BIRLA INSTITUTE OF TECHNOLOGY & SCIENCE, PILANI

First Semester, 2020-21 MATH F111: Mathematics-I

Tutorial sheet-IV

- **Q.1.** Find the derivative of the function $h(x, y, z) = \cos(xy) + e^{yz} + \ln(zx)$ at the point $P_0(1, 0, 1/2)$ in the direction of $\mathbf{u} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$.
- **Q.2.** Let $f(x,y) = \frac{(x-y)}{(x+y)}$. Find the direction **u** for which the value of $D_u f(-\frac{1}{2}, \frac{3}{2})$ is largest and also find the largest value of $D_u f(-\frac{1}{2}, \frac{3}{2})$.
- **Q.3.** If f(x, y, z) has directional derivative 1, -1 and 3 in the direction of vectors \mathbf{i} , $\mathbf{i} + \mathbf{j}$ and $3\mathbf{i} + \mathbf{j} \mathbf{k}$ respectively at P_0 . Find directional derivative of f in the direction of $\mathbf{i} + \mathbf{j} \mathbf{k}$ at P_0 .
- **Q.4.** Find equations for the tangent plane and normal line on the surface $x^2 + y^2 2xy x + 3y z = -4$ at the point $P_0(2, -3, 18)$.
- **Q.5.** Suppose that the Celsius temperature at the point (x, y) in the xy-plane is $T(x, y) = x \sin 2y$ and that distance in the xy-plane is measured in meters. A particle is moving clockwise around the circle of radius 1m centered at the origin at the constant rate of 2m/sec.
 - (a) How fast is the temperature experienced by the particle changing in degree Celsius per meter at the point $P(1/2, \sqrt{3}/2)$?
 - (b) How fast is the temperature experienced by the particle changing in degree Celsius per second at *P*?
- **Q.6.** Find the linearization L(x,y) of the function function $f(x,y) = xy^2 + y\cos(x-1)$ at $p_0(1,2)$. Also find an upper bound for the magnitude |E| of the error in the approximation f(x,y) = L(x,y) over the rectangle $R: |x-1| \le 0.1, |y-2| \le 0.1$.
- **Q.7.** Discuss the maxima and minima of $x^3y^2(1-x-y)$.
- **Q.8.** Find the absolute maxima and minima of the function $D(x,y) = x^2 xy + y^2 + 1$ on the closed triangular plate in the first quadrant bounded by the lines x = 0, y = 4, y = x.
- **Q.9.** Find the maximum and minimum distance of the point (3, 4, 12) from the sphere $x^2 + y^2 + z^2 = 1$.
- **Q.10.** If A, B and C are the angles of triangle, locate and classify the critical points of the function $f(A, B, C) = \cos A \cos B \cos C$ without using the method of Lagrange multipliers.
- **Q.11.** Prove that he equation $\frac{l^2a^4}{1-a^2u} + \frac{m^2b^4}{1-b^2u} + \frac{n^2c^4}{1-c^2u} = 0$ is satisfied by the extreme values of $u = \frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}$ subject to the constraints lx + my + nz = 0 and $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Here a, b, c, l, m, n are real constants.