Проектирование интеллектуальных систем

Распознавание изображений с помощью персептрона

Содержание

Краткое описание	1
Цель работы	1
Порядок выполнения работы	2
Требования к исходным данным и функциональности компьютерной	
программы	2
Рекомендации по реализации	4
Содержание отчета	4

Краткое описание

Разработка программы, которая обучает искусственную нейронную сеть (персептрон) распознавать два или более черно-белых изображения.

Цель работы

Изучить принципы работы и алгоритм обучения простейших искусственных нейронных сетей (HC).

Порядок выполнения работы

- Изучить теоретическое введение.
- Сформировать обучающую выборку из 10 + изображений.
- Разработать компьютерную программу (среда разработки выбирается студентом самостоятельно).
- Провести серию из 5 + испытаний с различными исходными данными, выявить ограничения и недостатки однослойных НС для решения задач распознавания.
- Оформить отчет по лабораторной работе.

Требования к исходным данным и функциональности компьютерной программы

- В программе должна быть реализована возможность задания обучающей выборки из внешних файлов изображений.
- Изображения должны быть черно-белыми (bitmap) и размером не менее 9
 (3х3) пикселей.
- Программа должна иметь два режима работы: обучения и распознавания.
- Обучение должно производиться по стандартному алгоритму обучения персептрона с использованием дельта-правила.
- В программе должны задаваться следующие настройки:

- количество входов нейрона, которое соответствует общему числу пикселей изображения,
- коэффициент скорости обучения (если его значение постоянно),
- правильные варианты элементов обучающей выборки,
- размер ошибки, при котором обучение персептрона завершается (опционально).
- На экранной форме режима обучения должны отображаться:
 - элементы обучающей выборки (изображения),
 - настройки алгоритма обучения,
 - текущие (итоговые) веса нейронов и значение порога активационной функции,
 - протоколы результатов обучения (значения весов для каждой итерации).
- На экранной форме режима распознавания должны отображаться:
 - распознаваемое изображение (должно выбираться из всего множества),
 - результат распознавания,
 - веса нейронов и значение порога активационной функции,
 - значения выходов всех нейронов до и после применения активационной функции.

Рекомендации по реализации

- Для задания различной размерности распознаваемых изображений можно пользоваться одним типо-размером с максимальной разрешающей способностью, но при этом считывать только часть пикселей (например, от верхнего левого угла).
- Для решения задач обучения двухмерное изображение NxM можно преобразовывать в одномерный вектор (массив) размерностью K = NxM.
- При распознавании цветных изображений (RGB) каждому пикселю соответствует 3-х байтовая последовательность (24 входа).

Содержание отчета

- Название и цель работы.
- Задание, краткое описание предметной области и выбранной задачи.
- Блок-схема алгоритмов обучения и распознавания.
- Протоколы проведенных экспериментов (5+), представленные в форме таблиц и графиков (допускаются скриншоты в случае программной реализации эту функциональности).
- Выводы и рекомендации по использованию HC для решения задач распознавания.