We define
$$\lambda_{A}(u_{A}) = \frac{\alpha_{A}(u_{A}, u_{A})}{\|u_{A}\|^{2}}$$

Then $(\lambda - \lambda_{A}(u_{A}))\|u_{A}\|^{2}$
 $= \lambda \|u_{A}\|^{2} - \alpha_{A}(u_{A}, u_{A})$
 $= \lambda \|u_{A} - u_{A}\|^{2} + 2\lambda(u_{A}, u_{A}) - \lambda(u_{A}, u_{A}) - \alpha_{A}(u_{A}, u_{A})$

For all three eigensolvers, we have

 $q(u, u) = (\nabla xu, \nabla xu)$
 $= \lambda(u, u)$
 $q(u, u) = (\nabla xu, \nabla xu)$
 $= \lambda(u, u)$
 $q(u, u) = (\nabla xu, \nabla xu)$
 $= \lambda(u, u) - \langle \nabla xu, u_{A} \rangle$

So

 $(\lambda - \lambda_{A}(u_{A}))\|u_{A}\|^{2} = \lambda \|u - u_{A}\|^{2} + 2\alpha_{A}(u_{A}, u_{A}) + 2\langle \nabla xu, u_{A} \rangle - \alpha_{A}(u_{A}, u_{A})$
 $= \lambda \|u - u_{A}\|^{2} - \alpha_{A}(u_{A}, u_{A}) + 2\langle \nabla xu, u_{A} \rangle - \alpha_{A}(u_{A}, u_{A})$
 $= \lambda \|u - u_{A}\|^{2} - \alpha_{A}(u_{A}, u_{A}) + \alpha_{A}(u_{A}, u_{A})$
 $+ 2\sum_{e} \langle \nabla xu, u_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$
 $+ 2\sum_{e} \langle \nabla xu - \nabla xu_{A}, u_{A} \rangle$

Here $(\nabla XU)_{A}$ is a single value approximation of ∇XU on each edge e we need to specify.

For example, we can take

 $(\widehat{\nabla x u})_A = (\overline{\nabla x u_A})_e$

Then $AC_1 = 2 \ge \langle (\nabla x u_1)e, [u_1]_{\bullet} \rangle_e$. This is the D_1° in Prof. Li's notes.

As you can see, the first two terms in Ex are already bounded by the energy norm $\|u-u_{4}\|_{A}^{2}:=\alpha(u-u_{4},u-u_{4})$. So we just need to choose $(\nabla xu)_{4}$ such that the third term $2 \le (\nabla xu - (\nabla xu)_{4}, [u_{4}]_{t})_{e}$ can be bounded by the energy norm.

From the numerical results in Prof. Li's paper, it seems that λ_h approximates λ from below. Since our formula is $\lambda - \lambda_h = \frac{AG_h}{\|u_h\|^2} + \frac{E_h}{\|u_h\|^2}$

I think if we can make ACI be a small positive term, then the error can be reduced. We may grab the penalty terms in $\alpha(u-u_1, u-u_1)$ and add them to the ACI, but these terms are negative, for example: $-\sum_{e} \frac{(\underline{T}_{u}(e))^2}{|e|} \int_{e} \underline{T}_{u} \underline{T}_{e}^{2} ds$.

So	I	think	adding	- tlese	penalty	ter	ms	may	not
he	lp	reduce	e the	enor	penalty, unless	the	AG	we	define
is	too	big.							
		<i>-</i>							