* $\Delta f(x) = f(x+h) - f(x)$

Camlin

Forward Difference Table						
Value of x	Value of y	1st. diff.	2nd diff.	3rd diff.	4th diff.	Est dier
x ₀	У0			ora aij.	un ayı.	5th diff.
		Δyo				
$x_0 + h$	y ₁		$\Delta^2 y_0$			
		Δy_1		$\Delta^3 y_0$		
$x_0 + 2h$	y ₂		$\Delta^2 y_1$		$\Delta^4 y_0$	
		Δy_2	11 17 23 11	$\Delta^3 y_1$		$\Delta^5 y_0$
$x_0 + 3h$	y ₃		$\Delta^2 y_2$		$\Delta^4 y_1$,	
*		Δy_3		$\Delta^3 y_2$		
$x_0 + 4h$	<i>y</i> ₄		$\Delta^2 y_3$			
		Δy_4				
$x_0 + 5h$	<i>y</i> ₅				V V. 1	1 1

*.	Forward diff Table
	r nabla
	> Backward Dyferences (D)
	$\nabla y_1 = y_1 - y_2$
	Dy = 41-40
	$\nabla y_2 = y_2 - y_1$
	$\nabla u_{in} = u_{in} - u_{in}$
10	$\nabla y_n = y_n - y_{n-1}$
	$\nabla \dot{q} = \nabla q - \nabla q$
	Tyr = Tyr - Tyr-1
*	Backward diff Table.
* 10	73(01)
, 10	$\nabla f(x) = f(x) - f(x-h)$
	> 0
	Averagina Oberator (8)
	Averaging operator (4)
	Averaging operator (4) Shift operator (E)
20	
	Relation between operators.

-

Central difference operator: (8) The central difference operator (S) is defined as Sf(x) = f(x+ 1/2) - f(x-1/2) · . 8 4 = 4, - 40 893/2 = 92-91 ; 895/2 = 93-92 Syn = Yn+2 yn-1 15 89, = 893/2 - 80, 892 = 895/2 893/2 in general form for mt central difference. S 5n = S m-1 - S m-1 yn-1 85 85 50

Averaging operator (4)

Mean operator :-

It is defined as

· · · My_ = = = (9,+90); My3/2 = = (92+91) -

In general My = = (47+1+47-4)

Shift operator (c): (or) renewn as Enlargement operator (or) displacement operator (or) shifting operator

It is defined as

(The function f(x) may be shifted to f(x+h)
by an operator E called shifting operator)

Eyo = y, , E^vyo = y₂

(i)
$$\Delta = E - I$$
 (ii) $\nabla = I - E^{I}$ (iii) $S = E^{\frac{1}{2}} - E^{\frac{1}{2}}$

Thy from the definitions, the remaining relations can be easily est

Thy from the definitions, the remaining relations can be easily est (ii) Preve HUS V=1-E = 1-V=E (1-0) f(x) = f(x) - o f(x) = f(x) - (f(x) - f(x-4)] = f(x-h) = E f(x) (1-0) f(x) = E f(x) -) 1- D=E // from these OND EE = (1-0) (1+0) X=X+D-V=VA V(1+A) = A => V = A Sf(x)= f(x++=)-f(x-+=) = E = f(x) - E = f(x)

$$S = \frac{1}{\sqrt{1-v}} = \frac{1}{\sqrt{1+v}} =$$

$$S = e^{\frac{1}{2}} - e^{-\frac{1}{2}} = \frac{1}{\sqrt{1+0}}$$

$$= \frac{1}{\sqrt{1+0}} - \sqrt{1+0}$$

$$= \frac{1}{\sqrt{1+0}} - \sqrt{1$$

$$\Delta = E - 1$$

$$\nabla = \left[\frac{1}{E} - \frac{1}{E} \right]$$

$$= 1 - \frac{1}{E} = \frac{E - 1}{E}$$

$$\vdots$$

$$\nabla = \Delta \Rightarrow \Delta = E \Rightarrow$$