

Changing the Variable: u-Substitution with Exponential Functions

by Sophia

WHAT'S COVERED

In this lesson, you will find antiderivatives of composite functions that involve exponential functions. Specifically, this lesson will cover:

- 1. Indefinite Integrals Where the Inner Function Is Exponential
- 2. Indefinite Integrals Where the Outer Function Is Exponential

1. Indefinite Integrals Where the Inner Function Is Exponential

Even though we talked about exponential functions with base "a" in the past, we will focus on exponential functions with base e for the sake of finding antiderivatives.

Recall the derivative formula: $D[e^u] = e^u \cdot u'$

These will be useful in making substitutions where the inside function is exponential.

$$ightharpoonup$$
 EXAMPLE Find the indefinite integral: $\int e^x \sin(e^x) dx$

Note that θ^{X} is the inner function, and it is also a factor in the integrand. This means a*u*-substitution will work.

$$\int e^x \sin(e^x) dx$$
 Start with the original expression.
$$= \int \sin u du$$
 Make the substitution: $u = e^x$ Find the differential: $du = e^x dx$ Replace the inner e^x with u and dx with $e^u du$.
$$= -\cos u + C$$
 Use the antiderivative rule for $\sin u$.
$$= -\cos(e^x) + C$$
 Back-substitute $u = e^x$.

Thus,
$$\int e^x \sin(e^x) dx = -\cos(e^x) + C$$
.

When making the substitution $u = e^{x}$, it can be difficult to know where the substitutions go in the integral.

Remember, the goal is to make $\int (expression)dx$ look like $\int (expression)du$. Therefore, the term with the du should always be outside the function, and u should always go inside the function. Here is one to try on your own.

Consider
$$\int e^x \sqrt{e^x + 4} dx$$
.

Find the indefinite integral.

$$\frac{2}{3}(e^x+4)^{3/2}+C$$

Here is an example with a more complicated substitution.

ightharpoonup EXAMPLE Find the indefinite integral: $\int \frac{e^{4x}}{e^{4x} + 20} dx$

 $\int \frac{e^{4x}}{e^{4x} + 20} dx$ Start with the original expression.

 $= \int \frac{1}{u} \cdot \frac{1}{4} du$ Make the substitution: $u = e^{4x} + 20$

Find the differential: $du = 4e^{4x}dx$

Solve for $e^{4x}dx$: $e^{4x}dx = \frac{1}{4}du$

Then, make the following replacements: $e^{4x} + 20 \rightarrow u$, $e^{4x} dx \rightarrow \frac{1}{4} du$

 $= \frac{1}{4} \int \frac{1}{u} du$ Move the constant $\frac{1}{4}$ outside the integral sign.

 $= \frac{1}{4} \ln|u| + C \qquad \text{Use the antiderivative rule for } \frac{1}{u}.$

 $= \frac{1}{4} \ln \left| e^{4x} + 20 \right| + C$ Back-substitute $u = e^{4x} + 20$.

Thus, $\int \frac{e^{4x}}{e^{4x} + 20} dx = \frac{1}{4} \ln |e^{4x} + 20| + C$. It's worth noting that since $e^{4x} + 20$ is positive for all real

numbers x, the antiderivative can be written without the use of absolute value. That is,

$$\int \frac{e^{4x}}{e^{4x} + 20} dx = \frac{1}{4} \ln(e^{4x} + 20) + C.$$

+

Consider
$$\int \frac{3e^{8x}}{(e^{8x}+15)^3} dx.$$

Find the indefinite integral.

$$\frac{-3}{16}(e^{8x}+15)^{-2}+C$$
 or $\frac{-3}{16(e^{8x}+15)^2}+C$

2. Indefinite Integrals Where the Outer Function Is Exponential

Now we will move on to antiderivatives where the exponential is the outer function. Let's look at an example to see how this is different:

$$ightharpoonup$$
 EXAMPLE Find the indefinite integral: $\int e^{3x} dx$

Note: the inner function is "3x" since we know the antiderivative of θ^u . This is where we start:

$$\int e^{3x} dx$$
 Start with the original expression.

$$= \int e^{u} \cdot \frac{1}{3} du$$
 Make the substitution: $u = 3x$
Find the differential: $du = 3dx$

Find the differential:
$$du = 3dx$$

Solve for
$$dx$$
: $dx = \frac{1}{3}du$

$$= \frac{1}{3} \int e^{u} du$$
 Move the constant $\frac{1}{3}$ outside the integral sign.

$$= \frac{1}{3}e^{u} + C$$
 Use the antiderivative rule for e^{u} .

$$= \frac{1}{3}e^{3x} + C \qquad \text{Back-substitute } u = 3x.$$

Thus,
$$\int e^{3x} dx = \frac{1}{3}e^{3x} + C$$
.

This result is used so often that it might be handy to remember this formula:

Antiderivative of e^{kx} , Where k is a Constant

$$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$$

Consider $\int e^{-x} dx$.

Find the indefinite integral.

Here is another more complicated example.

ightharpoonup EXAMPLE Find the indefinite integral: $\int 12x^2e^{-6x^3}dx$

Note: the inner function is " $^{-6}\chi^{3}$ " since we know the antiderivative of e ". This is where we start:

 $\int 12x^2 e^{-6x^3} dx$ Start with the original expression.

 $= \int e^{u} \cdot \left(-\frac{2}{3}\right) du$ Make the substitution: $u = -6x^3$

Find the differential: $du = -18x^2 dx$

Solve for $x^2 dx$: $x^2 dx = \frac{-1}{18} du$

Then, make the following replacements: $-6x^3 \rightarrow u$, $x^2dx \rightarrow \frac{-1}{18}du$

Note: $12\left(\frac{-1}{18}du\right) = \frac{-2}{3}du$

= $-\frac{2}{3}\int e^{u}du$ Move the constant $-\frac{2}{3}$ outside the integral sign.

 $= \frac{-2}{3}e^{u} + C \quad \text{Use the antiderivative rule for } e^{u}.$

 $= \frac{-2}{3}e^{-6x^3} + C$ Back-substitute $u = -6x^3$.

Thus, $\int 12x^2e^{-6x^3}dx = \frac{-2}{3}e^{-6x^3} + C$.

Consider $\int e^{-2\cos x} (\sin x) dx$.

Find the indefinite integral.

$$\frac{1}{2}e^{-2\cos x}+C$$

₽

SUMMARY

In this lesson, you learned how to use u-substitution to find indefinite integrals where the inner function is exponential and the outer function is exponential. With exponential functions added, this

expands your capabilities for finding more antiderivatives. You now have a sizable toolbox from which to apply antiderivatives, which is what we'll do in the next tutorial and in Challenge 5.4.

SOURCE: THIS WORK IS ADAPTED FROM CHAPTER 4 OF CONTEMPORARY CALCULUS BY DALE HOFFMAN.

FORMULAS TO KNOW

Antiderivative of ekx, Where k is a Constant

$$\int e^{kx} dx = \frac{1}{k} e^{kx} + C$$