Yinan Bu

University of Science and Technology of China | ynbu1002@gmail.com | +86 151-8999-5102 yinanbu.github.io | github.com/byn1002

EDUCATION

School of the Gifted Young,

Sep.2022 - Jul.2026

University of Science and Technology of China(USTC), Hefei, China

B.Sc. in Statistics

- GPA: 4.02/4.30 (92.33/100) Major GPA: 4.12/4.30 (93.63/100)
- Ranking: 3/116 across School of Management and School of the Gifted Young;

1st among female students(across School of Management, School of the Gifted Young and School of Mathematical Sciences).

Outperformed all other statistics majors in the School of Management.

Research Interests: Network Analysis, Statistical Machine Learning, Biostatistics, Optimization Theory Skills: C, Python (Pytorch), R(Rcpp), ET_PX, Mathematica, Matlab

AWARDS & HONORS

Guo Moruo Scholarship Nomination (most prestigious scholarship at USTC)	2025
China National Scholarship (highest scholarship from Ministry of Education of China)	2025
Yang Ya Alumni Fund Scholarship (top 5 female students in School of the Gifted Young)	2024
Excellent Student Scholarship – Silver (top 10%)	2023

PUBLICATION

• F. Jiang, Y. Bu, S. Wu, G. Xu, J. Zhu. (2025). Efficient synthetic network generation via latent embedding reconstruction. Under review at ICLR 2026.

RESEARCH EXPERIENCES

Efficient Synthetic Network Generation via Latent Embedding Reconstruction Advisor:

Jul.2025-Present

Prof. Gongiun Xu (Professor, Department of Statistics, University of Michigan, Ann Arbor)

Prof. Ji Zhu (Susan A. Murphy Collegiate Professor, Department of Statistics, University of Michigan, Ann Arbor);

- Developed a general, efficient framework for generating synthetic networks by combining latent space network models with a distribution-free generator over learned latent embeddings.
- Built scalable pipelines for a diffusion-based latent embedding generator and a bootstrap-based latent
 embedding resampler, preserving key network characteristics while enabling efficient training with lower
 computational cost than many existing deep architectures(GitHub repository).
- Conducted empirical studies on both simulated datasets and real-world datasets, showing that the proposed method efficiently generates networks that more faithfully preserve key characteristics than existing approaches.

Machine Learning and Hyperdimensional Computing

Apr.2024-Present

Advisor: Prof. Xueqin Wang (Chair Professor, Department of Statistics and Finance, USTC)

- Derived asymptotic information loss in vanilla hyperdimensional computing(HDC) operations and developed Hoeffding bounds for both hypervector similarity and predictive accuracy.
- Designed Feature-Subspace based Hyperdimensional Computing(FSHDC), a robust and highly scalable model for fast classification and interpretation. Applied on fMRI/MRI from UK Biobank and achieved a +0.20 AUROC improvement over vanilla HDC with strong robustness under class imbalance.
- Integrated **attention** mechanism into the HDC training pipeline, yielding a **30**% accuracy improvement on the HAR dataset over vanilla HDC and a **15**% improvement over an attention-only baseline.

Large Scale Optimization and GPU Acceleration

Jan.2024-Feb.2025

Advisor: Prof. Xueqin Wang (Chair Professor, Department of Statistics and Finance, USTC)

- Worked on graph trend filtering (minimizing the ℓ_1 norm of discrete graph differences) to recover piecewise-smooth signals; examined the ADMM trade-off between convergence speed and subproblem solvability.
- Proposed **D**ifferential **O**perator **G**rouping–bas**e**d ADMM(**Doge-ADMM**), grouping differential operators to get closed-form subproblems and parallel updates.
- Built a parallel implementation for first- and second-order cases and achieved up to 30× speedup over state-of-the-art methods(GitHub repository).

ACADEMIC PROJECTS

Analysis of the Government Pension Fund of Norway

Jan.2024-Feb.2025

Supervisor: Prof. Canhong Wen (Department of Statistics and Finance, USTC)

- Independently designed, implemented, and deployed an RShiny website for the Norwegian Government Pension Fund Global (NBIM) with interactive Plotly charts and a Leaflet world map (live demo).
- Conducted overall analysis combining statistical summaries, maps and interpreted trends with embedded figures and map snapshots (GitHub repository).

Uncertainty-Aware Time-Series Forecasting via Conformal Prediction

Dec.2024-Jan.2025

- Supervisor: Prof. Yu Chen (Department of Statistics and Finance, USTC)
 Reproduced Stankeviciute et al. (2021) conformal prediction framework for probabilistic time-series forecasting
- Reproduced Stankeviciute et al. (2021) conformal prediction framework for probabilistic time-series forecasting (CF-RNN), implementing model-agnostic, distribution-free prediction intervals with an end-to-end calibration/evaluation pipeline.
- Conducted experiments on a range of simulated and real-world datasets (AR/ARIMA, sales, air quality, COVID-19), demonstrating robust uncertainty quantification with competitive interval widths and accuracy versus standard baselines.

CORE COURSES

Probability and Statistics:					
Probability	91	Mathematical Statistics	91	Applied Stochastic Processes	94
Regression Analysis	98	Multivariate Analysis A	96	Time Series Analysis A	96
Non-parametric Statistics	95				
Mathematics:					
Mathematical Analysis I	95	Mathematical Analysis II	92	Mathematical Analysis III	93
Linear Algebra I	93	Linear Algebra II	91	Differential Equations	93
Real Analysis	86	Complex Analysis	95	Functional Analysis	99
Learning, Optimization & Ga	mes:				
Machine Learning	92	Fundamentals of Statistical Algorithm	94	A Primer in Game Theory	93
Computer Science:					
C Programming Language	95	Applied Statistical Software	96		

ADDITIONAL INFORMATION

TT1	1-:	. IZ	<u> </u>
Teac	nıng	Exper	iences:

• C Programming Language, Instructor: Prof. Lixiang Tan	Sep.2024-Feb.2025
• Linear Algebra I, Instructor: Prof. Junchao Shentu	Mar.2025-Jun.2025

Standardized Tests:

• TOEFL:108 (R: 28, L: 30, S: 23, W: 27)

Leadership & Activities:

Leadership a recivities.	
• Excellent member of the football team of School of the Gifted Young	2022-2025
 Winner of 3 gold medals in track and field at USTC Sports Games 	2023-2025
Flute player at the school Chinese orchestra	2022-2025
Member of the Debate team	2022-2025