Math 116: Problem Set 7

Owen Jones

March 4, 2024

```
(reflexive) f(X) \equiv f(X) \pmod{P(X)} \Leftrightarrow P(X) \mid (f(X) - f(X)). However, f(X) - f(X) = 0 and any polynomial divides 0.
```

(symmetric) Suppose
$$f(X) \equiv g(X) \pmod{P(X)} \Leftrightarrow P(X) \mid (f(X) - g(X))$$
. It follows $P(X) \mid (g(X) - f(X))$. Thus, $g(X) \equiv f(X) \pmod{P(X)}$

- (transitive) Suppose $f(X) \equiv g(X) \pmod{P(X)}$ and $g(X) \equiv h(X) \pmod{P(X)}$. It follows $P(X) \mid (f(X) g(X))$ and $P(X) \mid (g(X) h(X))$. Thus, $P(X) \mid ((f(X) g(X)) + (g(X) h(X))) \Rightarrow P(X) \mid (f(X) h(X)) \Leftrightarrow f(X) \equiv h(X) \pmod{P(X)}$.
 - 2. Suppose $f_1(X) \equiv f_2(X) \pmod{P(X)}$ and $g_1(X) \equiv g_2(X) \pmod{P(X)}$. Thus, $P(X) \mid (f_1(X) f_2(X))$ and $P(X) \mid (g_1(X) g_2(X))$.

$$P(X) \mid ((f_1(X) - f_2(X)) + (g_1(X) - g_2(X)))$$

$$\Rightarrow P(X) \mid ((f_1(X) + g_1(X)) - (f_2(X) + g_2(X)))$$

$$\Leftrightarrow f_1(X) + g_1(X) \equiv f_2(X) + g_2(X) \pmod{P(X)}.$$

$$P(X) \mid (g_1(X)(f_1(X) - f_2(X)) + f_2(X)(g_1(X) - g_2(X))) \Rightarrow P(X) \mid (f_1(X)g_1(X) - f_2(X)g_2(X)) \Leftrightarrow f_1(X)g_1(X) \equiv f_2(X)g_2(X) \pmod{P(X)}$$

3.
$$8X^4 - 12X^3 + 8X - 3 = (2C - 1)(4X^3 - 4X^2 - 3X + 2) + 2X^2 + X - 1$$

 $4X^3 - 4X^2 - 3X + 2 = (2X - 3)(2X^2 + X - 1) + 2X - 1$
 $2X^2 + X - 1 = (X + 1)(2X - 1) + 0$
 $\gcd(8X^4 - 12X^3 + 8X - 3, 4X^3 - 4X^2 - 3X + 2) = X - \frac{1}{2}$

$$y(x) z(x)$$

$$4. X^3 + 2X + 2 1 0$$

$$4. X^2 + 3X + 4 0 1$$

$$2X + 4 1 4X + 3$$

$$2 2X + 3 2X^2 + X + 4$$

$$1 = (X + 4)(X^3 + 2X + 2) + (X^2 + 3X + 2)(X^3 + 2X + 2)$$

5. (a) If x and p-1 are coprime, there exists some integer y s.t $xy \equiv 1 \pmod{p-1}$. Because $g_2 \equiv g^x \pmod{p} \Rightarrow g_2^y \equiv g^{xy} \equiv g^{k(p-1)} \cdot g \equiv g \pmod{p}$ by Fermat's Little Theorem.

Suppose $m \in \{0, 1, \ldots, p-1\}$. Because g is a primitive root, there exists some q s.t $g^q \equiv m \pmod p$. Let $q' \equiv qy \pmod p$. $g_2^{q'} \equiv g_2^{qy} \equiv g^q \equiv m \pmod m$. Thus, for any arbitrary $m \in \{0, 1, \ldots, p-1\}$, there exists an exponent q' s.t $g_2^{q'} \equiv m \pmod p$. (Surjectivity+finite domain and codomain of smae size implies a bijection) Thus, g_2 is a primitive root.

- (b) Suppose x is not coprime to p-1. It follows there exists some proper divisor $k = \frac{p-1}{\gcd(p-1,x)} \in \mathbb{F}_+$ of p-1 s.t $xk \equiv 0 \pmod{p-1}$. Since $h^k \equiv g^{xk} \equiv 1 \pmod{p}$ then h only cycles through k < p elements of \mathbb{F}_+ , so h is not a primitive root.
- (c) $\phi(p-1)$ because we want the number of integers less than p-1 that are coprime to p-1
- 6. (a) $600 = 2^3 \cdot 3 \cdot 5^2$. If $r \mid 600$, then r must share all of it's prime factors with 600. It follows $r = 2^{k_1} \cdot 3^{k_2} \cdot 5^{k_3}$ where $k_1 \leq 3, k_2 \leq 1$ and $k_3 \leq 2$. Since r < 600, at least of of the inequalities must be strict. If $k_1 < 3 \Rightarrow r \mid 300, k_2 < 0 \Rightarrow r \mid 200$, and $k_3 < 2 \Rightarrow r \mid 120$.
 - (b) Since 601 is prime, $\phi(601) = 600$. k is the smallest integer s.t $7^k \equiv 1 \pmod{601}$, so $k \mid \phi(601)$ by previous hw. Thus, by part (a), if $k < 600 \Rightarrow k \mid 120, 200$, or 300.
 - (c) $7^{300} = 600 \pmod{601}, 7^{120} \equiv 423 \pmod{601}, 7^{200} \equiv 576 \pmod{601}$. If k divided 120, 200, or 300 then at least one of our computed exponentiations would be congruent 1 (mod 601).
 - (d) If $k \mid 600$, but $k \nmid 120$, $k \nmid 200$, and $k \nmid 300$, then $k \geq 600$. Thus, k = 600 by definition of being the smallest integer s.t $7^k \equiv 1 \pmod{601}$. Hence, 7 must be a primitive root. If it weren't, there would be two integers q_1, q_1 where $|q_1 q_2| < 600$ s.t $7^{q_1} \equiv 7^{q_2} \pmod{601} \Rightarrow 7^{|q_1 q_2|} \equiv 1 \pmod{601}$ (because multiplication is well defined) which contradicts that 600 is the smallest integer s.t $7^k \equiv 1 \pmod{601}$.
- 7. Let $m_i = \frac{p-1}{q_i}$. If $g^{m_i} \not\equiv 1 \pmod{p}$ for all i, then g is a primitive root.
- 8. $65537 = 2^{16} + 1$. It follows we just need to show $3^{2^{15}} \not\equiv 1 \pmod{65537}$. Using Python $3^{2^{15}} \equiv 65536 \pmod{65537}$, so 3 is primitive root.
- 9. (a) $(3^k)^{32} \equiv 3^{32k} \equiv 2^{32} \equiv 1 \pmod{65537} \Rightarrow 2^{16} \mid 2^5k \Rightarrow 2^{11} \mid k$ where $2^{11} = 2048$ Since $(3^k)^{16} \equiv 3^{16k} \equiv 2^{16} \equiv -1 \pmod{65537} \Rightarrow 2^{16} \nmid 2^4k \Rightarrow 4096 \nmid k$ where $2^{12} = 4096$
 - (b) We only need to check the odd multiples of 2048, $i=1,3,\ldots 31$. We obtain $3^{55296}\equiv 2\pmod{65537}$
- 10. (a) X and X+1 are clearly irreducible because they are degree 1. X^2+X+1 is irreducible because it has no roots in \mathbb{F}_2 . There are $2^2=4$

polynomials of degree 2 with coefficients in \mathbb{F}_p , so we need to check X^2 , X^2+1 and X^2+X are all reducible. X^2+X can be reduced into polynomials X and X+1. X^2 can be reduced into polynomials X and X. $X^2 + 1$ can be reduced into polynomials X + 1 and X + 1.

(b) If $X^4 + X + 1$ is reducible, then it must be factor into polynomials of degree 2 and 2 or 3 and 1. We do division with remainder on $X^4 + X + 1$ to check if X, X + 1, or $X^2 + X + 1$ are factors.

 $X^4 + X + 1 = (X^3 + 1)X + 1$

 $X^4 + X + 1 = (X^3 + X^2 + X)(X + 1) + 1$ $X^4 + X + 1 = (X^2 + X)(X^2 + X + 1) + 1$

Since $X^4 + X + 1$ doesn't have any linear or quadratic factors, it must be irreducible.

- (c) $X^4 \equiv X + 1 \pmod{X^4 + X + 1} \Leftrightarrow X^4 + X + 1 \mid (X^4 (X + 1)).$ $X^{4} - (X+1) \equiv X^{4} + X + 1 \equiv 0 \pmod{X^{4} + X + 1}.$ Since multiplication is well defined $X^{8} \equiv (X^{4})^{2} \equiv (X+1)^{2} \equiv X^{2} + 1$ $\pmod{X^{4} + X + 1}$ and $X^{16} \equiv (X^{8})^{2} \equiv (X^{2} + 1)^{2} \equiv X^{4} + 1 \equiv X^{4} + X^{4} = X^{4} +$ $(X+1)+1 \equiv X \pmod{X^4+X+1}$.
- (d) Since X and X^4+X+1 are coprime X has an inverse $\pmod{X^4+X+1}$. It follows $X^{15}\equiv X^{-1}X^{16}\equiv X^{-1}\cdot X\equiv 1\pmod{X^4+X+1}$
- 11. (a) X^2+1 doesn't have any roots in \mathbb{F}_3 , so it must be irreducible. $0^2+1=$ $1, 1^2 + 1 = 2, 2^2 + 1 = 2.$
 - (b) Extended Euclidean Algorithm

$$y(X) \quad z(X)$$

$$X^2 + 1$$
 1 0

$$2X + 1$$
 0 1

2 1
$$X+1$$

 $(2X+1)(2X+2) \equiv X^2+2 \equiv 1 \pmod{X^2+1}$. 2+2X is the inverse of 1 + 2X.