Biased and flow driven Brownian motion in confined geometries

S. Martens¹, A. Straube¹, G. Schmid², P. Hänggi², and L. Schimansky-Geier¹

¹Department of Physics, Humboldt-Universität zu Berlin ²Department of Physics, Universität Augsburg

23.02.2012

TSP/TSD seminar

Free Brownian particle

• free Brownian particle subjected to external force $\mathbf{F} = (F, 0, 0)^T$ in x-direction

$$m\ddot{\mathbf{q}}(t) + \eta\dot{\mathbf{q}}(t) = \mathbf{F} + \sqrt{2\eta k_B T} \boldsymbol{\xi}(t)$$

• viscosity η , thermal energy k_BT , and Gaussian white noise $\xi(t)$: $\langle \xi(t) \rangle$ and $\langle \xi_i(t) \xi_j(s) \rangle = \delta_{i,j} \, \delta(t-s)$

- transport quantities of interest
 - averaged velocity in the long time limit

$$\langle \dot{x} \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle}{t}$$

e respectively, the mobility

$$\mu(F) = \langle \dot{x} \rangle / F$$

 \odot effective diffusion coefficient $D_{\rm ef}$

$$D_{\text{eff}} = \lim_{t \to \infty} \frac{\left\langle x(t)^2 \right\rangle - \left\langle x(t) \right\rangle^2}{2t}$$

Free Brownian particle

• free Brownian particle subjected to external force $\mathbf{F} = (F, 0, 0)^T$ in x-direction

$$m\ddot{\mathbf{q}}(t) + \eta\dot{\mathbf{q}}(t) = \mathbf{F} + \sqrt{2\eta k_B T} \boldsymbol{\xi}(t)$$

• viscosity η , thermal energy k_BT , and Gaussian white noise $\xi(t)$: $\langle \xi(t) \rangle$ and $\langle \xi_i(t) \xi_j(s) \rangle = \delta_{i,j} \, \delta(t-s)$

transport quantities of interest

1 averaged velocity in the long time limit

$$\langle \dot{x} \rangle = \lim_{t \to \infty} \frac{\langle x(t) \rangle}{t}$$

respectively, the mobility

$$\mu(F) = \langle \dot{x} \rangle / F$$

 \odot effective diffusion coefficient $D_{
m eff}$

$$D_{\text{eff}} = \lim_{t \to \infty} \frac{\left\langle x(t)^2 \right\rangle - \left\langle x(t) \right\rangle^2}{2t}$$

- averaged velocity $\langle \dot{x} \rangle = F/\eta$ is independent of thermal energy $k_B T$
- ullet free mobility is given by $\mu_0=1/\eta$

• effective diffusion coefficient $D_{\mathrm{eff}} = k_B T/\eta$ is **independent** of external force magnitude F

Sutherland-Einstein-relation $D_{ ext{eff}} = \mu_0 \, k_B T$

Brownian particle in confined geometries

• interest in mass transport through confined structures such as porous media, zeolites, and irregular pores

http://www.explainthatstuff.com/zeolites.html

Membranes (Sinauer, Sunderland, 2001)

C. Kettner et al., PRE 61,312 (2000)

• until now: within the Fick-Jacobs approach ¹ effective description of biased Brownian particles suspended in an unmovable fluid is possible ^{2 3 4}

¹R. Zwanzig, J. Chem. Phys.,**96**,p. 3926-3930 (1992)

²D. Reguera et al., PRL,**96**,130603 (2006)

³P. S. Burada et al., BioSystems, 93,16 (2008)

⁴P.S. Burada et al., Phil. Trans. R. Soc. A,367,3157 (2009)

Reminder: FJ approach ⁵

• dimensionless Langevin equation for V(x,y) = -f x

$$\dot{x} = f + \sqrt{2}\xi_x(t), \quad \dot{y} = \sqrt{2}\xi_y(t)$$

where $f = FL/k_BT$

assumption of fast equilibration in y

 → reduction to an effective 1D description

$$\dot{x} = -\partial_x A(x) + \sqrt{2}\xi_x(t)$$

"entropic"potential

$$A(x) = -f x - \ln \left(\frac{W(x)}{} \right)$$

Reminder: FJ approach ⁶

"entropic"potential

$$A(x) = -f x - \ln \left(\frac{W(x)}{} \right)$$

$$\lim_{f \to 0} \mu/\mu_0 \le 1 \approx \frac{1}{\langle W(x) \rangle \langle 1/W(x) \rangle}$$
$$\lim_{f \to \infty} \mu/\mu_0 = 1$$

$$\lim_{f \to 0} D_{\text{eff}} / D_0 = \lim_{f \to 0} \mu / \mu_0$$

$$\lim_{f \to 0} D_{\text{eff}} / D_0 = 1$$

$$\lim_{f\to\infty}D_{\rm eff}/D_0=1$$

 experimentally relevant situation: flow driven separation of macro-molecules 7. colloids 8. and DNA 9

⁷Lenshof et al., ChemSocRev **39**, 1203 (2010)

⁸M. Balvin et al., PRL **103**, 078301 (2009)

⁹M. P. MacDonald et al., Nature **426**, 421 (2003) S. Martens et al. (HU Berlin)

The model

• particle dynamics described by

$$m\ddot{\mathbf{q}}(t) + \eta \left(\dot{\mathbf{q}}(t) - \mathbf{u}(\mathbf{q}, t)\right) = -\vec{\nabla}V\left(\mathbf{q}\right) + \sqrt{2\eta k_B T}\boldsymbol{\xi}(t)$$

• solvent flow field $\mathbf{u}(\mathbf{q},t)$, external potential $V(\mathbf{q})$, viscosity η , thermal energy k_BT

• passing to dimensionless quantities and set $m=L=\eta=k_BT=1$

$$\mathbf{q}' \rightarrow \mathbf{q}/L, \ t' \rightarrow t \ k_B T/\eta L^2, \ \mathbf{u}' \rightarrow \mathbf{u} \ \eta L/k_B T, \ V' \rightarrow \ V/k_B T$$

yielding

$$\dot{\mathbf{q}} = \mathbf{u}(\mathbf{q}, t) - \vec{\nabla}V(\mathbf{q}) + \sqrt{2}\boldsymbol{\xi}(t)$$

Fokker-Planck equation

• evolution of $P(\mathbf{q}, t)$ of finding the particle at $\mathbf{q} = (x, y)^T$ at time t

$$\partial_{t}P\left(\mathbf{q},t\right)+\nabla_{\mathbf{q}}\cdot\mathbf{J}\left(\mathbf{q},t\right)=0,$$

with no-flux boundary conditions

$$\mathbf{J}(\mathbf{q},t)\cdot\mathbf{n}=0$$
, $\forall\mathbf{q}\in\mathsf{channel}$ wall.

and probability flux

$$\mathbf{J}(\mathbf{q},t) = \left(\mathbf{u}(\mathbf{q},t) - \vec{\nabla}V(\mathbf{q})\right)P(\mathbf{q},t) - \vec{\nabla}P(\mathbf{q},t)$$

- obeys periodicity condition $P(x+m,y,t)=P(x,y,t)\,,\,\forall m\in\mathbb{Z}$ and is normalized
- ullet focus on stationary probability density $P^{
 m st}({f q})$

Navier-Stokes equation

ullet evolution of volume element with flow velocity $old u = \left(v \left(\mathbf{q}, t \right), w \left(\mathbf{q}, t \right) \right)^T$

$$\mathcal{R}_{e}\left[\partial_{t}\mathbf{u}\left(\mathbf{q},t\right)+\underbrace{\left(\mathbf{u}\left(\mathbf{q},t\right)\cdot\vec{\nabla}\right)\mathbf{u}\left(\mathbf{q},t\right)}_{\mathrm{convection\,acceleration}}=-\underbrace{\vec{\nabla}\rho\left(\mathbf{q},t\right)}_{\mathrm{pressure\,drop}}+\underbrace{\triangle\mathbf{u}\left(\mathbf{q},t\right)}_{\mathrm{viscosity}}$$

with dimensionless quantities $R_e = \rho_f k_B T/\eta^2$ and $p \to p k_B T/L^3$

continuity equation for an incompressible flow

$$\vec{
abla} \cdot \mathbf{u} \left(\mathbf{q}, t
ight) = 0$$

no-slip boundary condition

$$\mathbf{u}(\mathbf{q},t) = 0$$
 , $\forall \mathbf{q} \in \text{wall}$.

Long-wave analysis

 series expansion in the geometric parameter ε

$$\varepsilon = \frac{\Delta\Omega - \Delta\omega}{L}$$

- new scaling $y \to y/\varepsilon$, $w \to w/\varepsilon$, and $\omega_+(x) \to \varepsilon h_+(x)$
- ullet perturbation series in the geometric parameter arepsilon

$$\begin{aligned} v &= v_0 + \varepsilon \, v_1 + \dots \,, \\ w &= w_0 + \varepsilon \, w_1 + \dots \,, \\ \text{pressure} : \quad p &= \frac{1}{\varepsilon^2} p_0 + \frac{1}{\varepsilon} \, p_1 + \dots \,, \\ \text{prob.density} : \quad P^{\text{st}} &= P_0^{\text{st}} + \varepsilon^2 \, P_1^{\text{st}} + \dots \,, \end{aligned}$$

< □ > < □ > < \(\operatorname{1}{\oper

Navier-Stokes equation: Zeroth order

 \bullet time derivative and convection acceleration are proportional to $R_e \underline{\varepsilon}^2$

leading order

$$\begin{split} p_0(x,y) &= p_0(0,y) + \Delta p \int_0^x dx \, 1/W(x)^3 / \int_0^1 dx \, 1/W(x)^3 \,, \\ v_0(x,y) &= -\frac{p_0'(x)}{2} \left(h_+(x) - y \right) \left(y - h_-(x) \right) \,, \\ w_0(x,y) &= -\frac{1}{12} \partial_x \left[p_0'(x) \left(y - h_-(x) \right)^2 \left(3h_+(x) - h_-(x) - 2y \right) \right] \end{split}$$

- pressure drop over period $\Delta p = p(x+1,y) p(x,y)$
- local channel width $W(x) = h_{+}(x) h_{-}(x)$

exemplarily taken boundary function

$$h_{\pm}(x) = \pm h(x) = \pm \frac{1}{4} \left(\frac{1+\delta}{1-\delta} + \sin(2\pi x) \right)$$

with $\delta = \Delta\omega/\Delta\Omega$

• exemplarily taken boundary function

$$h_{\pm}(x) = \pm h(x) = \pm \frac{1}{4} \left(\frac{1+\delta}{1-\delta} + \sin(2\pi x) \right)$$

with $\delta = \Delta\omega/\Delta\Omega$

Extension of FJ-approach to solvent flows

• zero-th order: $0 = \partial_y \left[e^{-V} \partial_y \left(e^V p_0(x,y) \right) \right] \quad \hookrightarrow \quad p_0(x,y) = g(x) e^{-V(x,y)}$

"generalized" Fick-Jacobs equation

$$0 = \partial_x \left\{ e^{-\Psi(x)} \partial_x \left(e^{\Psi(x)} p_0(x) \right) \right\}$$

"generalized" effective potential

$$\Psi(x) = A(x) - \int_{0}^{x} dx' \left[\int_{h_{-}(x')}^{h_{+}(x')} v_{0}(x', y) e^{-V(x', y)} dy / \int_{h_{-}(x')}^{h_{+}(x')} e^{-V(x', y)} dy \right]$$

concept of mean force

$$\frac{d \Psi(x)}{d x} = -\partial_x \ln \left[\int_{h_{-}(x)}^{h_{+}(x)} e^{-V(\mathbf{q})} dy \right] - \int_{h_{-}(x)}^{h_{+}(x)} v_0(x, y) \frac{e^{-V(\mathbf{q})}}{\int_{h_{-}(x)}^{h_{+}(x)} e^{-V(\mathbf{q})} dy} dy$$

TSP/TSD seminar

concept of mean force

$$\frac{d\Psi(x)}{dx} = -\partial_x \ln \left[\int_{h_{-}(x)}^{h_{+}(x)} e^{-V(\mathbf{q})} dy \right] - \int_{h_{-}(x)}^{h_{+}(x)} dy \, v_0(x,y) \underbrace{\frac{e^{-V(\mathbf{q})}}{\int_{h_{-}(x)}^{h_{+}(x)} e^{-V(\mathbf{q})} dy}}_{p_{eq}(y|x)} dy$$

TSP/TSD seminar

concept of mean force

$$-\frac{d\Psi(x)}{dx} = -\int_{h_{-}(x)}^{h_{+}(x)} \partial_{x}V(\mathbf{q})p_{\mathrm{eq}}(y|x) dy$$
$$+\int_{h_{-}(x)}^{h_{+}(x)} v_{0}(x,y)p_{\mathrm{eq}}(y|x) dy$$

$$p_{eq}(y|x)$$
 for $V(\mathbf{q}) = -f x - g y$.

• for only longitudinal forcing $V(\mathbf{q}) = -f x$

$$-\frac{d \Psi(x)}{d x} = \underbrace{f + \frac{W'(x)}{W(x)}}_{\text{mean force originated by bias}} - \underbrace{\frac{\Delta p}{12 \int\limits_{0}^{1} dx 1/W^{3}(x)} \frac{1}{W(x)}}_{\text{mean force originated by bias}}$$

mean force originated by solvent flow

mean particle velocity

• solution of "generalized" Fick-Jacobs equation

$$p_0(x) = e^{-\Psi(x)} \int_{x}^{x+1} e^{\Psi(x')} dx' / \left[\int_{0}^{1} dx e^{-\Psi(x)} \int_{x}^{x+1} e^{\Psi(x')} dx' \right]$$

Stratonovich formula ¹⁰

$$\frac{\mu(f)}{\mu_0} = \frac{\langle \dot{x}(f) \rangle_0}{f} = \frac{1 - \mathrm{e}^{\Delta \Psi}}{\int\limits_0^1 dx \, \mathrm{e}^{-\Psi(x)} \int\limits_x^{x+1} \mathrm{e}^{\Psi(x')} \, dx'}$$

with
$$\Delta\Psi = \Psi(1) - \Psi(0)$$

Particle mobility μ

Particle mobility versus f. $\Delta\Omega=$ 0.1, $\Delta\omega=$ 0.01, and $\emph{Re}=$ 0.1

Particle mobility μ

Particle mobility versus f. $\Delta\Omega=0.1$, $\Delta\omega=0.01$, and Re=0.1.

Effective potential $\Psi(x)$ for f=0.1 and $\Delta \rho=0,5\,10^3\,,10^4$ (from bottom to top).

$$\Delta\Omega=1$$
, $\Delta\omega=0.1$, and $Re=0.1$

Particle mobility μ

Particle mobility versus f. $\Delta\Omega=0.1,\,\Delta\omega=0.01,\,$ and Re=0.1.

Particle mobility versus $\emph{f}.$ $\Delta\Omega=0.1,$ $\Delta\emph{p}=10^{3},$ and $\emph{Re}=0.1.$

Competition between external bias and solvent flow

• mean particle current vanishes if

$$0 = \Delta \Psi = -f - \frac{\Delta p}{12} \frac{\int_{0}^{1} 1/W(x)dx}{\int_{0}^{1} 1/W(x)^{3}dx}$$

$$\hookrightarrow \left(\frac{f}{\Delta p}\right)_{\rm crit} = -\frac{\int\limits_0^1 1/W(x)dx}{12\int\limits_0^1 1/W(x)^3 dx}$$

Potential of mean force $\Psi(x)$

• for sinusoidal channel h(x)

$$\left(\frac{f}{\Delta p}\right)_{\rm crit} = \frac{\delta^2}{6\left(1-\delta\right)^2\left(3+2\delta+3\delta^2\right)}$$

Critical force magnitude versus pressure drop Δp .

 $\Delta\Omega=0.1$ and Re=0.1.

Critical force magnitude versus pressure drop Δp .

 $\Delta\Omega=1$ and $\mbox{\it Re}=0.1.$

Summary

- present expansion of NSE and FPE in geometric parameter ε \hookrightarrow calculate leading order of $\mathbf{u}(\mathbf{q})$ and $P(\mathbf{q})$
 - purely flow driven transport
 - ullet obtain $P({f q})=1/A_{
 m unit-cell}$ and analytic expression for $\langle\dot{x}
 angle_0$ and $D_{
 m eff}/D_0$
 - 2 combined biased and flow driven transport
 - present extension of Fick-Jacobs approach to experimentally relevant situation of moving solvent
 - effective description where particle evolve in potential of mean force

$$\Psi(x) = A(x) - \int_{0}^{x} \left[\int_{h_{-}(x)}^{h_{+}(x)} v_{0}(x, y) p_{eq}(y|x) \right]$$

- ullet it exist critical ratio $(f/\Delta p)_{
 m crit}$ where both drag forces anihilate each other
- numerics show that results are also valid for $\varepsilon \simeq 1$

