Representation Theory

January 18, 2018

CONTENTS	2
Contents	
0 Introduction	3
1 Group actions	4

3

0 Introduction

Representaiton theory is the theory of how groups act as groups of linear transformations on $vector\ spaces$.

Here the groups are either *finite*, or *compact topological groups* (infinite), for example, SU(n) and O(n). The vector spaces we conside are finite dimensional, and usually over \mathbb{C} . Actions are *linear* (see below).

Some books: James-Liebeck (CUP); Alperin-Bell (Springer); Charles Thomas, Representations of finite and Lie groups; Online notes: SM, Teleman; P.Webb A course in finite group representation theory (CUP); Charlie Curtis, Pioneers of representation theory (history).

1 Group actions

Throughout this course, if not specified otherwise: • F is a field, usually \mathbb{C} , \mathbb{R} or \mathbb{Q} . When the field is one of these, we are discussing *ordinary representation theory*. Sometimes $F = F_p$ or \bar{F}_p (algebraic closure, see Galois Theory), in which case the theory is called *modular representation theory*;

• V is a vector space over F, always finite dimensional; $GL(V) = \{\theta : V \to V, \theta \text{ linear, invertible}\}$, i.e. $\det \theta \neq 0$.

Recall from Linear Algebra:

If $\dim_F V = n < \infty$, choose basis $e_1, ..., e_n$ over F, so we can identify it with F^n . Then $\theta \in GL(V)$ corresponds to an $n \times n$ matrix $A_{\theta} = (a_{ij})$, where $\theta(e_j) = \sum_i a_{ij} e_i$. In fact, we have $A_{\theta} \in GL_n(F)$, the general linear group.

- (1.1) $GL(V) \cong GL_n(F)$ as groups by $\theta \to A_\theta$ ($A_{\theta_1\theta_2} = A_{\theta_1}A_{\theta_2}$ and bijection). Choosing different basis gives different isomorphism to $GL_n(F)$, but:
- (1.2) Matrices A_1, A_2 represent the same element of GL(V) w.r.t different bases iff they are conjugate (similar), i.e. $\exists X \in GL_n(F)$ s.t. $A_2 = XA_1X^{-1}$.

Recall that $tr(A) = \sum_{i} a_{ii}$ where $A = (a_{ij})$, the trace of A.

- (1.3) $\operatorname{tr}(XAX^{-1}) = \operatorname{tr}(A)$, hence we can define $\operatorname{tr}(\theta) = \operatorname{tr}(A_{\theta_1})$ independent of basis.
- (1.4) Let $\alpha \in GL(V)$ where V in f.d. over \mathbb{C} , with $\alpha^m = \iota$ for some m (here ι is the identity map). Then α is diagonalisable.

Recall EndV is the set of all ilnear maps $V \to V$, e.g. $End(F^n) = M_n(F)$ some $n \times n$ matrices.

- (1.5) Proposition. Take V f.d. over \mathbb{C} , $\alpha \in End(V)$. Then α is diagonalisable iff there exists a polynomial f with distinct linear factors with $f(\alpha) = 0$. For example, in (1.4), where $\alpha^m = \iota$, we take $f = X^m 1 = \prod_{j=0}^{m-1} (X \omega^j)$ where $\omega = e^{2\pi i/m}$ is the (m^{th}) root of unity. In fact we have:
- $(1.4)^*$ A finite family of commuting separately diagonalisable automorphisms of a \mathbb{C} -vector space can be simultaneously diagonalised (useful in abelian groups).

Recall from Group Theory:

- (1.6) The symmetric group, $S_n = Sym(X)$ on the set $X = \{1, ..., n\}$ is the set of all permutations of X. $|S_n| = n!$. The alternating group A_n on X is the set of products of an even number of transpositions (2-cycles). $|A_n| = \frac{n!}{2}$.
- (1.7) Cyclic groups of order m: $C_m = \langle x : x^m = 1 \rangle$. For example, $(\mathbb{Z}/m\mathbb{Z}, +)$; also, the group of m^{th} roots of unity in \mathbb{C} (inside $GL_1(\mathbb{C}) = \mathbb{C}^*$, the multiplicative group of \mathbb{C}). We also have the group of rotaitons, centre O of regular m-gon in \mathbb{R}^2 (inside $GL_2(\mathbb{R})$).
- (1.8) Dihedrap groups D_{2m} of order $2m = \langle x, y : x^m = y^2 = 1, yxy^{-1} = x^{-1} \rangle$. Think of this as the set of rotations and reflections preserving a regular m-gon.

- (1.9) Quaternino group, $Q_8 = \langle x, y | x^4 = 1, y^2 = x^2, yxy^{-1} = x^{-1} \rangle$ of order 8. For example, in $GL_2(\mathbb{C})$, put $i = \binom{i\ 0}{0\ i}, j = \binom{0\ 1}{-1\ 0}, k = \binom{0\ i}{i\ 0}$, then $Q_8 = \{\pm I_2, \pm i, \pm j, \pm k\}$.
- (1.10) The conjugacy class (ccls) of $g \in G$ is $C_G(g) = \{xgx^{-1} : x \in G\}$. Then $|C_G(g)| = |G : C_G(g)|$, where $C_G(g) = \{x \in G : xg = gx\}$, the centraliser of $g \in G$.
- (1.11) Let G be a group, X be a set. G acts on X if there exists a map $\cdot: G \times X \to X$ by $(g,x) \to g \cdot x$ for $g \in G$, $x \in X$, s.t. $1 \cdot x = x$ for all $x \in X$, $(gh) \cdot x = g \cdot (h \cdot x)$ for all $g, h \in G, x \in X$.
- (1.12) Given an action of G on X, we obtain a homomorphism $\theta: G \to Sym(X)$, called the *permutation representation* of G.

Proof. For $g \in G$, the function $\theta_g : X \to X$ by $x \to gx$ is a permutation on X, with inverse $\theta_{g^{-1}}$. Moreover, $\forall g_1, g_2 \in G$, $\theta_{g_1g_2} = \theta_{g_1}\theta_{g_2}$ since $(g_1g_2)x = g_1(g_2x)$ for $x \in X$.