도로재비산먼지

순서

01. GIS분석

도로재비산먼지와 버스정류장 데이터를 활용한 쉘터형 버스정류장 입지선정

02. 군집분석(K-means)

도로재비산먼지와 버스정류장 데이터를 활용한 집중관리 도로 선별

도로재비산먼지란?

주행하는 차량의 타이어와 도로면의 마찰에 의하여 비산되는 먼지

전국 미세먼지(PM_{10}) 배출량의 40.3%로 가장 높은 비율을 차지하고 있음

분석 배경

문제 제기

※ 국립환경과학원(CAPSS 배출량, 2012)

1. 수도권지역 미세먼지 기여율

- 비산먼지 71.6%
- 도로이동오염원 9.3%
- 실제 차량 배기에 의한 오염 보다 비산먼지가 미세먼지 생성에 더 큰 기여

2. 비산먼지 오염원별 기여율

- 도로재비산먼지 32.2%
- 미세먼지 기여율 1위 비산먼지, 그리고 비산먼지 내 기여율 1위 도로재비산먼지

분석 배경

도로재비산먼지의 유해성

도로재비산먼지의 유해성

도로 재비산먼지는 AI, K, Ca 등의 지각물질에 기인하는 자연적 성분 외에도 배출가스, 타이어 및 브레이크 마모 등에 의해 발생되는 Cd, Pb, Cr 등 유해한 인위적 성분을 포함하여 일반 먼지에 비해 더욱 인체에 해롭습니다. 또한, 입자가 미세하여 코 점막을 통해 걸러지지 않고 폐(뇌)까지 직접 침투해 천식과 폐암 등의 호흡기질환을 유발하며 교통·산업·건설 활동이 많은 대도시에서 발생하여 인체 건강에 큰 피해를 줍니다. 분석 배경

도로재비산먼지의 유해성

도로재비산먼지는

우리 아이들과 고령층 어른들에게 더 해롭습니다

그리고 오염원에 더 가까이 노출되는 도로의 도보이용자에게 더 해롭습니다.

도로변 직접 노출 되는 버스정류장 승객들에게 더 해롭습니다

방법은 있습니다. 도로재비산먼지로부터 버스정류장 승객들을 보호할 수 있는 방법이

더위 추위 미세먼지 모두 막는 쉘터형 버스정류장

식물을 이용한 미세먼지 저감 그린형 버스정류장

에어커튼으로 미세먼지 방어 커튼형 버스정류장

문제는 예산.

일반 버스정류장 설치 비용 : 평균 1천 600만원 쉘터형 버스정류장 설치 비용 : 평균 5천 500만원 02

데이터 분석

GIS 결합 분석

도로재비산먼지와 버스정류장 데이터를 활용한 쉘터형 버스정류장 입지선정 <서울시>

데이터 분석

왜 서울시인가?

도로재비산먼지 측정지역

1. 도로재비산먼지 측정지역

- 도로재비산먼지 측정지역 중 가장 많은 버스정류장 보유
- 도로재비산먼지 측정지역 중 가장 많은 도로 수 보유

2. 버스 이용객 수

- 버스 이용객 수가 많아 쉘터형 버스정류장 설치 시 비용 대비 효과가 큼
- 도로변 유동인구가 전국 시도 중 가장 많아 도로재비산먼지 관련 정책시 효과가 큼

3. 도로 포장율

- 전국 시도 중 유일한 도로 포장율 100% 도시
- 비포장도로의 경우 재비산먼지 원인이 복잡하여 정확한 비교 분석이 어려움

데 이 터 분석 **활용 데이터**

도로재비산먼지 측정정보

한국환경공단

- -> 2019년, 2020년 측정
- → 도로 별 도로재비산먼지 농도와 오염범례

버스정류장별 승하차 인원

서울열린데이터광장

- -> 2019년, 2020년 측정
- -> 정류장 별 승하차 인원 측정 데이터 (24시)

서울시 도로명 도로 데이터

국토교통부

->서울시 도로명 기준 도로 데이터(SHP)

버스정류장 위·경도 데이터

서울열린데이터광장 ->서울시 버스정류장 위·경도 위치 데이터

분석 개요

데이터 분석 데이터 전처리

◆ 전체리후

2019년, 2020년 서울시도로별도로재비산먼지농도 (평균월 2회측정)

2019년, 2020년 서울시버스정류장별승하차인원 (365일/24시간)

> 2020년기준 서울시버스정류장별위치

도로재비산먼지 측정정보

버스정류장별 승하차 인원

버스정류장 위·경도데이터

도로재비산먼지농도는계절별날씨별영향을 받으므로 1년 평균데이터로데이터산출

버스승하차인원은시간과날씨에영향을 받으므로 1년총인원으로데이터집계

버스정류장고유코드인ARS_ID를기준으로 승하차인원데이터와결합

데 이 터 분석 통계적 분석

1. 쉘터형 버스정류장 후보지 선별

- 연간 승객 수 일백만명 이상인 정류장으로 선별 시 서울시 버스이용객의 약 30%가 쉘터형 버스정류장 을 사용 할 수 있음
- 이 기준은 서울시 버스정류장 10,992 개 중 4.5%에 해당하는 502개 정류장에 해당함

기준 승객 수(연간)	>= 5,000,000 (오백만명)	>= 3,000,000 (삼백만명)	>= 1,000,000 (일백만명)
정류장 수	5 (ንዘ)	25 (개)	502 (개)
연간 이용 승객 수	26,993,522 (명)	101,518,297 (명)	810, 143,844 (명)
서울시 버스 이용객 대비	0.96 %	3.62 %	28.9 %

도로 재비산먼지 등급 (#g/m³)				
매우좋음	좋음	뿅	내쁨	매유
0~50	51~100	101~150	151~200	201~

2. 도로재비산먼지 측정 도로 선별

- 도로재비산먼지 등급 분류 기준 (환경공단) 보통인 101(μg/m³) 이상의 농도가 측정된 도로 선별
- 2,620개 측정 도로중 32개 도로 선별

데 이 터 분석 **분석 과정**

버스정류장 위·경도 데이터

연간 이용객 수 1,000,000(일백만명) 이상 정류장

=> 후보 버스정류장 선정

데이터 분석 분석 분석

도로재비산먼지 농도 $101(\mu g/m^3)$ 이상 도로만 선별하여 위험도로 선정

⇒ 후보 버스정류장 위치를 선정하기 위함

데이터 분석 최종 선정된 버스정류장 맵핑

도로재비산먼지 농도 101(µg/m³) 이상 도로<32개 도로>

연간 이용객 수 1,000,000(일백만명) 이상 정류장 <502개 정류장>

=> 최종 버스정류장 선정 <35개>

데 이 터 분석 최종 선정된 버스정류장 목록

station	рор		정류소명
17014	5688625	구로디지털단지역환승센터	St
21001	5206011	구로디지털단지역	
24146	3118849	잠실역.롯데월드	
17013	2933632	구로디지털단지역	
24138	2618050	잠실역,롯데월드	
17015	2366650	구로디지털단지역환승센터	
21225	2276858	신대방역	
24132	2228247	잠실역8번출구	
18003	2018932	금천우체국	
14001	1944074	마포역	
24134	1821318	잠실역1번.11번출구	
18004	1807404	금천우체국	
24158	1758428	잠실새내역4번출구	
24154	1633832	잠실 종 합운동장	
13044	1575330	아현역	
19010	1555746	강남성심병원.대림성모병원	

25162	1441326	천호역현대백화점.노동권익센터
14002	1407955	마포역
18009	1309308	시흥사거리
18002	1276445	문성초등학교
18010	1244989	시흥사거리
25161	1243523	천호역현대백화점.노동권익센터
18007	1222650	금천구청.금천경찰서
24249	1222405	오금동현대아파트
20002	1208889	신대방경남아파트
24101	1152601	천호역.풍납시장
18503	1148338	가산디지털단지역
24369	1118497	송파경찰서.오금역
25131	1066890	상일동역4번출구.센트럴푸르지오
24142	1062182	<u> 잠실엘스아파트앞</u>
24157	1058571	종합운동장사거리
24215	1056381	송파구청.방이맛골
18008	1033190	금천구청.금천경찰서
19009	1024011	서울영림초등학교
18511	1004196	독산역

Station = 정류장 ARS_ID Pop = 연간 이용객 수

기존 인식 변화

정책적 활용

모델링 활용

그런데

의문점

정 책 적 활용도가 높은 분석인가?

이 데이터를 100% 활용한 것인가?

다른 분석 접근법이 없을까?

보 다 활 용 범 위 가 넓 은 분 석 을 찾 지

2

군집분석

도로재비산먼지와 버스정류장 데이터를 활용한 집중관리도로 선별

분석 개요

버스정류장 선별이 아닌 집중관리 구간을 선정

더 넓어질 정책적 활용

정 책 제 안 버스정류장 승하차 인원 변수 활용

상관관계 분석 결과 버스정류장 승하차 인원은 차량통행량과 유동인구와 강한 양의 상관관계를 갖으며 유의 수준 0.05에서 모두 상관성이 있다

-> 지하철 승객 수 변수도 활용 가능

데이터 분석 분석할 데이터 형태

	Α	В	С	D	
1		도로명	농도	рор	
2	1	신내역로	32	1998562	
3	2	용마산로	54	1024152	
4	3	동일로	28	5314038	
5	4	중랑천로	27	1330910	
6	5	겸재로	39	7346886	
7	6	봉우재로	39	2808098	
8	7	망우로	25	22222558	
9	8	봉화산로	24	7402372	
10	9	숙선옹주로	38	712074	
11	10	신내로	24	11956032	
12	11	상봉로	23	2219296	
13	12	사가정로	33	1200416	
14	13	면목천로	29	7346886	
15	14	난곡로	105	13410436	
16	15	신사로	152	635092	
17	16	봉천로	143	5854816	
18	17	낙성대로	331	698058	
19	18	은천로	133	5665350	
20	19	신림로	118	38738672	
21	20	관악로	123	29044112	
22	21	성현로	95	1933624	
23	22	양녕로	109	11686340	

농도 : 도로재비산먼지 농도(µg/m³) Pop : 도로별 합산된 버스 이용 승객

⇒ 등급이 아닌 연속형 변수로 군집

데 이 터 분석 K-means Clustering

알고리즘 설명

- 대표적으로 Lable(정답)이 없는 비지도학습 머신러닝
- 단순한 형태의 데이터에 빠르면서도 높은 성능을 보임
- 거리 차이의 분산을 최소화하는 거리기반 군집법

선정 사유

- 사용될 데이터가 2차원 형태로 단순함
- 집중관리 도로 구간을 선정하는 주제이기에 상대적 군집(밀도기반) 보다는 형태적 군집(거리기반)이 더 적합함

데이터 분석

도로재비산먼지 농도 – 버스정류장 승하차 인원 군집분석(K = 4)

1번 군집

■ 도로재비산먼지 농도가 높으면서 버스 승하차 인원이 많은 도로

집중관리도로

2번 군집

■ 도로재비산먼지 농도는 낮으면서 버스 승하차 인원은 많은 도로

3번 군집

■ 도로재비산먼지 농도는 낮으면서 버스 승하차 인원은 중간인 도로

4번 군집

■ 도로재비산먼지 농도가 낮으면서 버스 승하차 인원이 적은 도로

결 과 도 출

집중관리도로 선별을 활용한 정책 제안

재비산먼지 차단 녹지 조성

- 인도에 도로재비산먼지를 차단하는 녹지 조성 구역
- 녹지 조성 시 평균 미세먼지 농도가 5~10(µg/m³) 저감 효과

결과도출

집중관리도로 선별을 활용한 정책 제안

도로 청소차 운행 도로 지침

■ 도로재비산먼지 저감에 가장 효과적인 청소차 운행 경로 및 운행 설정에 근거 마련

결과 도출

도로재비산먼지 농도 – 버스정류장 승하차 인원 – 도로폭 군집분석(예시)

1번 군집

- 도로재비산먼지 농도가 높은 도로
- 버스 승하차 인원이 많은 도로
- 도로폭이 좁은 도로

2번 군집

- 도로재비산먼지 농도가 높은 도로
- 버스 승하차 인원이 많은 도로
- 도로폭이 넓은 도로

청소차운행추천도로

3번 군집

- 도로재비산먼지 농도가 낮은 도로
- 버스 승하차 인원은 중간인 도로
- 도로폭은 중간인 도로

4번 군집

- 도로재비산먼지 농도가 낮은 도로
- 버스 승하차 인원이 적은 도로
- 도로폭이 좁은 도로

결과도출

청소차 운행 도로 활용한 정책 예시

실시간 데이터와 결합하여 인터랙티브 시각화 구현 (예시)

1. 실시간 데이터 결합

- 실시간 날씨 데이터를 모델에 결합
- 실시간 주변 공사 현황 데이터를 모델에 결합
- 현재 가장 청소가 필요한 도로를 점수로 선별

2. 모델 개선안 제시

- 청소차가 운행했던 구간은 패널티를 부과해 자동으로 후순위 배정
- 계절별 특성에 맞는 알고리즘 변화
- ML모델 업데이트 주기 제시

E.N.D