Acendendo as luzes

Projeto 1 – LED piscante

Componentes necessários

^{*} Esse valor pode ser diferente, dependendo do LED que você utilizar. O texto explicará como descobrir o valor correto.

Figura 2.1 – Circuito para o Projeto 1 – LED piscante.

1

Projeto 1 – LED piscante – Análise do hardware

Protoboard

LED de 5 mm

Resistor de 100 ohms*

-1110-

Fios jumper

Projeto 3 – Semáforo

Componentes necessários

Protoboard

LED vermelho difuso

LED amarelo difuso

LED verde difuso

3 resistores de 150 ohms*

Fios jumper

 $^{^{\}ast}$ Ou o valor apropriado para seu LED.

Figura 2.6 – Circuito para o Projeto 3 – Semáforo.

Figura 2.7 – Quatro estados do sistema de semáforos do Reino Unido (imagem por Alex43223 do WikiMedia).

Projeto 4 – Semáforo interativo

Componentes necessários

Figura 2.8 – Circuito para o Projeto 4 – Sistema de semáforo com travessia de pedestres e botão de requisição.

Figura 2.12 - Resistor pull-down do Projeto 4.

Efeitos com LEDs

Projeto 5 – Efeito de iluminação sequencial com LEDs

Componentes necessários

10 LEDs de 5 mm

10 resistores limitadores de corrente

Figura 3.1 – Circuito para o Projeto 5 – Efeito de iluminação sequencial com LEDs.

5

Projeto 6 – Efeito interativo de iluminação sequencial com LEDs

Componentes necessários

Todos os componentes do projeto 5, mais...

Potenciômetro giratório de 4,7 Ω *

^{*} Imagem cortesia de Iain Fergusson.

Figura 3.2 – Circuito do Projeto 6 – Efeito interativo de iluminação sequencial com LEDs.

Projeto 7 – Lâmpada pulsante

Componentes necessários

LED verde difuso de 5 mm

Resistores limitadores de corrente

Figura 3.3 – Circuito para o Projeto 7 – Lâmpada pulsante.

Projeto 8 – Mood lamp RGB

Componentes necessários

Figura 3.4 – Circuito para o Projeto 8 – Mood lamp RGB.

Figura 3.5 – Misturando R,G e B para obter cores diferentes.

Projeto 9 – Efeito de fogo com LEDs

Componentes necessários

Desta vez, você utilizará três LEDs: um vermelho e dois amarelos.

LED vermelho difuso de 5 mm

2 LEDs amarelos difusos de 5 mm

3 resistores limitadores de corrente

Figura 3.6 – Circuito para o Projeto 9 – Efeito de fogo com LEDs.

Sonorizadores e sensores simples

Projeto 11 – Alarme com sonorizador piezo

Componentes necessários

Sonorizador piezo (ou disco piezo)

Terminal de parafusos de duas vias

Figura 4.1 – Circuito para o Projeto 11 – Alarme com sonorizador piezo.

9

Projeto 13 – Sensor de batida piezo

Componentes necessários

Sonorizador piezo (ou disco piezo)

Terminal de parafusos de duas vias

LED de 5 mm (de qualquer cor)

Resistor de 1 $M\Omega$

Figura 4.3 – Circuito para o Projeto 13 – Sensor de batida piezo.

Projeto 14 – Sensor de luz

Componentes necessários

Sonorizador piezo (ou disco piezo)

Terminal de parafusos de duas vias

Resistor dependente de luz

Resistor de 10 k Ω

Figura 4.4 – Circuito para o Projeto 14 – Sensor de luz.

Controlando um motor CC

Projeto 15 – Controle de um motor simples

Componentes necessários

Motor CC

Potenciômetro de $10 \text{ k}\Omega$ Transistor TIP 120° Diodo $1\text{N}4001^{\circ}$ Plugue fêmea

Fonte de alimentação externa

^{*} Ou um equivalente adequado.

Figura 5.1 – Circuito para o Projeto 15 – Controle de um motor simples.

Projeto 16 – Uso do CI controlador de motor L293D

Componentes necessários

Motor CC

CI controlador de motor L293D ou SN754410

Potenciômetro de $10~k\Omega$

Chave seletora

Resistor de 10 k Ω

Dissipador de calor

Figura 5.3 – Circuito para o Projeto 16.

Contadores binários

Projeto 17 — Registrador de deslocamento, usado como contador binário de 8 bits

Componentes necessários

1 CI registrador de deslocamento 74HC595

8 resistores de 220 Ω^*

8 LEDs de 5 mm

* Ou o equivalente adequado

Figura 6.1 – Circuito para o Projeto 17 – Registrador de deslocamento, usado como contador binário de 8 bits.

Projeto 18 – Contador binário de 8 bits duplo

Componentes necessários

2 CI registradores de deslocamento 74HC595

16 resistores limitadores de corrente

8 LEDs vermelhos

Figura 6.4 – Circuito para o Projeto 18.

Figura 6.5 – Detalhe da fiação dos CIs para o Projeto 18.

Displays de LED

Projeto 19 – Display de matriz de pontos LED – Animação básica

Componentes necessários

2 CIs registradores de deslocamento 74HC595

8 resistores limitadores de corrente

Display de matriz de pontos 8 x 8 (C+)

Figura 7.1 – Circuito para o Projeto 19 – Display de matriz de pontos LED – Animação básica.

Projeto 21 – Display de matriz de pontos LED – Mensagem com rolagem horizontal

Componentes necessários

MAX7219 (ou AS1107)

Resistor limitador de corrente

Display de matriz de pontos 8 x 8 (C-)

Figura 7.4 – Circuito para o Projeto 21.

Projeto 22 – Display de matriz de pontos LED – Pong

Componentes necessários

Os mesmo do projeto 21, mais:

Potenciômetro de $10~k\Omega$

Figura 7.8 – Adicione um potenciômetro ao circuito do projeto 21.

Displays de cristal líquido

Projeto 23 – Controle básico de um LCD

Componentes necessários

LCD 16 x 2 com backlight

Resistor limitador de corrente (backlight)

Figura 8.1 – Circuito para o Projeto 23 – Controle básico de um LCD.

23

Projeto 24 – Display LCD de temperatura

Componentes necessários

LCD 16 x 2 com backlight

Resistor limitador de corrente (backlight)

Resistor limitador de corrente (contraste)

Botão

Sensor de temperatura analógico

Figura 8.2 – Circuito para o Projeto 24 – Display LCD de temperatura.

Servomecanismos

Projeto 25 — Controle de um servo

Componentes necessários

Servo RC padrão

Potenciômetro rotativo

Figura 9.3 – Circuito para o Projeto 25 – Controle de um servo.

Projeto 26 – Controle de um servo duplo

Componentes necessários

2 servos RC padrão

Figura 9.5 – Circuito para o Projeto 26 – Controle de um servo duplo.

Projeto 27 – Controle de servos com joystick

Componentes necessários

2 servos RC padrão

Joystick potenciômetro de dois eixos (ou dois potenciômetros)

Figura 9.6 – Circuito para o Projeto 27 – Controle de servos com joystick.

Motores de passo e robôs

Projeto 28 – Controle básico de um motor de passo

Componentes necessários

Motor de passo

CI controlador de motor L293D ou SN754410

2 Capacitores cerâmicos de 0,01 µF

Resistor limitador de corrente

Figura 10.1 – Circuito para o Projeto 28 – Controle básico de um motor de passo.

Projeto 29 – Uso de um shield de motor

Componentes necessários

Shield de motor

2 motores CC ou...

... uma base de robô com duas rodas

Fonte de alimentação

Projeto 30 – Robô que acompanha uma linha

Componentes necessários

Shield de motor

4 resistores limitadores de corrente

3 resistores de $1 \text{ k}\Omega$

4 LEDs brancos

3 resistores dependentes de luz

2 motores CC ou...

... uma base de robô de duas rodas

Fonte de alimentação

Figura 10.9 – Circuito para o Projeto 30 – Robô que acompanha uma linha.

Sensores de pressão

Projeto 31 – Sensor digital de pressão

Componentes necessários

Arduino Mega

Sensor de pressão SCP1000

3 resistores de $10 \text{ k}\Omega$

 $1\,resistor\,de\,1\,k\Omega$

Figura 11.2 – Circuito para o Projeto 31 – Sensor digital de pressão.

33

Projeto 32 – Barógrafo digital

Componentes necessários

Arduino Mega

Sensor de pressão SCP1000

3 resistores de 10 k Ω

1 resistor de 1 k Ω

1 resistor de 150 Ω

Potenciômetro de 10 k Ω

GLCD de 128 x 64

Figura 11.5 – Circuito para o Projeto 32 – Barógrafo digital.

Tela de toque

Projeto 33 – Tela de toque básica

Componentes necessários

Tela de toque do Nintendo DS

Breakout para tela de toque

Figura 12.1 – Circuito para o Projeto 33 – Tela de toque básica.

Projeto 34 – Tela de toque com teclado

Componentes necessários

Tela de toque do Nintendo DS

Breakout para tela de toque

Display LCD 16 x 2

Figura 12.4 – Circuito para o Projeto 34 – Tela de toque com teclado.

Projeto 35 – Controlador de luz com tela de toque

Componentes necessários

Tela de toque do Nintendo DS

Breakout para a tela de toque

LED RGB (cátodo comum)

Resistor limitador de corrente *

Figura 12.5 – Diagrama do teclado para o projeto 35.

Figura 12.6 – Circuito para o Projeto 35 – Controlador de luz com tela de toque.

^{*} se necessário

Sensores de temperatura

Projeto 36 – Sensor serial de temperatura

Componentes necessários

Sensor de temperatura LM335

Potenciômetro trim de 5 k Ω

Resistor de 2,2 k Ω

Figura 13.1 – Circuito para o Projeto 36 – Sensor serial de temperatura.

Projeto 37 — Sensor digital de temperatura 1-Wire

Componentes necessários

2 sensores de temperatura DS18B20

Resistor de 4,7 k Ω

Figura 13.3 – Circuito para o Projeto 37 – Sensor digital de temperatura 1-Wire.

Telêmetros ultrassônicos

Projeto 38 – Telêmetro ultrassônico simples

Componentes necessários

LV-MaxSonar EZ3*

Capacitor eletrolítico de 100 μF

Resistor de 100 Ω

^{*} ou qualquer um da série LV (imagem cortesia da Sparkfun)

Figura 14.1 – Circuito para o Projeto 38 – Telêmetro ultrassônico simples.

Projeto 39 – Display ultrassônico de distância

Componentes necessários

LV-MaxSonar EZ3*

Capacitor eletrolítico de 100 μF

2 resistores de 100 Ω

Resistor de 10 kΩ

Chave seletora

5 displays LED de 7 segmentos (cátodo comum)

CI controlador de LEDs MAX7219

^{*}ou qualquer um da série LV (imagem cortesia da Sparkfun)

Figura 14.3 – Circuito para o Projeto 39 – Display de distância ultrassônico.

Projeto 40 – Alarme ultrassônico

Componentes necessários

LV-MaxSonar EZ3*

Capacitor eletrolítico de 100 µF

2 resistores de 100 Ω

Resistor de $10 \text{ k}\Omega$

Chave seletora

5 displays LED de 7 segmentos (cátodo comum)

CI controlador de LEDs MAX7219

Potenciômetro de 5 a 10 k Ω

Receptor acústico Piezo ou alto-falante de 8 Ω

^{*}ou qualquer um da série LV (imagem cortesia da Sparkfun)

Figura 14.5 – Circuito para o Projeto 40 – Alarme ultrassônico.

Leitura e escrita de dados em um cartão SD

Projeto 42 – Operação simples de leitura/escrita em um cartão SD

Componentes necessários

Cartão SD e breakout*

3 resistores de 3,3 k Ω

3 resistores de 1,8 k Ω

^{*} imagem cortesia da Sparkfun

Figura 15.1 – Circuito para o Projeto 42 – Operação simples de leitura/escrita em um cartão SD.

Projeto 43 – Registrador de dados de temperatura em um cartão SD

Componentes necessários

Cartão SD e placa breakout*

3 resistores de 3,3 k Ω

3 resistores de 1,8 k Ω

Resistor de 4,7 k Ω

2 resistores de $1 \text{ k}\Omega$

CI RTC DS1307

Cristal de relógio de 32,768 kHz e 12,5 pF

2 sensores de temperatura DS18B20

Suporte para bateria de tipo moeda**

^{*} imagem cortesia da Sparkfun

^{**} opcional

Figura 15.2 – Circuito para o Projeto 43 – Registrador de dados de temperatura em SD.

Criação de um leitor RFID

Projeto 44 – Leitor RFID simples

Componentes necessários

Leitor RFID ID-12

Placa breakout para o ID-12*

Resistor limitador de corrente

LED de 5 mm

Tags ou cartões de 125 kHz (ao menos 4)

^{*} imagem cortesia da Sparkfun

Figura 16.1 – Circuito para o Projeto 44 – Leitor RFID simples.

Projeto 45 – Sistema de controle de acesso

Componentes necessários

Leitor RFID ID-12

Placa breakout para o ID-12*

Resistor limitador de corrente

LED de 5 mm

Tags ou cartões de 125 kHz (ao menos 4)

Diodo 1N4001

Transistor TIP-120 NPN

Conector de alimentação de 2,1 mm

Fonte de alimentação CC de 12 V

Receptor acústico ou alto-falante de 8 Ω

Fechadura elétrica de 12 V

^{*} imagem cortesia da Sparkfun

Figura 16.3 – Circuito para o Projeto 45 – Sistema de controle de acesso.

Comunicação via Ethernet

Projeto 46 – Shield Ethernet

Componentes necessários

Shield Ethernet do Arduino

2 sensores de temperatura DS18B20

Resistor de 4,7 k Ω

Figura 17.1 – Circuito para o Projeto 46 – Shield Ethernet.

53