import pandas as pd
import numpy as np
dataset=pd.read_csv('titanic2.csv')
dataset.head()

												Out[2]:
	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked	Survived
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S	0
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С	1
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S	1
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S	1
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S	0

In [3]:

Out[3]:

dataset.isnull().sum()

Passengerld 0 Pclass 0 Name 0 Sex 0 177 Age 0 SibSp Parch Ticket 0 Fare 0 687 Cabin Embarked 2 0 Survived dtype: int64

In [4]:

 $\label{eq:dataset} \begin{subarray}{ll} $\tt dataset = dataset.drop(columns=['Name','Ticket','Cabin','Embarked',]) \\ &\tt dataset['Age'].fillna(dataset['Age'].mean(),inplace={\it True}) \end{subarray}$

In [5]:

dataset.head()

1								
1	Passengerld	Pclass	Sex	Age	SibSp	Parch	Fare	Survived
0	1	3	male	22.0	1	0	7.2500	0
1	2	1	female	38.0	1	0	71.2833	1
2	3	3	female	26.0	0	0	7.9250	1
3	4	1	female	35.0	1	0	53.1000	1
4	5	3	male	35.0	0	0	8.0500	0

In [6]:

x=dataset.iloc[:,:-1].values

In [7]:

y=dataset.iloc[:,7].values

```
array([0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
     1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1,
     1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1,
     1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
     1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
     0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
     0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
     1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
     1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1,
     0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
     0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0,
     1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
     0,\,1,\,1,\,1,\,0,\,0,\,0,\,1,\,1,\,0,\,1,\,1,\,0,\,0,\,1,\,1,\,0,\,1,\,0,\,1,\,1,\,1,
     1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
     0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
     0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
     0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1,
     0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
     1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
     0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
     1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
     1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
     0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1,
     1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
     1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
     0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
     0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
     0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0
     1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
     0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
     0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
     1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1,
     0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
     0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
     0,\,0,\,0,\,0,\,1,\,1,\,0,\,0,\,0,\,1,\,1,\,1,\,1,\,0,\,0,\,0,\,0,\,1,\,0,\,0,\,0,\,0,
     0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
     0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1,
     1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
     1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0], dtype=int64)
                                                                                                                                                                            In [8]:
 from sklearn.preprocessing import OneHotEncoder
 from sklearn.compose import ColumnTransformer
 transform=ColumnTransformer([("norm1",OneHotEncoder(),[2])],
                    remainder='passthrough')
 x=transform.fit_transform(x)
                                                                                                                                                                          Out[8]:
array([[0.0, 1.0, 1, ..., 1, 0, 7.25],
     [1.0, 0.0, 2, ..., 1, 0, 71.2833],
     [1.0, 0.0, 3, ..., 0, 0, 7.925],
     [1.0, 0.0, 889, ..., 1, 2, 23.45],
     [0.0, 1.0, 890, ..., 0, 0, 30.0],
     [0.0, 1.0, 891, ..., 0, 0, 7.75]], dtype=object)
                                                                                                                                                                            In [9]:
 from sklearn.model_selection import train_test_split
 x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,
                                  random_state=0)
 from sklearn.linear_model import LogisticRegression
 from sklearn.metrics import accuracy_score
                                                                                                                                                                          In [10]:
 logreg = LogisticRegression(max_iter=1000)
 logreg.fit(x_train, y_train)
 y_pred = logreg.predict(x_test)
 acc_logreg = round(accuracy_score(y_pred, y_test) * 100, 2)
 print(acc_logreg)
79.89
                                                                                                                                                                            In [ ]:
Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
```

Out[7]: