Computer Graphics and Image

Lecture B3 **Region Processing**

The University

Convolution Definition

$$g'(\mathbf{r},c) = \sum_{\mathbf{x} = -\infty}^{\infty} \sum_{\mathbf{y} = -\infty}^{\infty} g(\mathbf{r} - \mathbf{x},c - \mathbf{y}) \cdot t(\mathbf{x},\mathbf{y})$$

Place template on image

Multiply overlapping values in image and template

Limits are template size

Sum products (and normalise)

Templates usually small

MANCHESTER 1824									
The University Soft Manchester Example									
Image	Template			Result					
4 5 8 5 4 4 6 9 6 4 4 6 9 5 3 4 5 8 5 4	1 1 1	1 2 1	1 1 1			6		6	
3*1 + 5*1 + 7*1 4 *1 + 5*2 + 8* 4*1 + 6*1 + 9*1	1 +	Divide	by tem	nplate	SUI	m	(1	0) :	= 5.6

The University

Normalisation

- Lab example of smoothing without normalisation
- Maximum pixel value is 255
- Smoothed value would be 255*9
- What is output?

MANCHESTER

The University of Manchester

- Therefore either normalise the output
- Or convolve with

The University of Mancheste

Separable Templates (Aside)

- Convolve with n x n template
 - n² multiplications and additions per output pixel
- Convolve with two n x 1 templates
 - 2n multiplications and additions per output pixel
- Results in faster processing

MANCHESTER

The University of Manchester

Example

- Laplacian template
- 0 -1 0
- -1 4 -1 0 -1 0
- Separated kernels
 - -1 2 -1
- -1 2
- -1

The University of Mancheste

Composite Filters

Convolution is distributive

$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$

- Can create a composite filter and do a single convolution
- **Don't** convolve image with one filter and convolve result with second.
- Efficiency gain

MANCHESTER

The University

Example

- Two n x n filters convolved with a m x m image
- Option 1
 - Convolve image and template \approx n^2 x m^2 multiplications and additions
 - Convolve image and template \approx n² x m² multiplications and additions
- Option 2
 - Convolve template and template \approx n^2 x n^2 multiplications and additions
 - Convolve image and template \approx n^2 x m^2 multiplications and additions

The University

Applications of Convolution

- Usefulness of convolution is in the effects generated by different templates
- Examples:
 - Smoothing
 - Noise reduction
 - Sharpening
 - Edge enhancement
 - Template matching
 - · Finding objects

MANCHESTER

The University of Manchester

Smoothing

- Aim is to reduce noise
- A digression
 - What is "noise"?
- How is it reduced
 - Addition
 - Adaptively
 - Weighted

The University of Mancheste

Noise Definition

- Noise is deviation of a value from its expected value
 - Random changes
 - $x \rightarrow x + n$
 - n can be positive or negative
 - Random distribution and mean is zero
 - Usually much smaller than max(x)
 - Salt and pepper
 - $x \rightarrow \{max, min\}$
 - Much less common
 - Imaging artefacts
 - · Streaks and blooms

MANCHESTER

The University

Noise Sources

- Two schools of thought:
 - Anything within the imaging system that causes a change
 - Electrical interference
 - Optical aberration
 - Anything that causes a change
 - Atmospheric disturbance
- First is preferred definition

The University of Manchester

Noise Reduction

By smoothing

$$\Sigma(\mathsf{x}+\mathsf{n}) = \Sigma(\mathsf{x}) + \Sigma(\mathsf{n}) \approx \Sigma(\mathsf{x})$$

- Since noise is random and zero mean
- Smooth locally or temporally
- Local smoothing
 - Convolve with what template?
 - Suggestions?
 - Removes detail
 - Introduces ringing
- Noise amplitude reduced by template length

Examples Laboratory exercises And below

Adaptive Smoothing • Compute smoothed value, s Output = s if |s - x| < T x otherwise

The University

Rank Filters: Median Smoothing

Median is one value in an ordered set, X:

$$X\left(\frac{n+1}{2}\right)$$
 nodd

$$average\left(X\left(\frac{n}{2}\right), X\left(\frac{n+1}{2}\right)\right) \ n \ even$$

 $1234567 \rightarrow median = ?$

 $234567 \rightarrow \text{median} = ?$

The University of Mancheste

Gaussian Smoothing

- Used
 - To reduce ringing
- Uses
 - Weighted smoothing
- Weights
 - Derived from Gaussian (normal) distribution
- Template
 - Suggestions?

MANCHESTER 1824 Annual Manual Manual

Sharpening

- What is it?
 - Enhancing discontinuities
 - Edge detection
- Why do it?
 - Perceptually important
 - Computationally important

Everything that can be invented has been invented Charles Duell, Commissioner U.S. Office of Patents, 1899