5 הרצאה

אלגוריתמים חמדניים

הקדמה

לעיתים קרובות אפשר לייצג בעיות אופטימזציה כקבוצה של אלמנטים כאשר פתרון חוקי הוא תת קבוצה של אלמנטים שמקיימת תכונות מסויימות. למשל, עץ פורש מינימלי. בדרך כלל יש פונקציית מחיר / רווח לכל תת קבוצה והמטרה שלנו היא למזער / למקסם את הערך הזה.

אלגוריתם חמדן, באופן לא פורמלי, הוא כזה שבונה פתרון (תת קבוצה של אלמנטים) באופן איטרטיבי ובכל שלב מוסיף / מסיר מהקבוצה

שיבוץ אינטרוולים

נתונים $a_i \leq b_i$ רוצים למצוא תת קבוצה בגודל מקסימלי $a_i, b_i \in \mathbb{R}_+$, $A = \{(a_1,b_1),\dots,(a_n,b_n)\}$ נתונים $a_i \leq a_j$ אחד התנאים מתקיים: $a_i \leq a_j$ כך שהאינטרוולים ב- $a_i \leq a_j$ זרים בזוגות, כלומר לכל $a_i \leq a_j$ כך שראינטרוולים ב- $a_i \leq a_j$ או ש $a_i > a_j$ או שראינטרוולים ב- $a_i > a_j$ דוגמה:

אלגוריתם חמדן:

- $b \leftarrow 0$, $I \leftarrow \emptyset$.1. אתחול:
- b_i בסדר אינטרוול (a_i,b_i) בסדר אינטרוול 2.

$$a_i \geq b$$
 אם (א) $I \leftarrow I \cup \{(a_i,b_i)\}$ i. $b \leftarrow b_i$ ii.

הוכחת נכונות: נוכיח את הטענה הבאה, בכל צעד של האלגוריתם קיימת קבוצה בגודל מקסימלי, I' כך ש-I רישא שלה ביחס למיון ע"פ ערכי b.