

Version: 2020-01-28 14:03

Prior-Knowledge Survey Spring 2020

COMP 526 – Applied Algorithmics

For each question, select **exactly one** answer!

Some Statistics

Which **course** of study are you enrolled in?

- **A:** MSc Computer Science
- **B:** MSc Advanced Computer Science
- **C:** MSc Advanced Computer Science with Internet Economics (MSc in Computation and Game Theory)
- **D:** MSc Big Data and High Performance Computing
- **E:** MSc Data Science and Artificial Intelligence
- **F:** Other:

Why did you choose to take COMP 526? (Please select the most important motivation.)

- **A:** It is a compulsory module in my course.
- **B:** Module was recommended to me.
- **C:** I heard it is easy to pass.
- **D:** The topics sound interesting.
- **E**: The topics will help me find a job.
- **F:** The topics will help me succeed in my later job.
- **G**: Other:

Do you fancy to do a **PhD**?

A: Yes! B: No way. C: Maybe.

Problem 1 (Math basics)

- a) What is $\frac{2}{3} + \frac{3}{4}$?

 - **A:** $\frac{5}{7}$ **C:** $\frac{16}{12}$
- **E**: $\frac{18}{12}$
- **G:** Don't know

- **B**: $\frac{15}{12}$
- **D**: $\frac{17}{12}$
- **F**: 1

- b) What is $x^a (x^2y)^b$?
 - A: $x^{2ab}y^b$
- **G**: $2x^ay^b$
- **J:** Depends on aand b.

B: $x^{ab^2}y^b$

C: $x^{a+2b}y^b$

- **D:** $x^{a+o-2}y^{-1}$ **E:** $x^{a} + x^{2b}y^{b}$ F: $(xy)^a$
- **H**: 1 **I**: 42
- **K:** Don't know.

- c) What is $\log_2(\frac{a^2}{4})$? (a > 0)

 - **A:** $\log_2(a) 2$ **D:** $4\log_2(a) 2$ **G:** $2\log_2(a) 1$
- **J**: ∞

- **B**: $2(\log_2(a) 1)$ **E**: $\log_2(\frac{a}{4})$ **H**: $2(\log_2(a) + 1)$
- **K:** Depends on aand b.

- **C:** $4\log_2(a) 4$ **F:** $2\log_2(a)$
- **I**: 2
- **L:** Don't know.

Problem 2 (Java ints)

Which values can an int in Java take?

A: 0 or 1.

- **G**: $\{-2^{31}, \dots, 2^{31}\}$
- **M:** $\{-2^{63}-1,\ldots,2^{63}\}$

- **B**: $\{0, \dots, 255\}$
- **H:** $\{-2^{31}, \dots, 2^{31} 1\}$
- **N:** any natural number.

- **C**: $\{-128, \dots, 127\}$
- $I: \{-2^{31}-1,\ldots,2^{31}\}$
- **0**: any integer.

- **D:** $\{-127, \dots, 128\}$
- **J**: $\{0,\ldots,2^{64}\}$
- **P:** any rational number.

- **E**: $\{0, \dots, 2^{32}\}$
- **K:** $\{-2^{63}, \dots, 2^{63}\}$
- **Q:** any real number.

- **F:** $\{0,\ldots,2^{31}\}$
- **L:** $\{-2^{63}, \dots, 2^{63} 1\}$
- R: I don't know Java.

Problem 3 (Limits)

What interval do the following *limits* fall into?

a)
$$\lim_{x \to \infty} \frac{13x^3 + 7x^2 + x - 100}{x^3 - 1}$$

A: $(-\infty, -1)$

D: [0.5, 1]

G: $(42, \infty)$

B: [-1,0)

E: (1,2]

H: Don't know.

C: [0, 0.5)

F: (2,42]

b)
$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n$$

A: $(-\infty, -1)$

D: [0.5, 1]

G: $(42, \infty)$

B: [-1,0)

E: (1, 2]

H: Don't know.

C: [0, 0.5)

F: (2,42]

c)
$$\lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

A: $(-\infty, -1)$

D: [0.5, 1]

G: $(42, \infty)$

B: [-1,0)

E: (1,2]

H: Don't know.

C: [0, 0.5)

F: (2,42]

Problem 4 (Stacks & Queues)

Consider the code to the right for a container class. What ADT does Container implement?

A: array

F: deque

B: singly linked list

G: priority queue

C: doubly linked list

H: heap

D: stack

I: Don't know ADT.

E: queue

J: Don't know.

```
class Container {
  Node node = null;
  class Node {
      Object item;
      Node next;
  void add(Object item) {
      Node oldfirst = node;
      node = new Node();
      node.item = item;
      node.next = oldfirst;
  }
  Object del() {
      Object item = node.item;
      node = node.next;
      return item;
}
```

Problem 5 (Binary Trees)

Consider the binary tree to the right.

Give the labels of the nodes as they are encountered in an in-order traversal of the tree.

Answer:

Problem 6 (Combinatorics)

How many possibilities are there to select a subset of exactly 3 objects out of 10 pairwise different, identifiable objects?

A: 6 **D**: 30 **G**: 504 **J**: 59049

B: 27 **E**: 120 **H:** 720

C: 20 **F**: 240 **K:** Don't know. **I**: 1000

Problem 7 (Sorting Complexity)

C: $\Theta(\log n)$

What is the complexity of sorting n comparable objects?

G: $\mathcal{O}(n \log n)$

A: $\mathcal{O}(\log n)$ **E**: $\Omega(n)$ **I**: $\Theta(n \log n)$ M: Don't know

 $\mathcal{O}, \Omega, \Theta$. J: $\mathcal{O}(n^2)$ **B**: $\Omega(\log n)$ F: $\Theta(n)$ **N:** Don't know. \mathbf{K} : $\Omega(n^2)$

D: $\mathcal{O}(n)$ **H:** $\Omega(n \log n)$ L: $\Theta(n^2)$

derstand the code.

Z: Don't know.

Problem 8 (Low-level coding)

	Consider the following pseudure:	docode proce-	Address	Content
1 2 3 4 5 6 7 8 9	<pre>procedure m(s) { x1 = 0 while (s >= 0) { load(x2, s) x1 = x1 + x2 x3 = s + 1 load(s, x3) } return x1 }</pre>		77200 77201 77202 77203 77204 77205 77206 77207 77208 77209 77210	-98208 77213 00017 77207 -00007 -00001 77205 -00005 77214 -54813 15487 -00003
	Here, load(x,a) copies the value at memory address a into the register/variable x. What is the result of the call m(77202)	er/variable x.	77212 77213 77214 77215 77216	-00001 -77204 00004 77204 -00001
	when the memory contents a the right?		77217 :	00113
	A: -98208 G: 6	M: 12	S: 77205	Y: Don't un-

A: -98208	G : 6	M: 12	S : 77205
B: -1	H : 7	N: 13	T: 77206
C : 0	I : 8	O : 17	U : 77207
D: 1	J: 9	P: 77202	V : 77208
E : 4	K : 10	Q : 77203	W : 77209
F: 5	L : 11	R: 77204	X : 77210

Problem 9 (Java Semantics)

What is the output of the following Java fragment?

Assume that each class resp. interface is stored in a suitably named file and that we call the program as java Main.

```
interface I { int m(int p) ; }
   class A implements I {
      public int m(int p) { return p/2; }
3
   }
   class B extends A {
5
      public int m(int p) { return 2*super.m(p); }
6
   }
7
   class Main {
8
      public static void main (String[] a) {
9
         I i = new B();
10
         System.out.println(i.m(7));
11
12
13
  }
```

A: -7 F: 7 K: i.m(7)
B: 3 G: 7.000001 L: no output

C: 3.5 H: 8 M: throws exception

D: 6

N: Don't understand the code.