The following process describes the setup and execution of the SITL on a Ubuntu 20.04 OS, using ROS Noetic. Other versions are not covered in this tutorial.

Docker setup

Begin by installing Docker (https://docs.docker.com/engine/install/ubuntu/). Preferably, install using apt package manager.

Add your user to the "docker" group. To add your user to the Docker group run sudo usermod -a -G docker <your_user_name_here>

Logout/login or restart. You should now be able to to run docker run hello-world without sudo.

Download and unzip the files. Then, make all scripts executable chmod + x *.sh

Run the installation script, it will download and install the files needed. _/install.sh

Create two folders named host and catkin_ws in the same folder as the install.sh file, mkdir -p host mkdir -p catkin_ws

These folders are shared between host machine and Docker container, and either side can access and edit files in it. Find the **path to these folders** in the **host** machine (not inside Docker), as it will be relevant in the next step.

Copy the world created (my.world) to the *host* folder (shared folder). This could be done manually in the file explorer software in a terminal by:

cp /path/to/my.world /path/to/host/

Copy the offboard package folder to the correct place in the catkin_ws (shared folder).

cp -r offboard_package /path/to/catkin_ws/offboard_package/

Docker execution

Using 5 terminals, run the 5 sets of commands below

Terminal 1 – execute the Gazebo simulator

./start.sh export PX4_SITL_WORLD=~/host/danger_zones.world

cd ~/PX4-Autopilot/ && make px4_sitl_default gazebo_typhoon_h480 param set COM_RCL_EXCEPT 4

Terminal 2 – execute the PX4 firmware

./terminal.sh

roslaunch mavros px4.launch fcu_url:="udp://:14540@127.0.0.1:14557"

Terminal 3 – monitor position

./terminal.sh

rqt_plot /mavros/setpoint_raw/local/position/x:y:z /mavros/local_position/pose/pose/position/x:y:z

Terminal 4 – monitor velocity

./terminal.sh

rqt_plot /mavros/setpoint_raw/local/velocity/x:y:z /mavros/local_position/velocity_local/twist/linear/x:y:z

Terminal 5 – execute the FB controller

./terminal.sh cd catkin_ws/offboard_package/ source devel/setup.bash rosrun offb *your_fb_controller*.py

The terminal 5 is responsible for executing the offb controller implemented and plotting the top view figure with the trajectory.