

Informe de Laboratorio 05

Tema: Laboratorio 05

Nota

${f Estudiante}$	Escuela	Asignatura
Jhonatan David Arias Quispe	Escuela Profesional de	Programación Web 2
jariasq@unsa.edu.pe	Ingeniería de Sistemas	Semestre: II Código: 1702122

Laboratorio	Tema	Duración
05	Laboratorio 05	04 horas

Semestre académico	Fecha de inicio	Fecha de entrega
2024 - A	Del 29 Mayo 2024	Al 1 Junio 2024

1. Equipos, materiales y temas utilizados

- Sistema Operativo ArchCraft GNU Linux 64 bits Kernell
- NeoVim
- Git 2.42.0
- Cuenta en GitHub con el correo institucional.
- Python
- Latex

2. URL de Repositorio Github

- URL del Repositorio GitHub para clonar o recuperar.
- https://github.com/JhonatanDczel/pweb2.git
- URL para el laboratorio 05 en el Repositorio GitHub.
- https://github.com/JhonatanDczel/pweb2/tree/main/lab05

3. Informe sobre la clase Picture

La clase Picture en el código presentado está diseñada para manejar y manipular imágenes representadas como listas de cadenas de caracteres. Esta clase ofrece diversas funcionalidades para transformar y combinar imágenes de diferentes maneras. A continuación, se presenta un análisis detallado de sus métodos y atributos.

3.1. Atributos

• img: Este atributo almacena la imagen, que es una lista de cadenas de caracteres donde cada cadena representa una fila de la imagen.

3.2. Métodos

1. Constructor (__init__)

```
def __init__(self, img):
    self.img = img
```

2. Igualdad (__eq__)

```
def __eq__(self, other):
    return self.img == other.img
```

3. Invertir Color (_invColor)

```
def _invColor(self, color):

if color not in inverter:

return color

return inverter[color]
```

4. Espejo Vertical (verticalMirror)

```
def verticalMirror(self):
    vertical = []

for fila in self.img:
    espejo = ""

for letra in fila:
    espejo = letra + espejo
    vertical.append(espejo)
    return Picture(vertical)
```

5. Espejo Horizontal (horizontal Mirror)

```
def horizontalMirror(self):
    horizontal = []

for i in range(len(self.img)):
    l = len(self.img) - i - 1
    horizontal.append(self.img[l])

return Picture(horizontal)
```

6. Negativo (negative)

```
def negative(self):
    new_img = []
```



```
for string in self.img:
new_string = [self._invColor(letter) for letter in string]
new_img.append(new_string)
return Picture(new_img)
```

7. Unir (join)

```
def join(self, p):
       new_img = []
2
        1 = max(len(self.img), len(p.img))
3
4
        for i in range(1):
          izquierda = self.img[i] if i < len(self.img) else [" " for _ in</pre>
5
              range(len(self.img[0]))]
          6
           row = "".join(izquierda) + "".join(derecha)
          new_img.append(row)
8
        return Picture(new_img)
9
```

8. Colocar Arriba (up)

```
def up(self, p):
    new_img = self.img + p.img
    return Picture(new_img)
```

9. Colocar Debajo (under)

```
def under(self, p):
    new_img = p.img + self.img
    return Picture(new_img)
```

10. Repetición Horizontal (horizontalRepeat)

```
def horizontalRepeat(self, n):
    new_img = []

for row in self.img:
    new_row = row * n
    new_img.append(new_row)
    return Picture(new_img)
```

11. Repetición Vertical (verticalRepeat)

```
def verticalRepeat(self, n):
    new_img = self.img * n
    return Picture(new_img)
```

12. Rotar en Sentido Horario (rotate_horario)

```
def rotate_horario(self):
    transpuesta = list(zip(*self.img))
    rotada = [list(fila)[::-1] for fila in transpuesta]
    return Picture(rotada)
```

13. Rotar en Sentido Antihorario (rotate_antihorario)

```
def rotate_antihorario(self):
    return self.rotate_horario().rotate_horario()
```


14. Superposición (on)

```
def on(self, p):
2
          new_img = []
          for i in range(len(self.img)):
3
              row = self.img[i]
4
              p_row = p.img[i]
5
              new_row = []
6
              for j in range(len(row)):
                  if row[j] == " ":
8
                     new_row.append(p_row[j])
9
10
                     new_row.append(row[j])
11
              new_img.append(new_row)
          return Picture(new_img)
13
```

15. Métodos Estáticos para Crear Piezas

```
@staticmethod
       def rock():
2
           return Picture(ROCK)
3
4
5
       @staticmethod
       def king():
6
          return Picture(KING)
       @staticmethod
9
       def bishop():
10
          return Picture(BISHOP)
11
12
       @staticmethod
13
       def square():
14
15
           return Picture(SQUARE)
16
       @staticmethod
17
       def knight():
18
          return Picture(KNIGHT)
19
20
       @staticmethod
21
22
       def pawn():
           return Picture(PAWN)
23
24
       @staticmethod
25
26
       def queen():
          return Picture(QUEEN)
```

4. Ejercicios con la biblioteca

Las figuras que se nos pidio hacer son:

5. Pregunta

El directorio pycache es para guardar las instancias de las calses para consterior consulta

Figura 1: 1

Figura 2: 2

Figura 3: 3

Figura 4: 4

Figura 5: 5

Figura 6: 6

Figura 7: 7

6. Rúbricas

6.1. Rúbrica para el contenido del Informe y demostración

- El alumno debe marcar o dejar en blanco en celdas de la columna **Checklist** si cumplio con el ítem correspondiente.
- El alumno debe autocalificarse en la columna Estudiante de acuerdo a la siguiente tabla:

Tabla 1: Niveles de desempeño

	Nivel			
Puntos	Insatisfactorio 25%	En Proceso 50 %	Satisfactorio 75 %	Sobresaliente 100 %
2.0	0.5	1.0	1.5	2.0
4.0	1.0	2.0	3.0	4.0

Tabla 2: Rúbrica para contenido del Informe y demostración

	Contenido y demostración	Puntos	Checklist	Estudiante	Profesor
1. GitHub	Hay enlace URL activo del directorio para el laboratorio hacia su repositorio GitHub con código fuente terminado y fácil de revisar.	2	X	2	
2. Commits	Hay capturas de pantalla de los commits más importantes con sus explicaciones detalladas. (El profesor puede preguntar para refrendar calificación).	4	X	4	
3. Código fuente	Hay porciones de código fuente importantes con numeración y explicaciones detalladas de sus funciones.	2	X	2	
4. Ejecución	Se incluyen ejecuciones/pruebas del código fuente explicadas gradualmente.	2	X	2	
5. Pregunta	Se responde con completitud a la pregunta formulada en la tarea. (El profesor puede preguntar para refrendar calificación).	2	X	2	
6. Fechas	Las fechas de modificación del código fuente estan dentro de los plazos de fecha de entrega establecidos.	2	X	2	
7. Ortografía	El documento no muestra errores ortográficos.	2	X	1.5	
8. Madurez	El Informe muestra de manera general una evolución de la madurez del código fuente, explicaciones puntuales pero precisas y un acabado impecable. (El profesor puede preguntar para refrendar calificación).	4	X	3	
Total		20		18.5	