	Peredictive Analysis using States
	Assignment-Parameter Estimation
Ansl	Giroun - Rondom Sample (x_1, x_n) $L(\theta_1, \theta_2) = \prod_{i=1}^{n} L(\frac{x_i - x_i}{2\sigma^2})$ $L(\theta_1, \theta_2) = \prod_{i=1}^{n} L(\frac{x_i - x_i}{2\sigma^2})$
	Jaking natural log of Likelihood fx^n $ln L(\theta_1, \theta_2) = \underbrace{\left(-\left(x_i - \mu\right)^2 - 1 \ln(2\pi\sigma^2)\right)}_{i=1}$
	Jo find MLE, diff. Log Likelihood w. 91. t O, , O2.
	$\frac{\partial}{\partial \theta_{i}} \ln L(\theta_{i}, \theta_{2}) = \underbrace{\left(x_{i} - u\right)}_{i=1} = 0$
	$\Rightarrow \sum_{i=1}^{n} x_i - nu = 0$
	$\frac{0}{u} = 1 \times x_{1}$ $u = 1$
T0102	$\frac{\partial}{\partial \theta_2} \frac{\partial \mathcal{L}(\theta_1, \theta_2) = \tilde{\mathcal{L}}(-(\chi_1, \theta_1)^2 + 1)}{(2(\theta_2)^2)^2 + 2(\theta_2)^2} = 0$
	$\sum_{i=1}^{n} \left(\frac{x_i - \theta_1}{\theta_2} \right)^2 = n = 0$
<u> </u>	$\frac{\partial_2^2}{\partial z} = \frac{1}{\pi} \sum_{i=1}^{\infty} \left(\times i - \theta_i \right)^2$
	02=1 = (Xi-Oi) Sample Variance.

	Date.
Ans 2	Page Mo.
	To find the MLE of Opor a bionomial distribution B(m. a)
	Je find the MLE of Of or a bionomial distribution $B(m, \Theta)$ where m m is a known to integer.
	$L(\theta) = \frac{\pi}{\pi} {m \choose \pi_i} \theta^{\lambda_i} (1-\theta)^{m-\lambda_i}$
	Taking In
	$ln(L(\theta)) = \underbrace{len(m) + Xiln(\theta) + (m-Xi)ln(1-\theta)}_{l=1}$
	$\frac{\partial}{\partial x} \ln(L(\theta)) = \sum_{i=1}^{\infty} (X_i - m - X_i) = 0$
	00 PO /
	Solving for O
,	X' = X'
	$\underbrace{X_i = \sum_{i=1}^{\infty} m - X_i}_{i=1}$
	$\sum_{i=1}^{n} X_{i}(1-\theta) = \sum_{i=1}^{n} (m-X_{i})\theta$
	γ η
	$\theta \in X_i = m \leq \theta$
	0- 1 m V.
	O= 1 x Xi m i=1
- 1	MLE of this sample mean of observations.
11	