A Proof of the Strong Normalization of the Simply-Typed Lambda Calculus

Thiago F Cesar

This proof uses the reducibility technique and is based on the one given in Proofs and Types, by Jean-Yves Girard. Only a small number of changes was made.

1 Basic Definitions

Definition 1.1 (Lambda terms) Let $\mathcal C$ be an infinite countable set of constants and $\mathcal X$ an infinite countable set of variables. We define the terms of the simply-typed lambda calculus by the grammar

$$M, N ::= x \in \mathcal{X} \mid c \in \mathcal{C} \mid M \mid N \mid \lambda x.M$$

Reduction on the lambda-calculus is given by the rules

$$\frac{M \longrightarrow M'}{MN \longrightarrow M'N} \operatorname{appL} \qquad \frac{N \longrightarrow N'}{MN \longrightarrow MN'} \operatorname{appR}$$

$$\frac{M \longrightarrow M'}{\lambda x.M \longrightarrow \lambda x.M'} \xi \qquad \overline{(\lambda x.M)N \longrightarrow M(N/x)} \beta$$

Definition 1.2 (Simple types) Let \mathcal{B} be an infinite countable set of base types. We define the grammar of simple types by

$$A, B ::= p \in \mathcal{B} \mid A \to B$$

A context Γ is a set of or pairs x:A, where x is a variable and A is a type, such that any variable can only appear once. A signature Σ is a set of pairs c:A, where c is a constant, A is a type and every constant can only appear once.

If M is a lambda term, we define the type judgment Σ ; $\Gamma \vdash M : A$ inductively by

$$\frac{x:A\in\Gamma}{\Sigma;\Gamma\vdash x:A}\text{ ax } \frac{\Sigma;\Gamma,x:A\vdash M:B}{\Sigma;\Gamma\vdash\lambda x.M:A\to B}\text{ abs}$$

$$\frac{c:A\in\Sigma}{\Sigma;\Gamma\vdash c:A}\text{ cons } \frac{\Sigma;\Gamma\vdash M:A\to B}{\Sigma;\Gamma\vdash M:B}\text{ app}$$

We assume an underlying signature and we write $\Gamma \vdash M : A$ for simplification reasons.

The following lemmas are standard and will be used on the strong normalization proof. Their proofs are omitted.

Lemma 1.1 If
$$M \longrightarrow^* M'$$
 and $N \longrightarrow^* N'$ then $M(N/x) \longrightarrow^* M'(N'/x)$.

Lemma 1.2 If M is a term, we define its reduction tree as follows. A node is a term N with $M \longrightarrow^* N$ and there is an edge from N to N' when $N \longrightarrow N'$. Then its reduction tree is finite iff M is SN.

Lemma 1.3 Let MN be a term and $MN \longrightarrow^* Q$ a reduction in which β is never applied at the outer application. Then Q = M'N' with $M \longrightarrow^* M'$ and $N \longrightarrow^* N'$.

2 Strong Normalization

Definition 2.1 If A is a type, we define $[\![A]\!]$ by induction on its structure as

- if $A = p \in \mathcal{B}$, then $\llbracket p \rrbracket = SN$
- if $A = B \to C$, then $[B \to C] = \{M \in SN \mid \forall N \in [B], MN \in [C]\}$

where SN denotes the set of strongly normalizing terms.

Lemma 2.1 Let A be any type. If $M \longrightarrow M'$, then $M \in [A]$ implies $M' \in [A]$.

Proof. By induction on the structure of A. For the base case, note that if M is SN then M' is also SN.

For the induction step we have $A=B\to C$. First note that the previous observation also holds, thus M' is SN. It is left to prove that for all $N\in [\![B]\!]$ we have $M'N\in [\![C]\!]$. But $MN\longrightarrow M'N$, where $MN\in [\![C]\!]$ and C is structurally smaller then A. We thus conclude by the induction hypothesis that $M'N\in [\![C]\!]$.

Proposition 2.1 Let A be a type and let M be a variable, constant or of the form M_1M_2 . If for all N with $M \longrightarrow N$ we have $N \in [\![A]\!]$ then $M \in [\![A]\!]$.

Proof. By induction on the structure of A. For the base case A=p, note that as every reduction path goes through a SN term, then M must also be SN.

For the induction step we have $A=B\to C$. The previous remark also holds, so we are left to prove that for all $Q\in [\![B]\!]$, $MQ\in [\![C]\!]$. As Q is SN, then by Lemma 1.2 its reduction tree is finite. We show the result by induction on its height. As we now have nested inductions, we let IH 1 be the induction hypothesis of the outer induction and IH 2 the one of the inner one.

- For the base case, Q is in normal form and thus every reduction $MQ \longrightarrow Q'$ takes place on M. We thus have Q' = NQ with $M \longrightarrow N$. By hypothesis, $N \in \llbracket B \to C \rrbracket$, and thus $NQ \in \llbracket C \rrbracket$. Therefore, every Q' with $MQ \longrightarrow Q'$ is in $\llbracket C \rrbracket$. As C is structurally smaller then A, we apply IH 1 to find $MQ \in \llbracket C \rrbracket$.
- For the induction step, we consider all the reductions $MQ \longrightarrow N$ and we do a case analysis on the rules that can be applied on the head, which are only appL and appR. We show that each N is in $[\![C]\!]$.

If the rule is appR we have $MQ \longrightarrow MQ'$ with $Q \longrightarrow Q'$. As the tree of Q' has a lower height, we apply IH 2 to conclude $MQ' \in [\![C]\!]$.

If the rule is appL we have $MQ \longrightarrow NQ$ with $M \longrightarrow N$. By hypothesis, $N \in [\![B \to C]\!]$, and thus $NQ \in [\![C]\!]$.

We have show that for all N with $MQ \longrightarrow N$, $N \in [\![C]\!]$. As C is structurally smaller then A, by IH 1 we get $MQ \in [\![C]\!]$.

Corollary 2.1 Let A be any type. If M is a variable or constant then $M \in [\![A]\!]$.

Proof. As M is normal, there is no N with $M \longrightarrow N$, thus the hypothesis of Proposition 2.1 is verified trivially.

Lemma 2.2 If $M \in [\![A]\!]$, $N \in [\![B]\!]$ and $M(N/x) \in [\![A]\!]$ then $(\lambda x.M)N \in SN$.

Proof. First note that no infinite reduction can happen with only appL and appR on the outer application, as this would imply that either N or M is not SN.

Now let $(\lambda x.M)N \longrightarrow M_1 \longrightarrow M_2 \longrightarrow \dots$ be a reduction in which β is applied to the outer application at some point. We write $(\lambda x.M)N \longrightarrow^* (\lambda x.M')N' \longrightarrow_{\beta} M'(N'/x) \longrightarrow^* \dots$ where β does not occur in the outer application in $(\lambda x.M)N \longrightarrow^* (\lambda x.M')N'$.

Thus, by Lemma 1.3 we have $M \longrightarrow^* M'$ and $N \longrightarrow^* N'$. By Lemma 1.1, $M(N/x) \longrightarrow^* M'(N'/x)$, and thus $M'(N'/x) \in \llbracket A \rrbracket$ by Lemma 2.1. In particular, $M'(N'/x) \in \mathsf{SN}$ and thus $(\lambda x.M)N \longrightarrow^* (\lambda x.M')N' \longrightarrow M'(N'/x) \longrightarrow^* \dots$ is finite.

Proposition 2.2 If $M \in [\![A]\!]$, $N \in [\![B]\!]$ and $M(N/x) \in [\![A]\!]$ then $(\lambda x.M)N \in [\![A]\!]$.

Proof. As $(\lambda x.M)N$ is SN, by Lemma 1.2 its reduction tree is finite. We show $(\lambda x.M)N \in \llbracket A \rrbracket$ by induction on the height of its reduction tree. For the base case of height zero, as $(\lambda x.M)N$ is a redex then we can derive absurdity, from which the conclusion follows trivially.

For the induction step, we consider all the possible Q with $(\lambda x.M)N \longrightarrow Q$ and we do a case analysis on the rule applied at the head

- **AppL**: Then $Q = (\lambda x.M')N$ with $\lambda x.M \longrightarrow \lambda x.M'$ and $M \longrightarrow M'$. Using Lemma 1.1, this also implies $M(N/x) \longrightarrow^* M'(N/x)$. As $M, M(N/x) \in \llbracket A \rrbracket$, by Lemma 2.1, we have $M', M'(N/x) \in \llbracket A \rrbracket$. As the reduction tree of $(\lambda x.M')N$ is smaller, we can apply the induction hypothesis and conclude $(\lambda x.M')N \in \llbracket A \rrbracket$.
- AppR : Then $Q = (\lambda x.M)N'$ with $N \longrightarrow N'$. Using Lemma 1.1, this also implies $M(N/x) \longrightarrow^* M(N'/x)$. By Lemma 2.1, we have $N' \in \llbracket B \rrbracket$ and $M(N'/x) \in \llbracket A \rrbracket$. As the reduction tree of $(\lambda x.M)N'$ is smaller, we can apply the induction hypothesis and conclude $(\lambda x.M)N' \in \llbracket A \rrbracket$.
- β : Then Q = M(N/x), which by hypotheses is in $[\![A]\!]$.

We have shown that for all Q with $(\lambda x.M)N \longrightarrow Q$ we have $Q \in [\![A]\!]$. Hence, by Proposition 2.1 we have $(\lambda x.M)N \in [\![A]\!]$.

Theorem 2.1 Let M be a term with $\Gamma \vdash M : A$ and let σ be a substitution with dom $\sigma = \{x \mid x : A_x \in \Gamma\}$ and with $\sigma(x) \in \llbracket A_x \rrbracket$. Then $\sigma(M) \in \llbracket A \rrbracket$.

Proof. By induction on the type derivation.

Rule ax: The derivation ends with

$$\frac{x:A\in\Gamma}{\Gamma\vdash x:A}$$
 ax

Thus M=x and $\sigma(x)\in \llbracket A\rrbracket$ by hypothesis.

Rule cons: The derivation ends with

$$\frac{c:A\in\Sigma}{\Gamma\vdash c:A}\operatorname{cons}$$

Thus M=c and $\sigma(c)=c$. By Corollary 2.1, $c\in [\![A]\!]$.

Rule app: The derivation ends with

$$\frac{\Gamma \vdash M : B \to A \qquad \Gamma \vdash N : B}{\Gamma \vdash MN : A} \text{ app}$$

By the induction hypothesis, $\sigma(M) \in \llbracket B \to A \rrbracket$ and $\sigma(N) \in \llbracket B \rrbracket$. By definition of $\llbracket B \to A \rrbracket$, we get $\sigma(M)\sigma(N) \in \llbracket A \rrbracket$, and thus $\sigma(MN) \in \llbracket A \rrbracket$.

Rule abs: The derivation ends with

$$\frac{\Gamma, x : B \vdash M : A}{\Gamma \vdash \lambda x. M : B \to A} \text{ abs}$$

For $N \in [\![B]\!]$, we need to show that $(\lambda x.\sigma(M))N \in [\![A]\!]$.

Consider the substitution $\sigma' := (\sigma; x \mapsto x)$. As x is a variable, then $x \in [\![B]\!]$ and thus we can apply the induction hypothesis on $\Gamma, x : B \vdash M : A$. We thus have $\sigma(M) = \sigma'(M) \in [\![A]\!]$.

Now consider the substitution $\tau:=(\sigma;x\mapsto N)$. As $N\in [\![B]\!]$, we can apply the induction hypothesis once again and find that $\tau(M)=\sigma(M)(N/x)\in [\![A]\!]$.

We have all the hypothesis to apply Lemma 2.2, from which we get $(\lambda x.\sigma(M))N \in [\![A]\!]$.

Corollary 2.2 Let M be a term with $\Gamma \vdash M : A$, then $M \in SN$.

Proof. Let $\sigma:=(x_i\mapsto x_i)_{x_i:A_i\in\Gamma}$. As each x_i is a variable, then $x_i\in [\![A_i]\!]$ and we can apply the previous theorem. Thus, $M=\sigma(M)\in [\![A]\!]$, and in particular we deduce $M\in \mathsf{SN}$.