

СПЕКТРЫ ЗВЁЗД

Анджело Секки (1818 – 1878)

Генри Дрейпер (1837-1882)

КАТАЛОГ ГЕНРИ ДРЕЙПЕРА

- 200+ тыс. спектров
- Руководитель: Эдвард Пикеринг
- Обработка шла силами «гарвардских счётчиц» (Harvard Computers)
- Издан в 1918-1924
- На его основе построена гарвардская (классическая) классификация звёзд.

Main Sequence B8-A2

He I 4026, which is equal in intensity to K in the B8 dwarf & Per, becomes fainter at B9 and disappears at A0. In the B9 star & Peg He I 4026 = Sc II 4129. He I 4471 behaves similarly to He I 4026.

The singly ionized metallic lines are progressively stronger in a CMa and n Oph than in a Lyr. The spectral type is determined from the vatios: BB, B9: HeI 4026: Ca II K, HeI 4026: Si II 4129, HeI 4471: Mg II 4481. AO-AZ: Mg II 4481: 4385, Si II 4129: Mn I 4030-4.

Eastman Process

СПЕКТРЫ НАЧАЛА XX ВЕКА

СПЕКТРЫ

ДИАГРАММА ЦВЕТ - ВЕЛИЧИНА

Спектральный класс

Температура, К

8

СОЛНЕЧНАЯ КОРОНА

ЭМИССИОННЫЕ ТУМАННОСТИ

ИЗЛУЧЕНИЕ В КОСМОСЕ

ИЗЛУЧЕНИЕ ИЗЛУЧЕНИЯ

Энергия, излучаемая объёмом V в интервале частот, за единицу времени в малый телесный угол:

$$dE_{
m v}=j_{
m v}~dvdVd\Omega dt$$
 (объёмный) коэффициент излучения $\left[rac{
m эр \Gamma}{
m cm^3\cdot cek\cdot ctep\cdot \Gamma \mu}
ight],~j_{
m v}\propto k(T)\cdot n^2$

Объем $dV = dAds \Rightarrow$ добавка к интенсивности вдоль луча s:

$$dI_{
u} = j_{
u} \, ds$$
 или $I_{
u}(s) = I_{
u}(0) + \int_0^s j_{
u}(s') ds'$

Это другая форма записи утверждения о сохранении интенсивности вдоль луча зрения: $j_{
u}=0 \Rightarrow rac{dI_{
u}}{ds}=0$

Иногда также вводят излучательную способность $\epsilon_{r,v}=rac{j_v}{
ho}\left[rac{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }{r\cdot {\rm cek\cdot ctep\cdot \Gamma u}}\right]$

ПОГЛОЩЕНИЕ ИЗЛУЧЕНИЯ

При прохождении пути ds часть фотонов поглощается веществом (выпадает из луча) и поэтому

$$dI_{
m v} = -lpha_{
m v} I ds$$
 коэффициент поглощения [см $^{-1}$]

То есть интенсивность убывает по экспоненциальному закону:

$$I_{\nu}(s) = I_{\nu}(0) \exp\left[-\int_{0}^{s} \alpha_{\nu}(s')ds'\right]$$

Иногда вводят коэффициент непрозрачности: $\alpha_{
m v}={\color{red}\kappa_{
m v}}
ho$, где ${\color{red}\kappa_{
m v}}\left[\frac{{
m cm}^2}{{
m r}}\right]$.

СЕЧЕНИЕ ПОГЛОЩЕНИЯ

Если n — плотность числа частиц в облаке [см $^{-3}$], то можно ввести эффективное сечение поглощения σ_{v} :

$$\alpha_{\nu} = \sigma_{\nu} n$$
, где σ_{ν} [см²]

«площадь поперечного сечения частицы с точки зрения фотона»

Средняя длина свободного пробега фотона: $\sigma_{\nu} n \langle l_{\nu} \rangle = 1 \Rightarrow$

$$\langle l_{\nu} \rangle = \frac{1}{\sigma_{\nu} n} = \frac{1}{\alpha_{\nu}} [\text{cm}]$$

Важные условия, при которых эта модель применима:

- (a) Размер частиц много меньше расстояния между ними, т.е. $\sqrt{\sigma_{
 m v}} \ll d \sim n^{1/3}$ или $\alpha_{
 m v} d \ll 1$. Иначе будут пересечения!
- (б) Все поглощающие частицы независимы и распределены¹⁴ равномерно по малому объёму.

УРАВНЕНИЕ ПЕРЕНОСА

$$rac{dI_{
u}}{ds} = -lpha_{
u}I_{
u} + j_{
u}$$
 или $rac{dI_{
u}}{d au_{
u}} = -I_{
u} + S_{
u}$

Здесь $au_{
m v}$ – оптическая толща, так что $d au_{
m v}=lpha_{
m v}ds$. А $extbf{S}_{
m v}=j_{
m v}/lpha_{
m v}$ – функция источника.

Решение в общем случае:

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + \int_{0}^{\tau_{\nu}} e^{-(\tau_{\nu} - \tau_{\nu}')} S_{\nu}(\tau_{\nu}') d\tau_{\nu}'$$

$$\frac{dI_{\nu}}{d\tau_{\nu}} = -I_{\nu} + S_{\nu}$$

УРАВНЕНИЕ ПЕРЕНОСА

Пусть $S_{\nu}=const$, тогда

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0)e^{-\tau_{\nu}} + S_{\nu}(1 - e^{-\tau_{\nu}}) = S_{\nu} + e^{-\tau_{\nu}}[I_{\nu}(0) - S_{\nu}]$$

Оптически толстая среда: $au_{
u}\gg 1$

$$I_{\nu}(\tau_{\nu}) \rightarrow S_{\nu}$$

Если излучение тепловое $(S_{\nu} = B_{\nu})$, тогда в пределе больших оптических толщин мы всегда будем видеть планковский спектр!

Оптически тонкая среда: $au_{
u} \ll 1$

$$I_{\nu}(\tau_{\nu}) = I_{\nu}(0) - \tau_{\nu}[I_{\nu}(0) - S_{\nu}]$$

Если $I_{\nu}(0) > S_{\nu}$, то интенсивность уменьшается вдоль луча;

Если $I_{\nu}(0) < S_{\nu}$, то интенсивность увеличивается вдоль луча;

ОПТИЧЕСКАЯ ТОЛЩА

В среде без излучения $\exp(-\tau_{\nu})$ – это вероятность того, что фотон не будет поглощён, пройдя оптическую толщу τ_{ν} (это доля прошедших фотонов). Тогда средняя оптическая толща, которую пройдёт фотон:

$$\langle \tau_{\nu} \rangle = \int_{0}^{\infty} \tau_{\nu} \exp(-\tau_{\nu}) d\tau_{\nu} = 1$$

Откуда опять получаем длину свободного пробега фотона $\langle \tau_{\nu} \rangle = \alpha_{\nu} \langle l_{\nu} \rangle = 1 \Rightarrow \langle l_{\nu} \rangle = \alpha_{\nu}^{-1} = (n\sigma_{\nu})^{-1}$

Таким образом, фотоны, которые видит наблюдатель от плотной среды приходят с оптической толщи $\, au=1\,$

ПОТЕМНЕНИЕ ДИСКА ЗВЕЗДЫ К КРАЮ

ОПТИЧЕСКАЯ ТОЛЩА

СЕЧЕНИЕ ПОГЛОЩЕНИЯ

Коэффициент поглощения не постоянен и около выделенных энергий имеет максимум (линии). И конечную ширину.

$$P_v(v) \propto v^2 \exp(-v^2)$$

$$P_{\lambda}(\lambda) \sim N\left(\lambda_0, \lambda_0 \sqrt{\frac{\xi kT}{mc^2}}\right)$$

Full Width Half Maximum:

$$FWHM = 2\sqrt{2 \ln 2} s_{\lambda}$$

-- доплеровское, тепловое ушириение

$$P_{\lambda}(\lambda) \propto (\lambda - \lambda_0)^{-2}$$

-- лоренцевское уширение

$$I_{\nu}(\tau_{\nu}) = S_{\nu} + e^{-\tau_{\nu}}[I_{\nu}(0) - S_{\nu}]$$

ФОРМИРОВАНИЕ ЛИНИЙ: БЕЗ ПОДСВЕТКИ

ФОРМИРОВАНИЕ ЛИНИЙ: С ПОДСВЕТКОЙ

ФОРМИРОВАНИЕ ЛИНИЙ: С ПОДСВЕТКОЙ

 V_0

ИТОГОВЫЕ СПЕКТРЫ ЗВЁЗД

НЕ ТОЛЬКО ТЕПЛОВЫЕ СПЕКТРЫ

ЯРКОСТНАЯ ТЕМПЕРАТУРА

Пусть $S_{\nu}=B_{\nu}$, и будем вычислять яркостную температуру в пределе Рэлея-Джинса ($h
u\ll kT$):

$$T_b = \frac{c^2}{2\nu^2 k} I_{\nu}$$

Уравнение переноса излучения через нагретую среду с температурой T тогда запишется как:

$$\frac{dT_b}{d\tau_v} = -T_b + T$$

$$T_b = T + e^{-\tau_v} [T_b(0) - T]$$

Для оптически толстой среды $\mathrm{e}^{- au_{
u}} o 0$ и $T_b \; -> \; T$

Для оптически тонкой среды без засветки $T_b pprox T au_{
m v} << T$

Вывод: Интенсивность АЧТ с температурой *Т* является максимально возможной интенсивностью теплового излучения для любого тела с этой температурой.

СЕМИНАР: МАЗЕРНЫЙ ИСТОЧНИК

СЕМИНАР: ДИСПЕРСИЯ

