

DISEÑO DIGITAL

- Professor:
- Estudiante:
 - Rubens Andre Apresa Echeverria ID:200161783
 - Laura Sofía Gomez Rosales ID: 200161861
 - Luis Espinel Luna ID:200149985

Punto 1:

- 7365 4192 (7365 menos 4192)
 - Comenzamos a pasar los numeros a binario:

Restante	Residuo
3682	1
1841	0
920	1
460	0
230	0
115	0
57	1
28	1
14	0
7	0
3	1
1	1
0	1
	3682 1841 920 460 230 115 57 28 14 7

Numero	Restante	Residuo
4192	2096	0
2096	1048	0
1048	524	0
524	262	0
262	131	0
131	65	1
65	32	1
32	16	0
16	8	0
8	4	0
4	2	0
2	1	1
1	0	0

- Esto seria con 16 bits:

Numero	A binario de 16
7365	0001110011000101
4192	0001000001100000

- El resultado debe ser: 3173
- $-\,$ debemos encontrar el complemento de 4192

4192	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0
complemento	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1

- le sumamos 1

complemento	1	1	1	0	1	1	1	1	1	0	0	1	1	1	1	1
+1																1
Resultado	1	1	1	0	1	1	1	1	1	0	1	0	0	0	0	0

- El resultado lo sumamos con 7365

Resultado	1	1	1	0	1	1	1	1	1	0	1	0	0	0	0	0
7365	0	0	0	1	1	1	0	0	1	1	0	0	0	1	0	1
Resultado	0	0	0	0	1	1	0	0	0	1	1	0	0	1	0	1

- Nos queda que:

Numero	A binario de 16
3173	0000110001100101

- 9274 5888 (9274 menos 5888)
 - Comenzamos a pasar los numeros a binario:

Numero	Restante	Residuo
9274	4637	0
4637	2318	1
2318	1159	0
1159	579	1
579	289	1
289	144	1
144	72	0
72	36	0
36	18	0
18	9	0
9	4	1
4	2	0
2	1	0
1	0	1

Numero	Restante	Residuo
5888	2944	0
2944	1472	0
1472	736	0
736	368	0
368	184	0
184	92	0
92	46	0
46	23	0
23	11	1
11	5	1
5	2	1
2	1	0
1	0	1

$-\,$ Esto seria con 16 bits:

Numero	A binario de 16
9274	0010010000111010
5888	00010111000000000

- El resultado debe ser: 3386
- $-\,$ Debemos encontrar el complemento de 5888

5888	0	0	0	1	0	1	1	1	0	0	0	0	0	0	0	0
complemento	1	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1

- le sumamos 1

complemento	1	1	1	0	1	0	0	0	1	1	1	1	1	1	1	1
+1																1
Resultado	1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0

- El resultado lo sumamos con 9274

Resultado	1	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0
9274	0	0	1	0	0	1	0	0	0	0	1	1	1	0	1	0
Resultado	0	0	0	0	1	1	0	1	0	0	1	1	1	0	1	0

- Nos queda que:

Numero	A binario de 16
3386	0000110100111010

Punto 2

Demuestre usando álgebra booleana:

$$F(A,B,C,D) = \sum m(0,1,2,3,6,9,11,13,14,15) = \prod M(4,5,7,8,10,12)$$

• Tabla de verdad

X	A	В	\mathbf{C}	D	\mathbf{S}
0	0	0	0	0	1
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	1

• Mapa de Karnaugh para suma de productos:

00 00	00	01	11	10
00	1	1	1	1
01	0	0	0	1
11	0	1	1	1
10	0	1	1	0

• Apartir del mapa obtebemos:

$$\overline{AB} + BC\overline{D} + AD$$

• Mapa con producto de sumas

00 00	00	01	11	10
00	1	1	1	1
01	0	(0)	0	1
11	0	1	1	1
10	0	1	1	0

• Nos queda que:

$$(A + \overline{B} + \overline{D})(A + \overline{B} + C)(\overline{B} + C + D)(\overline{A} + C + D)(\overline{A} + B + D)$$

• Nuestra meta es concluir que:

$$\overline{AB} + BC\overline{D} + AD = (A + \overline{B} + \overline{D})(A + \overline{B} + C)(\overline{B} + C + D)(\overline{A} + C + D)(\overline{A} + B + D)$$

- Empezamos de izquierda a derecha
 - Negamos la ecuación:

$$\overline{\overline{AB} + BC\overline{D} + AD}$$

– Teniendo en la Ley de Morgan: $\overline{x+y}=\overline{x}\cdot\overline{y}, \overline{x\cdot y}=\overline{x}+\overline{y}(\text{Ley de Morgan})$

$$(\overline{\overline{A}} + \overline{\overline{B}})(\overline{B} + \overline{C} + \overline{\overline{D}})(\overline{A} + \overline{D})$$

- Dado que $\overline{\overline{x}} = x$, entonces:

$$(A+B)(\overline{B}+\overline{C}+D)(\overline{A}+\overline{D})$$

– Utilizamos propiedad distributiva:

$$\overline{A}A\overline{B} + \overline{A}A\overline{C} + A\overline{A}D + AB\overline{B} + \overline{A}B\overline{C} + \overline{A}BD + A\overline{B}\overline{D} + A\overline{C}\overline{D} + AD\overline{D} + B\overline{B}\overline{D} + B\overline{C}\overline{D} + BD\overline{D}$$

- Por $\overline{x} \cdot x = 0$

$$\overline{A}B\overline{C} + \overline{A}BD + A\overline{B}\overline{D} + A\overline{C}\overline{C} + B\overline{C}\overline{D}$$

- Negamos la ecuación para convertirla en producto de suma:

$$\overline{\overline{A}B\overline{C}} + \overline{\overline{A}BD} + A\overline{BD} + A\overline{CC} + B\overline{CD}$$

– Aplicamos Ley de Morgan y $\overline{\overline{x}} = x$ reemplazmos

$$(A + \overline{B} + C)(A + \overline{B} + \overline{D})(\overline{A} + B + D)(\overline{A} + C + D)(\overline{B} + C + D)$$

• Otra forma de hacerlo que también es equivalente a la tabla de verdad, es demostrando que

$$\overline{AB} + AD + BC\overline{D} = (\overline{A} + B + D)(\overline{B} + C + D)(A + \overline{B} + \overline{D})$$

 Teniendo en cuenta que es una igualdad, podemos desarrollar el lado derecho para demostrar que es equivalente al izquierdo

$$(\overline{A} + B + D)(\overline{B} + C + D)(A + \overline{B} + \overline{D})$$

- Se aplica distributiva entre $(\overline{A} + B + D)(\overline{B} + C + D)$ y las propiedades $X\overline{X} = 0$ XX = X

$$\overline{AB} + \overline{AC} + \overline{AD} +$$

$$BD + BC +$$

$$\overline{BD} + CD + D$$

(1) Aplicando X + XY = X

$$\overline{AB} + \overline{A}C + D + BC$$

- Distributiva de (1) con $(A + \overline{B} + \overline{D})$ y aplicando las propiedades $X\overline{X} = 0$ XX = X

$$\begin{split} AD + ABC + \\ \overline{AB} + \overline{AB}C + \overline{B}D + \\ \overline{ABD} + \overline{A}C\overline{D} + BC\overline{D} \end{split}$$

- Aplicando X + XY = X

$$\overline{AB} + \overline{A}C\overline{D} + AD + \overline{B}D + ABC + BC\overline{D}$$

– Simplificamos aplicando $XY+\overline{X}Z+YZ=XY+\overline{X}Z$

$$\overline{AB} + AD + BC\overline{D}$$

De dos distintas formas se demostró la equivalencia

• Damos razón que:

$$F(A,B,C,D) = \sum m(0,1,2,3,6,9,11,13,14,15) = \prod M(4,5,7,8,10,12)$$

Punto 3

• Dada:

$$F(A,B,C,D) = \prod M(0,1,2,3,6,7,11,13,14) = \sum m(4,5,8,9,10,12,15)$$

• hacemos la tabla de verdad

X	A	В	\mathbf{C}	D	\mathbf{S}
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	0
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	1

• Mapa para suma de productos

00 00	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	0	1	0
10	1	1	0	1

• Nos da que:

$$\overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}\overline{D} + A\overline{C}\overline{D} + ABCD$$

• Mapa para producto de sumas

00 00	00	01	11	10
00	0	0	0	0
01	1	1	0	0
11	1	0	1	0
10	1	1	0	1

• Nos queda que:

$$(A+B)(A+\overline{C})(B+\overline{C}+\overline{D})(\overline{B}+\overline{C}+D)(\overline{A}+\overline{B}+C+\overline{D})$$

• Demostrar que:

$$(A+B)(A+\overline{C})(B+\overline{C}+\overline{D})(\overline{B}+\overline{C}+D)(\overline{A}+\overline{B}+C+\overline{D})$$

$$=$$

$$\overline{A}B\overline{C}+A\overline{B}\overline{C}+A\overline{B}\overline{D}+A\overline{C}\overline{D}+ABCD$$

- Empezamos de izquierda a derecha
 - Se realiza la distribución de $(A+B)(A+\overline{C})$ y se aplica la propiedad XX=X

$$(A + A\overline{C} + AB + B\overline{C})$$

(1) Teniendo en cuenta que X + XY = X

$$(A+B\overline{C})$$

— Distributiva de (1) con $(B+\overline{C}+\overline{D})$ y se aplica la propiedad XX=X

$$AB + B\overline{C} + A\overline{C} + B\overline{C} + A\overline{D} + B\overline{C}\overline{D}$$

(2) Simplificamos aplicando $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ y XX = X

$$(AB+B\overline{C}+A\overline{C}+A\overline{D})$$

– Distributiva de (2) con $(\overline{B}+\overline{C}+D)$ y se aplican las propiedad XX=X y $x\overline{x}=0$

$$A\overline{BC} + A\overline{BD} +$$

$$AB\overline{C} + B\overline{C} + A\overline{C} + A\overline{CD} +$$

$$ADB + B\overline{C}D + A\overline{C}D$$

(3) Simplificamos aplicando $XY+\overline{X}Z+YZ=XY+\overline{X}Z$ y XX=X

$$(ABD+B\overline{C}+A\overline{C}+A\overline{BD})$$

– Distributiva de (3) con $(\overline{A} + \overline{B} + C + \overline{D})$ y se aplican las propiedad XX = X y $x\overline{x} = 0$

$$\overline{A}B\overline{C}+$$

$$A\overline{B}\overline{C}+A\overline{B}\overline{D}+$$

$$ABCD+A\overline{B}C\overline{D}+$$

$$B\overline{C}\overline{D}+A\overline{C}\overline{D}+A\overline{B}\overline{D}$$

(4) Simplificamos aplicando $XY+\overline{X}Z+YZ=XY+\overline{X}Z$ y XX=X

$$\overline{A}B\overline{C} + A\overline{B}\overline{C} + A\overline{B}\overline{D} + A\overline{C}\overline{D} + ABCD$$

• Damos razón que:

$$F(A,B,C,D) = \prod M(0,1,2,3,6,7,11,13,14) = \sum m(4,5,8,9,10,12,15)$$

Punto 4:

Demuestre usando álgebra booleana:

$$F(A,B,C,D,E) = \sum m(0,6,8,9,15,16,26,27,28) = \\ \prod M(1,2,3,4,5,7,10,11,12,13,14,17,18,19,20,21,22,23,24,25,29,30,31)$$

• Tabla de verdad.

x	A	В	С	D	E	S
0	0	0	0	0	0	1
1	0	0	0	0	1	0
2	0	0	0	1	0	0
3	0	0	0	1	1	0
4	0	0	1	0	0	0
5	0	0	1	0	1	0
6	0	0	1	1	0	1
7	0	0	1	1	1	0
8	0	1	0	0	0	1
9	0	1	0	0	1	1
10	0	1	0	1	0	0
11	0	1	0	1	1	0
12	0	1	1	0	0	0
13	0	1	1	0	1	0
14	0	1	1	1	0	0
15	0	1	1	1	1	1
16	0	0	0	0	0	1
17	1	0	0	0	1	0
18	1	0	0	1	0	0
19	1	0	0	1	1	0
20	1	0	1	0	0	0
21	1	0	1	0	1	0
22	1	0	1	1	0	0
23	1	0	1	1	1	0
24	1	1	0	0	0	0
25	1	1	0	0	1	0
26	1	1	0	1	0	0
27	1	1	0	1	1	1
28	1	1	1	0	0	1
29	1	1	1	0	1	0
30	1	1	1	1	0	0
31	1	1	1	1	1	0

- Mapa de Karnaugh para suma de productos:
 - A=0

SO TO	> 00	01	11	10
00	1	0	0	0
01	0	0	0	1
11	0	0	1	0
10	1	1	0	0

- A=1

10 B	00	01	11	10
00	1	0	0	0
01	0	0	0	0
11	1	0	0	0
10	0	0	1	1

- Nos quedaria lo siguiente:

$$\overline{A}(\overline{B}CD\overline{E} + BCDE + B\overline{C}\overline{D}) + A(\overline{B}C\overline{D}\overline{E} + BC\overline{D}\overline{E} + B\overline{C}D + \overline{C}\overline{D}\overline{E})$$

- Mapa de Karnaugh para producto de sumas:
 - A=0

8/0E	> 00	01	11	10
00	1	0	0	0
01	0	0	0	1
11	0	0	1	0
10	1	1	0	0

- A=1

- Nos quedaria lo siguiente:

$$(A+(C+\overline{D})(B+\overline{E})(\overline{E}+D)(\overline{B}+\overline{D}+E))(\overline{A}+(D+\overline{E})(B+\overline{C}(\overline{B}+C+D)(B+\overline{D})(\overline{C}+\overline{D}))$$

• Demostrar que:

$$\overline{A}(\overline{B}CD\overline{E} + BCDE + B\overline{C}\overline{D}) + A(\overline{B}C\overline{D}\overline{E} + BC\overline{D}\overline{E} + B\overline{C}D + \overline{C}D\overline{E})$$

$$=$$

$$(A + (C + \overline{D})(B + \overline{E})(\overline{E} + D)(\overline{B} + \overline{D} + E))(\overline{A} + (D + \overline{E})(B + \overline{C}(\overline{B} + C + D)(B + \overline{D})(\overline{C} + \overline{D}))$$

• Empezamos con esta propiedad que nos dice que:

$$-x \cdot z + \overline{x} \cdot z = (x+v)(\overline{x}+w) \to (x+z)(\overline{x}+y) = (x+v)(\overline{x}+w) \to y = w \quad z = v$$

$$-z = v \rightarrow \overline{z} \cdot v = 0$$

- siendo x = A $\overline{x} = \overline{A}$

- siendo $v = (C + \overline{D})(B + \overline{E})(\overline{E} + D)(\overline{B} + \overline{D} + E)$

- siendo $w = (D + \overline{E})(B + \overline{C}(\overline{B} + C + D)(B + \overline{D})(\overline{C} + \overline{D})$

- Nos quedaria que:

$$\overline{CDE} + \overline{B}CD\overline{E} + BCDE + B\overline{CD}$$

$$=$$

$$(C + \overline{D})(B + \overline{E})(\overline{C} + D)(\overline{B} + \overline{D} + E)$$

- Aplicamos ley de Morgan en la parte de \boldsymbol{z}

$$\overline{CDE} + \overline{B}CD\overline{E} + BCDE + B\overline{C}\overline{D}$$

$$=$$

$$(C + \overline{D})(B + \overline{E})(\overline{C} + D)(\overline{B} + \overline{D} + E)$$

- Aplicamos $\overline{z} \cdot v =$

$$(C+D+E)(B+\overline{C}+\overline{D}+E)(\overline{B}+\overline{C}+\overline{D}+\overline{E})(\overline{B}+C+D)(C+\overline{D})(B+\overline{E})(\overline{C}+D)(\overline{B}+\overline{D}+E)$$

 $-(C+D+E)(\overline{B}+C+D)$, por medio de absorción nos quedaria de esta forma:

$$C\overline{B} + CC + CD + D\overline{B} + DC + DD + E\overline{B} + EC + ED$$

$$=$$

$$C + D + E\overline{B}$$

 $-\ (B+\overline{C}+\overline{D}+E)(\overline{B}+\overline{C}+\overline{D}+\overline{E}),$ por medio de absorción y $A\cdot\overline{A}=0$ nos quedaria de esta forma:

$$B\overline{E}+\overline{C}+\overline{D}+E\overline{B}$$

 $-\ (C+\overline{D})(\overline{C}+D)$ Por $A\cdot\overline{A}=0$

$$CD + \overline{DC}$$

 $-(B+\overline{E})(\overline{B}+\overline{D}+E)$ Aplicamos $A\cdot\overline{A}=0$ y depues consenso.

$$B\overline{B} + B\overline{D} + BE + \overline{EB} + \overline{ED} + \overline{EE}$$

$$=$$

$$BE + \overline{EB} + \overline{ED}$$

- Juntamos para mas claridad para los proximos desarrollo

$$(C+D+E\overline{B})(B\overline{E}+\overline{C}+\overline{D}+E\overline{B})(CD+\overline{DC})(BE+\overline{EB}+\overline{ED})$$

 $-(C+D+E\overline{B})(CD+\overline{DC})$ Aplicamos Aplicamos $A\cdot\overline{A}=0$ y depues $A\cdot A=A$ y absorción.

$$\begin{split} CCD + C\overline{CD} + DCD + D\overline{DC} + E\overline{B}CD + E\overline{B}D\overline{C} \\ = \\ CD + E\overline{B}\overline{DC} \end{split}$$

 $-(B\overline{E}+\overline{C}+\overline{D}+E\overline{B})(BE+\overline{EB}+\overline{ED})$ Aplicamos Aplicamos $A\cdot\overline{A}=0$ y depues $A\cdot A=A$.

$$B\overline{E}BE + B\overline{E}\overline{E}B + \overline{C}BE + \overline{C}E\overline{B} + \overline{C}E\overline{D} + \overline{D}BE + \overline{D}E\overline{D} + E\overline{B}BE + E\overline{B}E\overline{B} + E\overline{B}E\overline{D}$$

$$=$$

$$\overline{C}BE + \overline{C}E\overline{B} + \overline{D}BE + \overline{D}E$$

- Juntamos para seguir con el procedimiento:

$$(CD+E\overline{B}\overline{D}\overline{C})(\overline{C}BE+\overline{C}\overline{E}\overline{B}+\overline{D}BE+\overline{D}E)$$

-nos quedaria con $A\cdot \overline{A}=0$ y depue
s $A\cdot A=A.$ nos da como resultado

$$CD\overline{C}BE + CD\overline{C}BE + CD\overline{C}E\overline{B} + CD\overline{D}BE + CD\overline{D}E + E\overline{B}DCCBE +$$

$$E\overline{B}DCCE\overline{B} + E\overline{B}DC\overline{D}BE + E\overline{B}DC\overline{D}E$$

$$=$$

0

– recordemos que $y = w \to \overline{y} \cdot w = 0$

$$(\overline{BCDE} + BC\overline{DE} + B\overline{C}D)$$

$$=$$

$$(D + \overline{E})(B + \overline{C}(\overline{B} + C + D)(B + \overline{D})(\overline{C} + \overline{D})$$

- Hacemos los pasos primero aplicamos ley de morgan nos quedaria que:

$$(\overline{BCDE} + BC\overline{DE} + B\overline{C}D)$$

$$=$$

$$(D + \overline{E})(B + \overline{C}(\overline{B} + C + D)(B + \overline{D})(\overline{C} + \overline{D})$$

- recordemos $\overline{y} \cdot w$

$$(B+C+D+E)(\overline{B}+\overline{C}+D+E)(\overline{B}+C+\overline{D})(D+\overline{E})(B+\overline{C})(\overline{B}+C+D)(B+\overline{D})(\overline{C}+\overline{D})$$

 $-\ (B+C+D+E)(B+\overline{C})$ por absorción y $A\cdot\overline{A}=0$

$$\begin{split} BB + B\overline{C} + CB + C\overline{C} + DB + D\overline{B} + EB + E\overline{C} \\ = \\ B + D\overline{C} + E\overline{C} \end{split}$$

 $-~(\overline{B}+\overline{C}+D+E)(\overline{B}+C+D)$ utilizando las propiedades de absorción y $A\cdot\overline{A}=0$

$$\overline{BB} + \overline{B}C + \overline{B}D + \overline{C}\overline{B} + \overline{C}\overline{C} + \overline{C}D + D\overline{B} + DC + DD + E\overline{B} + EC + ED$$

$$=$$

$$\overline{B} + D + EC + ED$$

 $-\ (D+\overline{E})(B+\overline{D})$ Utilizando absorción y $A\cdot\overline{A}=0$

$$\begin{split} \overline{B}C + \overline{B}\overline{D} + C\overline{C} + C\overline{D} + \overline{D}\overline{C} + \overline{D}\overline{D} \\ = \\ \overline{B}\overline{C} + \overline{D} \end{split}$$

 $-\ (D+\overline{E})(B+\overline{D})$ Utilizando consevo y $A\cdot\overline{A}=0$

$$DB + D\overline{D} + \overline{E}B + \overline{ED}$$

$$=$$

$$DB + \overline{ED}$$

- Juntamos todo para desarrolarlo mas facil, nos quedaria que:

$$(B+D\overline{C}+E\overline{C})(\overline{B}+D+EC+ED)(\overline{BC}+\overline{D})(DB+\overline{ED})$$

 $-~(B+D\overline{C}+E\overline{C})(DB+\overline{ED})$ Nos quedaria con las propiedades de absorción y $A\cdot\overline{A}$ asi:

$$\begin{split} BDB + B\overline{ED} + D\overline{C}DB + D\overline{C}E\overline{D} + E\overline{C}DB + E\overline{C}E\overline{D} \\ = \\ BD + B\overline{ED} \end{split}$$

 $-(\overline{B}+D+EC+ED)(\overline{BC}+\overline{D})$

$$\begin{array}{c} \overline{BBC} + \overline{BD} + D\overline{BC} + \overline{DD} + EC\overline{BC} + EC\overline{D} + ED\overline{D} \\ \\ = \\ \overline{BC} + \overline{BD} + EC\overline{D} \end{array}$$

– Nos quedaria que $(BD+B\overline{ED})(\overline{BC}+\overline{BD}+EC\overline{D}(\overline{BC}+\overline{BD}+EC\overline{D})$ es:

$$\begin{split} BD\overline{BD} + BD\overline{BC} + BDEC\overline{D} + B\overline{EDBC} + B\overline{EDBD} + B\overline{ED}EC\overline{D} \\ = \\ 0 \end{split}$$

- Quiere decir que:

$$\overline{B}CD\overline{E} + BCDE + B\overline{C}\overline{D}) + A(\overline{B}C\overline{D}\overline{E} + BC\overline{D}\overline{E} + B\overline{C}D + \overline{A} \cdot (\overline{C}\overline{D}\overline{E})$$

$$= (A + (C + \overline{D})(B + \overline{E})(\overline{E} + D)(\overline{B} + \overline{D} + E))(\overline{A} + (D + \overline{E})(B + \overline{C}(\overline{B} + C + D)(B + \overline{D})(\overline{C} + \overline{D}))$$

Es correcta!

• Damos razón que:

$$F(A,B,C,D,E) = \sum m(0,6,8,9,15,16,26,27,28) = \\ \prod M(1,2,3,4,5,7,10,11,12,13,14,17,18,19,20,21,22,23,24,25,29,30,31)$$

Punto 5

• Dado que:

$$\prod M(0,6,8,9,15,16,26,27,28)$$

=

 $F(A,B,C,D,E) = \sum m(1,2,3,4,5,7,10,11,12,13,14,17,18,19,20,21,22,23,24,25,29,30,31)$

 $\bullet\,\,$ comenzamos con tabla de verdad:

x	A	В	$\mid C \mid$	D	Е	S
0	0	0	0	0	0	0
1	0	0	0	0	1	1
2	0	0	0	1	0	1
3	0	0	0	1	1	1
4	0	0	1	0	0	1
5	0	0	1	0	1	1
6	0	0	1	1	0	0
7	0	0	1	1	1	1
8	0	1	0	0	0	0
9	0	1	0	0	1	0
10	0	1	0	1	0	1
11	0	1	0	1	1	1
12	0	1	1	0	0	1
13	0	1	1	0	1	1
14	0	1	1	1	0	1
15	0	1	1	1	1	0
16	1	0	0	0	0	0
17	1	0	0	0	1	1
18	1	0	0	1	0	1
19	1	0	0	1	1	1
20	1	0	1	0	0	1
21	1	0	1	0	1	1
22	1	0	1	1	0	1
23	1	0	1	1	1	1
24	1	1	0	0	0	1
25	1	1	0	0	1	1
26	1	1	0	1	0	0
27	1	1	0	1	1	0
28	1	1	1	0	0	0
29	1	1	1	0	1	1
30	1	1	1	1	0	1
31	1	1	1	1	1	1
						•

• Hacemos el mapa para la suma de productos :

Figure 1: A = 0

Figure 2: A = 1

• Nos quedaria que:

$$\overline{B}E + \overline{AC}D + \overline{BC}D + \overline{A}C\overline{D} + \overline{B}C\overline{D} + \overline{A}BC\overline{E} + A\overline{D}E + ACD + AB\overline{CD}$$

• Mapa de Karnaugh para producto de suma

00	00	01	11	10
00	0	1	1	1
01	1	1	1	0
11	1	1	0	1
10	0	0	1	1

Figure 3: A = 0

Cal	00	01	11	10
00	0	1	1	1
01	1	1	1	1
11	0	1	1	1
10	1	1	0	0

Figure 4: A = 1

• Nos quedaria que:

$$(B+C+D+E)(A+\overline{B}+C+D)(\overline{A}+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+\overline{D}+\overline{E})(A+B+\overline{C}+\overline{D}+E)(\overline{A}+\overline{B}+\overline{C}+D+E)$$

• Demostrar que:

$$(B+C+D+E)(A+\overline{B}+C+D)(\overline{A}+\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+\overline{D}+\overline{E})(A+B+\overline{C}+\overline{D}+E)(\overline{A}+\overline{B}+\overline{C}+D+E)$$

$$=$$

$$\overline{B}E+\overline{AC}D+\overline{BC}D+\overline{A}C\overline{D}+\overline{B}C\overline{D}+\overline{A}BC\overline{E}+A\overline{D}E+ACD+AB\overline{C}\overline{D}$$

- Empezamos de izquierda a derecha
 - Aplicamos distributiva entre $(B+C+D+E)y(A+\overline{B}+\overline{C}+\overline{D}+\overline{E})$ y la propiedad $\overline{X}X=0$

$$AB + B\overline{C} + B\overline{D} + B\overline{E} +$$

$$AC + \overline{B}C + C\overline{D} + C\overline{E} +$$

$$AD + \overline{B}D + \overline{C}D + D\overline{E} +$$

$$AE + \overline{B}E + \overline{C}E + \overline{D}E$$

(1) Simplificamos dadas la propiedad $XY + \overline{X}Z + YZ = XY + \overline{X}Z$

$$B\overline{E} + C\overline{E} + D\overline{E} + AE + \overline{B}E + \overline{C}E + \overline{D}E$$

– Aplicamos distributiva entre $(1)y(\overline{A} + \overline{B} + C + \overline{D})$, la propiedad $\overline{X}X = 0yXX = X$

$$\overline{A}B\overline{E} + \overline{A}C\overline{E} + \overline{A}D\overline{E} + \overline{A}\overline{B}E + \overline{A}\overline{C}E + \overline{A}\overline{D}E + \overline{B}C\overline{E} + A\overline{B}E + \overline{B}D\overline{E} + \overline{B}E + \overline{B}CE + \overline{B}DE + \overline{C}B\overline{E} + C\overline{E} + CD\overline{E} + ACE + \overline{B}CE + C\overline{D}E + B\overline{D}E + C\overline{D}E + A\overline{D}E + \overline{C}DE + \overline{D}E$$

– Aplicamos la propiedad X + XY = X

$$\overline{A}B\overline{E} + AD\overline{E}A\overline{C}E + \\ D\overline{E} + \overline{B}E + \\ CB\overline{E} + CD\overline{E} + C\overline{E} + ACE + \\ B\overline{D}\overline{E} + \overline{D}E$$

(2) Aplicamos $XY + \overline{X}Z + YZ = XY + \overline{X}Z$

$$\overline{A}B\overline{E} + B\overline{D} + \overline{A}D\overline{E} + \overline{B}D + \overline{B}E + AC + C\overline{E} + \overline{AC}E$$

- Aplicamos distributiva entre $(2)y(A+B+\overline{C}+\overline{D}+E)$, la propiedad $\overline{X}X=0yXX=X$

$$AB\overline{D} + A\overline{B}D + A\overline{B}E + AC + AC\overline{E} +$$

$$\overline{A}B\overline{E} + B\overline{D} + \overline{A}BD\overline{E} + ABC + BC\overline{E} + \overline{A}B\overline{C}E +$$

$$\overline{A}B\overline{C}E + B\overline{C}D + \overline{A}\overline{C}D\overline{E} + \overline{B}\overline{C}D + \overline{B}\overline{C}E + \overline{A}\overline{C}E +$$

$$\overline{A}B\overline{E}D + B\overline{D} + \overline{B}DE + AC\overline{D} + C\overline{D}E + \overline{A}\overline{C}D +$$

$$B\overline{D}E + \overline{B}DE + \overline{B}E + ACE + \overline{A}\overline{C}E$$

(3) Aplicamos $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ y X + XY = X

$$\overline{A}B\overline{E} + B\overline{D} + \overline{AC}D + \overline{AC}E + A\overline{B}D + \overline{BC}D + \overline{B}E + CA + BC\overline{E} + C\overline{DE}$$

– Aplicamos distributiva entre (3) $y(A + \overline{B} + C + D)$, la propiedad $\overline{X}X = 0yXX = X$

$$\begin{split} AB\overline{D} + A\overline{B}D + A\overline{B}\overline{C}D + A\overline{B}E + CA + ABC\overline{E} + AC\overline{D}\overline{E} + \\ \overline{ABC}D + \overline{ABC}E + A\overline{B}D + \overline{B}\overline{C}D + \overline{B}E + A\overline{B}C + \overline{B}C\overline{D}\overline{E} + \\ \overline{ABC}\overline{E} + BC\overline{D} + A\overline{B}CD + \overline{B}CE + CA + BC\overline{E} + C\overline{D}\overline{E} + \\ \overline{ABD}\overline{E}A\overline{C}D + \overline{A}\overline{C}DE + A\overline{B}D + \overline{B}\overline{C}D + \overline{B}DE + ACD + BCD\overline{E} \end{split}$$

(4) Aplicamos $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ y X + XY = X

$$BC\overline{E} + \overline{A}BD\overline{E} + AC + C\overline{D} + A\overline{B}D + AB\overline{D} + \overline{AC}D + \overline{BC}D + B\overline{E} + A\overline{D}E$$

– Aplicamos distributiva entre $(4)y(\overline{A} + \overline{B} + \overline{C} + D + E)$, la propiedad $\overline{X}X = 0yXX = X$

$$\overline{A}BC\overline{E} + \overline{A}BD\overline{E} + \overline{A}C\overline{D} + \overline{A}\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{E} +$$

$$A\overline{B}C + \overline{B}C\overline{D} + A\overline{B}D + \overline{A}B\overline{C}D + \overline{B}CD + A\overline{B}DE +$$

$$\overline{A}B\overline{C}D\overline{E} + A\overline{B}CD + A\overline{C}B\overline{D} + \overline{A}CD + \overline{B}CD + B\overline{C}E + A\overline{C}DE +$$

$$BCD\overline{E} + \overline{A}BD\overline{E} + ACD + A\overline{B}D + \overline{A}CD + \overline{B}CD + B\overline{E}D +$$

$$ACE + C\overline{D}E + A\overline{B}DE + AB\overline{D}E + \overline{A}CDE + \overline{B}CDE + A\overline{D}E$$

(5) Aplicamos $XY + \overline{X}Z + YZ = XY + \overline{X}Z$ y X + XY = X

$$\overline{BE} + \overline{ACD} + \overline{BCD} + \overline{ACD} + \overline{BCD} + \overline{ABCE} + A\overline{DE} + ACD + AB\overline{CD}$$

• Damos razón que:

$$\prod M(0,6,8,9,15,16,26,27,28)$$

=

 $F(A,B,C,D,E) = \sum m(1,2,3,4,5,7,10,11,12,13,14,17,18,19,20,21,22,23,24,25,29,30,31)$

Punto 6:

• Mapa:

• Grupos:

$$\begin{array}{c|ccc} (2,3,10,11) & \overline{B}.C \\ (2,3,6,7) & \overline{A}.C \\ (1,3) & \overline{A}.\overline{B}.D \\ (13,15) & A.B.D \end{array}$$

$$y = B'C + A'C + A'B'D + ABD$$

• Tabla de verdad

	Α	В	$^{\rm C}$	D	Y
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	X
5	0	1	0	1	1
6	0	1	1	0	X
7	0	1	1	1	0
8	1	0	0	0	0
9	1	0	0	1	1
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	X