Nicholas M. Rapidis

Curriculum Vitae

Email: rapidis@stanford.edu Phone: +1 (510) 847-1414
Address: Varian Physics Building, Room 130 Nationalities: USA & EU (Greek)
382 Via Pueblo Mall, Stanford, CA 94305 Website: nicholas-rapidis.github.io

Education

2019-present Stanford University

Ph.D. Candidate in Physics

Member of the *DMRadio* collaboration

Advisor: Prof. Kent Irwin

2015-2019 University of California, Berkeley

B.A. in Physics. Graduated with High Distinction in General Scholarship and Departmental Honors

Thesis Title: Resonant Axion-Photon Scattering and Galactic Searches for Axions

Advisor: Prof. Karl van Bibber

2011-2015 Athens College High School, Psychiko, Greece

Completed International Baccalaureate Diploma Program in May 2015

Research Experience

2020-present Graduate Research Assistant, Stanford University

Advisor: Prof. Kent Irwin

Member of the Dark Matter Radio (DMRadio) collaboration. DMRadio is a series of experiments searching for ultra-light axions, with sensitivity to DFSZ axions in the 30-200 MHz (20-130 neV) range. Carrying out first experimental tests for DMRadio 50L, aimed at optimizing the design of the final experiment. Running analytic calculations and finite element electromagnetic simulations to determine sensitivity of DMRadio 50L, m³, and GUT.

In charge of cryogenic testing of Superconducting Quantum Interference Devices (SQUIDs) for cosmology projects, such as the BICEP Array.

2019-2020 Graduate Research Assistant, Stanford Institute for Theoretical Physics

Advisor: Prof. Savas Dimopoulos

Studied the physics and phenomenology of dense dark matter axion clumps (oscillons) in the context of oscillon-neutron star collisions. Using current sensitivity of radio telescopes, set limits on the abundance of oscillons in galactic dark matter halos in terms of the axion mass and symmetry breaking scale.

2016-2019 Undergraduate Research Assistant, UC Berkeley

Advisor: Prof. Karl van Bibber

Member of the Haloscope at Yale Sensitive to Axion Cold Dark Matter (HAYSTAC) collaboration. HAYSTAC is an experiment designed to search for μeV mass axions. Designed and refurbished microwave cavities used in experimental runs. Co-lead on refurbishment and optimization for cavity used in first fundamental physics result to evade the standard quantum limit. Introduced extensive use of finite element simulation techniques for characterization of axion haloscopes.

Teaching Experience

2021-present Mentor, Polygence

One-on-one mentoring of high school students on research projects in their pre-collegiate schooling. Projects have involved studies of cosmologies with different density parameters as well as dark matter halo fits and simulations.

Head Teaching Assistant, Stanford University

Spring 2022 Physics 25 – Modern Physics (Instructor: Kent Irwin).

Teaching Assistant, Stanford University

Fall 2020 Physics 46 – Heat and Optics (Instructor: Giorgio Gratta).

Spring 2020 Physics 43 – Electricity and Magnetism (Instructor: Mark Kasevich).

Summer 2017 Reader (Grader), UC Berkeley

Physics 137A – Quantum Mechanics I

Honors & Awards

2022 Young Scientist Award at Identification of Dark Matter 2022.

2019 Member of Φ BK

2018-2019 Haas Scholar: Received \$13,800 grant awarded to twenty UC Berkeley undergraduates across all

disciplines to conduct research in their senior year.

2017-2018 Berkeley Physics Undergraduate Research Scholar

2016-2019 UC Berkeley Dean's List

Member of the Greek National Linguistics Team: Participated in 12th International Linguistics

Olympiad in Beijing, China.

Skills

Programming & Software

 ${\bf Languages:} {\it Mathematica, Python, Matlab, LabVIEW}$

Software: COMSOL (AC/DC, RF, Heat Transfer), CST Microwave Studio, KiCad

Other: LATEX, HTML

Languages

English (native), Greek (native), German (advanced proficiency), Danish (elementary proficiency)

Experimental Tools

Operating and calibrating network analyzers for studies of electromagnetic devices, dips in liquid cryogens, operating dilution refrigerators, testing of quantum devices (e.g. SQUIDs), basic machine shop skills (operating mills, lathes, and drill presses for work on metallic parts)

Publications & Talks

Journal Articles

[INSPIRE Profile] [GOOGLE SCHOLAR PROFILE]

- [10] DMRadio-m³: A Search for the QCD Axion Below 1 μ eV
 - L. Brouwer, S. Chaudhuri, S. Chengsy, H.-M. Cho, W. Craddock, C.S. Dawson, A. Droster, A. Gavin, P.W. Graham, R. Henning, S.P. Ho, K.D. Irwin, F. Kadribasic, Y. Kahn, A. Keller, R. Kolevatov, S. Kuenstner, N. Kurita, A. F. Leder, D. Li, J. L. Ouellet, K. Pappas, A. Phipps, S. Rajendran, N.M. Rapidis, B.R. Safdi, C. Salemi, M. Simanovskaia, J. Singh, E. C. van Assendelft, K. van Bibber, K. Wells, L. Winslow, W. J. Wisniewski, B. A. Young. [arXiv:2204.13781][INSPIRE]
- [9] Introducing DMRadio-GUT, a search for GUT-scale QCD axions
 L. Brouwer, S. Chaudhuri, S. Chengsy, H.-M. Cho, W. Craddock, C.S. Dawson, A. Droster, A. Gavin, P.W. Graham, R. Henning, S.P. Ho, K.D. Irwin, F. Kadribasic, Y. Kahn, A. Keller, R. Kolevatov, S. Kuenstner, N. Kurita, A.F. Leder, D. Li, J. L. Ouellet, K. Pappas, A. Phipps, S. Rajendran, N.M. Rapidis, B.R. Safdi, C. Salemi, M. Simanovskaia, J. Singh, E.C. van Assendelft, K. van Bibber, K. Wells, L. Winslow, B. A. Young. [arXiv:2203.11246][INSPIRE]
- [8] A Model-Independent Radio Telescope Dark Matter Search
 A. Keller, S. O'Brien, A. Kamdar, N.M. Rapidis, A.F. Leder, K. van Bibber. Astrophys. J. 927 (2022)
 1, 71. [arXiv:2112.03439][INSPIRE]
- [7] A quantum-enhanced search for dark matter axions

 K.M. Backes, D.A. Palken, S. Al Kenany, B.M. Brubaker, S.B. Cahn, A. Droster, G.C. Hilton, S. Ghosh, H. Jackson, S. K. Lamoreaux, A.F. Leder, K.W. Lehnert, S.M. Lewis, M. Malnou, R.H. Maruyama, N.M. Rapidis, M. Simanovskaia, S. Singh, D.H. Speller, I. Urdinaran, L.R. Vale, E.C. van Assendelft, K. van Bibber, H. Wang, Nature 590, 238-242 (2021) [arXiv:2008.01853][inSPIRE]
- [6] Resonant Conversion of Dark Matter Oscillons in Pulsar Magnetospheres
 A. Prabhu and N.M. Rapidis, JCAP 10, (2020) 054 [arXiv:2005.03700][INSPIRE].
- [5] An improved analysis framework for axion dark matter searches

 D.A. Palken, B.M. Brubaker, M. Malnou, S. Al Kenany, K.M. Backes, S.B. Cahn, Y.V. Gurevich, S.K.

 Lamoreaux, S.M. Lewis, R.H. Maruyama, N.M. Rapidis, J.R. Root, M. Simanovskaia, T.M. Shokair,
 S. Singh, D.H. Speller, I. Urdinaran, K. van Bibber, L. Zhong, K.W. Lehnert, *Phys. Rev. D* 101,
 123011, (2020) [arXiv:2003.08510][INSPIRE].
- [4] Characterization of the HAYSTAC axion dark matter search cavity using microwave measurement and simulation techniques

 N.M. Rapidis, S.M. Lewis, K.A. van Bibber, Review of Scientific Instruments 90, 024706 (2019)

 [arXiv:1809.02246][INSPIRE].
- [3] Results from Phase 1 of the HAYSTAC microwave cavity axion experiment
 L. Zhong, S. Al Kenany, K.M. Backes, B.M. Brubaker, S.B. Cahn, G. Carosi, Y.V. Gurevich, W.F. Kindel, S.K. Lamoreaux, K.W. Lehnert, S.M. Lewis, M. Malnou, R.H. Maruyama, D.A. Palken,

N.M. Rapidis, J.R. Root, M. Simanovskaia, T.M. Shokair, D.H. Speller, I. Urdinaran, K.A. van Bibber, *Phys. Rev. D* 97, 092001, (2018) [arXiv:1803.03690][INSPIRE].

Design and Operational Experience of a Microwave Cavity Axion Detector for the 20-100 μeV Range

S. Al Kenany, M.A. Anil, K.M. Backes, B.M. Brubaker, S.B. Cahn, G. Carosi, Y.V. Gurevich, W.F. Kindel, S.K. Lamoreaux, K.W. Lehnert, S.M. Lewis, M. Malnou, D.A. Palken, N.M. Rapidis, J.R. Root, M. Simanovskaia, T.M. Shokair, I. Urdinaran, K.A. van Bibber, L. Zhong. Nuclear Instruments and Methods in Physics Research A 854 (2017) 11–24. [arXiv:1611.07123] [INSPIRE].

[1] First Results from a Microwave Cavity Axion Search at 24 μeV

B.M. Brubaker, L. Zhong, Y.V. Gurevich, S.B. Cahn, S.K. Lamoreaux, M. Simanovskaia, J.R. Root, S.M. Lewis, S. Al Kenany, K.M. Backes, I. Urdinaran, N.M. Rapidis, T.M. Shokair, K.A. van Bibber, D.A. Palken, M. Malnou, W.F. Kindel, M.A. Anil, K.W. Lehnert, G. Carosi, *Phys. Rev. Lett.* 118, 061302 (2017) [arXiv:1610.02580][INSPIRE].

Talks

[6] Status of DMRadio 50L and m³

Identification of Dark Matter, July 18-22, 2022, Vienna, Austria

[5] Modeling and optimizing DMRadio using an equivalent circuit formalism

APS April Meeting 2021, April 17-20, 2021, Virtual

[4] Electromagnetic sensing below the Standard Quantum Limit: 3 kHz to 300 MHz

APS March Meeting 2021, March 15-19, 2021, Virtual

[3] Characterization of the HAYSTAC dark matter detector cavity: microwave measurement and simulation

APS April Meeting 2019, April 13-16, 2019, Denver, CO

[2] Completion of Phase I and Preparation for Phase II of the HAYSTAC Experiment

14th Patras Workshop on Axions, WIMPs, and WISPs, June 18-22, 2018, DESY, Hamburg, Germany

Application of the Bead Perturbation Technique to a Study of a Tunable 5 GHz Annular Cavity

2nd Workshop on Microwave Cavities and Detectors for Axion Research, January 10-13, 2017, LLNL, Livermore, CA

Conference Proceedings

[8] Axion Dark Matter

[1]

C.B. Adams, et al., Snowmass 2021 - Whitepaper [arXiv:2203.14923][INSPIRE]

[7] New Horizons: Scalar and Vector Ultralight Dark Matter

D. Antypas, et al., Snowmass 2021 - Whitepaper [arXiv:2203.14915][INSPIRE]

[6] A Model-Independent Radio Telescope Dark Matter Search

A. Keller, S. O'Brien, A. Kamdar, N.M. Rapidis, A.F. Leder, K. van Bibber. Contributed to TAUP-2021. J. Phys.: Conf. Ser. 2156 012026 [INSPIRE]

[5] Probing the QCD Axion with DMRadio-m³

J.L. Ouellet, L. Brouwer, S. Chaudhrui, H.-M. Cho, C.S. Dawson, A. Droster, A. Gavin, P.W. Graham, R. Henning, S.P. Ho, K.D. Irwin, F. Kadribasic, Y. Kahn, A. Keller, R. Kolevatov, S. Kuenstner, A.F. Leder, D. Li, J.L. Ouellet, K. Pappas, A. Phipps, S. Rajendran, N.M. Rapidis, B.R. Safdi, C. Salemi, M. Simanovskaia, J. Singh, E.C. van Assendelft, K. van Bibber, K. Wells, L. Winslow, B. A. Young, Snowmass2021 – Letter of Interest

[4] DMRadio-GUT: Probing GUT-scale QCD Axion Dark Matter

S. Chaudhuri, L. Brouwer, H.-M. Cho, C. S. Dawson, A. Droster, A. Gavin, P. W. Graham, R. Henning, S. P. Ho, K.D. Irwin, F. Kadribasic, Y. Kahn, A. Keller, R. Kolevatov, S. Kuenstner, A.F. Leder, D. Li, J.L. Ouellet, K. Pappas, A. Phipps, S. Rajendran, N.M. Rapidis, B.R. Safdi, C. Salemi,

M. Simanovskaia, J. Singh, E.C. van Assendelft, K. van Bibber, K. Wells, L. Winslow, B.A. Young, Snowmass2021 – Letter of Interest

[3] HAYSTAC – Pioneering the Quantum Frontier

INSPIRE.

- S. Al Kenany, K.M. Backes, B.M. Brubaker, S. B. Cahn, A. Droster, G.C. Hilton, S. Ghosh, H. Jackson, S.K. Lamoreaux, A.F. Leder, K.W. Lehnert, S. M. Lewis, M. Malnou, R. H. Maruyama, D. A. Palken, N.M. Rapidis, M. Simanovskaia, S. Singh, D.H. Speller, I. Urdinaran, L.R. Vale, E. C. van Assendelft, K. van Bibber, H. Wang, *Snowmass2021 Letter of Interest*
- [2] Completion of Phase I and Preparation for Phase II of the HAYSTAC Experiment

 N.M. Rapidis, Contributed to the 14th Patras Workshop on Axions, WIMPs and WISPs, DESY in Hamburg, June 18 to 22, 2018. [arXiv:1809.05913][INSPIRE]
- [1] Application of the Bead Perturbation Technique to a Study of a Tuneable 5 GHz Annular Cavity

 N.M. Rapidis (2018), In: Carosi G., Rybka G., van Bibber K. (eds) Microwave Cavities and Detectors for Axion Research. Springer Proceedings in Physics, vol 211. Springer, Cham [arXiv:1708.04276]