

Overview

Unsupervised Learning Algorithms

Semi-supervised Learning Algorithms


```
#Setting up for Supervised learning
# First clean: use mapping + buckets
# X = matrix of data – e.g 1000 rows
# Y = In sample responses
```

Typically we want to split in to training data and test data

 $X_{train} = X[0:500]$ $Y_{train} = Y[0:500]$

 $X_{test} = X[501:1000]$ $Y_{test} = Y[501:1000]$

Linear Regression Illustration


```
#Setting Linear Regression in sklearn
from sklearn import linear_model

model= linear_model.LinearRegression()
model.fit(X_train, Y_train)

Y_pred_train = model.predict(X_train)
Y_pred_test = model.predict(X_test)

# Compare Y_pred_test with Y_test for error.
```


Logistic Regression Illustration

Logistic Regression Illustration

Support Vector Machine (SVM) Illustration

A typical support vector machine class boundary maximizes the margin separating two classes

Support Vector Machine (SVM) Illustration

Support Vector Machine (SVM) Illustration

KNN / K Means Illustration

Illustration Source:

https://docs.microsoft.com/en-us/azure/machine-learning/machine-learning-algorithm-choice

K Means / KNN Illustration

Decision Tree Illustration

Decision Tree Illustration

Our experiment with the Titanic Data Set

Model	Score
Random Forest	86.76
Decision Tree	86.76
KNN	84.74
Support Vector Machines	83.84
Logistic Regression	80.36
Linear SVC	79.01
Perceptron	78.00
Naive Bayes	72.28
Stochastic Gradient Decent	72.28

More Accuracy Generally more training time More risk of overfitting

Less Accuracy Generally less computation

Neural Network Illustration

End of Section

