FIG. 1

FIG. 2

CARTRIDGE		SEPARATED MATERIALS
Ţ		
STEP 1 PRIMARY CRUSHING ST	EP⊳	TONER, PAPER DUST
STEP 2 SCREENING STEP	······································	TONER, PAPER DUST FINE PLASTIC PARTICLES
STEP 3 MAGNETIC SELECTION S	STEP⊳	DRUM SHAFT BLADES
STEP 4 DRUM MAGNETIC SELEC	CTION STEP ······▷	SMALL IRON PARTS, PLASTIC MAGNETS
STEP 5 EDDY CURRENT STEP		DEVELOPING SLEEVES
STEP 6 AIR SELECTION STEP	>	SUS MEMBERS, SMALL IRON PARTS
STEP 7 SECONDARY CRUSHING	STEP	
STEP 8 PEELING AND AIR SELEC	CTION STEP ···········⊳	LABELS, SEALS FINE PARTICLES
STEP 9 DRY GRAVITY SEPARAT	ION STEP	METALS, POLYETHYLENE, FOAMED URETHANE
STEP 10 COLOR SELECTION STE	· ·	URETHANE RUBBER SILICONE RUBBER METALS, COLORED RESINS
STEP 11 MELTING STEP	······>	METALS
STEP 12 MIXING STEP		MOLDING MATERIAL

The second of th

FIG. 8

PLASTIC REFLECTION DENSITY MEASUREMENT RESULTS						
COLOR	MATERIAL	REFLECTION DENSITY				
		MIN	MAX	AV		
BLACK 1	HIPS	1.5	1.59	1.54		
BLACK 2	HIPS	1.55	1.66	1.62		
BLACK 3	HIPS	1.31	1.5	1.4		
GRAY 1	HIPS	1.21	1.37	1.29		
BLUE 1	PP	0.53	0.68	0.58		
GREEN 1	PP	0.54	0.64	0.59		
VERMILION 1	ABS	0.5	0.55	0.52		
MILK WHITE 1	POM.	0.37	0.41	0.39		
MILK WHITE 2	POM	0.22	0.32	0.25		

FIG. 9

MEASUREMENT APPARATUS : Macbeth RD914 (MONOCHROME MODE)				
TEST ITEMS	Α	В		
GRAVITY	1.12	1.11		
MI (g / 10min)	4.1	4.1		
TENSILE BREAK STRENGTH (Mpa)	26	25		
BENDING STRENGTH (Mpa)	. : 43	44		
IZOD IMPACT STRENGTH (KJ / m²)	8	7.5		
FLAMMABILITY	V–2	V–2		
SHRINKAGE FACTOR 200mm (%)	0.59	0.58		