13)$$

Step 5: Finding y_1 Substitute $x_1 = 2$ into $x_1^2 = 4y_1$ to find y_1 :

$$(2)^2 = 4y_1, (0.14)$$

$$y_1 = 1. (0.15)$$

Conclusion: The foot of the normal is (2, 1).