Multbiplot (vinos)

Yoselin Merari Medel Colorado

2022-05-17

BIPLOT

Instalación de paquetes

```
install.packages("MultBiplotR")
library(MultBiplotR)
```

Reconocimiento de la matriz de datos

```
load("/cloud/project/Vinos.rda")
BD<-Vinos</pre>
```

Exploracion de matriz

```
dim(BD)
## [1] 45 21
str(BD)
                   45 obs. of 21 variables:
## 'data.frame':
             : Factor w/ 2 levels "1986", "1987": 1 1 1 1 1 1 1 1 1 1 ...
## $ denomina: Factor w/ 2 levels "RIBERA", "TORO": 1 1 1 1 1 1 1 1 1 1 ...
             : Factor w/ 4 levels "RD86", "RD87", ...: 1 1 1 1 1 1 1 1 1 1 ...
## $ grado
             : num 12.8 12.8 12.5 11.9 12.5 12.1 12.2 12.6 13 12.4 ...
                   1.2 0.75 1 0.7 0.95 0.5 0.8 0.4 0.4 0.35 ...
## $ avol
##
  $ atot
             : num 6.7 6.9 7.2 7.7 7.7 5.8 5.9 5.4 4.6 5.5 ...
## $ acfi
             : num 5.2 6 6 6.8 6.3 5.2 4.9 4.9 4.1 5 ...
              : num 3.7 3.5 3.6 3.3 3.6 3.2 3.4 3.3 3.6 3.3 ...
## $ ph
## $ folin
              : num 2827 1818 1459 2054 2930 ...
## $ somers : num 50.8 37.8 35.1 32.1 49.6 30.6 35.6 30.6 41.7 30 ...
              : num 811 968 866 978 1128 ...
## $ procian : num 3794 1736 2306 3420 3158 ...
                    386 144 225 204 214 167 252 315 293 152 ...
  $ acrg
              : num
##
   $ acse
              : num
                    287 141 132 110 148 95 160 124 170 67 ...
##
   $ achplc : num
                    181 69 78 84 75 74 101 101 137 56 ...
                    7.81 4.88 5.52 4.64 6.99 3.98 7.6 6.15 6.6 5.49 ...
   $ ic
              : num
                   8.95 5.55 6.35 5.15 7.87 4.36 8.84 7.11 7.85 6.23 ...
   $ ic2
              : num
              : num 0.72 0.755 0.456 0.675 0.672 0.716 0.716 0.74 0.93 0.75 ...
   $ tono
```

```
18.4 23.6 36.8 36.4 34.2 38.1 28.5 27.7 21.6 30.3 ...
                    0.489 0.48 0.598 0.42 0.45 0.434 0.501 0.566 0.557 0.689 ...
##
    $ eq1
              : num
              : num 0.21 0.56 0.38 0.29 0.36 0.3 0.24 0.4 0.28 0.26 ...
##
   - attr(*, "variable.labels")= Named chr [1:21] "A\x840" "DENOMINACION" "" "" ...
##
     ..- attr(*, "names")= chr [1:21] "a_o" "denomina" "grupo" "grado" ...
   - attr(*, "codepage")= int 28605
colnames(BD)
##
    [1] "a_o"
                   "denomina"
                              "grupo"
                                          "grado"
                                                      "avol"
                                                                 "atot"
    [7] "acfi"
                   "ph"
                               "folin"
                                          "somers"
                                                                 "procian"
                                                      "srv"
                   "acse"
                                          "ic"
                                                                 "tono"
## [13] "acrg"
                               "achplc"
                                                      "ic2"
  [19] "iim"
                   "eq1"
                               "vla"
```

Gráficos de exploración

```
BX1<-BoxPlotPanel(BD[,4:9], nrows=2, groups=BD$denomina)
```


BX1

```
## $mfrow
## [1] 2 3
BX2<-BoxPlotPanel(BD[,4:9], nrows=2, groups=BD$grupo)</pre>
```

[1] 2

BX2

\$mfrow

[1] 2 3

Filtrado de variables

1.- Seleccion de variables numericas

X<-BD[,4:21]

2.- Generación Plot

PL1<-plot(X[,1:9])

#1.- ACP # Scaling=# 1: datos orginales, # 2: Resta la media global del conjunto de los datos, # 3: Doble centrado (agricultura / interaccion de resuduales) # 4: Centrado por columnas (variables con misma escala) # 5: Estandarizado por columnas

```
acpvino<-PCA.Analysis(X,Scaling = 5)</pre>
summary(acpvino)
   ###### Principal Components Analysis ######
##
## Transformation of the raw data:
## [1] "Standardize columns"
##
##
   Eigenvalues & Explained Variance (Inertia)
##
       Eigenvalue Exp. Var Cummulative
## [1,]
        277.12688
                    34.991
                                 34.991
## [2,]
        199.36534
                     25.172
                                 60.163
## [3,]
                                 70.949
         85.42317
                     10.786
##
##
   STRUCTURE OF THE PRINCIPAL COMPONENTS
##
           Dim 1 Dim 2 Dim 3
           -0.676 -0.142 0.188
## grado
## avol
          -0.450 0.204 -0.519
           -0.225 0.738 -0.526
## atot
## acfi
           -0.063 0.797 -0.397
           0.191 -0.593 -0.193
## ph
## folin
           -0.910 -0.094 -0.072
## somers -0.920 -0.154 -0.090
           -0.798 -0.088 0.277
## srv
## procian -0.873 -0.102 0.036
## acrg
           -0.301 -0.726 -0.441
           -0.213 -0.856 -0.372
## acse
## achplc
           0.119 -0.830 -0.355
          -0.926 0.117 -0.074
## ic
## ic2
           -0.932 0.095 -0.048
           -0.351 -0.290 0.612
## tono
## iim
           0.021 0.810 -0.179
## eq1
           -0.688 0.416 0.255
## vla
           0.006 0.071 0.368
```

Presentacion de tablas (markdown)

```
summary(acpvino, latex=TRUE)
##
   ###### Principal Components Analysis ######
##
## Transformation of the raw data:
## [1] "Standardize columns"
##
   Eigenvalues & Explained Variance (Inertia)
##
        Eigenvalue Exp. Var Cummulative
## [1,] 277.12688
                     34.991
                                 34.991
## [2,]
        199.36534
                     25.172
                                  60.163
## [3,]
          85.42317
                     10.786
                                 70.949
##
##
  STRUCTURE OF THE PRINCIPAL COMPONENTS
```

```
Dim 1 Dim 2 Dim 3
## grado
           -0.676 -0.142 0.188
           -0.450 0.204 -0.519
## avol
           -0.225 0.738 -0.526
## atot
## acfi
           -0.063 0.797 -0.397
           0.191 -0.593 -0.193
## ph
## folin
           -0.910 -0.094 -0.072
## somers -0.920 -0.154 -0.090
           -0.798 -0.088 0.277
## srv
## procian -0.873 -0.102 0.036
          -0.301 -0.726 -0.441
## acrg
           -0.213 -0.856 -0.372
## acse
## achplc
          0.119 -0.830 -0.355
## ic
           -0.926 0.117 -0.074
## ic2
           -0.932 0.095 -0.048
## tono
           -0.351 -0.290 0.612
           0.021 0.810 -0.179
## iim
## eq1
           -0.688 0.416 0.255
           0.006 0.071 0.368
## vla
## % latex table generated in R 4.1.3 by xtable 1.8-4 package
## % Tue May 17 19:18:32 2022
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrr}
##
    \hline
## & Eigenvalue & Exp. Var & Cummulative \\
##
    \hline
## 1 & 277.13 & 34.99 & 34.99 \\
##
   2 & 199.37 & 25.17 & 60.16 \\
     3 & 85.42 & 10.79 & 70.95 \\
##
##
      \hline
## \end{tabular}
## \caption{Explained Variance}
## \end{table}
## % latex table generated in R 4.1.3 by xtable 1.8-4 package
## % Tue May 17 19:18:32 2022
## \begin{table}[ht]
## \centering
## \begin{tabular}{rrrr}
     \hline
##
## & Dim 1 & Dim 2 & Dim 3 \\
##
     \hline
## grado & -0.68 & -0.14 & 0.19 \\
     avol & -0.45 & 0.20 & -0.52 \\
##
     atot & -0.23 & 0.74 & -0.53 \\
     acfi & -0.06 & 0.80 & -0.40 \\
##
##
     ph & 0.19 & -0.59 & -0.19 \\
##
     folin & -0.91 & -0.09 & -0.07 \\
##
     somers & -0.92 & -0.15 & -0.09 \\
##
     srv & -0.80 & -0.09 & 0.28 \\
##
    procian & -0.87 & -0.10 & 0.04 \\
##
    acrg & -0.30 & -0.73 & -0.44 \\
##
     acse & -0.21 & -0.86 & -0.37 \\
##
     achplc & 0.12 & -0.83 & -0.35 \\
```

```
ic & -0.93 & 0.12 & -0.07 \
##
     ic2 & -0.93 & 0.10 & -0.05 \\
##
     tono & -0.35 & -0.29 & 0.61 \\
##
##
     iim & 0.02 & 0.81 & -0.18 \setminus
##
     eq1 & -0.69 & 0.42 & 0.26 \\
##
     vla & 0.01 & 0.07 & 0.37 \\
      \hline
## \end{tabular}
## \caption{Correlations with the Principal Components}
## \end{table}
```

2.- Contenido del objeto acpvino

names(acpvino)

3.- Generacion del grafico sin caja

```
acp1<-plot(acpvino, ShowBox=FALSE)</pre>
```

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

screeplot con barras

```
acp2<-princomp(X, cor=TRUE, score=TRUE)
plot(acp2)</pre>
```


Grafico circular de correlacion

Principa

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

Agregar grupos al biplot definido por usuario

Grafico con poligonos

CexInd= tamaño de los argumentos

Principal Components Analysis (Dim 1 (35 %)-2 (25.2 %))

Grafico con elipses

```
acp5<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="el",
    ShowBox=F)</pre>
```

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Grafico con estrellas

```
acp6<-plot(acpvino1, PlotClus=TRUE, ClustCenters=TRUE,
    margin=0.05, CexInd=0.7, TypeClus="st",
    ShowBox=TRUE)</pre>
```

Principal Components Analysis (Dim 1 (35 %)- 2 (25.2 %))

Biplot

alpha=

0:GH

1:JK

2:HJ

Predeterminado JK

```
bipvino<-PCA.Biplot(X, Scaling = 5)</pre>
summary(bipvino)
   ###### Biplot for Principal Components Analysis ######
##
## Call
## PCA.Biplot(X = X, Scaling = 5)
## Type of coordinates:
## Transformation of the raw data:
## [1] "Standardize columns"
## Type of Biplot
## [1] "PCA"
##
   Eigenvalues & Explained Variance (Inertia)
##
       Eigenvalue Exp. Var Cummulative
##
## [1,] 277.12688
                     34.991
                                 34.991
## [2,]
                                 60.163
        199.36534
                     25.172
## [3,]
         85.42317
                     10.786
                                 70.949
##
##
   RELATIVE CONTRIBUTIONS OF THE FACTOR TO THE ELEMENT
##
##
##
   Row Contributions
##
       Dim 1 Dim 2 Dim 3
## I1 42.04 6.63 44.06
## I2
       0.03 32.75 2.51
## I3
       0.07 57.27 18.53
## I4
       0.28 70.89 8.84
## I5
     29.69 38.53 12.87
## 16
       2.64 67.95 1.86
       23.63 27.17 9.95
## I7
## I8 15.06 20.09 8.55
## I9 60.32 7.05 10.79
## I10 1.55 61.24 11.60
## I11 0.12 74.78 12.48
## I12 0.09 35.48 28.14
## I13 1.68 57.21 29.79
       2.95 15.65 39.81
## I14
## I15 64.41 9.27 3.81
## I16 35.26 17.46 4.85
```

```
## I17 63.73 0.99 14.28
## I18 51.05 25.08 0.12
## I19 75.88 7.45 9.01
## I20 77.10 5.13 0.77
## I21 24.48 9.79 18.31
## I22 30.80 25.95 0.05
## I23 2.08 2.45 0.20
## I24 71.22 15.56 0.82
## I25 72.83 12.08 2.23
## I26 32.34 43.51 1.52
## 127 35.29 35.58 11.66
## I28 63.06 11.10 3.65
## I29 16.99 16.98 27.32
## I30 17.97 32.85 0.25
## I31 9.13 1.41 35.53
## I32 55.95 4.40 3.60
## I33 28.58 7.60 26.59
## I34 67.06 0.00 4.97
## I35 7.12 13.24 1.64
## I36 41.97 12.56 27.66
## I37 4.81 4.11 20.46
## I38 83.21 0.21 0.95
## I39 88.41 3.71 2.38
## I40 0.08 13.31 0.69
## I41 42.39 34.59 1.36
## I42 9.24 2.75 29.92
## I43 23.86 2.26 7.75
## I44 29.74 44.90 6.03
## I45 56.52 23.65 1.05
##
## Column Contributions
##
          Dim 1 Dim 2 Dim 3
## grado
          45.71 2.02 3.54
## avol
          20.23 4.14 26.96
## atot
           5.06 54.44 27.69
## acfi
           0.40 63.45 15.73
## ph
           3.63 35.20 3.72
## folin
          82.89 0.89 0.52
## somers 84.58 2.36 0.81
## srv
          63.74 0.78 7.65
## procian 76.19 1.04 0.13
## acrg
           9.08 52.64 19.41
           4.54 73.25 13.87
## acse
## achplc
           1.41 68.84 12.61
          85.75 1.37 0.54
## ic
          86.89 0.91 0.23
## ic2
          12.30 8.43 37.44
## tono
           0.04 65.55 3.20
## iim
## eq1
          47.38 17.28 6.51
## vla
           0.00 0.51 13.58
##
##
##
## Qualities of representation of the rows (Cummulative contributions)
```

```
Dim 1 Dim 2 Dim 3
## I1 42.04 48.67 92.73
       0.03 32.78 35.29
## I2
       0.07 57.34 75.87
## I3
## I4
       0.28 71.17 80.01
## I5
     29.69 68.22 81.09
       2.64 70.59 72.45
## I7 23.63 50.80 60.75
## I8 15.06 35.15 43.70
## I9 60.32 67.37 78.16
## I10 1.55 62.79 74.39
## I11 0.12 74.90 87.38
## I12 0.09 35.57 63.71
## I13 1.68 58.89 88.68
## I14 2.95 18.60 58.41
## I15 64.41 73.68 77.49
## I16 35.26 52.72 57.57
## I17 63.73 64.72 79.00
## I18 51.05 76.13 76.25
## I19 75.88 83.33 92.34
## I20 77.10 82.23 83.00
## I21 24.48 34.27 52.58
## 122 30.80 56.75 56.80
## I23 2.08 4.53 4.73
## I24 71.22 86.78 87.60
## I25 72.83 84.91 87.14
## I26 32.34 75.85 77.37
## 127 35.29 70.87 82.53
## I28 63.06 74.16 77.81
## I29 16.99 33.97 61.29
## I30 17.97 50.82 51.07
## I31 9.13 10.54 46.07
## 132 55.95 60.35 63.95
## I33 28.58 36.18 62.77
## I34 67.06 67.06 72.03
## I35 7.12 20.36 22.00
## I36 41.97 54.53 82.19
## I37 4.81 8.92 29.38
## I38 83.21 83.42 84.37
## I39 88.41 92.12 94.50
## I40 0.08 13.39 14.08
## I41 42.39 76.98 78.34
## I42 9.24 11.99 41.91
## I43 23.86 26.12 33.87
## 144 29.74 74.64 80.67
## 145 56.52 80.17 81.22
##
##
##
   Qualities of representation of the columns (Cummulative contributions)
##
           Dim 1 Dim 2 Dim 3
## grado
           45.71 47.73 51.27
## avol
           20.23 24.37 51.33
## atot
           5.06 59.50 87.19
```

```
## acfi
            0.40 63.85 79.58
## ph
            3.63 38.83 42.55
## folin
           82.89 83.78 84.30
           84.58 86.94 87.75
## somers
           63.74 64.52 72.17
## procian 76.19 77.23 77.36
## acrg
            9.08 61.72 81.13
## acse
            4.54 77.79 91.66
## achplc
           1.41 70.25 82.86
## ic
           85.75 87.12 87.66
## ic2
           86.89 87.80 88.03
           12.30 20.73 58.17
## tono
            0.04 65.59 68.79
## iim
           47.38 64.66 71.17
## eq1
## vla
            0.00 0.51 14.09
```

Valores propios

```
bipvino$EigenValues
```

```
[1] 277.12687550 199.36534193 85.42316719 61.02361652
                                                            54.61472549
  [6]
        33.21950770 23.10087611
                                  18.20271969
                                               12.93567822
                                                             8.99721387
## [11]
         7.17039349
                      5.14634483
                                   2.46693118
                                                1.76863760
                                                             1.12884586
## [16]
         0.26153511
                      0.02966717
                                   0.01792254
```

screeplot

SC<-barplot(bipvino\$EigenValues)</pre>

Vectores propios

bipvino\$EV ## [,1] [,2] [,3]

```
[1,] -0.269400471 -0.06678758 0.13502664
##
  [2,] -0.179235894  0.09563188 -0.37266607
  [3,] -0.089642289 0.34663991 -0.37767939
## [4,] -0.025075364 0.37420670 -0.28461188
   [5,] 0.075921760 -0.27872944 -0.13842752
## [6,] -0.362771201 -0.04421297 -0.05176113
## [7,] -0.366464498 -0.07220257 -0.06472232
## [8,] -0.318130606 -0.04157401 0.19854164
## [9,] -0.347804576 -0.04785685 0.02584725
## [10,] -0.120049408 -0.34086254 -0.31617278
## [11,] -0.084888000 -0.40207820 -0.26728099
## [12,] 0.047378644 -0.38977456 -0.25488092
## [13,] -0.368971746  0.05491570 -0.05287232
## [14,] -0.371435455 0.04476039 -0.03421019
## [15,] -0.139772430 -0.13640832 0.43913353
## [16,] 0.008178563 0.38035721 -0.12838425
## [17,] -0.274261123 0.19527349 0.18313281
## [18,] 0.002361018 0.03345360 0.26444673
```

Tabla de inercias

Markdown

```
install.packages("knitr")
library(knitr)
kable(Inercias)
```

Eje	Valor Propio	Inercia	Inercia acumulada
Eje 1	277.1268755	34.991	34.991
Eje 2	199.3653419	25.172	60.163
Eje 3	85.4231672	10.786	70.949
Eje 4	61.0236165	7.705	78.654
Eje 5	54.6147255	6.896	85.550
Eje 6	33.2195077	4.194	89.744
Eje 7	23.1008761	2.917	92.661
Eje 8	18.2027197	2.298	94.959
Eje 9	12.9356782	1.633	96.592
Eje 10	8.9972139	1.136	97.728
Eje 11	7.1703935	0.905	98.633
Eje 12	5.1463448	0.650	99.283
Eje 13	2.4669312	0.311	99.594
Eje 14	1.7686376	0.223	99.817
Eje 15	1.1288459	0.143	99.960

Eje	Valor Propio	Inercia	Inercia acumulada
Eje 16	0.2615351	0.033	99.993
Eje 17	0.0296672	0.004	99.997
Eje 18	0.0179225	0.002	99.999

tabla contribucion de columnas

kable(bipvino\$ColContributions)

	Dim 1	Dim 2	Dim 3
grado	45.71	2.02	3.54
avol	20.23	4.14	26.96
atot	5.06	54.44	27.69
acfi	0.40	63.45	15.73
ph	3.63	35.20	3.72
folin	82.89	0.89	0.52
somers	84.58	2.36	0.81
srv	63.74	0.78	7.65
procian	76.19	1.04	0.13
acrg	9.08	52.64	19.41
acse	4.54	73.25	13.87
achplc	1.41	68.84	12.61
ic	85.75	1.37	0.54
ic2	86.89	0.91	0.23
tono	12.30	8.43	37.44
iim	0.04	65.55	3.20
eq1	47.38	17.28	6.51
vla	0.00	0.51	13.58

Grafico

plot(bipvino, ShowBox=TRUE)

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Prolongacion de vectores linea recta

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Prolongacion de vectores con flechas y linea punteada

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Grafico circular correlaciones

GC<-CorrelationCircle(bipvino)</pre>

PCA Biplot – Correlation Circle

Axis 1

Grafico contribuciones de los vectores

Calidad de representacion eje 1, 2 y 1+2

PCA Biplot – Contribution Plot

Axis 2

Axis 1

Proyeccion individuos sobre una variable

```
dp= selecciona la variable
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

#Proyeccion de ind sobre todas las variables PredPoints= individuo

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

Agregar cluster Jerarquico con datos originales

Metodo ward.D

Cluster aplicado al biplot

```
clusBP<-plot(bipvino, PlotClus=TRUE, ShowAxis=TRUE)</pre>
```

PCA Biplot (Dim 1 (35 %)- 2 (25.2 %))

NULL