Introduction to Machine Learning, Spring 2022

Homework 2

(Due Friday, Apr. 8 at 11:59pm (CST))

He Haoyu

March 28, 2022

1 Problem1

Given a set of data $\{(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)\}$, where $y_i \in \{0, 1\}$. We want to conduct a binary classification, and the decision boundary is $\beta_0 + x^T \beta = 0$. When $\beta_0 + x^T \beta > 0$, the sample will be classified as 1, and 0 otherwise.

- (a) Define a function which enables to map the range of an arbitrary linear function to the range of a probability [2 points]
- (b) Derive the posterior probability of $P(y_i = 1|x_i)$ and $P(y_i = 0|x_i)$ [3 points]
- (c) Write the log-likelihood for N observations, which means:

$$l(\theta) = log P(Y|X) = \sum_{i=1}^{N} log(P(y_i|x_i))$$

(Using the expression of $P(y_i|x_i)$ in (b) and eliminate redundant items) [5 points] Solution:

- (a) We can define a map $f(x) = \frac{e^x}{e^x+1}$ from the range of an arbitrary linear function to the range of a probability
- **(b)** Let

$$\log \frac{P(y_i = 1|x_i)}{1 - P(y_i = 1|x_i)} = \log \frac{P(y_i = 1|x_i)}{P(y_i = 0|x_i)} = \beta_0 + x^T \beta$$

By the properties of possibility, we know

$$P(y_i = 1|x_i) + P(y_i = 0|x_i) = 1$$

Thus,

$$P(y_i = 1 | x_i) = \frac{\exp(\beta_0 + x^T \beta)}{1 + \exp(\beta_0 + x^T \beta)}$$

$$P(y_i = 0 | x_i) = \frac{1}{1 + \exp(\beta_0 + x^T \beta)}$$

(c) Let
$$\theta = \{\beta_0, \beta\}$$

$$l(\theta) = \log P(Y|X;\theta)$$

$$= \sum_{i=1}^{N} \log(P(y_i|x_i;\theta))$$

$$= \sum_{i=1}^{N} (y_i \log(P(y_i = 1|x_i;\theta)) + (1 - y_i) \log(P(y_i = 0|x_i;\theta)))$$

$$= \sum_{i=1}^{N} (y_i(\beta_0 + x^T\beta - \log(1 + \exp(\beta_0 + x^T\beta))))$$

Table 1: probability distribution for X

_	abic	T. P.	obability an	diberro delon 101 21		
	X	0	1	2	3	
	\overline{P}	θ^2	$2\theta(1-\theta)$	θ^2	$1-2\theta$	

2 Problem2

- (a) Given a random variable X and its probability distribution is shown in Table 1. Now, we sample 8 times and get the results $\{3, 1, 3, 0, 3, 1, 2, 3\}$. Please derive the MLE estimate for $\theta(0 < \theta < \frac{1}{2})$. [4 points]
- (b) Now we discuss Bayesian inference in coin flipping. Let's denote the number of heads and the total number of trials by N_1 and N, respectively. Please derive the MAP estimate based on the following prior:

$$p(\theta) = \begin{cases} 0.5 & \text{if } \theta = 0.5\\ 0.5 & \text{if } \theta = 0.3\\ 0 & \text{otherwise,} \end{cases}$$

which believes the coin is fair, or is slightly biased towards tails. [4 points]

(c) Suppose the true parameter is $\theta = 0.31$. Please compare the prior in (b) with the Beta prior distribution (You can review this part in Lecture 07). Which prior leads to a better estimate when N is small? Which prior leads to a better estimate when N is large? [2 points]

3 Problem3

According to the following Fig. 3, answer the following questions:

- (a) use the D-separation to discus whether the following statements are true or not:
 - (1) Given x_4 , $\{x_1, x_2\}$ and $\{x_6, x_7\}$ are conditionally independent. [1(reason)+1(conclusion) points]
 - (2) Given x_6 , x_3 and x_2 are conditionally independent. [1(reason)+1(conclusion) points]
- (b) if all the nodes are observed and boolean variables, please complete the process of learning the parameter $\theta_{x_6|i,j}$ by using MLE, where $\theta_{x_6|i,j} = p(x_6 = 1 \mid x_3 = i, x_4 = j), i, j \in \{0,1\}.$ [6 points]

Figure 1: The Bayesian network for questions 3.

Solution:

- (a) (1) True. Let $A = \{x_1, x_2\}$, $B = \{x_6, x_7\}$, the path is like $A \to x_4 \to B$ head-to-tail. For given x_4 , x_4 is blocked, which means $\{x_1, x_2\}$ and $\{x_6, x_7\}$ are conditionally independent given x_4 .
 - (2) False. First of all, $x_3 \to x_6 \leftarrow x_4$ is head-to-head path,so for given x_6 , x_6 is not blocked. Then, $x_2 \to x_4 \to x_6$ is head-to-tail path, x_4 is not blocked for not given x_4 . Thus, Given x_6 , x_3 and x_2 are not conditionally independent.
- (b) Suppose we observed N points. Let $\theta = \{\theta_{x_1}, \theta_{x_2}, \theta_{x_3}, \theta_{x_4}, \theta_{x_5}, \theta_{x_6|i,j}, \theta_{x_7|j}\}$

$$\log P(D|\theta) = \log \prod_{k=1}^{N} P(x_{1k}, x_{2k}, x_{3k}, x_{4k}, x_{5k}, x_{6k}, x_{7k}|\theta)$$

$$= \sum_{k=1}^{N} \log(P(x_{1k}|\theta) + P(x_{2k}|\theta) + P(x_{3k}|\theta) + P(x_{4k}|\theta) + P(x_{5k}|\theta) + P(x_{6k}|x_3, x_4, \theta) + P(x_{7k}|x_4, \theta))$$

$$\frac{\partial \log P(D|\theta)}{\partial \theta_{x_6}|i, j} = \sum_{k=1}^{N} \frac{\partial \log P(x_{6k}|x_3, x_4, \theta)s}{\partial \theta_{x_6}|i, j}$$

Now define $I(\cdot)$ be the indicator variable, $I(\cdot) = 1$ if and only if is (\cdot) is right, and 0 for all other cases. Thus,

$$\theta_{x_6}|i,j = \frac{\sum_{k=1}^{N} I(x_{6k} = 1, x_{3k} = i, x_{4k} = j)}{I(x_{3k} = i, x_{4k} = j)}$$