

Zeichensätze und Rechteverwaltung

Tutorium 12

Betriebssysteme SS2024

Inhaltsverzeichnis

- Zeichensätze
- 2 Rechteverwaltung
- 3 UNIX/Linux Rechteverwaltung
- 4 Windows Rechteverwaltung

ASCII

- Wurde 1963 in den USA eingeführt
- 7-Bit Code (erstes Bit ist immer 0)
- Unterstützt keine weiteren Sprachen neben Englisch
- Viele wichtige Zeichen (z.B. deutsche Umlaute) fehlen

ISO 8859

- Verschiedene Erweiterungen des ASCII Codes
- Aktuell existieren 15 normierte Zeichensätze
- 8-Bit Code, wobei die Positionen
 - 00₁₆ bis 7F₁₆ ASCII entsprechen
 - 80₁₆ bis 9F₁₆ nicht definiert sind
 - A0₁₆ bis FF₁₆ regionale Sonderzeichen enthalten

Unicode

- Wird vom Unicode-Konsortium verwaltet
- Die aktuelle Version 15.1 definiert 149.878 Zeichen
- Wird kontinuierlich um neue Zeichen erweitert
- Es existieren verschiedene Kodierungsformate:
 - UTF-8: Kodierung in ein bis vier 1 Byte großen Blöcken
 - UTF-16: Kodierung in ein oder zwei 2 Byte große Blöcken
 - UTF-32: Keine Kodierung notwendig

UTF-8 Kodierung

- Darstellung von Unicode mit variabler Länge
- Die Kodierung erfolgt mit Hilfe folgender Tabelle

Unicode	UTF-8
U+000000 - U+00007F	0xxxxxx
U+000080 - U+0007FF	110xxxxx 10xxxxxx
U+000800 - U+00FFFF	1110xxxx 10xxxxxx 10xxxxxx
U+010000 - U+10FFFF	11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240: Binärdarstellung von 000240₁₆:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

Binärdarstellung von 000240_{16} : $000240_{16} = 00000000 00000010 01000000_2$

Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

```
Binärdarstellung von 000240_{16}: 000240_{16} = 00000000 \ 00000010 \ 01000000_2 Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF: 110xxxxx \ 10xxxxxx \rightarrow 11001001 \ 10000000
```

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

```
Binärdarstellung von 000240<sub>16</sub>: 000240_{16} = 00000000 \ 00000010 \ 01000000_2 Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF: 110xxxxx \ 10xxxxxx \rightarrow 11001001 \ 10000000
```

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000876:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

```
Binärdarstellung von 000240<sub>16</sub>: 000240_{16} = 00000000 \ 00000010 \ 01000000_2 Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF: 110xxxxx \ 10xxxxxx \rightarrow 11001001 \ 10000000
```

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000876: Binärdarstellung von 000876₁6:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

```
Binärdarstellung von 000240_{16}: 000240_{16} = 00000000 00000010 01000000_2 Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF: 110xxxxx 10xxxxxx \rightarrow 11001001 10000000
```

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000876:

```
Binärdarstellung von 000876<sub>16</sub>: 000876<sub>16</sub> = 00000000 00001000 01110110<sub>2</sub>
```

Einfügen in 3-Byte breite Kodierung da 000800 < 000876 < 00FFFF:

■ Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000240:

```
Binärdarstellung von 000240_{16}: 000240_{16} = 00000000 \ 00000010 \ 01000000_2 Einfügen in 2-Byte breite Kodierung da 000080 < 000240 < 0007FF: 110xxxxx \ 10xxxxxx \rightarrow 11001001 \ 10000000
```

Bestimmen Sie die UTF-8 Darstellung für den Unicode U+000876:
 Binärdarstellung von 000876₁₆:
 000876₁₆ = 00000000 00001000 01110110₂
 Einfügen in 3-Byte breite Kodierung da 000800 < 000876 < 00FFFF:

Einfügen in 3-Byte breite Kodierung da 000800 < 000876 < 00FFFF: $1110xxxx 10xxxxxx 10xxxxxx \rightarrow 11100000 10100001 10110110$

Berechtigungen

- Ein Betriebssystem verwaltet Zugriffsberechtigungen für Ressourcen
- Einschränkung der Berechtigungen:
 - Nicht jeder Nutzer sollte alles tun dürfen
 - Nicht jeder Prozess sollte alles tun dürfen
 - Stattdessen können Rechte vergeben, geändert oder entzogen werden
- Zugriffsmöglichkeiten
 - datenzentriert : lesender und schreibender Zugriff
 - operationszentriert : ausführen von beliebigen Operationen

- Bei Betriebssystemen gibt es drei Akteuere bei der Rechteverwaltung
 - Subjekte z.B. Benutzer
 - Objekte z.B. Dateien, Verzeichnisse, ...
 - Operationen z.B. Schreibzugriffe, Lesezugriffe, ...

- Bei Betriebssystemen gibt es drei Akteuere bei der Rechteverwaltung
 - Subjekte z.B. Benutzer
 - Objekte z.B. Dateien, Verzeichnisse, ...
- Operationen z.B. Schreibzugriffe, Lesezugriffe, ...
- Rechte können für jeden der Akteure definiert werden
 - Für jedes Subjekt kann festgelegt werden, welche Operationen auf welchen Objekten ausgeführt werden können.
 - Implementierung typischerweise mittels Capabilities

- Bei Betriebssystemen gibt es drei Akteuere bei der Rechteverwaltung
 - Subjekte z.B. Benutzer
 - Objekte z.B. Dateien, Verzeichnisse, ...
- Operationen z.B. Schreibzugriffe, Lesezugriffe, ...
- Rechte können für jeden der Akteure definiert werden
 - Für jedes Subjekt kann festgelegt werden, welche Operationen auf welchen Objekten ausgeführt werden können.
 - Implementierung typischerweise mittels Capabilities
 - Für jedes *Objekt* kann festgelegt werden, welche Operationen auf welchen Objekten ausgeführt werden können.
 - Implementierung typischerweise mittels Access Control Lists

- Bei Betriebssystemen gibt es drei Akteuere bei der Rechteverwaltung
 - Subjekte z.B. Benutzer
 - Objekte z.B. Dateien, Verzeichnisse, ...
 - Operationen z.B. Schreibzugriffe, Lesezugriffe, ...
- Rechte können für jeden der Akteure definiert werden
 - Für jedes Subjekt kann festgelegt werden, welche Operationen auf welchen Objekten ausgeführt werden können.
 - Implementierung typischerweise mittels Capabilities
 - Für jedes *Objekt* kann festgelegt werden, welche Operationen auf welchen Objekten ausgeführt werden können.
 - Implementierung typischerweise mittels Access Control Lists
 - Für jede *Operation* kann festgelegt werden, welche Subjekte diese auf welchen Objekten ausführen können.
 - Sehr selten implementiert

Benutzerverwaltung

- Benutzer werden durch einen Benutzernamen identifiziert
- Die Identität muss durch ein Authentisierungsverfahren nachgewiesen werden
- Die Anmeldedaten werden in einer geschützten Datenbank gespeichert
 - Die Datenbank muss vor Manipulation und unerwünschtem Auslesen geschützt sein
 - Passwortänderungen müssen trotzdem möglich sein
 - Die Datenbank muss für den Anmeldeprozess lesbar sein

Benutzerverwaltung

- Benutzer werden durch einen Benutzernamen identifiziert
- Die Identität muss durch ein Authentisierungsverfahren nachgewiesen werden
- Die Anmeldedaten werden in einer geschützten Datenbank gespeichert
 - Die Datenbank muss vor Manipulation und unerwünschtem Auslesen geschützt sein
 - Passwortänderungen müssen trotzdem möglich sein
 - Die Datenbank muss für den Anmeldeprozess lesbar sein
- Beispiel: UNIX/Linux Betriebssysteme
 - Speicherung von Nutzer Informationen in der Datei /etc/passwd
 - → öffentlich lesbar
 - Speicherung von Passwort Hashwerten in der Datei /etc/shadow
 - → nur vom Benutzer root oder der Benutzern in der Gruppe sudo lesbar

UNIX/Linux Rechteverwaltung

- Berechtigungen sind an Inodes geknüpft
- Inodes haben einen Eigentümer der durch eine User-ID identifiziert wird
- Inodes gehören genau einer Gruppe an die durch die Group-ID identifiziert wird

UNIX/Linux Rechteverwaltung

- Berechtigungen sind an Inodes geknüpft
- Inodes haben einen Eigentümer der durch eine User-ID identifiziert wird
- Inodes gehören genau einer Gruppe an die durch die Group-ID identifiziert wird
- Pro Inode werden jeweils drei Berechtigungen für Eigentümer User, die Gruppe Group, und alle anderen vergeben Others
- Bei Dateien gibt es hierbei das Leserecht (r), Schreibrecht (w), und Ausführungsrecht (x)
- Bei Verzeichnissen gibt es ebenfalls das Leserecht (r) und Schreibrecht (w), sowie das Durchgangsrecht (x)
- Die Berechtigungen k\u00f6nnen nur vom Eigent\u00fcmer, vom Benutzer root oder Nutzern der Gruppe sudo ge\u00e4ndert werden

Zusätzliche Berechtigungen an Inodes

- User S-Bit
 - Bei *ausführbaren Dateien* findet die Ausführung mit den Berechtigungen des Dateieigentümers statt und nicht mit den Berechtigungen des Nutzers

Zusätzliche Berechtigungen an Inodes

User S-Bit

Zeichensätze und Rechteverwaltung | Betriebssysteme SS2024 |

- Bei ausführbaren Dateien findet die Ausführung mit den Berechtigungen des Dateieigentümers statt und nicht mit den Berechtigungen des Nutzers
- Group S-Bit
 - Bei ausführbaren Dateien findet die Ausführung mit den Gruppenberechtigungen der Datei statt und nicht mit den Berechtigungen der Gruppe des Nutzers
 - Bei Verzeichnissen erhalten neuen Einträge die selbe Gruppenzuordnung wie das Verzeichnis

Zusätzliche Berechtigungen an Inodes

- User S-Bit
 - Bei ausführbaren Dateien findet die Ausführung mit den Berechtigungen des Dateieigentümers statt und nicht mit den Berechtigungen des Nutzers
- Group S-Bit
 - Bei ausführbaren Dateien findet die Ausführung mit den Gruppenberechtigungen der Datei statt und nicht mit den Berechtigungen der Gruppe des Nutzers
 - Bei Verzeichnissen erhalten neuen Einträge die selbe Gruppenzuordnung wie das Verzeichnis
- Sticky Bit
 - Bei Verzeichnissen kann ein Nutzer trotz Schreibrecht nur eigene Einträge löschen
 - Bei ausführbaren Dateien werden Speicherseiten nicht ausgelagert (bei modernen Systemen nicht mehr unterstützt)

Access Control Lists

- Mit Hilfe von POSIX-ACLs k\u00f6nnen zus\u00e4tzliche positive Rechte f\u00fcr Benutzer und Gruppen f\u00fcr jeden Inode gespeichert werden
- Eine vorhandene ACL ist an einem x hinter den klassischen Rechten erkennbar
- Beispiel:

```
$ ls -l
drw-rw-r--+ alice users 427 Jul 3 14:37 file.txt
```

Access Control Lists

- Mit Hilfe von POSIX-ACLs k\u00f6nnen zus\u00e4tzliche positive Rechte f\u00fcr Benutzer und Gruppen f\u00fcr jeden Inode gespeichert werden
- Eine vorhandene ACL ist an einem x hinter den klassischen Rechten erkennbar
- Beispiel:

```
$ ls -l drw-rw-r--+ alice users 427 Jul 3 14:37 file.txt
```

- Mit dem Befehl setfacl können Einträge in der ACL gesetzt/gelöscht werden
- Mit dem Befehl getfacl können Einträge in der ACL angezeigt werden
- Mit Hilfe von Default-ACLs k\u00f6nnen ACLs an angelegte Dateien und Verzeichnisse vererbt werden

Berechtigungen unter Windows

- Bei modernen Windows Systemen werden Security Descriptors f\u00fcr die Speicherung von ACLs verwendet, welche ein NTFS Dateisystem erforden
- Bei FAT Dateisystemen ist lediglich ein einfacher Schreibschutz implementiert
- ACLs sind hier ebenfalls für beliebige Benutzer und Gruppen definierbar

Berechtigungen unter Windows

- Bei modernen Windows Systemen werden Security Descriptors f\u00fcr die Speicherung von ACLs verwendet, welche ein NTFS Dateisystem erforden
- Bei FAT Dateisystemen ist lediglich ein einfacher Schreibschutz implementiert
- ACLs sind hier ebenfalls für beliebige Benutzer und Gruppen definierbar
- Erlauben feingranularere Berechtigungsstufen im Vergleich zu UNIX/Linux:
 - No Access Kein Zugriff
 - List Auflistung von Dateien in Verzeichnissen
 - Read Lesen von Dateien, schließt List mit ein
 - Add Anlegen von Dateien, schließt List mit ein
 - Read & Add Kombination aus Read und Add
 - Change Änderung/Löschen von Dateien, schließt Read & Add mit ein
 - Full Änderung des Eigentümers/Zugriffsrechten, schließt Change mit ein