PRINTABLE VERSION

Quiz 11

Question 1

The function f is graphed below on the interval [0,10]. Give the **number of** valuesc between 0 and 10 which satisfy the conclusion of the mean value

theorem for f.

- a) 2 b) 4
- c) 3
- d) 1

e) 5

Ouestion 2

Determine if Rolles Theorem applies to the function $f(x) = x^3 - 9x$ on $\begin{bmatrix} -3, 0 \end{bmatrix}$. If so, find all numbers c on the interval that satisfy the theorem.

$$f(a) = f(-3) = 0$$
, $f(b) = f(0) = 0$

a)
$$c = \sqrt{3}$$

a)
$$c = \sqrt{3}$$
 $3c^2q = f(c) = 0 \Rightarrow 3(c+\sqrt{3})(c-\sqrt{3}) = 0$

b)
$$c = \sqrt{3} \text{ and } c = -\sqrt{3}$$

b)
$$c = \sqrt{3}$$
 and $c = -\sqrt{3}$

c)
$$c = -3$$

d) Rolles Theorem does not apply to this function on the given interval.

e)
$$c = -\sqrt{3}$$

Ouestion 3

Determine if the function $f(x) = 4\sqrt{x} - x$ satisfies the Mean Value Theorem on [1, 25]. If so, find all numbers c on the interval that satisfy the

theorem.
$$f(a) = f(1) = 3$$
 $f(25) = f(b) = 4.5 - 25 = -5$
a) $c = -9$ $\frac{2}{\sqrt{5}} - 1 = f(c) = \frac{f(b) - f(a)}{b - a} = \frac{-1}{25 - 3} = \frac{-1}{3}$

b)
$$c = 9$$
 $c = 9$ $c = 9$ $c = 9$

c) The Mean Value Theorem does not apply to this function on the given interval.

d)
$$\bigcirc c = \frac{9}{2}$$

e)
$$c = 18$$

Ouestion 4

2 of 6

Print Test

The graph of f(x) is shown. Find the x-value(s) where f'(x)=0.

a)
$$x = 0$$

b)
$$x = \{-4, 0, 4\}$$

c)
$$x = -4$$

d)
$$x = 4$$

e)
$$x = \{-4, 4\}$$

Question 5

3 of 6

Find the intervals on which $f(x) = x^4 + 5x^3$ increases. $\Rightarrow f(x) > 0$

$$f(x)=4x^3+15x^2=\chi^2(4x+15)=0$$

a)
$$(-\infty, \infty)$$

b) $(-\infty, -\frac{15}{4})$
the domant $(-\infty) = \{x \in | R, \}$
 $f(x) = \frac{5(x^2+36)-2x\cdot5x}{(x^2+36)^2}$

d)
$$= \left(-\frac{15}{4}, 0\right) \cup (0, \infty)$$
 $= \frac{-5x + 5 \cdot 36}{(x^2 + 36)^2}$ $= \frac{-5(x^2 - 36)}{(x^2 + 36)^2} = 0$ Ouestion 6

Find the intervals on which $f(x) = \frac{5x}{x^2 + 36}$ decreases. $(x^2 + 36) \rightarrow 0$ $(x+6)(x-6) \rightarrow 0$

a)
$$\bigcirc (-6,6)$$
 $\bigcirc (-\infty,-6) \cup (0,6)$
b) $\bigcirc (-\infty,-6) \cup (6,\infty)$ $\bigcirc (-\infty,-6) \cup (6,\infty)$

d)
$$=(-\infty,\infty)$$
 decreasing $(-6) \cup (6,6)$.

e) \bigcirc $(6,\infty)$

Question 7

Find the intervals on which $f(x) = \frac{25 x^2 + 9}{25 x^2 - 0}$ increases.

03/01/2015 01:51 PM

Q7. As 25c-9=0, x==== , foo DNE, Domain of f is IXEIRIX # == 3

https://assessment.casa.uh.edu/Assessment/Print.

a)
$$\cup \left(0, \frac{3}{5}\right) \cup \left(\frac{3}{5}, \infty\right)$$
 $\longrightarrow \times = 0$

b)
$$\cup (\left(-\infty, -\frac{3}{5}\right) \cup \left(\frac{3}{5}, \infty\right)$$

c)
$$=\left(-\infty,-\frac{3}{5}\right)\cup\left(\frac{3}{5},\infty\right)$$

d)
$$-\left(-\infty, -\frac{3}{5}\right) \cup \left(-\frac{3}{5}, 0\right) \Rightarrow \text{Increasing interval}$$

e)
$$=(-\infty,\infty)$$

$$(-20, -\frac{3}{5}) \cup (-\frac{3}{5}, 0)$$

 $f(x) = 4x (6tx)^2 + 2x^2 \cdot 2(6tx)$

Find the intervals on which $f(x) = 2x^2(6+x)^2$ increases

$$=4x(6tx)[6tx+z]$$

a)
$$=(3,\infty)$$
 = $(4x)(6+2x)=0 \Rightarrow x=0,-6,-3$

b)
$$(-6, -3) \cup (0, \infty) \uparrow (x)$$

c)
$$=(-\infty,-6)\cup(3,\infty)$$

d)
$$(-\infty, \infty)$$

$$(-\infty, -6) \cup (-3.0)$$
 $(-6, -3) \cup (0, +\infty)$

f(x)=2+2SIN(X)=0 > STN(x)=-1

Find the intervals on which $f(x)=2\,x-2\,\cos(x)$ increases for $0\leq x\leq 2\pi$.

a)
$$[0, \frac{3\pi}{2}]$$

b)
$$0, 2\pi$$

c) f(x) is never increasing on the given interval

d)
$$\left[\frac{3\pi}{2}, 2\pi\right]$$
 $f(x) = (4 \sin x) \cos(x)$
e) $\left[\frac{\pi}{2}, 2\pi\right]$ $2x = 0$, π 2π
Question 10 $x = 0$ π π
Find the intervals on which $f(x) = 7 \cos^2(x)$ decreases for $0 \le x \le \pi$.

a)
$$\mathbb{Z}\left[\frac{\pi}{2},\pi\right]$$
 $\mathbb{Z}\left[X\right]$

$$\mathbf{b)} = \left[\frac{\pi}{4}, \frac{3\pi}{4} \right]$$

c)
$$\left[0, \frac{\pi}{2}\right]$$

d)
$$[0,\pi]$$

e) f(x) is never decreases on the given interval.