Zadania z Analizy Matematycznej I.1 - seria V

Zadanie 1. Pokazać, że jeśli dla ciągu $\{a_n\}$ istnieje granica $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q$, to

- jeśli q < 1 to $\lim_{n \to \infty} a_n = 0$,
- jeśli q > 1 to $\lim_{n \to \infty} |a_n| = \infty$.

Zadanie 2. Obliczyć granice ciągów:

- a) $a_n = \frac{2^n}{n!}$,
- b) $b_n=\frac{n^k}{C^n},$ gdzie ki Csą ustalone, $k\in\mathbb{N},\,C>1,$
- c) $c_n = \frac{n}{\ln(n!)}$,
- d) $d_n = \sqrt[n]{n!}$

Zadanie 3. Udowodnić, że ciągi $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ oraz $\left\{\left(1+\frac{1}{n}\right)^{n+1}\right\}$ są zbieżne i to do tej samej granicy.

Zadanie 4. Obliczyć

- a) $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$,
- b) $\lim_{n\to\infty} \left(\frac{3n-1}{3n+1}\right)^{n+4}$,
- c) $\lim_{n\to\infty} \left(\frac{n^2+3}{n^2+1}\right)^{2n^2+5}$,
- d) $\lim_{n\to\infty} \left(1+\frac{1}{n^2}\right)^n$,
- e) $\lim_{n\to\infty} (0,999999 + \frac{1}{n})^n$,
- f) $\lim_{n\to\infty} (1,00001 + \frac{1}{n})^n$,
- g) $\lim_{n\to\infty} \frac{n\sin(n!)}{n^2+1}$,
- h) $\lim_{n\to\infty} n(\ln(n+1) \ln n)$.

Zadanie 5. Wykazać, że

- a) Jeśli $na_n \to 0$ to $(1+a_n)^n \to 1$.
- b) Jeśli $na_n \to g$, $g < \infty$, to $(1 + a_n)^n \to e^g$.