EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos

Duração da prova: 120 minutos Militares 2000

PROVA ESCRITA DE MATEMÁTICA

Primeira Parte

	•	•	•		•		
•	Para cada uma delas	s, são indica	das quatro	alternativas,	das quais só	uma está	correcta.

- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.

1.	Uma função	f	tem domínio	\mathbb{R}	e contradomínio	\mathbb{R}^+	
----	------------	---	-------------	--------------	-----------------	----------------	--

• As sete questões desta primeira parte são de escolha múltipla.

Qual das seguintes pode ser a expressão analítica da função f ?

(A)
$$sen x$$

(B) e^x

(C)
$$1 + x^2$$

(D) $\ln x$

2. Considere uma função f, de domínio \mathbb{R} , definida por $f(x)=e^{\,x\,+\,a}$, onde a designa um certo número real.

O gráfico de $\,f\,$ intersecta o eixo $\,Oy\,$ no ponto de ordenada $\,2.$ Indique o valor de $\,a.\,$

(C)
$$e^2$$

(D)
$$e + \ln 2$$

3. De uma certa função g sabe-se que:

$$\lim_{x \to 3^{-}} g(x) = +\infty$$

$$g(3) = 1$$

$$\lim_{x \to 3^+} g(x) = 2$$

Qual das afirmações seguintes é verdadeira?

- (A) O contradomínio da função $\,g\,$ é o intervalo $\,[\,2\,,\,+\infty\,[\,$
- **(B)** 3 não pertence ao domínio da função g
- (C) A recta de equação $\,x=3\,$ é assimptota do gráfico da função $\,g\,$
- **(D)** Existe $\lim_{x \to 3} g(x)$
- **4.** Na figura está representado um triângulo rectângulo [ABC], cuja hipotenusa mede 2 m.

Qual das expressões seguintes dá a área (em m^2) do triângulo [ABC], em função da amplitude, α , do ângulo ABC ?

(A) $4 \cdot \sin \alpha \cdot \tan \alpha$

(B) $2 \cdot \sin \alpha \cdot \tan \alpha$

(C) $4 \cdot \sin \alpha \cdot \cos \alpha$

- **(D)** $2 \cdot \sin \alpha \cdot \cos \alpha$
- Quando se altera a ordem dos algarismos do número 35142, obtém-se outro número. Considere todos os números que se podem obter por alteração da ordem dos algarismos de 35142.

Quantos desses números são múltiplos de $\,5\,$?

- **(A)** 12
- **(B)** 24
- **(C)** 60
- **(D)** 120

6. Uma formiga desloca-se ao longo de um caminho que, como a figura mostra, vai apresentando bifurcações.

A formiga nunca inverte a sua marcha.

Ao chegar a uma bifurcação, opta 70% das vezes pelo caminho da esquerda.

Qual é a probabilidade de a formiga ser apanhada pela aranha?

- **(A)** 0, 14
- **(B)** 0,21
- **(C)** 0,42
- **(D)** 0,49

7. Considere o número complexo $z_{\scriptscriptstyle 1}=\,3\,\sqrt{2}\,\,cis\,\frac{3\,\pi}{4}$

A imagem geométrica de $\,z_{\scriptscriptstyle 1}\,$ pertence à região do plano complexo definida pela condição

(A) |z| > 3

(B) $0 < arg(z) < \frac{\pi}{4}$

(C) $Re(z) = 3\sqrt{2}$

(D) $Im(z) = \frac{3\pi}{4}$

Segunda Parte

Nas questões desta segunda parte apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Na figura junta está representado, no plano complexo, um triângulo equilátero [ABC], inscrito numa circunferência centrada na origem do referencial.

O ponto A é a imagem geométrica de $2\,i$.

- **1.1.** Escreva uma condição em $\mathbb C$ que defina a referida circunferência.
- **1.2.** Determine, na forma algébrica, o número complexo $\,w\,$ cuja imagem geométrica é o ponto $\,B.$
- 2. Um recipiente contém uma certa quantidade de açúcar.

Para dissolver o açúcar, enche-se o recipiente com água.

Admita que a massa, em gramas, de açúcar ainda não dissolvido, $\,t\,$ minutos após o início do processo de dissolução, é dada por

$$M(t) = 50 \, e^{-0.02 \, t} \ , \quad t \ge 0$$

- **2.1.** Determine a massa de açúcar dissolvido ao longo da primeira **hora**. Apresente o resultado em gramas, arredondado às unidades.
- **2.2.** Utilizando métodos exclusivamente analíticos, estude a função M quanto à monotonia e quanto à existência de assimptotas ao seu gráfico. Interprete as conclusões a que chegou, no contexto do problema.

3. Para cada número real k, pertencente ao intervalo $\left]0, \frac{\pi}{2}\right[$, a expressão

$$f(x) = \begin{cases} 1, 2 + \operatorname{tg} x & \text{se } 0 \le x \le k \\ 2x - \ln x & \text{se } x > k \end{cases}$$

define uma função f, de domínio $[0, +\infty[$ (In designa *logaritmo* de base e).

- **3.1.** Nas duas alíneas que se seguem (3.1.1. e 3.1.2.), considere k=1.
 - **3.1.1.** Utilizando métodos exclusivamente analíticos, estude a função f quanto ao sentido da concavidade do seu gráfico, no intervalo $]\,1,\,+\infty[$
 - **3.1.2.** Recorrendo ao Teorema de Bolzano, mostre que a equação $f(x)=2+f\left(\frac{\pi}{4}\right)$ tem, no intervalo $]\,2,3[$, pelo menos uma solução.
- **3.2.** Existe um número real k para o qual a função f é contínua em $[0, +\infty[$. Recorrendo às capacidades gráficas da sua calculadora, determine um valor aproximado desse número k (arredondado às décimas).
- 4. Um saco contém seis bolas, numeradas de 1 a 6. As bolas que têm números pares estão pintadas de verde. As bolas que têm números ímpares estão pintadas de azul. Extraem-se, aleatoriamente, e de uma só vez, duas bolas do saco.

Sejam A e B os seguintes acontecimentos:

- A- As duas bolas são da mesma cor.
- $B-{\rm O}$ produto dos números das duas bolas é ímpar.
- **4.1.** Determine $P\left(A\right)$ (P designa probabilidade) Apresente o resultado na forma de fracção irredutível.
- **4.2.** Indique, justificando, o valor da probabilidade condicionada $P(A \mid B)$

5. Seja S o conjunto de resultados (com um número finito de elementos) associado a uma certa experiência aleatória.

Sejam A e B dois acontecimentos (A e B são, portanto, subconjuntos de S). Sabe-se que:

$$P\left(A\right)=2\,P\left(B\right)$$

$$P\left(A\,\cup\,B\right)=3\,P\left(B\right)$$
 (\$P\$ designa probabilidade).

Prove que os acontecimentos $\,A\,$ e $\,B\,$ são incompatíveis.

FIM

COTAÇÕES

eira Pa	arte	
Cad	da resposta certada resposta erradada questão não respondida ou anuladada	3
Nota	a: Um total negativo nesta parte da prova vale () (zero) pontos.
nda P	arte	
1		21
	1.1	
2	2.1. 2.2.	14
3	3.1.1.	34
	3.1.2.	17
4	4.1. 4.2.	10
5		12

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r-raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \, . \, (\rho' \operatorname{cis} \theta') = \rho \, \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'.v - u.v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$