Comparing SMT and Canonical Set Representation for Analyzing Network Policies

Shai Guendelman

What will be in this lecture?

- Seminar, not a lecture!
- NP-Guard static analysis tool for Kubernetes
- Comparing SMT and Canonical Representation

Background

Kubernetes

- Micro-services vs. Monolith
- Kubernetes supports micro-services developers
- Used in many projects. For example Spotify, booking.com, CERN

Kubernetes – Restaurant Metaphor

- Different logical components
- Simplicity
- Useful automations
- For example
 - Auto-scaling
 - Self-healing

Network Policies

- Limit internal and external communications
- Open communication channels are security risks
- Communications graph
 - Nodes: pods & outside entities
 - Edges: allowed communications
 - Edge labels: conditions

Network Policies – Example

Network Policies – Difficulties

- Lack of awareness
 - Connectivity map
 - CI/CD integration
- Easy to do mistakes
 - Change Impact Analysis


```
apiVersion: networking.k8s.io/v1
                                           apiVersion: networking.k8s.io/v1
kind: NetworkPolicy
                                           kind: NetworkPolicy
metadata:
                                           metadata:
 name: paymentservice-netpol-with-typo
                                             name: paymentservice-netpol
 namespace: default
                                              namespace: default
spec:
                                           spec:
 ingress:
                                              ingress:
 - from:
                                              - from:
   - podSelector:
                                                - podSelector:
       matchLabels:
                                                    matchLabels:
         app: checkoutservice
                                                      app: checkoutservice
 - ports: # the typo is here
                                                ports:
   - port: 50051
                                                - port: 50051
     protocol: TCP
                                                  protocol: TCP
 podSelector:
                                              podSelector:
   matchLabels:
                                                matchLabels:
     app: paymentservice
                                                  app: paymentservice
```

Hyper-Cube Set

- Connectivity can be modelled as a set of hyper-cubes
- Dimensions are either Strings or Integers
- Analysis reduces to set operations
 - Change impact analysis → set difference

Canonical Representation

- Efficient equality check
- Supports set operations union, intersection, subtraction
- Integers
 - Interval Sets: {[1-10], [100-200], [432-543]}
- Strings
 - Minimal DFAs
- Hyper-Cubes
 - Tree

SMT (Satisfiability Modulo Theory) Solver

- Is formula ψ satisfiable?
- Integers:
 - $0 \le x \land x \le 10 \mapsto \text{sat}(x = 0)$
 - $7 \le x \land x \le 6 \mapsto \text{unsat}$
- Strings:
 - PrefixOf("www", s) \land SuffixOf(".com", s) \mapsto sat (s = "www.com")
 - PrefixOf("abc",s) \land PrefixOf("xyz",s) \mapsto unsat

SMT (Satisfiability Modulo Theory) Solver

- Single hyper-cube: $C_1 = (port \le 20 \land port \ge 10) \land (PrefixOf ("us/", host))$
- Hyper-cube set: $A = C_1 \vee C_2 \vee \cdots \vee C_n$
- Can only check sat / unsat
- $A == B \mapsto (A \land \neg B) \lor (\neg A \land B)$ is unsat
- No canonical representation

Results

Comparison on Realistic Examples

Comparison on Realistic Examples

operation	mode	#samples	#z3 wins	z3 wins (%)	total time		max time		max advantage	
					z3	canonical	z3	canonical	z3	canonical
contained_in	simple	1332	316	23.724	31.74	35.873	0.085	0.545	0.504	0.073
contained_in	complex	1640	1063	64.817	1610.665	2029.715	40.11	11.658	11.376	32.217
emptiness	simple	37	3	8.108	0.744	0.409	0.05	0.141	0.129	0.047
emptiness	complex	41	23	56.098	16.974	24.29	7.847	7.445	3.974	0.505
equivalence	simple	666	114	17.117	18.793	14.721	0.083	0.256	0.208	0.079
equivalence	complex	820	517	63.049	705.715	971.611	22.419	11.562	11.328	22.149

Overlapping / Non-Overlapping Cubes

Summary

- Canonical Representation Advantages:
 - Z3 unable to deal with general regular expressions
 - Can be used for connectivity map
 - Better at small common examples
- Z3 advantages:
 - Simple if we do simple things
 - Scales better
 - May be optimized?

