Analysis I, Exercise 1

David Schmitz

Task 1

Let $f: A \to B$ be a map, and let $X, Y \subseteq B$. Prove that

- 1. $f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y);$
- 2. $f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$;
- 3. $f^{-1}(X) \setminus f^{-1}(Y) = f^{-1}(X \setminus Y)$.

Solution. We show that two sets P, Q are equal by showing $P \subseteq Q$ and $Q \subseteq P$.

1. Let $p \in f^{-1}(X \cup Y)$. Then $f(p) \in X \cup Y$, so $f(p) \in X$ or $f(p) \in Y$. In the first case, $p \in f^{-1}(X) \subseteq f^{-1}(X) \cup f^{-1}(Y)$. In the second case, $p \in f^{-1}(Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$. Thus in both cases, $p \in f^{-1}(X) \cup f^{-1}(Y)$. Since this holds for each $p \in f^{-1}(X \cup Y)$, this implies $f^{-1}(X \cup Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$.

Now let $p \in f^{-1}(X) \cup f^{-1}(Y)$, so $p \in f^{-1}(X)$ or $f^{-1}(Y)$. In the first case, $f(p) \in X \subseteq X \cup Y$. In the second case, $f(p) \in Y \subseteq X \cup Y$. Thus, $f(p) \in X \cup Y \implies p \in f^{-1}(X \cup Y)$ for each $p \in f^{-1}(X) \cup f^{-1}(Y)$. Hence, $f^{-1}(X) \cup f^{-1}(Y) \subseteq f^{-1}(X) \cup f^{-1}(Y)$.

Since both inclusions hold, the two sets are equal.

2. Let $p \in f^{-1}(X \cap Y)$, so $f(p) \in X \cap Y$. Thus, both $f(p) \in X$ and $f(p) \in Y$ hold. Hence, $p \in f^{-1}(X)$ and $p \in f^{-1}(Y)$, so $p \in f^{-1}(X) \cap f^{-1}(Y)$. Since this holds for each $p \in f^{-1}(X \cap Y)$, it follows that $f^{-1}(X \cap Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$.

Now let $p \in f^{-1}(X) \cap f^{-1}(Y)$. Then $p \in f^{-1}(X)$ and $p \in f^{-1}(Y)$, so $f(p) \in X$ and $f(p) \in Y$. Finally, this yields $f(p) \in X \cap Y$, so $p \in f^{-1}(X \cap Y)$. Since this holds for each $p \in f^{-1}(X) \cap f^{-1}(Y)$, it follows that $f^{-1}(X) \cap f^{-1}(Y) \subseteq f^{-1}(X) \cap f^{-1}(Y)$.

Since both inclusions hold, the two sets are equal.

3. Let $p \in f^{-1}(X) \setminus f^{-1}(Y)$. Then $p \in f^{-1}(X)$ and $p \notin f^{-1}(Y)$, so $f(p) \in X$ and $f(p) \notin Y$. Thus, $f(p) \in X \setminus Y$, so $p \in f^{-1}(X \setminus Y)$. Since this holds for each $p \in f^{-1}(X) \setminus f^{-1}(Y)$, we have $f^{-1}(X) \setminus f^{-1}(Y) \subseteq f^{-1}(X \setminus Y)$.

Now let $p \in f^{-1}(X \setminus Y)$. Then $f(p) \in X \setminus Y$, so $f(p) \in X$ and $f(p) \notin Y$. Thus, $p \in f^{-1}(X)$ and $p \notin f^{-1}(Y)$. Hence, $p \in f^{-1}(X) \setminus f^{-1}(Y)$. Since this holds for each $p \in f^{-1}(X \setminus Y)$, it follows that $f^{-1}(X \setminus Y) \subseteq f^{-1}(X) \setminus f^{-1}(Y)$.

Again both inclusions hold, so the two sets are equal.

Task 2

Let X, Y and Z sets and $f: X \to Y$ and $g: Y \to Z$ bijective mappings. Prove that $g \circ f: X \to Z$ is bijective and its inverse is given by

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Solution. Let $a, b \in X$ and assume g(f(a)) = g(f(b)). Since g is bijective (and thus in particular injective), this implies f(a) = f(b). Since f is bijective, this implies a = b. Thus, $g \circ f$ is injective.

Let now $a \in Z$ be arbitrary. Since g is surjective, there is some $b \in Y$ with g(b) = a. Then since f is surjective, there is some $c \in X$ with f(c) = b. Observe that g(f(c)) = g(b) = a. Since $a \in Z$ was arbitrary, $g \circ f$ is surjective.

All in all, we deduce $g \circ f$ is bijective. For the second part, note that f^{-1}, g^{-1} are well-defined since f, g are bijective. Observe that

$$(f^{-1} \circ g^{-1}) \circ (g \circ f)(a) = f^{-1} \circ g^{-1} \circ g \circ f(a)$$
$$= f^{-1}(g^{-1}(g(f(a)))) = f^{-1}(f(a)) = a,$$

so $f^{-1} \circ g^{-1}$ is the left inverse of $g \circ f$. Similarly,

$$(g \circ f) \circ (f^{-1} \circ g^{-1})(a) = g \circ f \circ f^{-1} \circ g^{-1}(a)$$
$$= g(f(f^{-1}(g^{-1}(a)))) = g(g^{-1}(a)) = a.$$

Task 3

Consider rational numbers as granted for the moment. Determine all $x \in \mathbb{R}$ such that the following inequalities hold

- (a) $\left| \frac{x+4}{x-2} \right| < x;$
- (b) $|x-a|+|x-b| \le b-a$ for given $a \le b$.

Solution.

- (a) Note that the left side is not defined for x = 2, so $x \neq 2$. Furthermore, the left side is nonnegative, so $x \geq 0$.
 - Case $0 \le x < 2$: Then x 2 < 0 < x + 4, so $\frac{x+4}{x-2} < 0$ and the inequality becomes $-\frac{x+4}{x-2} < x$. Multiplying by x 2 < 0, this becomes $-x 4 > x(x-2) \iff 0 > x^2 x + 4 = \left(x \frac{1}{2}\right)^2 + \frac{15}{4}$. Since squares are non-negative, this is false, so we get no solutions in this case.
 - Case x > 2: Then x + 4, x 2 > 0 and $\frac{x+4}{x-2}$ is positive, so the inequality becomes $\frac{x+4}{x-2} < x$. Multiplying by x 2 > 0, this is equivalent to $x + 4 < x(x-2) \iff 0 < x^2 3x 4 = (x-4)(x+1)$. Since x + 1 > 0, this holds if and only if x > 4.

Hence, the solutions are all $x \in (4, \infty)$.

- (b) Note that x must lie in one of the intervals $(-\infty, a)$, [a, b], (b, ∞) .
 - Case x < a: Then |x a| = a x and |x b| = b x, so the inequality becomes

$$a + b - 2x \le b - a$$

$$\iff 2a \le 2x$$

$$\iff a \le x.$$

Hence, there are no solutions in this case (the last inequality contradicts x < a).

• Case $a \le x \le b$: Then |x-a| = x-a and |x-b| = b-x, so the inequality becomes $x-a+b-x \le b-a,$

which is always true.

• Case b < x: Then |x - a| = x - a and |x - b| = x - b, so the inequality becomes

$$\begin{aligned} 2x - a - b &\leq b - a \\ \iff 2x &\leq 2b \\ \iff x &\leq b. \end{aligned}$$

Hence, there are no solutions in this case.

Finally, we deduce that x satisfies the inequality if and only if $x \in [a, b]$.