A számításelmélet alapjai I. (Tizedik gyakorlat)

Dr. Lázár Katalin Anna

Eötvös Loránd Tudományegyetem, Informatikai Kar 1117 Budapest, Pázmány Péter sétány 1/C. e-mail: lazarkati@elte.hu

2024. április 25.

Tematika

- A veremautomata fogalma. A közvetlen (egylépéses) konfiguráció-átmenet, a (0 vagy többlépéses) konfiguráció-átmenet (közvetlen redukció, redukció) fogalma. Elfogadás elfogadó állapotokkal (végállapotokkal) vagy üres veremmel. A veremautomata által elfogadott nyelv. A determinisztikus veremautomata fogalma.
- Az üres veremmel elfogadó és az elfogadó állapotokkal elfogadó veremautomaták egyenlő felismerő ereje. A veremautomata (mindkét elfogadási mód esetében) és a környezetfüggetlen grammatikák egyenlő ereje (mindketten a környezetfüggetlen nyelvek osztályát határozzák meg).

Példa 1

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{ab^ncb^na \mid n \geq 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 1

Legyen a veremautomata $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, b\}$, $F = \emptyset$, valamint

$$\delta(z_0, q_0, a) = (z_0, q_1), \quad \delta(z_0, q_1, b) = (bz_0, q_1), \quad \delta(b, q_1, b) = (bb, q_1),$$

$$\delta(b, q_1, c) = (bb, q_2), \quad \delta(b, q_2, b) = (\varepsilon, q_2), \quad \delta(z_0, q_2, a) = (\varepsilon, q_2).$$

- A veremautomata első lépésben elolvas egy a betűt az input szalagról és kiveszi, majd visszateszi a kezdő veremszimbólumot, valamint a q_0 állapotból átmegy q_1 állapotba.
- Ezután a q_1 állapotban b betűt olvas az input szalagról, valamint egy b betűt ad a verem tetejéhez és továbbra is marad a q_1 állapotban.
- ullet Ezt a lépést addig ismétli, amíg a c szimbólum következik olvasásra.
- A veremben levő b betűk száma meg fog egyezni az elolvasott b betűk számával.

- A c betű olvasásakor átmegy q_2 állapotba és nem változtatja a verem tartalmát.
- Ezután ismét csak b betűket tud olvasni az input szalagról, végig q₂ állapotban, minden egyes lépésnél törölve egy b betűt a verem tartalmából.
- Működését akkor végzi el sikeresen, ha pontosan annyi b betűt tud elolvasni ebben a fázisban, ahány b betű van a veremben; ekkor az utolsó lépésben az a betűt olvassa és törli a z_0 veremszimbólumot.
- A veremautomata üres veremmel fogadja el a szót.

Példa 2

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{c^m a^n b^n \mid m \ge 0, n \ge 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 2

Legyen $A = (\{z_0, a\}, \{q_0, q_1, q_2\}, \{c, a, b\}, \delta, z_0, q_0, \emptyset)$, ahol

(1)
$$\delta(z_0, q_0, c) = (z_0, q_0),$$

(2)
$$\delta(z_0, q_0, a) = (az_0, q_1),$$

(3)
$$\delta(a, q_1, a) = (aa, q_1),$$

(4)
$$\delta(a, q_1, b) = (\varepsilon, q_2),$$

(5)
$$\delta(a, q_2, b) = (\varepsilon, q_2),$$

(6)
$$\delta(z_0, q_2, \varepsilon) = (\varepsilon, q_2).$$

- A veremautomata az átmenet használatával $m \ge 0$ számú c betűt olvas el egymás után. Az első a betű elolvasása után állapotát q_1 -re cseréli és egy a betűt helyez el a veremben a verem tetejére írva.
- Ezután vagy további a betűket olvas el, marad a q₁ állapotban és minden egyes a betű elolvasása után egy a betűt ír a verembe, vagy egy b betűt olvas el, állapotát a q₂ állapotra cseréli, és törli a verem tetején levő a betűt.
- Munkáját akkor tudja befejezni, ha a veremből minden a betűt törölt és a verem tetején levő szimbólum z_0 , de ez csak akkor lehetséges, ha pontosan annyi b betűt olvas el a q_2 állapotban, mint ahány a betű van a veremben.
- Tehát A az L nyelv minden szavát és csak azokat ismeri fel.

Példa 2

Megjegyzés

A δ leképezést szabályok formájában is megadhatjuk. Az így nyert szabályhalmazt M_{δ} -val jelöljük. Tehát

- **1** $zqa o up \in M_\delta$ akkor és csak akkor, ha $(u,p) \in \delta(z,q,a)$,
- 2 $zq \rightarrow up \in M_{\delta}$ akkor és csak akkor, ha $(u,p) \in \delta(z,q,\varepsilon)$.

Példa 2

A példában:

- (1) $z_0q_0c \rightarrow z_0q_0$,
- $(2) \quad z_0q_0a \to az_0q_1,$
- (3) $aq_1a \rightarrow aaq_1$,
- (4) $aq_1b \rightarrow q_2$,
- (5) $aq_2b \rightarrow q_2$,
- (6) $z_0q_2 \to q_2$.

Példa 3

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^{n-1} \mid n \ge 1\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet és ismertessük ezen veremautomata működését!

Példa 3

Legyen $A = (\{\#, a\}, \{S, A, B\}, \{a, b\}, \delta, \#, S, \emptyset)$ üres veremmel elfogadó automata. A szabályhalmaz:

- ullet #Sa o #A ; első a-t nem tesszük be
- f 2 #Aa
 ightarrow aaA; további a-kat berakjuk a verembe
- $oldsymbol{3}$ aAb
 ightarrow B; ha b jön, akkor kiveszünk egy a-t
- $oldsymbol{0}$ aBb
 ightarrow B; ha b jön, akkor kiveszünk egy a-t

Példa 4

Legyen $L = \{w \in \{a, b\}^* \mid |w|_a = |w|_b\}$, ahol $|w|_a$ és $|w|_b$ a és b előfordulásainak számát jelöli w-ben.

- Adjunk meg egy, az L-et végállapotokkal felismerő (elfogadó állapotokkal elfogadó) veremautomatát!
- Adjunk meg egy, az L-et üres veremmel felismerő (elfogadó) veremautomatát!

Példa 4

Az L-et végállapotokkal felismerő veremautomata:

$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0, q_1\}$, $Z = \{z_0, a, b\}$, $T = \{a, b\}$, $F = \{g_0\}$ valuation

$$F = \{q_0\}$$
, valamint

(1)
$$\delta(z_0, q_0, a) = (az_0, q_1),$$

(2)
$$\delta(z_0, q_0, b) = (bz_0, q_1),$$

(3)
$$\delta(a, q_1, a) = (aa, q_1),$$

(4)
$$\delta(b, q_1, b) = (bb, q_1),$$

(5)
$$\delta(b, q_1, a) = (\varepsilon, q_1),$$

(6)
$$\delta(a, q_1, b) = (\varepsilon, q_1),$$

(7)
$$\delta(z_0, q_1, a) = (az_0, q_1),$$

(8)
$$\delta(z_0, q_1, b) = (bz_0, q_1),$$

(9)
$$\delta(z_0, q_1, \varepsilon) = (z_0, q_0)$$
.

Példa 4

Az L-et üres veremmel felismerő veremautomata:

$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0\}$, $Z = \{z_0, a, b\}$, $T = \{a, b\}$, $F = \emptyset$, valamint

- (1) $\delta(z_0, q_0, a) = (az_0, q_0),$
- (2) $\delta(z_0, q_0, b) = (bz_0, q_0),$
- (3) $\delta(a, q_0, a) = (aa, q_0),$
- (4) $\delta(b, q_0, b) = (bb, q_0),$
- (5) $\delta(b, q_0, a) = (\varepsilon, q_0),$
- (6) $\delta(a,q_0,b)=(\varepsilon,q_0),$
- (7) $\delta(z_0, q_0, \varepsilon) = (\varepsilon, q_0).$

Példa 5

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a\}$, $T = \{a, b\}$, $F = \{q_1, q_2\}$, valamint

- $(1) \quad \delta(\varepsilon, q_0, a) = (a, q_0),$
- (2) $\delta(\varepsilon, q_0, \varepsilon) = (\varepsilon, q_1),$
- (3) $\delta(a, q_0, b) = (\varepsilon, q_2),$
- (4) $\delta(a, q_1, \varepsilon) = (\varepsilon, q_1),$
- (5) $\delta(a, q_2, b) = (\varepsilon, q_2),$
- (6) $\delta(a, q_2, \varepsilon) = (\varepsilon, q_2).$
- Az alábbi szavak közül melyeket ismeri fel végállapotokkal az A veremautomata: b^2 , a^2b^2 , a^3b ?
- Adjuk meg az A veremautomata által végállapotokkal felismert L(A) nyelvet!

- $z_0q_0b^2 \Longrightarrow_A z_0q_1b^2$, amelyből más konfiguráció nem érhető el, tehát $b^2 \notin L(A)$.
- $z_0q_0a^2b^2 \Longrightarrow_A az_0q_0ab^2 \Longrightarrow_A a^2z_0q_0b^2 \Longrightarrow_A az_0q_2b$, vagyis $a^2b^2 \in L(A)$.
- $z_0q_0a^3b \Longrightarrow_A^* a^3z_0q_0b \Longrightarrow_A a^2z_0q_2$, vagyis $a^3b \in L(A)$.
- $L(A) = \{a^n b^m \mid n \ge m\}$

Példa 6

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^m \mid n < m\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Példa 6

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a\}$, $T = \{a, b\}$, $F = \{q_2\}$, valamint

- $(1) \quad \delta(\varepsilon, q_0, a) = (a, q_0),$
- (2) $\delta(\varepsilon, q_0, \varepsilon) = (\varepsilon, q_1),$
- (3) $\delta(a,q_1,b)=(\varepsilon,q_1),$
- (4) $\delta(z_0, q_1, b) = (z_0, q_2),$
- (5) $\delta(z_0, q_2, b) = (z_0, q_2).$

Példa 7

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{a^i b^j c^{j+1} \mid i, j \ge 0\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Legyen
$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0, q_1, q_2, q_3\}$, $Z = \{z_0, b\}$, $T = \{a, b, c\}$, $F = \{q_3\}$, valamint

(1)
$$\delta(\varepsilon, q_0, a) = (\varepsilon, q_0),$$

(2)
$$\delta(\varepsilon, q_0, \varepsilon) = (\varepsilon, q_1),$$

(3)
$$\delta(\varepsilon, q_1, b) = (b, q_1),$$

(4)
$$\delta(\varepsilon, q_1, \varepsilon) = (\varepsilon, q_2),$$

(5)
$$\delta(b, q_2, c) = (\varepsilon, q_2),$$

(6)
$$\delta(z_0, q_2, c) = (z_0, q_3).$$

Példa 8

Legyen $V = \{a, b, c\}$ egy ábécé és legyen

$$L = \{a^{i}b^{j}c^{k} \mid i, j, k > 0, i = j + k\}.$$

Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Legyen
$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0, q_1, q_2, q_3, q_4\}$, $Z = \{z_0, a\}$, $T = \{a, b, c\}$, $F = \{q_4\}$, valamint

$$(1) \quad \delta(\varepsilon, q_0, a) = (a, q_1),$$

(2)
$$\delta(\varepsilon, q_1, a) = (a, q_1),$$

(3)
$$\delta(a,q_1,b)=(\varepsilon,q_2),$$

(4)
$$\delta(a, q_2, b) = (\varepsilon, q_2),$$

(5)
$$\delta(a, q_2, c) = (\varepsilon, q_3),$$

(6)
$$\delta(a,q_3,c)=(\varepsilon,q_3),$$

(7)
$$\delta(z_0, q_3, \varepsilon) = (z_0, q_4).$$

Példa 9

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{ww^R \mid w \in \{a, b\}^*\}$. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Legyen
$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a, b\}$, $T = \{a, b\}$, $F = \{q_2\}$, valamint

(1)
$$\delta(\varepsilon, q_0, a) = (a, q_0),$$

(2)
$$\delta(\varepsilon, q_0, b) = (b, q_0),$$

(3)
$$\delta(\varepsilon, q_0, \varepsilon) = (\varepsilon, q_1),$$

(4)
$$\delta(a, q_1, a) = (\varepsilon, q_1),$$

(5)
$$\delta(b, q_1, b) = (\varepsilon, q_1),$$

(6)
$$\delta(z_0, q_1, \varepsilon) = (z_0, q_2).$$

Példa 10

Legyen $V = \{a, b, c\}$ egy ábécé és legyen $L = \{wcw^R \mid w \in \{a, b\}^*\}$. Mutassuk meg, hogy az L nyelv determinisztikus veremautomatával felismerhető!

Példa 10

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a, b\}$, $T = \{a, b, c\}$, $F = \{q_2\}$, valamint

- $(1) \quad \delta(\varepsilon, q_0, a) = (a, q_0),$
- (2) $\delta(\varepsilon, q_0, b) = (b, q_0),$
- (3) $\delta(\varepsilon, q_0, c) = (\varepsilon, q_1),$
- $(4) \quad \delta(a,q_1,a)=(\varepsilon,q_1),$
- (5) $\delta(b, q_1, b) = (\varepsilon, q_1),$
- $(5) \quad \delta(b, q_1, b) = (\varepsilon, q_1),$
- (6) $\delta(z_0, q_1, \varepsilon) = (z_0, q_2).$

L(A) = L és A determinisztikus.

Példa 11

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{w \in \{a, b\}^* \mid |w|_b \leq |w|_a\}$, ahol $|w|_a$ és $|w|_b$ a és b előfordulásainak számát jelöli w-ben. Konstruáljunk egy veremautomatát, amely felismeri az L nyelvet!

Legyen
$$A = (Z, Q, T, \delta, z_0, q_0, F)$$
, ahol $Q = \{q_0, q_1\}$, $Z = \{z_0, a, b\}$, $T = \{a, b\}$, $F = \{q_1\}$, valamint

- (1) $\delta(z_0, q_0, \varepsilon) = (z_0, q_1),$
- (2) $\delta(\varepsilon, q_0, a) = (a, q_1),$
- (3) $\delta(z_0, q_0, a) = (az_0, q_0),$
- (4) $\delta(a, q_0, a) = (aa, q_0),$
- (5) $\delta(z_0, q_0, b) = (bz_0, q_0),$
- (6) $\delta(b, q_0, b) = (bb, q_0),$
- (7) $\delta(b, q_0, a) = (\varepsilon, q_0),$
- (8) $\delta(a, q_0, b) = (\varepsilon, q_0).$

Példa 12

Legyen $V = \{a, b\}$ egy ábécé és legyen $L = \{a^n b^n \mid n > 0\}$. Mutassuk meg, hogy az L nyelv determinisztikus veremautomatával felismerhető!

Példa 12

Legyen $A = (Z, Q, T, \delta, z_0, q_0, F)$, ahol $Q = \{q_0, q_1, q_2\}$, $Z = \{z_0, a\}$, $T = \{a, b\}$, $F = \{q_2\}$, valamint

$$(1) \quad \delta(\varepsilon, q_0, a) = (a, q_0),$$

(2)
$$\delta(a, q_0, b) = (\varepsilon, q_1),$$

(3)
$$\delta(a,q_1,b)=(\varepsilon,q_1),$$

(4)
$$\delta(z_0, q_1, \varepsilon) = (z_0, q_2).$$

L(A) = L és A determinisztikus.