Gradient Descent in Gory Detail:

OLS to Mini-batching and Beyond

Hands-on session linear regression + gradient descent

Jacob Munson & Will Hammond

Montana State University | TAILS | 10/17/2025 AD

Learning goals

- Understand ordinary least squares (OLS) for linear regression:
 - Model
 - Loss
 - Closed-form solution
- Gradient descent:
 - Derive gradients of mean-squared error (MSE)
 - Implement gradient descent (GD) updates
- Compare GD flavors: batch GD vs. mini-batch vs. stochastic GD
- Diagnose convergence (learning rate schedules, conditioning, normalization)

Motivation: Why Linear Regression?

Scenario: We observe data pairs (x_i, y_i) and suspect a linear trend

- Goal: find a line $\hat{y}_i = \beta_0 + \beta_1 x_i$ that best fits the data
- Minimize Mean Squared Error (MSE):

$$J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i} (\hat{y}_i - y_i)^2$$

- Captures linear input-output relationships
- Basis for understanding gradient descent
- In the figure: the dashed black line is the *true* fit (y = 1.5x + 3), the red line is the *OLS* fit, and gray dots are noisy observed data.

Figure 1: Simulated data and fitted line.

Data and notation

Matrix calculus: simplifies gradients and updates for all parameters simultaneously.

- Let $X \in \mathbb{R}^{n \times d}$ (rows are examples, columns are features)
- Response $y \in \mathbb{R}^n$
- Parameters $\beta \in \mathbb{R}^d$
- Generalize scalar case (β_0, β_1) to vector form:
 - Predictions: $\hat{y} = X\beta$
 - Loss (MSE): $J(\beta) = \frac{1}{n} ||X\beta y||_2^2$

Notation summary

Notation summary		
symbol	shape	comment
X	$n \times d$	design matrix
У	$n \times 1$	targets
β	$d \times 1$	parameters

OLS: closed-form solution

$$J(\beta) = \frac{1}{n}(X\beta - y)^{\top}(X\beta - y)$$

$$\nabla_{\beta}J(\beta) = \frac{2}{n}X^{\top}(X\beta - y)$$
Set gradient to zero: $X^{\top}X\beta = X^{\top}y$

$$\Rightarrow \beta^{\text{OLS}} = (X^{\top}X)^{-1}X^{\top}y \quad (\text{if } X^{\top}X \text{ invertible})$$

Warm-up: Paper & Pencil View

Given data points (x_i, y_i) , assume a linear model:

$$\hat{y}_i = \beta_0 + \beta_1 x_i$$

Our goal: find β_0, β_1 minimizing the Mean Squared Error (MSE)

$$J(\beta_0, \beta_1) = \frac{1}{n} \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

Exercise:

- 1. Write down $J(\beta_0, \beta_1)$ explicitly in terms of β_0, β_1 .
- 2. Compute partial derivatives:

$$\frac{\partial J}{\partial \beta_0} = \dots, \quad \frac{\partial J}{\partial \beta_1} = \dots$$

3. Write gradient descent step

Gradient Descent: Elementwise & Matrix Form

Elementwise Form

$$\hat{y}_i = \beta_0 + \sum_{j=1}^d x_{ij} \beta_j$$

$$J(\beta) = \frac{1}{n} \sum_{i} (\hat{y}_i - y_i)^2$$

$$\frac{\partial J}{\partial \beta_j} = \frac{2}{n} \sum_i x_{ij} (\hat{y}_i - y_i)$$

Gradient descent:

$$\beta_j^{(t+1)} = \beta_j^{(t)} - \eta \frac{\partial J}{\partial \beta_j}$$

Matrix Form

$$\hat{y} = X\beta$$
, $J(\beta) = \frac{1}{n} ||X\beta - y||_2^2$

Gradient:

$$\nabla_{\beta}J = \frac{2}{n}X^{\top}(X\beta - y)$$

Update rule:

$$\beta^{(t+1)} = \beta^{(t)} - \eta \nabla_{\beta} J$$

Same math, compactly!

- Vectorization = efficiency
- Often easier for analysis and coding

Gradient Descent

```
Objective: J(\beta) = \frac{1}{n} ||X\beta - y||_2^2

Gradient: \nabla J(\beta) = \frac{2}{n} X^{\top} (X\beta - y)

Update: \beta^{(t+1)} = \beta^{(t)} - \eta \nabla J(\beta^{(t)})
```

Algorithm (pseudocode)

```
initialize beta randomly or zeros
repeat until convergence:
    grad = (2/n) * X.T @ (X @ beta - y)
    beta = beta - eta * grad
    (should do) monitor J(beta) or validation error
```

 $^{^1}$ We often drop the factor of 2 ightarrow "absorb into η "

Gradient Descent Variants

General update rule:

$$\beta^{(t+1)} = \beta^{(t)} - \eta \frac{2}{|\mathcal{B}_t|} X_{\mathcal{B}_t}^{\top} (X_{\mathcal{B}_t} \beta^{(t)} - y_{\mathcal{B}_t})$$

- \mathcal{B}_t is the batch of samples used at iteration t.
- The batch size $|\mathcal{B}_t|$ determines the variant.

Special cases:

- $|\mathcal{B}_t| = n \Rightarrow$ Batch Gradient Descent Deterministic, stable but slow for large n.
- $1 < |\mathcal{B}_t| < n \Rightarrow$ Mini-batch (Stochastic) Gradient Descent Balances efficiency and stability; default in deep learning.
- $|\mathcal{B}_t| = 1 \Rightarrow$ Stochastic Gradient Descent Highly stochastic updates; rarely used in pure form.

Note: In practice, "SGD" often refers to the mini-batch case rather than strictly B=1.

Full Algorithm: Mini-batch Gradient Descent

```
# Mini-batch Gradient Descent for Linear Regression
import numpy as np
# X: n x d matrix, y: n-vector
n, d = X.shape
beta = np.zeros(d)
eta = 0.1 # learning rate
B = 32 \# batch size
n = pochs = 100
for epoch in range(n_epochs):
   perm = np.random.permutation(n)
   X, y = X[perm], y[perm]
   for i in range(0, n, B):
       idx = slice(i. i+B)
       Xb, yb = X[idx], y[idx]
       grad = (2/B) * Xb.T @ (Xb @ beta - yb)
       beta -= eta * grad
print("Learned coefficients:", beta)
```

Ridge (L2) regularization

Objective:
$$J_{\lambda}(\beta) = \frac{1}{n} ||X\beta - y||^2 + \lambda ||\beta||^2$$
.
Closed form: $\beta = (X^{\top}X + n\lambda I)^{-1}X^{\top}y$.
Gradient: $\nabla J_{\lambda} = \frac{2}{n}X^{\top}(X\beta - y) + 2\lambda\beta$.

Effect: shrinks coefficients, improves conditioning of $X^{T}X$; GD tolerates larger η .

Compare OLS vs GD variants

Metrics

- Parameter error $\|\beta_{\text{est}} \beta_{\text{OLS}}\|$.
- Train/validation MSE.
- Time-to- ε and epochs to converge.
- Sensitivity to feature scaling.

Why pick one over another?

- OLS is one-shot but unstable for ill-conditioned/huge X.
- GD scales to large n, d and streaming data.
- Mini-batch leverages hardware; SGD can escape shallow minima in nonconvex problems.

GD trajectories on MSE contours

Learning rate effect (batch GD)

Batch size vs. convergence noise

Parameter convergence toward OLS

Complexity and Runtime Takeaways

Computational Complexity

- Closed-form OLS: $\mathcal{O}(nd^2 + d^3)$ time
- Batch Gradient Descent: O(nd) per iteration
- Mini-batch / SGD: $\mathcal{O}(Bd)$ per step

Runtime Insights

- **OLS:** One-shot and very fast for small d and moderate n (exact up to FP precision)
- **GD/Mini-batch:** Preferred for large *n* or streaming data
- **Practical tuning:** Tune learning rate η ; monitor wall time and validation error.

Common pitfalls

- Forgetting intercept column or feature scaling.
- Learning rate too big (divergence) or too small (stalling).
- Not shuffling mini-batches; data order bias.
- Evaluating only training MSE; always hold out validation.

Thanks! Questions + discussion.