COMMUNITIES

QUESTION 1:

For the following graph:

Write the adjacency matrix A, the degree matrix D, and the Laplacian matrix L. For each, find the sum of all entries and the number of nonzero entries.

SOLUTION

QUESTION 2:

Consider the following undirected graph (i.e., edges may be considered bidirectional):

Run the "trawling" algorithm for finding dense communities on this graph and find all complete bipartite subgraphs of types $K_{3,2}$ and $K_{2,2}$. Note: In the case of $K_{2,2}$, we consider $\{\{W,X\},\{Y,Z\}\}\}$ and $\{\{Y,Z\},\{W,X\}\}$ to be identical.

Question	A.	jbronce A =	FBEC5	7	
0	10		B, A, E }		1
X	10	2-4	000		- IN
6	1 1	621	A 6, C 0 3	11-4	111
£3,2 0	and F2,2		000	23	0 1
k 3/2	win suppo	at temphold	=3	10	1 11
item	Support	Haw	Support		
A	3	8,8	3	item	Support
В	4	BC	2	BE	3
c	3	60	2 >	9 9	112
P	2	A, 5	2		
E	14	A ₂ D	2	J. But	1
		A/C	2	10. 7	
		6/0_	1	0 0	
-		D/C	2		1 0
		BA	1	10	0 1
1	100	6,D -c,D	10	-	0 0
		710		-	0 0 0
1	Liportite o	prosphi	A STATE OF		
				2 1	30.0
	0	测	A Hall	-	40 600 150
1	RX	/	-	100	
		XE	1160		
	(D)			101	

Question 3:

We fit AGM to the network on the left, and found the parameters on the right:

Find the optimal values for $p_{\mbox{\scriptsize A}}$ and $p_{\mbox{\scriptsize B}}.$

SOLUTION

Pa = Number of edges in the network / Total possible number of edges = 7/5c2 = 7/10.

Pb = Number of edges in the network / Total possible number of edges = 9/6c2 = 9/15.