

Tema-2-Ejercicios.pdf

CarlosGarSil98

Modelos Avanzados de Computacion

4º Grado en Ingeniería Informática

Escuela Técnica Superior de Ingeniería Universidad de Huelva

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Continúa de

405416_arts_esce ues2016juny.pdf

Top de tu gi

Modelos Avanzados de Computación

Ejercicios del Tema 2

Ejercicio 2.1

- a) ¿Cuantas funciones binarias diferentes sobre 2 variables de entrada pueden construirse con una única puerta NAND?.
- b) ¿Y con dos puertas NAND?

Apartado a:

ĸ	Y	× Q	Y 9	XY	XX	YY
0	0	•	•	4	٨	1
0	4	•	4	A	4	0
4	0	4	•	4	•	4
1	4	4	4	•	•	0

Apartado b:

X	Y	ΧØ	Y Ø	XY	XX	YY	XYX	XYY	xxx	g k Y	YYX	YYY
0	0	0	0	4	4	4	4	4	4	4	4	4
0	1	0	4	4	1	0	4	0	4	0	4	1
1	0	1	0	1	0	4	0	1	4	4	•	1
1	4	4	1	ø	0	0	4	1	٦	4	4	1
NA	Haciendo uso de dos puertas NAND, obtenemos S funciones diferentes											

Ejercicio 2.2

Se denomina función de paridad de n entradas a la función que devuelve 1 si el número de 1's es par v 0 en caso contrario.

- a) Construya el circuito que desarrolla la función de paridad en Forma Normal Disyuntiva (DNF). ¿Que tamaño tiene? ¿Puede reducirse como Suma de Productos (SOPE)?
- b) Construya el circuito que desarrolla la función de paridad en Ring-Sum Expansion (RSE). ¿Que tamaño tiene?

Apartado a:

A modo de ejemplo, vamos a realizarlo para n=3

X,	X,	Χz	Paridad
0	0	0	4
0	•	1	0
0	1	•	D
٥	1	1	4
1	0	0	0
1	0	1	4
1	4	0	4
4	4	4	0

Forma Normal Disyuntiva (DNF):

Paridad =
$$\overline{X}_0 \overline{X}_1 \overline{X}_2 \cup \overline{X}_0 X_1 X_2 \cup X_0 \overline{X}_1 X_2 \cup X_1 \overline{X}_2$$
 $2^3 = 8$, tenemos 4 mintérminos, es decir: $8 \cdot \frac{A}{2} = 4$
generalitando al caso N:

 $2^n \cdot \frac{A}{2} = 2^{n-4}$. Tenemos un tamaño = 2^{n-1}

suma de productos (SOPE):

No se puede ya que existe una diferencia de 2 variables entre los mintérminos y es necesaria, para simplificar, una diferencia de 2.

Aparta do b:

```
Partimos de la función de Paridad en DNF
```

Paridad (DNF) =
$$\overline{X}_{o} \overline{X}_{i} \overline{X}_{i} U \overline{X}_{o} X_{i} X_{i} U X_{o} \overline{X}_{i} X_{i} U X_{o} X_{i} \overline{X}_{i}$$

Paridad (RSE) =
$$\overline{X}_{o} \overline{X}_{1} \overline{X}_{1} \oplus \overline{X}_{o} X_{1} X_{2} \oplus X_{o} \overline{X}_{1} X_{2} \oplus X_{o} X_{1} \overline{X}_{2}$$

Paridad (RSE) =
$$(x_0 \oplus 1)(x_4 \oplus 1)(x_2 \oplus 1)$$

 $\oplus (x_0 \oplus 1)x_1x_2$
 $\oplus x_0(x_4 \oplus 1)x_2$
 $\oplus x_0x_1(x_2 \oplus 1)$

Paridad (RSE) =
$$X_0 \times_1 X_1 \oplus X_0 \times_4 \oplus X_1 \times_4 \oplus X_4 \oplus X_$$

$$\oplus$$
 X° X' X' \oplus X' X'

Paridad (RSE) =
$$\frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times X_2}{X_0 \times X_1 \times X_2} \oplus \frac{X_0 \times X_1 \times$$

⊕ X₀ X₁ X₁

Paridad (RSE) =
$$X_0 X_1 \oplus X_0 \oplus X_1 \oplus X_2 \oplus 1$$

$$\frac{Paso 2: cambiar}{X por(X \oplus 1)}$$

Ejercicio 2.3

Se denomina *modulo3* (*mod3*) a la función booleana definida sobre n variables que devuelve 1 si el número de 1s es múltiplo de 3.

- a) Demuestre que el tamaño del circuito que desarrolla la función mod3 en Forma Normal Disyuntiva (DNF) o Suma de Productos (SOPE) crece de forma exponencial con n.
- b) Demuestre que el tamaño del circuito que desarrolla la función mod3 en Forma Normal Conjuntiva (CNF) o Producto de Sumas (POSE) crece de forma exponencial con n.
- c) Demuestre que el tamaño del circuito que desarrolla la función mod3 en Ring-Sum Expansion (RSE) crece de forma exponencial con n.

X4	XZ	X3	mod 3
0	0	0	1
0	0	4	0
0	4	0	0
0	1	4	0
1	0	•	0
1	0	1	0
1	4	•	0
1	1	1	1

- a) Forma Normal Disguntiva (DNF):
 - n -> 2" · 1/3; Aproxi madamente sique siendo exponencial.
- b) Forma Normal Conjuntiva (CNF):

C) Ring-Sum Expansion (RSE): Signe siendo exponencial.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Ejercicio 2.4

- a) Construya un circuito lógico con 3 entradas (x0, x1, x2) y 3 salidas (z0, z1, z2) que genere los siguientes resultados:
- z0 es 1 si el número de 1's (N) es divisible entre 3 (N mod 3=0) y 0 en caso contrario.
- z1 es 1 si N mod 3=1 y 0 en caso contrario.
- z2 es 1 si N mod 3=2 y 0 en caso contrario.
- b) En base al circuito anterior, construya de manera recursiva circuitos de n+1 entradas que generen las salidas z0, z1 y z2.
- c) Calcule el tamaño y la profundidad del circuito anterior en función del número de entradas.

X4	XZ	X3	24	72	23
0	0	0	1	•	•
0	0	1	0	1	•
0	1	0	•	0	•
0	4	1	•	0	4
1	0	0	•	4	0
4	0	1	0	4	1
1	4	0	0	•	4
1	4	1	4	0	0

a)
$$\begin{aligned}
Z_0 &= \overline{X_0} \overline{X_1} \overline{X_2} & \cup X_0 X_1 X_2 \\
Z_1 &= \overline{X_0} \overline{X_1} X_2 & \cup \overline{X_0} X_1 \overline{X_2} & \cup X_0 \overline{X_1} \overline{X_2} \\
Z_2 &= \overline{X_0} X_1 X_2 & \cup X_0 \overline{X_1} X_2 & \cup X_0 X_1 \overline{X_2}
\end{aligned}$$
3 NOT
46 AND
5 OR
$$\begin{aligned}
&\text{Tamaño} \\
&\text{S or}
\end{aligned}$$

b) 4 entradas:

$$\mathbf{z}_{1} = \mathbf{Y}_{2} \overline{\mathbf{X}_{3}} \quad \mathbf{U} \quad \mathbf{Y}_{1} \mathbf{X}_{3}$$

$$\mathbf{z}_{2} = \mathbf{Y}_{2} \overline{\mathbf{X}_{3}} \quad \mathbf{U} \quad \mathbf{Y}_{1} \mathbf{X}_{3}$$

c)
$$\Omega$$
 (circuito) = 24 + (n+3) · 40
D(circuito) = 5 + (n+3) · 3

