Prompt based learning

References:Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing

Four paradigms in NLP

Paradigm	Engineering	Task Relation
a. Fully Supervised Learning (Non-Neural Network)	Features (e.g. word identity, part-of-speech, sentence length)	CLS TAG
b. Fully Supervised Learning (Neural Network)	Architecture (e.g. convolutional, recurrent, self-attentional)	CLS TAG LM GEN
c. Pre-train, Fine-tune	Objective (e.g. masked language modeling, next sentence prediction)	CLS TAG LM GEN
d. Pre-train, Prompt, Predict	Prompt (e.g. cloze, prefix)	CLS TAG LM GEN

Fine-tuning: 用别人的参数, 修改后的网络和自己的数据进行训练, 使得参数适应自己的模型。预训练模型迁就下游任务, 通过引入各种损失函数, 添加到预训练模型中。

Prompt:下游任务迁就预训练语言模型,对不同任务进行同构,使得下游任务适配预训练语言模型

术语和符号

Name	Notation	Example	Description		
Input	\boldsymbol{x}	I love this movie.	One or multiple texts		
Output	\boldsymbol{y}	++ (very positive)	Output label or text		
$egin{array}{ll} Prompting & f_{ ext{prompt}}(oldsymbol{x}) \end{array}$		[X] Overall, it was a [Z] movie.	A function that converts the input into a specific form by inserting the input x and adding a slot $[Z]$ where answer z may be filled later.		
Prompt	$oldsymbol{x}'$	I love this movie. Overall, it was a [Z] movie.	A text where [X] is instantiated by input x but answer slot [Z] is not.		
Filled Prompt	$f_{\mathrm{fill}}(oldsymbol{x'},oldsymbol{z})$	I love this movie. Overall, it was a bad movie.	A prompt where slot [Z] is filled with any answer.		
Answered $f_{\mathrm{fill}}(\boldsymbol{x'}, \boldsymbol{z}^*)$ I		I love this movie. Overall, it was a good movie.	A prompt where slot [Z] is filled with a true answer.		
Answer	z	"good", "fantastic", "boring"	A token, phrase, or sentence that fills [Z]		

Method

Input: x = I love this movie.

Predicting: ©

Input: x = I love this movie.

Template: [x]
Overall, it was a
[z] movie.

Answer: {fantastic:ⓒ, boring:⊗}

Prompting: x' = I love this movie. Overall, it was a [z] movie.

Predicting: x' = I love this movie. Overall, it was a fantastic movie.

常见任务的prompt、predict示例

Type	Task	Input ([X])	Template	Answer ([Z])	
	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic 	
Text CLS	Topics	He prompted the LM.	[X] The text is about [Z].	sports science	
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city 	
Text-span CLS	Aspect Sentiment	Poor service but good food.	or service but good food. [X] What about service? [Z].		
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks [X1]? [Z], [X2]		Yes No 	
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris			
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman	
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.	

Pre-trained Language Models

LMs	\boldsymbol{x}		\boldsymbol{y}			A 12 42	
	Mask	Noise	Main Obj.	Mask	Noise	Main Obj.	Application
L2R	Diagonal	None	SLM	1.5	5		NLU & NLG
Mask	Full	Mask	CTR	- 2	2	-	NLU
Prefix	Full	Any	CTR	Diagonal	None	SLM	NLU & NLG
En-De	Full	Any	None†	Diagonal	None	FTR/CRT	NLU & NLG

Prompt Engineering

- Prompt shape
- Manual Template
- Automated Template

离散Prompts

连续prompts

• Prompt-based Training Strategies

Prompt shape

Cloze prompt (填充文本字符串空白的完形填空) (Prefix) prompt (延续字符串前缀的前缀)

对于有关生成的任务或使用标准自 回归 LM 解决的任务,前缀 prompt 往往更有帮助,因为它 们与模型从左到右的性质刚好吻合。 对于使用掩码 (Mask) LM 解决的任务 (比如, BERT), 完形填空 prompt 则非常合适, 因为它们与预训练任务的形式非常匹配。

Manual Template

优: 直观

缺: 耗费时间和人力, 可能无法发现最优模板

Automated Template

离散Prompts

模板搜索空间是离散的,自动生成由自然语言的词组成的prompt,每个token都是自然语言中真实的word。

连续prompts

模板搜索空间是连续的, 直接作用于embedding层, 每个token是虚拟的word, 由连续的向量表示。

离散Prompts

prompt mining

给定输入【x】和输出【y】,找到x和y的中间词或依赖路径,选取最频繁出现的中间词或依赖路径作为模板。

Eg: [X] middle words [Z]"

prompt paraphrasing

根据现有的prompt,将其转述成另一组其他候选的prompt,然后选择效果最好的(同义词替换等)

Gradient-based search

梯度下降搜索方法:在单词候选集选择此并组成prompt,利用梯度下降的方式不断组合,找出最合适的词和模板

离散Prompts

Prompt Generation

将T5引入模板搜索的过程,让T5生成模板词(域自适应算法:为每个输入生成一种唯一的域相关特征,然后把输入和特征连接应用到下游任务)

Prompt scoring

人工制造模板候选,把相应的【x】和【z】都填上成为prompt,并使用双向LM为prompt打分,选取高分prompt。

连续prompts

Prefix tuning

在输入钱添加一串连续的向量,可以保持PLM的参数不懂,仅训练合适的前缀。在给定一个可训练的前缀矩阵和一个固定的参数化为θ的PLM的对数目标上的优化

Tuing Initialized with Discrete Prompts

先用一个离散prompt搜索方法定义了一个模板,然后基于该模板初始化虚拟的token,最后微调这些token的embedding以提高准确率。

Hard-Soft Prompt Hybrid Tuning

手工设计和自动学习的结合

在手工设计的模板中插入一些可学习的embedding。"P-Tuning"方法,通过在input embedding中插入可训练的变量来学习连续的prompts。该方法使用BiLSTM的输出来表示prompt embeddings,以便让prompt tokens之间有一定的交互。

Answer Engineering

Shape

Manual Design:同prompt一样,直观但不理想

Design

Answer Search:

Discrete—利用分类器,根据样本选择词的生成概率,构建answer,迭代地计算单词s的适用性作为标签y的代表性答案z。

利用训练数据将固定模板的LM与每个答案映射进行微调, 并根据开发集上的准确率选择最佳标签词作为答案。 (挖词,填空,构建集合,训练,缩小集合)

Answer Shape

- Token: 预训练 LM 词汇表中的一个 token, 或者词汇子集;
- Span: 短的 multi-token span, 这些通常与 cloze prompt 一起使用;
- 句子或文档: 这些通常与前缀 prompt 一起使用。

multi-prompt (多重 prompt)

- •prompt 集成
- •prompt 增强
- •prompt 合成
- •prompt 分解

(a) Prompt Ensembling.

(c) Prompt Composition.

(b) Prompt Augmentation.

(d) Prompt Decomposition.

问题

• prompt和Masked Language Model有什么不一样?

