HN62321 Series HN62331 Series

1M (128K x 8-bit) Mask ROM

■ DESCRIPTION

The Hitachi HN62321/HN62331 Series is a 1-Megabit CMOS Mask Programmable Read Only Memory organized as 131,072 x 8-

The low power consumption of this device makes it ideal for battery powered, portable systems. In addition, the high speed provides enough capacity and high performance to be used as a character generator in laser printers.

Hitachi's HN62321/HN62331 Series is offered with pinouts in 28pin Plastic DIP and 28-lead Plastic SOP packages.

■ FEATURES

- · Single Power Supply: $V_{cc} = 5 V \pm 10\%$
- Fast Access Times: 120/150/200 ns (max)
- Low Power Consumption:

Active Current: 100 mW (typ) Standby Current: 5 µW (typ)

- · Byte-Wide Data Organization
- · TTL-Compatible Inputs and Outputs
- · Three-State Data Outputs
- · Packages:

28-pin Plastic DIP 28-lead Plastic SOP

ORDERING INFORMATION

Type No.	Access Time	Package
HN62331P	120/150 ns	28-pin
HN62331BP	200 ns	Plastic DIP
		(DP-28)
HN62331F	120/150 ns	28-lead
HN62331BF	200 ns	Plastic SOP
		(FP-28DA)

■ PIN DESCRIPTION

4496203 0025229 721

Pin Name	Function
A ₀ - A ₁₆	Address
D ₀ - D ₇	Output
CE	Chip Enable
V _{cc}	Power Supply
V _{ss}	Ground

PIN ARRANGEMENT

3-1

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit	
Supply Voltage ¹	V _{cc}	-0.3 to +7.0	V	
Terminal Voltage ¹	V _T	-0.3 to V _{cc} + 0.3	٧	
Operating Temperature Range	T _{OPA}	0 to +70	°C	
Storage Temperature Range	T _{stG}	-55 to +125	°C	
Temperature Under Bias	T _{BIAS}	-20 to +85	° C	

Notes: 1. With respect to V_{ss}.

CAPACITANCE

(V_{CC} = 5V \pm 10%, V_{SS} = 0V, T_a = 25°C, V_{IN} = 0 V, f = 1MHz)

Item	Symbol	Min.	Max.	Unit
Input Capacitance 1	CIN	-	10	pF
Output Capacitance 1	C _{OUT}	-	15	pF

Notes: 1. This parameter is sampled and not 100% tested.

■ DC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(V_{-} = 5V + 10\%, V_{-} = 0 \text{ V}, T = 0 \text{ to } 70^{\circ}\text{C})$

Item	Symbol	Min.	Max.	Unit	Test Condition
Input Leakage Current	I _{Li}	-	10	μА	$V_{IN} = 0 \text{ to } V_{CC}$
Output Leakage Current	I _{LO}	-	10	μ A	$\overline{CE} = 2.2 ^{1}\text{V}, \text{ V}_{OUT} = 0 \text{ to V}_{CC}$
Operating V _{cc} Current	I _{cc}	-	50	mA	$V_{CC} = 5.5 \text{ V}, I_{DOUT} = 0 \text{ mA, } t_{RC} = \text{Min.}$
Standby V _{cc} Current	I _{SB}	-	30	μА	$V_{cc} = 5.5 \text{ V}, \overline{CE} \ge V_{cc} - 0.2 \text{V}$
Input Voltage	V _{IH}	2.2 1	V _{cc} +0.3	٧	
	V _{IL}	-0.3	0.8 1	٧	
Output Voltage	V _{OH}	2.4	-	٧	I _{OH} = -205 μA
	V _{oL}	-	0.4	V	I _{OL} = 3.2 mA

Notes: 1. HN62331 Series is $V_{iH} = 2.4 \text{ V (min.)}$ and $V_{iL} = 0.45 \text{V (max.)}$.

■ AC ELECTRICAL CHARACTERISTICS FOR READ OPERATION

 $(V_{CC} = 5V \pm 10\%, V_{SS} = 0 \text{ V}, T_a = 0 \text{ to } 70^{\circ}\text{C})$

Test Conditions

· Input pulse levels:

HN62321 Series:

HN62331 Series:

0.45 V / 2.4 V

· Input rise and fall times:

0.8 V / 2.4 V ≤ 10 ns

Output load:

1 TTL Gate + CL = 100 pF (Including jig capacitance)

Input/Output Timing Reference level:

1.5 V

Item	Symbol	HN62331		HN62321		HN62321B		
		Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle Time	t _{RC}	120		150	-	200	-	пѕ
Address Access Time	t _{AA}	-	120	-	150	-	200	ns
CE Access Time	t _{ACE}	-	120	-	150	-	200	ns
Output Hold Time from Address Change	t _{dha}	0	•	0	-	0	-	ns
Output Hold Time from CE	t _{DHC}	0	-	0	-	0	-	ns
CE to Output in High Z	t _{cHZ} 1	-	60	-	70	-	100	ns
CE to Output in Low Z	t _{cLZ}	5	-	10	-	10	-	ns

 t_{CHZ} defines the time at which the output becomes an open circuit and is not referenced to output voltage levels.

■ READ TIMING WAVEFORM

(TD.R.HN62321/331)

Note:

- 1. t_{DHA} , t_{DHC} are determined by the faster time.
- 2. \$\dagger_{\text{AA}}, \text{t}_{\text{ACE}} are determined by the slower time.