Package 'immer'

March 21, 2024

```
Title Item Response Models for Multiple Ratings
Version 1.5-13
Date 2024-03-21 15:57:11
Author Alexander Robitzsch [aut, cre], Jan Steinfeld [aut]
Maintainer Alexander Robitzsch < robitzsch@ipn.uni-kiel.de>
Description Implements some item response models for multiple
     ratings, including the hierarchical rater model,
     conditional maximum likelihood estimation of linear
     logistic partial credit model and a wrapper function
     to the commercial FACETS program. See Robitzsch and
     Steinfeld (2018) for a description of the functionality
     of the package.
     See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>)
     for an overview of modeling alternatives.
Depends R (>= 3.0-0)
Imports CDM, coda, graphics, methods, psychotools, Rcpp, sirt, stats,
     TAM
Suggests MASS
Enhances eRm, lme4
LinkingTo Rcpp, RcppArmadillo
URL https://github.com/alexanderrobitzsch/immer,
     https://sites.google.com/site/alexanderrobitzsch2/software
License GPL (>= 2)
NeedsCompilation yes
Repository CRAN
Date/Publication 2024-03-21 15:20:02 UTC
```

Type Package

2 immer-package

R topics documented:

	immer-package	2
	data.immer	
	data.ptam	8
	immer_agree2	10
	immer_ccml	11
	immer_cml	14
	immer_FACETS	21
	immer_hrm	24
	immer_hrm_simulate	29
	immer_install	30
	immer_jml	31
	immer_latent_regression	34
	immer_opcat	37
	immer_proc_data	38
	immer_reshape_wideformat	40
	immer_unique_patterns	41
	lc2_agreement	42
	probs2logits	45
Index		46
immer	r-package Item Response Models for Multiple Ratings	

Description

Implements some item response models for multiple ratings, including the hierarchical rater model, conditional maximum likelihood estimation of linear logistic partial credit model and a wrapper function to the commercial FACETS program. See Robitzsch and Steinfeld (2018) for a description of the functionality of the package. See Wang, Su and Qiu (2014; <doi:10.1111/jedm.12045>) for an overview of modeling alternatives.

Details

The **immer** package has following features:

- Estimation of the hierarchical rater model (Patz et al., 2002) with immer_hrm and simulation of it with immer_hrm_simulate.
- The linear logistic partial credit model as an extension to the linear logistic test model (LLTM) for dichotomous data can be estimated with conditional maximum likelihood (Andersen, 1995) using immer_cml.
- The linear logistic partial credit model can be estimated with composite conditional maximum likelihood (Varin, Reid & Firth, 2011) using the immer_ccml function.
- The linear logistic partial credit model can be estimated with a bias-corrected joint maximum likelihood method (Bertoli-Barsotti, Lando & Punzo, 2014) using the immer_jml function.

immer-package 3

 Wrapper function immer_FACETS to the commercial program FACETS (Linacre, 1999) for analyzing multi-faceted Rasch models.

• ...

Author(s)

Alexander Robitzsch [aut, cre], Jan Steinfeld [aut]

Maintainer: Alexander Robitzsch <robitzsch@ipn.uni-kiel.de>

References

Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 39-52). New York: Springer.

Bertoli-Barsotti, L., Lando, T., & Punzo, A. (2014). Estimating a Rasch Model via fuzzy empirical probability functions. In D. Vicari, A. Okada, G. Ragozini & C. Weihs (Eds.). *Analysis and Modeling of Complex Data in Behavioral and Social Sciences*, Springer.

Linacre, J. M. (1999). FACETS (Version 3.17)[Computer software]. Chicago: MESA.

Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to large-scale educational assessment data. *Journal of Educational and Behavioral Statistics*, 27(4), 341-384.

Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. *Psychological Test and Assessment Modeling*, 60(1), 101-139.

Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. *Statistica Sinica*, 21, 5-42.

Wang, W. C., Su, C. M., & Qiu, X. L. (2014). Item response models for local dependence among multiple ratings. *Journal of Educational Measurement*, 51(3), 260-280.

See Also

For estimating the Rasch multi-facets model with marginal maximum likelihood see also the TAM::tam.mml.mfr and sirt::rm.facets functions.

For estimating the hierarchical rater model based on signal detection theory see sirt::rm.sdt.

For conditional maximum likelihood estimation of linear logistic partial credit models see the **eRm** (e.g. eRm::LPCM) and the **psychotools** (e.g. psychotools::pcmodel) packages.

```
##
##
   ######"
         ##
   #####+ ##'
         ##
##
   ##
  :####+:###@:,@##@,;##@+@##@+'###@;.'##@##@#"@''@#####@@'+@###,;##@;######.
                     ' :
##
  ;####@ @##
         ##@
                  .#
                           , @@#'
                                     @####.
                        : .
           ,;
               :,
           : ''
                     `+;
##
  '#####\:##
                         + '
                              `+@
         #@
                  @@;
                           #@'
                                 #@
                                     #####.
               ++
##
  +######, #
                              `##
                                 @#\
            @#@
               +#@
                  `##,
                     @#@
                        @##
                           `#@
                                     @####:
                        `###
##
  +######@@
        :+@`
            ;##'
               `##@
                  .@#
                     +##:
                           .0.
                              @#+
                                 #:
                                   .##@@####:
##
  '######:
        ##@
            @#@,
               ;##;
                  ;#@
                     @##\
                        +##,
                           +#
                                `@#`
                                   ########,
##
            ###
               @##`
                     `###
                        @##
                           ##
                              ,;'@##@
                                   @########,
  ;########
                  @#+
                             `######
##
  :######@
        `##+
           ,##@
               0#0
                  @#,
                     '##@
                        ##@
                           <u>@</u>@
                                  `########.
                        ,##@
##
  .######+
        ,##.
           @##+
              `##@
                 .##`
                    @##;
                           `##
                              ###; #;
                                  :#@,+#####
##
   ######"
         #
           @##:
              ,##;
                 ;##
                    @##\
                       +###
                           `@:
                               `;#.
                                  @: ######
##
   #######@,`,##.`,###,..###,
                 #@#..,##@,..####:` +#@'
                              ``#+#` `@#+ :####@
##
   ##########:
                  ##
   ##
   ##
```

data.immer

Some Example Datasets for the immer Package

Description

Some example rating datasets for the **immer** package.

Usage

```
data(data.immer01a)
data(data.immer01b)
data(data.immer02)
data(data.immer03)
data(data.immer04a)
data(data.immer04b)
data(data.immer05)
data(data.immer06)
data(data.immer07)
data(data.immer08)
data(data.immer09)
data(data.immer10)
data(data.immer11)
data(data.immer11)
```

Format

```
• The format of the dataset data.immer@1a is:
  'data.frame': 23904 obs. of 8 variables:
  $ idstud: int 10001 10001 10003 10003 10003 10004 10004 10005 10005 10006 ...
  $ type : Factor w/ 2 levels "E","I": 1 2 1 1 2 1 2 1 2 1 . . .
 $ rater : Factor w/ 57 levels "R101", "R102", ...: 1 36 33 20 21 57 36 9 31 21 ...
 $k1: int 2100022120...
 $k2: int 1 1 0 0 0 1 1 1 2 0 ...
 $k3: int 1 1 0 0 0 1 1 1 2 1 ...
 $k4: int 2210011121...
 $k5: int 1 2 0 0 0 2 1 2 3 2 ...
• The format of the dataset data.immer@1b is:
  'data.frame': 4244 obs. of 8 variables:
  $ idstud: int 10001 10003 10005 10007 10009 10016 10018 10022 10024 10029 ...
  $ type : Factor w/ 1 level "E": 1 1 1 1 1 1 1 1 1 1 1 . . .
 $ rater : Factor w/ 20 levels "R101", "R102", ...: 1 20 9 5 14 19 20 6 10 10 ...
 $k1: int 2012223132...
 $k2: int 1012213221...
 $k3: int 1011322131...
 $k4: int 2012322232...
 $k5: int 1021312331...
 This dataset is a subset of data.immer01a.
• The format of the dataset data.immer@2 is:
  'data.frame': 6105 obs. of 6 variables:
  $ idstud: int 10002 10004 10005 10006 10007 10008 10009 10010 10013 10014 ...
 $ rater : Factor w/ 44 levels "DR101", "DR102", ...: 43 15 12 21 9 3 35 24 11 17 ...
 $a1: int 3 1 2 1 0 2 1 2 1 1 ...
 $ a2: int 3 0 3 1 0 3 0 2 2 1 ...
 $ a3: int 1 2 0 1 2 3 2 2 1 1 ...
 $ a4: int 2121131221...
• The format of the dataset data, immer@3 is:
  'data.frame': 6466 obs. of 6 variables:
  $ idstud: int 10001 10002 10003 10004 10005 10006 10007 10009 10010 10012 ...
  $ rater : Factor w/ 44 levels "R101", "R102",...: 18 10 8 25 19 31 16 22 29 6 ....
 $b1: int 1 2 1 3 3 2 3 2 2 1 ...
 $b2: int 2103311221...
 $b3: int 2312312222...
 $b4: int 1 2 0 2 2 2 3 2 3 1 ...
• The format of the dataset data.immer@4a is:
  'data.frame': 25578 obs. of 7 variables:
  $ idstud: int 10001 10001 10001 10002 10002 10002 10003 10003 10004 10004 ...
  $ task : Factor w/ 4 levels "11", "12", "s1", ...: 1 4 4 1 1 3 1 3 2 2 ....
```

```
$ rater : Factor w/ 43 levels "R101", "R102",...: 14 31 25 39 35 19 43 27 12 4 ...
  $TA: int 5 2 4 0 0 0 2 6 5 3 ...
  $CC: int 4131002643...
  $GR: int 4121001752...
  $ VOC: int 4 2 3 1 0 0 1 6 5 3 ...
• The format of the dataset data.immer04b is:
  'data.frame': 2975 obs. of 7 variables:
  $ idstud: int 10002 10004 10010 10013 10015 10016 10024 10025 10027 10033 ...
  $ task : Factor w/ 1 level "s1": 11111111111...
  $ rater : Factor w/ 20 levels "R101", "R102", ...: 19 1 5 16 13 13 8 10 19 5 ...
  $TA: int 0 3 5 5 3 2 3 6 4 5 ...
  $CC: int 0 3 4 5 4 1 4 7 3 3 ...
  $GR: int 0 3 3 6 5 2 3 6 3 2 ...
  $ VOC: int 0 2 4 6 5 2 3 6 3 2 ...
 This dataset is a subset of data.immer04a.
• The format of the dataset data.immer05 is:
  'data.frame': 21398 obs. of 9 variables:
  $ idstud: int 10001 10001 10002 10002 10003 10003 10004 10004 10005 10005 ...
  $ type : Factor w/ 2 levels "1", "s": 2121212121...
  $ task : Factor w/ 6 levels "l1", "l4", "l5", ...: 5 2 6 3 5 1 5 1 5 2 ....
  $ rater : Factor w/ 41 levels "ER101", "ER102", ...: 1 40 38 23 37 33 2 33 21 27 ...
  $ idstud_task: Factor w/ 19484 levels "1000114", "10001s3", ...: 2 1 4 3 6 5 8 7 10 9 ...
  $TA: int 3466420313...
  $CC: int 5 4 5 5 3 3 0 2 5 3 ...
  $GR: int 4456530454...
  $ VO: int 6 4 6 6 4 3 0 3 4 3 ...
• The dataset data.immer@6 is a string containing an input syntax for the FACETS program.
• The format of the dataset data.immer07 is:
  'data.frame': 1500 obs. of 6 variables:
  $pid: int 1 1 1 2 2 2 3 3 3 4 ...
  $ rater: chr "R1" "R2" "R3" "R1" ...
  $ I1: num 1 1 2 1 1 1 0 1 1 2 ...
  $ I2: num 0 1 1 2 1 2 1 1 2 1 . . .
  $ I3: num 1 1 2 0 0 1 1 0 2 1 ...
  $ I4: num 0 0 1 0 0 1 0 1 2 0 ...
• The format of the dataset data.immer08 (example in Schuster & Smith, 2006) is
  'data.frame': 16 obs. of 3 variables:
  $ Facility: int 1 1 1 1 2 2 2 2 3 3 ...
  $ Research: int 1 2 3 4 1 2 3 4 1 2 ...
  $ weights: int 40 6 4 15 4 25 1 5 4 2 ...
```

 The dataset data.immer09 contains reviewer ratings for conference papers (Kuhlisch et al., 2016):

```
'data.frame': 128 obs. of 3 variables:

$ idpaper: int 1 1 1 2 2 3 3 3 4 4 ...

$ idreviewer: int 11 15 20 1 10 11 15 20 13 16 ...

$ score: num 7 7 7 7 7 7 7 7 7 ...
```

• The dataset data.immer10 contains standard setting ratings of 13 raters on 61 items (including item identifier item and item difficulty itemdiff)

```
'data.frame': 61 obs. of 15 variables:
$ item : chr "I01" "I02" "I03" "I04" ...
$ itemdiff: num 380 388 397 400 416 425 427 434 446 459 ...
$ R01: int 1 3 2 2 1 3 2 2 3 1 ...
$ R02: int 1 1 1 1 1 2 1 2 2 1 ...
$ R03: int 1 1 1 1 1 1 2 2 3 1 ...
$ R04: int 1 2 1 3 2 2 2 2 3 2 ...
$ R05: int 1 1 2 1 1 1 2 2 3 2 ...
$ R06: int 1 2 1 1 1 2 2 2 3 2 ...
$ R07: int 1 2 1 2 1 1 2 1 3 1 ...
$ R08: int 2 2 1 2 1 1 2 2 3 2 ...
$ R09: int 2 1 1 2 1 2 1 2 3 1 ...
$R10: int 2 2 2 2 1 2 2 3 3 2 ...
$R11: int 2 2 1 2 1 2 2 2 3 2 ...
$R12: int 2213122232...
$R13: int 1 1 1 1 1 1 1 1 2 1 ...
```

• The dataset data.immer11 contains ratings of 148 cases (screening mammogram samples) diagnoses by 110 raters (Zhang & Petersen, xxxx). The codes of the polytomous rating are normal (code 0), benign (code 1), probably benign (code 2), possibly malignant (code 3), and probably malignant (code 4). The dataset was extracted from an image plot in Figure 2 by using the processing function png::readPNG. The format of the dataset is

```
'data.frame': 148 obs. of 110 variables: $ R001: num 2 1 3 2 1 2 0 0 0 2 ... $ R002: num 1 3 4 4 0 4 0 0 3 0 ... $ R003: num 0 0 0 4 0 2 3 0 0 0 ... $ R004: num 1 2 1 4 2 2 2 0 4 4 ... [...]
```

• The dataset data.immer12 contains ratings of the 2002 olympic pairs figure skating competition. This dataset has been used in Lincare (2009). The items are ST (short program, technical merit), SA (short program, artistic impression), FT (free program, technical merit), and FA (free program, artistic impression). The format of the dataset is

```
'data.frame': 180 obs. of 7 variables:

$ idpair: int 1 1 1 1 1 1 1 1 1 2 ...

$ pair: chr "BB-Svk" "BB-Svk" "BB-Svk" "BB-Svk" ...

$ judge: chr "RUS" "CHI" "USA" "FRA" ...

$ ST: int 58 57 57 56 55 55 50 51 51 47 ...

$ SA: int 58 57 57 56 55 55 50 51 51 47 ...

$ FT: int 58 57 57 56 55 55 50 51 51 47 ...
```

8 data.ptam

```
$ FA: int 58 57 57 56 55 55 50 51 51 47 ...
```

References

Kuhlisch, W., Roos, M., Rothe, J., Rudolph, J., Scheuermann, B., & Stoyan, D. (2016). A statistical approach to calibrating the scores of biased reviewers of scientific papers. *Metrika*, 79, 37-57.

Linacre, J. M. (2009). Local independence and residual covariance: A study of Olympic figure skating ratings. *Journal of Applied Measurement*, 10(2), 157-169.

Schuster, C., & Smith, D. A. (2006). Estimating with a latent class model the reliability of nominal judgments upon which two raters agree. *Educational and Psychological Measurement*, 66(5), 739-747.

Zhang, S., & Petersen, J. H. (XXXX). Quantifying rater variation for ordinal data using a rating scale model. *Statistics in Medicine*, XX(xx), xxx-xxx.

data.ptam

Example Datasets for Robitzsch and Steinfeld (2018)

Description

Example datasets for Robitzsch and Steinfeld (2018).

Usage

```
data(data.ptam1)
data(data.ptam2)
data(data.ptam3)
data(data.ptam4)
data(data.ptam4long)
data(data.ptam4wide)
```

Format

• The dataset data.ptam1 is a subset of the dataset from Example 3 of the ConQuest manual and contains 9395 ratings for 6877 students and 9 raters on 2 items (OP and TF). The format is

```
'data.frame': 9395 obs. of 4 variables:

$ pid : int 1508 1564 1565 1566 1567 1568 1569 1629 1630 1631 ...

$ rater: num 174 124 124 124 124 124 114 114 114 ...

$ OP : int 2 1 2 1 1 1 2 2 2 3 ...

$ TF : int 3 1 2 2 1 1 2 2 2 3 ...
```

• The dataset data.ptam2 contains 1043 ratings for 262 students and 17 raters on 19 items (A1, ..., D9). The format is

data.ptam 9

```
$ A1 : int 1 1 1 1 1 1 1 1 1 1 1 ...

$ A2 : int 1 1 1 1 0 0 0 1 1 1 ...

$ A3 : int 1 1 1 1 1 1 0 1 0 0 ...

[...]

$ D9 : int 2 2 2 2 2 2 2 2 1 0 ...
```

• The dataset data.ptam3 contains 523 ratings for 262 students and 8 raters on 23 items (A1, ..., J0). The format is

```
'data.frame': 523 obs. of 25 variables:
$ idstud: int 1001 1001 1002 1002 1003 1004 1004 1005 1005 ...
$ idrater: int 101 108 104 108 103 104 102 104 102 108 ...
$ A1: int 1 1 1 1 1 1 1 1 1 1 ...
$ A2: int 1 1 0 0 1 1 NA 0 1 1 ...
$ A3: int 1 1 1 1 0 0 0 0 0 0 ...
[...]
$ J0: int 2 3 3 2 0 0 2 2 0 1 ...
```

• The dataset data.ptam4 contains 592 ratings for 209 students and 10 raters on 3 items (crit2, crit3 and crit4). The format is

```
'data.frame': 592 obs. of 5 variables:
$ idstud: num 10005 10009 10010 10010 10014 ...
$ rater : num 802 802 844 802 837 824 820 803 816 844 ...
$ crit2 : int 3 2 0 2 1 0 2 1 1 0 ...
$ crit3 : int 3 2 1 2 2 2 2 2 2 2 ...
$ crit4 : int 2 1 2 1 2 2 2 2 2 2 ...
```

• The dataset data.ptam4long is the dataset data.ptam4 which has been converted into a long format for analysis with mixed effects models in the **lme4** package. The format is

```
'data.frame': 1776 obs. of 17 variables:
$ idstud: num 10005 10005 10005 10009 10009 ...
$ rater: num 802 802 802 802 802 802 844 802 844 802 ...
$ item: Factor w/ 3 levels "crit2", "crit3", ...: 1 2 3 1 2 3 1 1 2 2 ...
$ value: int 3 3 2 2 2 1 0 2 1 2 ...
$ I_crit2: num 1 0 0 1 0 0 1 1 0 0 ...
$ I_crit3: num 0 1 0 0 1 0 0 0 1 1 ...
$ I_crit4: num 0 0 1 0 0 1 0 0 0 ...
$ R_802: num 1 1 1 1 1 1 1 0 1 0 1 ...
$ R_803: num 0 0 0 0 0 0 0 0 0 0 ...
[...]
$ R_844: num 0 0 0 0 0 0 1 0 1 0 ...
```

• The dataset data.ptam4wide contains multiple ratings of 40 students from the dataset data.ptam4 from the item crit2. Each column corresponds to one rater. The format is

```
'data.frame': 40 obs. of 11 variables:

$ pid : chr "10014" "10085" "10097" "10186" ...

$ R802: int 2 3 2 2 2 1 1 2 2 2 ...

$ R803: int 1 1 3 1 2 0 0 0 1 0 ...
```

immer_agree2

```
$ R810: int 1 2 2 2 1 0 1 1 2 1 ...

$ R816: int 1 2 3 2 2 0 1 1 2 1 ...

$ R820: int 2 2 2 2 1 1 1 1 1 1 1 ...

$ R824: int 0 3 2 3 2 0 0 1 2 1 ...

$ R831: int 1 2 2 2 1 0 0 0 1 1 ...

$ R835: int 0 1 2 2 1 1 0 0 2 1 ...

$ R837: int 1 2 3 2 2 0 1 1 2 2 ...

$ R844: int 0 2 3 2 2 0 0 0 1 3 ...
```

References

Robitzsch, A., & Steinfeld, J. (2018). Item response models for human ratings: Overview, estimation methods, and implementation in R. *Psychological Test and Assessment Modeling*, 60(1), 101-139.

immer_agree2

Agreement Statistics for 2 Raters

Description

Some agreement statistics for two raters, including raw agreement, Scott's Pi, Cohen's Kappa, Gwets AC1 and Aickens Alpha (see Gwet, 2010).

Usage

```
immer_agree2(y, w=rep(1, nrow(y)), symmetrize=FALSE, tol=c(0, 1))
## S3 method for class 'immer_agree2'
summary(object, digits=3,...)
```

Arguments

У	Data frame with responses for two raters
W	Optional vector of frequency weights
symmetrize	Logical indicating whether contingency table should be symmetrized
tol	Vector of integers indicating tolerance for raw agreement
object	Object of class immer_agree2
digits	Number of digits after decimal for rounding
	Further arguments to be passed

Value

List with entries

agree_raw Raw agreement
agree_stats Agreement statistics
agree_table Contingency table
marg Marginal frequencies

Pe Expected chance agreement probabilities

PH Probabilities for hard-to-classify subjects according to Aicken

nobs Number of observations

References

Gwet, K. L. (2010). Handbook of inter-rater reliability. Gaithersburg: Advanced Analytics.

See Also

For more inter-rater agreement statistics see the R packages **agRee**, **Agreement**, **agrmt**, **irr**, **obs.agree**, **rel**.

Examples

immer_ccml Composite Conditional Maximum Likelihood Estimation for the Par-

tial Credit Model with a Design Matrix for Item Parameters

Description

Estimates the partial credit model with a design matrix for item parameters with composite conditional maximum likelihood estimation. The estimation uses pairs of items X_i and X_j and considers conditional likelihoods $P(X_i = k, X_j = h|\theta)/P(X_i + X_j = k + h|\theta)$. By using this strategy, the trait θ cancels out (like in conditional maximum likelihood estimation). The proposed strategy is a generalization of the Zwinderman (1995) composite conditional maximum likelihood approach of the Rasch model to the partial credit model. See Varin, Reid and Firth (2011) for a general introduction to composite conditional maximum likelihood estimation.

Usage

```
immer_ccml( dat, weights=NULL, irtmodel="PCM", A=NULL, b_fixed=NULL, control=NULL )
## S3 method for class 'immer_ccml'
summary(object, digits=3, file=NULL, ...)
## S3 method for class 'immer_ccml'
coef(object, ...)
## S3 method for class 'immer_ccml'
vcov(object, ...)
```

Arguments

dat	Data frame with polytomous item responses $0, 1, \ldots, K$
weights	Optional vector of sampling weights
irtmodel	Model string for specifying the item response model
A	Design matrix (items \times categories \times basis parameters). Entries for categories are for $1,\dots,K$
b_fixed	Matrix with fixed b parameters
control	Control arguments for optimization function stats::nlminb
object	Object of class immer_ccml
digits	Number of digits after decimal to print
file	Name of a file in which the output should be sunk
	Further arguments to be passed.

Details

The function estimates the partial credit model as $P(X_i = h|\theta) \propto \exp(h\theta - b_{ih})$ with $b_{ih} = \sum_l a_{ihl} \xi_l$ where the values a_{ihl} are included in the design matrix A and ξ_l denotes basis item parameters.

Value

List with following entries (selection)

coef	Item parameters
vcov	Covariance matrix for item parameters
se	Standard errors for item parameters
nlminb_result	Output from optimization with stats::nlminb
suff_stat	Used sufficient statistics
ic	Information criteria

References

Varin, C., Reid, N., & Firth, D. (2011). An overview of composite likelihood methods. *Statistica Sinica*, 21, 5-42.

Zwinderman, A. H. (1995). Pairwise parameter estimation in Rasch models. *Applied Psychological Measurement*, 19(4), 369-375.

See Also

See sirt::rasch.pairwise.itemcluster of an implementation of the composite conditional maximum likelihood approach for the Rasch model.

```
# EXAMPLE 1: Partial credit model with CCML estimation
library(TAM)
data(data.gpcm, package="TAM")
dat <- data.gpcm</pre>
#-- initial MML estimation in TAM to create a design matrix
mod1a <- TAM::tam.mml(dat, irtmodel="PCM2")</pre>
summary(mod1a)
#* define design matrix
A <- - mod1a$A[,-1,-1]
A <- A[,,-1]
str(A)
#-- estimate model
mod1b <- immer::immer_ccml( dat, A=A)</pre>
summary(mod1b)
```

immer_cml	Conditional Maximum Likelihood Estimation for the Linear Logistic
	Partial Credit Model

Description

Conditional maximum likelihood estimation for the linear logistic partial credit model (Molenaar, 1995; Andersen, 1995; Fischer, 1995). The immer_cml function allows for known integer discrimination parameters like in the one-parameter logistic model (Verhelst & Glas, 1995).

Usage

```
immer_cml(dat, weights=NULL, W=NULL, b_const=NULL, par_init=NULL,
    a=NULL, irtmodel=NULL, normalization="first", nullcats="zeroprob",
    diff=FALSE, use_rcpp=FALSE, ...)

## S3 method for class 'immer_cml'
summary(object, digits=3, file=NULL, ...)

## S3 method for class 'immer_cml'
logLik(object,...)

## S3 method for class 'immer_cml'
anova(object,...)

## S3 method for class 'immer_cml'
coef(object,...)

## S3 method for class 'immer_cml'
vcov(object,...)
```

Arguments

dat		Data frame with item responses
weight	S	Optional vector of sample weights
W		Design matrix ${m W}$ for linear logistic partial credit model. Every row corresponds to a parameter for item i in category h
b_cons	t	Optional vector of parameter constants b_{0ih} which can be used for parameter fixings.
par_in	it	Optional vector of initial parameter estimates
а		Optional vector of integer item discriminations
irtmod	el	Type of item response model. irtmodel="PCM" and irtmodel="PCM2" follow the conventions of the TAM package.
normal	ization	The type of normalization in partial credit models. Can be "first" for the first item or "sum" for a sum constraint.

nullcats A string indicating whether categories with zero frequencies should have a prob-

ability of zero (by fixing the constant parameter to a large value of 99).

diff Logical indicating whether the difference algorithm should be used. See psychotools::elementary_syr

for details.

use_rcpp Logical indicating whether **Rcpp** package should be used for computation.

... Further arguments to be passed to stats::optim.

object Object of class immer_cml

digits Number of digits after decimal to be rounded.

file Name of a file in which the output should be sunk

Details

The partial credit model can be written as

$$P(X_{pi} = h) \propto \exp(a_i h \theta_p - b_{ih})$$

where the item-category parameters b_{ih} are linearly decomposed according to

$$b_{ih} = \sum_{v} w_{ihv} \beta_v + b_{0ih}$$

with unknown basis parameters β_v and fixed values w_{ihv} of the design matrix W (specified in W) and constants b_{0ih} (specified in b_const).

Value

List with following entries:

item Data frame with item-category parameters

b Item-category parameters b_{ih} coefficients Estimated basis parameters β_v

vcov Covariance matrix of basis parameters β_v

par_summary Summary for basis parameters
loglike Value of conditional log-likelihood

deviance Deviance

result_optim Result from optimization in stats::optim

W Used design matrix W b_const Used constant vector b_{0ih} par_init Used initial parameters suffstat Sufficient statistics score_freq Score frequencies dat Used dataset used_persons Used persons

NP Number of missing data patterns

N Number of persons
I Number of items

maxK Maximum number of categories per item

K Maximum score of all items

npars Number of estimated parameters

pars_info Information of definition of item-category parameters b_{ih}

parm_index Parameter indices
item_index Item indices

score Raw score for each person

References

Andersen, E. B. (1995). Polytomous Rasch models and their estimation. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 39–52). New York: Springer.

Fischer, G. H. (1995). The linear logistic test model. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 131–156). New York: Springer.

Molenaar, I. W. (1995). Estimation of item parameters. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 39–52). New York: Springer.

Verhelst, N. D. &, Glas, C. A. W. (1995). The one-parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 215–238). New York: Springer.

See Also

For CML estimation see also the **eRm** and **psychotools** packages and the functions eRm::RM and psychotools::raschmodel for the Rasch model and eRm::PCM and psychotools::pcmodel for the partial credit model.

See eRm::LLTM for the linear logistic test model and eRm::LPCM for the linear logistic partial credit model in the **eRm** package for CML implementations.

The immer_cml function makes use of psychotools::elementary_symmetric_functions.

For CML estimation with sample weights see also the **RM.weights** package.

```
#--- Model 1: Rasch model, setting first item difficulty to zero
mod1a <- immer::immer_cml( dat=dat)</pre>
summary(mod1a)
logLik(mod1a) # extract log likelihood
coef(mod1a) # extract coefficients
## Not run:
library(eRm)
# estimate model in psychotools package
mod1b <- psychotools::raschmodel(dat)</pre>
summary(mod1b)
logLik(mod1b)
# estimate model in eRm package
mod1c <- eRm::RM(dat, sum0=FALSE)</pre>
summary(mod1c)
mod1c$etapar
# compare estimates of three packages
cbind( coef(mod1a), coef(mod1b), mod1c$etapar )
#-- Model 2: Rasch model sum normalization
mod2a <- immer::immer_cml( dat=dat, normalization="sum")</pre>
summary(mod2a)
# compare estimation in TAM
mod2b <- tam.mml( dat, constraint="items" )</pre>
summary(mod2b)
mod2b$A[,2,]
#-----
#--- Model 3: some fixed item parameters
# fix item difficulties of items 1,4,8
# define fixed parameters in constant parameter vector
b_{const} \leftarrow rep(0,I)
fix_items <- c(1,4,8)
b_const[fix_items] <- c(-2.1, .195, -.95)
# design matrix
W <- matrix( 0, nrow=12, ncol=9)</pre>
W[ cbind( setdiff( 1:12, fix_items ), 1:9 ) ] <- 1 \,
colnames(W) <- colnames(dat)[ - fix_items ]</pre>
# estimate model
mod3 <- immer::immer_cml( dat=dat, W=W, b_const=b_const)</pre>
summary(mod3)
#-----
#--- Model 4: One parameter logistic model
# estimate non-integer item discriminations with 2PL model
I <- ncol(dat)</pre>
mod4a <- sirt::rasch.mml2( dat, est.a=1:I )</pre>
```

```
summary(mod4a)
                 # extract (non-integer) item discriminations
a <- mod4a$item$a
\# estimate integer item discriminations ranging from 1 to 3
a_integer <- immer::immer_opcat( a, hmean=2, min=1, max=3 )</pre>
# estimate one-parameter model with fixed integer item discriminations
mod4 <- immer::immer_cml( dat=dat, a=a_integer )</pre>
summary(mod4)
#-----
#--- Model 5: Linear logistic test model
# define design matrix
W <- matrix( 0, nrow=12, ncol=5 )</pre>
colnames(W) \leftarrow c("B","C", paste0("Pos", 2:4))
rownames(W) <- colnames(dat)</pre>
W[ 5:8, "B" ] <- 1
W[ 9:12, "C" ] <- 1
W[c(2,6,10), "Pos2"] <- 1
W[c(3,7,11), "Pos3"] <- 1
W[c(4,8,12), "Pos4"] <- 1
# estimation with immer_cml
mod5a <- immer::immer_cml( dat, W=W )</pre>
summary(mod5a)
# estimation in eRm package
mod5b <- eRm::LLTM( dat, W=W )</pre>
summary(mod5b)
# compare models 1 and 5 by a likelihood ratio test
anova( mod1a, mod5a )
# EXAMPLE 2: Polytomous data | data.Students
data(data.Students,package="CDM")
dat <- data.Students
dat <- dat[, grep("act", colnames(dat) ) ]</pre>
dat <- dat[1:400,] # select a subdataset</pre>
dat <- dat[ rowSums( 1 - is.na(dat) ) > 1, ]
   # remove persons with less than two valid responses
#-----
#--- Model 1: Partial credit model with constraint on first parameter
mod1a <- immer::immer_cml( dat=dat )</pre>
summary(mod1a)
# compare pcmodel function from psychotools package
mod1b <- psychotools::pcmodel( dat )</pre>
summary(mod1b)
# estimation in eRm package
mod1c <- eRm::PCM( dat, sum0=FALSE )</pre>
 # -> subjects with only one valid response must be removed
```

```
summary(mod1c)
#-- Model 2: Partial credit model with sum constraint on item difficulties
mod2a <- immer::immer_cml( dat=dat, irtmodel="PCM2", normalization="sum")</pre>
summary(mod2a)
# compare with estimation in TAM
mod2b <- TAM::tam.mml( dat, irtmodel="PCM2", constraint="items")</pre>
summary(mod2b)
#-- Model 3: Partial credit model with fixed integer item discriminations
mod3 <- immer::immer_cml( dat=dat, normalization="first", a=c(2,2,1,3,1) )</pre>
summary(mod3)
# EXAMPLE 3: Polytomous data | Extracting the structure of W matrix
data(data.mixed1, package="sirt")
dat <- data.mixed1</pre>
# use non-exported function "lpcm_data_prep" to extract the meaning
# of the rows in W which are contained in value "pars_info"
res <- immer:::lpcm_data_prep( dat, weights=NULL, a=NULL )</pre>
pi2 <- res$pars_info</pre>
# create design matrix with some restrictions on item parameters
W <- matrix( 0, nrow=nrow(pi2), ncol=2 )</pre>
colnames(W) <- c( "P2", "P3" )</pre>
rownames(W) <- res$parnames</pre>
# joint item parameter for items I19 and I20 fixed at zero
# item parameter items I21 and I22
W[ 3:10, 1 ] <- pi2$cat[ 3:10 ]
# item parameters I23, I24 and I25
W[ 11:13, 2] <- 1
# estimate model with design matrix W
mod <- immer::immer_cml( dat, W=W)</pre>
summary(mod)
# EXAMPLE 4: Partial credit model with raters
data(data.immer07)
dat <- data.immer07
#*** reshape dataset for one variable
dfr1 <- immer::immer_reshape_wideformat( dat$I1, rater=dat$rater, pid=dat$pid )</pre>
#-- extract structure of design matrix
```

```
res <- immer:::lpcm_data_prep( dat=dfr1[,-1], weights=NULL, a=NULL)
pars_info <- res$pars_info</pre>
# specify design matrix for partial credit model and main rater effects
# -> set sum of all rater effects to zero
W <- matrix( 0, nrow=nrow(pars_info), ncol=3+2 )</pre>
rownames(W) <- rownames(pars_info)</pre>
colnames(W) <- c( "Cat1", "Cat2", "Cat3", "R1", "R2" )</pre>
# define item parameters
W[ cbind( pars_info$index, pars_info$cat ) ] <- 1</pre>
# define rater parameters
W[ paste(pars_info$item)=="R1", "R1" ] <- 1
W[ paste(pars_info$item)=="R2", "R2" ] <- 1
W[ paste(pars_info$item)=="R3", c("R1", "R2") ] <- -1
# set parameter of first category to zero for identification constraints
W \leftarrow W[,-1]
# estimate model
mod <- immer::immer_cml( dfr1[,-1], W=W)</pre>
summary(mod)
# EXAMPLE 5: Multi-faceted Rasch model | Estimation with a design matrix
data(data.immer07)
dat <- data.immer07
#*** reshape dataset
dfr1 <- immer::immer_reshape_wideformat( dat[, paste0("I",1:4) ], rater=dat$rater,</pre>
               pid=dat$pid )
#-- structure of design matrix
res <- immer:::lpcm_data_prep( dat=dfr1[,-1], weights=NULL, a=NULL)
pars_info <- res$pars_info</pre>
#--- define design matrix for multi-faceted Rasch model with only main effects
W <- matrix( 0, nrow=nrow(pars_info), ncol=3+2+2 )</pre>
parnames <- rownames(W) <- rownames(pars_info)</pre>
colnames(W) \leftarrow c(paste0("I",1:3), paste0("Cat",1:2), paste0("R",1:2))
#+ define item effects
for (ii in c("I1","I2","I3") ){
    ind <- grep( ii, parnames )</pre>
   W[ ind, ii ] <- pars_info$cat[ind ]</pre>
ind <- grep( "I4", parnames )</pre>
W[ ind, c("I1","I2","I3") ] <- -pars_info$cat[ind ]</pre>
#+ define step parameters
for (cc in 1:2){
    ind <- which( pars_info$cat==cc )</pre>
   W[ ind, paste0("Cat",1:cc) ] <- 1</pre>
#+ define rater effects
```

immer_FACETS 21

immer_FACETS

Wrapper to FACDOS

Description

This Function is a wrapper do the DOS version of FACETS (Linacre, 1999).

Usage

```
immer_FACETS(title=NULL, convergence=NULL, totalscore=NULL, facets=NULL,
noncenter=NULL, arrange=NULL,entered_in_data=NULL, models=NULL,
inter_rater=NULL, pt_biserial=NULL, faire_score=NULL, unexpected=NULL,
usort=NULL, positive=NULL, labels=NULL, fileinput=NULL, data=NULL,
path.dosbox=NULL, path.facets="", model.name=NULL, facetsEXE=NULL)
```

Arguments

title title of the analysis convergence convergence criteria

totalscore show the total score with each observation

facets number of specified facets

noncenter specified the non centered facet here arrange control the ordering in each table/output

entered_in_data

optional specification for facets

models model to be used in the analysis

inter_rater Specify rater facet number for the agreement report among raters

22 immer_FACETS

correlation between the raw-score for each element pt_biserial faire_score intended for communicating the measures as adjusted ratings unexpected size of smallest standardized residual usort order in which the unexpected observation are listed positive specifies which facet is positively oriented name of each facet, followed by a list of elements labels fileinput optional argument, if your data are stored within a separate file data Input of the data in long-format Path to the installed DOSBox. If NULL: the function assumed that you have purpath.dosbox chased FACETS and would like to use this version (currently only for Windows-User) path.facets Path to FACDOS or FACETS if the path.dosbox is "NULL" model.name Name of the configuration file for FACETS facetsEXE optional argument to specific specific FACETS.exe

Details

Within the function immer_FACETS it is either possible to pass existing FACETS input files or to specify the Input within the function. To run the estimation in FACETS it is necessary to provide both the path to the DosBox and FACDOS (it is recommended to use the function immer_install for the installation process). After the estimation process is finished the Exports are in the Facets folder.

References

Linacre, J. M. (1999). FACETS (Version 3.17)[Computer software]. Chicago: MESA.

See Also

Install FACDOS and DOSBox immer_install.

```
## Not run:
####################################
# 1. Example on Windows
####################################
# define data generating parameters
set.seed(1997)
N <- 500 # number of persons
I <- 4
          # number of items
R <- 3
          # number of raters
         # maximum score
sigma <- 2 # standard deviation</pre>
theta <- rnorm( N, sd=sigma ) # abilities
# item intercepts
b <- outer( seq( -1.5, 1.5, len=I), seq( -2, 2, len=K), "+" )
```

immer_FACETS 23

```
# item loadings
a \leftarrow rep(1,I)
# rater severity parameters
phi <- matrix( c(-.3, -.2, .5), nrow=I, ncol=R, byrow=TRUE )
phi <- phi + rnorm( phi, sd=.3 )</pre>
phi <- phi - rowMeans(phi)</pre>
# rater variability parameters
psi <- matrix( c(.1, .4, .8), nrow=I, ncol=R, byrow=TRUE )</pre>
# simulate HRM data
data <- immer::immer_hrm_simulate( theta, a, b, phi=phi, psi=psi )</pre>
# prepare data for FACETS
data2FACETS <- function(data){</pre>
  tmp <- match(c("pid","rater"),colnames(data))</pre>
  items <- grep("I",colnames(data))</pre>
cbind(data[, match(c("pid","rater"),
colnames(data))],gr=paste0("1-",length(items)),data[,items])
}
facets_in <- data2FACETS(data)</pre>
# Example of FACETS
mod1.a <- immer::immer_FACETS(</pre>
  title="Example 1 with simulated data",
  {\tt convergence=NULL}\,,
  totalscore="YES",
  facets=3,
  noncenter=NULL,
  arrange="m,N",
  entered_in_data="2,1,1",
  models="?$,?$,?$,R4",
  inter_rater=NULL,
  pt_biserial=NULL,
  faire_score="Zero",
  unexpected=2,
  usort=NULL,
  positive=1,
  labels=c("1,Persons","1-500","2,Rater","1-3","3,Item","1-4"),
  fileinput=NULL,
  data=facets_in,
  path.dosbox=NULL,
  path.facets="C:\\Facets",
  model.name="Example.SD",
  facetsEXE=NULL
  )
# 2. Example on Windows using existing input-files of FACETS
data(data.immer06)
mod1b <- immer::immer_FACETS(</pre>
  fileinput=data.immer06,
  path.facets="C:\\Facets",
```

```
model.name="Example.SD",
facetsEXE=NULL
)
## End(Not run)
```

immer_hrm

Hierarchical Rater Model (Patz et al., 2002)

Description

Estimates the hierarchical rater model (HRM; Patz et al., 2002; see Details) with Markov Chain Monte Carlo using a Metropolis-Hastings algorithm.

Usage

Arguments

dat	Data frame with item responses
pid	Person identifiers
rater	Rater identifiers
iter	Number of iterations
burnin	Number of burnin iterations
N.save	Maximum number of samples to be saved.

prior	Parameters for prior distributions
est.a	Logical indicating whether a parameter should be estimated.
est.sigma	Logical indicating whether σ parameter should be estimated.
est.mu	Optional logical indicating whether the mean μ of the trait θ should be estimated.
est.phi	Type of ϕ_{ir} parameters to be estimated. If est.phi="a", then ϕ_{ir} is estimated for all items and all raters. If est.phi="r", then $\phi_{ir}=\phi_r$ is rater specific, while for est.phi="i" it is item specific ($\phi_{ir}=\phi_i$). In case of est.phi="n", no ϕ parameters are estimated and all ϕ parameters are fixed at 0.
est.psi	Type of ψ_{ir} parameters to be estimated. The arguments follow the same conventions as est.phi, but also allows est.psi="e" (exchangeable) which means $\psi_{ir}=\psi$, i.e assuming the same ψ parameter for all items and raters.
MHprop	Parameters for Metropolis Hastings sampling. The standard deviation of the proposal distribution is adaptively computed (Browne & Draper, 2000).
theta_like	Grid of θ values to be used for likelihood approximation
sigma_init	Initial value for sigma
print_iter	Integer indicating that after each print_iterth iteration output on the console should be displayed.
object	Object of class immer_hrm
digits	Number of digits after decimal to print
file	Name of a file in which the output should be sunk
x	Object of class immer_hrm
•••	Further arguments to be passed. See <pre>sirt::plot.mcmc.sirt</pre> for options in plot.

Details

The hierarchical rater model is defined at the level of persons

$$P(\xi_{pi} = \xi | \theta_p) \propto \exp(\xi \cdot a_i \cdot \theta_p - b_{ik})$$

where θ_p is normally distributed with mean μ and standard deviation σ .

At the level of ratings, the model is defined as

$$P(X_{pir} = x | \theta_p, \xi_{pi}) \propto \exp(-(x - \xi_{pi} - \phi_{ir})^2 / (2 \cdot \psi_{ir}))$$

Value

A list with following entries

person Data frame with estimated person parameters

item Data frame with estimated item parameters

rater_pars Data frame with estimated rater parameters

est_pars Estimated item and trait distribution parameters arranged in vectors and matrices.

sigma	Estimated standard deviation σ of trait θ
mu	Estimated mean μ of trait θ
mcmcobj	Object of class mcmc.list for coda package.
summary.mcmcobj	
	Summary of all parameters
EAP.rel	EAP reliability
ic	Parameters for information criteria
f.yi.qk	Individual likelihood evaluated at theta_like
f.qk.yi	Individual posterior evaluated at theta_like
theta_like	Grid of θ values for likelihood approximation
pi.k	Discretized θ distribution

Log-likelihood value

References

like

MHprop

Browne, W. J., & Draper, D. (2000). Implementation and performance issues in the Bayesian and likelihood fitting of multilevel models. *Computational Statistics*, 15, 391-420.

Updated parameters in Metropolis-Hastings sampling

Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to large-scale educational assessment data. *Journal of Educational and Behavioral Statistics*, 27(4), 341-384.

See Also

Simulate the HRM with immer_hrm_simulate.

```
## Not run:
library(sirt)
library(TAM)
# EXAMPLE 1: Simulated data using the immer::immer_hrm_simulate() function
# define data generating parameters
set.seed(1997)
N < -500 # number of persons
I <- 4
       # number of items
      # number of raters
R <- 3
K <- 3
      # maximum score
sigma <- 2 # standard deviation</pre>
theta <- stats::rnorm( N, sd=sigma ) # abilities
# item intercepts
b <- outer( seq( -1.5, 1.5, len=I), seq( -2, 2, len=K), "+" )
# item loadings
```

```
a \leftarrow rep(1,I)
# rater severity parameters
phi <- matrix( c(-.3, -.2, .5), nrow=I, ncol=R, byrow=TRUE )
phi <- phi + stats::rnorm( phi, sd=.3 )</pre>
phi <- phi - rowMeans(phi)</pre>
# rater variability parameters
psi <- matrix( c(.1, .4, .8), nrow=I, ncol=R, byrow=TRUE )</pre>
# simulate HRM data
data <- immer::immer_hrm_simulate( theta, a, b, phi=phi, psi=psi )</pre>
pid <- data$pid</pre>
rater <- data$rater
dat <- data[, - c(1:2) ]</pre>
#*** Model 1: estimate HRM with equal item slopes
iter <- 3000
burnin <- 500
mod1 <- immer::immer_hrm( dat, pid, rater, iter=iter, burnin=burnin )</pre>
summary(mod1)
plot(mod1,layout=2,ask=TRUE)
# relations among convergence diagnostic statistics
par(mfrow=c(1,2))
plot( mod1$summary.mcmcobj$PercVarRatio, log(mod1$summary.mcmcobj$effSize), pch=16)
plot( mod1$summary.mcmcobj$PercVarRatio, mod1$summary.mcmcobj$Rhat, pch=16)
par(mfrow=c(1,1))
# extract individual likelihood
lmod1 <- IRT.likelihood(mod1)</pre>
str(lmod1)
# extract log-likelihood value
logLik(mod1)
# write coda files into working directory
sirt::mcmclist2coda(mod1$mcmcobj, name="hrm_mod1")
#*** Model 2: estimate HRM with estimated item slopes
mod2 <- immer::immer_hrm( dat, pid, rater, iter=iter, burnin=burnin,</pre>
            est.a=TRUE, est.sigma=FALSE)
summary(mod2)
plot(mod2,layout=2,ask=TRUE)
# model comparison
anova( mod1, mod2 )
#-----
#*** Model 3: Some prior specifications
prior <- list()</pre>
# prior on mu
prior$mu$M <- .7
prior$mu$SD <- 5</pre>
# fixed item parameters for first item
```

```
prior$b$M <- matrix( 0, nrow=4, ncol=3 )</pre>
prior$b$M[1,] <- c(-2,0,2)
prior$b$SD <- matrix( 10, nrow=4, ncol=3 )</pre>
prior$b$SD[1,] <- 1E-4</pre>
# estimate model
mod3 <- immer::immer_hrm( dat, pid, rater, iter=iter, burnin=burnin, prior=prior)</pre>
summary(mod3)
plot(mod3)
#*** Model 4: Multi-faceted Rasch models in TAM package
# create facets object
facets <- data.frame( "rater"=rater )</pre>
#-- Model 4a: only main rater effects
form <- ~ item*step + rater</pre>
mod4a <- TAM::tam.mml.mfr( dat, pid=pid, facets=facets, formulaA=form)</pre>
summary(mod4a)
#-- Model 4b: item specific rater effects
form <- ~ item*step + item*rater</pre>
mod4b <- TAM::tam.mml.mfr( dat, pid=pid, facets=facets, formulaA=form)</pre>
summary(mod4b)
#-----
#*** Model 5: Faceted Rasch models with sirt::rm.facets
#--- Model 5a: Faceted Rasch model with only main rater effects
mod5a <- sirt::rm.facets( dat, pid=pid, rater=rater )</pre>
summary(mod5a)
#--- Model 5b: allow rater slopes for different rater discriminations
mod5b <- sirt::rm.facets( dat, pid=pid, rater=rater, est.a.rater=TRUE )</pre>
summary(mod5b)
# EXAMPLE 2: data.ratings1 (sirt package)
data(data.ratings1, package="sirt")
dat <- data.ratings1</pre>
# set number of iterations and burnin iterations
set.seed(87)
iter <- 1000
burnin <- 500
# estimate model
mod <- immer::immer_hrm( dat[, paste0("k",1:5) ], pid=dat$idstud, rater=dat$rater,</pre>
           iter=iter, burnin=burnin )
summary(mod)
plot(mod, layout=1, ask=TRUE)
plot(mod, layout=2, ask=TRUE)
```

immer_hrm_simulate 29

```
## End(Not run)
```

immer_hrm_simulate

Simulating the Hierarchical Rater Model (Patz et al., 2002)

Description

Simulates the hierarchical rater model (Patz et al., 2002).

Usage

```
immer_hrm_simulate(theta, a, b, phi, psi)
```

Arguments

theta	Vector of θ parameters
a	Vector of a parameters
b	Matrix of b parameters
phi	Matrix of ϕ parameters
psi	Matrix of ψ parameters

Details

See immer_hrm for more details of the hierarchical rater model.

Value

Dataset with simulated item responses as well as vectors of person and rater identifiers

References

Patz, R. J., Junker, B. W., Johnson, M. S., & Mariano, L. T. (2002). The hierarchical rater model for rated test items and its application to large-scale educational assessment data. *Journal of Educational and Behavioral Statistics*, 27(4), 341-384.

See Also

See Example 1 in immer_hrm for applying the immer_hrm_simulate function.

immer_install

immer_install

Support for the installation of the DOS-version from FACETS

Description

This function supports the installation process of the DOS-version from FACETS and also the necessary DOSBox in Windows, Linux (Ubuntu) and OS X

Usage

```
immer_install(DosBox_path=NULL, Facets_path=NULL )
```

Arguments

DosBox_path optional argument for the specification of the path where the DosBox should be

saved

Facets_path optional argument for the specification of the path where FACETS should be

saved

Details

This function provides assistance for the installation process of the FACDOS (DOS version of FACETS) and the required DosBox. Currently supported operating systems are: Windows, Mac OS X and Ubuntu (Linux).

References

```
Linacre, J. M. (1999). FACETS (Version 3.17) [Computer software]. Chicago: MESA.
```

Veenstra, P., Froessman, T., Wohlers, U. (2015): *DOSBox* (Version 0.74) [Computer Software]. Arizona: Scottsdale.

See Also

Install FACDOS and DOSBox immer_FACETS.

```
## Not run:
    immer::immer_install( DosBox_path=NULL, Facets_path=NULL )
## End(Not run)
```

immer_jml 31

immer_jml	Joint Maximum Likelihood Estimation for the Partial Credit Model with a Design Matrix for Item Parameters and ε -Adjustment Bias Correction

Description

Estimates the partial credit model with a design matrix for item parameters with joint maximum likelihood (JML). The ε -adjustment bias correction is implemented with reduces bias of the JML estimation method (Bertoli-Barsotti, Lando & Punzo, 2014).

Usage

```
immer_jml(dat, A=NULL, maxK=NULL, center_theta=TRUE, b_fixed=NULL, weights=NULL,
    irtmodel="PCM", pid=NULL, rater=NULL, eps=0.3, est_method="eps_adj", maxiter=1000,
    conv=1e-05, max_incr=3, incr_fac=1.1, maxiter_update=10, maxiter_line_search=6,
        conv_update=1e-05, verbose=TRUE, use_Rcpp=TRUE, shortcut=TRUE)

## S3 method for class 'immer_jml'
summary(object, digits=3, file=NULL, ...)

## S3 method for class 'immer_jml'
logLik(object, ...)

## S3 method for class 'immer_jml'
IRT.likelihood(object, theta=seq(-9,9,len=41), ...)
```

Arguments

dat	Data frame with polytomous item responses $0, 1, \ldots, K$
A	Design matrix (items \times categories \times basis parameters). Entries for categories are for $1,\dots,K$
maxK	Optional vector with maximum category per item
center_theta	Logical indicating whether the trait estimates should be centered
b_fixed	Matrix with fixed b parameters
irtmodel	Specified item response model. Can be one of the two partial credit model parametrizations PCM and PCM2.
weights	Optional vector of sampling weights
pid	Person identifier
rater	Optional rater identifier
eps	Adjustment parameter ε
est_method	Estimation method. Can be 'eps_adj' for the ε -adjustment, 'jml' for the JML without bias correction and 'jml_bc' for JML with bias correction.
maxiter	Maximum number of iterations

32 immer_jml

conv Convergence criterion
max_incr Maximum increment

incr_fac Factor for shrinking increments from max_incr in every iteration

maxiter_update Maximum number of iterations for parameter updates

maxiter_line_search

Maximum number of iterations within line search

conv_update Convergence criterion for updates

verbose Logical indicating whether convergence progress should be displayed

use_Rcpp Logical indicating whether **Rcpp** package should be used for computation.

shortcut Logical indicating whether a computational shortcut should be used for effi-

ciency reasons

object Object of class immer_jml

digits Number of digits after decimal to print

file Name of a file in which the output should be sunk

theta Grid of θ values

... Further arguments to be passed.

Details

The function uses the partial credit model as $P(X_i = h|\theta) \propto \exp(h\theta - b_{ih})$ with $b_{ih} = \sum_l a_{ihl} \xi_l$ where the values a_{ihl} are included in the design matrix A and ξ_l denotes basis item parameters.

The adjustment parameter ε is applied to the sum score as the sufficient statistic for the person parameter. In more detail, extreme scores $S_p=0$ (minimum score) or $S_p=M_p$ (maximum score) are adjusted to $S_p^*=\varepsilon$ or $S_p^*=M_p-\varepsilon$, respectively. Therefore, the adjustment possesses more influence on parameter estimation for datasets with a small number of items.

Value

List with following entries

b Item parameters b_{ih} theta Person parameters

theta_se Standard errors for person parameters

xsi Basis parameters

xsi_se Standard errors for bias parameters
probs Predicted item response probabilities

person Data frame with person scores

dat_score Scoring matrix

score_pers Sufficient statistics for persons score_items Sufficient statistics for items

loglike Log-likelihood value

immer_jml 33

References

Bertoli-Barsotti, L., Lando, T., & Punzo, A. (2014). Estimating a Rasch Model via fuzzy empirical probability functions. In D. Vicari, A. Okada, G. Ragozini & C. Weihs (Eds.). *Analysis and Modeling of Complex Data in Behavioral and Social Sciences*, Springer.

See Also

See TAM::tam.jml for joint maximum likelihood estimation. The *varepsilon*-adjustment is also implemented in sirt::mle.pcm.group.

```
# EXAMPLE 1: Rasch model
data(data.read, package="sirt")
dat <- data.read</pre>
#--- Model 1: Rasch model with JML and epsilon-adjustment
mod1a <- immer::immer_jml(dat)</pre>
summary(mod1a)
## Not run:
#- JML estimation, only handling extreme scores
mod1b <- immer::immer_jml( dat, est_method="jml")</pre>
summary(mod1b)
#- JML estimation with (I-1)/I bias correction
mod1c <- immer::immer_jml( dat, est_method="jml_bc" )</pre>
summary(mod1c)
# compare different estimators
round( cbind( eps=mod1a$xsi, JML=mod1b$xsi, BC=mod1c$xsi ), 2 )
#--- Model 2: LLTM by defining a design matrix for item difficulties
A \leftarrow array(0, dim=c(12,1,3))
A[1:4,1,1] <- 1
A[5:8,1,2] <- 1
A[9:12,1,3] <- 1
mod2 <- immer::immer_jml(dat, A=A)</pre>
summary(mod2)
# EXAMPLE 2: Partial credit model
library(TAM)
data(data.gpcm, package="TAM")
dat <- data.gpcm
```

```
#-- JML estimation in TAM
mod0 <- TAM::tam.jml(resp=dat, bias=FALSE)</pre>
summary(mod0)
# extract design matrix
A <- mod0$A
A < - A[,-1,]
#-- JML estimation
mod1 <- immer::immer_jml(dat, A=A, est_method="jml")</pre>
summary(mod1)
#-- JML estimation with epsilon-adjusted bias correction
mod2 <- immer::immer_jml(dat, A=A, est_method="eps_adj")</pre>
summary(mod2)
# EXAMPLE 3: Rating scale model with raters | Use design matrix from TAM
data(data.ratings1, package="sirt")
dat <- data.ratings1</pre>
facets <- dat[,"rater", drop=FALSE]</pre>
resp <- dat[,paste0("k",1:5)]
#* Model 1: Rating scale model in TAM
formulaA <- ~ item + rater + step</pre>
mod1 <- TAM::tam.mml.mfr(resp=resp, facets=facets, formulaA=formulaA,</pre>
              pid=dat$idstud)
summary(mod1)
#* Model 2: Same model estimated with JML
resp0 <- mod1$resp</pre>
A0 <- mod1$A[,-1,]
mod2 <- immer::immer_jml(dat=resp0, A=A0, est_method="eps_adj")</pre>
summary(mod2)
## End(Not run)
```

```
immer_latent_regression
```

Unidimensional Latent Regression

Description

Fits a unidimensional latent regression $\theta_{ig} = Y_{ig}\beta + \varepsilon_{ig}$ with group-specific variances $Var(\varepsilon_{ig}) = \sigma_q^2$ based on the individual likelihood of a fitted model.

Usage

Arguments

like	Matrix containing the individual likelihood $L(\boldsymbol{X} \boldsymbol{\theta})$
theta	Grid of θ values

Y Predictor matrix group Group identifiers

weights Optional vector of weights conv Convergence criterion

maxit Maximum number of iterations

verbose Logical indicating whether progress should be displayed

object Object of class immer_latent_regression digits Number of digits after decimal to print

file Name of a file in which the output should be sunk

... Further arguments to be passed.

Value

List containing values (selection)

coef Parameter vector

vcov Covariance matrix for estimated parameters

beta Regression coefficients gamma Standard deviations

beta_stat Data frame with β parameters gamma_stat Data frame with standard deviations

1C .	Information	criteria

deviance Deviance

N Number of persons
 G Number of groups
 group Group identifier
 iter Number of iterations

Note

The IRT.likelihood method can be used for extracting the individual likelihood.

References

Adams, R. J., & Wu, M. L. (2007). The mixed-coefficients multinomial logit model. A generalized form of the Rasch model. In M. von Davier & C. H. Carstensen (Eds.): *Multivariate and mixture distribution Rasch models: Extensions and applications* (pp. 55-76). New York: Springer.

See Also

See TAM::tam.latreg for latent regression estimation in the **TAM** package.

```
## Not run:
# EXAMPLE 1: Latent regression for Rasch model with simulated data
library(sirt)
#-- simulate data
set.seed(9877)
I \leftarrow 15 # number of items
N <- 700 # number of persons per group
G <- 3 # number of groups
b \leftarrow seq(-2,2,len=I)
group <- rep( 1:G, each=N)</pre>
mu \leftarrow seq(0,1, length=G)
sigma \leftarrow seq(1, 1.5, length=G)
dat <- sirt::sim.raschtype( stats::rnorm( N*G, mean=mu[group], sd=sigma[group] ), b)</pre>
#-- estimate Rasch model with JML
mod1 <- immer::immer_jml( dat )</pre>
summary(mod1)
#-- compute individual likelihood
like1 <- IRT.likelihood(mod1)</pre>
#-- estimate latent regression
mod2 <- immer::immer_latent_regression( like=like1, group=group)</pre>
```

immer_opcat 37

```
summary(mod2)
## End(Not run)
```

immer_opcat

Estimation of Integer Item Discriminations

Description

Estimates integer item discriminations like in the one-parameter logistic model (OPLM; Verhelst & Glas, 1995). See Verhelst, Verstralen and Eggen (1991) for computational details.

Usage

```
immer_opcat(a, hmean, min=1, max=10, maxiter=200)
```

Arguments

a Vector of estimated item discriminations
--

hmean Prespecified harmonic mean

min Minimum integer item discrimination
max Maximum integer item discrimination

maxiter Maximum number of iterations

Value

Vector containing integer item discriminations

References

Verhelst, N. D. &, Glas, C. A. W. (1995). The one-parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.). *Rasch Models* (pp. 215–238). New York: Springer.

Verhelst, N. D., Verstralen, H. H. F. M., & Eggen, T. H. J. M. (1991). Finding starting values for the item parameters and suitable discrimination indices in the one-parameter logistic model. CITO Measurement and Research Department Reports, 91-10.

See Also

See immer_cml for using immer_opcat to estimate the one-parameter logistic model.

38 immer_proc_data

Examples

```
# EXAMPLE 1: Estimating integer item discriminations for dichotomous data
library(sirt)
data(data.read, package="sirt")
dat <- data.read
I <- ncol(dat)</pre>
#--- estimate 2PL model
mod <- sirt::rasch.mml2( dat, est.a=1:I, mmliter=30)</pre>
summary(mod)
a <- mod$item$a
                   # extract (non-integer) item discriminations
#--- estimate integer item discriminations under different conditions
a1 <- immer::immer_opcat( a, hmean=3, min=1, max=6 )</pre>
table(a1)
a2 <- immer::immer_opcat( a, hmean=2, min=1, max=3 )</pre>
a3 <- immer::immer_opcat( a, hmean=1.5, min=1, max=2 )
#--- compare results
cbind( a, a1, a2, a3)
```

immer_proc_data

Processing Datasets and Creating Design Matrices for Rating Data

Description

The function immer_proc_data processes datasets containing rating data into a dataset into a long format of pseudoitems (item \times raters).

The function immer_create_design_matrix_formula creates a design matrix for a processed dataset and a provided formula.

Usage

```
immer_proc_data(dat, pid=NULL, rater=NULL, weights=NULL, maxK=NULL)
immer_create_design_matrix_formula( itemtable, formulaA )
```

Arguments

dat	Datasets with integer item responses
pid	Vector with person identifiers
rater	Vector with rater identifiers
weights	Vector with sampling weights
maxK	Optional vector with maximum category per item

immer_proc_data 39

itemtable Processed item table. The table must include the column item (an integer

item identifier) and maxK (maximum number of categories per item). Optional columns are rater (an integer rater identifier), item_name and rater_name.

formulaA An R formula. The facets item, step and rater are treated as numeric. How-

ever, numeric transformation can be applied for the step parameter by using the

arguments item_num, step_num or rater_num in formulaA.

Value

The output of immer_proc_data is a list with several entries (selection)

dat2 Dataset containing pseudoitems

dat2.resp Dataset containing response indicators for pseudoitems

dat2.NA Dataset containing pseudoitems and missing responses coded as NA

dat Original dataset
person.index Person identifiers
rater.index Rater identifiers
VV Number of items
N Number of persons
RR Number of raters

dat2.ind.resp Array containing indicators of pseudoitems and categories

ND Number of person-rater interactions itemtable Information about processed data

The output of immer_create_design_matrix_formula is a list with several entries (selection)

A design matrix

itemtable2 Processed item table

```
data(data.ratings1, package="sirt")
dat <- data.ratings1</pre>
resp <- dat[,-c(1,2)]
#- redefine the second and third item such that the maximum category score is 2
for (vv in c(2,3)){
    resp[ resp[,vv] >=2,vv ] <- 2
#--- process data
res0 <- immer::immer_proc_data( dat=resp, pid=dat$idstud, rater=dat$rater)</pre>
#--- rating scale model
des1 <- immer::immer_create_design_matrix_formula( itemtable=res0$itemtable,</pre>
                formulaA=~ item + step )
des1$des
#--- partial scale model
des2 <- immer::immer_create_design_matrix_formula( itemtable=res0$itemtable,</pre>
                formulaA=~ item + item:step )
des2$des
#--- multi-facets Rasch model
des3 <- immer::immer_create_design_matrix_formula( itemtable=res0$itemtable,</pre>
                formulaA=~ item + item:step + rater )
des3$des
#--- polytomous model with quadratic step effects
des4 <- immer::immer_create_design_matrix_formula( itemtable=res0$itemtable,</pre>
                formulaA=~ item + item:I(step_num^2) )
des4$des
## End(Not run)
```

immer_reshape_wideformat

Creating a Rating Dataset in Wide Format

Description

Converts a rating dataset from a long format into a wide format.

Usage

```
immer_reshape_wideformat(y, pid, rater, Nmin_ratings=1)
```

Arguments

y Vector or a data frame containing ratings

pid Person identifier

immer_unique_patterns 41

rater Rater identifier

Nmin_ratings Minimum number of ratings used for selection

Value

Data frame with ratings. Each row corresponds to a person, and each of the columns (except the first one containing the person identifier) to one rater.

Examples

```
# EXAMPLE 1: Reshaping ratings of one variable into wide format
data(data.immer03)
dat <- data.immer03
# select variable "b" and persons which have at least 10 ratings
dfr <- immer::immer_reshape_wideformat( y=dat$b2, pid=dat$idstud, rater=dat$rater,</pre>
              Nmin_ratings=10 )
head(dfr)
# EXAMPLE 2: Reshaping ratings of a data frame into wide format
data(data.immer07)
dat <- data.immer07
#*** Dataset 1: Wide format for item I1
dfr1 <- immer::immer_reshape_wideformat( dat$I1, rater=dat$rater, pid=dat$pid)</pre>
#*** Dataset 2: Wide format for four items I1, I2, I3 and I4
dfr2 <- immer::immer_reshape_wideformat( dat[, paste0("I",1:4) ],</pre>
         rater=dat$rater, pid=dat$pid )
str(dfr2)
```

immer_unique_patterns Extracts Unique Item Response Patterns

Description

Extracts unique item response patterns.

Usage

```
immer_unique_patterns(dat, w=rep(1, nrow(dat)))
```

42 lc2_agreement

Arguments

dat Data frame containing integer item responses

w Optional vector of weights

Value

A list with entries

y Data frame with unique item response patterns

w Vector of frequency weights

y_string Item response pattern coded as a string

See Also

See mirt::expand.table for back-converting unique item response patterns into a data frame with item responses.

Examples

lc2_agreement

A Latent Class Model for Agreement of Two Raters

Description

Estimates a latent class model for agreement of two raters (Schuster & Smith, 2006). See Details for the description of the model.

lc2_agreement 43

Usage

```
lc2_agreement(y, w=rep(1, nrow(y)), type="homo", method="BFGS", ...)
## S3 method for class 'lc2_agreement'
summary(object, digits=3,...)
## S3 method for class 'lc2_agreement'
logLik(object, ...)
## S3 method for class 'lc2_agreement'
anova(object, ...)
```

Arguments

У	A data frame containing the values of two raters in columns
W	Optional vector of weights
type	Type of model specification. Can be "unif", "equal", "homo" or "hete". See Details.
method	Optimization method used in stats::optim
	Further arguments passed to stats::optim
object	Object of class 12_agreement

Details

digits

The latent class model for two raters decomposes a portion of ratings which conform to true agreement and another portion of ratings which conform to a random rating of a category. Let X_r denote the rating of rater r, then for $i \neq j$, it is assumed that

$$P(X_1 = i, X_2 = j) = \phi_{1i}\phi_{2j}(1 - \gamma)$$

For i = j it is assumed that

$$P(X_1 = i, X_2 = i) = \tau_i \gamma + \phi_{1i} \phi_{2i} (1 - \gamma)$$

where γ denotes the proportion of true ratings.

All τ_i and ϕ_{ri} parameters are estimated using type="hete". If the ϕ parameters are assumed as invariant across the two raters (i.e. $\phi_{1i} = \phi_{2i} = \phi_i$), then type="homo" must be specified. The constraint $\tau_i = \phi_i$ is imposed by type="equal". All ϕ_i parameters are set equal to each other using type="unif".

Value

model_output Output of the fitted model
saturated_output
Output of the saturated model

LRT_output Output of the likelihood ratio test of model fit

Number of digits for rounding

44 lc2_agreement

partable Parameter table
parmsummary Parameter summary

agree_chance Agreement by chance

rel_agree Conditional reliability of agreement
optim_output Output of optim from the fitted model

nobs Number of observations

type Model type

ic Information criteria loglike Log-likelihood

npars Number of parameters

y Used dataset
w Used weights

References

Schuster, C., & Smith, D. A. (2006). Estimating with a latent class model the reliability of nominal judgments upon which two raters agree. *Educational and Psychological Measurement*, 66(5), 739-747.

```
# EXAMPLE 1: Dataset in Schuster and Smith (2006)
data(data.immer08)
dat <- data.immer08
# select ratings and frequency weights
v <- dat[,1:2]</pre>
w <- dat[,3]</pre>
#*** Model 1: Uniform distribution phi parameters
mod1 <- immer::lc2_agreement( y=y, w=w, type="unif")</pre>
summary(mod1)
#*** Model 2: Equal phi and tau parameters
mod2 <- immer::lc2_agreement( y=y, w=w, type="equal")</pre>
summary(mod2)
## Not run:
#*** Model 3: Homogeneous rater model
mod3 <- immer::lc2_agreement( y=y, w=w, type="homo")</pre>
summary(mod3)
#*** Model 4: Heterogeneous rater model
```

probs2logits 45

```
mod4 <- immer::lc2_agreement( y=y, w=w, type="hete")
summary(mod4)

#--- some model comparisons
anova(mod3,mod4)
IRT.compareModels(mod1,mod2,mod3,mod4)

## End(Not run)</pre>
```

probs2logits

Conversion of Probabilities into Logits

Description

Converts probabilities into logits

Usage

```
probs2logits(probs)
logits2probs(y)
```

Arguments

probs Vector containing probabilities
y Vector containing logits

Value

A vector with logits or probabilities

Index

```
eRm::RM, 16
* package
    immer-package, 2
                                                 immer (immer-package), 2
anova.immer_cml (immer_cml), 14
                                                 immer-package, 2
anova.immer_hrm(immer_hrm), 24
                                                 immer_agree2, 10
anova.immer_latent_regression
                                                 immer\_ccm1, 2, 11
                                                 immer_cml, 2, 14, 37
        (immer_latent_regression), 34
anova.lc2_agreement(lc2_agreement), 42
                                                 immer_create_design_matrix_formula
                                                         (immer_proc_data), 38
coef.immer_ccml (immer_ccml), 11
                                                 immer_FACETS, 3, 21, 30
coef.immer_cml(immer_cml), 14
                                                 immer_hrm, 2, 24, 29
coef.immer_latent_regression
                                                 immer_hrm_simulate, 2, 26, 29
        (immer_latent_regression), 34
                                                 immer_install, 22, 30
                                                 immer_jml, 2, 31
data.immer, 4
                                                 immer_latent_regression, 34
data.immer01a(data.immer), 4
                                                 immer_opcat, 37
data.immer01b (data.immer), 4
                                                 immer_proc_data, 38
data.immer02 (data.immer), 4
                                                 immer_reshape_wideformat, 40
data.immer03 (data.immer), 4
                                                 immer_unique_patterns, 41
data.immer04a (data.immer), 4
                                                IRT.likelihood.immer_hrm (immer_hrm), 24
data.immer04b (data.immer), 4
                                                IRT.likelihood.immer_jml(immer_jml), 31
data.immer05 (data.immer), 4
                                                IRT.posterior.immer_hrm (immer_hrm), 24
data.immer06 (data.immer), 4
data.immer07 (data.immer), 4
                                                1c2_agreement, 42
data.immer08 (data.immer), 4
                                                logits2probs (probs2logits), 45
data.immer09 (data.immer), 4
                                                logLik.immer_cml (immer_cml), 14
data.immer10 (data.immer), 4
                                                logLik.immer_hrm (immer_hrm), 24
data.immer11 (data.immer), 4
                                                logLik.immer_jml (immer_jml), 31
data.immer12 (data.immer), 4
                                                logLik.immer_latent_regression
data.ptam, 8
                                                         (immer_latent_regression), 34
data.ptam1 (data.ptam), 8
                                                logLik.lc2_agreement (lc2_agreement), 42
data.ptam2 (data.ptam), 8
data.ptam3 (data.ptam), 8
                                                plot.immer_hrm (immer_hrm), 24
data.ptam4 (data.ptam), 8
                                                probs2logits, 45
data.ptam4long(data.ptam), 8
                                                psychotools::elementary_symmetric_functions,
data.ptam4wide(data.ptam), 8
                                                         15. 16
                                                psychotools::pcmodel, 3, 16
eRm::LLTM, 16
                                                psychotools::raschmodel, 16
eRm::LPCM, 3, 16
eRm::PCM, 16
                                                sirt::mle.pcm.group, 33
```

INDEX 47

```
sirt::plot.mcmc.sirt, 25
sirt::rasch.pairwise.itemcluster, 13
sirt::rm.facets, 3
sirt::rm.sdt, 3
stats::nlminb, 12, 13
stats::optim, 15, 43
summary.immer_agree2 (immer_agree2), 10
summary.immer_ccml (immer_ccml), 11
summary.immer_cml (immer_cml), 14
summary.immer_FACETS (immer_FACETS), 21
summary.immer_hrm(immer_hrm), 24
summary.immer_jml(immer_jml), 31
summary.immer_latent_regression
        (immer_latent_regression), 34
summary.lc2_agreement (lc2_agreement),
        42
TAM::tam.jml, 33
TAM::tam.latreg, 36
TAM::tam.mml.mfr, 3
vcov.immer_ccml (immer_ccml), 11
vcov.immer_cml (immer_cml), 14
vcov.immer_latent_regression
        (immer_latent_regression), 34
```