Understanding responses to environments for the Prisoner's Dilemma

Max Planck Institute

@NikoletaGlyn

Software Sustainability Institute

http://rebloggy.com/post/animals-bat-black-and-white-eyes-creepy-horror-gore-halloween-animal-bats-vampir/101865318472

$$S_p = \begin{pmatrix} 3 & 0 \\ 5 & 1 \end{pmatrix} \quad S_q = \begin{pmatrix} 3 & 5 \\ 0 & 1 \end{pmatrix}$$

Bibliometric Study of the Prisoner's Dilemma

title="prisoner's dilemma" OR abstract="prisoner's dilemma"

"A bibliometric study of research topics, collaboration and influence in the field of the Iterated Prisoner's Dilemma"

https://arxiv.org/abs/1911.06128

Nikoleta E. Glynatsi, Vincent A. Knight

Meta Analysis of Tournaments

strategies in 45686 tournaments

Evolved HMM 5 ?

"A meta analysis of tournaments and an evaluation of

performance in the Iterated Prisoner's Dilemma"

Nikoleta E. Glynatsi, Vincent A. Knight

arXiv:2001.05911

Best Response Memory One Strategies

$$p = (p_1, p_2, p_3, p_4)$$
$$q = (q_1, q_2, q_3, q_4)$$

$$p = (p_1, p_2, p_3, p_4)$$
$$q = (q_1, q_2, q_3, q_4)$$

$\sum\limits_{i=1}^{N}u_{q}{}^{(i)}(p)$

$\sum_{i=1}^{N} u_q^{(i)}(p) \longrightarrow max_p : \sum_{i=1}^{N} u_q^{(i)}(p)$

$$\sum_{i=1}^{N} u_q^{(i)}(p) \longrightarrow max_p : \sum_{i=1}^{N} u_q^{(i)}(p)$$

$$\sum_{i=1}^{N} u_q^{(i)}(p) + u_p(p) \longrightarrow max_p : \sum_{i=1}^{N} u_q^{(i)}(p) + u_p(p)$$

"Stability of defection, optimisation of strategies and the limits of memory in the Prisoner's Dilemma "

arXiv:1911.12112

Nikoleta E. Glynatsi, Vincent A. Knight

Best Response Sequences

	1	2	3	4	5	$oldsymbol{U}$
Tit For Tat	$oldsymbol{C}$	D	D	D	D	0.8

Tit For Tat

Best response

	1	2	3	4	5	\overline{U}
Tit For Tat	\boldsymbol{C}	C	C	C	C	3
Best response	C	$oldsymbol{C}$	$oldsymbol{C}$	\boldsymbol{C}	C	3
					l	$\overline{}$

Tit For Tat

Alternator

AntiTitForTat

Bully

Cooperator

Defector

SuspiciousTitForTat

WinShiftLoseStay

Evolved HMM 5

```
AntiTitForTat
   Defector
Evolved HMM 5
```

Tit For Tat

95

Heuristics Tit For Tat Alternator AntiTitForTat Bully

 ${\color{red}\mathsf{Cooperator}} \longrightarrow$

Defector ———

 ${\bf WinShiftLoseStay} \longrightarrow$

Evolved HMM 5 ----

Heuristics

Recurrent Neural Network Player

Performance violin plot

- ▶ Point 1
- ▶ Point 2
- ▶ Point 3
- ▶ Point 4
- ▶ Point 5

y@NikoletaGlyn

- https://nikoleta-v3.github.io
- github.com/ArcasProject/Arcas
- github.com/Nikoleta-v3/

bibliometric-study-of-the-prisoners-dilemma

- github.com/Nikoleta-v3/
- meta-analysis-of-prisoners-dilemma-tournaments
- 🖸 github.com/Nikoleta-v3/Memory-size-in-the-prisoners-dilemma