Section 2.4

Quadratic Air Resistance

Read Section 2.4.

Now we'll assume that the air resistance force is proportional to the *square* of the speed; i.e., the linear resistance is negligible compared to the quadratic resistance.

Equations

$$\Box f = - \operatorname{c} \operatorname{v}^2 \mathbf{e}_{v}$$

☐ For a spherical object, with diameter D,

$$c = \gamma D^2$$
 , $\gamma = 0.25 Ns^2 m^{-4}$

Horizontal motion with quadratic air resistance; e.g., a bicycle coasting on a level road;

$$m\frac{dv}{dt} = -cv^2$$

Figure 2.8.

Let
$$T = \frac{m}{cv_0}$$
 "time constant for quadratic resistance"

Then $U(t) = \frac{v_0}{1 + t/c}$ decreasing slowly to 0 as t increases

<u>Vertical motion with quadratic air</u> <u>resistance;</u> e.g., an object dropped from rest falls straight down;

It is convenient to let the y axis point downward, so $F_g = + mg$

Before we solve the equation, what is the terminal velocity? At terminal velocity, F = 0.

Thus
$$v_{ter} = \sqrt{mg/c}$$
.

Separation of variables

$$m \, dv = (mg - cv^2) \, dt$$

$$\frac{dv}{(mg - cv^2)} = \frac{dt}{m}$$

$$\int_{v_0}^{v} \frac{dv'}{mg - cv^{12}} = \int_{v_0}^{t} \frac{dt'}{m} = \frac{t}{m}$$

$$L \Rightarrow = \frac{1}{c} \int_{v_0}^{v} \frac{dv'}{v_{ter}^2 - v'^2} = \frac{1}{cv_{ter}} \frac{arctanh(v')}{v_0} = \frac{1}{cv_{ter}} \frac{arctanh(v')}{v_0} = \frac{1}{cv_{ter}} \frac{arctanh(v')}{v_0} = 0$$

Solve for
$$v(t)$$
 $t = \frac{m}{c v_{ter}} \operatorname{arctanh}(\frac{v}{v_{ter}}) \Rightarrow$
 $v(t) = v_{ter} + \operatorname{anh}(\frac{gt}{v_{ter}})$

Check: $gt/v_{ter} = \frac{c v_{ter}^2 t}{m v_{ter}} = \frac{c v_{ter}^2 t}{m}$

Example 2.5

a baseball dropped from a tower

(See Figures 2.9 (a) and (b) .)

Dashed: no air resistance

Black : quadratic air resistance

Mathematica commands; Note: c = \(\gamma \) D² {mass, diam} = {0.15 , 0.07} (* kg and m *) {g, gamma} = {9.8,0.25} (* mks units *) vterm = Sqrt[mass*g/(gamma*diam^2)] vy[t_] := vterm*Tanh[g*t/vterm] y[t_] := vterm^2/g*Log[Cosh[g*t/vterm]] p1 = Plot[{g*t, vy[t]}, {t, 0, 8}] p2 = Plot[{1/2*g*t^2, y[t]}, {t, 0, 8}]

Quadratic drag for a projectile with both x (horizontal) and y (vertical) motion

Example. A baseball home run, calculated using Mathematica.

Assume these *initial conditions*:

speed = 40 m/s ($\sim 90 \text{ mi/h}$)

angle = 45 degrees

height = 1 m

Mathematica Program

```
g = 9.8; vter = 35; m = 0.15; const = m*g/vter^2;
v0 = 40; ang=Pi/4;
eqs = {
    m*x''[t] == - const*x'[t]*Sqrt[x'[t]^2 + y'[t]^2],
    m*y''[t] == -m*g - const*y'[t]*Sqrt[x'[t]^2 + y'[t]^2],
    x[0] == 0, x'[0] == v0*Cos[ang],
    y[0] == 1, y'[0] == v0*Sin[ang]};
Q = NDSolve[eqs, {x[t], y[t]}, {t, 0, 6}];
ParametricPlot[{x[t] /. Q[[1]], y[t] /. Q[[1]]}, {t, 0, 6}]
```


Test yourself:

A bicycle rider coasts down a hill. The angle of the slope is θ = 10 degrees = 0.174 radians. (A) Using your knowledge about air resistance, estimate the terminal speed of the bicycle, in meters per second. (B) Determine the speed as a function of time, starting from speed v_0 at t = 0. Data: Mass = 70 kg; effective area = 1 m^2 (approximate the shape by a sphere).

Homework Assignment #3

[11] Problem 2.2 *

[12] Problem 2.3 *

[13] Problem 2.10 **

[14] Problem 2.18 *

[15] Problem 2.26 *

Use the cover sheet.