a. An-Nakayama algebra with length n and generators m

$$Q_n: 1 \xrightarrow{\alpha_1} 2 \xrightarrow{\alpha_2} 3 \xrightarrow{\alpha_3} \cdots \longrightarrow \cdots \xrightarrow{\alpha_{n-2}} n - 1 \xrightarrow{\alpha_{n-1}} n$$

b. Mobility Theorem

Corollary 5.7. If $I_i \cong J_i$, I_i and I_j are irrelevant, J_i and J_j are irrelevant, $\forall i = 1, 2, 3, \ldots, m$ and $i \neq j$, then

$$q(A/\sum_{i=1}^{m} I_i) = q(A/\sum_{i=1}^{m} J_i)$$

Theorem 6.4. $q(A_n/I_{T_1}) = 2^m(n-m)!$

Theorem 7.2. $q(A_n/I_{T_2}) = \frac{a_{m+1}n!}{(2m+1)!}$

c. Bound estimators of the given algebra (With generator T1 and T2)