LEARNING TO RANK

GROUP 3

Anna Dymanus, Vitor Faria de Souza, Vincent Nguyen, Nil Palau and Álvaro Sánchez

PROBLEM DESCRIPTION

TREC 2020

TREC 2020

- For Information retrieval in a large training data regime
- One of the few real-world simulated scenarios
- One positive label for 10.000-100.000's per training query
- Ms-marco (Microsoft):
 - +22 GB (all of it)
- Goal: To study what methods work best in this regime with two different models, point-wise & pair-wise.
- TREC consists of two parts:
 - Passage retrieval task
 - Document retrieval task

LEARNING TO RANK

Point-wise & Pair-wise

LEARNING TO RANK: DIFFERENT APPROACHES

POINTWISE

Unsupervised functions

(q, d1)

Order by classifier's confidence

PAIRWISE

Unsupervised functions

(q, d1, d2)

Merge results in a consistent order

THE DATA & PREPROCESSING

How we treated the data

DATA AND DATA PREPROCESSING

DOCUMENT COLLECTION: 3,2 Mio. Documents

TRAINING SET: ~350 000 queries, each paired with 1 relevant document from the corpus (Label: 1)

VALIDATION SET: ~5 500 queries

TEST SET: \sim 50 queries, each with \sim 200-1400 documents with relevance labels from 0 to 3

PREPARE DATASETS:

- Problem: Training set has only 1 positive example of document per query
- Solution: Create I negative example of document for each query
 - Assign random other document from the corpus as negative example.
- **PREPROCESS:** Remove stop words, tokenize and lemmatize (spaCy). Create BoW and Tf-Idf Vector, compress with SVD ...

MODELS

Models for point-wise & pair-wise

L2R MODELS - MODEL COMPARISON

BASELINE: Cosine Similarity

MODELS WITH DIFFERENT REPRESENTATIONS AS AN INPUT:

- Tf-idf vector
- · Average GloVe Word Embedding
- Average BART Word Embeddings
- · BART Document Embedding

Some Scoring Functions get BoW

- Jaccard
- BM25
- → BoW served to model together with the representations

SCORING FUNCTIONS

- Cosine Similarity
- Logistic Regression*
- BM25
- Jaccard Similarity

*(not used for models using BART Embeddings)

EMBEDDINGS

• GloVe Embeddings:

Non-Contextualised

Average Word Embedding per Query and Document

BART Embeddings:

Contextualised
Takes up to 1024 tokens input
Average Word Embedding per Query and Document
Document Embeddings: End of Sequence <EOS>

PROBLEM: Size. After saving up to 35GB

SOLUTION: We don't save the embeddings earlier (~35GB). BART embeddings calculate during training and testing:

• Long training runtime!

NEURAL NETWORK TRAINING

SET UP:

- · Scoring Mode: True / False
- · Mode for BART-Embeddings: None, Word, Document
- · Criterion: Binary Cross Entropy Loss
 - Pointwise: Relevant vs. Non-Relevant
 - Pairwise: First vs. Second Document
- · Optimizer: AdamW
- Scoring Mode: False
 - Concatenate Vectors of Query and Document Representations

Rank the results: Pointwise vs Pairwise

Pointwise L2R:

• Rank the documents based on the model's score.

Pairwise L2R:

- PROBLEM: Each of ~50 queries has ~200-1400 documents to be ranked → 40 000-2 000 000 comparisons per query: computationally too heavy
 - O(n log n) Sorting: Still up to 15 000 Comparisons per Query.

OUR APPROACH:

- For each query create a vector with average embeddings of all the documents that are to be ranked.
- Compare how relevant each of those document is in relation to that average document vector.
- Base the rank on that relevance score.

Evaluation Metrics

Gold Standard:

 DocID and QueryID pairs with relevance ratings ranging from 0 (irrelevant) to 3 (super relevant).

Mean Reciprocal Rank @ k=10:

 Position of the first relevant document (rating ≥ 2) among the first 10 retrieved.

(normalized) Discounted Cumulative Gain:

 How close the ranked list of retrieved documents is to the perfect order.

MRR Relevance Threshold = 1

		MRR_at_10	DCG	nDCG	pairwise_acc
(Pointwise)	GloVe Word Embedding	0.568309	32.664117	0.676987	0.607968
(Pairwise)	GloVe Word Embedding Scoring Pairwise	0.572250	32.295990	0.668845	0.595777
(Pointwise)	Tf-ldf	0.481423	31.800888	0.667206	0.592718
(Pairwise)	Tf-Idf Pairwise	0.564212	31.706860	0.666408	0.583277
(Pairwise)	GloVe Word Embedding Pairwise	0.581654	32.100947	0.665090	0.587289
(Pointwise)	BART Doc Embedding Scoring	0.456966	36.038576	0.664488	0.574078
(Pointwise)	GloVe Word Embedding Scoring	0.537302	32.126986	0.663315	0.594484
(Pointwise)	Tf-Idf Scoring	0.451477	31.722231	0.655401	0.587863
(Pairwise)	Tf-Idf Scoring Pairwise	0.448247	31.595256	0.651772	0.583725
(Pointwise)	BART Doc Embedding	0.520378	33.681145	0.650810	0.549932
	Cosine Similarity	0.376966	31.337178	0.649092	0.581657
(Pairwise)	BART Doc Embedding Pairwise	0.521152	31.146306	0.646021	0.555442
(Pointwise)	BART Word Embedding Scoring	0.473348	31.333809	0.643832	0.567777
(Pairwise)	BART Word Embedding Pairwise	0.491113	31.226614	0.641721	0.561485
(Pointwise)	BART Word Embedding	0.470986	31.208557	0.633229	0.556830

Best model

MRR Relevance Threshold = 2

		MRR_at_10	DCG	nDCG	pairwise_acc	
(Pointwise)	GloVe Word Embedding	0.380159	32.664117	0.676987	0.607968	
(Pairwise)	GloVe Word Embedding Scoring Pairwise	0.331294	32.295990	0.668845	0.595777	
(Pointwise)	Tf-ldf	0.251800	31.800888	0.667206	0.592718	
(Pairwise)	Tf-Idf Pairwise	0.252473	31.706860	0.666408	0.583277	
(Pairwise)	GloVe Word Embedding Pairwise	0.318217	32.100947	0.665090	0.587289	
(Pointwise)	BART Doc Embedding Scoring	0.231349	36.038576	0.664488	0.574078	
(Pointwise)	GloVe Word Embedding Scoring	0.303027	32.126986	0.663315	0.594484	
(Pointwise)	Tf-Idf Scoring	0.258869	31.722231	0.655401	0.587863	
(Pairwise)	Tf-Idf Scoring Pairwise	0.237495	31.595256	0.651772	0.583725	
(Pointwise)	BART Doc Embedding	0.210084	33.681145	0.650810	0.549932	
	Cosine Similarity	0.253387	31.337178	0.649092	0.581657	
(Pairwise)	BART Doc Embedding Pairwise	0.203092	31.146306	0.646021	0.555442	
(Pointwise)	BART Word Embedding Scoring	0.280131	31.333809	0.643832	0.567777	
(Pairwise)	BART Word Embedding Pairwise	0.216584	31.226614	0.641721	0.561485	
(Pointwise)	BART Word Embedding	0.191528	31.208557	0.633229	0.556830	

Best model

Baseline

GloVe Pointwise Model - Examples	MRR_AT_10	nDCG				
HARDEST QUERIES						
what is theraderm used for	0.0	0.256076				
how many liberty ships were built in brunswick	0.0	0.261792				
what is an aml surveillance analyst	0.0	0.370303				
EASIEST QUERIES						
what is durable medical equipment consist of	1.0	0.895841				
exons definition biology	0.5	0.859406				
define visceral?	0.5	0.867105				

CONCLUSIONS

What have we learned from our results

Conclusions

- Transformers Embeddings (e.g. BART) are costly to get
 - With limited time → worst
 - Not effective without fine-tuning
- GloVe Embeddings work best and are fast to get (just a lookup)
- Embedding vs Scoring:
 - Embedding directly as input is better
- Pairwise has a slightly worse performance than Pointwise, even has more difficulties:
 - Needs more GPU memory (2 docs per data-point)
 - Ranking the results is costly if done properly
- Plenty space for improvement: Hyperparameter Optimization, Ensembles etc.
 - Achieving best possible results was not our focus.
 - Comparing representations was.

THANKS!

Do you have any questions?

Our code: https://github.com/annadymanus/IR-project

Anna Dymanus Vitor Faria de Souza Vincent Nguyen Nil Palau Álvaro Sánchez