

Kayla Nguyen, Jason Zheng, Charles Le, Jason Chu, Yutao He, Mohammad Ashtijou, Mimi Paller

Acknowledgement

- We wish to thank the following people for their help during the period of the task
 - Louise Veilleux
 - Kevin Wheeler
 - Mark Fischman
 - Samuel Chan
 - Mike Spencer
 - Vu Duong
 - Duane Clark
 - Andy Berkun
 - Other ISAAC team members
 - Jason Hyon

Outline

- Task Overview
- Algorithm Design
- FPGA Design & Implementation
- Prototype Board
- Testbench Construction & Demonstration
- GUI Interface
- Conclusion

Task Overview

Task Objective

- Investigate whether it is feasible to implement the 240 MHz digital filter design on Xilinx
 Virtex II 3000 devices.
- Work duration: Jan April 2009

Approach

- Inherit and extend the ISAAC 60 MHz digital filter design
 - Algorithm Development and Simulation (ADS)
 - Based on the ISAAC 60 MHz digital filter design
 - FPGA Design and Implementation (FDI)
 - Based on the ISAAC 60 MHz digital filter core
 - Testbed Construction and Demonstration (TCD)
 - Based on the ISAAC iBench

Demo Agenda

- Demonstrate technical feasibility of 240 MHz digital filter on Xilinx Virtex-II 3000
- Demonstrate the ability to tune the center frequency with 1MHz spacing

Instrument Digital Electronics

JPL

Radar Onboard Processor Requirements

- 12:4 BFPQ; collected over land only; over
 ½ scan only; over AM half orbit only.
 - Low-Rate Data
- always collected; squared; range gating into 10 range bins; integrated over 45 IPPs; 16bit output for each range bin.
 - Low-Rate Noise Data
 - always collected, except during bin 0; integrated over 45 IPPs; 16-bit output.

Algorithm Development Multi-Stage Decimation Filter Design

Individual Lowpass Prototype Specifications:

 $|H_i|$ protected passband alias-free transition alias-free transition attenuated stopband $f_{pass,i}$ $f_{stop,0}$ $F_{i+1}/2$ $f_{stop,i}$ (multi-stage cutoff)

(single-stage cutoff)

- $f_{pass,i} = f_{pass,0}$ $f_{stop,i} = F_{i+1} f_{stop,0}$ $\delta_{pass,i} = (1/4)\delta_{pass,0}$
 - $o_{\text{pass,i}} = (1/4)o_{\text{pass,0}}$ • $\delta_{\text{stop,i}} = \delta_{\text{stop,0}}$
- f_{pass,0} = 0.5 MHz, desired passband freq.
- f_{stop,0} = 0.6 MHz, (required) stopband freq.
- $\delta_{\text{pass},0}$ < 0.1 dB, (required) passband ripple.
- $\delta_{\text{stop},0}$ < -40 dB, (required) stopband attenuation.
- F₀ = 240 MHz, ADC sampling rate, slowed down to 60 MHz by 1:4 DMUX.

high decimation ratio

- $F_{i+1} = F_i / M_i$, ith stage decimated output sampling rate.
 - i = [0,1,2,3], total 4 stages.
 - M_i = [4,5,5,2], decimation ratios. 6 — 3/23/2009

SMAP 240MHz Digital Filter Demo

JPL DISCREET - not for distribution

FPGA Design & Implementation

Functional Verification - Comparison between HDL H/W Implementation model and Matlab Algorithmic Fixed-Point model - NOT AN EASY FIX! Abstraction level is NOT the same: Matlab fixed point vs. HDL

Quantization Verification – Comparison between Matlab Algorithmic Floating-Point and Fixed-Point models
- Comparison done in algorithm development stage

FPGA Design & Implementation

Current ISAAC Design Methodology

Functional Verification - Comparison between Algorithm and H/W Implementation floating-point models, both in Matlab - EASIER FIX! Abstraction level is the same: Matlab floating point

Quantization Verification – Comparison between Matlab fixed-point and HDL models of H/W Implementation

- Comparison done in hardware development stage

FPGA Design & Implementation

QM & Polyphase Decimation Filter

FPGA Design & Implementation Functional Verification – Outputs Comparison

Blue – floating point Matlab
(qmfir_hw.m)

Red – Hardware output
(qmfir_hw.v)

8-bit input
16-bit output

JPL DISCREET - not for distribution

SMAP 240MHz Digital Filter Demo

FPGA Design & Implementation Functional Verification – Error

JPL DISCREET - not for distribution

Functional Verification

- Meets expectation of fixedpoint error analysis
- · Additional items to be done
 - •Gate Level netlist simulation
 - Test coverage
 - Real science and echo data simulation

FPGA Design & Implementation **Performance Validation**

Performance Validation

- Timing closure 29% timing margin with space qualified part
- Power consumption no requirement yet
- Signal integrity need to wait for integration
- Device usage more than 40% margin
- SEU Mitigation no requirement yet

PARAMETER:	Xilinx XC2V3000 (speed grade 4)		Xilinx XQR2V3000 (space qualified part) (speed grade 4)	
Speed	87.2 MHz		85.4 MHz	
	Used / Total	%	Used / Total	%
# of Multipliers	68 / 96	70%	68 / 96	70%
# of Slices	8,224 / 14,336	57%	8,278 / 14,336	57%
# of Flip Flops	9,680 / 28,672	33%	9,680 / 28,672	33%
# of 4 input LUTs	13,944 / 28,672	48%	14,064/ 28,672	49%
Power Consumption	DYNAMIC: 0.87W, QUIESCENT: 0.08W, TOTAL: 0.95 W (Estimate from XPower, Industrial temperature range)		DYNAMIC: 0.89W, QUIESCENT: 0.38W, TOTAL: 1.26 W (Estimate from XPower, Industrial temperature range)	

V2 Prototype Board Options

Our Choice

	Option 1 AFX-FF1152-200	Option 2 GVA-325	Option 3 xc2v3000- 4FF1152C	Option 4 xc2v3000-4FF1152C	Option 5 GR-PCI-XC2V
Vendor	Xilinx	GV & Associates	ERST	Acromag	HighTech Global
Key Features	• XC2V3000 in FF1152 •. Onboard programmable oscillator •systemACE port	2 XC2v3000, and 2 SpartanT-II FPGAs for interface and configuration control	XC2V3000 in FF1152	XC2V3000 in FF1152	. LEON V8 processor . XC2V3000 . 64MB SDRAM . 10/100 Ethernet
Price (\$k)	2.3	13.5	3.3	\$4.2+\$750	4.9
Lead Time	discontinued	4 weeks	7~9 weeks	1 week	1 week

V2 Prototype Board

GR-PCI-XC2V Evaluation Board

- Virtex-II XC2V3000-FG676-4 FPGA
- On-board FPGA configuration PROMs
- 8 Mbyte Flash PROM
- 1 Mbyte SRAM
- 64 Mbyte PC133 SDRAM
- Ethernet PHY 10/100 Mbit transceiver
- 33 MHz, 32-bit PCI interface
- Standard RS-232 UART port for DSU
- 120-pins memory and custom I/O expansion connectors
- JTAG and slave-serial FPGA programming capability
- Supports LEON2 core frequencies up to 65 MHz

SMAP 240

Testbench Construction & Demonstration Testbench & Data Flow Descriptions

FPGA CORES Test Data Input BRAM -Synthetic data generated by Matlab -Size of 6KB -Max: 0dB -Holds the input data from Host Machine -Min: -25dB until the digital filter core is ready to Pulse -Thermal noise: -34dB process the data Generator -ADC scaling: 0.25 **Output BRAM** -10,800 8-bit samples stores and read from Input BRAM -Size of 200B each -Holds the processed data until the Test Board Station is ready to retrieve the data **UART I/F** -Serves to collect commands and data from 60MHz PROM2 PROM1 PROM3 test station Programs the Clock **FPGA** 240MHz Digital Filter whenever the -4 streams input data at 60MHz power cycles -6 streams output data at 1.2MHz -Filter running at 60MHz Virtex II FPGA **COMPONENTS** PROM - each 4MB 60 MHz -Holds the bit file and reprograms the FPGA whenever the power cycles 240MHz Digital Filter Input BRAM **Pulse Generator** -Generates a 60MHz clock for the FPGA **Host Machine** 1.2 MHz **iPanel** Baud rate: - Provide GUI I/F **UARTI/F** 57600 - Control UART transfer Output Output Output BRAM3 BRAM1 BRAM2 - Control Matlab

Testbench Construction & Demonstration **Demo Flow Operations**

Host Machine

- Runs on Linux with the iPanel in Python
- Calls Matlab to generate synthetic data
- Sends data to the board over UART to be stored on the Input BRAM inside the FPGA
- Starts the Digital Filter core by writing to a register

Prototype Board

- When the register is written, it sends a signal to the Digital Filter Core to grab data from the Input BRAM to process the data
- Digital Filter core process all of the data and store the outputs in the Output BRAM

Host Machine

- Grabs the data from the Output BRAM through UART
- Plots the output data vs. the expected output data generated by Matlab
- Plots the error between the output data and the expected data

Testbench Construction & Demonstration iPanel

Lessons Learned

- Lessons Learned
 - Positive Lesson: enhanced productivity due to IP reuse in an ISAAC framework based design methodology (9 months for 60MHz design down to 3 months for 240MHz design)
 - Negative Lesson: insufficient vendor support for discontinued parts (board, FPGA)
 - Focus on scope
 - Effective requirement communication between algorithm and hardware designers
 - Better synergy between technology development and project needs

Conclusion & Future Study

- The Testbench Construction and Demonstration work has
 - Verified and validated the algorithm design and FPGA implementation
 - Successfully shown that the 240MHz digital filter design is feasible on the Xilinx Virtex-II FPGA
 - Successfully shown that the 240MHz digital filter is able to tune to different center frequencies with spacing of 1MHz
- Suggestions for further study (as applied to SMAP)
 - Expand frequency tuning design to include frequency spacing of 0.5MHz
 - Design FPGA interfaces with ADC, CTU, BFPQ, and Data Formatter
 - Work on test plan and implement full test coverage
 - Further reduce multiplier count with VKCMs (constant multipliers implemented in LUTs)
 - FIR0 can save 12x2 full multipliers by replacing with VKCMs
 - How to detect error in computation
 - SEU mitigation