- 9.2 SUPERPOSITION THEOREM
 ANOTHER TOOL WE CAN USE TO ANALYTE
 CIRCUITS WITH MULTIPLE SOURCES.
- SUPERPOSITION: THE CURRENT THROUGH, OR VOLTAGE
 ACROSS, AN ELEMENT IN A LINEAR
 BILATIERAL NETWORK IS EQUAL TO THE
 ALGEBRAIC SUM OF THE CURRENTS OR
 VOLTAGES PRODUCED INDEPENDENTLY BY
 EACH SOURCE.
 - LINEAR THE CHARACTERISTICS OF THE NETWORK

 ELEMENTS ARE INDEPENDENT OF THE

 VOLTAGE ACROSS OR CURRENT THROUGH THEA.

 ("R" DOESN'T CHANGE WITH APPLIED VOLTAGE)

 OR CURRENT
 - BILATERAL -> NO CHANGE IN THE CHARACTERISTICS

 OF AN ELEMENT IF THE CURRENT THROUGH

 IT OR VOLTAGE ACROSS IT IS REVERSED.

 ("R" DOESN'T CHANGE IF WE REVERSE THE)

 APPLIED VOLTAGE OR CURRENT
- * NOTE: WORKS FOR VOLTAGE & CURRENT, NOT POWER CDIRECTLY).

WE NEED TO FIND VOR I DUE TO EACH SOURCE INDEPENDENTLY, HOW?

- (1) KEEP THE SOURCE OF INTEREST
- (2) REMOVE OTHER SOURCES
- (3) ANALYZE THE CIRCUIT
- (4) REPEAT STEPS (1) TO (3) FOR EACH SOURCE
- (5) ALGEBRAICALLY SUM THE CURRENTS (OR VOLTAGES)

TO REMOVE A VOLTAGE SOURCE:

$$E + \frac{1}{L} \Rightarrow \int_{R_s}^{R_s} E s/c, No Voltage$$

$$E + \frac{1}{L} \Rightarrow \int_{R_s}^{R_s} E s/c AGAIN$$

TO REMOVE A CURRENT SOURCE .

* NOTE: 2 SOURCES 0°, 2 CIRCUITS TO ANALYZE

(EXAMPLE) FIND IR, + PR. 3 CIRCUITS ANALY ZE DUE TO E,: VI REDRAW, COMBINE RY//Rz + RS $\begin{cases} R_5 + (R_4 / / R_2) = 4 + 12 / / 4 \\ = 7n \end{cases}$ $R_T = R_1 + R_3 //7$ = 6 + 30//7 = 11,67m $^{\circ}_{\circ}I_{T} = \frac{12V}{11.67} = \frac{1.028A}{1}$ °. IR, = √1.028A

SOURCES

IR1'' = IT(RT/Rx)

 $IR1'' = IA[(6\Omega//30\Omega)/6\Omega]$

IR1" = 1.67A

