Càlcul Diferencial en Diverses Variables

Cinc Cèntims de Càlcul

Mario VILAR

30 de desembre de 2022

Índex

I	Conceptes bàsics	2
2	Topologia	2
3	Límits i continuïtat	4
4	Derivabilitat	6
5	Aproximació polinomial	9
6	Funció inversa i implícita	II
7	Lagrange	15

2 Topologia

Conceptes bàsics

Definició 1.1 (Norma de $x \in \mathbb{R}^n$). Podem definir la norma amb la següent equació:

$$||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_{j=1}^{n} x_j^2}.$$
 (1.1)

Geomètricament, ||x|| representa la longitud del vector x.

Teorema 1.2 (Designaltat de Cauchy-Schwarz). *Per a tot x, y es compleix que:*

$$\left| \langle x, y \rangle \right| \le \|x\| \cdot \|y\|$$

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right| \le \left(\sum_{j=1}^{n} x_{j}^{2} \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} x_{j}^{2} \right)^{\frac{1}{2}}$$
(1.2)

Definició 1.3 (Distància). Siguin dos vectors $x, y \in \mathbb{R}^n$. Aleshores, la distància entre x i y la definim com d(x, y) = ||x - y||. La distància satisfà les següents propietats característiques:

- I. $d(x, y) \ge 0$ i $d(x, y) = 0 \iff x = y$;
- 2. és simètrica: d(x, y) = d(y, x) per a tot $x, y \in \mathbb{R}^n$;
- 3. compleix la designaltat triangular: $d(x, y) \le d(x, z) + d(z, y)$, per a tot $x, y, z \in \mathbb{R}^n$.

Topologia

Definició 2.1 (Entorn). Prenem com a referència la recta real \mathbb{R} . Sigui $a \in \mathbb{R}$ i $r \in \mathbb{R}^+$. L'interval a l'entorn del punt $a \in \mathbb{R}$ és I = (a - r, a + r) = I(a, r).

Definició 2.2 (Bola). Anàlogament, prenem $a \in \mathbb{R}^n$. Una bola centrada en a de radi r són tots aquells punts pertanyents a \mathbb{R}^n tals que la distància que els separa d'a és inferior a r.

$$B(a,r) = \{ x \in \mathbb{R}^n \mid d(x,a) = ||x-a|| < r \}.$$
 (2.1)

Definició 2.3 (Bola tancada). És un conjunt de punts delimitat per una figura, que en reté els punts. En aquest cas, matemàticament queda definida de la següent manera:

$$\overline{B(a,r)} = \{ x \in \mathbb{R}^n \mid d(x,a) \le r \}. \tag{2.2}$$

Definició 2.4 (Punt interior). Diem que un punt a és interior a A si $\exists r > 0$ tal que $B(a,r) \subset A$ (està *totalment* continguda en el conjunt, per molt petit que agafem r). Denotem el conjunt dels punts interiors a A com \mathring{A} , i observem immediatament que $\mathring{A} \subset A$.

Topologia 2.15

Definició 2.5 (Punt adherent). Diem que un punt x és adherent a A si $\forall r >$ o tenim que $B(x, r) \cap A \neq \emptyset$. Tots els punts pertanyents a A formen part de l'adherència d'A (\overline{A}): sigui $a \in A$ un punt interior, aleshores $B(a, r) \cap A \neq \emptyset$ ja que, com a mínim, $B(a, r) \cap A = \{a\}$.

Definició 2.6 (Punt frontera). Sigui $A \subset \mathbb{R}^n$. Direm que un punt x és a la frontera d'A si és adherent a A i a $A^C = \mathbb{R}^n \setminus A$, el seu complementari en \mathbb{R}^n . Aquest conjunt de punts es coneix com a *frontera* d'A i es denota per ∂A o Fr(A).

$$\begin{cases}
B(x,r) \cap A & \neq \emptyset \\
B(x,r) \cap (\mathbb{R}^n \setminus A) & \neq \emptyset
\end{cases} \forall r > 0.$$
(2.3)

Equivalentment, $\partial A = \overline{A} \setminus \mathring{A}$.

Propietat 2.7. Si A és obert, aleshores $\mathbb{R}^n \setminus A = A^C$ és tancat. En particular, A és obert si, i només si, el seu complementari és tancat.

Definició 2.8 (Punt d'acumulació). Un punt x és un punt d'acumulació, és a dir, pertany al conjunt d'acumulació si $B(x,r)\cap (A\setminus\{x\})\neq\emptyset$ (és adherent a $A\setminus\{x\}$).

Definició 2.9 (Conjunt d'acumulació). Anàlogament, sigui $A \subset \mathbb{R}^n$. Diem conjunt d'acumulació d'A, escrit A', format pels punts $x \in \mathbb{R}^n$ que són adherents a $A \setminus \{x\}$. En altres paraules, la bola centrada en x de radi r que té punts d'A que no són x.

Definició 2.10 (Punt aïllat). $a \in A$ és aïllat si existeix r > 0 tal que $B(a, r) \cap A = \{a\}$.

Propietat 2.11.

- 1. $\overline{A} = A' \cup \{punts \ aillats \ d'A\}.$
- 2. $x \in A' \iff B(x,t) \cap (A \setminus \{x\})$ té infinits punts, $\forall r > 0$.

Definició 2.12 (Successió a \mathbb{R}^n). Una successió a \mathbb{R}^n és $s: \mathbb{N} \longrightarrow \mathbb{R}^n$ tal que $k \longmapsto s(k): x^k$, on x^k correspon al k-èsim valor de la successió, de cadascuna de les coordenades de l'n-vector. Denotem la successió per $(x^k)_{k\in\mathbb{N}}$. Això equival a n successions a \mathbb{R} $(x_j^k)_{k,j\in\mathbb{N}}$, amb $j=i\div n$.

Definició 2.13 (Successió convergent a \mathbb{R}^n). Una successió $(x^k)_{k\in\mathbb{N}}$ es diu que és convergent amb límit $a\in\mathbb{R}^n$ si $\forall \varepsilon>0 \exists k_0\in\mathbb{N} \mid \forall k\geq k_0 \mid x^k-a \mid <\varepsilon$ (si la distància entre el k-èsim punt de la successió i el límit és menor que un cert valor ε).

Teorema 2.14. Sigui $(x^k) \subset \mathbb{R}^n$ una successió, i sigui $a \in \mathbb{R}^n$ un punt. Aleshores, $(x^k)_k$ és convergent si, i només si, ho són totes les seves successions coordenades $(x_j^k)_k$, $j = 1 \div n$.

$$\lim_{k \to \infty} x^k = a \iff \lim_{k \to \infty} x_j^k = a_j, \ \forall j.$$
 (2.4)

Teorema 2.15. Sigui $A \subset \mathbb{R}^n$.

3 Límits i continuïtat

1.
$$x \in \overline{A} \iff \exists (x^k)_k \subset A \text{ tal que } \lim_k x^k = x.$$

2.
$$x \in \delta A \iff \exists (x^k)_k \subset A, (y^k)_k \subset (\mathbb{R} \setminus A) \text{ tals que } \lim_k x^k = \lim_k y^k = x.$$

3.
$$x \in A' \iff \exists (x^k)_k \subset A, x^k \neq x \forall k \text{ tal que } \lim_k x^k = a.$$

Definició 2.16 (Conjunt acotat). Sigui $A \subset \mathbb{R}^n$. Informalment, un conjunt acotat és aquell que està contingut en alguna bola. Formalment, si $\exists r > 0$ tal que $A \subset B(0, r)$.

Definició 2.17 (Conjunt compacte). A és compacte per successions si tota successió dins del conjunt $(x^k) \subset A$ té una parcial convergent amb límit a A.

$$(x^{k_j})_{j\in\mathbb{N}} \longrightarrow x \in A. \tag{2.5}$$

Teorema 2.18 (Compacte per successions). Un conjunt K és compacte per successions si, i només si, K és tancat i acotat.

Límits i continuïtat

Definició 3.1 (Corbes de nivell). Sigui $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ i sigui $c \in \mathbb{R}$. Aleshores, $E_c = \{x \in D \mid f(x) = c\}$ és el conjunt de nivell c.

Definició 3.2 (Límit). Sigui $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ i, en concret, sigui a un punt d'acumulació de D ($a \in D'$). Diem que $\lim_{x \to a} f(x) = \ell$ (existeix el límit) si, i només si:

$$\forall \varepsilon > o \exists \delta > o \mid o < \|x - a\| < \delta \implies |f(x) - \ell| < \varepsilon. \tag{3.1}$$

En altres paraules, $x \in B(a, \delta) \setminus \{a\}$ (la bola punxada $B^*(a, \delta)$) i, equivalentment, la imatge per la intersecció entre la bola i el domini està continguda en un entorn (o bola) d' ℓ :

$$f(B^*(a,\delta) \cap D) \subset B(\ell,\varepsilon).$$
 (3.2)

Propietat 3.3. Siguin $f, g: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ i sigui $a \in D'$ tals que existeixen $\ell_f = \lim_{x \to a} f(x)$ i $\ell_g = \lim_{x \to a} g(x)$. Aleshores:

$$I. \lim_{x \to a} (f(x) + g(x)) = \ell_f + \ell_g,$$

2.
$$\lim_{x\to a} f(x)g(x) = \ell_f \cdot \ell_g$$
,

3.
$$Si \ell_g \neq 0$$
, $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\ell_f}{\ell_g}$.

Fem límits restringits (iterats, sobre rectes i sobre corbes) per veure quin valor és candidat a límit o, en cas que trobem dos camins que passin per a amb límits restringits diferents, concloure que no hi ha límit.

Límits i continuïtat

• **Límits iterats**: hem de fer una *composició* de límits per a cada coordenada del vector, començant per la última i acabant per la primera:

$$\lim_{(x_1,\ldots,x_n)\to(a_1,\ldots,a_n)} f(x_1,\ldots,x_n) = \lim_{x_1\to a_1} \left(\lim_{x_2\to a_2} \left(\cdots \left(\lim_{x_n\to a_n} \left(f(x_1,\ldots,x_n) \right) \right) \cdots \right) \right)$$
(3.3)

En aquest sentit, si els límit iterats són diferents, el límit no existeix pas.

• **Límits sobre rectes**: agafem les rectes que passen per a i tenen direcció \vec{v} unitari: $x = a + \lambda \vec{v}$. Notem que $x = a + \lambda \vec{v}$ implica que ||v|| = 1 i $||x - a|| = |\lambda|$. $\lim_{x \to 0} f(a + \lambda \vec{v})$. Anomenem $\lim_{x \to 0} (a + \lambda \vec{v})$ el límit de f restringit a la recta $x = a + \lambda \vec{v}$.

Definició 3.4 (Continuïtat). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$. Sigui $a\in D'$. Diem que f és contínua al punt a si $\lim_{x\to a}f(x)=f(a)$. Formalment:

$$\forall \varepsilon > o \exists \delta > o \mid ||x - a|| < \delta \implies |f(x) - f(a)| < \varepsilon. \tag{3.4}$$

També podem formular la continuïtat en termes de successions, especificant que el límit és f(a):

contínua per successions
$$\iff \forall (x^k)_k \subset D \text{ amb } \lim_{x \to a} x^k = a \text{ es té } \lim_{k \to \infty} f(x^k) = f(a).$$
 (3.5)

Definició 3.5 (Corba). Una corba a \mathbb{R}^n és una aplicació $\gamma:[a,b]\longrightarrow\mathbb{R}^n$ contínua, és a dir:

$$\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t)), \tag{3.6}$$

on cada $\gamma_j: [0, 1] \longrightarrow \mathbb{R}$ és contínua i, a més, $\gamma(t) \in D$, per a cada $t \in [0, 1]$. Simbòlicament, escriurem $\gamma \subset D$, per dir que $\gamma([0, 1]) \subset D$. Els punta $a = \gamma(0)$ i $b = \gamma(1)$ s'anomenen, respectivament, origen i extrem de la corba. Una corba es diu que passa pel punt $p \in \mathbb{R}^n$ si per a un determinat temps t_0 es té $\gamma(t_0) = p$.

Proposició 3.6. Si existeix el límit de f(x, y) quan $(x, y) \to (a, b)$ i aquest val ℓ , també existeixen els límits de f sobre totes les corbes que passen pel punt (a, b) i aquests límits valen ℓ .

Teorema 3.7 (Criteri del Sandwich). Sigui $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$. Suposem que per $x \in B(a,r)$ per algun r, tenim $|f(x) - \ell| \le \varphi(||x - a||)$, amb $\lim_{t\to 0^+} \varphi(t) = 0$, on φ és una funció d'una variable. Aleshores, $\lim_{x\to a} f(x) = \ell$.

Observació 3.8. Com $\varphi(t)$ convergeix al o quan $t \to o^+$ i $|f(x) - \ell|$ està fitada per aquesta expressió, té uniformement el mateix comportament, és a dir, $f(x) - \ell$, quan $||x - a|| \to o^+$, ens diu que $|f(x) - \ell| \to o$.

Proposició 3.9. Sigui $D \subset \mathbb{R}^n$ un conjunt, $i \ a \in \mathbb{R}^n$ un punt d'acumulació de D. Si $f: D \to \mathbb{R}^m$ és contínua $a \ a, i \ g: \mathbb{R}^m \to \mathbb{R}^p$ és contínua $a \ f(a)$, aleshores la composició $g \circ f$ és contínua $a \ a$.

4 Derivabilitat

Teorema 3.10 (Composició amb una funció contínua d'una variable). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ amb $\lim_{x\to a}f(x)=\ell$. Sigui $g:I\longrightarrow\mathbb{R}$ una funció contínua, on $I=(\ell-r,\ell+r)$, interval al voltant de ℓ .

$$\mathbb{R}^n \xrightarrow{f} \mathbb{R} \xrightarrow{g} \mathbb{R}. \tag{3.7}$$

Aleshores, $\lim_{x\to a} g(f(x)) = g(\ell)$.

Teorema 3.11. Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$. Són equivalents:

- $f \in C(D)$.
- 2. L'antiimatge d'un obert és un obert. $\forall \mathcal{U}$ obert de \mathbb{R}^n , $f^{-1}(\mathcal{U}) = D \cap \mathcal{V}$, on $\mathcal{V} \subset \mathbb{R}^n$ és un obert.
- 3. Per a tot tancat $\mathcal{T} \subset \mathbb{R}^m$ existeix un tancat $G \subset \mathbb{R}^n$ tal que $f^{-1}(\mathcal{T}) = G \cap D$.

Definició 3.12 (Homeomorfisme). Un homeomorfisme és una aplicació $f:D\subset\mathbb{R}^n\longrightarrow E\subset\mathbb{R}^m$ entre subconjunts D i E amb la propietat que f és continua a D, injectiva a D, i la inversa $f^{-1}:f(D)\subset E\longrightarrow D$ és contínua.

Teorema 3.13. Sigui $f: K \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, amb $K \subset \mathbb{R}^n$ compacte $i f \in C(K)$. Si f és injectiva, $f^{-1}: f(K) \longrightarrow \mathbb{R}^n$ és contínua. Equivalentment, f és oberta.

Propietat 3.14. Sigui $K \subset \mathbb{R}^n$ compacte i sigui $f: K \longrightarrow \mathbb{R}$ contínua. Aleshores, f(K) és compacte.

Corol·lari 3.15 (Weierstrass). Sigui $K \subset \mathbb{R}^n$ compacte $i f : K \longrightarrow \mathbb{R}$ continua. Existeixen $x^o \in K$ i $x^i \in K$ tals que $f(x^o) \leq f(x) \leq f(x^i)$, per a tot $x \in K$ (s'assoleixen el màxim i el mínim).

Definició 3.16 (Funció uniformement contínua). Recordem que $f:A\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ és contínua a A si, i només si, $\forall a\in\mathbb{A}\forall \varepsilon>0$ existeix un $\delta=\delta(a,\varepsilon)>0$ (un delta que depèn d'a i d' ε) tal que $\|x-a\|<\delta\Longrightarrow|f(x)-f(a)|<\varepsilon$. En canvi, si f és uniformement contínua a A, δ no depèn de l'elecció del punt:

$$\forall \varepsilon > o \exists \delta = \delta(\varepsilon) > o \mid ||x - a|| < \delta \implies |f(x) - f(a)| < \varepsilon, \ \forall a \in A.$$
 (3.8)

Teorema 3.17. Sigui $f: K \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ contínua, amb K compacte. Aleshores, f és uniformement contínua $a \mathbb{R}$.

Lema 3.18. Donat A un conjunt, si tenim \mathcal{U} obert $i\mathcal{T}$ un conjunt tancat tal que $\mathcal{U} \subset A \subset \mathcal{T}$ $iD = \mathcal{T} \setminus \mathcal{U} \subset \partial A$. Aleshores, $\overline{A} = B$, $\mathring{A} = \mathcal{U}$ $i\partial A = D$.

DERIVABILITAT

Definició 4.1 (Derivada parcial). Sigui $a \in \mathcal{U}, f : \mathcal{U} \longrightarrow \mathbb{R}^n$ i \mathcal{U} obert a \mathbb{R}^n . Les derivades parcials de f al punt a (si existeixen) són:

$$\frac{\partial f}{\partial x_j} = \lim_{x_j \to a_j} \frac{f(a_1, \dots, a_{j-1}, x_j, a_{j+1}, \dots, n) - f(a_1, \dots, a_n)}{x_j - a_j}.$$
 (4.1)

Derivabilitat 4.5

En derivació parcial podem fer servir les regles de derivació que coneixem fins avui dia. Les altres variables actuen com si fossin constants.

Definició 4.2 (Gradient). És el vector de les derivades parcials d'una funció escalar. Així, el gradient de f al punt a és:

$$\nabla f(a) = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right). \tag{4.2}$$

Es tracta d'un vector i per coherència se sol expressar com una matriu columna:

$$\nabla f(a) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(a) \\ \vdots \\ \frac{\partial f}{\partial x_n}(a) \end{pmatrix} = \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a) \right)^T = Df(a)^T. \tag{4.3}$$

Notem que l'existència de gradient implica només l'existència de les seves components (les derivades parcials) i, per tant, en esmentar gradient en cap cas s'assumeix que la funció és derivable.

Definició 4.3 (Derivada direccional). Sigui $f: \mathcal{U} \longrightarrow \mathbb{R}^n$, \mathcal{U} un obert d' \mathbb{R}^n i \vec{v} una direcció (un vector a \mathbb{R}^n amb ||v|| = 1). Diem derivada direccional de f al punt a i en la direcció \vec{v} a:

$$D_v f(a) = \lim_{t \to 0} \frac{f(a+t\vec{v}) - f(a)}{t}.$$
 (4.4)

Definició 4.4 (Funció de classe C^k). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$. Diem que f és de classe C^k , o bé $f\in C^k(D), k\in\mathbb{N}$, si existeixen totes les derivades d'ordre k:

$$\frac{\partial^k f}{\partial x_{i_1} \cdots \partial x_{i_k}}, \ i_1, \dots, i_k \in \{1, \dots, n\} \text{ i són contínues a } D.$$
(4.5)

Definició 4.5 (Diferenciabilitat en un punt). Sigui $f: \mathcal{U} \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ amb \mathcal{U} obert en \mathbb{R}^n i $a \in \mathcal{U}$. f és diferenciable al punt a si, i només si, $\exists L_a : \mathbb{R}^n \longrightarrow \mathbb{R}$ una aplicació lineal tal que:

$$\lim_{x \to a} \frac{|f(x) - f(a) - L_a(x - a)|}{\|x - a\|} = 0.$$
(4.6)

Ens queda que la matriu de L_a té mida $n \times 1$ i és la següent:

$$L_a \longmapsto \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_n}(a)\right).$$
 (4.7)

A posteriori:

$$L_a(v) = \nabla f(a) \cdot \vec{v}, \ v \in \mathbb{R}^n. \tag{4.8}$$

Així doncs, podem reescriure l'expressió de diferenciabilitat de la següent manera:

$$\lim_{x \to a} \frac{|f(x) - f(a) - \nabla f(a)(x - a)|}{\|x - a\|} = 0.$$
 (4.9)

4 Derivabilitat

Propietat 4.6. Si f és diferenciable al punt a, aleshores existeixen les derivades direccionals:

$$D_v f(a) = \lim_{t \to 0} \frac{f(a + t\vec{v})}{t}, \text{ si } ||v|| = 1.$$
 (4.10)

En concret, $\nabla f(a) \cdot \vec{v} = \|\nabla f(a)\| \cos(\theta)$, ja que hem fixat $\|v\| = \mathbf{I}$, $i\vec{v} = \frac{\nabla f(a)}{\|\nabla f(a)\|}$. La derivada direccional és màxima quan \vec{v} i $\nabla f(a)$ estan alineats.

Propietat 4.7. Si $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ és diferenciable al punt $a \in \mathring{D}$, aleshores f té derivades direccionals a a, i es compleix:

$$D_v f(a) = Df(a) \cdot v = \sum_{j=1}^n v_j \frac{\partial f}{\partial x_j}(a) = \langle \nabla f(a), v \rangle, \tag{4.11}$$

és a dir, la derivada direccional en la direcció v és la imatge de v per la diferencial.

Propietat 4.8. Signi $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, tal que $a \in D$ i tal que les seves derivades parcials $\frac{\partial f}{\partial x_j}$ amb $j = 1 \div n$, són contínues a D. Aleshores, f és diferenciable a D. Diem que $f \in C^1(D)$ o que f és de classe C^1 . En forma de cadena d'implicacions podem posar:

$$f \in C^{\text{\tiny I}}(D) \implies f$$
 diferenciable a $D \implies f$ continua a D . (4.12)

Notem que $f \in C^1$ és una condició més forta que f sigui diferenciable.

Definició 4.9 (Matriu diferencial de ϕ al punt a). Sigui $\phi: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$ i sigui $a \in D$. Definim la imatge per ϕ com la imatge per les m aplicacions components en les m coordenades: $\phi(x_1, \ldots, x_n) = (\phi_1(x_1, \ldots, x_n), \ldots, \phi_m(x_1, \ldots, x_n))$. ϕ és diferenciable al punt a si, i només si, existeix $L: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ tal que

$$\lim_{x \to a} \frac{\|\phi(x) - \phi(a) - L_a(x - a)\|}{\|x - a\|} = 0.$$
(4.13)

A posteriori, quan això passa, $L_a(u)$ és la matriu diferencial de ϕ al punt a (o jacobiana, tot i que per jacobiana normalment s'entén el determinant d'aquesta matriu).

$$L_{a}(u) = (D\phi_{a})(u), \text{ on } D\phi_{a} \equiv \begin{pmatrix} \frac{\partial \phi_{1}}{\partial x_{1}}(a) & \cdots & \frac{\partial \phi_{1}}{\partial x_{n}}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_{n}}{\partial x_{1}}(a) & \cdots & \frac{\partial \phi_{m}}{\partial x_{1}}(a) \end{pmatrix} \iff \begin{pmatrix} \nabla \phi_{1}(a) \\ \vdots \\ \nabla \phi_{m}(a) \end{pmatrix}$$
(4.14)

Propietat 4.10. Si ϕ , ψ differenciables:

- 1. $\phi + \psi$ és diferenciable i $D(\phi + \psi)_a = D\phi_a + D\psi_a$.
- 2. Si m=1, $\phi \psi$ és diferenciable i $\nabla (\phi \psi)_a = \psi(a) \nabla \phi_a + \phi(a) \nabla \psi_a$.

Definició 4.11 (Regla de la cadena). Siguin $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^m$ i $g:f(D)\subset E\subset\mathbb{R}^m\longrightarrow\mathbb{R}^p$. Sigui $a\in D$ amb $f(a)\in E$. Si f és diferenciable al punt a i g és diferenciable a f(a), aleshores $g\circ f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}^p$ és diferenciable i

$$D(g \circ f)(a) = Dg(f(a)) \cdot D(f(a)), \text{ on } \cdot \text{ indica el producte de matrius.}$$
 (4.15)

Lema 4.12 (Lema de Schwarz). Sigui $f \in C^2(D)$ (totes les segones derivades són contínues). Aleshores,

$$\frac{\partial^2 f}{\partial x_i \partial x_k}(a) = \frac{\partial^2 f}{\partial x_k \partial x_j}(a). \tag{4.16}$$

Podem derivar amb l'ordre més convenient, ja que el resultat final serà el mateix. N'hi ha prou amb què cadascuna de les derivades parcials sigui diferenciable.

Propietat 4.13 (La derivació és «commutativa»). Si $\frac{\partial f}{\partial x_j}$, $j=1\div n$, són diferenciables a un punt $a\in D$. Aleshores,

$$\frac{\partial^2 f}{\partial x_k \partial x_j}(a) = \frac{\partial^2 f}{\partial x_j \partial x_k}(a), \ \forall j, k \in \{1, \dots, n\}.$$
(4.17)

L'ordre de les derivades creuades, no influeix en la derivació.

Definició 4.14 (Matriu hessiana). Sigui f per a la qual $\frac{\partial f}{\partial x}$ són diferenciables a $a \in D$ (per exemple, $f \in C^2(D)$. Aleshores, la matriu hessiana d'f al punt a:

$$Hf(a) = \begin{pmatrix} \frac{\partial^2 f}{(\partial x_1)^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_1 \partial x_n} & \cdots & \frac{\partial^2 f}{(\partial x_n)^2} \end{pmatrix}, \ Hf(a) \in \mathcal{M}_{n \times n}(\mathbb{R}) \text{ \'es sim\`etrica.}$$
(4.18)

Aproximació polinomial

Definició 5.1 (Polinomi de Taylor). Sigui $f:\Omega\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ i sigui $a\in\Omega$. Anem a desenvolupar el polinomi de Taylor en diverses variables, és a dir, per a diverses n. Per a n=1, on n és el nombre de variables, sigui $f:\Omega\subset\mathbb{R}^n\longrightarrow\mathbb{R}$, amb $a\in\Omega$. El polinomi de Taylor de f de grau k al punt a és:

$$p_k = \sum_{i=0}^k \frac{f^{(i)}(a)}{i!} (x - a)^i.$$
 (5.1)

Teorema 5.2. Sigui $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}$, en concret, sigui $f \in C^k(\Omega)$ i sigui $a \in \Omega$. Existeix un únic polinomi $p_k(x_1, \ldots, x_n)$ de grau $\leq k$ tal que:

$$\lim_{x \to a} \frac{|f'(x) - p_k(x)|}{\|x - a\|^k} = 0.$$
 (5.2)

A més, $f(x) = p_k(x) + o(||x - a||^k)$ i té la forma:

$$p_k(x) = f(a) + \nabla f(a)(x-a) + \frac{1}{2!}D^2 f(a)(x-a,x-a) + \dots + \frac{1}{k!}D^k f(a)(x-a, \frac{k}{2}, x-a). \tag{5.3}$$

Això és:

$$p_k(x) = \sum_{i=0}^k D^i f(a) \frac{(x-a, :::, x-a)}{i!}$$
(5.4)

Aleshores:

$$f(x) = \sum_{i=0}^{k} \frac{1}{i!} D^{i} f(a)(x - a, \cdot \cdot \cdot \cdot, x - a) + \frac{1}{(k+1)!} D^{(k)} f(\xi)(x - a, \cdot \cdot \cdot, x - a),$$

$$\xi = (1 - t)a + tx, t \in [0, 1].$$
(5.5)

Corol·lari 5.3 (Teorema del valor intermig). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ diferenciable i sigui D un domini convex (és a dir, que per a dos punts qualssevol del domini el segment entre ells també pertany al domini). Siguin $x, y \in D$ i sigui z(t) = (t-t)x + t y, $t \in [0, t]$. Existeix $t \in (0, t)$ tal que:

$$f(x) - f(y) = \nabla f(z(t))(x - y) \iff f(x) = f(y) + \nabla f(z(t))(x - y). \tag{5.6}$$

Definició 5.4 (Màxim relatiu). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ funció a D,D obert. Diem que $a\in D$ és un màxim relatiu si $\exists \varepsilon>0$ tal que $f(x)\leq f(a)$ sempre que $x\in B(a,\varepsilon)$.

Definició 5.5 (Mínim relatiu). Anàlogament, sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ funció a D,D obert. Diem que $a\in D$ és un màxim relatiu si $\exists \varepsilon>0$ tal que $f(x)\geq f(a)$ sempre que $x\in B(a,\varepsilon)$.

Teorema 5.6. Sigui $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ diferenciable. Si a és un extrem relatiu (o punt estacionari), aleshores $\nabla f(a) = 0$ (dit d'una altra manera, les primeres derivades amb totes les variables són o).

Definició 5.7 (Punt crític). Sigui $f:D\subset\mathbb{R}^n\longrightarrow\mathbb{R}$ funció a D,D obert. Diem que $a\in D$ és un punt crític si les derivades parcials són simultàniament nul·les; això és, si $\nabla f(a)=0$:

$$f(x) = f(a) + \nabla f(a)(x - a) + \frac{1}{2!}D^2 f(a)(x - a, x - a) + o(\|x - a\|^2)$$

$$\iff f(x) - f(a) = \frac{1}{2}(x - a)Hf(a)(x - a) + o(\|x - a\|^2).$$
(5.7)

Definició 5.8 (Matriu definida positiva). Sigui M una matriu $n \times n$ simètrica. Diem que M és definida positiva si:

$$v^T \cdot M \cdot v \ge 0, \ \forall v \in \mathbb{R}^n \setminus \{0\}.$$
 (5.8)

Teorema 5.9 (Punt de sella). Sigui $f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$ funció a D de classe $C^2(D)$. Sigui a punt crític $(\nabla f(a) = 0)$. Si Hf(a) és estrictament definida negativa, a és un màxim relatiu. Anàlogament, si Hf(a) és estrictament definida positiva, a és un mínim relatiu. Si $v^T Hf(a)v$ pren valors positius i negatius (segons v), diem que a és un punt de sella.

Propietat 5.10. Sigui M una matriu $n \times n$. Sigui Δ_j el primer menor d'ordre j, $\Delta_1 = a_{11}$, $\Delta_2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$ $i \Delta_n = \det M$ (els menors orlants).

$$M = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{n1} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$
 (5.9)

- 1. Si $\Delta_i > 0$ per a tot j, M és definida estrictament positiva.
- 2. Si Δ_j és negativa per a j senar i si A_j és positiva per a j parell, aleshores M definida estrictament negativa.

6

Funció inversa i implícita

Teorema 6.1 (Teorema de la funció inversa). Sigui $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}^n$ de classe C^k , amb Ω obert. Sigui $a \in \Omega$ amb $\det(Df(a)) \neq 0$, és a dir:

$$\det(Df(a)) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{vmatrix}$$
(6.1)

Existeix $\mathcal{U} \subset \Omega$ obert amb $a \in \mathcal{U}$ tal que:

- 1. $\mathcal{V} = f(\mathcal{U})$ és un obert.
- 2. $f: \mathcal{U} \longrightarrow \mathcal{V}$ és bijectiva.
- 3. $f^{-1}: \mathcal{V} \longrightarrow \mathcal{U}$ és de classe C^k .

Demostració.

1. Hi ha un entorn d'a (una bola) on f és injectiva: siguin $a \in \Omega$ i $\varepsilon > 0$ tal que existeix $B(a, \varepsilon)$. Comprovem la condició d'injectivitat ($f(x) = f(y) \implies x = y$):

$$f(x) = f(y) \iff 0 = f_j(x) - f_j(y) = \nabla f_j(\xi)(x - y) = \sum_{k=1}^n \frac{\partial f_j}{\partial x_k}(\xi_j)(x_k - y_k)$$
 (6.2)

Per tant, tenim un sistema d'n equacions amb n incògnites i de matriu:

$$M = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(\xi_{1}) & \cdots & \frac{\partial f_{1}}{\partial x_{n}}(\xi_{n}) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{1}}(\xi_{n}) & \cdots & \frac{\partial f_{n}}{\partial x_{n}}(\xi_{n}) \end{pmatrix}$$
(6.3)

on ξ_1, \ldots, ξ_n són coordenades d'un punt intermig entre x i y. En concret, si ε és prou petit, $x, y \in B(a, \varepsilon)$ i el $\det(M) \neq 0$. Aleshores, $x_k - y_k = 0$ per a tot k. D'aquesta manera, x = y.

2. Sigui $\delta < \varepsilon$. Aleshores, $f|_{\overline{B(a,\delta)}}$ és injectiva i de classe C^k . Considerem:

$$m = \min_{x \in B(a,\delta)} (\|f(x) - f(a)\|) > 0, \text{ tal que } \|x - a\| = \delta.$$
 (6.4)

Amb tot, veurem que $B(f(a), \frac{m}{2}) \subset f(B(a, \delta))$. En efecte, sigui $y \in B(f(a), \frac{m}{2})$ un punt qualsevol. Aquest punt compleix, per definició, que $||y - f(a)|| < \frac{m}{2}$. Volem veure que existeix $x \in \overline{B(a, \delta)}$ tal

que f(x) = y; en altres paraules, volem veure que la funció $d: B(a, \delta) \longrightarrow \mathbb{R}$ assoleix el valor o per a $d(x) = \|f(x) - y\|^2$. Pel teorema de Weierstrass, d(x) assoleix un mínim $x_0 \in \overline{B(a, \delta)}$. Hem de distingir casos en funció d'aquest mínim:

1. Si $x_0 \notin \partial B(a, \delta)$, ens queda:

$$||f(x_0) - y|| \ge ||f(x_0) - f(a)|| - ||f(a) - y|| > m - \frac{m}{2} = \frac{m}{2} > ||f(a) - y||.$$
 (6.5)

2. En canvi, si $x_0 \in B(a, \delta)$, és un extrem relatiu. Si prenem tot $k = 1 \div n$:

$$o = \frac{\partial d}{\partial x_k}(x_o) = \sum_{j=1}^n 2(f_j(x_o) - y_j) \frac{\partial f_j}{\partial x_k}(x_o) \implies f_j(x_o) - y_j = o, \forall j \implies f(x_o) = y.$$

$$(6.6)$$

Com hem provat que és exhaustiva, ja hem acabat.

3. Definim $\mathcal{V} = B(f(a), \frac{m}{2})$ i, per tant, $\mathcal{U} = f^{-1}(B(f(a), \frac{m}{2}))$. La inversa $f^{-1}: \mathcal{V} \longrightarrow \mathcal{U}$ és de classe C^k . Pel fet que $f^{-1}(f(x)) = x$ (és bijectiva), $Df^{-1}(f(a)) = (Df(a))^{-1} = Id$ i $Df^{-1}(f(a))Df(a) = Id$.

Observació 6.2. L'enunciat anterior porta associades algunes particularitats:

- Es tracta d'un teorema d'existència; és a dir, es dona una condició suficient per a l'existència d'inversa, però no sabem qui és aquesta inversa: només sabem que existeix i té una certa regularitat.
- Es tracta d'un teorema local; és a dir, es garanteix que f és injectiva en un entorn \mathcal{U} del punt a. Lluny de l'entorn \mathcal{U} no sabem què passa. A més, tampoc sabem si \mathcal{U} és gran o petit.
- Demanar que Df(a) sigui un isomorfisme és equivalent a demanar que $\det(Df(a)) \neq 0$. Aquest determinant és precisament el determinant de la matriu jacobiana de f al punt a. Si $f = (f_1, \ldots, f_n)$, aleshores:

$$\det(Df(a)) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1}(a) & \cdots & \frac{\partial f_1}{\partial x_n}(a) \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \cdots & \frac{\partial f_n}{\partial x_n}(a) \end{vmatrix}. \tag{6.7}$$

Aquest determinant s'anomena el *jacobià de f al punt a* i sovint es denota per:

$$J(a,f) = \det(Df(a)) = \det\left(\frac{\partial(f_1,\dots,f_n)}{\partial(x_1,\dots,x_n)}\right)(a),\tag{6.8}$$

amb la intenció de destacar les funcions que es deriven i en quines variables es deriven, en particular.

• El teorema garanteix que si f té jacobià no nul a un punt, aleshores f és una funció bijectiva a \mathcal{U} , i la seva inversa g és tal que $g \in C^r(f(\mathcal{U}))$.

Teorema 6.3 (Teorema de la funció implícita). Sigui $\Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ obert, i sigui $F: \Omega \subset \mathbb{R}^n \times \mathbb{R}^m$ de classe C^1 . Sigui $(x^0, y^0) \in \Omega \subset \mathbb{R}^n \times \mathbb{R}^m$. Si

$$\det\left(\frac{\partial F_{j}}{\partial y_{k}}\right)_{\substack{j=1 \div m \\ k=1 \div m}} (x^{\circ}, y^{\circ}) = \det\begin{pmatrix} \frac{\partial F_{i}}{\partial y_{i}}(x^{\circ}, y^{\circ}) & \frac{\partial F_{i}}{\partial y_{i}}(x^{\circ}, y^{\circ}) & \cdots & \frac{\partial F_{i}}{\partial y_{n}}(x^{\circ}, y^{\circ}) \\ \frac{\partial F_{2}}{\partial y_{i}}(x^{\circ}, y^{\circ}) & \frac{\partial F_{2}}{\partial y_{2}}(x^{\circ}, y^{\circ}) & \cdots & \frac{\partial F_{2}}{\partial y_{n}}(x^{\circ}, y^{\circ}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_{n}}{\partial y_{i}}(x^{\circ}, y^{\circ}) & \frac{\partial F_{n}}{\partial y_{2}}(x^{\circ}, y^{\circ}) & \cdots & \frac{\partial F_{n}}{\partial y_{n}}(x^{\circ}, y^{\circ}) \end{pmatrix} (x^{\circ}, y^{\circ}) \neq 0, \quad (6.9)$$

aleshores existeixen W entorn de (x°, y°) , \mathcal{U} entorn de x° i $g_j: \mathcal{U} \longrightarrow \mathbb{R}$ de classe $C^{\scriptscriptstyle 1}$ tals que

$$\{x, y \in W \mid F(x, y) = 0\} = \{(x, g(x)) \mid x \in \mathcal{U}\}, g_j(x^0) = y_j, j = i \div m.$$
 (6.10)

Estem dient que existeix un entorn (x, g(x)) tal que es correspon amb els punts de W que fan que F(x, y) = 0. Quan això passa, tenim m igualtats que defineixen implícitament les funcions g_1, \ldots, g_m .

$$F_{1}(x_{1},...,x_{n},g_{1}(x),...,g_{m}(x)) = o$$

 \vdots
 $F_{m}(x_{1},...,x_{n},g_{1}(x),...,g_{m}(x)) = o$
(6.11)

Tenim que, a més, $g_j \in C^k(\mathcal{U}_a)$.

Idea de la demostració. Definim $H: \Omega \subseteq \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^{n+m}$ tal que $H \in C^k(\Omega)$, H(x,y) = (x,F(x,y)) i H(a,b) = (a,o). Comprovem que H té inversa a l'entorn de (a,o). Pel teorema de la funció inversa, hi ha una inversa local de classe C^k si

$$\det(DH(a,b)) = \begin{bmatrix} I & o & \cdots & o & o & \cdots & o \\ o & I & \cdots & o & o & \cdots & o \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ o & o & \cdots & I & o & \cdots & o \\ \hline \frac{\partial F_1}{\partial x_1} & \frac{\partial F_1}{\partial x_2} & \cdots & \frac{\partial F_1}{\partial y_1} & \frac{\partial F_1}{\partial y_2} & \cdots & \frac{\partial F_1}{\partial y_m} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \frac{\partial F_m}{\partial x_1} & \frac{\partial F_m}{\partial x_2} & \cdots & \frac{\partial F_m}{\partial y_1} & \frac{\partial F_m}{\partial y_2} & \cdots & \frac{\partial F_m}{\partial y_m} \end{bmatrix} \neq 0$$

$$(6.12)$$

$$\left| \frac{\partial F_m}{\partial x_1} \frac{\partial F_m}{\partial x_2} \cdots \frac{\partial F_m}{\partial y_1} \right| \frac{\partial F_m}{\partial y_2} \cdots \frac{\partial F_m}{\partial y_m}$$

$$H(x, y) = (x_1, \dots, x_n, F_1(x, y), \dots, F_m(x, y))$$

$$H_1(x, y) = x_1, \dots, H_n(x, y) = x_n$$

$$\tilde{H}_1(x, y) = F_1(x, y), \dots, \tilde{H}_m = F_m(x, y)$$

$$i \begin{cases} H^{-1}(x, 0) = (x, \tilde{H}^{-1}(x, 0)) \\ y = \tilde{H}^{-1}(x, 0) = g(x) \end{cases}$$

Existeixen $\mathcal{U}_{(a,b)}$ i $\mathcal{V}_{(a,b)}$ oberts de \mathbb{R}^{n+m} tals que $H:\mathcal{U}_{(a,b)}\longrightarrow\mathcal{V}_{(a,o)}$ és un difeomorfisme de classe C^k . Existeix, per a $(x,y)\in\mathcal{V}_{(a,o)}$:

$$H^{-1}(x,y) = (H_{\mathbf{I}}^{-1}(x,y), \dots, H_{n}^{-1}(x,y), \tilde{H}_{\mathbf{I}}^{-1}(x,y), \dots, \tilde{H}_{m}^{-1}(x,y)). \tag{6.13}$$

H i \tilde{H} indiquen que H és per les n components d' \mathbb{R}^n i \tilde{H} és per les m components d' \mathbb{R}^m . Definim: $g(x) = (\tilde{H}_1^{-1}(x, 0), \dots, \tilde{H}_m^{-1}(x, 0)) = \tilde{H}^{-1}(x, 0)$. Queda per demostrar que en aquest entorn $F(x, y) = 0 \iff y = g(x)$.

$$\Rightarrow$$
 $F(x, y) = 0$ implica que $H(x, y) = (x, 0)$ i $(x, y) = H^{-1}(x, 0)$ i $y = \tilde{H}^{-1}(x, 0) = g(x)$.

$$\leftarrow F(x, g(x)) = F(x, \tilde{H}^{-1}(x, o)) = F(H^{-1}(x, o)) = o.$$

Observació 6.4.

- Es tracta d'un teorema d'existència local. Globalment no es pot dir res.
- La funció *g* rep el nom de *funció implícita*, i se'n sap l'existència i la regularitat, però no la seva forma explícita.
- L'aplicació $z \mapsto (g(z), z) = G(o, z)$ definida per a $z \in C$ amb valors $A \cap \{F = o\}$ és contínua i bijectiva a C.

Definició 6.5 (Subvarietat diferenciable). Diem que $M \subset \mathbb{R}^n$ és una subvarietat diferenciable de classe C^k i dimensió m (els graus de llibertat que queden després d'imposar una sèrie de condicions) si per a cada $p \in M$ existeix un entorn de p, \mathcal{U} , i existeixen n-m funcions (el nombre de condicions que hem fixat) $g_1, \ldots, g_{n-m}: \mathcal{U} \longrightarrow \mathbb{R}, g_j \in C^k(\mathcal{U}_p)$ tals que

$$M \cap \mathcal{U}_p = \{ x \in \mathcal{U}_p \mid g_{\scriptscriptstyle \rm I}(x) = \dots = g_{n-m}(x) = {\rm o} \}, \tag{6.14}$$

i les funcions g_1, \ldots, g_m són diferents: $\nabla g_1(p), \ldots, \nabla g_{n-m}(p)$ són vectors linealment independents.

Definició 6.6 (Espai normal i espai tangent). Diem espai normal a M al punt p a l'espai generat per tots els vectors gradient, que són perpendiculars a la corba en el punt p. El denotem per:

$$N_p(M) = \langle \nabla g_1(p), \dots, g_{n-m}(p) \rangle, \dim(N_p(M)) = n - m.$$
(6.15)

Diem espai tangent a M en el punt p a:

$$T_p(M) = \langle \nabla g_1(p), \dots, \nabla g_{n-m}(p) \rangle^{\perp}, \dim(T_p(M)) = m.$$
(6.16)

Definició 6.7 (Parametrització). Sigui M una subvarietat diferenciable de \mathbb{R}^n de dimensió m i de classe C^k . Donat un entorn \mathcal{U}_p de p els punts de $M\cap\mathcal{U}_p$ són els zeros d'una funció $F:\mathcal{U}_p\longrightarrow\mathbb{R}^{n-m}$ de classe $C^k(\mathcal{U}_p)$ amb DF de rang n-m a tot punt d' \mathcal{U}_p . Si per les derivades parcials $\frac{\partial}{\partial x_{m+1}},\ldots,\frac{\partial}{\partial x_n}$ tenim $\det(\frac{\partial (F_1,\ldots,F_{n-m})}{\partial (x_{m+1},\ldots,x_n)})\neq 0$, aleshores hem trobat una parametrització $G=(Id_m,g)$ on $Id_m:\mathcal{U}_p\to\mathcal{U}_p$ és la identitat, i g és la funció resultant d'aplicar el teorema de la funció implícita. En particular, G^{-1} és la projecció en les coordenades x_1,\ldots,x_m .

Lagrange 7.1

Teorema 6.8. Sigui A un obert de \mathbb{R}^m i siguin $g_1, \ldots, g_n \in C^k(A)$ amb diferencials de rang m. Per a cada punt $a \in A$ existeix un entorn $\mathbf{U} \subset A$ tal que $g = (g_1, \ldots, g_n)$ sobre \mathbf{U} és un homeomorfisme amb la seva imatge $g(\mathbf{U}) \subset \mathbb{R}^n$. Aquesta és una subvarietat diferenciable de \mathbb{R}^n de dimensió m.

LAGRANGE

Teorema 7.1 (Mètode de multiplicadors de Lagrange). Sigui $M \subset \mathbb{R}^n$ una subvarietat diferenciable de classes C^k i dimensió m. És a dir, definim $p \in M$, \mathcal{U}_p entorn de p, $g_j \in C^k(\mathcal{U}_p)$ i $j = 1 \div n - m$ tals que:

$$M \cap \mathcal{U}_p = \{ x \in \mathcal{U}_p \mid g_{\scriptscriptstyle \rm I}(x) = \dots = g_{n-m}(x) = \mathsf{o} \}. \tag{7.1}$$

Sigui ara $f \in C^1(\Omega)$ on Ω és un obert que conté M. Els extrems de f restringida a $M \cap \mathcal{U}_p$ es troben entre els punts $x \in \mathcal{U}_p \cap M$ tals que $\nabla f(x) \in \langle \nabla g_1(x), \ldots, \nabla g_{n-m}(x) \rangle$. És a dir, $\nabla f(x)$ és combinació lineal de $\nabla g_i(x)$, existeixen $\lambda_1, \ldots, \lambda_{n-m} \in \mathbb{R}$ tals que:

$$\nabla f(x) = \lambda_1 \nabla g_1(x) + \dots + \lambda_{n-m} \nabla g_{n-m}(x). \tag{7.2}$$

Diem que $\lambda_1, \ldots, \lambda_{n-m}$ són els multiplicadors de Lagrange.

Idea de la demostració. Si agafem $M = \{(x, y) \mid g(x, y) = o\}$ i el conjunt de corbes de nivell $E_C = \{(x, y) \mid f(x, y) = c\}$. Sabem que el vector perpendicular a la corba de nivell en un punt és el gradient de ∇f en aquell punt. En M, el vector perpendicular en un punt és, per definició, ∇g . Aleshores, si els vectors són tangents en algun punt, tenim $\nabla f = \lambda \nabla g$.