

Arsi University Dep't of Information Technology

Introduction to Data Warehousing and Data Mining

Contents of the course

- ✓ Chapter 1: Introduction to Dm. and data warehousing
- √ Chapter 2: Data Preprocessing
- √ Chapter 3: Classification
- √ Chapter 4: Clustering
- **✓ Chapter 5: Associations**

Introduction

- In this chapter we will cover the following issues in brief
 - Motivation: Why data mining?
 - What is data mining?
 - Data mining vs Statistics
 - Challenges in Data Mining
 - Application of data mining
 - Data mining functionality
 - Are all the patterns interesting?
 - Classification of data mining systems

- Our capacity of generating and collecting data have been increased rapidly in the last several decades
- Huge amount of data is available at the tip of our hand
- It is predicted that more data will be produced in the next 2 years than has been generated during the entire existence of humankind!

Motivation:

"Necessity is the Mother of Invention"

- Contributing factors include
 - Widespread use of bar code for most commercial products,
 - 40 billion RFID tags world wide
 - Billions of telephone calls are recorded daily worldwide
 - Billions of customers are using face book and other social network applications
 - 10 billions of content are shared on face book per month
 - Computerization of many business, scientific, and governmental transactions,
 - Advances in data collection tools (audio, video, satellite, remote sensing, scanning, image capturing tools)
 - Usage of WWW as a global information system
 - comprehensive application software,
 - new computing and storage technologies

Motivation:

"Necessity is the Mother of Invention"

- All this have made it easier to create, collect, and store all types of data.
- As a result it creates a problem what is called data exposition.
- Data explosion is the problem of having huge amount of data in an enterprise stored in databases, data warehouses and other information repositories generated by automated
- data collection tools and mature database technology in large databases which has to be processed to make a decision.
- As the size of data get larger, analyzing the data becomes very difficult

- Data can be managed and stored in
 - -Data warehouse
 - -structured databases;
 - -in semi-structured file systems, such as e-mail;
 - -unstructured fixed content, like documents and graphic files.

- Companies rely on this enterprise data to improve decision-making and to gain a competitive advantage;
- Data has indeed become a highly valued business asset.
- The huge amount of data exceeds our human ability to make comprehension on the data and to put the best decision without tools
- Generating and storing of large volumes of data has reached a critical mass and appropriate tools for comprehend the data becomes vital.

- We are drowning in data, but starving for knowledge!
- The Solution: Data warehousing and data mining
- Data mining can be viewed as a result of the natural evolution of information technology.
- This can be more explained if we look at the evolution of database technology since 19th century.

Motivation:

"Necessity is the Mother of Invention"

• 1960s:

- Known to be the era of primitive file processing
- There were activities such as
 - Data collection,
 - database creation,
 - Information management system (IMS), mainly using COBOL

• 1970s:

- Relational data model, relational DBMS implementation
- Data modeling tools like ER diagram
- Indexing and data organization techniques such as B+ tree, hashing, etc
- Query language such as SQL
- User interfaces, forms and reports
- Query processing and optimization techniques
- Transaction management: recovery, concurrency control, etc
- Online Transaction processing (OLTP)

- 1980s:
 - Period of advanced DB Systems
 - advanced data models
 - extended-relational, Object Oriented, Object-Relational, deductive, etc.)
 - application-oriented DBMS
 - -spatial, temporal, multimedia, active, scientific, engineering, Knowledgebase, etc.)
- 1990s—2000s:
 - Data mining and data warehousing, Knowledge discovery,
 OLAP and Web based databases

Data Mining Enablers

- Explosion of data
- Fast and cheap computation and storage
 - Moore's Law: processing doubles every 19 months
 - Disk storage doubles every 9 months
 - Database technology
- Competitive pressure in business
 - Data has value!
- New, successful models
- Commercial products
 - SAS, SPSS, Insightful, IBM, Oracle
 - Open Source products
 - Weka

- Data mining is extraction of interesting (non-trivial, implicit, previously unknown and potentially useful) information or patterns from data source(Han and Kamber)
- The process of discovering meaningful new correlations, patterns, and trends by sifting through large amounts of data stored in repositories and
- by using pattern recognition technologies as well as statistical and mathematical techniques (The Gartner Group)
- The exploration and analysis of large quantities of data in order to discover meaningful patterns and rules (Berry and Linoff)
- The nontrivial extraction of implicit, previously unknown, and potentially useful information from data (Frawley, Paitestsky-Shapiro and Mathews)
- The non-trivial discovery of novel, valid, comprehensible and potentially useful patterns from data (Fayyad et. al).
- Focused on hypothesis generation, not on hypothesis testing

- The term Data mining is a misnomer as it doesn't directly related to what is does.
- For exampling mining gold from rock is called Gold mining but not rock mining.
- Similarly oil mining is mining oil from the ground.
- Data mining should best describe as knowledge mining from data rather that data mining
- Any way, we will use the term with this understanding

• Alternative names

- Knowledge discovery(mining) from databases (KDD),
- knowledge extraction,
- data/pattern analysis,
- data archeology,
- data dredging,
- information harvesting,
- business intelligence, etc.

• *Note that:*

 query processing systems, Expert statistical data analysis or Information retrieval systems are not data mining tasks

- Sample pattern you might find
 - ■Supermarket data
 - On Thursday nights people who buy diapers also tend to buy beer
 - Insurance company data
 - People with good credit ratings are less likely to have accidents
 - Telecom data
 - ■Government lines are busy than private line

Statistics vs. Data Mining

Statistics	Data Mining
Confirmative	Explorative
Small data sets/ File-based	Large data sets/ Databases
Small number of variables	Large number of variables
Deductive	Inductive
Numeric data	Numeric and non-numeric (including txt, networks)
Clean data	Data cleaning

Data Mining vs. Statistics

- Statistics is known for:
 - -well defined hypotheses used to learn about a topic
 - Work on specifically chosen population
 - -Require carefully collected data for inferences well known properties.
- Data mining isn't that careful. It is:
 - -data driven discovery of pattern
 - -observational data sets is needed (data collected as side issue of other operations)

Data Mining vs. Statistics

• Traditional statistics

- -first hypothesize, then collect data, then analyze
- often model-oriented (strong parametric models)

• Data mining:

- -few if any a priori hypotheses
- data is usually already collected a priori
- analysis is typically data-driven not hypothesisdriven
- Often algorithm-oriented rather than model-oriented

Challenges in Data Mining

- > Efficiency and scalability of data mining algorithms
- Parallel, distributed, stream, and incremental mining methods
- ➤ Handling high-dimensionality
- Handling noise, uncertainty, and incompleteness of data
- Incorporation of constraints, expert knowledge, and background knowledge
- ➤ Pattern evaluation and knowledge integration
- ➤ Mining diverse and heterogeneous kinds of data: e.g., bioinformatics, Web,
- > Application-oriented and domain-specific data mining
- ➤ Invisible data mining (embedded in other functional modules)
- Protection of security, integrity, and privacy in data mining

Potential Applications of Data Mining

- Market analysis and management
 - -target marketing analysis
 - -Market basket analysis
 - -Customer cross selling Analysis
 - -customer purchase pattern analysis
 - -Market segmentation
- Fraud detection and management

Data source for DM applications

- Where are the data sources for analysis?
 - -Credit card transactions,
 - -loyalty cards,
 - -discount coupons,
 - -customer complaint calls,
 - -Customer calls
 - -Log files
 - Transaction files etc...

Market Basket Analysis

- It is a processes of modeling item-set that consumers will put into his/her basket in one shopping
- This permits seller to arrange item-set so that consumers will find them easily

Customer Cross-Selling Analysis

- It is a processes of modeling item-set that consumers will purchase them at different time so that if customer buys item X them the business will recommend item Y which goes together
- This permits seller to maximize their profit, motivate their customers and improve their business strategy

Target Market Analysis

- It is the process of identifying cluster of customers who will buy your service
- These customers share the same characteristics
- Target market analysis is the process of identifying (modeling) such groups of individuals

Market Segmentation

- It is the process of dividing the market into different homogeneous groups of consumers
- This better satisfy customers as they can choose the appropriate market for their need

Customer purchase pattern Analysis

- It is the process of identifying the behaviors of consumers on their purchase pattern which includes
 - -Why consumers make purchase and when?
 - -What factors influence their purchase behavior
- This allows business to make selective promotion of good

Fraud Detection and Management

Applications

- widely used in health care, retail, credit card services, banking, insurance company, telecommunications (phone card fraud), etc.

• Approach

 use historical data to build models of fraudulent behavior and use data mining to help identify similar instances

Examples

- <u>auto insurance</u>: detect a group of people who stage accidents to collect on insurance
- money laundering: detect suspicious money transactions
- medical insurance: detect professional patients and ring of doctors and ring of references

Fraud Detection and Management

• Detecting inappropriate medical treatment

- Australian Health Insurance Commission identifies that in many cases blanket screening tests were requested (save Australian \$1m/yr).

Detecting telephone fraud

- Telephone call model: destination of the call, duration, time of day or week. Analyze patterns that deviate from an expected norm.
- British Telecom identified discrete groups of callers with frequent intra-group calls, especially mobile phones, and broke a multimillion dollar fraud.

Retail

- Analysts estimate that 38% of retail shrink is due to dishonest employees.

Data Mining: On What Kind of Data?

- Relational databases
- Data warehouses
- Transactional databases
- Advanced DB and information repositories
 - Object-oriented and object-relational databases
 - Spatial databases
 - Time-series data and temporal data
 - Text databases and multimedia databases
 - Heterogeneous and legacy databases

-WWW

- Data mining can be performed on various types of data stores and Databases
- Data mining functionalities are used to specify the kind of patterns to be found in data mining task
- Data mining task can be broadly classified into two as
 - Descriptive
 - Predictive

- Descriptive data mining task characterize the general properties of the data in a database.
 - For example one can say
 - Ethiopia's weather is selected to leave in for many birds
 - The past 10 years rainfall of Ethiopia is appropriate for the agriculturalist in southern Shewa
 - All mobile callers make few calls to wired lines than mobile receipents

- Predictive data mining task perform inference on the current data in order to make prediction to the future reference
- For example one can say
 - A person loves to leave in Ethiopia if he/she was in ASIA for the last two years
 - It will rain in Addis with in two days if there is a wind from Mediterranean see in west east direction and average current temperature at Addis is bellow 20°c

- The kind of pattern to be mined form a given data is not known for the user (hence it is hypothesis generation not hypothesis proving)
- Techniques should be implemented to extract various pattern from the available data so that user can choose what they need to use.
- There are different kinds of data mining functionalities that can be used to extract various types of pattern from data

- This are
 - Concept /class description: Characterization and discrimination
 - -Association Analysis
 - Classification and prediction
 - Clustering analysis
 - Outlier analysis
 - Evolution analysis

Are All the "Discovered" Patterns Interesting?

- A data mining system/query may generate thousands of patterns, not all of them are interesting.
- Questions
 - 1. What makes a pattern interesting?
 - 2. Can a data mining system generate all of the interesting patterns?
 - 3. Can a data mining system generate only interesting patterns?

Question 1

- 1. What makes a pattern interesting?
- A pattern is interesting if it is <u>easily understood</u> by humans, <u>valid on</u>
 <u>new or test data</u> with some degree of certainty, <u>potentially useful</u>, <u>novel</u>,
 <u>or validates some hypothesis</u> that a user seeks to confirm
- An interesting pattern represents knowledge
- Measure of Interestingness measures
 - Two types (Objective vs. subjective)
 - <u>Objective:</u> based on statistics and structures of patterns, e.g., support, confidence, FP, FN, TN, TP, Recall, Precision, etc.
 - <u>Subjective</u>: based on user's belief in the data, e.g., unexpectedness (contradicting a user's belief), novelty, actionability, etc.

Question 2

- 2. Can a data mining system generate all of the interesting patterns?
- Referred as Completeness of the data mining algorithm
- No single data mining system is complete but users can set a
 constraint on the type of pattern they are looking for in which the data
 mining function generate all the pattern with the specified constraints
- Association algorithms don't find classification pattern and others for example

Question 3

- 3. Can a data mining system generate only interesting patterns?
- This is an Optimization problem in data mining system
- it remain an challenging issue
- Usually data mining system generate pattern from the data set which may or may not relevant at the point
- So first generate all the patterns and then filter out the uninteresting ones.

Data Mining: Classification Schemes

- Different views, different classifications
 - -Kinds of databases to be mined
 - -Kinds of knowledge to be discovered
 - -Kinds of techniques utilized
 - -Kinds of applications adapted

A Multi-Dimensional View of Data Mining Classification

• Databases to be mined

- Relational, transactional, object-oriented, object-relational, active, spatial, time-series, text, multi-media, heterogeneous, legacy, WWW, etc.

• Knowledge to be mined

- Characterization, discrimination, association, classification, clustering, trend, deviation and outlier analysis, etc.
- Multiple/integrated functions and mining at multiple levels

• <u>Techniques utilized</u>

- Database-oriented, data warehouse (OLAP) oriented, machine learning, statistics, visualization, neural network, etc.

• Applications adapted

- Retail, telecommunication, banking, fraud analysis, DNA mining, stock market analysis, Web mining, Weblog analysis, etc.