Example 3.33. Determine whether the system \mathcal{H} is time invariant, where

$$\Re x(t) = \text{Odd}(x)(t) = \frac{1}{2} [x(t) - x(-t)].$$
 (1)

Solution. Let $x'(t) = x(t - t_0)$, where t_0 is an arbitrary real constant. From the definition of \mathcal{H} , we have

Since $\Re x(t-t_0) = \Re x'(t)$ does not hold for all x and t_0 , the system is not time invariant.

A system H is said to be time invariant if, for every function x and every real constant to, the following condition holds:

$$\mathcal{H} \times (t-t_o) = \mathcal{H} \times'(t)$$
 for all t, where $\times'(t) = \times (t-t_o)$.

Example 3.35. Determine whether the system \mathcal{H} is linear, where

$$\mathfrak{R}x(t) = tx(t). \ \mathbf{0}$$

Solution. Let $x'(t) = a_1x_1(t) + a_2x_2(t)$, where x_1 and x_2 are arbitrary functions and a_1 and a_2 are arbitrary complex constants. From the definition of \mathcal{H} , we can write

Since $\mathcal{H}(a_1x_1 + a_2x_2) = a_1\mathcal{H}x_1 + a_2\mathcal{H}x_2$ for all x_1, x_2, a_1 , and a_2 , the superposition property holds and the system is linear.

A system H is said to be linear if, for all functions x, and xz and all complex constants a, and az, the following condition holds:

$$\mathcal{H}\left\{a_1x_1+a_2x_2\right\}=a_1\mathcal{H}x_1+a_2\mathcal{H}x_2$$

Example 3.36. Determine whether the system \mathcal{H} is linear, where

$$\mathfrak{R}(t) = |x(t)|. \quad \bigcirc$$

Solution. Let $x'(t) = a_1x_1(t) + a_2x_2(t)$, where x_1 and x_2 are arbitrary functions and a_1 and a_2 are arbitrary complex constants. From the definition of \mathcal{H} , we have

f
$$\mathcal{H}$$
, we have
$$a_1\mathcal{H}x_1(t) + a_2\mathcal{H}x_2(t) = a_1|x_1(t)| + a_2|x_2(t)| \quad \text{and} \quad \text{from definition of } \mathcal{H} \text{ in } \mathbb{O}$$

$$\mathcal{H}x'(t) = |x'(t)| \quad \text{from definition of } \mathcal{H} \text{ in } \mathbb{O}$$

$$= |a_1x_1(t) + a_2x_2(t)|. \quad \text{from definition of } \mathbf{x'} \text{ in } \mathbb{O}$$

At this point, we recall the triangle inequality (i.e., for $a, b \in \mathbb{C}$, $|a+b| \le |a| + |b|$). Thus, $\mathcal{H}(a_1x_1 + a_2x_2) = a_1\mathcal{H}x_1 + a_2\mathcal{H}x_2$ cannot hold for all x_1, x_2, a_1 , and a_2 due, in part, to the triangle inequality. For example, this condition fails to hold for

$$a_1 = -1, \quad x_1(t) = 1, \quad a_2 = 0, \quad \text{and} \quad x_2(t) = 0,$$

$$a_1 \mathcal{H} x_1(t) + a_2 \mathcal{H} x_2(t) = -1 \quad \text{and} \quad \mathcal{H} x'(t) = 1.$$

in which case

Therefore, the superposition property does not hold and the system is not linear.

A system
$$\mathcal{H}$$
 is Said to be linear if, for all functions X_1 and X_2 and all complex constants at and az, the following condition holds:
$$\mathcal{H}\left\{a_1X_1+a_2X_2\right\} = a_1\mathcal{H}X_1+a_2\mathcal{H}X_2.$$

Example 3.41. Consider the system $\mathcal H$ characterized by the equation

$$\mathcal{H}x(t) = \mathcal{D}^2x(t), \ \mathbf{0}$$

where \mathbb{D} denotes the derivative operator. For each function x given below, determine if x is an eigenfunction of \mathcal{H} , and if it is, find the corresponding eigenvalue.

(a)
$$x(t) = \cos 2t$$
; and

(b)
$$x(t) = t^3$$
.

Solution. (a) We have

$$\mathcal{H}x(t) = \mathcal{D}^2\{\cos 2t\}(t)$$
 from definition of \mathcal{H} in ()
$$= \mathcal{D}\{-2\sin 2t\}(t)$$

$$= -4\cos 2t$$

$$= -4x(t)$$
 from definition of \mathbf{X}

So, we have $H_X = -4x$.

Therefore, x is an eigenfunction of \mathcal{H} with the eigenvalue -4.

(b) We have

 $\Re x(t) = \mathcal{D}^2\{t^3\}(t)$ $= \mathcal{D}\{3t^2\}(t)$ = 6t $= \frac{6}{t^2}x(t).$ from definition of X $\left(\frac{6t}{x(t)} = \frac{6t}{t^3}\right)$ of a

Therefore, x is not an eigenfunction of \mathcal{H} .

A function x is said to be an eigenfunction of the system
$$\mathcal{H}$$
 with eigenvalue λ if
$$\mathcal{H}_X = \lambda_X.$$

constant