Logika - Bizonyításelmélet

- (C1) $A\supset (B\supset A)$
- (C2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

Levezetési szabály (modus ponens)

 $\{A\supset B,A\}\vdash_0 B$

- $A\supset (B\supset A)$ (C1)
- (C2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$

(C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

Levezetési szabály (modus ponens)

 $\{A\supset B,A\}\vdash_{\mathsf{D}} B$

Egy egyszerű levezetés

$$\{X\} \vdash_0 Y \supset X$$

- $\begin{array}{lll} 1. & X\supset (Y\supset X) & \quad & [\text{C1; }A||X; \,B||Y] \\ 2. & X & \quad & [\text{hip}] \\ 3. & Y\supset X & \quad & [\text{mp}(1,2)] \end{array}$

- (C1) $A \supset (B \supset A)$
 - $(C2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$ Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \vdash_0 B$$

1. Feladat

 $\vdash_0 A \supset A$

- 1. $(A\supset ((A\supset A)\supset A))\supset ((A\supset (A\supset A))\supset (A\supset A)))$
- 2. $A\supset ((A\supset A)\supset A)$
- 3. $(A\supset (A\supset A))\supset (A\supset A)$
- 4. $A\supset (A\supset A)$
- 5. $A\supset A$

Ez után használható axiómaséma: Biz1 - $A\supset A$

Logika - Bizonyításelmélet

- (C1) $A\supset (B\supset A)$
 - (C2) $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$ (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \, \vdash_0 B$$

1. Feladat

 $\vdash_0 A \supset A$

- 1. $(A\supset ((A\supset A)\supset A))\supset ((A\supset (A\supset A))\supset (A\supset A)))$
- 2. $A\supset ((A\supset A)\supset A)$
- 3. $(A\supset (A\supset A))\supset (A\supset A)$
- 4. $A\supset (A\supset A)$
- 5. $A\supset A$

Ez után használható axiómaséma: Biz $1 - A \supset A$

[C2; A||A; $B||A \supset A$; C||A]

[C1; A||A; $B||A\supset A$]

[mp(1,2)]

[C1; A||A; B||A]

[mp(3,4)]

Dedukciós tétel

$$\{F_1,F_2,...F_n\} \vdash_0 G \Leftrightarrow \{F_1,F_2,...F_{n-1}\} \vdash_0 F_n \supset G$$

Dedukciós tétel

 $\{F_1, F_2, ... F_n\} \vdash_0 G \Leftrightarrow \{F_1, F_2, ... F_{n-1}\} \vdash_0 F_n \supset G$

2. Feladat

Készítsük el az előző levezetést úgy, hogy használjuk a dedukciós tételt is:

 $\vdash_0 A \supset A \Leftrightarrow \{A\} \vdash_0 A$

Bizonyítani kell: $\{A\} \vdash_0 A$

Dedukciós tétel

 $\{F_1,F_2,...F_n\} \vdash_0 G \Leftrightarrow \{F_1,F_2,...F_{n-1}\} \vdash_0 F_n \supset G$

2. Feladat

Készítsük el az előző levezetést úgy, hogy használjuk a dedukciós tételt is:

$$\vdash_0 A \supset A \Leftrightarrow \{A\} \vdash_0 A$$

Bizonyítani kell: $\{A\} \vdash_0 A$

3. Feladat

Bizonyítsuk be, hogy az A és $\neg \neg A$ formulák ekvivalensek, azaz

 $\{\neg\neg A\} \vdash_0 A$, illetve

 $\{A\} \vdash_0 \neg \neg A$

- (C1) $A\supset (B\supset A)$
- (C2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$ (C3)

(Biz1) $A \supset A$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \vdash_0 B$$

$$\{\neg\neg A\} \vdash_0 A$$

- 1. $(\neg A \supset \neg A) \supset ((\neg A \supset \neg \neg A) \supset A)$
- 2. $\neg A \supset \neg A$
- 3. $(\neg A \supset \neg \neg A) \supset A$
- 4. $\neg \neg A \supset (\neg A \supset \neg \neg A)$ 5. $\neg \neg A$
- 6. $\neg A \supset \neg \neg A$

Ez után használható axiómaséma: C4 - $\neg \neg A \supset A$

(C1)
$$A\supset (B\supset A)$$

$$(C2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$$

$$(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

(Biz1)
$$A \supset A$$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \vdash_0 B$$

$$\{\neg\neg A\} \vdash_0 A$$

1.
$$(\neg A \supset \neg A) \supset ((\neg A \supset \neg \neg A) \supset A)$$
 [C3; $A||A; B||\neg A$]

2.
$$\neg A \supset \neg A$$
 [Biz1; $A||\neg A|$

3.
$$(\neg A \supset \neg \neg A) \supset A$$
 $[mp(1,2)]$

4.
$$\neg\neg A \supset (\neg A \supset \neg\neg A)$$
 [C1; $A||\neg \neg A; B||\neg A$]
5. $\neg\neg A$ [hip]

6.
$$\neg A \supset \neg \neg A$$
 [mp(4,5)]

$$A \qquad \qquad [mp(3,6)]$$

Ez után használható axiómaséma: C4 - $\neg \neg A \supset A$

(C1)
$$A\supset (B\supset A)$$

$$(C2) \qquad (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$$

$$(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

$$(C4)$$
 $\neg \neg A \supset A$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash_{\mathsf{D}} B$$

 $\neg \neg A$

Ez után használható axiómaséma: Biz3 - $A \supset \neg \neg A$

Logika - Bizonyításelmélet

[mp(5.6)]

- (C1) $A\supset (B\supset A)$
- (C2) $(A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$ (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$
- (Biz1) $A \supset A$
 - (C4) $\neg \neg A \supset A$ (Biz3) $A \supset \neg \neg A$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash_0 B$$

4. Feladat

Készítsük el a következő levezetést: $\{A \supset B\} \vdash_0 \neg \neg A \supset \neg \neg B$

Dedukciós tétel használata után a következő levezetés kell: $\{A \supset B, \neg \neg A\} \vdash_0 \neg \neg B$

- 1. $B \supset \neg \neg B$ [Biz3; A||B]
- 2. $A \supset B$ [hip]
- 3. $\neg \neg A \supset A$ [C4; A || A]
- 4. ¬¬*A* [hip]
- 5. *A* [mp(3,4)]
- 6. $B \quad [mp(2,5)]$
- 7. $\neg \neg B$ [mp(1,6)]

Ez után használható axiómaséma: Biz4 - $(A \supset B) \supset (\neg \neg A \supset \neg \neg B)$

Logika - Bizonyításelmélet

5. Feladat

Egy bál szervezése a feladatod. Mikor a bejáratot ellenőrzöd, két feliratot látsz kiírva. 1. Ha Ön időben érkezett, akkor az üdvözlő italokat a bejárat melletti asztalon találja. 2. Ha az üdvözlő italokat nem találja a bejárat melletti asztalon, akkor Ön nem érkezett időben.

Bár az információ, amit hordoznak nem túl egyértelmű, téged mégis a redundancia zavar, amit felismersz bennük. Hirtelen eszedbe jut, hogy az ítéletkalkulus segítségével egyszerűen el tudnád dönteni, hogy a két állítás ugyanaz-e. Neki is állsz az állítások formalizálásának, és kiszámolod a két levezetést, amely az ekvivalencia megállapításához szükséges. Kérlek írd le a folyamatot! Bizonvítani kell:

$${X \supset Y} \vdash_0 \neg Y \supset \neg X$$
, illetve ${\neg Y \supset \neg X} \vdash_0 X \supset Y$

14 / 26

(C1)
$$A\supset (B\supset A)$$

$$\begin{array}{ll} (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \\ (C3) & (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A) \end{array}$$

$$(Biz1)$$
 $A \supset A$
 $(C4)$ $\neg \neg A \supset A$

$$(Biz4)$$
 $(A\supset B)\supset (\neg\neg A\supset \neg\neg B)$

$$\{A\supset B,A\} \vdash_{\mathsf{0}} B$$

$${X \supset Y} \vdash_0 \neg Y \supset \neg X$$

Dedukciós tétel alkalmazása után: $\{X \supset Y, \neg Y\} \vdash_0 \neg X$

1.
$$(\neg\neg X \supset \neg Y) \supset ((\neg\neg X \supset \neg\neg Y) \supset \neg X)$$
 [C3; $A||\neg\neg X$; $B||\neg Y$]
2. $\neg Y \supset (\neg\neg X \supset \neg Y)$ [C1: $A||\neg Y$: $B||\neg X$]

2.
$$\neg Y \supset (\neg \neg X \supset \neg Y)$$

3. $\neg Y$

4.
$$\neg \neg X \supset \neg Y$$

5.
$$(\neg\neg X \supset \neg\neg Y) \supset \neg X$$

6.
$$(X \supset Y) \supset (\neg \neg X \supset \neg \neg Y)$$

[Biz4;
$$A||X; B||Y$$
]

7.
$$X \supset Y$$

8.
$$\neg \neg X \supset \neg \neg Y$$

15 / 26

(C1)
$$A\supset (B\supset A)$$

$$\begin{array}{ll} (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \\ (C3) & (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A) \end{array}$$

(
$$Biz1$$
) $A \supset A$

(C4)
$$\neg \neg A \supset A$$

(Biz3) $A \supset \neg \neg A$

$$(Biz4)$$
 $(A\supset B)\supset (\neg\neg A\supset \neg\neg B)$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\} \vdash_0 B$$

$$\{\neg Y \supset \neg X\} \vdash_0 X \supset Y$$

Dedukciós tétel alkalmazása után:
$$\{\neg Y \supset \neg X, X\} \vdash_0 Y$$

1.
$$(\neg Y \supset \neg X) \supset ((\neg Y \supset \neg \neg X) \supset Y)$$
 [C3; $A||Y; B||\neg X$]

$$(\neg I \cup \neg A) \cup ((\neg I \cup \neg \neg A) \cup I)$$

3.
$$(\neg Y \supset \neg \neg X) \supset Y$$

3.
$$(\neg Y \supset \neg \neg X) \supset Y$$

4.
$$\neg \neg X \supset (\neg Y \supset \neg \neg X)$$

5.
$$X \supset \neg \neg X$$

8.
$$\neg Y \supset \neg \neg X$$

[C1;
$$A||\neg\neg X$$
; $B||\neg Y$]

Levezetési szabály (modus ponens)

 $\{A\supset B,A\}\vdash_{\mathsf{D}} B$

$$\begin{array}{ll} (C1) & A\supset (B\supset A) \\ (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C) \\ \end{array}$$

$$(C1) \qquad (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$$

$$(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

$$(Biz1) A \supset A$$

$$(C4) \neg \neg A \supset A$$

(Biz3)
$$A \supset \neg \neg A$$

(Biz4) $(A \supset B) \supset (\neg \neg A \supset \neg \neg B)$

6. Feladat

Nyomozós példa (rövidített verzió): $\{F \supset K, K \supset A, \neg A\} \vdash_0 \neg F$

1.
$$(\neg \neg F \supset \neg K) \supset ((\neg \neg F \supset \neg \neg K) \supset \neg F)$$
 [C3; $A||\neg F; B||\neg K$]

2.
$$\neg K \supset (\neg \neg F \supset \neg K)$$
 [C1; $A || \neg K; B || \neg \neg K$]
3. $(\neg \neg K \supset \neg A) \supset ((\neg \neg K \supset \neg \neg A) \supset \neg K)$ [C3; $A || \neg K; B || \neg A$]

3.
$$(\neg \neg K \supset \neg A) \supset ((\neg \neg K \supset \neg \neg A) \supset \neg K)$$

4.
$$\neg A \supset (\neg \neg K \supset \neg A)$$

6.
$$\neg \neg K \supset \neg A$$

7.
$$(\neg \neg K \supset \neg \neg A) \supset \neg K$$

8.
$$(K \supset A) \supset (\neg \neg K \supset \neg \neg A)$$

9.
$$K \supset A$$

10.
$$\neg \neg K \supset \neg \neg A$$

12.
$$\neg \neg F \supset \neg K$$

13.
$$(\neg \neg F \supset \neg \neg K) \supset \neg F$$

14.
$$(F \supset K) \supset (\neg \neg F \supset \neg \neg K)$$

15
$$\stackrel{\frown}{F} \stackrel{\frown}{\supset} K$$

16.
$$\neg \neg F \supset \neg \neg K$$

[C3;
$$A||\neg F$$
; $B||\neg K$]

[C1;
$$A||\neg K$$
; $B||\neg \neg F$]

[C1;
$$A||\neg A; B||\neg \neg K$$
]

[Biz4;
$$A||K; B||A$$
]

$$[mp(2,11)]$$

 $[mp(1.12)]$

[Biz4;
$$A||F; B||K$$
]

6. Feladat

Nyomozós példa (rövidített verzió): $\{F \supset K, K \supset A, \neg A\} \vdash_0 \neg F$

Másik megoldás:

1.
$$(\neg \neg F \supset \neg A) \supset ((\neg \neg F \supset \neg \neg A) \supset \neg F)$$
 [C3; $A || \neg F; B || \neg A$]

2.
$$\neg A \supset (\neg \neg F \supset \neg A)$$

4.
$$\neg \neg F \supset \neg A$$

5. $(\neg \neg F \supset \neg \neg A) \supset \neg F$

6.
$$(F \supset A) \supset (\neg \neg F \supset \neg \neg A)$$

7.
$$(F \supset (K \supset A)) \supset ((F \supset K) \supset (F \supset A))$$
 $[C2; A||F; B||K; C||A]$

7.
$$(F \supset (K \supset A)) \supset ((F \supset K) \supset (F \supset A))$$

8.
$$(K \supset A) \supset (F \supset (K \supset A))$$

9.
$$K \supset A$$

10.
$$F\supset (K\supset A)$$

11.
$$(F\supset K)\supset (F\supset A)$$

12.
$$F \supset K$$

13.
$$F \supset A$$

14.
$$\neg \neg F \supset \neg \neg A$$

[C3;
$$A||\neg F$$
; $B||\neg A$]

[C1;
$$A||\neg A; B||\neg \neg F$$
]

[Biz4;
$$A||F; B||A$$
]

[C1;
$$A||K \supset A$$
; $B||F$]

Predikátumkalkulus

Használható axiómasémák

- (C1) $A\supset (B\supset A)$
- $(C2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- $(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$
- (C11) $\forall xA \supset [A(x||t)]$
- (C12) $\forall x(B \supset A) \supset (B \supset \forall xA)$, ahol $x \notin Par(B)$
- (C13) $[A(x||t)] \supset \exists x A$
- (C15) $A \supset \forall x A$, ahol $x \notin Par(A)$
- $(C17) \quad \forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

Levezetési szabály (modus ponens)

$${A\supset B,A}\vdash B$$

Általánosítás szabálya

$$\{A_1, A_2...\} \vdash B \text{ \'es } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

Levezetési szabály (modus ponens)

- (C1) $A\supset (B\supset A)$ (C2)
- $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$ (C3) $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$

- (C11) $\forall x A \supset [A(x||t)]$
- (C12) $\forall x(B \supset A) \supset (B \supset \forall xA)$, ahol $x \notin Par(B)$
- $[A(x||t)] \supset \exists x \hat{A}$ (C13) (C15) $A \supset \forall xA$, ahol $x \notin Par(A)$
- (C17) $\forall x(A\supset B)\supset (\forall xA\supset \forall xB)$

Általánosítás szabálva

$$\{\mathit{A}_{1},\mathit{A}_{2}\ldots\} \,\vdash\, \mathit{B} \,\, \acute{\mathsf{e}}\mathsf{s} \,\, \mathit{x} \,\notin\, \mathit{par}(\mathit{A}_{i}) \,\Rightarrow\, \{\mathit{A}_{1},\mathit{A}_{2}\ldots\} \,\vdash\, \forall \mathit{x} \mathit{B}$$

1. Feladat

 $\{A\supset B,A\}\vdash B$

Adjuk meg a következő levezetést: $\{\forall x \forall y Q(x, y)\} \vdash Q(x, y)$

- $\forall x \forall y Q(x, y)$
- $\forall x \forall y Q(x, y) \supset \forall y Q(x, y)$ [C11; $A | | \forall y Q(x, y), t | | x |$
- 3. $\forall y Q(x, y)$
- 4. $\forall y Q(x, y) \supset Q(x, y)$ [C11; A||Q(x, y), t||y|5. Q(x, y)
- [mp(1,2)]
 - [mp(3.4)]

[hip]

$$\begin{array}{ll} (C1) & A\supset (B\supset A) \\ (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \end{array}$$

$$(C3) \quad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

(C11)
$$\forall xA \supset [A(x||t)]$$

(C12)
$$\forall x(B \supset A) \supset (B \supset \forall xA)$$
, ahol $x \notin Par(B)$

(C13)
$$[A(x||t)] \supset \exists xA$$

(C15) $A \supset \forall xA$, ahol $x \notin Par(A)$ $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$ (C17)

Levezetési szabály (modus ponens) $\{A \supset B, A\} \vdash B$

$$\{A_1, A_2...\} \vdash B \text{ és } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

2. Feladat

Bizonyítható a következő kifejezés? $\vdash \forall x P(x) \supset \forall y P(y)$

Dedukciós tétel használata után: $\{\forall x P(x)\} \vdash \forall y P(y)$

1.
$$\forall y(\forall x P(x) \supset P(y)) \supset (\forall y \forall x P(x) \supset \forall y P(y))$$

2.
$$\forall y (\forall x P(x) \supset P(y))$$

3.
$$\forall y \forall x P(x) \supset \forall y P(y)$$

.
$$\forall x P(x) \supset \forall y \forall x P(x)$$

5.
$$\forall x P(x)$$

6.
$$\forall v \forall x P(x)$$

7.
$$\forall y P(y)$$

[C17;
$$A||\forall x P(x); B||P(y)$$
]

[C11 általánosítás;
$$A||P(x)|$$

[C15;
$$A | \forall x P(x)$$
]

21 / 26

$$(C1)$$
 $A\supset (B\supset A)$
 $(C2)$ $(A\supset (B\supset C)$

$$(C2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$$

$$(C3) \qquad (\neg A\supset B)\supset ((\neg A\supset \neg B)\supset A)$$

(C11)
$$\forall xA \supset [A(x||t)]$$

$$(C12) \quad \forall x(B) \Rightarrow (B) \quad \forall xA), \text{ ahol } x \notin Par(B)$$

(C13)
$$[A(x||t)] \supset \exists x A$$

(C15)
$$A \supset \forall xA$$
, ahol $x \notin Par(A)$
(C17) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

Levezetési szabály (modus ponens) $\{A\supset B,A\}\vdash B$

Artaianositas szabalya
$$\{A_1, A_2...\} \vdash B \text{ és } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

2. Feladat

Bizonyítható a következő kifejezés? $\vdash \forall x P(x) \supset \forall v P(v)$

Dedukciós tétel használata után: $\{\forall x P(x)\} \vdash \forall y P(y)$ Általánosítás szabály alapján elegendő: $\{\forall x P(x)\} \vdash P(y)$

1.
$$\forall x P(x) \supset P(y)$$
 [C11; $A||P(x)$]

2.
$$\forall x P(x)$$
 [hip]

3.
$$P(y)$$
 [mp(1,2)]

- (C1) $A\supset (B\supset A)$
- (C2) $(A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- (C3) $(\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

- $\forall x A \supset [A(x||t)]$
- $\forall x(B \supset A) \supset (B \supset \forall xA)$, ahol $x \notin Par(B)$ (C12)
- (C13) $[A(x||t)] \supset \exists x A$ $A \supset \forall xA$, ahol $x \notin Par(A)$ (C15)
- (C17) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

Levezetési szabály (modus ponens)

$$\{A\supset B,A\}\vdash B$$

Általánosítás szabálya

$$\{A_1, A_2...\} \vdash B \text{ \'es } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

3. Feladat

Bizonyítható ekvivalens-e a következő két formula? $\forall x (R(y) \supset P(x)) = R(y) \supset \forall x P(x)$

Első levezetés: $\forall x (R(y) \supset P(x)) \vdash R(y) \supset \forall x P(x)$

Dedukciós tétel használata után: $\{\forall x (R(y) \supset P(x)), R(y)\} \vdash \forall x P(x)$ Általánosítás szabály alapján elegendő: $\{\forall x (R(y) \supset P(x)), R(y)\} \vdash P(x)$

- $\forall x (R(y) \supset P(x))$ [hip] $\forall x (R(y) \supset P(x)) \supset (R(y) \supset P(x))$ [C11]
- $R(y) \supset P(x)$ [mp(1,2)]
- 4. R(y)[qid]
- 5. P(x)[mp(3,4)]

$$\begin{array}{ll} (C1) & A\supset (B\supset A)\\ (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \end{array}$$

$$(C2) \qquad (A \supset (B \supset C)) \supset ((A \supset B) \supset (A \supset C))$$

$$(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

(C11)
$$\forall xA \supset [A(x||t)]$$

(C12)
$$\forall x(B \supset A) \supset (B \supset \forall xA)$$
, ahol $x \notin Par(B)$
(C13) $[A(x||t)] \supset \exists xA$

(C15)
$$A \supset \forall xA$$
, ahol $x \notin Par(A)$
(C17) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

Levezetési szabály (modus ponens)

Levezetési szabály (modus ponens
$$\{A \supset B, A\} \vdash B$$

Általánosítás szabálva

$$\{A_1, A_2...\} \vdash B \text{ \'es } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

3. Feladat

Bizonyítható ekvivalens-e a következő két formula? $\forall x (R(y) \supset P(x)) = R(y) \supset \forall x P(x)$

Második levezetés:
$$\{R(y) \supset \forall x P(x)\} \vdash \forall x (R(y) \supset P(x))$$

Altalánosítás szabály alapján elegendő: $\{R(y) \supset \forall x P(x)\} \vdash R(y) \supset P(x)$

1.
$$(R(y) \supset (\forall x P(x) \supset P(x))) \supset ((R(y) \supset \forall x P(x)) \supset (R(y) \supset P(x))$$
 [C2]

2.
$$(\forall x P(x) \supset P(x)) \supset (R(y) \supset (\forall x P(x) \supset P(x)))$$

3.
$$\forall x P(x) \supset P(x)$$

4.
$$R(y) \supset (\forall x P(x) \supset P(x))$$

5.
$$(R(y) \supset \forall x P(x)) \supset (R(y) \supset P(x))$$

5.
$$(R(y) \supset \forall x P(x)) \supset (R(y) \supset P(x))$$

6.
$$R(y) \supset \forall x P(x)$$

7.
$$R(y) \supset P(x)$$

$$\begin{array}{ll} (C1) & A\supset (B\supset A) \\ (C2) & (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C)) \end{array}$$

$$(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$$

(C11)
$$\forall xA \supset [A(x||t)]$$

(C12)
$$\forall x(B \supset A) \supset (B \supset \forall xA)$$
, ahol $x \notin Par(B)$
(C13) $[A(x]|t] \supset \exists xA$
(C15) $A \supset \forall xA$, ahol $x \notin Par(A)$
(C17) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

(C15) $A \supset \forall xA$, ahol $x \notin Par(A)$

Levezetési szabály (modus ponens) $\{A \supset B, A\} \vdash B$

Altalánosítás szabálya
$$\{A_1, A_2...\} \vdash B \text{ és } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

3. Feladat

Bizonyítható ekvivalens-e a következő két formula? $\forall x (R(y) \supset P(x)) = R(y) \supset \forall x P(x)$

Második levezetés: $\{R(y) \supset \forall x P(x)\} \vdash \forall x (R(y) \supset P(x))$

Hogy lett volna szebb?

Általánosítás szabály alapján elegendő: $\{R(y) \supset \forall x P(x)\} \vdash R(y) \supset P(x)$ Dedukciós tétel használata után: $\{R(y) \supset \forall x P(x), R(y)\} \vdash P(x)$

- $R(y) \supset \forall x P(x)$ [hip]
- 2. R(y)[hip]
- R(y) [hip] $\forall x P(x)$ [mp(1,2)] 3.
- $\forall x P(x) \supset P(x)$ [C11]
- [mp(3,4)]P(x)

- $(C1) \qquad A \supset (B \supset A)$
- $(C2) \qquad (A\supset (B\supset C))\supset ((A\supset B)\supset (A\supset C))$
- $(C3) \qquad (\neg A \supset B) \supset ((\neg A \supset \neg B) \supset A)$

- (C11) $\forall xA \supset [A(x||t)]$
- (C12) $\forall x(B \supset A) \supset (B \supset \forall xA)$, ahol $x \notin Par(B)$
- (C13) $[A(x||t)] \supset \exists xA$ (C15) $A \supset \forall xA$, ahol $x \notin Par(A)$
- (C15) $A \supset \forall xA, \text{ anol } x \notin Par(A)$ (C17) $\forall x(A \supset B) \supset (\forall xA \supset \forall xB)$

Levezetési szabály (modus ponens) $\{A \supset B, A\} \vdash B$

Általánosítás szabálya

$$\{A_1, A_2...\} \vdash B \text{ és } x \notin par(A_i) \Rightarrow \{A_1, A_2...\} \vdash \forall xB$$

4. Feladat

Bizonyítható-e a következő formula: $\forall x (\neg Q(x, y) \supset R(z)) \supset (\neg R(z) \supset \forall x Q(x, y))$?

$$\begin{cases} \} \vdash \forall x (\neg Q(x,y) \supset R(z)) \supset (\neg R(z) \supset \forall x Q(x,y)) \iff \text{(dedukciós tétel)} \\ \{ \forall x (\neg Q(x,y) \supset R(z)) \} \vdash (\neg R(z) \supset \forall x Q(x,y)) \iff \text{(dedukciós tétel)} \\ \{ \forall x (\neg Q(x,y) \supset R(z)), \neg R(z) \} \vdash \forall x Q(x,y) \Rightarrow \text{(általánosítás)} \\ \{ \forall x (\neg Q(x,y) \supset R(z)), \neg R(z) \} \vdash Q(x,y) \end{cases}$$

- 1. $(\neg Q(x,y) \supset R(z)) \supset ((\neg Q(x,y) \supset \neg R(z)) \supset Q(x,y))$ 2. $\forall x (\neg Q(x,y) \supset R(z)) \supset (\neg Q(x,y) \supset R(z))$
- 3. $\forall x(\neg Q(x,y) \supset R(z)) \supset (\neg Q(x,y) \supset R(z))$
- 3. $\forall x(\neg Q(x,y) \supset R(z))$
- $4. \quad \neg Q(x,y) \supset R(z)$
- 5. $((\neg Q(x,y) \supset \neg R(z)) \supset Q(x,y))$
- 6. $\neg R(z) \supset (\neg Q(x, y) \supset \neg R(z))$
- 7. $\neg R(z)$
- 8. $\neg Q(x, y) \supset \neg R(z)$
- 9. Q(x,y)

[C3;
$$A||Q(x,y); B||R(z)$$
]

[C11;
$$A||\neg Q(x,y) \supset R(z)$$
]

- [hip] [mp(2,3)]
- [mp(1,4)]
- [C1; $A||\neg R(z); B||\neg Q(x,y)$]
- [hip]
- [mp(6,7)]
- [mp(5,7)]