1. Compare bivariate predictors to independence predictors

- run runME_oneZoneY.R
- required files: basefun.R, basefun_uni.R, cpp.R
- change case from 1 to 4 to do four different simulation studies in Section 4.1
- output: result/simuresult_EBP.rds
- use function AVMSE_BR in runME_analysis.R to compute MSE and bias ratio

2. Evaluation of bootstrap MSE estimator

- run runME_oneZoneY.R with setting bootstrap = TRUE
- required files: basefun.R, basefun_uni.R, cpp.R
- this bootstrap computation requires parallel computation
- output: result/bootstarpMSE_s.rds for $s=1,\ldots,S$
- use function relative_bias in runME_analysis.R to compute relative bias

3. Informative sampling simulation

- run runME_oneZoneY.R with setting noninfor = FALSE
- required files: basefun.R , basefun_uni.R, cpp.R
- set wronguse = TRUE to ignore the sampling weights in estimation procedure
- simulated sample data sets are names as <code>SAE_sample_infor_s.rds</code> for $s=1,\ldots,S$
- output: result/simuresult_EBP.rds

4. Reproduce Li & Zaslavsky (2010) Bayesian model

- run runME_bayes.R with rstan package
- required files: Bayes_basefun.R and simulated population and sample data stored in data folder
- output: rstan/Bayes_result.rds