Exercise 0.1 (1). Let

$$N' \xrightarrow{f} N \xrightarrow{g} N'' \to 0$$

be exact and consider

$$0 \to \operatorname{Hom}_{R}(N'', M) \xrightarrow{g^{*}} \operatorname{Hom}_{R}(N, M) \xrightarrow{f^{*}} \operatorname{Hom}_{R}(N', M)$$
.

- (1) Show that the induced sequence is exact.
- (2) Show that even though $N' \to N$ is injective, the map $\operatorname{Hom}_R(N,M) \to \operatorname{Hom}_R(N',M)$ may fail to be surjective.

Proof. (1) Suppose $g^*(k) = g^*(h)$, so kg = hg as maps $N \to M$. For any $n'' \in N''$, there exists $n \in N$ such that g(n) = n'', and so k(n'') = kg(n) = hg(n) = g(n'') for all $n'' \in N''$, hence k = h. Suppose $f^*(h) = 0$, so hf = 0. By injectivity of f, ker $g = \operatorname{im} f \subset \ker h$. This means that h factors through g in the sense that there exists a map $l \colon N'' \to M$ such that h = lg. Thus $h \in \operatorname{im} g^*$.

(2) We have $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q}/\mathbb{Z}) = 0$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Z}) = 0$, so while $0 \to \mathbb{Z} \to \mathbb{Q} \to \mathbb{Q} \to \mathbb{Q} \to 0$ is exact,

$$0 \to 0 \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Q}) \to 0 \to 0$$

cannot be, since $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q},\mathbb{Q})$ contains $\operatorname{id} \neq 0$, and is thus not isomorphic to the trivial ring.

Exercise 0.2 (3). Let R be a commutative ring.

- (1) Show that if $\{e_i \mid i \in I\}$ and $\{e'_j \mid j \in J\}$ are bases for E and E', respectively, where E and E' are both free R-modules, then $E \otimes_R E'$ is a free R-module with the simple tensors $e_i \otimes e'_j$ as a basis.
- (2) Show that if E and E' are projective R-modules, then $E \otimes_R E'$ is a projective R-module.

Proof. (1) The simple tensors span $E \otimes_R E'$ since (e_i, e'_j) are a basis for $E \times E'$ of which $E \otimes_R E'$ is a quotient. Suppose

$$\sum c_{i,j}e_i\otimes e'_j=0,$$

with $c_{i_0,j_0} \neq 0$. Then since $E \times E'$ is free on $\{(e_i,e_j')\}$, we define a map $\tilde{\varphi} \colon E \times E' \to E \otimes_R E'$ by $(e_i,e_j') = e_i \otimes e_j'$ when $(i,j) = (i_0,j_0)$ and 0 otherwise. Then the induced map $\varphi \colon E \otimes_R E' \to E \otimes_R E'$ is not identically 0. Then

$$0 = \sum c_{i,j} \varphi \left(e_i \otimes e'_j \right) = c_{i_0,j_0} e_{i_0} \otimes e'_{j_0}.$$

Now, suppose $e_{i_0} \otimes e'_{j_0} = 0$. But then let $f: E \times E' \to E \times E'$ be the identity. We then get a map $\overline{f}: E \otimes_R E' \to E \times E'$ sending $e_{i_0} \otimes e'_{j_0}$ to (e_{i_0}, e'_{j_0}) , but also \overline{f} is a homomorphism of abelian groups, so it sends 0 to 0, giving $(e_{i_0}, e'_{j_0}) = (0, 0)$, contradicting it being a basis element. Hence the set $\{e_i \otimes e'_j \mid i \in I, j \in J\}$ is a basis for $E \otimes_R E'$.

(2) Suppose we have maps f, g as follows

$$E \times E' \xrightarrow{h} E \otimes_R E'$$

$$X \xrightarrow{g} Y$$

Since E and E' are projective, restricting \overline{h} to either coordinate induces a map into X. So for $e \in E$ fixed, there exists $k_e \colon E' \to X$ such that $g \circ k_e = \overline{h}(e, -)$. Define a map $k \colon E \times E' \to X$ by $k(e, e') = k_e(e')$. Then $g \circ k(e, e') = g \circ k_e(e') = \overline{h}(e, e') = f \circ h(e, e')$, hence the diagram

$$E \times E' \xrightarrow{h} E \otimes_R E$$

$$\downarrow^k \qquad \qquad \downarrow^f$$

$$X \xrightarrow{g} Y$$

commutes. By the universal property of tensor products, there exists a unique map $\overline{k} \colon E \otimes_R E' \to X$ such that

$$E \times E' \xrightarrow{h} E \otimes_R E'$$

$$\downarrow^k \xrightarrow{\exists!\overline{k}} \qquad \downarrow^f$$

$$X \xrightarrow{g} Y$$

commutes. Thus $E \otimes_R E'$ is projective.

Exercise 0.3 (4). Let M be an R-module.

(1) Show that for any two-sided ideal $\mathfrak{a} \subset R$, the set

$$M[\mathfrak{a}] = \{x \in M \mid ax = 0 \text{ for each } a \in \mathfrak{a}\} \subset M.$$

is a submodule of M.

Proof. (1) A submodule is a subgroup which is closed under multiplication by elements of the ring.

Suppose $x, y \in M[\mathfrak{a}]$. Then for any $a \in \mathfrak{a}$, a(x-y) = ax + a(-1)y = 0 whenever \mathfrak{a} is a right ideal.

Now, if $x \in M[\mathfrak{a}]$, then for any $r \in R$ and any $a \in \mathfrak{a}$, we have $ar \in \mathfrak{a}$, so $a \cdot (rx) = (ar) \cdot x = 0$ by assumption, so $rx \in M[\mathfrak{a}]$.

- (2) If $\mathfrak{b} \subset \mathfrak{a}$, then for any $x \in M[\mathfrak{a}]$, we have that for all $b \in \mathfrak{b} \subset \mathfrak{a}$, bx = 0, so $x \in M[\mathfrak{b}]$. In particular, since $\mathfrak{a}^s \subset \mathfrak{a}^r$ for $r \leq s$, we have $M[\mathfrak{a}^r] \subset M[\mathfrak{a}^s]$.
- (3) We define the scalar multiplication by $[r]_{R/\mathfrak{a}} \cdot [x]_{M[\mathfrak{a}^r]/M[\mathfrak{a}^{r-1}]} = [rx]_{M[\mathfrak{a}^r]/M[\mathfrak{a}^{r-1}]}$. We check that this is well-defined. Suppose $\overline{r} = \overline{r'}$ and $\overline{x} = \overline{x'}$. Then $r^{-1}r' \in \mathfrak{a}$ and $x' x \in M[\mathfrak{a}^{r-1}]$. Then $r'x' rx = r'(x' x) + (r' r)x \in M[\mathfrak{a}^{r-1}]$. The remaining module properties are inherited from M.
- (4) Suppose $t \geq n$. Then for any $\overline{r} \in R/\mathfrak{m}^n$ and any $m \in \mathfrak{m}^t$, we have $rm \in \mathfrak{m}^n$, so $(R/\mathfrak{m}^n)[\mathfrak{m}^t] = R/\mathfrak{m}^n$. Suppose t < n. Then we claim $(R/\mathfrak{m}^n)[\mathfrak{m}^t] = (\mathfrak{m}^{n-t}R)/\mathfrak{m}^n$. $\mathfrak{m}^{n-t}R$ is generated by elements of the form $m_1 \cdots m_{n-t}r$, and \mathfrak{m}^t is generated by elements of the form $m_{n-t+1} \cdots m_n$, so $rm_{n-t+1} \cdots m_n(r'm_1)m_2 \cdots m_{n-t}$ and $r'm_1 \in \mathfrak{m}$ as it is an ideal. Hence this is an element in \mathfrak{m}^n . So we have $(\mathfrak{m}^{n-t}R)/\mathfrak{m}^n \subset (R/\mathfrak{m}^n)[\mathfrak{m}^t]$. If

 $n \in (R/\mathfrak{m}^n)[\mathfrak{m}^t]$, then for all $m \in \mathfrak{m}^t$, we have mn = 0, so $mn \in \mathfrak{m}^n$. Let's postpone this for later.

Exercise 0.4 (5). Show that $\mathbb{Z}/3$ is a projective $\mathbb{Z}/6$ -module.

Proof. $\mathbb{Z}/3$ is a projective $\mathbb{Z}/6$ -module if and only if $\mathbb{Z}/3$ is a direct summand in a free $\mathbb{Z}/6$ -module which it indeed is: $\mathbb{Z}/6 \approx \mathbb{Z}/3 \oplus \mathbb{Z}/2$.