

مدرس:

نمونه تمرين

نام و نامخانوادگی: امید یعقوبی شماره دانشجویی: -

میخواهیم نشان دهیم که ماشین تورینگی محاسبه گری مانند f وجود ندارد به شکلی که هر زمان W_x با تعریف زیر:

 $W_x = \{ w \in \Sigma^* : M_x \text{ halts on } w \}$

ناتهی باشد، f(x) برابر کوچکترین عضو W_x باشد. W_x همان x امین ماشین تورینگ است.)

اثبات با برهان خلف فرض کنیم f محاسبه پذیر باشد. نشان می دهیم در این صورت $HP \in R$ برقرار است، که این به روشنی تناقض است.

به کمک ماشین محاسبه گر f که نام آن را M_f می گذاریم، یک decider با نام HP_{TM} می سازیم به شکلی که

$$HP_{TM}(\langle M, w \rangle) = 1 \Leftrightarrow M \text{ halts on } w$$

برقرار باشد:

1- If $\langle M, w \rangle$ is not a pair s.t. M is a TM and w is a String then REJECT

 $HP_{TM}(\langle M,w\rangle) \coloneqq \begin{cases} \text{ 2- Build a new machine } T(x) = \begin{cases} \text{ If } (x\geq 2) \text{ then ACCEPT} \\ \text{ If } (x=1) \text{ then do:} \\ \text{ 1- Simulate } M \text{ on input } w \\ \text{ 2- ACCEPT} \end{cases}$ 3- Compute $M_f(T)$ 4- If $M_f(T) = 1$ then ACCEPT 5- Otherwise REJECT

توجه شود که ساخت ماشین T از روی ورودی $\langle M,w \rangle$ به صورت الگوریتمیک در زمان متناهی قابل انجام است. به عبارتی یک توصیف از ماشین T می سازیم و هرگز آن را اجرا نمی کنیم که این توصیف وابسته به ورودی $\langle M,w \rangle$ است. مشاهده شود که $\emptyset
eq W_t
eq W_t$ و $W_t \neq 0$ و $W_t \neq 0$ این تناقض است. $W_t \neq 0$ در نتیجه $W_t \neq 0$ زبان $W_t \neq 0$ در نتیجه است.

١