EE303: Communication Systems

Professor A. Manikas Chair of Communications and Array Processing

Imperial College London

Introductory Concepts

Table of Contents

- Introduction
 - Communication Systems Block Diagrams
 - Simplified Block Diagrams
- 2 Communication Signals
 - Classification of Signals
 - Some Signal Parameters
 - Signal Bandwidth
 - Redundancy Autocorrelation
 - Similarity Cross Correlation
- Parseval's and Wiener-Khinchin(W-K) Theorems
- Woodwards's Notation and Fourier Transform
 - Introduction
 - Examples
 - Fourier Transform Tables
- 5 Comm Systems: Basic Performance Criteria
- Additive Noise
 - Additive White Gaussian Noise (AWGN)
 - Bandlimited AWGN
 - "I" and "Q" Noise Components
- 7 Tail function (or Q-function) for Gaussian Signals
 - Probablity and Probability-Density-Function (pdf)
 - Gaussian pdf and Tail function
 - Tail Function Graph

Block Structure of a Digital Comm System

Block Structure of a Spread Spectrum Comm System

◆ロ → ◆御 → ◆ 重 → ◆ 重 → りへ○

Multi-carrier Comm Systems

Simplified Block Diagrams

- A simplified and general block structure of a Digital Communication System is shown in the following page.
- it is common practice its **quality** to be expressed in terms of the accuracy with which the binary digits delivered at the output of the detector/Rx (point \widehat{B}) represent the binary digits that were fed into the digital modulator/Tx (point B).
- It is generally taken that it is the fraction of the binary digits that are delivered back in error that is a measure of the quality of the communication system. This fraction, or rate, is referred to as the probability of a bit in error, or, **Bit-Error-Rate BER** (point \widehat{B}).

Digital Communication

Digital Transmission of Analogue Signals

cont.

- N.B.: Quality is measured as
 - ▶ the Signal-to-Noise (SNR) at point \widehat{T} known as **input SNR** (analogue signals degrade as noise level increases)
 - the SNR at point \widehat{A} known as **output SNR**
 - ▶ Bit-Error-Rate at point \widehat{B}
- Note that like Wireline and fiber communications wireless communications are also fully digital.
- It is clear from the previous discussion that signals (representing bits) propagate through the networks.
- Therefore the following sections are concerned with the main properties and parameters of communication signals.

Communication Signals

TRANSFORMATION

Frequency Domain (spectrum) is very important in Communications

According to their description

Deterministic Signals

* describable by mathematical functions

Random

- * these are unpredictable
- * cannot be expressed as a function
- * can be expressed probabilistically

According to their **periodicity**

Non-Periodic

• N.B.:according to Fourier Series Theorem any periodic waveform can be represented by a sum of sinusoidals having frequencies $F_0 = \frac{1}{T_0}$, $2F_0$. $3F_0$. etc.

According to their **Energy**

- N.B.:
 - Energy= $\int_{\infty}^{\infty} g(t)^2 dt$
 - Signals of finite duration are Energy Signals
 - Periodic Signals are Power Signals

According to their **Spectrum**

Classifications of Signals (cont.)

According to their **Spectrum (Power Spectral Density, PSD(f)) Low Pass Signals Band Pass Signals** (Bandwidth=W)Bandwidth=BPSD(f) Fractional Bandwidth= $\frac{B}{F}$ Narrow Band Wide Band Ultra Wide Band $0 < B_{fr} < 0.01$ $0.01 < B_{fr} < 0.25$ $0.25 < B_{fr} < 2.00$

Some Signal Parameters

The figures below show the following parameters:

- peak (Volts) or peak-to-peak
- Energy (J) (or Power (W)) over 1Ω resistor
- rms (Volts)
- Crest Factor: $CF = \frac{peak}{rms}$

$$Power = \frac{Energy}{T}$$

Signal Bandwidth

- Bandwidth of a signal: is the range of the significant frequency components in a signal waveform
- Examples of message signals (baseband signals) and their bandwidth:
 - television signal bandwidth 5.5MHz
 - speech signal bandwidth 4KHz
 - audio signal bandwidth 8kHz to 20kHz
- Note that there are various definitions of bandwidth, e.g.
 - ▶ 3dB bandwidth, (see B₂) or 10dB bandwidth
 - ▶ null-to-null bandwidth, (see $B_1 = \frac{2}{T}$, where T =signal duration).
 - Nyquist (minimum) bandwidth (see $B_3 = \frac{1}{T}$)

Redundancy - Autocorrelation

- The degree of Redundancy in a signal is provided by its autocorrelation function.
- ullet For instance the autocorrelation function of a signal is $R_{gg}(au)$

- NB:
 - if $\tau = \textit{fixed}$ then $R_{gg}(\tau) = \text{a number}$
 - if $\tau = variable$ (i.e. $\forall \tau$) then $R_{gg}(\tau) = a$ function of τ

◆ロ → ◆ □ → ◆ □ → ◆ ○ ● ・ ◆ ○ ○ ○

Similarity - Cross Correlation

- The degree of Similarity between two signals is given by their cross-correlation function.
- For instance the cross-correlation function between two signals $g_1(t)$ and $g_2(t)$ is $R_{g_1g_2}(au)$

- NB:
 - if $\tau = \textit{fixed}$ then $R_{g_1g_2}(\tau) = \text{a number}$
 - if $\tau = variable$ (i.e. $\forall \tau$) then $R_{g_1g_2}(\tau) = a$ function of τ

Parseval's and Wiener-Khinchin(W-K) Theorems

"Accumulators" and "Averaging" Devices

Definitions

Accumulators:	$\int_{t_1}^{t_2}$	$\sum_{i=1}^{M}$	
Averaging:	$\frac{1}{t_2-t_1}\int_{t_1}^{t_2}$	$\frac{1}{M}\sum_{i=1}^{M}$	E{.}

Examples

Woodwards's Notation and FT

• The evaluation of FT, that is

$$\mathsf{FT}\{g(t)\} = G(f) \triangleq \int_{-\infty}^{\infty} g(t) \cdot \exp(-j2\pi f t) \cdot dt \tag{1}$$

$$\mathsf{FT}^{-1}\{G(f)\} = g(t) \triangleq \int_{-\infty}^{\infty} G(f) \cdot \exp(+j2\pi f t) \cdot df \qquad (2)$$

involves integrating the product of a function and a complex exponential - which can be difficult; so tables of useful transformations are frequently used.

- However, the use of tables is greatly simplified by employing Woodward's notation for certain commonly occurring situations.
- Main advantage of using Woodward's notation: allows periodic time/frequency functions to be handled with FT rather than Fourier Series.

cont.

1.
$$\operatorname{rect}\{t\} \triangleq \left\{ \begin{array}{ll} 1 & \text{if } |t| < \frac{1}{2} \\ 0 & \text{otherwise} \end{array} \right.$$

2.
$$\operatorname{sinc}\{t\} \triangleq \frac{\sin(\pi t)}{\pi t}$$

3.
$$\Lambda\{t\} \triangleq \left\{ \begin{array}{ll} 1-t & \text{if } 0 \le t \le 1\\ 1+t & \text{if } -1 \le t \le 0 \end{array} \right.$$

cont.

4.
$$\operatorname{rep}_{T} \{g(t)\} \triangleq \sum_{n=-\infty}^{+\infty} g(t-nT)$$

$$\forall n:\dots-2,-2,1,0,1,\dots$$

5.
$$\operatorname{comb}_{T}\{g(t)\} \triangleq \sum_{n=-\infty}^{+\infty} g(nT).\delta(t-nT)$$

also known as sampling function

Examples

 we can generate any desired "rect" function by scaling and shifting see for instance the following table

Effects of Scaling

as $T \to \infty$ \Rightarrow FT becomes **narrower** and amplitude **rises** \Rightarrow δ -function at 0 frequency when $T \to \infty$

Fourier Transform Tables

	ansionn	1 4 5 1 0 5	
	Description	Function	Transformation
1	Definition	g(t)	$G(f) = \int_{-\infty}^{\infty} g(t) \cdot e^{-j2\pi f t} dt$
2	Scaling	$g(\frac{t}{T})$	T .G(fT)
3	Time shift	g(t-T)	$G(f).e^{-j2\pi fI}$
4	Frequency shift	$g(t).e^{j2\pi Ft}$	G(f - F)
5	Complex conjugate	g*(t)	$G^*(-f)$
6	Temporal derivative	$\frac{d^n}{dt^n}g(t)$	$(j2\pi f)^n.G(f)$
7	Spectral derivative	$(-j2\pi t)^n.g(t)$	$\frac{d^n}{df^n}G(f)$
8	Reciprocity	G(t)	g(-f)
9	Linearity	A.g(t) + B.h(t)	A.G(f) + B.H(f)
10	Multiplication	g(t).h(t)	G(f) * H(f)
11	Convolution	g(t) * h(t)	G(f).H(f)
12	Delta function	$\delta(t)$	1
13	Constant	1	$\delta(f)$
14	Rectangular function	$\mathbf{rect}\{t\} \triangleq \left\{ egin{array}{ll} 1 & \mathrm{if} \ t < rac{1}{2} \\ 0 & \mathrm{otherwise} \end{array} ight.$	$\operatorname{sinc}\{f\} \triangleq \frac{\sin(\pi f)}{\pi f}$
15	Sinc function	sinc(t)	$rect{f}$
16	Unit step function	$u(t) \triangleq \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$	$\frac{1}{2}\delta(f) - \frac{j}{2\pi f}$
17	Signum function	$\operatorname{sgn}(t) \triangleq \left\{ egin{array}{ll} 1 & t > 0 \\ -1 & t < 0 \end{array} \right.$	$-\frac{j}{\pi f}$
18	decaying exp (two-sided)	$e^{- t }$	$\frac{2}{1+(2\pi f)^2}$
19	decaying exp (one-sided)	$e^{- t }.u(t)$	$\frac{1-j2\pi f}{1+(2\pi f)^2}$
20	Gaussian function	$e^{-\pi t^2}$	$e^{-\pi f^2}$
21	Lambda function	$\Lambda\{t\} \triangleq \left\{ \begin{array}{ll} 1-t & \text{if} 0 \le t \le 1\\ 1+t & \text{if} -1 \le t \le 0 \end{array} \right.$	$\operatorname{sinc}^2\left\{f\right\}$
22	Repeated function	$rep_{\mathcal{T}}\left\{ g(t) \right\} = g(t) * rep_{\mathcal{T}}\left\{ \delta(t) \right\}$	$\left \frac{1}{T}\right comb_{\frac{1}{T}} \{G(f)\}$
23	Sampled function	$comb_{\mathcal{T}}\{g(t)\} = g(t).rep_{\mathcal{T}}\{\delta(t)\}$	$\frac{1}{T}\operatorname{rep}_{\frac{1}{T}}\left\{G(f)\right\}$

Basic Performance Criteria

$$SNR_{in} = \frac{\text{Power of signal at } \widehat{T}}{\text{Power of noise at } \widehat{T}} = \frac{\mathcal{E}\left\{ (\beta s(t))^2 \right\}}{\mathcal{E}\left\{ n(t)^2 \right\}} = \frac{\beta^2 P_s}{N_0 B} \qquad (3)$$

$$p_e = BER \text{ at point } \widehat{B}$$
 (4)

$$SNR_{out} = \frac{\text{Power of signal at } \widehat{A}}{\text{Power of noise at } \widehat{A}} = \underbrace{\underbrace{f\{p_e\}}_{\text{denotes: a function of } p_e}}_{\text{denotes: a function of } p_e} \tag{5}$$

Additive Noise

- types of channel signals
 - s(t), r(t), n(t): bandpass
 - $ightharpoonup n_i(t) = AWGN$: allpass

- \bullet $n_i(t)$
 - ▶ it is a random all-Pass signal
 - its Power Spectral Density is "White" i.e. "flat". That is,

- its amplitude probability density function is Gaussian
- ▶ its Autocorrelation function (i.e. $FT^{-1} \{PSD(f)\}$) is:

Bandlimited AWGN

- n(t)
 - ▶ it is a random Band-Pass signal of bandwidth *B* (equal to the channel bandwidth)
 - its Power Spectral Density is "bandmimited White". That is,

$$\mathsf{PSD}_{n_i}(f) = \frac{N_0}{2} \left(\mathsf{rect} \left\{ \frac{f + F_c}{B} \right\} + \mathsf{rect} \left\{ \frac{f - F_c}{B} \right\} \right) \tag{8}$$

Its power is:

$$P_{n} = \sigma_{n}^{2} = \int_{-\infty}^{\infty} PSD_{n_{i}}(f).df = \frac{N_{0}}{2} \times B \times 2$$

$$\Rightarrow P_{n} = N_{0}B$$
(9)

- more on n(t):
 - its amplitude probability density function is Gaussian

$$pdf_n = N(0, \sigma_n^2 = N_0 B)$$
 (10)

- It is also known as bandlimited-AWGN
- It can be written as follows:

$$n(t) = n_c(t)\cos(2\pi F_c t) - n_s(t)\sin(2\pi F_c t)$$
(11)
= $\sqrt{n_c^2(t) + n_s^2(t)}\cos(2\pi F_c t + \phi_n(t))$ (12)

where

- ★ $n_c(t)$ and $n_s(t)$ are random signals with pdf=Gaussian distribution
- ★ $r_n(t)$ is a random signal with pdf=Rayleigh distribution

 $\triangleq r_n(t)$

★ $\phi_n(t)$ is a random signal - with pdf=uniform distribution: $[0, 2\pi]$)

N.B.: all the above are low pass signals & appear at Rx's o/p

Equ. 11 is known as Quadrature Noise Representation .

"I" and "Q" Noise Components

- $n_c(t)$ (i.e. "I") and $n_s(t)$ (i.e. "Q")
 - ▶ their Power Spectral Densities are:

$$PSD_{n_c}(f) = PSD_{n_s}(f) = N_0 rect \left\{ \frac{f}{B} \right\}$$
 (13)

their power are:

$$P_{n_c} = \sigma_{n_c}^2 = \int_{-\infty}^{\infty} PSD_{n_c}(f).df = N_0 \times B$$

$$\Rightarrow P_{n_c} = P_{n_s} = P_n = N_0 B$$
(14)

Amplitude probability density functions: Gaussian,

$$pdf_{n_c} = pdf_{n_s} = N(0, N_0 B)$$
(15)

re uncorrelated i.e. $\mathcal{E}\left\{n_{c}(t).n_{s}(t)
ight\}=0$

Prof. A. Manikas (Imperial College)

Tail function (or Q-function) for Gaussian Signals

Probablity and Probability-Density-Function (pdf)

• Consider a random signal x(t) with a known amplitude probability density function $\operatorname{pdf}_x(x)$ - not necessarily Gaussian. Then the probability that the amplitude of x(t) is greater than A Volts (say) is given as follows:

$$Pr(x(t) > A) = \int_{A}^{\infty} pdf_{x}(x).dx$$
 (16)

• e.g. if $A = 3V \Rightarrow \Pr(x(t) > 3V) = \int_3^\infty pdf_x(x).dx = \text{highlighted area}$

$$x(t) = \frac{\text{Nodrs} - \sum_{x \in A} \frac{1}{\sqrt{M}} -$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (^*)

Gaussian pdf and Tail function

• If $pdf_x(x)=Gaussian$ of mean μ_x and standard deviation σ_x (notation used: $pdf_x(x)=N(\mu_x,\sigma_x^2)$, then the above area is defined as the Tail-function (or Q-function)

$$\Pr(x(t) > A) = \int_{A}^{\infty} \mathsf{pdf}_{x}(x) . dx \triangleq \mathsf{T} \left\{ \frac{|A - \mu_{x}|}{\sigma_{x}} \right\} \tag{17}$$

- e.g.
 - $\begin{array}{l} \bullet \ \ \text{if } \mathrm{pdf}_{\scriptscriptstyle X}(x) = \mathrm{N}(1,4) \text{ i.e. } \ \mu_{\scriptscriptstyle X} = \mathrm{0,} \ \sigma_{\scriptscriptstyle X} = 2 \text{ and } A = 3V \\ \mathrm{then} \ \mathrm{Pr}(x(t) > 3V) = \int_3^\infty \mathrm{pdf}_{\scriptscriptstyle X}(x).dx \triangleq \overline{T} \Big\{ \frac{|3-1|}{2} \Big\} = \overline{T} \Big\{ 1 \Big\} \end{array}$
 - $\label{eq:pdf_x} \begin{array}{l} \text{if } \mathsf{pdf}_x(x) = \mathsf{N}(0,1) \text{ and } A = 3V \\ \text{then } \mathsf{Pr}(x(t) > 3V) = \int_3^\infty \mathsf{pdf}_x(x).dx \triangleq \mathsf{T}\!\left\{3\right\} \end{array}$
- The Tail function graph is given in the next page

- 4 □ > 4 圖 > 4 ≣ > 4 ≣ > 9 Q (♡

The graph below shows the Tail function $\mathbf{T}\{x\}$ which represents the area from x to ∞ of the Gaussian probability density function N(0,1), i.e.

$$T\{x\} = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \cdot \exp\left(-\frac{y^2}{2}\right) dy$$

