

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคการเรียนที่ 1 ปีการศึกษา 2554

วิชา ENE 326 Electronics Communication Engineering.

นศ.ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชั้นปีที่ 3

โดรงการปกติ และสองภาษา

สอบวันที่ 21 กรกฎาคม พ.ศ.2554

เวลา 09.00 – 12.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 6 ข้อ 12 หน้า เต็ม 100 คะแนน ทำทุกข้อลงในข้อสอบ และ กระคาษคำตอบหน้า11
- 2. อนุญาตให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัยได้
- 3. ไม่อนุญาตให้นำเอกสารและตำราเข้าห้องสอบ
- 4. สมการที่จำเป็นอยู่ในหน้า 12

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ชื่อ นามสกุล	รหัส	เลขที่นั่ง

ผู้ช่วยศาสตราจารย์ ชนินทร์ วงศ์งามขำ ผู้ออกข้อสอบ

โทร 02 470 9070

ข้อสอบนี้ใค้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

รศ. คร. วุฒิชัย อัศวินชัยโชติ

OD OM

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

ชื่อ-นามสกุล	รหัสภาควิชาภาควิชาภาควิชาภาควิชา
1. มีข้อย่อย 40 ข้อ จงเลือกทำเครื่องหมาย กากะ	บาท X ทับตัวเลือกที่ต้องการเพียงตัวเลือกเคียว ในกระคาษคำตอบหนึ้น ำ สุดท้าย
(ข้อละ 1 คะแนน)	
1. ย่านความถี่ที่สามารถสื่อสารได้ไกลเกินขอบฟ้	า โดยกลื่นเดินทางแบบ skywave
ก. MF	v. HF
ค. VHF	1. UHF
2. สายอากาศของเครื่องรับวิทยุทำหน้าที่ใด	
ก. เป็นความต้านทานขาเข้าของเครื่องรั	ับ ข. เปลี่ยนกระแสให้เป็นแรงคัน
ค. เปลี่ยนคลื่นแม่เหล็กไฟฟ้าให้เป็นกระ	ะแสและแรงคัน ง. เปลี่ยนคลื่นวิทยุให้เป็นแรงคัน
3. กำหนด BW.= 5 MHz ,Temp. 30 celcius,สาม	มารถคำนวณได้กำลังของ thermal noise ที่ขาเข้าเท่ากับ
ก. 0.02 pW.	¶. 2.0pW.
ค. 0.2pW.	1. 20 pW.
4. ถ้าเครื่องรับวิทยุข้อ 3)มีความต้านทานขาเข้าเ	ท่ากับ 75 Ohms สามารถคำนวณค่าแรงคัน thermal noise ที่ขาเข้าได้เท่ากับ
ก. 2.05uV.	V. 2.24uV.
ค. 2.25uV.	4. 2.50uV.
5. สัญญาณ AM มีกำลังทั้งหมค 30 W มีเปอร์เซ	นต์การผสมสัญญาณ 100 % จะมีกำลังในไซค์แบนค์ทั้งสองรวมเท่ากับ
n. 10W.	ข. 12W.
ค. 12.5W.	4. 15W.
6. ในระบบวิทยุกระจายเสียงแบบเอฟเอ็ม มีการ	รป้องกันการเบี่ยงเบนความถี่เกินกำหนด โดย
ก. กำหนดขนาคสัญญาณเข้าไม่ให้เกินค	าที่กำหนด
ข. กำหนด m _เ ที่ไม่สูงเกินไป	
ค. ใช้วงจรควบคุมความแรงสัญญาณอัต	าโนมัติ
้ง. กำหนดช่วงความถี่การ์คไว้	
7. over modulation ในระบบเอเอ็มมีผลในการส	ขึ้อสารอย่างไร
ก. ทำให้เกิคความเพี้ยนของสัญญาณ	ข. ทำให้เกิดความถี่แปลกปลอม
ค. ทำให้คลื่นพาห์ถูกหักล้าง	ง. ทำให้ไซค์แบนค์ลคลงค้านหนึ่ง
8. เครื่องส่งเอเอ็มผสมที่ คัชนีการผสมสูงสุด เ	เละมีกำลังทั้งหมด 1.5 Watts เมื่อแปลงเป็นแบบ SSB โดยใช้ฟิลเตอร์ที่ไม่มีการ
สูญเสีย จะมีกำลังเท่ากับ	
ก. เท่าเดิม 1.5 Watts	ข. เพิ่มขึ้นเป็น 4.5 Watts
ค. ลคลงเป็น 0.25 Watts	ง. ไม่มีข้อใคถูก

ชื่อ-นามสกุล	รหัส ภาควิ ธากับกับกับกับกับกับกับกับกับกับกับกับกับก	
9. ในระบบที่มีการแมทช์อิมพีแคนซ์ เมื่อป้อนกำล	รัง RF 1 W เข้าสายนำสัญญาณที่มีการสูญเสีย 17 dB จงคำนวณค่ากำลัง RP 1	
เหลือที่ทางออก ?	, , , , , , , , , , , , , , , , , , ,	
ก. 0.020W	ข. 0.01W	
ค. 0.05W	U. 1.00W	
10. การผสมสัญญาณแบบเอเอ็มที่ระคับต่ำ(low l	evel modulation) มีการใช้งานร่วมกับวงจรใค	
ก. วงจรขยายแบบจูนเลือกความถึ่	ข. วงจรขยายแบบลิเนียร์	
ค. วงจรบัฟเฟอร์	ง. ไม่มีข้อใคถูก	
11. คลื่นพาห์ 2Vpp ผสมแบบ AM กับคลื่นเสียง	รูปซายน์ ใค้สัญญาณช่วงต่ำสุค 0Vpp สัญญาณช่วงสูงสุคจะมีขนาคเท่ากับ	
n. 3Vpp	ข. 4Vpp	
ค. 5Vpp	1 . 6Vpp	
ุง2. ระบบ DSB SC มีวัตถุประสงค์หลักในการทำ	าลักษณะของการส่งสัญญาณคั้งกล่าวในเรื่องใค	
ก. เพิ่มประสิทธิภาพเรื่องกำลัง	ข. ลคความกว้างของแถบความถึ่	
ค. ลคสัญญาณรบกวน	ง. ไม่มีข้อใคถูก	
13. ระบบวิทยุแบบไซค์แบนค์เคี่ยวเหมาะกับการ	ใช้งานใด	
ก. วิทยุกระจายเสียง	ข. วิทยุสื่อสารแบบมือถือ	
ค. วิทยุสื่อสารย่าน VHF	ง. วิทยุสื่อสารย่าน HF	
14. การแปลงความถี่ RF เป็นความถี่ IF ช่วยเรื่อง	เใด	
ก. ช่วยให้สามารถเพิ่มอัตราขยายสัญญาเ	ณ ข. ช่วยให้สามารถป้องกันสัญญาณเงา	
ค. ช่วยลคสัญญาณรบกวนได้คีขึ้น	ง. ช่วยให้สามารถสร้างวงจรเล็กลง	
15. การสร้างสัญญาณไซค์แบนค์เคี่ยวโคยใช้ฟิลเ	ตอร์ มีหลักการสำคัญคื อ	
ก. ต้องใช้ฟิลเตอร์ที่มีค่า Q สูงๆ	ข. ต้องใช้ฟิลเตอร์แบบปรับความถี่ได้	
 ค. ต้องใช้ฟิลเตอร์ที่ความถี่กลางค่าสูงๆ 	ง. ต้องใช้ฟิลเตอร์ที่มีค่า Qปานกลาง	
16. ริงใคโอคมอดูเลเตอร์ ต้องมีลักษณะที่คือผ่าง	ls	
ก. ใคโอคทุกตัวมีลักษณะตรงกันทุกประ	ะการ ข. ไคโอคสามารถใช้งานที่ความถี่สูง	
ค. หม้อแปลงต้องมีการแบ่งกลางถูกต้อง	ง. ถูกทุกข้อ	
17. วงจร integrator ในการส่ง indirect FM มีปร	ะโยชน์อย่างไร	
ก. ใช้เพิ่มรายละเอียคของเสียงแหลม	ข. ทำให้เสียงแหลมดังขึ้นกว่าปกติ	
ค. ใช้ลคขนาคสัญญาณที่ความถี่สูง	ง. ใช้ลคสัญญาณรบกวนจากเสียงแหลม	
18. เครื่องส่งเอเอ็มที่มีการผสมสัญญาณที่ระคับลั	^រ ល្យល្ងាណ ក្ខុ រ	
ก. ต้องใช้วงจรขยายแบบคลาสซี	ข. ต้องใช้วงจรขยายแบบลิเนียร์	
ค. ต้องใช้วงจรผสมแบบบาลานซ์	ง. ต้องใช้กับวงจรขยายแบบจูนความถึ่	

ชื่อ-นามสกุล	รหัส	ภาควิชา	AL SELVE WALLES
19. วงจรสมมูลย์ของคริสตอลเป็นอย่างไ	5		
ก. Rs,Ls,Cs อนุกรมกันและทั้งห	มคขนานกับCp ข. Ls,Cs	อนุกรมกัน และทั้งหมคขนานกับ	Rp
ค. Ls,Cs อนุกรมกัน	4. Lp,C	p ขนานกัน	
20. หลักการของการออสซิเลชั่น			
ก. อัตราขยายในลูปเท่ากับ 3	ข. อัตราข	ยายในลูปเท่ากับ 2	
ค. อัตราขยายในลูปเท่ากับ 1	ง. อัตราง	ยายในลูปเท่ากับ 0 (ป้อนกลับแบบ	บวก)
21. สัญญาณรบกวนที่มีปัญหากับอุปกรณ์	เ์อิเล็กทรอนิกส์ทางการแพท	ย์	
ก. สว่นใหญ่คือ thermal	ข. สว่นให	หมู่คือ shot noise	
ค. สว่นใหญ่คือ 1/f	ง. สว่นใ	าญ่คือ noise figure	
22. ขคลวคตัวนำ 1mH ต่อขนานกับตัวเก็	ก็บประจุขนาค 100pF , จงค์	านวนความถี่เรโซแนนท์	
n. 499.7 KHz	ข. 500ั	3 KHz	
ค. 503.3 KHz	٩. 523.3	KHz	
23. TCXO ได้มีการปรับปรุงสิ่งใด จาก ค	ริสตอลออสซิเลเตอร์ปกติ		
ก. ใช้ SC Cut คริสตอล	ข. เพิ่มว	งจรควบคุมอุณหภูมิ	
ค. เพิ่มวงจรชคเชยอุณหภูมิ	ง. ไม่มีเ	ป้อใคถูก	
24. การลดความถี่จาก VCO ด้วยการใช้ r	mixer ให้ผลต่างจากการใช้ pr	escaler อย่างไร?	
ก. เกิดความถี่ผลบวกรบกวน	q	บ. แบนค์วิคธ์เท่าเดิม	
ค. ไม่สามารถลดความถี่ฮาร์โมเ	นิกส์ไค้ เ	ı. แบนค์วิค ธ ์ลคลง	
25. ที่ความถี่เกินจาก series resonance ,	คริสตอลสามารถออสซิเลตโ	คย	
ก. เพิ่ม L อนุกรมกับคริสตอล	G	บ. เพิ่ม C อนุกรมกับคริสตอล	
ค. เพิ่ม L ขนานกับคริสตอล		ı. เพิ่ม C ขนานกับคริสตอล	
26. ออสซิเลเตอร์แบบ Clapp จะสามารถ	าคำนวนความถี่ได้จาก		
ก. LC ที่ต่อขนานกัน	6	บ. L ขนานกับ C สองตัวที่อนุกรม	ู ่ เก้น
ค. Lและ C ที่ต่ออนุกรมกัน		a. C ขนานกับ L สองตัวที่อนุกรม	มกัน
27. ป้อนความถี่ 10 KHz เข้าผสมแบบ Fl	M สังเกตสเปกตรัมคูพบว่า	มี 11,12,13 ถามว่า แบนค์วิคธ์ มีค่า	เท่าใด?
n. 30 KHz	•	U. 60 KHz	
ค. 50 KHz		1. 120 KHz	
28. การลดอัตราการเบี่ยงเบนความถี่สาม	ารถทำได้อย่างไร?		
ก. แก้ความเพี้ยนสัญญาณเสียง	•	บ. ลดขนาคสัญญาณเสียง	
ค. ลคความถี่สัญญาณเสียง	,	 เพิ่มขนาคสัญญาณเสียง 	

ชื่อ-นามสกุล......ภาควิชา......ภาควิชา......รหัส.......ภาควิชา.......

- 29. การคูณความถี่ทำได้อย่างไร
 - ก. เลือกเอาความถี่ฮาร์โมนิกส์มาขยายออก
 - ค. ใช้การทำงานแบบมิกเซอร์
- 30. วงจรขยายแบบลิเนียร์
 - ก. มีความถี่ฮาร์โมนิกส์น้อย
 - ค. มีประสิทธิภาพสูง
- 31. การบวกความถี่ ทำได้อย่างไร
 - ก. เลือกเอาความถี่ฮาร์โมนิกส์มาขยายออก
 - ค. ใช้การทำงานแบบมิกเซอร์
- 32. จงคำนวน NF รวมจากต่อวงจรขยายคาสเคคกัน

- ข.เลือกเอาความถี่ฮาร์ โมนิกส์มาป้อนกลับง.ใช้การทำงานแบบนอนลิเนียร์มิกเซอร์
- ข.มีความถี่ฮาร์ โมนิกส์มาก ง.มีแบนค์วิคธ์แคบ
- ข.เลือกเอาความถี่ฮาร์ โมนิกส์มาป้อนกลับ ง.ใช้การทำงานแบบนอนลิเนียร์มิกเซอร์

First Stage	\$	Second	Stage	Total	Tr. a. 1 37T
GAIN	NF	GAIN	NF	Gain	Total NF
(dB)	(dB)	(dB)	(dB)	(dB)	(dB)
Enter Actu	al	Einter	Actual	A	4481/1
Values He	re	Value	Here	Cancinate	ed Values

n. 9.0 dB

v. 3.6 dB

ค. 6.3 dB

- 1. 3.6 dB
- 33.หากสัญญาณจากวงจร divide by N มี duty cycle 5% จะต้องใช้เฟสดีเทคเตอร์ แบบใค
 - fl. FlipFlop

V. Analog Multiplier

ค. EXOR

- 1. AND
- 34. วงจรขยายชนิดใดให้อัตราขยายแรงคันสูงกว่าแบบอื่น?
 - n. Common Collector

V. Push Pull

Common Emitter

- 1. Common Base
- 35. วงจรขยายชนิดใคให้อัตราขยายกำลังสูงกว่าแบบอื่น?
 - fl. Common Collector

V. Push Pull

ค. Common Emitter

1. Common Base

36. วงจรขยายชนิคใค ที่ตัวอุปกรณ์แอกตีฟสองตัวผลัคกันทำงาน?

n. Common Collector V. Push Pull

ค. Common Emitter 1. Common Base

(ข้อ 37 - 39)รูปสัญญาณข้างล่างนี้ เป็นค่าแรงคันที่วัดคร่อมโหลดความต้านทาน 50 โอห์ม (10V/div.)

- 37. สามารถคำนวน modulation index ได้เท่ากับ....%
 - ก. 30

ข. 36

ค. 60

- ١. 32
- 38. สามารถคำนวน carrier voltage (p-p) ได้เท่ากับ......Vpp
 - ก. 30

ข. 36

ค. 60

- ۹. 32
- 39. สามารถคำนวน carrier power ได้เท่ากับ......Watts
 - ก. 30

ข. 36

ค. 60

- ۹. 32
- 40. เครื่องขยายเครื่องหนึ่งระบุว่า Noise temp = 125K จงคำนวณว่าเทียบเท่ากับ Noise Figure = ?dB
 - ก. 1.557dB

v. 1.922 dB

3.229dB ค.

4. 2.332 dB

ชื่อ-นามสกุล......รหัส......รหัส.....ภาควีซ**าโนยาลัสทศโบโลยีสาระจาแกล้าขนา**

- 2.1 จงแสคงว่าระบบวิทยุกระจายเสียงFM ยังให้คุณภาพที่คี แม้ว่าสัญญาณเข้ามี S/N เพียง 2 (10 คะแนน)

2.2 Pre emphasis สามารถช่วยลดน้อยส์ได้อย่างไร? (5 คะแนน)

Prinke.

ชื่อ-นามสกุล ภาควิช**าวานแสทดในใกอีพระจอ**นค**รับ**

3. จงเขียนเติมสัญลักษณ์ที่ถูกต้องของบล็อกทั้งห้าที่ว่างอยู่ (5 คะแนน)

4.เครื่องส่งเอฟเอ็มเครื่องหนึ่ง มีกาลังส่ง 10 W. ถ้า ดัชนีการผสมสัญญาณมีค่า 1.0 จงคานวน ค่ากาลังในความถี่ต่างๆ ของ สัญญาณ (10 คะแนน)

ชื่อ-นามสกุล......ภาควิชา...

Reference Address Code			Total	
RA2	RA1	RAO	Divide Value	
0	0	0	8	
0	0	1	64	
0	1	0	128	
0	1	1	256	
1	0	0	512	
1	0	1	1024	
ŧ	1	0	1160	
t	1	1	2048	

- 5.1 ความถี่ขาออกเท่ากับ 1818.020 MHz N =
- 5.2 ความถี่ขาออกสูงสุด เมื่อไม่สามารถเพิ่มค่า N, เพิ่มได้เฉพาะ A MHz
- 5.4 เปลี่ยน prescaler จาก 128/129 เป็น 64/65 ,เปลี่ยน VCO เป็น 900MHz เพิ่ม frequency doubler (900 MHz in 1800MHz out), คำนวณ N,A ใหม่ ให้ความถื่ออก 1800.00 MHz

ชื่อ-นามสกุล.....ภาควิชา.....ภาควิชา

6. วงจรนี้คือวงจรอะไร อธิบายการทำงานของวงจร และ ยกตัวอย่างคำนวณประกอบ (10 คะแนน)

Formulas

THE THE THE PARTY OF THE PROPERTY OF THE PARTY OF THE PAR

$$P_n = kT\Delta f$$

$$e_n = \sqrt{4kT\Delta f R}$$

Sin A Sin B = 1/2cos(A-B) - 1/2 cos(A+B)

$$i_n = \sqrt{2qI_{dc}\Delta f}$$

Cos A Cos B = 1/2cos(A+B) - 1/2 cos(A-B)

$$m = \frac{E_{t}}{E_{\pi}}$$

$$e = E_c \sin \omega_c t + \frac{mE_c}{2} \cos(\omega_c - \omega_t)t - \frac{mE_c}{2} \cos(\omega_c + \omega_t)t$$

$$T_e = (F_N - 1)T_O$$

$$E_{sr} = \frac{mE_c}{2}$$

$$P_i = P_c (1 + \frac{m^2}{2})$$

$$T_e = K T_O \log^{-1} \left[\frac{NF}{10} \right] - 1$$

