# 







# MBA em DATA SCIENCE & ARTIFICIAL INTELLIGENCE

**APPLIED STATISTICS** 





profregina.bernal@fiap.com.br
reginabernal@terra.com.br

#### Dra. Regina Tomie Ivata Bernal Cientista de Dados na área da Saúde

#### Formação Acadêmica:

Estatístico - UFSCar

Mestre em Saúde Pública – FSP/USP

Doutor em Ciências – Epidemiologia - FSP/USP

#### Atividades Profissionais:

Professora de pós-graduação na FIAP

Consultora externa da SVS/MS

Cientista de Dados em Saúde

TÍTULO DA APRESENTAÇÃO OU TÍTULO PRINCIPAL DO DOCUMENTO



## Extração de Conhecimento



KNOWLEDGE DISCOVERY IN DATABASES (KDD)



## Técnicas Estatísticas



#### Extração de conhecimento em bases de dados

- A metodologia de data mining -

#### Técnicas Supervisionadas





#### Uso dos Modelos no Ciclo do Cliente





## **Modelos Preditivos**

#### Data Mining: Mineração - Construção de Modelos



- aplicações práticas de Data Mining se podem ser categorizadas de acordo com a tarefa que se pretende resolver
- Regressão: Compreende a busca por uma função que mapeie os registros de um banco de dados em um intervalo de valores numéricos reais. Esta tarefa é similar à tarefa de Classificação, com a diferença de que o atributo alvo assume valores numéricos.

• Classificação. A tarefa de Classificação consiste em descobrir uma função que mapeie um conjunto de registros em um conjunto de classes. Uma vez descoberta, tal função pode ser aplicada a novos registros de forma a prever a classe em que tais registros se enquadram.





Fonte: Ronaldo Goldschmidt e Eduardo Bezerra - DataMining: conceitos, técnicas, algoritmos, orientações e aplicações. Editora Elsevier.



## **TÉCNICAS SUPERVISIONADAS**



#### Análise de Discriminação de Estrutura

#### **REGRESSÃO LOGÍSTICA**

Encontrar uma **função logística**, formada através de ponderações das variáveis (atributos), cuja resposta permita estabelecer a **probabilidade de ocorrência** de determinado evento e a **importância das variáveis** (peso) para esta ocorrência.



#### Análise de Discriminação de Estrutura

#### \*REGRESSÃO LOGÍSTICA



- (\*) Evento (exemplos)
  - Aquisição
  - Cancelamento
  - Pagamento

#### Regra de Decisão





#### Probabilidade

Sendo Y: a resposta à preferência por um evento (sim ou não),

- → a probabilidade de:
  - Preferência (ou sucesso) será p
  - Não-preferência (de fracasso) será (1-p)

#### "Chance de Ocorrência de um Evento"

> Chance = (probabilidade de sucesso) / (probabilidade de fracasso)

Exemplo, se a probabilidade de sucesso é 0,65:

a chance é igual a: 
$$p / (1-p) = p / q = 0.65 / 0.35 = 1.86$$

.

•



Exemplo: Preferência por canal de futebol

|           |         | Não     |       |
|-----------|---------|---------|-------|
| Sexo      | Prefere | Prefere | Total |
| Masculino | 146     | 120     | 266   |
| Feminino  | 110     | 124     | 234   |
| Total     | 256     | 244     | 500   |

> Chance de preferir o canal de futebol entre homens:

**Chance** de preferir o canal de futebol entre <u>mulheres</u>:

Razão de chances de preferir canal de futebol entre homens, em relação às mulheres:

$$\rightarrow$$
 [p1/(1-p1)] / [p2/(1-p2)] = 1,22 / 0,89 = 1,37



#### Modelo de Regressão Logística

Y = a+ B1 X1 + B2 X2 + ...+ Bn Xn

Y: logit da resposta de preferência (sim)

a: intersecção

B1, B2, ...,Bn: coeficientes logísticos



• A função logística é dada pelo logito-inverso (anti-logit) que nos permite transformar o logito em probabilidade:

$$Probabilidade = \frac{\exp(Y)}{1 + \exp(Y)}$$

•



## Método de Estimação dos Coeficientes

Regressão Linear: Método dos Mínimos Quadrados

⇒ É o método que determina a linha reta mais apropriada, minimizando a soma dos quadrados das diferenças entre os valores estimados de Y por meio da reta de regressão e os valores observados de Y.

Logística: Método da Máxima Verossimilhança

(algoritmo interativo)

 $\Rightarrow$  Consiste em determinar uma função, denominada função de verossimilhança [ $L(y, \vartheta)$ ], que é a função de probabilidade de ocorrência de um específico conjunto de dados e estimar os parâmetros que maximizam a mesma.



#### Seleção Conjuntos de Atributos (Variáveis)

- Variáveis Discriminantes
- Variáveis Não-Discriminantes

#### Instrumento para selecionar variáveis (atributos) significativos

BACKWARD FORWARD STEPWISE

- Backward Selection : Procedimento constrói adicionando todas as variáveis e vai eliminando iterativamente uma a uma até que não haja mais variáveis .
- Forward Selection: Procedimento constrói iterativamente adicionando variáveis uma a uma até que não haja mais variáveis preditoras
- Stepwise: Combinação de Forward Selection e Backward elimination.
   Procedimento constrói iterativamente uma seqüência de modelos pela adição ou remoção de variáveis em cada etapa.



#### Qualificação do Ajuste do Modelo

Matriz de Classificação

Estatística de Ajuste

Verossimilhança: -2 log Verossimilhança

Significância do Modelo: Qui-quadrado (similar ao F regressão)

Ganho no Modelo (significância)



#### Qualificação do Ajuste do Modelo

|      |     | Previsão do modelo |     | Total |
|------|-----|--------------------|-----|-------|
|      |     | y=1                | y=0 | iolai |
| Obs. | y=1 | (1)                | n2  | n1+n2 |
|      | y=0 | (3)                | n4  | n3+n4 |

Sensibilidade = n1 / (n1+n2)

Especificidade = n4 / (n3+n4)







Segmento: Cartões de Crédito

A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência



Média de dias com pagamentos em atraso nos últimos 6 meses





Tempo de relacionamento em anos









\_ . .

•















#### Tabela de Coeficientes do Modelo

| variável                   | categoria             | Coeficientes |
|----------------------------|-----------------------|--------------|
|                            | até 3 dias            | -1,276       |
| fatura em atraso           | 3 a 15 dias           | -0,611       |
| iatura em atraso           | de 15 a 30 dias       | 0,580        |
|                            | mais de 30 dias       | 1,308        |
|                            | até 1 ano             | 0,580        |
| Tempo de cliente           | de 1 a 3 anos         | 0,401        |
| rempo de cheme             | de 3 a 8 anos         | -0,264       |
|                            | mais de 8 anos        | -0,718       |
|                            | Até R\$250            | 0,262        |
| valor da fatura            | R\$ 250 a R\$ 800     | 0,103        |
| valor da fatura            | R\$ 800 a R\$ 1.499   | -0,105       |
|                            | Mais de R\$1.500      | -0,261       |
|                            | até 10%               | 0,581        |
| % de gasto com alimentação | de 10% a 20%          | 0,401        |
| 70 de gasto com anmentação | de 20% a 30%          | -0,264       |
|                            | mais de 30%           | -0,718       |
|                            | Região 4              | 1,067        |
| Dogião do Disco            | Região 3              | 0,371        |
| Região de Risco            | Região 2              | -0,368       |
|                            | Região 1              | -1,069       |
|                            | Até R\$ 1.518         | 0,455        |
| renda mensal               | R\$ 1.519 a R\$ 3.000 | 0,080        |
| renda mensai               | R\$ 3.000 a R\$ 4.500 | -0,122       |
|                            | Mais de R\$ 4.500     | -0,413       |
| Constante                  |                       | 0,099        |



98%

#### Exemplo - Modelo de Inadimplência

4%

Modelo Logístico

Pesos definidos na modelagem

-1,276 Mai s de 30 dias Até 3 dias Fatura em atraso 1,308 Até 1 ano -0,718 Mais de 8 anos Tempo de Relacionamento 0,580 Até R\$250 -0,261 Mais de R\$1.500 Valor da Fatura 0,262 Mais de 30% % de gasto com alimentação Até 10% 0,580 -0,718 Região 1 Região de Risco Região 4 1,067 -1,069 -0,413 0,455 Mais de R\$4.500 Renda Mensal Até R\$1.518 0,099 Constante 0,099

Propensão

Propensão = probabilidade = 
$$\frac{\exp(4.351)}{1+\exp(4.351)}$$
=0.98 ou 98%



# Exemplo: Modelo Cross-Selling Propensão à Compra de um Produto

#### **Objetivo**

Estabelecer público-alvo para a venda qualificada de um determinado Produto X, com uso dos mailing's internos do cliente, através do desenvolvimento de modelos preditivos.



→ Propensão de compra do Produto X



Sem Produto X

Com Produto X



→ Propensão de compra do Produto X



→ Propensão de compra do Produto X



Probabilidade de comprar o Produto X



### Modelos Cross Selling - Implementação

## → Propensão de compra do Produto X

#### Algoritmo Matemático

Para associar uma probabilidade de compra de um produto X à cada cliente, os seguintes passos devem ser tomados:

- 1. Identificar as variáveis, associando os respectivos coeficientes;
- 2. Somar os coeficientes encontrados no item 1, juntamente com a constante do modelo determinando o valor de Y;
- 3. Efetuar a operação matemática que se segue, para determinação final do score.

$$Probabilidade = \frac{\exp(Y)}{1 + \exp(Y)}$$



### → Propensão de compra do Produto X

#### Regra de Decisão Estatística

Após associar à cada indivíduo sua probabilidade de compra do produto, deve-se submetê-la à Regra de Decisão, ou seja, se a probabilidade obtida for menor ou igual ao valor de corte\* o assinante pertencerá ao grupo que não irá adquirir o produto, caso contrário, se esta probabilidade for maior que o valor de corte, ele pertencerá ao grupo que irá adquirir.

\* valor de corte é o valor de probabilidade que define os grupos, segundo análise de acertos do modelo.



#### Data Mining



aplicações práticas de Data Mining se podem ser categorizadas de acordo com a tarefa que se pretende resolver

## Exercitando!!!!!





Base Inadimplência +



## SAÍDAS DO PYTHON REGRESSÃO LOGÍSTICA



#### \* Segmento: Cartões de Crédito

# A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

| Variável      | De scrição                  | Valor               | Tipo de variável      | Regra de data mining |
|---------------|-----------------------------|---------------------|-----------------------|----------------------|
| atrasos       | Atrasos                     | 1-Ate 3 dias        |                       | Preditora            |
|               |                             | 2-3 a 15 dias       | Qualitativa ordinal   |                      |
|               |                             | 3-15 a 30 dias      |                       |                      |
|               |                             | 4-Mais de 30 dias   |                       |                      |
|               | Tempo de relacionamento     | 1-ate 1 ano         |                       | Preditora            |
| temporel      |                             | 2-1a3anos           | Qualitativa ordinal   |                      |
| ·             |                             | 3-3 a 8 a n o s     |                       |                      |
|               |                             | 4-mais 8 anos       |                       |                      |
|               |                             | 1-Ate R\$250        |                       | Preditora            |
| va lorfatura  | Valor da fatura             | 2-R\$250 a R\$800   | Qualitativa ordinal   |                      |
| valoriatura   |                             | 3-R\$800 a R\$1499  | Qualitativa ordinal   |                      |
|               |                             | 4-R\$1500 e mais    |                       |                      |
|               | % de gastos com alimentação | 1-Ate 10%           | - Qualitativa ordinal | Preditora            |
| p gastoalim   |                             | 2-10% a 20%         |                       |                      |
| p_gastoaiiii  |                             | 3-20% a 30%         |                       |                      |
|               |                             | 4-30% e mais        |                       |                      |
|               |                             | ı                   | - Qualitativa nominal | Preditora            |
| regiaorisco   |                             | II                  |                       |                      |
| regiaoris co  |                             | III                 |                       |                      |
|               |                             | IV                  |                       |                      |
| rendam ens al | Renda mensal                | 1-Ate R1518         | Qualitativa ordinal   | Preditora            |
|               |                             | 2-R\$1519 a R\$3000 |                       |                      |
|               |                             | 3-R\$3000 a R\$4500 |                       |                      |
|               |                             | 4-mais de R\$4500   | 1                     |                      |
| Para art-     | Resposta                    | 0=Não               | Qualitativa nominal   | Target               |
| Resposta      |                             | 1=Sim               | qualitativa nominal   |                      |

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 25984 entries, 0 to 25983
Data columns (total 19 columns):

| #                        | Column        | Non-Null Count | Dtype |  |
|--------------------------|---------------|----------------|-------|--|
|                          |               |                |       |  |
| 0                        | Resposta      | 25984 non-null | int64 |  |
| 1                        | atrasos_2     | 25984 non-null | uint8 |  |
| 2                        | atrasos_3     | 25984 non-null | uint8 |  |
| 3                        | atrasos_4     | 25984 non-null | uint8 |  |
| 4                        | temporel_2    | 25984 non-null | uint8 |  |
| 5                        | temporel_3    | 25984 non-null | uint8 |  |
| 6                        | temporel_4    | 25984 non-null | uint8 |  |
| 7                        | valorfatura_2 | 25984 non-null | uint8 |  |
| 8                        | valorfatura_3 | 25984 non-null | uint8 |  |
| 9                        | valorfatura_4 | 25984 non-null | uint8 |  |
| 10                       | p_gastoalim_2 | 25984 non-null | uint8 |  |
| 11                       | p_gastoalim_3 | 25984 non-null | uint8 |  |
| 12                       | p_gastoalim_4 | 25984 non-null | uint8 |  |
| 13                       | regiaorisco_2 | 25984 non-null | uint8 |  |
| 14                       | regiaorisco_3 | 25984 non-null | uint8 |  |
| 15                       | regiaorisco_4 | 25984 non-null | uint8 |  |
| 16                       | rendamensal_2 | 25984 non-null | uint8 |  |
| 17                       | rendamensal_3 | 25984 non-null | uint8 |  |
| 18                       | rendamensal_4 | 25984 non-null | uint8 |  |
| dtumes: int64/4)int0/40) |               |                |       |  |

dtypes: int64(1), uint8(18) memory usage: 659.9 KB



#### \* Segmento: Cartões de Crédito

A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

Amostra proporcional de categorias 0 e 1

|          | cliente | %     |  |  |
|----------|---------|-------|--|--|
| Resposta |         |       |  |  |
| 0        | 13056   | 50.25 |  |  |
| 1        | 12928   | 49.75 |  |  |

# Segmento: Cartões de Crédito

A área de crédito deseja avaliar a propensão ao risco de seus clientes

e implementar políticas de redução da inadimplência

import statsmodels.api as sm X = sm.add constant(X train) logit model=sm.Logit(y train,X ) result=logit model.fit() print(result.summary2())

Model:

Date:

atrasos 3

atrasos 4

temporel 2

temporel 3

p gastoalim 4 -2.3206

Dependent Variable:

(1)Optimization terminated successfully. Current function value: 0.483152 Iterations 6

1.2169

-0.1041

-1.0233

1.4690 3695323.3497

Results: Logit

2023-03-23 15:16

Logit

Resposta

(1) Valor do ponto de corte

(2) Coeficientes do modelo.

(3) Resultado do p-value do teste de hipótese para seleção da variável.

| No. Observations: |        | 18188        |        | Log    | -Likelihood:   | -8787.6       |  |
|-------------------|--------|--------------|--------|--------|----------------|---------------|--|
| Df Model:         |        | 15           |        | LL-I   | Null:          | -12607.       |  |
| Df Residuals      | :      | 18172        |        | LLR    | p-value:       | 0.0000        |  |
| Converged:        |        | 1.0000       |        | Sca.   | le:            | 1.0000        |  |
| No. Iteratio      | ns:(2) | 6.0000       |        | (3)    |                |               |  |
|                   | Coef.  | Std.Err.     | Z      | P> z   | [0.025         | 0.975]        |  |
| const             | 0.5846 | 0.0708       | 8.2602 | 0.0000 | 0.4459         | 0.7233        |  |
| atrasos_2         | 0.5013 | 5691891.6909 | 0.0000 | 1.0000 | -11155902.2168 | 11155903.2193 |  |

Pseudo R-squared:

nan

-0.2065

-1.1332

-2.4153

-7242699.2076

AIC:

BIC:

nan

0.0000 1.0000

-1.9910 0.0465

0.0561 -18.2560 0.0000

0.0483 -48.0367 0.0000

0.303

17607.1474

17732.0836

temporel 4 -1.0490 0.0501 -20.9280 0.0000 -1.1472 valorfatura 2 -0.0217 0.0344 -0.6312 0.5279 -0.0891 valorfatura 3 -0.3817 -0.4675 -8.7191 0.0000 valorfatura 4 -0.5699 0.0345 -16.5249 0.0000 -0.6375 p gastoalim 2 -0.2694 -0.3720 -5.1494 0.0000 p gastoalim 3 -1.1579 0.0459 -25.2020 0.0000 -1.2480

nan

-0.1669 -1.0679 -2.2259

nan

-0.0016

-0.9135

-0.9507

0.0457

-0.2959

-0.5023

7242702.1457



# Segmento: Cartões de Crédito

## A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência





#### Matriz de confusão



predictions = logmodel.predict(X\_train)
print(classification\_report(y\_train['Resposta'],predictions))

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 0.74      | 0.74   | 0.74     | 9115    |
| 1            | 0.74      | 0.73   | 0.74     | 9073    |
|              |           |        |          |         |
| accuracy     |           |        | 0.74     | 18188   |
| macro avg    | 0.74      | 0.74   | 0.74     | 18188   |
| weighted avg | 0.74      | 0.74   | 0.74     | 18188   |
|              |           |        |          |         |
|              |           |        |          |         |

VN: Verdadeiro Negativo

FP: Falso Positivo

FN: Falso Negativo

VP: Verdadeiro Positivo

# \* Segmento: Cartões de Crédito

# A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

#### Matriz de confusão



VN: Verdadeiro Negativo

FP: Falso Positivo

FN: Falso Negativo

VP: Verdadeiro Positivo



Precision(0)= 
$$\frac{6738}{6738+2405}$$
 = 0.74

Precision(1)=
$$\frac{6668}{6668+2377}$$
= 0.74

□ · · •

# \* Segmento: Cartões de Crédito

# A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

#### Matriz de confusão



VN: Verdadeiro Negativo

FP: Falso Positivo

FN: Falso Negativo

VP: Verdadeiro Positivo



Recall (0)= 
$$\frac{6738}{6738+2377}$$
 = 0.74

Recall (1)= 
$$\frac{6668}{6668+2405}$$
 = 0.73

. . . .



# Segmento: Cartões de Crédito

## A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

#### Matriz de confusão



| <pre>predictions = logmodel.predict(X_train) print(classification_report(y_train['Resposta'],predictions))</pre> |              |              |                      |                         |            |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------|-------------------------|------------|--|--|
|                                                                                                                  | precision    | recall       | f1-score             | support                 |            |  |  |
| 9<br>1                                                                                                           | 0.74<br>0.74 | 0.74<br>0.73 | 0.74<br>0.74         | 9115<br>9073            | 50%<br>50% |  |  |
| accuracy<br>macro avg<br>weighted avg                                                                            | 0.74<br>0.74 | 0.74<br>0.74 | 0.74<br>0.74<br>0.74 | 18188<br>18188<br>18188 |            |  |  |

VN: Verdadeiro Negativo

FP: Falso Positivo

FN: Falso Negativo

VP: Verdadeiro Positivo

F1-score(0) = 
$$2*(precision(0) + recall(0))/(precision(0) + recall(0))$$
  
=  $(2*(0.74 + 0.74))/((0.74+0.74)) = 0.74$ 

F1-score(1) = 
$$2*(precision(1) + recall(1))/(precision(1) + recall(1))$$
  
=  $(2*(0.74 + 0.74))/((0.74 + 0.74)) = 0.74$ 

# \* Segmento: Cartões de Crédito

## A área de crédito deseja avaliar a propensão ao risco de seus clientes e implementar políticas de redução da inadimplência

#### Matriz de confusão



| <pre>predictions = logmodel.predict(X_train)</pre>                       |
|--------------------------------------------------------------------------|
| <pre>print(classification_report(y_train['Resposta'],predictions))</pre> |
|                                                                          |

|              | precision | recall | f1-score | support |  |
|--------------|-----------|--------|----------|---------|--|
| 0            | 0.74      | 0.74   | 0.74     | 9115    |  |
| 1            | 0.74      | 0.73   | 0.74     | 9073    |  |
|              |           |        |          |         |  |
| accuracy     |           |        | 0.74     | 18188   |  |
| macro avg    | 0.74      | 0.74   | 0.74     | 18188   |  |
| weighted avg | 0.74      | 0.74   | 0.74     | 18188   |  |

VN: Verdadeiro Negativo

FP: Falso Positivo

FN: Falso Negativo

VP: Verdadeiro Positivo

Accuracy = 
$$\frac{6016738+6668}{18188}$$
 = 0.66

macro average = (precision of class 
$$0 + \text{precision of class } 1)/2$$

$$=(0.74+0.74)/2=0.74$$

Compute the F1 score, also known as balanced F-score or F-measure.

The F1 score can be interpreted as a harmonic mean of the precision and recall, where an F1 score reaches its best value at 1 and worst score at 0. The relative contribution of precision and recall to the F1 score are equal. The formula for the F1 score is:

In the multi-class and multi-label case, this is the average of the F1 score of each class with weighting depending on the average parameter.

#### Média Harmônica

$$M_h = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} + \dots + \frac{1}{x_n}}$$

M<sub>h</sub>: média harmônica

n: quantidade de elementos

$$M_h = \frac{2}{\frac{1}{80} + \frac{1}{120}} = \frac{2}{\frac{3+2}{240}} = \frac{2}{\frac{5}{240}} = 2.\frac{240}{5}$$

$$M_h = 2.\frac{240}{5} = \frac{480}{5} = 96$$
km/h

Um carro realiza um percurso duas vezes. Na ida, ele faz o percurso com uma velocidade  $v_1$  = 80 km/h. Na volta, ele realiza o mesmo percurso com velocidade de  $v_2$  = 120 km/h. Qual foi a velocidade média ao juntar-se ida e volta?

Note que a distância é a mesma, para a ida e para a volta, o que muda é a velocidade e, consequentemente, o tempo.

Se eu aumento a velocidade, o tempo que eu levo para percorrer uma mesma distância diminuirá, logo, essas grandezas são inversamente proporcionais.

Fonte: https://mundoeducacao.uol.com.br/matematica/media-harmonica.htm



Interpretação da estatística weighted average :

# O modelo está adequado?

| Classificatio                         | n Report :<br>precision | recall       | f1-score             | support                 |
|---------------------------------------|-------------------------|--------------|----------------------|-------------------------|
| 0<br>1                                | 1.00<br>0.02            | 1.00<br>0.02 | 1.00<br>0.02         | 28432 99.8%<br>49 0.2%  |
| accuracy<br>macro avg<br>weighted avg | 0.51<br>1.00            | 0.51<br>1.00 | 1.00<br>0.51<br>1.00 | 28481<br>28481<br>28481 |

In the case of weighted average the performance metrics are weighted accordingly:

$$score_{weighted-avg} = 0.998 \cdot score_{class\ 0} + 0.002 \cdot score_{class\ 1}$$

However, macro avg is not weighted and therefore

$$score_{macro-avg} = 0.5 \cdot score_{class~0} + 0.5 \cdot score_{class~1}$$

Fonte: https://datascience.stackexchange.com/questions/65839/macro-average-and-weighted-average-meaning-in-classification-report



• • • -

ANÁLISE DE REGRESSÃO LOGÍSTICA

#### Qualificação do Ajuste do Modelo

|      |     | Previsão | Total |       |
|------|-----|----------|-------|-------|
|      |     | y=1      | y=0   | TOTAL |
| Obs. | y=1 | (n)      | n2    | n1+n2 |
|      | y=0 | (3)      | n4    | n3+n4 |

Sensibilidade = n1 / (n1+n2) Especificidade = n4 / (n3+n4)



. . .

□ · · • •



# O que você achou da aula de hoje?

#### Pelo aplicativo da FIAP

(Entrar no FIAPP, e no menu clicar em Experience Survey)







# A grande finalidade do conhecimento não é conhecer, mas agir.

T. Huxley

# **OBRIGADO**





Copyright © 2023 | Professora Dra. Regina Tomie Ivata Bernal
Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente
proibido sem consentimento formal, por escrito, do professor/autor.

• • • + - +

. . .

•