CAGCGTCAGACGCAGGGCACTGAGAATGTGCGACAGCGCGCAACGATGAAGTAGCCCAGAGGGTCCCTTG GAAAATGAGGCCAGGGTCCCTGCTGCTGCTTGTTCTGCTGCTCGCCCTGTCCAGGAGCCTGCGGGGCAAA GAGTGTGCGTCTCCACCCTGTGAGTGTCACCAGGAGGACGACTTCAGAGTCACCTGCAAGGAGCTCCACC GAATCCCCAGCCTGCCGCCCAGCACCCAGACTCTGAAGCTCATCGAGACTCATCTGAAGACCATACCCAG TCTTGCATTTTCGAGTCTGCCCAATATTTCCAGGATCTATTTATCTATAGATGCAACTCTGCAGCGCTG GAACCACATTCTTCTACAATTTGAGTAAAATGACTCACATAGAAATCCGGAACACCAGAAGCTTAACCT ATATAGACCCTGATGCCTTGACAGAGCTCCCCTTGCTCAAGTTTCTTGGCATTTTCAATACTGGACTTAG AATATTCCCTGACTTGACCAAAATTTATTCCACGGACATATTCTTTATACTTGAAATCACAGACAACCCT TACATGACTTCGGTCCCTGAAAACGCATTCCAGGGCCTATGCAATGAAACCTTGACCCTGAAACTGTACA ACAATGGATTTACTTCAGTCCAAGGACATGCTTTCAATGGAACAAAGCTGGATGCTGTTTACCTAAACAA GAATAAATACCTGACAGCTATAGACAACGATGCCTTTGGAGGAGTATACAGTGGACCAACTTTGCTAGAT GTGTCTTCCACCAGCGTCACTGCCCTTCCTTCCAAAGGCCTGGAGCACCTCAAAGAACTGATCGCAAAAG ACACCTGGACTCTCAAAAAGCTCCCGCTGTCGTTGAGTTTCCTCCACCTCACTCGGGCTGACCTCTCTTA CCCGAGCCACTGCTGCGCTTTTAAGAACCAGAAGAAAATCAGGGGAATCCTGGAGTCTTTGATGTGTAAT GAGAGCAGTATCCGGAACCTTCGTCAAAGGAAATCAGTGAACATCTTGAGGGGTCCCATCTACCAGGAAT CTCTCACTATTACGTCTTCTTTGAAGAACAAGAGGATGAGGTCGTTGGTTTCGGCCAAGAGCTCAAAAAT CCTCAGGAAGAGCTCTCCAAGCCTTCGAGAGCCACTATGACTACACGGTGTGTGGGGACAACGAGGACA TGGTGTGTACCCCCAAGTCGGACGAGTTTAACCCCTGTGAAGATATCATGGGCTACAGGTTCCTGAGAAT CGTGGTGTGTGTCAGTCTGCTGGCTCTCCTGGGCAATATCTTCGTCCTGCTCATTCTGCTAACCAGC CACTACAAATTGACCGTGCCGCGGTTCCTCATGTGCAACTTGGCCTTTGCAGATTTCTGCATGGGGGTAT ACCTGCTTCTCATTGCCTCTGTAGACCTGTACACACACTCTGAGTACTACAACCACGCCATCGACTGGCA GACGGGCCCTGGGTGCAACACGGCTGGCTTCTTCACTGTTTTCGCCAGTGAGTTATCAGTGTACACACTG ACGGTCATCACCCTGGAGCGATGGTACGCCATCACCTTCGCCATGCGCCTGGATAGGAAGATCCGCCTCA GGCACGCGTACACCATCATGGCTGGGGGCTGGGTTTCCTGCTTCCTCGCCCTGCTCCCGATGGTGGG AATCAGCAGCTATGCCAAGGTCAGCATCTGCCTGCCAATGGACACCGACACCCCTCTTGCACTCGCATAC ATTGTCCTCGTTCTGCTCCAATGTTGTTGCCTTTGTTGTCGTCTGTTCCTGCTATGTGAAGATCTACA TCACGGTCCGAAATCCCCAGTACAACCCTCGAGATAAAGACACCAAGATTGCCAAGAGGGATGGCTGTGTT GATCTTCACTGACTTCATGTGCATGGCGCCCATCTCCTTCTATGCGCTGTCGGCACTTATGAACAAGCCT CTAATCACTGTTACTAACTCCAAAATCTTGTTGGTTCTCTTCTACCCCCTCAACTCCTGTGCCAATCCGT TTCTCTATGCTATTTTCACCAAGGCCTTCCAGAGGGACGTGTTCATCCTGCTCAGCAAGTTTGGCATCTG CAAACGCCAGGCCCAGGCCTATCAGGGTCAGAGAGTCTGTCCCAACAATAGCACTGGTATTCAGATCCAA AAGATTCCCCAGGACACGAGGCAGAGTCTCCCCAACATGCAAGATACCTATGAACTGCTTGGAAACTCCC AGCTAGCTCCAAAACTGCAGGGACAAATCTCAGAAGAGTATAAGCAAACAGCCTTGTAAAGGAAAGGCTA CGCTAGTCACAGTGAGACTTACAAAAGGCTGGTTTCTTGAACATGCGTTCCAGTCCCGTGACATGTGAAC ACATAGGTTCATGCAGGTGATGATTCATAGGGTCAGAGTTCATCTCTAGAAAGTATTGCCTC (SEQ ID NO:1)

FIGURE 1A

MRPGSLLLLVLLLALSRSLRGKECASPPCECHQEDDFRVTCKELHRIPSLPPSTQTLKLIETHLKTIPSLAFSSLPN ISRIYLSIDATLQRLEPHSFYNLSKMTHIEIRNTRSLTYIDPDALTELPLLKFLGIFNTGLRIFPDLTKIYSTDIFF ILEITDNPYMTSVPENAFQGLCNETLTLKLYNNGFTSVQGHAFNGTKLDAVYLNKNKYLTAIDNDAFGGVYSGPTLL DVSSTSVTALPSKGLEHLKELIAKDTWTLKKLPLSLSFLHLTRADLSYPSHCCAFKNQKKIRGILESLMCNESSIRN LRQRKSVNILRGPIYQEYEEDPGDNSVGYKQNSKFQESPSNSHYYVFFEEQEDEVVGFGQELKNPQEETLQAFESHY DYTVCGDNEDMVCTPKSDEFNPCEDIMGYRFLRIVVWFVSLLALLGNIFVLLILLTSHYKLTVPRFLMCNLAFADFC MGVYLLIASVDLYTHSEYYNHAIDWQTGPGCNTAGFFTVFASELSVYTLTVITLERWYAITFAMRLDRKIRLRHAY TIMAGGWVSCFLLALLPMVGISSYAKVSICLPMDTDTPLALAYIVLVLLLNVVAFVVVCSCYVKIYITVRNPQYNPR DKDTKIAKRMAVLIFTDFMCMAPISFYALSALMNKPLITVTNSKILLVLFYPLNSCANPFLYAIFTKAFQRDVFILL SKFGICKRQAQAYQGQRVCPNNSTGIQIQKIPQDTRQSLPNMQDTYELLGNSQLAPKLQGQISEEYKQTAL (SEQ ID NO:2)

FIGURE 1B

<u>underlined</u> = deleted in targeting construct

[] = sequence flanking Neo insert in targeting construct

[CAGCGTCAGACGCAGGGCACTGAGAATGTGCGACAGCGCGCAACGATGAAGTAGCCCAG AGGGTCCCTTGGAAAATGAGGCCAGGGTCCC] TGCTGCTGCTTGTTCTGCTGCTCGCCCT GTCCAGGAGCCTGCGGGGCAAAGAGTGTGCGTCTCCACCCTGTGA [GTGTCACCAGGAGG ACGACTTCAGAGTCACCTGCAAGGAGCTCCACCGAATCCCCAGCCTGCCGCCCAGCACCC AGACTCT] GAAGCTCATCGAGACTCATCTGAAGACCATACCCAGTCTTGCATTTTCGAGT CTGCCCAATATTTCCAGGATCTATTTATCTATAGATGCAACTCTGCAGCGGCTGGAACCA CATTCTTTCTACAATTTGAGTAAAATGACTCACATAGAAATCCGGAACACCAGAAGCTTA ACCTATATAGACCCTGATGCCTTGACAGAGCTCCCCTTGCTCAAGTTTCTTGGCATTTTC AATACTGGACTTAGAATATTCCCTGACTTGACCAAAATTTATTCCACGGACATATTCTTT ATACTTGAAATCACAGACAACCCTTACATGACTTCGGTCCCTGAAAACGCATTCCAGGGC CTATGCAATGAAACCTTGACCCTGAAACTGTACAACAATGGATTTACTTCAGTCCAAGGA GCTATAGACAACGATGCCTTTGGAGGAGTATACAGTGGACCAACTTTGCTAGATGTGTCT TCCACCAGCGTCACTGCCCTTCCTTCCAAAGGCCTGGAGCACCTCAAAGAACTGATCGCA AAAGACACCTGGACTCTCAAAAAGCTCCCGCTGTCGTTGAGTTTCCTCCACCTCACTCGG GCTGACCTCTCTTACCCGAGCCACTGCTGCGCTTTTAAGAACCAGAAGAAAATCAGGGGA ATCCTGGAGTCTTTGATGTGTAATGAGAGCAGTATCCGGAACCTTCGTCAAAGGAAATCA GTGAACATCTTGAGGGGTCCCATCTACCAGGAATATGAAGAAGATCCGGGTGACAACAGT GTTGGGTACAAACAAAACTCCAAGTTCCAGGAGAGCCCAAGCAACTCTCACTATTACGTC TTCTTTGAAGAACAAGAGGATGAGGTCGTTGGTTTCGGCCAAGAGCTCAAAAATCCTCAG GAAGAGACTCTCCAAGCCTTCGAGAGCCACTATGACTACACGGTGTGTGGGGACAACGAG GACATGGTGTGTACCCCCAAGTCGGACGAGTTTAACCCCCTGTGAAGATATCATGGGCTAC AGGTTCCTGAGAATCGTGGTGTGGTTTGTCAGTCTGCTGGCTCTCCTGGGCAATATCTTC GTCCTGCTCATTCTGCTAACCAGCCACTACAAATTGACCGTGCCGCGGTTCCTCATGTGC AACTTGGCCTTTGCAGATTTCTGCATGGGGGTATACCTGCTTCTCATTGCCTCTGTAGAC CTGTACACACTCTGAGTACTACAACCACGCCATCGACTGGCAGACGGGCCCTGGGTGC AACACGGCTGGCTTCTTCACTGTTTTCGCCAGTGAGTTATCAGTGTACACACTGACGGTC ATCACCCTGGAGCGATGGTACGCCATCACCTTCGCCATGCGCCTGGATAGGAAGATCCGC CTCAGGCACGCGTACACCATCATGGCTGGGGGCTGGGTTTCCTGCTTCCTCCCCCTG GACACCCCTCTTGCACTCGCATACATTGTCCTCGTTCTGCTGCTCAATGTTGTTGCCTTT GTTGTCGTCTGTTCCTGCTATGTGAAGATCTACATCACGGTCCGAAATCCCCAGTACAAC CCTCGAGATAAAGACACCAAGATTGCCAAGAGGGTGGCTGTGTTGATCTTCACTGACTTC ATGTGCATGGCGCCCATCTCCTTCTATGCGCTGTCGGCACTTATGAACAAGCCTCTAATC ACTGTTACTAACTCCAAAATCTTGTTGGTTCTCTTCTACCCCCTCAACTCCTGTGCCAAT CCGTTTCTCTATGCTATTTTCACCAAGGCCTTCCAGAGGGACGTGTTCATCCTGCTCAGC AAGTTTGGCATCTGCAAACGCCAGGCCCAGGCCTATCAGGGTCAGAGAGTCTGTCCCAAC AATAGCACTGGTATTCAGATCCAAAAGATTCCCCAGGACACGAGGCAGAGTCTCCCCAAC ATCTCAGAAGAGTATAAGCAAACAGCCTTGTAAAGGAAAGGCTACGCTAGTCACAGTGAG ACTTACAAAAGGCTGGTTTCTTGAACATGCGTTCCAGTCCCGTGACATGTGAACACATAG GTTCATGCAGGTGATGATTCATAGGGTCAGAGTTCATCTCTAGAAAGTATTGCCTC

FIGURE 2A

FIGURE 2B

Testes +	Epididvmis	Weight	(a)			0.224	0.226		0.181				0.087	0.180	0.076
Heart/	Body		(%)	0.694	0.719	0.485	0.559	0.535	0.570	0.499	0.610	0.455	0.452	0.478	0.520
	Heart	Weight	(a)	0.155	0.122	0.119	0.133	0.121	0.137	0.045	0.051	0.053	0.053	0.060	0.042
Thymus/	Body	Weight	(%)	0.367	0.354	0.224	0.265	0.354	0.258	0.111	0.048	0.266	0.290	0.279	0.012
	Thymus	Weight	(b)	0.082	0.060	0.055	0.063	0.080	0.062	0.010	0.004	0.031	0.034	0.035	0.001
Kidney/	Body	Weight	(%)	1.464	1.297	1.393	1.278	1.052	1.339	1.219	1.316	1.091	1.142	1.164	1.177
	Kidney	Weight	(b)	0.327	0.220	0.342	0.304	0.238	0.322	0.110	0.110	0.127	0.134	0.146	0.095
Liver/	Body	Weight	(%)	5.622	5.307	5.654	5.010	5.624	5.591	4.819	4.569	5.034	5.676	6.202	4.535
	Liver	Weight	(a)	1.256	0.900	1.388	1.192	1.272	1.344	0.435	0.382	0.586	0.666	0.778	0.366
Spleen/	Body	Weight	(%)	0.425	0.307	0.281	0.340	0.354	0.300	0.089	0.191	0.137	0.153	0.191	0.087
	Spleen	Weight	(g)	0.095	0.052	0.069	0.081	0.080	0.072	0.008	0.016	0.016	0.018	0.024	0.007
	Body	Weight	(g)	22.339	16.960	24.550	23.792	22.619	24.040	9.026	8.360	11.640	11.733	12.545	8.070
		Length	(cm)	10	8.25	9.5	9.7	8.5	თ	7.5	7	∞	7.6	∞	7
		Age	(days)	48	48	48	48	48	48	47	48	48	48	48	48
		Gender		Female	Female	Male	Male	Female	Male	Female	Female	Female	Male	Male	Male
				+/+	+/+	+/+	+/+	+/-	+/-	-/-	' -	- /-	-/-	-	+

FIGURE 3

						Spleen/		Liver/		Kidney/		Thymus/		Heart/	Testes +
		Age at		Body	Spleen	Body	Liver	Body	Kidney	Body	Thymus	Body	Heart	Body	Epididymis
	Gender	Test	Length W	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight	Weight
		(days)	(cm)	(g)	(g)	(%)	(a)	(%)	(g)	(%)	(a)	(%)	(b)	(%)	(6)
+/+	+/+ Female	308	9.5	9.5 25.191	0.222	0.8813	1.476	5.8592	0.353	1.4013	0.039	0.1548	0.145	0.5756	
+/+	+/+ Female	308	9.918	28.180	0.091	0.3229	1.447	5.1348	0.383	1.3591	0.043	0.1526	0.136	0.4826	
+/+	Male	308	11.025	55.089	0.182	0.3304	3.267	5.9304	0.694	1.2598	0.074	0.1343	0.219	0.3975	0.35
+/+	Male		=	42.613	0.136	0.3192	2.144	5.0313	0.485	1.1382	0.052	0.1220	0.201	0.4717	0.387
-/-	Female	307	7.978	7.978 19.561	0.030	0.1534	0.863	0.863 4.4118	0.184	0.9406	0.040	0.2045	0.109	0.5572	
-/-	Male	307	9.47	25.557	0.077	0.3013	1.394	5.4545	0.340	1.3304	0.025	0.0978	0.111	0.4343	0.401
- /-	Male	307	9.5	25.263	0.051	0.2019	1.232	4.8767	0.296	1.1717	0.027	0.1069	0.102	0.4038	0.389

FIGURE 4