Matematica e BioStatistica con Applicazioni Informatiche Esercitazione in aula del 15 gennaio 2018

Quesito 1. Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = x^3 y^2 \\ y(0) = 4 \end{cases}$$

- 1. Trovare la soluzione del problema di Cauchy.
- 2. Determinare l'intervallo massimale di esistenza della soluzione.

Risposta

La soluzione del problema di Cauchy è data dalla funzione $y(x) = \frac{4}{1 - x^4}$. Risposta 1

L'intervallo massimale è (-1,1).

Risposta 2

Quesito 2. Si consideri il seguente problema di Cauchy:

$$\begin{cases} y' = -xe^{-y} \\ y(0) = 3 \end{cases}$$

- 1. Trovare la soluzione del problema di Cauchy.
- 2. Determinare l'intervallo massimale di esistenza della soluzione.

Risposta

La soluzione del problema di Cauchy è data dalla funzione $y(x) = ln(-\frac{x^2}{2} + e^3)$. Risposta

L'intervallo massimale è $(-\sqrt{2e^3}, \sqrt{2e^3})$.

Risposta 2

Risposta 1

Quesito 3. Preleviamo un campione di rango n=25 da una popolazione con distribuzione $N(\mu, \sigma^2)$. Sappiamo che la deviazione standard è $\sigma=3$. La media μ invece potrebbe avere uno qualsiasi valori dei nell'intervallo [2, 8].

Vogliamo testare $H_0: \mu = 2$ contro $H_A: \mu \in (2,8]$. Fissiamo come significatività $\alpha = 0.05$ otteniamo che per uno z-test a coda superiore la zona di rifiuto è $[2.987, +\infty)$.

- 1. Nel caso $H_A: \mu \in [3.5, 8]$ qual'è la massima probabilità β di non rigettare H_0 (errore II tipo)?
- 2. Calcolare la potenza del test con l'effect-size suggerito nel punto precedente.

Esprimere il risutato numerico tramite (solo) le funzioni elencate in calce.

Risposta

Il caso più sfavorevole si ottiene quando $\mu=3.5$. Sia $\bar{X}\sim N(3.5,\ \sigma^2/n)$

$$\beta = \Pr(\bar{X} < 2.987) = \Pr\left(\frac{\bar{X} - 3.5}{\sigma/\sqrt{n}} < \frac{-0.513}{\sigma/\sqrt{n}}\right) = \Pr(Z < -0.855)$$
 $\beta = \text{norm.cdf}(-0.855) = 0.1963$

Con un effect size $\delta = 1.5$ la potenza del test è $1 - \beta = 1$ - norm.cdf(-0.855) = 0.8037 Risposta 2

Formulario: se
$$X \sim B(\mathtt{n},\mathtt{p})$$
 allora $E(X) = np$ se $X \sim NB(\mathtt{n},\mathtt{p})$ allora $E(X) = n(1-p)/p$
$$T = \frac{\bar{X} - \bar{Y}}{S \cdot \sqrt{1/n_x + 1/n_y}} \quad \text{dove } S^2 \ = \ \frac{n_x - 1}{n_x + n_y - 2} \cdot S_x^2 + \frac{n_y - 1}{n_x + n_y - 2} \cdot S_y^2 \quad \text{ha distribuzione } t(n_x + n_y - 2)$$

Si assuma noto il valore delle seguenti funzioni della libreria scipy.stats di Python

binom.pmf(k, n, p) = $\Pr\left(X = \mathtt{k}\right) \text{ dove } X \sim B(\mathtt{n},\mathtt{p})$

binom.cdf(k, n, p) = $\Pr(X \leq k)$ dove $X \sim B(n, p)$

 $\texttt{bimom.ppf(q, n, p)} = \texttt{k dove k \'e} \text{ tale che } \Pr \left(X \leq \texttt{k} \right) \cong \texttt{q per } X \sim B(\texttt{n},\texttt{p})$

 ${\tt nbinom.xxx(...),\,\grave{e}\,\,l'analogo\,\,per}\,\,X \sim NB({\tt n},{\tt p}).$

norm.xxx(...), è l'analogo per $Z \sim N(0,1)$.

t.xxx(..., ν), è l'analogo per $T \sim t(\nu)$.