

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی

دادهافزایی

Data Augmentation

Overfitting vs Underfitting

• برای جلوگیری از overfitting و استفاده از مزایای شبکههای دارای توانایی یادگیری بیشتر، میتوان مسئلهای که قرار است توسط شبکه حل شود را پیچیدهتر کرد

• استفاده از dropout نمونهای از این موارد است

دادهافزایی

دادهافزایی: Flip

دادهافزایی: چرخش

دادهافزایی: تبدیلات هندسی

Shaded image Base Image Base Image Shaded image

دادهافزایی: تغییر رنگ

Salt pepper noise image Base Image 150 -Base Image Salt pepper noise image 25 -50 -75 -

دادهافزایی: افزودن نویز

دادهافزایی

مقداردهی اولیه وزنها

Weight Initialization

مقداردهی اولیه

• در روشهای بهینهسازی مبتنی بر تکرار، نقطه شروع بهینهسازی بسیار مهم است

• اگر در ابتدای کار تمام وزنهای شبکه مقدار صفر داشته باشند چه اتفاقی میافتد؟

• مقدار یکسان؟

مقداردهي اوليه

- روش مقداردهی اولیه Xavier یکی از معروفترین روشهای وزندهای اولیه است
 - مقداردهی اولیه مناسب هنوز یک زمینه تحقیقاتی فعال است
- به خصوص برای مجموعه دادههای کوچک، مقداردهی اولیه بسیار حائز اهمیت است
- برای آموزش یک شبکه CNN با میلیونها پارامتر، حجم زیادی از دادههای آموزشی لازم است
- با استفاده از تقویت داده و دیگر روشهای تنظیم پارامترهای شبکه میتوان تا حدی کمبود داده را جبران کرد
- یکی از بهترین روشها برای مقداردهی اولیه پارامترهای یک شبکه استفاده از شبکههای pretrained است
- انتقال یادگیری روش بسیار موثری است تا دانش بدست آمده توسط یک شبکه به شبکه جدید منتقل شود

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

مجموعه داده بسیار متفاوت	مجموعه داده بسیار مشابه	
?	?	مجموعه داده خیلی کم
?	?	مجموعه داده زیاد

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

مجموعه داده بسیار متفاوت	مجموعه داده بسیار مشابه	
?	از یک دستهبند خطی در آخرین لایه استفاده شود	مجموعه داده خیلی کم
?	?	مجموعه داده زیاد

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

مجموعه داده بسیار متفاوت	مجموعه داده بسیار مشابه	
?	از یک دستهبند خطی در آخرین لایه استفاده شود	مجموعه داده خیلی کم
?	تعدادی از لایههای انتهایی تنظیم دقیق شوند	مجموعه داده زیاد

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

مجموعه داده بسیار متفاوت	مجموعه داده بسیار مشابه	
مشکل است! می توان دسته بند خطی را در گامهای مختلف امتحان کرد	از یک دستهبند خطی در آخرین لایه استفاده شود	مجموعه داده خیلی کم
?	تعدادی از لایههای انتهایی تنظیم دقیق شوند	مجموعه داده زیاد

FC-4096

FC-4096

MaxPool

Conv-512

Conv-512

MaxPool

Conv-512

Conv-512

MaxPool

Conv-256

Conv-256

MaxPool

Conv-128

Conv-128

MaxPool

Conv-64

Conv-64

مجموعه داده بسیار متفاوت	مجموعه داده بسیار مشابه	
مشکل است! می توان دسته بند خطی را در گامهای مختلف امتحان کرد	از یک دستهبند خطی در آخرین لایه استفاده شود	مجموعه داده خیلی کم
تعداد زیادی از لایههای انتهایی تنظیم دقیق شوند	تعدادی از لایههای انتهایی تنظیم دقیق شوند	مجموعه داده زیاد

انتقال یادگیری

- در صورتیکه مجموعه دادههای شما به اندازه کافی بزرگ نیست و مسئله پیچیده است (شبکه دارای پارامترهای زیادی است):
- یک مجموعه داده بسیار بزرگ که به مجموعه داده مورد نظر مشابه است انتخاب و شبکه کانولوشنی با آن آموزش ببیند
 - انتقال یادگیری به مجموعه داده مورد نظر انجام شود
 - خوشبختانه مدلهای پیش آموخته زیادی در دسترس هستند

PyTorch: https://github.com/pytorch/vision

TensorFlow: https://github.com/tensorflow/models

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo

MatConvNet: http://www.vlfeat.org/matconvnet/pretrained/

Keras: https://github.com/fchollet/deep-learning-models/releases/

برخی شبکههای دیگر

Some Other Networks

کانولوشن با عمق جداپذیر (Depthwise Separable)

• در کانولوشن معمولی، هر فیلتر دارای یک ابعاد مکانی است و عمق آن برابر با عمق خروجی لایه قبل است

(b) Depthwise Separable Convolutional Neural Network

- در بسیاری از کاربردهای پردازش تصویر مناسب است تا یک فیلتر مکانی بر روی تمام ویژگیهای لایه قبل اعمال شوند (مانند Sobel)
 - سپس می توان با استفاده از فیلترهای ۱×۱ آنها را ترکیب کرد
 - برای داشتن ۶۴ فیلتر ۳×۳ با عمق ۳۲، هر روش چند پارامتر دارد؟

$$64 \times (3 \times 3 \times 32 + 1) = 18496$$

$$M \times (3 \times 3 + 1) + 64 \times (32 \times M + 1) = 2058M + 64$$

tf.keras.layers.SeparableConv2D(filters, kernel_size, strides=(1, 1), padding="valid", data_format=None, dilation_rate=(1, 1), depth_multiplier=1, activation=None, use bias=True, depthwise initializer="glorot uniform", pointwise_initializer="glorot_uniform", bias_initializer="zeros", depthwise regularizer=None, pointwise regularizer=None, bias_regularizer=None, activity_regularizer=None, depthwise_constraint=None, pointwise constraint=None, bias_constraint=None, **kwargs

لایه کانولوشن با عمق جداپذیر در Keras

filters: Integer, the dimensionality of the output space (i.e. the number of output filters in the convolution).

kernel_size: An integer or tuple/list of 2 integers, specifying the height and width of the 2D convolution window

depth_multiplier: The number of depthwise convolution output channels for each input channel. The total number of depthwise convolution output channels will be equal to filters in * depth multiplier.

ادغام میانگین وزندار سراسری (GWAP)

- در بسیاری از شبکههای اخیر پس از لایههای کانولوشنی، از لایه GAP استفاده می شود
- اگرچه GAP باعث میشود تعداد ویژگیها برای لایه بعد به مراتب کاهش بیابد، اما اطلاعات مکانی را به کلّی از بین میبرد

ادغام میانگین وزندار سراسری (GWAP)

- در بسیاری از شبکههای اخیر پس از لایههای کانولوشنی، از لایه GAP استفاده می شود
- اگرچه GAP باعث میشود تعداد ویژگیها برای لایه بعد به مراتب کاهش بیابد، اما اطلاعات مکانی را به کلّی از بین میبرد
 - می توان میانگین گیری را به صورت وزن دار انجام داد

- اگر شیئ مورد نظر به درستی در مرکز تصویر قرار نگرفته باشد، وظیفه شبکه برای دستهبندی آن پیچیده خواهد بود
- شبکههای کانولوشنی بسیار عمیق با دادههای آموزشی زیاد و/یا با دادهافزایی هندسی بسیار زیاد ممکن است بتوانند مدل مستقل از مکان را با هزینه زیاد آموزش ببینند
- اگر بتوانیم مکان شیئ را به خوبی تخمین بزنیم و دور شیئ را به خوبی برش بزنیم، مسئله دستهبندی برای شبکه بسیار ساده تر خواهد شد
 - توسعه الگوریتمی که بتواند مکان شیئ را به درستی مشخص کنید کار سادهای نیست
 - چطور می توان نحوه برش زدن مناسب را آموخت؟
 - می توانیم یک لایه طراحی کنیم که پارامترهای برش را تخمین بزند

• بعد از آنکه تبدیل مکانی به خوبی انجام شد، میتوان یک شبکه ساده برای دستهبندی قرار داد

R: rotated

RTS: rotated, translated, scaled

P: projective

E: elastic

Aff: affine transformation

Proj: projective transformation

TPS: 16-point thin plate spline transformation

- بخش مربوط به تبدیل مکانی نیز مشابه با لایههای دیگر آموزش میبیند و تابع ضرر جداگانهای برای این بخش تعریف نمیشود
- با بهینهسازی پارامترهای شبکه برای دستهبندی، پارامترهای مربوط به بخش تبدیل مکانی نیز آموزش میبینند

