Solutions to homework 5:

- 1. Solutions
 - (a) $u_1 = \frac{4}{3}, u_2 = \frac{10}{7}, u_3 = \frac{24}{17}$
 - (b) Proof

Proof by Induction:

Base Case: $n=0,\,u_0=2$ so $1\leq u_0\leq 2.$ Base case holds.

I.H. for
$$k \ge 0, 1 \le u_k \le 2$$

I.S.

Lower Bound

$$u_k \geq 1 \qquad \qquad \text{By I.H.}$$

$$u_k+2 \geq u_k+1$$

$$\frac{u_k+2}{u_k+1} \geq 1 \qquad \text{By I.H. } u_k+1>0$$

$$u_{k+1} \geq 1$$

• Upper Bound

$$u_k \leq 2 \qquad \text{By I.H.}$$

$$u_k + 2 \leq 2u_k + 2$$

$$\frac{u_k + 2}{u_k + 1} \leq 2 \qquad \text{By I.H. } u_k + 1 > 0$$

$$u_{k+1} \leq 2$$

Hence, by induction $1 \le u_k \le 2$.

- 2. Solution
 - Proof by Induction:
 - ► **Base Case:** n = 1, $1\frac{1+1}{2} = 1^3$, 1 = 1. Base case holds.
 - ► I.H.

$$\sum_{k=1}^{\ell} k^3 = \left(\frac{\ell(\ell+1)}{2}\right)^2$$

► I.S.

$$\sum_{k=1}^{\ell} k^3 = \left(\frac{\ell(\ell+1)}{2}\right)^2$$

$$\sum_{k=1}^{\ell} k^3 + (\ell+1)^3 = \left(\frac{\ell(\ell+1)}{2}\right)^2 + (\ell+1)^3$$

$$\sum_{k=1}^{\ell+1} k^3 = \frac{\ell^2(\ell+1)^2 + 4(\ell+1)^3}{4}$$

$$= \frac{(\ell+1)^2(\ell^2 + 4\ell + 4)}{4}$$

$$= \frac{(\ell+1)^2(\ell+2)^2}{4}$$

$$= \left(\frac{(\ell+1)(\ell+2)}{2}\right)^2$$

Hence by induction $\forall n \in \mathbb{N}, \sum_{k=1}^{\ell} k^3 = \left(\frac{\ell(\ell+1)}{2}\right)^2$.

3. • Proof by Induction:

- ▶ **Base Case:** $n = 1, \frac{1}{1} \le 2 1, 1 \le 1$. Base case holds.
- ► I.H.

$$\sum_{i=1}^{k} \frac{1}{i^2} < 2 - \frac{1}{k}$$

► I.S.

$$\begin{split} \sum_{i=1}^k \frac{1}{i^2} &< 2 - \frac{1}{k} \\ \sum_{i=1}^k \frac{1}{i^2} + \frac{1}{(k+1)^2} &< 2 - \frac{1}{k} + \frac{1}{(k+1)^2} \\ \sum_{i=1}^{k+1} \frac{1}{i^2} &< 2 - \frac{1}{k} + \frac{1}{k+1} \\ \sum_{i=1}^{k+1} \frac{1}{i^2} &< 2 - \frac{1}{k} + \frac{2}{k+1} \\ &< 2 + \frac{-(k+1) + 2k}{k(k+1)} \\ &< 2 + \frac{k}{k(k+1)} - \frac{1}{k(k+1)} \\ &< 2 + \frac{k}{k(k+1)} \\ &< 2 + \frac{k}{k(k+1)} \end{split}$$

Hence by induction $\forall n \in \mathbb{N}, \sum_{i=1}^n \frac{1}{i^2} \leq 2 - \frac{1}{n}$

4. • Solutions

(a)
$$u_{n+1} - 5^2 \cdot u_n = -17 \cdot 2^{3n+1}$$

(b) *Proof*

Proof by Induction

Base Case $n = 0, 3 \cdot 5^{0+1} + 2^{0+1} = 17$ and $17 \pmod{17} = 0$. Base case holds.

I.H.
$$\forall k \in \mathbb{Z}, k \geq 0, u_k = 3 \cdot 5^{2k+1} + 2^{3k+1} \text{ s.t. } 17 \mid u_k.$$

Lemma:
$$\forall n \in \mathbb{N}, u_{n+1} = -17 \cdot 2^{3n+1} + 5^2 \cdot u_n$$

I.S.

$$\begin{split} u_{k+1} &= -17 \cdot 2^{3n+1} + 5^2 \cdot u_k & \text{By Lemma} \\ &= -17 \cdot 2^{3n+1} + 5^2 \cdot 17i & \text{By I.H. and } i \in \mathbb{Z} \\ &= 17 \big(-2^{3n+1} \big) + 17 \big(5^2 \cdot i \big) \\ &= 17 \big(-2^{3n+1} + 5^2 \cdot i \big) \\ &= 17 \ell & \ell \in \mathbb{Z} \end{split}$$

Hence by induction, $17 \mid u_n$.

5. **Proof by Induction**

Base Case $n = 1, 2^{1^2} > 1!$ so 2 > 1. Base case holds.

I.H. $\forall k \in \mathbb{N}, 2^{k^2} > k!$.

• Sub Induction: $\forall t \in \mathbb{N}, 2^{2t+1} > (t+1)$

Base Case: $t = 1, 2^{2(1)+1} > 2$. Base case holds.

I.H.
$$\forall s \in \mathbb{N}, 2^{2s+1} > (s+1)$$

I.S.

$$2^{2s+1} > (s+1)$$

$$2 \cdot 2^{2s+1} > 2(s+1)$$

$$2^{2s+2} > 2s+2$$

$$2^{2s+2} > s+2$$

Thus if P(s) then P(s+1).

Hence by induction, $\forall t \in \mathbb{N}, 2^{2t+1} > t+1$

Lemma: $\forall k \in \mathbb{N}, 2^{2k+1} > k+1$

I.S.

$$\begin{aligned} 2^{k^2} > k! \\ 2^{k^2} \cdot (k+1) > k! \cdot (k+1) & k \geq 1 \\ 2^{k^2} \cdot 2^{2k+1} > 2^{k^2} \cdot (k+1) > (k+1)! & \text{By Lemma} \\ 2^{k^2+2k+1} > (k+1)! \\ 2^{(k+1)^2} > (k+1)! \end{aligned}$$

Thus if P(k) then P(k+1)

Hence by induction, $\forall n \in \mathbb{N}, 2^{n^2} > n!$

6. • Proof by Induction:

- ▶ Base Case: n=1, n=2 and $a_1=3, a_2=12$ so $2^1<3<4^1$ and $2^2<12<4^2$. Base case holds.
- I.H.

$$\forall k \in \mathbb{N}, k \geq 1, 2^k < a_k < 4^k \ \text{s.t.} \ a_k = 2a_{k-1} + a_{k-2} + a_{k-3}$$

 $\textit{Lemma}: \forall n \in \mathbb{N}, n \geq 3, a_{n+1} = 5a_{n-1} + 3a_{n-2} + 2a_{n-3}$

$$\begin{split} a_{n+1} &= 2a_n + a_{n-1} + a_{n-2} \\ a_{n+1} &= 4a_{n-1} + 2a_{n-2} + 2a_{n-3} + a_{n-1} + a_{n-2} \\ a_{n+1} &= 5a_{n-1} + 3a_{n-2} + 2a_{n-3} \end{split}$$

► I.S.

Consider

$$\begin{aligned} &2^k < a_k \\ &2 \cdot 2^k < 2 \cdot a_k \\ &2^{k+1} < 2 \cdot (2a_{n-1} + a_{n-2} + a_{n-3}) \\ &2^{k+1} < 4a_{n-1} + 2a_{n-2} + 2a_{n-3} \\ &2^{k+1} < 4a_{n-1} + 2a_{n-2} + 2a_{n-3} < 5a_{n-1} + 3a_{n-2} + 2a_{n-3} \\ &2^{k+1} < 5a_{n-1} + 3a_{n-2} + 2a_{n(n-3)} = a_{k+1} \end{aligned} \qquad \text{By Lemma}$$

$$2^{k+1} < a_{k+1}$$

And

$$\begin{aligned} a_k < 4^k \\ 4 \cdot a_k < 4 \cdot 4^k \\ 4 \cdot a_k < 4^{k+1} \\ 4 \cdot (2a_{k-1} + a_{k-2} + a_{k-3}) < 4^{k+1} \\ 8a_{k-1} + 4a_{k-2} + 4a_{k-3} < 4^{k+1} \\ 5a_{k-1} + 3a_{k-2} + 2a_{k-2} < 8a_{k-1} + 4a_{k-2} + 4a_{k-3} < 4^{k+1} \\ 5a_{k-1} + 3a_{k-2} + 2a_{k-2} = a_{k+1} < 4^{k+1} \end{aligned} \qquad \text{By Lemma}$$

$$a_{k+1} < 4^{k+1}$$

Hence by induction $\forall n \in \mathbb{N}, n \geq 1, 2^n < a_n < 4^n$