Table S1. Systems of Lotka-Volterra equations used to model the effects of multiple disturbances on the six 3-species motifs explored.

Motifs	Equation systems	Initial parameters values
Tri-trophic food chain	$ \frac{\frac{dX_i}{dt}}{\frac{dX_j}{dt}} = X_i(r_i - \alpha_{ii}X_i - \alpha_{ij}X_j) $ $ \frac{\frac{dX_j}{dt}}{\frac{dX_j}{dt}} = X_j(e_{ij}\alpha_{ij}X_i - \alpha_{jk}X_k - m_j) $ $ \frac{dX_k}{dt} = X_k(e_{jk}\alpha_{jk}X_j - m_k) $	$r_i = 1$ $\alpha_{ii} = 0.001$ $\alpha_{ij}, \alpha_{jk} \in [0.0001, 0.01]$ $e_{ij}, e_{jk} = 0.5$ $m_j, m_k \in [0.01, 0.5]$
Omnivory	$ \frac{dX_i}{dt} = X_i(r_i - \alpha_{ii} - \alpha_{ij}X_j - \alpha_{ik}X_k) \frac{dX_j}{dt} = X_j(e_{ij}\alpha_{ij}X_i - \alpha_{jk}X_k - m_j) \frac{dX_k}{dt} = X_k(e_{ik}\alpha_{ik}X_i + e_{jk}\alpha_{jk}X_j - m_k) $	$r_{i} = 1$ $\alpha_{ii} = 0.001$ $\alpha_{ij}, \alpha_{ik}, \alpha_{jk} \in [0.0001, 0.01]$ $e_{ij}, e_{ik}, e_{jk} = 0.5$ $m_{j}, m_{k} \in [0.01, 0.5]$
Exploitative competition	$ \frac{dX_i}{dt} = X_i(r_i - \alpha_{ii} - \alpha_{ij}X_j - \alpha_{ik}X_k) \frac{dX_j}{dt} = X_j(e_{ij}\alpha_{ij}X_i - \alpha_{jj}\alpha_{jk}X_k - \alpha_{jj}X_j - m_j) \frac{dX_k}{dt} = X_k(e_{ik}\alpha_{ik}X_i - \alpha_{kk}\alpha_{kj}X_j - \alpha_{kk}X_k - m_k) $	$r_{i} = 1$ $\alpha_{ii}, \alpha_{jj}, \alpha_{kk}, \alpha_{jk}, \alpha_{kj} = 0.001$ $\alpha_{ij}, \alpha_{ik}, \in [0.0001, 0.01]$ $e_{ij}, e_{ik} = 0.5$ $m_{j}, m_{k} \in [0.01, 0.5]$
Apparent competition	$ \frac{\frac{dX_i}{dt}}{\frac{dX_j}{dt}} = X_i(r_i - \alpha_{ii}X_i - \alpha_{ik}X_k) \frac{\frac{dX_j}{dt}}{\frac{dX_j}{dt}} = X_j(r_j - \alpha_{jj}X_j - \alpha_{jk}X_k) \frac{\frac{dX_k}{dt}}{\frac{dX_k}{dt}} = X_k(e_{ik}\alpha_{ik}X_i + e_{jk}\alpha_{jk}X_j - m_k) $	$r_{i}, r_{j} = 1$ $\alpha_{ii}, \alpha_{jj} = 0.001$ $\alpha_{ik}, \alpha_{jk} \in [0.0001, 0.01]$ $e_{ik}, e_{jk} = 0.5$ $m_{k} \in [0.01, 0.5]$
Partially disconnected	$ \frac{\frac{dX_i}{dt}}{\frac{dX_j}{dt}} = X_i(r_i - \alpha_{ii}X_i - \alpha_{ik}X_k) $ $ \frac{\frac{dX_j}{dt}}{\frac{dX_j}{dt}} = X_j(r_j - \alpha_{jj}X_j) $ $ \frac{dX_k}{dt} = X_k(e_{ik}\alpha_{ik}X_i - m_k) $	$r_i, r_j = 1$ $\alpha_{ii}, \alpha_{jj} = 0.001$ $\alpha_{ik} \in [0.0001, 0.01]$ $e_{ik} = 0.5$ $m_k \in [0.01, 0.5]$
Disconnected	$ \frac{dX_i}{dt} = X_i(r_i - \alpha_{ii}X_i) \frac{dX_j}{dt} = X_j(r_j - \alpha_{jj}X_j) \frac{dX_k}{dt} = X_k(r_k - \alpha_{kk}X_k) $	$r_i, r_j, r_k = 1$ $\alpha_{ii}, \alpha_{jj}, \alpha_{kk} = 0.001$