Technische Informatik I

Kapitel 3

Schaltnetze

Prof. Dr. Dirk W. Hoffmann

Logikgatter

Beispiel

Beispiel: Paritätsfunktion

Eigenschaften

Eingänge: x₁, x₂, x₃, x₄

Ausgänge: y

Gatter: 3 × XOR

Stufen: 2

Allgemeines Schema

$$y_1 = f_1(x_1, x_2, \dots, x_n)$$

$$y_2 = f_2(x_1, x_2, \dots, x_n)$$

. . .

$$y_m = f_m(x_1, x_2, \dots, x_n)$$

Beispiel

Beispiel: Paritätsfunktion

Eigenschaften

Eingänge: x₁, x₂, x₃, x₄

Ausgänge: y

Gatter: 3 × XOR

Stufen: 2

Wahrheitstabelle

	×	×	×	x	У
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

Darstellung in VHDL

Beispiel: Paritätsfunktion

```
with bit vector' (x4, x3, x2, x1)
   select
             '0' when "0000",
      y <=
              '1' when "0001",
              '1' when "0010",
              '0' when "0011",
              '1' when "0100",
              '0' when "0101",
              '0' when "0110",
              '1' when "0111",
              '1' when "1000",
              '0' when "1001",
              '0' when "1010",
              '1' when "1011",
              '0' when "1100",
              '1' when "1101",
              '1' when "1110",
              '0' when "1111";
```

Wahrheitstabelle

	ж	ж	ж	x	У
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

end demo;

Optimierte Darstellung in VHDL

Beispiel: Paritätsfunktion

```
entity fktab is
port(x4,x3,x2,x1:in std logic;
                y:out std logic)
end;
architecture demo of fktab is
begin
with bit vector (x4, x3, x2, x1)
   select
       y \le '1' \text{ when "0001"},
              '1' when "0010",
              '1' when "0100",
              '1' when "0111",
              '1' when "1000",
              '1' when "1011",
              '1' when "1101",
```

'1' when "1110",

'0' when others;

Wahrheitstabelle

	x	x	x	x	У
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	1
9	1	0	0	1	0
10	1	0	1	0	0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	1
14	1	1	1	0	1
15	1	1	1	1	0

Ausnützen von Redundanz

Aufgabe

 Gesucht ist eine Schaltung mit 4 Eingangsleitungen x₁, x₂, x₃, x₄ und einer Ausgangsleitung y. Die Schaltung soll für eine BCD-Ziffer bestimmen, ob diese ungerade (y=1) oder gerade ist (y=0).

```
with bit_vector'(x4,x3,x2,x1)
select

y <= '0' when "0000",
    '1' when "0001",
    '0' when "0011",
    '0' when "0100",
    '1' when "0101",
    '0' when "0111",
    '0' when "0111",
    '0' when "1000",
    '1' when "1000",
    '1' when "1001",
    '0' when "1000",
    '0'
```


Normalformen (Beispiel)

	x	x	x	У
0	0	0	0	0
1	0	0	1	1
2	0	1	0	1
3	0	1	1	0
4	1	0	0	1
5	1	0	1	0
6	1	1	0	0
7	1	1	1	1

Normalformen (Allgemeine Form)

Gegeben: Boolesche Funktion $f(x_n, ..., x_3, x_2, x_1)$

Kanonische disjunktive Normalform

Allgemeine Form

$$\bigvee_{e \in E} Minterm_e$$

- E = Einsmenge von f
- Jeder Minterm hat die Form

$$(L_n \wedge ... \wedge L_1) L_i \in \{x_i, \neg x_i\}$$

- Jedes L_i heißt ein Literal von f
- Abkürzungen
 - DNF (Disjunktive Normalform)
 - SOP (Sum of products)

Kanonische konjunktive Normalform

Allgemeine Form

- N = Nullmenge von f
- Jeder Maxterm hat die Form

$$(L_n \vee \ldots \vee L_1) \ L_i \in \{x_i, \neg x_i\}$$

- Jedes L_i heißt ein Literal von f
- Abkürzungen
 - KNF (Konjunktive Normalform)
 - POS (Product of sums)

Übergang zur Hardware

Jede Gleichung lässt sich 1:1 in Hardware umsetzen

$$y = (x_1 \land \neg x_2 \land \neg x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (\neg x_1 \land \neg x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$$

$$y = (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor \neg x_3)$$