MECHTRON 2MD3

Data Structures and Algorithms for Mechatronics Winter 2022

24 Binary Trees

Department of Computing and Software

Instructor:

Omid Isfahanialamdari

March 17, 2022

Admin

- Mid-Term 2:
 - Wednesday 23 March 2022
 - Duration: 1 hour
 - From 1:30 to 14:30 (lec. time)
 - Location: MCMST CDN_MARTYRS
 - Seems to be here, I am not sure

 Covers: Topics from "Doubly Linked Lists" until the lecture of Wednesday 16 March 2022 (inclusive)

Binary Tree

- A binary tree is an ordered tree with the following properties:
 - Every node has at most two children.
 - Each child node is labeled as a left child or a right child.
 - A left child precedes a right child in the order of children.
- A recursive definition of the binary tree:
 - A binary tree is either empty or consists of:
 - A node r, called the root of T and storing an element
 - A binary tree, called the left subtree of T
 - A binary tree, called the right subtree of T
- Applications:
 - arithmetic expressions
 - decision processes
 - searching

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper ✗, Complete ✗, Perfect ✗

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper ✓, Complete X, Perfect X

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper ✓, Complete ✗, Perfect ✗

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper X, Complete ✓, Perfect X

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper ✓, Complete ✓, Perfect ✗

- Left subtree: Subtree rooted at the left child of an internal node
- Right subtree: Subtree rooted at the right child of an internal node
- Proper/full tree: A tree in which every node has either 0 or 2 children
- Complete tree: Tree in which all except possibly the last level is completely filled and the nodes in the last level are as far left as possible
- Perfect tree: Complete tree in which the last level is completely filled

Binary ✓, Proper ✓, Complete ✓, Perfect ✓

- Relationships between the height of a binary tree and the number of its nodes is interesting
- Recall: Height is the maximum depth of the tree, and depth of a node is the number of its ancestors.
- maximum number of nodes in each level:
- n_E = # of external nodes
- n_I = # of internal nodes
- $n = n_E + n_I$
- h = height of the tree

- maximum number of nodes at level i of a binary tree:
 - \circ **2**ⁱ, for $i \ge 0$.
- Proof:
 - by Induction:
 - Introduction base:
 - ∘ i = 0 (level 0 that has only root):
 - The number of node is: $2^i = 2^0 = 1$.

- Assume that for $i \ge 0$, the maximum number of nodes on level **i-1** is 2^{i-1} .
- Induction step:
- Since each node in a binary tree has a maximum degree of 2,
 therefore, the maximum number of nodes on level i is 2 * 2ⁱ⁻¹ = 2ⁱ

- maximum number of nodes at level i of a binary tree is 2^i , for $i \ge 0$.
- $h + 1 \le n \le 2^{h+1} 1$

min # of nodes is h + 1

o max # of nodes is:

$$0.1 + 2 + 4 + 8 + ... + 2^{h} = 2^{h+1} - 1$$

summation of geometrical series

- maximum number of nodes at level i of a binary tree is 2ⁱ, for i ≥ 0.
- $h + 1 \le n \le 2^{h+1} 1$
- $1 \le n_E \le 2^h$
- $h \le n_1 \le 2^h 1$
- $\log(n + 1) 1 \le h \le n 1$

- If T is a proper binary tree:
 - \circ 2h + 1 \leq n \leq 2 h+1 1
 - $_{\circ}$ h + 1 \leq n_F \leq 2^h
 - $h \le n_1 \le 2^h 1$
 - \circ log(n + 1) 1 \le h \le (n 1)/2
 - $_{\circ}$ $n_{E} = n_{I} + 1$

BinaryTree ADT

- The BinaryTree ADT extends the Tree ADT, i.e., it inherits all the methods of the Tree ADT
- Additional methods:
 - o position p.left()
 - o position p.right()
- Update methods may be defined by data structures implementing the BinaryTree ADT
 - Proper binary tree: Each node has either 0 or 2 children

Linked Representation of Binary Trees

Array-Based Representation of Binary Trees

Nodes are stored in an array A

- □ Node v is stored at A[rank(v)]
 - rank(root) = 1
 - if node is the left child of parent(node), rank(node) = 2 · rank(parent(node))
 - if node is the right child of parent(node), rank(node) = 2 · rank(parent(node)) + 1

University

Array-Based Representation of Binary Trees

- Advantages:
 - Suppose n is the number of nodes. The search time can be bounded to $O(\log_2 n)$.
- Disadvantages:
 - The utilization of memory space is not flexible enough.

Inorder Traversal

- In an inorder traversal a node is visited after its left subtree and before its right subtree
- Application: draw a binary tree
 - \circ x(v) = inorder rank of v

 \circ y(v) = depth of v 6

Algorithm inOrder(v)

if ¬v.isExternal()

inOrder(v.left())

visit(v)

if ¬v.isExternal()

inOrder(v.right())

Print Arithmetic Expressions

- Specialization of an inorder traversal
 - print operand or operator when visiting node
 - print "(" before traversing left subtree
 - print ")" after traversing right subtree


```
Algorithm printExpression(v)

if ¬v.isExternal()

print("(")

inOrder(v.left())

print(v.element())

if ¬v.isExternal()

inOrder(v.right())

print ("")")
```

Evaluate Arithmetic Expressions

- Specialization of a postorder traversal
 - recursive method returning the value of a subtree
 - when visiting an internal node, combine the values of the subtrees

Questions?