Einführung in die Geometrie und Topologie - Mitschrieb -

Vorlesung im Wintersemester 2011/2012

Sarah Lutteropp

18. Oktober 2011

Inhaltsverzeichnis

1 Homotopie und Fundamentalgruppe

Vorwort

Dies ist ein Mitschrieb der Vorlesung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Herrn Prof. Dr. Wilderich Tuschmann gehalten wird.

3

Kapitel 1

Homotopie und Fundamentalgruppe

Definition 1.1 (Topologischer Raum). Ein topologischer Raum X ist gegeben durch eine Menge X und ein System σ von Teilmengen von X, den so genannten offenen Mengen von X, welches unter beliebigen Vereinigungen und endlichen Durchschnitten abgeschlossen ist und X und die leere Menge \emptyset als Elemente enthält.

X Menge, $\sigma \subset \mathcal{P}(X)$:

- (1) $O_1, O_2 \in \sigma \Rightarrow O_1 \cap O_2 \in \sigma$
- (2) $O_{\alpha} \in \sigma, \alpha \in A, A \ Indexmenge \Rightarrow \bigcup_{\alpha \in A} O_{\alpha} \in \sigma$
- (3) $X, \emptyset \in \sigma$

Beispiel 1.1. $\sigma = \{X, \emptyset\} \Rightarrow (X, \sigma)$ ist topologischer Raum!

Beispiel 1.2.

$$X \ Menge, \ \sigma = \{\{x\} | x \in X\} + Axiome, \ die \ zu \ erfüllen \ sind \leadsto \tilde{\sigma}$$

 $\Rightarrow (X, \tilde{\sigma})$ ist topologischer Raum. σ ist "Basis" der Topologie $\tilde{\sigma}$.

Definition 1.2 (Metrischer Raum). Ein <u>metrischer Raum</u> X ist eine Menge X mit einer Abbildung $d: X \times X \to \mathbb{R}$, der <u>"Metrik"</u> auf X, die folgende Eigenschaften erfüllt:

- (1) d(x,y) = d(y,x) "Symmetrie"
- (2) $d(x,y) = 0 \Leftrightarrow x = y, d(x,y) \ge 0$ "Definitheit"
- (3) $d(x,z) \le d(x,y) + d(y,z)$ "Dreiecksungleichung"
- $\forall x, y, x \in X$

Definition 1.3 (stetig). Eine Abbildung $F: X \to Y$ zwischen topologischen Räumen X und Y heißt stetig, falls die F-Urbilder offener Mengen in Y offene Teilmengen von X sind.

Bemerkung 1.1. Ist (X,d) ein metrischer Raum, so sind die offenen Mengen der von der Metrik induzierten Topologie Vereinigungen von endlichen Durchschnitten von Umgebungen $U_{\epsilon}(x) := \{y \in X | d(x,y) < \epsilon\} (\epsilon > 0), und F: (X,d) \to (Y,d')$ ist stetig im obigen Sinn genau dann, falls für alle $\epsilon > 0$ ein $\delta > 0$ existiert mit $F(U_{\delta}(x)) \subset U_{\epsilon}(F(x))$.

Definition 1.4 (Homotopie). Eine <u>Homotopie</u> $H: f \simeq g$ zwischen zwei (stetigen) Abbildungen $f, g: X \to Y$ ist <u>eine (stetige)</u> Abbildung

$$H \colon X \times I^1 \to Y, (x,t) \mapsto H(x,t)$$

 $mit\ H(x,0) = f(x)\ und\ H(x,1) = g(x) \forall x \in X.$

TODO:BILDER

Bemerkung 1.2. H heißt auch $\underline{Homotopie}$ $\underline{von\ f\ nach\ g}$, eine solche ist also eine parametrisierte Schar von $\underline{Abbildungen\ mit\ "Anfang}$ " f und $\underline{"Ende"}$ g. f und g heißen dann homotop, in Zeichen: $f \simeq g$.

 $^{^{1}}I=[0,1]\subset\mathbb{R}$