Mathematical description of SPLab

Joari Paulo da Costa and Filipe Goulart Cabral

ONS - Operador Nacional do Sistema Elétrico Rua Júlio do Carmo, 251, Cidade Nova Rio de Janeiro, RJ, 20211-160, Brasil

Abstract. We present a brief description of the mathematical formulation and data sets of the SPLab model.

1 Stochastic optimization model

1.1 Vectorial notation

The dynamic programming formulation for the long-term operation planning problem considered in the SPLab model can be written as:

$$Q_{t}([v_{t}, a_{[t-\widehat{p}, t-1]}], \eta_{t}) = \min \quad c^{\top}g_{t} + \widetilde{c}^{\top} \operatorname{df}_{t} + \theta^{\top}f_{t} + \widetilde{\theta}^{\top}s_{t} + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p}, t]}])$$

$$s.t. \quad v_{t+1} = v_{t} + a_{t} - q_{t} - s_{t}$$

$$a_{t} = \left(\zeta_{t} + \sum_{\nu=1}^{\widehat{p}} \Phi_{t, \nu} a_{t-\nu}\right) \bullet \eta_{t}$$

$$q_{t} + M_{I}g_{t} + \widetilde{M}_{I} \operatorname{df}_{t} + M_{D}f_{t} = d_{t},$$

$$0 \leq v_{t+1} \leq \overline{v}, \quad 0 \leq q_{t} \leq \overline{q}, \quad \underline{g} \leq g_{t} \leq \overline{g},$$

$$0 \leq \operatorname{df}_{t} \leq \overline{\operatorname{df}}_{t}, \quad 0 \leq f_{t} \leq \overline{f}$$

$$\mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p}, t]}]) = \begin{cases} \rho_{t+1} \left[Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p}, t]}], \eta_{t+1})\right], \quad t \in \{1, \dots, T-1\} \\ 0, \quad t = T \end{cases}$$

for all t = 1, ..., T. For each stage t, the decision vector is $x_t = (v_{t+1}, a_t, q_t, s_t, g_t, \mathrm{df}_t, f_t)$. In this model the only uncertainty considered is the vector multiplicative error, that is, $\xi_t = \eta_t$.

The risk measure used considers a mean-AV@R convex combination, given by:

$$\rho_t[Z_t] = (1 - \lambda)\mathbb{E}[Z_t] + \lambda \text{AV@R}_{\alpha}[Z_t]$$

with $\lambda \in [0,1]$ and $\alpha \in (0,1]$ being chosen parameters.

1.1.1 Objective function equation

The objective function

$$c^{\mathsf{T}}g_t + \tilde{c}^{\mathsf{T}}\operatorname{df}_t + \theta^{\mathsf{T}}f_t + \tilde{\theta}^{\mathsf{T}}s_t + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$$

represents the sum of thermal generation costs, deficit (load shedding) costs, small penalties for energy interchange, small penalties for spillage and the cost-to-go function $Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$ where:

- c cost vector whose components are unit costs (\$/MWh) of thermal plants from each subsystem;
- g_t thermal generation vector whose components are thermal generations (MWmonth) at stage t of thermal plants from each subsystem;
- \tilde{c} cost vector whose components are unit costs (\$/MWh) of energy deficits (load shedding) of each depth and from each subsystem;
- df_t deficit energy vector (load shedding) is a slack thermal generation vector whose components are energy deficits (MWmonth) at stage t of each depth and from each subsystem;
- θ penalty vector for energy flow whose components are penalties (\$/MWmonth) for energy interchange between each interconnected subsystem pair;
- f_t energy flow vector whose components are energy interchanges at stage t between each interconnected subsystem pair;
- $\tilde{\theta}$ penalty vector whose components are penalties for spillages in each subsystem;
- s_t spilled energy vector whose components are spilled energies in each subsystem during stage t;
- β discount factor constant;
- $Q_{t+1}(\cdot)$ cost-to-go function of stage t+1, which corresponds to the total cost risk from stage t+1 onwards;
 - v_t stored energy vector whose components are stored energies on each equivalent energy reservoir at the beginning of stage t;
 - a_t energy inflow vector whose components are energy inflows on each equivalent energy reservoir during stage t;
- $a_{[t-\hat{p},t-1]}$ vector of energy inflow vectors from stage $t-\hat{p}$ to t-1;
 - \hat{p} time-series model maximum order;
 - η_t vector multiplicative error whose components are the ratio between the components of energy inflows a_t during stage t and the corresponding predicted energy inflows;
 - $Q_t(\cdot,\cdot)$ total cost function of stage t.

1.1.2 Energy balance equation

The energy balance equation, in MWmonth, for each equivalent energy reservoir and stage t is:

$$v_{t+1} = v_t + a_t - q_t - s_t$$

where:

- v_t stored energy vector whose components are stored energies on each equivalent energy reservoir at the beginning of stage t;
- a_t energy inflow vector whose components are energy inflows on each equivalent energy reservoir during stage t;
- q_t turbined energy (hydro generation) vector whose components are turbined energies on each equivalent energy reservoir during stage t;
- s_t spilled energy vector whose components are spilled energies on each equivalent energy reservoir during stage t;

1.1.3 Time-series equation

The time-series equation of the PVAR $_m$ model, in MWmonth, for each equivalent energy reservoir and stage t is:

 $a_t = \left(\zeta_t + \sum_{\nu=1}^{\widehat{p}} \Phi_{t,\nu} a_{t-\nu}\right) \bullet \eta_t$

where:

 a_t energy inflow vector whose components are energy inflows on each equivalent energy reservoir during stage t;

 ζ_t intercept vector of stage t;

 $\Phi_{t,\nu}$ lag ν coefficient matrix of stage t;

 \hat{p} time-series model maximum order;

• Hadamard vector product, $(\boldsymbol{a} \bullet \boldsymbol{b})_i = a_i b_i$;

 η_t vector multiplicative error whose components are ratios between the components of energy inflows a_t during stage t and the corresponding predicted energy inflows;

1.1.4 Load balance equation

The load balance equation, in MWmonth, for each subsystem and stage t is:

$$q_t + M_I q_t + \widetilde{M}_I \operatorname{df}_t + M_D f_t = d_t$$

where:

- d_t energy demand (load) vector on each subsystem at stage t;
- q_t turbined energy (hydro generation) vector whose components are turbined energies on each equivalent energy reservoir during stage t;
- M_I zero-one indicator matrix whose columns contain all deficit positions and lines contain all subsystems positions;
- M_Ig_t total thermal generation on each subsystem at stage t;
 - g_t thermal generation vector whose components are thermal generations at stage t of thermal plants from each subsystem;
 - \widetilde{M}_I zero-one indicator matrix whose columns contain all thermal generation positions and lines contain all subsystems positions;
- $\widetilde{M}_I df_t$ total deficit on each subsystem at stage t;
 - df_t deficit energy vector (load shedding) is a slack thermal generation vector whose components are energy deficits (MWmonth) at stage t of each depth and from each subsystem;
 - M_D flow direction matrix whose columns contain all energy flow positions and lines contain all subsystems positions;
- $M_D f_t$ net energy interchange;
 - f_t energy flow vector whose components are energy interchanges at stage t between each interconnected subsystem pair;

1.1.5 Bounds

Bounds on decision variables are:

- $0 \le v_{t+1} \le \overline{v}$ stored energy upper bound;
 - $0 \le q_t \le \overline{q}$ hydro generated energy upper bound;
 - $g \leq g_t \leq \overline{g}$ thermal generation lower and upper bound;
 - $0 \le f_t \le \overline{f}$ energy flow lower and upper bound; and
- $0 < df_t < \overline{df}_t$ deficit (slack thermal generation) lower and upper bound.

1.2 Indicial notation

The dynamic programming formulation for the operation planning problem considered in the SPLab model can be written as:

$$Q_{t}([v_{t}, a_{[t-\widehat{p}, t-1]}], \eta_{t}) = \min \left\{ \sum_{k=1}^{n_{s}} \left(\sum_{j \in T_{k}} c_{j} g_{t,j} + \sum_{i=1}^{n_{d}} \tilde{c}_{i} \operatorname{df}_{t,ki} + \sum_{l \in \Omega_{k}} \theta_{lk} f_{t,lk} + \tilde{\theta}_{k} s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p}, t]}]) \right\}$$

$$s.t. \quad v_{t+1,k} = v_{t,k} + a_{t,k} - q_{t,k} - s_{t,k},$$

$$a_{t,k} = \left(\zeta_{t,k} + \sum_{\nu=1}^{\widehat{p}} \sum_{l=1}^{n_{s}} \phi_{t\nu,kl} a_{t-\nu,l} \right) \cdot \eta_{t,k},$$

$$q_{t,k} + \sum_{j \in T_{k}} g_{t,j} + \sum_{i=1}^{n_{d}} \operatorname{df}_{t,ki} + \sum_{l \in \Omega_{k}} \left(r_{lk} f_{t,lk} - f_{t,kl} \right) = d_{t,k},$$

$$0 \le v_{t+1,k} \le \overline{v}_{k}, \quad 0 \le q_{t,k} \le \overline{q}_{k}, \quad \underline{g}_{j} \le g_{t,j} \le \overline{g}_{j},$$

$$0 \le \operatorname{df}_{t,ki} \le \overline{\operatorname{df}}_{t,ki}, \quad 0 \le f_{t,lk} \le \overline{f}_{lk},$$

$$\forall k = 1, \dots, n_{s}, \quad \forall j \in T_{k}, \quad \forall l \in \Omega_{k}, \quad \forall i = 1, \dots, n_{d}.$$

$$Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}]) = \begin{cases} \rho_{t+1} \left[Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}], \eta_{t+1}) \right], \quad t \in \{1, \dots, T-1\} \\ 0, \quad t = T \end{cases}$$

$$(2)$$

for all t = 1, ..., T. For each stage t, the decision vector is $x_t = (v_{t+1}, a_t, q_t, s_t, g_t, df_t, f_t)$. In this model the only uncertainty considered is the multiplicative error, that is, $\xi_t = \eta_t$.

The risk measure used considers a mean-AV@R convex combination, given by:

$$\rho_t[Z_t] = (1 - \lambda)\mathbb{E}[Z_t] + \lambda \text{AV@R}_{\alpha}[Z_t]$$

with $\lambda \in [0,1]$ and $\alpha \in (0,1]$ being chosen parameters.

1.2.1 Objective function equation

The objective function

$$\sum_{k=1}^{n_s} \left(\sum_{j \in T_k} c_j g_{t,j} + \sum_{i=1}^{n_d} \tilde{c}_i \, \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \theta_{lk} f_{t,lk} + \tilde{\theta}_k s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$$

represents the sum of thermal generation costs, deficit (slack thermal generation) costs, small penalties for energy interchange, small penalties for spillage and the cost-to-go function $Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$ where:

- n_s number of subsystems;
- T_k thermal set of subsystem k;
- Ω_k set of subsystems directly connected to subsystem k;
- c_j unit cost (\$/MWmonth) associated to the thermal plant j;
- $g_{t,j}$ thermal generation (MWmonth) at stage t of thermal plant j;
- n_d number of deficit (slack thermal generation) depths;
- \tilde{c}_i unit cost (\$/MWh associated to the deficit depth i;
- $df_{t,ki}$ deficit (MWmonth) at stage t in subsystem k of depth i;
 - θ_{lk} penalty for energy flow from subsystem l to subsystem k;
- $f_{t,lk}$ energy flow (MWmonth) at stage t from subsystem l to subsystem k;
 - $\tilde{\theta}_k$ penalty for spillage in subsystem k;
- $s_{t,k}$ spilled energy (MWmonth) during stage t in subsystem k
 - β discount factor;
- $Q_{t+1}(\cdot)$ cost-to-go function of stage t+1, which corresponds to the total cost risk from stage t+1 onwards;
 - $v_{t,k}$ stored energy at the beginning of stage t in subsystem k;
 - $a_{t,k}$ energy inflow (MWmonth) during stage t in subsystem k;
- $a_{[t-\hat{p},t-1]}$ energy inflow (MWmonth) vector from stage $t-\hat{p}$ to t-1;
 - \hat{p} time-series model maximum order;
 - $\eta_{t,k}$ time-series multiplicative error of stage t in subsystem k; and
 - $Q_t(\cdot,\cdot)$ total cost of stage t.

1.2.2 Energy balance equation

The energy balance equation for each subsystem k is:

$$v_{t+1,k} = v_{t,k} + a_{t,k} - q_{t,k} - s_{t,k}$$

where:

- $v_{t,k}$ stored energy at the beginning of stage t in subsystem k;
- $a_{t,k}$ energy inflow during stage t in subsystem k;
- $q_{t,k}$ generated energy during stage t in subsystem k; and
- $s_{t,k}$ spilled energy during stage t in subsystem k.

1.2.3 Time-series equation

The time-series equation of the $PVAR_m$ model, in MWmonth, for each subsystem k is:

$$a_{t,k} = \left(\zeta_{t,k} + \sum_{\nu=1}^{\widehat{p}} \sum_{l=1}^{n_s} \phi_{t\nu,kl} a_{t-\nu,l}\right) \cdot \eta_{t,k}$$

where:

 n_s number of subsystems;

 $a_{t,k}$ energy inflow during stage t in subsystem k;

 $\zeta_{t,k}$ intercept of stage t and subsystem k;

 $\phi_{t\nu,kl}$ lag ν coefficient of stage t representing the influence of subsystem l in subsystem k;

 \hat{p} time-series model maximum order;

 $\eta_{t,k}$ multiplicative error of stage t in subsystem k;

1.2.4 Load balance equation

The load balance equation, in MWmonth, for each subsystem k and stage t is:

$$q_{t,k} + \sum_{j \in T_k} g_{t,j} + \sum_{i=1}^{n_d} df_{t,ki} + \sum_{l \in \Omega_k} (r_{lk} f_{t,lk} - f_{t,kl}) = d_{t,k}$$

where:

 T_k thermal set of subsystem k;

 Ω_k set of subsystems directly connected to subsystem k;

 $d_{t,k}$ energy demand (load) at stage t in subsystem k;

 $q_{t,k}$ hydro generation at stage t in subsystem k;

 $\sum_{i \in T_k} g_{t,j}$ total thermal generation at stage t in subsystem k;

 $g_{t,j}$ thermal generation at stage t of thermal plant j;

 n_d number of deficit (slack thermal generation) depths;

 $\sum_{i=1}^{n_{\rm d}} {\rm df}_{t,ki}$ total deficit in subsystem k at stage t;

 $df_{t,ki}$ deficit at stage t in subsystem k of depth i;

 $\sum_{l \in \Omega_t} (r_{lk} f_{t,lk} - f_{t,kl})$ net energy interchange;

 r_{lk} transmission loss factor from subsystem l to subsystem k; and

 $f_{t,lk}$ energy flow at stage t from subsystem l to subsystem k.

1.2.5 Bounds

Bounds on decision variables are:

 $0 \le v_{t+1,k} \le \overline{v}_k$ stored energy upper bound;

 $0 \le q_{t,k} \le \overline{q}_k$ generated energy upper bound;

 $g_k \leq g_{t,k} \leq \overline{g}_k$ thermal generation lower and upper bound;

 $0 \le f_{t,kl} \le \overline{f}_{kl}$ energy flow upper bound; and

 $0 \le df_{t,ki} \le \overline{df}_{t,ki}$ deficit (slack thermal generation) upper bound.

1.3 Time-series model

A Periodic Vector Autoregressive Multiplicative model of period S and order $\mathbf{p} = (p_1, \dots, p_S)$, PVAR_m(\mathbf{p}), is given by

$$a_t = \left(\zeta_t + \sum_{\nu=1}^{p_t} \Phi_{t,\nu} a_{t-\nu}\right) \bullet \eta_t,$$

for all positive t, where $\{\eta_1, \eta_2, \dots\}$ are independent multiplicative errors. For each time t, the model coefficients and order are equal modulo \mathbb{S} ; the errors are identically distributed modulo \mathbb{S} with unit mean and constant variance (modulo \mathbb{S}). Formally:

- $\zeta_t = \zeta_{t+\mathbb{S}}$ and $\Phi_{t,\nu} = \Phi_{t+\mathbb{S},\nu}$;
- $p_t = p_{t+\mathbb{S}};$
- η_t has the same distribution as $\eta_{t+\mathbb{S}}$; and
- $\mathbb{E}\left[\eta_t\right] = \mathbb{1}$,

where $1 := (1, ..., 1)^{\top}$.

It is instructive to note that $PVAR_m$ is a vector model:

$$a_{t} = \begin{pmatrix} a_{t,1} \\ a_{t,2} \\ \vdots \\ a_{t,n_{s}} \end{pmatrix}, \quad \zeta_{t} = \begin{pmatrix} \zeta_{t,1} \\ \zeta_{t,2} \\ \vdots \\ \zeta_{t,n_{s}} \end{pmatrix}, \quad \Phi_{t,\nu} = \begin{pmatrix} \phi_{t\nu,11} & \phi_{t\nu,12} & \cdots & \phi_{t\nu,1n_{s}} \\ \phi_{t\nu,21} & \phi_{t\nu,22} & \cdots & \phi_{t\nu,2n_{s}} \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{t\nu,n_{s}1} & \phi_{t\nu,n_{s}2} & \cdots & \phi_{t\nu,n_{s}n_{s}} \end{pmatrix}, \quad \eta_{t} = \begin{pmatrix} \eta_{t,1} \\ \eta_{t,2} \\ \vdots \\ \eta_{t,n_{s}} \end{pmatrix},$$

where n_s is the number of subsystems.

2 Data description

Data regarding the operation planning problem are provided by four files namely data.txt, linear_models.txt, scenarios.txt, scenarios_efs.txt. A detailed description of each input file follows.

Remark 1. The input data are described following the math formulation and not the order of the inputs on the files.

2.1 data.txt file

This file is organized in sections identified by "field descriptors" in the sense that each section contains the corresponding data values.

2.1.1 Risk averse parameters (λ, α)

The adopted risk measure considers a mean-AV@R convex combination, given by:

$$\rho_t[Z_t] = (1 - \lambda)\mathbb{E}[Z_t] + \lambda \text{AV@R}_{\alpha}[Z_t],$$

with $\lambda \in [0,1]$ and $\alpha \in (0,1]$ being fixed parameters. The risk parameters λ and α are identified by RISK AVERSION DATA keyword as described below.

In this example, $\lambda = 0.15$ and $\alpha = 0.05$.

Remark 2. Flag equal to 0 (zero) in the "RISK AVERSE APPROACH" field corresponds to the risk neutral case.

2.1.2 Monthly discount rate β

The monthly discount rate is a constant used to rescale a future cost to the same basis of a present cost. Considering the annual rate r_{annual} , we can get the monthly discount rate by the following formula:

$$\beta = \frac{1}{(1 + r_{\text{annual}})^{\frac{1}{12}}}.$$

This block is identified by ANUAL DISCOUNT RATE keyword. The r_{annual} input is described below.

ANUAL DISCOUNT RATE (%) : 12

In this example, $r_{\text{annual}} = 0.12$ and therefore $\beta = 1/(1 + 0.12)^{\frac{1}{12}} = 0.99060$.

2.1.3 Subsystem set K

The subsystems consist of partitions of the system which have their particular demand, thermal generation and equivalent energy reservoir. Those subsystems are connected by equivalent energy transmission lines. The subsystems set K are identified by the SYSTEMS DATA keyword. The input K is described below.

SYSTEMS DATA CODE NAME ---- 1 1 SUDESTE 2 SUL 3 NORDESTE 4 NORTE 5 NOFICT1 9999999

Remark 3. In this particular case $n_s = 5$.

2.1.4 Energy demand $d_{t,k}$

The load balance equation is given by:

$$q_{t,k} + \sum_{j \in T_k} g_{t,j} + \sum_{i=1}^{n_d} df_{t,ki} + \sum_{l \in \Omega_k} \left(r_{lk} f_{t,lk} - f_{t,kl} \right) = d_{t,k},$$

with the energy demand (load) $d_{t,k}$. The energy demand block is identified by the ENERGY DEMAND keyword and is described below.

ENERGY	DEMAND													
STAGE	VALUE	SYS 1	VALUE	SYS	2	VALUE	SYS	3	VALUE	SYS	4	VALUE	SYS	5
001		45515		116	92		108	11		65	07			0
002		46611		119	33		106	83		65	64			0
003		47134		120	05		107	27		65	06			0
004		46429		114	78		105	89		65	56			0
005		45622		111	45		103	89		66	45			0
116		46149		110	51		103	72		67	72			0
117		46336		109	17		106	75		68	43			0
118		46551		110	15		109	34		68	15			0
119		46035		111	56		110	04		68	71			0
120		45234		112	97		109	14		67	01			0
9999999														

For instance, the energy demand for stage 4 and subsystem 3 is $d_{4,3} = 10589$ MWmonth.

Remark 4. The subsystem k=5 has no demand because it represents just a transhipment node.

2.1.5 Deficit cost \tilde{c}_i , upper bound $\overline{\mathrm{df}}_{t,ki}$ and number of deficit depths n_d

The deficit is a slack thermal generation which represents the load shedding. The deficit cost \tilde{c}_i is associated to the economical impact of not meeting one unit of energy demand in a given depth i. The depth of a deficit is a measure of severity of the load shedding. The more severe is the load shedding, the more expensive is the economical impact to society. Below, we recall the deficit cost \tilde{c}_i and number of depth n_d contribution for the objective function

$$\sum_{k=1}^{n_s} \left(\sum_{j \in T_k} c_j g_{t,j} + \sum_{i=1}^{n_d} \tilde{c}_i \, \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \theta_{lk} f_{t,lk} + \tilde{\theta}_k s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$$

and the bound $\overline{\mathrm{df}}_t$ contribution for box constraint:

$$0 \le \mathrm{df}_{t,ki} \le \overline{\mathrm{df}}_{t,ki}.$$

The deficit block is identified by the ENERGY DEFICITS DATA keyword. The deficit value $df_{t,kj}$ for each stage t, subsystem k and depth i is described below.

ENERGY	DEFIC	ITS DATA
CODE	DEPTH	COST
1	0.05	1142.80
2	0.05	2465.40
3	0.10	5152.46
4	0.80	5845.54
9999		

The deficit depth value provide us the percentage of the load shedding that corresponds to a given economic impact. In this case, the number of deficit depth is $n_d = 4$ and the deficit cost \tilde{c} (\$/MWh) and bounds $d_{t,k}$ are

$$\begin{array}{ll} \tilde{c}_1 = 1142.80 & \overline{\mathrm{df}}_{t,k1} = 0.05 d_{t,k} \\ \tilde{c}_2 = 2465.40 & \overline{\mathrm{df}}_{t,k2} = 0.05 d_{t,k} \\ \tilde{c}_3 = 5152.46 & \overline{\mathrm{df}}_{t,k3} = 0.10 d_{t,k} \\ \tilde{c}_4 = 5845.54 & \overline{\mathrm{df}}_{t,k4} = 0.80 d_{t,k} \end{array},$$

for all subsystem k and stage t.

999

Remark 5. The subsystem k = 5 has no deficit variable because it represents a transshipment node.

2.1.6 Thermal generation set T_k , cost c_j and bounds g, \bar{g}

Each subsystem has its own set of thermal plants T_k . Below, we recall the thermal cost c_i contribution for the objective function

$$\sum_{k=1}^{n_s} \left(\sum_{j \in T_k} c_j g_{t,j} + \sum_{i=1}^{n_d} \tilde{c}_i \, \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \theta_{lk} f_{t,lk} + \tilde{\theta}_k s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}])$$

and the bounds g, \overline{g} contribution for box constraint:

$$\underline{g}_k \leq g_{t,k} \leq \overline{g}_k$$
.

The thermal generation block is identified by the THERMAL PLANTS keyword. The thermal generation parameters are described below.

-											
THER	THERMAL PLANTS										
NUM	SYS	NAME	COST	TGEN_MIN	TGEN_MAX						
1	1	ANGRA 1	21.49	520	657						
13	1	ANGRA 2	18.96	1080	1350						
7	1	CARIOBA	937	0	36						
88	1	CCBS_L	194.79	59.3	250						
89	1	CCBS_TC	222.22	27.1	250						
67	3	TERMONE	329.2	0	171						
96	3	TERMOPE	70.16	348.8	533						
83	3	VALE DO ACU	287.83	0	323						
70	4	NOVA OLINDA	329.56	0	166						
73	4	TOCANTINOPO	329.56	0	166						

For instance, the thermal set of subsystem 1 is $T_1 = \{1, 13, 211, 7, 219, ...\}$ and the corresponding costs c_j (\$/MWh) and bounds g, \overline{g} (MWmonth) are

Remark 6. The subsystem k = 5 has no thermal generation variable because it represents a transshipment node.

2.1.7 Hydro generation upper bound \overline{q} , storage energy upper bound \overline{v} and initial condition v_1

Each subsystem has only *one* equivalent energy reservoir that aggregates all hydro power plants belonging to a homogeneous hydrological region. Below, we recall the contribution of the storage initial condition v_1 for the energy balance equation on t

$$v_{t+1,k} = v_{t,k} + a_{t,k} - q_{t,k} - s_{t,k},$$

the hydro generation upper bound \overline{q} and storage energy upper bound \overline{v} contribution on box constraint:

$$0 \le q_{t,k} \le \overline{q}_k, \quad 0 \le v_{t+1,k} \le \overline{v}_k.$$

The hydro generation block is identified by the HYDRO PLANTS keyword. The hydro generation parameters are described below.

VALORES USADOS SAO DA CONFIGURAÇÃO 1 (JAN/2011)

11 1 2 10	0 1 111					
NUM	SYS	NAME	PRODFACT	MAX TURB	MAX VOL	INIT VOL
1	1	REE SUDESTE	1	45414.3	200717.6	59419.3
2	2	REE SUL	1	13081.5	19617.2	5874.9
3	3	REE NORDESTE	1	9900.9	51806.1	12859.2
4	4	REE NORTE	1	7629.9	12744.9	5271.5
999						

Based on these registers, the corresponding values in the math formulation are

$$\begin{array}{llll} v_{1,1} = 59419.3 & \overline{q}_1 = 45414.3 & \overline{v}_1 = 200717.6 \\ v_{1,2} = 5874.9 & \overline{q}_2 = 13081.5 & \overline{v}_2 = 19617.2 \\ v_{1,3} = 12859.2 & \overline{q}_3 = 9900.9 & \overline{v}_3 = 51806.1 \\ v_{1,4} = 5271.5 & \overline{q}_4 = 7629.9 & \overline{v}_4 = 12744.9 \end{array}$$

Remark 7. Subsystem k = 5 has no hydro generation variable because it represents a transshipment node.

2.1.8 Energy interchange capacity \overline{f}_{kl}

Transmission lines connect subsystems and allow the energy interchange between them. Below, we recall the contribution of the interchange capacity \overline{f}_{kl} in the box constraint:

$$0 \le f_{t,kl} \le \overline{f}_{kl}.$$

The interchange capacity block is identified by the ENERGY EXCHANGES CAPACITY BETWEEN SYSTEMS keyword. The interchange capacity \overline{f} and the set Ω_k of subsystems directly connected to a given subsystem k are described below.

CAPACIDADES DE INTERCAMBIO DE DEZ/12 FORAM USADAS ENERGY EXCHANGES CAPACITY BETWEEN SYSTEMS

				~	~					_	
5	SYS	4	SYS	3	SYS	2	SYS	1	SYS	TO	FROM
000	40	0		00	10	379	7	999	999999	1	SYS
0		0		0		999	99999	625	56	2	SYS
236	22	0		99	999999	0		600	6	3	SYS
99	999999	99	999999	0		0		0		4	SYS
99	999999	53	30	951	39	0		154	31	5	SYS
											99999

In this particular example, we have the following sets and values:

2.1.9 Energy interchange penalties θ_{lk}

Small penalties for energy interchange indicates to the model a preference for meeting the demand with generation from the same subsystem if there are multiple optimal solutions (considering only costs). Below, we recall the energy interchange penalty θ_{lk} contribution to the objective function:

$$\sum_{k=1}^{n_s} \left(\sum_{j \in T_k} c_j g_{t,j} + \sum_{i=1}^{n_d} \tilde{c}_i \, \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \theta_{lk} f_{t,lk} + \tilde{\theta}_k s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}]).$$

The interchange capacity block is identified by the ENERGY EXCHANGES PENALTIES keyword. The energy interchange penalties θ_{lk} are described below.

ENERGY	ΕX	CHANGES	PΕ	NALTIES							
FROM/	TO	SYS	1	SYS	2	SYS	3	SYS	4	SYS	5 5
-			-		-						
SYS	1		0	0.00	1	0.0	01	0.0	001	0.0	0005
SYS	2	0.00	1		0	0.0	01	0.0	001	0.0	0005
SYS	3	0.00	1	0.00	1		0	0.0	001	0.0	0005
SYS	4	0.00	1	0.00	1	0.0	01		0	0.0	0005
SYS	5	0.000	5	0.000	5	0.00	05	0.00	005		0
99999											

In this particular example, we have the following values:

2.1.10 Energy interchange loss factor r_{lk}

Energy losses for energy interchange is represented by a constant factor r_{lk} . Below, we recall the energy interchange loss factor r_{lk} contribution to the load balance equation:

$$q_{t,k} + \sum_{i \in T_k} g_{t,j} + \sum_{i=1}^{n_d} \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \left(r_{lk} f_{t,lk} - f_{t,kl} \right) = d_{t,k}.$$

The energy interchange loss factors are generated from the block identified by the ENERGY EXCHANGES LOSS FACTORS keyword.

ENERGY	EX(CHANGES	LOSS	FACT	ORS	(PU)					
FROM/	TO	SYS	1	SYS	2	SYS	3	SYS	4	SYS	5
-											
SYS	1		0	0.0	01	0.0	01	0.0	01	0.0	005
SYS	2	0.00	1		0	0.0	01	0.0	01	0.0	005
SYS	3	0.00	1	0.0	01		0	0.0	01	0.0	005
SYS	4	0.00	1	0.0	01	0.0	01		0	0.0	005
SYS	5	0.000)5	0.00	05	0.00	05	0.00	05		0
99999											

In this particular example, we have the following values:

$$\Omega_1 = \{2,3,5\}$$
 $\Omega_2 = \{1\}$ $\Omega_3 = \{1,5\}$ $\Omega_4 = \{5\}$ $\Omega_5 = \{1,3,4\}$ $r_{12} = 1 - 0.001$ $r_{21} = 1 - 0.001$ $r_{31} = 1 - 0.0005$ $r_{45} = 1 - 0.0005$ $r_{51} = 1 - 0.0005$ $r_{53} = 1 - 0.0005$ $r_{54} = 1 - 0.0005$

2.1.11 Spillage penalty $\tilde{\theta}_k$

Small penalties for energy spillage indicates to the model a preference for not spilling hydro energy if there are multiple optimal solutions (considering only costs). Below, we recall the energy spillage penalty $\tilde{\theta}_k$ contribution to the objective function:

$$\sum_{k=1}^{n_s} \left(\sum_{j \in T_k} c_j g_{t,j} + \sum_{i=1}^{n_d} \tilde{c}_i \, \mathrm{df}_{t,ki} + \sum_{l \in \Omega_k} \theta_{lk} f_{t,lk} + \tilde{\theta}_k s_{t,k} \right) + \beta \mathcal{Q}_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}]).$$

These penalties are hard coded and have the following values:

$$\begin{split} \tilde{\theta}_1 &= 0.001 \\ \tilde{\theta}_2 &= 0.001 \\ \tilde{\theta}_3 &= 0.001 \\ \tilde{\theta}_4 &= 0.001 \end{split}.$$

Remark 8. Subsystem k = 5 has no spillage variable because it represents a transshipment node.

2.2 linear_models.txt file

2.2.1 PVAR_m coefficients ζ_t , $\Phi_{t,\nu}$ and maximum order \hat{p}

The multiplicative time-series model PVAR_m is used to describe the uncertainty of the inflow a_t . It is instructive to emphasize the following properties of this model:

- linearity this property allows us to add the time-series model equation as constraints and the stochastic programming problem remains linear;
- error independence After adding the time-series model equation as constraints, the inflow becomes a variable and the multiplicative error becomes the stochastic program uncertainty. This is interesting for computational purpose, since the stagewise independence property reduces the number of cost-to-go functions to one per stage. From an algorithm perspective, this consequence allows us to share cuts;
- positive variables With an appropriate parameter estimation, the multiplicative model $PVAR_m$ ensure that all inflow scenarios are positive.

The first two properties are requirements of the original SDDP algorithm. The third property is an important stylized fact, since the inflows are always nonnegative. Below, we recall the coefficients ζ_t , $\Phi_{t,\nu}$ and maximum order \hat{p} contributions to the PVAR_m time-series equation:

$$a_{t,k} = \left(\zeta_{t,k} + \sum_{\nu=1}^{\widehat{p}} \sum_{l=1}^{n_s} \phi_{t\nu,kl} a_{t-\nu,l}\right) \cdot \eta_{t,k}.$$

In this model, the maximum order \hat{p} and the periodicity \mathbb{S} are hard coded and equal to 1 and 12, respectively. The coefficients ζ_t , $\Phi_{t,\nu}$ block is identified by the MONTH keyword followed by the month associated to the time t.

MONTH: COEF#	_	1	PLANT	2	PLANT	3	PLANT	4
0	19053.	62	3458.3	317	6955.	198	2305.3	304
	0.86584			0		0		0
2		0	0.38772	219		0		0
3		0		0	0.7045	067		0
4		0		0		0	1.270	784
99999								
MONTH:	2							
	_	1	PLANT	2	PLANT	3	PLANT	4
0	21290.	56	2536.1	L89	2532.	467	5104.	156
1	0.65395	29		0		0		0
2		0	0.69039			0		0
3		0		-	0.8295			0
4		0		0		0	0.7327	121
99999								
MONTH:	3							
COEF#	PLANT	1	PLANT	2	PLANT	3	PLANT	4
0	21292.	61	2611 (161	480 6	702	4828.9	261
-	0.55602		2011.0	0	400.0	0	4020.	0
2	0.00002		0.4754	•		0		0
3		0	3.110		0.9531	-		0
4		0		0		0	0.763	194
99999								

In this particular example, we have the following vector and matrices:

$$\Phi_{1,1} = \begin{pmatrix} 0.8658406 & 0 & 0 & 0 \\ 0 & 0.3877219 & 0 & 0 \\ 0 & 0 & 0.7045067 & 0 \\ 0 & 0 & 0 & 1.270784 \end{pmatrix}, \qquad \zeta_1 = \begin{pmatrix} 19053.62 \\ 3458.317 \\ 6955.198 \\ 2305.304 \end{pmatrix},$$

$$\Phi_{2,1} = \begin{pmatrix} 0.6539529 & 0 & 0 & 0 \\ 0 & 0.6903953 & 0 & 0 \\ 0 & 0 & 0.8295804 & 0 \\ 0 & 0 & 0 & 0.7327421 \end{pmatrix}, \qquad \zeta_2 = \begin{pmatrix} 21290.56 \\ 2536.189 \\ 2532.467 \\ 5104.156 \end{pmatrix},$$

$$\Phi_{3,1} = \begin{pmatrix} 0.55602070 & 0 & 0 & 0 \\ 0 & 0.475443 & 0 & 0 \\ 0 & 0 & 0.9531763 & 0 \\ 0 & 0 & 0 & 0.763194 \end{pmatrix}, \qquad \zeta_3 = \begin{pmatrix} 21292.61 \\ 2611.061 \\ 480.6702 \\ 4828.961 \end{pmatrix}.$$

Remark 9. Subsystem k = 5 has no inflow variable because it represents a transshipment node.

2.2.2 PVAR_m initial conditions $\{a_0, \ldots, a_{-\hat{p}+1}\}$

The initial inflow condition $\{a_0, \ldots, a_{-\hat{p}+1}\}$ is necessary to initialize the stochastic process $\{a_t\}_{t=1}^T$ defined by the PVAR_m model. Below, we recall the contributions of the initial inflow condition $\{a_0, \ldots, a_{-\hat{p}+1}\}$ to the corresponding time-series equation from time t=1 to time $t=\hat{p}$:

$$a_{t,k} = \left(\zeta_{t,k} + \sum_{\nu=1}^{\widehat{p}} \sum_{l=1}^{n_s} \phi_{t\nu,kl} a_{t-\nu,l}\right) \cdot \eta_{t,k}.$$

The initial inflow conditions $\{a_0,\ldots,a_{-\hat{p}+1}\}$ is identified by the PAST INFLOWS keyword.

PAST INFLOWS:

LAG	PLANT	1	PLANT	2	PLANT	3	PLANT	4
01	39717.	564	6632.5	5141	15897	. 183	2525.2	2938
99999								

In this particular example, we have the following initial inflow condition:

$$a_0 = \begin{pmatrix} 39717.564 \\ 6632.5141 \\ 15897.183 \\ 2525.2938 \end{pmatrix}.$$

Remark 10. Subsystem k=5 has no inflow variable because it represents a transshipment node.

2.3 scenarios.txt file

2.3.1 PVAR_m multiplicative error η_t

The multiplicative error scenario tree is implicitly described, on each stage, by a list of outcomes and marginal probabilities. This particular representation is possible due to the stagewise independence property of the multiplicative error η_t . Below, we provide an illustration of a general inflow tree (fig.1a) and a stagewise independent noise tree (fig.1b). For example, the outcomes of the inflow a_t from stage t = 3 are $\{a^5, a^6, a^7, a^8, a^9, a^{10}\}$. Because of the stagewise independence, the outcomes of the multiplicative noise η_t from stage t = 3 are just $\{\eta^5, \eta^6\}$. Also, the conditional probability $p_{2,5}$, for instance, from the inflow tree (fig.1a) is

$$p_{2,5} = \mathbb{P}[a_3 = a^5 \mid a_2 = a^2, \ a_1 = a^1].$$

On the other hand, the conditional probability $p_{2,5}$ from the multiplicative noise tree (fig.1b) can be further simplified

$$p_{2,5} = \mathbb{P}[\eta_3 = \eta^5 \mid \eta_2 = \eta^2, \ \eta_1 = \eta^1]$$

= $\mathbb{P}[\eta_3 = \eta^5],$

due to the stagewise independence property.

Below, we recall the contribution of the multiplicative error scenario tree to the Sample Average Approximation (SAA) of the cost-to-go function:

$$Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}]) = \begin{cases} \rho_{t+1}\left[Q_{t+1}([v_{t+1}, a_{[t+1-\widehat{p},t]}], \eta_{t+1})\right] &, t \in \{1, \dots, T-1\} \\ 0 &, t = T \end{cases},$$

where $\rho_t[Z_t] = (1 - \lambda)\mathbb{E}[Z_t] + \lambda \text{AV@R}_{\alpha}[Z_t]$, and the multiplicative error η_t contribution to the corresponding time-series equation:

$$a_{t,k} = \left(\zeta_{t,k} + \sum_{\nu=1}^{\widehat{p}} \sum_{l=1}^{n_s} \phi_{t\nu,kl} a_{t-\nu,l}\right) \cdot \eta_{t,k}.$$

$$a^2 \qquad p_{2,5} \qquad 5 \qquad a^5$$

$$2 \qquad p_{2,6} \qquad 6 \qquad a^6$$

$$2 \qquad p_{2,6} \qquad 6 \qquad \eta^2 \qquad p_{2,5} \qquad 5 \qquad \eta^5$$

$$2 \qquad p_{2,6} \qquad 6 \qquad \eta^6$$

$$7 \qquad a^7 \qquad p_{2,6} \qquad 6 \qquad \eta^6$$

$$p_{1,3} \qquad 3 \qquad p_{3,8} \qquad 8 \qquad a^8 \qquad \eta^1 \qquad p_{1,3} \qquad 3 \qquad p_{3,7} = p_{2,5} \qquad 7 \qquad \eta^7 = \eta^5$$

$$p_{3,8} = p_{2,6} \qquad 8 \qquad \eta^8 = \eta^6$$

$$p_{4,10} = p_{2,6} \qquad 10 \qquad \eta^{10} = \eta^6$$

Figure 1: Probability tree

(b) Stagewise independent noise tree

The multiplicative error η_t and the corresponding marginal distribution block is identified by the SCENARIOS keyword.

SCENARIOS					
STAGE	PROB	NOISE 1	NOISE 2	NOISE 3	NOISE 4
1	1	1	1	1	1
2	0.01	1.114361	0.9465053	1.129625	1.083902
2	0.01	1.85045	0.9829512	2.512377	2.108396
2	0.01	0.8134146	1.5349	0.5319363	0.6795749
2	0.01	1.646692	1.574305	1.782563	1.774331
120	0.01	1.147625	0.5115445	1.301088	1.018563
120	0.01	1.08623	0.8097364	0.9884022	0.9619588
120	0.01	0.8509878	1.723977	0.6564894	0.6487821
120	0.01	1.065119	1.893918	0.8602847	0.7493693
120	0.01	0.7375268	0.8348935	0.5918711	0.8142026
9999999					

2.4 scenarios_efs.txt

2.4.1 Out-of-sample multiplicative error scenario tree

(a) General inflow tree

After performing the optimization procedure, it is important to evaluate the corresponding policy approximation. This is done by sampling multiplicative error scenarios $\eta^i_{[T]} := (\eta^i_1, \eta^i_2, \dots, \eta^i_T)$ and

solving each stage problem (1) with the respective cost-to-go function approximation from stage 1 to T. In this way, we assess the costs and decisions distributions for those sampled scenarios and judge if this modeling approach is reasonable. The multiplicative error scenario samples are obtained from an implicit scenario tree, similar to the one used in the optimization procedure.

The multiplicative error η_t and the corresponding marginal distribution block is identified by the SCENARIOS keyword.

SCENARIOS					
STAGE	PROB	NOISE 1	NOISE 2	NOISE 3	NOISE 4
1	1	1	1	1	1
2	0.01	1.114361	0.9465053	1.129625	1.083902
2	0.01	1.85045	0.9829512	2.512377	2.108396
2	0.01	0.8134146	1.5349	0.5319363	0.6795749
2	0.01	1.646692	1.574305	1.782563	1.774331
120	0.01	1.147625	0.5115445	1.301088	1.018563
120	0.01	1.08623	0.8097364	0.9884022	0.9619588
120	0.01	0.8509878	1.723977	0.6564894	0.6487821
120	0.01	1.065119	1.893918	0.8602847	0.7493693
120	0.01	0.7375268	0.8348935	0.5918711	0.8142026
9999999					

3 Output description

The first stage linear programming problem for the initial iteration od the SDDP algorithm (that is, before any cut is generated) is given below.

\Problem name:

```
Minimize
              0.00100 SpillVol_1 +
                                          0.00100 SpillVol_2 +
Stage_1:
               0.00100 SpillVol_3 +
                                          0.00100 SpillVol_4
            21.49000 ThermalGen_1 +
                                      18.96000 ThermalGen_13
                 937 ThermalGen_7 + 194.79000 ThermalGen_88
          222.22000 ThermalGen_89 + 140.58000 ThermalGen_104
            6.27000 ThermalGen_12 + 505.92000 ThermalGen_153 +
            0.01000 ThermalGen_65 + 112.46000 ThermalGen_183 +
         159.97000 ThermalGen_187 + 250.87000 ThermalGen_189 +
         550.66000 ThermalGen_155 + 188.89000 ThermalGen_63 +
           645.30000 ThermalGen_2 +
                                           150 ThermalGen_54 +
          145.68000 ThermalGen_15 + 274.54000 ThermalGen_178 +
         253.83000 ThermalGen_179 + 37.80000 ThermalGen_171 +
         51.93000 ThermalGen_172 + 90.69000 ThermalGen_173 +
         131.68000 ThermalGen_174 +
                                     317.98000 ThermalGen_72 +
         152.80000 ThermalGen_105 + 470.34000 ThermalGen_50 +
         317.98000 ThermalGen_66 +
                                      523.35000 ThermalGen_9 +
           730.54000 ThermalGen_3 +
                                      310.41000 ThermalGen_4 +
         730.54000 ThermalGen_87 + 101.33000 ThermalGen_197 +
         140.34000 ThermalGen_198 + 292.49000 ThermalGen_51
         610.33000 ThermalGen_193 + 487.56000 ThermalGen_194 +
          122.65000 ThermalGen_75 +
                                     214.48000 ThermalGen_77 +
         1047.38000 ThermalGen_19 +
                                     0.01000 ThermalGen_196 +
         329.57000 ThermalGen_49 +
                                     197.85000 ThermalGen_34 +
         733.54000 ThermalGen_108 +
                                     564.57000 ThermalGen_31 +
               219 ThermalGen_199 +
                                           219 ThermalGen_48 +
         50.47000 ThermalGen_156 +
                                     541.93000 ThermalGen_64 +
```

```
218.77000 ThermalGen_28 + 189.54000 ThermalGen_26 +
          143.04000 ThermalGen_27 +
                                       142.86000 ThermalGen_25 +
          116.90000 ThermalGen_24 +
                                              780 \; ThermalGen_30 +
          115.90000 ThermalGen_22 + 115.90000 ThermalGen_23 +
          248.31000 \; \text{ThermalGen}_32 + 141.18000 \; \text{ThermalGen}_35 +
         464.64000 ThermalGen_109 + 464.64000 ThermalGen_111 +
         455.13000 ThermalGen_112 + 464.64000 ThermalGen_113 +
          834.35000 \; ThermalGen_93 + 509.86000 \; ThermalGen_164 +
         509.86000 ThermalGen_166 + 464.64000 ThermalGen_117 +
         464.64000 ThermalGen_119 + 185.09000 ThermalGen_175 +
         492.29000 ThermalGen_177 + 464.64000 ThermalGen_121 +
         464.64000 ThermalGen_125 + 188.15000 ThermalGen_74 +
           82.34000 \; \text{ThermalGen}\_42 \; + \; 329.37000 \; \text{ThermalGen}\_53 \; + \;
          329.37000 \; ThermalGen\_55 + 464.64000 \; ThermalGen\_127 +
         464.64000 ThermalGen_131 + 464.64000 ThermalGen_133 +
          317.19000 ThermalGen_57 + 464.64000 ThermalGen_135 +
         464.64000 ThermalGen_138 + 678.03000 ThermalGen_160 +
         559.39000 ThermalGen_144 + 611.57000 ThermalGen_151 +
         611.56000 ThermalGen_161 + 204.43000 ThermalGen_43 +
         325.67000 ThermalGen_152 + 678.03000 ThermalGen_159 +
          329.20000 ThermalGen_67 +
                                       70.16000 ThermalGen_96 +
          287.83000 ThermalGen_83 + 329.56000 ThermalGen_70 +
          329.56000 ThermalGen_73 +
                                        1142.80000 Deficit_1_1 +
           2465.40000 Deficit_1_2 +
                                        5152.46000 \; Deficit_1_3 +
           5845.54000 Deficit_1_4 +
                                        1142.80000 \; Deficit_2_1 +
           2465.40000 \; \text{Deficit}_2_2 \; + \;
                                        5152.46000 \; Deficit_2_3 +
           5845.54000 \; Deficit_2_4 +
                                        1142.80000 Deficit_3_1 +
           2465.40000 \; Deficit_3_2 +
                                        5152.46000 \; Deficit_3_3 +
           5845.54000 \; Deficit_3_4 +
                                        1142.80000 Deficit_4_1 +
           2465.40000 \; Deficit_4_2 \; + \;
                                        5152.46000 \; Deficit_4_3 +
           5845.54000 Deficit_4_4 +
                                        1142.80000 \; Deficit_5_1 +
           2465.40000 \; Deficit_5_2 +
                                        5152.46000 \; Deficit_5_3 +
           5845.54000 \; Deficit_5_4 +
                                          0.00100 Exchange_1_2 +
              0.00100 Exchange_1_3 +
                                          0.00050 Exchange_1_5 +
              0.00050 Exchange_3_5 +
                                          0.00050 Exchange_4_5 +
              0.00100 Exchange_2_1 +
                                          0.00100 Exchange_3_1 +
              0.00050 Exchange_5_1 +
                                          0.00050 Exchange_5_3 +
              0.00050 Exchange_5_4 +
                                                   0.99060 alfa
Subject To
D_Supply_1:
                         TurbVol_1 +
                                                   ThermalGen_1 +
                     ThermalGen_13 +
                                                   ThermalGen_7 +
                     ThermalGen_88 +
                                                  ThermalGen_89 +
                    ThermalGen_104 +
                                                  ThermalGen_12 +
                    ThermalGen 153 +
                                                  ThermalGen_65 +
                    ThermalGen_183 +
                                                 ThermalGen_187 +
                    ThermalGen_189 +
                                                 ThermalGen_155 +
                     ThermalGen_63 +
                                                   ThermalGen_2 +
                     ThermalGen_54 +
                                                  ThermalGen_15 +
                    ThermalGen_178 +
                                                 ThermalGen_179 +
                    ThermalGen 171 +
                                                 ThermalGen 172 +
                    ThermalGen_173 +
                                                 ThermalGen_174 +
                     ThermalGen_72 +
                                                 ThermalGen_105 +
                     ThermalGen_50 +
                                                  ThermalGen_66 +
                      ThermalGen_9 +
                                                   ThermalGen_3 +
                      ThermalGen_4 +
                                                  ThermalGen_87 +
                    ThermalGen_197 +
                                                 ThermalGen_198 +
                     ThermalGen 51 +
                                                 ThermalGen_193 +
                    ThermalGen_194 +
                                                  ThermalGen_75 +
```

154.10000 ThermalGen_29 + 180.51000 ThermalGen_169 +

```
ThermalGen_77 +
                                                 ThermalGen_19 +
                    ThermalGen_196 +
                                                 ThermalGen_49 +
                     ThermalGen_34 +
                                                ThermalGen_108 +
                       Deficit_1_1 +
                                                   Deficit_1_2 +
                       Deficit_1_3 +
                                                   Deficit_1_4 -
                      Exchange_1_2 -
                                                  Exchange_1_3 -
                      Exchange_1_5 +
                                                  Exchange_2_1 +
                      Exchange_3_1 +
                                                  Exchange_5_1 = 45515
D_Supply_2:
                         TurbVol_2 +
                                                 ThermalGen_31 +
                    ThermalGen_199 +
                                                 ThermalGen_48 +
                    ThermalGen_156 +
                                                 ThermalGen_64 +
                    ThermalGen_29 +
                                                ThermalGen_169 +
                    ThermalGen_28 +
                                                 ThermalGen_26 +
                    ThermalGen_27 +
                                                 ThermalGen_25 +
                    ThermalGen_24 +
                                                 ThermalGen_30 +
                     ThermalGen_22 +
                                                 ThermalGen_23 +
                     ThermalGen_32 +
                                                 ThermalGen_35 +
                       Deficit_2_1 +
                                                   Deficit_2_2 +
                       Deficit_2_3 +
                                                   Deficit_2_4 +
                      Exchange_1_2 -
                                                  Exchange_2_1 = 11692
D_Supply_3:
                         TurbVol_3 +
                                                ThermalGen_109 +
                    ThermalGen_111 +
                                                ThermalGen_112 +
                    ThermalGen_113 +
                                                 ThermalGen_93 +
                    ThermalGen_164 +
                                                ThermalGen_166 +
                    ThermalGen_117 +
                                                ThermalGen_119 +
                                                ThermalGen_177 +
                    ThermalGen_175 +
                    ThermalGen_121 +
                                                ThermalGen_125 +
                    ThermalGen_74 +
                                                 ThermalGen_42 +
                    ThermalGen_53 +
                                                 ThermalGen_55 +
                    ThermalGen_127 +
                                                ThermalGen_131 +
                    ThermalGen_133 +
                                                 ThermalGen_57 +
                    ThermalGen_135 +
                                                ThermalGen_138 +
                   ThermalGen_160 +
                                                ThermalGen_144 +
                    ThermalGen_151 +
                                                ThermalGen_161 +
                    ThermalGen_43 +
                                                ThermalGen_152 +
                    ThermalGen_159 +
                                                 ThermalGen_67 +
                     ThermalGen_96 +
                                                 ThermalGen_83 +
                       Deficit_3_1 +
                                                   Deficit_3_2 +
                                                   Deficit_3_4 +
                       Deficit_3_3 +
                      Exchange_1_3 -
                                                  Exchange_3_5 -
                      Exchange_3_1 +
                                                  Exchange_5_3 = 10811
D_Supply_4:
                         TurbVol_4 +
                                                 ThermalGen_70 +
                     ThermalGen_73 +
                                                   Deficit_4_1 +
                       Deficit_4_2 +
                                                   Deficit_4_3 +
                       Deficit_4_4 -
                                                  Exchange_4_5 +
                      Exchange_5_4 = 6507
D_Supply_5:
                       Deficit_5_1 +
                                                   Deficit_5_2 +
                       Deficit_5_3 +
                                                   Deficit_5_4 +
                      Exchange_1_5 +
                                                  Exchange_3_5 +
                      Exchange_4_5 -
                                                  Exchange_5_1 -
                      Exchange_5_3 -
                                                  Exchange_5_4 = 0
H_Balance_1:
                         TurbVol_1 +
                                                    SpillVol_1 +
                          StoVol_1 = 112861.99944
                         TurbVol_2 +
H_Balance_2:
                                                    SpillVol_2 +
                          StoVol_2 = 11904.78797
H_Balance_3:
                         TurbVol_3 +
                                                    SpillVol_3 +
                          StoVol_3 = 31014.06993
H_Balance_4:
                         TurbVol_4 +
                                                    SpillVol_4 +
                          StoVol_4 = 10785.90696
```

```
Bounds
 0
            <= TurbVol_1
                                  <= 45414.30000
 0
            <= TurbVol_2
                                  <= 13081.50000
 0
            <= TurbVol_3
                                  <= 9900.90000
 0
            <= TurbVol_4
                                  <= 7629.90000
 0
            <= StoVol_1
                                  <= 200717.60000
 Λ
            <= StoVol_2
                                  <= 19617.20000
 0
            <= StoVol_3
                                  <= 51806.10000
 0
            <= StoVol_4
                                  <= 12744.90000
            <= ThermalGen_1</pre>
                                  <= 657
 520
 1080
            <= ThermalGen_13</pre>
                                  <= 1350
            <= ThermalGen_7</pre>
                                  <= 36
 59.30000 <= ThermalGen_88
                                  <= 250
 27.10000 <= ThermalGen_89
                                  <= 250
            <= ThermalGen_104 <= 28</pre>
 0
            <= ThermalGen_12</pre>
                                  <= 529
            <= ThermalGen_153 <= 44
 219.78000 <= ThermalGen_65
                                 <= 255
 199.99000 <= ThermalGen_183 <= 235
 0
            <= ThermalGen_187 <= 386</pre>
 0
            <= ThermalGen_189 <= 386</pre>
 0
            <= ThermalGen_155 <= 145</pre>
 0
            <= ThermalGen_63 <= 226</pre>
            <= ThermalGen_2</pre>
                                  <= 131
            <= ThermalGen_54 <= 87</pre>
 0
 O
            <= ThermalGen_15 <= 204</pre>
            <= ThermalGen_178 <= 923
 0
            <= ThermalGen_179 <= 923</pre>
 0
 399.99000 <= ThermalGen_171 <= 400
            <= ThermalGen_172 <= 100</pre>
 0
            <= ThermalGen_173 <= 200</pre>
 0
            <= ThermalGen_174 <= 169</pre>
 O
            <= ThermalGen_72 <= 386
 0
            <= ThermalGen_105 <= 28</pre>
 0
            <= ThermalGen_50</pre>
                                 <= 200
 0
            <= ThermalGen_66</pre>
                                 <= 272
            <= ThermalGen_9</pre>
                                  <= 30
 0
           <= ThermalGen_3</pre>
                                  <= 168
            <= ThermalGen_4</pre>
                                  <= 440
 0
            <= ThermalGen_87</pre>
 0
                                  <= 400
            <= ThermalGen_197 <= 258</pre>
 0
 0
            <= ThermalGen_198 <= 258</pre>
 0
            <= ThermalGen_51 <= 258
 0
            <= ThermalGen_193 <= 64</pre>
 0
            <= ThermalGen_194 <= 340</pre>
 71.70000 <= ThermalGen_75 <= 1058
 28.80000 <= ThermalGen_77
                                <= 1058
            <= ThermalGen_19 <= 10</pre>
 132.98000 <= ThermalGen_196 <= 197
            <= ThermalGen_49 <= 175</pre>
 0
            <= ThermalGen_34 <= 206</pre>
            <= ThermalGen_108 <= 54</pre>
 0
            <= ThermalGen_31 <= 66</pre>
 0
            <= ThermalGen_199 <= 485</pre>
 0
 0
            <= ThermalGen_48 <= 485</pre>
 210
            <= ThermalGen_156 <= 350</pre>
 0
            <= ThermalGen_64</pre>
                                 <= 161
 27
            <= ThermalGen_29</pre>
                                  <= 72
 0
            <= ThermalGen_169 <= 4
```

```
9.56000
            <= ThermalGen_28</pre>
                                  <= 20
25
            <= ThermalGen_26</pre>
                                  <= 100
79.46000
            <= ThermalGen_27</pre>
                                  <= 132
147.54000 <= ThermalGen_25
                                  <= 262
228.02000 <= ThermalGen_24
                                  <= 363
0
            <= ThermalGen_30</pre>
                                  <= 24
49.66000
           <= ThermalGen_22</pre>
                                  <= 126
105
            <= ThermalGen_23</pre>
                                  <= 320
5
            <= ThermalGen_32</pre>
                                  <= 20
0
                                  <= 640
            <= ThermalGen_35</pre>
0
            <= ThermalGen_109 <= 13</pre>
            <= ThermalGen_111 <= 11</pre>
0
            <= ThermalGen_112 <= 32</pre>
0
0
            <= ThermalGen_113 <= 11</pre>
0.70000
            <= ThermalGen_93 <= 347</pre>
0
            <= ThermalGen_164 <= 152</pre>
0
            <= ThermalGen_166 <= 150</pre>
0
            <= ThermalGen_117 <= 13</pre>
0
            <= ThermalGen_119 <= 15</pre>
0
            <= ThermalGen_175 <= 220</pre>
0
            <= ThermalGen_177 <= 220</pre>
0
            <= ThermalGen_121 <= 13</pre>
0
            <= ThermalGen_125 <= 15</pre>
0
            <= ThermalGen_74 <= 138</pre>
223
            <= ThermalGen_42 <= 347</pre>
                                 <= 149
            <= ThermalGen_53</pre>
0
            <= ThermalGen_55 <= 149
0
            <= ThermalGen_127 <= 15</pre>
0
0
            <= ThermalGen_131 <= 102</pre>
0
            <= ThermalGen_133 <= 15</pre>
0
            <= ThermalGen_57</pre>
                                  <= 168
0
            <= ThermalGen_135 <= 13</pre>
O
            <= ThermalGen_138 <= 13
0
           <= ThermalGen_160 <= 103</pre>
0
            <= ThermalGen_144 <= 136</pre>
0
            <= ThermalGen_151 <= 53</pre>
0
            <= ThermalGen_161 <= 66</pre>
0
            <= ThermalGen_43 <= 186</pre>
            <= ThermalGen_152 <= 50</pre>
O
            <= ThermalGen_159 <= 156
0
            <= ThermalGen_67</pre>
0
                                  <= 171
348.80000 <= ThermalGen_96
                                  <= 533
0
            <= ThermalGen_83</pre>
                                  <= 323
0
            <= ThermalGen_70</pre>
                                  <= 166
0
            <= ThermalGen_73</pre>
                                  <= 166
0
            <= Deficit_1_1</pre>
                                  <= 2275.75000
0
            <= Deficit_1_2</pre>
                                  <= 2275.75000
0
            <= Deficit_1_3</pre>
                                  <= 4551.50000
0
            <= Deficit_1_4</pre>
                                  <= 36412
                                  <= 584.60000
0
            <= Deficit_2_1
            <= Deficit_2_2
0
                                  <= 584.60000
            <= Deficit_2_3
                                  <= 1169.20000
0
            <= Deficit_2_4
                                  <= 9353.60000
0
            <= Deficit_3_1
                                  <= 540.55000
0
0
            <= Deficit_3_2</pre>
                                  <= 540.55000
0
            <= Deficit_3_3</pre>
                                  <= 1081.10000
0
            <= Deficit_3_4</pre>
                                  <= 8648.80000
0
            <= Deficit_4_1
                                  <= 325.35000
0
            <= Deficit_4_2</pre>
                                  <= 325.35000
```

```
<= 650.70000
<= 5205.60000
<= 0
<= 0
0
         <= Deficit_4_3
          <= Deficit_4_4
0
0
          <= Deficit_5_1
0
          <= Deficit_5_2
                             <= 0
0
          <= Deficit_5_3
                             <= 0
0
          <= Deficit_5_4
                             <= 0
0
                            <= 7379
          <= Exchange_1_2</pre>
0
         <= Exchange_1_3 <= 1000
0
         <= Exchange_1_5 <= 4000
         <= Exchange_3_5 <= 2236
0
0
         <= Exchange_4_5
                            <= 99999999
0
         <= Exchange_2_1
                            <= 5625
          <= Exchange_3_1</pre>
0
                            <= 600
          <= Exchange_5_1
                            <= 3154
0
                            <= 3951
          <= Exchange_5_3
0
0
                            <= 3053
          <= Exchange_5_4</pre>
End
```