

Networks & Operating Systems Essentials

Dr Angelos Marnerides

<angelos.marnerides@glasgow.ac.uk>
School of Computing Science, Room: S122

Today, on NOSE2...

Source: https://xkcd.com/742/

Based on slides © 2017 Colin Perkins

NETWORK LAYER (L3)

The Network Layer

- First end-to-end layer in the OSI reference model
 - Responsible for end-to-end delivery of data:
 - Across multiple link-layer hops and technologies
 - Across multiple autonomous systems
 - Building an Internet: a set of <u>inter</u>connected <u>net</u>works
- An internet comprises a set of interconnected networks
 - Each network administered separately
 - An autonomous system (AS)
 - Making independent policy and technology choices

The Network Layer

- Components of an internet
 - A common end-to-end network protocol
 - Provide a single seamless service to transport layer
 - Delivery of data packets/provisioning of circuits
 - Addressing of end systems
 - A set of gateway devices (a.k.a. routers)
 - Implement the common network protocol
 - Hide differences in link layer technologies
 - Framing, addressing, flow control, error detection and correction
 - Desire to perform the least amount of translation necessary

The Internet

- The globally interconnected networks running the Internet Protocol (IP)
 - 1965: Concept of packet switching
 - Paul Baran (RAND, USA), Donald Davies (NPL, UK)
 - 1969: Wide-area packet networks
 - ARPANET (US), CYCLADES (France)
 - 1973: First non-US ARPANET sites
 - UCL
 - 1974: Initial version of the Internet Protocol
 - Vint Cerf and Robert Kahn
 - 1981: Access to ARPANET broadened to non-DARPA-funded sites
 - NSF funds access for universities; production internetworking starts
 - 1983: Network switched to IPv4
 - 1992: Development of IPv6 starts
 - Initial IETF IPng effort led by Allison Mankin and Scott Bradner

Leonard Kleinrock Louis Pouzin

Allison Mankin

The Internet

ARPA Network Map, December 1972

Based on slides © 2017 Colin Perkins

THE INTERNET PROTOCOL (IPV4 AND IPV6)

The Internet Protocol

- IP provides an abstraction layer
 - Transport protocols and applications above
 - Assorted data link technologies and physical links below
 - A simple, best effort, connectionless, packet delivery service
 - Addressing, routing, fragmentation and reassembly
- Basic concepts:
 - Global inter-networking protocol
 - Hour glass protocol stack
 - Many transport & application layer protocols
 - Single standard network layer protocol (IP)
 - Packet switched network, best effort service
 - Uniform network and host addressing
 - Uniform end-to-end connectivity (subject to firewall policy)
 - Range of link-layer technologies supported

The Internet Protocol

- IP Service Model: Best effort, connectionless, packet delivery
 - Just send no need to setup a connection first
 - Network makes its best effort to deliver packets, but provides no guarantees
 - Time taken to transit the network may vary
 - Packets may be lost, delayed, reordered, duplicated or corrupted
 - The network discards packets it can't deliver
 - Easy to run over any type of link layer
 - Fundamental service: can easily simulate a circuit over packets, but simulating packets over a circuit difficult
- Two versions of IP in use
 - IPv4 the current production Internet
 - IPv6 the next generation Internet
 - Compared to IPv4: simpler header format, larger addresses, removes support for fragmentation, adds flow label

Addressing

- Every network interface on every host is intended to have a unique address
 - Hosts may change address over time to give illusion of privacy
 - Addressable ≠ reachable: firewalls exist in both IPv4 and IPv6
- IPv4 addresses are 32 bits
 - Example: 130.209.241.197
 - Significant problems due to lack of IPv4
 addresses → details later
- IPv6 addresses are 128 bits
 - Example: 2001:4860:4860::8844

Fragmentation (placeholder)

- Link layer has a maximum packet size (MTU)
 - What is this?
 - Why is it needed?
 - How is it used?
 - Is it a good solution?

(you can post answers on Slido ©)

Fragmentation

- Link layer has a maximum packet size (MTU)
 - Ethernet: 1500 bytes by default
- IPv4 routers will fragment packets that are larger than the MTU
 - MF bit is set if more fragments follow: reconstruct using fragment offset and fragment

- DF bit is set → routers shouldn't fragment, must discard large packets
- IPv6 doesn't support fragmentation
 - Hard to implement for high rate links
 - End-to-end principle

Loop Protection

- Packets include a forwarding limit:
 - Set to a non-zero value when the packet is sent (typically 64 or 128)
 - Each router that forwards the packet reduces this value by 1
 - If zero is reached, packet is discarded
- Why is it needed?
 - Stops packets circling forever if a network problem causes a loop
 - Assumption: network diameter is smaller than initial value of forwarding limit

Header Checksum

- IPv4 header contains a checksum to detect transmission errors
 - Conceptually similar to link-layer checksum, although uses a different algorithm
 - Protects the IP header only, not the payload data protected
 - Payload data must be protected by upper layer protocol, if needed
 - Isn't the checksum part of the IP header? (you can tell me what you think during the Q&A session ©)
- IPv6 does not contain checksum
 - Assumes the data is protected by a link layer checksum

0 1 2 3	4 5 6 7 8 9	10 11	12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 31				
Version=6	/ersion=6 DSCP ECN Flow Label								
	Payload Lengt	th		Next Header	Hop Limit				
	Source Address								
Destination Address									
(Optional Extension Headers – variable length)									
Data – variable length									

Transport Layer Protocol Identifier

- Network layer packets include the transport layer data as payload
- Must identify what transport layer protocol is used, to pass the data to the correct upper-layer protocol
 - TCP = 6
 - UDP = 17
 - DCCP = 33
 - ICMP = 1
- Protocols managed by the IANA
 - http://www.iana.org/assignments/proto col-numbers/

Aside: Misc

- Differentiated services (DiffServ)
 - End systems can request special service from the network
 - Telephony or gaming might prefer low latency over high bandwidth
 - Emergency traffic could be prioritised
 - Background software updates might ask for low priority
 - Signalled by differentiated service code point (DSCP) field in header
 - Provides a hint to the network, not a guarantee
 - Often stripped at network boundaries
 - Difficult economic and network neutrality issues
 - Who is allowed to set the DSCP and what are they charged for doing so?
 - IPv6 provides a flow label to group related traffic flows together

	0	1 2	3	4	5	6	7	8	9	10	11	12	13 14	1 15	5	16 17 18	19 20 2	21 22 23	3 24	25 2	6 27	28 2	9 30 3
[Version=6 DSCP ECN										Flow Label												
	Payload Length								I	Ne	xt Head	ler		Hop Limit									
	Source Address																						
	Destination Address																						
I	(Optional Extension Headers – variable length)																						
ſ	Data – variable length																						

Aside: Misc

- Explicit Congestion Notification
 - Routers typically respond to network congestion by dropping packets
 - A "best effort" packet delivery service
 - Transport protocols detect the loss, and can request a retransmission if necessary
 - Explicit congestion notification gives routers a way to signal congestion is approaching
 - If a sending host enables ECN, routers monitor link usage and can indicate congestion is imminent
 - A host seeing that congestion is imminent needs to reduce it's sending rate – or the congested router will start dropping packets

0 1 2 3	4 5 6 7 8 9	10 11	12 13 14 15	16 17 18 19 20 21 22 23	24 25 26 27 28 29 30 3 ⁻				
Version=6	DSCP	ECN		Flow Label					
	Payload Leng	th		Next Header	Hop Limit				
	Source Address								
Destination Address									
(Optional Extension Headers – variable length)									
Data – variable length									

IPv4 or IPv6?

- IPv4 has reached end-of-life: insufficient addresses
- IPv6 intended as long term replacement for IPv4
 - Primary goal: increase the size of the address space, to allow more hosts on the network
 - Also simplifies the protocol, makes high-speed implementations easier
- Not yet clear if IPv6 will be widely deployed
 - But, straight-forward to build applications that work with both IPv4 and IPv6
 - DNS query will return IPv6 address if it exists, else IPv4 address; all other communication calls use the returned value
 - Write new code to support both IPv6 and IPv4
- To get a better idea on the IPv6 deployment status check : https://www.worldipv6launch.org/measurements/

IP Addresses

- How to name hosts in a network?
 - Is the address an identity or a location?
 - Does it name the host, or the location at which it attaches to the network
 - How should addresses be allocated?
 - Hierarchical or flat?
 - What is the address format?
 - Human or machine readable?
 - Textual or binary? Structured or unstructured?
 - Fixed or variable length? How large?

Identity and Location

- Addresses can denote host identity
 - Give hosts a consistent address, irrespective of where or when they attach to the network
 - Simple upper-layer protocols
 - Transport layer and applications unaware of multi-homing or mobility
 - Puts complexity in network layer
 - Network must determine location of host before it can route data
 - Often requires in-network database to map host identity to routable address
 - E.g., mobile phone numbers
- Alternatively, an address can indicate the location at which a host attaches to the network
 - Address structure matches the network structure
 - Network can directly route data given an address
 - E.g., geographic phone numbers: +44 141 330 4256
 - Simplifies network layer, by pushing complexity to the higher layers
 - Multi-homing and mobility must be handled by transport layer or applications transport layer connections break when host moves

Address Allocation & Format

- Are addresses allocated hierarchically?
 - Allows routing on aggregate addresses
 - E.g., phone call to +1 703 243 9422
 - Forces address structure to match network topology
 - Requires rigid control of allocations
- Or is there a flat namespace?
 - Flexible allocations, no aggregation → not scalable
- How about format? Textual or binary? Fixed or variable length?
 - Fixed length binary easier (faster) for machines to process
 - Variable length textual easier for humans to read
 - Which are you optimising for?

IP Addresses

- IP addresses have the following characteristics:
 - They specify location of a network interface
 - They are allocated hierarchically
 - They are fixed length binary values
 - IPv4: 32 bitsIPv6: 128 bits
- Domain names are a separate application level namespace
- Both IPv4 and IPv6 addresses encode location
 - Addresses are split into a network part and a host part
 - A netmask describes the number of bits in the network part
 - The network itself has the address with the host part equal to zero
 - The broadcast address for a network has all bits of host part equal to one
 - Allows messages to be sent to all hosts on a network
 - A host with several network interfaces will have one IP addresses per interface
 - E.g., laptop with an Ethernet interface and a Wi-Fi interface will have two IP addresses
- Example:

```
- IP address: 130.209.241.197 => 10000010 11010001 11110001 11000101
- Netmask: 255.255.240.0 => 11111111 11111111 11110000 000000000
- Network = 130.209.240.0/20 => 10000010 11010001 11111111 111111111
- Broadcast: 130.209.255.255 => 10000010 11010001 11111111 11111111
```


Aside: Classes of IP Addresses

- IP addresses used to be allocated so the netmask was a multiple of 8 bits
 - Class A → a /8 network (~16 million addresses)
 - Class B \rightarrow a /16 network (65536 addresses)
 - Class C → a /24 network (256 addresses)
 - Old terminology, still used sometimes
 - Inflexible, and wasted addresses
- Arbitrary length netmask allowed since 1993:
 - The Glasgow SoCS network is a /20

Aside: IPv6 Addresses

- IPv6 uses 128 bit binary addresses, written as 8 ":" separated 16 bit hexadecimal fields
 - 2a00:1098:0000:0086:1000:0000:0000:0010
- Usually written in a shortened form [RFC 5952]
 - Leading zeros in each 16 bit field are suppressed
 - A run of more than one consecutive 16 bit field that is all 0 is omitted and replaced with a "::"
 - If there is more than one such run, the longest is replaced
 - If there are several runs of equal length, the first is replaced
 - The "::" must not be used to replace a single 16 bit field
 - 2a00:1098:0:86:1000::10
- Local identifier part of IPv6 address is 64 bits
 - 2001:0db8:85a3:08d3:1319:8a2e:0370:7334
 - Can be derived from Ethernet/Wi-Fi MAC address
 - 48-bit IEEE MAC: 0014:5104:25ea
 - Expand to 64 bits: 0014:51ff:fe04:25ea
 - Invert bit 6: 0214:51ff:fe04:25ea
 - Or randomly chosen, with bit 6 set to zero, to give illusion of privacy
- Routers advertise network part, hosts auto-configure address
 - 2001:0db8:85a3:08d3:1319:8a2e:0370:7334
- Network part is split into global routing prefix (up to 48 bits) and a subnet identifier

Netmask

• 130.209.247.112 = 10000010 11010001 11110111 01110000

Global routing prefix Subnet Host

IP Address Management

- IPv4 has $2^{32} = 4,294,967,296$ addresses
 - IANA administers the pool of unallocated addresses
 - Historically would assign addresses directly to ISPs, large enterprises, etc.
 - Now, addresses assigned to regional Internet registries (RIRs) as needed:
 - Allocations made one /8 (224 = 16,777,216 addresses) at a time
 - RIRs allocate addresses to ISPs and large enterprises within their region; ISPs allocate to their customers
- IANA has allocated all available addresses to RIRs
 - Last allocation on 3 February 2011
- In practical terms, we have run out of IPv4 address space
- IPv6 provides 128 bit addresses
 - If deployed it will solve address shortage for a long time
 - 2¹²⁸ = 340,282,366,920,938,463,463,374, 607,431,768,211,456 addresses
 - Approx. 665,570,793,348,866,943,898,599 addresses per m² of the Earth's surface

IPv6 Deployment Issues

- IPv6 requires changes to every single host, router, firewall, and application...
 - Significant deployment challenge!
 - Host changes done: MacOS X, Windows, Linux, FreeBSD, Symbian, iOS, Android, etc.
 - Backbone routers generally support IPv6, home routers and firewalls are starting to be updated
 - Many applications have been updated

Reading Material

- Peterson & Davie "Computer Networks: A systems approach": Chapter 3, sections 3.2, Chapter 4, section 4.1
- Kurose & Ross "Computer Networking: A top-down approach": Chapter 4, sections 4.1, 4.4, 4.6
- Tanenbaum & Wetherall "Computer Networks" 5th edition: Chapter 5, sections 5.1, 5.5, 5.6
- Bonaventure "Computer Networking": https://www.computer-networking.info/1st/html/network/network.html

Coming up next...

Source: https://xkcd.com/399/

Source: https://xkcd.com/85/

