Actividad: Regresión Lineal 2

Por si alguna grafica, linea de codigo, o paso se ve distorsionado en el PDF, aquí está el link:

https://colab.research.google.com/drive/10ucxKJJIS1wCBG00F-9Fxt51kaQA1xXn?usp=sharing

```
import numpy as np
import pandas as pd
from scipy.stats import t
import scipy.stats as stats
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.metrics import r2 score
import statsmodels.formula.api as smf
from statsmodels.formula.api import ols
from sklearn.metrics import mean_squared_error
from sklearn.metrics import mean_absolute_error
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
df = pd.read_csv('/content/drive/MyDrive/7mo Semestre/Colab Notebooks/DataSources/breast_cancer.csv')
df.head()
С→
               id diagnosis radius_mean texture_mean perimeter_mean area_mean smoothness_mean compactness_mean
      0
           842302
                          M
                                     17.99
                                                   10.38
                                                                  122.80
                                                                             1001.0
                                                                                              0.11840
                                                                                                                0.27760
           842517
                                     20.57
                                                   17.77
                                                                  132.90
                                                                             1326.0
                                                                                              0.08474
                                                                                                                0.07864
                           M
      2 84300903
                                                                                              0.10960
                                     19.69
                                                   21.25
                                                                  130.00
                                                                             1203.0
                                                                                                                0.15990
```

5 rows × 32 columns

3 84348301

4 84358402

1.- Base de datos completa. No se observan valores faltantes. En caso de haberlos se realiza imputación simple

20,38

14 34

77,58

135 10

386.1

1297.0

0.14250

0.10030

0.28390

0.13280

```
df.columns
     Index(['id', 'diagnosis', 'radius_mean', 'texture_mean', 'perimeter mean',
             'concave points_mean', 'symmetry_mean', 'fractal_dimension_mean',
             'radius_se', 'texture_se', 'perimeter_se', 'area_se', 'smoothness_se', 'compactness_se', 'concavity_se', 'concave points_se', 'symmetry_se',
                                                                         'symmetry_se',
             'fractal_dimension_se', 'radius_worst', 'texture_worst',
             'perimeter_worst', 'area_worst', 'smoothness_worst',
             'compactness_worst', 'concavity_worst', 'concave points_worst', 'symmetry_worst', 'fractal_dimension_worst'],
            dtype='object')
df.isnull().sum()
     id
     diagnosis
     radius_mean
     texture_mean
     perimeter_mean
     area mean
     smoothness_mean
     {\tt compactness\_mean}
                                   0
     concavity_mean
                                   0
     concave points_mean
     symmetry_mean
```

11.42

20.29

```
fractal_dimension_mean
    radius_se
    texture se
    perimeter_se
    area_se
    smoothness se
    compactness_se
    concavity_se
    concave points_se
    symmetry_se
    fractal_dimension_se
    radius_worst
    texture_worst
    perimeter_worst
    area_worst
    smoothness_worst
    compactness_worst
    concavity worst
    concave points_worst
                             0
    symmetry worst
                             0
    fractal_dimension_worst 0
    dtype: int64
df['diagnosis'].unique()
    array(['M', 'B'], dtype=object)
dummies_diagnosis = pd.get_dummies(df['diagnosis'], prefix = 'diagnosis')
dummies_diagnosis
```

		diagnosis_B	diagnosis_M	
	0	0	1	ılı
	1	0	1	
	2	0	1	
	3	0	1	
	4	0	1	
ţ	564	0	1	
Ę	565	0	1	
ţ	566	0	1	
į	567	0	1	
ţ	568	1	0	

569 rows × 2 columns

```
df = pd.concat([df, dummies_diagnosis], axis = 1)
df.drop('diagnosis', axis = 1, inplace = True)
df = df.rename(columns={'concave points_mean': 'concave_points_mean'})
df = df.rename(columns={'concave points_se': 'concave_points_se'})
df = df.rename(columns={'concave points_worst': 'concave_points_worst'})
```

2.- Mostrar que las variables regresoras son independientes. En caso de no serlo realizar el procedimiento correspondiente.

```
corr = df.corr()
corr
```

	id	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compact	
id	1.000000	0.074626	0.099770	0.073159	0.096893	-0.012968		
radius_mean	0.074626	1.000000	0.323782	0.997855	0.987357	0.170581		
texture_mean	0.099770	0.323782	1.000000	0.329533	0.321086	-0.023389		
perimeter_mean	0.073159	0.997855	0.329533	1.000000	0.986507	0.207278		
area_mean	0.096893	0.987357	0.321086	0.986507	1.000000	0.177028		
smoothness_mean	-0.012968	0.170581	-0.023389	0.207278	0.177028	1.000000		
compactness_mean	0.000096	0.506124	0.236702	0.556936	0.498502	0.659123		
concavity_mean	0.050080	0.676764	0.302418	0.716136	0.685983	0.521984		
concave_points_mean	0.044158	0.822529	0.293464	0.850977	0.823269	0.553695		
symmetry_mean	-0.022114	0.147741	0.071401	0.183027	0.151293	0.557775		
fractal_dimension_mean	-0.052511	-0.311631	-0.076437	-0.261477	-0.283110	0.584792		
radius_se	0.143048	0.679090	0.275869	0.691765	0.732562	0.301467		
texture_se	-0.007526	-0.097317	0.386358	-0.086761	-0.066280	0.068406		
perimeter_se	0.137331	0.674172	0.281673	0.693135	0.726628	0.296092		
area_se	0.177742	0.735864	0.259845	0.744983	0.800086	0.246552		
smoothness_se	0.096781	-0.222600	0.006614	-0.202694	-0.166777	0.332375		
compactness_se	0.033961	0.206000	0.191975	0.250744	0.212583	0.318943		
concavity_se	0.055239	0.194204	0.143293	0.228082	0.207660	0.248396		
concave_points_se	0.078768	0.376169	0.163851	0.407217	0.372320	0.380676		
symmetry_se	-0.017306	-0.104321	0.009127	-0.081629	-0.072497	0.200774		
fractal_dimension_se	0.025725	-0.042641	0.054458	-0.005523	-0.019887	0.283607		
radius_worst	0.082405	0.969539	0.352573	0.969476	0.962746	0.213120		
texture_worst	0.064720	0.297008	0.912045	0.303038	0.287489	0.036072		
perimeter_worst	0.079986	0.965137	0.358040	0.970387	0.959120	0.238853		
area_worst	0.107187	0.941082	0.343546	0.941550	0.959213	0.206718		
smoothness_worst	0.010338	0.119616	0.077503	0.150549	0.123523	0.805324		
compactness_worst	-0.002968	0.413463	0.277830	0.455774	0.390410	0.472468		
concavity_worst	0.023203	0.526911	0.301025	0.563879	0.512606	0.434926		
concave_points_worst	0.035174	0.744214	0.295316	0.771241	0.722017	0.503053		
symmetry_worst	-0.044224	0.163953	0.105008	0.189115	0.143570	0.394309		
fractal_dimension_worst	-0.029866	0.007066	0.119205	0.051019	0.003738	0.499316		
diagnosis_B	-0.039769	-0.730029	-0.415185	-0.742636	-0.708984	-0.358560		
diagnosis_M	0.039769	0.730029	0.415185	0.742636	0.708984	0.358560		
alta_corr = np.where((corr > 0.95) & (corr < 1)) baja_corr = np.where((corr < -0.95) & (corr > -1)) print('Alta correlación: ', alta_corr) print('Baja correlación: ', baja_corr)								
	Alta correlación: (array([1, 1, 1, 1, 3, 3, 3, 4, 4, 4, 4, 4, 11, 11, 13, 14,							

```
baja_
prin<sup>-</sup>
prin<sup>-</sup>
            21, 21, 21, 21, 23, 23, 23, 23, 23, 24, 24, 24]), array([ 3, 1, 3, 4, 23, 24, 1, 3, 4, 21, 24, 4, 21, 23]))
Baja correlación: (array([], dtype=int64), array([], dtype=int64))
```

Como podemos observar, hay bastantes columnas que se encuentran correlacionadas, así que las vamos a eliminar.

```
df.drop('perimeter_mean', axis = 1, inplace = True)
df.drop('area_mean', axis = 1, inplace = True)
df.drop('perimeter_worst', axis = 1, inplace = True)
df.drop('radius_se', axis = 1, inplace = True)
df.drop('radius_worst', axis = 1, inplace = True)

corr = df.corr()
alta_corr = np.where((corr > 0.95) & (corr < 1))
baja_corr = np.where((corr < -0.95) & (corr > -1))
print('Alta correlación: ', alta_corr)
print('Baja correlación: ', baja_corr)

Alta correlación: (array([], dtype=int64), array([], dtype=int64))
Baja correlación: (array([], dtype=int64), array([], dtype=int64))
```

Y las variables regresoras que terminaremos utilizando son las siguientes:

```
df.columns
```

3.- Hipótesis nula de los coeficientes de regresión. Estadístico de prueba, distribución del estadístico de prueba.

Estandarizamos los datos:

```
scaler = StandardScaler()

df_estandar = scaler.fit_transform(df)

df_estandar = pd.DataFrame(df_estandar, columns = df.columns)

df_estandar
```

	id	radius_mean	texture_mean	smoothness_mean	compactness_mean	concavity_mean	concave_points_mear
0	-0.236405	1.097064	-2.073335	1.568466	3.283515	2.652874	2.532475
1	-0.236403	1.829821	-0.353632	-0.826962	-0.487072	-0.023846	0.548144
2	0.431741	1.579888	0.456187	0.942210	1.052926	1.363478	2.037231
3	0.432121	-0.768909	0.253732	3.283553	3.402909	1.915897	1.451707
4	0.432201	1.750297	-1.151816	0.280372	0.539340	1.371011	1.428493
564	-0.235732	2.110995	0.721473	1.041842	0.219060	1.947285	2.320965
565	-0.235730	1.704854	2.085134	0.102458	-0.017833	0.693043	1.263669
566	-0.235727	0.702284	2.045574	-0.840484	-0.038680	0.046588	0.105777
567	-0.235725	1.838341	2.336457	1.525767	3.272144	3.296944	2.658866
568	-0.242406	-1.808401	1.221792	-3.112085	-1.150752	-1.114873	-1.261820

569 rows × 28 columns

```
Entrenamiento:
entrenamiento, prueba = train test split(df estandar, test size=0.20, random state=42)
df.columns
    'area_se', 'smoothness_se', 'compactness_se', 'concavity_se',
          'concave_points_se', 'symmetry_se', 'fractal_dimension_se', 'texture_worst', 'area_worst', 'smoothness_worst', 'compactness_worst',
          'concavity_worst', 'concave_points_worst', 'symmetry_worst', 'fractal_dimension_worst', 'diagnosis_B', 'diagnosis_M'],
         dtype='object')
modelo = smf.ols(formula = 'radius_mean~id+texture_mean+smoothness_mean+compactness_mean+concavity_mean+concave_point:
modelo = modelo.fit()
print(modelo.summary())
                           OLS Regression Results
    ______
    Dep. Variable: radius_mean R-squared:
    radius_mean R-squared:

Model: OLS Adj. R-squared:

Method: Least Squares F-statistic:

Date: Wed, 06 Sep 2023 Prob (F-statistic):

Time: 06:33:44 Log-Likelihood:

No. Observations: 455 AIC:

Df Residuals: 428 BIC:

Covariance Type: recepbust
                                                                0.952
                                                                  344.7
                                                           344.7
1.50e-268
                                                                55.550
                                                                 -57.10
                                                                 54.15
    Covariance Type: nonrobust
    ______
   coef std err t P>|t| [0.025 0.975]
    ______
```

______ 39.226 Durbin-Watson: Omnibus: 1.982 ous): 0.000 Jarque-Bera (JB): 182.226
-0.109 Prob(JB): 2.69e-40 Prob(Omnibus): Skew: 6.093 Cond. No. Kurtosis: 38.1 _____

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Nuestra R^2 es bastante buena. Si queremos simplificar el modelo, eliminamos las β que su p-valor sea mayor a 0.05

Para un 95% de confianza realiza un diagrama en donde se muestre la distribución del estadístico de prueba, la zona de aceptación y la zona de rechazo.

```
indice_columna = 0
dof = df_estandar.shape[0] - 1
alpha = 0.05
ntails = 2

tcrit = abs(stats.t.ppf(alpha/ntails, dof))

xs = np.linspace(-5,5,1000)

plt.plot(xs, stats.t.pdf(xs,dof), 'k')
plt.vlines([-tcrit, tcrit], 0.0, stats.t.pdf(tcrit,dof), colors='r')

for i in range(1, len(modelo.tvalues)):
    t = modelo.tvalues[i]
    plt.plot(t, 0.008, marker="o", markersize=10, markerfacecolor="orange")

plt.axvspan(-tcrit, tcrit, facecolor='green', alpha=0.5, label = 'Aceptación')
plt.axvspan(-15, -tcrit, facecolor='red', alpha=0.5, label = 'Rechazo')
plt.axvspan(tcrit, 55, facecolor='red', alpha=0.5)
plt.show()
```


Si observamos, hay muchos valores que se encuentran en la región de rechazo, así que esta prueba nos indica que aun quedan variables regresoras que podemos eliminar para hacer mas simple nuestro modelo.

4.- Hipótesis nula de la significancia del modelo (prueba F-Fisher). Menciona que distribución tiene el estadístico de prueba con qué número de grados de libertad. Para un 95% de confianza realiza un diagrama en donde se muestre la distribución del estadístico de prueba, la zona de aceptación y la zona de rechazo.

```
fTest = np.identity(len(modelo.params))
fTest = fTest[1:,:]
modelo.f_test(fTest)
```

```
<class 'statsmodels.stats.contrast.ContrastResults'>
     <F test: F=344.692004902787, p=1.501640435420423e-268, df_denom=428, df_num=26>
rand_f_samples = stats.f.rvs(dfn=30, dfd=424, size=100000)
plt.figure(figsize=(10, 5))
plt.plot(
    np.arange(0, 4, 0.1),
    stats.f.pdf(np.arange(0, 4, 0.1), dfn=1, dfd=453),
    linewidth=2,
    color="orange",
plt.xlim(0, 2)
plt.ylim(0, 2)
plt.title("Distribución Fisher con zona de aceptación y rechazo")
critical_value = stats.f.ppf(q=1-.05, dfn=30, dfd=424)
print('Valor critico', critical_value)
plt.vlines([-critical_value, critical_value],0,4, colors='r', label = 'valores criticos')
plt.axvspan(-critical_value, critical_value, facecolor='green', alpha=0.2)
plt.axvspan(critical_value, 10, facecolor='red', alpha=0.2)
plt.show()
```

Valor critico 1.4861716526654176

Si vemos nuestra F en el test de Fisher, nos da como resultado, F=344.692004902787, valor que entra en la región de rechazo (que la marca el valor critico = 1.4861716526654176) de la hipotesis nula, infiriendo que el modelo sí es significativo.

5.- Realiza un modelo de regresión hacia atrás (backward). Explica el criterio para ir eliminando variables del modelo.

Bueno, ahora sabemos que el modelo tiene espacio para mejorar, así que vamos a mejorar el modelo analizando el p-valor de nuestas variables regresoras, y si son mayores a 0.05, los eliminamos porque se acepta la hipotesis nula que implica que la variable es igual a cero.

modelo = smf.ols(formula = 'radius_mean~texture_mean+compactness_mean+concave_points_mean+fractal_dimension_mean+fractal_mean+fractal_dimension_mean+fracta

OLS Regression Results

Dep. Variable:	nadius maan	 D. cauan		:======	0.948	
Model:	radius_mean OLS	R-squar	eu: squared:	0.947		
Method:	Least Squares	F-stati			812.5	
Date:	Wed, 06 Sep 2023		-statistic):		3.46e-278	
Time:	06:33:45	,	elihood:		26.391	
No. Observations:	455	AIC:	erriood.		-30.78	
Df Residuals:	444	BIC:			14.54	
Df Model:	10	BIC.			14.54	
Covariance Type:	nonrobust					
covariance Type.						
	coef	std err	t	P> t	 [0.025	0.975]
Intercept	0.0023	0.011	0.215	0.830	-0.019	0.024
texture_mean	0.0658	0.030	2.211	0.028	0.007	0.124
compactness_mean	0.1482	0.034	4.337	0.000	0.081	0.215
concave_points_mean	0.3274	0.040	8.218	0.000	0.249	0.406
fractal_dimension_me	an -0.3467	0.027	-12.892	0.000	-0.400	-0.294
<pre>fractal_dimension_se</pre>	0.0272	0.016	1.660	0.098	-0.005	0.059
texture_worst	-0.1034	0.031	-3.321	0.001	-0.165	-0.042
area_worst	0.5270	0.025	20.919	0.000	0.477	0.576
smoothness_worst	-0.0792	0.017	-4.563	0.000	-0.113	-0.045
<pre>fractal_dimension_wo</pre>	rst 0.0410	0.025	1.659	0.098	-0.008	0.089
diagnosis_B	-0.0399	0.020	-1.955	0.051	-0.080	0.000
Omnibus:	34.774	 -Durbin	======== Watson:		1.984	
Prob(Omnibus):	0.000	Jarque-	Bera (JB):	70.536		
Skew:	-0.445	Prob(JB):		4.82e-16	
Kurtosis:	4.712	Cond. N	0.		10.0	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Empeoró ligeramente nuestra \mathbb{R}^2 , pero disminuimos considerablemente el numero de variables regresoras. Ahora este modelo nos dió otros p-valores que son mayores que 0.05, así que vamos a ver que tanto cambia el modelo si los eliminamos.

modelo = smf.ols(formula = 'radius_mean~texture_mean+compactness_mean+concave_points_mean+fractal_dimension_mean+texture
modelo = modelo.fit()
print(modelo.summary())

OLS Regression Results

Dep. Variable:	radius_mean	R-squared:	0.947						
Model:	OLS	Adj. R-squared:	0.946						
Method:	Least Squares	F-statistic:	1133.						
Date:	Wed, 06 Sep 2023	<pre>Prob (F-statistic):</pre>	6.33e-280						
Time:	06:33:45	Log-Likelihood:	19.774						
No. Observations: 455		AIC:	-23.55						
Df Residuals:	f Residuals: 447		9.414						
Df Model:	7								
Covariance Type:	nonrobust								
============	============								
	coef st	d err t	P> t [0.025						

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0035	0.011	0.318	0.751	-0.018	0.025
texture_mean	0.0585	0.029	2.017	0.044	0.002	0.116
compactness_mean	0.1730	0.032	5.394	0.000	0.110	0.236
concave_points_mean	0.3350	0.036	9.280	0.000	0.264	0.406
<pre>fractal_dimension_mean</pre>	-0.3084	0.021	-14.792	0.000	-0.349	-0.267
texture_worst	-0.0824	0.030	-2.759	0.006	-0.141	-0.024
area_worst	0.5432	0.025	21.734	0.000	0.494	0.592

smoothness_worst	-0.0774	0.016	-4.988	0.000	-0.108	-0.047
Omnibus:	 46.278	======== Durbin-Wat			1.982	
Prob(Omnibus):	0.000	Jarque-Bei			96.896	
Skew:	-0.573	Prob(JB):			9.11e-22	
Kurtosis:	4.949	Cond. No.			7.71	
=======================================					======	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Nuevamente, nuestra \mathbb{R}^2 empeoró ligeramente, pero personalmente considero que es decremento minimo, en comparación al numero de variables al que se pudo minimizar gracias a este decremento. Y ya no quedan p-valores que se puedan eliminar.

Asi que vamos a hacer las predicciones con este modelo.

▼ 6.- Comparación entre datos reales y predicción. Análisis de los resultados.

```
y_pred = modelo.predict(prueba)
y_test = prueba["radius_mean"]

print("MAE = ", mean_absolute_error(y_test, y_pred))
print("MSE = ", mean_squared_error(y_test, y_pred))
print("R^2 = ", r2_score(y_test, y_pred))

MAE = 0.16672250002141548
    MSE = 0.0468402226218193
    R^2 = 0.9519550705600349

plt.scatter(y_test, y_pred)
plt.title("Valor Real VS Predicción")
plt.xlabel("Valor Real")
plt.ylabel("Predicción")
plt.axline([0, 0], [1, 1])
plt.show()
```


Como podemos ver nuestro modelo es bastante bueno porque mayormente se alinean los resultados verdaderos con las predicciones de manera lineal.

▼ Conclusión

Al darnos la libertad de analizar con diferentes pruebas la eficiencia del modelo, podemos elegir de una manera mas optima las variables que valen la pena eliminar para mejorar el modelo. Además, podemos simplificar el modelo y evitar que se sobreajuste al eliminar variables regresoras.

✓ 0s completed at 12:33 AM

• ×

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.