

Features

- · Two-stage LNA
- 30 dB gain & 0.8 dB NF at 1575 MHz GPS, GLONASS, Galileo and Compass
- · Unconditionally Stable
- · Need only 6 components
- 2 kV Contact Discharge ESD Rating achievable with one external L (Refer to an application circuit at page 8, 14)

"AEC-Q100 Qualified"

Typical Performance

(Supply Voltage = +3 V, $T_A = +25 \,^{\circ}\text{C}$, $Z_0 = 50 \,\Omega$)

Parameters	Units	Typical				
Frequency	MHz	900	1575	1950	2400	3500
Gain	dB	36	30	23	23	17
S11	dB	-18	-20	-20	-20	-18
S22	dB	-18.0	-16.0	-18.0	-18.0	-13.5
S12	dB	-40	-38	-34	-34	-28
Output IP31)	dBm	22	22	21	21	18
Noise Figure	dB	0.9	0.8	1.1	1.1	1.6
Output P1dB	dBm	11	11	11	11	8
Current	mA	20	20	20	20	22
Device Voltage	V	+3	+3	+3	+3	+3

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Product Specifications*

Parameters	Units	Min	Тур	Max
Frequency	MHz		1575	
Gain	dB	28	30	33
S11	dB	-10	-20	
S22	dB	-10	-16	
S12	dB		-38	
Output IP3	dBm	20	22	
Noise Figure	dB		0.8	1.2
Output P1dB	dBm	10	11	
Current	mA	17	20	25
Device Voltage	V		+3	

^{100%} in-house DC & RF testing is done on packaged products before taping.

Absolute Maximum Ratings

Parameters	Rating
Operating Case Temperature	-40 to +85 °C
Storage Temperature	-40 to +150 °C
Device Voltage	+5 V
Operating Junction Temperature	+150 °C
Input RF Power (CW, 50 Ω matched as in 1950 MHz application circuit)*	+22 dBm
Thermal Resistance	285 °C/W

^{*} Please find the max. input power data from http://www.asb.co.kr/pdf/Maximum_Input_Power_Analysis.pdf
The max. input power, in principle, depends upon the application frequency and the matching circuit.

Description

ASL30G is a two-stage LNA for GPS, GLONASS, Galileo and Compass receiver low noise block. It has a low noise, high gain, and high linearity over a wide range of frequency up to 6 GHz. It is also suitable for use in the low noise amplifier block of the mobile wireless system. The amplifier is available in a SOT363 package and passes the stringent DC, RF, and reliability tests.

Package Style: SOT363

Application Circuit

- · GPS,GLONASS,Galileo,Compass
- · 1559 MHz ~ 1610 MHz (3 V, 4 V, 3.3 V, 1.8 V)
- · 1559 MHz ~ 1610 MHz (Robust ESD, ± 2 kV)
- · 1164 MHz ~ 1300 MHz (3 V, 3.3 V)
- · 1164 MHz ~ 1300 MHz (Robust ESD, ± 2 kV)

Others

- · 900 MHz (3 V, 4 V)
- · 1950 MHz (3 V, 4 V)
- · 2400 MHz (3 V, 4 V)
- · 3300 ~ 3800 MHz (3 V, 4 V)

Pin Configuration

Function
VDD
GND
RF OUT
RF IN

Outline Drawing

Symbols	Dimensions (In mm)		Dimensions (In inch)		
	MIN	MAX	MIN	MAX	
Α	0.90	1.10	.036	.044	
A1	0.025	0.10	.001	.004	
A2	0.875	1.00	.035	.040	
b	0.20	0.40	.008	.016	
С	0.10	0.15	.004	.006	
D	1.90	2.10	.076	.084	
E	1.15	1.35	.046	.054	
E1	2.00	2.20	.080	.088	
е	0.65 BSC.		.026 BSC.		
e1	1.30 BSC.		.052 BSC.		
L	0.425 REF.		.017 REF		

Pin No.	Function	Pin No.	Function.
1	VDD	4	GND
2	GND	5	GND
3	RF OUT	6	RF IN

Mounting Recommendation (In mm)

- **Note**: 1. The number and size of ground via holes in a circuit board is critical for thermal and RF grounding considerations.
 - 2. We recommend that the ground via holes be placed on the bottom of lead pin 2, 4 and 5 for better RF and thermal performance, as shown in the drawing at the left side.
 - 3. You can download the gerber file of ASL226 from http://www.asb.co.kr/s-para/ASL226_gerber.zip

ESD Classification & Moisture Sensitivity Level

ESD Classification (Test Method : AEC-Q100)

HBM Class H0 (Voltage Level: 200 V)
MM Class M0 (Voltage Level: 50 V)
CDM Class C4 (Voltage Level: 800 V)

CAUTION: ESD-sensitive device!

Moisture Sensitivity Level

Level 3 at 260 °C reflow

GSM 900 MHz +3 V, +4 V

Parameter	Symbol	Test Conditions TYP.		Unit	
Power Gain	G _p	F = 900 MHz	36.0	37.5	dB
Noise Figure	NF	F = 900 MHz	0.9	0.9	dB
Input Return Loss	RLin	F = 900 MHz	-18	-20	dB
Output Return Loss	RLout	F = 900 MHz	-18	-14	dB
Reverse Isolation	ISO	F = 900 MHz	-40	-40	dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 900 MHz	11.0	13.5	dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 900 MHz	22	25	dBm
Current	I _d	F = 900 MHz, Non-RF	20	30	mA
Device Voltage	V _d	F = 900 MHz, Non-RF	+3	+4	٧

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

 * Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Bottom

APPLICATION CIRCUIT
GPS,GLONASS,Galileo&Compass
1164 MHz ~ 1300 MHz
+3 V

Parameter	Symbol	Unit	Frequency [MHz]	
Parameter			1176	1227
Power Gain	G _p	dB	33	32
Noise Figure	NF	dB	1.00	0.95
Input Return Loss	RLin	dB	-18	-18
Output Return Loss	RLout	dB	-18	-18
Reverse Isolation	ISO	dB	-40	-40
1 dB Gain Compression Output Power	P _{o(1dB)}	dBm	11.0	11.5
3 rd Intercept Point Output Power ¹⁾	OIP3	dBm	21.0	21.5
Current	I _d	mA	20	20
Device Voltage	V_d	V	+3	+3

¹⁾ OIP3 is measured with two tones at an output power of -10 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Тор

APPLICATION CIRCUIT
PS,GLONASS,Galileo&Compass
1164 MHz ~ 1300 MHz
+3.3 V

Parameter	Symbol	Unit	Frequency [MHz]		
raidilletei	Syllibol	Offic	1176	1227	
Power Gain	Gp	dB	33	32	
Noise Figure	NF	dB	1.00	0.95	
Input Return Loss	RL_{in}	dB	-18	-17	
Output Return Loss	RLout	dB	-17	-16	
Reverse Isolation	ISO	dB	-40	-40	
1 dB Gain Compression Output Power	P _{o(1dB)}	dBm	12	12	
3 rd Intercept Point Output Power ¹⁾	OIP3	dBm	22	23	
Current	I_d	mA	23	23	
Device Voltage	V_d	V	+3.3	+3.3	

¹⁾ OIP3 is measured with two tones at an output power of -10 dBm/tone separated by 1MHz.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Top

Bottom

Current vs. Temperature

Gain vs. Temperature

P1dB vs. Temperature

Output IP3 vs. Temperature

NF vs. Temperature

NF vs. Frequency

Robust ESD (± 2 kV)¹⁾ GPS,GLONASS,Galileo&Compass 1164 MHz ~ 1300 MHz

+3 V

Parameter	Symbol	Unit	Frequency [MHz]		; L
			1176	1227	
Power Gain	G _p	dB	31.5	31.2	-
Noise Figure	NF	dB	1.45	1.45	-
Input Return Loss	RLin	dB	-11	-11	-
Output Return Loss	RLout	dB	-18	-18	_
Reverse Isolation	ISO	dB	-40	-40	-
1 dB Gain Compression Output Power	P _{o(1dB)}	dBm	11.0	11.5	-
3 rd Intercept Point Output Power ¹⁾	OIP3	dBm	20	21	_
Current	I _d	mA	20	20	_
Device Voltage	V _d	V	+3	+3	

¹⁾ OIP3 is measured with two tones at an output power of -10 dBm/tone separated by 1MHz.

Schematic

C2=2 pF RF OUT ASL30G L2=8.2 nH C1=100 pF RF IN 0-L1=6.2 nH Vs = +3 V

 * Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

¹⁾ Test Method: Contact discharge on GPS patch antenna input. Applying 10 times repeated voltage at 1 sec time Interval.

GPS,GLONASS,Galileo&Compass 1559 MHz ~ 1610 MHz

+3 V, +4 V

				ASI	30G
Parameter	Symbol	Test Conditions	TYP.		Unit
Power Gain	Gp	F = 1575 MHz ~	ognin in	1130.5VIIV	IICB LNA
Noise Figure	NF	F = 1575 MHz	0.8	0.8	dB
Input Return Loss	RLin	F = 1575 MHz	-20	-20	dB
Output Return Loss	RL _{out}	F = 1575 MHz	-16	-15	dB
Reverse Isolation	ISO	F = 1575 MHz	-38	-38	dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1575 MHz	11	13	dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 1575 MHz	22	26	dBm
Current	I _d	F = 1575 MHz, Non-RF	20	30	mA
Device Voltage	V_d	F = 1575 MHz, Non-RF	+3	+4	V

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Bottom

Current vs. Temperature

Gain vs. Temper Gure 6000 MHz MMIC LNA

P1dB vs. Temperature

Output IP3 vs. Temperature

NF vs. Temperature

NF vs. Frequency

GPS,GLONASS,Galileo&Compass 1559 MHz ~ 1610 MHz

+3.3 V

					ISL300	i
-	Parameter	Symbol	Test Conditions	TYP.	Unit	_
	Power Gain	Gp	F = 1575 MHz ~	OSHUD MIHZ	NAMIC EN	A
	Noise Figure	NF	F = 1575 MHz	0.8	dB	
	Input Return Loss	RLin	F = 1575 MHz	-20	dB	
	Output Return Loss	RL _{out}	F = 1575 MHz	-16	dB	
	Reverse Isolation	ISO	F = 1575 MHz	-38	dB	
	1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1575 MHz	12	dBm	
	3 rd Intercept Point Output Power 1)	OIP3	F = 1575 MHz	23	dBm	
	Current	I _d	F = 1575 MHz, Non-RF	23	mA	
	Device Voltage	V _d	F = 1575 MHz, Non-RF	+3.3	V	

¹⁾ OIP3 is measured with two tones at an output power of -10 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Current vs. Temperature

Gain vs. Temperature 6000 MHz MMIC LNA

P1dB vs. Temperature

Output IP3 vs. Temperature

NF vs. Temperature

NF vs. Frequency

GPS,GLONASS,Galileo&Compass 1559 MHz ~ 1610 MHz

+1.8 V

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power Gain	Gp	F = 1.575 GHz		26		dB
Noise Figure	NF	F = 1.575 GHz		1.0		dB
Input Return Loss	RLin	F = 1.575 GHz		-14		dB
Output Return Loss	RL _{out}	F = 1.575 GHz		-18		dB
Reverse Isolation	ISO	F = 1.575 GHz		-38		dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1.575 GHz		6		dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 1.575 GHz		15		dBm
Current	I _d	F = 1.575 GHz, Non-RF		8.5		mA

¹⁾ OIP3 is measured with two tones at an output power of -5 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

322

S-parameters & K-factor

Frequency (MHz)

ASI 30G

APPLICATION CIRCUIT

Robust ESD (± 2 kV)¹⁾ GPS,GLONASS,Galileo&Compass 1559 MHz ~ 1610 MHz

+3 V

	AULSUC					
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power Gain	Gp	F = 1.575 GHz ^	- 6000	13072	MIMIC	PBIA
Noise Figure	NF	F = 1.575 GHz		1.1		dB
Input Return Loss	RLin	F = 1.575 GHz		-15		dB
Output Return Loss	RL _{out}	F = 1.575 GHz		-18		dB
Reverse Isolation	ISO	F = 1.575 GHz		-40		dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1.575 GHz		11		dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 1.575 GHz		22		dBm
Current	I _d	F = 1.575 GHz, Non-RF		20		mA

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

S-parameters & K-factor

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

¹⁾ Test Method: Contact discharge on GPS patch antenna input. Applying 10 times repeated voltage at 1 sec time Interval.

ASL30G

APPLICATION CIRCUIT

Robust ESD (± 2 kV)¹⁾

GPS,GLONASS,Galileo&Compass

1559 MHz ~ 1610 MHz

+1.8 V

				A	OLO	UG
Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Power Gain	Gp	F = 1.575 GHz	- 0000	26.5	William	dB
Noise Figure	NF	F = 1.575 GHz		1.25		dB
Input Return Loss	RLin	F = 1.575 GHz		-12		dB
Output Return Loss	RL _{out}	F = 1.575 GHz		-14		dB
Reverse Isolation	ISO	F = 1.575 GHz		-40		dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1.575 GHz		6		dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 1.575 GHz		15		dBm
Current	I _d	F = 1.575 GHz, Non-RF		8.5		mA

¹⁾ OIP3 is measured with two tones at an output power of -5 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Bottom

¹⁾ Test Method: Contact discharge on GPS patch antenna input. Applying 10 times repeated voltage at 1 sec time Interval.

WCDMA 1950 MHz +3 V, +4 V

Parameter	Symbol	Test Conditions	TYP.		Unit
Power Gain	G _p	F = 1950 MHz	25	26	dB
Noise Figure	NF	F = 1950 MHz	1.10	1.05	dB
Input Return Loss	RLin	F = 1950 MHz	-20	-20	dB
Output Return Loss	RL _{out}	F = 1950 MHz	-18	-18	dB
Reverse Isolation	ISO	F = 1950 MHz	-34	-34	dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 1950 MHz	11	13	dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 1950 MHz	21.0	24.5	dBm
Current	I _d	F = 1950 MHz, Non-RF	20	30	mA
Device Voltage	V _d	F = 1950 MHz, Non-RF	+3	+4	V

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Bottom

WLAN 2400 MHz +3 V, +4 V

Parameter	Symbol	Test Conditions	TYP.		Unit
Power Gain	G _p	F = 2400 MHz	23	24	dB
Noise Figure	NF	F = 2400 MHz	1.10	1.05	dB
Input Return Loss	RLin	F = 2400 MHz	-20	-20	dB
Output Return Loss	RL _{out}	F = 2400 MHz	-18	-18	dB
Reverse Isolation	ISO	F = 2400 MHz	-34	-34	dB
1 dB Gain Compression Output Power	P _{o(1dB)}	F = 2400 MHz	11	13	dBm
3 rd Intercept Point Output Power 1)	OIP3	F = 2400 MHz	21.0	24.5	dBm
Current	I _d	F = 2400 MHz, Non-RF	20	30	mA
Device Voltage	V _d	F = 2400 MHz, Non-RF	+3	+4	V

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Bottom

NI A

APPLICATION CIRCUIT

WiMAX 3300 ~ 3800 MHz +3 V, +4 V

Parameter	Symbol	Unit	Freque	ency [Mł	lz]			
Farameter	Symbol	Offic	3300	3800	3300	3800		
Power Gain	G _p	dB	18.5	17.0	19.0	17.5		
Noise Figure	NF	dB	1.4	1.6	1.6	1.8		
Input Return Loss	RLin	dB	-18	-18	-18	-18		
Output Return Loss	RL _{out}	dB	-12.5	-13.5	-12.0	-13.5		
Reverse Isolation	ISO	dB	-30	-28	-29	-28		
1 dB Gain Compression Output Power	P _{o(1dB)}	dBm	12.5	7.5	14.0	11.0		
3 rd Intercept Point Output Power ¹⁾	OIP3	dBm	21	18	25	22		
Current	I _d	mA	22		33			
Device Voltage	V_d	٧	+3		+4			

¹⁾ OIP3 is measured with two tones at an output power of -3 dBm/tone separated by 1MHz.

Schematic

C2=0.75 pF RF OUT ASL30G C1=10 pF C1=10 pF Vs

* Note: Gain and current can be reduced by controlling Vs to 2 V. C3 must be placed as close as possible to the device.

Board Layout (FR4, 14x11.3 mm², 0.8T)

Top

Bottom

Recommended Soldering Reflow Profile

