output:

html\_document: default pdf\_document: default word\_document: default

## Results and Discussion



The two most commmonly used distributions in Geology and Mineral Processing and specifically comminution circuits are the Roslin-Rammler and the Gates-Gaudin-Schumann distributions.

Both models were used to model all PSD screening data to, and the subsequent best fit model was selected in each case. Model selection was determined by comparing each PSD's transformed linear model's determinant  $(R^2)$ . Interpolation between measured sizing points is conducted by the back-transformation of the model-fitted points along the respective model's distribution function.

| stream | r.squared | adj.r.squared | p.value | AIC         | stream | r.squared | adj.r.squared | p.value   |       |
|--------|-----------|---------------|---------|-------------|--------|-----------|---------------|-----------|-------|
| F13m   | 0.9956533 | 0.9951703     | 0.0e+00 | -25.9593455 | F13m   | 0.8379477 | 0.8199419     | 0.0000771 | 14.4  |
| F14m   | 0.9955036 | 0.9950040     | 0.0e+00 | -25.7171818 | F14m   | 0.8387440 | 0.8208267     | 0.0000754 | 13.4  |
| OS13m  | 0.9350773 | 0.9278637     | 1.2e-06 | 11.2322434  | OS13m  | 0.6817117 | 0.6463463     | 0.0017444 | 17.0  |
| OS14m  | 0.9185811 | 0.9095345     | 3.4e-06 | 14.2023478  | OS14m  | 0.6552875 | 0.6169861     | 0.0025357 | 16.9  |
| US13m  | 0.9717199 | 0.9681848     | 2.0e-07 | 0.7989748   | US13m  | 0.7781676 | 0.7504386     | 0.0007306 | 38.7  |
| US14m  | 0.9706707 | 0.9670045     | 2.0e-07 | 0.4601869   | US14m  | 0.7643995 | 0.7349495     | 0.0009360 | 39.9' |

|        |           | Table 2:      |         |                            | '         | Table 3:      |           |          |
|--------|-----------|---------------|---------|----------------------------|-----------|---------------|-----------|----------|
| stream | r.squared | adj.r.squared | p.value | str <b>eali</b> 6          | r.squared | adj.r.squared | p.value   | AIC      |
| F13m   | 0.9956533 | 0.9951703     | 0.0e+00 | -25.9 <b>F9345</b> $5$     | 0.8379477 | 0.8199419     | 0.0000771 | 14.40924 |
| F14m   | 0.9955036 | 0.9950040     | 0.0e+00 | -25.7 <b>F7</b> $148$ $18$ | 0.8387440 | 0.8208267     | 0.0000754 | 13.41234 |
| OS13m  | 0.9350773 | 0.9278637     | 1.2e-06 | 11.260282143344            | 0.6817117 | 0.6463463     | 0.0017444 | 17.02321 |
| OS14m  | 0.9185811 | 0.9095345     | 3.4e-06 | 14.20283147783             | 0.6552875 | 0.6169861     | 0.0025357 | 16.94985 |
| US13m  | 0.9717199 | 0.9681848     | 2.0e-07 | 0.798917318                | 0.7781676 | 0.7504386     | 0.0007306 | 38.75904 |
| US14m  | 0.9706707 | 0.9670045     | 2.0e-07 | 0.46031869                 | 0.7643995 | 0.7349495     | 0.0009360 | 39.97982 |

|        |           | Table 4:      |         | Table 5:                   |           |               |           |          |
|--------|-----------|---------------|---------|----------------------------|-----------|---------------|-----------|----------|
| stream | r.squared | adj.r.squared | p.value | str <b>e</b> ali6          | r.squared | adj.r.squared | p.value   | AIC      |
| F13m   | 0.9956533 | 0.9951703     | 0.0e+00 | -25.9 <b>F9345</b> $5$     | 0.8379477 | 0.8199419     | 0.0000771 | 14.40924 |
| F14m   | 0.9955036 | 0.9950040     | 0.0e+00 | -25.7 <b>F7</b> $148$ $18$ | 0.8387440 | 0.8208267     | 0.0000754 | 13.41234 |
| OS13m  | 0.9350773 | 0.9278637     | 1.2e-06 | 11.26282143344             | 0.6817117 | 0.6463463     | 0.0017444 | 17.02321 |
| OS14m  | 0.9185811 | 0.9095345     | 3.4e-06 | 14.202314778               | 0.6552875 | 0.6169861     | 0.0025357 | 16.94985 |
| US13m  | 0.9717199 | 0.9681848     | 2.0e-07 | 0.79889173484              | 0.7781676 | 0.7504386     | 0.0007306 | 38.75904 |
| US14m  | 0.9706707 | 0.9670045     | 2.0e-07 | 0.46081869                 | 0.7643995 | 0.7349495     | 0.0009360 | 39.97982 |

|        | Ta        | ble 6: hello                 |         | Table 7:                              |     |                       |       |  |  |
|--------|-----------|------------------------------|---------|---------------------------------------|-----|-----------------------|-------|--|--|
| stream | r.squared | ${\it adj.r.} {\it squared}$ | p.value | AIC                                   | hp  | $\operatorname{drat}$ | wt    |  |  |
| F13m   | 0.9956533 | 0.9951703                    | 0.0e+00 | -25.959345 <b>M</b> azda RX4          | 110 | 3.90                  | 2.620 |  |  |
| F14m   | 0.9955036 | 0.9950040                    | 0.0e+00 | -25.717181 <b>M</b> azda RX4 Wag      | 110 | 3.90                  | 2.875 |  |  |
| OS13m  | 0.9350773 | 0.9278637                    | 1.2e-06 | 11.232243 <b>D</b> atsun 710          | 93  | 3.85                  | 2.320 |  |  |
| OS14m  | 0.9185811 | 0.9095345                    | 3.4e-06 | 14.202347Hornet 4 Drive               | 110 | 3.08                  | 3.215 |  |  |
| US13m  | 0.9717199 | 0.9681848                    | 2.0e-07 | 0.798974Hornet Sportabout             | 175 | 3.15                  | 3.440 |  |  |
| US14m  | 0.9706707 | 0.9670045                    | 2.0e-07 | $0.460186 \mathbf{V} \mathrm{aliant}$ | 105 | 2.76                  | 3.460 |  |  |