

Neuron With Steady Response Leads to Better Generalization

Haitao Mao²
Joint work with Qiang Fu¹, Lun Du¹, Xu Chen¹, Wei Fang³, Shi Han¹, Dongmei Zhang¹

- Microsoft Research Asia
- 2. Michigan State University
- 3. Tsinghua University

2022/10/20

Existing Regularizations

Inductive bias	Example	Principle	Leveraged information	
Scale	L2	Penalize large norms of model weights	Weights	
Sparseness	L1	Reward zero neuron response	Collective neuron responses	
Smoothness	Jacobian	Penalize big change with small perturbation	Mapping function derivatives	
Diversity	Orthogonalization	Reduce feature correlations	Weight correlations	

Limitations:

- Individual neurons are lack of "global view" of its response distribution on different classes
- Neurons are only aware of responses of current mini-batch, which may contain noise and be instable

Observations

--from neuron perspective

2022/10/20

Observation 1

- ☐ Intra-class response variance of correctly classified samples is smaller than that of misclassified ones on arbitrary class
- ☐ Smaller intra-class response variance leads to better generalization

The horizontal axis and the vertical axis represent class indexes and the value of intra-class response variance, respectively. Each bar represents the intra-class response variance aggregated from all neurons in the penultimate layer.

Observation 2

- Does cross entropy control intra-class response variance well? No!
- ☐ The ascending intra-class response variance shows the potential improvement space for the regularization

Ascending Variance!

Training procedure of vanilla four-layer MLP on MNIST

Key Insight

- Neuron with small intra-class responses variance (**steadiness**) can lead to better generalization
- ☐ Cross entropy can NOT control intra-class response variance well

Regularization on intra-class response variance is needed!

Neuron Steadiness Regularization (NSR)

☐ Final regularized loss function

$$\mathcal{L} = \mathcal{L}_C + \mathcal{L}_S$$

 L_C is cross entropy loss

 L_S is NSR loss of the model

■NSR loss of the model

$$\mathcal{L}_S = \sum_{n=1}^N \lambda_n \sigma_n$$

Evaluation Setting

Multiple datasets and architectures

Network Architecture	Vanilla model	Dataset	Optimization	
Multiple Layer Perceptron	MLP-3,4,6,8,10	MNIST	SGD	
	ResNet-18	CIFAR-10	Momentum	
Convolutional Neural Network	VGG-19	CIFAK-10		
	ResNet-50	ImageNet	Adam	
Graph Neural Network	GraphSAGE	WikiCS, PubMed,	Adam	
	GCN	Amazon-Photo, Computers		

Performance of NSR on MLP & CNN

Model	MLP-3	MLP-4	MLP-6	MLP-8	MLP-10	ResNet-18	VGG-19
Vanilla	3.09 ± 0.10	2.29 ± 0.07	2.44 ± 0.09	2.87 ± 0.09	3.06 ± 0.06	7.96 ± 0.12	10.57 ± 0.17
Vanilla+NSR	2.80 ± 0.08	1.64 ± 0.04	1.76 ± 0.06	1.98 ± 0.09	1.72 ± 0.14	7.20 ± 0.09	8.77 ± 0.10
Gain of NSR	9.39%	28.38%	27.87%	30.87%	43.79%	9.55%	17.03%

Model	ResNet-18	VGG-19	ResNet-50
Vanilla	4.22 ± 0.07	9.19 ± 0.18	7.82 ± 0.09
Vanilla+NSR	3.74 ± 0.08	8.09 ± 0.17	6.98 ± 0.08
Gain of NSR	11.37%	11.97%	10.74%

Thanks!