Lab 0. QEMU Simulator and Raspberry Pl Setup

We setup a simulation environment with QEMU to run Raspberry PI code on your PC. The following instructions are for Windows 11.

Step 1. Set up QEMU and KVM

Follow the instructions in this video to set up QEMU and KVM (skip the last step of installing Ubuntu Linux)

QEMU Installation Guide for Windows PC [with KVM]

https://www.youtube.com/watch?v=dPg8P5DYZNg

First, from Search box, start "Turn Windows features on or off", and enable these three options: HyperV, Windows Subsystem for Linux, Virtual Machine Platform.

From Windows Powershell, run:

wsl --install

wsl --set-default-version 2

From WSL, run:

sudo apt update && sudo apt upgrade -y sudo apt install qemu-kvm libvirt-daemon-system libvirt-clients bridge-utils -y sudo usermod -aG kvm \$USER

From Windows Powershell, run:

wsl --shutdown

Skip the rest of the steps for installing Ubuntu, since we will run Raspberry PI OS instead.

When starting WSL, always choose "run as administrator".

Step 2. Install Raspberry PI on QEMU

This step is based on this page for installing Raspberry PI on QEMU:

Emulating a Raspberry Pi in QEMU

https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu

However, we need more storage in the emulated Raspberry PI, so please follow the updated instructions below.

1. Get the Raspberry Pi Image (same as original)

sudo apt-get install -y qemu-system-aarch64

cd~

wget https://downloads.raspberrypi.org/raspios_arm64/images/raspios_arm64-2023-05-03/2023-05-03-raspios-bullseye-arm64.img.xz

xz -d 2023-05-03-raspios-bullseye-arm64.img.xz

2. Inspect and Mount the Boot Partition (same as original)

```
fdisk -1 ./2023-05-03-raspios-bullseye-arm64.img

# Note the boot partition offset (should be 8192 * 512 = 4194304)

sudo mkdir /mnt/image

sudo mount -o loop,offset=4194304 ./2023-05-03-raspios-bullseye-arm64.img /mnt/image/
```

Extract kernel and device tree as before:

```
cp /mnt/image/bcm2710-rpi-3-b-plus.dtb ~ cp /mnt/image/kernel8.img ~
```

3. Resize the Image to 32 GB (or desired size)

Instead of resizing to the next power of two, pick a larger number directly. For example, 32 GB:

```
qemu-img resize ./2023-05-03-raspios-bullseye-arm64.img 32G
```

You can change 32G to 16G, 64G, etc.

4. Enable SSH (same as original)

Create hashed password and add userconf + ssh. In the echo command, replace <your_hash_here> with what you got from running "openssl passwd -6" on you own computer, and use userconf.txt instead of userconf. (Copy this command into a text file and edit it.)

```
openssl passwd -6
```

type your password twice; copy the hash

echo 'pi:<your hash here>' | sudo tee /mnt/image/userconf.txt

sudo touch /mnt/image/ssh

Unmount:

sudo umount /mnt/image

5. Launch QEMU with Expanded Disk

```
qemu-system-aarch64 \
-machine raspi3b -cpu cortex-a72 -nographic \
-dtb bcm2710-rpi-3-b-plus.dtb \
-m 1G -smp 4 \
-kernel kernel8.img \
-sd 2023-05-03-raspios-bullseye-arm64.img \
-append "rw earlyprintk loglevel=8 console=ttyAMA0,115200 dwc_otg.lpm_enable=0 root=/dev/mmcblk0p2 rootdelay=1" \
-device usb-net,netdev=net0 -netdev user,id=net0,hostfwd=tcp::2222-:22
```

You can log into the PI within the current window, or you can SSH in from another WSL window:

```
ssh -p 2222 pi@localhost
```

6. Expand the Filesystem Inside the Emulated Pi

Once inside the Pi:

sudo raspi-config

- Go to Advanced Options → Expand Filesystem
- Reboot

Alternatively (manual method, usually not needed):

```
sudo fdisk /dev/mmcblk0

# delete partition 2 and recreate it to extend to the full disk
sudo reboot
sudo resize2fs /dev/mmcblk0p2
```

7. Verify the New Size

df-h

You should now see nearly 32 GB available in the root folder /.

This modified workflow only changes **Step 3 (resize)** + **Step 6 (expand FS)**, everything else is identical to the original blog's process.

8. Verify the New Size

df -h

Step 3. Enable 32-bit ARMv7 assembly on Raspberry Pi 3/4

Follow the next steps for running 32-bit ARMv7 assembly/programs on a Raspberry Pi 3/4 running Raspberry Pi OS 64-bit:

1. Verify Hardware and OS Architecture

Check the CPU and OS:

```
uname -m # should show aarch64

lscpu | grep -i model
```

Raspberry Pi 3 and 4 (ARMv8-A) can run ARMv7 binaries if the kernel supports AArch32.

2. Enable 32-bit (armhf) Support in Raspberry Pi OS 64-bit

By default, the 64-bit OS is "multi-arch capable." You need the 32-bit runtime:

```
sudo dpkg --add-architecture armhf
sudo apt update
sudo apt install libc6:armhf libstdc++6:armhf
```

If you need to run more complex ARMv7 programs (usually not needed):

sudo apt install gcc-arm-linux-gnueabihf g++-arm-linux-gnueabihf binutils-arm-linux-gnueabihf

3. Compiling ARMv7 Binaries

Save your **ARMv7 assembly** program, e.g., hello.s, by using an editor and copying the following commands into it. (Based on this page https://embeddedjourneys.com/blog/hello-world-arm-assembly-raspberry-pi/)

```
global _start
_start:

MOV R0, #1
LDR R1, =msg
MOV R2, #12
MOV R7, #4
SWI 0

MOV R7, #1
SWI 0

msg:
_asciz "Hello, ARM!\n"
```

then compile with the 32-bit toolchain:

arm-linux-gnueabihf-as -o hello.o hello.s arm-linux-gnueabihf-ld -o hello hello.o

You'll notice the output binary is ELF32 for ARM, which will run in AArch32 compatibility mode.

Check with:

file hello

./hello: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), statically linked, not stripped

4. Run the ARMv7 Program Directly

Now just run it:

./hello

The Pi's 64-bit kernel automatically switches into AArch32 user-mode for execution.

5. Debug/Inspect (Optional)

You can disassemble or inspect with:

arm-linux-gnueabihf-objdump -d hello

Step 4. Lab Report

Write a short report that records your experience in going through these steps. What problems you encountered and how did you resolve them.