

COPIE INTERNE 21/08/2025

Dr POULEAU HENRI CHU TIVOLI

AVENUE MAX BUSET 34 7100 LA LOUVIERE

Centre d'Anatomie Pathologique H.U.B.

Rue Meylemeersch 90 - 1070 Anderlecht Mijlemeerschstraat 90 – 1070 Anderlecht

> **Directrice de Service** Pr Myriam Remmelink

Equipe Médicale

Dr Nicolas de Ŝaint Aubain
Pr Nicky D'Haene
Dr Maria Gomez Galdon
Dr Chirine Khaled
Pr Denis Larsimont
Pr Laetitia Lebrun
Dr Calliope Maris
Pr Jean-Christophe Noël
Dr Anne-Laure Trépant
Dr Marie Van Eycken
Pr Laurine Verset

Consultant (e) s

Dr Sarah Bouri Dr Xavier Catteau Dr Roland de Wind Dr Marie-Lucie Racu Dr Valérie Segers Dr Anne Theunis Dr Marie-Paule Van Craynest

Secrétariat Médical T. +32 (0)2 541 73 23

+32 (0)2 555 33 35

SecMed.AnaPath@hubruxelles.be

Secrétariat Direction T. +32 (0)2 555 31 15

Mme Kathia El Yassini Kathia.elyassini@hubruxelles.be

Mme Véronique Millecamps veronique.millecamps@hubruxelles.be

PATIENT:

ID:

Réf. Externe : 25CU007855 EXAMEN : 25EM00752

Prélevé le 07/02/2025 à 07/02/2025 14:00 Prescripteur : Dr POULEAU HENRI

Reçu le 21/02/2025

RECHERCHE PAR « NEXT GENERATION SEQUENCING » DE VARIANTS DANS 39 GENES IMPLIQUES DANS LES GLIOMES ET RECHERCHE DE CO-DELETION 1p19q

(CLINICAL GLIOMA PANEL V2)

HUB – Centre d'Anatomie Pathologique – est accrédité par BELAC sous le numéro de certificat B-727 MED

I. Renseignements anatomopathologiques

N° du prélèvement : 25CU007855 1.03.

Date du prélèvement : 07/02/25

Origine du prélèvement : CurePath

Type de prélèvement : GBM

II. Evaluation de l'échantillon

- % de cellules tumorales : 60%

- Qualité du séquençage : Optimale (coverage moyen > 1000x)

Les exons à considérer comme non contributifs sont détaillés dans le tableau ci-dessous

(point III).

- Commentaires : /

III. Méthodologie (effectué par : NADN, NIDH)

- Extraction ADN à partir de coupes paraffinées après macrodissection des zones tumorales ou à partir de frottis.
- Détection par « Next Generation Sequencing » (sur Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) de variants dans 39 gènes liés aux tumeurs cérébrales :

Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*	Gène	RefSeq	Exons testés	Exons Non Contributifs (coverage <250x)*
ACVR1	NM_001105	6-11	7	MDM4	NM_002393	2-11 (whole CDS)	2, 5, 8
ATRX	NM_00489	1-35 (whole CDS)	1, 5, 8, 9, 11, 15, 16, 17, 18, 22, 28, 29	MYCN	NM_1293228	2-3 (whole CDS)	2, 3
BRAF	NM_004333	7, 10, 11, 12, 15		NF1	NM_001042492	1-58 (whole CDS)	1, 2, 4, 5, 6, 7, 13, 15, 16, 27, 30, 33, 36, 37, 39, 42, 51, 56
CDK4	NM_000075	1-8 (whole CDS)	7	NF2	NM_00268	1-16 (whole CDS)	1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16
CDK6	NM_001259	2-8 (whole CDS)	3, 4, 5	NRAS	NM_002524	2-4 (whole CDS)	2, 4
CDKN2A	NM_000077 NM_004936	1-3 (whole CDS)	1-3	PDGFRA	NM_006206	5-12, 14-15, 18, 21-23	18, 22
CDKN2B	et NM_078487	1-2 (whole CDS)	2	PIK3CA	NM_006218	1-20 (whole CDS)	3, 6, 11, 12, 13, 1
EGFR	NM 005228	1-28 (whole CDS)		PIK3R1	NM 181523	2-16 (whole CDS)	2, 5, 6, 10, 11, 13 15
FGFR1	NM_23110	12, 14-16	12, 15	POLD1	NM_001256849	1-27 (whole CDS)	4, 6, 7, 13, 15, 17 18, 19, 20, 22, 24
FGFR2	NM 000141	5-7, 9-10, 12, 14	5, 9, 14	POLE	NM 006231	1-49 (whole CDS)	1, 2, 7, 9, 13, 14, 15, 18, 25, 31, 36, 40, 42, 43, 44, 46, 47, 48
FGFR3	NM_00142	7, 9, 10, 13-16		PPM1D	NM_003620	1-6 (whole CDS)	1, 6
H3F3A (=H3.3)	NM_002107	2		PRKCA	NM-002737	1-17 (whole CDS)	1, 4, 6, 9, 12 2, 3, 4, 5, 6,
H3F3B	NM_005324	2-4 (whole CDS)	2, 3	PTEN	NM_00314	1-9 (whole CDS)	8, 9
HIST1H3B (=H3C2)	NM_003537	1		PTPN11	NM_02834	1-15 (whole CDS)	1, 3, 5, 7, 10, 11
HIST1H3C (=H3C3)	NM_003531	1		RB1	NM_00321	1-27 (whole CDS)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25
HRAS	NM_005343	2-4 (whole CDS)	2, 3	TERT	NM_001193376	Promoteur	Promoteur
IDH1	NM_005896	4		TP53	NM_00546	1-11 (whole CDS)	4, 9, 11
IDH2	NM 002168	4		TSC1	NM 000368	3-23 (whole CDS)	5, 9, 10, 12, 18, 21, 23 3, 4, 5, 6, 7, 8,
KRAS	NM_033360	2-4 (whole CDS)	3	TSC2	NM_000548	2-42 (whole CDS)	9, 13, 14, 17, 19, 22, 23, 28, 29, 30, 31, 32, 33, 34, 35, 36, 40, 42
MDM2	NM 002392	1-11 (whole CDS)	1, 4, 7, 8, 9, 10				

^{*} Un coverage < 250x induit une perte de sensibilité et de spécificité de la méthode.

- Sensibilité : Seuls les variants avec une fréquence supérieure à 5% et un variant coverage >30x (sauf promoteur de TERT : variant coverage >20x) sont rapportés.
- Détection par « Next Generation Sequencing » (Ion Gene Studio S5, Ion Torrent avec Kit AmpliSeq) d'une perte d'hétérozygotie (LOH) 1p et 19q, sur base de 30 SNP sur le chromosome 1 et 25 SNP sur le chromosome 19. Sensibilité : la technique utilisée détecte la LOH 1p et 19q si l'échantillon contient > 40% de cellules tumorales.

IV. Résultats

a. Liste des variants détectés :

Variants pathogéniques ou présumés pathogéniques :

Gène	Exon	Variant	Coverage	% d'ADN				
				muté				
Variants avec impact clinique potentiel								
TERT	Promoteur	chr5:1295228C>T	73	60%				
		(C228T)						
Variants avec impact clinique indéterminé								
TP53	7	p.C238Y	996	92%				

Variants de significations biologiques et cliniques indéterminées :

/

Les données de coverage mettent en évidence la présence d'une amplification du gène EGFR. En effet le coverage moyen de l'ensemble des 1305 amplicons est de 1374 et les 48 amplicons couvrant le gène EGFR présentent un coverage moyen de 19204.

b. Statut 1p19q:

Qualité de l'échantillon : optimale

Résultat : Pas de perte d'hétérozygotie (LOH) du chromosome 1p. Perte d'hétérozygotie du chromosome 19.

V. Discussion

Les mutations au niveau du promoteur de TERT sont fréquentes dans les oligodendrogliomes et les glioblastomes. Leur impact pronostique est controversé.

Les mutations du gène TP53 sont fréquentes dans les glioblastomes. Leur impact clinique est indéterminé.

Les mutations ainsi que les amplifications du gène EGFR sont fréquentes dans les glioblastomes (30% à 60%). La présence d'une amplification de l'EGFR est caractéristique d'une malignité de haut grade et peut également permettre de différencier les glioblastomes à petites cellules des oligodendrogliomes de haut grade.

Horbinski, C. et al., Semin Diagn Pathol 2010; 27: 105-113.

Jansen, M., et al., Lancet Neurol 2010; 9: 717-726.

Layfield, L.J. et al., Appl Immunohistochem Mol Morphol 2006; 14: 91-96.

VI. Conclusion : (NADN le 07/03/2025)

Absence de variant détecté dans les gènes IDH1 et IDH2.

Présence d'un variant présumé pathogénique dans le promoteur du gène TERT (C228T).

Présence du variant présumé pathogénique C238Y du gène TP53.

Présence d'une amplification du gène EGFR.

Pas de co-délétion des chromosomes 1p19q détectée. Perte d'hétérozygotie du chromosome 19.

Pour toute information complémentaire, veuillez nous contacter au 02/555.85.08 ou par mail : Biomol.AnaPath@erasme.ulb.ac.be

N.B. Pour les prélèvements d'histologie et de cytologie ainsi que pour les examens complémentaires de biologie moléculaire, merci d'utiliser les nouvelles prescriptions disponibles sur le site internet du HUR.

 $\frac{\text{https://www.hubruxelles.be/sites/default/files/2024-03-04_demande\%20analyse\%20anapath\%20cytologie\%20v3.pdf}{\text{https://www.hubruxelles.be/sites/default/files/FO-HUB-BM-11\%20Demande\%20de\%20biologie\%20mol\%C3\%A9culaire-IPD\%20v1.doc}{\text{IPD}\%20v1.doc}$

Dr N D'HAENE

Dr LEBRUN Laetitia