And, Or, Not

And, Or, Not

And, Or, and Not

Let P and Q be statements.

P and Q is a new statement that is True if **both** P and Q are True; and false otherwise.

P or Q is a new statement that is True if either P or Q, or both, are True; and false otherwise.

Not P is a new statement that is True if P is False, and False if P is Q.

And

P and Q can be written $P \wedge Q$ (compare with set intersection).

OR

P or Q can be written $P \lor Q$ (compare with set union)

Not

Not P can be written $\sim P$, or sometimes $\neg P$.

Examples

Write the open sentences $x \neq y$ and $y \geq x$ as P and Q, P or Q, or not P.

Example

Express the following in the form $P \wedge Q$, $P \vee Q$ or $\sim P$.

$$A \in \{X \in \mathcal{P}(\mathbb{N}) : |\overline{X}| < \infty\}$$

Truth Tables

Truth tables are an effective way to keep track of combinations of statements.