Oiulin Fan

ma217-w24 Assignment readQ5-2 due 03/15/2024 at 08:01am EDT

Problem 1. (1 point)

Consider the basis $\vec{v}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ of \mathbb{R}^2 . Apply the algorithm in the text (the Gram-Schmidt process) to this basis to find an orthonormal pair of basis vectors \vec{u}_1 and \vec{u}_2 . (Be sure to enter your answers to at least four decimal places of accuracy.)

$$ec{u}_1 = \left[egin{array}{c} -- \ -- \ \end{array}
ight]$$
 $ec{u}_2 = \left[egin{array}{c} -- \ -- \ \end{array}
ight]$

Answer(s) submitted:

0.8944 -0.4472

submitted: (correct) recorded: (correct)

Problem 2. (1 point)

Consider the basis $\vec{v}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$ of \mathbb{R}^2 . Consider the *QR* factorization of the matrix $M = [\vec{v}_1 \ \vec{v}_2]$:

$$\begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = QR.$$

What is the first column of Q?

first column of Q =

What is the first column of R?

first column of R =

Answer(s) submitted:

$$\bullet \begin{bmatrix}
0.8944 \\
-0.4472
\end{bmatrix}$$

$$\bullet \begin{bmatrix}
2.2361 \\
0
\end{bmatrix}$$

submitted: (correct) recorded: (correct)

Generated by @WeBWorK, http://webwork.maa.org, Mathematical Association of America

Problem 3. (1 point)

Consider the basis vectors $\vec{v}_1 = \begin{bmatrix} -4 \\ 3 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ of \mathbb{R}^2 . The *QR* factorization of $M = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix}$ is

$$M = \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix} R,$$

where $R = \begin{bmatrix} r_{11} & r_{12} \\ r_{21} & 3/5 \end{bmatrix}$. What are the remaining components of

Answer(s) submitted:

1

submitted: (correct) recorded: (correct)