

Micro-Power Voltage Detectors with Manual Reset

General Description

The RT9817 is a micro-power voltage detector with deglitched manual reset input supervising the power supply voltage level for microprocessors (μP) or digital systems. It provides internally fixed threshold levels with 0.1V per step ranging from 1.2V to 5V, which covers most digital applications. It features low supply current of 3 μA . The RT9817 performs supervisory function by sending out a reset signal whenever the V_{DD} voltage falls below a preset threshold level. This reset signal will last the whole period before V_{DD} recovering. Once V_{DD} recovered upcrossing the threshold level, the reset signal will be released after a certain delay time. To pull reset signal low manually, just pull the manual reset input (MR) below the specified V_{IL} level. RT9817 is provided in SC-82 and SOT-143 packages.

Ordering Information

Package Type
H: SOT-143
Y: SC-82
Pi
Lead Plating System
P: Pb Free
G: Green (Halogen Free and Pb Free)
Threshold Voltage
12: 1.2V
13: 1.3V
:
49: 4.9V
50: 5.0V
Reset Active Timeout Period
A = 0ms (RESET)

B = 55ms (RESET)C = 220ms (RESET)

 $D = 450ms (\overline{RESET})$

G = 220ms (RESET)

H = 450ms (RESET)

E = 0ms (RESET) F = 55ms (RESET)

Note:

Richtek products are:

- ▶ RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
- ▶ Suitable for use in SnPb or Pb-free soldering processes.

Features

- Internally Fixed Threshold 1.2V to 5V in 0.1V Step
- High Accuracy ±1.5%
- Low Supply Current 3μA
- No External Components Required
- Quick Reset within 20µs
- Built-in Recovery Delay Include 0ms, 55ms, 220ms, 450ms Options
- 800ns Glitch Immunity of Manual Reset Input
- Low Functional Supply Voltage 0.9V
- CMOS Push-Pull Output
- Small SC-82 and SOT-143 Packages
- RoHS Compliant and 100% Lead (Pb)-Free

Applications

- Computers
- Controllers
- · Intelligent Instruments
- Critical μP and μC Power Monitoring
- Portable/Battery-Powered Equipment

Pin Configurations

VDD

GND

(TOP VIEW)

SOT-143

RESET

RESET

SC-82

Marking Information

For marking information, contact our sales representative directly or through a RichTek distributor located in your area, otherwise visit our website for detail.

DS9817-09 April 2011

Typical Application Circuit

Functional Pin Description

Pin Name	Pin Function
GND	Ground Pin
RESET	Active Low Push-Pull Reset Output
RESET	Active High Push-Pull Reset Output
MR	Manual Reset
VDD	Power Pin

Function Block Diagram

Absolute Maximum Ratings (Note 1)

Terminal Voltage (with Respect to GND)	
V _{DD}	
All Other Inputs	
• Input Current, I _{VDD}	20mA
 Power Dissipation, PD @ T_A = 25°C 	
SC-82	0.25W
SOT-143	0.285W
Package Thermal Resistance (Note 2)	
SC-82, θ _{JA}	400°C
SOT-143, θ _{JA}	350°C
Lead Temperature (Soldering, 10sec.)	260°C
Storage Temperature Range	
ESD Susceptibility (Note 3)	
HBM (Human Body Mode)	2kV
MM (Machine Mode)	200V
Recommended Operating Conditions (Note 4)	
Junction Temperature Range	

Electrical Characteristics

 $(V_{DD} = 3V, T_A = 25^{\circ}C, unless otherwise specified)$

Parameter		Symbol	Test Conditions	Min	Тур	Max	Unit
Operating V _{DD} (V _{OUT}) Range		V _{DD}	RT9817A/B/C/D	0.9		6	V
			RT9817E/F/G/H	1.1		6	
Supply Current	Supply Current		V _{TH} = 3V , V _{DD} = 4.5V		3	8	μА
Reset Threshold	Reset Threshold				1.2 to 5.0		V
Threshold Voltage Accuracy		ΔV_{TH}		-1.5		+1.5	%
Threshold Voltage Hysteresis		V _{HYS}			0.01 V _{TH}		V
V _{DD} Drop to Reset Delay		t _{RD}	Drop = V _{TH} –125mV		20		μS
	RT9817A/E		$V_{DD} \ge 1.02 \times V_{TH}$		0		ms
Reset Active Time Out Period	RT9817B/F			35	55	75	ms
	RT9817C/G	t _{RP}		143	220	297	ms
	RT9817D/H]		292	450	608	ms
RESET Output Voltage Low			$V_{DD} < V_{TH(MIN)}$, $I_{SINK} = 3.5mA$, $V_{TH} \ge 3V$			0.4	V
		V _{OL}	$V_{DD} < V_{TH(MIN)}$, $I_{SINK} = 1.2mA$, $V_{TH} \ge 1.8V$			0.3	
			$V_{TH(MIN)} > V_{DD} > 1V,$ $I_{SINK} = 0.5mA$			0.3	

To be continued

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
RESET Output Voltage High	Vон	$V_{DD} > V_{TH(MAX)}$, $I_{SOURCE} = 800\mu A$, $V_{TH} \ge 3V$	V _{DD} -1.5			V
		$V_{DD} > V_{TH(MAX)}$, $I_{SOURCE} = 500\mu A$, $V_{TH} \ge 1.8V$	0.8 V _{DD}			
		$V_{DD} > V_{TH(MAX)}$, $I_{SOURCE} = 200\mu A$, $V_{TH} \ge 1.1V$	0.8 V _{DD}			
RESET Output Voltage Low	VoL	$\begin{split} V_{DD} &> V_{TH(MAX)} \ , I_{SINK} = 3.5 mA, \\ V_{TH} &\geq 3 V \end{split}$			0.4	
		$V_{DD} > V_{TH(MAX)}$, $I_{SINK} = 1.2mA$, $V_{TH} \ge 1.8V$			0.3	V
		$V_{DD} > V_{TH(MAX)}$, $I_{SINK} = 0.5mA$, $V_{TH} \ge 1.2V$			0.3	
RESET Output Voltage High	Vон	$1.1V < V_{DD} < V_{TH(MIN)} ,$ $I_{SOURCE} = 200 \mu A$	0.8 V _{DD}			
		$1.8V < V_{DD} < V_{TH(MIN)}$, $I_{SOURCE} = 500\mu A$	0.8 V _{DD}			V
		$3V < V_{DD} < V_{TH(MIN)}$, $I_{SOURCE} = 800\mu A$	V _{DD} –1.5	-		

Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.

Note 2. θ_{JA} is measured in the natural convection at $T_A = 25^{\circ}C$ on a low effective thermal conductivity test board of JEDEC 51-3 thermal measurement standard.

- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.

Typical Operating Characteristics

DS9817-09 April 2011 www.richtek.com

7

Application Information

Benefits of Highly Accurate Reset Threshold

Most μP supervisor ICs have reset threshold voltages between 1% and 1.5% below the value of nominal supply voltages. This ensures a reset will not occur within 1% of the nominal supply, but will occur when the supply is 1.5% below nominal.

Outline Dimension

Cumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.800	1.200	0.031	0.047	
A1	0.050	0.150	0.002	0.006	
В	1.200	1.400	0.047	0.055	
b	0.300	0.520	0.012	0.020	
b1	0.760	0.920	0.030	0.036	
С	2.100	2.640	0.083	0.104	
D	2.800	3.040	0.110	0.120	
е	1.900		0.0)75	
Н	0.080	0.150	0.003	0.006	
L	0.210	0.410	0.008	0.016	

SOT-143 Surface Mount Package

Cumbal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
А	0.800	1.100	0.031	0.043	
A1	0.000	0.100	0.000	0.004	
В	1.150	1.350	0.045	0.053	
b	0.150	0.400	0.006	0.016	
b1	0.350	0.500	0.014	0.020	
С	1.800	2.450	0.071	0.096	
D	1.800	2.200	0.071	0.087	
е	1.300		0.0)51	
Н	0.080	0.260	0.003	0.010	
L	0.200	0.460	0.008	0.018	

SC-82 Surface Mount Package

Richtek Technology Corporation

Headquarter

5F, No. 20, Taiyuen Street, Chupei City

Hsinchu, Taiwan, R.O.C.

Tel: (8863)5526789 Fax: (8863)5526611

Richtek Technology Corporation

Taipei Office (Marketing)

5F, No. 95, Minchiuan Road, Hsintien City

Taipei County, Taiwan, R.O.C.

Tel: (8862)86672399 Fax: (8862)86672377

Email: marketing@richtek.com

Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.