Boolean Algebra

Logic Design

Boolean Algebra

- Axioms and theorems to simplify Boolean equations
- Like regular algebra, but simpler: variables have only two values (1 or 0)
- Duality in axioms and theorems:
 - -ANDs and ORs, 0's and 1's interchanged

Some Definitions

• Complement: variable with a bar over it \overline{A} , \overline{B} , \overline{C}

• Literal: variable or its complement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

• Implicant: product of literals

Boolean Axioms

Number	Axiom	Name
A1	B = 0 if B ≠ 1	Binary Field
A2	$\overline{0} = 1$	NOT
A3	$0 \cdot 0 = 0$	AND/OR
A4	1 • 1 = 1	AND/OR
A5	0 • 1 = 1 • 0 = 0	AND/OR

Boolean Axioms

Number	Axiom	Dual	Name
A1	B = 0 if B ≠ 1	B = 1 if B ≠ 0	Binary Field
A2	$\overline{0} = 1$	$\overline{1} = 0$	NOT
A3	0 • 0 = 0	1 + 1 = 1	AND/OR
A4	1 • 1 = 1	0 + 0 = 0	AND/OR
A5	0 • 1 = 1 • 0 = 0	1+0=0+1=1	AND/OR

Dual: Replace • with + 0 with 1

Boolean Theorems of One Variable

Number	Theorem	Name
T1	B • 1 = B	Identity
T2	B • 0 = 0	Null Element
T3	$B \bullet B = B$	Idempotency
T4	$\overline{\overline{B}} = B$	Involution
T5	$B \bullet \overline{B} = 0$	Complements

Boolean Theorems of One Variable

Number	Theorem	Dual	Name
T1	B • 1 = B	B + O = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	$\overline{\overline{B}} = B$		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace • with + 0 with 1

T1: Identity Theorem

•
$$B + 0 = B$$

$$B =$$
 $1 = B =$

$$B \rightarrow B$$

T2: Null Element Theorem

• B •
$$0 = 0$$

•
$$B + 1 = 1$$

$$\frac{B}{0}$$
 = 0

T3: Idempotency Theorem

$$\bullet$$
 B + B = B

$$B \rightarrow B \rightarrow B$$

T4: Identity Theorem

$$\bullet \ \overline{\overline{B}} = B$$

$$B \longrightarrow B \longrightarrow$$

T5: Complement Theorem

• B •
$$\overline{B} = 0$$

•
$$B + \overline{B} = 1$$

$$\frac{B}{B}$$
 $=$ 0

$$\frac{B}{B}$$
 \rightarrow 1

Recap: Basic Boolean Theorems

Number	Theorem	Dual	Name
T1	B • 1 = B	B + O = B	Identity
T2	B • 0 = 0	B + 1 = 1	Null Element
T3	B • B = B	B + B = B	Idempotency
T4	= B = B		Involution
T5	$B \bullet \overline{B} = 0$	$B + \overline{B} = 1$	Complements

Dual: Replace • with + 0 with 1

Boolean Theorems of Several Vars

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity
T7	(B•C) • D = B • (C • D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
T9	B• (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

How to Prove

- Method 1: Perfect induction
- Method 2: Use other theorems and axioms to simplify the equation
 - Make one side of the equation look like the other

Proof by Perfect Induction

- Check every possible input value
- If two expressions produce the same value for every possible input combination, the expressions are equal

Example: Proof by Perfect Induction

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity

В	C	BC	CB	
0	0	0	0	
0	1	0	0	
1	0	0	0	
-	ı	1	I	

Boolean Theorems of Several Vars

Number	Theorem	Name
T6	$B \bullet C = C \bullet B$	Commutativity
T7	(B•C) • D = B • (C • D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	Distributivity
T9	B• (B+C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

T9: Covering

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Prove true by:

- Method 1: Perfect induction
- Method 2: Using other theorems and axioms

T9: Covering

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Method 1: Perfect Induction

	В	C	(B+C)	B(B+C)
(0	0	0	0
(0	I	I	0
	ı	0	1	I
	I	I		l

T9: Covering

Number	Theorem	Name
T9	B• (B+C) = B	Covering

Method 2: Prove true using other axioms and theorems.

$$B \bullet (B+C) = B \bullet B + B \bullet C$$
 T8: Distributivity
 $= B + B \bullet C$ T3: Idempotency
 $= B \bullet (1 + C)$ T8: Distributivity
 $= B \bullet (1)$ T2: Null element
 $= B$ T1: Identity

T10: Combining

Number	Theorem	Name
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	Combining

Prove true using other axioms and theorems:

$$B \bullet C + B \bullet \overline{C} = B \bullet (C + \overline{C})$$
 T8: Distributivity
= $B \bullet (1)$ T5': Complements
= B T1: Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove.

Boolean Theorems of Several Vars

#	Theorem	Dual	Name
T6	$B \bullet C = C \bullet B$	B+C=C+B	Commutativity
T7	$(B \bullet C) \bullet D = B \bullet (C \bullet D)$	(B + C) + D = B + (C + D)	Associativity
T8	$B \bullet (C + D) = (B \bullet C) + (B \bullet D)$	B + (C•D) = (B+C) (B+D)	Distributivity
T9	B • (B+C) = B	B + (B•C) = B	Covering
T10	$(B \bullet C) + (B \bullet \overline{C}) = B$	$(B+C) \bullet (B+\overline{C}) = B$	Combining
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	$(B+C) \bullet (\overline{B}+D) \bullet (C+D) =$ $(B+C) \bullet (\overline{B}+D)$	Consensus

Dual: Replace • with + 0 with 1

Simplifying an Equation

Reducing an equation to the **fewest number of implicants**, where each implicant has the **fewest literals**

Recall:

Implicant: product of literals

- Literal: variable or its complement

$$A, \overline{A}, B, \overline{B}, C, \overline{C}$$

Also called **minimizing** the equation

Simplification methods

$$B(C+D) = BC + BD$$

$$B + CD = (B+C)(B+D)$$

$$A + AP = A$$

$$P\overline{A} + PA = P$$

$$P = P\overline{A} + PA$$

$$A = A + AP$$

$$A = A + A$$

$$\overrightarrow{PA} + \overrightarrow{A} = \overrightarrow{P} + \overrightarrow{A}$$

$$PA + \overline{A} = P + \overline{A}$$

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 1:
$$PA + \overline{A}$$

Method 1:
$$PA + \overline{A} = PA + (\overline{A} + \overline{A}P)$$
 T9' Covering

$$= PA + P\overline{A} + \overline{A}$$
 T6 Commutativity

$$= P(A + \overline{A}) + \overline{A}$$
 T8 Distributivity

$$= P(1) + \overline{A}$$
 T5' Complements

$$= P + \overline{A}$$
 T1 Identity

Proving the "Simplification" Theorem

"Simplification" theorem

$$PA + \overline{A} = P + \overline{A}$$

Method 2:
$$PA + \overline{A} = (\overline{A} + A) (\overline{A} + P)$$
 T8' Distributivity
= $1(\overline{A} + P)$ T5' Complements
= $\overline{A} + P$ T1 Identity

T11: Consensus

Number	Theorem	Name
T11	$(B \bullet C) + (\overline{B} \bullet D) + (C \bullet D) =$ $(B \bullet C) + (\overline{B} \bullet D)$	Consensus

Prove using other theorems and axioms:

Simplifying Boolean Equations Example 1:

$$Y = AB + A\overline{B}$$

Simplifying Boolean Equations Example 2:

$$Y = A(AB + ABC)$$

Simplifying Boolean Equations Example 3:

Y = A'BC + A' Recall: $A' = \overline{A}$

Simplifying Boolean Equations Example 4:

Y = AB'C + ABC + A'BC

Simplifying Boolean Equations Example 5:

$$Y = AB + BC + B'D' + AC'D'$$

Method 1:

Y = AB + BC + B'D' + (ABC'D' + AB'C'D') T10: Combining

= (AB + ABC'D') + BC + (B'D' + AB'C'D') T6: Commutativity

T7: Associativity

= AB + BC + B'D' T9: Covering

Method 2:

Y = AB + BC + B'D' + AC'D' + AD' T11: Consensus

= AB + BC + B'D' + AD' T9: Covering

= AB + BC + B'D' T11: Consensus

Simplifying Boolean Equations Example 6:

$$Y = (A + BC)(A + DE)$$