LVC 3 - Glossary of Notation

X = Random Variable

X_t = Random Variable at time t

 $h = \text{lag value i.e if h=1 then } X_{t+h} \text{ is X at lag 1}$

∀ = indicates the "for all"

 μ_t = mean of the stochastic process

 $E(X_t)$ = Expected value of Stochastic Process X_t

 μ = mean of stochastic process is constant value

 t_1 , t_2 = t_1 and t_2 are the two different time stamps

 Σ = Summation

 $R_X(t1, t2)$ = AutoCovariance

 λ = window size of the time series (Random point which we choose)

N = The total number of samples

 $\hat{\mu}$ = The summation of X values where i is ranging from λ to N-1 divided by the subtraction of total number of samples and λ

 τ = t_1 - t_2 i.e, difference between past value and present value

 $\widehat{R}_{X}(\tau)$ = Sample autocovariance at each λ

 S_t = Seasonal Component of the time series

k = Seasonal period

 Y_{t} = Sequence of random variables

 \hat{Y}_t = time series after applying smoothing(removing the fine-grained variation between time steps)

 γ = parameter value from the fitting of the smoothing equation

w = A continuous value taken from a sample distribution of data

w_t = White Noise

 σ^2 = Varaince

 δ_{t1-t2} = delta i.e change in time

- p = The number of past orders to be included in the model
- a = parameter of the Auto Regressive model
- z = Variable of the polynomial
- *b* = parameter of the Moving Average model
- q = The order of moving average
- $X_t X_{t-1} = First Order differencing$
- A(z) = Matrix that represents the regressor values
- || || = Denotes the Norm of a Vector