

PES University, Bangalore
(Established under Karnataka Act 16 of 2014)

B.Tech — END SEMESTER ASSESSMENT - December 2017
Engineering Mathematics-I(for lateral entry students)

UE17MA101D

Time: 2 Hours

Answer all Questions

Max. Marks:60

1.	a.	Define Cauchy's Mean value theorem.	 2
	b.	Find the angle between the radius vector and the tangent for the polar curve $r^m = a^m (cosm\theta + sinm\theta)$.	5
	c.	Find the n^{th} derivate of $x^3 4^x$.	5
-	7.		· ·
	а.	If $u = \log(\frac{x^2 + y^2}{x + y})$ then find $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$.	4
	b.	If $u=x^2+y^2+z^2$ where $x=e^{2t}$; $y=e^{2t}cost$; $z=e^{2t}sint$. Find $\frac{du}{dt}$ using total derivative rule.	4
	с.	Find the Reduction formula for $\sin^n(x)$.	4
3.	a.	Trace the curve $y^2(a-x)=x^2(a+x),a>0$.	6
	b.	Determine the area bounded by the curves $xy=2$, $4y=x^2$ and $y=4$.	6
4.	a.	Define Homogeneous Differential Equation.	2
	b.	Solve $(4xy+3y^2-x)dx+x(x+2y)dy=0$	4
	С,	Solve $\frac{dy}{dx} + \frac{y}{x} = y^2 x$.	6
5	a.	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 0$; where y(0)=-1 and y'(0)=0.	5
	b.	Solve $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 5y = x^2$.	7