import pandas as pd
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.linear_model import LogisticRegression

%matplotlib inline

train = pd.read_csv('/content/titanic.csv')

train.head()

\Rightarrow		PassengerId	Survived	Pclass	Name	Sex
	0	1	0	3	Braund, Mr. Owen Harris	male
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female
	2	3	1	3	Heikkinen, Miss. Laina	female
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female
	4	5	0	3	Allen, Mr. William Henry	male

sns.heatmap(train.isnull(),yticklabels=False)

g	gender_submission.csv tita ••							
38	1 to 10 of Name	891 ent	ries [Filter SibSp	□ Pa			
	Braund, Mr. Owen Harris	male	22	1	0			
	Cumings, Mrs. John Bradley (Florence Briggs Thayer)	female	38	1	0			
	Heikkinen, Miss. Laina	female	26	0	0			
	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0			
	Allen, Mr. William Henry	male	35	0	0			
	Moran, Mr. James	male		0	0			
	McCarthy, Mr. Timothy J	male	54	0	0			
	Palsson, Master. Gosta Leonard	male	2	3	1			
	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27	0	2			
	Nasser, Mrs. Nicholas (Adele Achem)	female	14	1	0			
4	10	<u> </u>			•			
Show 10 ✓ per page 1 2 10 80 90								

sns.countplot(x='Survived', data=train)

sns.countplot(x='Survived', data=train, hue='Sex')

sns.countplot(x='Survived', data=train, hue='Pclass')

<Axes: xlabel='Survived', ylabel='count'>

sns.distplot(train.Age.dropna(), kde=False, bins=40)

<ipython-input-42-4da8785f8ce8>:1: UserWarning:

`distplot` is a deprecated function and will be $r\varepsilon$

Please adapt your code to use either `displot` (a similar flexibility) or `histplot` (an axes-level

For a guide to updating your code to use the new 1 https://gist.github.com/mwaskom/de44147ed2974457ac

sns.distplot(train.Age.dropna(), kde=False, bins
<Axes: xlabel='Age'>

sns.distplot(train.Fare.dropna(), kde=False, bins=45)

<ipython-input-44-9333a98ee152>:1: UserWarning:

`distplot` is a deprecated function and will be $r\varepsilon$

Please adapt your code to use either `displot` (a similar flexibility) or `histplot` (an axes-level

For a guide to updating your code to use the new 1 sns.countplot(train.SibSp)

plt.figure(figsize=(11,8))
sns.boxplot(x='Pclass', y='Age', data=train)

```
<Axes: xlabel='Pclass', ylabel='Age'>
       70
       60
       50
     ₽ 40
       30
def calc_age(col):
    Age = col[0]
    Pass_class = col[1]
    if pd.isnull(Age):
        if Pass_class == 1:
            return 37
        elif Pass_class == 2:
            return 29
        else:
            return 24
    else:
        return Age
train['Age'] = train[['Age','Pclass']].apply(calc_age,
# Missing age values have been filled
sns.heatmap(train.isnull(),yticklabels=False)
```


Handling catagorical features
binarysex = pd.get_dummies(train['Sex'],drop_first=Truembarked = pd.get_dummies(train['Embarked'], drop_first=Truembarked = pd.get_dummies(train['Pclass'],drop_first=Truembarked'],drop_first=Truembarked',drop_

train.head()

	male	Q	S	2	3	Survived	Age	SibSp	Parch
0	1	0	1	0	1	0	22.0	1	0

Extracting the training set and test set from the da
X = train.drop('Survived', axis = 1)

y = train['Survived']

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,

Cleaning and preparing the new Xdata
NewX = pd.read_csv('/content/titanic.csv')

sns.heatmap(NewX.isnull(),yticklabels=False)

NewX['Age'] = NewX[['Age','Pclass']].apply(calc_age, a
NewX.drop('Cabin', axis=1, inplace=True)
NewX.dropna(inplace=True)

sns.heatmap(NewX.isnull(),yticklabels=False)


```
# Convert feature names to strings for both training a
X_train.columns = X_train.columns.astype(str)
X_test.columns = X_test.columns.astype(str)

# Fitting and applying the logistic regression model w
logmodel = LogisticRegression(max_iter=1000)
logmodel.fit(X_train, y_train)
y_pred = logmodel.predict(X_test)
accuracy = logmodel.score(X_test, y_test)

print("Accuracy:", accuracy)
```

Accuracy: 0.7940074906367042

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))
from sklearn.metrics import confusion_matrix
confusion_matrix(y_test,y_pred)

	precision	recall	f1-score	supp
0	0.81	0.86	0.84	
1	0.77	0.69	0.72	
accuracy			0.79	
macro avg	0.79	0.77	0.78	
weighted avg	0.79	0.79	0.79	

•

```
# Tuning the C value
# Fitting and applying the logistic regression model
import numpy as np
max_score=[]
best_c = []
inter = [0.1,0.3,0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9,2.1,2
for num in inter:
    logmodel = LogisticRegression(C = num)
    logmodel.fit(X_train,y_train)
    score = logmodel.score(X_test,y_test)
    max_score.append(score)
    best_c.append(num)
```

/usr/local/lib/python3.10/dist-packages/sklearn STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or

```
https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
    https://scikit-learn.org/stable/modules/lin
    options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
```

Increase the number of iterations (max_iter) or
 https://scikit-learn.org/stable/modules/pre
Please also refer to the documentation for alte
 https://scikit-learn.org/stable/modules/lin
 options={"iprint": iprint, "gtol": tol, "maxi
/usr/local/lib/python3.10/dist-packages/sklearn

```
print(max_score)
print(best_c)
```

[0.7902621722846442, 0.7940074906367042, 0.7940074] [0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9]

plt.scatter(best_c,max_score)

<matplotlib.collections.PathCollection at
0x7800c52663e0>


```
# using the best C we found in our findings
logmodel = LogisticRegression(C = 0.1)
logmodel.fit(X,y)
y_pred2 = logmodel.predict(NewX)
print(y_pred2)
```

/usr/local/lib/python3.10/dist-packages/sklearn/li STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.

Increase the number of iterations (max_iter) or so
 https://scikit-learn.org/stable/modules/prepro
Please also refer to the documentation for alternate https://scikit-learn.org/stable/modules/linear
 options={"iprint": iprint, "gtol": tol, "maxiter


```
# Assuming 'Survived' is the target variable to predic
# If it's not, adjust accordingly
# Convert feature names to strings for both training a
X.columns = X.columns.astype(str)
NewX.columns = NewX.columns.astype(str)
# Fitting the logistic regression model on the trainir
logmodel = LogisticRegression(C=0.1)
logmodel.fit(X, y)
# Remove the 'Survived' column from NewX if it's prese
if 'Survived' in NewX.columns:
    NewX.drop('Survived', axis=1, inplace=True)
# Predicting the new data with probabilities
y_probabilities = logmodel.predict_proba(NewX)
# Setting a threshold of 0.5 to convert probabilities
+hnachald - A E
# Counting the number of 0s and 1s
num_survived = sum(y_pred_binary)
num_not_survived = len(y_pred_binary) - num_survived
print("Number of survived:", num_survived)
print("Number of not survived:", num_not_survived)
     Number of survived: 288
     Number of not survived: 601
     /usr/local/lib/python3.10/dist-packages/sklearn/li
     STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
     Increase the number of iterations (max_iter) or so
```

https://scikit-learn.org/stable/modules/prepro
Please also refer to the documentation for altern: