

June 2006

FSA66 Low-Voltage UHS Single SPST Normally Open Analog Switch

Features

- Space-saving SOT23 or SC70 5-lead package
- Ultra small MicroPak™ leadless package
- Broad V_{CC} operating range: 1.65V–5.5V
- Rail-to-rail signal handling
- 5Ω switch connection between two ports
- Minimal propagation delay through the switch
- Low I_{CC}
- Zero bounce in flow-through mode
- Control input compatible with CMOS input levels
- >250 MHz -3dB bandwidth

General Description

The FSA66 is a ultra high-speed (UHS) CMOS compatible Single-Pole/Single-Throw (SPST) analog switch. The low On Resistance (R_{ON}) of the switch allows input to be connected to output with minimal propagation delay and without generating additional ground bounce noise. The device is organized as a 1-bit switch with a switch enable (OE) signal. When OE is HIGH, the switch is on and Port A is connected to Port B. When OE is LOW, the switch is open and a high-impedance state exists between the two ports.

Ordering Information

Order Number	Package Number	PB-Free	Product Code Top Mark	Package Description	Packing Method
FSA66M5X	MA05B	Yes	7Z66	5-Lead SOT23, JEDEC MO-178, 1.6mm	3k Units on Tape and Reel
FSA66P5X	MAA05A	Yes	Z66	5-Lead SC70, EIAJ SC-88a, 1.25mm Wide	3k Units on Tape and Reel
FSA66L6X	MAC06	Yes	EE	6-Lead MicroPak, 1.0mm Wide	5k Units on Tape and Reel

 $\label{eq:microPak} \mbox{MicroPak}^{\tiny{TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Analog Symbol

Connection Diagrams

Pin Assignments for SC70

Pin Assignments for MicroPak

(Top Through View)

Pin Descriptions

Pin Names	Function
OE	Switch Enable Input
A	Bus A I/O
В	Bus B I/O
NC	No Connect

Function Table

OE	B ₀	Function
L	High-Z State	Disconnect
Н	A ₀	Connect

Absolute Maximum Ratings

The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table defines the conditions for actual device operation.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
V _S	DC Switch Voltage	-0.5V to V _{CC} +0.5V
V _{IN}	DC Input Voltage ⁽¹⁾	-0.5V to +7.0V
I _{IK}	DC Input Diode Current, V _{IN} < 0V	_50mA
I _{OUT}	DC Output Sink Current	128mA
I _{CC} /I _{GND}	DC V _{CC} /GND Current	±100mA
T _{STG}	Storage Temperature Range	-65°C to +150°C
TJ	Junction Lead Temperature under Bias	+150°C
T _L	Junction Lead Temperature (soldering, 10 seconds)	+260°C
P _D	Power Dissipation @ 85°C	
	SOT23-5	200mW
	SC70-5	150mW

Recommended Operating Conditions⁽²⁾

Symbol	Parameter	Rating
V _{CC}	Power Supply Operating	1.65V to 5.5V
V _{IN}	Control Input Voltage	0V to 5.5V
V _{IN}	Switch Input Voltage	0V to V _{CC}
V _{OUT}	Switch Output Voltage	0V to V _{CC}
t_r, t_f	Input Rise and Fall Time	
	Control Input; V _{CC} = 2.3V to 3.6V	0ns/V to 10ns
	Control Input; V _{CC} = 4.5V to 5.5V	0ns/V to 5ns
	Switch I/O	0ns/V to DC
T _A	Operating Temperature	-40°C to +85°C
θ_{JA}	Thermal Resistance	
	SOT23-5	300°C/W
	SC70-5	425°C/W

Notes:

- 1. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 2. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

				Т	T _A =25°C		T _A =			
			.,		_			- (4)		
Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Тур.	Max.	Min.	Typ. ⁽⁴⁾	Max.	Units
V _{IH}	HiGH-Level Input Voltage		1.65 to 1.95	_	_	_	0.75 V _{CC}	_	_	V
			2.3 to 5.5	_	_	-	0.7 V _{CC}	-	-	
V _{IL}	LOW-Level Input Voltage		1.65 to 1.95	-	-	-	_	_	0.25 V _{CC}	٧
			2.3 to 5.5	_	_	_	-	-	0.3 V _{CC}	
I _{IN}	Control Input Leakage Cur- rent	$0 \le V_{IN} 5.5V$	0 to 5.5	_	_	-	_	±0.05	±1.0	μА
I _{OFF}	OFF Leakage Current	$0 \le A, B \le V_{CC}$	1.65 to 5.5	-	_	_	_	±0.05	±10.0	μА
R _{ON}	Switch ON	V _{IN} = 0V, I _{IN} = 30mA	4.5	_	_	_	_	3	7	Ω
	Resistance ⁽³⁾	V _{IN} = 2.4V, I _{IN} = 15mA		_	_	_	_	5	12	
		V _{IN} = 4.5V, I _{IN} = 30mA		_	_	-	-	7	15	
		V _{IN} = 0V, I _{IN} = 24mA	3.0	_	_	_	_	4	9	
		V _{IN} = 3V, I _{IN} = 24mA		_	_	_	_	10	20	
		V_{IN} = 0V, I_{IN} = 8mA	2.3	_	_	_	_	5	12	
		$V_{IN} = 2.3V, I_{IN} = 8mA$		_	_	_	_	13	30	
		$V_{IN} = 0V$, $I_{IN} = 4mA$	1.8	_	_	_	_	7	28	
		$V_{IN} = 1.8V, I_{IN} = 4mA$		_	_	_	_	25	60	
R _{flat}	On Resistance Flatness ⁽³⁾⁽⁵⁾⁽⁶⁾	I_A = -30mA, $0 \le V_{Bn} \le V_{CC}$	5.0	-	6	-	_	_	_	Ω
		I_A = -24mA, $0 \le V_{Bn} \le V_{CC}$	3.3	-	12	-	_	_	_	
		I_A = -8 mA, $0 \le V_B \le V_{CC}$	2.5	-	28	-	-	_	_	
		$\begin{array}{l} I_A = -4mA, \ 0 \leq V_{Bn} \leq \\ V_{CC} \end{array}$	1.8	-	125	_	_	_	_	
I _{CC}	Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0V$	1.65 to 5.5	-	-	_	_	0.05	10	μА

Notes:

- 3. Measured by the voltage drop between A and B pins at the indicated current through the switch. ON resistance is determined by the lower of the voltages on the two (A or B) pins.
- 4. All typical values are at the specified V_{CC} , and T_A = 25°C.
- 5. Parameter is characterized, but not tested in production.
- 6. Flatness is defined as the difference between the maximum and minimum value of on resistance over the specified range of conditions.

AC Electrical Characteristics

All typical values are @ 25°C unless otherwise specified.

				T_A = -40°C to +85°C, C_L = 50pF, RU = RD = 500 Ω			Figure	
Symbol	Parameter	Conditions	V _{CC} (V)	Min.	Typ. ⁽⁷⁾	Max.	Units	Number
tPHL, tPLH	Propagation Delay Bus to Bus ⁽⁸⁾	V _{IN} = OPEN	1.65 to 1.95	_	_	4.3	ns	Figure 1 Figure 2
			2.3 to 2.7	-	-	1.2		
			3.0 to 3.6	_	-	0.8		
			4.5 to 5.5	_	-	0.3		
t_{PZL}, t_{PZH}	Output Enable Time	V_{IN} = 2 x V_{CC} for t_{PZL} V_{IN} = 0V for t_{PZH}	1.65 to 1.95	1.5	7.0	14.2	ns	Figure 1 Figure 2
			2.3 to 2.7	1.5	3.3	7.0		
			3.0 to 3.6	1.5	2.4	5.5		
			4.5 to 5.5	1.5	2.0	4.5		
t _{PLZ} , t _{PHZ}	Output Disable Time	V_{IN} = 2 x V_{CC} for t_{PLZ} V_{IN} = 0V for t_{PHZ}	1.65 to 1.95	1.5	9.2	18.2	ns	Figure 1 Figure 2
			2.3 to 2.7	1.5	5.3	9.0		
			3.0 to 3.6	1.5	4.0	7.0		
			4.5 to 5.5	1.5	2.7	5.0		
Q	Charge Injection ⁽⁹⁾	$C_L = 0.1$ nF, $V_{GEN} = 0$ V, $R_{GEN} = 0$ Ω, $f = 1$ MHz	1.65 to 5.5		0.05		pC	Figure 3
OIRR	Off Isolation ⁽¹⁰⁾	$R_L = 50\Omega$, $C_L = 5pF$, $f = 10MHz$	1.65 to 5.5	– 50		dB	Figure 4	
BW	-3db Bandwidth	$R_L = 50\Omega$	1.65 to 5.5	>250			MHz	Figure 5
THD	Total Harmonic Distortion ⁽⁷⁾	$R_L = 600\Omega$, $0.5V_{P-P}$, $f = 600Hz$ to $20KHz$	5		.011		%	

Capacitance

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C _{IN}	Control Pin Input Capacitance	V _{CC} = 0V	_	2	-	pF
C _{I/O}	Input/Output Capacitance	V _{CC} = 5.0V	ı	6	ı	pF

Notes:

- 7. All typical values are at the specified V_{CC} and T_A = 25°C.
- 8. This parameter is guaranteed by design, but is not tested. The switch contributes no propagation delay other than the RC delay of the typical ON Resistance of the switch and the 50 pF load capacitance when driven by an ideal voltage source (zero output impedance).
- 9. Guaranteed by design.
- 10.Off Isolation = 20 $log_{10} [V_A/V_{BN}]$.

AC Loading and Waveforms

Input driven by 50Ω source terminated in 50Ω .

C₁ includes load and stray capacitance.

Input PRR = 1.0MHz; $t_w = 500ns$.

Figure 1. AC Test Circuit

Figure 2. AC Waveforms

Figure 3. Charge Injection Test

AC Loading and Waveforms (Continued)

Figure 4. Off Isolation

Figure 5. Bandwidth

Tape Specification

Tape Format for SOT23, SC70

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Tape Status
M5X, P5X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions

Dimensions are in millimeters (inches) unless otherwise specified.

BEND RADIUS NOT TO SCALE

Package	Tape Size	Dim A	Dim B	Dim F	Dim K _O	Dim P1	Dim W
SC70-5	8 mm	0.093 (2.35)	0.096 (2.45)	0.138 ± 0.004 (3.5 ± 0.10)	0.053 ± 0.004 (1.35 ± 0.10)	0.157 (4)	0.315 ± 0.004 (8 ± 0.1)
SOT23-5	8 mm	0.130 (3.3)	0.130 (3.3)	0.138 ± 0.002 (3.5 ± 0.05)	0.055 ± 0.004 (1.4 ± 0.11)	0.157 (4)	0.315 ± 0.012 (8 ± 0.3)

Tape Specification (Continued)

Tape Format

Package Designator	Tape Section	Cavity Number	Cavity Status	Cover Tape Status
L6X	Leader (Start End)	125 (typ)	Empty	Sealed
	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Dimensions

Dimensions are in millimeters (inches) unless otherwise specified.

Reel Dimensions for Micropack 6

Dimensions are in millimeters (inches) unless otherwise specified.

Tape Size	Α	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 +0.059 / -0.000	0.567	W1 +0.078 / -0.039
	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 +1.50 / -0.00)	(14.40)	(W1 +2.00 / -1.00)

Physical Dimensions

Dimensions are in inches (millimeters) unless otherwise noted.

BOTTOM VIEW

LAND PATTERN RECOMMENDATION

NOTES: UNLESS OTHEWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO JEDEC MO-178, ISSUE B, VARIATION AA, DATED JANUARY 1999,
- B) ALL DIMENSIONS ARE IN MILLIMETERS.

MA05BrevC

5-Lead SOT23, JEDEC MO-178, 1.6mm

Physical Dimensions (Continued)

Dimensions are inches (millimeters) unless otherwise noted.

NOTES: UNLESS OTHERWISE SPECIFIED

- A) THIS PACKAGE CONFORMS TO EIAJ SC-88A, 1996.B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

MAA05AREVD

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide

Physical Dimensions

Dimensions are inches (millimeters) unless otherwise noted.

- Notes:
- 1. CONFORMS TO JEDEC STANDARD M0-252 VARIATION UAAD
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. DRAWING CONFORMS TO ASME Y14.5M-1994

MAC06AREVC

Pb-Free 6-Lead MicroPak, 1.0mm Wide

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST®	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench®	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™
DOME™	HiSeC™	MSX™	Quiet Series™	TinyLogic [®]
EcoSPARK™	I ² C™	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX™	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect™	OCXPro™	μSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC®	ScalarPump™	UniFET™
FACT Quiet Series™		OPTOPLANAR™	SILENT SWITCHER®	UltraFET [®]
Across the board. Around the world.™		PACMAN™	SMART START™	VCX™
The Power Franchise®		POP TM	SPM™	Wire™
Programmable Active Droop™		Power247™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev.I19