

1 3. (Previously amended) A crystal growth method according to claim 1, wherein the
2 compound semiconductors A and B are alternatively and periodically grown by MOCVD on said
3 substrate to form said multi-layered buffer.

1 4. (Currently amended) A crystal growth method according to claim 1, wherein the
2 compound semiconductors A and B are alternatively grown by MOCVD on a substrate with the
3 thickness of the layers varying from one to another to form [a] said multi-layered buffer.

1 5. (Original) A crystal growth method according to claim 1, wherein a number of
2 compound semiconductors A, B, C form a sequence of ABC. wherein said
3 sequence is alternately grown on said substrate at said first temperature to form said multi-
4 layered buffer, and wherein said compound semiconductors are different from each other in
5 lattice constant, energy band gap, layer thickness, and composition.

1 6. (Original) A crystal growth method according to claim 1, wherein said substrate is
2 made of sapphire wafer with any possible orientation.

1 7. (Original) A crystal growth method according to claim 1, wherein said first
2 temperature is around 525 °C and said second temperature is around 1,050 °C.

1 8. (Original) A crystal growth method according to claim 3, wherein said multi-
2 layered buffer consists of three periods of repeated AB units and the total layer thickness of said
3 multi-layered buffer is approximately 24 nm.

1 9. (Original) A crystal growth method according to claim 3, wherein said compound
2 semiconductors A and B are made of GaN and Ga_xAl_{1-x}N (0 ≤ x ≤ 1), respectively.

1 10. (Original) A crystal growth method according to claim 3, wherein said compound
2 semiconductors A and B are made of GaN and Ga_yIn_{1-y}N (0 ≤ y ≤ 1), respectively.

1 11. (Original) A crystal growth method according to claim 5, wherein said compound
2 semiconductors A, B, C, are made of GaN, Ga_xAl_{1-x}N (0 ≤ x ≤ 1), Ga_yIn_{1-y}N (0 ≤ y ≤ 1)
3, respectively.

1 12. (Currently amended) A group-III nitride compound semiconductor, comprising:
2 a MOCVD-grown periodic or non-periodic inactive intermediate multi-layered
3 buffer having at least three layers with each layer having a thickness in the range from 2 nm to
4 6 nm on a substrate grown at a first temperature in which the layers alternate between at least two

5 types of compound semiconductors A and B different from each other in lattice constant, energy
6 band gap, layer thickness, and composition; and

7 a MOCVD-grown layer of a group-III nitride compound semiconductor on the
8 formed inactive intermediate multi-layered buffer wherein said layer of group-III is formed at a
9 temperature that is higher than said first temperature.

1 13. (Currently amended) A method as recited in claim 1 wherein [a total] the multi-
2 layered buffer thickness is less than 96 nm.

1 14. (Currently amended) A method as recited in claim 1 wherein [a total] the multi-
2 layered buffer thickness is less than 48 nm.