



# Vodenje tehnoloških procesov

# dodatni zapiski

Povzeto po gradivu "C2000 Teaching materials", SSQC011, Texas Instruments, European Customer Training Center, University of Applied Sciences Zwickau (FH), priredila

Vanja Ambrožič, Mitja Nemec (vaje)

Univerza v Ljubljani, Fakulteta za elektrotehniko,

Tržaška 25, 1000 Ljubljana, SLOVENIJA

e-mail: vanjaa@fe.uni-lj.si







#### Kaj je digitalni signalni (mikro)krmilnik (Digital Signal Controller)?

- 1. Mikroprocesor (μP):
  - Centralna naprava mikroračunalniškega sistema, sestavljenega iz več IC-jev
  - Dve osnovni arhitekturi:
    - "Von Neumannova arhitektura"
    - "Harvard" arhitektura
  - "Von Neumannova" arhitektura :
    - Podatki in program (koda) si delita pomnilniško področje
    - Podatki in koda si delita pomnilniško vodilo
  - "Harvard" arhitektura :
    - Dve neodvisni pomnilniški področji za podatke in kodo
    - Dva neodvisna sistema pomnilniških vodil za podatke in kodo
  - Za delovanje μP so potrebna dodatna vezja





#### Zgodovina (1984): Microprocessor Intel 80x86







### PC je mikroračunalnik (Micro Computer)

Mikroračunalnik = mikroprocesor (μP) + pomnilnik + periferija







#### Periferija računalnika

- Periferija vključuje:
  - Digitalne vhodne in izhodne povezave (Digital Input / Output lines)
  - Analogno-digitalne pretvornike (ADC)
  - Digitalno-analogne pretvornike(DAC)
  - Časovne/števne enote (Timer / Counter units)
  - Izhode za pulzno širinsko modulacijo (PWM)
  - Enota za digitalni zajem (Digital Capture)
  - Enote za omrežno povezavo:
    - Serial Communication Interface (SCI) UART (ser. asinhr. vmes.)
    - Serial Peripheral Interface (SPI) (ser. sinhronski vmesnik)
    - Controller Area Network (CAN)
    - Inter Integrated Circuit (I<sup>2</sup>C) Bus
    - Local Interconnect Network (LIN)
    - Universal Serial Bus (USB)
    - Local / Wide Area Networks (LAN, WAN)
  - Grafične izhodne enote itd.





#### Mikrokrmilnik - Sistem na integriranem vezju

#### Mikrokrmilnik (Microcontroller - μC)

- Mikroračunalnik na enem samem integriranem vezju!
- Vsa procesna moč in vhodno/izhodni kanali potrebni za krmiljenje v realnem času se nahajajo na IC-ju
- Zagotavlja poceni in procesno močno rešitev za "embedded" krmilne aplikacije (aplikacije z "vstavljenim" – integriranim procesorjem)
- Osnova za skorajda vsak sodobni regulirani sistem
- Čez 200 različnih družin mikrokrmilnikov
- V mikrokrmilnikih najdemo obe arhitekturi µP-jev ("Von Neumann" in "Harvard")





### Digitalni signalni procesorji (Digital Signal Processor – DSP)

- 4. Digitalni signalni procesorji
  - Podobni mikroprocesorjem
  - Dodatne aparaturne enote za pospeševanje obdelave sofisticiranih matematičnih operacij:
    - Dodatne hardverske množilne enote (Multiply Units)
    - Dodatni sistemi vodil za vzporedni dostop do več operandov hkrati
    - Ločena programska in podatkovna pomnilniška prostora
    - Dodatne enote za kazalčno aritmetiko (Pointer Arithmetic Units)
    - Dodatni enote za hardverski pomik (Shifter) za skaliranje in/ali množenje/deljenje z 2<sup>n</sup>





#### Tipični DSP algoritmi

 Vsota produktov (angl. Sum of Products - SOP) ključni element v večini DSP algoritmov, npr

| A 1      | • 4       |
|----------|-----------|
| ΔΙ       | lgoritem  |
| $\Delta$ | 201111111 |

Konvolucija

Diskretna Fourierjeva transformacija

Diskretna kosinusna transformacija

#### Enačba

$$y(n) = \sum_{k=0}^{N} x(k)h(n-k)$$

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp[-j(2\pi/N)nk]$$

$$F(u) = \sum_{x=0}^{N-1} c(u) \cdot f(x) \cdot \cos \left[ \frac{\pi}{2N} u(2x+1) \right]$$





$$SOP z \mu P$$

$$y = \sum_{i=0}^{3} data[i] * coeff[i]$$

- Naloga: s pomočjo PC računalnika rešiti enačbo ob uporabi C jezika
- Možna koda v c-ju::

```
#include <stdio.h>
int data[4]={1,2,3,4};
int coeff[4]={8,6,4,2};
int main(void)
{
    int i;
    int result =0;
    for (i=0;i<4;i++)
        result += data[i]*coeff[i];
    printf("%i",result);
    return 0;
}</pre>
```







$$y = \sum_{i=0}^{3} data[i] * coeff[i]$$

- Kako se bi to izvedlo s procesorjem Pentium?
  - 1. Naj Kazalec1 kaže na data[0]
  - 2. Naj Kazalec2 kaže na coeff[0]
  - 3. Preberi data[i] in prenesi v jedro
  - 4. Preberi coeff[i] in prenesi v jedro
  - 5. Pomnoži data[i]\*coeff[i]
  - 6. Zadnji zmnožek prištej k prejšnjim
  - 7. Spremeni Kazalec1
  - 8. Spremeni Kazalec2
  - 9. Inkrementiraj i;
  - 10. Če i<3, skoči na korak 3 in nadaljuj
- Korake od 3 do 8 imenujemo "6 osnovnih operacij DSP-ja"
- DSP lahko izvrši vseh šest korakov v enem samem strojnem ciklu!





# SOP strojna koda v µP

| Naslov                          | Strojna koda            | Ukaz   | v zbirniku                   |  |
|---------------------------------|-------------------------|--------|------------------------------|--|
| 10: for $(i=0;i<4;i++)$         |                         |        |                              |  |
| 00411960                        | C7 45 FC 00 00 00 00    | mov    | dword ptr [i],0              |  |
| 00411967                        | EB 09                   | jmp    | main+22h (411972h)           |  |
| 00411969                        | 8B 45 FC                | mov    | eax,dword ptr [i]            |  |
| 0041196C                        | 83 C0 01                | add    | eax,1                        |  |
| 0041196F                        | 89 45 FC                | mov    | dword ptr [i],eax            |  |
| 00411972                        | 83 7D FC 04             | cmp    | dword ptr [i],4              |  |
| 00411976                        | 7D 1F                   | jge    | main+47h (411997h)           |  |
| 11: result += data[i]*coeff[i]; |                         |        |                              |  |
| 00411978                        | 8B 45 FC                | mov    | eax,dword ptr [i]            |  |
| 0041197B                        | 8B 4D FC                | mov    | ecx,dword ptr [i]            |  |
| 0041197E                        | 8B 14 85 40 5B 42 00    | mov    | edx,dword ptr[eax*4+425B40h] |  |
| 00411985                        | 0F AF 14 8D 50 5B 42 00 | imul e | dx,dword ptr[ecx*4+425B50h]  |  |
| 0041198D                        | 8B 45 F8                | mov    | eax,dword ptr [result]       |  |
| 00411990                        | 03 C2                   | add    | eax,edx                      |  |
| 00411992                        | 89 45 F8                | mov    | dword ptr [result],eax       |  |
| 00411995                        | EB D2                   | jmp    | main+19h (411969h)           |  |





# Izvajanje SOP v DSP

$$y = \sum_{i=0}^{3} data[i] * coeff[i]$$

- Primer 2: uporaba razvojnega sistema za DSP in kodiranje enačbe ob uporabi ustreznega C prevajalnika (npr. na TI DSP sistemih v LKS)
- Identična koda v C jeziku:

```
int data[4]={1,2,3,4};
int coeff[4]={8,6,4,2};
int main(void)
{
    int i;
    int result =0;
    for (i=0;i<4;i++)
        result += data[i]*coeff[i];
    printf("%i",result);
    return 0;
}</pre>
```







### DSP-Pretvorba v strojno kodo

| Naslov | Strojna koda | Ukaz v zbirniku               |
|--------|--------------|-------------------------------|
| 0x8000 | FF69         | SPM 0                         |
| 0x8001 | 8D04 0000R   | MOVL XAR1,#data               |
| 0x8003 | 76C0 0000R   | MOVL XAR7,#coeff              |
| 0x8005 | 5633         | ZAPA                          |
| 0x8006 | F601         | RPT #1                        |
| 0x8007 | 564B 8781    | DMAC ACC:P,*XAR1++,*XAR7++    |
| 0x8009 | 10AC         | ADDL ACC,P< <pm< td=""></pm<> |
| A008x0 | 8D04 0000R   | MOVL XAR1,#y                  |
| 0x800B | 1E81         | MOVL *XAR1,ACC                |

Primer: Texas Instruments TMS320F2812

Pomnilnik: 12 Code Memory; 9 Data Memory

Število ciklov: 10 x 150 MHz = 66 ns





## Tržni deleži na področju DSP-jev v 2003



Skupni dohodek: \$6.13 milijard





#### Družine DSP-jev TMS320 Texas Instruments

Različne družine in podskupine podpirajo različna področja



## <u>Najcenejši</u>

#### Krmilni sistemi

- Krmiljenje motorjev
- Shranjevanje
- Digitalni krmilni sistemi



#### **Zmogljivost**

### Največ MIPS na W / \$ / dimenzijo

- Brezžična telefonija
- Internetni audio predvaj.
- Digitalni foto aparati
- Modemi
- Telefonija
- VolP



# Performance in enostavnost uporabe

- Večkanalne in večfunkcijske aplikacije
- Komunikacijska infrastrukt.
- Bazne postaje za brezžično telefonijo
- DSL
- Slika
- Multimedijski serverji
- Video





## Aplikacije DSP-jev družine C28x



#### Optične mreže

Krmiljenje laserske diode



Krmiljenje, zajemanje, nadzor izpadov itd.



Krmiljenje glave tiskalnika Krmiljenje motorja za posredovanje papirja

## Ostale aplikacije

npr. glazbeni inštrumenti



"Tradicionalno" in "netradicionalno" krmiljenje motorjev

