Phase-Locked Quantum-Plasma Processor

Normalized Hamiltonian and Stability Analysis (V4)

Nikita Tesla ORCID: 0009-0002-0328-4873 DOI: 10.5281/zenodo.15663517

1 Introduction

This document expands upon version V3 by adding formal descriptions of emergent logical behavior observed in field-based simulations. It includes updated analytical constructs based on resonance, field interactions, and detector-based phase evaluation. All core animations are provided in the archive Simulations_V4.zip.

Note: Full Hamiltonian derivations and the dimensional normalization procedure are provided in WhitePaper V3. This document assumes familiarity with those results and notation.

2 Field Model

The field evolution is governed by a dissipative coupling model:

$$\frac{d\phi_i}{dt} = -\gamma\phi_i + \sum_{j \in N(i)} J_{ij}\sin(\phi_j - \phi_i) + \eta_i(t)$$

where ϕ_i is the phase at point i, γ is dissipation, J_{ij} is coupling strength, and $\eta_i(t)$ is additive noise (e.g., Gaussian).

Simulation Parameters

Unless otherwise stated, simulations use:

• Time step: $\Delta t = 0.01$

• Grid size: $N = 64 \times 64$

• Noise levels: $\sigma = \{0.00, 0.05, 0.10, 0.20\}$

• Activation threshold: $\theta \in [1.5, 5.0]$

Resonant Activation

Each input node emits a field:

$$\phi_i(t) = \alpha_i \cos(\omega t + \varphi_i)$$

Agents respond via:

$$F_x(t) = \sum_{i} K_i \cdot \cos(\omega t + \varphi_i - \Delta r_{ix})$$

Resonant conditions ($\Delta \varphi = 0$ for AND, π for XOR) determine field convergence.

3 Detector Metrics

Logical output is determined by an amplitude detector:

$$D = \frac{1}{n} \sum_{i=1}^{n} |\phi_i|^2 \quad \text{with } D \ge \theta$$

Alternatively, using direct modulus summation:

$$|M| = \left| \sum \phi_i \right| \quad \Rightarrow \quad \text{output} = \begin{cases} 1, & \text{if } |M| \ge \theta \\ 0, & \text{otherwise} \end{cases}$$

4 Grover-Type Amplification

Amplitude follows resonance amplification:

$$A(t) = A_0 \cdot \sin^2\left(\frac{\pi t}{2\sqrt{N}}\right)$$

This was empirically verified via oscillatory convergence to marked states, with collapse observed under noise $\sigma \geq 0.2$.

5 Core Simulations

File	Description
field_fft.gif	In-situ discrete Fourier transform $(k = 5, 13, 29)$
${ t grover_wave.gif}$	Grover amplification, $\sqrt{N} = 6$ cycles
grover_wave_noise.gif	Same with additive noise $\sigma = 0.05$
${\tt phase_adder.gif}$	Integer adder: $3+4 \rightarrow 7$ peaks
${\tt parity_central.gif}$	Phase-parity (XOR) via centre detector
<pre>phase_gate_XOR_resonant.gif</pre>	Two-source resonant XOR gate
<pre>phase_gate_AND_resonant.gif</pre>	Three-source resonant AND gate
phase_gate_OR_resonant.gif	Two-source resonant OR gate

Table 1: Core demonstrations from Simulations_V4.zip.

6 Appendix A: Extended Simulations

Additional cases (e.g., stress/noise/failure) are included in the archive. They demonstrate behavior outside optimal regime and support analytical thresholds.

7 License

Use permitted for research and academic purposes only. Redistribution, modification, or military application is prohibited without author consent. See included license notice.