Research activity, interests and beyond

Ottavia M. Epifania, Ph.D.

Università di Trento Rovereto, Italia

May, 22nd 2024

Item Response Theory and Rasch modeling

```
( TITLE-ABS-KEY ( "Item response theory" ) OR TITLE-ABS-KEY ( "Rasch" ) ) AND PUBYEAR > 1959 AND PUBYEAR < 2025 AND ( LIMIT-TO ( DOCTYPE , "ar" ) )
```

n = 18,661 documents (May, 17^{th} 2024) on Scopus:

Some fields of application:

Some reasons for their application:

Measure validation

Measure refinement

Item selection

Computerized adaptive testing

. . .

May 22nd

 $\rm May~22^{\rm nd}$

Rasch modeling of complex data structures

 A_{Bart}

 $A_{
m Lisa}$

 $\mathbf{Q}\mathbf{1}$

$$4 + 5 = ?$$

 d_{q1}

 $\mathbf{Q2}$

$$x^2 + \frac{5}{4}x = 6$$

 A_{Lisa}

 $\mathbf{Q}\mathbf{1}$

$$4 + 5 = ?$$

$$d_{q1}$$

 $\mathbf{Q2}$

$$\frac{3}{2}x^2 + \frac{5}{4}x = ?$$

$$d_{q2}$$

 A_{Lisa}

$$P(X_{pi} = 1) = \frac{\frac{A_p}{d_i}}{1 + \frac{A_p}{d_i}}$$

6/21

Teaching Activity

$$P(X_{pi} = 1 | \theta_p, b_i) = \frac{\exp(\theta_p - b_i)}{1 + \exp(\theta_p - b_i)}$$

$$P(X_{pi} = 1 | \theta_p, b_i) = \frac{\exp(\theta_p - b_i)}{1 + \exp(\theta_p - b_i)}$$

Measurement theory

Measurement theory

$$P(X_{pi} = 1 | \theta_p, b_i) = \frac{\exp(\theta_p - b_i)}{1 + \exp(\theta_p - b_i)}$$

$$P(X_{pi} = 1 | \theta_p, b_i) = \frac{\exp(\theta_p - b_i)}{1 + \exp(\theta_p - b_i)}$$

Generalized linear model (GLM) for dichotomous responses

Generalized linear model (GLM) for dichotomous responses

May 22nd

Linear combination of predictors in a Linear Model:

$$\eta = X\beta$$
,

where β indicates the coefficients of the fixed intercept and slope(s), and X is the model-matrix.

Linear combination of predictors in a Linear Mixed-Effects Model (LMM):

$$\eta = X\beta + Zd,$$

where Z is the matrix and d is the vector of the random effects (not parameters!)

Best Linear Unbiased Predictors

Future lines and developments

Application to data from experiments typically used in different fields of study, such:

- Go/No-Go in addiction studies
- SNARC effect in cognitive psychology
- o ...

Integration between the information obtained from the accuracy responses and the response times

Item Response Theory and short test forms development

11 / 21

2-Parameter Logistic Model

Item Response Function: $P(x_{pi} = 1 | \theta_p, b_i, a_i) = \frac{\exp[a_i(\theta_p - b_i)]}{1 + \exp[a_i(\theta_p - b_i)]}$

2-Parameter Logistic Model

Item Information Function: $I_i(\theta) = a_i^2 P_i(\theta, b_i, a_i) [1 - P_i(\theta, b_i, a_i)]$

2-Parameter Logistic Model

Test Information Function: $I(\theta) = \sum_{i=1}^{I} I_i(\theta)$

Measurement theory

θ -target procedure

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

i jioni i	to - wem_f	un-iene	jui ici
	$ heta_1'$	$ heta_2'$	$ heta_3'$
item	-2.67	0.01	2.67
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	$ heta_2'$	$ heta_3'$
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	$ heta_2'$	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

13 / 21

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

item	$\theta'_1 \\ -2.67$	θ_2' 0.01	θ_3' 2.67
100111	-2.07	0.01	2.01
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ') e.g.: 3-item short form from 10-item full-length test

•,	θ_1'	$ heta_2'$	θ_3'
item	-2.67	0.01	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ')

e.g.: 3-item short form from 10-item full-length test

	θ_1'	θ_2'	θ_3'
item	-2.67	$0.\bar{0}1$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ')

e.g.: 3-item short form from 10-item full-length test

	$ heta_1'$	$ heta_2'$	θ_3'
item	-2.67	$0.\overline{01}$	2.67
1	0.04	0.12	0.08
2	0.09	0.33	0.03
3	0.01	0.01	0.02
4	0.73	0.06	0.01
5	0.04	0.03	0.02
6	0.01	0.06	0.59
7	0.05	0.06	0.03
8	0.01	0.04	0.69
9	0.03	0.05	0.04
10	0.02	0.03	0.02

Measurement theory

Rasch revised & beyond

Selected items \rightarrow items with highest IIFs with respect to θ targets (θ')

e.g.: 3-item short form	n from	10 - $item\ f$	full-leng	$gth \ test$
	item	$\begin{array}{c} \theta_1' \\ -2.67 \end{array}$	$\begin{array}{c} \theta_2' \\ 0.01 \end{array}$	$\begin{array}{c} \theta_3' \\ 2.67 \end{array}$
	1	0.04	0.12	0.08
	2	0.09	0.33	0.03
	3 4	$0.01 \\ 0.73$	0.01 0.06	0.02 0.01
	5	0.04	0.03	0.02
	6	0.01	0.06	0.59
	7 8	0.05 0.01	0.06	0.03 0.69
	9	0.03	0.05	0.04
	10	0.02	0.03	0.02

The other way around

The other way around

Future lines and directions

- Development of short test forms for the diagnosis of clinically relevant constructs (e.g., addiction) \rightarrow Focused on specific regions of the latent trait
- Extension to multidimensionl/bifactor latent structures (e.g., content balancing) and to polytomous data

15 / 21

Measurement theory

16/21

Raven-like measure for the assessment of fluid intelligence in children and adults: From stimulus generation to measure validation under three different approaches

The meaningfulness of Psychological Measures

The ratio between the measures of a and b is constant and independent of the measurement unit:

$$\frac{\varphi(a)}{\varphi(b)} = \frac{\varphi'(a)}{\varphi'(b)},$$

where φ and φ' are two different scales of measurement of the same variable.

Meaningful comparisons

The comparison between a and b is meaningful if it is invariant under all the unit transformations.

19/21

Sum scores

10

10

From theory...

Psychometrics
Statistics, data analysis, and experiment design in Social Sciences
Measurement Theory and Measurement models in Psychology
Rasch modeling and Item Response Theory

...to practice

R for beginneRs RMarkdown in an Open Science perspective Developing web applications with shiny Implementing experiments in Inquisit

21 / 21

Thank you!

