演習問題 8.5

定理8.1を証明せよ

不変条件: $D(i) < \min(ci + i, cs + 1 - t)$ ただし $s = \min(|f|, |r|), t = \max(|f|, |r|)$

- 回転を起こさない cons
 - o 先頭側ストリームに要素を追加、|f|が1増える
 - ullet |f|<|r| のとき、cs+1-t=c|f|+1-|r| も 1 増えるので問題なし
 - ullet $|f| \geq |r|$ のとき、cs+1-t=c|r|+1-|f| は 1 減る
 - 不変条件を守るには、キューの末尾の負債を返済し、全ての後続の累積負債を1ずつ減ら す
- 回転を起こさない tail
 - 先頭側ストリームから要素を削除、|f|が1減る
 - ullet |f| > |r| のとき、cs + 1 t = c|r| + 1 |f| は 1 増えるので問題なし
 - ullet |f| < |r| のとき、cs + 1 t = c|f| + 1 |r| は c 減る
 - 不変条件を守るには、キューの先頭 c 個の負債を返済し、全ての後続の累積負債を c ずつ減 らす
- 回転を引き起こす cons と tail
 - |f| > c|r| + 1 のとき、|f| = cm + 2, |r| = m とすると、
 - r' = r ++ reverse (drop i f) なので $(i = \frac{|f| + |r|}{2} = \frac{(c+1)m}{2} + 1 > m+1)$ ++ のために |r| = m の負債: 末尾 m ノードに 1 ずつ負わせる

 - \blacksquare reverse のために $\frac{(c+1)m}{2}+1$ の負債: 末尾から m+1 番目のノードにまとめて負わせる
 - 負債は次を満たすように分散される

$$d(j) = egin{cases} 1 & j < m$$
 ගඋප් $rac{(c+1)m}{2} + 1 & j = m$ ගඋප් $0 & j > m$ ගඋප් $rac{(c+3)m}{2} + 1 & j \geq m$ ගඋප්

- あとは、ノード 0 の負債を返済すれば不変条件を守ることができる
- \circ |r| > c|f| + 1 のとき
 - ■略