

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2552

วิชา ENE 325 Electromagnetic fields and waves สอบ วันศุกร์ที่ 24 กรกฎาคม พ.ศ. 2552

ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 เวลา 9.00-12.00 น.

คำเตือน

โทร 0-2470-9062

- _ 1. ข้อสอบวิชานี้มี 5 ข้อ 7 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ

- ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
 อนุญาตให้ใช้เครื่องคำนวณได้
 ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา				
ชื่อ-สกุล	รหัสประจำตัว			
อาจารย์ราชวดี ศิลาพันธ์ ผู้ออกข้อสอบ				

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ พัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

สูตรที่ใช้ในการคำนวณ

1.พิกัดทรงกลม (r, θ, ϕ)

Differential element

volume:

 $dv = r^2 \sin \theta dr d\theta d\phi$

surface vector: $d\vec{s} = r^2 \sin \theta d\theta d\phi \hat{a}_r$

2. พิกัค Cylindrical (ρ, ϕ, z)

Differential element

volume:

 $dv = \rho d\rho d\phi dz$

surface vector (ด้านบน): $d\vec{s}=
ho$ dhod $\hat{\phi}\hat{a}_z$

surface vector (ด้านข้าง): $d\vec{s} = \rho d\phi dz \hat{a}_{\rho}$

3. เวคเตอร์หนึ่งหน่วย (Unit vector) $\hat{a}_R = \frac{R}{R}$

4. การแปลงจากพิกัดดาร์ทีเชียนไปเป็นพิกัดทรงกระบอก

ขนาด	เวกเดอร์หนึ่งหน่วย		
$x = \rho \cos \phi$ $y = \rho \sin \phi$ $z = z$	$\begin{bmatrix} \hat{a}_x \\ \hat{a}_y \\ \hat{a}_z \\ \hat{a}_z \end{bmatrix} = \begin{bmatrix} \cos \phi & -\sin \phi & 0 \\ \sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{a}_\rho \\ \hat{a}_\phi \\ \hat{a}_\phi \\ \hat{a}_z \end{bmatrix}$		

- 5. Electric flux $\psi = \oint \overrightarrow{D} \cdot d\overrightarrow{S}$ coulomb
- 6. Gauss's law $Q_{en} = \oint \overrightarrow{D} \cdot d\overrightarrow{S}$ coulomb

7.
$$\vec{E} = \frac{\vec{D}}{\varepsilon}$$
 V/m

โดย $\mathcal{E} = \mathcal{E}_{\nu} \mathcal{E}_{0}$

 \mathcal{E}_r = relative permittivity (\mathcal{E}_r ของอากาศ = 1)

 \mathcal{E}_0 = free space permittivity = 8.854x10⁻¹² F/m

- 8. Work $W = -Q \int_{A}^{B} \vec{E} \cdot d\vec{L}$ J
- 9. Electric potential $V = -\int_{1}^{B} \vec{E} \cdot d\vec{L}$ V
- 10. Boundary conditions สำหรับรอยต่อที่ปราศจากประจุอิสระ

$$: \overline{E}_{t1} = \overline{E}_{t2}$$

$$\overrightarrow{D}_{n1} = \overrightarrow{D}_{n2}$$

โดยมุมที่สนามไฟฟ้าทำกับรอยต่อคือ $heta = an^{-1}(rac{|E_t|}{|E|})$

ط	• , , •	ھ ا
ชื่อ	รหัสประจำตัว	เลขที่นั่งสอบ

1. Electric field calculation: จากเนื้อหาวิชาที่ผ่านมา มีกฏหรือวิธีใดบ้างที่สามารถนำมาใช้ในการ คำนวณความเข้มสนามไฟฟ้า (Electric field intensity) จงอธิบายพอสังเขป (20 คะแนน)

طم	ma co la constante de la const	1000001
ซือ	รหัสประจำตัว	เลขที่นึ่งสอบ

- 2. Coordinate system: กำหนดให้ค่าความเข้มสนามไฟฟ้า $\vec{E}=e^{-x}z\hat{a}_x+2xy\hat{a}_y+\hat{a}_z$ V/m (20 คะแนน)
- a) จงแสดงค่า Eี ในพิกัดทรงกระบอก (10 คะแนน)

b) กำหนดให้สนามไฟฟ้าเดินทางในอวกาศ จงแสดงค่า \vec{D} ในพิกัดคาร์ทีเชียนและคำนวณขนาด ฟลักซ์ที่เดินทางพื้นผิว $0 \le x \le 1$ และ $0 \le z \le 1$ และ y = 2 (10 คะแนน)

3. Gauss's law: รูปทรงกลมนำไฟฟ้ารัศมี 2 เมตรมีความหนาแน่นประจุ $ho_{
m s}$ = 2 nC/m² ล้อมรอบก้อน ประจุขนาด Q คูลอมบ์ (20 คะแนน)

a) จงคำนวณขนาดประจุ Q ที่ทำให้ค่าฟลักซ์สนามไฟฟ้า \vec{D} บนแกน y ณ ตำแหน่ง y=4 m มีค่าเป็น ศูนย์ (10 คะแนน)

b) จากคำตอบในข้อ a) จงคำนวณความหนาแน่นฟลักซ์ \vec{D} ที่ตำแหน่ง r=1 เมตร (10 คะแนน)

d		• , , •		جا ف	
ซื่อ)	รหัสประจำตั	3	เลขที่นั่งสอบ	}

4. Work and electric potential: กำหนดให้ $\vec{E} = 2xy\hat{a}_x + yz\hat{a}_y + z\hat{a}_z$ V/m จงคำนวณงานในการ ลากประจุขนาด 1 C จากจุด P (0, 0, 0) ไปยังจุด Q (3, 4, 5) งานที่คำนวณได้เป็นงานที่ทำจาก สนามไฟฟ้าหรือจากแรงภายนอก (20 คะแนน)

แนะน้ำ: $d\vec{l} = dx\hat{a}_x + dy\hat{a}_y + dz\hat{a}_z$

5. Electric boundary conditions: พิจารณารอยต่อระหว่างอากาศกับน้ำทะเลดังแสดงในรูป อากาศมี $arepsilon_{II}=1$ และน้ำทะเลมี $arepsilon_{I2}=81$ กำหนดให้ $\overrightarrow{D}_{1}=1$ $\overset{\circ}{a}_{x}+3$ $\overset{\circ}{a}_{z}$ C/m², จงคำนวณ (20 คะแนน)

a) \overrightarrow{D}_2 (10 คะแนน)

b) \vec{E}_2 (5 คะแนน)

c) มุม θ_2 ที่ทำกับแนวตั้งฉากกับรอยต่อ (5 คะแนน)