Отметим, что радиус площадки значительно превышает длину основания кучи, поэтому можно считать, что все песчинки сметаются в центр круга.

Полная работа по преодолению сил трения при сметанию песка к центру равна

$$A^*_{mp} = \sum_{k=1}^{N_R} A^*_{k} = \sum_{k=1}^{N_R} \frac{2\mu g \rho L^2 H h^3}{3R^2} k^2 = \frac{2\mu g \rho L^2 H h^3}{3R^2} \sum_{k=1}^{N_R} k^2 = \frac{2\mu g \rho L^2 H h^3}{3R^2} \frac{N_R (N_R + 1)(N_R + 2)}{6}.$$
 (24)

Так как мы разбили круг на очень большое количество колец $N_{\scriptscriptstyle R} >> 1$, то единицей и двойкой по сравнению с $N_{\it R}$ можно пренебречь.

двоикой по сравнению с
$$N_R$$
 можно пренеоречь.
Кроме того, надо вспомнить, что $h = \frac{R}{N_R}$, тогда
$$A^*_{mp} = \frac{2\mu g \rho L^2 H(h^3}{3R^2} \frac{N_R^3}{6} = \frac{2\mu g \rho L^2 HR^3}{18R^2} = \frac{\mu g \rho L^2 HR}{9}$$
(25)

Полная работа по сметанию песка в пирамиду равна

$$A^* = \frac{\rho g L^2 H^2}{12} + \frac{\mu g \rho L^2 H R}{9} = \frac{\rho g L^2 H}{3} \left(\frac{H}{4} + \frac{\mu R}{3} \right)$$
$$A^* = 820000 \, \text{Д} \mathcal{H} = 820 \kappa \text{Д} \mathcal{H}$$
(26)

Задание 2. «Водная феерия»

2.1 При открывании крышки давление упадет до нормального атмосферного, при этом вода окажется перегретой – начнется вскипание, которое будет продолжаться до тех пор, ее температура не понизится до температуры кипения при нормальном атмосферном давлении, то есть до $t_1 = 100^{\circ}C$. При это теплота, выделившаяся при остывании воды пойдет на $\$ испарение ее части $\ \Delta m$. Уравнение теплового баланса в этом случае примет вид

$$L\Delta m = c_1 m (t_0 - t_1), \tag{1}$$

из которого легко определить долю выкипевшей воды

$$\frac{\Delta m}{m} = \frac{c_1(t_0 - t_1)}{L} = \frac{4.2 \cdot 10^3 \cdot (120 - 100)}{2.2 \cdot 10^6} \approx 3.8 \cdot 10^{-2}.$$
 (2)

Иными словами, выкипит около 4% води

2.2 При кристаллизации выделяется теплота, которая расходуется на нагревание оставшейся воды. Процесс кристаллизации будет продолжаться до тех пор, пока температура воды не станет равной $t_1 = 0$ °C. Уравнение теплового баланса в данном случае принимает вид

$$\lambda \Delta m = c_1 m (t_1 - t_0). \tag{1}$$

Откуда находим

$$\frac{\Delta m}{m} = \frac{c_1(t_1 - t_0)}{\lambda} = \frac{4.2 \cdot 10^3 \cdot (0 - (-5))}{330 \cdot 10^3} \approx 6.3 \cdot 10^{-2}.$$
 (2)

Примечание: Малость доли воды, претерпевающей фазовый переход, позволяет пренебречь изменением теплоемкости смеси при фазовых преврашениях.

- 2.3 В зависимости от количества впущенного пара могут реализовываться различные конечные состояния воды в сосуде: только лед, лед и жидкость, жидкость, жидкость и пар. Последовательно рассмотрим возможные процессы и конечные равновесные состояния при увеличении количества впущенного пара.
- 1. Пар сконденсировался, образовавшаяся вода остыла до температуры замерзания и частично замерзла – при этом температура льда не достигла температуры плавления. В этом случае уравнение теплового баланса имеет вид

$$Lm + c_1 m(t_1 - t_{nx}) + \lambda m + c_0 m(t_{nx} - t_x) = c_0 m_0(t_x - t_0),$$
(1)

здесь и далее: m - масса впущенного пара, t_x - температура, установившаяся в сосуде после установления теплового равновесия, $t_{\scriptscriptstyle nn.}=0.0^{\circ}C$ - температура плавления льда.

Из уравнения (1) находим требуемую зависимость:
$$t_x = \frac{Lm + c_1 m \left(t_1 - t_{nx.}\right) + \lambda m + c_0 m t_{nx.} + c_0 m_0 t_0}{c_0 m + c_0 m_0}. \tag{2}$$

Подставляя численные значения характеристик воды (удобно теплоту измерять в кДж, а массы в граммах), получим функцию

$$t_{x} = \frac{Lm + c_{1}m(t_{1} - t_{nx}) + \lambda m + c_{0}mt_{nx} + c_{0}m_{0}t_{0}}{c_{0}m + c_{0}m_{0}} = \frac{(2200 + 4,2 \cdot 100 + 330)m + 2,1 \cdot 300 \cdot (-10)}{2,1 \cdot (300 + m)} = \frac{2950m - 6300}{6300 + 2,1m}$$
(3)

Температура льда достигнет нуля, при массе впущенного пара равной $m_1 = \frac{6300}{2050} \approx 2.1 e$.

Так как эта масса мала, то зависимость (3) является примерно линейной. Этот участок на графике обозначен «0-1».

2. Количество пара превысило найденной значение $m_1 \approx 2,1$ г. При этом лед начал плавиться, но пара «не хватает», чтобы расплавить весь лед. В этом случае в сосуде в состоянии равновесия окажется смесь льда и воды, находящаяся при температуре $t_{\scriptscriptstyle nn.} = 0.0^{\circ} C$. Найдем массу пара $m_{\scriptscriptstyle 2}$, при которой количество теплоты, выделившейся при конденсации пара и остывании образовавшейся воды, будет достаточно, чтобы нагреть лед до температуры плавления и полностью его расплавить. Из уравнения теплового баланса

$$Lm_2 + c_1 m_2 (t_1 - t_{n_2}) = c_0 m_0 (t_{n_2} - t_0) + \lambda m_0 \tag{4}$$

находим

$$m_2 = \frac{c_0 m_0 (t_{n_1} - t_0) + \lambda m_0}{L + c_1 (t_1 - t_{n_1})} = \frac{2.1 \cdot 300 \cdot 10 + 330 \cdot 300}{2200 + 4.2 \cdot 100} \approx 40 \,\varepsilon. \tag{5}$$

Таким образом, при массе пара от $m_1 \approx 2.1 \, \epsilon$ до $m_2 \approx 40 \, \epsilon$ температура установившаяся в сосуде будет равна $t_{nn} = 0.0$ °C (участок «1-2» на графике).

3. Весь лед расплавился, образовавшаяся при этом вода стала нагреваться. В этом случае тепловой баланс имеет вид: теплота, выделившаяся при конденсации пара и остывании образовавшейся воды, расходуется на нагревание льда, его плавление и нагревание талой воды до равновесной температуры t_x , или на языке уравнения:

$$Lm + c_1 m(t_1 - t_x) = c_0 m_0 (t_{nx} - t_0) + \lambda m_0 + c_1 m_0 (t_x - t_{nx}).$$
(6)

Из этого уравнения определяем

$$t_{x} = \frac{Lm + c_{1}mt_{1} - c_{0}m_{0}(t_{nn} - t_{0}) - \lambda m_{0}}{c_{1}m + c_{1}m_{0}} =$$

$$= \frac{2200m + 4,2 \cdot 100m - 2,1 \cdot 300 \cdot 10 - 330 \cdot 300}{4,2m + 4,2 \cdot 300} = \frac{2620m - 105300}{4,2m + 1260}$$
(7)

Это участок на графике обозначен «2-3». Конечная температура достигнет температуры конденсации $t_1=100\,^{\circ}C$, если масса впускаемого пара превысит значение m_3 , которое также можно определить из уравнения (6), в котором следует положить $t_x=t_1$:

$$Lm_3 = c_0 m_0 (t_{nx} - t_0) + \lambda m_0 + c_1 m_0 (t_1 - t_{nx}).$$
(8)

Или

$$Lm_{3} = c_{0}m_{0}(t_{nn} - t_{0}) + \lambda m_{0} + c_{1}m_{0}(t_{1} - t_{nn})$$

$$m_{3} = \frac{c_{0}m_{0}(t_{nn} - t_{0}) + \lambda m_{0} + c_{1}m_{0}(t_{1} - t_{nn})}{L} = \frac{2,1 \cdot 300 \cdot 10 + 330 \cdot 300 + 4,2 \cdot 300 \cdot 100}{2200} \approx 105 \,\varepsilon$$

$$(9)$$

При дальнейшем увеличении массы пара конечная температура не превысит $t_1 = 100^{\circ}C$. Требуемый график показан на рисунке.

Отметим, что наклонные участки, строго говоря, не прямолинейны. Однако эти отклонения незначительны.

Задание 3. «Опыт Араго»

1. Необходимо, чтобы лучи отражённые от зеркальца 31, попали на зеркало 32. Это возможно при

$$\frac{90^{\circ} - \theta}{2} < \varphi < 45^{\circ} \tag{1},$$

$$40^{\circ} < \varphi < 45^{\circ}$$
 (2),

и, т.к. зеркальце двухстороннее,

$$\frac{90^{\circ} - \theta}{2} + 180^{\circ} < \varphi < 45^{\circ} + 180^{\circ} \tag{3},$$

$$220^{\circ} < \varphi < 225^{\circ}$$
 (4).