Pr. Cabri 805

Enunciado

Si la recta de Euler es paralela al lado BC del triángulo, los ángulos B y C satisfacen tg $B.tg\ C=3$.

Coxeter, H.S.M. (1961, 1969).

Introduction to Geometry. Second Edition, (pag 18).

Solución por César Beade Franco

Consideremos el triángulo de vértices A(p,q), B(0,0) y C(1,0).

La recta de Euler contiene al baricentro G $\left(\frac{p+1}{3},\frac{q}{3}\right)$ y al ortocentro H $\left(p,\frac{p-p^2}{q}\right)$. Si es paralela al lado BC entonces los vectores \overrightarrow{BC} y \overrightarrow{GH} son proporcionales lo que significa que $\frac{p-p^2}{q}$ - $\frac{q}{3}$ = 0 \Longrightarrow q = $\sqrt{3}$ $\sqrt{p-p^2}$.

Si D (p,0) es el pie de la altura desde A,

tg B.tg C =
$$\frac{AD}{BD} \cdot \frac{AD}{CD}$$
 = $\frac{\sqrt{3} \sqrt{p-p^2}}{p} \cdot \frac{\sqrt{3} \sqrt{p-p^2}}{1-p}$ = 3.

