Solve the	problems adding to the re	eplies	short	and	essen	tial e	xplen	ation	s. Pl	ease v	vrite the s	solutions in the designed areas. NO questions allowed in the first hour
and in the	e last 20 minutes.											
		1	2	3	4	5	6	7	8	9	ТОТ.	
1. Answ	ver to the following question	ons w	ith a	justif	icatio	on of	one li	ne:				
a	Is it true that if n is odd,	the ir	reduc	ible f	actor	s of x	; ^{3ⁿ} –	x hav	e all	odd o	degree?	
b. 1	Is it true that it is not pos	ssible	to ell	iptic	curve	s ove	r finit	e fiel	ds for	the l	Diffie – H	ellman key exchange protocol?
c.	Which is the probability t	hat a	n irre	ducib	le pol	lynon	nial o	f degi	ree 5	over l	\mathbf{F}_5 is prim	nitive?
d. 1	Is it true that there are no	ellip	tic cu	rves	over l	F_{11^2} s	such t	that I	$\Xi(\mathbf{F}_{11}$	$_{2})\cong$	${f Z}/7{f Z}\oplus{f Z}$	$L/42{f Z}?$

2. After having recalled the RSA cryptosystem, decode the crypted text C = 25 knowing that he public key is (7,143).

4. Explain the Goldwa	asser – Micali cryptosy	stem.		

3. Expain how the Miller – Rabin primality test works.

5. After having defined Carmichael numbers and having recalled their main properties, prove that 6601 is Carmichael.
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E: y^2 + \alpha y = x^3$ be and elliptic curve over $\mathbf{F}_8 = \mathbf{F}_2[\alpha], \alpha^3 = \alpha + 1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E:y^2+\alpha y=x^3$ be and elliptic curve over $\mathbf{F}_8=\mathbf{F}_2[\alpha], \alpha^3=\alpha+1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E:y^2+\alpha y=x^3$ be and elliptic curve over $\mathbf{F}_8=\mathbf{F}_2[\alpha], \alpha^3=\alpha+1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^6})$. What can be said regarding the group structure?
6. Let $E:y^2+\alpha y=x^3$ be and elliptic curve over $\mathbf{F}_8=\mathbf{F}_2[\alpha], \alpha^3=\alpha+1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^0})$. What can be said regarding the group structure?
6. Let $E:y^2+\alpha y=x^3$ be and elliptic curve over $\mathbf{F}_8=\mathbf{F}_2[\alpha], \alpha^3=\alpha+1$. Determine $\#E(\mathbf{F}_2[\alpha])$ and $\#E(\mathbf{F}_{2^0})$. What can be said regarding the group structure?

