Quad			
f	F.x		
0	Q.y		
1	Q.y		
2	Q.x		
3	Q.x		

Hexahedron			
f	(F.x, F.y)	$\int f$	(F.x, F.y)
0	(Q.y, Q.z)	3	(Q.x, Q.z)
1	(Q.y, Q.z)	4	(Q.x, Q.y)
2	(Q.x, Q.z)	5	(Q.x, Q.y)

Table 1: t8_element_boundary_face for quadrilaterals and hexahedra. Left: For a quadrilateral Q with anchor node (Q.x,Q.y) and a face f, the corresponding anchor node coordinate F.x of the face line element. Right: For a hexahedron Q with anchor node (Q.x,Q.y,Q.z) and a face f, the corresponding anchor node coordinates (F.x,F.y) of the face quadrilateral element. In either case, computing the coordinates is equivalent to a projection.