Analisi dei dati Esercizi

Aggiornati al 30 marzo 2018

1 Parte B

- 1. Considerate il lancio di due dati e considerate la somma delle due facce. Sia Y la v.c. 'somma delle due facce'
 - (a) Individuate lo spazio campionario.
 - (b) Costruite un programma in R che estragga un campione bernoulliano di numerosità n dalla v.c. somma delle due facce.
 - (c) Calcolate la distribuzione di probabilità di Y.
 - (d) Calcolate la distribuzione di probabilità empirica di Y, con n = 50.
 - (e) Confrontate le due distribuzioni.
 - (f) Calcolate la funzione di ripartizione e la funzione di ripartizione empirica e sovrapponetele in un'unico grafico.
 - (g) Commentate quanto accade se n = 500.
- 2. Sia Y_1, \ldots, Y_n un campione bernoulliano da una v.c. $\mathcal{N}(\mu, \sigma^2)$ e si voglia stimare μ . Per questo vengono considerati due stimatori $\widehat{\mu}_{A,n} = \sum_{i=1}^{n-1} Y_i/n$, e $\widehat{\mu}_{B,n} = Y_1/n + (n-1)Y_n/n$. Nel seguito si suppone che σ^2 sia noto.
 - Calcolate la distorsione dei due stimatori.
 - Calcolate il loro errore standard.
 - Fornite una stima del loro errore standard.
 - Calcolate il loro errore quadratico medio.
- 3. Siano (Y_1, \dots, Y_4) , quattro v. c. di Bernoulli indipendenti con probabilità di successo $\Pr\{Y_i = 1\} = \theta$, $0 < \theta < 1$. Si considerino i seguenti stimatori di θ :

$$T_1 = \frac{2}{3}Y_1 + \frac{1}{3}Y_4, \qquad T_2 = 3Y_2 - 2Y_3.$$

- (a) Dite quale dei due stimatori risulta preferibile.
- (b) Mostrate che lo stimatore

$$T_3 = (2-a)T_1 + (a-1)T_2$$

è non distorto per qualsiasi valore di a.

- (c) Trovate il valore di a che rende minima la varianza di questo stimatore.
- 4. Riprendete l'esercizio precedente e fissate $n=50, \mu=4$ e $\sigma=1$. Nel seguito utilizzate R.
 - Simulate m = 1000 campioni di numerosità n. Ogni campione sarà denotato con $(y_1^{(j)}, \dots, y_n^{(j)})', j = 1, \dots, m$.

• Per ogni campione $(y_1^{(j)},\ldots,y_n^{(j)})'$ calcolate le due stime $\widehat{\mu}_A^{(j)}$ e $\widehat{\mu}_B^{(j)}$, ottenendo i vettori

$$(\widehat{\mu}_A^{(1)}, \dots, \widehat{\mu}_A^{(m)})' \qquad (\widehat{\mu}_B^{(1)}, \dots, \widehat{\mu}_B^{(m)})'$$

- Calcolate le distorsioni ottenute in simulazione $\sum_{j=1}^{m} \widehat{\mu}_{A}^{(j)}/m \mu$ e $\sum_{j=1}^{m} \widehat{\mu}_{B}^{(j)}/m \mu$ e confrontatele con quelle teoriche si commentino i risultati.
- Si calcolino le varianze e lo scarto quadratico medio di $(\widehat{\mu}_A^{(1)}, \dots, \widehat{\mu}_A^{(m)})'$ e $(\widehat{\mu}_B^{(1)}, \dots, \widehat{\mu}_B^{(m)})'$ e si commentino i risultati.
- Si calcoli sulla base di $(\widehat{\mu}_A^{(1)}, \dots, \widehat{\mu}_A^{(m)})'$ e $(\widehat{\mu}_B^{(1)}, \dots, \widehat{\mu}_B^{(m)})'$ una misura dell'errore quadratico medio e si commentino i risultati.
- \bullet Riflettete sul ruolo di n e m. Cosa ottenete al variare dei due valori ?
- 5. Sia Y una v.c. di Poisson di parametro λ . Sia dato un campione bernoulliano $Y_1, \ldots, Y_n, n > 3$. Si considerino i seguenti stimatori di λ :

$$T_1 = \frac{\sum_{i=1}^{n-2} Y_i}{n-1} + \frac{Y_n}{n-1}, \quad T_2 = \frac{Y_1 + (n-2)Y_n}{n-1}.$$

- (a) Calcolare le distorsioni dei due stimatori proposti.
- (b) Calcolare le varianze dei due stimatori.
- (c) Calcolare gli errori quadratici medi.
- (d) Quale dei due stimatori risulta preferibile?
- 6. Siano Y_1, \dots, Y_n, n variabili casuali i.i.d. normali con valore atteso θ e varianza θ^2 e si considerino i seguenti stimatori di θ :

$$T_1 = \frac{Y_1 + (n-1)Y_n}{n}, \qquad T_2 = \frac{Y_1 + \dots + Y_{n-1}}{n}$$

- (a) Dite quale dei due stimatori risulta preferibile secondo il criterio dell'errore quadratico medio.
- 7. Sia y_1, \ldots, y_n un campione bernoulliano da una v.c. Y continua e si consideri la stima della funzione di densità

$$\widehat{f}_n(t) = \frac{1}{n\Delta} \sum_{i=1}^n K\left(\frac{t - y_i}{\Delta}\right).$$

dove K(t) è un prefissato nucleo. Si chiede di dimostrare che

- (a) $\widehat{f}_n(t)$ è effettivamente una funzione di densità ovvero $\widehat{f}_n(t) \geq 0$ e $\int_{-\infty}^{\infty} \widehat{f}_n(t) dt = 1$;
- (b) $\int_{-\infty}^{\infty} t \widehat{f}_n(t) dt = \overline{y}$.
- 8. Un amministratore ospedaliero che spera di migliorare i tempi di attesa decide di stimare il tempo medio di attesa del pronto soccorso nel suo ospedale. Raccoglie un campione casuale di 64 pazienti e determina il tempo (in minuti) tra il momento del *check-in* al pronto soccorso fino a quando i pazienti non sono stati visti per la prima volta da un medico. Un intervallo di confidenza del 95% basato su questo campione è (128 minuti, 147 minuti), che si basa sul modello normale per la media.

Determina se le seguenti affermazioni sono vere o false e spiega il tuo ragionamento.

- (a) Questo intervallo di confidenza non è valido poiché non sappiamo se la distribuzione della popolazione dei tempi di attesa ER sia quasi normale.
- (b) Siamo condfidenti al 95% che il tempo medio di attesa di questi 64 pazienti del pronto soccorso sia tra i 128 ei 147 minuti.
- (c) Siamo confidenti al 95% che il tempo di attesa medio di tutti i pazienti nel pronto soccorso di questo ospedale sia tra i 128 e i 147 minuti.
- (d) il 95% dei campioni casuali ha una media campionaria compresa tra 128 e 147 minuti.

- (e) Un intervallo di confidenza del 99% sarebbe più ristretto dell'intervallo di confidenza del 95% poiché dovremmo essere più sicuri della nostra stima.
- (f) Il margine di errore è 9.5 e la media campionaria è 137.5.
- (g) Al fine di ridurre il margine di errore di un intervallo di confidenza del 95% a metà di quello che è ora, dovremmo raddoppiare la dimensione del campione.
- 9. Sia Y_1, \ldots, Y_n un campione bernoulliano da una v.c. Y e che μ sia un parametro della distribuzione (non necessariamente il valore atteso). Si supponga che $L_n = g(Y_1, \ldots, Y_n)$ e $U_n = h(Y_1, \ldots, Y_n)$ siano tali che $P(L_N < \mu < U_n) = 0.95$ per ogni valore di μ .
 - (a) Si supponga che il parametro sia $\theta = 3\mu + 7$, derivate un intervallo di confidenza di livello 0.95 per θ
 - (b) Si supponga che $\theta = 1 \mu$. Costruite un intervallo di confidenza per θ di livello 0.95.
 - (c) Sia $\theta = \exp(\mu)$. Costruite, se possibile, un intervallo di confidenza per θ di livello 0.95.
 - (d) Sia $\theta = \mu^2$. Costruite, se possibile, un intervallo di confidenza per θ di livello 0.95.
- 10. Sia y_1, \ldots, y_n un campione bernoulliano da una v.c. $Y \sim \mathcal{N}(\mu, 3)$.
 - (a) Derivate un intervallo di confidenza per μ di livello 0.99
 - (b) Quante osservazioni sono necessarie affinché la lunghezza dell'intervallo di confidenza per μ di livello 0.99 sia pari a 0.57 ?
- 11. L'esercizio mira ad una verifica empirica del seguente risultato teorico:

Se
$$Y_1, \ldots, Y_n \sim \mathcal{N}(\mu, \sigma^2)$$
 allora $\sum_{i=1}^n (Y_i - \overline{Y})^2 \sim \sigma^2 \chi_{n-1}^2$

e prevede la realizzazione di un programma in R .

- (a) Considerate dei campione bernoulliano da una v.c. $\mathcal{N}(-2,4)$ di numerosità n=20.
- (b) Simulate un grande numero di questi, ad esempio 1000.
- (c) Calcolate per ognuno $t = \sum_{i=1}^{n} (y_i \overline{y})^2$.
- (d) Verificate empircamente con l'aiuto di un istogramma e con la costruzione di un qq-plot che i valori di t/σ^2 si distribuiscono come χ^2_{n-1}
- (e) Ripetete la procedura per n=2 e considerate la stima non parametrica della funzione di densità. Quali inconvenienti registrate? Come potreste ovviare a questi?
- 12. Considerate i dati sulla velocità della luce e supponete che questi costituiscano un campione bernoulliano da una v.c. $\mathcal{N}(\mu, \sigma^2)$
 - (a) Derivate un intervallo di confidenza per σ^2 di livello 0.99.
 - (b) In base al campione quanto vale l'intervallo di confidenza?
- 13. La stagione di vendita al dettaglio delle vacanze del 2009, che ha segnato il 27 novembre 2009 (il giorno successivo al Giorno del Ringraziamento), è stata contrassegnata da una spesa per consumi auto-segnalata leggermente inferiore a quella osservata nel periodo comparabile del 2008. Per ottenere una stima della spesa dei consumatori, sono stati intervistati 436 adulti americani campionati a caso. E' stata esaminata la spesa giornaliera dei consumatori per il periodo di sei giorni successivo al Ringraziamento, che si è estesa al weekend del Black Friday e al Cyber Monday e i dati sono contenuti nel file thanksgiving_spend.csv.
 - (a) Importate il file in R.
 - (b) Disegnate un istogramma dei dati e confrontatelo con una stima della funzione di densità.
 - (c) Proponete un intervallo di confidenza per la spesa media.
 - (d) Quali potrebbero essere gli elementi di debolezza della vostra scelta?
 - (e) Trasformate ora i dati y_i secondo queste tre opzioni: a) $\log(y_i)$, b) $\sqrt{y_i}$, c) $y_i^{1/3}$.
 - (f) A vostro parere quale di queste trasformazioni rende la distribuzione dei dati trasformati più simile a quella di una v.c. normale?