Cadeias de Markov

Como simular uma cadeia de Markov

(espaço de estados finito)

Referência: livro do Häggström - Finite Markov Chains

Como simular uma variável aleatória qualquer

Resultado de Probabilidade

Seja X é uma variável aleatória com função de distribuição ${\cal F}_{{\scriptscriptstyle X}}.$

- Se X é contínua, a variável aleatória $W=F_{\scriptscriptstyle X}(X)$ tem distribuição Uniforme (0,1)
- Se $F_{\scriptscriptstyle X}$ é uma função de distribuição contínua e estritamente crescente e $U\sim$ Uniforme (0,1), então

$$Y=F_{\scriptscriptstyle X}^{-1}(U)$$
 tem função de distribuição $F_{\scriptscriptstyle X}$

Obs.: este último item é válido para qualquer função de distribuição usando a definição mais ampla de função inversa:

$$F_X^{-1}(u) = \inf\{y : F_X(y) \ge u\}$$

Em particular, se X for uma variável aleatória que assume apenas valores inteiros não-negativos, então a variável Y definida por

$$Y = k \quad \Longleftrightarrow \quad F_{\scriptscriptstyle X}(k-1) < U \le F_{\scriptscriptstyle X}(k)$$

tem função de distribuição $F_{\scriptscriptstyle X}$

Geradores de números (pseudo) aleatórios

Para simular valores de qualquer variável aleatória X basta ter F_X^{-1} e números $u_1, u_2, u_3, \ldots, \underline{uniformemente distribuídos}$ no intervalo (0,1).

- Aplicativos computacionais têm um gerador de números pseudo aleatórios.
- Os números gerados u_1, u_2, u_3, \ldots , **não** são aleatórios. Eles são gerados por uma função.
- Os números gerados passam por testes de aleatoriedade, de independência e de aderência à uma distribuição Uniforme (0,1).
- Atenção à semente
 - \longrightarrow fornece a mesma sequência se a mesma semente for usada.
- Atenção à quantidade de números gerados
 pode entrar em ciclo.

Como simular uma CADEIA de MARKOV

Toda informação sobre uma cadeia de Markov está contida na matriz de probabilidades de transição \mathbf{P} e na distribuição inicial π_0 .

Para simular uma cadeia de Markov precisamos:

- uma sequência de números aleatórios com distribuição Uniforme (0,1): $u_o,u_1,\ldots,u_n,\ldots$
- uma função inicial para simular o valor inicial X_0 \longrightarrow usa π_0 e um número aleatório u_0 .
- uma **função de atualização** para simular o valor X_n dado X_{n-1} \longrightarrow usa $\mathbf{P}=(p_{ij};i,j\in S)$ e um numero aleatório u_n , para todo instante/passo n.

Como simular uma CADEIA de MARKOV

Função inicial

A função inicial $\psi:[0,1]\to S$ simulará o valor inicial da cadeia. Portanto deve satisfazer:

- ψ é constante por partes;
- para cada estado $i \in S$, o comprimento total dos intervalos para os quais $\psi(u) = i$ é igual a $\pi_0(i)$.

Função de atualização

A função de atualização $\phi: S \times [0,1] \to S$ simulará a evolução da cadeia ao longo do tempo, isto é, ela atualizará o estado da cadeia em cada instante do tempo (a cada passo). Portanto satisfaz:

- φ é constante por partes;
- para cada par de estados $i, j \in S$, o comprimento total dos intervalos para os quais $\phi(i, u) = j$ é igual a p_{ij} .

Simulando o valor inicial - especificar ψ

Considere a cadeia com espaço de estados $S=\{s_1,s_2,\ldots,s_k\}$. Então uma opção para ψ é

$$\psi(u) = \left\{ \begin{array}{ll} s_1 & \mathsf{para} & u \in [0, \pi_0(s_1)) \\ s_2 & \mathsf{para} & u \in [\pi_0(s_1), \pi_0(s_1) + \pi_0(s_2)) \\ \vdots & & \vdots \\ s_i & \mathsf{para} & u \in \left[\sum_{j=1}^{i-1} \pi_0(s_j), \sum_{j=1}^{i} \pi_0(s_j)\right) \\ \vdots & & \vdots \\ s_k & \mathsf{para} & u \in \left[\sum_{j=1}^{k-1} \pi_0(s_j), 1\right] \end{array} \right.$$

Atenção: Essa função ψ não é única.

Simulando o valor inicial - verificando condições

O valor inicial X_0 é simulado via a função ψ e uma variável aleatória $U_0\sim$ Uniforme(0,1), com a seguinte representação (como variável aleatória)

$$X_0 = \psi(U_0)$$

Essa função ψ satisfaz as condições, pois é constante por partes e

$$\begin{split} \int_0^1 1\!\!1_{\{\psi(u)=s_i\}} du &= P(\psi(U_0)=s_i) = \sum_{j=1}^i \pi_0(s_j) - \sum_{j=1}^{i-1} \pi_0(s_j) = \pi_0(s_i) \\ &= P(X_0=s_i) \;, \quad \text{para todo} \quad s_i \in S. \end{split}$$

Simulando o passo seguinte - especificar ϕ

Para cada $s_i \in S$

$$\phi(s_i,u) = \left\{ \begin{array}{ll} s_1 & \text{para} & u \in [0,p_{s_is_1}) \\ s_2 & \text{para} & u \in [p_{s_is_1}\,,\,p_{s_is_1}+p_{s_is_2}) \\ \vdots & & \vdots \\ s_j & \text{para} & u \in \left[\sum_{\ell=1}^{j-1}p_{s_is_\ell}\,,\,\sum_{\ell=1}^{j}p_{s_is_\ell}\right) \\ \vdots & & \vdots \\ s_k & \text{para} & u \in \left[\sum_{\ell=1}^{k-1}p_{s_is_\ell},1\right] \end{array} \right.$$

Verificando condições de ϕ

Essa opção de função ϕ satisfaz as condições, pois é constante por partes e,

$$\begin{split} &\int_0^1 1\!\!1_{\{\phi(s_i,u)=s_j\}} du = P(\phi(s_i,U_0)=s_j) = \sum_{\ell=1}^j p_{s_is_\ell} - \sum_{\ell=1}^{j-1} p_{s_i\ell} \\ &= p_{s_is_j} = P(X_1=s_j \mid X_0=s_i) \;, \quad \text{para cada par } s_i,s_j \in S. \end{split}$$

Atenção: Essa função ϕ tdambém **não é única**.

9/11

Estrutura geral da simulação

Assim, gerando independentes variáveis U_0,U_1,U_2,\ldots com distribuição Uniforme [0,1], uma cadeia de Markov pode ser simulada através de

```
\begin{array}{ll} X_0=\psi(U_0) & \text{estado inicial} \\ X_1=\phi(X_0,U_1) & \text{estado no passo 1} \\ X_2=\phi(X_1,U_2) & \text{estado no passo 2} \\ X_3=\phi(X_2,U_3) & \text{estado no passo 3} \\ X_4=\phi(X_3,U_4) & \text{estado no passo 4} \\ \vdots \end{array}
```

Exemplo: chove/não chove

Considere a cadeia com $S=\{a,b\}$, em que a= chove e b=não chove

$$\mathbf{P} = \frac{a}{b} \begin{pmatrix} 0.7 & 0.3 \\ 0.4 & 0.6 \end{pmatrix}$$

Especifique 2 (duas) opções para a função de atualização ϕ .