Handbuch: Rechnen in Abelschen Kategorien

Long Huynh Huu

Inhaltsverzeichnis

	Produkte und Coprodukte 1.1 Für allgemeine Kategorien	
2	Faserprodukte (und Fasersummen)	2
	Kerne, Cokerne, Bilder und Cobilder3.1 Kerne (und Cokerne)3.2 Bilder (und Cobilder)	
4	Rolands Vierzehn	3

1. Produkte und Coprodukte

1.1. Für allgemeine Kategorien

Anders als im Titel erwähnt werde ich in diesem Abschnitt keine Coprodukte erwähnen – es gelten einfach die dualen Aussagen.

Sei \mathcal{C} eine Kategorie, $(Y_i)_{i\in I}$ eine Familie von Objekten und es existiere ein Produkt $\prod_i Y_i := \prod_{i\in I} Y_i$ mit Projektionen $\pi_j : \prod_i Y_i \to Y_j$.

Proposition 1.1. Die Projektionen sind Epis.

Sei $X \in \mathcal{C}$ und $f_i : X \to Y_i$ Pfeile. Nach der universellen Eigenschaft des Produktes wird ein eindeutiger Pfeil $X \to \prod_i Y_i$ induziert, den ich mit $\prod_i f_i$ bezeichne, sodass für alle $i \in I$ gilt: $f_i = \pi_j \cdot \prod_i f_i$. Alternativ kann man auch $\prod (f_1, ..., f_n)$ schreiben.

Im Falle von Coprodukten schreibt man $\coprod_i f_i$ bzw. $\coprod (f_1, ..., f_n)$.

Proposition 1.2. Set $u: W \to X$ ein Pfeil. Dann gilt $(\prod_i f_i).u = \prod_i (f_i.u): W \to \prod_i Y_i$.

1.2. In Abelschen Kategorien

Sei nun $\mathcal A$ eine abelsche Kategorie, $X, X_1, ... X_n$ sowie $Y, Y_1, ... Y_n$ Objekte und $f_i: X_i \to Y_i$ (für i=1,...n) Pfeile. Für die direkten Summen $\bigoplus_i X_i$ bzw. $\bigoplus_i Y_i$ bezeichne die Inklusionen und Projektionen mit $\iota_j^X: X_j \to \bigoplus_i X_i$ und $\pi_j^X: \bigoplus_i X_i \to X_j$ bzw. $\iota_j^Y: Y_j \to \bigoplus_i Y_i$ und $\pi_j^Y: \bigoplus_i Y_i \to Y_j$.

Proposition 1.3. Die f_i induzieren eindeutig einen Pfeil $\bigoplus_i f_i : \bigoplus_i X_i \to \bigoplus_i Y_i$ mit $f_j = \pi_j^Y . \bigoplus_i f_i.\iota_j^X$ für alle j.

Proposition 1.4. Sind die f_i Monos, so auch $\bigoplus_i f_i$.

2. Faserprodukte (und Fasersummen)

Ein wenig Notation: Ich bezeichne für Pfeile $f: X \to Z, g: Y \to Z$ die Projektionen des Faserprodukts als $\mathrm{fib}(f,g)_1: X \times_Z Y \to X$ und $\mathrm{fib}(f,g)_2: X \times_Z Y \to Y$. Um etwas mit dieser Notation vertraut zu werden verwende ich sie gleich in der folgenden Definition.

Für Fasersummen ersetze ich fib durch cofib.

Definition 2.1 (Universelle Eigenschaft des Faserprodukts). Seien $f: X \to Z, g: Y \to Z$ Pfeile, dann heißt das Tripel $(X \times_Z Y, \operatorname{fib}(f,g)_1, \operatorname{fib}(f,g)_2)$ bestehend aus einem Objekt und zwei Projektionen Faserprodukt, falls:

- 1. $f. \operatorname{fib}(f, g)_1 = g. \operatorname{fib}(f, g)_2$
- 2. Für jedes weitere Paar von Morphismen $\theta_1: M \to X, \theta_2: M \to X$ erhalten wir einen eindeutigen Pfeil $\mu: M \to X \times_Z Y$, sodass $\theta_i = \mathrm{fib}(f,g)_i \cdot \mu$ für i=1,2.

Dies definiert ein Faserprodukt eindeutig bis auf eindeutigen Iso.

Proposition 2.1. Sei C eine Kategorie, $f: X \to Z, g: Y \to Z$ Morphismen sowie $X \times_Z Y$ deren Faserprodukt. Ist $g: Y \to Z$ ein Mono oder Iso, so ist auch die Projektion $\mathrm{fib}(f,g)_1: X \times_Z Y \to X$ ein Mono bzw.

Korollar 2.1. Sei \mathcal{A} eine abelsche Kategorie und $X_1 \hookrightarrow X$ und $X_2 \hookrightarrow X$ Monos in \mathcal{A} . Dann ist der induzierte Pfeil $X_1 \times_X X_2 \to X$ auch Mono als Komposition $X_1 \times_X X_2 \hookrightarrow X_2 \hookrightarrow X$ von Monos.

Proposition 2.2. Sei A eine abelsche Kategorie, $f: X \to Z, g: Y \to Z$ Morphismen. Ist $g: Y \to Z$ ein Epi, so ist auch die Projektion fib $(f,g)_1: X \times_Z Y \to X$ ein Epi.

Satz 2.1 (Staffelung). Seien $f: X \to Y, g: Y \to Z, h: W \to Z$ Pfeile und (bla, Existenzaussage damit alle folgenden Faserprodukte definiert sind...). Dann ist $X \times_{g,f,Z,h} W = X \times_{f,Y,\mathrm{fib}(g,h)_1} (Y \times_{g,Z,h} W)$ und es gelten

- $fib(g.f, h)_1 = fib(f, fib(g, h)_1)_1$
- $\operatorname{fib}(g.f, h)_2 = \operatorname{fib}(g, h)_2 \cdot \operatorname{fib}(f, \operatorname{fib}(g, h)_1)_2$

3. Kerne, Cokerne, Bilder und Cobilder

Wir sind nun in einer abelschen Kategorie A.

3.1. Kerne (und Cokerne)

Proposition 3.1. Für $X, Y \in \mathcal{A}$ gelten

- 1. $\ker(0_{X,Y}) = \mathrm{id}_X$
- 2. $\operatorname{coker}(0_{X,Y}) = \operatorname{id}_Y$
- 3. $\ker(\mathrm{id}_Y) = 0_{0,Y}$
- 4. $\operatorname{coker}(\operatorname{id}_X) = 0_{X,0}$

Proposition 3.2. Ein Pfeil $\beta: Y \hookrightarrow Z$ ist genau dann ein Mono, wenn $\ker(\beta) = 0_{0,Y}$. Ein Pfeil $\alpha: X \to Y$ ist genau dann ein Epi, wenn $\operatorname{coker}(\alpha) = 0_{Y,0}$.

Proposition 3.3. Man kann Kerne als Faserprodukte ausdrücken. Sei $f: X \to Y$, dann gilt

$$\ker(f) = \operatorname{fib}(f, 0_{0,Y})_1$$

3.2. Bilder (und Cobilder)

Definition 3.1. Sei $f: X \to Y$ ein Pfeil, dann bezeichnet man den Kern des Cokerns $\ker(\operatorname{coker}(f)) =: \operatorname{im}(f)$ als Bild von f und den Cokern des Kerns $\operatorname{coker}(\ker(f)) =: \operatorname{coim}(f)$ als Cobild von f.

Proposition 3.4. Sei $f: X \to Y$ ein Pfeil, dann erfüllt jedes Bild $\operatorname{im}(f) =: g: B \to Y$ folgende universelle Eigenschaft: Es gibt einen Pfeil $h: X \to B$, sodass g.h = f. Weiters gibts für jede Faktorisierung $f = m.e: X \to B' \to Y$ mit m Mono einen eindeutigen Pfeil $\gamma: B \to B'$, sodass $h = m.\gamma$.

Proposition 3.5. Für $X, Y \in \mathcal{A}$ gelten

- 1. $\operatorname{im}(\operatorname{id}_X) = \operatorname{id}_X$
- 2. $\operatorname{coim}(\operatorname{id}_Y) = \operatorname{id}_Y$
- 3. $\operatorname{im}(0_{X,Y}) = 0_{0,Y}$
- 4. $coim(0_{X,Y}) = 0_{X,0}$

Proposition 3.6. Seien $\alpha: X \to Y, \beta: Y \hookrightarrow Z$ Pfeile und β Mono. Dann gilt $\operatorname{im}(\beta.\alpha) = \beta.\operatorname{im}(\alpha)$.

Proposition 3.7. Seien $\alpha: X \twoheadrightarrow Y, \beta: Y \to Z$ Pfeile und α Epi. Dann gilt $\operatorname{im}(\beta.\alpha) = \operatorname{im}(\beta)$.

Korollar 3.1. Seien $\alpha: X \to Y, \beta: Y \hookrightarrow Z$, α Epi und β Mono, dann gilt $\operatorname{im}(\beta.\alpha) = \beta$. Insbesondere gelten $\operatorname{im}(\beta) = \beta$ und $\operatorname{im}(\alpha) = \operatorname{id}_Y$.

BEWEIS. $\operatorname{im}(\beta.\alpha) = \operatorname{im}(\beta) = \beta.\operatorname{im}(\operatorname{id}) = \beta.$ Für die anderen Aussagen setzte jeweils $\alpha = \operatorname{id}_Y, X = Y$ bzw. $\beta = \operatorname{id}_Y, Y = Z$.

Bemerkung 3.1. Umgekehrt folgt aus $\operatorname{im}(\beta') = \beta'$ für einen Pfeil β' , dass β' ein Mono ist, d.h.: Es ist β genau dann Mono, wenn $\operatorname{im}(\beta) = \beta$

Korollar 3.2. Monos sind Kerne und Kerne sind Monos.

Beweis. Ist β ein Mono, so gilt $\beta = \text{im}(\beta) = \text{ker}(\text{coker}(\beta))$. Jeder Kern ist Mono nach Proposition soundso.

Bemerkung 3.2 (Epi-Mono-Faktorisierung). Für jeden Pfeil f einer abelschen Kategorie gibt es per Axiom einen Isomorphismus τ , sodass $f = \operatorname{im}(f).\tau.\operatorname{coim}(f)$.

4. Rolands Vierzehn

Hier sind die 14 Rechenregeln, die uns der Prophet Roland L. auf Steintafeln gebracht hat. Das Studium dieser Aussagen über abelsche Kategorien hat dieses Handbuch motiviert.

Im folgenden sei \mathcal{A} eine abelsche Kategorie und mit $X, X_1 \overset{x_1}{\hookrightarrow} X, X_2 \overset{x_2}{\hookrightarrow} X, X' \overset{x'}{\hookrightarrow} X, Y, Y_1 \overset{y_1}{\hookrightarrow} Y, Y_2 \overset{y_2}{\hookrightarrow} Y, Y' \overset{y'}{\hookrightarrow} Y, Z, Z' \overset{z'}{\hookrightarrow} Z$ seien Objekte und Unterobjekte dieser Kategorie gemeint. Weiter seien $f: X \to Y, g: Y \to Z$ Pfeile.

Definition 4.1 (Objektnotation). Wir definieren

- $X_1 \cap X_2 := X_1 \times_Z X_2$ als Unterobjekt von X via x_1 . fib $(x_1, x_2)_1$.
- $X_1 + X_2 = \text{Bild}(X_1 \oplus X_2 \to X)$ als Unterobjekt von X via $\text{im}(\coprod(x_1, x_2))$.
- $f^{-1}(Y') = X \times_{f,Y,u'} Y'$ als Unterobjekt von X via fib $(f,y')_1$
- f(X') = Bild(f.x') als Unterobjekt von Y via im(f.x').

Bemerkung 4.1. Ohne Beweis habe ich oben angenommen, dass die vorkommenden Inklusionspfeile Monos sind, hier eine kurze Begründung: etc.pp.

Proposition 4.1 (Reflexionsprinzip). Unterobjekte und Quotientenobjekte stehen in enger Beziehung zueinander:

- 1. $\operatorname{cofib}(\operatorname{coker}(x_1), \operatorname{coker}(x_2)) = \operatorname{coker}(\coprod(x_1, x_2)), \ (d.h. \ X/X_1 \cap X/X_2 = X/(X_1 + X_2) \ mit \ Schnitt \ in \mathcal{A}^{op})$
- 2. $\operatorname{coim}(\prod(\operatorname{coker}(x_1),\operatorname{coker}(x_2))) = \operatorname{coker}(\operatorname{fib}(x_1,x_2))$ (d.h. $X/X_1 + X/X_2 = X/(X_1 \cap X_2)$ mit Summe in \mathcal{A}^{op})
- 3. $\operatorname{coim}(\operatorname{coker}(y').f) = \operatorname{coker}(\operatorname{fib}(f,y'))$ (d.h. $f^{op}(Y/Y') = X/f^{-1}(Y')$ mit Bild in \mathcal{A}^{op})
- 4. $\operatorname{cofib}(f,\operatorname{coker}(x')) = \operatorname{coker}(\operatorname{im}(f.x'))$ (d.h. $(f^{op})^{-1}(X/X') = Y/f(X')$ mit Urbild in \mathcal{A}^{op})

Siehe (Blatt 1, Warmup)

Beweise mich, ich bin nicht schwierig! (nur nervig!)

Lemma 4.1 (Regel (a)).

- 1. $\operatorname{im}(0_{0,X}) = 0_{0,X} (d.h. f(0) = 0)$
- 2. $im(f. id_X) = im(f) (d.h. f(X) = X)$
- 3. $fib(f, 0_{0,Y})_1 = ker(f)$ (d.h. $f^{-1}(0) = Kern(f)$)
- 4. $fib(f, id_Y)_1 = id_X (d.h. f^{-1}(Y) = X)$

Lemma 4.2 (Regel (b)). Es gelten $X_1 \cap X_2 = X_2 \cap X_1$ sowie $X_1 + X_2 = X_2 + X_1$ als Unterobjekte.

Beweis. verwende das Reflexionsprinzip etc.

Lemma 4.3 (Regel (c)). Es gelten $X' \cap (X_1 \cap X_2) = (X' \cap X_1) \cap X_2$ sowie $X' + (X_1 + X_2) = (X' + X_1) + X_2$ als Unterobjekte.

Beweis. Formuliere universelle Eigenschaft für Dreifachschnitte bzw. Dreifachsummen, etc.

Lemma 4.4 (Regel (d)).

- 1. $\operatorname{fib}(g.f, z')_1 = \operatorname{fib}(f, \operatorname{fib}(g, z')_1)_1 \ (d.h. \ (g.f)^{-1}(Z') = f^{-1}(g^{-1}(Z')))$
- 2. $\operatorname{im}(g.f.x') = \operatorname{im}(g.\operatorname{im}(f.x')) \ (d.h. \ (g.f)(X') = g(f(X')))$

Lemma 4.5 (Regel (e)).

$$im(f. fib(f, y')_1) = im(f). fib(im(f), y')_1$$

und

$$fib(f, im(f.x')) = im(II(x', ker(f)))$$

In Objektnotation heißt dies: $f(f^{-1}(Y')) = Y' \cap \text{Bild}(f)$, bzw. $f^{-1}(f(X')) = X' + \text{Kern}(f)$.