Hölder's Inequality

If $1 \le p \le \infty$ and $\frac{1}{p} + \frac{1}{p'} = 1$, then $\|fg\|_1 \le \|f\|_p \|g\|_{p'}$; that is,

$$\begin{split} &\int_{E}|fg| \leq \left(\int_{E}|f|^{p}\right)^{1/p}\left(\int_{E}|g|^{p'}\right)^{1/p'}, \quad 1$$

$$||fg||_r = \left(\int |fg|^r\right)^{1/r}$$

 $||fg||_r^r = \left(\int |fg|^r\right)^1 = ||f^rg^r||_1$

Problem 1.

(a) Let $1 \le p_i, r \le \infty$ and $\frac{1}{p_1} + \cdots + \frac{1}{p_k} = \frac{1}{r}$. Prove the following generalization of Hölder's inequality:

$$||f_1 \cdot f_2 \cdots f_k||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \cdots ||f_k||_{p_k}$$

(b) Let $1 \le p < r < q \le \infty$ and define $\theta \in (0,1)$ by

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1 - \theta}{q}$$

Prove the interpolation estimate:

$$||f||_r \le ||f||_p^{\theta} ||f||_q^{1-\theta}$$

Solution.

(a) Generalization of Hölder's Inequality

We prove this by induction.

The k=2 case is a consequence of Hölder's inequality:

If
$$\frac{1}{p_1} + \frac{1}{p_2} = \frac{1}{r}$$
, then $\frac{r}{p_1} + \frac{r}{p_2} = 1$, so

$$||fg||_r^r = ||f^rg^r||_1 \le ||f^r||_{p_1/r} ||g^r||_{p_2/r} = ||f||_{p_1}^r ||g||_{p_2}^r.$$

It is implied that

$$||fg||_r \leq ||f||_{p_1} ||g||_{p_2}$$

Now if $\frac{1}{p_1} + \cdots + \frac{1}{p_k} = \frac{1}{r}$ for k > 2, we have

$$||f_1 \cdots f_k||_r \le ||f_1 \cdots f_{k-1}||_s ||f_k||_{p_k}$$

 $\le ||f_1||_{p_1} \cdots ||f_k||_{p_k},$

where
$$\frac{1}{s} = \frac{1}{r} - \frac{1}{p_k} = \frac{1}{p_1} + \dots + \frac{1}{p_{k-1}}$$
.

(b) Interpolation Estimate

Let $1 \le p < r < q \le \infty$ and define $\theta \in (0,1)$ by

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

In other words, 1/r is the convex interpolation between 1/p and 1/q.

$$\frac{1}{r} = \frac{\theta}{p} + \frac{1-\theta}{q}$$

$$\frac{1}{r} = \frac{1}{p/\theta} + \frac{1}{q/(1-\theta)}$$

Apply the Hölder's Inequality,

$$\begin{split} \|f\|_r &= \|f^\theta f^{1-\theta}\|_r \\ \text{(Apply the H\"older's Inequality)} &&\leq \|f^\theta\|_{p/\theta} \|f^{1-\theta}\|_{q/(1-\theta)}. \\ &&= \|f\|_p^\theta \|f\|_a^{1-\theta} \end{split}$$

The last equation is due to

$$||f^{\theta}||_{p/\theta} = \left(\int |f^{\theta}|^{p/\theta}\right)^{\theta/p} = \left(\int |f|^p\right)^{\theta/p} = ||f||_p^{\theta}$$

Lemma. (used in the proof of Problem 2)

For $a, b \in \mathbb{R}$, $|a + b|^p \le 2^p (|a|^p + |b|^p)$, where 0 .

Proof.

$$|a+b|^{p} \le (|a|+|b|)^{p}$$

$$\le (2\max\{|a|,|b|\})^{p}$$

$$= 2^{p}(\max\{|a|,|b|\})^{p}$$

$$\le 2^{p}(|a|^{p}+|b|^{p}).$$

Problem 2.

Let $f \in L^p(\mathbb{R}^n)$, where 0 . Show that

$$\lim_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} \, dy = 0 \quad \text{a.e.}$$

Let $\{r_k\}$ be the rational numbers. First note that for any Q, x, and r_k ,

$$|f(y) - f(x)|^p \le |f(y) - r_k|^p + |r_k - f(x)|^p$$

$$\begin{split} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} dy &\leq 2^{p} \frac{1}{|Q|} \int_{Q} |f(y) - r_{k}|^{p} dy + 2^{p} \frac{1}{|Q|} \int_{Q} |r_{k} - f(x)|^{p} dy \\ &= 2^{p} \frac{1}{|Q|} \int_{Q} |f(y) - r_{k}|^{p} dy + 2^{p} |r_{k} - f(x)|^{p}. \end{split}$$

For every r_k , let Z_k be the set in which the formula

$$\lim_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - r_k|^p dy = |f(x) - r_k|^p$$

is not valid.

Since

$$|f(y) - r_k|^p \le 2^p (|f(y)|^p + |r_k|^p)$$

is locally integrable, by Lebesgue's Differentiation Theorem, $|Z_k| = 0$. Let $Z = \bigcup Z_k$, then |Z| = 0.

Thus, if $x \notin Z$, for every r_k ,

$$\limsup_{Q \searrow x} \frac{1}{|Q|} \int_{Q} |f(y) - f(x)|^{p} dy \le 2^{p} |f(x) - r_{k}|^{p} + |r_{k} - f(x)|^{p}$$
$$= 2^{p+1} |f(x) - r_{k}|^{p}.$$

For an x at which f(x) is finite (in particular, almost everywhere since $f \in L^p(\mathbb{R}^n)$), by the density of rationals in \mathbb{R}^n we can choose r_k such that $|f(x) - r_k|^p$ is arbitrarily small.

Thus

$$\limsup_{Q\searrow x}\frac{1}{|Q|}\int_Q|f(y)-f(x)|^pdy=0\quad\text{a.e.}$$

and this completes the proof. Since

$$\liminf_{Q\searrow x}\frac{1}{|Q|}\int_{Q}|f(y)-f(x)|^{p}dy\leq \limsup_{Q\searrow x}\frac{1}{|Q|}\int_{Q}|f(y)-f(x)|^{p}dy=0\quad \text{a.e.}$$

Problem 3.

Show that every subset Λ of a separable metric space (M, d) is separable.

separable

Def. A metric space (X, d) is said to be **separable** if there exists a countable subset $A \subseteq X$ that is dense in X, i.e., $\overline{A} = X$.

That is, (X, d) is **separable** if and only if there exists a countable subset $A \subseteq X$ such that for every $x \in X$ and every $\epsilon > 0$, there exists $a \in A$ with $d(x, a) < \epsilon$.

Let $D = \{f_k\}$ be a countable dense set in M.

i.e.,

$$\forall \lambda \in \Lambda, \forall n \geq 1, \exists f_k \in D \text{ such that } d(\lambda, f_k) < \frac{1}{n}.$$

For $n \geq 1$, define

$$D_n = \{ f \in D : \inf_{\lambda \in \Lambda} d(\lambda, f) < \frac{1}{n} \}.$$

If $f_k \in D_n$, pick $\lambda_{k,n} \in \Lambda$ with

$$d(\lambda_{k,n}, f_k) < \frac{1}{n}.$$

Claim 0.1. The subset $\{\lambda_{k,n}\}$ is dense in Λ .

Proof. Consider any $\lambda \in \Lambda$ and any $n \geq 1$. There exists $\lambda_{k,n}$ such that

$$d(\lambda,\lambda_{k,n}) \leq d(\lambda,f_k) + d(f_k,\lambda_{k,n}) = \frac{1}{n} + \frac{1}{n}.$$

This simplifies to

$$d(\lambda, \lambda_{k,n}) \to 0 \text{ as } n \to \infty.$$

This implies that every point in Λ can be approximated arbitrarily closely by elements of $\{\lambda_{k,n}\}$, thereby proving that $\{\lambda_{k,n}\}$ is dense in Λ , which establishes the claim.