Three Different Ways to Think About Errors

Time

s-Domain

Control Theory Lecture 6: Steady-State (and Transient) Response Design

Prof Simon Maskell
CHAD-G68
s.maskell@liverpool.ac.uk
0151 794 4573

This lecture covers:

- General Steady-state response
- Steady-state accuracy and errors
- System Characterization by order and type number

ELEC 207B: Timeline

This lecture on "Introduction" covers:

- (Introduction to part B of ELEC207 module)
- Function, architecture, history and applications of a control system
- Open-loop and closed-loop systems
- Mathematical model of a control system

Lecture 1

Lecture 2

This lecture on "Control System Modelling (1)" covers:

- Laplace Transforms
- Transfer Function
- Characteristic Equations
- · Poles and zeros
- State-space model
- Transformation between transfer function and state-space model

This lecture on "Control

- How to use Laplace T Response of a Dynam
- Typical Input Signals

1

Lecture 3

Lect

This lecture on "Control System Modelling (2)" covers:

- Single-input single-output and multi-input multi-output systems
- Components and the underpinning mathematics of block diagrams
- · Block diagram manipulation and reduction
- Closed-loop transfer function of a negative feedback system

This lecture on "Control Systems Performance (1)" covers:

- How to use Laplace Transforms to Solve the Time Response of a Dynamic System
- Typical Input Signals

ock diagrams

M

Lecture 5

This lecture on "Control Systems Performance (2)" covers

- First-order system and second-order system
- Generalized second-order system

ELEC 207B: Timeline

This lecture covers:

- General Steady-state response
- Steady-state accuracy and errors
- System Characterization by order and type number

Three Different Ways to Think About Errors

Time

s-Domain

General Steady-state Response

Time Domain (Representation) of the System's Transient Response

Approximate as first-order or second-order using the pole(s) nearest the imaginary axis.

First-Order System

 Settling time is the time taken to move to within 2% of the steady-state response

Second-Order System

response

First-Order System

rst-Order Systei

Time Constant, T

$$\mathcal{L}^{-1} \left[\frac{1}{s} \times \frac{a}{s+a} \right] = 1 - e^{-at} = 1 - e^{-\frac{t}{T}}$$

Steady-state error is difference between steady-state response and the input

Steady-state Response

$$\lim_{t\to\infty}\left[1-e^{-\frac{t}{T}}\right]=1$$

Steady-state error is difference between steady-state response and the input

$$\lim_{t \to \infty} \left[1 - e^{-\frac{t}{T}} \right] = 1$$

$$1 - e^{-\frac{t}{T}}\Big|_{t=T} = 1 - e^{-1} = 0.6321 \approx 0.63$$

$$\frac{d}{dt} \left[1 - e^{-\frac{t}{T}} \right]_{t=0} = \frac{1}{T} e^{-\frac{t}{T}} \Big|_{t=0} = \frac{1}{T}$$

1/T

$$1 - e^{-\frac{t_{10\%}}{T}} = 0.1$$

$$1 - e^{-\frac{t_{90\%}}{T}} = 0.9$$

$$t_{90\%} - t_{10\%} = -(\log_e (1 - 0.9) - \log_e (1 - 0.1)) T = 2.197T \approx 2.2T$$

$$1 - e^{-\frac{t_{98\%}}{T}} = 0.98$$
$$t_{98\%} = -\log_e (1 - 0.98) T = -3.912T \approx 4T$$

4T

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\frac{908}{100} = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega \tau} \sin\left(\omega \sqrt{1 - \zeta^2}\tau\right) d\tau \bigg|_{\omega = \frac{\omega}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\zeta \omega}{\sqrt{1 - \zeta^2}}}$$
• **Percentage**

- Percentage overshoot is the amount that the waveform overshoots the steady-state (as a fraction of the steady-state)
- Peak time is the time taken to reach the first, or maximum, peak

$$\omega \sqrt{1 - \zeta^2} t = n\pi$$

$$t_p = \frac{\pi}{\omega \sqrt{1 - \zeta^2}}$$

• Rising time is the time taken to move from 10% to 90% of the steady-state response

 Settling time is the time taken to move to within 2% of the steady-state response

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$t_s = \frac{\log_e\left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

is the move of the esponse

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\left. \frac{\omega\sqrt{1-\zeta^2}\tau}{d\tau} \right) d\tau \bigg|_{t=\frac{\pi}{\omega\sqrt{1-\zeta^2}}} = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$
e
is the

$$=1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega t}\cos\left(\omega\sqrt{1-\zeta^2}t-\tan^{-1}\left(\frac{\zeta}{\sqrt{1-\zeta^2}}\right)\right)$$

s the te (as of the te)

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\frac{908}{100} = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega \tau} \sin\left(\omega \sqrt{1 - \zeta^2}\tau\right) d\tau \bigg|_{\omega = \frac{\omega}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\zeta \omega}{\sqrt{1 - \zeta^2}}}$$
• **Percentage**

- Percentage overshoot is the amount that the waveform overshoots the steady-state (as a fraction of the steady-state)
- Peak time is the time taken to reach the first, or maximum, peak

$$\omega \sqrt{1 - \zeta^2} t = n\pi$$

$$t_p = \frac{\pi}{\omega \sqrt{1 - \zeta^2}}$$

• Rising time is the time taken to move from 10% to 90% of the steady-state response

 Settling time is the time taken to move to within 2% of the steady-state response

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$t_s = \frac{\log_e\left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

is the move of the esponse

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1 - \zeta^2}} = 0.02$$

$$t_s = \frac{\log_e \left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\frac{908}{100} = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega \tau} \sin\left(\omega \sqrt{1 - \zeta^2}\tau\right) d\tau \bigg|_{\omega = \frac{\omega}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\zeta \omega}{\sqrt{1 - \zeta^2}}}$$
• **Percentage**

- Percentage overshoot is the amount that the waveform overshoots the steady-state (as a fraction of the steady-state)
- Peak time is the time taken to reach the first, or maximum, peak

$$\omega \sqrt{1 - \zeta^2} t = n\pi$$

$$t_p = \frac{\pi}{\omega \sqrt{1 - \zeta^2}}$$

• Rising time is the time taken to move from 10% to 90% of the steady-state response

 Settling time is the time taken to move to within 2% of the steady-state response

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$t_s = \frac{\log_e\left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

is the move of the esponse

or maximum, peak

$$\omega\sqrt{1-\zeta^2}t = n\pi$$
$$t_p = \frac{\pi}{\omega\sqrt{1-\zeta^2}}$$

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\frac{908}{100} = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega \tau} \sin\left(\omega \sqrt{1 - \zeta^2}\tau\right) d\tau \bigg|_{\omega = \frac{\omega}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\zeta \omega}{\sqrt{1 - \zeta^2}}}$$
• **Percentage**

- Percentage overshoot is the amount that the waveform overshoots the steady-state (as a fraction of the steady-state)
- Peak time is the time taken to reach the first, or maximum, peak

$$\omega \sqrt{1 - \zeta^2} t = n\pi$$

$$t_p = \frac{\pi}{\omega \sqrt{1 - \zeta^2}}$$

• Rising time is the time taken to move from 10% to 90% of the steady-state response

 Settling time is the time taken to move to within 2% of the steady-state response

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$t_s = \frac{\log_e\left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

is the move of the esponse

$$\mathcal{L}^{-1}$$
 $\left\lfloor \frac{1}{s} \right\rfloor$

$$\frac{\%OS}{100} = \int \frac{\omega}{\sqrt{1-\zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1-\zeta^2}\tau\right) d\tau \bigg|_{t=\frac{\pi}{\omega\sqrt{1-\zeta^2}}} = e^{-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}}$$

Percentage
 overshoot is the

$$\mathcal{L}^{-1}\left[\frac{1}{s} \times \frac{\omega^2}{s^2 + 2\zeta\omega s + \omega^2}\right] = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta\omega\tau} \sin\left(\omega\sqrt{1 - \zeta^2}\tau\right) d\tau$$

$$\frac{908}{100} = \int \frac{\omega}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega \tau} \sin\left(\omega \sqrt{1 - \zeta^2}\tau\right) d\tau \bigg|_{\omega = \frac{\omega}{\sqrt{1 - \zeta^2}}} = e^{-\frac{\zeta \omega}{\sqrt{1 - \zeta^2}}}$$
• **Percentage**

- Percentage overshoot is the amount that the waveform overshoots the steady-state (as a fraction of the steady-state)
- Peak time is the time taken to reach the first, or maximum, peak

$$\omega \sqrt{1 - \zeta^2} t = n\pi$$

$$t_p = \frac{\pi}{\omega \sqrt{1 - \zeta^2}}$$

• Rising time is the time taken to move from 10% to 90% of the steady-state response

 Settling time is the time taken to move to within 2% of the steady-state response

$$e^{-\zeta \omega t_s} \frac{1}{\sqrt{1-\zeta^2}} = 0.02$$

$$t_s = \frac{\log_e\left(0.02\sqrt{1-\zeta^2}\right)}{\zeta\omega} \approx \frac{4}{\zeta\omega}$$

is the move of the esponse

General Steady-state Response

Time Domain (Representation) of the System's Transient Response

Approximate as first-order or second-order using the pole(s) nearest the imaginary axis.

First-Order System

 Settling time is the time taken to move to within 2% of the steady-state response

Second-Order System

response

Finding the Steady-state Error

Closed-loop Transfer Function (Representation) of the System

We can write the Laplace Transform of the error signal:

$$E(s) = X(s)-Y(s)$$
$$=X(s)-H(s)X(s)$$
$$=(1-H(s))X(s)$$

The final value theorem can then be used:

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

$$e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s(1 - H(s))X(s)$$

Example What's the study-fetter error when a step and ramp input is applied to a system defined by H(s): $H(s) = \frac{1}{s + \alpha}$ $X(s) - \frac{1}{s}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} = 1 - \frac{1}{s}$ $X(s) = \frac{1}{s^2}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} - \frac{1}{s} = \frac{1}{s}$

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

$$1-H(s)X(s)$$

Finding the Steady-state Error

Closed-loop Transfer Function (Representation) of the System

We can write the Laplace Transform of the error signal:

$$E(s) = X(s)-Y(s)$$
$$=X(s)-H(s)X(s)$$
$$=(1-H(s))X(s)$$

The final value theorem can then be used:

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

$$e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s(1 - H(s))X(s)$$

Example What's the study-fetter error when a step and ramp input is applied to a system defined by H(s): $H(s) = \frac{1}{s + \alpha}$ $X(s) - \frac{1}{s}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} = 1 - \frac{1}{s}$ $X(s) = \frac{1}{s^2}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} - \frac{1}{s} = \frac{1}{s}$

Example

What's the steady-state error when a step and ramp input is applied to a system defined by H(s)?

$$H(s) = \frac{1}{s+a}$$

- Only zero error if a=1
- We need to wrap the plant in a control system to make sure a=1

$$X(s) = \frac{1}{s} \qquad e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a} \right) \frac{1}{s} = 1 - \frac{1}{a}$$

$$X(s) = \frac{1}{s^2}$$
 $e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a}\right) \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s} = \infty$

 We can't use a first-order system if want a design with zero steady-state error in response to a ramp.

- Only zero error if a=1
- We need to wrap the plant in a control system to make sure a=1

$$1 - \frac{1}{a}$$

 We can't use a first-order system if want a design with zero steady-state error in

Example

What's the steady-state error when a step and ramp input is applied to a system defined by H(s)?

$$H(s) = \frac{1}{s+a}$$

- Only zero error if a=1
- We need to wrap the plant in a control system to make sure a=1

$$X(s) = \frac{1}{s} \qquad e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a} \right) \frac{1}{s} = 1 - \frac{1}{a}$$

$$X(s) = \frac{1}{s^2}$$
 $e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a}\right) \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s} = \infty$

 We can't use a first-order system if want a design with zero steady-state error in response to a ramp. • We can't use a first-order system if want a design with zero steady-state error in response to a ramp.

Example

What's the steady-state error when a step and ramp input is applied to a system defined by H(s)?

$$H(s) = \frac{1}{s+a}$$

- Only zero error if a=1
- We need to wrap the plant in a control system to make sure a=1

$$X(s) = \frac{1}{s} \qquad e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a} \right) \frac{1}{s} = 1 - \frac{1}{a}$$

$$X(s) = \frac{1}{s^2}$$
 $e(\infty) = \lim_{s \to 0} s \left(1 - \frac{1}{s+a}\right) \frac{1}{s^2} = \lim_{s \to 0} \frac{1}{s} = \infty$

 We can't use a first-order system if want a design with zero steady-state error in response to a ramp.

Finding the Steady-state Error

Closed-loop Transfer Function (Representation) of the System

We can write the Laplace Transform of the error signal:

$$E(s) = X(s)-Y(s)$$
$$=X(s)-H(s)X(s)$$
$$=(1-H(s))X(s)$$

The final value theorem can then be used:

$$x(\infty) = \lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$

$$e(\infty) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} s(1 - H(s))X(s)$$

Example What's the study-fetter error when a step and ramp input is applied to a system defined by H(s): $H(s) = \frac{1}{s + \alpha}$ $X(s) - \frac{1}{s}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} = 1 - \frac{1}{s}$ $X(s) = \frac{1}{s^2}$ $s(sc) = \frac{1}{\log s} \left(1 - \frac{1}{s + \alpha}\right) \frac{1}{s} - \frac{1}{s} = \frac{1}{s}$

System Type and Error Constants

Unity Negative Feedback (Representation of) System

Number of "pure integrators" (ie poles that G(s) has at s=0) is the system type

Position constant

$$k_p = \lim_{s \to 0} G(s)$$

Velocity constant

$$k_v = \lim_{s \to 0} sG(s)$$

Acceleration constant

$$k_a = \lim_{s \to 0} s^2 G(s)$$

Input		System Type		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$\frac{1}{K_a}$

Position constant

$$k_p = \lim_{s \to 0} G(s)$$

Velocity constant

$$k_v = \lim_{s \to 0} sG(s)$$

Acceleration constant

$$k_a = \lim_{s \to 0} s^2 G(s)$$

R

Par

System Type and Error Constants

Unity Negative Feedback (Representation of) System

Number of "pure integrators" (ie poles that G(s) has at s=0) is the system type

Position constant

$$k_p = \lim_{s \to 0} G(s)$$

Velocity constant

$$k_v = \lim_{s \to 0} sG(s)$$

Acceleration constant

$$k_a = \lim_{s \to 0} s^2 G(s)$$

Input		System Type		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$\frac{1}{K_a}$

integrators" (ie poles that G(s) has at s=0)

Input	S	System Type		
Input	Type-0	Type-1	Type-2	
Step $x(t) = u$	(t) $\frac{1}{1+K_p}$	0	0	
Ramp $x(t) =$		$\frac{1}{K_v}$	0	
Parabola $x(t) = 1$	$\frac{t^2}{2}$ ∞	∞	$\frac{1}{K_a}$	

(s)

System Type and Error Constants

Unity Negative Feedback (Representation of) System

Number of "pure integrators" (ie poles that G(s) has at s=0) is the system type

Position constant

$$k_p = \lim_{s \to 0} G(s)$$

Velocity constant

$$k_v = \lim_{s \to 0} sG(s)$$

Acceleration constant

$$k_a = \lim_{s \to 0} s^2 G(s)$$

Input		System Type		
		Type-0	Type-1	Type-2
Step	x(t) = u(t)	$\frac{1}{1+K_p}$	0	0
Ramp	x(t) = t	∞	$\frac{1}{K_v}$	0
Parabola	$x(t) = \frac{t^2}{2}$	∞	∞	$\frac{1}{K_a}$

This lecture covers:

- General Steady-state response
- Steady-state accuracy and errors
- System Characterization by order and type number

