AIL 722: Reinforcement Learning

Lecture 10: Policy Iteration and Value Iteration

Raunak Bhattacharyya

Outline

- Defining Optimality
- Policy Iteration
- Value Iteration

Discounting

Episodic

Source: Youtube

Infinite horizon

Source: Youtube

$$\theta^* = \arg\max_{\theta} \mathbb{E}_{p_{\theta}(\tau)} \left[\sum_{t=0}^{T} \gamma^t \cdot r(s_t, a_t) \right]$$

Bellman Equation

$$V^{\pi}(s) = r\left(s, \pi(s)\right) + \gamma \cdot \mathbb{E}_{p(s'|s,\pi(s))}\left[V^{\pi}(s')\right]$$

Discounting

Deterministic policies

Optimality

- Goal: Finding a policy that achieves a lot of reward over the long run
- Notion of betterness: A policy is better than or equal to another policy if its expected return is greater than or equal to that of the other policy for all states

$$\pi \geq \pi'$$
 if and only if $V^{\pi}(s) \geq V^{\pi'}(s) \ \forall s \in \mathcal{S}$

 There is always at least one policy that is better than or equal to all the other policies. This is called an optimal policy

Optimality

 All the optimal policies share the same state value function as well as the same state-action value function

$$V^*(s) = \max_{\pi} V^{\pi}(s) \ \forall s \in \mathcal{S}$$

$$Q^*(s,a) = \max_{\pi} Q^{\pi}(s,a) \ \forall s \in \mathcal{S} \text{ and } \forall a \in \mathcal{A}$$

$$J(\theta) = \mathbb{E}_{p(s_1)} \left[V^{\pi}(s_1) \right]$$

Policy Iteration

- 1. Evaluate $V^{\pi}(s)$ 2. Set $\pi \leftarrow \pi_{\text{new}}$

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg \max_{a} A^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Policy Evaluation

$$V^{\pi}(s) = r\left(s, \pi(s)\right) + \gamma \cdot \mathbb{E}_{p(s'|s,\pi(s))} \left[V^{\pi}(s')\right]$$

Backup diagram for v_{π}

Iterative Policy Evaluation

Input π , the policy to be evaluated

Iterative Policy Evaluation, for estimating $V \approx v_{\pi}$

```
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop:
\Delta \leftarrow 0
Loop for each s \in S:
v \leftarrow V(s)
V(s) \leftarrow \sum_a \pi(a|s) \sum_{s',r} p(s',r|s,a) \big[ r + \gamma V(s') \big]
\Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta
```

Demo: Iterative Policy Evaluation

GridWorld: Dynamic Programming Demo

Evaluation	n (one swe	ep)	Policy Update			Toggle Val	n	Reset	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 +		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 A	0.00 ♦ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 A	0.00 +	0.00	0.00 +	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 ★ R-1.0	0.00
0.00	0.00	0.00	0.00 ♠ R-1.0		0.00 A	0.00 ★ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Policy Iteration

1.
$$V^{\pi}(s) = r\left(s, \pi(s)\right) + \gamma \cdot \mathbb{E}_{p(s'|s,\pi(s))} \left[V^{\pi}(s')\right]$$

2. Set $\pi \leftarrow \pi_{\text{new}}$

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg \max_{a} A^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Finding the Policy

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg\max_{a} A^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

$$A^{\pi}(s, a) = r(s, a) + \mathbb{E}_{p(s'|s,a)} \left[V^{\pi}(s') \right] - V^{\pi}(s)$$

Goal: Find the argmax

Finding the Policy

Goal: Find the argmax

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg \max_{a} Q^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

$$Q^{\pi}(s, a) = r(s, a) + \gamma \mathbb{E}_{p(s'|s, a)} \left[V^{\pi}(s') \right]$$

Extract the policy using Q-function (table in case of tabular setting)

Policy Iteration: Using Q-values

1.
$$V^{\pi}(s) = r\left(s, \pi(s)\right) + \gamma \cdot \mathbb{E}_{p(s'|s,\pi(s))}\left[V^{\pi}(s')\right]$$

2. Set $\pi \leftarrow \pi_{\text{new}}$

$$\pi_{\text{new}} = \begin{cases} 1 & \text{if } a = \arg \max_{a} Q^{\pi}(s, a) \\ 0 & \text{otherwise} \end{cases}$$

Workflow

Start with some policy

Find corresponding value (iterative policy evaluation until convergence)

From the converged V, Find corresponding Q-values for each action

Construct policy through argmax

Pseudocode?

Policy Iteration Demo

GridWorld: Dynamic Programming Demo

Evaluation	(one swe	ep)	Policy Update			Toggle Val	n	Reset		
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
0.00					0.00				0.00	
0.00	0.00	0.00	0.00 +	Т	0.00	0.00	0.00	0.00	0.00	
0.00	0.00	0.00	0.00		0.00 A	0.00 A	0.00	0.00	0.00	
0.00	0.00	0.00	0.00		0.00 R 1.0	0.00 R-1.0	0.00	0.00 A	0.00	
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 R-1.0	0.00	
0.00	0.00	0.00	0.00 A		0.00 +	0.00 R-1.0	0.00	0.00	0.00	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Value Iteration

a _?	V(s ₁)	Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)			a ₂
a _?	V(s ₂)	Q(s ₂ ,a ₁)	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)			a ₁
a _?	V(s ₃)	Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)			a_3
a _?	V(s ₄)	Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)			a_3
a _?	V(s ₅)	Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	Q(s ₅ ,a ₃)			a ₁

a _?	V(s ₁)	Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)		
a _?	V(s ₂)	Q(s ₂ ,a ₁)	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)		
a _?	V(s ₃)	Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)		
a _?	V(s ₄)	Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)		
a _?	V(s ₅)	Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	Q(s ₅ ,a ₃)		
s ₁)		Q(s ₁ ,a ₁)	Q(s ₁ ,a ₂)	Q(s ₁ ,a ₃)		
S ₂)		Q(s ₂ ,a ₁)	Q(s ₂ ,a ₂)	Q(s ₂ ,a ₃)		
S ₃)		Q(s ₃ ,a ₁)	Q(s ₃ ,a ₂)	Q(s ₃ ,a ₃)		
S ₄)		Q(s ₄ ,a ₁)	Q(s ₄ ,a ₂)	Q(s ₄ ,a ₃)		
S ₅)		Q(s ₅ ,a ₁)	Q(s ₅ ,a ₂)	$Q(s_5,a_3)$		

Value Iteration

Start with a random value function V(s)

Pseudocode?

How do we find the policy?

Value Iteration Demo

GridWorld: Dynamic Programming Demo

Evaluation	n (one swe	ер)	Policy Update			Toggle Val	n	Reset	
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 +		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 A	0.00 ★ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 ★ R-1.0	0.00	0.00 ♦ R-1.0	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 ♦ R-1.0	0.00
0.00	0.00	0.00	0.00 ♠ R-1.0		0.00 A	0.00 ♠ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00