VNH3SP30-E

Automotive fully integrated H-bridge motor driver

Datasheet - production data

Features

Туре	R _{DS(on)}	l _{out}	V _{ccmax}
VNH3SP30-E	45 mΩ max (per leg)	30 A	40 V

- Output current: 30 A
- 5 V logic level compatible inputs
- Undervoltage and overvoltage shutdown
- Overvoltage clamp
- Thermal shut down
- Cross-conduction protection
- Linear current limiter
- Very low standby power consumption
- PWM operation up to 10 kHz
- Protection against loss of ground and loss of V_{CC}
- Package: ECOPACK[®]

Description

The VNH3SP30-E is a full-bridge motor driver intended for a wide range of automotive applications. The device incorporates a dual monolithic high-side driver (HSD) and two low-side switches. The HSD switch is designed using STMicroelectronics proprietary VIPower™ M0-3 technology that efficiently integrates a true Power MOSFET with an intelligent signal/protection circuit on the same die.

The low-side switches are vertical MOSFETs manufactured using STMicroelectronics proprietary EHD ("STripFET™") process. The three circuits are assembled in a MultiPowerSO-30 package on electrically isolated lead frames. This package, specifically designed for the harsh automotive environment, offers improved thermal performance thanks to exposed die pads. Moreover, its fully symmetrical mechanical design provides superior manufacturability at board level. The input signals INA and INB can directly interface with the microcontroller to select the motor direction and the brake condition. Pins DIAGA/ENA or DIAG_B/EN_B, when connected to an external pullup resistor, enable one leg of the bridge. They also provide a feedback digital diagnostic signal. The normal operating conditions are explained in the truth table. The speed of the motor can be controlled in all possible conditions by the PWM up to kHz. In all cases, a low level state on the PWM pin will turn off both the LS_A and LS_B switches. When PWM rises to a high level, LSA or LS_B will turn on again depending on the state of the input pin.

Table 1. Device summary

Package	Order codes
rackage	Tape & reel
MultiPowerSO-30	VNH3SP30TR-E

Contents VNH3SP30-E

Contents

1	Bloc	k diagra	am and pins description	. 5
2	Elec	trical sp	pecifications	. 8
	2.1	Absolu	ute maximum ratings	. 8
	2.2	Electri	cal characteristics	. 9
	2.3	Electri	cal characteristics curves	14
3	Арр	lication	information	19
	3.1	Revers	se battery protection	20
	3.2	Open I	load detection in Off mode	20
	3.3	Test m	ode	21
4	Pack	kage an	d PCB thermal data	24
	4.1	MultiP	owerSO-30 thermal data	24
		4.1.1	Thermal calculation in clockwise and anti-clockwise operation in steady state mode	,
		4.1.2	Thermal resistances definition (values according to the PCB heatsink area)	. 25
		4.1.3	Thermal calculation in transient mode	. 25
		4.1.4	Single pulse thermal impedance definition (values according to the PCB heatsink area)	. 25
5	Pack	kage inf	formation	29
	5.1	MultiPo	owerSO-30 package information	29
	5.2	Packin	ng information	31
6	Revi	sion his	story	32

VNH3SP30-E List of tables

List of tables

Table 1.	Device summary	1
Table 2.	Block description	5
Table 3.	Pin definitions and functions	6
Table 4.	Pin functions description	7
Table 5.	Absolute maximum ratings	8
Table 6.	Power section	9
Table 7.	Logic inputs (INA, INB, ENA, ENB)	9
Table 8.	PWM	9
Table 9.	Switching (V_{CC} = 13 V, R_{LOAD} = 1.1 Ω , unless otherwise specified)	10
Table 10.	Protection and diagnostic	10
Table 11.	Truth table in normal operating conditions	12
Table 12.	Truth table in fault conditions (detected on OUTA)	12
Table 13.	Electrical transient requirements (part 1)	13
Table 14.	Electrical transient requirements (part 2)	13
Table 15.	Electrical transient requirements (part 3)	13
Table 16.	Thermal calculation in clockwise and anti-clockwise operation in steady-state mode	25
Table 17.	Thermal parameters	27
Table 18.	MultiPowerSO-30 mechanical data	30
Table 19.	Document revision history	32

List of figures VNH3SP30-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	
Figure 4.	Definition of the delay time measurement	. 11
Figure 5.	Definition of the low side switching times	. 11
Figure 6.	Definition of the high side switching times	12
Figure 7.	On state supply current	
Figure 8.	Off state supply current	
Figure 9.	High level input current	
Figure 10.	Input clamp voltage	. 14
Figure 11.	Input high level voltage	14
Figure 12.	Input low level voltage	. 14
Figure 13.	Input hysteresis voltage	15
Figure 14.	High level enable pin current	. 15
Figure 15.	Delay time during change of operation mode	15
Figure 16.	Enable clamp voltage	
Figure 17.	High level enable voltage	
Figure 18.	Low level enable voltage	. 15
Figure 19.	PWM high level voltage	. 16
Figure 20.	PWM low level voltage	
Figure 21.	PWM high level current	
Figure 22.	Overvoltage shutdown	
Figure 23.	Undervoltage shutdown	. 16
Figure 24.	Current limitation	. 16
Figure 25.	On state high side resistance vs Tcase	17
Figure 26.	On state low side resistance vs Tcase	17
Figure 27.	On state high side resistance vs Vcc	17
Figure 28.	On state low side resistance vs Vcc	17
Figure 29.	Output voltage rise time	17
Figure 30.	Output voltage fall time	17
Figure 31.	Enable output low level voltage	18
Figure 32.	ON state leg resistance	18
Figure 33.	Typical application circuit for DC to 10 kHz PWM operation short circuit protection	. 19
Figure 34.	Half-bridge configuration	21
Figure 35.	Multi-motor configuration	. 21
Figure 36.	Waveforms in full bridge operation (part 1)	22
Figure 37.	Waveforms in full bridge operation (part 2)	
Figure 38.	MultiPowerSO-30™ PC board	24
Figure 39.	Chipset configuration	
Figure 40.	Auto and mutual Rthj-amb vs PCB copper area in open box free air condition	. 24
Figure 41.	MultiPowerSO-30 HSD thermal impedance junction ambient single pulse	
Figure 42.	MultiPowerSO-30 LSD thermal impedance junction ambient single pulse	
Figure 43.	Thermal fitting model of an H-bridge in MultiPowerSO-30	
Figure 44.	MultiPowerSO-30 package outline	29
Figure 45.	MultiPowerSO-30 suggested pad layout	. 30
Figure 46.	MultiPowerSO-30 tape and reel shipment (suffix "TR")	31

1 Block diagram and pins description

Figure 1. Block diagram

Table 2. Block description

Name	Description
Logic control	Allows the turn-on and the turn-off of the high side and the low side switches according to the truth table
Overvoltage + undervoltage	Shuts down the device outside the range [5.5 V36 V] for the battery voltage
High side and low side clamp voltage	Protects the high side and the low side switches from the high voltage on the battery line in all configurations for the motor
High side and low side driver	Drives the gate of the concerned switch to allow a proper $R_{\mbox{\scriptsize DS}(\mbox{\scriptsize on})}$ for the leg of the bridge
Linear current limiter	Limits the motor current by reducing the high side switch gate-source voltage when short-circuit to ground occurs
Overtemperature protection	In case of short-circuit with an increase in the junction temperature, shuts down the concerned high side to prevent its degradation and to protect the die
Fault detection	Signals abnormal behavior of the switches in the half-bridge A or B by pulling low the concerned ${\sf EN_x/DIAG_x}$ pin

Figure 2. Configuration diagram (top view)

Table 3. Pin definitions and functions

Pin No	Symbol	Function
1, 25, 30	OUT _A , Heat Slug3	Source of high side switch A / Drain of low side switch A
2, 4, 7, 9, 12, 14, 17, 22, 24, 29	NC	Not connected
3, 13, 23	V _{CC} , Heat Slug1	Drain of high side switches and power supply voltage
6	EN _A /DIAG _A	Status of high side and low side switches A; open drain output
5	IN _A	Clockwise input
8	PWM	PWM input
11	IN _B	Counter clockwise input
10	EN _B /DIAG _B	Status of high side and low side switches B; open drain output
15, 16, 21	OUT _B , Heat Slug2	Source of high side switch B / Drain of low side switch B
26, 27, 28	GND _A	Source of low side switch A ⁽¹⁾
18, 19, 20	GND _B	Source of low side switch B ⁽¹⁾

^{1.} GND_A and GND_B must be externally connected together.

Table 4. Pin functions description

Name	Description
V_{CC}	Battery connection
GND _A , GND _B	Power grounds; must always be externally connected together
OUT _A , OUT _B	Power connections to the motor
IN _A , IN _B	Voltage controlled input pins with hysteresis, CMOS compatible. These two pins control the state of the bridge in normal operation according to the truth table (brake to V_{CC} , brake to GND, clockwise and counterclockwise).
PWM	Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low side FETs are modulated by the PWM signal during their ON phase allowing speed control of the motor.
EN _A /DIAG _A , EN _B /DIAG _B	Open drain bidirectional logic pins. These pins must be connected to an external pull up resistor. When externally pulled low, they disable half-bridge A or B. In case of fault detection (thermal shutdown of a high side FET or excessive ON state voltage drop across a low side FET), these pins are pulled low by the device (see truth table in fault condition).

2 Electrical specifications

Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Table 5. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{cc}	Supply voltage	-0.340	V
I _{max1}	Maximum output current (continuous)	30	Α
I _R	Reverse output current (continuous)	-30	A
I _{IN}	Input current (IN _A and IN _B pins)	±10	
I _{EN}	Enable input current (DIAG _A /EN _A and DIAG _B /EN _B pins)	±10	mA
I _{pw}	PWM input current	±10	
V _{ESD}	Electrostatic discharge (R = 1.5kΩ, C = 100pF) – logic pins – output pins: OUT _A , OUT _B , V _{CC}	4 5	kV kV
Tj	Junction operating temperature	Internally limited	
T _c	Case operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	

2.2 Electrical characteristics

Vcc = 9 V up to 18 V; -40 $^{\circ}\text{C}$ < T $_{j}$ < 150 $^{\circ}\text{C}$, unless otherwise specified.

Table 6. Power section

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CC}	Operating supply voltage		5.5		36	٧
I _S	Supply current	Off state: $IN_A = IN_B = PWM = 0$; $T_j = 25^{\circ}C$; $V_{CC} = 13V$ $IN_A = IN_B = PWM = 0$		20	30 40	μA μA
		On state: IN _A or IN _B = 5V, no PWM			15	mA
R _{ONHS}	Static high side resistance	I_{OUT} = 12A; T_j = 25°C I_{OUT} = 12A; T_j = -40 to 150°C		23	30 60	mΩ
R _{ONLS}	Static low side resistance	I_{OUT} = 12A; T_j = 25°C I_{OUT} = 12A; T_j = -40 to 150°C		11	15 30	11122
V _f	High side free- wheeling diode forward voltage	I _f = 12 A		0.8	1.1	>
I _{L(off)}	High side off state output current (per channel)	$T_j = 25$ °C; $V_{OUTX} = EN_X = 0V$; $V_{CC} = 13V$ $T_j = 125$ °C; $V_{OUTX} = EN_X = 0V$; $V_{CC} = 13V$			3 5	μΑ

Table 7. Logic inputs (IN_A , IN_B , EN_A , EN_B)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{IL}	Input low level voltage				1.5	
V _{IH}	Input high level voltage	Normal operation (DIAG _X /EN _X pin acts as an input pin)	3.25			
V _{IHYST}	Input hysteresis voltage	,	0.5			٧
V	Input clamp voltage	I _{IN} = 1mA	6	6.8	8	
V _{ICL}		I _{IN} = -1mA	-1	-0.7	-0.3	
I _{INL}	Input low current	V _{IN} = 1.5V	1			
I _{INH}	Input high current	V _{IN} = 3.25V			10	μA
V_{DIAG}	Enable output low level voltage	Fault operation (DIAG $_X$ /EN $_X$ pin acts as an output pin); I $_{EN}$ = 1mA			0.4	٧

Table 8. PWM

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{pwl}	PWM low level voltage				1.5	V
I _{pwl}	PWM low level pin current	V _{pw} = 1.5V	1			μA

Table 8. PWM (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{pwh}	PWM high level voltage		3.25			V
I _{pwh}	PWM high level pin current	V _{pw} = 3.25V			10	μA
V _{pwhhyst}	PWM hysteresis voltage		0.5			
V .	PWM clamp voltage	I _{pw} = 1mA	V _{CC} + 0.3	V _{CC} + 0.7	V _{CC} + 1	٧
V _{pwcl}		I _{pw} = -1mA	-5	-3.5	-2	
V _{pwtest}	Test mode PWM pin voltage		-3.5	-2	-0.5	>
I _{pwtest}	Test mode PWM pin current	V _{IN} = -2 V	-2000	-500		μA

Table 9. Switching (V_{CC} = 13 V, R_{LOAD} = 1.1 Ω , unless otherwise specified)

Symbol	Parameter Test Conditions M		Min	Тур	Max	Unit
f	PWM frequency		0		10	kHz
t _{d(on)}	Turn-on delay time	Input rise time < 1µs (see <i>Figure 6</i>)		100	300	
t _{d(off)}	Turn-off delay time	Input rise time < 1µs (see <i>Figure 6</i>)		85	255	
t _r	Rise time	(see Figure 5)		1.5	3	μs
t _f	Fall time	(see Figure 5)		2	5	
t _{DEL}	Delay time during change of operating mode	(see Figure 4)		600	1800	

Table 10. Protection and diagnostic

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{USD}	Undervoltage shut-down				5.5	V
V _{OV}	Overvoltage shut-down		36	43		v
I _{LIM}	Current limitation		30	45		Α
T _{TSD}	Thermal shut-down temperature	V _{IN} = 3.25V	150	170	200	
T _{TR}	Thermal reset temperature		135			°C
T _{HYST}	Thermal hysteresis		7	15		

Figure 4. Definition of the delay time measurement

Figure 6. Definition of the high side switching times

Table 11. Truth table in normal operating conditions

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUTB	Operating mode
1	1			Н	Н	Brake to V _{CC}
'	0	1	1	"	L	Clockwise (CW)
0	1	'	'		Н	Counterclockwise (CCW)
	0			L	L	Brake to GND

Table 12. Truth table in fault conditions (detected on OUT_A)

INA	IN _B	DIAG _A /EN _A	DIAG _B /EN _B	OUTA	OUT _B						
1	1				Н						
'	0		0		L						
0	1			1	'	OPEN	ı	1	'		Н
U	0	0					OPEN	L			
	Х				OPEN	OPEN					
X	1			1		Н					
	0		ı		L						
Fault Information Protection Action											

Note:

Note that saturation detection on the low side power MOSFET is possible only if the impedance of the short-circuit from the output to the battery is less than 100 m Ω when the device is supplied with a battery voltage of 13.5 V.

Table 13. Electrical transient requirements (part 1)

ISO T/R - 7637/1 Test pulse	Test level	Test level	Test level	Test level IV	Test level delays and impedance
1	-25V	-50V	-75V	-100V	2ms, 10Ω
2	+25V	+50V	+75V	+100V	0.2ms, 10Ω
3a	-25V	-50V	-100V	-150V	$0.1 \mu s, 50 \Omega$
3b	+25V	+50V	+75V	+100V	υ. 1μ8, 3022
4	-4V	-5V	-6V	-7V	100ms, 0.01Ω
5	+26.5V	+46.5V	+66.5V	+86.5V	400ms, 2Ω

Table 14. Electrical transient requirements (part 2)

ISO T/R - 7637/1 Test pulse	Test level results I	Test level results	Test level results	Test level results
1				
2				
3a	С	С	С	С
3b				
4				
5 ⁽¹⁾		E	E	Е

^{1.} For load dump exceeding the above value a centralized suppressor must be adopted

Table 15. Electrical transient requirements (part 3)

Class	Class Contents				
С	All functions of the device are performed as designed after exposure to disturbance.				
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.				

2.3 Electrical characteristics curves

Figure 7. On state supply current

Figure 8. Off state supply current

Figure 9. High level input current

Figure 10. Input clamp voltage

Figure 11. Input high level voltage

Figure 12. Input low level voltage

Figure 13. Input hysteresis voltage

Figure 14. High level enable pin current

Figure 15. Delay time during change of operation mode

Figure 16. Enable clamp voltage

Figure 17. High level enable voltage

Figure 18. Low level enable voltage

Figure 19. PWM high level voltage

Figure 20. PWM low level voltage

Figure 21. PWM high level current

Figure 22. Overvoltage shutdown

Figure 23. Undervoltage shutdown

Figure 24. Current limitation

Figure 25. On state high side resistance vs T_{case} Figure 26. On state low side resistance vs T_{case}

Figure 27. On state high side resistance vs Vcc Figure 28. On state low side resistance vs Vcc

Figure 29. Output voltage rise time

Figure 30. Output voltage fall time

Figure 31. Enable output low level voltage

Figure 32. ON state leg resistance

3 Application information

In normal operating conditions the $DIAG_X/EN_X$ pin is considered as an input pin by the device. This pin must be externally pulled high.

PWM pin usage: In all cases, a "0" on the PWM pin will turn off both LS_A and LS_B switches. When PWM rises back to "1", LS_A or LS_B turn on again depending on the input pin state.

Figure 33. Typical application circuit for DC to 10 kHz PWM operation short circuit protection

Note:

The value of the blocking capacitor (C) depends on the application conditions and defines voltage and current ripple onto the supply line at PWM operation. Stored energy of the motor inductance may fly back into the blocking capacitor, if the bridge driver goes into tristate. This causes a hazardous overvoltage if the capacitor is not big enough. As a basic orientation, $500 \, \mu F$ per $10 \, A$ load current is recommended.

In case of a fault condition, the DIAG_X/EN_X pin is considered an output pin by the device.

The fault conditions are:

- · overtemperature on one or both high sides
- short to battery condition on the output (saturation detection on the low side power MOSFET)

Possible origins of fault conditions may be:

- OUT_A is shorted to ground → overtemperature detection on high side A.
- OUT_A is shorted to V_{CC} → low side power MOSFET saturation detection^(a).

When a fault condition is detected, the user can know which power element is in fault by monitoring the IN_A , IN_B , $DIAG_A/EN_A$ and $DIAG_B/EN_B$ pins.

In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the respective output (OUT_x) again, the input signal must rise from low to high level.

3.1 Reverse battery protection

Three possible solutions can be considered:

- a Schottky diode D connected to V_{CC} pin
- 2. an N-channel MOSFET connected to the GND pin (see Figure 33: Typical application circuit for DC to 10 kHz PWM operation short circuit protection on page 19)
- 3. a P-channel MOSFET connected to the V_{CC} pin

The device sustains no more than -30 A in reverse battery conditions because of the two body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of VNH3SP30-E will be pulled down to the V_{CC} line (approximately -1.5 V). A series resistor must be inserted to limit the current sunk from the microcontroller I/Os. If I_{Rmax} is the maximum target reverse current through μ C I/Os, the series resistor is:

$$R = \frac{V_{IOs} - V_{CC}}{I_{Rmax}}$$

3.2 Open load detection in Off mode

It is possible for the microcontroller to detect an open load condition by adding a simply resistor (for example, $10 \text{ k}\Omega$) between one of the outputs of the bridge (for example, OUTB) and one microcontroller input. A possible sequence of inputs and enable signals is the following: INA = 1, INB = X, ENA = 1, ENB = 0.

- normal condition: OUTA = H and OUTB = H
- open load condition: OUTA = H and OUTB = L: In this case the OUTB pin is internally
 pulled down to GND. This condition is detected on OUTB pin by the microcontroller as
 an open load fault.

a. An internal operational amplifier compares the drain-source MOSFET voltage with the internal reference (2.7 V typ.). The relevant low side power MOS is switched off when its drain-source voltage exceeds the reference voltage.

3.3 Test mode

The PWM pin can be used to test the load connection between two half-bridges. In the Test mode (V_{pwm} = -2 V) the internal power MOS gate drivers are disabled. The INA or INB inputs can be used to turn on the high side A or B, respectively, in order to connect one side of the load at VCC voltage. The check of the voltage on the other side of the load can be used to verify the continuity of the load connection. In case of load disconnection, the DIADx/ENx pin corresponding to the faulty output is pulled down.

Figure 34. Half-bridge configuration

Note:

The VNH3SP30-E can be used as a high power half-bridge driver achieving an On resistance per leg of 22.5 m Ω .

Figure 35. Multi-motor configuration

Note:

The VNH3SP30-E can easily be designed in multi-motor driving applications such as seat positioning systems, where only one motor must be driven at a time. The $DIAG_X/EN_X$ pins allow the unused half-bridges to be put into high impedance.

Figure 36. Waveforms in full bridge operation (part 1)

Figure 37. Waveforms in full bridge operation (part 2)

4 Package and PCB thermal data

4.1 MultiPowerSO-30 thermal data

Figure 38. MultiPowerSO-30™ PC board

Note: Layo

Layout condition of R_{th} and Z_{th} measurements (PCB FR4 area = 58 mm x 58 mm, PCB thickness = 2 mm, Cu thickness = 35 μ m, Copper areas: from minimum pad layout to 16 cm²).

Figure 39. Chipset configuration

Figure 40. Auto and mutual R_{thi-amb} vs PCB copper area in open box free air condition

4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-state mode

Table 16. Thermal calculation in clockwise and anti-clockwise operation in steadystate mode

HSA	HS _B	LSA	LS _B	T _{jHSAB}	T _{jLSA}	T _{jLSB}
ON	OFF	OFF	ON	$P_{dHSA} \times R_{thHS} + P_{dLSB} \times R_{thHSLS} + T_{amb}$	P _{dHSA} x R _{thHSLS} + P _{dLSB} x R _{thLSLS} + T _{amb}	$\begin{array}{c} P_{dHSA} x R_{thHSLS} + P_{dLSB} \\ x R_{thLS} + T_{amb} \end{array}$
OFF	ON	ON	OFF	P_{dHSB} x R_{thHS} + P_{dLSA} x R_{thHSLS} + T_{amb}	P _{dHSB} x R _{thHSLS} + P _{dLSA} x R _{thLS} + T _{amb}	$P_{dHSB} x R_{thHSLS} + P_{dLSA}$ $x R_{thLSLS} + T_{amb}$

4.1.2 Thermal resistances definition (values according to the PCB heatsink area)

 $R_{thHS} = R_{thHSA} = R_{thHSB} = High Side Chip Thermal Resistance Junction to Ambient (HS_A or HS_B in ON state)$

R_{thLS} = R_{thLSA} = R_{thLSB} = Low Side Chip Thermal Resistance Junction to Ambient

 R_{thHSLS} = $R_{thHSALSB}$ = $R_{thHSBLSA}$ = Mutual Thermal Resistance Junction to Ambient between High Side and Low Side Chips

 R_{thLSLS} = $R_{thLSALSB}$ = Mutual Thermal Resistance Junction to Ambient between Low Side Chips

4.1.3 Thermal calculation in transient mode^(b)

 $T_{JHSAB} = Z_{thHS} \times P_{dHSAB} + Z_{thHSLS} \times (P_{dLSA} + P_{dLSB}) + T_{amb}$

T_{jLSA} = Z_{thHSLS} x P_{dHSAB} + Z_{thLS} x P_{dLSA} + Z_{thLSLS} x P_{dLSB} + T_{amb}

 $T_{JLSB} = Z_{thHSLS} \times P_{dHSAB} + Z_{thLSLS} \times P_{dLSA} + Z_{thLS} \times P_{dLSB} + T_{amb}$

4.1.4 Single pulse thermal impedance definition (values according to the PCB heatsink area)

Z_{thHS} = High Side Chip Thermal Impedance Junction to Ambient

 $Z_{thLS} = Z_{thLSA} = Z_{thLSB} = Low Side Chip Thermal Impedance Junction to Ambient$

 $\mathbf{Z}_{\text{thHSLS}}$ = $Z_{\text{thHSABLSA}}$ = $Z_{\text{thHSABLSB}}$ = Mutual Thermal Impedance Junction to Ambient between High Side and Low Side Chips

 $\mathbf{Z}_{\mathsf{thLSLS}}$ = Z_{thLSALSB} = Mutual Thermal Impedance Junction to Ambient between Low Side Chips

b. Calculation is valid in any dynamic operating condition. P_d values set by user.

DocID12688 Rev 9

Equation 1: pulse calculation formula

$$\begin{aligned} \textbf{Z}_{\textbf{TH}\delta} &= \textbf{R}_{TH} \cdot \delta + \textbf{Z}_{THtp} (1 - \delta) \\ &\text{where } \delta &= \textbf{t}_p / \textbf{T} \end{aligned}$$

Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse

Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse

57

Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30

Table 17. Thermal parameters⁽¹⁾

Area/island (cm ²)	Footprint	4	8	16
R1 = R7 (°C/W)	0.05			
R2 = R8 (°C/W)	0.3			
R3 (°C/W)	0.5			
R4 (°C/W)	1.3			
R5 (°C/W)	14			
R6 (°C/W)	44.7	39.1	31.6	23.7
R9 = R10= R15= R16 (°C/W)	0.6			
R11 = R17 (°C/W)	0.8			
R12 = R18 (°C/W)	1.5			
R13 = R19 (°C/W)	20			
R14 = R20 (°C/W)	46.9	36.1	30.4	20.8
R21 = R22 = R23 (°C/W)	115			
C1 = C7 = C9 = C15 (W.s/°C)	0.001			
C2 = C8 (W.s/°C)	0.005			
C3 = (W.s/°C)	0.02			
C4 = C13 = C19 (W.s/°C)	0.3			
C5 (W.s/°C)	0.6			
C6 (W.s/°C)	5	7	9	11
C10 = C11= C16 = C17 (W.s/°C)	0.003			

Table 17. Thermal parameters⁽¹⁾ (continued)

Area/island (cm ²)	Footprint	4	8	16
C12 = C18 (W.s/°C)	0.075			
C14 = C20 (W.s/°C)	2.5	3.5	4.5	5.5

^{1.} A blank space means that the value is the same as the previous one.

VNH3SP30-E Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

5.1 MultiPowerSO-30 package information

Figure 44. MultiPowerSO-30 package outline

Package information VNH3SP30-E

Table 18. MultiPowerSO-30 mechanical data

Symbol		Millimeters	
Symbol	Min	Тур	Max
Α			2.35
A2	1.85		2.25
A3	0		0.1
В	0.42		0.58
С	0.23		0.32
D	17.1	17.2	17.3
E	18.85		19.15
E1	15.9	16	16.1
е		1	
F1	5.55		6.05
F2	4.6		5.1
F3	9.6		10.1
L	0.8		1.15
N			10deg
S	0deg		7deg

Figure 45. MultiPowerSO-30 suggested pad layout

5.2 Packing information

Note: The devices are packed in tape and reel shipments (see Table 1: Device summary on page 1).

Figure 46. MultiPowerSO-30 tape and reel shipment (suffix "TR")

Revision history VNH3SP30-E

6 Revision history

Table 19. Document revision history

Date	Revision	Changes
Aug-2004	1	Initial release of lead-free version based on the VNH3SP30 datasheet (May 2004 - Rev.1)
Aug- 2005	2	Modified figure 5
20-Dec-2006	3	Document converted into new ST corporate template. Changed document title. Changed features on page 1 to add ECOPACK® package. Added section 1: device block description on page 5. Added section 2: pinout description on page 6. Added section 3: maximum ratings on page 8. Added section 4: electrical characteristics on page 9. Added "low" and "high" to parameters for IINL and IINH in Table 6 on page 9. Added section 5: Waveforms and truth table on page 12. Changed first of two fault conditions in section 5 on page 12. Inserted note in Figure 4 on page 12. Added vertical limitation line to left side arrow of tD(off) to Figure 7 on page 17. Added section 6: thermal data on page 26. Added section 7: package characteristics on page 30. Added section 8: packaging information on page 32. Updated disclaimer (last page) to include a mention about the use of ST products in automotive applications.
20-Jun-2007	4	Document reformatted. Changed <i>Table 6: Power section on page</i> 9 : supply current and static resistance values. Added <i>Table 7: Logic inputs (INA, INB, ENA, ENB) on page</i> 9 : V _{DIAG} ROW · Deleted Enable (Logic I/O pin) Table.
13-Sep-2007	5	Updated Table 2: Block description on page 5.
15-Nov-2007	6	Corrected Figure 34 note : changed On resistance per leg from 9.5 m Ω to 22.5 m Ω .
06-Feb-2008	7	Corrected Heat Slug numbers in Table 3: Pin definitions and functions.
24-Sep-2013	8	Updated disclaimer.
17-Jan-2017	9	 Removed all information relative to tube packing of the product Modified Section 5: Package information. Added AEC-Q100 qualified in the Features section Minor text edits throughout the document

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

