Mathematical Logic (M345P65) Problem Sheet 5

[1] Prove (or at least, sketch a proof of) the following version of the Lindenbaum Lemma (2.5.2) which was used in the proof of 2.5.3:

Suppose \mathcal{L} is a countable first-order language and Σ is a consistent set of closed \mathcal{L} -formulas. Then there is a consistent set $\Sigma^* \supseteq \Sigma$ of closed \mathcal{L} -formulas such that, for every closed \mathcal{L} -formula ϕ either $\Sigma^* \vdash \phi$ or $\Sigma^* \vdash (\neg \phi)$.

Recall the notion of a first-order language with equality $\mathcal{L}^{=}$ discussed in the problem class in Lecture 12 and the notion of a normal $\mathcal{L}^{=}$ -structure (see Question 2 on the problem sheet there). In the questions below you may use the following result which we will discuss in week 7:

THEOREM (COMPACTNESS THEOREM FOR NORMAL MODELS) Suppose $\mathcal{L}^=$ is a (countable) language with equality and Σ is a set of closed $\mathcal{L}^=$ -formulas. If every finite subset of Σ has a normal model, then Σ has a normal model.

- [2] Describe a language with equality $\mathcal{L}^{=}$ which is appropriate for groups (see the example after 2.2.7).
- (a) Write down a closed $\mathcal{L}^=$ -formula γ whose normal models are precisely the groups. (You can use traditional mathematical notation if you wish.)
- (b) Write down a set Σ of closed $\mathcal{L}^{=}$ -formulas whose normal models are precisely the infinite groups.
- (c) Suppose that ϕ is a closed $\mathcal{L}^=$ -formula such that for every $n \in \mathbb{N}$ there is a group with at least n elements which is a model of ϕ . Show that there is an infinite group which is a model of ϕ .
- (d) Show that there is no set Δ of closed $\mathcal{L}^=$ -formulas whose normal models are precisely the finite groups.
- (e) Show that there is no closed $\mathcal{L}^{=}$ formula whose normal models are precisely the infinite groups.
- (f) (Harder) Is there a closed $\mathcal{L}^=$ -formula σ which has a normal model and is such that any normal model of σ is an infinite group?
- [3] Suppose $\mathcal{L}^{=}$ is a first-order language with equality and a single binary relation symbol R. A graph is a normal model of the closed formula γ :

$$(\forall x_1)(\forall x_2)((\neg R(x_1, x_1)) \land (R(x_1, x_2) \rightarrow R(x_2, x_1))).$$

- (i) Find a closed formula τ with the property that there is a finite normal model of $\gamma \wedge \tau$ whose domain has n elements iff n is divisible by 3.
- (ii) (Hard) Can you find a closed $\mathcal{L}^=$ -formula which has no finite models and has some infinite graph as a normal model?
- [4] Suppose $\mathcal{L}^{=}$ is a first-order language with equality (=) and a single binary relation symbol \leq . A linear order is a normal $\mathcal{L}^{=}$ -structure $\langle A; \leq_{A} \rangle$ such that the relation \leq_{A} is reflexive, transitive and such that for distinct $a, b \in A$ exactly one of $a \leq_{A} b$, $b \leq_{A} a$ holds.

Let Σ be the set of all closed $\mathcal{L}^{=}$ -formulas which are true in all *finite* linear orders.

- (i) Prove that any normal model of Σ is a linear order with a least element and a greatest element.
- (ii) Prove that any normal model of Σ (with at least 2 elements) is not dense.
- (iii) Prove that Σ has an infinite normal model.
- (iv) Find a closed $\mathcal{L}^{=}$ -formula ϕ such that neither ϕ nor $(\neg \phi)$ is a consequence of Σ .

- [5] Suppose $\mathcal{L}^{=}$ is a first order language with equality (=) and a single binary relation symbol R. Write down what it means for two normal $\mathcal{L}^{=}$ -structures to be isomorphic (see the problem class in week 5)?
- (i) Write down a set Σ of closed $\mathcal{L}^=$ -formulas such that the normal models of Σ are the normal $\mathcal{L}^=$ -structures in which R is interpreted as an equivalence relation in which all equivalence classes have size 2 or 3 and there are infinitely many equivalence classes of size 2 and infinitely many of size 3.
- (ii) Explain why any two countable normal models of Σ are isomorphic.
- [6] Suppose $\mathcal{L}^{=}$ is a first-order language with equality having just a single 1-ary function symbol f (and no other relation, function or constant symbols apart from =).
- (i) What does it mean to say that two normal $\mathcal{L}^{=}$ -structures \mathcal{A} , \mathcal{B} are isomorphic?
- (ii) Write down a set Σ of closed $\mathcal{L}^=$ -formulas such that $\langle A; \bar{f} \rangle$ is a normal model of Σ if and only if:
- $\bar{f}:A\to A$ is a bijection and for every $n\in\mathbb{N}$, the function $\bar{f}^n:A\to A$ (obtained by applying \bar{f} n times) has no fixed points.
- (iii) Find countable normal models A_0, A_1, A_2, \ldots of Σ such that no two of these models are isomorphic and any countable model of Σ is isomorphic to one of these.

David Evans, November 2018.