

Gowin SDRAM Controller **User Guide**

IPUG279-1.3E,12/14/2018

Copyright©2018 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI®, LittleBee®, Arora™, and the GOWINSEMI logos are trademarks of GOWINSEMI and are registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders, as described at www.gowinsemi.com.cn. GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. All information in this document should be treated as preliminary. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description
12/14/2017	1.3E	Initial version published.

Contents

Cor	ntents	. i
List	of Tablesi	iv
1 Al	bout This Guide	1
	1.1 Purpose	. 1
	1.2 Supported Products	. 1
	1.3 Related Documents	. 1
	1.4 Abbreviations and Terminology	. 2
	1.5 Support and Feedback	2
2 Fı	unction	3
	2.1 Introduction	. 3
	2.2 Features	. 3
	2.2.1 External SDRAM Controller	. 3
	2.2.2 Embedded SDRAM Controller	4
3 S i	ignal Definition	5
	3.1 Introduction	. 5
	3.2 SDRAM Signals	6
	3.3 User Signals	. 7
4 G	UI Parameters	8
	4.1 Introduction	. 8
	4.2 External SDRAM GUI Parameters	. 8
5 P	rinciple1	0
	5.1 Introduction	10
	5.2 Principle Diagram	10
	5.3 SDRAM Commands	10
	5.4 Initialization	11
	5.5 Refresh	11
	5.6 Read Operation	11
	5.7 Write Operation	12
	5.8 Working Flow1	13

	5.8.1 Read/Write Flow	. 13
	5.8.2 Initialization Flow	. 14
	5.8.3 Auot-refresh Flow	. 15
	5.8.4 Power-down Flow	. 16
6 E	Examples and Explanation	18
	6.1 Introduction	. 18
	6.2 Application	. 18
	6.3 Example for Embedded SDRAM Controller	. 20
	6.3.1 Open an Existing Project	. 20
	6.3.2 SDRAM Controller Generation	. 20
	6.3.3 SDRAM Controller Instantiation	. 22
	6.3.4 Bitstream Files Generation	. 22
	6.4 Example for External SDRAM Controller	. 23
	6.4.1 Open an Existing Project	. 23
	6.4.2 SDRAM Controller Generation	. 23
	6.4.3 SDRAM Controller Instantiation	. 25
	6.4.4 Bitstream Files Generation	. 26
7 I	nterface Timing	. 27
	7.1 Introduction	. 27
	7.2 User Interface Timing	. 27
	7.2.1 User Interface Read Operation	. 27
	7.2.2 User Interface Write Operation	. 28
	7.3 SDRAM Interface Timing	. 28
	7.3.1 SDRAM Initialization	. 28
	7.3.2 SDRAM Read Operation	. 29
	7.3.3 SDRAM Write Operation	. 29
	7.3.4 SDRAM Auto-refresh	. 29
о г	Porformanco Poforonco	30

List of Figures

Figure 3-1: System Architecture	5
Figure 5-1: Principle Diagram	10
Figure 5-2: Read/Write Working Flow	13
Figure 5-3: Initialization Flow	14
Figure 5-4: Auto-refresh Flow	15
Figure 5 5: Power-down Flow	16
Figure 6-1: Application Diagram	19
Figure 6-2: Open an Existing Project	20
Figure 6-3: IP Core Generator Page	21
Figure 6-4: SDRAM Controller Interface	21
Figure 6-5: SDRAM_controller_top_SIP Instantiation	22
Figure 6-6: Open an Existing Project	23
Figure 6-7: IP Core Generator Page	24
Figure 6-8: SDRAM Controller Interface	25
Figure 6-9: SDRAM_controller_top_SIP Instantiation	26
Figure 7-1: User Interface Read Operation	27
Figure 7-2: User Interface Write Operation	28
Figure 7-3: SDRAM Initialization	28
Figure 7-4: SDRAM Read Operation	29
Figure 7-5: SDRAM Write Operation	29
Figure 7-6: SDRAM Auto-refresh	29

IPUG279-1.3E iii

List of Tables

Table 1-1: Abbreviations and Terminology	2
Table 3-1: Description of SDRAM Signals	6
Table 3-2: Description of User Signals	7
Table 4-1: Interface Parameters	8
Table 4-2: Time Delay Parameter	9
Table 5-1: Definition of the SDRAM Commands	11
Table 8-1: SDRAM Performance Reference	30

IPUG279-1.3E iv

1About This Guide 1.1Purpose

1 About This Guide

1.1 Purpose

The purpose of this Gowin SDRAM Controller User Guide is to help users to quickly understand the features and functionality of the GOWINSEMI SDRAM controller by providing an overview of the associated functions, architecture view, principles, signal definition, parameters, GUI, and interface timing.

1.2 Supported Products

The information presented in this guide applies to the following products:

- GW1N series of FPGA products: GW1N-4
- 2. GW1NR series of FPGA products: GW1NR-4
- 3. GW2A series of FPGA products: GW2A-18
- 4. GW2AR series of FPGA products: GW2AR-18

1.3 Related Documents

The latest user guides are available on the Gowin Semi website. Refer to the related documents at www.gowinsemi.com:

- 1. GW1N FPGA Products Data Sheet
- 2. GW1NR FPGA Products Data Sheet
- 3. GW2A FPGA Products Data Sheet
- 4. GW2AR FPGA Products Data Sheet
- 5. Gowin Software User Guide

IPUG279-1.3E 1(30)

1.4 Abbreviations and Terminology

The abbreviations and terminology used in this manual are as shown in Table 1-1.

Table 1-1: Abbreviations and Terminology

Abbreviations and Terminology	Full Name/Meaning
FPGA	Field Programmable Gate Array
SDRAM	Synchronous Dynamic Random Access Memory (RAM)
I/O	Input/Output
CL	CAS latency
tRP	PRECHARGE command period
tRFC	AUTO REFRESH period
tMRD	LOAD MODE REGISTER command to ACTIVE or REFRESH command period
tRCD	ACTIVE-to-READ or WRITE delay
tWR	WRITE recovery time

1.5 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly using the information provided below:

Website: www.gowinsemi.com
E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

IPUG279-1.3E 2(30)

2Function 2.1Introduction

2Function

2.1 Introduction

SDRAM is widely used for its high cost-performance. As SDRAM has strict timing requirements and complex logic control, a dedicated controller is required to implement the initialization, data read/write, refresh, and pre-charge functions.

The SDRAM controller can meet the needs of FPGA users by reducing the complexity of system development and decreasing product development time. The SDRAM is located between the SDRAM controller and the user logic modules. It offers a user-friendly interface and can read from or write to SDRAM.

The Gowin YunYuan software can be used with two different SDRAM controllers per the users' needs. The first is an external SDRAM controller for GW1N-4, GW1A-18, etc. This controller should be configured according to the external SDRAM. The second is an embedded SDRAM controller for GW2AR-18, GW1NR-4, etc., and this SDRAM IP can be generated directly without the need to set parameters.

Users can utilize the Gowin YunYuan software to generate the SDRAM controller, configure the parameters, place and route, etc.

2.2 Features

2.2.1 External SDRAM Controller

- Configurable width of SDRAM data, address, row/column, etc.
- Configurable SDRAM refresh times, etc.
- Configurable timing parameters.
- Configurable SDRAM working clock cycle.
- Can support any length read/write operation within the range of 1~Page.
- Supports auto-refresh.
- Supports self-refresh.
- Supports power-down.

IPUG279-1.3E 3(30)

2Function 2.2Features

- Supports industry-standard SDRAM.
- Fully synthesizable.

2.2.2 Embedded SDRAM Controller

- Displays SDRAM interface parameter values and timing parameters.
- Supports any length read/write operation within the range of 1~Page.
- Supports auto-refresh.
- Supports self-refresh.
- Supports power-down.
- Supports industry-standard SDRAM.
- Fully synthesizable.
- GW1NR-4 supports two kinds of embedded controller: 32-bit data width and 16-bit data width.

IPUG279-1.3E 4(30)

3Signal Definition 3.1Introduction

3 Signal Definition

3.1 Introduction

The SDRAM controller is located between the SDRAM and the user logic modules, as shown in Figure 3-1. The signals that are available on the user logic side predominantly consist of data signal, address signal, control signal, status signal, etc. The signals on the SDRAM side mainly include data signal, address signal, and command signal.

Figure 3-1: System Architecture

IPUG279-1.3E 5(30)

3Signal Definition 3.2SDRAM Signals

3.2 SDRAM Signals

Table 3-1: Description of SDRAM Signals

No.	Signal Name	I/O	Description	Remarks
1	O_sdram_clk	1	Clock	
2	O_sdram_cke		Clock enable	
3	O_sdram_cs_n	1	Chip select	
4	O_sdram_cas_n	I	Column address strobe	The I/O direction
5	O_sdram_ras_n	1	Row address strobe	of all signals takes
6	O_sdram_wen_n I Write enable		Write enable	the SDRAM as reference.
7	O_sdram_dqm	dram_dqm I Data mask control		1.0.0.0
8	O_sdram_addr	I	Address	
9	O_sdram_ba	_ba I Bank address		
10	IO_sdram_dq	I/O	Data	

IPUG279-1.3E 6(30)

3Signal Definition 3.3User Signals

3.3 User Signals

Table 3-2: Description of User Signals

No.	Signal Name	I/O	Description	Remarks
1	I_sdrc_rst_n	I	Reset signal, active low	
2	I_sdrc_clk	I	SDRAM controller working clock	
3	I_sdram_clk	I	SDRAM working clock	
4	I_sdrc_selfrefresh	I	Self-refresh control 1: self-refresh enable 0: self-refresh disable	
5	I_sdrc_power_down	1	Lower power consumption control 1: lower power consumption enable 0: lower power consumption disable	
6	I_sdrc_wr_n	I	Write enable Active-low, one clock cycle of pulse width	
7	I_sdrc_rd_n	I	Read enable Active-low, one clock cycle of pulse width	
8	I_sdrc_addr	I	Address	
9	I_sdrc_dqm	I	Data mask control	The I/O
10	0 I_sdrc_data_len I Tak inst 0~2 rea		Read/write data length Take I_sdrc_data_len[7:0] for instance, the port input range is 0~255, and the corresponding valid read/write length range is 1~256, and so on.	direction of all signals takes the SDRAM as
11	I_sdrc_data	I	Write data	reference.
12	O_sdrc_data	0	Read data	
13	3 O_sdrc_init_done C		Power-on initialization indication 1: done 0: undone	
14	14 O_sdrc_busy_n		Idle/busy controller indication User logic can issue read/write operation when the controller is idle. 1: idle 0: busy	
15	O_sdrc_rd_valid	0	Active data reading indication, high active, and aligns with valid data	
16 O_sdrc_wrd_ack		0	Read/write request response, active high After receiving the read/write request, the SDRAM controller sends the signal after two clock delays, one clock cycle width	

IPUG279-1.3E 7(30)

4GUI Parameters 4.1Introduction

4GUI Parameters

4.1 Introduction

Users can use the SDRAM controller GUI to set the SDRAM interface data, address width, etc., and the timing value of the SDRAM controller.

For the external SDRAM controller, users can set the parameters on the "Customize IP" page of the Gowin YunYuan software according to the value of the detailed external SDRAM parameters.

For the embedded SDRAM controller, users do not need to set the parameters because the SDRAM controller is embedded in FPGA devices and the parameters are fixed.

4.2 External SDRAM GUI Parameters

Table 4-1: Interface Parameters

No.	Name	Value Range	Default Value	Description
1	Data Width	8/16/32/64	32	SDRAM data bus width
2	Bank Width	1/2	2	SDRAM BANK address width
3	Row Width	11/12/13/1 4	11	SDRAM row address width
4	Column Width	8/9/10/11/ 12	8	SDRAM column address width

IPUG279-1.3E 8(30)

Table 4-2: Time Delay Parameter

No.	Name	Range	Default Value	Description	Remark
1	Clock Period	≥4, ≤100	10	Working clock cycle of SDRAM controller, in ns.	Used for auto-refresh.
2	Refresh Period	≥1	640000 00	Auto-refresh cycle of SDRAM, in ns.	The value is determined by the specific chip
3	Refresh Times	≥1	4096	Auto-refresh times of SDRAM.	parameters.
4	CL Period	1/2/3	3	CAS latency.	The specific
5	tRP Period	≥1	3	PRECHARG E command period.	value is determined by the specific
6	tRFC Period	≥1	9	AUTO REFRESH period.	chip parameters. The value is
7	tMRD Period	≥1	3	LOAD MODE REGISTER command to ACTIVE or REFRESH command period.	the number of the controller clock.
8	tRCD Period	≥1	3	ACTIVE-to-R EAD or WRITE delay.	
9	tWR Period	≥1	3	WRITE recovery time.	

IPUG279-1.3E 9(30)

5Principle 5.1Introduction

5 Principle

5.1 Introduction

The SDRAM controller offers parameter configuration, auto-refresh, user interfaces, and command control. The auto-refresh, data read/write, etc., functions are achieved through communication with the other modules.

5.2 Principle Diagram

Figure 5-1: Principle Diagram

5.3 SDRAM Commands

The common SDRAM commands include no operation, active, read operation, write operation, pre-charge, auto-refresh, configuration mode register, etc. Table 5-1 provides an overview of the operation and definition of the commands that are available.

IPUG279-1.3E 10(30)

5Principle 5.4Initialization

Command Name CS **RAS** CAS WE Command Inhibit Н Χ Χ Χ L Н Н Н NOP L Н Active L Н Read L Н L Н Write L Н L L Н Н **Burst Terminate** L L Н L Pre-charge L Auto Refresh or L L L Н Self Refresh Configuration L L L L Mode Register Write Enable Χ Χ Χ Χ

Table 5-1: Definition of the SDRAM Commands

Notes!

Write Inhibit

• X: Any; L: Low level; H: High level

Χ

CS: chip select; RAS: row selection; CAS: column selection; WE: enable

Χ

Χ

5.4 Initialization

The SDRAM must be initialized using the SDRAM controller before being powered up. After power is applied to the VDD and VDDQ (simultaneously) and the clock is stable, the SDRAM requires a 100us delay prior to issuing any commands other than the INHIBIT or NOP commands. Following that, two auto-refresh cycles must be performed. After the auto-refresh cycles are complete, the SDRAM is ready for mode register programming. The mode register is programmed via the 0/1 signals from the address line. After programming the mode register, the user will need to wait at least tMRD time. The SDRAM will enter the normal working state.

Χ

5.5 Refresh

SDRAM refresh options consist of self-refresh and auto-refresh.

- Self-refresh operation: When the self-refresh command is initiated and CKE is set to low, self-refresh mode is engaged. SDRAM saves data via self-refresh. To exit the self-refresh mode, set CEK to high when the self-refresh command is initiated.
- Auto-refresh operation: The auto-refresh command is used to refresh the parameters according to different chips. The SDRAM controller will send auto-refresh commands periodically to trigger the SDRAM to refresh and retain the data.

5.6 Read Operation

After initialization, if the SDRAM controller needs to address the array in one bank, confirm the row first and activate it before confirming the

IPUG279-1.3E 11(30)

5Principle 5.7Write Operation

column.

The specific flow is as follows:

- 1. Activate the row address of the bank from which to read data.
- 2. Send the read command after the tRCD delay and simultaneously write the corresponding column address.
- The SDRAM will begin to output the data after CL.
- 4. After reading the date, pre-charge the corresponding bank (or all banks). Perform the other operations after the tRP period.

5.7 Write Operation

The flow of the write operation is the same as that of the read operation. Please refer to Section <u>5.6 Read Operation</u> for further details.

IPUG279-1.3E 12(30)

5.8 Working Flow

5.8.1 Read/Write Flow

Figure 5-2: Read/Write Working Flow

The specific read/write flow is as follows:

- 1. Initialization wait, go to Step (2) after the preset waiting time.
- 2. Start SDRAM initialization, and progress to Step (3).
- Put the SDRAM controller in an idle state.
- 4. Verify whether there is auto-refresh request; if yes, auto-refresh before progressing to Step (3); if not, go to Step (5).
- 5. Verify whether the interfaces on the user side have received a read/write control request; if yes, start the read-write data address and length processing first and then send the read/write request before progressing to Step (6); if no, return to Step (3).

IPUG279-1.3E 13(30)

- 6. Send Activate, Read/Write commands to SDRAM. Proceed to Step (7).
- 7. Read/Write according to the data length.
- Verify whether the read/write operation has ended or not; if yes, proceed to Step (9); if not, return to Step (7).
- 9. Precharge and return to Step (3) after precharging is complete.

5.8.2 Initialization Flow

Figure 5-3: Initialization Flow

The detailed initialization flow is as follows:

- 1. After power-up, the SDRAM controller enters an idle state; progress to Step (2) after the preset initialization waiting time, or keep waiting.
- 2. Precharge and send a pre-charging command; progress to Step (3) after the preset waiting time, or keep waiting.
- 3. Auto-refresh and send an auto-refresh command; progress to Step (4) after the preset waiting time, or keep waiting.

IPUG279-1.3E 14(30)

4. Auto-refresh and send an auto-refresh command; progress to Step (5) after the preset waiting time, or keep waiting.

- 5. Enters the configuration mode register state and send configuration mode register command; progress to Step (6) after the preset waiting time, or keep waiting.
- 6. Initialization is complete.

5.8.3 Auto-refresh Flow

Figure 5-4: Auto-refresh Flow

The auto-refresh flow process is as follows:

- 1. After power-up, the SDRAM controller enters a waiting state.
- 2. Verify whether the initialization is complete or not; if yes, progress to

IPUG279-1.3E 15(30)

- Step (3); if no, keep waiting.
- 3. Verify whether there is an auto-refresh request; if yes, proceed to Step (4).
- 4. Send an auto-refresh command; progress to Step (5).
- 5. The xxx enters the auto-refresh state. Verify whether there is auto-refresh exiting request; if yes, progress to Step (6).
- Send an auto-refresh exiting command, and then return to the idle state.

5.8.4 Power-down Flow

Figure 5 5: Power-down Flow

The power-down flow is as follows:

1. After power-up, the SDRAM controller enters a waiting state.

IPUG279-1.3E 16(30)

2. Verify whether the initialization is complete or not; if yes, go to Step (3); if no, keep waiting.

- 3. Verify whether there is power-down request; if yes, proceed to Step (4).
- 4. Send a power-down command. Proceed to Step (5).
- 5. XX enters the power-down state. Verify whether there is a power-down exiting request; if yes, proceed to Step (6).
- 6. Send a power-down exiting command, and then return to the idle state.

IPUG279-1.3E 17(30)

6 Examples and Explanation

6.1 Introduction

This chapter described the use of the Gowin YunYuan Software interface to configure parameters and generate a SDRAM controller module according to user requirements. Application cautions are also described.

When you instantiate an embedded SDRAM controller in your design, the I/O ports connected with the SDRAM controller in the top design module should have the same name as that of the embedded SDRAM controller. Gowin YunYuan software will perform place and route automatically according to the designed I/O port name, which facilitates smooth communication between the SDRAM controller and the SDRAM.

Examples of the operation flow of the two controllers are described below.

6.2 Application

The SDRAM controller application mainly includes PLL, user logic, SDRAM controller, and SDRAM. Figure 6-1 shows the SDRAM application diagram.

As an internal clock resource of FPGA, PLL can generate SDRAM working clock I_sdram_clk and SDRAM controller working clock I_sdrc_clk via frequency multiplication and division. When the SDRAM controller works at a high speed, the phase of I_sdrc_clk needs to be adjusted to meet the setup/hold time of the SDRAM side read/write signals.

All input/output signals of the user logic interface align with the rising edge of I_sdrc_clk.

IPUG279-1.3E 18(30)

Figure 6-1: Application Diagram

Notes!

- When the SDRAM controller works at a high speed, you can adjust the phase of I_sdram_clk to meet the setup/hold time of the SDRAM side read/write signals.
- For external SDRAM, the input/output DFF of the SDRAM side can be constrained to IOLOGIC DFF to improve the transmission performance.
- Considering internal delay and PCB routing, etc., when the SDRAM controller works at a high speed, if reading data has one cycle delay in excess of the active indicator, you need to delay the active indicator for one cycle so that it is aligned with the active data.
- For embedded SDRAM, the signals on the SDRAM side occur on Module ports after the SDRAM controller is called. These signals should be led to the TOP layer and retain the same names. These signals do not need constraints in .cst files.
- When the GW1NR-4 32-bit width controller is called, the clock frequency of I_sdrc_clk must be half that of I_sdram_clk frequency; I_sdrc_clk and I_sdram_clk have the same clock frequency in other cases.

IPUG279-1.3E 19(30)

6.3 Example of an Embedded SDRAM Controller

6.3.1 Open an Existing Project

Start the Gowin YunYuan Software and open an existing project, as shown in Figure 6-2.

Figure 6-2: Open an Existing Project

6.3.2 SDRAM Controller Generation

Click "Tools > IP Core Generator". The window displayed in Figure 6-3 will appear.

IPUG279-1.3E 20(30)

Output Error Warning Info

_ _ _ X გ <u>F</u>ile <u>E</u>dit <u>P</u>roject <u>T</u>ools <u>W</u>indow <u>H</u>elp Process Target Device: GW2AR-18-LQFP144 Design Summary ■ User Constraints SDRAM Controller(With embedded FloorPlanner 🖺 FIFO M Timing Constraints Editor SDRAM) FIFO_SC Synthesize (Synplify Pro) SDP_FIFO Synthesis Report SDP_FIFO_SC Netlist File ▲ I2C Slave **Information** 🛮 🥝 Place & Route 🖺 I2C Slave Place & Route Report MIPI Type: SDRAM Controller Timing Analysis Report MIPI RX Vendor: GOWIN Semiconductor Ports & Pins Report A MIPI TX Summary: The SDRAM controller allows designers to create custom systems in Power Analysis Report Memory Interface one GOWIN device that connect easily to SDRAM chips. This SDRAM B DDR2 Memory Interface 👭 Program Device Controller located between the SDRAM and the user logic, reduces the SDRAM Controller user's effort to deal with the SDRAM command interface by providing a SDRAM Controller(With embedded SDRAM) simple generic system interface to the user. SDRAM Controller(With external SDRAM) Module Block Memory ♣ DP Start Page × × 🔒 Design Process (PW0001) : Power analysis completed.
(CM0008) : Generate 'SDRAM Controller_top.power.html' file completed.
(CM0008) : Generate 'SDRAM_Controller_top.tr.html' file completed.
(CM0008) : Generate 'SDRAM_Controller_top.vo' file completed. Info Info Info

Figure 6-3: IP Core Generator Page

Select GW2AR-18-LQFP144, and then double-click "SDRAM Controller (With embedded SDRAM)" to open the "Customize IP" page, as shown in Figure 6-4. Accept the default settings displayed on this page and click "OK" to generate the SDRAM_controller_top_SIP.

Figure 6-4: SDRAM Controller Interface

IPUG279-1.3E 21(30)

6.3.3 SDRAM Controller Instantiation

Instantiate the module "SDRAM_controller_top_SIP" in a project, as shown in Figure 6-5.

Figure 6-5: SDRAM_controller_top_SIP Instantiation

6.3.4 Bitstream File Generation

After inputting the necessary constraints, begin to synthesize, P&R, and then generate the bitstream files.

Load the bitstream files to the development board or test board using the Gowin download cable. You can also observe the SDRAM read/write operation via the test interface.

IPUG279-1.3E 22(30)

6.4 Example of an External SDRAM Controller

6.4.1 Open an Existing Project

Start the Gowin YunYuan Software and open an existing project, as shown in Figure 6-6.

Figure 6-6: Open an Existing Project

6.4.2 SDRAM Controller Generation

Click "Tools > IP Core Generator". The window displayed in Figure 6-7 will appear.

IPUG279-1.3E 23(30)

_ _ X გ <u>F</u>ile <u>E</u>dit <u>P</u>roject <u>T</u>ools <u>W</u>indow <u>H</u>elp Target Device: GW1N-4-LQFP144 Process Design Summary Name ■ User Constraints SDRAM Controller(With external FloorPlanner 🖺 FIFO M Timing Constraints Editor SDRAM) FIFO_SC Synthesize (Synplify Pro) SDP_FIFO SDP_FIFO_SC Synthesis Report Netlist File ▲ 📒 I2C Slave **Information** 🛮 🥝 Place & Route 🖺 I2C Slave Place & Route Report ■ MIPI SDRAM Controller Type: Timing Analysis Report MIPI RX Vendor: GOWIN Semiconductor Ports & Pins Report MIPI TX Summary: The SDRAM controller allows designers to create custom systems in Power Analysis Report Memory Interface one GOWIN device that connect easily to SDRAM chips. This SDRAM ₽ Program Device Controller located between the SDRAM and the user logic, reduces the SDRAM Controller user's effort to deal with the SDRAM command interface by providing a SDRAM Controller(With embedded SDRAM) simple generic system interface to the user. SDRAM Controller(With external SDRAM) Module Block Memory Start Page IP Core Generator × Design Process Design Summary Output (PW0001): Power analysis completed.
(CM0008): Generate 'SDRAM_Controller_top.power.html' file completed.
(CM0008): Generate 'SDRAM_Controller_top.tr.html' file completed.
(CM0008): Generate 'SDRAM_Controller_top.vo' file completed. Info Info Output Error Warning Info

Figure 6-7: IP Core Generator Page

Select GW1N-4-LQFP144, and then double-click on "SDRAM Controller (with external SDRAM)" to open the "Customize IP" page, as shown in Figure 6-8. Accept the default settings on this page and click "OK" to generate the SDRAM_controller_top_SIP.

IPUG279-1.3E 24(30)

Figure 6-8: SDRAM Controller Interface

6.4.3 SDRAM Controller Instantiation

Instantiate the "SDRAM_controller_top_SIP" module in a project, as shown in Figure 6-9.

IPUG279-1.3E 25(30)

🔆 GOWIN FPGA Designer - [E\Demo_program\DK_DEV_GW2AR18_V1.10\SDRAM_test_Project\SDRAM_test_SIP_can_readback_data_test_data\SDRAM_test_SIP\src\SDR Eile Edit Project Tools Window Help

 Eile Project Tools Window Help

 Eile Project Tools Window Help

 Eile Project Tools Window Help

 Edit Pr Design Summary ■ User Constraints 87 ⋤SI b2v_inst(☐ FloorPlanner 88 .O_sdram_clk(O_sdram_clk), 89 M Timing Constraints Editor Synthesize (Synplify Pro) .O_sdram_cke(O_sdram_cke) Synthesis Report 91 .O_sdram_cs_n(O_sdram_cs_n) Netlist File 92 .O_sdram_cas_n(O_sdram_cas_n), Place & Route 93 .0 sdram ras n (0 sdram ras n),
.0 sdram wen n (0 sdram wen n), 94 Place & Route Report 🔳 Timing Analysis Report .O_sdram_dqm(O_sdram_dqm) Ports & Pins Report 96 .O_sdram_addr(O_sdram_addr) 97 Power Analysis Report .O sdram ba (O sdram ba) 98 .IO_sdram_dq(IO_sdram_dq), III Program Device 100 .I_sdrc_rst_n(rst_sys), 101 .I_sdrc_clk(clkout_o) .I_sdram_clk(clkout o) 102 .I_sdrc_selfrefresh(sdrc_selfrefresh), 103 104 .I_sdrc_power_down(sdrc_power_down), 105 .I_sdrc_wr_n(sdrc_wr_n), 106 .I_sdrc_rd_n(sdrc_rd_n), 107 .I_sdrc_addr(sdrc_addr),
.I_sdrc_data_len(sdrc_data_len), 108 109 .I_sdrc_dqm(sdrc_dqm), 110 .I sdrc data(user data) 💡 Start Page 🗵 📘 Design Summary 🗵 🚽 SDRAM_controller_test_module. v 🗵 🔱 IP Core Generator 🗵 🚽 SDRAM_control 🕩 Design Process (CM0004) : Generate timing report completed. (CM0002) : Generate Tool-Run report completed. (CM0001) : Tue Jan 24 09:12:13 2017 Output Error Warning Info

Figure 6-9: SDRAM_controller_top_SIP Instantiation

6.4.4 Bitstream File Generation

After inputting the necessary constraints, begin to synthesize, P&R, and then generate the bitstream files.

Load the bitstream files to the development board or test board using the Gowin download cable. You can also observe the SDRAM read/write operation via the test interface.

IPUG279-1.3E 26(30)

7.1Introduction 7.1Introduction

7 Interface Timing

7.1 Introduction

Interface timing includes user interface timing and SDRAM interface timing. The user interface timing mainly includes read timing and write timing. All user interface input/output signals align at the rising edge of the controller working clock. The SDRAM interface timing mainly includes initialization, read timing, write timing, and auto-refresh timing. All output signals align at the rising edge of the controller working clock.

7.2 User Interface Timing

Note!

7.2.1 User Interface Read Operation

Ladre_fat_n
Ladre_power_down
Ladre_wr_n
Ladre_wr_n
Ladre_wr_n
Ladre_data
Ladre_data_len
Ladre_data_len
Ladre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data
O_sdre_data

Figure 7-1: User Interface Read Operation

The actual data read/write length of the SDRAM controller is I_sdrc_data_len+1.

IPUG279-1.3E 27(30)

7.2.2 User Interface Write Operation

Figure 7-2: User Interface Write Operation

Note!

The actual data read/write length of the SDRAM controller is I_sdrc_data_len+1.

7.3 SDRAM Interface Timing

7.3.1 SDRAM Initialization

Figure 7-3: SDRAM Initialization

IPUG279-1.3E 28(30)

7.3.2 SDRAM Read Operation

Figure 7-4: SDRAM Read Operation

7.3.3 SDRAM Write Operation

Figure 7-5: SDRAM Write Operation

7.3.4 SDRAM Auto-refresh

Figure 7-6: SDRAM Auto-refresh

IPUG279-1.3E 29(30)

8 Performance Reference

The SDRAM controller uses Verilog. Table 8-1 shows the performance indications for different devices.

Table 8-1: SDRAM Performance Reference

Device	Programm	LUTs	Registers	BSRAMs	PLLs	Fmax
	ing					
	Language					
GW1N-4	Verilog	323	504	1	1	≥90 MHz
GW1NR-4	Verilog	323	504	1	1	≥90 MHz
GW2AR-18	Verilog	285	488	1	1	≥160 MHz
GW2A-18	Verilog	285	488	1	1	≥160 MHz

IPUG279-1.3E 30(30)

