MATH 241

Chapter 5

SECTION 5.1: AREA BETWEEN CURVES

Contents

Non Intersecting Regions	2
Intersecting Regions	3
Regions Bounded By Functions of y	6

Created by: Pierre-Olivier Parisé Fall 2022

Non Intersecting Regions

<u>Desmos</u>: https://www.desmos.com/calculator/o7vvfgfwzy

Given two functions f(x) and g(x) such that

$$g(x) \le f(x)$$
 $a \le x \le b$,

the area of the region S enclosed by f(x), g(x), x = a and x = b is

Area
$$(S) = \int_a^b f(x) - g(x) dx$$
.

EXAMPLE 1. Find the area of the region bounded above by $y = x^2 + 1$, bounded below by y = x, and bounded on the sides by x = 0 and x = 1.

Intersecting Regions

EXAMPLE 2. Find the area of the region enclosed by the functions $y = x^2$ and y = x + 2.

General Steps:

- 1. Find the intersection between the two curves.
- 2. Draw a picture.
- 3. Set up the definite integral.
- 4. Evaluate the definite integral.

EXAMPLE 3. Find the area of the region enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

Regions Bounded By Functions of y

EXAMPLE 4. Find the area enclosed by the line y = x - 1 and the parabola $y^2 = 2x + 6$.