

Compilation Principle 编译原理

第3讲: 词法分析(3)

张献伟

xianweiz.github.io

DCS290, 3/1/2022

Quiz Questions

- Q1: lexical analysis of "if i == 0"? <keyword, 'if'>, <id, 'i'>, <op, '=='>, <num, '0'>
- Q2: usage of RE and FA in lexical analysis?
 RE: specify the token pattern; FA: implement the token recognizer
- Q3: write a regular expression for all strings of as and bs which contains the substring aba (a|b)*aba(a|b)*
- Q4: the graph describes NFA or DFA? Why?
 NFA. A: ε-transition, B: 1-transition
- Q5: FA for the Regex a(b|c)d

The Conversion Flow

- Outline: RE → NFA → DFA → Table-driven
 Implementation
 - 3 Converting DFAs to table-driven implementations
 - 1 Converting REs to NFAs
 - 2 Converting NFAs to DFAs

NFA → DFA: Same[等价]

NFA and DFA are equivalent

To show this we must prove every DFA can be converted into an NFA which accepts the same language, and vice-versa

NFA → DFA: Theory[相关理论]

- Question: is L(NFA) ⊆ L(DFA)?
 - Otherwise, conversion would be futile
- Theorem: $L(NFA) \equiv L(DFA)$
 - Both recognize regular languages L(RE)
 - Will show L(NFA) \subseteq L(DFA) by construction (NFA \rightarrow DFA)
- Since L(DFA) ⊆ L(NFA), L(NFA) ≡ L(DFA)
 Any DFA can be easily changed into NFA
 Resulting DFA consumes more memory than NFA
- - Potentially larger transition table as shown later
- But DFAs are faster to execute
 - For DFAs, number of transitions == length of input
 - For NFAs, number of potential transitions can be larger
- NFA → DFA conversion is done because the speed of DFA far outweighs its extra memory consumption

NFA → DFA: Idea

- Algorithm to convert[转换算法]
 - Input: an NFA N
 - Output: a DFA D accepting the same language as N
- Subset construction[子集构建]
 - Each state of the constructed DFA corresponds to a set of NFA states
 - Hence, the name 'subset construction'
 - After reading input $a_1a_2...a_n$, the DFA is in that state which corresponds to the set of states that the NFA can reach, from its start state, following paths labeled $a_1a_2...a_n$

NFA → DFA: Steps

- The initial state of the DFA is the set of all states the NFA can be in without reading any input
- For any state $\{q_i, q_j, ..., q_k\}$ of the DFA and any input a, the **next state** of the DFA is the set of all states of the NFA that can result as next states if the NFA is in any of the states $q_i, q_j, ..., q_k$ when it reads a
 - This includes states that can be reached by reading α followed by any number of ϵ -transitions
 - Use this rule to keep adding new states and transitions until it is no longer possible to do so
- The accepting states of the DFA are those states that contain an accepting state of the NFA.

NFA \rightarrow DFA: Algorithm

```
Initially, \varepsilon-closure(s_0) is the only state in Dstates and it is unmarked while there is an unmarked state T in Dstates do mark T

for each input symbol a \in \Sigma do
U := \varepsilon-closure(move(T,a))
if U is not in Dstates then
add \ U as an unmarked state to Dstates
end if
Dtran[T,a] := U
end do
```

- Operations on NFA states:
 - ε-closure(s): set of NFA states reachable from NFA state s on ε-transitions alone
 - ε-closure(T): set of NFA states reachable from some NFA state s
 in set T on ε-transitions alone; = U_{s in T}ε-closure(s)
 - move(T, a): set of NFA states to which there is a transition on input symbol a from some state s in T

NFA → DFA: Example

- Start by constructing ϵ -closure of the start state
 - ε -closure(A) = A
- Keep getting ε-closure(move(T, a)) T: A, a: 0/1
- Stop, when there are no more new states

alphabet		
	0	1
А	A	ВС
ВС	AC	ВС
AC	AC	ВС

state

NFA DFA: Example (cont.)

- Mark the final states of the DFA
 - The accepting states of D are all those sets of N's states that include at least one accepting state of N

- Is the DFA minimal?
 - As few states as possible

NFA DFA: Minimization[最小化]

- Any DFA can be converted to its minimum-state equivalent DFA
 - Discover sets of equivalent states
 - Represent each such set with just one state
- Two states are equivalent if and only if:
 - $\forall \alpha \in \Sigma$, transitions on α lead to equivalent states
 - α -transitions to distinct sets \Rightarrow states must be in distinct sets

Initial: {A}, {BC, AC}

For {BC, AC} Initial sets: {non-accepting states}, {accepting states}

- BC on '0' \rightarrow AC, AC on '0' \rightarrow AC
- BC on '1' \rightarrow BC, AC on '1' \rightarrow BC
- No way to distinguish BC from AC on any string starting with '0' or '1'

Final: {A}, {BCAC}
https://people.cs.umass.edu/~moss/610-slides/06

NFA DFA: Minimization (cont.)

- States BC and AC do not need differentiation
 - Should be merged into one

Minimization Algorithm

The algorithm

- Partitioning the states of a DFA into groups of states that cannot be distinguished (i.e., equivalent)
- Each groups of states is then merged into a single state of the min-state DFA
- For a DFA $(\Sigma, S, n, F, \delta)$
 - The initial partition P₀, has two sets
 {F} and {S-F}
 - Splitting a set (i.e., partitioning a set \boldsymbol{s} by input symbol $\boldsymbol{\alpha}$)
 - □ Assume q_a and $q_b \in \mathbf{S}$, and $\delta(q_a, \alpha) = q_x$ and $\delta(q_b, \alpha) = q_y$
 - If q_x and q_y are not in the same set, then **s** must be split (i.e., α splits **s**)
 - One state in the final DFA cannot have

P <- {F}, {S-F}

T <- { }

while (P is still changing)

for each state $s \in P$

for each $\alpha \in \Sigma$

if T ≠ P then

P <- T

 $T \leftarrow T \cup S_1 \cup S_2$

partition s by α into s_1 and s_2

NFA -> DFA: More Example

- Start state of the equivalent DFA
 - ε -closure(A) = {A, B, C, E, H} = A'
- ε-closure(move(A', a)) = ε-closure({D, J}) = {B, C, D, E, H, G, J} = B'
- ε-closure(move(A', b)) = ε-closure({F}) = {B, C, E, F, G, H} = C'
- •

Step 1: Construct the NFA Table

State table of the NFA \Longrightarrow

	ω	а	b
Α	ВН		
В	CE		
С		D	
D	G		
E			F
F	G		
G	ВН		
Н		J	
I			
J			K
K			М
М			

Step 2: Update ε Column to ε-closure

 ϵ -closure of the NFA state \Longrightarrow e.g., ϵ -closure(D) = {D,B,H,C,E}

	ε	а	b
Α	ABHCE		
В	BCE		
С		D	
D	DBHCE		
E			F
F	FGBHCE		
G	GBHCE		
Н		J	
I			
J			K
K			М
M			

Step 3: Update other cols based on the ε col

Get the transitions of the ϵ col \Rightarrow e.g., $\{D,B,H,C,E\}$ --a--> $\{D,J\}$

	8	а	b
A	ABHCE	DJ	F
В	BCE	D	F
C		D	
D	DBHCE	DJ	F
₩			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
J			K
K			М
M			

Step 4: Construct the DFA Table

	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

	ε	а	b
Α	ABHCE A' for short	DJ	F
В	BCE	D	F
С		D	
D	DBHCE	DJ	F
E			F
F	FGBHCE	DJ	F
G	GBHCE	DJ	F
Н		J	
I			
J			K
K			M
M			

Step 4: Construct the DFA Table(cont.)

	а	b
A'	DJ	F
DJ	DJ	FK
F	DJ	F
FK	DJ	FM
FM	DJ	F

- Is the DFA minimal?
 - States A' and F should be merged
- Should we merge states A and FM?
 - NO. A' and FM are in different sets from the very beginning (FM is t).

Step 5: (Optional) Minimize DFA

Original DFA: before merging A' and F

Minimized DFA: Do you see the original RE (a|b)*abb

NFA → DFA: Space Complexity[空间复杂度]

NFA may be in many states at any time

- How many different possible states in DFA?
 - If there are N states in NFA, the DFA must be in some subset of those N states
 - How many non-empty subsets are there?

$$-2^{N}-1$$

- The resulting DFA has $O(2^N)$ space complexity, where N is number of original states in NFA
 - For real languages, the NFA and DFA have about same number of states

NFA → DFA: Time Complexity[时间复杂度]

DFA execution

- Requires O(|X|) steps, where |X| is the input length
- Each step takes constant time
 - If current state is S and input is c, then read T[S, c]
 - Update current state to state T[S, c]
- Time complexity = O(|X|)

NFA execution

- Requires O(|X|) steps, where |X| is the input length
 - Anyway, the input symbols should be completely processed
- Each step takes $O(N^2)$ time, where N is the number of states
 - Current state is a set of potential states, up to N
 - \Box On input c, must union all T[S_{potential},c], up to N times
 - Each union operation takes O(N) time
- Time complexity = $O(|X|*N^2)$

Non-deterministic: form current state, your can transit to any (including itself)

Deterministic:

unique transition

