亞洲大學 © ASIA University

資訊與科技

數字系統與資料表示法

資料來源:新世代計算機概論(第五版),學貫出版社

電腦的基本單位

- 位元 (bit)
- 二進位系統 (binary system)
- 位元組 (byte)
- 字元 (character)
- 字組 (word)

電腦的基本單位

單位	位元數目	簡寫	
位元組 (byte)	8位元	В	
字組 (word)	16位元	W	
雙字組 (double word)	32位元	DW	
四字組 (quad word)	64位元	QW	

電腦的基本單位

單位	簡寫	準確値	近似値
千位元組 (kilobyte)	KB	2 ¹⁰ Bytes	10 ³ Bytes
百萬位元組 (megabyte)	MB	2 ²⁰ Bytes	10 ⁶ Bytes
十億位元組 (gigabyte)	GB	2 ³⁰ Bytes	10 ⁹ Bytes
兆位元組 (terabyte)	TB	2 ⁴⁰ Bytes	10 ¹² Bytes
千兆位元組 (petabyte)	PB	2 ⁵⁰ Bytes	10 ¹⁵ Bytes
百京位元組 (exabyte)	EB	2 ⁶⁰ Bytes	10 ¹⁸ Bytes

數字系統

■ 任何一個屬於K進位系統的正數N都可表示成 如下多項式:

$$\begin{split} N &= \ d_{p-1}K^{p-1} + \ d_{p-2}K^{p-2} + \ldots + \ d_1K^1 + \ d_0\ K^0 + \ d_{-1}K^{-1} + \ d_{-2}\ K^{-2} + \ldots + \ d_{-q}K^{-q} \\ &= \sum_{i=-q}^{p-1} \ d_i\ K^i \quad , \ 0 \ \leq \ d_i \leq \ K-1 \quad , \ -q \ \leq \ i \leq \ p-1 \end{split}$$

■ N通常寫成 $N_K = (d_{p-1}d_{p-2}\cdots d_1d_0.d_{-1}d_{-2}\cdots d_{-q})_K$

數字系統

■ 12345.678_{10} 是一個十進位數字,我們可以將它表示成如下多項式: $12345.678_{10} = 1 \times 10^4 + 2 \times 10^3 + 3 \times 10^2 +$

$$4 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} +$$
 $7 \times 10^{-2} + 8 \times 10^{-3}$

■ 1101010.11₂是一個二進位數字,我們可以將它表示成如下多項式: 1101010.11₂=1 x 2⁶+1 x 2⁵+0 x 2⁴+

$$1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 +$$

$$0 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2}$$

數字系統

- 1234.567_8 是一個八進位數字,我們可以將它表示成如下多項式: 1234.567_8 = $1 \times 8^3 + 2 \times 8^2 + 3 \times 8^1 + 4 \times 8^0 + 5 \times 8^{-1} + 6 \times 8^{-2} + 7 \times 8^{-3}$
- 56789A.BC₁₆是一個十六進位數字,我們可將它表示成如下多項式: 56789A.BC₁₆ = $5 \times 16^5 + 6 \times 16^4 + 7 \times 16^3 + 8 \times 16^2 + 9 \times 16^1 + 10 \times 16^0 + 11 \times 16^{-1} + 12 \times 16^{-2}$

二進位系統

- 二進位系統 (binary system) 是以0、1等兩個數字做為計數的基底。
- 為簡化,我們通常將二進位數字1000和十進位 數字8寫成1000₂和8₁₀(或寫成1000₂=8₁₀)。

八進位系統

■八進位系統 (octal system) 是以0、1、2~7等八個數字做為計數的基底。

十六進位系統

十六進位系統 (hexadecimal system) 是以0、1、2~9、A、B、C、D、E、F等十六個數字做為計數的基底。

十進位	二進位	八進位	十六進位	十進位	二進位	八進位	十六進位
0	0000	0	0	16	10000	20	10
1	0001	1	1	17	10001	21	11
2	0010	2	2	18	10010	22	12
3	0011	3	3	19	10011	23	13
4	0100	4	4	20	10100	24	14
5	0101	5	5	21	10101	25	15
6	0110	6	6	22	10110	26	16
7	0111	7	7	23	10111	27	17
8	1000	10	8	24	11000	30	18
9	1001	11	9	25	11001	31	19
10	1010	12	Α	26	11010	32	1A
11	1011	13	В	27	11011	33	1B
12	1100	14	С	28	11100	34	1C
13	1101	15	D	29	11101	35	1D
14	1110	16	Е	30	11110	36	1E
15	1111	17	F	31	11111	37	1F
表2.3二、/	表2.3二、八、十、十六進位對照表						

$$5621.78_{10} = (5 \times 1000) + (6 \times 100) + (2 \times 10) + (1 \times 1) + (7 \times 0.1) + (8 \times 0.01)$$

$$= (5 \times 10^{3}) + (6 \times 10^{2}) + (2 \times 10^{1}) + (1 \times 10^{0}) + (7 \times 10^{-1}) + (8 \times 10^{-2})$$

$$51763.2_8 = (5 \times 8^4) + (1 \times 8^3) + (7 \times 8^2) +$$

$$(6 \times 8^1) + (3 \times 8^0) + (2 \times 8^{-1})$$

$$= (5 \times 4096) + (1 \times 512) + (7 \times 64) +$$

$$(6 \times 8) + (3 \times 1) + (2 \times 0.125)$$

$$= 20480_{10} + 512_{10} + 448_{10} + 48_{10} +$$

$$3_{10} + 0.25_{10}$$

$$= 21491.25_{10}$$

$$F2A9.C_{16} = (F \times 16^{3}) + (2 \times 16^{2}) + (A \times 16^{1}) +$$

$$(9 \times 16^{0}) + (C \times 16^{-1})$$

$$= (15 \times 4096) + (2 \times 256) + (10 \times 16) +$$

$$(9 \times 1) + (12 \times 0.0625)$$

$$= 61440_{10} + 512_{10} + 160_{10} + 9_{10} + 0.75_{10}$$

$$= 62121.75_{10}$$

$$10110.0011_{2} = (1 \times 2^{4}) + (0 \times 2^{3}) + (1 \times 2^{2}) +$$

$$(1 \times 2^{1}) + (0 \times 2^{0}) + (0 \times 2^{-1}) +$$

$$(0 \times 2^{-2}) + (1 + 2^{-3}) + (1 + 2^{-4})$$

$$= (1 \times 16) + (0 \times 8) + (1 \times 4) +$$

$$(1 \times 2) + (0 \times 1) + (0 \times 0.5) +$$

$$(0 \times 0.25) + (1 \times 0.125) +$$

$$(1 \times 0.0625)$$

$$= 16_{10} + 4_{10} + 2_{10} + 0.125_{10} + 0.0625_{10}$$

$$= 22.1875_{10}$$

將十進位數字59.7510轉換成二進位數字:

$$(1) 59.75_{10} = 59_{10} + 0.75_{10}$$

- (2) 找出整數部分的二進位表示法
 - 2 59 1 (59除以2的餘數)
 - 2 29 1 (29除以2的餘數)
 - 2 14 0(14除以2的餘數)
 - 2 7 1(7除以2的餘數)
 - 2 3 1(3除以2的餘數)
 - 1 (最大有效字元)

商數小於除數時停止,依反方向寫下餘數得到5910=1110112

(3) 找出小數部分的二進位表示法

依序寫下乘以2之積數的整數部分得到0.7510=0.112

(4) 將整數部分及小數部分的二進位表示法合併得到59.75₁₀ = 111011.11₂

將十進位數字5176.312510轉換成八進位數字:

- (1) 5176.312510 = 517610 + 0.312510
- (2) 找出整數部分的八進位表示法

```
8 5176 0 (5176除以8的餘數)
8 647 7 (647除以8的餘數)
8 80 0 (80除以8的餘數)
8 10 2 (10除以8的餘數)
1 (最大有效數字)
```

商數小於除數時停止,依反方向寫下餘數得到517610=120708

(3) 找出小數部分的八進位表示法

依序寫下乘以8之積數的整數部分得到0.312510 = 0.248

(4) 將整數部分及小數部分的八進位表示法合併,得到 $5176.3125_{10} = 12070.24_8$ 。

將十進位數字4877.610轉換成十六進位數字:

- (1) 4877.610 = 487710 + 0.610
- (2) 找出整數部分的十六進位表示法

商數小於除數時停止,依反方向寫下餘數得到 487710 = 130D8

(3) 找出小數部分的十六進位表示法

0.6 取得小數部分乘以16

依序寫下乘以16之積數的整數部分,得到0.610=0.916

(4) 將整數部分及小數部分的十六進位表示法合併,得到 4877.610 = 130D.916

將八或十六進位數字轉換成二進位數字

將二進位數字轉換成八或十六進位數字

整數部分每三個數字一組,不足三個的 就在左邊補上0 小數部分每三個數字一組,不足三個的 就在右邊補上0

將二進位數字轉換成八或十六進位數字

整數部分每四個數字一組,不足四個的就在左邊補上0

小數部分每四個數字一組,不足四個的就在右邊補上0

數值表示法

- ■帶符號大小
- 1's補數
- 2's補數

带符號大小

假設使用n位元來表示正負整數,那麼最左邊的位元 (MSD) 是整數的正負符號,0表示正數,1表示負數, 剩下的n-1位元才是整數的數值大小,正整數的範圍 為0~2ⁿ⁻¹-1,負整數的範圍為-(2ⁿ⁻¹-1)~0。

1's補數

■ 假設使用n位元來表示正負整數,最左邊的位元 (MSD) 是整數正負符號,0表示正數,1表示負數,剩下n-1位元才是整數數值大小,正整數範圍為0~2ⁿ⁻¹-1,負整數範圍為-(2ⁿ⁻¹-1)~0。

2's補數

■假設使用n位元來表示正負整數,那麼最左邊的位元(MSD)是整數的正負符號,0表示正數, 1表示負數,剩下的n-1位元才是整數的數值 大小,正整數範圍為0~2ⁿ⁻¹-1,負整數範圍為 -2ⁿ⁻¹~0。

數值表示法

十進位	帶符號大小	1's補數	2's補數	十進位	帶符號大小	1's補數	2's補數
+8	無	無	無	-8	無	無	1000
+7	0111	0111	0111	-7	1111	1000	1001
+6	0110	0110	0110	-6	1110	1001	1010
+5	0101	0101	0101	-5	1101	1010	1011
+4	0100	0100	0100	-4	1100	1011	1100
+3	0011	0011	0011	-3	1011	1100	1101
+2	0010	0010	0010	-2	1010	1101	1110
+1	0001	0001	0001	-1	1001	1110	1111
+0	0000	0000	0000	-0	1000	1111	0000
表2.4不同數值表示法對照表							

補數的推廣

- (K-1)'s補數:對於 N_K 的每位數字均以(K-1) 減去該數字,便能求出 N_K 的(K-1)'s補數為 ((K-1- d_{p-1})(K-1- d_{p-2})···(K-1- d_1)(K-1 d_0).(K-1- d_{-1})···(K-1- d_{-q}))_K;或者,您也可以 套用公式(K_p - K_{-q})- N_K 。
- K's補數:先求出 N_K 的 (K 1) 's補數,再加上 K_{-q} ,也就是 ((K 1 d_{p-1})(K 1 d_{p-2})···(K 1 d_1)(K 1 d_0).(K 1 d_{-1})···(K 1 d_{-q}))_K + K_{-q} ;或者,您也可以套用公式 K_p N_K 。

數值算術運算

- 加法
- 減法
- 乘法
- 除法

加法

範例: $111010_2 + 11011_2$ (1) 00111010 + 00011011

$$\begin{array}{cccc}
 & & & & 1 \\
 & & & 00111010 \\
 & + & 00011011 \\
\hline
 & & 01
\end{array}$$

加法

$$\begin{array}{cccc}
 & & & 1 \\
 & & 00111010 \\
 & + & 00011011 \\
\hline
 & & 10101
\end{array}$$

加法

$$\begin{array}{c}
 1 \\
 00111010 \\
 + 00011011 \\
 \hline
 010101
\end{array}$$

$$\begin{array}{c} (6) & 00111010 \\ + & 00011011 \\ \hline & 01010101 \end{array}$$

减法

```
(1) 00001010
- 00000011
```

```
(2) -1
00001010
- 00000011
```

减法

```
(3) -1
00001010
- 00000011
11
```

减法

(5) 00001010 - 0000011 00000111

乘法

■ 範例:11012 x 10112

除法

■ 範例:111010012÷10012

數碼系統

- IEEE 754 Single格式
 - □ 符號位元 (sign bit)
 - □ 偏移指數 (biased exponent)
 - □ 尾數 (mantissa)、分數 (fraction)

文字表示法

- ASCII
- ASCII-8
- EBCDIC
- 中文編碼系統;如BIG5、王安碼、CCCII碼, 簡體中文編碼系統以國標碼GB或漢字碼HZ為 主。
- Unicode

常見的文字檔格式

- TXT
- DOC/DOCX
- PDF

圖形表示法

- 點陣圖:點陣圖放大時,容易出現鋸齒狀。
- 向量圖:能夠依照任意比例放大、縮小、旋轉 及傾斜,而不會出現鋸齒狀。

點陣圖

- ■水平解析度V.S.垂直解析度
- ■圖形尺寸
- ■色彩深度
- ■常見的點陣圖檔格式
 - □ BMP
 - JPEG
 - GIF
 - PNG
 - TIFF
 - PSD

向量圖

- ■常見的向量圖檔格式
 - □ EPS
 - DXF/DWG
 - □ WMF

聲音表示法

聲音表示法

- ■常見的聲音檔格式
 - □ WAV
 - □ MP3
 - MIDI
 - Real Audio
 - □ WMA
 - CD-AUDIO
 - Dolby Digital
 - DTS

視訊表示法

- 主要的電視系統視訊標準:
 - □ NTSC (national television standards committee)
 - PAL (phase alteration line)
 - SECAM (sequential color and memory)
 - □ HDTV (high definition TV)

視訊表示法

- ■常見的視訊檔格式
 - □ AVI
 - MPEG
 - Quick Time
 - □ Real Video
 - □ <u>WMV</u>

資料壓縮

- 非失真壓縮,例如變動長度編碼 (run length encoding)、霍夫曼碼 (Huffman coding)、Lempel-Ziv編碼等。
- 失真壓縮,例如JPEG可用來壓縮圖形、照片, MPEG可用來壓縮影片,MP3可用來壓縮聲音。

資料壓縮

- ■常見的壓縮技術
 - JPEG
 - GIF
 - □ PNG
 - □ MP3
 - MPEG

變動長度編碼

■ 原理是記錄符號出現的次數,例如:

霍夫曼碼

- 編碼步驟如下:
 - □ 找出所有符號的出現頻率。
 - □ 將頻率最低的兩者相加得出另一個頻率。
 - 重覆步驟2不斷將頻率最低的兩者相加,直到只剩下一個頻率為止。
 - □ 根據合併的關係分別配置0和1,形成一個編碼樹。

誤差與錯誤檢查

- 固有誤差 (inherent error)
- 捨棄誤差 (round-off error)

同位元檢查

在資料位元傳送出前,先加上一個同位位元 (通常加在最前面),然後送出,待接收到這 些位元圖樣後,檢查看看是否有奇數個1或偶 數個1。

整個位元圖樣有奇數個 1

■ 分成奇同位檢查和偶同位檢查。

整個位元圖樣有奇數個 1

同位位元 **E**的ASCII碼 同位位元 **G**的ASCII碼 11000111

循環冗餘碼 (CRC)

讓發訊端與收訊端事先協調一個生成多項式, 然後發訊端在將資料位元傳送出去之前,先將 資料位元除以生成多項式,再將得到的餘數 (即CRC碼)放在資料位元的後面一起傳送出去。

循環冗餘碼 (CRC)

假設資料位元為110010101110,生成多項式為X³+1(1001),試求取CRC碼及加上CRC碼後的完整訊息:

 由於生成多項式X³+1(1001)的暴次為3,故 先在資料位元110010101110的後面加上三個0, 得到被除數為110010101110000。

循環冗餘碼(CRC)

2. 以長除法求取 1100101011110000除以生 成多項式X³+1(1001) 的餘數:

3. CRC碼為餘數11,故完整訊息為 11001010111011。

餘數

錯誤更正碼 (ECC)

■ 當錯誤更正碼的**漢明距離**大於等於D時,只要發生錯誤的位元不超過D-1個,系統都能夠偵測出來,而只要發生錯誤的位元不超過(D-1)/2個,系統都能夠加以更正。