EX1

3)
$$(-1) \times 44 + 5 \times 9 = 4$$

 $x = 2 \times 5 \times 9 + 5 \times (-44)$ [44×9]
 $= -130$ [44×9]

 $\underline{E} \times \underline{\ell}$ 1), $\underline{L}_2 = A(1,0) \in \mathbb{H}$

" $\forall n,y, n',y' \in C$ A(n,y) - A(n',y') = A(n-u',y-y')el $A(n,y) A(n',y') = A(nn'-y \overline{y}', ny' + y \overline{n}')$

2) A(0,0) = 0 n'est clairered parimersilée et $n(u,y) \in C^2 \setminus \{(0,0)\}$ alors $A\left(\frac{\overline{x}}{|u|^2+|y|^2}\right) \xrightarrow{-\frac{y}{|u|^2+|y|^2}}$ or in inverse de A(x,y) dans ff

- 3) A(1,1) A(1,i) = A(1+i,1+i) + A(1-i,1+i) = A(1,i) A(1,1) dove la landfriction dan st st non-comentative ainci H n'est par un corps.
- EX3 2) Si xetel invenible, $\exists u' \in A$ by u' = 1 done n(u) n(u') = n(1) = 1or $n(x'), n(u) \in \mathbb{Z}$ done $n(u) = \pm 1$. Reignogrand si $n(u) = \pm 1$ avec $u = a + \sqrt{5}b$ alors $1 = \pm n(u) = (a + \sqrt{5}b) \left(\pm (a - \sqrt{5}b)\right)$ done $\pm (a - \sqrt{5}b)$ est un invene de x down A. $u_0 = 2 + \sqrt{5}$
 - 3) k = 0,1,2,3 [4] $\Rightarrow k^2 = 0,1$ [4] somi on obtient on cas particular $n(x) \neq 2$ [4] on particular $n(x) \neq \pm 2$
 - 5) Si n = y g dam A et $n(x) = \pm 4$ dors $n(y) n(g) = \pm 4$ d'où $n(y) = \pm 4$ et $n(g) = \pm 1$ on l'inverse (car $n(y) \neq \pm 2$)

 cuin y ou g est inversible
 - 6) Si arbé Z sont ty 2(a+V5b) = 1 ± V5 alors 2a = 1
 - 2 est irreductible et divise $(3+\sqrt{5})(3-\sqrt{5}) = -4 = 2\times(-2)$ dans Al or il ne divine ni $(3+\sqrt{5})$, ni $(3-\sqrt{5})$ done