Numbers and Computers (practice)

ICS312 Machine-Level and Systems Programming

Henri Casanova (henric@hawaii.edu)

(q1) Conversion

■ What is 52₁₀ in binary?

(q1) Solution

- What is 52_{10} in binary?
- Systematic method:

$$\Box$$
 52 = 26*2 + 0

$$\Box$$
 26 = 13*2 + 0

$$\Box$$
 13 = 6*2 + 1

$$\Box$$
 6 = 3*2 + 0

$$3 = 1*2 + 1$$

$$\Box 1 = 0*2 + 1$$

- □ Answer: 110100
- Intuitive method (for "small" numbers)
 - □ 52 is lower than 64, so it's 32 + something
 - □ 32 + 16 is 48, so 52 is 32 + 16 + something

$$\Box$$
 52 - 48 = 4, so: 52 = 32 + 16 + 4

- □ Therefore: 110100
 - We have 32, 16, not 8, 4, not 2, not 1

(q2) Conversion

■ What is 2049₁₀ in binary?

(q2) solution

- What is 2049₁₀ in binary?
- The systematic method is really long here
 - simple though, but tedious
- It's easier to see that 2049₁₀ is 2048₁₀ + 1₁₀
 - \square 2048₁₀ is 2¹¹ = 100000000000₂
 - \Box 1 is 2⁰ = 1₂
- Therefore
 - \square 2049₁₀ = 10000000001₂
- In general, one likes to find "nearby" powers of 2

(q3) Conversion

■ What is 1021₁₀ in binary?

м.

(q3) Solution

- What is 1021₁₀ in binary?
- 1021₁₀ is "close to" 1024₁₀
- We know that 1024₁₀ is 100000000₂
- More useful: 1023₁₀ is 11111111₂
- So we can "count backwards"
- 111111110₂ comes before 111111111₂, and therefore it is 1022₁₀
- 111111101₂ comes before 111111110₂, and therefore it is 1021₁₀
- Answer: 111111101₂

(q4) Conversions

■ What is B8₁₆ in binary?

(q4) Solution

- Just "glue" the 2 4-bit conversions together
 - \square B₁₆ = 1011₂, 8₁₆ = 1000₂
 - □ Answer: 10111000

- How do I know that $B_{16} = 1011_2$?
 - Just go back to decimal
 - \blacksquare B₁₆ = 11₁₀
 - \blacksquare 11₁₀ = 1011₂

(q5) Conversions

■ What is 51₁₀ in hexadecimal?

.

(q5) Solution

■ What is 51₁₀ in hexadecimal?

$$\Box$$
 51 = 3*16 + 3

□ Answer: 33

(q6) Conversion

■ What is 0110₂ in hexadecimal?

(q6) Solution

■ What is 0110₂ in hexadecimal?

$$\Box$$
 0110₂ = 6₁₀ = 6₁₆

Answer: 6

м.

More Conversions

(q7) What is 123₁₀ in binary?

(q8) What is F3EA₁₆ in binary?

(q9) What is 111₁₀ in hexadecimal?

(q10) What is 100110₂ in hexadecimal?

Solutions

Conversions:

- (q7) What is 123₁₀ in binary?
 1111011 (127 4)
- (q8) What is F3EA₁₆ in binary?1111001111101010
- (q9) What is 111₁₀ in hexadecimal?
 6F (112 -1)
- (q10) What is 100110₂ in hexadecimal?

Always try to find simple "tricks" if you can

(q11) Binary addition

What is: 10101101 + 11001011 ?

(q11) Solution

What is: 10101101 + 11001011 ?

```
10101101
+ 11001011
= 101111000
```

(q12) Hex addition

■ What is: A5F + E32 ?

(q12) Solution

■ What is: A5F + E32 ?

- Small "trick": adding F to a digit takes that digit 1 lower and generates a carry
 - F + 7 = 6 and a carry
 - F + E = D and a carry

Another binary addition (no poll)

What is 1010111 + 1110111?

Solution

What is 1010111 + 1110111?

```
1010111
+ 1110111
= 11001110
```

Another hex addition (no poll)

■ What is AF3F + EE8D?

Solution

■ What is AF3F + EE8D?

```
C C
AF3F
+ EE8D
= 19DCC
```

(q13) Two's complement

What is the 2's complement 2-byte representation of signed integer -153₁₀ in hexadecimal?

(q13) Solution

- What is the 2's complement 2-byte representation of signed integer -153₁₀ in hexadecimal?
 - \blacksquare 153₁₀ = 0099₁₆
 - complement: FF66
 - add 1 to get the answer: FF67

м.

(q14) Two's complement

What is the 2's complement 2-byte representation of signed integer 96₁₀ in hexadecimal?

(q14) Solution

- What is the 2's complement 2-byte representation of signed integer 96₁₀ in hexadecimal?
 - \square 96₁₀ = 60₁₆
 - It's a positive number, so its 2's complement representation is simply it's 2-byte binary representation
 - answer: 0060

(q15) Two's complement

What is the decimal value of FF4A, a 2-byte (hex) signed number stored in 2's complement fashion?

v.

(q15) Solution

- What is the decimal value of FF4A, a 2-byte (hex) signed number stored in 2's complement fashion?
 - FF4A = 1....₂
 - Therefore it represents a negative number, let's invert it
 - Invert: 00B5
 - Add 1: 00B6 = B6
 - $B6_{16} = 11*16 + 6 = 176 + 6 = 182_{10}$
 - Therefore, in 2's complement representation, FF4A is -182₁₀

(q16) Two's complement

What is the 2's complement 1-byte representation of signed number -81₁₀ in hexadecimal?

.

(q16) Solution

- What is the 2's complement 1-byte representation of signed number -81₁₀ in hexadecimal?
 - \square 81₁₀ = 51₁₆
 - complement: AE
 - □ add 1: AF

(q17) Two's complement

What is the decimal value of 76 (hex), a 1byte signed number stored in 2's complement fashion?

(q17) Solution

- What is the decimal value of 76h, a 1-byte signed number stored in 2's complement fashion?
 - It's a positive number, so 76 is simply the hex value of the integer
 - □ Answer: $7*16^1 + 6*16^0 = 118_{10}$

.

(q18) Ranges of numbers

- What is the largest unsigned decimal number that can be encoded with 8 bits?
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
- What is the largest signed decimal number that can be encoded with 8 bits?
- What is the smallest signed decimal number that can be encoded with 8 bits?
- What is the 2's complement representation of -1₁₀ with 32 bits?

w

(q18) Solutions

- What is the largest unsigned decimal number that can be encoded with 8 bits?
 - □ 255 (i.e., FF in 2's complement representation)
- What is the smallest unsigned decimal number that can be encoded with 8 bits?
 - □ 0 (i.e., 00 in 2's complement representation)
- What is the largest signed decimal number that can be encoded with 8 bits?
 - □ Largest that isn't negative: 7F in 2's complement representation = 127₁₀
- What is the smallest **signed** decimal number that can be encoded with 8 bits?
 - □ Smallest that isn't positive: 80 in 2's complement representation = -128₁₀
- What is the 2's complement representation of -1₁₀ with 32 bits?
 - □ 1 = 00000001; complement: FFFFFFE; add one: FFFFFFF

1-byte Ranges

Conclusion

- I have posted a practice quiz on Laulima (without answers).
 This is just some extra material you can use to practice.
- Homework #1 is all about this, let's look at it
- Yes, this is a lot of number arithmetic practice
- But as Computer Scientists you cannot afford to not be extremely comfortable with all this
 - □ No, you won't use it everyday at all
 - But when you need to use it, not being good at it is really, really embarrassing
 - Especially since these things pop up at job interviews!