ZigBee Arquitetura

Guilherme S. Mazzariol - RA 138466 MO809 - Prof.: L.E. Buzato Outubro/2016

Fig. 1. The IEEE 802.15.4/ZigBee protocol stack architecture

Alguns Conceitos

- Dispositivos trocam informações em pacotes de dados
- Limita a quantidade de bits enviados de uma vez
- Dividido em cabeçalho, corpo da mensagem e rodapé

Cabeçalho

- Informações sobre conteúdo
- Bits de sincronização
- Endereço fonte e destino
- Tamanho total do pacote
- Instruções de controle

Corpo da mensagem

- Dados da camada de aplicação

Rodapé

- Informações que permitem checar erro nos pacotes
 - Cyclic Redundancy Check (CRC)

Frame

- Formato dos dados em cada camada
- Protocol Data Unit
- **APDU** Application Protocol Data Unit
- **NPDU** -Network Protocol Data Unit
- **MPDU** -MAC Protocol Data Unit
- **PPDU** -PHY Protocol Data Unit

Primitivas

- Comandos de comunicação entre camadas adjacentes
- Requerer um serviço de outra camada
- Obter informações de controle
- Transferir frames
- Todas as camadas tem um pequeno conjunto

Tipos de Primitivas

- Request
- Confirm
- Indication
- Response

Tipos de Primitivas

- Primitivas de Dados
- Primitivas de Gerenciamento

Tabela 1 - Primitivas entre PHY e MAC

Primitiva de Dados	.request	.confirm	.indication
PD-DATA	/		/
Primitiva de gerenciamento			
PLME-CCA	√	1	
PLME-ED	√	1	
PLME-GET	√	1	
PLME-SET-TRX-STATE	✓	/	
PLME-SET	✓	/	

SAP (Service Access Points)

- Conexões entre duas camadas
- Por onde as primitivas e frames são transferidos
- SAP de transferência de dados
- SAP de gerenciamento

SAPs de transferência de dados

- **APSDE-SAP** (entre os Endpoints e APS).
- **NLDE-SAP** (entre APS e NWK).
- MCPS-SAP (entre NWK e MAC).
- **PD-SAP** (entre MAC e PHY)

SAPs de gerenciamento

- **APSME-SAP** (entre ZDO e APS)
- **NLME-SAP** (entre APS e NWK; e entre ZDO e NWK)
- **MLME-SAP** (entre NWK e MAC)
- **PLME-SAP** (entre MAC e PHY)

Information Base

- Atributos: parâmetros de configuração da rede ou do dispositivo que podem ser alterados/modificados.
- Constantes: duração de um evento ou tamanho máximo/mínimo de frames, payload ou cabeçalho.

Information Base

- PIB (PAN Information Base) PHY e MAC
- NIB (Network Information Base) NWK
- AIB (APS Information Base) APS

Camada PHY

- Nível mais baixo da pilha ZigBee
- Definida pela IEEE 802.15.4
- Faz a interface entre as camadas acima e o meio de transmissão
- Verifica se o canal está livre para transmitir

- A baixa frequência (868/915MHz):
 - maior alcance devido a redução na perda de propagação
 - melhor sensibilidade
 - ampla área de cobertura

- A alta frequência (2.5GHz):
 - alta throughput
 - baixa latência

Receiver Energy Detection (ED)

- Parte do algoritmo de seleção de canal
- Ele é uma estimativa da potência do sinal recebido dentro da largura de banda de um canal
- O ED é um número inteiro de 8 bits que varia de 0x00 a 0xFF, medido em dB

Link Quality Indication (LQI)

- Qualidade do sinal de conexão
- Calculado pelas camadas de Rede e Aplicação
- Pode ser calculado pela relação sinal-ruído e o valor do pacote ED (Energy Detection).

Clear Channel Assessment (CCA)

- Energy above threshold
- Carrier sense only
- Carrier sense with energy above threshold

Camada MAC

- Prover suporte à transmissão de frames beacons
- Reconhecimento (acknowledgment)
- Sincronização da rede

Modos de Operação

Modo Beacon

- Roteadores transmitem periodicamente beacons frames
- Utiliza a estrutura de um superframe
- Método de acesso CSMA-CA
- Gerenciamento de GTS (Guaranteed Time Slot)

superframe

Modo Non-Beacon

- Não há transmissão de Beacons
- Método de acesso CSMA unslotted ALOHA

Octets: 2	1	0/2	0/2/8	0/2	0/2/8	variable	2
	Sequence number	PAN		Source address	Frame payload	FCS	
	6133000 3900 PG 000 3300 AU						
MHR					MAC payload	MFR	

Configuração geral de um frame da camada MAC

Frame control field

Bits: 0-2	3	4	5	6	7-9	10-11	12-13	14- 15
Frame type	security enabled	Frame pending	Ack. Request	Intra PAN	Reserved	Dest. Addre- ssing mode	Reserved	Source Addre- ssing mode

Frame type subfield

Frame type value (b2,b2,b0)	Description
000	Beacon frame
001	Data frame
010	Acknowledgement
011	MAC command
100-111	Reserved

Beacon frame

Data frame

Acknowledge frame

Command frame

Command Frame ID	Command frame		
0x01	Association request(Tx)		
0x02	Association response(Rx)		
0x03	Disassociation notification(Tx,Rx)		
0x04	Data request(Tx)		
0x05	PAN ID conflict notification(Tx)		
0x06	Orphan notification(Tx)		
0x07	Beacon request(Tx)		
0x08	coordinator realignment(Rx)		
0x09	GTS Request		
0x0a-0xFF	Reserved		

Segurança MAC

- Quando existe somente 1 salto na rede
- AES (Advanced Encryption Standard) 128 bits
- Validação/garantia de integridade do dado é feita por MIC (Message Integrity Code)
- Para múltiplos saltos a segurança é realizada na camada
 NWK e Aplicações

Camada NWK

- Interliga o nível de aplicação Zigbee com as camadas IEEE 802.15.4
- Formação de uma nova rede
- Associação e dissociação de dispositivos da rede
- Atribuição de endereços
- Roteamento
- Transmissão multicast
- Segurança

Coordenador ZigBee (ZC)	Roteador ZigBee (ZR)	Dispositivo Final ZigBee (ZED)	Função na Camada de Rede
×			Estabelecer uma nova rede ZigBee
x	x		Conceder endereço lógico de rede
x	x		Permitir que dispositivos entrem ou saiam da rede
x	x		Manter lista de vizinhos e rotas
x	x		Rotear pacotes da camada de rede
x	x	x	Transferir pacotes da camada de rede

Funções dos dispositivo na camada de rede

Topologias de redes

NWK frame

Valor do Comando	Comando NWK		
0x01	pedido da rota		
0x02	resposta da rota		
0x03	status da rede		
0x04	sair da rede		
0x05	gravar rota		
0x06	pedido de reingresso		
0x07	resposta de reingresso		
0x08	status do link		
0x09	relatório da rede		
0x0a	atualização da rede		
0x0b - 0xff	reservado		

NWK frame

Endereçamento

- PAN ID
 - Número de 16 bits, variam de 0x0000 à 0x3fff
- PAN ID Estendido
 - Número de 64 bits
- Endereço 64 bits endereço MAC
 - Possibilidade de 4 bilhões de endereços/m²
- Endereço 16 bits endereço NWK
 - Variam de 0x0000 à 0xfff7

Atribuição de Endereços

Estocástico

- Cskip:
$$Cskip = \begin{cases} 1 + Cm * (Lm - d - 1), & se \ Rm = 1 \\ \frac{1 + Cm - Rm - Cm * Rm^{Lm - d - 1}}{1 - Rm}, & caso \ contrário \end{cases}$$

$$nwkMaxDepth(Lm) \\ nwkMaxChildren(Cm) \\ nwkMaxRouters(Rm)$$

 Só se atribui valores Cskip para dispositivos do tipo coordenador ou roteador

Atribuição de Endereços

- Endereço no n-ésimo roteador a se associar ao mesmo pai: $Add_n = Add_{n-1} + Cskip_{pai}$

$$Add_n = Add_{pai} + Cskip_{pai} * Rm + n$$

Formação de uma Rede (Coordinator)

- Varredura de detecção de energia pelos canais
- Escolhido canal com menor número de redes operando
- Varredura ativa que retorna os PAN ID's vizinhos
- Escolhido um PAN ID

Entrada de novos dispositivos na rede

- Dispositivos transmite um pedido de beacon
- Roteadores enviam de volta um beacon com as propriedades da rede PAN
- O dispositivo escolhe a rede PAN

- Broadcast

- Oxffff: difundido para toda a rede
- Oxffd: difundido para todos os dispositivos acordados (que não estão em modo de suspensão)
- Oxffc: difundido para todos os roteadores.
- Oxffb: difundido somente para roteadores com baixa potência

- Tabela de Roteamento (Roteadores)
 - endereço do próximo roteador
 - endereço de destino da mensagem
 - flags de controle

- Descoberta de rota
 - Enviado mensagem com pedido-de-rota (custo)
 - Cara roteador adiciona um custo e retransmite
 - Custo: qualidade da conexão entre dois dispositivos

$$C(l) = \begin{cases} 7 \\ min[7, round(\frac{1}{P_l^4})] \end{cases} \qquad C(P) = C[l_1, l_2, \dots l_n] = \sum_{i=1}^n C(l_i)$$

- Descoberta de rota
 - Muitos pedidos de rota, o roteador transmite o de menor custo
 - Destinatário envia resposta-de-rota para o menor custo

Descoberta de Rota com os custos de link

- Árvore
 - Dispositivos sem capacidade de roteamento em mesh
 - Roteador endereço A e profundidade d:

$$A < D < A + Cskip(d-1)$$

- O endereço, do próximo dispositivo a receber a

mensagem:
$$N = A + 1 + \frac{[D - (A + 1)]}{Cskip(d)} * Cskip(d)$$

Camada APL

- As aplicações que darão funcionalidade para o dispositivo
- até 240 aplicações em um mesmo dispositivo
- subdividida em três partes:
 - Application Support Sublayer (APS)
 - Zigbee Device Object (ZDO)
 - Application Framework

Application Support Sublayer (APS)

- Interface entre a camada NWK e a camada APL
- Transmissão de dados entre dois ou mais dispositivos
- Fragmentação e Desfragmentação de pacotes
- Transporte confiável

General Frame

Octets:	0/1	0/2	0/2	0/2	0/1	1	Variable
Frame control	Destination endpoint	Group address	Cluster identifier	Profile Identifier	Source endpoint	APS counter	Frame payload
		Ad	dressing fiel	ds		5	
APS header							APS payload

Frame Control

Bits: 0-1	2-3	4	5	6	7
Frame type	Delivery mode	Indirect address mode	Security	Ack. request	Reserved

Data Frame

Octets:	0/1	0/2	0/2	0/2	0/1	1	Variable
Frame control	Destination endpoint	Group address	Cluster identifier	Profile Identifier	Source endpoint	APS counter	Frame payload
		Ad	dressing fiel	ds			
APS header						APS payload	

Name
APSME-BIND
APSME-GET
APSME-SET
APSME-UNBIND
APSME-ADD- GROUP
APSME-REMOVE- GROUP
APSME-REMOVE- ALL-GROUPS

Command Frame

Octets: 1	0/2	1	1	Variable
Frame control	Group Address	APS counter	APS command identifier	APS command payload
	APS header		APS p	ayload

Application Framework

- key value pair
- generic message

Zigbee Device Object (ZDO)

- determina o tipo do device na rede (end device, router, or coordinator)
- inicializa o APS, camada de NWK e provedores de serviços de segurança
- executa dispositivo e serviço de descoberta
- inicializa coordenador para o estabelecimento de uma rede
- gerenciamento de segurança

Referências

Análise sobre a tecnologia de rede sem fio ZigBee-IEE802.15.4

Open-ZB: an open-source implementation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS

ZigBee/IEEE 802.15.4 Summary

Zigbee / IEEE 802.15.4 Standard

http://ftp1.digi.com/support/documentation/html/manuals/ZigBee/Introduction/zigbee.htm

http://www.informit.com/articles/article.aspx?p=1409785&seqNum=7

http://www.gta.ufrj.br/grad/10_1/zigbee/index.html

http://www.rfwireless-world.com/Tutorials/Zigbee-MAC-layer-frame-format.html