	1.8) Linear Transformations
	19) The Matrix of a linear transformation.
	Des: A motrix transportmention T: R" -> 1R" is a function
	aiven by motion mellidication is function
	given by matrix multiplication by some man matrix A
	Ea A [10 17
	$E.g. A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix}$
	Define $T: \mathbb{R}^3 \to \mathbb{R}^2$ as $T(\overline{x}) = A\overline{x}^2$ for $\overline{x} \in \mathbb{R}^3$.
	-(
	$T\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \end{bmatrix} x_1 = \begin{bmatrix} x_1 - x_3 \\ 2x_1 + x_2 \end{bmatrix}$
	$\begin{bmatrix} 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_3 & 2x_1 + x_2 \end{bmatrix}$
	the image of -1 is under T is:
	The image of -1 is under T is:
	TO7
	$T\begin{pmatrix} 1\\-1 \end{pmatrix} = \begin{bmatrix} 1 \end{bmatrix}$
	Vyes!
	Is there other P CIP3 such that T(2) - [07]. ATG
	Is there other $\mathbb{Z} \in \mathbb{R}^3$ such that $T(\mathbb{R}) = [0]$ i.e. $A\mathbb{Z} = [0]$
	[10-110] [10]
	$ \begin{bmatrix} 1 & 0 & -1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} $
	7
	x, free.
	$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} t \\ -2t+1 \end{bmatrix} = \begin{bmatrix} t \\ -2 \\ t \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$
	$ z_2 = -2t+1 = t -2 + 1 $
	$\begin{bmatrix} \chi_3 \end{bmatrix} \begin{bmatrix} \mathbf{t} \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}$
11	

What is the range of T?
what is the range of T ? i.e. all \vec{b} with $\vec{\tau}(\vec{x}) = \vec{b}$ for some \vec{b} $\vec{x} \in \mathbb{R}^3$.
10 Thu Cat an I was I
always consistent! Span [1] [0] [-1] $= \mathbb{R}^2 = \mathbb{I}_{mage}(T)$.
E.g. let $A = \begin{bmatrix} 1 & -37 \\ 3 & 5 \end{bmatrix}$. Is $B = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ in the range of $T(\vec{x}) = A\vec{x}$?
$ \begin{bmatrix} A & i & 5 \\ & 1 & -3 & 1 \\ & 3 & 7 & 7 & 7 \\ & 3 & 5 & 1 & 2 \\ & 3 & 5 & 1 & 2 \\ & -1 & 7 & 1 & -5 \end{bmatrix} \begin{array}{c} & 1 & 0 & 0 & 1 \\ & 0 & 0 & 1 & 1 \end{array} $
inconsistent. The range of T.
What's the range of T? span [17 [-37] 2 3 1 5 7
* Geometric examples:
$T(\overline{\chi}) = 0 + 0 $
X ₂
x, * T(2)

$$T(\overline{\chi}) = \begin{bmatrix} 0 & -1 \end{bmatrix} \overline{\chi} = \begin{bmatrix} 0 & -1 \end{bmatrix} \begin{bmatrix} \chi_1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -\chi_2 \\ \chi_1 \end{bmatrix}$$

rotation 90° counter-clockwise

* Linearity: Motrix multiplication behaves well under addition: $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$.

scalar multiplication: $A(\vec{x}\vec{u}) = \alpha A\vec{u}$, $\alpha \in \mathbb{R}$

Deg: A linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is a function with the properties

 $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all $\vec{u}, \vec{v} \in \mathbb{R}^n$. $T(\alpha \vec{u}) = \alpha T(\vec{u})$ for all $\alpha \in \mathbb{R}^n$.

-) Matrix transformations are examples of linear transformations.

* Properties:

 $T(\mathcal{E}) = \mathcal{E}$

 $T(\mathbf{x}, \mathbf{u}_{1}^{2} + \mathbf{x}, \mathbf{u}_{2}^{2} + \dots + \mathbf{x}_{n} \mathbf{u}_{n}^{2}) = \mathbf{x}_{1} T(\mathbf{u}_{1}^{2}) + \mathbf{x}_{2} T(\mathbf{u}_{2}^{2}) + \dots + \mathbf{x}_{n} T(\mathbf{u}_{n}^{2})$ "superposition principle"

T: R-> RM

Thm: A linear transformation is completely determined by its image on the standard basis vectors. $T(\vec{e_1}), T(\vec{e_2}), ..., T(\vec{e_n})$.

Moreover, every linear transformation is a matrix

transformation.

E.g. Consider
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} + \begin{bmatrix} x_2 \\ 1 \end{bmatrix} + \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$

$$\vec{e}_1 = \vec{e}_2$$

$$\vec{e}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix}$$

"The stordard mothix of
$$T$$
:"
$$\left[\vec{a}_1 \ \vec{a}_2 \ \vec{a}_3 \ \right] = \left[T(\vec{e}_1) \ T(\vec{e}_2) \ T(\vec{e}_3) \right].$$

E.g. The identity punction $T(\vec{z}) = \vec{z}$ is linear.

What is its matrix? $[T(\vec{e}) \ T(\vec{e}) \ . \ T(\vec{e}_n)] = [\vec{e}, \vec{e}, \ \vec{e}_n] = [\vec{o}, \vec{e}, \ \vec{e}_n] = [\vec{o}, \vec{e}, \ \vec{e}, \$

F.g. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a 180° radation around \tilde{O} (Assume it's linear). What's the moth's?

(26) T(a	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
onte is	f: A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is called entering its whole range is its co-domain. i.e. for every $B \in \mathbb{R}^m$, there is at least one $\overline{x} \in \mathbb{R}^n$ with $T(\overline{x}) = \overline{b}$ one if $T(\overline{x}) = \overline{b}$ has at most one solution \overline{b} .
	g. $T(\bar{z}) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \bar{z}$ is not one-to-one (why?) $0 & 2 & 1 \end{bmatrix}$ is one-to-one $5 & 7 & 2 \end{bmatrix}$ but not onto ? (why?) $\begin{bmatrix} 1 & 3 \end{bmatrix}$
\$tcm a) i.	: Let T: IR -> IR be a linear transformation with dard matrix A. T maps IR onto IR iff: the rows of A are pivotal e. Az = B consistent for every B. e. columns of A span IR . is one-to-one iff: columns of A are all pivotal i.e. columns of A are lin, independent