CHARACTERIZATION OF TOTALLY UNIMODULAR MATRICES

PAUL CAMION

In this paper A will always denote a matrix with entries equal to 1, -1 or 0. A is totally unimodular if every square submatrix has a determinant equal to 1, -1 or 0. A submatrix A_J^I of A is said to be Eulerian [1] if

$$(\bigvee_{I} i) \colon \sum_{i \in I} A_i^i \equiv 0 \mod 2$$

and

$$(\bigvee_{j \neq j}): \sum_{i \in I} A_i^i \equiv 0 \mod 2.$$

We published in [2] and also in [6] a proof of:

THEOREM 1. A is totally unimodular if and only if every square Eulerian submatrix is singular.

We exposed the proof or the sufficient condition of this theorem as well as the one of Statement 3 at the Seminary on Combinatorial Problems of the Faculté des Sciences de Paris in January 1962. A. Ghouila-Houri gave independently a characterization [3] which could have been deduced however from our results.

R. Gomory gave us recently a new proof of the sufficient condition. His proof, combined with ours, allows us to prove a simpler characterization:

THEOREM 2. A is totally unimodular if and only if for every (square) Eulerian submatrix A_J^I : $\sum_{i \in I: j \in J} A_j^i \equiv 0 \mod 4$.

The following Statements 1 and 2 clearly prove the sufficient condition of Theorem 1.

I. STATEMENT 1 (R. GOMORY). If there exists a submatrix B of order n in the matrix A with $|\operatorname{Det}(B)| > 2$, there exists a square submatrix Q of B with $|\operatorname{Det}(Q)| = 2$.

PROOF. Let D = [BI], where I is the unit matrix, and let \mathfrak{C} be the class of all matrices obtained by unimodular row transformations of D, with the property: $(\nabla_{\mathfrak{C}}C)(\nabla_{j})(\nabla_{i}): C_{j} \in \{1, -1, 0\}$ and C contains n different unit column vectors.

Received by the editors June 23, 1964.

Let F be a matrix in $\mathfrak C$ with the greatest number of unit vectors among its first n columns. At least one vector, F_k , $k \le n$ is not a unit vector. For there cannot be in $\mathfrak C$ a matrix of the form [IG], since $|\operatorname{Det}(B)| > 2$.

Let us prove that among all possible choices of n-1 unit vectors such that $F_{J(r)} = [F_k, e_{r_1}, \dots, e_{r_{n-1}}]$ contains the set $F_j, j \in T$ of unit vectors of the first n columns, at least one is such that $F_{J(r)}$ is unimodular.

If this was not true, $F_{J(r)}$ would be singular for each of those choices and to each of those choices would correspond a null coordinate of F_k .

Let F_k^t , $i \in S$ be the set of those null coordinates. Thus $F_{T \cup \{k\}}^S$ would be a null matrix $(n-|T|) \times (|T|+1)$ and consequently the matrix defined by the first n columns of F would be singular, contrary to the hypothesis that Det(B) > 2.

Let e_1 be the vector which is not in the set $e_{r_1}, \dots, e_{r_{n-1}}$; $F_{J(r)}$ (which will be denoted F_J for simplicity) being unimodular. $F_J^{-1}F$ cannot belong to \mathfrak{C} , because it has one more unit vector than F in its first n columns. However, $F_J^{-1}F$ contains a unit matrix, thus one of the entries of $F_J^{-1}F$ is not 1, -1 or 0. Let us point out that (after rearrangement of rows and columns),

$$F_J = \left| egin{array}{cccc} \epsilon_1 & 0 & \cdots & 0 \ \epsilon_2 & 1 & \cdots & 0 \ \vdots & \ddots & \ddots & \vdots \ \epsilon_n & 0 & \cdots & 1 \end{array}
ight| ,$$

where $\epsilon_1 \in \{1, -1\}$, and

$$F_J^{-1} = \begin{vmatrix} \epsilon_1 & 0 & \cdots & 0 \\ -\epsilon_2 \epsilon_1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -\epsilon_n \epsilon_1 & 0 & \cdots & 1 \end{vmatrix}.$$

 F_J^{-1} is the product of elementary matrices, T_p , \cdots , T_1 , where p is the number of nonzero ϵ_i . Concretely,

$$T_1 = \left| \begin{array}{ccc} \epsilon_1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right|,$$

$$T_{p} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & & & & \\ 0 & & & & & \\ -\epsilon_{s} & \vdots & & \ddots & \vdots \\ 0 & & & & \ddots & \vdots \\ \vdots & & & & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}.$$

Let q be the smallest integer such that one of the entries of $F^* = T_q T_{q-1} \cdots T_1 F$ is not 1, -1 or 0.

Clearly, T_q is the transformation which adds (subtracts) the first row of $T_{q-1} \cdot \cdot \cdot T_1 F$ to (from) the *i*th row of this matrix. Then, the entries of F^* which are not 1, -1 or 0 are necessarily ± 2 and they must all be in the *i*th row. Let F_j^{*i} be one of those entries; necessarily, $j \in J$. Moreover, $T_q T_{q-1} \cdot \cdot \cdot T_1 F_k$ has one more null coordinate than $T_{q-1} \cdot \cdot \cdot T_1 F_k$ which is precisely F_k^{*i} . Suppressing e_i of $F_{J \cup \{j\}}^*$, one finds F_J^{*i} , which has n-2 unit column vectors. The submatrix $F_{\{k\} \cup \{i\}}^{*i}$ is necessarily

$$\begin{vmatrix} \pm 1 & \pm 1 \\ 0 & \pm 2 \end{vmatrix}$$
,

thus $\operatorname{Det}(F_{J'}^*) = \pm 2$. But $\operatorname{Det}(F_{J'}^*) = \operatorname{Det}(D_{J'})$, since $F_{J'}^*$ is obtained from $D_{J'}$ by a unimodular transformation. As D = [BI], $\operatorname{Det}(D_{J'})$ is equal to the determinant of one of the square submatrices of B.

Statement 2 (R. Gomory). If for every Eulerian square submatrix $A_{J'}^{I'}$ of A, $\operatorname{Det}(A_{J'}^{I'}) = 0$, then, for every square submatrix A_{J}^{I} of A, $\operatorname{Det}(A_{J}^{I}) \equiv 0 \mod 2$ implies $\operatorname{Det}(A_{J}^{I}) = 0$.

PROOF. Let \mathfrak{C} be the class of all square submatrices A_J^I with $\operatorname{Det}(A_J^I)=2k$, k nonzero. Let us suppose that $\mathfrak{C}\neq\emptyset$. Let B be any matrix of minimum order. There exists a vector x with integral coordinates which are not all zero or even, such that $Bx\equiv 0 \mod 2$, since $\operatorname{Det}(B)\equiv 0 \mod 2$. Let B_K be the set of column vectors of B whose coefficients are the odd coordinates of x. These vectors are linearly dependant modulo 2, thus the determinants of the square submatrices B_K^I of B_K are null modulo 2.

As they cannot be all zero, since $Det(B) \neq 0$, one of them must be even and nonzero.

Since there cannot exist a square matrix B_K^I in $\mathfrak C$ which would be a proper submatrix of B, K is necessarily the set of all column vectors

of B. Thus the row sums of B are even. The same argument applied to B^T proves that B is Eulerian, hence singular, which implies that contrary to definition, $\mathfrak C$ would contain a singular matrix.

II. We proved in [2] and also in [6] the following statement.

STATEMENT 3. If A is totally unimodular, then to each vector x, with $Ax \equiv 0 \mod 2$, corresponds a vector y whose coordinates are 1, -1 or 0, with Ay = 0 and $y \equiv x \mod 2$.

With the help of Statement 3, we shall now prove the necessary condition of Theorem 2. It will be used for proving Statement 4 which with the previous statements will be used to prove the sufficient condition of Theorem 2.

PROOF OF THE NECESSARY CONDITION OF THEOREM 2. For every Eulerian submatrix A_I^I of the totally unimodular matrix A, we have

(1)
$$(\forall ri): \sum_{j \in J} A_j^i x_j \equiv 0 \mod 2;$$

where $x_j = 1$ for each j in J. Thus, by Statement 3, there exists a vector y with coordinates 1 or -1, for which

(2)
$$(\forall Ii): \sum_{i\in I} A_i^i y_i = 0.$$

If y has at least one negative coordinate, let w be the vector y where the negative coordinates have been replaced by 1.

As A_J^I has an even number of nonzero entries in each column,

(3)
$$\sum_{i \in I: i \in J} A_i^i y_i \equiv \sum_{i \in I: i \in J} A_i^i w_i \operatorname{mod} 4.$$

Then, by (2),

(4)
$$\sum_{i \in I; j \in J} A_j^i \equiv 0 \mod 4.$$

STATEMENT 4. Let A_J^i be a square Eulerian submatrix of a matrix A, such that every proper submatrix of A_J^i is totally unimodular, then $\sum_{i \in I; j \in J} A_j^i \equiv \text{Det}(A_J^i) \mod 4$.

In the case where A_J^I is singular, the necessary condition of Theorem 2 proves Statement 4. So, let A_J^I be nonsingular. As

(5)
$$\sum_{i \in I} A_J^{I - \{k\}} x_j \equiv 0 \mod 2,$$

where $x_j = 1$, for all j in J, there exists a vector y with coordinates 1 or -1 (Statement 3), for which

(6)
$$\sum_{i \in I} A_J^{I - \{k\}} y_i = 0.$$

Let y^D be the diagonal matrix where the jth diagonal element is y_j and let α be the number: $\sum_{j\in J} A_j^k y_j$; finally, let $B_J^I = A_J^I y^D$. Then, by (6),

(7)
$$\sum_{i \in I: i \in I} B_i^i = \alpha.$$

Since every column of B_J^I has an even number of nonzero elements, by the same argument as for the proof of the necessary condition of Theorem 2.

(8)
$$\sum_{i \in I: i \in I} A_i^i \equiv \alpha \mod 4.$$

It suffices now to prove that

(9)
$$\operatorname{Det}(A_J^I) \equiv \alpha \mod 4.$$

Let v be the column vector whose coordinates are zero, except the kth which is α . Then

$$(10) y = (A_J^I)^{-1} v.$$

Each element of the kth column of $(A_J^I)^{-1}$ must be $1/|\alpha|$ since for all j, $|y_j| = 1$. But each entry of the adjoint of A_J^I is 1, -1 or 0. Thus $|\operatorname{Det}(A_J^I)| = |\alpha|$, which proves (9).

III. PROOF OF THE SUFFICIENT CONDITION OF THEOREM 2. We shall prove that if for every square Eulerian submatrix A_J^I of A, $\sum_{i \in I, j \in J} A_J^I \equiv 0 \mod 4$, then for those matrices $\text{Det}(A)_J^I = 0$. Theorem 1 will end the proof.

Let $\mathfrak E$ be the class of Eulerian square submatrices A_J^I with $\operatorname{Det}(A_J^I) \neq 0$. Assume $\mathfrak E$ is not empty. Let B be any matrix of $\mathfrak E$ of minimum order. Then for every square Eulerian proper submatrix B_J^I of B, $\operatorname{Det}(B_J^I) = 0$. By Theorem 1, this proves that every proper submatrix of B is totally unimodular, and Statement 4 then proves that $\operatorname{Det}(B) \equiv 0 \mod 4$. On the other hand, applying Statement 1 to B, one sees that $|\operatorname{Det} B| \leq 2$. Then $\operatorname{Det}(B) = 0$, and contrary to the hypothesis, $\mathfrak E$ would contain a singular matrix.

BIBLIOGRAPHY

- 1. C. Berge, Théorie des graphes et ses applications, Dunod, Paris, 1958.
- 2. P. Camion, Matrices totalement unimodulaires et problèmes combinatoires, Thèse, Université Libre de Bruxelles, Février 1963, Rapport EURATOM EUR

- 1632 f. 1964, Presses Académiques Européennes, Bruxelles.
- 3. A. Ghouila-Houri, Caractérisation des matrices totalement unimodulaires, C. R. Acad. Sci. Paris 254 (1962), 1192-1194.
- 4. I. Heller, On linear systems with integralvalued solutions, Pacific J. Math. 7 (1957), 1351-1364.
 - 5. W. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552.
- 6. P. Camion, Caractérisation des matrices unimodulaires, Cahiers Centre Études Rech. 5 (1963), no. 4.

EURATOM, ISPRA, ITALY

PRIME RINGS WITH MAXIMAL ANNIHILATOR AND MAXIMAL COMPLEMENT RIGHT IDEALS¹

KWANGIL KOH AND A. C. MEWBORN

- 1. Introduction. Let R be a prime ring with a maximal annihilator right ideal and a maximal complement right ideal. Then there is a division ring D such that either R is isomorphic to a right order in the complete ring of linear transformations of a finite dimensional D-space, or for each positive integer n there is a subring $R^{(n)}$ of R which is isomorphic to a right order in the complete ring of linear transformations of an n-dimensional D-space. This is related to a result of N. Jacobson [2, p. 33] and extends a theorem of A. W. Goldie [1; Theorem [4, 4] that a prime ring with maximum conditions on annihilator right ideals and complement right ideals is a right order in a simple ring with minimum condition on right ideals. R is also isomorphic to a weakly transitive ring of linear transformations of a vector space. This is a generalization of a theorem of R. E. Johnson [4; 3.3].
- 2. We assume throughout that R is a prime ring. The notation R_r^{Δ} (R_i^{Δ}) is used to denote the right (left) singular ideal of R, and L_r^* (L_i^*) is the lattice of closed right (left) ideals of R. An R-module is uniform if each pair of nonzero submodules has nonzero intersection. A right (left) ideal of R is uniform if it is uniform as right (left) R-module. For other definitions and notation see [6].

THEOREM 1. R contains a maximal annihilator right ideal and a maximal complement right ideal if and only if $R_r^{\Delta} = (0)$ and L_r^* is atomic.

Received by the editors July 1, 1964.

¹ The authors wish to thank Professor R. E. Johnson for many helpful comments in revising the original manuscript of this paper.