Лекция 3, 07.10.11

Предложение 1. Любые две максимальные подгруппы внутри одного \mathscr{D} -класса изоморфны.

Доказательство. Пусть H_1 и H_2 — две такие подгруппы. По следствию из теоремы Миллера-Клиффорда существуют идемпотенты e и f такие, что $H_1 = H_e$ и $H_2 = H_f$. Поскольку все происходит внутри одного \mathscr{D} -класса, имеем $e \mathscr{D} f$. Таким образом, $e \mathscr{R} a \mathscr{L} f$ для некоторого $a \in S$. Из того, что $a \mathscr{L} f$, получаем, что существует элемент $a' \in S^1$, для которого f = a'a.

На H_e рассмотрим отображение, определенное правилом $x\mapsto a'xa$. Из леммы Грина и утверждения, двойственного к ней, следует, что это отображение есть биекция H_e на H_f . Осталось проверить, что это отображение является гомоморфизмом.

Заметим, что aa'a=af=a. Отсюда (aa')(aa')=(aa'a)a'=aa', т. е. aa' — идемпотент из R_a .

Для произвольных $x, y \in H_e$, поскольку (aa')y = y, получаем

$$(a'xa)(a'ya) = a'x(aa'y)a = a'xya,$$

что и показывает, что отображение $x \mapsto a'xa$ есть гомоморфизм. \square

Элемент $a \in S$ называется peryлярным, если существует такой $x \in S$, что axa = a. Класс отношения Грина называется peryлярным, если все его элементы регулярны.

Предложение 2. Пусть D – некоторый \mathscr{D} -класс. Следующие условия эквивалентны:

- (1) D регулярный \mathscr{D} -класс;
- (2) в D есть регулярный элемент;
- (3) каждый \mathcal{R} -класс внутри D содержит идемпотент;
- (4) каждый \mathcal{L} -класс внутри D содержит идемпотент;
- (5) в D есть идемпотент;
- (6) существуют такие $x, y \in D$, что $xy \in D$.

Доказательство. Эквивалентность условий (1)–(5) вытекает из следующей леммы и двойственного ей утверждения:

Лемма 1. \mathscr{R} -класс регулярен тогда и только тогда, когда он содержит идемпотент.

Доказательство. Пусть $a \mathcal{R} e$, где e — идемпотент. Тогда существует такой элемент $u \in S^1$, что e = au. Имеем следующую цепочку равенств: $a = ea = e^2a = (au)ea = a(ue)a$. Поскольку $ue \in S$, видим, что элемент a регулярен.

Обратно, если axa = a для некоторого $x \in S$, то ax — идемпотент, лежащий в R_a .

Очевидно, что $(5) \Rightarrow (6)$, а импликация $(6) \Rightarrow (5)$ следует из теоремы Миллера-Клиффорда.

 \mathscr{D} -строение моноида преобразований. Пусть X – множество. Через T_X обозначим моноид всех преобразований множества X. Для $\alpha \in T_X$ через $\operatorname{Im} \alpha$ обозначается *образ* α , т. е. множество

$$\{y \in X \mid (\exists x \in X) \ y = x\alpha\},\$$

а через $\ker \alpha$ обозначается $s\partial po$ α , т. е. разбиение множества X, при котором элементы $x,y\in X$ принадлежат одному классу тогда и только тогда, когда $x\alpha=y\alpha$. Заметим, что мощность множества классов разбиения $\ker \alpha$ (обозначаемая $|\ker \alpha|$) равно мощности $|\operatorname{Im} \alpha|$ множества $\operatorname{Im} \alpha$.

Предложение 3. Для любых $\alpha, \beta \in T_X$ имеем:

- (1) $\alpha \leq_{\mathscr{L}} \beta \iff \operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$;
- (2) $\alpha \leq_{\mathscr{R}} \beta \iff \operatorname{Ker} \alpha \supset \operatorname{Ker} \beta$;
- (3) $\alpha \leq \mathcal{J} \beta \iff |\operatorname{Im} \alpha| \leq |\operatorname{Im} \beta|$.

Доказательство. (1) Если $\alpha \leq_{\mathscr{L}} \beta$, то существует такое преобразование $\gamma \in T_X$, что $\alpha = \gamma \beta$. Тогда $\operatorname{Im} \alpha = \operatorname{Im} \gamma \beta = (\operatorname{Im} \gamma)\beta \subseteq \operatorname{Im} \beta$.

Обратно, если $\operatorname{Im} \alpha \subseteq \operatorname{Im} \beta$, то для каждого $x \in X$ существует такой $y \in X$, что $x\alpha = y\beta$. Рассмотрим отображение γ , сопоставляющее каждому x один из таких y. Тогда $\alpha = \gamma\beta$.

(2) Если $\alpha \leq_{\mathscr{R}} \beta$, то существует такое преобразование $\gamma \in T_X$, что $\alpha = \beta \gamma$.

Пусть $(x,y)\in {\rm Ker}\,\beta,$ т. е. $x\beta=y\beta.$ Тогда $x\alpha=x\beta\gamma=y\beta\gamma=y\alpha.$ Это значит, что $(x,y)\in {\rm Ker}\,\alpha.$

Обратно, если $\operatorname{Ker} \alpha \supseteq \operatorname{Ker} \beta$, то соответствие $\gamma = \beta^{-1}\alpha$ является однозначным отображением и потому принадлежит T_X . Ясно, что $\alpha = \beta \gamma$.

(3) Если $\alpha \leq_{\mathscr{J}} \beta$, то существуют такие преобразования $\gamma, \delta \in T_X$, что $\alpha = \gamma \beta \delta$. Отсюда немедленно получаем, что $|\operatorname{Im} \alpha| \leq |\operatorname{Im} \beta|$.

Обратно, рассмотрим отображение $\varepsilon: X \to X$, которое каждому классу $\operatorname{Ker} \alpha$ сопоставляет элемент из $\operatorname{Im} \beta$ так, что разным классам соответствуют разные элементы. Поскольку $|\operatorname{Ker} \alpha| = |\operatorname{Im} \alpha| \leq |\operatorname{Im} \beta|$, то организовать такое отображение возможно.

Так как $\operatorname{Ker} \varepsilon = \operatorname{Ker} \alpha$, по пункту (2) имеем $\varepsilon \mathscr{R} \alpha$. Далее, $\operatorname{Im} \varepsilon \subseteq \operatorname{Im} \beta$, поэтому по пункту (1) имеем $\varepsilon \leq_{\mathscr{L}} \beta$. Отсюда $\alpha \leq_{\mathscr{D}} \beta$ и потому $\alpha \leq_{\mathscr{J}} \beta$. \square

Отметим, что из доказательства пункта (3) вытекает, что в моноиде T_X отношения $\mathscr D$ и $\mathscr J$ совпадают.

Следствие 1. Для любых $\alpha, \beta \in T_X$ имеем:

- (1) $\alpha \mathcal{L} \beta \iff \operatorname{Im} \alpha = \operatorname{Im} \beta$;
- (2) $\alpha \mathcal{R} \beta \iff \operatorname{Ker} \alpha = \operatorname{Ker} \beta$;
- (3) $\alpha \mathscr{J} \beta \iff \alpha \mathscr{D} \beta \iff |\operatorname{Im} \alpha| = |\operatorname{Im} \beta|.$

В качестве примера рассмотрим \mathscr{D} -строение моноида всех преобразований 3-элементного множества $\{1,2,3\}$. Согласно доказанному, у него ровно три \mathscr{D} -класса: класс D_3 всех преобразований с 3-элементным образом, класс D_2 всех преобразований с 2-элементным образом и класс D_1 всех преобразований с 1-элементным образом. Ясно, что преобразование 3-элементного множества, образ которого 3-элементен, есть не что иное как перестановка этого множества. Таким образом, класс D_3 состоит из 6 перестановок исходного множества. Класс D_1 состоит из трех константных преобразований. Интереснее всего устроен класс D_2 . Его egg-box картинка показана ниже.

	$\{1,2\}$	$\{2, 3\}$	$\{1, 3\}$
$1 \mid 23$	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \end{pmatrix}$ *	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 1 \end{pmatrix} *$	$\left(\begin{smallmatrix}1&2&3\\2&3&3\end{smallmatrix}\right), \left(\begin{smallmatrix}1&2&3\\3&2&2\end{smallmatrix}\right)$
2 13	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \end{pmatrix}$ *	$\left(\begin{smallmatrix}1&2&3\\1&3&1\end{smallmatrix}\right),\left(\begin{smallmatrix}1&2&3\\3&1&3\end{smallmatrix}\right)$	$\left(\begin{smallmatrix}1&2&3\\2&3&2\end{smallmatrix}\right), \left(\begin{smallmatrix}1&2&3\\3&2&3\end{smallmatrix}\right)^*$
3 12	$\left(\begin{smallmatrix}1&2&3\\1&1&2\end{smallmatrix}\right), \left(\begin{smallmatrix}1&2&3\\2&2&1\end{smallmatrix}\right)$	(123), (123)*	$\left[\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 3 & 2 \end{pmatrix} * \right]$

Таблица 1: \mathscr{D} -класс моноида всех преобразований 3-элементного множества, состоящий из всех преобразований с 2-элементным образом. Над каждым \mathscr{L} -классом показано параметризующее его 2-элементное подмножество, а левее каждого \mathscr{R} -класса — параметризующее его разбиение. Звездочкой отмечены \mathscr{H} -классы, содержащие идемпотент.