Στατιστική Μοντελοποίηση και Αναγνώριση Προτύπων (ΤΗΛ311)

Αναφορά 2ης Σειράς Ασκήσεων Ανδρεαδάκης Αντώνης 2013030059

1. Στην άσκηση αυτή, ασχοληθήκαμε με την αναλυτική εύρεση της κλίσης σε ένα σύνολο m δεδομένων $\{(\boldsymbol{x}^{(1)}, y^{(1)}), (\boldsymbol{x}^{(2)}, y^{(2)}), \dots, (\boldsymbol{x}^{(m)}, y^{(m)})\}$, όπου $\boldsymbol{x}^{(i)} \in \mathbb{R}^{n \times 1}$ είναι τα διανύσματα χαρακτηριστικών και $y^{(i)} \in \{0,1\}$ ορίζουν την κλάση κάθε δείγματος (labels).

A.

We know calculate the slope of the loss function $J(\theta)$ w.r.t the learnable parameters θ of our learner.

$$ln(h_{\theta}(x^{(i)})) = ln(\frac{1}{1 + e^{-\theta^{T}x^{(i)}}}) = -ln(1 + e^{-\theta^{T}x^{(i)}})$$

$$ln(1 - h_{\theta}(x^{(i)})) = ln(1 - \frac{1}{1 + e^{-\theta^{T}x^{(i)}}}) = ln(\frac{e^{-\theta^{T}x^{(i)}}}{1 + e^{-\theta^{T}x^{(i)}}}) =$$

$$= ln(e^{-\theta^{T}x^{(i)}}) - ln(1 + e^{-\theta^{T}x^{(i)}}) = -\theta^{T}x^{(i)} - ln(1 + e^{-\theta^{T}x^{(i)}})$$

By substitution we get that

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(y^{(i)} ln \left(1 + e^{-\theta^{T} x^{(i)}} \right) + (1 - y^{(i)}) \left(\theta^{T} x^{(i)} + ln (1 + e^{-\theta^{T} x^{(i)}}) \right) \right) =$$

$$\frac{1}{m} \sum_{i=1}^{m} \left(ln \left(e^{\theta^{T} x^{(i)}} (1 + e^{-\theta^{T} x^{(i)}}) \right) - y^{(i)} \theta^{T} x^{(i)} \right) =$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(ln (1 + e^{\theta^{T} x^{(i)}}) - y^{(i)} \theta^{T} x^{(i)} \right)$$

By taking the derivative of the above relation w.r.t the learnable parameters $\theta \in \mathbb{R}^n$ we get that

$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{x^{(i)} e^{\theta^T x^{(i)}}}{1 + e^{\theta^T x^{(i)}}} - y^{(i)} x^{(i)} \right) = \frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{1 + e^{-\theta^T x^{(i)}}} - y^{(i)} \right) x^{(i)}.$$

Proving that

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}.$$

Β. Χρησιμοποιώντας τη λογιστική παλινδρόμηση, για να προβλέψουμε αν ένας μαθητής γίνει δεκτός σε ένα πανεπιστήμιο , με βάση τους βαθμούς του σε 2 εξετάσεις, πήραμε τα παρακάτω αποτελέσματα: Αρχικά προβάλλουμε τα δεδομένα:

Υλοποιώντας τις συναρτήσεις που μας ζητήθηκαν και εκτελώντας τον κώδικα, είχαμε τα εξής αποτελέσματα:

Κόστος και κλίση:

```
Cost at initial theta (zeros): 0.693147

Gradient at initial theta (zeros):

-0.100000

-12.009217

-11.262842
```

Γράφημα από την plotDecisionBoundary:

Με βελτιστοποίηση:

Cost at theta found by fminunc: 0.203498 theta:
-25.161343
0.206232
0.201472

Πρόβλεψη αν ο φοιτητής γίνει δεκτός:

Program paused. Press enter to continue. For a student with scores 45 and 85, we predict an admission probability of 0.776291

Train Accuracy: 89.000000

2. Εδώ εφαρμόσαμε ομαλοποιημένη λογιστική παλινδρόμηση, για την πρόβλεψη ελέγχου ποιότητας στα μικροτσιπ μιας μονάδας κατασκευής. Αρχικά προβάλλουμε τα δεδομένα:

Με μαύρο απεικονίζονται όσα έχουν ελεγχθεί και είναι ποιοτικά, ενώ με κίτρινο όσα δεν είναι ποιοτικά.

Προχωρώντας τον κώδικα έχουμε:

Και τα σύνορα απόφασης για διάφορες τιμές του λ:

Train Accuracy: 88.983051

Expected accuracy (with lambda = 0): 89(approx)

Train Accuracy: 83.050847

Expected accuracy (with lambda = 1): 83.1(approx)

Train Accuracy: 74.576271

Expected accuracy (with lambda = 10): 74.6(approx)

Train Accuracy: 61.016949

Expected accuracy (with lambda = 1): 61(approx)

3. Ο M-L.Ε. είναι η λύση του ακόλουθου προβλήματος μεγιστοποίησης: $\hat{\lambda} = \arg \max_{\lambda} l(\lambda; x_1, ..., x_n)$ Η 1^{η} συνθήκη για μέγιστο είναι: $\frac{d}{d\lambda} l(\lambda; x_1, ..., x_n) = 0$

Η 1^{η} παράγωγος της πιθανότητας log-likelihood, σε σχέση με την παράμετρο λ είναι: $\frac{d}{d\lambda}l(\lambda;x_1,\ldots,x_n) = \frac{d}{d\lambda}\left(-n\lambda - \sum_{j=1}^n \ln(x_j!) + \ln(\lambda)\sum_{j=1}^n x_j\right)$ $= -n + \frac{1}{\lambda}\sum_{i=1}^n x_i$

Η παράγωγος της πιθανότητας πρέπει να είναι μηδέν, σύμφωνα με την συνθήκη που αναφέρουμε παραπάνω. Οπότε τελικά έχουμε:

$$\lambda = \frac{1}{n} \sum_{j=1}^{n} x_j$$

Μια πιο ακριβής λύση είναι η εξής:

Suppose we have n i.i.d samples $D = \{x_1, ..., x_n\}$ that are generated from a Poisson distribution that is parameterized by λ .

$$p(x|\lambda)\frac{\lambda^x e^{-\lambda}}{x!}$$
, $x = 0, 1, 2, ...$, $\lambda > 0$

We will attend to find the MLE of parameters λ . The likelihood function is

$$L_D(\lambda) = \prod_{i=1}^{n} \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}$$
.

The log-likelihood then is

$$\begin{split} l_D(\lambda) &= log(\prod_{i=1}^n \frac{\lambda^{x_i} e^{-\lambda}}{x_i!}) = \sum_{i=1}^n log(\frac{\lambda^{x_i} e^{-\lambda}}{x_i!}) = \\ &= \sum_{i=1}^n (-\lambda + x_i log\lambda - logx_i!) = -n\lambda - \sum_{i=1}^n logx_i! + log\lambda \sum_{i=1}^n x_i. \end{split}$$

The Maximum Likelihood Estimation of λ can be found by solving the convex optimization problem $\operatorname{argmax}_{\lambda}(l_D(\lambda))$. (This optimization problem is convex because we are maximizing a concave function).

$$\nabla_{\lambda_{MLE}} l_D(\lambda) = 0 \Leftrightarrow -n + \frac{1}{\lambda_{MLE}} \sum_{i=1}^n x_i = 0$$

$$\Leftrightarrow \lambda_{MLE} = \frac{1}{n} \sum_{i=1}^n x_i$$

Therefore, λ_{MLE} is just the sample mean of the n observations in the sample.

4. Εδώ, υλοποιήσαμε τον naive Bayes ταξινομητή για αναγνώριση προτύπων. Τα ψηφία 0 έως 9 αντιστοιχούν σε 10 κλάσεις και κάθε δείγμα είναι αναπαράσταση μιας εικόνας με διαστάσεις 28x28. Στην περίπτωσή μας, υποθέτουμε ότι τα χαρακτηριστικά (εικονοστοιχεία-pixels) είναι ανεξάρτητα. Χρησιμοποιώντας την κατανομή Bernoulli, μοντελοποιούμε κάθε Pixel από κάθε κλάση.

A.
$$L_{D_{x^{y_i}}} = P(D_{x^{y_i}}|p^{y_i}) = \prod_{j=1}^n P(X = x_j^{y_i}) = (p^{y_i})^k (1 - p^{y_i})^{k'}$$

where $k = \sum_{j=1}^{n} x_{j}^{y_{i}}$ and k' = n - k.

$$\begin{split} l_{D_{x}y_{i}}(p^{y_{i}}) &= log((p^{y_{i}})^{k}(1-p^{y_{i}})^{k'}) = klog(p^{y_{i}}) + k'log(1-p^{y_{i}}) \\ \nabla_{p_{MLE}^{y_{i}}} l_{D_{x}y_{i}}(p^{y_{i}}) &= 0 \Leftrightarrow \frac{k}{n^{y_{i}}} - \frac{k'}{1-n^{y_{i}}} = 0 \\ \frac{k - kp_{MLE}^{y_{i}} - k'p_{MLE}^{y_{i}}}{p_{MLE}^{y_{i}}(1-p_{MLE}^{y_{i}})} &= 0 \Leftrightarrow p_{MLE}^{y_{i}} = \frac{k}{k+k'} \\ p_{MLE}^{y_{i}} &= \frac{1}{n} \sum_{j=1}^{n} x_{j}^{y_{i}} \end{split}$$

Β. Παρακάτω στα γραφήματα, χρησιμοποιώντας τα δοσμένα δείγματα εκπαίδευσης, για κάθε ψηφίο χρησιμοποιούμε τους εκτιμητές μέγιστης πιθανοφάνειας.
 Τρέχοντας τον κώδικα που δόθηκε ως παράδειγμα είχαμε την εξής εικόνα:

Μετά την εκπαίδευση κάθε ψηφίου, χρησιμοποιώντας την κατανομή Bernoulli έχουμε: **MLE Bernoulli Distribution of digit 0**

C. Ακρίβεια ταξινόμησης:

```
(matlab code) ... (correct/(label*size(test0,1)):
                Accuracy after testing digits 0: 0.718
                Accuracy after testing digits 1: 0.858
                Accuracy after testing digits 2: 0.64533
                Accuracy after testing digits 3: 0.577
                Accuracy after testing digits 4: 0.58
                Accuracy after testing digits 5: 0.51033
                Accuracy after testing digits 6: 0.53314
                Accuracy after testing digits 7: 0.54675
                Accuracy after testing digits 8: 0.50978
                Accuracy after testing digits 9: 0.53
                Accuracy: 0.53
(matlab code) ... (correct/(label*size(test0,2)):
                 Accuracy after testing digits 0 : 0.45791
                 Accuracy after testing digits 1: 0.54719
                 Accuracy after testing digits 2: 0.41156
                 Accuracy after testing digits 3: 0.36798
                 Accuracy after testing digits 4: 0.3699
                 Accuracy after testing digits 5: 0.32547
                Accuracy after testing digits 6: 0.34001
                 Accuracy after testing digits 7: 0.34869
                 Accuracy after testing digits 8: 0.32511
                Accuracy after testing digits 9: 0.33801
                Accuracy: 0.53
(matlab code) ... (correct/(label*size(test0,3)):
                Accuracy after testing digits 0: 359
                Accuracy after testing digits 1: 429
               Accuracy after testing digits 2: 322.6667
                Accuracy after testing digits 3: 288.5
                Accuracy after testing digits 4: 290
               Accuracy after testing digits 5: 255.1667
               Accuracy after testing digits 6: 266.5714
               Accuracy after testing digits 7: 273.375
                Accuracy after testing digits 8: 254.8889
                Accuracy after testing digits 9: 265
                Accuracy: 0.53
(matlab code) ... (correct/(label*size(test0,4)):
               Accuracy after testing digits 0: 359
               Accuracy after testing digits 1: 429
               Accuracy after testing digits 2: 322.6667
               Accuracy after testing digits 3: 288.5
               Accuracy after testing digits 4: 290
               Accuracy after testing digits 5: 255.1667
               Accuracy after testing digits 6: 266.5714
               Accuracy after testing digits 7: 273.375
               Accuracy after testing digits 8: 254.8889
               Accuracy after testing digits 9: 265
               Accuracy: 0.53
```

Όταν το σύνολο των δειγμάτων αλλάζει από size(test0,1) σε size(test0,2) ... size(test0,9) η ακρίβεια της ταξινόμησης παραμένει σταθερή 0.53. Αντιθέτως, η ακρίβεια για το κάθε ψηφίο (0...9) διαφοροποιείται. Συγκεκριμένα, για τις 2 πρώτες περιπτώσεις που αναφέρουμε έχουμε μικρή μεταβολή προς τα κάτω. Μόλις η «παράμετρος» i (στην έκφραση: size(test0, i), i=1...9) γίνει 3, η διαφοροποίηση είναι ακραία και παραμένει σταθερή.

Ο αρχικός πίνακας είναι:

confusio	on_mat	rix =							
359	64	0	1	2	6	40	10	5	13
0	499	0	0	0	0	1	0	0	0
7	329	110	13	4	0	11	19	4	3
0	294	0	186	1	2	1	11	1	4
0	112	0	0	296	0	11	1	0	80
5	231	0	87	14	81	12	14	0	56
4	135	1	0	24	0	335	0	0	1
1	162	0	0	5	0	0	321	1	10
5	298	0	22	5	2	7	11	107	43
1	90	0	4	32	0	3	13	1	356

Ο πίνακας διαμορφώνεται ως εξής:

confusion_ma	trix =								
0.7180	0.1280	0	0.0020	0.0040	0.0120	0.0800	0.0200	0.0100	0.0260
0	0.9980	0	0	0	0	0.0020	0	0	0
0.0140	0.6580	0.2200	0.0260	0.0080	0	0.0220	0.0380	0.0080	0.0060
0	0.5880	0	0.3720	0.0020	0.0040	0.0020	0.0220	0.0020	0.0080
0	0.2240	0	0	0.5920	0	0.0220	0.0020	0	0.1600
0.0100	0.4620	0	0.1740	0.0280	0.1620	0.0240	0.0280	0	0.1120
0.0080	0.2700	0.0020	0	0.0480	0	0.6700	0	0	0.0020
0.0020	0.3240	0	0	0.0100	0	0	0.6420	0.0020	0.0200
0.0100	0.5960	0	0.0440	0.0100	0.0040	0.0140	0.0220	0.2140	0.0860
0.0020	0.1800	0	0.0080	0.0640	0	0.0060	0.0260	0.0020	0.7120

Και τελικά η γραφική απεικόνιση είναι η παρακάτω:

Παρατηρούμε, ότι όσες τιμές του πίνακα confusion_matrix είναι μικρότερες από 0.05(περίπου), απεικονίζονται με μπλε (σκούρο ή λίγο ανοικτό), ενώ όσες είναι από 0.1 και πάνω αρχίζουν και διαφοροποιούν το χρώμα με το οποίο αναπαρίστανται σε κάθε pixel (γαλάζιο, λαχανί, κίτρινο).

- 5. Σε αυτή την άσκηση, μελετήσαμε την Bayesian εκτίμηση του μ. Σε ένα σύνολο H(n) με n = 25 μετρήσεις, υποθέτοντας ότι η συνάρτηση πυκνότητας πιθανότητας των μετρήσεων είναι Gaussian, με γνωστή τυπική απόκλιση σ = 1.25 και μέση τιμή μ₀ = 0.
 - Α. Για τις διάφορες τιμές του σ_0^2 , υλοποιήσαμε σε κοινό γράφημα τη δεσμευμένη πυκνότητα πιθανότητας $p(\mu|H(n))$, καθώς το η μεταβάλλεται από 1 έως 25. Αρχικά, υλοποιώντας για όλες τις τιμές του πίνακα H είχαμε:

Τελικά, το ζητούμενο γράφημα είναι:

Otan $\sigma_0^2 = 10 * \sigma^2$:

Β. Οι δεσμευμένες πιθανότητες p(x/H(n)), για όλες τις τιμές του πίνακα Η είναι:

Τα ζητούμενα γραφήματα όμως είναι:

 $\underline{\text{Otan } \sigma_0^2 = 10^* \ \sigma^2:}$

<u>Οταν σ</u>₀² = σ²:

$\underline{\text{Otan } \sigma_0^2 = 0.1^* \ \sigma^2:}$

<u>Όταν $\sigma_0^2 = 0.01* \sigma^2$:</u>

Αποδεικνύεται από τα γραφήματα, ότι όταν το σ_0^2 είναι μεγάλο, η εκτίμηση της μέσης τιμής συγκλίνει γρηγορότερα στο μέσο όρο του δείγματος των μετρήσεων του χρόνου. Όταν το σ_0^2 είναι μικρό, η επίδραση του μέσου όρου του δείγματος στην εκτίμηση της μέσης τιμής είναι λιγότερη, κάνοντάς την να παραμένει κοντά στο $\mu_0=0$.

6.

7. Στην άσκηση αυτή, ασχοληθήκαμε με ένα πρόβλημα βελτιστοποίησης με περιορισμούς, χρησιμοποιώντς Support Vector Machines. Θέλουμε να προβλέψουμε τις τιμές y⁽ⁱ⁾ από τις αντίστοιχες τιμές x⁽ⁱ⁾, iε{1,...,n}. Αποθηκεύουμε όλα τα δεδομένα σε ένα πίνακα X, όπου οι γραμμές είναι τα δείγματα και οι στήλες τα χαρακτηριστικά.

Αρχικά προβάλλουμε τα δεδομένα:

Μέρος 1°: Γραμμικά διαχωρίσιμα δείγματα.

Η Λαγκρανζιανή του δυικού προβλήματος είναι

$$\tilde{L}(\lambda) = \sum_{i=1}^{n} \lambda^{(i)} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda^{(i)} \lambda^{(j)} y^{(i)} y^{(j)} K(\boldsymbol{x}^{(i)}, \boldsymbol{x}^{(j)})$$

όπου
$$K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)}) = \mathbf{x}^{(i)} \cdot \left(\mathbf{x}^{(j)}\right)^T$$

την οποία μεγιστοποιούμε κάτω από τους περιορισμούς

$$\lambda^{(i)} \ge 0, \quad i = 1, ..., n$$

$$\sum_{i=1}^{n} \lambda^{(i)} y^{(i)} = 0$$

Υλοποιώντας τα ερωτήματα, προέκυψαν οι εξής γραφικές:

$$C = 0.01$$

C = 1

C = 100

Και για μεγαλύτερο C, παραμένει η ίδια γραφική.

Μέρος 2°: Μεταβλητές περιθωρίου (slack variables).

Όταν υπάρχει θόρυβος στα δεδομένα χρησιμοποιούμε μεταβλητές περιθωρίου για να γίνονται ανεκτά κάποια παραδείγματα στην λάθος πλευρά της επιφάνειας απόφασης. Η παράμετρος που καθορίζει το επίπεδο ανοχής συνήθως συμβολίζεται με C και παίρνει τιμές στο διάστημα $(0, +\infty)$, με 0^+ να αντιστοιχεί σε μέγιστη ανοχή και $+\infty$ σε μηδενική ανοχή.

Η Λαγκρανζιανή του δυικού προβλήματος είναι ίδια με αυτή του πρώτου μέρους αλλά την **μεγιστοποιούμε** κάτω από τους παρακάτω περιορισμούς:

$$0 \le \lambda^{(i)} \le C$$
, $i = 1, ..., n$

Επαναλάβαμε ό,τι και στο προηγούμενο μέρος, αλλά για όλα τα δεδομένα του αρχείου και πήραμε τα εξής αποτελέσματα:

C = 0.01

C = 10

Ομοίως κι εδώ για μεγαλύτερη τιμή του C, το γράφημα παραμένει σταθερό.