2008 G3

Ezra Guerrero Alvarez

February 10, 2022

2008 G3

2008 G3

Let ABCD be a convex quadrilateral and let P and Q be points in ABCD such that PQDA and QPBC are cyclic quadrilaterals. Suppose that there exists a point E on the line segment PQ such that $\angle PAE = \angle QDE$ and $\angle PBE = \angle QCE$. Show that the quadrilateral ABCD is cyclic.

Let W, X, Y, Z be the points on \overline{AE} , \overline{BE} , \overline{CE} , \overline{DE} respectively such that W, Z lie on (PQDA) and X, Y lie on (PQBC). From the angle condition it follows both WQPZ and XPQY are isosceles trapezoids. Now, let

$$f(X) = \pm \frac{PX}{QX},$$

where f(X) is negative if X lies on or below the segment and positive otherwise. From the isosceles trapezoids, we see

$$f(W)f(Z) = f(X)f(Y) = 1.$$

Now, by the Ratio Lemma we have that

$$f(A) f(W) = f(B) f(X) = f(C) f(Y) = f(D) f(Z) = f(E).$$

Therefore,

$$f(A)f(D) = f(A)f(W)f(D)f(Z) = f(E)^2 = f(B)f(X)f(C)f(Y) = f(B)f(C).$$

But by the ratio lemma once more this implies \overline{AD} , \overline{BC} , \overline{PQ} concur, hence ABCD is cyclic as desired.