

DESNATURAÇÃO E RENATURAÇÃO DA DUPLA HÉLICE E PAREAMENTO DAS BASES

Grupo 3 - Algoritmos em bioinformática - N - 2022

TOPICOS

INTRODUÇÃO

DESNATURAÇÃO

QUEBRA DAS PONTES

RENATURAÇÃO E PAREAMENTO

INTRODUÇÃO

- A desnaturação do DNA pode ser acompanhada pela medida em espectrofotômetro de absorbância de luz ultravioleta (UV).
- Elevação de temperatura como a febre pode ser letal.
- PCR.

QUEBRA DAS PONTES

POR TEMPERATURA

Ocorre quando o DNA é submetido a uma faixa estreita e específica de temperatura:

Tm (oC) = 69.3 + 0.41(GC%).

Exemplo: 40% (C-G) = 87°C

LIGAÇÕES DE HIDROGÊNIO

A = T

 $C \equiv G$

IMPORTANTE: A DUPLA HÉLICE É MUITO ESTÁVEL

- Titulação com os ácidos ou álcalis;
- Ação de agentes desnaturantes, como a formamida e o dimetilsulfóxido (DMSO).

DESNATURAÇÃO

UMA SOLUÇÃO ÁCIDA E ALCALINA

Vai protonizar ou desprotonizar os anéis aromáticos. Esse tratamento gera grupos carregados no interior da dupla-hélice dos DNAs, levando ao rompimento das pontes de hidrogênio entre as bases nitrogenadas.

A AÇÃO DE AGENTES DESNATURANTES

têm maior facilidade em romper as duas pontes de hidrogênio que ligam as bases A e T, do que as três pontes de hidrogênio que ligam as bases C e G. Portanto, são necessárias maiores concentrações de agentes desnaturantes para romper as bases C e G, do que as bases A e T.

DESNATURAÇÃO

FIGURA 1.20 Fitas simples de DNA desnaturado podem ser renaturadas, originando a forma de duplex.

RENATURAÇÃO

SIMPLES

Processo espontâneo. A renaturação depende do pareamento de bases específico entre as fitas complementares

COMO OCORRE?

Este processo envolve duas etapas: uma mais lenta, pois envolve o encontro casual das fitas complementares de DNA, formando um curto segmento de dupla hélice; e outra mais rápida, envolvendo a formação das pontes de hidrogênio entre as bases complementares, reconstruindo a conformação tridimensional.

#DICA

Quanto maior a complexidade do genoma, maior será o tempo de sua renaturação.

PAREAMENTO DE BASES C

- Pareamento das bases é a conexão entre duas bases químicas, que assim formam uma sequência de DNA.
- Pelo pareamento das bases é feito a contagem de pareamentos para contar o tamanho de uma molécula de DNA.
- Essas bases químicas são bases nitrogenadas que são : Adenina (A), timina (T), citosina (C) e guanina (G).

DNA POLIMERASE

Enzima responsável por construir o DNA de cada célula.

No processo de revisão ela checa se não houve um pareamento errado e caso haja a DNA Ligase realiza a adesão de uma sequência corretora.

Polymerase adds an incorrect nucleotide to the new strand of DNA.

Polymerase detects that bases are mispaired.

Polymerase uses 3.'→ 5' exonuclease activity to remove incorrect nucleotide.

REFERÊNCIAS

DEXHEIMER, T. S. (2013). DNA REPAIR PATHWAYS AND MECHANISMS. IN L. A. MATTHEWS, S. M. CABARCAS, AND E. HURT (EDS.), DNA REPAIR OF CANCER STEM CELLS (PP. 25-26). HTTP://WWW.SPRINGER.COM/978-94-007-4589-6.

ALBERTS, B. ET AL. BIOLOGIA MOLECULAR DA CÉLULA. 6. ED. PORTO ALEGRE: ARTMED, 2017.

LEHNINGER, T. M., NELSON, D. L. & COX, M. M. PRINCÍPIOS DE BIOQUÍMICA. 6ª EDIÇÃO, 2014. ED. ARTMED.ERTS, B. ET AL. BIOLOGIA MOLECULAR DA CÉLULA. 6. ED. PORTO ALEGRE: ARTMED, 2017.

CORFIELD, JUSTIN. "BASE PAIR". ENCYCLOPEDIA BRITANNICA. HTTPS://WWW.BRITANNICA.COM/SCIENCE/BASE-PAIR.

LAWRENCE C. BRODY, PH.D.. "BASE PAIR". NATIONAL HUMAN GENOME RESEARCH INSTITUTE.

HTTPS://WWW.GENOME.GOV/.

OBRIGADO!

