MOOC Econometrics

Lecture 6.4 on Time Series: Evaluation and Illustration

Dick van Dijk, Philip Hans Franses, Christiaan Heij

Erasmus University Rotterdam

Check for cointegration

- If x_t and y_t are both non-stationary: check for cointegration.
- Test method: Engle-Granger two-step method
 - \rightarrow OLS in $y_t = \alpha + \beta x_t + \varepsilon_t \rightarrow b$ and OLS residuals e_t
 - ightarrow OLS in $\Delta e_t = \alpha + \beta t + \rho e_{t-1} + \gamma_1 \Delta e_{t-1} + \ldots + \gamma_L \Delta e_{t-L} + \omega_t$ Critical value $t_{\widehat{\rho}}$: -3.4 if $\beta = 0$, -3.8 if $\beta \neq 0$
- If x_t and y_t are cointegrated, estimate ECM:

$$\Delta y_t = \alpha + \beta t + \gamma_0 (y_{t-1} - bx_{t-1}) + \sum_{j=1}^p \gamma_{y,j} \Delta y_{t-j} + \sum_{j=1}^r \gamma_{x,j} \Delta x_{t-j} + \varepsilon_t$$
 (or with $\beta = 0$)

• t- and F-tests as usual.

First evaluation step: Check for stationarity

- Take difference of time series until stationarity.
- Test equation: Augmented Dickey-Fuller

$$\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma_1 \Delta y_{t-1} + \ldots + \gamma_L \Delta y_{t-L} + \varepsilon_t$$
Critical value $t_{\widehat{o}}$: -2.9 if $\beta = 0$, -3.5 if $\beta \neq 0$

- For stationary data:
 - ightarrow OLS in AR: $y_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \varepsilon_t$ with trend: $y_t = \alpha + \gamma t + \sum_{j=1}^p \beta_j y_{t-j} + \varepsilon_t$
 - ightarrow OLS in ADL: $y_t = \alpha + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$ with trend: $y_t = \alpha + \delta t + \sum_{j=1}^p \beta_j y_{t-j} + \sum_{j=1}^r \gamma_j x_{t-j} + \varepsilon_t$
- t- and F-tests as usual.

£ zafus,

Lecture 6.4, Slide 2 of 12, Erasmus School of Economics

Diagnostic tests

- Choice of lag lengths: BIC (see Lecture 3).
- Stability check: Chow tests (see Lecture 3).
- Normal residuals: Jarque-Bera (see Lecture 3), critical value: 6.0.
- Out-of-sample forecasting: Lecture 6.5.
- Model should in particular capture autocorrelation in time series.
 - \rightarrow Test if model residuals are uncorrelated: white noise.
- Two tests: ACF and Breusch-Godfrey.
- ACF rule-of-thumb: significant if $|ACF| > 2/\sqrt{n}$.

Test question

Test

Let y_t be white noise with variance σ^2 . Show that OLS estimator b in $y_t = \alpha + \beta y_{t-1} + \varepsilon_t$ gives the first-order autocorrelation of y_t . Further show that $(-2/\sqrt{n},\ 2/\sqrt{n})$ is approximate 95% confidence interval for β . Hint: Use results of Lecture 1.

Answer:

- $y_t = \alpha = \beta x_t + \varepsilon_t$ where $x_t = y_{t-1}$, t = 2, ..., n, so $b = \sum_{t=2}^n (y_t \overline{y})(y_{t-1} \overline{y}) / \sum_{t=2}^n (y_{t-1} \overline{y})^2$
- $\operatorname{var}(b) = \sigma^2 / \sum_{t=2}^n (y_{t-1} \overline{y})^2$, where $\sum_{t=2}^n (y_{t-1} \overline{y})^2 = (n-1) \sum_{t=2}^n (y_{t-1} \overline{y})^2 / (n-1) \approx (n-1)\sigma^2$, $\operatorname{var}(b) \approx \sigma^2 / ((n-1)\sigma^2) = 1/(n-1) \approx 1/n$
- If n large then $b \approx 0$ and $\mathrm{SE}(b) \approx 1/\sqrt{n}$ $b-2\mathrm{SE}(b) < \beta < b-2\mathrm{SE}(b) \quad \rightarrow_{\text{Lecture 6.4. Mide 5}} \beta \leqslant \beta \leqslant 2 \text{ Frasmus School of Economics}$

Illustration: Revenue Passenger Kilometers (RPK)

• Graphs suggest: X_1 and X_2 non-stationary, ΔX_1 and ΔX_2 stationary.

Lecture 6.4, Slide 7 of 12, Erasmus School of Economics

Test on serial correlation: Breusch-Godfrey

- Step 1: Estimate model and get residuals e_t .
- Step 2: Regress e_t on all variables of model and r lags of e_t .
- Step 3: BG = nR^2 of Step 2, and BG $\approx \chi^2(r)$ if e_t white noise.
- Example: Model $y_t = \alpha + \beta y_{t-1} + \gamma x_{t-1} + \varepsilon_t$
 - \rightarrow Step 1: OLS residuals $e_t = y_t a by_{t-1} cx_{t-1}$.
 - \rightarrow Step 2: OLS in $e_t = \alpha + \beta y_{t-1} + \gamma x_{t-1} + \delta_1 e_{t-1} + \delta_2 e_{t-2} + \omega_t$
 - \rightarrow Step 3: BG = $nR^2 \approx \chi^2(2)$ if e_t white noise.
 - \rightarrow Conclusion: Model not correctly specified if BG > 6.0.
 - \rightarrow Should then adjust model, e.g. more lags of y_t and x_t .

Lecture 6.4, Slide 6 of 12, Erasmus School of Economics

Tests on stationarity

- Let y_t denote log(RPK), either X_{1t} or X_{2t} : trend ADF: $\Delta y_t = \alpha + \beta t + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$ t-value of $\widehat{\rho}$: t = -2.8 for X_1 , t = -1.2 for X_2
- Let y_t denote either ΔX_{1t} or ΔX_{2t} : no trend ADF: $\Delta y_t = \alpha + \rho y_{t-1} + \gamma \Delta y_{t-1} + \varepsilon_t$ t-value of $\widehat{\rho}$: t = -3.3 for X_1 , t = -3.7 for X_2

Test

What conclusions do you draw from these outcomes?

Answer:

- As t > -3.5, X_1 and X_2 not stationary.
- As t < -2.9, ΔX_1 and ΔX_2 are both stationary.

Erafus

Lecture 6.4, Slide 8 of 12, Erasmus School of Economi

Granger causality tests

	ADL for ΔX_{1t}			ADL for ΔX_{2t}		
	Coef.	t-Stat.	p-value	Coef.	t-Stat.	p-value
Constant	0.01	1.85	0.07	0.01	2.86	0.01
$\Delta X_{1,t-1}$	0.87	4.96	0.00	0.18	1.29	0.21
$\Delta X_{1,t-2}$	-0.42	-2.02	0.05	0.61	3.68	0.00
$\Delta X_{2,t-1}$	0.35	1.74	0.09	-0.29	-1.81	0.08
$\Delta X_{2,t-2}$	-0.19	-1.27	0.21	-0.13	-1.05	0.30

- Company 1 Granger causal for company 2, not other way round.
 - \rightarrow See *t*-tests (confirmed by *F*-tests on two coefficients jointly).

Lecture 6.4, Slide 9 of 12, Erasmus School of Economics

ECM: Check for serial correlation and normality

• ECM models for log(RPK) of airline companies 1 and 2 (n = 39):

$$\Delta X_{1t} = 0.00 + 1.02 \Delta X_{1,t-1} + 0.46(X_{2,t-1} - 0.92X_{1,t-1}) + e_{1t}$$

$$\Delta X_{2t} = 0.02 - 0.45(X_{2,t-1} - 0.92X_{1,t-1}) + e_{2t}$$

• Jarque-Bera test: $JB_1=0.4<6$, $JB_2=1.8<6$. Breusch-Godfrey test (1 lag): $BG_1=0.3<3.9$, $BG_2=1.2<3.9$. ACF: $2/\sqrt{n}=2/\sqrt{39}=0.32$.

Ezafu,

Lecture 6.4. Slide 11 of 12. Fraemus School of Econom

Engle-Granger test and ECM

- Step 1: OLS: $X_{2t} = 0.01 + 0.92X_{1t} + e_t$.
- Step 2: ADF: $\Delta e_t = 0.00 0.50 e_{t-1} + 0.30 \Delta e_{t-1} + \mathrm{res}_t$
 - \rightarrow *t*-value of coefficient e_{t-1} : t = -3.5 < -3.4
 - ightarrow e_t stationary ightarrow X_{1t} and X_{2t} cointegrated
- ECM (after removing insignificant coefficients):

$$\Delta X_{1t} = 0.00 + 1.02 \Delta X_{1,t-1} + 0.46(X_{2,t-1} - \underline{0.92}X_{1,t-1}) + e_{1t}$$

$$\Delta X_{2t} = 0.02 - 0.45(X_{2,t-1} - \underline{0.92}X_{1,t-1}) + e_{2t}$$

• If $D_{t-1}=X_{2,t-1}-0.92X_{1,t-1}$ is positive, then 0.46>0 \rightarrow X_{1t} \uparrow \rightarrow $D_t=X_{2t}-0.92X_{1t}$ \downarrow -0.45<0 \rightarrow X_{2t} \downarrow \rightarrow $D_t=X_{2t}-0.92X_{1t}$ \downarrow

• Error correction mechanism acts on both variables. Error school of Economics

TRAINING EXERCISE 6.4

- Train yourself by making the training exercise (see the website).
- After making this exercise, check your answers by studying the webcast solution (also available on the website).

- Crafins