

Comprehensive Course on Digital Circuits

Bhima Sankar Manthina • Lesson 2 • Oct 21, 2021

What is the base of the numbers for the following operation to be correct? $\frac{(54)_b}{(4)_b} = (13)_b$ (a) 2 (b) 4 (c) 8 (d) 16

Digital Circuit

10. The minimum decimal equivalent of the

number 11C.0 is

a) Determine minimum decimel eq 11 $\frac{321x}{x}$

() 328 10

g, 5,51°

Given
$$\sqrt{(224)_r} = (13)_r$$
, $2\gamma^2 + 2\gamma + 4 = (6+3)^2$
The value of the radix'r is: $3^2 - 4\gamma - 5 = 0$
(a) 10 (b) 8 (c) 5 (d) 6

Digital Circuit

13. Let a denote number system radix. The only

values(s) of r that satisfy the equation $\sqrt{121}$ =

- B. decimal 11
- C. decimal 10 and 11

$$\bigcirc$$
 D. any value > 2

equation
$$\sqrt{121} = \frac{1}{121} = \frac{1}{121}$$

True

10.4

Digital Circuit

16.
$$\sqrt{311_r} = 14_r r = ?$$

A. any value > 4

B. 5

C. any value >5 \

D None

J64=80 Y=7 Va) Y=10 62=60-1 True only bor Y=10 b) r any value > 9 1=10 () Y = 9

di none

Digital Circuit

12. How many 1's are present in the binary representation of

$$4 * 2^{12} + 9 * 2^{8} + 7 * 2^{4} + 5 * 2^{0}$$
 $100 0000 0000 0000$
 $100 0000 0000$
 $100 0000 0000$
 $100 0000 0000$
 $100 0000 0000$
 $100 0000 0000$

$$\sqrt{10^3} * 55 = 55000$$
 $10^5 * 47 = 4700000$

$$\frac{3}{3} \times 5 = 40$$

$$\frac{3}{3} \times (101)_{1} = 101000_{1}$$

$$\frac{96}{2} \times 3$$

$$\frac{2}{3} \times 100_{2} = 110000_{1}$$

11. The number of digit 1 present in the binary

37537

011 111 101 011

Consider the number given by the decimal expression.

$$16^{3} \times 9 + 16^{2} \times 7 + 16 \times 5 + 3 = 9753$$

The number of 1's in the unsigned binary representation of the number is

$$A-B=A+x's$$
 comp of 'B'

Bin my

 $A-B=A+z'i$ borp of 'B'

$$2^{3} = 1000$$
 $2^{7} = 10000$
 $2^{5} = 10000$

$$10^{3} = 1000_{10}$$
 $10^{5} = 10000_{10}$

$$2^{3}-1=7=111_{2}$$
 $2^{4}-1=15=1111_{2}$

N-times

Example: Decimal => x=10; Ex: N=4 Num: 123410

95 compliment: 10-1-Num = 9999

-1234
876510

FFFF 2BFD DY02

F's complement of (2BFD)_{hex} is (a) E304

(c) D402

(b) D403

(d) C403

The 9's complement of $(25.639)_{10}$ is

(a) 74.360

(c) 6.732

(b) 0.6732

(d) 7.436

Ben Codes

num: 25: 110012 -> Binary Dolo 0'012 -> Packet BCP

Doos 0010 0000 01312 -> Unpacked BCP

55-3 111001-) Binary Ib 2-digits 10-digit Disglag Digit Jeperatery Each Light 0-9

```
BCD
3 do 6 6
9 -> 1001
10 7 0000 C 0000
197 5001 # 501
```

BCD CODE	S: Weighted	(Positional val	ul)	Unweigh	ino
Decimal	8421	2421	84-2-1	excess-3	Position
0	0000	0000	0000	0011	Valle)
1	0001	0001	0111	0100	
2	0010	0010	0110	0101	
3	0011	0011	0101	0110	
4	0100	0100	0100	0111	
5	0101	1011	1011	1000	
6	0110	1100	1010	1001	
7	0111	1101	1001	1010	
8	1000	1110	1000	1011	
9	1001	1111	1111	(1100)	

BCD CODES:

Decimal	8421	2421	84-2-1	excess-3
0	0000	0000	0000	0011
1	0001	0001	0111	0100
2	0010	0010	0110	0101
3	0011	00.1.1	0101	0110
4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	1001	1010
8	1000	1110	1000	1011
9	1001	1111	(1111)	1100

BCD CODE	S: NOT Self		5016 Compline	ntony Codes
Decimal	8421	2421	84-2-1	excess-3
0	0000	0000	0000	10011
1	0001	_0001	0111	0100
2	0010	0010	-0110	0101
3	0011	0011	0101	0110_
4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	_ 1001	1010
8	1000	_1110	1000	1011
9	Seg 71001	-1111	1111	1100

Self Complimentary codes: 9's comp = is comp $Ex: Ex(ey-3: 5) \to 1000$ $\longrightarrow is imp = 1000 = 0111$ 9'S (omp of 's' =) 9-S=4= 0111 Excess-3 15 Seif Omplimentory 8 also Sequential code i.e, if me agg, i, to buen unw We get next num.

In self (amp Gde sum of weight = 9

(ode	weighted	Sequential	tell comp
8421	V		×
2421		X	
84-2-1	V	X	
Exion -3	X		

8421

5 % 0 101

7:0111

8-7 1000

7 4 100

100 100 100 1

▲ 1 • Asked by Rishav

One simple doubt....in complements why we take r^n-1-N=(r_1)(r-1).....-Num

$$\frac{10 - \text{NUM}}{- \text{NUM}} = \frac{100000}{- \text{NUM}}$$

$$\frac{10^{5} - 1}{- 999999}$$

$$\frac{10^{5} - 1}{- \text{NUM}}$$

$$\frac{10^{5} - 1}{- \text{NUM}}$$

