23 As an application of the Fourier transform, show that there does not exist a function $I \in L^1(\mathbb{R}^d)$ such that

$$f * I = f$$
 for all $f \in L^1(\mathbb{R}^d)$.

Solution Suppose otherwise, and that there exists I with those properties. Note that by translation invariance, I(x-y) is also integrable on \mathbb{R}^d .

Consider the characteristic function χ_E , where E is a set of positive measure. Then by assumption, $\chi_E * I = \chi_E$. By commutativity of convolution, we get

$$\chi_E(x) = I * \chi_E = \int_{\mathbb{R}^d} \chi_E(y) I(x - y) \, dy = \int_E I(x - y) \, dy.$$

By a theorem, since I(x-y) is integrable on \mathbb{R}^d , then for every $\varepsilon > 0$, there exists $\delta > 0$ such that if $m(K) < \delta$, then $\int_K I(x) dx < \varepsilon$. Take $\varepsilon = 1$, and shrink E so that $m(E) = \delta/2$. Then we get

$$\chi_E(x) = \int_E I(x - y) \, \mathrm{d}y < \varepsilon = 1 \, \forall x \in E.$$

But this implies that $\chi_E(x) \equiv 0$, which is a contradiction, since we assumed E to have positive measure.

24 Consider the convolution

$$(f * g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, \mathrm{d}y.$$

- a. Show that f * g is uniformly continuous when f is integrable and g bounded.
- b. If in addition g is integrable, prove that $(f * g)(x) \to 0$ as $|x| \to \infty$.

Solution a. Let f be integrable and g be bounded. Since g is bounded, there exists M>0 such that $|g(x)|\leq M$. Let $x,z\in\mathbb{R}^d$, and fix $\varepsilon>0$. Then

$$|(f * g)(x) - (f * g)(z)| = \left| \int_{\mathbb{R}^d} f(x - y)g(y) \, \mathrm{d}y - \int_{\mathbb{R}^d} f(z - y)g(y) \, \mathrm{d}y \right|$$

$$= \left| \int_{\mathbb{R}^d} \left[f(x - y) - f(z - y) \right] g(y) \, \mathrm{d}y \right|$$

$$\leq \int_{\mathbb{R}^d} |f(x - y) - f(z - y)| |g(y)| \, \mathrm{d}y$$

$$\leq M \int_{\mathbb{R}^d} |f(x - y) - f(z - y)| \, \mathrm{d}y$$

Note that |f(x-y) - f(z-y)| is integrable, since $0 \le |f(x-y) - f(z-y)| \le |f(x-y)| + |f(z-y)|$, and the RHS is integrable. Indeed, f is integrable, and integrals are invariant under translation, so both f(x-y) and f(z-y) are integrable.

Also note that by Proposition 2.5,

$$\int_{\mathbb{R}^d} |f(x-y) - f(z-y)| \, \mathrm{d}y \xrightarrow{z \to x} 0,$$

so there exists $\delta > 0$ such that if $||x - z|| < \delta$, then

$$\int_{\mathbb{R}^d} |f(x-y) - f(z-y)| \, \mathrm{d}y < \frac{\varepsilon}{M}.$$

Thus, for this same δ , we get

$$|(f*g)(x) - (f*g)(z)| \le M \int_{\mathbb{R}^d} |f(x-y) - f(z-y)| \, \mathrm{d}y < \varepsilon,$$

so f * g is uniformly continuous.

b. Let g be integrable, in addition to being bounded.

Then by Exercise 21(d), f(x-y)g(y) is integrable, so by Fubini's theorem, f*g is integrable for almost every x. By part (a), f*g is uniformly continuous.

If we fix every coordinate except for x_i , we can treat (f * g)(x) as a function from \mathbb{R} to \mathbb{R} , so by problem 6(b) (which was on our previous homework), we have that

$$\lim_{|x_i| \to \infty} (f * g)(x) = 0,$$

for each $1 \le i \le d$.

For any $\varepsilon > 0$, the definition of the limit gives us $N_i \in \mathbb{N}$ for each i such that if $|x_i| > N_i$, where x_i is the i-th coordinate of x, then $|(f * g)(x)| < \varepsilon$.

Thus, if ||x|| is sufficiently large, we have at least one $|x_i| \ge N_i$, which gives us $(f * g)(x) < \varepsilon$. Hence,

$$\lim_{\|x\| \to \infty} (f * g)(x) = 0.$$

2 Prove the Cantor-Lebesgue theorem: if

$$\sum_{n=0}^{\infty} A_n(x) = \sum_{n=0}^{\infty} (a_n \cos nx + b_n \sin nx)$$

converges for x in a set of positive measure (or in particular for all x), then $a_n \to 0$ and $b_n \to 0$ as $n \to \infty$. [Hint: Note that $A_n(x) \to 0$ uniformly on a set E of positive measure.]

Solution Suppose the series converges on a set U of positive measure.

Since the series converges, we must have that

$$\lim_{n \to \infty} A_n(x) = 0$$

pointwise for every $x \in U$. Hence, we can take a smaller subset with finite measure, and apply Egorov's theorem. This gives us a set $E \subseteq U$ of (finite) positive measure such that $A_n \xrightarrow{n \to \infty} 0$ uniformly on E.

Thus,

$$\int_{E} |A_{n}| \xrightarrow{n \to \infty} 0 \iff \int_{E} |a_{n} \cos nx + b_{n} \sin nx| dx \xrightarrow{n \to \infty} 0.$$

Note that we can write

$$A_n^2(x) = (a_n \cos nx + b_n \sin nx)^2 = (a_n^2 + b_n^2)\cos^2\left(nx + \arctan\left(-\frac{b_n}{a_n}\right)\right).$$

Moreover, $A_n^2 \xrightarrow{n \to \infty} 0$ uniformly on E as well. Indeed, if $A_n(x) < \varepsilon < 1$ for some $n \ge N$,

$$|A_n^2(x)| < \varepsilon^2 < \varepsilon.$$

Then by Problem 1,

$$\int_{E} A_n^2 = \int_{E} (a_n^2 + b_n^2) \cos^2\left(nx + \arctan\left(-\frac{b_n}{a_n}\right)\right) dx = \frac{a_n^2 + b_n^2}{2} m(E).$$

But since $A_n^2 \xrightarrow{n \to \infty} 0$ uniformly, $\int_E A_n^2 \xrightarrow{n \to \infty} 0$. Since m(E) > 0, this implies that $a_n^2 + b_n^2 \xrightarrow{n \to \infty} 0$, which implies that $a_n \xrightarrow{n \to \infty} 0$ and $b_n \xrightarrow{n \to \infty} 0$, as desired.

Proof of Problem 1

Let f be integrable on $[0, 2\pi]$. By Exercise 22.

$$\int_0^{2\pi} f(x)e^{-inx} dx = \int_{\mathbb{R}^d} f(x)e^{-inx}\chi_{[0,2\pi]} \xrightarrow{|n| \to \infty} 0,$$

which implies that

$$\int_{E} f(x)e^{-inx} dx = \int_{E} f(x)\cos(nx) - if(x)\sin(nx) dx \xrightarrow{n \to \infty} 0,$$

so $\int_E f(x) \cos(nx) dx$ and $\int_E f(x) \sin(nx) dx$ both converge to 0 as $n \to \infty$.

It suffices to show that

$$\int_{E} \cos^{2}(nx + u_{n}) - \frac{1}{2} dx \xrightarrow{n \to \infty} 0,$$

where u_n is any sequence.

$$\left| \int_{E} \cos^{2}(nx + u_{n}) - \frac{1}{2} dx \right| = \left| \int_{E} \frac{1}{2} \left(1 + \cos(2nx + u_{n}) \right) - \frac{1}{2} dx \right|$$

$$= \left| \int_{E} \cos(2nx + 2u_{n}) dx \right|$$

$$= \left| \int_{0}^{2\pi} \cos(2nx + 2u_{n}) \chi_{E} dx \right|$$

$$= \left| \int_{0}^{2\pi} \chi_{E} \cos(2nx) \cos(2u_{n}) - \chi_{E} \sin(2nx) \sin(2u_{n}) dx \right|$$

$$\leq \left| \cos(2u_{n}) \right| \left| \int_{0}^{2\pi} \chi_{E} \cos(2nx) dx \right| + \left| \sin(2u_{n}) \right| \left| \int_{0}^{2\pi} \chi_{E} \sin(2nx) dx \right| \xrightarrow{n \to \infty} 0.$$

The limit holds because of the first half of the problem.

Thus,

$$\int_{E} \cos^{2}(nx+u_{n}) - \frac{1}{2} dx \xrightarrow{n \to \infty} 0 \implies \int_{E} \cos^{2}(nx+u_{n}) dx \xrightarrow{n \to \infty} \int_{E} \frac{1}{2} dx \implies \int_{E} \cos^{2}(nx+u_{n}) dx \xrightarrow{n \to \infty} \frac{m(E)}{2},$$

as desired.