Repetition

Definition

The stochastic variable X has a **Poisson distribution** with (mean) parameter $\mu > 0$ if

$$p(x) = \frac{\mu^x}{x!} e^{-\mu}, \quad x = 0, 1, \dots$$

We write $X \sim \text{Poisson}(\mu)$.

Note: $E[X] = \mu$ and $Var[X] = \mu$.

Theorem 5.1

If $X \sim \text{Poisson}(\mu)$, $Y \sim \text{Poisson}(\nu)$, and X and Y are independent, then

$$X + Y \sim \text{Poisson}(\mu + \nu).$$

Theorem 5.2

If $N \sim \text{Poisson}(\mu)$ and $M|N \sim \text{Binomial}(N, p)$, then

$$M \sim \text{Poisson}(\mu p)$$
.

Definition

A Poisson process with rate (intensity) $\lambda > 0$ is an integer-valued stochastic process $\{X(t): t \geq 0\}$ for which

1. for any integer n > 1 and any time points $0 = t_0 < t_1 < \cdots < t_n$, the increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots, X(t_n) - X(t_{n-1})$$

are independent.

2. for $s \ge 0$ and t > 0,

$$X(s+t) - X(s) \sim \text{Poisson}(\lambda t)$$
.

3. X(0) = 0.

Note: We have $X(t) \sim \text{Poisson}(\lambda t)$.

Note 2: We have $E[X(t)] = \lambda t$ and $Var[X(t)] = \lambda t$.

Definition

An inhomogeneous Poisson process with rate (intensity) $\lambda(t) \geq 0$, $t \geq 0$, is an integer-valued stochastic process $\{X(t): t \geq 0\}$ for which

1. for any integer n > 1 and any time points $0 = t_0 < t_1 < \cdots < t_n$, the increments

$$X(t_1) - X(t_0), X(t_2) - X(t_1), \dots, X(t_n) - X(t_{n-1})$$

are independent.

2. for $s \ge 0$ and t > 0,

$$X(s+t) - X(s) \sim \text{Poisson}\left(\int_{s}^{s+t} \lambda(y) \, \mathrm{d}y\right).$$

3. X(0) = 0.