CSP-554-BIG DATA TECHNOLOGIES

PROJECT PROPOSAL

BIG DATA PROCESSING PIPELINE

MARCH 25, 2021

IASHTATEL	M20431170
HARSH VORA	A20445400
VISHNU BHARATH	A20465596
VARUN VEERLA	A20458191

A 20451170

VASH PATEL

ILLINOIS INSTITUTE OF TECHNOLOGY PROF. JOSEPH ROSEN

INTRODUCTION

PROBLEM STATEMENT

The stream API on Twitter allows you to receive approximately 50 tweets per second. However, this figure must be even higher. Handling, processing, and analyzing this massive volume of real-time data upon its arrival in order to gain information without exceeding the time allotted for decision making or an analytical procedure.

PROPOSED SOLUTION

A big data processing pipeline is proposed as a workaround. To collect real-time data, also known as event streaming, we will use Apache Kafka as the first portion of the pipeline, which offers a coherent, high-throughput, and low-latency solution. The performance of Apache Kafka will be absorbed as the middle portion of the pipeline for real-time stream data processing into the Apache Spark distributed processing system, which provides data parallelism and fault tolerance. To store vast volumes of processed real-time data, we can use Google Firebase Realtime Database as the last portion of the pipeline, which is a NoSQL database that allows you to store, sync, and query data between users in real-time. We will stream this real-time data to the HTML web-page client for visualization using the firebase kit in the Node.js server.

PROJECT GOALS:

- Ingest data using Twitter's streaming API.
- Capture data using Apache Kafka.
- Process streaming data using Apache Spark.
- Store these processed data using Google Firebase.
- Visualize these processed data using Node.js server and HTML web-page client.

BIG DATA TECHNOLOGIES: Kafka, Spark, Firebase

OTHER TECHNOLOGIES: Node.js, HTML

REFERENCES

The list of sources below is a recommended reading list. The knowledge collection mechanism may determine whether or not a reference is eventually relevant to this program, and to what capacity/extent. As a result, all references listed below may or may not be referenced. Additional sources may also be applied during the review process.

- [1] https://developer.twitter.com/en/docs/twitter-api/tweets/filtered-stream/introduction
- [2] https://developer.twitter.com/en/docs/twitter-api/tweets/sampled-stream/introduction
- [3] https://dzone.com/articles/running-apache-kafka-on-windows-os
- [4] https://phoenixnap.com/kb/install-spark-on-windows-10
- [5] https://firebase.google.com/docs/database
- [6] https://pypi.org/project/firebase/
- [7] https://www.npmjs.com/package/firebase