

Sardar Patel Institute of Technology

Duration: 1 Hr.

Branch: COMP

Semester: VI

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

Mid Semester Examination March 2020

Max. Marks: 20

Class: T.E.

Course Code: CE63

Name of the Course: Digital Signal Processing

Instruction:

(1) All questions are compulsory

(2) Draw neat diagrams

(3) Assume suitable data if necessary

Q. No.	Synoptic Synoptic	Max.	CO-BL-P
	Determine and sketch the linear convolution $y(n)$ of the signals using tabular method $x(n) = \begin{cases} \frac{1}{3}n, & 0 \le n \le 6 \\ 0, & elsewhere \end{cases}$ $h(n) = \begin{cases} 1, & -2 \le n \le 2 \\ 0, & elsewhere \end{cases}$ Solution: 1. folding 1M 2. index calculation and left shift 1M	Marks 6	2-3-2.2.3
2	3. Tabular representation 1M 4. correct values of y(n) 3M A discrete-time signal x(n) is defined as $\begin{cases} 1 + \frac{n}{3}, & -3 \le n \le -1 \\ 1, & 0 \le n \le 3 \\ 0, & elsewhere \end{cases}$ a) sketch the signal that result if we,	5	2-3-2.1.3
	 First fold x(n) and then delay the resulting signal by 4 samples. First delay x(n) by 4samples and then fold the resulting signal. Sketch the signal x(-n+4) Compare the results in parts (b) and (c) and derive a rule for obtaining signal x(-n+k) from x(n) Can you express the signal ,x(n) in terms of signals δ(n) and u(n) 		

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

	Solution: a) resultant signal +graph =2M		
	$x(-n) = \left\{ \dots 0, 1, 1, 1, \frac{2}{1}, \frac{1}{3}, \frac{1}{3}, 0, \dots \right\}.$		
	After delaying the folded signal by 4 samples, we have	ill seri	230 10 01
	$x(-n+4) = \left\{ \dots 0, 0, 1, 1, 1, 1, \frac{2}{3}, \frac{1}{3}, 0, \dots \right\}.$	202001	sep (LA 21)
	On the other hand, if we delay x(n) by 4 samples we have		Linux Ave
	$x(n-4) = \left\{ \dots 0, 0, \frac{1}{3}, \frac{2}{3}, 1, 1, 1, 1, 0, \dots \right\}.$		
	Now, if we fold $x(n-4)$ we have		
	$x(-n-4) = \left\{ \dots 0, 1, 1, 1, 1, \frac{2}{3}, \frac{1}{3}, 0, 0, \dots \right\}$		le fisca
		1 . r =	
	b) resultant signal +graph =1M		
	$x(-n+4) = \left\{ \dots 0, 1, 1, 1, 1, \frac{2}{3}, \frac{1}{3}, 0, \dots \right\}$	1236 - T	
	c)Justification for comparison=1M	enition and conse	
	d) express the signal $x(n)$ in terms of signals $\delta(n)$ and $u(n)=1M$	violadal Storio	
	$x(n) = \frac{1}{3}\delta(n-2) + \frac{2}{3}\delta(n+1) + u(n) - u(n-4)$		- Abi
3	Describe Time Variant and Time Invariant System. Write a procedure to test for time invariance. Test the following system for time invariance	4	1-2- 1.3.
	$y(n) = x(n^2)$ Solution:	a (rejos d	10
	Description of Time Variant and Time Invariant System= 1M		
	Procedure= 1M	4	1-2-1.3.
	Test the following system for time invariance= 2M	ali (Disa)	
	OR	SANG SIDE	

Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058, India (Autonomous College Affiliated to University of Mumbai)

	Describe Linear and nonlinear system with suitable diagram. Test the following system for linearity $y(n) = x(n^2)$ Solution: Description of Linear and nonlinear system = 1M Diagram = 1M Test the following system for linearity = 2M	via ilibary	
4	Discover the Relation between DFT and DTFT. State and explain properties of DFT Solution: the Relation between DFT and DTFT = 2M Properties of DFT = 1M each(3M)	5	3-2-1.3.1