Information Retrieval - Short Exercises I - Boolean Retrieval and Navigational Patterns

I. Consider the following documents **D1-D4** using 8 different terms:

D1 = {breakthrough drug schizophrenia}

D2 = {new schizophrenia drug}

D3 = {new approach treatment schizophrenia}

D4 = {new hope schizophrenia patient}

Fill in the term-document incidence matrix for this document collection.

	D1	D2	D3	D4
approach	0	0	1	0
breakthrough	1	0	0	0
drug	1	1	0	0
hope	0	0	0	1
new	0	1	1	1
patient	0	0	0	1
schizophrenia	1	1	1	1
treatment	0	0	1	0

What are the results returned for the below Boolean queries:

schizophrenia AND drug
Answer: 1111 AND 1100 = 1100

new AND NOT(drug OR approach)
Answer: 0111 AND NOT(1100 OR 0010) =

0111 AND NOT 1110 = 0111 AND 0001 = 0001

II. Given the following four sessions: {D1 D2 D3}, {D1 D3}, {D2 D3}, answer the questions related to using the Markov chain for mining navigational patterns.

What is $P(D1 \rightarrow D2)$?

Answer: 1 - 2/3 = 1/3

What is the probability of P(Start \rightarrow D1 \rightarrow D3)? Answer: $3/4 \times 2/3 = 1/2$

Answer: 2/3 + 1/3 * 1 = 1

What is the probability of P(D3|D1)?

INFORMATION RETRIEVAL - SHORT EXERCISES II - VECTOR SPACE MODEL AND LATENT SEMANTIC INDEXING

I. Consider a set of terms $\mathbf{T} = \{t_1, t_2, t_3, t_4\}$ and the following collection of two documents: $\mathbf{D1} = \{t_1 \ t_2 \ t_1 \ t_2 \ t_3\}$ and $\mathbf{D2} = \{t_4 \ t_2 \ t_3\}$. Consider query $\mathbf{Q} = \{t_1 \ t_4\}$. Represent D1, D2, and Q using TF (normalized Bag-Of-Words).

TF	t ₁	t ₂	t ₃	t ₄	max
D1	2/2	2/2	1/2	0	2
D2	0	2/2	1/2	1/2	2
Q	1	0	0	1	1

Compute IDFs for all four terms (note that only D1 and D2 are included in the collection).

	t ₁	t ₂	t ₃	t ₄	N
IDF	log2	log1=0	log1=0	log 2	2

II. Consider the below term-document matrix \mathbf{C} for the bag-of-words representation of five documents $\mathbf{D1}$ - $\mathbf{D5}$ in the space of six terms $\mathbf{t_1}$ - $\mathbf{t_6}$. Using the SVD factorization method, matrix \mathbf{C} has been decomposed into matrices \mathbf{K} , \mathbf{S} , and $\mathbf{D^T}$ given below. The rank of \mathbf{C} is 4 (4 \leq min{6,5}), so 4 concepts (semantic dimensions) were discovered.

 $\mathbf{C} = \begin{bmatrix} & \mathbf{D1} & \mathbf{D2} & \mathbf{D3} & \mathbf{D4} & \mathbf{D5} \\ \mathbf{t_1} & 5 & 5 & 0 & 0 & 1 \\ \mathbf{t_2} & 4 & 5 & 1 & 1 & 0 \\ \mathbf{t_3} & 5 & 4 & 1 & 1 & 0 \\ \mathbf{t_4} & 0 & 0 & 4 & 4 & 4 \\ \mathbf{t_5} & 0 & 0 & 5 & 5 & 5 \\ \mathbf{t_6} & 1 & 1 & 4 & 4 & 4 \end{bmatrix}$

not

sure

	terms -> concepts										
			-0.78								
			0.44								
_t <u>3</u>	-0.29	0.47	0.44	0.71							
r t4	-0.45	-0.29	-0.01	0							
t5	-0.56	-0.36	-0.02	0							
t6	-0.50	-0.18	-0.05	0							

concept space									
13.74	0	0	0						
0	10.88	0	0						
0	0	1.36	0						
0	0	0	1						
	13.74 0 0	13.74 0 0 10.88 0 0	0 10.88 0 0 0 1.36						

	D1	D2	D3	D4	D5
	-0.32	-0.32	-0.52	-0.52	-0.5
D ^T =					-0.29
D -	-0.02	-0.02	0.41	0.41	-0.82
	0.71	-0.71	0	0	0

Answer the following questions:

- What is the informativeness value of the most important concept? Answer: 13.74
- Based on the informativeness values of all concepts, which seems the most obvious value for the reduced number of dimensions k? Answer: k = 2
- What is the (numerical value of the) mapping of term t₆ to the most important (informative)
 concept? Answer: 0 (i.e., the 4th concept)
- What is the vector representing document D3 in the space of four discovered concepts?
 Answer: [-0.52, -0.25, 0.41 , 0]

INFORMATION RETRIEVAL - SHORT EXERCISES III - EVALUATION IN INFORMATION RETRIEVAL AND PAGERANK

I. Consider an information need for which there are 4 relevant documents in the collection. A system run on this collection returned the top 10 results for which the relevance is judged as follows (R – relevant; N – non-relevant):

RNRNNNNRR

What is the recall at 6 (R@6)? Answer: (1/4) * (1 + 0 + 1 + 0 + 0 + 0) = 2/4 = 1/2

What is the Mean Average Precision? Answer: (1/4) * (P@1 + P@3 + P@9 + P@10) == (1/4) * ((1/1) * 1 + (1/3) * 2 + (1/9) * 3 + (1/10) * 4) = 3/5

II.Consider the web graph presented below to the left. It involves four pages D1-D4 and four links.

Fill in the stochastic matrix M given to the right.

Write the equation for PR(D3) without dumping factor q? Answer: PR(D3) = 0*PR(D1) + 1*PR(D2) + 0*PR(D3) + 1*PR(D4)

Which page has the greatest PageRank (without computing the exact PR values)? Answer: D3

An oracle has evaluated D2 as trusted and D4 as spam. What is the starting vector d for TrustRank?

Answer: d = [0, 1, 0, 0]

(Of course, apart from d = [0, 0, 0, 0])

Information Retrieval - Short Exercises IV - HITS, Relevance Feedback and Spelling Correction

I. Consider the web graph presented below to the left. It involves four pages D1-D4 and four links. Fill in the adjacency matrix L given to the right.

0	1	0	0
0	0	1	1
0	0	0	0
0	0	1	0

The principal eigenvector of LL^T is [0, 1.618, 0, 1] and the principal eigenvector of L^TL is [0, 0, 1.618, 1].

What is $h(D_4)$? Answer: .1.

(not normalized)

The page with the greatest authority score is: D3

max

II. Compute the Levenshtein distance for "LEGIA" and "LECHIA".

		L	E	С	Н	I	Α
	0	1	2	3	4	5	6
L	1	0	1	2	3	4	5
E	2	1	0	1	2	3	4
G	3	2	1	1	2	3	4
ı	4	3	2	2	2	2	3
Α	5	4	3	3	3	3	2

Information Retrieval - Short Exercises V - Collaborative Filtering and ADWORDS

I. Given the below user-item rating matrix, predict rating of user U7 for item I4:

	11	12	13	14	sim(U7,U·)	Average
U1	5	4	4	4	0.0	(5 + 4 + 4) / 3 = 4.3(3)
U2	5	3	7	3	1.0	5
U3	4	3	2	3	-0.5	3
U4	6	4	5	4	0.5	5
U5	3	4	2	4	-1.0	3
U6	4	3	5	3	1.0	4
U7	4	3	5	?		4

a) Employ user-based CF with k=2 and either simple average or weighted average?

Answer: U7(I4) = (3 + 3) / 2 = 3

b) Employ user-based CF with k=2 and modify U7's average rating by the weighted modification of its nearest neighbors averages:

Answer: U7(I4) = $4 + \frac{1.0 * (3 - 4) + 1.0 * (3 - 5)}{1.0 + 1.0} = 4 - 1.5 = 2.5$

c) Which item should be analyzed to predict the rating when using item-based CF with k=1? What would be the predicted rating?

Answer: item - 12 and prediction - 3

II. Four advertisers A, B, C, and D with a daily budget of \$2 bid for the following keywords (\$1 each): A: w, x; B: x, z; C: x, y; D: y, z. Use a simplified version of BALANCE to select the ads for the following query stream (in the case of a tie use the following order for breaking it A > B > C > D):

query stream	х	у	W	Z	Z	W	у	Х
BALANCE	Α	С	Α	? B	? D	?-	? C	? C

Information Retrieval - Short Exercises VI - Index Construction and Compression

I. Consider the following fragment of a term-based positional index in the format:

term: doc1: <position1,position2,...>; doc2: <position1,...>; etc.

Gates: 1: <3>; 2: <6>; 3: <2,17>; 4: <1>;

IBM: 4: <3>; 7: <14>;

Microsoft: 1: <1>; 2: <1,21>; 3: <3>; 5: <16,22,51>;

The /k operator, word1 /k word2 finds occurrences of word1 within k words of word2 (on either side), where k is a positive integer argument. Which document(s) satisfy the query "Gates /2 Microsoft"?

Answer: 1: [3] 3: [2]

1: [1] 3: [3]

II. Build a suffix array for "couscous\$" using the *qsufsort* algorithm.

	i	1	2	3	4	5	6	7	8	9
h	Xi	С	0	u	S	С	0	u	S	\$
	A[i]	9	1	5	2	6	4	8	3	7
	V[A[i]]	1	3	3	5	5	7	7	9	9
1	V[A[i]+h]		5	5	9	9	3	1	7	7
	A[i]	9	1	5	2	6	8	4	3	7
	V[A[i]]	1	3	3	5	5	6	7	9	9
2	V[A[i]+h]		9	9	7	6			3	1
	A[i]	9	1	5	6	2	8	4	7	3
	V[A[i]]	1	3	3	4	5	6	7	8	9
4	V[A[i]+h]		3	1						
	A[i]	9	5	1	6	2	8	4	7	3

III. Encode 15 in y. Answer: 0001111

IV. Decode 00111000001 written in the δ -code. Answer: N+1=00111=7=>N=6

Answer: $2^6 + 1 = 65$