1

Assignment 12

Priya Bhatia

Abstract—This document demonstrate how to check whether the matrix is nilpotent, diagonalizable or not and rank as well as Jordan canonical form of a matrix.

Download latex-tikz from

```
https://github.com/priya6971/
matrix_theory_EE5609/tree/master/
Assignment12
```

1 Problem

Let V be a vector space over C of all the polynomials in a variable X of degree atmost 3. Let $D: V \to V$ be the linear operator given by differentiation with respect to X. Let A be the matrix of D with respect to some basis for V. Which of the following are true?

- 1.A is nilpotent matrix
- 2.A is diagonalizable matrix
- 3.the rank of A is 2
- 4.the Jordan canonical form of A is

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2 Solution

Given	V be a vector space over C of all the polynomials in a variable X of degree atmost 3 $D: P_3 \rightarrow P_3$
	$D: V \to V$ be the linear operator given by differentiation wrt X $D(P(x)) \to P'(x)$
	A be the matrix of D wrt some basis for V Assume basis for V be $\{1, x, x^2, x^3\}$

Matrix	$D(1) = 0 = 0.1 + 0.x + 0.x^{2} + 0.x^{3}$
	$D(1) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
	$D(x) = 1 = 1.1 + 0.x + 0.x^{2} + 0.x^{3}$
	$D(x) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$
	$D(x^2) = 2x = 0.1 + 2.x + 0.x^2 + 0.x^3$
	$D(x^2) = \begin{pmatrix} 0 \\ 2 \\ 0 \\ 0 \end{pmatrix}$
	$D(x^3) = 3x^2 = 0.1 + 0.x + 3.x^2 + 0.x^3$
	$D(x^3) = \begin{pmatrix} 0 \\ 0 \\ 3 \\ 0 \end{pmatrix}$
	$Matrix A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
Inference	An $n \times n$ matrix with λ as diagonal elements, ones on the super diagonal and zeroes in all other entries is nilpotent with minimal polynomial $(A - \lambda I)^n$
Nilpotent	$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
	All eigen values of matrix <i>A</i> is 0 Thus, above matrix is nilpotent matrix Thus, above statement
	is true

Diagonalizable	$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
	nullity(A) = 1 means there exists only one
	means there exists only one
	linearly independent eigen vector corresponding to 0 eigen values
	Thus,matrix A is not Diagonalizable.
	Thus, above statement is
	false
	(0, 1, 0, 0)
	$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix}$
Rank	$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
	(0 0 0 0)
	Rank of matrix A is 3
	Thus, above statement is false
Jordan CF	Assume characteristic polynomial of
	matrix A is $c_A(x)$
	$c_A(x) = x^4$
	Assume minimal polynomial of
	A is $m_A(x)$
	$m_A(x)$ always divide $c_A(x)$
	$m_A(x) = \{x, x^2, x^3, x^4\}$
	Minimal polynomial always annihilates
	its matrix. Thus, we see that
	$m_A(A) = \{A = 0, A^2 = 0, A^3 = 0, A^4 = 0\}$
	But we see that neither A is zero matrix $\frac{A^2}{A^2}$ and $\frac{A^3}{A^3}$ acqual to zero
	nor A^2 and A^3 equal to zero but A^4 is equal to zero.Thus, x^4
	is minimal polynomial.
	Hence, Jordan form of block size 4
	and order 4 is written as, using Inference
	$\begin{bmatrix} 0 & \lambda_1 & 1 & 0 \end{bmatrix}$
	$\mathbf{J} = \begin{pmatrix} \lambda_1 & 1 & 0 & 0 \\ 0 & \lambda_1 & 1 & 0 \\ 0 & 0 & \lambda_1 & 1 \\ 0 & 0 & 0 & \lambda_1 \end{pmatrix}$
	$\begin{pmatrix} 0 & 0 & 0 & \lambda_1 \end{pmatrix}$
	$\lambda_1 = 0$
	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$
	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
	which is same as given in
	_
	the question. Thus, statement is true