Включение действий в синтаксис грамматик

Романенко Владимир Васильевич, к.т.н., доцент каф. АСУ ТУСУР

Включение действий в LL(1)-грамматику

Размеченное правило LL(1)-грамматики при включении (внедрении) действий имеет вид:

$$B_i \rightarrow \langle A_i \rangle X_j \langle A_j \rangle X_{j+1} \langle A_{j+1} \rangle \dots X_{j+n-1} \langle A_{j+n-1} \rangle$$

ИЛИ

$$B_i \langle A_i \rangle \to X_j \langle A_j \rangle X_{j+1} \langle A_{j+1} \rangle \dots X_{j+n-1} \langle A_{j+n-1} \rangle$$

- Действие $\langle A_i \rangle$ выполняется при переходе к *i*-й строке таблицы разбора;
- Если $X_k \in \Sigma, k = j, j+1, ..., j+n-1$, то действие $\langle A_k \rangle$ выполняется при переходе к k-й строке, после ассерt;

Включение действий в LL(1)-грамматику

3

Размеченное правило LL(1)-грамматики при включении (внедрении) действий имеет вид:

$$B_i \rightarrow \langle A_i \rangle X_j \langle A_j \rangle X_{j+1} \langle A_{j+1} \rangle \dots X_{j+n-1} \langle A_{j+n-1} \rangle$$

ИЛИ

$$B_i \langle A_i \rangle \to X_j \langle A_j \rangle X_{j+1} \langle A_{j+1} \rangle \dots X_{j+n-1} \langle A_{j+n-1} \rangle$$

- Если $X_k = e$, k = j, n = 1, то действие $\langle A_k \rangle$ выполняется при переходе к k-й строке, перед return;
- Если $X_k \in N$, k = j, j+1, ..., j+n-2, то действие $\langle A_k \rangle$ выполняется после возвращения к k-й строке, т.е. после return, когда на вершине стека находится k.

Включение действий в LL(1)-грамматику

ID	X	Terms	Jump	Accept	Stack	Return	Error	Action
•••			•••	•••	•••		•••	
<i>i</i> –1	B_{i-1} $ o$	$T(B_{i-1})$???	false	false	false	false	
i	$B_i \rightarrow$	$T(B_i)$	j	false	false	false	false	$\langle A_i angle$
<i>i</i> +1	$B_{i+1} \rightarrow$	$T(B_{i+1})$???	false	false	false	???	
•••	•••		•••	•••	•••	•••	•••	•••
j	$X_j \in N$	$T(X_j)$???	false	true	false	true	$\langle A_j angle$
<i>j</i> +1	$X_{j+1} \in \Sigma$	$\{X_{j+1}\}$	<i>j</i> +2/0	true	false	???	true	$\langle A_{j+1} \rangle$
	•••	•••	•••	•••	•••	•••	•••	•••
<i>j</i> +n−1	e	$F(B_i)$	0	false	false	true	true	$\langle A_{j+n-1} \rangle$
•••	•••	•••	•••	•••	•••	•••	•••	•••

5

Пример 1. Язык, описывающий десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Правила LL(1)-грамматики:

$$\begin{aligned} & \text{BYTE}_1 \rightarrow \text{O}_3 \\ & \text{BYTE}_2 \rightarrow \text{1--9}_4 \left< A_1 \right> \text{MORE}_5 \\ & \text{MORE}_6 \rightarrow \text{O--9}_8 \left< A_2 \right> \text{MORE}_9 \\ & \text{MORE}_7 \rightarrow \textcolor{red}{e}_{10} \end{aligned}$$

6

Получим таблицу разбора:

ID	X	Terms	Jump	Accept	Stack	Return	Error	Action
1	$\mathrm{BYTE} \to$	{o}	3				false	
2	$\mathrm{BYTE} \to$	{1-9}	4					
3	0	{o}	0	true		true		
4	1-9	{1-9}	5	true				$\langle A_{\scriptscriptstyle 1} angle$
5	MORE	{o - 9 ⊥}	6					
6	$\text{MORE} \rightarrow$	{o - 9}	8				false	
7	$\text{MORE} \rightarrow$	{⊥}	10					
8	0-9	{o - 9}	9	true				$\langle A_2 \rangle$
9	MORE	{o - 9 ⊥}	6					
10	e	{⊥}	0			true		

7

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LL(1)-грамматики:

IDLIST → SPC ID SPC MOREID SPC

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow SPC$, SPC ID SPC MOREID SPC | e

8

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LL(1)-грамматики:

IDLIST → SPC ID MOREID SPC

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow SPC$, SPC ID MOREID | e

9

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LL(1)-грамматики:

 $IDLIST \rightarrow SPC ID SPC MOREID$

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow$, SPC ID SPC MOREID | e

10

Пример 2. Язык, описывающий список уникальных идентификаторов.

Или:

 $IDLIST \rightarrow SPC ID SPC MOREID$

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow , IDLIST \mid e$

11

Пример 2. Язык, описывающий список уникальных идентификаторов.

Включение действий:

 $IDLIST \rightarrow SPC ID \langle A_3 \rangle SPC MOREID$

 $ID \to a-z \langle A_1 \rangle TAIL \rangle \rangle$

 $TAIL \rightarrow a-z \langle A_2 \rangle TAIL \mid o-9 \langle A_2 \rangle TAIL \mid e \langle A_3 \rangle$

 $MOREID \rightarrow$, $IDLIST \mid e$

12

Пример 2. Язык, описывающий список уникальных идентификаторов.

Или, если делать буфер пустым в начале разбора и $\langle A_3 \rangle$:

 $IDLIST \rightarrow SPC ID \langle A_3 \rangle SPC MOREID$

$$ID \to a-z \langle A_1 \rangle TAIL \rangle$$

 $TAIL \rightarrow a-z \langle A_1 \rangle TAIL \mid o-9 \langle A_1 \rangle TAIL \mid e \langle A_3 \rangle$

 $MOREID \rightarrow$, IDLIST | e

 $SPC \rightarrow \sqcup SPC \mid e$

Примечание: если изменить правило

$$TAIL \rightarrow ID \mid 0-9 TAIL \mid e$$
,

то второй вариант в любом случае был бы недопустим.

Разметка грамматики:

$$\begin{split} &\operatorname{IDLIST_1} \to \operatorname{SPC_2} \operatorname{ID_3} \left\langle \mathbf{A_3} \right\rangle \operatorname{SPC_4} \operatorname{MOREID_5} \\ &\operatorname{ID_6} \to \operatorname{a-z_7} \left\langle \mathbf{A_1} \right\rangle \operatorname{TAIL_8} \\ &\operatorname{TAIL_9} \to \operatorname{a-z_{12}} \left\langle \mathbf{A_{1/2}} \right\rangle \operatorname{TAIL_{13}} \\ &\operatorname{TAIL_{10}} \to \operatorname{0-9_{14}} \left\langle \mathbf{A_{1/2}} \right\rangle \operatorname{TAIL_{15}} \\ &\operatorname{TAIL_{11}} \to \boldsymbol{e_{16}} \left\langle \mathbf{A_3} \right\rangle \\ &\operatorname{MOREID_{17}} \to ,_{19} \operatorname{IDLIST_{20}} \\ &\operatorname{MOREID_{18}} \to \boldsymbol{e_{21}} \\ &\operatorname{SPC_{22}} \to \sqcup_{24} \operatorname{SPC_{25}} \\ &\operatorname{SPC_{23}} \to \boldsymbol{e_{26}} \end{split}$$

14

ID	X	Terms	Jump	Accept	Stack	Return	Error	Action
1	$IDLIST \rightarrow$	{ ⊔ a-z}	2					
2	SPC	{ ⊔ a-z}	22		true			
3	ID	{a-z}	6		true			$\langle A_3 \rangle$
4		{⊔ ,⊥}	22		true			
5	MOREID	$\{, \perp\}$	17					
6		{a-z}	7					
7		{a-z}	8	true				$\langle { m A}_{ m 1} angle$
8		$\{a-z \ O-9 \ \sqcup \ , \bot\}$	9					
9		{a-z}	12				false	
		{o - 9}	14				false	
11		{⊔ ,⊥}	16					
12	a-z	{a-z}	13	true				$\langle \mathrm{A}_{\mathrm{1/2}} angle$
13		{a-z o-9 ⊔ , ⊥}	9					
14		{0-9}	15	true				$\langle { m A}_{1/2} angle$
		{a-z o-9 ⊔ , ⊥}	9					
16		{⊔ ,⊥}	0			true		$\langle { m A}_3 angle$
	$MOREID \rightarrow$	{,}	19				false	
	$MOREID \rightarrow$	{⊥}	21					
	,	{,}	20	true				
20		{ ⊔ a-z}	1					
	e	{⊥}	0			true		
	$SPC \rightarrow$	{ u }	24				C 1	
23		{a-z, ⊥}	26				false	
24		{⊔}	25	true				
25		{ ⊔ a-z , ⊥}	22					
26	e	{a-z , ⊥}	0			true		

15

Пример 3. Язык, описывающий математические выражения. Необходимо построить ОПЗ.

Правила LL(1)-грамматики:

$$MATH_1 \rightarrow o-9_2 \langle A_1 \rangle NUM_3 OPER_4$$

$$OPER_5 \rightarrow +_8 \langle A_2 \rangle MATH_9$$

$$OPER_6 \rightarrow \times_{10} \langle A_2 \rangle MATH_{11}$$

$$OPER_7 \rightarrow e_{12} \langle A_3 \rangle$$

$$NUM_{13} \rightarrow o-9_{15} \langle A_1 \rangle NUM_{16}$$

$$\mathrm{NUM}_{14} \to \underline{e}_{17}$$

16

Пример 3. Язык, описывающий математические выражения. Необходимо построить ОПЗ.

Действия:

 $\langle A_1 \rangle$: POLSTR := POLSTR + a;

 $\langle A_2 \rangle$: Пока (M не пуст) и ПРИОР(M) \geq ПРИОР(a), $M \rightarrow$ POLSTR;

Затем $a \rightarrow M$;

 $\langle A_3 \rangle$: Пока (M не пуст), $M \to POLSTR$.

В начале разбора строка POLSTR и стек M пусты.

17

ID	X	Terms	Jump	Accept	Stack	Return	Error	Action
1	$MATH \rightarrow$	{0-9}	2					
2	0-9	{0-9}	3	true				$\langle A_{_1} \rangle$
3	NUM	{0-9 + * ⊥}	13		true			
4	OPER	{+ * ⊥}	5					
5	$OPER \rightarrow$	{+}	8				false	
6	$OPER \rightarrow$	{*}	10				false	
7	$OPER \rightarrow$	{⊥}	12					
8	+	{+}	9	true				$\langle {\rm A}_2 \rangle$
9	MATH	{0-9}	1					
10	×	{*}	11	true				$\langle A_2 \rangle$
11	MATH	{0-9}	1					
12	e	$\{ot\}$	0			true		$\langle A_3 \rangle$
13	$\text{NUM} \rightarrow$	{0-9}	15				false	
14	$\text{NUM} \rightarrow$	{+ * ⊥}	17					
15	0-9	{0-9}	16	true				$\langle A_{\scriptscriptstyle 1} \rangle$
16	NUM	{0-9 + * ⊥}	13					
17	е	{+ * ⊥}	O			true		

Включение действий в LR(1)-грамматику

18

Правило LR(1)-грамматики R_j при включении (внедрении) действий имеет вид:

$$B_{i} \to \left\langle A_{i} \right\rangle X_{j} \left\langle A_{j} \right\rangle X_{j+1} \left\langle A_{j+1} \right\rangle \dots X_{j+n-1} \left\langle A_{j+n-1} \right\rangle$$

ИЛИ

$$B_i \langle A_i \rangle \to X_j \langle A_j \rangle X_{j+1} \langle A_{j+1} \rangle \dots X_{j+n-1} \langle A_{j+n-1} \rangle$$

- Действие $\langle A_i \rangle$ выполняется при свертке правила R_j , т.е. когда в таблице разбора встречаем элемент R_j , или при окончании разбора (когда встречаем HALT).
- Действие $\langle A_k \rangle$, k = j, j+1, ..., j+n-1, выполняется при занесении элемента X_k в стек, т.е. когда в таблице разбора встречаем элемент S_l .

19

Пример 1. Язык, описывающий десятичные числа в диапазоне от 0 до 255, без ведущих нулей.

Правила LR(1)-грамматики:

o: BYTE'
$$\rightarrow$$
 (o) BYTE (1)

1: BYTE
$$\rightarrow_{(0)}$$
 O $_{(2)}$

2: BYTE
$$\rightarrow$$
 (0) 1-9 (3)

3: BYTE
$$\rightarrow$$
 (0) 1-9 $\langle A_1 \rangle$ (3) MORE (4)

4: MORE
$$\rightarrow$$
 (3,4,7) o $\langle A_2 \rangle$ (5)

5: MORE
$$\rightarrow_{(3,4,7)}$$
 1-9 $\langle A_2 \rangle_{(6)}$

6: MORE
$$\rightarrow$$
 (3,4,7) MORE (4,7) MORE (7)

Получим таблицу разбора:

	0	1-9	Τ	BYTE	MORE
S_{o}	S_2	$S_3\langle A_1\rangle$		S_1	
S_1			HALT		
S_2			R_1		
S_3	$\mathrm{S}_5\langle A_2 angle$	$\mathrm{S}_6\langle A_2\rangle$	R_2		S_4
S_4	$\mathrm{S}_5\langle A_2 angle$	$\mathrm{S}_6\langle A_2\rangle$	R_3		S_7
S_5	R_4	R_4	R_4		
S_6	R_5	R_5	R_5		
S_7	$\mathrm{S}_5\langle A_2 angle$	$\mathrm{S}_6\langle A_2\rangle$	R_6		S_7

21

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LL(1)-грамматики:

 $IDLIST \rightarrow SPC ID SPC MOREID$

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow$, IDLIST | e

(22)

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LR(1)-грамматики:

$$\label{eq:idlist} \begin{split} \text{IDLIST} \rightarrow \text{ID MOREID} \mid \text{SPC ID MOREID} \mid \text{ID SPC MOREID} \\ \mid \text{SPC ID SPC MOREID} \end{split}$$

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $MOREID \rightarrow$, IDLIST | e

 $SPC \rightarrow \sqcup \mid SPC SPC$

23

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LR(1)-грамматики:

$$\begin{split} \text{IDLIST} \to \text{ID} \mid \text{SPC ID} \mid \text{ID SPC} \mid \text{SPC ID SPC} \mid \text{ID MOREID} \mid \\ \text{SPC ID MOREID} \mid \text{ID SPC MOREID} \mid \\ \text{SPC ID SPC MOREID} \end{split}$$

ID \rightarrow a-z TAIL

TAIL \rightarrow a-z TAIL | o-9 TAIL | e

MOREID \rightarrow , IDLIST

SPC \rightarrow \sqcup | SPC SPC

24

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LR(1)-грамматики:

<code>IDLIST</code> \to <code>ID</code> | <code>SPC</code> <code>ID</code> | <code>ID</code> <code>SPC</code> | <code>SPC</code> <code>ID</code> <code>SPC</code> | <code>ID</code> , <code>IDLIST</code> | <code>SPC</code> <code>ID</code> , <code>IDLIST</code> | <code>ID</code> <code>SPC</code> , <code>IDLIST</code> | <code>SPC</code> <code>ID</code> <code>SPC</code> , <code>IDLIST</code> |

ID \rightarrow a-z TAIL

TAIL \rightarrow a-z TAIL | o-9 TAIL | e

SPC \rightarrow \sqcup | SPC SPC

25

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LR(1)-грамматики:

IDLIST \rightarrow ID | SPC ID | ID SPC | SPC ID SPC | IDLIST , IDLIST

 $ID \rightarrow a-z TAIL$

 $TAIL \rightarrow a-z TAIL \mid o-9 TAIL \mid e$

 $SPC \rightarrow \sqcup | SPC SPC$

26

Пример 2. Язык, описывающий список уникальных идентификаторов.

Правила LR(1)-грамматики:

IDLIST \rightarrow ID | SPC ID | ID SPC | SPC ID SPC | IDLIST , IDLIST

 $ID \rightarrow a-z TAIL \mid a-z$

 $TAIL \rightarrow a-z \mid o-9 \mid TAIL TAIL$

 $SPC \rightarrow \sqcup \mid SPC SPC$

27

Пример 2. Язык, описывающий список уникальных идентификаторов.

Включение действий:

$$\begin{split} & \operatorname{IDLIST} \to \operatorname{ID} \left< \mathsf{A}_3 \right> \mid \operatorname{SPC} \operatorname{ID} \left< \mathsf{A}_3 \right> \mid \operatorname{ID} \left< \mathsf{A}_3 \right> \operatorname{SPC} \mid \\ & \operatorname{SPC} \operatorname{ID} \left< \mathsf{A}_3 \right> \operatorname{SPC} \mid \operatorname{IDLIST}, \operatorname{IDLIST} \\ & \operatorname{ID} \left< \mathsf{A}_3 \right> \to \operatorname{a-z} \left< \mathsf{A}_1 \right> \operatorname{TAIL} \left< \mathsf{A}_3 \right> \mid \operatorname{a-z} \left< \mathsf{A}_1 \right> \left< \mathsf{A}_3 \right> \\ & \operatorname{TAIL} \to \operatorname{a-z} \left< \mathsf{A}_2 \right> \mid \operatorname{o-9} \left< \mathsf{A}_2 \right> \mid \operatorname{TAIL} \operatorname{TAIL} \right> \\ & \operatorname{SPC} \to \sqcup \mid \operatorname{SPC} \operatorname{SPC} \end{split}$$

Пример 2. Язык, описывающий список уникальных идентификаторов.

Включение действий:

```
0: IDLIST' \rightarrow_{(0)} IDLIST<sub>(1)</sub>

1: IDLIST \rightarrow_{(0,6)} ID \langle A_3 \rangle_{(2)}

2: IDLIST \rightarrow_{(0,6)} SPC<sub>(3)</sub> ID \langle A_3 \rangle_{(9)}

3: IDLIST \rightarrow_{(0,6)} ID \langle A_3 \rangle_{(2)} SPC<sub>(7)</sub>

4: IDLIST \rightarrow_{(0,6)} SPC<sub>(3)</sub> ID \langle A_3 \rangle_{(9)} SPC<sub>(16)</sub>

5: IDLIST \rightarrow_{(0,6)} IDLIST<sub>(1,14)</sub>, <sub>(6)</sub> IDLIST<sub>(14)</sub>

6: ID \rightarrow_{(0,3,6)} a-z \langle A_1 \rangle_{(4)}

7: ID \rightarrow_{(0,3,6)} a-z \langle A_1 \rangle_{(4)} TAIL \rangle_{(11)}

8: TAIL \rightarrow_{(4,11,17)} a-z \langle A_2 \rangle_{(12)}

9: TAIL \rightarrow_{(4,11,17)} TAIL \rangle_{(11,17)} TAIL \rangle_{(17)}

11: SPC \rightarrow_{(0,2,3,6,7,9,10,15,16)} \sqcup_{(5,8)}

12: SPC \rightarrow_{(0,2,3,6,7,9,10,15,16)} SPC \rangle_{(3,7,10,15,16)} SPC \rangle_{(10,15)}
```

		-	\
//			77
7	7	Ω	١
	_	J	-)
//			//
10		_	/

	a-z	Ш	,	0-9	1	IDLIST	ID	TAIL	SPC
S_{o}	$S_4\langle A_1\rangle$	S_5				S_1	$S_2\langle A_3\rangle$		S_3
		J	S_6		HALT				
S_2		S_8	R_1		R_1				S_7
S_3	$S_4\langle A_1\rangle$	S_5					$S_9\langle A_3\rangle$		S_{10}
$egin{array}{c} & S_1 \\ & S_2 \\ & S_3 \\ & S_4 \\ & S_5 \\ & S_6 \\ & S_7 \\ & S_8 \\ & S_9 \\ \end{array}$	$S_{12}\langle A_2\rangle$	R_6	R_6	$S_{13}\langle A_2\rangle$	R_6			S_{11}	
${f S}_5$	R_{11}	R_{11}							
S_6	$S_4\langle A_1\rangle$	S_5				S ₁₄	$S_2\langle A_3\rangle$		${f S}_3$
S_7		S_8	R_3		R_3				$egin{array}{c} \mathbf{S}_3 \ \mathbf{S}_{15} \end{array}$
S_8		R_{11}	R ₁₁		R ₁₁				
S_9		S_8	R_2		R_2				$egin{array}{c} S_{16} \ S_{10} \end{array}$
S_{10}	R_{12}	S_5							S_{10}
S_{11}	$S_{12}\langle A_2\rangle$	R_7	R_7	$S_{13}\langle A_2\rangle$	R_7			S_{17}	
	R_8	R_8	R_8	R_8	R_8				
S_{13}	R_9	R_9	R_9	R_9	R_9				
S_{14}			S_6		R_5				
S_{15}		S_8	R_{12}		R_{12}				S_{15}
$egin{array}{c} S_{12} \\ S_{13} \\ S_{14} \\ S_{15} \\ S_{16} \\ S_{17} \\ \end{array}$		S_8	R_4		R_4				$egin{array}{c} \mathbf{S_{15}} \\ \mathbf{S_{15}} \end{array}$
S ₁₇	$S_{12}\langle A_2\rangle$	R_{10}	R_{10}	$S_{13}\langle A_2\rangle$	R_{10}			S ₁₇	

Пример 2. Язык, описывающий список уникальных идентификаторов.

Или:

```
0: IDLIST' \rightarrow_{(0)} IDLIST<sub>(1)</sub>
1: IDLIST \rightarrow_{(0,6)} ID<sub>(2)</sub>
2: IDLIST \rightarrow_{(0,6)} SPC<sub>(3)</sub> ID<sub>(9)</sub>
3: IDLIST \rightarrow_{(0,6)} ID<sub>(2)</sub> SPC<sub>(7)</sub>
4: IDLIST \rightarrow_{(0,6)} SPC<sub>(3)</sub> ID<sub>(9)</sub> SPC<sub>(16)</sub>
5: IDLIST \rightarrow_{(0,6)} IDLIST<sub>(1,14)</sub>, <sub>(6)</sub> IDLIST<sub>(14)</sub>
6: ID \rightarrow \langle A_3 \rangle_{(0,3,6)} a-z \langle A_1 \rangle_{(4)}
7: ID \rightarrow \langle A_3 \rangle_{(0,3,6)} a-z \langle A_1 \rangle_{(4)} TAIL<sub>(11)</sub>
8: TAIL \rightarrow_{(4,11,17)} a-z \langle A_2 \rangle_{(12)}
9: TAIL \rightarrow_{(4,11,17)} 0-9 \langle A_2 \rangle_{(13)}
10: TAIL \rightarrow_{(4,11,17)} TAIL<sub>(11,17)</sub> TAIL<sub>(17)</sub>
11: SPC \rightarrow_{(0,2,3,6,7,9,10,15,16)} \sqcup_{(5,8)}
12: SPC \rightarrow_{(0,2,3,6,7,9,10,15,16)} SPC<sub>(3,7,10,15,16)</sub> SPC<sub>(10,15)</sub>
```

			1
	2	1	-))
		_	$/\!\!/$
1		_	//

	a-z	Ш	,	0-9		IDLIST	ID	TAIL	SPC
S_{o}	$S_4\langle A_1\rangle$	S_5				S_1	S_2		S_3
S_1	·	J	S_6		HALT				
${ m S_2}$		S_8	R_1		R_{1}				S_7
	$S_4\langle A_1\rangle$	S_5					S_9		S_{10}
S_4	$S_{12}\langle A_2\rangle$	$R_6\langle A_3\rangle$	$R_6\langle A_3\rangle$	$S_{13}\langle A_2\rangle$	$R_6\langle A_3\rangle$			S ₁₁	
$egin{array}{cccccccccccccccccccccccccccccccccccc$	R_{11}	R_{11}							
S_6	$S_4\langle A_1\rangle$	S_5				S_{14}	S_2		S_3
S_7		S_8	R_3		R_3				S_{15}
S_8		R_{11}	R ₁₁		R ₁₁				
S ₈ S ₉		S_8	R_2		R_2				S ₁₆
S_{10}	R ₁₂	S_5							S_{10}
S_{11}	$S_{12} \langle A_2 \rangle$	$R_7 \langle A_3 \rangle$	$R_7 \langle A_3 \rangle$	$S_{13}\langle A_2\rangle$	$R_7 \langle A_3 \rangle$			S ₁₇	
S_{12}	R_8	R_8	R_8	R_8	R_8				
S_{13}	R_9	R_9	R_9	R_9	R_9				
S_{14}			S_6		R_5				
$egin{array}{c} S_{12} \\ S_{13} \\ S_{14} \\ S_{15} \\ S_{16} \\ S_{17} \\ \end{array}$		S_8	R_{12}		R_{12}				S_{15}
S_{16}		S_8	R_4		R_4				$egin{array}{c} \mathbf{S_{15}} \ \mathbf{S_{15}} \end{array}$
S ₁₇	$S_{12}\langle A_2\rangle$	R_{10}	R_{10}	$S_{13}\langle A_2\rangle$	R_{10}			S ₁₇	

(32)

$a, \sqcup b \bot$

```
(S_0, a, \sqcup b \perp)
(S_0 a S_4, \cup b \perp), \langle A_1 \rangle
(S_0 \text{ ID } S_2, \sqcup b \perp), \langle A_2 \rangle
(S_0 \text{ IDLIST } S_1, \cup b \perp)
(S_0 \text{ IDLIST } S_1, S_6, \sqcup b \perp)
(S_0 \text{ IDLIST } S_1, S_6, \sqcup b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \sqcup S_5, b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3, b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3 \text{ b } S_4, \bot), \langle A_1 \rangle
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3 \text{ ID } S_9, \bot), \langle A_3 \rangle
(S_0 \text{ IDLIST } S_1, S_6 \text{ IDLIST } S_{14}, \bot)
(S_0 \text{ IDLIST } S_1, \perp)
HALT
```

$a, \sqcup b \perp$

```
(S_0, a, \sqcup b \perp)
(S_0 \ a \ S_4, \cup b \perp), <A_1>
(S_0 ID S_2, \sqcup b \perp), \langle A_2 \rangle
(S_0 \text{ IDLIST } S_1, , \sqcup b \perp)
(S_0 \text{ IDLIST } S_1, S_6, \sqcup b \perp)
(S_0 \text{ IDLIST } S_1, S_6, \sqcup b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \sqcup S_5, b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3, b \perp)
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3 \text{ b } S_4, \bot), \langle A_1 \rangle
(S_0 \text{ IDLIST } S_1, S_6 \text{ SPC } S_3 \text{ ID } S_9, \bot), \langle A_3 \rangle
(S_0 \text{ IDLIST } S_1, S_6 \text{ IDLIST } S_{14}, \bot)
(S_0 \text{ IDLIST } S_1, \perp)
HALT
```


Пример 3. Язык, описывающий математические выражения. Необходимо построить ОПЗ.

Правила LR(1)-грамматики:

 $MATH \rightarrow NUM \mid MATH + \langle A_2 \rangle MATH \mid MATH \times \langle A_2 \rangle MATH$

 $NUM \rightarrow o-9 \langle A_1 \rangle \mid o-9 \langle A_1 \rangle NUM$

ИЛИ

 $MATH \rightarrow NUM \mid NUM + \langle A_2 \rangle MATH \mid NUM \times \langle A_2 \rangle MATH$

 $NUM \rightarrow 0-9 \langle A_1 \rangle \mid 0-9 \langle A_1 \rangle NUM$

34

Пример 3. Язык, описывающий математические выражения. Необходимо построить ОПЗ.

Правила LR(1)-грамматики:

$$\begin{array}{l} S \left< A_{3} \right> \to \left< A_{3} \right>_{(0)} MATH \left< A_{3} \right>_{(1)} \\ MATH \to_{(0,4,5)} NUM_{(2)} \\ MATH \to_{(0,4,5)} NUM_{(2)} + \left< A_{2} \right>_{(4)} MATH_{(7)} \\ MATH \to_{(0,4,5)} NUM_{(2)} \times \left< A_{2} \right>_{(5)} MATH_{(8)} \\ NUM \to_{(0,3,4,5)} 0 - 9 \left< A_{1} \right>_{(3)} \\ NUM \to_{(0,3,4,5)} 0 - 9 \left< A_{1} \right>_{(3)} NUM_{(6)} \end{array}$$

Получим таблицу разбора:

	+	*	0-9	Т	MATH	NUM
S_{o}			$S_3 \langle A_1 \rangle$		$S_1 \langle A_3 \rangle$	S_2
S_1				$HALT \langle A_3 \rangle$		
S_2	$S_4 \langle A_2 \rangle$	$S_5 \left< A_2 \right>$		$R_{_1}$		
S_3	R_4	R_4	$S^{}_{3} \left< A^{}_{\scriptscriptstyle 1} \right>$	R_4		S_6
S_4			$S^{}_{3} \left< A^{}_{\scriptscriptstyle 1} \right>$		S_7	S_2
S_5			$S^{}_{3} \left< A^{}_{\scriptscriptstyle 1} \right>$		S_8	${\rm S}_2$
S_6	R_5	R_5		R_5		
S_7				R_2		
S_8				R_3		

$$1+2*3\bot$$

$$\begin{array}{l} (S_{0},1+2^{*}3\bot) \\ (S_{0}\ 1\,S_{3},+2^{*}3\bot),< A_{1}> \\ (S_{0}\ NUM\ S_{2},+2^{*}3\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4},2^{*}3\bot),< A_{2}> \\ (S_{0}\ NUM\ S_{2}+S_{4}\ 2\,S_{3},{}^{*}3\bot),< A_{1}> \\ (S_{0}\ NUM\ S_{2}+S_{4}\ 2\,S_{3},{}^{*}3\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}3\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}3\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}S_{5},3\bot),< A_{2}> \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}S_{5},3\ S_{3},\bot),< A_{1}> \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}S_{5},3\ S_{3},\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}S_{5}\ NUM\ S_{2},\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ NUM\ S_{2},{}^{*}S_{5}\ MATH\ S_{8},\bot) \\ (S_{0}\ NUM\ S_{2}+S_{4}\ MATH\ S_{7},\bot) \\ (S_{0}\ MATH\ S_{1},\bot),< A_{3}> \\ HALT,< A_{3}> \end{array}$$

POLSTR	M
1	
1	
1	+
12	+
12	+
12	+
12	+ *
123	+ *
123	+ *
123	+ *
123	+ *
123	+ *
123*+	

- 1) Как хранить действия в программе?
- в виде отдельного списка:

```
declare 1 RULE,
2 left string,
2 right LIST,
2 actions LIST,
2 mark_left int,
2 mark_right int,
2 start LIST,
2 follow LIST,
2 terms LIST;
declare GRAMMAR(N) RULE;
```

• вместе с правой частью правила.

- 2) Как задавать в грамматике символы-разделители и другие спецсимволы?
- ввести для символов-разделителей специальные обозначения, например, \r – возврат каретки, \n – переход на следующую строку, \t – табуляция, \s – пробел, \\ – просто слеш;
- использовать какой-то один символ, например, \s или \s\, но тогда где-то нужно указать, какие символы он описывает;
- указывать после слеша код символа, например, \13, \10,
 \9, \32 и т.д.;

- 2) Как задавать в грамматике символы-разделители и другие спецсимволы?
- чтобы элементы алфавита не пересекались со спецсимволами (e, |, <, > и т.п.) их также можно экранировать слешем;
- для обозначения диапазонов можно либо просто писать a-b (если в алфавит не входит лексема a-b, хотя можно дефис экранировать: a\-b), либо добавить скобки [a-b], (a-b), <a-b>, \a-b\ и т.п.

- 3) Как с помощью LR-грамматики описать язык, допускающий пустые цепочки (предложения)?
- Добавить в грамматику правило $S \to e$. Перед построением множества состояний это правило из грамматики удаляется.
- Каким-то другим образом указать во входных данных, что язык допускает пустые цепочки.

В обоих случаях программа должна внести в таблицу разбора новый элемент:

$$T(S_0, \perp) = \text{HALT}.$$

Порядок выполнения лабораторных работ:

- 1. Описать требуемый язык заданным способом (в виде грамматики LL(1)/LR(1)).
- 2. Написать программу, реализующую требуемый механизм синтаксического анализа.
- 3. Внедрить в синтаксис анализатора действия для проверки семантики языка или его интерпретации.
- 4. Протестировать программу.
- 5. Написать отчёт, включающий все требуемые пункты (в т.ч. формальное описание построенного анализатора) и удовлетворяющий требованиям ОС ТУСУР 01-2013.

42

Требования к программе:

- Описание языка находится не в программе, как в ЛР№1-2, а в отдельном входном файле grammar.txt.
- Грамматика состоит из четырёх компонентов N, Σ , P, S. Однако, в файле grammar.txt можно описать только правила P. В этом случае нетерминалами N будут являться символы, встречающиеся в левых частях правил, терминалами Σ все остальные символы правил (кроме пустой цепочки e и других специальных символов вывода, альтернативы, внедрения действий и т.п.), стартовым символом S будет являться нетерминал в левой части первого правила.

Пример:

 $FIXED \rightarrow SIGN MANT$

 $SIGN \rightarrow + \langle A1 \rangle \mid - \langle A1 \rangle \mid e$

 $MANT \rightarrow . <A2 > NUM | NUM FRACT$

 $NUM \rightarrow 0-9 < A3 > NUM2$

 $NUM2 \rightarrow NUM \mid e$

FRACT \rightarrow . $\langle A2 \rangle$ NUM2 | e

Однако, при желании можно все эти компоненты описать явно.

44

Требования к программе:

- Файл с грамматикой должен быть один, и приведённая в нём грамматика должна полностью описывать заданный язык.
- Вначале программа загружает описание грамматики из файла grammar.txt и проверяет её на корректность. Если грамматика некорректна, сообщение об этом выводится в выходной файл и программа завершает работу.
- Иначе она должна построить таблицу разбора по рассмотренному алгоритму.

45

Требования к программе:

- Затем программа считывает входную цепочку из файла с именем input.txt и проверяет её синтаксис и семантику, используя построенную таблицу разбора.
- Для проверки семантики в синтаксис грамматики должны быть внедрены действия.
- Программа должна корректно завершать свою работу независимо от содержимого входного файла.
- Результаты работы программа должна вывести на консоль или в выходной файл output.txt.