THE INTERNATIONAL UNIVERSITY (IU) - VIETNAM NATIONAL UNIVERSITY - HCMC

MIDTERM EXAMINATION - CLASS

Student Name:_____Student ID:_____

Date: April 2021

	n: 90 minutes
SUBJECT: PHYSICS 3	
Chair of Department of Physics:	Lecturer: Phan Bảo Ngọc
Signature:	Signature:
Full name: Phan Bảo Ngọc	Janger
Phan Bảo Ngọc	Full name:

INSTRUCTIONS: This is a closed book examination. Use of cell phones, laptops, dictionaries is not allowed.

1/ (20 pts) Three non-conducting spherical shells are fixed in place. Shell 1 has a uniform surface charge density $\sigma_1 = +5.0$ $\mu\text{C/m}^2$ on its outer surface and radius 6.0 cm; shell 2 has uniform charge density $\sigma_2 = +3.0$ $\mu\text{C/m}^2$ on its outer surface and radius 4.0 cm; shell 3 has uniform charge density $\sigma_3 = +2.0$ $\mu\text{C/m}^2$ on its outer surface and radius 2.0 cm. The center of shell 1 is at origin O. The centers of shell 2 and 3 are

on the x axis, at 2 cm and 12 cm from origin O (Figure 1), respectively. In unit-vector notation, what is the net electric field at the origin O? ($k = 9.0 \times 10^9 \text{ N.m}^2/\text{C}^2$; Hint: Use the shell theorem)

2/ (10 pts) A proton is at the origin and an electron is on the y axis at y = 0.5 mm. Find the electric dipole moment of these two particles in unit-vector notation.

4/ (20 pts) Calculate the work done by an external force to bring four 2.0×10^{-9} C positive point charges from infinity and place them at the corners of a square of side 8 cm. $(U = \frac{kq_1q_2}{r})$

5/ (20 pts) A 25-k Ω resistor and a capacitor are connected in series. A 12-V potential difference is suddenly applied across them. The potential difference across the capacitor rises to 4.0 V in 1.3 μ s.

Find the capacitance C.
$$(V = \varepsilon \left(1 - e^{-\frac{t}{RC}}\right))$$

6/ (20 pts) Determine the currents in Figure 3 if $\epsilon_1 = 12$ V, $\epsilon_2 = 6$ V, $\epsilon_2 = 3$ V, $R_1 = 1$ Ω , $R_2 = 2$ Ω and $R_3 = 3$ Ω .

END OF QUESTION PAPER

$$\begin{cases} EA = Q = QA \\ = Q = QA \end{cases}$$