TECHIN 513: Managing Data and Signal Processing ICTE 2

You task is load RSSI database from "RSSI.csv" and plot a path map with X and Y.

TO D0

- Load CSV file "RSSI.csv"
- 2. Check and modify data (check for missing values NaN)
- 3. Count the number of times there was no signal from the router in each column except X and Y (-100 represent no signal from that WiFi router)
 - 4. Find top 10 of most usable WiFi router
 - 5. Plot a map with X and Y

```
In []: # 1)Load CSV file "RSSI.csv"
    # 2)Check and modify data (check for missing values NaN)
    # 3)Count the number of times there was no signal from the router in each column exce
    # (-100 represent no signal from that WiFi router)
    # 4)Find top 10 of most usable WiFi router
    # 5)Plot a map with X and Y

In []: import pandas as pd
    import numpy as np

# step 1: load file "RSSI.csv"

RSSI = pd.read_csv("RSSI.csv", header=0)

In []: # step 2: check missing values

# according to #3, empty values are already represented as -100 instead of NaN, done
    # we reverse the change for the sake of this question
    RSSI_mod = RSSI.replace(-100, np.nan)

RSSI_mod
```

Out[]:		х	Υ	00:bb:60:5c:28:30	2c:30:33:49:f1:51	a0:63:91:d9:cf:bb	ac:23:16:eb:20:
	0	-4.729264	-8.266995	NaN	NaN	NaN	-
	1	-5.504700	-8.094806	-83.0	NaN	NaN	-
	2	-5.807762	-7.380555	-83.0	NaN	NaN	-
	3	-6.008443	-6.611304	-82.0	NaN	NaN	-
	4	-6.217061	-5.797879	-82.0	NaN	NaN	-
	•••						
	1007	-24.432861	-7.485832	-68.0	NaN	NaN	-
	1008	-24.797718	-8.147212	-68.0	NaN	NaN	-
	1009	-24.850538	-7.899585	-80.0	NaN	NaN	-
	1010	-24.725263	-8.245343	-80.0	NaN	NaN	-
	1011	-24.723473	-8.248850	-73.0	NaN	NaN	-

```
In [ ]: # step 3: count empty values
        # drops X and Y for easier comparison
        # router_data = RSSI_mod.drop(['X', 'Y'], axis=1)
        signals = RSSI_mod.iloc[:, 2:229]
        # adds a column with the count of valid signals for each router
        valid = signals.notnull().sum(axis=1)
        RSSI_mod = pd.concat([RSSI_mod, valid.rename('valid')], axis=1)
        # # adds a column with the count of empty signals for each router
        empty = signals.isnull().sum(axis=1)
        RSSI_mod = pd.concat([RSSI_mod, empty.rename('empty')], axis=1)
        empty
Out[]: 0
                 163
        1
                 163
        2
                 163
        3
                 163
        4
                 163
                . . .
        1007
                 164
                 164
        1008
        1009
                 164
                 164
        1010
        1011
                 162
        Length: 1012, dtype: int64
In [ ]: # step 4: rank valid counts
        # adds a column with the ranking of routers' usability
        ranking = valid.rank(ascending=0)
        RSSI_mod = pd.concat([RSSI_mod, ranking.rename('ranking')], axis=1)
        # sorts the routers by their usability
        RSSI_rank = RSSI_mod.set_index('ranking').sort_index()
        # finds the top 10 routers
        RSSI top = RSSI rank.head(10)
        RSSI_top.loc[:, ['X', 'Y', 'valid']]
Out[]:
                        Χ
                                   Y valid
        ranking
            3.5 -28.587851
                            57.727020
                                       66
            3.5 -27.681598
                            57.748005
                                       66
            3.5 -26.745995
                            57.638415
                                       66
            3.5 -25.844334
                            57.535345
                                       66
            3.5 -24.888309 -21.477894
                                       66
            3.5 -24.294086 -20.869478
                                       66
```

91.0

91.0

91.0

91.0

-8.498357

-7.716759

-7.576172

34.605604

-7.615818 36.054524

35.101800

36.973923

65

65

65

65

```
In []: from matplotlib import pyplot as plt
# step 5: plot two-axis map

# plot x and y axes
plt.plot(RSSI['X'], RSSI['Y'])
plt.show()
```

