$12n_{0191} (K12n_{0191})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2.93013 \times 10^{22} u^{41} - 2.55618 \times 10^{22} u^{40} + \dots + 3.19018 \times 10^{22} b + 3.37541 \times 10^{22},$$

$$3.37341 \times 10^{22} u^{41} - 5.52290 \times 10^{22} u^{40} + \dots + 3.19018 \times 10^{22} a - 5.34100 \times 10^{22}, \ u^{42} - 2u^{41} + \dots + 9u^2 - I_2^u = \langle b - 1, \ -u^2 + a - u + 1, \ u^3 + u^2 - 2u - 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 45 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 2.93 \times 10^{22} u^{41} - 2.56 \times 10^{22} u^{40} + \dots + 3.19 \times 10^{22} b + 3.38 \times 10^{22}, \ 3.37 \times 10^{22} u^{41} - \\ 5.52 \times 10^{22} u^{40} + \dots + 3.19 \times 10^{22} a - 5.34 \times 10^{22}, \ u^{42} - 2u^{41} + \dots + 9u^2 - 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.05743u^{41} + 1.73122u^{40} + \dots + 2.10719u + 1.67420 \\ -0.918482u^{41} + 0.801265u^{40} + \dots - 1.32965u - 1.05806 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.468740u^{41} + 1.75288u^{40} + \dots - 2.79645u + 2.00796 \\ 0.403032u^{41} - 0.477459u^{40} + \dots - 0.178275u - 0.123472 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.944557u^{41} + 1.20115u^{40} + \dots + 2.24614u + 1.02215 \\ -0.805605u^{41} + 0.271202u^{40} + \dots - 1.19070u - 1.71011 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.557571u^{41} - 2.03034u^{40} + \dots + 3.30377u - 2.22423 \\ 0.0502449u^{41} - 0.799422u^{40} + \dots + 0.797791u - 1.15514 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -1.10864u^{41} + 1.93014u^{40} + \dots + 1.65865u + 1.89346 \\ -0.771455u^{41} + 0.605910u^{40} + \dots - 0.932314u - 1.18080 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -1.09560u^{41} + 2.57105u^{40} + \dots - 3.54399u + 2.46417 \\ 0.00573169u^{41} + 0.199584u^{40} + \dots - 0.855377u + 0.139917 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{\frac{14504839839598429454722}{31901842262824074426539}u^{41}}{\frac{572906099932607375763123}{31901842262824074426539}u^{-\frac{222969079138844677276793}{31901842262824074426539}} + \frac{\frac{28913484959271594911639}{31901842262824074426539}u^{40} + \cdots + \frac{57290609932607375763123}{31901842262824074426539}u^{-\frac{222969079138844677276793}{31901842262824074426539}}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{42} + 20u^{41} + \dots + 439u + 1$
c_{2}, c_{4}	$u^{42} - 4u^{41} + \dots + 31u - 1$
c_3, c_7	$u^{42} - 3u^{41} + \dots + 4u + 8$
c_5, c_6, c_{10} c_{11}	$u^{42} - 2u^{41} + \dots + 9u^2 - 1$
c_8, c_9, c_{12}	$u^{42} + 2u^{41} + \dots + 4u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{42} + 8y^{41} + \dots - 130935y + 1$
c_{2}, c_{4}	$y^{42} - 20y^{41} + \dots - 439y + 1$
c_{3}, c_{7}	$y^{42} - 21y^{41} + \dots - 4304y + 64$
c_5, c_6, c_{10} c_{11}	$y^{42} - 46y^{41} + \dots - 18y + 1$
c_8, c_9, c_{12}	$y^{42} - 34y^{41} + \dots - 18y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.622716 + 0.726936I		
a = 0.249920 - 0.575224I	-1.64578 + 10.08720I	-11.9616 - 7.8917I
b = -1.08189 - 1.07126I		
u = -0.622716 - 0.726936I		
a = 0.249920 + 0.575224I	-1.64578 - 10.08720I	-11.9616 + 7.8917I
b = -1.08189 + 1.07126I		
u = 0.630110 + 0.667113I		
a = -0.067316 - 0.527398I	3.26280 - 5.05879I	-7.66762 + 6.22497I
b = 1.195850 - 0.754840I		
u = 0.630110 - 0.667113I		
a = -0.067316 + 0.527398I	3.26280 + 5.05879I	-7.66762 - 6.22497I
b = 1.195850 + 0.754840I		
u = -0.410576 + 0.797115I		
a = 0.590560 + 0.729454I	-1.01128 - 5.04828I	-10.54510 + 3.70923I
b = 0.654792 - 0.588986I		
u = -0.410576 - 0.797115I		
a = 0.590560 - 0.729454I	-1.01128 + 5.04828I	-10.54510 - 3.70923I
b = 0.654792 + 0.588986I		
u = -0.613330 + 0.550269I		
a = -0.152550 - 0.404189I	0.340193 - 0.146534I	-9.04090 - 2.32576I
b = -1.211510 - 0.276966I		
u = -0.613330 - 0.550269I		
a = -0.152550 + 0.404189I	0.340193 + 0.146534I	-9.04090 + 2.32576I
b = -1.211510 + 0.276966I		
u = 0.384114 + 0.702008I		
a = -0.371736 + 1.039810I	3.99048 + 0.46078I	-5.35173 - 0.25994I
b = -0.789326 - 0.194769I		
u = 0.384114 - 0.702008I		
a = -0.371736 - 1.039810I	3.99048 - 0.46078I	-5.35173 + 0.25994I
b = -0.789326 + 0.194769I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.418033 + 0.606743I		
a = 0.084600 + 1.400980I	0.90530 + 4.12360I	-8.68102 - 5.50502I
b = 0.934140 + 0.238589I		
u = -0.418033 - 0.606743I		
a = 0.084600 - 1.400980I	0.90530 - 4.12360I	-8.68102 + 5.50502I
b = 0.934140 - 0.238589I		
u = 1.36749		
a = 0.995996	-6.50001	-13.6470
b = 1.03484		
u = 0.505963 + 0.303182I		
a = 1.89815 + 1.24925I	-4.34422 - 3.06091I	-15.9828 + 7.3630I
b = -0.202771 + 1.082850I		
u = 0.505963 - 0.303182I		
a = 1.89815 - 1.24925I	-4.34422 + 3.06091I	-15.9828 - 7.3630I
b = -0.202771 - 1.082850I		
u = 1.38819 + 0.34209I		
a = -0.381252 + 0.184770I	-6.74773 + 0.95826I	0
b = 0.108566 - 0.214622I		
u = 1.38819 - 0.34209I		
a = -0.381252 - 0.184770I	-6.74773 - 0.95826I	0
b = 0.108566 + 0.214622I		
u = -1.43233		
a = 10.9436	-8.26088	77.1970
b = 11.6572		
u = -0.561117		
a = -2.94490	-5.90144	-19.1780
b = -0.320377		
u = -1.44186 + 0.20173I		
a = 0.423668 + 1.035100I	-1.83573 + 2.73592I	0
b = 0.236187 + 0.379056I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.44186 - 0.20173I		
a = 0.423668 - 1.035100I	-1.83573 - 2.73592I	0
b = 0.236187 - 0.379056I		
u = -1.47192		
a = 1.74936	-8.07301	0
b = 2.58881		
u = 1.47089 + 0.06692I		
a = 0.12566 + 2.06315I	-6.78843 - 2.26447I	0
b = -0.51913 + 1.71572I		
u = 1.47089 - 0.06692I		
a = 0.12566 - 2.06315I	-6.78843 + 2.26447I	0
b = -0.51913 - 1.71572I		
u = 1.48233 + 0.17827I		
a = -0.54943 + 1.55713I	-5.29803 - 6.90242I	0
b = -0.523659 + 0.673391I		
u = 1.48233 - 0.17827I		
a = -0.54943 - 1.55713I	-5.29803 + 6.90242I	0
b = -0.523659 - 0.673391I		
u = -1.51313 + 0.07664I		
a = -0.40049 + 1.89572I	-11.04660 + 4.37109I	0
b = 0.471789 + 1.251810I		
u = -1.51313 - 0.07664I		
a = -0.40049 - 1.89572I	-11.04660 - 4.37109I	0
b = 0.471789 - 1.251810I		
u = 1.52457		
a = 0.592680	-12.8376	0
b = -0.635110		
u = -0.349126 + 0.309363I		
a = -1.252420 + 0.444201I	-0.798095 + 1.043220I	-8.93837 - 6.28488I
b = 0.207903 + 0.938910I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.349126 - 0.309363I		
a = -1.252420 - 0.444201I	-0.798095 - 1.043220I	-8.93837 + 6.28488I
b = 0.207903 - 0.938910I		
u = -0.464350		
a = -0.268787	-0.827896	-11.7750
b = -0.520788		
u = 1.57075 + 0.24415I		
a = 0.42013 - 1.89705I	-8.8765 - 13.6938I	0
b = 1.31507 - 1.60521I		
u = 1.57075 - 0.24415I		
a = 0.42013 + 1.89705I	-8.8765 + 13.6938I	0
b = 1.31507 + 1.60521I		
u = 0.175152 + 0.368374I		
a = 0.719520 - 0.426879I	-3.37453 + 0.76491I	-10.40964 + 7.93136I
b = 0.25392 + 1.93248I		
u = 0.175152 - 0.368374I		
a = 0.719520 + 0.426879I	-3.37453 - 0.76491I	-10.40964 - 7.93136I
b = 0.25392 - 1.93248I		
u = -1.57812 + 0.22378I		
a = -0.70680 - 1.63267I	-4.07471 + 8.38744I	0
b = -1.47281 - 1.33651I		
u = -1.57812 - 0.22378I		
a = -0.70680 + 1.63267I	-4.07471 - 8.38744I	0
b = -1.47281 + 1.33651I		
u = 1.60757 + 0.18431I		
a = 0.894775 - 1.082450I	-7.24321 - 2.57720I	0
b = 1.49803 - 0.87021I		
u = 1.60757 - 0.18431I		
a = 0.894775 + 1.082450I	-7.24321 + 2.57720I	0
b = 1.49803 + 0.87021I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.321929		
a = 2.42803	-2.06972	3.71630
b = -0.909883		
u = -1.82062		
a = -0.545929	-19.0753	0
b = -1.04503		

II.
$$I_2^u = \langle b-1, -u^2 + a - u + 1, u^3 + u^2 - 2u - 1 \rangle$$

(i) Arc colorings

a₆ =
$$\begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u^2 + u - 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ u^2 - u - 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -u \\ u^2 - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^2 + 1 \\ -u^2 + u + 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} u^2 - 1 \\ -u + 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u^2 + u - 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -u^2 + 1 \\ -u^2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-u^2 + 4u 24$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^3$
c_3, c_7	u^3
c_4	$(u+1)^3$
c_5, c_6, c_8 c_9	$u^3 - u^2 - 2u + 1$
c_{10}, c_{11}, c_{12}	$u^3 + u^2 - 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^3$
c_3, c_7	y^3
c_5, c_6, c_8 c_9, c_{10}, c_{11} c_{12}	$y^3 - 5y^2 + 6y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.24698		
a = 1.80194	-7.98968	-20.5670
b = 1.00000		
u = -0.445042		
a = -1.24698	-2.34991	-25.9780
b = 1.00000		
u = -1.80194		
a = 0.445042	-19.2692	-34.4550
b = 1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u-1)^3)(u^{42} + 20u^{41} + \dots + 439u + 1)$
c_2	$((u-1)^3)(u^{42} - 4u^{41} + \dots + 31u - 1)$
c_3, c_7	$u^3(u^{42} - 3u^{41} + \dots + 4u + 8)$
C4	$((u+1)^3)(u^{42}-4u^{41}+\cdots+31u-1)$
c_5, c_6	$(u^3 - u^2 - 2u + 1)(u^{42} - 2u^{41} + \dots + 9u^2 - 1)$
c_8,c_9	$(u^3 - u^2 - 2u + 1)(u^{42} + 2u^{41} + \dots + 4u + 1)$
c_{10}, c_{11}	$(u^3 + u^2 - 2u - 1)(u^{42} - 2u^{41} + \dots + 9u^2 - 1)$
c_{12}	$(u^3 + u^2 - 2u - 1)(u^{42} + 2u^{41} + \dots + 4u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$((y-1)^3)(y^{42} + 8y^{41} + \dots - 130935y + 1)$
c_2, c_4	$((y-1)^3)(y^{42} - 20y^{41} + \dots - 439y + 1)$
c_3, c_7	$y^3(y^{42} - 21y^{41} + \dots - 4304y + 64)$
c_5, c_6, c_{10} c_{11}	$(y^3 - 5y^2 + 6y - 1)(y^{42} - 46y^{41} + \dots - 18y + 1)$
c_8, c_9, c_{12}	$(y^3 - 5y^2 + 6y - 1)(y^{42} - 34y^{41} + \dots - 18y + 1)$