

ZIMBABWE

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

PHYSICS SYLLABUS

FORMS 5 - 6

2015 - 2022

Curriculum Development and Technical Services
P. O. Box MP 133
Mount Pleasant
Harare

© All Rrights Reserved 2015

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the production of this syllabus:

- Panelists for 'A' levelPhysics syllabus.
- ZIMSEC.
- Government departments.
- · Ministry of Higher and Tertiary Education, Science and Technology Development.
- · United Nations Cchildren's Fund UNICEF.
- United Nations Educational, Scientific and Cultural Organization UNESCO.

CONTENTS

ACKNOWLEDGEMEN 15	. I
CONTENTS	ii
1.0 PREAMBLE	1
2.0 PRESENTATION OF THE SYLLABUS	1
3.0 AIMS	1
4.0 SYLLABUS OBJECTIVES	2
5.0 METHODOLOGY	2
6.0 TOPICS	2
7.0 SCOPE AND SEQUENCE	3
8.0 COMPETENCE MATRIX	5
FORM 5	5
FORM 6	23
9.0 ASSESSMENT	40
10. 0 APPENDIX	42

1.0 PREAMBLE

1.1 INTRODUCTION

This syllabus is designed to put greater emphasis on the mastery and application of Physics. This two- year learning phase will make learners identify, investigate and solve problems in a sustainable manner and prepare them for further studies in Science and Technology. This learning phase will see learners being assessed through continuous assessment and national examinations. The 'A' level Physics syllabus is designed to inclusively cater for all categories of learners.

1.2 RATIONALE

Modern day economies, Zimbabwe included, are driven by Technology and Physics concepts form part of thebasis. The study of Physics enables learners to be creative and innovative in industry and society that can promote the application of

Physics in industrial processes for value addition. The learning of Physics concepts promotes value addition and beneficiation of natural resources and the harnessing of available opportunities for enterprise skills.

1.3 SUMMARY OF CONTENT

The 'A' level PhysicsSyllabus will cover theory and practical activities in the following areas:

Newtonian	Mechanics

Electrodynamics

□ Oscillations and Waves

□ Physics of Matter

□ Modern Physics

1.4 ASSUMPTIONS

It is assumed that:

- The learner has successfully completed Form 3 and 4 Physics Syllabus or any other equivalent syllabus.
- The learner has successfully completed Form 3 and 4 Mathematics syllabus.
- Science clubs are existing and operational in schools.
- Learners are conversant and have access to ICT.
- Well-equipped laboratories are available and safety measures are adhered to.

1.5 CROSS-CUTTING ISSUES

Environmental issues: climate change and
disaster risk management
Indigenous knowledge systems
Financial literacy
Enterprise Education
Gender
H I V and Life skills
Child Protection.
Team work
Food security

2.0 PRESENTATION OF THE SYLLABUS

The Advanced Level Physics syllabus is a single document covering Forms 5 and 6. It contains the Preamble, Aims, Syllabus Objectives, Methodology, Topics, Scope and Sequence, CompetencyMatrix, Assessment, and Appendices.

3.0 AIMS

The aims are to enable learners to:

□ Safety health issues

- 3.1 acquire sufficient understanding and knowledge to become confident citizens in a technological world and be able to take or develop an informed interest in matters of scientific importance
- 3.1.1 recognise the usefulness, and limitations, of scientific method and to appreciate its applicability in other disciplines and in everyday life
- 3.1.2 be suitably prepared for studies beyond A-Level.
- 3.2 develop abilities and skills that are relevant to the study and practice of Physics, are useful in everyday life, encourage efficient and safe practice as well as effective communication.
- 3.3. develop attitudes relevant to Physics such as concern for accuracy and precision, objectivity, integrity, the skills of enquiry, initiative, innovativeness and inventiveness.
- 3.4. stimulate interest in, and care for the environment in relation to the environmental impact of Physics and its applications.
- 3.5. promote an awareness, as guided by Ubuntu/Unhu/Vumunhu philosophy, that:

- the study and practice of Physics are co-operative and cumulative activities, and are subject to social, economic, technological, ethical and cultural influences and limitations.
- the implications of Physics may be both beneficial and detrimental to the individual, the community and the environment.
 - 3.6 create a sustained interest in Physics so that the study of the subject is enjoying and satisfying.

4.0 SYLLABUS OBJECTIVES

Learners should be able to:

- demonstrate knowledge about physical phenomena, facts, laws, definitions and concepts of Physics
- 2. follow instructions in practical work in order to manipulate, record observations and analyse data to confirm or establish relationships.
- 3. measure and express physical quantities to a given level of accuracy and precision.
- 4. solve real life problems using the scientific method
- 5. use ICT to simulate Physics phenomena, present and analyse Physics data
- 6. apply safety measures in all practical work.
- usePhysicsconcepts, principles and techniques in the conservation and sustainable use of the environment.

5.0 METHODOLOGY

The teaching and learning of Physics should be based on learner-centredapproach. The following methods are recommended:

- · Planned experiments
- Learning by discovery
- · Problem based learning
- Individual and group work
- Educational tours
- · Project based learning
- Design based learning
- E-learning such as simulation
- Resource person(s)

TIME ALLOCATION

A minimum of 12 periods of 35 minutes each in a week should be allocated as double periods for adequate

coverage of the syllabus. A block of 4 periods should be allocated to practicalwork.

6.0 TOPICS

- 1. General Physics
- 2. Newtonian Mechanics
- 3. Oscillations and Waves
- 4. Electricity and Magnetism
- 5. Electronics
- 6. Matter
- 7. Modern Physics

Physics Syllabus Forms 5 - 6

SCOPE AND SEQUENCE

TOPIC	FORM 5	FORM 6
1.0 General Physics	 Physical Quantities and Units Errors and uncertainties 	
2.0 Newtonian Mechanics	 Kinematics Dynamics Forces Work, Energy and Power Circular Motion Gravitational Field 	
3.0 Oscillations and Waves	OscillationsWavesSuperposition	
4.0 Electricity and Magnetism	 Electricity D.C. Circuits Electric fields Capacitance 	
		Electro magnetismElectromagnetic InductionAlternating Currents

Physics Syllabus Forms 5 - 6

TOPIC	FORM 5	FORM 6
5.0 Electronics		Analogue ElectronicsDigital electronics
6.0 Matter		 Phases of Matter Deformation of Solids Temperature Thermal Properties of Materials Ideal gases Non-viscous Fluid Flow Transfer of Thermal Energy
7.0 Modern Physics		 Charged Particles Quantum Physics Atomic Structure Radioactivity Communication

8.0 COMPETENCE MATRIX

FORM 5

1.0 GENERAL PHYSICS

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
1.1 Physical quantities and units	 express derived units as products or quotients of the base units and use the named units listed in the appendix use base units to check the homogeneity of physical equations derive physical equations using base units demonstrate understanding and use the conventions for labelling graph axes and table columns use the following prefixes and their symbols to indicate decimal submultiples or multiples of both base and derived units: pico (p), nano (n), micro (µ), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G), tera (T) 	 Physical quantities and equations Base Quantities SI units Data presentation 	Deriving units from base units Carrying out planned experiment in measurement checking of the homogeneity of physical equations Measuring and Expressing physical quantities in multiple/sub multiple units	"ASE publication SI Units, Signs, Symbols and Abbreviations" (The ASE Companion to 5-16 Science, 1995).
	 determine the resultant of two or more coplanar vectors represent a vector as two perpendicular components 	 Vectors 	 adding and subtracting two or more coplanar vectors Resolving vectors 	
1.2 Errors and uncertainties	 distinguish between systematic and random errors differentiate between precision and accuracy assess the uncertainty in a derived quantity by simple addition of actual, fractional or percentage uncertainties (a rigorous statistics treatment is not required) 	Data presentationErrorsuncertainties	Differentiating between systematic and random errors. Demonstrating precision and accuracy Combining errors	• Graphs

Physics Syllabus Forms 5 - 6

2.0 NEWTONIAN MECHANICS

SUGGESTED RESOURCES	• ICT	• ICTs • Trollies
SUGGESTED LEARNING ACTIVITIES AND NOTES	Deriving equations of motion Solving problems using equations of linear motion Analysing projectile motion problems	Explaining the use of force-time graphs
UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	• Rectilinear motion $v = u + at$ $v^2 = u^2 + 2as$ $s = ut + \frac{1}{2}at^2$ • Non-linear motion	Linear momentum
OBJECTIVES Learners should be able to:	 derive from the definitions of velocity and acceleration, equations which represent uniformly accelerated motion in a straight line. solve problems using equations which represent uniformly accelerated motion in a straight line, including the motion of bodies falling in a uniform gravitational field without air resistance describe and explain motion due to a uniform velocity in one direction and a uniform acceleration in a perpendicular direction (Projectiles) solve problems using standard equations for projectile motion identify and explain some everyday examples of rectilinear and non-linear 	 define linear momentum as the product of mass and velocity solve problems using the
TOPIC	2.1 Kinematics	2.2 Dynamics

an d	Spring balances mass Burette/ long glass tube Metal Beads
Demonstrating elastic and inelastic collisions using ICT simulations Determining area under force-time graph	 Using the vector triangle to represent forces in
Impulse Newton's laws of motion	Types of forcesEquilibrium of forces
relationship F= ma, appreciating that acceleration and force are always in the same direction • state the principle of conservation of momentum • use the principle of conservation of momentum on simple applications including elastic and inelastic collisions between two bodies in one dimension (calculations involving the use of coefficient of restitution are not required) • recognise that, for a perfectly elastic collision, the relative speed of approach is equal to the relative speed of separation • define impulse as 'change in momentum' • explain the significance of area under a force - time graph • describe applications of Newton's laws of motion and conservation of linear momentum	 describe the forces acting on a mass in motion or at rest state and explain the
	2.3 Forces

Meter rule Liquid paraffin	Masking tape/maker	Stop watch	•	•																													
equilibrium	Investigating "three force"	equilibrium using spring	balances and weights							Carrying out experiments	to measure terminal	velocity	Carrying out experiments	to determine the viscosity	of a liquid									 Determining the moment 	and torque of a couple								
		forces																															
Centre of gravity		Turning effects of forces								Terminal velocity.	•																						
origin of the upthrust	calculate the upthrust in	terms of the weight of the	displaced fluid		 describe friction as a force 	which opposes motion	(knowledge of coefficient	of friction and viscosity is	required)	use Stoke's law to explain	quantitatively how a body	falling through a viscous	fluid under laminar	conditions attains a	terminal velocity	 describe an experiment, 	based on the	measurement of terminal	velocity, to determine the	viscosity of a liquid	 describe a couple as a 	pair of forces tending to	produce rotation only	 define and use the 	moment of a force and the	torque of a couple	 outline the conditions for a 	system to be in	equilibrium	describe everyday	application of forces in	application of forces in	

Force metre Stop watch Slotted masses Light gates/ motion sensors Metre rule/ tape measure Electric motor Solar panels Solar bulbs			
• • • • • • •			
Measuring work required for various tasks Estimating kinetic energy of various objects Investigating speed of a falling object (gravitational potential		Measuring power output of an electric motor	Visiting Power stations
• • •		•	•
Energy conversion and conservation Work	 Potential energy, kinetic energy and internal energy 	• Power	
define work in terms of the product of a force and displacement in the direction of the force calculate the work done in a number of situations including the work done by a gas which is expanding against a	 constant external pressure: W = pΔV derive, from the equations of motion, the formula E_k= ½mv² recall and apply the formula E_k= ½ mv² distinguish between gravitational potential energy, electric potential energy and elastic potential energy derive, from the defining equation W = FΔs, the 	formula E _p = mgh for potential energy changes near the Earth's surface use the formula E _p =mgh for potential energy changes near the Earth's surface explain the concept of internal energy explain that there are energy losses in practical	devices and use the concept of efficiency relate power to work done and time taken using appropriate examples derive and use power as
<u>.</u>	•	• •	•
2.4 Work,energy and power			

		the product of force and					
	•	velocity describe and explain everyday examples of energy conversion (e.g. hydro, thermal, solar, wind, chemical electric power, and environmental concerns)			•	Using solar panels for heating and lighting	
2.5 Circular Motion	•	express angular displacement in radians	•	Kinematics of uniform circular motion	•	Deriving the equations of • circular motion •	Bucket String
	•	define angular velocity, centripetal force and centripetal acceleration	• •	Centripetal acceleration Centripetal force	•	Demonstrating circular motion in vertical and horizontal circles using	Periodium ICTs Bicycles
	•	understand the use of the concept of angular velocity			•	buckets with water. Visiting centres where	
	• •	derive and use $v = r\omega$			•	Riding bicycles at round	
	•	mesonibe qualitatively title motion in curved path due to a perpendicular force				about.	
	•	explain the centripetal acceleration in the case of			•	Deriving and using	
	•	Derive and use centripetal acceleration $a = v^2/r$			•	equations when solving a problem.	
	•	and $a = r\omega^2$ use centripetal force $F = mv^2/r$. $F = mr\omega^2$					
	•	describe and explain					
		ever yday examples or motion in a circle (to include banked roads.					
		geostationary orbits and their applications)					
2.6 Gravitational Field	•	show an understanding of	•	Gravitational field	•	Simulating planetary •	ICT tools
	-						

	Motion sensors.
motion using ICT tools.	Carrying out experiments using falling objects and laser beams and timers.
 Force between point masses Field of a point mass Field near the surface of the earth Gravitational potential 	
a gravitational field as a field of force define gravitational field strength as force per unit mass state and use Newton's law of gravitation in the form F = Gm ₁ m ₂ /r ² analyse circular orbits in inverse square law fields by relating the gravitational force to the centripetal acceleration it	 causes derive from Newton's law of gravitation and the definition of gravitational field strength, the equation g = Gm/r² for the gravitational field strength of a point mass use the equation g = Gm/r² for the gravitational field strength of a point mass explain that on the surface of the Earth g is approximately constant and is called the acceleration of free fall describe an experiment to determine the acceleration of free fall using a falling body define potential at a point as the work done in bringing unit mass from infinity to the point use the equation φ = - Gm/r for the potential in

Physics Syllabus Forms 5 - 6

3.0 OSCILLATIONS AND WAVES

SUGGESTED RESOURCES	Simple pendulum Loaded cantilever Barton pendulums Stop watches .
SUGGESTED LEARNING ACTIVITIES AND NOTES	 Carrying out experiments involving oscillatory sytems. Deriving a =- w²x. Solving problems using the listed equations Drawing and analysing displacement, velocity and acceleration graphs.
UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	Simple harmonic motion.
OBJECTIVES Learners should be able to:	 describe simple examples of free oscillations such as the simple pendulum, spring mass system and torsional pendulum explain the terms amplitude, period, frequency, angular frequency and phase difference express period in terms of frequency and angular frequency, f=1/T and T=2π/f express graphically the changes in displacement, velocity and acceleration for a simple oscillator recognise and use: v=v.coswt v=w.coswt v=± w (x.o.² - x²) 1/12 prove that for simple oscillations a= - w²x recall and use x = x.0 sinwt as a solution to the equation a = - w² x describe analytically and graphically the interchange between kinetic and potential (gravitational/elastic) energy in a simple
TOPIC	3.1 Oscillations

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	describe examples of damped oscillations such as car suspension systems and moving coil meters describe graphically the degrees of damping describe practical examples of forced vibrations and resonance depict graphically how the amplitude changes with frequency near the natural frequency of an oscillation system state examples where resonance is a nuisance	Damped and forced oscillations. Resonance	Using Barton pendulums to analyse resonance	
3.2 Waves	 define critical angle, c and total internal reflection derive and use the equation n = 1/sin c explain the use of total internal reflection in fibre optics transmission appreciate the advantage of fibre optics transmission understand and use the terms speed of a wave, wave length, frequency, period, amplitude and phase difference 	Reflection and refraction of light. Polarisation Electro-magnetic waves	 Simulating ICT. Deriving listed equations, visiting and using them to solve problems. Using polaroids to show polarisation 	ICT tools Polaroids Resource persons CRO Ripple tank and diffraction grating

TOPIC	Ľ O	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	\downarrow	:	(
	•	deduce the definition of			
		speed, frequency and			
		wave length			
	•	use the equation $v = f\lambda$			
	•	understand polarisation			
		as a phenomenon			
		association with			
		transverse waves only			
	•	describe the main			
		features of			
		electromagnetic			
		spectrum and			
		characteristics of			
		electromagnetic waves			
	•	describe the main	 X-ray production 	 Visiting x-ray and C.T. 	
		features of the x-ray tube	 X-ray tube intensity and 	Scan centre.	
		and the production of x-	hardness.	 Measuring wave length. 	
		rays by electron		 Solving problems using 	
		bombardment on a metal		listed formulae.	
		target (no need for		 Carrying out experiments 	
		equations)		on diffraction.	
	•	understand the use of x-	 Uses of x-rays. 		
		rays in imaging internal	 X-ray diffractometer or x- 		
		structures, including a	ray diffraction.		
		simple analysis of the	 Diffraction. 		
		causes of sharpness and	 Interference. 		
		contrast	 Two source interference 		
	•	understand the use of x-	pattern		
		rays in the treatment of	 Diffraction order 		
		malignancy and			
		identification of minerals			
	•	use equation $I = l_0e^{-ux}$ for			
		the attenuation of x-rays			
		in matter			
	•	understand the purpose			
	_	or computed tomograpmy			

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	or understand the principles of CT scanning distinguish between stationery and progressive waves determine the wave length of sound using stationary waves understand how the image of an 8 voxel cube can be developed using CT scan	• CT scanning		
3.3 Superposition	 explain the principle of super position in simple application explain and identify nodes and antinodes show an understanding of experiments which demonstrate two-source interference (Young's two-slit experiment explain the term coherence explain the conditions required if two source interference fringes are to be observed use the equation, for fringe spacing x = λ D/a demonstrate experiments on diffraction use the formula nλ = dsinθ to determine the wave 		Experimenting on super position and stationery wave formation.	Signal generator Signal generator Microphone Slinky spring Rope Meter rule

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	length of light			

Physics Syllabus Forms 5 - 6

4.0 ELECTRICITYAND MAGNETISM

TOPIC		OBJECTIVES Learners should be able to:		UNIT CONTENT (Skills. Attitudes and knowledge)		Suggested learning activities and notes		Suggested resources
4.1 Electricity	•	describe practical applications of electrostatic	•	Simple electrostatic phenomena	•	Carrying visits to places where electrostatics spray	• •	Resource person Photocopier
		phenomena in				painting, photocopying	•	ICT tools
		photocopying, paint spraying				and dust attraction are		
		and dust attraction				done.		
	•	define the charge and the	•	Electric current				
		coulomb					•	Power source
	•	define potential difference	•	Potential difference			•	Carbon resistors
		and the volt					•	Voltmeters
	•	solve problems using Q=It,	•	Resistance and resistivity			•	Ammeters
		V=W/Q P=VI, P=V ² /Rand P					•	Constantan wires
		= I ² R	•	Circuit faults			•	Multi-meter
	•	define resistance and the					•	CRO
		ohm	•	Electromotive faults		:)	
	•	recall and solve problems			•	Solving circuit problems		
		using R=pl/A	•	Power		using listed equations		
	•	define e.m.f. in terms of						
		energy transferred by a						
		source in driving unit charge						
		round a complete circuit						
	•	use appropriate equipment						
		in trouble shooting electrical						
		circuits				:		
	•	distinguish between e.m.f.			•	Taking measurement to		
		and p.d. in terms of energy				distinguish between e.m.r.		
		considerations			•	2.50 7.60.		
	•	describe the effects of			•	identiliyirig arid lixiirig		

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills. Attitudes and knowledge)	Suggested learning activities and notes	Suggested resources
	internal resistance of a source of e.m.f. on terminal optential difference and		faulty circuits. Testing basic circuit	
	output power calculate the internal	 Internal resistance 	Carrying out experiments	
	resistance of a source of e.m.f. using $V=E-Ir$		to measure internal resistance.	
	 determine practically the internal resistance (r) of a 			
	power source			

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills. Attitudes and knowledge)	Suggested learning activities and notes	Suggested resources
	strength as force per unit positive charge use E = V/d to calculate the field strength of the uniform field between charged			
	parallel plates in terms of potential difference and separation calculate the forces on charges in uniform in electric fields	 Uniform electric fields. 	Simulating an electric field	
	uniform electric field on the motion of charged particles use Coulomb's law in the form $F=Q_1 Q_2/(4\pi \ \rm cor^2)$ for the force between two point	 Force between point charges. 		
	 use E=Q/4 π ε₀r² for the field strength of a point charge in free space or air define potential at a point in terms of work done in 	 Electric field of a point charge. Electric potential. 		
	bringing a unit positive charge from infinity to the point state that the field strength of the field at a point is numerically equal to the potential gradient at that	 Potential gradient. 		
	 use the equation V= Q/4πε₀r² for the potential in the field of a point charge compare qualitative and quantitative aspect of 		 Indicating similarities between electric and gravitational fields. 	

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills. Attitudes and knowledge)	Suggested learning activities and notes	Suggested resources
	electric and gravitational fields			
4.4 Capacitances	describe the function of capacitors in simple circuits	Capacitors and capacitance	Discussing the use of capacitors in electronic	Resistors Capacitors
	 define capacitance and the farad 	 Energy stored in a capacitor. 	circuits	Power source Ammeters
	 solve problems using C=Q/V 		 Solve problems using the stated formulae. 	
	C=Q/V, conservation of			
	charge and edition of p.ds, the formulae for capacitors			
	in series and parallel			
	 solve problems using formulae for capacitors in 			
	series and in parallel		Parist VO C/1=/W evine O	
	 deduce the area under a potential-charge graph, the 		graphs graphs	
	equation W=1/2QV and hence W=1/2 CV ²			
	 describe charging and discharging of capacitors in 		 Charging and discharging capacitors in circuits. 	
	RC circuits			

FORM 6

4.5 Electromagnetism	•	explain that a force might	Force on current-carrying	rrying		Carrying out experiment	•	Permanent magnets
		act on a current	conductor		Ţ	to verify F=BIL sin θ	•	Metallic rods
	•	carrying conductor placed in	 Force on a moving charge. 	tharge.			•	Rider
		a magnetic field					•	Half meter rule
	•	solve problems using the		•	•	Solving problems using	•	Protractor
		equation $F = BIL \sin \theta$ with			_	F=BIL sin θ and	•	Power pack
		directions as interpreted by			_	$F = Bqv \sin \theta$.	•	Ammeter
		Fleming's left hand rule		_	•	Determining direction	•	Electronic balance
	•	define magnetic flux density			ر	using Fleming's left hand	•	Computer
		and the testla	 Magnetic fields due to currents 	to currents	_	rule.	•	Solenoid

Physics Syllabus Forms 5 - 6

CICCH		OD/ITOTIOO	CHILD THATTING THAT	Tailor Lotonson	F-4-0-2-2
2		Learners should be able	Attitudes and knowledge)	activities and notes	resources
		to:			
	•	demonstrate how the force		Carrying out experiment	Soft iron core
		conductor can be used to		using current balance	
		measure the flux density of)	
		a magnetic field using a			
		current balance			
	•	predict the direction of the			
		force on a charge moving in			
		a magnetic field			
	•	solve problems using			
		F = Bqvsinθ			
	•	sketch flux patterns due to a		 Sketching flux field 	
		long straight wire, a flat		patterns.	
		circular coil and a long		Simulating force on a	
		solenoid		moving charge in B field	
	•	show that the field due to a		using computers	
		solenoid may be influenced		 Investigating the effect of 	
		by the presence of a ferrous		ferrous core in a solenoid	
		core	i		
	•	describe the principle of the	Electromagnet.		
		electro magnet and state its			
		nses			
	•	explain the force between			
		current carrying conductors	Force between current- carrying		
		and predict the direction of	conductors.		
		the torce			
	•	describe and compare the			
		rorces on mass, charge and			
		current in a gravitational,			
		electric and magnetic neigh,			
		משוקטומוס	Hall probe	Mooginipa flux dopoity	
	•	describe how a calibrated Hall probe can be used to		using a calibrated Hall	
		measure flux density		probe.	
4.6 Electromagnetic	•	define magnetic flux and the	Laws of electromagnetic	 Solving problems using φ 	Dynamo
Induction		Weber	induction		 Voltmeter

Physics Syllabus Forms 5 - 6

Suggested resources	Solenoid/ Solenoid/ Coil Magnet Center zero galvanometer	t of tput The prototype transformer transformer CRO A.C power source CRO A.C power source full-
Suggested learning activities and notes	 Measuring voltage and current generated by a dynamo Verifying Lenz law 	 using a CRO to display and measure peak voltage/current and determining root-meansquare investigating the effect of number of turns on output voltage/current making prototype transformer connecting diodes to display half-wave and full-wave rectification.
UNIT CONTENT (Skills. Attitudes and knowledge)	- Faraday's law - Lenz law	 Characteristics of alternating currents The transformer Transmission of electrical energy Rectification
OBJECTIVES Learners should be able to:	 solve problems using φ = BA. define magnetic flux linkage deduce from appropriate experiments on electromagnetic induction - that a changing magnetic flux can induce an e.m.f. in a circuit, that the direction of the induced e.m.f. opposes the change producing it - the factors affecting the magnitude of the induced e.m.f. 	 define and use the terms period, frequency, peak value and root-meansquare(r.m.s) value as applied to an alternating current or voltage. deduce that the mean power in a resistive load is half the maximum power for a sinusoidal alternating current represent an alternating current or an alternating voltage by an equation of the form x = x₀ sinωt distinguish between r.m.s and peak values and solve problems using the relationship I_{rms} = I₀/√2for the sinusoidal case show an understanding of
TOPIC		4.7 Alternating Currents

TOPIC	OBJECTIVES Learners should be able	UNIT CONTENT (SKIIIS. Attitudes and knowledge)	Suggested learning activities and notes	Suggested
	to:			
	the principle of operation of a			
	simple iron-cored transformer			
	and solve the problems using			
	$N_S/_{Y_1} = V_S/_{Y_2} = I_P/_{Y_3}$			
	$\frac{1}{2} \frac{1}{2} \frac{1}$			
	_			
	explain the use of oil in			
	transformer			
	 show an appreciation of the 			
	scientific and economic			
	advantages of alternating			
	current and of high voltages			
	for the transmission of			
	electric energy			
	 state the scientific and 			
	economic advantages of			
	alternating current and of			
	high voltage			
	 distinguish graphically 			
	between half-wave and full-			
	wave rectification			
	 explain the use of a single 			
	diode for the half-wave			
	rectification of an alternating			
	current			
	 explain the use of four 			
	diodes (bridge rectifier) for			
	the full-wave rectification of			
	 analyse the effect of a single 			
	capacitor in smoothing,			
	value			
	- of capacitance in relation			
	to the load resistance			
5.0. ELECTRONICS	 describe the use of the light- 	 Transducers 	 Constructing circuits to 	 operational
	=	-		

Suggested resources	amplifiers ICs circuit boards LED Buzzer relay CRO carbon resistors Signal generator
Suggested learning activities and notes	Assembling circuits to show the effect of negative feedback on gain and bandwidth An and bandwidth An and bandwidth
UNIT CONTENT (Skills. Attitudes and knowledge)	The ideal operational amplifier Operational amplifier circuits
OBJECTIVES Learners should be able to:	emitting diode (LED), the buzzer and the relay as output devices describe the properties of the ideal amplifier as a comparator explain the use of an operational amplifier as a comparator discuss the principles of negative and of positive feedback in an amplifier for single signal input use the virtual earth approximation to derive an expression for the gain of inverting amplifiers use expression for the gain of inverting amplifiers use expression for the woltage gain of inverting and non-inverting amplifiers discuss the effect of negative feedback on the gain and on the bandwidth of an operational amplifier as a summing amplifier as a summing amplifier as a summing amplifier in the inverting mode describe the use of an operational amplifier as a voltage follower describe the use of an operational amplifier as a non-inverting Schmitt-trigger,
TOPIC	5.1 Analogue Electronics

	OBJECTIVES Learners should be able to:	UNIT CONTENT (Skills. Attitudes and knowledge)	Suggested learning activities and notes	Suggested resources
	with positive feedback provided by a potential divider			
5.2 Digital Electronics	 describe the function of each of the following gates: NOT, AND, NAND, OR, NOR and represent these functions by 	 Logic gates 	Assembling circuits to show functionality of NOT, AND, NAND, OR, NOR	ICspower sourceswitchesCRO
	_ + /		 Making circuits with a mesh of logic gates to open a safe, or other 	
	 describe how to combine AND, NOT and OR gates, or NAND gates only, to form EXOR and EX-NOR gates 		control functions	logic gates
	 analyse circuits using combinations of logic gates to perform control functions explain how to construct and explain how to construct and 	 Logic gates combinations 		
		■ The impact of electronics in		
	simple electronic devices and systems which are found in the home, in industry and	society and industry		
	in communications appreciate the impact of electronic devices and			
	systems on domestic and industrial activities			
	 appreciate the impact of electronic devices and 			
	systems on modern communications			

6.0 MATTER

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
6.1 Phases of Matter	 relate the difference in the structures and densities of solids, liquids and gases to simple ideas of the spacing, ordering and motion of molecules describe a simple kinetic model for 	DensityStates of matter	 Carrying out experiment to observe the random movement of molecules. Carrying out experiments to determine the pressure due 	 transparent glass tube Ice Cube Laboratory thermometer
	 solids, liquids and gases distinguish between the process of melting, boiling and evaporation define the term pressure and using the kinetic model explain the pressure exerted by gases 	Change of phase	to a liquid column.	A beakerBunsen burner
	 derive, from the definitions of pressure and density the equation p = pgh use the equation p =pgh. 	Pressure in fluids		
6.2 Deformation of Solids	 explainhow the deformation is a result of deformation tensile or compressive describe the behaviour of springs in terms of load, extension, elastic limit, Hooke's law and the spring constant (i.e. force per unit extension) 	 Stress, σ, strain, ε. Elastic and plastic behavior 	Carrying out experiments to determine the spring constant for springs connected in series and in parallel	Helical springsClampsstands

TOPIC	OBJECTIVES	UNIT CONTENT (SKILLS	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	ATTITUDES AND KNOWLEDGE)	ACTIVITIES AND NOTES	RESOURCES
	 define and use the terms stress, strain and the Young modulus describe an experiment to determine the Young Modulus of a metal in the form of 	 Young Modulus, E 	 Loading materials to identify plastic and elastic behavior 	different materialsrubber bandscoat hanger wire
	a wire distinguish between elastic and plastic			Resource persons
	 deduce the strain energy in a deformed material from the area under the force- extension graph 	 Force extension graph 	 Sketching graphs. 	• ICI tools
	 sketch and compare the force-extension graphs for the typical ductile, brittle and polymeric materials, (consider ultimate tangle stress) 	 Structure and metals 	 Visiting engineering companies 	
	explain fatigue as a consequence of cyclic stress insufficient to cause	 Deterioration and failure 		
	immediate failure, describe situations which lead to fatigue failure describe creen as failure due to			
	sustained stress, below that required for immediate failure, combined with			
	 elevated temperature demonstrate knowledge with reference to properties of materials to the solving of simple engineering problems 			
6.3 Temperature	 show that a physical property which varies with temperature may be used for the measurement of temperature and 	 Temperature scales 	measuring the e.m.f of a thermocouple and using it	thermocouple Bunsen burner
	state examples of such properties use the equation $\frac{\theta}{100} = \frac{x_{\theta} - x_{0}}{x_{100} - x_{0}}$ to	Fixed points	temperature associated with the e.m.f	Liquid in glass Resistance
	calibrate a thermometer where X is a proportionally varying physical property explain the principal features and operation of a liquid-in-glass, resistance, constant-volume gas and thermocouple	 Thermometric properties 	of thermometers	thermometer Constant volume gas
	thermometers and state the advantages			

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 and disadvantages of each describe the thermodynamic scale and explain the concept of absolute zero. (Existence of an absolute scale of temperature which does not depend on the property of any particular substance) express temperatures in Kelvin and degree Celsius 	Types of thermometers)		
6.4 Thermal Properties of Materials	 relate a rise in temperature of a body to an increase in internal energy define and use specific heat capacity, and show an awareness of the principles of its determination by electrical methods or any other suitable method 	Specific heat capacity	carrying out experiments to determine the nature of the cooling curve for metallic samples and other materials	samples of different materialsthermometerheating element
	 define and use specific latent heat, and show an awareness of the principles of its determination by electrical methods describe and explain the cooling which accompanies evaporation both in terms of specific latent heat and in terms of the escape of high energy molecules 	Specific latent heat e	 Determining specific latent heat of fusion and vaporization. Determining the specific heat capacity of a liquid and a solid using electrical methods or any other suitable method. 	 stopwatch ammeter voltmeter electronic balance bomb calorimeter
	 explain that internal energy is determined by the state of the system and can be expressed as the sum of a random distribution of kinetic and potential energies associated with the molecules of a system state the first law of thermodynamics expressed in terms of the changes in internal energy, the heating of the system and the work done on the system 	 Internal energy First law of thermodynamics 	Simulating internal energy using ICT	
6.5 Ideal Gases	 list the assumptions of the kinetic theory of gases 	/ • Kinetic theory of gases • Equation of state	measuring the pressure of gas from a gas cylinder	gas cylindersU-tube

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 state and use the equation of state for an ideal gas expressed as pV = nRT(n = number of moles) explain how molecular movement 	Pressure of a gasKinetic energy of a molecule	using a manometer • Solving problems using the equation of state	manometer • meter rule
	causes the pressure exerted by a gas and provide a simple derivation of $p = \frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle (N = \text{number of molecules})$		• comparing different pressures from two different sources of gas	
	• compare $p = \frac{1}{3} \langle c^2 \rangle$ with $pV = NKI$ and hence deduce that the average translational kinetic energy of a molecule is proportional to T			
	 calculate work done by an ideal gas from p - V graphs 	 Work done by an ideal gas 	 Determining work done by ideal gas. 	
6.6 Non-Viscous Fluid Flow	 explain what is meant by the terms steady (laminar, streamline) flow. 	 Ideal fluids in motion 	 Using ICT simulation to show that Av=constant. 	resource person
	incompressible flow, non-viscous flow,	 Streamlines and the 	 Visiting airports to consult 	ICT tools
	as applied to the motion of an ideal fluid explain how the velocity vector of a	equation of continuity	with resource persons to explain aerofoil motion	4:14
	_		 Investigating the effect of 	• Pitot tube
	related to the streamline associated with that particle	■ Horizontal streamline	creating a partial vacuum	
	describe how streamlines can be used			
	to define a tube of flow derive and use the equation			
	Av=constant (the equation of continuity) for the flow of an ideal, incompressible			
	fluid			
	 prove that the equation of continuity is a form of the principle for conservation of 			
		iii C		
	 explain now pressure differences can arise from different rates of flow of a 	■ The Bernoulli effect		
	fluid (the Bernoulli effect) ■ derive the Bernoulli equation in the form		Solving problems using	
	$p_1 + \frac{1}{2}\rho V_1^2 = p_2 + \frac{1}{2}\rho V_2^2$		$p_1 + \frac{1}{2}pv_1^2 = p_2 + \frac{1}{2}pv_2^2$	

TOPIC	OBJECTIVES Learners should be able to:	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	for the case of a horizontal tube to flow show that the Bernoulli equation is a form of the principle of conservation of mass explain how the Bernoulli effect is applied in the filter pump, in the Venturi meter, in atomizers and in the flow of air over an aerofoil		 Using ICT simulation to show how atomizers operate. Using Pitot tube to measure velocity 	
6.7 Transfer of Thermal Energy	 demonstrate that thermal energy is transferred from a region of higher temperature to a region of low 	 Thermal equilibrium 	 investigating the direction of heat flow based on temperature gradient 	ICT toolsthermometervarious materials
	temperature state and explain the Zeroth law of thermo-dynamics	 Thermal conduction 		
	consequence of change of density demonstrate a qualitative understanding	 Convection 		
	that bodies emit electromagnetic radiation at a rate which increases with increasing temperature	 Radiation 	 simulating emission of electromagnetic radiation 	
	 describe simple applications involving the transfer of thermal energy by conduction, convection and radiation 			

Physics Syllabus Forms 5 - 6

7.1 MODERN PHYSICS

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.1 Charged Particles	 interpret the experimental evidence for quantization of change 	Electrons	 carrying out experiments to show the deflection of electrons 	vacuum tube electron gun
	 understand the principles of determination of charge e by Millikan's experiment 			permanent magnets
	 describe and analyze quantitatively using 			ICT tools
	 the deflection of beams of charged particles by uniform electric and uniform magnetic fields 	 Beams of charged particles 	 Carrying out calculations involving charged particles in uniform fields. 	
	 explain how electric and magnetic fields can be used in velocity selection 	 Crossed fields 	 Explaining methods for the 	
	 explain the principles of one method for the determination of v and e/ me for electrons 	 Mass spectrometry 	determination of v and e/me	

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.2 Quantum Physics	 explain the particulate nature of electromagnetic radiation state and use E = hf 	 Energy of a photon 	 Demonstrating photoelectric emission using a charged gold leaf and a suitable metal and 	 gold leaf electroscope UV source metal plates
	 describe the phenomena of the photoelectric effect describe the significance of threshold features. 	 Photoelectric emission of electrons 	Electromagnetic radiation	Computer ICT tools
	 explain why the maximum photoelectric energy is independent of intensity, and why the photoelectric current is 			
	proportional to intensity explain photoelectric phenomena in terms of photon energy and work 			
	function energy ■ use and explain the significance of <i>hf</i> = Ø+ ½mv² _{max} .			
	 explain the photoelectric effect as evidence for the particulate nature of electromagnetic radiation while 	 Wave particle duality 		
	phenomena such as interference and diffraction provides evidence for a wave			
	 describe and interpret qualitatively the evidence provided by electron diffraction for the wave nature of 			
	particles ■ derive and use the relation for the de			
	 explain the existence of discrete electron energy levels in isolated atoms 	■ Energy levels in atoms	simulating to show energy levels	
	(e.g. atomic hydrogen) and explain how this leads to spectral lines	entraction		
	absorption line spectra state and use the relation $hf = E_1 - E_2$.			

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.3 Atomic Structure	 describe qualitatively the α - particle scattering experiment and the evidence it provides for the existence and small size of the nucleus 	 The nuclear atom The nucleus Isotopes Mass excess and 	 Describing the size of the nucleus Simulation 	ICT tools
	use the usual notation of the presentation of nuclides	Nuclear processes	Sketching a graph to show variation of binding energy per	
	 show an appreciation of the association between energy and mass as represented by E = mc2 			
	 Illustrate graphically the variation of binding energy per nucleon with nucleon number 			
	 describe the relevance of binding energy per nucleon to nuclear fusion and to nuclear fission 			
	 verify that nucleon number, proton number, energy and mass are all conserved in nuclear processes 			
	 represent simple nuclear reactions by nuclear equations of the form 		 Balancing nuclide equations 	
	• $^{14}\text{N} + ^{4}\text{2He}$ • $^{48}\text{O} + ^{1}\text{H}$			

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.4 Radioactivity	 explain the spontaneous and random nature of nuclear decay 	Types of ionizing radiation	Simulating nuclear decayDiscussing nature of nuclear	ICT toolsResource persons
	 describe the scientific and 	 Background radiation 	decay	• GM tube
	environmental importance of		 Solving problems using the listed formulae 	
	its existence and origin		 Measuring background 	
	illustrate the random nature of		radiation	
	radioactive decay by observation of the		 Visiting industries which make 	
	Inccuations in countrate describe the environmental hazards of	Hazards and safety	use of radio activity	
	ionizations and the safety	precautions		
	 list precautions which should be taken 		 Discussing procedures in the 	
	in the handling and disposal of		handling and disposal of	
	radioactive material		radioactive waste.	
	 define the terms activity and decay 	 Radioactive decay 		
	constant and use $A = \lambda N$			
	recognize, use and represent			
	graphically solutions of the decay law			
	based on $x = x_0 exp(-\lambda t)$			
	 define half-life (t_{1/2}) 			
	 use the relation λ = (ln2)/t_∞ 			
	 describe the use of radioisotopes, 	 Radioisotopes 		
	providing one example of each of the			
	following: the use of tracers, the use of			
	penetrating properties of radiation, the			
	use ofionizing radiation in radiotherapy			
	and leak detection			

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
7.5 Communication	 appreciate that information may be carried by a number of different 	Communication Channels	 Visiting Broadcasting stations. 	ICT tools
	channels, including wire-pairs, coaxial cables, radio and microwave links, optic	Modulation		Resource persons
	fibres define the term modulation and be able			Encoders
	to distinguish between amplitude modulation (AM) and frequency	 Digital Communication 	 Comparing transmissions of 	Decorders
	modulation (FM) recall that a carrier wave, amplitude modulated by a single andio		data in digital form and analog form	
	frequency, is equivalent to the carrier wave frequency together with two	 Relative merits of channels of 		
	sideband frequencies	communication		
	recall the frequencies and wavelengths			
	used in different channels of communication			
	 demonstrate an awareness of the 			
	relative advantages of AM and FM transmissions			
	state the advantages of the			
	compared with the transmission of data			
	in analogue form			
	 understand that the digital transmission of speech or music involves analogue- 			
	to-digital conversion (ADC) before			
	transmission and digital-to-analogue			
	understand the effect of the sampling			
	rate and the number of bits in each			
	sample on the reproduction of an input			
	signal discuss the relative advantages and	Attenuation		
	disadvantages of channels of			

Physics Syllabus Forms 5 - 6

TOPIC	OBJECTIVES Learners should be able to :	UNIT CONTENT (SKILLS, ATTITUDES AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	bandwidth, noise, crosslinking, security, signal attenuation, repeaters and regeneration recall the relative merits of both geostationary and polar orbiting satellites for communicating information understand and use signal attenuation expressed in dB and dB per unit length recall and use the expression <i>number</i> of dB = 10 log(P ₁ /P ₂) for the ratio of two powers		 Inviting resource persons who know deal with satellite 	

9.0 ASSESSMENT

Candidates for Advanced Level certification take Papers 1, 2, 3, 4 and 5 in a single examination series. Candidates may onlyenter for all the five papers per sitting. Papers 1, 2, 3 and 4 are externally assessed while Paper 5 is assessed internally. The syllabus is examined in May/June and October/November. Those who sit the October/November examination series are allowed to carry forward their Paper 5(continuous assessment mark) to the next May/June examination. The May/June examination series for this subject will not be available to school candidates.

(a) Assessment Objectives

The assessment objectives listed below reflect those parts of the syllabus aims that will be assessed in the examina-

Skill A: Knowledge with understanding

Candidates should be able to demonstrate knowledge and understanding of:

scientific phenomena, facts, laws, definitions, concepts and theories

scientific vocabulary, terminology and conventions (including symbols, quantities and units)

scientific instruments and apparatus, including techniques of operation and aspects of safety

scientific quantities and their determination

scientific and technological applications with their social, economic and environmental implications.

The syllabus content defines the factual knowledge that candidates may be required to recall and explain.

Skill B: Handling, applying and evaluating information

Candidates should be able (in words or by using symbolic, graphical and numerical forms of presentation) to:

locate, select, organise and present information from a variety of sources

translate information from one form to another

manipulate numerical and other data

use information to identify patterns, report trends, draw inferences and report Conclusions

present reasoned explanations for phenomena, patterns and relationships

make predictions and put forward hypotheses

apply knowledge, including principles, to new situations

evaluate information and hypotheses

demonstrate an awareness of the limitations of physical theories and models.

In answering such questions, candidates are required to use principles and concepts that are within the syllabus and apply them in a logical, reasoned or deductive manner to a new situation

Skill C: Experimental skills and investigations

Candidates should be able to:

- plan experiments and investigations: defining the problem choice of equipment and procedure data collection methods good design features
- 2. collect, record and present observations, measurements and estimates

- 3. analyse and interpret data to reach conclusions
- 4. evaluate methods and quality of data, and suggest improvements.

The questions may be based on physics not included in the syllabus content, but candidates will be assessed on their practical skills rather than their knowledge of theory.

(b) Scheme of Assessment

Paper 1: Multiple Choice 1 hour

This paper consists of 40 multiple choice questions, all with four options. Candidates will answer all questions. Candidates will answer on an answer sheet. [40 marks]

Paper 2: Structured Questions 1 hour 30 minutes

This paper consists of a variable number of questions of variable mark value. Candidates will answer all questions. Candidates will answer on the question paper. [60 marks]

Paper 3: Free Response Questions 2 hours

This paper consists of 5free response questions. Each question carries 25 marks.

Question 1 covers General Physics and Newtonian Mechanics,

Question 2 covers Oscillations and Waves,

Question 3 covers Electricity and Magnetism,

Question 4 covers Matter and

Question 5 covers Modern Physics.

Candidates will answer question 1 and any three questions from the remaining 4 questions. Question 1 is compulsory. Candidates will answer on separate answer sheets. [100 marks]

Paper 4: Practical Skills:2 hours

This paper requires candidates to carry out practical work in timed conditions. The paper will consist of two experiments and one design practical drawn from different areas of Physics. The candidates will be assessed on their practical skills rather than their knowledge of theory. Candidates will answer all questions. Candidates will answer on the question paper. [50 marks]

Paper 5: Continuous Assessment

Continuous assessment will be done at the schools from term 1 of Form 5 to the end of term 2 of Form 6. Continuous assessment comprises of Theory tests, Practical tests and a Project. Teachers will be responsible for the continuous assessment of their candidates.

One continuous assessment theory test is administered at the end of each of the 32 topics. The standard of each test should be 50% skill A and 50% skill B.Each test carries 20 marks. [The total possible mark is weighted to 35 marks]

Two continuous assessment practical tests are administered per term from term 2 of Form 5 to term 2 of Form 6. The standard of each practical test is 100% skill C.[The total possible mark is weighted to 35 marks]

Paper	Type of Paper	Duration	Marks	Weight %
1	Multiple Choice	1hr	40	11
2	Structured	1hr 30minutes	60	17
3	Free response	2hr 30minutes	100	28
4	Practical	2hr 30minutes	50	14
5	Continuous assessment	Form 5 - 6	*110	30

^{*} The final total mark possible for continuous assessment is weighted to 110 marks

(c) Specification grid

The relationship between assessment objectives/skills and the Papers of the subject is as follows:

Paper	Skill A	Skill B	Skill C	Total Marks
1	18	22	0	40
2	25	35	0	60
3	45	55	0	100
4	0	0	50	50
5	24	23	63	*110
TOTAL				360

^{*}The final total mark possible for continuous assessment is weighted to 110 marks

10. 0 APPENDIX

MATHEMATICAL REQUIREMENTS

Arithmetic

Candidates should be able to:

recognise and use expressions in decimal and standard form (scientific) notation

recognise and use binary notation

use an electronic calculator for addition, subtraction, multiplication and division. Find arithmetic means, powers (including reciprocals and square roots), sines, cosines, tangents (and the inverse functions), exponentials and logarithms (Ig and In)

take account of accuracy in numerical work and handle calculations so that significant figures are neither lost unnecessarily nor carried beyond what is justified

make approximate evaluations of numerical expressions (e.g. $\pi 2 \approx 10$) and use such approximations to check the magnitude of calculated results.

Algebra

Candidates should be able to:

change the subject of an equation. Most relevant equations involve only the simpler operations but may include positive and negative indices and square roots.

solve simple algebraic equations. Most relevant equations are linear but some may involve inverse and inverse square relationships. Linear simultaneous equations and the use of the formula to obtain the solutions of quadratic equations are required.

substitute physical quantities into physical equations using consistent units and check the dimensional consistency of such equations

set up simple algebraic equations as mathematical models of physical situations, and identify inadequacies of such models

recognise and use the logarithms of expressions like ab, a b, xn, ekx and understand the use of logarithms in relation to quantities with values that range over several orders of magnitude

express small changes or uncertainties as percentages and vice versa understand and use the symbols <, >, \leq , \geq , \ll , \gg , l, \square , \ll , Σ , Δx , δx , $\sqrt{}$

Geometry and trigonometry

Candidates should be able to:

calculate areas of right-angled and isosceles triangles, circumference and area of circles, areas and volumes of cuboids, cylinders and spheres

use Pythagoras' theorem, similarity of triangles, the angle sum of a triangle

use sines, cosines and tangents of angles (especially for 0°, 30°, 45°, 60°, 90°)

use the trigonometric relationships for triangles:

Sine rule

Cosine rule

use $\sin\theta \approx \tan\theta \approx \theta$ and $\cos\theta \approx 1$ for small θ ; $\sin 2\theta + \cos 2\theta = 1$

understand the relationship between degrees and radians, convert from one to the other and use the appropriate system in context.

Vectors

Candidates should be able to:

find the resultant of two coplanar vectors, recognising situations where vector addition is appropriate obtain expressions for components of a vector in perpendicular directions, recognising situations where vector resolution is appropriate.

Graphs

Candidates should be able to:

translate information between graphical, numerical, algebraic and verbal forms

select appropriate variables and scales for graph plotting

determine the gradient, intercept and intersection of linear graphs

choose, by inspection, a straight line which will serve as the line of best fit through a set of data points presented graphically

draw a curved trend line through a set of data points presented graphically, when the arrangement of these data points is clearly indicative of a non-linear relationship

recall standard linear form y = mx + c and rearrange relationships into linear form where appropriate sketch and recognise the forms of plots of common simple expressions like 1/x, x^2 , $1/x^2$, $\sin x$, $\cos x$, e^{-x} draw a tangent to a curve, and understand and use the gradient of the tangent as a means to obtain the gradient of

the curve at a point understand and use the area below a curve where the area has physical significance.

Treatment of uncertainties

Candidates should be able to:

convert absolute uncertainty estimates into fractional or percentage uncertainty estimates and vice versa

show uncertainty estimates, in absolute terms, beside every value in a table of results

calculate uncertainty estimates in derived quantities

show uncertainty estimates as error bars on a graph

estimate the absolute uncertainty in the gradient of a graph by recalling that absolute uncertainty = gradient of line of best fit – gradient of worst acceptable line

estimate the absolute uncertainty in the y-intercept of a graph by recalling that absolute uncertainty = y-intercept of line of best fit – y-intercept of worst acceptable line

express a quantity as a value, an uncertainty estimate and a unit.

Summary of key quantities, symbols and units

Quantity	Usual symbols	Usual unit
Base quantities		
mass	m	kg
length	1	m
time	t	s
electric current	Ι	А
thermodynamic temperature	Τ	K
amount of substance	п	mol

Quantity	Usual symbols	Usual unit
electric field strength	E	N C ⁻¹ , V m ⁻¹
electric potential	V	V
electric potential difference	V	V
electromotive force	E	V
electron mass	m _e	kg, u
elementary charge	е	С
energy	E, U, W	J
force	F	N
frequency	f	Hz
gravitational constant	G	N m ² kg ⁻²
gravitational field strength	g	N kg ⁻¹
gravitational potential	φ	Jkg ⁻¹
half-life	$t_{\frac{1}{2}}$	s
Hall voltage	V _H	V
heating	q, Q	J
intensity	I	Wm ⁻²
internal energγ change	ΔU	J
kinetic energy	E _k	J
magnetic flux	Φ	Wb
magnetic flux density	В	Т
mean-square speed	$\langle c^2 \rangle$	m²s ⁻²
molar gas constant	R	Jmol ⁻¹ K ⁻¹
molar mass	М	kg mol ⁻¹
moment of force	T	Nm
momentum	p	Ns
neutron mass	m _n	kg, u
neutron number	N	
nucleon number	А	
number	N, n, m	
number density (number per unit volume)	n	m ⁻³
period	Т	s
permeability of free space	μ_0	Hm ⁻¹
permittivity of free space	ε_0	Fm ⁻¹

Physics Syllabus Forms 5 - 6

Quantity	Usual symbols	Usual unit
power	P	W
pressure	р	Pa
proton mass	$m_{_{\mathrm{p}}}$	kg, u
proton number	Ζ	
ratio of powers		dB
relative atomic mass	A,	
relative molecular mass	M _r	
resistance	R	Ω
resistivity	ρ	Ωm
specific acoustic impedance	Ζ	kg m ⁻² s ⁻¹
specific heat capacity	С	J kg ⁻¹ K ⁻¹
specific latent heat	L	Jkg ⁻¹
speed	u, v, w, c	m s ⁻¹
speed of electromagnetic waves	С	ms ⁻¹
spring constant	k	Nm ⁻¹
strain	ε	
stress	σ	Pa
torque	T	Nm
velocity	u, v, w, c	ms ⁻¹
volume	V, v	m ³
wavelength	λ	m
weight	W	N
work	w, W	J
work function energy	Φ	J
Young modulus	Ε	Pa

Physics Syllabus Forms 5 - 6

Other quantities		
acceleration	а	m s ⁻²
acceleration of free fall	g	m s ⁻²
activity of radioactive source	A	Bq
amplitude	<i>X</i> ₀	m
angle	θ	°, rad
angular displacement	θ	°, rad
angular frequency	ω	rads ⁻¹
angular speed	ω	rad s ⁻¹
angular velocity	ω	rad s ⁻¹
area	Α	m²
atomic mass	m _a	kg, u
attenuation/absorption coefficient	μ	m ⁻¹
Avogadro constant	N _A	mol ⁻¹
Boltzmann constant	k	J K ⁻¹
capacitance	С	F
Celsius temperature	θ	°C
decay constant	λ	s ⁻¹
density	ρ	kg m ⁻³
displacement	s, x	m
distance	d	m
efficiency	η	
electric charge	q, Q	С

Quantity	Usual symbols	Usual unit
electric field strength	E	N C ⁻¹ , V m ⁻¹
electric potential	V	V
electric potential difference	V	V
electromotive force	E	V
electron mass	m _e	kg, u
elementary charge	е	С
energy	E, U, W	J
force	F	N
frequency	f	Hz
gravitational constant	G	N m ² kg ⁻²
gravitational field strength	g	N kg ⁻¹
gravitational potential	φ	Jkg ⁻¹
half-life	$t_{\frac{1}{2}}$	s
Hall voltage	$V_{\rm H}$	V
heating	q, Q	J
intensity	I	Wm ⁻²
internal energy change	ΔU	J
kinetic energy	E_{k}	J
magnetic flux	Φ	Wb
magnetic flux density	В	Т
mean-square speed	$\langle c^2 \rangle$	m ² s ⁻²
molar gas constant	R	Jmol ⁻¹ K ⁻¹
molar mass	М	kg mol ⁻¹
moment of force	Т	Nm
momentum	р	Ns
neutron mass	m _n	kg, u
neutron number	N	
nucleon number	А	
number	N, n, m	
number density (number per unit volume)	n	m ⁻³
period	Т	s
permeability of free space	μ_0	Hm ⁻¹
permittivity of free space	ε_0	Fm ⁻¹

Quantity	Usual symbols	Usual unit
power	P	W
pressure	р	Pa
proton mass	$m_{_{\mathrm{p}}}$	kg, u
proton number	Z	
ratio of powers		dB
relative atomic mass	A,	
relative molecular mass	M _r	
resistance	R	Ω
resistivity	ρ	Ωm
specific acoustic impedance	Z	kg m ⁻² s ⁻¹
specific heat capacity	С	J kg ⁻¹ K ⁻¹
specific latent heat	L	J kg ⁻¹
speed	u, v, w, c	m s ⁻¹
speed of electromagnetic waves	С	m s ⁻¹
spring constant	k	Nm ⁻¹
strain	ε	
stress	σ	Pa
torque	T	Nm
velocity	u, v, w, c	ms ⁻¹
volume	V, v	m ³
wavelength	λ	m
weight	W	N
work	w, W	J
work function energy	Φ	J
Young modulus	E	Pa

(c) Glossary of Assessment command words

This glossary should prove helpful to candidates as a guide, although it is not exhaustive and it has deliberately been kept brief. Candidates should understand that the meaning of a term must depend in part on its context. The number of marks allocated for any part of a question is a guide to the depth required for the answer.

- 1. Define (the term(s) ...) is intended literally. Only a formal statement or equivalent paraphrase, such as the defining equation with symbols identified, is required.
- 2. What is meant by ... normally implies that a definition should be given, together with some relevant comment on the significance or context of the term(s) concerned, especially where two or more terms are included in the question. The number of marks indicated will suggest the amount of supplementary comment required.
- 3. Explain may imply reasoning or some reference to theory, depending on the context.
- 4. State implies a concise answer with little or no supporting argument, e.g. a numerical answer that can be obtained 'by inspection'.
- 5. List requires a number of points with no elaboration. If a specific number of points is requested, this number should not be exceeded.
- 6. Describe requires candidates to state in words (using diagrams where appropriate) the main points of the topic. It is often used with reference either to particular phenomena or to particular experiments. For particular phenomena, the term usually implies that the answer should include reference to (visual) observations associated with the phenomena. The amount of description intended is suggested by the indicated mark value.
- 7. Discuss requires candidates to give a critical account of the points involved in the topic.
- 8. Deduce/Predict implies that candidates are not expected to produce the required answer by recall, but by making a logical connection between other pieces of information. Such information may be wholly given in the question, or may depend on answers extracted in an earlier part of the question.
- 9. Suggest is used in two main contexts. It may imply either that there is no unique answer or that candidates are expected to apply their general knowledge to a new situation (one that may not, formally, be in the syllabus).
- 10. Calculate is used when a numerical answer is required. In general, working should be shown.
- 11. Measure implies that the quantity concerned can be directly obtained from a suitable measuring instrument, e.g. length, using a rule, or angle, using a protractor.
- 12. Determine often implies that the quantity concerned cannot be measured directly, but is obtained by calculation, substituting measured or known values of other quantities into a standard formula, e.g. the Young modulus, relative molecular mass.
- 13. Show is used where a candidate is expected to derive a given result. It is important that the terms being used by candidates are stated explicitly and that all stages in the derivation are stated clearly.
- 14. Estimate implies a reasoned order of magnitude statement or calculation of the quantity concerned. Candidates should make any necessary simplifying assumptions about points of principle and about the values of quantities not otherwise included in the question.
- 15. Sketch (applied to graph work) implies that the shape and/or position of the curve need only be qualitatively correct.
- 16. However, candidates should be aware that, depending on the context, some quantitative aspects may be looked

for, e.g. passing through the origin, having an intercept, asymptote or discontinuity at a particular value. On a sketch graph it is essential that candidates clearly indicate what is being plotted on each axis.

- 17. Sketch (applied to diagrams) implies that a simple, freehand drawing is acceptable, though care should be taken over proportions and the clear exposition of important details.
- 18. Compare requires candidates to provide both similarities and differences between things or concepts.
- (D) Data and formulae

The following data and formulae will appear as pages 2 and 3 in Papers 1, 2 and 3.

DATA

DATA		
speed of light in free space	$c = 3.00 \times 10^8 \text{ms}^{-1}$	
permeability of free space	$\mu_o = 4\pi \times 10^{-7} \text{ Hm}^{-1}$	
permittivity of free space	$\epsilon_0 = 8.85 \times 10^{-12} \text{ Fm}^{-1} \text{ (} 1/4\pi\epsilon_0 = 8.99 \times 10^9 \text{ mF}^{-1}\text{)}$	
elementary charge	e = 1.60 x 10 ⁻¹⁹ C	
the Planck constant	$h = 6.63 \times 10^{-34} \text{ Js}$	
unified atomic mass unit	$1 \text{ u} = 1.66 \text{ x } 10^{-27} \text{ kg}$	
rest mass of electron	m_e = 9.11 x 10 ⁻³¹ kg	
rest mass of proton	$m_p = 1.67 \times 10^{-27} \text{ kg}$	
molar gas constant	$R = 8.31 \text{ JK}^{-1} \text{mol}^{-1}$	
the Avogadro constant	$N_A = 6.02 \times 10^{23} \text{mol}^{-1}$	
the Boltzmann constant	$k = 1.38 \times 10^{-23} \text{ JK}^{-1}$	
gravitational constant	$G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$	
acceleration of free fall	$g = 9.81 \text{ ms}^{-2}$	

FORMULAE

uniformly accelerated motion $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$ work done on/by a gas $W = \rho \Delta V$ gravitational potential Ø = - Gm/rhydrostatic pressure $p = \rho gh$ $\rho = \frac{1}{3} \frac{Nm}{V} < c^2 >$ pressure of an ideal gas simple harmonic motion $a = -\omega^2 x$ velocity of particle in s.h.m. $v = v_0 \cos \omega t$ $f_o = \frac{f_s v}{}$ $v = \pm \omega \sqrt{(x_0^2 - x^2)}$ Doppler effect electric potential $4\pi \varepsilon_0 r$ $1/C = 1/C_1 + 1/C_2 + \dots$ capacitors in series capacitors in parallel $C = C_1 + C_2 + \dots$ $W = \frac{1}{2}QV$ energy of charged capacitor electric current I = Anvqresistors in series $R = R_1 + R_2 + \dots$ resistors in parallel $1/R = 1/R_1 + 1/R_2 + \dots$ $V_H = \frac{BI}{}$ Hall voltage ntq alternating current/voltage $x = x_o \sin \omega t$ radioactive decay $x = x_0 \exp(-\lambda t)$ $\lambda = \frac{0.693}{}$ decay constant

(E) Commonly Used Materials And Apparatus

The list is not exhaustive: other items are usually required, to allow for variety in the questions set.

Cells: 1.5 V

Connecting leads and crocodile clips

Digital ammeter, minimum ranges 0–1 A reading to 0.01 A or better, 0–200 mA reading to 0.1 mA or better, 0–20 mA reading to 0.01 mA or better (digital multimeters are suitable)

Digital voltmeter, minimum ranges 0–2 V reading to 0.001 V or better, 0–20 V reading to 0.01 V or better (digital multimeters are suitable)

Lamp and holder: 6 V 60 mA; 2.5 V 0.3 A

Power supply: variable up to 12 V d.c. (low resistance)

Rheostat (with a maximum resistance of at least 8 Ω, capable of carrying a current of at least 4 A)

Switch Wire: constantan 26, 28, 30, 32, 34, 36, 38 s.w.g. or similar metric sizes

Long stem thermometer: -10 °C to 110 °C × 1 °C

Means to heat water safely to boiling (e.g. an electric kettle)

Plastic or polystyrene cup 200 cm3

Stirrer

Adhesive putty (e.g. Blu-Tack)

Adhesive tape (e.g. Sellotape)

Balance to 0.1 g (this item may often be shared between sets of apparatus)

Bar magnet

Bare copper wire: 18, 20, 26 s.w.g. or similar metric sizes

Beaker: 100 cm3, 200 cm3 or 250 cm3

Card

Expendable steel spring (spring constant approx. 25 N m-1; unstretched length approx. 2 cm)

G-clamp

Magnadur ceramic magnets

Mass hanger

Micrometer screw gauge (this item may often be shared between sets of apparatus)

Modelling clay (e.g. Plasticine)

Newton-meter (1 N, 10 N)

Physics Syllabus Forms 5 - 6

Pendulum bob

Protractor

Pulley

Rule with a millimetre scale (1 m, 0.5 m, 300 mm)

Scissors Slotted masses (100 g, 50 g, 20 g, 10 g) or alternative Stand, boss and clamp

Stopwatch (candidates may use their wristwatches), reading to 0.1 s or better

Stout pin or round nail

String/thread/twine

Vernier or digital callipers (this item may often be shared between sets of apparatus)

Wire cutters

