桂林航天工业学院学生实验报告 实验一

课程名称	计算机组成与结	i构	实验名称		运算器实验(2 学时)		
开课教学单位及实验室			计算机科学与工程学院		实验日期	2024. 10. 11	
学生姓名	廉振威		学号 2023070030615		专业班级	软件工程6班	
指导教师				实验成绩			
实验目的			 掌握算术逻辑运算单元的工作原理。 熟悉简单运算器的电路组成。 熟悉 4 位运算功能发生器(74LS181)的算术、逻辑运算功能。 				
实验要求		 做好实验预习,看懂电路图,熟悉实验中所用芯片各引脚的功能和连接方法。 按照实验内容与步骤的要求,认真仔细地完成实验。 写出实验报告。 					

一、实验电路

2. 功能器件

74LS181	4位运算器	23 22 21 20 19 18 17 16 15 14 13 12 VCC M CN G Cn+4P A=BF3 F2 F1 F0 S0 74LS181 A3 A2 A1 A0 B3 B2 B1 B0 S3 S2 S1 GND 0 1 2 3 4 5 6 7 8 9 10 11
74LS245	8 位三态门	19 18 17 16 15 14 13 12 11 10 VCC -E B7 B6 B5 B4 B3 B2 B1 B0 74LS245 DIR A7 A6 A5 A4 A3 A2 A1 A0GND 0 1 2 3 4 5 6 7 8 9
74LS273	8 位锁存器	19 18 17 16 15 14 13 12 11 10 VCC Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 CP 74LS273 -MRD7 D6 D5 D4 D3 D2 D1 D0GND 0 1 2 3 4 5 6 7 8 9
Switch	开关	8
Led	指示灯	
SinglePulse	单脉冲发生器	

本实验用到的主要数字功能器件有: 4 位算术逻辑运算单元 74LS181, 8 位数据锁存器 74LS273, 三态输出的 8

图 2 运算器实验电路图

二、实验原理

ALU: 两片 74181 连成串行 8 位 ALU, 低 4 位和高 4 位分别输入 ALU(1)和 ALU(2), 共享控制信号 M, S0-S3, ALU(1) 与 ALU(2)形成进位关系

数据输入:三态门(74245)SW-BUS 用于数据输入,当需要输入数据时,拨动数据开关 SW7-SW0,完成后,打开三 态门,信号即输入到 DR1 和 DR2 中,两片数据锁存器(74273)DR1,DR2,同时收到信号,拨动脉冲发生器 P1 或 P2 来 锁存其需要的数据

数据输出: 三态门 ALU-BUS 用于将运算结果送至数据显示灯

三、实验设备

- 3. TEC-5G 计算机组成实验系统 1 台
- 4. 逻辑测试笔一支 (在实验台上)
- 5. 双踪示波器一台(公用)
- 6. 万用表一只(公用)

四、实验任务

- 1、按表 2.1 所示,将运算器模块与实验台操作板上的线路进行连接。由于运算器模拟块内部的连线已由印制板连好,故接线任务仅仅是完成数据开关、控制信号模拟开关、与运算器模块的外部连线。
- 2、用开关 SW7-SW0 向通用寄存器堆 RF 内的 R0-R3 寄存器置数,然后读出 R0-R3 的内容,在数据总线 DBUS 上显示出来。
 - 3、验证 ALU 的正逻辑算术、逻辑运算功能。

接表 2.2、2.3 接线, 令 DR1=0AAH, DR2=55H, Cn#=1。在 M=0 和 M=1 两种情况下, 令 S3-S0 的值从 0000B 变到 1111B, 记录出实验结果。将实验结果记录在表 2.4 中。注意: 进位是运算器的最高进位 Cn+4#的反,即有进位为 1,无进位为 0。

五、实验步骤和实验结果

整体过程:

输入待运算数据 A=65H, B=A7H, 不断变换 ALU 工作模式, 验证功能的正确性

- 7. 连接电路, 按照原理图将器件放置和连接好
- 8. 预置电路,令各器件处理准备工作的状态两片74273设为高电平,避免被清零
- 9. 打开电源开关

此处粘贴完整电路连接图

10. 输入待运算数据 A

4.0 准备

打开数据输入端三态门: -SW-BUS 置低

4.1 输入 A

拨动数据开关: SW7-SW0=65H=0110 0101

输入数据锁入 DR1: 触发 P1

4.2 输入 B

拨动数据开关: SW7-SW0=A7H=1010 0111

输入数据锁入 DR2: 触发 P2

11. 验证数据输入正确性

5.1 准备

打开数据输出开关: -ALU-BUS 置低

下方进位位入 0: Cn 置高

5.2 验证 A

S3, S2, S1, S0, M 置 00000, 指示灯应显示 A=65H=0110 0101

5.2 验证 B

S3, S2, S1, S0, M 置 10101, 指示灯应显示 B=A7H=1010 0111

12. 验证运算器所有功能正确性

保持其他信号不变,改变 S3, S2, S1, S0, M的值,填写下表

说明: plus/minus 表示算术加,+/-表示逻辑加

算式选择	M=0 Cr	$M=0$ $\overline{C}n=1$		M=1	
S3 S2 S1 S0	功能	输出值	功能	输出值	
0 0 0 0	A		¬A		
0 0 0 1	A+B		¬(A+B)	1	
0 0 1 0	A+¬B		(¬A)B		
0 0 1 1	0 minus 1		Logical 0		
0 1 0 0	A plus A¬B		¬(AB)		
0 1 0 1	(A+B) plus (A¬B)		¬B		
0 1 1 0	A minus B minus 1		$A \oplus B$		
0 1 1 1	AB minus 1		A¬B	1	
1 0 0 0	A plus AB		¬A + B		
1 0 0 1	A plus B		¬(A ⊕ B)		
1 0 1 0	(A+¬B) plus AB		В		
1 0 1 1	AB minus 1		AB		
1 1 0 0	A plus A		Logical 1		
1 1 0 1	(A+B) plus A		A+¬B		
1 1 1 0	(A+¬B) plus A		A+B		
1111	A minus 1		A		

粘贴其中任意两个结果截图

六、思考题

- 1. 运算器主要由哪些器件组成? 这些器件是怎样连接的?
- 运算器由算术逻辑单元、寄存器、控制单元、数据选择器、数据缓冲器和时钟产生器等器件组成,它们通过数据总线、地址总线和控制总线相互连接,协同工作以实现算术和逻辑运算功能。
- 13. 芯片 74LS181 没有减法: A minus B 的指令,怎样实现减法功能?
 - 1. **取反 B**: 首先,通过设置 74LS181 的 S0、S1、S2 引脚,使 ALU 执行对 B 的取反操作(即 将 B 的所有位都翻转,1 变为 0,0 变为 1)。
 - 2. **准备加法操作:**接着,将进位输入 Cin 设置为 1,因为在计算机中,一个数的补码(用于表示负数或进行减法)是通过对该数取反后加 1 得到的。所以,取反 B 后,我们需要再加 1 来得到 B 的补码。
 - 3. **执行加法:**最后,将 A(被减数)和取反后的 B(mL Cin 的 1, 即 B 的补码)输入到 74LS181 中,并选择加法操作。ALU 将执行 <math>A mL B 的补码的操作,其结果就是 A 减 B 的结果。
- 3. 74LS181 有哪两种级联方法? 分别要用到哪些引脚?哪一种速度更快?

- 1. **并行级联**: 使用 Cout 和 Cin 引脚连接,实现高速的多位数运算。
- 2. **串行级联**:通过 A/B 输入和 S 引脚设置,逐位进行运算,速度相对较慢。 并行级联因直接连接进位,所以速度更快。