

Fundação Universidade Federal de Rondônia - UNIR

Curso de Bacharelado e Licenciatura em Ciência da Computação

Disciplina: Álgebra Linear

Professor: Lucas Marques da Cunha SIAPE: 3269899

Aluno (a):

LISTA DE ATIVIDADES 06

- 1) Seja T: $\mathbb{R}^3 \to \mathbb{R}^2$ a transformação linear definida por $L(x) = (x_1 + x_2, x_2 + x_3)^T$.
 - a) Encontre T(1, -4, 3);
 - **b)** Determine Ker(T);
- 2) Determine o núcleo e a imagem de cada uma dos seguintes operadores lineares em \mathbb{R}^3 .

a)
$$L(x) = (x_3, x_2, x_1)^T$$

b)
$$L(x) = (x_1, x_2, 0)^T$$

c)
$$L(x) = (x_1, x_1, x_1)^T$$

- 3) Determine uma transformação linear T: $\mathbb{R}^3 \to \mathbb{R}^3$ cuja imagem é gerada por (2, 1, 1) e (1, -1, 2).
- 4) Prove que transformação linear T: $\mathbb{R}^2 \to \mathbb{R}^2$ dada por: T(x, y) = (x 2y, y) é um isomorfismo.
- 5) Determine os autovetores e os autovalores de:

a) T:
$$\mathbb{R}^2 \to \mathbb{R}^2$$
 dado por T(x, y) = (-y, x).

b) T:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 dado por T(x, y, z) = (4x + 2y, -x + y, y + 2z).

- **6)** Seja T: $\mathbb{R}^2 \to \mathbb{R}^2$ dada por T(x, y) = (-5x+2y, 2x 2y).
 - a) Determine os autovalores e os autoespaços de T.
 - **b)** Determine se T é diagonalizável. Em caso afirmativo, determine uma base de \mathbb{R}^2 formada por autovetores de T e determine a matriz de T com relação a esta base.
 - c) Se T for diagonalizável, determine a matriz diagonalizadora P de T.

- 7) Seja T: $\mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (-2x+2y-3z, 2x+y-6z, -x-2y).
 - a) Determine os autovalores e os autoespaços de T.
 - **b)** Determine se T é diagonalizável. Em caso afirmativo, determine uma base de \mathbb{R}^3 formada por autovetores de T e determine a matriz de T com relação a esta base.
 - c) Se T for diagonalizável, determine a matriz diagonalizadora P de T.