Surname		Other names	
Pearson Edexcel nternational Advanced Level	Centre Number	Candida	te Number
Mechanic	c M2		
Advanced/Advance		ry	
	d Subsidia	Paper Refe	erence E02/01

Candidates may use any calculator allowed by the regulations of the Joint Council for Qualifications. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). Coloured pencils and highlighter pens must not be used.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Whenever a numerical value of g is required, take $g = 9.8 \text{ m s}^{-2}$, and give your answer to either two significant figures or three significant figures.
- When a calculator is used, the answer should be given to an appropriate degree of accuracy.

Information

- The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

P 4 3 0 6 9 A 0 1 2 8

Turn over ▶

Leave
blank

impulse. Immediately after the impulse is applied, P has velocity $(2\mathbf{i} - 3\mathbf{j}) \mathrm{m \ s^{-1}}$.		
(a)	Find the magnitude of the impulse. (5	
(b)	Find the angle between the direction of the impulse and the direction of motion of a	
	immediately before the impulse is applied. (3	

2. A particle *P* moves on the *x*-axis. At time *t* seconds the velocity of *P* is $v \, \text{m s}^{-1}$ in the direction of *x* increasing, where

$$v = (t - 2)(3t - 10), \quad t \geqslant 0$$

When t = 0, P is at the origin O.

(a) Find the acceleration of P when t = 3

(3)

(b) Find the total distance travelled by P in the first 3 seconds of its motion.

(6)

(c) Show that *P* never returns to *O*.

(2)

uestion 2 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

3.	A car has mass 550 kg. When the car travels along a straight horizontal rothere is a constant resistance to the motion of magnitude R newtons, the eng of the car is working at a rate of P watts and the car maintains a constant speed $30 \mathrm{m s^{-1}}$. When the car travels up a line of greatest slope of a hill which	ine of
	inclined at θ to the horizontal, where $\sin \theta = \frac{1}{14}$, with the engine working at a rate of	
	P watts, it maintains a constant speed of $25 \mathrm{ms^{-1}}$. The non-gravitational resistance motion when the car travels up the hill is a constant force of magnitude R newtons.	to
	(a) (i) Find the value of R.	
	(ii) Find the value of P .	(8)
		(0)
	(b) Find the acceleration of the car when it travels along the straight horizontal road $20 \mathrm{ms^{-1}}$ with the engine working at 50 kW.	
		(4)

nestion 3 continued	

4.

Figure 1

A uniform lamina ABCD is formed by removing the isosceles triangle ADC of height h metres, where $h < 2\sqrt{3}$, from a uniform lamina ABC in the shape of an equilateral triangle of side 4 m, as shown in Figure 1. The centre of mass of ABCD is at D.

(a) Show that
$$h = \sqrt{3}$$

The weight of the lamina ABCD is W newtons. The lamina is freely suspended from A. A horizontal force of magnitude F newtons is applied at B so that the lamina is in equilibrium with AB vertical. The horizontal force acts in the vertical plane containing the lamina.

(b) Find F in terms of W .	(4
	(4

uestion 4 continued		
		_
		_
		_
		_
		_
	 	_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
		_
	 	_
		_
	 	_
	 	-
		_
		_
	 	 _
		_
		-
		-
		-
		_

5.

Figure 2

Figure 2 shows a uniform rod AB, of mass m and length 2a, with the end B resting on rough horizontal ground. The rod is held in equilibrium at an angle θ to the vertical by a light inextensible string. One end of the string is attached to the rod at the point C, where

 $AC = \frac{2}{3}a$. The other end of the string is attached to the point D, which is vertically above

B, where BD = 2a.

(a) By taking moments about D, show that the magnitude of the frictional force acting on the rod at B is $\frac{1}{2}mg\sin\theta$ (3)

(b) Find the magnitude of the normal reaction on the rod at *B*.

(5)

The rod is in limiting equilibrium when $\tan \theta = \frac{4}{3}$

(c) Find the coefficient of friction between the rod and the ground.

(3)

estion 5 continued	

6. [In this question the unit vectors **i** and **j** are in a vertical plane, **i** being horizontal and **j** being vertically upwards.]

Figure 3

The point O is a fixed point on a horizontal plane. A ball is projected from O with velocity $(3\mathbf{i} + v\mathbf{j})$ m s⁻¹, v > 3. The ball moves freely under gravity and passes through the point A before reaching its maximum height above the horizontal plane, as shown in Figure 3.

The ball passes through A at time $\frac{15}{49}$ s after projection. The initial kinetic energy of the ball is E joules. When the ball is at A it has kinetic energy $\frac{1}{2}E$ joules.

(a) Find the value of v.

(8)

At another point B on the path of the ball the kinetic energy is also $\frac{1}{2}E$ joules.

The ball passes through B at time T seconds after projection.

(b) Find the value of T.

-	7	1
•	. 🤊	
•	\sim	

uestion 6 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	-

Leave		
blank		

7.	Three particles A , B and C , each of mass m , lie at rest in a straight line L on a smooth horizontal surface, with B between A and C . Particles A and B are projected directly towards each other with speeds Su and Su respectively. Particle Su is projected directly away from Su with speed Su . In the subsequent motion, Su , Su and Su and Su collide directly. The coefficient of restitution between Su and Su is Su and Su is Su and Su is Su and Su is Su and Su and Su is Su and Su is Su and Su and Su and Su is Su and Su a
	(a) Find (i) the speed of A immediately after the collision,
	(ii) the speed of B immediately after the collision. (7)
	Given that the direction of motion of A is reversed in the collision between A and B , and that there is no collision between B and C ,
	(b) find the set of possible values of <i>e</i> . (4)

	Leave
Question 7 continued	blank
	Q7
(Total 11 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	