EPIGENETIC MECHANISMS OF NICKEL CARCINOGENESIS

Max Costa NYU School of Medicine

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington			
. REPORT DATE NOV 2010		2. REPORT TYPE		3. DATES COVERED 00-00-2010 to 00-00-2010				
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER			
Epigenetic Mechan	5b. GRANT NUMBER							
					5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER				
					5e. TASK NUMBER			
				5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AD dicine ,550 First Av	` '	16	8. PERFORMING REPORT NUMB	G ORGANIZATION ER			
9. SPONSORING/MONITO	RING AGENCY NAME(S) A		10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited						
13. SUPPLEMENTARY NO Presented at the Do Radiobiology Reser	epleted Uranium Sy	mposium, held Nove	ember 4, 2010, at	the Armed F	Forces			
14. ABSTRACT								
15. SUBJECT TERMS								
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 63	RESPONSIBLE PERSON			

Report Documentation Page

Form Approved OMB No. 0704-0188

Nickel Compounds

- Occupational exposures in Nickel refining industry and environmental exposures from oil and coal burning power plants.
- Although Ni ions are required for certain enzymes in bacteria and plants (Ureases, Dehydrogenases), No known function in mammals.
- Certain particulate Ni compounds (Ni3S2) that deliver Ni ions into cells, are potently carcinogenic (nasal, lung cancers etc at site of exposure). Not Mutagenic but can induce many diverse types of cancers at the site of exposure and in many different species.
- Ni ions do not induce or bind to Mt or Ferritin, there is little protection in Human cells for these metal ions. However Ni ions are not very toxic to cells which may allow cancer cells to arise with epigenetic and genetic alterations

Potential Intracellular Concentration of a Phagocytized Crystalline NiS Particle^a

Mean particle diameter used in calculation (μm) cellular concentration (M)

1.45

4.00

4.75

banalyzer and log range expander.

Cell volume, 393.5, μm³; density of NiS, 5.5g/cm³; particles assumed spherical.

^aCell volume was determined in CHO cells with a Coulter counter-particle size analyzer and log range expander.

Effect of 24 hr exposure of A549 Cells to NiCl₂ On Cell Colony Formation

Periodic Table

1.2 0 2+ um	3 IIIB	4 IVB	vB	6 VIB	7 VIIB		-VII/-	10	11 IB	12 IIB	20 1.5 A
20 3 2+	Sc 21 44 955910 13 3+ Scandium	Ti 22 47.88 1.5 4+ Titanium	V 23 50.9415 1.6 5+ Vanadium	Cr 24 51.9961 16 3+ Chromium		Fe 26 55.847 1.8 3+ Iron	58.9332 1.8 2+	Ni 28 58.6934 1.8 2+ Nickel	Cu 29 63.546 1.9 2+ Copper	Zn 30 65.39 1.6 2+ Zinc	
8 2+	Y 39 88 90585 13 3+ Yttrium	Zr 40 91.224 1.4 4+ Zirconium	Nb 41 92.90638 1.6 5+ Niobium	Mo 42 95.94 1.8 6+ Molybdenum	98.9063 1.9 7+	Ru 44 101.57 22 3+,4+ Ruthenium	Rh 45 102.9055 2.2 3+ Rhodium	Pd 46 106.42 22 2+ Palladium	Ag 47 107.8682 1.9 1+ Silver	Cd 48 112.411 1.7 2+ Cadmium	
7 2+	La 57 138,9055 1.1 3+ Lanthanum	Hf 72 178.49 13 4+ Hafnium	Ta 73 180.9479 15 5+ Tantalum	W 74 183.85 1.7 6+ Tungsten	186,207 1.9 7+		17 77 192.22 2.2 4+ Iridium	Pt 78 195.08 2.2 4+ Platinum	Au 79 196.96654 2.4 3+ Gold	Hg 80 200.59 1.9 2+ Mercury	2 1.8
3 8 54 2+ 11	Ac 89 227.0278 1.1 3+ Actinium	Rf 104 261.11 - Rutherfordium	262.11 	Sg 106 263.12 - Seaborgium	En	264	Mt 109 266.1378 - Meitnerium		Uuu 111 272 - Unununium	Uu 112 277 Ununbium	

Examples of Oxoglutarate Superfamily of Dioxygenases Enzymes in Humans (more than 100 across evol. phyla)

Prolyl Hydroxylases (collagen, HIF-dependent)

Asparigine Hydroxylases (FIH)

Alk b DNA repair enzymes (1-meA, 3-meC, ABH2 and ABH3)

FTO (3-meT, 3meC, overexpression weight gain, Type 2 Diabetes)

Histone Lysine Demethylases

(only use of Ascorbic Acid in our bodies)

Structure of Nucleosome

Blue: H3; green: H4; yellow: H2A; red: H2B

Atomic Force Microscopy View of Chicken Erythrocyte Single Nucleosomes

end on view

face view

JMJD1A (Histone 3 Lysine 9 Di and Mono Demethylase JHDM2A)

Human histone demethylases (HDMs)

name	substrate
PADI4	R on H3, H4 (No Fe)
LSD1	H3K4 (No Fe)
JHDM1	H3K9, H3K36 (di-), Fe dep
JHDM2A /JMJD1A	H3K9 (mono-, di-)
JHDM3A /JMJD2A	H3K9 (tri-), H3K36 (tri-)
GASC1/JMJD2C	H3K9 (di-, tri-)
JARID-1 family (4 members Jmjc dom)	H3K4 (Tri)

In vitro H3K9 Demethylation by Flag-JHDM2A recombinant protein

Dose-dependent inactivation of JHDM2A by Ni ions (Ni ions added last)

Inactivation of JHDM2A by Ni ions

Dose-dependent inactivation of ABH2 by Ni ions

Oligo 3-meC: 5'-³²PAAA GCA ^{3-me}CCG GTC GAA AAA GCG AAA-3'
30 min 1 μg ABH2 demethylation →Annealing → 1 h HpaII cutting

Data Quantification

Log (µM Ni²⁺)

Kd for Ni and Fe binding to ABH2 (DNA Demethyl)

Fe=4.5uM Ni=1.7uM

Giri and Maroney, Dept Chem, Univ of Mass

XAS analysis of nickel binding to ABH2. A). K-Edge XANES spectra for Fe-ABH2 (red), Ni-ABH2 (blue) and Ni-ABH2 + 2-oxoglutarate (green). Inserts: Expansions of the preedge XANES region showing peaks associated with 1s [] 3d electronic transitions. B). Unfiltered, k3-weighted EXAFS spectra (colored lines, red = Fe-ABH2, blue = Ni-ABH2 and green = Ni-ABH2 + 2-oxoglutarate) and best fits from Table 1 (black lines). Left: k-space spectra and fits. Right: FT-data and fits.

Ni ion binding to ABH2 In Intact Cells

Figure 1

SPRY2 and JHMD2A

- JHMD2A binds and activates SPRY2 transcription.
- SPRY2 is epigenetically silenced with H3K9 dimethylation marks in it's promoter in Nickel treated and transformed BEAS2B cells.
- SPRY2 inhibits growth factor signaling in cells and is a tumor suppressor.

Heat Maps of Genes Changed in Nickel-transformed Cells

Figure 12. Affymetrix gene expression array heat maps from non-tumorigenic normal BEAS2B cell clones and NiCl2 transformed BEAS-2B cells. BEAS2B cells were exposed to NiCl2 at 100uM concentration for 4 weeks and then either unexposed exposed OF BEAS2B were plated to proliferate in soft agar. Shown in the figure are Affymetrix arrays from spontaneously derived small agar colonies from untreated cells (first 6 lanes) or large agar colonies nickel-treated from cells. Colonies were picked from the agar and Affymetrix expression gene determined directly from these agar colonies. The left panel compares the most unregulated genes while the right panels compares the most down regulated genes based upon the nickel transformed clones.

No tumors

tumors in nude mice

Control Red=H3K9me2 Green=H3K4me3

1 mM Ni

Chip-on-chip and Chip-Seq

Chip-Seq sequence 36 BP DNA

Correlation of increases of H3K9me2 in gene promoter and Gene expression

strand	annotation	Symbol	Chromosome	Start	End	expression
					17 3333	
-	IL12B	NM_002187	5	158694368	158694540	↓ 8.4
-	C10orf86	NM_01761	10	123730785	123730944	↓ 3.3
+	CD3EAP	NM_01209	5	96056126	96056327	↓ 3.5
+	CCT7	NM_01590	7	100312376	100312519	↓ 3.0

Correlation of increases of H3K4me3 in gene promoter and Gene expression

strand	annotation	Symbol	Chromosome	Start	End	Gene expres sion
-}-	NDRG1	NM_006096	8	134,376,200	134,377,500	↑ 21.2
+	CA9	NM_001216	9	35663914	35671151	↑ 6.5
+	STC2	NM_003714	5	172,685,450	172,685,600	↑ 3.5
+	EGLN3	NM_022073	14	33463173	33490036	↑ 3.3

Chip-Seq H3K4 trime NDRG1/Cap43

Chip-Seq H3K4 trimeth CA-9

RNA-Seq +/- Nickel A549 Cells CA-9

RNA-Seq +/- Nickel A549 Cells NDRG1/Cap43

RNA-Seq +/- Nickel A549 Cells ANGPTL4

1.1mM Mg+2

No Cation

CD spectral difference of dodecanucleosome (12-mer) samples in 0 or 0.58 mM divalent cation. The left panel shows Mg^{2+} -treated and the right panel shows Ni^{2+} -treated oligonucleosomes. In each case the top curve is the untreated oligonucleosomes and the lower curve is divalent cation-treated oligonucleosomes.

Figure 4. Analysis of chromatin proteins associated with Ni-silenced *gpt* gene using the chromosome immunoprecipitation assay. The ChIP assay was performed with antiacetylated H4 (A), anti-acetylated H3 (B), anti-acetylated H3K9 (C), anti-dimethyl-H3K9 (D), and anti-MeCP2 (E). Input DNA fractions were amplified by PCR to adjust for chromatin loading (F). A representative gel is shown but similar results were observed in three replicate experiments. G12 indicates the wild-type clone with *gpt* expression while the N24, N37, N96, and N97 are nickel induced *gpt*-silenced clones.

GPT Dnase1 Protection Assay

* 0.125 units Dnase1

** 0.06 units Dnase1

•DNasel 20min 37C buffer with 200uM CaCl2

Figure 10. Effect of nickel chloride on the condensation of chromatin in BEAS-2B Cells and A549 cells.

Figure 11. Chromosomal location of the HIF-1 alpha and TiMM8A gene.

Model for Transcriptional Inactivation by Ni²⁺

Carcinogenesis vol.29 no.9 pp.1831–1836, 2008 doi:10.1093/carcin/bgn063 Advance Access publication March 4, 2008

Arsenite alters global histone H3 methylation

Xue Zhou[†], Hong Sun[†], Thomas P.Ellen, Haobin Chen and Max Costa*

Modulation of histone methylation and MLH1 gene silencing by hexavalent chromiun Toxicology and Applied Pharmacology 237 (2009) 258-266

Hong Sun ¹, Xue Zhou ¹, Haobin Chen, Oin Li, Max Costa *

Effects of nickel, chromate, and arsenite on histone 3 lysine methylation

Xue Zhou, Qin Li, Adriana Arita, Hong Sun, Max Costa *

Toxicology and Applied Pharmacology 236 (2009) 78-84

H3K9me2 All runs Av. with Std.

H3K9acetyl Av. of all runs

p*= 0.6056

p**= 0.0002

 $p^* = t \text{ test } (Z \text{ vs J2}) p^* = t \text{ test } (Z \text{ vs J1})$

SUMMARY

- Nickel ions inhibit the dioxygenase histone demethylases leading to increased H3K4 trime and H3K9 dime which increases or decreases the expression of specific genes, respectively
- Nickel ions bind and displace the Fe in the His-His Glu facial triad at the active site of dioxygenases such as ABH2
- •Mapped genomic positions of H3K4 tri and H3K9 di changes induced by Ni using Chip-on-chip and Chip-Seq technology (correlates with gene expression changes)
- •SPRY2 which inhibits ERK signaling is a direct target of histone demethylase JMJD2A
- SPRY2 is epigenetically suppressed in Nickel induced transformed BEAS2B cells (By chronic inhibition of JMJD2A?) and overexpression of SPRY2 reversed the transformed phenotype
- •Gene expression changes are very metal specific in Normal Human Bronchial Epithelial cells transformed by Nickel and Chromate
- •Nickel induces condensation of chromatin and silencing of genes near or in heterochromatin

Acknowledgements

- Haobin Chen
- Thomas Kluz
- Thomas Ellen
- Hong Sun
- Adriana Arita
- Mike Marone
- Nitai Giri

Kathrin Kiok

Yana Chervona

NYU
Sterling Forest

NYU Cancer Center Manhattan

