Proof strategies

Week 4. Deep dive.

ABCS

- Assumptions (write them down)
- Break down the assumptions
 - $E \wedge_{i} E \rightarrow_{i} E \leftrightarrow$
 - Sometimes E v (though this can be tricky to identify)
- Conclusion (what's the main connective?)
 - $|\sim, |\rightarrow, |\vee, |\wedge$
- Stuff in the middle (trial and error)
 - Start with non-hypothetical rules
 - Then try out hypothetical rules

Table 4-1 Proof Strategies

If the conclusion is $a(n)$:	Then do this:
Atomic formula	If no other strategy is immediately apparent, hypothesize the negation of the conclusion for ~I. If this is successful, then the conclusion can be obtained after the ~I by ~E.
Negated formula	Hypothesize the conclusion without its negation sign for \sim I. If a contradiction follows, the conclusion can be obtained by \sim I.
Conjunction	Prove each of the conjuncts separately and then conjoin them with &I.
Disjunction	Sometimes (though not often) a disjunctive conclusion can be proved directly simply by proving one of its disjuncts and applying $\bigvee I$. Otherwise, hypothesize the negation of the conclusion and try $\sim I$.
Conditional Biconditional	Hypothesize its antecedent and derive its consequent by \rightarrow I. Use \rightarrow I twice to prove the two conditionals needed to obtain the conclusion by \leftrightarrow I.

How for all x puts it:

Working backward from what you want.

• What does working backwards from each connective involve? Which connective is easiest to work backwards from? Hardest?

Work forward from what you have.

• What does working forward from each connective involve? Which connective is easiest to work forward from? Hardest?

My tip: There are no magical unicorn people who "just get proofs"! It's a matter of practicing and recognizing patterns.

Remember, there aren't that many rules anyway.