SER 1721 EL PROJESO OUT GENERA UNA SERIE DE TIEMPO, ENTONCES DICHA SENE POEDE MODELANE MEDIANTE UN PROCESO DOZIMA (p.d.q)

$$\sqrt{\Phi(B)} = \Delta_q \overline{\Phi(B)}$$

DE DONDE

TENERS OVE

ENGENERAL PARA WALDLER dyp DE TIENE

. Por 10 TANTO, USANDO (3) 4 (4) BE TIENE DUC

(1-41B- -- Ab+9Bb+9) (1-18B-. 16B.- 1=1.

DE ABUÍ EN ADEIANTÍ BE WARAN LOS VAIDRES ESTIMADOS DE Ý

POR LO TANTO, LOS LÍMITES DE (100)(1-00) DE PROCABILIDAD
PARA T (ZELLA) COMDICIO MADOS AL LONOXIMIENTO DE ZE, ZEI, 30M

EJEMPIO CONSIDERE LA SOLIE DE CETES EN CRICULACIOS

FUEND DEL BANCO DE MEXICO DESDE LA SEMANA 1 DE 1981

A LA SEMANA IV DE 1982

	Semana							
Mes	. I '	n	III	IV	V			
Ene., 81	3865830	4509420	4877968	5058049	5846191			
Feb.	4967153	5308012	6192480	7192366				
Mar.	6020899	7957845	10606173	8677033				
Abr.	7132335	8416913	8137690	9857308	9528142			
May.	8113492	9452338	10516287	7755065				
Jun.	7529229	8654304	11166441	8884981	55			
Jul.	8257909	7616304	9225947	7261061	6633927			
Ago.	8014504	8375683	8002921	8944805				
Sep.	7894975	8207583	9284684	10179941				
Oct.	9249210	9060318	9149136	10038385	10182700			
Nov.	7752507	7787527	8752806	9395747				
Dic.	9034515	8013791	6889031		* * .			
Ene., 82	7192465	9605715	10433049	10023351				
Feb.	8661590	8612446	8015310	7561768				

CALLULAR ELPRONDER TO DE LA SEMANOS I, II 7 TIL DE MONZO DE 1982 Y DU CHMESTON DI ENTEN MITENYALO DE PREDICCIOS CON ASS = - 1379. 3 ; ASS = - 548.42

EL MODERO & GASIDERAR ES

(1-0.388B4) TT(LETEST) = (1-0.481B2) Qt . . (1) Ta = 1109.7 y Teccercy = CETESE

UN MODELO COUNTIENTE ES

+ 0.388 TCLETES (-5) = Qt - 0481 Qt-2

DE DONDE

(1-B-038884+0308BT)T((ETESt)=(1-048182)Q1 Note out \$\overline{A}(B) = 7 & B(B) = (1-B -0 388B +0-388B 5) $\hat{\Phi}_1 = 1; \hat{\Phi}_2 = 0 = \hat{\Phi}_{\bullet}; \hat{\Phi}_4 = 0 = 0 = 0 = 0$

P= 5 / 2=2

$$\hat{Q}_{i} = 0; \quad \hat{\Theta}_{2} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Theta}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{1}, Q_{i-1} + \hat{\Phi}_{2}, Q_{i-2} + \dots + \hat{\Phi}_{p+1}, Q_{i-p-d} \qquad \text{si } i = 1, \dots, q$$

$$Q_{i} = 0; \quad \hat{\Phi}_{2}, Q_{i-1} + \hat{\Phi}_{2}, Q_{i-2} + \dots + \hat{\Phi}_{p+1}, Q_{i-p-d} \qquad \text{si } j = 1, \dots, q$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$Q_{i} = 0; \quad \hat{\Phi}_{3} = 0.481 \qquad P = 5, \quad q = 2$$

$$\hat{\mathbf{q}}_{0} = -1$$

$$\hat{\mathbf{q}}_{1} = \hat{\mathbf{q}}_{1} + \hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{1} = (1)(-1) = -1$$

$$\hat{\mathbf{q}}_{2} = \hat{\mathbf{q}}_{2} + \hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{1} + \hat{\mathbf{q}}_{2}, \hat{\mathbf{q}}_{0} = 6481 + (1)(-1) = -658$$

$$\hat{\mathbf{q}}_{3} = \hat{\mathbf{q}}_{1}, \hat{\mathbf{q}}_{2} + \hat{\mathbf{q}}_{2}, \hat{\mathbf{q}}_{1} + \hat{\mathbf{q}}_{3}, \hat{\mathbf{q}}_{0} = -$$

$$\vdots$$

AND DUCES MATERIE DE OBTIEMEN TANTOS VAIDRES

() COMO INTERNADO DE PREDICCION DICLEJARIOS

PARA LALLUIAR EL MITENARIO DE PREDICCIO- MLILES ITAMOS
CAMIAN LOS PROMOSTILOS.

Cuadro	6.2	Pronósticos	e intervalos d	e predicción	para T	(CETE _t)
--------	-----	-------------	----------------	--------------	--------	----------------------

h	$\hat{T}(\text{CETE}_{59})(h)$	$z_{0.025}(\sum_{j=0}^{h-1}\hat{\psi}_{j}^{2})^{1/2}\hat{\sigma}_{a}$	Intervalos de 95% de probabilidad para $T(\text{CETE}_{59+h})$
1	8753.58	2165.21	(6558.37, 10918.79)
2	9036.44	3062.07	(5974.37, 12098.51)
3	9268.13	3261.76	(6006.37, 12529.89)
4	9444.10	3449.91	(5994.19, 12894.01)
5	8981.68	3969.71	(5011.97, 12951.39)
6	8871.93	4428.91	(4443.02, 13300.84)
7	8782.03	4695.28	(4086.75, 13477.31)
8	8713.76	4947.32	(3766.44, 13661.08)
9	8893.18	5294.58	(3598.60, 14187.76)
10	8935.86	5620.43	(3315.43, 14556.29)

Cuadro 6.3 Actualización de Pronósticos

	ammn						m	:4. m/01	- OPPD /1	000
Serie: $Z_t = CETE_t$							Transformación: $T(Z_t) = CETE_t/1000$			
te:h	1	2	3	4	5	6	7	- 8	. 9	. 10
ación: $\hat{\psi}_h$	-1	-0.519	-0.519	-0.907	-0.907	-0.720	-0.720	-0.871	0.871	
icos tipo del 95%: ±	$\hat{T}(Z_{t-1})(1)$ 2165.21	$\hat{T}(Z_{t-2})(2)$ 3062.07	$\tilde{T}(Z_{t-3})(3)$ 3261.76	$T(Z_{t-4})(4)$ 3449.91	$T(Z_{t-5})(5)$ 3969.71	$\hat{T}(Z_{t-6})(6)$ 4428.91	$T(Z_{t-7})(7)$ 4695.28	$\hat{T}(Z_{t-8})(8)$ 4947.32	$T(Z_{t-9})(9)$ 5294.58	$T(Z_{t-10})(10)$ 5620.43
S ₁) a _t	~		-			850			1	
	8753.58									
		9036.44								
			9268.13				*			
				9444.10						
					8981.68					
						8871.93				
38						S. Mercelouse	8782.03			
			* 1				(5	8713.76		
100									8893.18	
10								, i		8935.86

CALCULO DE PATELVALOS DE PREDICCION

PREVIAMENTE SE (ALCULO EL PROND'STILO DE LA SEMANA I DE MARZO DE 1982 Y SE OBTUYO

CHILLEMOS EL INTENVALO DE PROBABILIDAD AL 95/

$$Z_{\frac{1}{2}} = 1.96 \qquad \hat{T}(ceres_{t=sq})(1)^{\pm}(1.96) \left(\frac{5}{5} \cdot 4^{2} \right)^{1/2} (1109.7)$$

$$\hat{T}_{a} = 1109.7 \qquad 7696.85 \pm (196)(-1)^{2} \right]^{1/2} (1109.7)$$

$$7696.85 \pm (196)(1109.7)$$

$$7696.85 \pm 2175.012$$

$$\left[5521.838, 9871.862 \right]$$