Crash course on entanglement theory

Ray Ganardi

2023.11.24

CeNT, University of Warsaw, Poland

State	Expectation value
$ \psi angle$	$ra{\psi}X\ket{\psi}$

State	Expectation value
$ \psi angle$	$\langle \psi X \psi \rangle$
$\{(p_i, \psi_i\rangle)\}$	$\sum_{i} p_{i} \langle \psi_{i} X \psi_{i} \rangle = \operatorname{Tr} \left(\left(\sum_{i} p_{i} \psi_{i} \rangle \langle \psi_{i} \right) X \right)$

State	Expectation value
$ \psi\rangle$	$\langle \psi X \psi \rangle$
$\{(p_i, \psi_i\rangle)\}$	$\sum_{i} p_{i} \langle \psi_{i} X \psi_{i} \rangle = \operatorname{Tr} \left(\left(\sum_{i} p_{i} \psi_{i} \rangle \langle \psi_{i} \right) X \right)$
$\rho = \sum_{i} p_{i} \psi_{i}\rangle\langle\psi_{i} $	$\operatorname{Tr}\left(ho X ight)$

State	Expectation value
$ \psi angle$	$\langle \psi X \psi \rangle$
	$\sum_{i} p_{i} \langle \psi_{i} X \psi_{i} \rangle = \operatorname{Tr} \left(\left(\sum_{i} p_{i} \psi_{i} \rangle \langle \psi_{i} \right) X \right)$
$\rho = \sum_{i} p_i \psi_i\rangle\langle\psi_i $	$\operatorname{Tr}\left(ho X ight)$

A (mixed) state is represented by a density matrix ρ s.t.

- 1. $\rho \ge 0$
- 2. Tr $\rho = 1$

 $\mathcal{D} \subset \mathcal{M}$ the set of all density matrices

We could say $\rho_{AB}=\rho_A\otimes\rho_B$

We could say $\rho_{AB}=\rho_A\otimes\rho_B$

Only makes sense if the systems are uncorrelated

We could say $\rho_{AB} = \rho_A \otimes \rho_B$

Only makes sense if the systems are uncorrelated

Example

$$\rho_{AB} = \frac{1}{2} |00\rangle\langle00| + \frac{1}{2} |11\rangle\langle11|, \text{ while } \rho_A \otimes \rho_B = \frac{1}{2} \otimes \frac{1}{2}$$

3

We could say $\rho_{AB} = \rho_A \otimes \rho_B$

Only makes sense if the systems are uncorrelated

Example

$$\rho_{AB}=\frac{1}{2}\left|00\right\rangle\!\!\left\langle 00\right|+\frac{1}{2}\left|11\right\rangle\!\!\left\langle 11\right|$$
 , while $\rho_{A}\otimes\rho_{B}=\frac{1}{2}\otimes\frac{1}{2}$

In general, $\rho_{AB}=\sum_{i}p_{i}\left|\psi_{i}\right\rangle\!\langle\psi_{i}|_{AB}$, where $\left|\psi_{i}\right\rangle_{AB}\in\mathcal{H}_{A}\otimes\mathcal{H}_{B}$

What is entanglement?

What is entanglement?

non-classical correlation

What is entanglement?

non-classical correlation

What is classical correlation?

LOCC: local operations and classical communication

LOCC: local operations and classical communication

Separable states: $ho_{AB} = \sum_i p_i
ho_A^i \otimes
ho_B^i$

LOCC: local operations and classical communication

Separable states: $ho_{AB} = \sum_i p_i
ho_A^i \otimes
ho_B^i$

Entangled states: everything else

LOCC: local operations and classical communication

Separable states: $ho_{AB} = \sum_i p_i
ho_A^i \otimes
ho_B^i$

Entangled states: everything else

Proposition

A pure state ψ_{AB} is separable iff. $\psi_{AB}=\psi_{A}\otimes\psi_{B}$

Entanglement theory

Transformations between entangled states under LOCC

Bipartite pure states

Proposition (Schmidt decomposition)

Given a pure state ψ_{AB} , there exist bases $\{|e_i\rangle_A\}, \{|f_j\rangle_B\}$ such that

$$|\psi_{AB}\rangle = \sum_{i} \sqrt{p_{i}} |e_{i}\rangle_{A} \otimes |f_{i}\rangle_{B}$$

Bipartite pure states

Proposition (Schmidt decomposition)

Given a pure state ψ_{AB} , there exist bases $\{|e_i\rangle_A\},\{|f_j\rangle_B\}$ such that

$$|\psi_{AB}\rangle = \sum_{i} \sqrt{p_i} |e_i\rangle_A \otimes |f_i\rangle_B$$

Theorem (Nielsen's majorization)

$$\begin{array}{l} (|\psi\rangle = \sum_{i} \sqrt{p_{i}} \, |ii\rangle) \rightarrow \left(|\phi\rangle = \sum_{j} \sqrt{q_{j}} \, |jj\rangle\right) \text{ iff.} \\ \sum_{i < k} p_{i} \leq \sum_{j < k} q_{j} \text{ for all } k \text{ (also written } \vec{p} \preceq \vec{q}\text{)} \end{array}$$

7

Bipartite pure states

Proposition (Schmidt decomposition)

Given a pure state ψ_{AB} , there exist bases $\{|e_i\rangle_A\},\{|f_j\rangle_B\}$ such that

$$|\psi_{AB}\rangle = \sum_{i} \sqrt{p_i} |e_i\rangle_A \otimes |f_i\rangle_B$$

Theorem (Nielsen's majorization)

$$\begin{array}{l} (|\psi\rangle = \sum_{i} \sqrt{p_{i}} \, |ii\rangle) \rightarrow \left(|\phi\rangle = \sum_{j} \sqrt{q_{j}} \, |jj\rangle\right) \text{ iff.} \\ \sum_{i < k} p_{i} \leq \sum_{j < k} q_{j} \text{ for all } k \text{ (also written } \vec{p} \preceq \vec{q}\text{)} \end{array}$$

Example

$$|\Phi\rangle=\frac{1}{\sqrt{2}}\,|00\rangle+\frac{1}{\sqrt{2}}\,|11\rangle$$
 can be transformed to any pure two qubit state $|\phi\rangle=\sqrt{q_0}\,|00\rangle+\sqrt{q_1}\,|11\rangle$

$$\psi \not\to \Phi \text{ since} \\ (0.6,0.4) \not\preceq (0.5,0.5)$$

$$\psi \not\rightarrow \Phi$$
 since $(0.6, 0.4) \not \leq (0.5, 0.5)$

$$\psi^{\otimes 2} \to \Phi \text{ since} \\ (0.36, 0.24, 0.24, 0.16) \preceq (0.5, 0.5)$$

$$\psi \not\rightarrow \Phi$$
 since $(0.6, 0.4) \not \leq (0.5, 0.5)$

$$\psi^{\otimes 2} \to \Phi \text{ since} \\ (0.36, 0.24, 0.24, 0.16) \preceq (0.5, 0.5)$$

$$\begin{array}{l} \psi^{\otimes 3} \rightarrow \Phi^{\otimes 2} \text{ since} \\ (0.216, 0.144, 0.144, 0.144, 0.096, 0.096, 0.096, 0.064) \preceq \\ (0.25, 0.25, 0.25, 0.25) \end{array}$$

What's the maximum rate of distillation?

What's the maximum rate of distillation?

Distillable entanglement

$$E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$$

What's the maximum rate of distillation?

Distillable entanglement

$$E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$$

Example

$$E_D\!\left(\sqrt{0.6}\left|00\right\rangle+\sqrt{0.4}\left|11\right\rangle\right)\geq 2/3$$

What's the maximum rate of distillation?

Distillable entanglement

$$E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$$

Example

$$E_D\!\left(\sqrt{0.6}\left|00\right\rangle+\sqrt{0.4}\left|11\right\rangle\right)\geq 2/3$$

Distillable state: $E_D(\rho) > 0$

Bound entangled state: ρ entangled but $E_D(\rho) = 0$

Asymptotic transformations

$$R(\rho \to \sigma) = \sup \left\{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \sigma^{\otimes m} \right\}$$

Asymptotic transformations

$$R(\rho \to \sigma) = \sup \left\{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \sigma^{\otimes m} \right\}$$

Theorem
For pure states,

$$R(\psi \to \phi) = \frac{S(\psi_A)}{S(\phi_A)}$$

Summary

entanglement and LOCC

End of part 1

Summary

- entanglement and LOCC
- Nielsen's majorization

End of part 1

Summary

- entanglement and LOCC
- Nielsen's majorization
- entanglement distillation

End of part 1

Catalytic and asymptotic equivalence for quantum entanglement

Can your bank help you to distill more entanglement? arxiv:2305.03488

Ray Ganardi

2023.11.24

CeNT, University of Warsaw, Poland Joint work with Tulja Varun Kondra and Alexander Streltsov

Entanglement

Entanglement

Separable states: $\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i$

Entanglement

Separable states: $\rho = \sum_i p_i \rho_A^i \otimes \rho_B^i$

Entangled states: not separable

Entanglement

Separable states: $ho = \sum_i p_i
ho_A^i \otimes
ho_B^i$

Entangled states: not separable

Entanglement is useful

Real-life source produces noisy entanglement

Real-life source produces noisy entanglement

Many copies: purify with entanglement distillation

Real-life source produces noisy entanglement

Many copies: purify with entanglement distillation

Distillable entanglement: maximal distillation rate under LOCC

$$E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$$

Real-life source produces noisy entanglement

Many copies: purify with entanglement distillation

Distillable entanglement: maximal distillation rate under LOCC

$$E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$$

Distillable state: $E_D(\rho) > 0$

Bound entangled state: ρ entangled but $E_D(\rho)=0$

Why limit ourselves to LOCC?

Why limit ourselves to LOCC?

What if we can "borrow" entanglement?

Catalysis

definition (exact)

$$\rho \xrightarrow{ec} \sigma$$
 if there exists a catalyst state τ and an LOCC protocol Λ s.t. $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau$

Catalysis

definition (exact)

$$\rho \xrightarrow{ec} \sigma$$
 if there exists a catalyst state τ and an LOCC protocol Λ s.t. $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau$

How powerful is this?

Catalysis

definition (exact)

$$\rho \xrightarrow{ec} \sigma$$
 if there exists a catalyst state τ and an LOCC protocol Λ s.t. $\Lambda(\rho \otimes \tau) = \sigma \otimes \tau$

How powerful is this?

Can we find ρ, σ such that $\rho \not\to \sigma$ but $\rho \xrightarrow{ec} \sigma$?

Jonathan, Plenio (PRL 1999): yes

Jonathan, Plenio (PRL 1999): yes

Single-shot bipartite pure state transformation is governed by majorization (Nielsen, PRL 1999)

$$\sum_i \sqrt{p_i} \, |ii\rangle \to \sum_j \sqrt{q_j} \, |jj\rangle$$
 iff. $\sum_{i < k} p_i \le \sum_{j < k} q_j$ for all k

Jonathan, Plenio (PRL 1999): yes

Single-shot bipartite pure state transformation is governed by majorization (Nielsen, PRL 1999)

$$\sum_i \sqrt{p_i} \ket{ii} \to \sum_j \sqrt{q_j} \ket{jj}$$
 iff. $\sum_{i < k} p_i \le \sum_{j < k} q_j$ for all k

Choose

$$s(\psi) = (0.4, 0.4, 0.1, 0.1)$$

$$s(\phi) = (0.5, 0.25, 0.25)$$

Jonathan, Plenio (PRL 1999): yes

Single-shot bipartite pure state transformation is governed by majorization (Nielsen, PRL 1999)

$$\sum_i \sqrt{p_i} |ii\rangle \to \sum_j \sqrt{q_j} |jj\rangle$$
 iff. $\sum_{i < k} p_i \le \sum_{j < k} q_j$ for all k Choose

$$s(\psi) = (0.4, 0.4, 0.1, 0.1)$$

$$s(\phi) = (0.5, 0.25, 0.25)$$

$$s(\tau) = (0.6, 0.4)$$

Jonathan, Plenio (PRL 1999): yes

Single-shot bipartite pure state transformation is governed by majorization (Nielsen, PRL 1999)

$$\sum_i \sqrt{p_i} \, |ii\rangle \to \sum_j \sqrt{q_j} \, |jj\rangle$$
 iff. $\sum_{i < k} p_i \le \sum_{j < k} q_j$ for all k

Choose

$$s(\psi) = (0.4, 0.4, 0.1, 0.1)$$

$$s(\phi) = (0.5, 0.25, 0.25)$$

$$s(\tau) = (0.6, 0.4)$$

Then

$$s(\psi \otimes \tau) = (0.24, 0.24, 0.16, 0.16, 0.06, 0.06, 0.04, 0.04)$$

$$s(\phi \otimes \tau) = (0.30, 0.20, 0.15, 0.15, 0.10, 0.10, 0.00, 0.00)$$

• Duan (PRA 2005): connection with asymptotics

■ Duan (PRA 2005): connection with asymptotics If $\psi^{\otimes n} \to \phi^{\otimes n}$ for some n, then $\psi \xrightarrow{ec} \phi$. catalyst: $|\tau\rangle = \sum_{i < n-1} |\psi\rangle^{\otimes i} \otimes |\phi\rangle^{\otimes n-1-i} \otimes |i\rangle / \sqrt{n}$

- Duan (PRA 2005): connection with asymptotics If $\psi^{\otimes n} \to \phi^{\otimes n}$ for some n, then $\psi \xrightarrow{ec} \phi$. catalyst: $|\tau\rangle = \sum_{i < n-1} |\psi\rangle^{\otimes i} \otimes |\phi\rangle^{\otimes n-1-i} \otimes |i\rangle / \sqrt{n}$
- definition (correlated) $\rho \xrightarrow{cc} \sigma \text{ if for any } \epsilon > 0 \text{, there exists a catalyst } \tau \text{ and an LOCC}$ protocol Λ s.t.

$$\mu_{SC} = \Lambda(\rho_S \otimes \tau_C),$$

$$\|\mu_S - \sigma\|_1 \le \epsilon, \ \mu_C = \tau.$$

- Duan (PRA 2005): connection with asymptotics If $\psi^{\otimes n} \to \phi^{\otimes n}$ for some n, then $\psi \xrightarrow{ec} \phi$. catalyst: $|\tau\rangle = \sum_{i < n-1} |\psi\rangle^{\otimes i} \otimes |\phi\rangle^{\otimes n-1-i} \otimes |i\rangle / \sqrt{n}$
- definition (correlated) $\rho \xrightarrow{cc} \sigma \text{ if for any } \epsilon > 0 \text{, there exists a catalyst } \tau \text{ and an LOCC}$ protocol Λ s.t.

• Kondra (PRL 2021): $\psi \xrightarrow{cc} \phi$ iff. $S(\psi_A) \geq S(\phi_A)$.

- Duan (PRA 2005): connection with asymptotics If $\psi^{\otimes n} \to \phi^{\otimes n}$ for some n, then $\psi \xrightarrow{ec} \phi$. catalyst: $|\tau\rangle = \sum_{i < n-1} |\psi\rangle^{\otimes i} \otimes |\phi\rangle^{\otimes n-1-i} \otimes |i\rangle / \sqrt{n}$
- definition (correlated) $\rho \xrightarrow{cc} \sigma \text{ if for any } \epsilon > 0 \text{, there exists a catalyst } \tau \text{ and an LOCC}$ protocol Λ s.t.

• Kondra (PRL 2021): $\psi \xrightarrow{cc} \phi$ iff. $S(\psi_A) \geq S(\phi_A)$. Catalytic-asymptotic equivalence (for bipartite pure states)!

- Duan (PRA 2005): connection with asymptotics If $\psi^{\otimes n} \to \phi^{\otimes n}$ for some n, then $\psi \xrightarrow{ec} \phi$. catalyst: $|\tau\rangle = \sum_{i < n-1} |\psi\rangle^{\otimes i} \otimes |\phi\rangle^{\otimes n-1-i} \otimes |i\rangle / \sqrt{n}$
- definition (correlated) $\rho \xrightarrow{cc} \sigma \text{ if for any } \epsilon > 0 \text{, there exists a catalyst } \tau \text{ and an LOCC}$ protocol Λ s.t.

$$\mu_{SC} = \Lambda(\rho_S \otimes \tau_C),$$

$$\|\mu_S - \sigma\|_1 \le \epsilon, \ \mu_C = \tau.$$

- Kondra (PRL 2021): $\psi \xrightarrow{cc} \phi$ iff. $S(\psi_A) \geq S(\phi_A)$. Catalytic-asymptotic equivalence (for bipartite pure states)!
- Duan construction can be extended to mixed states

How powerful is catalysis?

How powerful is catalysis?

Literature: at least as powerful as asymptotics

How powerful is catalysis?

Literature: at least as powerful as asymptotics

This work: exactly as powerful as asymptotics**

For bipartite pure states, $\psi \xrightarrow{a} \phi$ iff. $\psi \xrightarrow{ma} \phi$

Theorem

When the initial state is distillable, correlated catalysis is equivalent to marginal asymptotics

Theorem

When the initial state is distillable, correlated catalysis is equivalent to marginal asymptotics

Proof sketch:

Catalysis \leftarrow marginal asymptotics: Duan construction

Catalysis \Rightarrow marginal asymptotics: use distillability to create the catalyst from the initial state

Theorem

When the initial state is distillable, correlated catalysis is equivalent to marginal asymptotics

Proof sketch:

Catalysis \leftarrow marginal asymptotics: Duan construction

Catalysis \Rightarrow marginal asymptotics: use distillability to create the catalyst from the initial state

For two-qubit states, this shows general equivalence!

Theorem

When the initial state is distillable, correlated catalysis is equivalent to marginal asymptotics

Proof sketch:

Catalysis \leftarrow marginal asymptotics: Duan construction

Catalysis \Rightarrow marginal asymptotics: use distillability to create the catalyst from the initial state

For two-qubit states, this shows general equivalence!

Also works in the multipartite setting

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Theorem

Distillable entanglement for a distillable state cannot increase under correlated catalysis

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Theorem

Distillable entanglement for a distillable state cannot increase under correlated catalysis

Proof sketch:

ullet standard rate \leq marginal rate = marginal catalytic rate

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Theorem

Distillable entanglement for a distillable state cannot increase under correlated catalysis

Proof sketch:

- standard rate ≤ marginal rate = marginal catalytic rate
- ullet standard rate \leq catalytic rate \leq marginal catalytic rate

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Theorem

Distillable entanglement for a distillable state cannot increase under correlated catalysis

Proof sketch:

- standard rate ≤ marginal rate = marginal catalytic rate
- ullet standard rate \leq catalytic rate \leq marginal catalytic rate
- marginal rate = standard rate (for pure target state)

Distillable entanglement: $E_D(\rho) = \sup \{ m/n \, | \, \Lambda(\rho^{\otimes n}) \approx \Phi^{\otimes m} \}$

Theorem

Distillable entanglement for a distillable state cannot increase under correlated catalysis

Proof sketch:

- standard rate ≤ marginal rate = marginal catalytic rate
- standard rate \leq catalytic rate \leq marginal catalytic rate
- marginal rate = standard rate (for pure target state)

Lami (arxiv 2023): There exist bound entangled states that cannot be distilled under catalysis

 Catalysis is exactly as powerful as marginal asymptotics for distillable states

- Catalysis is exactly as powerful as marginal asymptotics for distillable states
- Catalysis cannot increase distillable entanglement

- Catalysis is exactly as powerful as marginal asymptotics for distillable states
- Catalysis cannot increase distillable entanglement

Open questions

Equivalence for bound entangled state

- Catalysis is exactly as powerful as marginal asymptotics for distillable states
- Catalysis cannot increase distillable entanglement

Open questions

- Equivalence for bound entangled state
- Gap between marginal asymptotic and standard asymptotic

- Catalysis is exactly as powerful as marginal asymptotics for distillable states
- Catalysis cannot increase distillable entanglement

Open questions

- Equivalence for bound entangled state
- Gap between marginal asymptotic and standard asymptotic

Thanks!

arxiv:2305.03488