

Algorithmen und Datenstrukturen 2

Vorlesung im Wintersemester 2024/2025 Prof. Dr. habil. Christian Heinlein

5. Übungsblatt (19. Dezember 2024)

Aufgabe 11: Minimale Spannbäume

Bestimmen Sie mit dem Algorithmus von Kruskal und mit dem modifizierten Algorithmus von Prim mit Startknoten E jeweils alle möglichen minimalen Spannbäume des folgenden Graphen!

"Alle möglichen" bedeutet: Wenn es an einer Stelle des Algorithmus mehrere Möglichkeiten gibt, soll der Algorithmus je einmal für jede Möglichkeit ausgeführt werden.

	v	Α	В	С	D	Е	F	G	Н	I
	$\delta(v)$	∞ ∞	 ∞		 ∞		∞	∞	∞	∞
Initialisierung	$\pi(v)$	ı —	ı —	<u> </u>	ı —		<u> </u>	L $^{\sim}$		L $^{\sim}$
1. Durchlauf	$\frac{\delta(v)}{\delta(v)}$	∞			9		10			∞
u = E		& 	 	 	E		E	 	& 	l .
	$\pi(v)$				E					<u> </u>
2. Durchlauf	$\delta(v)$	∞ .	∞ .	7			10	∞ .	∞ .	∞ .
u = D	$\pi(v)$	上	上	D			Е	上	1	1
3. Durchlauf	$\delta(v)$	∞	8				4	∞	∞	2
u = C	$\pi(v)$	上	С				C	上	上	C
4. Durchlauf	$\delta(v)$	∞	8				4	6	7	
u = I	$\pi(v)$	上	С				C	I	I	
5. Durchlauf	$\delta(v)$	∞	8					2	7	
u = F	$\pi(v)$	上	C					F	I	
6. Durchlauf	$\delta(v)$	∞	8						1	
u = G	$\pi(v)$	上	С						G	
7. Durchlauf	$\delta(v)$	8	8							
u = H	$\pi(v)$	Н	C							
8. Durchlauf (Variante 1)	$\delta(v)$		4							
u = A	$\pi(v)$		Α							
9. Durchlauf (Variante 1)	$\delta(v)$									
u = B	$\pi(v)$									
8. Durchlauf (Variante 2)	$\delta(v)$	4								
u = B	$\pi(v)$	В								
9. Durchlauf (Variante 2)	$\delta(v)$									
u = A	$\pi(v)$									

Im 8. Durchlauf kann entweder A (Variante 1) oder B (Variante 2) aus der Vorrangwarteschlange entnommen werden.

Der minimale Spannbaum besteht dann aus den Kanten

- { H, A }, { A, B }, { D, C }, { E, D }, { C, F }, { F, G }, { G, H }, { C, I } (Variante 1)
- { B, A }, { C, B }, { D, C }, { E, D }, { C, F }, { F, G }, { G, H }, { C, I } (Variante 2)

(2)

Aufgabe 12: Algorithmus von Bellman und Ford

Gegeben sei der folgende Graph:

Führen Sie auf diesem Graphen den Algorithmus von Bellman und Ford mit Startknoten A aus. Durchlaufen Sie die Kanten dabei jeweils in alphabetischer Reihenfolge: (A, B), (A, E), (B, C), (B, D), (B, E), ...

Ändern Sie das Gewicht der Kante (D, A) von 2 auf 1 und wiederholen Sie dann die Ausführung des Algorithmus!

	v	A	В	С	D	Е
Initialisiamuna	$\delta(v)$	0	∞	∞	∞	∞
Initialisierung	$\pi(v)$	1	⊥		⊥	上
1. Durchlauf	$\delta(v)$	0	6	4	2	7
1. Durchiaur	$\pi(v)$	上	A	E	В	Α
2. Durchlauf	$\delta(v)$	0	2	4	2	7
	$\pi(v)$	1	C	E	В	Α
3. Durchlauf	$\delta(v)$	0	2	4	-2	7
(original)	$\pi(v)$	1	C	E	В	Α
4. Durchlauf	$\delta(v)$	0	2	4	-2	7
(original)	$\pi(v)$	1	C	E	В	Α
3. Durchlauf	$\delta(v)$	-1	2	4	-2	7
(geändert)	$\pi(v)$	D	C	E	В	Α
4. Durchlauf	$\delta(v)$	-1	2	3	-2	6
(geändert)	$\pi(v)$	D	C	Е	В	Α

Beim geänderten Graphen mit $\rho(D, A) = 1$ ist A, E, C, B, D, A ein negativer Zyklus mit Gesamtgewicht -1. In diesem Fall bricht der Algorithmus am Ende ab, weil für die Kante (C, B) gilt: $\delta(C) + \rho(C, B) = 3 + (-2) = 1 \le 2 = \delta(B)$.

(2)

Aufgabe 13: Algorithmus von Dijkstra

Führen Sie auf dem folgenden Graphen den Algorithmus von Dijkstra mit Startknoten A aus:

	v	A	В	С	D	Е
T., 141 - 11 - 1	$\delta(v)$	0	8	∞	∞	∞
Initialisierung	$\pi(v)$	上	上	1	1	上
u = A	$\delta(v)$		10	∞	∞	5
	$\pi(v)$		Α	Ι Τ	⊥	A
Б	$\delta(v)$		8	14	7	
u = E	$\pi(v)$		Е	Е	Е	
– D	$\delta(v)$		8	13		
u = D	$\pi(v)$		Е	D		
D	$\delta(v)$			9		
u = B	$\pi(v)$			В		
u = C	$\delta(v)$ $\pi(v)$					
	$\pi(v)$					

Führen Sie den Algorithmus von Dijkstra auch – unzulässigerweise – auf dem Graphen aus Aufgabe 12 aus und vergleichen Sie die Ergebnisse!

	v	A	В	С	D	Е
T. 141 - 11 - 1	$\delta(v)$	0	∞	∞	∞	∞
Initialisierung	$\pi(v)$	上	上	Ι Τ	1	上
u = A	$\delta(v)$		6	∞	∞	7
u - A	$\pi(v)$		A	1	1	Α
u = B	$\delta(v)$			11	2	7
	$\pi(v)$			В	В	Α
u = D	$\delta(v)$			9		7
u = D	$\pi(v)$			D		Α
u = E	$\delta(v)$			4		
u = E	$\pi(v)$			Е		
u = C	$\delta(v)$ $\pi(v)$					
<i>u</i> – C	$\pi(v)$					

Da der Graph aus Aufgabe 12 Kanten mit negativem Gewicht enthält, darf der Algorithmus von Dijkstra eigentlich nicht verwendet werden. Tatsächlich sind die von ihm berechneten Werte $\delta(B)$ und $\delta(E)$ falsch.

(2)

Aufgabe 14: Algorithmus von Floyd und Warshall

Führen Sie den Algorithmus von Floyd und Warshall auf dem Graphen von Aufgabe 12 aus!

Init.	A	В	С	D	Е
A	0	6	8	∞	7
В	∞	0	5	-4	8
С	∞	-2	0	∞	8
D	2	8	7	0	8
Е	∞	8	-3	9	0

k = 1	A	В	С	D	Е
A	0	6	∞	8	7
В	∞	0	5	-4	8
С	∞	-2	0	8	8
D	2	8	7	0	9
Е	∞	∞	-3	9	0

k = 2	A	В	С	D	Е
A	0	6	11	2	7
В	∞	0	5	-4	8
С	∞	-2	0	-6	6
D	2	8	7	0	9

k = 3	A	В	С	D	Е
A	0	6	11	2	7
В	∞	0	5	-4	8
С	∞	-2	0	-6	6
D	2	5	7	0	9
Е	∞	-5	-3	-9	0

k = 4	A	В	С	D	Е
A	0	6	9	2	7
В	-2	0	3	-4	5
С	-4	-2	0	-6	3
D	2	5	7	0	9
Е	-7	-5	-3	- 9	0

k = 5	A	В	C	D	Е
A	0	2	4	-2	7
В	-2	0	2	-4	5
С	-4	-2	0	-6	3
D	2	4	6	0	9
Е	- 7	-5	-3	- 9	0