

Randomly Directed Exploration An Efficient Node Clone Detection Protocol in Wireless Sensor Networks

Zhijun Li and Guang Gong University of Waterloo

Research Review Seminar February 25, 2010

Overview

■ Node Clone Attack and Previous Schemes

- Proposed Distributed Detection Protocol
- Simulations

Wireless Sensor Networks

- ☐ Ad-hoc
- ☐ A Large Number of Low-Cost Sensor Nodes
- Multi-Hop
- □ Infrastructureless

Node Clone Attack in WSNs

- Corrupt the collected information
- **☐** Spread abnormal behavior
- □ Exacerbate most of inside attacks

Centralized Approaches

- Nodes report all neighbors to base station
- SET, [Choi, Zhu, and Porta, 2007]

Exclusive
Subset
Maximal
Independent
Set
Algorithm

Distributed Approaches

■ Node-to-Network Broadcast

- □ Parno, Perrig, and Gligor, IEEE S&P 2005
 - Randomized Multicast
 - Line-selected Multicast

Network Model

Homogeneous Sensors Densely Deployed

Identity-based Public-key Cryptography

Secure Localization Mechanism

Proposed Protocol Main Idea

Initial Direction: Random

Forwarding Messages(Routing)

Boundary Case

Protocol Parameters

□ *TTL*--- time to live

- □ *Type* --- routing type
 - Type 1: Discard a message only if ttl=0
 - Type 2: In addition to ttl = 0, discard a message when it reaches a boundary.

AngleRange

Algorithm: HandleMessage(M_{α})

1: verify the signature of M_{α} $M_{\alpha} = ttl, ID_{\alpha}, L_{\alpha}, Neighbor List_{\alpha},$ 2: **if** found clone **then** $\{ID_{\alpha}, L_{\alpha}, Neighbor List_{\alpha}\}_{K_{\alpha}^{-1}}\}$ 3: broadcast the evidence;

4: $ttl \Leftarrow ttl - 1$ 5: **if** $ttl \leq 0$ **then**6: discard M_{α} 7: **else**8: $nextnode \Leftarrow getnextnode(M_{\alpha})$ 9: **if** nextnode = NIL **then**

10:

11:

12:

discard M_{α}

forward M_{α} to nextnode

else

Performance Comparison

Protocol	Comm. Cost	Memory Cost
Node-To-Network Broadcasting	O(N)	O(d)
Randomized Multicast	O(N)	$O(\sqrt{N})$
Line-Selected Multicast	$O(\sqrt{N})$	$O(\sqrt{N})$
Randomized, Efficient, and Distributed	$O(\sqrt{N})$	$O(d\sqrt{N})$
Single Deterministic Cell	$O(\sqrt{N})$	$< O(\sqrt{N})$
Parallel Multiple Probabilistic Cells	$O(\sqrt{N})$	$< O(\sqrt{N})$
Randomly Directed Exploration	$O(\sqrt{N})$	O(d)

Security Analysis

- Identity Authentication
- Message Authentication

A cloned node cannot lie to its neighbors about its location

Simulations

□ OMNeT++ Platform

- Unit-Disc Graph
- □ Parameters:

$$d = 20$$

$$\blacksquare$$
 $ttI = \sqrt{N}$

Two cloned nodes

Simulation Demo: Type 1

Simulation Demo: Type 2

Simulation Results Communication Cost

Simulation Results Success Probability of Detection

Conclusions

- Directed-Forwarding
- Initial Randomness
- Achieves High Detection Probability
- Remarkable Communication and Memory costs
- Z.J. Li and G. Gong, Randomly Directed Exploration: An Efficient Node Clone Detection Protocol in Wireless Sensor Networks, Proceedings of IEEE 6th International Conference on Mobile Adhoc and Sensor Systems (MASS '09), October 12-15, 2009, Macau SAR, P.R.C, pp. 1030-1035