Динамическая симуляция объемного огня

Стаховский А.В.

Научный руководитель: Кукин Д.П., к.т.н., доцент

Белорусский государственный университет информатики и радиоэлектроники

10 мая 2020 г.

Проблема

В приложениях реального времени существует потребность в симуляции огня (рис. 1).

Требования и ограничения, предъявляемые к решению:

- средняя частота кадров сцены — 60 кадров /сек.;
- максимальная визуальная привлекательность;
- адаптивность под задачи художников.

Рисунок 1 - Кадр из игры Doom Eternal

Цели и задачи исследования

Объектом исследования является огонь в трехмерной графике как один из элементов трехмерной сцены.

Предметом исследования является динамическая симуляция объемного огня в режиме реального времени.

Цель исследования — разработка системы динамической симуляции трехмерного огня.

Задачи исследования:

- Обзор и анализ научных работ по современным алгоритмам анимации огня и трехмерному рендерингу.
- Анализ теории динамической симуляции огня.
- Реализация системы динамической симуляции.

Анализ методов симуляции огня

В 2011 году Чжао Хуэй и его коллеги представили статью [1], в которой авторы проанализировали большое количество методов симуляции огня и предложили свою классификацию методов. Результаты данного исследования можно увидеть в таблице 1.

Таблица 1 - Сравнение производительности различных методов симуляции огня

	Real-time	Realistic	Spatio-temporal complexity	Editability	Interactivity
Texture mapping	High	Low	Low	Low	No
Particle system	Inversely with particles count	Medium	Proportional to particles count	Random large and difficult to control	Medium
Mathematical physics-based	Low	High(physical consistency)	High	Parameter control	High
Cellular automation	Inversely proportional to the complexity of combined requirements	Have certain realistic	Cell simple but the combined complex	Modium	Limited
Tomographic reconstruction	No	High(visual consistency)	Data acquisition and processing complex	No	No

Структура симуляции

В общем случае задача симуляции огня может быть разбита на три непересекающихся подзадачи [2]:

- моделирование;
- анимация;
- визуализация.

Альтернативная схема была предложена Филиппом Боденом в работе [3] (рис. 2).

Рисунок 2 – Структура симуляции, предложенная в [3]

Идея решения

В процессе анализа предыдущих работ по данной теме были выделены следующие идеи, которые легли в основу технического решения:

- Визуальная эффектность симуляции важнее реалистичности.
- Физико-математические методы позволяют достичь высокой реалистичности анимации, однако требуют больших затрат ресурсов.
- Использование аналогий при анимации позволит существенно уменьшить количество расчетов по сравнению с численными методами.

Моделирование

В качестве модели системы была выбрана система частиц, впервые предложенная в Уильямом Томасом Ривзом в 1983 году в работе [4]. В качестве основы для симулятора была использована система для генерации частиц в 2D игре, предложенная в работе [5]. В систему были внесены следующие оптимизации:

- Система полностью адаптирована для работы в 3D пространстве.
- Алгоритмы рендеринга были оптимизированы, что позволило увеличить число частиц в системе с нескольких сотен до десятков тысяч.
- Увеличено количество атрибутов частиц.

Структура симуляции

В качестве структуры симулятора была выбрана схема, предложенная в работе [6]. Общая структура симулятора представлена на рисунке 3.

Рисунок 3 - Иерархия объектов, использованная в разработанном симуляторе

Схема обновления частиц

В качестве основы алгоритма обновления частиц была использована схема, предложенная Вудхаузом в публикации [7] (рис. 4). На шаге обновления позиции также выполняется генерация точек низкого давления давления для анимации частиц и расчет траектории частиц.

Рисунок 4 — Схема обновления частиц в кадре

Промежуточные результаты

На рисунке 5 представлен промежуточный прототип. В данном прототипе все частицы движутся равноускоренно и прямолинейно в сторону эмиссии.

Рисунок 5 - "Наивная" анимация

Анимация частиц

Для анимации частиц был использован алгоритм, предложенный в работе [6].

Рисунок 6 - Алгоритм анимации частиц

Реализация анимации

Реализованная анимация позволила добиться реалистичного движения языка пламени.

Рисунок 7 – Реализация анимации частиц

Текстурные сплэты

Для улучшения рендеринга можно использовать текстурные сплэты — текстуры с альфа-каналом, которые накладываются друг на друга [8].Для увеличения стохастичности следует чередовать различные текстуры. Недостатки метода:

- необходимо ориентировать полигоны на зрителя;
- нереалистичные результаты при наблюдении сверху.

Рисунок 8 — Использование текстурных сплэтов для рендеринга частиц

Производительность системы

Одним из важных экспериментов является поиск максимального количества частиц в системе, при котором сохраняется приемлемая частота кадров (таблица 2). Окружение симуляции использует операционную систему Debian 10 Buster, процессор Intel Core i5-5200U с частотой 2.7GHz, 8 ГБ оперативной памяти и видеокарту Intel(R) HD Graphics 5500.

Таблица 2 – Зависимость частоты кадров от количества частиц в системе

Количество частиц	Средняя частота кадров		
5000	60,00		
10000	58,46		
15000	50,62		
25000	31,94		
50000	15,85		

Список использованных источников І

- Beaudoin P., Paquet S., Poulin P. Realistic and Controllable Fire Simulation. // Graphics Interface. 2001.
- Perry C. H., Picard R. W. Synthesizing Flames and their Spreading. // Proceedings of the Fifth Eurographics Workshop on Animation and Simulation. 1994. P. 1–14.
- 3. Beaudoin P., Paquet S., Poulin P. Realistic and Controllable Fire Simulation. //. 01/2001. P. 159–166.
- Reeves W. T. Particle Systems a Technique for Modeling a Class of Fuzzy Objects. // ACM Trans. Graph. 1983. Vol. 2. P. 91–108.
- 5. *Vries J. de.* Learn OpenGL: An offline transcript of learnopengl.com. 06/2017.

15 / 16

Список использованных источников ІІ

- Somasekaran S. Using Particle Systems to Simulate Real-Time Fire. //. 2005.
- 7. Woodhouse F. Particle systems: The theory. 2002.
- 8. Simulating Fire with Texture Splats. /. X. Wei [et al.] //. 01/2002. P. 227–234.