

Classification of Movie Reviews with Latent Semantic Analysis Using SVD

Taekkeun Nam, Houming Kuang, Kristin Kim

Motivation

- A. Something interesting!
- B. Taking advantage of what we learned in the course!
- 1. **Shared interests?** Movies
- 2. Model? Movies & Knowledge from the course
- 3. Why LSA? Simple yet powerful with SVD & TF-IDF
- 4. On the side? CounterVectorizer & SVM
- 5. **Object?** To classify movie reviews into Romance/Comedy vs. Action/Horror

Introduction

[Work Flow]

Data Importing -> Data Cleaning ->

- LSA part
- CountVectorizer(BOW) -> SVD -> Fitting LSA
- 2. TF-IDF -> SVD -> Fitting LSA
 - SVM part
- Fitting SVM(without parameters)
- 2. GridsearchCV -> Fitting SVM(with parameters)
 - Dataset: "Rotten Tomatoes Movies and critic Reviews" from <Kaggle>

Latent Semantic Analysis (LSA)

- unsupervised learning
- natural language processing for topic modeling
- discovers relationships between documents and the words that they contain
- uses the statistical approach to identify the association
- uses Single Value Decomposition(SVD) to extract the distinct features and finds hidden patterns and insights

Mathematics of SVD ($U \sum V^T$)

 In LSA, SVD allows to truncate few contexts that are not necessarily required by us

∑ matrix

- provides the diagonal values which represent the significance of the context from highest to the lowest.
- allows to reduce the dimensions
- K: the number of topic

TF-IDF

(term frequency-inverse document frequency)

$$w_{x,y} = tf_{x,y} \times log(\frac{N}{df_x})$$

TF-IDF

4

 $\mathsf{tf}_{\mathsf{x},\mathsf{y}} = \mathsf{frequency} \; \mathsf{of} \; \mathsf{x} \; \mathsf{in} \; \mathsf{y}$

 df_x = number of documents containing x

Term x within document y N = tot

N = total number of documents

Word	Т	F	IDF	TF*IDF	
vvoru	Α	В	IDI	Α	В
The	1/7	1/7	log(2/2) = 0	0	0
Car	1/7	0	log(2/1) = 0.3	0.043	0
Truck	0	1/7	log(2/1) = 0.3	0	0.043
Is	1/7	1/7	$\log(2/2) = 0$	0	0
Driven	1/7	1/7	log(2/2) = 0	0	0
On	1/7	1/7	log(2/2) = 0	0	0
The	1/7	1/7	log(2/2) = 0	0	0
Road	1/7	0	log(2/1) = 0.3	0.043	0
Highway	0	1/7	log(2/1) = 0.3	0	0.043

 $A = "The \ car \ is \ driven \ on \ the \ road"; B = "The \ truck \ is \ driven \ on \ the \ highway" \ Image \ from \ freeCodeCamp - How \ to$

SVM

(Support Vector Machine)

- this algorithm can be used for both regression and classification tasks
- more widely used in classification objectives
- objective : to find an optimal hyperplane in an N-dimensional space (N the number of features) that distinctly classifies the data points

Possible hyperplanes

Implementation

Now, Time to check out our code!

https://colab.research.google.com/drive/1vlebBf mgPH9yjfRi2Oweip 9yTsAqjf?authuser=2#scrollTo=oYsCHxxllz82


```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 17712 entries, 0 to 17711
Data columns (total 22 columns):
                                      Non-Null Count Dtype
     Column
                                      17712 non-null object
    rotten tomatoes link
    movie title
                                      17712 non-null object
                                      17391 non-null object
    movie info
    critics consensus
                                      9134 non-null
                                                      object
                                      17712 non-null object
    content rating
                                      17693 non-null object
    genres
                                      17518 non-null object
    directors
    authors
                                      16170 non-null object
                                      17360 non-null object
     actors
    original release date
                                      16546 non-null object
    streaming release date
                                      17328 non-null object
                                      17398 non-null float64
 11 runtime
                                      17213 non-null object
 12 production company
   tomatometer status
                                      17668 non-null object
 14 tomatometer rating
                                      17668 non-null float64
 15 tomatometer count
                                      17668 non-null float64
 16 audience status
                                      17264 non-null object
 17 audience rating
                                      17416 non-null float64
   audience count
                                      17415 non-null float64
   tomatometer top critics count
                                      17712 non-null int64
    tomatometer fresh critics count
                                      17712 non-null int64
    tomatometer rotten critics count 17712 non-null int64
dtypes: float64(5), int64(3), object(14)
memory usage: 3.0+ MB
```


1870 •

Dataset - Final Dataset after cleaning

- 53 rows of Action / 53 rows of Romantic Comedy
- 2 columns of Reviews / Genres

	critics_consensus	genres
2307	Cobbling together an unfinished satire on the	Comedy, Romance
12048	Primeval is a low-quality horror film, which d	Action & Adventure, Drama, Horror, Mystery & S
3012	Provides lots of laughs with Myers at the heal	Comedy, Romance
5456	Though it is ultimately somewhat undone by its	Action & Adventure, Drama, Horror, Mystery & S
3598	Insubstantial yet charming, Billy's Hollywood	Comedy, Romance

(CountVectorizer) LSA

1. CountVectorizer() to vectorize the words of reviews

```
count_vec = CountVectorizer(min_df=1, stop_words='english')
bag_of_words_count = count_vec.fit_transform(action_romcom.critics_consensus)
bag_of_words_count.todense()
```

2. TruncatedSVD() to fit Bag of Words

```
svd = TruncatedSVD(n_components=2,n_iter=100)
lsa = svd.fit_transform(bag_of_words_count)
```


Red) result of LSA (finding hidden patterns & separate into two categories)
Blue) Convert categorical values to binary values

Г	topic_1	topic_2	review	genre	Is_Romance
0	1.03447	-0.55144	Blake Edwards' bawdy comedy may not score a pe	Comedy, Romanc	1
1	1.03861	-0.45070	Matched by Garson Kanin's witty, sophisticated	Classics, Comedy, Romanc	1
2	0.80111	-0.47994	he Baxter is good-natured, but there are simp	Comedy, Romanc	1
3	1.64536	-0.92025	What Happens in Vegas has a few laughs, but mo	Comedy, Romanc	1
4	0.17707	0.05142	Sandra Bullock and Ryan Reynolds exhibit plent	Comedy, Romanc	1
101	0.78395	1.71309	Train to Busan delivers a thrillingly unique	Action & Adventure, Art House of International,.	0
102	0.32414	0.30112	A visual and aural assault on the senses, this	Action & Adventure, Horror, Myster & Suspense.	0
103	0.28342	0.43371	oefully deficient in thrills or common sense,	Action & Adventure, Horror, Myster & Suspense.	0
104	0.00000	0.00000	Though Wolf Creek is effectively horrific, it	Action & Adventure, Horror, Myster & Suspens	0
105	0.16527	-0.04145	Young Sherlock Holmes is a charming, if unnece	Action & Adventure, Drama, Horro Kids & Fami.	0

	topic_1	topic_2
count	979.00000	979.00000
mean	0.01623	0.00685
std	0.02755	0.03123
min	0.00000	-0.32067
25%	0.00409	-0.00312
50%	0.00812	0.00205
75%	0.02260	0.01170
max	0.56403	0.37479

(CountVectorizer) LSA

Romance/Comedy vs. Action/Horror

(TF-IDF) LSA

1. **IfidfVectorizer()** to vectorize the words of reviews

```
tfidf_vec = TfidfVectorizer(min_df=1, stop_words='english')
bag_of_words = tfidf_vec.fit_transform(action_romcom.critics_consensus)
bag_of_words.todense()
```

TruncatedSVD() to fit Bag of Words

```
svd = TruncatedSVD(n_components=2,n_iter=100)
lsa = svd.fit_transform(bag_of_words_count)
```


'Topic 1 (Romantic Comedy) Top 20 keywords'

"comedy", "romantic", "predictable", "laughs", "charming", "easy", "shallow"

'Topic 2 (Action/Horror) Top 20 keywords'

"genre", "horror", "action", "thrills", "fans", "crazies"

(TF-IDF) LSA

Romance/Comedy vs. Action/Horror

Classification Report

(Co	untV	'ecto	rizer)
100			'' 'E 🗢 ' ' <i>'</i>

support	f1-score	recall	precision	
53 53	0.79 0.83	0.70 0.92	0.90 0.75	0 1
106	0.81			accuracy
106	0.01	0.81	0.83	macro avg
106	0.81	0.81	0.83	weighted avg

	precision	recall	f1-score	support
False True	0.91 0.68	0.57 0.94	0.70 0.79	53 53
accuracy macro avg weighted avg	0.80 0.80	0.75 0.75	0.75 0.75	106 106 106

SVM - 1 (without parameters)

```
#train data
clf = LinearSVC()
clf.fit(X_train, y_train)
LinearSVC()
#evaluation
y pred = clf.predict(X test)
print(classification report(y test, y pred))
              precision
                           recall f1-score
                                               support
                   0.76
                              0.81
                                        0.79
                                                     16
           0
                   0.80
                              0.75
                                        0.77
                                                     16
                                        0.78
                                                     32
    accuracy
                              0.78
                                        0.78
                                                     32
                   0.78
   macro avg
weighted avg
                   0.78
                              0.78
                                        0.78
                                                     32
```


GridSearchCV (for parameter tuning)

```
def search params(train review, train in romance):
   #pipeline
   text clf = Pipeline([("tfidf", TfidfVectorizer()),
                    ("clf", svm.LinearSVC())))
   #ranges of parameters for GridSearchCV
   parameters = {"tfidf_use_idf":[True, False],
                "tfidf ngram range":[(1,1),(1,2),(1,3)], #n grams,
                 "tfidf stop words":[None, "english"], #exclude unnecessary words
                 "tfidf min df":[1, 3, 5], #minimum frequency in documents
                 "clf C":[0.1, 0.5, 1, 2]} #lower C param : softer margin, higher C param : harder margin
   metric = "f1 macro"
   gs clf = GridSearchCV(text clf, param grid=parameters, refit=True,
                         scoring=metric, cv=10)
   gs clf.fit(train review, train in romance)
   best_param = gs_clf.best_params_
   best score = gs clf.best score
   return [best param, best score]
```

```
clf_C: 2
tfidf_min_df: 1
tfidf_ngram_range: (1, 1)
tfidf_stop_words: english
tfidf_use_idf: True
best f1-score: 86.381%
```

SVM - 2

(with parameters based on GridSearchcv)

```
def svm params(dtm options, svm options):
  tfidf vect = TfidfVectorizer(stop words=dtm options["stop words"],
                                 min df=dtm options["min df"],
                                 use idf=dtm options["use idf"],
                                 ngram range=dtm options["ngram range"])
  dtm = tfidf vect.fit transform(svm train["review"])
  # data split
 X train = dtm
 y train = svm train["Is Romance"]
 X test = tfidf vect.transform(svm test["review"])
 y test = svm test["Is Romance"]
  # train data
 clf = svm.LinearSVC(C=svm options["C"])
 clf.fit(X train, y train)
  # prediction result
                                                                     precision
                                                                                  recall f1-score
  y pred = clf.predict(X test)
  report = classification report(y test, y pred)
                                                                          0.93
                                                                                    0.81
                                                                          0.75
                                                                                    0.90
  return report
                                                           accuracy
```

0.86

0.85

0.84

0.86

macro avo weighted avg support

16

10

26

26

0.87

0.82

0.85

0.84

0.85

Conclusion

F-1 score of CountVectorizer LSA: 81%

F-1 score of TFIDF LSA: 75%

F-1 score of SVM w/o Parameter (F1 score): 78%

F-1 score of SVM w/ parameters (F1 score): 85%

Limitations and Future Work

Limitations

Lack of Valid measurements in Evaluations of LSA

- Inconsistent classification since they weigh more in the difference of two values than each value itself

TF-IDF producing a lower F1-score than CountVectorizer

- requires more research to reveal a hidden logic

Future Work

- Analyzing more variations of genres, not confined to 2 distinct genres
- Apply these methods for another types of data set
 - restaurant reviews
 - book reviews
- Improve the accuracy of current work by trying various classifications method

	LSA		SVM	
	CounterVector izer	TF-IDF	Without Parameters	With Parameters
f1-score	0.83	0.79	0.77	0.82
accuracy	0.81	0.75	0.78	0.85

Implementation

Check out our code!

https://colab.research.google.com/drive/1vlebBf mgPH9yjfRi2Oweip 9yTsAqjf?authuser=2#scrollTo=oYsCHxxllz82

Thank you