

Effects of bias correction on the climate change signal of extreme indices of precipitation

C. Fox Maule¹, P. Thejll¹, R. Cornes², C.M. Goodess² and O.B. Christensen¹

- 1) Danish Meteorological Institute, Climate and Arctic Research
 - 2) University of East Anglia, Climatic Research Unit

Motivation

MODEXTREME

- Modelling vegetation response to Extreme events
- Agricultural project funded by FP7
- Improvement the capacity of agro-meteorological crop modelling to integrate climatic variability and extreme weather events

First scientific workshop:
September 10th 2015, 9am-1pm
Montpellier, France
http://modextreme.org/event/sw1

Climate change:

- How might more extreme weather in the future affect crop yields?

Regional Climate Models

- Nine Euro-CORDEX 11 simulations used:
 - CNRM-CM5 CCLM4-8-17
 - CNRM-CM5 RCA4
 - EC-EARTH RACMO22E
 - EC-EARTH HIRHAM5
 - EC-EARTH CCLM4.8.17
 - EC-EARTH RCA4
 - HadGEM2ES RCA4
 - MPI-ESM-LR CCLM4-8-17
 - MPI-ESM-LR RCA4

RCP8.5

Present day: 1991-2010

Timeslice: 2041-2060

Bias correction

- Empirical statistical quantile-quantile mapping
- E-obs v.10, 0.25 reg
- Calibration period: 1991-2010
- 31-day sliding window
- Adjust dry-day frequency
- New extremes: correction of maximum

Extreme indices analysed

Extreme precipitation indices

- Rx1day
- Rx5day
- SDII
- CDD
- CWD
- R10mm
- R20mm

JJA Consecutive Dry Days

Results

CC = -0.92±0.65 ~-6.9 %

Climate change signal

GCM-RCM	Annual	mean (mm/d)	Rx1	day (mm/d)	R20	mm
CNRM-CERFACS	-0.30 ± 0.13	-0.13 ± 0.07	0.47 ± 1.72	7.31 ± 1.30	-0.92 ± 0.65	-0.05 ± 0.32
SMHI-RCA4	-10%	-8%	1.5%	22%	-6.9%	-0.4%
CNRM-CERFACS	-0.26 ± 0.11	-0.15 ± 0.08	2.52 ± 1.51	7.19 ± 1.23	-0.35 ± 0.52	0.09 ± 0.32
CCLM4-8-17	-12%	-9.4%	5.8%	21%	-2.5%	4.6%
ICHEC-ECEARTH	-0.13 ± 0.09	-0.13 ± 0.09	3.60 ± 1.61	7.16 ± 1.49	0.10 ± 0.46	0.17 ± 0.41
CCLM4-8-17	-7.7%	-8.5%	8.8%	21%	5.5%	7.5%
ICHEC-ECEARTH	-0.23 ± 0.11	-0.15 ± 0.09	-1.46 ± 1.97	5.73 ± 1.47	-0.95 ± 0.58	-0.43 ± 0.36
DMI-HIRHAM5	-11%	-9.9%	-1.4%	18%	-8.2%	-3.7%
ICHEC-ECEARTH	-0.17 ± 0.08	-0.09 ± 0.07	-0.46 ± 1.40	4.29 ± 1.29	-0.52 ± 0.40	-0.11 ± 0.34
KNMI-RACMO	-8.6%	-6.1%	-0.8%	13%	-5.3%	4.1%
ICHEC-ECEARTH	-0.08 ± 0.09	-0.05 ± 0.07	4.45 ± 1.95	8.04 ± 1.44	0.05 ± 0.48	0.29 ± 0.34
SMHI-RCA4	-4.0%	-2.8%	9.7%	25%	6.0%	15%
HadGEM2-ES	-0.37 ± 0.09	-0.23 ± 0.07	-2.11 ± 2.18	5.35 ± 1.69	-1.47 ± 0.45	-0.71 ± 0.30
SMHI-RCA4	-15%	-13%	-3.3%	16%	-14%	-7.2%
MPI-ESM	-0.24 ± 0.14	-0.15 ± 0.09	2.92 ± 1.91	6.61 ± 1.34	-0.26 ± 0.79	0.17 ± 0.41
CCLM4-8-17	-10%	-10%	4.1%	19%	-1.9%	4.4%
MPI-ESM	-0.18 ± 0.14	-0.08 ± 0.08	0.97 ± 2.30	6.80 ± 1.42	-0.37 ± 0.83	0.15 ± 0.39
SMHI-RCA4	-7.1%	-6.1%	2.3%	20%	-2.6%	4.2%

Rx1day (two models)

Conclusion

 Bias correction using empirical quantile-quantile mapping influences extreme precipitation indices, in particular Rx1day.

If extreme indices like Rx1day of bias corrected data are important, use functions to model the cumulative distribution function

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

