

Modeling Round-off Error in the Fast Gradient Method for Predictive Control

lan McInerney, Eric C. Kerrigan, George A. Constantinides

1

Outline

- Preliminaries
- 2 Generic round-off error model
- 3 Parametric round-off error model
- 4 Conclusions

Model Predictive Control

$$\min_{u,x} \frac{1}{2} x_N' P x_N + \frac{1}{2} \sum_{k=0}^{N-1} x_k' Q x_k + u_k' R u_k$$
s.t. $x_{k+1} = A x_k + B u_k, \ k = 0, \dots, N-1$

$$x_0 = \bar{x}_0$$

$$E u_k < c_u, \ k = 0, \dots, N-1$$

$$\min_{u} \frac{1}{2}u'Hu + \bar{x}'_{0}J'u$$
s.t. $Gu < g$

Fast Gradient Method

- Accelerated first-order optimization solver
- Project onto the constraint set
- Necessary condition for stability: $\lambda(H) \in (0,1)$

$$\begin{array}{l} \textbf{for } i=0 \text{ to } I_{\max}-1 \text{ do} \\ t_i:=(I-\frac{1}{L}H)y_i-\frac{1}{L}\Phi x \\ z_{i+1}:=\pi_{\mathbb{K}}(t_i) \\ y_{i+1}:=(1+\beta)z_{i+1}-\beta z_i \\ \textbf{end for} \end{array}$$

Fixed-Point Arithmetic

 \bullet Quantize $\mathbb R$ into $\mathbb Z$ by multiplying by a scale factor and rounding

$$\underbrace{18020.017052}^{\mathbb{R}} \xrightarrow{\times 10^5} \underbrace{18020\underbrace{01705}_{\text{integer fraction}}}^{\text{Fixed-point}}$$

- Only requires integer computations in hardware
- Introduces ϵ_f round-off error

Model rounding action as an additive disturbance matrix:

$$\hat{H} = H + E$$

5

Rounding Stability Margin

Rounding Stability Margin (η)

The smallest value of $||E||_2$ that causes the eigenvalues of \hat{H} to leave the interval (0,1).

Rounding Stability Margin

Computation

Use the ϵ -pseudospectrum of H at $\tilde{\lambda} = \{0, 1\}$.

$$\left\| (\tilde{\lambda}I - H)^{-1} \right\| \geq \frac{1}{\epsilon} \xrightarrow{Equivalently} \tilde{\lambda} \in \lambda(H + E) \text{ with } \|E\| \leq \epsilon$$

Generic Rounding Model

Model

$$E_g := \begin{bmatrix} \pm \epsilon_f & \pm \epsilon_f & \dots \\ \pm \epsilon_f & \pm \epsilon_f & \dots \\ \vdots & \vdots & \ddots \end{bmatrix}$$

Fractional Bits Necessary for Stability

$$f = \begin{cases} \left\lceil -\log_2\left(\frac{\eta}{mN}\right) \right\rceil - 1 & \text{if using round to nearest,} \\ \left\lceil -\log_2\left(\frac{\eta}{mN}\right) \right\rceil & \text{otherwise.} \end{cases}$$

HIPEDS

Results

Hessian Structure

Toeplitz Components

$$H_i = \begin{cases} B'(A^i)'PB & \text{if } i > 0, \\ B'PB + R & \text{if } i = 0, \\ B'PA^{|i|}B & \text{if } i < 0. \end{cases}$$

Parametric Rounding Model

Idea

Split round-off error model into two parts: $E_p := E_G + E_T$

$$(E_G)_i := \begin{cases} E_g & \text{if } i < k, \\ 0 & \text{otherwise,} \end{cases}$$
 $(E_T)_i := \begin{cases} H_i & \text{if } |i| \ge k, \\ 0 & \text{otherwise.} \end{cases}$

Parametric Rounding Model

Fractional Width Selection

Choose ϵ_f such that

$$|\epsilon_f|m(2k-1)+2\|\mathcal{P}_{\bar{H}}(k,\cdot)\|_{H_\infty}<\eta,$$

where

$$\begin{split} \mathcal{P}_{\bar{H}}(n,z) &:= z \mathcal{G}_{P}(z) - B' P \mathcal{P}_{n}(z) B \quad \forall z \in \mathbb{T}, \\ \mathcal{G}_{P} &:= \left\{ \begin{array}{ll} x^{+} = Ax + Bu \\ y = B' P x \end{array} \right., \\ \mathcal{P}_{n}(z) &:= \sum_{i=0}^{n-1} A^{i} z^{-i} \quad \forall z \in \mathbb{T}. \end{split}$$

Imperial College London Results

Imperial College London Results

Imperial College London Results

10⁶

10⁰

Cost scaling factor α

10²

10⁴

Fractional	Fractional Logic Resources				Power	Solve Time
Length	LUT	FF	DSP	BRAM	(mW)	(μs)
f=12	947	768	4	2	20	532.17
f=16	1,136	912	4	2	25	612.17
f=21	887	1,033	8	8	43	701.77
f=26	993	1,237	12	9	48	701.77

10⁻²

10 ⁻⁴

10⁻⁶

Conclusions

Key Contributions

- ullet Compute the Rounding Stability Margin for the Fast Gradient Method using the ϵ -pseudospectrum
- Exploit Toeplitz structure to model exact round-off error
- Reduce the fractional bits needed by 30–45%
- Reduction in hardware usage and solution time by up to 77% and 25% respectively

Future Directions

- Derive sufficient condition for stability of the Fast Gradient Method
- Bound perturbation of optimal vector u* when problem is quantized