Note sulle unità di misura nella simulazione di dinamica molecolare

Mauro Oi

Per verificare quali unità di misura siano adatte al problema proposto, iniziamo col notare che stiamo simulando la traiettoria di particelle in una scatola di alcuni Å e che quindi questa è l'unità di misura fondamentale per le lunghezze.

In secondo luogo, noi generiamo le particelle con velocità iniziali

$$v_0 \simeq \sqrt{\frac{2k_{\rm B}T}{m}},$$
 (1)

dove $[k_BT] = eV$ e [m] = amu. Le unità di misura saranno quindi eV per le energie e amu per le masse. La velocità può essere espressa, invece, come

$$[v_0] = \sqrt{\frac{\text{eV}}{\text{amu}}} = \sqrt{\frac{1.619 \cdot 10^{-19} \,\text{J}}{1.66 \cdot 10^{27} \,\text{kg}}} \simeq \sqrt{10^8 \, \frac{\text{kg} \cdot \text{m}^2/\text{s}^2}{\text{kg}}} = 10^4 \, \frac{m}{s}. \tag{2}$$

Possiamo riesprimere questa quantità in unità di misure più adatte al problema

$$[v_0] = 10^4 \frac{m}{s} = 10^4 \frac{10^{10} \,\text{Å}}{10^{15} \,\text{fs}} = 0.1 \,\frac{\text{Å}}{\text{fs}},\tag{3}$$

perciò le velocità sono espresse in decimi di Å al fs e l'unità di misura naturale per la misura dei tempi è quindi il fs.