

Motor Torque and Power

J. Michael McCarthy

DC Motors

PITTMAN brand brush commutated gearmotors is a product of Ametek Technical and Industrial products, http://www.ametektip.com/

Local Representative: Halbar Associates

Email: halbar@halbar.net

Contact: 3002 Dow Avenue, #412

Tustin, CA 92780 Phone: 714-731-2222 Fax: 714-368-9781 www.halbar-assoc.com

Series GM 8000 LO-COG® Brush Commutated DC Motors

Reduction Ratio	Maximum Continuous Torque	No-Load Speed	Peak Torque (Stall)	Torque Constant	Back EMF Constant	Resistance	Inductance	Rated Voltage	Encoder	Outline Drawing Page	Part Number
	oz·in (N·m)	rpm (rad/s)	oz·in (N·m)	oz-in/A (N-m/A)	V/krpm (V/rad/s)	Ω	mH	v		Number	
6.3:1 6.3:1	6 (.04)	1227 (128.5)	26 ¹ (.184)	3.06 (0.022)	2.27 (0.022)	10.8	5.4	19.1	None	PE-10	GM8712-11
19.5:1 19.5:1	15.5 (.109)	396 (41.5)	72 ¹ (.51)	3.06 (0.022)	2.27 (0.022)	10.8	5.4	19.1	None	PE-10	GM8712-21
60.5:1 60.5:1	46 (.325)	128 (13.4)	201 ^{1,2} (1.42)	3.06 (0.022)	2.27 (0.022)	10.8	5.4	19.1	None	PE-10	GM8712-31
187.7:1 187.7:1	100 (.71)	41 (4.3)	557 ^{1,2} (3.93)	3.06 (0.022)	2.27 (0.022)	10.8	5.4	19.1	None	PE-10	GM8712-41
187.7:1 187.7:1	100 (.71)	41 (4.3)	557 ^{1,2} (3.93)	3.87 (0.027)	2.86 (0.027)	17.2	8.62	24	None	PE-10	GM8712S030
6.3:1 6.3:1	14.5 (.102)	720 (75.4)	42 ¹ (.297)	3.09 (0.022)	2.29 (0.022)	4.33	2.34	12	None	PE-10	GM8724S008 ³
6.3:1 6.3:1	14.5 (.102)	720 (75.4)	42 ¹ (.297)	3.09 (0.022)	2.29 (0.022)	4.33	2.34	12	500 CPR	PE-10	GM8724S009 ³
6.3:1 6.3:1	14.5 (.102)	720 (75.4)	42 ¹ (.297)	6.18 (0.044)	4.57 (0.044)	17	9.35	24	None	PE-10	GM8724S010 ³
6.3:1 6.3:1	14.5 (.102)	720 (75.4)	42 ¹ (.297)	6.18 (0.044)	4.57 (0.044)	17	9.35	24	500 CPR	PE-10	GM8724S011 ³
9.9:1 9.9:1	21 (.148)	455 (47.7)	60 ¹ (.424)	3.09 (0.022)	2.29 (0.022)	4.33	2.34	12	None	PE-10	GM8724S012 ³
9.9:1 9.9:1	21 (.148)	455 (47.7)	60 ¹ (.424)	6.18 (0.044)	4.57 (0.044)	17	9.35	24	None	PE-10	GM8724S013 ³

Brush Commutated DC Motor

Figure 6.1 Diagram to explain the operation of the simple permanent magnet DC motor

The motor torque T is proportional to the armature current I, where k_t is the torque constant.

The current I is defined by the armature resistance R and the *difference* between the supply voltage V_s and the opposing electro-motive force V_b generated by the rotation of the armature windings.

The classical DC motor consists of permanent magnets, a wire coil and commutator.

The interaction of the current passing through the coil and the magnetic field of the magnets generates a torque on the axis of the armature holding the coil.

The commutator changes the direction of current in the coil as it turns so the torque is consistent.

$$T=k_tI, \quad I=rac{V_s-V_b}{R}, \quad ext{and} \quad V_b=k_e\omega,$$
 therefore $T=rac{k_tV_s}{R}-rac{k_tk_e\omega}{R}.$

Thus, the motor torque decreases linearly with increasing angular velocity.

Torque Speed Curve

Geared DC Motors

PITTMAN DC GEARHEAD MOTOR P/N GM8714F560

- Rated for 24VDC, 800 RPM, No Load; 163 ma. Gearhead Ratio 10:1
- Lab Test @ 24VDC

Speed	Current ·	Load		
800 RPM	163 ma.	N.L.		
520 RPM	1 amp.	26 ozin.		
Stall	2 amp	60 ozin.		

The primary parameters used to characterize a DC Motor are its stall torque and its no-load speed.

The torque speed curve of the motor is a line that connects these two points.

Torque-Speed Curve

A transmission (4:1 reduction plotted above) decreases the output speed and increases the output torque.

Power-Speed Curve

The power delivered by the motor is the product of its torque and angular velocity, $P=T\omega$. Notice that the power peak is at one-half the no-load speed.

A transmission shifts the peak of the power-speed curve to the desired range of the output.

Transmission

The choice of transmission components depends on the desired speed ratio:

- up to 2:1 can be achieved using a **linkage**. The links are stiff, and have low but variable inertia and low joint friction;
- up to 6:1 can be achieved by a **belt**, chain and cable drives. The pulleys of these drives have higher but constant inertia, and the belt, chain or cable introduce elastic and friction losses; and
- up to 8:1 and higher can be achieved by **gear trains**. Gears have constant inertia, and tooth flexibility introduces elastic and friction losses.

Linkages, belt drives and gear trains can be combined to achieve a desired speed ratio.

Summary

- o The torque of a DC motor decreases linearly with increasing angular velocity.
- o A motor's stall torque and no-load speed define its torque-speed curve.
- o The power peak of a DC motor occurs at one-half of its no-load speed.
- o A transmission shifts the peak of the power-speed curve to the desired range of the output.
- o A linkage, belt-drive, gears or a combination of these components can provide the speed-ratio that matches the motor to the desired application.
- Transmission losses arise from inertia, elastic and friction effects.