$h \propto$ 

## NANYANG TECHNOLOGICAL UNIVERSITY

#### SEMESTER 2 EXAMINATION 2014-2015

#### **EE3001 – ENGINEERING ELECTROMAGNETICS**

April / May 2015

Time Allowed:  $2\frac{1}{2}$  hours

#### **INSTRUCTIONS**

- 1. This paper contains 4 questions and comprises 8 pages.
- 2. Answer ALL questions.
- 3. All questions carry equal marks.
- 4. This is a closed-book examination.
- 5. Unless specifically stated, all symbols have their usual meanings and all coordinates given are Cartesian coordinates.
- 6. A list of physical constants and useful formulae is provided in Appendix A (on pages 6 8).
- 7. The Smith chart may be used in the solution of Question 4.
- 1. (a) Figure 1 (on page 2) shows the geometry (not to scale) of a quarter-circular arc of radius a, which lies in free-space in the z=0 plane and carries a uniform charge density  $\rho_l$ .
  - (i) Determine the electric field intensity  $\vec{E}_o$  at the origin.
  - (ii) Determine the electric field intensity  $\vec{E}_c$  at the centroid  $C = \left(\frac{2}{\pi}a, \frac{2}{\pi}a, 0\right)$  of the quarter-circular arc.

Note: Question No. 1 continues on page 2.

Note:

$$\int_{0}^{\pi/2} \vec{a}_{r} d\phi = \vec{a}_{x} + \vec{a}_{y}; \qquad \vec{a}_{r} = \cos\phi \, \vec{a}_{x} + \sin\phi \, \vec{a}_{y}$$

$$\int_{0}^{\pi/2} \frac{\frac{2}{\pi} - \cos\phi}{\left[\left(\frac{2}{\pi} - \cos\phi\right)^{2} + \left(\frac{2}{\pi} - \sin\phi\right)^{2}\right]^{3/2}} d\phi \simeq -13.42$$

$$\int_{0}^{\pi/2} \frac{\frac{2}{\pi} - \sin \phi}{\left[ \left( \frac{2}{\pi} - \cos \phi \right)^{2} + \left( \frac{2}{\pi} - \sin \phi \right)^{2} \right]^{3/2}} d\phi \simeq -13.42$$

(13 Marks)

- (b) Consider the quarter-circular arc of Figure 1 forming one quadrant of a whole circular loop (centred at origin) with steady current I flowing in the counter-clockwise direction.
  - (i) Determine the magnetic field intensity  $\vec{H}_q$  at a point (0, 0, z) on the z axis due to the current on the quarter-circular arc only.
  - (ii) Determine the magnetic field intensity  $\vec{H}_t$  at a point (0, 0, z) on the z axis due to the current on the whole circular loop.

(12 Marks)



Figure 1

- 2. (a) Figure 2 shows an infinitely long line carrying a direct current I along the y axis in free space. A set of conducting wires form a closed rectangular loop ABCD with the left wire AB fixed at x = a and the right wire CD movable along the long horizontal conducting wires at y = -a and y = a. Assume that the wire CD is moving at constant velocity  $v_0$  away from the current starting at time t = 0 and initial position x = 2a.
  - (i) Determine the magnetic flux density  $\vec{B}$  due to the current I at point (x,0,0).
  - (ii) Determine the magnetic flux  $\Phi_m$  passing through the loop at time t.
  - (iii) Determine the induced voltage  $V_{emf}$  in the loop at time t.

(10 Marks)



Figure 2

(b) A plane wave travelling in an unknown medium has the electric and magnetic fields expressed as

$$\begin{split} \tilde{E} &= \vec{a}_x 1505 e^{-2.878z} \cos(2\pi \times 10^8 t - 6.586z + 6.207) \text{ V/m} \\ \tilde{H} &= \vec{a}_y 13.7 e^{-2.878z} \cos(2\pi \times 10^8 t - 6.586z + 5.795) \text{ A/m} \end{split}$$

- (i) Calculate the propagation constant  $\gamma = \alpha + j\beta$ , wavenumber  $k_c$  and intrinsic impedance  $\eta_c$ .
- (ii) Determine the dielectric constant  $\varepsilon_r$  and conductivity  $\sigma$  of the medium.

(15 Marks)

3. (a) The incident electric field of a uniform plane wave (UPW) in air occupying the region  $z \le 0$  is given by

$$\vec{E}_i(z) = (j30\vec{a}_x - 40\vec{a}_y)e^{-j4\pi z} \text{ V/m}$$

The UPW is incident normally on a planar interface at z=0 with a lossy medium having  $\mu_r=1$ ,  $\varepsilon_r=2$  and  $\sigma=0.08$  S/m, occupying the region z>0.

Find the following:

- (i) The frequency of the incident UPW.
- (ii) The polarization (linear, circular or elliptical) of the incident UPW. Briefly explain your answer.
- (iii) The intrinsic impedance in air and in the lossy medium, i.e.,  $\eta_1$  and  $\eta_{2e}$ .
- (iv) The positions z at which the magnitude of the total electric field in the air medium is maximum, i.e.,  $z_{\rm max}$ .
- (v) The maximum magnitude of the total electric field in the air medium, i.e.,  $\left|E_1\right|_{\max}$ .

State any assumption made.

(13 Marks)

(b) The magnetic field of a uniform plane wave (UPW) travelling in a lossless dielectric medium with  $\varepsilon = 1.5\varepsilon_o$ ,  $\mu = \mu_o$  and occupying the region  $z \le 0$  is given by

$$\vec{H}_i(x,z) = \vec{a}_y 0.4 e^{-j(6x+5z)}$$
 A/m

The UPW is incident on an air boundary at z = 0, occupying the region z > 0.

Determine the following:

(i) The angles of incidence  $\theta_i$  and transmission  $\theta_t$ .

Note: Question No. 3 continues on page 5.

- (ii) The direction of incident electric field vector  $\vec{a}_{E_i}$  and the polarization of the incident UPW with respect to the plane of incidence.
- (iii) The percentage of average power reflected from the interface at z = 0. State any assumption made.

(12 Marks)

- 4. (a) A 75- $\Omega$  air-filled transmission line is terminated in a load  $Z_L = 85 j40 \Omega$ . The line operates at 1 GHz.
  - (i) Determine the load reflection coefficient  $\Gamma_L$  and the standing wave ratio (SWR) due to this load.
  - (ii) Find the input impedance  $Z_{in}$  when the line is 0.4 m long.
  - (iii) Find the shortest length  $\ell_{\min}$  of the line in order to make the input impedance both real and as large as possible.

State any assumption made.

(13 Marks)

(b) A 50- $\Omega$  air-filled transmission line of length  $\ell$  is connected to a source with an open-circuit voltage  $V_g = 35 \angle 0^\circ$  V and internal impedance  $Z_g = 50 - j40 \Omega$  at  $z = -\ell$ . The line is terminated in a load  $Z_L$  at z = 0.

If  $Z_L = 50 - j60 \,\Omega$ ,  $\ell = 50 \,\mathrm{m}$  and  $\beta = 0.025 \,\mathrm{rad/m}$ , find the following:

- (i) The input impedance  $Z_{in}$  at  $z = -\ell$ .
- (ii) The input voltage  $V_{in}$  at  $z = -\ell$ .
- (iii) The average power delivered to the load  $Z_L$ .

State any assumption made.

(12 Marks)

The Smith chart may be used in the solution of one or both parts of this question. Please put the Smith chart inside the answer script and tie it with a thread.

## Appendix A

## **Physical Constants**

Permittivity of free space  $\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ F/m}$ Permeability of free space  $\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ 

# $\nabla$ Operator

$$\nabla V = \vec{a}_x \frac{\partial V}{\partial x} + \vec{a}_y \frac{\partial V}{\partial y} + \vec{a}_z \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \vec{A} = \begin{vmatrix} \vec{a}_x & \vec{a}_y & \vec{a}_z \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix}$$

$$\nabla V = \vec{a}_{r} \frac{\partial V}{\partial r} + \vec{a}_{\phi} \frac{\partial V}{r \partial \phi} + \vec{a}_{z} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \vec{A} = \frac{\partial (rA_{r})}{r \partial r} + \frac{\partial A_{\phi}}{r \partial \phi} + \frac{\partial A_{z}}{\partial z}$$

$$\nabla \times \vec{A} = \frac{1}{r} \begin{vmatrix} \vec{a}_{r} & r\vec{a}_{\phi} & \vec{a}_{z} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & rA_{\phi} & A_{z} \end{vmatrix}$$

## **Electric and Magnetic Fields**

$$\vec{E} = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{a}_{R}}{R^{2}} dv = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v} \vec{R}}{R^{3}} dv$$

$$V = \frac{1}{4\pi\varepsilon} \iiint_{V} \frac{\rho_{v}}{R} dv$$

$$\vec{H} = \frac{1}{4\pi} \int_{C} \frac{I \vec{dl} \times \vec{a}_{R}}{R^{2}} = \frac{1}{4\pi} \int_{C} \frac{I \vec{dl} \times \vec{R}}{R^{3}}$$

$$\oint\limits_C \vec{H} \cdot \vec{dl} = I = \iint\limits_S \vec{J} \cdot \vec{ds}$$

$$emf = \oint_C \vec{E} \cdot \vec{dl} = -\frac{d\Phi_m}{dt} = -\frac{d}{dt} \iint_S \vec{B} \cdot \vec{ds}$$

Maxwell's Equations
$$\nabla \times \tilde{E} = -\frac{\partial \tilde{B}}{\partial t}$$

$$\nabla \times \tilde{H} = \frac{\partial \tilde{D}}{\partial t} + \tilde{J}$$

$$\nabla \cdot \tilde{D} = \rho$$

$$\nabla \cdot \tilde{B} = 0$$

# **Complex Propagation Constant**

$$\gamma = \alpha + j\beta = j\omega\sqrt{\mu\varepsilon_c} = j\omega\sqrt{\mu(\varepsilon - j\,\sigma/\omega)}$$

## Complex Intrinsic Impedance

$$\eta_c = \sqrt{\frac{\mu}{\varepsilon_c}} = \sqrt{\frac{\mu}{\varepsilon - j\,\sigma/\omega}}$$

## Reflection and Transmission of Electromagnetic Wave

$$\begin{split} \frac{\sin\theta_t}{\sin\theta_i} &= \sqrt{\frac{\mu_1\varepsilon_1}{\mu_2\varepsilon_2}} & \tan\theta_{B||} &= \sqrt{\frac{\varepsilon_2}{\varepsilon_1}} \\ & \Gamma_\perp &= \frac{\eta_2\cos(\theta_i) - \eta_1\cos(\theta_t)}{\eta_2\cos(\theta_i) + \eta_1\cos(\theta_t)} \\ & \tau_\perp &= \frac{2\eta_2\cos(\theta_i)}{\eta_2\cos(\theta_i) + \eta_1\cos(\theta_t)} \\ & \Gamma_{||} &= \frac{\eta_2\cos(\theta_t) - \eta_1\cos(\theta_t)}{\eta_2\cos(\theta_t) + \eta_1\cos(\theta_t)} \\ & \tau_{||} &= \frac{2\eta_2\cos(\theta_t)}{\eta_2\cos(\theta_t) + \eta_1\cos(\theta_t)} \\ \end{split}$$

## **Transmission Line**

$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{+j\beta z}$$

$$I(z) = \frac{1}{Z_o} \{ V_o^+ e^{-j\beta z} - V_o^- e^{+j\beta z} \}$$

$$\beta = \frac{2\pi}{\lambda}$$

$$\Gamma_L = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_o}{Z_L + Z_o}$$

$$\Gamma(z) = \Gamma_L e^{+j2\beta z} - \ell \le z \le 0$$

$$Z_{in}(-\ell) = \frac{Z_L + jZ_o \tan(\beta \ell)}{Z_o + jZ_L \tan(\beta \ell)} Z_o$$

END OF PAPER

Jenester 2 2014-2015

Yes, U Can!

|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              |                                          | Califo            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|------------------------------------------|-------------------|
|             | EE3001 - Engineering Electromagnetics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              |                                          |                   |
| ),          | EE 3001 - Engineering Electromagnetics  a) i) = \frac{1}{Fax} \int \frac{P_2 dl}{R^3} \overline{R} = \frac{7}{F} = \frac{7}{F} = \frac{1}{F} = | ० वै                  | + 0 ay +     | 0 $\vec{q}_{x}$                          |                   |
|             | $=\frac{1}{4\pi q_0}\int_0^{\frac{\pi}{2}} \frac{\rho_{\ell}}{q^2} \frac{a  d\phi}{\left(-a \cos \phi  \overline{q_x} - q \sin \phi  \overline{q_y}\right)} \frac{\overline{S}}{R} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              |                                          |                   |
|             | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                     |              |                                          |                   |
|             | $\frac{-\int_{2}^{2} \int_{0}^{\frac{\pi}{2}} -\cos\phi  \overline{ax} - \sin\phi  \overline{ay}  d\phi}{4\pi \cos\phi} = \frac{R}{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~ a cos               | \$ ax - 0    | i sin q                                  | ay + 0 az         |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2   = <del>  (-</del> | -a cos q)    | + (-                                     | $a \sin \phi)^2$  |
| <del></del> | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R = a                 | <u> </u>     |                                          | <u> </u>          |
|             | $= \frac{\rho_0}{4\pi 6 \alpha} \left[ -\sin \phi \frac{1}{\alpha_x} + \cos \phi \frac{1}{\alpha_y} \right]_0^{\frac{\pi}{2}}  \left[ dl = \alpha \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                     |              | -                                        |                   |
|             | $= \frac{\int_{\mathcal{L}} \frac{1}{4\pi \xi_0 a} \left( -\overline{a}_x + 0 - 0 - \overline{a}_y \right)}{4\pi \xi_0 a}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |              |                                          | •                 |
|             | $\frac{1}{16} = \frac{\rho_{\ell}(-\overline{ax} - \overline{ay})}{4\pi \epsilon_{\ell} \cdot a}  V/m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |              |                                          |                   |
|             | = 1 Redl=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | حہ ع                  | . 3          |                                          | 5                 |
| 1           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | + 元 0 0      |                                          |                   |
|             | = $\frac{4\pi k_0}{a^3} \int_0^{\infty} \frac{1}{(\frac{2}{\pi} - \cos \phi)^2 + (\frac{2}{\pi} - \sin \phi)^2} \int_0^{3/2} \frac{1}{R^2} = \frac{1}{R^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | dx + as      | <u>η φ νγ</u>                            | +0 23             |
| <u></u>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              | - a(==================================== | sin \$ ) ay to az |
|             | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |              |                                          | चे -sin ø)²       |
|             | Pe TE Z-cus \$ d\$ ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R = 0                 | 1 [(== - coc | <del>4)<sup>2</sup>+(</del>              | 2 - sin φ)2 ] ±   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | adq                   | <u> </u>     |                                          | 1                 |
|             | + Jo [(\frac{1}{2} - \cos \phi)^2 + (\frac{1}{2} - \cos \phi)^2] 3/2 dp dy ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |              |                                          |                   |
|             | 10 [cπ - cos φ) + (π - sin φ) ] - 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ····                  |              | ·· <del>····· •</del>                    |                   |
|             | = 1e / -13,42 ax -13,42 ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |              |                                          |                   |
| <del></del> | <del>  -</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |              |                                          |                   |
|             | :. Ec= Pe(-13.42 ax - 13.42 ay) V/m #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              |                                          |                   |
| <u> </u>    | b) i) $\overrightarrow{H} = \frac{1}{4\pi} \int \frac{1}{8} \frac{d\vec{l} \times \vec{R}}{R^3}$ $\overrightarrow{f} = 0$ $= \frac{1}{4\pi} \int_{0}^{\pi} \frac{1}{(ad\phi \vec{a}_{\phi}) \times (-a\vec{a}_{f} + 3\vec{a}_{g})}{(a^2 + 3^2)^{3/2}}$ $\overrightarrow{S} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q+ 0                  | a, + z a     | <br>*}                                   |                   |
|             | = 1 (ad ap) x (-a ar + 3 as) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>वि</u> +           | 0 a + 0 a    | 3                                        |                   |
|             | 1 (a'+3') R= 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>              | -aār         | + 0 a o                                  | +373              |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (-a)2 +               | + . 32.      |                                          |                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a2+32                 |              | <u>-</u>                                 |                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ado.                  | . ap         |                                          |                   |
|             | Hg= Ia (3 th + a th) A/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |              |                                          | `                 |
|             | VYCATZI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                                          | 5                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                     |              |                                          |                   |

Yes, U Can!

1. b) ii) 
$$\vec{H}_{1} = 4 \times \vec{H}_{0}$$

$$= 4 \times I_{0} (3 \vec{u}_{1} + a \vec{u}_{2})$$

$$= 4 \times I_{0} (3 \vec{u}_{1} + a \vec{u}_{2})$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a (3 \vec{u}_{1} + a \vec{u}_{2}) = A/M$$

$$= 1 a ($$

ntusu

|                   | <u>,</u>                                 |                                           |                                         |                         |                                     | <u> </u>       |                                        | 1110            |
|-------------------|------------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------|----------------|----------------------------------------|-----------------|
|                   |                                          |                                           |                                         |                         |                                     |                |                                        |                 |
| 7 Pi !!           | 1) kc = W.                               | MEC = W/M                                 | (8-18)                                  |                         |                                     |                |                                        |                 |
|                   | •                                        |                                           | 9                                       |                         |                                     |                |                                        |                 |
|                   | ٤-:                                      | \( \frac{\k}{\omega} = \frac{\kc}{\omega} | 立立                                      | M=No=                   | 47×10-                              | H/m            |                                        |                 |
|                   |                                          | = / 6.                                    | 586- 12.87                              | 8 12 1                  |                                     | • •            |                                        | ·               |
|                   |                                          |                                           | 27×10 8                                 | 8 )= 1<br>42 :          | ×10 <sup>-7</sup>                   |                |                                        | - <del></del> - |
|                   | 9-12                                     | 7.07                                      | 14 V 10 -11 -                           | -j7-641 x               | 10-11                               |                |                                        |                 |
|                   | 9= 8, 80=                                | 7.074                                     | ×10-11 F/m                              | #                       | <u> </u>                            | 1.641 × 10     |                                        |                 |
|                   | £ = 2                                    | 7-274 x 10                                | 5" - D                                  |                         | 7= -                                | 1 41 ~ 15      | リンスで×1                                 | D 8             |
|                   |                                          | 367 × 10                                  | 59 - 0                                  | #                       | 77 = (                              | >0480          | 2 /40                                  |                 |
|                   |                                          | <del></del>                               |                                         | - T-1                   |                                     | , , , , , ,    | 3/1/4                                  | <u></u>         |
| 3 0 0             | k= w Tus .                               | n k= 27                                   | af Tue                                  | Assur                   | Le 11 1.                            | · & = 6        |                                        | <del></del>     |
| <u> </u>          | T. T. M.C.                               | _k,                                       | 470                                     | 7,0-0                   | / - / - / - / - / - / - / - / - / - | <u></u>        | ·                                      |                 |
|                   | k= ω <u>Τμε,</u> =                       | INJUE,                                    | 27C / ATCX 10-7                         | × ± × 10 -9             | -600 M                              | <u>п2</u><br># |                                        |                 |
| 3 (2)             | F. (2)= (13                              | 7-47                                      | ) =-j4xz                                | · \//.                  |                                     |                |                                        |                 |
| - Constant of 112 | Ē; (z)= (jš                              | 30 / 90° a                                | <u> </u>                                | = 40 (1871°             | -4×3                                | 1//            |                                        |                 |
|                   | ax_                                      | 70 10 E                                   | <u>ч</u> н                              | 4 102 100               | <u>e</u>                            | V/m            |                                        | •               |
|                   | The includent L                          | irio is e                                 | 111PTICALLY                             | palarized 7             | + 10° 10-                           |                | 1\                                     |                 |
| <u> </u>          | :   Eox  = 30 == 0                       |                                           | ·                                       | 1 . <del>/</del>        |                                     | =/ no          | " linear                               |                 |
| 3 -2 22           |                                          | 1= 70                                     | but 160x                                | 1 # (boy)               |                                     | => no          | T CITOM                                | <u>xr</u>       |
| 0, 0) 111         | 1 = 1 = 1                                | 20 TC 12                                  | # (                                     | V= = 1-2                | < >0                                |                |                                        |                 |
|                   | 1/26= \[ \frac{1/2}{\varepsilon_{26}} \] | <i>M</i> >                                | <u> </u>                                | "he                     |                                     | <u> </u>       |                                        | *****           |
|                   |                                          | J 4                                       | •                                       |                         |                                     |                |                                        | •               |
|                   | =   -                                    | 7C×70=7                                   |                                         | 29123 42                | +34948.                             | 12 = 4540      | 2 L50.1                                | <del>7°</del> — |
|                   | (V_, <u>2</u> y                          | 36TC × 10-4 - 12                          | 2000 - AUX00710p                        | 29123.42                | <u> </u>                            | 74 1-1         | ·<br>                                  |                 |
|                   | -: 12c=                                  |                                           |                                         |                         |                                     |                |                                        |                 |
|                   | V                                        |                                           |                                         |                         |                                     | ,              |                                        |                 |
| 3 a) iv)          | , n , η ;                                | <u>-ηι _</u>                              | L13.3 L251                              | - 120TL                 | 0.3549                              | 1 144 00       | - ln/                                  |                 |
| - 0 00, 10,       | , <u> </u>                               | -+ M.                                     | 13,3L26,1                               | +12070                  | 0,3711                              | _              | = 0-3549/6                             | \ E77~          |
|                   |                                          | <u> </u>                                  |                                         | <del></del>             | ···                                 |                | - 0.3917/6                             | 4.7-17ad        |
|                   | <b>f</b>                                 |                                           |                                         | , - <del>1</del> 27, -4 |                                     |                |                                        |                 |
|                   | <u></u>                                  | 2 1 + 4x                                  | 3 Max = 0                               | , -22 ; -4              | - 3,527                             | _4x-2.         | 927                                    |                 |
|                   |                                          |                                           | x = -0.100                              | O                       | 3505                                | - S-2          |                                        |                 |
| 3 a) v)           | Ei max =                                 |                                           | (m) = [3                                | 3 M, -V,                | -203M                               | -U-6005        | 1                                      | _#              |
| 3 7 7             | 1 - 11 max -                             | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -   | / - / - / - / - / - / - / - / - / - / - | 7- 1/                   | r 0,354                             | 7)             |                                        | <del></del>     |
|                   | -                                        | 101                                       | 1max - 61                               | .75 V/m                 | #                                   |                | <u> </u>                               |                 |
|                   |                                          | ······································    |                                         |                         |                                     |                | ······································ |                 |
|                   |                                          |                                           |                                         |                         |                                     |                |                                        | 6:              |

ntusus strates throates

| 3 b) i) $tan 6$ ; $= \frac{kx_1}{k} = \frac{6}{5} = 70$ , $= 50$ , $= 20$ , $= \frac{10}{5}$ $= $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 163, 6 Call:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{\sin 6x}{\sin 6x} = \frac{\sin 6x}{\sin 6x} = \frac{1.5}{1.5} = 2  \theta_{+} = 70.2^{\circ}$ $\frac{3}{5} = \frac{1}{11} \times \frac{1}{11$ |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\sin \theta_{2}}{\sin \theta_{1}} = \int \int$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                      | b) i) tan 6: - kxi - 6 = 3 f) 2° a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3 b) ii) $\frac{1}{H_{1}}(x, z) = \frac{a_{y}}{a_{y}} \frac{0.4 e^{-\frac{1}{3}(6x+b_{z}^{2})}}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}}$ $\frac{a_{x}}{a_{x}} = \frac{a_{y}}{a_{y}^{2}} \times \frac{a_{x}}{a_{x}^{2}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                      | 9) 1) (24) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3 b) ii) $\frac{1}{H_{1}}(x, z) = \frac{a_{y}}{a_{y}} \frac{0.4 e^{-\frac{1}{3}(6x+b_{z}^{2})}}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}}$ $\frac{a_{x}}{a_{x}} = \frac{a_{y}}{a_{y}^{2}} \times \frac{a_{x}}{a_{x}^{2}} = \frac{b}{\sqrt{a_{x}^{2}+5a_{y}^{2}}} = \frac{b}{\sqrt{a_{x}^{2}+5a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | $\frac{\sin \theta_{+}}{\sin \theta_{-}} = \frac{\ln \theta_{-}}{\sin \theta_{-}} = \frac{1.5}{\sin \theta_{-}} = $ |
| $\overline{a_{E_1}} = \overline{a_{in}} \times \overline{a_{in}} = \overline{a_{in}} \times \left(\frac{c}{L_1} \cdot \overline{a_{in}} + \frac{c}{L_1} \cdot \overline{a_{in}}\right) = \overline{J_{in}} \cdot \overline{a_{in}} - \frac{b}{J_{in}} \cdot \overline{a_{in}}$ The incident UPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane is 301. So and the plane of incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the plane is 301. So and incident (IPIN is parallel polarized with expect to the pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | sin 0; /M2 22 10.2 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\overline{a_{E_1}} = \overline{a_{H_1}} \times \overline{a_{E_1}} = \overline{a_{Y}} \times \left(\frac{b}{E_1} \cdot \overline{a_{X}} + \frac{b}{E_1} \cdot \overline{a_{Y}}\right) = \overline{J_{E_1}} \cdot \overline{a_{X}} - \frac{b}{J_{E_1}} \cdot \overline{a_{Y}} + \overline{J_{E_1}} \cdot \overline{a_{Y}}$ The incident UPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane of incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel polarized with repect to the plane is 301.  The incident (IPW is parallel paralle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        | -i(4x+5x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\overrightarrow{a_{E_1}} = \overrightarrow{a_{H_1}} \times \overrightarrow{a_{E_1}} = \overrightarrow{a_{Y}} \times \left(\frac{c}{E_1} \overrightarrow{a_{X}} + \frac{c}{E_1} \overrightarrow{a_{Y}}\right) = \frac{c}{J_{G_1}} \overrightarrow{a_{X}} - \frac{b}{J_{G_1}} \overrightarrow{a_{Y}} + \frac{c}{J_{G_1}} \overrightarrow{a_{Y}}$ The incident UPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane is parallel para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                                      | b) 11) H: (x,3)= ay 0.4e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\overrightarrow{a_{E_1}} = \overrightarrow{a_{H_1}} \times \overrightarrow{a_{E_1}} = \overrightarrow{a_{Y}} \times \left(\frac{c}{E_1} \overrightarrow{a_{X}} + \frac{c}{E_1} \overrightarrow{a_{Y}}\right) = \frac{c}{J_{G_1}} \overrightarrow{a_{X}} - \frac{b}{J_{G_1}} \overrightarrow{a_{Y}} + \frac{c}{J_{G_1}} \overrightarrow{a_{Y}}$ The incident UPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane of incident (IPIN is parallel polarized with expect to the plane is parallel para                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | $\overline{a}_{H} = \overline{a}_{Y}$ $\overline{a}_{K} = \frac{6\overline{a}_{X} + 5\overline{a}_{Y}}{\sqrt{3} + 3\overline{a}_{X}} = \frac{5}{\sqrt{6}}\overline{a}_{X} + \overline{\lambda}_{1}^{2}\overline{a}_{Z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The incident UPW is parallel polarized with respect to the place of incident $\frac{1}{2}$ in $\frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                      | 7 - 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The incident UPW is parallel polarized with respect to the plane of incident $\frac{1}{2}$ in $\frac{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | $\vec{a}_{E_1} = \vec{a}_{11} \times \vec{a}_{11} = \vec{a}_{12} \times (\vec{b}_1 \vec{a}_2 + \vec{b}_1 \vec{a}_2) = \vec{b}_1 \vec{a}_2 - \vec{b}_1 \vec{a}_2 + \vec{b}_2 \vec{a}_2 = \vec{b}_1 \vec{b}_2 + \vec{b}_2 \vec{a}_2 = \vec{b}_1 \vec{b}_2 + \vec{b}_2 \vec{b}_2 = \vec{b}_1 \vec{b}_2 + \vec{b}_2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3 b) iii) $\vec{S}_{1}^{"} = \vec{a}_{1} \cdot \frac{1}{2}  H_{01}^{"} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3 b) iii) $\vec{S}_{1}^{"} = \vec{a}_{1} \cdot \frac{1}{2}  H_{01}^{"} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}}  I_{0} ^{2} \eta$ , $\eta_{1} = \int_{\vec{C}_{1}}^{\vec{C}_{1}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | The incident UPW is parallel polarized with respect to the plane of incidence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $ = (\frac{6}{10} \frac{1}{10} \frac{1}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $ = (\frac{6}{10} \frac{1}{10} \frac{1}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                      | b) (ii) $S_i^{*} = \overline{a}_i \cdot \frac{1}{2}  H_0^{*} ^2 \eta$ , $\eta_i = \frac{1}{120} = 307.8 \Omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $P_{i}^{"} = 15.76  \text{W/m}^{2}$ $P_{i}^{"} = 15.76  \text{W/m}^{2}$ $P_{i}^{"} = 15.76  \text{W/m}^{2}$ $P_{i}^{"} = 15.76  \text{W/m}^{2}$ $P_{i}^{"} = \frac{\eta_{2} \cos \theta_{1}}{\eta_{2} \cos \theta_{1}} = 0.2135$ $P_{i}^{"} =  \Gamma_{i} ^{2} P_{i}^{"}$ $\sqrt{\rho} P_{i}^{"} = \frac{P_{i}^{"}}{P_{i}^{"}} =  \Gamma_{i} ^{2} = 0.2135^{2} = 4.56 \frac{\eta_{0}}{\rho_{0}}$ $\frac{\eta_{0}}{\rho_{0}} = \frac{21.72}{21.73} = \frac{85.140.15}{85.140.15} = 0.25 L - 61.9^{\circ} =  \Gamma_{i}  \leq 0.00$ $SWR = \frac{1+ \Gamma_{i} }{1+ \Gamma_{i} } = \frac{140.25}{1-0.25} = 1.667$ $\frac{\eta_{0}}{\rho_{0}} = \frac{2\pi}{2} = \frac{2\pi}{4} = \frac{2\pi \times 1\times 10^{3}}{2\times 10^{3}} = 20.94  \text{pad/m}$ $Z_{in}(-0.4) = \frac{21.72}{20.12} = \frac{35.140.1(15)}{15.12} = \frac{160.40}{15.12} = \frac{35.140.1(15)}{15.12} = \frac{160.40}{15.12} = \frac{15.140.1(15)}{15.12} = \frac{160.10}{15.12} = \frac{15.140.1(15)}{15.12} = \frac{160.10}{15.12} = \frac{160.10}{15.12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | = (= = + = = ) - (0.4) 307.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $ \Gamma_{1} = \frac{1}{12} \cos \theta_{1} - \frac{1}{12} \cos \theta_{2} = -0.2135 $ $ P_{1}'' =  \Gamma_{1} ^{2} P_{1}''' $ $ \frac{1}{12} P_{1}''' =  \Gamma_{1} ^{2} P_{1}''' $ $ \frac{1}{12} P_{1}'''' $ $ \frac{1}{12} P_{1}'''' $ $ \frac{1}{12} P_{1}'''' $ $ \frac{1}{12} P_{1}''' $ $ \frac{1}{12} P_{1}'' $ $\frac{1}{12} P_{1}' $ $\frac{1}{12} P_{1}' $ $\frac{1}{1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | $= 1992\overline{6} + 1971\overline{6} + 1971\overline{6} + 1971\overline{6} = 120710$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \Gamma_{\parallel} = \frac{1}{12} \cos \theta_{1} - \frac{1}{12} \cos \theta_{2} = -0.2135 $ $ P_{\Gamma}^{\parallel} =  \Gamma_{\parallel} ^{2} P_{1}^{\parallel} $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} P_{1}^{\parallel} $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\% $ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} =  \Gamma_{\parallel} ^{2} = 0.2135^{2} = 0.2135^{2} = 4.56\%$ $ \frac{1}{12} e^{-\frac{1}{12}} = \frac{1}{12} e^{-\frac{1}{12}} = \frac{1}{12} e^{-\frac{1}{12}} = \frac{1}{12} e^{-\frac{1}{12}} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | D" = 15 = 1 heles =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $P_{\Gamma}^{"} =  \Gamma_{1} ^{2} P_{1}^{"}$ $\% P_{\Gamma}^{"} = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $\% P_{\Gamma}^{"} = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $\# = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $WR = \frac{1+ \Gamma_{1} }{2+ \Gamma_{2} } = \frac{1+0.25}{85-j+0+75} = 1.667$ $\# = \frac{1+ \Gamma_{1} }{1- \Gamma_{1} } = \frac{1+0.25}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = \frac{20.94}{1-0.67} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *****                                  | 1; - 19-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $P_{\Gamma}^{"} =  \Gamma_{1} ^{2} P_{1}^{"}$ $\% P_{\Gamma}^{"} = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $\% P_{\Gamma}^{"} = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $\# = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $WR = \frac{1+ \Gamma_{1} }{2+ \Gamma_{2} } = \frac{1+0.25}{85-j+0+75} = 1.667$ $\# = \frac{1+ \Gamma_{1} }{1- \Gamma_{1} } = \frac{1+0.25}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = 1.667$ $\# = \frac{2\pi}{1- \Gamma_{1} } = \frac{2\pi}{1-0.25} = \frac{20.94}{1-0.67} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1 - 12 cos Ot -7 : cos O: = -12.2135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $P_{\Gamma}^{"} =  \Gamma_{1} ^{2} P_{1}^{"}$ $\% P_{\Gamma}^{"} = \frac{P_{\Gamma}^{"}}{P_{1}^{"}} =  \Gamma_{1} ^{2} = 0.2135^{2} = 4.56\%$ $\# a) i) \Gamma_{L} = \frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} = \frac{85-j+0-75}{85-j+0+75} = 0.25 L-61.9^{\circ} \# =  \Gamma_{1}  L \theta_{0}$ $SWR = \frac{j+ \Gamma_{1} }{j- \Gamma_{1} } = \frac{j+0.25}{j-0.25} = 1.667$ $\# \Phi ii) B = \frac{2\pi}{\lambda} = \frac{2\pi}{4\pi} + \frac{2\pi \times 1\times 10^{9}}{2\times 10^{8}} = 20.94 \text{ fod/m}$ $Z_{in}(-i0+) = \frac{Z_{1}+jZ_{0} \text{ tan } pl.}{Z_{0}+jZ_{1}+\text{ tan } pl.} Z_{0} = \frac{85-j+0+j(75) \text{ tan } (20.94\times 0.4)}{75+j(85-j+0)+\text{ tan } (30.94\times 0.4)}$ $Z_{in}(-0-4) = 87.95 + j3.9.89 \Omega \#$ $\Phi_{0} = -61.9^{\circ} = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 11 1/2 cus Ot + 1/2 cos Oi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 a) i) $\Gamma_{L} = \frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} = \frac{g_{5}-j_{40}-75}{g_{5}-j_{40}+75} = 0.25 L-61.9^{\circ} \# =  \Gamma_{1}  \angle \theta_{0}$ $SWR = \frac{j+ \Gamma_{1} }{j- \Gamma_{1} } = \frac{j+0.25}{j-0.25} = 1.667$ $4 a) ii) \beta = \frac{2\pi}{\Lambda} = \frac{2\pi \times 1 \times 10^{9}}{Up} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-\frac{1}{10}+\frac{1}{10}) = \frac{Z_{1}+j}{Z_{0}} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-\frac{1}{10}+\frac{1}{10}) = \frac{Z_{1}+j}{Z_{0}} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-\frac{1}{10}+\frac{1}{10}) = \frac{Z_{1}+j}{Z_{0}} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-\frac{1}{10}+\frac{1}{10}) = \frac{Z_{1}+j}{Z_{0}} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-\frac{1}{10}+\frac{1}{10}) = \frac{Z_{1}+j}{Z_{0}} = \frac{Z_{1}+j}{Z_{0}} = \frac{g_{2}-j+0+j}{2 \times 10^{9}} = \frac{g_{2}-j+0+j}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | D"-1012 p"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4 a) i) $\Gamma_{L} = \frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} = \frac{85-j+0-75}{85-j+0+75} = 0.25 L-61.9° \# =  \Gamma_{1}  L \theta_{0}$ $SWR = \frac{j+ \Gamma_{1} }{j- \Gamma_{1} } = \frac{j+0.25}{j-0.25} = 1.667$ $H Q ii) R = \frac{2\pi}{\Lambda} = \frac{2\pi}{Mp} = \frac{2\pi \times 1 \times 10^{9}}{2 \times 10^{8}} = 20.94 \text{ rad/m} Z_{in}(-io_{+}) = \frac{Z_{1}+jZ_{0}}{Z_{0}+jZ_{1}} = \frac{85-j+0+j(75)}{75+j(85-j+0)+an(20.94\times0.4)} (75) Z_{in}(-io_{+}) = \frac{Z_{1}+jZ_{0}}{Z_{0}+jZ_{1}} = \frac{87.95}{j-10+j(75)} = \frac{1}{75+j(85-j+0)+an(20.94\times0.4)} (75) Z_{in}(-io_{+}) = \frac{87.95}{Z_{0}+jZ_{0}} = \frac{1}{2} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | σ D " Po" 1012 2012 4 5 1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4 a) i) $\Gamma_{L} = \frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} = \frac{85-j+0-75}{85-j+0+75} = 0.25 L-61.9° \# =  \Gamma_{1}  L \theta_{0}$ $SWR = \frac{j+ \Gamma_{1} }{j- \Gamma_{1} } = \frac{j+0.25}{j-0.25} = 1.667$ $4 a) ii) \beta = \frac{2\pi}{\lambda} = \frac{2\pi \times 1 \times 10^{9}}{Up} = \frac{20.94 \text{ rad/m}}{3 \times 108} = 20.94 \text{ rad/m} Z_{in}(-\frac{10}{10}) = \frac{Z_{1}+jZ_{0}}{Z_{0}+jZ_{1}} = \frac{20.94 \text{ rad/m}}{3 \times 108} = \frac{85-j+0+j(75) \text{ tan}(20.94 \times 0.4)}{75+j(85-j+0)+\text{tan}(30.94 \times 0.4)} (75) Z_{in}(-\frac{10}{10}) = \frac{87.95}{20} + \frac{1}{139.89} = \Omega 4 a) iii) \theta_{1} = \theta_{0} + 2\beta \frac{2}{3} \text{ max} = -2\pi \theta_{0} = -61.9° = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | 70 Pr = 111/ = 0,2135 = 1,96 /0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $SWR = \frac{ +  \Omega  }{ -  \Omega  } = \frac{ +0.25 }{ -0.35 } = 1.667$ $4  4  (i)  \beta = \frac{3\pi}{\Lambda} = \frac{3\pi}{4} + \frac{3\pi \times 1 \times 10^9}{2 \times 10^8} = 20.94  \text{rad/m}$ $Z_{\text{in}} \left( -\frac{10}{4} \right) = \frac{Z_1 + j Z_0 \text{ fan } \beta Z_1}{Z_0 + j Z_1} = \frac{85 - j + 0 + j (75) \text{ fan } (20.94 \times 0.4)}{75 + j (85 - j + 0) + \text{fan } (20.94 \times 0.4)} $ $Z_{\text{in}} \left( -\frac{10}{4} \right) = \frac{27.95}{Z_0 + j Z_1} + \frac{1}{39.89} \cdot \Omega $ $Z_{\text{in}} \left( -\frac{10}{4} \right) = \frac{27.95}{Z_0 + j Z_1} + \frac{1}{39.89} \cdot \Omega $ $\theta_0 = -61.9^\circ = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 9 ii) $\beta = \frac{2\pi}{\lambda} = \frac{2\pi \times 1 \times 10^9}{4} = 20.94 \text{ rad/m}$ $Z_{in}(-0.4) = \frac{Z_L + i Z_0 \tan \beta L}{Z_0 + j} Z_0 = \frac{85 - j 40 + j (75) \tan (20.94 \times 0.4)}{75 + j (85 - j 40) + \tan (20.94 \times 0.4)} (75)$ $Z_{in}(-0.4) = 87.95 + j 39.89 \Omega \#$ $4 a) iii) \theta_n = \theta_0 + 2\beta z_{max} = -2\pi \theta_0 = -61.9^\circ = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                               | (a) 1) $1_L = \frac{1}{Z_L + Z_0} = \frac{1}{85 - j + 0} + 75$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4 9 ii) $\beta = \frac{3\pi}{\lambda} = \frac{3\pi + \frac{3\pi \times 1 \times 10^{9}}{3 \times 10^{8}} = 20.94 \text{ rad/m}}{2 \times 10^{9} \times 10^{9} \times 10^{9}}$ $Z_{\text{in}}(-0.4) = \frac{Z_{\text{L}} + j Z_{\text{0}} \tan \beta l}{Z_{\text{0}} + j Z_{\text{L}} \tan \beta l} = \frac{85 - j 40 + j (75) \tan (20.94 \times 0.4)}{75 + j (85 - j 40) - \tan (20.94 \times 0.4)} $ $Z_{\text{in}}(-0.4) = \frac{87.95 + j 39.89}{75 + j 39.89} \Omega \#$ $4 a) iii) \theta_{\text{n}} = \theta_{\text{o}} + 2\beta z_{\text{max}} = -3\pi$ $\theta_{\text{o}} = -61.9^{\circ} = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | 1+10-11-11-11-11-11-11-11-11-11-11-11-11-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $Z_{in}(-0.4) = 87.95 + j39.89 \Omega$ #  4 a) iii) $\theta_{n} = \theta_{0} + 2\beta z_{max} = -2\pi$ $\theta_{0} = -61.9^{\circ} = -1.08 \text{ md}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | SWK = 1-121 = 1-0-25 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $Z_{in}(-0.4) = 87.95 + j39.89 \Omega$ #  4 a) iii) $\theta_{n} = \theta_{0} + 2\beta z_{max} = -2\pi$ $\theta_{0} = -61.9^{\circ} = -1.08 \text{ rad}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ······································ | 2 11 2 2 2 2 1 10 2 2 0 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $Z_{in}(-0.4) = 87.95 + j39.89 \Omega$ #  4 a) iii) $\theta_{n} = \theta_{0} + 2\beta z_{max} = -2\pi$ $\theta_{0} = -61.9^{\circ} = -1.08 \text{ rad}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                      | $\frac{d}{d} = \frac{d}{d} = \frac{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $Z_{in}(-0.4) = 87.95 + j39.89 \Omega$ #  4 a) iii) $\theta_{n} = \theta_{0} + 2\beta z_{max} = -2\pi$ $\theta_{0} = -61.9^{\circ} = -1.08 \text{ md}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        | $Z_{in}(-0.4) = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + 1.72 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = \frac{21.7120 (an px. Z_0)}{Z_0 + (an px. Z_0)} = 21.7120 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4 a) iii) $\theta_n = \theta_0 + 2\beta z_{max} = -2\pi$ $\theta_0 = -61.9° = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 a) iii) $\theta_n = \theta_0 + 2\beta z_{max} = -2\pi$ $\theta_0 = -61.9° = -1.08 \text{ rad}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        | Zin (-0-4) = \$7.95 + 39.89 12 #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0=-61.9°=-1.08 md.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                      | a) iii) θn=θo+2βzmax=-2π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Jmax= -22-(-1.08) = -0.1242 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | 1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7 (24 04)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Jmax = -27 - (-1.08) 0.1242 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2 (30.17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 2 (20.94)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| : lnin: 0,1242 m #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | Inin= 0,1242 m +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

ntusu

| Zin (-l) =  4 b) ii) Vin = = | 50-j60<br>50+j<br>16.58              | + j 50 fan (<br>(50-j66) -<br>+ j 8,797<br>= 16.58+ | (0.025 x 50)<br>tan (0.025 x<br>-1 #<br>-j 8-797<br>8-797 + 50-j* | <u>50)</u>   |                                       | 8.935       | <u>/53.1</u> · |
|------------------------------|--------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------|--------------|---------------------------------------|-------------|----------------|
| Zin (-l) =  4 b) ii) Vin = = | 50-j60<br>50+j<br>16.58<br>Zin Vg    | + j 50 fan (<br>(50-j66) -<br>+ j 8,797<br>= 16.58+ | (0.025 x 50)<br>tan (0.025 x<br>-1 #<br>-j 8-797<br>8-797 + 50-j* | <u>50)</u>   |                                       | 8.935       | <u> </u>       |
| Zin (-l) =  4 b) ii) Vin = = | 50-j60<br>50+j<br>16.58<br>Zin Vg    | + j 50 fan (<br>(50-j66) -<br>+ j 8,797<br>= 16.58+ | (0.025 x 50)<br>tan (0.025 x<br>-1 #<br>-j 8-797<br>8-797 + 50-j* | <u>50)</u>   |                                       | 8.935       | <u> </u>       |
| Zin (-l) =  4 b) ii) Vin = = | 16.58<br>Zin Vg                      | (50-j60) -<br>+j8,797<br>= 1658+<br>1658+j          | tan (0,025 x<br>-) 8-797<br>8-797 + 50-jik                        | <u>50)</u>   |                                       | 8.935       | <u> </u>       |
| 4 b) ii) Vin = =             | 16.58<br>Zin<br>Zin+2g Vg            | +j8,797<br>= 1658+<br>1658+j                        | -2 #<br>-j8-797<br>8-797+50-j*                                    |              | - (°0.                                | 8.935,      | <u>/53.1 °</u> |
| 4 b) ii) Vin = =             | Zin Vg : Zin+Zg Vg :                 | = 16587<br>16587                                    | - j 8-797<br>8-797 + 50-j*                                        | (352         | - (°0.                                | 8.935       | <u>/53.1 '</u> |
|                              |                                      |                                                     |                                                                   | (352         | = ل <sup>ه</sup> ه.                   | 8.935       | (53.1'         |
|                              |                                      |                                                     |                                                                   | (354         | = (°0.                                | 8.935       | 153.1          |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
| 4 b) iii) P, =               | $\frac{1}{3} \times \frac{V_1}{Z_2}$ |                                                     |                                                                   |              |                                       |             | <del></del>    |
| 4 b) iii) P1 =               | $\frac{1}{2} \times \frac{V}{Z}$     |                                                     |                                                                   |              |                                       |             | <del></del>    |
|                              | <u> </u>                             | in 2 Ra C                                           |                                                                   |              |                                       |             |                |
|                              | 7 180                                | 935 L 53.1°                                         | 2 N 16 15                                                         | <del></del>  |                                       |             |                |
|                              | 2 7 (16.                             | -58+j8-797/                                         |                                                                   | ·            |                                       |             |                |
| P. =                         | 1.878W                               | #                                                   |                                                                   |              |                                       |             |                |
|                              |                                      | 1                                                   |                                                                   |              |                                       |             | <del></del>    |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     | <u> </u>                                                          |              |                                       | ,           |                |
| 1                            |                                      |                                                     |                                                                   |              |                                       | <u> </u>    |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              | <del>11 - 1</del>                    |                                                     |                                                                   |              |                                       | · · · · · · |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      | ······································              |                                                                   | <del>,</del> |                                       |             | <u></u>        |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              | · · · · · · · · · · · · · · · · · · · |             |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      | g same to success.                                  | and his a straight of                                             |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              |                                       |             |                |
|                              |                                      |                                                     |                                                                   |              | •                                     | -           | ; 1            |
|                              |                                      |                                                     |                                                                   |              |                                       |             | 1 · ·          |