마케터를 위한 기초통계

• 디지털 마케팅 SCHOOL

수업의 흐름

• 큰 틀 그리기

Chapter 2. 통계의 언어 배우기

- 확률변수
- 확률분포
 - 정규분포
 - 표준정규분포

2.8. 확률변수 (Random variable)

- 확률변수란 일정한 확률을 가지고 발생하는 사건에 수치를 부여한 것
- 보통 X 로 표시함
- 동전 한 개를 던질 때, 모든 가능한 사건의 집합은?
 - S = { 앞면, 뒷면}
- 그러나 실제 통계학적 방법 및 분석과정에 들어서면, 어떠한 수치를 부여할 필요가 있다
 - S = { 1, 0 } : 앞면에는 1, 뒷면에는 0을 부여

2.9. 확률분포 (Probability Distribution)

- 동전을 두 번 던질 때, 모든 가능한 사건들과 각 사건이 나타날 확률에 대해서 다음과 같이 정의 가능하다
- 모든 가능한 사건의 집합 : $S = \{HH, HT, TH, TT\}$

사건	앞면의 수	각 사건의 확률
{H,H}	2	1/4
{H,T}	1	1/4
{T,H}	1	1/4
{ T , T }	0	1/4

- 만약 앞면이 나올 횟수를 확률변수(X)로 하고자 한다면, 다음과 같이 확률분포를 정의 가능하다
- 표본공간 $S = \{2, 1, 0\}$

확률변수(X_i)	$P(X_i)$
0	1/4
1	1/2
2	1/4

• 즉, 확률분포란 어떤 확률변수가 취할 수 있는 모든 값들과 이 값들이 나타날 확률을 표시한 것이다.

확률분포 (예제) - 문제

• 동전 3개를 던질 때 앞면이 나오는 사건에 대한 확률분포표와 확률분포를 그려보기

2.9.1. 확률분포의 기대값 (Expected Value)

- 확률분포의 평균값 (average, weigthed average)
- 표기법 : *E(X)*기댓값의 계산

$$E(X) = \Sigma X_i \cdot P(X_i)$$

2.9.1. 기대값의 특성

1. 확률변수 X 에 일정한 상수 a 를 곱한 확률변수의 기댓값은 확률변수 X 의 기댓값에 a 를 곱한 것과 같다.

$$E(aX) = a \cdot E(X)$$

2. 확률변수 X 에 일정한 상수 b 만큼을 가감한 확률변수의 기댓값은 확률변수 X 의 기댓값에 b 를 가감한 것과 같다.

$$E(X \pm b) = E(X) \pm b$$

3. 위의 두 가지 결과를 결합하면 다음 식이 성립된다.

$$E(aX \pm b) = a \cdot E(X) \pm b$$

확률분포 (예제) - 문제

• 위에서 본 3개의 동전던지기 문제를 활용하여 동전의 앞면이 나올 기대값을 구하세요.

• 만약 동전의 앞면의 갯수 당 500원을 받는다고 한다면, 동전 3개 던지기의 기대 수익은 얼마인가?

2.9.2. 확률분포의 분산 (Variance)

확률분포의 분산표기법 : Var(X)

• 분산의 계산

$$Var(X) = \Sigma [X_i - E(X)]^2 \cdot P(X_i)$$

= $E[\{X - E(X)\}^2]$
= $E(X^2) - [E(X)]^2$

2.9.2. 분산과 표준편차의 특성

1. 어떤 확률변수에 일정한 상수를 더한 확률변수의 분산은 본래의 확률변수의 분산과 같다. 확률변수에 상수를 더하는 것은 분포의 분산도에는 아무런 영향을 미치지 못하기 때문이다.

$$Var(X + b) = Var(X)$$

2. 어떤 확률변수에 일정한 상수 a 를 곱한 확률변수의 분산은 본래의 확률변수의 분산에 a^2 를 곱한 것과 같다.

$$Var(aX) = a^2 Var(X)$$

3. 위의 두 식을 종합하면 다음과 같은 식이 성립된다.

$$Var(aX + b) = a^2 Var(X)$$

확률분포의 기대값 (실습): 일일 세션과 확률변수의 관계?

• 사건:

• 확률변수 :

ex.

확률:

2.9.3. 여러가지 분포 (참고)

- 이항분포 (Binomial)
- 다항분포 (Multinomial)
- 정규분포 (Normal)
- 표준정규분포 (Standard Normal)
- t-분포 (Student's t)
- χ 2-분포 (Chi-Squared)
- *F*-분포(F)

2.9.4. 정규분포 (Normal Distribution)

- 정규분포는 표본을 통한 통계적 추정 및 가설검정이론의 기본
- 실제로 사회적, 자연적 현상에서 접하는 여러 자료들의 분포도 정규분포와 비슷한 형태를 띔
- 현실적인 자료가 이론적인 정규분포와 완전히 일치하는 것은 아니지만 정규분포의 형태에 가깝게 나타나므로 이를 자료분석에 이용할 수 있다는 점

정규분포의 특성

- 1. 정규분포의 모양과 위치는 분포의 평균과 표준편차로 결정된다.
- 2. 정규분포의 확률밀도함수는 평균(μ)을 중심으로 대칭인 종모양이다.
- 3. 정규곡선은 X축에 맞닿지 않으므로 확률변수 X가 취할 수 있는 값의 범위는 $-\infty \le X \le +\infty$ 이다.
- 4. 분포의 평균(μ)과 표준편차(σ)가 어떤 값을 갖더라도, 정규곡선과 X축 사이의 전체 면적은 1이다. (면적 = 확률)

2.9.5. 표준정규분포 (Z-분포)

- 정규분포는 평균과 표준편차에 따라 모양과 위치가 각기 다르기 때문에 두 분포의 성격을 비교하거나 특정 정규분포에서 확률을 계산하기 위해서는,
- 먼저 모든 정규분포의 평균과 표준편차를 표준화하여 표준적인 정규분포(standard normal distribution)를 만들어야 한다

Quiz

- 어느 학생이 영어와 수학 시험을 치렀다. 그 결과 영어점수는 80점이고 수학점수는 75점이었 다. 이 학생은 어느과목을 더 잘했다고 할 수 있는가?
- 추가정보 : 영어과목에서는 전체학급의 평균은 90점, 표준편차는 5점 그리고 수학과목에서는 평균이 60점, 표준편차가 10 점이라고 한다.

표준정규분포 (계속)

- 표준정규분포는 모든 정규분포를 평균 $\mu=0$, 표준편차 $\sigma=1$ 이 되도록 **표준화**한 것이다.
- 어떤 확률변수 X의 관찰값이 그 분포의 평균으로부터 표준편차의 몇 배 정도나 떨어져 있는가를 다음과 같이 표준화된 확률변수 Z로 나타내기 때문에 표준정규분포를 Z-분포 라고도 한다.

$$Z = \frac{X - \mu}{\sigma}$$

Quiz (그림도 함께 그려보세요)

• 앞에서 든 예를 Z의 척도로 바꾸어 보면,

$$Z = \frac{X - \mu}{\sigma}$$

영어 Z =

수학
$$Z =$$

2.9.6. 표준정규분포표 보는 법

Areas Under the One-Tailed Standard Normal Curve

This table provides the area between the mean and some Z score. For example, when Z score = 1.45 the area = 0.4265.

							μ-υ			
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.7	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.8	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999
3.9	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000	0.5000

정규분포의 확률계산 (예제 1) - 문제

• Z=0부터 Z=1.5 사이에 확률변수가 있을 확률

• Z = -1부터 Z = 1 사이에 확률변수가 있을 확률

• Z = -1.5부터 Z = -0.5 사이에 확률변수가 있을 확률

• Z=-2보다 작거나 Z=2보다 큰 사이에 확률변수가 있을 확률

정규분포의 확률계산 (예제 2) - 문제

• 한 초등학교 전교생의 IQ를 측정해 본 결과 평균 $\mu=100$, 표준편차 $\sigma=10$ 이었다. 이 초등학교 학생들의 IQ 분포가 정 규분포를 이룬다고 가정할 때, IQ가 100에서 110사이인 학생의 비율은 얼마나 될까?

정규분포의 확률계산 (예제 3) - 문제

• 그렇다면 IQ 가 120 이상인 학생의 비율은 얼마나 될까?

Chapter 3. 분석의 기본 단계 (과정) 알기

- 표본과 표집분포
 - 중심극한정리
- 통계적 추정
 - 신뢰도와 신뢰구간
- 통계적 가설검정
 - 유의수준과 P-value

기본적인 분석 단계

- 분석하고자 하는 대상에서 표본을 추출 (모집단)
- 표본의 특성 알아냄 (통계량)
- 표본의 특성을 통해서 모집단의 특성을 유추함 (모수)
- 모집단의 특성을 바탕으로 예측 문제를 품 (각종 분석들)
- 보고서 작성 (끝)

3.1. 표본과 표집분포 (Sample & Sample dist.)

- 표본추출의 필요성
- 오차의 종류
- 표본 (Sample) & 통계량 (Statistic)
- 표집분포

3.1.1. 표본추출의 필요성

- 경제성
- 시간의 제약

3.1.2. 오차의 종류

- 1. 측정오차 (Measurement Error)
 - 측정하는 과정에서 발생하는 오류 (물리적 오류)
- 2. 표본추출오차 (Sampling Error)
 - 모집단을 대표할 수 있는 전형적인 구성요소를 표본으로 선택하지 못해서 발생
 - 워이
 - 표본의 크기 때문에 생기는 우연에 의한 오류
 - 편의에 의한 오류

3.1.3. 표본과 통계량 (sample & statistic)

• 통계량 (표본의 특성)

평균
$$ar{X}=rac{\sum X_i}{n}$$

분산 $S^2=rac{\sum (X_i-ar{X})^2}{n-1}$
표준편차 $S=\sqrt{S^2}=\sqrt{rac{\sum (X_i-ar{X})^2}{n-1}}$

3.1.4. 표집분포 (sampling distribution)

- 표집분포란 모집단에서 일정한 크기로 뽑을 수 있는 표본을 모두 뽑았을 때 그 모든 표본의 특성치, 즉 통계량의 확률분포를 말한다.
 - 모집단에서 표본을 뽑아 그 표본을 분석할 때, 우리가 뽑은 표본이 과연 모집단을 대표할 수 있는가?
 - 이는 표본이 포함하고 있는 오차를 추정해 낼 수 있다는 것을 의미 (표집분포가 가능하게 해줌)
 - 똑같은 크기를 가진 표본을 여러 번 추출 -> 각 표본의 특성치인 통계량들 역시 분포를 갖게 됨 -> 이때 통계량이 어떤 분포를 이루는가를 보여주는 것이 표집분포

평균의 표집분포

• 특정한 모집단에서 동일한 크기로 가능한 모든 표본을 뽑아서 각각의 표본들의 평균을 계산했을 때, 그 평균들의 확률분포를 말한다.

모집단이 정규분포일 때

• 평균의 표집분포는 표본의 크기 n 에 관계없이 언제나 정규분포를 이룬다.

평균
$$E(\bar{X}) = \mu$$
 분산 $Var(\bar{X}) = \frac{\sigma^2}{n}$

3.1.7. 모집단이 정규분포가 아닐 때

- 모집단이 정규분포가 아닐 때에는 표집분포가 정규분포라고 단정지을 수 없다.
- 그러나 아래의 그림에서와 같이 표집분포는 표본의 크기 n을 크게 할수록 정규분포에 접근하게 된다. 이를 **중심극한정리** (central limit theorem)라 한다.

평균
$$E(\bar{X}) = \mu$$
 분산 $Var(\bar{X}) = \frac{\sigma^2}{n}$

중심극한정리 (Central Limit Theorem)

- 통계학에서 가장 중요한 정리
- 모집단의 분포모양과는 상관없이 표본의 크기가 커지면 표집분포가 정규분포를 이루게 되어, 정규분포의 성질을 쉽게 이용할 수 있다는 장점
- 모집단이 정규분포가 아니더라도 n 이 커질수록 정규분포에 접근
 - 대게 표본의 크기가 30 이상이면 정규분포를 이룬다.

중심극한정리 (Central Limit Theorem)

분산의 표집분포

- 어떤 모집단이 σ^2 의 분산을 가질 때, 이 모집단으로부터 크기가 동일하게 선택가능한 모든 표본을 뽑아서 각각의 분산을 계산했을 때,
- 표본분산 S^2 들은 일정한 분포를 이루게 된다.

χ^2 분포(chi-square distribution)

- χ^2 분포는 비대칭 모양을 이루고 오른쪽으로 긴 꼬리를 가짐
- 항상 양수값만을 갖는 특징
- 자유도가 커질수록 (샘플의 크기 n) 정규분포에 가깝게 된다

3.2. 통계적 추정

- 통계적 추정의 기본개념
- 점추정
- 구간추정
- 신뢰도와 신뢰구간

Quiz

• 서울시 대학 신입생의 수학능력시험 평균 점수를 알아보려 한다. 각 대학에서 총 400명의 표본을 뽑아 그들의 점수를 조사하여 본 결과 평균 점수가 250점이었다고 한다면, 모집단의 평균 점수는 얼마라고 볼 수 있는가?

A. 250점 일 것이다.

- B. 225~275점 일 것이다.
- C. 170~330점 일 것이다.

Quiz (답)

- 위 세 개의 답을 보면 어느 하나도 꼭 틀렸다고 말할 수 없다.
 - A의 경우 표본의 평균이 250점이라고 해서, 모집단의 평균이 꼭 250점이라고 할 수는 없다.
 - **B 의 답**, 즉 225점 이상 275점 이하의 어느 점수가 모수가 될 것이라는 것은 모집단의 평균이 꼭 250점이라는 것보다 맞을 가능성이 높다.
 - **C 의 답**, 즉 170점 이상 330점 이하에 모수가 있을 가능성은 거의 100%라고 할 수 있다.

3.2.1. 통계적 추정의 기본개념

- 정보의 효과와 추정구간의 크기는 상반관계(trade-off)
 - 구간을 크게 할 수록 그 추정이 맞을 가능성은 높아지나, 구간이 클수록 그 정보의 효과는 감소된다.
 - 극단적으로 시험점수가 400점 만점일 때 평균 점수가 0점에서 400점 사이에 있을 것이라고 한다면 그 추정이 맞을 가능성은 100%이지만 그것이 주는 정보의 가치는 하나도 없다.

3.2.2. 점추정 (point estimation)

- 점추정이란 하나의 값으로 모수값을 추정하는 방법이다.
- 다시 말해서, 표본으로부터 구할 수 있는 통계량 가운데 모수를 추정하기에 가장 적절한 것을 결정하여 그 값을 모수값으로 보는 것
 - ex. 평균이 250점 일 것이다.

3.2.3. 구간추정 (interval estimation)

• 구간추정은 모수가 존재할 범위를 제공함으로써 연구자가 원하는 만큼의 정확도를 가지고 모수를 추정할 수 있다는 장점을 가짐

3.2.4. 신뢰도와 신뢰구간

- 신뢰도 또는 신뢰수준 (confidence level)
 - $-1-\alpha$
 - 구간으로 추정된 추정값이 실제 모집단의 모수를 포함하고 있을 **가능성(확률)**
- 신뢰구간 (confidence interval)
 - 이때 모수가 포함될 것으로 추정된 구간
- 신뢰도가 높을수록 신뢰구간은 넓어진다.
- 범위가 넓을수록 그 속에 모집단의 평균이 포함될 가능성이 더 높아지나,
- 반면에 신뢰구간이 갖는 정보의 가치는 줄어들게 됨을 의미

Quiz

• 위의 학생들의 시험점수 문제에서, 표본의 평균 점수가 250점이고, 표준편차가 30점 이라고 할때, 95%의 신뢰구간을 구하여 보자. (위 정규분포 그림을 이용)

3.2.5. 모집단 평균의 구간추정 (σ 를 알고 있는 경우)

Z-통계량

$$Z = \frac{(\bar{X} - \mu_{\bar{X}})}{\sigma_{\bar{X}}}$$

Z 값에 대한 신뢰구간

$$P(-Z_{\alpha/2} \le Z \le Z_{\alpha/2}) = 1 - \alpha$$

 μ 값에 대한 신뢰구간

$$P(\bar{X} - Z_{\alpha/2} \cdot \sigma_{\bar{X}} \le \mu \le \bar{X} + Z_{\alpha/2} \cdot \sigma_{\bar{X}}) = 1 - \alpha$$

table. 신뢰도에 따른 $Z_{lpha/2}$ 값

신뢰도 (1 — α)	$Z=0$ 에서 $Z_{lpha/2}$ 까지 면적	$Z_{\alpha/2}$
0.90	0.450	1.64
0.95	0.475	1.96
0.99	0.495	2.57

Quiz 에 적용

• 위의 학생들의 시험점수 문제에서, 표본의 평균 점수가 250점이고, 표준편차가 30점 이라고 할때, 95%의 신뢰구간을 구하여 보자.

$$\begin{split} P(-Z_{\alpha/2} \leq Z \leq Z_{\alpha/2}) &= 1 - \alpha \\ P(\bar{X} - Z_{\alpha/2} \cdot \sigma_{\bar{X}} \leq \mu \leq \bar{X} + Z_{\alpha/2} \cdot \sigma_{\bar{X}}) &= 1 - \alpha \end{split}$$

3.2.6. 모집단 평균의 구간 추정 (σ 를 모르는 경우)

- 앞에서 모집단의 평균을 추정할 때 정규분포 모집단의 표준편차를 σ 를 알고 있는 것으로 가정했으나, 모집단의 평균을 모르면서 모집단의 표준편차를 알고 있는 경우는 매우 드물다.
- 대개의 경우 모집단의 표준편차는 모집단의 평균 μ 를 알아야 계산할 수 있기 때문이다.
- 모집단의 표준편차 σ 를 모를 때에는 **표본에서 구한 불편추정량** S, **즉 표본의 표준편차**를 모집단의 표준편차 σ 대신으로 사용한다.

$$S = \sqrt{\frac{\sum (X_i - \bar{X})^2}{n - 1}}$$

3.2.6. 모집단 평균의 구간 추정 (σ 를 모르는 경우)

t-통계량

• t-통계량은 표준정규분포를 따르지 않고 자유도 (n-1)의 t-분포를 이루기 때문에 t-분포를 이용하여 신뢰구간을 구해야 한다.

$$t = \frac{(\bar{X} - \mu_{\bar{X}})}{S_{\bar{X}}}, \quad (S_{\bar{X}} = \frac{S}{\sqrt{n}})$$

t-통계량을 이용한 신뢰구간

$$P(-t_{\alpha/2} \le \frac{(\bar{X} - \mu_{\bar{X}})}{S_{\bar{X}}} \le t_{\alpha/2}) = 1 - \alpha$$

t-분포에서의 신뢰구간

$$P(\bar{X} - t_{\alpha/2} \cdot S_{\bar{X}} \le \mu \le \bar{X} + t_{\alpha/2} \cdot S_{\bar{X}}) = 1 - \alpha$$

참고) t-분포에 대해서 (1)

- t-분포의 모양은 Z-분포와 유사
- 종 모양으로서 t = 0에 대하여 대칭을 이룸
- t-분포는 표준정규분포보다 두터운 꼬리를 가지고 옆으로 퍼져 있음

- 이러한 특성으로 인해 α 에 대하여 t-통계량이 Z-통계량보다 큰 값을 갖도록 함
- 모집단의 표준편차 σ 를 알지 못하는 데서 오는 추정상의 오류를 보상해 준다. (후하게 쳐준다)
- 그러나 표본의 크기 n 이 커질수록 표본의 표준편차 S는 σ 에 접근하기 때문에 t-분포는 점차 표준정규분포와 비슷항 형태를 이루게 된다. $(n \ge 30)$

데이터 스튜디오를 활용한 기술통계와 데이터 시각화 (실습)

Google Data Studio

- 목표
 - 기본적인 GA 대쉬보드 만들기
 - 조건부확률 실습예제 시각화 하기
- 준비사항
 - GA데모 계정
 - 데이터 스튜디오

데이터 스튜디오의 기본구조

• 데이터 소스

측정기준 : dimension측정항목 : metric세그먼트 : segment

수업끝