Zapletal's u_2 argument

Richard Ketchersid

Paul B. Larson

March 8, 2006

This is an outline of the proof of the following theorem from [2].

Theorem 0.1. Suppose that there exist a measurable cardinal and a stationary $S \subset \omega_1$ such that $NS_{\omega_1} \upharpoonright S$ is saturated. Then there is a forcing preserving stationary subsets of S which increases u_2 .

If $u_2 = \omega_2$ then Namba forcing (or any forcing making ω_2^V have cofinality ω while preserving ω_1) increases u_2 , so we will concentrate on the issue of making u_2 as large as the ω_2 of the ground model. We break the proof in this case up into the two following theorems.

Theorem 0.2. Suppose that there is a stationary $S \subset \omega_1$ such that $NS_{\omega_1} \upharpoonright S$ is saturated. Then there is a forcing preserving stationary subsets of S which adds a collection $\{C_n : n \in \omega\}$ of club subsets of ω_1 from the ground model such that $\bigcap_{n \in \omega} C_n \subset S$.

Theorem 0.3. Suppose that $V \subset W$ are models of ZFC which are correct about ω_1 , and that κ is a measurable cardinal in both models as witnessed by a measure in W that restricts to a measure in V. Let $S \subset \omega_1$ be stationary such that $NS_{\omega_1} \upharpoonright S$ is saturated in V, and let $\{C_n : n < \omega\} \in W$ be such that each C_n is a club subset of ω_1 in V, and $\bigcap_{n \in \omega} C_n \subset S$. Then $u_2^W \geq \omega_2^V$.

We work on the proof of Theorem 0.2 first. Given a tree T and node $p \in T$, we let |p| be the length (equivalently, the domain) of p. An immediate successor of p (in T) is a $q \in T$ such that $p \subset q$ and |q| = |p| + 1. For a node $p \in T$, let \mathcal{S}_p be the set of X such that $p \cap \langle X \rangle$ is in T. A splitnode in T is a node having at least two distinct immediate successors (equivalently, such that \mathcal{S}_p has size at least 2). The root of a tree is the unique splitnode r of the tree (possibly the empty sequence) such that for all $p \in T$, $r \subset p$ or $p \subset r$.

Given collections S, N of subsets of ω_1 , we say that S is N-broad (with $S \subset \omega_1$ as a suppressed parameter) if

- 1. $\bigcup \{X \mid X \in \mathcal{S}\} \supset (\omega_1 \setminus S);$
- 2. For every $(A \in NS_{\omega_1} \upharpoonright S) \cap \mathcal{N}$ there exists a $B \in \mathcal{S}$ such that $A \setminus B$ is countable.

We drop " \mathcal{N} " from " \mathcal{N} -broad" when $\mathcal{N} = \mathcal{P}(\omega_1)$. Note that since $NS_{\omega_1} \upharpoonright S$ is normal, item (2) is equivalent to: there exists a $\gamma < \omega_1$ such that for all $A \in NS_{\omega_1} \upharpoonright S$ there is a $B \in \mathcal{S}$ such that $A \subset \gamma \cup B$.

Fix S and let P be the set of trees T contained in $(NS_{\omega_1})^{<\omega}$ such that

- For every $p \in T$ there exists a splitnode $q \in T$ such that $p \subset q$.
- For every splitnode $p \in T$, S_p is broad.

Forcing with P adds an ω -sequence (the members of the roots of the members of the generic filter) of elements of NS_{ω_1} whose union is all of $\omega_1 \setminus S$ (by item (1) and genericity). It remains to see that P preserves ω_1 . We show this in several steps.

Lemma 0.4. Suppose that $NS_{\omega_1} \upharpoonright S$ is saturated, for some $S \in NS_{\omega_1}^+$. Let S be a broad subset of NS_{ω_1} , and suppose that $j \colon V \to M$ is an elementary embedding derived from forcing with $\mathcal{P}(\omega_1)/(NS_{\omega_1} \upharpoonright S)$ then j[S] is $\mathcal{P}(\omega_1)^M$ -broad.

Proof. Let $j\colon V\to M$ be a generic ultrapower embedding induced by a generic filter $G\subset (NS_{\omega_1}{\upharpoonright}S)^+$. Noting that $j(f)(j(B))=j(f(B))<\omega_1^V$ for all $B\in\mathcal{S}$, we claim that ω_1^V works for $j(\mathcal{S})$ and j(S) in M. First, let $h\colon S\to\omega_1$ be a function representing an element of $\omega_1^M\setminus j(S)$. If $[h]_G<\omega_1^V$, then since \mathcal{S} is broad there is a $B\in\mathcal{S}$ such that $[h]_G\in B$. Since $\omega_1^V\in j(S)$, $\{\alpha<\omega_1\mid h(\alpha)=\alpha\}\not\in G$, so we may assume that $h(\alpha)\in\omega_1\setminus (S\cup(\alpha+1))$ for all $\alpha<\omega_1$. Then the range of h is in $NS_{\omega_1}{\upharpoonright}S$, so there is a $B\in\mathcal{S}$ containing all but countably many elements of the range of h, which means that $[h]_G\in j(B)$. Now consider $h\colon \omega_1\to NS_{\omega_1}{\upharpoonright}S$. The diagonal union of the range of h is an element of $NS_{\omega_1}{\upharpoonright}S$, and so there exists a $B\in\mathcal{S}$ containing all but countably many members of this diagonal union. Therefore, there is a $\gamma<\omega_1^V$ such that for all $\beta\in(\gamma,\omega_1^V)$, if there is an $\alpha<\beta$ such that $\beta\in h(\alpha)$, then β is in β . To see that $\beta\in (\beta,\beta)$ then $\beta\in (\beta,\beta)$ that $\beta\in (\beta,\beta)$ is in $\beta\in (\beta,\beta)$. Then $\beta\in (\beta,\beta)$ is an element of $\beta\in (\beta,\beta)$. Then $\beta\in (\beta,\beta)$ is an element of $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if there is an $\beta\in (\beta,\beta)$ such that $\beta\in (\beta,\beta)$ if the expression is a such that $\beta\in (\beta,\beta)$ if the expression is a such that $\beta\in (\beta,\beta)$ if the expression is a such that $\beta\in (\beta,\beta)$ is an exp

Given a P-name τ for a function from ω_1 to ω_1 , a bijection $\pi : \omega \to \beta$ for some countable ordinal β and a condition $T \in P$ we consider the game $G(\tau, \pi, T)$. For notational ease, let $T_{-1} = T$. In the ith round of the game, I plays either an element α of $\omega_1 \setminus S$ or an element A of $NS_{\omega_1} \upharpoonright S$, and II plays a condition $T_i \leq T_{i-1}$ such that T_i forces $\tau(\pi(i))$ to be less than β , the root of T_i is longer than the root of T_{i-1} , and for B the $|root(T_{i-1})|$ th member of the root of T_i , either $\alpha \in B$, if I played α , or $A \setminus B$ is countable, if I played A. If ever II cannot play meeting these conditions, she loses. Otherwise, if the game lasts for ω many rounds, she wins.

For each τ , π and T, this is a closed game, and thus determined, and a winning strategy for II defines a condition $T' \leq T$ which forces that $\tau[\beta] \subset \beta$. To show that P preserves stationary subsets of S, then, it suffices to show that for each pair τ , T and each stationary $S' \subset S$ there exist a $\beta \in S'$ and a bijection $\pi \colon \omega \to \beta$ such that II has a winning strategy in $G(\tau, \pi, T)$. To see that this is the case, fix τ , T and S', let $G \subset \mathcal{P}(\omega_1)/(NS_{\omega_1} \upharpoonright S)$ be a generic

filter containing S' and let $j\colon V\to M$ be the corresponding embedding. Fix a bijection $\pi\colon \omega\to\omega_1^V$ in M and a strategy Σ for I in $G(j(\tau),\pi,j(T))$. By Lemma 0.4, there is an infinite run of $G(j(\tau),\pi,j(T))$ where I plays by Σ and all of II's moves are in j[P]. Therefore, Σ is not a winning strategy for I, so II must have a winning strategy. By the elementarity of j, then we are done.

We now turn to the proof of Theorem 0.3. Let ZFC° denote the theory ZFC – Powerset – Replacement + " $\mathcal{P}(\mathcal{P}(\omega_1))$ exists" plus the following scheme, which is a strengthening of ω_1 -Replacement: every (possibly proper class) tree of height ω_1 definable from set parameters has a maximal branch

We note two facts from Section 3.1 of [1].

Theorem 0.5. If M is countable transitive model of ZFC°, I is a precipitous ideal on ω_1^M in M and M is a rank initial segment of a model containing ω_1 , then the pair (M,I) is iterable.

Theorem 0.6. Suppose that M is countable transitive model of ZFC° , I is a precipitous ideal on ω_1^M in M and the pair (M,I) is iterable, and let x be any real coding (M,I). If $f: \omega_1 \to \omega$ is a canonical function for an ordinal $\gamma < \omega_2$, and f appears in the last model of an iteration of (M,I) of length $\omega_1 + 1$, then the least x-indiscernible of x above ω_1 is bigger than γ .

The following is a slight variation of a standard fact.

Lemma 0.7. Suppose that $V \subset W$ are models of ZFC and that μ is a normal measure on κ in W such that $\mu \cap V$ is a normal measure on κ in V. Fix θ such that $\mu \cap V \in H(\theta)^V$, and let $X \in W$ be a countable elementary submodel of $H(\theta)^V$. Let $\gamma = \min(X \cap \mu)$. Then

$$\{f(\gamma) \mid f \colon \kappa \to V \land f \in X\}$$

is an elementary submodel of $H(\theta)^V$ end-extending X below κ .

We now prove Theorem 0.3, which completes the proof of the main theorem.

Proof of Theorem 0.3. Fix $\gamma < \omega_2^V$ and let f be a canonical function for γ in V. Let $X \in W$ be a countable elementary substructure of $H(\theta)^V$ containing f, S and each C_n , where θ is as in Lemma 0.7. Let I denote $(NS_{\omega_1} \upharpoonright s)^M$, where s is the image of S under the transitive collapse of S. By Lemma 0.7 and Theorem 0.5, the pair (M,I) is iterable. Recursively define X_{α} ($\alpha \leq \omega_1$) by letting $X_0 = X$, taking unions at limit stages, and letting

$$X_{\alpha+1} = \{ g(X_{\alpha} \cap \omega_1) : g \colon \omega_1 \to H(\theta)^V \land g \in X_{\alpha} \}.$$

Letting M_{α} be the transitive collapse of X_{α} and I_{α} the image of $NS_{\omega_1} \upharpoonright S$ under this collapse, it remains only to see that $\langle (M_{\alpha}, I_{\alpha}) : \alpha \leq \omega_1 \rangle$ is an iteration of (M, I). This follows almost immediately from the fact that $NS_{\omega_1} \upharpoonright S$ is saturated in V, noting that since each C_n is in X, each $X_{\alpha} \cap \omega_1$ is in S.

References

- [1] W.H. Woodin, **The axiom of determinacy, forcing axioms, and the nonstationary ideal**, de Gruyter Series in Logic and its Applications, 1. Walter de Gruyter & Co., Berlin, 1999
- [2] J. Zapletal, The nonstationary ideal on ω_1 and the other ideals on ω_1 , Transactions of the American Mathematical Society 352 (2000), 3981-3993

Department of Mathematics and Statistics Miami University
Oxford, Ohio 45056
USA
ketchero@muohio.edu
larsonpb@muohio.edu