考研概率论

枫聆

2021年10月11日

目录

1	概率运算	2
	1.1 翻译事件要准确	2
	1.2 贝叶斯的应用	2
	1.3 随机变量函数	
	1.4 连续性判定	2
2	正态分布	3
	2.1 线性运算	3
3	期望和方差	4
	3.1 复杂随机变量函数	4
	3.2 随机变量乘积	4
4	三大分布	4
	4.1 三大分布重要性质的应用	4

概率运算

翻译事件要准确

Example 1.1. 某种产品由自动生产线进行生成,一旦出现不合格品就立即对其进行调整,经过调整后生产出的产品为不合格的概率为 0.1,求两次调整之间至少产生 3 件产品的概率.

hints 设 $A_i = \{ -$ 次调整之后生产的第 i 件为次品 $\}, B = \{ 两次调整之间至少产生 3 件产品<math>\}, 那么$

$$P(B) = 1 - P(A_1) - P(A_2) = 1 - 0.1 - 0.1 * 0.9 = 0.81.$$

贝叶斯的应用

Example 1.2. 假设有两箱同种零件: 第一箱内装有 50 件, 其中 10 件一等品; 第二箱内装有 30 件, 其中 18 件一等品. 现从两箱中随意挑选一箱, 然后从箱中随机取两个零件, 试求在第一次取出的零件是一等品的条件下, 第二次取出一等品的概率.

hints 设事件 A 为选择第一个箱子,事件 B_1 为第一次取出一等品,事件 B_2 为第二次取出一等品. 这里要求的是一个条件概率 $P(B_2|B_1)$,首先我们用贝叶斯公式分别计算 $P(A|B_1)$ 和 $P(\bar{A}|B_1)$,即

$$P(A|B_1) = \frac{P(A)P(B_1|A)}{P(A)P(B_1|A) + P(\bar{A})P(B_1|\bar{A})} = \frac{\frac{10}{50}}{\frac{10}{50} + \frac{18}{30}} = \frac{1}{4},$$

因此 $P(\bar{A}|B_1) = \frac{3}{4}$. 于是

$$P(B_2|B_1) = P(B_2|AB_1)P(A|B_1) + P(B_2|\bar{A}B_1)P(\bar{A}|B_1) = \frac{9}{49} \times \frac{1}{4} + \frac{17}{29} \times \frac{3}{4}$$

随机变量函数

连续性判定

Example 1.3. 设随机变量 X 与 Y 相互独立,X 服从参数为 λ 的指数分布,Y 的分布律为 $P\{Y=-1\}=\frac{1}{2}, PY=1=\frac{1}{2}.$ 判定 Z=X+Y 的分布函数 $F_Z(z)$ 的连续性.

hints 求出 $F_Z(z)$ 来判断是下下策! 这里要结合分布函数的性质来做就比较简单,如果 $F_Z(z)$ 有间断点 a,那么它是左间断的,即 $P\{Z=a\}=F(a)-F(a-0)>0$. 因此我们来求 $P\{Z=a\}$,

$$P\{Z=a\}=P\{X\leq a+1\}P\{Y=-1\}+P\{X\leq a-1\}P\{Y=1\}=\frac{1}{2}\left[P\{X\leq a+1\}+P\{X\leq a-1\}\right]=0$$
最后一个等式成立条件是因为 X 是连续的.

正态分布

线性运算

Example 2.1. 设 X_1, X_2 是两个独立的正态分布 (μ, σ^2) ,证明: $X_1 - X_2$ 和 $X_1 + X_2$ 也是独立的. hints

$$Cov(X_1 - X_2, X_1 + X_2) = D(X_1) - D(X_2) = 0,$$

期望和方差

复杂随机变量函数

Example 3.1. 相互独立的随机变量 X_1 和 X_2 均服从正态分布 $N(0, \frac{1}{2})$,求 $D(|X_1 - X_2|)$.

hints 这里求期望不需要计算出 $|X_1-X_2|$ 的概率分布,只需要确定 X_1-X_2 概率分布即可,设 $Z=X_1-X_2$,那么显然有 $Z\sim N(0,1)$. 首先求 $E(|X_1-X_2|)$

$$E(|X_1 - X_2|) = \int_{-\infty}^{+\infty} |z| f_z(z) dz = 2 \int_0^{+\infty} z \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} = \frac{\sqrt{2}}{\sqrt{\pi}}.$$

再来求 $D(|X_1 - X_2|)$

$$D(|X_1 - X_2|) = D(|Z|) = E(Z^2) - E^2(|Z|) = 1 - \frac{2}{\pi}.$$

Example 3.2. 设随机变量 X 的分布函数为 $F(x) = 0.4\Phi(\frac{x-5}{2}) + 0.6\Phi(\frac{x+1}{3})$, 其中 $\Phi(x)$ 为标准正态分布的分布函数, 求 E(X).

hints 常规思路是先求出 f(x), 再积分

$$\int_{-\infty}^{+\infty} \frac{x}{5} f(\frac{x-5}{2}) dx + \int_{-\infty}^{+\infty} \frac{x}{5} f(\frac{x+1}{3}) dx = \int_{-\infty}^{+\infty} (\frac{4}{5}t+2) f(t) dt + \int_{-\infty}^{+\infty} (\frac{9}{5}t - \frac{3}{5}) f(t) dt = \frac{7}{5}.$$

也可以这样思考 $\Phi(\frac{x-5}{2}) \sim N(5,4), \Phi(\frac{x+1}{3}) \sim N(-1,9),$ 因此 $E(X) = \frac{2}{5} \cdot 5 - 1 \cdot \frac{3}{5} = \frac{7}{5}.$

随机变量乘积

Example 3.3. 设随机变量 X 服从标准正态分布 N(0,1), 求 $E[(X-2)^2e^{2X}]$.

hints 这里要用求随机变量函数期望的公式.

Example 3.4. 设随机变量 X, Y 不相关,且 E(X) = 2, E(Y) = 1, D(X) = 3,求 E[X(X + Y - 2)]. hints

$$Cov(X, X + Y - 2) = E[X(X + Y - 2)] - E(X)E(X + Y - 2).$$

三大分布

三大分布重要性质的应用

Example 4.1. 设 X_1, X_2, \cdots, X_n 来自正态总体 $N(\mu, \sigma^2)$ 的简单随机样本,求 $E\left\{\sum_{i=1}^n X_i \left[\sum_{j=1}^n (nX_j - \sum_{k=1}^n X_k)^2\right]\right\}$. hints \overline{X} 和 S^2 线性无关.

Example 4.2. 设 X_1, X_2, \cdots, X_n 和 Y_1, Y_2, \cdots, Y_n 分别来自正态总体 $N(\mu, \sigma^2)$ 两个相互独立简单随机样本,设它们样本方差分别为 S_X^2 和 S_Y^2 ,求统计量 $T = (n-1)(S_X^2 + S_Y^2)$ 的方差 DT. hints $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$.

Example 4.3. 设随机变量 $X \sim F(n,n), p_1 = P\{X \ge 1\}, p_2 = P\{X \le 1\},$ 证明: $p_1 = p_2$. hints $X \sim F(n_1, n_2) \Rightarrow \frac{1}{X} \sim F(n_2, n_1)$.