Índice

În	Indice								
1.	General								
	1.1.	Fracciones	2						
		1.1.1. Operaciones con fracciones	2						
	1.2.	Notación Científica	13						
	1.3.	Teorema de Pitágoras	16						
	1.4.	Potenciación	17						
2.	Ecuaciones 2								
	2.1.	Ecuaciones	23						
		2.1.1. Forma canónica de la ecuación	26						
		2.1.2. Tipos de ecuaciones	28						
	2.2.	Inecuaciones	33						
		2.2.1. Grafica de inecuaciones	36						
		2.2.2. Tipos de inecuaciones	38						
		2.2.3. Metodo de barras	44						
	2.3.	Sistema de Ecuaciones	56						
3.	Funciones 5								
	3.1.	Función Lineal	57						
	3.2.	Función Cuadratica	57						
	3.3.	Función Polinomica	57						
	3.4.	Conicas	57						
	3.5.	Función Exponencial	57						
	3.6.	Función Logaritmica	57						
	3.7.	Funciones Trigonometricas	57						
4.	Polinomios 5								
	4.1.	Productos notables	59						
	4.2.	Factorizacion	59						
	4.3.	Regla de Ruffini	59						

	4.4. Coeficientes indeterminados	59
	4.5. Radicales	59
5.	Vectores	60
	5.1. vectores	61
	5.2. matrices	61

1. General

1.1. Fracciones

una fracción, número fraccionario, o numero **racional**, es la expresión de una cantidad dividida entre otra cantidad; es decir que representa un cociente no efectuado de 2 números. Las fracciones, como se observan en la imagen Fracción, comunes se componen de: numerador, denominador y línea divisora entre ambos (barra horizontal u oblicua). En una fracción común a/b el denominador "b" expresa la cantidad de partes iguales que representan la unidad y **no puede ser 0**, y el numerador "a" indica cuántas de ellas se toman.

Figura 1: Fracción

El conjunto matemático que contiene a las fracciones de la forma a/b, donde a y b son números enteros y b \neq 0 es el conjunto de los números racionales, denotado como \mathbb{Q} .

Toda fracción es una división y toda división es una fracción. Debido a eso una división se puede convertir en una fracción para ser simplificada.

Las fracciones pueden ser representadas como $num \div denom, numdenom$ o $\frac{num}{denom}$ en una operación matemática.

1.1.1. Operaciones con fracciones

Dado que las fracciones, el conjunto \mathbb{Q} , son una extensión de los números previamente estudiados (conjuntos \mathbb{N} y \mathbb{Z}), se pueden realizar las mismas operaciones, es decir, simplificación, Suma y Resta, Comparación, Multiplicación, División, Potenciación y Radicalización (Raíces).

simplificación

Simplificar una fracción consiste en reducir tanto el numerador como el denominador en iguales proporciones hasta llevarlo a su mínima expresión. Para esto, se deben descomponer en su base y simplificar, eliminar, los números que sean iguales en numerador y denominador. Ejemplo:

$$\frac{21}{9} = \frac{factores(21)}{factores9} = \frac{7 \times 3}{3 \times 3} = \frac{7}{3}$$

$$\frac{154}{22} = \frac{factores(154)}{factores22} = \frac{2 \times 7 \times 11}{2 \times 11} = \frac{7}{1} = 7$$

$$\frac{6}{8} = \frac{factores(6)}{factores8} = \frac{2 \times 3}{2 \times 2 \times 2} = \frac{3}{4}$$

Los 0 a la izquierda se pueden eliminar dividiendo entre 10 tantas veces sea posible:

$$\frac{10}{200} = \frac{1 \times 10}{2 \times 10 \times 10} = \frac{1}{20}$$

Suma y Resta

La suma y la resta entre fracciones puede dividirse en 2 posibilidades:

• Los denominadores son **iguales** En este caso, se deja el mismo denominador y se suman o restan, dependiendo del signo y la operación, los numeradores. Se emplean las mismas reglas con respecto a los signos. Ejemplos:

Suma de fracciones

$$\frac{7}{5} + \frac{19}{5} = \frac{7+19}{5} = \frac{26}{5}$$

Resta de fracciones

$$\frac{7}{5} - \frac{19}{5} = \frac{7 - 19}{5} = \frac{-12}{5}$$

Recordemos que cuando se restan números pueden haber resultados negativos.

Suma de fracciones (signos distintos)

$$\frac{10}{9} + \frac{-8}{9} = \frac{10 + (-8)}{9} = \frac{2}{9}$$

4

Cabe resaltar que siempre hay que tener en cuenta los signos.

Suma algebraica, varias funciones

$$\frac{7}{8} + \frac{-5}{8} - \frac{-9}{8} + \frac{10}{8} = \frac{7 + (-5) - (-9) + 10}{8} = \frac{21}{8}$$

■ Los denominadores son **diferentes** Cuando esto pasa, hay que llevar las fracciones a un denominador común, para de esta forma aplicar lo que ya vimos. Esto se puede hacer de 2 formas, consiguiendo el **mínimo común múltiplo (mcm)** o haciendo una operación "cruzada" y luego multiplicamos el numerador por el mismo numero que multiplicamos el denominador de esa fracción. Ejemplos:

Suma de fracciones con distinto denominador

mcm:

$$\frac{5}{3} + \frac{10}{9}$$
buscamos el M.C.M:
$$M.C.M(3) = 3 & M.C.M(9) = 3^2 \Rightarrow M.C.M(3;9) = 3^2$$

$$\frac{5 \times 3}{3 \times 3} + \frac{10 \times 1}{9 \times 1} = \frac{5 \times 3 + 10}{9} = \frac{25}{9}$$

cruzado: En este método se multiplican directamente los denominadores para crear el nuevo denominador y luego se multiplican los numeradores por los denominadores opuestos.

$$\frac{5}{3} + \frac{10}{9}$$

$$numerador \ 1 = \frac{5}{3} \searrow \frac{10}{9} = 5 \times 9 = 45$$

$$numerador \ 2 = \frac{5}{3} \nearrow \frac{10}{9} = 3 \times 10 = 30$$

$$denominador = \frac{5}{3} \to \frac{10}{9} = 3 \times 9 = 27$$

$$\frac{5 \times 9}{3 \times 9} + \frac{10 \times 3}{9 \times 3} = \frac{45 + 30}{27} = \frac{75}{27}$$

Nota: aunque las fracciones se vean diferentes, tienen el mismo valor, a estas se les conoce como **fracciones equivalentes** y se puede comprobar fácilmente al ver que $25 \times 3 = 75$ y $3 \times 9 = 27$.

Comparación

Para comparar 2 fracciones se de deben tomar en cuenta tanto el numerador como el denominador. Primero se debe asegurar que el denominador sea el mismo y luego comparar los numeradores. Para esto se puede usar cualquiera de los métodos vistos en la suma (M.C.M o cruzado).

La forma mas rápida de hacerlo es con el método de el **cruzado** de la suma, dado que solo hay que conseguir los numeradores, ya que estos métodos (también aplica con el M.C.M) aseguran un denominador común. Ejemplo:

$$\frac{5}{3} : \frac{10}{9}$$

$$numerador \ 1 = \frac{5}{3} \searrow \frac{10}{9} = 5 \times 9 = 45$$

$$numerador \ 2 = \frac{5}{3} \nearrow \frac{10}{9} = 3 \times 10 = 30$$

$$\Rightarrow como \ 45 > 30 \ \frac{5}{3} > \frac{10}{9}$$

Multiplicación

La multiplicación se hace de forma lineal, es decir, se multiplican los numeradores para obtener el numerador y los denominadores para obtener el denominador. Ejemplos:

Multiplicación

$$\frac{7}{5} \times \frac{6}{11} = \frac{7 \times 6}{5 \times 11} = \frac{42}{55}$$
$$\frac{5}{3} \times \frac{10}{9} = \frac{5 \times 10}{3 \times 9} = \frac{50}{27}$$

División

La división se puede hacer de dos formas:

Invirtiendo el denominador

en este caso, se invierte la fracción del denominador (el numerador pasa a ser el denominador y el denominador al numerador) y se multiplica por esta. Ejemplos:

$$\frac{7}{5} \div \frac{6}{11} = \frac{7}{5} \times \frac{11}{6} = \frac{7 \times 11}{5 \times 6} = \frac{77}{30}$$
$$\frac{5}{3} \times \frac{10}{9} = \frac{5}{3} \times \frac{9}{10} = \frac{5 \times 9}{3 \times 10} = \frac{45}{30}$$

Doble C

Se coloca el denominador debajo del numerador de forma que queden 4 números verticales, los extremos se multiplican para dar el numerador y los internos se multiplican y dan como resultado el denominador. Ejemplos:

$$\frac{7}{5} \div \frac{6}{11} = \frac{\frac{7}{5}}{\frac{6}{11}} = \frac{7 \times 11}{5 \times 6} = \frac{77}{30}$$

$$\frac{5}{3} \times \frac{10}{9} = \frac{\boxed{\frac{5}{3}}}{\boxed{\frac{10}{9}}} = \frac{5 \times 9}{\boxed{3 \times 10}} = \frac{45}{30}$$

Potenciación

Una fracción puede tener potencia en su numerador, denominador, ambos o un exponente común para ambos. En el caso de que sea en el numerador o denominador, se resuelve como se acostumbra. Si la potenciación se aplica a ambos elementos, esta se puede dividir, es decir la potencia de una fracción es igual a la potencia del numerador entre la del denominador y con estos se procede de la misma forma que para los conjuntos previamente estudiados, y tienen las mismas propiedades. Ejemplos:

Potencia en el numerador

$$\frac{5^3}{9} = \frac{5 \times 5 \times 5}{9} = \frac{125}{9}$$

Potencia en el denominador

$$\frac{5}{3^4} = \frac{5}{3 \times 3 \times 3 \times 3} = \frac{5}{81}$$

Potencias distintas en numerador y denominador

$$\frac{5^3}{3^4} = \frac{5 \times 5 \times 5}{3 \times 3 \times 3 \times 3} = \frac{125}{81}$$

Potencia afectando a numerador y a denominador

$$\left(\frac{4}{3}\right)^2 = \frac{4^2}{3^2} = \frac{16}{9}$$

Hay que resaltar que la operación opuesta puede realizarse también, es decir, si el numerador y el denominador tienen la misma potencia, se puede colocar una única potencia que afecte a toda la fracción.

$$\frac{2^3}{5^3} = \left(\frac{2}{5}\right)^3$$

$$\frac{2^{4\times2}}{5^{3\times2}} = \left(\frac{2^4}{5^3}\right)^2$$

Radicalización (Raíces)

Una fracción puede contener radicales en su numerador, denominador, ambos o una raíz en común para ambos, y se procede de la misma forma que con la potencia pero siendo este caso una raíz. Si el denominador contiene radicales, puede ser de gran ayuda racionalizar estos, especialmente si se van a realizar operaciones, tales como la adición o la comparación de una fracción con otra. Es también conveniente si la división tiene que realizarse explícitamente. Para racionalizar necesitamos elevar la raíz al mismo termino que esta (2 si es cuadrada, 3 si es cubica, etc), esto se consigue al multiplicar tanto el numerador como el denominador por la raíz que se quiera eliminar, tantas veces como sea necesario (como ya hay 1, seria 1 si es cuadrática, 2 si es cubica, etc). ejemplos:

Nota: una raíz puede ser expresada como una potencia fraccionaria, de esta forma se pueden facilitar cálculos. $\sqrt{a}=a^{\frac{1}{2}},\ \sqrt[3]{a}=a^{\frac{1}{3}},\ \cdots,\ \sqrt[n]{a}=a^{\frac{1}{n}}$

Raíz en el numerador

$$\frac{\sqrt{9}}{5} = \frac{3}{5}$$

Raíz en el denominador

$$\frac{5}{\sqrt{4}} = \frac{5}{2}$$

Raíz distintas en numerador y denominador

$$\frac{\sqrt[3]{27}}{\sqrt{4}} = \frac{3}{2}$$

8

Raíz afectando a numerador y a denominador

$$\sqrt{\frac{4}{25}} = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5}$$

Racionalización

$$\frac{3}{\sqrt{7}} = \frac{3}{\sqrt{7}} \frac{\sqrt{7}}{\sqrt{7}} = \frac{3 \times \sqrt{7}}{\sqrt{7} \times \sqrt{7}} = \frac{3 \times \sqrt{7}}{7}$$

$$\frac{3}{\sqrt[3]{7}} = \frac{3}{\sqrt[3]{7}} \left(\frac{\sqrt[3]{7}}{\sqrt[3]{7}}\right)^2 = \frac{3 \times (\sqrt[3]{7})^2}{\sqrt[3]{7} \times (\sqrt[3]{7})^2} = \frac{3 \times (\sqrt[3]{7})^2}{7}$$

Propiedades

Las propiedades de el conjunto \mathbb{Q} , las mismas que en \mathbb{N} y \mathbb{Z} , siendo estas extrapoladas a fracciones.

Nota: Todo numero entero puede escribirse como fracción, la forma mas simple es colocarle un denominador de 1:

$$10=\frac{10}{1}\qquad 4431=\frac{4431}{1}\qquad -75=\frac{-75}{1}$$
y mas general, con letras: $A=\frac{A}{1}$; $A\in\mathbb{Z}$

Sean $\frac{A}{J}$, $\frac{B}{K}$, $\frac{C}{L}$ fracciones cualquiera.

 Propiedad Conmutativa Tanto para la suma como la multiplicación se cumple que:

Aditiva:

$$\frac{A}{J} + \frac{B}{K} = \frac{B}{K} + \frac{A}{J}$$

$$\frac{3}{2} + \frac{1}{5} = \frac{17}{10} = \frac{1}{5} + \frac{3}{2}$$

Multiplicativa:

$$\frac{A}{J} \times \frac{B}{K} = \frac{B}{K} \times \frac{A}{J}$$

9

$$\frac{3}{2} \times \frac{1}{5} = \frac{3}{10} = \frac{1}{5} \times \frac{3}{2}$$

• Propiedad Asociativa Tanto para la suma como la multiplicación se cumple que:

Aditiva:

$$\frac{A}{J} + \left(\frac{B}{K} + \frac{C}{L}\right) = \left(\frac{A}{J} + \frac{B}{K}\right) + \frac{C}{L}$$

$$\frac{5}{3} + \left(\frac{1}{8} + \frac{7}{6}\right) = \left(\frac{5}{3} + \frac{1}{8}\right) + \frac{7}{6}$$

$$\frac{5}{3} + \frac{1 \times 6 + 7 \times 8}{8 \times 6} = \frac{5 \times 8 + 1 \times 3}{3 \times 8} + \frac{7}{6}$$

$$\frac{5}{3} + \frac{62}{48} = \frac{43}{24} + \frac{7}{6}$$

$$\frac{5 \times 48 + 62 \times 3}{48 \times 3} = \frac{43 \times 6 + 7 \times 24}{24 \times 6}$$

$$\frac{426}{144} = \frac{426}{144}$$

Multiplicativa:

$$\frac{A}{J} \times \left(\frac{B}{K} \times \frac{C}{L}\right) = \left(\frac{A}{J} \times \frac{B}{K}\right) \times \frac{C}{L}$$

$$\frac{5}{3} \times \left(\frac{1}{8} \times \frac{7}{6}\right) = \left(\frac{5}{3} \times \frac{1}{8}\right) \times \frac{7}{6}$$

$$\frac{5}{3} \times \frac{1 \times 7}{8 \times 6} = \frac{1 \times 5}{8 \times 3} \times \frac{7}{6}$$

$$\frac{5}{3} \times \frac{7}{48} = \frac{5}{24} \times \frac{7}{6}$$

$$\frac{5 \times 7}{3 \times 48} = \frac{5 \times 7}{24 \times 6}$$

$$\frac{35}{144} = \frac{35}{144}$$

• Propiedad distributiva se cumple que:

$$\frac{A}{J} \times \left(\frac{B}{K} + \frac{C}{L}\right) = \left(\frac{A}{J} \times \frac{B}{K}\right) + \left(\frac{A}{J} \times \frac{C}{L}\right)$$

$$\frac{1}{7} \times \left(\frac{2}{3} + \frac{4}{5}\right) = \left(\frac{1}{7} \times \frac{2}{3}\right) + \left(\frac{1}{7} \times \frac{4}{5}\right)$$

$$\frac{1}{7} \times \frac{2 \times 5 + 4 \times 3}{3 \times 5} = \left(\frac{1 \times 2}{7 \times 3}\right) + \left(\frac{1 \times 4}{7 \times 5}\right)$$

$$\frac{1}{7} \times \frac{22}{15} = \frac{2}{21} + \frac{4}{35}$$

$$\frac{1 \times 22}{7 \times 15} = \frac{2 \times 35 + 4 \times 21}{21 \times 35}$$

$$\frac{22}{105} = \frac{154}{735}$$

aunque los resultados parezcan diferentes, se puede observar que son **fracciones equivalentes** ya que

$$22 \times 7 = 154$$

У

$$105 \times 7 = 735$$

■ Elemento neutro de la suma Este sigue siento el numero 0, ya que al sumarlo queda igual.

$$\frac{A}{I} + 0 = \frac{A}{I}$$

$$\frac{57}{3} + 0 = \frac{57}{3}$$

■ Elemento neutro de la multiplicación Este es el 1 ya que cualquier numero multiplicado por 1 sigue siendo el mismo

$$\frac{A}{J} \times 1 = \frac{A}{J}$$

$$\frac{28}{9} \times 1 = \frac{28}{9}$$

Fracciones Equivalentes

Como se ha observado, una fracción representa una cantidad especifica. Y por ende, las fracciones equivalentes son aquellas que expresan el mismo número, o cantidad, aunque el numerador y denominador de estas sean distintas. Esto es posible ya que, si se multiplica, o divide, el numerador y denominador de una fracción por el mismo numero, se obtiene una nueva forma de describir la misma cantidad original. (esto es ya que al multiplicar el numerador y el denominador por una misma cantidad, es equivalente a multiplicarlo por 1) $5 \div 5 = 1$, $485 \div 485 = 1$, $-4684 \div -4684 = 1 \rightarrow n \div n = 1$ Ejemplos:

$$\frac{3}{5} = \frac{3 \times 4}{5 \times 4} = \frac{12}{20}$$

$$\frac{-95}{3} = \frac{-95 \times 2}{3 \times 2} = \frac{190}{6}$$

$$\frac{451}{9} = \frac{451 \times 3}{9 \times 3} = \frac{1353}{27}$$

$$\vdots$$

$$\frac{A}{B} = \frac{A \times N}{B \times N} \; ; \; con\{A, B, N\} \in \mathbb{Z}$$

Por lo tanto, para conseguir una fracción equivalente solo hace falta multiplicar el numerador y el denominador, de la función dada, por un numero cualquiera.

Fracción Generatriz

La fracción generatriz es aquella que da como resultado un número decimal, ya sea exacto o periódico, mediante una fracción irreducible, es decir, donde el numerador y el denominador no tienen divisores en común, de manera que la fracción no se puede simplificar en números más pequeños. Para encontrar la fracción generatriz de una expresión en particular se debe distinguir en 3 casos:

• el numero es decimal exacto. Tomamos el número sin la coma decimal y lo dividimos entre diez elevado al número de decimales, y luego simplificamos la fracción.
Ejemplos:

$$0,46 = \frac{46}{10^2} = \frac{46}{100} = \frac{2 \times 23}{50 \times 2} = \frac{23}{50}$$

$$1,125 = \frac{1125}{10^3} = \frac{1125}{1000} = \frac{3^2 \times 5^3}{2^3 \times 5^3} = \frac{9}{8}$$
$$2,4 = \frac{24}{10} = \frac{3 \times 2 \times 2 \times 2}{5 \times 2} = \frac{12}{5}$$

■ El numero es periódico puro. Tomamos el número sin la coma decimal, usando una única vez el periodo, y le restamos la parte entera. Luego, al resultado lo dividimos entre un número que tenga tantos nueves como cifras tiene el periodo, y finalmente simplificamos hasta hallar la fracción irreductible.

$$1, \widehat{5} = \frac{15 - 1}{9} = \frac{14}{9}$$

$$4, \widehat{789} = \frac{4789 - 4}{999} = \frac{4785}{999} = \frac{1595 \times 3}{333 \times 3} = \frac{1595}{333}$$

$$11, \widehat{45} = \frac{1145 - 11}{99} = \frac{1134}{99} = \frac{2 \times 3^4 \times 7}{3^2 \times 11} = \frac{2 \times 3^2 \times 7}{11} = \frac{126}{11}$$

■ El numero es periódico mixto. Tomamos el número, sin la coma decimal y repitiendo el periodo solo una vez. A este le restamos el numero formado por la parte entera y la no periódica. Dividimos el resultado entre tantos 9 como el periodo y tantos 0 como la parte decimal.

$$1,2\widehat{31} = \frac{1231 - 12}{990} = \frac{1219}{990}$$
$$31,42\widehat{5} = \frac{31425 - 3142}{900} = \frac{28283}{900}$$
$$0.4\widehat{243} = \frac{4243 - 4}{9990} = \frac{4239}{9990} = \frac{157 \times 3^3}{2 \times 5 \times 37 \times 3^3} = \frac{157}{2 \times 5 \times 37} = \frac{157}{370}$$

Cabe resaltar que: de manera más general, se puede extender el concepto de fracción a un cociente cualquiera de expresiones matemáticas (no necesariamente números), dando origen a funciones, ecuaciones y, permitiendo de esta forma, modelar todo tipo de fenómenos físicos.

1.2. Notación Científica

La notación científica es una forma de escribir números muy grandes o muy pequeños de forma mas sencilla y eficiente. Para esto, se utilizan las propiedades de la potenciación, y que si se multiplica por una potencia de 10 se mueve la coma decimal, si la potencia de 10 es > 0 se mueve hacia la derecha, y si es < 0, se mueve hacia la izquierda.

La idea de la notación científica es escribir el numero resultante de forma **Normalizada**, es decir con un numero distinto de 0 como unidad, luego la coma decimal, el resto de números en el mismo orden que se encontraban (si a partir de un punto solo quedan 0 a la derecha no se colocan), y luego " $\times 10^{exp}$ " donde "exp" seria el numero de veces que se corrió la coma.

De numero a notación científica

se quiere llevar desde un numero sin potencia hacia la forma $unidad, decimales \times 10^{exp}$. Para esto se debe:

1. Conseguir el dígito mas significativo ya que este sera la nueva unidad, único dígito de la parte entera, este es el dígito mas a la izquierda que sea distinto de 0. Ejemplos:

$$235, 39 \ MSD = 2$$
 $0, 12 \ MSD = 1$
 $0, 00000924 \ MSD = 9$
 $-4500000 \ MSD = 4$
 $1507800, 2 \ MSD = 1$

- 2. Conseguir el signo, este es el mismo que el del numero.
- 3. Conseguir la nueva parte decimal. Esta esta conformada por todos los dígitos a la derecha del MSD, este se consiguió en el paso 1. Cabe resaltar que si estos son todos 0, o a partir de cierto punto todos los números hacia la derecha son 0, se omitirán. Ejemplos:

$$235, 39 \ decimal = 3539$$
 $0, 12 \ decimal = 2$
 $0,00000924 \ decimal = 24$
 $-4500000 \ decimal = 5$
 $1507800, 2 \ decimal = 5078002$

- 4. Calcular el exponente. Esta compuesto en 2 partes, el signo y el valor.
 - El signo sera:
 - $\bullet\,$ + si el MSD esta a la izquierda de la coma ","
 - - si el MSD esta a la derecha de la coma ","
 - El valor sera: la cantidad de espacios, números, que se tiene que correr el MSD hasta llegar a ser el único dígito a la izquierda de la coma ","

Ejemplos:

$$2 35, 39 exp = +2$$
 $0, 12 exp = -1$
 $0,000 00 924 exp = -6$
 $-4 500 000 exp = +6$
 $1 507800, 2 exp = +6$

Finalmente:

$$235,39 = 2,3539 \times 10^{2}$$

$$0,12 = 1,2 \times 10^{-1}$$

$$0,000\ 009\ 24 = 9,24 \times 10^{-6}$$

$$-4\ 500\ 000 = -4,5 \times 10^{6}$$

$$1\ 507\ 800,2 = 1,507\ 800\ 2 \times 10^{6}$$

de notación científica a numero

se quiere llevar desde la forma unidad, $decimales \times 10^{exp}$ hacia un numero sin potencia. Para esto se debe correr la coma tantas veces lo diga el exponente y de acuerdo al signo, si es positivo(+, exp > 0) hacia la derecha, si es negativo (-, exp < 0) hacia la izquierda. Cuando no hay mas elementos a la derecha o izquierda(respectivamente del signo del exponente) después de la coma se completa con 0 (ceros).

nota: para ayudar a recordar hacia donde se mueve la coma, es útil usar el menor o mayor como la punta de una flecha, así se tiene que: -5 < 0 entonces hacia la izquierda y 5 > 0 entonces hacia la derecha.

$$2,3539 \times 10^2 = 2$$
, $35 \ 39 = 235,39$
 $1,2 \times 10^{-1} = 0 \ 1$, $2 = 0,12$
 $9,24 \times 10^{-6} = \text{Completamos con 0 a la izquierda: } 0\ 000\ 009$, $24 = 0,000\ 009$ 24
 $-4,5 \times 10^6 = \text{Completamos con 0 a la derecha: } -4$, $500\ 000 = -4\ 500\ 000$
 $1,507\ 800\ 2 \times 10^6 = 1$, $507\ 800\ 2 = 1\ 507\ 800$, 2

Dato curioso: se usan potencias de 10 ya que esta es la base del sistema decimal, es decir, tenemos 10 posibles opciones para la unidad $(\{0,1,2,3,4,5,6,7,8,9\}$, en otros sistemas se utilizan potencias de la base para desplazar la coma, en binario potencias de 2, hexadecimal potencias de 16, etc.

1.3. Teorema de Pitágoras

En matemáticas, el teorema de Pitágoras es una relación fundamental en geometría euclidiana entre los tres lados de un triángulo **rectángulo**. Este teorema se puede escribir como una ecuación que relaciona las longitudes de los lados a, b y c, (catetos e hipotenusa) y a menudo se le llamada ecuación pitagórica y estipula que:

"En todo triangulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos".

Sean a, b los catetos y c la hipotenusa, como se observa en 2:

$$c^2 = a^2 + b^2$$

y despejando para hipotenusa y cada cateto:

$$c = \sqrt{a^2 + b^2}$$

$$a = \sqrt{c^2 - b^2}$$

$$b = \sqrt{c^2 - a^2}$$

Figura 2: Triangulo rectángulo

Recordemos: que la hipotenusa de todo triangulo es el lado mas grande y siempre esta opuesta al ángulo de 90°

1.4. Potenciación

La potenciación es una operación matemática entre 2 términos, base y exponente y se escribe de la forma: $base^{exp}$, la potenciación se puede aplicar a cualquier conjunto de números $(\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C})$ y consiste en:

Multiplicar tantas veces la base como lo indique el exponente

Cuando el exponente es 2 se le suele que esta elevado a **cuadrado** y al exponente 3 se le dice elevado al **cubo** y ante exponentes mayores se suele leer a la cuarta, quinta, etc potencia. O el numero esta elevado a cuatro, cinco, etc.

Nota: Cuando la base es un numero negativo, se encierra este entre paréntesis para evitar confusión, ya que el signo si afecta y se multiplica.

Es importante: saber que todo numero elevado a 0 tiene como resultado 1. ejemplos: $5^0 = 1$, $5441^0 = 1$, $(-443148)^0 = 1$, $n^0 = 1$, con n siendo distinto de 0. si la base y el exponente son ambos 0 la operación no esta definida, es decir 0^0 es indeterminado, no existe. Ejemplos:

$$15^{2} = 15 \times 15 = 225$$

$$6^{4} = 6 \times 6 \times 6 \times 6 = 1296$$

$$(-8)^{3} = -8 \times -8 \times -8 = -512$$

$$(-24)^{2} = -24 \times -24 = 576$$

De los ejemplos se observa que:

- Los resultados de la potenciación crecen muy rápido, mientras mayor sea el exponente, mayor sera el valor absoluto del numero resultante siempre que la base sea distinta de 1 o 0.
- todo numero elevado a 1 es el mismo numero.
- Si la base es 1 el resultado siempre sera 1.
- Todo numero elevado a una potencia par da resultado positivo

para las fracciones, se utiliza una propiedad de la potenciación, y se elevan tanto el numerador como el denominador al exponente común. Ejemplos:

$$\left(\frac{10}{8}\right)^3 = \frac{10^3}{8^3} = \frac{10 \times 10 \times 10}{8 \times 8 \times 8} = \frac{1000}{512}$$

$$\left(\frac{5}{3}\right)^2 = \frac{5^2}{3^2} = \frac{5 \times 5}{3 \times 3} = \frac{25}{9}$$

$$\left(\frac{-8}{7}\right)^4 = \frac{(-8)^4}{7^4} = \frac{-8 \times -8 \times -8 \times -8}{7 \times 7 \times 7 \times 7} = \frac{4096}{2401}$$

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \frac{a \times a \times \cdots \times a}{b \times b \times \cdots \times a}$$

Propiedades de la potenciación

Potencia Par

Como se menciono anteriormente, todo numero elevado a una potencia par da como resultado un numero positivo, además, es bueno recordar que un numero par tiene la forma $2 \times N$, con $N \in \mathbb{Z}$ o dicho de otra forma, es divisible entre 2.

$$(-8)^{4} = -8 \times -8 \times -8 \times -8 = 4096$$

$$9^{3} = 9 \times 9 \times 9 = 729$$

$$(-864)^{2} = -864 \times -864 = -746496$$

$$(-1)^{8} = -1 \times -1 \times -1 \times \cdots \times -1 = 1$$

Potencia Impar

En este caso, todo numero elevado a potencia impar tendrá el mismo signo que la base. De nuevo, recordemos que un numero impar tiene la forma $(2 \times N) + 1$, es decir, no es divisible entre 2.

$$(-3)^{3} = -3 \times -3 \times -3 = -27$$

$$(-745)^{1} = -745$$

$$(-2)^{7} = -2 \times -2 \times -2 \times \cdots \times -2 = -128$$

$$(-1)^{97} = -1 \times -1 \times -1 \times \cdots \times -1 = -1$$

Exponente Negativo

Un exponente negativo en una potencia implica que la base es una fracción con numerador 1 y denominador base, como el numerador es 1 el exponente solo afectara en el denominador y sera un numero positivo, es decir:

$$A^{-n} = \frac{1}{A^n}$$

Ejemplos:

$$7^{-1} = \frac{1}{7}$$

$$5^{-4} = \frac{1}{5^4} = \frac{1}{625}$$

$$(-4)^{-3} = \frac{1}{(-4)^3} = \frac{1}{64}$$

$$98^{-2} = \frac{1}{98} \left(\frac{3}{4}\right)^{-2} = \frac{1}{\left(\frac{3}{4}\right)^2} = \frac{4^2}{3^2} = \frac{16}{9}$$

Multiplicación de potencias de igual base

Cuando se multiplican 2 o mas potencias de igual base, se deja la misma base y se **suman** los exponentes. Ejemplos:

$$2^{10} \times 2^{5} = 2^{10+5} = 2^{15} = 32768$$

$$5^{2} \times 5^{3} = 5^{2+3} = 5^{5} = 3125$$

$$9 \times 9^{2} = 9^{1+2} = 9^{3} = 729$$

$$\vdots$$

$$A^{m} \times A^{n} = A^{m+n}$$

División de potencia de igual base

Cuando se dividen 2 o mas potencias de igual base, se deja la misma base y se **restan** los exponentes. Ejemplos:

$$2^{10} \div 2^5 = 2^{10-5} = 2^5 = 32$$

$$5^2 \div 5^2 = 5^{2-2} = 5^0 = 1$$

$$9^4 \div 9^2 = 9^{4-2} = 9^2 = 81$$

$$\vdots$$

$$A^m \div A^n = A^{m-n}$$

Potencia de un producto

La potencia de un producto es igual al producto de los operandos elevados al exponente original, esto es La potencia puede repartirse a los multiplicandos, $(A \times B)^n = A^n \times B^n$.

Se hace especial énfasis en que es en **productos**, esto **no aplica ni en suma ni en restas**, en esos casos se usan **productos notables**.

Ejemplos:

$$(3 \times 5)^2 = 3^2 \times 5^2 = 9 \times 25 = 225$$
$$(10 \times (-3))^3 = 10^3 \times (-3)^3 = 1000 \times (-27) = -27000$$
$$(5 \times 4)^4 = 5^4 \times 4^4 = 625 \times 256 = 160000$$

potencia de un cociente

La potencia de un cociente es igual al cociente de los operandos elevados al exponente original, es decir, La potencia puede repartirse al numerador y al denominador. De nuevo se recuerda que LA POTENCIA NO SE PUEDE REPARTIR EN SUMA O RESTA, de presentarse una operación de ese estilo se aplica un producto notable (véase Referenciasproducto-notable).

$$\left(\frac{A}{B}\right)^n = \frac{A^n}{B^n}$$

$$\left(\frac{2}{3}\right)^3 = \frac{2^3}{3^3} = \frac{8}{27}$$

$$\left(\frac{7}{5}\right)^2 = \frac{7^2}{5^2} = \frac{49}{25}$$

$$\left(\frac{8}{9}\right)^4 = \frac{8^4}{9^4} = \frac{4096}{6561}$$

$$\left(\frac{-1}{2}\right)^{10} = \frac{(-1)^{10}}{2^{10}} = \frac{1}{1024}$$

Potencia de una potencia

La potencia de una potencia es igual a una nueva potencia, esta tiene como base la original y como exponente el producto de los dos exponentes de la original. De esta forma: $(B^{exp1})^{exp2} = B^{exp1 \times exp2}$ donde B es la base y exp1, exp2 los exponentes.

$$(5^{2})^{3} = 5^{2 \times 3} = 5^{6} = 15625$$

$$(7^{2})^{2} = 7^{2 \times 2} = 7^{4} = 2401$$

$$(2^{3})^{4} = 2^{3 \times 4} = 2^{1}2 = 4096$$

$$\left(\left(\frac{-1}{2}\right)^{5}\right)^{2} = \left(\frac{-1}{2}\right)^{2 \times 5} = \left(\frac{-1}{2}\right)^{10} = \frac{(-1)^{10}}{2^{10}} = \frac{1}{1024}$$

Exponente Racional

Un exponente racional implica que el numero que es el exponente pertenece al conjunto \mathbb{Q} , es una fracción. De este tipo de expresiones es que se crearon las raíces, ya que son un

caso particular del mismo (cuando el numerador es 1), esto significa que: $A^{\frac{1}{den}}=\sqrt[den]{A}$

Por otro lado, el numerador actúa como un exponente normal, siendo la expresión general:

$$A^{\frac{num}{den}} = \sqrt[den]{A^{num}}$$

Ejemplos:

$$10^{\frac{1}{4}} = \sqrt[4]{10}$$

$$5^{\frac{2}{3}} = \sqrt[3]{5^2} = \sqrt[3]{25}$$

$$44^{\frac{-2}{5}} = \frac{1}{44^{\frac{2}{5}}} = \frac{1}{\sqrt[5]{44^2}} = \frac{1}{\sqrt[5]{1936}}$$

$$(-3)^{\frac{4}{5}} = \sqrt[5]{(-3)^4} = \sqrt[5]{81}$$

Potencia Indeterminada

La potencia 0^0 es una potencia indeterminada, es decir no existe, para referirse a este tipo de resultados se dice que **presenta una forma indeterminada** 0^0 .

Como dato curioso: Existen otras formas indeterminadas por ejemplo $\frac{0}{0}$, $\frac{\infty}{\infty}$ los cuales se estudian en cursos universitarios y superiores con **limites**.

Cabe resaltar: que es posible encontrarse mas de una propiedad en la misma potencia, y para resolverla basta con aplicar las propiedades que hagan falta, paso a paso.

2. Ecuaciones

2.1. Ecuaciones

Una ecuación es una igualdad entre dos expresiones que contienen una o mas variables. Esta es una expresión algebraica conformada una o mas variables y operadores numéricos; estos se relacionan mediante operaciones como suma, resta, multiplicación, división, potenciación, entre otras; y el objetivo es conseguir el valor, o valores, de las variables que satisfacen la igualdad. Una ecuación tiene la forma:

$$13x - 9 = 5 + x$$

Donde cada color representa un miembro de la ecuación, x es la variable y se puede observar que en cada miembro hay operaciones suma, resta, y multiplicación

Para resolver una ecuación se procede a "despejar" la variable, este proceso consiste en agrupar todas las variables de un lado y todos los números del otro, realizar las operaciones necesarias para simplificar y que de esta forma quede una única variable igualada a un numero o una expresión. (por expresión se refiere a algún tipo de función, como el valor absoluto, una raíz o una dependencia de otra variable de forma que el resultado sea mas que un único dígito). Para resolver ecuaciones se puede seguir la formula, algoritmo:

- Colocar variables de un lado y los números del otro. Esto se hace siguiendo ciertas reglas:
 - Las sumas pasan como restas.
 - Las restas pasan como sumas.
 - Las multiplicaciones pasan como divisiones. PERO, tienen que estarse multiplicando a todo ese lado de la igualdad.
 - Las divisiones pasan como multiplicaciones. PERO, tienen que estar dividiendo a todos los elementos de ese lado de la igualdad
 - Los **exponentes** como raíces.**PERO**, tienen que estar abarcando a todos los elementos de ese lado de la igualdad
 - Las **raíces** como exponentes. **PERO**, tienen que estar abarcando a todos los elementos de ese lado de la igualdad

Es decir se convierte en su **función inversa**.

• realizar las operaciones necesarias a ambos lados, son independientes, para simplifi-

car la ecuación. Cabe resaltar: que las operaciones deben de realizarse siguiendo

las reglas del álgebra, esto significa:

1. Paréntesis

2. Exponentes

3. Multiplicación y división

4. Suma

y si las operaciones tienen la misma jerarquía, del mismo nivel-tipo, se resuelven de

izquierda a derecha. Recordemos: que hay un tipo especial de operación dentro

de los exponentes, este se llama Referenciasproducto-notable, y ocurre cuando la

variable esta entre paréntesis en una operación de suma o resta y el paréntesis esta

elevado a un exponente. Si no recuerda como resolverlo vaya a Referenciasproducto-

notable.

• En este punto deben de quedar expresiones sencillas a ambos lados de la igualdad,

si no es que solo quedan números y una variable. por lo tanto:

Si la variable esta sola: La ecuación esta resuelta(si la variable esta sola pero

negativa se invierten los signos de la igualdad).

Si la variable esta siendo multiplicada o dividida: se despeja para dejarla

sola, se resuelve la operación resultante y este seria el resultado final

Ejemplos: Resolver las siguientes ecuaciones:

$$13x - 9 = 5 + x$$

$$13x - x = 5 + 9$$

$$12x = 14$$

$$x = \frac{14}{12}$$

$$x = \frac{7}{6}$$

$$124 + 18x - 40 = (19 + 45x) \times 2$$

$$\frac{124 + 18x - 40}{2} = 19 + 45x$$

$$\frac{124}{2} + \frac{18x}{2} - \frac{40}{2} = 19 + 45x$$

$$\frac{18x}{2} - 45x = 19 - \frac{124}{2} + \frac{40}{2}$$

$$9x - 45x = 19 - 62 + 20$$

$$-36x = -23$$

$$x = \frac{-23}{-36}$$

$$x = \frac{23}{36}$$

$$(25x + 48)^{2} - 10 = 666$$

$$(25x + 48)^{2} = 666 + 10$$

$$25x + 48 = \sqrt{676}$$

$$25x + 48 = 26$$

$$25x = 26 - 48$$

$$x = \frac{-22}{25}$$

$$\frac{150x + 40 - 65}{-50x + 89} = 9$$

$$150x + 40 - 65 = 9 \times (-50x + 89)$$

$$150x - 25 = 9 \times (-50x) + 9 \times 89$$

$$150x - 25 = -450x + 801$$

$$150x + 450x = 801 + 25$$

$$600x = 826$$

$$x = \frac{826}{600}$$

$$x = \frac{413}{300}$$

Notesé que: la forma de resolver las ecuaciones siempre es la misma, se despeja hasta conseguir que todas las variables estén de un lado y todos los números del otro y se realizan las operaciones.

Consejo: cuando se tienen fracciones o denominadores de un polinomio siempre suele ser mas sencillo buscar colocar de forma lineal, para esto se suele usar M.C.M o operaciones cruzadas hasta tener un denominador común, luego ese denominador se despeja.

2.1.1. Forma canónica de la ecuación

Este es un caso particular de las ecuaciones, y es de suma importancia para el estudio y la resolución de las mismas. Se dice que una ecuación esta en su **forma canónica** cuando uno de sus miembros, lados, es 0 y el otro miembro no puede ser simplificado mas, es decir hay una expresión igualada a 0.

La importancia de este tipo de ecuaciones es que facilitan la resolución en ciertos casos y en otros permiten la interpretación de un fenómeno físico con mayor claridad. **Recordemos** que las matemáticas son utilizadas para describir el comportamiento y la evolución de fenómenos físicos para de esta forma entender a mayor profundidad el mundo que nos rodea.

La forma de resolver una ecuación en forma canónica es la misma que la explicada anteriormente. y para colocar una ecuación a su forma canónica basta con pasar todos los elementos a un mismo lado, siguiendo las reglas del despeje. Ejemplos:

Llevando las ecuaciones anteriores a su forma canónica:

$$13x - 9 = 5 + x$$
$$13x - x - 9 - 5 = 0$$
$$12x - 14 = 0$$

$$124 + 18x - 40 = (19 + 45x) \times 2$$

$$\frac{124 + 18x - 40}{2} = 19 + 45x$$

$$\frac{124}{2} + \frac{18x}{2} - \frac{40}{2} = 19 + 45x$$

$$\frac{124}{2} + \frac{18x}{2} - \frac{40}{2} - 19 - 45x = 0$$

$$62 + 9x - 20 - 19 - 45x = 0 - 36x + 23 = 0$$

$$(25x + 48)^{2} - 10 = 666$$

$$(25x + 48)^{2} = 666 + 10$$

$$25x + 48 = \sqrt{676}$$

$$25x + 48 = 26$$

$$25x + 48 - 26 = 0$$

$$25x + 22 = 0$$

2.1.2. Tipos de ecuaciones

Existen muchos tipos de ecuaciones, estas se clasifican por el tipo de operaciones que son necesarias para resolverlas. La clasificación mas común, y la que se estudiara es la de **ecuaciones algebraicas**, esta recibe este nombre dado que para resolverla solo hacen falta operaciones algebraicas.

Cabe resaltar que existen otro tipo de ecuaciones como las logarítmicas diferenciales, integrales y funcionales, estas no se estudiaran ya que pertenecen a cursos mas avanzados.

Las ecuaciones algebraicas, se suelen sub dividir según el grado del polinomio en:

- De primer grado o lineales.
- De segundo grado o cuadráticas.
- De tercer grado o cubicas.

:

■ De grado n, n $\in \mathbb{N}$.

recordemos que el grado de un polinomio es el exponente mas alto al que esta elevado la variable independiente.

Ecuaciones 1er orden

Su forma canónica es: ax + b = 0; $a, b \in \mathbb{R}$ a es llamado coeficiente de x y b es el termino independiente.

Este tipo de ecuaciones se resuelven de la forma previamente estudiada, es decir se despeja la x siguiendo las reglas anteriormente nombradas. Ejemplo:

$$10x + 50 = 3$$
$$10x = 3 - 50$$
$$x = \frac{-47}{10}$$
$$x = -4.7$$

$$(95x - 10)^{3} = 27$$
$$95x - 10 = \sqrt[3]{27}$$
$$95x = 3 + 10$$
$$x = \frac{13}{95}$$

Ecuaciones 2do orden

Su forma canónica es: $a_1x^2 + a_2x + b = 0$; $a, b \in \mathbb{R}$ a_1, a_2 son llamados coeficientes de x y b es el termino independiente.

Para resolver este tipo de ecuación se busca expresarlo en su forma canónica y aplicar una formula, a esta se le suele llamar **resolvente cuadrática**, o solo **resolvente** pero al ser tan utilizada se le conoce de muchas formas...

Cabe resaltar que: también se puede escribir la forma canónica de la forma: $ax^2 + bx + c = 0$, es lo mismo, pero la formula que se usa para resolver este tipo de ecuaciones suele llevar a, b, c.

La formula a usar es:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

donde a, b, c son respectivamente los coeficientes de la formula.

También se observa que existe un símbolo \pm este indica que pueden haber **2 resultados posibles que satisfacen la ecuación**. Para conseguirlos se tiene que resolver 2 veces todos los cálculos, **1 vez sumando** y **1 vez restando**, es decir, \pm se va a reemplazar por un + para x_1 y por un - para x_2 . Ejemplos:

$$x^2 + 5x - 14 = 0$$

identificamos que: a=1,b=5,c=-14

entonces, procedemos a sustituir en la formula:

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times -14}}{2 \times 1}$$
$$x = \frac{-5 \pm \sqrt{25 + 56}}{2}$$
$$x = \frac{-5 \pm \sqrt{81}}{2}$$

Luego, realizamos las 2 operaciones:

$$x_{1} = \frac{-5 + \sqrt{81}}{2}$$

$$x_{2} = \frac{-5 - \sqrt{81}}{2}$$

$$x_{1} = \frac{-5 + 9}{2}$$

$$x_{2} = \frac{-5 - 9}{2}$$

$$x_{1} = \frac{4}{2}$$

$$x_{2} = \frac{-14}{2}$$

$$x_{1} = 2$$

$$x_{2} = -7$$

Algunas veces la raíz interna no es exacta, en esos casos se deja expresado:

$$x^2 + 5x - 9 = 0$$

identificamos que: a=1,b=5,c=-9

entonces, procedemos a sustituir en la formula:

$$x = \frac{-5 \pm \sqrt{5^2 - 4 \times 1 \times -9}}{2 \times 1}$$
$$x = \frac{-5 \pm \sqrt{25 + 36}}{2}$$
$$x = \frac{-5 \pm \sqrt{61}}{2}$$

y entonces, queda de la forma:

$$x_1 = \frac{-5 + \sqrt{61}}{2}$$
; $x_2 = \frac{-5 - \sqrt{61}}{2}$

En otras ocasiones se tendrá que despejar antes de aplicar la formula:

$$4x + 186 = -10x + 5x^{2}$$
$$-5x^{2} + 4x + 10x + 186 = 0$$
$$-5x^{2} + 14x + 186 = 0$$

identificamos que: a = -5, b = 14, c = 186

entonces, procedemos a sustituir en la formula:

$$x = \frac{-14 \pm \sqrt{14^2 - 4 \times -5 \times 186}}{2 \times -5}$$
$$x = \frac{-14 \pm \sqrt{196 + 3720}}{-10}$$
$$x = \frac{-14 \pm \sqrt{3916}}{-10}$$

y entonces, queda de la forma:

$$x_1 = \frac{-14 + \sqrt{3916}}{-10}$$
; $x_2 = \frac{-14 - \sqrt{3916}}{-10}$

Y en algunos casos la raíz se hará 0 y se terminara con que ambos valores serán el mismo:

$$x^2 + 4xx_1 = x_2 = -2 + 4 = 0$$

identificamos que: a=1,b=4,c=4

entonces, procedemos a sustituir en la formula:

$$x = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 4}}{2 \times 1}$$
$$x = \frac{-4 \pm \sqrt{16 - 16}}{2}$$
$$x = \frac{-4 \pm 0}{2}$$

y por lo tanto x_1 y x_2 valen: -2

$$x_1 = x_2 = -2$$

Ecuaciones de 3er orden o superior

Su forma canónica es: $a_1x^3 + a_2x^2 + a_3 + b = 0$; $a, b \in \mathbb{R}$ a_1, a_2, a_3 son llamados coeficientes de x y b es el termino independiente.

La forma general es:

$$a_1x^n + a_2x^{n-1} + a_3x^{n-2} + \dots + a_{n+1}x + b = 0$$

donde, $a_1, a_2, a_3, \dots, a_{n+1}$ son los coeficientes, b es el termino independiente y todos estos son números reales. n es llamado exponente máximo, representa el grado y puede ser cualquier numero natural $(n \in \mathbb{N})$

Este tipo de ecuaciones se resuelven al factorizarla, ya que de esta forma se consiguen las raíces. La forma mas común es utilizando el método de **Ruffini**. Véase (Referencias-Factorización) para una explicación mas profunda. Ejemplos:

Recordemos que: las raíces son los valores que hacen 0 el polinomio- expresión y que por lo tanto hacen cumplir la igualdad en la forma canónica (expresin = 0).

Se pueden presentar varios casos, cuando no hay termino independiente:

$$x^3 + 5x^2 - 14x = 0$$

Procedemos a factorizar primero factor común x

$$x(x^2 + 5x - 14) = 0$$

Luego, nos queda una ecuación de segundo grado, ejemplo anterior:

donde:
$$x_1 = 2x_2 = -7$$

por lo tanto la ecuación factorizada resultante es:

$$x \times (x-2) \times (x+7) = 0$$

y los resultadosde la ecuación son:

$$x_1 = 2$$
, $x_2 = -7$, $x_3 = 0$

Notemos: que se busca factorizar la expresión, al sacar factor común buscamos que nos quede un termino independiente, en ese momento procedemos, según el grado del polinomio resultante, a usar la resolvente cuadrática o Ruffini.

cuando hay termino independiente:

$$2x^3 + 9x^2 + 13x = -6$$

despejando, a su forma canónica:

$$2x^3 + 9x^2 + 13x + 6 = 0$$

Como **HAY** termino independiente, no se puede usar factor común procedemos por Ruffini:Los coeficientes, en orden decreciente, son: 2, 9, 13, 6;

La ecuación factorizada, resultante seria:

$$(x+1) \times (x+2) \times \left(x + \frac{3}{2}\right) = 0$$

y por lo tanto, las soluciones serian: $x_1=-1, x_2=-2, x_3=\frac{-3}{2}$

2.2. Inecuaciones

Una inecuación es una desigualdad algebraica, estas son un equivalente de las Referencias Ecuaciones pero con los operadores relacionales $<,>,\leq,\geq$. Además, las inecuaciones dan como resultado un **conjunto de valores** los cuales cumplen la desigualdad, mientras que la ecuación daba un numero, mas si era de un grado mayor.

Asimismo, las inecuaciones también obedecen a una regla la cual modifica el operador relacional entre los términos:

Si se multiplican o dividen ambos términos de una inecuación por un numero negativo, el operador relacional se invierte. Esta inversión es como sigue:

 \bullet el < pasa a ser >.

- \bullet el > pasa a ser <.
- $el \leq pasa \ a \ ser \geq$.
- $el \ge pasa \ a \ ser \le .$

Esto implica que: si hay igualdad, esta se mantiene (\leq, \geq) . Recuerde que: cuando se pasa un numero a multiplicar o dividir al otro lado de la desigualdad, es el equivalente a multiplicar o dividir (respectivamente) ambos lados por ese numero. Entonces, cuando se despeja un numero negativo que multiplica o divide se invierte el operador relacional.

Es importante resaltar que las inecuaciones pueden ser representadas de forma gráfica, ya que son un conjunto de puntos en la recta real. véase ReferenciasGrafica-inecuaciones.

Ejemplo y explicación:

$$5x + 40 < 0$$

$$5x < -40$$

$$x < \frac{-40}{5}$$

$$x < -8$$

Entonces, la solución es el conjunto de valores que puede tomar x que sean menores a -8, es decir $\{-9, -10, \frac{-354}{2}, -354, \cdots, -\infty\}$ Es decir todos los numero $x \in \mathbb{R}$ (si se trabaja en otro conjunto $\{\mathbb{N}, \mathbb{Z}, \mathbb{Q}\}$ se usa ese conjunto en vez de \mathbb{R}) que cumplen $\{x \in \mathbb{R} : x < -8\}$, otra forma: el conjunto $(-\infty; -8)$.

Se pueden observar que, el proceso de despeje sigue siendo el mismo mas hay un paso adicional, **conseguir el conjunto solución**; este puede ser expresado de 2 formas, como: $\{x \in \mathbb{R} : x < -8\}$ o de la forma $(-\infty; -8)$. Ambos resultados son exactamente iguales, la segunda forma es la mas vista en bachillerato, sin embargo el primero suele ser usado en niveles mas avanzados ya que da mas libertad y permite definir expresiones mas complejas.

Para expresar el resultado en forma de conjunto se debe hacer lo siguiente:

Es importante saber:

Operador relacionar	Nombre	expresión como conjunto
<	Menor que o menor estricto	") " $=$ paréntesis de cierre
>	Mayor que o mayor estricto	" (" = paréntesis de apertura
<u> </u>	Menor o igual que	"] " = Bracket (corchete cuadrado) de cierre
<u> </u>	Mayor o igual que	" [" = Bracket (corchete cuadrado) de apertura

Primera forma

Primero, la forma de decirlo es: $\{x \in \mathbb{R} : x < -8\}$ sea x perteneciente (\in) a los reales (\mathbb{R}) tal que(:) x es menor que -8 (también se puede decir: menor estricto que -8). y para escribirlo solo hay que escribir:

$$\{variable \in conjunto : inecuación final\}$$

En el caso del ejemplo anterior

- variable: x
- conjunto no se especifico, así que asumiremos ℝ ya que es el mas general, e
- expresión: x < -8

y al reemplazar obtenemos el resultado: $\{x \in \mathbb{R} : x < -8\}$

Segunda forma

La forma de decirlo es: $(-\infty; -8)$ el conjunto formado por los números desde menos infinito hasta -8 abierto .

Para escribirlo hay que tener en cuenta

- Cuantos factores-conjuntos tiene, esto es ya que como se vera mas adelante, cuando se tienen polinomios de un grado alto, en valor absoluto o en forma de fracción se crean mas de 1 conjunto solución.
- El tipo de desigualdad, de acuerdo a esto se reemplazara según la tabla 2.2.
- El infinito siempre va con corchete, ya sea de apertura o de cierre, dependiendo de su ubicación.

Se toma en cuenta la forma de la desigualdad, se identifican los términos, cual es el mayor y cual es el menor y siguiendo las normas anteriormente nombradas se coloca:

- " (" o " [", dependiendo del operador, y la consideración del infinito.
- expresión de menor valor en la desigualdad.

• ;

- expresión de mayor valor de la desigualdad.
- ") " o "] ", dependiendo del operador, y la consideración del infinito.

De esta forma se tiene que:

Menor valor $= -\infty$

Mayor valor = -8

Entonces: $(-\infty; -8)$

2.2.1. Gráfica de inecuaciones

Las inecuaciones pueden ser vistas de una forma gráfica, como un conjunto de puntos en la recta real. El punto de inicio suele ser un circulo o punto abierto, o paréntesis, para los intervalos abiertos, creados con "<" o ">" y un punto o circulo coloreado, o corchetes para los intervalos cerrados, los creados con $\le \ge$.

Para crear la gráfica se debe:

- 1. Dibujar la **Recta real**. **Recordemos que:** esta es una linea en la cual se coloca un punto medio, 0, y a su derecha los números positivos y a su izquierda los números negativos, siguiendo el orden numérico tradicional $(\cdots, -2, -1, 0, 1, 2, \cdots)$.
- 2. Marcar los puntos de especial importancia, estos son el 0, como referencia o valor, y luego todos los puntos críticos.

Lo puntos críticos son los números en los cuales se hace 0 una ecuación, para conseguirlos lo que se hace es reemplazar EN LA ULTIMA EXPRESIÓN DE LA INECUACIÓN, es decir cuando se tiene resuelto, y conseguir los valores solución de esta, a veces es mas fácil expresarla en su forma canónica.

3. Comprobar hacia que lado se cumple la desigualdad y marcarlo.

Para esto es suficiente con tomar un punto de prueba a la derecha o izquierda del punto critico, o en un intervalo específico, y comprobar si ese valor satisface la desigualdad, si es así, todos esos puntos forman parte del intervalo solución. Por lo tanto se marcan.:w

Algunos ejemplos son:

Para: x > 0

Recta:

Puntos: 0 únicamente. infinitos de referencia.

Comprobando con $x=1,\ 1>0$? si, por ende se cumple y es hacia la derecha del **punto critico** 0.

Marcas: dado que es una desigualdad abierta (<) el circulo va abierto o se usa un paréntesis

Con paréntesis:

para $x \ge 0$

Con circulo y flecha:

Si fuera $x \geq 0$ lo único que cambiaría seria la parte de marca. Seria un corchete y un punto cerrado:

Con corchete:

Con punto y flecha:

Es mas utilizado la primera forma (corchete y paréntesis) ya que facilita comparaciones en intervalos. Por esto, aunque ambos son equivalentes, de ahora en adelante se graficarán solamente estos.

Otros ejemplos:

x < -5 puntos: -5 valor de la desigualdad, 0 e infinitos referencia.

valores: tomamos un punto, ej 0 (esta a la derecha de -5 en la recta real) entonces: x < -5, 0 < -5? no, no lo es, 0 > -5 y por ende es el otro lado de la recta la que cumple la desigualdad. El lado **izquierdo**. La gráfica es:

2.2.2. Tipos de inecuaciones

Las inecuaciones al igual que las ecuaciones pueden ser clasificadas en distintos tipos, los mas comunes y relevantes son:

- Inecuaciones Lineales.
- Inecuaciones de grado $n, n \neq \{0, 1\}.$
- Inecuaciones con valor absoluto.
- Inecuaciones racionales.

Esta clasificación se hace porque la forma de resolverla varia considerablemente para cada uno de estos.

Inecuaciones Lineales

Las inecuaciones lineales son el equivalente a las ecuaciones algebraicas de grado 1, es decir, son la forma mas fácil de resolver y los ejemplos que se han dado hasta ahora son de este tipo. para resolver estas basta con despejar, de la forma explicada en Referenciasecuaciones, y tener en consideración la inversión de los operadores relacionales al multiplicar o dividir por un numero negativo. **RECUERDE** que: cuando se despeja un numero negativo que multiplica o divide se invierte el operador relacional.

Es importante saber que en este tipo de inecuaciones siempre habrá un único conjunto solución.

Ejemplos:

$$8x - 45 < 9$$

$$8x < 9 + 45$$

$$8x < 54$$

$$x < \frac{54}{8}$$

$$x < \frac{27}{4}$$

Una vez completado el despeje, se procede a crear el conjunto y graficar:

Punto único,
$$\frac{27}{4}$$

Tomando un valor, 0 por conveniencia, a la izquierda de $\frac{27}{4}$ en la recta real, se tiene: $0 < \frac{27}{4}$? si, entonces ese es el lado del intervalo que soluciona la inecuación.

El conjunto:
$$\left(-\infty; \frac{27}{4}\right)$$

La gráfica:

$$-\infty$$
 0 $\frac{1}{6}$ $\frac{27}{4}$ $\frac{1}{7}$ x

$$9 - 45x \le 639$$
$$-45x \le 639 - 9$$
$$-45x \le 630$$
$$x \ge \frac{630}{-45}$$
$$x \ge -14$$

nótese: que como el despeje involucraba pasar de multiplicar a dividir un numero negativo, se invirtió el operador relacional $(\leq \Rightarrow \geq)$

Una vez completado el despeje, se procede a crear el conjunto y graficar:

Punto único, -14

Tomando un valor, 0 por conveniencia, a la derecha de -14 en la recta real, se tiene: $0 \ge -14$? si, entonces ese es el lado del intervalo que soluciona la inecuación.

El conjunto: $[-14; \infty)$

La gráfica:

$$(95x - 10)^{3} > 27$$
$$95x - 10 > \sqrt[3]{27}$$
$$95x > 3 + 10$$
$$x > \frac{13}{95}$$

Una vez completado el despeje, se procede a crear el conjunto y graficar:

Punto único, $\frac{13}{95}$

Tomando un valor, 0 por conveniencia, a la izquierda de $\frac{13}{95}$ en la recta real, se tiene: $0 > \frac{13}{95}$? No, entonces ese no es el lado del intervalo que soluciona la inecuación, por lo

tanto el lado solución es a la derecha de $\frac{13}{95}$.

El conjunto:
$$\left(\frac{13}{95};\infty\right)$$

La gráfica:

$$\frac{3x+1}{7} - \frac{2-4x}{3} \ge \frac{-5x-4}{14} + \frac{7x}{6}$$

M.C.M(7,3,14,6)=42, multiplicamos ambos lados para eliminar denominadores

$$42 \times \left(\frac{3x+1}{7} - \frac{2-4x}{3}\right) \ge 42 \times \left(\frac{-5x-4}{14} + \frac{7x}{6}\right)$$

$$6(3x+1) - 14(2-4x) \ge 3(-5x-4) + 49x$$

$$18x+6-28+56x \ge -15x-12+49x$$

$$18x+56x+15x-49x \ge -12-6+28$$

$$40x \ge 10$$

$$x \ge \frac{10}{40}$$

$$x \ge \frac{1}{4}$$

Una vez completado el despeje, se procede a crear el conjunto y graficar:

Punto único, $\frac{1}{4}$

Tomando un valor, 0 por conveniencia, a la izquierda de $\frac{1}{4}$ en la recta real, se tiene: $0 \ge \frac{1}{4}$? No, entonces ese no es el lado del intervalo que soluciona la inecuación, por lo tanto el lado solución es a la derecha de $\frac{1}{4}$.

El conjunto:
$$\left[\frac{1}{4};\infty\right)$$

La gráfica:

Inecuaciones de grado n

Una inecuaciones de grado n, es el equivalente de las ecuaciones de grado 2 hacia adelante (3,4,5,...) y la forma de resolverlas es distinta a las lineales. Esto es porque se generan mas de 1 punto que crea intervalos, mientras mayor sea el grado de la inecuación mayor puntos se dan y mayor sera la cantidad de **posibles intervalos solución**.

Para resolver una inecuación de este estilo se deben encontrar todos los posibles intervalos y unirlos $(A \cup B)$ intersectarlos $(A \cap B)$

Para resolver este tipo de inecuaciones se deben seguir los siguientes pasos:

- Despejar la inecuación hasta igualar un extremo a 0 (forma canónica).
- Factorizar la ecuación para conseguir los puntos críticos o raíces de la ecuación.
- Graficar los puntos críticos y hallar los intervalos en los que la inecuación se cumpla.
- Formar los intervalos con los puntos críticos y respetando los operadores de relación.

Los puntos 3 y 4 se pueden invertir en orden, dependiendo de los gustos y las dificultades de cada quien puede ser mas sencillo primero graficar o primero encontrar los intervalos.

Para realizar las gráficas, se debe graficar cada posible intervalo. Los posibles intervalos vienen dados por los puntos, raíces, de los **los elementos factorizados**. Cada uno de estos se observa como una inecuación nueva y se grafican, los intervalos solución vienen dados por los punto solución en los cuales se cumple la inecuación, estos puntos a su vez ya indican que tipo de relación guardan (paréntesis o corchetes), por lo tanto es fácil obtener la información.

Para recordar como factorizar puede ir a ReferenciasFactorización.

Para proseguir, tomaremos las ecuaciones resueltas con anterioridad en 2.1.2 y 2.1.2 y nos concentraremos en resolver los intervalos.

Para:
$$x^2 + 5x - 14 < 0$$
 factorizamos $x^2 + 5x - 14 = 0$

$$x^{2} + 5x - 14 = 0$$

 $x_{1} = 2 ; x_{2} = -7$
 $x^{2} + 5x - 14 = 0 \longrightarrow (x - 2)(x + 7) = 0$

Y la inecuación queda:

$$x^{2} + 5x - 14 < 0 \longrightarrow (x - 2)(x + 7) < 0$$

cada factor se graficará independientemente, en la **raíz** como resultado de una inecuación lineal (la raíz es el valor que esta dentro del paréntesis pero con signo opuesto, ej para (x-2) seria x=2, esto sale del despeje... $x-2=0 \rightarrow x=2$).

Por facilidad, se busca que las gráficas tengan la misma referencia, y de ser posible la misma escala, para esto o se dibujan en la misma recta real o se hacen rectas reales iguales o centradas con respecto al 0, ya que este es referencia.

Los puntos son: $P_1 = 2$, $P_2 = -7$

La gráfica de los puntos es::

Dela gráfica se observan los intervalos (por las separaciones) $(-\infty, -7); (-7, 2); (2, +\infty)$

Para saber si se cumple la inecuación en los intervalos, se elige un valor cualquiera que pertenezca al intervalo que se evalúa y se sustituye en la expresión.

Tenemos: Intervalos: $(-\infty, -7)$; (-7, 2); $(2, +\infty)$ Inecuación: (x-2)(x+7) < 0 Valores de muestra, pueden ser cualquiera: -8; 0; 8 (tomamos estos valores por facilidad, cada uno representa su intervalo)

Sustituyendo:

Para -8

$$(-8-2)(-8+7) < 0$$
$$(-10)(-1) < 0$$
$$10 < 0$$

Se observa que no pertenece el intervalo a la solución porque no cumple la inecuación.

Para 0

$$(0-2)(0+7) < 0$$
$$(-2)(7) < 0$$
$$-14 < 0$$

Se observa que si cumple.

Para 8

$$(8-2)(8+7) < 0$$
$$(6)(15) < 0$$
$$90 < 0$$

Se observa que no pertenece el intervalo a la solución.

y de esta forma, el intervalo solución es $x \in (-7, 2)$ y la gráfica es:

Esta forma de resolver es sencilla y practica, la mayor dificultad es las multiplicaciones. Cabe resaltar que **NO ES NECESARIO** hacer las multiplicaciones, ya que con el signo es suficiente. **Recordemos** que todo numero $> o \ge$ que 0 (cero) es positivo y en caso contrario, es < si es negativo o \le si es negativo o 0.

Se hace este énfasis por dos razones.

- Evitar cálculos innecesarios que pueden llevar mucho tiempo.
- Es la base del método de barras o tabla de signos, que es muy utilizado y sirve también para las inecuaciones racionales.

2.2.3. Método de barras

El método de barras o de tabla de signos consiste en hacer una tabla, colocar en la parte superior los intervalos posible solución, a la izquierda colocar todos los términos que impliquen una raíz. Es decir, **Todos los factores que se están multiplicando**

o dividiendo que son de la forma $(x \pm a)$, pueden convertir en 0 la multiplicación. Además, se coloca un renglón adicional para la solución, usualmente al final como si fuera una multiplicación

Posteriormente, se procede a rellenar la tabla con los signos resultantes en el intervalo, se toma un valor perteneciente al intervalo trabajado y se reemplaza en el monomio $(x\pm a)$, se coloca el signo. Luego se multiplican los signos de cada columna y el resultado se coloca en el renglón solución.

El renglón solución indicara que valores toma la inecuación final y se observa si cumple con el operador relacional.

Operador Relacional (inecuación)	Signo que lo satisface
expresin < 0	negativo
$expresin \leq 0$	negativo
expresin > 0	positivo + + + +
$expresin \ge 0$	positivo + + + +

Usando el mismo ejemplo anterior:

Inecuación: (x - 2)(x + 7) < 0

Intervalos: $(-\infty, -7)$; (-7, 2); $(2, +\infty)$

La tabla:

Procedemos a llenar la tabla, calculando: para (x-2):

-8:
$$x-2 \rightarrow -8-2 \rightarrow -10$$
 negativo

0:
$$x-2 \rightarrow 0-2 \rightarrow -2$$
 negativo

8:
$$x-2 \rightarrow 8-2 \rightarrow 6$$
 positivo

para (x+7):

-8:
$$-8 + 7 \rightarrow -1$$
 negativo

0:
$$0+7 \rightarrow 7$$
 positivo

8: $8+7 \rightarrow 15$ positivo

binomio	Intervalos		
	$(-\infty, -7)$	(-7,2)	$(2, +\infty)$
x-2			++++
x+7		++++	++++
Resultado	++++		++++

y de esta forma, el intervalo solución es $x \in (-7, 2)$, ya que es el único negativo y por ende el único que cumple la inecuación y la gráfica es:

Ahora, estudiemos para el caso del operador relacional opuesto, para Inecuación: (x-2)(x+7)>0

El procedimiento es el mismo, y se llega a la misma tabla:

binomio	Intervalos			
	$(-\infty, -7)$	(-7, 2)	$(2,+\infty)$	
x-2			++++	
x+7		++++	++++	
Resultado	++++		++++	

Mas ahora, como se tiene la expresión expresin > 0 buscamos por **TODOS** los intervalos positivos, y se usa el operador de conjuntos unión (\cup) para indicar que ambos satisfacen la inecuación.

Entonces la gráfica resultante es:

Y el conjunto solución es $x \in \{(-\infty; -7) \cup (2; +\infty)\}$. Se lee como, el conjunto formado por la unión de -infinito a -7 con 2 a +infinito.

Además, también se puede expresar como: $\mathbb{R} - [-7; 2]$, mas la otra nomenclatura es mas sencilla y se seguirá trabajando con esa. Notesé que en este caso los intervalos son cerrados, esto es porque ni -7 ni 2 pertenecen al intervalo solución, y por esto se deben añadir al conjunto exclusión. Esta nomenclatura se lee como, todos los reales excepto el conjunto de -7 a 2.

Ahora procedamos con otro ejercicio, esta ecuación fue factorizada anteriormente en ecuaciones de 3er grado (2.1.2) $2x^3 + 9x^2 + 13x = -6 \rightarrow (x+1)(x+2)\left(x+\frac{3}{2}\right) = 0$

Tomando la Factorización y resolviéndo la para los 2 operadores relacionales que nos faltan por ver (\leq , \geq), tenemos:

Para:
$$(x+1)(x+2)(x+\frac{3}{2}) \le 0$$

Los puntos críticos son: -2, $-\frac{3}{2}$ (-1.5), -1 por ende, los intervalos son:

$$(-\infty; -2], [-2; -\frac{3}{2}], [-\frac{3}{2}, -1], [-1, +\infty)$$

Luego procedemos a tomar valores para cada intervalo: $v_1 = -3, v_2 = -1.6, v_3 = -1.6, v_3 = -1.6, v_4 = -1.6, v_5 = -1.6, v_6 = -1.6, v_7 = -1.6, v_8 = -1.6,$

$$-1.1, v_4 = 0$$

Para (x+1):

-3: -3+1=-2 negativo

-1.6: -1.6+1=-0.6 negativo

-1.1: -1.1+1=-0.1 negativo

0: 0+1=1 positivo

Para $\left(x + \frac{3}{2}\right)$:

 $-3: -3 + \frac{3}{2} = -\frac{3}{2}$ negativo

 $-1.6: -1.6 + \frac{3}{2} = -0.1$ negativo

-1.1: $-1.1 + \frac{3}{2} = +0.4$ positivo

0: $0 + \frac{3}{2} = 1.5$ positivo

Para (x+2):

-3: -3+2=-1 negativo

-1.6: -1.6+2=0.4 positivo

-1.1: -1.1+2=0.9 positivo

0: 0+2=2 positivo

binomio	Intervalos			
	$(-\infty; -2]$	$\left[-2; -\frac{3}{2}\right]$	$\left[-\frac{3}{2}, -1 \right]$	$\left[-1,+\infty\right)$
x+1				++++
$\left(x+\frac{3}{2}\right)$			++++	++++
x+2		++++	++++	++++
Resultado		++++		++++

Y el conjunto solución es $x \in \{(-\infty; -2] \cup \left[-\frac{3}{2}, -1\right]\}$ (negativos).

Para: $(x+1)(x+2)(x+\frac{3}{2}) \ge 0$

Tenemos lo mismo, por tanto llegamos a la tabla:

binomio	Intervalos			
	$(-\infty; -2]$	$\left[-2; -\frac{3}{2}\right]$	$\left[-\frac{3}{2}, -1 \right]$	$\left[-1,+\infty\right)$
x+1				++++
$\left(x+\frac{3}{2}\right)$			++++	++++
x+2		++++	++++	++++
Resultado		++++		++++

Y el conjunto solución es $x\in\{\left[-2;\frac{-3}{2}\right]\cup[-1,+\infty)\}$ (positivos). La gráfica resultante es:

Inecuaciones Racionales

Este tipo de inecuaciones tienen la forma $\frac{P(x)}{Q(X)}$ como una de las expresiones y el otro lado esta igualado a 0. P(x), Q(x) son expresiones algebraicas como las que hemos venido trabajando y la forma de resolución de estos es con el método de barras (tabla de signos), con algunas consideraciones adicionales:

- Se factorizar tanto numerador como denominador y se colocan los intervalos correspondientes
- El polinomio denominador NO puede ser 0, ya que la división por 0 no existe, por esto esos intervalos siempre serán ABIERTOS, es decir, con un paréntesis "(" o ")" dependiendo si es apertura o cierre del intervalo.

Ejemplos:

Para $\frac{x^2+x-2}{x} \ge 0$ Primero factorizados tanto numerador como denominador: Numerador:

$$x^{2} + x - 2 = 0. \ a = 1, b = 1, c = -2$$
$$x = \frac{-1 \pm \sqrt{1^{2} - 4 \times 1 \times -2}}{2 \times 1}$$

Al resolver se obtiene: $x_1 = 1, x_2 = -2$

$$\rightarrow (x-1)(x+2) = 0$$

Denominador: x

Y la inecuación factorizada queda de la forma:

$$\frac{(x-1)(x+2)}{x} \ge 0$$

Las raíces, puntos críticos, son: 1, -2, 0. Dando origen a los intervalos: $(-\infty; -2]$, [-2,0), (0,1], $[1,+\infty)$ nótese que los intervalos son **ABIERTOS** en 0, esto es porque si el denominador se hace 0 (único punto en 0), la inecuación no existe y en los infinitos, porque estos se desconocen y por ende no se pueden tomar (misma razón que antes, por eso siempre es abierto en estos "puntos").

De igual forma, procedemos a tomar valores entre los intervalos: -3,-1,0.5,2 por facilidad de los cálculos. entonces tenemos:

Para (x-1): -3 : -3-1 = -4 negativo

-1:-1-1=-2 negativo

0.5:0.5-1=-0.5 negativo

2:2-1=1 positivo

Para (x+2): -3 : -3+2 = -1 negativo

-1:-1+2=1 positivo

-0.5: -0.5+2 = 1.5 positivo

2:2+2=4 positivo

para x: -3: -3 negativo

-1:-1 negativo

0.5:0.5 positivo

2:2 positivo

	$(-\infty; -2]$	[-2,0)	(0,1]	$[1, +\infty)$
x-1				++++
x+2		++++	++++	++++
X			++++	++++
resultado		++++		++++

De lo que se obtiene el intervalo resultado: $\{x \in [-2,0) \cup [1,+\infty)\}$

Y la gráfica es:

Otro ejemplo y un truco: Si se sigue un orden creciente, una vez se presenta el cambio de signo, para un monomio, todos los posteriores tendrán el nuevo signo

$$\frac{(x+1)(x+3)(x-3)}{(x-5)x} \le 0$$

Primero conseguimos los puntos críticos, raíces, estos son:

Numerador:-1,-3,3, en orden creciente, -3,-1,3

denominador:5,0 en orden creciente, 0,5

Por lo tanto, los puntos son -3,-1,0,3,5 y los intervalos son:

$$(-\infty, -3]; [-3, -1]; [-1, 0); (0, 3]; [3, 5); (5, +\infty)$$

Tomando puntos, estos serian, -4,-2,-0.5,1,4,6 y probando:

Para (x+1):

-4:-4+1=-3, negativo

-2: -2+1 = -1, negativo

-0.5:-0.5+1=0.5 positivo cambio de signo

1:1+1=2 positivo

4:4+1=5 positivo

6:6+1=7 positivo

Para (x+3):

-4 :-4+3=-1 negativo

-2:-2+3=1 positivo cambio de signo

-0.5:-0.5+3=2.5 positivo

1:1+3=4 positivo

4:4+3=7 positivo

6:6+4=10 positivo

Para (x-3):

-4:-4-3=-7 negativo

-2:-2-3=-5 negativo

-0.5:-0.5-3=-3.5 negativo

1:1-3=-2 negativo

4 : 4-3=1 positivo cambio de signo

6:6-3=3 positivo

Para x:

-4:-4 negativo

-2:-2 negativo

-0.5:-0.5 negativo

1 : 1 positivo cambio de signo

4 : positivo

6: positivo

Para (x-5):

-4:-4-5=-9 negativo

-2:-2-5 = -7 negativo

-0.5:-0.5-5=-5.5 negativo

1:1-5=-4 negativo

4:4-5=-1 negativo

6:6-5=1 positivo

	$(-\infty, -3]$	[-3, -1]	[-1,0)	(0, 3]	[3, 5)	$(5,+\infty)$
x+1			++++	++++	++++	++++
x-3					++++	++++
x+3		++++	++++	++++	++++	++++
X				++++	++++	++++
x-5						++++
resultado		++++		++++		++++

El intervalo solución es: $x \in \{(-\infty, -3] \cup [-1, 0) \cup [3, 5)\}$

Inecuaciones con valor absoluto

Las inecuaciones con valor absoluto son bastante comunes, y se resuelven de una forma diferente a lo estudiado anteriormente. Para resolverlas se utiliza la definición de valor

absoluto.

Recordemos: que el valor absoluto, también conocido como modulo de un numero real, se escribe |x| es el valor no negativo de la expresión x. Y se define como:

$$|x| = \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$

Para resolver las inecuaciones con valor absoluto, debemos entonces, resolver primero el valor absoluto, luego resolver las inecuaciones resultantes y finalmente conseguir los intervalos que la satisfacen.

Ejemplos:

Cuando el operador es < o \le , los intervalos se conectan:

$$|x| < K \to \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$

Resolviendo tenemos las inecuaciones:

$$x < K \; ; \; -x < K$$

$$x < K$$
; $x > -K$

Y el resultado se escribe de la siguiente forma:

$$-K < x < K \ o \ x \in (-k; k)$$

y la gráfica resultante es:

Como se observa, solo se aplica la definición y se procede a resolver las inecuaciones por separado.

algunos ejemplos mas complejos serian:

$$|x-5| \le 3 \to \begin{cases} x-5, & \text{si } x \ge 0 \\ -x-(-5) = 5-x, & \text{si } x < 0 \end{cases}$$

Resolviendo tenemos las inecuaciones:

$$x-5 \le 3$$

$$x \le 3+5$$

$$x \le 8$$

$$x \le 8$$

$$5-x \le 3$$

$$-x \le 3-5$$

$$-x \le -2$$

$$x \le 8$$

$$x \ge 2$$

y se tiene el intervalo: $2 \leq x \leq 8$ o, de la otra forma, $x \in [2;8]$

Y la gráfica resultante es:

Cuando el operador relacional es > o \geq , los intervalos son separados:

$$|x| > K \to \begin{cases} x, & \text{si } x \ge 0 \\ -x, & \text{si } x < 0 \end{cases}$$

Resolviendo tenemos las inecuaciones:

$$x > K$$
; $-x > K$

$$x > K$$
; $x < -K$

Y el resultado se escribe de la siguiente forma:

$$x \in \{(-\infty; -K) \cup (K; \infty)\}$$

Y la gráfica es:

Otro ejemplo:

$$|x-1| \ge 2x \to \begin{cases} x-1, & \text{si } x \ge 0\\ -x-(-1) = 1-x, & \text{si } x < 0 \end{cases}$$

Resolviendo tenemos las inecuaciones:

$$x-1 \ge 2x$$

$$x-2x \ge 1$$

$$-x \ge 1$$

$$-x \ge 1$$

$$x \le -1$$

$$x \le -1$$

$$x \ge \frac{-1}{-3}$$

$$x \ge \frac{1}{3}$$

y el intervalo solución es $x\in\left\{(-\infty;-1]\cup\left[\frac{1}{3};\infty\right)\right\}$ Y la gráfica es:

Otro ejemplo:

$$\frac{|x+1|}{x} \ge 0 \to \begin{cases} x+1, & \text{si } x \ge 0\\ -x-1, & \text{si } x < 0 \end{cases}$$

Para que la inecuación se cumpla, se tiene que cumplir que $\frac{a}{b} \geq 0$ Como el numerador

siempre dará un resultado positivo (por eso tiene el valor absoluto), lo único que puede modificar el resultado es el denominador, entonces el intervalo estará dictado por que $den \geq 0$

 $x \geq 0 \rightarrow$ el intervalo solución es $x \in (0; \infty)$ abierto, porque el denominador no puede ser 0.

2.3. Sistema de Ecuaciones

Un sistema de ecuaciones, es un conjunto de ecuaciones con mas de una incógnita, variable, las cuales conforman un problema matemático. Para resolverlo se tienen que encontrar los valores de las incógnitas que satisfacen las ecuaciones.

Existen muchos tipos de sistemas de ecuaciones, estos se clasifican según que tipo de ecuaciones lo conforman. En este caso se estudiaran los **sistemas de ecuaciones** algebraicas; estos están conformados únicamente por ecuaciones algebraicas.

Una ecuación de varias variables tiene la forma: $a_1X_1 + a_2X_2 + \cdots + a_nX_n = 0$ o, también $aX, bY, \cdots, cZ = 0$, donde a_1, a_2, \cdots, a_n y/o a, b, z son coeficientes y X_1, X_2, \cdots, X_n y/o X, Y, \cdots, Z son variables independientes.

Los sistemas tienen la forma general:

$$F_1(x_1, \dots, x_n) = 0$$

$$\vdots$$

$$F_n(x_1, \dots, x_n) = 0$$

$$(1)$$

Y a su vez, se dividen por sus posibilidades de resolución en:

- Compatible determinado: El sistema siempre tiene solución única. Tiene tantas incógnitas como ecuaciones.
- Compatible indeterminado: El sistema tiene infinitas soluciones. Tiene mas incógnitas que ecuaciones.
- Incompatible: El sistema no tiene solución, esto se da por alguna incoherencia

mientras resolvemos (división por cero, raíz par de un numero negativo, incompatibilidad de resultados).

El sistema incompatible indeterminado siempre dependerá de alguna variable, quedara expresado en términos de función.

El compatible determinado siempre dará algún valor **único** para cada variable y es el que se estudiara.

2.3.1. Resolución sistemas de ecuaciones

Los métodos mas comunes para resolver los sistemas de ecuaciones son:

- sustitución.
- igualación.
- reducción.

Cabe resaltar que: existen otros métodos, como lo son el método gráfico y los métodos matriciales de Gauss Jordán y kramer.

Sustitución

Consiste en despejar **una** de las incógnitas, de forma que quede *incgnita* = *expresin* y luego sustituir en otra ecuación la incógnita despejada por la expresión, esto da origen a una nueva ecuación la cual tiene una variable menos, repetir hasta que quede una ecuación de una sola variable y resolver. Luego se regresan en la linea sustituyendo las variables por los nuevos valores resultados.

Paso a paso se observa:

Elegir una ecuación (llámesele ec1) y despejar 1 incógnita.

Sustituir el despeje en otra ecuación (llámesele ec2), esto da origen a una nueva ecuación (llámesele sol).

Verificar si la nueva ecuación (sol) tiene mas de 1 variable.

■ Si sol tiene 1 sola variable, se despeja y se obtiene el resultado. Ese resultado se sustituye en ec1 y se obtienen todos los valores

si sol no tiene 1 única variable, despejar alguna otra incógnita y sustituirlo en otra
ecuación (llámesele ec3) y repetir hasta obtener una única variable.

- 3. Funciones
- 3.1. Función Lineal
- 3.2. Función Cuadratica
- 3.3. Función Polinomica
- 3.4. Conicas
- 3.5. Función Exponencial
- 3.6. Función Logaritmica
- 3.7. Funciones Trigonometricas

4. Polinomios

4.1. Productos notables

- cuadraticos
- 4.2. Factorizacion
- 4.3. Regla de Ruffini
- 4.4. Coeficientes indeterminados
- 4.5. Radicales

5. Vectores

- 5.1. vectores
- 5.2. matrices