Computer-Assisted Problem-Solving / Numerical Methods

Partial Differential Equations

version: October 16th, 2017

Legend: Method, Theory, Example, Advanced, Appendix

Theory

Parabolic PDEs

Describe e.g. heat conduction (temperature), diffusion, time-dependence of concentrations, viscous effects, etc.

1D diffusion equation for variable u = u(x, t)

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Diffusion coefficient D > 0

Variable u is e.g. temperature, concentration, velocity, etc.

Remark: if u is temperature $\Longrightarrow D = \lambda/(\rho C_p)$, with heat conduction coefficient λ , density ρ , specific heat C_p

Initial condition at t = 0: $u(x, 0) = \phi(x)$, with ϕ given function of x

Spatial coordinate $x \in [0, L]$

Boundary conditions at x = 0 and x = L:

$$u(0,t) = U_L(t) \qquad \qquad u(L,t) = U_R(t)$$

Spatial Discretization

Approximation of second derivative $\frac{\partial^2 u}{\partial x^2}$ via relations between u-values at mesh points

Meshing of interval [0, L]:

M equidistant intervals: $\Delta x := L/M$

M+1 mesh points $x_m = m\Delta x, m=1,...,M+1$

2 boundary points: m = 1 en m = M + 1

M-1 internal mesh points $x_m, m=2,..,M$

Taylor-expansions:

$$u(x_{m+1}, t) = u(x_m, t) + \Delta x \frac{\partial u}{\partial x}(x_m, t) + \frac{\Delta x^2}{2} \frac{\partial^2 u}{\partial x^2}(x_m, t) + \frac{\Delta x^3}{6} \frac{\partial^3 u}{\partial x^3}(x_m, t) + \mathcal{O}(\Delta x^4)$$

$$u(x_{m-1}, t) = u(x_m, t) - \Delta x \frac{\partial u}{\partial x}(x_m, t) + \frac{\Delta x^2}{2} \frac{\partial^2 u}{\partial x^2}(x_m, t) + \frac{\Delta x^3}{6} \frac{\partial^3 u}{\partial x^3}(x_m, t) + \mathcal{O}(\Delta x^4)$$

$$- \frac{\Delta x^3}{6} \frac{\partial^3 u}{\partial x^3}(x_m, t) + \mathcal{O}(\Delta x^4)$$

Combine and divide by $\Delta x^2 \Longrightarrow$

$$\frac{\partial^{2} u}{\partial x^{2}}(x_{m}, t) = \frac{u(x_{m+1}, t) - 2u(x_{m}, t) + u(x_{m-1}, t)}{\Delta x^{2}} + \mathcal{O}(\Delta x^{2})$$

In short-hand notation:

$$\frac{\partial^2 u}{\partial x^2}(m,t) = \frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2} + \mathcal{O}(\Delta x^2)$$

Neglect $\mathcal{O}(\Delta x^2)$ term \Longrightarrow

2nd-order accurate approximation of $\frac{\partial^2 u}{\partial x^2}$ in all internal points m=2,..,M

Substitution in PDE \Longrightarrow approximation $u_m(t)$, which satisfies the ODE

$$\frac{du_{m}}{dt}(t) = D \frac{u_{m+1}(t) - 2u_{m}(t) + u_{m-1}(t)}{\Delta x^{2}}$$

The functions $u_m(t)$ have to satisfy the initial condition (at t=0): $u_m(t=0)=\phi(x_m)$

At the boundaries:

$$u_1(t) = U_L(t)$$
, $u_{M+1}(t) = U_R(t)$ for every time t

System of coupled ODEs for the unknowns $u_m(t)$, $m=2,\cdots M$, with initial conditions.

Can be solved with methods for ODEs: Euler (explicit, implicit), Heun, Runge-Kutta, Trapezoidal rule, ...

Explicit Time Discretization

Approximate time variable of ODE system:

stone with size $\Delta t > 0$ starting at t = 0

steps with size $\Delta t > 0$, starting at t = 0

Approximation $u_m(t)$ at time $t = n\Delta t$: u_m^n The solution at t = 0 is given by: $u_m^0 = \phi(x_m)$

At each time $t = (n+1)\Delta t$ we can approximate the solution of

$$\frac{du_m}{dt}(t) = D\frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2}$$

=: $f(u_{m-1}, u_m, u_{m+1})$

using explicit Euler:

$$u_m^{n+1} = u_m^n + \Delta t f(u_{m-1}^n, u_m^n, u_{m+1}^n)$$

This does not give the exact solution

$$u(m\Delta x, (n+1)\Delta t),$$

but an approximation u_m^{n+1} satisfying

$$u_m^{n+1} = ru_{m-1}^n + (1-2r)u_m^n + ru_{m+1}^n,$$

with

$$r := \frac{\Delta t D}{\Delta x^2}$$
, and $m = 1, 2, ..., M$

Difference equation

$$u_m^{n+1} = ru_{m-1}^n + (1-2r)u_m^n + ru_{m+1}^n$$

Working of algorithm:

- 1st time line $t = 1\Delta t$
 - internal u_m from u_{m-1}, u_m, u_{m+1} at t=0
 - boundary points u_1 and u_{M+1} from bouco
- 2nd time line $t = 2\Delta t$
 - internal u_m from u_{m-1}, u_m, u_{m+1} at $t=1\Delta t$
 - boundary points u_1 and u_{M+1} from bouco
- general: time line n + 1 follows from time line n

• continue until $t = n\Delta t = T_{end}$

Consistency

Definition:

the discretization is consistent with the PDE when the difference between difference eqn. and PDE $\rightarrow 0$ for $\Delta x \rightarrow 0$ and $\Delta t \rightarrow 0$

 $Local\ truncation\ error =$

difference between difference eqn. and PDE

$$T(m\Delta x, n\Delta t) = \mathcal{O}(\Delta t, \Delta x^2),$$

since:

 $\mathcal{O}(\Delta x^2)$ thrown away for approximation of $\frac{\partial^2 u}{\partial x^2}$ $\mathcal{O}(\Delta t)$ thrown away with (explicit) Euler for $\frac{\partial u}{\partial t}$

Remark:

this does not necessarily mean that $u_m^n \to u(x,t)$ for $\Delta x \to 0$ and $\Delta t \to 0$

But if this is the case \implies convergence

Stability

Stability: errors in initial and boundary conditions should not grow too fast

Consider the difference equation

$$u_m^{n+1} = ru_{m-1}^n + (1 - 2r)u_m^n + ru_{m+1}^n$$

Physics: increase of u (e.g. temperature) in point must lead to increase (not decrease!) in neighbouring points.

Coefficients must be of equal sign \Longrightarrow

$$0 \le r \le \frac{1}{2}$$

So choose Δx and Δt such that $r = \frac{\Delta tD}{\Delta x^2} \le 1/2$

Necessary condition, but also sufficient? Yes! This follows from "practical stability"

Practical Stability

Practical stability:

- something in between stability and accuracy
- in terms of Fourier analysis: no Fourier component of the numerical solution should grow faster than the fastest possible growth of the exact solution

Fourier expansion of exact solution u(x,t):

$$u(x,t) = \sum_{j=0}^{\infty} f_j(t)e^{ib_jx}$$

Consider arbitrary j-th term in the series:

$$f(t)e^{ibx}$$

Substitution in PDE
$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2} \Longrightarrow$$

$$f'(t)e^{ibx} = -Db^2f(t)e^{ibx} \Longrightarrow$$

$$f'(t) = -Db^2 f(t) \Longrightarrow$$

$$f(t) = ce^{-Db^2t}$$
, with $c = f(0)$ constant

Since $D > 0 \Longrightarrow f(t)/f(0) = e^{-Db^2t}$ decreases (when $t \to \infty$)

Fourier expansion of numerical approx. u_m^n :

$$u_m^n = \sum_{j=0}^{\infty} f_j^n e^{ib_j m \Delta x}$$

Consider arbitrary j-th term in the series:

$$f^n e^{ibm\Delta x}$$

Substitution in difference scheme \Longrightarrow

$$f^{n+1} = \left(re^{-ib\Delta x} + 1 - 2r + re^{ib\Delta x}\right) f^n$$
$$= \left(1 - 2r + 2r\cos b\Delta x\right) f^n$$
$$= \left(1 - 4r\sin^2\frac{b\Delta x}{2}\right) f^n$$

In the last step, $\cos x = 1 - 2\sin^2(x/2)$ was used Since $f(t)/f(0) \downarrow \implies f^n/f^0$ may not increase This leads to the condition

$$|1 - 4r\sin^2\frac{b\Delta x}{2}| \le 1 \ (\forall b) \ ,$$

which is satisfied if $r \leq 1/2$

In other words: $0 \le r \le 1/2$ is necessary and sufficient for stability

Advanced

Convergence and Stability

Explicit scheme:

$$u_m^{n+1} = ru_{m-1}^n + (1-2r)u_m^n + ru_{m+1}^n$$

Definition: a scheme is called convergent if the error $\epsilon_m^n := u_m^n - u(m\Delta x, n\Delta t)$ goes to 0, when $\Delta x \to 0$ en $\Delta t \to 0$

An unstable scheme may give unrealistic (physically unacceptable) results u_m^n , even if Δx and Δt are very small

Hence: convergence requires stability

Consequence:

explicit scheme requires $r \le 1/2$ for convergence

Equivalence theorem of Lax:

If scheme consistent: stability \iff convergence

Consequence:

explicit scheme convergent $\iff r \le 1/2$

Theorem: $r \le 1/2 \Longrightarrow$

Global Error Explicit scheme 1st order in Δt , 2nd order in Δx (see Appendix A for proof)

Advanced

Domain of Influence

Analytic solution of PDE $\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$ with initial profile $u(x, t = 0) = \phi(x)$

$$u(x,t) = \int_{-\infty}^{\infty} \phi(\xi)v(x-\xi,t)d\xi \quad \text{with} \quad v(y,t) = \frac{e^{\frac{-y^2}{4Dt}}}{\sqrt{4\pi Dt}}$$

Analytic solution:

- Every location x contains information of $\phi(x)$, directly after t=0
- Information of initial profile $\phi(x)$ is spread infinitely fast, everywhere in xt-plane

Explicit Euler:

Value of u_m^n in point R only determined by segment PQ of initial profile $\phi(x)$

Triangle is called Domain of Influence of PQ

Stability restriction $(r < \frac{1}{2})$:

- For fixed Δt : Δx should be large enough
- Angle at top of PQR should be large enough
- Numerical information transfer must be sufficiently fast

For infinitely fast information transfer:

- $angle = 180^{\circ}$
- direct information transfer required between u_m^{n+1} and neighbours u_{m-1}^{n+1} , u_{m+1}^{n+1}
- \Longrightarrow Implicit methods

Implicit Time Discretization

At each time line $t = (n+1)\Delta t$ we can solve

$$\frac{du_{m}}{dt}(t) = D \frac{u_{m+1}(t) - 2u_{m}(t) + u_{m-1}(t)}{\Delta x^{2}}$$

approximately using implicit Euler:

$$u_m^{n+1} = u_m^n + \Delta t D \frac{u_{m+1}^{n+1} - 2u_m^{n+1} + u_{m-1}^{n+1}}{\Delta x^2}$$

This leads to the difference scheme

$$-ru_{m-1}^{n+1} + (1+2r)u_m^{n+1} - ru_{m+1}^{n+1} = u_m^n,$$

with (similar to explicit Euler)

$$r := \frac{\Delta t D}{\Delta x^2}$$
, and $m = 1, 2, ..., M$

There are 3 unknown u-values (at time line n+1) related to 1 "old" u-value at $t = n\Delta t$

Truncation error of implicit scheme has same order as explicit scheme:

1st order in Δt and 2nd order in Δx

So implicit scheme is also consistent

Stability: Fourier component of u_m^n

$$f^n e^{ibm\Delta x}$$

substitution in implicit difference scheme \Longrightarrow

$$f^{n+1} = \frac{f^n}{-re^{-ib\Delta x} + 1 + 2r - re^{ib\Delta x}}$$
$$= \frac{f^n}{1 + 2r - 2r\cos(b\Delta x)}$$
$$= \frac{f^n}{1 + 4r\sin^2(b\Delta x/2)}$$

The amplification factor

$$\frac{1}{1 + 4r\sin^2\left(b\Delta x/2\right)}$$

is smaller than 1 for all $r > 0 \Longrightarrow$ implicit scheme is unconditionally stable

Equivalence theorem of Lax \Longrightarrow implicit scheme convergent

Solution Scheme

Implicit Euler \Longrightarrow difference scheme

$$-ru_{m-1}^{n+1} + (2r+1)u_m^{n+1} - ru_{m+1}^{n+1} = u_m^n,$$

with

$$r := \frac{\Delta t D}{\Delta x^2}$$
, **en** $m = 1, 2, ..., M$

Divide by $r \Longrightarrow$

$$-u_{m-1}^{n+1} + (2 + \frac{1}{r})u_m^{n+1} - u_{m+1}^{n+1} = \frac{1}{r}u_m^n$$

For each time $t = (n+1)\Delta t$:

- system of M + 1 coupled (linear) eqns.
- boundary conditions $u_1 = U_L(t)$, $u_{M+1} = U_R(t)$

Linear system:

$$\begin{pmatrix} 1 & 0 & & & \\ -1 & 2 + \frac{1}{r} & -1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & -1 & 2 + \frac{1}{r} & -1 & & \\ & & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 + \frac{1}{r} & -1 \\ & & & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1^{n+1} \\ u_2^{n+1} \\ \vdots \\ u_m^{n+1} \\ u_M^{n+1} \\ u_{M+1}^{n+1} \end{pmatrix} = \begin{pmatrix} U_L(t) \\ \frac{1}{r} u_2^n \\ \vdots \\ \frac{1}{r} u_m^n \\ \vdots \\ \frac{1}{r} u_M^n \\ U_R(t) \end{pmatrix}$$

Solve with LU (TDMA), SOR, PCG, ...

Crank-Nicolson

Implicit Euler is only $\mathcal{O}(\Delta t) \Longrightarrow \text{small } \Delta t$ necessary for accuracy (not for stability)

Higher accuracy with e.g. Crank-Nicolson

$$\frac{du_m}{dt}(t) = D\frac{u_{m+1}(t) - 2u_m(t) + u_{m-1}(t)}{\Delta x^2}$$

=: $f(u_{m-1}, u_m, u_{m+1})$

Trapezoidal rule \Longrightarrow

$$\frac{u_m^{n+1} - u_m^n}{\Delta t} = \frac{\left\{ f(u_{m-1}^{n+1}, u_m^{n+1}, u_{m+1}^{n+1}) + f(u_{m-1}^n, u_m^n, u_{m+1}^n) \right\}}{2}$$

Corresponding difference equation

$$-ru_{m-1}^{n+1}+(2+2r)u_m^{n+1}-ru_{m+1}^{n+1}=ru_{m-1}^n+(2-2r)u_m^n+ru_{m+1}^n$$
 with $r=\Delta tD/\Delta x^2$ (similar to Euler)

Truncation error: 2nd order in both Δx and Δt

Calculation scheme in the xt-plane:

Divide difference equation by $r \Longrightarrow$

$$-u_{m-1}^{n+1} + (2 + \frac{2}{r})u_m^{n+1} - u_{m+1}^{n+1} = u_{m-1}^n + (-2 + \frac{2}{r})u_m^n + u_{m+1}^n$$

Linear system:

$$\begin{pmatrix} 1 & 0 & & & \\ -1 & 2 + \frac{2}{r} & -1 & & & \\ & \ddots & \ddots & \ddots & & \\ & & -1 & 2 + \frac{2}{r} & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 + \frac{2}{r} & -1 \\ & & & 0 & 1 \end{pmatrix} \begin{pmatrix} u_1^{n+1} \\ u_2^{n+1} \\ \vdots \\ u_{m+1}^{n+1} \\ \vdots \\ u_{m-1}^{n+1} + (-2 + \frac{2}{r})u_m^n + u_{m+1}^n \\ \vdots \\ u_{m-1}^n + (-2 + \frac{2}{r})u_m^n + u_{m+1}^n \\ \vdots \\ u_{m-1}^n + (-2 + \frac{2}{r})u_m^n + u_{m+1}^n \\ \vdots \\ u_{m-1}^n + (-2 + \frac{2}{r})u_m^n + u_{m+1}^n \\ U_R(t) \end{pmatrix}$$

Computational work per time-line similar to implicit Euler.

Larger Δt possible because of 2nd order accuracy \Longrightarrow faster method.

Appendix

A: Global Error Explicit Scheme

Error $\epsilon_m^n = u_m^n - u(m\Delta x, n\Delta t) \to 0$ if $\Delta x, \Delta t \to 0$ Question: how fast?

At the boundaries m=1 and m=M+1: $\epsilon_m^{n+1}=0$ Substitution of $u_m^n=\epsilon_m^n+u(m\Delta x,n\Delta t)$ in the explicit scheme

$$u_m^{n+1} = ru_{m-1}^n + (1 - 2r)u_m^n + ru_{m+1}^n$$

gives M-1 equations for internal points

$$\begin{array}{lll} \epsilon_{m}^{n\!+\!1} + u(x_{m},(n\!+\!1)\Delta t) &=& r\epsilon_{m\!-\!1}^{n} + (1\!-\!2r)\epsilon_{m}^{n} + r\epsilon_{m\!+\!1}^{n} \\ &+& ru(x_{m\!-\!1},n\Delta t) + (1\!-\!2r)u(x_{m},n\Delta t) \\ &+& ru(x_{m\!+\!1},n\Delta t) \end{array}$$

Local (truncation) error = |difference eqn - PDE|:

$$T(m\Delta x, n\Delta t) = \mathcal{O}(\Delta t, \Delta x^2),$$

This gives

$$\epsilon_m^{n\!+\!1} = r\epsilon_{m\!-\!1}^n + (1-2r)\epsilon_m^n + r\epsilon_{m\!+\!1}^n + \Delta t T(m\Delta x, n\Delta t)$$

Define for the n-th time line $t = n\Delta t$

$$E^{n} := \max_{m} |\epsilon_{m}^{n}|$$

$$T^{n} := \max_{m} |T(m\Delta x, n\Delta t)|$$

Use these to estimate $|\epsilon_m^{n+1}|$

$$\left|\epsilon_m^{n+1}\right| \le (r+|1-2r|+r)E^n + \Delta t T^n$$

Stability restriction $r \leq 1/2 \Longrightarrow$

$$1 - 2r > 0 \Longrightarrow r + |1 - 2r| + r = 1 \Longrightarrow$$
$$\left| \epsilon_m^{n+1} \right| \le E^n + \Delta t T^n$$

This holds for m=2,...,M, hence also for m with maximum $|\epsilon_m^{n+1}|$:

$$E^{n+1} := \max_{m} \left| \epsilon_m^{n+1} \right| \le E^n + \Delta t T^n$$

Now estimate the (absolute) largest error for time line $t = (n+1)\Delta t$, with induction

$$E^{n+1} \leq E^{n} + \Delta t T^{n}$$

$$\leq E^{n-1} + \Delta t (T^{n} + T^{n-1})$$

$$\leq \dots$$

$$\leq E^{0} + \Delta t (T^{n} + T^{n-1} + \dots + T^{0})$$

Define $T := \max_{0 \le j \le n} T^j,$

then we obtain

$$E^{n+1} \le E^0 + \Delta t(n+1)T \sim E^0 + tT$$

Besides initial error E^0 , the error $\sim tT$ The latter is 1st order in Δt , 2nd order in Δx