

(12) UK Patent (19) GB (11) 2 129 333 B

SCHNICE REFERENCE LIBRARY

(54) Title of invention

Recording medium

(51) INT CL4; B32B 5/16 D21H 5/00

- (21) Application No 8322093
- (22) Date of filing 17 Aug 1983
- (30) Priority data
 - (31) 57/145882 57/145883 57/145884 57/145885 57/152807
 - (32) 23 Aug 1982 3 Sep 1982
 - (33) Japan (JP)
- (43) Application published 16 May 1984
- (45) Patent published 19 Nov 1986
- (52) Domestic classification (Edition H) B2E 1544 1714 400T 403S 404S 415S 417T 418T 421T 427T 436T 441T 444T 450T 451T 455T 456T 470T 472T 489T 490T 491T M U1S 2249 B2E
- (56) Documents cited GB A 2012617 GB 0540148
- (58) Field of search B2E

- (73) Proprietors
 Canon Kabushiki Kaisha
 (Japan)
 30-2 3-chome Shimomaruko
 Ohta-ku
 Tokyo
 Japan
- (72) Inventors
 Shigeo Toganoh
 Ryuichi Arai
- (74) Agent and/or Address for Service R. G. C. Jenkins & Co., 12-15 Fetter Lane, London EC4A 1PL

: 1

FIG. I

FIG. 2

- 1 -

RECORDING MEDIUM

This invention relates to a recording medium such as recording paper particularly but not exclusively suitable for use in ink-jet recording or ink-transfer type thermal recording, and more particularly to a recording medium for such purposes which is excellent in ink absorptivity and coloration of image.

Attention is directed to Applications Nos. 85/20224 and 85/20225 which are divided from this application.

Methods of recording by use of recording liquids involve, for instance, an old and general method: writing with a fountain pen or the like, and a recently developed method: so-called ink-jet recording. The ink-jet recording system is a recording method in which droplets or recording liquid are generated and flown by one of various operation principles and attached onto a recording medium such as paper or the like to form images. Ink-jet recording is noticed in that it generates less noises and permits high speed printing and multicolor printing. Water-based recording liquids are predominantly used for ink-jet recording in aspects of safety and printability.

For ink-jet recording, usual paper has so far been used in general as recording medium. However,

- requests for the medium are growing more severe with improvements in the performance of ink-jet recorders, such as developments of higher speed recorders and multicolor recorders. That is, for securing high
- degree of resolution and high quality of images, the ink-jet recording medium is required to fulfill the following requirements:
 - (1) It should absorb ink as quickly as possible.

10

15

• : •

- (2) When ink dots overlap one another on the medium, the later ink should not run on the earlier ink dot.
 - (3) Diameters of ink dots on the medium should not be enlarged more than necessary.
 - (4) Shapes of ink dots on the medium should be close to a right circle and the outlines thereof should be smooth.
 - (5) Ink dots on the medium should have high optical density and the outlines thereof should not be obscure.

Further, the recording medium for multicolor

ink-jet recording is requested to fulfill the following requirements, in addition to the above, in order to achieve image quality comparable to that of color photographs:

- (6) It should have a high brightness.
- 25 (7) Ink dots of different colors on the medium should exhibit each a good coloration.
 - (8) Ink absorptivity of the medium should be

particularly superior since ink dots of different colors may often overlap one another.

The ink-transfer type thermal recording system has been developed lately, wherein wax-containing colorants (solid inks) are utilized. The recording medium for this recording system also is required to fulfill the above requirements. In particular, it is required when ink dots overlap one another that the formerly dotted ink shall not be molten to diffuse with the heat applied for the next dotting or with the heat contained in the next dotted ink.

10

15

20

25

However, it is the present situation of the art that any recording medium satisfying all the above requirements is not yet found. As an example, the ink-jet recording paper described in Japanese Pat. Laid-open No.74304/1977 quickly absorbs ink, but has disadvantages in that ink dots on the paper are liable to be enlarged in diameter and hence the outlines thereof becomes obscure, and that a dimentional stability of the paper is poor after recording.

The primary object of this invention is to provide a full-color-recording medium which satisfies such various requirements as noted above, particularly has high absorptivity for ink and gives images of good colorations.

According to the invention there is provided a recording medium particularly but not exclusively suitable for use in ink-jet recording or ink-transfer type thermal recording which comprises a substrate and an ink receiving layer on said substrate, wherein the Bekk smoothness of the ink receiving layer surface is from 20 to 120 seconds.

Preferably the Bekk smoothness of said ink receiving layer surface is from 28 to 108 seconds.

10 Preferably said ink receiving layer comprises a filler and binder, the irregular shapes of said filler appearing at the surface of said ink receiving layer.

In the drawings:

5

Fig. 1 is a scanning electron microscopic photograph of magnification factor about 1500 showing a face of a commercially available art paper. Fig. 2 is a scanning electron microscopic photograph of the same magnification factor showing a face of the coating layer of the recording medium prepared in Example 1 of this invention.

5

10

15

20

The recording medium of this invention is characterized by the unique surface state of its ink receiving or coating layer which acts as an ink acceptor. That is, the Bekk smoothness of the coating layer ranges from 20 to 120 seconds. Preferably the average value of maximum heights at 10 points selected at random on the surface of the coating layer, as determined in accordance with the JIS B-0601 method of measuring surface roughness, ranges from 10 to 35 μ for a referance length of 2.5 mm.

The coating layer preferably has a surface structure such that the filler particles of irregular shapes and relatively large particle sizes, which are the main component of the coating layer, appear at the surface of the coating layer in the state of random distribution. And numerous large interstices, which act as ink absorbing pores, exist among the filler particles. A typical surface state of the coating layer is shown in Fig. 2. These particles of the filler are of course fixed with the binder within the coating layer and therefore do not readily separate therefrom. The surface state, like scattered tile fragments of various sizes, is well shown by Fig. 2.

Fig. 1 is a similar photograph of a coating layer face of a conventional recording medium. This coating

layer has a flat surface structure, while numerous fine pores serving as recording liquid absorbers are present in the layer.

As stated above, the preferred recording medium of this invention has numerous large interstices serving as ink absorbers among filler particles, so that the ink attached onto the medium surface are quickly absorbed into these interstices and also the ink absorption capacity of the medium is great.

- When the Bekk smoothness of the coating layer is less than 20 seconds, the ink absorptivity may be insufficient. On the other hand, when the value exceeds 120 seconds, the degree of resolution of the printed image lowers though the ink absorptivity is satisfactory.
- 15 While paper is usually the most suitable substrate of the recording medium of this invention, other substrates can also be used including porous materials such as cloth, synthetic paper, porous resins, and wood, and non-porous materials such as non-porous resins, 20 metals, and glass. The choice of the substrate from these materials depends upon the purpose and use of recording.

The coating layer of the recording medium of this invention preferably includes a filler and a binder. Suitable materials for the filler are white inorganic pigments including, for example, silica, clay, talc, diatomaceous earth, calcium carbonate, calcium sulfate, barium sulfate, titanium oxide, zinc oxide, satin white, aluminum silicate, lithopone, alumina, and zeolite; and organic powdery materials including, for example, ion exchange resin powders and plastic pigments. These fillers can also be used in mixture. Among these fillers, porous inorganic pigments are particularly preferred.

For the purpose of forming the coating surface where filler particles irregular in shape are distributed at random like scattered tile fragments, particle sizes of the filler used are desired to range approximately from 1 to 30 µ, preferably from 3 to 20 µ. Too large particle sizes of the filler are undesirable, since the circularity of ink dots is deteriorated and the resolution degree of images is lowered, on the resulting recording medium. Filler particles of higher absorptivity for coloring matter and those having a porous structure are preferable. It is because the coloration is best when coloring matter in the ink applied to the recording medium is captured at outermost

sites in the coating layer of the recording medium.

Binders for use in the coating layer include; watersoluble macromolecular compounds, for example, starch, arabic, sodium gelatin, casein, gum alginate, carboxymethyl cellulose, poly(vinyl alcohol), polyvinyl pyrrolidone, sodium polyacrylate, and polyacrylamide; synthetic rubber latexes; and organic-solvent-soluble resins, for example, poly(viny1 butyral), poly(viny1 chloride), poly(vinyl acetate), polyacrylonitrile, 10 poly(methyl methacrylate), poly(vinyl formal), melamine resin, polyamide resins, phenolic resins, polyurethane resins, and alkyd resins. If necessary, these polymers can be used in combination. Some of various additives such as a dispersing agent, optical brightener, pH 15 regulator, defoaming agent, lubricant, and preservative, surfactant, can also be incorporated into the coating layer.

The recording medium of this invention can be prepared by coating a substrate with a dispersion of the above-mentioned components of the coating layer in water by the roll coating, rod bar coating, spray coating, and air knife coating method and drying the coat as quickly as possible. Suitable compounding ratios of the binder to the filler are 10: 100-100: 100 by weight. When the

filler has a relatively large average particle size, better results are obtained by minimizing the amount of binder. Suitable amounts of the coating layer on the substrate are usually about 1 - about 50 g/m², preferably about 2 - about 30 g/m², in dry coating weight.

The recording medium of this invention, having a coating layer of a unique surface structure on a substrate, exhibits very high ink absorptivity; even when ink dots of the different color overlap one another in a short time, the phenomenon of elusion or bleeding of dotted ink does not occur on the recording medium, so that distinct images with a high degree of resolution are obtained. Additionally the images on the recording medium are excellent in coloration. Thus, the present recording medium is best suited for full-color ink-jet recording.

This invention is illustrated in more detail referring to the following Examples: In the Examples "parts" are all by weight.

20 Comparative Example 1

5

10

15

A commercial art paper (tradename: SK Coat, mfd. by Sanyo-Kokusaku Pulp Co., Ltd.) was evaluated as a

recording medium for ink-jet recording characteristics.

Results of the evaluation are shown in Table 1. Fig. 1 is a scanning electron microscopic photograph of magnification factor ca. 1500 showing a face of the coating layer of this paper.

Example 1

A coating composition was prepared according to the following formulation:

Formulation

Water

10	Silica (tradename: Syloid 404, average particle size 10 µ, mfd.		
	by Fuji-Davison Chem. Co., Ltd.)		
	as filler	100	parts
15	Calcium carbonate (average particle size 2 μ) as filler	15	parts
	Poly(vinyl alcohol) as binder	30	parts
	SBR latex as binder	3	parts

500 parts

Then, the same common wood-free paper as used in Example 2 was coated with the above composition by means of a blade coater so as to give a dry coating weight of 10 g/m^2 and was dried in the usual way, whereby a recording medium was obtained. Fig. 2 is a scanning electron microscopic photography of magnification factor ca. 1500 showing a face of the coating layer of the recording medium.

Results of evaluating recording characteristics and
the Bekk smoothness of this recording medium are shown in
Table 1. The Bekk smoothness was measured by using an
Ohken's air permeability - smoothness tester (supplied by
Asahi Seiko Co., Ltd.)

Example 2

15 A coating composition was prepared according to the following formulation:

Formulation

Diatomaceous earth

(tradename: Celite 281, average

20 particle size 8 μ , mfd. by John-Manville Co.) as porous

inorganic	pigment	100	parts
Starch as	binder	30	parts
SBR latex	as binder	10	parts
Water		800	parts

Common wood-free paper (basis weight 65 g/m^2) having a size degree of 35 seconds as measured in accordance with JIS P-8122 was coated with the above composition by means of a blade coater so as to give a dry coating weight of 10 g/m^2 and was dried in the usual way, whereby a recording medium was obtained.

The recording medium was evaluated in the same manner as in Example 1. The results are shown in Table 1.

Example 3

A coating composition was prepared according to the following formulation:

Formulation

Zeolite (average particle size

10 μ) as filler

100 parts

Talc (average particle size

7 μ) as filler

10 parts

5 Casein as binder

20 parts

Water

500 parts

Then, the same common wood-free paper as used in Example 2 was coated with the above composition by means of a bar coater so as to give a dry coating weight of 15 g/m² and was dried in the usual way, whereby a recording medium was obtained.

Results of evaluating this recording medium in the same manner as in Example 1 are shown in Table 1.

Comparative Example 2

The same commercial art paper as of Comparative Example 1 was evaluated as a .ecording medium in the same manner as in Example 1. The results are shown in Table 1.

Comparative Example 3

Using calcium carbonate (average particle size 50 µ) as filler and poly(vinyl alcohol) as binder, a coating composition was prepared according to the following formulation:

Calcium carbonate (average particle
size 50 µ) as filler 100 parts

Poly(vinyl alcohol) as binder 5 parts

Water 50 parts

- Then, the same common wood-free paper as used in Example 2 was coated with the above composition by means of a bar coater so as to give a dry coating weight of 15 g/m^2 and was dried in the usual way, whereby a recording medium was obtained.
- Results of evaluating this recording medium in the same manner as in Example 1 are shown in Table 1.

In Table 1, the items and criteria of evaluation are as follows:

- (1) The optical density of ink dot was measured by using Micro-Densitomer PDM-5 (supplied by Konishiroku Photographic Ind. Co., Ltd.).
- (2) The shape of ink dot was observed with a stereomicroscope. A nearly circular shape was marked with o, slightly deformed circular shape with Δ , and irregular shape with x.
- 10 (3) The blotting degree (spread degree) of ink dot was represented by the ratio of the diameter of ink dot measured with a stereo-microscope to that of the original ink droplet.
- (4) The brightness of color was evaluated by visual observation of the image formed by ink-jet recording. It was ranked with \bigcirc , o, \triangle , or x in order of from good to bad.
- (5) The ink absorptivity was evaluated by applying four ink droplets of different colors to overlap one another and observing the state of the ink dots. When the diffusion or bleeding of inks was not observed and the image was distinct, the sample was marked with o. In other cases, the sample was marked with x.

TABLE 1

						,
	Item (color of used ink)	Example 1	Example 2	Example 3	Comparative Example 2	Comparative Example 3
5	Bekk smooth- ness (sec.)	108	28	60	1200	10
10	Optical density of ink dot (Black)	0.78	0.74	0.74	0.35	0.68
	Shape of ink dot (Black)	0		0	0	x
15	Blotting degree of ink dot (Black)	2.5	2.6	2.6	3.5	2.8
	Brightness of color (Yellow)	0	0	0	ж	
20	(Red)	0	0	Δ	×	0
	" (Blue)	0		o	x	0
25	Ink absorptivity (Black)	0	0	o ·	x	x

Syloid: Talyourf; and Celite are registered Trade
Marks.

CLAIMS:

- 1. A recording medium particularly but not exclusively suitable for use in ink-jet recording of ink-transfer type thermal recording which comprises a substrate and an ink receiving layer on said substrate, wherein the Bekk smoothness of said ink receiving layer surface is from 20 to 120 seconds.
- A recording medium according to claim 1 wherein the Bekk smoothness of said ink receiving layer surface
 is from 28 to 108 seconds.
 - 3. A recording medium according to claim 1 or claim 2 wherein said ink receiving layer comprises a filler and binder, the irregular shapes of said filler appearing at the surface of said ink receiving layer.
- 4. A recording medium according to claim 3 wherein said filler is a porous inorganic pigment.
 - 5. A recording medium according to any of claims 2, 3 or 4 wherein particle sizes of said filler range from 1 to 30 μm .

- 6. A recording medium according to any preceding claim wherein said ink receiving layer has a porous structure.
- 7. A recording medium substantially as described herein with reference to any one of the Examples.
 - 8. A method of ink jet printing utilising a recording medium according to any preceding claim.