カルノ一図,論理回路の設計第19,20回

カルノ一図 (Karnaugh map)

枠内の意味

入	出力	
А	АВ	
0	0	ĀB
0	1	ĀB
1	0	ΑB
1	1	AB↓

カルノー図の各区画は, 主加法標準形の最小項に対応

カルノ一図

真理值表

入	出力		
А	В	X	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

3変数のカルノ一図 論理の順序に注意 (ハミング距離の短い遷移)

	入力]	出力
Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

4変数のカルノ一図

CD AB		CD 01	CD 11	CD 10
AB 00	ĀBCD	ĀBCD	ĀBCD	ĀĒCŌ
ĀB 01	ĀBCD	ĀBCD	ĀBCD	ĀBCD
AB 11	ABCD	ABCD	ABCD	ABCD
AB 10	ABCD	ABCD	ABCD	ABCD

CD AB	00	01	11	10
00			1	
01				1
11	1			
10		1		

ĀBCD+ĀBCD+ABCD+ABCD

加法標準形の論理式からの真理値表、カルノ一図の作成

$$ABC+A\overline{B}+\overline{B}C$$

	入力		出力
Α	В	С	X
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

1になる組合せを考える

ABC

$$\rightarrow$$
 A=B=C=1のとき

\overline{AB}

→ A=1, B=0のとき (Cは0/1どちらでもよい)_

BC

→ B=0, C=1のとき (Aは0/1どちらでもよい)

AB, BCの両方

BC A	00	01	11	10
0		1		
1	1	1	1	

乗法標準形の論理式からの真理値表、カルノ一図の作成

$$(A+B)(\overline{B}+C)$$

入力		出力	
Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

0になる組合せを考える

(A+B)と $(\overline{B}+C)$ のどちらかが、0になれば、0

$$A+B$$

→ A=B=0のとき (Cは0/1どちらでもよい)

→ B=1, C=0のとき (Aは0/1どちらでもよい)

0が入らなかったところが

A BC	00	01	11	10
0	0	0	1	0
1	1	1	1	0

2マスを囲む

A B	0	1
0		1
1		1

$$\bar{A}B+AB=B$$

BC A	00	01	11	10
0	1	1		
1				

ABC+ABC=AB

	2マスを囲む						
BC A	00	01	11	10			
0	1						
1	1						

•	BC A	00	01	11	10
·	0	1			1
	1				

ĀBC+ABC=BC

 $\bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} = \bar{A}\bar{C}$

BC A	00	01	11	10
0		1	1	
1		1	1	

BC A	00	01	11	10
0				
1	1	1	1	1

BC A	00	01	11	10
0	1			1
1	1			1

ABC+ABC+ABC+C=C

ABC+ABC+ABC+ABC=A

 $\bar{A}\bar{B}\bar{C}+\bar{A}\bar{B}\bar{C}+\bar{A}\bar{B}\bar{C}+\bar{A}\bar{B}\bar{C}=\bar{C}$

2マスを囲む

CD AB	00	01	11	10
00			1	1
01				ĀĒC
11		1		
10		1		

4マスを囲む

CD AB	00	01	11	10
00	1			
01	1	1	1	
11	1	1	1	
10	1		BD	

8マスを囲む

CD AB	00	01	11	10
00				
01	1	1	1	1
11	1	1	1	1
10		В		

ACD

CD

2マス, 4マスを組み合わせることで簡略化を図る

BC A	00	01	11	10
0		1	1	
1	1	1	1	

A 00 01 11 10 0 1 1 1 1 1 1 1 1 A \(\bar{B}+C\)

ABC+ABC+ABC+ABC

5項が2項に 簡略化

2マス, 4マスを組み合わせることで簡略化を図る

BC A	00	01	11	10		
0						
1	1	1	1			
AB+AC						

3項が2項に簡略化

5項が2項に簡略化

(2マス), 4マス, 8マスを組み合わせることで簡略化を図る

CD AB	00	01	11	10	
00		1			
01	1	1	1	1	
11	1	1	1	1	
10		1			
B+CD					

00 10 AB 00 01 11 10 BC+AD+CD

10項が2項に簡略化

8項が3項に簡略化

カルノ一図を使うと、ブール代数の法則を使うよりも楽に変形できる

入力		出力
Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1
X=ĀB+AB+AB		
OR		

べき等則

 $X = \overline{A}B + A\overline{B} + AB$

=A+B

 $= \overline{A}B + A\overline{B} + AB + AB$

=A(B+B)+(A+A)B

相補則

)		
A B	0	1
0		1
1	1	1
	 А+В	

入力		出力	
Α	В	X	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
$X = \overline{A}\overline{B} + \overline{A}B + A\overline{B}$			
NAND			

べき等則

A	0	1
0	1	1
1	1	

入	力	出力	
А	В	X	
0	0	1	
0	1	0	
1	0	1	
1	1	1	
X=ĀB+AB+AB			

入力		出力	
Α	В	X	
0	0	1	
0	1	1	
1	0	0	
1	1	1	
X=ĀB+ĀB+AB			

X=ĀB+AB- =ĀB+AB+	
=A(B+B)-	+(A+Ā)B
=A+B	相補則

	べき等則
$X = \overline{A}\overline{B} + \overline{A}B$	+AB
$= \overline{A} \overline{B} + \overline{A} B$	+ĀB+AB
$=\bar{A}(\bar{B}+\bar{B})$	$+(A+\overline{A})B$
$= \overline{A} + B$	相補則

	入力	出力	
А	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A BC	00	01	11	10
0				AB
1		1	1	1
		AC		

$$X = AB + AC$$

参考)論理式の展開

 $X = ABC + AB\overline{C} + \overline{ABC} = ABC + AB\overline{C} + \overline{ABC} + \overline{ABC} = AB(C+\overline{C}) + \overline{AC}(B+\overline{B}) = AB+\overline{AC}$

べき等則

相補則

相補則

X =	= AC+	-AB+	-BC

参考)論理式の展開

	入力	出力	
Α	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

乗法標準形なので, 積の各項が0になる 条件を考える

参考)論理式の展開

$$X = (A+B)(\overline{A}+C)$$

相補則

- = AA+BA+AC+BC
- = AB + AC + BC

相補則

- = AB+AC+BC(A+A)
- = AB + ABC + AC + ABC

零原則

零原則

- $=\overline{A}B(1+C)+AC(1+B)$
- = AB + AC

(A+B)が0になる組合せは, _A=B=0のとき (A+C)が0になる組合せは, A=1, C=0のとき

A BC	00	01	11 _A	10 B
0	0	0	1	1
1	0	1	1	0
		AC		

重複なので不要

0になる組合せ		
А	ВС	
0	00	
0	01	
1	00	
1	10	

対応する箱に0を入れる. 残りが1となる

$$X = \overline{A}B + AC$$

乗法標準形なので, 積の各項が0になる 条件を考える

A BC	00	01	11 B	10
0	1	QC AC	1	1
1	0	1	1	1

$$X = AC + AC + B$$

$$\frac{\downarrow}{A \oplus C}$$

	入力		中間		中間		出力
А	В	С	第1項	第2項	Χ		
0	0	0	1	1	1		
0	0	1	0	1	0		
0	1	0	1	1	1		
0	1	1	1	1	1		
1	0	0	1	0	0		
1	0	1	1	1	1		
1	1	0	1	1	1		
1	1	1	1	1	1		

相補則

参考)論理式の展開

$$X = (A + B + C) \cdot (A + B + C)$$

$$= AB+AC+AB+B+BC+AC+BC$$

$$= AC+\overline{AC}+B(A+1+C+\overline{C})$$

$$= AC + \overline{AC} + B$$

相補則

論理回路設計:不一致回路

2入力の不一致を見る

真理值表

入力		出力
Α	В	X
0	0	0
0	1	1
1	0	1
1	1	0

A	0	1
0		1
1	1	

$$X = \overline{A}B + A\overline{B}$$

= $A \oplus B$

論理回路設計:一致回路

2入力の一致を見る

真理值表

入	出力	
Α	В	Χ
0	0	1
0	1	0
1	0	0
1	1	1

A	0	1
0	1	
1		1

$$X = \overline{AB} + AB$$

= $\overline{A \oplus B}$

論理回路設計:比較回路

- ・2入力を比較しフラッグを立てる
- A>Bのとき、Pフラッグを立て、A=Bのとき、Eフラッグを立て、A<Bのとき、Mフラッグを立てる.

真理值表

入	力	出力		 説明	
Α	В	Р	Ε	M	記しりつ
0	0	0	1	0	A=B
0	1	0	0	1	A <b< td=""></b<>
1	0	1	0	0	A>B
1	1	0	1	0	A=B

		_
P=	A	В

E=AB	+AB

$$M = \overline{A}B$$

論理回路設計:多数決回路

入力の半数を超える場合(3入力なので2以上のとき)にフラッグを立てる

	入力		出力
Α	В	С	X
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

A BC	00	01	11	10
0			1	
1		1	1	1

$$X = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

= $AB + BC + AC$

