Input Representations for Parsing Discourse Representation Structures: Comparing English with Chinese

Chunliu Wang Rik van Noord Arianna Bisazza Johan Bos

Discourse Representation Structures

Example: Brad Pitt is an actor.

Boxes

Discourse referents Concepts

Semantic relations

English DRS Parsing ➤ **Chinese DRS Parsing**

English DRS Parsing ➤ **Chinese DRS Parsing**

Questions

Q1: Can existing DRS parsing models achieve good results for Chinese?

Q2: Given the different writing systems used for English and Chinese, which input granularity is best for either language?

Q3: Is rule-based word segmentation beneficial for Chinese DRS parsing?

How to get Chinese DRSs data?

Input document: Brad Pitt is an actor.

b1 REF x1

b1 Name x1 "brad~pitt"

b1 PRESUPPOSITION **b2**

b1 male "n.02" **x1**

b2 REF e1

b2 REF t1

b2 Co-Theme **e1 x2**

b2 EQU **t1** "now"

b2 Theme **e1 x1**

b2 be "v.08" **e1**

b2 time "n.08" **t1**

b2 REF **x2**

b2 REF **x3**

b2 actor "n.01" **x3**

MT

Check

Input document: 布拉德·皮特是个演员。

b2 Time **e1 t1**

b2 Role **x2 x3**

b2 person "n.01" **x2**

b1 REF x1

b1 Name x1 "布拉德~皮特" b2 be "v.08" e1

b1 PRESUPPOSITION **b2**

b1 male "n.02" **x1**

b2 REF e1

b2 REF t1

b2 Co-Theme **e1 x2**

b2 EQU **t1** "now"

b2 Theme e1 x1

b2 Time **e1 t1**

b2 time "n.08" **t1**

b2 REF x2

b2 REF x3

b2 Role **x2 x3**

b2 actor "n.01" **x3**

b2 person "n.01" **x2**

Methodology: Input representations

Туре	English input representation	Chinese input representation
	<pre>prad ^pitt is an actor. brad pittis an actor. brad ^pitt is an actor . brad pitt is an actor. b@ ra@ d ^ p@ it@ t is an ac@ tor@ .</pre>	布拉德·皮特是个演员。 布拉德
	Word boundary	
Uppe	reased characters No word boundary	

Raw and continuous char-level are identical in Chinese

Methodology: Output representation

Input sentence

汤姆提着一桶水。

Output DRS

```
bl REF x1
                           b2 Time e1 t1
                                                b2 REF x2
b1 Name x1 "汤姆"
                           b2 time "n.08" t1
                                               b2 bucket "n.01" x2
b1 PRESUPPOSITION b2
                                                b2 Content x2 x3
                           b2 REF e1
b1 male "n.02" x1
                                               b2 REF x3
                           b2 Agent e1 x1
b2 REF t1
                                                b2 water "n.06" x3
                           b2 Theme e1 x2
                           b2 carry "v 01" e1
b2 TPR t1 "now"
```

Indices,

Clause boundary

instead of variables

DRS representation

```
$NEW || REF *** $0 || Name || @0 || "汤姆"*** $0 || PRESUPPOSITION || $NEW *** $-1 || m a le || "n.02" || @0 *** $0 || REF *** $0 || TPR || @0 || "now" *** $0 || Time || @1 || @0 *** $0 || time || "n.08" || @0 *** $0 || REF *** $0 || Agent || @0 || @-2 *** $0 || Theme || @0 || @1 *** $0 || carry || "v.01" || @0 *** $0 || REF *** $0 || bucket || "n.01" || @0 *** $0 || Content || @0 || @1 *** $0 || REF *** $0 || water || "n.06" || @0
```

Evaluation: Bi-LSTM model

	English		Chinese	
Input type	Dev	Test	Dev	Test
Char (raw) Char (continuous) Char (tokenised)	87.9 86.1 88.0	87.6 86.9 88.1	} 78.8 79.5	76.2 76.2
BPE (1k) BPE (5k) BPE (10k)	86.8 87.4 82.5	87.0 87.1 82.3	78.5 75.1 68.5	76.2 71.8 65.2
Word	84.5	83.2	74.7	71.6

Evaluation: Bi-LSTM model

,	English		Chinese	
Input type	Dev	Test	Dev	Test
Char (raw) Char (continuous) Char (tokenised)	87.9 86.1 88.0	87.6 86.9 88.1	} 78.8 79.5	76.2 76.2
BPE (1k) BPE (5k) BPE (10k)	86.8 87.4 82.5	87.0 87.1 82.3	78.5 75.1 68.5	76.2 71.8 65.2
Word	84.5	83.2	74.7	71.6

Conclusions

Q1: Can existing DRS parsing models achieve good results for Chinese?

A1: Projecting meaning representations from English gives remarkable performance

Q2: Which input granularity is best for Chinese?

A2: Characters are the preferred input representation for Chinese

Q3: Is rule-based word segmentation beneficial for Chinese DRS parsing?

A3: Tokenisation of the input offers a small advantage only for English

Input Representations for Parsing Discourse Representation Structures: Comparing English with Chinese

Chunliu Wang Rik van Noord Arianna Bisazza Johan Bos

Q1: Can existing DRS parsing models achieve good results for Chinese?

A1: Projecting meaning representations from English gives remarkable performance

Q2: Which input granularity is best for Chinese?

A2: Characters are the preferred input representation for Chinese

Q3: Is rule-based word segmentation beneficial for Chinese DRS parsing?

A3: Tokenisation of the input offers a small advantage only for English