EFC 2

Cláudio Ferreira Carneiro - RA 263796 20 de Outubro de 2019

1 Parte 1 – Classificação binária

O código referente às atividades se encontra no repositório: https://github.com/carneirofc/IA006.git

1.1 a) Características dos atributos de entrada

Os histogramas dos atributos em sua forma original são apresentados nas figuras 1, 2 e 3. A correlação dos atributos é apresentada na forma de um *heatmap*, figura 4, e por gráficos de dispersão, 5, sendo que a diagonal principal da matriz de gráficos de dispersão (figura 5) é exibido o histograma do atributo apresentado

Percebe-se que determinados atributos apresentam alto grau de correlação.

Figura 1: Classificação binária: Histograma dos atributos (1)

Figura 2: Classificação binária: Histograma dos atributos $\left(2\right)$

Figura 3: Classificação binária: Histograma dos atributos (3)

Figura 4: Classificação binária: Mapa de calor da correlação dos atributos

Figura 5: Classificação binária: Correlação dos atributos em gráfico de dispersão

b) Curva ROC e F_1 -medida 1.2

É utilizado o método Z-score para normalização dos dados. Tal método foi escolhido pois favorece o progresso de algoritmos baseados no gradiente descendente, uma vez que deixa as curvas de nível da superfície de erro mais circulares.

O processo de treinamento tem como critério de parada a variação da função de custo. Quando o decréscimo por década do custo for inferior a 10^{-8} é terminado o processo de treinamento.

Parâmetros de treinamento, sendo η a taxa de aprendizagem e tol o limiar para o término do processo:

$$\eta = 10^{-2} \tag{1}$$

$$\eta = 10^{-2}$$
 $tol = 10^{-8}$
(1)

A curva ROC é obtida consideranto o rótulo 1 como classe positiva.

Figura 6: Classificação binária: Curva ROC relativa aos dados de Teste

Figura 7: Classificação binária: F_1 -medida relativa aos dados de Teste

1.3 c) Melhor threshold, matriz de confusão e acurácia

Para a escolha do valor de threshold será utilizada a F_1 -medida, de forma que o recall e a precisão do classificador tenham a mesma importância.

Conforme apresentado na figura 7, o valor de threshold para máxima F_1 -medida é obtido com:

$$threshold = 0.657 (3)$$

$$F_1 - medida \approx 0.9757 \tag{4}$$

Classe Estimada

		reminino	Masculino
\mathbf{Classe}	Feminino	1245	22
Verdadeira	Masculino	39	1228

Tabela 1: Matriz de confusão para o threshold de 0.657

	Precisão	Recall	F1-medida	Amostras
Feminino	0.969626	0.982636	0.976088	1267
Masculino	0.982400	0.969219	0.975765	1267
Média	0.976013	0.975927	0.975926	2534
Média ponderada	0.976013	0.975927	0.975926	2534

Tabela 2: Desempenho do classificador para o threshold de 0.657

Utilizando o threshold que maximiza a F_1 -medida, a classificação do dataset de testes é apresentada conforme a matriz de confusão 1. O classificador apresentou acurácia de aproximadamente 0.975927. Outras medidas de desempenho como precisão, recall e F_1 -medida são apresentadas na tabela 2. As medidas de desempenho são apresentadas por rótulo (Masculino e Feminino), na forma de uma média e como média ponderada pelo número de amostras de cada classe.

2 Parte 2 – Classificação multi-classe

Será abordado um problema de classificação multi-classe com os rótulis apresentados na tabela 3 e 561 atributos.

2.1 a) Regressão logística

Para a classificação multi-classe é adotada a softmax, sendo gerado um modelo capaz de produzir Q saídas que representam a probabilidade do padão pertencer a uma classe específica. Tal modelo apresenta maior robustez que as abordagens "um-contra-todos" e "um-contra-um".

Na etapa de pré-processamento dos dados, o dataset de entrada foi normalizado utilizado a z-score e os rótulos (dataset de saída) transformados com o processo de one hot encoding. A matriz de pesos \mathbf{w} utilizada na regressão é inicializada através de uma distribuição uniforme na faixa de]-1,+1[.

Ao término do processo de treinamento, o modelo classifica corretamente 98,89% dos padrões de treinamento.

0	1	2	3	4	5
Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado

Tabela 3: Rótulos

 \mathbf{A} matriz de confusão apresentada na tabela 4 foi obtida com o teste do modelo.

	Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado
Caminhada	479	8	9	0	0	0
Subindo Escadas	8	460	3	0	0	0
Descendo Escadas	11	33	376	0	0	0
Sentado	0	2	0	428	58	3
Em pé	0	0	0	16	516	0
Deitado	0	0	0	0	24	513

Tabela 4: Regressão Logística: Matriz de confusão, dataset testes com o modelo explorando a função softmax.

	Precisão	Recall	F1-medida	Medidas
Caminhada	0.961847	0.965726	0.963783	496
Subindo	0.914513	0.976645	0.944559	471
Escadas	0.914515	0.970045	0.944559	4/1
Descendo	0.969072	0.895238	0.930693	420
Escadas	0.909072	0.090200	0.950095	420
Sentado	0.963964	0.871690	0.915508	491
Em pé	0.862876	0.969925	0.913274	532
Deitado	0.994186	0.955307	0.974359	537
Acurácia			0.940618	2947
Média macro	0.944410	0.939089	0.940363	2947
Média ponderada	0.943691	0.940618	0.940761	2947

Tabela 5: Regressão Logística: Métricas de desempenho do classificador.

Será adotada como métrica para avaliação de desempenho a F_1 – score macro, por dar a mesmam importância para a precisão e o recall do estimador além de tratar de forma igualitária todas as classes.

2.2 b) kNN

Para o uso do kNN é feito o pré-processamento do dataset de entrada, que é normalizado utilizando a z-score. O melhor número de vizinhos k é encontrado com o uso da técnica de validação cruzada K-Fold, com 5 folds. Na implementação do kNN, cada vizinho contribui de forma igualitária à decisão final, ou seja, o peso de cada vizinho é igual.

É utilizada a distância de Minkowski de ordem p=2 (equação 5), a distância Euclidiana (equação 6).

$$\left(\sum_{i=1}^{K} |x_i - y_i|^p\right)^{\frac{1}{p}} \tag{5}$$

$$\left(\sum_{i=1}^{K} |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$\sqrt{\sum_{i=1}^{K} |x_i - y_i|^2}$$
(5)

O melhor resultado de classificação na validação cruzada é obtido com k=26vizinhos, conforme é mostrado no gráfico 8. A figura 8 apresenta o valor médio da quantidade de estimações incorretas obtidos nos 5 folds para k vizinhos.

Figura 8: kNN: Média das estimações incorretas dos K-Folds para k vizinhos

Ao término da etapa de testes é obtida a matriz de confusão 6 e as métricas de desempenho mostradas na tabela 7.

	Caminhada	Subindo Escadas	Descendo Escadas	Sentado	Em pé	Deitado
Caminhada	489	2	5	0	0	0
Subindo Escadas	49	419	3	0	0	0
Descendo Escadas	67	59	294	0	0	0
Sentado	0	2	0	387	100	2
Em pé	0	0	0	21	511	0
Deitado	0	0	0	10	18	509

Tabela 6: kNN: Matriz de confusão.

	Precisão	Recall	F1-medida	Medidas
Caminhada	0.808264	0.985887	0.888283	496
Subindo Escadas	0.869295	0.889597	0.879328	471
Descendo Escadas	0.973510	0.700000	0.814404	420
Sentado	0.925837	0.788187	0.851485	491
${f Em}{f p\acute{e}}$	0.812401	0.960526	0.880276	532
Deitado	0.996086	0.947858	0.971374	537
Acurácia			0.885307	2947
Média macro	0.897566	0.878676	0.880859	2947
Média ponderada	0.896129	0.885307	0.883887	2947

Tabela 7: kNN: Métricas de desempenho na etapa de testes.

O kNN apresentou desempenho inferior à regressão logística quando a F1-medida macro é a métrica a ser maximizada. A regressão logística também apresentou maior precisão, recall, acurácia e F1-medida. Tal resultado se manteve com as métricas ponderadas pelo número de amostras nas classes ou não.

		Precisao	Recall	F1-medida	Acurácia
Regrassão	Média macro	0.944410	0.939089	0.940363	0.940618
Logística	Média ponderada	0.943691	0.940618	0.940761	0.940010
kNN	Média macro	0.897566	0.878676	0.880859	0.885307
KININ	Média ponderada	0.896129	0.885307	0.883887	0.000307

Tabela 8: Comparativo de desempenho da classificação feita pela regressão logística e pela kNN $(k=26, \, {\rm pesos~uniformes})$.