НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Дисциплина: Информатика Лабораторная работа № 6

«Работа с системой компьютерной вёрстки ТЕХ»

Выполнил студент

Григорьев Никита Александрович Группа № Р3124

Преподаватель:

Болдырева Елена Александровна

 $\Phi 214.~B$ схеме, изображенной на рисунке 11, $R_1=10~$ ком, $R_2=R_3=5~$ ком, а к клеммам 1-2~ приложено переменное напряжение (U=127) в. Диоды можно считать идеальными — при одном направлении тока их сопротивление бесконечно мало, при другом — бесконечно велико. Найти, какая мощность выделяется на сопротивлении R_1 .

Так как диоды идеальные, можно считать что половину периода изменения напряжения на клеммах участки цепи AB и CD накоротко замкнуты, а другую половину периода—разомкнуты. Это означает, что в первом случае данная схема эквивалентна схеме приведенной на рисунке 12, a, а во втором—схеме, приведенной на рисунке 12, δ

Количество теплоты, выделяемой на сопротивлении R_1 в течении первой половины периода, равно

$$Q_1 = \frac{U^2}{R_1} \frac{T}{2}$$

(T- период изменения напряжения в цепи U=127-действующее значение напряжения).

В течении второй половины периода через сопротивление R_1 идет ток

$$l = \frac{U}{R_1 + R_2 + R_3}$$

и на нём выделяется количество теплоты

$$Q_2 = l^2 R_1 \frac{T}{2} = \frac{U}{(R_1 + R_2 + R_3)^2} R_1 \frac{T}{2}.$$

За период T на сопротивлении R_1 выделяется количество теплоты

$$Q = Q_1 + Q_2 = \frac{T}{2}U^2 \left[\frac{1}{R_1} + \frac{R_1}{(R_1 + R_2 + R_3)^2} \right]$$

Это означает, что в среднем (по периоду) на сопротивлении R_1 выделяется мощность

$$P = \frac{Q}{T} = \frac{U62}{2} \left[\frac{1}{R_1} + \frac{R_1}{(R_1 + R_2 + R_3)^2} \right] \approx 1em.$$

 $\Phi 215$. Два мыльных пузыря радиусов R_1 и R_2 сливаются в один пузырь радиуса R_3 . Найти атмосферное давление если коэффициент поверхностного натяжение мыльной пленки равен σ .

При решении этой задачи будем исходить из того, что после слияния двух

Рис. 11. мыльных пузырей в один суммарная масса воздуха в них не изменится:

$$m_3 = m_1 = m_2 \tag{1}$$

Согласно уравнение Менделеева—Клапейрона, масса воздуха в пузыре равна

$$m = \frac{pV\mu}{RT},\tag{2}$$

где $V=\frac{4}{3}\pi R^3$ — объем пузыря, μ —молекулярная масса воздуха, T—температура окружающего воздуха и одинакова для всех пузырей) и R— универсальная газовая постоянная.

Запишем условие равновесия пузыря:

$$p = p_a + p_{\text{доб}} = p_a + \frac{2\sigma}{R_{\pi}},$$
 (3)

где $p_{\text{доб}}=\frac{2\sigma}{R_{\pi}}$ —добавочное давление под сферической поверхностью мыльной пленки радиуса $R_{\pi}*$), а p_a —атмосферное давление.

*) Заметим, что в данном случае σ — коэффициент поверхностного натяжения мыльной пленки (заданный в условии), численно равный удвоенному значение коэффициента поверхностного натяжения мыльного раствора, приводимого в таблицах.

Рис. 12.

12	13	14	15	23
24	25	34	35	45
123	124	125	134	135
145	234	235	245	345

Puc. 1.

этому

$$-\frac{1}{3}\sum M_{ijkl} + \frac{2}{3}\sum M_{12345} \leqslant 0.$$

Теперь уже легко получить требуемый ответ. Из (7) следует, что

$$\sum M_{ij}\geqslant 2\sum M_i-3M\geqslant 2(5\cdot \frac{1}{2})-3=2$$

Формулировка общей задачи; случай двух зарплат

На кафтане M площади 1 имеется n заплат M_1, M_2, \ldots, M_n , площадь каждой из которых не меньше известного нам числа a; требуется оценить площадь наибольшего из пересечений $M_i j$ заплат.

Другими словами, для каждой конфигурации из n заплат на кафтане мы находим м а к с и м а л ь н о е по площади пересечение $M_i j$, а потом отыскиваем м и н и м у м этого максимума $M_i j$ по всем возможным конфигурациям заплат*). Такого рода «минимаксные» (то есть связанные с нахождением минимума некоторых максимумов) задачи играют в современной математике очень большую роль.

Искомое число $minmax M_{ij}$ зависит, разумеется от заданного числа α , то есть является функцией от α ; так как оно зависит также и от числа n заплат, то мы обозначим эту функцию через $f_n(\alpha)$ (где, очевидно, $0 \le \alpha \le 1$, а $n \ge 2$). Решение задачи М185 сводится к доказательству равенства