<u>36-705 – Intermediate Statistics</u>

Key areas to understand

A pedagogical tool to track the key aspects of the lecture that the instructor emphasises, and as a checklist of things you have judged are important.

List what you feel a need to commit to memory later.

Week 1

<u>Lecture Notes 1 – Review of probability</u>

Youtube lecture 31/08/2016

- There was a lecture that covered earlier parts of the probability review that is not covered here.
- Understand that independence can be a physical fact, or an assumption that has to be evaluated.
- Distinction between parameter and random variable.
- The importance of the IID data to the statistical setting.
- Distinction between the distribution of IID random variables, and the (sampling) distributions of statistics/estimators of IID random variables.
- Source of stochasticity in sampling estimators, and their characterisation as random variables/deterministic functions of random variables.
- Properties of the mean and variance of sample mean and variance estimators i.e. properties
 of the sampling distribution, and their relation to the mean and variance of the underling IID
 random variables.

<u>Lecture Notes 2 – Inequalities</u>

Youtube lecture 31/08/2016

- The proof of Lemma 4 (as part of a strategy to prove Hoeffding) is not in the video footage.
- Appreciate role of probability bounds in machine learning, particularly Hoeffding's inequality.
- Probability bounds -> VC theory -> convergence bounds.
- Understand the proofs of the Gaussian tail, Markov, Chebyshev inequalities.

Youtube lecture 02/09/2016

- Understand the proofs of Hoeffding's lemma and Chernoff's method.
- Understand the proof of Hoeffding's inequality, the variational trick.
- Understand role of Cauchy-Schwarz and Jensen's inequality for to bound expectations.
- Application to Kullback-Leibler divergence as having certain desirable distance metric properties.
- Understand the proof of the bound on the expectation of the maximum of a series of IID random variables.
- Appreciate the relation between a "thin-tail" in a probability distribution and an exponential bound on the corresponding moment-generating function as a sub-Gaussian random variable.

Youtube lecture 07/09/2016

• Understand the computer-science definitions of little-o and Big-O notation.

- Understand the adaptation of these definitions into a statistical/probabilistic context i.e. little-op and Big-Op.
- Understand that they are both notions of convergence in probability and stochastic boundedness.
- Understand and be able to use arguments from mathematical analysis and probability inequalities to prove composite statements about random variables stipulated in this notation.

<u>Lecture notes 3 – Uniform bounds</u>

- Appreciate the limitations of Markov's, Chebyshev's and Hoeffding's inequality as bounds on one random variable.
- Appreciate that many applications in statistics and machine learning require bounds on multiple random variables.
- Understand the definition of the empirical CDF and theoretical CDF.
- Understand the distinction between pointwise and uniform convergence.
- Understand this distinction in context of estimation error on CDF and of training error in classification.