Arithmétique et cryptologie

http://www.math.u-psud.fr/~belabas/

Université Paris-Sud France

Un grand nombre d'« informations » peuvent se traduire numériquement (parfois imparfaitement, mais avec des différences imperceptibles). Par exemple un programme informatique, un CD, une image, un texte.

Ce texte-ci par exemple :

Un mathématicien est une machine à transformer le café en théorèmes.

- Paul Erdös

On peut le coder en **ASCII** : chaque signe est représenté par deux symboles, choisis parmi les 16 suivants

$$\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f\},\$$

c'est-à-dire un nombre à deux chiffres en base 16 :

On peut interpréter cette suite de chiffres comme un grand nombre, écrit en base 16 :

Un mathématicien est une mach 556e206d617468e96d6174696369656e2065737420756e65206d6163686 96e6520e0207472616e73666f726d6572206c6520636166e920656e2074 68e96f72e86d65732e202d2d205061756c20457264f673 (base 16)

$$= 3 + 7 \times 16^{1} + 6 \times 16^{2} + 15 \times 16^{3} \dots =$$

99781154227264479227165858852054752813050341969418003789560 01073332481166880538368439248938141894959742557027653964490 42897857270188655105046183260538732733952271900145229312269 36244913388202030707. (base 10: 197 chiffres décimaux).

Chiffrer: modifier une information, en utilisant une procédure secrète ou clé.

Déchiffrer : le retrouver en utilisant la clé.

Décrypter : découvrir la clé.

Un chiffrage très simple : $A \xrightarrow{+1} B$, $B \xrightarrow{+1} C$, etc.

$$\texttt{Bonjour} \xrightarrow{+1} \texttt{Cpokpvs} \xrightarrow{-1} \texttt{Bonjour}$$

Plus compliqué : faire des groupes de lettres et les décaler en changeant le décalage au sein du groupe

On dit que 1, 3, 2 (ou 132) est la clé utilisée pour chiffrer le message. Dans ce cas, plus la clé est longue, plus il est difficile de décrypter.

Problèmes :

- comment se mettre d'accord sur une clé sans risque d'interception?
- chiffrer/déchiffrer sont des opérations très proches. Si le chiffreur se fait prendre, et avec lui la clé, l'ennemi peut déchiffrer tous les messages.

Échange de clés (1/2)

Anatole et Barnabé choisissent en secret, un entier chacun : a pour Anatole, b pour Barnabé. Ils se téléphonent, choisissent un ensemble G dont ils savent multiplier les éléments (par exemple, les entiers) et un objet g dans cet ensemble (par exemple le nombre 10).

Ils dévoilent chacun $A = g^a$ et $B = g^b$ (a et b restent secrets!). Tous deux peuvent alors calculer la clé secrète :

$$\mathsf{cl\acute{e}} := A^b = B^a = g^{ab}$$

Un espion éventuel ne connaît que g, A, et B. L'opération qui consiste à retrouver a à partir de A ou b à partir de B s'appelle extraire un logarithme (en base g). Il faut que ce soit une opération difficile pour empêcher l'espion de déterminer la clé. Malheureusement, si $G = \mathbb{N}$ c'est beaucoup trop simple. Par exemple, si g = 10, pour résoudre $10^x = 1000000000$, il suffit de compter les 0 (x = 9).

Échange de clés (2/2)

Une étrange façon de compter (1/4)

On fixe un entier N et on regroupe tous les entiers dont la division par N donne le même reste. Par exemple si N=2, on a deux groupes : les entiers pairs (reste 0) et les impairs (reste 1). On écrit

$$x \equiv y \pmod{N}$$

pour

« x et y sont dans le même sac ».

Il y a exactement N sacs différents, et on appelle l'ensemble des sacs \mathbb{Z}/N .

On additionne (ou multiplie) deux sacs, en effectuant l'opération sur un nombre au hasard de chaque sac, et en regardant dans quel sac se trouve le résultat.

Une étrange façon de compter (2/4)

Addition et multiplication dans $\mathbb{Z}/2$:

Une étrange façon de compter (3/4)

Une autre façon de voir : sur une horloge où les heures font N minutes, on oublie le nombre de tours (les heures) pour ne regarder que la grande aiguille.

$$\boxed{40 + 30 \equiv 10 \pmod{60}}$$

Une étrange façon de compter (4/4)

Supposons maintenant qu'Anatole et Barnabé choisissent un grand N (200 chiffres), et font leurs calculs dans $G = \mathbb{Z}/N$:

$$g^a$$
, g^b , A^b , B^a

il n y a que des multiplications! On ne connaît pas de méthode raisonnable pour extraire de logarithmes.

Si on sait décomposer N en produit de nombres premiers et qu'on se donne un entier c (comme chiffrer), on sait calculer un entier d (comme déchiffrer) tel que

$$M^{cd} \equiv M \pmod{N}$$

pour la plupart des sacs M (il faut supposer que pgcd(M, N) = 1). Actuellement, on ne sait pas calculer d à partir de (c, N) sans savoir factoriser le (grand) entier N.

Le chef du réseau Anatole, dévoile c et N, et garde d secret. Si M < N est un message à coder, n'importe qui peut écrire le message chiffré $C \equiv M^c \pmod{N}$ puisque N et c sont publics. Pour le déchiffrer, Anatole calcule $C^d \equiv M^{cd} \equiv M \pmod{N}$. Mais comme on sait que $0 \leqslant M < N$, connaître le sac dans lequel tombe M suffit à le déterminer.

Le système RSA (2/3)

Cryptographie clé publique : le système RSA (Rivest-Shamir-Adleman)

Anatole peut aussi signer un message M sans le chiffrer, c'est-à-dire prouver qu'il connaît la clé secrète d... sans la compromettre! Il dévoile $D \equiv M^d$ et n'importe qui peut calculer $D^c \equiv M^{cd} \equiv M \pmod N$ à l'aide de la clé publique c et vérifier qu'il obtient bien un message intelligible.

C'est exactement comme ça que le terminal du commerçant vérifie qu'une carte bleue est authentique : l'entier N (96 chiffres) est public, et la clé publique est c=3. La carte contient un message de la forme $D\equiv M^d$, et le terminal de paiement vérifie que D^3 est intelligible.

Un autre groupe (1/3)

Un point à l'infini (= une direction du plan)

Un autre groupe – multiplication (2/3)

Multiplication sur la courbe elliptique $y^2 = x(x-1)(x+1)$

Un autre groupe – puissances (3/3)

Multiplication sur la courbe elliptique $y^2 = x(x-1)(x+1)$

On a $P^6 = 1$.