COSC 290 Discrete Structures

Lecture 24: Relations: XXXX

Prof. Michael Hay

Monday, Apr. 2, 2018

Colgate University

Plan for today

- 1. Closures
- 2. Warshall relations
- 3. Equivalence relations and partial orders
- 4. Hasse diagram
- 5. Topological sort

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

• symmetric closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

transitive closure:

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

 transitive closure: (hint: what does R ∘ R give you?)

Poll: towards transitive closure

Consider the *parentOf* relation on persons where $\langle p, c \rangle \in parentOf$ if p is the parent of c. What is $parentOf \circ parentOf$?

- A) ancestorOf
- B) grandParentOf
- C) parentOf
- D) childOf
- E) grandChildOf
- F) descendantOf

A closure of a relation R on A is a smallest $R' \supseteq R$ that satisfies a desired property.

· reflexive closure:

$$R' = R \cup \{ \langle a, a \rangle : a \in A \}$$

· symmetric closure:

$$R' = R \cup R^{-1}$$

· transitive closure:

$$R' = R \cup (R \circ R) \cup ((R \circ R) \circ R) \cup \cdots$$

Warshall relations

Warshall relation

Let $A := \{a_1, a_2, \dots, a_n\}$, a finite set.

Let R be a relation on A.

For k = 0 to n, let W_k denote the k^{th} Warshall relation for R where W_k is defined as...

- $W_0 := R$
- For $k \geq 1$, W_k is a relation on A such that $\langle a_i, a_j \rangle \in W_k$ iff there is a sequence of relationships in R connecting a_i to a_j using any subset of the elements $\{a_1, a_2, \ldots, a_k\}$ as intermediates.

Example

W_0 (i.e., this is the relation R)

```
FFFT
TFFF
FTFF
W_1
FTFF
W_2
TTFT
```


W₄ T T F T T T F T

orders

Equivalence relations and partial

Recall: relation properties

For relation *R* on $A \times A$.

- **R** reflexive: for every $a \in A$, $\langle a, a \rangle \in R$.
- **IR** *irreflexive*: for every $a \in A$, $\langle a, a \rangle \notin R$.
- **S** symmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \in R$.
- **antiS** antisymmetric: for every $a,b\in A$, if $\langle a,b\rangle\in R$ and $\langle b,a\rangle\in R$, then a=b.
 - **AS** asymmetric: for every $a, b \in A$, if $\langle a, b \rangle \in R$, then $\langle b, a \rangle \notin R$.
 - **T** transitive: for every $a, b, c \in A$, if $\langle a, b \rangle \in R$ and $\langle b, c \rangle \in R$, then $\langle a, c \rangle \in R$.

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Conventions: use \equiv as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \equiv b$ instead of $\langle a, b \rangle \in \equiv$.

Special relation: equivalence relation

Relation R on A is an equivalence relation if it is reflexive, symmetric, transitive.

Conventions: use \equiv as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \equiv b$ instead of $\langle a, b \rangle \in \equiv$.

Intuition: equivalence relations behave like =.

Relation R on A is a partial order if it is reflexive, antisymmetric, transitive.

Relation R on A is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Relation *R* on *A* is a partial order if it is reflexive, antisymmetric, transitive.

Conventions: use \leq as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \leq b$ instead of $\langle a, b \rangle \in \leq$.

Intuition: partial order relations behave like \leq except that some pairs may be incomparable.

Example: the prefixOf relation:

- "a" ≺ "aa"
- "aa"

 "aardvark"
- not all pairs comparable: "a" $\not\preceq$ "b" and "b" $\not\preceq$ "a"

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a, b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be *incomparable*.

Relation *R* on *A* is a strict partial order if it is irreflexive, (antisymmetric), transitive.

Conventions: use \prec as the "name" of the relation (as opposed to a letter like *R*) and use *infix* notation: $a \prec b$ instead of $\langle a,b \rangle \in \prec$.

Intuition: strict partial order relations behave like < except that some pairs may be *incomparable*.

Example: the ancestorOf relation (ancestor is parent or (recursively) parent of ancestor):

- "DT" \prec "Don Jr"
- "Hanns Drumpf" ≺ "DT" (#makedonalddrumpfagain)

Poll: partial order

Relation \leq is a partial order if it is reflexive, antisymmetric, transitive.

Consider two relations on a set of track runners:

- $a \leq_1 b$ if the number of races in which a competed is no more than the number in which b competed.
- $a \leq_2 b$ if the total amount of time (measured in nanoseconds with laser precision) that a ran is no more than the total amount of time that b ran.

Is \leq_1 a partial order? Is \leq_2 a partial order?

- A) Yes, Yes
- B) Yes, No
- C) No, Yes
- D) No, No

Hasse diagram

Hasse diagram

A partial order \leq on A can be drawn using a Hasse diagram.

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Example: isSubstringOf relation on the strings $\{a, b, c, ab, bc, abc, cd\}$.

Exercise: draw Hasse diagram

Complete the following exercise: on a piece of paper, draw a Hasse diagram for the relation on $A := \{1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60\}$ for the relation $R \subseteq A \times A$ where

$$R := \{ \langle x, y \rangle \in A \times A : y \bmod x = 0 \}$$

- · Draw nodes: one node for each A
- Draw edges: edge from a to b if $a \leq b$, except...
- · ... omit edges that can be inferred by reflexivity
- · ... omit edges that can be inferred by transitivity
- ... and *layout* nodes "by level" if $a \leq b$ for $a \neq b$, then a is placed *lower* than b

Topological sort

Example

A to do list,

[attendClass, sleep, borrowBook, eat, brushTeeth, study]

with constraints:

- $borrowBook \leq study$
- study \leq attendClass
- sleep \leq attendClass
- eat ≺ brushTeeth
- $brushTeeth \leq sleep$

What should you do first? Brush teeth? Eat? Borrow book?

Topological ordering

Given a partial order \leq , a topological ordering is a total order \leq_{total} that is *consistent* with \leq .

Total order

Relation *R* is a total order if it is a partial order where every pair is comparable (either $\langle a,b\rangle\in R$ or $\langle b,a\rangle\in R$).

A total order can be written succinctly as an ordered list.

Exercise

Suppose you have a findMinimal(S) method that finds a minimal element among S.

x is minimal in S if $\forall y \in S - \{x\} : y \not\preceq x$

How could you use this to compute the topological sort of a partial order?

Suppose findMinimal(S) had cost f(n) where n is the size of the set. What is the runtime of your algorithm?