Sri Lanka Institute of Information Technology

Lab Submission <Lab sheet 08>

<IT24104201> <Anupadha H.M.I>

IT2120- Probability and Statistics

B.Sc. (Hons) in Information Technology

Exercise

```
1.
       1 setwd("C:\\Users\\User\\Desktop\\IT24104201")
          getwd()
       3
          #01
       4
       5
          weights_data <- read.table("Exercise - LaptopsWeights.txt", header=TRUE)</pre>
          fix(weights_data)
          attach(weights_data)
       8
       9 #Calculate the Population Mean
      10 pop_mean <- mean(Weight.kg.)</pre>
      11
      12
          #Calculate the Population Standard Deviation
      13
          n_pop <- length(Weight.kg.)</pre>
          pop_variance <- var(Weight.kg.) * (n_pop - 1) / n_pop</pre>
      14
      15
          pop_sd <- sqrt(pop_variance)</pre>
      16
      17
          print(paste("Population Mean:", pop_mean))
      18 print(paste("Population Standard Deviation:", pop_sd))
      19
      > print(paste("Population Mean:", pop_mean))
      [1] "Population Mean: 2.468"
      > print(paste("Population Standard Deviation:", pop_sd))
      [1] "Population Standard Deviation: 0.252885349516337"
       21 #02
2.
        22 population <- Weight.kg.
        23
           k <- 25 # Number of samples
        24
        25
           n <- 6 # Sample size
        26
        27 samples_matrix <- c()
        28 sample_means <- c()
        29 sample_sds <- c()</pre>
        30
        31 - for (i in 1:k) {
        32
            # Draw a sample of size n=6 with replacement
        33
             s <- sample(population, n, replace = TRUE)
        34
              # Calculate sample mean and sample standard deviation
        35
        36
             s_mean <- mean(s)</pre>
        37
              s\_sd \leftarrow sd(s)
        38
        39
              # Store the mean and SD
        40
              sample_means <- c(sample_means, s_mean)</pre>
        41
              sample_sds <- c(sample_sds, s_sd)</pre>
        42 - }
        43
           # Combine results into a table for display
        44
        45 results_table <- data.frame(
             Sample = 1:k,
        46
        47
              Mean = sample_means,
       48
             SD = sample_sds
        49 )
        50
       51 print(results_table)
```

```
print(results_table)
   Sample
              Mean
                            SD
1
        1 2.468333 0.19166812
2
        2 2.473333 0.16132782
        3 2.490000 0.10564090
3
4
        4 2.625000 0.16932218
5
        5 2.455000 0.17615334
6
        6 2.488333 0.22364406
7
        7 2.440000 0.21854061
8
        8 2.383333 0.26964174
        9 2.560000 0.24511222
9
       10 2.410000 0.32112303
10
       11 2.628333 0.22569153
11
12
       12 2.251667 0.14048725
13
       13 2.236667 0.35629576
14
       14 2.643333 0.10191500
15
       15 2.456667 0.26356530
       16 2.341667 0.22355462
16
17
       17 2.421667 0.18356652
       18 2.418333 0.27125019
18
19
       19 2.593333 0.24824719
20
       20 2.560000 0.20909328
       21 2.481667 0.25222345
21
       22 2.696667 0.04179314
22
23
       23 2.318333 0.17057745
24
       24 2.491667 0.20014162
25
       25 2.600000 0.11242775
```

Mean of sample means \approx Population means

SD of sample means < Population SD

```
53 <u>#0</u>3
3.
         #Calculate the Mean of the Sample Means
      55
          mean_of_sample_means <- mean(sample_means)</pre>
      56
      57
          #Calculate the Standard Deviation of the Sample Means
      58 sd_of_sample_means <- sd(sample_means)</pre>
      59
      60 print(paste("Mean of the Sample Means:", mean_of_sample_means))
         print(paste("Standard Deviation of the Sample Means (SE):", sd_of_sample_means))
      62
      > print(paste("Mean of the Sample Means:", mean_of_sample_means))
      [1] "Mean of the Sample Means: 2.47733333333333"
      > print(paste("Standard Deviation of the Sample Means (SE):", sd_of_sample_means))
      [1] "Standard Deviation of the Sample Means (SE): 0.118645909545386"
       Relationship:-
       (based on the Central Limit Theorem)
```