

DEUTSCHE GESELLSCHAFT FÜR PÄDIATRISCHE KARDIOLOGIE UND ANGEBORENE HERZFEHLER e.V.

S2k-Leitlinie

Akute Herzinsuffizienz und mechanische Kreislaufunterstützung

Ina Michel-Behnke (Wien), Josef Thul (Gießen), Peter Murin (Berlin), Oliver Miera (Berlin)

Beschlossen vom Vorstand der Deutschen Gesellschaft für Pädiatrische Kardiologie und Angeborene Herzfehler am 29.02.2020

1. Geltungsbereich:

Akute Herzinsuffizienz von der Fetalzeit bis ins junge Erwachsenenalter

2. Methodik

Die Konsensfindung in der Leitlinienkommission erfolgte nach eingehender Literaturrecherche in einem zweistufigen Delphi-Verfahren:

- 1. schriftlich per E-Mail Umlauf
- 2. mündliche Konsentierung im strukturierten Gruppenprozess.

Handlungsempfehlungen wurden soweit möglich in vier Empfehlungsgrade eingeteilt (Tab. 1).

Tabelle 1: Empfehlungsgrade für die in der Leitlinie enthaltenen Handlungsempfehlungen

Formulierung	Empfehlungsgrad	Farbliche Markierung
Soll	Starke Empfehlung	Grün
Sollte	Empfehlung	Gelb
Kann erwogen werden	Empfehlung offen	Grau
Soll nicht / sollte nicht	Nicht empfohlen	Rot

www.dgpk.org 1 / 47

2.1. Abkürzungen

AHI = Akute Herzinsuffizienz

AVDO₂ = Arteriovenöse Sauerstoffdifferenz AVSD = Atrioventrikulärer Septumdefekt

BGA = Blutgasanalyse

BNP = Brain natriuretic peptide

BVAD = Biventrikuläres Assist Device

ccTGA = korrigierte Transposition der großen Arterien

CK = Creatinkinase

CT = Computertomographie

DGPK = Deutsche Gesellschaft für pädiatrische Kardiologie

DEGUM = Deutsche Gesellschaft für Ultraschall in der Medizin

ECLS = Extracorporal life support

ECMO = Extracorporale Membranoxygenierung

ECPR = Extracorporeal cardiopulmonary resuscitation

EKG = Elektrokardiographie

EMAH = Erwachsene mit angeborenen Herzfehlern

HFrEF = Heart failure with reduced ejection fraction (Herzinsuffizienz mit reduzierter

Ejektionsfraktion

HFpEF = Heart failure with preserved Ejection Fraction(Herzinsuffizienz mit erhaltener

Ejektionsfraktion

HLHS = Hypoplastisches Linksherzsyndrom

HLM = Herz-Lungen-Maschine

HTX = Herztransplantation

HZV = Herzzeitvolumen

IABP = Intraaortale Ballongegenpulsation iNO = inhalatives NO (Stickstoffmonoxid)

LA = Linker Vorhof
LV = Linker Ventrikel

LVAD = Linksventrikuläres Assist Device

NIRS = Near-infrared spectroscopy

NO = Nitric oxide (Stickstoffmonoxid)

PDE II = Phosphodiesterase III

PEEP = Postendexspiratoric pressure

PPHN = Persistierende pulmonale Hypertension des Neugeborenen

RV = Rechter Ventrikel

RVAD = Rechtsventrikuläres Assist Device

www.dgpk.org 2 / 47

RVOT = Rechtsventrikulärer Ausflusstrakt

SaO₂ = Arterielle Sauerstoffsättigung

SpO₂ = Transkutane Sauerstoffsättigung

SvO₂ = gemischtvenöse Sauerstoffsättigung

TCPC = Totale cavopulmonale Connection

TGA = Transposition der großen Arterien

TNF = Tumor-Nekrose-Faktor

VAD = Ventrikuläres Assist Device

VEDGF = Ventrikular endothelium derived growth factor

VSD = Ventrikelseptumdefekt

ZVD = Zentraler Venendruck

ZVS = Zentralvenöse Sättigung

3. Definition - Klassifikation - Basisinformationen

Die akute Herzinsuffizienz (AHI) ist definiert als ein pathophysiologisches und klinisches Zustandsbild, das aus einer ventrikulären (myokardialen) Dysfunktion, einer abnormen Volumen- oder Drucküberlastung des Herzens oder deren Kombination resultiert. Aufgrund des plötzlich reduzierten Herzzeitvolumens kann der Sauerstoffbedarf des Körpers nicht mehr gedeckt werden. Sekundär kommt es zu Funktionseinschränkungen weiterer Organe (u.a. Niere, Leber, zentrales Nervensystem) mit einer metabolischen Laktatazidose. Molekulare und zelluläre Veränderungen sowie die Aktivierung des sympathischen Nervensystems und des Renin-Angiotensin-Aldosteron-Systems wirken sich durch einen Anstieg der Herzfrequenz sowie Salz- und Wasserretention zusätzlich negativ auf die Arbeitsbedingungen des Herzens aus, schädigen die Kardiomyozyten aber auch unmittelbar. Kompensatorische Mechanismen (z.B. natriuretische Peptide) sind unzureichend; und Inflammationsprozesse können das Kreislaufversagen unterhalten.

Die klinische Manifestation der akuten Herzinsuffizienz fällt nicht immer mit dem ätiologischen Beginn der Grunderkrankung zusammen. So beinhaltet die akute Herzinsuffizienz sowohl akute Verschlechterungen einer bestehenden Erkrankung als auch primär akut kreislaufwirksame kardiale und nicht-kardiale Grunderkrankungen.

3.1. Systolische und diastolische Herzinsuffizienz

Die akute Herzinsuffizienz bei Kindern ist überwiegend eine systolische Funktionsstörung (eingeschränkte Kontraktilität) mit echokardiographisch reduzierter Ejektionsfraktion (HFrEF),

www.dgpk.org 3 / 47

während die Symptomatik einer eingeschränkten Relaxation - diastolische Herzinsuffizienz - (HFpEF) erst in einem späten Stadium klinisch auffällt. Analog zur Herzinsuffizienz beim Erwachsenen können der rechte Ventrikel, der linke Ventrikel oder beide versagen. Die Ätiologie ist jedoch deutlich variabler und weist altersabhängige Besonderheiten auf. Aufgrund der unterschiedlichen klinischen Präsentation wird die Diagnose bei nahezu 50% der Patienten verzögert gestellt.¹

3.2. Herzinsuffizienz ohne strukturelle Herzerkrankung

Bei einer biventrikulären Zirkulation kann im Rahmen der akuten Herzinsuffizienz primär der rechte Ventrikel (Rechtsherzversagen) oder der linke Ventrikel (Linksherzversagen) betroffen sein. Dennoch ist der jeweils andere Ventrikel in der Phase der akuten Dekompensation meist mitbetroffen (ventrikuloventrikuläres Coupling).² Hämodynamischer Stress der einen Kammer führt über verschiedene Signalwege zur veränderten Biologie und Funktion des primär nicht betroffenen Ventrikels. ³ Diese interventrikuläre Interaktion macht man sich aufgrund der mechanischen Auswirkungen auf die Ventrikelgeometrie und -funktion z.B. bei der kongenital korrigierten TGA⁴ sowie bei der dilatativen Kardiomyopathie⁵ durch die Anlage eines pulmonalarteriellen Bandings therapeutisch zunutze.

Die myokardiale Funktionsstörung, z.B. bei einer Myokarditis oder Kardiomyopathie, manifestiert sich aufgrund der höheren Nachlast im Systemkreislauf primär mit einer Einschränkung des linken Ventrikels und sekundär erhöhten Füllungsdrücken. Das akute Rechtsherzversagen, z.B. bei pulmonaler Hypertension oder Lungenembolie, ist das Resultat einer Druckerhöhung im Pulmonalkreislauf, welche sich jedoch auch sekundär (postkapilläre pulmonale Hypertension) bei Linksherzerkrankungen entwickeln kann.

3.3. Herzinsuffizienz bei angeborenen Herzfehlern

Die akute Herzinsuffizienz bei angeborenen Herzfehlern ergibt sich einerseits aus der Pathophysiologie des Herzfehlers, dem vorrangig eine Volumenüberlastung (z.B. Rezirkulationsherzfehler) oder vermehrte Druckarbeit (z.B. Aortenisthmusstenose) oder eine Kombination von beiden zugrunde liegen. Darüber hinaus spielen eine anhaltende Sauerstoffuntersättigung (zyanotische Herzfehler) und die postoperative Funktionseinschränkung durch den Einfluss der Herz-Lungen-Maschine eine wesentliche Rolle. Auch die Kreislaufumstellung nach korrigierenden oder palliativen Operationen kann in ein akutes Kreislaufversagen münden (z.B. pulmonalhypertensive Krise).

www.dgpk.org 4 / 47

3.4. Herzinsuffizienz bei tachykarden Herzrhythmusstörungen

Eine akute Herzinsuffizienz kann sich auch im Verlauf von chronischen permanenten Tachykardien entwickeln; ebenso kann eine Kreislaufdekompensation durch akute hochfrequente Arrhythmien oder Bradyarrhythmien ausgelöst werden.

Kernaussage 1:

Leitlinie Akute Herzinsuffizienz

Herzinsuffizienz - Definition

- Die AHI ist ein klinisches Zustandsbild, bei dem das Herzzeitvolumen nicht ausreicht, eine adäquate Gewebeoxygenierung zu gewährleisten.
- Pathophysiologisch liegen eine myokardiale Funktionseinschränkung, eine akute
 Druck- oder Volumenbelastung des Herzens oder eine Kombination vor.
- Die AHI kann sich aufgrund einer primär systolischen oder diastolischen Herzinsuffizienz entwickeln (HFrEF/HFpEF).
- In der akuten kardialen Dekompensation sind aufgrund der ventrikulo-ventrikulären Interaktion unabhängig von einem primären Rechts-/Linksherzversagen beide Ventrikel betroffen.

4. Epidemiologie

<u>Fetale Herzinsuffizienz:</u> Die schwere fetale Herzinsuffizienz äußert sich klinisch mit der Ausbildung eines Hydrops fetalis. Die pränatale Inzidenz des nicht-immunologischen fetalen Hydrops beträgt 7,9/1000.⁶ Kardiovaskuläre Ursachen wie anhaltende Arrhythmien, Insuffizienzen der AV-Klappen sowie intrauterine Infektionen (z.B. Parvovirus B19) sind unbehandelt mit einem hohen Risiko des intrauterinen Fruchttods verbunden.⁷ <u>Herzinsuffizienz im Kindesalter:</u> Aufgrund der unterschiedlichen Phänotypen und variablen Definitionen liegen exakte Angaben zur Häufigkeit der akuten Herzinsuffizienz nicht vor.⁸ Die Prävalenz der Herzinsuffizienz ist regional sehr unterschiedlich; eine aktuelle Übersicht gibt die Arbeit von Shaddy.⁹ In den USA werden jährlich 14000 Kinder wegen Herzinsuffizienz stationär behandelt, davon 16-18% wegen Kardiomyopathien.¹⁰ Der Anteil von Patienten mit angeborenem Herzfehler und dekompensierter Herzinsuffizienz, perioperative Patienten ausgeschlossen, beträgt 0,6% mit einem Trend nach oben.¹¹ Eine belgische prospektive Studie beziffert die Inzidenz der Herzinsuffizienz bei Kindern mit 11,4%;¹² generell nehmen Patienten mit angeborenen Herzfehlern den größten Anteil mit 52%-69,3% ein.^{10,12,13} Das Risiko einer akuten Herzinsuffizienz ist für Neugeborene und

www.dgpk.org 5 / 47

Säuglinge mit angeborenen Herzfehlern am höchsten. 11,14

Herzinsuffizienz bei EMAH: Mit der verbesserten Überlebensrate und Erreichen des Erwachsenenalters ist die Herzinsuffizienz bei Erwachsenen mit angeborenen Herzfehlern (EMAH) die Haupttodesursache, noch vor Arrhythmien. Die Hospitalisierung wegen akuter Herzinsuffizienz bei EMAH tritt mit einer Inzidenz von 1,2/1000 Patientenjahren auf,¹⁵ und das Risiko, innerhalb des ersten Jahres nach einer akuten Hospitalisierung zu versterben, liegt bei 25%.¹⁶

5. Pathophysiologie und Hämodynamik

Die variable Ätiologie der akuten Herzinsuffizienz findet sich in der unterschiedlichen Pathophysiologie und Hämodynamik wieder. Einen Überblick hierzu gibt Tabelle 2.

Tabelle 2: Hämodynamik/Pathophysiologie		
Ursache / Ätiologie	Hämodynamik / Pathophysiologie	
Aortopulmonaler Shunt	Links-Rechts-Shunt, Volumenbelastung, verminderte Koronarperfusion	
Klappeninsuffizienz	Volumenbelastung durch Pendelvolumen	
Kritische Ausflusstraktobstruktion	Druckbelastung, evtl. Ductusabhängige systemische / pulmonale Perfusion	
Kardiomyopathien	Systolische/diastolische Dysfunktion	
Koronaranomalien	Koronarinsuffizienz	
Tachykarde Arrhythmien	Systolische Dysfunktion und diastolische Füllungsstörung	
Myokarditis	Systolische Dysfunktion	
High output Herzinsuffizienz		
- Sepsis	Systemischer Widerstandsverlust	
- Anämie	Volumenüberlastung	
 Arteriovenöse Fistel 	Volumenüberlastung	

5.1. Fetale Herzinsuffizienz

Die fetale Herzinsuffizienz entwickelt sich aufgrund einer erhöhten Füllung des linken und rechten Vorhofs und manifestiert sich wegen der pränatal parallelen Kreislaufphysiologie mit Dominanz des rechten Ventrikels als Rechtsherzinsuffizienz (Pleura-, Perikardergüsse, Aszites, Ödeme, Hydrops). Der fetal um das fünffach erhöhte Lymphfluss führt bereits bei Füllungsdrucken ab 15mmHg zum plazentaren Ödem und zur fetalen Hypoxämie.

www.dgpk.org 6 / 47

Die Kontraktilität des unreifen Myokards, das weniger Myofibrillen mit zudem unorganisierter Anordnung besitzt sowie einen funktionell reduzierten Calciumgradienten (unterentwickeltes sakroplasmatisches Retikulum) aufweist, verbessert sich während der Gestation und kann mittels fetaler Echokardiographie abgeschätzt werden.¹⁷ Der Schweregrad der Herzinsuffizienz bei Herzfehlern und Rhythmusstörungen korreliert mit der Plasmakonzentration natriuretischer Peptide im Nabelvenenblut.^{18,19} Die Bestimmung von Biomarkern wie TNFα, VEGF-D aus mütterlichem Blut erlauben als nicht-invasives Verfahren die Abschätzung der Depression des fetalen Kreislaufs.²⁰

Die häufigsten Ursachen der fetalen Herzinsuffizienz sind in Tabelle 3 zusammengefasst.

Tabelle 3: Fetale Herzinsuffizienz - Häufige Ursachen		
Kardiale	Bradykardien (z.B. kompletter AV-Block)	
Ursachen	Tachykarde Herzrhythmusstörungen	
	Kardiomyopathien	
	AV-Klappeninsuffizienz (z.B. bei AVSD, Ebstein-Anomalie)	
	Pulmonalinsuffizienz (Absent pulmonary valve bei Fallot	
	Tetralogie)	
	Pränataler Ductusverschluss	
Nichtkardiale	Fetale Anämie	
Ursachen	Fetale Teratome	
	Arteriovenöse Shunts mit fetalem "high output failure"	
	Fetofetales Transfusionssyndrom	
	Fetale Infektion (z.B. Parvovirus B19-Infektion)	

5.2. Herzinsuffizienz des Neugeborenen

Bei Neugeborenen mit akuter Herzinsuffizienz spielen die fetalen Shuntverbindungen (persistierender Ductus arteriosus, offenes Foramen ovale) bzw. ihr vorzeitiger Verschluss eine zentrale Rolle (siehe hierzu auch DGPK-Leitlinien Hypoplastisches Linksherzsyndrom, Pulmonalatresie und Aortenisthmusstenose).

Das neonatale Herz zeigt physiologische Besonderheiten, die z.T. allerdings nur in Tierversuchen nachgewiesen wurden: So bedingt die reduzierte Gesamtmasse kontraktiler Elemente eine verminderte Ventrikelcompliance; eine Vorlasterhöhung führt daher – anders als beim Erwachsenen – nicht zu einem entsprechenden Anstieg des schon in Ruhe hohen Schlagvolumens; die Steigerung des Herzzeitvolumens erfolgt somit überwiegend über eine Steigerung der Herzfrequenz.²¹ Die elektromechanische Kopplung des neonatalen Myokards zeigt eine stärkere Abhängigkeit vom transmembranösen Calcium-Flux.²² Die Ansprechbarkeit des neonatalen Herzens auf ß1-Stimulation ist reduziert, möglicherweise

www.dgpk.org 7 / 47

als Folge relativ verminderter myokardialer Noradrenalinspeicher.²³

Die persistierende pulmonale Hypertension des Neugeborenen (PPHN) tritt bei fehlender Adaptation nach der Geburt mit anhaltend hohen Drucken im Pulmonalkreislauf oder auch als Folge relevanter anderer Erkrankungen (z.B. Mekoniumaspiration, Zwerchfellhernie) als Rechtsherzinsuffizienz bzw. sekundär biventrikuläres Versagen auf.

5.3. Dilatative Kardiomyopathie und Myokarditis

Vergleichende Untersuchungen zu Erwachsenen zeigen bei der dilatativen Kardiomyopathie im Kindesalter keine Hypertrophie und keine Fibrosierung im Sinne eines "Adverse remodeling".²⁴ Darüber hinaus ist die Dysregulation der ß₁₋ und ß₂-Adrenorezeptoren im linken Ventrikel different zum Erwachsenen und somit die dilatative Kardiomyopathie im Kindesalter auch auf molekularer Ebene eine distinkte Entität.²⁵⁻²⁷

Bei Kindern mit dilatativer Kardiomyopathie sind ß₁-Rezeptorantikörper mit konsekutiver permanenter adrenaler Überstimulation der Kardiomyozyten nachweisbar und mit einem schlechten Outcome assoziiert.²⁸

Hämodynamisch zeichnet sich die dilatative Kardiomyopathie im dekompensierten Stadium der akuten Herzinsuffizienz durch erhöhte Füllungsdrucke, eine erniedrigtes Schlagvolumen und eine pulmonalvenöse Stauung aus. Sekundär entstehen durch die Gefügedilatation des linken Ventrikels eine Mitralinsuffizienz und schließlich eine postkapilläre pulmonale Hypertension. Im Rahmen der Ventrikeldilatation kommt es zum Septumshift nach rechts und damit konsekutiv zur Verschlechterung des diastolischen Einstroms in den rechten Ventrikel mit nachfolgender Funktionseinbuße.

5.4. Akute Herzinsuffizienz bei angeborenen Herzfehlern

Die wesentlichen pathophysiologischen und hämodynamischen Charakteristika ausgewählter Herzfehler sind im Hinblick auf die sich daraus ergebenden Behandlungsstrategien im Abschnitt Therapie abgehandelt.

5.5. Akute Herzinsuffizienz bei Erwachsenen mit angeborenen Herzfehlern

Die Herzinsuffizienz ist die häufigste Todesursache von Erwachsenen mit angeborenen

Herzfehlern (EMAH). In einer großen Studie wurden etwa 7% mit einer akuten

Herzinsuffizienz hospitalisiert und 16% mussten primär intensivmedizinisch behandelt

werden. 15 Insbesondere komplexe Herzfehler bedürfen einer exakten Analyse der zugrunde

liegenden Pathophysiologie der (sub)-akuten Herzinsuffizienz (vergleiche auch Tabelle 4). Zu

Grunde liegt häufig nicht ein myokardiales Versagen, sondern residuelle postoperative

www.dgpk.org 8 / 47

Läsionen (residuelle Shunts, Klappeninsuffizienzen).^{29,30} Bei funktionell univentrikulären Herzen ist zwischen einem subaortalen bzw. subpulmonalen Versagen zu differenzieren. Suprasystemische pulmonalarterielle Drucke beim Eisenmenger-Syndrom führen zum Rechtsherzversagen mit Zyanose. Komplexe angeborene Herzfehler sind beim Erwachsenen eine Multisystem-Erkrankung mit sekundären Organdysfunktionen (Leber, Niere, Gerinnungssystem).

Tabelle 4: Herzinsuffizienz bei EMAH		
Ursache / Mechanismus	Beispiele	
RV/LV-Dysfunktion	Systemischer RV (ccTGA, D-TGA nach Vorhofumkehr-OP)	
Volumenüberlastung	Aortopulmonale Kollaterale - Links-Rechts-Shunt	
Zyanose	Venovenöse Kollaterale - Rechts-Links-Shunt nach	
	Glenn/Fontan-Operation	
Residuelle Läsionen	Nach VSD-Verschluss: Restshunt, Ausflusstraktobstruktion, Klappeninsuffizienzen	
	- Aortenklappe (Segelprolaps)	
	- AV-Klappen (z.B. nach AVSD-Korrektur, bei Ebstein- Anomalie)	
	- Pulmonalklappe (nach RVOT-Erweiterung)	
	Pulmonalstenose (inclusive Conduit-Dysfunktion)	
Endokarditis	z.B. nach Conduit-Implantation/Transkatheterklappe im RVOT	

6. Körperliche Befunde und Leitsymptome

Die akute Herzinsuffizienz umfasst in ihrer Ausprägung sowohl den noch nicht intensivpflichtigen Patienten als auch die fortgeschrittene akute Herzinsuffizienz mit kardiogenem Schock (vergl. Tabelle 5).

Tabelle 5: Leitsymptome / Befunde		
Leitsymptome	Untersuchungsbefunde	
Kongestion	Tachy-/Dyspnoe, Orthopnoe, Husten, Hepatomegalie,	
	Aszites, periphere Ödeme, Jugularvenenstauung	
Verminderte Perfusion	Haut: kühl, blass, marmoriert, grau, Ausschöpfungszyanose	
	Blutdruck: erniedrigt, verminderte Amplitude	
	Puls: flach, tachykard	
	Auskultation: Gallopprhythmus	
	Verminderte kapilläre Füllungszeit	
	Neurologie: Unruhe, Bewusstseinstrübung/-verlust	
	Erbrechen	
	Oligurie/Anurie	

www.dgpk.org 9 / 47

7. Diagnostik und Monitoring

Kernaussage 2:

Leitlinie Akute Herzinsuffizienz

Herzinsuffizienz - Definition

Die akute Herzinsuffizienz ist eine klinische Diagnose!

7.1. Zielsetzung

Ziel der Diagnostik ist sowohl die Beschreibung der aktuellen Kreislaufsituation in Bezug auf Vorlast, Nachlast, Herzfrequenz, Rhythmus, systolische und diastolische Funktion und resultierendem Herzzeitvolumen als auch eine rasche Klärung der Ursache der akuten Herzinsuffizienz, um erste therapeutische Entscheidungen treffen zu können. Jede diagnostische Maßnahme muss unter dem Gesichtspunkt der schnellstmöglichen Kreislaufstabilisierung abgewogen werden. Neben einer kontinuierlichen Überwachung ("Monitoring") sind im Verlauf wiederholte Untersuchungen und gegebenenfalls weiterführende Diagnostik unabdingbar.

7.2. Apparative Diagnostik

EKG, Echokardiographie, Labor, Röntgen-Thorax, Herzkatheteruntersuchung, Computertomographische Angiographie (CT-Angio)

7.2.1. Echokardiographie

Die Echokardiographie ist die Methode der Wahl zur Beschreibung der Funktion des linken und des rechten Ventrikels, der Klappen und der Anatomie des Herzens. Angeborene Herzfehler sind inklusive ggf. vorhandener Restdefekte zu beschreiben. Ergüsse, Tamponaden und intrakardiale Thromben sind auszuschließen/ nachzuweisen. Wiederholte Echokardiographien zur Abschätzung der intrakardialen Druckverhältnisse, der Ventrikelfüllung, der systolischen Funktion und Bestimmung des Schlagvolumens mit Abschätzung des Herzminutenvolumens sind ergänzend zur kontinuierlichen Überwachung sinnvoll.

7.2.2. Labor

Zur aktuellen Kreislaufbeurteilung sollen Blutgasanalyse (BGA), O₂-Sättigung, Serum-Elektrolyte (Natrium, Kalium, Calcium), Blutzucker und Laktat bestimmt werden (vgl. Empfehlung 1). Simultane Messungen der arteriellen und zentralvenösen Blutgasanalyse (BGA) dienen der Bestimmung der zentralvenösen Sättigung, der arteriovenösen

www.dgpk.org 10 / 47

Sauerstoffdifferenz und je nach Anatomie des Verhältnisses von Lungen- zu Systemperfusion (vgl. Tab 6a und 6b). Zur differentialdiagnostischen Abklärung und/oder Diagnose sekundärer Organdysfunktion sollen: Blutbild, Kreatinin, Harnstoff, Transaminasen, Bilirubin, Gerinnungsdiagnostik inklusive D-Dimere zum Ausschluss einer Lungenembolie, sowie Troponin I, CK/CK-MB, BNP/NT-proBNP analysiert werden.

Tabelle 6a: Beurteilung Herzzeitvolumen - Zielwerte		
Parameter	Zielwerte	
ZVS	Ohne Zyanose: >60%	
AVDO ₂	4-6 ml/dl bzw. 30 – 40%	
AVDO ₂ , vereinfacht zu (SaO ₂ – SvO ₂)	30 – 40%	
Blutgasanalyse	Basendefizit ausgeglichen, Normokapnie	
Laktat	Sinkend bis zur Normalisierung (< 2mmol/l)	
Diurese	Einsetzend, 2 - 3ml/kg/h	
Temperaturdifferenz zentral/peripher	< 4°C (abhängig von Patientengröße,	
	Medikation und Umgebungstemperatur)	
Kapilläre Füllungszeit	< 2 Sek.	

ZVS: Zentralvenöse Sauerstoffsättigung, AVDO₂: Arteriovenöse Sauerstoffdifferenz

Tabelle 6b: Berechnung wichtiger Kreislaufparameter		
Parameter	Berechnungsformel	
Arterio-venöse Sauerstoffdifferenz (AVDO ₂)	(1,34 [mL/g] x Hb [g/dL]) x (SaO ₂ – SvO ₂)	
Verhältnis pulmonaler zu	(SaO ₂ – SvO ₂) / (pulmonalvenöse Sättigung –	
systemischer Perfusion (Q _p /Q _s)	pulmonalarterielle Sättigung)	

AVDO₂: Arteriovenöse Sauerstoffdifferenz, Hb: Hämoglobin, Qp: Lungenfluss, Qs: Körperfluss

Empfehlung 1:	Leitlinie Akute Herzinsuffizienz	,O,
Labordiagnostik		DGPK
Labordiagnostik zur	Blutgasanalyse (BGA)	
Beurteilung der aktuellen	O ₂ -Sättigung	
Kreislaufsituation	Serum-Elektrolyte (Natrium, Kalium, Calcium)	
	Blutzucker	
	Laktat	
Labordiagnostik zur	Blutbild	
Differentialdiagnostik	Kreatinin, Harnstoff, Transaminasen, Bilirubin	
sowie Diagnose sekundärer	Gerinnungsdiagnostik inklusive D-Dimere zum	
Organdysfunktion	Ausschluss einer Lungenembolie	
	Troponin I, CK/CK-MB	
	BNP/NT-proBNP	

www.dgpk.org 11 / 47

7.2.3. Röntgenbild des Thorax

Zur Beurteilung der Herzgröße, des Ausmaßes der Lungenstauung oder –überflutung, der Diagnose von Pleuraergüssen sowie Differenzialdiagnostik (Pneumothorax, Atelektase, etc.) muss ein Röntgenbild des Thorax angefertigt werden.

7.2.4. EKG

Ein EKG muss zur Rhythmusdiagnostik sowie zum Ischämienachweis abgeleitet werden. Im Verlauf kann es ggf. zur Therapiekontrolle verwendet werden.

7.2.5. Herzkatheteruntersuchung

Bei Verdacht auf Koronarpathologie und bei nichtinvasiv nicht klärbarer Ursache der Herzinsuffizienz sollte eine Herzkatheteruntersuchung durchgeführt werden. Eine Biopsie zur Differentialdiagnose Myokarditis vs. Kardiomyopathie kann wertvolle Hinweis zur Prognose geben (siehe DGPK-Leitlinie Myokarditis).

7.2.6. Computertomographische Angiographie (CT-Angiografie)

Das nichtinvasive Verfahren einer kontrastmittelverstärkten Computertomographie erlaubt die Segmentierung der Gefäße und Abgrenzung gegen die umgebenden Gewebsstrukturen. Im Rahmen einer akuten Herzinsuffizienz ist die häufigste Indikation zur CT-Angiografie der Ausschluss einer Lungenembolie. Im Kindesalter ist die Lungenembolie zwar außerordentlich selten (z.B. bei Patienten mit ausgeprägter Zyanose und sekundärer Erythrozytose), dennoch sollte bei starkem klinischem Verdacht, der Anamnese einer tiefen Venenthrombose oder bei liegenden zentralen Venenkathetern eine Lungenembolie mittels CT-Angiographie ausgeschlossen werden.³¹

Empfehlung 2: Leitlinie Akute Herzinsuffizie	nz 💸
Apparative Diagnostik	DGPK
Eine Echokardiographie soll zur Beschreibung der Anatomie und Funktion des	6
Herzens als eine der ersten Maßnahmen durchgeführt werden.	
Eine Echokardiographie sollte im Verlauf zur Bewertung der Hämodynamik	
vorgenommen werden. Sie dient auch dem erweiterten Monitoring.	
Zur Beurteilung der Herzgröße sowie zur differentialdiagnostischen	
Bewertung kardialer/pulmonaler Ursachen der AHI soll ein Röntgenbild des	
Thorax angefertigt werden.	

www.dgpk.org 12 / 47

Ein EKG soll zur Rhythmusanalyse und Ischämiediagnostik durchgeführt	
werden.	
Bei anderweitig nicht klärbarem Verdacht auf eine Koronarpathologie als	
Ursache der AHI sollte eine Herzkatheteruntersuchung mit Koronardarstellung	
erfolgen.	
Bei Verdacht auf eine akute Lungenembolie und Vorliegen von Risikofaktoren	
kann eine CT-Angiografie die Diagnose weitestgehend sichern und sollte	
erwogen werden.	

7.3. Basismonitoring

Die rechtzeitige Erfassung von Herzfunktion, Herzzeitvolumen und Gewebsoxygenierung trägt wesentlich zur Prognose der akuten Herzinsuffizienz bei. Ein entsprechendes Monitoring ist zwingende Voraussetzung. Kontinuierliche nicht-invasive oder intermittierende oszillometrische Blutdruckmessungen überschätzen den Blutdruck bei Hypotension. Die Empfehlung zum Basismonitoring ist in **Empfehlung 3** zusammengefasst.

Empfehlung 3:	Leitlinie Akute Herzinsuffizienz	S.
Basismonitoring		DGPK
Monitoring	Bemerkung	
EKG	3-Kanal-EKG, Schrittmachererkennung	
Pulsoxymetrie	Fehlerhaftigkeit bei sehr niedriger SaO ₂ . Bei Ductusabhängigen Herzfehlern eventuelle differentielle Sättigung prä- und postductal beachten.	
Blutdruckmessung	Bei medikamentöser Therapie mit Vasopressoren (z.B. Noradrenalin), Inotropika (z.B. Dobutamin, Suprarenin) muss die Blutdruckmessung invasiv erfolgen.	
Flüssigkeitsbilanzierung	Die Perspiratio muss beachtet werden.	
Temperaturmessung zentral und peripher	Die zentral-periphere Temperaturdifferenz erlaubt eine Beurteilung der Perfusion und sollte gemessen werden.	
Blutgasanalyse	In der Regel venös, für die Bestimmung der AVDO ₂ auch arteriell; Häufigkeit der klinischen Situation anpassen.	

7.4. Erweitertes Monitoring

7.4.1. Zentraler Venendruck/Venöse Oxymetrie

Der zentrale Venendruck soll zur kontinuierlichen Erfassung des Füllungszustands in

www.dgpk.org 13 / 47

Abhängigkeit von der Ventrikelcompliance gemessen werden. Letztere ist Schwankungen unterworfen (z.B. mechanische Beatmung), die ZVD-Messung kann dabei der Optimierung des Füllungsdrucks dienen. Volumengaben dienen der Erfassung der Vorlastreserve. Die venöse Oxymetrie ist ein rascher und sensibler Parameter zur Bewertung des Sauerstoffangebots/Cardiac output im Rahmen einer kritischen Kreislaufsituation. Sie ist stets in Abhängigkeit von der systemarteriellen Sättigung (AVDO₂) und von der Sauerstoffzufuhr zu bewerten.

7.4.2. Pulmonaliskatheter

Pulmonaliskatheter sind bei Kindern nur selten sinnvoll und sollten nicht routinemäßig verwendet werden. Der Nutzen einer direkten HZV-Messung (Thermodilution) muss gegen deren Fehlerhaftigkeit und gegen das Komplikationsrisiko bei der Anlage abgewogen werden. Bei Shuntvitien ist die Methode nicht anwendbar. Die Bestimmung der gemischtvenösen Sauerstoffsättigung kann in der Regel durch die zentralvenöse Sättigungsmessung ersetzt werden.

Patienten mit unzureichendem Ansprechen auf die Therapie, bei denen der Füllungsdruck des linken Ventrikels unklar ist, können dagegen von einer Messung des Wedge-Druckes über einen Pulmonaliskatheter profitieren.³⁷ Auch bei instabilen Patienten mit pulmonaler Hypertension oder erhöhtem Risiko für pulmonale Hochdruckkrisen (idiopathisch oder bei angeborenem Herzfehler) ist eine invasive pulmonalarterielle Druckmessung sinnvoll. Ebenso sind im Rahmen der Listung für eine Herztransplantation über Eurotransplant, ggf. auch repetitiv, Messungen der pulmonalarteriellen Druckwerte und Sättigungen notwendig. Kontinuierliche Verfahren zur Bestimmung des Herzzeitvolumens können im Einzelfall sinnvoll sein.

7.4.3. Linksatriale Druckmessung (LA-Katheter)

Linksatriale Katheter (in der Regel Positionierung in der Lungenvene) erlauben die kontinuierliche invasive Messung der linksventrikulären Vorlast und werden alternativ zur Wedge-Druckmessung verwendet. Ihre Anwendung ist wegen möglicher Komplikationen (Blutung, Tamponade, Schlaganfall) und der notwendigen chirurgischen Anlage begrenzt auf Patienten nach Herzoperation. Eine Indikation kann bei grenzwertiger Größe/Compliance bzw. Funktion des linken Ventrikels gegeben sein.

7.4.4. Nah-Infrarot-Spektroskopie (= Near-infrared spectroscopy/NIRS)

www.dgpk.org 14 / 47

Bei der "Messung" der regionalen Oxyhämoglobinsättigung (rSO₂) des Gehirns handelt sich um einen berechneten Wert und nicht um eine direkte Messung. Sie wird zur Vermeidung neurologischer Komplikationen kritisch kranker Patienten eingesetzt. Die Ergebnisse korrelieren nicht einheitlich mit der zentralvenösen Sättigung in der oberen Hohlvene, ³⁸ unterliegen pCO₂-abhängigen Schwankungen des zerebralen Gefäßtonus und sind bei ausgeprägter Polyzythämie nicht verlässlich. ³⁹ Die NIRS wird insbesondere während und nach kardiochirurgischen Eingriffen angewendet, wenngleich es keine verlässlichen validierten und reproduzierbaren Referenzwerte gibt und Korrelationen zum neurologischen Outcome nicht reproduzierbar nachzuweisen sind. Die Methode wird noch immer kontrovers diskutiert. ⁴⁰⁻⁴² Der Parameter reagiert relativ rasch im Vergleich zu Lactat und SvO₂ und zeigt frühzeitig regionale Perfusionsstörungen sowohl zerebral als auch peripher (Niere, Darm) an. ⁴³ Trotz gebotener Vorsicht hinsichtlich der Interpretation der Absolutwerte der NIRS kann der Trend der angezeigten Werte peri- und postoperativ im Rahmen von herzchirurgischen Eingriffen zur Verlaufsbeurteilung herangezogen werden. Die Empfehlung zum erweiterten Monitoring ist in **Empfehlung 4** zusammengefasst.

Empfehlung 4:	Leitlinie Akute Herzinsuffizienz	S,
Erweitertes Monitoring		DGPK
Monitoring	Bemerkung	
ZVD-Messung	Physiologie berücksichtigen, z.B. bei	
	palliativer Kreislauftrennung (Glenn/TCPC)	
Zentralvenöse O²-Sättigung(ZVS)	Sensibler Parameter zur Beurteilung von	
/Oxymetrie	Sauerstoffangebot und HZV. Im Verlauf	
Tonymound	sollten wiederholte Analysen zur Bewertung	
	der Kreislauffunktion durchgeführt werden.	
Pulmonaliskatheter	Sollte nicht routinemäßig bei Kindern	
	angewendet werden. Fehlerhaftigkeit bei der	
	HZV-Abschätzung im Rahmen von Shunt-	
	vitien. Venöse Oxymetrie meist ausreichend.	
LA-Katheter	Der Einsatz ist auf Patienten nach	
	Herzoperation beschränkt. Zur Bewertung	
	der Compliance des linken Ventrikels und bei	
	grenzwertig großen linken Ventrikeln kann	
	die Platzierung erwogen werden.	
Nah-Infrarot-Spektroskopie	Zeigt frühzeitig regionale Perfusionsstörungen	
(NIRS)	an; kann trotz Störquellen (Zyanose, pCO ₂)	
(zur Verlaufsbeurteilung peri- und postoperativ	
	nach Herzoperation herangezogen werden.	

www.dgpk.org 15 / 47

7.5. Differenzialdiagnose

Bei Feststellung einer akuten Herzinsuffizienz sind im Diagnoseprozess kardiale sowie nicht-kardiale Ursachen eines Low/High-Cardiac Output-Zustands zu klären (vgl. Tabelle 7).

Tabelle 7: Differentialdiagnose der akuten Herzinsuffizienz					
Ursache	Beispiele				
Kardiale Ursachen					
Myokarditis/Kardiomyopathie	Dilatativ, hypertroph, restriktiv, postinfektiös,				
	idiopathisch, metabolisch, ischämisch, bei				
	Muskelerkrankungen, nach Chemotherapie				
Herzrhythmusstörungen	AV-Blockierung, supraventrikuläre oder				
	ventrikuläre Tachykardien				
Perikardtamponade	Immunologische oder infektiöse Grunderkrank-				
	ung, postoperativ nach herzchirurgischem Eingriff				
Klappenstenose/-insuffizienz,	Endokarditis, rheumatisches Fieber				
erworben					
Herzfehler					
- Ductusabhängige Herzfehler	Hypoplastisches Linksherzsyndrom, Aorten-				
	isthmusstenose, unterbrochener Aortenbogen,				
	Pulmonalatresie,				
- Kritische Ausflusstraktstenose	kritische Aorten-/Pulmonalstenose				
- AV-Klappeninsuffizienz	Ebstein-Anomalie, AVSD				
- Koronaranomalie	Bland-White-Garland Syndrom, Koronarfistel				
Nicht-kardiale Ursachen					
Pulmonale Hypertension	z.B. idiopathisch, hereditär, Lungenerkrankung,				
	Lungenembolie				
Hypertensive Krise	Renale, endokrine Ursache, Tumor				
Extrakardiale arteriovenöse	Vena Galeni Malformation, große kutane				
Shunts	(Highflow) Hämangiome				
Septischer Schock					
Anämie					
Spannungspneumothorax					
Trauma					
Intoxikation					
Thyreotoxikose					

8. Therapie

8.1. Grundsätze der Behandlung

Die Therapie sollte sich an der Erreichung von individuell zu definierenden Zielparametern (siehe Tab.6a) orientieren, Intensivierung und Deeskalation sind danach zu

www.dgpk.org 16 / 47

steuern. Ein adäquater Perfusionsdruck (arterieller Blutdruck) ist insbesondere für die Koronarperfusion unabdingbar. Die entscheidende hämodynamische Zielgröße stellt jedoch das Herzzeitvolumen dar. Da eine direkte Messung des Herzminutenvolumens und der Widerstände im systemischen bzw. pulmonalen Kreislauf nur in Ausnahmefällen möglich ist, wird in der klinischen Routine abgeschätzt, ob das Herzminutenvolumen adäquat ist (siehe 6.3/6.4).

Bei kritischer Kreislaufsituation/Schock/Herzkreislaufstillstand gilt im Allgemeinen:

- Frühzeitige Verlegung des Patienten in eine Intensivstation/Intensiveinheit
- Reanimation nach publizierten Standards⁴⁴
- Überprüfung kausaler Therapiemöglichkeiten (Katheterintervention; Operation)
- Intoleranz der chronischen Herzinsuffizienzmedikation (Nachlastsenker oder β-Blocker) – Unterbrechung erforderlich

8.2. Allgemeine Maßnahmen

Beim kritisch kranken Kind ist die Anlage eines mehrlumigen zentralen Venenkatheters indiziert; jedoch darf sich dadurch die Initiierung der Notfalltherapie nicht verzögern. Ggf. muss über periphere Zugänge oder eine intraossäre Kanüle der Kreislauf stabilisiert werden.⁴⁴

Bei normaler Anatomie und transkutaner Sauerstoffsättigung (SpO₂) <90% ist Sauerstoff zur Verbesserung der Gewebeoxygenierung indiziert. Cave: Die Sauerstoffgabe kann bei Shunt-abhängiger Lungenperfusion, Rezirkulationsvitien und insbesondere bei Herzfehlern mit Parallelzirkulation (z.B. Hypoplastisches Linksherzsyndrom) die Herzinsuffizienz aggravieren.

Bei Kindern mit akuter Herzinsuffizienz besteht häufig eine Anämie (Prävalenz 18%), die wie bei Erwachsenen negativ mit dem Versterben, einer Transplantation oder Kunstherzeinsatz korreliert. Evidenzbasierte Empfehlungen für Zielwerte des Hämoglobins oder Hämatokrits für das Kindesalter im Rahmen einer akuten Herzinsuffizienz können nicht gegeben werden. Eine Anämie ist bei Neugeborenen und älteren Kindern im Rahmen nichtkardialer Operationen negativ mit der postoperativen Mortalität assoziiert. Ein Hämoglobingehalt >10g/dl gilt bei azyanotischen Patienten in vielen Intensiveinheiten als unterer Grenzwert, wenngleich auch deutlich niedrigere Werte bei hämodynamisch stabilen Patienten ausreichend scheinen. Bei Herzfehlern mit chronischer Zyanose wird aufgrund der nach rechts verschobenen Sauerstoffdissoziationskurve in praxi ein hoher Hämoglobinwert (>12 g/dl, in besonderen Situationen höher)

www.dgpk.org 17 / 47

angestrebt, auch wenn hierfür keine Evidenz vorliegt. Die Indikation zur Transfusion von Erythrozyten ist immer im Zusammenhang mit der Pathophysiologie und anderen Parametern einer nicht ausreichenden Sauerstoffversorgung wie der zentralvenösen Sättigung, Lactat etc. zu stellen; Benefit und Risiko sind abzuwägen. Die Analyse des Eisenstoffwechsels mit eventueller Eisensubstitution gehört zum festen Bestandteil in der Behandlung der Herzinsuffizienz im Anschluss an die akute Phase der Erkrankung. Zur Kreislaufentlastung sollte der Sauerstoffverbrauch durch strikte Vermeidung unnötigen körperlichen und psychischen Stresses und Behandlung von Fieber gesenkt werden. Sedierung senkt den Sauerstoffverbrauch, erschwert allerdings die neurologische Beurteilung.

Bei schwerer Kreislaufinsuffizienz ist die Beatmung mit positiv endexspiratorischem Druck indiziert. Die Sedierung/Relaxierung zur Intubation kann durch den Wegfall endogener Katecholamine und durch den peripheren Widerstandsverlust einen Herz-Kreislaufstillstand provozieren. Bei unter Beatmung fortbestehender akuter Herzinsuffizienz können tiefe Sedierung, Relaxierung und Kühlung den Sauerstoffverbrauch weiter senken, wobei bei postoperativen Patienten der Effekt auf die Blutgerinnung (verstärkte Blutungsneigung nach Operationen mit tiefer Hypothermie) beachtet werden muss.

Eine metabolische Azidose vermindert die Empfindlichkeit des Myokards gegenüber Katecholaminen und erhöht die Gefäßwiderstände. Daher sollte diese ab einem Basenexzess von -5 mmol/L oder mehr z.B. durch Na-bicarbonat oder Tris-puffer ausgeglichen werden.

Empfehlung 5: Leitlinie Aku	ute Herzinsuffizienz	2,
Therapie - Allgemeinmaßnahmen	DGI	PK
- Bei einer SpO2 < 90% und normaler kardialer Anatomie Sauerstoff indiziert.	e ist die Gabe von	
 Bei einer akuten Herzinsuffizienz im Kindesalter mit hän Instabilität sollte bei einem Hb <10g/dL eine Transfusior werden. 	•	
- Bei Patienten mit zyanotischem Herzfehler sollte der Hb gehalten werden.	über 12 g/dL	
- Bei der AHI sollte der Sauerstoffverbrauch gesenkt werd Antipyrese/Kühlung, Sedierung, Relaxierung)	den. (z.B.	
- Bei der schweren Dekompensation soll eine PEEP-Beat noninvasiv vorgenommen werden.	tmung (invasiv oder	

www.dgpk.org 18 / 47

Bei einer metabolischen Azidose sollte ab einem Basendefizit von -5mmol/L eine Pufferung mit Na-Bicarbonat/Tris erfolgen.

8.3. Medikamentöse Behandlung

Für die im Folgenden genannten medikamentösen Therapieoptionen liegen keine methodisch hochwertigen, randomisierten, kontrollierten Studien für das Kindesalter vor. Die vorliegenden Empfehlungen beruhen auf klinischer Erfahrung und Expertenkonsens.

8.3.1. Optimierung der Vorlast

<u>Volumen-Mangel:</u> Besteht der Verdacht auf eine nicht ausgeschöpfte Vorlastreserve (beurteilbar durch Echoparameter, Herzfrequenz, Reaktion auf Kopftieflage und Leberdruck) ist eine probatorische Volumengabe (initial 10–30 ml/kg Vollelektrolytlösung). indiziert. Menge und Geschwindigkeit richten sich nach dem Ausmaß des geschätzten Defizits und dem erzielbaren Effekt (ZVD, Frequenz, Blutdruck, ggf. LA-Druck)

Führt die Volumengabe nicht zu einer Verbesserung und besteht eine linksventrikuläre Funktionseinschränkung, werden Medikamente zur Inotropiesteigerung eingesetzt.

<u>Volumen-Überlastung:</u> Bei stark erhöhtem Füllungsdruck oder klinischen Zeichen einer pulmonalen oder systemvenösen Kongestion ist die rasche Optimierung der Vorlast dagegen durch Volumenentzug (Diuretika) bzw. die Gabe von Nitroglycerin indiziert, ggf. ebenfalls in Kombination mit einer Inotropiesteigerung bzw. Nachlastsenkung.

Wichtig ist die differenzialdiagnostische Abgrenzung zur schweren restriktiven Funktionsstörung oder Perikardtamponade. Bei diesen Erkrankungen kann die Senkung der Nachlast oder der Volumenentzug zum Herz-Kreislaufstillstand führen. Auch bei sehr hypertrophiertem Myokard können Füllungsdrücke von 15 mmHg für eine ausreichende Vordehnung des Ventrikels erforderlich sein.

Weiterhin müssen ein Rechtsherzversagen, eine pulmonale Hypertension oder ein inadäquat hoher pulmonalarterieller Widerstand bei Fontanzirkulation o.ä. abgegrenzt werden. In diesen Fällen ist durch pulmonalarterielle Widerstandssenkung eine Erhöhung der Vorlast (bessere Füllung) des systemischen Ventrikels zu erreichen.

Eine gleichzeitige Senkung der systemarteriellen Nachlast muss (dabei) wegen der prinzipiell vorlastabhängigen Fontanzirkulation vermieden werden. Nach Optimierung der Vorlast und persistierender akuter Herzinsuffizienz kann die weitere spezifische medikamentöse Therapie vor allem an den systemarteriellen Blutdruckwerten, der Pumpfunktion der Ventrikel und der Einschätzung der Gefäßwiderstände orientiert werden.

www.dgpk.org 19 / 47

8.3.2. Optimierung der Nachlast

Ziel ist eine Normalisierung der Gefäßwiderstände bei adäquatem Perfusionsdruck. Kinder mit normaler Anatomie oder nach biventrikulärer Korrekturoperation eines angeborenen Herzfehlers und erhöhtem systemvaskulärem Widerstand werden in der Regel mit einem Inodilatator (z.B. PDE-III-Inhibitor (Milrinon), weniger Nachlast-effektiv: Dobutamin) und /oder reinen Vasodilatatoren (Na-Nitroprussid) sowie indirekt über eine effektive Analgosedierung behandelt.

Bei Vorliegen einer arteriellen Hypotension sollten (nach Ausgleich eines Volumenmangels) positiv inotrope Medikamente ohne Nachlastsenkung eingesetzt werden (in der Regel Adrenalin), insbesondere um die Koronarperfusion nicht zu verschlechtern. Der Einsatz von niedrig dosierten Vasopressoren (Noradrenalin, Vasopressin) kann hier sinnvoll und – aufgrund der geringeren / fehlenden Chronotropie – von Vorteil gegenüber Adrenalin sein.

Bei hypertrophiertem Myokard (z.B. nach Korrektur einer Aortenklappen- oder - isthmusstenose) wird die Nachlast durch Vasopressoren erhöht.

Bei univentrikulärem Herzen jeglicher Palliationsstufe oder Rechtsherzversagen ist die gezielte medikamentöse Senkungdes pulmonalvaskulären Widerstands (z.B. mit Sildenafil i.v., inhalatives NO, Prostanoide) entscheidend. Bei erhöhtem Widerstand ist die Lungenperfusion reduziert, nach Glenn- oder Fontanoperation (und ihren Varianten) sowie pulmonalarterieller Hypertension ohne Herzfehler hängt die adäquate Füllung des subaortalen Ventrikels von einem niedrigen Widerstand in der Lungenstrombahn ab (zur Therapie vgl. 7.3.5.2).

8.3.3. Chronotropie

In der akuten Herzinsuffizienz besteht eine Bedarfstachykardie, die in der Regel nicht spezifisch behandelt wird. In besonderen Fällen, z.B. Ausflusstraktobstruktionen, HOCM, kann eine medikamentöse Reduktion der Herzfrequenz eine deutliche Steigerung des HZV bewirken. Neben der Absenkung der Körpertemperatur durch Kühlung (ggf. mit Relaxierung) kommen hierzu in ausgewählten Indikationen unter Beachtung der Hämodynamik am ehesten kurzwirksame Betablocker (z.B. Landiolol, Esmolol per infusionem) sowie Digoxin i.v. in Betracht. Das bei chronischer Herzinsuffizienz nachweislich wirksame Ivabradin eignet sich aufgrund seiner Pharmakokinetik weniger für die Akuttherapie.⁴⁹

Postoperativ kann es durch verschiedene Erregungsbildungs- und Überleitungsstörungen

www.dgpk.org 20 / 47

zu einer nicht adäquaten, niedrigen Herzfrequenz kommen. Diese kann durch eine Schrittmachertherapie behandelt werden.

8.3.4. Inotropie

Positiv inotrop wirksame Medikamente (z.B. Milrinon, Dobutamin, Suprarenin) werden insbesondere bei akutem Herzversagen mit arterieller Hypotension eingesetzt. In Reanimationssituationen und in der postoperativen Intensivtherapie haben sie einen festen Platz. Bei akut verschlechterter chronischer Herzinsuffizienz oder bei Kardiomyopathien ist die kurzfristige Anwendung indiziert.

Alle Katecholamine erhöhen dosisabhängig den myokardialen O₂-Verbrauch und das Arrhythmierisiko, die Dosis-Wirkungsbeziehungen sind altersabhängig und im Einzelfall nicht exakt vorhersagbar. Für die Dosisangaben gibt es im Kindesalter keine ausreichenden Studiendaten; die Dosierung wird wesentlich von der klinischen Situation und den institutionellen Erfahrungen mit den jeweiligen Wirkstoffen bestimmt. Volumenmangel und Azidose sollten, wenn möglich, ausgeglichen werden, da sie die Wirkung von Katecholaminen regelhaft vermindern. Ob die durch Steroide und Schilddrüsenhormone verbesserte Ansprechbarkeit auf Katecholamine in der klinischen Situation von Nutzen ist, ist im Einzelfall nicht vorhersehbar. Insbesondere unter hochdosierter Plasmazufuhr ist auf eine ausreichende Calcium-Substitution zu achten. Besteht jedoch bei diesen Erkrankungen die Notwendigkeit von positiv inotroper Therapie über mehrere Tage oder müssen die Dosierungen rasch eskaliert werden, ist die Indikation für eine mechanische Kreislaufunterstützung zu prüfen (vgl. 8.7).

8.3.5. Levosimendan

Levosimendan gilt in der prolongiert dekompensierten Herzinsuffizienz seit Jahren als sicher und gut verträglich, ist in der Regel jedoch keine Primärtherapie in der akuten Dekompensation. Eine Verbesserung des Herzzeitvolumens wurde in mehreren Studien nachgewiesen,⁵⁰ eine generelle Verbesserung der Myokardfunktion wurde jedoch nicht erzielt.⁵¹ In der Regel wird keine Bolusgabe mehr verabreicht, sondern mit der Erhaltungsdosis über 24-48 Stunden behandelt.

Eine präventive Therapie mit Levosimendan bei kardiochirurgischen Eingriffen bei Kindern zur Vermeidung eines Low-Cardiac-Output-Syndroms erwies sich nicht als effektiv. 52

www.dgpk.org 21 / 47

Leitlinie Akute Herzinsuffizienz

Medikamentöse Therapie

- Wichtigste Zielgröße in der Therapie der akuten Herzinsuffizienz ist ein adäquates Herzzeitvolumen.
- Ein ausreichender koronarer Perfusionsdruck ist unabdingbar.
- Vor Beginn einer Inotropika-Therapie ist die Vorlast zu optimieren.
- Die Senkung der Nachlast bei systemischer Widerstandserhöhung erfolgt über Inodilatatoren (z.B. PDE III-inhibitoren wie Milrinon) und reine Vasodilatatoren (z.B. Na-Nitroprussid).
- Bei univentrikulären Herzen nach palliativer Kreislauftrennung ist die gezielte pulmonalarterielle Widerstandssenkung die wirksamste Maßnahme zur Steigerung des Herzzeitvolumens.

Abbildung 1 fasst das diagnostische und therapeutische Vorgehen bei akuter Herzinsuffizienz als Algorithmus zusammen.

www.dgpk.org 22 / 47

Abbildung 1: Diagnostisches/therapeutisches Vorgehen bei akuter Herzinsuffizienz *Bei Herzkreislaufstillstand ist primär die kardiopulmonale Reanimation einzuleiten.

www.dgpk.org 23 / 47

8.3.6. Medikamentöse Therapie bei verschiedenen Grunderkrankungen

Es können keine Evidenz-basierten Empfehlungen gegeben werden. Die Wirkmechanismen und Dosierungsempfehlungen für Kinder sind in Tabelle 12 dargestellt.

8.3.6.1. Dilatative Kardiomyopathie und Myokarditis

Häufig ist ein linksventrikuläres Versagen mit erhöhten Füllungsdrücken, Stauung, hochgradig eingeschränkter Kontraktilität und Hypotension führend.

Je nach Ausmaß der Kontraktilitätseinschränkung Milrinon und/oder Dobutamin, falls nicht ausreichend, Adrenalin, bei Volumenüberladung oder pulmonalvenöser Stauung Diuretikagabe.

8.3.6.2. Rechtsherzversagen, pulmonale Hypertension

Es bestehen erhöhte rechtsventrikuläre Füllungsdrücke mit Ausbildung von Ödemen, Pleuraergüssen, Aszites; zusätzliche Beeinträchtigung der linksventrikulären Funktion durch Septumshift.

Therapie: Senkung des pulmonalvaskulären Widerstands: Sofortige Gabe von O_2 ; akute Senkung des pulmonalvaskulären Widerstandes mit Prostacyclinen (inhalativ, intravenös), ggf. Sildenafil, Azidoseausgleich (Basenexzess nicht negativ!).

Die Beatmungsindikation ist zurückhaltend zu stellen. Bei beatmeten Patienten inhalatives NO, Beatmung mit möglichst langen Exspirationszeiten, Normoventilation (pCO₂ 35-40 mmHg). Bei Hinweisen auf ein Lungenödem als kausale Ursache ist eine Beatmung mit erhöhtem PEEP indiziert.

Die Inotropie wird durch Milrinon oder Dobutamin gesteigert, bei systemischer Hypotension Therapie mit Vasopressoren (z.B. Noradrenalin).

Die Optimierung der Vorlast muss vorsichtig erfolgen. Ein Volumenentzug wird häufig hämodyamisch nicht vertragen.

8.3.6.3. Postoperative Herzinsuffizienz nach biventrikulärer Korrektur

Die Optimierung der Vorlast ist nach zugrunde liegender Pathologie und individueller Festlegung von Zielwerten vorzunehmen (vgl. 7.3.1).

Bei einfachen Herzfehlern und präoperativ normaler Ventrikelfunktion ist häufig keine inotrope Therapie erforderlich. Ansonsten Start der medikamentösen Therapie in der Regel beim Abgang von der Herz-Lungenmaschine. Zur Inotropiesteigerung: Milrinon, Dobutamin oder Adrenalin, ggf. in Kombination.⁵³⁻⁵⁵. Bei Hypotension trotz ausreichender Vorlast kann

www.dgpk.org 24 / 47

die zusätzliche Gabe von Vasopressoren (z.B. Noradrenalin) zur Aufrechterhaltung der Koronarperfusion sinnvoll sein. Im postoperativen Verlauf muss die Therapie der klinischen Situation angepasst werden.

Bei hypertrophiertem Myokard mit guter systolischer Funktion sind erst nach Gabe von ausreichendem Volumen Vasopressoren indiziert. Eine Tachykardie ist zu vermeiden bzw. zu behandeln.

8.3.6.4. Postoperative Herzinsuffizienz bei aortopulmonalem Shunt

Die Therapie wird entsprechend dem vorliegenden Herzfehler angepasst.

- Bei Imbalanz der pulmonalen zur systemischen Perfusion muss immer auch die Funktion des Shunts evaluiert werden. Eine pulmonale Überperfusion kann eine chirurgische Verkleinerung des Shunts erfordern.
- Bei univentrikulärem Herzen mit morphologisch rechtem Systemventrikel (z.B. hypoplastischem Linksherzsyndrom) sind Maßnahmen zur Verminderung des Sauerstoffverbrauchs wie unter 7.2 beschrieben essentiell, insbesondere Vermeidung von erhöhter Körpertemperatur. Mit steigendem Verhältnis von pulmonaler zu systemischer Perfusion (Qp/Qs) bei konstantem Hämoglobinwert verschlechtert sich das systemische Sauerstoffangebot. 56,57 Systemische Nachlastsenkung und ein ausreichend hohes Hämoglobin (siehe DGPK-Leitlinie Hypoplastisches Linksherz-Syndrom) sind die wichtigsten Interventionen zur Optimierung von Qp/Qs und systemischem Sauerstoffangebot. 57-59 Die eingeschränkte myokardiale Funktion wird durch Nachlastsenkung (z. B. Na-Nitroprussid) und Inotropika (Milrinon bzw. Dobutamin und Adrenalin) unterstützt. Zu niedrige Nachlast mit Hypotension reduziert sowohl den pulmonalen Blutfluss als auch die Koronarperfusion und muss ggf. durch Erhöhung des systemischen Widerstandes behandelt werden. Cave: Dopamin erhöht den systemischen Sauerstoffverbrauch und die Sauerstoffextraktion⁶⁰ und kann nicht empfohlen werden. Die therapeutische Beeinflussung des pulmonalen Widerstandes scheint keinen wesentlichen Einfluss auf das systemische Sauerstoffangebot zu haben; eine Hyperventilation sollte jedoch unbedingt vermieden werden. Regelmäßige, in der Initialphase stündliche, venöse und arterielle Blutgasanalysen sind erforderlich, um die medikamentöse Therapie dem sich ändernden Bedarf anzupassen

Bei univentrikulärem Herzen mit morphologisch linkem Systemventrikel (z.B. Trikuspidalklappenatresie) und insbesondere bei biventrikulärer Anatomie (z.B. Pulmonalklappenatresie mit Ventrikelseptumdefekt) ist die ventrikuläre Pumpfunktion in

www.dgpk.org 25 / 47

aller Regel gut. Die oben genannten Therapieprinzipien werden auch hier angewandt; eine Erhöhung der Nachlast durch Vasopressoren wird im Allgemeinen wesentlich besser vertragen als bei Herzfehlern mit morphologisch rechtem Systemventrikel.

8.3.6.5. Besonderheiten bei Glenn- oder Fontanhämodynamik

Die Volumenentlastung des Ventrikels nach der Operation, Tachykardie, Widerstandsverlust durch Inflammation und Überdruckbeatmung behindern die ventrikuläre Füllung und verringern somit das Herzzeitvolumen. Zur Verbesserung der pulmonalen Perfusion werden die unter 7.3.7.2 beschriebenen Maßnahmen angewandt. Eine möglichst frühe Extubation verbessert die Hämodynamik und verkürzt den Aufenthalt auf der Intensivstation. Ein positiver endexspiratorischer Atemwegsdruck bis 5 mmHg beeinträchtigt die Hämodynamik nicht; eine gut ventilierte Lunge ohne Dystelektasen und ohne Pleuraergüsse senkt den pulmonalvaskulären Widerstand. Inhalatives NO verbessert die Hämodynamik, Adrenalin verursacht häufig eine Tachykardie, ohne das Herzminutenvolumen zu steigern.

8.3.7. Systemarterielle hypertensive Krise

Normalisierung des Blutdrucks durch Nachlastsenkung mit Na-Nitroprussid oder Urapidil (siehe DGPK-Leitlinie Arterielle Hypertonie).

8.3.8. Herzrhythmusstörungen

Siehe DGPK-Leitlinien Bradykarde Herzrhythmusstörungen und Tachykarde Herzrhythmusstörungen.

8.3.9. Herzinsuffizienz bei Neugeborenen

Bei Neugeborenen mit kritischen angeborenen Herzfehlern oder unklarer akuter Herzinsuffizienz sollte bis zur definitiven Klärung der Anatomie und der hämodynamischen Situation bzw. Einleitung einer spezifischen Therapie eine Prostaglandin E1-Infusion (5 – 10 – 50 ng/kg/min) begonnen werden.

www.dgpk.org 26 / 47

E	mpfehlung 6: Leitlinie Akute Herzinsuffizienz	S.
S	pezifische hämodynamisch orientierte Therapie	DGPK
-	Bei dilatativer Kardiomyopathie und Myokarditis sind Milrinon und/oder	
	Dobutamin die bevorzugt zu verwendenden Inotropika.	
-	Bei akutem Rechtsherzversagen sind zur Aufrechterhaltung eines ausreich-	
	enden koronaren Perfusionsdrucks Vasopressoren (z.B. Noradrenalin)	
	indiziert.	
-	Insbesondere bei ausgeprägter Myokardhypertrophie sollten Vasopressoren	
	(z.B. Noradrenalin) erst nach Ausnutzung der Vorlastreserve angewendet	
	werden.	
-	Um eine ausreichende Ventrikelfüllung zu gewährleisten, soll die	
	Herzfrequenz spezifisch medikamentös gesenkt werden (z.B. bei starker	
	Myokardhypertrophie, restriktiver Kardiomyopathie, Tachykardieinduzierter	
	Kardiomyopathie).	
-	Zur postoperativen Balancierung von Qp/Qs bei aortopulmonalem Shunt mit	
	pulmonaler Überperfusion und systemischer Hypotension sollte neben	
	Milrinon oder Dobutamin auch eine reine Nachlastsenkung mit Na-	
	nitroprussid erwogen werden.	
-	Dopamin ist zur Kreislaufstabilisierung bei AHI aufgrund des hohen	
	Sauerstoffverbrauchs, insbesondere bei univentrikulären Herzen, nicht	
	empfohlen.	
-	Sofern eine maschinelle Beatmung indiziert ist, verhindert ein PEEP bis	
	5mmHg pulmonale Dystelektasen nach palliativer Kreislauftrennung und	
	beeinträchtigt die Hämodynamik nicht.	
1		

8.4. Operative Behandlung

Über die kausale Therapie eines kritischen Herzfehlers hinaus können Gründe für eine interventionelle oder operative Therapie sein: Perikarderguss, Herzbeuteltamponade, Blutung, Restdefekt. Bei therapierefraktärer postoperativer, mechanisch bedingter diastolischer Funktionsstörung ("trockene Tamponade") ist eine sekundäre Eröffnung des Thorax erforderlich.

www.dgpk.org 27 / 47

Bei Patienten mit intraoperativem myokardialen Pumpversagen und Dyssynchronie kann die Implantation eines 2. ventrikulären Elektrodenpaares zur späteren biventrikulären Stimulation bzw. ein "Multisite-Pacing" bei univentrikulärem Herzen erwogen werden. 64,65

8.5. Interventionelle Behandlung

Mit dem zunehmenden Verständnis über die Bedeutung der ventrikulo-ventrikulären Interaktion sowie der akuten Entlastung bei hohen insbesondere linksatrialen Füllungsdrucken sind Interventionen in den Fokus der Therapie der akuten Herzinsuffizienz gerückt.³ Aktuell sind sie eine mögliche additive Therapie bei Versagen der medikamentösen Behandlung.

8.5.1. Manipulationen am interatrialen Septum

Interventionen zur Eröffnung/Erweiterung eines Vorhofseptumdefekts sind im Rahmen der Akuttherapie zur Verbesserung der Mischung der Kreisläufe (z.B. D-TGA, HLHS) standardisierte Verfahren und werden gelegentlich auch im Rahmen der akuten Herzinsuffizienz mit ECMO-Einsatz zur ausreichenden Entleerung des linken Vorhofs/Ventrikels indiziert.⁶⁶

Im Rahmen der <u>Rechtsherzinsuffizienz</u> kann die Etablierung eines restriktiven Vorhofseptumdefekts zur Verminderung von Synkopen und als Bridgingverfahren zu einer Lungentransplantation erwogen werden. ⁶⁷ Aufgrund der hohen spontanen Verschlussrate nach Ballondilatation werden aktuell auch pädiatrische Studien mit einem fenestrierten Implantat mit definierter Öffnung ("Atrial flow restrictorTM") durchgeführt. ⁶⁸ Bei <u>linksventrikulärem Versagen</u> bei Erwachsenen sowohl mit HFrEF als auch mit HFpEF konnte ebenfalls eine akute Besserung der klinischen Symptome nachgewiesen werden. Kinder und Erwachsene mit angeborenen Herzfehlern sowie Kardiomyopathien mit systolischer und diastolischer Funktionsstörung profitieren ebenfalls von einer restriktiven interatrialen Kommunikation mit akuter Absenkung des mittleren linksatrialen Drucks sowohl bei HFpEF als auch bei HFrEF⁶⁹ mit einer Verbesserung der Herzinsuffizienz (NYHA/Rossklassifizierung) und Abfall neurohumoraler Marker.⁷⁰

8.6. Fetale Herzinsuffizienz

Die Behandlung der fetalen Herzinsuffizienz beinhaltet am häufigsten die diaplazentare antiarrhythmische Therapie von tachykarden Herzrhythmusstörungen. Digoxin führt in 50-60% zur Konversion in einen Sinusrhythmus, alternativ werden Flecainid und Sotalol verabreicht. (siehe DGPK-Leitlinie Tachykarde Herzrhythmusstörungen).

www.dgpk.org 28 / 47

Die Laserkoagulation von arteriovenösen plazentaren Gefäßverbindungen .ist die effektivste Maßnahme bei hyperdynamer Herzinsuffizienz durch ein fetofetales Transfusionssyndrom. Fetale Katheterinterventionen wie die Ballonvalvuloplastie der kritischen Aortenklappenstenose und die Eröffnung des interatrialen Septums bei hypoplastischem Linksherzsyndrom werden zur Rekompensation der Ventrikelfunktion und des Kreislaufs durchgeführt.⁷¹

8.7. Mechanische Kreislaufunterstützung

Bei Kindern mit akuter Herzinsuffizienz, die nicht auf eine maximierte medikamentöse Therapie anspricht, sind unter Beachtung der Kontraindikationen mechanische Kreislaufersatzverfahren indiziert. Hinweise dafür sind steigender Katecholaminbedarf, fortgesetzte Notwendigkeit zur Pufferung, steigendes Laktat, erhöhte Sauerstoffausschöpfung und Zeichen eines beginnenden sekundären Organversagens (Diurese, Gerinnung). Eine frühzeitige Kontaktaufnahme mit einem Zentrum mit Erfahrung im Einsatz von Kreislaufersatzverfahren ist dringend anzuraten, eine Verlegung ggf. frühzeitig zu planen. Ziel der Ersatzverfahren ist die Überbrückung bis zur myokardialen Erholung oder zur Herztransplantation. Kontraindikationen zu mechanischen Ersatzverfahren sind nicht therapierbare infauste Grunderkrankungen. Ferner erscheint bei gleichzeitig vorliegender Kontraindikation gegen eine Transplantation – zumindest solange eine "Destinations-Therapie" bei Kindern fehlt, eine LVAD-Implantation nicht sinnvoll. Vor Implantation von Langzeitunterstützungssystemen ist eine umfassende Aufklärung inklusive einer eventuell notwendigen Herztransplantation essentiell und zwingend erforderlich und ein entsprechendes Einverständnis des Patienten bzw. den Erziehungsberechtigten einzuholen (siehe DGPK-Leitlinie HTX).

8.7.1. Veno-arterielle extrakorporale Membranoxygenierung (VA-ECMO)

Die VA-ECMO, auch als extracorporeal life support (ECLS) bezeichnet, ersetzt Herz- und Lungenfunktion. Die VA-ECMO wird am häufigsten intraoperativ bei gescheiterter Entwöhnung von der Herz-Lungen-Maschine (HLM) oder bei medikamentös nicht ausreichend zu stabilisierenden Patienten am Ende der Operation bzw. frühpostoperativ auf der Intensivstation eingesetzt. Bei Reanimationsereignissen unterschiedlicher, mitunter zunächst nicht zu klärender Ursache stellt die rasche Anlage einer VA-ECMO eine letzte Therapieoption dar ("ECPR").⁷²

Die Kanülierung erfolgt in der postoperativen Situation in der Regel transthorakal. Außerhalb herzchirurgischer Eingriffe ist eine periphere Kanülierung (Femoralgefäße,

www.dgpk.org 29 / 47

Kopf-Halsgefäße) möglich. Dies kommt z.B. bei therapierefraktärer Tachyarrhythmie (elektrischer Sturm), septischem Schock, Intoxikation und unter Reanimation in Betracht, erlaubt aber häufig keine vollständige Entlastung des Herzens und ist zudem mit einer höheren Rate an Gefäßkomplikationen verbunden. Unmittelbar nach Implantation einer VA-ECMO und Kreislaufstabilisierung müssen Ursachen des Herzversagens diagnostiziert und ggf. therapiert werden.

Bei schwerer ventrikulärer Dysfunktion bzw. verzögerter Erholung der Myokardfunktion ist im Rahmen der VA-ECMO ggf. eine Dekompression des linken Vorhofs bzw. linken Ventrikels durch die Schaffung eines Vorhofseptumdefekts⁶⁶ oder Platzierung eines Vents, alternativ einer zusätzliche Apexkanüle im linken Ventrikel notwendig.⁷³

Nach VA-ECMO können etwa 40% - 50% der Kinder nach Hause entlassen werden.^{72,74} Für einzelne Diagnosen, beispielsweise bei Fontan-Hämodynamik, ist die Prognose mit einer Rate von 35% schlechter.⁷⁵ Lange Unterstützungszeiten über 28 Tage sind mit sehr hoher Mortalität (>80%) und Morbidität bei den Überlebenden verbunden.⁷⁶

Wegen der langen Wartezeiten auf ein Spenderorgan ist bei fehlender Erholung des Herzens und intakter übriger Organfunktion die Implantation eines Langzeitunterstützungssystems (VAD, s. 7.6.3) indiziert, sofern keine Kontraindikation gegen eine Organtransplantation besteht. Insbesondere die Beurteilung einer eventuell vorliegenden Hirnschädigung ist bei einem Kind an thorakal kanülierter VA-ECMO schwierig. Konzepte einer "awake ECMO" erlauben eine gute neurologische Beurteilung und Erholung der übrigen Organe.⁷⁷

Bei isolierter pulmonalarterieller Hypertension mit Rechtsherzversagen kann die VA-ECMO als Überbrückungsverfahren bis zur Lungentransplantation eingesetzt werden.

8.7.2. Zentrifugalpumpen zur kurzzeitigen Unterstützung

Während die intraaortale Ballongegenpulsation (IABP) im Kindesalter keinen Stellenwert besitzt, werden temporäre ECLS-Systeme mit Zentrifugalpumpen bei Kindern eingesetzt, ⁷⁸ sind jedoch den Langzeitsystemen hinsichtlich des Überlebens unterlegen. Bei perakutem kardiogenem Schock z. B. bei Abstoßungsreaktion nach HTX oder Myokarditis können ab dem Jugendlichenalter die teilweise perkutan implantierbaren Systeme (z.B. Impella™) eine rasche Entlastung des linken Herzens herbeiführen. Insbesondere die Entlastung des linken Vorhofs und Reduktion der Wandspannung des linken Ventrikels machen diese Technik der ECMO überlegen oder können ergänzend zu dieser eingesetzt werden. Daten für die Anwendung bei Kindern zeigen eine gute Verwendbarkeit auch bei Einkammerherzen mit Fontanphysiologie als Überbrückung bis

www.dgpk.org 30 / 47

zur myokardialen Erholung oder zum Langzeit-VAD. 79-81

Trotz vielversprechender erster Ergebnisse ist derzeit unklar, welche Patientengruppe im Kindes-/Jugendlichenalter am meisten profitiert. Generell sollten diese temporären Kreislaufunterstützungssysteme in Zentren implantiert werden, in denen auch ECMO-und VAD-Systeme als Modalität angeboten werden und ein Wechsel jederzeit möglich ist.

8.7.3. Ventrikuläres Assist Device (VAD)

Mit mechanischen Systemen zum Ersatz der Pumpfunktion des Herzens können die linke (LVAD), die rechte (RVAD) oder beide (BVAD) Herzkammern unterstützt werden. Die Entlastung des linken Ventrikels erfolgt in der Regel über den linksventrikulären Apex, die des rechten über eine im rechten Vorhof liegende Kanüle. Parakorporale Systeme stehen zur kurzfristigen Unterstützung als Zentrifugalpumpen (Zulassung bis 30 Tage), siehe 8.7.2 und zur langfristigen Unterstützung als pulsatile Systeme (BerlinHeart EXCOR™) ab einem Körpergewicht von 2,5 kg zur Verfügung. Voll implantierbare Pumpen, die einen kontinuierlichen Blutfluss erzeugen, sind ab einer Körperoberfläche von 1,2 m² für die Linksherzunterstützung zugelassen (HVAD™); vereinzelt wird über den Einsatz ab einem Körpergewicht von 25-30 kg berichtet. Die Unterstützung bei Kindern mit univentrikulärer Physiologie ist möglich. ^{82,83}

Die Gründe für ein intrakorporales nicht-pulsatiles System (HVAD™, HeartMate III™) sind die Möglichkeit einer Mobilisation des Patienten und ggf. Entlassung in die ambulante Betreuung sowie eine vermeintlich niedrigere Rate an Blutungs- und thromboembolischen Komplikationen.⁸⁴ Optimierte Gerinnungsprotokollen führen zu vergleichbaren Ergebnissen bei der Anwendung der parakorporalen pulsatilen Systeme bei Kindern und Jugendlichen.^{85,86}

Indikation: Die Implantation eines VAD ist indiziert im therapieresistenten Herzversagen bei intakter Lungenfunktion als Überbrückungstherapie zur Erholung des Herzens oder zur Transplantation und ist bei dieser Indikation der ECMO überlegen. Turn Feststellung der Indikation sollte das Ausmaß der Beeinträchtigung klassifiziert werden, z.B. nach dem Intermacs®-Profil. Allgemein als Indikation akzeptiert sind kardiogener Schock (Intermacs Profil 1) sowie zunehmende Verschlechterung trotz inotroper Therapie mit sekundärer Organbeeinträchtigung (Intermacs Profil 2). Die sekundäre Organbeteiligung wird definiert als Verschlechterung der glomerulären Filtrationsrate <50%, des Ernährungsstatus über mehr als 1 Woche trotz optimaler Therapie, Notwendigkeit zur Beatmung, Bettlägerigkeit über mehr als 1 Woche. Da die Beeinträchtigung der

www.dgpk.org 31 / 47

Organfunktion von Leber und Niere die Mortalität am VAD erhöht.⁸⁹ ist bei ausbleibender rascher Rekompensation eine frühzeitige mechanische Unterstützung zu erwägen.

Präoperative Diagnostik: Vor Implantation sind echokardiographisch zu diagnostizieren:

(1) Funktion und Anatomie des linken und rechten Ventrikels, (2) Aorten- bzw. Pulmonalklappeninsuffizienz, (3) intrakardiale Thromben, (4) intrakardiale Shunts inklusive PFO, (5) soweit möglich Pulmonalisdruck und Abschätzung des pulmonalarteriellen Widerstandes.

Auswahl des Systems: Bei führendem linksventrikulärem Versagen wird zunächst ein LVAD implantiert. Eine biventrikuläre Unterstützung ist mit erhöhter Mortalität im Vergleich zur alleinigen linksventrikulären Unterstützung assoziiert. ⁸⁹⁻⁹² Ob die Ursache hierfür die Form der biventrikulären Unterstützung an sich ist (anspruchsvollere Implantation und Steuerung) oder ob BVAD-Patienten von vorneherein die kränkeren sind, ist nicht geklärt. *Ergebnisse:* Die publizierten Überlebensraten liegen bei Kardiomyopathien bei bis zu 91% und können je nach Patientenselektion und Wartezeit abweichen. ^{89,93,94} Bei operierten angeborenen Herzfehlern liegen sie niedriger, bei univentrikulären Herzen bei 40%. ⁹⁵ Die Mortalität von 20% - 55,5% mit BVAD bei Kindern unter einem Jahr (Berlin Heart Excor™) ist deutlich höher als in der Gesamtpopulation (6,3%-38,9%). ⁹⁶ 20,7% der Patienten können vom Unterstützungssystem entwöhnt werden. ⁹⁶ Andererseits hat sich die Überlebensrate von älteren Säuglingen (>5kgKG) mit alleinigem LVAD zuletzt denen älterer Kinder angeglichen. Demzufolge gibt es keinen Grund, diese Therapieoption Säuglingen per se vorzuenthalten. ⁹⁷

Tabelle 11: Extrakorporale Verfahren/ Assist Devices				
Verfahren	Spezifizierung			
ECMO	veno-arteriell, veno-venös; Kurzzeitverfahren, jedes			
Flow kontinuierlich	Alter, Größe, Anatomie, Herzfehler			
ECLS, temporär	Jedes Alter, jede Größe, z,B. Centrimag/ Pedimag™,			
Flow kontinuierlich	Kurzzeit-System, aber auch längere Bridgingzeiten bis			
	zur myokardialen Erholung oder zu permanenten			
	Langzeit-Systemen			
LVAD/RVAD/BIVAD	ab Säuglings-/ Kleinkindalter (ab 2,5 kg), Berlin			
Flow pulsatil	HeartExcor™, Ventrikel extrakorporal, Patient stationär			
LVAD	ab Schulalter (>1,2m² KÖF), z.B. HVAD/HeartWare™			
Flow kontinuierlich	Pumpe intrakorporal, transkutane "Driveline ", mobile			
	Antriebseinheit, Patient entlassbar, ambulant			
BVAD	"Total artificial heart" - nur bei Erwachsenen			
Flow kontinuierlich				

www.dgpk.org 32 / 47

Hauptkomplikation sind thromboembolische Ereignisse. ⁹⁸⁻¹⁰⁰ Die kurz- und mittelfristige Entlastung des linken Ventrikels bleibt nicht konstant; demzufolge kann sich die Funktion des rechten Ventrikels im Verlauf noch entscheidend verschlechtern und eine Eskalation der Inotropikamedikation notwendig machen. ¹⁰¹ Patienten, die nach VAD-Unterstützung herztransplantiert werden, haben ein vergleichbares Überleben und kein erhöhtes Risiko für Abstoßungen wie solche ohne VAD-unterstützung. ¹⁰²

9. Nachsorge

Regelmäßige Nachuntersuchungen entsprechend der Grunderkrankung sind vorzunehmen, ggf. ist eine chronische Herzinsuffizienztherapie (vgl. DGPK-Leitlinie Chronische Herzinsuffizienz im Kindesalter) anzuschließen. Neurologische Nachuntersuchungen sind ratsam, um gegebenenfalls entwicklungsfördernde Maßnahmen frühzeitig einzuleiten.

10. Durchführung der Diagnostik und Therapie

Die initiale Diagnostik und Therapie ist unverzüglich vor Ort durchzuführen; eine frühzeitige Verlegung auf eine pädiatrische (ggf. pädiatrisch-kardiologische) Intensivstation, die alle diagnostischen und therapeutischen Möglichkeiten bietet, ist frühzeitig zu erwägen. Die Durchführung der weiterführenden Diagnostik und Therapie erfolgt im spezialisierten Zentrum durch eine Ärztin/einen Arzt für Kinder- und Jugendmedizin mit Schwerpunktbezeichnung Kinderkardiologie und/oder Zusatzbezeichnung Intensivmedizin bzw. bei Erwachsenen ein(e) EMAH-zertifizierte Ärztin/Arzt. Kann der Patient/die Patientin nicht auf eine pädiatrische (ggf. pädiatrisch-kardiologische) Intensivstation verlegt werden, sollte das diagnostische und therapeutische Vorgehen in enger Absprache mit dem kooperierenden spezialisierten Zentrum erfolgen. Die pränatale Diagnostik und Beratung sollte durch einen DEGUM II/III qualifizierten Pränatalmediziner/in in Kooperation mit einem/r Kinderkardiologen/in durchgeführt werden.

Therapeutische Maßnahmen obliegen der Verantwortung einer Ärztin/eines Arztes für Kinder- und Jugendmedizin mit Schwerpunktbezeichnung Kinderkardiologie bzw. bei Erwachsenen einer(es) EMAH-zertifizierten Ärztin/Arztes, im Falle einer mechanischen Kreislaufunterstützung eines Herzchirurgen mit Erfahrung in der Implantation von Kreislaufunterstützenden Systemen bei Kindern.

www.dgpk.org 33 / 47

Tabelle 12: Medikamente und Dosierungen zur Therapie der akuten Herzinsuffizienz

Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
Inotropika				
Adrenalin/Epinephrin	0,01 - 0,1 (-1) μg/kg/min	3 – 10 Minuten	Ja	Positiv inotrop und chronotrop. Stimulation aller adrenergen Rezeptoren (Myokard hauptsächlich β_1 - Rezeptoren); in Dosen > 0,1 μ g/kg/min überwiegt die vasokonstriktorische α_1 -Stimulation. Potentestes Katecholamin, in Reanimations- und Schocksituation Mittel der Wahl.
Dobutamin	5 - 10 (- 20) μg/kg/min	2 – 3 Minuten	Ja	Therapeutische Breite im Kindesalter ist deutlich geringer als bei Erwachsenen. Positiv inotrop durch vorrangige $\beta1$ -Stimulation, weniger stark positiv chronotrop als Adrenalin. Der Vasotonus bleibt weitestgehend unverändert oder sinkt sogar durch sich aufhebende $\alpha1$ - und $\beta2$ -Stimulation. Somit bevorzugtes Katecholamin bei pulmonalarterieller Hypertonie.
Dopamin	1 - 10 (-15) μg/kg/min	5 – 10 Minuten	Ja	Dosisabhängige Inotropie und Vasokonstriktion. In mittlerer Dosis steht die positive Ino- und Chronotropie (kardiale β_1 -Stimulation), in hohen Dosen die Vasokonstriktion (vaskuläre α_1 -Stimulation) im Vordergrund, kein Vorteil gegenüber anderen Katecholaminen; keine Indikation zur Prophylaxe oder Therapie eines Nierenversagens. Aufgrund des erhöhten myokardialen O2-Verbrauchs heute nicht mehr zu empfehlen.
Inodilatatoren				Phosphodiesterase-III-Hemmer wirken positiv inotrop und senken den systemischen und pulmonalen Gefäßwiderstand
Milrinon	Bolus 50-75 μg/kg über 15 min; dann 0,375 - 1 μg/kg/min	2 (Kinder) bis 10 (Frühgeborene) Stunden, von Nierenfunktion abhängig.	- Ja	Risiko eines postoperativen Low-Cardiac-Output- Syndroms kann gesenkt werden. ⁵³ Thrombozytopenie tritt bei Kindern häufiger auf als bei Erwachsenen. Vorsicht bei Früh-geborenen mit Risiken für intrakranielle Blutungen. Der Verschluss des Ductus arteriosus verlangsamt sich unter Milrinon.
Enoximon	Bolus 0,2 - 0,5 mg/kg über 10 min, dann 2 - 10 μg/kg/min	Pharmakodynamisch ähnlich wie Milrinon	Ja	Risiko von Thrombozytopenien. Eine Kurzzeittherapie von max. 24 Stunden wird empfohlen.

www.dgpk.org 34 / 47

Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
Levosimendan	(0,05)- 0,1 (-0,2) μg/kg/min über 24 h	Aktive Metabolite mit langer HWZ (< 80 Std). Begrenzte Daten bei Kindern legen nah, dass die pharmakokinetischen Eigenschaften ähnlich wie bei Erwachsenen sind.)	Nein	Hämodynamische Effekte halten bis zu einer Woche an, danach ggf. Wiederholung. Erhöht Sensitivität der Myozyten für Calcium ohne Erhöhung der intrazellulären Calciumkonzentration (Calcium-sensitizer); hemmt selektiv die Phosphodiesterase-III. Durch duale Wirkung ändert sich die Kontraktionskinetik des Herzens kaum (Calciumsensitizer verlängern, PDE-Hemmer verkürzen die Relaxationszeit). Das Arrhythmierisiko erscheint geringer als bei reinen PDE-III-Inhibitoren; kann bei Versagen der Standardmedikation ergänzend eingesetzt werden. ¹⁰³ .
Vasopressoren				
Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
Noradrenalin/Norepinephrin	0,01 – 0,1 – 1 μg/kg/min	2 min	Ja	Stimulation von α_1 -Rezeptoren (Vasokonstriktion) und β_1 -Rezeptoren, nur geringe β_2 -Stimulation. Erhöht myokardiale Wandspannung und Sauerstoffverbrauch. Kann trotz direkter β_1 -Stimulation über Barorezeptorreflex negativ chronotrop wirken.
Vasopressin	0,0003 – 0,002 Einheiten/kg/min	1 min	Nein	Direkte Wirkung auf Gefäße, keine chronotrope Wirkung; Reservemedikament bei therapieresistentem Widerstandsverlust.
Terlipressin	10 – 20 μg/kg als Bolus alle 4 -6 Std oder 5-10 ng/kg/min	50 – 80 Minuten	Nein	Alternative zu Vasopressin. Höhere Selektivität für V ₁ -Rezeptoren als Vasopressin

www.dgpk.org 35 / 47

Vorwiegend systemische	· Vasodilatatoren			
Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
Nitroprussidnatrium	0,5 – 10 μg/kg/min	3-4 min	Ja (Kurzzeit)	Nur in Kombination mit Natriumthiosulfat einzusetzen (Gefahr der Cyanidintoxikation). Ausgeprägte Nachlastsenkung, Anwendung nur unter invasiver Blutdruckmessung. Kombination mit Sildenafil verstärkt die Vasodilatation massiv.
Urapidil	1 – 4 mg/kg als Bolus; 0,5 – 2 mg/kg/h	3 Std.	Nein	Blockierung postsynaptischer α_1 -Rezeptoren und Aktivierung zentraler 5-HT $_{1A}$ -Rezeptoren, durch letztere kaum Reflextachykardie.
Phentolamin	Bolus 250 μg/kg; (0,1 -) 2 (-10) μg/kg min		Nein	Kompetitive Hemmung post- (α_1) und präsynaptischer- (α_2) Rezeptoren, durch letztere ausgeprägte Reflextachykardie.
Clonidin	0,5 - 3 μg/kg/h	bei Nierengesunden zwischen 6-24 Stunden, bei Insuffi- zienz bis 40 Stunden	Bei Kindern <12 Jahre off-label	Agonist an präsynaptischen α_2 -Rezeptoren, daher zentrale Sympatholyse und Blutdrucksenkung. Cave: initiale Blutdruckerhöhung über Stimulation vasokonstriktorischer α_2 -Rezeptoren
Nitroglycerin	0,5 – 3 – 20 μg/kg/min	2 min	Ja	In niedriger Dosis (bis 3 µg/kg/min) vorwiegend Senkung der Vorlast (venöses Pooling), in höheren Dosen auch der Nachlast.

www.dgpk.org 36 / 47

Vorwiegend pulmonalarterielle Vasodilatatoren				
Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
iNO	Inhalativ 2 - 20 ppm als Beimischung zum Atemgas		Ja, (vor 34 SSW off label)	Selektive Vasodilatation im pulmonalen Stromgebiet. Bei Neugeborenen und Säuglingen muss der Methämoglobinwert innerhalb einer Stunde nach Beginn der NO-Therapie mit Hilfe eines Analysengerätes gemessen werden, das zwischen fötalem Hämoglobin und Methämoglobin unterscheiden kann.
Sildenafil	Oral: 8 - 20 kg: 3 x 10 mg; >20 kg: 3 x 20 mg Intravenös: 0,02 - 0,04 mg/kg/h	4 Stunden (bei 10-70 kg)	Nur oral	Phosphodiesterase-V-Hemmung
Epoprostenol	5-20 ng/kg/min iv	6 min (starke interindividuelle Unterschiede)	Nein	Hemmung der Thrombozytenfunktion
lloprost	1 – 2 – 5 ng/kg/min iv 0,25 μg/kg, max. 5 μg pro Inhalation, bis zu 9 Einzelinhalationen pro Tag	30 min	Nein	Hemmung der Thrombozytenfunktion. Nur mit Inhalationssystemen sinnvoll, die eine Tröpfchengröße von < 7 μm generieren

www.dgpk.org 37 / 47

β-Blocker			Negativ inotrop und negativ chronotrop, daher nicht bei systolischer Funktionsstörung; Spezialindikation: Herzinsuffizienz durch Ausflusstraktobstruktion mit konsekutiver Tachykardie	
Medikament	Dosis	Halbwertszeit	Zulassung bei Kindern	Kommentar
Metoprolol	0,5 – 2 – 5 μg/kg/min	3 – 5 Std.; kann genetisch bedingt deutlich länger sein	Nein	β_1 -selektiv
Esmolol	Start: 500 μg/kg/min, Erhalt: 50 - 200 μg/kg/min	Etwas kürzer (< 7 Minuten) als bei Erwachsenen	Nein	eta_1 -selektiv, nur zur Akuttherapie von Arrhythmien maximal 24 Stunden. Parallel Start eines Alternativmedikamentes.
Diuretika	•			
Furosemid	0,1 – 0,5 mg/kg/h iv (kurzfristig bis 1 mg/kg/h) Tagesdosis 3 - 12 (- 20) mg/kg/d	etwa 1 Stunde	Ja	Stark, kurz und schnell wirkendes Schleifendiuretikum. In Ausnahmefällen sind kurzfristige Dosierungen bis 3 mg/kg/h außerhalb der Zulassung beschrieben.

www.dgpk.org 38 / 47