CSCU9YQ - NoSQL Databases

Lecture 10a: Intro to Complex Networks

Prof Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ University of Stirling

North America (ARIN)

Europe (RIPE)

Latin America (LACNIC)

Asia Pacific (APNIC)

Africa (AFRINIC)

"Backbone" (highly connected networks)

A visual Map of the Internet

- Project started in 2003 by computer scientist and artist Barrett Lyon, last visualisation 2015
- Map of routing paths: paths through which information flows from router to router all across the world.
- Nodes: IP addresses (devices such as routers)
- Lines (edges): links between nodes. The length of the lines are indicative
 of the delay between those two nodes.
- Colour: different regions of the world

http://www.opte.org/the-internet/

Facebook's Social Network Graph, By Paul Butler

- 10 million friend pairs from Facebook's Hadoop-based database
- Nodes: cities
- Edges: connect two cities if there is at least one friend-pair. Edge weight is proportional to the number of friends between them. Edge colours depend on their weight from black to blue to white.

Resources

Books

- Network Science Book by <u>Laszlo Barabasi</u> et al. <u>http://barabasi.com/networksciencebook/</u>)
- Networks: An Introduction, M. E. J. Newman, Oxford University Press,
 Oxford (2010)

Articles

- Newman, M. E. (2003). <u>The structure and function of complex networks</u>.
 SIAM review, 45(2):167–256
- Newman, M. E. (2001) <u>The structure of scientific collaboration networks</u>.

What is a Network?

- A collection points that are connected with lines
- A Graph is an ordered pair G = (V, E), where V set of vertices, E set of edges (2-element subsets of V)
- Graph: mathematical abstraction,
- Network: real world instantiation

Points	Lines	Discipline
vertices	edges, arcs	Math (Graph Theory)
nodes	links	Computer Science
sites	bonds	Physics
actors	ties, relations	Sociology

Terminology according to the discipline

What is a Complex Network?

- Have nontrivial topological features, i.e. its structure is irregular as opposed to regular/simple.
- Are not random either
- Can evolve over time

Regular Graphs

Types of networks

(a) un-weighted, undirected

- (b) discrete vertex and edge types, undirected
- (c) varying vertex and edge weights, undirected
- (d) Directed (also called arcs)

From (Newman, 2003)

General concepts: Degree and Degree Distribution

• Degree $\delta(i)$ of vertex i: number of edges incident on i

 Degree distribution: probability distribution of these degrees over the whole network.

General concepts: Diameter and shortest path

- Shortest path: the path between two nodes that visits the fewest intermediate nodes (path with less edges)
 - In the graph above, A->B->C->D is shorter than

A->B->C->B->D (disallowing loops)

Let d(v_i, v_i) be the shortest-path distance between nodes i and j

Diameter: length of the longest shortest path between two vertices of the graph

$$D = \max d(v_i, v_j)$$

$$l_G = rac{1}{n \cdot (n-1)} \cdot \sum_{i
eq j} d(v_i, v_j)$$

What is a social network?

- A social network is a collection of people, each of whom is acquainted with some subset of the others
- Represented as a set of points (or vertices) denoting people, joined in pairs by lines (or edges) denoting acquaintance.
- One could, in principle, construct the social network for a company or firm, for a school or university, or for any other community up to and including the entire world.

N **EXAMPLE** 유 SMALL COAUTHORSHIP

NETWORK

Collaborations among scientists at a private research institution.

Nodes in the network represent scientists, and a line between two of them indicates they coauthored a paper during the period of study.

This network seems to divide into a number of subcommunities, as indicated by the shapes and colours of the nodes

These subcommunities correspond roughly to 12 topics of research,

A Larger Co-authorship Network by Gabriela Ochoa and Nadarajen Veerapen

- Genetic and Evolutionary Computation Conference (GECCO)
- Data from 2005 2017

Why to study social networks?

- Inherent interest in the patterns of human interaction
- Their structure has important implications for the spread of information and disease.
- For example, the average no. of acquaintances individuals have (average *degree*) might substantially influence the propagation of a rumour, a fashion, a joke, or this year's flu.
- Understanding influence and public opinion formation

Network Science & Data Science

Interdisciplinary Nature

 Network science offers a language through which different disciplines can seamlessly interact with each other.

Data driven Nature

 What distinguishes network science from graph theory is its empirical nature, i.e. its focus on data and utility. It offers insights about a system's structure or evolution.

Computational Nature

 Given the size of many of the networks we explore, and the exceptional amount of data behind them, network science offers computational challenges.

Computational Tools

Graph/Network Database Management Systems

- DSE Graph
- InfiniteGraph
- Neo4j
- OrientDB
- TitanDB

Network Analysis and Visualisation Tools

- <u>NetworkX</u> library for Python
- igraph library for both Python and R
- Gephi visualisation and analysis software