Chapitre: Produit scalaire

Dans tout le chapitre, sauf mention contraire, on se placera dans un repère orthonormé $(0, \vec{i}, \vec{j})$

I. Rappels

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ un vecteur et $A(x_A; y_A)$, $B(x_B; y_B)$ deux points du plan tel que $\vec{u} = \overrightarrow{AB}$.

- \overrightarrow{AB} a pour coordonnées
- On appelle **norme** du vecteur \vec{u} , noté $\|\vec{u}\|$, la ______du segment [AB].

On a donc $\|\vec{u}\| = AB$.

• Dans une base orthonormée on a :

 $\|\vec{u}\| =$ _____

AB =

II. Produit scalaire

1) Produit scalaire et angle

Définition 1 : Soient \vec{u} et \vec{v} sont deux vecteurs non nuls.

Il existe trois points A, B et C tels que $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{AC}$.

On appelle ______ de \vec{u} par \vec{v} le nombre réel, noté _____ tel que :

 $\vec{u} \cdot \vec{v} =$

Autrement dit : $\vec{u} \cdot \vec{v} =$

Remarque 1 : (\vec{u}, \vec{v}) est un angle orienté de vecteurs.

Pour le visualiser, il faut ramener ces vecteurs à la même origine.

Remarque 2 : Cette expression du produit scalaire modélise le travail d'une force en physique.

Application 1:

1. Calculer \overrightarrow{AB} . \overrightarrow{AC} tel que : AB = 3, AC = 9 et $\widehat{BAC} = \frac{\pi}{4}$

- 2. Calculer AB sachant que : \overrightarrow{AB} . $\overrightarrow{AC} = 40$, AC = 8 et $\overrightarrow{BAC} = 60^\circ$.
- 3. Calculer \widehat{BAC} au degré près sachant que : AB = 3, AC = 7 et \overrightarrow{AB} . $\overrightarrow{AC} = 6$.

Exercice 1 : Produit scalaire avec normes et angle

Soit deux vecteurs \vec{u} et \vec{v} . On note θ une mesure en radian de l'angle (\vec{u}, \vec{v}) .

Dans chacun des cas suivants, calculer \vec{u} . \vec{v} :

a.
$$\|\vec{u}\| = 4, \|\vec{v}\| = 7 \text{ et } \cos(\vec{u}, \vec{v}) = \frac{\sqrt{2}}{2}$$

b.
$$\|\vec{u}\| = 8, \|\vec{v}\| = 5 \text{ et } \cos(\vec{u}, \vec{v}) = \frac{\sqrt{3}}{2}$$

c.
$$\|\vec{u}\| = 2$$
, $\|\vec{v}\| = 7$ et $\theta = \frac{\pi}{4}$

d.
$$\|\vec{u}\| = 6$$
, $\|\vec{v}\| = 3$ et $\theta = \frac{\dot{\pi}}{6}$

e.
$$\|\vec{u}\| = 4$$
, $\|\vec{v}\| = 10$ et $\theta = -\frac{2\pi}{3}$

Exercice 2 : Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \overrightarrow{AB} . \overrightarrow{AC} .

a.
$$AB = 5$$
, $AC = 7$ et $\widehat{BAC} = 0$.

b.
$$AB = 10$$
, $AC = 4$ et $\widehat{BAC} = \frac{\pi}{2}$.

c.
$$AB = 3$$
, $AC = 9$ et $\widehat{BAC} = \frac{\pi^2}{4}$.

Exercice 3: Produit scalaire avec normes et angle

On considère un triangle ABC.

Calculer AB sachant que :

a.
$$\overrightarrow{AB} \cdot \overrightarrow{AC} = 40$$
, $AC = 8$ et $\widehat{BAC} = 60^{\circ}$.

b.
$$\overrightarrow{AB}.\overrightarrow{AC} = -10$$
, $AC = 4$ et $\widehat{BAC} = \frac{2\pi}{3}$.

Exercice 4 : Produit scalaire avec normes et angle

On considère un triangle ABC.

Dans chacun des cas suivants, calculer \overline{BAC} au centième de radian près.

a.
$$AB = 3$$
, $AC = 7$ et \overrightarrow{AB} . $\overrightarrow{AC} = 6$.

b.
$$AB = 4 AC = 2 \text{ et } \overrightarrow{AB} . \overrightarrow{AC} = 7.$$

c.
$$AB = 8$$
, $AC = 3$ et \overrightarrow{AB} . $\overrightarrow{AC} = 12$.

Exercice 5: Produit scalaire avec normes et angle

En physique, le travail d'une force \vec{F} lors d'un déplacement \overline{AB} est le produit scalaire des vecteurs \vec{F} et \overline{AB} . Sur un téléski, la perche exerce sur un skieur une force constante \vec{F} d'intensité 400N lors d'un déplacement du point A au point B de longueur 100 m.

Une mesure de l'angle $(\vec{F}, \overrightarrow{AB})$ est 30°.

Quel est le travail de la force \vec{F} durant le déplacement \overrightarrow{AB} ?

Propriété 1:

Si l'un des vecteurs (ou les deux) est le vecteur nul, alors le produit scalaire est

Attention! La réciproque n'est pas généralement vraie.

Propriété 2 : Soit \vec{u} un vecteur.

On appelle ______ du vecteur \vec{u} le nombre réel : $\vec{u}^2 =$

Preuve: $\vec{u}^2 = \vec{u} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{u}|| \times \cos(0) = ||\vec{u}||^2$

Remarque : On a alors $\overrightarrow{AB}^2 = AB^2$

2) Propriétés

Propriété 3:

Deux vecteurs sont orthogonaux si et seulement si leur produit scalaire est

Preuve : Soit $\vec{u} = \overrightarrow{AB}$ et $\vec{v} = \overrightarrow{CD}$ deux vecteurs.

- Si $\vec{u} = \vec{0}$ ou $\vec{v} = \vec{0}$ alors $\vec{u} \cdot \vec{v} = 0$ et le vecteur nul est orthogonal à tout vecteur du plan par définition.
- Si $\vec{u} \neq \vec{0}$ et $\vec{v} \neq \vec{0}$ alors AB et AC sont non nuls. $\vec{u} \cdot \vec{v} = 0 \Leftrightarrow AB \times AC \times \cos(\overline{BAC}) = 0 \Leftrightarrow \cos(\overline{BAC}) = 0 \Leftrightarrow \overline{BAC}$ est droit $\Leftrightarrow \vec{u}$ et \vec{v} sont orthogonaux.

Propriétés 4 (symétrie et bilinéarité du produit scalaire) :

Soient \vec{u}, \vec{v} et \vec{w} trois vecteurs et k un réel alors :

- 1. $\vec{u} \cdot \vec{v} =$
- 2. $\vec{u} \cdot (\vec{v} + \vec{w}) =$
- 3. $(\vec{u} + \vec{v}) . \vec{w} =$
- 4. $k(\vec{u}.\vec{v}) =$

Application 2:

Sachant que \overrightarrow{AB} . $\overrightarrow{AC} = 5$ et \overrightarrow{AB} . $\overrightarrow{CD} = 10$, calculer \overrightarrow{AB} . \overrightarrow{AD} , \overrightarrow{BA} . \overrightarrow{DA} et \overrightarrow{BA} . \overrightarrow{AD} .

Exercice 6 : Propriété du produit scalaire

Soit deux vecteurs \vec{u} et \vec{v} qui vérifient :

 $\|\vec{u}\| = 2, \|\vec{v}\| = 3 \text{ et } \vec{u}. \vec{v} = 5.$

Calculer les réels suivants :

a)
$$(\vec{u} + \vec{v}) \cdot \vec{v}$$

b)
$$(\vec{u} + 3\vec{v}).(2\vec{u} + \vec{v})$$

c)
$$(\vec{u} + \vec{v})^2$$

Exercice 7 : Propriété du produit scalaire

Soit *ABC* un triangle, *I* étant le milieu du côté [*BC*].

On suppose que BC = 8 et IA = 5.

Calculer \overrightarrow{AB} . \overrightarrow{AC} .

Exercice 8 : Propriété du produit scalaire

Soit trois points A, B et C.

On suppose que \overrightarrow{AB} . $\overrightarrow{AC} = 5$ et \overrightarrow{AB} . $\overrightarrow{BC} = -4$.

Calculer la longueur du segment [AB].

Exercice 9 : Propriété du produit scalaire

ABCD est un parallélogramme tel que AB = 6, AD = 7 et BD = 10.

- 1. Calculer \overrightarrow{DA} . \overrightarrow{DC} , puis \overrightarrow{DB} . \overrightarrow{DC} .
- 2. En déduire \overrightarrow{AB} . \overrightarrow{AD} .
- 3. Déterminer alors la longueur de la diagonale [AC]

3) Expression analytique

Le produit scalaire est le nombre réel \vec{u} . $\vec{v} =$ ___

<u>Preuve</u>: Soit une base orthonormée $(\vec{\iota}, \vec{j})$ du plan donc $\vec{\iota}^2 = 1, \vec{\jmath}^2 = 1$ et $\vec{\iota}. \vec{\iota} = \vec{\jmath}. \vec{\iota} = 0$.

Comme $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ alors $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors $\vec{u} = x'\vec{i} + y'\vec{j}$.

Ainsi \vec{u} . $\vec{v} = (x\vec{i} + y\vec{j})(x'\vec{i} + y'\vec{j})$ $= xx'\vec{\imath}^2 + xy'\vec{\imath}.\vec{\jmath} + yx'\vec{\jmath}.\vec{\imath} + yy'\vec{\jmath}^2$ (à l'aide des **propriétés 4**)

Remarque : On retrouve $\vec{u}^2 = \vec{u} \cdot \vec{u} = x^2 + v^2 = ||\vec{u}||^2$.

<u>Propriété 6 :</u> Soient $\vec{u} \binom{x}{y}$ et $\vec{v} \binom{x'}{y'}$ deux vecteurs dans une base orthonormée.

Deux vecteurs sont orthogonaux si et seulement si

Preuve: C'est une conséquence des propriétés 3 et 5.

Application 3 : Démonter que deux vecteurs sont orthogonaux.

On se place dans un repère orthonormé. Soient les points A(-1, -1), B(3, 5), C(2, 1) et D(-1;3).

Montrer que les droites (AB) et (CD) sont perpendiculaires.

Exercice 10: Expression analytique du produit scalaire

On considère deux vecteurs \vec{u} et \vec{v} , dans chacun des cas :

- 1. Calculer \vec{u} , \vec{v} , \vec{u} , \vec{u} , $(\vec{u} + \vec{v})$, \vec{u} et \vec{v}^2 .

- a. $\vec{u} {5 \choose 6}$ et $\vec{v} {2 \choose 4}$ b. $\vec{u} {-1 \choose 3}$ et $\vec{v} {2 \choose 5}$ c. $\vec{u} {10 \choose 7}$ et $\vec{v} {3 \choose 2}$ 2. Dire si les vecteurs \vec{u} et \vec{v} sont orthogonaux.
- a. $\vec{u} \begin{pmatrix} 5 \\ 3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 10 \\ 6 \end{pmatrix}$ b. $\vec{u} \begin{pmatrix} 21 \\ -7 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$
- c. $\vec{u} \begin{pmatrix} 8 \\ 1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 6 \\ 7 \end{pmatrix}$
- 3. Déterminer le réel m de telle sorte que les vecteurs \vec{u} et \vec{v} soient orthogonaux.
- a. $\vec{u} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ et b. $\vec{u} \begin{pmatrix} 7 \\ -2 \end{pmatrix}$ et c. $\vec{u} \begin{pmatrix} 2 \\ m-3 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} m \\ -5 \end{pmatrix}$ $\vec{v} \begin{pmatrix} 9 \\ m \end{pmatrix}$ $\vec{v} \begin{pmatrix} -1 \\ 2m \end{pmatrix}$

Exercice 11: Expression analytique

Dans chacun des cas suivants, montrer que les droites (AB) et (CD) sont perpendiculaires.

- 1. A(1;1), B(2;3), C(-2;1) et D(2;-1)
- 2. A(-3;2), B(6;-1), C(3;4) et D(1;-2)

Exercice 12: Expression analytique

Dans chacun des cas suivants, déterminer la nature du triangle EFG.

- 1. E(8;4), F(4;-2), et G(-2;2)
- 2. E(1;2), F(9;-2), et G(13;6)

Exercice 13: Expression analytique du produit scalaire

Soit les points A(3;5), B(-3;7), C(-1;1) et D(5;-1).

- 1. Calculer \overrightarrow{BD} , \overrightarrow{AC} .
- 2. Montrer que $\overrightarrow{AB} = \overrightarrow{DC}$
- 3. En déduire la nature du quadrilatère ABCD.

Exercice 14: Expression analytique du produit scalaire

Soit les points $A\left(\frac{3}{2};-2\right)$, $B\left(-\frac{3}{2};4\right)$, C(2;2) et D(-2;0).

- 1. Calculer \overrightarrow{AB} , \overrightarrow{CD} .
- 2. En déduire la nature du quadrilatère ACBD.

Exercice 15: Expression analytique du produit scalaire

Soit les points E(2; 20), F(10; -5) et G(27; 28).

- 1. Montrer que le triangle FEG est rectangle en E.
- 2. Calculer les coordonnées du point *H* tel que *EFHG* est un rectangle.

Exercice 16: Expression analytique du produit scalaire

Soit les points A(5;3) et B(-3;1).

Déterminer les coordonnées du point C de sorte que C appartiennent à l'axe des abscisses et que le triangle ABC soit rectangle en A.

Application 4: Soient $A(1; 2)$, $B(3; -4)$ et $C(1; -1)$ trois points du plan.	4) <u>Vecteurs coline</u>
1. Calculer \overrightarrow{AB} . \overrightarrow{AC}	Propriété 7 : Soient
	$\bullet \overrightarrow{AB}.\overrightarrow{AC} = \underline{\hspace{1cm}}$
	$\bullet \overrightarrow{AB}.\overrightarrow{AC} = \underline{\hspace{1cm}}$
	Preuve: • Si \overrightarrow{AB} et \overrightarrow{AC} sont of
2. Calculer $\cos(\widehat{BAC})$	
	• Si \overrightarrow{AB} et \overrightarrow{AC} sont \overrightarrow{C}
	5) <u>Produit scalair</u>
	<u>Définition 3 :</u> Le proje
	<u>M</u> .
	Propriété 8 : Soient do orthogonaux de C et
3. Donner une mesure, en degré, de l'angle $\widehat{\mathit{BAC}}$.	Preuve :
	On a \overrightarrow{AB} . $\overrightarrow{CD} = \overrightarrow{AB}$. (
1. Le triangle <i>ABC</i> est-il rectangle en <i>A</i> ? <u>Justifier.</u>	En effet \overrightarrow{AB} . $\overrightarrow{CC'} = \overrightarrow{AB}$. droite (AB) .
	<u>Illustration :</u>

Exercice 17 : Produit scalaire avec normes et angle Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$. On donne les points A, B et C.

Dans chacun des cas suivants, calculer \overrightarrow{AB} . \overrightarrow{AC} , puis $\cos(\overrightarrow{AB},\overrightarrow{AC})$ et une mesure de l'angle \widehat{BAC} .

- 1. A(4;1), B(-3;1) et C(1;5).
- 2. A(1;2), B(-1;2) et C(3;2)

Exercice 18: Produit scalaire avec normes et angle

Dans le plan rapporté à un repère orthonormé, on considère les points A(1;3), B(-3;2) et C(-5; -2).

- 1. Calculer \overrightarrow{AB} . \overrightarrow{AC} et \overrightarrow{BC} . \overrightarrow{BA} .
- 2. En déduire une valeur approchée en degré des mesures des angles du triangle ABC.

éaires

A, B, C trois points distincts.

- si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont
- si les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont

colinéaires de même sens, alors $\widehat{BAC} = 0$ et $\cos(0) = 1$ ainsi :

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(0) = AB \times AC$$

colinéaires de sens contraire, alors $\widehat{BAC} = 180$ et $\cos(180) = -1$ ainsi :

$$\overrightarrow{AB}.\overrightarrow{AC} = AB \times AC \times \cos(180) = -AB \times AC$$

e et projection orthogonale

eté orthogonal H d'un point M sur une droite d est de la droite d et de la perpendiculaire à d passant par

les points A, B, C et D avec A, B distincts. Soit C' et D' les projeté D sur la droite (AB) alors:

$$\overrightarrow{AB}.\overrightarrow{CD} =$$

 $\overrightarrow{CC'} + \overrightarrow{C'D'} + \overrightarrow{D'D}) = \overrightarrow{AB}.\overrightarrow{CC'} + \overrightarrow{AB}.\overrightarrow{C'D'} + \overrightarrow{AB}.\overrightarrow{D'D} = \overrightarrow{AB}.\overrightarrow{C'D'}$ $\overrightarrow{B}.\overrightarrow{D'D}=\overrightarrow{0}$ car C' et D' sont les projeté orthogonaux de C et D sur la

Propriété 9 : Soient A, B, C trois point distincts. Soit H le projeté orthogonal du point C sur la droite (AB).

$$\overrightarrow{AB}.\overrightarrow{AC} =$$

Preuve : C'est un cas particulier de la propriété précédente où *A* a pour projeté lui-même.

Conséquence 10:

Soient A, B, C trois point distincts. Soit H le projeté orthogonal du point C sur la droite (AB).

• $\overrightarrow{AB}.\overrightarrow{AC} =$ si les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont

• \overrightarrow{AB} . $\overrightarrow{AC} =$ si les vecteurs \overrightarrow{AB} et \overrightarrow{AH} sont

Illustation: \overrightarrow{AB} . $\overrightarrow{AC} = -AB \times AH$

Application 5:

ABCD est un rectangle de centre O tel que AB=5 et AD=2. Calculer les produits scalaires :

a) $\overrightarrow{AB}.\overrightarrow{AC}$ b) $\overrightarrow{CB}.\overrightarrow{CA}$ c) $\overrightarrow{DA}.\overrightarrow{AC}$ d) $\overrightarrow{AB}.\overrightarrow{OD}$ e) $\overrightarrow{AB}.\overrightarrow{OD}$

Exercice 19 : Produit scalaire et projeté orthogonal

ABC est un triangle et H est le pied de la hauteur issue de A.

On suppose que AB = 6, BH = 4 et HC = 5. Calculer:

a) $\overrightarrow{BA}.\overrightarrow{BC}$

b) $\overrightarrow{AB}.\overrightarrow{AH}$

c) $\overrightarrow{AC}.\overrightarrow{AH}$

d) \overrightarrow{CA} . \overrightarrow{CB}

Exercice 20 : Produit scalaire et projeté orthogonal

ABCD est un carré de côté 5. Calculer :

a) $\overrightarrow{AB}.\overrightarrow{AC}$

b) $\overrightarrow{BA}.\overrightarrow{BD}$

c) $\overrightarrow{BC}.\overrightarrow{BD}$

Exercice 21 : Produit scalaire et projeté orthogonal

ABCD est un trapèze rectangle en A et D tel que : AB = AD = 5 et DC = 7. Calculer :

a) $\overrightarrow{AB}.\overrightarrow{AD}$

b) $\overrightarrow{CD}.\overrightarrow{AB}$

c) \overrightarrow{AB} , \overrightarrow{BC}

d) $\overrightarrow{CA}.\overrightarrow{CD}$

Exercice 22 : Produit scalaire et projeté orthogonal

ABC est un triangle rectangle en B, avec AB = 4 et BC = 6. Calculer:

a) $\overrightarrow{AB}.\overrightarrow{AC}$

b) $\overrightarrow{AB}.\overrightarrow{BC}$

c) $\overrightarrow{CA}.\overrightarrow{CB}$

Exercice 23 : Produit scalaire et projeté orthogonal

ABC est un triangle équilatéral de côté 5.

Soit les points I,J et K les milieux respectifs des segments [AB],[BC] et [AC]. Calculer :

a) $\overrightarrow{AB}.\overrightarrow{AC}$

b) $\overrightarrow{BC}.\overrightarrow{BA}$

c) $\overrightarrow{AB}.\overrightarrow{BC}$

d) $\overrightarrow{BA}.\overrightarrow{AC}$

e) $\overrightarrow{CA}.\overrightarrow{BC}$

Exercice 24 : Produit scalaire et projeté orthogonal

 \overline{ABCD} est un losange tel que AC = 8 et BD = 10.

On note O le centre de ce losange.

1. Calculer:

a) $\overrightarrow{AC}.\overrightarrow{BD}$

b) $\overrightarrow{BC}.\overrightarrow{BD}$

c) \overrightarrow{AB} . \overrightarrow{AC}

2. a) Décomposer le vecteur \overrightarrow{AB} en fonction de \overrightarrow{AD} et \overrightarrow{DB} . En déduire \overrightarrow{AB} . \overrightarrow{AD} .

b) De la même façon, calculer $\overrightarrow{BA}.\overrightarrow{BC}$.

Application 6 : Choisir la forme la plus adapté.	4. $ABCD$ est un losange dans lequel la diagonale $[AC]$ mesure 10 cm.
Calculer dans chacun des cas le produit scalaire $\overrightarrow{AB}.\overrightarrow{AC}$	
1. ABC est un triangle tel que $AB = 3$, $AC = 4$ et $\widehat{BAC} = \frac{5\pi}{6}$	
	5. $ABCD$ est un rectangle dans lequel $AB = 6$.
2. Les trois points A , B et C sont tel que $AB = 6$, $BC = 3$ et B appartient au segment $[AC]$.	
	6. ABCDEF est un hexagone régulier de côté 4.
3. <i>A</i> (2;6), <i>B</i> (-1;7) et <i>C</i> (5;3).	
	7. ABC est un triangle isocèle en A tel que $AB = 5$ et $\widehat{ABC} = 30^\circ$.
	1. 120 cst an analyse isoscie en it cal que it = 5 cc it so = 50.

III. Théorème d'AL-Kashi

Propriété 12 : Dans un triangle quelconque ABC, notons a = BC, b = AC et c = AB.

Le théorème d'AL-Kashi nous donne :

•
$$a^2 =$$

•
$$b^2 =$$

•
$$c^2 =$$

Remarque: Ce théorème généralise le théorème de Pythagore. Il permet de calculer la longueur d'un côté d'un triangle quelconque en fonction des deux autres et de l'angle opposé au côté.

Preuve:

$$a^2 = BC^2 = \|\overrightarrow{BC}\|^2 = \overrightarrow{BC}.\overrightarrow{BC}$$

D'après la relation de Chasles : $\overrightarrow{BC} = \overrightarrow{BA} + \overrightarrow{AC}$ Ainsi :

$$a^{2} = (\overrightarrow{BA} + \overrightarrow{AC}).(\overrightarrow{BA} + \overrightarrow{AC})$$

$$a^{2} = \overrightarrow{BA}.(\overrightarrow{BA} + \overrightarrow{AC}) + \overrightarrow{AC}.(\overrightarrow{BA} + \overrightarrow{AC})$$

$$a^{2} = \overrightarrow{BA}^{2} + \overrightarrow{BA}.\overrightarrow{AC} + \overrightarrow{AC}.\overrightarrow{BA} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - \overrightarrow{AB}.\overrightarrow{AC} - \overrightarrow{AC}.\overrightarrow{AB} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - 2\overrightarrow{AB}.\overrightarrow{AC} + \overrightarrow{AC}^{2}$$

$$a^{2} = \overrightarrow{BA}^{2} - 2\overrightarrow{AB}.\overrightarrow{AC} + \overrightarrow{AC}^{2}$$

$$a^{2} = c^{2} - 2||\overrightarrow{AB}||||\overrightarrow{AC}||\cos(\hat{A}) + b^{2}$$

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos(\hat{A})$$

Application 7: Calculer une longueur et un angle

Le triangle ABC est tel que AB = 9, AC = 4 et $\hat{A} = 60^{\circ}$.

1. Calculer BC.

2.	Calculer	\hat{C} , en	donner	l'arrondi au	degré près.
----	----------	----------------	--------	--------------	-------------

Exercice 25 : Electricité

Il est conseillé d'avoir un bon $\cos \varphi$, sur une installation électrique.

La figure est issue d'une situation rencontrée en électricité.

On donne:

$$\|\overrightarrow{BC}\| = U_1 = 25, \|\overrightarrow{AC}\| = U_2 = 20 \text{ et } (\overrightarrow{CD}, \overrightarrow{CB}) = -72^{\circ}.$$

Dans le triangle ABC, déterminer :

- 1. La valeur approchée arrondie à 10^{-2} de $U = \|\overrightarrow{AB}\|$
- 2. La valeur approchée arrondie à 10^{-2} de la mesure φ en degrés de l'angle orienté $(\overrightarrow{AC}, \overrightarrow{AB})$

Exercice 26: Parcours d'un avion (En mécanique)

Un avion se déplace dans un plan horizontal à partir d'un point O situé à la verticale de sa base.

Il part en suivant une direction de 30° par rapport au nord, cap nord-est, parcourt 200 km et arrive en point M. Là il change de cap, suit la direction est, sur une distance de 100 km jusqu'au point P.

Quelle distance doit-il parcourir pour revenir au-dessus de sa base ?

IV. Lien avec la physique

Exercice 27:

On considère un cycliste montant une côte, représenté sur le schéma suivant.

Données:

$$\alpha = 15^{\circ}$$
;
 $m_{v\acute{e}lo+cycliste} = 80kg$;
 $travail\ W = \vec{P} \cdot \overrightarrow{AB}$

- a) Calculer le travail du poids pour une côte de 500m.
- b) Le travail que doit fournir le cycliste doit compenser le travail du poids. Calculer la force F développée pendant la montée de la côte.
- c) Quel est le travail de la réaction pendant la montée du cycliste?

Exercice 28:

Une personne pousse sa voiture en exerçant une force de 200N suivant une direction qui fait un angle de 25° avec le niveau horizontal de la route.

Calculer le travail de \vec{F} pour un traiet de 50m. On arrondira le résultat à l'unité.

Exercice 29:

Calculer le travail en joules de chacune des forces exercées lors d'un déplacement rectiligne de A vers B et préciser dans chaque cas si la force exerce un travail moteur ou résistant.

Les résultats seront arrondis à l'unité et on notera

$$F = \|\vec{F}\|.$$

On donne

$$F_1 = 5N$$
;

 $F_2 = 2.7 N$; $F_3 = 6 N et$

AB = 75m

Exercice 30:

Même Exercice que le précédent avec :

 $F_2 = 10 N$;

 $F_3 = 7 \, N \, et$

$$AB = 0.2 \text{ km}$$

Exercice 31:

On souhaite calcule la somme de deux forces. Soit $\overrightarrow{F_1}$ et $\overrightarrow{F_2}$ deux forces s'exerçant sur un même point O d'intensités respectives $F_1 = 40N$ et $F_2 = 30N$ en formant un angle de 30° comme l'illustre le schéma cicontre.

Ces deux forces s'exerçant simultanément sur O peuvent être résumées par une seule force \vec{F} appelée force résultante et obtenue par la relation :

$$\overrightarrow{F} = \overrightarrow{F_1} + \overrightarrow{F_2}$$

On souhaite déterminer l'intensité et la direction de \vec{F} .

- a) Déterminer la mesure de l'angle \widehat{OAS} .
- b) En déduire la valeur approchée à 0,01 près de la distance OS.
- c) Calculer enfin l'angle \widehat{AOS} à 0,1° près .
- d) Conclure par rapport au problème posé.

Exercice 32:

Une poutrelle de poids inconnu est soulevé par deux élingues [AB] et [AC] selon le schéma ci-contre.

1) On considère un repère orthonormé d'unité graphique 1cm, où 1cm représente 1000N. $\overrightarrow{T_1}$ est représenté par le vecteur $\overrightarrow{OM_1}$ de coordonnées (4;5) et $\overrightarrow{T_2}$ par le vecteur $\overrightarrow{OM_2}$ de coordonnées (-4;5). Placer les vecteurs $\overrightarrow{OM_1}$ et $\overrightarrow{OM_2}$ dans ce repère.

- 2) Etude du poids.
- a) Construire dans ce repère le vecteur \overrightarrow{OM} tel que $\overrightarrow{OM} = \overrightarrow{OM_1} + \overrightarrow{OM_2}$.
- b) Calculer les coordonnées du point M
- c) Tracer le vecteur $\vec{P} = -\overrightarrow{OM}$ et donner ses coordonnées.
- d) En déduire la valeur en Newton (N) du poids de la charge.
- 3) Etude de la tension et de l'angle.
- a) Calculer $\overrightarrow{OM_1} \cdot \overrightarrow{OM_2}$, $||\overrightarrow{OM_1}||$ et $||\overrightarrow{OM_2}||$.
- b) En déduire une valeur approchée à l'unité de la tension dans chaque élingue, exprimée en Newton.
- c) Déterminer l'angle d'élingage α , arrondi au degré.

Exercice 33:

Le train avant d'un avion A380 est représenté par le schéma ci contre (qui n'est pas à l'échelle).

Le segment [AC] représente le vérin en position "train sorti" et le segment [AB] le vérin en position "train rentré".

On se place dans un repère orthonormé $(0; \vec{i}, \vec{j})$ où \vec{i} et \vec{i} sont les vecteurs unitaires de (0x) et (0y). En prenant 1m comme unité graphique, on a repéré les points A, B et C de coordonnées respectives (0,8;0,2),(0;1,2) et (1,1;0).

Le but de l'exercice est de déterminer l'allongement du vérin $\delta = AC - AB$ et le débattement α du vérin.

- 1a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} .
- 1b) En déduire l'allongement du vérin, arrondi au millimètre près.
- 2a) Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$
- 2b) En déduire une mesure de α au dixième de degré près .

Exercice 34:

On considère un cycliste montant une côte, représenté sur le schéma suivant.

Données:

$$\alpha = 15^{\circ}$$
:

$$m_{v\'elo+cycliste} = 80kg$$
;

$$travail W = \vec{P} \cdot \overrightarrow{AB}$$

- a) Calculer le travail du poids pour une côte de 500m.
- b) Le travail que doit fournir le cycliste doit compenser le travail du poids. Calculer la force F développée pendant la montée de la côte.
- c) Quel est le travail de la réaction pendant la montée du cycliste?

Exercice 35:

Afin de réduire les pertes aérodynamiques, les concepteurs de véhicules s'imposent une contrainte : la mesure de l'angle "capot /pare-brise" soit être supérieure à 150°.

En considérant que les points O; B et C sont dans un même plan vertical muni d'un repère orthonormé d'origine O et d'axes (0x) et (0y), on a obtenu les coordonnées suivantes:

$$B(67,9;37)$$
et $C(-92,7;-24,7)$

La contrainte imposée est-elle vérifiée ?

Exercice 36:

Un skieur de masse m=80kg est tracté, à vitesse constante v, sur une piste faisant un angle de 20° avec l'horizontale

Le skieur est soumis à trois forces : son poids \vec{P} , la force \vec{F} exercée par la perche et la réaction \vec{R} du sol, de direction perpendiculaire au sol. Il parcourt une distance de 250m.

- 1) Quel est le travail de la force \vec{R} ? Justifier.
- 2) Calculer le travail du poids \vec{P} .Arrondir à l'unité.
- 3) Exprimer en fonction de F le travail de la force \vec{F} .
- 4) En utilisant le théorème de l'énergie cinétique, calculer F. Arrondir à l'unité.

Exercice 37:

Les micro-ondes sont générées dans un magnétron, cavité métallique cylindrique dont la dimension permet d'accueillir un champ électromagnétique à la fréquence de 2,45GHz, propre à ces fours.

Rapporté à un repère orthonormé du plan, le parcours d'une onde est donné par le schéma ci-contre.

- a) Calculer les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{AC} , puis le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$.
- b) En déduire la mesure de l'angle \widehat{BAC} , arrondie au degré près.
- c) Que peut-on conjecturer concernant les mesures de l'angle incident $\hat{\imath}$ et de l'angle réfléchi \hat{r} ?

/. Projeté d'un vecteur sur un axe

1) Projeté sur une droite

Propriété 11 :

Soit Δ une droite et \vec{u} un vecteur. Le projeté orthogonal de \vec{u} sur Δ est le vecteur \vec{v} tel que :

$$\vec{v} =$$

où $\vec{\iota}$ est un vecteur directeur de Δ de norme 1.

Propriété 12:

Soit Δ une droite, \vec{i} est un vecteur directeur de Δ de norme 1 et \vec{u} un vecteur qui forme un angle θ avec \vec{i} (i.e. $(\vec{i};\vec{u}) = \theta$)

Le projeté orthogonal de \vec{u} sur Δ est le vecteur \vec{v} tel que :

2) Projeté sur un vecteur

Propriété 13 :

Dans un repère orthonormé (0; \vec{t} , \vec{j}), \vec{u} est un vecteur non nul tel que (\vec{t} ; \vec{u}) = θ

 \vec{u} se décompose de manière unique sous la forme :

$$\vec{u} = \vec{u_x} + \vec{u_y}$$

avec \vec{u}_x le projeté de \vec{u} sur l'axe des abscisses et \vec{u}_y le projeté de \vec{u} sur l'axe des ordonnées

De plus, on a:

$$\vec{u}_r =$$
 et

$$\vec{u}_x =$$
_____.

Application 8:

Une personne tire sur une corde attachée au sommet d'un mur vertical avec une force de 200 N suivant un angle de 40° avec l'horizontale.

Déterminer la décomposition de cette force sur des axes horizontaux et verticaux, et calculer l'intensité de chacune de ces forces.

