群 G の元 x の位数とは、x のみで生成された部分群の位数 $|\langle x \rangle|$ のことを指す。

G を有限群、H をその部分群とする。

1.~H の位数 |H| は G の位数 |G| の約数である。

.....

 $g \in G$ に対して剰余類 $gH = \{gh \mid h \in H\}$ を考える。

このとき、写像 f を次のように定義する。

$$f: H \to gH, \quad h \mapsto gh$$
 (1)

このとき、 $\forall gh \in gH$ に対して $h \in H$ が存在するので、f は全射である。

また、 $f(h_1)=f(h_2)$ とすれば $gh_1=gh_2$ であり、左から g^{-1} をかければ $h_1=h_2$ となり、f は単射である。

f は全単射であり、H, gH は有限集合であるので、|H|=|gH| である。

 $H \cap gH \neq \emptyset$ とする。つまり、 $h_1,h_2 \in H$ が存在し、 $h_1 = gh_2$ となる。右から h_2^{-1} を書けることで、 $h_1h_2^{-1} = g$ となり、 $g \in H$ である。H は部分群であるから H = gH である。つまり、次が言える。

$$H \cap gH \neq \emptyset \Rightarrow H = gH \tag{2}$$

 $\alpha, \beta \in G$ について $\alpha H \cap \beta H \neq \emptyset$ とする。このとき、 $x \in \alpha H \cap \beta H$ が存在する。つまり、 $x = \alpha h_1 = \beta h_2$ となる $h_1, h_2 \in H$ が存在する。右から h_1^{-1} をかけると $\alpha = \beta h_2 h_1^{-1} \in \beta H$ である。これにより $\beta^{-1} \alpha \in H$ であるため $H = \beta^{-1} \alpha H$ となり、 $\beta H = \alpha H$ となる。

 $\alpha, \beta \in G$ について $\alpha H \cap \beta H = \emptyset$ または $\alpha H = \beta H$ である。

H は部分群であるから単位元 $e \in H$ を含むので、次の式が成り立つ。

$$G = \bigcup_{g \in G} gH \tag{3}$$

 $\forall g,g'\in G$ に対して gH=g'H または $gH\cap g'H=\emptyset$ であるので、部分群 H の位数は G の位数を割り切ることが出来る。

2.~G の元の位数は G の位数 |G| の約数である。

 $g \in G$ が生成する部分群 $\langle g \rangle$ は G の部分群であるので、g の位数は G の位数の約

数である。