

FIG. 1: Single User Matched Filter Correlator (Prior Art)

FIG. 2: Multiuser Matched Filter Correlators (Prior Art)

FIG. 3: OPERA Block Diagram

FIG. 4: Complex Baseband Correlator

FIG. 5: Complex Intermediate Frequency Correlator

FIG. 6: DDID Architecture

FIG. 7: DDID Module Stack

Time	0	CCD site				CCD output
t	Operation	(1, y)	(2, y)	(3, y)	(4, y)	у
0	Start	0	0	0	0	0
1	s(1)	s(1) m(1,y)	s(1) m(2,y)	s(1) m(3,y)	s(1) m(4,y)	0
2	Shift + s(2)	s(2) m(1,y)	s(1) m(1,y) + s(2) m(2, y)	s(1) m(2,y) + s(2) m(3,y)	s(1) m(3,y) + s(2) m (4, y)	s(1)m(4,y)
3	Shift + s(3)	s(3) m(1,y)	s(2) m(1, y) + s(3) m (2, y)	s(1) m(1,y) + s(2) m(2,y) + s(3) m (3, y)	s(1) m(2,y) + s(2) m(3,y) + s(3) m (4, y)	s(1) m(3,y) + s(2) m(4,y)
4	Shift + s(4)	s(4) m(1,y)	s(3) m(1,y) + s(4) m(2, y)	s(2) m(1, y) + s(3) m (2, y) + s(4) m(3, y)	s(1)m(1,y) + s(2) m(2, y) + s(3) m(3,y) + s(4) m(4, y)	s(1) m(2,y) + s(2) m(3, y) + s(3) m(4,y)
5	Shift + s(5)	s(5) m(1,y)	s(4) m(1,y) s(5) m(2,y)	s(3)m(1,y) + s(4)m (2,y) + s(5)m(3,y)	s(2) m(1,y) + s(3) m(2,y) + s(4) m(3,y) + s(5)m(4,y)	s(1) m(1,y) + s(2) m(2,y) + s(3) m(3,y) + s(4) m(4,y)
6	Shift + s(6)	s(6) m(1,y)	s(5) m(1,y) + s(6) m(2,y)	s(4) m(1,y) + s(5) m(2,y) + s(6) m(3,y)	s(3) m(1,y) + s(4) m(2,y) + s(5) m(3,y) + s(6) m(4,y)	s(2) m(1,y) + s(3) m(2,y) + s(4) m(3,y) + s(5) m(4,y)

FIG. 8: DDID Operation (4 Stage TDI)

FIG. 9: Integrated Mask and Detector Architecture

FIG. 10: General Multiplying Integrated Hypothesis and TDI Detector

FIG. 11: Binary Integrated Hypothesis and TDI Detector

FIG. 12: Space Integration Traveling Wave Displacement Architecture

FIG. 13: Single Channel of Space Integration Traveling Wave Displacement

output (t) =
$$e^{\int_{0}^{T} (1 - \frac{T}{2})} \int_{0}^{L} g(x) f(t - \frac{T}{2} + \frac{x}{v}) e^{\int_{0}^{T} \frac{x}{v}} e^{-\omega_{x} x} dx$$

power (t) = $\int_{0}^{L} g(x) f(t - \frac{T}{2} + \frac{x}{v}) e^{\int_{0}^{x} \frac{x}{v}} e^{-\omega_{x} x} dx$

FIG. 14: Space Integration Traveling Wave Displacement Architecture with Coherent Detection

FIG. 15: Detector Integrating, Traveling Wave Displacement Architecture

FIG. 16: Time Integrating Vector-Matrix Multiplier

ESSEX PROPRIETARY FIGHT FOR FOR COU

FIG. 17: Time Integrating Matrix-Matrix Multiplier

FIG. 18: Compact Time Integrating Matrix-Matrix Multiplier

FIG. 19: Compact Module Stack