MAP 433 : Introduction aux méthodes statistiques. Cours 7

9 Octobre 2015

Aujourd'hui

- 1 Tests asymptotiques
 - Elements de la théorie asymptotique des tests
 - Efficacité asymptotique relative
- 2 Quelques tests asymptotiques
 - Test du rapport de vraisemblance
 - Tests de Wald
 - Test de Rao
- 3 Tests d'adéquation
 - Tests de Kolmogorov-Smirnov
 - Tests du χ^2

Quelques définitions

- Soit (P_θ, θ ∈ Θ) une famille de probabilités sur (X, X) admettant des densités {f(θ, x), θ ∈ Θ} par rapport à une mesure de domination µ.
- Supposons que nous disposions d'un *n*-échantillon $(X_1, X_2, ..., X_n)$ de ce modèle statistique.
- Considérons le problème de tester l'hypothèse de base $H_0: \theta \in \Theta_0$ contre l'alternative $H_1: \theta \in \Theta_1$, où $\Theta_0 \cap \Theta_1 = \emptyset$ et $\Theta_0 \cup \Theta_1 = \Theta$.
- Un test pour un échantillon de taille *n* est une fonction mesurable

$$\varphi_n: \mathsf{X}^n \to [0,1]$$
.

■ Si le test est non randomisé $\varphi_n \in \{0,1\}$ et l'ensemble

$$\{(x_1,\ldots,x_n)\in\mathsf{X}^n,\varphi_n(x_1,\ldots,x_n)=1\}$$

est appelée la région critique du test.

Tests asymptotiques

■ On dit qu'une suite de tests $\{\varphi_n, n \in \mathbb{N}\}$ est asymptotiquement de niveau α pour $\alpha \in [0,1]$ si

$$\lim_{n\to\infty}\mathbb{E}^n_{\theta}[\varphi_n(X_1,\ldots,X_n)]\leq\alpha\,,\text{pour tout }\theta\in\Theta_0$$

La puissance de ce test est la fonction

$$\theta \mapsto \pi_n(\theta) = \mathbb{E}_{\theta}^n[\varphi_n(X_1,\ldots,X_n)]$$

■ On dit qu'une suite de tests $\{\varphi_n, n \in \mathbb{N}\}$ est asymptotiquement consistante si, pour tout $\theta \in \Theta_1$,

$$\lim_{n\to\infty}\pi_n(\theta)=1.$$

Modèle régulier

Definition

La famille de densités $\{f(\theta,\cdot), \theta \in \Theta\}$, par rapport à la mesure dominante μ , $\Theta \subset \mathbb{R}^d$, est régulière si

- Θ ouvert et $\{f(\theta,\cdot)>0\}=\{f(\theta',\cdot)>0\}, \forall \theta,\theta'\in\Theta$.
- $\blacksquare \mu$ -p.p. $\theta \leadsto f(\theta, \cdot)$ est C^2 .
- Pour tout $\theta \in \Theta$, il existe un voisinage $V_{\theta} \subset \Theta$ t.q. pour $\tilde{\theta} \in V_{\theta}$

$$|\nabla_{\theta}^{2} \log f(\tilde{\theta}, x)| + |\nabla_{\theta} \log f(\tilde{\theta}, x)| + (\nabla_{\theta} \log f(\tilde{\theta}, x))^{2} \leq g(x)$$

οù

$$\int_{\mathsf{X}} \mathsf{g}(\mathsf{x}) \sup_{\tilde{\theta} \in \mathcal{V}(\theta)} f(\tilde{\theta}, \mathsf{x}) \mu(\mathsf{d}\mathsf{x}) < +\infty.$$

■ L'information de Fisher est non-dégénérée : pour tout $\theta \in \Theta$, la matrice d'information de Fisher $\mathbb{I}(\theta)$ est définie positive.

Consistance du test de Neyman-Pearson

- Supposons que $\Theta = \{\theta_0, \theta_1\}$ avec $\theta_0 \neq \theta_1$ et que l'on cherche à tester $H_0: \theta = \theta_0$ contre $H_1: \theta = \theta_1$.
- Le lemme de Neyman-Pearson montre que le test qui rejette H_0 si

$$\Lambda_n(\theta_0,\theta_1) = \frac{\prod_{i=1}^n f(\theta_1,X_i)}{\prod_{i=1}^n f(\theta_0,X_i)} > c_{n,\alpha}$$

est U.P.P.

■ De façon équivalente, en prenant le logarithme de chaque membre de l'identité, le test de N.P. rejette H_0 si

$$\log \Lambda_n(\theta_0, \theta_1) = \sum_{i=1}^n \left\{ \log \frac{f(\theta_1; X_i)}{f(\theta_0; X_i)} \right\} \ge k_{n,\alpha}$$

où $\ell(x;\theta) = \log f(\theta,x)$ et $k_{n,\alpha}$ est choisi de telle sorte que

$$\mathbb{P}_{\theta_0}^n[\log \Lambda_n(\theta_0, \theta_1) \geq k_{n,\alpha}] = \alpha$$

(on suppose qu'une telle valeur existe, autrement il faudrait utiliser un test randomisé)

Calcul asymptotique du seuil critique

■ En pratique, il est souvent difficile de déterminer exactement le seuil critique $k_{n,\alpha}$... mais il est souvent facile de déterminer une suite $\{k_{n,\alpha}, n \in \mathbb{N}\}$ telle que

$$\lim_{n\to\infty}\mathbb{P}^n_{\theta_0}(\log\Lambda_n(\theta_0,\theta_1)\geq k_{n,\alpha})=\alpha.$$

■ En effet, le théorème central limite montre que, sous H_0 ,

$$n^{-1/2} \sum_{k=1}^{n} \left\{ \log \frac{f(\theta_1, X_k)}{f(\theta_0, X_k)} + \mathrm{KL}(\theta_0, \theta_1) \right\} \stackrel{d}{\to}_{\theta_0}^{n} \mathcal{N}(0, J(\theta_0, \theta_1))$$

où $KL(\theta_0, \theta_1)$ est la divergence de Kullback-Leibler définie par

$$\mathrm{KL}(heta_0, heta_1) = \mathbb{E}_{ heta_0}\left[\lograc{f(heta_0,X_1)}{f(heta_1,X_1)}
ight] > 0$$

et

$$J(\theta_0, \theta_1) = \operatorname{Var}_{\theta_0} \left(\log \frac{f(\theta_0, X_1)}{f(\theta_1, X_1)} \right).$$

Calcul asymptotique du seuil critique

- Pour $\alpha \in (0,1)$, on note $z_{1-\alpha}$ le quantile $1-\alpha$ de la loi gaussienne standardisée.
- Nous avons donc:

$$\lim_{n\to\infty} \mathbb{P}^n_{\theta_0}\left(\frac{1}{\sqrt{nJ(\theta_0,\theta_1)}}\{\log \Lambda_n(\theta_0,\theta_1) + n\mathrm{KL}(\theta_0,\theta_1)\} \geq z_{1-\alpha}\right) = \alpha$$

ce qui implique, en posant

$$k_{n,\alpha} = -n \mathrm{KL}(\theta_0, \theta_1) + n^{1/2} z_{1-\alpha} \sqrt{J(\theta_0, \theta_1)}$$

que le test de région critique $\{\log \Lambda_n(\theta_0, \theta_1) \geq k_{n,\alpha}\}$ est asymptotiquement de niveau α ,

$$\lim_{n\to\infty}\mathbb{P}^n_{\theta_0}[\log\Lambda_n(\theta_0,\theta_1)\geq k_{n,\alpha}]=\alpha.$$

Distribution du test sous l'hypothèse alternative

■ Sous $\mathbb{P}_{\theta_1}^n$, nous avons

$$\begin{split} & \mathbb{P}_{\theta_1}^n \left(\sum_{k=1}^n \left\{ \log \frac{f(\theta_1, X_k)}{f(\theta_0, X_k)} \right\} \ge -n \mathrm{KL}(\theta_0, \theta_1) + \sqrt{n} J^{1/2}(\theta_0, \theta_1) z_{1-\alpha} \right) \\ & = \mathbb{P}_{\theta_1}^n \left(\frac{1}{n} \sum_{k=1}^n \left\{ \log \frac{f(\theta_1, X_k)}{f(\theta_0, X_k)} - \mathrm{KL}(\theta_1, \theta_0) \right\} \ge -I(\theta_0, \theta_1) + \frac{\sqrt{J(\theta_0, \theta_1)}}{\sqrt{n}} z_{1-\alpha} \right) \,, \end{split}$$

οù

$$I(\theta_0, \theta_1) = KL(\theta_0, \theta_1) + KL(\theta_1, \theta_0).$$

Distribution du test sous l'hypothèse alternative

■ Sous $\mathbb{P}_{\theta_1}^n$, nous avons

$$\begin{split} & \mathbb{P}_{\theta_1}^n \left(\sum_{k=1}^n \left\{ \log \frac{f(\theta_1, X_k)}{f(\theta_0, X_k)} \right\} \geq -n \mathrm{KL}(\theta_0, \theta_1) + \sqrt{n} J^{1/2}(\theta_0, \theta_1) z_{1-\alpha} \right) \\ & = \mathbb{P}_{\theta_1}^n \left(\frac{1}{n} \sum_{k=1}^n \left\{ \log \frac{f(\theta_1, X_k)}{f(\theta_0, X_k)} - \mathrm{KL}(\theta_1, \theta_0) \right\} \geq -I(\theta_0, \theta_1) + \frac{\sqrt{J(\theta_0, \theta_1)}}{\sqrt{n}} z_{1-\alpha} \right) \,, \end{split}$$

οù

$$I(\theta_0, \theta_1) = KL(\theta_0, \theta_1) + KL(\theta_1, \theta_0).$$

- Par conséquent,
- Conclusion Si $KL(\theta_0, \theta_1) \neq 0$ alors

$$\lim_{n\to\infty}\pi_n(\theta_1)=1.$$

Si le modèle est identifiable, alors il existe un test de niveau asymptotique α consistant (la puissance du test tend vers 1).

Efficacité asymptotique... à travers un exemple

- Supposons que $(X_1, ..., X_n)$ est un n-échantillon indépendant de densité $f(\theta, x) = f(x \theta)$ par rapport à la mesure de Lebesgue sur \mathbb{R} .
- Hypothèses
 - Variance finie: $\sigma_f^2 \int |x|^2 f(x) dx < \infty$
 - Parité: f est une fonction paire (donc θ est la moyenne et la médiane de la loi)
 - f est continue et f(0) > 0: unicité de la médiane
- On note F la cdf associée à la densité f
- On cherche à tester $\theta = 0$ contre $H_1 : \theta > 0$.

Un exemple

On considère deux statistiques:

$$U_n=rac{1}{n}\sum_{i=1}^n\mathbb{1}_{\{X_i>0\}}$$
 test du signe $ar{X}_n=n^{-1}\sum_{i=1}^nX_i$ z-test

- Sous H_0 , $\mathbb{P}_0(X_1 > 0) = 1/2$, et donc $U_n \xrightarrow{\mathbb{P}_0^n} 1/2$. Si $\theta > 0$, $\mathbb{P}_{\theta}(X_1 > 0) > 1 F(-\theta)$ et ce qui suggère de considérer un test $\{U_n 1/2 > c_{n,\alpha}\}$
- Sous H_0 , $\mathbb{E}_0[X_1] = 0$ et donc $\bar{X}_n \xrightarrow{\mathbb{F}_0^n} 1/2$. Si $\theta > 0$, $\mathbb{E}_{\theta}[X_1] = \theta$ ce qui suggère de considérer un test $\{\bar{X}_n > d_{n,\alpha}\}$
- Questions:
 - 1 Comment calibrer les constantes $c_{n,\alpha}$ et $d_{n,\alpha}$? facile !
 - 2 quel test dois je choisir? En quoi mon choix est-il dépendant de la distribution des observations?

Asymptotique du test du signe

$$U_n = n^{-1} \sum_{i=1}^n \mathbb{1}_{\{X_i > 0\}}$$

■ Par le théorème de la limite centrale

$$n^{1/2}\sigma^{-1}(\theta)(U_n-\mu(\theta))\stackrel{d}{
ightarrow}_{\theta}^n \mathcal{N}(0,1)$$

οù

$$\mu(\theta) = 1 - F(-\theta) \qquad \sigma^2(\theta) = (1 - F(-\theta))F(-\theta).$$

■ Par conséquent, sous $H_0: \theta=0, \ \mu(0)=1/2 \ {\rm et} \ \sigma^2(0)=1/4 \ {\rm ce} \ {\rm qui}$ implique:

$$2\sqrt{n}(U_n-1/2)\stackrel{d}{\to}_{\mathbb{P}_0^n}\mathcal{N}(0,1).$$

■ Le test de région critique $\{2\sqrt{n}(U_n - 1/2) > z_{1-\alpha}\}$ est un test de niveau asymptotique α .

Puissance du test de signe

La puissance du test de signe de niveau asymptotique α est donnée pour tout $\theta>$ 0, par

$$egin{aligned} \pi_{n,lpha}^{\mathrm{sign}}(heta) &= \mathbb{P}_{ heta}(\sqrt{n}(U_n-1/2) > 1/2z_{1-lpha}) \ &= \mathbb{P}_{ heta}\left(U_n-\mu(heta) > \{1/2-\mu(heta)\} + rac{1}{2\sqrt{n}}z_{1-lpha}
ight)\,. \end{aligned}$$

Puisque $1/2 < \mu(\theta) = 1 - F(-\theta)$ pour $\theta > 0$, la loi des grands nombres montre que le test est consistant: pour tout $\theta > 0$,

$$\lim_{n\to\infty}\pi_{n,\alpha}^{\mathrm{sign}}(\theta)=1.$$

Asymptotique du z-test

- Théorème Central limite: $n^{-1/2} \sum_{i=1}^{n} (X_i \theta) \stackrel{d}{\to}_{\mathbb{P}_{\theta}} \mathcal{N}(0, \sigma_f^2)$.
- Le test de région critique $\{\bar{X}_n > n^{-1/2}\sigma_f z_{1-\alpha}\}$ est un test de niveau asymptotique α :

$$\begin{split} \lim_{n \to \infty} \mathbb{P}_0 \left(\bar{X}_n > n^{-1/2} \sigma_f z_{1-\alpha} \right) &= \lim_{n \to \infty} \mathbb{P}_0 \left(n^{1/2} \bar{X}_n / \sigma_f > z_{1-\alpha} \right) \\ &= 1 - \Phi(z_{1-\alpha}) = \alpha \,. \end{split}$$

Puissance du z-test

La puissance du test de niveau α est donnée par

$$\pi_{n,\alpha}^{\mathrm{t-test}}(\theta) = \mathbb{P}_{\theta}^{n}(\sqrt{n}\bar{X}_{n} > \sigma_{f}z_{1-\alpha})$$

Comme, par la loi des grands nombres

$$\frac{1}{n}\sum_{i=1}^n (X_i - \theta) \stackrel{\mathbb{P}^n_{\theta}}{\longrightarrow} 0$$

$$n^{-1/2}\sigma_f z_{1-\alpha} - \theta \xrightarrow{\mathbb{P}_{\theta}^n} -\theta$$

le z-test de niveau asymptotique α est consistant: pour tout $\theta > 0$,

$$\lim_{n\to\infty} \pi_{n,\alpha}^{\mathrm{z-test}}(\theta) = 1.$$

Comparaison asymptotique des puissances

- A l'instar de l'estimation ponctuelle, la simple notion de consistance ne nous donne pas une méthode permettant de comparer des tests: tous les tests raisonnables sont consistants, comme tous les estimateurs raisonnables des paramètres.
- Pour pouvoir comparer asymptotiquement les tests, il faut introduire une élementaire que la consistance..
- Deux approches possibles:
- Bahadur: mesurer la vitesse à laquelle la vitesse du test tend vers 1 (théorie des grandes déviations)
- Pitman:
 - rendre la discrimination entre l'hypothèse nulle H_0 et l'hypothèse alternative H_1 plus difficile quand $n \to \infty$.
 - considérer un test $H_0: \theta=0$ contre une suite d'hypothèses alternatives $H_1^n: \theta=\theta_n$ avec $\theta_n>0$ et $\lim_{n\to\infty}\theta_n=0$.

Test du signe

$$\pi_{n,\alpha}^{\mathrm{sign}}(\theta) = \mathbb{P}_{\theta}(\sqrt{n}\sigma^{-1}(\theta)(U_n - \mu(\theta)) > \sigma^{-1}(\theta)\{\sigma(0)z_{1-\alpha} + \sqrt{n}\{\mu(0) - \mu(\theta)\}\})$$

- Nous cherchons à déterminer la puissance du test contre la suite de contre-alternatives $H_1^n: \theta_n > 0$, où $\theta_n \to 0$.
- La puissance dépend de $\sqrt{n}(\mu(0) \mu(\theta_n))$ où

$$\mu(\theta) = 1 - F(-\theta).$$

■ Comme F est différentiable en $\theta = 0$, nous avons

$$\sqrt{n}(\mu(\theta_n) - \mu(0)) = -\sqrt{n}(F(-\theta_n) - F(0)) = \sqrt{n}\theta_n f(0) + o(\sqrt{n}\theta_n),$$

car

$$F(-\theta) = F(0) - \theta f(0) + o(\theta)$$

Test du signe

- Si $\sqrt{n}\theta_n \to 0$, alors $\sqrt{n}(\mu(0) \mu(\theta_n)) \to 0$; donc, $\pi_{n,\alpha}^{\mathrm{sign}}(\theta_n) \to \alpha$, on ne distingue pas l'hypothèse de base et l'alternative.
- Si $\sqrt{n}\theta_n \to \infty$, alors $\sqrt{n}(\mu(0) \mu(\theta_n)) \to -\infty$: $\pi_{n,\alpha}^{\mathrm{sign}}(\theta_n) \to 1$, problème trop facile, la puissance tend vers 1.
- Cas intéressant!

$$\lim_{n\to\infty}\sqrt{n}\theta_n=h>0$$

Efficacité asymptotique des tests

 Ceci conduit à une approche naturelle de comparaison des tests, qui consiste à comparer la puissance locale des tests

$$\pi(h) = \lim_{n \to \infty} \pi_n(h/\sqrt{n}).$$

 Pour les modèles réguliers, cette fonction de puissance locale asymptotique est bien définie (preuve délicate, basée sur la notion de contiguité)

Efficacité asymptotique locale des tests

Théorème

Soit g une fonction telle $\mathbb{E}_{\theta}[g^2(X_1)] < \infty$ pour tout $\theta \in \Theta$. On note $\mathbb{E}_{\theta}[g(X_1)] = \mu(\theta)$ et $\operatorname{Var}_{\theta}[g(X_1)] = \sigma^2(\theta)$.

- $\mathbf{1}$ μ est différentiable en $\mathbf{0}$
- σ continue en 0.

On pose $G_n = n^{-1/2} \sum_{k=1}^n \{g(X_k) - \mu(0)\}.$

- **1** La suite de test $\{G_n > \sigma(0)z_{1-\alpha}\}$ est de niveau asymptotique α : $\lim_{n\to\infty} \mathbb{P}_0(G_n > \sigma(0)z_{1-\alpha}) = \alpha$.
- 2 La puissance locale asymptotique de cette suite de tests est donnée par

$$\pi(h) = \lim_{n \to \infty} \pi_n(h/\sqrt{n}) = \Phi(h\mu'(0)/\sigma(0) - z_{1-\alpha}).$$

Elements de preuve

On pose

$$G_n = n^{-1/2} \sum_{k=1}^n \{ g(X_k) - \mu(0) \}$$

$$\Lambda_n = \Lambda_n(X_1, \dots, X_n) = \prod_{k=1}^n \frac{f(hn^{-1/2}, X_k)}{f(0, X_k)}$$

- On cherche à déterminer la loi de G_n sous la suite de lois $\mathbb{P}_{\theta_n}^n$. On va chercher à calculer $\lim_{n\to\infty} \mathbb{E}_{\theta_n} \left[\mathrm{e}^{\mathrm{i} u G_n} \right]$
- Remarque fondamentale: $\mathbb{E}_{\theta_n}[\mathrm{e}^{\mathrm{i}uG_n}] = \mathbb{E}_0[\Lambda_n\mathrm{e}^{\mathrm{i}uG_n}]$

$$\mathbb{E}_{\theta_n}[e^{iuG_n}] = \int \cdots \int e^{iun^{-1/2} \sum_{k=1}^n \{g(x_k) - \mu(0)\}} \prod_{k=1}^n f(\theta_n, x_k) dx_1 \dots dx_n$$

$$= \int \cdots \int e^{iun^{-1/2} \sum_{k=1}^n \{g(x_k) - \mu(0)\}} \Lambda_n(x_1, \dots, x_n) \prod_{k=1}^n f(0, x_k) dx_1 \dots dx_n$$

Elements de preuve 2

■ On est ramené à étudier, sous $\mathbb{P}_{\theta_0}^n$ la limite du vecteur aléatoire

$$\begin{bmatrix} \log \Lambda_n \\ G_n \end{bmatrix} = \begin{bmatrix} \sum_{k=1}^n \log f(hn^{-1/2}, X_k) - \log f(0, X_k) \\ n^{-1/2} \sum_{k=1}^n \{g(X_k) - \mu(0)\} \end{bmatrix}$$

Pour un modèle régulier, en posant $\ell(\theta, x) = \log f(\theta, x)$ (avec la convention $\ell(x) = \ell(0, x)$), nous avons

$$\ell(hn^{-1/2},x) = \ell(x) + hn^{-1/2}\dot{\ell}(x) + (h^2n^{-1})/2\ddot{\ell}(x) + o(n^{-1})$$

ce qui implique

$$\sum_{k=1}^{n} \ell(hn^{-1/2}, X_k) - \ell(X_k) = \frac{h}{\sqrt{n}} \sum_{k=1}^{n} \dot{\ell}(X_k) + \frac{h^2}{2n} \sum_{k=1}^{n} \ddot{\ell}(X_k) + o_{\mathbb{P}_0^n}(1)$$

$$= \frac{h}{\sqrt{n}} \sum_{k=1}^{n} \dot{\ell}(X_k) - \frac{h^2}{2} I(0) + o_{\mathbb{P}_0^n}(1)$$

où I(0) est l'information de Fisher.

Elements de preuve 3

Par conséguent, nous avons

$$\left[\begin{array}{c} \log \Lambda_n \\ G_n \end{array}\right] = n^{-1/2} \sum_{k=1}^n \left[\begin{array}{c} \dot{\ell}(X_k) \\ g(X_k) - \mu(0) \end{array}\right] - \left[\begin{array}{c} (h^2/2)I(0) \\ 0 \end{array}\right] + o_{\mathbb{P}_0^n}(1).$$

En utilisant un TCL, nous avons donc

$$\begin{bmatrix} \log \Lambda_n \\ G_n \end{bmatrix} \stackrel{d}{\to} \mathbb{P}_0^n \begin{bmatrix} L \\ G \end{bmatrix}$$

$$\sim \mathcal{N} \left(\begin{bmatrix} -(h^2/2)I(0) \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbb{E}_0[(\dot{\ell}(X_1))^2] & \mathbb{E}_0[g(X_1)\dot{\ell}(X_1)] \\ \mathbb{E}_0[g(X_1)\dot{\ell}(X_1)] & \operatorname{Var}_0(g(X_1)) \end{bmatrix} \right)$$

- Nous avons:

 - 1 $\mathbb{E}_0[(\dot{\ell}(X_1))^2] = I(0)$ 2 $\mathbb{E}_0[(g(X_1) \mu(0))^2] = \sigma(0)^2$.
 - **3** $\mathbb{E}_0[(g(X_1) \mu)\dot{\ell}(X_1)] = \mathbb{E}_0[g(X_1)\dot{\ell}(X_1)] = \int g(x)\dot{f}(x \theta)dx|_{\theta = 0} = -\dot{\mu}(0)$

Preuve: on rassemble les bouts

■ En utilisant $\mathbb{E}_{\theta_n}[\mathrm{e}^{\mathrm{i}uG_n}] = \mathbb{E}_0[\mathrm{e}^{\log(\Lambda_n)}\mathrm{e}^{\mathrm{i}uG_n}]$ et la convergence en loi de $[\log(\Lambda_n),G_n]$ implique (il y a encore des petits détails à régler)

$$\lim_{n\to\infty} \mathbb{E}_{\theta_n}[e^{iuG_n}] = \mathbb{E}[e^L e^{iuG}]$$

où $[L,G]^T$ est un vecteur gaussien de moyenne $[-h^2I(0)/2,0]^T$ et de covariance

$$\begin{bmatrix} I(0) & -\dot{\mu}(0) \\ -\dot{\mu}(0) & \sigma^2(0) \end{bmatrix}$$

■ Conclusion par un calcul élémentaire...

Conclusion

- Nous disposons maintenant d'une méthode simple pour comparer les tests de l'hypothèse $H_0\theta=0$;, contre $H_1:\theta>0$, en nous basant sur la puissance asympotique locale...
- Pour les tests asymptotiquement normaux, il suffit de comparer la pente des tests, à savoir $\mu'(0)/\sigma(0)$.
- Plus la pente est grande, plus la puissance asymptotique locale $\pi(h)$ augmente rapidement avec h!

Application

- Test du signe
 - Statistique $U_n = n^{-1} \sum_{i=1}^n \mathbb{1}_{\{X_i > 0\}}$.
 - $\mu(\theta) = 1 F(-\theta), \ \dot{\mu}(\theta) = f(\theta).$
 - $\sigma^2(\theta) = (1 F(-\theta))F(-\theta)$
 - Pente: $\dot{\mu}(0)/\sigma(0) = 2f(0)$.
- z-test
 - Statistique \bar{X}_n .
 - $\mu(\theta) = \theta$ and $\sigma(\theta) = \sigma_f$ avec $\sigma_f^2 = \int x^2 f(x) dx$.
 - Pente: $\dot{\mu}(0)/\sigma(0) = 1/\sigma_f$.

Efficacité relative

- **1** test du signe: $\mu'(0)/\sigma(0) = 2f(0)$,
- **2** *t*-test: $\mu'(0)/\sigma(0) = 1/\sigma_f$.
- Laplace: $2f(0)s = \sqrt{2} = 1.414$.
- Logistique: $2f(0)s = \pi/(2\sqrt{3}) = 0.907$.
- Gauss: $2f(0)s = \sqrt{2/\pi} = 0.798$.
- Uniforme: $2f(0)s = 1/\sqrt{3} = 0.577$.

Test du rapport de vraisemblance

- Soit $X^{(n)}=(X_1,\ ,\ X_n)$ un *n*-échantillon du modèle statistique $\mathbb{P}^n_{\theta} \ll \mu_n,\ \theta \in \Theta$, de densité $f(\theta,x^{(n)})=\mathrm{d}\,\mathbb{P}^n_{\theta}\,/\mathrm{d}\mu_n$.
- Pour tester H₀: θ ∈ Θ₀ contre H₁: θ ∈ Θ − Θ₀, le test du rapport de vraisemblance rejette H₀ lorsque la valeur du rapport de vraisemblance généralisé

$$\Lambda_n = \frac{\sup_{\theta \in \Theta_0} f(\theta, X^{(n)})}{\sup_{\theta \in \Theta} f(\theta, X^{(n)})}$$

est inférieure à un seuil.

- Lorsque les hypothèses H_0 , H_1 sont simples, ce test est U.P.P. .
- Pour des hypothèses composites, il n'y a en général aucun résultat d'optimalité, sauf dans des cas simples...

Exemple 1: t-test

- Soient $X^{(n)} = (X_1, \dots, X_n)$ un *n*-échantillon de $\mathcal{N}(\mu, \sigma^2)$.
- On teste l'hypothèse $H_0: \mu = 0$ contre $H_1: \mu \neq 0$.
- En posant $\theta = (\mu, \sigma^2)$,

$$\begin{split} \Lambda_n &= \frac{\sup_{\theta \in \Theta_0} (1/\sigma^n) \exp(-\frac{1}{2\sigma^2} \sum_i (X_i - \mu)^2)}{\sup_{\theta \in \Theta} (1/\sigma^n) \exp(-\frac{1}{2\sigma^2} \sum_i (X_i - \mu)^2)} \\ &= \left(\frac{\sum_i (X_i - \overline{X}_n)^2}{\sum_i X_i^2}\right)^{n/2} \end{split}$$

Résultat important: Le *t*-test est un test de rapport de vraisemblance généralisé: $\Lambda_n < c$ est équivalent à $T_n^2 > k$ où

$$T_n = \frac{\sqrt{n}\overline{X}_n}{S_n}$$
 où $S_n^2 = \frac{1}{n-1}\sum_i (X_i - \overline{X}_n)^2$.

est la t-statistique.

Preuve

$$T_n^2 = \frac{n\overline{X}_n^2}{\frac{1}{n-1}\sum_i (X_i - \overline{X}_n)^2}$$

$$= \frac{\sum_i X_i^2 - \sum_i (X_i - \overline{X}_n)^2}{\frac{1}{n-1}\sum_i (X_i - \overline{X}_n)^2}$$

$$= \frac{(n-1)\sum_i X_i^2}{\sum_i (X_i - \overline{X}_n)^2} - (n-1)$$

$$= (n-1)\Lambda_n^{-2/n} - (n-1)$$

ce qui montre que

$$\Lambda_n = \left(\frac{n-1}{T_n^2 + n - 1}\right)^{n/2}$$

Distribution asymptotique

Comme

$$\Lambda_n = \left(\frac{n-1}{T_n^2 + n - 1}\right)^{n/2}$$

nous avons

$$-2\log \Lambda_n = n\log\left(1 + \frac{T_n^2}{n-1}\right)$$
$$= n\left(\frac{T_n^2}{n-1} + o_p(\frac{T_n^2}{n-1})\right)$$

■ Sous $H_0: \theta=0$, nous avons en utilisant le TCL $\sqrt{n}\bar{X}_n \stackrel{d}{\to}_{\mathbb{P}_0^n} \mathcal{N}(0,\sigma^2)$ et Slutsky

$${\mathcal T}_n = rac{ar X_n}{S_n} \stackrel{d}{
ightarrow}_{{\mathbb P}^n_0} {\mathcal N}(0,1).$$

- Par conséquent $-2 \log \Lambda_n \stackrel{d}{\to}_{\mathbb{P}_0^n} \chi_1^2$.
- résultat vrai en toute généralité...

Test du chi²

- On suppose $(X_1, ..., X_n)$ *n*-échantillon multinomial d'un modèle multinomial.
- Paramètre $\mathbf{p} = (p_1, \dots, p_d) \in \mathcal{M}_d = \{(p_1, \dots, p_d), p_i \ge 0, \sum_{i=1}^d p_i = 1\}.$
- On considère le test bilatère de l'hypothèse nulle $H_0: (p_1, \ldots, p_d) = (q_1, \ldots, q_d)$ contre l'alternative $H_1: (p_1, \ldots, p_d) \neq (q_1, \ldots, q_d)$.
- Idée: Comparaison des fréquences empiriques

$$\widehat{p}_{n,\ell} = rac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i = \ell\}}$$
 proche de q_ℓ , $\ell = 1, \ldots, d$?

Loi des grands nombres :

$$(\widehat{p}_{n,1},\ldots,\widehat{p}_{n,d})\stackrel{\mathbb{P}_{m{p}}}{\longrightarrow}(p_1,\ldots,p_d)=m{p}_{m,d}$$

■ Théorème central-limite ?

$$\boldsymbol{U}_{n}(\boldsymbol{p}) = \sqrt{n} \left(\frac{\widehat{p}_{n,1} - p_{1}}{\sqrt{p_{1}}}, \dots, \frac{\widehat{p}_{n,d} - p_{d}}{\sqrt{p_{d}}} \right) \stackrel{d}{\to}_{\mathbb{P}_{\boldsymbol{p}}}?$$

■ Composante par composante oui. Convergence globale plus délicate.

Statistique du Chi-deux

Proposition

Si les composantes de p sont toutes non-nulles

lacktriangle On a la convergence en loi sous \mathbb{P}_p

$$\boldsymbol{\textit{U}}_{\textit{n}}(\boldsymbol{\textit{p}}) \stackrel{\textit{d}}{\longrightarrow} \mathcal{N}\big(0, \textit{V}(\boldsymbol{\textit{p}})\big)$$

avec
$$V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} \left(\sqrt{\mathbf{p}}\right)^T$$
 et $\sqrt{\mathbf{p}} = \left(\sqrt{p_1}, \dots, \sqrt{p_d}\right)^T$.

■ De plus

$$\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n \sum_{\ell=1}^d \frac{(\widehat{\rho}_{n,\ell} - p_\ell)^2}{p_\ell} \stackrel{d}{\longrightarrow} \chi^2(d-1).$$

Preuve de la normalité asymptotique

■ Pour i = 1, ..., n et $1 \le \ell \le d$, on pose

$$Y_\ell^i = rac{1}{\sqrt{
ho_\ell}} ig(\mathbb{1}_{\{X_i = \ell\}} -
ho_\ellig).$$

Les vecteurs $Y_i = (Y_1^i, \dots, Y_d^i)$ sont indépendants et identiquement distribués et

$$U_n(\mathbf{p}) = \frac{1}{\sqrt{n}} \sum_{i=1}^n \mathbf{Y}_i,$$

$$\mathbb{E}_{\textbf{\textit{p}}}\left[Y_{\ell}^{i}\right] = 0, \ \mathbb{E}_{\textbf{\textit{p}}}\left[(Y_{\ell}^{i})^{2}\right] = 1 - p_{\ell}, \ \mathbb{E}_{\textbf{\textit{p}}}\left[Y_{\ell}^{i}Y_{\ell'}^{i}\right] = -(p_{\ell}p_{\ell'})^{1/2}.$$

On applique le TCL vectoriel.

Convergence de la norme au carré

- On a donc $U_n(p) \stackrel{d}{\longrightarrow} \mathcal{N}(0, V(p))$.
- On a aussi

$$\|\boldsymbol{U}_{n}(\boldsymbol{p})\|^{2} \stackrel{d}{\longrightarrow} \|\mathcal{N}(0, V(\boldsymbol{p}))\|^{2}$$
$$\sim \chi^{2}(\operatorname{Rang}(V(\boldsymbol{p})))$$

par Cochran : $V(\mathbf{p}) = \mathrm{Id}_d - \sqrt{\mathbf{p}} \left(\sqrt{\mathbf{p}} \right)^T$ est la projection orthogonale sur $\mathrm{vect} \{ \sqrt{\mathbf{p}} \}^\perp$ qui est de dimension d-1.

Test des proportions pour une variable multinomiale

- Soit (X_1, \ldots, X_n) un *n*-échantillon d'une loi multinomiale à *d*-instances
- On considère le test bilatère $H_0:(p_1,\ldots,p_d)=(q_1,\ldots,q_d)$ conte $H_1=(p_0,\ldots,p_d)\neq (q_1,\ldots,q_d)$
- Rapport de vraisemblance généralisé

$$\Lambda_{n} = \frac{\prod_{i=1}^{d} q_{i}^{N_{i}}}{\max_{(p_{1},...,p_{d}) \in \mathcal{M}_{d}} \prod_{i=1}^{d} p_{i}^{N_{i}}}$$

$$= \prod_{i=1}^{d} \left(\frac{q_{i}n}{N_{i}}\right)^{N_{i}} = \prod_{i=1}^{d} (q_{i}/\hat{p}_{n,i})^{N_{i}}$$

où $N_i = \sum_{j=1}^n \mathbb{1}_{\{X_j = i\}}$ et $\hat{p}_{n,i} = N_i/n$ les fréquences empiriques.

Distribution limite de $-2 \log \Lambda_n$

Nous avons

$$-2\log \Lambda_{n} = 2\sum_{i=1}^{d} N_{i} \log(\hat{p}_{N,i}/q_{i})$$

$$= 2n\sum_{i=1}^{d} (\hat{p}_{N,i} - q_{i} + q_{i}) \log\left(1 + \frac{\hat{p}_{n,i} - q_{i}}{q_{i}}\right)$$

$$= 2n\sum_{i=1}^{d} \frac{(\hat{p}_{n,i} - q_{i})^{2}}{q_{i}} + 2n\sum_{i=1}^{d} q_{i} \left\{\frac{(\hat{p}_{n,i} - q_{i})}{q_{i}} - \frac{1}{2}\left(\frac{\hat{p}_{n,i} - q_{i}}{q_{i}}\right)^{2}\right\} + o_{\mathbb{P}}(1)$$

$$= n\sum_{i=1}^{d} \frac{(\hat{p}_{n,i} - q_{i})^{2}}{q_{i}}$$

car
$$\sum_{i=1}^{d} q_i (\hat{p}_{n,i} - q_i)/q_i = 0...$$

$$-2\log\Lambda_n\stackrel{d}{\to}_{\mathbb{P}_+}\chi^2(d-1)$$

Distribution asymptotique du test du rapport de vraisemblance

Théorème

On considère un n-échantillon (X_1, \ldots, X_n) d'un modèle paramétrique régulier $(\mathbb{P}_{\theta}, \theta \in \Theta \subset \mathbb{R}^d)$ et le test bilatéral de $H_0 : \theta = \theta_0$ contre $H_1 : \theta \neq \theta_0$. On a:

$$v(X_1,...,X_n) = \frac{\prod k = 1^n f(\theta_0; X_k)}{\sup_{\theta \in \Theta} \prod_{k=1}^n f(\theta, X_k)} = \frac{\prod_{k=1}^n f(\theta_0, X_k)}{\prod_{k=1}^n f(\hat{\theta}_n, X_k)}$$

Alors, sous H_0 , on a:

$$-2 \ln v(X_1, \dots, X_n) \stackrel{d}{\to}_{\mathbb{P}^n_{\theta_0}} \chi^2_d.$$

Donc le test déterministe dont la région critique est

$$W_{\alpha} = \{-2 \ln v(X_1, \dots, X_n) > z_{d,1-\alpha}\}$$

est asymptotiquement de seuil α pour tester H_0 contre H_1 .

Elements de preuve

■ On suppose que d=1. On note $L_n(\theta)$ la log-vraisemblance

$$L_n(\theta) = \sum_{k=1}^n \log f(\theta, X_k).$$

On effectue un développement à l'ordre 2 de la log-vraisemblance

$$L_n(\theta_0) = L_n(\hat{\theta}_n) + (\theta_0 - \hat{\theta}_n) \frac{\partial}{\partial \theta} L_n(\hat{\theta}_n) + \frac{1}{2} (\theta_0 - \hat{\theta}_n)^2 \frac{\partial^2}{\partial \theta^2} L_n(\hat{\theta}_n')$$

où $\theta_n' \in [\theta_0, \hat{\theta}_n]$

■ Comme $\frac{\partial}{\partial \theta} L_n(\hat{\theta}_n)$, ceci implique

$$-2\{L_n(\theta_0) - L_n(\hat{\theta}_n)\} = -(\theta_0 - \hat{\theta}_n)^2 \frac{\partial^2}{\partial \theta^2} L_n(\theta'_n)$$
$$= -\{\sqrt{n}(\theta_0 - \hat{\theta}_n)\}^2 \frac{1}{n} \frac{\partial^2}{\partial \theta^2} L_n(\theta'_n)$$

Elements de preuve

- L'estimateur du maximum de vraisemblance est asymptotiquement normal: $\sqrt{n}(\theta_0 \hat{\theta}_n) \stackrel{d}{\to}_{\theta_0}^n \mathcal{N}(0, I^{-1}(\theta_0))$, où $I(\theta)$ est l'information de Fisher
- Par la loi des grands nombres

$$n^{-1} \frac{\partial^2}{\partial \theta^2} L_n(\theta'_n) = n^{-1} \sum_{k=1}^n \frac{\partial^2}{\partial \theta^2} f(\theta'_n, X_k)$$
$$\xrightarrow{\mathbb{P}^n_{\theta_0}} -I(\theta_0)$$

■ Par conséquent, $-2\{L_n(\theta_0) - L_n(\hat{\theta}_n)\} \stackrel{d}{\to}_{\mathbb{P}_{\theta_0}^n} \chi_1^2$

Le test de Wald : hypothèse nulle simple

- <u>Situation</u> la suite d'expériences $(X^n, \mathcal{X}^{\otimes n}, \{\mathbb{P}^n_{\theta}, \theta \in \Theta\})$ est engendrée par l'observation $Z^n = (X_1, \dots, X_n), \theta \in \Theta \subset \mathbb{R}$
- Objectif: Tester

$$H_0: \theta = \theta_0$$
 contre $H_1 \theta \neq \theta_0$.

 \blacksquare Hypothèse : on dispose d'un estimateur $\widehat{\theta}_n$ asymptotiquement normal

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{ o} \mathcal{N}(0, v(\theta))$$

en loi sous \mathbb{P}_{θ}^n , $\forall \theta \in \Theta$, où $\theta \rightsquigarrow v(\theta) > 0$ est continue.

On a la convergence

$$\sqrt{n}rac{\widehat{ heta}_n- heta_0}{\sqrt{
u(\widehat{ heta}_n)}}\stackrel{d}{\longrightarrow}_{\mathbb{P}^n_{ heta_0}}\mathcal{N}(0,1).$$

Test de Wald (cont.)

- Remarque $\sqrt{v(\widehat{\theta}_n)} \leftrightarrow \sqrt{v(\theta_0)}$ ou d'autres choix encore...
- On a aussi

$$T_n = n \frac{(\widehat{\theta}_n - \theta_0)^2}{v(\widehat{\theta}_n)} \xrightarrow{d}_{\mathbb{P}_{\theta_0}^n} \chi^2(1).$$

■ Soit $q_{1-\alpha,1}^{\chi^2}>0$ tel que si $U\sim\chi^2(1)$, on a $\mathbb{P}\left[U>q_{1-\alpha,1}^{\chi^2}\right]=\alpha$. On choisit la zone de rejet

$$\mathcal{R}_{n,\alpha} = \{T_n \geq q_{1-\alpha,1}^{\chi^2}\}.$$

Le test de zone de rejet $\mathcal{R}_{n,\alpha}$ s'appelle Test de Wald de l'hypothèse simple $\theta = \theta_0$ contre l'alternative $\theta \neq \theta_0$ basé sur $\widehat{\theta}_n$.

Propriétés du test de Wald

Proposition

Le test de Wald de l'hypothèse simple $\theta=\theta_0$ contre l'alternative $\theta\neq\theta_0$ basé sur $\widehat{\theta}_n$ est

asymptotiquement de niveau α :

$$\mathbb{P}_{\theta_0}^n \left[\mathcal{R}_{n,\alpha} \right] \to \alpha.$$

convergent ou (consistant). Pour tout point $\theta \neq \theta_0$

$$\mathbb{P}^n_\theta\left[\mathcal{R}^c_{n,\alpha}\right]\to 0.$$

Lests de Wald

Preuve

- Test asymptotiquement de niveau α par construction.
- lacksquare Contrôle de l'erreur de seconde espèce : Soit $heta
 eq heta_0$. On a

$$T_{n} = \left(\sqrt{n} \frac{\widehat{\theta}_{n} - \theta}{\sqrt{\nu(\widehat{\theta}_{n})}} + \sqrt{n} \frac{\theta - \theta_{0}}{\sqrt{\nu(\widehat{\theta}_{n})}}\right)^{2}$$
$$=: T_{n,1} + T_{n,2}.$$

On a $T_{n,1} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$ sous \mathbb{P}^n_{θ} et

$$T_{n,2} \xrightarrow{\mathbb{P}_{\theta}^n} \pm \infty \operatorname{car} \theta \neq \theta_0$$

Donc $T_n \xrightarrow{\mathbb{P}_{\theta}^n} +\infty$, d'où le résultat.

Remarque : si $\theta \neq \theta_0$ mais $|\theta - \theta_0| \lesssim 1/\sqrt{n}$, le raisonnement ne s'applique pas. Résultat non uniforme en le paramètre.

Test de Wald : cas vectoriel

■ Même contexte: $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\theta}_n$ asymptotiquement normal :

$$\sqrt{n} \big(\widehat{\theta}_n - \theta \big) \stackrel{d}{\longrightarrow} \mathcal{N} \big(0, V(\theta) \big)$$

où la matrice $V(\theta)$ est définie positive et continue en θ .

- On cherche à tester $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_1$.
- Sous \mathbb{P}_{θ} , la convergence $n^{1/2}(\widehat{\theta}_n \theta) \stackrel{d}{\rightarrow} \mathcal{N}(0, V(\theta))$ implique que

$$V^{-1/2}(\theta)n^{1/2}(\widehat{\theta}_n-\theta)\stackrel{d}{\to} \mathcal{N}(0,\mathrm{Id}_d)$$

et donc que

$$n(\widehat{\theta}_n - \theta)^T V^{-1}(\theta)(\widehat{\theta}_n - \theta) \stackrel{d}{\to} \chi^2(d)$$
.

Exemple: loi exponentielle

- Hypothèse: $\{X_i\}_{i=1}^n$, i.i.d. de loi exponentielle de paramètre $\theta \in \Theta = \mathbb{R}_+^*$.
- log-vraisemblance

$$\ell_n(\theta) = n^{-1} \sum_{i=1}^n \log f(\theta, X_i) = \log(\theta) - \theta \bar{X}_n$$

où $\bar{X}_n = n^{-1} \sum_{i=1}^n X_i$ est la moyenne empirique.

- Estimateur du MV: $\hat{\theta}_n = \bar{X}_n^{-1}$.
- Modèle régulier

$$\sqrt{n}(\widehat{\theta}_n - \theta) \stackrel{d}{\rightarrow}_{\mathbb{P}_{\theta}} \mathcal{N}(0, I^{-1}(\theta))$$

où $I(\theta) = \theta^{-2}$ est l'information de Fisher

Exemple: test loi exponentielle

■ Test de Wald de l'hypothèse $H_0: \theta = \theta_0$ contre l'hypothèse $H_1: \theta \neq \theta_0$.

$$\textit{n}(\widehat{\theta}_n - \theta_0)^2\textit{I}(\widehat{\theta}_n) = \textit{n}(1 - \theta_0/\widehat{\theta}_n)^2 \stackrel{\textit{d}}{\rightarrow}_{\mathbb{P}_{\theta_0}} \geq \textit{q}_{1-\alpha,1}^{\chi_2}$$

■ Application numérique n = 100, $\theta_0 = 0.5$,

Test de Wald: cas vectoriel

■ Le test de Wald de l'hypothèse $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$ rejette H_0 si

$$n(\widehat{\theta}_n - \theta_0)^T V^{-1}(\widehat{\theta}_n)(\widehat{\theta}_n - \theta_0) > q_{1-\alpha,d}^{\chi^2}$$

• On peut remplacer la matrice de covariance $V(\widehat{\theta}_n)$ par $V(\theta_0)$ ou tout estimateur consistant de $V(\theta_0)$.

Test de Wald : hypothèse nulle composite

■ Même contexte: $\Theta \subset \mathbb{R}^d$ et on dispose d'un estimateur $\widehat{\theta}_n$ asymptotiquement normal : pour tout $\theta \in \Theta$,

$$\sqrt{n} \big(\widehat{\theta}_n - \theta \big) \stackrel{d}{\longrightarrow}_{\mathbb{P}^n_{\theta}} \mathcal{N} \big(0, V(\theta) \big)$$

où la matrice $V(\theta)$ est définie positive et continue en θ .

■ But: Tester $H_0: \theta \in \Theta_0$ contre $H_1: \theta \notin \Theta_0$, où

$$\Theta_0 = \{ heta \in \Theta, \ \ g(heta) = 0 \}$$

et

$$g: \mathbb{R}^d \to \mathbb{R}^m$$

 $(m \le d)$ est régulière.

Test de Wald cont.

■ Hypothèse : la différentielle (de matrice $J_g(\theta)$) de g est de rang maximal m en tout point de (l'intérieur) de Θ_0 .

Proposition

En tout point θ de l'intérieur de Θ_0 on a, en loi sous \mathbb{P}^n_{θ} (i.e. sous l'hypothèse) :

ı

$$\sqrt{n}g(\widehat{\theta}_n) \stackrel{d}{\longrightarrow} \mathcal{N}(0, J_g(\theta)V(\theta)J_g(\theta)^T),$$

$$\begin{split} T_n &= \textit{ng}(\widehat{\theta}_n)^\mathsf{T} \Sigma_g(\widehat{\theta}_n)^{-1} g(\widehat{\theta}_n) \overset{d}{\longrightarrow} \chi^2(\textit{m}) \\ \textit{où } \Sigma_g(\theta) &= J_g(\theta) V(\theta) J_g(\theta)^\mathsf{T}. \end{split}$$

Preuve : méthode delta multidimensionnelle.

Test de Wald (fin)

Proposition

Sous les hypothèses précédentes, le test de zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ T_n \geq q_{1-\alpha,m}^{\chi^2} \right\}$$

avec $\mathbb{P}\left[U>q_{1-lpha,m}^{\chi^2}
ight]=lpha$ si $U\sim\chi^2(m)$ est

■ Asymptotiquement de niveau α en tout point θ de (l'intérieur) de Θ_0 :

$$\mathbb{P}_{\theta}^{n}\left[\mathcal{R}_{n,\alpha}\right] \to \alpha.$$

■ Convergent : pour tout $\theta \notin \Theta_0$ on a

$$\mathbb{P}^n_\theta\left[\mathcal{R}^c_{n,\alpha}\right]\to 0.$$

C'est la même preuve qu'en dimension 1.

Test du score (Rao)

- Soit (X_1, \dots, X_n) un n-échantillon i.i.d. associé à un modèle statistique $(\mathbb{P}_{\theta}, \theta \in \Theta \subseteq \mathbb{R}^d)$ régulier
- Pour $\theta \in \Theta$, le score de Fisher est donné par

$$\eta_{\theta}(x) = \nabla_{\theta} \log f(\theta, x)$$

- Propriétés
 - Le score de Fisher est centré sous \mathbb{P}_{θ} ,

$$\mathbb{E}_{\theta}[\eta_{\theta}(X)] = 0, \quad \theta \in \Theta.$$

 La matrice de covariance du score de Fisher est égale à la matrice d'Information de Fisher

$$I(\theta) = \mathbb{E}_{\theta} \left[\eta_{\theta}(X) \eta_{\theta}(X)^T \right]$$

■ Conclusion Pour tout $\theta \in \Theta$.

$$Z_n(\theta) = n^{-1/2} \sum_{i=1}^n \eta_{\theta}(X_i) \stackrel{d}{\to}_{\mathbb{P}^n_{\theta}} \mathcal{N}(0, I(\theta)).$$

Test de Rao

■ Pour tester $H_0: \theta = \theta_0$ contre $H_1: \theta \neq \theta_0$, nous considérons la statistique de test

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0)$$

Sous l'hypothèse nulle,

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0) \stackrel{d}{\to}_{\mathbb{P}^n_{\theta_0}} \chi^2(d)$$

et donc le test de Rao de rejet

$$Z_n(\theta_0)^T I^{-1}(\theta_0) Z_n(\theta_0) \geq q_{1-\alpha,d}^{\chi^2}$$

est asymptotiquement de niveau α .

Tests d'adéquation

■ <u>Situation</u> On observe (pour simplifier) un *n*-échantillon de loi *F* inconnue

$$X_1, \ldots, X_n \sim_{\text{i.i.d.}} F$$

Objectif Tester

$$H_0: F = F_0$$
 contre $H_1: F \neq F_0$

où F_0 distribution donnée. Par exemple : F_0 gaussienne centrée réduite.

Il est très facile de construire un test asymptotiquement de niveau α . Il suffit de trouver une statistique $\phi(X_1, \ldots, X_n)$ de loi connue sous l'hypothèse de base.

Test d'adéquation : situation

■ Exemples : sous l'hypothèse

$$\phi_1(X_1, \dots, X_n) = \sqrt{nX_n} \sim \mathcal{N}(0, 1)$$

$$\phi_2(X_1, \dots, X_n) = \sqrt{n\frac{X_n}{S_n}} \sim \text{Student}(n-1) \quad \text{avec } S_n = (n-1)^{-1} \sum_{k=1}^n (X_k - \bar{X}_n)$$

$$\phi_3(X_1, \dots, X_n) = (n-1)s_n^2 \sim \chi^2(n-1).$$

- Le problème est que ces tests ont une faible puissance : ils ne sont pas consistants.
- Pas exemple, si $F \neq \text{gaussienne mais } \int_{\mathbb{R}} x dF(x) = 0, \int_{\mathbb{R}} x^2 dF(x) = 1$, alors

$$\mathbb{P}_F\left[\phi_1(X_1,\ldots,X_n) \leq x\right] \to \int_{-\infty}^x e^{-u^2/2} \frac{du}{\sqrt{2\pi}}, \ x \in \mathbb{R}.$$

(résultats analogues pour ϕ_2 et ϕ_3).

■ La statistique de test ϕ_i ne caractérise pas la loi F_0 .

Test de Kolmogorov-Smirnov

Rappel Si la fonction de répartition F est continue,

$$\sqrt{n}\sup_{x\in\mathbb{R}}\left|\widehat{F}_n(x)-F(x)\right|\stackrel{d}{\longrightarrow}\mathbb{B}$$

où la loi de $\mathbb B$ ne dépend pas de F.

Proposition (Test de Kolmogorov-Smirnov)

Soit $q_{1-\alpha}^{\mathbb{B}}$ tel que $\mathbb{P}\left[\mathbb{B}>q_{1-\alpha}^{\mathbb{B}}\right]=\alpha$. Le test défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ \sqrt{n} \sup_{x \in \mathbb{R}} \left| \widehat{F}_n(x) - F_0(x) \right| \ge q_{1-\alpha}^{\mathbb{B}} \right\}$$

est asymptotiquement de niveau $\alpha: \mathbb{P}_{F_0}\left[\mathcal{R}_{n,\alpha}\right] \to \alpha$ et consistant :

$$\forall F \neq F_0 : \mathbb{P}_F \left[\mathcal{R}_{n,\alpha}^c \right] \to 0.$$

Test du Chi-deux

• X variable qualitative : $X \in \{1, \dots, d\}$.

$$\mathbb{P}\left[X=\ell\right]=\rho_{\ell},\;\ell=1,\ldots d.$$

- La loi de X est caratérisée par $\mathbf{p} = (p_1, \dots, p_d)^T$.
- Notation

$$\mathcal{M}_d = ig\{ oldsymbol{p} = ig(p_1, \dots, p_d ig)^T, \;\; 0 \leq oldsymbol{p}_\ell, \sum_{\ell=1}^d oldsymbol{p}_\ell = 1 ig\}.$$

■ Objectif $q \in \mathcal{M}_d$ donnée. A partir d'un n-échantillon

$$X_1,\ldots,X_n\sim_{\text{i.i.d.}} \boldsymbol{p},$$

tester $H_0: \mathbf{p} = \mathbf{q}$ contre $H_1: \mathbf{p} \neq \mathbf{q}$.

Test d'adéquation du χ^2

■ distance du χ^2 :

$$\chi^2(\pmb{p},\pmb{q}) = \sum_{\ell=1}^d rac{(p_\ell-q_\ell)^2}{q_\ell}.$$

• Avec ces notations $\|\boldsymbol{U}_n(\boldsymbol{p})\|^2 = n\chi^2(\widehat{\boldsymbol{p}}_n,\boldsymbol{p}).$

Proposition

Pour $\mathbf{q} \in \mathcal{M}_d$ le test simple défini par la zone de rejet

$$\mathcal{R}_{n,\alpha} = \left\{ n\chi^2(\widehat{\boldsymbol{p}}_n, \boldsymbol{q}) \geq q_{1-\alpha,d-1}^{\chi^2} \right\}$$

où $\mathbb{P}\left[U>q_{1-\alpha,d-1}^{\chi^2}\right]=\alpha$ si $U\sim\chi^2(d-1)$ est asymptotiquement de niveau α et consistant pour tester

$$H_0: \mathbf{p} = \mathbf{q}$$
 contre $H_1: \mathbf{p} \neq \mathbf{q}$.

Exemple de mise en oeuvre : expérience de Mendel

■ Soit *d* = 4 et

$$q = \left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right).$$

Répartition observée : n = 556

$$\hat{\boldsymbol{p}}_{556} = \frac{1}{556}(315, 101, 108, 32).$$

lacktriangle Calcul de la statistique du χ^2

$$556 \times \chi^2(\widehat{\pmb{p}}_{556}, \pmb{q}) = 0,47.$$

- On a $q_{95\%,3} = 0,7815$.
- Conclusion : Puisque 0,47 < 0,7815, on accepte l'hypothèse $\mathbf{p} = \mathbf{q}$ au niveau $\alpha = 5\%$.