The AK model

Paulo Brito pbrito@iseg.ulisboa.pt

15.2.2020

The AK model

- ► This is the simplest endogenous growth model
- ► The economy has the following features:
 - 1. population is constant and normalised to one N=1
 - 2. there is one reproducible input: physical capital
 - 3. there is one good which is produced by a CRS technology (using capital)
 - 4. the good is used in consumption and investment (it is a closed economy)
 - 5. the consumer solves an intertemporal optimization problem (savings for consumption smoothing)

The AK model

Two versions of the model

- ▶ Decentralized version: there is no state and the allocation of capital through time is determined by market equilibrium
- ▶ Centralized version: there is a central planner ("benevolent dictator") that determines the optimal allocation of capital by maximizing the intertemporal social welfare
- ► As there are no externalities or other distortions, the two versions are equivalent: in this case we say that the equilibrium allocations are Pareto optimal
- ▶ We will see that when there are externalities the two economies lead to different allocations: then equilibrium allocations are not Pareto optimal

Assumptions

► Technology: production function:

$$Y = AK$$

► Economy's constraint: capital accumulation equation

$$\dot{K} = Y - \delta K - C$$

▶ Preferences: utility functional

$$\int_0^\infty \frac{C(t)^{1-\theta} - 1}{1-\theta} e^{-\rho t} dt$$

The model

Centralized version

▶ The central planner determines the optimal paths $(C(t), K(t))_{t \in [0,\infty)}$ by solving the problem

$$\max_{[C(t)]_{t\geq 0}} \int_0^\infty \frac{C(t)^{1-\theta}-1}{1-\theta} e^{-\rho t} dt$$

subject to

$$\dot{K} = AK(t) - C(t) - \delta K,$$

$$K(0) = k_0, \text{ given, } t = 0$$

$$\lim_{t \to +\infty} e^{-At} K(t) \ge 0.$$

ightharpoonup assumption: $A > \delta$

The MHDS

- ▶ We determine the growth facts on Y(t) = AK(t) as a solution of the MHDS (maximised hamiltonian dynamic system) solving
- two dynamic equations

$$\dot{C} = C(A - \rho - \delta)/\theta \tag{1}$$

$$\dot{K} = AK - C - \delta K, \tag{2}$$

(3)

initial and the transversality conditions

$$0 = \lim_{t \to \infty} C(t)^{-\theta} K(t) e^{-\rho t} \tag{4}$$

$$K(0) = K_0$$
, given (5)

Growth in the AK model

► The capital stock solution is

$$K(t) = \bar{K}(t) = k_0 e^{\gamma t}, \ t \in [0, \infty)$$

▶ which implies that the output is

$$Y(t) = \bar{Y}(t) = Ak_0 e^{\gamma t}, \ t \in [0, \infty)$$

- ► Conclusion (growth facts):
 - ▶ the (endogenous) long run rate of growth is

$$\bar{\gamma} = \frac{A - \delta - \rho}{\theta} > 0$$

- ▶ the long run level is $\bar{y} = Ak_0$
- there is no transitional dynamics $\lambda = 0$ (this is counterfactual)

Solution method

for endogenous growth models

- 1. Write the level of variables as: $X(t) = x(t)e^{\gamma_x t}$ (level = short run × trend)
- 2. Rewrite the MHDS for the detrended variables by introducing assumptions on the rates of growth (call it detrended MHDS) such that it is an autonomous ODE
- 3. Determine the long run growth rate from the steady state of the detrended MHDS
- 4. Introduce the long run growth rate in the detrended MHDS and solve for the detrended variables, k and y = Ak
- 5. Get the final solution for K and, therefore, for Y = AK

Step 1: detrending variables

▶ Separation of transition, (k, c), and long-run trend $(e^{\gamma_k t}, e^{\gamma_c t})$

$$K(t) = k(t)e^{\gamma_k t}, \quad C(t) = c(t)e^{\gamma_c t},$$

► Then

$$\frac{\dot{c}}{c} = \frac{\dot{C}}{C} - \gamma_c$$

$$\frac{\dot{k}}{k} = \frac{\dot{K}}{K} - \gamma_k$$

Step 2: building the detrended MHDS

▶ Substituting \dot{C}/C and \dot{K}/K we get

$$\frac{\dot{c}}{c} = \frac{A - \rho - \delta}{\theta} - \gamma_c$$

$$\frac{\dot{k}}{k} = A - \delta - \frac{c}{k} e^{(\gamma_c - \gamma_k)t} \gamma_k$$

▶ A necessary condition for the MHDS to be autonomous (time-independent) is

$$\gamma = \gamma_k = \gamma_c$$

► Therefore, the detrended MHDS is

$$\dot{c} = c \left(\frac{A - \rho - \delta}{\theta} - \gamma \right)$$
$$\dot{k} = (A - \delta - \gamma)k - c$$

Step 3 : the long-run growth rates

▶ Setting $\dot{c} = 0$ we get the long run growth rate

$$\bar{\gamma} = \frac{A - \delta - \rho}{\theta} > 0$$

▶ Setting $\dot{k} = 0$ we get the long run ratio

$$\frac{\bar{c}}{\bar{k}} = \beta,$$

where

$$\beta \equiv A - \delta - \bar{\gamma} = \frac{1}{\theta} \left((A - \delta)(\theta - 1) + \rho \right) > 0$$

Step 4: solving the detrended MHDS

• if we substitute the rate of growth γ in the detrended MHDS we have

$$\dot{c} = 0 \tag{6}$$

$$\dot{k} = \beta k - c \tag{7}$$

$$0 = \lim_{t \to +\infty} e^{-\beta t} k(t) c(t)^{-\theta}$$
 (8)

because

$$\lim_{t \to +\infty} e^{-(\rho + \bar{\gamma}(\theta - 1))t} k(t) c(t)^{-\theta} = \lim_{t \to +\infty} e^{-\beta t} k(t) c(t)^{-\theta}$$

Step 4: solving the detrended MHDS (cont.)

▶ the solution of equation (??) is

$$c(t) = B$$

B is an arbitrary constant

 \triangleright substituting c and solving equation (??) we find

$$k(t) = \left(k_0 - \frac{B}{\beta}\right)e^{\beta t} + \frac{B}{\beta}.$$

 \triangleright to determine B we substitute in the TVC

$$\lim_{t \to +\infty} e^{-\beta t} k(t) c(t)^{-\theta} = \lim_{t \to +\infty} e^{-\beta t} \left[\left(k_0 - \frac{B}{\beta} \right) e^{\beta t} + \frac{B}{\beta} \right] B^{-\theta} =$$

$$= \lim_{t \to +\infty} \left[k_0 - \frac{B}{\beta} \right] B^{-\theta} =$$

$$= 0$$

Step 5: the solution to the AK model

▶ The BGP is

$$\bar{K}(t) = \bar{k}e^{\gamma t}, \quad \bar{C}(t) = \bar{c}e^{\gamma t}.$$

- where $\gamma = \bar{\gamma}$ is determined from the steady state of the detrended MHDS
- ▶ the endogenous rate of growth is

$$\bar{\gamma} = \frac{A - \delta - \rho}{\theta} > 0$$

▶ we get additionally the ratio of the levels along the BGP

$$\frac{\bar{c}}{\bar{k}} = \beta,$$

where

$$\beta \equiv A - \delta - \bar{\gamma} = \frac{1}{\rho} \left((A - \delta)(\theta - 1) + \rho \right) > 0$$

- Observe that there is an indeterminacy here: we have two equations ($\dot{c} = 0$ and $\dot{k} = 0$) and three variables (γ, c, k))
- ▶ this is a typical property of the endogenous growth models.

References

► (?, ch.11.1)