Particle spectrograph

 $'+2t_2\;\omega_{\kappa\lambda}^{\prime}\;\omega^{\kappa\lambda}_{\prime}+6\;f^{\alpha\beta}\;\tau_{\alpha\beta}+6\;\omega^{\alpha\beta\chi}$

 $\iiint (\frac{1}{6} (4t_3 \omega_{\alpha'}^{\alpha'} \omega_{\kappa\alpha}^{\kappa} + 4t_2 \omega_{\kappa\lambda}^{\kappa\lambda} \omega_{\kappa\lambda}^{\prime})$

Quadratic (free) action

 $_{\kappa}^{\beta'}\omega_{\lambda}^{\alpha}$ - $6r_{5}\beta_{i}\omega^{\kappa\lambda}_{i}$

 $\sigma_{\alpha\beta\chi}$ -3 $r_3\partial_i\omega^{\kappa\lambda}_{k}$

Wave operator and propagator

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1^{-}\ lpha}^{\#1}$	$\omega_{1-lpha}^{$ #2}	$f_{1}^{#1}\alpha$	$f_{1-\alpha}^{#2}$
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{\scriptscriptstyle 1}^{\scriptscriptstyle \#2}\dagger^{lphaeta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt_2</u> 3	0	0	0	0
$f_{1+}^{\#1}\dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3}\bar{l}kt_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1}\dagger^lpha$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5 \right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{ extstyle extstyle +2} extstyle ^lpha$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}i\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2 k^2 t_3}{3}$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0+}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 \bar{\imath} k \sigma_{0+}^{\#1} == 0$	1			
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3			
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3			
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3			
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5			
$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	21			

 $f_{0+}^{#1} \dagger \sqrt{2} kt_3$

$\sigma_{2}^{\#1} \dagger^{lphaeta}$	$-\frac{2}{3k^2r_3}$	0	
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	
$\sigma_2^{\#1}$ † $^{lphaeta\chi}$	0	0	
l	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	
$\omega_{2}^{\sharp 1} \dagger^{lpha eta}$	$-\frac{3k^2r_3}{2}$	0	
$c#1 \perp \alpha\beta$		_	I

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

0

0

0

0

$4t_3 \omega_{\kappa\lambda}^{\lambda} \partial^{\kappa} f'_{} - 8t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{} + 4t_3 \partial_{\kappa} f^{\lambda}_{\lambda} \partial^{\kappa} f'_{} +$	$t_{t_2} \omega_{\iota_{K}\theta} \partial^{\kappa} f^{\iota\theta} - 2t_2 \omega_{\theta\iota_{K}} \partial^{\kappa} f^{\iota\theta} + 4t_2 \omega_{\theta\kappa_{I}} \partial^{\kappa} f^{\iota\theta} +$	$4t_3 \omega_{_{1}\lambda}^{\ \lambda} \partial^\kappa f_{_{1}}^{\ \ } - t_2 \partial^\alpha f^\lambda_{\ \ } \partial^\kappa f_{\lambda\alpha}^{\ \ } - t_2 \partial_\kappa f_{\ \theta}^{\ \ \lambda} \partial^\kappa f_{\lambda}^{\ \ \theta} +$	$t_{L_3} \partial^{\alpha} f^{\lambda}_{\ \ \alpha} \partial^{\kappa} f_{\lambda \kappa} + 2 r_2 \partial_{\kappa} \omega^{\alpha \beta \theta} \partial^{\kappa} \omega_{\alpha \beta \theta} +$	$_{eta heta}$ - $_{eta heta}$ + $_{eta}$ + $_{eta}$ + $_{eta}$ + $_{eta}$ + $_{eta}$	$_{\alpha\beta}^{\prime}$ - 3 $r_3 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial^{\lambda} \omega^{\theta\kappa}_{\kappa} + 6 r_5 \partial_{\alpha} \omega_{\lambda}^{\alpha}_{\theta} \partial^{\lambda} \omega^{\theta\kappa}_{\kappa} +$	$_{\kappa}^{\kappa}$ - 6 $r_5 \partial_{\theta} \omega_{\lambda}^{\ \alpha} \partial^{\lambda} \omega^{\theta \kappa}_{\ \kappa}))[t, x, y, z] dz dy dx dt$	
4	<u>~</u>	7	~	β	ä	\boldsymbol{x}^{-}	

 $t_2 \, \partial_\kappa f^\lambda_{\ \ \theta} \, \partial^\kappa f_\lambda^{\ \ \theta} + 4$

 $4t_3 \omega_{l\alpha}^{\alpha} \partial^k f^l_{\kappa} +$

 $2t_2 \, \omega_{_{1}\theta_K} \, \partial^{\kappa} f^{^{1}\theta} - 4$

 $4t_3 \omega_{\kappa\alpha}^{} \partial^{\kappa} f'_{}^{}$

 $4 r_2 \, \partial_{\kappa} \omega^{\theta lpha eta} \, \partial^{\kappa} \omega_{lpha_l}$

0- 1	0 0	$k^2 r_2 + t_2$ ω_0^4	5-1 + 0	0 0 $k^2 r_2 +$	$+t_2$ ω_2 $+ \cdots$ 0	U	0
	$\sigma_{1^{+}lphaeta}^{\sharp1}$	$\sigma_{1^{+}lphaeta}^{ exttt{#2}}$	$\tau_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\sharp 1}{}_{lpha}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_{1^{-}\alpha}^{\#2}$
$\sigma_{1}^{\sharp 1} \dagger^{lphaeta}$	$\frac{1}{k^2(2r_3+r_5)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	0	0	0	0
$\sigma_{1}^{\#2}\dagger^{lphaeta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\tau_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_1^{\!\#1}\dagger^lpha$	0	0	0	$\frac{2}{k^2(r_3+2r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\sigma_1^{\!\scriptscriptstyle \#2}\dagger^lpha$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$ au_1^{\#1} + ^{lpha}$	0	0	0	0	0	0	0
$\tau_{1}^{#2} + ^{\alpha}$	0	0	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$

 $f_{0}^{\#1}$

 $-i \sqrt{2} kt_3$

 $2k^2t_3$

 $f_{0}^{\#2}$

0

0

Massive and massless spectra

 $12 r_5 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa\lambda\theta} + t_2 \partial^\alpha f_{\theta\kappa} \partial^\kappa f_{\alpha}^{\ \theta} - t_2 \partial^\alpha f_{\kappa\theta} \partial^\kappa f_{\alpha}^{\ \theta} + t_2 \partial^\alpha f^\lambda_{\ \kappa} \partial^\kappa f_{\alpha\lambda}^{\ -}$

 $3r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ - $6r_5\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ + $6r_3\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}\partial_{\kappa}\omega^{\kappa\lambda\theta}$ +

 $_{\alpha}^{\prime}\partial_{\kappa}\omega^{\theta\kappa\lambda}+6\,r_{5}\,\partial_{\theta}\omega_{\lambda}^{\alpha}\,\partial_{\kappa}\omega^{\theta\kappa\lambda}$

 $6r_5\partial_{lpha}\omega_{\lambda}^{a}_{\theta}\partial_{\kappa}\omega^{ heta\kappa\lambda}$ - $3r_3\partial_{ heta}\omega_{\lambda}^{a}_{c}$

Massive particle
Pole residue:
$$-\frac{1}{r_2} > 0$$
Polarisations: 1
Square mass: $-\frac{t_2}{r_2} > 0$
Spin: 0
Parity: Odd

Quadratic pole				
Pole residue:	$-\frac{1}{r_3(2r_3+r_5)(r_3+2r_5)p^2} > 0$			
Polarisations:	2			

 $\tau_{0}^{\#1}$

 $-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$

 $\frac{2\,k^2}{(1+2\,k^2)^2\,t_3}$

 $\tau_{0^{+}}^{\#2}$ †

 $au_{0}^{\#2}$

 $\sigma_0^{\#1}$

Unitarity conditions

 $r_2 < 0 \& \& r_3 < 0 \& \& r_5 < -\frac{r_3}{2} \& \& t_2 > 0 \parallel r_2 < 0 \& \& r_3 < 0 \& \& r_5 > -2 r_3 \& \& t_2 > 0 \parallel r_2 < 0 \& \& r_3 > 0 \& \& -2 r_3 < r_5 < -\frac{r_3}{2} \& \& t_2 > 0$