End-Term Examination (CBCS)(SUBJECTIVE TYPE)(OffLine)

B.Tech:<>, III Semester:<> (December, 2024)

Subject Code: BEC 205	Subject Net t. a. t. t. a. t.	
Time :3 Hours	Subject: Network Analysis and Synthesi	
	Maximum Marks :60	

Note: Q1 is compulsory. Attempt one question each from the Units I, II, III & IV.

Q1	(2.5*8	3=20)	CO Mapping
	a) What is source transformation technique? Explain by transforming a voltage source to a current source and vice versa.		CO1
	b) Explain KCL and KVL.		CO1
	c) In the circuit shown in Figure, the switch s is closed at t=0 then determine the steady state value of the current.		CO2
	d) What do you understand by time constant of a circuit?		CO1
	e) If Z= (4+j6) Ohm then find the value of Conductance G and Susceptance B?		CO2
	f) Derive the condition of symmetry in terms of Z -parameters		CO2
H	g) What do you understand by positive real function?		CO1
	h) What are the necessary conditions for driving point functions?		CO1
	UNIT I		CO Mappin
2	Prove that maximum power is delivered from a source having internal impedance Zs, to a connected load impedance ZL, when ZL=Zs*.	(10)	CO2
3	Using nodal analysis, find the power dissipated in the 4 ohm resistor of the network shown in Figure. $ \begin{array}{c} $	(10)	CO3

-	UNIT II	(O Mapping
Q4	The switch K, as shown in the Fig.4 is in steady state position 'a' for t<0. At t=0, it is shifted to position 'b'. Find iL(t), for t≥0.	(10)	CO3
	VI CIT BOOK STILLED		
Q5	What is graph theory? Explain its applications with one example.	(10)	CO3
QJ_	UNIT III		CO Mapping
Q6	Find T parameters of the circuit shown in figure below:	(10)	CO4
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	0		
Q7	What do you understand by h-parameters? Derive h-parameters for a two port network and clearly explain the procedure. Draw the equivalent circuit	(10)	CO2
	model. UNIT IV		CO Mapping
Q8	Explain concept of poles & zeroes. Discuss restrictions on pole and zero locations for driving point functions.	(10)	CO2
Q9	Synthesize a network using Foster-I and Foster -II forms for the impedance function: $Z(s) = \frac{s(s^2 + 9)}{(s^2 + 5)(s^2 + 13)}$	(10)	CO4