

PROIECT- Sisteme cu circuite integrate analogice

Nume:Vasiu Andrei

Specializarea: Electronica Aplicata

Grupa 2131/2

Profesor indrumator: Gheorghe Eduard Vladu

Contents

1.Tematica proiectului	3
1.1 Amplificator instrumentatie cu 3 AO V-V	3
1.2 Band pass 2 AO V-V Tow Thomas	4
1.3 PGA, Rg paralel	4
1.4 Redresor dubla alternanta FWR v11	5
2. Dimensionarea etajelor	5
2.1 Dimensionare amplificator de instrumentatie cu 3 AO V-V	5
2.2 Dimensionare Band pass 2 AO V-V Tow Thomas	7
2.3 Dimensionare PGA, Rg parallel	8
2.4 Dimensionare Redresor dubla alternanta FWR v11	9
3.Caracterizarea etajelor	10
3.1 Caracterizare amplificator de instrumentatie cu 3 AO V-V	10
3.2 Caracterizare Band pass 2 AO V-V Tow Thomas	12
3.3 Caracterizare PGA, Rg parallel	14
3.4 Caracterizare Redresor dubla alternanta FWR v11	19
1 Concluzii	21

1.Tematica proiectului

1.1 Amplificator instrumentatie cu 3 AO V-V

-Amplitudine minima (pt castig maxim PGA): 3.96E-02

-Amplitudine maxima (pt castig minim PGA): 9.95E-02

-|Castig| etaj 1 in linear: 16

-Unitate masura: V (differential)

-Semnal intrare: tensiune

-Semnal iesire: tensiune

1.2 Band pass 2 AO V-V Tow Thomas

-|Ho| castig linear in banda de trecere: 1

-Rintrare minim: 2.00E+03

-Banda: 8.00E+03

-Q: 1.41

-Tip functie de transfer: trece-banda BPF

1.3 PGA, Rg paralel

-Castig minim [dB]: 8

-Rezolutie [dB]: 2

-Castig maxim [dB]: 16

-Nr pasi: 5

1.4 Redresor dubla alternanta FWR v11

-|Castig| (liniar): 1

-Tip AO: AD8065

-Tensiuni de alimentare: +/- 5V

VIn R1 R2 V01 +VDD AO2 VOut AO2 -VSS

2. Dimensionarea etajelor

2.1 Dimensionare amplificator de instrumentatie cu 3 AO V-V

Analiza circuit:

Se poate observa ca circuitul este impartit in 2 etaje de amplificare:

-Etaj 1: amplificator cu intrare si iesire diferentiala

-Etaj 2: amplificator cu intrare diferentiala si iesire asimetrica

Etaj 1: Se aplica teorema lui Kirchhoff

$$-Vo2 + R1Irg + RgIrg + R1Irg + Vo1 = 0$$

$$Vo1 - Vo2 = -(2R1 + Rg)Irg$$

$$Vo2 - Vo1 = (2R1 + Rg)Irg$$

$$Irg = \frac{Va - Vb}{Rg}$$

$$\Rightarrow \text{Vo2} - \text{Vo1} = \frac{Rg + 2R1}{Rg} (\text{Va} - \text{Vb}) \implies \text{expresia amplificarii etajului 1}$$
Etaj 2:

$$Vo = Vo(Vo2) + Vo(Vo1) + Vo(Vref)$$

Efect Vo(Vo2) => amplificator neinversor cu reactie negativa

$$\Rightarrow Vin = \frac{R3}{R3 + R2} Vo2$$

$$\Rightarrow Vo(Vo2) = (1 + \frac{R3}{R2}) (\frac{R3}{R3 + R2}) Vo2$$

Efect Vo(Vref) => amplificator neinversor cu reactie negativa

$$\Rightarrow$$
 Vin = $\frac{R2}{R3+R2}$ Vref

$$\Rightarrow$$
 Vo(Vref) = $(1 + \frac{R3}{R2})(\frac{R2}{R3 + R2})$ Vref

Efect Vo(Vo1) => amplificator inversor cu reactie negativa

$$\Rightarrow$$
 Vin = $Vo1$

$$\Rightarrow$$
 Vo(Vo1) = $-\frac{R3}{R2}$ Vo1

$$\Rightarrow \text{ Daca A(Vo2)} = \text{A(Vo1)} \Rightarrow \text{Vo} = \frac{R3}{R2}(\text{Vo1} - \text{Vo2}) + \text{Vref}$$

Dimensionarea circuitului

Se cere un castig de 16 => H0 = 16, din analiza stim ca A(etaj1) + A(etaj2) = H0 = $\frac{Rg + 2R1}{Rg} \frac{R3}{R2}$

Voi alege A(etaj1) = 2 iar A(etaj2) = 8, avand ecuatia de mai sus putem presupune A(etaj1) si A(etaj2)

Daca A(etaj1) =
$$2 \Rightarrow \frac{Rg + 2R1}{Rg} = 2$$
, => R1 = 200 si Rg = 400
Daca A(etaj2) = $8 \Rightarrow \frac{R3}{R2} = 8$, => R3 = 16k si R2 = 2k

2.2 Dimensionare Band pass 2 AO V-V Tow Thomas

$$H0 = \frac{R4}{R} = 1 = \frac{R4}{R} = R4 = R$$

 $C1 = C2 = C = \omega 0 = \frac{1}{\sqrt{R1*R4*C1*C2}} = \omega 0 = \frac{1}{R2C}$

$$Q = R1\sqrt{\frac{c_1}{c_2} * \frac{1}{R2R4}} = > Q = \frac{R1}{R2} = > 1.41 = \frac{R1}{R2} = > R1 = 1.41 * R2$$

Aleg
$$C = 2.2nF$$

$$\Rightarrow \omega 0 = 2\pi f 0 = 50.24 \text{ KHz}$$

$$\Rightarrow R2 = \frac{1}{\omega_0 c} = 9.04k \implies R2 = R4 = R = 9.04k$$

$$\Rightarrow$$
 R1 = 1.41 * 9.04k = 12.74k

Deoarece in programul Ltspice valorile erau putin decalate am ales niste valori orientative care sa respecte cerintele noastre!!

$$\Rightarrow$$
 R2 = R4 = R = 12k

$$\Rightarrow$$
 R1 = 16.2k

2.3 Dimensionare PGA, Rg parallel

 $Av = \{8dB, 10dB, 12dB, 14dB, 16dB\} = \{2.51, 3.16, 3.98, 5.01, 6.31\}$

s5

s4

s3

s2

s1 => switch-uri

{0

0

0

0

0}

$$00001 => Av = 1 + \frac{RF}{R1} => RF = 10k \text{ si } R1 = 6.61k$$

$$00011 \Rightarrow 1 + \frac{RF}{\frac{R1*R2}{R1+R2}} \Rightarrow R2 = 15.45k$$

$$00111 \Rightarrow 1 + \frac{RF}{\frac{R1*R2*R3}{R1*R2+R2*R3+R1*R3}} \Rightarrow R3 = 12.2k$$

$$01111 \Rightarrow 1 + \frac{RF}{\frac{R1*R2*R3*R4}{R2*R3*R4+R1*R3*R4+R1*R2*R4+R1*R2*R3*R4}} \Rightarrow R4 = 9.7k$$

$$11111 \Rightarrow 1 + \frac{RF}{\frac{R1*R2*R3*R4}{R2*R3*R4+R1*R3*R4+R1*R2*R4+R1*R2*R3*R4}} \Rightarrow R4 = 9.7k$$

$$11111 \Rightarrow 1 + \frac{RF}{\frac{R1*R2*R3*R4*R5+R1*R2*R3*R4*R5}{R2*R3*R4*R5+R1*R2*R3*R4*R5}} \Rightarrow R4 = 7.7k$$

2.4 Dimensionare Redresor dubla alternanta FWR v11

Vin > 0

$$Vin \uparrow VDD \implies Voa \approx -VSS \implies D1 \text{ conduce, } D2 \text{ blocata} \implies Vout = 0V$$

 $Vin < 0$

Vin
$$\downarrow$$
 -VSS => Voa = VDD => D2 conduce, D1 blocata => Vout = $-\frac{R2}{R1}$ * Vin

Castigul etajului este $1 \Rightarrow R2 = R1 = 10k$ (valoare nominala)

3. Caracterizarea etajelor

3.1 Caracterizare amplificator de instrumentatie cu 3 AO V-V

PSF

0	perating Point -	-	
V(n003):	-0.000104039	voltage	
V(n006):	-0.000106284	voltage	
V(+v):	5	voltage	
V(-v):	-5	voltage	
V(outd):	2.02041e-05	voltage	
V(n002):	-0.000119506	voltage	
V(n009):	-0.000119506	voltage	
V(n001):	1.13358e-09	voltage	
V(n008):	1.13358e-09	voltage	
V(n004):	0	voltage	
V(n010):	0	voltage	
V(n005):	0	voltage	
V(n007):	0	voltage	
V(n013):	-0.000104039	voltage	
V(n016):	-0.000106284	voltage	
V(outcm):	2.02041e-05	voltage	
V(n012):	-0.000119506	voltage	
V(n019):	-0.000119506	voltage	
V(n011):	1.13358e-09	voltage	
V(n018):	1.13358e-09	voltage	
V(n014):	0	voltage	
V(n020):	0	voltage	
V(n015):	0	voltage	
V(n017):	0	voltage	
V(n021):	-0.000104039	voltage	
V(n026):	-0.000106284	voltage	
V(+v_ps):	5	voltage	
V(outps):	2.02041e-05	voltage	
V(n023):	-0.000119506	voltage	

Castig

Banda > Banda filtru

CMRR-146db

PSRR-124db

THD

3.2 Caracterizare Band pass 2 AO V-V Tow Thomas

Psf

Castig

Banda-3db

Thd

🍠 SPICE Error Log: C:\Users\andy_\OneDrive - Technical University of Cluj-Napoca\Desktop\SCIA Proiect\Etaj... × Circuit: * C:\Users\andy_\OneDrive - Technical University of Cluj-Napoca\Desk Direct Newton iteration for .op point succeeded. N-Period=1 Fourier components of V(vout)
DC component:-0.000800204

Harmonic	Frequency	Fourier	Normalized
Number	[Hz]	Component	Component
1	8.000e+3	7.923e-4	1.000e+0
2	1.600e+4	1.430e-6	1.805e-3
3	2.400e+4	6.738e-7	8.505e-4
4	3.200e+4	2.117e-6	2.672e-3
5	4.000e+4	1.958e-6	2.471e-3
6	4.800e+4	1.528e-6	1.929e-3
7	5.600e+4	6.551e-8	8.269e-5
8	6.400e+4	4.799e-7	6.057e-4
9	7.200e+4	1.611e-6	2.033e-3
10	8.000e+4	2.684e-7	3.387e-4

Partial Harmonic Distortion: 0.505660% Total Harmonic Distortion: 0.544139%

Date: Mon Jan 15 21:28:00 2024 Total elapsed time: 1.876 seconds.

tnom = 27 temp = 27 method = modified trap totiter = 39536 traniter = 39492 tranpoints = 8322 accept = 6239 rejected = 2083 matrix size = 375

matrix size = 375 fillins = 399 solver = Normal

Avg thread counts: 1.1/1.3/1.2/1.1

Matrix Compiler1: 35.49 KB object code size 14.0/9.5/[4.5]

3.3 Caracterizare PGA, Rg parallel

Psf

Castig 16db

Banda 8db

Banda 10db

Banda 12db

Banda 14db

Banda 16db

Liniaritate (castig minim, 8 db) Valoarea gasita la 2V

Liniaritate (castig maxim, 16 db)

Valoarea gasita la 0.48V

3.4 Caracterizare Redresor dubla alternanta FWR v11

PSF

```
🍠 * C:\Users\andy_\OneDrive - Technical University of Cluj-Napoca\Desktop\SCIA Proiect\Etaj4\Etaj4.asc
         --- Operating Point ---
V(+v):
V(-v):
V(vin):
V(n002):
                                        voltage
                      -12
                                        voltage
                     n
                                         voltage
                     -0.000399093
                                        voltage
V(n001):
                     -0.00039912
                                         voltage
                     -0.393538
-0.000799095
V(n003):
                                        voltage
V(out):
                                        voltage
                     3.99156e-08
-4.03139e-13
I(D1):
                                         device_current
I(D2):
                                        device_current
device_current
I(R2):
                     2.67668e-12
I(R1):
I(V1):
                     -3.9912e-08
-0.0128024
                                        device_current
                                        device_current
I (V2):
I (V3):
                     0.0128025
                                         device_current
                     -3.9912e-08
-3.12799e-12
                                        device_current
subckt_current
Ix(u1:100):
Ix(u1:101):
Ix(u1:102):
                     -9.5193e-13
0.0064012
                                        subckt_current
                                        subckt_current
subckt_current
Ix (u1:103):
                      -0.00640125
Ix(u1:104):
Ix(u2:100):
                     3.9916e-08
                                        subckt_current
                     -3.07978e-12
                                        subckt_current
Ix(u2:101):
                     -1.08008e-12
                                        subckt_current
                     0.00640121
                                        subckt_current
subckt_current
Ix (u2:102):
Ix (u2:103):
                     -0.00640121
Ix (u2:104):
                     1.07997e-12
                                        subckt_current
```

Castig

Se observa faptul ca sunt egale, ceea ce releva ca avem un castig de 1

Implementare functie de circuit

Domeniul linear > specificatii

Tensiunea de intrare a etajului 4 poate varia intre 3.997, 3.998 => domeniul liniar trebuie sa fie mai mare decat domeniul tensiunii de intrare. Urmatoarele simulari releva faptul ca domeniul linear este de [500mV, 10V]

$$-\frac{R2}{R1}$$
 * Vin + Vd2 = VOA1 => Vin = 9.4 => cam la 10V apare saturatia

Domeniul linear 10V

Domeniul linear 0.5V

Se poate observa ca apare un zgomot ce relava faptul ca mai putin de 0.5V nu se poate

4.Concluzii

	Specificatii tabel	Masuratori
Castig amplificator	16V	16V
Banda amplificator	8kHz	10.35MHz
Castig filtru	1V	1V
Banda filtru	8kHz	8.43kHz
Castig PGA	8dB	7.80dB
Castig PGA	10dB	9.80dB
Castig PGA	12dB	11.80dB
Castig PGA	14dB	13.80dB
Castig PGA	26dB	15.80dB
Banda(8dB)	8kHz	27.12MHz
Banda(10dB)	8kHz	22.80MHz
Banda(12dB)	8kHz	20.80MHz
Banda(14dB)	8kHz	18.01MHz
Banda(16dB)	8kHz	16.61MHz
Castig redresor	1V	1V