Constraint Violation Probability Minimization for a Robot Manipulator

Sirine Ayadi

Bachelor Thesis

Supervisor: M. Sc. Michael Fink

Chair of Automatic Control Engineering

Technical University of Munich

Motivation

- Safety critical systems: constraints
- Model Predictive Control (MPC): efficient algorithm for reference trajectory task
- Presence of uncertainties
- Constraint Violation Probability Minimization with underlying MPC method (CVPM-MPC)

Problem Settings

Goal

- Follow reference trajectory
- lacksquare Minimize probability of collision with the obstacle set ${\cal O}$

Related Work

- CVPM Approach [Brüdigam+ 2020]
 - Avoid an obstacle with an uncertain position
- Robots Model and Dynamics [Siciliano+ 2010]

- Inverse Dynamics: Linearise dynamics of robot
- Standard linear MPC: follow x_{ref}

Inverse Dynamics Approach

■ Dynamics of the robot:

$$\tau = M(q)\ddot{q} + V(q,\dot{q}) + G(q) \tag{1}$$

6

Inverse Dynamics Approach

■ Dynamics of the robot:

$$\tau = M(q)\ddot{q} + V(q,\dot{q}) + G(q)$$
 (1)

Control law for feedback linearization:

$$au = \hat{M}(q)u + \hat{V}(q,\dot{q}) + \hat{G}(q)$$
 (2)

Inverse Dynamics Approach

■ Dynamics of the robot:

$$\tau = M(q)\ddot{q} + V(q,\dot{q}) + G(q)$$
 (1)

■ Control law for feedback linearization:

$$au = \hat{M}(q)u + \hat{V}(q,\dot{q}) + \hat{G}(q)$$
 (2)

■ Good Estimation Parameters:

$$\ddot{q} = u \tag{3}$$

- Inverse Dynamics: Linearise dynamics of robot
- lacktriangle Standard linear MPC: follow x_{ref}

■ Probabilistic Set \mathcal{X}_p : collision-free set

- Probabilistic Set \mathcal{X}_p : collision-free set

8

- Probabilistic Set \mathcal{X}_p : collision-free set
- Violation Probability: $P = \mathsf{Pr}\left(\boldsymbol{X}_{N_{\mathrm{p}}} \notin \mathcal{X}_{\mathrm{p}}^{N_{\mathrm{p}}}\right)$

- Probabilistic Set \mathcal{X}_p : collision-free set
- $\blacksquare \ \boldsymbol{X}_{N_{\mathsf{p}}} = [x_1, \dots, x_{N_p}]^{\top}$
- Violation Probability: $P = \mathsf{Pr}\left(\boldsymbol{X}_{N_{\mathrm{p}}} \notin \mathcal{X}_{\mathrm{p}}^{N_{\mathrm{p}}}\right)$
- 1. CVPM:

8

- Probabilistic Set \mathcal{X}_p : collision-free set
- $\blacksquare X_{N_p} = [x_1, \dots, x_{N_p}]^\top$
- Violation Probability: $P = \mathsf{Pr}\left(\boldsymbol{X}_{N_{\mathrm{p}}} \notin \mathcal{X}_{\mathrm{p}}^{N_{\mathrm{p}}}\right)$
- 1. CVPM:

- Probabilistic Set \mathcal{X}_p : collision-free set
- $\blacksquare X_{N_p} = [x_1, \dots, x_{N_p}]^\top$
- Violation Probability: $P = \mathsf{Pr}\left(\boldsymbol{X}_{N_{\mathrm{p}}} \notin \mathcal{X}_{\mathrm{p}}^{N_{\mathrm{p}}}\right)$
- 1. CVPM:
 - \blacksquare Case 1: $\exists \boldsymbol{U}_{N_{\mathrm{p}}} \quad \text{s.t.} \quad P = 0$
 - Case 2: Otherwise $\min_{U_{N_n}} P$

- Probabilistic Set \mathcal{X}_p : collision-free set
- $\blacksquare \ \boldsymbol{X}_{N_{\mathsf{p}}} = [x_1, \dots, x_{N_p}]^{\top}$
- Violation Probability: $P = \mathsf{Pr}\left(\boldsymbol{X}_{N_{\mathrm{p}}} \notin \mathcal{X}_{\mathrm{p}}^{N_{\mathrm{p}}}\right)$
- 1. CVPM:

 - Case 2: Otherwise $\min_{U_{N_n}} P$
- 2. MPC

Target Set \mathcal{X}_T

- Case 2 optimization: Minimize distance between the states and the target set.
- \mathcal{X}_T : tightens probabilistic set \mathcal{X}_p w.r.t disturbances.
- $N_p = 10$
- Probabilistic set \mathcal{X}_p : collision-free set

■ Configuration Space (C-Space): Point representation of the robot

- C-Space: Grid of sample 0.1°
- Forward Dynamics of each configuration pair of grid
- Check collison in workspace

(c) Workspace

(d) C-Space

■ enclose the C-obstacle in a convex polyhedron

■ Set \mathcal{X}_p as the largest convex polyhedron in free space

Method

000000

11

CVPM-MPC

- Case 1, Case 2
- $t_p = 1$ change of probabilistic set
- $N = N_p = 10$

(i) t = 0.9 s

(j) t = 2 s

(k) t = 4 s

(I) t = 10 s

Summary

- CVPM-MPC
 - Handle uncertainties and sudden change of probabilistic set
 - Minimize the probability of collision
- Future Work:
 - Manipulator with higher degrees of freedom
 - Extend approach for a moving obstacle

References

Tim Brüdigam, Victor Gaßmann, Dirk Wollherr and Marion Leibold. Minimization of Constraint Violation Probability in Model Predictive Control. In: arXiv preprint arXiv:2006.02337 (2020).

Bruno Siciliano, Lorenzo Sciavicco, Luigi Villani and Giuseppe Oriolo. Robotics: modelling, planning and control. Springer Science & Business Media, 2010.

