

Amendments to the Claims:

1. (Original) A method for demodulating data from a channel, comprising:
receiving *a priori* probability values for symbols transmitted across the channel;
in accordance with the *a priori* probability values, determining a set of Monte Carlo
samples of the symbols weighted with respect to a probability distribution of the symbols; and
estimating *a posteriori* probability values for the symbols based on the set of Monte
Carlo samples.

2. (Original) The method of claim 1, wherein:
the *a priori* probability values are represented by $P(s_k=a_i)$, where the symbols in a symbol
interval are represented by s_k , and k is an index identifying a transmit antenna; and
 a_i is an i th value in an alphabet set from which the symbols take their values.

3. (Original) The method of claim 1, wherein:
the Monte Carlo samples comprise stochastic Monte Carlo samples.

4. (Original) The method of claim 1, wherein:
the probability distribution of the symbols is represented by $p(s | z)$, where s is a vector of
transmitted signal values for different transmit antennas in a symbol interval, and z is a vector of
received signals from the different transmit antennas after nulling.

5. (Original) The method of claim 1, wherein determining the set of Monte
Carlo samples of the symbols in a symbol interval, represented by $\{(s_k^{(j)}, w_k^{(j)})\}$, comprises:
determining a trial sampling density for each i th value, a_i , in an alphabet set A from
which the symbols take their values, using the *a priori* probability value $P(s_k=a_i)$ from a previous
iteration, where the symbols are represented by s_k , and k is an index identifying a transmit
antenna;

drawing the j th sample symbol $s_k^{(j)}$, from the alphabet set A , where $j=1,2,\dots,m$, and m is a
number of the Monte Carlo samples determined for the symbol interval; and

computing an importance weight $w_k^{(j)}$ for $s_k^{(j)}$.

6. (Original) The method of claim 5, further comprising:
performing resampling to obtain updated importance weights $w_k^{(j)}$.

7. (Original) The method of claim 5, further comprising:
initializing the importance weights $w_{-1}(j)=1$.

8. (Original) The method of claim 1, wherein:
 m is a number of the Monte Carlo samples determined for a symbol interval;
the Monte Carlo samples are represented by $\{(s_k^{(j)}, w_k^{(j)})\}$,
each *a posteriori* probability value $P(s_k=a_i | z)$ is obtained from

$$P(s_k=a_i | z) = \frac{1}{W_k} \sum_{j=1}^m \mathbf{1}(s_k^{(j)} = a_i) w_k^{(j)}, a_i \in A \text{ where}$$

z is a vector of received signals from different transmit antennas after nulling;
the symbols are represented by s_k , where k is an index identifying a transmit antenna;
importance weights for the symbols s_k are represented by w_k ;
 A is an alphabet set from which the symbols take their values, and a_i is an i th value in A ;

$$W_k \triangleq \sum_{j=1}^m w_k^{(j)}; \text{ and}$$

$$\mathbf{1}(x = a) = \begin{cases} 1, & \text{if } x = a, \\ 0, & \text{if } x \neq a. \end{cases}$$

1 is an indicator function defined by

9. (Original) The method of claim 1, further comprising:
based on the *a posteriori* probability values, calculating *a posteriori* log-likelihood ratios
of interleaved code bits.

10. (Original) The method of claim 1, wherein:
the Monte Carlo samples comprise deterministic Monte Carlo samples.

11. (Original) The method of claim 1, wherein determining the set of Monte Carlo samples of the symbols in a symbol interval, represented by $\{(s_k^{(j)}, w_k^{(j)})\}$, comprises:

calculating an exact expression for the probability distribution by enumerating m samples for less than all transmit antennas to obtain m data sequences, where m is a number of the Monte Carlo samples determined for the symbol interval;

computing the importance weight $w_k^{(j)}$ for each symbol $s_k^{(j)}$, where k is an index identifying a transmit antenna; and

selecting and preserving m distinct data sequences with the highest weights.

12. (Original) The method of claim 1, wherein:

the channel comprises a multiple-input multiple-output (MIMO) channel.

13. (Original) A program storage device tangibly embodying a program of instructions executable by a machine to perform a method for demodulating data from a channel, the method comprising:

receiving *a priori* probability values for symbols transmitted across the channel;

in accordance with the *a priori* probability values, determining a set of Monte Carlo samples of the symbols weighted with respect to a probability distribution of the symbols; and

estimating *a posteriori* probability values for the symbols based on the set of Monte Carlo samples.

14. (Original) A demodulator for demodulating data from a channel, comprising:

means for receiving *a priori* probability values for symbols transmitted across the channel;

means for determining, in accordance with the *a priori* probability values, a set of Monte Carlo samples of the symbols weighted with respect to a probability distribution of the symbols; and

means for estimating *a posteriori* probability values for the symbols based on the set of Monte Carlo samples.

15. (Original) The demodulator of claim 14, wherein:

the Monte Carlo samples comprise stochastic Monte Carlo samples.

16. (Original) The demodulator of claim 14, wherein:

the Monte Carlo samples comprise deterministic Monte Carlo samples.

17. (Original) The demodulator of claim 14, wherein:

the channel comprises a multiple-input multiple-output (MIMO) channel.

18. (Original) A receiver for receiving data from a channel, comprising:

a soft outer channel decoder;

a soft inner demodulator; and

a symbol probability computer; wherein:

the symbol probability computer calculates *a priori* symbol probability values based on bit data received from the soft outer channel decoder; and

the soft inner demodulator, in accordance with the *a priori* probability values, determines a set of Monte Carlo samples of the symbols weighted with respect to a probability distribution of the symbols, and estimates *a posteriori* probability values for the symbols based on the set of Monte Carlo samples.

19. (Original) The receiver of claim 18, further comprising:

a bit log likelihood ratio computer that is responsive to the *a posteriori* probability values for determining *a posteriori* log-likelihood ratios (LLRs) of the bit data.

20. (Original) The receiver of claim 18, wherein:

the channel from which the data is received is a multiple-input multiple-output (MIMO) channel.

21. (New) A method for demodulating data from a channel, the channel comprising a multiple-input multiple-output (MIMO) channel, the method comprising:

(a) receiving *a priori* probability values for symbols transmitted across the channel;

(b) in accordance with the *a priori* probability values, determining a set of deterministic Monte Carlo samples of the symbols in a symbol interval, represented by $\{(s_k^{(j)}, w_k^{(j)})\}$, weighted with respect to a probability distribution of the symbols, by:

(b)(1) calculating an exact expression for the probability distribution by enumerating m samples for less than all transmit antennas to obtain m data sequences, where m is a number of the deterministic Monte Carlo samples determined for the symbol interval;

(b)(2) computing the importance weight $w_k^{(j)}$ for each symbol $s_k^{(j)}$, where k is an index identifying a transmit antenna; and

(b)(3) selecting and preserving m distinct data sequences with the highest weights; and

(c) estimating *a posteriori* probability values for the symbols based on the set of deterministic Monte Carlo samples; wherein:

(d) the probability distribution of the symbols is represented by $p(s | z)$, where s is a vector of transmitted signal values for different transmit antennas in a symbol interval, and z is a vector of received signals from the different transmit antennas after nulling.

22. (New) A method for demodulating data from a channel, the channel comprising a multiple-input multiple-output (MIMO) channel, the method comprising:

(a) receiving *a priori* probability values for symbols transmitted across the channel;

(b) in accordance with the *a priori* probability values, determining a set of deterministic Monte Carlo samples of the symbols in a symbol interval, represented by $\{(s_k^{(j)}, w_k^{(j)})\}$, weighted with respect to a probability distribution of the symbols, by:

(b)(1) calculating an exact expression for the probability distribution by enumerating m samples for less than all transmit antennas to obtain m data sequences, where m is a number of the deterministic Monte Carlo samples determined for the symbol interval;

(b)(2) computing the importance weight $w_k^{(j)}$ for each symbol $s_k^{(j)}$, where k is an index identifying a transmit antenna; and

(b)(3) selecting and preserving m distinct data sequences with the highest weights;

(c) estimating *a posteriori* probability values for the symbols based on the set of deterministic Monte Carlo samples; wherein:

(d) wherein the probability distribution of the symbols is represented by $p(s | z)$, where s is a vector of transmitted signal values for different transmit antennas in a symbol interval, and z is a vector of received signals from the different transmit antennas after nulling;

(e) wherein m is a number of the deterministic Monte Carlo samples determined for a symbol interval;

each *a posteriori* probability value $P(s_k=a_i | z)$ is obtained from

$$P(s_k=a_i | z) = \frac{1}{W_k} \sum_{j=1}^m \mathbf{1}(S_k^{(j)} = a_i) w_k^{(j)}, a_i \in A \text{ where}$$

z is a vector of received signals from different transmit antennas after nulling;

A is an alphabet set from which the symbols take their values, and a_i is an i th value in A ;

$$W_k \triangleq \sum_{j=1}^m w_k^{(j)}; \text{ and}$$

$$\mathbf{1}(x = a) = \begin{cases} 1, & \text{if } x = a, \\ 0, & \text{if } x \neq a. \end{cases}$$

$\mathbf{1}$ is an indicator function defined by

and

(f) calculating, based on the *a posteriori* probability values, *a posteriori* log-likelihood ratios of interleaved code bits.