ASYMPTOTIC WAVE-FRONT

MEK4320; Geir Pedersen

Department of Mathematics, UiO

September 24, 2015

The Fourier transform

Transform and inversion (may be defined in slightly different ways)

$$\tilde{f} = \int_{-\infty}^{\infty} f(x) e^{-kx} dx, \quad f = \frac{1}{2\pi} \int_{-\infty}^{\infty} \tilde{f}(k) e^{kx} dk.$$

Initial surface elevation: $\eta(x,0) = \eta_0(x)$; no initial velocities. Fourier transform on linear inviscid set \Rightarrow The right-going wave system:

$$\eta(x,t) = \frac{1}{2\pi} \Re \int_{0}^{\infty} \tilde{\eta}_0 e^{i\chi} dk$$
$$\chi \equiv kx - \omega(k)t,$$

where η_0 is assumed symmetric around x = 0.

Stationary phase

Stationary point

$$\frac{\mathrm{d}\chi(k_s)}{\mathrm{d}k}=0$$

corresponding to

$$c_g(k_s) = \frac{x}{t}$$

Neighbourhood of $k_s \Rightarrow$ dominant contributon to Fourier integral Limitation in finite depth

Depth: H

$$c_g \le c_0 \equiv \sqrt{gH} \Rightarrow$$
 Stationary phase for $\frac{x}{t} \le c_0$
Neighbourhood $\frac{x}{t} \sim c_0 \Rightarrow$ different approach

Wave front: close to $x = c_0 t$

Main contributions in Fourier integral from $k \to 0$.

$$\omega = \sqrt{gk \tanh(kH)} = c_0(1 - \frac{1}{6}(kH)^2 + O((kH)^4)),$$

where $c_0 = \sqrt{gh}$.

$$\chi \approx kx - c_0 \left(k - \frac{H^2}{6} k^3 \right) t$$

and

$$\eta(x,t) \sim \frac{1}{2\pi} \Re \int_{0}^{\infty} \tilde{\eta}_{0}(0) e^{i\left(kx - (c_{0}k - \frac{H^{2}}{6}c_{0}k^{3})t\right)} dk
= \frac{\hat{\eta}_{0}(0)}{2\pi} \int_{0}^{\infty} \cos\left(k(x - c_{0}t) - \frac{H^{2}}{6}c_{0}tk^{3}\right) dk$$
(1)

Transformation to the Airy function

The substitution k = s/m and $z = (x - c_0 t)/m$, where

$$m=\left(\frac{1}{2}H^2c_0t\right)^{\frac{1}{3}},$$

in $(1) \Rightarrow$

$$\eta(x,t)\sim \frac{\eta_0(0)}{2m}I(z),$$

with

$$I(z) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{1}{3}s^{3} + zs\right) ds$$

Integral formula for the Airy function, Ai.

The Airy function

F = Ai is the solution of

$$\frac{\mathrm{d}^2 F}{\mathrm{d}z^2} - zF = 0,\tag{2}$$

which vanish as $z \to \infty$ and fulfills $\int_{-\infty}^{\infty} F dz = 1$.

Ai links an exponential behavoiour to an oscillating one.

The wave front

close to $x = c_0 t$

$$\eta \sim \frac{V}{2m} \text{Ai}(z) = \frac{\frac{1}{2}V}{(\frac{1}{2}c_0H^2t)^{\frac{1}{3}}} \text{Ai}\left(\frac{x - c_0t}{(\frac{1}{2}c_0H^2t)^{\frac{1}{3}}}\right),$$
(3)

where $V = \tilde{\eta}(0)$ is the volume (per width) under $\eta(x,0)$

- Leading crest close to $x = c_0 t$
- Shape indpendent of shape of $\eta(x,0)$
- Maximum wave height decays as $\sim t^{-\frac{1}{3}}$
- Length of leading crest increases as $\sim t^{\frac{1}{3}}$

Wave front and dispersion in tsunami propagation

Dispersion often neglected for tsunamis due to large wavelength. Its significance depends on:

- Extent of source relative to depth.
- Propagation distance.

Exampel inspired by earthquake off Portugal (1969)

Magnitude: $M_s=7.9$, $H=5000\,\mathrm{m}$, inverse thrust fault, large dip angle $\approx 50^\circ$, fault length $\approx 70\,\mathrm{km} \Rightarrow$ rather confined bottom uplift Left panel: co-seismic bottom-uplift from Okada's formula Right panel: hydrodynamic response for centerline from 2D theories

2D response used as initial condition.

After $t = 11.3 \Rightarrow L = c_0 t = 150 \,\mathrm{k} m$

Curves:

'full' and Boussinesq: numerical solutions with dispersion

'hydr': is half the initial elevation

'asymp': Asymptotic solution for wave front

After $t = 30 \text{ min} \Rightarrow L = 400 \text{km}$

Now asymptote and numerical solution are becoming close.