Definizioni

- Hitting set (di una collezione di insiemi). È un insieme che presenta un'intersezione non vuota rispetto a tutti gli insiemi della collezione data.
- Hitting set minimale (MHS). È un hitting set (della collezione di insiemi data) tale che nessun suo sottoinsieme è un hitting set.

Modello concettuale

Una collezione di N insiemi i cui elementi appartengono a un dominio di M componenti distinti può essere concettualmente rappresentata come una matrice $A_{N,M}$, dove $a_{i,j} = 1$ se il componente j appartiene all'insieme i, $a_{i,j} = 0$ altrimenti.

Esempio

- N = 7
- M = 7

Identificatori univoci dei componenti

- Collezione di insiemi =
 {{1,5,7},{1,3,7},{4,7},{1,4},{5,7},
 {4,5},{1,7}}
- Insieme dei MHS = {{4,7},{1,4,5},{1,5,7}}

1	2	3	4	5	6	7
1				1		1
1		1				1
			1			1
1			1			
				1		1
			1	1		
1						1

Calcolo incrementale/parallelo

- È basato sulla capacità di calcolare i MHS di una collezione di insiemi dati i MHS di due parti di tale collezione (algoritmo MHS2)
- Esempio (cont.)
 MHS della collezione
 {{1,5,7},{1,3,7},{4,7}, {1,4},{5,7}, {4,5},{1,7}} =
 MHS2(MHS di {{1,5,7},{1,3,7},{4,7}},
 MHS di {{1,4},{5,7},{4,5},{1,7}}) =
 MHS2({{7},{1,4},{3,4,5}},{{1,5},{4,7}})

Funzionamento di MHS2

1	2	3	4	5	6	7	
1				1		1	
1		1				1	_ A1
			1			1	
1			1				
				1		1	4.0
			1	1			– A2
1						1	

Rappresentazione dei MHS {7},{1,4},{3,4,5}

Rappresentazione dei MHS {1,5},{4,7}

N.C. = non colpito C. = colpito (hit)

MHS2(A1,A2,A12,incr)

 A ogni invocazione ricorsiva, determina, mediante la combinazione di una coppia di transizioni per volta, tutte e sole le "transizioni" aventi "lunghezza" pari a ℓ+incr, dove ℓ è la lunghezza maggiore fra quella delle due transizioni di volta in volta combinate

MHS2(A1,A2,A12,incr)

- A ogni iterazione del ciclo più esterno viene tentata prima la combinazione di ciascuna transizione di A1 di lunghezza ℓ con ciascuna transizione di A2 di lunghezza <= ℓ, poi di ciascuna transizione di A2 di lunghezza ℓ con ciascuna transizione di A1 di lunghezza < ℓ
- Ogni transizione di A1 (A2) che venga aggiunta immutata ad A12 deve essere rimossa da A1 (A2)

MHS2(A1,A2,A12,incr)

 L'aggiunta ad A12 di una transizione che sia una combinazione (= unione) di una transizione t1 di A1 e di una transizione t2 di A2 determina un aggiornamento della lista tabu sia di t1 sia di t2

Invocazione con incr=0

Invocazione con incr=0 (cont.)

Invocazione con incr=0 (cont.)

Invocazione con incr=1

Invocazione con incr=1 (cont.)

Invocazione con incr=1 (cont.)

Invocazione con incr=2

Invocazione con incr=2 (cont.)

