

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

SW3566 双口充电解决方案

1. 概述

SW3566 是一款高集成度的多快充协议双口充电 SOC 芯片,支持 C+C/A+C/A+A 口任意口快充输出,支持双口独立限流。其集成了 7A 高效率同步降压变换器,支持 PD3.1/QC/SCP/UFCS 等多种快充协议,最大支持 140W输出功率,集成 CC/CV 模式、双口管理逻辑以及母线电压检测,并且内置 Cortex-MO CPU 满足快充协议定制需求。外围只需少量的器件,即可组成完整的高性能多快充协议双口充电解决方案。

2. 应用领域

- 车充
- 适配器
- 插排

3. 规格

• 同步降压变换器

- ▶ 输出电流高达 7A
- ➤ 输出电压 3~32V
- ➤ 工作电压范围 5~36V
- ➤ 支持 CC/CV 模式
- > 支持双口独立限流
- > 支持线损补偿
- ▶ 支持温度控制

• 快充协议

- ➤ 支持 PD3.1 With PPS
- ➤ 支持 QC3. 0/QC2. 0
- ➤ 支持 SCP
- ▶ 支持 UFCS

• System

- > Cortex-MO CPU, 25MHz
- > I2C Master/Slave
- > UART
- > GPIO

• Type-C 接口

- ▶ 内置 USB Type-C 接口逻辑
- ➤ 支持 DFP/Source 角色

• BC1.2 模块

- ➤ 支持 BC1.2 DCP 模式
- ▶ 支持苹果/三星大电流充电模式

• 保护机制

- > 软启动
- ▶ 输入过压/欠压保护
- ▶ 输出过压/欠压保护
- ▶ 输出过流/短路保护
- ➤ DP/DM/CC 过压保护
- ➤ DP/DM 弱短路保护
- ➤ 芯片过温/NTC 过温保护
- ➤ LPS 保护
- QFN-32(4x4mm) 封装

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

4. 功能框图

ZHUHALISMARTWARE TECHNOLOGY CO. LTD.

5. 引脚定义及功能描述

5.1 引脚定义

5.2 引脚描述

Pin	Name	Function Description
1	DM1	1 口 DM 信号
2	DP2	2 口 DP 信号
3	DM2	2 口 DM 信号
4	CC11	1口 CC1 信号,可复用成 GPIO
5	CC21	1口 CC2 信号,可复用成 GPIO
6	CC12	2 口 CC1 信号,可复用成 GPIO
7	CC22	2 口 CC2 信号,可复用成 GPIO
8	GP100	通用 GPIO
9	GPI01	通用 GPIO
10	GPIO2	通用 GPIO
11	GPI03	通用 GPIO
12	GPI04	通用 GPIO
13	GPI05	通用 GPIO
14	VD	母线电压检测,可复用成 GPIO
15	VDD3V3	芯片 3. 3V 电源
16	VDD5V	芯片 5V 电源
17	COMP	外部补偿
18	BST	上 N 管驱动 Bootstrap
19	LG	下N管驱动
20	HG	上N管驱动
21	SW	开关节点电压检测

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

_		
22	VIN	电源输入
23	GATE1	2 口通路控制
24	GATE2	2 口通路控制
25	VBUS2	1口 VBUS 放电以及插入检测
26	VBUS1	2 口 VBUS 放电以及插入检测
27	DSC	VOUT 放电
28	CPS2	1口检流正端输入
29	CSN2	1口检流负端输入
30	CSP1	2口检流正端输入
31	CSN1	2 口检流负端输入
32	DP1	1 口 DP 信号
	EPAD	散热 PAD,接地。

6. 极限参数

Parameters	Symbol	MIN	MAX	UNIT
输入电压	VIN	-0.3	45	V
输出电压	CSP1/CSN1/CSP2/ CSN2/VBUS1/VBUS2	-0.3	45	V
SW管脚电压	SW	-0. 3	SW	V
BST/HGATE 管脚电压	BST/HGATE-SW	-0.3	6	V
通路控制电压	GATE1/GATE2	-0.3	40	V
接口通信管脚电压	DP1/DM1/CC11/CC21/ DP2/DM2/CC12/CC22	-0.3	32	V
其它管脚电压		-0.3	6	V
结温		-40	+150	° C
存储温度		-60	+150	° C
ESD (HBM)		-4	+4	KV

【备注】超过此范围的电压电流及温度等条件可能导致器件永久损坏。

7. 推荐参数

Parameters	Symbol Symbol	MIN	Typical	MAX	UNIT
输入电压	VIN	5		36	V
节温		-40		125	${\mathbb C}$

8. 电气特性

(V_{IN} = 12V, T_A = 25°C, 除特别说明。)

Parameters	Symbol	Test Conditions	Min	Тур	Max	Unit
Power Supply						

ISMARTWARE		ZHUHAI ISMA	RTWARE	TECHNO	LOGY CO)., LTD.	
VIN Input Voltage	$V_{\rm IN}$			5		36	V
VDD5V Output Voltage	V_{DD5V}	V _{IN} =12V		4.9	5	5. 1	V
VDD5V Output Current	$I_{ ext{DD5V}}$	V _{IN} =12V			100		mA
VDD3V3 Output Voltage	$V_{ m DD3V3}$	V _{IN} =12V		3. 2	3.3	3. 4	V
VDD3V3 Output Current	$I_{ ext{DD3V3}}$	V _{IN} =12V			20		mA
Quiescent Current	I_{Q}	V _{IN} =12V, I _{OUT} =OmA			1	1.5	mA
Synchronous Buck	l			L	l		Y
Switching Frequency	Fchg	V _{IN} =12V		171	180	189	kHz
Maximum Duty Ratio	D _{MAX}			97		Y	%
Frequency Jitter	F _{CHG_JIT}			3	5	7	%
Output Voltage Range	$V_{ ext{OUT}}$	0		3.0	>	28	V
Output Voltage Accuracy	V _{OUT_ACR}	6	A	-2		+2	%
CC Current Limited Range	Icc	5		0.3		7. 5	A
CC Current Limited Accuracy	Icc_acr	$R_{\text{CS}}=3$ m Ω		-130		+130	mA
Wire Drop Compensation	V	D =2O	00	45	65	85	mV/A
wire prop compensation	V _{OUT_WDC}	$R_{\text{CS}}=3\text{m}\Omega$	01	80	100	120	mV/A
Thermal Regulation Threshold	Treg			105	120	135	$^{\circ}$
0,73			00	5	10	15	$^{\circ}$ C/V
Thermal Regulation Voltage	$ m V_{REG}$		01	15	20	25	$^{\circ}$ C/V
Thermal Regulation voltage	V REG		_10	25	30	35	°C/V
			11	35	40	45	\mathbb{C}/V
Protection		/					
			000	26. 5	27	27. 5	V
	0	1/2	001	19.5	20	20.5	V
			010	18.5	19	19.5	V
VIN Input UVLO Threshold	V _{IN_UVLO}	VIN Voltage Falling	011	14.5	15	15. 5	V
vilv input oveo inresnoru	V IN_UVLO	viiv voitage l'alling	100	13.5	14	14. 5	V
			101	10.5	11	11.5	V
	C.Y	•	110	7.5	8	8. 5	V
	二十		111	4.5	5	5. 5	V
VIN Input UVLO Hysteresis	V _{IN_UVLO_HYS}	VIN Voltage Rising		0.8	1.0	1.2	V
			000	40.5	42	43.5	V
			001	38. 5	40	41.5	V
VIN Input OVP Threshold	$V_{\rm IN_OVP}$	VIN Voltage Rising	010	36. 5	38	39.5	V
			011	34. 5	36	37. 5	V
			100	32. 5	34	35. 5	V

ISMARTWARE	ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.						
			101	30.5	32	33. 5	V
			110	24. 5	26	27. 5	V
			111	22. 5	24	25. 5	V
VIN Input OVP Hysteresis	V _{IN_OVP_HYS}	VIN Voltage Falling		1.8	2	2.2	V
			00	78	80	82	%
	V	v / v	01	68	70	72	%
Output UVP Threshold	$V_{\text{OUT_UVP}}$	VOUT_UVP / VOUT_SET	10	58	60	62	%
			11	3.0	3.1	3. 2	V
			00	110	115	120	%
Output Frat OVD Thread 11	V	V / V	01	115	120	125	%
Output Fast OVP Threshold	$V_{ ext{OUT_FOVP}}$	V _{OUT_FOVP} / V _{OUT_SET}	10	125	130	135	%
		6	11	135	140	145	%
Output Fast OVP Debounce Time	T _{OUT_FOVP}			30	50	70	μs
	207		00	108	110	112	%
Out out Class OVD Three Is 1.1		V / V	01	113	115	117	%
Output Slow OVP Threshold	V _{OUT_SOVP}	V _{OUT_SOVP} / V _{OUT_SET}	10	118	120	122	%
			11	123	125	137	%
	T _{OUT_SOVP}		00	3	4	5	ms
Output Slow OVP Debounce Time			01	7	8	9	ms
Output Short Protection	V		00	2.6	2.7	2.8	V
Threshold	V _{OUT_SCP}		01	2.9	3.0	3.0	V
Output Short Protection Debounce Time	T _{OUT_SCP}				1		ms
		1/2/	00	2	3	4	A
LDC MOC Current	т	(1//)	01	3	4	5	A
LPS MOS Current	${ m I}_{ ext{LPS_MOS}}$	X^'V	10	4	5	6	A
			11	5	6	7	A
			00	0.8	1.0	1.2	A
LPS ADC Current	A Y		01	1.8	2.0	2.2	A
LIS ADC CULTEHT	ILPS_ADC		10	2.8	3.0	3. 2	A
. 5			11	3.8	4.0	4.2	A
	-		000		3		mΩ
			001		4		mΩ
MOS Rdson	D		010		5		mΩ
MOS KUSOII	$R_{\text{DSON_H}}$		011		6		mΩ
			100		7		mΩ
			101		8	· · · · · ·	mΩ

ZHUHALISMARTWARE TECHNOLOGY CO. LTD

13/MARTWARE		ZHUHAI ISMA	KIWAKE	TECHNO	LUGI CU)., LID.	
			110		9		mΩ
			111		10		mΩ
			00	6	8	10	A
MOC D. I. C.	T		01	8	10	12	A
MOS Peak Current	${ m I}_{ m PEAK}$		10	10	12	14	A
			11	13	15	17	A
			00	120	130	140	$^{\circ}$ C
Thermal Shutdown Threshold	т	Town one tune Dieing	01	130	140	150	$^{\circ}$
Inermal Shutdown Inreshold	$T_{ ext{SHDT}}$	Temperature Rising	10	140	150	160	$^{\circ}$
			11	150	160	170	$^{\circ}$
Thermal Shutdown Hysteresis	T _{SHDT_HYS}	Temperature Falling		30	40	50	$^{\circ}$
D+, D-Section		GV	A		·		
Pull-Low Resistance	R _{PULL_LW}	Disable/enable by fi	irmware	16	20	24	kΩ
D+ Line Leakage Resistance	R _{DP_LKG}	Disable/enable by fi	irmware	800	900	1000	kΩ
Output High Voltage	V _{OH_DPDM}	RL=15k Ω	Y	3. 2	3. 3	3. 4	V
Output Low Voltage	V _{OL_DPDM}	RL=15k Ω	/			0.2	V
			00	X	0.375		V
D+/D- Unplug	V	01			0.400		V
Detect Threshold	$V_{ ext{DPDM_TH}}$		10		0. 425		V
			_11	\ /	0.450		V
D+/D- High Pulse Trip Voltage	V _{DPDM_HI_TH}		X		2.0		V
D+/D- Input High Threshold	$V_{ ext{DPDM_VIH}}$			1.3			V
D+/D- Input Low Threshold	V _{DPDM_VIL}	// ()				1.0	V
D+/D- Switch On-Resistance	Rshort	1/2/				40	Ω
OVP Voltage on D+/D-	$V_{ ext{DPDM_OVP}}$, 4 ///>		5.8	6.0	6. 2	V
Debounce Time for D+/D- OVP	T _{D_DPDM_OVP}	X			50		μs
CC1, CC2 Section							
Output High Voltage	$V_{ m OH_CC}$			1.05	1. 125	1.2	V
Output Low Voltage	V _{OL_CC}			0	0. 037 5	0.07 5	V
Rise-Time	T_{R_CC}	C _L =470pF		300		700	ns
Fall-Time	T_{F_CC}	C _L =470pF		300		700	ns
7			00	304	330	356	μА
Sourcing Current	т		01	166	180	194	
	$I_{ ext{cc_src}}$		10	72	80	88	
			11	High	ı Impeda	nce	
CC Open Voltage	V _{CC_OPEN}			3. 2	3.3	3. 4	V

High Side

珠海智融科技股份有限公司

ISMARTWARE		ZHUHAI ISMA	RTWARE	TECHNO	LOGY CO)., LTD.	
CC1/CC2 Comparison Threshold	$V_{\text{CC_DET_TH}}$			2.5	2.6	2. 7	V
for Cable Detection	V CC_DET_TH			2.0	2.0	۷. ۱	V
OVP Voltage on CC1/CC2	$V_{\text{CC_OVP}}$			5.8	6.0	6.2	V
Debounce Time for CC1/CC2 OVP	$T_{\text{D_CC_OVP}}$				50		μs
VCONN							
VCONN Voltage Supply	V_{vconn}			4.9	5.0	5. 1	V
OVP Voltage on VCONN	$V_{\text{VCONN_OVP}}$			5.8	6.0	6. 2	V
Debounce Time for VCONN OVP	T _{D_VCN_OVP}				50		μs
VCONN OCP Threshold	I_{vconn_ocp}				50		mA
Debounce Time for VCONN OCP	$T_{D_VCN_OCP}$				4	7	ms
ADC		OX					
Resolution for ADC	RES _{ADC}	CV	_		12		bits
VOUT Sense Voltage	V _{OUT_RANGE}	70.	A			32	V
IOUT Sense Current	Iout_range))		8	A
GPIO Voltage Range	V _{GPIO_RANGE}	8	Y			3. 27	V
ADC Data Convert Rate	F_IADC			V	1		kHz
GPI0							
Input Low Voltage	$ m V_{IL}$			31		0.8	V
Input High Voltage	V_{IH}		X	2.5			V
Pull Up Resistor	Rup		(= X		30		kΩ
Pull Down Resistor	R _{DOWM})	T		30		kΩ
Output Low Voltage	V _{OL}	I _{SINK} =5mA				0.4	V
Output High Voltage	Voh	I _{SRC} =5mA		2.9			V
*	U		000		Disable		
			001		5		
			010		10		
			011		20		
Current Source for NTC	${ m I}_{ m NTC}$		100		40		μА
	6-1	*	101		60		
			110		80		
	\"		111		100		
VD		<u> </u>	1		100		
VD Internal Resistance for Low							
Side	$R_{\text{VD_LW}}$				2.4		kΩ
VD Internal Resistance for	$R_{\text{VD_HI}}$				4.8		kΩ
II. 1 C. 1	IVVD_HI	1	Ì	1	7.0	1	V 25

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

VD Peak Blacking Time	T_{VD_B}	Programmable		25		3200	ns
VD Peak Sample Time	T_{VD_S}	Programmable		25		400	ns
			000		0. 525		V
			001		0.600		V
			010		0.675		V
VD Low Side	V		011		0.750		V
Comparator Threshold	$V_{ ext{VD_LW_TH}}$		100		0.825		V
			101		0.900	0	V
			110	,	0. 975		V
			111		1.050		V
		0	000	1	1. 300		V
		6	001		1. 375		V
			010	(1.450		V
VD High Side	V	\mathcal{I}	011) -	1. 525		V
Comparator Threshold	$V_{ m VD_HI_TH}$		100		1.600	ZL	V
	O		101		1.675		V
			110		1.750		V
$\mathcal{C}_{\mathcal{L}}$			111	X	1.825		V

9. 功能描述

9.1 降压变换器

SW3566 集成了高效率的开关降压变换器。采用外置双 N 功率管, 负载能力可达 7A, 效率>95% (VIN=12V, VOUT=5V, IOUT=5A)。

降压变换器开关频率 180KHz。采用 PFM/PWM 自动切换模式,轻载时工作在 PFM 模式,中载及重载时工作在 PWM 模式。

降压变换器支持 CC/CV 模式。输出电压支持 3.0~32V,限流范围支持 0.3~7.5A,当负载电流小于 CC 限流时,降压电路输出设定电压。当负载达到 CC 限流值时,将限定输出电流在 CC 限流值,输出电压将下降。

降压变换器支持线损补偿。输出补偿电压根据负载电流线性增加,增加电压为65mV/A。

降压变换器支持温度控制,当芯片温度超过 120℃时,输出电压开始下降;如果继续过温超过 150℃,则芯片进入过温关机模式。进入过温关机模式后,温度降低到过温门限迟滞以下,芯片自动开机,降压变换器启动回到默认状态。

降压变换器包含了输入过压/输入欠压/输出过压/输出欠压/输出过流/输出短路等保护。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

9.2 通路控制

SW3566 支持双 Type-C 口输出,任意口支持快充输出。每个 Type-C 口均支持 PD3.1/PPS/QC3.0/QC2.0/AFC/ SCP/UFCS 等快充协议。

默认状态下,双Type-C口无输出。单口输出时,支持快充输出。双口输出时,支持5V输出,同时各口单独限流。

UFP 设备接入打开 Type-C 口对外放电, UFP 设备移出关闭 Type-C 口, 同时 Type-C 口空载时也会关闭 Type-C 口通路。空载检测电流门限约 10mA。

9.3 Type-C 接口

SW3566 集成了 Type-C 接口控制器,支持 DFP/Source 角色,当 UFP 设备接入时自动对其放电,UFP 设备移出时自动关闭通路。

当 UFP 设备连接时, SW3566 将会在 CC 引脚上广播 3A/1.5A/0.5A 电流能力。

9.4 PD 快充

SW3566 集成了 PD3. 1 PHY 可以支持 SPR/EPR/PPS 等类型的 PD0, 最大支持 140W 输出功率(28V@5A)。

9.5 QC 快充

SW3566 集成了 QC 快充协议,支持 QC3.0/QC2.0,支持 Class A/Class B。QC2.0 输出支持 5V/9V/12V/20V。QC3.0 输出支持 3.6V~20V, 200mV/Step。

QC2. 0/QC3. 0 根据 DP/DM 电压请求相应的输出电压,如下表:

接入	设备	SW3	566
DP	DM	VOUT	Note
3. 3V	3. 3V	20V	
0. 6V	0. 6V	12V	
3. 3V	0. 6V	9V	
0. 6V	3. 3V	连续模式	0.2V/Step
0. 6V	GND	5V	

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

9.6 SCP 快充

SW3566 集成了 SCP PHY, 可通过软件实现 SCP 快充协议。

9.7 UFCS 快充

SW3566 集成了 UFCS PHY, 可通过软件实现 UFCS 快充协议。

9.8 BC1.2 功能

SW3566 包含了 USB 智能自适应功能模块,其不仅支持 BC1.2 功能,以及中国手机充电器标准,还能很好的兼容苹果和三星的大电流输出识别:

Apple 2.4A mode: DP=2.7V, DM=2.7V;

Samsung 2A mode: DP=1.2V, DM=1.2V;

9.9 ADC

SW3566 内部集成了 12 bit ADC, 内部支持 VIN/VOUT/IOUT1/IOUT2/Tdie/GPIO0~GPIO3 等 9 个通道数据采样其中 GPADC0~GPADC3 支持可配置的输出电流源,输出电流可以各自独立配置成 0、5uA、10uA、20uA、40uA、60uA、80uA 和 100uA。

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

10. 典型应用电路图

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

11. 机械尺寸

11.1 封装图

11.2 封装尺寸

Comba 1	Di	mension in Millimeter	rs
Symbol Symbol	MIN	NOM	MAX
A	0.70	0.75	0.80
A1	0	0.02	0.05
b	0.15	0.20	0. 25
С	0.18	0.20	0.25
D	3.90	4.00	4.10
D2	2.60	2. 65	2.70
е		0. 40BSC	
Nd	V.A.L.	2. 80BSC	
Е	3.90	4.00	4.10
E2	2.60	2.65	2.70
Ne		2.80BSC	
K	0.20	-	-
L	0.35	0.40	0.45
L1	0.30	0.35	0.40
L2	0.15	0.20	0.25
h	0.30	0.35	0.40

ZHUHAI ISMARTWARE TECHNOLOGY CO., LTD.

12. 版本历史

V0.1 初始版本;

