Richardson-Extrapolated Pseudo-Spectral (REPS) Methods

For a continuous Gaussian chain (CGC) as used in the "standard" model (see Models.pdf for details), the chain propagators satisfy the modified diffusion equations. Here we consider as an example the (one-end-integrated) forward propagator $q(\mathbf{r},s)$ in a block of length N and the effective bond length b (for CGC, individual values of N and b do not matter; strictly speaking, $N \rightarrow \infty$ and $b \rightarrow 0$, and it is $\sqrt{N}b$ that matters), where $s \in [0,N]$ is the (continuous) variable along the block contour; the modified diffusion equation is then $\frac{\partial q}{\partial c} = \frac{b^2}{6} \nabla^2 q - \omega(\mathbf{r}) q$ with given initial condition of $q(\mathbf{r},s=0)$, where $\omega(\mathbf{r})$ is the conjugate field interacting with segments on the block, and has the formal solution of $q(\mathbf{r}, s + \mathrm{d}s) = \exp\left\{\left[\left(b^2/6\right)\nabla^2 - \omega(\mathbf{r})\right]\mathrm{d}s\right\}q(\mathbf{r}, s)$. Discretizing the block contour into n steps each of step-size $\Delta s = N/n$, one needs to numerically calculate $q(\mathbf{r},s+\Delta s)$ from $q(\mathbf{r},s)$, where $s=j\Delta s$ and $j=0,\dots,n-1$. For block copolymer self-assembly under the periodic boundary conditions, the 2nd-order pseudo-spectral (PS) method¹ gives $q(\mathbf{r}, s + \Delta s) \approx \exp(-\omega(\mathbf{r})\Delta s/2)\exp[(b^2/6)\Delta s\nabla^2]\exp(-\omega(\mathbf{r})\Delta s/2)q(\mathbf{r}, s)$, which has a **global** error of $O(\Delta s^2)$ and can be readily computed using fast Fourier transforms. Morse and co-workers first pointed out that the error of the PS method contains only even powers of Δs and thus proposed a 4th-order method, which is used in PSCF, by linearly extrapolating the two results of $q(\mathbf{r},s+\Delta s)$ obtained via the PS method with the step-size of Δs and $\Delta s/2$, respectively, to the limit of $\Delta s \rightarrow 0.2$ This is similar to the trapezoidal rule for numerical integration, the error of which also contains only even powers of the step-size; the K^{th} -order polynomial extrapolation of the K+1 results obtained via the trapezoidal rule with successively halved step-size to the limit of zero step-size then gives the commonly used Romberg integration³, with K=1 corresponding to the Simpson's 1/3 rule. We therefore refer to the PS method and that proposed by Morse and co-workers² as the REPS-0 and REPS-1 method, respectively, and have implemented the REPS-K (for K=0,...,4) methods in PSCF+; polynomial extrapolation with K>4 is usually unstable.

To be more specific, let q_k (k=1,...,K+1) be the result of $q(\mathbf{r},s+\Delta s)$ obtained via the PS method with a step-size of $\Delta s/2^{k-1}$, and q_0 be the extrapolated result given by the REPS-K method; one can then write $q_k = q_0 + \sum_{i=1}^K a_i \left(\Delta s/2^{k-1}\right)^{2i}$. For given Δs and q_k 's, solving q_0 and the coefficients a_i (i=1,...,K) from these K+1 equations, we obtain $q_0 = \left(4q_2 - q_1\right)/3$ (i.e., Eq. (A6) in Ref. 2) for K=1, $q_0 = \left(64q_3 - 20q_2 + q_1\right)/45$ for K=2, $q_0 = \left(4096q_4 - 1344q_3 + 84q_2 - q_1\right)/2835$ for K=3, and $q_0 = \left(1048576q_5 - 348160q_4 + 22848q_3 - 340q_2 + q_1\right)/722925$ for K=4. Note that the REPS-K method has a global error of $O(\Delta s^{2(K+1)})$; this requires the Romberg integration of the same (or higher) order to calculate the integral $\int_0^N \mathrm{d}sq(\mathbf{r},s)q^\dagger(\mathbf{r},s)$ involved in the volume-fraction field (e.g., the Simpson's 1/3 rule is used in PSCF to match the REPS-1 method), which in turn requires n be an integer multiple of 2^K (see RI.pdf for details). We also note that the REPS-K method requires $2^{K+1}-1$ pairs of forward and backward fast Fourier transforms to obtain $q(\mathbf{r},s+\Delta s)$ from $q(\mathbf{r},s)$.

References:

- 1. Tzeremes, G.; Rasmussen, K. K.; Lookman, T.; Saxena, A., <u>Efficient computation of the structural phase behavior of block copolymers</u>. *Phys. Rev. E* **2002**, *65* (4), 041806.
- 2. Ranjan, A.; Qin, J.; Morse, D. C., <u>Linear response and stability of ordered phases of block copolymer melts</u>. *Macromolecules* **2008**, *41* (3), 942-954.
- 3. Press, W. H., Chap. 4.3 in *Numerical recipes in C: The art of scientific computing*, 2nd ed.; Cambridge University Press: Cambridge; New York, 1992.