Contents

- Aim
- Main Python Methods
- Data Processing Steps
 - Step 1: Retrieve original counts table
 - Step 2: Retrieve original metadata table
 - Step 3: Create dictionary from metadata table
 - Step 4: Calculate total read counts per sample
 - Step 5: Extract counts for all six sample groups
 - Step 6: Normalize count values for all six sample groups
 - Step 7: Calculate Spearman Correlation Coefficients for each sample group
 - Step 8: Generate final figure
 - Step 9: Compare original and regenerated figures

Aim: Replicate Figure 4B

Transfer Efficiency Across Groups (Non-inflamed Groups)

Main Python Methods

```
In [20]:
        import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import os
         import re
         from scipy import stats
         from scipy.special import comb
         # calculate Pearson correlation coefficients from input set of samples
         def get inter corr values(df1, df2):
            corr values = [stats.pearsonr(df1.loc[:, col A], df2.loc[:, col B]).statis
         tic \
                    for col_A in df1.columns for col B in df2.columns]
            # Remove nan values
            corr values = [val for val in corr values if not np.isnan(val)]
            return corr values
         # Retrieve tab delimited file
         def read csv file(file path, skiprows=None, header = 0, sep = '\t', index col=
            df = pd.read csv(file path, skiprows=skiprows, sep=sep, header=header, ind
         ex col=index col)
            return df
         # Create dictionary from metadata table
         def get dict from metadata(input df):
            mydict = {}
            for row in input df.iterrows():
                obj = row[1]
                sample id = obj['SampleID']
                key = obj['FMTGroupFMTsourcegtRecipientbackground']
                if key not in mydict:
                    mydict[key] = [sample id]
                    mydict[key].append(sample id)
            return mydict
         # ******************************** HELPER METHODS ***********************
         # Normalize sample counts
         def get norm counts(input df, ser sample count sums):
            overall mean count = ser sample count sums.mean()
            df norm logged = pd.DataFrame()
            for col name in input df.columns:
                df norm logged.loc[:, col name] = \
                np.log10(((input df.loc[:, col name] / ser sample count sums[col name
         ]) * overall mean count) + 1)
            return df norm logged
         # Get tuples of sample column names
         def get tup list(col names):
            tup list = []
            corr result = []
            col name length = len(col names)
            for i in range(col name length):
```

Data Processing Steps

Step 1: Retrieve original counts table

```
In [21]: df_asv = read_csv_file(asv_tbl_file_path, 1)
    df_asv = df_asv.astype({col:'int32' for col in df_asv.columns[1:-1] }, copy=Fa
    lse)
    df_asv
```

Out[21]:

	#OTU ID	1gKO.1	1gKO.2	1gKO.3	1gWT.1	1gWT.2	1gWT.3	2gKO.1
0	1ba8c796d07406783c96d016a6a5cace	13615	16637	17148	20227	23630	25656	14832
1	a6c38249aff7768283faf6cfbdeb05a8	26439	30129	19743	8955	10759	7074	18489
2	062f38ff92cfaee0654200b6f5be5ddf	7451	8774	8754	174	214	148	21958
3	1183cc23f552d81e63c93ca9fcba2f2c	225	223	184	13762	16856	18692	269
4	5e15ecfb579e72bf87c0bea3920bbf42	10108	12117	8633	10027	11910	7424	5979
4070	92bb8f4683ef5c8651e7d34dbb37ab2e	0	0	0	0	0	0	0
4071	92f09070a4fd5786bb34e756217e6ee1	0	0	0	0	0	0	0
4072	919b82324c41ed0046323c63aa1550da	0	0	0	0	0	0	0
4073	dbc0dad15ec1c8ad9d826cab94e18696	0	0	0	0	0	0	0
4074	1ff2d07d10264c23dc43e08d3097cd7c	0	0	0	0	0	0	0

Step 2: Retrieve original metadata table

```
In [22]: df_metadata = read_csv_file(metadata_file_path)
    df_metadata
```

Out[22]:

	SampleID	UniversalCageNumber	Background	${\bf FMTGroupFMT} sourcegt Recipient background$	Passage
0	F8-1	F8-cage-1	129.IL10KO	1gKOgtKO	8
1	F8-2	F8-cage-1	129.IL10KO	1gKOgtKO	8
2	F8-3	F8-cage-2	129.IL10KO	1gKOgtKO	8
3	F8-4	F8-cage-2	129.IL10KO	1gKOgtKO	8
4	F8-5	F8-cage-3	129.IL10KO	1gKOgtKO	8
105	1gWT.2	NaN	NaN	1gWTinput	1gWT
106	1gWT.3	NaN	NaN	1gWTinput	1gWT
107	2gWT.1	NaN	NaN	2gWTinput	2gWT
108	2gWT.2	NaN	NaN	2gWTinput	2gWT
109	2gWT.3	NaN	NaN	2gWTinput	2gWT

110 rows × 8 columns

Step 3: Create dictionary from metadata table

Step 4: Calculate total read counts per sample

```
In [5]: sample count sums = df asv.iloc[:, 1:-1].sum(axis=0)
       sample count sums
Out[5]: 1gKO.1 118256
       1gKO.2
                  141891
       1gK0.3
                 123292
       1gWT.1
                 119717
       1gWT.2
                 146158
       h1-2-3.2 135326
       h1-2-3.3 133745
       h3-4-5.1
                 129613
       h3-4-5.2
                 140316
       h3-4-5.3 132984
       Length: 110, dtype: int64
```

Step 5: Extract counts for target sample groups

```
In [6]: # 'hFMT.1.2.3.input' --> 'HM1Input'
key_name = 'hFMT.1.2.3.input'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
HM1_Input = df_asv[[col_name for col_name in dict_metadata[key_name]]]
HM1_Input
```

Grouped columns: ['h1-2-3.1', 'h1-2-3.2', 'h1-2-3.3']

Out[6]:

	h1-2-3.1	h1-2-3.2	h1-2-3.3
0	1483	1515	1402
1	1129	691	725
2	2927	3523	3254
3	298	231	238
4	218	160	111
4070	0	0	0
4071	0	0	0
4072	0	0	0
4073	0	0	0
4074	0	0	0

4075 rows × 3 columns

```
In [7]: # 'hFMT.1.2.3.gtWT' --> 'HM1->WT'
key_name = 'hFMT.1.2.3.gtWT'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
print('Number of expected correlation values: {}'.format(int(comb(len(dict_metadata[key_name]), 2))))
HM1_WT = df_asv[[col_name for col_name in dict_metadata[key_name]]]
HM1_WT
```

Grouped columns: ['F1-16', 'F1-17', 'F1-18', 'F1-19', 'F1-20', 'F1-21', 'F1-22']

Number of expected correlation values: 21

Out[7]:

	F1-16	F1-17	F1-18	F1-19	F1-20	F1-21	F1-22
0	19186	10727	29599	32588	32950	18853	5199
1	2938	6816	3233	1118	1710	1047	2202
2	9072	10348	5289	176	196	207	269
3	247	258	275	18297	22544	19687	21014
4	2389	3858	1904	3904	2928	5286	4884
4070	0	0	0	0	0	0	0
4071	0	0	0	0	0	0	0
4072	0	0	0	0	0	0	0

```
      4073
      0
      0
      0
      0
      0
      0
      0

      4074
      0
      0
      0
      0
      0
      0
      0
```

4075 rows × 7 columns

```
In [8]: # 'lgWTinput' --> 'NIMM-glinput'
key_name ='lgWTinput'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
NIMM_glinput = df_asv[[col_name for col_name in dict_metadata[key_name]]]
NIMM_glinput
```

Grouped columns: ['1gWT.1', '1gWT.2', '1gWT.3']

Out[8]:

	1gWT.1	1gWT.2	1gWT.3
0	20227	23630	25656
1	8955	10759	7074
2	174	214	148
3	13762	16856	18692
4	10027	11910	7424
4070	0	0	0
4071	0	0	0
4072	0	0	0
4073	0	0	0
4074	0	0	0

4075 rows × 3 columns

```
In [9]: # '1gWTgtWT' --> 'NIMM-g1->WT'
key_name ='1gWTgtWT'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
NIMM_g1_WT = df_asv[[col_name for col_name in dict_metadata[key_name]]]
NIMM_g1_WT
```

Grouped columns: ['F8-27', 'F8-28', 'F8-29', 'F8-30', 'F8-31', 'F8-32', 'F8-33', 'F11-1', 'F11-2', 'F11-3', 'F11-4', 'F11-5', 'F11-6', 'F11-7', 'F11-8', 'F11-9', 'F11-10', 'F11-11']

Out[9]:

	F8-27	F8-28	F8-29	F8-30	F8-31	F8-32	F8-33	F11-1	F11-2	F11-3	F11-4	F11-5	F11-6	ı
0	21313	6113	24573	19347	18028	10482	11761	34742	24360	31173	45582	18929	22349	1
1	300	972	397	332	573	825	1995	410	434	376	376	370	337	
2	135	243	197	193	99	207	237	129	291	167	282	412	190	
3	21071	16272	27247	21302	26135	23762	22465	25848	26231	19490	22181	18524	12915	2
4	2245	5227	5760	1189	2327	14279	7911	1416	2031	1899	2725	2679	1920	
4070	0	0	0	0	0	0	0	0	0	0	0	0	0	

```
4072
4073
           0
                   0
                           0
                                   0
                                          0
                                                  0
                                                                          0
                                                                                  0
                                                                                          0
                                                                                                  0
                                                                                                          0
4074
           0
                           0
                                   0
                                          0
                                                                                  0
                                                                                          0
                                                                                                  0
```

4075 rows × 18 columns

```
In [10]: # '2gWTinput' --> 'NIMM-g2input'
key_name ='2gWTinput'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
NIMM_g2input = df_asv[[col_name for col_name in dict_metadata[key_name]]]
NIMM_g2input
```

Grouped columns: ['2gWT.1', '2gWT.2', '2gWT.3']

Out[10]:

	2gWT.1	2gWT.2	2gWT.3
0	26154	27846	29545
1	487	298	403
2	221	152	77
3	18419	20399	21089
4	2446	1550	1249
4070	0	0	0
4071	0	0	0
4072	0	0	0
4073	0	0	0
4074	0	0	0

4075 rows × 3 columns

```
In [11]: # '2gWTgtWT' --> 'NIMM-g2->WT'
key_name ='2gWTgtWT'
print('Grouped columns: {}'.format(dict_metadata[key_name]))
NIMM_g2_WT = df_asv[[col_name for col_name in dict_metadata[key_name]]]
NIMM_g2_WT
```

Grouped columns: ['F8-34', 'F8-35', 'F8-36', 'F8-37', 'F8-38', 'F8-39', 'F8-40', 'F8-41']

Out[11]:

	F8-34	F8-35	F8-36	F8-37	F8-38	F8-39	F8-40	F8-41
0	23089	23716	26435	13911	32356	18934	23958	18944
1	329	537	320	362	473	1848	258	282
2	172	254	238	146	225	135	189	66
3	11455	20177	11798	13910	13422	24886	20107	18889
4	4360	10659	3839	3613	5501	13735	2324	12215
4070	0	0	0	0	0	0	0	0
4071	0	0	0	0	0	0	0	0
4072	0	0	0	0	0	0	0	n

7012	U	U	U	U	U	U	U	U
4073	0	0	0	0	0	0	0	0
4074	0	0	0	0	0	0	0	0

4075 rows × 8 columns

Step 6: Normalize count values for target sample groups

Out[12]:

3.170992	3.168281	3.139741
3.052636	2.827698	2.853624
3.466129	3.534613	3.505231
2.475230	2.353116	2.371106
2.340004	2.194478	2.041962
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
0.000000	0.000000	0.000000
	3.052636 3.466129 2.475230 2.340004	3.052636 2.827698 3.466129 3.534613 2.475230 2.353116 2.340004 2.194478 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

4075 rows × 3 columns

```
In [13]: HM1_WT_norm = _get_norm_counts(HM1_WT, sample_count_sums)
HM1_WT_norm
```

Out[13]:

	F1-16	F1-17	F1-18	F1-19	F1-20	F1-21	F1-22
0	4.245267	3.999519	4.464795	4.552695	4.457225	4.238876	3.673620
1	3.430471	3.802595	3.503245	3.088422	3.172643	2.983868	3.300643
2	3.920013	3.983899	3.716960	2.287385	2.234151	2.281717	2.389137
3	2.356868	2.382421	2.434436	4.302027	4.292408	4.257674	4.280140
4	3.340672	3.555481	3.273402	3.631237	3.406096	3.686687	3.646482
4070	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4071	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4072	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4073	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4074	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

```
        1gWT.1
        1gWT.2
        1gWT.3

        0
        4.346750
        4.327617
        4.390865

        1
        3.992909
        3.985949
        3.831387

        2
        2.283615
        2.286796
        2.154970

        3
        4.179510
        4.180916
        4.253338

        4
        4.042010
        4.030085
        3.852357

        ...
        ...
        ...
        ...

        4070
        0.000000
        0.000000
        0.000000

        4071
        0.000000
        0.000000
        0.000000

        4072
        0.000000
        0.000000
        0.000000

        4073
        0.000000
        0.000000
        0.000000

        4074
        0.000000
        0.000000
        0.000000
```

4075 rows × 3 columns

Out[15]:

	F8-27	F8-28	F8-29	F8-30	F8-31	F8-32	F8-33	F11-1	F11-2	F11
0	4.269712	3.868181	4.305071	4.313638	4.241945	4.043398	4.160521	4.485555	4.333532	4.4697
1	2.419820	3.069904	2.514711	2.549369	2.744909	2.939868	3.390166	2.558671	2.585453	2.5523
2	2.075047	2.468951	2.211733	2.314670	1.986115	2.340871	2.466282	2.059083	2.412411	2.2014
3	4.264752	4.293331	4.349929	4.355443	4.403212	4.398815	4.441569	4.357132	4.365668	4.2658
4	3.292482	3.800189	3.675105	3.102528	3.352961	4.177641	3.988323	3.096097	3.254786	3.2547
4070	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
4071	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
4072	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
4073	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000
4074	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.0000

4075 rows × 18 columns

Out[16]:

	2gW I.1	2gW1.2	2gW1.3
0	4.410161	4.472699	4.474499
1	2.681041	2.503502	2.610372
2	2.338993	2.212436	1.896044

```
      3
      4.257896
      4.337551
      4.328077

      4
      3.381243
      3.218516
      3.100908

      4070
      0.000000
      0.000000
      0.000000

      4071
      0.000000
      0.000000
      0.000000

      4072
      0.000000
      0.000000
      0.000000

      4073
      0.000000
      0.000000
      0.000000

      4074
      0.000000
      0.000000
      0.000000
```

4075 rows × 3 columns

Out[17]:

		F8-34	F8-35	F8-36	F8-37	F8-38	F8-39	F8-40	F8-41
	0	4.326180	4.345537	4.473561	4.148775	4.388825	4.288827	4.446174	4.297041
	1	2.481386	2.701315	2.557721	2.565278	2.554926	3.278493	2.479769	2.471266
	2	2.201025	2.377136	2.429562	2.172667	2.233579	2.145017	2.345136	1.845337
	3	4.021791	4.275356	4.123208	4.148744	4.006713	4.407534	4.370073	4.295778
	4	3.602349	3.998236	3.635686	3.563373	3.619399	4.149421	3.433104	4.106475
4	4070	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	4071	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	4072	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	4073	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
4	4074	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

4075 rows × 8 columns

Step 7: Calculate Spearman Correlation Coefficients for each sample group

Step 8: Generate final figure

Step 9: Compare original and regenerated figures

In []: