Versuch 201

Das Dulong-Petitsche Gesetz

Jonah Nitschke Sebastian Pape lejonah@web.de sepa@gmx.de

> Durchführung: 29.11.2016 Abgabe: 06.12.2016

Inhaltsverzeichnis

1	Einfuehrung	3
2	Theorie 2.1 spezifische Wärmekapazität	3
3	Messtechnische Hinweise	5
4	Durchführung	5

1 Einfuehrung

Bei dem folgenden Versuch geht es darum, die Aussage des Dulong-Petitschen Gesetzes über die Gleichmäßigkeit der Molwärme von verschiedenen Stoffen zu überprüfen und darauf basierend zu Entscheiden, ob die klassische Mechanik zur Beschreibung der oszillatorischen Bewegung von Atomen ausreicht oder ob dies nur auf der Grundlage der Quantenmechanik geschehen kann.

2 Theorie

2.1 spezifische Wärmekapazität

Erhöht sich die Temperatur eines Körpers um ΔT so ergibt sich für aufgenommene Wärmeenergie und Temperaturdifferenz entsprechend des 1. Thermodynamischen Hauptsatzes folgende Beziehung:

$$\Delta Q = mc\Delta T \tag{1}$$

Bei c handelt es sich dabei um die Wärmekapazität bzw. im Bezug auf den vorliegenden Stoff um die spezifische Wärmekapazität. Von Bedeutung für das vorliegende Experiment ist zudem die Molwärme C. Sie beschreibt die benötigte Wärmemenge, um ein Mol eines Stoffes um dT zu erwärmen. Dabei wird noch unter C_V für konstante Volumen und C_p für konstanten Druck unterschieden.

2.2 Dulong-Petit

Das Dulong-Petitsche Gesetz trifft die Aussage, dass die Atomwärme bei konstanten Volumen C_V im festen Aggregatzustand unabhängig von dem Charakter des Elements ist, sondern konstant den Wert 3R annimmt (R = Allgemeine Gaskonstante). Die Herleitung dieses Zusammenhanges basiert dabei auf der Annahme, dass Atome in einem Festkörpergitter um feste Punkte schwingen, und ihre potentielle und kinetische Energie dabei gleich sind. Gleichzeitig besagt das Äquipartitionstheorem, dass ein Atom dabei die kinetische Energie $\langle E_{kin} \rangle = 1/2kT$ besitzt. Aus beiden folgt dann für die mittlere Energie des Festkörpers der Wert 3RT und aus diesem der oben geschriebene Wert für die Molwärme C_V .

Die Molwärme C_V von allen festen chemischen Elementen nimmt bei hoher Temperatur tatsächlich etwa den Wert 3R an, bei vielen Stoffen auch schon bei Zimmertemperatur. Die kinetische Theorie kann allerdings nicht beschreiben, warum die Molwärme aller chemischen Elementen bei hinreichend tiefen Temperaturen beliebig klein wird.

Das liegt an der Annahme, dass die Energie der atomaren Oszillatoren sich beliebig ändern kann. Dies steht im Widerspruch zu Quantentheorie, die Energieänderungen nur in bestimmten Beträgen erlaubt. Die nun auf komplizierte Weise von T abhängige mittlere Energie kann somit nur über eine Aufsummierung der verschiedenen Energiezustände multipliziert mit der jeweiligen Wahrscheinlichkeit ihres Auftretens geschehen. Mit der Boltzmann-Verteilung ergibt sich für die innere Energie damit folgender Ausdruck:

$$< U_{qu} > = \frac{3N_l\hbar\omega}{\exp(\hbar\omega/kT) - 1}$$
 (2)

Für den Grenzfall von $T\to\infty$ ergibt sich jedoch auch hier wieder der bekannte Zusammenhang von $< U_{qu}>=3RT.$

2.3 Messung der spez. Wärmekapazität fester Körper mit dem Mischungskalorimeter

Da eine Messung mit konstantem Volumen schwer zu realisieren ist, wird bei dem Experiment auf ein konstanten Druck zurückgegriffen. Dafür ist es notwendig, den Zusammenhang zwischen C_V und C_p zu kennen:

$$C_p - C_V = 9\alpha^2 \kappa V_0 T \tag{3}$$

Bei α , κ und $V_{=}0$ handelt es sich um Konstanten. Für die abgegebene Wärmeenergie des Körpers (Q_1) und die aufgenommene Wärmemenge der Kalorimeterwände ergeben sich folgende Formel:

$$Q_1 = c_k m_k (T_k - T_m) \tag{4}$$

$$Q_2 = (c_W m_W + c_a m_a)(T_k - T_m) \tag{5}$$

Bei T_m handelt es sich um die sich einstellende Mischtemperatur und alle Werte mit Index k und W beziehen sich auf den Körper bzw. das Wasser.

Bei dem Experiment wird ein Wärmeverlust des Systems vernachlässigt, so dass für die Bestimmung der spez. Wärmekapazität des Körpers die obigen Formeln lediglich gleichgesetzt werden müssen $(Q_1 = Q_2)$:

$$c_k = \frac{(c_W m_W + c_g m_g)(T_k - T_m)}{m_k (T_k - T_m)} \tag{6}$$

Die Wärmekapazität $c_g m_g$ des Kalorimeters muss am Anfang des Experiments noch einmal extra bestimmt werden und kann mit folgender Formel errechnet werden:

$$c_g m_g = \frac{c_W m_y \left(T_y - T_m'\right) - c_W m_x \left(T_x - T_m'\right)}{\left(T_m' - T_x\right)} \tag{7}$$

3 Messtechnische Hinweise

Für die Messung der Temperaturen bei diesem Versuch wird ein Thermoelement benutzt. Dies liegt vor allem and der sehr hohen Einstellgeschwindigkeit, die erzielt werden kann. Das Thermoelement besteht aus zwei verschiedenen Metallen, die hinsichtlich ihrer Elektronen-Austrittsarbeit unterschiedlich sind. Wie in Abbildung zu erkennen, gibt es zwei Berührungstellen dieser Metalle. An diesen Berührungsstellen wandern die Elektronen von dem Metall mit der niedrigeren in das Metall mit der höheren Austrittsarbeit, bis das durch die Ladungsverschiebung entstehende Potential diesen Elektronendrift unterbindet. Das enstehende Potenzial nennt man dann Kontaktpotenzial. Das Kontaktpotenzial hat an beiden Berührungstellen allerdings ein anderes Vorzeichen, so dass an den Berührungsstellen der beiden Metalle A keine Differenzspannung zu beobachten ist. Tritt nun an einer der beiden Berührungsstelle eine Erwärmung auf, wird das Kontaktpotenzial beeinflusst und die beiden Kontaktpotenziale heben sich nicht mehr auf. Daraus resultiert eine messbare Spannung an den Enden der beiden A-Dräten, die spezifsch ist für jede Temperaturdifferenz zwischen beiden Berührungsstellen.

4 Durchführung

Bevor die Messungen für die spezifische Wärmekapazität begonnen werden, muss zuerst eine Referenzwert ermittelt werden, um hinterher mithilfe der gemessenen Spannungen die vorliegenden Temperaturen zu bestimmen. Dafür wird ein Dewar-Gefäß mit Eiswasser gefüllt und in einem Becherglas zum Kochen gebracht. Erst werden beide Enden des Kabels in das Eiswasser gelegt, um die Spannungsdifferent bei einem Temperaturunterschied von 0 K zu überprüfen. Anschließend wird ein Ende in das kochende Wasser gelegt um die Spannungsdifferenz bei einem Unterschied von 100 K zu überprüfen. Mit beiden Spannungen kann ein lineare Regression ausgeführt werden um die Paramter zur Bestimmmung der Temperatur in Abhängigkeit der gemessenen Spannungen zu bestimmen.

Danach wird noch die die spezifische Wärmekapazität des Kalorimeters bestimmt. In das Dewar-Gefäß werden zwei Mengen an Wasser der Masse m_x und m_y und der Temperaturen T_x und T_y gegeben. Anschließend wird die Mischtemperatur T_m gemessen und mit (7) kann die spezifische Wärmekapazität bestimmt werden.

Nach den Vorbereitungen kann mit den eigentlichen Messungen gestartet werden. Zuerst wird das Dewar-Gefäß mit der gleichen Flüssigkeitsmenge wie bei der Bestimmung von $c_q m_q$ gefüllt. Dann wird das Blei in dem Becherglas mit kochendem Wasser aufgeheizt.

Dabei wird mit dem Thermoelement die Temperatur des Bleis gemessen. Vor dem Eintauchen des Körpers in das Diwar-Gefäß wird die Temperatur des Wassers noch einmal bestimmt. Nach einer kurzen Wartezeit wird dann die Mischtemperatur gemessen. Für die Metalle Blei 2 und Graphit wird die Messung drei mal durchgeführt. Anschließend wird die Messung noch einmal für Kupfer durchgeführt.