CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 13 LUGLIO 2023

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Determinare, laddove possibile, verità o falsità delle seguenti formule o frasi.

- $(i) \varnothing \in \{\{\varnothing\}\}.$
- $(ii) |\mathbb{N}| = {\mathbb{N}}.$
- $(iii) \{1, 2, 3\} = \{3!\} \to \emptyset \in \emptyset.^{(\ddagger)}$
- (iv) $\{(1,1),(2,1)\}$ è il grafico di un'applicazione da $\{1,2\}$ a \mathbb{N} .

Esercizio 2. Sia $S = \mathbb{N} \cap [0]_3$ e sia $\chi = \chi_{\mathbb{N},S}$ la funzione caratteristica di S in \mathbb{N} . Si consideri poi la seguente operazione binaria * definita su \mathbb{N} :

$$*: (a,b) \in \mathbb{N} \times \mathbb{N} \mapsto a^{\chi(a)} \cdot b^{\chi(b)} \in \mathbb{N}.$$

- (i) * è un'operazione commutativa? È associativa?
- (ii) Trovare tutti gli elementi neutri a destra o a sinistra in $(\mathbb{N}, *)$.
- (iii) Siano $T = \mathbb{N} \cap [0]_2$ e $U = \mathbb{N} \cap [2]_3$. Dire quali tra S, T e U sono parti stabili (ovvero: chiuse) di $(\mathbb{N}, *)$. Quali di queste parti stabili costituiscono un semigruppo?

Esercizio 3. Per ciascuna delle seguenti relazioni binarie definite in \mathbb{N} dire se essa è o non è d'ordine e, nel caso lo sia, determinare gli eventuali minimo, massimo, elementi minimali ed elementi massimali nell'insieme ordinato da essa definito, decidere se questo è un reticolo ed infine disegnare il diagramma di Hasse di $S := \{1, 20, 40, 400, 10000\}$ ordinato dall'ordinamento indotto.

- (i) α definite da: $\forall a, b \in \mathbb{N} (a \alpha b \iff a = b)$;
- (ii) β definite da: $\forall a, b \in \mathbb{N} (a \beta b \iff (a = b \lor (a|b \land a < 10b)));$
- (iii) γ definite da: $\forall a, b \in \mathbb{N} (a \gamma b \iff (a = b \lor (a|b \land a > 10b)));$
- (iv) δ definite da: $\forall a, b \in \mathbb{N} (a \delta b \iff (a = b \text{ oppure } a \text{ non divide } b))$.

Esercizio 4. Disegnare, se possibile, un grafo connesso G = (V, L) tale che |V| = 16 e |L| = 10, oppure spiegare perché un tale grafo non esiste.

Esercizio 5. Determinare l'insieme A dei numeri interi n tali che 111n sia congruo a 11 o a 12 modulo 126. Quanti elementi ha $\{a \in A \mid 0 < a \le 84\}$?

Esercizio 6. Per ogni $n \in \mathbb{Z}$, sia \overline{n} la classe di resto di n modulo 5.

- (i) Sia S l'insieme dei polinomi $f \in \mathbb{Z}_5$ di grado 4 tali che $f(\overline{1}) = \overline{0}$. Quanti elementi possiede S?
- (ii) S è una parte chiusa di $(\mathbb{Z}_5[x], +)$? Nel caso, (S, +) è un gruppo abeliano (ovvero commutativo)? Sia $\varphi \colon f \in S \mapsto f(\overline{1}) \in \mathbb{Z}_5$ la restrizione ad S dell'omomorfismo di sostituzione relativo a $\overline{1}$ e sia \sim_{φ} il nucleo di equivalenza di φ .
 - (iii) φ è iniettiva? È suriettiva?
 - (iv) Quanti elementi possiede S/\sim_{φ} ?

^(‡)qui '→' indica il connettivo di implicazione.