

Machine Learning

SVM

Outline

- Support Vector Machines (SVM)
 - Intuition
 - Important tricks

Past classes

- We have seen how the basic idea of linear regression
 - Can be used for classification
 - Perceptron
 - Logistic regression
 - Can be used to approximate non linear functions
 - Transfroming the independent variables
 - Adding attributes
 - Connecting many components to form a network

General Idea

- We want to keep on using the idea of separating classes with hyperplanes
 - We know how to solve this optimally
 - Problem, of course, is that not all problems are linearly separable
- Idea: Maybe not linearly separable in their current space, but perhaps they will be in a higher dimension
 - Create additional dimensions so that the categories become linearly separable
 - Similiar in spirit to what we did adding attributes

Original Data

Optimal Margin Classifier

- The idea is familiar, so are its problems
 - How do I add dimensions automatically? How many?
 - Adding dimensions is adding new attributes or features to the original data vectors
 - In having more dimensions we increment the sideffects of the curse of dimensionality
 - More sensitivity to noisy data
 - Also, there is an increased risk of added computational burden
 - If the number of extra features is very large just computing them could be prohibitive

SVM

- Support vector machines are a proposal that addresses this issues
- Their development required the use of a a few important ideas
 - We will review them presently

- Optimal margin classifier
 - Reduces sensitivity to noise
 - Speeds up computations
 - Diminishes the curse of dimensionality
- Use of kernels
 - Adds dimensions to the data (arbitrarily large)
 - The kernel trick lets us pay a small computational price
- Soft margin
 - Slightly relax the requirement of lineal separability
 - Reduce sensitivity to noisy data

Optimal Margin Classifier

- Remember our lineal classifier?
 - In general, there are infinitely many hyperplanes to separate two classes
 - For what follows let us assume the classes are linearly separable in the current space
 - We will address this assumption later with the use of kernels and the soft margin

Binary Classificatio

¿Cuál separación es mejor, h1 h2 o h3?

Optimal Margin Classifier

- It is reasonable to assume that our prediccion is more reliable the further away the data point is from the separating hyperplane
 - We are more confident that A belongs to the Star class than B
 - A small change in h3 would change a change in classification for B
- h2 generalizes better

Optimal Margin Classifier Intuition

- If we think of our logistic classifier, the further away an instance is from the decision boundary, the closer the value of g(w^Tx+w₀) will be to 0 or 1 (depending on the class)
- If we think of the perceptron that has only two output values the same result is given to instances on the same side of the boundary
- The optimal margin combines both this ideas
 - We want instances within a band to satisfy the first observation
 - We want instances outside the band to satisfy the second; to not contribute to the error and permit the value of w^Tx+w₀ to change without impact (as long as they remain on the proper side of the boundary)
 - In this way we can focus only on the instances that are on the border between classes

4

The Optimization Problem: the optimal margin classifier

- The cost function used will maximize this band
- The step transfer function establishes:
 - $V^{(x)} = 1$ if $W^{T}x >= 0$ else -1
- What we now want
 - $V^{(x)} = 1$ if $w^{T}x > = 1$ and
 - $V^{(x)} = -1$ if $W^{T}x <= -1$
 - Otherwise we want the function to vary smoothly between -1 and 1

The Optimization Problem: the optimal margin classifier

$$Min \frac{1}{2} w^T w$$

tal que

$$y_i(w^T x_i + w_0) \ge 1 \quad para \quad i = 1,...,M$$

With y_i 1 o -1

Geometric Interpretation

- Why does minimizing the size of w widen the margin?
 - The decision boundary is w^Tx*=0 and is orthogonal to the weight vector w (x* are the values of the features that satisfy the equation)
 - We require $w^Tx^{(i)} >= 1$ with y=1 and $w^Tx^{(i)} <= -1$ with y=-1
 - Remember that $w^T x^{(i)} = p||w|| = p \operatorname{sqrt}(\Sigma w_i^2)$ where p is the projection of vector $x^{(i)}$ onto vector w
 - We require ||w||² to be small
 - The optimization problem forces the magnitude of the projection p to be large (very negative or very positive) in order to satisfy the restrictions thus pushing the decision boundary away from each x⁽ⁱ⁾
 - For simplicity of explanation assume w0 =0 so that $||w||^2 = \sum w_j^2$

Geometric Interpretation

Which separeates the classes better h1 o h2 given x?

Optimal Margin Classifier

The three circled vectors are the support vectors

Next Steps

- We want to find the vectors that characterize the optimal margin
 - This will help with the efficiency of the algorithm
 - This will help with generalization
- Increase the dimensionality of the problem so that the data points are linearly seprable (or almost)
- For this...we need to transform our problem

Problem Transformation

- The dual problem
 - Transforms the original problem into another such that the solution the new problem, under certain circumstanes, is the solution to the original
- The goal is to have a problem that is easier or more efficient to solve
 - Our original optimization problem has an inequality that complicate the optimization (que $|w^Tx|>=1$)
 - It allows us to conserve only some vectors (the support vectors), the ones that characterize the optimal margin
 - It will allow the use of kernels for elevating the dimensionality of the problem in a computationally efficient manner

Problem Transformation

We express the problem using Lagrange multipliers

$$L(w, w_0, \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{m} \alpha_i \left[y^{(i)} (w^T x^{(i)} + w_0) - 1 \right]$$

- Note that the restrictions appear as a subtraction in the formula
- There is a set of conditions (KKT) under which the solution to the dual problem apply to the primal problem with the inequality restrictions
- This conditions give rise to the support vectors

Condiciones Karush-Kuhn-Tucker

1.
$$\frac{\partial}{\partial w_i} L(w, w_0, \alpha) = 0$$

2.
$$\frac{\partial}{\partial wo}L(w, w_0, \alpha) = 0$$

3.
$$\alpha(y(w^Tx + w_0) - 1) = 0$$

4.
$$y(w^T x + w_0) - 1 \ge 0$$

5.
$$\alpha \ge 0$$

.

The Dual Optimization Problem

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

tal que $\alpha_i \ge 0, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

- To construct the optimization problem we minimize with respect to w y w_0 and substitute in the eqn for the lagrangian.
- If we solve the dual problem then we can recover the w's (except w₀) using:

$$w = \sum_{i=1}^{m} \alpha_i y^{(i)} x^{(i)}$$

- This comes from differentiating an setting to zero (condition 1)
- w_o is obtained similarly from condition 2

Support Vectors

- Note that we are still assuming data to be linearly separable
- Note that the problem maximizes α and forces it to be greater than or equal tho zero
- Not that condition 3 forces many α to become zero.
 Form here that only some vectors matter, those that support the separating hyperplane

$$\alpha(y(w^Tx + w_0) - 1) = 0$$

This $y(w^Tx + w_0) - 1$ is 0 only for those vectors x that define the margin, for the res α must be 0

The Dual Problem

■ To make a prediction we need to compute w^Tx+w_0 . We substitute using the above equations

$$w^{T}x + w_{0} = \left(\sum_{i=1}^{m} \alpha_{i} y^{(i)} x^{(i)}\right)^{T} x + w_{0} = \sum_{i=1}^{m} \alpha_{i} y^{(i)} (x^{(i)})^{T} x + w_{0}$$

- This is our model
- If we have the α's then the only expensive thing we need to do is compute the inner product of the support vectors with the input datum

Adding Dimensions

- This is relevant since there is a way to compute the inner product of vectors without having to manipulate them explicitly
- This, together with the fact that we will only use a few vectors (the support vectors) will allow us to increase the dimentionality at a low cost

Adding Dimensions

- Remember when we saw linear regresion that we included features like x² in our data (we only had x as attribute)?
 - We talked about adding x³, sen(x) or whatever we could think of
 - One problem was that we could over fit
 - This will be mitigated since we only use a few vectors
 - Another that we did not have a principaled way to add them

Kernels

- What we are looking for is a way to increase the dimensionality of the data that allows us to compute the inner product efficiently
 - If we can do this we can add a lot of dimensions...even infinite
- This is what we will use the kernel trick for

Kernels

The Kernel between two vectors is defined as:

$$K(x,z) = \phi(x)^T \phi(z)$$

Where φ is a mapping of attributes to new features. For example, for a vector x in R

$$\phi(x) = \begin{vmatrix} x \\ x^2 \\ x^3 \end{vmatrix}$$

Kernels Examples

- Suppose we have vectors x y z in R^3
- And suppose our mapping consists on multiplying every pair of components:

$$\phi(x) = \begin{bmatrix} x_1 x_1 \\ x_1 x_2 \\ x_1 x_3 \\ x_2 x_1 \\ x_2 x_2 \\ x_2 x_3 \\ x_3 x_1 \\ x_3 x_2 \\ x_3 x_3 \end{bmatrix}$$

Kernels Example

The kernel

$$K(x,z) = \phi(x)^{T} \phi(z) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i} x_{j} z_{i} z_{j}$$
$$= \left(\sum_{i=1}^{n} x_{i} z_{i}\right) \left(\sum_{j=1}^{n} x_{j} z_{j}\right) = \left(x^{T} z\right)^{2}$$

 Computing the kernel takes time proportional to the number of attributes while the number of generated features is proportional to the square of the number of attributes

•

Other Kernels

- Not all mappings have this property (Mercer's theorem establishes when a Kernel is valid).
- These are some common kernels

$$K(x,z) = (x^T z + c)^d$$

$$K(x,z) = \exp\left(\frac{-\|x-z\|^2}{2\sigma^2}\right)$$

$$K(x,z) = \tanh(\kappa x^T z - \partial)$$

Kernels

- Picking a Kernel an its parameters is a bit of an art
 - Not much theory
 - We could even design our own. Mercer's theorem will guide us to design a valid one
- One useful intuition to guide the selection of a Kernel is to think of K(x,z) as a measure of how similar $\phi(x)$ y $\phi(z)$ are
 - The value of K(x,z) will be large when they are similar and small when they are not

The New Model

$$Prediccion(x) = \sum_{i=1}^{m} \alpha_i y^{(i)} K(x^{(i)} x) + w_0$$

 Note that the model only uses the support vectors and that K only requires computing the inner product without enumerating the added attributes

- All of the above was done assuming that the classes are lineaarly separable in some space
 - We can relax this supposition so that they are "almost" linearly separable and allow some datapoints to cross the border. This is called the soft margin
- There are a few efficient algorithms for solving the dual optimization problem
 - One of the most common is called "sequential minimal optimization" (SMO)

Soft Margin

- Data might not be linearly separable for two reasons:
 - The presence of noisy or mislabelled data
 - Data is intrinsically non-separable in this space
- For the second point we use Kernels to elevate the dimensionality
- For the first issue we use the soft margin

•

Soft Margin

- The idea of the soft margin is to permit some data points to be missclassified and not affect the margin
- We introduce a tolerance or slack parameter
 - Before

$$y(w^T x + w_0) \ge 1$$

Now

$$y(w^T x + w_0) \ge 1 - \xi$$

 We allow for data points to be "a little" misclassified, we allow their distance to the correct side of the boundary to be at most psi

The Optimization Problem: soft margin classifier

$$Min \frac{1}{2} w^{T} w + C \sum_{i=1}^{M} \xi_{i}$$

$$tal \quad que$$

$$y_{i}(w^{T} x_{i} + w_{0}) \ge 1 - \xi_{i} \quad para \quad i = 1, ..., M$$

$$y \quad \xi_{i} \ge 0 \quad para \quad i = 1, ..., M$$

The Dual Optimization Problem

$$\max_{\alpha} W(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} y^{(i)} y^{(j)} \alpha_i \alpha_j (x^{(i)})^T x^{(j)}$$

tal que $0 \le \alpha_i \le C, i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_i y^{(i)} = 0$$

- Almoust the same!
- The difference is that alfas must be smaller than or equal to a constant
- The support vector returned that are equal to C or –C are those that don't respect the margin

Some advice from Andrew Ng

- If you have more attributes than data points
 - Use regularized logistic regression of SVMs with a linear kernel
- Few attributes and less than 10k examples
 - SVM with gaussina kernel
- Few attributes and more than 10k training examples
 - Add additional attributes and use logistic regression or SVM with linear kernel

Other comments

 The complexity of the resulting model is related to the relative number of support vectors (VC dimension)

Packages

 Implementing an SVM is a bit hard. A well tested and widely used library is libSVM

Exercise

- Download andSVM_2.csv
- Train a perceptron and plot the decision boundary
- Train an SVM using:
 - from sklearn.svm import SVC
 - Use a linear kernel
- Plot the data points and the decision boundary
- Plot the margin: the lines that pass through the support vectors
 - Try different values of C (1 and 100)

Exercise

- Create a data set in 2D x₁ y x₂ such that the points that lie within a circle are class 1 and those outside class 0
 - $x_1^2 + x_2^2 = r^2$
- Train a Neural net for this problem
 - Compute the confusion matrix and visualize the misclassified points
- Repeat using an SVM and compare