

Description of Transport Codes for Space Radiation Shielding

Myung-Hee Y. Kim¹, John W. Wilson², and Francis A. Cucinotta³

¹Division of Space Life Sciences, Universities Space Research Association, Houston, TX 77058 ²Distinguished Research Associates, NASA Langley Research Center, Hampton, VA 23681 ³Space Radiation Program, NASA Johnson Space Center, Houston, TX 77058

Introduction

- Radiation transport codes, when combined with Risk Projection models, are main tool for shielding study and design.
- Approaches to assess the accuracy of Transport Codes:
 - Ground-based studies with defined beams and material layouts
 - Inter-comparison of transport code results for matched boundary conditions
 - Comparisons to flight measurements
- NASA's HZETRN/QMSFRG code has a very high degree of congruence for each of these criteria.

Damage

Components of Space Radiation Shield Design

NSRL for Biophysics Applications

Approximate Composition

 $N_{101.7}O_{33.1}AI_{36}$

Density: 0.00194 g/cm³

Thickness: 1.2166 g/cm²

N: 2.09 10²² atoms/g

O: 6.81 10²¹ atoms/g

Al: 7.41 10²¹ atoms/g

Fragmentation Cross Sections: Comparison of QMSFRG to Si and Fe Beams

NSRL Bragg Curve Comparison to GCR Event-based Risk Model (GERM)

Thick Target Comparison with NASA's GERMCode* and GRNTRN Code*

Iron (1 GeV/u) on Polyethylene

^{*}HZETRN uses identical Nuclear Cross Sections and Atomic Data

Space Weather Prediction Center, NWS, NOAA

Space Environmental Models

Fit to Proton Measurements for Continuous Spectrum

Functional Forms with Measurements

- Exponential in Rigidity or Energy: $\Phi(>R)=J_0 \exp(-R/R_0)$ or $\Phi(>E)=J_0 \exp(-E/E_0)$
- Sum of Two Exponentials : $\Phi(>E)=J_1 \exp(-E/E_1) + J_2 \exp(-E/E_2)$
- Weibull Function in Energy : $\Phi(>E)=J_0 \exp(-\kappa E^{\alpha})$

Band Function with 4 Parameters $(J_0, \gamma_1, \gamma_2, R_0)$: Double Power Law in Rigidity

$$\Phi(>R) = J_0 R^{-\gamma_1} e^{-R/R_0} \qquad \text{for } R \le (\gamma_2 - \gamma_1) R_0$$

$$\Phi(>R) = J_0 R^{-\gamma_2} \left\{ \left[(\gamma_2 - \gamma_1) R_0 \right]^{(\gamma_2 - \gamma_1)} e^{(\gamma_1 - \gamma_2)} \right\} \qquad \text{for } R \ge (\gamma_2 - \gamma_1) R_0$$

Interplanetary Galactic Cosmic Ray Energy Spectra

Advanced Composition Explorer/Cosmic Ray Isotope Spectrometer

Badhwar-O'Neill Model fit of ACE CRIS oxygen energy spectra measurements near solar minimum and near solar maximum Solar modulation parameter:
ACE CRIS oxygen measurements (line);
IMP-8 (Z>8) channel 7 measurements (○)

Geometry Models

Shield Geometry Model and Shielding Analysis by CAD

Structural Distribution Model for Layers of Spacecraft Using ProE™/Fishbowl

Property of the Property of th

Human Geometry Models and Active Marrow Distributions

Computerized Anatomical Male

Programme

Inter-Comparisons of Transport Codes

Heinbockel JH et al., NASA TP 2009-215560, 2009

Evaluation of Detector Response TEPC Response for Trapped Protons on STS-89 -

Phantom Torso Experiment (PTE) of ISS/STS **TLD Dose Contours of Brain Slice**

Organ Dose Equivalent using CR-39/TLD, mSv								
Tissue	Measured	HZETRN/QMSFRG	Difference (%)					
Skin Thyroid Bone surface Esophagus Lung Stomach Liver Bone marrow Colon Bladder Gonad Chest Remainder	4.5±0.05 4.0±0.21 5.2±0.22 3.4±0.49 4.4±0.76 4.3±0.94 4.0±0.51 3.4±0.40 3.6±0.42 3.6±0.24 4.7±0.71 4.5±0.11 4.0±0.57	4.7 4.0 4.0 3.7 3.8 3.6 3.7 3.9 3.9 3.5 3.9 4.5 4.0	4.4 0 -23.1 8.8 -13.6 -16.3 -7.5 14.7 8.3 -2.8 -17.0 0					
Effective dose	4.1±0.22	3.9	-4.9					

Yasuda et al., 2002

Active Dosimetry Data, mGy/d								
Organ	Tra	pped	G	CR	To	otal	Difference	
	Expt	Model	Expt	Model	Expt	Model	(%)	
Brain Thyroid Heart Stomach Colon	0.051 0.062 0.054 0.050 0.055	0.066 0.072 0.061 0.057 0.056	0.076 0.074 0.075 0.076 0.073	0.077 0.077 0.076 0.077 0.076	0.127 0.136 0.129 0.126 0.128	0.143 0.148 0.137 0.133 0.131	13.3 9.4 6.7 5.5 2.5	

Predictions for Mars Mission

Radiation type

Model-based Prediction of SPE Occurrence

SPE onset date

Model-based Prediction of SPE Fluence

Propensity of SPEs: Hazard Function of Offset β Distribution Density Function

$$\lambda(t) = \frac{\lambda_0}{4000} + \frac{K}{4000} \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} \left(\frac{t}{4000}\right)^{p-1} \left(1 - \frac{t}{4000}\right)^{q-1} \quad (0 \le t \le 4000)$$

Mission duration, d

Effective dose on Mars Surface with MOLA Topography

Altitude, km	T, °C	p, kPa	Atmospheric shielding thickness, g/cm ²		
			Low density	High density	
			model	model	
8.0	-41.16	0.34	0.14	0.19	
4.0	-34.99	0.49	6.73	9.25	
2.0	-33.00	0.58	10.97	15.08	
0.0	-31.00	0.7	16.00	22.00	
-2.0	-29.00	0.84	19.04	26.17	
-4.0	-27.01	1.00	22.64	31.13	
-8.0	-23.02	1.44	32.00	44.00	

Conclusion

- Highly accurate descriptions of space environment models are available:
 - ➤ Inter-stellar GCR composition accuracy: ~5% for abundant elements (oxygen, carbon, and iron); less than 10% for all major GCR components; and solar modulation parameters with the 98.9% correlation in various spacecraft measurements.
 - > Probabilistic SPE occurrence model as a tool for managing the risk.
 - ➤ Comprehensive catalogue of GLE fluences and spectra assembled for shielding design application using satellites and NM spectra;
- Radiation transport codes have been validated extensively:
 - \triangleright QMSFRG model agrees for absorption σ -section within +5% and elemental fragment σ -section $\pm 25\%$.
 - Good agreement found from inter-comparisons of transport codes.
 - \triangleright Comparison of model prediction to flight measurements: accuracy less than 15 % for GCR dose rates; ~25% for secondary particles; and $\pm 30\%$ for quality factors by TEPC.
 - ➤ Minor scientific questions remained: low-energy light ion cross section, albedo protons, secondary pions, and kaons.
- Space Radiation Shield Design Tool for the reliable and realistic radiation simulation in the early design process of exploration missions:
 - ➤ Environmental models, shielding and body geometry models, atomic and nuclear interaction and fragmentation models are incorporated.