Chapter 4

Time Response

a. System showing input and output; **b.** pole-zero plot of the system; c. evolution of a system response. Follow blue arrows to see the evolution of the response component generated by the pole or zero.

Figure 4.2
Effect of a real-axis
pole upon transient

response

Figure 4.3 System for Example 4.1

$$R(s) = \frac{1}{s}$$

$$(s+3)$$

$$(s+2)(s+4)(s+5)$$

- a. First-order system;
- **b.** pole plot

Figure 4.5
First-order system response to a unit step

Figure 4.6
Laboratory results
of a system step
response test

Figure 4.7
Second-order
systems, pole plots,
and step
responses

Figure 4.8
Second-order
step response
components
generated by
complex poles

Figure 4.9 System for Example 4.2

$$R(s) = \frac{1}{s}$$

$$\frac{200}{s^2 + 10s + 200}$$

Figure 4.10
Step responses
for second-order
system
damping cases

Figure 4.11
Second-order response as a function of damping ratio

Figure 4.12 Systems for Example 4.4

Figure 4.13
Second-order underdamped responses for damping ratio values

Figure 4.14
Second-order
underdamped
response
specifications

Figure 4.15
Percent
overshoot vs.
damping ratio

Figure 4.16
Normalized rise time vs. damping ratio for a second-order underdamped response

Figure 4.17
Pole plot for an underdamped second-order system

Lines of constant peak time, T_p , settling time, T_s , and percent overshoot, %OS

Note: $T_{s_2} < T_{s_1}$; $T_{p_2} < T_{p_1}$; %OS₁ < %OS₂

Figure 4.19 Step responses of second-order underdamped systems as poles move: a. with constant real part; **b.** with constant imaginary part; c. with constant damping ratio

Figure 4.20
Pole plot for Example 4.6

Rotational mechanical system for Example 4.7

The Cybermotion SR3 security robot on patrol. The robot navigates by ultrasound and path programs transmitted from a computer, eliminating the need for guide strips on the floor. It has video capabilities as well as temperature, humidity, fire, intrusion, and gas sensors.

Component responses of a three-pole system:

- a. pole plot;
- **b.** component responses: nondominant pole is near dominant second-order pair (Case I), far from the pair (Case II), and at infinity (Case III)

Figure 4.24 Step responses of system $T_1(s)$, system $T_2(s)$, and system $T_3(s)$

Figure 4.25
Effect of adding a zero to a two-pole system

Figure 4.26
Step response of a nonminimum-phase system

Figure 4.27
Nonminimum-phase electrical circuit

Step response of the nonminimum-phase network of Figure 4.27 (c(t)) and normalized step response of an equivalent network without the zero $(-10c_o(t))$

a. Effect of amplifier saturation on load angular velocity response;
b. Simulink block diagram

Figure 4.30
a. Effect of
deadzone on
load angular
displacement
response;
b. Simulink block
diagram

Figure 4.31 a. Effect of backlash on load angular displacement response; **b.** Simulink block diagram

Antenna azimuth position control system for angular velocity:

- a. forward path;
- **b.** equivalent forward path

Figure 4.33
Unmanned
Free-Swimming
Submersible
(UFSS) vehicle

Figure 4.34
Pitch control loop for the UFSS vehicle

Figure 4.35
Negative step
response of pitch
control for UFSS
vehicle

Figure 4.36
A ship at sea, showing roll axis

$$\frac{R(s)}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{C(s)}{s}$$

Figure P4.9 (figure continues)

©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e

Figure P4.9 (continued)

©2000, John Wiley & Sons, Inc. Nise/Control Systems Engineering, 3/e

Steps in determining the transfer function relating output physical response to the input visual command

Step 1: Light source on

Step 2: Recognize light source

Step 3: Respond to light source

Figure P4.11
Vacuum robot lifts
two bags of salt

Figure P4.20 Pump diagram

