ENT Metrics Calibration: Mapping τ , ν_* , and $E_{\rm syn}$ to Neurophysiological Coherence

AlWaleed K. AlShehail ORCID: 0009-0001-0536-8504

July 7, 2025

Abstract

This paper extends Emergent Necessity Theory (ENT) by calibrating its symbolic coherence metrics with empirical neurophysiological data. We propose biological reference scales for symbolic recursion rate (ν_*), symbolic persistence time (T_*), and define $E_{\rm syn}$ in physical and informational terms. We then identify potential neural markers for the coherence threshold τ_c , such as EEG phase locking, entropy plateaus, and symbolic integration duration. This calibration opens a path to make ENT testable across species and AI systems.

1 Introduction

ENT introduces three core formal measures: $\tau(t)$ as coherence, κ_R^{eff} as recursive structure, and SCQ as observed structural consciousness. This companion paper focuses on grounding these metrics in biological measurements.

2 ENT Metric Recap

- $\nu_s(t) = \text{symbolic recursion rate (Hz)}$
- $\eta_c(t)$ = mutual information across symbolic structure
- $T_p(t)$ = persistence duration of symbolic memory
- $\kappa_{\text{inst}}(t) = \frac{\nu_s}{\nu_*} \cdot \eta_c \cdot \frac{T_p}{T_*}$
- κ_R^{eff} = hysteresis average of κ_{inst} over window Δ
- $\tau(t) = \frac{\Delta S_{\rm syn}}{E_{\rm syn}}$

3 Calibrating ν_* and T_*

Reference for ν_*

Cortical oscillations in wakeful humans cluster around 40100 Hz (gamma). We set $\nu_* = 100$ Hz as baseline for symbolic recursion rate.

Reference for T_*

Working memory traces decay over 13 seconds (neocortical maintenance). We set $T_* = 1$ s to normalize persistence comparisons.

4 Defining E_{syn} in Physical Terms

 $E_{\rm syn}$ quantifies the effort required to maintain syntactic structure over time. We propose:

- Biophysical proxy: ATP consumption per symbolic loop (est. from fMRI/metabolism)
- Informational proxy: inverse of redundancy across recursive loops
- Practical proxy: average entropy of representational codes

5 Mapping τ_c to Neural Markers

Candidate indicators of τ_c transition:

- EEG phase coherence minima before conscious transitions
- Frontal-parietal entropy collapse under anesthesia
- Hallucination-onset in DMT/psilocybin fMRI maps (increase in recursive symbol loops)

6 Experimental Protocols

To validate ENT empirically:

- Log high-density EEG during memory recall tasks
- Measure symbolic persistence and redundancy
- Overlay $\tau(t)$ estimates from entropy slope vs energy usage
- Compare against behavioral markers of emergence/loss of awareness

7 Conclusion and Roadmap

This companion paper proposes concrete calibration points for ENTs formal metrics using biological data. Further work is needed to validate τ_c anchors and $E_{\rm syn}$ extraction in AI and nonhuman systems.