Word Vectors

	blood wine	
x_2	juice sea rose	
	car cloud 'liquidness'	

word	x_1	x_2
rose	1.2	6.9
blood	5.1	9.3
car	1.5	3.9
sea	9.3	7.1
wine	6.0	8.5
juice	7.9	7.2
cloud	4.9	4.0

Can we predict the next word in a sentence?

input == a 'one-hot' vector 'cat' is word number 3 in the dictionary

each neuron == a linear function of its inputs one 'w' for each word in the dictionary

word in the dictionary

'cat' == word 4

 $a_{1,2} = w_1 \times x_1 + w_2 \times x_2 + w_3 \times x_3 + w_4 \times x_4 + \dots + b$ each neuron == a linear function of its inputs one 'w' for each word in the dictionary

The 'word2vec' skip-gram model

'word2vec' with negative sampling

One prediction neuron for each word in vocabulary (10,000 words = 10,000 neurons)

Given this input word ...

... does the target word appear in the input word's context?

'cat' == word 4

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,4} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,4} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,4} \\ w_{4,1} & w_{4,2} & w_{4,3} & w_{4,4} \end{bmatrix}$$

$$\begin{bmatrix} Predictor for 'black' (word 2) & 1 = 'black' is in context \\ w_{2,1} & context \\ w_{3,4} & context \\ w_{4,4} & w_{4,2} & w_{4,3} \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} w_{1,1} & w_{1,2} & w_{1,3} & w_{1,4} \\ w_{2,1} & w_{2,2} & w_{2,3} & w_{2,4} \\ w_{3,1} & w_{3,2} & w_{3,3} & w_{3,4} \\ w_{4,1} & w_{4,2} & w_{4,3} & w_{4,4} \end{bmatrix}$$

 $a_2 = \sigma(w_1 \times w_{1,4} + w_2 \times w_{2,4} + w_3 \times w_{3,4} + \dots + w_n \times w_{n,4})$

Training data for negative sampling

'When I looked out, a black cat crossed the road, and purred.'

input word	target word	value			
cat	out	1	•		Actual word
cat	blue	0	K		
cat	spandex	0			
cat	ballet	0			Randomly sampled negative examples
cat	thingamy	0			

What can you do with word vectors?

Tomas Mikolov and others, 'Distributed Representations of Words and Phrases and Their Compositionality', in *Advances in Neural Information Processing Systems 26*, ed. by C. J. C. Burges and others (Curran Associates, Inc., 2013), pp. 3111–19.