Galaxy data fusion

Pauline Barmby
Physics & Astronomy,
Institute for Earth & Space Exploration,
Rotman Institute of Philosophy

Western University, London Canada

CFHT/Coelum/Cuillandre

ESA/Herschel/J. Fritz, U. Gent; ESA/XMM-Newton/W. Pietsch; R. Gendler

What do we want to know about galaxies?

Well, everything.

- What accounts for the range of galaxy properties?
- How (when, where) do they make stars?
- How (when) do they grow supermassive black holes?
- What about their interstellar medium?
- How do the stars, ISM, and AGN interact?
- How does the local environment affect all of the above?

SKA Observatory (S. Africa, Australia, NZ)

300 PB/year, operations begin 2027

Daily raw data generated by the Square Kilometer Array:

SKAO, NAOJ

Euclid mission (ESA)

- 1.2-m diameter visible/near-infrared telescope designed for surveys; imaging and spectroscopy
- launched July 2023, first public data 2025

Rubin/Legacy Survey of Space & Time (Chile)

Under construction in Chile, operations to begin very soon

Will survey entire southern sky once/week over 10 years

Informatics and Statistics Science Collaboration! https://issc.science.lsst.org/

Nancy Grace Roman Space Telescope (NASA)

Hubble-sized telescope, but with 100x larger field of view

Visible & infrared imaging surveys; coronagraph

Launch 202?

CASTOR (CSA)

- 1-m diameter visible/ultraviolet telescope with large field of view; imaging and spectroscopy
- CSA-led with Japan, India, US: funding advocacy in progress

What are the challenges?

Well, everything.

- Multiple physical scales
- Multiple observational wavelengths (& redshift!)
- Local versus distant galaxies
- Distances!
- Names and positions!
- Terminology of different sub-fields

Astro-data can differ from other big data

Incomplete/truncated/ weird selection functions

Boubert & Everall 2020

Doesn't always fit into a database model

Performance level	Database DTUs	Storage included	Storage limit	
Standard S0 – S2	10 - 50	250 GB	250 GB	
Standard S3	100	250 GB	1 TB new	
Standard S4 new	200	250 GB	1 TB new	
Standard S6 new	400	250 GB	1 TB new	
Standard S7 new	800	250 GB	1 TB new	
Standard S9 new	1600	250 GB	1 TB new	
Standard S12 new	3000	250 GB	1 TB new	
Premium P1	125	500 GB	1 TB new	
Premium P2	250	500 GB	1 TB new	
Premium P4	500	500 GB	1 TB new	
Premium P6	1000	500 GB	1 TB new	
Premium P11 – P15	1750 – 4000	4 TB	4 TB	
Premium RS PRS1	125	500 GB	1 TB new	
Premium RS PRS2	250	500 GB	1 TB new	
Premium RS PRS4	500	500 GB	1 TB new	
Premium RS PRS6	1000	500 GB	1 TB new	

Astro-data is (very) widely distributed

Astronomical Data Query Language

SELECT * FROM gaia

JOIN tycho2

ON 1=CONTAINS (POINT('ICRS',gaia.ra, gaia.dec),

CIRCLE('ICRS', tycho2.ra, tycho2.dec, 2/3600))

IVOA

Possible solutions 1

Salvato et al 2018

Sophisticated and statistically sound cross-match & deblending algorithms

Lam et al 2025

Input:	
Primary	
Catalogue	
x1	
x2	

2nd Catalogue
b1
b2

3rd Catalogue
c1
c2

Output:

	Proba- bility	3rd Cat. Entry	2nd Cat. Entry	Primary Cat. Entry
\prod		c1	b1	x1
		c2	b1	x1
		(none)	b1	x1
		c1	b2	x1
source x		c2	b2	x1
		(none)	b2	x1
		c1	(none)	x1
		c2	(none)	x1
		(none)	(none)	x1

Wang et al 2024

MIPS 24μm	PACS $100\mu m$	PACS 160μm	SPIRE 250μm	SPIRE 350μm	SPIRE 500µm
				40	

Possible solutions 2 spatial statistics approaches

Metha et al 2021

Li & Barmby 2021

Curated databases: SIMBAD, NED, HyperLEDA

Putting it all together: CanDIAPL Rubin

More info

 "Astronomical data fusion: recent progress and future prospects — a survey," <u>Yu et al 2019 ExA, 47, 359</u>

- "A 'Rosetta Stone' for Studies of Spatial Variation in Astrophysical Data: Power Spectra, Semivariograms, and Structure Functions", Metha & Berger 2024
 - Astronomical observations: a guide for allied researchers <u>Barmby 2019</u>