Контроль и управление изменениями в тендерных закупках

Цифровой прорыв 2024 Международный хакатон, Калининград

© ЛИФТ

ЛИФТ состав команды

Руслан Латипов

Full Stack Developer, Зеленодольск **⊘**erus_lat116

Юрий Дон

Алексей Верт-Миллер

Татьяна Моисеева

Full Stack Developer, Москва **Д**@Estochka

Задача

Задача комплаенс контроля широко известна и востребована в индустриях автомобилестроения, авиастроения, при создании сложных программно-аппаратных систем в железнодорожной, энергетической и других отраслях.

Участникам хакатона необходимо разработать алгоритм для осуществления комплаенс контроля. Необходимо производить качественный анализ документации на соответствие, также устанавливать уровень соответствия ПО предоставленной шкале.

Комплаенс контроль

разработка алгоритма ИИ

Документация на дизайн (HMI)

12 элементов спецификации, описывающих сценарий интерфейсной работы системы

Технические спецификации (SSTS)

11 элементов технической документации, описывающий работу блока сисетемы

Отчёт

анализ и выявленная зависимость (уровень расхождения) документов с выводами

EDA

анализ данных

1

Наличие примеров, где отсутствует спецификация SSTS

отсутствие возможности оценки реализации разработанного дизайна

Рекомендация

возрат на доработку/разработка критериев необходимости разработки технической спецификации

2

Нет описания критерия Complience Level

высокий риск человеческого фактора при оценке уровня соответсвия от эталонного, отсутствие возможности итерпритации результата соответствия при использовании алгоритмов ИИ

Рекомендация

разработать описания критерия оценки соответствия, а также методические рекомендации для работников

EDA

анализ данных

3

Разнородный формат текста в документах

затрудняет реализацию автоматизации обработки документов, а так же человеческое восприятие при чтении документа

Рекомендация

разработать требованию к формату документов (шрифт, стилистика, нумерация разделов) — образец типовой формы документа

4

Отсутствие информации в отдельных разделах

затрудняет полноценную оценку документов, например раздел **Description:** не заполнен

Рекомендация

В случае отсутсвия информации раздел не включать в документацию или помечать раздел - «требования не предъявляются»

EDA

Отсутствие обобщающей характеристики RFI/RFP

отсутствие возможности принятия решения по результатам общего анализа документации

Рекомендация

разработать критерии (допустимую долю) в разрезе Complience Level

FE

генерация признаков

1

Извлечение текстов из документов

данный признак позволяет формировать токены для обучения модели ИИ

2

Признак наличия спецификации SSTS

данный признак позволяет определить уровень расхождения без использования алгоритмов ИИ

3

Удаление не релевантных слов из описания

данный признак позволяет улучшить качество сопоставления документов

Качественное сравнение

BartForConditionalGeneration (с начальными весами facebook/bart-base)

- Bart использует стандартную архитектуру seq2seq/машинного перевода с двунаправленным кодером (типа BERT) и декодером слева направо (типа GPT).
- BART особенно эффективен при тонкой настройке для генерации текста, но также хорошо подходит для задач на понимание. Он соответствует производительности RoBERTa с сопоставимыми учебными ресурсами на GLUE и SQuAD, достигает новых передовых результатов в ряде задач абстрактного диалога, ответов на вопросы и резюмирования с приростом до 6 ROUGE.

Количественное сравнение

SentenceTransformer + Cosine Similarity

(с весами roberta-base-nli-stsb-mean-tokens)

SentenceTransformer — формирование эмбедингов для сравнения похожести Differences и Description

Сервис Web интерфейс

Дальнейшее развитие проекта

идеи

1

Расширение набора документов

fine-tunning используемых архитектур моделей на большем количестве документов

2

Внедрения единого формата документов HMI и SSTS

использованием ML для приведения в соответствия единому стандарту или выявлению примеров не соответствия стандартам. Что позволит более эффективно в будущем обучать ML модели для текущей и смежных задач.

Дальнейшее развитие проекта

идеи

3

Критерии шкалы соответствия документов

разработка более четких критериев шкалы соответствия документов, с утвержденными метриками по конкретным критериям оценки отсутствия или наличия расхождений.

4

Разделение функционала на ключевой и дополнительный

установить предел/долю каждого из функционала по количественной характеристике

Вывод

всеобъемлеющий тотальный контроль и управление изменениями в тендерных закупках

Преимущества

почему нужно выбрать нашу модель ИИ

Web-интерфейс

- загрузка документов
- формирование отчёта
- выгрузка отчёта в файл

Контроль

- качественный анализ
- количественный анализ
- интерпритация результатов
- конкретные шаги использования

Потенциал

- идеи развития
- возможность дообучения модели

Скорость работы

- время обработки одного файла не более 3 секунд

БЛИЖЕ ЧЕМ КАЖЕТСЯ

контроль и управление изменениями в тендерных закупках

