

AI 데이터셋 개요

업종: 식품가공(분무건조공법을 이용한 분말유크림 제조)

목적:품질 보증

유형:bmp

알고리즘: YOLOv3

제공기관: KAIST

배경및분석목적

포장 공정의 마지막 단계에 완제품 내 금속 및 이물 포함 여부를 검출하기 위해 진행되는 X-RAY 비전 검사에서 미검(불량이 양품)과 과검(양품이 불량)의 문제를 해결 하기위해 AI 분석을 통해 장비 셋팅, 검사기준 또는 여타 스펙을 개선 할 수 있는 학습 모델이 필요하게 되었다.

검사장비를 교체하지 않는 한 해결될 수 없는 근본적 기술적 한계를 보완하기 위해 검사장비에서 수집되는 X-RAY 사진이미지를 라벨링하고 학습한 객체 탐지 분석 모델을 개발하여 이를 바탕으로 포장제품의 양품/불량품을 정확하게 판정하고자 한다.

사용 프로그램

Python(3.9.18)

(anaconda) Jupyter notebook (7.0.8)

YOLOv3(Cartucho/OpenLabeling: Label images and video for Computer Vision applications (github.com))

Pytorch(1.12.1)

데이터

- 데이터 크기, 데이터 수량 (확장자.bmp)
- [1호기] 폴더 1,031개, 112MB
- [2호기] 폴더 920개, 92.9MB
- [3호기] 폴더 858개, 210MB

AI 분석모델 YOLOv3 선정이유

이중 삼중 검사 시 라인 흐름의 버퍼와 작업 동선등의 변화로 비용 낭비를 막기위한 타 모델보다 정확하면서 신속한 AI 모델 이여아 한다.

각 이미지에는 검출된 결함이 표시되어 있으며, 이러한 이미지에 대 하여 객체 탐지 방법론을 적용하여 X-RAY 이물검출기에서 확인된 결함을 객체로 탐 지하여 불량을 구분해 낼 수 있어야 한다.

객체를 둘러싸고 있는 경계 상자(bounding box)와 그 내부의 객체에 대한 종류 (class)를 예측하는 회귀(regression) 문제로 객체 탐지(object detection)를 수행하는 모델이기때문이다.

YOLOv3 방식

그리드로 나누어 그리드 별작업

분석 단계

1단계 - 라이브러리 설치

2단계 - 데이터 정제(전처리)

결함 데이터 좌표입력을 위한 Labeling 실행

Train과 test를 나눌때 splitdata.py 가 jpg 만 지원 됨

라벨링 된 이미지 내 사각형 좌표

3단계-학습/평가 데이터 분리

import random

특징은 이미지 파일 위치 데이터만 train.txt, test.txt에 들어가서 나뉜다는것 입니다.

```
def spirit_data_set(image_dir):
   # 테스트 세트를 저장할 파일을 'test.txt'로, 훈련 세트를 저장할 파일을 'train.txt'로 엽니다.
  f_val = open("test.txt", 'w')
   f train = open("train.txt", 'w')
   # 지정된 디렉토리에서 파일 목록을 가져옵니다.
   path, dirs, files = next(os.walk(image_dir))
   data_size = len(files) # 전체 데이터 크기를 계산합니다.
   ind = 0
   data test size = int(0.2 * data size) # 전체 데이터의 20%를 테스트 세트 크기로 설정합니다.
```

분석에 쓰일 이미지 데이터셋이 저장되어 있는 디렉토리 지정

```
test array = random.sample(range(data size), k=data test size) # 테스트 세트에 사용할 파일 인덱스를 무작위로 선택합니다.
```

데이터 나누기

```
# 디렉토리 내의 모든 파일을 순회합니다.
for f in os.listdir(image dir):
   if f.endswith('.jpg'): # 파일 확장자가 .jpg인 경우만 처리합니다.
      ind += 1
      # 파일 인덱스가 테스트 배열에 포함되어 있으면 테스트 세트로, 그렇지 않으면 훈련 세트로 분류합니다.
      if ind in test array:
         f val.write(image dir + '/' + f + '\n') # 테스트 세트 파일에 이미지 경로를 기록합니다.
      else:
         f train.write(image dir + '/' + f + '\n') # 훈련 세트 파일에 이미지 경로를 기록합니다.
# 파일을 닫아 리소스를 해제합니다.
f val.close()
f_train.close()
```

이미지를 읽어 각각의 이미지 위치를 입력하고 각각의 데이터셋 저장

split_data_set(image_dir) 학습 및 평가 데이터 셋이 분리된 것을 확인하면 'train.txt', 'test.txt'로 나누어져있다.

3단계-학습/평가 데이터 분리

4단계-모델 구축

classes= 1

```
names= 'C:/test1/volov3/data/classes.names'

→ ±
!pip install -r C:/test1/volov3/requirements.txt
Requirement already satisfied: Cython in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 4)) (3.0.8)
Requirement already satisfied: matplotlib>=3.2.2 in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/volov3/requirements.txt (line 5)) (3.
Requirement already satisfied: numpy>=1.18.5 in c:\users\untjr\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 6)) (1.26.4)
Requirement already satisfied: opency-python>=4.1.2 in c:\users\untjr\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 7))
(4.9.0.80)
Requirement already satisfied: pillow in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 8)) (10.2.0)
Requirement already satisfied: PyYAML>=5.3 in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 9)) (6.0.1)
Requirement already satisfied: scipy>=1.4.1 in c:\users\untjr\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 10)) (1.11.4)
Requirement already satisfied: tensorboard>=2.2 in c:\users\untjr\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 11)) (2.1
0.1)
Requirement already satisfied: torch>=1.6.0 in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 12)) (1.12.1)
Requirement already satisfied: torchyision>=0.7.0 in c:\users\untir\anaconda3\lib\site-packages (from -r C:/test1/voloy3/requirements.txt (line 13))
(0.13.1)
Requirement already satisfied: tqdm>=4.41.0 in c:\users\untjr\anaconda3\lib\site-packages (from -r C:/test1/yolov3/requirements.txt (line 14)) (4.65.0)
Requirement already satisfied: contourpy>=1.0.1 in c:\users\untjr\anaconda3\lib\site-packages (from matplotlib>=3.2.2->-r C:/test1/yolov3/requirements.
txt (line 5)) (1.2.0)
```

Requirement already satisfied: cycler>=0.10 in c:\users\untjr\anaconda3\lib\site-packages (from matplotlib>=3.2.2->-r C:/test1/yolov3/requirements.txt

train= 'C:/test1/yolov3/images/train.txt'

valid= 'C:/test1/yolov3/images/valid.txt'

클래스 개수 설정

학습 데이터셋 위치 설정

평가(검증) 데이터셋 위치 설정

클래스 name 위치 설정

4단계-모델 구축(requirements)

- Cython: C 언어로 작성된 Python 확장 모듈을 쉽게 생성할 수 있게 해주는 프로그래밍 언어입니다.
- matplotlib: Python에서 데이터를 시각화할 수 있는 라이브러리입니다.
- numpy: 대규모 다차원 배열 및 행렬 연산에 최적화된 라이브러리입니다.
- opencv-python: 오픈소스 컴퓨터 비전 및 머신 러닝 소프트웨어 라이브러리입니다.
- pillow: Python 이미징 라이브러리(PIL)의 포크로, 이미지 파일 처리 기능을 제공합니다.
- PyYAML: YAML 파일 형식을 읽고 쓸 수 있는 Python 라이브러리입니다.
- scipy: 과학 계산을 위한 Python 라이브러리입니다.
- tensorboard: TensorFlow의 시각화 도구입니다.
- torch: PyTorch, 오픈소스 머신 러닝 라이브러리입니다.
- torchvision: PyTorch와 함께 이미지 및 비디오 데이터 작업을 위한 라이브러리 및 유틸리티입니다.
- tqdm: 루프 및 작업 진행 상황 표시를 위한 라이브러리입니다.
- pycocotools: COCO 데이터셋을 다루기 위한 도구 모음입니다.
- packaging: 버전 관리 및 패키지 정보 파싱을 위한 라이브러리입니다.
- coremitools: Apple의 Core ML 모델 포맷으로 변환하기 위한 도구입니다.
- onnx: 여러 프레임워크 간 모델 호환성을 제공하는 오픈 뉴럴 네트워크 교환 포맷입니다.
- scikit-learn: 데이터 마이닝 및 데이터 분석을 위한 라이브러리입니다.
- thop: 모델의 FLOPS를 계산하기 위한 도구입니다.

이 제조 데이터 의 특징은 파일화 되어있어서

간단하게 줄일 수있다

5단계-모델 훈련

!python train.py --epochs 15 --weights weights/last.pt --batch-size 3 --cfg yolov3-spp.cfg --data custom.data --nosave --device cpu

- # --epochs 15: 모델을 15 에폭(epoch) 동안 학습시킵니다. 에폭은 전체 데이터 세트를 한 번 학습하는 것을 의미합니다.
- # --weights weights/last.pt: 학습을 시작할 때 사용할 가중치 파일입니다. 'last.pt' 파일을 초기 가중치로 사용합니다.
- # --batch-size 3: 각 학습 배치에서 처리할 샘플의 수를 3으로 설정합니다. 배치 크기는 메모리 사용량과 학습 속도에 영향을 미칩니다.
- # --cfg yolov3-spp.cfg: 모델의 구조를 정의하는 구성 파일입니다. 'yolov3-spp.cfg'는 모델 구조에 대한 설정을 포함합니다.
- # --data custom.data: 학습에 사용될 데이터와 관련된 설정을 포함한 파일입니다. 데이터 경로, 클래스 수, 클래스 이름 등의 정보를 포함할 수 있습니다.
- # --nosave: 이 옵션을 사용하면 학습 도중 생성되는 중간 가중치 파일을 저장하지 않습니다. 주로 테스트나 디버깅 목적으로 사용됩니다.
- # --device cpu: 학습을 CPU에서 수행하도록 설정합니다. GPU를 사용할 수 있는 경우, '--device gpu' 또는 '--device 0'과 같이 GPU ID를 지정하여 GPU에서 학습을 수행할 수 있습니다

5단계-모델 훈련(GPU, CPU 비교)

!python train.py --epochs 15 --weights weights/last.pt --batch-size 3 --cfg yolov3-spp.cfg --data custom.data --nosave --device cpu

GPU로 훈련 : 빠름 다른작업도 여유있게 가능

CPU로 훈련 : 느리고pc 죽는소리남;; 다른작업시 랙이 걸림

5단계-모델 훈련

873/876	0G	1.08	0.0202	0	1.1	6	512:	75% #######5	3/4	[00:16<00:04,	4.19s/it]
873/876	0G	1.08	0.0202	0	1.1	6	512:	100% #########	# 4/4	[00:16<00:00,	4.00s/it]
873/876	0G	1.08	0.0202	0	1.1	6	512:	100% #########	# 4/4	[00:17<00:00,	4.28s/it]
	Class	Images	Targets	Р	R	mAP@0.5	F1:	0%	0/1	[00:00 , ?it/</td <td>/s]</td>	/s]
	Class	Images	Targets	Р	R	mAP@0.5		100% #########			-
	Class	Images	Targets	Р	R	mAP@0.5		100% #########		-	
		8							- 7 - 7 -	L ,	
0%	0/4	[00:00 ,</td <td>?it/sl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	?it/sl								
874/876	 0G	0.631	0.011	0	0.642	2	512:	0%	0/4	[00:05 , ?it/</td <td>/s]</td>	/s]
874/876	0G	0.631	0.011	0	0.642	2	512:	25% ##5		[00:05<00:16,	_
874/876	0G	0.843	0.0118	0	0.854	6	512:	25% ##5	1/4	[00:09<00:16,	5.50s/it]
874/876	0G	0.843	0.0118	0	0.854	6	512:	50% #####		[00:09<00:09,	
874/876	0G	0.799	0.0136	0	0.812	5	512:			[00:13<00:09,	
874/876	0G	0.799	0.0136	0	0.812	5	512:	75% #######5		[00:13<00:04,	
874/876	0G	1.05	0.014	0	1.06	4	512:	75% #######5		[00:17<00:04,	
874/876	0G	1.05	0.014	0	1.06	4		100% ##########		[00:17<00:00,	4.10s/it]
874/876	0G	1.05	0.014	0	1.06	4		100% ##########		[00:17<00:00,	
074/070	00	1.05	0.014	· ·	1.00	4	312.	100% ########	7 4/4	[00.1/(00.00,	4.503/10]
	Class	Images	Targets	Р	R	mAP@0.5	F1:	0%	I 0/1	[00:00 , ?it/</td <td>/ < 1</td>	/ < 1
	Class	Images	Targets	Р	R	mAP@0.5		100% ##########		[00:03<00:00,	-
	Class	Images	Targets	P	R	mAP@0.5		100% ##########			
	CIASS	Images	rai gets		K	IIIAI @O.5	11.	100% ########	7 1/1	[00.04(00.00)	4.053/10]
0%	0/4	[00:00 ,</td <td>?it/sl</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	?it/sl								
875/876	0G	1.01	0.0295	0	1.04	10	512:	0%	1 0/4	[00:05 , ?it,</td <td>/s1</td>	/s1
875/876	0G	1.01	0.0295	0	1.04	10	512:	25% ##5		[00:05<00:16,	-
875/876	0G	1.02	0.0245	0	1.05	5	512:	25% ##5		[00:09<00:16,	
875/876	0G	1.02	0.0245	0	1.05	5	512:	50% #####		[00:09<00:09,	
875/876	0G	1.05	0.0233	0	1.07	5	512:	50% #####		[00:13<00:09,	
875/876	0G	1.05	0.0233	0	1.07	5	512:	75% #######5		[00:13<00:03,	
875/876	0G	1.06	0.0233	0	1.09	6	512:	75% #######5		[00:13<00:04,	4.23s/it]
875/876	0G	1.06	0.0224	0	1.09	6		100% #########		[00:17<00:04,	
875/876	0G	1.06	0.0224	0	1.09	6		100% ##########		[00:17<00:00,	
0/3/0/0	00	1.00	0.0224	V	1.09	0	512:	100% ########	+ 4/4	[00:1/(00:00,	4.405/11]
	Class	Images	Targets	Р	R	mAP@0.5	F1:	0%	I a/1	[00:00 , ?it/</td <td>/c1</td>	/c1
	Class	Images	Targets	Р	R	mAP@0.5		100% ##########	-	[00:03<00:00,	-
	Class	Images	Targets	P	R	mAP@0.5		100% ##########		-	_
	CIGSS	Images	rai ge cs		K	IIIAI @O.5	11.	100% #########	7 1/1	[00.04(00.00)	4.053/10]
0%	1 0/4	[00:00 ,</td <td>?i+/s1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	?i+/s1								
876/876	0G	0.897	0.0134	0	0.911	3	512:	0%	1 0/4	[00:05 , ?it/</td <td>/e1</td>	/e1
876/876	0G	0.897	0.0134	0	0.911	3	512:			[00:05<00:16,	
876/876	0G	0.737	0.0134	0	0.752	4	512:	25% ##5		[00:09<00:16,	_
876/876	0G	0.737	0.0149	0	0.752	4	512:		100	[00:09<00:10,	
	0G	0.884	0.0149	0	0.732	2	512:	50% #####		[00:13<00:09,	
876/876	0G	0.884		0		2				[00:13<00:09,	
876/876			0.0131		0.897	4	512:	75% #######5 75% #######5			
876/876	0G	1	0.0145	0	1.02	4	320:			[00:15<00:04,	
876/876	0G	1	0.0145	_	1.02	4		100% #########		[00:15<00:00,	3.31s/it]
876/876	0G	1	0.0145	0	1.02	4	520:	100% ########	# 4/4	[00:15<00:00,	3.84s/it]
	Class	T	Tauast-	Р	n	ADQQ	Γ4 -	0%	L 0/4	[00.004] 3:+	/-1
	Class Class	Images	Targets Targets	P P	R R	mAP@0.5 mAP@0.5	F1:			[00:00 , ?it,</td <td>-</td>	-
	CIass	Images	i ar gets	P	К	MARINO.5	F1:	100% ##########	+: 1/1	100:00<00:00.	J.335/1T

6단계-결과 분석 및 해석

!python detect.py --weights weights/last.pt --source images --cfg yolov3-spp.cfg --names classes.names --output result

```
Model Summary: 225 layers, 6.25733e+07 parameters, 6.25733e+07 gradients
image 1/15 images\001 20200622 203312(6).jpg: 416x512 Done. (0.404s)
image 2/15 images\001_20200623_003516(8).jpg: 416x512 Done. (0.395s)
image 3/15 images\001 20200901 003429(1).jpg: 416x512 Done. (0.386s)
image 4/15 images\001 20200922 163329(0).jpg: 416x512 Done. (0.386s)
image 5/15 images\001 20200922 163332(2).jpg: 416x512 Done. (0.396s)
image 6/15 images\002_20200714_043029(1).jpg: 512x512 1 defects, Done. (0.559s)
image 7/15 images\002_20200715_042416(9).jpg: 512x512 Done. (0.500s)
image 8/15 images\002_20200831_083545(0).jpg: 512x512 Done. (0.479s)
image 9/15 images\002 20200831 123134(5).jpg: 512x512 Done. (0.466s)
                                                                     제품의 결함이 발견됨
image 10/15 images\002 20200908 043137(8).jpg: 512x512 Done. (0.458s)
image 11/15 images\002_20200915_003459(4).jpg: 512x512 Done. (0.460s)
image 12/15 images\002_20200917_043110(7).jpg: 512x512 Done. (0.464s)
image 13/15 images\002 20200917 202952(6).jpg: 512x512 Done. (0.477s)
image 14/15 images\002 20200917 203001(5).jpg: 512x512 1 defects, Done. (0.570s)
image 15/15 images\002 20200922 083747(7).jpg: 512x512 1 defects, Done. (0.500s)
Results saved to C:\test1\yolov3\result
Done. (7.072s)
```

6단계-결과 분석 및 해석

```
!python test.py --cfg yolov3-spp.cfg --batch-size 3 --data custom.data --weights weights/last.pt
WARNING: smart bias initialization failure.
WARNING: smart bias initialization failure.
WARNING: smart bias initialization failure.
Model Summary: 225 layers, 6.25733e+07 parameters, 6.25733e+07 gradients
Fusing layers...
Model Summary: 152 layers, 6.25465e+07 parameters, 6.25465e+07 gradients
                                                                              0.983
                                              0.967
                                                                   0.995
Speed: 441.8/1.0/442.8 ms inference/NMS/total per 512x512 image at batch-size 3
```

P (정밀도) R (재현율)

F1

'평균 정밀도)

결과-발표

학습 이미지 수량	P(정밀도)	R(재현율)	MAP@0.5 (평균 정밀도)	F1
15	0.78	0.571	0.675	0.659
50	0.936	0.933	0.963	0.935
100	0.954	0.967	0.96	0.96
200	0.881	0.933	0.885	0.907
300	0.881	0.933	0.885	0.907

결과-발표

새로운 문제

- 1. 과적합?
- 2. 데이터 전처리 문제?

결과-발표

문제 해결: 데이터 전처리(데이터 다양성)

학습 이미지 수량	P(정밀도)	R(재현율)	MAP@0.5 (평균 정밀도)	F1
100-a(단일)	0.954	0.967	0.96	0.96
100-b(다양성)	0.958	0.886	0.937	0.921

데이터 다양성이란?

다른 라인(다양성 높음)

같은 라인(다양성 낮음)

학습 데이터 이미지 수(100개) 는 같으나 사진의 각도와 불량품의 종류의 다양성이 다름

결론

Yolov3로 성능을 올리기 위해서는 일반적으로 학습데이터 개수를 많이 하는게 일반적이나, 그보다 중요한건 학습데이터 선별에서 데이터의 다양성을 확보해서 학습시키는것이 중요하다.

이 프로젝트를 하면서....

데이터 다양성을 위해 다른 라인에서 섞어서 학습을 시켜야 하는데 그러지 못했다.(시간부족)

이러한 경우(다양하게 섞는경우) 학습데이터 양을 늘릴 수 록 성능이 개선 될것이라 예측됨

감사합니다.