1 nolen

 $A \times A$ של כלשהי חלקית קבוצה הוא A הוא יחס מעל א.

 $P(A \times A)$ קבוצת כל היחסים מעל

$$|P(A \times A)| = 2^9 = 512$$

ב. אוא רפלקסיבי וסימטרי אבל אינו טרנזיטיבי. נוכיח שאינו טרנזיטיבי:

-עלינו למצוא כך ת $R_{1},R_{2},R_{3}\in M$ כך עלינו

$$(R_1, R_3) \notin S$$
 אבל $(R_2, R_3) \in S$ $(R_1, R_2) \in S$

-ש כך $R_1, R_2, R_3 \in M$ כך שלינו למצוא אחרות, עלינו כד במלים כדי

$$R_1R_3 \neq R_3R_1$$
 אבל , $R_2R_3 = R_3R_2$, $R_1R_2 = R_2R_1$ (*)

. מתחלף בכפל עם כל יחס. היוס הריק מתחלף בכפל עם כל יחס. כידוע, היחס הריק מתחלף בכפל עם כל יחס

, (*) לכן אם נקח את להיות היחס הריק או יחס היחידה, יתקיימו שני השוויונים של R_{γ} אם נקח את

 R_1, R_3 בלי קשר לשאלה מהם

 $.\,R_1R_3\neq R_3R_1\,$ בל שנותר לנו הוא למצוא R_1,R_3 המקיימים לנו שנותר כל

בקצת ניסוי וטעיה לא קשה למצוא כאלה – השלימו בעצמכם.

2 nolen

- $S(R_1)=S(R_2)$ אבל $R_1 \neq R_2$ אז $R_2=\{(2,1)\}$, $R_1=\{(1,2)\}$ אבל . א.
- ב. אינם שאינם המטריים, וכמובן של s נמצאים אינם ב. לא. בתמונה של s נמצאים סימטריים, כגון s סימטריים, כגון סימטריים, כגון $\{(1,2)\}$.
 - ג. לא. מיצאו בעצמכם דוגמה נגדית.
 - ד. כן. זה נובע משתי תכונות בסיסיות של סגור, ללא חישובים כלל:
 - הסגור הסימטרי של יחס כלשהו הוא סימטרי.
 - בהינתן יחס **סימטרי**, הסגוֹר הסימטרי שלו הוא היחס הנתון עצמו.

3 nalen

. $f(n) \leq f(n)$, $n \in \mathbb{N}$ לכל לכל . באופן טריביאלי, ההי . $f \in F$. תהי . $. (f,f) \in \textbf{\textit{K}}$ לכן

 $g(g,f)\in K$ אנטי-סימטריוּת: תהיינה $f,g\in F$, ונניח ש- $f(n)\leq g(n)$, וגם $g(n)\leq f(n)$, $g(n)\leq f(n)$, $g(n)\leq f(n)$, $g(n)\leq g(n)$, $g(n)\leq g(n)$, $g(n)\leq g(n)$, $g(n)\leq g(n)$, $g(n)\leq g(n)$

g(n)=f(n) , $n\in {\mathbb N}$ לכן, מתכונת האנטי-סימטריות של היחס בטבעיים, לכל . f=g

 $g(n)\in K$ וגם $(f,g)\in K$ ונניח ש- $f,g,h\in F$ טרנזיטיביות: תהיינה $g(n)\leq h(n)$, $n\in {\bf N}$ וגם לכל $f(n)\leq g(n)$, $n\in {\bf N}$ משמע לכל $g(n)\leq h(n)$ וגם $f(n)\leq g(n)$, $n\in {\bf N}$ משמע לכל

. $f(n) \leq h(n)$, $|n| \in \mathbb{N}$ לכל בטבעיים \leq היחס של היחס הטרנזיטיביות מתכונת הטרנזיטיביות . $(f,h) \in \mathcal{K}$ כלומר

- ב. תהי f(n)=n ותהי g(n)=7 ותהי g(n)=7 ותהי g(n)=n ב. מכיוון ש- g(n)=7 ולכן g(n)=7 (הפונקציה המחזירה ערך g(n)=n מכיוון ש- g(n)=1 (קבל g(n)=1 (קבל g(n)=1) ולכן g(n)=1 ולכן g(n
- . מצאנו שני איברים של F שהיחס אינו משווה ביניהם, לכן אינו סדר-מלא מצאנו שני איברים של
- ג. fאינה ש- f אינה איבר מקסימלי. g (נראה ש- f , נראה ש- f אינה איבר מקסימלי. g(n)=f(n)+1 . g מובן בפונקציה g(n)=f(n)+1 . לכל g מתקיים g מתקיים g . לכן g . לכן g אינה איבר מקסימלי. מכיון שאין איבר מקסימלי, ודאי אין איבר גדול ביותר (מדוע!).
 - ד. הפונקציה המחזירה 0 לכל n היא האיבר הקטן ביותר (מדועי). לפיכך היא גם האיבר המינימלי \mathbf{n} (מדועי)
 - בכל g(n)=f(n) בהינתן f בהינתן $g\in F$ מונקציה המתלכדת עם $g\in F$ מונקציה $g\in F$, תהי g(106)=g(106)+1 בכל מקום פרט ל-g(106)=g(106)+1 בעבורו נגדיר: g(106)=g(106)+1 מובן ש-g הוכיחו בעצמכם שאין אף פונקציה "בין" שתיהן. משמע g מכסה את g השלימו עצמאית את הנותר בשאלה.

4 22167

.
$$2 \cdot 3^0 + (-2)^1 = 2 - 2 = 0$$
 : $n = 0$ נציב : בדיקה:

$$2 \cdot 3^{1} + (-2)^{2} = 6 + 4 = 10$$
 : $n = 1$ נציב

בדקנו ביישני אינדוקציה תוך שימוש ביישני צעדים הדקנו כי בשלב המעבר אנו מתכוונים לבצע אינדוקציה תוך שימוש ביישני צעדים אחורהיי ולא רק צעד אחד.

(שניהם!) n-1 ועבור n-1 ועבור שהטענה נכונה עבור ועבור n-1

$$f(n-1) = 2 \cdot 3^{n-1} + (-2)^n$$
 , $f(n) = 2 \cdot 3^n + (-2)^{n+1}$ כלומר נניח

 $f(n+1) = 2 \cdot 3^{n+1} + (-2)^{n+2}$ ש- ש- פלומר נוכיח עבור n+1 , n+1 ונוכיח שהטענה נכונה עבור

כלומר נוכיח ש- (כתבנו בצורה אחרת את הביטוי מהשורה הקודמת).

f מההגדרה הרקורסיבית של

$$f(n+1) = f(n) + 6f(n-1)$$

: נציב את הנחות האינדוקציה

$$= 2 \cdot 3^{n} + (-2)^{n+1} + 6(2 \cdot 3^{n-1} + (-2)^{n})$$

: נפתח ונסדר מחדש

$$= 2 \cdot 3^{n} + 12 \cdot 3^{n-1} + (-2)^{n+1} + 6(-2)^{n}$$

$$= 18 \cdot 3^{n-1} + 4(-2)^{n}$$

$$= 2 \cdot 3^{n+1} + (-2)^{n+2}$$

n+1 הראינו שהטענה נכונה עבור

. טבעי ת לכל האינדוקציה השלמה, מהבדיקה והמעבר יחד נובע שהטענה נכונה לכל ת לפי

,
$$f(n) = 2 \cdot 3^n + (-2)^{n+1} = 2 \cdot (3^n - (-2)^n)$$
 .ב.

. f הוא תמיד מספר אוגי. לכן למשל למינו מספר הוא הוא לפיכך אינו מספר הוא חוא הוא לפיכך

. אינה f -ש אינה על. אינה על דרכים אחרות להראות ש

איתי הראבן