AMENDMENTS TO THE CLAIMS

A data processor for use in a wireless communication device,

(Original)

1.

1

2

3

2	comprising:			
3	a processing unit;			
4	an instruction pipeline circuit;			
5	at least one processing module;			
6	a timer for generating a time-out interval; and			
7	power control logic for detecting a sleep instruction and placing the processing unit,			
8	instruction pipeline circuit and at least one processing module in a low-power state, where			
9	the power control logic is operative in response to a wake-up signal to reactivate the			
10	instruction pipeline circuit, and consequently at least one processing module only to the			
11	extent required by the wake-up signal.			
1	2.	(Original)	The processor of claim 1, where the instruction pipeline circuit	
2	comprises a multi-stage instruction pipeline circuit.			
1	3.	(Original)	The processor of claim 1, where the wake-up signal comprises	
2	a logical OR combination of one or more predetermined wake-up conditions and the time-out			
3	interval.			
1	4.	(Original)	The processor of claim 1, where the power control logic	
2 comprises instruction decode logic to detect the sleep instruction.			le logic to detect the sleep instruction.	
1	5.	(Original)	The processor of claim 1, where the power control logic	
2	comprises branch condition logic to respond to the wake-up signal.			
,		(O : : : - I)	The second California and the second State of	
1	6.	(Original)	The processor of claim 1, where the power control logic,	

having specified one or more wake-up conditions that the processing unit will respond to when in a low-power state, generates the wake-up signal upon detecting the one or more

wake-up conditions or the time-out interval.

- 1 7. (Original) The processor of claim 1, where the power control logic
 2 instructs the instruction pipeline circuit to complete any instructions preceding the sleep
 3 instruction.
- 1 8. (Original) The processor of claim 7, where the power control logic
 2 instructs the instruction pipeline circuit to cease fetching new instructions after encountering
 3 a sleep instruction whose wake-up conditions are currently deasserted.
- 9. (Original) The processor of claim 1, wherein the processing unit, instruction pipeline circuit and at least one processing module are formed together on a common silicon substrate using CMOS processing.
- 1 10. (Original) The processor of claim 6, wherein the wake-up conditions and 2 time-out interval are stored in a register by the power control logic.
- 1 11. (Currently Amended) An article of manufacture having at least one computer
 readable medium encoded with a computer program comprising recordable medium havingstored thereon executable instructions and data which, when executed by at least one
 processing device, cause the at least one processing device to:
- 5 detect a sleep instruction for the processing device;
- 6 specify one or more wake-up conditions and a time-out interval;
 - power down an instruction pipeline and one or more processor modules;
- 8 reactivate the instruction pipeline upon detection of a wake-up signal corresponding
- 9 to either a wake-up condition or the time-out interval, and

7

- process one or more instructions in the instruction pipeline to reactivate any of the one or more processor modules required to respond to a detected wake-up condition.
- 1 12. (Original) The article of manufacture of claim 11, wherein the processing
 2 device executes any instructions received by the instruction pipeline before the sleep
 3 instruction is received.

- 1 13. (Original) The article of manufacture of claim 11, wherein the instruction pipeline comprises a multistage instruction pipeline, and the processing device reactivates only stages in the multistage instruction pipeline and/or the function units needed to process one or more instructions necessary to analyze and respond to the wake-up signal.
- 1 14. (Original) The article of manufacture of claim 11, further comprising a register for holding the specified wake-up conditions and time out signal.
- 1 15. (Original) The article of manufacture of claim 11, where the processing device is implemented as part of a single-chip wireless communication device.
- 1 16. (Original) The article of manufacture of claim 11, where the executable instructions and data comprise control logic for controlling the operation of the processing device.
- 1 17. (Original) The article of manufacture of claim 11, where the processing device powers down the one or more processor modules by freezing a clock signal for said one or more modules.
- 1 18. (Original) The article of manufacture of claim 11, where the processing
 2 device powers down the one or more processor modules by placing said one or more
 3 modules in an idle mode.
- 1 19. (Currently Amended) A method for managing power in a communications 2 processor by selectively removing one or more processor modules from a standby mode, 3 comprising:
- 4 storing one or more wake-up conditions and a time-out interval in a register;
- 5 receiving a processor sleep instruction;
- executing any pending instructions received by the processor before the sleep
 instruction:

8	powering down the one or more processor modules, where one of the processor
9	modules comprises an instruction pipeline circuit;
10	receiving a processor wake-up signal corresponding to one of said wake-up
11	conditions or said time-out interval;
12	powering up only the processor modules required to respond to the detected processor

13

wake-up signal.

1 20. (Currently Amended) The method of claim 19, wherein one of the processor2 medules comprises an instruction pipeline circuit comprises a plurality of instruction pipeline
3 stages.

5