Bases, dualité

Dans ce texte, K désigne un corps commutatif, d'élément unité $1 \neq 0$. Lorsque ce n'est pas précisé, E désigne un K-espace vectoriel.

1. Indépendance linéaire. Bases.

1.1. Familles génératrices; familles libres; bases Rappelons que pour tout ensemble d'indice I, l'ensemble E^I des familles à valeurs dans E est naturellement muni d'une structure de K-espace vectoriel, et que les familles presques nulles forment un K-sous espace vectoriel $E^{(I)}$.

Ceci s'applique notamment au cas E = K, amenant au K-espace vectoriel $K^{(I)}$.

Soit $\bar{x} = (x_i)_{i \in I}$ une famille (quelconque, pas nécessairement presque nulle!) d'éléments de E. On peut alors définir l'application $\varphi: K^{(I)} \to E$ qui à une famille presque nulle de scalaires $\bar{\alpha} = (\alpha_i)_{i \in I}$ associe la combinaison linéaire $\sum_{i=1}^n \alpha_i.x_i$. Cette application est K-linéaire. Elle est appelée **application linéaire associée à la famille** \bar{x} . Son image est l'ensemble $Vect(\bar{x})$ des combinaisons linéaires de \bar{x} .

Définition 1.1. On appelle famille génératrice (resp. famille libre) toute famille d'éléments de E telle que l'application linéaire associée soit surjective (resp. injective). Une famille qui est à la fois libre et génératrice est appelée base. Une famille non-libre est dite liée.

En d'autres termes :

- $-\bar{x}=(x_i)_{i\in I}$ est génératrice si tout élément de E est combinaison linéaire de \bar{x} .
- $-\bar{x}=(x_i)_{i\in I}$ est liée s'il existe une famille presque nulle mais non-nulle $\bar{\alpha}=(\alpha_i)_{i\in I}$ telle que $\sum_{i\in I}\alpha_i.x_i=0.$
- $-\overline{\bar{x}} = (x_i)_{i \in I}$ est libre si pour toute famille presque nulle $\bar{\alpha} = (\alpha_i)_{i \in I}$ vérifiant $\sum_{i \in I} \alpha_i . x_i$ on doit avoir $\alpha_i = 0$.
- $-\bar{x}=(x_i)_{i\in I}$ est une base de E si pour tout élément x de E il existe une et une seule famille presque nulle $\bar{\alpha}=(\alpha_i)_{i\in I}$ telle que $\sum_{i\in I}\alpha_i.x_i=x$
- 1.2. Base canonique Le K-espace vectoriel $K^{(I)}$ admet une base naturelle :

Théorème - **Définition 1.2.** La famille $\hat{\epsilon} = (\bar{\epsilon}_i)_{i \in I}$ d'éléments de $K^{(I)}$ définie par :

$$\bar{\epsilon}_i = (\delta_{ij})_{(j \in I)}$$
 (où δ_{ij} désigne le symbole de Kronecker)

est une base de $K^{(I)}$, appelée base canonique.

On va surtout se soucier du cas où I est fini, plus précisément l'ensemble des entiers compris entre 1 et n. Dans ce cas, $K^{(I)}$ est tout simplement K^n , et chaque $\bar{\epsilon}_k$ est le «vecteur» dont toutes les composantes sont nulles, sauf la k-ième qui vaut 1.

1.3. Image d'une famille par une application linéaire Soient E, F deux K-evs, et u une application K-linéaire de E dans F. À toute famille $\bar{x} = (x_i)_{i \in I}$ on associe la famille $(u(x_i))_{i \in I}$ d'éléments de F, que l'on note $u(\bar{x})$.

Pour tout $(\alpha_i)_{i\in I}$ dans $K^{(I)}$ on a:

$$(\alpha_i)_{i \in I} \to^{\varphi} \sum_{i=1}^n \alpha_i . x_i \to^u \sum_{i=1}^n \alpha_i . u(x_i)$$

ce qui montre que l'application linéaire associée à $u(\bar{x})$ est $\psi = u \circ \varphi$.

Théorème 1.3. Soit $\bar{e} = (e_i)_{i \in I}$ une base de E, et $\bar{f} = (f_i)_{i \in I}$ une famille (quelconque) d'éléments d'un K-ev F, indexée par le même ensemble I. Alors il existe une et une seule application K-linéaire u telle que :

$$u(\bar{e}) = \bar{f}$$

Cette application est surjective (resp. injective) si et seulement si \bar{f} est génératrice (resp. libre). En particulier, c'est un isomorphisme si et seulement si \bar{f} est une base de F. Corollaire 1.4. Si E admet une base $(e_i)_{i \in I}$ indexée par un ensemble I, alors E est isomorphe à $K^{(I)}$.

D'ailleurs, à ce propos :

Théorème 1.5 (admis). Tout K-espace vectoriel admet une base. Donc tout K-espace vectoriel est isomorphe à $K^{(I)}$ pour un ensemble I.

Corollaire 1.6. Si E admet une base $(e_i)_{i \in I}$, alors le K-espace vectoriel $\mathcal{L}_K(E,F)$ est isomorphe à F^I .

En particulier, toujours si E admet une base $(e_i)_{i\in I}$, le K-espace vectoriel $\mathcal{L}_K(E,K)$, appelé espace dual de E, est isomorphe à K^I . Ainsi, si I est un ensemble fini, on a $K^I = K^{(I)}$, et donc un espace vectoriel admettant une base finie est isomorphe à son dual.

2. Espaces vectoriels de dimension finie

Définition 2.1. Un K-espace vectoriel est dit de dimension finie s'il admet une famille génératrice finie.

2.1. Compléments sur l'indépendance linéaire

Lemme 2.2. Une famille dans E est liée si et seulement si il existe un élément de la famille qui est combinaison linéaire des autres.

Preuve : Une des implications est évidente. Voyons l'autre : supposons que $(x_i)_{i\in I}$ soit une famille liée de E : il existe une famille non-nulle mais presque nulle $(\alpha_i)_{i\in I}$ telle que $\sum_{i=1}^n \alpha_i.x_i = 0$. Soit k un indice pour lequel α_k est non-nul. Alors $x_k = \sum_{i \neq k} -\alpha_i(\alpha_k)^{-1}x_i$.

Lemme 2.3. Soit $\bar{e} = (e_i)_{i \in I}$ une famille dans E. Les assertions suivantes sont équivalentes :

- (1) \bar{e} est une base,
- (2) ē est une famille génératrice minimale (aucune sous-famille propre n'est génératrice),
- (3) \bar{e} est une famille libre maximale (aucune sur-famille propre n'est libre).

Preuve:

 $-(1) \Leftrightarrow (2)$: Si \bar{e} est une base, elle est génératrice, et aucun des e_i n'est combinaison linéaire des autres, ce qui montre qu'aucune sous-famille n'est génératrice.

Inversement, supposons que \bar{e} est une famille génératrice minimale. Si ce n'est pas une base, c'est qu'elle est liée, et d'après le Lemme 2.2 un des e_i est combinaison linéaire des autres. On en déduit que $(e_i)_{(i \in I \setminus \{i\})}$ est une famille génératrice, ce qui contredit la minimalité supposée.

 $-(1) \Leftrightarrow (3)$: Supposons que \bar{e} est une base. Elle est libre, et comme elle est aussi génératrice, tout élément de E est combinaison linéaire des e_i : ceci montre que toute sur-famille est nécessairement liée, et donc, que \bar{e} est une famille libre maximale.

Inversement, supposons que \bar{e} est une famille libre maximale. Si elle n'est pas génératrice, il existe alors un élément x de E qui n'est pas combinaison linéaire des e_i . Si on adjoint ce x à \bar{e} on obtient une sur-famille, qui doit donc être liée. Il existe donc une famille presque-nulle $(\alpha_i)_{i\in I}$ et un scalaire β tel que :

$$\beta.x + \sum_{i \in I} \alpha.e_i = 0$$

Comme x n'est pas combinaison linéaire des e_i , le scalaire β est nul, et on obtient que la famille $(e_i)_{i\in I}$ est liée. Contradiction.

Lemme 2.4. Soit $\bar{e} = (e_i)_{i \in I}$ une famille finie, de cardinal n, d'éléments de E. Alors toute famille de cardinal n+1 dont les éléments sont des combinaisons linéaires de \bar{e} est liée.

Preuve : Montrons le par récurrence sur n. C'est clairement vrai si n=1 : si $\bar{e}=\{e_1\}$, ses combinaisons linéaires sont les multiples $\alpha.e$; étant donnés deux tels multiples $a=\alpha.e_1$ et $b=\beta.e_1$ on a $\beta.a+(-\alpha).b=(\beta\alpha)e_1-(\alpha\beta)e_1=0$.

Supposons la propriété établie au rang n-1; et soit $a_i=\sum_{j=1}^n\alpha_j^i.e_j$ des combinaisons linéaires des e_j , pour i variant entre 1 et n+1. Si tous les α_j^n sont nuls, alors les a_i sont en fait des combinaisons linéaires des e_j pour $j \leq n-1$, et est donc liée par hypothèse de récurrence. Sinon, un d'entre eux, disons α_n^{n+1} , est non-nul. On considère alors la famille des éléments $a_i'=a_i-\frac{\alpha_n^i}{\alpha_n^{n+1}}.a_{n+1}$ avec $1\leq i\leq n$. Dans cette différence, le coefficient de e_n est annulé, ce qui montre que les a_i' forment une famille de n éléments qui sont chacun combinaison linéaire des

n-1 premiers e_j . Par hypothèse de récurrence, la famille des a_i' est liée : il existe des scalaires β_1, \ldots, β_n non tous nuls tels que :

$$0 = \sum_{i=1}^{n} \beta_i . a_i' = \sum_{i=1}^{n} \beta_i . a_i + (\sum_{i=1}^{n} \beta_i \frac{\alpha_n^i}{\alpha_{n+1}^i}) . a_{n+1}$$

La famille de tous les a_i est donc liée.

Corollaire 2.5. Si E est engendré par une famille à n éléments, alors toute famille libre de E est finie, de cardinal $\leq n$.

2.2. Le théorème de la dimension

Théorème 2.6 (Théorème de la base incomplète). Soit E un K-espace vectoriel **de dimension finie**, $(e_i)_{i\in I}$ une famille génératrice finie et $J\subset I$ tel que $(e_i)_{i\in J}$ est libre. Alors, il existe une partie L de I telle que $J\subset L\subset I$ et telle que $(e_i)_{i\in L}$ soit une base de E.

Preuve : Soit \mathcal{H} l'ensemble des parties L de I telles que $J \subset L \subset I$ et telle que $(e_i)_{i \in L}$ soit une famille libre de E. Il y a dans \mathcal{H} un élément L_0 de cardinal maximal. Alors, pour tout i dans $I \setminus L_0$, la famille des e_j pour j parcourant l'union de L_0 et de $\{i\}$ doit être liée; or, comme $(e_i)_{i \in L_0}$ est libre, ceci n'est possible que si e_i est combinaison linéaire de $(e_i)_{i \in L_0}$. Donc $\mathrm{Vect}((e_i)_{i \in L_0})$ contient tous les e_i , et donc E tout entier puisque $(e_i)_{i \in I}$ engendre E. C'est donc une famille libre et génératrice : une base de E.

Corollaire 2.7. Tout K-espace vectoriel de dimension finie admet une base.

Corollaire 2.8. Soit E un K-espace vectoriel de dimension finie, $(e_i)_{i \in I}$ une famille libre d'éléments de E et $(f_j)_{j \in J}$ une famille génératrice finie. Alors, on peut compléter $(e_i)_{i \in I}$ en une base de E en ajoutant exclusivement des éléments de $(f_j)_{j \in J}$.

Preuve : Appliquer le théorème de la base incomplète à la famille formée de l'union des e_i et des f_j , indexée donc par $I \cup J$, et en prenant comme sous-ensemble d'indice L la partie I de $I \cup J$.

Théorème - Définition 2.9. Soit E un K-espace vectoriel de dimension finie. Alors E admet une base; de plus les bases de E sont toutes finies et ont le même cardinal. Ce cardinal commun est la dimension de E. Il est noté $\dim E$, ou aussi $\dim_K E$.

Preuve : Soient $(e_i)_{1 \le i \le n}$, $(f_j)_{1 \le j \le m}$ deux bases de E. D'après le corollaire 2.5, comme E est engendré par $(e_i)_{1 \le i \le n}$ et que $(f_j)_{1 \le j \le m}$ est libre, on a $m \le n$. En inversant les rôles, on montre aussi $n \le m$.

Remarque 2.10. Il n'y a, à isomorphisme près, qu'un seul K-espace vectoriel de dimension $n: K^n$ (celui-ci est bien de dimension n puisqu'il admet une base de cardinal n: sa base canonique). En particulier, le dual d'un espace vectoriel E de dimension n est lui aussi de dimension finie n.

Exercice 1. Montrer que l'espace vectoriel $K_d[X]$ de degré $\leq d$ est de dimension finie d+1.

3. Sous-espaces vectoriels, applications linéaires en dimension finie

Dans toute cette section et la suivante (sauf à la Définition 3.6), on suppose que E est de dimension finie n.

3.1. Sous-espace vectoriels, espaces vectoriels quotient

Théorème 3.1. Tout sev de E est de dimension $\leq n$; le seul sev de E de dimension n est E lui-même.

Preuve : Soit $F \subset E$ un sev. D'après le Corollaire 2.5, toute famille libre de F admet au plus n éléments. Soit \bar{f} une famille libre de F de cardinal maximal k. D'après le Lemme 2.3 c'est une base de F.

Enfin, si son cardinal k est égal à n, c'est aussi une famille libre dans E maximale : c'est donc alors une base de E, et donc engendre E; ce qui montre l'égalité F = E.

Définition 3.2. Les sev de E de dimension 1 sont appelés droites; ceux de dimension 2 sont appelés plans.

Théorème 3.3. Tout sev F de E admet au moins un supplémentaire dans E; et pour tout supplémentaire G de F dans E on a:

$$\dim F + \dim G = \dim E$$

Preuve : Soit $(e_i)_{1 \leq i \leq k}$ une base de F; d'après le théorème de la base incomplète on peut la compléter en une base $(e_i)_{1 \leq i \leq n}$ de E; Vect $(e_i)_{1 \leq i \leq k}$ est alors un supplémentaire à F, de dimension n-k.

Par ailleurs, comme on l'a vu auparavant, les supplémentaires à F dans E sont tous isomorphes à E/F; ils ont donc tous la même dimension.

Plus généralement :

Théorème 3.4. Soient E_1, \ldots, E_k une famille finie de sous-espaces vectoriels, de dimensions n_1, \ldots, n_k . Alors, si la somme directe $E_1 \oplus \ldots \oplus E_n$ est directe, elle est de dimension $n_1 + \ldots + n_k$.

Preuve : En effet, l'union de bases de chacun des E_i forme une base de $E_1 \oplus ... \oplus E_n$.

On a aussi un corollaire immédiat du Théorème 3.3 (puisque tout supplémentaire est isomorphe à l'espace quotient) :

Théorème 3.5. Pour tout sev F de E on a :

$$\dim(E/F) = \dim E - \dim F$$

Il se peut que E/F soit de dimension finie sans que E soit de dimension finie :

Définition 3.6. On ne suppose plus a priori que E soit de dimension finie. Un sous-espace vectoriel F de E est dit **de codimension finie** si E/F est de dimension finie. La dimension de E/F est alors appelée **codimension de** F; elle est notée codimF.

Définition 3.7. Un hyperplan de E est un sev de codimension 1.

3.2. Applications linéaires Dans cette sous-section, u désigne une application linéaire $u: E \to F$ entre deux K-ev E, F. Rappelons que nous avons convenu que E est de dimension finie; mais cette convention peut être omise dans la définition suivante :

Définition 3.8. Le rang de u, noté rg u, est la dimension de Im u.

Bien sûr, si F est de dimension finie, le rang de u est toujours fini. Il en est de même si E est de dimension finie : en effet, l'image par u d'une famille génératrice de E est une famille génératrice de Imu.

Nous reprenons notre convention selon laquelle E est de dimension finie.

D'après le théorème de décomposition canonique, Im u est isomorphe au quotient $E/\ker u$. Donc d'après le Théorème 3.5 on obtient :

Théorème 3.9. Pour toute application linéaire $u: E \to F$ on a:

$$\dim \ker u + rgu = \dim E$$

On en déduit aisément :

Théorème 3.10. Soient E, F deux espaces vectoriels de même dimension (par exemple, E = F). Alors, une application linéaire $u : E \to F$ est injective si et seulement si elle est surjective, auquel cas c'est un isomorphisme.

4. Dualité

E désigne toujours un K-ev, mais nous ne supposons plus dans un premier temps qu'il est de dimension finie

4.1. Espace vectoriel dual Rappelons la définition de l'espace vectoriel dual de E:

Définition 4.1. L'espace dual d'un K-espace vectoriel E est le K-espace vectoriel $\mathcal{L}_K(E,K)$. Il est noté E^* .

De même que nous notons x un élément typique de E, nous noterons x^* un élément typique de E.

Attention! Celà ne signifie absolument pas que x^* soit associé à un élément x de E, par une application imaginaire * entre E et E^* , ou de toute autre manière! Nous savons déjà que E et E^* sont isomorphes (si E est de dimension finie), mais il n'existe pas un isomorphisme meilleur que les autres; il faut donc vraiment penser E et E^* comme des espaces vectoriels isomorphes, mais pas égaux : leur lien intime est la dualité, qui est justement notre sujet d'étude.

Pour tout x dans E et tout x^* dans E^* on note $\langle x^*, x \rangle$ le résultat de l'évaluation de x^* sur x (c'est donc un scalaire). Le lien naturel entre E et E^* est :

Théorème - Définition 4.2. L'application de $E^* \times E$ dans K définie par $(x^*, x) \mapsto \langle x^*, x \rangle$ est appelée crochet de dualité. C'est une application bilinéaire, ie. pour tout x* dans E*. l'application de E dans K qui envoie x sur $< x^*, x >$ est linéaire, et pour tout x dans E, l'application de E^* dans K qui envoie x^* sur $\langle x^*, x \rangle$ est elle aussi linéaire.

4.2. Bidual Puisque E^* est un K-ev, il admet lui-aussi un K-espace vectoriel dual, qu'on appelle **bidual de** E et qu'on note E^{**} .

Théorème - **Définition 4.3.** Pour tout x dans E, l'application \hat{x} de E^* vers K définie par :

$$\hat{x}(y^*) = y^*(x)$$

est une application K-linéaire. C'est donc un élément du bidual E^{**} .

 $L'application \ \psi: E o E^{**} \ qui \ envoie \ x \ sur \ \hat{x} \ est \ K$ -linéaire; on l'appelle application lin'eaire canonique de E dans E^{**} .

4.3. Orthogonalité

Définition 4.4.

- (1) $x \in E$ et $x^* \in E^*$ sont dits **orthogonaux** $si < x^*, x >= 0$.
- (2) Plus généralement, une partie X de E et une partie Y^* de E^* sont dites **orthogonales** si tout élément de X est orthogonal à tout élément de Y^* ; on note alors $X \perp Y^*$.
- (3) Pour toute partie X de E, l'ensemble des éléments de E* orthogonaux à tous les éléments de X est appelé l'orthogonal de X et est noté X^{\perp} .
- (4) Pour toute partie X^* de E^* , l'ensemble des éléments de E orthogonaux à tous les éléments de X^* est appelé **l'orthogonal de** X^* et est noté $(X^*)^{\top}$.

Toutes les propriétés suivantes sont aisées à démontrer :

Proposition 4.5.

- Pour toute partie X de E, X^{\perp} est un K-sev de E^* (même si X n'est pas un K-sev de E!).
- Pour toute partie X^* de E^* , $(X^*)^{\top}$ est un K-sev de E.
- $-0^{\perp} = E^*, 0^{\top} = E, E^{\perp} = \{0\}.$
- Pour toute partie X de E et toute partie Y^* de E^* les assertions suivantes sont équivalentes:
 - $-X\bot Y^*$
 - $\begin{array}{l} -X\subset (Y^*)^\top \\ -Y^*\subset X^\perp \end{array}$

Autres propriétés:

Soit X, Y deux parties de E:

- Inversion de l'inclusion : $(X \subset Y) \Rightarrow (Y^{\perp} \subset X^{\perp})$
- sev engendré : $X^{\perp} = (\operatorname{Vect}(X))^{\perp}$
- inclusion dans l'orthogonal de l'orthogonal : $X \subset (X^{\perp})^{\top}$
- **4.4.** Dualité en dimension finie On suppose désormais que E est de dimension finie n. Rappelons qu'alors E^* est de dimension finie n.
- 4.4.1. Base duale Nous avons déjà insisté sur le fait qu'il n'y a pas d'isomorphisme canonique entre E et E^* , c'est-à-dire, même s'il existe bien un isomorphisme entre E et E^* , il n'y a pas un moyen naturel d'en choisir un. Ainsi, il n'y a pas de correspondance entre naturelle entre les éléments de E et ceux de E^* .

Par contre, il y a un moyen naturel d'associer à toute base de E une base de E^* :

Théorème - Définition 4.6. Soit $(e_1,...,e_n)$ une base de E. Alors, il existe une unique base $(e_1^*,...,e_n^*)$ de E^* vérifiant :

$$\forall i, j \in \{1, ..., n\}, < e_i^*, e_j > = \delta_{ij}$$

Cette base est appelée base duale de la base $(e_1,...,e_n)$.

Démonstration. D'après le Théorème 1.3, pour tout i il existe une et une seule application Klinéaire de E vers K envoyant e_i sur 1 et les autres e_i sur 0 : cette application est un élément de E^* qu'on note e_i^* .

Cette famille est libre : en effet, si $(\alpha_1, ..., \alpha_n) \in K^n$ vérifie $\sum_{i=1}^n \alpha_i . e_i^* = 0$, alors, pour tout j entre 1 et n :

$$0 = <\sum_{i=1}^{n} \alpha_i . e_i^*, e_j > = \sum_{i=1}^{n} \alpha_i < e_i^*, e_j >$$
$$= \sum_{i=1}^{n} \alpha_i \delta_{ij}$$
$$= \alpha_j$$

Tous les α_j doivent donc être tous nuls, ce qui montre que $(e_1^*, ..., e_n^*)$ est une famille libre. Comme elle est de cardinal n, cette famille doit être une base.

Corollaire 4.7. Lorsque E est de dimension finie, l'application linéaire canonique $\psi: E \to E^{**}$ est un K-isomorphisme.

 $D\acute{e}monstration$. Soit x un élément de $\ker \psi$. Choisissons une base $(e_1,...,e_n)$ de E. Alors x est une combinaison linéaire de la forme $\sum_{i=1}^n \alpha_i.e_i$. Comme $\psi(x)$ est nul, son évaluation sur tout élément e_i^* de la base duale $(e_1^*,...,e_n^*)$ doit être nulle :

$$0 = < \sum_{i=1}^{n} \alpha_{i}.\psi(e_{i}), e_{j}^{*} > = \sum_{i=1}^{n} \alpha_{i} < \psi(e_{i}), e_{j}^{*} >$$

$$= \sum_{i=1}^{n} \alpha_{i} < e_{j}^{*}, e_{i} > \text{ (par definition de } \psi)$$

$$= \sum_{i=1}^{n} \alpha_{i} \delta_{ij}$$

$$= \alpha_{j}$$

Tous les α_j doivent donc être nuls, ce qui signifie que x est nul.

Donc, $\ker \psi = \{0\}$ est une injection K-linéaire; comme $\dim E^{**} = \dim E^* = \dim E$, ψ est un isomorphisme.

Corollaire 4.8. Toute base de E^* est la base duale d'une base de E.

 $D\acute{e}monstration$. Soit $(f_1^*,...,f_n^*)$ une base de E^* . Soit $(f_1^{**},...,f_n^{**})$ sa base duale dans E^{**} , et $(e_1,...,e_n)$ l'image de $(f_1^{**},...,f_n^{**})$ par l'inverse de ψ . Alors, pour tout i,j:

$$\langle f_i^*, e_j \rangle = \langle \psi(e_j), f_i^* \rangle$$
 (par définition de ψ)
 $= \langle f_j^{**}, f_i^* \rangle$ (par définition des e_j)
 $= \delta_{ij}$ (puisque $(f_1^{**}, ..., f_n^{**})$ est la base duale de $(f_1^*, ..., f_n^*)$)

Ceci montre que $(f_1^*, ..., f_n^*)$ est la base duale de $(e_1, ..., e_n)$.

4.5. Dimension des orthogonaux

Proposition 4.9. Pour tout sous-espace vectoriel F de E et tout sous-espace vectoriel G^* de E^* on a:

$$\dim F + \dim F^{\perp} = \dim E \quad et \quad F = (F^{\perp})^{\top}$$
$$\dim G^* + \dim(G^*)^{\top} = \dim E \quad et \quad G^* = ((G^*)^{\perp})^{\top}$$

Démonstration. Soit $(e_1, ..., e_n)$ une base de E obtenue en complétant une base $(e_1, ..., e_k)$ de F. Soit $(e_1^*, ..., e_n^*)$ la base duale. Alors, les éléments de F^{\perp} sont les combinaisons linéaires $x^* = \sum_{i=1}^n \alpha_i.e_i^*$ orthogonales à toutes les combinaisons linéaires des e_j pour $1 \le j \le k$, ce qui équivaut à ce que pour tout $1 \le j \le k$:

$$0 = <\sum_{i=1}^{n} \alpha_i \cdot e_i^*, e_j > = \alpha_i \delta_{ij}$$

ceci équivaut à ce que, pour tout $1 \le j \le k$, on ait : $\alpha_j = 0$; ie. que x^* soit en fait combinaison linéaire des e_i^* pour $k+1 \le j \le n$. En d'autres termes :

$$F^{\perp} = \text{Vect}(e_{k+1}^*, ..., e_n^*)$$

Donc F^{\perp} admet une famille libre génératrice de cardinal n-k: elle est donc de dimension $n-k=\dim E-\dim F$.

Soit maintenant $(e_1^*, ..., e_n^*)$ une base de E^* obtenue en complétant une base $(e_1^*, ..., e_k^*)$ de G^* . On sait que c'est la base duale d'une base $(e_1, ..., e_n)$ de E (cf. Corollaire 4.8). En raisonnant

comme ci-dessus, on obtient que $(G^*)^{\top}$ est engendré par la famille libre $(e_{k+1},...,e_n)$, et est donc de dimension n-k.

Pour conclure, on observe qu'on sait déjà que $(F^{\perp})^{\top}$ est un sev de E contenu dans F; or, nous venons de montrer qu'il doit être de dimension dim F; l'égalité s'en suit. On prouve l'égalité $G^* = ((G^*)^{\perp})^{\top}$ de manière similaire.

Ainsi, $F \leftrightarrow F^{\perp}$ est une correspondance biunivoque entre les espaces vectoriels de E et ceux de E^* ; cette bijection s'appelle **dualité**.

Remarquons en particulier :

Corollaire 4.10.
$$(E^*)^{\top} = \{0\}.$$