Decision and Regression Trees

Texts in Computer Science

Michael R. Berthold · Christian Borgelt Frank Höppner · Frank Klawonn Rosaria Silipo

Guide to Intelligent Data Science

How to Intelligently Make Use of Real Data

Second Edition

Summary of this lesson

"Numbers have an important story to tell. They rely on you to give them a voice"
-Stephen Few

Can we explain the data?

*This lesson refers to chapter 8 of the GIDS book

What you will learn

Decision Trees

- How to grow a decision tree
- Possible evaluation measures
- How to deal with numerical attributes
- How to deal with Missing Values

Pruning

- Reduced Error Pruning
- Pessimistic Pruning
- Confidence Level Pruning
- Minimum description length

Regression Trees

Decision trees with numerical target

Datasets

- Datasets used : adult dataset
- Example Workflows:
 - "Decision tree" https://kni.me/w/PV-3WZ-ZquINMsl
 - confusion matrix
 - accuracy measures

Supervised Learning

- A target attribute is predicted based on other attributes
- Assumption: in addition to the object description x, we have also the value for the target attribute y

Classification

- Categorical target attribute
- Which category does a customer belong to?

Regression

- Numerical target attribute
- How much will a customer spend next month?

Decision Trees

A bit of History of Decision Trees

- 1. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: CART: Classification and Regression Trees. Wadsworth, Belmont (1983)
- Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)
- 3. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)
- 4. Is See5/C5.0 Better Than C4.5? https://www.rulequest.com/see5-comparison.html.

Decision Tree Algorithms comparison

	Splitting	Attributes	Missing values	Pruning	Outliers
ID3	Information Gain	Only Categorical	Not handled	No pruning	Susceptible
CART	Gini index / Towing Criteria	Categorical and Numeric	Handled	Cost- complexity pruning	Handled
C4.5	Gain Ratio	Categorical and Numeric	Handled	Error-based pruning	Susceptible

 $Source: \underline{https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.4929\&rep=rep1\&type=pdf}$

What is a Decision Tree

- Decision trees aim to find a hierarchical structure to explain how different areas in the input space correspond to different outcomes.
- Useful for data with a lot of attributes of unknown importance
- The final decision tree often only uses a small subset of the available set of attributes ⇒ Easy interpretation
- They tend to be insensitive to normalization issues and tolerant toward many correlated or noisy attributes.
- Decision trees can reveal unexpected dependencies in the data which would otherwise be hidden in a more complex model.

Simple Decision Tree Example

A simple example for a decision tree to classify animals

Simple Decision Tree Example

A simple example for a decision tree to classify animals

There are three options for splits in a Decision Tree

- Boolean splits: e.g. married? yes/no
- Nominal splits based on categorical attributes e.g. color? red/blue/brown...
- Continuous attributes splits based on numerical attributes e.g. age? ≤25/> 25
- Each split divides the remaining space in two or more disjoint subpartitions
- The resulting hierarchical structure is easy to read and interpret

Decision tree structure: Construction

- Top-down construction approach
 - Build the decision tree from top to bottom, from root to leaves
- Greedy Selection of a test attribute
 - Compute an evaluation measure for all attributes
 - Select the attribute with the best evaluation

Recursive Partitioning

- Divide the example cases according to the values of the test attribute
- Apply the procedure recursively to subsets
- Terminate the recursion if:
 - All cases belong to the same class.
 - No more test attributes are available

Partitioning example

A simple example for a decision tree (left) using two numerical attributes and the corresponding partitioning (right) of the underlying feature space

Decision Trees: An Example

Another Example: Assignment of Drug to a Patient

Let's see how we constructed this tree

Building a tree: the baseline

No	Sex	Age	Blood pr.	Drug
1	male	20	normal	Α
2	female	73	normal	В
3	female	37	high	Α
4	male	33	low	В
5	female	48	high	Α
6	male	29	normal	Α
7	female	52	normal	В
8	male	42	low	В
9	male	61	normal	В
10	female	30	normal	Α
11	female	26	low	В
12	male	54	high	Α

Patient Database

12 example cases3 descriptive attributes1 class target

Building a tree: the baseline

No	Sex	Age	Blood pr.	Drug	Assigned
1	male	20	normal	Α	А
2	female	73	normal	В	Α
3	female	37	high	Α	А
4	male	33	low	В	Α
5	female	48	high	Α	Α
6	male	29	normal	Α	Α
7	female	52	normal	В	А
8	male	42	low	В	Α
9	male	61	normal	В	Α
10	female	30	normal	Α	Α
11	female	26	low	В	А
12	male	54	high	Α	Α

Patient Database

12 example cases3 descriptive attributes1 class target

Assignment of drug (without attributes)
Always assign majority drug
50% correct (6 /12 cases)

Building a tree: selecting test attributes

Sex of the patient

Male vs. Female

Assignment of Drug

Male: 50% correct (3/6 cases)

Female: 50% correct (3/6 cases)

Total: **50% correct** (6/12 cases)

Not that much of an improvement

No	Sex	Drug	Assigned
1	male	Α	А
6	male	Α	Α
12	male	Α	А
4	male	В	Α
8	male	В	А
9	male	В	Α
3	female	А	В
5	female	Α	В
10	female	Α	В
2	female	В	В
7	female	В	В
11	female	В	В

Building a tree: selecting test attributes

Let's try with Blood Pressure

High vs. Normal vs. Low

Assignment of Drug

High: 100% correct (3/3 cases)

Normal: 50% correct (3/6 cases)

Low: 100% correct (3/3 cases)

Total: **75% correct** (9/12 cases)

Better!

No	Blood pr.	Drug	Assigned
3	high	А	Α
5	high	Α	Α
12	high	А	А
2	normal	В	А
7	normal	В	А
9	normal	В	Α
1	normal	А	А
6	normal	Α	Α
10	normal	А	А
11	low	В	В
4	low	В	В
8	low	В	В

Building a tree: selecting test attributes

Let's try with Age

- Sort according to Age
- Find best split on Age (ca. 40 years)

Assignment of Drug

<40: 67% correct (4/6 cases)

>40: 67% correct (4/6 cases)

Total: **67% correct** (8/12 cases)

Better, but not so much

No	Age	Drug	Assigned
1	20	Α	А
11	26	В	Α
6	29	Α	Α
10	30	Α	Α
4	33	В	Α
3	37	Α	А
8	42	В	В
5	48	Α	В
7	52	В	В
12	54	Α	В
9	61	В	В
2	73	В	В

Another Example: Assignment of Drug to a Patient

Let's stick to **Blood Pressure** ...

How do we determine which of the attributes is the "best" one?

Here we use **Class Frequency** as Evaluation Measure

Simple to compute, easy to understand

It works well only on two classes

We can do better ...

... and so on on the remaining data

Decision Tree construction algorithm

Algorithm BuildDecisionTree(\mathcal{D}, \mathcal{A}) input: training data \mathcal{D} , set \mathcal{A} of available attributes output: a decision tree matching \mathcal{D} , using all or a subset of \mathcal{A} if all elements in \mathcal{D} belong to one class return node with corresponding class label elseif $A = \emptyset$ **return** node with majority class label in \mathcal{D} 5 else 6 select attribute $A \in \mathcal{A}$ which best classifies \mathcal{D} create new node holding decision attribute **for** each split v_A of A add new branch below with corresponding test for this split create $\mathcal{D}(v_A) \subset \mathcal{D}$ for which split condition holds 10 11 if $\mathfrak{D}(v_A) = \emptyset$ **return** node with majority class label in \mathcal{D} 13 else 14 add subtree returned by calling **BuildDecisionTree**($\mathcal{D}(v_A), \mathcal{A}\setminus\{A\}$) endif 15 endfor 16 17 return node. 18 endif

Greedy strategy

- Starting from the root node (top-down approach), recursively find the best split at each point
- The recursion stops if:
 - a subset of only one class objects is encountered, or
 - no further attributes for splits are available ⇒ in this case the leaf node is labelled with the majority class

How do we determine which of the attributes is the "best" one?

Which kind of splits are possible?

ID3 Learning Algorithm

Which kind of splits are possible?

– For nominal values:

- Binary splits, some attributes on one side some on the other side
- N-splits, ultimately creating as many branches as there exist attribute values

ID3 learning algorithm:

- Considers only nominal attributes
- Only N-splits into all possible values of an attribute within a single node
- Each node has only one cut choice for splitting -> easier to implement

Decision Trees: Evaluation Measures

Evaluation Measures

How do we determine which of the attributes is the "best" one?

- Information Gain (Kullback/Leibler 1951, Quinlan 1986)
- Gain Ratio (Quinlan 1986 / 1993)

- Gini Index
- $-\chi^2$ Measure

Shannon Entropy

- Intuition: the best split lets us create leaves as soon as possible
- Leaves are created if all the patterns of a branch belong to the same class
- We have to create subsets containing mostly data from one class ⇒ measure of impurity of the subset using the Shannon entropy

$$H_{\mathcal{D}}(\mathcal{C}) = -\sum_{k \in dom(\mathcal{C})} \frac{|\mathcal{D}_{\mathcal{C}=k}|}{|\mathcal{D}|} \log_2 \frac{|\mathcal{D}_{\mathcal{C}=k}|}{|\mathcal{D}|}$$

where $\mathcal{D}_{\mathcal{C}=k}$ is the number of data in class $\mathcal{C}=k$, with $0 \log 0 = 0$

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	tall	normal	no	male

Shannon Entropy

Based on Shannon entropy = measure for information / uncertainty

Entropy
$$(p) = -\sum_{i=0}^{n} p_i \log_2 p_i$$
 for $p \in \mathbb{Q}^n$

Entropy
$$(p) = -\binom{6}{10}\log_2(\frac{6}{10}) + \frac{4}{10}\log_2(\frac{4}{10})$$

 ~ 0.9710

Entropy
$$(p) = -(\frac{10}{10}\log_2(\frac{10}{10}) + \frac{0}{10}\log_2(\frac{0}{10}))$$

= 0

Information Gain

Note. Shannon entropy ranges between 0 and 1

- 0 when all data points belong to one class
- 1 when data points are evenly distributed across all classes
- $H_{\mathcal{D}}(sex) \sim 0.9710$
- The best attribute to split on, is the attribute producing the biggest reduction in entropy from the original set.
- This reduction is called Information Gain

Information Gain

 $-H_{\mathcal{D}}(\mathcal{C},A)$ is the entropy left after the split on attribute A, as the weighted sum of the entropy in the generated subsets

$$H_{\mathcal{D}}(\mathcal{C}, A) = \sum_{a \in dom(A)} \frac{|\mathcal{D}_{\mathcal{A}=a}|}{|\mathcal{D}|} H_{\mathcal{D}_{A=a}}(\mathcal{C})$$

- $-\mathcal{D}_{\mathcal{A}=a}$ are the subsets of \mathcal{D} where attribute A has value a
- $-a \in dom(A)$ are all values in attribute A

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	tall	normal	no	male

$$Entropy_1 = Entropy\left(\frac{3}{4}, \frac{1}{4}\right)$$
 $w_1 = \frac{4}{10}$

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	tall	normal	no	male

$$Entropy_2 = Entropy\left(\frac{2}{3}, \frac{1}{3}\right) \qquad w_2 = \frac{3}{10}$$

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	tall	normal	no	male

$$Entropy_3 = Entropy\left(\frac{1}{3}, \frac{2}{3}\right) \qquad w_3 = \frac{3}{10}$$

Split Criterion: Information Gain

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	0	normal	no 0	male
ex Weigh		$opy_1 + \frac{5}{10}Entr$ $= 0.9710 - 0.4$	$opy_2 + \frac{2}{10}Entrop$ $4855 = 0.4855$	py ₃ ~ 0.485

Another Example: Predicting sex

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
2	short	low	yes	female
3	tall	high	no	male
4	short	normal	yes	female
5	tall	normal	yes	female
6	short	low	no	female
7	short	high	no	male
8	medium	normal	no	female
9	medium	low	yes	female
10	tall	0 rmal	no	male

 $H(Sex|Long\ Hair) = \frac{4}{10}\ Entropy_1 + \frac{6}{10}\ Entropy_2 \sim 0.5510$ $Inf.\ Gain = 0.9710 - 0.5510 = 0.4200$

Feature with highest information gain: Weight

Repeat for **Weight = "normal"**

Remaining Table to be considered

ID	Height	Weight	Long Hair	Sex
1	medium	normal	no	male
4	short	noimai	yes	female
5	tall	norm, al	yes	female
8	medium	no mai	no	female
10	tall	normal	no	male

$$H(Sex|Weight = normal) = -(\frac{2}{5}\log_2(\frac{2}{5}) + \frac{3}{5}\log_2(\frac{3}{5})) \sim 0.9710$$

Find best split for Weight="normal"

ID (Height	Long Hair	Sex
1	medium	no	male
4	short	yes	female
5	tall	yes	female
8	medium	no	female
10	tall	no	male

$$H(Sex|Weight = normal, Height) = \frac{1}{5} Entropy_1 + \frac{2}{5} Entropy_2 + \frac{2}{5} Entropy_3 = 0.8$$

$$Inf. Gain = 0.9710 - 0.8 = 0.1710$$

Remaining Table to be considered

ID	Height	Long Hair	Sex
1	medium	no	male
4	short	yes	female
5	tall	yes	female
8	medium	no	female
10	tall	no	male

$$H(Sex|Weight = normal, Long Hair) = \frac{2}{5} Entropy_1 + \frac{3}{5} Entropy_2 = 0.5510$$

 $Inf. Gain = 0.9710 - 0.5510 = 0.4200$

Repeat for
Weight = "normal",
Long Hair = "no"

Remaining Table to be considered

For the remaining node, only the attribute *Height* is left with the remaining data table:

ID	Height	Long Hair	Sex
1	medium	no	male
8	medium	no	female
10	tall	no	male

Therefore the resulting decision tree is:

Other Evaluation Measures from Information Theory

- Problem: Information Gain favors attributes with many unique values,
 i.e. of two attributes having about the same information content it tends to select the one having more values.
- What happens if we use a unique ID attribute for the splits?
 - The information gain is maximized for the ID feature
 - Each ID results in its own branch (one split per value/object)
 - In most application this result is useless

Solutions

- Gain Ratio
- Gini Index

Gain Ratio

Normalization removes this bias towards attributes with many values

- Compute the **split information** $SI_{\mathcal{D}}(A) = -\sum_{a \in dom(A)} \frac{|\mathcal{D}_{A=a}|}{|\mathcal{D}|} \log \frac{|\mathcal{D}_{A=a}|}{|\mathcal{D}|}$ Entropy distribution for subset $\mathcal{D}_{A=a}$

Normalize information gain with $SI_{\mathcal{D}}(A)$ to obtain the **gain ratio** for a given split

Gini Index is based on Gini Impurity:

$$I_{Gini}(C) = 1 - \sum_{i=1}^{n} p_i^2$$

where $p_i \in \mathbb{Q}^n$ is the frequency of class i and n is the number of classes

Gini Index can be interpreted as the expected error rate

$$I_{Gini_Gain}(C) = I_{Gini}(C) - I_{Gini}(C|A)$$

$$I_{Gini_Gain}(C,A) = \left(1 - \sum_{i=1}^{n_C} p_{i.}^2\right) - \sum_{j=1}^{n_A} p_{.j}^2 \left(1 - \sum_{i=1}^{n_C} p_{i|j}^2\right)$$

Possible Split Criterion: Gini Index

Gini index is based on Gini impurity:

$$Gini(p) = 1 - \sum_{i=1}^{n} p_i^2$$
 for $p \in \mathbb{Q}^n$
 $Gini(p) = 1 - \frac{7^2}{13^2} - \frac{6^2}{13^2}$

Split criterion:

$$\begin{aligned} Gini_{Index} &= \sum_{i=1}^{n} w_{i} Gini_{i} \\ Gini_{Index-after} &= \frac{6}{13} Gini_{1} + \frac{7}{13} Gini_{2} \end{aligned}$$

Next splitting feature:

Feature with lowest $Gini_{Index}$

Impurity of attribute with two possible values (A,B)

- Compares the actual joint distribution with a hypotheitcal independent distribution
- Uses absolute comparison
- Can be interpreted as a difference measure

$$\chi^{2}(C|A) = \sum_{i=1}^{n_{C}} \sum_{j=1}^{n_{A}} N_{..} \frac{(p_{i.}p_{.j} - p_{ij})^{2}}{p_{i.}p_{.j}}$$

Decision Trees: Numerical Attributes

Treatment of Numerical Attributes

Discretization

- Preprocessing I
 - Form equally sized or equally populated intervals (binning)
- Preprocessing II / Multi-splits during tree construction
 - Build a decision tree using only the numeric attribute.
 - Flatten the tree to obtain a multi-interval discretization.
 - Let's see ...

Splitting on Numerical Attributes

- ID3 only focuses on nominal values
- Introduce splits on numeric values
- We only care about splits occurring within class boundaries (i.e. it makes no sense to split a uniform subset into smaller ones)
- Instances are sorted by temperature values
- Three classes: A, B, C

temperature	30	33	37	37	41	41	43	50
class	Α	Α	В	В	В	С	С	Α

Splitting on Numerical Attributes

- Possible splits over temperature numerical values at boundary points
- Note that we cannot split on the dashed line since the same value holds for both classes.
- Define a binary variable for each possible split

Splitting on Numerical Attributes

- Splits at boundary points minimize entropy.
- For binary splits (only one cut point) all boundary points are considered and the one with the smallest entropy is chosen.
- For multiple splits a recursive procedure is applied.

Better restrict splits on numerical attributes to binary splits

The Data

The Solution

$$-H(S) = H(3+,6-) = 0.918$$

$$-I_{Gain}(DAX > 3000) = H(S) - \left(\frac{2}{9}H(2+,0-) + \frac{7}{9}H(1+,6-)\right) = 0.918 - \left(\frac{2}{9}*0.0 + \frac{7}{9}*0.592\right) = 0.458$$

$$-I_{Gain}(DAX > 2250) = H(S) - \left(\frac{5}{9}H(2+,3-) + \frac{4}{9}H(1+,3-)\right) = 0.918 - \left(\frac{5}{9}*0.971 + \frac{4}{9}*0.811\right) = 0.018$$

$$-I_{Gain}(DAX > 2000) = H(S) - \left(\frac{6}{9}H(3+,3-) + \frac{3}{9}H(0+,3-)\right) = 0.918 - \left(\frac{6}{9}*1.0 + \frac{3}{9}*0.0\right) = 0.251$$

$$-I_{Gain}(temp > 12) = H(S) - \left(\frac{6}{9}H(3+,3-) + \frac{3}{9}H(0+,3-)\right) = 0.918 - \left(\frac{6}{9}*1.0 + \frac{3}{9}*0.0\right) = 0.251$$

$$-I_{Gain}(temp > 29) = H(S) - \left(\frac{6}{9}H(3+,3-) + \frac{3}{9}H(0+,3-)\right) = 0.918 - \left(\frac{6}{9}*1.0 + \frac{3}{9}*0.0\right) = 0.251$$

- First best split
- -DAX > 3000

- Second and third best split and final decision tree
- temp > 12, temp > 29

Decision Tree construction: Summary

- Greedly investigate all possible splits
- Weight possible splits by the evaluation measure and the respective size of the subsets
- Choose the split, resulting in the biggest reduction of error

Missing Values

Missing Values

Dealing with missing values in decision trees is quite trivial

During training

- Estimate the impact of the missing value on the information gain measure
- e.g. add a fraction of each class to each partition

During classification

- During the tree traversal, the node relies on a value missing for that record
- Follow both branches
- In the end, merge the results encountered in the two (or more) leaves

Fuzzy Decision Tree can handle degrees of membership

ID	 Temp.	 Play Tennis
ID1	Hot	No
ID2	Hot	No
ID3	Hot	Yes
ID4	Mild	Yes
ID5	???	Yes
ID6	Cool	No
ID7	Cool	Yes
ID8	???	No
ID9	Cool	Yes
ID10	Mild	Yes
ID11	Mild	Yes
ID12	Mild	Yes
ID13	Hot	Yes
ID14	Mild	Yes

ID	•••	Temp.	•••	Play Tennis
ID1		Hot		No
ID2		Hot		No
ID3		Hot		Yes
ID4		Mild		Yes
ID5		Mild		Yes
ID6		Cool		No
ID7		Cool		Yes
ID8		Mild		No
ID9		Cool		Yes
ID10		Mild		Yes
ID11		Mild		Yes
ID12		Mild		Yes
ID13		Hot		Yes
ID14		Mild		Yes

Alternative 1

Replace with most frequent value

- 4* Hot
- 5* Mild
- 3* Cool

ID	 Temp.	 Play Tennis
ID1	Hot	No
ID2	Hot	No
ID3	Hot	Yes
ID4	Mild	Yes
ID5	Mild	Yes
ID6	Cool	No
ID7	Cool	Yes
ID8	Hot	No
ID9	Cool	Yes
ID10	Mild	Yes
ID11	Mild	Yes
ID12	Mild	Yes
ID13	Hot	Yes
ID14	Mild	Yes

Alternative 2

Replace with most frequent value of the same class

PlayTennis = Yes

- 2* Hot
- 4* Mild
- 2* Cool

PlayTennis = No

- 2* Hot
- 1* Mild
- 1* Cool

ID	•••	Temp.	•••	Weight	Play Tennis
ID1		Hot		1.0	No
ID2		Hot		1.0	No
ID3		Hot		1.0	Yes
ID4		Mild		1.0	Yes
ID5a		Hot		0.33	Yes
ID5b		Mild		0.42	Yes
ID5c		Cool		0.25	Yes
ID6		Cool		1.0	No
ID7		Cool		1.0	Yes
ID8a		Hot		0.33	No
ID8b		Mild		0.42	No
ID8c		Cool		0.25	No
ID9		Cool		1.0	Yes

Fuzzy Decision Trees

Alternative 3

Replace with all possible values and propagate with corresponding weights:

- 4* Hot -> w = 4/12 = 0.33
- 5^* Mild -> w = 5/12 = 0.42
- 3* Cool -> w = 3/12 = 0.25

Decision Trees: Pruning

How deep should the tree be?

Overfitting vs Underfitting

Underfitted

Model overlooks underlying patterns in the training set

Generalized

Model captures correlations in the training set

Overfitted

Model memorizes the training set rather then finding underlying patterns

Overfitting vs Underfitting

Overfitting	Underfitting
 Model that fits the training data too well, including details and noise Negative impact on the model's ability to generalize 	A model that can neither model the training data nor generalize to new data

Pruning

— Why should we avoid overgrown trees?

- Overfitting
- Unnecessary complexity
- Harder interpretation

The base algorithm would only stop if one node contains one pattern or there are no further attributes to be used for splits

– Two approaches:

- Pre-pruning: stop the construction of the tree during training
- Post-pruning: reduce the dimensions of an overgrown tree

Basic ideas of post-pruning:

- Replace "bad" branches (subtrees) by leaves
- Replace a subtree by its largest branch if it is better.

Goal: Tree that generalizes to new data and doesn't overfit

Early stopping

Idea: Define a minimum size for the tree leaves

Pruning

- Idea: Cut branches that seem to overfit
- Techniques
 - Reduced Error Pruning
 - Pessimistic Pruning
 - Confidence Level Pruning
 - Minimum description length

Reduced Error Pruning

- Classify a set of **new example cases** with the decision tree. (These cases must not have been used for the learning!)
- Determine the number of errors for all leaves.
- The number of errors of a subtree is the sum of the errors of all of its leaves.
- Determine the number of errors for leaves that replace subtrees.
- If such a leaf leads to the same or fewer errors than the subtree, replace the subtree by the leaf.
- If a subtree has been replaced, recompute the number of errors of the subtrees it is part of.

Reduced Error Pruning

– Advantage:

Very good pruning, effective avoidance of overfitting.

Disadvantage:

Additional example cases needed. Number of cases in a leaf has no influence.

Pessimistic Pruning

- Classify a set of example cases with the decision tree. (These cases may or may not have been used for the learning.)
- Determine the number of errors for all leaves and increase this number by a fixed, user-specified amount r.
- The number of errors of a subtree is the sum of the errors of all of its leaves.
- Determine the number of errors for leaves that replace subtrees (also increased by r).
- If such a leaf leads to the same or fewer errors than the subtree,
 replace the subtree by the leaf and recompute subtree errors.

Pessimistic Pruning

– Advantage:

No additional example cases needed.

Disadvantage:

Number of cases in a leaf has no influence.

Confidence Level Pruning

Like pessimistic pruning, but the number of errors is computed as follows:

- See classification in a leaf as a Bernoulli experiment (error/no error): p,
 p(1 p)
 - Expected success rate: $f = \frac{no \ error}{error + no \ error}$
 - For a large enough number of classifications f follows a normal distribution
- Estimate an interval for the error probability p(1 p) based on a user-specified confidence level α . (use approximation of the binomial distribution by a normal distribution)
- Increase error number to the upper level of the confidence interval times the number of cases assigned to the leaf.
- Formal problem: Classification is not a random experiment.

Confidence Level Pruning

– Advantage:

No additional example cases needed. Good pruning.

Disadvantage:

Statistically dubious foundation.

Decision tree pruning: An Example

A decision tree for iris data (induced with information gain ratio, unpruned)

Decision tree pruning: An Example

Pruned with confidence level pruning α =0.8

7 instead of 11 nodes, 4 instead of 2 misclassifications.

Pruned with pessimistic pruning r=2

5 instead of 11 nodes, 6 instead of 2 misclassifications.

This tree is "minimal" for the three classes.

Minimum Description Length Pruning (MDL)

Description length = #bits(tree) + #bits(misclassified samples)

Confidnimum Description Length Pruning (MDL)

– Advantage:

No additional example cases needed. Good pruning.

Disadvantage:

Additional calculation needed.

Predictive vs. Descriptive Tasks

– Predictive tasks:

The decision tree (or more generally, the classifier) is constructed in order to apply it to new unclassified data.

– Descriptive tasks:

The purpose of the tree construction is to understand, how classification has been carried out so far.

Regression Trees

Numerical Target: Regression Trees

- Numerical Target = Predicting a continuous target value
- CART (Classification And Regression Trees) described by Breiman
- Leaves contain numerical values instead of class labels
- Entropy-based measurements no longer needed
- Fit measure of the tree is the sum of squared errors for each node n:

$$SME(\mathcal{D}_n) = \frac{1}{|\mathcal{D}_n|} \sum_{(X,Y) \in \mathcal{D}_n} (Y - c_n)^2$$

- $-c_n$ is the constant value assigned to the node n,
- $-\mathcal{D}_n$ are the data points ending up at the node n,
- X is the input feature vector
- Y is the target value

Regression Tree: Goal

Regression Tree: Initial Split

Local mean:

$$c_m = \frac{1}{n} \sum y_i$$

For observations in segment m

X

• Split a feature x_j at threshold s:

$$R_1(j,s) = \{x \mid x_j \le s\}$$
 and $R_2(j,s) = \{x \mid x_j > s\}$

Search for s that minimizes error of:

$$E_{j,s} = \sum_{x \in R_1(j,s)} (y_i - c_1)^2 + \sum_{x \in R_2(j,s)} (y_i - c_2)^2$$

where

$$c_k = \frac{1}{n} \sum_{x \in R_k(j,s)} y_i$$
 Where $(y_i | x \in R_k, k = 1, 2)$

Regression Tree: Initial Split

Regression Tree: Growing the Tree

Regression Tree: Final Model

Start with a single node containing all points.

- 1. Calculate c_i and E_i .
- 2. If all points have the same value for feature x_i , stop.
- 3. Otherwise, find the best binary splits that reduces $E_{j,s}$ as much as possible.
 - $E_{j,s}$ doesn't reduce as much \rightarrow stop
 - A node contains less than the minimum node size → stop
 - Otherwise, take that split, creating two new nodes.
 - In each new node, go back to step 1.

Regression Trees: Summary

- Differences to decision trees:
 - Splitting criterion: minimizing intra-subset variation (error)
 - Pruning criterion: based on numeric error measure
 - Leaf node predicts average target values of training instances reaching that node
- Can approximate piecewise constant functions
- Easy to interpret

Regression Trees: Pros & Cons

- Finding of (local) regression values (average)
- Problems:
 - No interpolation across borders
 - Heuristic algorithm: unstable and not optimal.
- Extensions:
 - Fuzzy trees (better interpolation)
 - Local models for each leaf (linear, quadratic)

Additional Notes

- Despite their wide application, Decision Trees are notoriously unstable
- Small changes in the training data can heavily change the resulting decision tree

This is due to the underlying greedy algorithm

- Forests of decision trees
- Build a number of smaller, differently initialized decision trees
- Compute the classification by committee voting
- Can solve the stability problem
- Lead to less interpretability

What you should remember from this lesson

- What is a decision tree and what is it used for?
- How is a decision tree built from data?
- Which kind of splitting measurements exist?
- How can we handle missing values in the data?
- Why are decision trees pruned and how?
- What is a regression tree?

Practical Example

KNIME Workflow

Decision Tree

KNIME Workflow

Decision tree learner configuration window

KNIME Workflow

Trained tree with the tree view

Thank you

For any questions please contact: education@knime.com