1.	What two types of locality make cache systems effective?
2.	What three things are stored in every line of a cache system?
	a)
	b)
	c)
3.	When a memory address is sent to a cache system it's broken up into three pieces which are used to search the for data. What are the names of these three fields?
	a)
	b)
	c)
4.	A system with a capacity of 4GBytes uses a two-way set associative cache that has 4096 lines and 32 bytes per line.
	a) How large is the cache (in bytes)?
	b) Draw a diagram of how the memory address is used by the cache.
5.	Why doesn't a direct-mapped require a cache replacement policy?

- 6. A computer system stores 3 bits per jump instruction for a Finite State Machine which does dynamic branch prediction.
 - a) **How many circles** will the Finite State Machine's diagram have on it?
 - b) **How many arrows** will the Finite State Machine's diagram have on it?
- 7. In each of the pairs of the instructions below, **identify** what kind of **dependency** would keep the second instruction from executing at the same time as the first instruction:

R3 = R0 + R7 R5 = R3 - R4	

R5 = R0 + R3 R5 = R0 - R3

- 8. Which of the dependencies in question 7 could be eliminated through the use of **Register Renaming**?
- 9. A system using Superscalar Execution has a scoreboard in the following state:

Read Counts					Write Counts										
R0	R1	R2	R3	R4	R5	R6	R7	R0	R1	R2	R3	R4	R5	R6	R7
0	1	0	3	0	0	2	0	1	0	0	0	0	1	0	0

Assuming that there are no hidden registers, **circle the instructions below**which **could** be issued with the scoreboard in this state.

R2 = R3 + R7	R6 = R4 + R7	R7 = R2 + R4
R4 = R1 - R5	R5 = R2 * R4	R4 = R5 + R7

COMP 2825 – Computer Architecture Review Questions – Week 10

Page 3 of 4

10.	Which architectural level of a hardware and the software that		s the boundary betweer	the CPU
11.	Circle the words below which a level of a computer system:	are characteristics of	the Instruction Set Ar	chitecture
	Memory Model	Performance	Data Types	
	Pipeline Stages	Registers	Instructions	
12.	A computer system requires all Circle the hexadecimal address	•	_	oundaries
	2F0D	7598	0000	
	333C	2086	FFFF	
13.	What is the Harvard Architec	cture?		
14.	What is the difference between	n User Mode and K	ernel Mode ?	
15.	In the UltraSPARC architecture	e, what value does tl	ne R0 register hold?	

COMP 2825 – Computer Architecture

Page 4 of 4

16.	How many	bits	are there	in the	registers	for	the:

- a) Pentium-4
- b) UltraSPARC III
- 17. What are the names of the registers which hold the following information in a typical computer system?
 - a) The address of the next instruction to be executed.
 - b) The address of the top word on the stack
 - c) The address of the area holding the local variables for the current procedure.
 - d) The state of the last ALU operation.