Exercices Mathématiques pour l'informatique I : Injectivité, surjectivité et bijectivité

1. Les fonctions suivantes sont-elles injectives? Surjectives? Bijectives?

$$f_7: \mathbb{R} \to \mathbb{R}: x \mapsto x^2 \quad ; \quad f_8: \mathbb{R}^+ \to \mathbb{R}: x \mapsto x^2 \quad ; \quad f_9: \mathbb{R} \to \mathbb{R}^+: x \mapsto x^2$$

$$f_{10}: \mathbb{R} \to \mathbb{R}: x \mapsto ax + b \text{ où } a \in \mathbb{R}_0, b \in \mathbb{R} \quad ; \quad f_{11}: \mathbb{N} \to \{42\}: x \mapsto 42$$

$$f_{12}: \mathbb{R} \to \mathbb{R}: x \mapsto x^3 \quad ; \quad f_{13}: \mathbb{C} \to \mathbb{C}: x \mapsto x^3 \quad ; \quad f_{14}: \mathbb{R} \to \mathbb{R}^+: x \mapsto |x-2|$$

$$f_{15}: \mathbb{R}_0 \to \mathbb{R}: x \mapsto \frac{1}{x} \quad ; \quad f_{16}: \mathbb{R}^+ \to \mathbb{R}: x \mapsto \frac{3x+1}{4x+1} \quad ; \quad f_{17}: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{x}{x^2+1}$$

$$f_{18}: \mathbb{N} \to \mathbb{N}: x \mapsto \begin{cases} x & \text{si } x \text{ pair} \\ \frac{x+1}{2} & \text{sinon} \end{cases} \quad ; \quad f_{19}: \mathbb{Z} \to \mathbb{Z}: x \mapsto \begin{cases} x+2 & \text{si } x \text{ pair} \\ x+4 & \text{sinon} \end{cases}$$

- 2. Soient deux fonctions $f: A \to B$ et $g: B \to C$. La composée de f par g, notée $g \circ f$, est la fonction $g \circ f: A \to C: x \mapsto g(f(x))$. Montrez les affirmations suivantes.
 - (a) Si f et g sont injectives, alors $g \circ f$ est injective.
 - (b) Si f et g sont surjectives, alors $g \circ f$ est surjective.
 - (c) Si $g \circ f$ est injective, alors f est injective.
 - (d) Si $g \circ f$ est surjective, alors g est surjective.
- 3. Soit *A* un ensemble. On note $\mathscr{P}(A)$ l'ensemble des parties de *A*. Si $A = \{0, 1\}$, calculez $\mathscr{P}(A)$ et $\mathscr{P}(\mathscr{P}(A))$.
- 4. On pose : $A = \{1, 2\}, B = \{3, 4, 5\}$ et $C = \{7\}$. Calculez : $A \times B$, $\mathscr{P}(A \times C)$, $\mathscr{P}(A) \times C$.
- 5. Soient A et B deux ensembles. Etablissez les relations d'inclusion entre :
 - (a) $\mathscr{P}(A) \cup \mathscr{P}(B)$ et $\mathscr{P}(A \cup B)$,

- (b) $\mathscr{P}(A) \cap \mathscr{P}(B)$ et $\mathscr{P}(A \cap B)$.
- 6. Parmi les fonctions suivantes, déterminez celle qui est injective. Justifiez votre réponse.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^4$.
 - (b) $g: \mathbb{R}^+ \to \mathbb{R}$ définie par $g(x) = x^2 + 3x + 1$.
 - (c) $h: \mathbb{R}^+ \to \mathbb{R}^+$ définie par $h(x) = |x^2 1|$.
 - (d) $k : \mathbb{R} \to \mathbb{R}^+$ définie par $k(x) = \begin{cases} x & \text{si } x \ge 0 \\ -x^3 & \text{sinon.} \end{cases}$
 - (e) Aucune des affirmations n'est vraie.
- 7. Parmi les fonctions suivantes, déterminez celle qui est surjective. Justifiez votre réponse.
 - (a) $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x^4$.
 - (b) $g: \mathbb{R}^+ \to \mathbb{R}^+$ définie par $g(x) = x^2 + 3x + 1$.
 - (c) $h: \mathbb{R}^+ \to \mathbb{R}$ définie par $h(x) = |x^2 1|$.
 - (d) $k : \mathbb{R} \to \mathbb{R}^+$ définie par $k(x) = \begin{cases} x & \text{si } x \ge 0 \\ -x^3 & \text{sinon.} \end{cases}$
 - (e) Aucune des affirmations n'est vraie.
- 8. On considère la fonction $f : \mathbb{R} \to \mathbb{R}$ définie par $f(x) = -x^2 + x + 2$. Parmi les affirmations suivantes, cochez celle qui est correcte. Justifiez votre réponse.
 - \Box La fonction f est bijective.
 - \Box La fonction f est injective, mais n'est pas surjective.
 - \Box La fonction f est surjective, mais n'est pas injective.
 - \Box La fonction f n'est ni injective, ni surjective.
- 9. On considère la fonction $g: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ définie par $g(A,B) = \overline{A \cap B}$. Parmi les affirmations suivantes, cochez celle qui est correcte. Justifiez votre réponse.
 - La fonction g est bijective.
 - La fonction g est injective, mais n'est pas surjective.
 - La fonction g est surjective, mais n'est pas injective.
 - La fonction g n'est ni injective, ni surjective.
- 10. Soit la fonction $f : \mathbb{R} \to \mathbb{R} : x \mapsto e^x$.
 - (a) La fonction f est-elle injective? Justifiez votre réponse.
 - (b) La fonction f est-elle surjective? Justifiez votre réponse.
 - (c) La fonction $g: \mathbb{R} \to \operatorname{Im} f: x \mapsto e^x$ est-elle surjective? Justifiez votre réponse.
- 11. Quel que soit $a \in \mathbb{R}$, on note $f_a : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_a(x) = ax$. Déterminez l'ensemble des $a \in \mathbb{R}$ tels que f_a est une fonction surjective.
- 12. Soit *A* un ensemble tel que |A| = 1 et $f : A \to \mathbb{R}$. La fonction f est-elle nécessairement injective? Justifiez votre réponse.
- 13. Soit une fonction $f: A \to B$. On sait que f est surjective si et seulement si Im(f) = B.
 - (a) Montrez que f est surjective si et seulement si la formule suivante est vérifiée :

$$\forall y \in B \quad \exists x \in A \quad f(x) = y.$$

- (b) Donnez une formule qui traduit le fait que f n'est pas surjective.
- 14. Soit A et B deux ensembles finis tels que |A| = |B| et f une fonction de A vers B. Prouvez que f est une bijection si et seulement si f est une injection si et seulement si f est une surjection.
- 15. On considère la fonction $g: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ définie ci-dessous.

$$g(X,Y) = X \cap Y^c$$
.

- (a) Donnez $g(\{1,2,3\},\{3,4,5\})$.
- (b) La fonction g est-elle injective? Justifiez votre réponse.
- (c) La fonction g est-elle surjective? Justifiez votre réponse.