Infinite Series Practice

Definitions and Theory

Give an example of an infinite series that converges to 7.

4. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that converges and $\lim_{n\to\infty} a_n = 0$. If it's not possible, explain why.

5. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that diverges and $\lim_{n\to\infty} a_n = 0$. If it's not possible, explain why.

6. If possible, give an example of a series $\sum_{n=1}^{\infty} a_n$ that converges and $\lim_{n\to\infty} a_n \neq 0$. If it's not possible, explain why.

7. Give the argument for why $\sum_{n=1}^{\infty} ar^{n-1}$ converges when |r| < 1.

e argument for why
$$\sum_{n=1}^{\infty} ar^{n-1}$$
 converges when $|r| < 1$.

$$S \mu = \alpha + ar + ar^{2} + \dots + ar^{n-1} + ar^{n}$$

$$- (r S \mu = \alpha + ar^{2} + \dots + ar^{n-1} + ar^{n})$$

$$S \mu = \alpha - ar^{n}$$

Series Convergence

8. Use the tools we looked at in class to determine the convergence or divergence of each of the following series. If a series converges, find its sum.

(a)
$$\sum_{n=1}^{\infty} 2(-\frac{1}{3})^{n-1}$$
 converges (geo, $r = -\frac{1}{3}$, $|r| \ge 1$).
Sum = $\frac{a}{1-r} = \frac{2}{1-(-\frac{1}{3})} = \frac{2}{4/3} = \frac{2}{4} = \frac{3}{5}$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{3^{n-1}} = \frac{2}{5} \frac{1}{3^{n-1}} = \frac{1}{2/3} = \frac{1}{3} \frac{1}{3^{n-1}} = \frac{1}{2/3} = \frac{1}{3}$$

(c)
$$\sum_{n=1}^{\infty} 3(-2)^{n-1}$$
 diverges (geo, $r = -3$, $|1| 71$).

(d)
$$\sum_{n=2}^{\infty} 7(-\frac{1}{2})^{n+3}$$
 0 converges (geo, $r = -\frac{1}{3}$, $|v| \ge 1$).

Shifted $\frac{1}{9}$ $\frac{1}{1-(-\frac{1}{3})}$ $\frac{1}{1-(-\frac{1}{3})}$ $\frac{1}{1-(-\frac{1}{3})}$ $\frac{1}{1-(-\frac{1}{3})}$ $\frac{1}{1-(-\frac{1}{3})}$

(e)
$$\sum_{n=1}^{\infty} \frac{2}{5^n} = \frac{\infty}{2} 2 (\frac{1}{5}^n) = \frac{\infty}{2} 2 (\frac{1}{5}^n)$$
 converges $n=1$ (geo, $v=\frac{1}{5}$).

Sum = $\frac{1}{1-v} = \frac{2(\frac{1}{5})}{1-\frac{1}{5}} = \frac{1}{3}$

(f) $\sum_{n=1}^{\infty} \frac{3^{2n}}{9^{n-1}} = \frac{\infty}{n=1} \frac{(3^2)^n}{9^{n-1}} = \frac{\infty}{n=1} \frac{9^n}{9^{n-1}} = \frac{\infty}{n=1} \frac{9}{9^{n-1}} = \frac{\infty}{n=1} \frac{9}{9^{n-1}}$

$$= 9+9+9+\dots = \infty$$

$$\text{diverges.}$$
A iso $n \neq \infty$ $9 = 9 \neq 0$,

so diverges by Test for Divergence.