C335 Computer Structures

Basics of Logic Design

Dr. Liqiang Zhang

Department of Computer and Information Sciences

Adapted from Morgan Kaufmann and others

Boolean Algebra

- □ Named after mid-19th mathematician *George Boole*
- □ Two states: True (1) or False (0)
- Three operations
 - Binary operations:
 - AND (•), OR (+)
 - Unary operation
 - NOT (⁻)

AND (•)	OR (+)	NOT (⁻)
0 • 0 = 0	0 + 0 = 0	0 = 1
0 • 1 = 0	0 + 1 = 1	1 = 0
1 • 0 = 0	1 + 0 = 1	
1 • 1 = 1	1 + 1 = 1	

Indiana Un

This algebra was applied to electronic switching circuits by Claude Shannon, as a "Switching algebra"

Gates, Logic Equations, and Truth Table

Gates

Logic Equations

$$\overline{B} = A \cdot B$$

$$F = A \cdot B$$
 $F = A + B$

$$F = \overline{A} \text{ or } (A')$$

Truth Table

АВ	F = A • B
0 0	0
0 1	0
1 0	0
1 1	1

АВ	F = A + B
0 0	0
0 1	1
1 0	1
1 1	1

Α	F = A'
0	1
1	0

- Tabular listing that fully describes a Logic Equation
- Output value for all input combinations (valuations)

Gates, Logic Equations, and Truth Table

Gates

$$A \longrightarrow B$$

NAND

NOR

XOR

Logic Equations

$$\overline{} = (A \cdot B)'$$

$$F = (A \cdot B)'$$
 $F = (A + B)'$

$$F = A \oplus B$$

Truth Table

Α	В	F = (A • B)'
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	F = (A + B)'
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	$F = A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

Extends to N-input Logic Gates

Boolean Algebra: Notations

□ A AND B → A•B, AB, or A&B (also called product)

 \square A OR B \rightarrow A + B, A | B (also called *sum*)

■ NOT A → A', A, or !A (also called Complementation or Inversion)

Logic gates and networks

- A larger circuit is implemented by a network of gates
 - Called a logic network or logic circuit

Draw the truth table and the logic circuit for the following logic equation

а	b	С	ас	bc'	ac+bc'
0	0	0	0	О	0
0	0	1	0	О	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	О	0	О	0
1	0	1	1	О	1
1	1	0	0	1	1
1	1	1	1	0	1

Properties of Boolean Algebra (1/4)

Axioms of Boolean Algebra

- 1a 0⋅0=0
- 1b 1+1=1
- 2a 1-1=1
- 2b 0+0=0
- 3a 0·1=1·0=0
- 3b 1+0=0+1=1
- 4aIf x=0 then x'=1
- 4b If *x*=1 then *x*'=0

Properties of Boolean Algebra (2/4)

Single-Variable Properties

Identity law

Zero and one laws

$$x+0=$$

Idempotent law

$$X+X=$$

8a x⋅x'=

Inverse law

• 9

$$X''=$$

□ Substitute the values x=0 and x=1 into the expressions and verify using the basic axioms

Properties of Boolean Algebra (2/4)

Single-Variable Properties

5a

 $x \cdot 0 = 0$

Identity law

5b

x + 1 = 1

• 6a

 $x \cdot 1 = x$

Zero and one laws

• 6b

x + 0 = x

7a

 $X \cdot X = X$

Idempotent law

• 7h

X+X=X

8a

 $x \cdot x' = 0$

Inverse law

■ 8b x+x'=1

• 9

X''=X

Substitute the values x=0 and x=1 into the expressions and verify using the basic axioms

Properties of Boolean Algebra (3/4)

Two & Three Variable Properties

Commutative law

• 11a.
$$x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Associative law

• 11b.
$$x+(y+z)=(x+y)+z$$

• 12a.
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

Distributive law

$$X+y\cdot Z=(X+y)\cdot (X+Z)$$

$$X+X-Y=X$$

$$X \cdot (X+Y) = X$$

Properties of Boolean Algebra (4/4)

Two & Three Variable Properties

Combining law

• 14b.
$$(x+y)\cdot(x+y')=x$$

• 15b.
$$(x+y)'=x'\cdot y'$$

De Morgan's

Theorem

• 16b.
$$x \cdot (x'+y) = x \cdot y$$

Induction proof of x+x'-y=x+y

■ Use perfect induction to prove x+x'-y=x+y

Х	У	x'y	<i>x+x'y</i>	<i>X</i> + <i>y</i>	
0	0	0	0	0	
Ο	1	1	1	1	
1	O	Ο	1	1	
1	1	O	1	1	
equivalent					

C335 Computer Structures Liqiang Zhang Indiana University South Bend

Perfect induction example

□ Use perfect induction to prove (xy)'=x'+y'

Х	У	ху	(xy) ′	Χ'	У′	<i>X'</i> + <i>Y'</i>
0	O	0	1	1	1	1
О	1	Ο	1	1	0	1
1	O	0	1	О	1	1
1	1	1	О	0	0	0
	equivalent					

C335 Computer Structures Liqiang Zhang Indiana University South Bend

Canonical Forms of Logic Equations

- It is possible to construct a truth table for any Logic Equation
 - The truth table is useful in that it does provide a complete, unique description of the Logic Equation, but is cumbersome
- We can derive from the truth table certain unique expressions which defines the function exactly
 - Minterm form (sum of products)
 - Maxterm from (product of sums)

Minterm Form

	$F = A \oplus B$	В	Α
$\mathbf{F} = \mathbf{A}' \bullet \mathbf{B} + \mathbf{A} \bullet \mathbf{B}'$	0	0	0
	1	1	0
Sum of Products form	1	0	1
	0	1	1

It is obtained by ANDing together the variables, or their complements, which have a 1 in the function column

- □ If the variable has value 1, the variable is taken; if not, its complement is taken
- Each of these ANDs of all the variables, or their complements, is called a minterm.
- The minterms are then ORed together to give the function specified in the truth table.

Maxterm Form

A Dual form of minterm form is called maxterm form, or product of sums form.

- It can be obtained easily from the truth table by ORing together all the variables or their complements which give a zero for the function.
- ☐ If the variable has value 0, the variable is taken; if not, its complement is taken

	Α	В	С	F	Minterms	Maxterms
0	0	0	0	1	A' • B' • C'	
1	0	0	1	0		A + B + C'
2	0	1	O	1	A' • B • C'	
3	0	1	1	1	A' • B • C	
4	1	0	0	0		A' + B + C
5	1	0	1	0		A' + B + C'
6	1	1	0	1	A • B • C'	
7	1	1	1	1	A • B • C	

Minterm form:

$$F = A' \cdot B' \cdot C' + A' \cdot B \cdot C' + A' \cdot B \cdot C + A \cdot B \cdot C' + A \cdot B \cdot C$$

Maxterm form:

$$F = (A + B + C') \cdot (A' + B + C) \cdot (A' + B + C')$$

Logic Equations, Truth Table, and Logic Circuits

Design of a Half Adder

□ 1 bit half adder: a switching circuit which add together two binary digits (bits), producing two output bits, a sum bit, and a carry bit .

Input		Output		
Α	В	Carry	Sum	
0	0	0	0	
0	1	0	1	
1	0	0	1	
1	1	1	0	

□ Sum =
$$A' \cdot B + A \cdot B' = A \oplus B$$

Carry

A One-bit Full Adder

□ 1 bit full adder: a switching circuit which add together two binary digits (bits), and a third bit called a *CarryIn* bit which may have come from a previous full adder.

	Inputs		Outputs		
A	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0+0+1=01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

C335 Computer Structures Liqiang Zhang Indiana University South Bend

Logic Equation for CarryOut

	Inputs		Outputs		
A	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0+1+0=01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
11	1	0	11	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

- CarryOut = (A' B CarryIn) + (A B' CarryIn) + (A B CarryIn')+ (A B CarryIn)
- □ CarryOut = B CarryIn + A CarryIn + A B (*majority function*)

Logic Circuit for CarryOut

□ CarryOut = B • CarryIn + A • CarryIn + A • B

Logic Equation for Sum

	Inputs		Outputs		
A	В	CarryIn	CarryOut	Sum	Comments
0	0	0	0	0	0 + 0 + 0 = 00
0	0	1	0	1	0 + 0 + 1 = 01
0	1	0	0	1	0 + 1 + 0 = 01
0	1	1	1	0	0+1+1=10
1	0	0	0	1	1 + 0 + 0 = 01
1	0	1	1	0	1 + 0 + 1 = 10
1	1	0	1	0	1 + 1 + 0 = 10
1	1	1	1	1	1 + 1 + 1 = 11

- Sum = (A' B' CarryIn) + (A' B CarryIn') + (A B' CarryIn') + (A B CarryIn)
- □ Sum = $A \oplus B \oplus CarryIn$

Logic Circuit for Sum

Sum = A ⊕ B ⊕ CarryIn

Put Together

- Sum = A ⊕ B ⊕ CarryIn
- □ CarryOut = B CarryIn + A CarryIn + A B

C335 Computer Structures

Liqiang Zhang

Indiana University South Bend

Design of a 2-line to 1-line Multiplexer

Multiplexer: the output is selected to be equal to the input of the line given by the binary value of the select line(s).

S	Υ	S	I ₀	I ₁	Υ
	•	0	0	0	0
0	I 0	0	0	1	0
1	I ₁	0	1	0	1
		0	1	1	1
		1	0	0	0
		1	0	1	1
		1	1	0	0
		1	1	1	1

$$\square$$
 Y = S'• I_0 • I_1 ' + S'• I_0 • I_1 + S• I_0 '• I_1 + S• I_0 • I_1

$$\square$$
 Y = S'• I_0 + S• I_1

A 4-line to 1-line Multiplexer

S ₁	S ₀	Υ
0	0	I _o
0	1	I ₁
1	0	l ₂
1	1	l ₃

- □ For a 8-line to 1-line multiplexer, how many select lines do we need?
- □ For a 16-line to 1-line multiplexer, how many select lines do we need?

If you are interested...

A 4-line to 1-line Multiplexer

If you are interested...

- □ What is a decoder? (1-to-2, 2-to-4, 3-to-8...)
- How do you utilize a decoder to construct a multiplexer?

Summary

- Boolean Algebra:
 - two values, three operations
- Properties of Boolean Algebra
 - Axioms
 - Single-variable properties
 - Two & three-variable properties
- Relations among logic equations, truth tables, and logic circuits
- Design of a half adder and a full adder
 - Truth table → logic equation → logic circuit
- Multiplexer