

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA Termodinámica

Ouinto Semestre	035054	85
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

El alumno comprenderá los conceptos básicos de las leyes de la termodinámica y los mecanismos fundamentales que intervienen para la solución de problemas de Ingeniería.

TEMAS Y SUBTEMAS

1. Introducción y conceptos básicos

- 1.1. Termodinámica y energía.
- 1.2. Propiedades de un sistema.
- 1.3. Estado y equilibrio.
- 1.4. Procesos y ciclos.
- 1.5. Temperatura y ley cero de la termodinámica.
- 1.6. Presión.

2. Energía y transferencia de energía

- 2.1. Formas de energía.
- 2.2. Transferencia de energía por calor.
- 2.3. Transferencia de energía por trabajo.
- 2.4. Formas mecánicas del trabajo.
- 2.5.La primera ley de la termodinámica.
- 2.6.La segunda ley de la termodinámica

3. Propiedades de las sustancias puras

- 3.1. Sustancia pura.
- 3.2. Fases de la sustancia pura.
- 3.3. Proceso de cambio de fase en sustancias puras.
- 3.4. Diagramas de propiedades para procesos de cambio de fase.
- 3.5. Tablas de propiedades: P, v, T, u, h
- 3.6. La ecuación de estado de gas ideal.
- 3.7. Factor de compresibilidad.

4. El balance de energía. Aplicaciones de la primera y segunda ley de la termodinámica

- 4.1. Aplicación de la primera ley de la termodinámica a sistemas cerrados y abiertos: procesos isotérmicos, isométricos, isobáricos, adiabáticos y poli trópicos, con sustancias reales y con el gas ideal con índice adiabático constante (k).
- 4.2. Aplicación de la primera ley de la termodinámica en ciclos: de Rankine y de refrigeración por la compresión de un vapor. Los ciclos de Carnot, de Brayton, de Otto, de Diesel y de un compresor alternativo. Las eficiencias de los ciclos como introducción a la segunda ley de la termodinámica.

5. Mecanismos y leyes fundamentales de la transferencia de calor.

- 5.1.Ley de Fourier
- 5.2. Conductividad térmica
- 5.3.Ley de Newton
- 5.4. Radiación térmica
- 5.5. Requerimientos de conservación de la energía
- 5.6. Balance de energía sobre una superficie

6. Aplicaciones al Diseño Bioclimático

- 6.1. Transferencia de Calor en el Diseño Bioclimático
- 6.2. Modelo de estado estable para el intercambio de calor en habitaciones y sistemas cerrados
- 6.3. Movimiento de humedad dentro de viviendas y habitaciones
- 6.4. Calentamiento solar y sistemas solares pasivos

ACTIVIDADES DE APRENDIZAJE

Explicación oral y visual por parte del profesor, sobre cada tema, utilizando medios de apoyo didáctico (computadora, proyector, pizarrón y plumones). Resolución de ejercicios, investigación trabajo de campo por parte de los alumnos.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación que deberá comprender evaluaciones parciales que tendrán una equivalencia de 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución del problema sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso.

El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. Yunus A. Çengel, Michael A. Boles, Termodinámica, Mc Graw-Hill, 2003
- 2. John R. Howell, Richard O. Buckius, Principios de Termodinámica para ingenieros. Mc Graw-Hill, 1990
- 3. Kern, Donald Q. 1999. Procesos de transferencia de calor. CECSA (México).
- 4. Holman, J. P. 1990. Heat transfer. Seventh edition. McGraw-Hill.
- 5. Manrique, José A. Termodinámica. 3a edición México Harla, 2001

De consulta

- 1. Eastop, T.T., Mcconkey, A. Applied Thermodynamics for Engineering Technologists. 5th edition Burnt Mill Longman, 1993
- 2. Morán, Michael J. y Shapiro, Howard N. Fundamentos de Termodinámica Técnica. 2a edición Barcelona, España ,Reverté, 2004
- 3. Wark, Kenneth, Richards, Donald Termodinámica. 6a edición Madrid McGraw Hill Interamericana de España, 2001
- 4. Morris G. Davies, Heat Flow in Buildings, United States, Wiley, 2004.

PERFIL PROFESIONAL DEL DOCENTE

Licenciatura en Ingeniería, Física o áreas afines, preferentemente con estudios de posgrado y experiencia en docencia a nivel licenciatura.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico