S_05 Choosing Statistical Test

Statistical Analysis

Statistical Assumptions

- 일반적으로 Statistical Test들의 공통적인 가정들:
- 1. Independence of observations (a.k.a. no autocorrelation)
 - o Test에 포함된 variable (또는 observation) 들은 서로 관련이 없다
 - o 여러가지 측정치 (Predictor variable) 들이 서로 독립적이다
- 2. Homogeneity of variance
 - o 비교되는 여러 group들의 variance가 비슷하다
 - o 어떤 group의 variation이 다른 것들에 비해 매우 크면 test의 유효성에 문제가 된다
- 3. Normality of data: the data follows a normal distribution
 - o 제시된 data는 normal distribution을 따른다

Parameters for Selecting Statistical Test

- Statistical Test 선택 시 고려할 parameter들:
 - Types of variables
 - Categorical (nominal, ordinal, binary)
 - Quantitative (continuous, discrete)
 - o Test에 고려되는 Group (Sample) 의 개수
 - o Group들 간의 관계 (independent vs dependent)
 - o Normality Condition: Data의 normality 여부 (quantitative data일 경우만)
 - o Homogeneity of Variance Condition: 여러 Group들의 분산이 비슷해야 (quantitative data일 경우만)

Parametric? or Nonparametric?

- Parametric test는 일반적으로 data가 가져야 할 조건이 더 엄격함
- Nonparametric test를 해야 하는 경우 (예외 있음)
 - o Homogeneity of Variance Condition을 위배하는 경우
 - o Normality Condition을 위배하는 경우
 - o Predictor variable과 Outcome variable이 모두 Categorical type 일 경우

Flowchart (1/3)

variable type과 group의 개수를 기준으로 함

Flowchart (2/3)

Flowchart (3/3)

Comparison Test (Parametric)

• Group mean의 차이를 test

Test	Predictor Variable	Outcome Variable	Example RQ
Paired t-test	Categorical 1 Predictor	Quantitative groups come from the same population	두 가지 다른 시험 준비 프로그 램이 같은 반 학생의 평균 시험 점수에 미치는 영향?
Independent t-test	Categorical 1 Predictor	Quantitative groups come from different populations	서로 다른 두 학교 학생의 평균 시험 점수의 차이는 어떻게 되 나요?
ANOVA	Categorical 1 or more Predictor	Quantitative 1 outcome	수술 후 세 가지 진통제를 투여 한 환자들의 평균 통증 수준에 는 어떤 차이가 있을까요?
Welch's ANOVA	Categorical 1 or more Predictor	Quantitative 1 outcome	Variance 조건 위배 시 ANOVA 대신 사용 가능
MANOVA	Categorical 1 or more Predictor	Quantitative 2 or more outcome	꽃의 종류가 꽃잎 길이, 꽃잎 너비, 줄기 길이에 미치는 영향 은 무엇인가요?

Regression Test (Parametric)

• Cause-and-effect relationships

Test	Predictor Variable	Outcome Variable	Example RQ
Simple Linear Regression	Continuous 1 Predictor	Continuous 1 Outcome	소득이 장수에 미치는 영향
Multiple Linear Regression	Continuous n (≥ 2) Predictor	Continuous 1 Outcome	서로 다른 두 학교 학생의 평균 시험 점수 의 차이는 어떻게 되나요?
Logistic Regression	Continuous	Binary	수술 후 세 가지 진통제를 투여한 환자들의 평균 통증 수준에는 어떤 차이가 있을까요?
Multinomial Logistic Regression	Continuous	3 or more category	직원의 근무 연수에 따라 직무 만족도가 우수, 보통, 미흡 중 어디에 속하는지에 차이가 있는가?
Ordinal Logistic Regression	Continuous	Ordinal	환자의 운동 시간에 따라 건강 상태가 매우 좋음, 좋음, 보통, 나쁨 중 어디에 속하는지 에 차이가 있는가?

Correlation Test (Parametric)

Check whether variables are related

Test	Variables	Example RQ
Pearson r	2 Continuous Variables	위도와 기온의 관계는?

Nonparametric Test (1/3)

Test	Conditions	Predictor Variable	Outcome Variable	Instead of
Wilcoxon Rank-Sum test (Mann-Whitney U test)	Normality 위반	Categorical Quantitative independent groups come from different populations		Independent t-test
Welch's t-test	Variance 위반	Categorical independent 2 groups	independent groups come from	
¹⁾ Wilcoxon Signed-rank test	Normality, Variance 위반	Categorical 2 groups	Quantitative groups come from the same population	Paired t-test
Sign test	Normality 위반	Categorical	Quantitative	One-sample t-test

¹⁾ variance만 위반시에는 Paired t-test를 사용 가능

Nonparametric Test (2/3)

Test	Conditions	Predictor Variable	Outcome Variable	Instead of
Kruskal–Wallis H	Normality, Variance 위반	Categorical 3 or more groups	Quantitative	ANOVA
Friedman test	Normality, Variance 위반	Categorical 3 or more groups	Quantitative 2 or more outcome varia bles	MANOVA
Multivariate Rank test (ART ANOVA)	Normality, Variance 위반	Categorical 3 or more groups	Quantitative 2 or more outcome varia bles	MANOVA
ANOSIM	Normality, Variance 위반	Categorical 3 or more groups	Quantitative 2 or more outcome varia bles	MANOVA

Nonparametric Test (3/3)

Test	Conditions	Predictor Variable	Outcome Variable	Instead of
Spearman's r	Normality, Variance 조건 위반	Quantitative	Quantitative	Pearson's r
Chi square test of independence	이 경우는 대부분 Nonparametric 을 씀	Categorical	Categorical	Pearson's r
Mann-Whitney U test (= Wilcoxon Rank-Sum test)	독립 변수와 로그 오즈 비율 간이 선형 관계가 아닐 때 관측치가 독립적이지 않을때	Quantitative	Quantitative Categorical (Binary) independent 2 groups	
Kruskal-Wallis H test	독립 변수와 로그 오즈 비율 간이 선형 관계가 아닐 때 관측치가 독립적이지 않을때	Quantitative	Categorical (Multipartite) independent 3 groups	Multinomial Logistic Regression
Cochran-Armitage Trend Test	독립 변수와 로그 오즈 비율 간이 선형 관계가 아닐 때 관측치가 독립적이지 않을때	Quantitative	Categorical (Binary or Multipartite)	Multinomial Logistic Regression

Example) Therapy

- Predictor variable (1): Therapy
 - o A, B, C
- Outcome variables (3)
 - o Before, Middle, After (Blood Pressure)
- Test Procedure
 - a. csv 데이터파일 load
 - b. variance similarity test
 - c. regularity test
 - d. 위의 b, c를 통과했을 경우 MANOVA 실행
 - e. 위의 b, c를 통과하지 못했을 경우 Friedman test 실행
 - f. 위의 d 또는 e의 결과를 바탕으로 post-hoc test 진행 (Bonferroni correction 포함)

Therapy	Before	Middle	End
Α	165	145	140
Α	155	142	133
Α	138	135	140
Α	150	147	145
Α	149	148	149
В	135	130	115
В	145	150	132
В	170	166	150
В	138	139	130
В	144	143	132
С	165	145	118
С	139	140	125
С	141	140	126
С	149	146	125
С	135	134	118

Code and Data

- https://github.com/iklee99/StatCode
- 05_MANOVA_EX.py
- datasets/medical_data_for_manova3.csv
- datasets/medical_data_for_manova4.csv

Example 1 (1/4)

datasets/medical_data_for_manova4.csv

```
Variance Test Results: {'Before': 0.9469256208780882, 'Middle': 0.2294124482689248, 'End': 0.530342792699958}

Normality Test Results: {'Before': 0.08428268879652023, 'Middle': 0.14866092801094055, 'End': 0.5409590601921082}

Failed Variance Tests: []  # Variance Test Passed

Failed Normality Tests: []  # Normality Test Passed
```

Example 1 (2/4)

Intercept Table은 모델 자체의 유 의미성을 평가. Intercept는 모델이 종속 변수들의 평균 값에 영향을 미치는지를 나타냄. Intercept가 의미 있는 값이라면 전체 모델이 통계적으로 유의미하다는 것을 보여줌. Intercept의 p-value < 0.05 이므로, 모델이종속 변수들에 대해 통계적으로 유의미한 설명력을 가진다는 것을 의미

Therapy 테이블은 독립 변수(치료법)가 종속 변수들에 미치는 영향을 평가. p-value < 0.05 이므로 치료법 간에 유의미한 차이가 있다는 결론

Example 1 (3/4)

		for Befo parison o	re: of Means	- Tukey I	HSD, FWEF	R=0.05
group1	group2	meandiff	p-adj	lower	upper	reject
Α	В	-5.0	0.7788	25.1626	15.1626	False
Α	C	-5.6	0.7342	25.7626	14.5626	False
В	С	-0.6	0.9	20.7626	19.5626	False
		for Mido parison o	le: f Means	Tukey I	HSD, FWER	R=0.05
group1	group2	meandiff	p-adj	lower	upper	reject
Α	В	2.2	0.9	12.6499	17.0499	False
Α	С	-2.4	0.9	17.2499	12.4499	False
B	c	-4.6	0.6863	19.4499	10.2499	False
		for End: parison c	f Means -	Tukey I	HSD, FWEF	R=0.05
group1	g roup2	meandiff	p-adj	lower	upper	reject
Α	В	-9.6	0.202	23.6021	4.4021	False
Α	C	-19.0	0.0091	33.0021	-4.9979	True
В	С	-9.4	0.2141	23.4021	4.6021	False

Post-hoc test

p-value < 0.05, 즉, Therapy A와 C의 차이 End group에 대해서만 유의미 하다.

Example 1 (4/4)

Example 2 (1/3)

Variance Test Results: {'Before': 0.04910363798530076, 'Middle': 0.5900278357791713, 'End': 0.0017611953781425309} Normality Test Results: {'Before': 2.1902758362557506e-06, 'Middle': 4.5216318540042266e-05, 'End': 0.057111285626888275}

Failed Variance Tests: ['Before', 'End']. Variance Test Fail Failed Normality Tests: ['Before', 'Middle'] Normality Test Fail

Friedman Test Results:

(FriedmanchisquareResult(statistic=1.733333333333333333, pvalue=0.42035038450868467), FriedmanchisquareResult(statistic=0.9333333333333371, pvalue=0.6270890852730551)) 모든 pvalue > 0.05 이므로 Therapy A, B, C 간에 효과의 차이는 없다.

Example 2 (2/3)

		for Befo parison o	ore: of Means -	- Tukey I	HSD, FWER	k=0.05
group1	group2	meandif	p-adj	lower	upper	reject
А	В	-26.219	0.2782 -	67.2766	14.8387	False
Α	C	-3.6200	0.9 -	44.6782	37.4371	False
В	С	22.5984	0.3842 -	18.4592	63.6561	False
		for Mido		Tukey I	ISD, FWER	=0.05
group1	group2	meandif	p-adj	lower	upper	reject
A	В	-8.362	0.8825 -	52.2953	35.5708	False
Α	C	-15.5862	0.6551 -	59.5192	28.3468	False
В	c	-7 . 224	0.9	-51 . 157	36.7091	False
		for <mark>E</mark> nd nparison	of Means	– Tukey	HSD, FWE	R=0.05
group1	group2	meandif	p-adj	lower	upper	reject
Α	В	88.55	0.1409	-22.4987	7 199.600	7 False
Α	C	55.577	0.4525	-55.4724	166.62	7 False
В	С	-32.973	0.7351 -	144.0234	78.07	6 False

- Post-hoc test
- 모든 case의 p-value > 0.05
- 모든 Therapy 방식이 Before, Middle, End 모두에게 효과가 없다.
- H0를 reject할 수 없다.

Example 2 (3/3)

