DETECCCTION AND RECOGNITION OF TRAFFIC SIGNS

ALFARO VENDRELL, MÓNICA BARROSO LAGUNA, ÁXEL GILABERT RODRÍGUEZ, IBAI GÓMEZ BRUBALLA, RAÚL

B1/B2

1. EVALUATING COLOR SPACE

RGB

- Hue information in three components [0,255] YCbCr

- -Separates luminance
- -Hue information in 2 components [-127,127]

HSV

- -Separates luminance
- -Separates saturation
- -Hue information in one component [0°,360°]

1. EVALUATING COLOR SPACE

Method 1:

- Select the signal most common hue and put a threshold of accepted hue variance.
- -Train the classifier to select the best variance for each signal color (red and blue).

Method 2*:

- -Compute the euclidian distance between a reference color and the current pixel color.
- -The mean luminance of the image defines a threshold between the two colors.
- -Train the classifier to adjust the reference colors, starting from the signal most common hues.

^{*}Method extracted from the paper: "Color detection and segmentation for road and traffic signs" by Hasan Fleyeh.

2. EVALUATING MORPHOLOGICAL OPERATORS

2 versions:

→ v1: using 'xcorr2()', 'xconv2()'

→ v2: using 'ordfilt2()'

*efficiency	%	(100	im/my)	١

Efficiency*	Dilation	Erosion
V1	382.4991 %	219.2976%
V2	120.2001%	108.2080 %

2. EVALUATING MORPHOLOGICAL OPERATORS

3. GRANULOMETRY

4. EVALUATING MORPHOLOGICAL METHOD

5. RESULTS COLOR SEGMENTATION

YCbCr

Cb component range = 0.5 ∓ 0.037 Cr component range = 0.5 ∓ 0.037

HSV

Red colors H component range = $5.652^{\circ} \mp 9^{\circ}$ Blue colors H component range = $216^{\circ} \mp 9^{\circ}$

HSV-REF

Red color reference $H = 0^{\circ}$ S = 0.9Blue color reference $H = 219^{\circ}$ S = 0.9

	Precision	Accuracy	Recall	F1- measure	TP	FP	FN
YCbCr	0.0616	0.9671	0.5774	0.1113	1804712	27501796	1320873
HSV	0.0989	0.9862	0.3547	0.1547	1108696	10096720	2016889
HSV-REF	0.0594	0.9657	0.5818	0.1078	1818440	28802423	1307145

5. RESULTS MORPHOLOGICAL METHODS

M1

Opening with a square 3x3 SE

+ Filling holes

M2

Reconstruction by erosion with a square 7x7 SE

+ Filling holes

M3

TopHat with a square 14x14 SE

- + Reconstruction by erosion with a square 7x7 SE
- + Filling holes

	Precision	Accuracy	Recall	F1- measure	TP	FP	FN
M1	0.0881	0.9699	0.7968	0.1587	2490585	22772149	635000
M2	0.0921	0.9727	0.7536	0.1641	2353481	23209749	772104
М3	0.0811	0.9703	0.9712	0.1456	2219487	25147302	906098

5. CONCLUSIONS TEST DATASET

	Precision	Accuracy	Recall	F1- measure	TP	FP	FN
Test DB	0.108	0.9767	0.8643	0.1078	795621	6571509	124879