Axiomatic Potentialism

Chris Scambler

All Souls College, Oxford University

chris.scambler@all-souls.ox.ac.uk

November 30, 2021

Overview

- Background
- 2 Warm Up: Height Potentialism
- Height and Width Potentialism
- Concluding Remarks

Table of Contents

- Background
- 2 Warm Up: Height Potentialism
- 3 Height and Width Potentialism
- 4 Concluding Remarks

Potentialism

Potentialism

is the idea that a mathematical object (e.g. a set) is the sort of thing that may *merely possibly* exist.

E.g. a geometric object as a figure one can construct

Potentialism

- E.g. a geometric object as a figure one can construct
- A set as a certain sort of data structure one could assemble

Potentialism

- E.g. a geometric object as a figure one can construct
- A set as a certain sort of data structure one could assemble
- Or perhaps a structure that is instantiated given enough objects.

Potentialism

- E.g. a geometric object as a figure one can construct
- A set as a certain sort of data structure one could assemble
- Or perhaps a structure that is instantiated given enough objects.
- Ideas like this have deep roots in set theory, e.g. Zermelo and even Cantor

Potentialism

- E.g. a geometric object as a figure one can construct
- A set as a certain sort of data structure one could assemble
- Or perhaps a structure that is instantiated given enough objects.
- Ideas like this have deep roots in set theory, e.g. Zermelo and even Cantor
- Still deeper roots in mathematics in general.

■ The recent literature has seen two branches of study here:

- The recent literature has seen two branches of study here:
 - Model-theoretic: study Kripke models whose worlds are structures with the accessibility relation (some refinement of) the substructure relation.

- The recent literature has seen two branches of study here:
 - Model-theoretic: study Kripke models whose worlds are structures with the accessibility relation (some refinement of) the substructure relation.
 - Axiomatic: Develop axiom systems designed to characterize this or that form of potentialism directly, without appeal to models.

- The recent literature has seen two branches of study here:
 - Model-theoretic: study Kripke models whose worlds are structures with the accessibility relation (some refinement of) the substructure relation.
 - Axiomatic: Develop axiom systems designed to characterize this or that form of potentialism directly, without appeal to models.
- In each case interesting questions arise concerning the relation between assertions in the modal framework and in first order set theory.

- The recent literature has seen two branches of study here:
 - Model-theoretic: study Kripke models whose worlds are structures with the accessibility relation (some refinement of) the substructure relation.
 - Axiomatic: Develop axiom systems designed to characterize this or that form of potentialism directly, without appeal to models.
- In each case interesting questions arise concerning the relation between assertions in the modal framework and in first order set theory.
- E.g. Hamkins and Linnebo showed in MT potentialism with the structures initial segments of V that S5 at a world V_{κ} is equivalent to Σ_3 correctness of κ .

- The recent literature has seen two branches of study here:
 - Model-theoretic: study Kripke models whose worlds are structures with the accessibility relation (some refinement of) the substructure relation.
 - Axiomatic: Develop axiom systems designed to characterize this or that form of potentialism directly, without appeal to models.
- In each case interesting questions arise concerning the relation between assertions in the modal framework and in first order set theory.
- E.g. Hamkins and Linnebo showed in MT potentialism with the structures initial segments of V that S5 at a world V_{κ} is equivalent to Σ_3 correctness of κ .
- Here we will be focused on axiomatic potentialism, and on relations between potentialist axiom systems and their first order counterparts.

Table of Contents

- Background
- Warm Up: Height Potentialism
- 3 Height and Width Potentialism
- 4 Concluding Remarks

Imagine one has the ability to take things and make a set containing them.

- Imagine one has the ability to take things and make a set containing them.
- Imagine one is able to do this arbitrarily many times.

- Imagine one has the ability to take things and make a set containing them.
- Imagine one is able to do this arbitrarily many times.
- Axiomatize this conception and work out its non-modal counterpart.

The Language \mathcal{L}_0

 \blacksquare object variables x, y, z

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z
- \land , \neg , \forall , =

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z
- $\land, \neg, \forall, =$

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z
- $\land, \neg, \forall, =$
- \in

- Free FO logic
- 2 S4.2 modal logic + CBF

- Free FO logic
- S4.2 modal logic + CBF

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

Set-theoretic axioms

■ Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

- $\textbf{ § Extensionality, } \in \text{-rigidity, foundation}$

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

- lacktriangledown Extensionality, \in -rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF

- Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

- Extensionality, ∈-rigidity, foundation

- A modal translation of replacement

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$(Xx \leftrightarrow x \notin x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$(Xx \leftrightarrow x \not\in x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$(Xx \leftrightarrow x \not\in x) \to \Box \neg Set(y, X) \tag{2}$$

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall \mathsf{x} \psi}$$

$$(Xx \leftrightarrow x \not\in x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \neg Set(y, X) \tag{2}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \forall y \neg Set(y, X)$$
 (3)

Standard modal model theory validates the rule

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$(Xx \leftrightarrow x \notin x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \neg Set(y, X) \tag{2}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \forall y \neg Set(y, X)$$
 (3)

Hence the need for free logic.

Standard modal model theory validates the rule

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$(Xx \leftrightarrow x \notin x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \neg Set(y, X) \tag{2}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \forall y \neg Set(y, X)$$
 (3)

Hence the need for free logic.

$$\mathsf{UI} = \forall x [\forall y \varphi y \to \varphi x];$$

Standard modal model theory validates the rule

$$\frac{\varphi \to \Box \psi}{\varphi \to \Box \forall x \psi}$$

$$(Xx \leftrightarrow x \notin x) \to \forall y \Box \neg Set(y, X) \tag{1}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \neg Set(y, X) \tag{2}$$

$$(Xx \leftrightarrow x \notin x) \to \Box \forall y \neg Set(y, X)$$
 (3)

Hence the need for free logic.

$$\mathsf{UI} = \forall x [\forall y \varphi y \to \varphi x];$$

Instantiation requires assumption of existence.

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

In fact ZFC interprets L.

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

assign plural variables odd numbered variables t(X).

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives
- $t(Xx)(T) := x \in t(X)$

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives
- $t(Xx)(T) := x \in t(X)$
- $t(\forall x\varphi)(T) := \forall x \in T[t(\varphi)(T)]$

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives
- $t(Xx)(T) := x \in t(X)$
- $t(\forall x\varphi)(T) := \forall x \in T[t(\varphi)(T)]$
- $t(\forall X\varphi)(T) := \forall x \subseteq T[t(\varphi)(T)]$

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives
- $t(Xx)(T) := x \in t(X)$
- $t(\forall x\varphi)(T) := \forall x \in T[t(\varphi)(T)]$
- $t(\forall X\varphi)(T) := \forall x \subseteq T[t(\varphi)(T)]$
- $lacksquare t(\Box arphi)(t) := orall S \supseteq T[\mathit{Tran}(S)
 ightarrow t(arphi)(S)]$

In fact ZFC interprets L.

$$t: \mathcal{L}_0 \times V \to \mathcal{L}_{\in}, (\varphi, T) \mapsto \psi(T)$$

- assign plural variables odd numbered variables t(X).
- membership claims = id, commutes with propositional connectives
- $t(Xx)(T) := x \in t(X)$
- $t(\forall x\varphi)(T) := \forall x \in T[t(\varphi)(T)]$
- $t(\forall X\varphi)(T) := \forall x \subseteq T[t(\varphi)(T)]$
- $lacksquare t(\Box arphi)(t) := orall S \supseteq T[\mathit{Tran}(S)
 ightarrow t(arphi)(S)]$

Theorem

 $\mathsf{L} \vdash \varphi \mathsf{ implies } \mathit{ZFC} \vdash \mathit{Tran}(X) \to t(\varphi)(X)$

Mirroring theorem

Mirroring theorem

For φ in \mathcal{L}_{\in} , let φ^{\diamond} be the result of prefixing all universal quantifiers by a

 \square (and existential quantifiers by \lozenge .) Then we have

Mirroring theorem

For φ in \mathcal{L}_{\in} , let φ^{\diamond} be the result of prefixing all universal quantifiers by a

$$\square$$
 (and existential quantifiers by \lozenge .) Then we have

$$\Gamma \vdash_{FOL} \varphi \Leftrightarrow \Gamma^{\diamond} \vdash_{\mathsf{L}} \varphi^{\diamond}$$

Mirroring theorem

For φ in \mathcal{L}_{\in} , let φ^{\diamond} be the result of prefixing all universal quantifiers by a

 \square (and existential quantifiers by \lozenge .) Then we have

$$\Gamma \vdash_{FOL} \varphi \Leftrightarrow \Gamma^{\diamond} \vdash_{\mathsf{L}} \varphi^{\diamond}$$

Note on replacement⁴.

Mirroring theorem

For φ in \mathcal{L}_{\in} , let φ^{\diamond} be the result of prefixing all universal quantifiers by a

 \square (and existential quantifiers by \lozenge .) Then we have

$$\Gamma \vdash_{FOL} \varphi \Leftrightarrow \Gamma^{\diamond} \vdash_{\mathsf{L}} \varphi^{\diamond}$$

Note on replacement[⋄].

Linnebo Interpretation Theorem

 $L \vdash ZFC^{\diamond}$.

Mirroring theorem

For φ in \mathcal{L}_{\in} , let φ^{\diamond} be the result of prefixing all universal quantifiers by a

 \square (and existential quantifiers by \lozenge .) Then we have

$$\Gamma \vdash_{FOL} \varphi \Leftrightarrow \Gamma^{\diamond} \vdash_{\mathsf{L}} \varphi^{\diamond}$$

Note on replacement⁴.

Linnebo Interpretation Theorem

 $L \vdash ZFC^{\diamond}$.

Proof: use mirroring.

Axioms for the theory L

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF
- $\forall z[Xz \leftrightarrow Yz] \rightarrow X = Y$, rigidity, Choice, Comp

Set-theoretic axioms

- lacktriangledown Extensionality, \in -rigidity, foundation

- A modal translation of replacement

Mini-conclusion

Mini-conclusion

Equivalence

We have an exact proof-theoretic equivalence, $L \equiv ZFC$.

Mini-conclusion

Equivalence

We have an exact proof-theoretic equivalence, $L \equiv ZFC$.

Bi-interpretation

In fact, ZFC $\vdash Tran(X) \rightarrow t(\phi^{\diamond})(X) \leftrightarrow \phi$, and conversely.

Table of Contents

- Background
- 2 Warm Up: Height Potentialism
- Height and Width Potentialism
- 4 Concluding Remarks

Imagine one has the ability to take things and make a set containing them.

- Imagine one has the ability to take things and make a set containing them.
 - Imagine one is also able to take a partial order and add a filter meeting all its (current) dense sets;

- Imagine one has the ability to take things and make a set containing them.
- Imagine one is also able to take a partial order and add a filter meeting all its (current) dense sets;
- Or, equivalently, to take some things and add an enumerating function.

- Imagine one has the ability to take things and make a set containing them.
- Imagine one is also able to take a partial order and add a filter meeting all its (current) dense sets;
- Or, equivalently, to take some things and add an enumerating function.
- Axiomatize this conception and work out its non-modal counterpart.

Language

The Language \mathcal{L}_1

 \blacksquare object variables x, y, z

Language

The Language \mathcal{L}_1

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z

Language

The Language \mathcal{L}_1

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z
- $\land, \neg, \forall, =$

Language

The Language \mathcal{L}_1

- object variables x, y, z
- \blacksquare plural variables X, Y, Z
- \land , \neg , \forall , =
- $\square_{\uparrow}, \square_{\leftarrow}, \square$

Language

The Language \mathcal{L}_1

- \blacksquare object variables x, y, z
- \blacksquare plural variables X, Y, Z
- \land , \neg , \forall , =
- \square_{\uparrow} , \square_{\leftarrow} , \square
- \in

Logical Axioms

Free FO logic

- Free FO logic
- S4.2 modal logic + CBF for each modal

- Free FO logic
- S4.2 modal logic + CBF for each modal

- Free FO logic
- 2 S4.2 modal logic + CBF for each modal

Logical Axioms

- Free FO logic
- 2 S4.2 modal logic + CBF for each modal
- **3** $\Box \varphi \to \Box_{\uparrow} \varphi$, same for \Box_{\leftarrow} .

Logical Axioms

- Free FO logic
- 2 S4.2 modal logic + CBF for each modal

Set-theoretic axioms

■ Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF for each modal
- **3** $\Box \varphi \to \Box_{\uparrow} \varphi$, same for \Box_{\leftarrow} .

- Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF for each modal
- **3** $\Box \varphi \to \Box_{\uparrow} \varphi$, same for \Box_{\leftarrow} .

- Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- S4.2 modal logic + CBF for each modal
- **3** $\Box \varphi \to \Box_{\uparrow} \varphi$, same for \Box_{\leftarrow} .

- Extensionality, ∈-rigidity, foundation

Logical Axioms

- Free FO logic
- 2 S4.2 modal logic + CBF for each modal

- Extensionality, ∈-rigidity, foundation

- **⑤** $\square \forall \mathbb{P}, X[D(\mathbb{P}, X) \rightarrow \Diamond_{\leftarrow} \exists g[Fmeets(g, X)]]$

Logical Axioms

- Free FO logic
- 2 S4.2 modal logic + CBF for each modal
- **3** $\Box \varphi \to \Box_{\uparrow} \varphi$, same for \Box_{\leftarrow} .

- Extensionality, ∈-rigidity, foundation

- 6 A modal translation of replacement

 \blacksquare M interprets ZFC under the translation $\varphi \mapsto \varphi^{\diamond \uparrow}$.

- M interprets ZFC under the translation $\varphi \mapsto \varphi^{\diamond \uparrow}$.
- lacksquare M interprets ZFC $^-$ under the translation $arphi\mapsto arphi^\diamond.$

- \blacksquare M interprets ZFC under the translation $\varphi \mapsto \varphi^{\diamond \uparrow}$.
- M interprets ZFC⁻ under the translation $\varphi \mapsto \varphi^{\diamond}$.
- M proves ¬Pow[⋄].

- M interprets ZFC under the translation $\varphi \mapsto \varphi^{\diamond \uparrow}$.
- M interprets ZFC⁻ under the translation $\varphi \mapsto \varphi^{\diamond}$.
- M proves ¬Pow[⋄].
- M proves $V = HC^{\diamond}$ and hence SOA^{\diamond} .

- M interprets ZFC under the translation $\varphi \mapsto \varphi^{\diamond \uparrow}$.
- M interprets ZFC⁻ under the translation $\varphi \mapsto \varphi^{\diamond}$.
- M proves ¬Pow[⋄].
- M proves $V = HC^{\diamond}$ and hence SOA^{\diamond} .
- M proves it is possible for the continuum to exist and have a cardinality at least as great as any ℵ number whose existence is provable in ZFC.

The axioms imply

$$\Diamond \exists x (\Diamond \leftarrow \exists y [y \subseteq x \land y = z] \land \Box \uparrow \neg \exists y [y = z])$$

The axioms imply

$$\Diamond \exists x (\Diamond \leftarrow \exists y [y \subseteq x \land y = z] \land \Box \uparrow \neg \exists y [y = z])$$

abbreviate the formula in parentheses by $\Psi(x, z)$.

The axioms imply

$$\Diamond \exists x (\Diamond \leftarrow \exists y [y \subseteq x \land y = z] \land \Box \uparrow \neg \exists y [y = z])$$

abbreviate the formula in parentheses by $\Psi(x, z)$. By comprehension,

$$\Diamond \exists x \Psi(x,z) \land \exists X \forall y [Xy \leftrightarrow y \in z]$$

The axioms imply

$$\Diamond \exists x (\Diamond \leftarrow \exists y [y \subseteq x \land y = z] \land \Box \uparrow \neg \exists y [y = z])$$

abbreviate the formula in parentheses by $\Psi(x,z)$. By comprehension,

$$\Diamond \exists x \Psi(x, z) \land \exists X \forall y [Xy \leftrightarrow y \in z]$$

By height potentialism/rigidty,

$$\Diamond \exists x \Psi(x, z) \land \Diamond_{\uparrow} \exists w \forall y [y \in w \leftrightarrow y \in z]$$

The axioms imply

$$\Diamond \exists x (\Diamond \leftarrow \exists y [y \subseteq x \land y = z] \land \Box \uparrow \neg \exists y [y = z])$$

abbreviate the formula in parentheses by $\Psi(x, z)$. By comprehension,

$$\Diamond \exists x \Psi(x, z) \land \exists X \forall y [Xy \leftrightarrow y \in z]$$

By height potentialism/rigidty,

$$\Diamond \exists x \Psi(x, z) \land \Diamond_{\uparrow} \exists w \forall y [y \in w \leftrightarrow y \in z]$$

But then the rigidity/extensionality imply w = z after all, so we have a contradiction.

The argument just sketched uses comprehension with arbitrary parameters:

$$\exists X \forall y [Xy \leftrightarrow y \in z]$$

The argument just sketched uses comprehension with arbitrary parameters:

$$\exists X \forall y [Xy \leftrightarrow y \in z]$$

And in the crucial application, it applies when we have no a priori guarantee z even exists (indeed this is what we are trying to establish.)

The argument just sketched uses comprehension with arbitrary parameters:

$$\exists X \forall y [Xy \leftrightarrow y \in z]$$

And in the crucial application, it applies when we have no a priori guarantee z even exists (indeed this is what we are trying to establish.) Natural solution: restrict comp to closed form:

$$\Box \forall z \Box \forall Z \exists X \forall y [Xy \leftrightarrow \varphi(y, z, Z)]$$

The argument just sketched uses comprehension with arbitrary parameters:

$$\exists X \forall y [Xy \leftrightarrow y \in z]$$

And in the crucial application, it applies when we have no a priori guarantee z even exists (indeed this is what we are trying to establish.) Natural solution: restrict comp to closed form:

$$\Box \forall z \Box \forall Z \exists X \forall y [Xy \leftrightarrow \varphi(y, z, Z)]$$

Amounts to restricting ourselves to parameters that exist at the world of evaluation.

Intuitive idea

(From now on, I will ignore the difference between SOA and $ZFC^- + V = HC$. Replacement is formulated as collection.)

Intuitive idea

(From now on, I will ignore the difference between SOA and $ZFC^-+V=$ HC. Replacement is formulated as collection.)

We will use the fact that $T = SOA + \Pi_1^1$ -PSP \equiv ZFC, and in fact T proves that L[r] is a model of ZFC for every real r.

Intuitive idea

(From now on, I will ignore the difference between SOA and $ZFC^- + V = HC$. Replacement is formulated as collection.)

- We will use the fact that $T = SOA + \Pi_1^1$ -PSP \equiv ZFC, and in fact T proves that L[r] is a model of ZFC for every real r.
- Our translation will be doubly parameterized, once by a real and once by a transitive set.

Intuitive idea

(From now on, I will ignore the difference between SOA and $ZFC^-+V=HC$. Replacement is formulated as collection.)

- We will use the fact that $T = SOA + \Pi_1^1$ -PSP \equiv ZFC, and in fact T proves that L[r] is a model of ZFC for every real r.
- Our translation will be doubly parameterized, once by a real and once by a transitive set.
- Our interpretation for \Diamond_{\uparrow} will involve holding r fixed and climbing transitive sets in L[r];

Intuitive idea

(From now on, I will ignore the difference between SOA and $ZFC^-+V=$ HC. Replacement is formulated as collection.)

- We will use the fact that $T = SOA + \Pi_1^1$ -PSP \equiv ZFC, and in fact T proves that L[r] is a model of ZFC for every real r.
- Our translation will be doubly parameterized, once by a real and once by a transitive set.
- Our interpretation for \Diamond_{\uparrow} will involve holding r fixed and climbing transitive sets in L[r];
- while our interpretation for \Diamond_{\leftarrow} will involve allowing new reals to be added but not extending the height of the transitive set parameter.

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

Let
$$M \models SOA + \Pi_1^1 PSP$$
.

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

assign plural variables odd numbered variables t(X).

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$
- $t(\forall x\varphi)(T,r) := \forall x \in T[t(\varphi)(T,r)]$

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$
- $t(\forall x\varphi)(T,r) := \forall x \in T[t(\varphi)(T,r)]$
- $T(\forall X\varphi)(T,r) := \forall x \subseteq T[x \in L[r] \to t(\varphi)(T,r)]$

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$
- $t(\forall x\varphi)(T,r) := \forall x \in T[t(\varphi)(T,r)]$
- $T(\forall X\varphi)(T,r) := \forall x \subseteq T[x \in L[r] \to t(\varphi)(T,r)]$
- $T(\Box_{\uparrow}\varphi)(T,r) := \forall S \supseteq T[Tran(S) \land S \in L[r] \rightarrow t(\varphi)(S,r)]$

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$
- $t(\forall x\varphi)(T,r) := \forall x \in T[t(\varphi)(T,r)]$
- $T(\forall X\varphi)(T,r) := \forall x \subseteq T[x \in L[r] \to t(\varphi)(T,r)]$

Let $M \models SOA + \Pi_1^1 PSP$.

$$t: \mathcal{L}_1 \times M \times \mathbb{R}^M \to \mathcal{L}_{\in}, (\varphi, T, r) \mapsto \psi(T, r)$$

- assign plural variables odd numbered variables t(X).
- Membership = id, commutes with propositional connectives
- $t(Xx)(T,r) := x \in t(X)$
- $t(\forall x\varphi)(T,r) := \forall x \in T[t(\varphi)(T,r)]$
- $T(\forall X\varphi)(T,r) := \forall x \subseteq T[x \in L[r] \to t(\varphi)(T,r)]$
- $T(\square_{\leftarrow}\varphi)(T,r) := \forall s[r \in L[s] \to \forall S[S \leq T \land S \in L[s] \to t(\varphi)(S,s)]]$

Theorem

 $\mathsf{M} \vdash \varphi \text{ implies } \mathsf{T} \vdash \mathbb{R}(r) \land \mathit{Tran}(X) \land X \in \mathit{L}[r] \to \mathit{t}(\varphi)(X,r)$

Theorem

 $\mathsf{M} \vdash \mathsf{\Pi}_1^1 \mathit{PSP}^{\diamond}$

Theorem

 $\mathsf{M} \vdash \mathsf{\Pi}_1^1 \mathit{PSP}^{\diamond}$

Proof (sketch)

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge \exists x[x = \mathbb{R}^{L[r]}]$ using the \lozenge_{\uparrow} translation of ZFC and some absoluteness lemmas.

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge\exists x[x=\mathbb{R}^{L[r]}]$ using the \lozenge_\uparrow translation of ZFC and some absoluteness lemmas. One can also show by forcing that " $\lozenge\mathbb{R}^{L[r]}$ is countable."

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge\exists x[x=\mathbb{R}^{L[r]}]$ using the \lozenge_\uparrow translation of ZFC and some absoluteness lemmas. One can also show by forcing that " $\lozenge\mathbb{R}^{L[r]}$ is countable." This yields the \lozenge -translation of " $\mathbb{R}^{L[r]}$ exists for every r, and is coutnable."

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge\exists x[x=\mathbb{R}^{L[r]}]$ using the \lozenge_\uparrow translation of ZFC and some absoluteness lemmas. One can also show by forcing that " $\lozenge\mathbb{R}^{L[r]}$ is countable." This yields the \lozenge -translation of " $\mathbb{R}^{L[r]}$ exists for every r, and is coutnable." By a result of Solovay, if only countably many reals are constructible from r, then the $\Pi^1_1[r]$ PSP holds.

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge\exists x[x=\mathbb{R}^{L[r]}]$ using the \lozenge_\uparrow translation of ZFC and some absoluteness lemmas. One can also show by forcing that " $\lozenge\mathbb{R}^{L[r]}$ is countable." This yields the \lozenge -translation of " $\mathbb{R}^{L[r]}$ exists for every r, and is coutnable." By a result of Solovay, if only countably many reals are constructible from r, then the $\Pi_1^1[r]$ PSP holds. Hence by mirroring $\Pi_1^1[r]PSP^{\lozenge}$.

Theorem

 $M \vdash \Pi_1^1 PSP^{\diamond}$

Proof (sketch)

Given any possible real r, one can show $\lozenge\exists x[x=\mathbb{R}^{L[r]}]$ using the \lozenge_\uparrow translation of ZFC and some absoluteness lemmas. One can also show by forcing that " $\lozenge\mathbb{R}^{L[r]}$ is countable." This yields the \lozenge -translation of " $\mathbb{R}^{L[r]}$ exists for every r, and is coutnable." By a result of Solovay, if only countably many reals are constructible from r, then the $\Pi_1^1[r]$ PSP holds. Hence by mirroring $\Pi_1^1[r]PSP^{\lozenge}$. But r is arbitrary.

Table of Contents

- Background
- 2 Warm Up: Height Potentialism
- 3 Height and Width Potentialism
- Concluding Remarks

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$.

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$. The latter is in fact equiconsistent with ZFC. $M \equiv L \equiv ZFC$.

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$. The latter is in fact equiconsistent with ZFC. $M \equiv L \equiv ZFC$.

Bi-interpretation

However, SOA $+ \Pi_1^1 PSP$

 $\vdash \mathbb{R}(r) \land \mathit{Tran}(X) \land X \in L[r] \rightarrow t(\phi^{\diamond})(X,r) \leftrightarrow \phi$; whether the converse holds is still open.

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$. The latter is in fact equiconsistent with ZFC. $M \equiv L \equiv ZFC$.

Bi-interpretation

However, SOA $+ \Pi_1^1 PSP$ $\vdash \mathbb{R}(r) \land Tran(X) \land X \in L[r] \rightarrow t(\phi^{\diamond})(X, r) \leftrightarrow \phi$; whether the converse holds is still open.

Philosophical Interest?

There seems to be some relation between height + width potentialism and topological regularity.

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$. The latter is in fact equiconsistent with ZFC. $M \equiv L \equiv ZFC$.

Bi-interpretation

However, SOA + $\Pi_1^1 PSP$

 $\vdash \mathbb{R}(r) \land \mathit{Tran}(X) \land X \in L[r] \rightarrow t(\phi^{\diamond})(X,r) \leftrightarrow \phi$; whether the converse holds is still open.

Philosophical Interest?

There seems to be some relation between height + width potentialism and topological regularity.

The 'first order picture' corresponding to the height + width potentialist view may be second order arithmetic + topological regularity.

Equivalence

We have an exact proof-theoretic equivalence, $M \equiv SOA + \Pi_1^1 PSP$. The latter is in fact equiconsistent with ZFC. $M \equiv L \equiv ZFC$.

Bi-interpretation

However, SOA + $\Pi_1^1 PSP$

 $\vdash \mathbb{R}(r) \land \mathit{Tran}(X) \land X \in \mathit{L}[r] \rightarrow t(\phi^{\diamond})(X,r) \leftrightarrow \phi$; whether the converse holds is still open.

Philosophical Interest?

There seems to be some relation between height + width potentialism and topological regularity.

The 'first order picture' corresponding to the height + width potentialist view may be second order arithmetic + topological regularity.

What happens with stronger regularity properties? How does ${\sf PD}/{\sf AD}$ affect things?

Thanks!