Introducción a los Sistemas Operativos

Administración de Archivos - II

I.S.O.

- ☐ Versión: Noviembre 2017
- Palabras Claves: Archivo, Directorio, File System, Asignación, Espacio Libre

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts). También se incluyen diapositivas cedidas por Microsoft S.A.

Metas del Sistema de Archivos

- Brindar espacio en disco a los archivos de usuario y del sistema.
- Mantener un registro del espacio libre.
 Cantidad y ubicación del mismo dentro del disco.

Conceptos

- Sector
 - Unidad de almacenamiento utilizada en los Discos Rígidos
- ☐ Bloque/Cluster
 - Conjuntos de sectores consecutivos
- ☐ File System
 - ✓ Define la forma en que los datos son almacenados
- ☐ FAT: File Allocation Table
 - Contiene información sobre en qué lugar están alocados los distintos archivos

Pre-asignación

- ☐ Se necesita saber cuánto espacio va a ocupar el archivo en el momento de su creación
- Se tiende a definir espacios mucho más grandes que lo necesario
- Posibilidad de utilizar sectores contiguos para almacenar los datos de un archivo
- ¿Qué pasa cuando el archivo supera el espacio asignado?
- Esta técnica suele usar la forma de asignación continua (podría usar otras también)

Asignación Dinámica

- El espacio se solicita a medida que se necesita
- Los bloques de datos pueden quedar de manera no contigua

Formas de Asignación - Continua

10.00	_		1	- 4		Ta	1.1	_
	Θ	4	Inc	· a ri	on	19	m	ρ
		4.3		- CB 18-3		1.0		

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

Que sucedería si necesitamos agregar un nuevo archivo de 6 bloques?

Formas de Asignación - Continua

- Conjunto continuo de bloques son utilizados
- ☐ Se requiere una pre-asignación
 - Se debe conocer el tamaño del archivo durante su creación
- ☐ File Allocation Table (FAT) es simple
 - ✓ Sólo una entrada que incluye Bloque de inicio y longitud
- El archivo puede ser leído con una única operación
- Puede existir fragmentación externa
 - ✓ Compactación

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

File Allocation Table

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

Compactación

File Allocation Table

File Name	Start Block	Length
File A	0	3
File B	3	5
File C	8	8
File D	19	2
File E	16	3

Figure 12.8 Contiguous File Allocation (After Compaction)

Formas de Asignación - Continua

- Problemas de la técnica
 - Encontrar bloques libres continuos en el disco
 - ✓ Incremento del tamaño de un archivo

File Name	Start Block	Length
File B	1	5

Figure 12.9 Chained Allocation

- Asignación en base a bloques individuales
- Cada bloque tiene un puntero al próximo bloque del archivo
- ☐ File allocation table
 - Única entrada por archivo: Bloque de inicio y tamaño del archivo
- No hay fragmentación externa
- Útil para acceso secuencial (no random)
- Los archivos pueden crecer bajo demanda
- No se requieren bloques contiguos

File Name Start Block

Length

Se pueden consolidar los bloques de un mismo archivo para garantizar cercanía de los bloques de un mismo archivo.

File Name	Start Block	Length
• • •	•••	• • •
File B	0	5
• • •	•••	• • •

Figure 12.11 Indexed Allocation with Block Portions

- La FAT contiene un puntero al bloque índice
- El bloque índice no contiene datos propios del archivo, sino que contiene un índice a los bloques que lo componen

- Asignación en base a bloques individuales
- No se produce Fragmentación Externa
- ☐ El acceso "random" a un archivo es eficiente
- ☐ File Allocation Table
 - ✓ Única entrada con la dirección del bloque de índices (index node / i-node)

File Name	Index Block
File B	24

- □ Variante: asignación por secciones
- A cada entrada del bloque índice se agrega el campo longitud
- El índice apunta al primer bloque de un conjunto almacenado de manera contigua

Figure 12.12 Indexed Allocation with Variable-Length Portions

- □ Variante: niveles de indirección
- Existen bloques directos de datos
- Otros bloques son considerados como bloque índices (apuntan a varios bloques de datos)
- Puede haber varios niveles de indirección

Asignación Indexada - Ejemplo

Cada I-NODO contiene 9 direcciones a los bloques de datos, organizadas de la siguiente manera:

- 7 de direccionamiento directo.
- 1 de direccionamiento indirecto simple
- 1 de direccionamiento indirecto doble

Si cada bloque es de 1KB y cada dirección usada para referenciar un bloque es de 32 bits:

✓ ¿Cuántas referencias (direcciones) a bloque pueden contener un bloque de disco?

1 KB / 32 bits = 256 direcciones

✓ ¿Cuál sería el tamaño máximo de un archivo?

$$(7 + 256 + 256^2) * 1 \text{ KB} = 65799 \text{ KB} = 64,25 \text{ MB}$$

Gestión de Espacio Libre

- Control sobre cuáles de los bloques de disco están disponibles.
- □ Alternativas
 - ☐ Tablas de bits
 - □ Bloques libres encadenados
 - Indexación

Espacio Libre - Tabla de bits

- ☐ Tabla (vector) con 1 bit por cada bloque de disco
- Cada entrada:
 - \checkmark 0 = bloque libre 1 = bloque en uso
- Ventaja
 - Fácil encontrar un bloque o grupo de bloques libres.
- Desventaja
 - ✓ Tamaño del vector en memoria tamaño disco bytes / tamaño bloque en sistema archivo Eje: Disco 16 Gb con bloques de 512 bytes
 ☐ 32 Mb.

Espacio Libre - Tabla de bits (cont.)

Ejemplo

Espacio Libre - Bloques Encadenados

- ☐ Se tiene un puntero al primer bloque libre.
- Cada bloque libre tiene un puntero al siguiente bloque libre
- ☐ Ineficiente para la búsqueda de bloques libres ☐ Hay que realizar varias operaciones de E/S para obtener un grupo libre.
- Problemas con la pérdida de un enlace
- ☐ Difícil encontrar bloques libres consecutivos

Espacio Libre - Bloques Encadenados

Espacio Libre - Indexación (o agrupamiento)

- □ Variante de "bloques libres encadenados"
- El primer bloque libre contiene las direcciones de N bloques libres.
- ☐ Las N-1 primeras direcciones son bloques libres.
- La N-ésima dirección referencia otro bloque con N direcciones de bloques libres.

Espacio Libre - Recuento

- □ Variante de Indexación
- Esta estrategia considera las situaciones de que varios bloques contiguos pueden ser solicitados o liberados a la vez (en especial con asignación contigua).
- ☐ En lugar de tener N direcciones libres (índice) se tiene:
 - ✓ La dirección del primer bloque libre
 - ✓ Los N bloques libres contiguos que le siguen. (#bloque, N siguientes bloques libres)

