

Correction exercice II Projet (2,5 points + 0,25 bonus)

Correction exercice III Projet (9,5 points)

1. Sur 2 points

Etats physiques S, L et G: 0,5 (fluide supercritique non

Noms des courbes : 0,5 (-0,25 par erreur)

Points triple et critique: 0,25+0,25

Allure des courbes sublimation et vaporisation: 0,25

Respect de la pente de la courbe de fusion : (

2. Sur 1,5 points

Hyp 2: Air constitué de 80% de N₂ et de 20% de O₂

Remarque : quand on fait l'application numérique, on trouve par ce calcul 0,625 donc les étudiants peuvent de manière pertinente critiquer la valeur proposée dans l'énoncé et la corriger en 0,63.

3. Sur 1 point

$$P(H_2O) = HR \times P_{VS}(H_2O)$$
 à 20°C

On détermine $P_{VS}(H_2O)$ à $20^{\circ}C$ par lecture graphique: 0,022 bar 0,5 (incertitude de lecture laissée à votre appréciation)

$$P(H_2O) = 0.0022 \ bar \ a \ 20^{\circ}C$$
 0,5 (accepter 0.002 bar)

4. Sur 1 point

$$n(H_2O) = \frac{P(H_2O) \times V_{total}(avion)}{RT}$$
: expression littérale 0,5

 $n(H_2O) = 23.4 \text{ mol} : 0.5^{\vee}$ (dépend beaucoup de la précision de lecture de $P_{vs}(H_2O)$ de la question précédente ; ex : 21,4 mol si $P(H_2O)=0.002$ bar)

5. Sur 1 point

Quand l'eau est à ébullition : $P_{atm}(avion) = P_{VS}(H_2O)$ à 88,2°C 0,5 point

Lecture graphique à 361,2 K (ou 361 K) : 0,62 bar √ 0,5 point (tolérer 0,6 bar) (mettre seulement 0,25 si simple lecture de la valeur sans préciser à quoi elle correspond)

6. Energie échangée (1,5 points) :

$$\Delta U = m(H_2O) \times C_{eau} \times \Delta T = V(H_2O) \times \rho(H_2O) \times C_{eau} \times \Delta T$$
 ou $Q = m(H_2O) \times C_{eau} \times \Delta T = V(H_2O) \times \rho(H_2O) \times C_{eau} \times \Delta T$ expression littérale : 0,5 point Q ou $\Delta U = -28.4 \ kJ$ application numérique : 0,5 point (accepter -28 kJ)

ΔU < 0 car le système {10cL boisson chaude} cède de l'énergie au milieu extérieur (convention du banquier) : 0,5 point

7. Sur 1,5 point

Raisonnement : 1 point dont la pertinence est laissée à votre appréciation

Exemple : A 20°C calculer n_{max} (H₂O) à partir de P_{VS}, soustraire n_{initial}(H₂O) calculé à la question 4, comparer au nombre de moles dans 100g d'eau (5,56 mol)

Conclusion: tout s'évapore 0,5 point (mettre les 0,5 point si réponse juste sans démonstration)

