技術者リテラシー I (機械工学科) ―― 第2回 2024/10/2 略解

問題 1.

(1) 以下の図.

(2) 以下の図.

(3) 以下の図.

問題 2.

(1) 左が
$$y = 2^x$$
, 右が $y = 2^{-x}$ のグラフである.

(2) 以下の図.

問題 3.

(1) 左が $y = \log_3 x$, 右が $y = \log_{\frac{1}{2}} x$ のグラフである.

(2) 以下の図.

問題 4. 以下の図.

問題 5. 以下の図.

問題 6.

(2)
$$\cos \theta = -\frac{\sqrt{3}}{2} \, \, \mbox{$\m$$

(3)
$$\theta = \frac{\pi}{4}, \ \frac{5}{4}\pi.$$

- (4) $\cos\left(x + \frac{\pi}{3}\right) > -\frac{1}{2}$ と同値であり、これを解くと $-\frac{2}{3}\pi + 2n\pi < x + \frac{\pi}{3} < \frac{2}{3}\pi + 2n\pi \quad (n \text{ は整数}).$ よって $(2n-1)\pi < x < \frac{\pi}{3} + 2n\pi \quad (n \text{ は整数}).$
- (5) 三角関数の合成より $\sin\left(x-\frac{\pi}{3}\right) \ge \frac{\sqrt{2}}{2}$ と同値であり、これを解くと

$$\frac{\pi}{4} + 2n\pi \le x - \frac{\pi}{3} \le \frac{3}{4}\pi + 2n\pi \quad (n \text{ は整数}).$$
 よって $\frac{7}{12}\pi + 2n\pi \le x \le \frac{13}{12}\pi + 2n\pi \quad (n \text{ は整数}).$

(7)
$$2^{2x} = 2^{x+1}$$
 より $2x = x+1$, つまり $x = 1$.

(10)
$$2^{6x-2} \ge 2^{\frac{5}{2}}$$
 $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$

(11)
$$x = 3^2 = 9$$
.

(12)
$$x = \left(\frac{1}{4}\right)^{-\frac{3}{2}} = 8.$$

- (13) 真数条件より $x > \frac{1}{3}$. 与えられた不等式を解くと $3x 1 \le 16$, つまり $x \le \frac{17}{3}$. よって $\frac{1}{3} < x \le \frac{17}{3}$.
- (14) 真数条件より x < 3. 与えられた不等式を解くと $-x + 3 \le 4$, つまり $x \ge -1$. よって $-1 \le x < 3$.
- (15) 真数条件より $x>\frac{2}{3}$. 与えられた不等式を解くと 3x-2>9, つまり $x>\frac{11}{3}$. よって $x>\frac{11}{3}$.

(16)
$$\frac{3}{x-2} + 1 = x - 2$$
 を解くと $x = \frac{5 \pm \sqrt{13}}{2}$. よって下のグラフより

$$\frac{5-\sqrt{13}}{2} \le x < 2, \quad x \ge \frac{5+\sqrt{13}}{2}.$$

(17) $y=\sqrt{x+1}-1$ と y=2x-5の交点を考える. 連立すると $\sqrt{x+1}=2x-4$ となるが, 左辺は 0 以上なので $2x-4 \ge 0$, つまり $x \ge 2$. 方程式を 2 乗して解くと, $x=3,\frac{5}{4}$. $x \ge 2$ より x=3. よって下のグラフより $-1 \le x < 3$.

問題 7.
$$3X = A + 2B = \begin{pmatrix} 2 & -1 \\ 1 & -6 \end{pmatrix} + 2 \begin{pmatrix} 5 & -7 \\ 4 & 3 \end{pmatrix}$$
$$= \begin{pmatrix} 12 & -15 \\ 9 & 0 \end{pmatrix}.$$
$$よって $X = \frac{1}{3} \begin{pmatrix} 12 & -15 \\ 9 & 0 \end{pmatrix} = \begin{pmatrix} 4 & -5 \\ 3 & 0 \end{pmatrix}.$$$