Nº:		
APELLIDOS (escribir sobre la línea)	NOMBRE	DNI
TEORÍA DE CIRCUITOS 22 de noviembre de 2017	Grado en Ingeniería de Tecnologías de Tel	lecomunicación

Nota: las cuestiones con respuestas tipo test no restarán nota en caso de responderse incorrectamente.

Cuestión 1: Un circuito pasivo almacenador cumple que:

La energía consumida en cualquier intervalo de tiempo es >=0. La potencia consumida puede ser negativa.	
La potencia consumida en cualquier instante es >=0. La energía consumida puede ser negativa.	
Tanto la potencia como la energía consumidas en cualquier instante son >=0.	
Tanto la potencia como la energía consumidas pueden ser positivas o negativas.	

Cuestión 2: Escribir las ecuaciones del corte y del bucle (leyes de Kirchhoff) del circuito de la figura, en función únicamente de las variables dibujadas (U₁, U₂, U₃, U₄, I₁, I₂, I₃):

Cuestión 3: Se tiene el transformador ideal de la figura. Si las vueltas de primario y secundario son, respectivamente, N1=1000; N2=100; y se sabe que $v_2 = 30$ V, y $Z_2 = 2+2j$ Ω . Determinar los valores de v_1 , así como de la impedancia que se vería desde el lado primario, Z_1 e i_2 .

Cuestiones 4: Si a una fuente real de tensión continua (F.R.T), con parámetros Vg y Rg (tensión y resistencia interna respectivamente), se le conecta entre sus terminales una resistencia R₁=Rg, indicar la respuesta correcta:

Con cualquier resistencia R2 diferente a R1 que se conecte a la F.R.T. se obtendrá un peor	
rendimiento.	
Puede existir una resistencia R ₂ diferente a R ₁ que, conectada a dicha F.R.T, haga a la fuente	
trabajar con más rendimiento.	
Puede existir una resistencia R ₂ diferente a R ₁ que, conectada a dicha F.R.T, reciba más	
potencia.	
R ₁ , por ser igual a Rg, es la que hará a la fuente trabajar con más rendimiento.	

Cuestión 5: En una impedancia capacitiva, con fasores de intensidad y tensión en referencias pasivas, el fasor de intensidad, de módulo I, se adelanta un ángulo φ respecto a su fasor de tensión, de módulo V. ¿Cuál es la expresión de la potencia reactiva absorbida por dicha impedancia?

Qabs:

a

Cuestión 6 y 7: Escribir las ecuaciones de mallas del circuito de la figura. Datos: $V_{g1} = 4 \text{ V}$, $V_{g2} = 2 \text{ V}$, $I_g = 1 \text{ A}$, $R = 2 \Omega$.

Sabiendo que I_a = -1 A, I_b = -1 A e I_c = -3 A , calcular la potencia que cede V_{g1} y la potencia absorbida por la R que está a la derecha de V_{g2} .

$$P_{Absorbida R} = W$$

Cuestión 8: El circuito de la figura se encuentra en régimen permanente, cuando en t=0 se abre el interruptor. Obtener: a) La suma de energía almacenada en el condensador y la bobina en el instante anterior a la apertura del interruptor. b) La suma de potencia cedida por el condensador y la bobina en el instante posterior a la apertura del interruptor. Datos: $R_1 = R_2 = 2 \Omega$, L = 3 H, C = 1 F, $I_1 = 1 A$, $I_2 = 4 A$.

$$E_{LC} = J$$

$$P_{LC,\;ced} = \qquad \qquad W$$

Cuestión 9: Un motor consume de la red una potencia de 1,1 kW. También se sabe que en esas condiciones absorbe 400 var de potencia reactiva. Determinar el factor de potencia del motor y la capacidad del condensador a conectar en paralelo para que el factor de potencia resultante sea la unidad.

Datos: La red monofásica es de 230 V y 50 Hz.

cos φ =

$$C = \rho F$$

Cuestión 10: La fuente de tensión real de corriente continua de la figura se encuentra en régimen permanente. Se sabe que en el primer circuito funciona con un rendimiento del 75 % y que en el segundo circuito la intensidad I es de 5 A. Calcular los parámetros internos de la fuente. Datos: $R = 6 \Omega$.

$V_g =$	V

$$R_g=$$
 Ω

APELLIDOS (escribir sobre la línea)

NOMBRE

DNI

TEORÍA DE CIRCUITOS

22 de noviembre de 2017

Grado en Ingeniería de Tecnologías de Telecomunicación

Cuestión 11: En el circuito de la figura, obtener el valor de la intensidad i (t). Datos: R=5 Ω , C=1 mF, L=50 mH, ug (t) = $4\sqrt{2}\cos(100 \text{ t})$, ig (t) = $8 + 10\sqrt{2}\cos(200 \text{ t})$

Cuestión 12: Sabiendo que la lectura del vatímetro es 100 W, hallar la lectura del voltímetro y la tensión de la fuente. Datos: $R=4 \Omega$, $X_L=6 \Omega$, $X_C=3 \Omega$.

$$U_g \text{ (m\'odulo)} = V$$

Cuestión 13: Determinar el equivalente Norton entre los terminales A y B del circuito de corriente alterna de la figura. Datos: $u_g=20 \, \sqcup \, 0^\circ \, V$; $I_g=10 \, \sqcup \, 90^\circ \, A$; $R=8 \, \Omega$, $X_L=4 \, \Omega$, $X_C=2 \, \Omega$

 $I_{\text{nor}} = +j$ A

$$Z_{eq} = + j$$
 Ω

Cuestión 14-15: Obtener las ecuaciones de nudos para el circuito de la figura.

a

Cuestión 16 y 17: En el circuito trifásico equilibrado de la figura, se conoce que la carga trifásica dentro del recuadro punteado consume 8 kW y 6 kvar. Sabiendo que la tensión de alimentación de la carga U_c es 400 V, calcular el valor eficaz de tensión la de línea U_g de la fuente trifásica y el valor de la impedancia de la carga Z_c . Datos: $R_l = 0.1 \Omega$, $X_l = 0.1 \Omega$,

$$Z_{c}=$$
 Ω

Cuestión 18: El circuito de la figura se encuentra en régimen permanente de corriente continua, cuando en el instante t = 0, se abre el interruptor. Determinar la expresión de la tensión en la resistencia R_2 , $u_{R2}(t)$, para t>0. Datos: $R_1 = 6 \Omega$, $R_2 = 2 \Omega$, $L_1 = 2 H$, $U_g = 10 V$

$$u_{R2}(t) =$$
 V

Cuestión 19: Sabiendo que el circuito de CC es puramente resistivo, determinar la corriente I_{g2} en el montaje (b). $I_1 = 5$ A, $V_{g1} = 2$ V, $I_2 = 3$ A, $V_{g3} = 4$ V, $I_{g3} = 3$ A, $I_3 = 4$ A.

 $I_{g1} = A$

Cuestión 20: Calcular la tension V_f y V_{out} del circuito de la figura. Datos: V_{in1} =4V, V_{in2} =15 V, R_I =5.6 k Ω , R_2 =15 k Ω , R_f =5.6 k Ω , R_x =1.25 k Ω , R_y =5 k Ω , R_a =10 k Ω , R_b =10 k Ω .

$V_{ m out} =$	V