3.2.03 Given that $p \not| n$ for all primes $p \leq \sqrt[3]{n}$, show that n > 1 is either prime or the product of two primes.

Proof. By way of contradiction, let us assume $n = p_1 p_2 \cdots p_k, k \geq 3$ The first three prime factors are p_1, p_2, p_3 . Then, $p_1 | n, p_2 | n$, and $p_3 | n \Rightarrow p_1 p_2 p_3 | n \Rightarrow p \geq p_1 p_2 p_3$. Since $p \not | n$ for all $p \leq \sqrt[3]{n}$. Then, $p_1 > \sqrt[3]{n}$, $p_2 > \sqrt[3]{n}$, and $p_3 > \sqrt[3]{n}$. Thus, $p_1 p_2 p_3 > n$ is a contradiction.

Therefore n > 1 is either a prime of the product of two primes.

3.2.05 Show that any composite three-digit number must have a prime factor less than or equal to 31.

Proof. Let n be a composite three-digit number. Then $n \leq 999$. As n is composite, there must exist a p where $p \neq n$, p|n and $p \leq \sqrt{n} \Rightarrow p \leq \sqrt{999} \Rightarrow p \leq 31$ Therefore, any composite three-digit number must have a prime factor less than or equal to 31.

3.2.9a Prove that if n > 2, then there exists a prime p satisfying n .

Proof. Let n > 2. Using the hint given, if (n! - 1) is prime, then the statement is satisfied.

Else, (n!-1) is composite and thus has a prime divisor p with $p \le n \Rightarrow p|n!$ and $p|(n!-1) \Rightarrow p|(n!-(n!-1)) = 1 \Rightarrow p > n$. But p > n is a contradiction.

Therefore, if n > 2, then there exists a prime p satisfying n

3.2.9b For n > 1, show that every prime divisor of n! + 1 is an odd integer that is greater than n.

Proof. Let n > 1. Then,

$$n! + 1 = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 + 1$$

$$= 2n(n-1)(n-2) \cdots 3 + 1$$

$$let m := n(n-1)(n-2) \cdots 3$$

$$= 2m + 1$$

Thus, 2m + 1 is odd and greater than n. Therefore, For n > 1, every prime divisor of n! + 1 is an odd integer that is greater than n