Kinetic Monte Carlo Review Notes

Stefan Bringuier

Table of contents

Monte Carlo Methods	l
Integrating a function MC sampling	1
Example integrating a function using MC sampling	2
Example integrating a function using MC sampling	2
Backmatter	2
References & footnotes	4

Monte Carlo Methods

- Solve complex problems using random sampling from a probability distribution (i.e. stochastic description).
- Useful to evolve a physical system to a new state from an esemble of potential future states.

Integrating a function MC sampling

• If we want to evaluate the integral of a function over some domain we can numerically approximate this using the midpoint rule:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i})$$
 (1)

• There is an alternative way to do this using probablity theory to determine the expectation value of a function f(x) for random variable x:

$$\int_{a}^{b} p(x)f(x)dx = \frac{b-a}{N} \sum_{i=1}^{N} f(x_{i})$$
 (2)

where p(x) is a uniform probability distribution over the interval [a, b].

Figure 1: Monte Carlo methods Andersen, Panosetti, and Reuter (2019)

- The difference between numerically evaluating Equation 1 and Equation 2, is that Equation 1 is evaluated over a grid of points and Equation 2 is randomly sampled points.
- The error of MC integration is $\propto \frac{1}{\sqrt{N}}$ as a result of central limit theorem

Example integrating a function using MC sampling¹

Example integrating a function using MC sampling

Backmatter

Connect with me!

stefanbringuier@gmail.com

¹A more detailed notebook implementing the code can be viewed here

Figure 2: Random sampled points from uniform distribution over the interval [1,4]. The black points are those that are accepted.

Figure 3: Integration of log(x) using MC.

Note

This presentation can be viewed online at https://stefanbringuier.github.io/KMCNotes. A report formated PDF of this presentation can be downloaded here.

Tip

To export revealjs presentations to pdf, press 'e' then 'ctrl-p' 'save as pdf'

References & footnotes

Andersen, Mie, Chiara Panosetti, and Karsten Reuter. 2019. "A Practical Guide to Surface Kinetic Monte Carlo Simulations." Frontiers in Chemistry 7. https://doi.org/10.3389/fchem.2019.00202.