GENE638 - Homework 1

Daniel Osorio - dcosorioh@tamu.edu Department of Veterinary Integrative Biosciences Texas A&M University

1. Given

$$A = \begin{bmatrix} -1 & 7 & 9 & -2 & 3 \\ 3 & 13 & 10 & 2 & 6 \\ 11 & -9 & 0 & -3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} C = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \underline{y} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

(a) Calculate:

i.
$$\sum_{i=1}^{3} b_{i1}$$
 iii. $\sum_{i=1}^{3} b_{i3}$ > $sum(B[,3])$ [1] 3 [1] 0 iv. $\sum_{i=1}^{j} b_{ij}$ > $sum(B[,2])$ [1] 0 [1] 3

(b) Show that
$$1_3'B1_3 = \sum_{i=1}^3 \sum_{j=1}^3 b_{ij}$$

[1] 3

> all.equal(as.numeric(t(rep(1,3)) %*% B %*% rep(1,3)), sum(B))

[1] TRUE

(c) Find
$$B + C$$

(d) Show that $(B+C)\underline{y} = B\underline{y} + C\underline{y}$

> B %*% underlineY + C %*% underlineY

[2,] -5

[3,] 3

> all.equal((B + C) %*% underlineY, B %*% underlineY + C %*% underlineY)

[1] TRUE

(e) Find $A'(B+C)\underline{y}$

[1,] 25

[2,] -211

[3,] -113

[4,] -5

[5,] -45

2. In this comunication network, messages can be sent only in the direction of the arrows:

Message routes can be represented by a matrix $W = w_{ij}$, where $w_{ij} = 0$ except $w_{ij} = 1$ if a message can be sent from K_i to K_j .

$$W = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

In the r^{th} power of this matrix $W^r = w_{ij}(r), w_{ij}(r)$ is the number of ways of getting a message from K_i to K_j in r steps.

(a) Find W^2 . Identify the paths that a message can go from K_2 to K_5 in 2 steps

The paths are: $K_2 \to K_4 \to K_5$, and $K_2 \to K_3 \to K_5$

(b) Find W^3 . Identify the paths that a message can go from K_2 to K_3 in 3 steps

The paths are $K_2 \to K_4 \to K_5 \to K_3$ and $K_2 \to K_3 \to K_5 \to K_3$

3. For
$$A\underline{x} = \underline{b}$$
 where $A = \begin{bmatrix} 2 & -2 & -1 \\ 1 & 1 & -2 \\ 1 & 0 & -1 \end{bmatrix}$ and $\underline{b} = \begin{bmatrix} 5 \\ 1 \\ 4 \end{bmatrix}$

- (a) Find the rank of A
 - > as.numeric(Matrix::rankMatrix(A))

[1] 3

(b) Show that
$$B = \begin{bmatrix} -1 & -2 & 5 \\ -1 & -1 & 3 \\ -1 & -2 & 4 \end{bmatrix} = A^{-1}$$

> solve(A)

$$\begin{bmatrix} 1, \\ -1 \\ -2 \\ \end{bmatrix}$$
 $\begin{bmatrix} -1 \\ -1 \\ \end{bmatrix}$ $\begin{bmatrix} -1 \\ -1 \\ \end{bmatrix}$

$$[3,]$$
 -1 -2 4

- > all.equal(B, solve(A))
- [1] TRUE
- (c) Solve for \underline{x}
 - > solve(A) %*% b