《概率统计》试卷 2

姓名

任课教师

学号

专业

	题号	_	=	三	四	五	总分		
	(注意	意:要求写出	解题过程.	本试卷共三	大张,五大是	圆,满分 100	分)		
备用数据: $\Phi(1) = 0.8413$, $t_{0.90}(3) = 1.6377$, $t_{0.95}(3) = 2.3534$									
一、填空(50 分)									
1	1、 设 $A \setminus B$ 为两个随机事件, $P(A) = 0.6$, $P(B) = 0.4$.若 $A \setminus B$ 互不相容,								
则 $P(A-B)$ =									
若 $A \setminus B$ 有包含关系 ,则 $P(A-B)=$, $P(A \lor B)=$, $P(\overline{A} \overline{B})=$									
2、 学生甲和朋友约定:在三门完全不同的课程考试中,他只要有一门考试 取得 95 分以上就开香槟酒庆祝.若甲在这三门课程考试中得 95 分以上的概									
率分别为 $rac{1}{2}$ 、 $rac{1}{3}$ 、 $rac{1}{4}$,则他们开香槟酒庆祝的概率为									
2									
E	双出的第二 -次取到黑	个球为黑斑	材的概率为_		若已知	第二次取到	黑球 ,则第	5	
4	设 (X,	Y)服从区域		—— 匀分布,其		y): $0 < y < 0$	<1, x < y	,	
则 (X, Y) 的联合密度函数 $f(x, y)$ =, X 的边缘密度函数									
J	$f_{\scriptscriptstyle X}(x)$ =, Y 的边缘密度函数 $f_{\scriptscriptstyle Y}(y)$ =								

5、 设 X_1 、 X_2 、 X_3 、 X_4 独立同分布, $X_1 \sim N(\mu, 1)$, $\overline{X} = \frac{1}{4} \sum_{i=1}^{4} X_i$,则 $X_1 - \overline{X}$ 与 $X_2 - \overline{X}$ 的协方差 $cov(X_1 - \overline{X}, X_2 - \overline{X}) = \underline{\qquad}$, $X_1 - \overline{X} 与 X_2 - \overline{X}$ 的相 关系数 $\rho_{x,-\overline{x},x,-\overline{x}}$ = ______. 6、 设 X_1 、 X_2 、 X_3 、 X_4 、 X_5 是独立同分布的随机变量 , $X_1 \sim N \big(0, \ 1 \big)$, 记 $Y = C_1(X_1 + X_2 + X_3)^2 + C_2(X_4 + X_5)^2$, 其中 C_1 、 C_2 为常数 , 那么 , 当 7、 设 X_1 , X_2 , Λ , X_n 是独立同分布的随机变量 $n \ge 2$, $X_1 \sim R(0, 2)$, 记 $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$, $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$, $A_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}$, $M = \sum_{i=1}^{n} E(\overline{X}) = \sum_{i=1}^{n} X_{i}^{2}$, $D(\overline{X})=$ ______, $E(S^2)=$ ______, $E(A_2)=$ _____. 8、 设 x_1 、 x_2 、 x_3 、 x_4 是取自正态总体 $N(\mu, \sigma^2)$ 的样本观测值,其中 μ 、 σ^2 未知 , $-\infty < \mu < \infty$, $\sigma^2 > 0$, 已知 $\sum_{i=1}^4 x_i = 24$, $\sum_{i=1}^4 x_i^2 = 147$, 那么 σ^2 的极大 似然估计值为______, μ 的双侧 90%置信区间为_

二、(10分)某镇的码头只能容纳一艘船,现预知某日将独立地来到两艘船, 且在24小时内各时刻来到的可能性相同.如果它们需要停靠的时间分别为4 小时和6小时,试求二艘船中至少有一艘船在停靠时必须等待的概率.

三、(14 分) 设随机变量(X, Y)的联合概率函数为

Y	-1	1	2
-1	$\frac{5}{20}$	$\frac{1}{10}$	$\frac{3}{10}$
2	$\frac{3}{20}$	$\frac{3}{20}$	$\frac{1}{20}$

记 $U = \max(X, Y)$, $V = \min(X, Y)$, Z = XY , 求

Z 的概率函数;

(U, V)的联合概率函数;

已知事件 $\{U=2\}$ 发生时V的条件概率函数.

四、(10分)设随机变量 X 与 Y 相互独立,且 $X \sim N(-1,7)$ 、 $Y \sim N(3,1)$,

记
$$Z = 3X + Y$$
 , $W = e^{Z}$, 求

随机变量 Z 的概率密度函数 $f_z(z)$;

随机变量W 的概率密度函数 $f_{W}(w)$.

五、(16 分)设 X_1 , X_2 , Λ , X_n 是取自总体 X 的样本,X 服从泊松分布 $P(\lambda)$, $\lambda > 0$, λ 未知 ,

求 λ 和 $\theta = E(X^2)$ 的极大似然估计量 $\hat{\lambda}$ 和 $\hat{\theta}$;

问: $\theta = E(X^2)$ 的极大似然估计量 $\hat{\theta}$ 是 θ 的无偏估计吗?

求
$$\lim_{n\to\infty} P\left(\left|\overline{X}-\lambda\right| < \sqrt{\frac{\lambda}{n}}\right)$$
 , 其中 $\overline{X} = \frac{1}{n}\sum_{i=1}^{n} X_{i}$.