MAGPANTAY NINO JANDEL C. BSCS 4B

BLURRING TECHNIQUES COMPARISON

TECHNIQUES	BLURRING	NOISE REDUCTION	EDGE PRESERVATION	ARTISTIC EFFECT	SHARPENING
GAUSSIAN BLUR	APPLIES A SMOOTH BLUR ACROSS THE ENTIRE IMAGE	MODERATE LY REDUCES NOISE BUT ALSO SMOOTHS FINE DETAILS	POOR EDGE PRESERVATION EDGES TEND TO BLUR ALONG WITH THE REST OF THE IMAGE	CREATES SOFT DREAMY EFFECTS USEFUL IN PHOTOG RAPY TO REDUCE SHARPNE SS	DOES NOT SHARPEN, PRIMALY A SMOOTHING EFFECT
MEDIAN BLUR	BLURS BY REPLACIN G EACH PIXEL WITH THE MEDIAN OF ITS NEIGHBOR HOOD	VERY EFFECTIVE FOR REDUCING NOISE, ESPECIALL Y SALT AND PEPPER NOISE	GOOD EDGE PRESERVATION SINCE THE MEDIAN FUNCTIONS EDGE SPREADING	MINIMAL ARTISTIC EFFECTS MOSTLY FUNCTIO NAL FOR NOISE REMOVAL	DOES NOT, SHARPEN BUT RETAINS EDGES BETTER THAN GAUSSIAN BLUR
BILATERAL FILTER	COMBINES BLURRING WITH EDGE PRESERV ATION BYCONSID ERING BOTH SPATIAL DISTANCE AND PIXEL INTENSITI VITY	EXECELLEN T NOISE REDUCTION WHILE PRESERVIN G EDGES	BEST EDGE PRESERVATION AMONG THESE TECHNIQUES	SOFTEN TEXTURE S WHILE KEEPING EDGES INTACT, OFTEN CREATIN G A PAINTERL Y LOOK	NOT A SHARPENING FILTER BUT IT MAINTAINS SHARP EDGES WELL.
BOX FILTER	AVERAGE PIXEL VALUES OVER A BOX- SHAPED WINDOW, CAUSING SIGNIFICA NT	BASIC NOISE REDUCTION NOT VERY EFFECTIVE COMPARED TO OTHER METHODS	POOR EDGE PRESERVATION EDGES ARE BLUURED ALONG WITH THE REST OF THE IMAGE	LIMITED ARTISTIC EFFECT, MAINLY USED FOR BASIC SMOOTHI NG OR DOWNSA	DOES NOT SHARPEN, JUST A SIMPLE BLUR

	BLURRING			MPLING	
MOTION BLUR	SIMULATE S EFFECT OF A CAMERA MOVEMEN T BLURRING THE IMAGE ALONG A SPECIFIC DIRECTIO N	MINIMAL NOISE REDUCTION INTRODUCE S DIRECTION AL BLUR INSTEAD	POOR EDGE PRESERVATION ESPECIALLY ALONG THE AXIS OF THE BLUR.	CREATES A SENSE OF A MOVEME NT OR SPEED IN THE IMAGE USED FOR DYNAMIC ARTISTIC EFFECTS	NOT FOR SHARPENING INTRODUCES MOTION EFFECTS INSTEAD.
UNSHARP MASK	SHAPRNE SS IMAGES BY ENHANCIN G EDGES	NO NOISE REDUCTION AS IT IS DESIGNED FOR SHARPENIN G NOT BLURRING	GOOD EDGE ENHANCEMENT BUT CAN INTRODUCE NOISE AND ARTIFACTS IF OVERUSED.	INCREAS ES IMAGE CONTRAS T AND CRISPNE SS ADDS DETAIL TO ARTISTIC EFFECTS BY EMPHASI ZING EDGES	VERY EFFECTIVE FOR SHARPENING THE PRIMARY GOAL IS EDGE ENHANCEME NT

EXPLAIN:

In image processing, different filters like Gaussian blur, median blur, bilateral filter, box filter, motion blur, and unsharp mask have their own uses depending on how they affect the image. Gaussian blur makes the whole image smoother and reduces some noise, but it also makes the edges less sharp. Median blur is great for reducing noise, especially tiny dots of noise, and it keeps edges clearer than Gaussian blur. The bilateral filter is the best at reducing noise while keeping edges sharp, making images look soft but still detailed. Box filters are simple and blur everything equally, but they don't do well at keeping edges clear. Motion blur creates the effect of movement, making the image look like it's moving in a certain direction, but it doesn't reduce noise much and blurs the edges. The unsharp mask is different because it sharpens the edges instead of blurring, making details stand out more, though it can sometimes add noise. Each filter works best in different situations, depending on whether you want to smooth the image, keep edges sharp, or make details clearer.

EDGE DETECTION TECHNIQUES

Techniques	Sensitivity to Noise	Edge Thinness	Edge Continuity	Computational Efficiency
SOBEL EDGE DETECTION	Moderately sensitive to noise; the derivative operation amplifies noise.	Produces thicker edges, can be improved with post- processing.	Good edge continuity but may miss finer details.	Computationall y efficient due to simple gradient calculations.
LAPLACIAN EDGE DETECTION	Highly sensitive to noise due to the second derivative operation.	Thicker edges, often results in false edges without post- processing.	Poor edge continuity; requires combination with other methods like Gaussian smoothing.	More computationally intensive due to secondorder derivative.
PREWITT EDGE DETECTION	Moderately sensitive to noise, similar to Sobel.	Produces slightly thicker edges than Sobel.	Good edge continuity but less accurate with finer details.	Slightly more efficient than Sobel as it uses simpler kernels.
CANNY EDGE DETECTION	Low sensitivity to noise, due to built-in Gaussian smoothing.	Produces thin, precise edges.	Excellent edge continuity, as it traces connected edges.	More computationally intensive, due to multi-step processing (smoothing, gradient calculation, and non-maximum suppression).

EXPLAIN:

In edge detection, techniques like Sobel, Laplacian, Prewitt, and Canny are used to find the edges in an image, and each has different strengths. Sobel and Prewitt are similar because they handle noise okay and create thicker edges, with Sobel taking a bit more time to compute. Laplacian is very sensitive to noise, making it less reliable because it often produces thick and messy edges without extra work to clean it up. Canny is the best for getting thin, smooth edges and isn't as affected by noise, but it takes more time and processing steps. Overall, Canny gives the best results, but Sobel and Prewitt are faster and simpler for easier tasks.