

SRM Institute of Science and Technology College of Engineering and Technology

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu Academic Year: 2021-2022 (EVEN) OFFLINE MODE **SET D**

Test: CLAT- 1

Course Code & Title: 18ECC2011 - Analog Electronic Circuits

Duration: 60 minutes

Course Code & Title: 18ECC201J – Analog Electronic Circuits

Year & Sem: II / IV

Duration: 60 minutes

Max. Marks: 25

Course Articulation Matrix:

	18ECC201J - Analog Electronic Circuits	Program Outcomes (POs)														
		Graduate Attributes PSC					PSO									
COs	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO-1 :	Analyze bipolar amplifier circuits and their frequency response.	1	2	3	-	-	-	-	-	-	-	-	1	- 1	-	-
CO-2 :	Develop MOSFET amplifier circuits and their frequency response.	1	2	3	-	-	-	-	-	-	-	-	-	- 1	-	-
CO-3 :	Compile various negative feedback amplifier and oscillator circuits.	1	-	3	-	-	-	-	-	-	-	-	-	-	-	-
CO-4 :	Demonstrate the different classes of power amplifiers according to their performance characteristics.	1	2	3	- 1	-	- 1	- 1	- 1	- 1	- 1	- 1	1	- 1	-	-
CO-5	Construct the basic circuit building blocks that are used in the design of IC amplifiers, namely current mirrors and sources.	1	2	3	-	-	-	-	-	-	-	-	1	-	-	-
CO-6 :	Organize analog electronic circuits using discrete components to measure various analog circuits' performance.	-	-	3	-	-	-	-	-	2	-	-	-	3	1	-

	Part - A (5 x 1 = 5 Marks) Instructions: Answer all 5Questions						
Q. No	Question	Marks	BL	СО	PO	PI Code	
1	The process of raising the strength of a weak signal without any change its general shape is known as a. Rectification b. Oscillation c. Amplification d. Faithful Amplification	1	1	1	1		
2	The d.c. load of a transistor amplifier is generally that of a.c. load. a. Equal to b. Less than c. Greater than d. opposite	1	2	1	1		
3	Determine the value of r_π if the I_{C} = 2.16mA. Assume $\beta{=}100$ and $V_{A}{=}\infty.$ a. 1Ω b. 2Ω c. $1.2k\Omega$ d. $0.5k\Omega$	1	3	1	2		
4	The transistor has base current of 20μA and collector current of 1mA. The value of α is	1	3	1	2		

5	The Darlington amplifier is a configuration	1	1	1	1	
	multistage amplifier.					
	a. CE-CE					
	b. CB-CE					
	c. CC-CC					
	d. Both a and c					
	Part – B					
	(2 x 10 = 20 Marks) Instructions: Answer any TWO					
6.	a. Is it possible to use a fixed bias circuit for linear	4	2	1	2	
	amplification? If not give the justification. Also,					
	mention the suitable application of the fixed bias					
	circuit.					
	b. Fig. 1(i) shows the fixed bias circuit. The					
	transistor has the output characteristic shown in	6	3	1	3	
	Fig. 1(ii). Determine V_{CC} , R_C and R_{B} .					
	+V _{CC}					
	I _C					
	R_C 8 mA					
	Q-point Q-point					
	$I_{R} = 40 \mu\text{A}$					
	*					
	V_{E}					
	₩ 200					
	(i) (ii)					
	Fig. 1					
7.	a. What is cascode amplifier? List the	4	2	1	1	
	characteristics of cascode amplifier.					
	b. For the cascode amplifier shown in Fig.2.	6	3	1	2	
	(i) Represent the given circuit by its AC	U	3	1	2	
	equivalent circuit and obtain expression					
	for voltage gain. (3 Marks)					
	(ii) Determine the value of voltage gain.					
	Assume I_{EQ1} =4.2mA, β =100 and					
	V_{BE} =0.7V.(3 Marks)					
	$V_{CC} = 18 \text{ V}$					
	R_{c} R_{c} R_{c}					
	R_{B_1} $\sum_{i=1}^{n} 1.2 \text{ k}\Omega$					
	$\begin{array}{c c} 6.8 \text{ k}\Omega & & & \\ \hline C_1 & & & \\ \hline C_2 & & & \\ \end{array}$					
	C_1 $C = 5 \mu F$ Q_2					
	10 μF R _{R.} ₹					
	5.6 kΩ (***)					
	$v_i \circ \frac{(v_{i_1})}{Q_i}$			1		
	7	,				
	$C_{\lambda} = 5 \mu\text{F}$					
	$C_{\lambda} = 5 \mu\text{F}$ R_{R_3}					
	$C_{\lambda} = 5 \mu\text{F}$					
	$C_{\lambda} = 5 \mu\text{F}$ R_{R_3}					
	$C_{\lambda} = 5 \mu\text{F}$ R_{R_3}					
8	$C_s = 5 \mu\text{F}$ $R_{R_3} = \frac{R_E}{1 \text{k}\Omega}$ $C_E = 20 \mu\text{F}$	2	1	1	1	

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Evaluation Sheet

Name of the Student:

Register No.:

		Marks)							
Q. No	CO	Marks Allotted	Marks Obtained	Total					
1	1	1							
2	1	1							
3	1	1							
4	1	1							
5	1	1							
	Part- B Any TWO (2 x 10= 20 Marks)								
6.a	1	4							
6.a	1	6							
7.a.	1	4							
7.b.	1	6							
8.a	1	2							
8.b.	1	8		_					

Consolidated Marks:

СО	Marks Allotted	Marks Scored
CO1	25	
Total	25	

Approved by the Course Coordinator