Оглавление

1	Метрические пространства	2
	1.1 Определение и примеры	2
	1.2 Расположение точки относительно множества	4

Глава 1

Метрические пространства

1.1 Определение и примеры

Определение 1. M – множество, $\rho: M \times M \to \mathbb{R}$ (M, ρ) – метрическое пространство, если:

1.
$$\rho(x,y) \ge 0$$
, $\rho(x,y) = 0 \iff x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3.
$$\rho(x,y) \le \rho(x,z) + \rho(z,y)$$

Примеры.

1.
$$\mathbb{R}$$
, $\rho(x,y) = |x-y|$

2.
$$\mathbb{R}^2$$
, $\rho_2((x_1,y_1),(x_2,y_2)) = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$ – обобщается до \mathbb{R}^n

$$\rho_1((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$$

$$\rho_p((x_1, y_1), (x_2, y_2)) = \left(|x_1 - x_2|^p + |y_1 - y_2|^p\right)^{1/p}, \quad p \ge 1$$

Каждая ρ_p является метрикой. Свойтсва 1 и 2 очевидны. Проверим неравенство треугольника:

Доказательство.

$$\left(\sum_{i} |x_{i} + p_{i}|^{p}\right)^{1/p} \leq \left(\sum_{i} |x_{i}|^{p}\right)^{1/p} + \left(\sum_{i} |y_{i}|^{p}\right)^{1/p}$$

 $ho_{\infty}((x_1,y_1),(x_2,y_2)) = \max\{ \mid x_1-x_2|, |y_1-y_2| \}$ – без доказательства

 ho_1 — манхэтенская метрика (если в городе все улицы перпендикулярны "осям", то ho_1 — **любое** кратчайшее расстояние по улицам)

3. M – множество

$$\rho(x,y) := \begin{cases} 1, & x \neq y \\ 0, & x = y \end{cases}$$

$$B(x_0, \frac{1}{2}) = \{x_0\}$$

4. (M, ρ) – метрическое пространство

$$ho'(x,y)\coloneqq rac{
ho(x,y)}{1+
ho(x,y)}$$
 – тоже метрика

Теперь $\rho'(x,y) < 1$

 $\rho''(x,y) = \max \{ \rho(x,y), 1 \}$ – рассматриваем только расстояния, меньшие 1. Тоже метрика

5. M – множество строк из 0 и 1 длины n $\rho(x,y)$ – количество различных символов

Задача. Есть строки из n символов

При передаче может возникнуть не более k ошибок

Посылаем сколько-то строк (часть из них искажается)

Нужно, чтобы:

- Хотя бы одна строчка не исказилась
- Получатель мог однозначно определить, какая строчка не исказилась
- 6. M пространство (хороших) функций на [a,b]

$$\rho_1(f,g) := \int_a^b |f(x) - g(x)| dx$$

У хороших функций такой интеграл точно существует (например, хорошими будут непрерывные)

$$\rho_2(f,g) := \sqrt{\int_a^b (f(x) - g(x))^2 dx}$$

$$\rho_p(f,g) := \left(\int_a^b |f(x) - g(x)|^p dx \right)^{1/p}$$

$$\rho_{\infty} := \sup |f(x) - g(x)|, \qquad x \in [a, b]$$

7. М – множество (хороших) фигур на плоскости (например, многоугольников)

$$\rho(F,G) \coloneqq S_{F \triangle G}$$

Метрика Хауссдорфа:

- Есть 2 кривые
- По одной из них движется поливальная машина (поливает кружочек вокруг себя, радиусом ε)
- Хотим так подобрать ε , чтобы вторая кривая была полностью полита

"
$$\rho(F,G)$$
" := inf $\{ \varepsilon \mid \forall x \in F \mid \exists y \in G : \rho(x,y) \le \varepsilon \}$

Очевидно, что такой ε не будет симметричным. Поэтому, берём максимум из них двоих:

$$\rho(F,G) := \max \left\{ \inf \left\{ \varepsilon \mid \forall x \in F \quad \exists y \in G : \rho(x,y) \le \varepsilon \right\}, \inf \left\{ \varepsilon \mid \forall x \in G \quad \exists y \in F : \rho(x,y) \le \varepsilon \right\} \right\}$$

8. Z

$$|n| = \begin{cases} n, & n \ge 0 \\ -n, & n < 0 \end{cases}$$

Возьмём $p \in \mathbb{P}$

Положим $||n|| = 2^{-v_p(n)}$, где $v_p(n)$ – степень вхождения p в n

$$v_p(\frac{m}{n}) := v_p(m) - v_p(n)$$

Таким образом, мы расширили $||\cdot||$ на $\mathbb Q$

$$\rho_p(a,b) := \begin{cases} ||a-b||, & a \neq b \\ 0, & a = b \end{cases}, \quad a, b \in \mathbb{Q}$$

 ho_p — p-адическая метрика

Доказательство того, что это всё – метрики, остаётся упражнением (хотя бы часть)

Определение 2. Шар с центром x_0 и радиусом ε :

$$B(x_0, \varepsilon) := \{ x \in M \mid \rho(x, x_0) < \varepsilon \}$$

Рис. 1.1: Шары по различным метрикам (из примера 2)

1.2 Расположение точки относительно множества

 (M, ρ) — метрическое пространство $A \subset M, \qquad x_0 \in M$

Определение 3. x_0 называется внутренней для A, если $\exists \varepsilon > 0 : B(x_0, \varepsilon) \subset A$

Определение 4. x_0 называется внешней для A, если $\exists \varepsilon > 0 : B(x_0, \varepsilon) \cap A = \emptyset$

Определение 5. Иначе x_0 – граничная, то есть

$$\forall \varepsilon > 0 \begin{cases} B(x_0, \varepsilon) \not\subset A \\ B(x_0, \varepsilon) \not\subset M \setminus A \end{cases}$$

Определение 6. Множество внутренних точек называется внутренностью (Int(A))

Множество внешних точек называется внешностью (Ex(A))

Множество граничных точек называется границей (δA , $\mathrm{Fr}(A)$)

Очевидно, что. $\operatorname{Int}(M \setminus A) = \operatorname{Ex} A$

Определение 7. $\operatorname{Cl} A \coloneqq \operatorname{Int} A \cup \delta A$ – замыкание A

Определение 8. Множество A называется открытым, если A = Int A, то есть

$$\forall x_0 \in A \quad \exists \varepsilon > 0 : B(x_0, \varepsilon) \subset A$$

Определение 9. Множество A называется замкнутым, если $A=\operatorname{Cl} A$, то есть $M\setminus A$ открыто