Álgebra I Práctica 3 Resuelta

Por alumnos de Álgebra I Facultad de Ciencias Exactas y Naturales UBA

Choose your destiny:

- Notas teóricas
- Ejercicios de la guía:

1.	5.	9.	13.	17 .	21.	25.	29.
2.	6.	10.	14.	18.	22.	26.	30.
3.	7.	11.	15.	19.	23.	27.	31.
4.	8.	12 .	16.	20.	24.	28.	32.

• Ejercicios Extras

1.

Notas teóricas:

Ejer	Ejercicios de la guía:				
1.	Hacer!				
2.	Hacer!				
3.	Hacer!				
4.	Hacer!				
5.	Hacer!				
6.	Hacer!				
7.	Hacer!				

8. Hacer!

 $\ensuremath{ \bigodot}$ ¿Errores? Mandanos tu solución, prolija,así lo arreglamos.

9. Si A es un conjunto con n elementos ¿Cuántas relaciones en A hay? ¿Cuántas de ellas son reflexivas? ¿Cuántas de ellas son reflexivas y simétricas?

Dado que para dos conjuntos $A = \{a, b, c\}$ y $B = \{1, 2\}$ la cantidad de relaciones que hay entre ellos es igual a la cantidad de subconjuntos de $\mathcal{P}(A \times B)$, entonces si $A = \{1, \dots, n\}$ el cardinal $\#\mathcal{P}(A \mathcal{R} A) = 2^{n^2}$

Las relaciones reflexivas son de la forma $a_i \mathcal{R} a_i$, por lo que solo será una relación por cada elemento del conjunto $\#(A \mathcal{R} A)_{ref} = n$. Voy a calcular la cantidad de elementos que tiene el conjunto $\mathcal{P}((A \mathcal{R} A)_{ref})$, porque estoy buscando todos los subconjuntos que puedo formar con los elementos de $(A \mathcal{R} A)_{ref}$, entonces $\#\mathcal{P}((A \mathcal{R} A)_{ref}) = 2^n$

Corroborar

Las relaciones simétricas serán aquellas que $a_i \mathcal{R} a_j \Rightarrow a_j \mathcal{R} a_i$. Pensando esto como los elementos de la diagonal para abajo de una matriz de $n \times n$ tengo $\sum_{i=1}^n i = \frac{n \cdot (n+1)}{2}$ elementos matriciales.

$$\sum\limits_{k=0}^{n}{n\cdot (n+1)\choose k}=2^{\frac{n\cdot (n+1)}{2}}$$
Corroborar

	a_1	a_2	a_3	• • •	a_{n-2}	a_{n-1}	a_n
a_1	R, S	•	•	• • •	•	•	•
a_2	S	R, S	•	• • •	•	•	•
a_3	S	S	R, S	• • •	•	•	•
÷	:	••	:	٠	•	•	•
a_{n-2}	S	S	S	٠٠.	R, S	•	•
a_{n-1}	S	S	S	٠.	S	R, S	
a_n	S	S	S	• • •	S	S	R, S

- **10.** Sean $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Sea \mathcal{F} el conjunto de todas las funciones $f: A \to B$.
 - i) ¿Cuántos elementos tiene le conjunto ${\cal F}$
 - ii) ¿Cuántos elementos tiene le conjunto $\{f\in\mathcal{F}:10\in\mathrm{Im}(f)\}$
 - iii) ¿Cuántos elementos tiene le conjunto $\{f \in \mathcal{F} : 10 \in \text{Im}(f)\}$
 - iv) ¿Cuántos elementos tiene le conjunto $\{f\in\mathcal{F}:f(1)\in\{2,4,6\}\}$

Cuando se calcula la cantidad de funciones, haciendo el árbol se puede ver que va a haber #Im(f) de funciones que provienen de un elemento del dominio. Por lo tanto si tengo un conjunto A_n y uno B_m , la cantidad de funciones $f: A \to B$ será de m^n

- i) $\#\mathcal{F} = 12^5$
- ii) $\#\mathcal{F} = 11^5$
- iii) Tengo una que va a parar al 10 y cuento que queda. Por ejemplo si f(2) = 10: $A = \{1, 2, 3, 4, 5\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$. Por lo tanto tengo $\#\mathcal{F} = 12^4 \cdot \underbrace{1}_{f(2)=10}$

Corroborar

- iv) Me dicen que $f(\{1\}) = \{2, 4, 6\}$, Si lo pienso como el anterior ahora tengo 3 veces más combinaciones, entonces $\#\mathcal{F} = 12^4 \cdot \underbrace{3}_{f(\{1\})=\{2,4,6\}}$
- **11.** Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $\{8, 9, 10, 11, 12, 13, 14\}$.
 - i) ¿Cuántas funciones biyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas funciones biyectivas $f: A \to B$ hay tales que $f(\{1, 2, 3\}) = \{12, 13, 14\}$?

Cuando cuento funciones biyectivas, el ejercicio es como reordenar los elementos del conjunto de llegada de todas las formas posibles. Dado un conjunto Im(f), la cantidad de funciones biyectivas será #Im(f)

- i) Hay 7! funciones biyectivas.
- ii) Dado que hay 3 valores fijos, juego con los 4 valores restantes, por lo tanto habrá 4! funciones biyectivas
- 12. ¿Cuántos números de 5 cifras distintas se pueden armar usando los dígitos del 1 al 5? ¿ Y usando los dígitos del 1 al 7? ¿ Y usando los dígitos del 1 al 7 de manera que el dígito de las centenas no sea el 2?
 - 1) Hay que usar $\{1, 2, 3, 4, 5\}$ y reordenarlos de todas las formas posibles. 5!

 - 3) Parecido al anterior pero fijo el 2 en el dígito de las centenas:

$$\begin{cases} #6 & #5 & #4 & #1 & #3 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{3} & 4 & 5 \end{cases} \to \text{Tengo } 6 \cdot 5 \cdot 4 \cdot 1 \cdot 3 = \frac{6!}{2!} \text{ interpretar?}$$

- Sean $A = \{1, 2, 3, 4, 5, 6, 7\}$ y $B = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$. 13.
 - i) ¿Cuántas funciones inyectivas $f: A \to B$ hay?
 - ii) ¿Cuántas de ellas son tales que f(1) es par?
 - iii) ¿Y cuántas tales que f(1) y f(2) son pares?
 - i) Una pregunta equivalente a si tengo 10 pelotitas distintas y 7 cajitas cómo puedo ordenarlas.

$$\begin{cases} #10 & #9 & #8 & #7 & #6 & #5 & #4\\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow\\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases} \rightarrow \frac{10!}{3!} = \frac{\#B}{\#B - \#A}$$

ii) Hay 5 números pares para elegir como imagen de f(1)

$$\begin{cases} #5 & #9 & #8 & #7 & #6 & #5 & #4\\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \to 5 \cdot \frac{9!}{3!}\\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases}$$

iii) Hay 5 números pares para elegir como imagen de
$$f(1)$$
, luego habrá 4 números pares para $f(2)$
$$\begin{cases} \#5 & \#4 & \#8 & \#7 & \#6 & \#5 & \#4 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \to 5 \cdot 4 \cdot \frac{8!}{3!} \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \end{cases}$$

¿Cuántas funciones biyectivas $f: \{1, 2, 3, 4, 5, 6, 7\} \rightarrow \{1, 2, 3, 4, 5, 6, 7\}$ tales que $f(\{1, 2, 3\}) \subseteq$ $\{3, 4, 5, 6, 7\}$ hay?

Primero veo la condición $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$, donde podría formar $\frac{5!}{(5-3)!} = 60$ combinaciones biyectivas. Para obtener la cantidad de funciones pedidas, tengo que usar todos los valores del $\{1, 2, 3, 4, 5, 6, 7\}$. Primero fijo la cantidad de valores que pueden tomar $f(\{1,2,3\}) \subseteq \{3,4,5,6,7\}$ luego lo que reste.

$$\begin{cases} #5 & #4 & #3 & #4 & #3 & #2 & #1 \\ \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) \\ \hline Condiciones pedidas & Loquer est a para completar \end{cases} \rightarrow 5 \cdot 4 \cdot 3 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = \frac{5!}{(5-3)!} \cdot 4!$$

Sea $A = \{f : \{1, 2, 3, 4\} \rightarrow \{1, 2, 3, 4, 5, 6, 7, 8\} \text{ tal que } f \text{ es una función inyectiva} \}.$ 15. Sea \mathcal{R} la relación de equivalencia en A definida por: $f \mathcal{R} g \iff f(1) + f(2) = g(1) + g(2)$. Sea $f \in A$ la función definida por f(n) = n + 2; Cuántos elementos tiene su clase de equivalencia?

Hacer!

- **16.** Determinar cuántas funciones $f:\{1,2,3,4,5,6,7,8\} \rightarrow \{1,2,3,4,5,6,7,8,9,10,11,12\}$ satisfacen simultáneamente las condiciones:
 - f es inyectiva,

• f(5) + f(6) = 6,

- $f(1) \le 6$.
- \bullet f inyectiva hace que mi conjunto de llegada se reduzca en 1 con cada elección.
- Si f(5) + f(6) = 6 entonces $f: \{5,6\} \to \{1,2,4,5\}$. Una vez que f(5) tome un valor de los 4 posibles e.g. $f(5) = 1 \xrightarrow{\text{condiciona} \atop \text{única opción}} f(6) = 5$
- $f(1) \leq 6 \rightarrow f: \{1\} \rightarrow \{1,2,3,4,5,6\}$ donde cancelé el 1 y el 4, para sacar 2 números que sí o sí deben irse en la condición ¹ de f(5) + f(6) = 6. Por lo tanto f(1) puede tomar 4 valores. Por lo que sobrarían 9 elementos del conjunto de llegada para repartir en las f que no tienen condición.

$$\begin{cases} #4 & #9 & #8 & #7 & #4 & #1 & #6 & #5 \\ \downarrow & \downarrow \\ f(1) & f(2) & f(3) & f(4) & f(5) & f(6) & f(7) & f(8) \end{cases} \rightarrow 4 \cdot 9 \cdot 8 \cdot 7 \cdot 4 \cdot 1 \cdot 6 \cdot 5 = 4 \cdot 4 \cdot \frac{9!}{4!} = 241.920$$

Siento todo esto muy artesanal y poco justificable suficientemente mathy-snobby

Número combinatorio

17.

- i) ¿Cuántos subconjuntos de 4 elementos tiene el conjunto $\{1,2,3,4,5,6,7\}$
- ii) ¿ Y si se pide que 1 pertenezca al subconjunto?
- iii) ¿ Y si se pide que 1 no pertenezca al subconjunto?
- iv) ¿ Y si se pide que 1 o 2 pertenezca al subconjunto, pero no simultáneamente los dos?

El problema de tomar k elementos de un conjunto de n elementos se calcula con $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

i)
$$\binom{7}{4} = \frac{7!}{4!(7-4)!} = \frac{7 \cdot \cancel{6} \cdot 5 \cdot \cancel{A}!}{\cancel{A}!(\cancel{3}!)} = 35$$

ii)
$$\binom{6}{3} = \frac{6!}{3! \cdot 3!} = 20.$$

iii)
$$\binom{6}{4} = \frac{6!}{4! \cdot 2!} = 15.$$

iv)
$$\binom{5}{3} \cdot 2 = \frac{5!}{3! \cdot 2!} \cdot 2 = 20$$

 $[\]overline{}_{i}$ Podría haber elegido el 1 y 2? Sí, cualquiera 2 números del conjunto $\{1,2,4,5\}$

- 18. Sea $A=\{n\in\mathbb{N}:n\leq 20\}$. Calcular la cantidad de subconjuntos $B\subseteq A$ que cumplen las siguientes condiciones:
 - i) B tiene 10 elementos y contiene exactamente 4 múltiplos de 3.
 - ii) B tiene 5 elementos y no hay dos elementos de B cuya suma sea impar.

El conjunto $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$

i) $\xrightarrow[\text{de }3]{\text{de }3}$ $C=\{3,6,9,12,15,18\}$, agarro 4 elementos del conjunto C y luego 6 de los restantes del conjunto A sin contar el múltiplo de 3 que ya usé.

$$\begin{cases} \binom{6}{4} \cdot \binom{9}{6} = \frac{\cancel{8!}}{4!2!} \cdot \frac{9!}{\cancel{8!}3!} \xrightarrow{\text{simplificando}} 9 \cdot 4 \cdot 7 \cdot 5 = 1260 \\ Verificary preguntar por lajustificacin. \end{cases}$$

ii) La condición de que la suma *no sea impar* implica que todos los elementos deben ser par o todos impar.

$$\begin{cases} \frac{1 \text{ todos}}{\text{pares}} \left\{ 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 \right\} & \frac{10 \text{ elementos}}{\text{quiero 5}} & \binom{10}{5} = \frac{10!}{5! \cdot 5!} = 252 \\ \frac{10 \text{ todos}}{\text{impares}} \left\{ 1, 3, 5, 9, 11, 13, 15, 17, 19 \right\} & \frac{9 \text{ elementos}}{\text{quiero 5}} & \binom{9}{5} = \frac{9!}{5! \cdot 4!} = 126 \end{cases}$$

- 19. Dadas dos rectas paralelas en el plano, se marcan n puntos distintos sobre una y m puntos distintos sobre la otra. ¿Cuántos triángulos se pueden formar con vértices en esos puntos? Hacer!
- **20.** Determinar cuántas funciones $f:\{1,2,3,\ldots,11\} \to \{1,2,3,\ldots,16\}$ satisfacen simultáneamente las condiciones:
 - f es inyectiva,

- Si n es par, f(n) es par,
- f(1) < f(3) < f(5) < f(7).
- La función es inyectiva y cuando inyecto un conjunto de m elementos en uno de n elementos $\rightarrow \frac{m!}{(m-n)!}$.
- Para cumplir la segunda condición el Dom(f) tengo 5 números par $\{2, 4, 6, 8, 10\}$ y en el codominio tengo 8 números par $\{2, 4, 6, 8, 10, 12, 14, 16\}$ al *inyectar* obtengo $\frac{8!}{(8-5)!}$ permutaciones.

- La condición de las desigualdades se piensa con los elementos de la Im(f) restantes después de la inyección, que son 16-5=11. De esos 11 elementos quiero tomar 4. El cuántas formas distintas de tomar 4 elementos de un conjunto de 11 elementos se calcula con $\binom{11}{4}$, número de combinación que cumple las desigualdades, porque todos los números son distintos. Para la combinación no hay **órden**, elegir $\{16, 1, 15, 13\}$ es lo mismo ² que $\{1, 16, 13, 15\}$. Es por eso que con 4 elementos seleccionados solo hay una permutación que cumple las desigualdades; en este ejemplo sería {1, 13, 15, 16}
- Por último inyecto los número del dominio restantes $\{9,11\}$ en los 7 elementos de Im(f) que quedaron luego de la combinación de las desigualdades $\rightarrow \frac{7!}{(7-2)!}$

Concluyendo: Habrían $\frac{8!}{(8-5)!} \cdot \binom{11}{4} \cdot \frac{7!}{(7-2)!} = 93.139.200$ Corroborar

21. ¿Cuántos anagramas tienen las palabras estudio, elementos y combinatorio

El anagrama equivale a permutar los elementos. Si no hay letras repetidas es una biyección #(letras)!La palabra estudio tiene 7! anagramas.

Elementos tiene 3 letras \underline{e} , por lo tanto los elementos no repetidos son 6 $\{l, m, n, t, o, s\}$; esto es una

 $inyección \xrightarrow{3} \rightarrow \frac{9!}{(9-6)!} = \frac{9!}{3!}$.

También puedo pensar esto con combinatoria: Primero ubico a las 3 letras e en los lugares de las letras, por ejemplo $\begin{cases} e & e & e & e \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \end{cases}$ \rightarrow donde esta es una de un total de $\binom{9}{3}$ formas de hacer eso, y los elementos que quedan en el conjunto de letras se *inyectan* en los lugares vacíos que quedan, en este caso tengo 6 elementos para ubicar en 6 lugares, lo que sería una biyección #(letras)!. $\rightarrow \binom{9}{3} \cdot 6! = \frac{9!}{3!}$

Combinatorio tiene repetidas las letras i (x2) y la o (x3). Tengo un conjunto de 7 elementos $\{c, m.b, n, a, t, r\}$ sin repetición. Puedo ubicar las letras con combinación en los 12 lugares o y luego las i en los 9 lugares restantes. Una vez hecho eso puedo inyectar (biyectar?) las letras no repetidas restantes:

$$\rightarrow \binom{12}{3} \cdot \binom{9}{2} \cdot 7! = \underbrace{\frac{12!}{3!2!}}_{\text{poter}} = \frac{12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4}{2} = 39.916.800$$

 $^{^{2}}$ Que sea lo mismo quiere decir que no lo cuenta nuevamente, el contador aumenta solo si cambian los elementos y $\underline{\text{no}}$ el lugar de los elementos

³Primero ubico lo que no está repetido. Luego agrego, en una dada posición, a eso 3 o más elementos repetidos. Esta última acción no altera la cantidad de permutaciones. Pensar en esto: lmntosEEE cuenta como lmntos

⁴Esto es el total de biyecciones dividido entre las cantidades de repeticiones de los elementos en cuestión.

- 22. ¿Cuántas palabras se pueden formar permutando las letras de cuadros
 - i) con la condición de que todas las vocales estén juntas?
 - ii) con la condición de que las consonantes mantengan el orden relativo original?
 - iii) con la condición de que nunca haya dos (o más) consonantes juntas?

El conjunto de consonantes es $C = \{c, d, r, s\}$ y de vocales $V = \{u, a, o\}$

i) Para que las vocales estén juntas pienso a las 3 como un solo elemento, fusionadas las 3 letras, con sus permutaciones, es decir que tengo 3! cosas de la siguiente pinta:

$$\begin{cases}
 u & a & o \\
 u & o & a \\
 o & a & u \\
 o & u & a \\
 a & o & u \\
 a & u & o
\end{cases}$$

Los anagramas para que las letras estén juntas los formo combinando $\binom{5}{1} = 5$ poniendo los 3!=6 valores así en cada uno de los 5 lugares:

$$\begin{cases} uao & _ & _ & _ & _ \\ _ & uao & _ & _ & _ \\ _ & _ & _ & uao & _ \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 1 & 2 & 3 & 4 & 5 \end{cases}$$

Ahora puedo inyectar las 4 consonantese en los 4 lugares que quedan libres. Finalmente se pueden formar $\underbrace{4!}_{consonantes} \cdot \binom{5}{1} \cdot 3! = 720$ anagramas con la condición pedida.

ii) Supongo que el orden relativo es que aparezcan ordenadas así " $c \dots d \dots r \dots s$ ", quiere decir que tengo que combinar un grupo de 4 letras en 7 que serían los lugares de la letras teniendo un total de $\binom{7!}{4!}$ y luego tengo 1! permutaciones o, no permuto dicho de otra forma, dado que eso alteraría el orden y no quiero que pase eso. Obtengo cosas así:

$$\begin{cases} c & d & r & s & _ & _ & _ \\ _ & c & _ & d & _ & r & s \\ c & _ & _ & d & r & _ & s \\ \hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{cases} \rightarrow \text{lo cual deja 3 lugares libres para permutar con las 3 vocales, esa}$$

permutación es una biyección da 3!.

Por último se pueden formar $\underbrace{\binom{7!}{4!} \cdot 1!}_{consonantes} \cdot \underbrace{3!}_{vocales} = \frac{7!}{4!\cancel{3!}} \cdot \cancel{3!} = \frac{7 \cdot 6 \cdot 5 \cancel{4!}}{\cancel{4!}} = 210$

- iii) $C = \{c, d, r, s\}$ sin que estén juntas quiere decir que puedo ordenar de pocas formas, muy pocas porque solo hay 7 lugares. $\left\{ \begin{array}{c|c} c & d & r & s \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \end{array} \right. \rightarrow$ esta combinación es única $\binom{7!}{7!} = 1$, lo único
- 🖸 ¡Aportá! Correcciones, subiendo ejercicios, \star al repo, críticas, todo sirve.

que resta hacer es permutar las consonantes en esos espacios. 4 espacios para 4 consonantes. Luego relleno inyectando las vocales, como antes. El total de anagramas será $\underbrace{\binom{7!}{7!}}_{vocales} \cdot 4! \cdot \underbrace{3!}_{vocales} = 144$

- 23. Con la palabra polinomios,
 - i) ¿Cuántos anagramas pueden formarse en las que las 2 letras i no estén juntas?
 - ii) ¿Cuántos anagramas puede formarse en los que la letra n aparezca a la izquierda de la letra s y la letra s aparezca a la izquierda de la letra p (no necesariamente una al lado de la otra)?
 - i) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, i, i\}$. Para que no hayan "ii" calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{i} \underline{i}$ ". Para cada uno de estas 120 configuraciones de la pinta: Está mal!

$$\begin{cases} i & -i & ---- & --- & --- \\ ---i & ---- & i & --- & --- \\ \hline ----i & ---- & i & ---- & i & ---- \\ \hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \end{cases} \rightarrow \text{Con las } i \text{ donde están el "_" tiene 4 posiciones}$$

Estoy contando de más. La cantidad para que las i no estén juntas es 36... salieron contando a mano 5 . Luego inyectando con las repeticiones de la "o": $36 \cdot \frac{8!}{3!} = 241.920$

Pensando en el complemento:

Las posiciones que pueden tomar las ii juntas, se calculan a mano enseguida. Habrían en total

$$\rightarrow \underbrace{\frac{10!}{3! \cdot 2!}}_{\mathcal{U}} - \underbrace{9 \cdot \frac{8!}{3!}}_{complemento} = 241.920$$

ii) Tengo 10 letras, $\{p, l, n, m, s, o, o, o, o, i, i\}$. Para que se forme " $n \dots s \dots p$ " calculo $\binom{10}{3} = 120$, pensando que en un conjunto de 3, siempre puedo poner las letras " $\underline{n} \dots \underline{s} \dots \underline{p}$ ". Para cada uno de estas 120 configuraciones de la pinta:

teniendo en cuenta las repeticiones de las "o" y de las "i": $\binom{10}{3} \cdot \frac{7!}{3!2!}$

24. Hacer!

$$5\sum_{1}^{8} k = 36$$

🤡 ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

25. Hacer!

26. Hacer!

27. Hacer!

- 28. En este ejercicio no hace falta usar inducción.
 - i) Probar que $\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$. sug: ${n \choose k} = {n \choose n-k}$.
 - ii) Probar que $\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$.
 - iii) Probar que $\sum_{k=0}^{2n} {2n \choose k} = 4^n$ y deducir que ${2n \choose n} < 4^n$.
 - iv) Calcular $\sum_{k=0}^{2n+1} {2n+1 \choose k}$ y deducir que $\sum_{k=0}^{n} {2n+1 \choose k}$.

Binomio de Newton: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^n y^{n-k}$

i)

- $\begin{aligned} &\text{ii)} \quad \text{Binomio} \rightarrow \left\{ \begin{array}{l} x &=& 1 \\ y &=& -1 \end{array} \right\} \rightarrow 0^n = \sum\limits_{k=0}^n \binom{n}{k} 1^n (-1)^{n-k} = \sum\limits_{k=0}^n \binom{n}{k} (-1)^{n-k} = 0 \rightarrow \\ & \left\{ \begin{array}{l} \frac{\sin n \text{ es par}}{\text{primer término positivo}} \sum\limits_{k=0}^n (-1)^k \binom{n}{k} = \binom{n}{0} \binom{n}{1} + \dots + (-1)^{\frac{n}{2}} \binom{n}{2} + \dots \binom{n}{k-1} + \binom{n}{n} \rightarrow \\ \frac{\text{uso sugerencia}}{\binom{n}{k} = \binom{n}{n-k}} 2 \cdot \binom{n}{0} 2 \cdot \binom{n}{1} + \dots + 2 \cdot (-1)^{\frac{n}{2}+1} \binom{n}{\frac{n}{2}+1} + (-1)^{\frac{n}{2}} \binom{n}{\frac{n}{2}} = 0 \\ \frac{\sin n \text{ es impar}}{\text{primer término negativo}} \sum\limits_{k=0}^n (-1)^{k+1} \binom{n}{k} = -\binom{n}{0} + \binom{n}{1} \dots \binom{n}{k-1} + \binom{n}{n} \xrightarrow{\text{uso sugerencia}} \binom{n}{k} = \binom{n}{n-k} \checkmark 0 \end{aligned}$
- iii) Hacer!
- iv) Hacer!

29. Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$, y sea R la relación de orden en $\mathcal{P}(X)$ definida por: $A \mathcal{R} B \iff A - B = \emptyset$. ¿Cuántos conjuntos $A \in \mathcal{P}(X)$ cumplen simultáneamente #A > 2 y $A \mathcal{R} \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$?

Hacer!

Sea $X = \left\{1, 2, 3, 4, 5, 5, 7, 8, 9, 10\right\}$, y sea R la relación de equivalencia en $\mathcal{P}(X)$ definida por: $A \mathcal{R} B \iff A \cap \{1, 2, 3\} = B \cap \{1, 2, 3\}.$ ¿Cuántos conjuntos $B \in \mathcal{P}(X)$ de exactamente 5 elementos tiene la clase de equivalencia \overline{A} de A = $\{1,3,5\}$?

Como A tiene al 1 y al 3, los elementos B, conjuntos en este caso, pertenecientes a la clase \overline{A} deberían cumplir que si $B \subseteq \overline{A} \Rightarrow \begin{cases} 1 \in B \\ 3 \in B \\ 2 \notin B \rightarrow \text{ si } 2 \in B \Rightarrow A\mathcal{R}B \end{cases}$ Los conjuntos de 5 elementos serán de la forma:

 $\xrightarrow{5 \text{ elementos}}$ $\binom{7}{3} = 35$. Los 7 números usados son $\{4, 5, 6, 7, 8, 9, 10\}$

¿Es solo eso o interpreto mal la \mathcal{R} u otra cosa?

Sean $X = \{n \in \mathbb{N} : n \le 100\}$ y $A = \{1\}$ ¿Cuántos subconjuntos $B \subseteq X$ satisfacen que el conjunto 31. $A\triangle B$ tiene a lo sumo 2 elementos?

a lo sumo = como mucho = como máximo $al\ menos = por\ poco = como\ mínimo$

La diferencia simétrica es la unión de los elementos no comunes a los conjuntos A y B. Si me piden que:

② ¿Errores? Mandanos tu solución, prolija, así lo arreglamos.

$$\#(A\triangle B) \leq 2 \Rightarrow B = \begin{cases} 1 \in B \rightarrow \#B \leq 3 & \frac{\text{Busco conjuntos}}{\text{de la forma}} \end{cases} \begin{cases} \frac{1}{2} - \frac{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 2.}}}{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}}} \begin{pmatrix} 99\\1 \end{pmatrix} \\ \frac{1}{2} - \frac{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}}}{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 0.}}} \begin{pmatrix} 99\\1 \end{pmatrix} \\ \frac{1}{2} - \frac{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}}}{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 0.}}} \begin{pmatrix} 99\\0 \end{pmatrix} \\ \frac{1}{2} - \frac{\frac{\text{el 1 está usado}}{\text{quedan 99. Elijo 1.}}}{\frac{\text{el elgir 1 } \notin B. Elijo 1}{\text{elegir 1 } \notin B. Elijo 1}}} \begin{pmatrix} 99\\1 \end{pmatrix} \\ \mathcal{D} \end{cases}$$
Por último habría un total de $\binom{99}{2} + \binom{99}{1} + \binom{99}{0} + \binom{99}{1} + \binom{99}{0}$ subconjuntos $B \subseteq X$ para cumplir lo pedido.

32.

- i) Sea A un conjunto con 2n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?
- ii) Sea A un conjunto con 3n elementos. ¿Cuántas relaciones de equivalencia pueden definirse en A que cumplan la condición de que para todo $a \in A$ la clase de equivalencia de a tenga n elementos?

Hacer!

Ejercicios extras:

11. Sea $\mathcal{R} \subset \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$ la relación de equivalencia $\to X \mathcal{R} Y \iff X \triangle Y \subseteq \{4, 5, 6, 7, 8\}.$ ¿Cuántos conjuntos hay en la clase de equivalencia de $X = \{x \in \mathbb{N} : x > 6\}$?

- 1. La relación toma valores de $\mathcal{P}(\mathbb{N})$
- 2. Los elementos del conjunto $\mathcal{R} \subseteq \mathcal{P}(\mathbb{N}) \times \mathcal{P}(\mathbb{N})$
- 3. El conjunto $X = \{6, 7, 8, 9, 10, \ldots\}$ es simplemente un elemento de $\mathcal{P}(\mathbb{N})$. Los conjuntos $Y \in \mathcal{P}(\mathbb{N})$ tales que $X \mathcal{R} Y$ van a ser los conjuntos que junto a X formarán la clase de equivalencia. $\overline{X} = \{ Y \in \mathcal{P}\mathbb{N} : X \mathcal{R} Y \}$

Para tener una relación de equivalencia deben cumplirse:

- Reflexividad. $X \triangle X = \emptyset \subseteq \{4, 5, 6, 7, 8\}$
- Simetría. $X \triangle Y \stackrel{\checkmark}{=} Y \triangle X, \ \forall X, Y \in \mathcal{P}(\mathbb{N})$
- Transitividad.

Condiciones que debería cumplir un elemeto Y para pertenecer a la la clase de equivalencia, en otras palabras estar relacionado con X:

Los elementos
$$\rightarrow$$

Los elementos
$$\rightarrow$$

$$\begin{cases}
1, 2, 3 \text{ no deben pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{3, 8, 9, ...\} = \{3, 6, 7\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
X \triangle \{1, 2, 3\} = \{1, 2, 3, 6, 7, ...\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
\hline
4, 5, 6, 7, 8 \text{ pueden o no pertenecer a } Y \xrightarrow{\text{por ejemplo}} \begin{cases}
X \triangle \{4, 6, 8, 9, ...\} = \{4, 7\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{10, ...\} = \{9\} \cancel{\angle} \{4, 5, 6, 7, 8\} \\
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{4, 5, 6, 7, 8\} \\
\hline
X \triangle \{9, ...\} = \{6, 7, 8\} \stackrel{\checkmark}{\subseteq} \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\} = \{9, 1, 8\} \\
\hline
X \triangle \{9, ...\}$$

Se concluye que la clase de equivalencia será el conjunto \overline{X} (notación inventada):

 $\overline{X} = \{Y_1 \cup \{9, 10, \ldots\}, Y_2 \cup \{9, 10, \ldots\}, \ldots, Y_{32} \cup \{9, 10, \ldots\}\} \text{ con } Y_i \in \mathcal{P}(\{4, 5, 6, 7, 8\}) \ i \in [1, 2^5] \text{ donde}$ $\#\overline{X}=2^5$