Réaction d'oxydo-réduction

Tests d'identification d'ions métalliques

lon	Réactif	Observation	
lon magnésium Mg ²⁺	Solution d'hydroxyde de sodium (Na+ ; HO-)		
lon cuivre II Cu ²⁺	Solution d'hydroxyde de sodium (Na+ ; HO-)	Précipité bleu	
lon ferreux (fer II) Fe ²⁺	Solution d'hydroxyde de sodium (Na+ ; HO-)	Précipité vert	
Ion ferrique (fer III) Fe ³⁺	Solution d'hydroxyde de sodium (Na+; HO-)	dium Précipité orange	

Dans des tubes à essais différents, introduire :

- du fer solide et des ions fer (II)
- du fer solide et des ions cuivre (II)
- du cuivre solide et des ions cuivre (II)
- du cuivre solide et des ions fer (II)

Noter vos observations dans le tableau ci-dessous :

Espèces chimiques introduites	Fe²+ (aq)	Cu²+ (aq)
Fe (s)		
Cu (s)		

Dans le tube à essais où une transformation chimique a eu lieu, réaliser le test d'identification pour identifier l'ion métallique présent à l'état final.

- 1. Quel est cet ion?
- 2. Écrire l'équation de la réaction chimique qui a eu lieu.
- 3. Compléter les phrases suivantes :
 - L'oxydant est ici car il gagne des
 - La demi-équation correspondante est une
- : + e-=
- Le réducteur est ici car il perd des
- La demi-équation correspondante est une : = + e
- 4. Quels sont les deux couples/oxydant mise en jeu dans la réaction?

Avancement d'une réaction chimique

• La réaction d'oxydo-réduction étudiée

Solutions utilisées:

- une solution aqueuse de diiode I_2 (aq) de concentration en quantité de matière $C_1 = 1.0 \times 10^{-3}$ mol.L⁻¹
- une solution aqueuse de thiosulfate de sodium (2 Na⁺(aq) + $S_2O_3^{2-}$ (aq)) de concentration en quantité de matière $C_2 = 1.0 \times 10^{-3}$ mol.L⁻¹.

La réaction chimique modélisant la transformation chimique entre le diiode et les ions thiosulfate est une réaction d'oxydo-réduction dont les couples oxydant/réducteur sont :

5. Écrire les demi-équations modélisant le transfert d'électron entre l'oxydant le réducteur de chaque couple.

- 6. Écrire l'équation de la réaction d'oxydo-réduction modélisant la transformation chimique entre le diiode et les ions thiosulfate.
- Suivi de l'évolution d'un système chimique : l'avancement

Expérience 1:

Quantités initiales :

• I_2 (aq): $n_1 = 1.5 \times 10^{-5}$ mol

• $S_2O_3^{2-}(aq): n_2 = 2.0 \times 10^{-5} \text{ mol}$

7. Compléter l'état initial et l'état intermédiaire du tableau d'avancement

	Avancement (en mol)	$I_2(aq) + S_2O_3^{2-}(aq) \rightarrow I^{-}(aq) + S_4O_6^{2-}(aq)$			
État initial	x = 0				
État intermédiaire	x				
État final	$x_{max} =$				

Remarque : on étudie ici que des transformations totales donc l'avancement final x_f est égal à l'avancement maximal x_{max} .

- 8. Compléter les phrases suivantes :
 - Si I_2 (aq) est le réactif limitant alors 1,5×10-5 x_{max} = alors x_{max} =
 - Si S₂O₃²⁻ (aq) est le réactif limitant alors 2,0×10⁻⁵ $2x_{max}$ = alors x_{max} =

	,			•	_
Le	réa	ctit	lım	itant	est

car il conduit à la plus faible valeur de l'avancement maximal.

- 9. Compléter la dernière ligne du tableau d'avancement puis prévoir la couleur du système dans son état final.
- 10. Calculer le volume V_1 de solution aqueuse de diiode et le volume V_2 de solution aqueuse de thiosulfate de sodium à introduire afin de reproduire l'état initial figurant dans le tableau d'avancement précédent.

DEMANDER LA VÉRIFICATION

Réaliser l'expérience.

11. Vos prédictions sont-elles vérifiées ?

Expérience 2:

Dans un bécher, réalisons la transformation chimique entre $V_1'=5$,0 mL de solution aqueuse de diiode et $V_2'=20$,0 mL de solution aqueuse de thiosulfate de sodium.

- 12. À partir des observations, indiquer quelle espèce chimique est le réactif limitant.
- 13. Compléter le tableau d'avancement ci-dessous en détaillant les calculs des quantités de matière initiales et de l'avancement maximal.

	Avancement (en mol)	$I_2(aq) + S_2O_3^{2-}(aq) \rightarrow I_{-}(aq) + S_4O_6^{2-}(aq)$			
État initial	x = 0				
État intermédiaire	x				
État final	$x_{max} =$				

14. Le tableau confirme-t-il vos observations?