体論 (第11回)

11. ガロア理論

今回はガロア理論の基本定理とその使い方について解説します.

定理 11-1

L/K を有限次ガロア拡大、そのガロア群をGとする.

(1) G の部分群 H に対して,

$$L^{H} = \{ x \in L \mid \sigma(x) = x \quad (\forall \sigma \in H) \}$$

はL/Kの中間体となる. L^H をH の固定体という.

(2) M を L/K の中間体とすると, L/M はガロア拡大となる. $H(M) = \operatorname{Gal}(L/M)$ と置く と, H(M) は G の部分群で,

$$H(M) = \{ \sigma \in G \mid \sigma \mid_M = \mathrm{Id}_M \}$$

となる. H(M) を M の固定群という.

[証明]

(1) 定理 1-1 の (i)-(iv) を示せばよい. ここでは, (i) のみ確認しておく. つまり,

$$x,y \in L^H \implies x - y \in L^H$$

を言えばよい. $\sigma \in H$ に対して, $\sigma(x) = x$, $\sigma(y) = y$ であり, σ は環準同型だから

$$x - y = \sigma(x) - \sigma(y) = \sigma(x - y).$$

従って $x-y \in L^H$ である.

(2) $x \in L$ をとる. y を x の M 上共役とすると、定理 7-1 (2) から x の K 上共役でもある. L/K は ガロア拡大より $y \in L$ となる. 従って L/M はガロア拡大である. 後半の主張は

$$H(M) = \operatorname{Hom}_M(L, L) \subseteq \operatorname{Hom}_K(L, L) = G$$

から従う.

例題 11-1

 $L = \mathbb{Q}(\sqrt{2})$ とすると, L/\mathbb{Q} のガロア群は

$$G = G(L/\mathbb{Q}) = \{ \mathrm{Id}_L, \ \sigma \}$$

で与えられる. ただし, σ は $\sigma(\sqrt{2}) = -\sqrt{2}$ を満たすものとする.

- (1) L, \mathbb{Q} のそれぞれの固定群を求めよ.
- (2) $H = \{ Id_L \}$, G のそれぞれの固定体を求めよ.

(解答)

(1) について.

$$H(L) = G(L/L) = \{ \sigma \in G \mid \tau \mid_L = \mathrm{Id}_L \} = \{ \mathrm{Id}_L \},$$

$$H(\mathbb{Q}) = G(L/\mathbb{Q}) = G.$$

(2) について.

$$L^H = \{ x \in L \mid \mathrm{Id}_L(x) = x \} = L.$$

次に L^G について考える.

$$L^{G} = \{ x \in L \mid \tau(x) = x \ (\forall \tau \in G) \} = \{ x \in L \mid \sigma(x) = x \}$$

に注意する. $x = a + b\sqrt{2} \in L (a, b \in \mathbb{Q})$ を取ると,

$$\sigma(x) = x \iff a - b\sqrt{2} = a + b\sqrt{2} \iff b = 0 \iff x \in \mathbb{Q}.$$

従って $L^G = \mathbb{Q}$.

上の例題から、 $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ の部分体と $\mathrm{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$ の部分群とは一対一に対応していることが分かります.

$$L \longleftrightarrow \{ \mathrm{Id}_L \}, \quad \mathbb{Q} \longleftrightarrow G.$$

このような性質を一般化したのがガロア理論の基本定理です.

定理 11-2 (ガロア理論の基本定理)

L/K を有限次ガロア拡大とする. \mathbb{M} を L/K の中間体全体, \mathbb{H} を G の部分群全体とし, 写像

$$\Phi: \mathbb{H} \longrightarrow \mathbb{M} \quad (H \longmapsto L^H), \quad \Psi: \mathbb{M} \longrightarrow \mathbb{H} \quad (M \longmapsto H(M))$$

を考える. このとき,

$$\Phi \circ \Psi = \operatorname{Id}_{\mathbb{M}}, \quad \Psi \circ \Phi = \operatorname{Id}_{\mathbb{H}}$$

が成り立つ. つまり、上記の写像は L/K の中間体と G の部分群の間に一対一対応を与える. さらに、次が成り立つ.

(1) $H_1, H_2 \in \mathbb{H}$ とし, $M_1 = \Phi(H_1)$, $M_2 = \Phi(H_2)$ と置く. このとき,

$$H_1 \subseteq H_2 \iff M_2 \subseteq M_1$$
.

特に $\Phi(G) = K$, $\Phi(\{\mathrm{Id}_L\}) = L$.

(2) $\Phi(H) = M \ \text{Eta}$. $COEE, |H| = [L:M] \ \text{vab}, 26K$

H が G の正規部分群 $\iff M/K$ はガロア拡大

が成り立つ.

定理 11-2 は次回証明を与えます. 今回は定理の使い方を確認していきます.

例題 11-2

 $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ のとき, L/\mathbb{Q} の中間体をすべて求めよ.

[解答]

定理 10-3 より, L/\mathbb{Q} は 4 次ガロア拡大で, そのガロア群は

$$G = G(L/\mathbb{Q}) = \{ \sigma_1 = \mathrm{Id}_L, \sigma_2, \sigma_3, \sigma_4 \}$$

で与えられる. ただし, $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ は

$$\sigma_{1}(\sqrt{2}) = \sqrt{2}, \qquad \sigma_{1}(\sqrt{3}) = \sqrt{3},
\sigma_{2}(\sqrt{2}) = \sqrt{2}, \qquad \sigma_{2}(\sqrt{3}) = -\sqrt{3},
\sigma_{3}(\sqrt{2}) = -\sqrt{2}, \qquad \sigma_{3}(\sqrt{3}) = \sqrt{3},
\sigma_{4}(\sqrt{2}) = -\sqrt{2}, \qquad \sigma_{4}(\sqrt{3}) = -\sqrt{3}$$

を満たすものとする. $G \simeq C_2 \times C_2$ より, G の部分群は次の5つである.

$$G, \quad H_2 = <\sigma_2>, \quad H_3 = <\sigma_3>, \quad H_4 = <\sigma_4>, \quad \{\mathrm{Id}_L\}.$$

これらに対応する中間体を求めればよい. ここでは, H_2 に対応する中間体のみ考察する.

$$L^{H_2} = \{x \in L \mid \sigma(x) \quad (\forall \sigma \in H_2)\}$$
$$= \{x \in L \mid \sigma_2(x) = x\}.$$

 L/\mathbb{Q} の基底は $\{1,\sqrt{2},\sqrt{3},\sqrt{6}\}$ であるから, L の元を $x=a+b\sqrt{2}+c\sqrt{3}+d\sqrt{6}\in L$ $(a,b,c,d\in\mathbb{Q})$ で表すと,

$$x = \sigma_2(x)$$
 \iff $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = a + b\sqrt{2} - c\sqrt{3} - d\sqrt{6}$
 \iff $c = d = 0$
 \iff $x \in \mathbb{Q}(\sqrt{2}).$

従って $L^{H_2}=\mathbb{Q}(\sqrt{2})$ が従う. 他の部分群に対応する中間体は次のようになる.

$$L^G = \mathbb{Q}, \quad L^{H_3} = \mathbb{Q}(\sqrt{3}), \quad L^{H_4} = \mathbb{Q}(\sqrt{6}), \quad L^{\{\text{Id}_L\}} = L.$$

問題 11-1 例題 11-2 の状況を考える.

- (1) 例題 11-2 と同様にして, $L^{H_3} = \mathbb{Q}(\sqrt{3})$ を証明せよ.
- (2) $\Psi(\mathbb{Q}(\sqrt{6}))$ を計算し, $L^{H_4} = \mathbb{Q}(\sqrt{6})$ を確認せよ.

4

例題 11-3

 $\alpha = e^{\frac{2\pi i}{5}} = \cos(\frac{2\pi}{5}) + i\sin(\frac{2\pi}{5})$ とし, $L = \mathbb{Q}(\alpha)$ と置く.

- (1) L/\mathbb{Q} が 4 次ガロア拡大であることを示せ.
- (2) G を L/\mathbb{Q} のガロア群とし, $\sigma(\alpha)=\alpha^2$ を満たす $\sigma\in G$ を取る. このとき, $G=<\sigma>$ を示せ.
- (3) L/\mathbb{Q} の中間体をすべて求めよ.
- (1) α の ℚ 上の最小多項式は

$$(1)f(x) = x^4 + x^3 + x^2 + x + 1 = (x - \alpha)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)$$

である (問題 3-3). よって $[L:\mathbb{Q}]=4$. また $\alpha,\alpha^2,\alpha^3,\alpha^4$ はすべて L に含まれので, L/\mathbb{Q} はガロア 拡大である.

(2) $G = \{\sigma_1, \sigma_2, \sigma_3, \sigma_4\}$ と表す. ただし, $\sigma_1, \sigma_2, \sigma_3, \sigma_4$ は次を満たすものとする.

$$\sigma_1(\alpha) = \alpha$$
, $\sigma_2(\alpha) = \alpha^2$, $\sigma_3(\alpha) = \alpha^3$, $\sigma_4(\alpha) = \alpha^4$.

 $\alpha^5 = 1$ に注意すれば、

$$\begin{split} &\sigma(\alpha) &= \alpha^2, \\ &\sigma^2(\alpha) &= \sigma(\sigma(\alpha)) = \sigma(\alpha^2) = \alpha^4, \\ &\sigma^3(\alpha) &= \sigma(\sigma^2(\alpha)) = \sigma(\alpha^4) = \alpha^8 = \alpha^3, \\ &\sigma^4(\alpha) &= \sigma(\sigma^3(\alpha)) = \sigma(\alpha^3) = \alpha^6 = \alpha. \end{split}$$

よって $\sigma_1 = \sigma^4$, $\sigma_2 = \sigma$, $\sigma_3 = \sigma^3$, $\sigma_4 = \sigma^2$. 従って $G = <\sigma>$.

(3) (2) より G は σ で生成される位数 4 の巡回群である. よって, G の部分群は次の 3 つである.

$$G = \langle \sigma \rangle$$
, $H = \langle \sigma^2 \rangle$, $\{ \mathrm{Id}_L \}$.

定理 11-2 から L/\mathbb{Q} の中間体はちょうど 3 つ存在し, $L^G = \mathbb{Q}$, $L^{\{\mathrm{Id}_L\}} = L$ である. また

$$\frac{-1+\sqrt{5}}{4} = \cos\left(\frac{2\pi}{5}\right) = \frac{1}{2}\left(\alpha + \frac{1}{\alpha}\right) \in L$$

より、 $\mathbb{Q}(\sqrt{5})$ は L/\mathbb{Q} の中間体であり、 $L^H=\mathbb{Q}(\sqrt{5})$ でなければならない.以上より、 L/\mathbb{Q} の中間体は L、 $\mathbb{Q}(\sqrt{5})$ 、 \mathbb{Q} の3つである.

問題 11-2 $\alpha=\sqrt{2+\sqrt{2}}$ とし, $L=\mathbb{Q}(\alpha)$ と置く. このとき, L/\mathbb{Q} の中間体を求めよ (問題 10-3 を参照のこと).

問題 11-3 L/\mathbb{Q} は奇数次のガロア拡大とするとき, $L \subseteq \mathbb{R}$ を示せ.