Quinta serie de ejercicios de Álgebra Moderna

Akiyuki Shinbou

Mayo 2018

1. Encuentra un isomorfismo del grupo de los enteros bajo la suma al grupo de los enteros pares bajo la suma.

Solución:

 $\phi(n)=2n$. Es uno a uno porque 2n=2m implica que a=b. $\phi(m+n)=2(m+n)=2m+2n$, así que la operación del grupo se conserva.

8. Demuestra que el mappe
o $a\to\log_{10}a$ es un isomorfismo de R^+ bajo la multiplicación
aRbajo la suma.

Solución:

La definición del logaritmo asegura que el mappeo es uno a uno sobre R, y las leyes de los logaritmos dicen que $\log_{10}(ab) = \log_{10} a + \log_{10} b$, por lo que la operación se preserva.

15. Si G es un grupo, demuestra que Aut(G) y Inn(G) son grupos [bajo la operación de composición de funciones].

Solución:

Tomamos un elemento $\alpha \in Aut(G)$. Para probar que Aut(G) es un grupo, solo hace falta mostrar que α^{-1} preserva la operación del G:

$$\alpha^{-1}(xy) = \alpha^{-1}x\alpha^{-1}y$$

$$\iff \alpha(\alpha^{-1}(xy)) = \alpha(\alpha^{-1}x\alpha^{-1}y)$$

$$\iff xy = \alpha(\alpha^{-1}x)\alpha(\alpha^{-1}y)$$

$$= xy$$

Por lo que Aut(G) es un grupo.

29. Sean C los numeros complejos y

$$M = \left\{ \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \middle| a, b \in R \right\}$$

Demuestre que C y M son isomorficos bajo la suma y que C* y M*, los elemenos no cero de M, son isomorficos bajo la multiplicación.

Solución:

Tomamos el isomorfismo

$$\phi(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$$

Revisamos la operación:

$$\phi((a+bi)+(c+di)) = \begin{bmatrix} a+c & -(b+d) \\ b+d & a+c \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(a+bi) + \phi(c+di)$$

Y para el otro caso:

$$\phi((a+bi)(c+di)) = \phi((ac-bd) + (ad+bc)i) = \begin{bmatrix} ac-bd & -(ad+bc) \\ ac+bd & ac-bd \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$$

33. Sea G un grupo y sea $g \in G$. Si $z \in Z(G)$, muestra que el automorfismo interno inducido por g es el mismo que el automorfismo inducido por zg (esto es, que los mappeos ϕ_g y ϕ_{zg} son iguales).

Solución:

$$\phi_g(x) = gxg^{-1}$$
 y $\phi_{zg}(x) = zgx(zg)^{-1} = zgxz^{-1}g^{-1} = zz^{-1}gxg^{-1} = gxg^{-1}$ ya que $z \in Z(G)$.

35. Supón que g y h inducen el mismo automorfismo interno de un grupo G. Demuestra que $h^{-1}g \in Z(G)$.

Solución:

Si $\phi_g = \phi_h$, entonces $gxg^{-1} = hxh^{-1}$ para toda x. Entonces $x = h^{-1}gxg^{-1}h = h^{-1}gx(h^{-1}g)^{-1}$, lo que implica que $h^{-1}g \in Z(G)$.

 ${\bf 36.}\;$ Combina los resultados del ejercicio 33 y 35 en un solo teorema "Si y solo si".

Solución:

$$\phi_g = \phi_h$$
si y solo si $h^{-1}g \in Z(G)$

43. Demuestra que Q^+ , el grupo de los numeros racionales positivos bajo la multiplicación, es isomorfo a un subgrupo propio.

Solución:

 $\phi(x)=x^2$ es uno a uno, ya que si $a^2=b^2$, a=b para a y b en Q^+ . La operación se preserva, ya que $\phi(ab)=(ab^2)=a^2b^2=\phi(a)\phi(b)$. Sin embargo, ϕ , no es sobre, ya que no existe numero racional cuyo cuadrado sea 2, asi que la imagen de ϕ forma un subgrupo propio de Q^+ .