1. PDEs

Def 1.1 (PDE)

A PDE is a relation that involves the unknown function $u(x_1, x_2, \dots, x_n, t)$, where (x_1, x_2, \dots, x_n) is the spacial coordinate, and t is the time, with its derivatives.

Symbolically we have

$$F(x_1,x_2,\ldots,x_n,t,u,u_{x_1},u_{x_2},\ldots,u_{x_n},u_{x_1x_1},u_{x_1x_2},\ldots)=0,$$

for example

$$u_t + u_x + u = 0, \ u_t = u_{rr},$$

etc.

2. Method of characteristics

Def 2.1 (Quasilinear 1st order PDE)

A quasilinear first order PDE is

$$u_t + c(x, t, u)u_x = f(x, t, u),$$

where $u=u(x,t),\,x\in\mathbb{R},\,t>0.$ Moreover, c and f are known.

If c = c(x, t), we call the above equation a semilinear equation, and additionally, if f = f(x, t), we call it linear.

Remarks

- ullet Quasilinear means "linear" in the derivatives. So that the nonlinearity involves only u
- We can consider a more general equation $d(x,t,u)u_t+c(x,t,u)=f(x,t,u)$, but we assume it is always possible to divide by d.
- A general balance law looks like the following

$$u_t + q_x(x,t,u) = g(x,t,u).$$

Function c is actually the velocity of the wave, and we will see that later.

Def 2.2 (Method Of Characteristics)

Let $X_{\xi}(t)$ be an arbitrary curve on the x-t plane. Define $U_{\xi}(t)=u(X_{\xi}(t),t)$, where u is the solution of our equation. Now differentiate:

$$U_{\xi}'(t)=u_t+X_{\xi}'(t)u_x.$$

Notice that this is exactly the left hand side of our equation, provided we have $X'_{\xi}(t)=c(X_{\xi}(t),t,U_{\xi}(t)).$ Then we have

$$U_{arepsilon}'(t)=f(X_{\xi}(t),t,U_{\xi}(t)).$$

We have thus reduced our equation into an ODE

$$X'_{\xi}(t) = c(X_{\xi}(t), t, U_{\xi}(t)), \ U'_{\xi}(t) = f(X_{\xi}(t), t, U_{\xi}(t)).$$

These are the so-called characteristics equation, and $X_{\xi}(t)$ are called the characteristics. We have to impose initial conditions. Assume that $u(x,0)=\phi(x)$, then let $X_{\xi}(0)=\xi$, and obtain $U_{\xi}(0)=u(X_{\xi}(0),0)=\phi(X_{\xi}(0))=\phi(\xi)$.

In order to find the solution at any (x,t) we find a unique characteristic $X_{\xi}(t)$ passing through (x,t), go back to t=0, and use the initial condition, then read the solution from $U_{\xi}(t)$.