Recurrence Equation Analysis

- The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- \bullet Likewise, the basis case (n < 2) will take at b most steps.
- \bullet Therefore, if we let T(n) denote the running time of merge-sort:

$$T(n) = \begin{cases} b & \text{if } n < 2 \\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has T(n) only on the left-hand side.

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
 - 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 4T(n/2) + n$$

Solution: $log_b a = 2$, so case 1 says T(n) is $O(n^2)$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 2T(n/2) + n\log n$$

Solution: $log_b a = 1$, so case 2 says T(n) is O(n $log^2 n$).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = T(n/3) + n \log n$$

Solution: $log_b a = 0$, so case 3 says T(n) is O(n log n).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $log_b a=3$, so case 1 says T(n) is $O(n^3)$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $log_b a = 2$, so case 3 says T(n) is $O(n^3)$.

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

- 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
- 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$
- 3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = T(n/2) + 1$$
 (binary search)

Solution: $log_b a = 0$, so case 2 says T(n) is O(log n).

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits

$$I = I_h 2^{n/2} + I_l$$

$$J = J_h 2^{n/2} + J_l$$

■ We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$
$$= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer Multiplication Algorithm

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_I$

$$J = J_h 2^{n/2} + J_I$$

Observe that there is a different way to multiply parts:

$$I * J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l$$

- So, T(n) = 3T(n/2) + n, which implies T(n) is $O(n^{\log_2 3})$, by the Master Theorem.
- Thus, T(n) is O(n^{1.585}).