# Achieving optimal speed on TF 2

Zebroid Meeting 2020-07-21 Andres Potapczynski

## Relevant questions

- A What are the major changes from TF1 to TF2?
- B How does TF2 compare against TF1 and PyTorch?
- What are the most important TF APIs for performance?



Preamble

**Focus** 



## Similar to PyTorch, TF 2 is easier to debug and more pythonic



#### From (TF 1)\*\*

- Using graphs by default
- Defining nodes on a graph
- Constructing a graph with a fixed type in mind
- Using control dependencies to manage the execution
- Initializing variables manually
- Writing non-intuitive control flow statements and functions

#### To (TF 2)\*\*

- Running code on eager execution (enables per step debugging)
- Selecting operations to run under tf.function
- Having functions that "adapt" to different types
- Writing code imperatively to control order of execution
- Letting the variables be automatically initialized
- Using python syntax to define control flows (and letting Autograph do the translation)

# In principle, TF 2 should not be slower than TF 1 (VAEs)



#### **Models on MNIST**

#### **M1 VAE** (dense linear architecture)

- Encoder: Dense(784) Dense(400) –
   Dense(64)
- Decoder: Dense(64) Dense(400) Dense(784)

#### **M2 VAE** (dense nonlinear architecture)

- Encoder: Dense(784) Dense(400) Dense (240) Dense(64)
- Decoder: Dense(64) Dense(240) –
   Dense(400) Dense(784)

#### M3 VAE (convolutional architecture)

- Encoder: Conv2D(32, 3, 2) Conv2D(64, 3, 2) Dense(64).
- Decoder: Dense(1568) Conv2DT(64, 3,
   2) Conv2DT(32, 3, 2) Conv2DT(1, 3, 1)

## And in some cases faster than PyTorch



#### Models

#### Generator

- 4 Conv2DTranspose layers with Batch Normalization and ReLU activations
- 1 Conv2DTranpose layer with Tanh at the end

#### **Discriminator**

- 4 Conv2D layers with Batch Normalization and LeakyReLU activations
- 1 Conv2D layer with Sigmoid at the end



# TF 2 encapsulates several APIs for different tasks

#### **NOT EXHAUSTIVE**

| High-level DL APIs       | <ul><li>tf.keras</li><li>tf.estimator</li></ul>                                                                                    | Visualization               | <ul><li>tf.summary</li><li>tf.profile</li></ul>                                                                                           |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Low-level DL APIs        | <ul> <li>tf.nn</li> <li>tf.losses</li> <li>tf.metrics</li> <li>tf.optimizers</li> <li>tf.train</li> <li>tf.initializers</li> </ul> | Deployment and optimization | <ul> <li>tf.distribute</li> <li>tf.saved_model</li> <li>tf.autograph</li> <li>tf.lite</li> <li>tf.quantization</li> <li>tf.tpu</li> </ul> |
| Autodiff                 | <ul><li>tf.GradientTape</li><li>tf.gradients</li></ul>                                                                             | Special data structures     | <ul><li>tf.lookup</li><li>tf.ragged</li><li>tf.nest</li><li>tf.sparse</li></ul>                                                           |
| I/O and<br>Preprocessing | <ul> <li>tf.data</li> <li>tf.feature_column</li> <li>tf.audio</li> <li>tf.image</li> <li>tf.io</li> <li>tf.queue</li> </ul>        | Mathematics                 | <ul> <li>tf.math</li> <li>tf.linalg</li> <li>tf.signal</li> <li>tf.random</li> <li>tf.bitwise</li> </ul>                                  |

# C

## We focus on the APIs that drive performance



## API / Tool **Activity** Ensure code is graph tf.function executable (optimize graph with XLA) Preprocess data efficiently tf.data Profile bottlenecks tf.profiler Distribute across GPUs tf.distribute Accelerate computation by tf.keras.mixed precision / tf.keras.quantize reducing precision Shrink your models tf.keras.prune



<sup>\*</sup> Data optimization consists of caching and prefetching, \*\* Even for small models, tf.distribute yields some improvement despite its overhead. Distributed across 2 Tesla P4 GPUs

## Relevant questions

- A What are the major changes from TF1 to TF2?
- B How does TF2 compare against TF1 and PyTorch?
- C What are the most important TF APIs for performance?



Next

# tf.function requires some rules to compile properly



#### Common mistakes

- Writing all the code and then trying to decorate it
- Calling external libraries (like NumPy)
- Multiple function retracing from feeding python objects
- Returning non tensor objects
- Creating variables on every call
- Using the tensor's shape value (specially batch size)
- Putting decorators on all functions

Lack of examples and documentation might be hampering the adoption of TF 2!

## Relevant questions

- A What are the major changes from TF1 to TF2?
- B How does TF2 compare against TF1 and PyTorch?
- C What are the most important TF APIs for performance?



Next

## tf.data simplifies the input pipeline

**Standard code example** files = tf.data.Dataset.list\_files(file\_pattern) ds = tf.data.TFRecordDataset(files) ds = ds.shuffle(buffer size) ds = ds.repeat(epochs) **Transform** ds = ds.map(pre\_fn, num\_parallel\_calls=tf.data.experimental.AUTOTUNE) ds = ds.batch(batch\_size) ds = ds.cache() ds = ds.prefetch(tf.data.experimental.AUTOTUNE) iterator = ds.make\_one\_shot\_iterator() x = iterator.get next()

<sup>\*</sup> tf.data: Fast, flexible and easy-to-use input pipelines (https://www.youtube.com/watch?v=ulcgeP7MFH0&t=230s), Inside TensorFlow: tf.data (https://www.youtube.com/watch?v=kVEOCfBy9uY&list=WL&index=2&t=938s)

## Relevant questions

- A What are the major changes from TF1 to TF2?
- B How does TF2 compare against TF1 and PyTorch?
- C What are the most important TF APIs for performance?





## tf.profiler helps your model execute faster

NOT EXHAUSTIVE

#### EXAMPLE

#### **Benefits (tools)**

- Shows input bottlenecks (input pipeline analyzer)
- Guides how to speed up parts of training by exhibiting the cost of their ops (TF Stats)
- Breaks down ops per device and exhibits if they are waiting for input

#### **Best Practices\***

- Use parallel calls on map, prefetch and cache input
- Utilize the devices more by increasing batch size
- Calculate metrics every few steps and reduce callbacks
- Reduce precision fp16 and make dimension divisible by 8
- Send data to multiple devices in parallel
- Use tf.name\_scope to identify most costly ops in python construct





## Relevant questions

- A What are the major changes from TF1 to TF2?
- B How does TF2 compare against TF1 and PyTorch?
- C What are the most important TF APIs for performance?



Next

## tf.distribute is easy to use since TF 2 is "strategy aware"



#### **Code changes**

- Change data pipeline by distributing it
- Create model and optimizer under the strategy scope
- Define loss on a per example basis, create distributed train step function and aggregate loss and gradients using global batch size