RAPPELS

Définition

Un sous-ensemble $F \subset X$ est dit fermé si $X \setminus F$ est ouvert.

Lemme

- (F1) X, \emptyset sont fermés.
- (F2) $Si F_1, ..., F_k$ sont fermés, alors $F_1 \cup \cdots \cup F_k$ est fermé.
- (F3) Si $\{F_i : i \in I\}$ est une collection quelconque de sous-ensembles fermés, alors $\bigcap_{i \in I} F_i$ est fermé.

Définition (Voisinage)

Soit X un espace topologique et $x \in X$. Tout sous-ensemble ouvert $V \subset X$ tq $V \ni x$ s'appelle un voisinage de x.

Définition

Soit *A* un sous-ensemble d'un espace topologique *X*. Un point $x \in X$ est un point limite, ou point d'adhérence de *A* si pour tout voisinage $U \subset X$ de x, on a

$$(U \setminus \{x\}) \cap A \neq \emptyset.$$

1/26

Définition

Soit $A \subset X$ un sous-ensemble d'un espace topologique (X, \mathfrak{T}) . L'adhérence de A dans X est definie par

$$\bar{A} = \operatorname{adh}(A) := A \cup \{\operatorname{points limites de} A\}.$$

Proposition

 \bar{A} est fermé pour tout $A \subset X$. En fait, \bar{A} est le plus petit fermé qui contient A.

Définition

Soit $A \subset X$ un sous-ensemble d'un espace topologique (X, \mathcal{T}) . L'adhérence de A dans X est definie par

$$\bar{A} = \operatorname{adh}(A) := A \cup \{\operatorname{points limites de} A\}.$$

RAPPELS III

Proposition

 \bar{A} est fermé pour tout $A \subset X$. En fait, \bar{A} est le plus petit fermé qui contient A:

$$\overline{A} = \bigcap_{F \text{ est ferm\'e}} F.$$
 (*)

Définition

Soit M un ensemble non-vide. Une fonction $d: M \times M \to \mathbb{R}$ est une $m\acute{e}trique$ si les trois conditions suivantes sont satisfaites :

M1 $d(x, y) \ge 0$ pour tout $x, y \in M$ et d(x, y) = 0 ssi x = y

M2 d(x, y) = d(y, x) pour tout $x, y \in M$.

M3 $d(x,y) \le d(x,z) + d(z,y)$ pour tout $x,y,z \in M$ (l'inégalité triangulaire).

Le couple (M, d) est un espace métrique.

3/26

RAPPELS IV

Exemple (Des espaces métriques)

1. La métrique euclidienne sur \mathbb{R}^n :

$$d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \qquad d(x,y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}.$$

- 2. La métrique de Manhattan sur \mathbb{R}^n : $d_{\mathcal{M}}(x,y) = |x_1 y_1| + \cdots + |x_n y_n|$.
- 3. $d_{\infty}(x, y) := \max\{|x_1 y_1|, \dots, |x_n y_n|\}.$
- 4. Sur l'ensemble des fonctions continues $\mathcal{C}^0[a,b]$, on peut définir les métriques suivantes :

$$d_{1}(f,g) = \int_{a}^{b} |f(x) - g(x)| dx,$$

$$d_{2}(f,g) = \left(\int_{a}^{b} |f(x) - g(x)|^{2} dx\right)^{1/2},$$

$$d_{\infty}(f,g) = \sup\{|f(x) - g(x)| : x \in [a,b]\}.$$

LA DISTANCE DE LEVENSHTEIN*

La distance de Levenshtein est une distance entre deux chaînes de caractères qui est égale au <u>nombre minimal</u> d'opérations nécessaires pour transformer une chaîne de caractères en une autre, à l'aide de remplacement, suppression et ajout d'un caractère.

Exemple

Prenons de mots : NICHE et CHIEN. En regardant le tableau

N	I	С	Н		Ε	
		С	Н	I	Ε	N

on déduit que d_{Lev} (NICHE, CHIEN) \leq 4. En fait, on peut vérifier que d_{Lev} (NICHE, CHIEN) = 4.

Pour deux langues différentes, on compose une liste (100 mots, par exemple) de mots de même sens et on définit la distance lexicale entre ces deux langues par

$$d_{DL}(\mathsf{L1},\mathsf{L2}) \coloneqq \sum_{j} d_{Lev}(\mathsf{MOT}_{j},\mathsf{MOT}'_{j})$$

5/26

Soit (M,d) un espace métrique quelconque. Comme dans le cas de \mathbb{R}^n , on définit

Définition

La boule ouverte centrée en $m \in M$ de rayon r > 0 est l'ensemble

$$B_r(m) = \{m' \in M : d(m, m') < r\}.$$

Les boules ouvertes dans \mathbb{R}^2 pour les métriques suivantes : euclidienne, de Manhattan et d_{∞} . Parfois, les boules ne sont pas si « rondes ».

Définition

Un sous-ensemble $U \subset M$ est dite ouvert si

$$\forall m \in U \quad \exists r > 0 \quad \text{tq} \quad B_r(m) \subset U.$$

Exercice

- 1. Démontrer que $B_r(m)$ est un ouvert.
- 2. Démontrer que $\{m' \in M \mid d(m, m') > r\}$ et un ouvert.

Notons $\mathfrak{T}_M := \{ U \subset M \mid U \text{ est ouvert} \} = \mathfrak{T}_{(M,d)} = \mathfrak{T}_d.$

Proposition

 T_M est une topologie sur M. Ainsi, chaque espace métrique est un espace topologique.

Démonstration : voir la démonstration pour $\mathfrak{T}_{\mathbb{R}^n}$ (Exercise!).

7/26

Proposition

Soit d la métrique discrète sur M. Alors, $T_d = T^{discr}$.

Démonstration.

Puisque chaque point $\{m\} = B_1(m)$ est un ouvert dans (M, d), chaque sous-ensemble $U \subset M$ est ouvert :

$$U=\bigcup_{m\in U}\{m\}.$$

Donc, $T_d = T^{discr}$.

Question

Est-ce que toute topologie vient d'une métrique?

Non. Pour démontrer cela, soit X un ensemble infini muni de la topologie cofinie. Supposons que $\mathfrak{T}^{cofin} = \mathfrak{T}_d$ pour une métrique d. Choisissons un $x \in X$ et considérons

$$X = \bar{B}_{1/2}(x) \cup (X \setminus B_{1/2}(x)) = \text{ferm\'e} \cup \text{ferm\'e}$$

 \implies X est fini parce que les fermés sont finis.

MÉTRIQUES ÉQUIVALENTES

Parfois différentes métriques engendrent la même topologie.

Définition

Soient d, d' deux métriques sur l'ensemble M. Elles sont dites Lipschitz équivalentes (ou simplement équivalentes) s'il existe A, B > 0 tel que pour tout $x, y \in M$ $Ad(x, y) \le d'(x, y) \le Bd(x, y).$

Par exemple, les métriques euclidienne et de Manhattan sur \mathbb{R}^2 sont équivalentes (Preuve?).

Proposition

Si d et d' sont Lipschitz équivalentes, alors $\mathfrak{T}_d = \mathfrak{T}_{d'}$.

La démonstration découle de l'observation suivante : Si d et d' sont Lipschitz équivalentes, alors $\forall m \in M$ et $\forall r > 0$ $\exists r' > 0$ tq $B_r^d(m) \supset B_{r'}^{d'}(m)$ ET $\forall m \in M$ et $\forall r' > 0$ $\exists r > 0$ tq $B_{r'}^{d'}(m) \supset B_r^d(m)$.

9/26

Supposons que (M, d_M) et (M, d_N) sont deux espaces métriques. Sur $M \times N$ définissons

$$d_1((m_1, n_1), (m_2, n_2)) = d_M(m_1, m_2) + d_N(n_1, n_2),$$

$$d_2((m_1, n_1), (m_2, n_2)) = \sqrt{d_M(m_1, m_2)^2 + d_N(n_1, n_2)^2},$$

$$d_\infty((m_1, n_1), (m_2, n_2)) = \max\{d_M(m_1, m_2), d_N(n_1, n_2)\}.$$

Exercice

Démontrer que d_1 , d_2 et d_∞ sont des métriques sur $M \times N$.

Ainsi, le produit d'espaces métriques est un espace métrique mais la métrique n'est pas unique. Néanmoins, on a le fait suivant.

Proposition

 d_1 , d_2 et d_∞ sont Lipschitz équivalentes.

À vous de la démontrer.

SUITES ET LIMITES

Rappelons qu'une suite (x_n) dans \mathbb{R}^n converge vers $x \in \mathbb{R}^n$ lorsque $n \to \infty$ si $\forall \varepsilon > 0 \ \exists N > 0$ tq pour tout $n \ge N$ on a $||x_n - x|| < \varepsilon$.

Définition

Une suite (x_n) dans un espace métrique (M,d) converge vers $m \in M$ lorsque $n \to \infty$ si $\forall \varepsilon > 0$ $\exists N > 0$ tq pour tout $n \ge N$ on a $d(x_n,x) < \varepsilon$.

Exercice

Montrer que la limite dans un espace métrique est unique si elle existe :

$$\lim_{n\to\infty}x_n=m\quad\text{et}\quad\lim_{n\to\infty}x_n=m'\qquad\Longrightarrow\qquad m=m'.$$

Attention

La convergence est une propriété de la suite et de la métrique.

Exemple

Dans un espace muni de la métrique discrète, une suite x_n converge ssi $\exists N \in \mathbb{N} \text{ tq } x_N = x_{N+1} = x_{N+2} = \dots$ Donc, $x_n = \frac{1}{n}$ converge dans (\mathbb{R}, d_E) , mais pas dans (\mathbb{R}, d^{discr}) .

Pour construire un exemple plus intéressant, nous observons : Si $f_n \in \mathcal{C}^0[a,b]$ converge vers f par rapport à d_∞ , $f_n(x)$ converge vers f(x) pour tout $x \in [a,b]$.

Soit $f \in \mathcal{C}^0(\mathbb{R})$ une fonction positive tq f(0) = 1 et f(x) = 0 lorsque $|x| \ge 1$. Par exemple, on peut choisir

 $f(x) = \begin{cases} 1 - |x| & \text{si } x \in [-1, 1] \\ 0 & \text{sinon.} \end{cases}$

Posons $f_n(x) := n^{1/2} f(nx)$ et considérons f_n comme une suite dans $\mathcal{C}^0[-1,1]$.

- f_n ne converge pas par rapport à d_∞ parce que $f_n(0) = n^{1/2} \to \infty$.
- Soit $f(x) = 0 \ \forall x$, alors f = 0. On a

$$d_{1}(f_{n},0) = \int_{-2}^{2} |n^{1/2}f(nx)| dx \quad \stackrel{t=nx}{=} \quad n^{-1/2} \int_{-2n^{-1}}^{2n^{-1}} |f(t)| dt$$
$$= n^{-1/2} \int_{-1}^{1} |f(t)| dt = const \cdot n^{-1/2} \longrightarrow 0.$$

Donc, f_n converge par rapport à d_1 vers f = 0.

Exercice

Clarifier si f_n converge par rapport à d_2 .

13/26

Sous-ensembles fermés dans espaces métriques

Proposition

Soit M un espace métrique, $A \subset M$ et $m \in M$. Alors, $m \in \overline{A}$ ssi il existe une suite $a_n \in A$ tq $a_n \to m$.

Démonstration.

Si $m \in A$, on peut poser $a_n = m$. Ainsi, supposons que $m \in \overline{A} \setminus A \implies m$ est un point d'adhérence de $A \implies \forall n \in \mathbb{N} \quad \exists a_n \in A \cap B_{1/n}(m)$ parce que $B_{1/n}(a)$ est un voisinage de m. Par construction, $d(a_n, m) < \frac{1}{n}$ et donc a_n converge vers m.

Supposons que $\lim a_n = m$. S'il existe n tq $a_n = m$, on a $m \in A$. Alors, on peut supposer $a_n \neq m$ pour tout n.

Soit V un voisinage de m quelconque. Alors, $\exists r > 0$ tq $B_r(m) \subset V$. Puisque $\lim a_n = m$, $\exists N \in \mathbb{N}$ tq $d(a_n, m) < r$ pour tout $n \geq N$. Ainsi, $a_N \in B_r(m) \Longrightarrow a_N \in V$ et $a_N \neq m$. Donc, m est un point d'adhérence de A.

Théorème (Critère des suites pour un fermé)

Soit M un espace métrique. Un sous-ensemble $A \subset M$ est fermé si et seulement si, pour toute suite (a_n) d'éléments de A qui converge vers $m \in M$ on a que $m \in A$.

La démonstration découle de la proposition précédente.

15/26

APPLICATIONS CONTINUES DANS DES ESPACES MÉTRIQUES

Rappelons que $f:(M,d_M) \to (N,d_N)$ est dite continue, si $U \in \mathcal{T}_N \implies f^{-1}(U) \in \mathcal{T}_M$.

Théorème

Les conditions suivantes sont équivalentes :

- 1. f est continue;
- 2. $\forall m \in M \text{ et } \forall \varepsilon > 0 \ \exists \delta = \delta(m, \varepsilon) > 0 \text{ tq}$

$$d_M(m',m) < \delta \implies d_N(f(m'),f(m)) < \varepsilon.$$

3. $\forall m \in M \text{ et pour chaque suite } (x_n) \text{ de points de } M \text{ on a que}$

$$\lim_{n\to\infty} x_n = m \quad \Longrightarrow \quad \lim_{n\to\infty} f(x_n) = f(m).$$

La démonstration se fait comme dans le cas des fonctions $f: \mathbb{R}^n \to \mathbb{R}$ et reste à vous comme exercice.

Remarque

Comme dans le cas des fonctions $\mathbb{R}^n \to \mathbb{R}$, on dit que $f:(M,d_M) \to (N,d_N)$ est continue en $m \in M$ si l'une des conditions équivalentes suivantes est respectée :

- 1. $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \mathsf{tq}$ $d_M(m', m) < \delta \quad \Longrightarrow \quad d_N(f(m'), f(m)) < \varepsilon.$
- 2. Pour chaque suite (x_n) de points de M on a

$$\lim_{n\to\infty}x_n=m \quad \Longrightarrow \quad \lim_{n\to\infty}f(x_n)=f(m).$$

Ainsi, f est continue ssi f est continue en tout $m \in M$.

17/26

Exemple

- 1. $id: (M, d_M) \rightarrow (M, d_M)$ est toujours continue.
- 2. $id: (\mathcal{C}^0[a,b], d_\infty) \to (\mathcal{C}^0[a,b], d_1)$, est continue parce que

$$d_{\infty}(f,g) < \delta \implies d_1(f,g) = \int_a^b |f(x) - g(x)| dx < \delta(b-a).$$

Par contre, $id: (\mathcal{C}^0[a,b], d_1) \to (\mathcal{C}^0[a,b], d_\infty)$, n'est pas continue :

$$d_1(f,g) < \delta$$
 \Longrightarrow $d_{\infty}(f,g) = \sup_{x \in [a,b]} |f(x) - g(x)| < \varepsilon.$

3. Plus généralement, soient d et d' deux métriques sur M. Alors,

$$d(m,m') \le A d'(m,m') \quad \forall m,m' \in M$$

 $\implies id: (M,d) \to (M,d') \text{ est continue.}$

Ainsi, si d et d' sont Lipschitz équivalentes, $id: (M, d) \to (M, d')$ et $id: (M, d') \to (M, d)$ sont continues.

Exemple (suite)

4. Soit $c \in [a, b]$. La fonction

$$ev_C$$
: $(\mathcal{C}^0[a,b], d_\infty) \to \mathbb{R}$, $ev_C(f) = f(c)$,
est continue, parce que $d_\infty(f,g) = \sup_X |f(x) - g(x)| < \delta$ \Longrightarrow $d_E(ev_C(f), ev_C(g)) = |f(c) - g(c)| < \delta$.

5. Pour tout $m_0 \in M$ la fonction $f(m) := d(m_0, m)$ est continue.

Pour voir le dernier exemple, on applique l'inégalité

$$\left|d(x,y)-d(x,z)\right|\leq d(y,z)\tag{*}$$

qui vaut pour tous les points x, y, z dans un espace métrique quelconque. L'inégalité (*) découle de l'inégalité triangulaire (montrer comme exercice!)

19/26

REMARQUES SUR LES SUITES DANS LES ESPACES TOPOLOGIQUES

Définition

Une suite (x_n) dans un espace topologique (X, T) converge vers $x \in X$ lorsque $n \to \infty$ si pour chaque voisinage V de m il existe N > 0 tq pour tout $n \ge N$ on a que $x_n \in V$.

Contrairement au cas des espaces métriques, "la" limite n'est pas unique en général.

Exemple

- 1. Rappelons que $\mathfrak{T}_X^{gross} = \{\emptyset, X\}$. Alors, dans $(X, \mathfrak{T}_X^{gross})$ toute suite (x_n) converge et tout point $x \in X$ est sa limite parce que pour tout x il y a un seul voisinage : X.
- 2. Soit (x_n) une suite dans $(\mathbb{R}, \mathfrak{T}^{cofin})$ tq $x_n \neq x_m$ si $n \neq m$. Alors, tout $x \in \mathbb{R}$ est une limite de (x_n) .

Proposition

Soit (X,T) un espace topologique et $A \subset X$. Si A est fermé, pour toute suite (a_n) de points de A qui admet une limite a, alors $a \in A$.

Exercice

Démontrer cette proposition.

Remarque (*)

En général, la propriété "pour toute suite (a_n) de points de A qui admet une limite a, alors $a \in A$ " n'implique pas que A est fermé : Comme pour \mathfrak{T}^{cofin} , on définit

$$\mathfrak{I}^{coden} := \{ U \subset X \mid X \setminus U \text{ est vide, fini ou dénombrable} \}.$$

Dans $(\mathbb{R}, \mathbb{T}^{coden})$ considérons $A = (-\infty, 0]$. Si $(a_n) \subset A$ et b > 0, $\mathbb{R} \setminus \{(x_n)\}$ est un voisinage de $b \implies b$ n'est pas une limite de (x_n) . Pourtant A n'est pas fermé (par rapport à \mathbb{T}^{coden} !).

21/26

LA TOPOLOGIE INDUITE

Soit (M, d) un espace métrique. Pour tout $A \subset M$ on obtient une métrique sur A par restriction : $d_A: A \times A \to \mathbb{R}$, $d_A = d|_{A \times A}$. d_A s'appelle la métrique induite (de celle de M sur A).

Exemple

Considérons $\mathbb{Z} \subset (\mathbb{R}, d_E)$. La métrique induite est $d_{\mathbb{Z}}(n, m) = |n - m|$. Remarquez que $\mathfrak{T}_{d_{\mathbb{Z}}}$ est la topologie discrète (parce que $B_1(n) = \{n\}$) bien que $d_{\mathbb{Z}}$ et la métrique discrète ne soient pas Lipschitz équivalents.

Exercice

Montrer que $B_r^A(a) = \{a' \in A \mid d_A(a', a) < r\} = B_r^M(a) \cap A$.

Par

exemple, soit $M = \mathbb{R}^2$ muni de la métrique euclidienne et $A = \mathbb{R}^2 \setminus \{[-10, 10] \times \{0\}\}$. $B_2^A((0,1))$ est non-connexe.

Proposition

Un sous-ensemble $U \subset A$ est ouvert par rapport à d_A ssi $\exists V \subset M$ qui est ouvert dans (M, d) tq $U = V \cap A$.

Démonstration.

Supposons que $U \subset A$ et un ouvert. Alors, $\forall u \in U \ \exists r = r(u) > 0$ tq $B_r^A(u) = \{u' \in U \mid d_A(u', u) < r\} \subset U$. Considérons

$$V := \bigcup_{u \in U} B_{r(u)}^{M}(u).$$

V est ouvert comme la réunion des ouverts et

$$V \cap A = \bigcup_{u \in U} (B_{r(u)}^M(u) \cap A) = \bigcup_{u \in U} B_{r(u)}^A(u) = U.$$

Inversement, supposons que $V \subset M$ est ouvert et $U = V \cap A$. Alors, $V \in \mathcal{T}_M$ $\Longrightarrow \forall v \in V \quad \exists B^M_{r(v)}(v) \subset V$. En particulier, $\forall u \in U$

$$B_{r(u)}^{A}(u) = B_{r(u)}^{M}(u) \cap A \subset V \cap A \Longrightarrow V \cap A \text{ est ouvert dans } (A, d_A).$$

23/26

Ainsi, on a démontré que

$$\mathcal{T}_{d_A} = \{ V \cap A \mid V \in \mathcal{T}_{(M,d)} \}. \tag{*}$$

Pour les espaces topologiques on définit la top. induite en utilisant (*) :

Définition

Soit $A \subset (X, T)$ un sous-ensemble non-vide d'un espace topologique. Définissons une collection de sous-ensembles de A par

$$\mathfrak{T}|_{A} = \{ U \cap A \mid U \in \mathfrak{T} \}.$$

 $\mathfrak{I}|_A$ est une topologie sur A appelée la topologie induite.

Remarque

Quand on pense à $A \subset X$ comme étant un espace topologique pour la topologie induite, on dit que A est un sous-espace de X.

On va démontrer plus tard que la top. induite est bien une topologie.

Exemple

- 1. $(0,1) \subset \mathbb{R} : U \subset (0,1)$ est ouvert ssi U est ouvert dans \mathbb{R} parce que si V est ouvert dans \mathbb{R} et $U = V \cap (0,1)$, U est ouvert dans \mathbb{R} .
- 2. $[0,1] \subset \mathbb{R}$:
 - [0, 0, 1) est ouvert parce que $[0, 0, 1) = (-2, 0, 1) \cap [0, 1]$.
 - [0, 0, 1] n'est pas ouvert.
 - (0,5, 1] est ouvert.
 - En général, un ouvert de [0, 1] est de la forme suivante

$$[0,\varepsilon)\cup V\cup (\delta,1]$$
 ou $[0,\varepsilon)\cup V$ ou $V\cup (\delta,1]$ ou $V,$

où V est ouvert dans (0,1).

3. $\mathbb{R} \subset \mathbb{R}^2$: la topologie induite est la topologie standard parce que $(a,b) = B_r(m) \cap \mathbb{R}$ si $m = \left(\frac{a+b}{2}, 0\right)$ et $r = \frac{b-a}{2}$.

Attn: Un ensemble ouvert dans A n'est pas nécessairement ouvert dans X!

25/26

Lemma

La topologie induite $\mathfrak{T}|_{A}$ est bien une topologie sur A.

Démonstration.

T1.
$$A = X \cap A$$
, $\emptyset = \emptyset \cap A$.

T2. Soient $V_1, \ldots, V_k \in \mathfrak{T}|_A$. Alors il existe $U_1, \ldots, U_k \in \mathfrak{T}$ t.q. $V_j = U_j \cap A$. Or $V_1 \cap \cdots \cap V_k = U_1 \cap A \cap \cdots \cap U_k \cap A = U_1 \cap \cdots \cap U_k \cap A$.

Puisque \mathfrak{T} est une topologie, $U_1 \cap \cdots \cap U_k \in \mathfrak{T}$. Donc $V_1 \cap \cdots \cap V_k \in \mathfrak{T}|_{\mathcal{A}}$.

T3. Soit $\{V_i : i \in I\}$ une collection quelconque d'éléments de $\mathfrak{T}|_A$. Alors pour tout $i \in I$, il existe $U_i \in \mathfrak{T}$ t.q. $U_i \cap A = V_i$. Or

$$\bigcup V_i = \bigcup (U_i \cap A) = (\bigcup U_i) \cap A.$$

Puisque Υ est une topologie, $\bigcup U_i \in \Upsilon$. Donc $\bigcup V_i \in \Upsilon|_A$.