Random variables, probability distributions, expected value, variance, binomial distribution, Gaussian distribution (normal distribution)

Relevant Readings: Table 5.2, Section 5.3 up through 5.3.4 in Mitchell

CS495 - Machine Learning, Fall 2009

Prob and stats

▶ Probability, statistics, and sampling theory aren't only just useful in ML. These are generally useful in computer science (such is in the study of randomized algorithms)

Prob and stats

▶ Probability, statistics, and sampling theory aren't only just useful in ML. These are generally useful in computer science (such is in the study of randomized algorithms)

► A random variable is a numerical outcome of some random "experiment"

- ► A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed

- ► A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()

- ► A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution
 - The probability distribution is a specification for the likelihood of the random variable taking on different values

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution
 - ► The probability distribution is a specification for the likelihood of the random variable taking on different values
 - ▶ Example: For rolling a die, the probability distribution is *uniform*, meaning that each possibility (1, 2, 3, 4, 5, 6) has equal probability of coming up (1/6).

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution
 - The probability distribution is a specification for the likelihood of the random variable taking on different values
 - ▶ Example: For rolling a die, the probability distribution is *uniform*, meaning that each possibility (1, 2, 3, 4, 5, 6) has equal probability of coming up (1/6).
 - Random variables can be discrete or continuous

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution
 - The probability distribution is a specification for the likelihood of the random variable taking on different values
 - ▶ Example: For rolling a die, the probability distribution is *uniform*, meaning that each possibility (1, 2, 3, 4, 5, 6) has equal probability of coming up (1/6).
 - Random variables can be discrete or continuous
 - ▶ The probability that random variable X takes on the value x is denoted Pr(X = x)

- A random variable is a numerical outcome of some random "experiment"
 - It can be thought of as an unknown value that changes every time it is observed
 - Similar to Math.random()
 - ► Example: The result of rolling a die
- A random variable's behavior is governed its probability distribution
 - The probability distribution is a specification for the likelihood of the random variable taking on different values
 - ▶ Example: For rolling a die, the probability distribution is *uniform*, meaning that each possibility (1, 2, 3, 4, 5, 6) has equal probability of coming up (1/6).
 - Random variables can be discrete or continuous
 - ▶ The probability that random variable X takes on the value x is denoted Pr(X = x)

► Consider a uniform continuous random variable *X* over the range [0,2]

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - What is Pr(X = 1/2)?

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - What is Pr(X = 1/2)?
 - Zero.

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - What is $Pr(1/4 \le X \le 1/2)$?

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly
 - ► Think of it this way: what's the probability of throwing a dart and hitting *exactly* the right spot on the wall?

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - ▶ What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly
 - ► Think of it this way: what's the probability of throwing a dart and hitting *exactly* the right spot on the wall?
 - Zero.

- ► Consider a uniform continuous random variable *X* over the range [0,2]
 - ▶ What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly
 - ► Think of it this way: what's the probability of throwing a dart and hitting *exactly* the right spot on the wall?
 - Zero.
 - But after it's thrown, it actually hit some exact spot.

- Consider a uniform continuous random variable X over the range [0,2]
 - What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - ▶ What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly
 - ► Think of it this way: what's the probability of throwing a dart and hitting *exactly* the right spot on the wall?
 - Zero.
 - But after it's thrown, it actually hit some exact spot.
 - Therefore zero-probability doesn't necessarily mean "impossible"

- Consider a uniform continuous random variable X over the range [0,2]
 - What is Pr(X = 1/2)?
 - Zero.
 - What is Pr(X = 1/4)?
 - Zero.
 - ▶ What is $Pr(1/4 \le X \le 1/2)$?
 - **▶** 1/8
 - So then for continuous random variables, we work in terms of ranges of values, rather than the probability of equaling some value exactly
 - ► Think of it this way: what's the probability of throwing a dart and hitting *exactly* the right spot on the wall?
 - Zero.
 - But after it's thrown, it actually hit some exact spot.
 - Therefore zero-probability doesn't necessarily mean "impossible"

▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes
 - Just a weighted average (the continuous case would be an integral).

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes
 - Just a weighted average (the continuous case would be an integral).
- ► The variance of a random variable Y is $Var(Y) = E[(Y E[Y])^2]$

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes
 - Just a weighted average (the continuous case would be an integral).
- ► The *variance* of a random variable Y is $Var(Y) = E[(Y E[Y])^2]$
 - ▶ This is a measure of how much Y deviates from the mean

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes
 - Just a weighted average (the continuous case would be an integral).
- ► The variance of a random variable Y is $Var(Y) = E[(Y E[Y])^2]$
 - ▶ This is a measure of how much Y deviates from the mean
- ▶ The standard deviation of a random variable Y is simply $\sqrt{Var(Y)}$

- ▶ Summation notation: $\sum_{i=0}^{n} a_i$ means $a_0 + a_1 + \cdots + a_n$
- ▶ The expected value (aka. mean) of a random variable Y is $E[Y] = \sum_i y_i \cdot \Pr(Y = y_i)$, where the sum is over all possible outcomes
 - Just a weighted average (the continuous case would be an integral).
- ► The *variance* of a random variable Y is $Var(Y) = E[(Y E[Y])^2]$
 - ▶ This is a measure of how much Y deviates from the mean
- ▶ The standard deviation of a random variable Y is simply $\sqrt{Var(Y)}$

Discrete uniform distribution

▶ Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$

Discrete uniform distribution

- Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$
- ▶ What is E[X]?

Discrete uniform distribution

- Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$
- ▶ What is *E*[*X*]?
 - (m+1)/2

Discrete uniform distribution

- ▶ Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$
- ▶ What is E[X]?
 - (m+1)/2
- ▶ What is Var[X]?

Discrete uniform distribution

- Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$
- ▶ What is E[X]?
 - (m+1)/2
- ▶ What is *Var*[X]?
 - $(m^2-1)/12$

Discrete uniform distribution

- Suppose X is a discrete random variable with uniform probability distribution over the set $\{1, 2, 3, ..., m\}$
- ▶ What is E[X]?
 - (m+1)/2
- ▶ What is *Var*[X]?
 - $(m^2-1)/12$

► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]

- ► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]
- ▶ What is E[X]?

- ► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]
- ▶ What is E[X]?
 - ▶ (a+b)/2

- ► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]
- ▶ What is E[X]?
 - ▶ (a+b)/2
- ▶ What is *Var*[X]?

- ► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]
- ▶ What is E[X]?
 - ▶ (a+b)/2
- ▶ What is *Var*[X]?
 - $(b-a)^2/12$

- ► Suppose *X* is a continuous random variable with uniform probability distribution over the interval [*a*, *b*]
- ▶ What is E[X]?
 - ▶ (a+b)/2
- ▶ What is *Var*[X]?
 - $(b-a)^2/12$

► Imagine an unfair coin n times that has probability p of landing on heads

- ► Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"

- Imagine an unfair coin n times that has probability p of landing on heads
- ➤ A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- ► Suppose *X* is a random variable with binomial probability distribution

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- Suppose X is a random variable with binomial probability distribution
- ▶ What is *E*[*X*]?

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- Suppose X is a random variable with binomial probability distribution
- ▶ What is *E*[*X*]?
 - ► np

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- Suppose X is a random variable with binomial probability distribution
- ▶ What is *E*[*X*]?
 - ► np
- ▶ What is Var[X]?

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- Suppose X is a random variable with binomial probability distribution
- ▶ What is *E*[*X*]?
 - ► np
- ▶ What is *Var*[X]?
 - ▶ np(1-p)

- Imagine an unfair coin n times that has probability p of landing on heads
- A binomial distribution is: "how many times did we get heads?"
- Is this a discrete or continuous distribution?
 - Discrete
- Suppose X is a random variable with binomial probability distribution
- ▶ What is *E*[*X*]?
 - ► np
- ▶ What is *Var*[X]?
 - ▶ np(1-p)

▶ If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.

- If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.
- ▶ Thus, Gaussian distributions show up a lot in nature

- If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.
- ▶ Thus, Gaussian distributions show up a lot in nature
- ▶ It's a "bell shaped curve"

- If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.
- ▶ Thus, Gaussian distributions show up a lot in nature
- ▶ It's a "bell shaped curve"
- ► The probability distribution for a Gaussian with mean μ and variance σ^2 is defined as:

- If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.
- ▶ Thus, Gaussian distributions show up a lot in nature
- ▶ It's a "bell shaped curve"
- ► The probability distribution for a Gaussian with mean μ and variance σ^2 is defined as:
 - $e^{-(x-\mu)^2/(2\sigma^2)}/(\sigma\sqrt{2\pi})$

- If you add lots of random variables together, the sum is in itself a random variable whose probability distribution tends to look like a Gaussian.
- ▶ Thus, Gaussian distributions show up a lot in nature
- ▶ It's a "bell shaped curve"
- ► The probability distribution for a Gaussian with mean μ and variance σ^2 is defined as:
 - $e^{-(x-\mu)^2/(2\sigma^2)}/(\sigma\sqrt{2\pi})$

Application

► Suppose we are programming Naive Bayes and want to handle a continuous variable

Application

- Suppose we are programming Naive Bayes and want to handle a continuous variable
- ▶ One way we could do this: measure the mean and variance of the relevant examples, model them with a probability distribution (such as a Gaussian), and use that distribution to help determine whether "yes" or "no" is more likely for the given instance

Application

- Suppose we are programming Naive Bayes and want to handle a continuous variable
- ▶ One way we could do this: measure the mean and variance of the relevant examples, model them with a probability distribution (such as a Gaussian), and use that distribution to help determine whether "yes" or "no" is more likely for the given instance