Vv255 Lecture 24

Dr Jing Liu

UM-SJTU Joint Institute

July 24, 2017

ullet The line integral over a smooth closed curve ${\mathcal C}$ that is in an open region ${\mathcal D}$

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = 0$$

provided that the vector field ${\bf F}$ is sufficiently smooth and conservative in ${\cal D}.$

However, if the vector field is not conservative, we have to use

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) \ dt$$

where the closed smooth curve is defined by

$$\mathbf{r}(t) = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y$$
 for $a \le t \le b$

Consider the following vector field

$$\mathbf{F} = -\frac{y}{2}\mathbf{e}_x + \frac{x}{2}\mathbf{e}_y$$

Q: Is the above vector field conservative?

Suppose we need to evaluate

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where $\mathbf{F} = -\frac{y}{2}\mathbf{e}_x + \frac{x}{2}\mathbf{e}_y$ and the curve $\mathcal C$ is the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

We have to use the formula

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) \ dt$$

• Using the the following parametrization,

$$x(t) = a\cos\theta, \qquad y(t) = b\sin\theta \qquad \text{for} \quad 0 \le \theta \le 2\pi$$

we have

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2} \int_{0}^{2\pi} \left(-b\sin\theta \mathbf{e}_{x} + a\cos\theta \mathbf{e}_{y} \right) \cdot \left(-a\sin\theta \mathbf{e}_{x} + b\cos\theta \mathbf{e}_{y} \right) d\theta$$

• If we compute the dot product, we have

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \frac{1}{2} \int_{0}^{2\pi} (-b\sin\theta \mathbf{e}_{x} + a\cos\theta \mathbf{e}_{y}) \cdot (-a\sin\theta \mathbf{e}_{x} + b\cos\theta \mathbf{e}_{y}) d\theta$$

$$= \frac{1}{2}ab \int_{0}^{2\pi} (\sin^{2}\theta + \cos^{2}\theta) d\theta$$

$$= \frac{1}{2}ab \int_{0}^{2\pi} 1 d\theta$$

$$= \pi ab$$

Q: Is this a coincidence?

$$\iint_{\mathcal{D}} 1 \, dA = \pi a b$$

where \mathcal{D} is the region enclosed by the \mathcal{D} , that is, the ellipse.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

For any vector field

$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y$$

and the line integral $\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ where \mathcal{C} encloses a region \mathcal{D}

Q: Is the line integral somehow linked to a double integral over the region \mathcal{D} ?

ullet To simplify the discussion, let ${\mathcal D}$ be a region that is both

 \bullet Firstly ${\cal D}$ as a type I region, then the boundary of ${\cal D}$ is piecewise smooth ${\cal C}$ of

$$y = g_1(x)$$
 $x = b$ $y = g_2(x)$ $x = a$

• We need a parametrization for each piece before we can investigate

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F} \cdot \mathbf{r}'(t) \ dt$$

• Let the independent variables be the parameters, we have

• If we reverse the orientation of C_3 and C_4 , then

$$\mathcal{C} = \mathcal{C}_1 \cup \mathcal{C}_2 \cup (-\mathcal{C}_3) \cup (-\mathcal{C}_4)$$

is a positively oriented simple closed curve.

Definition

A positively oriented simple closed curve $\mathcal C$ is a curve with "direction" whose initial point is also the terminal point and which does not cross itself again such that the region $\mathcal D$ enclosed by the curve $\mathcal C$ is always on the left of the direction of motion.

Q: Are the following curves positively oriented? Are they simple closed curves?

Recall we can decompose a line integral of a vector field into

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} P \, dx + \oint_{\mathcal{C}} Q \, dy = \int P \dot{x} \, dt + \int Q \dot{y} \, dt$$

$$\oint_{\mathcal{C}} P \, dx = \int_{\mathcal{C}_{1}} P \, dx + \int_{\mathcal{C}_{2}} P \, dx + \int_{-\mathcal{C}_{3}} P \, dx + \int_{-\mathcal{C}_{4}} P \, dx$$

$$= \int_{\mathcal{C}_{1}} P \, dx + \int_{\mathcal{C}_{2}} P \, dx - \int_{\mathcal{C}_{3}} P \, dx - \int_{\mathcal{C}_{4}} P \, dx$$

$$= \int_{a}^{b} P(t, g_{1}(t)) \cdot (1) \, dt + \int_{g_{1}(b)}^{g_{2}(b)} P(b, t) \cdot (0) \, dt$$

$$- \int_{a}^{b} P(t, g_{2}(t)) \cdot (1) \, dt - \int_{g_{1}(a)}^{g_{2}(a)} P(a, t) \cdot (0) \, dt$$

$$= \int_{a}^{b} \left(P(t, g_{1}(t)) - P(t, g_{2}(t)) \right) \, dt$$

$$= \int_{a}^{b} \left[P(t, y) \right]_{y=g_{2}}^{y=g_{1}} \, dt = -\int_{a}^{b} \int_{g_{1}(a)}^{g_{2}} \frac{\partial P}{\partial y} \, dy \, dt = -\int_{\mathcal{D}} \frac{\partial P}{\partial y} \, dA$$

ullet Using a similar approach in which ${\mathcal D}$ is viewed as a region of type II,

$$\oint\limits_{C} Q \ dy = \iint\limits_{\mathcal{D}} \frac{\partial Q}{\partial x} \ dA \implies \oint\limits_{C} P \ dx + \oint\limits_{C} Q \ dy = \iint\limits_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA$$

 \bullet This proves the following for a region ${\cal D}$ that is type I as well as being type II.

Green's Theorem

If $\mathcal C$ is a positively oriented, piecewise smooth, simple closed curve that encloses a region $\mathcal D$, and P and Q have continuous first partial derivatives on some open region containing $\mathcal D$, then the line integral of the vector along $\mathcal C$

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Another common way of stating the theorem is

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

where $\partial \mathcal{D}$ denotes the positively oriented boundary of \mathcal{D} .

 Green's Theorem can sometimes act as a bridge between line integrals and double integrals.

Exercise

Evaluate the following line integral

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

where \mathcal{C} is the boundary of the following square with positive orientation

$$\mathcal{R} = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1\}$$

and the vector field is

$$\mathbf{F} = y\cos x\mathbf{e}_x + x^2\mathbf{e}_y$$

• For more general regions than those that are of both type I and type II,

we consider the union of regions that are of both type I and type II.

• It follows that for a vector field that satisfy the assumptions of Green's theorem on \mathcal{D} , we can apply the theorem to \mathcal{D}_i individually for $i=1,\ldots,4$.

$$\begin{split} \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA &= \sum_{i=1}^{4} \iint_{\mathcal{D}_{i}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dA \\ &= \oint_{\mathcal{C}_{7} \cup \mathcal{C}_{5}} \mathbf{F} \cdot d\mathbf{r} + \oint_{\mathcal{C}_{1} \cup (-\mathcal{C}_{3}) \cup (-\mathcal{C}_{5})} \mathbf{F} \cdot d\mathbf{r} \\ &+ \oint_{\mathcal{C}_{2} \cup \mathcal{C}_{4} \cup \mathcal{C}_{3}} \mathbf{F} \cdot d\mathbf{r} + \oint_{\mathcal{C}_{6} \cup (-\mathcal{C}_{4})} \mathbf{F} \cdot d\mathbf{r} \\ &= \oint_{\mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \mathcal{D}_{6} \cup \mathcal{D}_{7}} \mathbf{F} \cdot d\mathbf{r} = \oint_{C} \mathbf{F} \cdot d\mathbf{r} \end{split}$$

- ullet It can be concluded that Green's theorem holds on this \mathcal{D} .
- The same argument can be used to easily show that Green's theorem is valid on any finite union of regions that are regions of both type I and type II.

• Green's theorem can also be applied to regions with "holes", that is, regions that are not simply connected. To see this, let $\mathcal D$ be a region enclosed by two curves $\mathcal C_1$ and $\mathcal C_2$ that are both positively oriented with respect to $\mathcal D$, that is, $\mathcal D$ is on the left as either $\mathcal C_1$ or $\mathcal C_2$ is traversed.

- Suppose curve C_2 is contained within the region enclosed by curve C_1 ; that is, curve C_2 is the boundary of the "hole" in \mathcal{D} .
- Then partition the region \mathcal{D} into two simply connected regions \mathcal{D}_1 and \mathcal{D}_2 by connecting \mathcal{C}_2 to \mathcal{C}_1 along two separate curves that lie in the region \mathcal{D} .

• Applying Green's theorem to regions \mathcal{D}_1 and \mathcal{D}_2 individually, we find that the line integrals along the common boundaries of \mathcal{D}_1 and \mathcal{D}_2 cancel, since they have opposite orientations with respect to these regions. Hence, we have

$$\iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \iint_{\mathcal{D}_{1}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA + \iint_{\mathcal{D}_{2}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA
= \oint_{\mathcal{C}_{1}} \mathbf{F} \cdot d\mathbf{r} + \oint_{\mathcal{C}_{2}} \mathbf{F} \cdot d\mathbf{r}
= \oint_{\mathcal{C}_{1} \cup \mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

ullet Hence Green's theorem applies to a non-simply connected region ${\mathcal D}$ as well.

Exercise

Consider an n-sided polygon with vertices

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$$

Find the area of the polygon in terms of the coordinates of vertices.

Green's theorem can be thought as a generalization of FTC or FTL.

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$\int_{\mathcal{C}} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$$

$$\iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

• However, the meaning of Green's theorem can be studied in terms of velocity field of water flow \mathbf{F} . When $\mathcal C$ is an oriented simple closed curve, the integral

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds$$

would indicate how much the water tends to circulate around the path in the direction of its orientation, the tendency to circulate or rotate.

Q: Why does it indicate the amount of water circulating the the region?

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \, ds$$

• Of course the velocity **F** is in general not in the direction of **T**.

The integrand

$$\alpha = \mathbf{F} \cdot \mathbf{T}$$

gives the scalar component of the velocity \mathbf{F} of water in the direction of \mathbf{T} .

Q: What does the following integral represent?

$$\int_{a}^{b} \mathbf{F} \cdot \mathbf{T} \ dt$$

The distance travelled by water with a specification of the cross section gives

• Now back to the line integral of a velocity field,

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \ ds = \int_{a}^{b} \mathbf{F} \cdot \mathbf{T} \ |\mathbf{r}'(t)| \ dt$$

So the line integral, which is also known as flow integral, is an indication of

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$$

the amount of water circulating when $\ensuremath{\mathcal{C}}$ is a closed curve, thus the circulation

$$\mathbf{r} = x(t)\mathbf{e}_x + y(t)\mathbf{e}_y$$
 for $a \le t \le b$

• Now let us consider the other side of the formula in Green's theorem

$$\oint_{\partial \mathcal{D}} \mathbf{F} \cdot d\mathbf{r} = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

Q: Given a velocity field

$$\mathbf{F} = P(x, y)\mathbf{e}_x + Q(x, y)\mathbf{e}_y$$

How can we determine whether F would cause a tiny object to rotate?

Q: Does it depend on the magnitude or the direction of \mathbf{F} at (x,y)?

• It depends on the rate of change of \mathbf{F} at (x,y).

ullet If only the horizontal component of F is relevant, then it depends on whether

$$\frac{\partial P}{\partial y} < 0$$

ullet If only the vertical component of ${f F}$ is relevant, it depends on whether

$$\frac{\partial Q}{\partial x} > 0$$

• However, the other two partial derivatives have nothing to do with rotation.

• Therefore we see the difference in the partial derivatives tells whether

$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} > 0 \qquad \text{at} \quad (x, y)$$

there is a general tendency to rotate counterclockwise near (x, y).

• We expect Green's theorem as the partition becomes finer and finer

$$\oint_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \underbrace{\oint_{\mathcal{C}} P \ dx + \oint_{\mathcal{C}} Q \ dy}_{\text{Macroscopic circulation}} = \underbrace{\iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA}_{\text{Microscopic circulation}}$$

• Green's theorem says that if you add up all the microscopic circulation inside C, then the sum is exactly the same as the macroscopic circulation around C.

ullet Now consider a related vector field ${f G}$, which is orthogonal to ${f F}$ everywhere

$$\mathbf{G}(x,y) = -Q(x,y)\mathbf{e}_x + P(x,y)\mathbf{e}_y$$

Applying Green's theorem,

$$\iint\limits_{\mathcal{D}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \, dA = \oint\limits_{\mathcal{C}} -Q \, dx + \oint\limits_{\mathcal{C}} P \, dy = \oint\limits_{\mathcal{C}} P \dot{y} \, dt + \oint\limits_{\mathcal{C}} Q(-\dot{x}) \, dt$$

• In terms of the original vector field,

$$\mathbf{F}(x,y) = P(x,y)\mathbf{e}_x + Q(x,y)\mathbf{e}_y$$

ullet we can rewrite the above formula using the direction normal to the ${f r}'(s)$,

$$\iint_{\mathcal{D}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dA = \oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} ds \quad \text{where} \quad \mathbf{n} = \begin{bmatrix} y'(s) \\ -x'(s) \end{bmatrix}$$

Q: How to interpret the above formula if F is a velocity field of water flow?

Green's Theorem

If $\mathcal C$ is a positively oriented, piecewise smooth, simple closed curve that encloses a region $\mathcal D$, and P and Q have continuous first partial derivatives on some open region containing $\mathcal D$, then the line integral of the vector along $\mathcal C$

Tangential form
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{T} \ ds = \iint_{\mathcal{D}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA$$
Normal form
$$\oint_{\mathcal{C}} \mathbf{F} \cdot \mathbf{n} \ ds = \iint_{\mathcal{D}} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) \ dA$$

where
$$\mathbf{F} = P\mathbf{e}_x + Q\mathbf{e}_y$$
, $\mathbf{T} = \frac{dx}{ds}\mathbf{e}_x + \frac{dy}{ds}\mathbf{e}_y$, and $\mathbf{n} = \frac{dy}{ds}\mathbf{e}_x - \frac{dx}{ds}\mathbf{e}_y$.

• If F is a conservative vector field with the potential function f, then

$$\iint_{\mathcal{D}} \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) dA = \oint_{\mathcal{C}} \nabla f \cdot \mathbf{n} ds$$

where the directional derivative $\nabla f \cdot \mathbf{n}$ is called the normal derivative of f.