Trust Region Methods

Numerical Optimization

Prepared by LimCK

Line Search vs Trust Region

- Line search first determine direction p, then find a suitable step length α .
- Trust Region:
 - 1.At current search point (x_k) , define a region which a certain model (m_k) can approximate the original objective function f, to some extent
 - 2.Choose the step to the minimizer in this region. We assume that a quadratic model is adequate to model the original functions.

LimCK 2 / 21

LimCK 3 / 21

LimCK 4 / 21

LimCK 5 / 21

LimCK 6 / 21

LimCK 7 / 21

- The size of the trust region (Δ_k) is critical:
 - If too large : the predicted (modelled)
 minimizer may be too far from expected (real)
 minimizer
 - If too small : small steps, slow.

 Δ_{ν} too small

- May refer to performance of last step/iteration to determine the size of the region:
 - Good: increase region size
 - Fail : inadequate to model the region reduce size

LimCK 9 / 21

With Taylor's expansion, assuming m_k as a quadratic model (works in many cases):

This model is especially accurate when ||p|| is small

LimCK 10 / 21

With Taylor's expansion, assuming m_k as a quadratic model (works in many cases):

This model is especially accurate when ||p|| is small

LimCK

• To obtain each step, we seek a solution (p_{ν}^*) of the subproblem:

$$\min_{p \in \mathbb{R}^n} m_k(p) = f_k + g_k^T p + \frac{1}{2} p^T B_k p \qquad \text{s.t. } ||p|| \le \Delta_k$$
 (2)

where $\Delta_{k} > 0$ is the trust-region radius

• If
$$B_k$$
 is positive definite, the solution is easy to find:
$$g_k^T+2\cdot\frac{1}{2}p_kB_k=0$$

$$p_k=-B_k^{-1}g_k^T \tag{3}$$

• However, if B_{k} is not positive definite, more computation is required.

Trust Region Algorithm

• Based on the computation of ρ :

$$\rho_k = \frac{f(x_k) - f(x_k + p_k)}{m_k(0) - m_k(p_k)} - \frac{\text{actual reduction}}{\text{predicted reduction}}$$

Ratio between actual reduction and predicted reduction determine whether a model m_k is a good representation or not.

- $\rightarrow \rho$ should not be negative.
- > If negative or close to zero, shrink the Δ_k
- Close to 1: *m* is a good model, may expend the region in next iteration.

Trust Region Algorithm

Initialization: k=0 and $\widetilde{\Delta}=$ upper bound of the radius of the trust region while not converge {

obtain p_k by solving trust region sub-problem $m_k(p_k) = f_k + g_{k^T} p_k + \frac{1}{2} p_{k^T} B_k p_k$ evaluate ρ_k , the ratio of actual reduction over predicted reduction

```
if \rho_k is too small consider a smaller radius \Delta else if \rho_k is large enough and taking full step is allowed consider to increase the radius \Delta else consider current radius \Delta
```

if ρ_k is larger then a threshold accept this model and take this move else try again with a new model (smaller radius)

LimCK }

increase k by 1

Trust Region Algorithm

Initialization: k = 0 and $\widetilde{\Delta} =$ upper bound of the radius of the trust region for k = 0, 1, 2, 3, ...

```
p_k = solution_of_trust_region_sub-problem()
```

$$\rho_k = (f(x_k) - f(x_k + p_k)) / (m_k(0) - m_k(p_k))$$

if
$$\rho_k < \eta_1$$

$$\Delta_{k+1} = t_1 \Delta_k$$

else if $\rho_k > \eta_2$ and $||p_k|| = \Delta_k$

$$\Delta_{k+1} = \min(t_2 \Delta_k, \widetilde{\Delta})$$

else

$$\Delta_{k+1} = \Delta_k$$

if
$$\rho_k > \eta_3$$

$$X_{k+1} = X_k + p_k$$

else

$$X_{k+1} = X_k$$

Typical values

$$\eta_1 = 0.25$$

$$\eta_2 = 0.75$$

$$0 \le \eta_3 \le \eta_1$$

$$t_1 = 0.25$$

$$t_2 = 2$$

Cauchy Point

- Cauchy point strategy to solve the trust region subproblem.
- Like line search method, optimal solution p^* is not required, but we just look for approximate solution p_k that lies within the trust region and gives a sufficient reduction
- The sufficient reduction can be quantified in terms of the Cauchy point, which we denote by:

 p_k^c

LimCK 16 / 21

Cauchy Point Calculation

• Consider the linear model of eq (2):

$$l(p) = f_k + \nabla f_k^T p = f_k + g_k^T p \tag{5}$$

• The gradient of this linear model is g_k . A set of points along this direction:

$$p_k^{\rm s} = -\frac{\Delta_k}{\|g_k\|} g_k \tag{6}$$

 Cauchy point is a specific point along this direction given by Cauchy step:

$$p_k^{\text{C}} = -\tau_k \frac{\Delta_k}{\|g_k\|} g_k$$

$$\tau_k = \begin{cases} 1 & \text{if } g_k^T B_k g_k \leq 0; \\ \min(\|g_k\|^3/(\Delta_k g_k^T B_k g_k), 1) & \text{otherwise.} \end{cases}$$

$$(7)$$

Compute this Cauchy step is inexpensive – limited matrix ops

17 / 21

Cauchy Point Calculation

LimCK 18 / 21

Improving on the Cauchy Point

- Cauchy Point provides sufficient reduction with low cost
- However, performance can be poor in some cases.
- Improvement strategy: include the information provided by B_k .
- Example:
 - Dogleg method
 - Conjugated Gradient Steihaug's Method

LimCK 19 / 21

Any Question?

LimCK 26 / 21

Exercise (Q1)

- For trust region algorithm, the typical value for η_1 is 0.25 and $0 \le \eta_3 \le \eta_1$. What is the effect if :
 - we set η_1 to a smaller value, say 0.1?
 - We set $\eta_3 > \eta_1$?

LimCK