Universidad Peruana de Ciencias Aplicadas Escuela de Ingeniería de Sistemas y Computación Carrera de Ciencias de la Computación

CC53 Procesamiento de Imágenes

Filtro (espacial) de imágenes: Parte I

Prof. Peter Montalvo García

Agenda

- Filtros
- Convolución
- Filtro de la media

Nota

 Esta sesión está basada en el libro "Digital Image Processing" 3ra edición de Rafael C. González y Richard E. Woods. En especial el capítulo 3

Aplicaciones del filtro de imágenes

- Mejora de imágenes
- Remover ruido
- Detección de bordes
- Template matching

Término "filtro"

- Es un "préstamo" del procesamiento en el dominio de la frecuencia
 - Vamos a distinguir: dominio espacial y dominio de la frecuencia
- Filtros que dejan pasar información de baja frecuencia se conocen como low-pass filters
- Filtros que dejan pasar información de alta frecuencia se conocen como high-pass filters

Low pass filters (en el dominio del espacio)

• El efecto es el de "blur"

High pass filters (en el dominio del espacio)

https://commons.wikimed ia.org/wiki/File:High_Pas s_Filter_Example.jpg

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

	1	2	1	0
*	1	2	1	0
	1	2	1	0
	1	2	1	0

1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 =**1.33**

1/9	1/9	1/9	
1/9	1/9	1/9	*
1/9	1/9	1/9	

1		2	1	0
	1/9	1/9	1/9	· ·
1	1/9	1/9	1/91	0
1	1/9	1/9	1/9	0
1		2	1	0

1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 =**1.33**

1/9	1/9	1/9	
1/9	1/9	1/9	*
1/9	1/9	1/9	

1		2	1	0
	1/9	1/9	1/9	•
1	1/9	1/9	1/91	0
1	1/9	1/9	1/9	0

1.33	

$$1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 = 1.00$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1	2 1/9	1/9	<mark>0</mark> 1/9
1	1/9	1/9	1/9 0
1	1/9	1/9	0

1.33	?	

$$1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 = 1.00$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1	2 1/9	1/9	0 1/9
1	1/9	1/9	1/9 0
1	1/9	1/9	0

1.33	1.00	

1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 =**1.33**

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1	2	1	0
11/9	2 1/9	1 1/9	0
1 1/9	1/9	1/91	0
1/9	1/9	1/9	0

1.33	1.00	
?		

1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 + 1/9*1 + 1/9*2 + 1/9*1 =**1.33**

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1	2	1	0
11/9	2 1/9	1 1/9	0
1 1/9	1/9	1/91	0
1/9	1/9	1/9	0

1.33	1.00	
1.33		

$$1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 = 1.00$$

1/9	1/9	1/9	
1/9	1/9	1/9	*
1/9	1/9	1/9	

1	2	1	0
1	² 1/9	1/9	<mark>/</mark> 9
1	1/9	'	/9 0
1	2	1/9	/9

1.33	1.00	
1.33	?	

$$1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 + 1/9*2 + 1/9*1 + 1/9*0 = 1.00$$

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

1	2	1	0
1	² 1/9	1/9	<mark>/</mark> 9
1	1/9	1/9	/9 0
1	2	1/9	/9

1.33	1.00	
1.33	1.00	

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

	1	2	1	0
*	1	2	1	0
	1	2	1	0
	1	2	1	0

1.33	1.00
1.33	1.00

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

	1	2	1	0
*	1	2	1	0
	1	2	1	0
	1	2	1	0

¿Por qué la imagen original tiene dimensiones 4x4 y la resultante 2x2? ¿qué se puede hacer?

Convolución: padding

Podemos completar "imaginariamente" la imagen.

Nota: existen otras estrategias

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

0	0	0	0	0	0
0	1	2	1	0	0
0	1	2	1	0	0
0	1	2	1	0	0
0	1	2	1	0	0
0	0	0	0	0	0

Filtro de la media

- Calcula la media en una vecindad
- Tiene un efecto pasa-bajo

Filtro de la media

¿Cuál sería el kernel para calcular el filtro de la media usando un kernel 3x3?

Filtro de la media

¿Cuál sería el kernel para calcular el filtro de la media usando un kernel 3x3?

