Microelectronic Circuits I (Quiz 1)

date: 2010/10/22 (Fri)

time: 14:20~15:10

- 1. (50%) The circuit shown blow utilizes an ideal op amp.
 - (a) Find I_1 , I_2 , I_3 , and V_x .
 - (b) If V_O is not to be lower than -13V, find the maximum allowed value for R_L .
 - (c) If R_L is varied in the range 100Ω to $1K\Omega$, what is the corresponding change in I_L and in V_O ?

- 2. (50%) The circuit shown below is intended to supply a voltage to floating loads (those for which both terminals are ungrounded) while making greatest possible use of the available power supply.
 - (a) Assuming ideal op amps, sketch the voltage waveforms at nodes B and C for a 1-V peak-to-peak sine eave applied at A, Also sketch v_0 .
 - (b) What is the voltage gain v_0/v_1 ?
 - (c) Assuming that the op amps operate from ± 15 -V power supplies and that their output saturates at ± 14 V, what is the largest sine-wave output that can be accommodated? Specify both its peak-to-peak and rms values.

