Transition to Advanced Mathematics

Fall 2021

Practically Perfect Proof

Patrick May

October 29, 2021

Question 2.

Theorem 1. Let $a, b, c \in \mathbb{Z}$. If $a^2 + b^2 = c^2$, then abc is even.

Proof. Assume $a^2 + b^2 = c^2$.

Recall **Proposition 2.3.50:**

If
$$n$$
 is odd, n^2 is odd. (1)

$$\implies$$
 If n^2 is even, n is even. (2)

With this knowledge, we proceed into following cases:

Case 1. Without loss of generality, assume a is even and b is odd.

Then a = 2m for some $m \in \mathbb{Z}$.

Then abc = 2mbc = 2(mbc).

Since $mbc \in \mathbb{Z}$ by closure, abc is even.

Therefore when *a* and *b* have opposite parity, *abc* is even.

Case 2. a and b are both even.

Then a = 2m for some $m \in \mathbb{Z}$.

Then abc = 2mbc = 2(mbc).

Since $mbc \in \mathbb{Z}$ by closure, abc is even.

Therefore, when *a* and *b* are both even, *abc* is even.

Case 3. a and b are both odd.

Then by **Proposition 2.3.50**, a^2 and b^2 are odd.

Then $a^2 = 2d + 1$ and $b^2 = 2e + 1$ for some $d, e \in \mathbb{Z}$.

Then $c^2 = (2d + 1) + (2e + 1) = 2(d + e + 1)$.

Since d + e + 1 is an integer by closure, we know c^2 is even.

Using the contrapositive of **Proposition 2.3.50**, we know that *c* is even.

Then c = 2m for some $m \in \mathbb{Z}$.

Then abc = ab(2m) = 2(abm).

Since $abm \in \mathbb{Z}$ by closure, abc is even.

Therefore, when *a* and *b* are both odd, *abc* is even.