The Hong Kong Polytechnic University Department of Applied Mathematics AMA1120 Tutorial Set #08

Question 1. (Concept Level)

Consider two 2-vectors $\mathbf{a} := (a_1, a_2)^\mathsf{T}$ and $\mathbf{b} := (b_1, b_2)^\mathsf{T}$, the value of determinant is defined as

$$\det\left(\mathbf{a},\,\mathbf{b}\right) = \left| \begin{array}{cc} a_1 & b_1 \\ a_2 & b_2 \end{array} \right|.$$

- (a) Find $\lambda \in \mathbb{R}$ so that $\mathbf{a} \lambda \mathbf{b} \perp \mathbf{b}$.
- (b) Find $\|\mathbf{b}\| \|\mathbf{a} \lambda \mathbf{b}\|$, and argue $|\det(\mathbf{a}, \mathbf{b})|$ is equal to the area of the parallelogram spanned by \mathbf{a} and \mathbf{b} .

Question 2. (Concept Level)

Given 3-vectors $\mathbf{a} = (a_1, a_2, a_3)^\mathsf{T}$ and $\mathbf{b} = (b_1, b_2, b_3)^\mathsf{T}$, the cross product $\mathbf{a} \times \mathbf{b}$ is defined as

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}.$$

- (a) Show that
 - (i) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$

(ii)
$$(\alpha \mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (\alpha \mathbf{b}) = \alpha (\mathbf{a} \times \mathbf{b})$$

- (iii) $(\mathbf{a} + \mathbf{b}) \times \mathbf{c} = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{c}$
- (b) Explain that $\mathbf{a} \times \mathbf{b}$ has magnitude $\| \mathbf{a} \times \mathbf{b} \| = \| \mathbf{a} \| \| \mathbf{b} \| \sin \theta$, where $\theta \in [0, \pi]$ is the included angle between \mathbf{a} and \mathbf{b} ; and the direction is defined based on right hand grip rule:

Question 3. (Basic Level)

Compute the following cross products:

(a)
$$(2, 3, 6) \times (1, -4, 0)$$

(b)
$$(1, -4, 0) \times (-3, 1, -2)$$

(c)
$$(2, 3, 6) \times (-3, 1, -2)$$

Question 4. (Basic Level)

Compute the following inner products (aka dot products):

(a)
$$\langle (2,3,6), (1,-4,0) \rangle$$

(b)
$$\langle (1, -4, 0), (-3, 1, -2) \rangle$$

Question 5. (Concept Level)

Show, by the language of vectors and the knowledge of determinants, that

$$\frac{1}{2} \left| \begin{array}{ccc} 1 & a_1 & b_1 \\ 1 & a_2 & b_2 \\ 1 & a_3 & b_3 \end{array} \right|$$

is equal to the area of $\triangle ABC$ where A, B and C are the points (a_1, b_1) , (a_2, b_2) and (a_3, b_3) .

Question 6. (Exam Level)

Given parallel planes Π_1 : 2x - 2y + z = 5 and Π_2 : 2x - 2y + z = 20.

- (a) Show that $\mathbf{n} = (2, -2, 1)$ is normal to Π_1 and Π_2 .
- (b) Find the distance between the given planes.

Question 7. (Standard Level)

Consider the vectors $\mathbf{x} = (2, 3, 6)$, $\mathbf{y} = (1, -4, 0)$ and $\mathbf{z} = (-3, 1, -2)$.

- (a) Denote the unit vector in the direction of \mathbf{x} by $\hat{\mathbf{x}}$. Find $\hat{\mathbf{x}}$.
- (b) Calculate the $\operatorname{proj}_{\hat{x}} y$ and $\operatorname{proj}_{\hat{x}} z$.
- (c) Find the area of the triangle with vertices P(2, 3, 6), Q(1, -4, 0) and R(-3, 1, -2).

Question 8. (Standard Level)

- (a) Show that the vector $\mathbf{n} = (a, b)$ is perpendicular to the line defined by the equation ax + by + c = 0 in the plane.
- (b) Show that the shortest distance between the point P_0 (x_0, y_0) to the line ax + by + c = 0 is

$$\frac{ax_0 + by_0 + c}{\sqrt{a^2 + b^2}}.$$

Question 9. (Smart Level)

Use determinants to find the equation of

- (a) a straight line in \mathbb{R}^2 passing through (2, 1) and (3, 5);
- (b) a plane in \mathbb{R}^3 passing through (1, 0, 0), (2, 1, 0) and (3, 5, 1);
- (c) a circle in \mathbb{R}^2 passing through (1, 0), (2, 1) and (3, 5).

For part (a), find the equation of line in vector form.

Question 10. (Challenging Level with Fun)

Show that the area of polygon with vertices $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ can be given by

$$\frac{1}{2} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \\ x_1 & y_1 \end{vmatrix} = \frac{1}{2} | (x_1 y_2 - x_2 y_1) + (x_2 y_3 - x_3 y_2) + \dots + (x_n y_1 - x_1 y_n) |$$

Question 11. (Challenging Level with Fun, Not Linear Algebra)

(a) Show that the area of regular n-sided polygon with radius of circumcircle R is given by

$$nR^2 \sin \frac{\pi}{n} \cos \frac{\pi}{n} = \frac{1}{2} nR^2 \sin \frac{2\pi}{n}$$

- (b) Show also that $\lim_{n \to \infty} \frac{1}{2} nR^2 \sin \frac{2\pi}{n} = \pi R^2$.
- (c) Using excel or otherwise, try a numerical experiment to find the smallest integer n such that $\frac{1}{2}n\sin\frac{2\pi}{n}$ and π have no difference up to 5 decimal places.