# The Great Hackathon of January 2019: Predicting Churn

Emily J. Cain & Andrew Wester



## Preprocessed the Data

- Hunted down the 11 missing values (in TotalCharges)
- Converted to boolean values when possible
- One-hot encoded remaining categorical variables
- Used StandardScaler

# Optimized Models using GridSearch for Recall Score

Better to wrongly predict that some customers will churn, and end up staying, rather than miss a customer who will churn that we predicted to stay.

#### **Recall Scores:**

- Decision Tree: 91% Recall (Accuracy 67%)
- Random Forest: 77% (Accuracy 64%)
- Gradient Boost: 50% (Accuracy 80%)
- AdaBoost: 49% (Accuracy 78%)

IF YOU WERE DIAGNOSED AS NOT HAVING MYSTERY DISEASE, BUT ACTUALLY HAD MYSTERY DISEASE, THAT WOULD BE BAD → WE WANT HIGH RECALL

<u>IF YOU WERE DIAGNOSED AS HAVING MYSTERY DISEASE, BUT ACTUALLY DIDN'T HAVE MYSTERY DISEASE, THAT WOULD BE BETTER THAN THE ALTERNATIVE → WE ARE COMFORTABLE WITH LOWER ACCURACY</u>

### Short Term Tenure & High Monthly Charges = Highly Likely to Churn!





## Most Important Features of Decision Tree

#### **Top Features:**

- Monthly Contract
- Monthly Charges
- Tenure



# Targeting Customers Who May Churn

#### Our model shows:

- Customers most likely to Churn:
  - Have shorter tenure
  - Higher monthly payments
  - Month-to-month customers

#### **RECOMMENDATIONS:**

- Make longer contracts more attractive than monthly contracts
- Lower monthly payments to entice more customers
- Reward loyal customers