Syntax Analysis

Md Shad Akhtar Assistant Professor IIIT Dharwad

Syntax Analyser (Parser)

- Define the syntactic structure for a programming language
- Reads the sequence of tokens from lexical analysis and create|validate the syntactic structure (parse tree) for the sequence of tokens.

Syntactic structure and grammar

- Syntactic structure is defined by the context-free grammar (CFG)
- Steps to create parse tree
 - Parser checks whether a given source program satisfies the rules implied by a CFG or not
 - o If it satisfies, the parser creates the parse tree of that program
 - Otherwise, the parser gives the error messages

Grammar (G) $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$

Token sequence id + id * id

Syntax Errors

- Role of error handler in parser
 - Report the presence of errors clearly and accurately
 - Recover from each error quickly enough to detect subsequent errors
 - Add minimal overhead to the processing of correct programs.
- Error Detection:
 - Sequence of tokens that can not be accepted by any grammar rule.
 - **E.g.**:
 - A switch statement without a case statement
 - Missing closing braces
 - Operator without operands c = a +
 - \blacksquare Operands without operator c = a b

Syntax Error Recovery

Panic-mode:

o On discovering an error, discards input symbols one at a time until one of a designated set of synchronizing tokens is found, e.g., semicolon, closing brace, etc.

Phrase-level recovery:

- Perform local correction on the remaining input to continue
 - Replace the prefix of the remaining input by some string that allows the parser to continue. E.g., Replace comma by semicolon, deletelinsert an extra|missing semicolon.

Error Production

• For common errors, add special production rules to handle such scenario

Global correction

- Ideally, we want as few changes as possible to process incorrect inputs.
- We can design an algorithm for choosing a minimal sequence of changes to obtain a globally least-cost correction.
 - Given incorrect input x and grammar G, find a correct related input y with as less changes as possible.

Types of parsers

- In general three types of parsers
 - Universal
 - Capable to parse any grammar but too complex to use in compiler
 - E.g.: Cocke-Younger-Kasami (CYK) parser, Earley's parser
 - Top-down
 - Build parse tree from root to leaf
 - Bottom-Up
 - Build parse tree from leaf to root

Context-free Grammar (CFG)

- Provides a precise syntactic specification of a programming language
- A CFG G = <N, T, P, S>
 - Non-terminals:
 - A finite set of non-terminals (variables) [usually in capital letters]
 - Terminals:
 - A finite set of terminals (input symbols|tokens) [usually in small letters]
 - Production:
 - A finite set of productions rules in the following form $A \to \alpha$ where A is a non-terminal and α is a string of terminals and non-terminals (including the empty string); $|A| <= |\alpha|$
 - Start symbol:
 - One of the non-terminal symbols

CFG: An example

- CFG G = <N, T, P, S>
 - o Non-terminal = {E}
 - o Terminals = {+, -, *, |, (,), id}
 - o Start symbol = {E}
 - Production

$$E \rightarrow E + E \mid E - E \mid E * E \mid E \mid E \mid - E$$

$$\mathsf{E} \to (\mathsf{E})$$

$$E \rightarrow id$$

Derivations

 Starting with the start symbol, replace each non-terminals with the body of one of its production rules till all non-terminals are replaced by terminal symbols.

$$\circ$$
 E \Rightarrow E+E \Rightarrow id + E \Rightarrow id + id

In general a derivation step is

$$\alpha A\beta \Rightarrow \alpha \gamma \beta$$

if there is a production rule $A \rightarrow \gamma$ in our grammar, where α and β are arbitrary strings of terminal and non-terminal symbols.

- $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n (\alpha_n \text{ derives from } \alpha_1 \text{ or } \alpha_1 \text{ derives } \alpha_n)$
- → drives in one step
- →* drives in zero or more steps
- ⇒+ drives in zero or one step

Derivations

- S ⇒* α
 - If α contains non-terminals, it is called as a sentential form of G
 - o If α does not contain non-terminals, it is called as a **sentence** of G
- Left-most derivation: Always chooses the left-most non-terminal in each derivation step

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$$

 Right-most derivation: Always chooses the right-most non-terminal in each derivation step

$$E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(E+id) \Rightarrow -(id+id)$$

- Top-down parsers: Finds the left-most derivation of the given source program
- Bottom-up parsers: Finds the right-most derivation of the given source program in the reverse order

Parse Tree

- A graphical representation of a derivation
- Intermediate nodes: Inner nodes of a parse tree
- Leaves: Terminal symbols

Ambiguity

A grammar that produces more than one parse tree for a sentence is called as an ambiguous grammar

• $E \Rightarrow E+E \Rightarrow id+E \Rightarrow id+E*E \Rightarrow * id+id*E \Rightarrow id+id*id$

Ambiguity and Parser

- For the most parsers, the grammar must be unambiguous.
 - unique selection of the parse tree for a sentence

- Disambiguation of an ambiguous grammar
 - Necessary to eliminate the ambiguity in the grammar during the design phase of the compiler
 - Choose one of the parse trees of a sentence to restrict to this choice

Ambiguity disambiguation

- Stmt → if Expr then Stmt | if Expr then Stmt else Stmt | other_stmts
- Input string: if E₁ then if E₂ then S₁ else S₂
- Interpretation 1: S₂ being executed when E₁ is false (thus attaching the else to the first if)
 - if E₁ then (if E₂ then S₁) else S₂
- Interpretation 2: S₂ being executed when E₁ is true and E₂ is false (thus attaching the else to the second if)
 - if E₁ then (if E₂ then S₁ else S₂)

Ambiguity disambiguation

- In general, we prefer the second parse tree (else matches with closest if)
- So, we have to disambiguate our grammar to reflect this choice
- Unambiguous grammar:

```
Stmt → matchedStmt | unmatchedStmt matchedStmt | → if Expr then matchedStmt else matchedStmt |

Otherstmts → if Expr then Stmt |

if Expr then Stmt |

if Expr then matchedStmt else unmatchedStmt
```

Ambiguity disambiguation

Operator precedence grammar:

$$E \rightarrow E+E \mid E*E \mid E^E \mid id \mid (E)$$

Unambiguous grammar

```
E \rightarrow E+T \mid T
T \rightarrow T*F \mid F
F \rightarrow G^{F} \mid G
G \rightarrow id \mid (E)
```

Precedence

- ^ (right to left)
- * (left to right)
- + (left to right)

Left Recursion

- A grammar is left recursive if it has a non-terminal A such that there is a derivation
 - A \Rightarrow ⁺ A α for some string α
- Top-down parsing techniques cannot handle left-recursive grammars
 - Conversion of left-recursive grammar into an equivalent non-recursive grammar is *mandatory*.
- Possible ways of left-recursion
 - It may appear in a single step of the derivation (immediate left-recursion)
 - It may appear in more than one step of the derivation

Removing Left Recursion

In general,

$$A \rightarrow A\alpha_1 \mid \dots \mid A\alpha_m \mid \beta_1 \mid \dots \mid \beta_n$$
 Where $\beta_1 \dots \beta_n$ do not start with A

 $\downarrow \downarrow$

eliminate immediate left recursion

$$A \rightarrow \beta_1 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

an equivalent grammar

Removing Left Recursion: An example

$$E \rightarrow E+T \mid T$$

$$T \rightarrow T*F \mid F$$

$$F \rightarrow id \mid (E)$$

eliminate immediate left recursion

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

Why left-recursion is a problem?

- Given
 - \blacksquare A \to Aa | b generate a top-down parse tree from input string 'aaaaaa'
- On first input symbol 'a', you appy first production since second production expect first character to be 'b'. [Note that you don't know what's your second input]
 - o A ⇒ Aa ⇒ Aaa ⇒ ⇒ Aaaaaaa
 - We are waiting to reduce 'A' to 'a'
 - After infinite/many steps, we may get to know that the path we chose was not correct.

Non-immediate Left-recursion

- A grammar cannot be immediately left-recursive, but it still can be left-recursive
- Just elimination of the immediate left-recursion does not guarantee a grammar which is not left-recursive

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$

This grammar is not immediately left-recursive, but it is still left-recursive

$$S \Rightarrow Aa \Rightarrow Sca$$

Or

 $A \Rightarrow Sc \Rightarrow Aac$

Elimination of left-recursion: Algorithm

Input: A grammar G without e-moves or cycle

Output: An equivalent grammar without left recursion

- 1. Arrange non-terminals in some order: $A_1 \dots A_n$
- 2. for i = 1 to n
 - a. for j = 1 to i-1
 - i. replace each production of the form

b. eliminate the immediate left-recursions among A_i productions

If there are e-moves, the algorithm does not guarantee to work.

Elimination of left-recursion: Example

- Let grammar G: $S \rightarrow Aa \mid b$ $A \rightarrow Ac \mid Sd \mid f$
- Order of non-terminals: S, A
- For S: There is no immediate left recursion in S.
- For A: Replace A → Sd with A → Aad | bd ⇒ A → Ac | Aad | bd | f
 Eliminate the immediate left-recursion in A

$$A \rightarrow bdA' \mid fA'$$

 $A' \rightarrow cA' \mid adA' \mid \epsilon$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Elimination of left-recursion: Exercises

2. A
$$\rightarrow$$
 Ba | Aa | C B \rightarrow Bb | Ab | d

3.
$$X \rightarrow XSb \mid Sa \mid b$$

 $S \rightarrow Sb \mid Xa \mid a$

Elimination of left-recursion: Solutions

```
A \rightarrow aA'
                      A' \rightarrow BdA' \mid aA' \mid \epsilon
                      B \rightarrow bB'
                      B' \rightarrow eB' \mid \epsilon
                A \rightarrow BaA' \mid cA'
                      A' \rightarrow aA' \mid \epsilon
                      B \rightarrow cA'bB' \mid dB'
                      B' \rightarrow bB' \mid aA'bB' \mid \epsilon
3.
                     X \rightarrow SaX' \mid bX'
                      X' \rightarrow SbX' \mid \epsilon
                      S \rightarrow bX'aS' \mid aS'
                      S' \rightarrow bS' \mid aX'aS' \mid \epsilon
```

Left-factoring

 Top-down parser without backtracking (predictive parser) insists that the grammar must be left left-factored

```
stmt → if expr then stmt else stmt | if expr then stmt
```

 After seeing if, we cannot decide which production rule to choose to re-write stmt in the derivation

Left-factoring

In general,

$$A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$$

where α is non-empty and the first symbols of β_1 and β_2 (if they have one) are different

Choice involved when processing α

A to
$$\alpha\beta_1$$
 or A to $\alpha\beta_2$

Rewrite the grammar as follows:

$$A \rightarrow \alpha A'$$
 $A' \rightarrow \beta_1 \mid \beta_2$

so, we can immediately expand $A \rightarrow \alpha A'$

Elimination of Left-factoring: Algorithm

For each non-terminal A with two or more alternatives (production rules)
 with a common non-empty prefix,

$$A \rightarrow \alpha \beta_1 \mid \dots \mid \alpha \beta_n \mid \gamma_1 \mid \dots \mid \gamma_m$$

Convert it into

$$A \rightarrow \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$

 $A' \rightarrow \beta_1 \mid \dots \mid \beta_n$

Elimination of Left-factoring: Example

```
Example 1:
A → abB | aB | cdg | cdeB | cdfB

A → aA' | cdg | cdeB | cdfB

A' → bB | B
```

$$A \rightarrow aA' \mid cdA''$$
 $A' \rightarrow bB \mid B$
 $A'' \rightarrow q \mid eB \mid fB$

Example 2:

 $A \rightarrow ad \mid a \mid ab \mid abc \mid b$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid b \mid bc$$

$$\begin{vmatrix} A \rightarrow aA' & | b \\ A' \rightarrow d & | \epsilon & | bA'' \\ A'' \rightarrow \epsilon & | c \end{vmatrix}$$

Lookahead symbols

FIRST() and FOLLOW()

- The construction of top-down and bottom-up parsing is aided by two functions on grammar G
 - \circ FIRST(α): The set of *first character* that can be derived from α
 - FOLLOW(A): The set of character that can come immediately after the non-terminal A.

FIRST(a) = {a}
FIRST(A) = FIRST(c) = {c}
FIRST(S) = FIRST(
$$\alpha$$
) = {...}
FIRST(β) = {...}
FIRST(γ) = {...}

$$FOLLOW(A) = \{a\}$$

 $FOLLOW(S) = \{\$\}$

\$: A special symbol for the end marker.

FIRST()

- FIRST(α)
 - a. If α is a terminal
 - FIRST(α) = { α }

- b. If α is a non-terminal and $\alpha \rightarrow \beta_1 \beta_2 \beta_3 ... \beta_k$
 - FIRST(α) = FIRST(α) U FIRST(β_i) if $\beta_1 \beta_2 ... \beta_{i-1} \Rightarrow * \epsilon$

- c. If $\alpha \to \epsilon$
 - FIRST(α) = FIRST(α) U ε

FOLLOW()

- FOLLOW(A)
 - a. If A is the start symbol and \$ is the special end marker
 - \blacksquare FOLLOW(A) = $\{\$\}$

- b. If $A \rightarrow \alpha B \beta$
 - FOLLOW(B) = FOLLOW(B) U {FIRST(β) ϵ }

- c. If $A \rightarrow \alpha B$ OR $A \rightarrow \alpha B\beta$ with FIRST(β) has ϵ
 - FOLLOW(B) = FOLLOW(B) U FOLLOW(A)

FIRST() and FOLLOW()

FIRST(B) = $\{b, \epsilon\}$

 $FIRST(C) = \{f\}$

```
1. G: A \rightarrow aBe \mid cBd \mid C
           B \rightarrow bB \mid \epsilon
           C \rightarrow f
FIRST(a) = \{a\}
FIRST(b) = \{b\}
FIRST(c) = \{c\}
FIRST(d) = \{d\}
FIRST(e) = \{e\}
FIRST(f) = \{f\}
FIRST(A) = \{a, c, f\}
                                     FOLLOW(A) = \{\$\}
```

 $FOLLOW(B) = \{e,d\}$

 $FOLLOW(C) = \{\$\}$

2. G: $A \rightarrow aBc$ $B \rightarrow bC$ $C \rightarrow c \mid \epsilon$ FIRST(a) = (a)

 $FIRST(a) = \{a\}$ $FIRST(b) = \{b\}$ $FIRST(c) = \{c\}$ $FIRST(A) = \{a\}$ $FIRST(B) = \{b\}$ $FIRST(C) = \{c, \epsilon\}$ $FOLLOW(A) = \{\$\}$ $FOLLOW(B) = \{c\}$ $FOLLOW(C) = \{c\}$

FIRST() and FOLLOW()

```
3. G: E \rightarrow TE'
E' \rightarrow +TE' \mid \epsilon
T \rightarrow FT'
T' \rightarrow *FT' \mid \epsilon
F \rightarrow id \mid (E)
```

```
FIRST(+) = {+}, FIRST(*) = {*}, FIRST(id) = {id}, FIRST('(') = { ( }, FIRST(')') = { ) } 

FIRST(E) = FIRST(T) = FIRST(F) = { id, ( } 

FIRST(T') = {*, \epsilon} 

FOLLOW(E) = FOLLOW(E') = { ), $} 

FOLLOW(T) = FOLLOW(T') = {+, \, \, \} 

FOLLOW(F) = {+, \, \, \, \}
```

Top-Down Parsing

Top-Down Parsing

- Parse tree are created top to bottom
 - Begin with the start symbol to generate the input string.

- Top-down parser
 - Recursive-Descent Parsing
 - Predictive Parsing
 - Non-recursive Predictive Parsing (LL(1) parsing)

Recursive-Descent Parsing

- Tries to find the left-most derivation
- Recursively applies production rules
- If current production fails, backtrack, apply another rule.
- Its simple but not widely used
- Not efficient
 - Cost of backtracking is involved which may be huge.

Recursive-Descent Parsing

• Let grammar G:

$$S \rightarrow aBc$$

 $B \rightarrow bc \mid b$

• Input string: a b c

Designing a recursive-descent parser

- Write a procedure/function for each non-terminal.
- Call the associated function whenever a non-terminal is encountered during derivation.

```
function S()
{
    // match the input and/or call non-terminal functions
    // Backtrack, if it does not apply.
}
```

Designing a recursive-descent parser

Design a recursive-descent parser for the following grammar.

$$S \rightarrow aBc$$

$$B \rightarrow bc \mid b$$

(Recursive) Predictive Parser

- A special form of recursive-descent parsing without backtracking.
- Since no backtracking, its efficient
- But needs a special kind of grammar, i.e., LL(1) grammar
- Uniquely choose a production rule by looking at the current symbol in the input string

Current token

- Constraints on grammar
 - a. Unambiguous
 - b. No left recursion should be there
 - c. Grammar should be left-factored
- Still, no 100% guarantee

Let grammar G:

$$A \rightarrow aBe \mid cBd \mid C$$

 $B \rightarrow bB \mid \epsilon$
 $C \rightarrow f$

- Left recursion?
 - No left recursion

⇒ This ensures that, given the current token, we don't have to backtrack

- Left factored?
 - Yes

⇒ This ensures that, for a input symbol, we no longer have to make a decision

- For predictive parser, we need lookahead symbols
 - a. Compute **FIRST()** and **FOLLOW()** for the grammar

- For a given non-terminal A and the current input symbol a
 - a. IF FIRST(A) contains symbol a,
 - \blacksquare Apply the production associated with symbol a.
 - b. ElseIF FIRST(A) contains symbol ϵ ,
 - IF FOLLOW(A) contains symbol a,
 - Apply the production $A \to \varepsilon$ and proceed.
 - c. Else
 - Error

Input string: a b e

Predictive Parser

• Grammar G:

 $\begin{array}{l} A \rightarrow aBe \mid cBd \mid C \\ B \rightarrow bB \mid \epsilon \\ C \rightarrow f \end{array}$

FIRST(A) = $\{a, c, f\}$ FIRST(B) = $\{b, \epsilon\}$ FIRST(C) = $\{f\}$ $FOLLOW(A) = \{\$\}$ $FOLLOW(B) = \{e, d\}$ $FOLLOW(C) = \{\$\}$

- Let grammar G:
 - $S \rightarrow aBc$
 - $B \to bc \mid b$
- Left recursion?
 - No left recursion
- Left factored?
 - No

- $S \rightarrow aBc$
- $B \rightarrow bB'$
- $B' \to c \mid \epsilon$

• Let the new grammar G':

```
S \rightarrow aBc

B \rightarrow bB'

B' \rightarrow c \mid \epsilon
```

Find FIRST and FOLLOW

```
a. FIRST(S) = \{a\} FIRST(B) = \{b\} FIRST(B') = \{c, \epsilon\}
b. FOLLOW(S) = \{\$\} FOLLOW(B) = \{c\} FOLLOW(B') = \{c\}
```

Input string: a b c

Designing a Predictive Parser

- Write a procedure/function for each non-terminal.
- Call the associated function whenever a non-terminal is encountered during derivation.
- Match lookahead with the current input and apply the rule

```
function S(lookahead, current)
{
    // match the input and/or call non-terminal functions
}
```

Designing a Predictive Parser

Design a recursive-descent parser for the following grammar.

$$A \rightarrow aBe \mid cBd \mid C$$

 $B \rightarrow bB \mid \epsilon$
 $C \rightarrow f$

```
proc A {
    current token {
         a:
             - match the current token with a, and move to the next token;
             - call B;
             - match the current token with e, and move to the next token;
         c:
             - match the current token with c, and move to the next token;
             - call B;
             - match the current token with d, and move to the next token;
         f:
             - call C
    }}
proc B {
    current token {
        b:
             - match the current token with b, and move to the next token;
             - call B
         e,d:
             do nothing
                                   //FOLLOW(B)
    }}
proc C {
             - match the current token with f, and move to the next token;
```

LL(1) Parser

Non-Recursive Predictive or LL(1) Parser

- Top-down parser
- Table-driven parser
- LL(k), with k = 1
 - \circ Left-to-right Left-most-derivation with k lookahead symbols

Non-Recursive Predictive or LL(1) Parser

Input buffer

Contains the string to be parsed with end marked with a special symbol \$

Output

 A production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer

Stack

- Contains the grammar symbols
- At the bottom of the stack, there is a special end marker symbol \$
- Initially the stack contains only the symbol \$ and the starting symbol \$
 - \$S ← Initial stack
- Parsing completes when both input and stack becomes empty (i.e., only \$ left in stack)

Parsing table

- A two-dimensional array M[A, a]
- Each row is a non-terminal symbol
- Each column is a terminal symbol or the special symbol \$
- Entries holds a production rule.

LL(1) Grammar

- For any grammar G, if we can build an LL(1), then the grammar is called LL(1) grammar.
 - No left-recursive, non-left-factored or ambiguous grammar can be LL(1)
 - Still, there are some grammar which are non-left-recursive, left-factored and unambiguous but not a LL(1) grammar.
- A grammar G is LL(1) if and only if whenever A $\rightarrow \alpha$ | β are two distinct productions of G, the following conditions hold:
 - \circ Both α and β cannot derive strings starting with same terminals
 - \circ At most one of α and β can derive to ε
 - \circ If β can derive to ε, then α cannot derive to any string starting with a terminal in FOLLOW(A) and vice-versa.

Input: Grammar G.

Output: Parsing Table M.

- 1. For each production $A \rightarrow \alpha$ of the grammar,
- 2. do
 - a. For each terminal a in FIRST(α)
 - i. Add $A \rightarrow \alpha$ to M[A, α]
 - b. If ε is in FIRST(α)
 - i. For each terminal a in FOLLOW(A)
 - 1. Add $A \rightarrow \alpha$ to M[A, a]
 - c. If ε is in FIRST(α) and φ is in FOLLOW(A)
 - i. Add $A \rightarrow \alpha$ to M[A, a]

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

$$\begin{aligned} & \text{FIRST}(\text{T}') = \{ ^*, \, \epsilon \} & \text{FIRST}(\text{E}) = \text{FIRST}(\text{T}) = \text{FIRST}(\text{F}) = \{ \text{ id, ()} \\ & \text{FIRST}(\text{E}') = \{ +, \, \epsilon \} & \text{FOLLOW}(\text{E}) = \text{FOLLOW}(\text{E}') = \{ \text{), } \$ \} \\ & \text{FOLLOW}(\text{F}) = \{ +, \, ^*, \,), \, \$ \} & \text{FOLLOW}(\text{T}) = \text{FOLLOW}(\text{T}') = \{ +, \,), \, \$ \} \end{aligned}$$

Non-Term	Input Symbols						
	id	+	*	()	\$	
Е							
E'							
Т							
T'							
F							

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

$$\begin{split} & \text{FIRST}(\text{T}') = \{^*, \, \epsilon\} \\ & \text{FIRST}(\text{E}) = \text{FIRST}(\text{T}) = \text{FIRST}(\text{F}) = \{ \, \text{id}, \, (\, \} \\ & \text{FOLLOW}(\text{E}') = \{ +, \, \epsilon\} \\ & \text{FOLLOW}(\text{F}) = \{ +, \, ^*, \,), \, \$ \} \end{split}$$

Production E → TE'
$$\Rightarrow$$
 First(TE') = First(T) = { (, id } \Rightarrow Add E → TE' to M[E, id] and M[E, (]

Non-Term	Input Symbols						
	id	+	*	()	\$	
E	<i>E</i> → <i>TE</i> ′			<i>E</i> → <i>TE</i> ′			
E'							
Т							
T'							
F							

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

$$\begin{split} & \text{FIRST}(\text{T}') = \{^*, \, \epsilon\} \\ & \text{FIRST}(\text{E}) = \text{FIRST}(\text{T}) = \text{FIRST}(\text{F}) = \{ \, \text{id}, \, (\, \} \\ & \text{FOLLOW}(\text{E}') = \{ +, \, \epsilon\} \\ & \text{FOLLOW}(\text{F}) = \{ +, \, ^*, \,), \, \$ \} \end{split}$$

Production
$$T \to FT' \Rightarrow First(FT') = First(F) = \{ (, id \} \Rightarrow Add T \to FT' to M[T, id] and M[T, (]$$

Input Symbols Non-Term id \$ + Ε $E \rightarrow TE'$ $E \rightarrow TE'$ F' $T \rightarrow FT'$ $T \rightarrow FT'$ T' F

$$E \rightarrow TE'$$
 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$ $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow id \mid (E)$

Production $F \rightarrow id \Rightarrow First(id) = \{ id \}$

 \Rightarrow Add F \rightarrow id to

$$\begin{array}{|c|c|c|}\hline E \rightarrow TE' & E' \rightarrow +TE' \mid \epsilon \\ T \rightarrow FT' & T' \rightarrow *FT' \mid \epsilon \\ F \rightarrow id \mid (E) & \end{array}$$

Production $F \rightarrow (E) \Rightarrow First((E)) = \{ (\} \}$

FIRST(T') = $\{*, \epsilon\}$ FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-\}$, \$\\$ FOLLOW(F) = $\{+, *, ...\}$

 \Rightarrow Add F \rightarrow (E) to

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

Production $E' \rightarrow +TE' \Rightarrow First(+TE') = \{ + \}$

FIRST(T') =
$$\{*, \epsilon\}$$
 FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-\}$, \$\\$ FOLLOW(F) = $\{+, *, ...\}$

 \Rightarrow Add E' \rightarrow +TE' to

$$\begin{array}{|c|c|c|}\hline E \rightarrow TE' & E' \rightarrow +TE' \mid \epsilon \\ T \rightarrow FT' & T' \rightarrow *FT' \mid \epsilon \\ F \rightarrow id \mid (E) & \end{array}$$

Production $T' \rightarrow *FT' \Rightarrow First(*FT') = \{ * \}$

FIRST(T') =
$$\{*, \epsilon\}$$
 FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-\}$, \$\\$ FOLLOW(T) = FOLLOW(T') = $\{+, +, +\}$

 \Rightarrow Add T' \rightarrow *FT' to

$$\begin{array}{|c|c|c|}\hline E \rightarrow TE' & E' \rightarrow +TE' \mid \epsilon \\ T \rightarrow FT' & T' \rightarrow *FT' \mid \epsilon \\ F \rightarrow id \mid (E) & \end{array}$$

Production $E' \rightarrow \varepsilon \Rightarrow Follow(E') = \{ \}$

FIRST(T') =
$$\{*, \epsilon\}$$
 FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-\}$, \$\\$ FOLLOW(F) = $\{+, *, ...\}$

 \Rightarrow Add E' $\rightarrow \epsilon$ to

$$E \rightarrow TE' \qquad E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT' \qquad T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow id \mid (E)$$

Production $T' \rightarrow \epsilon$ \Rightarrow Follow(T') = {+,), \$ }

FIRST(T') =
$$\{*, \epsilon\}$$
 FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-\}$, \$\\$ FOLLOW(T) = FOLLOW(T') = $\{+, +, +\}$

 \Rightarrow Add T' $\rightarrow \epsilon$ to

- Once we have built a parsing table M, verify whether a given string w is part of the language or not.
- LL(1) parsing algorithm
 - Look at the symbol at the top of the stack (e.g., X) and the current symbol in the input string (e.g., a)

→ Halt with success:

→ Pop; Move to next input;

- \blacksquare If X == a == \$
- \blacksquare If X == a != \$
- If X == terminal OR M[X, a] is empty \rightarrow Halt with error;
- If X in non-terminal and $M[X, a] == X \rightarrow \alpha_1 \alpha_2 \alpha_3 \dots \alpha_k$
 - Pop
 - Push $\alpha_k \alpha_{k-1} \alpha_{k-2} \dots \alpha_1$ [top of stack = α_1]
 - Output the production $X \to \alpha_1 \alpha_2 \alpha_3 \dots \alpha_k$

Input: id + id * id

Following the output sequence gives you left-most derivation for the input

E
$$\rightarrow$$
 T E'
 \rightarrow F T' E'
 \rightarrow id T' E'
 \rightarrow id ϵ E'
 \rightarrow id + T E'
 \rightarrow id + F T' E'
 \rightarrow id + id T' E'
 \rightarrow id + id * id T' E'
 \rightarrow id + id * id ϵ E'
 \rightarrow id + id * id ϵ E'

• Construct parsing table for the following grammar:

Error Recovery in LL(1) Parsing

- An error may occur in the predictive parsing (LL(1) parsing), if
 - The terminal symbol on the top of stack does not match with the current input symbol
 - top of stack is a non-terminal A, the current input symbol is a, and the parsing table entry M[A, a] is empty.

Panic-mode Error Recovery in LL(1) Parsing

- Skip over the symbols on the input until a synchronization [sync] token is found.
- Synchronization tokens
 - Place all the symbols in the FOLLOW(A) into the synchronizing token set for the non-terminal A.

- If a non-terminal A can generate ε , then A $\rightarrow \varepsilon$ can be used as default choice.
- If a terminal on the top of stack cannot be matched, pop the terminal.
- If a non-terminal on the top of stack has an entry sync on a terminal a, skip the terminal.

Modified LL(1) parsing table with "sync" tokens

$$\begin{array}{|c|c|c|}\hline E \rightarrow TE' & E' \rightarrow +TE' \mid \epsilon \\ T \rightarrow FT' & T' \rightarrow *FT' \mid \epsilon \\ F \rightarrow id \mid (E) & \end{array}$$

FIRST(T') =
$$\{*, \epsilon\}$$
 FIRST(E) = FIRST(T) = FIRST(F) = $\{id, (\}\}$ FIRST(E') = $\{+, \epsilon\}$ FOLLOW(E) = FOLLOW(E') = $\{-1, 0\}$ FOLLOW(T) = FOLLOW(T') = $\{-1, 0\}$ FOLLOW(T) = FOLLOW(T') = $\{-1, 0\}$

Non-Term	Input Symbols						
	id	+	*	()	\$	
E	E → TE'			E → TE'	sync	sync	
E'		<i>E</i> ′ → + <i>TE</i> ′			$E' \rightarrow \varepsilon$	E'→ε	
Т	$T \rightarrow FT'$	sync		$T \rightarrow FT'$	sync	sync	
T'		T '→ ε	<i>T</i> ′ → * <i>FT</i> ′		T ' → ε	T ′ → ε	
F	$F \rightarrow id$	sync	sync	<i>F</i> → (<i>E</i>)	sync	sync	

Panic-mode Recovery in LL(1) parsing

Input:) id * + id

```
STACK
               E $
             T E' $
           F T' E' $
          id T' E' $
             T' E' $
         * F T' E' $
          F T' E' $
           FTE'$
          id T' E' $
             T' E' $
               E' $
```

```
Input
       ) id * + id $
            * + id $
           * + id $
             + id $
               id $
               id $
                  $
```

```
Remarks
Error, M[E, )] = sync, skip)
id is in FIRST(E)
Error, M[F, +] = sync, skip +
id is in FIRST(F)
```

Bottom-Up Parsing

Bottom-Up parsing

- Construct a parse tree for an input string beginning at the leaves (the bottom) and working up towards the root (the top)
 - \circ Reducing a string w to the start symbol of a grammar.
 - At each reduction step a particular substring matching the right side of a production is replaced by the symbol on the left of that production.
 - Gives the right-most derivation in the reverse order.

Bottom-Up parsing: An example

G: $S \rightarrow aABe$

 $A \to Abc \mid b$

 $\mathsf{B}\to\mathsf{d}$

Input: abbcde

- Procedure
 - Scan the string from left to right looking for a substring that matches the right side of a production:
 b and d qualifies
 - Choose *leftmost* b and apply A→ b, So string becomes aAbcde
 - Scan left to right: Abc, b and d qualifies
 - Choose *leftmost* Abc and apply A→ Abc, So string becomes aAde
 - Scan left to right: d qualifies
 - Apply $B \rightarrow d$, so the string becomes aABe
 - Scan left to right: aABe qualifies
 - Apply S → aABe
- abbcde ⇒ aAbcde ⇒ aAde ⇒ aABe ⇒ S

Right-most derivation

Handle

- Handle of a string is a substring that
 - matches the right side of a production rule; and
 - whose reduction to the nonterminal on the left side of the production represents one step along the reverse of a rightmost derivation;
- Therefore, *not every substring (or more specifically, the leftmost substring)* that matches the right side of a production rule is *handle*.

```
E.g.:

G: E \rightarrow E + T \mid T

T \rightarrow T * F \mid F

F \rightarrow id \mid (E)

Input: id_1 * id_2
```

```
\begin{array}{ll} \operatorname{id}_1 * \operatorname{id}_2 & \mathit{matched substring}\{\operatorname{id}_1, \operatorname{id}_2\} \\ \Rightarrow & \mathsf{F} * \operatorname{id}_2 & \mathit{matched substring}\{\mathsf{F}, \operatorname{id}_2\} \\ \Rightarrow & \mathsf{T} * \operatorname{id}_2 & \mathit{matched substring}\{\mathsf{T}, \operatorname{id}_2\} \\ \mathbf{In the next step, shall we reduce the leftmost} \\ \mathbf{substring} \; \mathsf{E} \to \mathsf{T} \; \mathbf{or} \; \mathsf{F} \to \operatorname{id}_2? \end{array}
```

Shift-Reduce Parsing

- A stack implementation of bottom-up parsing
 - Shift → Current input symbol is pushed onto the stack
 - Reduce → Right side of a production is replaced by the left side non-terminal in the stack.
- Shift zero or more input symbols onto the stack, until it is ready to reduce a string □ to a non-terminal A on top of the stack, if the grammar has production A → □.
- Repeat the process, until
 - It generate an error signal OR
 - Stack contains the start symbol and input is empty. Accept the input.

Shift-Reduce Parsing

G: $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow id \mid (E)$

Input: id₁ * id₂

Observe, handle is always at the top of stack.

Shift-Reduce Parsing: Few key points

- Four primary operations
 - Shift → Current input symbol is pushed onto the stack
 - Reduce → Right side of a production is replaced by the left side non-terminal on the stack.
 - Accept → Announce successful completion of parsing
 - Error → Discover a syntax error and call error handling mechanism.
- Handle always appear on top of the stack
- For an unambiguous grammar, for every right-sentential form there is exactly one handle.
 - ∘ Remember given $S \Rightarrow^* \alpha$,
 - If α contains non-terminals, it is called as a sentential form of G

Conflicts

- There are grammars for which shift-reduce parsing cannot be used.
- Shift-Reduce parser for such grammars may have a configuration where the parser cannot decide whether to
 - Shift the symbols onto the stack or Reduce the handle to a non-terminal OR
 - Reduce the handle with some non-terminal A or B.
- These situations are called conflicts.
 - Shift/Reduce conflict
 - Reduce/Reduce conflict

Conflicts: Example 1

- Ambiguous grammar can not have shift-reduce parser
- stmt → if expr then stmt |
 if expr then stmt else stmt |
 other

Conflicts: Example 2

 Let the configuration is Stack

\$.... id (id

Reduce with param \rightarrow id OR Reduce with expr \rightarrow id

LR Parsers

LR Parser

- LR(k) parsers are the most powerful and efficient shift-reduce parser
 - \circ Left-to-right scanning, Right-most derivation (with k lookahead symbols)
 - o In general, k = 1
 - o In both LL(k) and LR(k), if k is omitted, it is assumed LL(1) and LR(1)
- A grammar for which we can construct a LR parser are called LR grammar
- Three main types of parse
 - Simple LR or SLR or LR(0)
 - Canonical LR or LR(1)
 - Look-ahead LR or LALR
- Parsing of all three parsers are similar, only their parsing tables are different

Why LR parsers?

- LR parsers can be constructed to recognize virtually all programming language constructs for which CFGs can be written.
- LR parsers are most general non-backtracking shift-reduce parser and yet its implementation is as efficient as others.
- An LR parser can detect a syntactic error as soon as it is possible to do on a left-to-right scan of the input
- Class of grammars that can be parsed using LR methods is a proper superset of the class of grammars that can be parsed with predictive parsers or LL methods

LL(1) grammars $\subset LR(1)$ grammars

LR parsing

Configuration of LR parsing

- Each symbol on stack has an associated state.
- Initial stack configuration \$ S₀ (no symbol is associated with S₀)

$$(\$ S_0 X_1 S_1 \dots X_m S_m, \qquad a_i a_{i+1} \dots a_n \$)$$
Stack Input

• S_m and a_i decides the next parser action by consulting the parsing table M.

Configuration of LR parsing

- S_m and a_i decides the next parser action by consulting the parsing table M.
 - Shift:
 - Push a_i and its associated state S_i onto the stack

$$(\$S_0X_1S_1...X_mS_m, \quad \mathbf{a}_i a_{i+1}...a_n\$) \rightarrow (\$S_0X_1S_1...X_mS_m\mathbf{a}_i S_i)$$

$$a_{i+1}...a_n\$)$$

- Reduce:
 - If $A \to X_{m-r-1}S_{m-r-1}.....X_mS_m$ is a handle
 - Pop $r = |X_{m-r-1}S_{m-r-1}....X_mS_m|$ items from the stack
 - Push A and S onto the stack, where $S = GOTO[S_{m-r}, A]$

$$(\$S_0X_1S_1...X_mS_m, \quad a_i a_{i+1}...a_n\$) \rightarrow (\$S_0X_1S_1...X_{m-r}S_{m-r} A S_n, \quad a_i a_{i+1}...a_n\$)$$

Construction of LR(k) parser

- Building a parser
 - 1. Build LR(k) automation
 - a. Canonical set of "items"
 - 2. Build parsing table using LR(k) automation

• Once the parsing table is built, we can parse any given input string using LR(k) parsing algorithm.

Building LR(0) parser: Canonical set of items

Canonical set of "items" for LR(0) automation

- LR parser makes shift-reduce decision based on the states in an automation.
- Each state contains a set of items that reflects the progress in parsing.
- Collection of sets of LR(0) items are called canonical LR(0) collection.
- An LR(0) item (or simply item) of a grammar G is a production with a dot (.) at some position of the right side of the rule.
 - \circ For the production A \rightarrow XYZ, we have four items
 - \blacksquare A \rightarrow XYZ
 - $A \rightarrow X YZ$
 - $A \rightarrow XY Z$
 - \blacksquare A \rightarrow XYZ.

The position of • indicates the amount of processing completed.

- 1. Parser has PROCESSED X on a portion of the input; and
- 2. HOPE to derive the rest of the input from YZ

(Dot) Closure of items

- To build the LR(0) automation, we need to find the closure of each item set(*I*)
- Let the grammar G: $E \to E + T \mid T$ $T \to T * F \mid F$ $F \to (E) \mid id$
- Then, the dot closure of item $E \rightarrow \cdot E + T$ is

(Dot) Closure of items

Closure (I)

- 1. Add every item in I to Closure (I)
- 2. If $A \to \alpha . B\beta$ is in Closure(I) and $B \to \gamma$ is a production a. Add item $B \to . \gamma$ to Closure(I)
- 3. Repeat step 2, until no new items can be added to Closure(I).

Transition function GOTO()

- If Closure(I) has an item $A \to \alpha . B\beta$ • GOTO (I, B) = Closure($A \to \alpha B . \beta$)
- Let Closure(I) = {[$E \rightarrow .T$], [$E \rightarrow E. + T$]}

 o GOTO (I, +) = { [$E \rightarrow E + .T$],

 [$T \rightarrow .T * F$]

 [$T \rightarrow .F$]

 [$F \rightarrow .(E)$]

 [$F \rightarrow .id$] }

- The state of the automation is defined by the Closure(I) of items
- The GOTO(I, X) function defines the transition from state I on symbol X

- For every grammar, augment a production $S' \rightarrow S$, if S was the starting symbol.
 - ∘ S' becomes new start symbol
 - \circ $S' \rightarrow S$ signifies the acceptance of the input.

Computation of the canonical LR(0) collection

```
Items(G')
```

- 1. $C = \text{Closure}(\{[S' \rightarrow .S]\})$
- 2. Repeat
 - **a.** For each set of items I in C
 - i. For each grammar symbol X
 - 1. If $\mathrm{GOTO}(I,X)$ is not empty and not in C
 - a. Add GOTO(I, X) to C
- $oldsymbol{3}.$ Until no new sets of items are added to C

 $\mathbf{0} \colon E' \to E$

1: $E \rightarrow E + T$

2: $E \rightarrow T$

3: $T \rightarrow T * F$

4:
$$T \rightarrow F$$

5:
$$F \to (E)$$

6:
$$F \rightarrow id$$

$$E' \rightarrow E$$

$$E \rightarrow E \rightarrow E$$

$$E \rightarrow E + T$$

$$E \rightarrow .T$$

$$T \rightarrow T$$

$$T \rightarrow T * F$$

$$T \rightarrow F$$

$$F \rightarrow \cdot (E)$$

$$F \rightarrow id$$

 $\mathbf{0} \colon E' \to E$

4: $T \rightarrow F$

1: $E \rightarrow E + T$ **5**: $F \to (E)$

2: $E \rightarrow T$ **6**: $F \rightarrow id$ **3:** $T \rightarrow T * F$

 $\begin{array}{|c|c|c|c|c|}\hline \textbf{0} \colon E' \to E & \textbf{1} \colon E \to E + T & \textbf{2} \colon E \to T & \textbf{3} \colon T \to T * F \\ \textbf{4} \colon T \to F & \textbf{5} \colon F \to (E) & \textbf{6} \colon F \to id & \end{array}$

 $\mathbf{0} \colon E' \to E$ **1:** $E \rightarrow E + T$ **4:** $T \rightarrow F$

5: $F \to (E)$

2: $E \rightarrow T$ **6**: $F \rightarrow id$ **3:** $T \rightarrow T * F$

$\mathbf{0} \colon E' \to E$ **1:** $E \rightarrow E + T$ **2:** $E \rightarrow T$ **3:** $T \rightarrow T * F$ LR(0) Automation **4:** $T \rightarrow F$ **5**: $F \to (E)$ **6**: $F \rightarrow id$ $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow id$ $F \rightarrow (E)$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $T \rightarrow F$. $F \rightarrow id$

LR(0) Automation **4:** $T \rightarrow F$ **6**: $F \rightarrow id$ **5**: $F \rightarrow (E)$ $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow \cdot (E)$ $F \rightarrow id$ $F \rightarrow (E)$ $E \rightarrow E + T$ id $F \rightarrow id$. $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow \cdot (E)$ $T \rightarrow F$. $F \rightarrow id$

1: $E \rightarrow E + T$

2: $E \rightarrow T$

3: $T \rightarrow T * F$

 $\mathbf{0} \colon E' \to E$

4: $T \rightarrow F$

 $\mathbf{0} \colon E' \to E$

1: $E \rightarrow E + T$

5: $F \rightarrow (E)$

2: $E \rightarrow T$

6: $F \rightarrow id$

3: $T \rightarrow T * F$

 $F \rightarrow (E)$ $F \rightarrow id$

 I_o

 $T \rightarrow F$.

- $T \rightarrow F$ $F \rightarrow (E)$
 - $F \rightarrow id$

 $E \rightarrow E + . T$

 $T \rightarrow T * F$

- $F \rightarrow (E)$
- $E \rightarrow E + T$
- $E \rightarrow T$

 $T \rightarrow F$

 $F \rightarrow (E)$

 $F \rightarrow id$

 I_4

- $T \rightarrow T * F$

LR(0) Automation $E' \rightarrow E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$

 $F \rightarrow id$.

 $T \rightarrow F$.

 $F \rightarrow (E)$

 $F \rightarrow id$

 I_{o}

 $T \rightarrow F$

 $F \rightarrow (E)$

 $F \rightarrow id$

 $E \rightarrow T$

 $T \rightarrow F$

 $F \rightarrow \cdot (E)$

 $F \rightarrow id$

 I_4

 $\mathbf{0} \colon E' \to E$

3: $T \rightarrow T * F$

2: $E \rightarrow T$

6: $F \rightarrow id$

1: $E \rightarrow E + T$

2: $E \rightarrow T$

6: $F \rightarrow id$

3: $T \rightarrow T * F$

 $\mathbf{0} \colon E' \to E$

4: $T \rightarrow F$

1: $E \rightarrow E + T$

5: $F \rightarrow (E)$

 $F \rightarrow id$.

 $T \rightarrow F$.

 $T \rightarrow F$

 $F \rightarrow (E)$

 $F \rightarrow id$

 I_4

 $T \rightarrow F$

$$\rightarrow F \rightarrow (E \cdot)$$

 $E \rightarrow E \cdot + T$

4: $T \rightarrow F$

 $\mathbf{0} \colon E' \to E$

5: $F \rightarrow (E)$ $E \rightarrow E + T$

1: $E \rightarrow E + T$

 $E \rightarrow E + T$.

2: $E \rightarrow T$

6: $F \rightarrow id$

3: $T \rightarrow T * F$

 $E' \rightarrow \cdot E$ $E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$

 $T \rightarrow F$

 $F \rightarrow (E)$

 $F \rightarrow id$

 I_{o}

 $F \rightarrow id$.

 $T \rightarrow F$.

- - - $F \rightarrow \cdot (E)$

 $F \rightarrow (E .)$

 $E \rightarrow E \cdot + T$

 $T \rightarrow T * . F$

 $T \rightarrow T \cdot *F$

- $T \rightarrow F$ $F \rightarrow \cdot (E)$ $F \rightarrow id$

 $F \rightarrow (E)$

id $E \rightarrow .T$

 $E \rightarrow E + T$

 $T \rightarrow T * F$

 $T \rightarrow F$

 $F \rightarrow \cdot (E)$

 $F \rightarrow id$

- **4**: $T \rightarrow F$
- **5**: $F \rightarrow (E)$

1: $E \rightarrow E + T$

6: $F \rightarrow id$

2: $E \rightarrow T$

 $E \rightarrow E + T$. $T \rightarrow T$. * F

 $T \rightarrow T * . F$

 $F \rightarrow \cdot (E)$

 $F \rightarrow id$

3: $T \rightarrow T * F$

 $\mathbf{0} \colon E' \to E$

 \boldsymbol{F}

 $E \rightarrow E + T$

- $F T \to T * F$.

 $F \rightarrow id$ I_{o}

- $E \rightarrow E + T$

 $T \rightarrow T * F$

 $T \rightarrow F$

 $F \rightarrow \cdot (E)$

 $F \rightarrow id$

 $F \rightarrow (E .)$

 $E \rightarrow E \cdot + T$

 $F \rightarrow id$.

 $T \rightarrow F$.

$\mathbf{0} \colon E' \to E$ 1: $E \rightarrow E + T$ **2:** $E \rightarrow T$ **3:** $T \rightarrow T * F$ LR(0) Automation **4**: $T \rightarrow F$ **6**: $F \rightarrow id$ **5**: $F \rightarrow (E)$ $E \rightarrow E + T$. $T \rightarrow T$. * F $E' \rightarrow \cdot E$ $E \rightarrow E + T$ $E \rightarrow E + T$ $T \rightarrow F$ $E \rightarrow T$ $F \rightarrow \cdot (E)$ $T \rightarrow T * F$ id $F \rightarrow id$ $T \rightarrow F$ $F \rightarrow (E)$ $T \rightarrow T * . F$ \boldsymbol{F} $T \longrightarrow T \cdot *F$ $F \rightarrow id$ $T \rightarrow T * F$. $F \rightarrow \cdot (E)$ I_{o} $F \rightarrow id$ id T $F \rightarrow (E)$ $E \rightarrow E + T$ $F \rightarrow id$. id $E \rightarrow .T$ $T \rightarrow T * F$ $F \rightarrow (E .)$ $F \rightarrow (E)$. $T \rightarrow F$ $E \rightarrow E \cdot + T$ $F \rightarrow (E)$ $T \rightarrow F$. $F \rightarrow id$

LR(0) Automation $E' \rightarrow E$ $E \rightarrow E$

- $\begin{array}{c}
 \mathbf{0} \colon E' \to E \\
 \mathbf{4} \colon T \to F
 \end{array}$
- $\mathbf{5:} \ F \to (E)$

 $E \rightarrow E + T$

1: $E \rightarrow E + T$

- $\mathbf{6:} F \rightarrow id$

2: $E \rightarrow T$

 $E \rightarrow E + T$.

3: $T \rightarrow T * F$

Building LR(0) parser: Parsing table

Constructing SLR parsing table

- Remember, LR parsing table has two parts
 - Action: Takes only terminals
 - GOTO: Takes only non-terminals

SLR-Table(G')

- 1. Construct LR(0) collection for the grammar G'
- 2. Let I_i represents state S_i , then the parsing action for state i are as follows
 - a. If $[A \to \alpha.a\beta]$ is in I_i and $GOTO(I_i, a) = I_j$
 - i. Action[i, a] = "shift j"
 - b. If $[A \rightarrow \alpha]$ is in I_i
 - i. Action[i, a] = "reduce $A \rightarrow a$ " for all $a \in FOLLOW(A)$
 - c. If $[S' \rightarrow S]$ is in I_i
 - i. Action[i, \$] = "accept"
- 3. For all non-terminals A,
 - a. if $GOTO(I_i, A) = I_i$,
 - i. GOTO[i, A] = j

GOTO(S, X): Transition from state S to a new state on non-terminal symbol X

For all transitions on non-terminals in state 0

GOTO(0, E) = 1GOTO(0, T) = 2

GOTO(0, F) = 3

04-4-		Action							GOTO			
State	id	+	*	()	\$	E	Т	F			
0							1	2	3			
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
	•	1	1	1	'		•					

State

Action

\$

Ε

2

9

GOTO

3

3

F

GOTO(S, X): Transition from state S to a new state on non-terminal symbol X

For all transitions on non-terminals in

$$GOTO(4, F) = 3$$

For all transitions on non-terminals in state 6

$$GOTO(6, T) = 9$$

$$GOTO(6, F) = 3$$

For all transitions on non-terminals in state 7

$$GOTO(7, F) = 10$$

0

id

$$S, T) = 9$$

2 3

5

6

7

8

9

10

If $[A \rightarrow \alpha .a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift]

For all transitions on terminals in state 0

Action[0, id] = "shift 5" or "s5"

Action[0, (] = "s4"]

State

+

s4

Action

\$

Ε

	, -	\imath	` 1'	,	J	
n						
	Λ otion[i	a1 - "obift a"				

3

5

7

8

9

10

11

2

id

s5

Note: *a* is terminal

6

GOTO

F

If $[A \rightarrow a.a\beta]$ is in I_i and $\mathrm{GOTO}(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 1

Action[1, +] = "s6"

Ctata										
State	id	+	*	()	\$	E	Т	F	
0	s5			s4			1	2	3	
1		s6								
2										
3										
4							8	2	3	
5										
6								9	3	
7									10	
8										
9										
10										
11										

Action

GOTO

If $[A \rightarrow \alpha .a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 2

Action[2, *] = "s7"

0

2

3

6

7

8

9

10

11

State

id s5

+

s6

Action

s4

GOTO

2

9

F

3

3

3

10

\$

Ε

5

s7

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 3 None

8

9

10

11

State

+

s6

id

Action

\$

Ε

8	2	3
	9	3
		10

GOTO

F

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

Action[i, a] = "shift j"

For all transitions on terminals in state 4

Action[4, id] = "s5"

State

0

5

6

7

8

9

10

11

id s5

+

s6

Action

\$

Ε

GOTO

2

2

9

F

3

3

3

10

then

2 3

s5

s7

s4

s4

Note: *a* is terminal

Action[4, (] = "s4"

If $[A \rightarrow a.a\beta]$ is in I_i and $\mathrm{GOTO}(I_i, a) = I_i$ then

Action[i, a] = "shift j"

Note: *a* is terminal

For all transitions on terminals in state 5 None

0	s5			s4			1	2	3
1		s6							
2			s7						
3									
4	s5			s4			8	2	3
5									
6								9	3
7									10
8									
9									
10									
11									
		1	1	1	1	1	•		1

Action

State

id

+

GOTO

\$

Ε

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

Action[i, a] = "shift j"

For all transitions on terminals in state 6

Action[6, id] = "s5"

Action[6, (] = "s4"

State

0

id

s5

s5

s5

+

s6

s4

s4

s4

Action

\$

Ε

GOTO

2

2

9

F

3

3

3

10

then

2

3

5

6

8

9

10

11

s7

Note: *a* is terminal

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

Note: *a* is terminal

For all transitions on terminals in state 7

Action[7, id] = "s5"

State

0

2

id s5

+

s6

Action

s4

then Action[i, a] = "shift j"

3

s5

s5

s5

s7

s4

s4

s4

\$

Ε

GOTO

2

2

9

F

3

3

3

10

Action[7, (] = "s4"

5

6

7

8

9

10

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

Action[i, a] = "shift j"

For all transitions on terminals in state 8

Action[8, +] = "s6"

Action[8,)] = "s11"

0

State

id s5

+

s6

s6

Action

s4

\$

Ε

then

2

3

6

7

8

9

10

11

s7

s4

s4

s4

s11

Note: *a* is terminal

5

s5

s5

s5

3	
10	

GOTO

2

2

9

F

3

If $[A \rightarrow \alpha .a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$ then

Note: *a* is terminal

For all transitions on terminals in state 9 Action[9, *] = "s7"

0

State

id s5

Action[i , a] = "shift j "	

s6

s7

s6

+

Action

s4

s4

s4

s4

s11

GOTO

2

9

F

3

3

3

10

\$

Ε

5

6

7

8

9

10

11

2

3

s5

s5

If $[A \rightarrow \alpha .a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

For all transitions on terminals in state 10 None

State 0

id

s5

s5

s5

s5

+

s6

s4

Action

then Action[i, a] = "shift j"

2 3

s6

s7

s7

s4

s4

s4

s11

\$

Ε

GOTO

2

9

F

3

3

3

10

Note: *a* is terminal

5

9

10

If $[A \rightarrow a.a\beta]$ is in I_i and $GOTO(I_i, a) = I_i$

Action[i, a] = "shift j"

Note: *a* is terminal

then

For all transitions on terminals in state 11 None

2		
3		
4	s5	
5		
6	s5	
7	s5	
8		s6
9		
10		
44		

State

0

id	+	*	()	\$ Е
s5			s4		1
	s6				
		s7			

Action

GOTO

F

$$\begin{split} \text{If } [\mathcal{A} \to \alpha.] \text{ is in } I_i \\ \text{Action}[i \,,\, a] &= \text{``reduce } \mathcal{A} \to \alpha\text{'`} \text{ for all } \\ a &\in \text{FOLLOW}(\mathcal{A}) \end{split}$$

Statse 0, 4, 6, 7 and 8 does not have any such production

Ctata	Action						GOTO			
State	id	+	*	()	\$	E	Т	F	
0	s5			s4			1	2	3	
1		s6								
2			s7							
3										
4	s5			s4			8	2	3	
5										
6	s5			s4				9	3	
7	s5			s4					10	
8		s6			s11					
9			s7							
10										
11										

State
0

id

s5

s5

s5

+

s6

r2

Action

\$

r2

Ε

F

3

3

GOTO

2

2

If $[A \rightarrow \alpha]$ is in I_i

Action[i, a] = "reduce $A \rightarrow a$ " for all a $\in FOLLOW(A)$

Action[2, +] = "reduce $E \rightarrow T$ " or "r2" Action[2,] = "r2"

Action[2, \$] = "r2"

r2 means reduction by production no 2.

2

3

4

5

6

s7

s4

r2

For all terminals in Follow(E \rightarrow T) in state 2

s4

s4

[Remember, we numbered the productions]

7	s5			s4				10
8		s6			s11			
9			s7					
10								
11								
I		1	1	1	ı	1		1

$$\begin{split} \text{If } [\mathcal{A} \to \alpha.] \text{ is in } I_i \\ \text{Action}[i \text{ , } a] = \text{``reduce } \mathcal{A} \to \alpha\text{'' for all } \\ a \in \text{FOLLOW}(\mathcal{A}) \end{split}$$

For all terminals in Follow($T \rightarrow F$) in state 3 Action[3, +] = "r4"

Action[3, *] = "r4"

Action[3,)] = "r4"

Action[3, \$] = "r4"

	State			Act	tion				GОТО	
		id	+	*	()	\$	E	Т	F
	0	s5			s4			1	2	3
	1		s6							
	2		r2	s7		r2	r2			
	3		r4	r4		r4	r4			
	4	s5			s4			8	2	3
	5									
	6	s5			s4				9	3
	7	s5			s4					10
	8		s6			s11				
	9			s7						
	10									
	11									
		•	1	1	1	1	1			

If $[\mathcal{A} \to \alpha.]$ is in I_i Action $[i\,,\,a]$ = "reduce $\mathcal{A} \to \alpha$ " for all $a \in \mathsf{FOLLOW}(\mathcal{A})$

For all terminals in Follow($F \rightarrow id$) in state 5 Action[5, +] = "r6"

Action[5,)] = "r6"

Action[5, \$] = "r6"

Stata				Ac	tion				дото	
	State	id	+	*	()	\$	E	Т	F
_	0	s5			s4			1	2	3
	1		s6							
	2		r2	s7		r2	r2			
	3		r4	r4		r4	r4			
	4	s5			s4			8	2	3
	5		r6	r6		r6	r6			
	6	s5			s4				9	3
	7	s5			s4					10
	8		s6			s11				
	9			s7						
	10									
_	11									

all terminals in Follow/F \F+T) in state 0

If $[A \rightarrow \alpha]$ is in I_i

Action[9, \$] = "r1"

S	ta	ıt	е
-	-	-	-

0

2

3

5

6

7

8

9

10

11

id

s5

s5

s5

s5

+

s6

r2

r4

r6

s6

r1

Action

s4

\$

Ε

2

9

GOTO

3

F

-	Action[i , a] = "reduce $A \rightarrow a$ " for all a	_
	$\in FOLLOW(A)$	
		-

4

s7

r4

r6

s7

s4

r4

r6

s11

r1

r2

r2 r4

r6

r1

3

3

10

For all terminals in Follow($\square \rightarrow \square + 1$) in state 9	
Action[9, +] = "r1"	

s4

s4

If $[A \rightarrow \alpha]$ is in I_i

For all terminals in Follow($T \rightarrow T^*F$) in state 10

Action[10, +] = "r3" Action[10, *] = "r3"

Sta	te

0

2

3

id s5

s7

r4

r6

s7

r3

+

s6

r2

r4

s4

Action

r2

\$

r2

r4

r1

r3

Ε

8

2

2

9

GOTO

3

F

3

3

10

Action[i , a] = "reduce $A \rightarrow a$ " for all a	_
\in FOLLOW(A)	
	-

4 5

6

7

8

9

10

11

s5

s5

s5

s4

r4

r6

s6

r1

r3

s4

s4

r6

s11

r1

r3

r6

Action[10,)] = "r3"

Action[10, \$] = "r3"

For all terminals in Follow($F \rightarrow (E)$) in state 11

Action[11, *] = "r5"

Action[11,)] = "r5"

State	

0

2

3

id s5

+

s6

r2

r4

s4

Action

\$

r2

r4

r6

r1

r3

r5

2

Ε

8

GOTO

2

9

3

F

3

3

10

If $[\mathcal{A} \to \alpha.]$ is in I_i	
Action[i , a] = "reduce $A \rightarrow a$ " for all a	
$\in FOLLOW(A)$	

4 5

6

7

8

9

10

11

s5

s5

s5

r2

r4

r6

s11

r1

r3

r5

Action[11, +] = "r5"

Action[11, \$] = "r5"

r6

s6

r1

r3

r5

r6

s7

r3

r5

s7

r4

s4

s4

s4

All empty entries are "error" case.

0

State

2

3

4

5

6

7

8

9

10

11

id

s5

s5

s5

s5

s7

r4

r6

s7

r3

r5

+

s6

r2

r4

r6

s6

r1

r3

r5

s4

s4

s4

s4

Action

GOTO

2

9

F

3

3

3

10

\$

acc

r2

r4

r6

r1

r3

r5

r2

r4

r6

s11

r1

r3

r5

Ε

If $[S' \rightarrow S]$ is in I_i Action[i, \$] = "accept"

Action[1, \$] = "accept"

LR(0) parser: Parsing an input string

SLR parsing algorithm

- 1. Let a be the first symbol in w\$
- 2. Repeat
 - a. Let s be the state on top of the stack
 - b. If Action[s, a] == s#t
 - i. Push t on to the stack
 - ii. Let a be the next symbol
 - c. Else if Action[s, a] == reduce $A \rightarrow B$
 - i. Pop |B| symbols off the stack
 - ii. Push GOTO[t, A] on to the stack
 - iii. Output production $A \rightarrow B$
 - d. Else if Action[s, a] == "accept"
 - i. Halt
 - e. Else
 - i. Error: Call error handler

SLR parsing

Input: id * id + id

Stack 0 0.5 0.3 02 027 0275 0 2 7 10 0.2 0 1 0 1 6 0165 0 1 6 3 0169

0 1

Symbol id F T * id T * F Ε E + E + idE + FE + TΕ

```
Input
  id * id + id $
      id + id $
          id $
```

Action Shift Reduce $F \rightarrow id$ Reduce $T \rightarrow F$ Shift Shift Reduce $F \rightarrow id$ Reduce $T \rightarrow T * F$ Reduce $E \rightarrow T$ Shift Shift Reduce $F \rightarrow id$ Reduce $T \rightarrow F$ Reduce $E \rightarrow E + T$ Accept

LR(0) Automation: Another example

Grammar G:
$$S \rightarrow L = R \mid R$$

 $L \rightarrow *R \mid id$
 $R \rightarrow I$

Construct SLR parser for the above grammar

$$I_{0}: S' \rightarrow .S$$

$$S \rightarrow .L = R$$

$$S \rightarrow .R$$

$$L \rightarrow .*R$$

$$L \rightarrow .id$$

$$R \rightarrow .L$$

$$I_{4}: S' \rightarrow S.$$

```
I_{2}: S \rightarrow L \cdot = R
R \rightarrow L \cdot
I_{3}: S \rightarrow R \cdot
I_{4}: L \rightarrow * \cdot R
R \rightarrow \cdot L
L \rightarrow \cdot * R
L \rightarrow \cdot id
```


Parsing table entry for state 2

Action[2, =] = "shift 6" or "reduce $R \rightarrow L$ "?

SLR(1) grammar

- If any cell in the parsing table has multiple entries, then
 - Grammar is not SLR(1) or LR(0)

Grammar G:

$$S \rightarrow L = R \mid R$$

 $L \rightarrow *R \mid id$
 $R \rightarrow L$

- Every SLR(1) grammar is unambiguous.
- But, there are many unambiguous grammar that are not SLR(1)

LR(0) Automation: Another example - 2

Grammar G: $S \rightarrow AaAb \mid BbBa$ $A \rightarrow \varepsilon$ $B \rightarrow \varepsilon$

Construct SLR parser for the above grammar

Follow(A) =
$$\{a, b\}$$

Follow(B) = $\{a, b\}$

More Powerful LR Parsers

LR(1) and LALR parsers

- Canonical LR or LR(1) parser
 - Makes full use of lookahead symbols, i.e., both First() and Follow() symbols
 - Recall, LR(0) uses only Follow() symbols

- Lookahead LR or LALR parser
 - Inclusion of lookahead symbols in LR(0) sets of items
 - Can handle more grammars than SLR method
 - LALR tables are no bigger than the SLR tables
 - Fewer states than typical LR(1) parser

SLR vs LR(1)

- Reduction during parsing in SLR
 - Stack($\beta \alpha$) \Rightarrow Stack(βA) if we had [$A \rightarrow \alpha$.]
- What if, βA is not followed by a in right-sentential form
 - \circ Reduction $A \rightarrow \alpha$ is invalid
- E.g.:
 - Grammar G: $S \rightarrow L = R \mid R$ $L \rightarrow *R \mid id$ $R \rightarrow I$
 - If we apply "reduce $R \rightarrow L$ " on Action[2, =] "L = ..." \Rightarrow "R = ..."
 - \circ However, there is no right-sentential form of the grammar the begins with " $R = \dots$ "

Building LR(1) parser: Canonical set of items

Canonical LR(1) Items

- General form of an LR(1) item is $[A \rightarrow \alpha \cdot \beta, a]$
 - \circ $A \rightarrow \alpha\beta$ is a production, and
 - a is a lookahead terminal symbol or endmarker \$
- Lookahead symbol has no effect in an item of the form $[A \to \alpha \cdot \beta, a]$, where β is not ε
- Lookahead symbol is required during the reduction only
 - We reduce $[A \rightarrow \alpha, a]$, only if the next input symbol is a

Computation of the canonical LR(1) collection

Items(G')

- 1. $C = \text{Closure}(\{[S' \rightarrow .S, \$]\})$
- 2. Repeat
 - **a**. For each set of items I in C
 - i. For each grammar symbol X
 - 1. If GOTO(I, X) is not empty and not in C
 - i. Add GOTO(I, X) to C
- 3. Until no new sets of items are added to C

Closure(I)

- 1. Repeat
 - a. For each items $[A \rightarrow \alpha.B\beta, a]$ in I
 - i. For each production $B \rightarrow \gamma$ in G
 - 1. For each terminal b in FIRST (βa)
 - i. Add $[B \rightarrow .\gamma, b]$
- 2. Until no new items are added to I

GOTO(I, X)

- 1. For each items $[A \rightarrow \alpha \cdot X \beta, a]$ in I
 - a. Add item $[A \rightarrow \alpha X \cdot \beta, a]$ to J
- 2. return Closure(*J*)

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c \ C$

```
S' \rightarrow .S, $
S \rightarrow .CC, $
C \rightarrow .cC, c/d
C \rightarrow .d, c/d
```

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c \ C$ **3**: $C \rightarrow d$

$$S' \rightarrow .S, \$$$
 $S \rightarrow .CC, \$$
 $C \rightarrow .cC, c/d$
 $C \rightarrow .d, c/d$
 I_0

 $S' \rightarrow .S, \$$ $S \rightarrow .CC, \$$ $C \rightarrow .cC, c/d$ $C \rightarrow .d, c/d$ I_0 $S' \rightarrow S., \$$ I_1 $S \rightarrow C. C, \$$ $C \rightarrow .cC, \$$ $C \rightarrow .cC, \$$ $C \rightarrow .d, \$$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC \qquad \qquad \mathbf{2} \colon C \to c \ C$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC \qquad \qquad \mathbf{2} \colon C \to c \ C$

 $\mathbf{0} \colon S' \to S$ **1:** $S \rightarrow CC$

2: $C \rightarrow c C$

 $C \rightarrow c$.C, c/d

 $C \rightarrow .cC$, c/d $C \rightarrow .d$, c/d

 $C \rightarrow d$., c/d

 $S \rightarrow CC_{\bullet}$, \$

1: $S \rightarrow CC$

 $\mathbf{0} \colon S' \to S$

2: $C \rightarrow c C$

 $C \rightarrow c$.C, c/d $C \rightarrow .cC$, c/d $C \rightarrow d$, c/d

 $C \rightarrow d$, c/d

 $\mathbf{0} \colon S' \to S$

1: $S \rightarrow CC$

2: $C \rightarrow c C$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c C$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c C$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c C$

 $\mathbf{0} \colon S' \to S \qquad \qquad \mathbf{1} \colon S \to CC$

2: $C \rightarrow c C$

Building LR(1) parser: Parsing table

Constructing LR(1) parsing table

LR(1)-Table(G')

- 1. Construct LR(1) collection for the grammar G'
- 2. Let I_i represents state S_i , then the parsing action for state $\ i$ are as follows
 - a. If $[A \to \alpha.a\beta, b]$ is in I_i and $GOTO(I_i, a) = I_j$
 - i. Action[i, a] = "shiftj"
 - b. If $[A \rightarrow \alpha_{\bullet}, b]$ is in I_i
 - i. Action[i, b] = "reduce $A \rightarrow \alpha$ "
 - c. If $[S' \rightarrow S_{\cdot}, \$]$ is in I_i
 - i. Action[i, \$] = "accept"
- 3. For all non-terminals A,
 - a. if $GOTO(I_i, A) = I_i$,
 - i. GOTO[i, A] = j

Rule 3: For all non-terminals A, if $\mathrm{GOTO}(I_i,A)=I_j$, then $\mathrm{GOTO}[i,A]=j$

GOTO[0, S] = 1 GOTO[0, C] = 2 GOTO[2, C] = 5 GOTO[3, C] = 8 GOTO[6, C] = 9

		Action	GОТО	
State	С	d	\$ S	С
0			1	2
1				
2				5
3				8
4				
5				
6				9
7				
8				
9				

Rule 2a: If $[A \rightarrow \alpha.a\beta, \ b]$ is in I_i and $GOTO(I_i, a) = I_j$ Action[i, a] = "shift j" or "s j"

Action[0, c] = s3Action[0, d] = s4 $0: S' \to S \qquad 1: S \to CC \qquad 2: C \to c \quad C \qquad 3: C \to d$

Stata		Action	gото		
State	С	d	\$	s	С
0	s3	s4		1	2
1					
2					5
3					8
4					
5					
6					9
7					
8					
9					

Rule 2a: If $[A \to \alpha.a\beta, \ b]$ is in I_i and $GOTO(I_i, a) = I_j$ Action[i, a] = "shift j" or "s j"

Action[2, c] = s6 Action[2, d] = s7

21.1	Action			дото	
State	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3					8
4					
5					
6					9
7					
8					
9					

Rule 2a: If $[A \to a.a\beta, b]$ is in I_i and $GOTO(I_i, a) = I_j$ Action[i, a] = "shift j" or "s j"

Action[3, c] = s3Action[3, d] = s4

04-4-	Action			gото	
State	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3	s3	s4			8
4					
5					
6					9
7					
8					
9					

Rule 2a: If $[A \to a.a\beta, b]$ is in I_i and $GOTO(I_i, a) = I_j$ Action[i, a] = "shift j" or "s j"

Action[6, c] = s6Action[6, d] = s7

04-4-	Action			gото	
State	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3	s3	s4			8
4					
5					
6	s6	s7			9
7					
8					
9					

Rule 2b: If $[A \to \alpha, b]$ is in I_i Action[i, b] = "reduce $A \to \alpha$ "

Action[4, c] = r3Action[4, d] = r3

•	Action			GОТО		
State	С	d	\$	S	С	
0	s3	s4		1	2	
1						
2	s6	s7			5	
3	s3	s4			8	
4	r3	r3				
5						
6	s6	s7			9	
7						
8						
9						
'	-			•		

Rule 2b: If $[A \to \alpha$, b] is in I_i Action[i, b] = "reduce $A \to \alpha$ "

Action[5, \$] = r1

State	Action			GОТО	
	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7					
8					
9					
3 4 5 6 7	s3 r3	s4 r3	r1		8

Rule 2b: If $[A \to \alpha$, b] is in I_i Action[i, b] = "reduce $A \to \alpha$ "

Action[7, \$] = r3

$0 \colon S' \to S$	1: $S \rightarrow CC$	2 : $C \rightarrow c \ C$	3 : $C \rightarrow d$
---------------------	------------------------------	----------------------------------	------------------------------

State	Action			GOTO	
State	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8					
9					
	•	'		•	

Rule 2b: If $[A \to \alpha, b]$ is in I_i Action[i, b] = "reduce $A \to \alpha$ "

Action[8, c] = r2Action[8, d] = r2

	_						
21.1		Action			GОТО		
State	С	d	\$	S	С		
0	s3	s4		1	2		
1							
2	s6	s7			5		
3	s3	s4			8		
4	r3	r3					
5			r1				
6	s6	s7			9		
7			r3				
8	r2	r2					
9							
	•	'	'	•			

Rule 2b: If $[A \to \alpha, b]$ is in I_i Action[i, b] = "reduce $A \to \alpha$ "

Action[9, \$] = r2

0444		Action	дото		
State	С	d	\$	S	С
0	s3	s4		1	2
1					
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		

Rule 2c: If $[S' \rightarrow S_{\bullet}, \mbox{\$}]$ is in I_i Action $[i, \mbox{\$}]$ = "accept"

Action[1, \$] = accept

	I			l	
State		Action	GОТО		
	С	d	\$	S	С
0	s3	s4		1	2
1			acc		
2	s6	s7			5
3	s3	s4			8
4	r3	r3			
5			r1		
6	s6	s7			9
7			r3		
8	r2	r2			
9			r2		
	•	I	1	•	1

0: $S' \rightarrow S$ **1**: $S \rightarrow CC$ **2**: $C \rightarrow c$ **3**: $C \rightarrow d$

All empty entries are "error" case.

LR(1) parser: Parsing

LR(1) parsing

- Parsing algorithm for all LR parsers are same.
- Exercise:
 - o Input: "cccdddd"

LALR parsing

- Often used in practice
- Most common syntactic constructs of programming languages can be expressed conveniently by an LALR.
- SLR and LALR tables always have the same number of states
 - Roughly, several hundred states for the C language
- Table size is considerably small than canonical LR or LR(1)
 - Canonical LR has, roughly, several thousand states for the same language.

Constructing LALR parsers

- Canonical set of items for LALR automation
 - \circ Look for the item sets I_i and I_j in LR(1) automation, such that
 - lacktriangle Cores of Item (I_i) == Cores of Item (I_i) , with different lookahead symbols
 - $I_{\Delta} = [C \rightarrow d_{\bullet}, c/d]$
 - $I_7 = [C \to d_1, \$]$
 - Merge the item sets I_i and I_j into I_{ij} , such that
 - Item set I_{ii} contains all items, with lookahead symbols merged
 - $I_{47} = [C \to d_{\bullet}, c/d/\$]$

LALR Automation

0: $S' \rightarrow S$ **1**: $S \rightarrow CC$ **2**: $C \rightarrow c$ C **3**: $C \rightarrow d$

LR Automation

LALR Automation

LALR parsing table

 $\mathbf{0} \colon S' \to S \qquad \mathbf{1} \colon S \to CC \qquad \mathbf{2} \colon C \to c \quad C \quad \mathbf{3} \colon C \to d$

	Action	GОТО		
С	d	\$	S	С
s3	s4		1	2
		acc		
s36	s47			5
s36	s47			89
r3	r3	r3		
		r1		
r2	r2	r2		
	s3 s36 s36 r3	c d s3 s4 s36 s47 s36 s47 r3 r3	c d \$ s3 s4 acc s36 s47 s36 s47 r3 r3 r3 r1	c d \$ s3 s4 1 acc 36 s47 s36 s47 3 r3 r3 r3 r1 r1

LALR grammar

Its possible to introduce reduce/reduce conflicts during merger

$$\begin{split} I_1 &= \{ [\mathcal{A} \rightarrow \alpha \text{. , a}], \, [B \rightarrow \beta \text{. , b}] \} \\ &\Rightarrow \quad I_{12} &= \{ [\mathcal{A} \rightarrow \alpha \text{. , a/b}], \, [B \rightarrow \beta \text{. , b/c}] \} \end{split}$$

Action(12, b) = reduce with A or B??

- Cannot introduce a shift/reduce conflict
 - Suppose the merged item introduced a shift/reduce conflict, e.g., on symbol a $I_{34} = \{[A \to \alpha ., a/b], [B \to \beta .a \gamma, b/c]\}$ Action(34, a) = shift / reduce?
 - This means that we had two items in the LR(1) set as

$$I_3 = \{[A \rightarrow \alpha., a], [B \rightarrow \beta.a \gamma, b]\}$$
 $I_4 = \{[A \rightarrow \alpha., b], [B \rightarrow \beta.a \gamma, c]\}$

- Observe, there is a shift/reduce conflict prior to the merge operation, i.e., the original grammar was not LR(1).
- Grammar is LALR(1), if no conflicts are introduced

Parser and Ambiguous grammar

LR parsers for Ambiguous grammars

- Grammars for the construction of LR-parsing tables must be unambiguous
- Can we create LR-parsing tables for ambiguous grammars?
 - Yes, but they will have conflicts
 - What if, we can resolve these conflicts in favor of one of them to disambiguate the grammar?
 - At the end, we will have again an unambiguous grammar
- Why we want to use an ambiguous grammar?
 - Some of the ambiguous grammars are much natural, and a corresponding unambiguous grammar can be very complex
 - Usage of an ambiguous grammar may eliminate unnecessary reductions
 - $E \Rightarrow T \Rightarrow F \Rightarrow id$ (using unambiguous expression-grammar)
 - \blacksquare E \Rightarrow id (using ambiguous expression-grammar)

 $\mathbf{0} \colon E' \to E$

4: $E \rightarrow id$

1: $E \rightarrow E + E$

2: $E \to E *E$

3: $E \rightarrow (E)$

SLR parsing table

State		GОТО					
	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		s4/r1	s5/r1		r1	r1	
8		s4/r2	s5/r2		r2	r2	
9		r3	r3		r3	r3	

LR parsers for Ambiguous grammars

Why ambiguity is a problem? We have a decision to make and not sure which parse tree to pick?

- Ambiguous grammars G: $E \rightarrow E + E \mid E * E \mid (E) \mid id$
- We can have two parse trees for an input
 - Input 1: id + id + idP1: $E \Rightarrow E + E \Rightarrow id + E \Rightarrow id + E + E \Rightarrow id + id + E \Rightarrow id + id + id$
 - Input 2: id * id * id
 - P1: $E \Rightarrow E * E \Rightarrow id * E \Rightarrow id * E * E \Rightarrow id * id * E \Rightarrow id * id * id$
 - P2: $E \Rightarrow E * E \Rightarrow E * E * E \Rightarrow id * E * E \Rightarrow id * id * E \Rightarrow id * id * id$

P2: $E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow id + E + E \Rightarrow id + id + E \Rightarrow id + id + id$

- Input 3: id + id * id
 - P1: $E \Rightarrow E + E \Rightarrow id + E \Rightarrow id + E * E \Rightarrow id + id * E \Rightarrow id + id * id$
 - P2: $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow id + E * E \Rightarrow id + id * E \Rightarrow id + id * id$
- Input 4: id * id + id
 - P1: $E \Rightarrow E * E \Rightarrow id * E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow id * id + id$
 - P2: $E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow id * id + id$

Computation-wise, which parse tree is correct?

Input 1:

Either P1 or P2

Input 2:

Either P1 or P2

Input 3:

P1

Input 4:

P2

Reason?

Operation '*' has precedence over operator '+'

LR parsers for Ambiguous grammars

- In the parsing-table of an ambiguous grammars, if we can explicitly resolve the conflicts, then the processing of parsing remains unambiguous
 - E.g.,
 - We can look for the precedence of operators for the conflict resolution, 'OR'
 - We can look for the associativity of operators for the conflict resolution

In state 7, we have shift/reduce conflicts for symbols + and *

$$I_0 \stackrel{\underline{E}}{\Rightarrow} I_1 \stackrel{+}{\Rightarrow} I_4 \stackrel{\underline{E}}{\Rightarrow} I_7$$

If current input symbol is +

Shift \rightarrow if + right associative

Reduce → if + left associative

If current input symbol is *

Shift \rightarrow if * has higher precedence over +

Reduce→ if + has higher precedence over *

In state 8, we have shift/reduce conflicts for symbols + and *

$$I_0 \stackrel{\underline{E}}{\Rightarrow} I_1 \stackrel{*}{\Rightarrow} I_4 \stackrel{\underline{E}}{\Rightarrow} I_7$$

If current input symbol is *

Shift → if * right associative

Reduce → if * left associative

If current input symbol is +

Shift \rightarrow if + has higher precedence over *

Reduce→ if * has higher precedence over +

SLR parsing table

Conflict-free parsing table for ambiguous grammar.

04-4-		GОТО					
State	id	+	*	()	\$	E
0	s3			s2			1
1		s4	s5			acc	
2	s3			s2			6
3		r4	r4		r4	r4	
4	s3			s2			7
5	s3			s2			8
6		s4	s5		s9		
7		r1	s5		r1	r1	
8		r2	r2		r2	r2	
9		r3	r3		r3	r3	