

A DFT Study of the Low Temperature Water Gas Shift Reaction on Transition Metal Doped ZnO(1010) Surface

Bryan Goldsmith 10/4/12

$$CO + H_2O \Longrightarrow CO_2 + H_2$$

Petrochemical industry

Motivation Agriculture

Fe/Al₂O₃/K $N₂ + 3 H₂ \rightleftharpoons 2 NH₃$

Fuel cells

$$H_2 \rightarrow 2 H^+ + 2 e^-$$

 $O_2 + 4 H^+ + 4 e^- \rightarrow 2 H_2O$

Desulfurization

$$C_2H_5SH + H_2 \rightarrow C_2H_6 + H_2S$$

Methanol production

$$CO_2 + 3 H_2 \leftarrow \frac{Cu/ZnO}{200-300 °C} \rightarrow CH_3OH + H_2O$$

Steam reforming

$$C_mH_n + mH_2O \iff mCO + (m + 1/2n)H_2$$

Acres et. al. Catal. Today 1997, 38, 393-400

M

Low Temperature Water Gas Shift Reaction

 $CO + H_2O \iff CO_2 + H_2$ Exothermic (~40 kJ/mol), reversible

Low T push equilibrium toward H₂ production

High T provide faster kinetics

Industrial plants use two-step WGS reactor Not viable for small-scale, e.g. fuel cells

Community goal: Develop active, stable, and cheap LTWGS catalysts

Reduce volume/weight

Retain activity

[1] Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 3: Fuel Cell Technology and Applications.

M

LTWGSR catalysts

Conventional Catalyst

Cu/ZnO/Al₂O₃

Pro: stable*, selective

Con: activation, slow kinetics

Alternative Catalysts

Cu/CeO₂, Pt/CeO₂, Ni/CeO₂ Inverse CeO_x/Cu(111)^[1] Pt-alkali-Ox(OH)y/Silica^[2] Nonmetallic Au on Ceria^[3] Au NP on CeO₂, TiO₂ or Fe₂O₃^[4]

and others...

Pro: non pyrophoric, no activation

Con:

STO STORY

, sintering, poisoning

$$CO + 3 H_2 \rightarrow CH_4 + H_2O \Delta H_{rxn} = -217 \text{ kJ/mol}$$

- [1] Rodriguez et. al. Angew. Chem. Int. Ed. 2009, 48, 8047
- [2] Zhai et. al. Science 2010, 329, 1633-1636
- [3] Fu et. al. Science 2003, 301, 935-938
- [4] Deng et. al. Top. Catal. 2007, 44, 199-208

Two Mechanisms

Regenerative mechanism

$$CO + * \rightarrow CO*$$
 $H_2O + * \rightarrow O* + H_2$
 $CO* + O* \rightarrow CO_2 + 2*$

 $Fe_2O_3/Cr_2O_3^{[1]}$ Pt in $Ce_{1-x}Zr_xO_2^{[2]}$ Au/TiO₂ [3] Pd/CeO₂ [4]

[1] Rhodes et. al. Catal. Today 1995, 23, 43-58

- [2] Deshpande et. al. Appl. Catal., B 2010, 96, 83-93
- [3] Boccuzzi et. Al. Surface Science 2000, 454-456
- [4] Hilaire et. al. J. Appl. Catal., A 2001, 215, 271-278

Associative mechanism

$$CO + * \rightarrow CO*$$
 $H_2O + 2* \rightarrow H^* + OH^*$
 $OH^* + CO^* \rightarrow HCO_x^* + *$
 $HCO_x^* + * \rightarrow CO_2^* + H^*$
 $CO_2^* \rightarrow CO_2 + *$
 $2H^* \rightarrow H_2 + 2*$

 $CeO_x/Au(111)^{[5]}$ $Cu(111)^{[6]}$ Pt-promoted thoria^[7] $TiO_{2-x}/Au(111)^{[8]}$

- [5] Senanayake J. Catal. 2010, 271, 392-400
- [6] Gokhale et. al. J. Am. Chem. Soc. 2008, 130, 1402-1414
- [7] Jacobs et. al. J. Catal. 2005, 235, 79-91
- [8] Rodriguez et. al. Science 2007, 318, 1757-1760

Theoretical study of catalytic role of dispersed metal on $ZnO(10\overline{10})$

Questions:

Do highly dispersed metal species catalyze the WGSR? What is the active site and catalytic cycle?

Host support: ZnO

Industrially used Stable, cheap (~\$1000-2000/ton)

Dopants selected: Mn
Manganese
4. 353045

Abundant, inexpensive Could be atomically dispersed on ZnO

[1] Fu, Q et. al. Science 2003, 301, 935-938

- [2] Fu, Q et. al. Catal. Lett. 2001, 77, 87-95
- [3] Andreeva et. al. Catal. Today 2010, 158, 69-77
- [4] Deshpande et. al. Appl. Catal., B 2010, 96, 83-93
- [5] Li et. al. Appl. Catal., A 2008, 334, 321-329

[6] Qiao, B. et al. Nat Chem 2011, 3, 634

Modeling procedure

Zn O

O TM = Fe, Co, Ni, Mn ZnO(1010)
nonpolar facet
most energetically favorable surface
GGA-PW91[1], spin-polarized
6 layer slab model, 3x1 unit cell
4x4x1 k-point, 12 Å vacuum
Defect free
Bottom four layers fixed

Relative energies for Fe, Ni, Co, and Mn substituted in the 2^{nd} and 3^{rd} layer Zn lattice of the ZnO($10\overline{1}0$)

Pala et. al. found similar trend. [1] Pala, R. G. S.; Metiu, H. J. Phys. Chem. C 2007, *111*, 8617

			Bader charge	
	TM-O distance (Å)	$E_V(eV)$	TM	O
Fe/ZnO	1.89	3.73	1.35	-1.23
Ni/ZnO	1.88	3.14	1.07	-1.21
Co/ZnO	1.87	3.58	1.13	-1.21
ZnO	1.92	2.96	1.23	-1.23

Large E_v
 Exclude regenerative mechanism

Adsorption of reactants and intermediates

		Adsorption energy (eV)				
Species	Site	Fe	Ni	Co	ZnO	
СО	TM/Zn	-0.41	-0.43	-1.15	-0.32	
$\rm H_2O$	Zn	-1.09	-1.08	-1.09	-1.07	
	TM	-0.76	-0.71	-0.84	-	
ОН	TM-Zn	-3.30	-2.61	-2.91	-1.86	
	TM	-3.41	-2.45	-2.96	-	
Н	O	-2.22	-2.97	-2.62	-2.36	
	TM/Zn	-1.72	-1.65	-1.75	-0.66	
СООН	TM	-1.84	-1.72	-2.12	-	
CO_2	TM-O-TM	-0.65	-0.59	-0.72	-0.83	

TM = Fe, Co, or Ni

Most stable configurations found

Zn O C H

COOH only stable on TM dopants (not Ni)

f) is the OH on Ni/ZnO and g) is that on Fe/ZnO and Co/ZnO

Water dissociation

[1] Rodriguez, J. A.; et. al. Science 2007, 318, 1757-1760, [2] Nakamura, J.; Faraday Transactions 1990, 86

COOH formation and dissociation for Co and Fe

re.

CO+OH to CO₂ + H* dissociation on Ni and ZnO

H₂ formation

@ 1 atm, 500 K

TM-O-H H-TM-O H-TM-O-H $_{FS}$

M

What we learned so far

Doping changes surface energetics

Water dissociation not facilitated by TM dopant

COOH only stable on TM dopants

0.60

Fe

A Ni

0.45

0.45

0.00

1st layer

Substitution position

Fe, Ni, Co appear stable in surface layer Dope Fe, Ni, Co increases E_v locally

$$CO + * \rightarrow CO*$$
 $H_2O + 2* \rightarrow H^* + OH^*$
 $OH^* + CO^* \rightarrow HCO_x^* + *$
 $HCO_x^* + * \rightarrow CO_2^* + H^*$
 $CO_2^* \rightarrow CO_2 + *$
 $2H^* \rightarrow H_2 + 2*$

Acknowledgements

Professor Wei-Xue Li and group members

Professor Baron Peters and group members

