Dopasowanie modelu ARIMA do szeregu gnp

Paweł Matławski i Michał Liszkowski

20 06 2021

Podział danych na część uczącą i testową

```
training_set <- window(df, end = c(1990,4))
testing_set <- window(df, start = c(1991,1))
autoplot(cbind(testing_set, training_set))</pre>
```


Przekształcenie do postaci stacjonarnej szeregu

```
lambda <- BoxCox.lambda(training_set)
ndiffs(training_set)</pre>
```

[1] 2

```
training_set_stat <- diff(training_set, differences = 2)
training_set_stat <- BoxCox(training_set_stat, lambda = lambda)
autoplot(training_set_stat)</pre>
```


Box.test(training_set_stat)

```
##
## Box-Pierce test
##
## data: training_set_stat
## X-squared = 20.99, df = 1, p-value = 4.617e-06
```

Wstępna identyfikacja modeli stacjonarnych

Wybór AR i MA na podstawie ACF i PACF

ggtsdisplay(training_set_stat)

Na podstawie wykresów funkcji autokorelacji i funkcji cząstkowej autokorelacji będę rozważał w dalszych etapach nasz szereg jako szereg MA(21) lub AR(20).

Wybór rzędów dla modeli ARMA na podstawie kryteriów informacyjnych

```
arima.fit <- auto.arima(training_set)</pre>
arima.fit
## Series: training_set
##
   ARIMA(1,2,1)(0,0,2)[4]
##
##
  Coefficients:
##
             ar1
                                        sma2
                      ma1
                               sma1
##
                  -0.9717
                            -0.0323
                                     -0.1348
         0.3440
                                      0.0717
##
         0.0759
                   0.0196
                            0.0793
##
## sigma^2 estimated as 1345:
                                log likelihood=-872.97
## AIC=1755.94
                  AICc=1756.3
                                 BIC=1771.74
Automatyczne dopasowanie dało nam model ARMA(1,2,1)
```

Badanie poprawności dopasowania modeli na podstawie analizy reszt

MA(21)

```
test(residuals(ma21.fit))
```

```
## Null hypothesis: Residuals are iid noise.
## Test
                                Distribution Statistic
                                                          p-value
## Ljung-Box Q
                               Q ~ chisq(20)
                                                           0.9998
                                                   4.71
## McLeod-Li Q
                               Q ~ chisq(20)
                                                  31.71
                                                           0.0465 *
                        (T-116)/5.6 \sim N(0,1)
## Turning points T
                                                    120
                                                           0.4723
## Diff signs S
                       (S-87.5)/3.8 \sim N(0,1)
                                                     92
                                                           0.2413
## Rank P
                     (P-7700)/390.8 ~ N(0,1)
                                                   8102
                                                           0.3036
```


tsdiag(ma21.fit)

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Analizując reszty dla tego modelu, nie mamy podstaw do odrzucenia hipotezy zerowej, że reszty są szumem i.i.d, zatem model nasz wydaje się być sensownym dopasowaniem.

AR(20)

test(residuals(ar20.fit))

```
## Null hypothesis: Residuals are iid noise.
## Test
                                Distribution Statistic
                                                           p-value
## Ljung-Box Q
                                Q ~ chisq(20)
                                                    3.99
                                                                  1
## McLeod-Li Q
                                Q ~ chisq(20)
                                                   46.77
                                                             6e-04 *
## Turning points T
                        (T-116)/5.6 \sim N(0,1)
                                                     122
                                                            0.2809
                       (S-87.5)/3.8 \sim N(0,1)
## Diff signs S
                                                      83
                                                            0.2413
## Rank P
                     (P-7700)/390.8 ~ N(0,1)
                                                    7802
                                                            0.7941
```


Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Analizując reszty dla tego modelu, nie mamy podstaw do odrzucenia hipotezy zerowej, że reszty są szumem i.i.d, zatem model nasz wydaje się być sensownym dopasowaniem.

ARMA(1,2,1)

test(residuals(arima.fit))

```
## Null hypothesis: Residuals are iid noise.
## Test
                                 Distribution Statistic
                                                            p-value
## Ljung-Box Q
                                Q ~ chisq(20)
                                                    23.4
                                                             0.2697
## McLeod-Li Q
                                Q \sim chisq(20)
                                                   54.88
                                                                  0 *
## Turning points T
                        (T-116)/5.6 \sim N(0,1)
                                                     125
                                                             0.1058
                       (S-87.5)/3.8 \sim N(0,1)
## Diff signs S
                                                      92
                                                             0.2413
## Rank P
                     (P-7700)/390.8 ~ N(0,1)
                                                    8008
                                                             0.4306
```


Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Analizując reszty dla tego modelu, nie mamy podstaw do odrzucenia hipotezy zerowej, że reszty są szumem i.i.d, zatem model nasz wydaje się być senownym dopasowaniem.

Porównanie jakości dopasowania modeli w oparciu o kryteria informacyjne

```
AIC(ma21.fit)
## [1] 1790.639
AIC(ar20.fit)
## [1] 1782.12
AIC(arima.fit)
## [1] 1755.943
AIC(ma21.fit, k = log(length(training_set_stat)))
## [1] 1860.139
AIC(ar20.fit, k = log(length(training_set_stat)))
## [1] 1848.46
AIC(arima.fit, k = log(length(training_set_stat)))
## [1] 1771.738
```

Widzimy, że wśród wszystkich kryteriów model dopasowany automatycznie przez funkcję *auto.arima* ma najlepsze wyniki.

Ocena istotności współczynników

MA(21)

##

```
coeftest(ma21.fit)
##
## z test of coefficients:
##
##
         Estimate Std. Error z value Pr(>|z|)
## ma1
         0.412912
                    0.076316
                            5.4105 6.283e-08 ***
                    0.110657
## ma2
         0.358904
                              3.2434 0.001181 **
## ma3
        0.236163
                    0.089005
                             2.6534
                                     0.007969
        0.174528
                   0.105764
                             1.6502 0.098909
## ma4
## ma5
        0.137494
                   0.099844
                             1.3771 0.168483
## ma6
        0.197594
                    0.109913 1.7977
                                     0.072219
## ma7
        0.083705
                    0.096611
                             0.8664
                                     0.386264
       -0.096193
                    0.103754 -0.9271
                                     0.353862
## ma8
## ma9
        0.089847
                    0.101225
                             0.8876 0.374754
## ma10 0.248564
                    0.093884
                             2.6476 0.008107 **
## ma11
        0.207346
                   0.093414 2.2197
                                     0.026442 *
## ma12 -0.021998
                   0.089644 -0.2454 0.806156
## ma13 0.106205
                    0.106324 0.9989 0.317854
## ma14 0.080004
                    0.087093 0.9186
                                     0.358303
## ma15 -0.122626
                    0.091451 -1.3409
                                     0.179954
## ma16 0.151182
                    0.095623
                             1.5810 0.113873
## ma17
        0.141965
                    0.085679
                             1.6569
                                     0.097530
                             0.4263 0.669921
## ma18
        0.044468
                    0.104323
## ma19
        0.052982
                    0.107822
                             0.4914
                                     0.623154
## ma20
        0.277125
                    0.100258
                             2.7641
                                     0.005708 **
## ma21
        0.148790
                    0.078815 1.8878 0.059048
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Funkcja coeftest pokazuje nam, że dla modelu MA(21) powinniśmy usunąć zmienne 1, 2, 3, 10, 11, 12.
Sprawdźmy, jak wyzerowanie współczynników wpłynie na model.
```

```
ma.fixed <- numeric(21)
ma.fixed[1] <- NA
ma.fixed[2] <- NA
ma.fixed[3] <- NA
ma.fixed[10] <- NA
ma.fixed[11] <- NA
ma.fixed[20] <- NA

ma.zeros <- Arima(training_set, order=c(0,1,21), fixed=ma.fixed)
ma.zeros

## Series: training_set
## ARIMA(0,1,21)</pre>
```

```
## Coefficients:
##
            ma1
                     ma2
                                         ma5
                                                              ma9
                                                                      ma10
                                                                               ma11
                              ma3
                                   ma4
                                              ma6
                                                   ma7
                                                         ma8
                                                                            0.1518
##
         0.4182
                  0.2843
                          0.1482
                                     0
                                           0
                                                0
                                                      0
                                                           0
                                                                    0.1771
                                           0
                                                      0
##
         0.0806
                  0.0743
                          0.0744
                                     0
                                                0
                                                                    0.0799
                                                                            0.0716
  s.e.
                                                           0
                                                                 0
##
         ma12
                ma13
                      ma14
                             ma15
                                   ma16
                                          ma17
                                                ma18
                                                       ma19
                                                               ma20
                                                                      ma21
             0
                                0
                                       0
                                             0
                                                    0
                                                          0
                                                             0.1741
                                                                         0
##
                   0
                          0
             0
                   0
                          0
                                0
                                       0
                                             0
                                                    0
                                                          0
                                                             0.0746
                                                                         0
## s.e.
##
## sigma^2 estimated as 1491:
                                 log likelihood=-885.35
## AIC=1784.71
                  AICc=1785.38
                                  BIC=1806.86
ma21.fit
## Series: training_set
  ARIMA(0,1,21)
##
##
## Coefficients:
##
             ma1
                     ma2
                                               ma5
                                                        ma6
                                                                 ma7
                                                                          ma8
                                                                                   ma9
                              ma3
                                      ma4
##
         0.4129
                  0.3589
                          0.2362
                                   0.1745
                                            0.1375
                                                     0.1976
                                                             0.0837
                                                                      -0.0962
                                                                                0.0898
                                                                                0.1012
         0.0763
                  0.1107
                           0.0890
                                   0.1058
                                            0.0998
                                                     0.1099
                                                             0.0966
                                                                       0.1038
##
  s.e.
                                      ma13
##
           ma10
                    ma11
                              ma12
                                               ma14
                                                         ma15
                                                                  ma16
                                                                          ma17
                                                                                   ma18
##
         0.2486
                  0.2073
                           -0.0220
                                    0.1062
                                             0.0800
                                                      -0.1226
                                                               0.1512
                                                                        0.1420
                                                                                 0.0445
         0.0939
                  0.0934
                            0.0896
                                    0.1063
                                             0.0871
                                                       0.0915
                                                               0.0956
                                                                        0.0857
##
##
                    ma20
                             ma21
           ma19
         0.0530
                  0.2771
                          0.1488
##
                          0.0788
## s.e.
         0.1078
                  0.1003
## sigma^2 estimated as 1378:
                                 log likelihood=-873.32
## AIC=1790.64
                  AICc=1797.3
                                 BIC=1860.26
Widzimy, że według kryterium AIC model po usunięciu zmiennych ma trochę lepsze własności, a więc dalej
będziemy używać modelu zmodyfikowanego do prognoz.
subsection\{AR(20)\}
coeftest(ar20.fit)
##
## z test of coefficients:
##
##
          Estimate Std. Error z value Pr(>|z|)
##
  ar1
         0.3913343
                     0.0752289
                                5.2019 1.972e-07 ***
##
         0.1252265
                     0.0814110
                                 1.5382
                                           0.12400
  ar2
##
  ar3
         0.0336752
                     0.0812134
                                 0.4147
                                           0.67840
##
   ar4
         0.0408706
                     0.0815604
                                 0.5011
                                           0.61630
                     0.0799969 -0.4568
##
   ar5
        -0.0365426
                                           0.64781
         0.0513473
                     0.0798643
                                 0.6429
                                           0.52027
## ar6
##
  ar7
        -0.0682383
                     0.0794150 -0.8593
                                           0.39020
                     0.0790509 -0.7889
                                           0.43019
## ar8
        -0.0623600
##
  ar9
         0.1595073
                     0.0781678
                                2.0406
                                           0.04129 *
         0.0585325
                     0.0789016
                                 0.7418
                                           0.45818
##
  ar10
         0.0955476
                     0.0795091
                                 1.2017
                                           0.22947
```

0.02935 *

0.49543 0.91449

0.18249

0.01849 *

ar12 -0.1725610

ar15 -0.1069655

ar16 0.1892501

0.0551535

0.0086723

ar13

ar14

0.0791996 -2.1788

0.0802360 -1.3331

0.6817

0.1074

2.3557

0.0809056

0.0807641

0.0803355

```
## ar17 0.0035914 0.0819753 0.0438
                                          0.96506
                               1.2254
## ar18 0.1004416 0.0819682
                                          0.22044
                                          0.66248
## ar19 -0.0357851
                    0.0819836 -0.4365
## ar20 0.0798473 0.0762591
                               1.0471
                                          0.29508
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Funkcja coeftest pokazuje nam, że dla modelu AR(20) powinniśmy usunąć zmienne 1, 9, 12, 16.
Sprawdźmy, jak wyzerowanie współczynników wpłynie na model.
ar.fixed <- numeric(20)</pre>
ar.fixed[1] <- NA
ar.fixed[9] <- NA
ar.fixed[12] <- NA
ar.fixed[16] <- NA
ar.zeros <- Arima(training_set, order=c(0,1,20), fixed=ar.fixed)
ar.zeros
## Series: training_set
## ARIMA(0,1,20)
##
## Coefficients:
##
            ma1
                 ma2
                      ma3
                            ma4
                                 ma5
                                      ma6
                                            ma7
                                                 ma8
                                                         ma9
                                                               ma10
                                                                     ma11
                                                                             ma12
                              0
                                   0
                                        0
                                                      0.1433
                                                                           0.0241
##
         0.3920
                    0
                         0
                                              0
                                                   0
                                                                  0
                                                                        0
  s.e.
         0.0611
                    0
                         0
                              0
                                   0
                                         0
                                              0
                                                      0.0687
                                                                          0.0728
                                    ma17
                                          ma18
                                                 ma19
                                                       ma20
##
         ma13
               ma14
                     ma15
                              ma16
                  0
                            0.1562
                                       0
                                              0
                                                    0
##
            0
                         0
## s.e.
            0
                  0
                            0.0664
                                       0
                                              0
                                                    0
                         0
## sigma^2 estimated as 1736: log likelihood=-899.44
## AIC=1808.88
                 AICc=1809.23
                                 BIC=1824.7
ar20.fit
## Series: training_set
## ARIMA(20,1,0)
##
## Coefficients:
##
            ar1
                    ar2
                             ar3
                                     ar4
                                               ar5
                                                       ar6
                                                                 ar7
                                                                          ar8
                 0.1252 0.0337
                                                            -0.0682
##
                                  0.0409
                                          -0.0365
                                                    0.0513
                                                                      -0.0624
                                                                               0.1595
         0.3913
         0.0752
                 0.0814
                          0.0812
                                  0.0816
                                            0.0800
                                                    0.0799
                                                             0.0794
                                                                       0.0791
                                                                               0.0782
##
           ar10
                             ar12
                                                                        ar17
                                                                                ar18
                    ar11
                                     ar13
                                              ar14
                                                       ar15
                                                                ar16
##
         0.0585
                 0.0955
                          -0.1726
                                  0.0552
                                            0.0087
                                                    -0.1070
                                                             0.1893
                                                                      0.0036
                 0.0795
                           0.0792 0.0809 0.0808
                                                     0.0802 0.0803
                                                                      0.0820 0.0820
## s.e.
         0.0789
##
            ar19
                    ar20
                  0.0798
         -0.0358
##
## s.e.
          0.0820
                  0.0763
##
## sigma^2 estimated as 1354:
                                log likelihood=-870.06
```

W tym przypadku zmodyfikowany model ma gorsze własności według kryteriów informacyjnych.

BIC=1848.58

AIC=1782.12

AICc=1788.16

Wnioski na podstawie przeprowadzonej diagnostyki modeli ARIMA

Z trzech rozważanych modeli, zdecydowanie najlepszym kandydatem jest model ARMA(1,2,1), którego wybór sugeruje zarówno analiza reszt, jak i kryteria AIC oraz BIC, zaraz potem AR(20), a najmniej odpowiedni jest MA(21).

Zastosowanie modeli do konstrukcji prognoz dla zbioru testowego ${\rm MA}(21)$

```
h <- length(testing_set)
ma21.forecast <- forecast::forecast(ma.zeros, h = h)
autoplot(ma21.forecast) + autolayer(testing_set)</pre>
```

Forecasts from ARIMA(0,1,21)

Widzimy, że model MA(21), tak jak podejrzewaliśmy, nie ma zbyt dobrych własności predykcyjnych.

```
ar20.forecast <- forecast::forecast(ar20.fit, h = h)
autoplot(ar20.forecast) + autolayer(testing_set)</pre>
```

Forecasts from ARIMA(20,1,0)

Model AR(20) jest trochę lepszy, ale wyniki wciąż są daleko od zadowalających.

```
arima.forecast <- forecast::forecast(arima.fit, h = h)
autoplot(arima.forecast) + autolayer(testing_set)</pre>
```


Model dopasowany automatycznie ma najlepsze zdolności predykcyjne, ale wciąż fragmenty estymowanego szeregu czasowego wychodzą poza przedziały ufności.

Ocena dokładności

```
accuracy(ma21.forecast, testing_set)
                                                                             MASE
##
                        ME
                                 RMSE
                                              MAE
                                                         MPE
                                                                   MAPE
                  12.72106
                             37.83228
                                         28.50615 0.3735088 0.8320866 0.2095082
## Training set
## Test set
                1290.02128 1579.36046 1291.98298 14.9387486 14.9681238 9.4955314
                       ACF1 Theil's U
##
## Training set -0.08010559
                             19.57703
## Test set
                 0.94834698
accuracy(ar20.forecast, testing_set)
##
                        ME
                                RMSE
                                          MAE
                                                     MPE
                                                              MAPE
                                                                        MASE
                  3.677295 34.53522 26.4001 0.1235633 0.7906076 0.1940296
## Training set
                688.475517 911.87895 699.7302 7.8219564 7.9895618 5.1427223
## Test set
##
                      ACF1 Theil's U
## Training set -0.0104706
## Test set
                 0.9527785
                           11.17093
accuracy(arima.forecast, testing_set)
##
                        ME
                                RMSE
                                           MAE
                                                                        MASE
                           36.04791 27.11557 0.1019004 0.796447 0.1992881
## Training set
                  3.585384
```

Patrząc na współczynniki błędów, potwierdzają się słowa powyżej jeśli chodzi o poprawność prognozy. Najlepszym modelem jest model dopasowany automatycznie, później model autoregresji oparty na analizowaniu funkcji cząstkowej autokorelacji, a najgorzej wypada model ruchomej średniej wyznaczony poprzez analizę funkcji autokorelacji.