EE241 SPRING 2015: TUTORIAL #5

Friday, Feb. 13, 2015

PROBLEM 1: Fill in the following table with 0, 1, or ∞ solutions possible (multiple answer possible in one cell), or write DNA for "does not apply".

System	RREF	Pivots	m < n	m = n	m > n
$A ec{x} = ec{b}$	A has row(s) of all 0 in RREF	[A, b] has a pivot in the last column			
		[A,b] has no pivots in the last column			
	A no row(s) of all 0 in RREF	[A, b] has a pivot in the last column			
		[A,b] has no pivots in the last column			
$A\vec{x} = \vec{0}$	A has row(s) of all 0 in RREF				
	A no row(s) of all 0 in RREF				

PROBLEM 2 (Fitting): The first three physicists' Hermite polynomials are the following

$$H_0(x) = 1,$$

 $H_1(x) = 2x,$
 $H_2(x) = 4x^2 - 2.$

Find a linear combination of these polynomials such that the resulting function passes through (0,0) (1,0), and the first derivative at x=1 is -1.

1

PROBLEM 3 (Permutations): Group the following permutations into even and odd,

$$\{1,2,4,3\} \ , \ \{1,4,2,3\} \ , \ \{4,1,2,3\} \ , \ \{4,1,3,2\} \ , \ \{4,3,1,2\} \ , \ \{4,3,2,1\}$$

PROBLEM 4 (Vector lengths): Which is longer: a n-dimensional vector of 1's? Or a 2n-dimensional vector of 1/2's?

PROBLEM 5 (Determinants): Find the determinant of the following matrix

$$\left[\begin{array}{cccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{array}\right].$$

PROBLEM 6: The graph below represents the following process: You are steering a ship probabilistically. Your first mate flips two fair coins every half-an-hour. If he gets two heads, you turn the ship around. Otherwise, you turn the ship 90° "starboard" (right). This graph contains no self-loops, i.e.: a "stay" is not a valid move.

- (a) What is the matrix M representing this Markov process? This matrix should transform the vector $\vec{p} = [p_N, p_E, p_S, p_W]$ to new probabilities \vec{p}' according to the rules of the coin flips. (To check your answer, you can apply the matrix to $\vec{p} = [1, 0, 0, 0], [0, 1, 0, 0], \dots$).
- (b) You have no idea which direction you initially set sail in (\vec{p}) . However, after an hour and a half, you estimate the following probabilities for your direction $\vec{p}' = [9/64, 27/64, 27/64, 1/64]$. Which direction did you set sail in?