## FLIP FLOP CONVERSIONS

- SR to D
- SR to JK
- SR to T
- JK to T
- JK to D
- JK to SR

- D to T
- D to SR
- T to D

### PROCEDURE FOR CONVERSION

- 1. Draw the block diagram of the target flip flop from the given problem.
- 2. Write truth table for the target flip-flop.
- 3. Write excitation table for the available flip-flop.
- 4. Draw k-map for target flip-flop.
- 5. Draw the block diagram.

# SR(Available) to D(Target) Flip flop Conversion

#### Truth table

Next Present Input state state D Qn Qn+1 0

#### Excitation table

| Present<br>state | Next state | Flip flop Inputs |   |  |
|------------------|------------|------------------|---|--|
| Q n              | Qn+1       | S                | R |  |
| 0                | 0          | 0                | X |  |
| 0                | 0          | 0                | 1 |  |
| 0                | 1          | 1                | 0 |  |
| 1                | 1          | X                | 0 |  |

# SR to D Flip flop Conversion

#### **Conversion Table**

| Input | Present<br>state | Next state | Flip flop Inputs |   |
|-------|------------------|------------|------------------|---|
| D     | Qn               | Qn+1       | S                | R |
| 0     | 0                | 0          | 0                | X |
| 0     | 1                | 0          | 0                | 1 |
| 1     | 0                | 1          | 1                | 0 |
| 1     | 1                | 1          | X                | 0 |

### K- MAP SIMPLIFICATIO N





# SR to D

## Logic Diagram



# SR(Available) to JK(Target) Flip-Conversion Table

| Inp | out | Present<br>State | Next State | Flip-Flo <sub>l</sub> | o Inputs |
|-----|-----|------------------|------------|-----------------------|----------|
| J   | К   | Q n              | Qn+1       | S                     | R        |
| 0   | 0   | 0                | 0          | 0                     | Χ        |
| 0   | 0   | 1                | 1          | X                     | 0        |
| 0   | 1   | 0                | 0          | 0                     | X        |
| 0   | 1   | 1                | 0          | 0                     | 1        |
| 1   | 0   | 0                | 1          | 1                     | 0        |
| 1   | 0   | 1                | 1          | Х                     | 0        |
| 1   | 1   | 0                | 1          | 1                     | 0        |
| 1   | 1   | 1                | 0          | 0                     | 1        |

## SR to JK

## K-map Simplification





# Logic Diagram (SR to JK)



# SR(Available) to T(Target)

### **Conversion Table**

| Input | Present<br>state | Next state | Flip flop Inputs |   |
|-------|------------------|------------|------------------|---|
| Т     | Qn               | Qn+1       | S                | R |
| 0     | 0                | 0          | 0                | X |
| 0     | 1                | 1          | X                | 0 |
| 1     | 0                | 1          | 1                | 0 |
| 1     | 1                | 0          | 0                | 1 |

## K- MAP SIMPLIFICATION





# Logic Diagram (SR to T)



A T flip-flop using S-R flip-flop.

## JK(Available) to T (Target) Conversion Conversion Table

| Input | Present<br>state | Next<br>state | Flip flop Inputs |   |
|-------|------------------|---------------|------------------|---|
| Т     | Qn               | Qn+1          | J                | K |
| 0     | 0                | 0             | 0                | X |
| 0     | 1                | 1             | X                | 0 |
| 1     | 0                | 1             | 1                | Х |
| 1     | 1                | 0             | x                | 1 |

#### K- MAP SIMPLIFICATION



# Logic Diagram (JK to T)



# JK(Available) to D(Target)Flip-flop . \_ .. Conversion

### **Conversion Table**

| Input | Present<br>state | Next<br>state | Flip flop Inputs |   |
|-------|------------------|---------------|------------------|---|
| D     | Qn               | Qn+1          | J                | K |
| 0     | 0                | 0             | 0                | X |
| 0     | 1                | 0             | X                | 1 |
| 1     | 0                | 1             | 1                | Х |
| 1     | 1                | 1             | х                | 0 |

## K- MAP SIMPLIFICATION





# Logic Diagram (JK to D)



# D(Available) to T(Target)Flip-Flop

### **Conversion Table**

| Input | Present<br>state | Next state | Flip flop<br>Inputs |
|-------|------------------|------------|---------------------|
| Т     | Qn               | Qn+1       | D                   |
| 0     | 0                | 0          | 0                   |
| 0     | 1                | 1          | 1                   |
| 1     | 0                | 1          | 1                   |
| 1     | 1                | 0          | 0                   |

## K- MAP SIMPLIFICATION



D=T'Qn+TQn'

# Logic Diagram(D to T)



# T (Available) to D(Target) Flip-flop Conversion Table

| Input | Present<br>state | Next state | Flip flop<br>Inputs |
|-------|------------------|------------|---------------------|
| D     | Qn               | Qn+1       | Т                   |
| 0     | 0                | 0          | 0                   |
| 0     | 1                | 0          | 1                   |
| 1     | 0                | 1          | 1                   |
| 1     | 1                | 1          | 0                   |

#### **K-MAP SIMPLIFICATION**



## JK(Available) to SR(Target)Flip-flop conversion

#### **Conversion Table**

| Inp | out | Present<br>State | Next State | Flip-Flo <sub>l</sub> | o Inputs |
|-----|-----|------------------|------------|-----------------------|----------|
| S   | R   | Qn               | Qn+1       | J                     | K        |
| 0   | 0   | 0                | 0          | 0                     | X        |
| 0   | 0   | 1                | 1          | Х                     | 0        |
| 0   | 1   | 0                | 0          | 0                     | Х        |
| 0   | 1   | 1                | 0          | Х                     | 1        |
| 1   | 0   | 0                | 1          | 1                     | Х        |
| 1   | 0   | 1                | 1          | X                     | 0        |
| 1   | 1   | 0                | X          | X                     | X        |
| 1   | 1   | 1                | X          | X                     | X        |

# **JK**(Available) to **SR**(Target)Flip-flop conversion





K=R

## JK to SR

Logic Diagram



# D(Available) to SR(Target) Flip-Flop Conversion Table

| Inp | out | Present<br>State | Next State | Flip-Flo <sub>l</sub> | o Inputs |
|-----|-----|------------------|------------|-----------------------|----------|
| S   | R   | Q n              | Qn+1       | J                     | К        |
| 0   | 0   | 0                | 0          | 0                     | 0        |
| 0   | 0   | 1                | 1          | 1                     | 1        |
| 0   | 1   | 0                | 0          | 0                     | 0        |
| 0   | 1   | 1                | 0          | 0                     | 0        |
| 1   | 0   | 0                | 1          | 1                     | 1        |
| 1   | 0   | 1                | 1          | 1                     | 1        |
| 1   | 1   | 0                | X          | X                     | X        |
| 1   | 1   | 1                | X          | X                     | Х        |

## D to SR

K- MAP SIMPLIFICATION



D=R'Qn+S

# Logic Diagram For D to SR

