On the Outlier Detection for Standardized Tests

Nicolás Acevedo¹, Charles Thraves¹, and María Leonor Varas²

Universidad de Chile

- 1: Departamento de Ingeniería Industrial
- ²: Departamento de Ingeniería Matemática and DEMRE

March 7, 2022

PDT (former PSU)

• Chilean standardized college admission test (similar to SAT in the US)

PDT (former PSU)

- Chilean standardized college admission test (similar to SAT in the US)
- 4 multiple choice tests:
 - Language (LANG)
 - Math (MATH)
 - History (HIST) or Sciences (SCI)

PDT (former PSU)

- Chilean standardized college admission test (similar to SAT in the US)
- 4 multiple choice tests:
 - Language (LANG)
 - Math (MATH)
 - History (HIST) or Sciences (SCI)
- $\bullet \geq 230,000$ applicants per year (Chile's population is almost 20 million)

PDT (former PSU)

- Chilean standardized college admission test (similar to SAT in the US)
- 4 multiple choice tests:
 - Language (LANG)
 - Math (MATH)
 - History (HIST) or Sciences (SCI)
- $\bullet \geq 230,000$ applicants per year (Chile's population is almost 20 million)
- Some of the obtained scores may not be truthful (or correct)
 E.g.:
 - Correction was performed with the wrong answer key
 - Operational issue (pencil did not mark well)
 - Cheating
 - Other

• Problem: We do not know which scores are mistaken (as in supervised learning).

- Problem: We do not know which scores are mistaken (as in supervised learning).
- **Solution Approach**: Apply unsupervised machine learning techniques to find cases (i.e. test scores) worth to investigate.

- Problem: We do not know which scores are mistaken (as in supervised learning).
- **Solution Approach**: Apply unsupervised machine learning techniques to find cases (i.e. test scores) worth to investigate.
 - Not every combination of scores is equally likely to occur.
 E.g. (scores between 0 and 100):
 - **1** LANG/MATH/HIST = $84/80/90 \stackrel{4}{\leftarrow}$
 - ② LANG/MATH/HIST = $\frac{10}{80}$ /90

- Problem: We do not know which scores are mistaken (as in supervised learning).
- **Solution Approach**: Apply unsupervised machine learning techniques to find cases (i.e. test scores) worth to investigate.
 - Not every combination of scores is equally likely to occur.
 E.g. (scores between 0 and 100):
 - LANG/MATH/HIST = 84/80/90 de 10/80/90 de 10/90/90 de 10/90 de
 - ② LANG/MATH/HIST = $\frac{10}{80}$ /90
 - We are looking for the less likely cases. It is an outlier detection problem.

- Problem: We do not know which scores are mistaken (as in supervised learning).
- **Solution Approach**: Apply unsupervised machine learning techniques to find cases (i.e. test scores) worth to investigate.
 - Not every combination of scores is equally likely to occur. E.g. (scores between 0 and 100):
 - LANG/MATH/HIST = 84/80/90 de 10/80/90 de
 - We are looking for the less likely cases. It is an outlier detection problem.

Research Question:

How can we identify outliers for standardized tests while providing a way to interpret and classify the type of outlier?

Summary

Summary

1 PDT Scores \rightarrow 2 Outlier Detection Methods \rightarrow 3 PCA \rightarrow 4 k-means

PDT Scores

For this presentation we consider:

- Applicants who took the tests LANG/MATH/HIST in December 2021.
 - \geq 103,000 applicants on this group.

PDT Scores

For this presentation we consider:

- Applicants who took the tests LANG/MATH/HIST in December 2021.
 - \geq 103,000 applicants on this group.
- Test scores are the percentages of correct answers for each test.
 - Scores between 0 and 100.

Summary

1 PDT Scores \rightarrow 2 Outlier Detection Methods \rightarrow 3 PCA \rightarrow 4 k-means

Multivariate Outlier Detection Methods:

Mahalanobis Distance

Multivariate Outlier Detection Methods:

- Mahalanobis Distance
- Robust Mahalanobis Distance

Multivariate Outlier Detection Methods:

- Mahalanobis Distance
- Robust Mahalanobis Distance

Isolation Forest (iForest)

Multivariate Outlier Detection Methods:

- Mahalanobis Distance
- Robust Mahalanobis Distance

- Isolation Forest (iForest)
- Extended iForest

Multivariate Outlier Detection Methods:

- Mahalanobis Distance
- Robust Mahalanobis Distance

- Isolation Forest (iForest)
- Extended iForest

Every method gives us an outlier score (i.e. anomaly score) for all the applicants.

Outlier Detection Methods - Scorings Results

Outlier Detection Methods - Scorings Results

Outlier Detection Methods - Scorings Results

Summary

1 PDT Scores \rightarrow 2 Outlier Detection Methods \rightarrow 3 PCA \rightarrow 4 k-means

Applying PCA to the scores given by the 4 methods:

	PC1	PC2	PC3	PC4
Value	3.76	0.19	0.04	0.01
Percentage	94.07%	4.72%	1.00%	0.21%

Explained variance by each principal component

Applying PCA to the scores given by the 4 methods:

	PC1	PC2	PC3	PC4
Value	3.76	0.19	0.04	0.01
Percentage	94.07%	4.72%	1.00%	0.21%

Explained variance by each principal component

	Mahal.	R. Mahal.	iForest	E. iForest	PC1
Mahalanobis	1.00				
R. Mahalanobis	0.80	1.00			
iForest	0.70	0.74	1.00		
E. iForest	0.71	0.76	0.91	1.00	
PC1	0.83	0.86	0.85	0.87	1.00

Correlation Matrix with Kendall's au coefficient

Rank	LANG	MATH	HIST	SCI	PC1
1	13	20	98		17.76
2	7	20	72		14.90
3	28	22	95		14.63
4	67	2	93		13.49
5	38	27	97		13.32
6	88	100	48		13.23
7	55	97	50	28	12.87
8	67	82	18		12.83
9	58	97	45		12.79
10	28	68	67		12.66
11	55	97	67	61	12.64
12	38	80	70	26	12.54
13	18	58	7		12.52
14	70	90	30		12.49
15	37	82	60	60	12.47
16	62	73	13		12.35
17	68	12	98		12.21
18	63	93	38		12.14
19	55	83	92		12.13
20	98	100	100		12.12

Rank	LANG	MATH	HIST	SCI	PC1
1	13	20	98		17.76
2	7	20	72		14.90
3	28	22	95		14.63
4	67	2	93		13.49
5	38	27	97		13.32
6	88	100	48		13.23
7	55	97	50	28	12.87
8	67	82	18		12.83
9	58	97	45		12.79
10	28	68	67		12.66
11	55	97	67	61	12.64
12	38	80	70	26	12.54
13	18	58	7		12.52
14	70	90	30		12.49
15	37	82	60	60	12.47
16	62	73	13		12.35
17	68	12	98		12.21
18	63	93	38		12.14
19	55	83	92		12.13
20	98	100	100		12.12

Rank	LANG	MATH	HIST	SCI	PC1
1	13	20	98		17.76
2	7	20	72		14.90
3	28	22	95		14.63
4	67	2	93		13.49
5	38	27	97		13.32
6	88	100	48		13.23
7	55	97	50	28	12.87
8	67	82	18		12.83
9	58	97	45		12.79
10	28	68	67		12.66
11	55	97	67	61	12.64
12	38	80	70	26	12.54
13	18	58	7		12.52
14	70	90	30		12.49
15	37	82	60	60	12.47
16	62	73	13		12.35
17	68	12	98		12.21
18	63	93	38		12.14
19	55	83	92		12.13
20	98	100	100		12.12

Rank	LANG	MATH	HIST	SCI	PC1
1	13	20	98		17.76
2	7	20	72		14.90
3	28	22	95		14.63
4	67	2	93		13.49
5	38	27	97		13.32
6	88	100	48		13.23
7	55	97	50	28	12.87
8	67	82	18		12.83
9	58	97	45		12.79
10	28	68	67		12.66
11	55	97	67	61	12.64
12	38	80	70	26	12.54
13	18	58	7		12.52
14	70	90	30		12.49
15	37	82	60	60	12.47
16	62	73	13		12.35
17	68	12	98		12.21
18	63	93	38		12.14
19	55	83	92		12.13
20	98	100	100		12.12

Summary

1 PDT Scores \rightarrow 2 Outlier Detection Methods \rightarrow 3 PCA \rightarrow 4 *k*-means

Results - Clustering

In order to group the different patterns, we:

- Took 1% of students with highest scores
- Clustered according to their scores deviations from their applicants' average score

Cluster	LANG	MATH	HIST
1	6.96	15.08	-22.04
2	17.62	-42.01	24.39
3	-13.09	4.07	9.02
4	-7.78	-23.80	31.58
5	-5.91	16.53	-10.63
6	26.03	-4.23	-21.79
7	-2.27	2.82	-0.55

k-means centroids

Results - Clustering

Cluster	LANG	MATH	HIST	PC1	Cluster	LANG	MATH	HIST
	88	100	48	13.23		55	97	50
	67	82	18	12.83		58	97	45
1	70	90	30	12.49	5	55	97	67
	62	73	13	12.35		18	58	7
	63	93	38	12.14		37	82	60
	67	2	93	13.49		78	65	23
	68	12	98	12.21		77	48	17
2	93	22	97	10.09	6	93	60	40
	90	18	93	9.64		92	50	33
	78	18	95	9.51		78	23	13
	28	68	67	12.66		98	100	100
	38	80	70	12.54		93	100	98
3	55	83	92	12.13	7	97	98	97
	80	100	97	11.77		95	100	97
	2	2	28	11.29		97	100	85
	13	20	98	17.76				
	7	20	72	14.90				
4	28	22	95	14.63				
	38	27	97	13.32				
	23	12	67	11.25				

PC1 12.87 12.79 12.64 12.52 12.47 9.74 8.88 8.84 8.63 8.41 12.12 10.78 10.73 10.69 10.67

Results - Clustering

Cluster	LANG	MATH	HIST	PC1
	88	100	48	13.23
	67	82	18	12.83
1	70	90	30	12.49
	62	73	13	12.35
	63	93	38	12.14
	67	2	93	13.49
	68	12	98	12.21
2	93	22	97	10.09
	90	18	93	9.64
	78	18	95	9.51
	28	68	67	12.66
	38	80	70	12.54
3	55	83	92	12.13
	80	100	97	11.77
	2	2	28	11.29
	13	20	98	17.76
	7	20	72	14.90
4	28	22	95	14.63
	38	27	97	13.32
	23	12	67	11.25

Cluster	LANG	MATH	HIST	PC1
	55	97	50	12.87
	58	97	45	12.79
5	55	97	67	12.64
	18	58	7	12.52
	37	82	60	12.47
	78	65	23	9.74
	77	48	17	8.88
6	93	60	40	8.84
	92	50	33	8.63
	78	23	13	8.41
	98	100	100	12.12
	93	100	98	10.78
7	97	98	97	10.73
	95	100	97	10.69
	97	100	85	10.67

(Scores labeled as worth to investigate)

Conclusions - Future Work

Conclusions

- Outlier Detection methods + PCA enable the identification of suspicious scores
- Clustering methods allow us to interpret the groups according to the patterns
- Awaiting for the analysis of the last standardize PDT process

Future Work

- Analyze outliers at the level of test rooms and test centers
- Detection of **odd score patterns** in public schools

Conclusions - Future Work

Conclusions

- Outlier Detection methods + PCA enable the identification of suspicious scores
- Clustering methods allow us to interpret the groups according to the patterns
- Awaiting for the analysis of the last standardize PDT process

Future Work

- Analyze outliers at the level of test rooms and test centers
- Detection of odd score patterns in public schools

Questions

Appendix: PDT Scores Distribution and Correlations

	LANG	MATH	HIST
LANG MATH HIST	1.00 0.56 0.74	1.00 0.61	1.00

Table: LANG/MATH/HIST test scores correlation

Appendix: Outlier Detection Methods Scoring

Mahalanobis Distance:

$$d_{M}(X^{(i)}, \hat{\mu}) = \sqrt{(X^{(i)} - \hat{\mu})^{\top} \widehat{\Sigma}^{-1} (X^{(i)} - \hat{\mu})}$$

Robust Mahalanobis Distance:

$$\widehat{\Sigma}_{R} = \sum_{i=1}^{n} \frac{K(d_{M}(X^{(i)}, \widetilde{X})^{2})(X^{(i)} - \widetilde{X})(X^{(i)} - \widetilde{X})^{\top}}{\sum_{j=1}^{n} K(d_{M}(X^{(j)}, \widetilde{X})^{2})}$$

where $K(u) = e^{-0.1u}$, and the distance then is computed as

$$d_{RM}(X^{(i)}, \widetilde{X}) = \sqrt{(X^{(i)} - \widetilde{X})^{\top} \widehat{\Sigma}_{R}^{-1} (X^{(i)} - \widetilde{X})}$$

iForest, and Extended iForest:

$$s(X^{(i)}, n) = 2^{-\frac{\mathbb{E}(h(X^{(i)}))}{c(n)}}$$

where h() denotes the depth of the tree in which the i-th point is left as an outlier. c(n) s the average path length of unsuccessful search in a Binary Search Tree with n elements.

Appendix: Anomaly Scores Correlation

Table: Correlation Matrix with Spearman's ρ coefficient

	Mahala.	R. Mahal.	iFor.	E. iFor	PC1
Mahalanobis	1.00				
R. Mahalanobis	0.99	1.00			
iForest	0.98	0.97	1.00		
E. iForest	0.97	0.98	0.98	1.00	
PC1	0.99	0.99	0.99	0.99	1.00