Braids and the bracket polynomial

Thesis presentation

Apoorv Potnis

IISERB

April 17, 2023

Three dimensional representation

Three dimensional geometric representation of a braid

Two dimensional representation

A projection of the braid

Multiplication of braids

Multiplication of two braids

The identity braid \mathbf{I}_n

Inverse of braids

Inverse of a braid

Generators of the braid group

Generators σ_i and σ_i^{-1}

Type II move: $\sigma_i \sigma_i^{-1} = \mathbf{I}_n$

ffigureA type II move illustrating $\sigma_i\sigma_i^{-1}=\mathbb{I}_n$

Type III move: $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

ffigureA type III move illustrating $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$

Sliding of crossings: $\sigma_i \sigma_j = \sigma_j \sigma_i$

ffigureSliding of crossings illustrating $\sigma_i\sigma_j=\sigma_j\sigma_i$

Presentation of the braid group

The Artin braid group B_n admits the following presentation on the generators σ_i , for $1 \le i \le n-1$.

$$\mathsf{B}_n = \left\langle \begin{array}{ccc} \sigma_1, \dots, \sigma_{n-1} & \sigma_i \sigma_i^{-1} & = & \mathbb{I}_n \\ \sigma_i \sigma_{i+1} \sigma_i & = & \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{if } i+1 \leq n-1 \\ \sigma_i \sigma_i & = & \sigma_i \sigma_i & \text{if } |i-j| \geq 2 \end{array} \right\rangle$$

Closure of a braid \overline{b}

Braids and links

Every closure of a braid is a link.

Theorem (Alexander)

Every link is ambient isotopic to a closure of a braid.

Conjugation

Conjugation process illustrating the link equivalence of $\overline{g\,bg^{-1}}$ and \overline{b} (part 1)

Conjugation (contd.)

Conjugation process illustrating the link equivalence of $\overline{gbg^{-1}}$ and \overline{b} (part 2)

Markov theorem

Theorem (Markov)

Two braids whose closures are ambient isotopic to each other are related by a finite sequence of the following operations.

- Braid equivalences, i.e. equivalences resulting due to the braid relations.
- 2. Conjugation.
- 3. Markov moves.

Markov move

Markov move with $b = \sigma_1^{-1}$.

Orientation

A braid with downward orientation

For the consistency of the orientation, it must be either upwards or downwards for all strands.

Writhe is the sum of the assigned numbers.

Bracket polynomial of a braid:

$$\langle \cdot \rangle \colon \mathsf{B}_n \to \mathbb{Z}[A, A^{-1}]$$

 $\langle \cdot \rangle \colon b \mapsto \langle \overline{b} \rangle$

 $\langle\cdot\rangle$ is well defined and invariant under conjugation.

Normalisation using writhe:

$$L(K) := (-A^3)^{-w(b)} \langle \overline{b} \rangle$$

$$\left\langle \left| \cdots \right| \right\rangle = A \left\langle \left| \cdots \right| \right\rangle + A^{-1} \left\langle \left| \cdots \right| \right\rangle \left| \cdots \right| \right\rangle$$

$$\left| \cdots \right| \left| \bigcirc \left(\left| \cdots \right| = \mathbf{I}_n \quad \text{and} \quad \mathsf{U}_i \coloneqq \left| \cdots \right| \right| \right| \left| \cdots \right|$$

 $\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$

$$\langle \sigma_i \rangle = A \langle \mathbf{I}_n \rangle + A^{-1} \langle \mathsf{U}_i \rangle$$

$$\rangle + A^{-1}\langle 0 \rangle$$

We refer to U_i 's as "hooks" or "input-output" forms.

They don't belong to the Artin braid group.

Input-output forms or hooks for 4 strands

Example

Example (contd.)

Writing a state of a braid closure in terms of input-output forms

$$\langle b \rangle = \langle S(b) \rangle = \sum_{s} \langle b | s \rangle \langle P_{s} \rangle = \sum_{s} \langle b | s \rangle \delta^{\|s\|}$$

 $\langle \sigma_i^{-1} \rangle = A \langle \mathsf{U}_i \rangle + A^{-1} \langle \mathbf{I}_n \rangle$

||s||: Number of loops in s minus one

s: A state in the expansion

 $\langle b|s\rangle$: Product of A's and A^{-1} 's

 P_s : Product of U_i 's

 $\delta : -A^2 - A^{-2}$

$$\langle S(b)
angle$$
 : Substituting $\langle \sigma_i
angle = A\,\langle {
m I\hspace{-.1em}I}_n
angle + A^{-1}\,\langle {
m U}_i
angle$ and

Temperley–Lieb algebra TL_n

We give U_i 's a structure of their own by constructing

- \triangleright over the ring $\mathbb{Z}[A, A^{-1}]$
- \triangleright the free additive algebra TL_n
- \blacktriangleright with the generators $U_1, U_2, \ldots, U_{n-1}$
- and the multiplicative relations coming from the interpretation of U_i's as input-output forms.

Multiplicative relations in TL_n

Multiplicative relations in TL_n :

- 1. $U_i U_{i\pm 1} U_i = U_i$.
- 2. $U_i^2 = \delta U_i$.
- 3. $U_i U_i = U_i U_i$ if $|i j| \ge 2$.

Geometric interpretation of $U_1U_2U_1=U_1$

Geometric interpretation of $U_1U_2U_1=U_1$