Le problème des dominos de Wang

Matteo Wei et Nathan Boyer

2024

Table des matières

Introduction

Indécidabilité du problème du domino

Nombre minimal de dominos pour un ensemble de Wang apériodique

Définitions préalables

Ensemble de Wang

Definition

Un ensemble de Wang est un triplet (H,V,T) où H et V sont respectivement les couleurs horizontales et verticales et où $T\subseteq H^2*V^2$ est l'ensemble des dominos. On appelera parfois aussi abusivement ensemble de Wang l'ensemble des dominos T.

Pavage

Definition

Soit $X\subseteq \mathbb{Z}^2$ et τ un ensemble de Wang. Un pavage de X par τ est une fonction $f:X\to T$ avec:

$$\forall (x,y) \in X, f(x,y)_e = f(x+1,y)_w \land f(x,y)_n = f(x,y+1)_s.$$

Un pavage du plan par τ est un pavage de \mathbb{Z}^2 .

Pavage périodique et apériodique

Definition

On dit que τ est périodique s'il existe un pavage du plan périodique par τ (càd tel que

$$\exists (u,v) \in \mathbb{Z}^{*2}, \forall (x,y) \in \mathbb{Z}^2, f(x,y) = f(x+u,y) = f(x,y+v)).$$

On dit que τ est apériodique s'il existe au moins un pavage du plan par τ mais que tous ses pavages ne sont pas périodiques.

Table des matières

Introduction

Indécidabilité du problème du domino

Nombre minimal de dominos pour un ensemble de Wang apériodique

Définitions préalables

Table des matières

Introduction

Indécidabilité du problème du domino

Nombre minimal de dominos pour un ensemble de Wang apériodique

Définitions préalables

Transducteur

Definition

Un transducteur τ est un automate qui lit une bande d'entrée bifinie et écrit sur une bande de sortie bifinie.

Lien entre dominos et transducteurs

On peut voir un pavage comme un transducteur. En effet, $\forall t = (w, e, s, n) \in T$, on dit qu'il y a une transition de l'état w vers l'état e qui lit n et écrit s.