Recall:

Next: Some applications of systems of linear equations:

- Computations of traffic flow.
- Balancing chemical equations.
- Google PageRank.

Computations of traffic flow

Problem. Find the flow rate of cars on each segment of streets.

Note:

- flow into an intersection = flowout of that intersection
- total flow in = total flow out

Total:
$$85 + x_4 = 120 + x_5$$

 $CA: 85 = x_1 + x_2$
 $CA: 85 = x_2 + x_3$
 $CA: 85 = x_1 + x_2$
 $CA: 85 = x_2 + x_3$
 $CA: 85 = x_3 + x_4$
 $CA: 85 = x_2 + x_3$
 $CA: 85 = x_3 + x_4$
 $CA: 85 = x_4$
 $CA: 85 =$

augmented metrix:

Balancing chemical equations

Burning propane:

$${}^{4}_{x_{1}}C_{3}H_{8} + {}^{5}_{x_{2}}O_{2} \rightarrow {}^{3}_{x_{3}}CO_{2} + {}^{4}_{x_{4}}H_{2}O$$

Note:

- The numbers x_1, x_2, x_3, x_4 are integers.
- The number of atoms of each element on the left side is the same as the number of atoms of that element on the right side.

Google PageRank

Early search engines:

Google search engine:

How to rank webpages?

Very simple ranking:

ranking of a page
$$=$$
 $\begin{pmatrix} number of links \\ pointing to that page \end{pmatrix}$

Problem. This is very easy to manipulate.

How to rank webpages?

Google PageRank: Links from highly ranked pages are worth more than links from lower ranked pages.

If:

- \bullet the rank of a page is x
- \bullet the page has n links to other pages

then each link from that page is worth x/n.

$$\begin{cases} x_1 = x_2 + \frac{1}{2}x_4 \\ x_2 = \frac{1}{3}x_1 + \frac{1}{2}x_3 + \frac{1}{2}x_4 \\ x_3 = \frac{1}{3}x_1 \\ x_4 = \frac{1}{3}x_1 + \frac{1}{2}x_3 \end{cases}$$

$$\begin{cases} x_1 - x_2 - \frac{1}{2}x_4 = 0 \\ -\frac{1}{3}x_1 + x_2 - \frac{1}{2}x_3 - \frac{1}{2}x_4 = 0 \end{cases}$$
This eigher has a trivial solution
$$x_1 = x_2 + \frac{1}{2}x_4 = 0$$

$$\begin{cases} x_1 - x_2 - \frac{1}{2}x_4 = 0 \\ -\frac{1}{3}x_1 + x_3 = 0 \end{cases}$$
This eigher has a trivial solution
$$x_1 = 0 + x_2 = 0 + x_3 = 0 + x_4 = 0$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$
Adding this equation aliminates the trivial solution
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_1 + x_2 + x_3 + x_4 = 0 \end{cases}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 0 & -\frac{1}{2} & 0 \\ -\frac{1}{3} & 1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\ -\frac{1}{3} & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
row red.
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \\ 1 & 0 & 0 & 0 & | 12/31 \\ 0 & 0 & 0 & | 0 & | 4/31 \\ 0 & 0 & 0 & | 6/31 \\ 0 & 0 & 0 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 4/31 \\ 0 & 0 & 0 & | 0 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & | 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & 0 & | 0 & | 0 & | 0 & | 1 & | 6/31 \\ 0 & 0 & 0 & 0 & | 0 & | 0 & | 0 & | 1$$