De Cifris Trends in Cryptographic Protocols

University of Trento and De Componendis Cifris
October 2023

Lecture 8

Hierarchical Key Assignment

Barbara Masucci

University of Salerno

OUTLINE OF THE TALK

- The Access Control Problem
 -Motivations, scenario, requirements
- Hierarchical Key Assignment Schemes (HKAS)
 -Definition, evaluation criteria, notions of security
- Provably secure constructions for HKAS
 -PRF-based, EBC-based
- Some extensions:
 - -Time-bound HKAS, HKAS supporting dynamic updates, hierarhical and shared access control

THE ACCESS CONTROL PROBLEM: MOTIVATIONS

 Only authorized users should be given access to sensitive resources

- Many environments are characterized by a hierarchical structure
 - Healthcare
 - Military and Government
 - Databases
 - Broadcast services
 - Networking

HIERARCHICAL ACCESS CONTROL: THE SCENARIO

- According to their competencies, roles and responsibilities, users are organized in a hierarchy formed by disjoint security classes
- A partial order relation is defined according to authority, position or power of classes
- A partially ordered hierarchy can be represented by a directed graph G=(V,E)

THE ACCESS CONTROL PROBLEM: REQUIREMENTS

 Any class should be able to access secret data of all its successors in the hierarchy

 Any set of classes should not be able to access secret data of a class which is not a successor of any class in the set

THE ACCESS CONTROL PROBLEM: CRYPTOGRAPHIC SOLUTION

- Implement hierarchical access control policies by means of Cryptography
 - Assign and manage the keys according to the policy
- Hierarchical Key Assignment Schemes (HKAS)
 - Assign an encryption key and some private information to each class in the hierarchy, as well as some public information

HIERARCHICAL KEY ASSIGNMENT: DEFINITION

A hierarchical key assignment scheme for G=(V,E) is a pair of algorithms (Gen,Der):

- (s,k,pub) ← Gen(1^t, G)
- s is the sequence of private information
- k is the sequence of keys
- pub is the sequence of public information

• $k_v \leftarrow Der(1^{\tau}, G, u, v, s_u, pub)$ for each class v in A_u

HIERARCHICAL KEY ASSIGNMENT: EVALUATION CRITERIA

- Size of the information stored by each class
- Amount of public information
- Communication complexity of key updates
 - How much secret/public data needs to be re-distributed?
- Efficiency of key derivation

- Security against collusion attacks
 - Provable security (more on this later)

priv info

THE AKL-TAYLOR SCHEME (1983)

Algorithm Gen(1', G)

- Choose two large primes p and q and compute n=pq
- Choose uniformly at random a secret 1<k₀<n
- Assign to each class u
 - a public value t_{||} such that t_{||} divides t_{||} iff v ∈ A_{||}
 - the key $k_{\parallel} = k_0^{t_u} \mod n$
 - the private information s₁ = k₁

Public values assignment

- Assign a prime p, to each class u
- Compute the public value

$$\uparrow_{u} = \begin{cases}
1 & \text{if } A_{u} = V \\
\prod_{v \in A_{u}} p_{v} & \text{otherwise}
\end{cases}$$

Algorithm Der(1^r, G, u, v, s_u, pub)

- Extract t_i and t_v from pub
- Compute the key k, as follows:

$$k_v = (k_u)^{tv/tu} = (k_0)^{tv} \mod n$$

$$pub = (t_a, t_b, t_c, t_d, t_e, t_f)$$

THE AKL-TAYLOR SCHEME (1983)

Pros

- Low private storage
- · Direct key derivation
- Moderate public storage

Cons

- Key derivation involves modular exponentiation with large exponents
- Key update requires re-distribution of private information
- Security of the scheme is based on the assumption that computing roots modulo a product of large primes is difficult
 - At the time of the proposal a formal model for hierarchical key assignment was missing

PROVABLE SECURITY UNDER A COMPLEXITY ASSUMPTION

- Several other schemes have been proposed in the last 40 years
 - Many of them lack a formal security proof and have been shown to be insecure

- In 1984 Goldwasser and Micali introduced the use of security reductions
 - Aim at reducing the security of a protocol to the difficulty of solving a (presumed) hard computational problem

HIERARCHICAL KEY ASSIGNMENT: NOTIONS OF SECURITY

- Atallah et al. (2005) formally defined security for a HKAS by considering
 - Adversarial behaviour
 - What can an adversary do?
 - Adversarial goal
 - Which game does the adversary play?

The adversary chooses to attack class *u* before the setup of the scheme

WHAT CAN AN ADVERSARY DO? ADAPTIVE ADVERSARY

The adversary first gets all public information and private information of some classes and then chooses the class to attack

WHICH GAME DOES THE ADVERSARY PLAY? KEY RECOVERY

$$Adv^{REC} = Pr[k_{u}^{*} = k_{u}]$$

The scheme is secure against key-recovery if Adv^{REC} is negligible

REC-ST if A is static
REC-AD if A is adaptive

WHICH GAME DOES THE ADVERSARY PLAY? KEY INDISTINGUISHABILITY

I pick a random bit b, if b=1 I return k_u else I return a random value

$$Adv^{IND} = | Pr[b \leftarrow A] - 1/2 |$$

The scheme is secure w.r.t. key-indistinguishability if Adv^{IND} is negligible

IND-ST if A is static IND-AD if A is adaptive

Barbara Masucci University of Salerno

4

IMPLICATIONS AND SEPARATIONS

- Static and Adaptive adversaries are polynomially equivalent
- There exists a scheme which is REC-ST secure but not IND-ST secure

THE PRF-BASED CONSTRUCTION

Algorithm Gen(1^r, G)

- Let F be a PRF family
- Assign to each class u
 - -a public value $| = \{0,1\}^T$
 - -a key $\frac{k}{1}$ ∈ $\{0,1\}^{T}$
 - -the private information s =k
- Assign to each edge (u,v) a public value $p_{(u,v)} = F(k_u, l_v) \oplus k_v$

Algorithm $Der(1^r, G, u, v, s_u, pub)$

- Extract I_v and p_(u,v) from pub
- If (u,v) ∈ E, compute the key k, as:

$$k_v = p_{(u,v)} \oplus F(k_u, l_v)$$

- Private storage: one key for each class
- Public storage: |E|+|V| values
- Key derivation: indirect
- REC-ST secure
- Not IND-ST secure

THE ENCRYPTION BASED CONSTRUCTION

- Let ∏ = (K , E, D) be a symmetric encryption scheme
- Encrypt the key k_v with the key k_u, for each edge (u,v)

- Private storage: one key for each class
- Public storage: |E| values
- Key derivation: indirect
- REC-ST secure under plaintext indistinguishability of the encryption scheme
- Not IND-ST secure

THE ENCRYPTION BASED CONSTRUCTION

- How to achieve IND-ST security?
 - Never use the key assigned to a class to encrypt the keys assigned to other classes!

- Private storage: one key for each class
- Public storage: |E| + |V| values
- Key derivation: indirect
- IND-ST secure under plaintext indistinguishability of the encryption scheme

TIME-BOUND HKAS

- In several applications, users should access data only in specific periods of time
 - Examples: subscription services (digital libraries, music collections, newspapers, cable TV)
- A user may be assigned to a class for a certain time interval
- Once a time period expires, users should not be able to access any subsequent keys if they are not authorized to do so

HKAS SUPPORTING DYNAMIC UPDATES

 A HKAS supporting dynamic updates is a HKAS equipped with an updating algorithm Upd

$$(G', s', k', pub') \square Upd(1', G, s, k, pub, up)$$

 -up: insertion/deletion of classes/edges, key replacement, user revocation

- The security model needs to address futher security issues introduced by Upd
 - -A dynamic adaptive adversary can also perform dynamic updates on the hierarchy

 Barbara Masucci University of Salerno

HIERARCHICAL AND SHARED ACCESS CONTROL

- How to extend hierarchical access control in order to prevent abuses or violations?
 - -The Edward Snowden Case

- The access control should be not only hierarchical, but also shared
 - -Sensitive data should be accessed only by the agreement of some specific users (NSA Orange Book, Two-Person Authorization)

CONCLUSIONS

- Many environments are characterized by a hierarchical structure
- Access control in hierarchical structures can be implemented through HKASs
- We have analyzed different security models for HKAS, as well as some constructions
- We have also considered some extensions for such models

De Componendis Cifris

https:/www.decifris.it