P6. a.

对每个数据包. 延迟: 0 $t_1=0$, $t_2=1$, $t_3=1$, $t_4=2$, $t_5=2$ $t_6=2$. $t_7=3$, $t_8=2$, $t_9=3$, $t_{10}=2$, $t_{11}=2$, $t_{12}=3$.

· 中均延迟: 23/12=1.95.2.095.

b.

理证:
$$t_{2}=2$$
, $t_{3}=0$, $t_{4}=5$, $t_{5}=0$, $t_{6}=5$, $t_{7}=1$, $t_{8}=4$, $t_{9}=0$, $t_{6}=3$, $t_{11}=0$, $t_{12}=3$.

С.

$$\frac{11}{4} = \frac{1}{2} = \frac{1}{3} = \frac{1$$

d.

世紀:
$$t_2 = 1$$
, $t_3 = 1$, $t_4 = 2$, $t_5 = 1$ $t_6 = 3$ $t_7 = 3$, $t_8 = 2$, $t_9 = 3$, $t_{10} = 2$ $t_{11} = 2$, $t_{12} = 3$. $t_{13} = 2$. $t_{11} = 2$. $t_{12} = 3$.

C. 数据大小规等, 平均及迟为每个数据包的 延迟。

P9. 0楼口, 000000000 ~ 00111111 , 64个地址
1楼口, 01000000 ~ 01011111 , 32个地址
2楼口, 011000000 ~ 01111111 , 32个.
10000000 ~ 10111111 , 64个.
共96个.
3楼口, 110000000 ~ 11111111 , 64个.

P15. a. A: 214.97.254.0/24 (915/256, 32-9+1=24).

B: 214.97.254.0125 (816128, 32-8+1=25).

C: 214.97. 254. 8/25

D: 24.97.254.0/301(2个接口.)

E: 214.97.74.013 2/31

F: 214.97.254. 4/30.


```
b. A 11010110 01100001 11111111

D 11010110 01100001 11111110 0000000

E 11010110 01100001 11111110 0

E 11010110 01100001 11111110 0
```

```
F: 11010110 01100001 11111111 000001

E: 11010110 01100001 11111110 0000001

C: 11010110 01100001 11111110 1

P18. a. 主机: 192.(68.1.01

主机2: 192.(69.1.2

主机3: 192.(69.1.2
```

WAN

24.34.112.235, X2 24.34.112.235, X2 24.34.112.235, Y1 24.34.112.235, Y2 24.34.112.235, Y2 24.34.112.235, Y2

LAN

192.168.1.1, 1000]

192.168.1.1, 10002

192.168.1.2, 2000]

192.168.1.2, 20002

192.168.1.3, 30002