Assignment 1

$Computational\ Intelligence,\ SS2017$

Team Members				
Last name	First name	Matriculation Number		
Reeh	Lucas	00630128		

Contents

1	Line	ear Regression	2
	1.1	Derivation of Regularized Linear Regression	2
	1.2	Linear Regression with polynomial features	2
	1.3	Linear Regression with radial basis functions	5
2	Log	istic Regression	9
	2.1	Derivation of Gradient	9
	2.2	Logistic Regression training with gradient descent and scipy.optimize	9
		2.2.1 Gradient descent	9
		2.2.2 Scipy optimizer	18
${f L}$	\mathbf{ist}	of Figures	
	1	Training, validation and testing errors	2
	2	Linear Regression (Polynomial, Degree 1)	2
	3	Linear Regression (Polynomial, Degree 2)	3
	4	Linear Regression (Polynomial, Degree 5)	3
	5	Linear Regression (Polynomial, Degree 20)	4
	6	Linear Regression (Polynomial, Degree 21)	4
	7	Linear Regression (Polynomial, Degree 13)	5
	8	Training, validation and testing errors	5
	9	Linear Regression (Bias, Center 1)	6
	10	Linear Regression (Bias, Center 2)	6
	11	Linear Regression (Bias, Center 5)	7
	12	Linear Regression (Bias, Center 20)	7
	13	Linear Regression (Bias, Center 40)	8
	14	Linear Regression (Polynomial, Degree 9)	8
	15	Logistic Regression ($\eta = 1, l = 1, 20$ iterations)	9
	16	Logistic Regression Errors ($\eta = 1, l = 1, 20$ iterations)	10
	17	Logistic Regression ($\eta = 1, l = 1, 2000 \text{ iterations}) \dots \dots \dots \dots$	10
	18	Logistic Regression Errors ($\eta = 1, l = 1, 2000 \text{ iterations}$)	11
	19	Logistic Regression ($\eta = 0.15, l = 1, 200 \text{ iterations})$	11
	20	Logistic Regression Errors ($\eta = 0.15, l = 1, 200 \text{ iterations}$)	12
	21	Logistic Regression ($\eta = 1.5, l = 1, 200 \text{ iterations}) \dots \dots \dots \dots$	12
	22	Logistic Regression Errors ($\eta=1.5,\ l=1,\ 200$ iterations)	13
	23	Logistic Regression ($\eta = 15, l = 1, 200 \text{ iterations}) \dots \dots \dots \dots$	13
	24	Logistic Regression Errors ($\eta = 15, l = 1, 200 \text{ iterations}$)	14

25	Logistic Regression (adaptive) ($\eta = 1, l = 1, 1000 \text{ iterations}) \dots \dots$	14
26	Logistic Regression (adaptive) Errors ($\eta=1,l=1,1000$ iterations)	15
27	Logistic Regression (adaptive) ($\eta = 1, l = 2, 1000 \text{ iterations}) \dots \dots$	15
28	Logistic Regression (adaptive) Errors ($\eta=1,l=2,1000$ iterations)	16
29	Logistic Regression (adaptive) ($\eta = 1, l = 5, 1000 \text{ iterations}) \dots \dots$	16
30	Logistic Regression (adaptive) Errors ($\eta=1,l=5,1000$ iterations)	17
31	Logistic Regression (adaptive) ($\eta=1,\ l=15,\ 1000\ {\rm iterations})$	17
32	Logistic Regression (adaptive) Errors $(n = 1, l = 15, 1000 \text{ iterations})$.	18

1 Linear Regression

1.1 Derivation of Regularized Linear Regression

1.2 Linear Regression with polynomial features

Figure 1: Training, validation and testing errors

Figure 2: Linear Regression (Polynomial, Degree 1)

Figure 3: Linear Regression (Polynomial, Degree 2)

Figure 4: Linear Regression (Polynomial, Degree 5)

Figure 5: Linear Regression (Polynomial, Degree 20)

• Lowest training error when using degree 21

Figure 6: Linear Regression (Polynomial, Degree 21)

• Lowest validation error occurs when using degree 13

Figure 7: Linear Regression (Polynomial, Degree 13)

• Discussion

Validation sets help to estimate performance of algorithms used for predictions and also to select a hypothesis (lowes error on set data). According to the error in the test set no over-fitting occurred up to a degree of 13 (but would on higher degrees as can clearly be seen in Figure for degree 21, outliers and lesser data).

1.3 Linear Regression with radial basis functions

Figure 8: Training, validation and testing errors

Figure 9: Linear Regression (Bias, Center 1)

Figure 10: Linear Regression (Bias, Center 2)

Figure 11: Linear Regression (Bias, Center 5)

Figure 12: Linear Regression (Bias, Center 20)

• Lowest training error when using center 40

Figure 13: Linear Regression (Bias, Center 40)

• Lowest validation error occurs when using center 9

Figure 14: Linear Regression (Polynomial, Degree 9)

• Discussion

Bias function is better because it fits natural phenomen better. Overfitting occurs very early on parameter center 10.

2 Logistic Regression

2.1 Derivation of Gradient

2.2 Logistic Regression training with gradient descent and scipy.optimize

2.2.1 Gradient descent

1. **check_gradient** explaination

The function check whether the regression functions are really converging at a certain rate. To avoid divergence;)

2. **gradient descent** degree l=1, 20 and 2000 iterations, learning rate $\eta=1$

Figure 15: Logistic Regression ($\eta = 1, l = 1, 20$ iterations)

Figure 16: Logistic Regression Errors ($\eta=1,\,l=1,\,20$ iterations)

Figure 17: Logistic Regression ($\eta=1,\,l=1,\,2000$ iterations)

Figure 18: Logistic Regression Errors ($\eta = 1, l = 1, 2000 \text{ iterations}$)

3. gradient descent degree $l=2,\,200$ iterations, learning rate $\eta=0.15,1.5,15$

Figure 19: Logistic Regression ($\eta = 0.15, l = 1, 200 \text{ iterations}$)

Figure 20: Logistic Regression Errors ($\eta=0.15,\,l=1,\,200$ iterations)

Figure 21: Logistic Regression ($\eta = 1.5, l = 1, 200 \text{ iterations}$)

Figure 22: Logistic Regression Errors ($\eta=1.5,\,l=1,\,200$ iterations)

Figure 23: Logistic Regression ($\eta = 15, l = 1, 200 \text{ iterations}$)

Figure 24: Logistic Regression Errors ($\eta = 15, l = 1, 200$ iterations)

Discussion: Too low or too hight learning rates lead to divergence or spinning between lower and hight cost (oscillates).

4. Adaptative gradient descent (GDad) degree l=1,2,5,15,1000 iterations, learning rate $\eta=1$

Figure 25: Logistic Regression (adaptive) ($\eta=1,\,l=1,\,1000$ iterations)

Figure 26: Logistic Regression (adaptive) Errors ($\eta=1,\,l=1,\,1000$ iterations)

Figure 27: Logistic Regression (adaptive) ($\eta=1,\,l=2,\,1000$ iterations)

Figure 28: Logistic Regression (adaptive) Errors ($\eta=1,\,l=2,\,1000$ iterations)

Figure 29: Logistic Regression (adaptive) ($\eta=1,\,l=5,\,1000$ iterations)

Figure 30: Logistic Regression (adaptive) Errors ($\eta=1,\,l=5,\,1000$ iterations)

Figure 31: Logistic Regression (adaptive) ($\eta=1,\,l=15,\,1000$ iterations)

Figure 32: Logistic Regression (adaptive) Errors ($\eta = 1, l = 15, 1000$ iterations)

5. Stopping When error between iteration becomes too low, threshold regression should be stopped.

2.2.2 Scipy optimizer