

Assignment 4

Roll Number - 2018121004

Anurag Sahu 11 - Apl - 2019

Q1.1.a

```
function F = create_mat_dct(N)
    F = zeros(N);
    for v = 1:N
        for u = 1:N
            r = sqrt(2/N);
            if v==1
                 r = sqrt(1/N);
        end
            F(v,u) = r*cos((pi * (2*(u-1)+1)*(v-1))/(2*N));
        end
    end
end
```

Observation:

Dct Matrix from my function

Dct Matrix from inbuilt function


```
function transformed_im = myDCT(im,F)
    transformed_im = F*im*transpose(F);
end
```

Observation:

DCT Transform

Q1.1.c

```
function inverse = myIDCT(im,F)
  inverse = transpose(F)*im*F;
end
```

Observation:

Random Image

DCT Transform

IDCT Transform

Q1.1.d

```
function imqDCT = myDCT_quantization(imDCT,qm,c)
   imqDCT = imDCT./(c*qm);
end
```

Q1.1.e

```
function imqIDCT = myDCT_dequantization(imqDCT,qm,c)
     imqIDCT = imqDCT.*(c*qm);
end
```

Q1.1.f

```
function RSME er = RSME(im1,im2)
    % Get the Dimentions of the image
    [im1 len, im1 bre] = size(im1);
    [im2 len, im2 bre] = size(im2);
    difference in len = im1 len - im2 len;
    difference in bre = im1 bre - im2 bre;
    pad im1 len = 0;
    pad im2 len = 0;
    pad im1 bre = 0;
    pad_im2_bre = 0;
    if(difference in len < 0)</pre>
        pad_im1_len = - difference_in_len;
    elseif(difference_in_len > 0)
        pad_im2_len = difference_in_len;
    end
    if(difference in bre < 0)</pre>
        pad im1 bre = - difference in bre;
    elseif(difference in bre > 0)
        pad im2 bre = difference in bre;
    end
   % zero padding the images
    im1 = padarray(im1,[pad_im1_len,pad_im1_bre],'post');
    im2 = padarray(im2,[pad im2 len,pad im2 bre],'post');
    [im len, im bre] = size(im1);
    err = im1 - im2;
    RSME er = sqrt(sum(sum(err .* err))/im len*im bre);
end
```

Q1.1.g

```
function en = entrpy(im1)
   [im_len, im_bre] = size(im1);
   [count,binlocations] = imhist(im1);
   count(count==0)=[];
   count = count/(im_len*im_bre);
   en = -sum(count.*log2(count));
end
```

```
%% Question 1.2
lake_image = im2double(imread("LAKE.TIF"));
lake_image = im2double(imread("LAKE.TIF"));
lake_image_1 = lake_image(420:420+7, 45:45+7);
lake_image_2 = lake_image(427:427+7, 298:298+7);
lake_image_3 = lake_image(30:30+7, 230:230+7);

im_dct_1 = myDCT(lake_image_1,F);
im_dct_2 = myDCT(lake_image_2,F);
im_dct_3 = myDCT(lake_image_3,F);

figure,imshow(im_dct_1), title("lake_img_1 DCT");
figure,imshow(im_dct_2), title("lake_img_2 DCT");
figure,imshow(im_dct_2), title("lake_img_3 DCT");

c = 2;

figure,imshow(myDCT_quantization(im_dct_1,qm,c)), title("lake_img_1 DCT_qua");
figure,imshow(myDCT_quantization(im_dct_2,qm,c)), title("lake_img_3 DCT_qua");
figure,imshow(myDCT_dequantization(im_dct_1,qm,c)), title("lake_img_1 DCT_qua");
figure,imshow(myDCT_dequantization(im_dct_1,qm,c)), title("lake_img_1 DCT_qua");
figure,imshow(myDCT_dequantization(im_dct_2,qm,c)), title("lake_img_2 DCT_qua");
figure,imshow(myDCT_dequantization(im_dct_2,qm,c)), title("lake_img_3 DCT_qua");
figure,imshow(myDCT_dequantization(im_dct_3,qm,c)), title("lake_img_3 DCT_qua");
```

Observation:

lake img 1

lake img 2

lake img 3

lake img 1 DCT qua

lake img 2 DCT qua

lake img 3 DCT qua

In the above image it can be clearly seen that the pixels in the image haves lost their individuality and have more of a gradient factor in them and as we go on increasing the Value of C it will increase.

Q1.3

```
c = 1; %% Change this for changing the Value of C in Q4

DCT_quant = DCT_whole_quant(lake_image,F,qm,c);
figure,imshow(DCT_quant),title("Transformed Image");
```

Observation:

Quantised DCT Transformed Image

It can be see that the most of the pixel values in the above examples have black more all over with some

points at top left of each 8X8 pixels images.

Q1.4

```
%% Question 1.4
DCT_dequant = DCT_whole_dequant(lake_image,F,qm,c);
figure,imshow(DCT_dequant),title("Retransformed Image");
```

Obsevation:

Original Image

Constructed Image C = 10

As we go on Increasing the value to C the image goes on to go more and more Blur.