Lezione 14

Flip Flop JR, Flip Flop T (Toggle), Circuiti sequenziali, Analisi dei ciruiti sequenziali, Tavola degli stati futuri, Automa

Flip Flop JR, Flip Flop T (Toggle), Circuiti sequenziali, Analisi dei ciruiti sequenziali, Tavola degli stati futuri, Automa

Lezione 14 1

Flip Flop -D Stato di meroria di un bit

Lezione 14 2

- Parte combinatoria (porte logiche a MUX-Decoder)
- lusieune di Flip. Flop che rappresentuuo la memovia che veugono impostati e montenuti Usando di ingresi e assegnando valori tranite Sunzioni di eccitazione

3

ØS

- · Analisi ol: Circuit: sequenziali Data ma vete sequenziale
 - Espressioni booleane delle gunzioni d: eccitazione
 - Espressioni booleane degli atput
 - Tovolo di verità Tovolo deali stati suturi
 - Rappreseutave tramite diagramma avoluzione nel tempo – Automa stati Siniti
 - Descrisione verbale

· Tavola denli stati suturi

Lezione 14

. Tavola degli stati suturi

Comb. degli ingress: ** * degli slot: de: FF **	Funz. d:	Funz. d:	Stat: Suturi
	Exitazione	Uscita	y = y (++1)

· Automa

Possiamo evere oliversistati in bese ad una comb. di ingressi.

Qui stato vappresenta un valore diverso dolla memoria

&>∙

0 0 Y 0 1 0 1 0 1

· Espressioni booleane

S= x ,
$M = X_1 \times_0$
$\geq_1 = \overline{Y} + \times_0$
≥° = λ

$\lambda_1 \chi_0 \gamma$	S Z	2,2.	Y
000	10	10	1
0 0 1	10	0 1	1
010	10	10	1
011	1 0	1 1	1
1 0 0	ο ο	1 0	0
101	0 0	01	1
110	0 1	1 0	0
111	0 1	11	Ð

. Stato

· Automa della machina sequenziale

1
$$\rightarrow$$
 B 00 \rightarrow W 10 \rightarrow S 10 \rightarrow S 10 \rightarrow S 11 \rightarrow Z 11 \rightarrow Z

1) Espression: booleane
$$d_1 = Z_1 = \times \% + \times \%$$

$$d_0 = Z_0 = \times \% + \times \%$$

2). Tavola desli stati sutur;

3)· stati
1/01 O1 O1
1/00
10 1/10 (11) 0/11
0/40

× ¼ ½	D.D.	Z,Z.	1/1 /6
000	00	00	00
010	10	0 1 1 0	10
011	11	1 1	71
100	01	0 1	01
101	11	1 1	11
110	00	00	00
111	10	10	10

Co Automa contatore d: 1 Modulo 4 Secondo codice di Gray

h). Automa sottosorma el: tabella

S). Diagramma temporale

- Representazione in Sunz. oli una sag. in Ingresso con stato di pavenza spec · Clock

	0	1
5.	5./6	51/01
Sa	51/01	53/11
Sz	52/10	50/00
_ S₃	5/11	52/10

· Seq. in ingresse (tott::bit)
· Seq. Stat: (tott::bit)
· Seq. output (tott::bit)

Diag. temp. 6' dollo state 11 per imput 1011

