HW8 Theory

Alexander Kazantsev

March 2, 2016

Problem 6.6

First A is popped out of the queue and and edges (A, C) and (A, B) are relaxed. B is popped off and relax the edge (B, D) giving a distance of 6. D is now at the top, but has no edges. C is the last vertex left. The edge (C, B) is relaxed giving a total distance to B as 2. Now the queue is empty, but the shortest path to B from A is not correct.

Problem 7.1

```
\begin{split} & \text{Insert( val, v, adjList)} \\ & \text{assert } v \in \text{adjList} \\ & \text{if val } ! \in \text{adjList} \\ & \text{add(adjList, val)} \\ & \text{ListInsert(adjList[ v ], val)} \\ & \text{else} \\ & \text{ListInsert(adjList[ v ], val)} \end{split}
```

```
\begin{aligned} \text{Delete(val, vertex,adjList)} \\ & \text{assert val and vertex} \in \text{adjList} \\ & \forall \ e \in \text{adjList} \ [ \ \text{val} \ ] \\ & \text{if e == vertex} \\ & \text{remove(adjList[ vertex ], e)} \\ & \text{break} \\ & \forall \ e \in \text{adjList} \ [ \ \text{vertex} \ ] \\ & \text{if e == val} \\ & \text{remove(adjList[ val ], e)} \\ & \text{break} \end{aligned}
```

Problem 7.2

Restructuring the adjacency list as a matrix would allow for removal of the first edge in constant time. The down side is that this derivative requires more space than a linked list implementation.

	1	2	3	4	5	6	7
1	0	1	1	1	0	0	0
2	1	0	1	1	0	0	0
3	1	1	0	0	1	1	1
4	1	1	0	0	1	0	0
5	0	0	1	1	0	1	0
6	0	0	1	0	1	0	1
7	0	0	1	0	0	1	0

DeleteFirstEdge(vertex, adjMatrix)

```
assert vertex \in adjList adjMatrix[ vertex[ 0 ] ] [ vertex ] = Null adjMatrix[ vertex ] [ 0 ] = Null
```

Problem 7.3

Part a

Part b

