

Android 11.0

Camera AE3.0调试指导手册

WWW.UNISOC.COM

紫 光 展 锐 科 技

修改历史

版本号	日期	注释
V1.0	2020/11/10	第一次正式发布。

关键字

关键字: Camera、AE

目录

原理介绍

参数介绍

调试流程

功能确认

调试案例

参数列表

原理介绍 — 方框图

● AE (Auto Exposure)模块,根据不同亮度环境配置不同 target lum值,达到适度的图像预期亮度。

原理介绍 — AE Target计算

● AE Target 计算公式

AE Target = AE Target Base + AE offset

- 三种AE Target计算
 - Touch AE
 - 有人脸Global AE
 - 无人脸Global AE

参数介绍—AE模块界面及ISP参数界面

- AE模块界面(生成/导入/导出AE Chart)
 - > NORMAL AE
 - ➤ CUSTOM AE (不作调试)
 - > SCENE AE
 - > WEIGHT
 - > PARAM EXPORT/IMPORT
 - > TOUCH AE
 - > FACE AE
 - > AE CHART
 - > AE CONFIG
 - ➤ REGION (建议关闭)
 - ➤ FLAT (建议关闭)
 - > ABL
 - > HM
 - > NIGHT
- ISP参数界面

• • •

➤ AE参数目录

•••

参数介绍—NORMALAE

NORMAL AE 用于设定普通场景的AE曝光表。 NORMAL AE有以下两种模式:

- Easy模式
- Advance模式

参数介绍 — Easy 模式

Easy 模式参数:

- Line Time: preview状态下sensor曝光一行所用时间。 (在driver的sensor.h中查询)
- Max Gain: AE table使用的最大gain。
- Max Exp Time 50Hz: 50hz 下支持的最大曝光时间。 该参数影响最小帧率。max shutter = n*0.01s
- Max Exp Time 60Hz: 60hz下支持的最大曝光时间。
 该参数影响最小帧率。max shutter = n*0.008333333s。
- Target Lum: AE目标亮度base_target。

```
/*line time unit: 1ns*/
#define VIDEO LINE TIME 6098
#define PREVIEW LINE TIME 11671
#define SNAPSHOT LINE TIME 11671
/* please ret your spec */
#define FRAME OFFSET 18
#define SENSOR MAX GAIN 0xF0
#define SENSOR BASE GAIN 0x20
#define SENSOR MIN SHUTTER 8
```


参数介绍 — Advance模式

Advance 模式参数:

● AE Mode: 50Hz/60Hz曝光模式选择

● Line Time: sensor 曝光一行使用的时间

● Min Line: sensor 支持的最小曝光行

● Outdoor Gain: AE table使用的最小Gain

● Start Gain: 进入相机时使用的起始Gain

● Target Lum: AE目标亮度

● ISO: ISO档位 (Auto/100/200/400/800/1600)

exp time及Max Gain设置约束规则:

 $\operatorname{Exp \ time}_{\operatorname{N}} * \operatorname{Max \ gain}_{\operatorname{N}} \geq \operatorname{Exp \ time}_{\operatorname{N+1}}$

 $\operatorname{Exp\ time}_{N+1} * \operatorname{Max\ gain}_{N+1} > \operatorname{Exp\ time}_{N} * \operatorname{Max\ gain}_{N}$

参数介绍 — SCENE AE

SCENE AE 用于设定不同场景的AE曝光表

参数说明:

● Enable: Scene模式开关

● Scene mode: 支持NIGHT、SPORT、PORTRAIT、LANDSCAPE、FACEID、PANORAMA、VIDEO、VIDEO_EIS八种场景,建议NIGHT和FACEID必配

● Weight mode: 选择测光权重

● Target Lum: AE目标亮度

● Ev offset: ev_table的档位 (3为offset=0)

● Max fps: 最大帧率

● Min fps: 最小帧率

• ISO: ISO档位 (Auto /100 /200 /400 /800 /1600)

● Target zone in: 亮度变化的AE误差落在target_zone_in 区间内,判断AE稳定

● Target zone out: 亮度变化的AE误差落在 target_zone_out区间外,判断AE不稳定,需重新计算

参数介绍 — WEIGHT

WEIGHT 可修改不同测光模式下的权重表。

测光模式:

● AVG: 平均测光

● CENTER: 中心测光

● SPOT: 点测光

● CUSTOM: 自定义测光

如右图所示,权重表是一个32*32的表格。为修改方便,可以将数据copy到excel表中修改。

参数介绍 — PARAM EXPORT/IMPORT

PARAM EXPORT/IMPORT用于导出/导入AE 表

- 通过Export导出现有的50/60Hz 下各ISO的AE表, 或各个场景的AE表。
- 通过Import导入AE表。

index	exp(hex)	dummy(hex	again(hex	start_ind	max_index	exp	dummy	again/128
0	0000A0F0	00000000	0080	179	378	41200	0	1
1	0000A0F0	00000000	0084			41200	0	1.03125
2	0000A0F0	00000000	0088			41200	0	1.0625
3	0000A0F0	00000000	008C			41200	0	1.09375
4	0000A0F0	00000000	0090			41200	0	1.125
5	0000A0F0	00000000	0095			41200	0	1.164063
6	0000A0F0	00000000	0099			41200	0	1.195313
7	0000A0F0	00000000	009E			41200	0	1.234375

参数介绍 — TOUCH AE

TOUCH AE设置Touch框大小以及框内亮度权重。

参数说明:

- Win1_weight:整个图像的亮度权重,值越大得到的lum 越靠近整个图像的base lum。
- Win2_weight: Touch 区域的亮度权重,值越大 Touch。 ROI 权重越大, Touch亮度变化越明显。
- Touch_zone_width: Touch window 的宽度。
- Touch_zone_height: Touch window的高度。

参数设置建议:

- Win1_weight 设置为4, Win2_weight 设置为3。
- Touch_zone_width设置为图像宽度的1/16~1/8。
- Touch_zone_heigh设置为图像高度的1/16~1/8。

参数介绍 — FACE AE (1/6)

FACE AE根据不同的bv设置不同的Face_Target。

参数说明:

- Face_Target: 根据bv分段设置的Face目标亮度。
- Up_Offset:设置可以增加的门限值,两个bv之间分段进行插值获取。
- **Down_Offset**:设置可以减少的门限值,两个bv之间分段进行插值获取。
- Ratio_Block: 多人脸时计算的权重, 值越大侧重与人脸大小的方式调整, 与Ratio_Pos成对调整。
- Ratio_Pos: 多人脸时的计算权重,值越大侧重与人脸位置的方式调整,与Ratio_Block成对调整。
- MaxWRatio: 画面中多人脸大小相近情况下过亮抑制权重, 值越大多人脸场景中会根据最亮人脸的抑制能力越强。

说明: Ratio_Block + Ratio_Pos = 100

参数介绍 — FACE AE (2/6)

Face_param_adv参数用于修改人脸亮度的稳定速度。

参数说明: (一般情况下使用默认参数)

- **trigger_sensitivity1**: face ae trigger时的亮度区间,数值越大越易trigger。
- **trigger_sensitivity2**: check face ae trigger亮 度区间帧数,数值越小越易trigger。
- trigger_sensitivity3: 保持默认值
- **trigger_sensitivity4**: trigger稳定后再次face ae计算周期。
- face_frame_thrd: 人脸消失后维持face ae状态的帧数。
- **smooth_weight**: Face ae offset收敛过程中平滑参数权重值,[0]表示当前帧权重、[1]表示前一帧权重,依次类推。

BLOCK ISP EXIF		
NAME	HEX	DEC
□ ♠ AE		

□ 🗐 face_param_adv		
−≣ trigger_sensitivity1	0x28	40
−≣ trigger_sensitivity2	0x03	3
−≣ trigger_sensitivity3	0x01	1
−≣ trigger_sensitivity4	0x01	1
−≣ face_frame_thrd	0x14	20
= smooth_weight		
⊢ ᠍ [0]	0x1E	30
- ■ [1]	0x1E	30
- ■ [2]	0x14	20
- ■ [3]	0x0A	10
<u>□</u> [4]	0x0A	10
		'

参数介绍 — FACE AE (3/6)

● 参数说明:

- ➤ abl_face_offset: 逆光偏移offet
- abl_offset_thrd: 逆光门限值, face_offset与abl 的关系如右图所示。

说明:

- 1、使用上述参数必须打开ABL。
- 2、在Face AE基础上,再次提亮人脸,根据不同逆光偏移offset,输出不同的AE Target。

= abl_face_offset	0x32	50
<u>≡</u> abl_offset_thrd	0x64	100

参数介绍 — FACE AE (4/6)

下述参数通过中心人脸和全局人脸设置不同的权重,提高人脸识别度,改善人脸稍微偏转未识别的问题。

● 参数说明:

➤ face_roi_ratio: 设置中心人脸识别框大小

➤ face_weight1: 中心人脸权重

➤ face_weight2: 全局人脸权重

➤ small_weight_thrd: 中心人脸权重的门限值

➤ small_weight_raise: 中心人脸权重提升值

– <u>≡</u> abl_face_offset	0x32	50
– <u>≡</u> abl_offset_thrd	0x64	100
– <u>≡</u> face_roi_ratio	0x19	25
-∭ face_weight1	0x03	3
− face_weight2	0x01	1
– <u>≡</u> small_weight_thrd	0x1E	30
– <u>``</u> small_weight_raise	0x00	0
─ <u> </u>	0x04	4
offset_ratio_value	0x32	50

参数介绍 — FACE AE (5/6)

下述参数适用于人脸占比小场景,通过判断人脸占比 大小,输出不同的face offset 值。

● 参数说明:

➤ offset_ratio_thrd: 人脸占比门限。

➤ offset_ratio_value: 人脸占比小于 offset_ratio_thrd门限时, 在正常face ae输出的 face offset基础上,叠加的offset最低百分比。

face_roi_ratio	0x19	25
- <u>□</u> face_weight1	0x03	3
− <u>≡</u> face_weight2	0x01	1
– <u>≡</u> small_weight_thrd	0x1E	30
– <u>≡</u> small_weight_raise	0x00	0
+ offset_ratio_thrd	0x04	4
☐ offset_ratio_value	0x32	50

参数介绍 — FACE AE (6/6)

下述参数可单独设置人脸解锁状态下的目标亮度。

参数说明:

- u4fdunlock_enable: 人脸解锁调试参数的使能开关
- u4fdunlock_face_target: 人脸解锁时人脸目标亮度
- u4fdunlock_face_weight1: 人脸解锁时中心人脸区 域权重
- u4fdunlock_face_weight2: 人脸解锁时全局人脸区 域权重
- u4fdunlock_face_roi_ratio: 人脸解锁时中心人脸 区域百分比
- u4fdunlock_unlinear_cancel: 人脸解锁时背景亮度 是否参与face ae计算
- u4fdunlock_up_limit: 人脸解锁时目标偏移的上限值
- u4fdunlock_down_limit: 人脸解锁时目标偏移的下限值

BLOCK ISP EXIF		
NAME	HEX	DEC
- face_param		
– <u>≡</u> u4fdunlock_enable	0x01	1
– □ u4fdunlock_face_target	0x50	80
– <u>≡</u> u4fdunlock_face_weight1	0x03	3
– <u>≡</u> u4fdunlock_face_weight2	0x01	1
– <u>≡</u> u4fdunlock_face_roi_ratio	0x01	1
– <u>≡</u> u4fdunlock_unlinear_cancel	0x01	1
– <u>≡</u> u4fdunlock_up_limit	0xB4	180
└ <u></u> u4fdunlock_down_limit	0x3C	60

说明:

- 1、开启人脸解锁状态下预览功能的命令如下:
 adb shell setprop persist.vendor.isp.ae.set.test_faceid on
- 2、关闭预览功能的命令如下: adb shell setprop persist.vendor.isp.ae.set.test_faceid off

参数介绍—AE CHART

AE CHART用于直观显示各AE mode、ISO及Scene 下AE table中Exp和Gain的配比关系。

数字世界的生态承载者

参数介绍 — REGION

下紫光展锐。

● 检测过曝及欠曝区域,调整各区块target,减轻曝光不合理区块的曝光或欠曝问题。

图片分成右上图所示R、L、C、U、D五个区域,计算区域间(CU、CD、CL、CR、UD、LR)的亮度差,将各亮度差与相应阈值作比较,计算最终亮度补偿值。

● 参数说明:

➤ SampNum: 分段数。

➤ UpRatio: 亮度偏移增加的权重 (256为1倍)。

▶ DnRatio: 亮度偏移减少的权重 (256为1倍)。

▶ LV:分段bv,两个bv之间Weight通过插值产生。

➤ Index: Region分档数。

注意: Region功能未使用, 默认关闭。

	Mulae	es	Region							
Enable		~			~					
SampNum	8		4							
	LV	T Lum	LV	Index	UpRatio	DnRatio				
0	0	35	400	0	256	256				
1	150	45	500	1	256	256				
2	200	52	950	1	256	256				
3	350	52	1100	2	256	256				
4	400	40								
5	500	60								
6	800	60								
7	1200	80								

参数介绍 — FLAT

FLAT用于增强平坦场景的照片亮度

参数说明:

● LV: 两个LV level 之间的ratio权重通过插值得到

● Ratio: 256 表示输出 100% offset

● Index: Flat档位

说明:

Flatness = degree*4 (degree从exif中获取)

- ① Flatness <= Threshold_Low 不调整画面
- ② Flatness >= Threshold_Up
 Flat offset = Offset_Up
- ③ Threshold_Low < Flatness < Threshold_Up
 Flat offset = Offset_Low + K*(Flatness Threshold)
 其中 K = (Offset_Up- Offset_Low) / (Threshold_Up
 -Threshold_Low)

注意: Flat功能未使用, 默认关闭。

	Mula	es	Region						
Enable		~						V	
SampNum	8		4				5		
	LV	T Lum	LV	Index	UpRatio	DnRatio	LV	Index	Ratio
0	0	35	400	0	256	256	450	0	256
1	150	45	500	1	256	256	600	0	256
2	200	52	950	1	256	256	850	1	256
3	350	45	1100	2	256	256	950	1	256
4	400	45					1150	2	256
5	500	45							

参数介绍 — ABL/HM/NIGHT

• ABL

自动检测背光并进行AE矫正和gamma矫正。

- HM + NIGHT
 - > HM:

通过分析直方图信息进行调试,实现对图像亮度的控制,有效地抑制图像过曝,保留更多亮区细节信息。

> NIGHT:

通过直方图信息统计,调节夜景亮度的模块。

开启HM与Night模块后, target = Ns_target*Ns_weight + (1-Ns_weight)*HM_target

MAL AE	CUSTO	M AE	SCEN	IE AE	WEIGH	IT PA	RAM E	XPORT	/IMPOR	Т	тоисн	AE F
CHART	AE	CONFIG		REG	ION	FLAT		ABI	-	F	IM	NI
			T							r		
	Mula	es	Regio	n			Flat			Abl		
Enable		~								▽		
SampNum	8	4					5		<mark> </mark> 2			
	LV	T Lum	LV	Index	UpRatio	DnRatio	LV	Index	Ratio	LV	Index	Strength
0	0	35	400	0	256	256	450	0	256	30	0	0
1	150	45	500	1	256	256	600	0	256	1000	1	100
2	200	52	950	1	256	256	850	1	256	i		
3	350	52	1100	2	256	256	950	1	256			
4	400	40					1150	2	256			
5	500	60										
_	800	60										
6												

说明:

- 1. ABL模块调试详见《Android 11.0 Camera ABL调试指导手册V1.0》
- 2. HM 模块调试详见《Android 11.0 Camera HM 调试指导手册V1.0》
- 3. NIGHT模块调试详见《Android 11.0 Camera NIGHT 调试指导手册V1.0》

参数介绍 — ISP (1/8)

参数说明:

- s_data: 算法版本信息
 - ➤ version: 与major_id意义相同
 - ➤ major_id: 如版本号为3.1, 则major_id = 3
 - ➤ minor_id: 如版本号为3.1, 则minor_id = 1
- target_zone_in: AE由不稳定进入稳定区域的设置
- target_zone_out: AE出稳定区间的设置

说明:

实际使用stable_zone_in和stable_zone_out作为判断进/出稳定区域的参数,与target_zone_in和target_zone_out的换算如下:

 $x = target_zone_in/100$

 $y = target_zone_out/100$

 $stable_zone_in = min(max((2^x-1)*target_lum, 2), 0.5*target_lum)$

 $stable_zone_out = max(2*stable_zone_in, 2^y)$

BLOCK ISP EXIF					
NAME					
æ AE					
🗐 🗐 s_data					
- <u>□</u> version	0x03	3			
-∭ major_id	0x03	3			
minor_id	0x01	1,			
−∭ iso100_gain	0x00	0			
– <u>≡</u> target_lum	0x40	64			
_ <u> </u>	0x02	2			
- <u>□</u> target_zone_out	0x04	_ 4			
-⊞ cvg_speed	0x00	0			

参数介绍 — ISP (2/8)

参数说明:

- iso_special_mode:
 - ▶ 0: 固定iso (常规模式)
 - ➤ 1: iso auto mode (特殊模式)
- enter_skip_num: 进入相机时AE的跳帧数
- meter_mode: 测光模式
 - ▶ 0: 平均测光
 - ▶ 1: 中心测光
 - ▶ 2: 单点测光
 - ▶ 3: 自定义测光
- data_type:
 - ▶ 0: 旧AEM格式
 - ➤ 1: 新AEM格式 (oe_thd 、ue_thd)
- oe_thd: AEM 过曝阈值 (仅新AEM格式时有效)
- ue_thd: AEM 欠曝阈值 (仅新AEM格式时有效)
- win_num_w&win_num_h: AEM (auto exposure monitor) 区域块划分

BLOCK ISP EXIF		
NAME	HEX	DEC
□ AE		
cvg_speed	0x00	0
– <u>≡</u> iso_special_mode	0x01	1
– <u>≡</u> enter_skip_num	0x00	0
- <u>≡</u> meter_mode	0x00	0
monitor_param		
−≣ monitor_mode	0x01	1
- <u>≡</u> data_type	0x00	0
−∭ win_num_w	0x40	64
–∭ win_num_h	0x40	64
-∭ oe_thrd	0xFA	250
ue_thrd	0x10	16

参数介绍 — ISP (3/8)

参数说明:

- bhist_param: 全部默认配置为0。
- dc_fps: Preview模式最小、最大帧率
- Dv_fps: video模式最小、最大帧率
- Ctrl_setting:
 - ➤ max_gain: sensor支持的最大增益
 - > min_gain: sensor base gain
 - ➤ min_exp_line: 最小曝光行
 - ➤ gain_precision: 增益精度 (
 isp_base_gain/sensor_base_gain)
 - > exp_skip_numf∏gain_skip_num:
 - 1: 隔帧生效
 - 0: 下帧生效

严格按sensor spec 配置 ,使用以下命令测试 sensor exp和gain是否生效:

adb shell setprop persist.vendor.isp.ae.exp_gain "2 10000 128 5000 256",画面无闪烁表明正常,若画面出现闪烁,请联系sensor厂商支持。

➤ isp_gain_skip_num: 使用默认值0

BLOCK ISP EXIF	· · · · · · · · · · · · · · · · · · ·	
NAME	HEX D	EC
□ 🖨 AE		
+ bhist_param		
🖃 📵 dc_fps		
–≣ min	0x14	20
_≣ max	0x1E	30
□ 🔄 dv_fps		i
−∭ min	0x14	20
– <u>≡</u> max	0x1E	30
- 🔄 ctrl_setting		1
-∭ max_gain	0x0780	1920
–≣ min_gain	0x80	128
-∭ min_exp_line	0x08	8
–≣ gain_precision	0x01	1
–≣ exp_skip_num	0x01	1
–≣ gain_skip_num	0x01	1
–≣ isp_gain_skip_num	0x00	0
group_hold_en	0x00	0 /

参数介绍 — ISP (4/8)

参数说明:

- flash_control_param: 详见FLASH调试指导手册
- lv_cali: 定标sensor的LV/BV基准值
- ev_table: 相机选择手动模式(如下图)进入手机默认第0档, items[0].lum_diff = -3档、items[1].lum_diff = -2档以此类推。

final_target_lum = target_lum + items[x].lum_diff

BLOCK ISP EXIF		
NAME	HEX	DE
□ 🖨 AE		
flash_control_param		
🔄 lv_cali		
-∭ lux_value	0x0244	580
bv_value	0x0970	2416
ev_table		
− items[0].lum_diff	0xFFCE	-50
– items[0].stab	0x02	2
	0x04	4
– <u>≡</u> items[0].stab	UXU4	
- <u>≡</u> items[0].stab - <u>≡</u> items[1].lum_diff	0xFFDD	-35
		-35 0

参数介绍 — ISP (5/8)

参数说明:

- auto_flash: 详见FLASH调试指导手册。
- auto_3dnr: 开启auto_3dnr的上下阈值 (bv值)。
 - ➤ BV大于thrd_up,不开启。
 - ➤ BV小于thrd down, 开启。
 - ▶ BV在两者之间,过渡区域。
- Auto_video_fps: 控制video帧率生效的阈值(bv值)。
 - ➤ BV大于thrd_up,使用高帧率。
 - ▶ BV小于thrd down, 使用低帧率。
 - ▶ BV在两者之间,使用浮动帧率。
- **4cell**: 4in1模式开启的上下阈值 (bv值)。
- ai_param:详见AI调试指导手册。
- Abl_param:详见ABL调试指导手册。
- pcp_param: 未使用
- hm_param: 详见HM +NIGHT调试指导手册
- ns_param: 详见HM +NIGHT调试指导手册

BLOCK ISP EXIF		
NAME	HEX	DEC
□ 🔄 AE		
+ auto_flash		T
- 🔄 auto_3dnr		
-⊞ thrd_up	0x01F4	500
- thrd_down	0x01EA	490
- 🔄 auto_video_fps		
-⊞ thrd_up	0x0190	400
- thrd_down	0x64	100
- 🔄 4cell		
-⊞ thrd_up	0x01F4	500
-⊞ thrd_down	0x01EA	490
+ 🧰 touch_param		
+ 🧰 face_param		
+ 🧰 mulaes_param		
+ 🗀 region_param		
+ 🛅 flat_param		
+ 📄 ai_param		Ţ -
+ 🦲 abl_param		
+ 🗀 pcp_param		
+ 🦲 hm_param		
+ 🚞 ns_param		

参数介绍 — ISP (6/8)

参数说明:

• Mode:

> 0: OTP mode

▶ 1: dynamic mode (建议值1)

● y_ratio_chg_thr: 主辅摄间亮度差异chg门限

● y_ratio_chg_cnt: 主辅摄间亮度差异小于chg门限的连续帧数的门限。

● y_ratio_stb_thr: AE亮度稳定阈值 y_ratio_stb_cnt: AE亮度稳定计数器

● adpt_speed: AE Sync收敛因子。值越大收敛越快 ,但容易产生振荡;值越小收敛越慢。

● soft_frm_sync: 软件同步开关

▶ 软件同步: 1▶ 硬件同步: 0

● adj_ratio: 未使用

● adj_thrd: 未使用

BLOCK ISP EXIF		
NAME	HEX	DEC
- ♠ AE		
É ➡ AE_SYNC		
− ≡ mode	0x01	1
−∭ y_ratio_chg_thr	0x07	7
−∭ y_ratio_chg_cnt	0x0A	10
−≘ y_ratio_stb_thr	0x05	5
−≣ y_ratio_stb_cnt	0x0F	15
- <u>≡</u> adpt_speed	0x05	5
−∭ soft_frm_sync	0x00	0
–∭ adj_ratio	0x00	0
adj_thrd	0x00	0
±		•

参数介绍 — ISP (7/8)

参数说明:

binning_factor: 由于binning方式不同,一些 sensor的binning size和full size的raw图亮度存在 差异。可以在preview模式和capture模式下给 binning_factor设置不同的值来保持亮度一致。 (128为基数表示1倍)

设置示例:

preview模式binning size为4M, capture模式 fullsize为16M。两种模式设置的gain/exposure 相同,在相同环境下拍raw图, raw图亮度比值为4:1,则参数设置为:

Preview模式下binning factor = 128

Capture模式下binning factor = 512

BLOCK ISP EXIF	i	
NAME	HEX	DEC
F⊕ AE		
∃⊜ AE_ADAPT_SETTING		
binning_factor	0x80	128

参数介绍 — ISP (8/8)

EVD模块根据bv和abl_weight,输出ev作用到shutter和gain。

参数说明:

- **evd_calc_en:** evd模块开关
- evd_value[i]: 曝光参数调整的权重值
- **evd_ratio[i]:** evd的权重值
- **bv_cfg.num:** bv个数
- **bv_cfg.samples[i].x:** 分段bv值,两bv间的权 重通过插值产生。
- **bv_cfg.samples[i].y:**与evd_value[i]数值对应
- abl_cfg.num: abl_weight个数
- abl_cfg.samples[i].x: abl weight值
- abl_cfg.samples[i].y:与evd_ratio[i]数值对应ev = (evd_value*evd_ratio)/100

BLOCK ISP EXIF		
NAME	HE	EX DEC
- - evd_param		!
- <u>≡</u> evd_calc_en	0x0)1 1
= 😑 evd_value		
− <u>≡</u> [0]	0xFFFF	FFFB -5
− Ⅲ [1]	0xFFFF	FFFF1 -15
− ≡ [2]	0xFFFF	FFFF1 -15
– ∭ [3]	0xFFFF	FFE7 -25
⊢ ∭ [4]	0x0	0 0
- 🔄 evd_ratio		
<u>−</u> <u>≡</u> [0]	0x0	00 0
- <u>□</u> [1]	0x3	32 50
-∭ [2]	0x6	54 100
-∭ [3]	0x0	0 0
- [≝] [4]	0x0	0 0
− <u>≡</u> [5]	0x0	0 0
− Ⅲ [6]	0x0	0 0
<u>□</u> [7]	0x0	0 0
−∭ bv_cfg.num	0x0	04 4
− <u>≡</u> bv_cfg.sample	s[0].x 0x01	L2C 300
− <u>≡</u> bv_cfg.sample	s[0].y 0x0	0 0
− ≡ bv_cfg.sample	s[1].x 0x01	1F4 500
− <u>≡</u> bv_cfg.sample	s[1].y 0x0	01 1
− <u>≡</u> bv_cfg.sample	s[2].x 0x03	384 900
− <u>≡</u> bv_cfg.sample	s[2].y 0x0	02 2
− <u>≡</u> bv_cfg.sample	s[3].x 0x04	14C 1100
−≣ bv_cfg.sample	s[3].y 0x0	3 3
− <u>≡</u> bv_cfg.sample	s[4].x 0x0	0 0
-≣ abl_cfg.num	0x0)3 3
−≣ abl_cfg.sample	es[0].x 0x0	0 0
−≣ abl_cfg.sample	es[0].y 0x0	0 0
− ≡ abl_cfg.sample	es[1].x 0x3	32 50
abl_cfg.sample	es[1].y 0x0	01 1
abl_cfg.sample	es[2].x 0x6	54 100 I
- ■ abl_cfg.sample	es[2].y 0x0	2
- <u>≡</u> abl_cfg.sample	es[3].x 0x0	0 0

调试流程 — 设置Ctrl_setting

- ① 点击打开参数按钮, 打开tuning参数。
- ② 完成Ctrl_setting参数设置。

ctrl_setting 2		!
− <u> </u>	0x0780	1920
–∭ min_gain	0x80	128
– <u>≡</u> min_exp_line	0x08	8
–∭ gain_precision	0x01	1
– <u>≡</u> exp_skip_num	0x01	1
–∭ gain_skip_num	0x01	1
–∭ isp_gain_skip_num	0x00	0

数字世界的生态承载者

调试流程 — 安装Mlog

③ 安装Mlog,安装命令如下:

adb shell setenforce 0 adb install –r MLog.apk adb shell rm -rf /data/mlog adb shell mkdir /data/mlog/ adb shell touch /data/mlog/ae.txt adb shell touch /data/mlog/smart.txt adb shell touch /data/mlog/awb.txt adb shell touch /data/mlog/lsc1.txt adb shell touch /data/mlog/lsc2.txt adb shell chmod 777 /data/mlog/*.txt

说明:

- 1, lsc1.txt is for rear and front camera.
- 2, lsc2.txt is for extended rear camera.

安装完成后, Mlog设置界面如下图所示。

调试流程 — 标定lv_cali

- ④ 标定lv_cali, 过程如下:
 - a) 暗室中,打开lightbox调整到LV10 (或者DNP 亮度设置最低),使用照度计测量其照度值,填入lux_value。
 - b) 开启相机,镜头距光源1cm左右,使用Mlog工具抓取cali_bv,填入bv_value。

🗕 🚉 lv_cali		
⊢ <u>≡</u> lux_value	0x75	117
-∭ bv_value	0x0375	885

调试流程 — 生成曝光参数

小 紫光度锐。

- ⑤ 选择SCENE AE, 填入参数生成曝光表。
- ⑥ 选择FACE AE, 确保参数完整。
- ⑦ AE CONFIG->Mulaes,填入参数。
- ⑧ 打开HM&&NIGHT Enable。
- ⑨ 点击保存曝光参数。

功能确认 — AE

AE功能确认操作如下:

- 1、打开带有exif信息的照片。
- 2、将图片导入ISPtool,解析图片的debug信息。
- 3、AE3.0 exif能正确完整地解析,表明AE功能正常。

WODE ID	MODE NAME	IMAGE SIZE	FPS
⊕ 0	common	6528x4896	0
<u> </u>	prv_0	6528x4896	0
<u>2</u>	prv_1	3264x2448	0
<u></u>	cap_0	6528x4896	0
BLOCK	ISP EXIF		
NAME		HEX	DEC
Exif P AE AV LSO SN	3.0 VB3.0 C3.0		

BLOCK ISP	EXIF		
NAME		HEX	DEC
- @ Exif Paramete	r		
= € AE3.0			
- <u>≡</u> size		0x041938	268600
− ≡ version		0x05	5
+ 🖮 alg_versi	ion		
−≣ major_id		0x03	3
−≣ minor_id		0x01	1
+ 🚞 img_size			
− <u>≡</u> start_ind	ex	0xD2	210
- <u>≡</u> ae_start_	delay	0x01	1
− ≡ max_inde	ex	0x0164	356
−≣ min_inde	ex	0x00	0
−≣ max_fps		0x0BB8	3000
−≣ min_fps		0x0594	1428
−≝ lv_cali_lv		0x0A	10
−∭ lv_cali_bv	,	0x0970	2416
−≣ frame_id		0x43	67
-≣ lock_stat	tus	0x00	0
- ≡ awb_mo	- ■ awb_mode		0
-∭ awb_gai	-⊞ awb_gain_r		1978
– ≣ awb_gai	n_g	0x0400	1024
–≝ awb_gai	n_b	0x0795	1941
+ a sensor	r info		

功能确认 — Face AE

Face AE功能确认操作如下:

- 1、导入人脸图片。
- 2、关闭Face AE得到图1。
- 3、打开Face AE,填入右图所示参数得到图2。
- 4、对比图1和图2的人脸亮度,判断Face AE功能是否生效。

图1

图2

▼ Face AE Enable

Sample Num: 8

	LV	Face Target	Up Offset	Down Offset	Ratio Block	Ratio Pos	Ma×With Ratio
0	200	90	30	25	90	10	50
1	300	90	30	30	90	10	50
2	500	90	36	30	90	10	50
3	600	90	40	30	90	10	50
4	700	90	44	20	90	10	50
5	900	90	30	20	90	10	50
6	1180	90	30	15	90	10	50
7	1380	90	30	13	90	10	50

功能确认 — AE Mlog

AE Mlog介绍

● cam-id: 当前预览模组的ID

▶ 0: 主摄

▶ 1: 前摄

● cur-l: 当前帧图片亮度 (不带weight权重)

● tar-1: 当前帧图片亮度 (带weight权重)

● bv(lv): 当前场景的bv值

● expl: 当前曝光行

● expt: 当前曝光时间

● gain: 当前增益值

● FR(5-30): 当前帧率

```
cameid:0 fram-id:1587,flickete 0
```


调试示例 — 修改场景亮度

下 紫光展锐

修改场景亮度的操作如下:

- 1、查询照片exif信息确定需要修改的BV值。
- 2、修改对应Tlum,改后的照片亮度增加。
- 3、确定exif信息mulaes_target_offset的值。

BLOCK ISP **EXIF** NAME HEX DEC · cur_lum_w 0x42 66 cur_lum_avg 0x43 67 658 BV值 0x0292 ⊢∭ cur_bv cur_fps 0x10 16 0x00 -⊞ cur_ev mulaes_target_offset mulaes_target_offset 0xF2 -∭ region_target_offset 0x00 flat_target_offset 0x00 0 fd_ae_target_offset 0x000

修改前

修改后

调试示例 — 人脸亮度偏暗 (1/3)

问题描述: 开启Face AE功能,测试机拍摄图与对比机拍摄图相比,人脸亮度偏暗。

对比机

测试机

调试示例 — 人脸亮度偏暗 (2/3)

问题分析:

如右图,分析测试机人脸图像的exif信息,发现Face_avg_luma较低。需要修改的BV = 486,fd_ae_target_offset = 9 较小。

问题解决:

增大face target使人脸变亮,参数修改如下图所示。

BLOCK ISP EXIF		
NAME	HEX	DEC
- 📵 Exif Parameter		
(♣ AE3.0		
–≝ size	0x03F43C	259132
–≣ version	0x05	5
−≣ cur_lum_w	0x4B	75
– <u> </u>	0x4B	75
–⊞ cur_bv	0x01E6	486
-⊞ final target lum	0x49	73

0x49	73	
0x09	9	
0x2B	43	
0x2B	43	
0x2B	43	
	0x09 0x2B 0x2B	0x09 9 0x2B 43 0x2B 43

调试示例 — 人脸亮度偏暗 (3/3)

对比修改前后的图片,发现修改后人脸亮度有明显改善。

修改前

修改后

参数列表 (1/9)

AE参数	取值范围	缺省值	说明
s_data.version	_	3	算法版本信息。
s_data.major_id	-	3	主ID。
s_data.minor_id	-	1	子ID。
target_zone_in	[5,128]	5	基于EVD概念,精度1/100。
target_zone_out	[5,256]	5	基于EVD概念,精度1/100。
Iso_special_mode	[0,1]	1	0: 固定iso(常规模式) 1: iso auto mode(特殊模式)
enter_skip_num	-	0	进入相机时, AE计算跳帧数。
meter_mode	[0,3]	0	测光模式选择。
start_index	-	210	start index。只在烧录版本后,第一次进入相机时才生效。
monitor_mode	[0,1]	1	0: Single 1: Continue
data_type	[0,1]	1	0: uniform 1: separate (如果平台支持,建议设置为1。)
win_num_w&Win_num_h	[32/64/128]	64	AEM窗口个数配置,不能超过硬件支持的最大值。
oe_thd	[0,255]	250	过曝的阈值 (data_type为1时才生效)。

数字世界的生态承载者

参数列表 (2/9)

AE参数	取值范围	缺省值	说明
ue_thd	[0,255]	16	欠曝的阈值 (data_type为1时才生效)
bhist_param (by_pass)	[0,1]	1	0: on 1: bypass (硬件关联,必须check 是否支持)
bhist_param (mode)	[0,1]	0	0: single 1: continue
bhist_param (skip_num)	-	0	跳帧设置
bhist_param (ae_bhist_start, end_x/y)	-	0 ~ image size	bayer hist ROI的起点/终点坐标
dc_fps	-	-	控制preview模式帧率 (若全设置0, 默认值min=20、 max=30)
dv_fps	-	-	控制video模式帧率 (若全设置0, 默认值min=20、 max=30)
max_gain	[128, m*128]	-	sensor最大支持gain*128
min_gain	[128, n*128]	128	sensor最小支持gain*128
min_exp_line	-	-	最小曝光行
gain_precision	-	1	gain精度, isp_base_gain/sensor_base_gain
exp_skip_num	-	1	根据具体sensor exp生效机制配置,0表示下一帧生效, 1表示隔一帧生效。
gain_skip_num	-	0	根据具体sensor gain生效机制配置,0表示下一帧生效,1表示隔一帧生效

数字世界的生态承载者

参数列表 (3/9)

AE参数	取值范围	缺省值	说明
lux_value	-	-	对应光源机下,照度计测得的lux值。
bv_value	-	-	对应光源机下,测得的bv值,可以通过mlog直接看到。
ev_table	-	_	手机选择Manual模式使用参数。
items[i].lum_diff	[-100,100]	-	offset偏移, items[0].lum_diff=-3档、items[1].lum_diff=-2档 其它以此类推。
items[0].stable_zone_in	-	5	对应这个EV下的稳定区间 (进稳定区间, EVD精度: 1/100)。
items[0].stable_zone_out	-	5	对应这个EV下的稳定区间(出稳定区间,EVD精度: 1/100)。
Auto_flash	-	-	调试参照flash文档。
Auto_3dnr.thrd_up	[1,1600]	500	auto_3dnr开启的关闭阈值(bv值)。
Auto_3dnr.thrd_down	[1,1600]	490	auto_3dnr开启的打开阈值(bv值)。
Auto_video_fps.thrd_up	[1,1600]	400	控制video使用高帧率生效的上阈值 (bv值)。
Auto_video_fps.thrd_down	[1,1600]	100	控制video使用低帧率生效的下阈值 (bv值)。
4cell(thrd_up)	[1,1600]	500	4in1模式开启的关闭阈值 (bv值)。
4cell(thrd_down)	[1,1600]	490	4in1模式开启的打开阈值 (bv值)。

参数列表 (4/9)

AE参数	取值范围	缺省值	说明
Win1_weight	[0, 255]	4	整个图像的亮度权重。
Win2_weight	[0, 255]	3	touch 区域的亮度权重。
Touch_zone_width	[image width/16, image width/8]	image width/13	Touch window 的宽。
Touch_zone_height	[image width/16, image width/8]	image height/13	Touch window 的高。
Face ae enable	[0, 1]	-	Face使能开关。
Face target	[0, 255]	45	人脸目标亮度。
Up offset	[0, 255]	30	基础亮度增加的上限阈值。
Down offset	[0, 255]	30	基础亮度增加的下限阈值。
Ratio block	[0, 100]	90	多人脸计算权重 (Ratio_Block + Ratio_Pos = 100) 。
Ratio pos	[0, 100]	10	多人脸计算权重 (Ratio_Block + Ratio_Pos = 100) 。
Max With Ratio	[0, 100]	50	多人脸过亮抑制权重,值越大,多人脸场景根据最亮人脸的抑制能力越强。
u4face_trigger_sensitivity1	[0, 255]	40	亮度区间,数值越大越易trigger。
u4face_trigger_sensitivity2	[0, 10]	3	亮度区间帧数,数值越小越易trigger。

参数列表 (5/9)

AE参数	取值范围	缺省值	说明
trigger_sensitivity3	+ 1 -	-	固定不调试。
trigger_sensitivity4	[0,10]	1	trigger稳定后再次face ae计算周期。
face_frame_thrd	[0,100]	20	人脸消失后维持face ae状态的帧数。
smooth_weight	-	-	Face ae offset收敛过程中平滑参数权重值, [0]表示当前帧权重、[1]表示前一帧权重,依次类推。
u4abl_face_offset	[0,255]	40	abl提供的偏移值。
u4abl_offset_thrd	[0,100]	100	abl提供的偏移值的阈值。
u4face_roi_ratio	[1,100]	25	中心人脸大小。
u4face_weight1	[0,10]	3	中心人脸框权重。
u4face_weight2	[0,10]	1	全局人脸框权重。
u4small_weight_thrd	[0,100]	30	中心人脸权重的门限值。
u4small_weight_raise	[0,10]	0	中心人脸权重的提升值。
u4offset_ratio_thrd	[0,1024]	4	人脸大小的门限值。
u4offset_ratio_value	[0,100]	100	对应大小的偏移比例。

参数列表 (6/9)

AE参数	取值范围	缺省值	说明
u4fdunlock_enable	[0,1]	1	人脸解锁时, face ae的使能开关。
u4fdunlock_face_target	[0,255]	80	人脸解锁时, face ae的目标亮度。
u4fdunlock_face_weight1	[1,10]	3	人脸解锁时,中心人脸区域权重。
u4fdunlock_face_weight2	[1,10]	1	人脸解锁时,全局人脸区域权重。
u4fdunlock_face_roi_ratio	[0,100]	1	设置中心人脸roi的ratio。
u4fdunlock_unlinear_cancel	[0,1]	1	非线性设置是否取消。
u4fdunlock_up_limit	[0,255]	180	目标偏移的上限值。
u4fdunlock_down_limit	[0,255]	60	目标偏移的下限值。
sampNum	-	-	对应各模块所分段数。
Mulaes LV	[-600,1600]	-	填入分段bv值。
Mulaes T Lum	[0,255]	-	设定亮度目标值。

参数列表 (7/9)

AE参数	取值范围	缺省值	说明
cfg_info[0].region_thrd[0].min	[0,256]	10	
cfg_info[0].region_thrd[0].max	[0,256]	75	
cfg_info[0].region_thrd[1].min	[0,256]	10	
cfg_info[0].region_thrd[1].max	[0,256]	75	
cfg_info[0].region_thrd[2].min	[0,256]	10	region_thrd[0-5] 0~5是指划分的区域分别是
cfg_info[0].region_thrd[2].max	[0,256]	75	✓ 0: up ✓ 1: down
cfg_info[0].region_thrd[3].min	[0,256]	10	✓ 2: left
cfg_info[0].region_thrd[3].max	[0,256]	75	✓ 3: right
cfg_info[0].region_thrd[4].min	[0,256]	10	✓ 4: up & down✓ 5: left & right
cfg_info[0].region_thrd[4].max	[0,256]	75	
cfg_info[0].region_thrd[5].min	[0,256]	10	
cfg_info[0].region_thrd[5].max	[0,256]	75	
cfg_info[0].up_max	[-100,100]	15	
cfg_info[0].dwn_max	[-100,100]	-25	

参数列表 (8/9)

AE参数	取值范围	缺省值	说明
cfg_info[0].vote_region[0]	[0,1024]	256	
cfg_info[0].vote_region[1]	[0,1024]	153	
cfg_info[0].vote_region[2]	[0,1024]	153	05日本区域的waight
cfg_info[0].vote_region[3]	[0,1024]	153	0~5几个区域对应的weight
cfg_info[0].vote_region[4]	[0,1024]	153	
cfg_info[0].vote_region[5]	[0,1024]	153	
Flat_enable	[0,1]	0	AE3.0上默认为0
cfg_info[0].thrd[0]	[0,1024]	512	cfg_info[0]中的0是第0组参数, thrd[0]表示平坦度的下阈值。
cfg_info[0].thrd[1]	[0,1024]	720	thrd[1]表示平坦度的上阈值。
cfg_info[0].offset[0]	[-100,100]	0	offset[0]: offset_low
cfg_info[0].offset[1]	[-100,100]	10	offset[0]: offset_up
AE_sync(mode)	[0,1]	1	0: OTP mode 1:dynamic mode
y_ratio_chg_thr	[0,100]	7	slave 与 master之间的亮度差异

数字世界的生态承载者

参数列表 (9/9)

AE参数	取值范围	缺省值	说明	
y_ratio_chg_cnt	[0,10]	10	ae亮度同步启动计数器。	
y_ratio_stb_thr	[0, 100]	5	ae亮度稳定阈值。	
y_ratio_stb_cnt	[0, 10]	15	ae亮度稳定计数器。	
adpt_speed	[0,100]	5	亮度逼近的速度。	
evd_calc_en	[0,1]	1	evd模块开关。	
evd_value	-	-	曝光参数调整的权重值,bv_cfg.samples[i].y:与evd_value[i]数值对应。	
evd_ratio	-	-	evd的权重值。	
bv_cfg.samples[i].x	-	-	分段bv值,两bv之间的权重插值产生。	
abl_cfg.samples[i].x	-	-	abl weight值abl_cfg.samples[i].y与evd_ratio[i]数值对应。	

谢谢

小紫光展锐

行全面的测试和调试。