Revisão de Probabilidades e Estatística

Afshine AMIDI e Shervine AMIDI

13 de Outubro de 2018

Introdução a Probabilidade e Combinatória

□ Espaço amostral – O conjunto de todos os resultados possíveis é chamado de espaço amostral □ Independência – Dois eventos A e B são independentes se e apenas se tivermos: do experimento e $\acute{\rm e}$ denotado por S.

 \square Evento – Qualquer subconjunto E do espaço amostral é chamado de evento. Isso é, um evento é um conjunto de possíveis resultados do experimento. Se o resultado do experimento está contido em E, então é dito que o evento ocorreu.

 \square Axiomas de probabilidade - Para cada evento E, denotamos P(E) a probabilidade do evento E ocorrer.

(1)
$$0 \leqslant P(E) \leqslant 1$$
 (2) $P(S) = 1$ (3) $P\left(\bigcup_{i=1}^{n} E_i\right) = \sum_{i=1}^{n} P(E_i)$

 \square Permutação – A permutação é um arranjo de r objetos de um conjunto de n objetos, em uma determinada ordem. O número desses arranjos é dado por P(n,r), definido como:

$$P(n,r) = \frac{n!}{(n-r)!}$$

 \Box Combinação – A combinação de um arranjo de r objetos de um conjunto de n objetos, onde a ordem não importa. O número desses arranjos é dado por C(n,r), definido como:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{r!(n-r)!}$$

Observação: dado que $0 \le r \le n$, então temos que $P(n,r) \ge C(n,r)$

Probabilidade Condicional

 \square Regra de Bayes – Para eventos A e B tal que P(B) > 0, temos que:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Observação: temos que $P(A \cap B) = P(A)P(B|A) = P(A|B)P(B)$.

 \square Partição - Dado que $\{A_i, i \in [1,n]\}$ seja tal que para todo $i, A_i \neq \emptyset$. Dizemos que $\{A_i\}$ é uma partição se temos:

$$\forall i \neq j, A_i \cap A_j = \emptyset$$
 e $\bigcup_{i=1}^n A_i = S$

Observação: para qualquer evento B no espaço amostral temos que $P(B) = \sum_{i=1}^{n} P(B|A_i)P(A_i)$.

 \square Extensão da regra de Bayes - Seja $\{A_i, i \in [1,n]\}$ uma partição do espaço amostral. Temos que:

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum_{i=1}^{n} P(B|A_i)P(A_i)}$$

$$P(A \cap B) = P(A)P(B)$$

Variável aleatória

 \Box Variável aleatória – Uma variável aleatória, normalmente denominada X, é uma função que mapeia todo elemento em um espaço amostral para uma linha verdadeira.

 \Box Função de distribuição cumulativa (CDF) – A função de distribuição cumulativa F, que é monotonicamente não decrescente e é tal que

$$\lim_{x \to -\infty} F(x) = 0 \quad \text{e} \quad \lim_{x \to +\infty} F(x) = 1$$

é definida como:

$$F(x) = P(X \leqslant x)$$

Lembrete: temos que $P(a < X \le B) = F(b) - F(a)$

 \square Função densidade de probabilidade (PDF) – A função densidade de probabilidade f é a probabilidade de que X assuma valores entre duas realizações adjacentes da variável aleatória.

□ Relações envolvendo a PDF e a CDF - Aqui estão as propriedades mais importantes que se deve conhecer dos casos discretos (D) e contínuos (C).

Caso	$\mathbf{CDF}\ F$	PDF f	Propriedades da PDF		
(D)	$F(x) = \sum_{x_i \leqslant x} P(X = x_i)$	$f(x_j) = P(X = x_j)$	$0 \leqslant f(x_j) \leqslant 1 \text{ e } \sum_j f(x_j) = 1$		
(C)	$F(x) = \int_{-\infty}^{x} f(y)dy$	$f(x) = \frac{dF}{dx}$	$f(x) \geqslant 0 \text{ e } \int_{-\infty}^{+\infty} f(x) dx = 1$		

 \Box Variância - A variância de uma variável aleatória, normalmente denominada Var(X) ou σ^2 , é a medida do espalhamento da sua função de distribuição. Ela é determinada por:

$$Var(X) = E[(X - E[X])^{2}] = E[X^{2}] - E[X]^{2}$$

 \Box Desvio padrão - O desvio padrão de uma variável aleatória, normalmente denominado σ , é a medida do espalhamento da sua função de distribuição que é compatível com a unidade da variável aleatória. Ele é determinado por:

$$\sigma = \sqrt{\operatorname{Var}(X)}$$

 \square Expectativas e Momentos da Distribuição – Aqui estão as expressões do valor esperado E[X], do valor esperado generalizado E[g(X)], do k-ésimo momento $E[X^k]$ e função característica $\psi(\omega)$ para os casos discretos e contínuos:

Caso	E[X]	E[g(X)]	$E[X^k]$	$\psi(\omega)$
(D)	$\sum_{i=1}^{n} x_i f(x_i)$	$\sum_{i=1}^{n} g(x_i) f(x_i)$	$\sum_{i=1}^{n} x_i^k f(x_i)$	$\sum_{i=1}^{n} f(x_i)e^{i\omega x_i}$
(C)	$\int_{-\infty}^{+\infty} x f(x) dx$	$\int_{-\infty}^{+\infty} g(x)f(x)dx$	$\int_{-\infty}^{+\infty} x^k f(x) dx$	$\int_{-\infty}^{+\infty} f(x)e^{i\omega x}dx$

Remarque: on a $e^{i\omega x} = \cos(\omega x) + i\sin(\omega x)$.

 \square Transformação das variáveis aleatórias — Sejam as variáveis X e Y ligadas por alguma função. Ao denotador f_X e f_Y para as funções de distribuição de X e de Y respectivamente, temos que:

$$f_Y(y) = f_X(x) \left| \frac{dx}{dy} \right|$$

 $\hfill \Box$ Regra integral de Leibniz – Seja guma função de xe possivelmente de c,e a,b fronteiras que podem depender de c. Temos que:

$$\frac{\partial}{\partial c} \left(\int_{a}^{b} g(x) dx \right) = \frac{\partial b}{\partial c} \cdot g(b) - \frac{\partial a}{\partial c} \cdot g(a) + \int_{a}^{b} \frac{\partial g}{\partial c}(x) dx$$

 \Box Desigualdade de Chebyshev – Seja X uma variável aleatória com valor esperado μ . Para $k,\sigma>0$, temos a seguinte desigualdade:

$$P(|X - \mu| \geqslant k\sigma) \leqslant \frac{1}{k^2}$$

Variáveis aleatórias distribuídas conjuntamente

 \square Densidade condicional – A densidade condicional de X com respeito a Y, normalmente denotada como $f_{X\mid Y},$ é definida como:

$$f_{X|Y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$$

 \square Independência – Duas variáveis aleatórias X e Y são ditas independentes se:

$$f_{XY}(x,y) = f_X(x)f_Y(y)$$

 \square Densidade marginal e distribuição cumulativa – A partir da função de probabilidade de densidade conjunta f_{XY} , temos que:

Caso	Densidade marginal	Função cumulativa	
(D)	$f_X(x_i) = \sum_j f_{XY}(x_i, y_j)$	$F_{XY}(x,y) = \sum_{x_i \leqslant x} \sum_{y_j \leqslant y} f_{XY}(x_i, y_j)$	
(C)	$f_X(x) = \int_{-\infty}^{+\infty} f_{XY}(x,y)dy$	$F_{XY}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{XY}(x',y')dx'dy'$	

 \square Coveriância – Definimos covariância de duas variáveis aleatórias X e Y, que chamamos de σ^2_{XY} ou mais comumente de Cov(X,Y), como:

$$Cov(X,Y) \triangleq \sigma_{XY}^2 = E[(X - \mu_X)(Y - \mu_Y)] = E[XY] - \mu_X \mu_Y$$

 \square Correlação – Dado que σ_X , σ_Y são os desvios padrão de X e Y, definimos a correlação entre as variáveis aleatórias X e Y, denominada ρ_{XY} , como:

$$\rho_{XY} = \frac{\sigma_{XY}^2}{\sigma_X \sigma_Y}$$

Observação 1: é definido que para qualquer variáveis aleatórias X, Y temos que $\rho_{XY} \in [-1,1]$. Observação 2: Se X e Y são independentes, então $\rho_{XY} = 0$.

Distribuições principais – Aqui estão as principais distribuições que não devem ser esquecidas:

Tipo	Distribuição	PDF	$\psi(\omega)$	E[X]	Var(X)
(D)	$X \sim \mathcal{B}(n, p)$ Binomial	$P(X = x) = \binom{n}{x} p^x q^{n-x}$ $x \in [0,n]$	$(pe^{i\omega}+q)^n$	np	npq
	$X \sim \text{Po}(\mu)$ Poisson	$P(X = x) = \frac{\mu^x}{x!}e^{-\mu}$ $x \in \mathbb{N}$	$e^{\mu(e^{i\omega}-1)}$	μ	μ
	$X \sim \mathcal{U}(a,b)$ Uniform	$f(x) = \frac{1}{b-a}$ $x \in [a,b]$	$\frac{e^{i\omega b} - e^{i\omega a}}{(b-a)i\omega}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
(C)	$X \sim \mathcal{N}(\mu, \sigma)$ Gaussian	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $x \in \mathbb{R}$	$e^{i\omega\mu - \frac{1}{2}\omega^2\sigma^2}$	μ	σ^2
	$X \sim \operatorname{Exp}(\lambda)$ Exponential	$f(x) = \lambda e^{-\lambda x}$ $x \in \mathbb{R}_+$	$\frac{1}{1 - \frac{i\omega}{\lambda}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Estimativa de parâmetro

 \square Amostra aleatória – Uma amostra aleatória é uma coleção de n variáveis aleatórias $X_1,...,X_n$ que são independentes e igualmente distribuidas com X.

 $\hfill \Box$ Estimador – Um estimador é uma função dos dados que é usada para inferir o valor de um parâmetro desconhecido em um modelo estatístico.

 \Box Viés – O viés de um estimador $\hat{\theta}$ é definido como a diferença entre o valor esperado da distribuição de $\hat{\theta}$ e o seu real valor, i.e.:

$$\operatorname{Bias}(\hat{\theta}) = E[\hat{\theta}] - \theta$$

Observação: um estimador é chamado de imparcial (unbiased) quando $E[\hat{\theta}] = \theta$.

 \square Média da amostra – A média da amostra de uma amostra aleatória é usada para estimar a verdadeira média μ de uma distribuição, e é denominada \overline{X} e é definida como:

Observação: a média da amostra é imparcial, i.e $E[\overline{X}] = \mu$.

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

 \square Amostra da variância – A amostra da variância de uma amostra aleatória é usada para estimar a verdadeira variância σ^2 da distribuição, e é normalmente denominada s^2 ou $\hat{\sigma}^2$ e definida por:

Observação: a variância da amostra é imparcial, i.e $E[s^2] = \sigma^2$.

$$s^{2} = \hat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

 $\hfill\Box$ Teorema do Limite Central – Dado que temos uma amostra aleatória $X_1,...,X_n$ seguindo uma determinada distribuição com a média μ e a variância σ^2 , temos que:

$$\overline{X} \underset{n \to +\infty}{\sim} \mathcal{N}\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$