Chapter 3
Church-Turing Thesis

CS 341: Foundations of CS II

Marvin K. Nakayama Computer Science Department New Jersey Institute of Technology Newark, NJ 07102

3-4

Previous Machines

DFA

CS 341: Chapter 3

- Reads input from left to right
- Finite control (i.e., transition function) based on
 - ▲ current state.
 - ▲ current input symbol read.

PDA

- Has stack for extra memory
- Reads input from left to right
- Can read/write to memory (stack) by popping/pushing
- Finite control based on
 - ▲ current state,
 - ▲ what's read from input,
 - ▲ what's popped from stack.

Contents

• Turing Machines

• Turing-decidable

Algorithms

• Turing-recognizable

• Variants of Turing Machines

• Encoding input for TM

CS 341: Chapter 3

3-3

Turing machine (TM)

- Infinitely long tape, divided into cells, for memory
- Tape initially contains input string followed by all blanks □

- Tape head (↓) can move both right and left
- Can **read** from and write to tape
- Finite control based on
 - current state,
- current symbol that head reads from tape.
- Machine has one accept state and one reject state.
- Machine can run forever: infinite **loop**.

3-7

3-8

Key Difference between TMs and Previous Machines

- Turing machine can both read from tape and write on it.
- Tape head can move both right and **left**.
- Tape is infinite and can be used for storage.
- Accept and reject states take immediate effect.

Example: Machine for recognizing language

$$A = \{ s \# s \mid s \in \{0, 1\}^* \}$$

Idea: Zig-zag across tape, crossing off matching symbols.

- Consider string $01101\#01101 \in A$.
- Tape head starts over leftmost symbol

ullet Record symbol in control and overwrite it with X

ullet Scan right: reject if blank " \Box " encountered before #

CS 341: Chapter 3

• When # encountered, move right one cell.

- If current symbol doesn't match previously recorded symbol, reject.
- ullet Overwrite current symbol with X

- ullet Scan left, past # to X
- Move one cell right
- \bullet Record symbol and overwrite it with X

ullet Scan right past # to (last) X and move one cell to right ...

CS 341: Chapter 3

• After several more iterations of zigzagging, we have

$$X | X | X | X | \# | X | X | X | X | \bot$$
 \cdots

- After all symbols left of # have been matched to symbols right of #, check for any remaining symbols to the right of #.
 - If blank \sqcup encountered, accept.
 - If 0 or 1 encountered, reject.

$$X | X | X | X | \# | X | X | X | X | \bot | \bot | \bot |$$
 ...

• The string that is accepted or not by our machine is the original input string 01101#01101.

3-11

3-12

Description of TM M_1 for $\{s\#s \mid s \in \{0,1\}^*\}$

 $M_1 =$ "On input string $w \in \Sigma^*$, where $\Sigma = \{0, 1, \#\}$:

- 1. Scan input to be sure that it contains a single #. If not, reject.
- Zig-zag across tape to corresponding positions on either side of the # to check whether these positions contain the same symbol. If they do not, reject.
 Cross off symbols as they are checked off to keep track of which symbols correspond.
- 3. When all symbols to the left of # have been crossed off along with the corresponding symbols to the right of #, check for any remaining symbols to the right of the #. If any symbols remain, reject; otherwise, accept."

Formal Definition of Turing Machine

Definition: A **Turing machine** (TM) is a 7-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where

- ullet Q is a finite set of **states**
- \bullet Σ is the **input alphabet** not containing blank symbol \sqcup
- Γ is **tape alphabet** with blank $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the **transition function**, where
 - lacksquare L means move tape head one cell to left
 - lacksquare R means move tape head one cell to right
- $q_0 \in Q$ is the **start state**
- ullet $q_{\mathsf{accept}} \in Q$ is the **accept state**
- ullet $q_{\mathsf{reiect}} \in Q$ is the **reject state**, with $q_{\mathsf{reiect}}
 eq q_{\mathsf{accept}}$.

CS 341: Chapter 3

Transtion Function of TM

- Transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- $\delta(q, a) = (s, b, L)$ means
 - if TM
 - \blacktriangle in state $q \in Q$, and
 - \blacktriangle tape head reads tape symbol $a \in \Gamma$,
 - then TM
 - ${\bf \blacktriangle}$ moves to state $s\in Q$
 - lacktriangle overwrites a with $b \in \Gamma$
 - \blacktriangle moves head left (i.e., $L \in \{L, R\}$)

CS 341: Chapter 3

Start of TM Computation

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$ begins computation as follows:

- Given input string $w=w_1w_2\cdots w_n\in \Sigma^*$ with each $w_i\in \Sigma$, i.e., w is a string of length n for some $n\geq 0$.
- TM begins in start state q_0
- \bullet Input string is on n leftmost tape cells

- Rest of tape contains blanks □
- Head starts on leftmost cell of tape
- Because $\sqcup \not\in \Sigma$, first blank denotes end of input string.

TM Computation

When computation on TM $M=(Q,\Sigma,\Gamma,\delta,q_0,q_{\rm accept},q_{\rm reiect})$ starts,

ullet TM M proceeds according to transition function

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$$

- ullet If M tries to move head off left end of tape,
 - then head remains on first cell.
- \bullet Computation continues until $q_{\rm accept}$ or $q_{\rm reject}$ is entered.
- ullet Otherwise, M runs forever: infinite **loop**.
 - In this case, input string is neither accepted nor rejected.

Example: Turing machine M_2 recognizing language

$$A = \{ 0^{2^n} \mid n \ge 0 \},$$

which consists of strings of 0s whose length is a power of 2.

Idea: The number k of zeros is a power of 2 iff successively halving k always results in a power of 2 (i.e., each result > 1 is never odd).

 $M_2 =$ "On input string $w \in \Sigma^*$, where $\Sigma = \{0\}$:

- 1. Sweep left to right across the tape, crossing off every other 0.
- 2. If in stage 1 the tape contained a single 0, accept.
- 3. If in stage 1 the tape contained more than a single 0 and the number of 0s was odd, *reject*.
- 4. Return the head to the left end of the tape.
- 5. Go to stage 1."

CS 341: Chapter 3

Run TM M_2 with Input 0000

• Tape initially contains input 0000.

• Run stage 1: Sweep left to right across tape, crossing off every other 0.

• Run stage 4: Return head to left end of tape (marked by □).

• Run stage 1: Sweep left to right across tape, crossing off every other 0.

- Run stages 4 and 1: Return head to left end and scan tape.
- ullet Run stage 2: If in stage 1 the tape contained a single 0, accept.

CS 341: Chapter 3

3-15

Diagram of TM for $\{0^{2^n} \mid n \geq 0\}$

3-18

3-20

Step	State	Tape	Step	State	Таре
0	q_1	0000	4	q_3	
1	q_2	□000□	5	q_5	x 0 x
2	q_3		6	q_5	x $ x $ $ x $ $ x $ $ x $ $ x $ $ x $ $ x $
3	q_4		ŧ	ŧ	:

TM for $\{0^{2^n} \mid n \ge 0\}$

Turing machine $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{\text{accept}}, q_{\text{reject}})$, where

- $Q = \{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
- $\Sigma = \{0\}$
- $\bullet \Gamma = \{0, x, \sqcup\}$
- \bullet q_1 is start state
- q_{accept} is accept state
- ullet $q_{
 m reject}$ is reject state
- Transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is specified in previous diagram. For example,
 - $\delta(q_4,0) = (q_3,x,R)$
 - $\delta(q_3, \sqcup) = (q_5, \sqcup, L)$

CS 341: Chapter 3

TM Configurations

- Computation changes
 - current state
 - current head position

 (q_2)

■ tape contents

State

Tape

- Configuration provides "snapshot" of TM at any point during computation:
 - \blacksquare current state $q \in Q$
 - \blacksquare current tape contents $\in \Gamma^*$
 - current head location

CS 341: Chapter 3

3-19

TM Configurations

Configuration $1011q_201$ means

- \bullet current state is q_2
- LHS of tape is 1011

• RHS of tape is 01

State

Tape

• head is on RHS O

Definition: a **configuration** of a TM

 $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$ is a string uqv with $u, v \in \Gamma^*$ and $q \in Q$, and specifies that currently

- \bullet M is in state q
- ullet tape contains uv
- ullet tape head is pointing to the cell containing the first symbol in v.

3-24

Definition: Configuration C_1 yields configuration C_2 if the Turing machine can legally go from C_1 to C_2 in a single step.

- ullet Specifically, for TM $M=(\Sigma,\Gamma,\delta,q_0,q_{\mathrm{accept}},q_{\mathrm{reject}})$, suppose
- $u, v \in \Gamma^*$
- $a,b,c \in \Gamma$
- $q_i, q_j \in Q$
- transition function $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$.
- Then configuration uaq_ibv yields configuration $uacq_jv$ if $\delta(q_i,b) = (q_i,c,R).$

$$\underbrace{q_i} \quad b \to c, R \longrightarrow q_j$$

TM Transitions

• Similarly, configuration uaq_ibv yields configuration uq_jacv if $\delta(q_i,b)=(q_i,c,L)$.

CS 341: Chapter 3

TM Transitions

• Special case: q_ibv yields q_jcv if

$$\delta(q_i, b) = (q_i, c, L)$$

If head is on leftmost cell of tape and tries to move left, then it stays in same place.

After c v \Box \Box \cdots

CS 341: Chapter 3

CS 341: Chapter 3

Remarks on TM Configurations

- Consider TM $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}).$
- ullet Starting configuration on input $w\in \Sigma^*$ is

 q_0w

• An accepting configuration is

 $uq_{\mathsf{accept}}v$

for some $u,v\in\Gamma^*$

• A rejecting configuration is

uqreiectv

for some $u, v \in \Gamma^*$

- Accepting and rejecting configurations are halting configurations.
- ullet Configuration wq_i is the same as $wq_i \sqcup$

On input 0000, get following sequence of configurations:

Formal Definition of TM Computation

- Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}).$
- Input string $w \in \Sigma^*$.
- **Definition:** M accepts input w if there is a finite sequence of configurations C_1, C_2, \ldots, C_k for some $k \geq 1$ with
 - C_1 is the starting configuration q_0w
 - lacksquare C_i yields C_{i+1} for all $i=1,\ldots,k-1$
 - $f \Delta$ sequence of configurations obeys transition function δ
 - C_k is an accepting configuration $uq_{\mathsf{accept}}v$ for some $u,v\in\Gamma^*$.
- \bullet **Definition:** The set of all input strings accepted by TM M is the language **recognized** by M and is denoted by L(M).
 - Note that $L(M) \subseteq \Sigma^*$.

CS 341: Chapter 3 3-27

Turing-recognizable

Definition: Language A is **Turing-recognizable** if there is a TM Msuch that A = L(M).

Remarks:

- Also called a **recursively enumerable** or **enumerable** language.
- \bullet On an input $w \not\in L(M)$, the machine M can either
 - halt in a rejecting state, or
 - it can loop indefinitely
- How do you distinguish between
 - a very long computation and
 - one that will never halt?
- Turing-recognizable not practical because never know if TM will halt.

CS 341: Chapter 3 3-28

Turing-decidable

Definition: A **decider** is TM that halts on all inputs, i.e., never loops.

Definition: Language A = L(M) is **decided** by TM M if on each possible input $w \in \Sigma^*$, the TM finishes in a halting configuration, i.e.,

- ullet M ends in q_{accept} for each $w \in A$
- ullet M ends in q_{reject} for each $w \not\in A$.

Definition: Lang A is **Turing-decidable** if \exists TM M that decides A.

Remarks:

- Also called a **recursive** or **decidable** language.
- ullet Differences between Turing-decidable language A and Turing-recognizable language B
 - A has TM that halts on every string $w \in \Sigma^*$.
 - TM for B may loop on strings $w \notin B$.

3-32

Describing TMs

- It is assumed that you are familiar with TMs and with programming computers.
- Clarity above all:
 - high-level description of TMs is allowed; e.g.,

M = "On input string $w \in \Sigma^*$, where $\Sigma = \{0, 1\}$: 1. Scan input ..."

- but it should not be used as a trick to hide the important details of the program.
- Standard tools: Expanding tape alphabet Γ with
 - separator "#"
 - dotted symbols $\overset{\bullet}{0}$, $\overset{\bullet}{a}$, to indicate "activity," as we'll see later.
 - Typical example: $\Gamma = \{0, 1, \#, \sqcup, 0, 1\}$

Example: Turing machine M_3 to decide language

 $C = \{ a^i b^j c^k \mid i \times j = k \text{ and } i, j, k > 1 \}.$

Idea: If i collections of j things each, then $i \times j$ things total. TM: for each a, cross off j c's by matching each b with a c.

 $M_3 =$ "On input string $w \in \Sigma^*$, where $\Sigma = \{a, b, c\}$:

- 1. Scan the input from left to right to make sure that it is a member of $L(a^*b^*c^*)$, and reject if it isn't.
- 2. Return the head to the left-hand end of the tape
- 3. Cross off an a and scan to the right until a b occurs. Shuttle between the b's and the c's, crossing off each until all b's are gone. If all c's have been crossed off and some b's remain, reject.
- 4. Restore the crossed off b's and repeat stage 3 if there is another a to cross off. If all a's are crossed off, check whether all c's also are crossed off. If yes, accept; otherwise, reject."

CS 341: Chapter 3

Running TM M_3 on Input $a^3b^2c^6 \in C$

• Tape head starts over leftmost symbol

\													
a	a	a	b	b	c	c	c	c	c	c	Ш	Γ	

ullet Stage 1: Mark leftmost symbol and scan to see if input $\in L(a^*b^*c^*)$

ullet Stage 3: Cross off one a and cross off matching b's and c's

ullet Stage 4: Restore b's and return head to first a not crossed off

CS 341: Chapter 3

CS 341: Chapter 3

ullet Stage 3: Cross off one a and cross off matching b's and c's

ullet Stage 4: Restore b's and return head to first a not crossed off

ullet Stage 3: Cross off one a and cross off matching b's and c's

- \bullet Stage 4: If all a's crossed off, check if all c's crossed off.
- accept

3-36

TM Tricks

- Question: How to tell when a TM is at the left end of the tape?
- One Approach: Mark it with a special symbol.
- Alternative method:
 - remember current symbol
 - overwrite it with special symbol
 - move left
 - if special symbol still there, head is at start of tape
 - otherwise, restore previous symbol and move left.

Variant of TM: k-tape

Tape 1 0 1 1 ...

3-tape TM Tape 2 0 0 ...

Tape 3 1 0 0 1 ...

- Each tape has its own head.
- Transitions determined by
 - current state, and
 - what all the heads read.
- Each head writes and moves independently of other heads.

CS 341: Chapter 3

k-tape Turing Machine

Definition: A k-tape Turing machine

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

has k different tapes and k different read/write heads:

- Q is finite set of states
- Σ is input alphabet (where $\sqcup \not\in \Sigma$)
- Γ is tape alphabet with $(\{\sqcup\} \cup \Sigma) \subseteq \Gamma$
- q_0 is start state $\in Q$
- ullet q_{accept} is accept state $\in Q$
- $ullet q_{\mathsf{reject}}$ is reject state $\in Q$
- δ is transition function

$$\delta:Q\times \Gamma^k\to Q\times \Gamma^k\times \{L,R\}^k$$
 where $\Gamma^k=\underbrace{\Gamma\times\Gamma\times\cdots\times\Gamma}_{k\text{ times}}.$

CS 341: Chapter 3

Multi-Tape TM

• Transition function

$$\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$$

Suppose

$$\delta(q_i, a_1, a_2, \dots, a_k) = (q_i, b_1, b_2, \dots, b_k, L, R, \dots, L)$$

- Interpretation: If
 - \blacksquare machine is in state q_i , and
 - heads 1 through k read $a_1, \ldots a_k$,
- then
 - \blacksquare machine moves to state q_i
 - heads 1 through k write b_1, \ldots, b_k
 - \blacksquare each head moves left (L) or right (R) as specified.

3-37

3-39

3-40

Multi-Tape TM Equivalent to 1-Tape TM

Theorem 3.13

For every multi-tape TM M, there is a single-tape TM M' such that L(M) = L(M').

Remarks:

- ullet In other words, for every multi-tape TM M, there is an **equivalent** single-tape TM M'.
- Proving and understanding this kind of robustness result is essential for appreciating the power of the TM model.
 - We will consider different variants of TMs, and show each has equivalent basic TM.

Basic Idea of Proof of Theorem 3.13

Simulate *k*-tape TM using 1-tape TM

Equivalent 1-tape TM

CS 341: Chapter 3

Proof of Theorem 3.13

• Let $M_k = (Q, \Sigma, \Gamma, \delta, q_0, q_{\mathsf{accept}}, q_{\mathsf{reject}})$ be a k-tape TM.

- \bullet Initially, ${\cal M}_k$ has
 - \blacksquare input $w=w_1\cdots w_n$ on tape 1
 - \blacksquare other tapes contain only blanks \sqcup
 - each head points to first cell.

- \bullet Construct 1-tape TM M_1 with expanded tape alphabet $\Gamma' = \Gamma \ \cup \ \stackrel{\bullet}{\Gamma} \ \cup \ \{\#\}$
 - Head positions are marked by dotted symbols.

CS 341: Chapter 3

Proof of Theorem 3.13

On input $w = w_1 \cdots w_n$, the 1-tape TM M_1 does the following:

 \bullet First M_1 prepares initial string on single tape:

- ullet For each step of M_k , TM M_1 scans tape **twice**
 - 1. Scans its tape from
 - first # (which marks left end of tape) to
 - \bullet (k+1)st # (which marks right end of used part of tape) to read symbols under "virtual" heads
 - 2. Rescans to write new symbols and move heads
 - If M_1 tries to move virtual head to the right onto #, then
 - $lack M_k$ is trying to move head onto unused blank cell.
 - lacktriangle So M_1 has to write blank on tape and shift rest of tape right one cell.

3-44

Turing-recognizable $\iff k$ -tape TM

From Theorem 3.13, we get the following:

Corollary 3.15

Language L is TM-recognizable if and only if some multi-tape TM recognizes L.

CS 341: Chapter 3

Nondeterministic TM

Definition: A nondeterministic Turing machine (NTM) M can have several options at every step. It is defined by the 7-tuple

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject}),$$

where

- ullet Q is finite set of states
- Σ is input alphabet (without blank \Box)
- Γ is tape alphabet with $\{\sqcup\} \cup \Sigma \subseteq \Gamma$
- q_0 is start state $\in Q$
- ullet q_{accept} is $\mathit{accept state} \in Q$
- $ullet q_{\mathsf{reject}}$ is reject state $\in Q$
- \bullet δ is transition function

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

CS 341: Chapter 3

Transition Function δ of NTM

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

Multiple choices when in state q_i and reading c from tape:

$$\delta(q_i, c) = \{ (q_i, a, L), (q_k, c, R), (q_\ell, a, L), (q_\ell, d, R) \}$$

CS 341: Chapter 3

Computing With NTMs

- On any input w, evolution of NTM represented by a **tree of configurations** (rather than a single chain).
- If \exists (at least) one accepting leaf, then NTM accepts.

3 - 45

3-47

3-46

3-48

NTM Equivalent to TM

Theorem 3.16

Every nondeterministic TM N has an equivalent deterministic TM D.

Proof Idea:

- ullet Build TM D to simulate NTM N on each input w.
- ullet D tries all possible branches of N's tree of configurations.
- ullet If D finds any accepting configuration, then it accepts input w.
- ullet If all branches reject, then D rejects input w.
- ullet If no branch accepts and at least one loops, then $D\ loops$ on w.

Proof of Equivalence of NTM and TM

On each input w, NTM N's computation is a tree

- Each branch is branch of nondeterminism.
- Each node is a **configuration** arising from running N on w.
- Root is starting configuration.
- ullet TM D searches through tree to see if it has an accepting configuration.
 - Depth-first search (DFS) doesn't work. Why?
 - Breadth-first search (BFS) works.
- Tree doesn't actually exist.
 - lacksquare So TM D needs to build tree as it searches through it.

CS 341: Chapter 3

Proof of Equivalence of NTM and TM

Simulating TM D has 3 tapes

- 1. Input tape
 - ullet contains input string w
 - never altered
- 2. Simulation tape
 - ullet used as N's tape when simulating N's execution on some path in N's computation tree.
- 3. Address tape
 - ullet keeps track of current location of BFS of N's computation tree.

CS 341: Chapter 3

Address Tape Works as Follows

- ullet Every node in the tree has at most b children.
 - b is size of largest set of possible choices for N's transition fcn δ .
- Every node in tree has an address that is a string over the alphabet

$$\Gamma_b = \{1, 2, \dots, b\}$$

- To get to node with address 231
 - start at root
 - take **second** branch
 - then take third branch
 - then take **first** branch
- Ignore meaningless addresses.
- Visit nodes in **BFS order** by listing addresses in Γ_h^* in **string order**:

$$\varepsilon$$
, 1, 2, ..., b, 11, 12, ..., 1b, 21, 22, ...

3-51

3-52

Proof of Equivalence of NTM and TM

- "accept" configuration has address 231.
- Configuration C_6 has address 12.
- Configuration C_1 has address ε .
- Address 132 is meaningless.

TM D Simulating NTM N Works as Follows

- 1. Initially, input tape contains input string w.
 - Simulation and address tapes are initially empty.
- 2. Copy input tape to simulation tape.
- 3. Use simulation tape to simulate NTM N on input w on path in tree from root to the address on address tape.
 - At each node, consult next symbol on address tape to determine which branch to take.
 - *Accept* if accepting configuration reached.
 - Skip to next step if
 - symbols on address tape exhausted
 - nondeterministic choice invalid
 - rejecting configuration reached
- 4. Replace string on address tape with next string in Γ_b^* in string order, and go to Stage 2.

CS 341: Chapter 3

Remarks on TM Variants

Corollary 3.18

Language L is Turing-recognizable iff a nondeterministic TM recognizes it.

Proof.

- Every nondeterministic TM has an equivalent 3-tape TM
 - 1. input tape
 - 2. simulation tape
 - 3. address tape
- 3-tape TM, in turn, has an equivalent 1-tape TM by Theorem 3.13.

Remarks:

- k-tape TMs and NTMs are not more powerful than standard TMs:
- The Turing machine model is extremely robust.

CS 341: Chapter 3

TM Decidable ← NTM Decidable

Definition: A nondeterministic TM is a **decider** if all branches halt on all inputs.

Remark: Can modify proof of previous theorem (3.16) so that if NTM N always halts on all branches, then TM D will always halt.

Corollary 3.19

A language is decidable iff some nondeterministic TM decides it.

3-54

Enumerators

Remarks:

CS 341: Chapter 3

• Recall: a language is **enumerable** if some TM recognizes it.

• But why enumerable?

Definition: An **enumerator** is a TM with a printer

• TM takes no input

• TM simply sends strings to printer

• may create infinite list of strings

• duplicates may appear in list

• enumerates a language

3-55

3-53

Second Half of Proof of Theorem 3.21

We now show 2 (\Rightarrow): If TM M recognizes A, then some enumerator E enumerates A.

 \bullet Let s_1, s_2, s_3, \ldots be an (infinite) list of all strings in Σ^*

ullet Given TM M, define E using M as black box as follows:

 \blacksquare Repeat the following for $i=1,2,3,\ldots$

 \blacktriangle Run M for i steps on each input s_1, s_2, \ldots, s_i .

lacktriangle If any computation accepts, print out corresponding string s

• Note that duplicates may appear.

Enumerators

Theorem 3.21

Language A is Turing-recognizable iff some enumerator enumerates it.

Proof. Must show

1. (\Leftarrow) If E enumerates language A, then some TM M recognizes A.

2. (\Rightarrow) If TM M recognizes A, then some enumerator E enumerates A.

To show 1 (\Leftarrow), given enumerator E, build TM M for A using E as black box:

• M = "On input string w,

1. Run *E*.

2. Every time E outputs a string, compare it to w.

3. If w is output, accept."

CS 341: Chapter 3

"Algorithm" is Independent of Computation Model

• All reasonable variants of TM models are equivalent to TM:

■ k-tape TM

nondeterministic TM

enumerator

■ random-access TM: head can jump to any tape cell in one step.

• Similarly, all "reasonable" programming languages are equivalent.

■ Can take program in LISP and convert it into C, and vice versa.

• Notion of an **algorithm** is independent of computation model.

3-56

I

3-60

Algorithms

What is an algorithm?

- Informally
 - a recipe
 - a procedure
 - a computer program

Muḥammad ibn Mūsā al-Khwārizmī (c. 780 – c. 850)
source: wikipedia

- Historically,
 - algorithms have long history in mathematics
 - but not precisely defined until 20th century
 - informal notions rarely questioned, but insufficient to show a problem has **no** algorithm.

Hilbert's 10th Problem

David Hilbert (1862 – 1943) source: wikipedia

In 1900, David Hilbert delivered a now-famous address

- Presented 23 open mathematical problems
- Challenge for the next century
- 10th problem concerned algorithms and polynomials

CS 341: Chapter 3

Polynomials

• A term is product of variables and constant integer coefficient:

$$6x^3yz^2$$

• A **polynomial** is a sum of terms:

$$6x^3yz^2 + 3xy^2 - x^3 - 10$$

- A **root** of a polynomial is an assignment of values to variables so that the value of the polynomial is zero.
- The above polynomial has a root at (x, y, z) = (5, 3, 0).
- We are interested in **integral** roots.
- Some polynomials have integral roots; some don't.
 - Neither $21x^2 81xy + 1$ nor $x^2 2$ has an integral root.

CS 341: Chapter 3

Hilbert's 10th Problem

- **Problem:** Devise an algorithm that tests whether a polynomial has an integral root.
- In Hilbert's words:

"to devise a process according to which it can be determined by a **finite** number of operations ..."

- Hilbert seemed to assume that such an algorithm exists.
- However, Matijasevič proved in 1970 that no such algorithm exists.
- Mathematicians in 1900 couldn't have proved this.
 - No formal notion of an algorithm existed.
 - Informal notions work fine for constructing algorithms.
 - Formal notion needed to show no algorithm exists for a problem.

Church-Turing Thesis

Alonzo Church (1903 – 1995) source: wikipedia

Alan Turing (1912 - 1954) source: wikipedia

- Formal notion of algorithm developed in 1936
 - \bullet λ -calculus of Alonzo Church
 - Turing machines of Alan Turing
 - Definitions appear very different, but are equivalent.

• Church-Turing Thesis

The informal notion of an **algorithm** corresponds exactly to a Turing machine that halts on all inputs.

Hilbert's 10th Problem

- ullet For universe $\Omega=\{\,p\mid p \ {
 m is\ a\ polynomial}\,\}$, consider language $D=\{\,p\mid p \ {
 m is\ a\ polynomial\ with\ an\ integral\ root}\,\}\subseteq\Omega.$
 - Since $6x^3yz^2 + 3xy^2 x^3 10$ has an integral root at (x, y, z) = (5, 3, 0),

$$6x^3yz^2 + 3xy^2 - x^3 - 10 \in D.$$

■ Since $21x^2 - 81xy + 1$ has no integral root,

$$21x^2 - 81xy + 1 \notin D.$$

- Hilbert's 10th problem asks whether this language is decidable.
 - \blacksquare i.e., Is there a TM that decides D?
- *D* is **not decidable**, but it is **Turing-recognizable**.

CS 341: Chapter 3

Hilbert's 10th Problem

• Consider simpler language of polynomials over single variable:

 $D_1 = \{ p \mid p \text{ is a polynomial over } x \text{ with an integral root } \}$ $\subseteq \{ p \mid p \text{ is a polynomial over } x \} \equiv \Omega_1$

- D_1 is recognized by following TM M_1 :
 - lacksquare On input $p\in\Omega_1$, i.e., p is a polynomial over variable x
 - 1. Evaluate p with x set successively to values

 $0, 1, -1, 2, -2, 3, -3, \ldots$

- 2. If at any point the polynomial evaluates to 0, accept.
- M_1 recognizes D_1 , but does not decide D_1 .
 - \blacksquare If p has an integral root, the machine eventually accepts.
 - If not, machine loops.

CS 341: Chapter 3

3-63

Hilbert's 10th Problem

- ullet It turns out, though, that D_1 is decidable.
- ullet Can show that the roots of p (over single variable x) lie between

$$\pm k \frac{c_{\text{max}}}{c_1}$$

where

- \blacksquare k is number of terms in polynomial
- ullet c_{max} is maximum coefficient
- lacksquare c_1 is coefficient of highest-order term
- \bullet Thus, only have to check integers between $-k\frac{c_{\max}}{c_1}$ and $k\frac{c_{\max}}{c_1}$
- Matijasevič proved such bounds don't exist for multivariate polynomials.

Encoding

- Input to a Turing machine is a string of symbols over an alphabet.
- But we want TMs (algorithms) that work on
 - polynomials
 - graphs
 - grammars
 - Turing machines
 - etc.

CS 341: Chapter 3

- Need to **encode** an *object* as a *string of symbols* over an alphabet.
- Can often do this in many reasonable ways.
- We sometimes distinguish between
 - \blacksquare an object X
 - $\quad \blacksquare \ \, \text{its encoding} \,\, \langle X \rangle.$

3-67

Connected Graphs

Definition: An undirected graph is **connected** if every node can be reached from any other node by travelling along edges.

Connected graph G_1

Unconnected graph G_2

Example: Let A be the language consisting of strings representing connected undirected graphs:

$$A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}.$$

- $A \subseteq \Omega \equiv \{ \langle G \rangle \mid G \text{ is an undirected graph } \}.$
- $\bullet \langle G_1 \rangle \in A, \quad \langle G_2 \rangle \not\in A.$

Encoding an Undirected Graph

ullet Undirected graph G

• One possible encoding

$$\langle G \rangle = \underbrace{(1,2,3,4)}_{\text{nodes}} \underbrace{((1,2),(1,3),(2,3),(3,4))}_{\text{edges}}$$

- In this encoding scheme, $\langle G \rangle$ of graph G is string of symbols over alphabet $\Sigma = \{0, 1, \dots, 9, (,), ,\}$, where the string
 - starts with list of nodes
 - followed by list of edges

CS 341: Chapter 3

Decision Problems

- **Decision problem:** (computational) question with YES/NO answer.
 - Answer depends on particular value of input to question.
- Example: Graph connectedness problem:

Is an undirected graph connected?

- Input to question is from $\Omega \equiv \{ \langle G \rangle \mid G \text{ is an undirected graph } \}.$
- For input $\langle G_1 \rangle$, answer is YES.
- For input $\langle G_2 \rangle$, answer is NO.

3-69

3-71

3-70

3-72

Instance and Language of Decision Problem

- Instance of decision problem is specific input value to question.
 - Instance is encoded as string over some alphabet Σ .
 - YES instance has answer YES.
 - NO instance has answer NO.
- Universe Ω of a decision problem comprises all instances.
- Language of a decision problem comprises all its YES instances.
- Example: For graph connectedness problem,
 - Universe consists of (encodings of) **every** undirected graph G:

$$\Omega = \{ \langle G \rangle \mid G \text{ is an undirected graph } \}$$

 \blacksquare Language A of decision problem

$$A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}$$

is subset of universe; i.e., $A \subseteq \Omega$

Proving a Language is Decidable

• Recall for graph connectedness problem,

$$\Omega = \{ \langle G \rangle \mid G \text{ is an undirected graph } \},$$

 $A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \subseteq \Omega.$

- To prove A is decidable language, need to show \exists TM that **decides** A.
- \bullet For a TM M to **decide** A, the TM must
 - lacksquare take any instance $\langle G \rangle \in \Omega$ as input
 - lacksquare halt and **accept** if $\langle G \rangle \in A$
 - halt and **reject** if $\langle G \rangle \notin A$ (i.e., never loops indefinitely)

CS 341: Chapter 3

TM to Decide if Graph is Connected

$$A = \{ \langle G \rangle \mid G \text{ is a } \mathbf{connected} \text{ undirected graph } \}$$

$$\subseteq \{ \langle G \rangle \mid G \text{ is an undirected graph } \} \equiv \Omega$$

- M = "On input $\langle G \rangle \in \Omega$, where G is an undirected graph:
 - 0. Check if $\langle G \rangle$ is a valid graph encoding. If not, reject.
 - 1. Select first node of G and mark it.
 - 2. Repeat until no new nodes marked:
 - 3. For each node in G, mark it if it's attached by an edge to a node already marked.
 - 4. Scan all nodes of G to see whether they all are marked. If they are, accept; otherwise, reject."

CS 341: Chapter 3

TM M for Deciding Language A

For TM M that decides $A = \{ \langle G \rangle \mid G \text{ is a connected undirected graph } \}$

- Stage 0 checks that input $\langle G \rangle \in \Omega$ is valid graph encoding, e.g.,
 - two lists
 - ▲ first is a list of numbers
 - ▲ second is a list of pairs of numbers
 - first list contains no duplicates
 - every node in second list appears in first list
- Stages 1–4 then check if G is connected.
- When defining a TM, we often do not explicitly include stage 0 to check if the input is a valid encoding.
- Instead, the check is often only implicitly included.

3-73

Hierarchy of Languages (so far)

Examples

???

???

 $\{ 0^n 1^n 2^n | n \ge 0 \}$

 $\{ 0^n 1^n | n \ge 0 \}$

 $(0 \cup 1)^*$

{ 110, 01 }

Summary of Chapter 3

- Turing machines
 - tape head can move right and **left**
 - tape head can read and write
- TM computation can be expressed as sequence of configurations
- Language is **Turing-recognizable** if some TM recognizes it
 - But TM may loop forever on input string not in language
- Language is **Turing-decidable** if a TM decides it (must always halt)
- Variants of TM (k-tape, nondeterministic, etc.) have equivalent TM
- Church-Turing Thesis
- Informal notion of algorithm is same as deciding by TM.
- Hilbert's 10th problem undecidable.
- Encoding TM input and decision problems.