Detecção de artefatos de arritmia utilizando Máquinas de Vetores de Suporte e Coeficientes de Energia Wavelet

Proposta de TCC

Gabriel Lechenco Vargas Pereira Cristiano Marcos Agulhari 2020

Universidade Tecnológica Federal do Paraná - UTFPR

Sumário

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Revisão de Literatura
- 4. Proposta
- 5. Considerações Finais

Introdução

Introdução

Doenças cardiovasculares

- Foram responsáveis por um terço das mortes em 2016
- Três quartos dessas ocorreram em países de baixa e média renda
- A principal causa das mortes são diagnóstico feito tardiamente

Justificativa

O desenvolvimento de modelos computacionais com a capacidade de identificar artefatos de arritmia podem auxiliar em um diagnóstico mais rápido de doenças cardiovasculares.

Fundamentação Teórica

Eletrocardiograma

Figure 1: Ciclo PQRST [1]

Arritmia

A falta de ritmo cardíaco tem ampla influência sobre a saúde do paciente.

- Deficiência no transporte e fornecimento de oxigênio.
- Podendo acarretar complicações em todo o corpo.
- Algumas capazes de levar ao óbito em poucos minutos.

Exemplo Eletrocardiograma

Figure 2: Trecho batimentos ritmo normal

Exemplo Eletrocardiograma

Figure 2: Trecho batimentos com fibrilação atrial

Algoritmo de classificação binária que busca encontrar o hiperplano ótimo que seccione o hiperespaço onde os dados se encontram.

$$f(x) = \langle w, x \rangle + b = 0$$

Figure 3: Separação de dois planos por um hiperplano ótimo

Vantagens

- Otimização de natureza convexa
- Apresenta um unico mínimo global para problemas lineares
- Consegue bons resultados com poucos exemplos

Vantagens

- Otimização de natureza convexa
- Apresenta um unico mínimo global para problemas lineares
- Consegue bons resultados com poucos exemplos

Desvantagens

- A princípio resolve apenas problemas lineares
- Classificação binária

SVM's e problemas não lineares

Teorema de Cover

Dado um problema de classificação de padrões complexo, ao lançá-lo em um espaço com muitas dimensões é mais provável que este seja linearmente separável do que em um espaço com poucas dimensões, desde que o espaço não seja densamente preenchido. [2]

SVM's e problemas não lineares

A adição de diferentes kernels possibilita uma maior flexibilidade do algoritmo de SVM com uma pequena modificação no problema de otimização.

$$f(x) = \langle w, \psi(x) \rangle + b = 0$$

Problema XOR

Figure 4: SVM utilizando o kernel gaussiano para o problema XOR

SVM's e problemas não binários

Técnicas pra classificação não binária

- One Against All (OAA)
- One Against One (OAO)
- Directed Acyclic Graph SVM (DAGSVM)
- Binary Tree of SVM (BTS)

SVM's e problemas não binários

Directed Acyclic Graph SVM (DAGSVM)

SVM's e problemas não binários

Binary Tree of SVM (BTS)

Wavelets

A Transformada de Fourier é amplamente utilizada no processamento de sinais digitais, porém, ela pode não ser a mais adequada em alguns casos.

Transformadas wavelet são mais apropriadas para a análise de fenômenos não estacionários ou variantes no tempo.

Wavelets

Figure 5: Onda de energia e infinita e wavelet de energia concentrada

Wavelets

Características das funções Wavelet:

- Infinitas funções wavelet disponíveis
- Localização em tempo-frequência (Escala e Translação)
- Multirresolução

Multirresolução

Filter Bank e Wavelet Packets

Ao tentar otimizar a propriedade de multirresolução, os *Filter Banks* combinam as decomposições multiníveis em uma árvore binária, construindo uma coleção de filtros passa-baixa e passa-alta.

Enquanto que as *Wavelet Packets* procuram uma análise mais completa dos filtros, a partir de uma decomposição binária.

Filter Bank e Wavelet Packets

Figure 6: Árvores de Decomposição Wavelet

Revisão de Literatura

Trabalhos Relacionados

Trabalho	Técnica	
Govindan, Deng e	Coeficientes Wavelet + Redes Neurais	
Power (1997)		
Zhao e Zhang	Coeficientes Wavelet $+$ SVM $+$ Modelagem	
(2005)	Autorregressiva	
Mora e Amaya	Entropia de Shannon + Complexidade de	
(2012)	${\sf Lempel-Ziv} + {\sf SVM-OAO} \ {\sf assimétrica}$	
Rua et al. (2012)	Energia Wavelet + Redes Neurais	
Azariadi et al.	Coeficientes Wavelet + SVM	
(2016)		
Tuncer et al.	Decomposição Wavelet + Localização de	
(2019)	padrões locais hexadecimais $+ KNN$	

Trabalhos Relacionados

Trabalho	Nº de classes	Nº de Exemplos no treinamento	Acurácia
Govindan, Deng e	4	10	$77\% \pm 9\%$
Power (1997)			
Zhao e Zhang (2005)	6	7940	99,68%
Mora e Amaya	5	637	90,72%
(2012)			
Rua et al. (2012)	2	-	99.46%
Azariadi et al. (2016)	2	104581	97%
Tuncer et al. (2019)	17	-	95.0%

Proposta

Proposta

Figure 7: Descrição do Método que será utilizado

Proposta

Bases de dados

- MIT-BIH Arrhythmia Database (mitdb)
- MIT-BIH Normal Sinus Rhythm Database (nsrdb)

Pré-processamento

Localizar e seccionar trechos selecionados:

- Ler anotações e comentários presentes nas bases de dados
- Localizar o início e término de eventos arrítmicos
- Seccionar trechos a cada 8 segundos
- Padronizar taxa de amostragem para 128Hz
- Fazer o mesmo para os dados saudáveis

Pré-processamento

Localizar e seccionar trechos selecionados:

- Ler anotações e comentários presentes nas bases de dados
- Localizar o início e término de eventos arrítmicos
- Seccionar trechos a cada 8 segundos
- Padronizar taxa de amostragem para 128Hz
- Fazer o mesmo para os dados saudáveis

Extração de características

Cada trecho de sinal será decomposto até o quarto nível, no final a folha mais a esquerda será decomposta por mais dois níveis. Será utilizada a função *Daubechies* com suporte 3, por se adequar bem aos sinais cardíacos.

Extração de características

Figure 7: Decomposição Wavelet proposta

Aprendizado de Máquina

Máquinas de Vetores de Suporte (SVM)

- Aprendizado supervisionado
- Classificação entre 4 classes
- Comparação entre técnicas de classificação multiclasses

Aprendizado de Máquina

Classificação entre 4 classes

Sigla	Classe
N	Batimentos com ritmos normais
AFIB	Fibrilação Arterial
SBR	Bradicardia Sinusal
ASV	Arritmia Supraventricular

Cronograma

Data	Atividade	
14/Agosto	Selecionar trechos relevantes dos sinais biológicos	
	com base nas anotações do banco de dados	
28/Agosto	Realizar o janelamento e padronização destes trechos	
11/Setembro	Extrair Energias Wavelet	
02/Outubro	Realizar Classificações	
23/Outubro	Agrupar Resultados	
20/Novembro	Descrever Resultados e Conclusões finais	

Cronograma

Data	Atividade
14/Agosto	Selecionar trechos relevantes dos sinais biológicos
	com base nas anotações do banco de dados
28/Agosto	Realizar o janelamento e padronização destes trechos
11/Setembro	Extrair Energias Wavelet
02/Outubro	Realizar Classificações
23/Outubro	Agrupar Resultados
20/Novembro	Descrever Resultados e Conclusões finais

Considerações Finais

References i

S. Faziludeen and P. V. Sabig.

ECG beat classification using wavelets and SVM.

In 2013 IFFF Conference on Information Communication Technologies, pages 815-818, Apr. 2013.

S. Haykin.

Neural Networks and Learning Machines, 3/E.

Pearson Education India, 2010.