Modelagem Computacional: Simulacao v5 - Edidemiologia em Ri	n Computacional: Simulação 05 - Epidemiologia	ı em Rede
---	---	-----------

Alunos: Álvaro Cardoso Vicente de Souza 133536 Gabriel Angelo Cabral Neves 136124

Jhonatan Hiroo Eguchi 133691

Docente: Prof. Dr. Marcos Gonçalves Quiles

Universidade Federal de São Paulo - UNIFESP Instituto de Ciência e Tecnologia - Campus São José dos Campos

São José dos Campos - Brasil

Outubro de 2020

Descrição do modelo

O projeto propõe a simulação da propagação do COVID 19 seguindo o modelo de epidemiologia em rede, esse modelo consiste basicamente na junção do modelo SIR, utilizada na simulação 04, com o modelo de propagação em rede, utilizado na simulação 03, onde existem 10 países, representados através de um grafo e cada vértice desse grafo é um país e comporta um modelo SIRS que conta com três compartimentos que compõem a população total de cada país, a população suscetível a doença, a população infectada pela doença e a população que já se recuperou da doença. Assim, no modelo SIRS, os recuperados podem voltar a ser infectados pela doença.

Para isso, foi usou-se uma implementação de um algoritmo, em Python 3, que leva em conta a variação de cada uma das populações que compõem a população total e as relações entre os países, que podem ter visitantes vindo de outro país vizinho com a doença.

Utilizando-se o método de Euler podemos trabalhar, numericamente, com as equações diferenciais que o modelo SIRS nos proporciona, que descrevem as oscilações nas três populações que compõem a população total de cada país nossa simulação.

A doença tem um tempo de duração definida é curada após um período tempo. Após a doença ser curada, o indivíduo possui um período de imunidade e pode vir a contraí-la novamente ao fim desse período caso haja contato com alguém infectado.

Desta maneira, através da implementação e manipulação de grafos com uma *seed* responsável por determinar as relações entre cada indivíduo, utilizando pacote NetworkX em Python3.

Rede Desenvolvida

Utilizando a *seed* 136124 para a formulação do grafo aleatório que descreve as relações entre os países.

Para a confecção de um grafo que possui um Grau 2 e 10 vértices (países) utilizou-se a seguinte equação:

$$G = \frac{2m}{n}$$

G - Grau do grafo;

m - Número de arestas;

n - Número de vértices.

Modelo Matemático

Utilizou-se o modelo matemático de SIR para obtermos as equações diferenciais que descrevem a variação de cada uma das populações que compõem a população geral:

$$\frac{dS}{dt} = -rSI + fR$$

$$\frac{dI}{dt} = rSI - aI$$

$$\frac{dR}{dt} = aI - fR$$

- *S(t)* População Suscetível;
- *I(t)* População Infectada;
- *R(t)* População Recuperada;
- r Taxa de infecção (inversamente proporcional ao isolamento social);
- a Taxa de recuperação;
- $\frac{1}{a}$ Tempo de infecção;
- f-Taxa de susceptibilidade a reinfecção.

Para essa simulação utilizaremos a seguinte variação das equações:

$$\frac{dS_i}{dt} = -r_i S_i (I_i + \beta_{ij} \gamma_{ij} I_j) + f_i R_i$$

- $S_i(t)$ População Suscetível de um determinado país i;
- $I_i(t)$ População Infectada de um determinado país i;

- $R_i(t)$ População Recuperada de um determinado país i;
- r_i Taxa de infecção (inversamente proporcional ao isolamento social) no país i;
- β_{ij} Variável do modelo estocástico (Probabilidade de ocorrer viagem entre o país i e país j);
- γ_{ij} Número de pessoas presentes na viagem entre o país i e país j;
- f_i Taxa de susceptibilidade a reinfecção no país i.

Resultados e Discussões

Para as simulações foram utilizados os seguintes parâmetros iniciais:

N0 = 100000, N1 = 1000000, N2 = 200000, N3 = 300000, N4 = 500000, N5 = 900000, N6 = 200000, N7 = 800000, N8 = 100000, N9 = 700000, onde N0-9 são os valores das populações totais de cada país.

Taxas de visitação entre os países	Probabilidade de visitação entre os países	
v01 = 0.00035	p01 = 0.3	
v10 = 0.000055	p10 = 0.2	
v15 = 0.00005	p15 = 0.4	
v19 = 0.00006	p19 = 0.35	
v24 = 0.00003	p24 = 0.45	
v25 = 0.000035	p25 = 0.3	
v28 = 0.00002	p28 = 0.45	
v34 = 0.00005	p34 = 0.5	
v36 = 0.0000003	p36 = 0.25	
v37 = 0.0001	p37 = 0.1	
v39 = 0.00018	p39 = 0.6	
v42 = 0.00017	p42 = 0.55	
v43 = 0.00015	p43 = 0.25	
v51 = 0.00027	p51 = 0.45	
v52 = 0.00018	p52 = 0.3	
v63 = 0.000075	p63 = 0.2	
v73 = 0.00007	p73 = 0.4	
v82 = 0.0004	p82 = 0.5	
v91 = 0.000015	p91 = 0.6	
v93 = 0.000025	p93 = 0.55	

Taxas de infecção de cada país	Taxas de recuperação de cada país	Taxas de susceptibilidade a reinfecção de cada país
r0 = 0.000001 r1 = 0.0000002 r2 = 0.0000015 r3 = 0.000001 r4 = 0.0000005 r5 = 0.00000025 r6 = 0.0000009 r7 = 0.0000003	a0 = 1/15 $a1 = 1/15$ $a2 = 1/15$ $a3 = 1/15$ $a4 = 1/15$ $a5 = 1/15$ $a6 = 1/15$ $a7 = 1/15$	f0 = 0.001 $f1 = 0.01$ $f2 = 0.002$ $f3 = 0.003$ $f4 = 0.005$ $f5 = 0.009$ $f6 = 0.002$ $f7 = 0.008$
r8 = 0.000002 $r9 = 0.0000002$	a8 = 1/15 $a9 = 1/15$	f8 = 0.001 $f9 = 0.007$

Modelo determinístico

• Simulação 01 - Epidemia começando no país 3 (mais conexões) com 0,1% da população total infectada.

Sendo o país 3, com maior número de conexões, o epicentro da pandemia, pode-se observar um rápido crescimento de infectados. As regiões que são vizinhas deste país (4, 6, 7 e 9) recebem uma quantidade de infectados que migram e também possuem um crescimento de curva cedo. Para países mais afastados desse centro, como o 0, temos um pequeno número de infectados. Com o tempo, pode-se perceber que países que passaram do pico mas possuem ainda uma quantidade de infectados, podem começar uma nova onda de infecções devido a alguns recuperados retornarem ao grupo de suscetíveis.

Simulação 02 - Epidemia começando nos países 0, 6, 7 e 8 (mais distantes) com 0,1% da população total infectada.

Nessa simulação temos o início da doença nos países (0, 7, 8, 6) mais afastados que possuem apenas uma ligação com os outros países, assim a doença demora um pouco a se espalhar já que ela contamina primeiro a população dos países de origem e vizinhos e mais a frente se espalha para os outros países.

• Simulação 03 - Todos os países começam com 0,01% da população total infectada e possuem uma taxa de infecção menor.

Taxas de infecção de cada país
r0 = 0.0000009
r1 = 0.0000002
r2 = 0.0000009
r3 = 0.0000006
r4 = 0.00000035
r5 = 0.00000015
r6 = 0.00000075
r7 = 0.00000015
r8 = 0.0000009
r9 = 0.00000017

Esta simulação leva em consideração que existe uma pequena quantidade de infectados em todos os países e por esse motivo, há um aumento do isolamento social e com isso o pico de indivíduos com o vírus é menor e a curva achatada.

Modelo estocástico

 Simulação 04 - Epidemia começa no país 3 (mais conexões) com 0,1% da população total infectada.

Para o modelo estocástico, temos a presença dos parâmetros p, que são a probabilidade das pessoas infectadas viajarem para outros países. Pode-se notar uma diferença na população dos infectados em relação ao modelo determinístico, isso pois nem todas a pessoas migram de uma região para outra.