Module-02, Basic Mathematics and Statistics Mathematics (Linear Algebra)

Dostdar Ali Instructor

Data science and Artificial Intelligence
3-Months Course
at
Karakaroum international University

December 24, 2023

Table of Contents

Comparing Scalars and Vectors

2 Linear Combination of Vectors

3 Vector Operation(dot product)

4 Distances in Vectors

Scalars and vectors

- Scalar The simple numbers are consider as scalar like 2, 4, 6 so on, just at magnitude only used to represent time, speed, distance,length,mass work,power,area,volume, and so on.
- Vectors Vectors have its directions and its magnitude as well as many dimensions.
- Vectors are denoted as $V = [x_1, x_2, x_3, ...x_n]$.

Scalars and vectors

- Scalar The simple numbers are consider as scalar like 2, 4, 6 so on, just at magnitude only used to represent time, speed, distance,length,mass work,power,area,volume, and so on.
- Vectors Vectors have its directions and its magnitude as well as many dimensions.
- Vectors are denoted as $V = [x_1, x_2, x_3, ...x_n]$.

Linear Combination of Vectors

To, develop a better understanding, we will break down multiplication of matrix A and vector x. It is easiest to think of it as Linear Combination of vectors.

• Multiplication,

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_1x_1 & b_1x_2 & c_1x_3 \\ a_2x_1 & b_2x_2 & c_2x_3 \\ a_3x_1 & b_3x_2 & c_3x_3 \end{bmatrix}$$
$$= x_1 \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + x_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + x_3 \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

 It is important to note that matrix and vector multiplication is only processing when the numbers of column in the matrix is equal to the numbers of rows in vector

Linear Combination of Vectors

To, develop a better understanding, we will break down multiplication of matrix A and vector x. It is easiest to think of it as Linear Combination of vectors.

Multiplication,

$$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_1x_1 & b_1x_2 & c_1x_3 \\ a_2x_1 & b_2x_2 & c_2x_3 \\ a_3x_1 & b_3x_2 & c_3x_3 \end{bmatrix}$$
$$= x_1 \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + x_2 \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + x_3 \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

 It is important to note that matrix and vector multiplication is only processing when the numbers of column in the matrix is equal to the numbers of rows in vector

• There is another very important vector operation called the dot product, which is a types of multiplication. let's take two arbitrary vectors \mathbb{R}^2 , v and w and find its dot product, like

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

The following is the dot product,

$$v.w = v_1 w_1 + v_2 w_2 \tag{1}$$

• There is another very important vector operation called the dot product, which is a types of multiplication. let's take two arbitrary vectors \mathbb{R}^2 , v and w and find its dot product, like

$$v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$$
 and $w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$

• The following is the dot product,

$$v.w = v_1 w_1 + v_2 w_2 \tag{1}$$

• let's continue using the same vectors R^2 , v and w. We deal with before as follows,

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and } \mathbf{w} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

And by taking their dot product,

$$v.w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$= -2 + 2 = 0 \tag{2}$$

• We get zero, which tells us that the two vectors are perpendicular.

• let's continue using the same vectors R^2 , v and w. We deal with before as follows,

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and } w = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

And by taking their dot product,

$$v.w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$= -2 + 2 = 0 \tag{2}$$

We get zero, which tells us that the two vectors are perpendicular.

• let's continue using the same vectors R^2 , v and w. We deal with before as follows,

$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ and } w = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

And by taking their dot product,

$$v.w = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$
$$= -2 + 2 = 0 \tag{2}$$

We get zero, which tells us that the two vectors are perpendicular.

- $d(x,y) \ge 0$ and when x = y then d(x,y) = 0
- $\bullet \ d(x,y) = d(y,x)$
- d(x,z) = d(x,y) + d(y,z) known as triangular
- For all,x,y,z belong to set s.

- $d(x,y) \ge 0$ and when x = y then d(x,y) = 0
- $\bullet \ d(x,y) = d(y,x)$
- d(x,z) = d(x,y) + d(y,z) known as triangular
- For all,x,y,z belong to set s.

- $d(x,y) \ge 0$ and when x = y then d(x,y) = 0
- $\bullet \ \mathsf{d}(\mathsf{x},\mathsf{y}) = \mathsf{d}(\mathsf{y},\!\mathsf{x})$
- d(x,z) = d(x,y) + d(y,z) known as triangular
- For all,x,y,z belong to set s.

- $d(x,y) \ge 0$ and when x = y then d(x,y) = 0
- $\bullet \ \mathsf{d}(\mathsf{x},\mathsf{y}) = \mathsf{d}(\mathsf{y},\!\mathsf{x})$
- d(x,z) = d(x,y) + d(y,z) known as triangular
- For all,x,y,z belong to set s.

•
$$d(x,y) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}$$

- As we can extend this to find the distance of pints in \mathbb{R}^n as follow,
- $d(x,y) = \sqrt{\sum_{i}^{n} (x_i y_i)^2}$
- Home task, explore Norms and its types.

•
$$d(x,y) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_2)^2}$$

- As we can extend this to find the distance of pints in \mathbb{R}^n as follow,
- $d(x,y) = \sqrt{\sum_{i}^{n} (x_i y_i)^2}$
- Home task, explore Norms and its types.

- $d(x,y) = \sqrt{(x_2 x_1)^2 + (y_2 y_2)^2}$
- As we can extend this to find the distance of pints in \mathbb{R}^n as follow,
- $d(x,y) = \sqrt{\sum_{i}^{n}(x_i y_i)^2}$
- Home task, explore Norms and its types.

- $d(x,y) = \sqrt{(x_2 x_1)^2 + (y_2 y_2)^2}$
- As we can extend this to find the distance of pints in \mathbb{R}^n as follow,
- $d(x,y) = \sqrt{\sum_{i}^{n}(x_i y_i)^2}$
- Home task, explore Norms and its types.

Great Job Thank you

