

Universidade de Évora

Base de Dados

Autores:

Ricardo Oliveira nº42647

Vasco Barnabé nº42819

Professor(a):

Irene Rodrigues

Outubro de 2019

	/			
i		- 1		
ı	n	\sim	\sim	$\overline{}$
ı	111	()		-

Exercício 1	3
Exercício 5	-5

1./

Motorista:

Chaves Primária: {Nbi}

Chaves Candidatas: {Nbi}, {NCartaCond}

Chaves Estrangeiras: (não existem)

Telefone:

Chaves Primária: {Nbi, Telefone}

Chaves Candidatas: {Nbi, Telefone}

Chaves Estrangeiras: {Nbi} da relação "Motorista"

Modelo:

Chaves Primária: {Modelo}

Chaves Candidatas: {Marca, Modelo}

Chaves Estrangeiras: (não existem)

Táxi:

Chaves Primária: {Matricula}

Chaves Candidatas: {Matricula}

Chaves Estrangeiras: {Modelo} da relação "Modelo".

Serviço:

Chaves Primária: {Matricula, DataInicio}

Chaves Candidatas: {Matricula, Datalnicio}, {Matricula, CoordGPSInic, CoordGPSfin},

{DataInicio, DataFim}

Chaves Estrangeiras: {Matricula} da relação "Táxi".

Turno:

Chaves Primária: {Matricula, Nbi}

Chaves Candidatas: {Matricula, Nbi}, {KmInicio, KmFim}

Chaves Estrangeiras: {Matricula} da relação "Táxi" e {Nbi} da relação "Motorista".

Cliente:

Chaves Primária: {Nif}

Chaves Candidatas: {Nif}

Chaves Estrangeiras: (não existem)

Pedido:

Chaves Primária: {Nif, Matricula}

Chaves Candidatas: {Nif, Matricula}

Chaves Estrangeiras: {Nif} da relação "Cliente" e {Matricula} da relação "Táxi".

5./

a) Álgebra Relacional:

 $\pi_{Matricula}(\sigma_{Marca=Mercedes}(modelo \bowtie taxi))$

SQL:

select Matricula from modelo nij taxi where Marca like 'Mercedes'

b) Álgebra Relacional:

πNome(σMarca='Mercedes'(modelo ⋈ turno ⋈ motorista ⋈ taxi))

SQL:

select Nome

from modelo nij turno nij motorista nij taxi where Marca like 'Mercedes'

c) Álgebra Relacional:

SQL:

select distinct Telefone

from pedido, turno, telefone, servico

where Nif like '600700800900' and pedido.Matricula=servico.Matricula and servico.Matricula=turno.Matricula and turno.Nbi=telefone.Nbi

d) Álgebra Relacional:

ΠMarca,Modelo(σNome='Anibal Silva'(motorista ⋈ turno ⋈ taxi ⋈ modelo))

SQL:

select Marca, Modelo from motorista nij turno nij taxi nij modelo where Nome like 'Anibal Silva'

e) Álgebra Relacional:

TNome(motorista)-πmotorista.Nome(σcliente.Nome='José Silva' ∧ cliente.Nif=pedido.Nif ∧ pedido.Matricula=turno.Matricula ∧ turno.Nbi=motorista.Nbi(cliente × pedido × turno × motorista))

SQL:

select Nome

from motorista

except

select motorista. Nome

from cliente, motorista, pedido, turno

where cliente.Nome like 'José Silva' and cliente.Nif=pedido.Nif and pedido.Matricula=turno.Matricula and turno.Nbi=motorista.Nbi

f) Álgebra Relacional:

 $\pi_{Nome}(motorista) - \pi_{Nome}(\sigma_{Marca='Mercedes'}(modelo \bowtie turno \bowtie motorista \bowtie taxi))$

SQL:

select Nome

from motorista

except

select Nome

from modelo nij turno nij motorista nij taxi

where Marca like 'Mercedes'

g) Álgebra Relacional:

πNome,Matricula(σmotorista.Nbi=turno.Nbi(motorista ⋈ turno))÷πMatriculaσ(taxi)

SQL:

select Nome

from motorista

where not exists ((select matricula from taxi)

except(select matricula from turno where motorista.Nbi=turno.Nbi))

h) Álgebra Relacional:

Nbi ${\mathcal G}$ count(matricula) as NoServicos (${f O}$ servico.DataInicio=turno.DataInicio ${f \wedge}$

servico.Matricula=turno.Matricula(serviço x (motorista ⋈ turno))

SQL:

select Nbi, count(servico.Matricula) as NoServicos from servico, turno natural inner join motorista where date(servico.DataInicio)=date(turno.DataInicio) and servico.Matricula=turno.Matricula group by Nbi

i) Álgebra Relacional:

Nbi $\operatorname{\mathcal{G}}$ sum(Valor) as Lucros ($\operatorname{\mathbf{O}}$ servico.DataInicio=turno.DataInicio \wedge

servico.Matricula=turno.Matricula(serviço x (motorista ⋈ turno))

SQL:

select Nbi, sum(Valor) as Lucros
from servico, turno natural inner join motorista
where date(servico.DataInicio)=date(turno.DataInicio) and
servico.Matricula=turno.Matricula
group by Nbi