Advanced Statistical Methods HW 9

2021-21116 Taeyoung Chang

Exercise 15.1

1. Show that Holm's procedure (15.10) is more generous than Bonferroni in declaring rejections.

Note that for test statistics z_1, \dots, z_N , we can calculate corresponding p.values p_1, \dots, p_N . Put those in order statistics, we can denote as

$$p_{(1)} \leq \cdots \leq p_{(i)} \leq \cdots \leq p_{(N)}$$

. Note that Bonferroni procedure has constant cutoff values $\frac{\alpha}{N}$ while Holm's precedure has varying cutoff values $\frac{\alpha}{N-i+1}$ which is a function of i. Observe that for any i except 1, $\frac{\alpha}{N-i+1}$ is larger than $\frac{\alpha}{N}$. Hence Holm's procedure has larger cutoff values than Bonferroni procedure for almost all null hypotheses. It implies that Holm's procedure is more generous than Bonferroni in declaring rejections.

Exercise 15.2

2. Redraw Figure 15.3 for q = 0.2.

First, for testing N=6033 null hypotheses, we shall use transformed z values z_1, \dots, z_N which is defined as $z_i = \Phi^{-1}(F_{100}(t_i))$ for each $i=1,\dots,N$ where F_{100} is a cdf of a t_{100} distribution and Φ^{-1} is the inverse function of a standard normal cdf. By this transformation, z_i follows standard normal under the null hypothesis H_0 . Now, we shall redraw figure 15.3 for q=0.2

```
# transformed z_values are stored in the website of the textbook
zvals = read.table("https://hastie.su.domains/CASI_files/DATA/prostz.txt")

# sort zvalues in descending order
z = sort(c(zvals$V1), decreasing=T)
p = 0

N = 6033
q = 0.2

# calculate pvalues
for(i in 1:N){
    p[i] = pnorm(z[i], lower.tail=F)
}

# the first 50 p_values stored in `p` are corresponding to the largest z values

plot(1:50, p[1:50], xlab = "index i", ylab = "p-value")
holms = 0
Dq = 0

for(i in 1:50){
```

```
holms[i] = q / (N-i+1)
  Dq[i] = q * i / N
}
lines(1:50, holms, col='blue', type='l')
lines(1:50, Dq, col='red', type='l')
legend('toplef', legend = c('Holms', 'Dq'), lwd = c(1,1), lty = c(1,1), col=c('blue', 'red'))
```


As we can see in the figure, if q = 0.2 then we reject 9 number of null hypotheses using Holm's procedure. On the other hand, if we take advantage of \mathcal{D}_q procedure, then we reject at least 50 number of null hypotheses.

Exercises 15.4

4. For an observed data set of z-values z_1, z_2, \ldots, z_N , a case z_i of particular interest just barely made it into the Benjamini-Hochberg \mathcal{D}_q rejection region. Later you find out that 25 of the very negative other z-values were actually positive, and exceed z_i . Is H_{0i} still rejected?

Suppose z_i just barely made it into the Benjamini Hochberg \mathcal{D}_q rejection region. Since \mathcal{D}_q procedure rejects $z_{(1)}, \dots, z_{(i_{max})}$, we can assume that i is equal to i_{max} . Then, by the cutoff values of \mathcal{D}_q algorithm, we have

$$p_i = p_{(i_{max})} \le \frac{i_{max}}{N} q$$

Later, we have found out that 25 of the very negative other z-values were actually positive and exceed z_i . It implies that there are 25 p-values smaller than p_i so that p_i becomes $p_{i_{max}+25}$. Thus, by the \mathcal{D}_q algorithm, now z_i is rejected if

$$p_i = p_{(i_{max} + 25)} \le \frac{i_{max} + 25}{N} q$$

Note that we have already got $p_i \leq \frac{i_{max}}{N}q$. Thus H_{0i} is still rejected.