NEURAL NETWORK

- Neural networks are a set of algorithms, modelled loosely after the human brain, that are designed to recognize patterns.
- Such systems "learn" to perform tasks by considering examples, generally without being programmed with task-specific rules.

- Almost all resources on NN starts with the same example: Recognize handwritten digits
- TASK:
- 60000 digit images as training set data.
- 10000 digit images as test set data.
- Each image is 28x28 resolution.
- Images are gray scale images (8-bit, single channel)
- What would be the accuracy of recognizing the digits?

```
125006
598365723
  915808
   85889
```


0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 0.9 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.8 0.8 0.8 1.0 1.0 1.0 1.0 0.9 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.2 0.2 0.2 0.2 0.0 1.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.1 0.0 0.0 0.0 0.1 0.4 0.9 1.0 1.0 0.9 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.0 1.0 0.6 0.5 0.5 0.5 0.5 0.8 1.0 1.0 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The building block: Perceptron

Perceptron Model (Minsky-Papert in 1969)

$$\text{output} = \begin{cases} 0 & \text{if} & \sum_{j} w_{j} x_{j} \leq \text{threshold} \\ 1 & \text{if} & \sum_{j} w_{j} x_{j} > \text{threshold} \end{cases}$$

Perceptrons as simplified "neurons"

- b is called the "bias"
- −*b* is called the "**threshold**"

input

Input is
$$(x_1, x_2, ... x_n)$$

Weights are
$$(w_1, w_2, \dots w_n)$$

Output y is 1 ("the neuron fires") if the sum of the inputs times the weights is greater or equal to the threshold:

If
$$w_1x_1 + w_2x_2 + ... + w_nx_n > threshold$$

then $y = 1$, else $y = 0$
If $w_1x_1 + w_2x_2 + ... + w_nx_n > -b$
then $y = 1$, else $y = 0$
If $b + w_1x_1 + w_2x_2 + ... + w_nx_n > 0$
then $y = 1$, else $y = 0$

$$a(z) = \begin{cases} 1 \text{ if } z > 0 \\ 0 \text{ otherwise} \end{cases}$$

 $y = a(\mathbf{w} \cdot \mathbf{x} + b)$

Recognizing Handwritten Digits

28 pixels

28 pixels

Label: "2"

Architecture for handwritten digits classification: 10 individual perceptrons

Processing an input

For each perceptron, compute

$$\sum_{i=0}^{n} w_i x_i$$

Perceptron '0'

 $\sum_{i=1}^{n} w_i x_i + b = 6.5$

Perceptron '1'

Input **x**

 $\sum_{i=1}^{n} w_i x_i + b = 2.$

Perceptron '2'

Etc.

Processing an input

For each perceptron, compute

$$\sum_{i=1}^{n} w_i x_i + b$$

Perceptron '0'

Perceptron '1'

Input **x**

Perceptron '2'

Etc.

Computing outputs

For each perceptron, if

$$\sum_{i=1}^{n} w_i x_i + b > 0$$

 $\sum_{i=1}^{n} w_i x_i + b > 0$ then output y = 1; otherwise y = 0.

Perceptron '0'

$$\begin{array}{c}
\bigcirc \\
\vdots \\
\hline
\mathbf{W}_{0}, \\
\bigcirc \\
\end{array} \qquad \begin{array}{c}
\sum_{i=1}^{n} w_{i} x_{i} + b = 6.5 \quad y = 1 \\
\bigcirc
\end{array}$$

Perceptron '1'

Input **x**

$$\begin{array}{c}
\bigcirc \\
\vdots \\
\bigcirc \\
\bigcirc \\
\bigcirc
\end{array}$$

$$\begin{array}{c}
\sum_{i=1}^{n} w_{i} x_{i} + b = 2.4 \quad y = 1.4 \quad y =$$

Perceptron '2'

$$\sum_{i=1}^{n} w_i x_i + b = -7.2 \quad y = 0$$

Etc.

Computing outputs

For each perceptron, if

$$\sum_{i=1}^{n} w_i x_i + b > 0$$

then output $y = 1$; otherwise $y = 0$.

Perceptron '1'

Input **x**

$$\sum_{i=1}^{n} w_i x_i + b = 2.4 \quad y = 1$$

Perceptron '2'

$$\sum_{i=1}^{n} w_i x_i + b = -7.2 \quad y = 0$$

Etc.

Computing targets

If input's class corresponds to perceptron's class, then target t = 1, otherwise target t = 0.

For example, suppose \mathbf{x} is a '2'.

$$\sum_{i=1}^{n} w_{i} x_{i} + b = 6.5 \quad y = 1, \ t = 0$$

Perceptron '1'

Input **x**

$$\sum_{i=1}^{n} w_i x_i + b = 2.4 \quad y = 1, \ t = 0$$

Perceptron '2'

$$\sum_{i=1}^{n} w_i x_i + b = -7.2 \ y = 0, \ t = 0$$

Etc.

Computing targets

If input's class corresponds to perceptron's class, then target t = 1, otherwise target t = 0.

For example, suppose \mathbf{x} is a '2'.

 Learning is a optimization process, calibrating the weights and biases

Perceptron Learning

input

Input instance: $\mathbf{x}^k = (x_1, x_2, \dots x_n)$, with target class $t^k \hat{1} \{0,1\}$

Goal is to use the training data to learn a set of weights that will:

- (1) correctly classify the training data
- (2) generalize to unseen data

Perceptron Learning

Learning is often framed as an optimization problem:

• Find w that minimizes average "loss":

$$J(\mathbf{w},b) = \frac{1}{M} \sum_{k=1}^{M} L(\mathbf{w},b,\mathbf{x}^{k},t^{k})$$

where *M* is number of training examples and *L* is a "loss" function.

One part of the "art" of ML is to define a good loss function.

• Here, define the loss function as follows:

Let
$$y = a(\mathbf{w} \cdot \mathbf{x} + b)$$

$$L(\mathbf{w}, b, \mathbf{x}^k, t^k) = \frac{1}{2} (t^k - y)^2$$
 "squared loss"

Example

Training set:

What is the average loss for this training set, using the squared loss function?

Sigmoid Neuron

$$\sum_{i=1}^{n} w_i x_i + b \to wx + b$$
$$z = wx + b$$

$$\sigma(wx+b) = \sigma(z)$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Sigmoid Function

- $\sigma(z) = \frac{1}{1+e^{-z}}$ is called the "sigmoid" or "logistic" function.
- it is an S-shaped function that "squashes" the value of wx + b into the range [0, 1] so that we may interpret the output as a probability.

Bound its values between 0 and 1

Below function is unbounded:

$$wx + b$$

We are going to bound its output:

$$\sigma(\theta^T x + b)$$
,

where $\sigma(z)$ is sigmoid function.

$$\sigma(z) = \frac{1}{1 + exp(-z)}$$

 Notice that the sigmoid function transforms our output into the range between 0 and 1.

Step Function vs Sigmoid

$$\Delta \text{output} \approx \sum_{j} \frac{\partial \text{ output}}{\partial w_{j}} \Delta w_{j} + \frac{\partial \text{ output}}{\partial b} \Delta b$$

A multi-layer neural network...

- Cascade neurons together
- Output from one layer is the input to the next
- Each layer has its own sets of weights

Feed-forward networks

 Predictions are fed forward through the network to classify

Hidden Layer

Feeding a handwritten digit of 0 should trigger the 4 hidden layer neurons, and then the first output neuron

Learning in NN

Learning with sigmoid function

```
12500664
2934398725
598365723
319158084
5626858899
```


How do we train neural networks?

- No closed-form solution for the weights (i.e. we cannot set up a system A*w = b)
- We will iteratively find such a set of weights that allow the outputs to match the desired outputs
- We want to minimize a loss function (a function of the weights in the network)

Evaluating the NN

We use a cost function to quantify how well our NN operates

$$C(w,b) = \frac{1}{2n} \sum_{i} (y - a(w,b))^2$$

- the penalty for a bad guess goes up quadratically with the difference between the guess and the correct answer
- it acts as a very "strict" measurement of wrongness.

Plot of Cost Function

- We see that our goal is to find parameters such that our cost function is as small as possible.
- Take the gradients in different parameter directions.

How to minimize the loss function?

In 1-dimension, the derivative of a function:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

In multiple dimensions, the **gradient** is the vector of (partial derivatives).

Loss gradients

- How does the loss change as a function of the weights
- We want to change the weights in such a way that makes the loss decrease as fast as possible


```
[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,...]
loss 1.25347
```

gradient dW:

```
[?,
?,
?,
?,
?,
?,...]
```

W + h (first dim):

gradient dW:

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

[0.34 + 0.0001,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25322

[?, ?, ?, ?, ?, ?,...]

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25347

W + h (first dim):

```
[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
[0.33,...]
loss 1.25322
```

gradient dW:

$$egin{aligned} rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h} \end{aligned}$$

W + h (second dim):

gradient dW:

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...loss 1.25347

[0.34,-1.11 + 0.00010.78, 0.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25353

[-2.5, ?, ?, ?, ?, ?, ...]

[0.34, -1.11, 0.78, 0.12, 0.55, 2.81,

-3.1,

-1.5,

0.33,...]

W + h (second dim):

[0.34,-1.11 + 0.00010.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25353

gradient dW:

$$rac{df(x)}{dx} = \lim_{h o 0} rac{f(x+h) - f(x)}{h}$$

?,...]

current W: [0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5,

0.33,...]

loss 1.25347

W + h (third dim):

[0.34,-1.11, 0.78 + 0.00010.12, 0.55, 2.81, -3.1, -1.5, [0.33,...]loss 1.25347

gradient dW:

```
[-2.5, 0.6, ?, ?, ?, ?, ?, ?, ?, ...]
```

[0.34,-1.11, 0.78, 0.12, 0.55, 2.81, -3.1, -1.5, 0.33,...] loss 1.25347

gradient dW:

- We'll update weights
- Move in direction opposite to gradient:

$$\mathbf{w}_{\text{ }\uparrow}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$
 Time Learning rate

Suppose we change just two weight values, w₁ and w₂

$$\Delta C \approx \frac{\partial C}{\partial w_1} \Delta w_1 + \frac{\partial C}{\partial w_2} \Delta w_2$$

Gradient

$$\nabla C = \left(\frac{\partial C}{\partial w_1}, \frac{\partial C}{\partial w_2}\right)^T$$

$$\Delta C \approx \nabla C \cdot \Delta w$$

If we choose

$$\Delta w = - \eta \nabla C$$

Then

$$\Delta C \approx \nabla C \cdot \Delta w \approx -\eta \nabla C \cdot \nabla C$$

$$w \rightarrow w' = w - \eta \nabla C$$

- Iteratively subtract the gradient with respect to the model parameters (w)
- I.e. we're moving in a direction opposite to the gradient of the loss
- I.e. we're moving towards smaller loss

Plot of Cost Function

- We see that our goal is to find parameters such that our cost function is as small as possible.
- Take the gradients in different parameter directions.

Gradient descent iterations

Cost function vs iterations

In general case w₁, w₂ ... w_k

$$\nabla C = \left(\frac{\partial C}{\partial w_1}, \cdots, \frac{\partial C}{\partial w_k}\right)^T$$

$$\Delta C \approx \nabla C \cdot \Delta w$$

$$w \to w' = w - \eta \frac{\partial C}{\partial w}$$

What about the bias?

$$b \to b' = b - \eta \frac{\partial C}{\partial b}$$

Gradient descent ~ Challenges

Iterations

$$w \to w' = w - \eta \frac{\partial C}{\partial w}, \quad b \to b' = b - \eta \frac{\partial C}{\partial b}$$

- Huge number of instances!
- Remember

$$C(w,b) = \frac{1}{2n} \sum_{i} (y - a(w,b))^{2}$$

$$C = \frac{1}{n} \sum_{i} C^{i} \qquad \nabla C = \frac{1}{n} \sum_{i} \nabla C^{i}$$

(Batch) Gradient Descent

- 1. Initialize $\mathbf{w} := 0^{m-1}, b := 0$
- 2. for epoch $e \in [1, \dots, E]$:
 - \circ 2.1. shuffle ${\cal D}$ to prevent cycles
 - \circ 2.2. for every $\left\langle \mathbf{x}^{[i]}, y^{[i]}
 ight
 angle \in \mathcal{D}$:
 - 2.2.1. compute prediction $\hat{y}^{[i]} := h(\mathbf{x}^{[i]})$
 - \circ 2.3. compute loss $\mathcal{L} := rac{1}{n} \sum_{i=1}^n L(\hat{y}^{[i]}, y^{[i]})$
 - \circ 2.4. compute gradients $\Delta \mathbf{w} :=
 abla_{\mathcal{L}^{[i]}} \mathbf{w}, \; \Delta b := rac{\partial \mathcal{L}}{\partial b}$
 - \circ 2.5. update parameters $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, \ b := +\Delta b$

Stochastic Gradient Descent

Randomly choose an instances with a sequence iterate over all instances

$$\nabla C = \frac{1}{n} \sum_{i} \nabla C^{i} \approx \nabla C^{i}$$

Stochastic Gradient Descent

- 1. Initialize $\mathbf{w} := 0^{m-1}, b := 0$
- 2. for epoch $e \in [1, \dots, E]$:
 - \circ 2.1. shuffle ${\cal D}$ to prevent cycles
 - \circ 2.2. for every $\left\langle \mathbf{x}^{[i]}, y^{[i]}
 ight
 angle \in \mathcal{D}$:
 - ullet 2.2.3. compute prediction $\hat{y}^{[i]} := h(\mathbf{x}^{[i]})$
 - ullet 2.2.4. compute loss $\mathcal{L}^{[i]} := L(\hat{y}^{[i]}, y^{[i]})$
 - 2.2.5. compute gradients $\Delta \mathbf{w} := -\nabla_{\mathcal{L}^{[i]}} \mathbf{w}, \ \Delta b := -\frac{\partial \mathcal{L}^{[i]}}{\partial b?}$
 - 2.2.6. update parameters $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, \ b := +\Delta b$

Randomly choose a subset of instances, say m

$$\nabla C = \frac{1}{n} \sum_{i} \nabla C^{i} \approx \frac{1}{m} \sum_{i} \nabla C^{i}$$

This subset is referred as mini-batch

- 1. Initialize $\mathbf{w} := 0^{m-1}, b := 0$
- 2. for epoch $e \in [1, \dots, E]$:
 - \circ 2.1. shuffle ${\cal D}$ to prevent cycles
 - \circ 2.2. for $i \in [1, \ldots, m]$ (where m is the minibatch size):
 - ullet 2.2.1. draw random example **without** replacement: $\langle \mathbf{x}^{[i]}, y^{[i]}
 angle \in \mathcal{D}$
 - \circ 2.3. compute loss $\mathcal{L} := rac{1}{m} \sum_{i=1}^m L(\hat{y}^{[i]}, y^{[i]})$
 - \circ 2.4. compute gradients $\Delta \mathbf{w} := -\nabla_{\mathcal{L}} \mathbf{w}, \ \Delta b := -\frac{\partial \mathcal{L}}{\partial b}$
 - \circ 2.5. update parameters $\mathbf{w} := \mathbf{w} + \Delta \mathbf{w}, \ b := +\Delta b$

Scaling the Data

Gradient descent in multi-layer nets

- We'll update weights
- Move in direction opposite to gradient:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E(\mathbf{w}^{(\tau)})$$

- How to update the weights at all layers?
- Answer: backpropagation of error from higher layers to lower layers

Deep neural networks

- Lots of hidden layers
- Depth = power (usually)

hidden layer 1 hidden layer 2 hidden layer 3 input layer output layer

Deep neural networks – Too Good?

bus

dog

Deep neural networks – Too Good?

Random Labeling of True Data

But it still fits perfectly!

It memorizes all random labels!