MA385 Part 1: Solving nonlinear equations

1.6: Fixed Point Iteration

Dr Niall Madden

25+29 September, 2025

Newton's method can be considered to be a special case of a very general approach called *Fixed Point Iteration* (**FPI**) or *Simple Iteration*.

The basic idea is:

If we want to solve
$$f(x) = 0$$
 in $[a, b]$, find a function $g(x)$ such that, if τ is such that $f(\tau) = 0$, then $g(\tau) = \tau$. Choose x_0 and set $x_{k+1} = g(x_k)$ for $k = 0, 1, 2, \ldots$

0. News!

- Week 4: Tutorials start next week (week beginning Monday, 29 Sep).
- A tutorial sheet is available at https://www.niallmadden. ie/2526-MA385/MA385-Tutorial-1.pdf. The tutor will work with you on that. Questions will be similar in style to the final exam.
- 3. Tutorials are Mondays at 10 in AC-201 and Thursday at 2 in ENG-3036. Go to either. If available, please go to the Monday class (larger room).
- 4. Week 5: we'll have a lab, using Python/Jupyter.

0. Outline

- 1 Introduction
- 2 How not to choose g
- 3 Fixed points and contractions

- Fixed Point
- 4 How many iterations?
- 5 Newton's method as a FPI
- 6 Exercises

For more details, see Section 1.4 (Relaxation and Newton's method) of Süli and Mayers, *An Introduction to Numerical Analysis*

Also, Chapter 3 of Epperson:

https://search.library.nuigalway.ie/permalink/f/3b1kce/TN_cdi_askewsholts_vlebooks_9781118730966

1. Introduction

Yet again, we want to solve

Given a function f(x), find $\tau \in [a, b]$ such that

$$f(\tau)=0.$$

Again, we'll try to find a sequence $\{x_0, x_1, \dots, x_k, \dots\}$, such that $x_k \to \tau$ as $k \to \infty$.

In this section, we'll consider one step methods, which, like Newton's method, compute x_{k+1} just from x_k .

The Method is called **Fixed Point Iteration** (FPI):

- ▶ Choose a function g such that, if $f(\tau) = 0$, then τ is a fixed point of g.
- Choose x_0 , and then iterate with $x_{k+1} = g(x_k)$.

 Bisection Secant ore two-step

 -1.6: Fixed Point Iteration Methods: $x_{k+1} = g(x_k)$.

1. Introduction

Example 1.6.1

Suppose $f(x) = e^x - 2x - 1$ and we are trying to find a solution to f(x) = 0 in [1,2]. Then we can take $g(x) = \ln(2x + 1)$.

If we take $x_0 = 1$, then we get the following sequence:

$$e^{x} - 2x - 1 = 0$$

$$= 0$$

$$e^{x} = 2x + 1$$

$$= 0$$

$$= 1 \text{ in } (e^{x}) = 0$$

$$= 1 \text{ in } (2x + 1)$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

2. How not to choose g

We have to be quite careful with this method: **not every choice** is g is suitable.

For example, suppose we want the solution to $f(x) = x^2 - 2 = 0$ in [1,2]. We could choose $g(x) = x^2 + x - 2$. Then, if take $x_0 = 1$ we get the sequence:

$$x_0 = 1$$
 $x_1 = g(x_0) = 1 + 1 - 2 = 0$.
 $x_2 = g(x_1) = 0^7 + 0 - 2 = -2$
 $x_3 = g(-2) = (-2)^7 - 2 - 2 = 0$
 $x_5 = 0$
of c.

2. How not to choose g

Before we do that in a formal way, consider the following...

Example 1.6.2

Use the Mean Value Theorem to show that the fixed point method $x_{k+1} = g(x_k)$ converges if |g'(x)| < 1 for all x near the fixed point.

By the MUT: given
$$\alpha, \beta$$
 there is a point $C \in [\alpha, b]$ Such that

$$g(b) - g(a) = g'(c)$$

$$= g(b) - g(a) = g'(c)(b - a).$$
Let $a = x_{k}$ and $b = \tau$. Then $g(\tau) - g(x_{k}) = g'(c)(\tau - x_{k})$

$$= \int_{\alpha}^{\infty} \tau - x_{k+1} = g'(c)(\tau - x_{k}) \Rightarrow |\tau - x_{k+1}| = |g'(c)||\tau - x_{k}|$$
So $|\tau - x_{k+1}| < |\tau - x_{k}|$

2. How not to choose g

This previous example is useful in two ways:

- 1. It introduces the tricks of using that $g(\tau) = \tau$ & $g(x_k) = x_{k+1}$.
- 2. It leads us towards the contraction mapping theorem.

Definition: fixed point

A function $g:\mathbb{R}\to\mathbb{R}$ is said to have a **fixed** point at x= au if g(au)= au

$$g(x) = x + 1$$
 does not have a fixed point

If g(x) has a fixed point (here f(x) = g(x) - x has a zero.

then $f(x) = f(x) - \infty$ has a zero

Theorem 1.6.1 (Fixed Point Theorem)

Suppose the function g is cont's on [a, b], and $a \le g(x) \le b$ for all $x \in [a, b]$. Then g(x) has a fixed point in [a, b].

Next suppose that g is a contraction. That is, g(x) is continuous and defined on [a, b] and there is a number $L \in (0, 1)$ such that

$$|g(\alpha) - g(\beta)| \le L|\alpha - \beta|$$
 for all $\alpha, \beta \in [a, b]$. (1)

Theorem 1.6.2 (Contraction Mapping Theorem)

Suppose that the function g is a real-valued, defined, continuous, and

- (a) maps every point in [a, b] to some point in [a, b], and
- (b) is a contraction on [a, b], \checkmark then
 - (i) g(x) has a fixed point $\tau \in [a, b]$,
- (ii) the fixed point is unique,
- (iii) the sequence $\{x_k\}_{k=0}^{\infty}$ defined by $x_0 \in [a,b]$ and $x_k = g(x_{k-1})$ for $k=1,2,\ldots$ converges (at least linearly) to τ .
- (i) is true because of Thm 1.6.1 (sine a £ g(x) & b \(\text{X} \in \(\(\alpha \) (\alpha \)

3. Fixed points and contractions

Fixed Point

Proof of (ii) (that
$$\tau$$
 is unique).
Suppose that g has two fixed points τ , and τ_2 , and $\tau_1 \neq \tau_2$
So $g(\tau_i) = \tau_1$ $g(\tau_2) = \tau_3$

Then $|T_1 - T_2| = |g(T_1) - g(T_2)|$ L L | T1 - T2 |

$$\angle L | C_1 - C_2 |$$

0 21 21 12,- 22 / 12,- 22 which is not possible.

3. Fixed points and contractions

Fixed Point

(iii) Show that
$$x_k \rightarrow \tau$$
 of $|\tau - x_k| = |g(\tau) - g(x_{k-1})|$

$$\leq L|\tau - x_{k-1}|$$

So | T - x, | ≤ L | T - x0 |

And, in general IT-IKI 5 1 T-X01 Since OLLLI so LK->00 00 K->00

ス, 一つて

So 17-2/2/30 as k->∞.

4. How many iterations?

The algorithm generates as sequence $\{x_0, x_1, \dots, x_k\}$. Eventually we must stop. Suppose we want the solution to be accurate to say 10^{-6} , how many steps are needed? That is, how big do we need to take k so that

$$|x_k - \tau| \le 10^{-6}$$
?

The answer is obtained by first showing that

$$|\tau - x_{k}| \leq \frac{L^{k}}{1 - L}|x_{1} - x_{0}|.$$

This is because
$$|\tau - x_{0}| = |\tau - x_{1} + x_{1} - x_{0}|$$

$$\leq_{0} |\tau - x_{0}| \leq |\tau - x_{1}| + |x_{1} - x_{0}|$$

$$= \sum_{0} |\tau - x_{0}| \leq |g(\tau) - g(x_{0})| + |x_{1} - x_{0}|$$

$$\leq_{0} |\tau - x_{0}| \leq L |\tau - x_{0}| + |x_{1} - x_{0}|$$

$$= \sum_{0} |\tau - x_{0}| \leq L |\tau - x_{0}| \leq L |x_{1} - x_{0}|$$

4. How many iterations?

Example 1.6.3

Suppose we are using FPI to find the fixed point $\tau \in [1,2]$ of $g(x) = \ln(2x+1)$ with $x_0 = 1$, and we want $|x_k - \tau| \le 10^{-6}$, then we can use (2) to determine the number of iterations required.

Here
$$g'(x) = \frac{2}{2x+1}$$
. So, on $[1/2] |g'(x)| \le g(i) = \frac{2}{3}$
So, from the Mean Value theorem,
$$|g(\tau) - g(x_0)| \le |g'(\eta)| |\tau - x_0|$$

$$\Rightarrow |\tau - x_0| \le (\frac{2}{3})|\tau - x_0|$$
So, take $L = \frac{2}{3}$. L
So, $|\tau - x_0| \le \frac{2}{3}$. $|x_0| \le \frac{2}{3}$. $|x_0| < \frac{2}{3}$. Then (thech) need $|x_0| \le \frac{2}{3}$. $|x_0| < \frac{2}{3}$.

Newton's method can be thought of as an example of a fixed point method, where we take

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

However, we know that, when Newton's Method converges it does so quadratically, whereas FPI converges (at least linearly).

Let's remind ourselves of the definition:

- We have a sequence of numbers ε_0 , ε_1 , ..., such that $\lim_{k\to\infty}\varepsilon_k=0$.
- ▶ These bound the errors: $|\tau x_k| \le \varepsilon_k$ Let $\tau = \lim_{k \to \infty} x_k$.
- $lackbox{We know that }\lim_{k\to\infty}x_k= au$
- ► Then we say that the sequence $\{x_k\}_{k=0}^{\infty}$ converges with at least order q if

$$\lim_{k\to\infty}\frac{\varepsilon_{k+1}}{(\varepsilon_k)^q}=\mu,$$

for some constant μ .

For q=1 we get linear convergence. If q=2, we say it is quadratic.

Suppose that we have a convergent Fixed Point Method, $x_{k+1} = g(x_k)$, but with the additional property that $g'(\tau) = 0$. Then, in fact, FPI converges (at least) quadratically): Use a truncated Taylor Series

$$g(x) = g(\tau) + (x-\tau)g'(\tau) + \frac{1}{2}(x-\tau)^{2}g''(\eta)$$
for some $\eta \in [x, \tau]$.

Then $g(x_{R}) - g(\tau) = (x_{R} - \tau)g'(\tau) + (x_{R} - \tau)^{2}\frac{g''(\eta)}{2}$.

Since $x_{R+1} = g(x_{R})$ and $\tau = g(\tau)$, and $g'(\tau) = 0$

We get
$$x_{R+1} = \tau = (x_{R} - \tau)^{2}\frac{g''(\eta)}{2}$$

Suppose that we have a convergent Fixed Point Method, $x_{k+1} = g(x_k)$, but with the additional property that $g'(\tau) = 0$. Then, in fact, FPI converges (at least) quadratically):

Since the method converges, so
$$\lim_{K\to\infty} x_K = \tau.$$

$$K\to\infty$$
So
$$\lim_{K\to\infty} g''(\eta) = g''(\tau) \quad \text{which is a constant.}$$

$$\lim_{K\to\infty} \frac{|\tau - x_K|^2}{|\tau - x_K|^2} = M$$
where $M = \frac{1}{2}g''(\tau)$

Finally, we show that, in the FPI setting, Newton converges quadratically:

we need to show that, if we write Neuton's Method as a FPI method, then
$$g'(\tau) = 0$$
.

Newton: $2x_{R+1} = 2x - \frac{f(x_R)}{f'(x_R)}$

So take $g(x) = x - \frac{f(x)}{f'(x)} - \frac{f(x)}{f'(x)} = \frac{f(x)f'(x)}{(f'(x))^2} = \frac{f(x)f'(x)}{(f'(x))}$

So $g'(\tau) = 0$ Since $f(\tau) = 0$

6. Exercises

Exercise 1.6.1

Is it possible for g to be a contraction on [a, b] but not have a fixed point in [a, b]? Give an example to support your answer.

Exercise 1.6.2

Show that $g(x) = \ln(2x + 1)$ is a contraction on [1,2]. Give an estimate for L. (Hint: Use the Mean Value Theorem).

6. Exercises

Exercise 1.6.3

Suppose we wish to numerically estimate the famous golden ratio, $\tau = (1 + \sqrt{5})/2$, which is the positive solution to $x^2 - x - 1$. We could attempt to do this by applying fixed point iteration to the functions $g_1(x) = x^2 - 1$ or $g_2(x) = 1 + 1/x$ on the region [3/2, 2].

- (i) Show that g_1 is not a contraction on [3/2, 2].
- (ii) Show that g_2 is a contraction on [3/2, 2], and give an upper bound for L.

6. Exercises

Exercise 1.6.4

In class we saw that if $g(\tau) = \tau$, and the fixed point method given by

$$x_{k+1}=g(x_k),$$

converges to the point τ (where $g(\tau) = \tau$), and if $g'(\tau) = 0$, then the method converges quadraticially.

Show that, in fact if

$$g'(\tau) = g''(\tau) = \cdots = g^{(p-1)}(\tau) = 0,$$

then it converges with order p.