AI商用产品体验-报告

一. 基本信息

- 体验平台:
- 体验时间:
- 体验身份:

拆分需求	(1)目标用户画像和实际用户画像(2)功能的实际使用场景,流程和优化(3)数据报表,下一步的运营策略
个人体验习惯	* 优先评估技术实现难度 * 优先以技术角度思考用户体验的原因 * 优先寻找具有替代性的同类Github开源项 目
体验频率	
体验行为	
体验中的评估和反馈	
可能的认知偏见	

• 体验的产品

名称	版本

二. 体验内容

NLP

直播 2020.04.01 - BERT在美团搜索业务中的应用

主讲人: NLP部算法专家-王金刚

• 业务内容

一级类别	二级类别	应用	tricks
单句分类	情感分析	垃圾评论识别和过滤	用联合训练(考虑 apect之间的关 系,中间加

		细粒度情感分析(比如 每句话点评中的精选评 论,点击评论标签完成 评论召回)	attetion学权重) 减轻不同aspect分 布不均匀
	query意图识别	准确的query流量划分	
	推荐理由场景划分	和query、用户相关的个性化推荐理由的推送或 召回理由	
	query改写语义一致性检测	对同意义,一词多义的 query改写后是否和原意 义一致(+人工审核)	
句间关系	query成分分析(NER序列标 注)	对用户的随意搜索(关键词堆砌)做核心成分分析,做个二召	直接softmax看似整体准确率高,但是容易出现标签跳变,整个识别不完整,可用CRF规避

PS:

- (1) 完成分类后,还需要由业务方设计展示策略,从而完成类似"低星好评,高星差评"的问题的解决
- (2) BERT使用性价比综合考虑显卡资源和FineTune后作为Baseline可以节省足够时间
- 遇到的业务难题
 - 。 业务方提供数据-train模型-交付,业务周期长人手少 搭建平台解决
 - 。 希望寻找模型效果好的原因 搭建平台解决
- 其他材料

PPT: E:\PM之路\日常积累\讲座资料\2020.04.01-BERT在美团搜索业务中的应用.pdf 录音: E:\PM之路\日常积累\讲座资料\2020.04.01-BERT在美团搜索业务中的应用.wav 视频回放: https://www.bilibili.com/video/BV1vC4y147px?from=search&seid=197388710 3969807897

图像处理

直播 2020.04.15 - 行为动作定位的算法流程介绍与分享

大纲: 视界编码, proposal生成, proposal评价, 模型ensemble

• 业务内容(主要针对视频中人的行为)

一级类别	二级类别	应用	tricks
目标位测	视界编码-video represent at ion - 模型 C3D Convolution Two-stream		- 模型增加降维层 (卷积)和分类层 (MLP)会work - encoding可以在 attention、local global上挖掘 trick,现在做的最 好用的还是光流+做 two stream(不太 重视速度的话)
	proposal生成 - 模型 spliding windows	短视频、游戏平台 - 对用户感兴趣的片段裁 剪供用户预览 - QuickView	- 用snippet windows采集视频 clip,16帧采集效 果比较好

archor based(SSAD)	- 视频部分片段和文字联动(搜索,评论,广告) - Focus on a	- Archor baxes太 少可能会对小
boundary based(BSN, SSN)	台) - Focus on a section	proposal漏检
combinations(BMN[confidence e scroes+archor], DBG[proposal-level probabilities+anchor boxes], CTAP[spliding windows+TAG-temporal actioness grouping+complementary filter]) relative-aware pyramid netwo		- DBG测试action detection任务表现不是很好 - 其中BSN(?不确定)处理速度相对较慢,其他模型一般速度可以达到200ms/次,可以用多clip等方式加速code
rk(RAM[我们的工作,包括 Temporal contex distilling, Mutli-granularity proposal generation, Archor baxes selection])		
proposal评价 - 模型 confidence score		– contex的加入很 有用(比如CTAP 模型)
regression(BSN[extend boundary regions, BMN\DBG[pre-defined simple mask])		- 和其他模型,比 如BSN进行 Boundary微调会 work
offset and action regression		
Reranking&Boundary Adjustment[我们的工作,包括 Proposal Evaluation Module, Boundary Adjustment Scheme]		
模型ensemble		- 模型差异比较 大, ensemble
- 根据特征、根据模型 confidence score regression		效果相对较好
complementary filters		
Reranking & Boundary Refinement		

- 遇到的业务难题
 - 高质量体验 ?
 - 准确分类 combination和ensemble
- 其他材料

PPT: E:\PM之路\日常积累\讲座资料\2020.04.15-云从数据-行为动作定位的算法流程介绍与分享.pdf

视频回放: https://b23.tv/BV1VA411b7G5

公众号文章 2020.04.08 - 整个世界都是你的绿幕:这个视频抠图换背景的方法着

• 来源: CVPR 2020论文

内容

评价 指标	实验数据集	对比的 深度蒙 版算法	数据集上对比结果	已知BUG/ 限制条件	潜在应用场景	是否有 教程
MSE	Adobe	BM: Bayesi an Mattin g CAM: Contex t- Aware Mattin g IM: Index Mattin g LFM: Late Fusion Mattin g	Our: 1.72(Addit ional input s: B) 1.73(Addit ional input s: B') BM: 2.53(Addit ional input s: Trimap-10, B) 2.86(Addit ional input s: Trimap-20, B) 4.02(Addit ional input s: Trimap-20, B') CAM: 3.67(Addit ional input s: Trimap-10) 4.72(Addit ional input s: Trimap-20) IM: 1.92(Addit ional input s: Trimap-10) 2.36(Addit ional input s: Trimap-10) 2.36(Addit ional input s: Trimap-20)	限(原视研求拍人图 BU(是拍下拍中平致还一误制1)始频究拍一物 GU)在摄,摄,面的是些件。像外还者不背 尤像场手视于景差出版"了/,要多带景 其机景持频非导,现错	云 视会	是
SAD	Dataset		Our: 0.97(Addit ional input s: B) 0.99(Addit ional input s: B') BM: 1.33(Addit ional input s: Trimap-10, B) 1.13(Addit ional input s: Trimap-20, B) 2.26(Addit ional input s: Trimap-20, B') CAM: 4.50(Addit ional input s: Trimap-10) 4.49(Addit ional input s: Trimap-20) IM: 1.61(Addit ional input s: Trimap-10) 1.10(Addit ional input s: Trimap-10) 1.10(Addit ional input s: Trimap-20)			

指	世界视频	52.9%muchbetter	
标-	(手持相	41.4 ? tter	
相对	机)	5.7%similar	
提升	1/0/	0%worse	
挺川			
		0%much worse	
		CAM:	
		30.8%muchbetter	
		42.5�tter	
		22.5%similar	
		4.2%worse	
		0%much worse	
		o /orrideri worde	
		AM:	
		26.7%muchbetter	
		55.0 † tter	
		15.0%similar	
		2.5%worse	
		0.8%much worse	
		LFM:	
		72%muchbetter	
		20 tter	
		4%similar	
		3%worse	
		1%much worse	
		BM:	
		61%muchbetter	
		31 ter	
		3%similar	
		4%worse	
		1%much worse	
		CAM:	
		43.3%muchbetter	
		37.5�tter	
		5%similar	
		4.2%worse	
	10 个真实	10%much worse	
	世界视频	re yemaen weree	
	(固定相	AM:	
	机)	33.3%muchbetter	
		47.5 tter	
		5.9%similar	
		7.5%worse	
		5.8%much worse	
		LFM:	
		65.7%muchbetter	
		27.1 † tter	
		4.3%similar	
		0%worse	
		2.9%much worse	

 ${\bf Github:}\ https://github.com/senguptaumd/Background-Matting$