PREVENTIVE MAINTANENCE DEEP LEARNING

Canva

APRIL 2024

Overview

- Importance of predictive maintenance in industry
- Objective: Develop a deep learning model to predict failures
- Benefit: Prevent costly downtime, optimize maintenance

Business Understanding

Objective

OBJECTIVE: DEVELOP A DEEP LEARNING MODEL TO PREDICT FAILURES

BENEFIT: PREVENT COSTLY DOWNTIME, OPTIMIZE MAINTENANCE

Goal

GOAL: ACCURATE PREDICTIONS TO ENABLE PROACTIVE MAINTENANCE

IMPACT: REDUCE BREAKDOWNS, EXTEND EQUIPMENT LIFE, OPTIMIZE SCHEDULES

Data Set

- Analyzed sensor data from industrial machines
- Identified key sensors with significant readings variability
- Detected patterns linked to machine health and potential faults

Data Insight

ATTRIBUTES

• Total Entries: 220.320

• Total Columns: 55

• Unnamed: OColumn: ID/Index

• Sensor 15 column: Removing

DISTRIBUTION

• Normal: 205,836

• Recovering: 14,477

• Broken: 7

MISSING VALUES

- 77.017 and 220,320 missing
- Checked for duplicates

Data Prep

- Cleaned and preprocessed data for quality and consistency
- Merged similar machine statuses to simplify the target variable
- Visualized data distribution and sensor correlations
- Utilized exploratory data analysis for a deeper understanding of data

Model Process

01

Feedforward Neural Network(FNN)

• Developed a baseline neural network with dropout layers to prevent overfitting.

02

Tested ensemble machine learning models

Bagging, AdaBoost, Stacking, and Voting

03

Tuning

- Implemented cross-validation for robust model evaluation
- Optimized models for high accuracy and generalization

Precision: 0.9246 Recall: 0.9986 F1 Score: 0.9602 ROC AUC Score: 0.9998

Receiver Operating Characteristic

Results

- Achieved high consistency and accuracy across cross-validation folds
- Near-perfect ROC AUC scores indicating excellent model performance
- SHAP analysis confirmed key sensors as strong predictors

Next Steps

01

Refine models

• Continuous monitoring of key sensors for real-time predictive maintenance

02

Deployment

• Implementation into production with a real-time analytics pipeline

03

More data insight

• Further investigation into high-impact sensors for targeted maintenance

Further experiment

 Regular retraining of models with new data to maintain performance

Sens)

CONTACT

www.github.com/yaterjo

jly35630@yahoo.com

555-867-5309

Atlanta, Georgia

Our Team

Johnathan Yater

Data Science

THANK YOU