背景

很多改进网络的做法都是从网络的深度、网络的宽度以及图像的分辨率这三个方面入手(如图 1 所示),提高准确率,像 VGG、ResNet 等图像分类网络都是将输入的图像尺寸固定为 224×224,加深网络的深度来提高性能。虽然可以任意缩放两个或三个维度,但任意缩放需要繁琐的手动调优,并且通常会产生精度和效率不是最优的。而且增加网络的深度虽说可以得到更加丰富的特征,但是随着网络深度的加深会出现梯度消失、训练困难的问题。增加网络的宽度可以获得更高细粒度的特征,但是对于宽度很宽,深度较浅的网络很难提取到更具有判别性的特征。提高输入图像分辨率也可以获取到更高细粒度的特征,但是过高的分辨会增加计算量。从图 2 可以看出,这三个参数增加到一定程度其产生的准确率增益会减小

方法

这篇文章认为平衡网络的深度、网络的宽度以及图像的分辨率很重要,而且这种平衡可以通过简单地用常数比例缩放它们来实现。在此基础上,提出了一种简单有效的复合标度方法。与传统的任意缩放这些因素的做法不同,这里使用一组固定的缩放系数统一缩放网络的深度、网络的宽度以及图像的分辨率。

通过实证研究发现,不同尺度之间并不是相互独立的。比如说:

对于更高分辨率的图像,增加网络深度,这样更大的接受域可以帮助捕获在 更大的图像中包含更多像素的相似特征;

当分辨率较高时,我们也应该增加网络宽度,以便在高分辨率图像中捕获更 多像素的更细粒度的模式。

因此需要平衡不同的缩放维度, 而不是传统的一维缩放。

图 3 是采用不同深度和分辨率组合,然后改变网络的宽度得到的实验结果,可以发现在相同的 FLOPs 下,同时增加网络的深度和分辨率效果最好。

问题公式化

作者先将卷积层 i 定义为一个函数: $Y_i = F_i(X_i)$,而一个卷积网络是用 duo个卷积层堆叠而成的,那么卷积网络就可以表示为 $N = F_k \odot \cdots \odot F_1(X_1)$,卷积网络通常可以划分为多个阶段,每个阶段中的所有层都共享相同的架构,因此每个

阶段中的所有层都具有相同的卷积类型,所以我们可以将卷积网络定义为 $N = \bigcirc_{i=1,\dots,s} F_i^{L_i}(X)$,其中 $F_i^{L_i}$ 表示在 stage 中 $F_i(X_i)$ 运算被重复执行 L_i 次。为了探究深度、宽度、分辨率对网络性能的影响,将深度(d)、宽度(w)、分辨率(r)带入公式中,将最优化问题抽象为了公式(1):

$$\max_{d,w,r} \quad Accuracy \left(\mathcal{N}(d,w,r) \right)$$
 s.t.
$$\mathcal{N}(d,w,r) = \bigodot_{i=1...s} \hat{\mathcal{F}}_i^{d\cdot\hat{L}_i} \left(X_{\langle r\cdot\hat{H}_i,r\cdot\hat{W}_i,w\cdot\hat{C}_i \rangle} \right)$$
 (1)
$$\operatorname{Memory}(\mathcal{N}) \leq \operatorname{target_memory}$$

$$\operatorname{FLOPS}(\mathcal{N}) \leq \operatorname{target_flops}$$

d 用来缩放深度 \hat{L}_i , r 用来缩放分辨率,即直接对 \hat{H}_i 、 \hat{W}_i 产生影响,w 用来缩放特征矩阵的通道数 \hat{C}_i , target_memory 和 target_flops 为对内存和 FLOPs 的限制。

混合缩放法

混合缩放方法是利用混合因子 ϕ 对网络宽度、深度和分辨率进行统一缩放, 具体的计算公式如下:

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ (2) s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

其中 α , β , γ 分别指定如何将这些额外的资源分配给网络宽度、深度和分辨率。假设网络的深度增加一倍,那么 FLOPs 也会增加一倍;网络的深度增加一倍,且假设输入输出的特征图尺寸不变,那么因为网络深度增加了一倍,输入输出特征图的通道数也会增加一倍,那么 FLOPs 也会增加四倍,相当于网络增加一倍,FLOPs 增加平方倍;输入图像的分辨率增加一倍,那么 FLOPs 增加四倍。总的 FLOPs 可以近似用 $(\alpha\beta^2\gamma^2)^{\phi}$ 表示。

网络结构 使用 NAS 搜索技术得到 EfficientNet-B0 的结构, 其结构图如下图所示:

Stage i	Operator $\hat{\mathcal{F}}_i$	Resolution $\hat{H}_i \times \hat{W}_i$	\hat{C}_i #Channels	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7×7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

图 4

可以看到网络的 Stage2~ Stage8 是由 MBConv 堆叠得到的,MBConv1、MBConv6 指的是 MBConv 中第一个 1×1 卷积层将输入特征图的通道数扩充 1或者 6倍,k3×3、k5×5表示 MBConv 中深度方向卷积所采用的卷积核的大小。这里的 MBConv 就是 MobileNetV3 中使用的反向残差块。

然后又在 EfficientNet-B0 的基础上使用 NAS 搜索 α , β , γ 这三个参数:

首先固定混合因子 ϕ ,然后使用公式(1)和公式(2)进行搜索,发现当 α =1.2, β =1.1, γ =1.15时 EfficientNet-B0 的性能最佳; 然后固定刚刚得到的三个参数,改变混合因子 ϕ 得到 EfficientNet-B1~ EfficientNet-B7。

背景

EfficientNetV1 关注的时准确率、参数数量以及 FLOPs, 而在 EfficientNetV2 中关注的则是模型的训练速度,除此之外针对 EfficientNetV1 中存在的问题:

- ①训练图像的尺寸很大时, 训练速度很慢
- ②在浅层网络中使用深度方向的卷积速度会很慢
- ③同等放大每个 Stage 中的深度和宽度得到的结果不是最优的做出了改进。

方法

针对训练图像分辨率大引起的训练速度慢做出的改变

从下图可以看出当训练图像的尺寸为 380 时增加 batch_size 大小可以提高训练速度,但是当图像分辨率变大时,训练速度下降了,这时再使用较大的 batch_size 的话显存就不够了。那么针对这一问题最直接的方法就是降低训练图像的尺寸,不仅加快了训练速度,而且还能使用更大的 batch_size,没有必要像 EfficientNetV1 执着地增加分辨率。

			ngs/sec/core	V100 imgs/sec/gpu	
	Top-1 Acc.	batch=32	batch=128	batch=12	batch=24
train size=512	84.3%	42	OOM	29	OOM
train size=380	84.6%	76	93	37	52

图 5

Fused-MBConv

虽然说理论上使用深度方向的卷积计算量会很小,但是在实际中使用的时候因为无法充分利用现有的加速器,所以速度较慢,因此引入了Fused-MBConv结构。

图 6 是 MBConv 和 Fused-MBConv 的结构示意图。可以看出来 Fused-MBConv 是直接将 MBConv 中第一个 1×1 的卷积层和深度方向的卷积直接换为一个 3×3 的卷积层。它们的实验效果如图 7 所示,使用 MBConv 时其准确率可以达到82.8%,速度是每块 GPU 每秒训练 155 张图片,使用 Fused-MBConv 将原来

EfficientNetV1 中 stage2~4 的卷积模块换为 Fused-MBConv 可以发现准确率和训练速度都有所提升。

将原来 EfficientNetV1 中 stage2~6 的卷积模块或者将所有的 stage 换为 Fused-MBConv,通过图 7 的对比可以发现,还是将 stage2~4 的 MBConv 进行替换是最优的。随后作者也使用了 NAS 搜索技术去寻找将哪些 stage 的卷积模块进行替换道道的效果是最好的。

	Params (M)	FLOPs (B)	Top-1 Acc.	TPU imgs/sec/core	V100 imgs/sec/gpu
No fused	19.3	4.5	82.8%	262	155
Fused stage1-3	20.0	7.5	83.1%	362	216
Fused stage1-5	43.4	21.3	83.1%	327	223
Fused stage1-7	132.0	34.4	81.7%	254	206

图 7

采用非均匀缩放

EfficientNetV1 中同等地放大了每个 Stage 中的深度和宽度,由于每个 Stage 对于网络训练速度以及参数数量的贡献不是均等的,因此将其均匀缩放所得到的结果不是最优的,所以在这里,采用非均匀缩放的方式来进行模型深度和宽度的缩放调整,逐渐地添加更多的层到后面的几个阶段,并且修改了缩放策略,将图

像的最大尺寸限制为较小的值。

Training-aware NAS 搜索

因为现在有很多模型设计的选择,现在采用的不是原来的 NAS 搜索技术,而是基于 NAS 结合了新的优化对象,例如准确率、参数有效性和训练效率三个维度,模型设计的空间包含了卷积模块、层数、卷积核尺寸以及卷积模块中第一个卷积涉及到的扩展率。

EfficientNetV2 结构

网络结构框图如下所示:

Stage	Operator	Stride	#Channels	#Layers
0	Conv3x3	2	24	1
1	Fused-MBConv1, k3x3	1	24	2
2	Fused-MBConv4, k3x3	2	48	4
3	Fused-MBConv4, k3x3	2	64	4
4	MBConv4, k3x3, SE0.25	2	128	6
5	MBConv6, k3x3, SE0.25	1	160	9
6	MBConv6, k3x3, SE0.25	2	256	15
7	Conv1x1 & Pooling & FC	_	1280	1

图 8

除了在较浅的层使用 Fused-MBConv 外,使用的卷积模块的扩展率不同于 V1 中的 1 或 6,选择使用较小的扩展率,可以减少内存访问成本。而且不同于 V1 中使用了 3×3 和较多的 5×5 卷积核, V2 选择全部使用较小的 3×3 卷积核, 又由于卷积核尺寸的减小,也就意味着感受野变小,所以每一个卷积模块堆叠的 次数也变多了。

渐进学习策略

由于训练图像的分辨率对网络的训练速度有很大的影响,有人做实验发现在 网络训练的一开始使用较小的图像分辨率,然后再加大分辨率,这样得到的准确 率通常会下降,那么在这里,作者猜测,准确率的降低时不平衡的正则化导致的。

接下来使用前面提到的 training-awareNAS 搜索技术,在该搜索空间中采样并训练模型,在训练过程中使用不同的图像分辨率以及不同的数据增强手段。

	Size=128	Size=192	Size=300
RandAug magnitude=5	$\textbf{78.3} \pm 0.16$	81.2 ± 0.06	82.5 ± 0.05
RandAug magnitude=10	78.0 ± 0.08	$\textbf{81.6} \pm 0.08$	82.7 ± 0.08
RandAug magnitude=15	77.7 ± 0.15	81.5 ± 0.05	83.2 ± 0.09

图 9

图9的红色框可以看出,当使用很少的图像增强手段,且图片分辨率较小的时候,网络的效果时最好的。从蓝色的框中可以看出,当选用较大的图像分辨率时,使用更多的数据增强方法达到下效果是最好的。

基于这些实验结果,提出了渐进学习策略(如图 10 所示),也就是在训练早期阶段使用较小的图像分辨率以及弱正则化方法,让网络学习到一些简单的特征表达,然后随着训练进程的加深,加大图像的分辨率的同时也增强正则化手段。

epoch=1

epoch=100

epoch=300