1. Gegeben sind die folgenden Teilmengen $A = \{1, 3, 5, 7, 9\}, B = \{2, 4, 6, 8, 10\}$ und $D = \{5, 6, 7, 8, 9, 10\}.$

Gib die folgenden Mengen an:

(a) $A \cup B$

(d) $A \setminus D$

(g) $D \setminus B$

(b) $A \cap B$

(e) *B* \ *D*

(h) $D \setminus (A \cup B)$

(c) $A \setminus B$

(f) $D \setminus A$

(i) $D \setminus (A \cap B)$

Lösung:

(a) $A \cup B = \{1, 3, 5, 7, 9, 2, 4, 6, 8, 10\}$ (f) $D \setminus A = \{6, 8, 10\}$

(b) $A \cap B = \{\}$

(g) $D \setminus B = \{5, 7, 9\}$

(c) $A \setminus B = \{1, 3, 5, 7, 9\}$

(h) $D \setminus (A \cup B) = \{\}$

(d) $A \setminus D = \{1, 3\}$ (e) $B \setminus D = \{2, 4\}$

(i) $D \setminus (A \cap B) = \{5, 6, 7, 8, 9, 10\}$

2. Wie viele Elemente enthält die Potenzmenge $\mathcal{P}(A)$ einer (endlichen) Menge A mit |A| = n? Schreibe z.B. alle Teilmengen von $\{1, 2\}$ oder $\{1, 2, 3\}$ auf, und versuche eine Regelmäßigkeit zu erkennen. Wie könnte man die Regelmäßigkeit allgemein beweisen? Zeige dass für endliche Mengen stets $|A| < |\mathcal{P}(A)|$ gilt.

Lösung:

(a) $\mathcal{P}(\{1,2\}) = \{\{\},\{1\},\{2\},\{1,2\}\}$

(b) $\mathcal{P}(\{1,2,3\}) = \{\{\},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}\}$

- (c) Die Potenzmenge $\mathcal{P}(A)$ hat 2^n Elemente, denn für jedes der n Elemente von A kann entschieden werden, ob dieses in der Relation enthalten ist, oder nicht.
- (d) Beweis mit vollständiger Induktion (Induktionsanfang n=0)
- 3. Bestimme die folgenden Mächtigkeiten:

(a) $|\{1,4,6\}|$

(c) $|\{\emptyset\}|$

(b) |Ø|

(d) $|\{\emptyset, \{1, 2, 3\}\}|$

Lösung:

(a) $|\{1,4,6\}|=3$

(c) $|\{\emptyset\}| = 1$

(b) $|\emptyset| = 0$

(d) $|\{\emptyset, \{1, 2, 3\}\}| = 2$

4. Zeichne Punktmengen A, B und C, die die folgenden vier Bedingungen zugleich erfüllen:

(a) $A \cap B \cap C = \emptyset$

(c) $B \cap C \neq \emptyset$

(b) $A \cap B \neq \emptyset$

(d) $A \cap C \neq \emptyset$

Gib daraufhin Zahlenmengen möglichst kleiner Mächtigkeit an, die diese Bedingungen erfüllen.

Lösung:

(a) $A = \{1, 3\}$ $B = \{1, 2\}$ $C = \{2, 3\}$

- 5. A, B und C seien Teilmengen einer Grundmenge G. Beweise von den folgenden Aussagen die wahren und gib für die falschen jeweils ein Gegenbeispiel an.
 - (a) Wenn $A \cup B = A \cup C$, dann ist B = C
 - (b) Wenn $A \setminus B = A$, dann ist B = C
 - (c) Wenn $B = \emptyset$, dann ist $A \setminus B = A$
 - (d) $A \setminus B$ und $B \setminus C$ sind immer disjunkt (d.h. die Schnittmenge ist leer).

Lösung:

(a)

6. Beweise, dass zwei Mengen A und B gleich sind, wenn sie wechselseitig Teilmengen voneinander sind (und auch nur dann), also:

$$A = B \Leftrightarrow A \subseteq B \land B \subseteq A$$

Lösung:

- (a) ⊆
- (b) ⊇

7. Die 30 Schüler einer Klasse schrieben in den drei Fächern Deutsch, Englisch und Mathematik Prüfungsarbeiten mit folgendem Ergebnis: In Deutsch bestanden 22, in Englisch bestanden 17 und in Mathematik bestanden 22 Schüler. 4 bestanden weder Deutsch noch Englisch, 3 bestanden weder Deutsch noch Mathematik, 5 bestanden weder Englisch noch Mathematik. 1 Schüler schaffte keine der drei Prüfungen.

Wie viele Schüler bestanden die Prüfung in allen drei Fächern?Aussagen

Hinweis: zeichne die Mengen!

Lösung:

(a)

8. Mit der Schreibweise

$$\bigcup_{k=1}^{n} A_k := A_1 \cup A_2 \cup \dots \cup A_n$$

kann man bequem auch kompliziertere Mengen formulieren, insbesondere dann, wenn man erlaubt, dass auch unendlich viele Mengen vereinigt werden dürfen:

$$\bigcup_{k=1}^{\infty} A_k := A_1 \cup A_2 \cup \dots \cup A_n \cup \dots$$

Ein Element ist in dieser Vereinigungsmenge enthalten, wenn es in einer der Mengen A_k enthalten ist. Überlege Dir, wie man zum Beispiel die Menge der Primzahlen hinschreiben könnte (Tipp: formuliere dazu z.B. die Menge V_2 der Vielfachen von 2, etc.).

Lösung:

(a)
$$V_i := \bigcup_{k=0}^{\infty} \{i \cdot k\}$$

$$prim = \mathbb{N} \setminus (V_2 \cup V_3 \cup V_5 \cup V_7 \cup \cdots \cup V_{\infty})$$