Hong Kong Mathematics Olympiad 2013-2014 Heat Event (Individual)

除非特別聲明,答案須用數字表達,並化至最簡。

時限:40 分鐘

Unless otherwise stated, all answers should be expressed in numerals in their simplest form.

每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 40 minutes

1. 已知
$$a \cdot b \cdot c > 0$$
 且
$$\begin{cases} \frac{\sqrt{ab}}{\sqrt{a} + \sqrt{b}} = 2\\ \frac{\sqrt{bc}}{\sqrt{b} + \sqrt{c}} = 3 \end{cases}$$
,求 $\frac{a}{\sqrt{bc}}$ 的值。
$$\frac{\sqrt{ca}}{\sqrt{c} + \sqrt{a}} = 5$$

Given that
$$a, b, c > 0$$
 and
$$\begin{cases} \frac{\sqrt{ab}}{\sqrt{a} + \sqrt{b}} = 2\\ \frac{\sqrt{bc}}{\sqrt{b} + \sqrt{c}} = 3 \text{ . Find the value of } \frac{a}{\sqrt{bc}} \text{ .} \\ \frac{\sqrt{ca}}{\sqrt{c} + \sqrt{a}} = 5 \end{cases}$$

- 已知 a = 2014x + 2011, b = 2014x + 2013 及 c = 2014x + 2015。 2. Given that a = 2014x + 2011, b = 2014x + 2013 and c = 2014x + 2015. Find the value of $a^2 + b^2 + c^2 - ab - bc - ca$.
- 如圖一所示,T為等邊三角形 POR 內一點, 3. 其中 $TP = 3 \cdot TO = 3\sqrt{3}$ 及 $TR = 6 \circ$ 求 $\angle PTR$ 的值。

As shown in Figure 1, a point T lies in an equilateral triangle POR such that TP = 3, $TO = 3\sqrt{3}$ and TR = 6.

Find the value of $\angle PTR$.

圖一 Figure 1

4. 設 α 及 β 為二次方程
$$x^2 - 14x + 1 = 0$$
 的根。求 $\frac{\alpha^2}{\beta^2 + 1} + \frac{\beta^2}{\alpha^2 + 1}$ 的值。

Let α and β be the roots of the quadratic equation $x^2 - 14x + 1 = 0$.

Find the value of
$$\frac{\alpha^2}{\beta^2 + 1} + \frac{\beta^2}{\alpha^2 + 1}$$
.

如圖二所示, ABCD 為圓內接四邊形,
 其中 AD = 5、DC = 14、BC = 10 及 AB = 11。
 求四邊形 ABCD 的面積。

As shown in Figure 2, ABCD is a cyclic quadrilateral, where AD = 5, DC = 14, BC = 10 and AB = 11. Find the area of quadrilateral ABCD.

- 圖二 Figure 2
- 6. 設 n 為正整數,且 n < 1000。若 $(n-1)^2$ 整除 $(n^{2014}-1)$,求 n 的最大值。 Let n be a positive integer and n < 1000. If $(n^{2014}-1)$ is divisible by $(n-1)^2$, find the maximum value of n.
- 7. 若 $x^3 + x^2 + x + 1 = 0$, 求 $x^{-2014} + x^{-2013} + x^{-2012} + \dots + x^{-1} + 1 + x + x^2 + \dots + x^{2013} + x^{2014}$ 的值。 If $x^3 + x^2 + x + 1 = 0$, find the value of $x^{-2014} + x^{-2013} + x^{-2012} + \dots + x^{-1} + 1 + x + x^2 + \dots + x^{2013} + x^{2014}$
- 8. 設 $\overline{xy} = 10x + y$ 。若 $\overline{xy} + \overline{yx}$ 為一個平方數,這樣的數有多少個?

 Let $\overline{xy} = 10x + y$. If $\overline{xy} + \overline{yx}$ is a square number, how many numbers of this kind exist?
- 9. 已知 $x \cdot y$ 及z為正實數,且xyz = 64。 設S = x + y + z,求當 $4x^2 + 2xy + y^2 + 6z$ 的值為最小時,S 的值。 Given that x, y and z are positive real numbers such that xyz = 64. If S = x + y + z, find the value of S when $4x^2 + 2xy + y^2 + 6z$ is a minimum.
- 10. 已知 $\triangle ABC$ 為一銳角三角形,其中 $\angle A > \angle B > \angle C$ 。 若 x° 為 $\angle A \angle B \cdot \angle B \angle C$ 及 $90^\circ \angle A$ 中的最小值,求 x 的最大值。 Given that $\triangle ABC$ is an acute triangle, where $\angle A > \angle B > \angle C$. If x° is the minimum of $\angle A \angle B$, $\angle B \angle C$ and $90^\circ \angle A$, find the maximum value of x.

Hong Kong Mathematics Olympiad 2013-2014 **Heat Event (Group)**

除非特別聲明,答案須用數字表達,並化至最簡。 時限:20 分鐘 Unless otherwise stated, all answers should be expressed in numerals in their simplest form. 每題正確答案得一分。Each correct answer will be awarded 1 mark. Time allowed: 20 minutes

1. 已知
$$\sqrt{2014-x^2} - \sqrt{2004-x^2} = 2$$
 。求 $\sqrt{2014-x^2} + \sqrt{2004-x^2}$ 的值。

Given that $\sqrt{2014-x^2} - \sqrt{2004-x^2} = 2$, find the value of $\sqrt{2014-x^2} + \sqrt{2004-x^2}$.

圖一顯示 $\triangle ABC$ 中, $AB = 32 \cdot AC = 15$ 及 BC = x,其中x為一個正整數。假設AB及AC分別有一點 D 及 E 使得 AD = DE = EC = y, 其中y為一個正整數。求x的值。 Figure 1 shows a $\triangle ABC$, AB = 32, AC = 15 and BC = x, where x is a positive integer. If there are points D and E lying on AB and AC respectively such that AD = DE = EC = y, where y is a positive integer. Find the value of x.

2.

4.

Figure 1

3. 若
$$0^{\circ} \le \theta \le 180^{\circ}$$
 及 $\cos \theta + \sin \theta = \frac{7}{13}$,求 $\cos \theta + \cos^{3} \theta + \cos^{5} \theta + \cdots$ 的值。

If $0^{\circ} \le \theta \le 180^{\circ}$ and $\cos \theta + \sin \theta = \frac{7}{13}$, find the value of $\cos \theta + \cos^{3} \theta + \cos^{5} \theta + \cdots$.

如圖二所示,ABCD 為一正方形。P 為 ABCD 內的一點 A使得 $AP = 2 \text{ cm} \cdot BP = 1 \text{ cm} \mathcal{A} \angle APB = 105^{\circ} \circ$ 若 $CP^2 + DP^2 = x \text{ cm}^2$, 求 x 的值。 As shown in Figure 2, ABCD is a square. P is a point lies in ABCD such that AP = 2 cm, BP = 1 cm and $\angle APB = 105^{\circ}$. If $CP^2 + DP^2 = x$ cm², find the value of x.

圖二 Figure 2

5. 若 $x \cdot y$ 是實數,且 $x^2 + 3y^2 = 6x + 7$,求 $x^2 + y^2$ 的極大值。 If x, y are real numbers and $x^2 + 3y^2 = 6x + 7$, find the maximum value of $x^2 + y^2$. 6. 如圖三所示,在 $\triangle ABC$ 中,X、Y 及 Z 為分別位於 BC、CA 及 AB 的點使得 $\angle AZY = \angle BZX$ 、 $\angle BXZ = \angle CXY$ 及 $\angle CYX = \angle AYZ$ 。若 AB = 10、BC = 6 及 CA = 9,求 AZ 的長度。

As shown in Figure 3, X, Y and Z are points on BC, CA and AB of $\triangle ABC$ respectively such that $\angle AZY = \angle BZX$, $\angle BXZ = \angle CXY$ and $\angle CYX = \angle AYZ$. If AB = 10, BC = 6 and CA = 9, find the length of AZ.

7. 已知 $a \cdot b \cdot c$ 及 d 為四個不相同的數,且 (a+c)(a+d)=1 及 (b+c)(b+d)=1,求 (a+c)(b+c) 的值。

Given that a, b, c and d are four distinct numbers, where (a+c)(a+d)=1 and (b+c)(b+d)=1. Find the value of (a+c)(b+c).

- 8. 設 $a_1 = 215$, $a_2 = 2014$ 及 $a_{n+2} = 3a_{n+1} 2a_n$,其中 n 為一正整數。求 $a_{2014} 2a_{2013}$ 的值。 Let $a_1 = 215$, $a_2 = 2014$ and $a_{n+2} = 3a_{n+1} - 2a_n$, where n is a positive integer. Find the value of $a_{2014} - 2a_{2013}$.
- 9. 已知函數 $y = \sin^2 x 4 \sin x + m$ 的極小值為 $\frac{-8}{3}$, 求 m^y 的極小值。

 Given that the minimum value of the function $y = \sin^2 x 4 \sin x + m$ is $\frac{-8}{3}$.

10. 已知 $\tan\left(\frac{90^{\circ}}{\tan x}\right) \times \tan\left(90^{\circ} \tan x\right) = 1$ 及 $1 < \tan x < 3 \circ 求 \tan x$ 的值。

Find the minimum value of m^y .

Given that $\tan\left(\frac{90^{\circ}}{\tan x}\right) \times \tan\left(90^{\circ} \tan x\right) = 1$ and $1 < \tan x < 3$. Find the value of $\tan x$.

Hong Kong Mathematics Olympiad 2013 – 2014 Heat Event (Geometric Construction) 香港數學競賽 2013 – 2014

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份满分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第一題 Question No. 1

圖一所示為一個 $\triangle ABC$ 。

試在該三角形內,構作一個圓心為O的圓,使三角形三條邊均為該圓的切綫。

Figure 1 shows a $\triangle ABC$. Construct a circle with centre O inside the triangle such that the three sides of the triangle are tangents to the circle.

Hong Kong Mathematics Olympiad 2013 – 2014 Heat Event (Geometric Construction) 香港數學競賽 2013 – 2014

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份滿分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第二題 Question No. 2

圖二所示為一個長方形 PQRS。試構作一個面積與該長方形面積相等的正方形。 Figure 2 shows a rectangle PQRS. Construct a square of area equal to that of a rectangle.

Hong Kong Mathematics Olympiad 2013 – 2014 Heat Event (Geometric Construction) 香港數學競賽 2013 – 2014

初賽(幾何作圖)

每隊必須列出詳細所有步驟(包括作圖步驟)。	時限:20 分鐘
All working (including geometric drawing) must be clearly shown.	
此部份滿分為十分。The full marks of this part is 10 marks.	Time allowed: 20 minutes
School Code:	
School Name:	

第三題 Question No. 3

圖三所示為兩幾段 AB 及 AC 相交於 A 點。試在它們之間構作兩個大小不同的圓使得

- (i) 該兩圓相切於一點;及
- (ii) 綫段AB及AC均為該兩圓的切綫。

Figure 3 shows two line segments AB and AC intersecting at the point A. Construct two circles of different sizes between them such that

- (i) They touch each other at a point; and
- (ii) the line segments AB and AC are tangents to both circles.

