

COP 3502 – Computer Science I

- Problem with Bubble/Insertion/Selection Sorts:
 - All of these sorts make a large number of comparisons and swaps between elements
 - As mentioned last class (while covering n² sorts):
 - Any algorithm that swaps adjacent elements can only run so fast
 - So one might ask is there a more clever way to sort numbers
 - A way that does not require looking at all these pairs
 - Indeed, there are several ways to do this
 - And one of them is Merge Sort

- Merge Sort
 - Conceptually, Merge Sort works as follows:
 - If the "list" is of length 0 or 1, then it is already sorted!
 - Otherwise:
 - 1. <u>Divide</u> the <u>unsorted list</u> into <u>two sub-lists</u> of about <u>half</u> the size
 - So if your <u>list</u> has <u>n elements</u>, you will <u>divide</u> that list into <u>two</u> <u>sub-lists</u>, each having approximately <u>n/2 elements</u>:
 - Recursively sort each sub-list by calling recursively calling Merge Sort on the two smaller lists
 - 3. Merge the two sub-lists back into one sorted list
 - This Merge is a function that we study on its own
 - In a bit...

Merge Sort

- Basically, given a list:
 - You will split this list into two lists of about half the size
 - Then you recursively call Merge Sort on each list
 - What does that do?
 - Each of these new lists will, individually, be split into two lists of about half the size.
 - So now we have four lists, each about ¼ the size of the original list
 - This keeps happening...the lists keep getting split into smaller and smaller lists
 - Until you get to a list of size 1 or size 0...which is sorted!
 - Then we Merge them into a larger, sorted list

- Merge Sort
 - Incorporates two main ideas to improve its runtime:
 - A small list will take fewer steps to sort than a large list
 - 2) Fewer steps are required to construct a sorted list from two sorted lists than two unsorted lists
 - For example:
 - You only have to traverse each list once if they're already sorted

Merge function

- The key to Merge Sort: the Merge function
- Given two sorted lists, <u>Merge</u> them into one sorted list
- Problem:
 - You are given two arrays, each of which is already sorted
 - Your job is to efficiently combine the two arrays into one larger array
 - The larger array should contain all the values of the two smaller arrays
 - Finally, the larger array should be in sorted order

Merge function

- The key to Merge Sort: the Merge function
- Given two sorted lists, <u>Merge</u> them into one sorted list
- If you have two lists:
 - $X (x_1 < x_2 < ... < x_m)$ and $Y (y_1 < y_2 < ... < y_n)$
 - Merge these into one list: $Z(z_1 < z_2 < ... < z_{m+n})$

Example:

- List $1 = \{3, 8, 9\}$ and List $2 = \{1, 5, 7\}$
- Merge(List 1, List 2) = {1, 3, 5, 7, 8, 9}

Merge function

- Solution:
 - Keep track of the smallest value in each array that hasn't been placed, in order, in the larger array yet
 - Compare these two smallest values from each array
 - One of these MUST be the smallest of all the values in both arrays that are left
 - Place the smallest of the two values in the next location in the larger array
 - Adjust the smallest value for the appropriate array
 - Continue this process until all values have been placed in the large array

Example of <u>Merge</u> function:

Example of <u>Merge</u> function:

Result:

1	3	5	10	23	25	54	75
---	---	---	----	----	----	----	----

I

Merge function

- The big question:
 - How can we use this Merge function to sort an entire, unsorted array?
 - This function only "sorts" a specific scenario:
 - You have to have two, <u>already sorted</u>, arrays
 - Merge can then "sort" (merge) them into one larger array
 - So can we use this Merge function to somehow sort a large, unsorted array???
- This brings us back to Merge Sort

- Merge Sort
 - Again, here is the main idea for Merge Sort:
 - 1) Sort the first half of the array, using Merge Sort
 - Sort the second half of the array, using Merge Sort
 - Now, we do indeed have a situation where we can use the Merge function!
 - Each half is already sorted!
 - So simply merge the first half of the array with the second half.
 - And this points to a recursive solution...

Merge Sort

- Conceptually, Merge Sort works as follows:
 - If the "list" is of length 0 or 1, then it is already sorted!
 - Otherwise:
 - Divide the unsorted list into two sub-lists of about half the size
 - So if your list has n elements, you will divide that list into two sub-lists, each having approximately n/2 elements:
 - Recursively sort each sub-list by calling recursively calling Merge Sort on the two smaller lists
 - 3. Merge the two sub-lists back into one sorted list

Merge Sort

- Basically, given a list:
 - You will split this list into two lists of about half the size
 - Then you recursively call Merge Sort on each list
 - What does that do?
 - Each of these new lists will, individually, be split into two lists of about half the size.
 - So now we have four lists, each about ¼ the size of the original list
 - This keeps happening...the lists keep getting split into smaller and smaller lists
 - Until you get to a list of size 1 or size 0
 - Then we Merge them into a larger, sorted list

- Merge sort idea:
 - Divide the array into two halves.
 - Recursively sort the two halves (using merge sort).
 - Use <u>Merge</u> to combine the two arrays.

|--|

				_			
98	23	45	14	6	67	33	42

98 23 45 14 6	67 33 42
---------------	----------

98	23	45	14	6	67	33	42

98	23	45	14	6	67	33	42	
----	----	----	----	---	----	----	----	--

98	23	45	14	6	67	33	42

98 23

98	23	45	14	6	67	33	42
				•	• •		

98 23

Merge

98	23	45	14	6	67	33	42	
----	----	----	----	---	----	----	----	--

98	23	45	14	6	67	33	42

98 23 45 14

23 98

	9	8 2	3 4	5	14	6	67	3.	3 4	2	
	98	23	45	14	}		6	67	33	42	Ì
98	2	3	45	1	4						_
98		23	45] [14						
23	98	3	14	4.	5						
			, Me	erge	1						

Merge

	98	23	45	14	6	67	33	42	
98	3 2.	3 45	1 4			6 6	7 3	3	42
98	23] [45	14					
98	23	4	5	14					
23	98		L4 4	15					
14	23	45	98						
		lerge		3					

	98	23	45	14	6	67	33	42	
9	8 23	3 45	5 14			6 6	7 3	3 42	2
98	23		45	14	6	5 67	7	33	42
98	23	4	5	14					
23	98		L 4 4	1 5					
14	23	45	98	7					

	98	23	45	14	6	67	33	42	
	98 23	3 45	5 14			6 6	7 3	3 42	
9	98 23		4 5 [14	6	5 67	7	33 42	
98	8 23	4	5	14	6	; [•	57		
	23 98		L4 4	1 5					
	14 23	45	98	7					

	98	23	45	14	6	67	33	42	
98	3 23	45	14			6 6	/ 3.	3 4.	2
98	23	4	5 2	14	ϵ	5 67	,	33	42
98	23	45	5	14	6	;	57	33	42
23	98	1	4 4	15		6 6'	7		
14	23	45	98						

98 23 45 14 6	67 33 42
98 23 45 14 6	67 33 42
98 23 45 14 6	67 33 42
98 23 45 14 6	67 33 42
23 98 14 45 6	67 33 42
14 23 45 98	Merge

9	8 23	3 45	14	6	67	33	42	
98	23	45 14			6 6	7 3.	3 42	2
98 2	23	45	14	6	5 67	7	33	42
98	23	45	14	6	;	57	33	42
23 9	8	14 4	1 5		6 6	7	33	42
14	23 4	15 98			6 3	33 4	12 6	57
				- [Me	erge	

Merge

page 54

	98	23	45	14	6	67	33	42		
98	3 23	3 45	5 14	1		6 6	7 3.	3 4	2	
98	23		45	14	6	5 67	7	33	42]
98	23	4	5	14	6	5	57	33		42
23	98		L 4 4	15		6 6	7	33	42	2
14	23	45	98			6 3	33 4	12	57	
	6	14	23	33	42	45	67	98		

98	23	45	14	6	67	33	42	
----	----	----	----	---	----	----	----	--

Sorting: Merge Sort Example #2

Brief Interlude: FAIL Picture

UCF Daily Bike Fail

Courtesy of Sean Lunceford

UCF Weekly Bike Fail

Courtesy of Sean Lunceford

Merge Sort Code

```
void MergeSort(int values[], int start, int end) {
int mid;
// Check if our sorting range is more than one element.
if (start < end) {</pre>
        mid = (start+end)/2;
        // Sort the first half of the values.
        MergeSort(values, start, mid);
        // Sort the last half of the values.
        MergeSort(values, mid+1, end);
        // Put it all together.
        Merge(values, start, mid+1, end);
```


- Merge Code
 - This code is longer
 - And a bit convoluted
 - But all it does it Merge the values from two arrays into one larger array
 - Of course, keeping the items in order
 - Just like the example shown earlier in the slides
 - Code can be found here on the website:
 - http://www.cs.ucf.edu/courses/cop3502/sum2011/programs/sorting/mergesort.c
 - You need to fully understand how this code works
 - Including the Merge function!

- Merge Sort <u>Analysis</u>
 - Again, here are the steps of Merge Sort:
 - 1) Merge Sort the first half of the list
 - Merge Sort the second half of the list
 - 3) Merge both halves together
 - Let T(n) be the running time of Merge Sort on an input size n
 - Then we have:
 - T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3)

- Merge Sort Analysis
 - T(n): running time of Merge Sort on input size n
 - Therefore, we have:
 - T(n) = (Time in step 1) + (Time in step 2) + (Time in step 3)
 - Notice that Step 1 and Step 2 are sorting problems also
 - But they are of size n/2...we are halving the input
 - And the Merge function runs in O(n) time
 - Thus, we get the following equation for T(n)
 - T(n) = T(n/2) + T(n/2) + O(n)
 - T(n) = 2T(n/2) + O(n)

- Merge Sort Analysis
 - T(n) = 2T(n/2) + O(n)
 - For the time being, let's simplify O(n) to just n
 - T(n) = 2T(n/2) + n
 - and we know that T(1) = 1
 - So we now have a Recurrence Relation
 - Is it solved?
 - NO!
 - Why?
 - Damn T's!

- Merge Sort Analysis
 - T(n) = 2T(n/2) + n and T(1) = 1
 - So we need to solve this, by removing the T(...)'s from the right hand side
 - Then T(n) will be in its closed form
 - And we can state its Big-O running time
 - We do this in steps
 - We replace n with <u>n/2</u> on both sides of the equation
 - We plug the result back in
 - And then we do it again...till a "light goes off" and we see something

- Merge Sort Analysis
 - T(n) = 2T(n/2) + n and T(1) = 1
 - Do you know what T(n/2) equals
 - Does it equal 2,125 operations? We don't know!
 - So we need to develop an equation for T(n/2)
 - How?
 - Take the original equation shown above
 - Wherever you see an 'n', substitute with 'n/2'
 - T(n/2) = 2T(n/4) + n/2
 - So now we have an equation for T(n/2)

- Merge Sort Analysis
 - T(n) = 2T(n/2) + n and T(1) = 1
 - T(n/2) = 2T(n/4) + n/2
 - So now we have an equation for T(n/2)
 - We can take this equation and substitute it back into the original equation
 - T(n) = 2T(n/2) + n = 2[2T(n/4) + n/2] + n
 - now simplify
 - T(n) = 4T(n/4) + 2n
 - Same thing here: do you know what T(n/4) equals?
 - No we don't! So we need to develop an eqn for T(n/4)

- Merge Sort Analysis
 - T(n) = 2T(n/2) + n and T(1) = 1
 - T(n/2) = 2T(n/4) + n/2
 - T(n) = 4T(n/4) + 2n
 - Same thing here: do you know what T(n/4) equals?
 - No we don't! So we need to develop an eqn for T(n/4)
 - Take the eqn above and again substitute 'n/2' for 'n'
 - T(n/4) = 2T(n/8) + n/4
 - So now we have an equation for T(n/4)
 - We can take this equation and substitute it back the equation that we currently have in terms of T(n/4)

Merge Sort Analysis

$$T(n) = 2T(n/2) + n$$
 and $T(1) = 1$

- T(n/2) = 2T(n/4) + n/2
- T(n) = 4T(n/4) + 2n
- T(n/4) = 2T(n/8) + n/4
- So now we have an equation for T(n/4)
 - We can take this equation and substitute it back the equation that we currently have in terms of T(n/4)
- T(n) = 4T(n/4) + 2n = 4[2T(n/8) + n/4] + 2n
 - Simplify a bit
- T(n) = 8T(n/8) + 3n

- Merge Sort Analysis
 - So now we have three equations for T(n):
 - T(n) = 2T(n/2) + n
- ← 1st step of recursion
- T(n) = 4T(n/4) + 2n \leftarrow 2nd step of recursion
- T(n) = 8T(n/8) + 3n \leftarrow 3rd step of recursion
- So on the kth step/stage of the recursion, we get a generalized recurrence relation:
- $T(n) = 2^kT(n/2^k) + kn$ \leftarrow k^{th} step of recursion
- Whew! So now we're done right? Wrong!

- Merge Sort Analysis
 - So on the kth step/stage of the recursion, we get a generalized recurrence relation:
 - $T(n) = 2^k T(n/2^k) + kn^k$
 - We need to get rid of the T(...)'s on the right side
 - Remember, we know T(1) = 1
 - So we make a substitution:
 - Let $n = 2^k$
 - and also solve for k
 - $\mathbf{k} = \log_2 \mathbf{n}$
 - Plug these back in...

- Merge Sort Analysis
 - So on the kth step/stage of the recursion, we get a generalized recurrence relation:
 - $T(n) = 2^k T(n/2^k) + kn^k$
 - Let $n = 2^k$
 - and also solve for k
 - $\mathbf{k} = \log_2 \mathbf{n}$
 - Plug these back in...
 - $T(n) = 2^{\log_2 n} T(n/n) + (\log_2 n) n$
 - T(n) = n*T(1) + nlogn = n + n*logn
 - So Merge Sort runs in O(n*logn) time

- Merge Sort Summary
 - Avoids all the unnecessary swaps of n² sorts
 - Uses recursion to split up a list until we get to "lists" of 1 or 0 elements
 - Uses a Merge function to merge ("sort") these smaller lists into larger lists
 - Is MUCH faster than n² sorts
 - Merge Sort runs in O(nlogn) time

WASN'T THAT THE COOLEST!

Daily Demotivator

COP 3502 – Computer Science I