Dans chaque cas, une seule des trois réponses proposées est exacte. Laquelle ?

		Α	В	С
1	A B C Le quadrilatère ABCD est	un quadrilatère quelconque	un rectangle	un parallélogramme
2	Dans le triangle E DEF ci-contre : I ∈ [EF] et (DI) est la médiane issue de D. F D On peut alors affirmer que :	(DI)⊥(EF)	l est le milieu de [EF]	ÊDI = IDF
3	Si A, B et C sont trois points tels que AB = AC, alors	A est le milieu de [BC]	ABC est un triangle isocèle en B	A est un point de la médiatrice de [BC]
4	Si I, J et K sont trois points tels que	l est le milieu de [JK]	ctrictoment	I, J et K sont alignés
5	Si $\frac{3}{7} = \frac{x}{2}$, alors:	$x = \frac{3}{7} \times 2$	$x = 2 \times \frac{7}{3}$	$x = \frac{3}{7 \times 2}$
6	Si $\frac{4}{x} = \frac{2}{9}$, alors:	$x = \frac{2}{9} \times 4$	$x = 4 \times \frac{9}{2}$	$x = 4 \times 2 \times 9$

Exercice 1 Indiquer, dans chaque cas, si le point I est le milieu du segment [MN].

- 1 M est le symétrique de N par rapport à I.
- 2 I est le point d'intersection des diagonales d'un parallélogramme MPNA.
- 3 I est un point de la médiatrice du segment [MN] et I n'appartient pas à la droite (MN).
- I est le centre de symétrie d'un losange MSNT.
- \bigcirc M est le symétrique de N par rapport à une droite (d) et l appartient à la droite (d) mais n'appartient pas à la droite (MN).
- 6 l est le centre du cercle de diamètre [MN].

Exercice 2 \mathscr{C} et \mathscr{C}' sont deux cercles de même centre O. [AF] est un diamètre de \mathscr{C} et [ED] est un diamètre de \mathscr{C}' .

- ① Quelle est la nature du quadrilatère AEFD ? Justifier la réponse.
- En déduire que :
- **a.** les droites (AD) et (EF) d'une part, et (AE) et (DF) d'autre part sont parallèles.
- **b**. DF = AE et AD = FE.

<u>Activités</u>

Activité 1 Un triangle, deux milieux et une droite

A Observer et conjecturer

- Tracer un triangle ABC quelconque.

 Placer le milieu I du côté [AB] et le milieu J du côté [AC], puis tracer la droite (IJ).
- a. Comment semblent être les droites (IJ) et (BC) ?
 b. Mesurer les longueurs IJ et BC.
 Quelle relation semble-t-il y avoir entre ces deux longueurs ?

B Démontrer

On considère un triangle ABC quelconque. Le point I est le milieu de [AB] et le point J est le milieu de [AC].

Reproduire la figure ci-contre et construire le symétrique M
 de J par rapport à I.

- Quelle est la nature du quadrilatère AMBJ ? Justifier.
 - **b.** Qu'en déduit-on pour les droites (AJ) et (MB) ? pour les longueurs AJ et MB ?
 - **G.** Justifier alors que : (JC)//(MB) et JC = MB.
 - . En déduire la nature du quadrilatère MJCB.
 - Justifier alors que : (MJ)//(BC) et MJ = BC.
 - f. En déduire que : (IJ)//(BC) et $IJ = \frac{1}{2}BC$.

Pour conclure

- Que peut-on dire d'une droite qui passe par les milieux de deux côtés d'un triangle?
- Que peut-on dire de la longueur d'un segment dont les extrémités sont les milieux de deux côtés d'un triangle?

Activité 2 Un triangle, un milieu et une parallèle

- 1 a. Tracer un triangle ABC et placer le point I, milieu du côté [AB].
 - b. Combien existe-t-il de droites passant par le point I et parallèle à la droite (BC) ?

 Tracer la droite (d) passant par I et parallèle à (BC) ; elle coupe le côté [AC] en un point que l'on note M.
- On appelle J le milieu du côté [AC].
 - Que peut-on dire de la droite (IJ) ?
 - **b.** Que peut-on dire des droites (*d*) et (IJ) ?
 - G. Que peut-on en déduire pour les points M et J?

Pour conclure Que peut-on dire d'une droite qui passe par le milieu d'un côté d'un triangle et qui est parallèle à un deuxième côté?

Activité 3 Deux triangles : deux parallèles et deux sécantes

Conjecturer avec un logiciel de géométrie

- 1 a. Créer un triangle ABC.
 - **b.** Créer un **point** M libre sur le segment [AB].
 - Créer la droite parallèle à la droite (BC) passant par M, puis créer le point d'intersection N de cette droite et du segment [AC].
 - d. Créer le segment [MN].
- a. Afficher les longueurs des segments [AM], [AN], [MN], [AB], [AC] et [BC], arrondies au centième.
 - **b.** À l'aide de la **fonction calculatrice** du logiciel, afficher la valeur des quotients $\frac{AM}{AB}$, $\frac{AN}{AC}$ et $\frac{MN}{BC}$, nommés respectivement m, n et p.

- 3 a. Déplacer le point M sur le segment [AB]. Que remarque-t-on?
 - b. Déplacer le point A, puis déplacer de nouveau le point M sur [AB]. Que remarque-t-on ?
 - C. Observe-t-on le même résultat lorsque l'on déplace le point B ou le point C?

B Conjecturer avec une règle graduée

Dans chacun des trois cas suivants, ABC est un triangle, M et N sont deux points appartenant respectivement aux côtés [AB] et [AC] tels que : (MN)//(BC).

Pour chacun de ces trois triangles, mesurer avec une règle graduée les longueurs AM, AN, MN, AB, AC, BC, et consigner les résultats dans un tableau identique au tableau ci-contre. On donnera les longueurs en centimètre au millimètre près.

AM = cm	AN = cm	MN = cm		
AB = cm	AC = cm	BC = cm		
$\frac{AM}{AB} = \dots$	$\frac{AN}{AC} = \dots$	$\frac{MN}{BC} = \dots$		

Compléter la dernière ligne des trois tableaux. On donnera les arrondis au dixième.

Pour conclure

Voir l'exercice 22, page 208

Lorsque M et N sont deux points appartenant respectivement aux côtés [AB] et [AC] d'un triangle ABC tels que la droite (MN) est parallèle à la droite (BC), que peut-on conjecturer pour les quotients $\frac{AM}{AB}$, $\frac{AN}{AC}$ et $\frac{MN}{BC}$?

Agrandissement et réduction Activité 4

Agrandissement, réduction et angles

- Construire un triangle ABC tel que : AB = 2 cm; AC = 4 cm; BC = 5 cm.
 - **b.** Construire un triangle A'B'C' tel que : A'B' = 2 AB; A'C' = 2 AC; B'C' = 2 BC.

On dit que le triangle A'B'C' est un agrandissement de facteur 2 du triangle ABC.

- Mesurer les angles BAC, ACB, CBA, B'A'C', A'C'B' et C'B'A'. Que remarque-t-on?
- \bigcirc Construire un triangle DEF tel que : DE = 7,5 cm; DF = 6 cm; EF = 5,4 cm.
 - **b.** Construire un triangle D'E'F' tel que : D'E' = $\frac{1}{3}$ ED; D'F' = $\frac{1}{3}$ DF; E'F' = $\frac{1}{3}$ EF.

On dit que le triangle D'E'F' est une réduction de facteur $\frac{1}{3}$ du triangle DEF.

G. Mesurer les angles DEF, EFD, FDE, D'E'F', E'F'D' et F'D'E'. Que remarque-t-on?

Pour conclure On admet que les mesures des angles sont conservées dans un agrandissement et dans une réduction.

Agrandissement, réduction et parallélisme

Dans la figure ci-contre, ABCD est un quadrilatère tel que : (AB)//(DC).

Le quadrilatère A'B'C'D' est une réduction du quadrilatère ABCD.

- Comparer les angles DCA et CAB. Justifier.
- Que peut-on dire, d'après la propriété admise dans la partie A, des mesures des angles DCA et D'C'A' d'une part, CAB et C'A'B' d'autre part ?

D' C'

Que peut-on en déduire pour les droites (A'B') et (D'C')?

Pour conclure On admet que le parallélisme est conservé dans un agrandissement et dans une réduction.

Cas particulier

Dans la figure ci-contre, AST est un triangle, B est un point appartenant au côté [AS] et C un point appartenant au côté [AT] tels que : (BC) // (ST).

Quelles égalités de quotients peut-on écrire ? Justifier.