

Lecture d'article **ADAM pour le Deep Learning**

Groupe:

ACHIQ Aya CLETZ Laura EL MAZZOUJI Wahel

Octobre 2025

Table des matières

1	Intr	eduction	2
2	Ada	um et les méthodes adaptatives	2
	2.1	Contexte et motivation	2
	2.2	Principe de l'algorithme Adam	2
	2.3	Interprétation et propriétés	3
	2.4	Forces et apports de la méthode Adam	3
	2.5	Limites théoriques	3
3	Exp	périences et comparaisons	3
	3.1	Base de données "Credit Card Fraud Detection"	4
	3.2	Base de données "Heart Disease"	4
4	Con	nclusion	5
\mathbf{A}	Anr	nexes	6
	A.1	Graphiques	6
	A.2	Tableaux	7
	A.3	Définitions et formules	8
	A.4	Algorithme Adam	9
\mathbf{T}_{i}	abl	e des figures	
	1 2 3 4	Comparaison des métriques d'entraînement	6 6 7 7
\mathbf{L}_{i}	iste	e des tableaux	
	1 2 3	Comparaison des performances sur l'échantillon de taille $n=10000$ Comparaison des performances sur l'échantillon de taille $n=100000$	7 8 8

1 Introduction

L'optimisation occupe une place essentielle dans l'apprentissage profond, où la descente de gradient stochastique et ses variantes à momentum ont longtemps été les méthodes de référence. Cependant, ces approches présentent certaines limites, car leur convergence peut être lente et leur performance dépend fortement du choix du taux d'apprentissage, souvent difficile à ajuster.

Pour pallier ces difficultés, des méthodes dites adaptatives ont été proposées, comme AdaGrad et RMSProp, qui ajustent automatiquement le pas d'apprentissage pour chaque paramètre. Parmi elles, l'algorithme Adam KINGMA et BA, 2014 s'est imposé comme un compromis efficace entre rapidité et stabilité, devenant l'une des méthodes les plus utilisées en apprentissage profond.

Néanmoins, plusieurs travaux récents, notamment ceux de WILSON et al., 2017, ont remis en question la supériorité généralisée de ces approches adaptatives. Ce rapport s'interroge sur la validité de cette hypothèse et cherche à déterminer si les méthodes adaptatives telles qu'Adam sont réellement plus performantes que les méthodes non adaptatives comme SGD, tant en termes de convergence que de généralisation.

2 Adam et les méthodes adaptatives

2.1 Contexte et motivation

L'apprentissage profond repose sur la minimisation stochastique d'une fonction de coût bruitée. La descente de gradient stochastique et ses variantes à momentum sont simples mais sensibles au choix du taux d'apprentissage et instables en présence de gradients bruités ou clairsemés. Pour pallier ces limites, Adam (*Adaptive Moment Estimation*) a été proposé par KINGMA et BA, 2014. L'idée est de combiner les avantages du momentum (cf annexes A) et de l'adaptation du taux d'apprentissage, comme dans AdaGrad et RMSProp (cf annexes A), afin d'obtenir une descente plus rapide et plus stable.

Cependant, plusieurs travaux ont montré que la rapidité de convergence des méthodes adaptatives ne garantit pas toujours une meilleure généralisation. WILSON et al., 2017 soulignent que ces méthodes peuvent conduire à des minima différents de ceux trouvés par SGD, parfois moins performants sur les données de test.

2.2 Principe de l'algorithme Adam

L'algorithme Adam combine deux idées majeures : l'accumulation du momentum et l'adaptation du taux d'apprentissage pour chaque paramètre. À chaque itération t, le gradient stochastique $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ sert à mettre à jour deux moyennes mobiles : $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ et $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$, où m_t représente la moyenne et v_t la variance du gradient. Les coefficients usuels sont $\beta_1 = 0.9$ et $\beta_2 = 0.999$. Comme m_0 et v_0 sont initialisés à zéro, KINGMA et BA, 2014 introduisent une correction de biais : $\hat{m}_t = m_t/(1 - \beta_1^t)$ et $\hat{v}_t = v_t/(1 - \beta_2^t)$.

La mise à jour s'écrit

$$\theta_t = \theta_{t-1} - \alpha \, \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \varepsilon},$$

où α est le taux d'apprentissage et $\varepsilon \approx 10^{-8}$ évite la division par zéro. Cette règle combine la direction moyenne du gradient (momentum) et une normalisation par la variance locale, assurant une descente rapide et stable face aux variations d'échelle. L'algorithme complet est présenté en Annexe pour référence.

2.3 Interprétation et propriétés

Adam combine momentum et adaptation du pas : m_t lisse la direction de descente, tandis que v_t ajuste le pas selon la variance locale du gradient, réduisant les oscillations et stabilisant l'entraînement.

Adam présente plusieurs propriétés remarquables. Il est invariant à l'échelle des gradients, son pas est borné et contrôlé par α , et il reste peu sensible aux hyperparamètres. KINGMA et BA, 2014 montrent, dans le cadre convexe, un regret en $\mathcal{O}(\sqrt{T})$, équivalent à AdaGrad mais plus stable sur des objectifs non stationnaires.

Ces propriétés expliquent la popularité d'Adam pour l'apprentissage de réseaux profonds, où les gradients peuvent être bruités, corrélés ou fortement déséquilibrés selon les paramètres.

2.4 Forces et apports de la méthode Adam

Les expériences de KINGMA et BA, 2014 sur diverses tâches, telles que la régression logistique et l'apprentissage de réseaux profonds, montrent qu'Adam combine la rapidité d'AdaGrad et la stabilité de RMSProp. Sur MNIST, il atteint une faible perte en peu d'itérations et une précision comparable à SGD avec momentum, sans réglage manuel du taux d'apprentissage.

L'algorithme se distingue par sa robustesse aux hyperparamètres, sa rapidité de convergence et son efficacité face à des gradients bruités. Les valeurs par défaut ($\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\varepsilon = 10^{-8}$) offrent de bonnes performances dans la plupart des contextes, ce qui explique sa popularité comme méthode d'optimisation de référence en apprentissage profond.

Enfin, la variante AdaMax, fondée sur la norme infinie, améliore la stabilité numérique tout en conservant la simplicité d'Adam.

2.5 Limites théoriques

Bien qu'efficace en pratique, Adam présente une généralisation limitée. WILSON et al., 2017 montrent que les méthodes adaptatives diffèrent des approches non adaptatives comme SGD.

Théoriquement, WILSON et al., 2017 montrent que SGD converge vers une solution à norme minimale ($||w||_2$ faible), gage d'une bonne généralisation, tandis que les méthodes adaptatives tendent vers des solutions à norme infinie minimale ($||w||_{\infty}$ faible), souvent associées à un surapprentissage.

WILSON et al., 2017 montrent qu'Adam peut converger vers des solutions mal généralisées, alors que SGD atteint la solution optimale, ce qui explique la moindre généralisation des méthodes adaptatives.

Ces travaux soulignent ainsi le compromis fondamental entre rapidité d'apprentissage et capacité de généralisation propre aux méthodes adaptatives.

3 Expériences et comparaisons

Suivant les résultats théoriques comparatifs de Wilson et al., 2017, nous allons comparer sur deux bases de données connues les méthodes Adam et SGD, mais aussi deux méthodes proches : Adagrad et RMSprop. L'ensemble des tableaux et des graphes sont disponibles en annexes A.

Nous entraînerons les modèles avec les quatre optimiseurs en utilisant les taux d'apprentissage standards recommandés dans la littérature (RUDER, 2016) : Adam (η =0.001), SGD (η =0.01), Adagrad (η =0.01) et RMSprop (η =0.001).

3.1 Base de données "Credit Card Fraud Detection"

Pour comparer les performances des quatre méthodes citées, nous commençons avec la base de données "Credit Card Fraud Detection". C'est une base de données publique disponible sur Kaggle ¹ qui contient des transactions par carte de crédit, dont certaines sont frauduleuses. Le but est de détecter ces fraudes à partir des caractéristiques des transactions.

Nous gardons les variables "V14" et "Amount" comme variables explicatives, elles représentent respectivement les résultats d'une ACP (Analyse en Composantes Principales) anonymisant ainsi les données d'utilisation et d'utilisateur.ice de la carte qui sont fortement corrélés à la fraude, et le montant de la transaction. La variable "Class" est la variable réponse où 0 signifie que la transaction est légitime et 1 est une fraude.

Nous utilisons un réseau de neurones simple avec une couche cachée de 16 neurones et une fonction d'activation ReLU (cf cours GLM). La fonction de perte "binary cross-entropy" est en fait celle associée à la régression logistique (cf annexes A).

Les tableaux 1 et 2 révèlent plusieurs tendances intéressantes :

Sur l'échantillon de 10 000-observations, toutes les méthodes atteignent une précision de test identique de 99.77%. Cependant, dans ce contexte de classes très déséquilibrées, la perte de test est un indicateur plus discriminant. Sur ce critère, Adam se démarque nettement avec une perte de 0.0057, significativement plus faible que celle des autres optimiseurs.

Sur un 100000-échantillon, Adam se distingue comme le meilleur optimiseur avec une précision de 99.91% et la plus faible perte de test (0.0033). Nous notons également que les performances d'Adagrad et RMSprop s'améliorent considérablement par rapport au plus petit échantillon, bien qu'elles restent légèrement en deçà de celles d'Adam.

Il semble ainsi que l'augmentation de la taille d'échantillon favorise nettement les performances de chaque modèle, confirmant leur robustesse sur des datasets plus importants, pourtant nous n'apercevons pas d'amélioration évidente pour Adam.

Graphiquement, ces observations se confirment à travers l'évolution des métriques d'entraînement et de test. La figure 1 illustre l'évolution de l'erreur d'entraînement (cf annexes A) au cours des *epochs*, révélant les vitesses de convergence distinctes de chaque optimiseur.

On observe qu'Adagrad converge rapidement vers une faible erreur initiale, mais stagne ensuite, tandis qu'Adam continue à améliorer l'erreur au fil des *epochs*. Adagrad converge le plus lentement, RMSprop un peu plus rapidement, et SGD converge rapidement dès l'initialisation à cause du choix du learning rate, ce qui atténue les phénomènes de divergence locale aperçus dans les autres méthodes. La figure 2 présente une synthèse des performances finales de test, mettant en évidence les différences de généralisation entre les méthodes selon la taille de l'échantillon.

Ces visualisations confirment qu'Adam maintient des performances robustes à travers les différentes tailles d'échantillon, tandis qu'SGD, malgré une convergence similaire sur le grand échantillon, voit ses performances se dégrader légèrement avec l'augmentation des données.

3.2 Base de données "Heart Disease"

Pour valider les optimiseurs dans un contexte différent, nous utilisons le dataset Heart Disease, disponible sur Kaggle 2 . Ce dataset contient 1025 observations de patients avec 13 caractéristiques (âge, sexe, pression artérielle, cholestérol, etc.) permettant de prédire la présence de maladie cardiaque. La variable cible est binaire : 0 pour absence de maladie, 1 pour présence. Les classes sont relativement équilibrées (49% / 51%).

^{1.} https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud

^{2.} https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

Nous utilisons un réseau de neurones avec deux couches cachées (16 et 8 neurones) et activation ReLU, suivi d'une couche de sortie avec activation sigmoid. La fonction de perte utilisée est la binary cross-entropy. L'entraînement se fait sur 100 epochs avec batch size de 32 et validation split de 20%. Un mécanisme d'early stopping (patience=10) est implémenté pour prévenir le surapprentissage.

Le tableau 3 présente les performances finales sur l'ensemble de test. Les résultats révèlent que RMSprop obtient la meilleure précision (94.16%), suivi de près par Adam (93.18%). SGD affiche des performances nettement inférieures (80.84%), tandis qu'Adagrad se situe en position intermédiaire (88.64%).

Graphiquement, ces observations se confirment à travers l'évolution des métriques d'entraînement et de test. La figure 3 illustre l'évolution de l'erreur au cours des epochs, révélant les vitesses de convergence distinctes de chaque optimiseur. On observe que RMSprop et Adam convergent rapidement et régulièrement vers de faibles erreurs, tandis que SGD montre une convergence plus lente et moins stable. Adagrad converge initialement de manière rapide mais stagne ensuite.

La figure 4 présente l'évolution de la perte, confirmant ces observations.

Ces résultats contrastent fortement avec ceux obtenus sur Credit Card où Adam, Adagrad et RMSprop affichaient des performances quasi-identiques (99.91%). Cette différence s'explique par plusieurs facteurs : la taille réduite du dataset (1025 vs 100 000 observations) où SGD souffre davantage du bruit stochastique, et la dimensionnalité accrue (13 vs 2 features) qui favorise l'adaptation locale du taux d'apprentissage. Les méthodes adaptatives (RMSprop, Adam) démontrent ainsi leur supériorité sur des datasets de taille modeste et de dimension élevée, confirmant leur robustesse aux hyperparamètres et leur efficacité face à des gradients hétérogènes.

4 Conclusion

Ce travail a étudié l'algorithme Adam à travers ses fondements théoriques et ses performances pratiques. Proposé par Kingma et Ba, 2014, Adam combine momentum et adaptation du taux d'apprentissage, assurant une convergence rapide et stable, même en présence de gradients bruités. Cependant, comme l'ont montré Wilson et al., 2017, cette efficacité ne garantit pas toujours une meilleure généralisation, les solutions obtenues pouvant différer de celles issues de méthodes non adaptatives comme SGD. Nos expériences montrent d'ailleurs que les performances des méthodes non-adaptatives dépendent fortement des caractéristiques du jeu de données, comme sa taille ou sa complexité.

Les expériences confirment ce compromis entre rapidité et généralisation, suggérant qu'Adam est bien adapté aux phases d'entraînement initial, tandis que SGD demeure plus fiable pour la généralisation. L'étude de variantes récentes, telles qu'AdamW ou RAdam, pourrait permettre un meilleur équilibre entre ces deux aspects.

A Annexes

Afin de garantir la reproductibilité de nos résultats, l'ensemble du code utilisé pour les expériences de ce rapport est publiquement accessible sur notre dépôt GitHub³.

A.1 Graphiques

Figure 1 – Comparaison des métriques d'entraînement

Figure 2 – Comparaison des erreurs de test finales

^{3.} https://github.com/lcletz/Intro_to_ADAM

FIGURE 3 – Comparaison des erreurs pour Heart Disease

FIGURE 4 – Comparaison des pertes pour Heart Disease

A.2 Tableaux

Optimiseur	Test Loss	Test Accuracy	Erreur de test (%)
Adam	0.0057	0.9977	0.23
SGD	0.0224	0.9977	0.23
Adagrad	0.0271	0.9977	0.23
RMSprop	0.0167	0.9977	0.23

Table 1 – Comparaison des performances sur l'échantillon de taille $n=10\,000$

Optimiseur	Test Loss	Test Accuracy	Erreur de test (%)
Adam	0.0033	0.9991	0.09
SGD	0.0046	0.9986	0.14
Adagrad	0.0042	0.9990	0.1
RMSprop	0.0045	0.9990	0.1

Table 2 – Comparaison des performances sur l'échantillon de taille $n = 100\,000$

Optimiseur	Test Loss	Test Accuracy	Erreur (%)
Adam	0.2196	0.9318	6.82
SGD	0.3425	0.8084	19.16
Adagrad	0.2946	0.8864	11.36
RMSprop	0.2250	0.9416	5.84

Table 3 – Comparaison des performances sur Heart Disease (n = 1025)

A.3 Définitions et formules

Gradient non adaptatif

Une méthode non adaptative utilise un taux d'apprentissage fixe η identique pour tous les paramètres et à toutes les itérations :

$$\theta_{t+1} = \theta_t - \eta \, g_t,$$

où $g_t = \nabla_{\theta} f_t(\theta_t)$ est le gradient de la fonction de coût.

Gradient adaptatif

Une méthode adaptative ajuste dynamiquement le taux d'apprentissage pour chaque paramètre en fonction de l'historique de ses gradients. Les paramètres dont les gradients varient fortement reçoivent un pas plus petit, ceux dont les gradients sont faibles un pas plus grand :

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} g_t,$$

avec v_t la moyenne des carrés des gradients passés.

Momentum

Le momentum ajoute une mémoire du gradient passé pour lisser la trajectoire de la descente :

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t.$$

Ce mécanisme stabilise la descente et permet d'atteindre plus facilement le minimum.

Adagrad

Adagrad adapte le taux d'apprentissage en fonction de l'historique des gradients :

$$v_t = v_{t-1} + g_t^2,$$

où v_t est la somme des carrés des gradients. La mise à jour devient

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} g_t.$$

RMSprop

RMSProp modifie Adagrad en utilisant une moyenne mobile exponentielle des carrés des gradients:

$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2,$$

avec β_2 proche de 1. La mise à jour est la même.

Régression logistique

La régression logistique est un type de régression dans les cas binaires. Sa fonction de perte est définie par

$$L(y, \hat{y}) = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$$

avec $y \in 0, 1$ et $\hat{y} = \sigma(z)$ la probabilité prédite via la fonction sigmoid $\sigma(z) = 1/(1 + e^{-z})$.

Erreur d'entraînement et perte

L'erreur d'entraînement est la proportion de prédictions incorrectes sur l'ensemble d'entraînement, soit 1— la précision durant l'entraînement (training accuracy), tandis que la perte mesure la qualité globale des prédictions.

A.4 Algorithme Adam

```
Algorithm 1 Algorithme Adam (Kingma et Ba, 2014)
```

Require: α : pas d'apprentissage

Require: $\beta_1, \beta_2 \in [0, 1)$: taux de décroissance exponentielle des moments

Require: $f(\theta)$: fonction objectif stochastique à minimiser

Require: θ_0 : vecteur initial des paramètres

- 1: Initialiser $m_0 \leftarrow 0 \ (1^{\text{er}} \ \text{moment})$
- 2: Initialiser $v_0 \leftarrow 0$ (2^e moment)
- 3: Initialiser $t \leftarrow 0$ (pas de temps)
- 4: while θ_t non convergé do
- $t \leftarrow t + 1$
- Calculer $g_t = \nabla_{\theta} f_t(\theta_{t-1})$ 6: (gradient au pas t)
- $m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$ (moyenne mobile du gradient)
- $v_{t} = \beta_{2}v_{t-1} + (1 \beta_{2})g_{t}^{2}$ $\hat{m}_{t} = \frac{m_{t}}{1 \beta_{1}^{t}}$ $\hat{v}_{t} = \frac{v_{t}}{1 \beta_{2}^{t}}$ (moyenne mobile des carrés)
- (correction de biais du 1^{er} moment) 9:
- (correction de biais du 2^e moment) 10:
- $\theta_t = \theta_{t-1} \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \varepsilon}$ 11: (mise à jour des paramètres)
- 12: end while
- 13: **return** θ_t (paramètres optimisés)

Remarques. Toutes les opérations sur les vecteurs sont effectuées élément par élément. Les valeurs par défaut recommandées sont $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ et $\varepsilon = 10^{-8}$.

Références

- KINGMA, D. P., & BA, J. L. (2014). Adam : A Method for Stochastic Optimization. https://arxiv.org/abs/1412.6980
- Ruder, S. (2016). An overview of gradient descent optimization algorithms. $arXiv\ preprint\ arXiv\ :1609.04747.$
- WILSON, A. C., ROELOFS, R., STERN, M., SREBRO, N., & RECHT, B. (2017). The Marginal Value of Adaptive Gradient Methods in Machine Learning. https://arxiv.org/abs/1705.08292