Vision artificielle neuromimétique et localisation de cible visuelle

ALBIGES Pierre (M2 NIC)

Superviseurs:

DAUCE Emmanuel (INS) - PERRINET Laurent (INT)

Vision

Vision naturelle?

Appréhender à la fois rapidement et avec précision notre environnement

Vision

Vision

Vision artificielle?

Permettre à des agents artificiels de • percevoir, analyser et appréhender des images et des vidéos

Vision artificielle neuromimétique?

Créer un modèle de vision artificielle s'inspirant de l'acuité variable et des saccades oculaires biologiques pour percevoir et décrire son envionnement

Machine learning?

Stage A

Stage B

Python + TensorFlow

Processus de décision markoviens

Stage A

Stage B

Base de données MNIST

Objectif de l'agent : détecter les coordonnées de la cible dans l'espace

Comportement du modèle

Stage A

Stage B

Wavelets

LogPolaire

Stage A

Stage B

Python + TensorFlow Torch

Filtres LogPolaire + Wavelets

Objectif de l'agent : prédire, dans l'espace, la probabilité de la présence de la cible

Comportement du modèle

Stage A

Stage B

Prédictions du modèle

Perspectives

Filtre colliculaire

Apprentissage

Filtres Gabor

Rapport erreur/distance

Rapport nombre saccades/distance initiale

Quantification nombre de saccades

Carte de certitude (label)

Bruit Perlin

Bruit MotionCloud

Sources

