```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.tree import DecisionTreeClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.impute import SimpleImputer
import warnings
from sklearn.metrics import classification_report
from sklearn.metrics import accuracy_score
# Ignore all warnings
warnings.filterwarnings("ignore")
```

```
[ ] df.shape
```

→ (541, 45)

df.info()

<class 'pandas.core.frame.DataFrame'>
 RangeIndex: 541 entries, 0 to 540
 Data columns (total 45 columns):

```
Column
                        Non-Null Count Dtype
  Sl. No
0
                        541 non-null
                                      int64
1
 Patient File No.
                       541 non-null
                                      int64
                        541 non-null
                                      int64
2
  PCOS (Y/N)
                                      int64
3
   Age (yrs)
                       541 non-null
                       541 non-null
                                      float64
4
 Weight (Kg)
5
  Height(Cm)
                       541 non-null
                                      float64
                       242 non-null
                                      float64
6
  BMI
7
  Blood Group
                       541 non-null
                                      int64
  Pulse rate(bpm)
                       541 non-null
                                      int64
9
                       541 non-null
                                      int64
   RR (breaths/min)
10 Hb(g/dl)
                       541 non-null
                                      float64
11 Cycle(R/I)
                        541 non-null
                                      int64
12 Cycle length(days)
                     541 non-null
                                      int64
13 Marraige Status (Yrs) 540 non-null float64
14 Pregnant(Y/N)
                                      int64
                        541 non-null
15 No. of aborptions
                       541 non-null
                                      int64
16 I
        beta-HCG(mIU/mL) 541 non-null
                                      float64
17 II
        beta-HCG(mIU/mL) 541 non-null
                                      float64
                                      float64
                        541 non-null
18 FSH(mIU/mL)
                       541 non-null
                                      float64
19 LH(mIU/mL)
20 FSH/LH
                        9 non-null
                                      float64
```

```
21 Hip(inch)
                               541 non-null int64
22 Waist(inch)
                               541 non-null int64
23 Waist:Hip Ratio
                              9 non-null float64
                               541 non-null float64
540 non-null float64
24 TSH (mIU/L)
25 AMH(ng/mL)
26 PRL(ng/mL)
                               541 non-null float64
                              541 non-null float64
541 non-null float64
27 Vit D3 (ng/mL)
28 PRG(ng/mL)
                               541 non-null float64
29 RBS(mg/dl)
30 Weight gain(Y/N) 541 non-null int64
31 hair growth(Y/N) 541 non-null int64
32 Skin darkening (Y/N) 541 non-null int64
33 Hair loss(Y/N)
                               541 non-null int64
                               541 non-null int64
34 Pimples(Y/N)
                               540 non-null float64
35 Fast food (Y/N)
36 Reg.Exercise(Y/N) 541 non-null int64
37 BP _Systolic (mmHg) 541 non-null int64
38 BP _Diastolic (mmHg) 541 non-null int64
39 Follicle No. (L)
                               541 non-null int64
40 Follicle No. (R) 541 non-null int64
41 Avg. F size (L) (mm) 541 non-null float64
42 Avg. F size (R) (mm) 541 non-null float64
43 Endometrium (mm)
                               541 non-null float64
44 Unnamed: 44
                               1 non-null float64
```

dtypes: float64(22), int64(23)

memory usage: 190.3 KB

data.isnull().sum() Sl. No Patient File No. PCOS (Y/N) Age (yrs) Weight (Kg)

Height(Cm) 0

BMI 0

Blood Group 0

Pulse rate(bpm) 0

0

0

0

RR (breaths/min) 0
Hb(g/dl) 0
Cycle(R/I) 0

Cycle length(days) 0
Marraige Status (Yrs) 0
Pregnant(Y/N) 0

No. of aborptions 0
I beta-HCG(mIU/mL) 0
II beta-HCG(mIU/mL) 0

FSH(mIU/mL) 0
LH(mIU/mL) 0
FSH/LH 0
Hin(inch) 0

Hip(inch) 0
Waist(inch) 0
Waist:Hip Ratio 0

TSH (mIU/L) 0
AMH(ng/mL) 0

PRL(ng/mL) 0
Vit D3 (ng/mL) 0
PRG(ng/mL) 0

RBS(mg/dl) 0
Weight gain(Y/N) 0
hair growth(Y/N) 0

Skin darkening (Y/N) 0

 $\begin{array}{lll} \mbox{Hair loss}(\mbox{Y/N}) & \mbox{0} \\ \mbox{Pimples}(\mbox{Y/N}) & \mbox{0} \\ \mbox{Fast food}(\mbox{Y/N}) & \mbox{0} \end{array}$

Reg.Exercise(Y/N) 0
BP _Systolic (mmHg) 0
BP _Diastolic (mmHg) 0

Follicle No. (L) 0
Follicle No. (R) 0
Avg. F size (L) (mm) 0

Avg. F size (R) (mm) 0 Endometrium (mm) 0 Unnamed: 44 0

dtype: int64

```
# Split data into training and testing sets
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random_state=42)

# Build RandomForestClassifier model
rf_classifier = RandomForestClassifier()
rf_classifier.fit(x_train, y_train)

VRandomForestClassifier
RandomForestClassifier()

Feature ranking:
1. feature 39 (0.192279) Follicle No. (L)
2. feature 38 (0.138409) BP _Diastolic (mmHg)
3. feature 29 (0.056602) RBS(mg/dl)
4. feature 31 (0.049465) hair growth(Y/N)
5. feature 24 (0.042875) TSH (mIU/L)
6. feature 30 (0.036787) Weight gain(Y/N)
```

beta-HCG(mIU/mL)

7. feature 18 (0.028215) FSH(mIU/mL)

10. feature 10 (0.021934) Hb(g/dl)

12. feature 2 (0.019750) PCOS (Y/N) 13. feature 11 (0.019522) Cycle(R/I) 14. feature 26 (0.018908) PRL(ng/mL)

16. feature 34 (0.017822) Pimples(Y/N) 17. feature 3 (0.017385) Age (yrs)

20. feature 25 (0.016444) AMH(ng/mL)

32. feature 6 (0.010811) BMI

33. feature 7 (0.010198) Blood Group

feature 9 (0.016892) RR (breaths/min)
 feature 41 (0.016540) Avg. F size (L) (mm)

21. feature 40 (0.015817) Follicle No. (R) 22. feature 23 (0.015445) Waist:Hip Ratio 23. feature 4 (0.014129) Weight (Kg) 24. feature 20 (0.013861) FSH/LH

25. feature 42 (0.013286) Avg. F size (R) (mm) 26. feature 15 (0.013270) No. of aborptions 27. feature 27 (0.013168) Vit D3 (ng/mL) 28. feature 21 (0.012692) Hip(inch) 29. feature 28 (0.012581) PRG(ng/mL) 30. feature 5 (0.012391) Height(Cm) 31. feature 33 (0.011264) Hair loss(Y/N)

9. feature 1 (0.022400) Patient File No.

feature 12 (0.018222) Cycle length(days)

8. feature 0 (0.025201) Sl. No

11. feature 17 (0.021010) II

```
34. feature 16 (0.009147) I beta-HCG(mIU/mL)
35. feature 8 (0.004801) Pulse rate(bpm)
36. feature 32 (0.004153) Skin darkening (Y/N)
37. feature 36 (0.003891) Reg.Exercise(Y/N)
38. feature 35 (0.003615) Fast food (Y/N)
39. feature 13 (0.002861) Marraige Status (Yrs)
40. feature 14 (0.002200) Pregnant(Y/N)
41. feature 37 (0.001784) BP _Systolic (mmHg)
42. feature 19 (0.001082) LH(mIU/mL)
43. feature 22 (0.000895) Waist(inch)
44. feature 43 (0.000000) Endometrium (mm)
```

Feature importances

Boxplot for FSH(mIU/mL)

Boxplot for TSH (mIU/L)

Boxplot for RBS(mg/dl)

Boxplot for Weight gain(Y/N)

Boxplot for hair growth(Y/N)

Boxplot for BP _Diastolic (mmHg)

Boxplot for Follicle No. (L)


```
0.75 11.7

0.25 10.5

Name: Hb(g/dl), dtype: float64

11.7

10.5

1.1999999999999999

3.49999999999998

8.70000000000000000
```



```
0.75 6.41
0.25 3.30
```

Name: FSH(mIU/mL), dtype: float64

6.41

3.3

1.199999999999993

8.209999999999999

1.50000000000000000

<Axes: ylabel='FSH(mIU/mL)'>


```
0.75   3.57
0.25   1.48
Name: TSH (mIU/L), dtype: float64
3.57
1.48
```

1.19999999999999 5.36999999999999

-0.31999999999999895

<Axes: ylabel='TSH (mIU/L)'>


```
0.75 107.0

0.25 92.0

Name: RBS(mg/dl), dtype: float64

107.0

92.0

15.0

129.5

69.5

<Axes: ylabel='RBS(mg/dl)'>

130 -
```



```
0.75
        80.0
0.25
        70.0
Name: BP _Diastolic (mmHg), dtype: float64
80.0
70.0
15.0
102.5
47.5
<Axes: ylabel='BP _Diastolic (mmHg)'>
    95
    90
    85
BP_Diastolic (mmHg)
    80
    65
    60
```

55

```
0.75    9.0
0.25    3.0
Name: Follicle No. (L), dtype: float64
9.0
3.0
6.0
18.0
-6.0
<Axes: ylabel='Follicle No. (L)'>
```


	51. No	Patient File No.	PCOS (Y/N)	Age (yrs)	Weight (Kg)	Height(Cm)	вмі	Blood Group	Pulse rate(bpm)	RR (breaths/min)	 Fast food (Y/N)	Reg.Exercise(Y/N)
count	541.000000	541.000000	541.000000	541.000000	541.000000	541.000000	541.000000	541.000000	541.000000	541.000000	 541.000000	541.000000
mean	271.000000	271.000000	0.327172	31.430684	59.637153	156.484835	23.929752	13.802218	73.247689	19.243993	0.514815	0.247689
std	156.317519	156.317519	0.469615	5.411006	11.028287	6.033545	2.447200	1.840812	4.430285	1.688629	0.499780	0.432070
min	1.000000	1.000000	0.000000	20.000000	31.000000	137.000000	15.100000	11.000000	13.000000	16.000000	 0.000000	0.000000
25%	136.000000	136.000000	0.000000	28.000000	52.000000	152.000000	23.929752	13.000000	72.000000	18.000000	 0.000000	0.000000
50%	271.000000	271.000000	0.000000	31.000000	59.000000	156.000000	23.929752	14.000000	72.000000	18.000000	1.000000	0.000000
75%	406.000000	406.000000	1.000000	35.000000	65.000000	160.000000	23.929752	15.000000	74.000000	20.000000	 1.000000	0.000000
max	541.000000	541.000000	1.000000	48.000000	108.000000	180.000000	38.900000	18.000000	82.000000	28.000000	 1.000000	1.000000

8 rows × 45 columns


```
y_train.value_counts()
PCOS (Y/N)
0.0
     287
1.0
      145
Name: count, dtype: int64
ybal.value_counts()
PCOS (Y/N)
1.0
       287
0.0
       287
Name: count, dtype: int64
model_= DecisionTreeClassifier()
model_.fit(X_train, y_train)
dt pred = model .predict(X test)
acc_score = accuracy_score(y_test, dt_pred)
print("acc_score of model %.2f"%accuracy_score(y_test, dt_pred))
acc score of model 0.80
from sklearn.ensemble import RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=100)
my_model = rfc.fit(X_train, y_train)
#Making prediction and checking the test set
from sklearn.metrics import accuracy score
pred_rfc = rfc.predict(X_test)
accuracy = accuracy score(y test, pred rfc)
print(accuracy)
0.8715596330275229
from sklearn.metrics import accuracy_score
reg model = LogisticRegression()
reg_model.fit(X_train, y_train)
reg pred = reg model.predict(X test)
reg_acc_score = accuracy_score(y_test, reg_pred)
print("acc_score of model %.2f"%accuracy_score(y_test, reg_pred))
acc_score of model 0.88
```

	Hb(g/dl)	Cycle(R/I)	FSH(mIU/mL)	TSH (mIU/L)	RBS(mg/dl)	Weight gain(Y/N)	hair growth(Y/N)	<pre>BP _Diastolic (mmHg)</pre>	Follicle No. (L)
0	10.48	2.0	6.897407	0.680	92.0	0.0	0.0	80.0	3.0
1	11.70	2.0	6.730000	3.160	92.0	0.0	0.0	70.0	3.0
2	11.80	2.0	5.540000	2.540	84.0	0.0	0.0	80.0	13.0
3	12.00	2.0	6.897407	6.705	76.0	0.0	0.0	70.0	2.0
4	10.00	2.0	3.980000	3.570	84.0	0.0	0.0	80.0	3.0
536	11.00	2.0	6.897407	1.110	92.0	0.0	0.0	70.0	1.0
537	10.80	2.0	5.070000	2.050	108.0	1.0	0.0	70.0	9.0
538	10.80	2.0	6.897407	2.870	92.0	0.0	0.0	80.0	1.0
539	12.00	4.0	4.400000	2.500	115.0	0.0	0.0	70.0	7.0
540	10.20	4.0	3.990000	1.660	108.0	1.0	1.0	70.0	9.0

541 rows × 9 columns

```
у
0
      0.0
1
       0.0
2
       1.0
3
       0.0
      0.0
536
      0.0
537
      0.0
538
      0.0
539
      0.0
540
       1.0
Name: PCOS (Y/N), Length: 541, dtype: float64
```

print(model_.predict([[10.20,4.0,3.990000,1.660,108.0,1.0,1.0,70.0,9.0]]))

[1.]

from sklearn.metrics import classification_report
print(classification_report (reg_pred, y_test))

	precision	recall	f1-score	support
0.0 1.0	0.96 0.69	0.88 0.88	0.92 0.77	84 25
accuracy macro avg weighted avg	0.82 0.90	0.88 0.88	0.88 0.85 0.89	109 109 109

print(classification_report(dt_pred, y_test))

	precision	recall	f1-score	support
0.0 1.0	0.87 0.62	0.85 0.67	0.86 0.65	79 30
accuracy macro avg weighted avg	0.75 0.80	0.76 0.80	0.80 0.75 0.80	109 109 109

from sklearn.metrics import classification_report
classi_report = classification_report (y_test, pred_rfc)
print(classi_report)

	precision	recall	f1-score	support
0.0	0.87	0.96	0.91	77
1.0	0.88	0.66	0.75	32
accuracy			0.87	109
macro avg weighted avg	0.87 0.87	0.81 0.87	0.83 0.87	109 109

print(classification_report (reg_pred, y_test))

	precision	recall	f1-score	support
0.6		0.88	0.92	84
1.6	0.69	0.88	0.77	25
accuracy	,		0.88	109
macro av	•	0.88	0.85	109
weighted av	0.90	0.88	0.89	109