Lens model of multi-media

Index

Background Model of thin lens Model of telephoto lens Model of multi-media Conclusion

Background

● 기존 모델의 문제점

▶ 기존 모델.

Background

● 화각의 정의

▶ 사진 업계에서 화각의 의미.

> 즉, 초점=핀홀인 모델에서 화각이 정확하지 않다.

Background

● 기존 모델과 망원 렌즈 비교

▶ 기본 망원렌즈 모델.

▶ 제2주점이 물체 쪽으로 옮겨간다.

> 기존 모델에서는 상 쪽으로 옮겨간다.

Model of thin lens

● 얇은 렌즈 모델

> ynu 근추적법 사용

$$C_{I} = \frac{1}{R_{1}}, C_{2} = \frac{1}{R_{1}}$$

$$u_{I} = 0$$

$$n_{I} = 1$$

$$n_{2}' = 1$$

$$n_{1}'u_{1}' = -y_{I}(n_{1}'-n_{1})C_{I} + n_{I}u_{I} = -y_{I}(n_{2}-1)C_{I}$$

$$y_{2} = y_{I} + \frac{t(n_{I}'u_{I}')}{n_{I}'} = y_{I}(1 - \frac{(n_{2}-1)}{n_{2}}tC_{1})$$

$$n_{2}'u_{2}' = n_{I}'u_{I}' - y_{2}(n_{2}'-n_{2})C_{2} = -y_{I}(n_{2}-1)C_{I} - y_{I}(1 - \frac{(n_{2}-1)}{n_{2}}tC_{1})(1 - n_{2})C_{2}$$

$$u_{2}' = -y_{I}(n_{2}-1)(C_{1}-C_{2}+tC_{1}C_{2}\frac{(n_{2}-1)}{n_{2}})$$

$$f = -\frac{y_{I}}{u_{2}'}$$

$$t = 0$$

$$\therefore f = \frac{1}{(n_{2}-1)(C_{1}-C_{2})}$$

Model of thin lens

● 얇은 렌즈 모델의 특성

▶ 배율이 1인 얇은 렌즈

$$y_{2} = y_{1} + \frac{t(n_{1}'u_{1}')}{n_{1}'} = y_{1}(1 - \frac{(n_{2} - 1)}{n_{2}}tC_{1})$$

$$t = 0$$

$$\therefore y_{2} = y_{1}$$

- ▶ 주점의 위치가 모두 동일하기 때문에 앞 초점거리와 뒤 초점거리가 같다.
- ▶ 렌즈의 중심을 모든 광선이 통과한다.

Model of telephoto lens

● 망원렌즈 모델

▶ 망원 렌즈의 핀홀 카메라 모델링.

- ▶ 핀홀 카메라 초점이 물체 쪽으로 옮겨 간다.
- ▶ 화각 이외의 부분은 이미지 센서에 상이 맺히지 않는다.

Model of multi-media

● 다중매질 모델

- > 저수시 다른 화각이 적용되는 거리는 왜곡되어 더 길게 나타난다.
- > 왜곡 정도는 화각에 의존한다.

Model of multi-media

● 다중매질 초점거리 유도

$$\begin{aligned} \sin \theta_{full} &= \frac{\sqrt{S^2 + f_{full}^2}}{S} \\ \sin \theta_{empty} &= \frac{\sqrt{S^2 + f_{empty}^2}}{S} \\ \sin \theta_{full} &= n \sin \theta_{empty} \\ \frac{\sqrt{S^2 + f_{full}^2}}{S} &= n \frac{\sqrt{S^2 + f_{empty}^2}}{S} \\ f_{full} &= \sqrt{S^2 (n^2 - 1) + n^2 f_{empty}^2} \end{aligned}$$

$$heta_{full}$$
 = 저수시화각의 $heta_{empty}$ = 배수시화각의 f_{full} = 저수시초점 f_{empty} = 배수시초점 f_{empty} = 배수시

Conclusion

● 실험 결과

▶ 초점 거리 확인

	배수시	저수시	계산시
X축 초점거리	3480.6	4782.7	4752.5
Y축 초점거리	3472.8	4778.8	4705.3

(굴절률 = 1.33)

▶ 다중매질 모델 형성 확인 가능

Conclusion

● 실험 결과

- > 기존 방식 (Homography 이용)과 새로운 방식의 정확도 비교
 - ➤ 4mm 시료

	Homography 이용	다중 매질 렌즈 모델
1회 차	3.43	3.57
2회 차	3.34	3.89
3회 차	3.53	3.9
4회 차	4.04	3.9
5회 차	2.32	4.33
평균	3.332	3.918

Conclusion

▶ 5mm 시료

	Homography 이용	다중 매질 렌즈 모델
1회 차	4.17	4.83
2회 차	4.24	4.84
3회 차	4.5	4.94
4회 차	3.64	5.23
5회 차	3.42	4.95
평균	3.994	4.958

▶ 6mm 시료

	Homography 이용	다중 매질 렌즈 모델
1회 차	5.11	6.19
2회 차	4.85	6.01
3회 차	5.09	6.33
4회 차	5.69	6.05
5회 차	6.23	5.93
평균	5.394	6.102

Q&A