Chapter 9: More correlation

Features of r	2
r has no units	 3
Change of scale	
Changing the order of x and y	
Changing SDs	
When to use r ?	
Ecological correlation	8
Gubernatorial elections	 9
Illegal votes	
The court case	
Problems	
What is wrong with deduction method?	
Main lesson	
Effect on r	
Association is not causation	16
Example 1	 17
Example 2	
Examples from the news.	

Features of r 2 / 19

r has no units

- \blacksquare The first step in computing r is a conversion to standard units
- \blacksquare As a result, original units like inch, pound, dollar, etc disappear. So r has no units.

3 / 19

Change of scale

- \blacksquare The first step in computing r is a conversion to standard units
- Remember that standard units do not change if we change the scale, i.e., if:
 - we add a constant to all entries of a list
 - we multiply all entries of a list by a positive number
- \blacksquare As a result, r is not affected by changes of scale. So r does not change if:
 - we add a constant to all entries of a list
 - we multiply all entries of a list by a positive number
- That is nice! So the correlation between height and weight of people is the same, whether we measure it in inches and pounds, or in centimeters and kilograms.

4 / 19

Changing the order of x and y

- \blacksquare Remember that r is the average of the products of x and y, after conversion to standard units
- Products do not depend on the order of the factors (for example: $3 \times 8 = 8 \times 3$)
- \blacksquare As a result, the correlation between x and y is the same as the correlation between y and x

5 / 19

Changing SDs

- The appearance of a scatter diagram depends on the SDs. See overhead (Figure 3 on page 145). These two plots have the same correlation coefficient!
- \blacksquare The first step in computing r is a conversion to standard units. Standard units measure how many SDs a value is away from the average.
- \blacksquare So r measures clustering not in absolute terms, but in relative terms relative to the SD
- How to compare scatter diagrams?
 - ♦ In your mind's eye, draw them as Figures 6 and 7 on pages 127 and 129, so that the vertical and horizontal spread cover the same range as in these figures.
 - lack Then pick the panel it looks like most. That gives a good guess of r.

When to use r?

- \blacksquare r should only be used for football shaped scatter diagrams
- \blacksquare If the scatter diagram is not football shaped, r can be misleading. See overhead. Be aware of:
 - Outliers:
 - lacksquare Outliers can throw off the value of r.
 - But don't automatically delete outliers. Investigate what is going on with these values.
 Example: ozone layer
 - Nonlinear association:
 - r measures linear association
 - If the scatter diagram looks curved, don't use r!

7 / 19

Ecological correlation

8 / 19

Gubernatorial elections

- Last Washington State gubernatorial elections
- Gregoire (Democrat) vs Rossi (Republican)
- Very tight race:
 - ◆ First count: Rossi won by a few hundred votes
 - Machine recount: Rossi won by a few hundred votes
 - ◆ Hand recount: Gregoire won by a few hundred votes

9 / 19

Illegal votes

- It turned out that there were illegal votes cast by felons
- Republican party went to court, and argued that Rossi would have won if one accounts for the illegal votes
- UW Stat professors were expert witness in the court case
- The Democrats won the case, and Gregoire is the current governor

The court case

- Case presented by the Republicans:
 - ◆ They identified precincts with a high percentage of Democratic voters
 - ◆ In those precincts, they identified illegal voters
 - ♦ It is impossible to find the ballots of these people, so we don't know what they voted. But the Republicans wanted to guess their vote. Example:
 - lacksquare Suppose 60% voted Democratic in the precinct
 - Suppose they found 100 illegal voters
 - Then they estimated that 60 of these were for the Democrats, and 40 for the Republicans
 - They wanted to deduct these votes from the total
- What problems do you see?

11 / 19

Problems

- Main statistical problems:
 - ◆ The sample of precincts was a convenience sample. It is not fair to only look at a number of special hand-picked precincts.
 - ◆ The method for deducting the votes is not correct
- Moreover:
 - ◆ The democrats also looked for illegal voters:
 - They identified precincts with a high percentage of Republican voters
 - They found illegal voters in these precincts
 - ◆ If they followed the method proposed by the Republicans on their combined sample, then Gregoire would still win.

What is wrong with deduction method?

- We only have information on the percentage of Democratic/Republican votes for the precinct as a group. We do not know how each individual voted.
- The illegal voters are a special subgroup
- The Republicans assumed that this subgroup voted like the people did on average, but that does not have to be true!
- Example:
 - lacktriangle Overall, 55% of the votes were cast by women
 - ullet Using the method of the Republicans, we would guess that 55% of the illegal voters were women
 - ◆ But that is not true! Illegal voters are mostly felons, and felons are mostly men. They are a special subgroup!

13 / 19

Main lesson

- Data on group level is called ecological data
- When you have data on group level (like proportion of Republican voters), then you cannot say much about subgroups or individuals
- If you want to conclude something about individual people, then you want to have data about individual people.

14 / 19

Effect on r

- What is the effect on the correlation coefficient?
 - Ecological correlations (=correlations based on rates or averages of a group) usually overstate the strength of the association.
 - ◆ Why is that?
 - There is a lot of variation between individuals
 - Taking rate or averages of groups removes some of the variation
 - This makes it seem as if there is more clustering
 - ◆ So watch out for this!

Example 1

- The shoe size of children is strongly correlated with reading skills
- Is there an association between shoe size and reading skills? Yes, knowing the reading skills gives you information to guess the shoe size of a child.
- Is there causation? Does learning new words make your feet grow? No!
- There is a confounding factor:
 - ◆ As you grow older, your reading ability increases
 - ◆ As you grow older, your feet grow
 - ◆ So age is a difference between the two groups (the kids who read well, and the kids who read poorly), that affects the outcome (shoe size)
- See diagram on overhead

17 / 19

Example 2

- In the Great Depression (1929-1933), better educated people tended to be unemployed for shorter periods of time.
- Is there an association between education and unemployment periods? Yes, knowing somebody was highly educated, makes you guess that his/her unemployment periods were short
- Does education protect against unemployment? Perhaps...
- There is a confounding factor:
 - ♦ Highly educated people tended to be younger, because education goes up over time
 - Employers tended to prefer to hire younger people
 - ◆ So age is a difference between the two groups (highly educated people, and lowly educated people), that affects the outcome (unemployment period)
- See diagram on overhead

18 / 19

Examples from the news

- Recent examples from the news (see the tab 'Links' on the class website):
 - ◆ Dust may quell hurricanes
 - ◆ Study of psychiatric drug finds new is not better
 - ◆ Cola raises women's osteoporosis risks