INTRODUCCIÓN AL MACHINE LEARNING

PRECIOS DE LA VIVIENDA -TÉCNICAS AVANZADAS DE REGRESION

1° CHALLENGE

EQUIPO

DIANA LLAMOCA

BRIGITTE BERNAL

MASSIEL COLLA

STEPHANY TORIBIO

RESUMEN DE CONTENIDOS

I. MÉTODO

II. FRAMEWORKS Y MECANISMOS DE ENTRENAMIENTO

III. RESULTADOS

IV. MEJORAS FUTURAS

DESAFÍO 1

INTRODUCCIÓN

INTRODUCCIÓN

Month

MÉTODOS

MANEJO DE ARCHIVOS

PREPROCESAMIENTO

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os for dirname, _, filenames in os.walk('/kaggle/input') for filename in filenames: print(os.path.join(dirname, filename)) train=pd.read_csv("/kaggle/input/house-pricesadvanced-regression-techniques/train.csv") train.index=train["Id"] train.drop("Id",axis=1,inplace=True) #Vamos a eliminar las columnas con demasiados train[["Alley","PoolQC","Fence","MiscFeature"]].isnull().s train.drop(["Alley","PoolQC","Fence","MiscFeature"], axis=1, inplace=True) train.shape Num=[col for col in train.columns if train[col].dtype!="object" and col!="SalePrice"] Cat=[col for col in train.columns if train[col].dtype=="object"]

OS module

walk()

join()

preprocessing.
impute.Simple
Imputer()

preprocessing.St
andardScaler()

preprocessing.Or
dinalEncoder()

linear_model.
ElasticNet()

train_feat=train[Num] train_target=train["SalePrice"] from sklearn import impute SI=impute.SimpleImputer(strategy="mean") train_feat_si=pd.DataFrame(SI.fit_transform(tr ain_feat)) train_feat_si.index=train_feat.index train_feat_si.columns=train_feat.columns #Colocando a la misma escala los datos numéricos, puesto que los valores de los features están en escalas distintas Ifrom sklearn import preprocessing SE=preprocessing.StandardScaler() train_feat_t=pd.DataFrame(SE.fit_transform(tra in_feat_si)) train_feat_t.index=train_feat_si.index train_feat_t.columns=train_feat_si.columns

MÉTODOS

MANEJO DE DATOS

MODELO DE REGRESIÓN

import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))

train=pd.read_csv("/kaggle/input/house-pricesadvanced-regression-techniques/train.csv")

train.index=train["Id"] train.drop("Id",axis=1,inplace=True) train.info()

#Vamos a eliminar las columnas con demasiados valores faltantes

train[["Alley","PoolQC","Fence","MiscFeature"]].isnull().s/

train.drop(["Alley","PoolQC","Fence","MiscFeature"], axis=1, inplace=True)

train.shape

Num=[col for col in train.columns if train[col].dtype!="object" and col!="SalePrice"] Cat=[col for col in train.columns if train[col].dtype=="object"]

read csv()

drop()

isnull().sum()

DataFrame()

ElasticNet()

fit()

predict()

test_features_final=pd.concat([test_ features_esc,test_feat_cat_f],axis=1) test_target_final=test_target["SalePri

predicciones12=RLR.predict(test_fea tures_final)

output12=pd.DataFrame({'Id':output_ submission_12.Id':output_submission _12.ld, 'SalePrice':predicciones12}) output12.to_csv('submission_new_12.c sv',index=False) output12=pd.DataFrame({'Id':output_

submission_12.ld,

'SalePrice':predicciones12})

output12.to_csv('submission_new_12.c sv',index=False)

FRAMEWORKS

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O
(e.g. pd.read_csv)
import os

for dirname, _, filenames in os.walk('/kaggle/input'):
for filename in filenames:

print(os.path.join(dirname, filename))

train=pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/train.csv")

train.index=train["Id"]

train.drop("Id",axis=1,inplace=True)
train.info()

#Vamos a eliminar las columnas con demasiados valores faltantes

train[["Alley","PoolQC","Fence","MiscFeature"]].isnull().s um()

train.drop(["Alley","PoolQC","Fence","MiscFeature"],
axis=1, inplace=True)

train.shape

Num=[col for col in train.columns if train[col].dtype!="object" and col!="SalePrice"] Cat=[col for col in train.columns if train[col].dtype=="object"]

OS module

train_feat=train[Num]

train_target=train["SalePrice"]

from sklearn import impute

SI=impute.SimpleImputer(strategy="mean")

train_feat_si=pd.DataFrame(SI.fit_transform(train_feat))

train_feat_si.index=train_feat.index

train_feat_si.columns=train_feat.columns

#Colocando a la misma escala los datos

numéricos, puesto que los valores de los features

están en escalas distintas

from sklearn import preprocessing

SE=preprocessing.StandardScaler()

train_feat_t=pd.DataFrame(SE.fit_transform(tra

in_feat_si))

train_feat_t.index=train_feat_si.index
train_feat_t.columns=train_feat_si.columns

FRAMEWORKS

#Features categóricas:

train_feat_cat=train[Cat]

SI_Cat=impute.SimpleImputer(strategy="most frequent")

train_feat_c_n=pd.DataFrame(SI_Cat.fit_trans
form(train_feat_cat))

train_feat_c_n.index=train_feat_cat.index
train_feat_c_n.columns=train_feat_cat.column
s

from sklearn import preprocessing

OE=preprocessing.OrdinalEncoder()

train_feat_c_f=pd.DataFrame(OE.fit_transfor
m(train_feat_c_n))

train_feat_c_f.index=train_feat_c_n.index
train_feat_c_f.columns=train_feat_c_n.columns
train_features_final=pd.concat([train_feat_t,train_feat_c_f],axis=1)

train_target_final=train["SalePrice"]

#Entrenamos al modelo

from sklearn import linear_model

#Regresión lineal ElasticNet

RLR=linear_model.ElasticNet() #Dejamos el valor de alpha por defecto

#Entrenando al modelo

RLR.fit(train_features_final,train_target_final)

test_features=pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/test.csv")

test_target=pd.read_csv("/kaggle/input/house-prices-advanced-regression-techniques/sample_submission.csv")

test_features.index=test_features["Id"]

test_features.drop("Id",axis=1,inplace=True)

#Elegimos la data numérica del test

test_feat_num=test_features[Num]

output_submission_12=test_target.copy()

######

test_target.index=test_target["Id"]

test_target.drop("Id",axis=1,inplace=True)

test_features_f=pd.DataFrame(SI.transform(test_feat_num))

test_features_f.index=test_feat_num.index

test_features_f.columns=test_feat_num.columns

FRAMEWORKS

#Al ya no haber valores nulos, se igualará la escala de los valores numéricos

test_features_esc=pd.DataFrame(SE.transform(test_feature s_f))

test_features_esc.index=test_features_f.index
test_features_esc.columns=test_features_f.columns

#Ahora, la data categórica test_features_cat=test_features[Cat]

test_feat_cat_n=pd.DataFrame(SI_Cat.transform(test_features_cat))

test_feat_cat_n.index=test_features_cat.index
test_feat_cat_n.columns=test_features_cat.columns
test_feat_cat_f=pd.DataFrame(OE.transform(test_feat_cat_
n))

test_feat_cat_f.index=test_feat_cat_n.index
test_feat_cat_f.columns=test_feat_cat_n.columns

test_features_final=pd.concat([test_
features_esc,test_feat_cat_f],axis=1)
test_target_final=test_target["SalePri
ce"]

predicciones12=RLR.predict(test_fea/
tures_final)

output12=pd.DataFrame({'Id':output_ submission_12.Id':output_submission _12.Id, 'SalePrice':predicciones12}) output12.to_csv('submission_new_12.c sv',index=False)

output12=pd.DataFrame({'Id':output_ submission_12.Id,

'SalePrice':predicciones12})
output12.to_csv('submission_new_12.c

sv',index=False)

RESULTADOS

RESULTADOS DEL MODELO DE REGRESIÓN LINEAL

RMSE (EN LA DATA DE TEST)

RMSE test: 65054.557662585736

KAGGLE

Public Score

0.15646

Best Score

0.15646 V1

RMSE EN LA DATA DE TRAIN Y TEST

```
#Métrica RMSE
import math
from sklearn import metrics

print("RMSE_train:",math.sqrt(metrics.mean_squared_error(EN.predict(train_features_final),train_target_final)))

print("RMSE_test:",math.sqrt(metrics.mean_squared_error(EN.predict(test_features_final),test_target)))

#Sin embargo, el puntaje final de Kaggle (el Public Score) es 0.15646

RMSE_train: 32350.405832316555
RMSE_test: 65054.557662585736
```

Por ello, debemos saber que sí se pueden hacer posibles mejoras futuras con el objetivo de mejorar el 'performance' del modelo de ML.

POSIBLES MEJORAS FUTURAS

- Exploración de Datos:
- Operaciones destructivas
- Optimización de Hiperparámetros
- Validación Cruzada y Evaluación de Modelos
- Considerar otras bibliotecas
- Selección de Características

iMUCHAS!

CONÓCENOS

@SOFTWARE GIRLSTEAM

