EVML

MORE CNN HANDSON

JEROEN VEEN

AGENDA

- Limitations of neural nets
- Either restart the Keras tuner exercise
- Or build your own CNN
- Or starting with transfer learning

LIMITATIONS OF NEURAL NETS

Poor at representing uncertainty, difficult to trust

LIMITATIONS

LIMITATIONS OF NEURAL NETS

Easily fooled by adversarial examples

Source: MIT Deep Learning 6.S191 (introtodeeplearning.com)

USING THE KERAS TUNER

 Please study: https://www.tensorflow.org/tutorials/keras/keras_tuner

Use cross-validation to re-evaluate model with the optimal hyperparameters!

 Additional resources: https://www.youtube.com/watch?v=O85gh3Ozlul

BUILD YOUR FIRST CNN

Train a naive CNN

MORE SOPHISTICATED CNN

```
model = keras.Sequential([
                          keras.layers.Conv2D(64,3, activation='relu'),
                          keras.layers.MaxPool2D(2,2),
                          keras.layers.Dropout(0.5),
                          keras.layers.Conv2D(32, 3, activation = 'relu'),
                          keras.layers.MaxPool2D(2,2),
                          keras.layers.Dropout(0.5),
                          keras.layers.Flatten(),
                          keras.layers.Dense(64, activation = 'relu'),
                          keras.layers.Dense(3, activation='softmax')
model.compile(optimizer='adam',
              loss=keras.losses.SparseCategoricalCrossentropy(),
              metrics=['accuracy']
model.fit(train images, train labels, epochs=5, batch size=32)
```

RESNET MODEL

- https://www.kaggle.com/dansbecker/transfer-learning
- https://youtu.be/mPFq5KMxKVw

MOBILENETS

Efficient Convolutional Neural Networks for Mobile Vision Applications

Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1×1 convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification task at half the resolution (224×224 input image) and then double the resolution for detection.

VARIANTS

- V2: M. Sandler et al. 2019, https://arxiv.org/pdf/1801.04381.pdf
- MobileNet-Tiny, https://nitheshsinghsanjay.github.io/
- Single-Shot Multibox Detector (SSD)

RETRAINING AN IMAGE CLASSIFIER

- https://www.tensorflow.org/hub/tutorials/tf2_image_retraining
- Image size
- Normalization
- Data generator