LINGUAGENS FORMAIS E AUTÔMATOS

AUTÔMATO DE PILHA

Gabriel Schramm, Henrique Mesquita, Lucas Bettio e Willian Cavalheiro

Ciência da Computação 2023

O que são Autômatos de Pilha?

O autômato de pilha é um modelo análogo ao autômato finito, Semelhante a um AFND porém com um componente adicional para representar uma memória auxiliar na forma de uma pilha, seguindo o conceito de FIFO(First In, First Out).

A pilha é independente da fita de entrada e os estados do autômato em si são finitos mas a capacidade de armazenamento da pilha é infinita, entretanto só pode ler e escrever o elemento que estiver no topo da pilha.

ENTENDENDO A DIFERENÇA

- Usam a informação armazenada no topo da pilha para validar qual transição será feita.
- A pilha é uma ferramenta que auxilia na tomada de decisão do autômato.
- Manipulam a pilha ao realizar transições.
- Durante o processo de análise, ele pode remover ou adicionar elementos na pilha.
- Essa capacidade permite o processamento de linguagens mais complexas.

A TRANSIÇÃO

- A transição ocorre ao analisar o símbolo atual da entrada, o estado atual e o topo da pilha.
- A pilha é uma ferramenta extra que ajuda no processo de transição, ela permite que o autômato armazene de forma temporária informações importantes.
- São poderosos e flexíveis.
- A grande diferença entre ele e outros autômatos é a manipulação da pilha em si, enquanto os demais apenas manipulam um novo estado como resultado da transição.

Curiosidade!

Se um autômato finito possuir acesso a duas pilhas, seu poder e capacidade computacional serão equivalentes ao de uma máquina de Turing.

FORMALISMO

7-UPLA

P = (Q, Σ, Γ, δ, q0, Z0, F)

Elemento	Descrição
Q	conjunto finito de estados
Σ	alfabeto (símbolos de entrada)
Γ	alfabeto finito da pilha
δ	função de transição - δ: Q x (Σ ∪λ }) x Γ→Q x Γ*
q0	estado inicial
ZO	símbolo de início da pilha (opcional)
F	conjunto de estados finais.

MOVIMENTAÇÃO

O que determinará se haverá movimentação pelos estados, é o número de elementos dentro da Função " δ ", composta pela tripla (q, σ , γ), onde "q" é o estado corrente, " σ " é o símbolo lido, e " γ " é o símbolo da pilha. que pode conter nenhum, um ou mais de um elementos:

- No caso de não haver elementos, não há troca de estado;
- Havendo um elemento, a movimentação será determinística;
- Para mais de um elemento, a transição é não determinística (explosão de estados)

AUTÔMATO

USABILIDADE E EXEMPLOS

COMPILADORES E INTERPRETADORES

Autômatos de pilha são amplamente utilizados na construção de compiladores e interpretadores de linguagens de programação.

ANÁLISE DE EXPRESSÕES MATEMÁTICAS

Autômatos de pilha são aplicados na análise de expressões matemáticas para verificar a validade e a correta ordem de operações.

PROCESSAMENTO DE LINGUAGENS NATURAIS

Autômatos de pilha são empregados no processamento de linguagens naturais, como análise de sentenças gramaticais e construção de chatbots.

VERIFICAÇÃO DE LINGUAGENS DE PROGRAMAÇÃO

Autômatos de pilha são usados para verificar se um programa em uma linguagem de programação obedece à sua gramática definida.

CÓDIGO

```
class Pilha {
   constructor() {
    this.pilha = [];
  push(item) {
    this.pilha.push(item);
  pop() {
    if (!this.vazia()) {
      return this.pilha.pop();
     } else {
      return null;
  vazia() {
    return this.pilha.length === 0;
function expressaoValida(expressao) {
  const pilha = new Pilha();
  for (let i = 0; i < expressao.length; i++) {</pre>
    const caractere = expressao[i];
    if (caractere === '(') {
      pilha.push(caractere);
     } else if (caractere === ')') {
      if (pilha.pop() === null) {
        return false;
  return pilha.vazia();
```