

Aula 2 PORTAS LÓGICAS E ÁLGEBRA BOOLEANA

Projeto de Ensino

Material didático para lógica digital I: circuitos combinacionais

Bolsista: Everaldina Guimarães Barbosa

Orientador: César Alberto Bravo Pariente

UESC - 2022/23

Sumário

1.	PORTAS LÓGICAS	2. ÁLGEBRA BOOLEANA
	1.1. Porta NOT/NAO4	2.1. Introdução11
	1.2. Porta AND/E 5	2.2. Postulados da complementação
	1.3. Porta NAND/NAO-E6	
	1.4. Porta OR/OU 7	2.1. Postulados da adição14
	1.5. Porta NOR/NAO-OU 8	2.2. Postulados da multiplicação. 19
	1.5. Porta XOR/OU-EXCLUSIVO	2.3. Grupo
	9	2.4. Propriedades28
	1.5. Porta XNOR/COINCIDENCIA	2.4.1 Comutativa29
		2.4.2 Associativa 30
		2.4.3 Distributiva 31

Sumário

	2.5. Teorema de De Morgan	35
	2.6. Quadro resumo	43
	2.7. Identidades Auxiliares	44
3.	REFERÊNCIAS	
	BIBLIOGRÁFICAS	5(

Portas Lógicas – Porta NOT ou NÃO

A porta NOT retorna o inverso do valor de entrada.

É uma operação unária com apenas uma entrada.

A operação NOT A pode ser representada algebricamente como \bar{A} ou A'.

Representação

Tabela verdade

A	$S = \overline{A}$
0	1
1	0

Portas Lógicas – Porta AND ou E

A porta AND retorna verdadeiro se todos os valores de entrada são verdadeiros.

A operação A AND B pode ser representada algebricamente como A.B ou AB.

Tabela verdade

A	B	S = AB
0	0	0
0	1	0
1	0	0
1	1	1

Portas Lógicas – Porta NAND ou NAO-E

A porta NAND retorna falso apenas quando todas as entradas são verdadeiras. É o inverso do AND.

A operação de A NAND B <u>pode</u> ser representada algebricamente como A.B.

Tabela verdade

A	В	$S = \overline{A.B}$
0	0	1
0	1	1-
1	0	1
1	1	0

Portas Lógicas – Porta OR / OU

A porta OR retorna verdadeiro se algum dos valores de entrada é verdadeiro.

A operação de A OR B pode ser representada algebricamente como A + B.

Tabela verdade

A	B	S = A + B
0	0	0
0	1	1
1	0	1
1	1	1

Portas Lógicas – Porta NOR / NAO-OU

A porta NOR retorna verdadeiro se nenhuma entrada for verdadeira. É o inverso do OR.

A operação de A NOR B <u>pode</u> ser representada algebricamente como A + B.

Tabela verdade

A	В	$S = \overline{A + B}$
0	0	1
0	1	0
1	0	0
1	1	0

Portas Lógicas – Porta XOR / OU EXCLUSIVO

A porta XOR retorna verdadeiro quando um número ímpar de entradas são verdadeiras. Para duas entradas o XOR é verdadeiro se as entradas forem diferentes.

A operação de A XOR B pode ser representada algebricamente como A Φ B.

• Representação

Tabela verdade

500,000,000,000,000			
A	В	$S = A \oplus B$	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

Portas Lógicas – Porta XNOR / COINCIDENCIA

A porta XNOR retorna verdadeiro quando há um número par de entradas verdadeiras. Com duas entradas o XNOR é verdadeiro quando as entradas são iguais.

A operação de A XNOR B pode ser representada algebricamente como A O B.

• Representação

Tabela verdade

A	В	$S = A \odot B$
0	0	1
0	1	0
1	0	0
1	1	1

Álgebra Booleana – Introdução

- A álgebra booleana correlaciona teoremas algébricos comuns para manipulação de expressões booleanas.
- Expressão booleana é uma sentença matemática na qual os termos são variáveis booleanas, de forma que essas variáveis (representadas por letras) podem ter apenas valores binários 0 ou 1.
- Além disso, a álgebra booleana por definição é um sistema fechado, complementar e distributivo. Tendo como operadores: . e +, que representam respectivamente o AND e o OR.
- O uso de teoremas e postulados da álgebra booleana ajuda na simplificação de expressões booleanas na eletrônica.

Álgebra Booleana – Postulados da complementação

- Esse postulado mostra a existência do complemento e também demonstra as regras de complementação desse sistema algébrico.
- A será o complemento de A.

Se
$$A = 0 \rightarrow \overline{A} = 1$$

Se
$$A = 1 \rightarrow \overline{A} = 0$$

• O negado corresponde à porta lógica NOT.

Álgebra Booleana – Postulados da complementação

• Desse postulado podemos ainda concluir a seguinte identidade:

$$\overline{\overline{\mathbf{A}}} = \mathbf{A}$$

• Essa identidade pode ser percebida ao analisar a seguinte tabela verdade:

A	Ā	$\overline{\overline{\mathbf{A}}}$
0	1	0
1	0	1

- A adição de variáveis booleanas representa a porta lógica OU.
- Na adição, em álgebra booleana temos que:
 - 1) 0+0=0
 - $(2) \quad 0+1=1$
 - 1 + 0 = 1
 - 4) 1+1=1
- Através dessas regras é possível estabelecer algumas outras identidades.

• A adição de qualquer variável booleana A à zero, resulta no próprio A.

$$\mathbf{A} + \mathbf{0} = \mathbf{A}$$

• Como o '+' equivale a operação OR, se A for falso:

$$A OR 0 = 0 OR 0 = 0 = A$$

• Se A for verdadeiro:

$$A OR 0 = 1 OR 0 = 1 = A$$

• De mesma forma se vale para a operação 0 + A = A.

• Já a adição de uma variável booleana à 1, resulta em 1. Visto que, na tabela verdade do OR basta um dos operandos ser verdadeiro para um resultado verdadeiro.

$$\mathbf{A} + \mathbf{1} = \mathbf{1}$$

• Para A igual a 0 temos:

$$A OR 1 = 0 OR 1 = 1$$

• Se A for igual a 1:

$$A OR 1 = 1 OR 1 = 1$$

• A identidade também vale para 1 + A.

• A adição de uma variável booleana A qualquer a ela mesma, resulta no próprio A.

$$A + A = A$$

• Se A for igual a zero:

$$\mathbf{A} \ \mathbf{OR} \ \mathbf{A} = \mathbf{0} \ \mathbf{OR} \ \mathbf{0} = \mathbf{0} = \mathbf{A}$$

• Se A for 1:

$$A OR A = 1 OR 1 = 1 = A$$

• A adição de uma variável booleana A qualquer ao seu complemento, resulta em 1.

$$A + \overline{A} = 1$$

- Nessa operação sempre um dos termos será verdadeiro, pelo postulado da complementação. O que resulta em verdadeiro na operação OR.
- Com A igual a 0:

$$AOR(NOTA) = 0OR(NOT0) = 0OR1 = 1$$

• Se A for igual a 1:

$$AOR(NOTA) = 1 OR(NOT1) = 1 OR 0 = 1$$

- A multiplicação na álgebra booleana representa a porta lógica E.
- As regras da multiplicação booleana são as seguintes:
 - 1) 0.0 = 0
 - 0.1 = 0
 - 3) 1.0 = 0
 - 4) 1.1 = 1

Nota-se que essas regras representam a tabela verdade do AND.

• Também é possível estabelecer algumas identidades a partir dessas regras.

• A multiplicação de uma variável booleana A por zero, resulta em 0. Já que na tabela verdade AND, basta um dos operandos ser falso para resultado falso.

$$\mathbf{A} \cdot \mathbf{0} = \mathbf{0}$$

• Como o '.' equivale a operação AND, se A for igual a zero:

$$A AND 0 = 0 AND 0 = 0$$

• Se A for verdadeiro:

$$A AND 0 = 1 AND 0 = 0$$

• Essa identidade também vale para 0 . A.

• Já a multiplicação de uma variável booleana A por 1, resulta em A.

$$A \cdot 1 = A$$

• Para A igual a 0:

$$A AND 1 = 0 AND 1 = 0 = A$$

• Se A for igual a 1 temos:

$$A AND 1 = 1 AND 1 = 1 = A$$

• A identidade também vale para 1 . A.

• A multiplicação de uma variável booleana A com ela mesma, resulta no próprio A.

$$A \cdot A = A$$

• Se A for igual a zero:

$$A AND A = 0 AND 0 = 0 = A$$

• Se A for 1:

$$A AND A = 1 AND 1 = 1 = A$$

• A multiplicação de uma variável booleana A qualquer ao seu complemento, resulta em 0.

$$A \cdot \overline{A} = 0$$

- Nessa operação um dos termos será falso, de acordo ao postulado da complementação. O que resulta em falso na operação AND.
- Com A igual a 0:

$$AAND (NOTA) = 0 AND (NOT 0) = 0 AND 1 = 0$$

• Se A for igual a 1:

$$AAND(NOTA) = 1 AND(NOT1) = 1 AND 0 = 0$$

$(\{0, 1\}, +, 0)$			({0, 1}, *, 1)		
\mathbf{A}	В	A + B	A	В	A.B
0	0	0	0	0	0
0	1	1	0	1	0
1	0	1	1	0	0
1	1	1	1	1	1

• Em termos de grupo nós temos um conjunto de dois elementos: 0 e 1.

$(\{0, 1\}, +, 0)$			
A	В	A + B	
0	0	0	
0	1	1	
1	0	1	
1	1	1	

({0, 1}, *, 1)						
\mathbf{A}	$oldsymbol{\mathbf{B}}$	A.B				
0	0	0				
0	1	0				
1	0	0				
1	1	1				

- Além disso, na álgebra booleana, temos a presença de dois grupos fechados, tendo como operadores a adição e multiplicação.
- Sendo o elemento neutro, 0 e 1 respectivamente.

- Isso implica que todas as operações resultarão sempre em um elemento do próprio grupo, e que a propriedade associativa e existência do elemento neutro são aplicáveis.
- Uma operação com o elemento neutro faz com que o resultado seja igual ao outro operando.
- Além da associatividade, a álgebra booleana ainda apresenta as propriedades de comutatividade e distributividade.

• É possível ainda fazer a distributividade entre os grupos, o resultado também estará no sistema fechado.

$$A \cdot (B + C) = AB + AC$$

 $A + (BC) = (A + B) \cdot (A + C)$

• A seguir veremos uma explicação mais detalhada sobre as propriedades comutativa, associativa e distributiva.

Álgebra Booleana – Propriedades

- Na álgebra booleana, assim como na matemática comum, se valem algumas propriedades aritméticas.
- São elas: comutatividade, associatividade e distributividade.
- A utilização dessas propriedades auxilia a manipular expressões algébricas, e até simplificá-las.

Álgebra Booleana – Propriedade comutativa

• Propriedade válida tanto na adição quanto na multiplicação.

• Comutatividade na adição:

$$\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

• Comutatividade na multiplicação:

$$A.B = B.A$$

Álgebra Booleana – Propriedade associativa

• Também é válida na adição e multiplicação.

• Associatividade na adição:

$$\mathbf{A} + (\mathbf{B} + \mathbf{C}) = (\mathbf{A} + \mathbf{B}) + \mathbf{C}$$

• Associatividade na multiplicação:

$$A \cdot (BC) = (AB) \cdot C$$

• Na propriedade distributiva, temos que:

$$A \cdot (B + C) = AB + AC$$

• Essa equivalência pode ser percebida pela tabela verdade a seguir.

A	В	C	$\mathbf{B} + \mathbf{C}$	$\mathbf{A} \cdot (\mathbf{B} + \mathbf{C})$	AB	AC	AB + AC
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

• Também temos que:

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

• Essa equivalência pode ser percebida pela tabela verdade a seguir.

A	В	C	B.C	A + (B.C)	A + B	A + C	$(A+B) \cdot (A+C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	0
0	1	0	0	0	1	0	0
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Álgebra Booleana – Teorema de De Morgan

- O teorema de De Morgan define duas leis.
- 1^a) O complemento do produto é igual à soma dos complementos.

$$\overline{(A \cdot B)} = \overline{A} + \overline{B}$$

• 2^a) O complemento da soma é igual ao produto dos complementos.

$$\overline{(A+B)} = \overline{A} \cdot \overline{B}$$

• A aplicação do teorema pode ser feita com duas ou mais variáveis:

1a)
$$\overline{(ABC \dots Z)} = \overline{A} + \overline{B} + \overline{C} + \dots + \overline{Z}$$

$$2^{a}) \overline{(A + B + C + \cdots + Z)} = \overline{A}\overline{B}\overline{C} ... \overline{Z}$$

Álgebra Booleana – Teorema de De Morgan

• Podemos ainda fazer um paralelo com teoria de conjuntos, usando o diagrama de Venn.

- A operação de multiplicação representa A ∩ B.
- A operação de adição representa A ∪ B.

• O complemento de A e B equivale ao ∉.

• 1^a Lei de De Morgan: $\overline{(A \cdot B)} = \overline{A} + \overline{B}$

• 2^a Lei de De Morgan: $\overline{(A+B)} = \overline{A} \cdot \overline{B}$

• A primeira lei De Morgan também pode ser observada na seguinte tabela.

A	В	A.B	$\overline{(A.B)}$	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} + \overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	0	1	1	0	1
1	0	0	1	0	1	1
1	1	1	0	0	0	0

• A segunda lei De Morgan pode ser observada na seguinte tabela.

A	В	A + B	$\overline{(A+B)}$	Ā	$\overline{\mathbf{B}}$	$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0

Álgebra Booleana – Quadro resumo

Y <u> </u>		L. 2001. (2001.) (1001.) (1001.) (1001.) (1001.) (1001.) (1001.)		770.1870.1871.1870.1871.1871.1871.1871.1	
P	ostulados	Propriedades			
Complementação	Adição	Multiplicação	Comutativa	A + B = B + A	
$A=0 \rightarrow \overline{A}=1$	0 + 0 = 0	0.0 = 0		$A \cdot B = B \cdot A$	
$A=1 \rightarrow \overline{A}=0$	0 + 1 = 1	0.1 = 0	Associativa	A + (B + C) = (A + B) + C	
	1 + 0 = 1 1 + 1 = 1	$1 \cdot 0 = 0$ $1 \cdot 1 = 1$		A.(BC) = (AB).C	
I	dentidades	Distributiva	A. (B + C) = AB + AC		
Complementação	Adição	Multiplicação		A + (BC) = (A + B).(A + C)	
$\overline{\overline{A}} = A$	A + 0 = A	$A \cdot 0 = 0$	Teorema de De Morgan $1^{a}) \overline{(A . B)} = \overline{A} + \overline{B}$ $2^{a}) \overline{(A + B)} = \overline{A} . \overline{B}$		
	A + 1 = 1	$A \cdot 1 = A$			
	$A + A = A$ $A + \overline{A} = 1$	$A \cdot A = A$ $A \cdot \overline{A} = 0$			
AND THE RESERVE OF THE PROPERTY OF THE PROPERT				U. 1870 P. L. 1870 P. L	

- Existem também algumas identidades auxiliares que ajudam a simplificar expressões.
- Algumas delas serão deduzidas a seguir, sendo mostrado o caminho de dedução. As deduções podem ser feitas como treino para fixar os conceitos de álgebra booleana.

 $\cdot A + A.B = A$

$$A + A \cdot B = A + (A \cdot B)$$

$$= A(1 + B) \text{ (propriedade distributiva)}$$

$$= A \cdot 1 \text{ (identidade aditiva)}$$

$$= A \text{ (elemento neutro multiplicativo)}$$

Exemplo

$$A + AB + AC = A + AC = A$$

$$\bullet \mathbf{A} + \overline{\mathbf{A}}\mathbf{B} = \mathbf{A} + \mathbf{B}$$

$$A + \overline{A}B = \overline{\overline{A} + \overline{A}B} \qquad \text{(ident. comple.)} \qquad A + \overline{A}B = \overline{0 + \overline{A}B} \qquad \text{(ident. mult.)}$$

$$= \overline{\overline{A} \cdot \overline{(\overline{A}B)}} \qquad (2^a \text{ lei De Morgan}) \qquad = \overline{\overline{A} \cdot \overline{(\overline{A} + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(\overline{A} + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(A + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(A + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(A + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(A + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{\overline{A} \cdot \overline{(A + \overline{B})}} \qquad \text{(ident. comple.)}$$

$$= \overline{A + B} \qquad \text{(ident. comple.)}$$

$$= \overline{A + B} \qquad \text{(ident. comple.)}$$

$$\bullet \mathbf{A} (\overline{\mathbf{A}} + \mathbf{B}) = \mathbf{A} \mathbf{B}$$

$$A(\overline{A} + B) = A\overline{A} + AB$$
 (propriedade distributiva)
= $0 + AB$ (identidade multiplicativa)
= AB (elem. neutro adição)

•
$$AB + A\overline{B} = A$$

$$AB + A\overline{B} = A(B + \overline{B})$$
 (propriedade distributiva)
= $A.1$ (identidade aditiva)
= A (elem. neutro multiplicação)

•
$$(\mathbf{A} + \mathbf{B})(\mathbf{A} + \overline{\mathbf{B}}) = \mathbf{A}$$

$$(A + B)(A + \overline{B}) = AA + A\overline{B} + AB + B\overline{B}$$

$$= A + A\overline{B} + AB + B\overline{B}$$

$$= A + A\overline{B} + AB + 0$$

$$= A + A(\overline{B} + B)$$

$$= A + A.(1)$$

$$= A + A$$

$$= A$$

(propriedade distributiva)

(identidade multiplicativa)

(identidade multiplicativa)

(propriedade distributiva)

(identidade aditiva)

(elemento neutro mult.)

(identidade aditiva)

•
$$AB + A\overline{B}C = AB + AC$$

$$AB + A\overline{B}C = A(B + \overline{B}C)$$
 (propriedade distributiva)
 $= A(B + C)$ (identidade auxiliar, slide 46)
 $= AB + AC$ (propriedade distributiva)

Referências Bibliográficas

- IDOETA, Ivan V.; CAPUANO, Francisco G. Elementos de Eletrônica Digital. 40. ed. São Paulo: Érica, 2008.
- TOCCI, R. J.; WIDMER, N. S.; MOSS, G. L. Sistemas digitais: princípios e aplicações. 12. ed. São Paulo, SP: Pearson, 2018. E-book.
- NELSON, Victor P. et al. Digital logic circuit analysis and design. 1. ed. Englewood Cliffs: Prentice-Hall, 1995.