Distribution

Econ 361 Week 2

Joint, Marginal, Conditional

- (Joint distribution, marginal distribution, conditional distribution) are all types of probability mass function (pmf) or probability density function (pdf) – depending on whether the underlying random variables are continuous or discrete
- When the random variables are all discrete, these "distributions" can be interpreted as probabilities
 - e.g. the joint distribution of (X, Y) when (X, Y) are both discrete random variables provides the probability of the joint event (X = x, Y = y)

$$= P_{XY}(x, y) = P(X = x, Y = y)$$

• e.g. similarly, the conditional distribution of Y given X = 2 provides the probability of the conditional event (X = 2, Y = y)

$$= P(Y = y \mid X = 2) = P(X = 2, Y = y) / P_X(2) = P(X = 2, Y = y) / P(X = 2)$$

Two Dice Roll Experiment

		Second Die Roll (Y)									
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"				
	"Roll 1"										
	"Roll 2"										
First Die Roll	"Roll 3"										
(X)	"Roll 4"										
,	"Roll 5"										
	"Roll 6"										

36 Atomistic, mutually exclusive events ("simple" events) that span the Sample Space Introduce two random variables, (X, Y), to characterize possible outcomes of this random experiment X maps each of the 36 events in the Sample Space to the number rolled by first die

Y maps each of the 36 events in the Sample Space to the number rolled by second die

Two (*Fair*) Dice Roll Experiment Joint Distribution of (X, Y)

		Second Die Roll (Y)									
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"				
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36				
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36				
First Die Roll	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/36				
(X)	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36				
, ,	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36				
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36				

36 Atomistic, mutually exclusive events ("simple" events) that span the Sample Space Introduce two random variables, (X, Y), to characterize possible outcomes of this random experiment X maps each of the 36 events in the Sample Space to the number rolled by first die Y maps each of the 36 events in the Sample Space to the number rolled by second die

Two (*Fair*) Dice Roll Experiment Marginal Distribution of Y

		Second Die Roll (Y)								
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"			
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36			
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36			
First Die	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/36			
Roll	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36			
(X)	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36			
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36			
		1/6	1/6	1/6	1/6	1/6	1/6			
		Y = 1	Y = 2	Y = 3	Y = 4	Y = 5	Y = 6			

Marginal distribution "sums across" the relevant evaluations of the joint distribution

For continuous random variables, often refer to "integrating out" the other random variables in the relevant joint distribution

Two (*Fair*) Dice Roll Experiment Marginal Distribution of X

				Second D	ie Roll (Y)			
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"	
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 1
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 2
First Die Roll	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/30	1/6 X = 3
(X)	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 4
	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 5
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 6

Marginal distribution "sums across" the relevant evaluations of the joint distribution

For continuous random variables, often refer to "integrating out" the other random variables in the relevant joint distribution

Two (*Fair*) Dice Roll Experiment Conditional Distribution (1/2)

				Second D	ie Roll (Y)			
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"	
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 1
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 2
First Die	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 3
Roll	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 4
(X)	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 5
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36	1/6 X = 6
		1/6 Y = 1	1/6 Y = 2	1/6 Y = 3	1/6 Y = 4	1/6 Y = 5	1/6 Y = 6	

Conditional probability restricts the relevant Sample Space and then reconsider the relative frequency within this restricted Sample Space

Example: $P(X \mid Y = 3)$ "Conditional distribution of X given Y = 3"

Conditional Probability "Definition"

For our example: B is event corresponding to Y = 3

A is event corresponding to X = x

Two (*Fair*) Dice Roll Experiment Conditional Distribution (2/2)

				Second Die l	Roll (Y)			
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"	
	"Roll 1"			(1/36) / (1/6) = 1/6				1/6 X = 1
	"Roll 2"			= 1/6				1/6 X = 2
First Die Roll	"Roll 3"			= 1/6				1/6 X = 3
(X)	"Roll 4"			= 1/6				1/6 X = 4
()	"Roll 5"			= 1/6				1/6 X = 5
	"Roll 6"			= 1/6				1/6 X = 6
		1/6 Y = 1	1/6 Y = 2	1/6 Y = 3	1/6 Y = 4	1/6 Y = 5	1/6 Y = 6	

Conditional probability restricts the relevant Sample Space and then reconsider the relative frequency within this restricted Sample Space

Example: P(X = x | Y = 3) = P(X = x, Y = 3) / P(Y = 3) = (1/36) / (1/6) = 1/6

More than 2 Random Variables

- Suppose the random experiment consisted of three die rolls
 - Let Z be the die roll that maps the simple event in the Sample Space to the number rolled by the third die
- The concepts of joint/marginal/conditional distributions generalize to the case of N random variables (where N is some positive integer > 1)
 - To get joint distribution of (X, Y), sum across the relevant realizations of the joint distribution (X, Y, Z) i.e. "integrate out" Z
 - The conditional distribution of (X, Y) given Z = 2 can be obtained from taking the ratio of the appropriate evaluations of the joint distribution (X, Y, Z) and the marginal distribution of Z evaluated at Z = 2

Transformations of Random Variables

- Let's go back to the two die roll random experiment
- Instead of a third die roll, consider a third random variable that is a transformation of the other two random variables (X, Y)
- Say W = X + Y
 - W is the random variable that maps the simple events in the Sample Space to the sum of the two die rolls
- Knowing the joint distribution of (X, Y), can we arrive at the marginal distribution of W?

Two (*Fair*) Dice Roll Experiment Marginal Distribution of W = X + Y (1/2)

		Second Die Roll (Y)									
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"				
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36				
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36				
First Die Roll	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/36				
(X)	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36				
,	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36				
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36				

Consider the event W = 7

As W is a transformation of (X, Y), consider the joint events (X = x, Y = y) that correspond to (W = 7)

- $P_W(7) = P(W = 7) = sum of all the P(X = x, Y = y) such that x + y = 7$
- $P_W(7) = P(W = 7) = sum of all the P(X = x, Y = y) such that x + y = 7 = 1/36 * 6 = 1/6$

Note: (X, Y, Z) all have the same domain (same Sample Space as same random experiment)

Two (*Fair*) Dice Roll Experiment Marginal Distribution of W = X + Y (2/2)

				Second D	ie Roll (Y)			
		"Roll 1"	"Roll 2"	"Roll 3"	"Roll 4"	"Roll 5"	"Roll 6"	
	"Roll 1"	1/36	1/36	1/36	1/36	1/36	1/36	
	"Roll 2"	1/36	1/36	1/36	1/36	1/36	1/36	
First Die Roll	"Roll 3"	1/36	1/36	1/36	1/36	1/36	1/36	
(X)	"Roll 4"	1/36	1/36	1/36	1/36	1/36	1/36	
. ,	"Roll 5"	1/36	1/36	1/36	1/36	1/36	1/36	
	"Roll 6"	1/36	1/36	1/36	1/36	1/36	1/36	

Consider the event W = 4

As W is a transformation of (X, Y), consider the joint events (X = x, Y = y) that correspond to (W = 4)

- $P_W(4) = P(W = 4) = sum of all the P(X = x, Y = y) such that x + y = 4$
- $P_W(4) = P(W = 4) = sum of all the P(X = x, Y = y) such that x + y = 4 = 1/36 * 3 = 1/12$

Note: There are some realizations of X for which W = 4 is impossible (similarly some realizations of Y)

What about continuous random variables?

- (Joint, marginal, conditional) distributions may no longer be interpreted as probabilities; they must be interpreted as densities
- For continuous random variables, the respective values of some (joint, marginal, conditional) distribution for two events that are "adjacent" to each other, say X = x and $X = x + \varepsilon$, are usually connected,
- This allows us to "integrate" where we had previous summed
 - Think "Riemann sum" interpretation of integrals

Continuous Random Variables

 For continuous random variables, helps to "graph" the (joint, marginal, conditional) distributions

 Most famous example: the "Bell Curve" for the marginal distribution of X when X is distributed Normal

- Shape of the marginal distribution provides some insights
 - Where is the distribution centered? Symmetric? Modality? Fat or think tails?