- 1. Show that the converse of p4 is not true. That is, prove a counterexample of an asymmetric binary relation R with elements x and y such that $\neg xRy$ does not imply yRx.
- 2. Consider the set of all triples where each component is a real number, \mathbb{R}^3 . Let $x = (x_1, x_2, x_3)$ and $y = (y_1, y_2, y_3)$ and define the weak preference $x \leq^* y$ if $x_i \leq y_i$ for at least two out of the three components, i = 1, 2, 3.
 - (a) Show \leq^* is connected.
 - (b) Show \leq^* is not transitive by providing a counterexample.
 - (c) Define the strict preference $x \prec^* y$ by $x \preccurlyeq^* y$ but not $y \preccurlyeq^* x$.
 - i. Explain why it is equivalent to say $x \prec^* y$ if $x_i < y_i$ for at least two out of the three components, i = 1, 2, 3.
 - ii. Prove or give a counterexample: \prec^* is symmetric.
 - iii. Prove or give a counterexample: \prec^* is negatively transitive.