Modelos de Mixtura Gaussiana

K-Means y clustering jerárquico

- K-Means y clustering jerárquico son heurísticos
- Las asignaciones de cluster son "duras"
 - Un punto de dato solo puede pertenecer a 1 clase

Modelos de Mixtura

- Asumen que la data es generada por un proceso estadístico que es una combinación de componentes
- Clustering: determinar qué componente está generando el data point.
- La clasificación es "suave"
 - Un punto de dato puede pertenecer a más de 1 clase
 - El resultado es una lista de la probabilidad de que pertenezca a una clase determinada

Recordatorio de Distribución Normal

• Para 1D La función de densidad de la probabilidad (PDF) está definida como:

•
$$PDF(x) = \mathcal{N}(x|\mu,\sigma) =$$

Desviación Estándar σ (sigma)

- Es la raíz cuadrada de la varianza
- Indica la variabilidad con respecto a la media μ
- Para un PDF Gaussiano
 - El 68% del área bajo la curva se encuentra dentro de **una** desviación estándar de la media
 - 95% se encuentra dentro de dos desviaciones estándar
 - 99% se encuentra dentro de **tres**.

Múltiples dimensiones

Múltiples Dimensiones

$$PDF(x) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$
Constante para que el área bajo la curva sea 1

Da forma a la "campana"

x es el vector, o el punto de dato de D dimensiones μ es el vector media de D dimensiones Σ es la matriz de covarianza de $D \times D$ dimensiones

Visualizando la covarianza para 2D

Podemos dibujar un contorno de radio 1 desviación estándar.

•
$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

•
$$\Sigma = \begin{bmatrix} var(x_1) & cov(x_1, x_2) \\ cov(x_2, x_1) & var(x_2) \end{bmatrix}$$

Visualizando la covarianza para 2D

•
$$\Sigma = \begin{bmatrix} 7.75 & 2.17 \\ 2.17 & 5.25 \end{bmatrix}$$

• $\mu = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

•
$$\mu = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

Modelo de Mixtura Gaussiana

Modelo de Mixtura Gaussiana

• El modelo más común que asume que la data está siendo generada por varias distribuciones normales, cada una con media μ y desviación estándar σ

Modelo de Mixtura Gaussiana

Para dataset con D features, tendremos K distribuciones gaussianas, cada una con un vector media μ de D dimensiones y una matriz de covarianza Σ de $D \times D$ dimensiones

(a) A probability distribution on \mathbb{R}^2 .

(b) Data sampled from this distribution.

Modelo de Mixtura Gaussiana (Normal)

Para K distribuciones gaussianas (K clusters) la función de densidad de la totalidad de los datos está definida por:

La suma de los π_k es igual a 1. Representa la "densidad" de los puntos del cluster K

Gráficamente

https://lukapopijac.github.io/gaussian-mixture-model/

https://medium.com/swlh/gaussian-mixture-models-visually-explained-f54f761d304f

Relación con los modelos K-Means

- En ambos casos se modela la data usando centroides / media
- En clustering no existe un parámetro que indique que tan ajelados están los puntos con respecto al centro.
- En los modelos de mixtura, sí. Se usa la matriz de covarianza
- En clustering, el punto de data se le asigna un solo cluster.
- En modelos de mixtura se asigna a todos los clusters con probabilidades.

¿Como encontramos los parámetros?

• Para cada una de las K distribuciones de probabilidad tenemos que encontrar el vector μ y la matriz de covarianza Σ y el π correspondiente

$$\mu_1, \mu_2, \ldots, \mu_K$$

$$\Sigma_1, \Sigma_2, \ldots, \Sigma_K$$

$$\pi_1, \pi_2, \ldots, \pi_K$$

Idealmente

- Si por cada data point supiéramos de qué distribución proviene, sería fácil determinar los parámetros.
 - μ es la media de todos los puntos que pertenecen a la distribución k
 - Σ es la matriz de covarianza de todos los puntos que pertenecen a la distribución k
 - π es la proporción de datapoints que pertenecen a la distribución k
- Pero NO sabemos a qué distribución pertenece cada datapoint

Idealmente

- Si por cada distribución supiéramos μ , Σ y π sabríamos a qué distribución k pertenece cada data point
- Pero NO sabemos los parámetros de las distribuciones

Tenemos que fijar algo

- 1. Podemos asumir parámetros
 - Aleatoriamente definimos los valores de μ , Σ y π para cada distribución k
- 2. Vemos que tan bien encajan los datapoints con esos parámetros (la probabilidad de pertenencia a una distribución específica)
 - Dado x_i , qué tan probable es que haya sido originado por k?
- 3. En base a lo observado (paso 2), redefinimos los modelos para que se ajusten lo mejor posible las observaciones
 - Dado los x_i puntos que pertenecen a k, cuál es la mejor distribución k para que genere dichos puntos? (μ, Σ, π)

Algoritmo ExpectationMaximization

Temas iniciales

- Definir una variable z de tal forma que es la asignación del punto x_i al cluster k
- La variable z es una "variable latente". Explica la diferencia en las distribuciones

• Por lo tanto, $P(z_i = k) = \pi_k$

Probabilidad de que un punto cualquiera sea del cluster k

Porcentaje de elementos del cluster k con respecto al total. La "densidad" de los puntos

Temas iniciales

Dado a que la observación x_i es del cluster k, qué tan probable es observar x_i

 $P(x_i|z_i=k,\mu_k,\Sigma_k) = \mathcal{N}(x_i|\mu_k,\Sigma_k)$

Probabilidad de observar x_i dado a que pertenece a la distribución k con media μ_k y matriz de covarianza Σ_k

Probabilidad de observar x_i dado una distribución normal con media μ_k y matriz de covarianza Σ_k

Expectation

- Asumimos que las distribuciones son verdad y ...
- Determinamos para cada punto la probabilidad de que haya sido generado por k, dado a que "sabemos" los parámetros de k.
- La "responsabilidad" de cada distribución para generar x_i

Teorema de Bayes

$$r_{i,k} = P(z_i = k | x_i) = \frac{P(x_i | z_i = k) * P(z_i = k)}{P(x_i)}$$

Expectation

$$r_{i,k} = P(z_i = k | x_i) = \frac{P(x_i | z_i = k) * P(z_i = k)}{P(x_i)}$$

$$P(x_i) = \sum_{k=1}^{K} \pi_k * \mathcal{N}(x_i | \mu_k, \Sigma_k)$$

Probabilidad de que
$$x_i$$
 pertenezca a k
$$P(z_i = k | x_i) = \frac{\pi_k * \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k * \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

Probabilidad de x_i

Expectation

$$r_{i,k} = P(z_i = k | x_i) = \frac{\pi_k * \mathcal{N}(x_i | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k * \mathcal{N}(x_i | \mu_k, \Sigma_k)}$$

Ejemplo:

$$dato \ 1 = \begin{bmatrix} 0.04 \\ 0.5 \\ 0.46 \end{bmatrix} \qquad dato \ 2 = \begin{bmatrix} 0.80 \\ 0.15 \\ 0.05 \end{bmatrix} \qquad dato \ 2 = \begin{bmatrix} 0.50 \\ 0.25 \\ 0.25 \end{bmatrix}$$

$$x_i = \begin{bmatrix} r_{i,1} \\ r_{i,2} \\ r_{i,3} \end{bmatrix}$$

Maximización

- Asumimos que los puntos son verdad y...
- Redefinimos las distribuciones de tal manera que maximicen la pertenencia de los puntos

$$\pi_k = \frac{puntos "asignados" al cluster k}{total \ de \ puntos} = \frac{\sum r_{i,k}}{N}$$

$$\mu_k = \frac{\sum (r_{i,k} * x_i)}{puntos "asignados" al cluster k} = \frac{\sum (r_{i,k} * x_i)}{\sum r_{i,k}}$$

$$\Sigma_{k} = \frac{\sum (r_{i,k} * (x_{i} - \mu_{k})(x_{i} - \mu_{k})^{T})}{puntos "asignados" al cluster k} = \frac{\dots}{\sum r_{i,k}}$$

Y repetimos hasta converger

Iterpretación

- Iniciamos asumiendo una hipótesis (inicialización aleatoria)
- Observamos el experimento y vemos que tanto se ajusta a la hipotesis (Expectation)
- En base al experimento, deducimos una nueva hipótesis (Maximization)

$$g_1(x) = 0.176$$

 $g_2(x) \approx 0$
 $P(1 \mid x) \approx \frac{0.176 \times 0.3}{0.176 \times 0.3 + 0 \times 0.7} = 1$
 $P(2 \mid x) \approx 0$

• Dado los datapoints $X = \{-3,2,7\}$

Las nuevas medias son

$$\frac{-}{m_1} = \frac{0 \times x_1 + 0.723 \times x_2 + 1 \times x_3}{0 + 0.723 + 1} = \frac{0 \times (-3) + 0.723 \times 2 + 1 \times 7}{1.723} = 4.9$$

$$\frac{-}{m_2} = \frac{1 \times x_1 + 0.277 \times x_2 + 0 \times x_3}{1 + 0.277 + 0} = \frac{1 \times (-3) + 0.277 \times 2 + 0 \times 7}{1.277} = -1.92$$

En Resumen

- GMM encuentra K distribuciones gaussianas que se ajustan a los datos.
 - Cada una con una media, covarianza y responsabilidad respectiva.
- Usa el algoritmo E-M para hallarlo
 - Asume una distribución
 - Determina la participación (responsabilidad) de cada distribución para los puntos
 - Ajusta las distribuciones para que refleje dichas participaciones.
 - Repetir hasta converger