Real Variables: Problem Set VI

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set VI of Real Variables 2015 at NYU.

1 Solutions

Question 9.10.

Solution. Let $\{X_n, \rho_n\}_{n=1}^{\infty}$ be a countable collection of metric spaces. We now define $(\prod_{n=1}^{\infty} X_n, p_*) = (X, p_*)$ such that for $x, y \in X$,

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}.$$

First, we can show that p_* is well-defined via comparison test with the series $\sum_{n=1}^{\infty} \frac{1}{2^n}$, as $0 \le \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} \le 1$ for all n.

As $p_n(x_n,y_n)\geq 0$ for all n, we have $p_*(x,y)\geq 0$ for all $x,y\in X$. If $p_*(x,y)=0$, then $p_n(x_n,y_n)=0$ for all n. As each p_n is a metric space $x_n=y_n$ for all n. Therefore, x=y. If x=y, then $x_n=y_n$ for all n. As each p_n is a metric space, $p_n(x_n,y_n)=0$ for all n. Therefore, $p_*(x,y)=0$.

Since $p_n(x_n, y_n) = p_n(y_n, x_n)$ for all n, for $x, y \in X$, we

$$p_*(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)}$$
$$= \sum_{n=1}^{\infty} \frac{1}{2^n} \cdot \frac{p_n(y_n, x_n)}{1 + p_n(y_n, x_n)}$$
$$= p_*(y, x).$$

Let $x, y, z \in X$. By the problem 6 and the triangle inequality of each metric space X_n , which gives $p_n(x_n, z_n) \le p_n(x_n, y_n) + p_n(y_n, z_n)$ for each n, we have

$$\frac{p_n(x_n, z_n)}{1 + p_n(x_n, z_n)} \leq \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} + \frac{p_n(y_n, z_n)}{1 + p_n(y_n, z_n)},$$

for all n. Hence, we have

$$\sum_{n=1}^{\infty} \frac{p_n(x_n, z_n)}{1 + p_n(x_n, z_n)} \leq \sum_{n=1}^{\infty} \frac{p_n(x_n, y_n)}{1 + p_n(x_n, y_n)} + \frac{p_n(y_n, z_n)}{1 + p_n(y_n, z_n)},$$

which can be written as

$$p_*(x,z) \le p_*(x,y) + p_*(y,z).$$

Therefore, we have shown that all required properties of a metric space hold for (X, p_*) . (X, p_*) is a metric space. \Box

Question 9.20.

Solution. Let E be a subset of a metric space X, and let $\mathrm{int}E$ be the interior of E. We first show that $\mathrm{int}E\subseteq E$. If $x\in X\setminus E$, then every ball of x contains a point in $X\setminus E$. Hence, $x\in E$. Therefore, $\mathrm{int}E\subseteq E$.

Now, we wish to show that $\operatorname{int} E$ is open. For the first case, assume that $E=\operatorname{int} E$. Let $x\in\operatorname{int} E$. Since x is an interior point of E, there exists an open ball B(x,r) contained in E. Since $E=\operatorname{int} E$, the open ball B(x,r) is contained in $\operatorname{int} E$ as well. Hence, $\operatorname{int} E$ is open in this case. For the remaining case, assume that $E\setminus\operatorname{int} E\neq\emptyset$. Let $x\in\operatorname{int} E$. Since x is an interior point of E, there exists an open ball B(x,r) contained in E. Suppose that there exists $y\in B(x,r)\cap E\setminus\operatorname{int} E$. Then, we have d(x,y)< r. Consider B(y,r-d(x,y)), which is valid since r-d(x,y)>0. By the triangle inequality, for any point $z\in B(y,r-d(x,y))$,

$$\begin{array}{rcl} d(x,z) & \leq & d(x,y) + d(y,z) \\ & < & r. \end{array}$$

Hence, B(y, r - d(x, y)) is an open ball contained in B(x, r), which is again contained E, which contradicts the fact that $y \in E \setminus \text{int} E$. Hence, B(x, r) is contained in int E. Therefore, int E is open. As we covered all cases, int E for any subset E of a metric space X is open.

Assume E is open. Let $x \in E$. As E is open, there exists an open ball around x contained in E. Therefore, $x \in \text{int} E$. Hence, $E \subseteq \text{int} E$. As we have $\text{int} E \subseteq E$ from above, we have shown that E = int E.

Assume E = intE. Let $x \in E$. Then, as E = intE, $x \in \text{int}E$. By the definition of interior point, there exists an open ball around x contained in E. Hence, E is open. \square

Ouestion 9.32.

Solution. (a) We claim that f is 1-Lipschitz. Let $x, y \in \mathbb{R}$. Then, by the triangle inequality, we have

$$\begin{array}{lcl} \operatorname{dist}(x,E) & \leq & d(x,e) \\ & \leq & d(x,y) + d(y,e), \end{array}$$

for all $e \in E$. By taking the inf over $e \in E$ on the RHS, we have

$$\operatorname{dist}(x, E) \leq d(x, y) + \operatorname{dist}(y, E).$$

Hence, it follows that

$$\operatorname{dist}(x, E) - \operatorname{dist}(y, E) \leq d(x, y).$$

By symmetry, we also obtain that

$$dist(y, E) - dist(x, E) \le d(x, y).$$

Hence, it follows that

$$|\operatorname{dist}(x, E) - \operatorname{dist}(y, E)| \leq d(x, y).$$

Therefore, f is 1—Lipshictz, thus continuous.

(b) Let $x \in \overline{E}$. By the definition of closure, there exists a sequence $\{x_n\}$ from E such that $x_n \to x$. Since dist is continuous, we have $\operatorname{dist}(x_n, E) \to \operatorname{dist}(x, E)$. As $x_n \in E$, it follows that $\operatorname{dist}(x_n, E) = 0$ for all n. Therefore, we have $\operatorname{dist}(x, E) = 0$. Hence, we obtain

$$\overline{E} \subseteq \{x \in X \mid \operatorname{dist}(x, E) = 0\}.$$

Let $x \in \{x \in X \mid \operatorname{dist}(x, E) = 0\}$. Then, for all n, there exists $y \in E$ such that $\rho(x, y) > \frac{1}{n}$, which we label as x_n . Then, $\{x_n\}$ is a sequence from E such that $x_n \to x$. Hence, $x \in \bar{E}$. Consequently, we obtain

$$\{x \in X \mid \operatorname{dist}(x, E) = 0\} = \overline{E},$$

as desired. \square

Question 9.43.

Solution.

Question 9.72.

Solution. Assume $A \cap B \neq \emptyset$. Then, there exists $x \in A \cap B$. Since $\rho(x,x) = 0$, we have dist(A,B) = 0. By contrapositive, we have shown that if dist(A,B) > 0, then $A \cap B = \emptyset$.

Assume $A \cap B = \emptyset$. Recall that A is compact and B is closed.

Hence, dist(A, B) > 0.

Question 9.77.

Solution. Let X and Y be separable metric spaces. Consider the standard product metric on $X \times Y$. Then, there exist a countable dense subset D_X in X and countable dense subset D_Y in Y. Observe that $D_X \times D_Y$ is countable. We claim that $D_X \times D_Y$ is a dense subset in $X \times Y$. Therefore, $X \times Y$ is separable. \square