main_jupyter

February 5, 2021

1 Data aggregation in food webs: effects on key positions

The following R code uses the igraph package to plot the original plankton food web of the Gulf of Naples, as well as its aggregated versions.

1.1 Load packages and import data

Let's start from calling the packages we will need.

```
[4]: library(igraph)
library(NetIndices)

Attaching package: 'igraph'

The following objects are masked from 'package:stats':
    decompose, spectrum

The following object is masked from 'package:base':
    union

Warning message:
    "package 'NetIndices' was built under R version 4.0.2"
Loading required package: MASS
```

Import the adjacency matrices of the original food web and of the clustered food webs.

```
[]: edge_list <- read.delim('../data/edge_list_for_R.txt', header = FALSE)
edge_list_jaccard <- read.delim('../variables/edge_list_jaccard.txt', header =

→FALSE)
edge_list_rege <- read.delim('../variables/edge_list_rege.txt', header = FALSE)
edge_list_prey_modularity <- read.delim('../variables/edge_list_prey_modularity.

→txt', header = FALSE)
```

Import the matrix with the membership of the nodes to different clusters of different food webs.

```
[]: membership <- read.csv('../variables/membership.txt',header = FALSE)
```

Import the trophic position of the different nodes in different food webs.

```
[]: TP <- as.matrix(read.csv('../variables/TP.txt', header = FALSE))

TP_jaccard <- as.matrix(read.csv('../variables/TP_jaccard_clusters.txt', header

⇒= FALSE))
```

1.2 Original food web

1.2.1 Create

```
[6]: edges <- as.matrix(edge_list[,c("V2","V1")]) #You need to invert i and j
     G <- graph_from_edgelist(edges)</pre>
     G$weight <- edge_list[,"V3"]
     V(G)$TP <- TP[,1]
     layout.matrix<-matrix( nrow=length(V(G)),ncol=2)</pre>
     layout.matrix[,1]<-runif(length(V(G)))</pre>
     layout.matrix[,2] <- TP[,1]</pre>
     V(G)$color <- "666"
     A<-get.adjacency(G,sparse=F) #i and j are inverted
     plot.igraph(G,
                  main= "Original food web ",
                  vertex.label=NA,
                  vertex.size=2,
                  edge.arrow.size=.25,
                  layout=layout.matrix,
                  axes=TRUE,
                  xlim = c(0,1),
                  ylim=c(0,3),
                  ylab="Trophic position (TP)",
                  rescale=F,
                  asp=0)
```

Original food web

1.2.2 Global metrics

Let's take a look at some basic information about our food web.

	N	T	TST	Lint	Ltot	LD	\mathbf{C}	Tijbar	TSTbar	C1
A data.frame: 1×10	<int $>$	<dbl $>$	<dbl $>$	<int $>$	<int $>$	<dbl $>$	<dbl $>$	<dbl $>$	<dbl $>$	<
-	62	652	1077	652	652	10.51613	0.1723956	1	17.37097	0.5

where N = number of compartments, excluding the externals; T... = total system throughput; TST = total system throughflow; Lint = number of Internal links; Ltot = total number of links; LD = link density; C = connectance (internal); Tijbar = average link weight; TSTbar = average

Compartment Throughflow; Cbar = compartmentalization, [0,1], the degree of connectedness of subsystems within a network.

1.3 Clustered food web

1.3.1 Jaccard index food web

Let's now take a look at the Jaccard food web.

```
[20]: par(mfrow=c(1,2))
      #JACCARD FOOD WEB - colour
      V(G)$jaccard <- membership[,1]</pre>
      V(G)$color <- V(G)$jaccard</pre>
      plot.igraph(G,
                   main = "(a)", #Clustering through the jaccard index
                   vertex.label=NA,
                   vertex.size=3,
                   edge.arrow.size=.25,
                   layout=layout.matrix,
                   xlim = c(0,1),
                   ylim=c(0,3),
                   rescale=F,
                   asp=0,
                   \#axes=T,
                   #ylab="Trophic position (TP)"
      )
      #JACCARD FOOD WEB - create
      edges_jaccard <- as.matrix(edge_list_jaccard[,c("V2","V1")]) #You need to_
       \rightarrow invert i and j
      G_jaccard <- graph_from_edgelist(edges_jaccard)</pre>
      #G_jaccard$weight <- edge_list_jaccard[,"V3"]
      V(G_jaccard)$TP <- TP_jaccard</pre>
      layout.matrix<-matrix( nrow=length(V(G_jaccard)),ncol=2)</pre>
      layout.matrix[,1]<-runif(length(V(G_jaccard)))</pre>
      layout.matrix[,2] <- TP_jaccard</pre>
      V(G_jaccard)$color <- "666" #V(G_jaccard)</pre>
      plot.igraph(G_jaccard,
                   main= "(b)", #Jaccard food web
                   vertex.label=NA,
                   vertex.size=3,
                   edge.arrow.size=.25,
                   layout=layout.matrix,
                   xlim = c(0,1),
                   ylim=c(0,3),
                   #axes=TRUE,
                   #ylab="Trophic position (TP)",
```

rescale=F,
asp=0)

1.3.2 REGE index food web

```
layout=layout.matrix,
            xlim = c(0,1),
            ylim=c(0,3),
            rescale=F,
             asp=0,
             \#axes=T,
             #ylab="Trophic position (TP)"
)
#REGE FOOD WEB - create
edges_rege <- edge_list_rege[,c("V2","V1")] #You need to invert i and j</pre>
G_rege <- graph_from_edgelist(edges_rege)</pre>
weights_rege<-edge_list_rege[,"V3"]</pre>
G_rege$weight <- weights_rege</pre>
#V(G_rege)$TP <- TP
layout.matrix<-matrix( nrow=length(V(G_rege)),ncol=2)</pre>
layout.matrix[,1]<-runif(length(V(G_rege)))</pre>
#layout.matrix[,2] <- TP</pre>
#V(G_rege)$color <-
plot.igraph(G_rege,
            main= "(b)", #Jaccard food web
            vertex.label=NA,
             vertex.size=3,
             edge.arrow.size=.25,
            layout=layout.matrix,
            xlim = c(0,1),
            ylim=c(0,3),
             #axes=TRUE,
             #ylab="Trophic position (TP)",
             rescale=F,
             asp=0)
```

(c)

1.3.3 Density-based food web

```
asp=0,
             \#axes=T,
             #ylab="Trophic position (TP)"
)
edges_densitymodularity <- edge_list_densitymodularity[,c("V2","V1")] #You need_
\rightarrow to invert i and j
G_densitymodularity <- graph_from_edgelist(edges_densitymodularity)</pre>
weights_densitymodularity<-edge_list_densitymodularity[,"V3"]</pre>
G_densitymodularity$weight <- weights_densitymodularity</pre>
#V(G_densitymodularity)$TP <- TP_densitymodularity
layout.matrix<-matrix( nrow=length(V(G_densitymodularity)),ncol=2)</pre>
layout.matrix[,1]<-runif(length(V(G_densitymodularity)))</pre>
#layout.matrix[,2] <- TP</pre>
#V(G_densitymodularity)$color <-
plot.igraph(G_densitymodularity,
            main= "(b)", #Jaccard food web
            vertex.label=NA,
             vertex.size=3,
             edge.arrow.size=.25,
            layout=layout.matrix,
             xlim = c(0,1),
            ylim=c(0,3),
             #axes=TRUE,
             #ylab="Trophic position (TP)",
             rescale=F,
             asp=0)
```

1.3.4 Prey-based food web

```
asp=0,
             \#axes=T,
             #ylab="Trophic position (TP)"
)
edges_preymodularity <- edge_list_preymodularity[,c("V2","V1")] #You need to_\_
\rightarrow invert i and j
G_preymodularity <- graph_from_edgelist(edges_preymodularity)</pre>
weights_preymodularity<-edge_list_preymodularity[,"V3"]</pre>
G_preymodularity$weight <- weights_preymodularity</pre>
#V(G_preymodularity)$TP <- TP</pre>
layout.matrix<-matrix( nrow=length(V(G_preymodularity)),ncol=2)</pre>
layout.matrix[,1]<-runif(length(V(G_preymodularity)))</pre>
#layout.matrix[,2] <- TP</pre>
#V(G_preymodularity)$color <-
plot.igraph(G_preymodularity,
            main= "(b)", #Jaccard food web
             vertex.label=NA,
             vertex.size=3,
             edge.arrow.size=.25,
             layout=layout.matrix,
             xlim = c(0,1),
             ylim=c(0,3),
             #axes=TRUE,
             #ylab="Trophic position (TP)",
             rescale=F,
             asp=0)
```

(e)

1.3.5 Group model food web

```
asp=0,
             \#axes=T,
             #ylab="Trophic position (TP)"
)
edges_groups <- edge_list_groups[,c("V2","V1")] #You need to invert i and j
G_groups <- graph_from_edgelist(edges_groups)</pre>
weights_groups<-edge_list_groups[,"V3"]</pre>
G_groups$weight <- weights_groups</pre>
#V(G_groups)$TP <- TP
layout.matrix<-matrix( nrow=length(V(G_groups)),ncol=2)</pre>
layout.matrix[,1]<-runif(length(V(G_groups)))</pre>
#layout.matrix[,2] <- TP</pre>
#V(G_groups)$color <-
plot.igraph(G_groups,
            main= "(b)", #Jaccard food web
            vertex.label=NA,
             vertex.size=3,
             edge.arrow.size=.25,
             layout=layout.matrix,
            xlim = c(0,1),
            ylim=c(0,3),
             #axes=TRUE,
             #ylab="Trophic position (TP)",
             rescale=F,
             asp=0)
```

[]:[