Mathematics of Data Science
Chapter II: Matrices
Molation: Le work with mxn matrices
A = (Aij) ER nover the seals or A = [mxu over
the complex numbers. Le write A∈Kmxu if
$K \in \{\mathbb{R}, \mathbb{C}\}$
La de la
transpose: A (AT); = Xj;
adjoint (Hourtian transpose): A (A); ;= A.
Columns $A_{(i)} = (A_{ij})_{i=1}^n \in \mathbb{C}^n$
Columns $A_{(i)} = (A_{ij})_{i=1}^n \in \mathbb{C}^n$ $A^{(i)} = (A_{ij})_{j=1}^n \in \mathbb{C}^n$
range: ran (A) = 1 Ax: x E H b 3
= span f A (j): j = 1, _, n3 c#
identity matrix: I = I wan
Euclidean Scalar product: for x, y c IR
$\langle x_1, y_2 \rangle = \overline{Z} x_1, y_1$

Complex scalar product; for x, y & Cu Seite 2 x, y are called orthogonal it $\langle x, y \rangle = 0$ A basis x1, _, x of Ku 3 alled orthonomal $\frac{1}{2}$ $\frac{1$ A E Ruxu B called orthogonal ATA = I or equivalently if $AA^T = I$ A C $m \times u$ is called newton of $A \times A = I$ or equiv. if $AA \times = I$ In this case the inverse satisfies $A^{-1} = A^*$ rank A = din rou A - dui rou (AT) A ER has full rank of rank A = min [m, n]

Eigenvalues and leigenvoctors tor A e m x m, 2 e C is called an eigenvalue of Anth corresponding eigenboctor ~ E C m \ 403 (2) A v = 1signualues are the roots of the characteristic polymial $\chi_A(\lambda) = det(A - \lambda T)$, i. e all 2; e C such that 2 (2;) = 0. DP A = A + 3 Herritian, then all ligenalues are real and there exists au orthonormal basis V, _, vu e C'm of reigenvectors. With V= (v11--- / vn) Etmxler (neu dazy) ve can ther write A = VDVX with D = diag (2,1, -, 2n) - 2 - 2 - 2 - 4 $= \frac{1}{1} \frac{$

Dépuison 2.1: For a vector space Voverte, a norm $\|\cdot\|$: $V - 5R_+ = 4 \times \epsilon R$, $x \ge 03$ is a function satisfying (i) $\|w\| = 0$ if and only if w = 0(ii) 112 v-11 = | 21 11 v 11 for all v E V and 7 ck (iii) ||v + w| = ||v|| + /|w|| for all n, we V (triangle unequality) If (:) 3 weakened to |\si| = 0 . f \si = 0 , then

11. 11 13 called a seure - 40 m.

Examples:

a) lp-norm on Cm: For 14 p < so $\|x\|_{p} := \left(\frac{x}{2} | x, | p\right)/p, \quad x \in \mathbb{C}^{m}$ || x || = max | x, |
j=1,-,m

ase nomes on C.

Special case l₂-norm 3 Enclideau norm,
$$\|x\|_2 = \sqrt{\langle x, x \rangle}.$$

$$\|\varphi\|_{\infty} := \sup_{t \in [0,1]} |\varphi(t)|$$

$$+ (A) = \sum_{i=1}^{m} A_{ii}$$
 $A \in C$

Seite 6

Tr $(A) = \sum_{i=1}^{w} \lambda_i$ Notice $\lambda_i, \dots, \lambda_u$ ove the eigenvalues of A (rounted untth Proof for Hermitian readix A = At. Eigenvalue de romposition A = VIIV* usite Vundare and D = The ... + (A) = + (VDVX) = + (DVXV) = + (D)Froblinis scaler product : For A, BE I'm x n AB := In (AB*) = In (B*A)

H $= \sum_{i=1}^{\infty} (A 3^{i})_{i} = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} A_{ij} 3_{ij}$ trobenius nonn (Hilbert - Schmidt - norm): Il A II = \(\times A , A \) = \(\times \) \(\times \)

Dt holds $|A|_{\overline{A}} = |A|_{\overline{A}} = |A|_{\overline{A}} |A|_{$ Since At A 13 positive semi de finite, the eigenvalues of AA satisfy 2. (+ DA) > 0. Korall: A Hernitian matrix A = A E Chuxun 3 called positive semide finite of ×* A × ≥ 0 for all × ∈ C M.

The state of positive definite of ×* A × > 0 for all × ∈ C M. Fact: A Herritan matrix A = A & F Turn is positive semidefinite if and on ly ? 2: (A) > 0 (2: 50) for all ':-1._, m

left out in locture!

Seite 8 Operator norm. $+ \sigma \Gamma \times = (R'', ||\cdot||_{\times}), = (R'', ||\cdot||_{\times})$ the operator norm of AETR wxn (A: X->/) B defined as Example: $\|A\|_{\ell^2 \to \ell^2} = \max_{j \in \mathcal{I}} \sqrt{2_j} (A^*A)$ (spectral norm) Muitary invariance for all $A \in C^{1u \times u}$ and
unitary invariances $M \in C^{n \times u}$, $M \in C$ holds | | MAV| | = |A| | 0? -> ee

exes ci3e