

awesome micro:bit

Maqueen robot. Следене на линия

С малкия си корпус и наличието на MicroBit, той позволява на учениците бързо да научат визуалното програмиране по забавен начин, като същевременно развиват своите интереси към науката и логическото мислене.

🦖 Включване на захранването на робота;

1.1.Разширения

Gripper

Forklift

Loader

Push

1. RGB Neopixel

2.HC-SR04 Ultrasonic

- Ултразвуковият сензор за разстояние НС-SR04 осигурява метод за безконтактно измерване от 2 cm до 400 cm с точност на обхвата, която може да достигне до 3 mm.
- Всеки модул HC-SR04 включва ултразвуков предавател, приемник и контролна верига.
- УСС (захранване), TRIG (излъчвател), ЕСНО (приемник) и GND (земя).

HC-SR04 Ultrasonic

3.LED диоди

LED диоди

Key	Value
Red key	0
VOL+	1
FUNC/STOP	2
Left arrow	4
Pause	5
Right arrow	6
Down arrow	8
VOL-	9

Key	Value
Up arrow	10
0	12
EQ	13
ST/REST	14
1	16
2	17
3	18

Key	Value
5	21
6	22
7	24
8	25
9	26

Събитие, което ще настъпи, когато имаме получени данни по IR комуникацията

Променлива, където се съдържат данните от IR комуникацията


```
when (P16) received (infrared signal
Maqueen Starts
                                set ir data → to infrared signal
       ir data = 231
                                     serial output (infrared signal) in string • ,
       display pattern 😶
                         then 🕣
       display pattern
         ir data = 165 then
       display pattern
        ir data = 181 then
       display pattern ( •...•
        (ir data) = (199) then (-)
       display pattern (
         ir data = 151 then 🔾
       display pattern 🛗
         ir data = 79 then 🖯
       clear all dot matrixes
```



```
when (P16) received infrared signal
Maqueen Starts
pin P15 clear all LEDs
                                     set ir data → to infrared signal
forever
                                          serial output (infrared signal) in string • , Wrap •
       ir data = 93 then
        pin P15 the All (-1) ▼ LED display color
        ir data = 157 then 🔾
  pin P15 the All (-1) • LED display color
 else if (ir_data) = 29) then (
       pin P15 the All (-1) ▼ LED display color
 else if (ir_data) = (221) then (-)
        pin P15 the All (-1) ▼ LED display color
 else if (ir data) = (253) then (-)
        pin P15 the All (-1) • LED display color
 else if (ir_data) = 61) then (
        pin P15 the All (-1) ▼ LED display color
 else if (ir_data) = (151) then \bigcirc
        pin P15 clear all LEDs
```


<u>Пример 3</u>

```
define police

| Din P15 the All (-1) • LED display color |
| Display pattern | Disp
```

```
Maqueen Starts

| pin P15 clear all LEDs | when (P16) received infrared signal | | | |
| set | IR_val | to infrared signal |
| if | IR_val | = 93 | then |
| police | else if | IR_val | = 157 | then |
| blink_orange | else if | IR_val | = 151 | then |
| clear all dot matrixes |
| pin P15 clear all LEDs |
| pin P15 clear all
```


Измерване на температура и извеждане на сериен монитор

```
forever

set temp * to P Read pin P1 * DS18B20 temperature(°C)

serial output Temp = in string * , No-Wrap *

serial output temp in string * , Wrap *

wait 0.1 seconds
```

```
Temp = 27.00
```


<u>Пример 5</u>

```
Maqueen Starts
     pin P15 clear all LEDs
forever
     temp ▼ to Read pin P1 ▼ DS18B20 temperature(°C)
        pin P15 the All (-1) • LED display color
        pin P0 play sound POWER_UP •
        pin P15 the All (-1) ▼ LED display color
      serial output temp in string •
 wait (0.05) seconds
```


5.Сервомотор

Сервомотор е вид електродвигател, предназначен за привеждане в движение на устройства за управление. С помощта на енкодер предоставя прецизен контрол по линейни и ъглови позиции, скорости и ускорение;

- Сервомотори с въртене до 180 градуса;
- Сервомотори с непрекъснато въртене;


```
Maqueen Starts
forever

Servo S2 • angle 0

wait 1 seconds

Servo S2 • angle 180

wait 1 seconds
```



```
when (P16) received infrared signal
set ir_data ▼ to infrared signal
     serial output (ir_data) in string • , Wrap •
     ir_data = 231 then
      Servo S2 → angle 90
 wait 0.05 seconds
      (ir_data) = (165) then \bigcirc
      Servo S2 → angle 0
 wait 0.05 seconds
      ir data = 239 then 🔾
      Servo S2 ▼ angle 180
 wait 0.05 seconds
```


<u>6. I2С шина</u>

- № I2C (Inter-Integrated Circuit), алтернативно известен като I2C или IIC, е синхронна, серийна комуникационна шина, изобретена през 1982 г. от Philips Semiconductors;
- Тя се използва широко за свързване на понискоскоростни периферни интегрални схеми към процесори и микроконтролери при комуникация на къси разстояния в/извън рамките на платката;

6.1.Принцип на работа

- I2C пакетите данни са подредени в 8-битови байтове, включващи подчинен адрес, регистрационен номер и данни, които трябва да бъдат прехвърлени;
- У Предаването по шината е операция за четене или запис;
- Протоколите за четене и запис се основават на поредица от подпротоколи като условия за стартиране и спиране, повтарящи се стартови битове, адресен байт, битове за пренос на данни и битове за потвърждаване/непотвърждаване;

7.Linefollower

Когато сензорът за проследяване на линии открие черната линия на картата, индикаторът се включва и извежда "0", в противен случай индикаторът се

противен случай индикаторът се изключва и извежда "1".

IR Transmitter

7.1.Завивания

7.2. Състояния (states)

FORWARD - НАПРЕД

