Mathematik 3 für Physikstudierende

Winter 2023/24 Dr. Peter Gladbach Dr. Adrien Schertzer

Hausaufgabenblatt 3.

Abgabe bis Mi, 8.11.

Für die Klausurzulassung müssen insgesammt 50 % der Punkte erreicht werden. Die Aufgaben dürfen in Gruppen von maximal 3 Personen abgegeben werden.

Aufgabe 1. (10 Punkte)

Es sei R>0 der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty}a_nz^n$. Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen.

- (i) $\sum_{n=0}^{\infty} a_n z^{2n},$
- (ii) $\sum_{n=0}^{\infty} a_n^2 z^n,$
- (iii) $\sum_{n=0}^{\infty} a_n^2 z^{2n}$,
- (iv) $\sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$. (Sie können die Stirling Formel verwenden: $n! \geq \sqrt{2\pi n} (\frac{n}{e})^n$)

Aufgabe 2. (10 Punkte)

Es sei $p \in \mathbb{N}, p \geq 2$ und

$$J_p(z) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{z}{2}\right)^{p+2k}}{k!(p+k)!}$$

die Bessel Funktion der Ordnung p. Zeigen Sie:

- (i) Der Konvergenzradius der Potenzreihe $J_p(z)$ ist ∞ .
- (ii) Für $z \in \mathbb{C} \setminus \{0\}$ gilt

$$\frac{\mathrm{d}^2}{\mathrm{d}z^2}J_p(z) + \frac{1}{z}\frac{\mathrm{d}}{\mathrm{d}z}J_p(z) + \left(1 - \frac{p^2}{z^2}\right)J_p(z) = 0.$$

Aufgabe 3. (10 Punkte)

Bestimmen Sie den Konvergenzradius der folgenden Potenzreihen.

- (i) $\sum_{n=0}^{\infty} (\log n)^2 z^n,$
- (ii) $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n} z^n$
- (iii) $\sum_{n=0}^{\infty} n^{\frac{1}{\log(1+1/n)}} z^n.$

Aufgabe 4. (5 Punkte)

Sei
$$F(z) = \sum_{k=1}^{+\infty} \frac{z^k}{k}$$

- (i) Bestimmen Sie den Konvergenzradius der Reihe.
- (ii) Zeigen Sie, dass $F'(z) = \frac{1}{1-z}$.
- (iii) Zeigen Sie, dass $F(1 e^z) = -z$.