

UNTAR untuk INDONESIA

DATABASE DESIGN & MANAGEMENT SI10317

PROGRAM STUDI SISTEM INFORMASI **UIVERRSITAS TARUMANAGARA**

Course Schedule

- 1 Entity Relationship Modeling dan Alternative ER Notation Appendix C
- 2 Exercises
- 3. Enhanced Entity—Relationship Modeling
- 4. Exercises
- 5. Normalization dan Exerises
- 6. Advanded Normalization dan Exercises
- 7. Reiew and the *DreamHome* Case Study
- 8. UTS Presentasi Project

Course Schedule

- 9. Methodology—Conceptual Database Design
- 10. Methodology—Logical Database Design
- 11. Exercises: Case Study Appendix A, B1, B2
- 12. Presentasi Project: Case Study
- 13. Query Processing
- 14. Distributed DBMSs—Concepts and Design
- 15. Replication and Mobile Databases
- 16. Presentasi Project UAS

Concepts

Distributed Database

Kumpulan data bersama yang saling terkait secara logis, didistribusikan secara fisik melalui jaringan computer.

Distributed DBMS

Sistem perangkat lunak yang memungkinkan pengelolaan dan pendistribusian database secara transparan kepada pengguna.

Distributed Processing

Database terpusat yang dapat diakses melalui jaringan komputer.

Concepts

- Collection of logically-related shared data.
- Data split into fragments.
- Fragments may be replicated.
- Fragments/replicas allocated to sites.
- Sites linked by a communications network.
- Data at each site is under control of a DBMS.
- DBMSs handle local applications autonomously.
- Each DBMS participates in at least one global application.

Figure 22.2 Distributed processing

Parallel DBMS

DBMS yang berjalan di beberapa prosesor dan disk yang dirancang untuk menjalankan operasi secara paralel, yang bisa untuk meningkatkan kinerja.

- Alasannya, bahwa sistem prosesor tunggal tidak dapat lagi memenuhi persyaratan untuk skalabilitas, keandalan, dan kinerja.
- Parallel DBMS menghubungkan beberapa mesin yang lebih kecil untuk mencapai hasil dengan skalabilitas dan keandalan yang lebih besar.

Parallel DBMS

- Aristektur utama untuk parallel DBMSs adalah:
 - Shared memory: berbagi memori adalah arsitektur dengan banyak prosesor di dalamnya dihubungkan melalui jaringan. Sering disebut sebagai symmetric multiprocessing (SMP).
 - Shared disk: juga disebut sebagai cluster, setiap prosesor dapat mengakses semua disk secara langsung, tetapi masing-masing memiliki memorinya sendiri
 - Shared nothing: tidak ada yang dibagi, dan kinerja hanya optimal jika data yang diminta disimpan secara lokal.

Parallel DBMS: Shared Memory

(a)

Parallel DBMS: Shared Disk

Parallel DBMS: Shared Nothing

Advantages of DDBMSs

- Reflects organizational structure
- Improved shareability and local autonomy
- Improved availability
- Improved reliability
- Improved performance
- Economics
- Modular growth

Disadvantages of DDBMSs

- Complexity
- Cost
- Security
- Integrity control more difficult
- Lack of standards
- Lack of experience
- Database design more complex

Types of DDBMS: Homogeneous DDBMS

- Semua site menggunakan produk DBMS yang sama.
- Lebih mudah untuk dirancang dan dikelola.
- Memungkinkan peningkatan kinerja

Types of DDBMS: Heterogeneous DDBMS

- Site dapat menjalankan produk DBMS berbeda, dengan model data yang mungkin berbeda.
- Terjadi ketika site telah menerapkan database mereka sendiri dan integrasi akan dipertimbangkan nanti.
- Data mungkin diperlukan dari site lain yang mungkin memiliki
 - Perangkat keras berbeda.
 - Produk DBMS berbeda.
 - Perangkat keras yang berbeda dan produk DBMS yang berbeda.
- Solusi umum menggunakan gateway.

Multidatabase System (MDBS)

- DBMS yang secara transparan berada di atas database dan sistem file yang ada dan menyajikan database tunggal kepada penggunanya.
- Memungkinkan pengguna untuk mengakses dan berbagi data tanpa memerlukan integrasi database fisik.

Functions of a DDBMS

- DDBMS memiliki setidaknya fungsionalitas DBMS.
- DDBS juga memiliki fungsi berikut:
 - Extended communication services, untuk menyediakan akses ke site jarak jauh dan memungkinkan transfer kueri dan data antar site.
 - Extended system catalog to store data distribution details;
 - Distributed query processing, including query optimization and remote data access;
 - Extended concurrency control, untuk menjaga konsistensi data yang mungkin direplikasi dan terdistribusi;
 - Extended recovery services, untuk memperhitungkan kegagalan site individu dan kegagalan link komunikasi.

- Komponen arsitektur DDBMS terdiri dari empat komponen utama sbb:
 - local DBMS (LDBMS) component;
 - data communications (DC) component;
 - global system catalog (GSC);
 - distributed DBMS (DDBMS) component.

Figure 22.6 Components of a DDBMS.

- Local DBMS (LDBMS) component.
 - DBMS standar, mengontrol data lokal di setiap site yang memiliki database.
 - Memiliki katalog sistem lokalnya sendiri yang menyimpan informasi tentang data yang disimpan di site itu.
 - Dalam sistem homogen, komponen LDBMS adalah produk yang sama, direplikasi di setiap site.
 - Dalam sistem yang heterogen, setidaknya akan ada dua site dengan produk dan / atau platform DBMS yang berbeda.

- Data communications (DC) component.
 - Software yang memungkinkan semua site untuk saling berkomunikasi.
 - Berisi informasi tentang site dan linknya.

- Global system catalog (GSC).
 - Menyimpan informasi yang spesifik (khusus) untuk sistem terdistribusi, seperti fragmentasi, replikasi, dan skema alokasi.
- Distributed DBMS (DDBMS) component.
 - Unit pengendali dari keseluruhan sistem.

Distributed Relational Database Design

Three key issues:

Fragmentation

Relasi dapat dibagi menjadi beberapa sub-relasi, yang kemudian didistribusikan.

Allocation

Setiap fragmen disimpan di site dengan distribusi "optimal".

Replication

Salinan fragmen dapat disimpan di beberapa site.

Data Allocation

Four alternative strategies regarding placement of data:

Centralized

Terdiri dari database tunggal dan DBMS yang disimpan pada satu site dengan pengguna yang tersebar di seluruh jaringan.

<u>Partitioned or Fragmented</u>

Database dipartisi kedalam fragmen terpisah, setiap fragmen ditetapkan ke satu site.

Complete Replication

Strategi ini terdiri dari pemeliharaan salinan lengkap database di setiap site.

Selective Replication

Combination of partitioning, replication, and centralization.

Comparison of Strategies for Data Allocation

Table 22.3 Comparison of strategies for data allocation.

	Locality of reference	Reliability and availability	Performance	Storage costs	Communication costs		
Centralized Fragmented	Lowest High ^a	Lowest Low for item; high for system	Unsatisfactory Satisfactory ^a	Lowest Lowest	Highest Low ^a		
Complete replication	Highest	Highest	Best for read	Highest	High for update; low for read		
Selective replication	High ^a	Low for item; high for system	Satisfactory ^a	Average	Low ^a		

^a Indicates subject to good design.

Why Fragment?

- Usage
 - Aplikasi bekerja dengan tampilan (pandangan pengguna) bukan seluruh relasi.

- Efficiency
 - Data disimpan ditempat yang paling sering digunakan.
 - Data yang tidak digunakan oleh aplikasi lokal, tidak disimpan.

Why Fragment?

- Parallelism
 - Dengan fragmen sebagai unit distribusi, transaksi dapat dibagi menjadi beberapa subqueries yang beroperasi pada fragmen.
- Security
 - Data yang tidak diberlukan oleh aplikasi lokal tidak disimpan dan tidak disediakan untuk pengguna yang tidak berwenang.

Why Fragment?

- Disadvantages
 - Performance
 - Kinerja aplikasi global mungkin lebih lambat karena membutuhkan data dari beberapa fragmen yang terletak di lokasi berbeda.
 - Integrity.
 - Integrity control mungkin lebih sulit karena terletak di lokasi yang berbeda.

Correctness of Fragmentation

Tiga aturan ketepatan fragmetnasi:

Completeness

• Jika relasi R didekomposisi menjadi fragmen R1, R2, ... Rn, setiap item data yang dapat ditemukan di R harus muncul setidaknya dalam satu fragmen.

Reconstruction

- Harus memungkinkan untuk mengembalikan fragment ke relasi R dengan operasi relasional.
- Rekonstruksi untuk fragmentasi horizontal adalah operasi Union dan Join untuk vertikal

Correctness of Fragmentation

<u>Disjointness</u>

- Jika item data d_i muncul dalam fragment R_i , maka item tersebut tidak boleh muncul di fragmen lain.
- Exception (pengecualian): vertical fragmentation, fragmentasi vertikal, di mana primary key harus diulang untuk memungkinkan rekonstruksi.
- Untuk fragmentasi horizontal, item data adalah tuple.
- Untuk fragmentasi vertikal, item data adalah attribute.

Types of Fragmentation

- Ada 4 jenis fragmentsi:
 - Horizontal,
 - Vertical,
 - Mixed,
 - Derived.
- Kemungkinan lain adalah tidak ada fragmentasi:
 - Jika relasi ukurannya kecil dan tidak sering diperbarui, mungkin lebih baik tidak melakukan fragmen relasi.

Horizontal and Vertical Fragmentation

Figure 22.7

(a) Horizontal and (b) vertical fragmentation.

Horizontal Fragmentation

- Terdiri dari subset tuple dari sebuah relasi.
- Didefinisikan menggunakan operasi *Selection* relational algebra: $\sigma_p(R)$
- Sebagai contoh:

$$P_1 = \sigma_{\text{type='House'}}(PropertyForRent)$$

$$P_2 = \sigma_{type='Flat'}(PropertyForRent)$$

Figure 22.9. Horizontal fragmentation of PropertyForRent by property type.

Fragment P₁

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo	branchNo
PA14 PG21	16 Holhead 18 Dale Rd		AB7 5SU G12	House House			CO46 CO87	SA9 SG37	B007 B003

Fragment P2

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo	branchNo
PL94	6 Argyll St	London	NW2	Flat	4	400	CO87	SL41	B005
PG4	6 Lawrence St	Glasgow	G11 9QX	Flat	3	350	CO40	SG14	B003
PG36	2 Manor Rd	Glasgow	G32 4QX	Flat	3	375	CO93	SG37	B003
PG16	5 Novar Dr	Glasgow	G12 9AX	Flat	4	450	CO93	SG14	B003

Correctness of Fragmentation

Completeness: Setiap tupel dalam relasi muncul di fragmen P1 atau P2.

<u>Reconstruction:</u> Relasi PropertyForRent dapat direkonstruksi dari fragmen menggunakan operasi Union:

• P1 U P2 = PropertyForRent.

<u>Disjointness:</u> The fragments are disjoint; there can be no property type that is both 'House' and 'Flat'.

Vertical Fragmentation

- Consists of a subset of attributes of a relation.
- Defined using *Projection* operation of relational algebra:

$$\prod_{\mathsf{a1, \dots, an}} (\mathsf{R})$$

where $a1, \ldots, an$ are attributes of the relation R.

• For example:

$$S_1 = \prod_{\text{staffNo, position, sex, DOB, salary}} (Staff)$$

$$S_2 = \prod_{\text{staffNo, fName, IName, branchNo}} (Staff)$$

Figure 22.10. Vertical fragmentation of Staff.

Fragment S₁

staffNo	position	sex	DOB	salary
SL21	Manager	M	1-Oct-45	30000
SG37	Assistant	F	10-Nov-60	12000
SG14	Supervisor	M	24-Mar-58	18000
SA9	Assistant	F	19-Feb-70	9000
SG5	Manager	F	3-Jun-40	24000
SL41	Assistant	F	13-Jun-65	9000

Fragment S2

staffNo	fName	IName	branchNo	
SL21	John	White	B005	
SG37	Ann	Beech	B003	
SG14	David	Ford	B003	
SA9	Mary	Howe	B007	
SG5	Susan	Brand	B003	
SL41	Julie	Lee	B005	

Fragmentation schema satisfies the correctness rules:

- Completeness: Setiap atribut dalam relasi Staff muncul di fragmen S1 atau S2.
- Reconstruction: Relasi Staff dapat direkonstruksi dari fragmen menggunakan operasi natural join, $S_1 \bowtie S_2 = Staff$
- *Disjointness:* The fragments are disjoint except for the primary key, which is necessary for reconstruction.

Mixed Fragmentation

Figure 22.8 Mixed fragmentation: (a) vertical fragments, horizontally fragmented; (b) horizontal fragments, vertically fragmented.

Mixed Fragmentation

- Terdiri dari fragmen horizontal yang terfragmentasi secara vertikal, atau fragmen vertikal yang terfragmentasi secara horizontal
- Defined using Selection and Projection operations of relational algebra:

$$\sigma_p(\prod_{a1,\ldots,an}(R), \text{ or }$$

$$\prod_{a1, \dots, an} (\sigma_p(R))$$

• where p is a predicate based on one or more attributes of R and $a1, \ldots$, an are attributes of R.

Example - Mixed Fragmentation

 $S_1 = \prod_{\text{staffNo, position, sex, DOB, salary}} (Staff)$

 $S_2 = \prod_{\text{staffNo, fName, IName, branchNo}} (Staff)$

$$S_{21} = \sigma_{\text{branchNo='B003'}}(S_2)$$

$$S_{22} = \sigma_{\text{branchNo='B005'}}(S_2)$$

$$S_{23} = \sigma_{\text{branchNo='B007'}}(S_2)$$

Menggunakan Figure 3.3. Instance of the *DreamHome* rental database.

Staff

staffNo	fName	IName	position	sex	DOB	salary	branchNo
SL21	John	White	Manager	M	1-Oct-45	30000	B005
SG37	Ann	Beech	Assistant	F	10-Nov-60	12000	B003
SG14	David	Ford	Supervisor	M	24-Mar-58	18000	B003
SA9	Mary	Howe	Assistant	F	19-Feb-70	9000	B007
SG5	Susan	Brand	Manager	F	3-Jun-40	24000	B003
SL41	Julie	Lee	Assistant	F	13-Jun-65	9000	B005

Figure 22.11. Mixed fragmentation of Staff

Fragment S₁

staffNo	position	sex	DOB	salary
SL21	Manager	M	1-Oct-45	30000
SG37	Assistant	F	10-Nov-60	12000
SG14	Supervisor	M	24-Mar-58	18000
SA9	Assistant	F	19-Feb-70	9000
SG5	Manager	F	3-Jun-40	24000
SL41	Assistant	F	13-Jun-65	9000

Fragment S₂

staffNo	fName	IName	branchNo
SL21	John	White	B005
SG37	Ann	Beech	B003
SG14	David	Ford	B003
SA9	Mary	Howe	B007
SG5	Susan	Brand	B003
SL41	Julie	Lee	B005

Figure 22.11. Mixed fragmentation of Staff

Fragment S₂₁

staffNo	fName	IName	branchNo
SG37	Ann	Beech	B003
SG14	David	Ford	B003
SG5	Susan	Brand	B003

Fragment S₂₂

staffNo	fName	IName	branchNo
SL21	John	White	B005
SL41	Julie	Lee	B005

Fragment S₂₃

staffNo	fName	IName	branchNo
SA9	Mary	Howe	B007

UNTAR untuk INDONESIA

Fragmentation schema satisfies the correctness rules:

- Completeness: Setiap atribut dalam relasi Staff muncul dalam fragmen S1 atau S2; setiap (bagian) tuple muncul dalam fragmen S1 dan fragmen S21, S22, atau S23.
- Reconstruction: Relasi Staff dapat direkonstruksi dari fragmen menggunakan operasi Union dan Natural join

$$S_1 \bowtie (S_{21} \cup S_{22} \cup S_{23}) = Staff$$

• Disjointness: The fragments are disjoint; Tidak ada anggota staf yang bekerja di lebih dari satu cabang dan S1 dan S2 adalah terpisah, kecuali untuk duplikasi primary key yang diperlukan.

Derived Horizontal Fragmentation

- Fragmen horizontal yang didasarkan pada fragmentasi horizontal dari relasi induk.
- Memastikan bahwa fragmen yang sering digabungkan berada di site yang sama.
- Didefinisikan menggunakan operasi Semijoin dari relational algebra :
- Dikeketahui child relation R dan parent S, fragmentasi turunan dari R didefinisikan sebagai:

$$R_i = R \triangleright_f S_i \qquad 1 \le i \le w$$

di mana w adalah jumlah fragmen horizontal yang ditentukan pada S dan f adalah join attribute.

Example - Derived Horizontal Fragmentation

$$S_3 = \sigma_{\text{branchNo='B003'}}(\text{Staff}),$$
 $S_4 = \sigma_{\text{branchNo='B005'}}(\text{Staff})$
 $S_5 = \sigma_{\text{branchNo='B007'}}(\text{Staff})$

 Kita asumsikan bahwa properti PG4 saat ini dikelola oleh SG14. Kita akan menyimpan data properti menggunakan strategi fragmentasi yang sama. Menggunakan derived fragmentation untuk memecah secara horizontal relasi PropertyForRent berdasarkan kantor (nomor) cabang.

$$P_i = PropertyForRent$$
 $\underset{branchNo}{\triangleright} S_i$, $3 \le i \le 5$

Menggunakan Figure 3.3. Instance of the *DreamHome* rental database.

PropertyForRent

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo	branchNo
PA14	16 Holhead	Aberdeen	AB7 5SU	House	6	650	CO46	SA9	B007
PL94	6 Argyll St	London	NW2	Flat	4	400	CO87	SL41	B005
PG4	6 Lawrence St	Glasgow	G11 9QX	Flat	3	350	CO40		B003
PG36	2 Manor Rd	Glasgow	G32 4QX	Flat	3	375	CO93	SG37	B003
PG21	18 Dale Rd	Glasgow	G12	House	5	600	CO87	SG37	B003
PG16	5 Novar Dr	Glasgow	G12 9AX	Flat	4	450	CO93	SG14	B003

Example - Derived Horizontal Fragmentation

- Menghasilkan tiga fragmen (P3, P4, dan P5), satu terdiri dari properti yang dikelola oleh staf di cabang B003 (P3), kedua terdiri dari properti yang dikelola oleh staf di cabang B005 (P4), dan yang lainnya terdiri dari properti yang dikelola oleh staf di cabang B007 (P5), seperti yang ditunjukkan pada Gambar 22.12
- Jika relasi berisi lebih dari satu FK, perlu memilih salah satu sebagai parent.
- Pilihan dapat didasarkan pada fragmentasi yang paling sering digunakan atau fragmentasi dengan karakteristik gabungan yang lebih baik.

Fragment P₃

Figure 22.12
Derived
fragmentation of
PropertyForRent
based on Staff.

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo
PG4	6 Lawrence St	Glasgow	G11 9QX	Flat	3	350	CO40	SG14
PG36	2 Manor Rd	Glasgow	G32 4QX	Flat	3	375	CO93	SG37
PG21	18 Dale Rd	Glasgow	G12	House	5	600	CO87	SG37
PG16	5 Novar Dr	Glasgow	G12 9AX	Flat	4	450	CO93	SG14

Fragment P4

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo
PL94	6 Argyll St	London	NW2	Flat	4	400	CO87	SL41

Fragment P₅

propertyNo	street	city	postcode	type	rooms	rent	ownerNo	staffNo
PA14	16 Holhead	Aberdeen	AB7 5SU	House	6	650	CO46	SA9

Transparencies in a DDBMS

- Main type of transparency:
 - distribution transparency;
 - transaction transparency;
 - performance transparency;
 - DBMS transparency

Distribution transparency

- Distribution transparency adalah properti dari database terdistribusi berdasarkan detail internal distribusi yang disembunyikan dari pengguna.
- Perancang DDBMS dapat memilih untuk memecah tabel, mereplikasi fragmen dan menyimpannya di situs yang berbeda.
- Karena pengguna tidak menyadari detail ini, mereka merasa database terdistribusi mudah digunakan seperti database terpusat lainnya.

Distribution Transparency

- Fragmentation Transparency
- Location Transparency
- Replication Transparency
- Local Mapping Transparency
- Naming Transparency

Fragmentation Transparency

- Fragmentation merupakan level tertinggi dari distribution transparency dalam DDBMS.
- Jika fragmentation transparency disediakan oleh DDBMS, maka pengguna tidak perlu mengetahui bahwa datanya terfragmentasi.
- Pengguna mengakses database didasarkan pada skema global atau basis data tunggal dan tidak perlu menentukan nama fragmen atau lokasi datanya.

Fragmentation Transparency

 Contoh, untuk menampilkan nama staff yang menjadi Manajer, maka query nya adalah:

```
SELECT fName, IName
FROM Staff
WHERE position = 'Manager';
```

SQL ini sebenarnya sama dengan terpusat.

Location Transparency

- Location merupakan level menengah dari distribution transparency.
- Pengguna haru tahu bahwa data telah terfragmentasi (harus tahu nama-nama fragmen) tetapi tidak perlu mengetahui lokasi sebenarnya dari fragmen tersebut.
- Keuntungan: jika database diatur ulang secara fisik maka tidak perlu memengaruhi program aplikasi yang mengaksesnya
- Kueri seperti pada fragmentation transparency harus ditulis ulang sbb:

Location Transparency

SELECT fName, IName

FROM S_{21}

WHERE staffNo IN (SELECT staffNo FROM S₁ WHERE position = 'Manager') UNION

SELECT fName, IName

FROM S_{22}

WHERE staffNo IN (SELECT staffNo FROM S₁ WHERE position = 'Manager') UNION

SELECT fName, IName

FROM S_{23}

WHERE staffNo IN (SELECT staffNo FROM S₁ WHERE position = 'Manager');

Replication transparency

- Replication, terkait erat dengan location, tetapi replikasi (tiruan/salinan) database disembunyikan dari pengguna.
- Pengguna dimungkinkan melakukan kueri pada tabel seolah-olah hanya ada satu salinan tabel.

Local mapping transparency

- Local, merupakan level terendah dari distribution transparency.
- Ketika DBMS mendukung Local mapping transparency, pengguna perlu mengetahui nama fragmen serta lokasi sebenarnya dari fragmen tersebut.
- Kueri seperti pada location transparency harus ditulis ulang dengan menambahkan keyword AT SITE sbb:

Local mapping transparency

SELECT fName, IName

FROM S_{21} *AT SITE* 3

WHERE staffNo IN (SELECT staffNo FROM S₁ AT SITE 5 WHERE

position = 'Manager') UNION

SELECT fName, IName

FROM S₂₂ AT SITE 5

WHERE staffNo IN (SELECT staffNo FROM S₁ AT SITE 5 WHERE

position = 'Manager') UNION

SELECT fName, IName

FROM S_{23} *AT SITE* 7

WHERE staffNo IN (SELECT staffNo FROM S₁ AT SITE 5 WHERE

position = 'Manager');

UNTAR untuk INDONESIA

Naming transparency

- Setiap item di DDB harus memiliki nama yang unik.
- DDBMS harus memastikan bahwa tidak ada dua site yang membuat objek database dengan nama yang sama.
- Solusinya dengan membuat server terpusat, tetapi berakibat:
 - hilangnya sebagian otonomi local;
 - Central site mungkin menjadi hambatan dan lemahnya ketersediaan;
 - jika central site gagal, situs yang tersisa tidak dapat membuat objek baru.

Naming Transparency

Alternatif solusi:

- Misalnya, Branch yang dibuat di site S₁ mungkin diberi nama S1.BRANCH.
- Juga perlu mengidentifikasi setiap fragmen dan salinannya.
- Jadi, salinan 2 dari fragmen 3 dari Branch yang dibuat di site S₁ dapat disebut sebagai S1.BRANCH.F3.C2.
- Namun, hal ini mengakibatkan hilangnya transparansi distribusi.

Naming Transparency

- Pendekatan yang menyelesaikan masalah tersebut dengan menggunakan alias untuk setiap database object.
- Jadi, S1.BRANCH.F3.C2 mungkin diketahui sebagai LocalBranch oleh pengguna di situs S₁.
- DDBMS memiliki tugas memetakan alias ke database object yang sesuai

Selanjutnya kerjakan tugas untuk nilai UAS

Thank You

Reference: Database Systems A Practical Approach to Design, Implementation, and Management Fourth Edition.

Thomas M. Connolly and Carolyn E. Begg

