PAISAJES SONOROS

Hipótesis

- ¿Puede el método de LB generar medidas comparables de la siringe? ¿Cuán preciso es?
- ¿Qué método de clasificación es más apropiado: Network (DNN), Random Forest (RF), Gaussian Mixture Model (GMM), K-Nearest Neighbor (KNN), Hidden Markov Models (HMMs), Global Weighted Rank Pooling (GWRP) o Support Vector Machine (SVM)?
- ¿Qué forma de segmentación es la más óptima en paisajes sonoros, métodos aplicados en imágenes, propiedades acústicas o ambos?

Objetivo General

Diseño, desarrollo y evaluación de un sistema conjunto para la predicción de cantos de aves en paisajes sonoros. Se compone de un modelo predictivo para la identificación de cantos, segmentación y clasificación, y otra componente síntesis de datos.

Objetivos Específicos

- Comparar métodos de segmentación para datos levemente etiquetados de ambientes complejos.
- Implementar un método de clasificación para cantos de aves.
- Evaluar el modelo predictivo, segmentación y clasificación, sobre datos levemente etiquetados de paisajes sonoros complejos.
- Modelar el comportamiento ondulatorio del órgano de la siringe.
- Crear una base de datos etiquetados, data augmentation, a través de un método de Lattice Boltzmann para el modelo predictivo.

Metodología

Modelo predictivo

Diseño e implementación de un modelo predictivo sobre una base de datos levemente etiquetada proveniente de paisajes sonoros complejos. Consiste de dos componentes:

Segmentación

Entrenamiento de una CNN (o DNN) con datos levemente etiquetados con el fin de extraer las características de cada muestra, analizando el espacio de las frecuencias y el tiempo. Se dividen las muestras en partes pequeñas y se analizan las propiedades de cada una, además del cambio de estas en el tiempo. (Lo entiendo como una vectorización de los datos en frames)

Clasificación

Evaluación de un (o varios) modelo de clasificación: SVM, DNN o CNN, para la predicción de presencia de cantos en paisajes sonoros.

Siringe

Modelo físico teórico - computacional del órgano de la siringe a través de la teórica de las ondas y oscilaciones, y un método de Lattice Boltzmann tridimensional con condiciones de frontera móviles o fuentes de forzamiento dinámicas.

Sintetización de Datos

Mediante la técnica de data augmentation se busca crear una base de datos etiquetados utilizando la simulación de la siringe como fuente de cantos de aves.

Referencias

- [1] Rodrigo Laje Gabriel B. Mindlin. *The Physics of Birdsong*. Biological and medical physics, biomedical engineering. Springer, 2005. ISBN: 9783540253990,3540253998. URL: http://gen.lib.rus.ec/book/index.php?md5=edf7cca32d8330592f198613e8c54478.
- [2] Donald Knuth. Sound Event Detection and Time-Frequency Segmentation from Weakly Labelled Data (PyTorch implementation). URL: https://github.com/qiuqiangkong/sed_time_freq_segmentation.
- [3] Qiuqiang Kong y col. "A joint separation-classification model for sound event detection of weakly labelled data". En: arXiv:1711.03037 [cs, eess] (feb. de 2018). arXiv: 1711.03037. URL: http://arxiv.org/abs/1711.03037.
- [4] Revathy Narasimhan, Xiaoli Z. Fern y Raviv Raich. "Simultaneous segmentation and classification of bird song using CNN". En: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). New Orleans, LA: IEEE, mar. de 2017, págs. 146-150. ISBN: 9781509041176. DOI: 10.1109/ICASSP. 2017.7952135. URL: http://ieeexplore.ieee.org/document/7952135/ (visitado 19-06-2020).
- [5] Sebastian Aguilera Novoa. !Soundscapes. URL: https://github.com/saguileran/Soundscapes/.
- [6] Nirosha Priyadarshani, Stephen Marsland e Isabel Castro. "Automated birdsong recognition in complex acoustic environments: a review". En: Journal of Avian Biology 49.5 (2018), jav-01447. DOI: 10.1111/jav.01447. URL: http://doi.wiley.com/10.1111/jav.01447.
- [7] Zhao Zhao y col. "Automated bird acoustic event detection and robust species classification". En: Ecological Informatics 39 (2017), págs. 99-108. DOI: 10.1016/j.ecoinf.2017.04.003. URL: https://linkinghub.elsevier.com/retrieve/pii/S157495411630231X.