

FCC Test Report

FOR:

Pearl Automation Inc.

Model Name: / Model Number:

RearVision Camera Frame / P110

Product Description:

RearVision consists of 2 main components. The "Car Adapter", which is an accessory that connects to the vehicle's OBD-II diagnostic port, and the "Camera Frame" which is an accessory that is mounted at the license plate of the vehicle. The "Car Adapter" will relay information from the "Camera Frame" and vehicle environmental and state information over Bluetooth/WiFi, and that information will be relayed to the phone over Bluetooth/WiFi and displayed to the driver via the phone app.

FCC ID: 2AG6M-P110

47 CFR Part 15.247 (DTS)

TEST REPORT #: EMC-PEARL-004-16001-15.247-P110-DTS-WLAN

DATE: 2016-9-29

FCC Recognized

A2LA Accredited

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: + 1 (408) 586 6200 • Fax: + 1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

V5.0 2015-10-27 © Copyright by CETECOM

TABLE OF CONTENTS

Test Report #:

1		sessment	
2	\mathbf{Ad}	ministrative Data	5
	2.1	Identification of the Testing Laboratory Issuing the Test Report	
	2.2	Identification of the Client	
	2.3	Identification of the Manufacturer	
3		uipment under Test (EUT)	
	3.1	Specification of the Equipment under Test	
	3.2	EUT Sample details	
	3.3	Ancillary Equipment (AE) details	
	3.4	EUT Sample Configuration.	
	3.5	Test modes of operation:	
4		bject Of Investigation	
5		mmary of Measurement Results	
6		asurement Uncertainty	
_		vironmental Conditions During Testing:	
7			
8		es of Testing:	
9		asurement Procedures	
	9.1	Radiated Measurement	
	9.2	Sample Calculations for Field Strength Measurements	
	9.3	Power Line Conducted Measurement Procedure	
	9.4	RF Conducted Measurement Procedure	
_	9.4.	· · · · · · · · · · · · · · · · · · ·	
1(asurements and Results	
	10.1	Maximum Conducted (Average) Output Power and EIRP	
	10.1		
	10.1		
	10.1		
	10.1	·	
	10.1		
	10.1	1	
	10.2		
	10.2		
	10.2		
	10.2	· · · · · · · · · · · · · · · · · · ·	
	10.2	*	
	10.2		
	10.2	1	
	10.3		
	10.3		
	10.3		
	10.3		
	10.3		
	10.3	1	
	10.3		
	10.4	Power Spectral Density	
	10.4	4.1 Selection of applicable test method	48

	10.4.2	Limits:	48
	10.4.3	Test Conditions:	
	10.4.4	Measurement procedure:	
	10.4.5	Test Data: 2.4 GHz Band	49
	10.4.6	Measurement Result	
	10.4.7	Measurement Plots: 2.4 GHz Band	50
1	0.5 Ra	diated Transmitter Spurious Emissions:	56
	10.5.1	Measurement according to ANSI C63.10 (2013)	5 <i>t</i>
	10.5.2	Limits:	
	10.5.3	Test Conditions:	57
	10.5.4	Measurement procedure:	
	10.5.5	Test Result:	57
	10.5.6	Measurement Result	57
	10.5.7	Test data/ plots: 2.4 GHz Band	58
11	EUT aı	nd Setup Pictures	72
12		quipment and Ancillaries used for tests	
13		n History	

Date of Report: 2016-09-29

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.247 of Title 47 of the Code of Federal Regulations and

No deviations were ascertained during the course of testing performed.

Company	Description	Model #
Pearl Automation Inc.	RearVision Camera Frame	P110

Responsible for Testing Laboratory:

Franz Engert

Sept 29, 2016	Compliance	(Compliance Manager)	
Date	Section	Name	Signature

Responsible for the Report:

James Donnellan

Sept 29, 2016	Compliance	(EMC Engineer)	
Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

Date of Report: 2016-09-29

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Address:	411 Dixon Landing Road Milpitas, CA 95035 U.S.A.
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Manager Compliance Services:	Franz Engert
Project Engineer:	Ruther Navarro

2.2 Identification of the Client

Applicant's Name:	Pearl Automation Inc.
Street Address:	100 Enterprise Way, Suite A101
City/Zip Code	Scotts Valley, CA 95066
Country	USA
Contact Person:	Hagan O'Connor / Erturk Kocalar
Phone No.	+1 408 655-3319 (Hagan) / +1 408 410-0144 (Erturk)
e-mail:	hagan@pearlauto.com / erturk@pearlauto.com.

2.3 Identification of the Manufacturer

Manufacturer's Name:	Dongguan Primax Electronic & Telecommunications Products Co., Ltd	
Manufacturers Address:	Liu Wu District, Shek Kit Town,	
City/Zip Code	DongGuan City, Guang Dong,	
Country	China	

Date of Report: 2016-09-29

3 Equipment under Test (EUT)

3.1 Specification of the Equipment under Test

Model #:	P110		
HW Version :	DVT1B		
SW Version :	001.668		
FCC-ID:	2AG6M-P110		
Product Description:	RearVision Camera Frame		
Regulatory Band:	Nominal band: 2400 – 2483.5 MHz		
Channels Used:	2412 MHz (Ch. 1) – 2462 (Ch.11), 11 channels		
Type(s) of Modulation:	802.11b/g/n with CCK, DQPSK, DBPSK + DSSS QBSK, BPSK, 16 QAM, 64 QAM + OFDM		
Modes of Operation:	Communicates with and transmits video traffic to the RearVision Car Adapter module		
Antenna Type:	1 Custom internal PCB Trace Antenna. For RF conducted measurements, a temporary connection was made from measurement equipment to the 500hm UFL port of the EUT.		
Max. Declared Antenna Gain:	Documented max antenna gain: 2.4GHz = 5 dBi		
Max. Conducted Output Power + Antenna Gain	24.12 dBm EIRP (19.12 dBm plus 5 dbi Antenna gain)		
Power Supply:	Internal Li-ion Rechargeable Battery (Solar)		
Rated Operating Voltage Vmin: 2.8 V DC - Vmax: 4.2V DC USB 4.4 VDC - 5.25 VDC			
Operating Temperature Range: Tlow: -20° - Tmax: 45° C			
Other Radios included in the Device:	5G WLAN BT 4.0		
Sample Revision:	■Prototype; □Production; □Pre-Production		

Date of Report: 2016-09-29

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	A2A6170576	DVT1B	001.668	Radiated Sample
2	A2A61008K4	DVT1B	001.668	Conducted Sample

3.3 Ancillary Equipment (AE) details

AE#	Туре	Model	Manufacturer	Serial Number	Notes
1	12W USB Power Adapter	A143	Apple	-	Used to charge internal battery when needed
2	MacBook Air	A1465	Apple	C2QQ606&G4FY	Used to setup channel modes prior to test.
3	Lamp	-	-	-	To stimulate solar charging

3.4 EUT Sample Configuration

EUT Set-Up #	Combination of AE used for test set up	Comments
1	EUT#1	The radio of the EUT was stimulated directly in a test mode not accessible by the end user. The internal antenna was connected.
2	EUT#2	The radio of the EUT was stimulated directly in a test mode not accessible by the end user. The measurement equipment was connected to the 50Ohm UFL port of the EUT.
3	EUT#1 + AE #1	The radio of the EUT was stimulated directly in a test mode not accessible by the end user. The internal antenna was connected.
4	EUT#1 + AE #3	The radio of the EUT was stimulated directly in a test mode not accessible by the end user. The internal antenna was connected.

Date of Report: 2016-09-29

CETECOM

3.5 Test modes of operation:

The below listed worst case test modes of operation have been established from the output power measurement and evaluation of long term test data available to the lab for the different data rates and modulations which are supported by the equipment.

Modes of Operation		Data rate (Mbps)	Modulation Scheme
	802.11b	1.0	DSSS
2.4 GHz	802.11g	6.0	BPSK
	802.11n (20 MHz)	6.5	BPSK

The device was configured with a manufacturer provided test SW, capable of setting the unit in different supported modulation schemes with data rates specified and user selected channels of operation.

The Device was set to continuous framed Tx (burst) mode per test SW and could thus be operated with > 98% duty cycle during testing of 80211b.

The EUT was tested on low, mid and high channels (2.4GHz) in 802.11b, 802.11g, and 802.11n (HT20) modes (n-mode is used with 20 MHz channel bandwidth (HT20) only).

Date of Report: 2016-09-29

4 Subject Of Investigation

The objective of the measurements applied by Cetecom Inc. was to establish compliance of the EUT as described under Ch. 3 of this Test Report, with the applicable criteria specified in FCC rules Part 15.247 of Title 47 of the Code of Federal Regulations.

This test report is to support a request for new equipment authorization under the FCC ID **2AG6M-P110**

All testing was performed on the product referred to in Section 3 as EUT.

Testing procedures are based on ANSI C63.10:2013 for DTS devices and FCC KDB 558074 D01 v03r05, "GUIDANCE FOR PERFORMING COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEMS (DTS) OPERATING UNDER §15.247" and

CETECOM

Date of Report: 2016-09-29

5 Summary of Measurement Results

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	Fail	NA	NP	Result
§15.247(e)	Power Spectral Density	Nominal	802.11b 802.11g 802.11n	•				Complies
§15.247(a)(1)	Emission Bandwidth	Nominal	802.11b 802.11g 802.11n	•				Complies
§15.247(b)(3)	Maximum Peak Conducted Output Power	Nominal	802.11b 802.11g 802.11n					Complies
§15.247(d)	Band edge compliance	Nominal	802.11b 802.11g 802.11n					Complies
§15.247(d)	TX Spurious emissions- Conducted	Nominal	802.11b 802.11g 802.11n					See Note
§15.247(d) §15.209(a)	TX Spurious emissions- Radiated	Nominal	802.11b 802.11n					Complies
§15.207(a)	AC Conducted Emissions <30MHz	Nominal	802.11b 802.11g 802.11n					-

NA= Not Applicable; NP= Not Performed.

Note 1: Conducted spurious emissions test against non-restricted band limits is NOT PERFORMED since radiated spurious emissions against more stringent restricted band limits over the complete measurement range (9kHz to 26GHz) has passed.

Date of Report: 2016-09-29

6 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

	Uncertainty in dB radiated <30MHz	Uncertainty in dB radiated 30MHz - 1GHz	Uncertainty in dB radiated > 1GHz	Uncertainty in dB Conducted measurement
standard deviation k=1	2.48	1.94	2.16	0.64
95% confidence interval in dB	4.86	3.79	4.24	1.25
95% confidence interval in dB in delta to Result (rounded up to next decimal point)		+/- 2.0 dB	+/- 2.3dB	+/- 0.7dB

7 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

• Ambient Temperature: 20-25°C

• Relative humidity: 40-60%

8 Dates of Testing:

April 22, 2016 - June 21, 2016, Sep 28, 2016

Date of Report: 2016-09-29

9 Measurement Procedures

9.1 Radiated Measurement

The radiated measurement is performed according to:

ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running sweeps at 1 and 4m antenna heights over the required frequency range with R&S Test-SW EMC32 for both antenna polarizations. During each frequency scan the turntable rotates by no more than 10 deg.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then again maximized through a fine search in frequency domain, maximized in the 360deg range of the turntable, and maximized over antenna height between 1m and 4m and for positioning of the EUT.
- The above procedure is repeated for transmission low mid and high channel.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A
 magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz,
 and two different horn antennas are used to cover frequencies up to 40 GHz.

Radiated Emissions Test Setup Below 30MHz Measurements

Page 13 of 73

Date of Report: 2016-09-29

9.2 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS $(dB\mu V/m)$ = Measured Value on SA $(dB\mu V)$ - Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency (MHz)	Measured SA (dBµV)	Cable Loss (dB)	Antenna Factor Correction (dB)	Field Strength Result (dBµV/m)
1000	80.5	3.5	14	98.0

9.3 Power Line Conducted Measurement Procedure

AC Power Line conducted emissions measurements performed according to: ANSI C63.4 (2014)

Date of Report: 2016-09-29

CETECOM

9.4 RF Conducted Measurement Procedure

9.4.1 Conducted Measurement Setup without companion device

Date of Report: 2016-09-29

CETECOM

10 Measurements and Results

10.1 Maximum Conducted (Average) Output Power and EIRP

10.1.1 **Limits:**

Maximum Peak Output Power:

FCC §15.247 (b)(3): 1W

10.1.2 **Test Procedure**

Duty cycle measurement according to FCC KDB 558074 D01 v03r05 section 6.0. Power measurement according to FCC KDB 558074 D01 v03r05 section 9.2.2.4. §15.247 permits the maximum (average) conducted output power to be measured. Using Method AVGSA-2 (Trace Averaging across on and off times of the EUT transmission followed by duty cycle correction.)

Spectrum Analyzer settings:

Maximum Average Output Power

Span ≥ 1.5 times the OBW.

RBW = 1-5 % of the OBW not to exceed 1 MHz

 $VBW \ge 3xRBW$

Sweep = auto

Detector function = RMS

Trace = Average of 100 traces

Use integrated band power method. Set channel bandwidth \geq OBW bandwidth of the emission being measured.

OBW values are given in section 7.2

10.1.3 Test Conditions:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
22° C	2	Тх	Battery, 3.8V DC

Date of Report: 2016-09-29

10.1.4 Test Result: 2.4 GHz Band

Measured Average Conducted Output Power (dBm)						
	Frequency (MHz)					
Mode	2412 2437 2462 Channel 1 Channel 6 Channel					
802.11b	15.21	19.12	15.33			
802.11g	11.97	14.50	12.13			
802.11n /MCS0 (20 MHz)	11.78	13.54	11.93			

In addition the Duty cycle for the corresponding modes was as follows based on measurements of the mid channel.

Duty Cycle Measured					
802.11b Channel 6 802.11g Channel 6 802.11n Channel 6					
99	97	97			

Accounting for Duty Cycle Adjustment for g and n mode

Duty Cycle Adjusted Average Conducted Output Power (dBm)						
	Frequency (MHz)					
Mode	2412 Channel 1	2462 Channel 11				
802.11b	15.21	19.12	15.33			
802.11g	12.1	14.63	12.26			
802.11n /MCS0 (20 MHz)	11.91	13.67	12.06			

10.1.5 Test Verdict: Passed

CETECOM

10.1.6 Test Data/plots: 2.4 GHz Band See plots below.

Date of Report: 2016-09-29

CETECOM

Duty Cycle Plots

Date of Report: 2016-09-29

1) T refers to the minimum transmission duration over which the transmitter is ON and is transmitting at its maximum power control level for the tested mode of operation

Mode	T = Min duration Tx is On.
80211.b	8.42 ms
80211.g	1.40 ms
80211.n	1.31 ms

Date of Report: 2016-09-29

CETECOM

10.2 Occupied Bandwidth (6 dB & 99%)

10.2.1 Limits:

§15.247 (a)(2)

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

10.2.2 Test Conditions:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
21.5° C	2	Тх	Battery

10.2.3 Measurement procedure:

For 6dB according to C63-10-2013 section 6.9.2 Occupied bandwidth Relative Measurement procedure.

For 99% according to C63-10-2013 section 6.9.3 power bandwidth (99%) measurement procedure in conjunction with the 99% power bandwidth function of the Spectrum Analyzer.

Spectrum Analyzer settings:

Span= 2 to 5 x the occupied BW

RBW= 1% to 5 % of the occupied BW, unless otherwise specified

VBW≥ 3xRBW, Detector: Peak- Max hold;

Sweep Time: Auto

Allow the trace to stabilize

10.2.4 Test Result: 2.4 GHz Band

Occupied Bandwidth (MHz)							
	Frequency (MHz)						
Mode	2412 2437 2462						
	Channel 1 Channel 6 Channel 11						
	6dB	99%	6dB	99%	6dB	99%	
802.11b	7.48	12.15	7.40	12.08	8.30	12.19	
802.11g	14.39	16.86	15.02	16.88	14.01	16.84	
802.11n	15.01	17.68	14.06	17.70	15.93	17.70	
(20MHz)							

10.2.5 Measurement Result

Pass.

10.2.6 Test Data/plots: 2.4 GHz Band

Date of Report: 2016-09-29

CETECOM™

10.3 Band Edge Compliance – at restricted and non-restricted band edges

10.3.1 Limits:

§15.209/15.205/15.247 (d)

Only spurious emissions are permitted in any of the frequency bands listed below:

*PEAK LIMIT= $74dB\mu V/m$ @3m =-21.23dBm

*AVG. LIMIT= $54dB\mu V/m$ @3m =-41.23dBm

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Limits non restricted band §15.247

FCC15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a). (see §15.205(c)).

10.3.2 Test Conditions:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
22.4° C	2	Tx	Battery, 3.8V DC

Date of Report: 2016-09-29

10.3.3 Measurement Procedure:

These measurements are performed according to FCC KDB 558074 D01 v03r05 DTS Measurement Guidance.

Per 11.1(b) As maximum conducted (average) output power was used to demonstrate compliance as described in 9.2, then the measured power in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum in-band peak PSD level in 100 kHz (i.e. -30 dBc).

Measurement method to establish reference

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to ≥ 1.5 times the DTS bandwidth.
- c) Set the $\overrightarrow{RBW} = 100 \text{ kHz}$.
- d) Set the VBW $\geq 3 \times RBW$.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

The Lower band edge emissions measured using average power measurements are shown to be -30dBc relative to the reference signal level, and per the KDB, If the peak-detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

Since high band edge (2483.5MHz) falls next to the restricted band (2483.5-2500MHz), it is measured as a restricted band. Measurements made according to KDB 558074 D01 v03r05 Section 12.2.5.2 Trace averaging across on and off times of the EUT transmissions followed by duty cycle correction.

Note: The power level documented in the operational description are used for band edge test.

Date of Report: 2016-09-29

10.3.4 Measurement Result:

Plot #	EUT operating mode	Band Edge	Band Edge Delta (dBc)	Limit (dBc) in case average output power measured	Result
1	802.11b	Lower, non-restricted	-40.84	-30	Pass
2	802.11g	Lower, non-restricted	-44.24	-30	Pass
3	802.11n	Lower, non-restricted	-44.58	-30	Pass

Plot #	EUT operating mode	Band Edge	Measured value	Corrected by Duty Cycle Correction Factor (dBm)	Corrected by Antenna Gain (dBi)	Limit (dBm)	Result
4	802.11b	Upper restricted average	-49.18	-49.18	-44.18	-41.23 avg	Pass
5	802.11g	Upper restricted peak	-50.77	-50.64	-45.64	-41.23 avg	Pass
6	802.11n	Upper restricted average	-48.3	-48.17	-43.17	-41.23 avg	Pass
7	802.11b	Upper restricted average	-37.29	-37.29	-32.29	-21.23 Pk	Pass
8	802.11g	Upper restricted peak	-27.64	-27.51	-22.51	-21.23 Pk	Pass
9	802.11n	Upper restricted average	-26.68	-26.55	-21.55	-21.23 Pk	Pass

10.3.5 Test Data/plots: 2.4 GHz Band

Date of Report: 2016-09-29

Date of Report: 2016-09-29

Center 2.4 GHz

3 MHz/

Span 30 MHz

10.3.6 Restricted Band Plots

Date of Report: 2016-09-29

Date of Report: 2016-09-29

Date of Report: 2016-09-29

Date of Report: 2016-09-29

Date of Report: 2016-09-29

Date of Report: 2016-09-29

10.4 Power Spectral Density

10.4.1 Selection of applicable test method

The DTS rules specify a conducted PSD limit within the DTS bandwidth during any time interval of continuous transmission.6 Such specifications require that the same method as used to determine the conducted output power shall also be used to determine the power spectral density

Hence method selected was per KDB 558074 v03r05 Section10.5. Method AVGPSD-2 (trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction

10.4.2 Limits:

§ 15.247 (e) For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

10.4.3 Test Conditions:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
24 ° C	2	Tx	Battery, 3.8V DC

10.4.4 Measurement procedure:

Measurement according to FCC KDB 558074 D01 DTS v03r05 section 10.2

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to at least 1.5 x the OBW
- 3. Set the RBW $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$. = 3 kHz,
- 4. $VBW \ge 3 \times RBW$ and sweep time = auto.
- 5. Detector = power averaging (RMS) or sample detector (when RMS not available).
- 6. Employ trace averaging (RMS) mode over a minimum of 100 traces.
- 7. Use the peak marker function to determine the maximum amplitude level
- 8. Duty Cycle Correction
- 9. Compare with limits

Date of Report: 2016-09-29

10.4.5 Test Data: 2.4 GHz Band

Conducted Power Spectral Density (dBm)						
Mode	2412 2437 246 Channel 1 Channel 6 Chann					
802.11b	1.80	2.26	2.11			
802.11g	-4.87	-5.04	-4.82			
802.11n	-6.05	-6.69	-5.74			

	DC Correction Power Spectral Density (dBm)						
	Frequency (MHz)						
Mode	2412 Channel 1	2437 Channel 6	2462 Channel 11	Limit			
802.11b	1.80	2.26	2.11	8 dBm			
802.11g	-4.74	-4.91	-4.69	8 dBm			
802.11n	-5.92	-6.56	-5.61	8 dBm			

10.4.6 Measurement Result Pass.

10.4.7 Measurement Plots: 2.4 GHz Band Power Spectral Density 802.11b 2412 MHz

Power Spectral Density 802.11b 2437 MHz

CETECOM

Power Spectral Density 802.11b 2462 MHz

Power Spectral Density 802.11g 2412 MHz

Power Spectral Density 802.11g 2437 MHz

Power Spectral Density 802.11g 2462 MHz

Power Spectral Density 802.11n -MCS0 (20MHz) 2412 MHz

Power Spectral Density 802.11n -MCS0 (20MHz) 2437 MHz

Date of Report: 2016-09-29

Power Spectral Density 802.11n -MCS0 (20MHz) 2462 MHz

Date of Report: 2016-09-29

10.5 Radiated Transmitter Spurious Emissions:

10.5.1 Measurement according to ANSI C63.10 (2013)

Analyzer Settings:

Frequency = 9 KHz - 30 MHz

RBW = 9 KHz Detector: Peak

<u>Frequency = 30 MHz – 1 GHz</u> Detector = Peak / Quasi-Peak

RBW=120 KHz (<1GHz)

Frequency > 1 GHz

Detector = Peak / Average

RBW= 1MHz

Plots reported here represent the worst case emissions for horizontal and vertical antenna polarizations and orientations of the EUT. Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

10.5.2 Limits: §15.247/15.205/15.209

Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

^{*}PEAK LIMIT= 74dBµV/m and

^{*}AVG. LIMIT= $54dB\mu V/m$

Date of Report: 2016-09-29

Table 1:

Frequency of emission (MHz)	Field strength (μV/m)	
30–88	100 (40dBμV/m)	
88–216	150 (43.5 dBμV/m)	
216–960	$200 (46 dB\mu V/m)$	
Above 960	500 (54 dBμV/m, average) (Peak limit: 74 dBμV/m,)	

Table 2:

Frequency of emission (MHz)	Field strength (µV/m)	Measurement Distance (m)
0.009-0.490	2400/F(kHz)	300
0.490–1.705	24000/F(kHz)	30
1.705–30.0	30	30

10.5.3 Test Conditions:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
22.5° C	1,3,4	Tx	Battery, Charger, Solar

10.5.4 Measurement procedure:

Measurement according to ANSI C63.10:2013 (also refer to section 6.1 in this test report)

10.5.5 Test Result:

Unless mentioned otherwise, the emissions outside the limit lines in the plots are from the transmit signal.

Plots reported here represent the worst case emissions for horizontal and vertical antenna polarizations and orientations of the EUT.

10.5.6 Measurement Result

Pass.

10.5.7 Test data/ plots: 2.4 GHz Band

Transmitter Radiated Spurious Emission: Ch Mid- 9kHz - 30MHz- 802.11b-mode

CETECOM

Transmitter Radiated Spurious Emission: Ch Low- 30 MHz - 1GHz- 802.11b-mode

------ Preview Result 2-PK+ [Preview Result 2.Restalt:2]Preview Result 1-RMS [Preview Result * FCC 15C AVG [..\]

Transmitter Radiated Spurious Emission: Ch Mid- 30 MHz – 1GHz- 802.11b-mode

Transmitter Radiated Spurious Emission: Ch High- 30 MHz – 1GHz- 802.11b-mode

Transmitter Radiated Spurious Emission: Ch Low- 1GHz - 3GHz- 802.11b-mode

Note: The signal above limit is the Transmit channel.

_____CETECOM™

Transmitter Radiated Spurious Emission: Ch Mid-1GHz-3GHz-802.11b-mode

Preview Result 2-PK+ [Preview Result 2.Result:2]Preview Result 1-RMS [Preview Result + FCC 15C AVG [...]

Note: The signal above limit is the Transmit channel.

Transmitter Radiated Spurious Emission: Ch High- 1GHz – 3GHz- 802.11b-mode

Preview Result 2-PK+ [Preview Result 2.Restit:2]Preview Result 1-RMS [Preview Result * FCC 15C AVG [...\]

Transmitter Radiated Spurious Emission: Ch Low- 3 GHz - 18 GHz- 802.11b-mode

Transmitter Radiated Spurious Emission: Ch Mid- 3 GHz – 18 GHz- 802.11b-mode

-1110 CETECOM™

Transmitter Radiated Spurious Emission: Ch High- 3 GHz - 18 GHz- 802.11b-mode

Transmitter Radiated Spurious Emission: Ch Mid 18GHz- 26 GHz - 802.11b-mode

<u>CETECOM</u>™

Transmitter Radiated Spurious Emission: Ch Mid-9kHz-30MHz-802.11n-mode

Transmitter Radiated Spurious Emission: Ch Low- 30 MHz – 1GHz - 802.11n-mode

Transmitter Radiated Spurious Emission: Ch Mid- 30 MHz - 1GHz - 802.11n-mode

Preview Result 2-PK+ [Preview Result 2.Result:2]
Preview Result 1-RMS [Preview Result 1.Result:1]
FCC 15C AVG [..\]

CETECOM

Transmitter Radiated Spurious Emission: Ch High- 30 MHz – 1GHz - 802.11n-mode

Note: The signal above limit is the Transmit channel.

Transmitter Radiated Spurious Emission: Ch Low-1GHz-3GHz-802.11n-mode

Preview Result 2-PK+ [Preview Result 2.Restalt:2] Preview Result 1-RMS [Preview Result + FCC 15C AVG [...]

Note: The signal above limit is the Transmit channel.

CETECOM

Transmitter Radiated Spurious Emission: Ch Mid-1GHz-3GHz-802.11n-mode

Preview Result 2-PK+ [Preview Result 2.Result 2] Preview Result 1-RMS [Preview Result + FCC 15C AVG [...]

Note: The signal above limit is the Transmit channel.

Transmitter Radiated Spurious Emission: Ch High- 1GHz - 3GHz- 802.11n-mode

Preview Result 2-PK+ [Preview Result 2.Result 2] Preview Result 1-RMS [Preview Result * FCC 15C AVG [...\]

Note: The signal above limit is the Transmit channel.

Transmitter Radiated Spurious Emission: Ch Low- 3 GHz - 18 GHz- 802.11n-mode

Transmitter Radiated Spurious Emission: Ch Mid- 3 GHz - 18 GHz- 802.11n-mode

CETECOM

Transmitter Radiated Spurious Emission: Ch High- 3 GHz – 18 GHz- 802.11n-mode

CETECOM

Transmitter Radiated Spurious Emission: Ch Mid 18GHz- 26 GHz - 802.11n-mode

Date of Report: 2016-09-29

11 EUT and Setup Pictures

Please refer to EMC-PEARL-004-16001-P110 -TestSetupPhotos.pdf

12 Test Equipment and Ancillaries used for tests.

Item Name	Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
Turn table	Turn table	EMCO	2075	N/A	N/A	N/A
MAPS Position Controller	Controller	ETS Lindgren	2092	0004-1510	N/A	N/A
Antenna Mast	Antenna Mast	EMCO	2075	N/A	N/A	N/A
High Pass Filter	Filter	5HC2700	Trilithic Inc.	9926013	Part of system of	calibration
High Pass Filter	Filter	4HC1600	Trilithic Inc.	9922307	Part of system of	calibration
6GHz High Pass Filter	Filter	HPM50106	Microtronics	001	Part of system of	calibration
Pre-Amplifier	Amplifier	JS4-00102600	Miteq	00616	Part of system of	calibration
Relay Switch Unit	Relay Switch Unit	Rohde&Schwarz	RSU	338964/001	N/A	N/A
Spectrum Analyzer	Analyzer	Rohde&Schwarz	FSU	200302	3 Years	Jun 2013
Antenna Biconilog 3142E	Biconlog Antenna	EMCO	3142E	166067	3 years	6/14/2014
Antenna Loop 6512	Loop Antenna	ETS Lindgren	6512	49838	3 years	3/13/2014
Antenna Horn 3115 SN 35111	Horn Antenna	EMCO	3115	35111	3 years	7/24/2015
Spectrum Analyzer FSU26	Spectrum Analyzer	R&S	FSU26	200065	3 years	7/4/2015
Antenna Horn 3116	Horn Antenna	ETS Lindgren	3116	70497	3 years	7/22/2015
Digital Barometer	Compact Digital Barometer	Control Company	35519-055	91119547	2 Years	4/7/2015
ESU 40	Receiver	R&S	ESU 40	100251	2 years	6/29/2015
Thermometer Humidity TM320	Thermometer Humidity	Dickson	TM320	5283196	1 Year	10/27/2015

Calibration details valid at the time of testing.

Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels.

Calibration due dates, unless defined specifically, falls on the last day of the month.

Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

Date of Report: 2016-09-29

13 Revision History

Date	Report Name	Changes to report	Report prepared by	
2016-09-29	EMC-PEARL-004-16001-15.247-	Initial version	James Donnellan	
2010-07-27	P110-DTS-WLAN	mittai version	James Donnellan	