Quantum Chemistry 6-8 Lectures

- Atomic Structure: Schrödinger equation, the hydrogen atom;
- The chemical bond: simplest molecules H₂⁺ and H₂;
- Vibration of diatomics: harmonic oscillator and Morse potential

Reference Text Books:

- Peter Atkins and Julio De Paula, Elements of Physical Chemistry, 7th/8th/10th editions
- Robert J. Silbey, Robert A Alberty and Moungi G Bawendi, Physical Chemistry, 7th edition
- Ira N Levine, Physical Chemistry, 6th edition
- Nivaldo J. Tro, Chemistry, A Molecular Approach, 4th edition

Basics of Quantum Mechanics

de Broglie Wavelength

- Albert Einstein for photon (1905): $E = mc^2 = hv = \frac{hc}{\lambda}$ $\Rightarrow mc = \frac{h}{\lambda}$ Planck's constant, $h=6.6 \times 10^{-34}$ m² kg/s
- Louis de Broglie analogy for particles (1924): $mv = p = \frac{h}{\lambda} \implies \lambda = \frac{h}{mv} = \frac{h}{p}$

de Broglie wavelength

- Total energy of the particle: $E = K + V = \frac{p^2}{2m} + V = \frac{(h/\lambda)^2}{2m} + V \implies 2m(E V) = (h/\lambda)^2 \implies \lambda = \frac{h}{\sqrt{2m(E V)}}$
- (i) de Broglie wavelength of an electron ($m_e=9.1 \times 10^{-31}$ kg, v = $5.9 \times 10^6 m/s$): $\lambda = 1.23 \times 10^{-10} m$ \Rightarrow Comparable to atomic size or a chemical bond
- (ii) de Broglie wavelength of a bullet (m = 0.5 g, v = 400 m/s): $\lambda = 3.3 \times 10^{-33}$ m \Rightarrow Negligibly small as compare to the bullet size
- (iii) de Broglie wavelength of a cricket ball (m = 200 g, v = 160 km/hr): $\lambda = 7.425 \times 10^{-35} \text{ m}$ \Rightarrow Negligibly small as compare to the ball size
- (iv) de Broglie wavelength of a person (m = 70 kg, v = 5 km/hr): $\lambda = 6.79 \times 10^{-36} \text{ } m$ \Rightarrow Negligibly small as compare to the size of the person

Postulates of Quantum Mechanics

- Postulate One: The state of a system is completely described by a wavefunction $\psi(\mathbf{r},t)$. If the wavefunction is not explicit function of time t, then the state is completely described by time-independent wavefunction $\psi(\mathbf{r})$.
- Postulate Two: For every observable in classical mechanics, there is corresponding linear Hermitian operator in quantum mechanics.
- Postulate Three: The possible measured values of the physical observable 0 for a system in state ψ_n are the eigenvalues a_n which satisfy an eigenfunction-eigenvalue relationship: $\hat{0}\psi_n = a_n\psi_n$ where $\hat{0}$ is the operator corresponding to the observable 0.
- Postulate Four: For a general state described by the wavefunction ψ , the average or expectation value for a series of measurements corresponding to the operator \hat{O} is given by

$$\langle a \rangle = \frac{\int_{volume} \psi^*(\mathbf{r}) \, \widehat{o}_{observable} \psi(\mathbf{r}) d\mathbf{r}}{\int_{volume} \psi^*(\mathbf{r}) \psi(\mathbf{r}) d\mathbf{r}} = \int_{volume} \psi^*_{norm}(\mathbf{r}) \, \widehat{o}_{observable} \psi_{norm}(\mathbf{r}) d\mathbf{r}$$

• Postulate Five: The wavefunction of a system changes with time according to the time-dependent Schrödinger equation $\widehat{H}\psi(\mathbf{r},t)=i\hbar\frac{\partial\psi(\mathbf{r},t)}{\partial t}$ where \widehat{H} is the Hamiltonian operator for the system.

Properties of a well-behaved wavefunction

• ψ may be a complex function and therefore may involve $i = \sqrt{-1}$

ψ may be a complex function and increase may involve $\iota = \psi$.	
Required Property	Why?
• ψ must be finite and single valued at any point	 To guarantee that there is only a single value for the probability at any point
• ψ must also be square-integrable	 Should be able to use ψ*ψ= ψ ² as a probability density, since any probability density must integrate over all space to give a total value of 1, which is clearly not possible if the integral of ψ ² is infinite. One consequence of this proposal is that ψ ² must tend to 0 for infinite distances
 ψ must be a smooth continuous function of its coordinates, 	A rapid (discontinuous) change would mean that the derivative of ψ was very large. Since the momentum of the system is found using the momentum operator, which is a first order derivative of ψ , this would imply an infinite momentum, which is not possible in a physically realistic system.

• First derivatives of $\boldsymbol{\psi}$ w.r.t. the coordinates must be continuous.

A discontinuous first derivative would imply an infinite second derivative, and since the <u>energy</u> of the system is found using the second derivative of ψ , a discontinuous first derivative would imply an infinite energy, which again is not physically realistic.

• $\psi(\mathbf{r},t)$ may be a real or a complex function

- \rightarrow Complex number contain both real and imaginary part, $\psi = a + ib$; a, b are real constant
- \rightarrow Complex conjugate of ψ is then $\psi^* = a ib$

$$\rightarrow \psi^* \psi = (a + ib)(a - ib) = a^2 + b^2$$

- $\rightarrow \psi^* \psi = |\psi|^2$ is squared magnitude of ψ
- $\rightarrow \psi^* \psi = \psi^2$ if $\psi^* = \psi$ in cases where ψ is real
- Must be single valued at any point, ψ and $d\psi/dr$ are continuous.

Un-acceptable Wavefunctions

Physical Significance of $\psi^*\psi$ or $|\psi|^2$ [Max Born, 1926]

- Physically, $\psi^*\psi = |\psi|^2$ can be interpreted as a **probability** distribution or probability density for the system.
- For a particle moving in one-dimension, $|\psi(x)|^2 dx$ is probability of finding the particle between x and x + dx.

• Probability (P) of finding the particle between x_1 and x_2 is given by

$$P(x_1 \le x \le x_2) = \int_{x_1}^{x_2} \psi^* \psi dx$$

For a particle moving in three-dimension, $|\psi(x,y,z)|^2 dxdydz$ is probability of finding the particle in a region centered at (x,y,z) and with volume dxdydz.

• Because the particle must lie somewhere within the region of interest, the probability of finding the particle over the entire region must be equal to 1.

Normalization Condition: $\int \psi^* \psi d\tau = 1$

In cartesian coordinates

For three-dimensional system, the wavefunction is normalized if,

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \psi^*(x, y, z) \, \psi(x, y, z) \, dx dy dz = 1$$

In spherical polar coordinates

$$\int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2\pi} \psi^{*}(r,\theta,\phi) \psi(r,\theta,\phi) r^{2} dr \sin\theta d\theta d\phi = 1$$

Cartesian versus Spherical Polar Coordinate System

$\psi(x,y,z)$

Normalization of the wavefunction

What if ψ is not normalized?

$$\psi \to N \psi \quad \Rightarrow \quad N^2 \int_{All \ space} \psi^* \psi d\tau = 1 \quad \Rightarrow \quad N = \frac{1}{\left(\int_{All \ space} \psi^* \psi d\tau\right)^{1/2}}$$

For one-dimensional wavefunction

$$N^{2} \int_{-\infty}^{\infty} \psi^{*} \psi dx = 1 \qquad \Rightarrow \qquad N = \frac{1}{\left(\int_{-\infty}^{\infty} \psi^{*} \psi dx\right)^{1/2}}$$

Example: Normalizing unnormalized wavefunction $\psi = e^{-r/a_0}$ for hydrogen atom

$$\psi \rightarrow \psi = Ne^{-r/a_0}$$
 N is normalization constant

$$\int_{allspace}^{1} \psi^* \psi \ d\tau = N^2 \int_{0}^{\infty} r^2 e^{-2r/a_0} dr \int_{0}^{\pi} \sin \theta d\theta \int_{0}^{2\pi} d\phi = \pi a_0^3 N^2$$

$$\Rightarrow N = \left(\frac{1}{\pi a_0^3}\right)^{1/2}$$
Normalized wavefunction: $\psi = \left(\frac{1}{\pi a_0^3}\right)^{1/2} e^{-r/a_0}$