Unimodular Binary Hierarchical Models

Daniel Irving Bernstein and Seth Sullivant

North Carolina State University dibernst@ncsu.edu

http://arxiv.org/abs/1502.06131

March 2, 2015

Example

• Let T be the following $3 \times 2 \times 2$ table

front back
$$\begin{pmatrix} 1 & 1 \\ 2 & 0 \\ 3 & 1 \end{pmatrix}$$
 $\begin{pmatrix} 2 & 1 \\ 1 & 3 \\ 0 & 2 \end{pmatrix}$

 If we sum entries going down, we get the 2-way margin below. If we sum entries going left and back, we get the 1-way margin below.

$$\begin{pmatrix} 3 & 6 \\ 6 & 2 \end{pmatrix} \qquad \begin{pmatrix} 5 \\ 6 \\ 6 \end{pmatrix}$$

We are interested in the matrix that maps tables to margins

Main Definition

- $\mathbf{d} = (d_1, d_2, \dots, d_n)$ is an integer vector, $d_i \geq 2$
- C denotes a simplicial complex on [n]
- ullet facet($\mathcal C$) denotes the inclusion-maximal faces of $\mathcal C$

Definition

Let $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ be the matrix defined as follows:

- Columns are indexed by elements of $\bigoplus_{i=1}^{n} [d_i]$
- ullet Rows are indexed by $igoplus_{F \in \mathsf{facet}(\mathcal{C})} igoplus_{j \in F} [d_j]$
- Entry in row $(F,(j_1,\ldots,j_k))$ and column (i_1,\ldots,i_n) is 1 if $i|_F=(j_1,\ldots,j_k)$
- All other entries are 0

Example

- Let n = 3 with $d_1 = 3, d_2 = 2, d_3 = 2$
- Let $\mathcal C$ be the complex $\stackrel{1}{\bullet}$ $\stackrel{2}{\bullet}$ $\stackrel{3}{\bullet}$
- Then $\mathcal{A}_{\mathcal{C},\mathbf{d}}$ is the following matrix:

	$\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$	1 1 2	1 2 1	1 2 2	2 1 1	2 1 2	2 2 1	2 2 2	3 1 1	3 1 2	3 2 1	3 2 1
$\{1\}, 1$	1	1	1	1	0	0	0	0	0	0	0	0
$\{1\}, 2$	0	0	0	0	1	1	1	1	0	0	0	0
$\{1\}, 3$	0	0	0	0	0	0	0	0	1	1	1	1
(0.2) 11	1				1				1			_
$\{2,3\},11$	1	0	0	0	1	0	0	0	1	U	0	0
$\{2,3\},12$	0	1	0	0	0	1	0	0	0	1	0	0
$\{2,3\},21$	0	0	1	0	0	0	1	0	0	0	1	0
$\{2,3\},22$	0 /	0	0	1	0	0	0	1	0	0	0	1 /

Unimodularity

Definition

Let $A \in \mathbb{Z}^{n \times d}$ be an integral matrix with rank n. We say that A is **unimodular** if for every $b \in \mathbb{N}A$, the following polyhedron has integral vertices

$$P_{A,b} := \{ x \in \mathbb{R}^d : Ax = b, x \ge 0 \}.$$

Motivating Question

Question

Given a simplicial complex C on [n] and an integer vector $\mathbf{d} = (d_1, \dots, d_n)$ with $d_i \geq 2$, is $\mathcal{A}_{C,\mathbf{d}}$ unimodular?

Proposition

If $\mathcal{A}_{\mathcal{C},d}$ is unimodular, then for all \mathbf{d}' with $\mathbf{d}' \leq \mathbf{d}$ componentwise, $\mathcal{A}_{\mathcal{C},d}$ is also unimodular.

Therefore we restrict our attention to the binary case; i.e. where $d_1 = d_2 = \cdots = d_n = 2$.

Motivating Question

Definition

$$\mathcal{A}_{\mathcal{C}}:=\mathcal{A}_{\mathcal{C},(2,\ldots,2)}.$$

Question

Given a simplicial complex C on [n], is A_C unimodular?

Unimodularity-Preserving Operations

Definition (Cone Vertices)

If $\mathcal C$ is a simplicial complex on [n], define $\mathrm{cone}(\mathcal C)$ to be the complex on [n+1] with facets

$$\mathsf{facet}(\mathsf{cone}(\mathcal{C})) = \{F \cup \{n+1\} : F \in \mathsf{facet}(\mathcal{C})\}.$$

We say that n + 1 a cone vertex.

Unimodularity-Preserving Operations

Definition (Ghost Vertices)

If C is a simplicial complex on [n], define G(C) to be the simplicial complex on [n+1] that has exactly the same faces as C. We say that n+1 is a *ghost vertex*.

Unimodularity-Preserving Operations

Definition (Alexander Duality)

If $\mathcal C$ is a simplicial complex on [n], then the Alexander dual complex $\mathcal C^*$ is the simplicial complex on [n] with facets

 $facet(\mathcal{C}^*) = \{[n] \setminus S : S \text{ is a minimal non-face of } \mathcal{C}\}.$

Results: Constructive Classification

Definition

We say that a simplicial complex C is *nuclear* if it satisfies one of the following:

- **1** $\mathcal{C} = \Delta_k$ for some $k \geq -2$ (i.e. a simplex)
- $\mathcal{C} = \Delta_m \sqcup \Delta_n$ (i.e. a disjoint union of simplices)
- 3 C = cone(D) where D is nuclear
- ${f 0}$ ${\cal C}={\it G}({\cal D})$ where ${\cal D}$ is nuclear
- $oldsymbol{\circ}$ C is the Alexander dual of a nuclear complex.

Theorem (B-Sullivant 2015)

The matrix $A_{\mathcal{C}}$ is unimodular if and only if \mathcal{C} is nuclear.

Simplicial Complex Minors: Vertex Deletion

Let C be a simplicial complex on [n].

Definition (Deletion)

Let $v \in [n]$ be a vertex of C. Then $C \setminus v$ denotes the induced simplicial complex on $[n] \setminus \{v\}$.

Simplicial Complex Minors: Links of Vertices

Definition (Link)

Let $v \in [n]$ be a vertex of C. Then $link_v(C)$ denotes the simplicial complex on $[n] \setminus \{v\}$ with the following facets

 $facet(link_{\nu}(C) = \{F \setminus \{v\} : F \text{ is a facet of } C \text{ with } v \in F\}.$

Definition (Simplicial Complex Minor)

Let \mathcal{C},\mathcal{D} be simplicial complexes. If \mathcal{D} can be obtained from \mathcal{C} by taking links of vertices and deleting vertices, then we say that \mathcal{D} is a *minor* of \mathcal{C} .

Results: Excluded Minor Classification

Theorem (B-Sullivant 2015)

The matrix A_C is unimodular if and only if C has no simplicial complex minors isomorphic to any of the following

- $\partial \Delta_k \sqcup \{v\}$, the disjoint union of the boundary of a simplex and an isolated vertex
- ullet O_6 , the boundary complex of an octahedron, or its Alexander dual O_6^*
- The four simplicial complexes shown below

Next Steps

Proposition

Let A be a matrix of full row rank. If we can row reduce A to get the matrix $[I_n|D]$, then A is unimodular if and only if D is totally unimodular.

Question

Can we use Seymour's decomposition for regular matroids [4] to prove our results?

Next Steps

Question

Given a simplicial complex C on [n] and an integer vector $\mathbf{d} = (d_1, \dots, d_n)$ with $d_i \geq 2$, is $\mathcal{A}_{C,\mathbf{d}}$ unimodular?

Corollary (B-Sullivant 2015)

If $A_{C,d}$ is unimodular then C is nuclear.

Question

Let $\mathcal C$ and $\mathbf d$ be specified by the figure below. For which values of p and q is $\mathcal A_{\mathcal C,\mathbf d}$ unimodular?

References

Daniel Bernstein and Seth Sullivant.

Unimodular Binary Hierarchical Models.

ArXiv:1502.06131, 2015.

Persi Diaconis and Bernd Sturmfels.

Algebraic algorithms for sampling from conditional distributions.

Ann. Statist., 26(1):363-397, 1998.

Alexander Schrijver.

Theory of Linear and Integer Programming.

Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Ltd., Chichester, 1986. A Wiley-Interscience Publication.

Paul Seymour.

Decomposition of regular matroids.

J. Combin. Theory Ser. B, 28(3):305-359, 1980.

Bernd Sturmfels.

Gröbner Bases and Convex Polytopes, volume 8 of University Lecture Series.

American Mathematical Society, Providence, RI, 1996.