EXERCISE 1

1 Use the compound-angle formulae to write the following as surds.

(i)
$$\sin 75^{\circ} = \sin(45^{\circ} + 30^{\circ})$$

(ii)
$$\cos 135^{\circ} = \cos(90^{\circ} + 45^{\circ})$$

(iii)
$$\tan 15^{\circ} = \tan(45^{\circ} - 30^{\circ})$$

(iv)
$$\tan 75^{\circ} = \tan(45^{\circ} + 30^{\circ})$$

2 Expand each of the following expressions.

(i)
$$\sin(\theta + 45^\circ)$$

(iii)
$$\cos(\theta - 30^{\circ})$$

(iii)
$$\sin(60^{\circ} - \theta)$$

(iv)
$$cos(2\theta + 45^\circ)$$

(v)
$$tan(\theta + 45^{\circ})$$

(vi)
$$tan(\theta - 45^{\circ})$$

3 Simplify each of the following expressions.

(i)
$$\sin 2\theta \cos \theta - \cos 2\theta \sin \theta$$

(ii)
$$\cos \phi \cos 3\phi - \sin \phi \sin 3\phi$$

(iii)
$$\sin 120^{\circ} \cos 60^{\circ} + \cos 120^{\circ} \sin 60^{\circ}$$

(iv)
$$\cos\theta\cos\theta - \sin\theta\sin\theta$$

4 Solve the following equations for values of θ in the range $0^{\circ} \le \theta \le 180^{\circ}$.

(i)
$$\cos(60^{\circ} + \theta) = \sin \theta$$

(iii)
$$\sin(45^{\circ} - \theta) = \cos \theta$$

(iii)
$$tan(45^{\circ} + \theta) = tan(45^{\circ} - \theta)$$

(iv)
$$2\sin\theta = 3\cos(\theta - 60^\circ)$$

(v)
$$\sin \theta = \cos(\theta + 120^{\circ})$$

5 Solve the following equations for values of θ in the range $0 \le \theta \le \pi$. (When the range is given in radians, the solutions should be in radians, using multiples of π where appropriate.)

(i)
$$\sin\left(\theta + \frac{\pi}{4}\right) = \cos\theta$$

(ii)
$$2\cos\left(\theta - \frac{\pi}{3}\right) = \cos\left(\theta + \frac{\pi}{2}\right)$$

6 Calculators are not to be used in this question.

The diagram shows three points I (2,1) M(0,2) and N(3,2)

The diagram shows three points L(-2, 1), M(0, 2) and N(3, -2) joined to form a triangle. The angles a and β and the point P are shown in the diagram.

- (i) Show that $\sin a = \frac{2}{\sqrt{5}}$ and write down the value of $\cos a$.
- (ii) Find the values of $\sin \beta$ and $\cos \beta$.
- (iii) Show that $\sin \angle LMN = \frac{11}{5\sqrt{5}}$.
- (iv) Show that $\tan \angle LNM = \frac{11}{27}$.
- **7** (i) Find $\int x \cos kx \, dx$, where k is a non-zero constant.
 - (ii) Show that

$$\cos(A - B) - \cos(A + B) = 2\sin A \sin B.$$

Hence express $2 \sin 5x \sin 3x$ as the difference of two cosines.

(iii) Use the results in parts (i) and (ii) to show that

$$\int_0^{\frac{\pi}{4}} x \sin 5x \sin 3x \, dx = \frac{\pi - 2}{16}.$$

[MEI]

8 (i) Use the formulae for $cos(\theta + \phi)$ and $cos(\theta - \phi)$ to prove that

$$\cos(\theta - \phi) - \cos(\theta + \phi) = 2\sin\theta\sin\phi.$$

Prove also that $\sin (\pi - \theta) = \sin \theta$.

In triangle PQR, angle $P = \frac{1}{6}\pi$ radians, angle Q = a radians, and QR = 1 unit. The point S is at the foot of the perpendicular from R to PQ, as shown in the diagram.

(ii) Show that $PQ = 2\sin(\alpha + \frac{1}{6}\pi)$.

By finding RS in terms of a, deduce that the area A of the triangle is given by

$$A = \sin\left(a + \frac{1}{6}\pi\right)\sin a.$$

Find the value of a for which the area A is a maximum. [You may find the result \circledast helpful.]

(iii) Expand $\sin\left(a + \frac{1}{6}\pi\right)$, and hence show that, for small values of a, $A \approx pa + qa^2$, where p and q are contants to be determined.

For small
$$\theta$$
, $\sin \theta \approx \theta$ and $\cos \theta \approx 1$.

Find the value of this expression when a = 0.1, and find also the corresponding value of A given by the expression in part (ii).

[MEI]

1 Solve the following equations for $0^{\circ} \le \theta \le 360^{\circ}$.

(i)
$$2\sin 2\theta = \cos \theta$$

(iii)
$$\tan 2\theta = 4 \tan \theta$$

(iii)
$$\cos 2\theta + \sin \theta = 0$$

(iv)
$$\tan \theta \tan 2\theta = 1$$

(v)
$$2\cos 2\theta = 1 + \cos \theta$$

2 Solve the following equations for $-\pi \le \theta \le \pi$.

(i)
$$\sin 2\theta = 2\sin \theta$$

(iii)
$$\tan 2\theta = 2 \tan \theta$$

(iii)
$$\cos 2\theta - \cos \theta = 0$$

(iv)
$$1 + \cos 2\theta = 2\sin^2 \theta$$
 (v) $\sin 4\theta = \cos 2\theta$

(v)
$$\sin 4\theta = \cos 2\theta$$

(**Hint:** Write the expression in part (v) as an equation in 2θ .)

- **3** By first writing $\sin 3\theta$ as $\sin(2\theta + \theta)$, express $\sin 3\theta$ in terms of $\sin \theta$. Hence solve the equation $\sin 3\theta = \sin \theta$ for $0 \le \theta \le 2\pi$.
- **4** Solve $\cos 3\theta = 1 3\cos\theta$ for $0^{\circ} \le \theta \le 360^{\circ}$.

5 Simplify
$$\frac{1+\cos 2\theta}{\sin 2\theta}$$
.

- **6** Express $\tan 3\theta$ in terms of $\tan \theta$.
- 7 Show that $\frac{1-\tan^2\theta}{1+\tan^2\theta} = \cos 2\theta$.
- **8** (i) Show that $\tan\left(\frac{\pi}{4} + \theta\right) \tan\left(\frac{\pi}{4} \theta\right) = 1$.
 - (ii) Given that $\tan 26.6^{\circ} = 0.5$, solve $\tan \theta = 2$ without using your calculator. Give θ to 1 decimal place, where $0^{\circ} < \theta < 90^{\circ}$.
- **9** (i) Sketch on the same axes the graphs of

$$y = \cos 2x$$
 and $y = 3\sin x - 1$ for $0 \le x \le 2\pi$.

- (ii) Show that these curves meet at points whose x co-ordinates are solutions of the equation $2\sin^2 x + 3\sin x - 2 = 0$.
- (iii) Solve this equation to find the values of x in terms of π for $0 \le x \le 2\pi$.

[MEI]

Solve $\sin 3\theta + \sin \theta = 0$ for $0^{\circ} \le \theta \le 360^{\circ}$.

SOLUTION

Using

$$\sin a + \sin \beta = 2 \sin \left(\frac{a+\beta}{2} \right) \cos \left(\frac{a-\beta}{2} \right)$$

and putting $a = 3\theta$ and $\beta = \theta$ gives

$$\sin 3\theta + \sin \theta = 2 \sin 2\theta \cos \theta$$

so the equation becomes

$$2\sin 2\theta\cos\theta = 0$$

$$\Rightarrow$$
 $\cos \theta = 0$ or $\sin 2\theta = 0$.

From the graphs for $y = \cos \theta$ and $y = \sin \theta$

$$\cos \theta = 0$$
 gives $\theta = 90^{\circ}$ or 270°

$$\sin 2\theta = 0$$
 gives $2\theta = 0^{\circ}$, 180° , 360° , 540° or 720°

so
$$\theta = 0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ} \text{ or } 360^{\circ}.$$

You should only list each root once in the final answer.

The complete set of roots in the range given is $\theta = 0^{\circ}$, 90°, 180°, 270°, 360°.

EXERCISE 3

- **C** The questions in this exercise relate to enrichment material.
- **1** Factorise the following expressions.

(i)
$$\sin 4\theta - \sin 2\theta$$

(iii)
$$\cos 5\theta + \cos \theta$$

(iii)
$$\cos 7\theta - \cos 3\theta$$

(iv)
$$\cos(\theta + 60^{\circ}) + \cos(\theta - 60^{\circ})$$

60°)

(v)
$$\sin(3\theta + 45^{\circ}) + \sin(3\theta - 45^{\circ})$$

2 Factorise $\cos 4\theta + \cos 2\theta$. Hence, for $0^{\circ} < \theta < 180^{\circ}$, solve

$$\cos 4\theta + \cos 2\theta = \cos \theta$$
.

- **3** Simplify $\frac{\sin 5\theta + \sin 3\theta}{\sin 5\theta \sin 3\theta}$.
- **4** Solve the equation $\sin 3\theta \sin \theta = 0$ for $0 \le \theta \le 2\pi$.
- **5** Factorise $\sin(\theta + 73^\circ) \sin(\theta + 13^\circ)$ and use your result to sketch the graph of $y = \sin(\theta + 73^\circ) \sin(\theta + 13^\circ)$.
- **6** Prove that $\sin^2 A \sin^2 B = \sin(A B)\sin(A + B)$.
 - **7** (i) Use a suitable factor formula to show

that
$$\sin 3\theta + \sin \theta = 4 \sin \theta \cos^2 \theta$$
.

(ii) Hence show that $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$.