

◆ ML 폴더를 클릭하기

02 | ch06 폴더

◆ ch06 폴더 클릭하기

03 ch06_03_Scikit-learn모듈을 이용한 기계학습 맛보기.ipynb

◆ chO6_O3_Scikit-learn모듈을 이용한 기계학습 맛보기.ipynb 파일 클릭하기

- ▲ 다음은 아이리스(iris) 데이터셋을 읽어오는 코드이다.
 - ◆ sklearn.utils.Bunch 객체는 몇 가지의 key를 제공하며 이를 통해 데이터의 정보를 쉽게 확인할 수 있음

```
data = load_iris()
print(type(data)) # <class 'sklearn.utils._bunch.Bunch'>
data.keys() # key를 통해 데이터의 정보를 쉽게 확인

<class 'sklearn.utils._bunch.Bunch'>
dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
```


- ▲ 다음은 아이리스 데이터셋 객체 data에서 DESCR속성을 통해 아이리스 데이터 정보를 확인하는 코드이다.
 - ◆ 실행결과에서 관측치가 150개, 4개의 독립 변수, 1개의 종속 변수로 구성된 것을 볼 수 있음

- & 다음은 아이리스 데이터셋 객체 data에서 독립 변수 이름과 종속 변수의 레이블을 확인하는 코드이다.
 - ◆독립 변수 이름은 'sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)' 인 것을 볼 수 있음
 - > 종속 변수 레이블은 'setosa', 'versicolor', 'virginica' 인 것을 볼 수 있음

```
#독립변수이름
print(data.feature_names)

#종속변수레이블
print(data.target_names)

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']
['setosa' 'versicolor' 'virginica']
```


- ▲ 다음은 분석을 용이하게 하기 위해 아이리스 데이터셋의 독립 변수로 데이터프레임을 생성하는 코드이다.
 - ◆ 0h래와 같이 데이터 형상이 (150, 4)인 것을 볼 수 있음

iris = pd.DataFrame(data=data.data, columns=data.feature_names)
print(iris.shape) # (150, 4)
iris

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	
0	5.1	3.5	1.4	0.2	
1	4.9	3.0	1.4	0.2	
2	4.7	3.2	1.3	0.2	
3	4.6	3.1	1.5	0.2	
4	5.0	3.6	1.4	0.2	
145	6.7	3.0	5.2	2.3	
146	6.3	2.5	5.0	1.9	
147	6.5	3.0	5.2	2.0	
148	6.2	3.4	5.4	2.3	
149	5.9	3.0	5.1	1.8	
150 rows × 4 columns					

- ▲ 다음은 아이리스 데이터셋의 종속 변수를 범주형으로 변환하여 판다스의 시리즈로 생성하는 코드이다.
 - ◆ 종속 변수가 숫자(int64) 범주형으로 변환되고, 레이블이 0, 1, 2인 것을 볼 수 있음

```
target = pd.Series(data.target, dtype="category")
target
```

```
0 0
1 0
2 0
3 0
4 0
...
145 2
146 2
147 2
148 2
149 2
Length: 150, dtype: category
Categories (3, int64): [0, 1, 2]
```


- ▲ 다음은 종속 변수의 숫자 범주형을 종속 변수의 레이블로 변환하는 코드이다.
 - ◆종속 변수가레이블이 'setosa', 'versicolor', 'virginica'으로 변환된 것을 볼 수 있음

target = target.cat.rename_categories(data.target_names)
print(target)

```
0 setosa
1 setosa
2 setosa
3 setosa
4 setosa
...
145 virginica
146 virginica
147 virginica
148 virginica
149 virginica
Length: 150, dtype: category
Categories (3, object): ['setosa', 'versicolor', 'virginica']
```


- ▲ 다음은 독립 변수로 구성된 데이터프레임에 종속 변수 속성을 추가하는 코드이다.
 - ◆ 아래와 같이 데이터 형상이 (150, 5)로 변환된 것을 볼 수 있음

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica
150 r	rows × 5 columns				

- ▲ 다음은 iris 데이터프레임 객체의 변수 이름을 변경하는 코드이다.
 - ◆ 아래와 같이 변수 이름이 변경된 것을 볼 수 있음

iris.rename({"sepal length (cm)": "sepal_length", "sepal width (cm)": "sepal_width", "petal length (cm)": "petal_length", "petal width (cm)": "petal_width"}, axis=1, inplace=True) iris

	sepal_length	sepal_width	petal_length	petal_width	species	
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	
145	6.7	3.0	5.2	2.3	virginica	
146	6.3	2.5	5.0	1.9	virginica	
147	6.5	3.0	5.2	2.0	virginica	
148	6.2	3.4	5.4	2.3	virginica	
149	5.9	3.0	5.1	1.8	virginica	
150 r	150 rows × 5 columns					

- ▲ 다음은 iris 데이터프레임 객체의 결측값을 확인하는 코드이다.
 - ◆ 아래와 같이 모든 변수에서 결측값이 없는 것을 볼 수 있음

- ▲ 다음은 iris 데이터프레임 객체 정보를 확인하는 코드이다.
 - ◆ 이래와 같이 독립 변수 4개는 모두 실수 타입, 종속 변수는 범주형으로 구성된 것을 볼 수 있음

```
iris.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
    Column Non-Null Count Dtype
  sepal length 150 non-null float64
1 sepal_width 150 non-null
                             float64
2 petal length 150 non-null
                              float64
  petal width 150 non-null
                               float64
    species
               150 non-null
                               category
dtypes: category(1), float64(4)
memory usage: 5.1 KB
```


- ▲ 다음은 iris 데이터프레임 객체에서 숫자 타입 변수의 기초 통계량을 확인하는 코드이다.
 - ◆ 아래와 같이 독립 변수 4개의 기초 통계량이 계산된 것을 볼 수 있음

iris.describe()

	sepal_length	sepal_width	petal_length	petal_width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333
std	0.828066	0.435866	1.765298	0.762238
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

- ▲ 다음은 iris 데이터프레임 객체에서 숫자 타입 변수간의 상관 계수를 계산하는 코드이다.
 - ◆ 아래와 같이 독립 변수 4개의 상관 계수가 계산된 것을 볼 수 있음
 - > petal_width와 petal_length 변수간의 상관 계수가 약 0.962로 가장 높은 것을 볼 수 있음

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

- ▲ 다음은 iris 데이터프레임 객체에서 숫자 타입 변수간의 상관 계수로 히트맵을 그리는 코드이다.
 - ◆ 아래와 같이 독립 변수 4개의 상관 계수로 히트맵을 볼 수 있음

sns.heatmap(iris.iloc[:,:4].corr(), cmap="coolwarm", annot=True, annot_kws={"fontsize":8})
plt.tight_layout()
plt.show()

- ▲ 다음은 iris 데이터프레임 객체에서 종속 변수의 각 레이블 빈도를 확인하는 코드이다.
 - ◆ 아래와 같이 3개 레이블이 각 50개의 빈도로 구성된 것을 볼 수 있음

```
# groupby 메서드를 이용해 종속 변수의 각 레이블 빈도 확인 iris.groupby("species").size()
```

species
setosa 50
versicolor 50
virginica 50
dtype: int64

- ▲ 다음은 iris 데이터프레임 객체에서 독립 변수의 이상치 탐지를 위해 박스플롯(boxplot) 시각화하는 코드이다.
 - ◆ 아래와 같이 sepal_width 변수에서 이상치가 있는 것을 볼 수 있음

- & 다음은 iris 데이터프레임 객체에서 독립변수 간의 상관관계 및 데이터 분포를 시각화하는 코드이다.
 - ◆ 이래와 같이 petal_width와 petal_length 변수의 상관관계가 높은 것을 볼 수 있음

sns.pairplot(iris, hue="species")
plt.show()

- ▲ 다음은 iris 데이터프레임 객체에서 종속 변수의 클래스 비율을 파이차트로 시각화는 코드이다.
 - ◆이래와 같이 종속 변수의 각 레이블의 비율이 33.3%로 동일한 것을 볼 수 있음

```
def piechart_iris(target, dataset):
  plt.figure(figsize=(6, 4))
  labels = []
  sizes = []
  df = dataset.groupby(target).size()
  for key in df.keys():
     labels.append(key)
     sizes.append(df[key])
  plt.pie(sizes, labels=labels,
autopct="%1.1f%%", shadow=True,
startangle=140)
  plt.axis('equal')
  plt.title('Distribution of ' + target)
  plt.show()
piechart_iris('species', iris)
```


- ▲ 학습 및 검증을 수행해 보자.
 - 1 홀드아웃 검증
 - > sklearn의 train_test_split()함수로 훈련 데이터와 테스트 데이터를 7:3 비율로 나눔
 - > 여기서는 의사결정나무 모델을 사용함
 - > 모델 성능지표는 정확도(accuray)를 사용함
 - 10겹 교차 검증
 - > sklearn의 StratifiedShuffleSplit()함수로 훈련 데이터와 테스트 데이터를 7:3 비율로 나눔
 - > 여기서는 의사결정나무 모델을 사용함
 - > 모델 성능지표는 정확도(accuray)를 사용함

- 1 홀드아웃 검증
 - ▲ 다음은 train_test_split() 함수로 아이리스 데이터셋을 훈련 데이터와 테스트 데이터를 7:3 비율로 분리하는 코드이다.
 - ◆ 아래와 같이 데이터를 섞어서 종속 변수의 레이블을 기준으로 7:3 비율로 훈련 데이터와 테스트 데이터가 분리된 것을 볼 수 있음

```
X_train, X_test, y_train, y_test = train_test_split(iris.iloc[:, :-1],
                            iris.iloc[:, -1], test_size=0.3,
                            shuffle=True, stratify=iris['species'],
                            random state=42)
print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
print(y_train.value_counts())
                                                                   (105, 4) (45, 4) (105,) (45,)
print(y_test.value_counts())
                                                                   setosa
                                                                   versicolor
                                                                   virginica
                                                                   Name: species, dtype: int64
                                                                    setosa
                                                                                15
                                                                   lversicolor.
                                                                                15
                                                                   |virginica|
                                                                                15
                                                                   Name: species, dtype: int64
```


- ▲ 다음은 의사결정나무 모델을 생성하고 훈련 데이터로 학습을 수행하는 코드이다.
 - ◆ 아래와 같이 모델이 훈련 데이터와 훈련 데이터 정답으로 학습된 것을 알 수 있음

model = DecisionTreeClassifier(random_state=1234) # 모델 생성 model.fit(X_train, y_train) # 학습

- ▲ 다음은 학습된 모델에 테스트 데이터로 모델 성능을 평가하는 코드이다.
 - ◆모델 성능 평가결과 정확도가 약 97.78%인 것을 알 수 있음

```
pred = model.predict(X_test)
accuracy = np.round(accuracy_score(y_test, pred), 4)
print('\n## 검증 정확도:', accuracy) # 검증 정확도: 0.9778
```


- 2 10겹 교차 검증
 - ▲ 다음은 StratifiedShuffleSplit()함수로 아이리스 데이터셋을 훈련 데이터와 테스트 데이터를 7:3 비율로 분리하고, 의사결정나무 모델로 10겹 교차검증을 수행하는 코드이다.
 - ◆ 아래와 같이 데이터를 섞어서 종속 변수의 레이블을 기준으로 7:3 비율로 훈련 데이터와 테스트 데이터가 분리된 것을 볼 수 있음
 - ◆ 10겹 교차 검증의 평균 정확도는 약 95.34%인 것을 볼 수 있음


```
sfld = StratifiedShuffleSplit(n_splits=10, test_size=0.3, random_state=0)
cv_accuracy=[] # KFold 별 정확도 저장
n iter = 0
              # 반복횟수
for train_index, test_index in sfld.split(iris.iloc[:,:-1],iris['species']):
  print(train_index.shape, test_index.shape)
  X_train = iris.iloc[:,:-1].iloc[train_index]
  X_test = iris.iloc[:,:-1].iloc[test_index]
  y_train = iris['species'].iloc[train_index]
  y_test = iris['species'].iloc[test_index]
  model.fit(X_train, y_train)
  pred = model.predict(X_test)
  n_iter += 1
  label_train = iris['species'].iloc[train_index]
  label_test = iris['species'].iloc[test_index]
  print("n_iter=",n_iter,"\n",count_frequency(label_train), count_frequency(label_test))
  accuracy = np.round(accuracy_score(y_test, pred), 4)
  train_size = X_train.shape[0]
  test_size = X_test.shape[0]
  print('교차 검증 정확도 :{0}, 학습 데이터 크기: {1}, 검증 데이터 크기: {2}'.format(accuracy, train_size, test_size))
  print('검증 세트 인덱스 :{O}'.format(test_index))
  print('----
  cv_accuracy.append(accuracy)
# 개별 iteration별 정확도를 합하여 평균 정확도 계산
print('검증 정확도 \n', cv_accuracy)
print('\n## 평균 검증 정확도:', np.round(np.mean(cv_accuracy), 4)) # 평균 검증 정확도: 0.9534
```