Fachbereich Mathematik & Informatik

Freie Universität Berlin

Prof. Dr. Ralf Kornhuber, Prof. Dr. Christof Schütte, Lasse Hinrichsen

6. Übung zur Vorlesung

Computerorientierte Mathematik I

WS 2020/2021

http://numerik.mi.fu-berlin.de/wiki/WS_2020/CoMaI.php

Abgabe: Do., 14. Januar 2021, 12:15 Uhr

1. Aufgabe (8 TP)

Betrachten Sie die lineare Funktion f(x) = ax + b für $a, b \in \mathbb{R}$. Für die Auswertung mittels des Algorithmus

$$f = g_2 \circ g_1, \qquad g_1(y) = ay, \qquad g_2(y) = y + b$$

gilt

$$\sigma_{\rm rel} \le \frac{|ax| + |b|}{|ax + b|} + 1. \tag{1}$$

Verwendet man jedoch den Algorithmus

$$f = h_2 \circ h_1, \qquad h_1(y) = y + \frac{b}{a}, \qquad h_2(y) = ay,$$

erhält man

$$\sigma_{\rm rel} \le 2.$$
 (2)

- a) Zeigen Sie Gleichung (1) mit Hilfe von Satz 7.8.
- b) Zeigen Sie Gleichung (2) mit Hilfe von Satz 7.8. Sie dürfen dabei annehmen, dass $\frac{b}{a}$ exakt, das heißt ohne Runden, darstellbar ist.
- c) Angenommen, es können Rundungsfehler bei der Berechunng von $\frac{b}{a}$ auftreten. Schätzen Sie die Stabilitätskonstante $\sigma_{\rm rel}$ für den Algorithmus

$$f(x) = j_2(j_1(x, j_0(b, a))),$$
 $j_0(v, w) = \frac{v}{w},$ $j_1(y, z) = y + z,$ $j_2(y) = ay,$

- ab. Ist der Algorithmus immer noch besser als die "naive" Auswertung mittels $g_2 \circ g_1$?
- d) Ist die Annahme, dass $\frac{b}{a}$ nicht gerundet wird, gerechtfertigt? Begründen Sie Ihre Aussage.

2. Aufgabe (2 TP)

Für die Berechnung der Stabilität betrachten wir die Konditionen der einzelnen Elementarfunktionen. Die Entscheidung, wie elementar eine Funktion sein muss, um als Elementarfunktion zu gelten, hat Folgen: Betrachten Sie die Algorithmen

$$f(x) = u_n \circ u_{n-1} \circ \dots \circ u_0(x),$$
 (Algorithmus 1)
 $f(x) = (s_n \circ t_n) \circ u_{n-1} \circ \dots \circ u_0(x),$ (Algorithmus 2)

wobei die Elementarfunktion u_n durch $s_n \circ t_n$ verfeinert wurde. Zeigen Sie, dass gilt

$$\sigma_{\rm rel}(Algorithmus 1) \leq \sigma_{\rm rel}(Algorithmus 2).$$

3. Aufgabe (8 PP)

Zu $I = [-1, \infty)$ seien $f: I \to I$ samt Umkehrfunktion $f^{-1}: I \to I$ gegeben durch

$$f(x) = x(x+2),$$
 $f^{-1}(x) = \sqrt{x+1} - 1.$

Die Verkettung von f und f^{-1} führt unabhängig von der Reihenfolge zur Identität auf I, also $f^{-1} \circ f = \mathrm{id}_I = f \circ f^{-1}$.

a) Schreiben Sie eine Python-Funktion concat(g1,g2), die die Verkettung $g_1 \circ g_2$ zweier Funktionen g_1 und g_2 realisiert.

Hinweis: Rückgabewert dieser Funktion soll eine Funktion sein. Beispielsweise

```
def f1(n):
    return 2 * n
def f2(n):
    return n + 3
f = concat(f1, f2)
print(f(42) == f1(f2(x)))
```

sollte fehlerfrei laufen und True liefern.

b) Vergleichen Sie nun die Identitäten $f^{-1} \circ f$ mit $f \circ f^{-1}$. Implementieren Sie hierfür unter Verwendung von concat eine Funktion generateData(x), die ein Tupel

zurückgibt.

Hierbei soll val1 der Auswertung von $f^{-1}(f(x))$ entsprechen und err1 der relative Fehler von val1 zu x sein. Analog soll val2 der Auswertung von $f(f^{-1}(x))$ entsprechen und err2 der relative Fehler von val2 zu x sein.

c) Schreiben Sie ein Skript, das generateData für $x=-1+10^{-k}$ mit $k\in\{0,\ldots,12\}$ aufruft und die berechneten Daten in einer Tabelle mit den Spalten

k val1 val2 err1 err2

- ausgibt. Wählen Sie dabei eine sinnvolle Darstellung der jeweiligen Zahlenwerte. Speichern Sie die Tabelle außerdem (als Text-Datei) in der Datei daten.txt ab.
- d) Was beobachten Sie und wie erklären Sie sich die Resultate? Schreiben Sie Ihre Antwort in die Datei beobachtungen.txt.

4. Bonusaufgabe (Quiz) (1 Bonus TP/PP)

Formulieren Sie eine Frage zur Vorlesung. Falls Sie die Antwort wissen, geben Sie die richtige Antwort und 3 falsche Antwortmöglichkeiten an.

Allgemeine Hinweise

Die Punkte unterteilen sich in Theoriepunkte (TP) und Programmierpunkte (PP). Bitte beachten Sie die auf der Vorlesungshomepage angegebenen Hinweise zur Bearbeitung und Abgabe der Übungszettel, insbesondere der Programmieraufgaben.

1. Aufgabe (8 TP)

Betrachten Sie die lineare Funktion f(x)=ax+b für $a,b\in\mathbb{R}$. Für die Auswertung mittels des Algorithmus

$$f = g_2 \circ g_1, \qquad g_1(y) = ay, \qquad g_2(y) = y + b$$

gilt

$$\sigma_{\rm rel} \le \frac{|ax| + |b|}{|ax + b|} + 1. \tag{1}$$

Verwendet man jedoch den Algorithmus

$$f = h_2 \circ h_1, \qquad h_1(y) = y + \frac{b}{a}, \qquad h_2(y) = ay,$$

erhält man

$$\sigma_{\rm rel} \le 2.$$
 (2)

- a) Zeigen Sie Gleichung (1) mit Hilfe von Satz 7.8.
- b) Zeigen Sie Gleichung (2) mit Hilfe von Satz 7.8. Sie dürfen dabei annehmen, dass $\frac{b}{a}$ exakt, das heißt ohne Runden, darstellbar ist.

2. Aufgabe (2 TP)

Für die Berechnung der Stabilität betrachten wir die Konditionen der einzelnen Elementarfunktionen. Die Entscheidung, wie elementar eine Funktion sein muss, um als Elementarfunktion zu gelten, hat Folgen: Betrachten Sie die Algorithmen

$$f_{\mathbf{i}}(x) = u_n \circ u_{n-1} \circ \dots \circ u_0(x), \qquad \text{(Algorithmus 1)}$$
$$f_{\mathbf{i}}(x) = (s_n \circ t_n) \circ u_{n-1} \circ \dots \circ u_0(x), \qquad \text{(Algorithmus 2)}$$

wobei die Elementarfunktion u_n durch $s_n \circ t_n$ verfeinert wurde. Zeigen Sie, dass gilt $\sigma_{\text{rel}}(\text{Algorithmus 1}) \leq \sigma_{\text{rel}}(\text{Algorithmus 2}).$

$$f(x) = j_2(j_1(x, j_0(b, a))), \qquad j_0(v, w) = \frac{v}{w}, \qquad j_1(y, z) = y + z, \qquad j_2(y) = ay,$$

ab. Ist der Algorithmus immer noch besser als die "naive" Auswertung mittels

