

School of Computer Engineering Laboratory Report

Subject: CZ 4031
Querying Databases Efficiently

Group ID: 26
Guo Jiachun
Xu Mengxing
Zhou Xinzi
19 October 2015

0. Introduction

In this laboratory project, PostgreSQL is used, because it is very fast, advanced and flexible and we want to learn about it.

Our testing database is running on a virtual machine in cloud cluster. The virtual machine runs Ubuntu 14.04 and PostgreSQL 9.3.9. It occupies one core of a 6 Core processor (Intel(R) Xeon(R) CPU E5-2630L v2 @ 2.40GHz) with 1 GB memory. The cloud cluster uses SSD hard disk, so the hard disk access time is fast.

1. Schema Design and Data Acquisition

1.1 Schema Design

We created 7 tables for this project. They are article, author, book, incollection, inproceedings, pub author, publication.

Table	Owner	Tablespace	Estimated row count
article	postgres		1303221
author	postgres		1647342
book	postgres		11683
incollection	postgres		34966
inproceedings	postgres		1629926
pub_author	postgres		10083785
publication	postgres		4636528

Figure 1 Table information in database

The ER diagram of the schema is provided below.

Figure 2 ER diagram

Please refer to our source codes for the detailed table design.

1.2 Data Acquisition

We used python and lxml to read the data from DBLP's xml file. We generated INSERT statements in SQL to files. And we executed the SQL files in PostgreSQL to import the data.

1.3 Assumptions

The DBLP does not provide the page number count for each publication directly. Base of our research, we create our own decode algorithm for calculating page numbers in data processing. Please refer to our Python code for more detail.

Articles and inproceedings may be published in either journal or conferences. We extracted this information from publication's attribute "pub_key" and added a new column "type" in relation publication. The value is "journals" for articles or inproceedings published in journal, and "conf" for those published in conferences. We used this attribute in Query 3, 4 and 9 For incollection and book, this attribute is not relevant.

2. Queries

2.1 Introduction to our queries

We used a python program to run the queries in the server and recorded the execution time automatically.

In Query 3A, we set X (author) to "Yan Zhang" and in Query 3B and Y (year) to 2012, we set X (author) to "Wei Wang", Y (year) to 2009 and Z (conference) to CSCWD.

Queries 8 and 9 are our custom queries, where Query 8 selects the authors who have written more than 4000 pages of publication and Query 9 selects the top ten prolistic authors in all the conferences.

Please refer to our appendix for the SQL queries and results.

2.2 Analysis

	Full (s)	Half (s)	Quarter (s)
Analyze	6.4986	4.7777	3.8524
Q1	0.3426	0.2291	0.1746
Q2A	22.6443	10.4221	5.1452
Q2B	32.6716	21.5816	8.5167
Q3A	4.1945	2.3362	0.8583
Q3B	0.7304	0.3856	0.2787
Q4A	0.4514	0.2315	0.1261
Q4B	0.4279	0.2179	0.1182
Q5	10.0300	3.4353	1.1560
Q6	101.9929	48.3984	18.0066
Q7	160.5099	87.4878	36.3926
Q8	23.3102	14.0500	5.9431
Q9	22.2335	8.2849	4.4764

Table 1 Running time of analysis and queries

Before running the nine queries, we ran an ANALYZE statement to help the query planner better understand whole database, which is the first row shown in the table 1. Table 1 also shows the

running time results of all the queries. As the database size decreases, the running time of each query also decreases.

However, running time of each query doesn't always change as the same percentage of the changes of database size. Based on the table 1, change percentages of running time can be calculated (table 2). Here the result of first step analysis is ignored.

	Half / Full	Quarter / Half
Q1	66.86%	76.21%
Q2A	46.03%	49.37%
Q2B	66.06%	39.46%
Q3A	55.70%	36.74%
Q3B	52.79%	72.29%
Q4A	51.29%	54.45%
Q4B	50.94%	54.23%
Q5	34.25%	33.65%
Q6	47.45%	37.21%
Q7	54.51%	41.60%
Q8	60.27%	42.30%
Q9	37.26%	54.03%

Table 2 proportional changes of running time

Some queries take less effect form the changes of database size such as the first query, which is just asking for statistical information of the tables. Although different queries have various running time changes, most are range from 40% to 60%, which is close to the change of database size.

In addition, most queries have a higher percentage change of running time in the second time from half to quarter. It could be that the tables required is small enough to be loaded into the memory at the same time.

Figure 3 proportional changes of running time

3. Build Index and Study the Effect of Index

3.1 Create index

For each attribute declared UNIQUE or PRIMARY KEY in a relation, PostgreSQL automatically creates an index for it. We are not supposed to remove any of these indexes ourselves, because otherwise the UNIQUE or PRIMARY KEY constraint would be invalid. Those indexes are author (aid), author (name), publication (pubid), publication (pubkey), article (pubid), book (pubid), inproceedings (pubid), incollection (pubid), and pub_author (pubid, aid).

Besides those indexes created automatically by PostgreSQL, we considered adding the following indexes as they may speed up some of our queries: pub_author (aid), pub_author (pubid), publication (year), publication (type), article (journal), inproceedings (booktitle). Those are attributes used in GROUP BY, ORDER BY, equality or range checking in JOIN or WHERE clauses in our queries.

PostgreSQL supports several index methods: btree, hash, gist, spgist and gin. We chose the default method, **btree**, as it can handle both equality and range queries, which is more suitable for our queries.

Please refer to our appendix for the SQL statements of creating the indexes mentioned above.

3.2 Analysis: single index

To analyze the impact of an index, we recorded the running time of certain queries after creating that particular index (No other additional indexes were created), and compared it with the statistics in 3a. We selected those queries which we guessed may be speeded up by the index. The following tables show the results. Rows in shade indicates that the query was speeded up after creating the index.

	Unindexed	<pre>pub_author (aid)</pre>	
<u>Q2A</u>	22.6443	<u>4.8952</u>	GROUP BY
Q2B	32.6716	30.3416	GROUP BY
<u>Q3A</u>	<u>4.1945</u>	<u>0.2721</u>	equality
<u>Q3B</u>	<u>0.7304</u>	<u>0.5568</u>	equality
Q4A	0.4514	0.7505	GROUP BY
Q4B	0.4279	0.6491	GROUP BY
Q6	101.9929	103.9190	GROUP BY
Q7	160.5099	146.1676	equality
Q8	23.3102	27.8302	GROUP BY
Q9	22.2335	20.0786	GROUP BY

	Unindexed	pub_author (pubid)	
Q2B	32.6716	30.0524	equality

Q3A	4.1945	2.9541	equality
Q3B	0.7304	0.6788	equality
Q4A	0.4514	0.5085	equality
Q4B	0.4279	0.3831	equality
Q6	101.9929	111.4576	equality
Q7	160.5099	159.4943	equality
Q8	23.3102	26.5071	equality
Q9	22.2335	18.0093	equality

	Unindexed	Publication (year)	
Q3A	4.1945	2.1675	equality
Q3B	0.7304	0.4656	equality
<u>Q5</u>	10.0300	0.5669	range

	Unindexed	Publication (type)	
Q3B	0.7304	0.4116	equality
Q9	22.2335	18.0141	equality

	Unindexed	Article (journal)	
<u>Q3B</u>	0.7304	0.2158	equality
<u>Q4A</u>	<u>0.4514</u>	0.2335	equality
<u>Q4B</u>	0.4279	0.2227	equality

	Unindexed	Inproceedings (booktitle)	
<u>Q3B</u>	0.7304	0.2100	equality
Q4A	<u>0.4514</u>	0.2189	equality
<u>Q4B</u>	0.4279	0.1888	equality

Table 3 Running time (in seconds) for queries on unindexed and indexed databases.

The results show that most of the selected queries were speeded up by creating a certain index, some remained relatively unchanged, and others were even slowed down. To understand these "inconsistent" results, we used the EXPLAIN command in PostgreSQL to see the query plan the planner created for each query, so as to check whether an index was used in the query plan. The underline in the tables explicitly indicates that the index was used in the query plan of the query. Then it becomes clear to us that, for each single index created, the use of index speeds up the query. For queries that did not use the index, the difference in running time may be due to inaccuracy in timing, influence of cache, etc. Besides, the creation of index may increase the plan time of the query planner as it gives the planner alternative plans to select from. We also noticed that the index **pub_author (pubid)** was not used in any of the selected queries. After examining the query plan, we found the planner used the index **pub_author (pubid, aid)**

created automatically because of primary key constraint. In PostgreSQL, multicolumn indexes can be used with query conditions that involve any subset of the index's columns. Thus the query planner may choose to use index **pub_author (pubid, aid)** rather than **pub_author (pubid)**. Another observation is that it is up to the query planner to choose whether to use the index or not.

3.3 Analysis: Multiple indexes

Besides single index, we also examine the influence of multiple indexes. The following tables shows the comparison result. Again, queries running faster after creating indexes are shaded, and indexes used in queries are underlined.

	Unindexed	pub_author.aid	Index used
		pub_author.pubid	
Q2B	32.6716	34.1007	-
Q6	101.9929	110.3635	
Q7	160.5099	156.9749	
Q8	23.3102	23.9592	

	Unindexed	pub_author.aid	Index used
		pub_author.pubid	
		publication.year	
<u>Q3A</u>	<u>4.1945</u>	<u>0.2578</u>	pub_author (aid)

	Unindexed	pub_author.aid pub_author.pubid publication.year publication.type inproceedings.booktitle article.journal	Index used
<u>Q3B</u>	<u>0.7304</u>	<u>0.3296</u>	pub_author (aid)

	Unindexed	pub_author.aid pub_author.pubid inproceedings.booktitle article.journal	Index used	Use article (journal) only	Use inproceedings (booktitle) only
<u>Q4A</u>	0.4514	0.0440	article (journal)	0.2335	0.2189
Q4B	0.4279	0.0334	inproceedings (booktitle)	0.2227	0.1888

	Unindexed	pub_author.aid	Index used
		pub_author.pubid	
		publication.type	
<u>Q9</u>	22.2335	22.9054	Publication (type)

Table 4 Running time (in seconds) for queries on database with multiple indexes.

We had the following observations:

1. Not all indexes were used.

- 2. When both index article (journal) and inproceedings (booktitle) were used in Q4A and Q4B, the queries were running much faster than only one of them was used.
- 3. Except for index **publication (type)** in Q9, all other indexes used speeded up the query. The reason why **publication (type)** slightly slowed down the query is probably that, publications with (type = 'conf') accounts for a fairly large portion of the whole table and using index incurs random IO. Thus, an explicit table scan which follows a sequential access pattern may require less disk IO and runs faster.

3.4 Conclusion for indexing

To sum up our discussion, we have the following conclusions:

- 1. Not all indexes created would be used. It is up to the query planner to choose whether to use the index or not.
- 2. In most cases, when the query planner decides to use an index, that index speeds up the query.
- 3. The use of index may not necessarily speed up the query. For queries which require scanning a large faction of the table, an explicit table scan is probably faster than using an index because it follows a sequential access pattern which requires less disk IO.

4. Advanced Part: Study the Effect of Cache

Since we are using PostgreSQL in this project. We would like to study the effect of cache by changing the size of shared buffers in the database.

In PostgreSQL, the setting value of shared buffers stands for the amount of memory the database server uses for shared memory buffer.

The default shared buffers size is set to 128 MB in our system. According to the PostgreSQL's manual, the shared buffers size should be set to less then 25% of the total physical memory. Our testing environment has 1 GB physical memory. So we run our queries against the un-indexed and indexed databases with shared buffers size set to 64 MB, 128 MB and 256 MB.

The preparation and running time (in seconds) is recorded below.

	64MB	128MB	256MB
Preparation	11.27486897	6.498558998	12.34864283
Q1	0.567446947	0.342626095	0.503908873
Q2A	50.64990592	22.64434218	43.68930697
Q2B	41.70719409	32.67162514	44.38928485
Q3A	3.404536963	4.194535017	3.303052902
Q3B	0.827649832	0.730427027	1.008148909
Q4A	0.755666971	0.451442957	0.474472046
Q4B	0.672959805	0.427881002	0.575708866
Q5	9.317544937	10.02999711	9.011621952
Q6	127.826443	101.992877	108.8653719
Q7	205.551213	160.5099189	187.273037
Q8	40.4421041	23.31022882	26.88228607
Q9	24.26582313	22.23353004	22.55949903

Table 5 Queries on un-indexed database with different shared buffers

	64MB - indexed	128MB - indexed	256MB - indexed
Preparation	303.1849	330.5378461	295.2369292
Q1	0.322520971	0.537644863	0.336706877
Q2A	5.845171928	5.964559793	5.336188078
Q2B	30.30313206	35.47177505	34.88507605
Q3A	0.23734498	0.625428915	0.349078894
Q3B	0.187938929	0.472841024	0.305557966
Q4A	0.04162097	0.09879303	0.094848871
Q4B	0.0308671	0.068110943	0.069792032
Q5	1.091463089	0.840282917	0.927626133
Q6	127.445266	137.328089	147.3873761
Q7	167.3221791	150.3407059	158.2906749
Q8	28.01797605	24.1016829	27.03102803
Q9	22.23181987	23.58637595	27.88078308

Table 6 Queries on indexed database with different shared buffers.

We coloured the background cells for the best performance test for each queries. We can see that for un-indexed queries, performances are significantly better with 128 MB shared buffers, while for indexed databases, performances are better on 64 MB shared buffers.

We drew another two graphs when setting the time for 64 MB shared buffers as unit 1.

Figure 4 Relative running time for queries on un-index database.

Figure 5 Relative running time for queries on index database.

The finding was a little bit surprising to us at first. And we found several potential reasons that may explain it.

Size of shared buffers is the amount of space PostgreSQL can use as temporary memory space to put together result set. They are not used as the traditional cache as some other database system may do. PostgreSQL actually will request for as many memory space as they want from the OS if it needs, as long as the amount does not exceed another configurable variable effective cache size, which will be usually set to a number larger than whole system memory.

The performance depends of the memory that can be used to store temporary result sets and can be used to cache origin data tuples. Since both share the same physical memory, we will achieve the best performance when we balance the two size well.

As in our result, Query 5, 7 & 8 will generate more temporary result sets. Thus they would prefer larger shared buffers. Other queries do not need such large shared buffers, so their performances are better when they can request for more memory to cache data records.

Appendix A. Table Schemas

```
CREATE TABLE author (
    aid
                SERIAL
                             PRIMARY KEY,
                TEXT
                             UNIQUE
    name
);
CREATE TABLE publication (
    pubid
                SERIAL
                             PRIMARY KEY,
    pubkey
                             UNIQUE,
                TEXT
    title
                TEXT,
    year
                INTEGER,
    type
                TEXT,
    total_page INTEGER
);
CREATE TABLE article (
    pubid
                INTEGER
                             PRIMARY KEY REFERENCES publication(pubid),
    journal
                TEXT,
    month
                INTEGER,
    volume
                TEXT,
    number
                TEXT
);
CREATE TABLE book (
    pubid
                INTEGER
                             PRIMARY KEY REFERENCES publication(pubid),
    publisher
                TEXT,
    isbn
                TEXT
);
CREATE TABLE incollection (
    pubid
                INTEGER
                             PRIMARY KEY REFERENCES publication(pubid),
    booktitle
                TEXT,
    publisher
                TEXT,
    isbn
                TEXT
);
CREATE TABLE inproceedings (
    pubid
                INTEGER
                             PRIMARY KEY REFERENCES publication(pubid),
    booktitle
                TEXT,
    editor
                TEXT
);
```

```
CREATE TABLE pub_author (
   pubid INTEGER REFERENCES publication(pubid),
   aid INTEGER REFERENCES author(aid),
   PRIMARY KEY (pubid, aid)
);
```

Appendix B. Queries

```
-- Query 1
(SELECT 'Article' AS type, count(*) AS num FROM article)
UNION
(SELECT 'Book' AS type, count(*) AS num FROM book)
(SELECT 'Incollection' AS type, count(*) AS num FROM incollection)
(SELECT 'Inproceeding' AS type, count(*) AS num FROM inproceedings);
-----
-- Query 2A
DROP VIEW IF EXISTS pub count 2A CASCADE;
DROP VIEW IF EXISTS pub_rank_2A CASCADE;
CREATE VIEW pub_count_2A AS(
 SELECT aid, count(*) AS num_pub
 FROM pub author
 GROUP BY aid
);
CREATE VIEW pub_rank_2A AS(
  SELECT aid, rank() OVER (ORDER BY num_pub DESC)
 FROM pub_count_2A
);
SELECT pub_rank_2A.rank, author.name
FROM pub rank 2A
JOIN author USING (aid)
WHERE rank <= 10
ORDER BY rank;
-- Query 2B
```

```
DROP VIEW IF EXISTS pub_count_2B CASCADE;
DROP VIEW IF EXISTS pub_rank_2B CASCADE;
CREATE VIEW pub count 2B AS(
  SELECT pub author.aid, SUM(total page) AS total page
 FROM pub author
 JOIN publication USING (pubid)
 GROUP BY aid
);
CREATE VIEW pub rank 2B AS(
  SELECT aid, rank() OVER (ORDER BY total_page DESC)
 FROM pub_count_2B
);
SELECT pub_rank_2B.rank, author.name
FROM pub rank 2B
JOIN author USING (aid)
WHERE rank <= 10
ORDER BY rank;
-- Query 3 : Author: Yan Zhang
-- Query 3A
DROP VIEW IF EXISTS pub_info_3A CASCADE;
CREATE VIEW pub info 3A AS(
 SELECT author.name, publication.*
 FROM pub author
 JOIN author ON pub_author.aid = author.aid
 JOIN publication ON pub author.pubid = publication.pubid
  WHERE author.name = 'Yan Zhang' and publication.year = 2012
);
SELECT * FROM pub info 3A
LEFT JOIN article ON pub info 3A.pubid = article.pubid
LEFT JOIN book ON pub info 3A.pubid = book.pubid
LEFT JOIN incollection ON pub_info_3A.pubid = incollection.pubid
LEFT JOIN inproceedings ON pub info 3A.pubid = inproceedings.pubid;
-----
```

```
-- Query 3B
DROP VIEW IF EXISTS pub_info_3B CASCADE;
CREATE VIEW pub_info_3B AS(
 SELECT author.name, publication.*
 FROM author
 JOIN pub author ON (author.aid = pub author.aid)
 JOIN publication ON (pub_author.pubid = publication.pubid)
 WHERE author.name = 'Wei Wang' AND year = 2009 AND type = 'conf'
);
SELECT * FROM pub info 3B
JOIN article USING (pubid)
WHERE article.journal = 'CSCWD';
SELECT * FROM pub_info_3B
JOIN inproceedings USING (pubid)
WHERE inproceedings.booktitle = 'CSCWD';
--Query 4A:
DROP VIEW IF EXISTS PVLDB 4 CASCADE;
DROP VIEW IF EXISTS KDD_4A CASCADE;
CREATE VIEW PVLDB 4 AS(
 SELECT pub_author.aid, count(*) AS PVLDB_num
 FROM pub author
 JOIN article ON pub_author.pubid = article.pubid
 WHERE article.journal = 'PVLDB'
 GROUP BY aid
 HAVING count(aid) >= 10
);
CREATE VIEW KDD 4A AS(
 SELECT pub_author.aid, count(*) AS KDD_num
 FROM pub_author
 JOIN inproceedings ON pub author.pubid = inproceedings.pubid
 WHERE inproceedings.booktitle = 'KDD'
  GROUP BY aid
);
```

```
-- Query 4A:
DROP VIEW IF EXISTS P10K5 CASCADE;
CREATE VIEW P10K5 AS(
 SELECT aid FROM PVLDB_4
 INTERSECT
 SELECT aid FROM KDD_4A WHERE KDD_num >= 5
);
SELECT name
FROM author JOIN P10K5 ON (author.aid = P10K5.aid);
-----
--Query 4B:
DROP VIEW IF EXISTS P10K0 CASCADE;
CREATE VIEW P10K0 AS(
 SELECT aid FROM PVLDB_4
 EXCEPT
 SELECT aid FROM KDD 4A
);
SELECT name
FROM author JOIN P10K0 ON (author.aid = P10K0.aid);
-----
--Query 5:
DROP VIEW IF EXISTS decade_1970 CASCADE;
DROP VIEW IF EXISTS decade 1980 CASCADE;
DROP VIEW IF EXISTS decade_1990 CASCADE;
DROP VIEW IF EXISTS decade 2000 CASCADE;
DROP VIEW IF EXISTS decade_2010 CASCADE;
CREATE VIEW decade 1970 AS(
  SELECT pubid FROM publication
 WHERE year >= 1970 and year <= 1979
);
CREATE VIEW decade 1980 AS(
 SELECT pubid FROM publication
 WHERE year >= 1980 and year <= 1989
);
```

```
CREATE VIEW decade_1990 AS(
  SELECT pubid FROM publication
  WHERE year >= 1990 and year <= 1999
);
CREATE VIEW decade 2000 AS(
 SELECT pubid FROM publication
  WHERE year >= 2000 and year <= 2009
);
CREATE VIEW decade_2010 AS(
  SELECT pubid FROM publication
 WHERE year >= 2010 and year <= 2019
);
(SELECT '1970-1979' AS decade, count(*) AS num FROM decade_1970)
UNION
(SELECT '1980-1989' AS decade, count(*) AS num FROM decade_1980)
(SELECT '1990-1999' AS decade, count(*) AS num FROM decade_1990)
(SELECT '2000-2009' AS decade, count(*) AS num FROM decade_2000)
UNION
(SELECT '2010-2019' AS decade, count(*) AS num FROM decade_2010);
-----
-- Query 6:
DROP VIEW IF EXISTS decade 1970 top author CASCADE;
DROP VIEW IF EXISTS decade_1980_top_author CASCADE;
DROP VIEW IF EXISTS decade_1990_top_author CASCADE;
DROP VIEW IF EXISTS decade 2000 top author CASCADE;
DROP VIEW IF EXISTS decade 2010 top author CASCADE;
CREATE VIEW decade 1970 top author AS(
  SELECT aid, count(pubid) AS pub_num
  FROM decade 1970 JOIN pub author USING (pubid)
  GROUP BY aid
);
```

```
CREATE VIEW decade_1980_top_author AS(
  SELECT aid, count(pubid) AS pub num
  FROM decade 1980 JOIN pub author USING (pubid)
 GROUP BY aid
);
CREATE VIEW decade_1990_top_author AS(
 SELECT aid, count(pubid) AS pub num
 FROM decade 1990 JOIN pub author USING (pubid)
 GROUP BY aid
);
CREATE VIEW decade 2000 top author AS(
  SELECT aid, count(pubid) AS pub_num
  FROM decade_2000 JOIN pub_author USING (pubid)
  GROUP BY aid
);
CREATE VIEW decade_2010_top_author AS(
  SELECT aid, count(pubid) AS pub num
  FROM decade_2010 JOIN pub_author USING (pubid)
 GROUP BY aid
);
 SELECT '1970 - 1979' AS decade, name
  FROM decade 1970 top author JOIN author ON
    (pub_num = (SELECT MAX(pub_num) FROM decade_1970_top_author) AND
decade_1970_top_author.aid = author.aid)
) UNION ALL (
  SELECT '1980 - 1989' AS decade, name
  FROM decade 1980 top author JOIN author ON
    (pub_num = (SELECT MAX(pub_num) FROM decade_1980_top_author) AND
decade_1980_top_author.aid = author.aid)
) UNION ALL (
  SELECT '1990 - 1999' AS decade, name
  FROM decade_1990_top_author JOIN author ON
    (pub num = (SELECT MAX(pub num) FROM decade 1990 top author) AND
decade 1990 top author.aid = author.aid)
) UNION ALL (
  SELECT '2000 - 2009' AS decade, name
```

```
FROM decade_2000_top_author JOIN author ON
    (pub num = (SELECT MAX(pub num) FROM decade 2000 top author) AND
decade_2000_top_author.aid = author.aid)
) UNION ALL (
  SELECT '2010 - 2019', name
  FROM decade 2010 top author JOIN author ON
    (pub_num = (SELECT MAX(pub_num) FROM decade_2010_top_author) AND
decade_2010_top_author.aid = author.aid)
);
--Query 7
DROP VIEW IF EXISTS collaborator CASCADE;
DROP VIEW IF EXISTS collaborator counts CASCADE;
CREATE VIEW collaborator AS(
 SELECT a.aid, b.aid as colla_id
  FROM pub author a
 JOIN pub_author b ON a.pubid = b.pubid and NOT a.aid = b.aid
);
CREATE VIEW collaborator count AS(
  SELECT aid, count(DISTINCT colla_id) AS colla_num
 FROM collaborator
 GROUP BY aid
  ORDER BY colla_num DESC
);
SELECT author.name
FROM collaborator_count
JOIN author
ON collaborator_count.aid = author.aid AND colla_num = (SELECT MAX(colla_num) FROM
collaborator_count);
-----
-- Query 8
-- select the authors who have writen more than 4000 pages of publication
DROP VIEW IF EXISTS page_count_8 CASCADE;
CREATE VIEW page_count_8 AS(
```

```
SELECT pub_author.aid, SUM(total_page) AS total_page
  FROM pub_author
  JOIN publication USING (pubid)
 GROUP BY aid
);
SELECT author.name, total page
FROM page_count_8
JOIN author USING (aid)
WHERE total_page >= 4000
ORDER by total_page DESC;
-----
-- Ouerv 9
-- select the top ten prolistic authors in all the conferences
DROP VIEW IF EXISTS pub_count_9 CASCADE;
DROP VIEW IF EXISTS pub_rank_9 CASCADE;
CREATE VIEW pub count 9 AS(
 SELECT pub_author.aid, count(*) as pub_num
 FROM pub author
 JOIN publication USING (pubid)
 WHERE publication.type = 'conf'
 GROUP BY aid
);
CREATE VIEW pub_rank_9 AS(
  SELECT aid, rank() OVER (ORDER BY pub num DESC)
 FROM pub_count_9
);
SELECT pub rank 9.rank, author.name
FROM pub_rank_9
JOIN author USING (aid)
WHERE rank <= 10
ORDER BY rank;
```

Appendix C. Indexes

```
CREATE INDEX pub_author_aid_index ON pub_author (aid);

CREATE INDEX pub_author_pubid_index ON pub_author (pubid);

CREATE INDEX publication_year_index ON publication (year);

CREATE INDEX publication_type_index ON publication (type);

CREATE INDEX article_journal_index ON article (journal);

CREATE INDEX inproceedings_booktitle_index ON inproceedings (booktitle);
```

Appendix D. Query Results

Query 1

type	num
Book	11683
Article	1303221
Incollection	34966
Inproceeding	1629926

Query 2A

name
H. Vincent Poor
Wei Wang
Yan Zhang
Wei Liu
Wen Gao
Thomas S. Huang
Philip S. Yu
Lajos Hanzo
Chin-Chen Chang
Yang Yang

Query 2B

name
Juan Carlos Rosete Fonseca
Joaquin Perez Meneses
Benjamin Barrera Tapia
Robert H. Klenke
Fadi Obeidat
Nicola Santoro
Paola Flocchini
Stefan Dobrev
Giuseppe Prencipe
Ming-Ting Sun

Query 3A

This query result is very large. The total result contains 128 records.

To display full result, we separate the result into several tables below.

Subclass Article

name	pubi d	pubkey	title	ye ar	type	total_ page	pubi d	journal	mo nth	volume	number
Yan Zhang	9522 8	journals/ijdsn/HeZFCB12	Wireless M		journ als	1	9522 8	IJDSN	2	2012	NULL
Yan Zhang	1569 75	journals/tsg/LiuNZY12	Aggrega ted		journ als	12		IEEE Trans. Smart Grid	1	3	4
Yan Zhang		journals/comsur/ZhangA WY12	On Wide Ar		journ als	24		IEEE Communications Surveys and Tutorials	11	14	4
Yan Zhang		journals/network/WangZ SGGHZ12	A two- dime		journ als	7	1843 19	IEEE Network	3	26	5
Yan Zhang		journals/network/WangK CCZ12	Charact eri		journ als	8	1844 94	IEEE Network	1	26	1
Yan Zhang		journals/network/ZhangY NLXG12	Cognitiv e		journ als	8	1846 01	IEEE Network	5	26	3
Yan Zhang		journals/ai/AsuncionLZZ 12	Ordered co		journ als	24	2398 89	Artif. Intell.	5	177-179	NULL
Yan Zhang	3379 18	journals/wcl/HuangCZ12	Optimal Po		journ als	4	3379 18	IEEE Wireless Commun. Letters	7	1	1
Yan Zhang		journals/ijprai/ZhangYG1 2a	Multi- Leve		journ als	1	3739 08	IJPRAI	1	26	6
Yan Zhang	3754 47	journals/ijprai/ZhangYG1 2	Face Recog		journ als	1	3754 47	IJPRAI	9	26	3
Yan Zhang		journals/tvt/CampoloMVZ 12	Modelin g P		journ als	15	4279 76	IEEE T. Vehicular Technology	1	61	2
Yan Zhang	4712 55	journals/jms/HubaZ12	Designin g		journ als	13	4-40	J. Medical Systems	10	36	6
Yan Zhang		journals/cn/PalomarARZ 12	The Peer's		journ als	11	5113 42	Computer Networks	10	56	17
Yan Zhang	5539 20	journals/cm/HeCBCZG1 2	Secure ser		journ als	9	5539 20	IEEE Communications Magazine	9	50	8
Yan Zhang		journals/concurrency/Nin gLYZ12	Dual crypt		journ als	15		Concurrency and Computation: Practice and Experience	10	24	17
Yan Zhang	6440 37	journals/monet/LiuXZYL1 2	Energy- Eff		journ als	11	6440 37	MONET	2	17	1
Yan Zhang	6614 24	journals/tgrs/QiuHZLQ12	Absolute R		journ als	10		IEEE T. Geoscience and Remote Sensing	11	50	12
Yan Zhang		journals/tgrs/WangFZW WJZHLLZYL12	Cross- Cali		journ als	13		IEEE T. Geoscience and Remote Sensing	11	50	12
Yan Zhang		journals/bmcsb/ZhangLG 12	In silico		journ als	1	6823 96	BMC Systems Biology	1	6	S-1
Yan Zhang		journals/nar/LvLSWLLX WWZ12	Disease Met		journ als	6	6895 76	Nucleic Acids Research	4	40	Database -lssue
Yan Zhang		journals/corr/abs-1201- 0207	A Hop- by-h		journ als	1	7090 27	CoRR	10	abs/1201 .0207	NULL
Yan Zhang		journals/corr/abs-1212- 2257	A Process		journ als	1	7121 22	CoRR	1	abs/1212 .2257	NULL
Yan Zhang		journals/corr/abs-1206- 4781	Towards a		journ als	1		CoRR	10	abs/1206 .4781	NULL
Yan Zhang		journals/corr/abs-1212- 6813	Merging Pr		journ als	1	7458 44	CoRR	1	abs/1212 .6813	NULL
Yan Zhang		journals/iet- net/MuiDHLZ12	Optimal an		journ als	11	7730 12	IET Networks	3	1	2
Yan Zhang	7970 60	journals/tits/WangLFZ12	An IEEE 80		journ als	10		IEEE Transactions on Intelligent Transportation Systems	6	13	2
Yan Zhang		journals/iet- wss/YuZYXC12	Distribut e		journ als	12	8436 23	IET Wireless Sensor Systems	3	2	1
Yan Zhang	9427 19	journals/ipm/Zhang12	The impact		journ als	13	9427 19	Inf. Process. Manage.	11	48	1
Yan Zhang	9834 99	journals/lgrs/WangLZ12	Applicati o		journ als	5	9834 99	IEEE Geosci. Remote Sensing Lett.	5	9	4
Yan Zhang		journals/ieicet/HuangML ZY12	Interfere n		journ als	10	1041 237	IEICE Transactions	1	95-B	12

Yan Zhang	1098 765 journals/jnca/GunesZ12	In memory	20 journ 12 als		765	J. Network and Computer Applications	2	35	2
Yan Zhang	1113 504 journals/ires/Zhang12	College st	20 journ 12 als	1	1113 504	Inf. Res.	4	17	3
Yan Zhang	1129 368 journals/tcs/XinMZW12	Almost opt	20 journ 12 als	14	1129 368	Theor. Comput. Sci.	11	439	NULL
Yan Zhang	1132 754 journals/wc/YuZLXSG12	Second ary	20 journ 12 als	8	1132 754	IEEE Wireless Commun.	7	19	2
Yan Zhang	1185 journals/ijcomsys/Wang 505 WYYZ12	Trust- awar	20 journ 12 als	21	1185 505	Int. J. Communication Systems	10	25	10
Yan Zhang	1224 774 journals/jcp/SunHDMZ12	Intellige n	20 journ 12 als	8	1224 774	JCP	1	7	11
Yan Zhang	1240 645 journals/icl/HuangCZZ12	Energy- Eff	20 journ 12 als	4	1240 645	IEEE Communications Letters	4	16	4
Yan Zhang	1242 655 journals/icl/MaSZ12	Green Comm	20 journ 12 als	4	1242 655	IEEE Communications Letters	12	16	12

Inpreceedings

Imprece	camp								
name	pubid	pubkey	title	yea r	typ e	total_pa ge	pubid	booktitle	edito r
Yan Zhang		conf/globecom/ZhangZZLL1 2	Peer selec		con f	7	135923 9	GLOBECOM	NUL L
Yan Zhang		conf/globecom/ZhangAWY1	SDRE: Sele		con f	6	136121 1	GLOBECOM	NUL L
Yan Zhang		conf/globecom/SongZZTBC 12	A Playback	201	con f	6	137028 2	GLOBECOM	NUL L
Yan Zhang	139820 5	conf/whiceb/SongHYZ12	The Design		con f	1	139820 5	WHICEB	NUL L
Yan Zhang	142703 8	conf/ihi/ZhangWHW12	Health inf		con f	10	142703 8	IHI	NUL L
Yan Zhang		conf/ihi/ZhangMYF12	Panel on s		con f	2	142715 2	IHI	NUL L
Yan Zhang	146088 3	conf/vtc/MaSZ12	Flow Split		con f	5	146088 3	VTC Fall	NUL L
Yan Zhang		conf/grc/MaLCZL12	Research o		con f	4	150505 5	GrC	NUL L
Yan Zhang		conf/csee/MaoJSZ12	A New Mode		con f	5	151619 6	CSEE&T	NUL L
Yan Zhang	155540 6	conf/ccs/HuKBZ12	Constraint		con f	2	155540 6	ASIACCS	NUL L
Yan Zhang	156980 3	conf/icnc/LiuZZPC12	Research o		con f	5	156980 3	ICNC	NUL L
Yan Zhang		conf/icnc/DingSWZ12	Improved a		con f	5	157134 3	ICNC	NUL L
Yan Zhang	157383 6	conf/apscc/GaoZZJ12	Research F		con f	4	157383 6	APSCC	NUL L
Yan Zhang	158144 7	conf/pdcat/ZhangZLZTC12	Bidirectio		con f	4	158144 7	PDCAT	NUL L
Yan Zhang		conf/brain/ZhangY12	Rule Measu		con f	12	159704 4	Brain Informatics	NUL L
Yan Zhang		conf/cyberc/XingZLF12	Sequential		con f	6	159788 2	CyberC	NUL L
Yan Zhang		conf/iswcs/ZhangJ12	Performanc		con f	5	160354 9	ISWCS	NUL L
Yan Zhang		conf/ccpr/ZhangL12	Backgroun d		con f	8	163603 9	CCPR	NUL L
Yan Zhang	168858 8	conf/isscc/HarpeZDPG12	A 7-to-10b		con f	3	168858 8	ISSCC	NUL L
Yan Zhang	172636 6		Blind clos		con f	4	172636 6	ISCAS	NUL L
Yan Zhang	182023 2	conf/indin/ZhangC12	A closed-l		con f	5	182023 2	INDIN	NUL L

Yan Zhang	182806 9	conf/fmcad/ZhangSS12	Piecewise		con f	8	182806 9	FMCAD	NUL L
Yan Zhang	183145 2	conf/apweb/MaZ12	Who Resemb	201 2	con f	8	183145 2	APWeb	NUL L
Yan Zhang		conf/aici/LiuXZLP12	An Archite		con f	8	191353 5	AICI	NUL L
Yan Zhang		conf/skg/ZhangJS12	Particle M		con f		196487 3		NUL L
Yan Zhang	202544 0	conf/aaai/AsuncionZZ12	Ordered Co		con f	1	202544 0	AAAI	NUL L
Yan Zhang	208165 0	conf/itst/ZhangSLH12	Communic at		con f	4	208165 0	ITST	NUL L
Yan Zhang	208398 2	conf/sigcse/ScaffidiDZ12	How well d		con f	6	208398 2	SIGCSE	NUL L
Yan Zhang	212169 9	conf/ausai/ZhouZ12	RDL: Enhan	201	con f	12	9	Australasian Conference on Artificial Intelligence	NUL L
Yan Zhang	214616 7	conf/sac/HornfeckZL12	Philos: a	201	con f		214616 7		NUL L
Yan Zhang		conf/icc/SongZZTB12	A playback	2	con f	6	215617 6	ICC	NUL L
Yan Zhang	215717 7	conf/icc/ZhangAWY12	AFStart: A		con f	5	215717 7	ICC	NUL L
Yan Zhang	215965 1	conf/icc/ZhouZRGCZ12	Quality-de		con f		215965 1		NUL L
Yan Zhang	216539 4	conf/icc/ZhangA12	HERO: Hier	201	con f	5	216539 4	ICC	NUL L
Yan Zhang		conf/fskd/YangZ12	Available	201	con f	5	224397 9	FSKD	NUL L
Yan Zhang	224600 6	conf/fskd/WeiZ12	Event-rela	201	con f		224600 6		NUL L
Yan Zhang	224706 0	conf/fskd/KongCZK12	The self-r		con f		224706 0		NUL L
Yan Zhang	229194 7	conf/amia/AbirachedLXZ12	Designing		con f		229194 7		NUL L
Yan Zhang	229504 3	conf/amia/ParkAZ12	A Theoreti		con f		229504 3		NUL L
Yan Zhang	230074 8	conf/iwcmc/ZhangYZ12	Performanc	201	con f			IWCMC	NUL L
Yan Zhang	230080 6	conf/iwcmc/LiuZYX12	Asynchrono		con f			IWCMC	NUL L
Yan Zhang	U		An Approac		con f			ICCSA (4)	NUL L
Yan Zhang	237142 5	conf/icics/ZhangF12	Efficient	2			237142 5		NUL L
Yan Zhang		conf/incos/MaoZXLW12	ET-DMD: An	2			239236 4		NUL L
Yan Zhang	241431 3	conf/isw/HuKBZ12	Compliance	2	con f		241431 3		NUL L
Yan Zhang	4		Forgetting		con f	1	243450 4	KR	NUL L
Yan Zhang	243893 6	conf/wcnc/JiangHXSZ12	A two-hop		con f		243893 6		NUL L
Yan Zhang	244014 2	conf/wcnc/LiLZXHZXW12	Capacity a		con f	5	244014 2	WCNC	NUL L
Yan Zhang		conf/wcnc/YangFZYX12	Optimal wi		con f		244137 9		NUL L
Yan Zhang		conf/wcnc/ZhangD12	Wake-up ra	2	con f		244195 5		NUL L
Yan Zhang	244266 7	conf/wcnc/ShaoLZF12	A multi-pr	201	con f		244266 7		NUL L
Yan Zhang	244377 0	conf/wcnc/YuZC12	Hybrid spe	2			244377 0		NUL L
Yan Zhang	244686 9	conf/adma/YanZ12	News Senti		con f	12	244686 9	ADMA	NUL L

Yan Zhang	245006 9	conf/iccnc/JinguoJCZ12	Fine-grain	201	con f	5	245006 9	ICNC	NUL L
Yan Zhang	246610 3	conf/chi/ParkAZ12	A framewor	201	con f	6		CHI Extended Abstracts	NUL L
Yan Zhang	249276 7	conf/waim/ZhangYW12	Range Quer	201	con f	13	249276 7	WAIM	NUL L
Yan Zhang		conf/ias/ZhangHL12	Adaptive F	201 2	con f	10	252700 8	IAS (1)	NUL L
Yan Zhang	259271 2	conf/jcdl/YanHTZL12	To better	201 2	con f	10	259271 2	JCDL	NUL L
Yan Zhang	261574	conf/chinagrid/ZhangZCGH ZL12	A Hadoop- b	201 2	con f	6	261574 0	ChinaGrid	NUL L
Yan Zhang	261980 1	conf/icpads/ZhangZSYL12	Time- Stamp	201 2	con f	2	261980 1	ICPADS	NUL L
Yan Zhang	269994 3	conf/pakdd/YanYWZL12	Hierarchic	201 2	con f	12	269994 3	PAKDD (2)	NUL L
Yan Zhang	270545 5	conf/ieaaie/HuKBZ12	Tracking a	201 2	con f	10	270545 5	IEA/AIE	NUL L
Yan Zhang	273435 1	conf/cikm/KongJYXZ12	Ranking ne	201 2	con f	5	273435 1	CIKM	NUL L
Yan Zhang		conf/cikm/XuKZ12	A picture	201 2	con f	4	273519 9	CIKM	NUL L
Yan Zhang	273615 0	conf/cikm/WuJZ12	Serial pos	201 2	con f	4	273615 0	CIKM	NUL L
Yan Zhang	279555		Demand sid	201 2	con f	6	279555 6	ISGT Europe	NUL L
Yan Zhang	283797 5	conf/iscide/ZhuZSY12	Face Recog	201 2	con f	7	283797 5	IScIDE	NUL L
Yan Zhang	283818 6	conf/iscide/ChenZSY12	Fusing Dis	201 2	con f	7	283818 6	IScIDE	NUL L
Yan Zhang	288043 2	conf/airs/YanHZ12	Actively M	201 2	con f	11	288043 2	AIRS	NUL L
Yan Zhang	288710 8	conf/apsec/ZhangZ12	Hybrid Int	201	con f	10	288710 8	APSEC	NUL L

Query 3B

pubid	name	pubkey	title	year	type	total_page	booktitle	editor
2600087	Wei Wang	conf/cscwd/ChenWW09	Bridging shape grammar and	2009	conf	6	CSCWD	NULL
2600420	Wei Wang	conf/cscwd/WangWW09	Motivated learning agent	2009	conf	6	CSCWD	NULL
2601015	Wei Wang	conf/cscwd/WangW09a	Improving mutual	2009	conf	6	CSCWD	NULL

Query 4A

•
name
Philip S. Yu
Jiawei Han
Lei Chen 0002
Gautam Das
Xifeng Yan
Gao Cong
Johannes Gehrke

27

Anthony K. H. Tung

Query 4B

Query 4B
Divyakant Agrawal
Jignesh M. Patel
Stefan Manegold
Amr El Abbadi
Jeffrey F. Naughton
Amol Deshpande
Samuel Madden
Shivnath Babu
Joseph M. Hellerstein
Mohamed F. Mokbel
Christian S. Jensen
Wenfei Fan
Volker Markl
Ihab F. Ilyas
Christopher R
Michael Benedikt
David Maier
Christoph Koch
Jens Dittrich
Ziyang Liu
Ugur etintemel
Michael J. Franklin
Thomas Neumann 0001
Magdalena Balazinska
Alon Y. Halevy
Paolo Papotti
Dan Suciu
Stanley B. Zdonik
Tova Milo
Vivek R. Narasayya
Anastasia Ailamaki
Ippokratis Pandis
Neoklis Polyzotis
Tim Kraska
Daniel Deutch
Yanlei Diao
Saravanan Thirumuruganathan

Query 5

decade	num
1980-1989	102109
1970-1979	31388
1990-1999	375095
2000-2009	1260867
2010-2019	1235047

Query 6

decade	name
2010_2019	Wei Wang
1980-1989	Azriel Rosenfeld
	Kang G. Shin
2000-2009	Wen Gao
1970-1979	Jeffrey D. Ullman

Query 7

name Wei Wang

Query 8

name	total_page
Juan Carlos Rosete Fonseca	562040
Joaquin Perez Meneses	562020
Benjamin Barrera Tapia	562009
Robert H. Klenke	292227
Fadi Obeidat	292016
Nicola Santoro	102849
Paola Flocchini	102025
Stefan Dobrev	100984
Giuseppe Prencipe	100658
Ming-Ting Sun	35122
Jun Xie	34740
Rogrio Schmidt Feris	34222
Andrew S. Tanenbaum	19922
Vassil Yorgov	16776
Hermann A. Maurer	15130
Shu-Ching Chen	14681
Mei-Ling Shyu	14438

13357
13321
13251
13217
13150
13092
13008
12938
12927
12920
12741
12540
12415
12352
12177
12129
12045
12011
11639
11511
11503
11256
11227
11153
10910
10856
10341
10191
9939
9483
9294
8998
8965
8956
8728
8720
8630
8542

Stephen Wolfram	8519
Wil M. P. van der Aalst	8487
Gottfried Vossen	8462
Yan Zhang	8340
Dov M. Gabbay	8157
Kai-Uwe Sattler	8154
Wei Wang	8113
H. Vincent Poor	8055
Wei Liu	7927
Christoph Meinel	7758
David Salomon	7558
Micha Sharir	7435
Jiawei Han	7400
Jos Meseguer	7367
Hector Garcia-Molina	7201
Ronald R. Yager	7153
Sushil Jajodia	6967
Wen Gao	6934
Abraham Silberschatz	6910
Hartmut Ehrig	6909
Ellen Siever	6800
Ben Shneiderman	6751
Stephen Spainhour	6715
Danny Goodman	6665
Moshe Y. Vardi	6625
Ajith Abraham	6613
Steven Roman	6589
Thomas S. Huang	6576
Juraj Hromkovic	6503
Andreas Heuer	6495
Jun Liu	6482
Henri Prade	6425
Kang G. Shin	6414
Ralf Steinmetz	6401
Michael T. Goodrich	6374
Mario Piattini	6371
Francisco Herrera	6367
Chin-Chen Chang	6333

Karlheinz Meier	6316
Sajal K. Das	6314
Johannes Schemmel	6312
Ugo Montanari	6311
Daniel Brderle	6307
Kaoru Hirota	6294
Tao Li	6240
David A. Karp	6166
Arto Salomaa	6155
Hai Jin	6151
Azriel Rosenfeld	6151
Yu Zhang	6123
Yang Yang	6089
Jens Kremkow	6063
Jing Li	6059
Wei Zhang	6051
Eric Mller	6051
Joseph Y. Halpern	6049
Johannes Bill	6019
Bernhard Kaplan	6013
Xiaodong Wang	5993
Grady Booch	5969
Krishnendu Chakrabarty	5914
Lei Wang	5906
Donald E. Knuth	5889
Didier Dubois	5881
Roberto Tamassia	5873
Christos H. Papadimitriou	5864
David Harel	5838
Qing Li	5819
Thomas Eiter	5814
Alan R. Hevner	5761
Jrgen Gulbins	5756
Nicholas R. Jennings	5725
Moti Yung	5721
Ben Albahari	5704
Jan Treur	5694
Saharon Shelah	5650

Oded Goldreich	5637
Wolfgang A. Halang	5593
Bruce Schneier	5593
Reinhard Klette	5590
Chris J. Date	5561
Noga Alon	5507
Jian Li	5504
Ying Zhang	5490
Dan Hurwitz	5485
Rolf Drechsler	5483
John Mylopoulos	5469
Yannis Manolopoulos	5456
Kurt Mehlhorn	5439
Shamkant B. Navathe	5437
Amir Pnueli	5424
Tao Jiang	5410
Claudia Eckert	5405
Manfred Broy	5400
Yu Lei	5394
Michel Raynal	5391
Li Zhang	5371
Pankaj K. Agarwal	5339
Georg Gottlob	5329
Tharam S. Dillon	5296
Pascal Van Hentenryck	5258
Jing Qin	5253
Zohar Manna	5249
Leonard Barolli	5245
Edwin R. Hancock	5243
Chao Wang	5241
Bjarne Stroustrup	5224
Mahmut T. Kandemir	5223
Xuesong Qiu	5221
Bin Wang	5201
Luca Benini	5194
Georgios B. Giannakis	5183
Erik D. Demaine	5147
Yong Wang	5142

Victor C. M. Leung	5120
Jennifer Widom	5104
Oscar Castillo	5078
Hui Li	5074
Mario Gerla	5069
Bin Li	5059
Deke MacClelland	5038
Yan Chen	5038
Kishor S. Trivedi	5029
Jun Zhang	5011
Ming Li 0001	4999
Peter J. Stuckey	4998
Alberto L. Sangiovanni-Vincentelli	4961
Gonzalo Navarro	4951
Peng Li	4951
John C. Mitchell	4944
Christos Faloutsos	4943
Luoming Meng	4942
Jie Wu 0001	4940
Ivar Jacobson	4939
Xin Yao	4936
Hao Wang	4926
Paul G. Spirakis	4922
Jing Liu	4903
James F. Kurose	4893
Jack Dongarra	4892
Yong Liu	4874
Thomas A. Henzinger	4851
John-Jules Ch. Meyer	4841
Hans-Peter Seidel	4840
Makoto Takizawa	4838
Azzedine Boukerche	4836
Horst Bunke	4829
Leonidas J. Guibas	4820
CC. Jay Kuo	4818
Yang Liu	4815
Schahram Dustdar	4815
Eitan Altman	4804

Kaushal Chari	4800
Sartaj Sahni	4793
Luc J. Van Gool	4775
Bart Preneel	4749
Carlo Ghezzi	4741
Yong Zhang	4734
Robbie Allen	4731
Rama Chellappa	4712
Nancy A. Lynch	4701
Zhili Wang	4694
V. S. Subrahmanian	4683
Jiannong Cao	4679
Arnold Robbins	4677
Shelley Powers	4672
Stuart J. Russell	4670
Guoyan Zhang	4664
Min Chen	4654
Xin Li	4649
Josef Kittler	4647
Jing Wang	4639
Paul Lomax	4638
Bo Zhang	4628
Leon O. Chua	4612
Wei Li	4611
Qing Wang	4595
Andrzej Cichocki	4580
Alan M. Frieze	4572
Mohamed-Slim Alouini	4570
Willy Susilo	4568
Jian Yang	4567
Jun Wang	4548
Gheorghe Paun	4545
David Peleg	4545
Shams Qazi	4531
Klaus Pohl	4520
Anil K. Jain	4513
Xuemin Shen	4510
Patricia Melin	4501

Peng Zhang	4496
Ramez Elmasri	4489
Sarit Kraus	4480
Jian Wang	4475
Jos Duato	4465
Lei Zhang	4464
Jan Mendling	4464
Sanjay Jain	4456
Vijay Kumar	4448
Francky Catthoor	4446
Preston Gralla	4437
Xin Wang	4435
Xi Chen	4431
Simson L. Garfinkel	4428
Joost-Pieter Katoen	4423
Piet Demeester	4402
Rachid Guerraoui	4401
Oscar H. Ibarra	4399
Xiang Li	4384
Fangyan Dong	4384
Albert Y. Zomaya	4382
Tao Zhang	4378
Keith W. Ross	4364
Rudolf Kruse	4361
Edmund M. Clarke	4360
John A. Vince	4360
Zhongming Zhao	4358
Qian Zhang	4349
Kalyanmoy Deb	4346
Patrick Valduriez	4346
Yves Robert	4341
Licheng Jiao	4340
Kaushik Roy	4338
Michael A. Arbib	4334
Paul M. B. Vitnyi	4328
Edward A. Lee	4327
Bernhard Rumpe	4318
George A. Anastassiou	4312

Tom Christiansen	4299
K. J. Ray Liu	4296
Berthold Daum	4294
Manfred Sommer	4290
Nathan Patwardhan	4288
Dines Bjrner	4283
Peter Widmayer	4280
Hong Liu	4277
Thomas Rauber	4276
Alan Burns	4267
Bruno Courcelle	4250
Evangelos Kranakis	4249
Flemming Nielson	4245
Giovanni De Micheli	4244
Wei Zhao	4241
Frank Klawonn	4241
Zhongzhi Shi	4236
Wei Chen	4235
lan F. Akyildiz	4227
David Eppstein	4218
Yan Wang	4214
Li Chen	4211
Jeffrey Xu Yu	4210
Edward R. Dougherty	4205
Jan A. Bergstra	4202
Yang Li	4201
Derick Wood	4198
Krzysztof R. Apt	4192
Fatos Xhafa	4186
Martn Abadi	4185
Kathy Sierra	4183
Hong Zhang	4179
Ying Wang	4174
Martin Wirsing	4163
Gang Li	4160
Ping Wang	4159
Toshio Fukuda	4155
Joost Engelfriet	4139

Daniel Thalmann	4138
Gerhard Weikum	4135
Hans-Peter Kriegel	4128
Guanrong Chen	4127
Jingchun Sun	4126
Ling Liu	4121
Elliotte Rusty Harold	4106
Peng Wang	4106
Ying Liu	4104
Hsinchun Chen	4100
Yang Xiao	4094
Peilin Jia	4086
Charu C. Aggarwal	4085
Raghu Ramakrishnan	4070
Shlomo Shamai	4067
Donald F. Towsley	4067
Jingjing Wang	4064
Heinz-Peter Gumm	4063
Niklaus Wirth	4062
Jzsef Bukszr	4055
Frank Leymann	4053
Tao Wang	4053
Yu Liu	4050
Nachum Dershowitz	4050
Xiaolong Wang	4035
Zoltn sik	4035
Ying Li	4030
Yan Li	4030
Edwin J. C. G. van den Oord	4027
Ayman H. Fanous	4026
David Zhang	4025
Kenneth S. Kendler	4024
Xiangning Chen	4019
Philippe Flajolet	4018
Kian-Lee Tan	4017
Alfons Kemper	4015
Bradley T. Webb	4015
Aeleen Frisch	4010

David Pogue	4009
Michael Wooldridge	4008
Jie Li	4006

Query 9

rank	name
1	Wen Gao
2	Wei Wang
3	Wei Liu
4	Yan Zhang
5	Philip S. Yu
6	Thomas S. Huang
7	Edwin R. Hancock
8	Jiawei Han
9	Wei Zhang
10	Yang Yang

Appendix E. Create Index Statements

```
CREATE INDEX pub_author_aid_index ON pub_author (aid);
CREATE INDEX pub_author_pubid_index ON pub_author (pubid);
CREATE INDEX publication_year_index ON publication (year);
CREATE INDEX publication_type_index ON publication (type);
CREATE INDEX article_journal_index ON article (journal);
CREATE INDEX inproceedings_booktitle_index ON inproceedings (booktitle);
```