- 1. Prove by mathematical induction that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 2. Let $r \in \mathbb{R}$ such that $r \neq 1$. Use mathematical induction to prove that

$$\forall n \in \mathbb{Z}^{\geq 0}, \quad \sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}.$$

- 3. [2 marks] Use mathematical induction to prove that $\forall n \geq 2, \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \ldots + \frac{1}{\sqrt{n}} > \sqrt{n}$.
- 4. Prove the following using mathematical induction.
 - (a) $\forall n \ge 3, 2n+1 < 2^n$.
 - (b) $\forall n \geq 1, 2^{2n} 1$ is divisible by 3.
 - (c) $\forall n \geq 0, k \geq 2, k^n 1$ is evenly divisible by (k 1).
- 5. Prove, by strong induction, that you can make exact change for any amount greater than 7 cents using only 3 and 5 cent coins.
- 6. Prove by induction that any convex polygon P with $k \geq 3$ vertices can be decomposed into a set of k-2 traingles whose interiors do not overlap.
- 7. Consider the set S defined recursively as follows:
 - (base case) $3 \in S$, and
 - (recursive step) if $x \in S$ and $y \in S$ then $x + y \in S$.

Prove that S equals the set of all positive integers divisible by 3.

- 8. Prove by induction on n that $8^n 3^n$ is divisible by 5 for any non-negative integer n.
- 9. [2 marks] Let F_n denote the n^{th} Fibonacci number. Prove that $F_n \mod 2 = 0$ if and only if $n \mod 3 = 0$.
- 10. Let us define a *power of two* as either (i) 1, or (ii) $2 \cdot k$, where k is a power of two. Prove by structural induction that the product of any two powers of two is itself a power of two.
- 11. Call a logical proposition truth-preserving if the proposition is true under the all-true truth assignment. Prove the following claim by structural induction on the form of the proposition:

Any logical proposition that uses only the logical connectives \vee and \wedge is truth-preserving.