## Understanding Catastrophic Overfitting in Adversarial Training

Kang Peilin

Master Thesis Project Presentation ETH Supervisor Dr. Seyed-Mohsen Moosavi-Dezfooli **EPFL Supervisor Prof. Martin Jaggi** 





## Adversarial Training

Standard trained model is easy to be attacked



- Adversarial Training
  - Train the model on adversarial examples constructed by attack methods.
  - $l_{\infty}$  threat model: adversary can change each input coordinate  $x_i$  by at most  $\varepsilon$

## Projected Gradient Descent (PGD)

- > Select a random start point  $\delta^0$  $\delta^0 \sim \mathcal{U}([-\varepsilon, \varepsilon]^d)$
- $\triangleright$  For  $t = 1 \dots T$  do
  - Take a small gradient step ( $\alpha < \varepsilon$ )  $\delta_{temp}^{t+1} = \delta^t + \alpha * \operatorname{sign}(\nabla_x l(x + \delta^t, y; \theta))$
  - Project back to the  $l_{\infty}$ -ball.

$$\delta^{t+1} = \Pi_{[-\varepsilon,\varepsilon]^d}(\delta^{t+1}_{temp})$$



## Fast Gradient Sign Method (FGSM)

$$\delta_{FGSM} = \boldsymbol{\varepsilon} * \operatorname{sign}(\nabla_{x} l(x, y; \theta))$$



| Methods | Pros                      | Cons                                                    |
|---------|---------------------------|---------------------------------------------------------|
| PGD     | Can lead to robust model  | Huge<br>computational<br>overhead                       |
| FGSM    | Computationally efficient | Can be broken<br>by stronger<br>attacks, such<br>as PGD |

## FGSM with Random Initialization (RS-FGSM)

## Pros

- As effective as PGDbased training
- ➤ Significantly lower cost

#### Single-step PGD



## Catastrophic Overfitting (CO)



- Train with weaker attack, named **method-A**, such as FGSM.
- > Evaluate with another stronger attack, named method-B, such as PGD.
- > After a certain epoch, The accuracy gap between A and B increases suddenly

#### Robustness under Different $\varepsilon$ for FGSM and RS-FGSM



- > RS-FGSM suffers from CO when  $\varepsilon \gtrsim \frac{9}{255}$
- RS-FGSM permits us to use higher values of ε compared to FGSM

PGD-50-10 means 50 iterations and 10 restarts

## $\mathrm{DF}^{\infty}$ -1 Suffers from Catastrophic Overfitting

#### Compare $DF^{\infty}$ -1 to FGSM

- ➤ Similarity
  Computationally efficient, both use one iteration
- ightharpoonup Difference FGSM has the fixed step size  $\alpha$  for all inputs,  $\mathrm{DF}^\infty$ -1 will adapt the length of perturbation dynamically for each input



# Geometric Analysis of Catastrophic Overfitting

## Geometric Analysis of FGSM

Cross-section of the decision boundary spanned by two vectors.

- $\triangleright$  Calculated by DF<sup>2</sup> (A direction perpendicular to the decision boundary)
- $\triangleright$  Calculated by the adversarial method used in the training process (FGSM or DF $^{\infty}$ -1)

The model is trained by FGSM with  $\varepsilon$  = 8/255





## Geometric Analysis of FGSM

Accuracy under different FGSM perturbation length



- ➤ Before CO (epoch 12): Large perturbation is more effective than small perturbation to find adversarial example
- ➤ After CO (epoch 15): Small perturbation is more effective than large perturbation to find adversarial example

## Geometric Analysis of $DF^{\infty}$ -1

The model is trained by  $DF^{\infty}$ -1 with  $\epsilon = 8/255$ 



## Geometric Analysis of $DF^{\infty}$ -1

Accuracy under different  $DF^{\infty}$ -1 perturbation length



Both before (epoch 36) and after (epoch 70) CO, large perturbation is always more effective than small perturbation to find adversarial example.

## Compare Models Trained by FGSM and $\mathrm{DF}^{\infty}$ -1

Take the models trained by FGSM and  $DF^{\infty}$ -1 and evaluate by **FGSM perturbation**.



# Analysis of Factors Causing Catastrophic Overfitting

## Hypothesis: Large Perturbation Causes CO

#### Evidence

- 1. Random initialization in RS-FGSM is guaranteed to decrease the expected length of the perturbation. [1]
- 2. Reduce the step size of FGSM can avoid CO.

#### **Counter Experiment**

Goal: Perturbations with the same length, one causes CO while the other not.

**Implementation:** Generate  $\delta_{RS-FGSM}$  with different step size  $\alpha$ 

Magnify the  $\delta_{RS-FGSM}$  to the same  $l_2$  norm as  $\delta_{FGSM}$ 

$$\delta_{magnified} = \frac{\|\delta_{FGSM}\|_2}{\|\delta_{RS-FGSM}\|_2} \, \delta_{RS-FGSM}$$

## **Experiment Results**

PGD-10 accuracy of the model trained by perturbations with same length and different directions.



- Smaller the step size  $\alpha$ , the direction of the perturbation is closer to the direction of random initialized  $\delta \sim \mathcal{U}([-\varepsilon,\varepsilon]^d)$
- Besides the perturbation's length, its direction is also important

## Hypothesis: Perturbation Should Span the Entire Threat Model

#### Evidence

$$\varepsilon$$
=8/255

- 1. When step size  $\alpha = \varepsilon$ , each dimension of  $\delta_{RS-FGSM}$  is between  $-\varepsilon$  and  $\varepsilon$ , RS-FGSM does not suffer from CO on CIFAR10. When step size  $\alpha = 2\varepsilon$ , each dimension of  $\delta_{RS-FGSM}$  is either  $-\varepsilon$  or  $\varepsilon$ , RS-FGSM suffers from CO on CIFAR10. [1]
- 2. a) Random initialized  $\delta$  is either  $-\frac{\varepsilon}{2}$  or  $\frac{\varepsilon}{2}$  for each dimension
  - b) Step size  $\alpha = \frac{\varepsilon}{2}$
- c) Final perturbation's each dimension is in  $\{-\varepsilon, 0, \varepsilon\}$  can not train the robust model on MNIST dataset while RS-FGSM is capable [1]

### Experiment results

#### Counter Experiment (Boundary-RS-FGSM)

Use different initialization From RS-FGSM. Initialize on the boundary of  $l_{\infty}$ -ball, either  $-\epsilon$  or  $\epsilon$  for each dimension.

The value of the final perturbation is discrete and not span the entire threat model

#### $\varepsilon$ =8/255, Dataset CIFAR10

| Method           | Best<br>Clean / PGD-50-10 |  |
|------------------|---------------------------|--|
| FGSM             | 66.72 / 40.46             |  |
| RS-FGSM          | 86.77 / 42.69             |  |
| Boundary-RS-FGSM | 87.03 / 42.72             |  |

Boundary-RS-FGSM can achieve the comparable robust accuracy as RS-FGSM

## Hypothesis: Large Diversity of Perturbations Can Avoid CO

Definition

Diversity = 1-cos( $\delta_a$ ,  $\delta_b$ )

Compute pertubations twice using the same input and model.  $\delta_a$  is the first one and  $\delta_b$  is the second one.

Evidence

FGSM has zero diversity and RS-FGSM has positive diversity

#### **Counter Experiment**

Goal: Perturbations with similar diversity, one causes CO while the other not.

Implementation: 
$$\delta_1, \delta_2 \sim \mathcal{U} \big( [-\varepsilon, \varepsilon]^d \big)$$
 
$$\delta = (1 - t) \delta_1 + t \delta_2$$
 
$$\delta_{Diff-RS-FGSM} = \Pi_{[-\varepsilon, \varepsilon]^d} (\boldsymbol{\delta_1} + \alpha * \operatorname{sgn}(\nabla_x l(x + \boldsymbol{\delta}, y; \theta)))$$

## **Experiment Results**



When **t** is 0, 0.2, and 0.4, CO does not happen When **t** further increase, CO happens

Perturbations with different **t** has almost the same diversity before CO

large diversity cannot guarantee to avoid CO

## Further Improvements on RS-FGSM methods

Improve the RS-FGSM by not projecting back to  $l_{\infty}$ -ball



RS-FGSM-wo-Proj permits us to use higher values of ε compared to RS-FGSM

## Further Improvements on RS-FGSM methods

$$\varepsilon$$
=8/255

| Method              | Clean         | PGD-50-10     |
|---------------------|---------------|---------------|
| RS-FGSM             | 86.35 ± 0.34% | 43.57± 0.30%  |
| RS-FGSM-<br>wo-Proj | 82.66 ± 0.56% | 47.56 ± 0.37% |

➤ RS-FGSM-wo-proj has better robust accuracy compared to RS-FGSM

<sup>\*</sup> averaged over 5 random seeds

#### Conclusion

- $\triangleright$  FGSM and DF $^{\infty}$ -1 both suffers from CO
- $\triangleright$  FGSM and DF $^{\infty}$ -1 show totally different geometric properties after CO
- > We experimentally analyze three hypotheses on potential factors causing CO
- ightharpoonup We make a modification to RS-FGSM by not projecting perturbation back to the  $l_{\infty}$ -ball which leads to a better robust accuracy and permits us to use larger values of arepsilon

#### Future work

- > Geometric properties after CO happens has been well studied
  - Remaining question: why FGSM and  $DF^{\infty}$ -1 show totally different geometric properties after CO happens.
- > Need to put more efforts to study the main factors that cause CO
  - Explore the relationship between the direction of the perturbation and the maximum length of the perturbation which does not cause CO
  - In RS-FGSM, we use this equation  $\Pi_{[-\varepsilon,\varepsilon]^d}(\delta) + \alpha * \operatorname{sgn}(\nabla_x l(x + \delta) y; \theta))$  to calculate perturbations. We can study the usage of  $\delta$  in these two places

#### Reference

- Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. *Explaining and Harnessing Adversarial Examples*. 2015. arXiv: 1412.6572 [stat.ML].
- Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
   Towards Deep Learning Models Resistant to Adversarial Attacks. 2019. arXiv: 1706. 06083 [stat.ML].
- Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training.
   2020. arXiv: 2001.03994 [cs.LG].
- Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. *DeepFool: a simple and accurate method to fool deep neural networks*. 2016. arXiv: 1511.04599 [cs.LG]
- Maksym Andriushchenko and Nicolas Flammarion. Understanding and Improving Fast Adversarial Training. 2020. arXiv: 2007.02617 [cs.LG].