1 Power-Law

PDF

$$f_X(x) = Cx^{-\alpha} \tag{1}$$

defined for $\Gamma \in (x_{min}, \infty)$ and $\alpha < 1$

Normalizing $\int_{\Gamma} f_X(x) dx = 1$ which gives

$$C = \frac{\alpha - 1}{x_{min}^{1 - \alpha}} \tag{2}$$

and thus

$$f_X(x) = \frac{1 - \alpha}{x_{min}} \left(\frac{x}{x_{min}}\right)^{-\alpha}.$$
 (3)

CDF

$$F_X(x) = 1 - \left(\frac{x}{x_{min}}\right)^{1-\alpha} \tag{4}$$

Expected value

$$\mathbb{E}(X) = \int_{\Gamma} x f_X(x) dx = \begin{cases} \frac{\alpha - 1}{\alpha - 2} x_{min}, & \alpha > 2\\ \infty, & \text{else} \end{cases}$$
 (5)

MLE best estimator \hat{x}_{min} is the smallest x_i in the data (pretty obvious ...) and

$$\hat{\alpha} = 1 + n \left(\sum_{i=1}^{n} \ln \frac{x_i}{x_{min}} \right)^{-1} \tag{6}$$

2 M-files

misc general power_law.m