

2017 Winter midterm

Introduction to Theoretical Computer Science (Concordia University)

Scan to open on Studocu

DEPARTMENT OF COMPUTER SCIENCE & SOFTWARE ENGINEERING COMP335 INTRODUCTION TO THEORETICAL COMPUTER SCIENCE WINTER 2017

Midterm Exam March 2

- Your Name:
- Your Student ID:
- Your Signature:

Instructions:

- There are 10 multiple-choice questions (Questions 1 10, each worth 3 points) and one proof question (Question 11, worth 9 points).
- Answer questions 1 10 on the scan sheet.
 - NOTE: Only the scan sheet will be graded. Anything written in the booklet will be ignored.
- Answer Question 11 in the three boxes on page 6.
 - NOTE: Only answers written in the three boxes will be graded. Anything else written in the booklet will be ignored.
- Use provided scrap paper for your rough work. DO NOT hand in the scrap paper!

1. Let $L_1=\{a^i:i\geq 0\}$ and $L_2=\{a^ib^j:j\geq i\geq 0\}$. Then the language L_1L_2 is

- (a) $\{a^{2i}b^j: i, j \ge 0\}$
- (b) $\{a^ib^j : i \ge j\}$
- (c) $\{a^ib^j: i, j \ge 0\}$
- (d) $\{a^ib^j: j \geq i\}$

2. Which of the following strings is NOT in the Kleene closure of the language {011, 10, 110}

- (a) 10111011
- (b) 10110011
- (c) 1001110
- (d) 1010110

3. Consider the following ϵ -NFA

When you convert this ϵ -NFA to a DFA, which of the following would be a transition of the DFA?

- (a) $\delta(\{A, B\}, 1) = \{A, B\}$
- (b) $\delta(\{A, B\}, 1) = \{A\}$
- (c) $\delta(\{A, B\}, 3) = \{C, D\}$
- (d) $\delta(\{A, B\}, 2) = \{A, B, C\}$

4. Consider the following six ϵ -NFA's

Which of these accept the same language?

- (a) (a) and (f)
- (b) (a) and (c)
- (c) (c) and (d)
- (d) (b) and (f)
- 5. Consider the two regular expressions

$$R = 0^* + 1^*$$
 $S = 01^* + 10^* + 1^*0 + (0^*1)^*$

Then, consider the languages

$$L_1 = L(R) \setminus L(S), \ L_2 = L(S) \setminus L(R), \ L_3 = L(R) \cap L(S), \ L_4 = \overline{L(R) \cup L(S)}.$$

and the strings

$$w_1 = 011, \ w_2 = 111, \ w_3 = 000, \ w_4 = 1100$$

Which of the following is correct?

- (a) $w_1 \in L_1$, $w_2 \in L_2$, $w_3 \in L_3$, $w_4 \in L_4$
- (b) $w_3 \in L_1$, $w_1 \in L_2$, $w_2 \in L_3$, $w_4 \in L_4$
- (c) $w_4 \in L_1$ $w_2 \in L_2$, $w_1 \in L_3$, $w_3 \in L_4$
- (d) $w_2 \in L_1$, $w_1 \in L_2$, $w_4 \in L_3$, $w_3 \in L_4$

- 6. How many strings of length less than 4 is contained in L((a+b)*b(c+cd)*)
 - (a) 10
 - (b) 11
 - (c) 12
 - (d) 13
- 7. Which of the following regular expressions defines the complement of the language $L((0+10)^*)$
 - (a) $(0+1)^*(11+1+\epsilon)^*$
 - (b) $(0+1)^*(1+11)(0+1)^*$
 - (c) $(0+10)*1(\epsilon+11(0+1)*)$
 - (d) (0+1)*11(0+1)* + (0+10)*1
- 8. Let h be a homomorphism from $\{a, b, c\}$ to $\{0, 1\}$, where h(a) = 01, h(b) = 0, and h(c) = 10. Which of the following strings is in $h^{-1}(010010)$.
 - (a) bcab
 - (b) abcb
 - (c) bcba
 - (d) babc
- 9. Let $A = (Q, \Sigma, \delta, q_0, \{q_f\})$ be an ϵ -NFA that accepts language L(A). Consider the following modifications of A.
 - The automaton B constructed from A by adding ϵ -transitions from q_0 to every state, for which there is a path in A from q_0 to that state.
 - The automaton C constructed from A by adding ϵ -transitions to q_f from every state, for which there is a path in A to q_f from that state.
 - ullet The automaton D constructed from A by doing both of the above modifications.

Here are three candidate languages:

- $L_1 = \{x : xy \in L(A) \text{ for some } y \in \Sigma^*\}$
- $L_2 = \{y : xyz \in L(A) \text{ for some } x, z \in \Sigma^* \}$
- $L_3 = \{y : xy \in L(A) \text{ for some } x \in \Sigma^* \}$

Which of the following is correct?

- (a) $L(B) = L_1$, $L(C) = L_2$, $L(D) = L_3$
- (b) $L(B) = L_3$, $L(C) = L_1$, $L(D) = L_2$
- (c) $L(B) = L_3$, $L(C) = L_2$, $L(D) = L_3$
- (d) $L(B) = L_2$, $L(C) = L_3$, $L(D) = L_1$

10. Let A be the following DFA.

When you minimize A using the table-filling algorithm, the following are the sets of indistinguishable (equivalent) states.

- (a) $\{A,C\}, \{B,D,G\}, \{E,F\}$
- (b) $\{A,C,E\},\{B,D,G\},\{F\}$
- (e) $\{A\}$, $\{B, D, G\}$, $\{C, E, F\}$
- (d) $\{A, E\}, \{B, D, G\}, \{C, F\}$

11. Let L be the language of those strings over $\{0,1\}$ where the number of 0's differ from the number of 1's by at most 5. Complete the proof below, showing L is not regular.

Proof:

- Suppose to the contrary that L is regular
 ⇒ ∃ DFA A, s.t. L(A) = L.
- Let n be the number of states in A. $\Rightarrow \forall w \in L(A)$, if $|w| \ge n$, then w = xyz, where x, y, and z as in Pumping Lemma.
- (a) Choose a suitable $w \in L$, where $|w| \ge n$.

My solution: w =

(b) Find an i, such that $xy^iz \in L(A)$ and $xy^iz \notin L$.

My solution: $i = xy^{i}z =$

(c) Reason that $xy^iz \notin L$

My reason:

Since $xy^iz \in L(A) \Rightarrow L(A) \neq L$.

- (e) contradicts (a):
 - ⇒ (a) cannot be true
 - $\Rightarrow L$ cannot be regular