La transformada inversa de Laplace de X(s) es

$$x(t) = 1 - e^{-t}, \qquad 0 \le t$$

Por consiguiente,

$$X(z) = \mathcal{Z}[1 - e^{-t}] = \frac{1}{1 - z^{-1}} - \frac{1}{1 - e^{-T}z^{-1}}$$

$$= \frac{(1 - e^{-T})z^{-1}}{(1 - z^{-1})(1 - e^{-T}z^{-1})}$$

$$= \frac{(1 - e^{-T})z}{(z - 1)(z - e^{-T})}$$

Comentarios. De la misma forma como se trabaja con la transformada de Laplace, una tabla de las transformadas z de las funciones comúnmente encontradas es muy útil en la resolución de problemas en el campo de los sistemas en tiempo discreto. La tabla 2-1 es de este tipo.

TABLA 2-1 TABLA DE TRANSFORMADAS Z

	X(s)	x(t)	x(kT) o $x(k)$	X(z)
1.			Delta de Kronecker $\delta_0(k)$ 1. $k = 0$ 0. $k \neq 0$	1
2.			$\delta_0(n-k)$ 1, $n=k$ 0, $n \neq k$	z ^{-k}
3.	$\frac{1}{s}$	1(t)	1(k)	$\frac{1}{1-z^{-1}}$
4.	$\frac{1}{s+a}$	e ^{-at}	e ^{akT}	$\frac{1}{1-e^{-aT}z^{-1}}$
5.	$\frac{1}{s^2}$	t	kT	$\frac{Tz^{-1}}{(1-z^{-1})^2}$
6.	$\frac{2}{s^3}$	t ²	$(kT)^2$	$\frac{T^2z^{-1}(1+z^{-1})}{(1-z^{-1})^3}$
7.	$\frac{6}{s^4}$	t ³	$(kT)^3$	$\frac{T^3z^{-1}(1+4z^{-1}+z^{-2})}{(1-z^{-1})^4}$
8.	$\frac{a}{s(s+a)}$	$1-e^{-at}$	$1-e^{-akT}$	$\frac{(1-e^{-aT})z^{-1}}{(1-z^{-1})(1-e^{-aT}z^{-1})}$
9.	$\frac{b-a}{(s+a)(s+b)}$	$e^{-ai}-e^{-bi}$	$e^{-akT}-e^{-bkT}$	$\frac{(e^{-aT}-e^{-bT})z^{-1}}{(1-e^{-aT}z^{-1})(1-e^{-bT}z^{-1})}$
10.	$\frac{1}{(s+a)^2}$	te ^{-at}	kTe ^{-akT}	$\frac{Te^{-aT}z^{-1}}{(1-e^{-aT}z^{-1})^2}$
11.	$\frac{s}{(s+a)^2}$	$(1-at)e^{-at}$	$(1 - akT)e^{-akT}$	$\frac{1 - (1 + aT)e^{-aT}z^{-1}}{(1 - e^{-aT}z^{-1})^2}$

TABLA 2-1 (continuación)

	A Z-1 (CONTINU			
	X(s)	x(t)	$x(kT) \circ x(k)$	X(z)
12.	$\frac{2}{(s+a)^3}$	t^2e^{-at}	$(kT)^2 e^{-akT}$	$\frac{T^2 e^{-aT} (1 + e^{-aT} z^{-1}) z^{-1}}{(1 - e^{-aT} z^{-1})^3}$
13.	$\frac{a^2}{s^2(s+a)}$	$at-1+e^{-at}$	$akT - 1 + e^{-akT}$	$\frac{[(aT-1+e^{-aT})+(1-e^{-aT}-aTe^{-aT})z^{-1}]z^{-1}}{(1-z^{-1})^2(1-e^{-aT}z^{-1})}$
14.	$\frac{\omega}{s^2+\omega^2}$	sen ωt	sen ωk T	$\frac{z^{-1} \operatorname{sen} \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
15.	$\frac{s}{s^2+\omega^2}$	cos wt	eos ωkT	$\frac{1 - z^{-1} \cos \omega T}{1 - 2z^{-1} \cos \omega T + z^{-2}}$
16.	$\frac{\omega}{(s+a)^2+\omega^2}$	e ^{-at} sen ωt	e^{-akT} sen ωkT	$\frac{e^{-aT}z^{-1} \sec \omega T}{1 - 2e^{-aT}z^{-1} \cos \omega T + e^{-2aT}z^{-2}}$
17.	$\frac{s+a}{(s+a)^2+\omega^2}$	e ^{-at} cos ωt	$e^{-akT}\cos\omega kT$	$\frac{1 - e^{-aT}z^{-1}\cos\omega T}{1 - 2e^{-aT}z^{-1}\cos\omega T + e^{-2aT}z^{-2}}$
18.		<u>L</u>	a ^k	$\frac{1}{1-az^{-1}}$
19.			a^{k-1} $k = 1, 2, 3, \dots$	$\frac{z^{-1}}{1-az^{-1}}$
20.			ka ^{k - 1}	$\frac{z^{-1}}{(1-az^{-1})^2}$
21.			$k^2 a^{k-1}$	$\frac{z^{-1}(1+az^{-1})}{(1-az^{-1})^3}$
22.			k³ a ^{k - 1}	$\frac{z^{-1}(1+4az^{-1}+a^2z^{-2})}{(1-az^{-1})^4}$
23.			<i>k</i> * <i>a</i> ^{k − 1}	$\frac{z^{-1}(1+11az^{-1}+11a^2z^{-2}+a^3z^{-3})}{(1-az^{-1})^5}$
24.			$a^k \cos k\pi$	$\frac{1}{1+az^{-1}}$
25.			$\frac{k(k-1)}{2!}$	$\frac{z^{-2}}{(1-z^{-1})^3}$
26.		$\frac{k(k-1)}{k}$	$\frac{)\cdots(k-m+2)}{(m-1)!}$	$\frac{z^{-m+1}}{(1-z^{-1})^m}$
27.			$\frac{k(k-1)}{2!}a^{k-2}$	$\frac{z^{-2}}{(1-az^{-1})^3}$
23.	<u>k(k</u>	$\frac{-1)\cdots(k-m}{(m-1)!}$	$\frac{(k+2)}{2}a^{k-m+1}$	$\frac{z^{-m+1}}{(1-az^{-1})^m}$

x(t) = 0, para t < 0.

x(kT) = x(k) = 0, for k < 0.

A menos que se indique otra cosa, $k = 0, 1, 2, 3, \ldots$