

Baris dan Deret

A. POLA BILANGAN

- Pola bilangan adalah suatu susunan/baris bilangan yang memiliki keunikan membentuk suatu pola yang teratur.
- Name : Contoh pola bilangan:
 - 1) Pola bilangan ganjil 1, 3, 5, 7, 9, ...
 - 2) Pola bilangan genap 2, 4, 6, 8, 10, ...
 - 3) Pola persegi/kuadrat 1, 4, 9, 16, 25, ...
 - 4) Pola persegi panjang 2, 6, 12, 20, 30, ...
 - 5) Pola segitiga 1, 3, 6, 10, 15, ...
 - 6) Bilangan Fibonacci Tambah dua suku sebelumnya. 1, 1, 2, 3, 5, 8, 13, 21, ...
 - Segitiga Pascal Tambah dua suku diatasnya.

B. BARIS DAN DERET ARITMETIKA

Baris aritmetika adalah barisan bilangan yang mempunyai selisih dua suku yang berurutan selalu tetap.

1, 2, 3, 4, 5, 6, ... beda 1 tiap suku 3, 7, 11, 15, 19, ... beda 4 tiap suku 90, 87, 85, 82, 79, ... beda -3 tiap suku

Numus-rumus baris aritmetika:

Beda [b]

$$\mathbf{b} = \mathbf{U_n} - \mathbf{U_{(n-1)}}$$

Rumus suku ke-n [Sn]

Un = a + (n - 1)b a = U_1 = suku pertama n = banyak bilangan b = beda suku

Un = $S_n - S_{(n-1)}$ Sn = jumlah n suku pertama S(n-1) = jumlah n-1 suku pertama

Rumus suku tengah [Ut]

Berlaku untuk banyak bilangan ganjil.

Ut =
$$\frac{1}{2}$$
 (a + Un) t = $\frac{1}{2}$ (n + 1)

Deret atau jumlah n suku pertama [Sn]

$$Sn = \frac{1}{2} n(2a + (n - 1)b)$$

$$Sn = \frac{1}{2} n(a + Un)$$

$$Sn = n(Ut)$$

Jika baris aritmetika disisipkan k buah bilangan, akan terbentuk baris aritmetika baru.

Perubahan yang terjadi:

- Suku pertama, tengah dan akhir sama dengan barisan sebelumnya.
- 2) Banyak suku baru menjadi

$$n' = n + (n-1)k$$

3) Beda baris baru menjadi

$$\mathbf{b'} = \frac{\mathbf{b}}{\mathbf{k+1}}$$

Persamaan yang dapat diturunkan:

$$\frac{\mathsf{Sn'}}{\mathsf{Sn}} = \frac{\mathsf{n'}}{\mathsf{n}}$$

C. BARIS DAN DERET GEOMETRI

■ Baris geometri adalah barisan bilangan yang mempunyai perbandingan/rasio dua suku yang berurutan dan selalu tetap.

2, 4, 6, 8, 10, ... rasio 2 60, 30, 15, 7.5, ... rasio $\frac{1}{2}$ dimana a \neq 0

🦠 Rumus-rumus baris geometri:

Rasio [r]

$$r = \frac{U_n}{U_{(n-1)}}$$

dimana $r \neq -1 \neq 0 \neq 1$

Rumus suku ke-n [Un]

Un = $\mathbf{a.r^{(n-1)}}$ a = \mathbf{U}_1 = suku pertama n = banyak bilangan r = rasio suku

Un = $S_n - S_{(n-1)}$ Sn = jumlah n suku pertama S(n-1) = jumlah n-1 suku pertama

Rumus suku tengah [Ut]

Berlaku untuk banyak bilangan ganjil.

Ut =
$$\sqrt{a.U_n}$$
 $t = \frac{1}{2} (n + 1)$

Deret atau jumlah n suku pertama [Sn]

$$Sn = \frac{a.(r^n-1)}{r-1}$$
 $Sn = \frac{a.(1-r^n)}{1-r}$

$$Sn = \frac{a.(1 - r^n)}{1 - r}$$

🔪 **Jika baris geometri** disisipkan k buah bilangan, akan terbentuk baris geometri baru.

BG : **U**₁ BG' : **U**₁ 0 0 0 Ut 0 0 0

k bilangan Perubahan yang terjadi:

- 1) Suku pertama, tengah dan akhir sama dengan barisan sebelumnya.
- 2) Banyak suku baru menjadi

$$n' = n + (n-1)k$$

3) Rasio baris baru menjadi k genap

$$\mathbf{r'} = {}^{\mathbf{k}+1}\sqrt{\mathbf{r}}$$

k ganjil

$$\mathbf{r}' = \sqrt[k+1]{\mathbf{r}}$$

atau

$$\mathbf{r}' = -\sqrt[k+1]{\mathbf{r}}$$

BARIS GEOMETRI TAK HINGGA

- 🦠 Baris geometri tak hingga adalah baris geometri yang sukunya dapat mencapai mendekati tak hingga.
- 🔌 Baris geometri tak hingga (BGTH) dibagi menjadi:
 - 1) Baris geometri tak hingga divergen Nilai sukunya membesar, tidak memiliki limit jumlah, rasio r < -1 atau r > 1 (bukan pecahan).
 - 2) Baris geometri tak hingga konvergen Nilai sukunya mengecil, memiliki limit jumlah, rasio -1 < r < 1 dan $r \neq 0$ (pecahan).
- 🔪 Baris geometri tak hingga yang dapat dihitung adalah BGTH konvergen, karena memiliki suku yang nilainya mendekati nol.
- **९ Limit jumlah** [S∞] BGTH konvergen dapat dihitung:

$$S_{\infty} = \frac{a}{1 - r}$$