ECE 5984 SP22 – Prof. Jones – HW2

1. Print to the Python console a more complete set of statistics on the data. You may use numpy operations on a numpy array, or operations on a Pandas DataFrame (or Series) for this functionality. The output that I want is as follows (not all columns are shown):

Python Console Output

_	7																
In	In [80]: runfile('C:/Users/agarc/OneDrive/Documents/GitHub/Virginia_Tech_Masters/ECE_5984_Appl_Machine_Learning_SP22/Homework_2/simple_stats.py', wdir='C:/Users/agarc/OneDrive/																
	Documents/GitHub/Virginia Tech Masters/ECE 5984 Appl Machine Learning SP22/Homework 2')																
Re:																	
Fi]	File C:\Users\agarc\OneDrive\Documents\GitHub\Virginia Tech Masters\ECE 5984 Appl Machine Learning SP22\Homework 2\Heart Disease.xlsx is of size (303, 16)																
	stat	member	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope		thal	bt	target
0	cardinality	301	41.000000		4.000000	49.000000	152	2.000000	3.000000	87	2.000000	40.000000	3.000000	5.000000	4.000000		2.000000
1	mean	48332.7	54.366337	N/A	0.970199	131.615894	246.59	0.152027	0.529801	149.131	0.324503	1.043046	1.398671	0.741611	2.313531	N/A	0.544554
2	median	48340	55.000000	N/A	1.000000	130.000000	241.5	0.000000	1.000000	152	0.000000	0.800000	1.000000	0.000000	2.000000	N/A	1.000000
3	n_at_median		8.000000	N/A	50.000000	36.000000		251.000000	152.000000		204.000000	13.000000	139.000000	170.000000	166.000000	N/A	165.000000
4	mode	N/A	58.000000	N/A	0.000000	120.000000	N/A	0.000000	1.000000	N/A	0.000000	0.000000	2.000000	0.000000	2.000000	N/A	1.000000
5	n_at_mode	N/A	19.000000	N/A	142.000000	37.000000	N/A	251.000000	152.000000	N/A	204.000000	98.000000	141.000000	170.000000	166.000000	N/A	165.000000
6	stddev	877.941	9.082101	N/A	1.032257	17.566716	51.9697	0.359655	0.525849	22.5955	0.468966	1.161452	0.616872	1.026753	0.612277	N/A	0.498835
7	min	46820	29.000000	N/A	0.000000	94.000000	126	0.000000	0.000000	71	0.000000	0.000000	0.000000	0.000000	0.000000	N/A	0.000000
8	max	49840	77.000000	N/A	3.000000	200.000000	564	1.000000	2.000000	202	1.000000	6.200000	2.000000	4.000000	3.000000	N/A	1.000000
9	nzero		0.000000		142.000000	0.000000		251.000000	146.000000		204.000000	98.000000	21.000000	170.000000	2.000000		138.000000
10	nmissing		0.000000		1.000000	1.000000		7.000000	1.000000		1.000000	1.000000	2.000000	5.000000	0.000000		0.000000

2. Write a similar report to an Excel workbook. I used operations on a pandas DataFrame for this functionality. Note: "cardinality" is the number of distinct values. The output that I want in the spreadsheet is as follows (note, yours will have numbers (3)):

Report Excel File:

	stat	member	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	bt	target
0	cardinality	301	41	2	4	49	152	2	3	87	2	40	3	5	4	5	2
1	mean	48332.66	54.36634	N/A	0.970199	131.6159	246.59	0.152027	0.529801	149.1306	0.324503	1.043046	1.398671	0.741611	2.313531	N/A	0.544554
2	median	48340	55	N/A	1	130	241.5	0	1	152	0	0.8	1	0	2	N/A	1
3	n_at_med	1	8	N/A	50	36	0	251	152	7	204	13	139	170	166	N/A	165
4	mode	N/A	58	N/A	0	120	N/A	0	1	N/A	0	0	2	0	2	N/A	1
5	n_at_mod	N/A	19	N/A	142	37	N/A	251	152	N/A	204	98	141	170	166	N/A	165
6	stddev	877.9405	9.082101	N/A	1.032257	17.56672	51.96965	0.359655	0.525849	22.59548	0.468966	1.161452	0.616872	1.026753	0.612277	N/A	0.498835
7	min	46820	29	N/A	0	94	126	0	0	71	0	0	0	0	0	N/A	0
8	max	49840	77	N/A	3	200	564	1	2	202	1	6.2	2	4	3	N/A	1
9	nzero	0	0	0	142	0	0	251	146	0	204	98	21	170	2	0	138
10	nmissing	2	0	1	1	1	3	7	1	35	1	1	2	5	0	5	0

- 3. From this DQR, determine a few things about each column in the data set. For every column in the data, tell me each of the following:
 - a. The type of the feature (ID, target, or feature and what type of feature continuous, binary, interval, categorical, etc.)

Member = ID

Sex = Binary

Age = Numeric

CP = Categorical

Trestbps = Numeric

Chol = Numeric / Categorical

FBS = Binary

Restecg = Categorical

Thalach = Numeric

Exang = Binary

Oldpeak = Numeric

Slope = Categorical

```
Ca = Categorical
Thal = Categorical
Bt = Categorical
Target = Binary
```

b. How many values are missing and how many are invalid?

```
Total Missing Values: 65
Total Invalid Stats: 22 (not including stats that don't make sense)
Member = 2
Age = 0
Sex = 1
CP = 1
Trestbps = 1
Chol = 3
FBS = 7
Restecg = 1
Thalach = 35
Exang = 1
Oldpeak = 1
Slope = 2
Ca = 5
Thal = 0
Bt = 5
Target = 0
```

c. What should be done about the missing values – BE SPECIFIC (don't just say "replace missing values" but tell me how)

For numeric features such as Age, Blood Pressure, or Cholesterol, it would be best to replace those missing values with the average. For categorical and binary features, it would be best to replace those missing values with the mode. And for ID features such as Member, it would be best to not replace those values because there is no meaningful statistic that would replace an ID.

d. Whether the feature contains a significant number of outliers

Member: None Age: None Sex: None CP: None Trestbps: None Chol: None: Fbs: None Restecg: None Thalach: None Exang: None Oldpeak: None Slope: None

Andrew Garcia 2/15/2022

CA: Has cardinality of 5 however it should be cardinality of 4 based on the website. Thal: Has cardinality of 4 however it should be cardinality of 3 based on the website.

Bt: None Target: None

e. Whether the feature should be ignored in modeling (by removing the column).

Member: Yes

Age: No Sex: No CP: No

Trestbps: No
Chol: No
Fbs: No
Restecg: No
Thalach: No
Exang: No
Oldpeak: No
Slope: No
CA: No
Thal: No
Bt: No
Target: No

4. Calculate and write to Excel workbooks the covariance and correlation matrices for the numeric values in this data set. Create data frames with a row and a column for each numeric value; the entries in the cells are the covariances and the correlations for each pair of numeric features. Include the target value if it's numeric.

Covariance Output:

	member	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
member	770779.6	1485.512	-368.049	1703.156	849.032	-5.55443	-8.75953	-8177.45	147.9313	308.3186	-150.858	332.2046	138.1584	-378.277
age	1485.512	82.48456	-0.61136	44.66247	102.9632	0.384963	-0.54518	-73.3305	0.451123	2.244928	-0.95879	2.565035	0.378139	-1.02134
ср	-368.049	-0.61136	1.065554	0.829635	-4.48857	0.034763	0.024086	6.56436	-0.19806	-0.18546	0.077503	-0.19194	-0.10033	0.22554
trestbps	1703.156	44.66247	0.829635	308.5895	110.9536	1.129367	-1.04833	-15.4046	0.589535	3.956998	-1.31787	1.82032	0.672724	-1.27577
chol	849.032	102.9632	-4.48857	110.9536	2700.845	0.370144	-4.26464	16.46495	1.733934	3.545596	-0.00628	3.706157	2.959699	-2.07552
fbs	-5.55443	0.384963	0.034763	1.129367	0.370144	0.129352	-0.0158	-0.12661	0.004093	0.002277	-0.01334	0.051147	-0.00828	-0.00346
restecg	-8.75953	-0.54518	0.024086	-1.04833	-4.26464	-0.0158	0.276518	0.261412	-0.01746	-0.03644	0.029866	-0.03816	-0.00266	0.035159
thalach	-8177.45	-73.3305	6.56436	-15.4046	16.46495	-0.12661	0.261412	510.5559	-3.79813	-8.98838	5.357866	-3.98486	-1.15117	4.667393
exang	147.9313	0.451123	-0.19806	0.589535	1.733934	0.004093	-0.01746	-3.79813	0.219929	0.15093	-0.07291	0.05683	0.058129	-0.10147
oldpeak	308.3186	2.244928	-0.18546	3.956998	3.545596	0.002277	-0.03644	-8.98838	0.15093	1.348971	-0.4159	0.275694	0.148872	-0.25217
slope	-150.858	-0.95879	0.077503	-1.31787	-0.00628	-0.01334	0.029866	5.357866	-0.07291	-0.4159	0.380532	-0.05575	-0.03958	0.106722
ca	332.2046	2.565035	-0.19194	1.82032	3.706157	0.051147	-0.03816	-3.98486	0.05683	0.275694	-0.05575	1.054222	0.090254	-0.1975
thal	138.1584	0.378139	-0.10033	0.672724	2.959699	-0.00828	-0.00266	-1.15117	0.058129	0.148872	-0.03958	0.090254	0.374883	-0.10508
target	-378.277	-1.02134	0.22554	-1.27577	-2.07552	-0.00346	0.035159	4.667393	-0.10147	-0.25217	0.106722	-0.1975	-0.10508	0.248836

Correlation Output:

Andrew Garcia 2/15/2022

	member	age	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
member	1	0.185808	-0.408	0.110312	0.018508	-0.01795	-0.01901	-0.40954	0.358983	0.300974	-0.27801	0.374141	0.25639	-0.86329
age	0.185808	1	-0.06525	0.279508	0.217346	0.117935	-0.11407	-0.36278	0.106317	0.212657	-0.17089	0.275932	0.068001	-0.22544
ср	-0.408	-0.06525	1	0.045633	-0.08363	0.09284	0.04435	0.288622	-0.41076	-0.15448	0.121477	-0.18119	-0.15881	0.437885
trestbps	0.110312	0.279508	0.045633	1	0.121418	0.176945	-0.1133	-0.03798	0.071432	0.193315	-0.12144	0.100169	0.06247	-0.14555
chol	0.018508	0.217346	-0.08363	0.121418	1	0.019904	-0.1559	0.013848	0.07104	0.058719	-0.0002	0.069296	0.093505	-0.08
fbs	-0.01795	0.117935	0.09284	0.176945	0.019904	1	-0.08327	-0.01537	0.024151	0.005434	-0.06024	0.139262	-0.03761	-0.01924
restecg	-0.01901	-0.11407	0.04435	-0.1133	-0.1559	-0.08327	1	0.021833	-0.07092	-0.05962	0.092035	-0.0705	-0.00827	0.134078
thalach	-0.40954	-0.36278	0.288622	-0.03798	0.013848	-0.01537	0.021833	1	-0.36053	-0.34325	0.385144	-0.16838	-0.08212	0.413508
exang	0.358983	0.106317	-0.41076	0.071432	0.07104	0.024151	-0.07092	-0.36053	1	0.279031	-0.25202	0.117729	0.20253	-0.4339
oldpeak	0.300974	0.212657	-0.15448	0.193315	0.058719	0.005434	-0.05962	-0.34325	0.279031	1	-0.57906	0.231374	0.20909	-0.43539
slope	-0.27801	-0.17089	0.121477	-0.12144	-0.0002	-0.06024	0.092035	0.385144	-0.25202	-0.57906	1	-0.08905	-0.10453	0.346633
ca	0.374141	0.275932	-0.18119	0.100169	0.069296	0.139262	-0.0705	-0.16838	0.117729	0.231374	-0.08905	1	0.143738	-0.38511
thal	0.25639	0.068001	-0.15881	0.06247	0.093505	-0.03761	-0.00827	-0.08212	0.20253	0.20909	-0.10453	0.143738	1	-0.34403
target	-0.86329	-0.22544	0.437885	-0.14555	-0.08	-0.01924	0.134078	0.413508	-0.4339	-0.43539	0.346633	-0.38511	-0.34403	1

5. From these workbooks, determine the three feature values (predictors) that are most highly correlated with the target; list them and their correlation. Note that either a large positive or a large negative correlation with the target indicates a good predictor. Also, find the three predictors that are the most highly correlated with each other; list them and their cross-correlation.

Three features highly correlated to target: CP, Exang, and Oldpeak

Three predictors highly correlated:

Slope and Oldpeak: -0.579058

Slope and Thalach: 0.385144

Oldpeak and Thalach: -0.34325

Python Code:

```
simple_stats.py
import pandas
import stats_report as sr
filename =
r"C:\Users\agarc\OneDrive\Documents\GitHub\Virginia_Tech_Masters\ECE_5984_Appl_Machine_Lear
ning_SP22\Homework_2\Heart Disease.xlsx"
df = pandas.read_excel(filename) # read Excel spreadsheet
print('File {0} is of size {1}'.format(filename, df.shape))
labels = df.columns
report = sr.StatsReport()
# Create a simple data set summary for the console
for thisLabel in labels: # for each column, report stats
 thisCol = df[thisLabel]
  report.addCol(thisLabel, thisCol)
print(report.to_string())
report.statsdf.to_excel("Report_Andrew_Garcia.xlsx")
covariance = df.cov()
correlation = df.corr()
covariance.to_excel("Covariance_Andrew_Garcia.xlsx")
correlation.to_excel("Correlation_Andrew_Garcia.xlsx")
```

```
Andrew Garcia
2/15/2022
labels = correlation.columns
for thisLabel in labels:
  if thisLabel == "member":
    pass
  else:
    thisCol = correlation[thisLabel]
    v = thisCol.sort_values()
    max_v = v[-2]
    min_v = v[0]
    min_v_abs = abs(min_v)
    if max_v > min_v_abs:
      max_overall = max_v
      print(f"\n Label: {thisLabel} - Highest: {max_v}")
    elif min_v_abs > max_v:
      max_overall = min_v_abs
      print(f"\n Label: {thisLabel} - Highest: {min_v}")
stats_report.py
import pandas
class StatsReport:
  def __init__(self):
    self.statsdf = pandas.DataFrame()
    self.statsdf['stat'] = ['cardinality', 'mean', 'median', 'n_at_median', 'mode', 'n_at_mode', 'stddev',
'min', 'max', 'nzero', 'nmissing']
    pass
  def addCol(self, label, data):
```

```
Andrew Garcia 2/15/2022
```

```
self.statsdf[label] = [self.cardinality_(data), self.mean_(data), self.median_(data),
self.n_at_median(data), self.mode_(data), self.n_at_mode(data), self.std_(data), self.min_(data),
self.max_(data), self.nzero_(data), self.nmissing_(data)]
  def to_string(self):
    return self.statsdf.to_string()
  def cardinality_(self, d):
    try:
       return d.nunique()
    except:
       return "N/A"
  def mean_(self, d):
    try:
       return d.mean()
    except:
       return "N/A"
  def median_(self, d):
    try:
       return d.median()
    except:
       return "N/A"
  def n_at_median(self, d):
    try:
       n = d == d.median()
       return n.sum()
```

```
Andrew Garcia
2/15/2022
    except:
      return "N/A"
  def mode_(self, d):
    try:
      return int(d.mode())
    except:
      return "N/A"
  def n_at_mode(self, d):
    try:
      n = d == int(d.mode())
      return n.sum()
    except:
      return "N/A"
  def std_(self, d):
    try:
      return d.std()
    except:
      return "N/A"
  def min_(self, d):
    try:
      return d.min()
    except:
      return "N/A"
  def max_(self, d):
```

```
Andrew Garcia
2/15/2022
    try:
      return d.max()
    except:
      return "N/A"
  def nzero_(self, d):
    try:
      n = d == 0
      return n.sum()
    except:
      return "N/A"
  def nmissing_(self, d):
    try:
      n = d.isna()
      return n.sum()
    except:
      return "N/A"
```