# What makes DNNs stand out in approximation

### Yebiao Jin

University of Pennsylvania yebiao@sas.upenn.edu

October 24, 2019

### Overview

- 1 Motivation for my research on DNN approximation
  - Literature about smooth/non-smooth function appxoimation
- 2 DNN for smooth function approximation
- 3 DNN for general non-smooth function approximation
- 4 Summary

# Two papers of interest

- Shiyu Liang & R.Srikant Why deep neural networks for function approximation? (ICLR 2017)
- Masaaki Imaizumi & Kenji Fukumizu Deep neural networks learn non-smooth functions effectively (2018)

Some related topics: Candes and Donoho (2002,2004) on curvelet, Kutyniok and Lim(2011) on shearlet with Harmonic analysis.

# Why deep neural networks for function approximation? Abstract

- Number of neurons  $(\mathcal{O}(poly(1/\epsilon)))$  needed by a shallow network to approximate a function is **exponentially** larger than the number  $(\mathcal{O}(polylog(1/\epsilon)))$  needed by a deep neural network.
- Neural networks use a combination of ReLUs and binary step units, based on a simple observation: multiplication of two bits can be represented by a ReLU.
- Results can be extended to certain classes of important multivariate functions.

# Notations and setup

- $oldsymbol{ ilde{f}}: \mathbf{R}^d 
  ightarrow \mathbf{R}$  denotes a feedforward neural network
- $N = \sum_{l=1}^{L} N_l$  denotes the number of neurons on L hidden layers.
- Only consider two types of activation functions: ReLU and BSU.
- ullet  $\mathcal{F}(N,L)$  denotes the family of all feedforward neural networks of depth L and size N and composed of a combination of ReLU and BSU.
- Consider  $\min_{\tilde{f} \in \mathcal{F}(N,L)} \|f \tilde{f}\|_{\infty} \leq \epsilon$ 
  - Existence of upper bound  $L(\epsilon)$  and  $N(\epsilon)$ ?
  - ullet Given a fixed depth L, the minimum of size N?

# Begin with $f(x) = x^2$

### Theorem

For function  $f(x)=x^2, x\in [0,1]$ , there exists a multilayer neural network  $\tilde{f}(x)$  with  $\mathcal{O}(\log \frac{1}{\epsilon})$  BSU and  $\mathcal{O}(\log \frac{1}{\epsilon})$  ReLU such that  $|f(x)-\tilde{f}(x)|\leq \epsilon$ ,  $\forall x\in [0,1].$ 

### Proof sketch:

- $\bullet$  Show BSU for binary expansion  $\tilde{x} = \sum_{i=0}^n \frac{x_i}{2^i}$  with multilayer network
- ullet Construct 2-layer ReLU neural network for  $f(\tilde{x})$
- $\bullet$  Check approximation error  $|f(x) \tilde{f}(x)|$

### Proof of theorem

### BSU for finding the binary expansion



### Proof of theorem

Implementing the function  $\tilde{f}(x) = f(\sum_{i=0}^n \frac{x_i}{2^i})$  by a two-layer ReLU neural network:

$$\tilde{f}(x) = \left(\sum_{i=0}^{n} \frac{x_i}{2^i}\right)^2 = \sum_{i=0}^{n} x_i \left(\frac{1}{2^i} \sum_{j=0}^{n} \frac{x_j}{2^j}\right) \tag{1}$$

$$= \sum_{i=0}^{n} \max \left\{ 0, 2(x_i - 1) + \frac{1}{2^i} \sum_{j=0}^{n} \frac{x_j}{2^j} \right\}$$
 (2)

Hence, the weight matrix can be represented as

$$w_{ij} = \begin{cases} 2 + \frac{1}{2^{2i}} & i = j\\ \frac{1}{2^{i+j}} & i \neq j \end{cases}$$

 $\text{ for } 0 \leq i, j \leq n$ 



### Proof of theorem

The approximation error is trivial:

$$|f(x) - \tilde{f}(x)| \le 2 \left| x - \sum_{i=0}^{n} \frac{x_i}{2^i} \right| = 2 \left| \sum_{i=n+1}^{\infty} \frac{x_i}{2^i} \right| \le \frac{1}{2^{n-1}}$$
 (3)

To achieve  $\epsilon$ -approximation error,  $n = \lceil \log_2 \frac{1}{\epsilon} \rceil + 1$ . In summary, the DNN needs  $\mathcal{O}(\log \frac{1}{\epsilon})$  layers,  $\mathcal{O}(\log \frac{1}{\epsilon})$  BSU and  $\mathcal{O}(\log \frac{1}{\epsilon})$  ReLU.

# Generalization to polynomials

### **Theorem**

For polynomials  $f(x) = \sum_{i=0}^p a_i x^i$ ,  $x \in [0,1]$  and  $\sum_{i=1} p |a_i| \leq 1$ , there exists a multilayer neural network  $\tilde{f}(x)$  with  $\mathcal{O}(p + \log \frac{p}{\epsilon})$  layers,  $\mathcal{O}(\log \frac{p}{\epsilon})$  BSU and  $\mathcal{O}(p \log \frac{p}{\epsilon})$  ReLU such that  $|f(x) - \tilde{f}(x)| \leq \epsilon$ ,  $\forall x \in [0,1]$ .

The proof is quite similar, if we let  $g_i(x) = x^i$  and hence we can rewrite

$$g_{m+1}(\sum_{i=0}^{n} \frac{x_i}{2^i}) = \sum_{i=0}^{n} \max \left[ 0, 2(x_i - 1) + \frac{1}{2^i} g_m(\sum_{j=0}^{n} \frac{x_j}{2^j}) \right]$$
(4)

# Generalization to polynomials



The rest of proof is trivial!

# More generalizations

### Theorem

Assume that function f is continuous on [0,1] and  $\lceil \log \frac{2}{\epsilon} \rceil + 1$  times differentiable in (0,1). Let  $f^{(n)}$  denote the derivative of f of nth order and  $\|f\| = \max_{x \in [0,1]} f(x)$ . If  $\|f^{(n)}\| \leq n!$  holds for all  $n \in [\lceil \log \frac{2}{\epsilon} \rceil + 1]$ , then there exists a deep neural network  $\tilde{f}$  with  $\mathcal{O}(\log \frac{1}{\epsilon})$  layers,  $\mathcal{O}(\log \frac{1}{\epsilon})$  BSU,  $\mathcal{O}((\log \frac{1}{\epsilon})^2)$  ReLU such that  $\|f - \tilde{f}\| \leq \epsilon$ .

And this theorem can lead to corollaries with minor difference for function addition, multiplication and composition if  $h_1,h_2,\cdots,h_k$  satisfy condition in theorem.

### Proceed to next one!

- The main contribution of the first paper is about shallow vs deep neural networks. The proof is easy but solid.
- Personal opinion: the binary expansion is like harmonic analysis used with Fourier transform, curvelet transform and shearlet transform for function approximation.
- In contrast, the next paper is about DNNs vs other popular models for approximation, and for certain classes of non-smooth multivariate functions.

# Deep neural networks learn non-smooth functions effectively Abstract

- It's known that many standard methods attain the optimal rate of generalization errors for smooth functions in large sample asymptotics, so DNNs do not stand out in this case.
- This paper theoretically derives the generalization error of estimators by DNNs with ReLU activation and shows that the convergence rate are almost optimal.

### **Notation**

- $\bullet \ f: I^D = [0,1]^D \to \mathbf{R}$
- $H^{\beta}(\Omega)$  denotes the space of smooth function  $f:\Omega\to\mathbf{R}$  such that f are  $\lfloor\beta\rfloor$ -times differentiable and the  $\lfloor\beta\rfloor$ -th derivatives are  $\beta-\lfloor\beta\rfloor$ -Hölder continuous.
- $A=\{x\in I^D|\Psi_h(x)=1\}$  where  $h\in H^\alpha(I^{D-1})$  and  $\Psi_h(x)=\Psi(x_1,\cdots,x_d\pm h(x\setminus x_d),\cdots,x_D),\ \Psi:I^D\to\{0,1\}$  denotes a **basis piece**.
- $\mathcal{R}_{\alpha,J}=\left\{R\subset I^D: R=\cap_{j=1}^J A_j\right\}$  denotes the set of piecewise  $\alpha$ -smooth boundaries.
- $\mathcal{F}_{M,J,\alpha,\beta} = \left\{ \sum_{m=1}^M f_m 1_{Rm} : f_m \in H^{\beta}(I^D), R_m \in \mathcal{R}_{\alpha,J} \right\}$  denotes set of piecewise smooth fnctions.
- $\mathcal{F}_{NN,\eta}(S,B,L)$  denotes the set of DNNs with activation  $\eta$ , parameter sparsity upper bound S, parameter bound B and depth bound L.

# Optimal rate of generalization with smoothness assumption

Suppose the data  $\{(Y_i, X_i)\}$  are given by

$$Y_i = f(X_i) + \xi_i, \quad \xi_i \sim \mathcal{N}(0, \sigma^2)$$

with  $f \in H^{\beta}(I^D)$  and  $X_i \in I^D$ .

Methods such as kernel methods, Gaussian processes, series methods, as well as DNNs, achieve generalization errors of the order of

$$O(n^{-2\beta/(2\beta+D)})$$

How about the piecewise smooth case?

# The contribution of the paper

- Derive a rate of convergence of the generalization errors in the estimators by DNNs for the class of piecewise smooth functions.
- Prove that DNNs theoretically outperform other standard methods for data from non-smooth generating processes.
- Provide a practical guideline on the structure of DNNs, i.e show a necessary number of layers and parameters of DNNs to achieve the rate of convergence.

# An example of piecewise function



# Convergence rate of generalization errors

### **Theorem**

```
Suppose f^* \in \mathcal{F}_{M,J,\alpha,\beta}. Then, there exist constants c_1, c_1', C_L > 0, s \in \mathbb{N} \setminus \{1\} and (S,B,L) satisfying 
 (i) S = c_1' \max\{n^{D/(2\beta+D)}, n^{(D-1)/(\alpha+D-1)}\} 
 (ii) B \ge c_1 n^s 
 (iii) L \le c_1(1 + \max\{\beta/D, \alpha/2(D-1)\}) such that \hat{f}^L \in \mathcal{F}_{NN,\eta}(S,B,L) provides \|\hat{f}^L - f^*\|_{L^2(P_X)}^2 \le C_L M^2 J^2 \max\{n^{-2\beta/(2\beta+D)}, n^{-\alpha/(\alpha+D-1)}(\log n)^2\}
```

with probability at least  $1 - c_1 n^{-2}$ 

# Minimax optimal rate of convergence

### Theorem

Consider  $\bar{f}$ , an arbitrary estimator of  $f^* \in \mathcal{F}_{M,J,\alpha,\beta}$ . Then, there exists a constant  $C_{mm} > 0$  such that

$$\inf_{\bar{f}} \sup_{f^* \in \mathcal{F}_{M,J,\alpha,\beta}} \mathbb{E}_{f^*} \left[ \|\bar{f} - f^*\|_{L^2(P_X)}^2 \right] \ge C_{mm} \max\{ n^{-\frac{2\beta}{2\beta + D}}, n^{-\frac{\alpha}{\alpha + D - 1}} \}$$

The rate of convergence of the DNN estimators is optimal in the minimax sense, since the rate is only up to a log factor.

# Non-Optimality of other methods

We consider a class of linear estimators:

$$f^{\hat{l}in}(x) = \sum_{i \in [n]} \Psi_i(x; X_1, \cdots, X_n) Y_i$$

which contains kernel methods, Fourier estimators, splines, Gaussian process and others.

### Theorem

Linear estimators do not attain the optimal rate for  $\mathcal{F}_{M,J,\alpha,\beta}$ . Hence, there exist  $f^* \in \mathcal{F}_{M,J,\alpha,\beta}$  such that  $\hat{f}$  and any  $\hat{f}^{lin}$ , for large n we have

$$\mathbb{E}_{f^*} \left[ \| \hat{f}^L - f^* \|_{L^2(P_X)}^2 \right] < \mathbb{E}_{f^*} \left[ \| \hat{f}^{lin} - f^* \|_{L^2(P_X)}^2 \right]$$

## Intuition behind optimality of DNN with ReLU

One notable intuition on why DNNs are optimal: DNNs can approximate non-smooth functions with a small number of parameters, due to activation functions and multi-layer structures.

$$\mathbf{1}_{\{x \ge 0\}} \approx \eta(ax) - \eta(ax - 1) = \begin{cases} 1 & x \ge \frac{1}{a} \\ ax & 0 < x < \frac{1}{a} \\ 0 & x \le 0 \end{cases}$$

with sufficiently large a > 0.

## **Experiments**

$$f^*(x) = \mathbf{1}_{R_1}(x)(0.2 + x_1^2 + 0.1x_2) + \mathbf{1}_{R_2}(x)(0.7 + 0.01|4x_1 + 10x_2 - 9|^{1.5})$$
 with  $R_1 = \{(x_1, x_2) \in I^2 : x_2 \geq -0.6x_1 + 0.75\}$  and  $R_2 = I^2 \setminus R_1$ . And the DNN is of  $D_1 = 2, D_l = 3$  for  $l \in \{2, 3, 4\}$  and  $D_5 = 1$  with ReLU activation.



FIGURE 2. A plot for  $f^*(x_1, x_2)$  with  $(x_1, x_2) \in I^2$ .



FIGURE 3. A plot for the estimator  $\hat{f}^L$ .

# Comparison of errors



# Summary

- Both papers contribute to my project either practically or theoretically.
- A rough guidance on architecture of DNN is provided.
- That DNNs learn non-smooth functions effectively provides me with theoretical backup to extend the setting in my model where control variables can be a collection of piecewise continuous and discrete functions.

# The End