1. (a) In this part, B' is the start basis and B is the end basis:

$$\begin{bmatrix} \text{end basis} \mid \text{start basis} \end{bmatrix} = \begin{bmatrix} 2 & 4 \mid 1 & -1 \\ 2 & -1 \mid 3 & -1 \end{bmatrix}$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 \mid \frac{13}{10} & -\frac{1}{2} \\ 0 & 1 \mid -\frac{2}{5} & 0 \end{bmatrix}$$

The transition matrix is $P_{B' \to B} = \begin{bmatrix} \frac{13}{10} & -\frac{1}{2} \\ -\frac{2}{5} & 0 \end{bmatrix}$.

(b) In this part, B is the start basis and B' is the end basis:

$$\begin{bmatrix} \text{end basis} \mid \text{start basis} \end{bmatrix} = \begin{bmatrix} 1 & -1 \mid 2 & 4 \\ 3 & -1 \mid 2 & -1 \end{bmatrix}$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & -\frac{5}{2} \\ 0 & 1 & -2 & -\frac{13}{2} \end{bmatrix}$$

The transition matrix is $P_{B \to B'} = \begin{bmatrix} 0 & -\frac{5}{2} \\ -2 & -\frac{13}{2} \end{bmatrix}$.

(c) Expressing w as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 we obtain

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ -1 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$2c_1 + 4c_2 = 3
2c_1 - c_2 = -5$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -\frac{17}{10} \\ 0 & 1 & \frac{8}{5} \end{bmatrix}$. The solution of the linear

system is $c_1 = -\frac{17}{10}$, $c_2 = \frac{8}{5}$, therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} -\frac{17}{10} \\ \frac{8}{5} \end{bmatrix}$.

Using Formula (12),
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} 0 & -\frac{5}{2} \\ -2 & -\frac{13}{2} \end{bmatrix} \begin{bmatrix} -\frac{17}{10} \\ \frac{8}{5} \end{bmatrix} = \begin{bmatrix} -4 \\ -7 \end{bmatrix}$$
.

(d) Expressing w as a linear combination of \mathbf{u}'_1 and \mathbf{u}'_2 we obtain

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$c_1 - c_2 = 3$$

$$3c_1 - c_2 = -5$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -7 \end{bmatrix}$. The solution of the linear system is $c_1 = -4$, $c_2 = -7$, therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = \begin{bmatrix} -4 \\ -7 \end{bmatrix}$. This matches the result obtained in part (c).

2. (a) In this part, B' is the start basis and B is the end basis:

[end basis | start basis] =
$$\begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 1 & 1 & 4 \end{bmatrix}$$
 = [I | transition from start to end]

No row operations were necessary to obtain the transition matrix $P_{B' \to B} = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$.

(b) In this part, B is the start basis and B' is the end basis:

$$\begin{bmatrix} \text{end basis} \mid \text{start basis} \end{bmatrix} = \begin{bmatrix} 2 & -3 & 1 & 0 \\ 1 & 4 & 0 & 1 \end{bmatrix}$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{4}{11} & \frac{3}{11} \\ 0 & 1 & -\frac{1}{11} & \frac{2}{11} \end{bmatrix}$$

The transition matrix is $P_{B \to B'} = \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix}$.

- (c) Clearly, $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$. Using Formula (12), $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} -\frac{3}{11} \\ -\frac{13}{11} \end{bmatrix}$.
- (d) Expressing w as a linear combination of \mathbf{u}'_1 and \mathbf{u}'_2 we obtain

$$\begin{bmatrix} 3 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 4 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$2c_1 - 3c_2 = 3$$

$$c_1 + 4c_2 = -5$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & -\frac{3}{11} \\ 0 & 1 & -\frac{13}{11} \end{bmatrix}$. The solution of the linear

system is $c_1 = -\frac{3}{11}$, $c_2 = -\frac{13}{11}$, therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = \begin{bmatrix} -\frac{3}{11} \\ -\frac{13}{11} \end{bmatrix}$.

This matches the result obtained in part (c).

3. (a) In this part, B is the start basis and B' is the end basis:

$$[\text{end basis} \mid \text{start basis}] = \begin{bmatrix} 3 & 1 & -1 & 2 & 2 & 1 \\ 1 & 1 & 0 & 1 & -1 & 2 \\ -5 & -3 & 2 & 1 & 1 & 1 \end{bmatrix}$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 3 & 2 & \frac{5}{2} \\ 0 & 1 & 0 & -2 & -3 & -\frac{1}{2} \\ 0 & 0 & 1 & 5 & 1 & 6 \end{bmatrix}$$

The transition matrix is $P_{B \to B'} = \begin{bmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & -\frac{1}{2} \\ 5 & 1 & 6 \end{bmatrix}$.

(b) Expressing w as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 we obtain

$$\begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 9 \\ 0 & 1 & 0 & -9 \\ 0 & 0 & 1 & -5 \end{bmatrix}$. The solution of the

linear system is $c_1 = 9$, $c_2 = -9$, $c_3 = -5$ therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix}$.

Using Formula (12),
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} 3 & 2 & \frac{5}{2} \\ -2 & -3 & -\frac{1}{2} \\ 5 & 1 & 6 \end{bmatrix} \begin{bmatrix} 9 \\ -9 \\ -5 \end{bmatrix} = \begin{bmatrix} -\frac{7}{2} \\ \frac{23}{2} \\ 6 \end{bmatrix}.$$

(c) Expressing w as a linear combination of \mathbf{u}'_1 , \mathbf{u}'_2 and \mathbf{u}'_3 we obtain

$$\begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} 3 \\ 1 \\ -5 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ -3 \end{bmatrix} + c_3 \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$3c_1 + c_2 - c_3 = -5$$

 $c_1 + c_2 = 8$
 $-5c_1 - 3c_2 + 2c_3 = -5$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & -\frac{7}{2} \\ 0 & 1 & 0 & \frac{23}{2} \\ 0 & 0 & 1 & 6 \end{bmatrix}.$

The solution of the linear system is $c_1 = -\frac{7}{2}$, $c_2 = \frac{23}{2}$, $c_3 = 6$ therefore the coordinate vector is

$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = \begin{bmatrix} -\frac{7}{2} \\ \frac{23}{2} \\ 6 \end{bmatrix}$$
, which matches the result we obtained in part (b).

4. (a) In this part, B is the start basis and B' is the end basis:

$$[\text{end basis} \mid \text{start basis}] = \begin{bmatrix} -6 & -2 & -2 \mid -3 & -3 & 1 \\ -6 & -6 & -3 \mid 0 & 2 & 6 \\ 0 & 4 & 7 \mid -3 & -1 & -1 \end{bmatrix}$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \frac{3}{4} & \frac{3}{4} & \frac{1}{12} \\ 0 & 1 & 0 & -\frac{3}{4} & -\frac{17}{12} & -\frac{17}{12} \\ 0 & 0 & 1 & 0 & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

The transition matrix is $P_{B \to B'} = \begin{bmatrix} \frac{3}{4} & \frac{3}{4} & \frac{1}{12} \\ -\frac{3}{4} & -\frac{17}{12} & -\frac{17}{12} \\ 0 & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$.

(b) Expressing w as a linear combination of \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 we obtain

$$\begin{bmatrix} -5 \\ 8 \\ -5 \end{bmatrix} = c_1 \begin{bmatrix} -3 \\ 0 \\ -3 \end{bmatrix} + c_2 \begin{bmatrix} -3 \\ 2 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} 1 \\ 6 \\ -1 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$\begin{array}{rclrcrcr}
-3c_1 & - & 3c_2 & + & c_3 & = & -5 \\
& & & 2c_2 & + & 6c_3 & = & 8 \\
-3c_1 & - & c_2 & - & c_3 & = & -5
\end{array}$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. The solution of the linear

system is $c_1 = 1$, $c_2 = 1$, $c_3 = 1$ therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$.

Using Formula (12),
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} \frac{3}{4} & \frac{3}{4} & \frac{1}{12} \\ -\frac{3}{4} & -\frac{17}{12} & -\frac{17}{12} \\ 0 & \frac{2}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{19}{12} \\ -\frac{43}{12} \\ \frac{4}{3} \end{bmatrix}.$$

(c) Expressing w as a linear combination of \mathbf{u}'_1 , \mathbf{u}'_2 and \mathbf{u}'_3 we obtain

$$\begin{bmatrix} -5\\8\\-5 \end{bmatrix} = c_1 \begin{bmatrix} -6\\-6\\0 \end{bmatrix} + c_2 \begin{bmatrix} -2\\-6\\4 \end{bmatrix} + c_3 \begin{bmatrix} -2\\-3\\7 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & \frac{19}{12} \\ 0 & 1 & 0 & -\frac{43}{12} \\ 0 & 0 & 1 & \frac{4}{3} \end{bmatrix}$.

The solution of the linear system is $c_1 = \frac{19}{12}$, $c_2 = -\frac{43}{12}$, $c_3 = \frac{4}{3}$ therefore the coordinate vector is

$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B'} = \begin{bmatrix} \frac{19}{12} \\ -\frac{43}{12} \\ \frac{4}{3} \end{bmatrix}$$
, which matches the result we obtained in part (b).

5. (a) The set $\{\mathbf{f}_1, \mathbf{f}_2\}$ is linearly independent since neither vector is a scalar multiple of the other. Thus $\{\mathbf{f}_1, \mathbf{f}_2\}$ is a basis for V and $\dim(V) = 2$.

Likewise, the set $\{\mathbf{g}_1, \mathbf{g}_2\}$ of vectors in V is linearly independent since neither vector is a scalar multiple of the other. By Theorem 4.6.4, $\{\mathbf{g}_1, \mathbf{g}_2\}$ is a basis for V.

(b) Clearly,
$$\begin{bmatrix} \mathbf{g}_1 \end{bmatrix}_B = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} \mathbf{g}_2 \end{bmatrix}_B = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$ hence $P_{B' \to B} = \begin{bmatrix} \begin{bmatrix} \mathbf{g}_1 \end{bmatrix}_B \mid \begin{bmatrix} \mathbf{g}_2 \end{bmatrix}_B \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix}$.

(c) We find the two columns of the transitions matrix $P_{B \to B'} = \left[\left[\mathbf{f}_1 \right]_{B'} \mid \left[\mathbf{f}_2 \right]_{B'} \right]$

$$\mathbf{f}_{1} = a_{1}\mathbf{g}_{1} + a_{2}\mathbf{g}_{2}$$

$$\mathbf{f}_{2} = b_{1}\mathbf{g}_{1} + b_{2}\mathbf{g}_{2}$$

$$\sin x = a_{1}(2\sin x + \cos x) + a_{2}(3\cos x)$$

$$\cos x = b_{1}(2\sin x + \cos x) + b_{2}(3\cos x)$$

equate the coefficients corresponding to the same function on both sides of each equation

$$2a_1 = 1$$
 $2b_1 = 0$ $a_1 + 3a_2 = 0$ $b_1 + 3b_2 = 1$

reduced row echelon form of the augmented matrix of each system

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & 1 & -\frac{1}{6} \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & \frac{1}{3} \end{bmatrix}$$

We obtain the transition matrix $P_{B \to B'} = \begin{bmatrix} \mathbf{f}_1 \end{bmatrix}_{B'} \mid \begin{bmatrix} \mathbf{f}_2 \end{bmatrix}_{B'} \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix}$.

(An alternate way to solve this part is to use Theorem 4.7.1 to yield

$$P_{B\to B'} = P_{B'\to B}^{-1} = \left(\begin{bmatrix} 2 & 0 \\ 1 & 3 \end{bmatrix} \right)^{-1} = \frac{1}{(2)(3)-(0)(1)} \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 3 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix}.$$

(d) Clearly, the coordinate vector is $\begin{bmatrix} \mathbf{h} \end{bmatrix}_B = \begin{bmatrix} 2 \\ -5 \end{bmatrix}$.

Using Formula (12), we obtain $\begin{bmatrix} \mathbf{h} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{h} \end{bmatrix}_{B} = \begin{bmatrix} \frac{1}{2} & 0 \\ -\frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 2 \\ -5 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$.

- (e) By inspection, $2\sin x 5\cos x = (2\sin x + \cos x) 2(3\cos x)$, hence the coordinate vector is $\begin{bmatrix} \mathbf{p} \end{bmatrix}_{B'} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$, which matches the result obtained in part (d).
- **6.** (a) We find the two columns of the transitions matrix $P_{B' \to B} = [[\mathbf{q}_1]_B | [\mathbf{q}_2]_B]$

$$\mathbf{q}_{1} = a_{1}\mathbf{p}_{1} + a_{2}\mathbf{p}_{2}$$

$$\mathbf{q}_{2} = b_{1}\mathbf{p}_{1} + b_{2}\mathbf{p}_{2}$$

$$2 = a_{1}(6+3x) + a_{2}(10+2x)$$

$$3 + 2x = b_{1}(6+3x) + b_{2}(10+2x)$$

equate the coefficients corresponding to like powers of x on both sides of each equation

$$6a_1 + 10a_2 = 2$$
 $6b_1 + 10b_2 = 3$
 $3a_1 + 2a_2 = 0$ $3b_1 + 2b_2 = 2$

reduced row echelon form of the augmented matrix of each system

$$\begin{bmatrix} 1 & 0 & -\frac{2}{9} \\ 0 & 1 & \frac{1}{3} \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & -\frac{1}{6} \end{bmatrix}$$

We obtain the transition matrix $P_{B' \to B} = \begin{bmatrix} \mathbf{q}_1 \end{bmatrix}_B \mid \begin{bmatrix} \mathbf{q}_2 \end{bmatrix}_B \end{bmatrix} = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{9} & \frac{7}{9} \\ \frac{1}{3} & -\frac{1}{6} \end{bmatrix}$.

(b) We find the two columns of the transitions matrix $P_{B\to B'} = \left[\left[\mathbf{p}_1 \right]_{B'} \mid \left[\mathbf{p}_2 \right]_{B'} \right]$

$$\mathbf{p}_{1} = a_{1}\mathbf{q}_{1} + a_{2}\mathbf{q}_{2}$$

$$\mathbf{p}_{2} = b_{1}\mathbf{q}_{1} + b_{2}\mathbf{q}_{2}$$

$$6 + 3x = a_{1}(2) + a_{2}(3 + 2x)$$

$$10 + 2x = b_{1}(2) + b_{2}(3 + 2x)$$

equate the coefficients corresponding to like powers of x on both sides of each equation

$$2a_1 + 3a_2 = 6$$
 $2b_1 + 3b_2 = 10$ $2b_2 = 2$

reduced row echelon form of the augmented matrix of each system

$$\begin{bmatrix} 1 & 0 & \frac{3}{4} \\ 0 & 1 & \frac{3}{2} \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & \frac{7}{2} \\ 0 & 1 & 1 \end{bmatrix}$$

We obtain the transition matrix $P_{B \to B'} = \left[\begin{bmatrix} \mathbf{p}_1 \end{bmatrix}_{B'} \mid \begin{bmatrix} \mathbf{p}_2 \end{bmatrix}_{B'} \right] = \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1 \end{bmatrix}$.

- (c) Since -4 + x = (6 + 3x) (10 + 2x), the coordinate vector is $\begin{bmatrix} \mathbf{p} \end{bmatrix}_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$. Using Formula (12), we obtain $\begin{bmatrix} \mathbf{p} \end{bmatrix}_{B'} = P_{B \to B'} \begin{bmatrix} \mathbf{p} \end{bmatrix}_B = \begin{bmatrix} \frac{3}{4} & \frac{7}{2} \\ \frac{3}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} -\frac{11}{4} \\ \frac{1}{2} \end{bmatrix}$.
- (d) We are looking for the coordinate vector $[\mathbf{p}]_{B'} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ with c_1 and c_2 satisfying the equality

$$-4 + x = c_1(2) + c_2(3 + 2x)$$

for all real values x. Equating the coefficients associated with like powers of x on both sides yields the linear system

$$2c_1 + 3c_2 = -4$$
$$2c_2 = 1$$

which can easily be solved by back-substitution: $c_2 = \frac{1}{2}$, $c_1 = \frac{-4-3(\frac{1}{2})}{2} = -\frac{11}{4}$. We conclude that $\left[\mathbf{p}\right]_{B'} = \begin{bmatrix} -\frac{11}{4} \\ \frac{1}{2} \end{bmatrix}$, which matches the result obtained in part (c).

7. (a) In this part, B_2 is the start basis and B_1 is the end basis:

$$\left[\text{end basis} \mid \text{start basis}\right] = \begin{bmatrix} 1 & 2 & 1 & 1 \\ 2 & 3 & 3 & 4 \end{bmatrix}.$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 3 & 5 \\ 0 & 1 & -1 & -2 \end{bmatrix}.$$

The transition matrix is $P_{B_2 \to B_1} = \begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix}$.

(b) In this part, B_1 is the start basis and B_2 is the end basis:

$$\left[\text{end basis} \mid \text{start basis}\right] = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 3 & 4 & 2 & 3 \end{bmatrix}.$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 & 5 \\ 0 & 1 & -1 & -3 \end{bmatrix}.$$

The transition matrix is $P_{B_1 \to B_2} = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix}$.

- (c) Since $\begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ it follows that $P_{B_2 \to B_1}$ and $P_{B_1 \to B_2}$ are inverses of one another.
- (d) Expressing w as a linear combination of \mathbf{u}_1 and \mathbf{u}_2 we obtain

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$c_1 + 2c_2 = 0$$
$$2c_1 + 3c_2 = 1$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$. The solution of the linear system is $c_1 = 2$, $c_2 = -1$, therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_1} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$.

From Formula (12), $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_2} = P_{B_1 \to B_2} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_1} = \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(e) Expressing w as a linear combination of v_1 and v_2 we obtain

$$\begin{bmatrix} 2 \\ 5 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 4 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$\begin{array}{rcl}
1c_1 & + & 1c_2 & = & 2 \\
3c_1 & + & 4c_2 & = & 5
\end{array}$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & -1 \end{bmatrix}$. The solution of the linear system is $c_1 = 3$, $c_2 = -1$, therefore the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_2} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$.

From Formula (12), $\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_1} = P_{B_2 \to B_1} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B_2} = \begin{bmatrix} 3 & 5 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$.

- **8.** (a) By Theorem 4.7.2, $P_{B\to S} = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix}$.
 - **(b)** In this part, S is the start basis and B is the end basis: $\begin{bmatrix} \text{end basis} \mid \text{start basis} \end{bmatrix} = \begin{bmatrix} 2 & -3 \mid 1 & 0 \\ 1 & 4 \mid 0 & 1 \end{bmatrix}$.

The reduced row echelon form of this matrix is

 $\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & \frac{4}{11} & \frac{3}{11} \\ 0 & 1 & -\frac{1}{11} & \frac{2}{11} \end{bmatrix}.$

The transition matrix is $P_{S \to B} = \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix}$.

- (c) Since $\begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ it follows that } P_{B \to S} \text{ and } P_{S \to B}$ are inverses of one another.
- (d) Since (5,-3) = (2,1) (-3,4) the coordinate vector is $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

From Formula (12), $\begin{bmatrix} \mathbf{w} \end{bmatrix}_S = P_{B \to S} \begin{bmatrix} \mathbf{w} \end{bmatrix}_B = \begin{bmatrix} 2 & -3 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \end{bmatrix}$.

(e) By inspection, $\begin{bmatrix} \mathbf{w} \end{bmatrix}_S = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$. From Formula (12), $\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = P_{S \to B} \begin{bmatrix} \mathbf{w} \end{bmatrix}_S = \begin{bmatrix} \frac{4}{11} & \frac{3}{11} \\ -\frac{1}{11} & \frac{2}{11} \end{bmatrix} \begin{bmatrix} 3 \\ -5 \end{bmatrix} = \begin{bmatrix} -\frac{3}{11} \\ -\frac{13}{11} \end{bmatrix}$.

78

9. **(a)** By Theorem 4.7.2,
$$P_{B \to S} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$$
.

(b) In this part, S is the start basis and B is the end basis:

$$\begin{bmatrix} \text{end basis} \mid \text{start basis} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 & 0 \\ 2 & 5 & 3 & 0 & 1 & 0 \\ 1 & 0 & 8 & 0 & 0 & 1 \end{bmatrix}.$$

The reduced row echelon form of this matrix is

$$\begin{bmatrix} I \mid \text{transition from start to end} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & | & -40 & 16 & 9 \\ 0 & 1 & 0 & | & 13 & -5 & -3 \\ 0 & 0 & 1 & | & 5 & -2 & -1 \end{bmatrix}.$$

The transition matrix is $P_{S \to B} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}$.

(c) Since
$$\begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ it

follows that $P_{B\to S}$ and $P_{S\to B}$ are inverses of one another.

(d) Expressing w as a linear combination of v_1 , v_2 , and v_3 we obtain

$$\begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 2 \\ 5 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 3 \\ 3 \\ 8 \end{bmatrix}$$

Equating corresponding components on both sides yields the linear system

$$c_{1} + 2c_{2} + 3c_{3} = 5$$

$$2c_{1} + 5c_{2} + 3c_{3} = -3$$

$$c_{1} + 8c_{3} = 1$$

whose augmented matrix has the reduced row echelon form $\begin{bmatrix} 1 & 0 & 0 & -239 \\ 0 & 1 & 0 & 77 \\ 0 & 0 & 1 & 30 \end{bmatrix}$. The solution of the

linear system is $c_1 = -239$, $c_2 = 77$, $c_3 = 30$ therefore the coordinate vector is

$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} -239 \\ 77 \\ 30 \end{bmatrix}. \text{ From Formula (12), } \begin{bmatrix} \mathbf{w} \end{bmatrix}_{S} = P_{B \to S} \begin{bmatrix} \mathbf{w} \end{bmatrix}_{B} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix} \begin{bmatrix} -239 \\ 77 \\ 30 \end{bmatrix} = \begin{bmatrix} 5 \\ -3 \\ 1 \end{bmatrix}.$$

(e) By inspection,
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_{S} = \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix}$$
.

From Formula (12),
$$\begin{bmatrix} \mathbf{w} \end{bmatrix}_B = P_{S \to B} \begin{bmatrix} \mathbf{w} \end{bmatrix}_S = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix} \begin{bmatrix} 3 \\ -5 \\ 0 \end{bmatrix} = \begin{bmatrix} -200 \\ 64 \\ 25 \end{bmatrix}.$$

10. Reflecting $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ about the line y = x results in $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Likewise for $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ we obtain $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

- (a) From Theorem 4.7.5, $P_{B\to S} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.
- **(b)** Denoting $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, it follows from Theorem 4.7.5 that $P_{S \to B} = P^{-1}$. In our case, PP = I therefore $P = P^{-1}$. Furthermore, since P is symmetric, we also have $P_{S \to B} = P^{T}$.
- 11. (a) Clearly, $\mathbf{v}_1 = (\cos(2\theta), \sin(2\theta))$. Referring to the figure on the right, we see that the angle between the positive x-axis and \mathbf{v}_2 is $\frac{\pi}{2} 2(\frac{\pi}{2} \theta) = 2\theta \frac{\pi}{2}$. Hence,

$$\mathbf{v}_2 = \left(\cos\left(2\theta - \frac{\pi}{2}\right), \sin\left(2\theta - \frac{\pi}{2}\right)\right) = \left(\sin\left(2\theta\right), -\cos\left(2\theta\right)\right)$$

From Theorem 4.7.5, $P_{B \to S} = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.

(b) Denoting $P = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$, it follows from Theorem 4.7.5 that $P_{S \to B} = P^{-1}$. In our case, PP = I therefore $P = P^{-1}$. Furthermore, since P is symmetric, we also have $P_{S \to B} = P^{T}$.

- 12. Since for every vector \mathbf{v} in R^2 we have $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_2} = \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_1}$ and $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_3} = \begin{bmatrix} 7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_2}$, it follows that $\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_3} = \begin{bmatrix} 7 & 2 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_1} = \begin{bmatrix} 31 & 11 \\ 7 & 2 \end{bmatrix} \begin{bmatrix} \mathbf{v} \end{bmatrix}_{B_1}$ so that $P_{B_1 \to B_3} = \begin{bmatrix} 31 & 11 \\ 7 & 2 \end{bmatrix}$.

 From Theorem 4.7.1, $P_{B_3 \to B_1}$ is the inverse of this matrix: $\begin{bmatrix} -\frac{2}{15} & \frac{11}{15} \\ \frac{7}{15} & -\frac{31}{15} \end{bmatrix}$.
- 13. Since for every vector \mathbf{v} we have $[\mathbf{v}]_B = P[\mathbf{v}]_{B'}$ and $[\mathbf{v}]_C = Q[\mathbf{v}]_B$, it follows that $[\mathbf{v}]_C = QP[\mathbf{v}]_{B'}$ so that $P_{B' \to C} = QP$. From Theorem 4.7.1, $P_{C \to B'} = (QP)^{-1} = P^{-1}Q^{-1}$.
- **15.** (a) By Theorem 4.7.2, P is the transition matrix from $B = \{(1,1,0), (1,0,2), (0,2,1)\}$ to S.
 - **(b)** By Theorem 4.7.1, $P^{-1} = \begin{bmatrix} \frac{4}{5} & \frac{1}{5} & -\frac{2}{5} \\ \frac{1}{5} & -\frac{1}{5} & \frac{2}{5} \\ -\frac{2}{5} & \frac{2}{5} & \frac{1}{5} \end{bmatrix}$ is the transition matrix from B to S, hence by Theorem 4.7.2, $B = \left\{ \left(\frac{4}{5}, \frac{1}{5}, -\frac{2}{5} \right), \left(\frac{1}{5}, -\frac{1}{5}, \frac{2}{5} \right), \left(-\frac{2}{5}, \frac{2}{5}, \frac{1}{5} \right) \right\}$.
- **16.** Let the given basis be denoted as $B' = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ with $\mathbf{v}_1 = (1,1,1)$, $\mathbf{v}_2 = (1,1,0)$, $\mathbf{v}_3 = (1,0,0)$ and denote the unknown basis as $B = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$.

We have $P_{B \to B'} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \mathbf{u}_1 \end{bmatrix}_{B'} | \begin{bmatrix} \mathbf{u}_2 \end{bmatrix}_{B'} | \begin{bmatrix} \mathbf{u}_3 \end{bmatrix}_{B'} \end{bmatrix}$. Equating the respective columns yields

$$\begin{bmatrix} \mathbf{u}_1 \end{bmatrix}_{B'} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \Rightarrow \mathbf{u}_1 = 1\mathbf{v}_1 + 0\mathbf{v}_2 + 0\mathbf{v}_3 = (1,1,1)$$
$$\begin{bmatrix} \mathbf{u}_2 \end{bmatrix}_{B'} = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix} \Rightarrow \mathbf{u}_2 = 0\mathbf{v}_1 + 3\mathbf{v}_2 + 1\mathbf{v}_3 = (4,3,0)$$
$$\begin{bmatrix} \mathbf{u}_3 \end{bmatrix}_{B'} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \Rightarrow \mathbf{u}_3 = 0\mathbf{v}_1 + 2\mathbf{v}_2 + 1\mathbf{v}_3 = (3,2,0)$$

Thus the given matrix is the transition matrix from the basis $\{(1,1,1),(4,3,0),(3,2,0)\}$.

17. From T(1,0) = (2,5), T(0,1) = (3,-1), and Theorem 4.7.2 we obtain $P_{B\to S} = \begin{bmatrix} 2 & 3 \\ 5 & -1 \end{bmatrix}$.

- 18. From T(1,0,0) = (1,2,0), T(0,1,0) = (1,-1,1), T(0,0,1) = (0,4,3), and Theorem 4.7.2 we obtain $P_{B\to S} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & 4 \\ 0 & 1 & 3 \end{bmatrix}.$
- **19.** By Formula (10), the transition matrix from the standard basis $S = \{\mathbf{e}_1, ..., \mathbf{e}_n\}$ to B is $P_{S \to B} = \left[\left[\mathbf{e}_1 \right]_B \right] ... \left| \left[\mathbf{e}_n \right]_B \right] = \left[\mathbf{e}_1 \right| ... \left| \mathbf{e}_n \right] = I_n$ therefore B must be the standard basis.

True-False Exercises

- (a) True. The matrix can be constructed according to Formula (10).
- **(b)** True. This follows from Theorem 4.7.1.
- (c) True.
- (d) True.
- (e) False. For instance, $B_1 = \{(0,2),(3,0)\}$ is a basis for R^2 made up of scalar multiples of vectors in the standard basis $B_2 = \{(1,0),(0,1)\}$. However, $P_{B_1 \to B_2} = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}$ (obtained by Theorem 4.7.2) is not a diagonal matrix.
- (f) False. A must be invertible.

4.8 Row Space, Column Space, and Null Space

1. (a)
$$\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4 & 0 & -1 \\ 3 & 6 & 2 \\ 0 & -1 & 4 \end{bmatrix} \begin{bmatrix} -2 \\ 3 \\ 5 \end{bmatrix} = -2 \begin{bmatrix} 4 \\ 3 \\ 0 \end{bmatrix} + 3 \begin{bmatrix} 0 \\ 6 \\ -1 \end{bmatrix} + 5 \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix}$$

2. **(a)**
$$\begin{bmatrix} -3 & 6 & 2 \\ 5 & -4 & 0 \\ 2 & 3 & -1 \\ 1 & 8 & 3 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix} = -1 \begin{bmatrix} -3 \\ 5 \\ 2 \\ 1 \end{bmatrix} + 2 \begin{bmatrix} 6 \\ -4 \\ 3 \\ 8 \end{bmatrix} + 5 \begin{bmatrix} 2 \\ 0 \\ -1 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 2 & 1 & 5 \\ 6 & 3 & -8 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ -5 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 6 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 3 \end{bmatrix} - 5 \begin{bmatrix} 5 \\ -8 \end{bmatrix}$$