Зад. 1. Нека $\Gamma\colon \mathcal{F}_1 \to \mathcal{F}_1$ и $\Delta\colon \mathcal{F}_1 \to \mathcal{F}_1$ са следните оператори:

$$\Gamma(f)(x) \simeq \begin{cases} 0, & \text{ако } x = 0 \\ x.f(x-1), & \text{иначе.} \end{cases} \quad \text{и} \quad \Delta(f) = f \circ f.$$

- а) Определете операторите $\Gamma \circ \Delta$ и $\Delta \circ \Delta$.
- б) Намерете явния вид на функциите $\Gamma(f),\ (\Gamma\circ\Delta)(f)$ и $(\Delta\circ\Delta)(f),$ където f(x)=x+1 за всяко $x\in\mathbb{N}.$

 $\textbf{Pemeнue на Зад. 1. a) } (\Gamma \circ \Delta)(f)(x) \simeq \Gamma(\Delta(f))(x) \simeq \Gamma(f \circ f)(x) \simeq \begin{cases} 0 & , \ x = 0 \\ x.f(f(x-1)) & , \ x > 0 \end{cases}.$

$$(\Delta \circ \Delta)(f) = \Delta(\Delta(f)) = \Delta(f \circ f) = (f \circ f) \circ (f \circ f) = f^4.$$

6)
$$\Gamma(f)(x) \simeq \begin{cases} 0 & , \ x = 0 \\ x.((x-1)+1) & , \ x > 0 \end{cases} \simeq \begin{cases} 0 & , \ x = 0 \\ x^2 & , \ x > 0 \end{cases}$$

$$(\Gamma \circ \Delta)(f)(x) \simeq \begin{cases} 0 & , \; x = 0 \\ x.(((x-1)+1)+1) & , \; x > 0 \end{cases} \simeq \begin{cases} 0 & , \; x = 0 \\ x(x+1) & , \; x > 0 \end{cases}$$

$$(\Delta \circ \Delta)(f)(x) \simeq f^4(x) \simeq ((((x+1)+1)+1)+1) = x+4.$$

Зад. 2. а) Определете дали следната функция f: $\mathbb{N}^2_\perp \to \mathbb{N}_\perp$:

$$f(x,y) = \begin{cases} 0, & \text{ако } x = 0 \\ x.y, & \text{ако } x > 0 \ \& \ y \geq 0 \\ \bot, & \text{в останалите случаи} \end{cases}$$

е точна, монотонна или непрекъсната. Обосновете се.

- б) Нека f, g1 и g2 са функции от \mathcal{F}_2^{\perp} . Вярно ли e, че:
- ако f, g_1 и g_2 са точни функции, то и $f(g_1,g_2)$ е точна;
- ако f, g_1 и g_2 са монотонни, то и $f(g_1,g_2)$ е монотонна?

Обосновете отговорите си.

Решение на Зад. 2. а) От лекции знаем, че ако една функция е точна, то тя е монотонна и една функция е монотонна ТСТК е непрекъсната.

Тоест ако покажем, че f е точна, то тя ще е и монотонна и непрекъсната.

Обаче f не е точна, защото $f(0, \bot) = 0 \neq \bot$. Нека проверим дали е монотонна, като се възползваме от следното твърдение от лекции:

Една функция е монотонна ТСТК е монотонна по всеки аргумент.

- (по първия аргумент): Нека $a \in \mathbb{N}$ и $b \in \mathbb{N}_{\perp}$. Тогава $f(\bot, b) = \bot \sqsubseteq f(a, b)$ и значи f е монотнна по първия си аргумент.
- ullet (по втория): Нека $\mathfrak{a} \in \mathbb{N}_{\perp}$ и $\mathfrak{b} \in \mathbb{N}$. Тогава са възможни два случая.
 - 1. $a = \bot$. Тогава $f(a, \bot) = \bot = f(a, b)$.
 - 2. $a \in \mathbb{N}$. Тогава $f(a, \bot) = \bot \sqsubseteq a.b = f(a, b)$.

Следователно f е монотнна по втория си аргумент.

Следователно f е монотина и непрекъсната.

б)

- (точност): Нека $a, b \in \mathbb{N}_{\perp}$ са такива, че $a = \bot \lor b = \bot$. Тогава $g_1(a,b) = \bot$ и значи $(f(g_1,g_2))(a,b) = f(g_1(a,b),g_2(a,b)) = f(\bot,g_2(a,b)) = \bot$. Следователно $f(g_1,g_2)$ е точна, защото g_1,g_2,f са точни.
- (монотонност): Нека $a,b,c,d\in\mathbb{N}_\perp$ са такива, че $(a,b)\sqsubseteq(c,d)$. Тогава $g_1(a,b)\sqsubseteq g_1(c,d)$ и $g_2(a,b)\sqsubseteq g_2(c,d)$.

Следователно $(g_1(a,b),g_2(a,b)) \sqsubseteq (g_1(c,d),g_2(c,d)).$

Следователно $(f(g_1,g_2))(a,b)\sqsubseteq (f(g_1,g_2))(c,d),$ понеже f е монотонна.

Следователно $f(g_1, g_2)$ е монотонна.

Зад. 3. Нека $(A, \leqslant, \mathfrak{a}_0)$ и $(B, \leqslant', \mathfrak{b}_0)$ са ОС, а $f: A \to B$ е сюрективно изображение, такова че за всички $\mathfrak{a}_1, \mathfrak{a}_2 \in A$:

$$a_1 \leqslant a_2 \implies f(a_1) \leqslant' f(a_2).$$

Докажете, че:

- a) $f(a_0) = b_0$.
- б) Ако редицата $\{\mathfrak{a}_n\}_{n\in\mathbb{N}}$ е монотонно растяща в A, то редицата $\{f(\mathfrak{a}_n)\}_{n\in\mathbb{N}}$ е монотонно растяща в B.
- в) За всяка монотонно растяща редица $\{a_n\}_{n\in\mathbb{N}}$ в A е изпълнено:

$$\lim_{n\in\mathbb{N}}' f(a_n) \leqslant' f(\lim_{n\in\mathbb{N}} a_n),$$

където с lub и lub' са означени т.г.гр. в A и B, съответно.

г) Дайте пример за ОС, за които $\underset{n\in\mathbb{N}}{\text{lub}'}f(\mathfrak{a}_n) \neq f(\underset{n\in\mathbb{N}}{\text{lub}}\,\mathfrak{a}_n).$

Решение на Зад. 3. a) Понеже $f(\mathfrak{a}_0) \in B$, то $\mathfrak{b}_0 \leqslant' f(\mathfrak{a}_0)$. Но f е сюрекция. Нека тогава $\mathfrak{a} \in A$ е такова, че $\mathfrak{b}_0 = f(\mathfrak{a})$. Тогава $\mathfrak{a}_0 \leqslant \mathfrak{a}$ и значи $f(\mathfrak{a}_0) \leqslant' f(\mathfrak{a}) = \mathfrak{b}_0$. Така $\mathfrak{b}_0 \leqslant' f(\mathfrak{a}_0)$ и $f(\mathfrak{a}_0) \leqslant' \mathfrak{b}_0$ и понеже \leqslant' е антисиметрична, то $f(\mathfrak{a}_0) = \mathfrak{b}_0$.

- б) Нека $n \in \mathbb{N}$. Тогава $a_n \leqslant a_{n+1}$ и значи $f(a_n) \leqslant' f(a_{n+1})$. Следователно $\{f(a_n)\}_{n \in \mathbb{N}}$ е монотонно растяща в (B, \leqslant', b_0) .
- в) Нека $\{a_n\}_{n\in\mathbb{N}}$ е монотонно растяща редица в (A,\leqslant,a_0) . Тогава от б) следва, че $\{f(a_n)\}_{n\in\mathbb{N}}$ е монотонно растяща в (B,\leqslant',b_0) и значи $\underset{n\in\mathbb{N}}{\mathsf{lub}}'f(a_n)$ съществува. Нека $n\in\mathbb{N}$ тогава $a_n\leqslant\underset{n\in\mathbb{N}}{\mathsf{lub}}a_n$ и значи $f(a_n)\leqslant' f\left(\underset{n\in\mathbb{N}}{\mathsf{lub}}a_n\right)$. Но тогава $f\left(\underset{n\in\mathbb{N}}{\mathsf{lub}}a_n\right)$ е горна граница за $\{f(a_n)\}_{n\in\mathbb{N}}$. Следователно $\underset{n\in\mathbb{N}}{\mathsf{lub}}'f(a_n)\leqslant' f(\underset{n\in\mathbb{N}}{\mathsf{lub}}a_n)$.
- г) Нека $K = \mathbb{N} \cup \{\mathbb{N}\}$ и нека \leqslant е следната наредба $a \leqslant b \iff (a \in \mathbb{N} \& b \in \mathbb{N} \& a \leq_{\mathbb{N}} b) \lor b = \mathbb{N}$. Ясно е, че $(K, \leqslant, 0)$ е ОС. Нека $T = \{\emptyset, \{\emptyset\}\}$ и нека $\prec = \{\{(\emptyset, \{\emptyset\})\}\}$. Нека \preceq е рефлексивното затваряне на \prec в T. Тогава (T, \preceq, \emptyset) е ОС. Нека $q = \{n\}_{n \in \mathbb{N}}$. Тогава q е монотонно растяща редица в $(K, \leqslant, 0)$ и т.г.гр. е \mathbb{N} .

Тогава
$$(f, \leq, \emptyset)$$
 е ОС. Нека $q = \{n\}_{n \in \mathbb{N}}$. Тогава q е монотонно растяща редица в (K, \leq, \emptyset) и т Нека $f: K \to T$ е таква, че $f(x) = \begin{cases} \emptyset & , \ x \in \mathbb{N} \\ \{\emptyset\} & , \ x = \mathbb{N} \end{cases}$. Тогава $\underset{n \in \mathbb{N}}{\text{lub}} f(q_n) = \underset{n \in \mathbb{N}}{\text{lub}} f(n) = \underset{n \in \mathbb{N}}{\text{lub}} \emptyset = \emptyset$. От друга страна $f\left(\underset{n \in \mathbb{N}}{\text{lub}} q_n\right) = f(\mathbb{N}) = \{\emptyset\}$ и значи $\underset{n \in \mathbb{N}}{\text{lub}} f(q_n) = \emptyset \prec \{\emptyset\} = f\left(\underset{n \in \mathbb{N}}{\text{lub}} q_n\right)$. Следователно $\underset{n \in \mathbb{N}}{\text{lub}} f(q_n) \neq f\left(\underset{n \in \mathbb{N}}{\text{lub}} q_n\right)$.

п∈№ \ п∈№ / **Колегата Ланчо** (Йордан Петров) се сети за аналоги

Колегата Данчо (*Йордан Петров*) се сети за аналогичен на този пример. Може би неговият беше по-ясен, но този е малко по-интересен.

Зад. 4. Нека $\Gamma\colon \mathcal{F}_1 o \mathcal{F}_1$ е непрекъснат оператор. Докажете, че за всяко $\mathfrak{n} \ge 1$ са еквивалентни условията:

- $f \in \mathcal{F}_1$ е най-малката функция със свойството $\Gamma(f) \subseteq f;$
- ullet $f\in\mathcal{F}_1$ е най-малката функция със свойството $\Gamma^{\mathfrak{n}}(f)\subseteq f.$

Решение на Зад. 4. Както знаем от лекции понеже Г е непрекъснат,

то най-малката функция със свойството $\Gamma(f) \subseteq f$ съвпада с най-малката неподвижна точка на Γ . Лесно се доказва по индукция, че за всяко $\mathfrak{n} \in \mathbb{N}_+$ операторът $\Gamma^\mathfrak{n}$ е непрекъснат. Нека $n \in \mathbb{N}$. Ще докажем, че е в сила $lfp(\Gamma^{n+1}) = lfp(\Gamma)$. От където ще следва условието на задачата.

От теорията знаем, че lpf(Γ^{n+1}) = $\bigcup_{k\in\mathbb{N}} (\Gamma^{n+1})^k(\emptyset) = \bigcup_{k\in\mathbb{N}} \Gamma^{kn+k}(\emptyset)$ и lfp(Γ) = $\bigcup_{k\in\mathbb{N}} \Gamma^k(\emptyset)$ и редиците $\{\Gamma^{kn+k}(\emptyset)\}_{k\in\mathbb{N}}$ и $\{\Gamma^k(\emptyset)\}_{k\in\mathbb{N}}$ са монотонно растащи и сходящи.

Сега ще докажем частен случай на добре познато твърдение от Анализа: Границата на подредица на сходяща редица съвпада с границата на самата редицата.

 $\text{Hека } k \in \mathbb{N}. \text{ Тогава } \Gamma^k \subseteq \Gamma^{kn+k} \subseteq \bigcup_{l \in \mathbb{N}} \Gamma^{ln+l}(\emptyset) = lfp(\Gamma^{n+1}) \text{ и значи } lfp(\Gamma^{n+1}) \text{ е горна граница за редицата } \{\Gamma^l(\emptyset)\}_{l \in \mathbb{N}}.$ Следователно $lfp(\Gamma) = \bigcup_{l \in \mathbb{N}} \Gamma^l(\emptyset) \subseteq lfp(\Gamma^{n+1}).$

 $\text{Hека } k \in \mathbb{N}. \text{ Тогава } \Gamma^{kn+k} \subseteq \bigcup_{l \in \mathbb{N}} \Gamma^l(\emptyset) = \text{lfp}(\Gamma), \text{ защото } \bigcup_{l \in \mathbb{N}} \Gamma^l(\emptyset) \text{ е т.г.гр. на редицата } \{\Gamma^l(\emptyset)\}_{l \in \mathbb{N}}, \text{ а } kn+k \in \mathbb{N}.$ Следователно $\text{lfp}(\Gamma)$ е горна граница за редицата $\{\Gamma^{ln+l}(\emptyset)\}_{l \in \mathbb{N}}.$ Следователно $\text{lfp}(\Gamma^{n+1}) = \bigcup_{l \in \mathbb{N}} \Gamma^{ln+l}(\emptyset) \subseteq \text{lfp}(\Gamma).$

Така $lfp(\Gamma^{n+1}) = lfp(\Gamma)$ и от това следва условието на задачата.