

# Taller 08, Diferencia de cuadrados y cubos Álgebra 8°



Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

| Nombre: | _Curso: | Fecha: |
|---------|---------|--------|
|         |         |        |
|         |         |        |

## Guía

A continuación se explican dos casos de factorización a abordar en este taller.

#### Diferencia de cuadrados

Se presenta como su nombre lo indica cuando existe una diferencia entre dos cantidades o expresiones que son cuadrados perfectos y se factoriza según el siguiente patrón:

$$a^2 - b^2 = (a - b)(a + b)$$

Siempre que se tenga una diferencia de cuadrados perfectos, se factoriza como una suma por una diferencia de sus raíces.

#### Ejemplo 1

Factorizar  $x^2 - 16$ 

Se observa que tanto  $x^2$  como 16 son cuadrados perfectos, ya que  $x^2$  es el cuadrado de x y 16 es el cuadrado de 4. Luego factorizamos así:

$$x^{2} - 16 = x^{2} - 4^{2}$$
$$= (x - 4)(x + 4)$$

Diferencia de cuadrados suma por diferencia

### Ejemplo 2:

Factorizar  $4x^2 - 9y^2$ 

Nuevamente observamos que tanto 4 como  $x^2$  son cuadrados perfectos, así como 9 y  $y^2$ . Más específicamente podemos asumir que  $4x^2$  es el cuadrado de 2x y que  $9y^2$  es el cuadrado de 3y. Así que factorizamos así:

$$4x^2 - 9y^2 = 2^2x^2 - 3^2y^2$$
 Cada término es cuadrado perfecto 
$$= (2x)^2 - (3y)^2$$
 Se expresa como Diferencia de cuadrados 
$$= (2x - 3y)(2x + 3y)$$
 Se factoriza

# Quiz conceptual

Para los siguientes enunciados escriba V o F según corresponda.

- a. Un binomio que tiene dos cuadrados perfectos que se restan es una diferencia de cuadrados.
- b. La suma de dos cuadrados es factorizable usando enteros.
- c. La suma de dos cubos se puede factorizar usando enteros.
- d. La diferencia de dos cuadrados es factorizable.
- e. La diferencia de dos cubos es factorizable
- f. Para factorizar es aconsejable inspeccionar que se pueda aplicar factor común en primera instancia.
- g. El polinomio  $4x^2 + y^2$  se factoriza como (2x + y)(2x + y)
- h. La factorización completa de  $y^4 81$  es  $(y^2 + 9)(y^2 9)$
- i. La ecuación  $x^2 = -9$  no tiene soluciones reales.
- j. La ecuación abc = 0 si y sólo sí a = 0

# **Ejercicios**

Factorice usando el caso diferencia de cuadrados.

1. 
$$x^2 - 9$$

$$2.4x^2 - 49$$

3. 
$$x^2 - 64y^2$$

4. 
$$x^2u^2 - a^2b^2$$

5. 
$$x^6 - 9y^2$$

6. 
$$25 - 49n^2$$

7. 
$$(3x+5y)^2-y^2$$

8. 
$$x^2 - (y-5)^2$$

9. 
$$16s^2 - (3t+1)^2$$

10. 
$$(x-1)^2 - (x-8)^2$$

Factorice cada uno de los siguientes polinomios completamente. Indique cuáles no son factorizables usando coeficientes enteros. No olvide los casos vistos antes, como "factor común"

11. 
$$8x^2 - 72$$

$$8x^2 - 72 17. 20x^3 + 45x$$

12. 
$$7x^2 + 28$$
  
13.  $5u^2 - 80$ 

18. 
$$12x^3 - 27xy^2$$
  
19.  $1 - 16x^4$ 

14. 
$$x^3y^2 - xy^2$$

15. 
$$x^4 - 16$$

20. 
$$20x - 5x^3$$

21. 
$$9x^2 - 81y^2$$

16. 
$$4x^2 + 9$$

22. 
$$2x^5 - 162x$$

Para los siguientes ejercicios, use la suma o diferencia de cubos para factorizar.

23. 
$$a^3 - 27$$

26. 
$$1 - 8x^3$$

24. 
$$x^3 + 8$$

27. 
$$125x^3 + 27y^3$$

25. 
$$8x^3 + 27y^3$$

28. 
$$x^6 + y^6$$

Para los problemas siguientes, encuentre todos los números reales que son solución de cada ecuación.

29. 
$$x^2 - 1 = 0$$

33. 
$$54 - 6x^2 = 0$$

$$30. \ 4y^2 = 25$$

34. 
$$x^5 - x = 0$$

31. 
$$3x^2 - 108 = 0$$
  
32.  $4x^3 = 64x$ 

$$35. \ 4x^3 + 12x = 0$$

Para los problemas siguientes, plantee una ecuación y soluciónela para resolver el problema.

- 36. El cubo de un número es igual a su cuadrado. Encuentre el número
- 37. La suma de las áreas de dos cuadrados es  $26 m^2$ . El lado del cuadrado grande es cinco veces el lado del cuadrado pequeño. Encuentre las dimensiones de cada cuadrado.

- 38. Suponga que el largo de un rectángulo es  $1\frac{1}{3}$  veces su ancho. El área del rectángulo es  $48~cm^2$ . Encuentre el largo y ancho del rectángulo.
- 39. La superficie total de un cono circular recto es  $108\pi$  cm<sup>2</sup>. Si la altura del cono es dos veces la longitud del radio de la base, encuentre la longitud del radio.
- 40. La altura de un triángulo es  $\frac{1}{3}$  la longitud del lado sobre el que se dibuja la altura. Si el área del triángulo es 6 cm², encuentre su altura.