电子科技大学 实验报告

(2024 - 2025 - 2)

学生姓名: <u>吕俊霆</u> 学生学号: <u>2024270901009</u> 指导老师: 李朝海 选课序号: <u>19</u>

实验学时: 8 实验地点: 基础实验大楼 437 实验时间: 星期 二 第 五六 节课

报告目录

电子电路实验

一、实验课程名称:

•		2 4 2 4 7 4 7
<u>-</u> ,	实验项目名称:	信号的产生和处理
三、	实验目的:请附页	
四、	设计任务与要求:请附页	
	(备注:设计、综合性实验要求,基础验	证性实验可不要求)
五、	实验原理与方案设计:请附页	
	(备注:验证、基础性实验强调实验原理	U以及测试方案;设计、综合性实验重在软、
硬件的设计)		
六、	实验内容、测试数据以及结论	: 请附页
七、	思考题:请附页	
八、	实验体会及建议:请附页	
		报告评分:

三、 实验目的

- (1) 理解函数信号的产生原理
- (2) 掌握利用继承运放单元电路进行电子电路系统设计的方法
- (3) 掌握电路调试和指标测试技术

四、 设计任务与要求

用给定的运算放大器设计并制作一个信号产生与处理电路

设计要求如图所示,设计制作一个方波产生器输出方波,再与三角波相叠加输出一个复合信号,再经过低通滤波器输出一个正弦波信号。

图 1: 实验电路图

设计要求如下:

- (1) 方波产生器输出方波信号参数要求: $V_{o1_{pp}} = 4V$, 误差为 $\pm 5\%$, $f = 5kHz \pm 100 Hz$, 波形无明显失真;
- (2) 三角波产生器输出三角波信号参数要求: $V_{o2_{pp}} = 4V$, 误差为 $\pm 5\%$, f = 5kHz ± 100 Hz, 波形无明显失真;
- (3) 同相加法器输出复合信号参数要求: $V_{o3_{pp}}=8V$, 误差为 $\pm 5\%$, f = 5kHz $\pm 100Hz$, 波形无明显失真;
- (4) 滤波器输出正弦波信号参数要求: $V_{o4_{pp}}=4V$, 误差为 $\pm 5\%$, f = 5kHz $\pm 100Hz$, 波形无明显失真。
- (5) 要求预留方波 $V_{o1_{pp}}$ 、三角波 $V_{o2_{pp}}$ 、复合信号 $V_{o3_{pp}}$ 和正弦波 $V_{o4_{pp}}$ 的输出端口,便于后续测试。
 - (6) 设计报告需给出方案设计,详细电路图,仿真结果和实物测试数据波形

五、 实验原理与方案设计

1. 实验原理

六、 实验内容、测试数据以及结论

1. 实验内容

七、思考题

- 1. 题面
 - (1) text
- 2. 回答
 - (1) text

八、 实验体会及建议

1. 实验体会

测量时应注意小心调试仪器,尽量将读数稳定在误差允许范围内进行读数。

2. 建议

注意电源正负极的接入,防止反接造成仪器损坏,注意正负电压的接入,防止反接造成仪器损坏。