assignment 6 - sensitivity analysis

May 13, 2021

```
[2]: \[ \%\html \] \( \lambda \text{link rel="stylesheet" href="style/style.css"} \]
```

<IPython.core.display.HTML object>

1 EPA1361 - Model-Based Decision Making

2 Week 3 - Sensitivity analysis

This exercise uses the same predator-prey model we used for the multi-model exercise, focusing on the Python version. As with the other exercise, define a model object for the function below, with the uncertainty ranges provided:

Parameter	Range or value
prey_birth_rate	0.015 - 0.035
predation_rate	0.0005 - 0.003
predator_efficiency	0.001 - 0.004
$predator_loss_rate$	0.04 - 0.08

- Sensitivity analysis often focuses on the final values of an outcome at the end of the simulation. However, we can also look at metrics that give us additional information about the behavior of the model over time. Using the statsmodel library and an appropriate sampling design, fit a linear regression model for each of the following indicators. What can we conclude about the behavior of the model, and about the importance of the different inputs?
 - The final values of the prey outcome
 - The mean values of the prey outcome over time, within each experiment
 - The standard deviations of the prey outcome over time, within each experiment
- Use the Sobol sampling functionality included in the Workbench to perform experiments with a sample size of N=50, then analyze the results with SALib for the same three indicators. This requires specifying the keyword argument 'uncertainty_sampling' of perform_experiments. Note that when using Sobol sampling, the meaning of the keyword argument scenarios changes a bit. In order to properly estimate Sobol scores as well as interaction effects, you require N * (2D+2) scenarios, where D is the number of uncertain parameters, and N is the value for scenarios passed to perform_experiments. Repeat the analysis for larger sample sizes, with N=250 and N=1000. How can we interpret the first-order and total indices? Are these sample sizes sufficient for a stable estimation of the indices?

You'll need to use the get_SALib_problem function to convert your Workbench experiments to a problem definition that you can pass to the SALib analysis function.

- *hint*: sobol is a deterministic sequence of quasi random numbers. Thus, you can run with N=1000 and simply slice for 1:50 and 1:250.
- Use the Extra-Trees analysis included in the Workbench to approximate the Sobol total indices, with a suitable sampling design. As a starting point, use an ensemble of 100 trees and a max_features parameter of 0.6, and set the analysis to regression mode. Are the estimated importances stable relative to the sample size and the analysis parameters? How do the results compare to the Sobol indices? For more details on this analysis see Jaxa-Rozen & Kwakkel (2018)

```
[1]: ### Start of assignment

import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm

from ema_workbench import (Model, RealParameter, TimeSeriesOutcome,
→perform_experiments, ema_logging, MultiprocessingEvaluator)

from ema_workbench.em_framework.evaluators import LHS, SOBOL, MORRIS

from ema_workbench.analysis import feature_scoring
from ema_workbench.analysis.scenario_discovery_util import RuleInductionType
from ema_workbench.em_framework.salib_samplers import get_SALib_problem
from SALib.analyze import sobol
import pandas as pd
import seaborn as sns
```

2.0.1 Python Model Creation

```
py_model.uncertainties = uncertainties
py_model.outcomes = outcomes
processes = 10
```

```
[3]: \[ \%\html \] \( <\link \] rel="stylesheet" \[ \href=\"style/style.css\" > \]
```

<IPython.core.display.HTML object>

3 Linear regression on Prey

The sampling technique chosen for this part is Latin Hypercube Sampling as recommended in the course materials. This method of sampling makes sure that there are no points of the analysis that are not "investigated".

```
[5]: with MultiprocessingEvaluator(py_model, n_processes=processes) as evaluator:
    experiments, outcomes = perform_experiments(py_model, 50, □
    →uncertainty_sampling=LHS)
```

3.1 Look at final values of prey

The final values of prey are shown in the figure below.

```
[7]: prey = pd.DataFrame(outcomes["prey"]).T
preyfinal = pd.DataFrame(prey.iloc[-1])
```

```
fig, ax = plt.subplots(figsize=(20,15), ncols=2)
prey.plot(legend=None, figsize=(14,5), ax = ax[0])
sns.histplot(data=preyfinal, ax=ax[1], legend=None, binwidth=4)
fig.suptitle('Results from prey', fontsize=20)
ax[0].set_title('(a): All prey results shown in line plot', fontsize=14)
ax[1].set_title('(b): Histplot showing final values of prey', fontsize=14)
ax[1].set_xlabel('Prey')
ax[0].set_xlabel('Time')
ax[0].set_ylabel('Prey')
fig.tight_layout()
plt.show()
```

Results from prey

Analysis

- Figure (a) shows an overview of all the different model runs. Visual analysis shows that the number of 'large' outliers is around 9. At least the runs, where the model differst more from the rest of the model behaviour.
- Figure (b) shows the final values of the prey model. Some gaps can be identified there, which means that certain scores of prey are not in the final values.

3.2 Final results - regression

```
[10]: # do the regression
mod_fv = sm.OLS(Y, X).fit()

#results of the regression
mod_fv.summary()
```

[10]: <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	1460	R-squared:	0.568
Model:	OLS	Adj. R-squared:	0.529
Method:	Least Squares	F-statistic:	14.76
Date:	Thu, 13 May 2021	Prob (F-statistic):	8.87e-08
Time:	11:38:04	Log-Likelihood:	-201.95
No. Observations:	50	AIC:	413.9
Df Residuals:	45	BIC:	423.5
Df Model:	4		

Covariance Type:	non	nrobust 						
0.975]	coef	std 6	err	t	P> t	[0.025		
 const 68.766	37.3262	15.6	310 2	2.391	0.021	5.886		
predation_rate 6396.085	666.4235	2844.7	770 (0.234	0.816	-5063.238		
<pre>predator_efficiency -1.2e+04</pre>	-1.679e+04	2363.1	149 -7	7.106	0.000	-2.16e+04		
<pre>predator_loss_rate 692.942</pre>	332.3645	179.0)26	1.857	0.070	-28.213		
prey_birth_rate 1162.495	435.1136	361.1	144 :	1.205	0.235	-292.268		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		4.139 0.126 0.673 2.684	Durbin-V Jarque-F Prob(JB) Cond. No	Bera (JB)):) :	1.958 3.979 0.137 1.39e+03		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [11]: sm.graphics.plot_partregress_grid(mod_fv)
 fig.tight_layout(pad=1.0)

The results mention that the condition number is large. Which might indicate that there is a m $\langle br \rangle$

The coefficients show that predator loss rate has the most influence on the prey-variable. The P-value indicates that we can reject the null-hypothesis. Note that the margin of error for predation rate and predator efficiency is extremely high.

3.3 Mean values - regression

Model: OLS Adj. R-squared: 0.879
Method: Least Squares F-statistic: 90.22
Date: Thu, 13 May 2021 Prob (F-statistic): 6.78e-21

Time: No. Observations: Df Residuals: Df Model: Covariance Type:	non	:38:13 50 45 4 robust	Log-Likelih	ood:	-142.98 296.0 305.5
0.975]	coef	std 6	err	t P> t	[0.025
const	28.4146	4.7	799 5.92	1 0.000	18.748
38.081					
<pre>predation_rate 883.563</pre>	-877.9919	874.6	510 -1.00	4 0.321	-2639.547
<pre>predator_efficiency -1.06e+04</pre>	-1.205e+04	726.5	538 -16.58	7 0.000	-1.35e+04
predator_loss_rate 527.340	416.4823	55.0	7.56	7 0.000	305.625
prey_birth_rate 421.447	197.8168	111.(-25.813
Omnibus:		9.157			2.212
Prob(Omnibus):		0.010	Jarque-Bera	(JB):	8.412
Skew:		0.891	Prob(JB):		0.0149
Kurtosis:		3.928	Cond. No.		1.39e+03
=======================================		======			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [14]: sm.graphics.plot_partregress_grid(mod_mean) fig.tight_layout(pad=1.0)

Date:

The results mention that the condition number is large. Which might indicate that there is a m $\ensuremath{^{<\!}}$ br>

The coefficients show that predator loss rate has the most influence on the prey-variable. The P-value indicates that we can reject the null-hypothesis. Note that the margin of error for predation rate and predator efficiency is extremely high.

3.4 Standard deviations

```
[15]: Y = outcomes["prey"].std(axis=1)
      mod std = sm.OLS(Y, X).fit()
     mod_std.summary()
[16]:
[16]: <class 'statsmodels.iolib.summary.Summary'>
      11 11 11
                                    OLS Regression Results
      Dep. Variable:
                                                R-squared:
                                                                                    0.401
      Model:
                                          OLS
                                                Adj. R-squared:
                                                                                    0.348
      Method:
                               Least Squares
                                                F-statistic:
                                                                                    7.536
```

Thu, 13 May 2021

Prob (F-statistic):

9.79e-05

Time: No. Observations: Df Residuals: Df Model: Covariance Type:	non	:38:19 50 45 4 robust	Log-Likeliho AIC: BIC:		-120.64 251.3 260.8
0.975]	coef	std 6			[0.025
const	11.0209	3.0	3.590	0.001	4.838
17.204					
predation_rate 2637.918	1511.1281	559.4	150 2.701	0.010	384.338
<pre>predator_efficiency 2887.015</pre>	1950.9905	464.7	735 4.198	0.000	1014.966
<pre>predator_loss_rate 5.260</pre>	-65.6511	35.2	207 -1.865	0.069	-136.562
prey_birth_rate 112.485	-30.5615	71.0			-173.608
Omnibus:		2.443			1.797
<pre>Prob(Omnibus):</pre>		0.295	Jarque-Bera	(JB):	1.639
Skew:		0.145	Prob(JB):		0.441
Kurtosis:		3.838	Cond. No.		1.39e+03
============		======		========	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.39e+03. This might indicate that there are strong multicollinearity or other numerical problems.
- [17]: sm.graphics.plot_partregress_grid(mod_std)
 fig.tight_layout(pad=1.0)

The results mention that the condition number is large. Which might indicate that there is a moder's

The coefficients show that predator loss rate has the most influence on the prey-variable. The P-value indicates that we can not reject the null-hypothesis. Note that the margin of error for predation rate and predator efficiency is extremely high.

3.4.1 Comparison of the coefficients

The following part is used to analysise the coefficients.

```
[18]: params = pd.DataFrame(mod_fv.params, columns=["final"])
    params["means"] = mod_mean.params
    params["std"] = mod_std.params
    params.drop(index="const", inplace=True)

fig, ax = plt.subplots(figsize=(10,5))
    params.plot.bar(ax=ax)
    plt.show()
```


3.4.2 Comparison of rsquared

```
[19]: print(mod_fv.rsquared_adj)
print(mod_mean.rsquared_adj)
print(mod_std.rsquared_adj)
```

- 0.5290948580679158
- 0.8792716309677742
- 0.34791934824663817

Analysis

The R-Squared results show that the standard deviation results R-squared score is too low to take into account, the same counts for the final-values regression analysis. Only the results from the mean-regression have a high enour R-squared value. As this is the only value above 0.8 or 80%.

3.5 # Sobol

Start of the Sobol analysis

```
[24]: for N in [50, 250, 1000]:
          with MultiprocessingEvaluator(py_model, n_processes=processes) as evaluator:
              sa_experiments, sa_outcomes = perform_experiments(py_model,__
       →scenarios=N, uncertainty_sampling=SOBOL)
          problem = get_SALib_problem(py_model.uncertainties)
          Si = sobol.analyze(problem, sa_outcomes['prey'].ravel(),__
       →calc_second_order=True, print_to_console=False)
          scores_filtered = {k:Si[k] for k in ['ST', 'ST_conf', 'S1', 'S1_conf']}
          Si_df = pd.DataFrame(scores_filtered, index=problem['names'])
          sns.set_style('white')
          fig, ax = plt.subplots(1)
          indices = Si df[['S1','ST']]
          err = Si_df[['S1_conf','ST_conf']]
          indices.plot.bar(yerr=err.values.T,ax=ax)
          name = 'N size = ' + str(N)
          fig.suptitle(name, fontsize=20)
          fig.set_size_inches(8,6)
          fig.subplots_adjust(bottom=0.3)
          plt.show()
```

N size = 50

N size = 250

N size = 1000

Analysis

The figure above shows that for an N value of 50 none of the variables S1 value is higher than the Total effect. However, more important, the inputs where ST index =~ 0 should be discarded. The ST index for the four variables is close to 0 as they are all below 0.005, and examples form the course theory talk abou the 0.1> range. For an N value of 250 none of the variables S1 value is higher than the Total effect. However, more important, the inputs where ST index =~ 0 should be discarded. The ST index for the four variables is close to 0 as they are all below 0.005, and examples form the course theory talk abou the 0.1> range. For an N value of 1000 the total indices none of the variables S1 value is higher than the Total effect. However, more important, the inputs where ST index =~ 0 should be discarded. The ST index for the four variables is close to 0 as they are all below 0.005, and examples form the course theory talk abou the 0.1> range. Note that the error margin, shown with the black lines get's smaller with the size of N increasing. The sample size does not seem high enough to make a for a stable estimation.

3.6 ## Extra-trees analysis

Now continue with the extra-trees analysis

```
[25]: sobol_mean = pd.Series([i.mean() for i in sa_outcomes["prey"]]).astype('int')
sobol_std = pd.Series(sa_outcomes["prey"].std(axis=1)).astype('int')
sobol_final = pd.DataFrame(sa_outcomes["prey"]).T.iloc[-1]
```

```
scores = []
for y in [sobol_mean, sobol_std, sobol_final]:
    scores.append(feature_scoring.get_ex_feature_scores(sa_experiments, y,___
mode=RuleInductionType.REGRESSION, nr_trees=100, max_features=0.6)[0])

for i in scores:
    sns.heatmap(i, annot=True, cmap='viridis')
    plt.show()
```


Sobol mean, the first figure, shows that predator_efficieny has the highest influence on the prey variable. For the standard deviation, this is predation_rate. The last figure shows the final_values and that predator_efficiency is again the most important. All values above 0.05 can be considered stable enough for analysis. This means that prey_birth_rate and predation_rate are not stable enough compared to sample size.

```
[28]: scores_df = pd.concat(scores, axis=1, sort=False)
scores_list = scores_df.to_numpy()
```


The figure above shows that compared with the three different methods, predator_efficing is the most important value for the prey value. The results can not be compared to the sobol indices as they don't show any valid results.