By providing my signature below I acknowledge that I abide by the University's academic honesty policy. This is my work, and I did not get any help from anyone else during the exam:

Name (sign):	Name (print):
Student Number:	
Instructor's Name:	Class Time:

Problem Number	Points Possible	Points Made
1	15	
2	15	
3	12	
4	13	
5	15	
6	15	
Total:	85	

- If you need extra space use the last page.
- Please show your work. An unjustified answer may receive little or no credit.
- If you make use of a theorem to justify a conclusion then state the theorem used by name.
- Your work must be **neat**. If I can't read it (or can't find it), I can't grade it.
- The total number of possible points that is assigned for each problem is shown here. The number of points for each subproblem is shown within the exam.
- Please turn off your mobile phone.
- A calculator is not necessary, but numerical answers should be given in a form that can be directly entered into a calculator.
- Common identities:

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta),$$

$$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta).$$

- 1. Let $\Lambda, \Omega \in \mathbb{R}$ be unknown positive real numbers. Solve the following equations for the independent variable x.
 - (a) [5 pts] $\log_{10}(3x + \Omega) = \Lambda$.

(b) [5 pts] $\Lambda^{x-1} = \Omega$.

(c) [5 pts] $\frac{1}{\Lambda^x + 1} = \frac{1}{\Omega}$

- 2. Solve for x in the following equations:
 - (a) [5 pts] $7 \cdot 2^x = 8 \cdot 3^x$

(b) [5 pts] $\log(x^2+1) - \log(x+1) = 2$.

(c) [5 pts] $e^{x^2+1} = e^{2x}$.

- 3. For each description below, determine the formula for the function that matches the description.
 - (a) [6 pts] A function W(t) that models **exponential growth** where W(0) = 4 and W(2) = 6.

(b) [6 pts] The function G(x) that is the **functional inverse** of the function

$$F(x) = \log_{\alpha}(x).$$

where $\alpha \in \mathbb{R}$ is an unknown positive real number.

- 4. Answer each of the following questions relating to **injective** functions.
 - (a) [6 pts] The graph of a function $f: \mathbb{R} \to \mathbb{R}$ is shown below.

- 1. Is this function injective? In at least one sentence, justify why or why not. Hint: you may appeal to a "line test", but you should mention/show a specific line.
- 2. What is the domain and range of this function, in interval notation?
- 3. Determine some new, smaller, restricted domain on which f is injective. In at least one sentence, justify why f is injective on this new domain.

 Hint: you may appeal to a line test again! Your new domain should be some interval contained in the interval you wrote above.

(b) [7 pts] Show using the definition of injectivity that the following function is injective

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{1}{1+x}$$

5. [15 pts] A firm is planning to invest some money into a fund that has an interest rate of 1.1% compounded **once every month**. If they initially invest \$250,000.00 how much money will be in the account after three years?

A

6. [15 pts] Suppose there is a petri dish filled with bacteria. Suppose the weight of the dish is given by some function W(t) that models **exponential decay**. At time t = 30 days, it is weighed and found to be W(30) = 200 grams. At time t = 50 days, it is W(50) = 150 grams. How much did it weigh at t = 0 days?

Extra space for work. Do n	ot detach this page.	If you want us to conside	er the work on
this page you should print your	name, instructor and c	lass meeting time below.	
Name (print):	Instructor (print):	Time:	