Московский физико-технический институт Физтех-школа электроники, фотоники и молекулярной физики Центр испытаний функциональных материалов

Композитный катодный материал на основе литий-железо-фосфата с добавлением многостенных углеродных нанотрубок серии «Таунит»

Докладчик: Токунов Юрий Матвеевич

Авторы: Токунов Ю. М., Алешина М. Ю., Костина Д. Е., Пилипенко П. Н., Лошкарев А. А., Иванов В. В., Каменева Е. И.

Цель исследования

Цель работы

Увеличение электронной проводимости LiFePO4-аккумуляторных батарей путем внедрения отечественных УНТ серии «Таунит» и, как следствие, увеличение энергоемкости литий-ионных аккумуляторов

ПЭМ изображение многостенных углеродных

нанотрубок «Таунит»

Характеристика	Таунит	Таунит-М	Таунит- МД	
Внешний диаметр, нм	20–50	10–30	8–30	
Внутренний диаметр, нм	10–20	5–15	5–15	
Длина, мкм	≥2	≥2	≥20	
Чистота, %	≥90–95	≥95	≥95	

Характеристики МУНТ серии «Таунит»

Технология изготовления катода

H2O + SDBS

• УЗ диспергирование 1 раз 10 мин

+ УНТ серии «Таунит»

- Подключение перестальстического насоса
- УЗ диспергирование 6 раз по 10 мин

+ сажа С45

• УЗ диспергирование 3 раза по 10 мин

+ LFP + LA-133

- Перемешивание под вакуумом в течение 2-х часов
- Нанесение катодной пасты на подложку

Ультразвуковой диспергатор МЭФ93

Ракельная установка

91,79% LFP, 3% LA-133, 4% C-45, 0,81% SDBS, 0,4% YHT 91,19% LFP, 3% LA-133, 4% C-45, 0,81% SDBS, 1% YHT

Сборка ячейки типа «coin»

Схема сборки батареи типа «coin»

Процесс сборки ячеек типа «coin»

Растровая электронная микроскопия

РЭМ-изображения катодных материалов, содержащих 0,4% многостенных углеродных нанотрубок: «Таунит» (a), «Таунит-М» (б) и «Таунит-МД» (b)

Электрохимические характеристики

типа «Таунит» при различных токах (в режимах разряда от 0.1C до 3C)

	Конц. УНТ,	Удельная емкость, мА∙ч/г					
Образец	мас. %	0.1C	0.2C	0.5C	1C	3C	0.1C
Контроль	0	120	119	114	104	87	119
Таунит	0,4	135	130	125	120	60	135
Таунит-М	0,4	86	80	71	63	18	91
Таунит-МД	0,4	124	123	109	95	24	124

Электрохимические характеристики

Удельная емкость при скоростях заряда/разряда 0,1 С - 3С для составов с различной концентрацией Таунит-МД

Зависимость удельного сопротивления от давления

Выводы

- 1. В образцах с добавлением нанотрубок «Таунит» и «Таунит-МД» удельная емкость увеличилась относительно образцов сравнения на низких токах;
- 2. В образцах с многостенными УНТ «Таунит-МД» емкость увеличивается на 30% при 0,1С относительно образца без УНТ

Спасибо за внимание!

Дополнительная информация

С – условная единица измерения тока, показывающая, при каком токе ячейка разрядится/зарядится за 1/X часов

C-rate = C/X [MA/y]

C-rate	Х (время)			
0.1C	10 час			
0.2C	5 час			
0.5C	2 час			
1C	1 час			
3C	20 мин			

