Assumption 1.5. The growth functions Θ is such that the associated generalized modulus of continuity $\varphi_{\Theta}: [0,+\infty) \to [0,+\infty)$ is continuous, where

$$\varphi_{\Theta}(s) := \begin{cases} 0 & \text{if } s = 0, \\ s|\log s|\Theta(|\log s|) & \text{if } 0 < s < e^{-d-1}, \\ e^{-d-1}(d+1)\Theta(d+1) & \text{if } s \ge e^{-d-1}. \end{cases}$$

Indeed, φ_{Θ} is the modulus of continuity of the force field given that the macroscopic density is Yudovich, which is enforced by Assumption 1.4 (see Crippa, Inversi, Saffirio and Stefani [4, Lemma 1.1 and Assumption 1.3]); as explained in [4], the value e^{-d-1} in the definition of φ_{Θ} is essentially irrelevant and included solely to make φ_{Θ} more appealing. Under Assumption 1.4 and Assumption 1.5, one can define weak solutions f to (VP) through

$$\int_0^T \int_{\mathcal{X} \times \mathbb{R}^d} \left[\left(\partial_t \phi + v \cdot \nabla_x \phi - \nabla U_f \cdot \nabla_v \phi \right) f \right] (t; x, v) \ dx dv \ dt = - \int_{\mathcal{X} \times \mathbb{R}^d} \phi(0, x) f(0; x, v) \ dx dv$$
 for all test functions $\phi \in C_c^{\infty}([0, T) \times (\mathcal{X} \times \mathbb{R}^d))$, since then the product of the solution with the force

field is integrable; i.e., $||f(t)\nabla U_f(t)||_{L^1(\mathcal{X}\times\mathbb{R}^d)} \in L^1([0,T]).$

While [4, Theorem 1.6] assumed φ_{Θ} to be nondecreasing concave in some regime for the 1-Wasserstein stability of (VP), in the p-Wasserstein setting, we instead assume a p-modified version of φ_{Θ} to be nondecreasing concave in some regime as follows:

Assumption 1.6. The growth function Θ is such that $\varphi_{p,\Theta}:[0,+\infty)\to[0,+\infty)$ is nondecreasing concave on $[0, c_{p,\Theta;d})$ for some positive constant $c_{p,\Theta;d} < 1/e$ that depends only on p, Θ , and d, where $\varphi_{p;\Theta}$ is given by

$$\varphi_{p,\Theta}(s) := \begin{cases} 0 & \text{if } s = 0, \\ s|\log s|^p \Theta^p(|\log s|) & \text{if } 0 < s \le c_{p,\Theta;d}, \\ \varphi_{p,\Theta}(c_{p,\Theta;d}) & \text{if } s \ge c_{p,\Theta;d}. \end{cases}$$

This encompasses for instance the bounded case with $\Theta(r)=1$ $(c_{p,\Theta;d}=e^{-\max\{p,d+1\}})$, the exponential Orlicz space with $\Theta(r)=r^{1/\alpha}$ and $1\leq \alpha<+\infty$ $(c_{p,\Theta;d}=e^{-\max\{p\beta,d+1\}})$, $\beta:=1+1/\alpha$, and also a countable family of iterated logarithms due to Yudovich [18, Section 3] for two-dimensional Euler's equations in vorticity form; $\Theta_n: [0,+\infty) \to [0,+\infty)$ $(c_{p,\Theta;d} = \min\{\exp_{n+1}^{-2p}(1), e^{-d-1}\})$ given by

$$\Theta_n(r) := \begin{cases} r|\log_1(r)|^2|\log_2(r)|^2 \cdots |\log_n(r)|^2 & \text{if } r \ge \exp_n(1), \\ \Theta_n(\exp_n(1)) & \text{else,} \end{cases}$$

where $\exp_0(1) := 1$, $\exp_{n+1}(1) := e^{\exp_n(1)}$, and

$$\log_n(r) := \begin{cases} r & \text{if } n = 0, \\ \underbrace{\log \circ \log \circ \cdots \circ \log}_{(n-1) \text{times}} \circ |\log r| & \text{otherwise.} \end{cases}$$

Moreover, each of these cases satisfies the following two assumptions: