







## Statement Submissions Questions

interval  $[A_i, B_i]$ . To fix the duckinator, she has to fix all of the broken planks and, because rainbows are expensive, she should use the smallest possible number of rainbows.

 $1^*$  Duckinator: Long fence made of wide planks used to catch ducks. The planks are arranged in a line, numbered from 1 to S.

## Standard input

The first line contains three integers, N, M and S. The i-th following N lines contain two integers,  $L_i$  and  $R_i$ , describing the damage done to the duckinator. The i-th following M lines contain three integers  $A_i, B_i$  and  $C_i$ , describing Tiranca's possible superpower actions.

## Standard output

The output should contain the minimum number of rainbows required to repair the duckinator. In case it is impossible to fix, the output should be -1.

## Constraints and notes

- $1 \le S \le 10^5$
- $1 \le C_i \le 10^9$
- $1 \le L_i \le R_i \le S$
- $1 \le N, M \le 10^5$
- The intervals of broken planks may overlap.
- The author made up the term duckinator.

| Input                                          | Output | Explanation                                                                                                                         |
|------------------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------|
| 1 3 15<br>5 10                                 | 6      | There is one broken segment: $[5,10].$                                                                                              |
| 3 7 2<br>6 12 5<br>2 11 6                      |        | We choose $\left[ 2,11\right]$ with the total cost of $6$ to fix it.                                                                |
|                                                |        | Note that another solution would be choosing $\left[3,7\right]$ and $\left[6,12\right]$ , but the total cost of that would be $7$ . |
| 2 4 15 3 7                                     | 23     | There are two broken segments: $\left[3,7\right]$ and $\left[9,10\right]$ .                                                         |
| 9 10<br>2 6 10<br>3 9 15<br>5 12 13<br>8 10 30 |        | We choose $[2,6]$ and $[5,12]$ with the total cost of $23$ to fix it.                                                               |