10/511174 DT04 Rec'd PCT/PTO 1 5 OCT 2004

SPECIFICATION

1

Piperidine Derivatives With CCR3 Antagonism

Technical Field

The present invention relates to piperidine derivatives with CCR3 (C-C Chemokine Receptor 3) antagonism. More specifically, the invention relates to CCR3 antagonists with anticipated effects as therapeutic and/or prophylactic agents for allergic conditions such as bronchial asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis or allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis or Crohn's disease, diseases whose major factor is accelerated or sustained increase or tissue infiltration of eosinophils, basophils or activated T cells, such as eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia or eosinophilic leukemia, or AIDS (Acquired Immune Deficiency Syndrome) caused by infection with HIV (Human Immunodeficiency Virus).

Background Art

In recent years, the concept that allergic conditions such as bronchial asthma are fundamentally diseases of chronic inflammation has been established, and accumulation of eosinophils at local sites of inflammation is considered to be a major feature thereof (for example, see Busse, W.W. J. Allergy Clin. Immunol. 1998, 102, S17-S22; Fujisawa, T. Gendai Iryou 1999, 31, 1297). For example, administration of anti-adhesion molecule (ICAM-1) antibodies in monkey asthma models inhibits accumulation of eosinophils and

suppresses late asthmatic symptoms, suggesting the importance of eosinophils in allergic conditions (Wegner, C.D. et al. Science, 1990, 247, 456).

Eotaxins have been identified as specific chemotactic factors inducing accumulation and/or migration of eosinophils (eosinophil-specific chemokines) (for example, see Jose, P.J., et al. J. Exp. Med. 1994, 179, 881; Garcia-Zepda, E.A. et al. Nature Med. 1996, 2, 449; Ponath, P.D. et al. J. Clin. Invest. 1996, 97, 604; Kitaura, M. et al. J. Biol. Chem. 1996, 271, 7725). It has also been demonstrated that eotaxins bind to CCR3 expressed on eosinophils, exhibiting an effect of promoting accumulation and/or migration of eosinophils. In addition, chemotactic factors such as eotaxin-2, RANTES (abbreviation for Regulated on Activation, Normal T-cell Expressed and Secreted) antibodies, MCP-2 (abbreviation for Monocyte Chemoattractant Protein-2), MCP-3 (abbreviation for Monocyte Chemoattractant Protein-3), MCP-4 (abbreviation for Monocyte Chemoattractant Protein-4) and the like are also known to exhibit effects similar to those of eotaxins via CCR3, although their potency is weaker than that of eotaxins (for example, see Kitaura, M. et al. J. Biol. Chem. 1996, 271, 7725; Daugherty, B. L. et al. J. Exp. Med. 1996, 183, 2349; Ponath, P.D. et al. J. Exp. Med. 1996, 183, 2437; Hiath, H. et al. J. Clin. Invest. 1997, 99, 178; Patel, V.P. et al. J. Exp. Med. 1997, 185, 1163; Forssmann, U. et al. J. Exp. Med. 185, 2171, 1997).

The reported effects of eotaxins on eosinophils include not only inducing migration of eosinophils, but also effects related to eosinophil activation, such as augmenting expression of adhesion molecule receptor (CD11b) (for example, see Tenscher, K. et al. Blood, 1996, 88, 3195), accelerating production of active oxygen (for

example, see Elsner, J. et al. Eur. J. Immunol. 1996, 26, 1919), and promoting release of EDN (Eosinophil-Derived Neurotoxin) (see El-Shazly, et al. Int. Arch. Allergy Immunol. 1998, 117 (suppl.1), 55). Eotaxins have also been reported to accelerate liberation of eosinophils and their precursors from the bone marrow into the blood (for example, see Palframan, R.T. et al. Blood 1998, 91, 2240).

Numerous reports indicate that eotaxins and CCR3 play important roles in allergic conditions such as bronchial For example, it has been reported that infiltration of eosinophils is suppressed by anti-eotaxin antibodies in mouse asthma models (Gonzalo, J.-A. et al. J. Clin. Invest. 1996, 98, 2332), that infiltration of eosinophils is suppressed by anti-eotaxin antiserum in mouse cutaneous allergy models (Teixeira, M.M. et al. J. Clin. Invest. 1997, 100, 1657), that formation of pulmonary granulomas is suppressed by anti-eotaxin antibodies in mouse models (see Ruth, J.H. et al. J. Immunol. 1998, 161, 4276), that infiltration of eosinophils is suppressed in eotaxin gene-deficient mouse asthma models and interstitial keratitis models (see Rothenberg, M.E. et al. J. Exp. Med. 1997, 185, 785), that expression of eotaxins and CCR3 is augmented on both the genetic and protein level in asthmatic bronchi compared to healthy controls (see Ying, S. et al. Eur. J. Immunol. 1997, 27, 3507), and that eotaxin expression is augmented in nasal subepithelial tissue of chronic sinusitis patients (Am. J. Respir. Cell Mol. Biol. 1997, 17, 683).

Also, based on reports that eotaxins are abundantly expressed at sites of inflammation in the inflammatory bowel diseases of ulcerative colitis and Crohn's disease (see Garcia-Zepda, E.A. et al. Nature Med. 1996, 2, 449), it is believed that eotaxins also play an important role in

such inflammatory bowel diseases.

These data strongly suggest that eotaxins, via CCR3mediated accumulation and activation of eosinophils at lesion sites, are intimately involved in the onset, progression or sustaining of diseases wherein eosinophils are closely associated with developing lesions, including, for example, allergic conditions such as bronchial asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis or allergic conjunctivitis, inflammatory bowel diseases such as ulcerative colitis or Crohn's disease, and eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia or eosinophilic leukemia. In addition, since CCR3 is expressed not only on eosinophils but also on basophils and Th2 lymphocytes, and eotaxins induce intracellular calcium ion concentration increase and migration of these cells, it is believed that eotaxins and CCR3 are involved in the onset, progression and sustaining of diseases associated with these cells, such as allergic conditions, also via accumulation and activation of basophils and Th2 lymphocytes (for example, see Sallusto, F. et al. Science 1997, 277, 2005; Gerber, B.O. et al. Current Biol. 1997, 7, 836; Sallusto, F. et al. J. Exp. Med. 1998, 187, 875; Uguccioni, M. et al. J. Clin. Invest. 1997, 100, 1137; Yamada, H. et al. Biochem Biophys. Res. Commun. 1997, 231, 365).

Consequently, compounds which inhibit binding of CCR3 to CCR3 ligands such as eotaxins, or in other words CCR3 antagonists, should inhibit the effects of the CCR3 ligands on target cells and are therefore expected be useful as therapeutic and/or prophylactic agents for allergic conditions and inflammatory bowel disease. Yet, no agents

having such activity have been known.

Moreover, it has also been reported that HIV-1 (Human Immunodeficiency Virus-1) may utilize CCR3 to infect host cells, and therefore CCR3 antagonists are also expected to be useful as therapeutic or prophylactic agents for AIDS (Acquired Immune Deficiency Syndrome) caused by HIV infection (for example, see Choe, H. et al. Cell 1996, 85, 1135; Doranz, B.J. et al. Cell 1996, 85, 1149).

Recently, piperidine derivatives (see Patent Specification No. WO9802151, Patent Specification No. WO9804554, Patent Specification No. WO0029377, Patent Specification No. WO0031033, Patent Specification No. WO0035449, Patent Specification No. WO0035451, Patent Specification No. W00035452, Patent Specification No. WO0035453, Patent Specification No. WO0035454, Patent Specification No. W00035876, Patent Specification No. WO0035877, Patent Specification No. WO0051607, Patent Specification No. WO0051608, Patent Specification No. WO0051609, Patent Specification No. WO0051610, Patent Specification No. W00053600, Patent Specification No. WO0058305, Patent Specification No. WO0059497, Patent Specification No. W00059498, Patent Specification No. WO0059502, Patent Specification No. WO0059503, Patent Specification No. W00076511, Patent Specification No. WO0076512, Patent Specification No. WO0076513, Patent Specification No. WO0076514, Patent Specification No. WO0076972, Patent Specification No. WO0076973, Patent Specification No. WO0105782, Patent Specification No. WO0114333, Patent Specification No. WO0164216, Patent Specification No. WO0177101, Patent Specification No. WO0192227, Patent Specification No. WO0198268, Patent Specification No. W00198269, Patent Specification No. WO0198270, Patent Specification No. WO0202525, Patent

Specification No. W00204420), piperazine derivatives (see Patent Specification No. EP0903349, Patent Specification No. W00034278, Patent Specification No. W00102381) and other low molecular compounds (see Patent Specification No. W09955324, Patent Specification No. W09955330, Patent Specification No. W00004003, Patent Specification No. W00027800, Patent Specification No. W00027835, Patent Specification No. W00027843, Patent Specification No. W00031032, Patent Specification No. W00041685, Patent Specification No. W00053172, Patent Specification No. W00128987, Patent Specification No. W00129088, Patent Specification No. W00128987, Patent Specification No. W00129000), have been reported to exhibit antagonism against CCR3. However, these compounds differ from the compounds of the invention.

Patent Specification No. W00107436 and Patent Specification No. W09937304 describe oxopiperazine derivatives having inhibiting activity on Factor Xa, but they do not specifically mention the piperidine derivatives of the invention, nor is it known whether these oxopiperazine derivatives exhibit competitive inhibition for CCR3. Patent Specification No. W00132615 and Patent Specification No. W00268409 describe N-substituted piperidine derivatives having NMDA/NR2B antagonism, but they do not specifically mention the piperidine derivatives of the invention, nor is it known whether these N-substituted piperidine derivatives exhibit competitive inhibition for CCR3.

It is an object of the present invention to provide low molecular compounds having activity which inhibits binding of CCR3 ligands to CCR3 on target cells, i.e. CCR3 antagonists.

It is another object of the invention to provide therapeutic and/or prophylactic agents for diseases of

which a causal factor is binding of a CCR3 ligand to CCR3 on target cells.

Disclosure of the Invention

The present invention provides the following:

(1) Compounds represented by the following formula (I):

$$R^3N$$
 $X-(CH_2)_q$ Y R^6 $N-(CH_2)_r$ R^7 R^7

[wherein R^1 represents phenyl, C_3-C_8 cycloalkyl or an aromatic heterocyclic group (having 1-3 atoms selected from the group consisting of oxygen, sulfur and nitrogen as hetero atoms),

the phenyl or aromatic heterocyclic group of R¹ may optionally fuse with a benzene ring or aromatic heterocyclic group (having 1-3 atoms selected from the group consisting of oxygen, sulfur and nitrogen as hetero atoms) to form a fused ring,

the phenyl, C_3 - C_8 cycloalkyl or aromatic heterocyclic group, or fused ring, in R^1 may be unsubstituted, or substituted with one or more substituents selected from the group consisting of halogens, hydroxy, cyano, nitro, carboxyl, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, C_3 - C_5 alkylene, C_2 - C_4 alkyleneoxy, C_1 - C_3 alkylenedioxy, phenyl, phenoxy, phenylthio, benzyl, benzyloxy, benzoylamino, formyl, C_2 - C_7 alkanoyl, C_2 - C_7 alkanoyloxy, C_2 - C_7 alkanoylamino, C_1 - C_6 alkylsulfonyl, C_3 - C_8 (alkoxycarbonyl)methyl, amino, mono(C_1 -

 C_6 alkyl)amino, di(C_1 - C_6 alkyl)amino, carbamoyl, C_2 - C_7 Nalkylcarbamoyl, C4-C9 N-cycloalkylcarbamoyl, Nphenylcarbamoyl, piperidylcarbonyl, morpholinylcarbonyl, pyrrolidinylcarbonyl, piperazinylcarbonyl, Nmethoxycarbamoyl, (formyl)amino and ureido, and the substituent of the phenyl, C₃-C₈ cycloalkyl or aromatic heterocyclic group, or fused ring, of R1 may be unsubstituted, or substituted with one or more substituents selected from the group consisting of C_1-C_6 alkyl, C_2-C_6 alkenyl, C2-C6 alkynyl, phenyl, C3-C5 alkylene, C3-C8 cycloalkyl, C3-C8 cycloalkenyl, C1-C6 alkoxy, C1-C6 alkylthio, amino, mono $(C_1-C_6 \text{ alkyl})$ amino, di $(C_1-C_6 \text{ alkyl})$ amino, pyrrolidinyl, piperidyl, C3-C7 lactam, carbamoyl, C2-C7 Nalkylcarbamoyl, C2-C7 alkoxycarbonyl, carboxyl, hydroxy, benzoyl, cyano, trifluoromethyl, halogen and tertbutoxycarbonylamino, provided that when R^1 is C_3-C_8 cycloalkyl, the substituent

provided that when R^* is C_3-C_8 cycloalkyl, the substituent does not include amino, mono(C_1-C_6 alkyl)amino or di(C_1-C_6 alkyl)amino;

p represents an integer of 1-6;

 R^2 and R^3 may be the same or different and each independently represents hydrogen, C_1 - C_6 alkyl or phenyl, where the C_1 - C_6 alkyl or phenyl group of R^2 and R^3 may be unsubstituted, or substituted with one or more substituents selected from the group consisting of halogens, hydroxy, C_1 - C_6 alkyl, C_2 - C_7 alkoxycarbonyl, amino, carbamoyl, carboxyl, cyano and C_1 - C_6 alkoxy;

X represents -CO-, -SO₂-, -CH₂-, -CS- or a single bond;

```
q represents 0 or 1;
```

r represents 0 or 1;

Y represents $-(R^4)C=C(R^5)-$, -S- or $-NR^8-$;

 R^4 , R^5 , R^6 and R^7 may be the same or different, and

each independently represents hydrogen, a halogen, hydroxy, cyano, nitro, carboxyl, C₁-C₆ alkyl, C₃-C₈ cycloalkyl, C₂-C₆ alkenyl, C₁-C₆ alkoxy, C₁-C₆ alkylthio, C₃-C₅ alkylene, C₂-C₄ alkyleneoxy, C₁-C₃ alkylenedioxy, phenyl, phenoxy, phenylthio, phenylsulfonyl, benzyl, benzyloxy, benzoylamino, formyl, C_2-C_7 alkanoyl, C_2-C_7 alkoxycarbonyl, C_2-C_7 alkanoyloxy, C2-C7 alkanoylamino, C4-C10 cycloalkanoylamino, C_3-C_7 alkenoylamino, C_1-C_6 alkylsulfonyl, C_1-C_6 alkylsulfonylamino, C3-C8 (alkoxycarbonyl)methyl, amino, mono $(C_1-C_6 \text{ alkyl})$ amino, di $(C_1-C_6 \text{ alkyl})$ amino, carbamoyl, C_2- C₇ N-alkylcarbamoyl, C₄-C₉ N-cycloalkylcarbamoyl, Nphenylcarbamoyl, N-(C₇-C₁₂ phenylalkyl)carbamoyl, piperidylcarbonyl, morpholinylcarbonyl, pyrrolidinylcarbonyl, piperazinylcarbonyl, Nmethoxycarbamoyl, sulfamoyl, C₁-C₆ N-alkylsulfamoyl, (formyl)amino, (thioformyl)amino, ureido or thioureido, where the aforementioned groups of R^4 , R^5 , R^6 and R^7 each may be independently unsubstituted, or substituted with one or more substituents selected from the group consisting of C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, phenyl, C_3-C_5 alkylene, C_3-C_8 cycloalkyl, C_3-C_8 cycloalkenyl, C_1-C_6 alkoxy, $(C_1-C_6 \text{ alkoxy})$ $(C_1-C_6 \text{ alkoxy})$, phenyl $(C_1-C_6 \text{ alkoxy})$, C_1-C_6 alkylthio, amino, mono(C₁-C₆ alkyl)amino, di(C₁-C₆ alkyl) amino, pyrrolidinyl, piperidyl, (C2-C7 alkanoyl)piperidyl, C₃-C₇ lactam, carbamoyl, C₂-C₇ Nalkylcarbamoyl, C4-C9 N-cycloalkylcarbamoyl, Nphenylcarbamoyl, $N-(C_7-C_{12} \text{ phenylalkyl}) \text{ carbamoyl}, C_2-C_7$ alkanoylamino, C_2-C_7 alkoxycarbonyl, carboxyl, hydroxy, benzoyl, cyano, trifluoromethyl, halogens, tertbutoxycarbonylamino, C_1 - C_6 alkylsulfonyl and heterocycles or aromatic heterocycles (where a heterocycle or aromatic heterocycle has 1-3 atoms selected from the group consisting of oxygen, sulfur and nitrogen as hetero atoms,

and may be substituted with C_1-C_6 alkyl); and R^8 represents hydrogen or C_1-C_6 alkyl, where the C_1-C_6 alkyl group of R^8 may be unsubstituted, or substituted with one or more substituents selected from the group consisting of halogens, hydroxy, cyano, nitro, carboxyl, carbamoyl, mercapto, guanidino, C_3-C_8 cycloalkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, phenyl (where phenyl may be substituted, or substituted with one or more substituents selected from the group consisting of halogens, hydroxy, C_1-C_6 alkyl, C_1-C_6 alkoxy and benzyloxy), phenoxy, benzyloxycarbonyl, C_2-C_7 alkanoyl, C_2-C_7 alkoxycarbonyl, C_2-C_7 alkanoyloxy, C_2-C_7 alkanoylamino, C_2-C_7 alkylcarbamoyl, C_2-C_6 alkylsulfonyl, amino, mono(C_1-C_6 alkyl)amino, di(C_1-C_6 alkyl)amino and ureido], pharmaceutically acceptable acid adducts thereof, or

(2) Compounds according to (1), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein X in formula (I) is $-SO_2$ -;

pharmaceutically acceptable C1-C6 alkyl adducts thereof;

- (3) Compounds according to (1), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein X in formula (I) is -CO-;
- (4) Compounds according to (1), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein X in formula (I) is -CH₂-;
- (5) Compounds according to (1), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein X in formula (I) is -CS-;
 - (6) Compounds according to (1), pharmaceutically

acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein X in formula (I) is a single bond;

- (7) Compounds according to any one of (1) to (6), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1-C_6 alkyl adducts thereof, wherein Y in formula (I) is $-(R^4)C=C(R^5)-$;
- (8) Compounds according to any one of (1) to (6), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein Y in formula (I) is -S-;
- (9) Compounds according to any one of (1) to (6), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1-C_6 alkyl adducts thereof, wherein Y in formula (I) is $-NR^8-$;
- (10) Compounds according to any one of (1) to (9), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein R^1 in formula (I) is substituted or unsubstituted phenyl;
- (11) Compounds according to any one of (1) to (10), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein R^2 in formula (I) is hydrogen;
- (12) Compounds according to any one of (1) to (11), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein R^3 in formula (I) is hydrogen;
- (13) Compounds according to any one of (1) to (12), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein q=0 and r=0 in formula (I);
 - (14) Compounds according to any one of (1) to (12),

pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein q=1 and r=0 in formula (I);

- (15) Compounds according to any one of (1) to (12), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein q=0 and r=1 in formula (I);
- (16) Compounds according to any one of (1) to (15), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein p=1 in formula (I);
- (17) Compounds according to (2), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein Y is (R^4) C= $C(R^5)$ -, R^1 is substituted or unsubstituted phenyl, R^2 is hydrogen, R^3 is hydrogen, q=0, r=0 and p=1 in formula (I);
- (18) Compounds according to (3), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein Y is $(R^4)\,C$ = $C\,(R^5)$ -, R^1 is substituted or unsubstituted phenyl, R^2 is hydrogen, R^3 is hydrogen, R^3 is hydrogen, R^3 in formula (I);
- (19) Compounds according to (4), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein Y is (R^4) C= $C(R^5)$ -, R^1 is substituted or unsubstituted phenyl, R^2 is hydrogen, R^3 is hydrogen, q=0, r=0 and p=1 in formula (I);
- (20) Compounds according to (6), pharmaceutically acceptable acid adducts thereof, or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein Y is (R^4) C=C (R^5) -, R^1 is substituted or unsubstituted phenyl, R^2

is hydrogen, R^3 is hydrogen, q=0, r=0 and p=1 in formula (I);

- (21) Compounds according to any one of (17) to (20), pharmaceutically acceptable acid adducts thereof or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein R^4 and R^5 in formula (I) may be the same or different and each is independently hydrogen, a halogen, hydroxy, cyano, nitro, carboxyl, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_7 alkoxycarbonyl, C_2 - C_7 alkanoylamino, C_1 - C_6 alkylsulfonyl, amino, carbamoyl, C_2 - C_7 N-alkylcarbamoyl, sulfamoyl or C_1 - C_6 N-alkylsulfamoyl;
- (22) Compounds according to any one of (17) to (20), pharmaceutically acceptable acid adducts thereof or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein R^4 and R^5 in formula (I) may be the same or different and each is independently a halogen, hydroxy, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_7 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl or C_1 - C_6 N-alkylsulfamoyl;
- (23) Compounds according to any one of (17) to (22), pharmaceutically acceptable acid adducts thereof or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof, wherein each R^1 in formula (I) above may be the same or different and is independently hydrogen, a halogen, hydroxy, cyano, nitro, C_1 - C_6 alkyl or C_1 - C_6 alkoxy;
- (24) Pharmaceutical compositions with CCR3 antagonism which comprise as effective ingredients thereof compounds represented by formula (I) according to any one of (1) to (23), pharmaceutically acceptable acid adducts thereof or pharmaceutically acceptable C_1 - C_6 alkyl adducts thereof;
- (25) Prophylactic and/or therapeutic compositions for any disease associated with CCR3, which comprise as effective ingredients thereof compounds represented by formula (I) according to any one of (1) to (23),

pharmaceutically acceptable acid adducts thereof or a pharmaceutically acceptable $C_1\text{--}C_6$ alkyl adducts thereof;

- (26) Prophylactic and/or therapeutic compositions according to (25), wherein the disease is an allergic condition;
- (27) Prophylactic and/or therapeutic compositions according to (26), wherein the allergic condition is bronchial asthma, allergic rhinitis, atopic dermatitis, urticaria, contact dermatitis or allergic conjunctivitis;
- (28) Prophylactic and/or therapeutic compositions according to (25), wherein the disease is an inflammatory bowel disease;
- (29) Prophylactic and/or therapeutic compositions according to (25), wherein the disease is AIDS (Acquired Immune Deficiency Syndrome);
- (30) Prophylactic and/or therapeutic compositions according to (25), wherein the disease is eosinophilia, eosinophilic gastroenteritis, eosinophilic enteropathy, eosinophilic fasciitis, eosinophilic granuloma, eosinophilic pustular folliculitis, eosinophilic pneumonia or eosinophilic leukemia.

Best Mode for Carrying Out the Invention

The number of substituents on the phenyl, C_3-C_8 cycloalkyl or aromatic heterocyclic group, or fused ring, of R^1 , and the number of substituents on the substituents of the phenyl, C_3-C_8 cycloalkyl or aromatic heterocyclic group, or fused ring, of R^1 may be any chemically possible number, but it is preferably 0-15, more preferably 0-10 and more preferably 0-7.

The term ${}^{"}C_3 - C_8$ cycloalkyl" for R^1 means a cyclic alkyl group such as, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl, and as

preferred examples there may be mentioned cyclopropyl, cyclopentyl and cyclohexyl.

The term "aromatic heterocyclic group (having 1-3 atoms selected from the group consisting of oxygen, sulfur and nitrogen as hetero atoms)" for R¹ means an aromatic heterocyclic group such as, for example, thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, pyridyl, pyrimidinyl, triazinyl, triazolyl, oxadiazolyl (furazanyl) or thiadiazolyl, and as preferred examples there may be mentioned thienyl, furyl, pyrrolyl and pyridyl.

The term "fused ring" for R¹ means a bicyclic aromatic heterocyclic group formed by fusing the phenyl or aromatic heterocyclic group with a benzene ring or an aromatic heterocyclic group (having 1-3 atoms selected from the group consisting of oxygen, sulfur and nitrogen as hetero atoms) at any possible position, and as preferred examples there may be mentioned naphthyl, indolyl, benzofuranyl, benzothienyl, quinolyl and benzoimidazolyl.

R¹ according to the invention is most preferably phenyl, thienyl, furanyl, pyrrolyl, naphthyl, benzothienyl, benzofuranyl or indolyl.

The term "halogen" as a substituent on the phenyl, C_3-C_8 cycloalkyl or aromatic heterocyclic group, or fused ring, of R^1 means fluorine, chlorine, bromine and iodine or the like, and as preferred examples there may be mentioned fluorine, chlorine, bromine or iodine.

The term " C_1 - C_6 alkyl" as a substituent on R^1 means a C_1 - C_6 straight-chain or branched alkyl group such as, for example, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, isohexyl, 2-methylpentyl or 1-ethylbutyl, and as preferred examples

there may be mentioned methyl, ethyl, propyl and isopropyl.

The term ${}^{"}C_3 - C_8$ cycloalkyl" as a substituent on R^1 has the same meaning as ${}^{"}C_3 - C_8$ cycloalkyl" for R^1 itself, and the same preferred examples may be mentioned.

The term $"C_2-C_6$ alkenyl" as a substituent on R^1 means a C_2-C_6 straight-chain or branched alkenyl group such as, for example, vinyl, allyl, 1-propenyl, 2-butenyl, 3-butenyl, 2-methyl-1-propenyl, 4-pentenyl, 5-hexenyl or 4-methyl-3-pentenyl, and as preferred examples there may be mentioned vinyl and 2-methyl-1-propenyl.

The term ${}^{"}C_1 - C_6$ alkoxy" as a substituent on R^1 means a group comprising a $C_1 - C_6$ alkyl group and an oxy group, and as preferred examples there may be mentioned methoxy and ethoxy.

The term ${}^{"}C_1 - C_6$ alkylthio" as a substituent on R^1 means a group comprising a $C_1 - C_6$ alkyl group and a thio group, and as preferred examples there may be mentioned methylthio and ethylthio.

The term ${}^{\circ}C_3 - C_5$ alkylene" as a substituent on R^1 means a $C_3 - C_5$ divalent alkylene group such as, for example, trimethylene, tetramethylene, pentamethylene or 1-methyltrimethylene, and as preferred examples there may be mentioned trimethylene and tetramethylene.

The term " C_2 - C_4 alkyleneoxy" as a substituent on R^1 means a group comprising a C_2 - C_4 divalent alkylene group and an oxy group, such as, for example, ethyleneoxy (- $CH_2CH_2O_-$), trimethyleneoxy (- $CH_2CH_2CH_2O_-$), tetramethyleneoxy (- $CH_2CH_2CH_2CH_2CH_2O_-$) or 1,1-dimethylethyleneoxy (- $CH_2C(CH_3)_2O_-$), and as preferred examples there may be mentioned ethyleneoxy and trimethyleneoxy.

The term ${}^{"}C_1 - C_3$ alkylenedioxy" as a substituent on R^1 means a group comprising a $C_1 - C_3$ divalent alkylene group and two oxy groups, such as, for example, methylenedioxy (-

OCH₂O-), ethylenedioxy (-OCH₂CH₂O-), trimethylenedioxy (-OCH₂CH₂CH₂O-) or propylenedioxy (-OCH₂CH(CH₃)O-), and as preferred examples there may be mentioned methylenedioxy and ethylenedioxy.

The term $"C_2-C_7$ alkanoyl" as a substituent on R^1 means a C_2-C_7 straight-chain or branched alkanoyl group such as, for example, acetyl, propanoyl, butanoyl, pentanoyl, hexanoyl, heptanoyl, isobutyryl, 3-methylbutanoyl, 2-methylbutanoyl, pivaloyl, 4-methylpentanoyl, 3,3-dimethylbutanoyl or 5-methylhexanoyl, and as a preferred example there may be mentioned acetyl.

The term ${}^{"}C_2 - C_7$ alkoxycarbonyl" as a substituent on R^1 means a group comprising the aforementioned $C_1 - C_6$ alkoxy group and a carbonyl group, and as preferred examples there may be mentioned methoxycarbonyl and ethoxycarbonyl.

The term ${}^{"}C_2 - C_7$ alkanoyloxy" as a substituent on R^1 means a group comprising the aforementioned $C_2 - C_7$ alkanoyl and an oxy group, and as a preferred example there may be mentioned acetyloxy.

The term " C_2 - C_7 alkanoylamino" as a substituent on R^1 means a group comprising the aforementioned C_2 - C_7 alkanoyl group and an amino group, and as a preferred example there may be mentioned acetylamino.

The term ${}^{"}C_1 - C_6$ alkylsulfonyl" as a substituent on R^1 means a group comprising the aforementioned $C_1 - C_6$ alkyl group and a sulfonyl group, and as a preferred example there may be mentioned methylsulfonyl.

The term ${}^{1}C_{3}-C_{8}$ (alkoxycarbonyl)methyl" as a substituent on R^{1} means a group comprising the aforementioned $C_{2}-C_{7}$ alkoxycarbonyl group and a methyl group, and as preferred examples there may be mentioned (methoxycarbonyl)methyl and (ethoxycarbonyl)methyl.

The term ''mono(C_1 - C_6 alkyl) amino as a substituent on

 R^1 means an amino group substituted with the aforementioned C_1-C_6 alkyl group, and as preferred examples there may be mentioned methylamino and ethylamino.

The term "di(C_1 - C_6 alkyl)amino" as a substituent on R^1 means an amino group substituted with two identical or different C_1 - C_6 alkyl groups, and as preferred examples there may be mentioned dimethylamino, diethylamino and N-ethyl-N-methylamino.

The term ${}^{"}C_2 - C_7$ N-alkylcarbamoyl" as a substituent on R^1 means a group comprising the aforementioned $C_1 - C_6$ alkyl group and a carbamoyl group, and as preferred examples there may be mentioned N-methylcarbamoyl and N-ethylcarbamoyl.

The term ${}^{"}C_4 - C_9$ N-cycloalkylcarbamoyl" as a substituent on R^1 means a group comprising the aforementioned $C_3 - C_8$ cycloalkyl group and a carbamoyl group, and as preferred examples there may be mentioned N-cyclopentylcarbamoyl and N-cyclohexylcarbamoyl.

The term "piperidylcarbonyl" as a substituent on R¹ means a group resulting from bonding a piperidine group and a carbonyl group, and as a preferred example there may be mentioned (1-piperidyl)carbonyl.

The term "morpholinylcarbonyl" as a substituent on R¹ means a group resulting from bonding a morpholine group and a carbonyl group, and as a preferred example there may be mentioned (1-morpholinyl)carbonyl.

The term "pyrrolidinylcarbonyl" as a substituent on R¹ means a group resulting from bonding a pyrrolidine group and a carbonyl group, and as a preferred example there may be mentioned (1-pyrrolidinyl) carbonyl.

The term "piperazinylcarbonyl" as a substituent on R¹ means a group resulting from bonding a piperazine group and a carbonyl group, and as a preferred example there may be

mentioned (1-piperazinyl) carbonyl.

As particularly preferred substituents on R^1 there may be mentioned halogens, hydroxy, cyano, nitro, C_1 - C_6 alkyl and C_1 - C_6 alkoxy.

The term $"C_2-C_6$ alkynyl" as a substituent further substituting the substituent on the phenyl, C_3-C_8 cycloalkyl or aromatic heterocyclic group, or fused ring, of R^1 , means a C_2-C_6 alkynyl group such as, for example, ethynyl, methylethynyl and ethylethynyl, and as a preferred example there may be mentioned ethynyl.

The term " C_3 - C_8 cycloalkenyl" as a substituent further substituting the substituent on R^1 means a C_3 - C_8 cyclic alkenyl group such as, for example, cyclopentenyl, cyclohexenyl or 1,3-cyclohexadienyl, and as a preferred example there may be mentioned cyclohexenyl.

The term " C_3 - C_7 lactam" as a substituent further substituting the substituent on R^1 means a group derived by removing one hydrogen from a cyclic amide group such as, for example, 3-propanelactam, 4-butanelactam, 5-pentanelactam or 6-hexanelactam, and as a preferred example there may be mentioned "a group derived by removing one hydrogen from 4-butanelactam".

The C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, C_3 - C_5 alkylene, C_3 - C_8 cycloalkyl, mono(C_1 - C_6 alkyl)amino, di(C_1 - C_6 alkyl)amino, C_2 - C_7 alkoxycarbonyl or C_2 - C_7 N-alkylcarbamoyl groups as substituents further substituting the substituent on R^1 have the same definitions as the substituents on R^1 , and the same preferred examples may be mentioned.

In formula (I), p represents an integer of 1-6, and preferably 1 or 3.

The number of substituents on the $C_1\text{--}C_6$ alkyl or phenyl group of R^2 and R^3 according to the invention may be

any chemically possible number, but it is preferably 0-13, more preferably 0-10 and more preferably 0-7.

The C_1 - C_6 alkyl group of R^2 and R^3 has the same definition as the substituent on R^1 , and the same preferred examples may be mentioned.

The halogen, C_1 - C_6 alkyl, C_2 - C_7 alkoxycarbonyl and C_1 - C_6 alkoxy groups as substituents on the C_1 - C_6 alkyl or phenyl group of R^2 and R^3 have the same definitions as the substituents on R^1 , and the same preferred examples may be mentioned.

Either R^2 and R^3 of formula (I) preferably represents hydrogen, and most preferably both represent hydrogen.

In formula (I), X represents $-CO_-$, $-SO_2_-$, $-CH_2_-$, $-CS_-$ or a single bond, all of which may be mentioned as preferred examples. Here, $-CO_-$ represents carbonyl, $-SO_2_-$ represents sulfonyl and $-CS_-$ represents thiocarbonyl.

In formula (I), q represents 0 or 1, and r represents 0 or 1. The cases where q=0 and r=0, q=1 and r=0, and q=0 and r=1 may be mentioned as preferred examples.

In formula (I), Y represents $-(R^4)C=C(R^5)-$, -S- or $-NR^8-$, all of which may be mentioned as preferred examples.

The number of substituents on the groups for R^4 , R^5 , R^6 and R^7 according to the invention may be any chemically possible number, but it is preferably 0-15, more preferably 0-10 and more preferably 0-7.

The C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_6 alkenyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, C_3 - C_5 alkylene, C_2 - C_4 alkyleneoxy, C_1 - C_3 alkylenedioxy, C_2 - C_7 alkanoyl, C_2 - C_7 alkoxycarbonyl, piperidylcarbonyl, morpholinylcarbonyl, pyrrolidinylcarbonyl, piperazinylcarbonyl, C_2 - C_7 alkanoyloxy, C_2 - C_7 alkanoylamino, C_1 - C_6 alkylsulfonyl, C_3 - C_8 (alkoxycarbonyl)methyl, mono(C_1 - C_6 alkyl)amino, di(C_1 - C_6 alkyl)amino, carbamoyl, C_2 - C_7 N-alkylcarbamoyl or C_4 - C_9 N-

cycloalkylcarbamoyl groups for R^4 , R^5 , R^6 and R^7 have the same respective definitions as the substituents on R^1 or the substituents further substituting those substituents, and the same preferred examples may be mentioned.

The term " C_4-C_{10} cycloalkanoylamino" for R^4 , R^5 , R^6 and R^7 means a group comprising a C_4-C_{10} cycloalkanoyl group and an amino group, and as preferred examples there may be mentioned cyclopropanoylamino, cyclobutanoylamino, cyclopentanoylamino and cyclohexanoylamino.

The term " C_3-C_7 alkenoylamino" for R^4 , R^5 , R^6 and R^7 means a group comprising a C_3-C_7 alkenoyl group and an amino group, and as a preferred example there may be mentioned acryloyl.

The term ${}^{"}C_1 - C_6$ alkylsulfonylamino" for R^4 , R^5 , R^6 and R^7 means a group comprising a $C_1 - C_6$ alkylsulfonyl group and an amino group, and as preferred examples there may be mentioned methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino and butylsulfonylamino.

The term "N-(C_7 - C_{12} phenylalkyl)carbamoyl" for R^4 , R^5 , R^6 and R^7 means a group comprising a carbamoyl group and a C_7 - C_{12} phenylalkyl group, and as preferred examples there may be mentioned phenylmethylcarbamoyl and phenylethylcarbamoyl.

The term " C_1 - C_6 N-alkylsulfamoyl" for R^4 , R^5 , R^6 and R^7 means a group comprising a C_1 - C_6 alkyl group having the same definition as " C_1 - C_6 alkyl" as a substituent on R^1 , and a sulfamoyl group, and as preferred examples there may be mentioned N-methylsulfamoyl and N,N-dimethylsulfamoyl.

As particularly preferred groups for R^4 , R^5 , R^6 and R^7 there may be mentioned halogens, hydroxy, cyano, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_2 - C_7 alkoxycarbonyl, C_1 - C_6 alkylsulfonyl and C_1 - C_6 N-alkylsulfamoyl.

The C_1-C_6 alkyl, C_2-C_6 alkenyl, C_2-C_6 alkynyl, C_3-C_5

alkylene, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkenyl, C_1 - C_6 alkoxy, C_1 - C_6 alkylthio, mono(C_1 - C_6 alkyl)amino, di(C_1 - C_6 alkyl)amino, C_3 - C_7 lactam, C_2 - C_7 N-alkylcarbamoyl, C_4 - C_9 N-cycloalkylcarbamoyl, N-(C_7 - C_{12} phenylalkyl)carbamoyl or C_2 - C_7 alkoxycarbonyl groups as substituents on R^4 , R^5 , R^6 and R^7 have the same respective definitions as the substituents on R^1 , as the substituents further substituting those substituents or as R^4 , R^5 , R^6 and R^7 themselves, and the same preferred examples may be mentioned.

The term " $(C_1-C_6 \text{ alkoxy})$ ($C_1-C_6 \text{ alkoxy}$)" as a substituent on R^4 , R^5 , R^6 and R^7 means a group comprising a C_1-C_6 alkoxy group and a C_1-C_6 alkoxy group, and as preferred examples there may be mentioned methoxymethoxy, methoxyethoxy and ethoxyethoxy.

The term "phenyl(C_1 - C_6 alkoxy)" as a substituent on R^4 , R^5 , R^6 and R^7 means a group comprising a phenyl group and a C_1 - C_6 alkoxy group, and as preferred examples there may be mentioned benzyloxy, phenylethoxy and phenylpropoxy.

The term " $(C_2-C_7 \text{ alkanoyl})$ piperidyl" as a substituent on R^4 , R^5 , R^6 and R^7 means a group comprising a C_2-C_7 alkanoyl group and a piperidyl group, and as a preferred example there may be mentioned 1-(acetyl)-4-piperidyl.

The number of substituents on the C_1 - C_6 alkyl group for R^8 and the number of substituents on the phenyl group as a substituent on the C_1 - C_6 alkyl group for R^8 according to the invention may be any chemically possible number, but it is preferably 0-15, more preferably 0-10 and more preferably 0-7.

The C_1 - C_6 alkyl group for R^8 has the same definition as the substituent on R^1 , and the same preferred examples may be mentioned.

The halogen, C_3-C_8 cycloalkyl, C_1-C_6 alkoxy, C_1-C_6 alkylthio, C_2-C_7 alkanoyl, C_2-C_7 alkoxycarbonyl, C_2-C_7

alkanoyloxy, C_2 - C_7 alkanoylamino, C_2 - C_7 N-alkylcarbamoyl, C_2 - C_6 alkylsulfonyl, mono(C_1 - C_6 alkyl)amino and di(C_1 - C_6 alkyl)amino groups as substituents on the C_1 - C_6 alkyl group for R^8 have the same respective definitions as the substituents of R^1 , and the same preferred examples may be mentioned.

The terms "halogen", " C_1 - C_6 alkyl" and " C_1 - C_6 alkoxy" as substituents on the phenyl group substituting the C_1 - C_6 alkyl group of R^8 have the same definitions as the substituents on R^1 , and the same preferred examples may be mentioned.

As preferred examples of piperidine derivatives of formula (I) there may be mentioned compounds containing the substituents listed in Tables 1 to 8 below. The compound numbers are listed in the columns titled "Compnd. No." in Tables 1 to 8.

Tables 1-1 to 1-6 list preferred examples of compounds wherein X = single bond, q=0, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$. Table 2 lists preferred examples of compounds wherein X=-CO-, q=0, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$. Table 3 lists preferred examples of compounds wherein $X=-SO_2-$, q=0, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$. Table 4 lists preferred examples of compounds wherein $X=-CH_2-$, q=0, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$. Table 5 lists preferred examples of compounds wherein X=-CO-, q=0, r=0 and Y=-S-. Table 6 lists preferred examples of compounds wherein X=-CO-, q=0, r=0 and $Y=-N\,(R^8)-$. Table 7 lists preferred examples of compounds wherein X=-CO-, q=1, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$. Table 8 lists preferred examples of compounds wherein X=-CO-, q=0, r=0 and $Y=-(R^4)\,C=C\,(R^5)-$.

	_ 《 Table 1 ─ 1 》					4)C=C(R5)-	
Compound No.	R1	R2	R3	R4	R5	R6	R7
1-1-1	CI	н	н	н	Н	н ,	н.
1-1-2	CI	н	Н	н	Н	NO2	H
1-1-3	CI	н	H	н	н	Me	н
1-1-4	CI	н	Н	н	Н	CI	Н .
1-1-5	CI	н	н	н .	Н	F	Н
1-1-6	CI	н	н	Н	н	CF3	Н
1-1-7	CI	н	н	н	н	соон	. н
1-1-8	CI	н	н	н	CI	CI	н
1-1-9	CI	н	Н	Н	Н	Н	Me
1-1-10	CI	H .	н	н	н	MeO	Н
1-1-11	CI	Н	Н	Н	н.	H	NO2

1-1-12	CI	Н	н	Н	Н	Н	MeO
1-1-13	CI	н	Н	н	Н	H	F
1-1-14	CI	н	Н	н	Н	Н	CI
1-1-15	CI	н .	Н	. н	H	OCF3	н
1-1-16	CI	н	н	н	н	CN	н
1-1-17	CI	н.	н	н	н	н	CN
1-1-18	CI	Н	н	н	H	н	соон
	CI	Н	Н	н	H	ОН	н
1-1-20	CI	н	н	H	. Н	н	ОН
1-1-21	MeN	H	н	Н	н	NO2	н
1-1-22	MeN	н	н	H	Н	Me	Н
1-1-23	MeN	Н	н	н	н	CI	H

1-1-24	MeN	Н	н	Н	н	· · F	н
1-1-25	MeN	н .	. Н	н	н	CF3	Н
1-1-26	MeN	н	Н	H	н	соон	н
1-1-27	MeN	н	н	н	CI	CI	Н
1-1-28	MeN	н	н	Н	Н	H	Me
1-1-29	MeN	н	Н	Н	н	MeO	н
1-1-30	MeN	н ′	н	H	н	н	NO2
1-1-31	MeN	Н	н	н	н	н	MeO
1-1-32	MeN	, H	н			н	F
1-1-33	MeN	Н	H	н	н	н	CI
1-1-34	MeN	. Н	н	Н	н	OCF3	Н
1-1-35	M eN	H .	н	н	н	CN	• н

1-1-36	MeN	н	н	Н	Н	н	CN
1-1-37	MeN	н	н	н	н	н	соон
1-1-38	MeN	Н	н	н	Н	ОН	Н
1-1-39	MeN	, Н	Н	Н	H	Н	OH
1-1-40		н	Н	н	н	NO2	н
1-1-41		н	Н	Н	H .	Ме	н
1-1-42		н	н	н	Н	Cl	н
1-1-43		н	Н	н	· Ĥ	F	н
1-1-44		н	Н	Н	н	CF3	н
1-1-45		Н	Н .	Н	н	соон	н
1-1-46		н	Н	Н	CI	CI	н
1-1-47		н	н	н	Н	н	Me

1-1-48	Q	н	н	н	Н	MeO	H
1-1-49		н	н	н	н	н	NO2
1-1-50		н ,	н	н	Н	н	MeO
1-1-51		н	Н	н	н	Н	F
1-1-52		, н	н	н	. H	н	CI
1-1-53		н	Н	н	Н	OCF3	н
1-1-54		н	н	н	Н	CN	н
1-1-55		н	H	Н	Н .	н .	CN
1-1-56		н	. Н	н	Н	н	СООН
1-1-57		Н	H	н	Н	ОН	Н
1-1-58		H	Н	Н .	н	н	ОН
1-1-59		н	н	н	н	NO2	Н

1-1-60	Q	Н	н	н	н	Me	н
1-1-61		H	н	Н	Н	CI	Н
1-1-62	Q.,	. Н	н	н	Н	F	H
1-1-63		н	H	н	H	CF3	н
1-1-64		н	н	H	Н	СООН	• Н
1-1-65		н	·Η	H	CI	CI	н
1-1-66		н	н	Н	Н	н	Ме
1-1-67		н	Н	н	Н	MeO	Н
1-1-68		н	H ·	Н -	Н	н	
1-1-69	Q	н	Н	н		н	MeO
1-1-70		н	H .		н	н .	F
1-1-71		Н		Н	Н	Н	CI

1-1-72		H	Н	Н	Н	OCF3	H
1-1-73		н	н	н	н.	CN	Н
1-1-74	Q	н	н	н	н	н	CN
1-1-75	<u> </u>	н	Н	н	н	H	СООН
1-1-76	<u> </u>	, н	Н	H	н	ОН	н
1-1-77		н	Н	Н	н	Ĥ	ОН
1-1-78	CIOH	н	н	Н	Н	NO2	н
1-1-79	CI	н	H	Н	Н	Ме	н
1-1-80	CI	, н	Н	Н	Н	CI	н
1-1-81	CI	н	Н	· н	Н	F	н
1-1-82	СІ	Н	н	Н	H ,	CF3	н
1-1-83	CI OH	. Н	н	н	н	соон	н

1-1-84	CI	Н	н	н	CI	CI	н
1-1-85	CIOH	H	Н	н	н	Н	Me
1-1-86	CICH	н	н	н	н	MeO	н
1-1-87	CI	н	н	H	н	н	NO2
1-1-88	CIOH	H.	Н	н	н	Н	MeO
1-1-89	CI OH.	н	Н	н	Н	Н	F
1-1-90	CIOH	н	Н	н	H	Н	CI
1-1-91	CI	Н	Н	н	н	OCF3	Н
1-1-92	CIOH	Н	Н	н	н	CN	Н
1-1-93		н	. H	Н	н	н	CN
1-1-94	CIOH	Н	н	Н	н	н	СООН
1-1-95	СІ	н	H	Н	н	ОН	н

1-1-96	CI	F	н н	н	н	, H	ОН
1-1-97	Br	`	н н	, H	H	NO2	н
1-1-98	Вг		1 Н	н	н	Me ,	н
1-1-99	Br	٢	н н	Н	Н .	CI	Н
1-1-100	Вг	H	н ` н	н.	н	F	Н
1-1-101	Вг		н н	н	Ħ	CF3	н
1-1-102	Br	Н	і н	н	н	СООН	н
1-1-103	Вг	' н	і н	н	CI	CI	Н
1-1-104	Вг	Н	і н	. н	Н	н	Me
1-1-105	Br	Н	ı H	н	н	MeO	н
1-1-106	Вг	н	і н	н	Н	Н	NO2
1-1-107	Вг	н	Н	н	н	Н	MeO

1-1-108	Br	н	н	н	Н	Н	F
1-1-109	Br	н	H	н	н	н	CI
1-1-110	Вг	Н	н	н	Н	OCF3	н
1-1-111	Вг	н	Н	н	н	CN	н
1-1-112	Br	Н	н	н	Н	Н	CN
1-1-113	Вг	Н	Н.	н	Н	н	соон
1-1-114	Вг	Ĥ	Н	н	н	ОН	Н
1-1-115	Вг	Н	Н	н	Н	н	ОН
1-1-116 _.	S	Н				NO2	. н
1-1-117	S_//	Н		Н		Ме	н
1-1-118	S.	Н	н	Н	н	CI	н
	S.	Н	н	н	н	F .	Н

1-1-120	5	н	н	Н	Н	CF3	Н
1-1-121	S.	н	Н	н	Н	соон	Н
1-1-122	S	н	н	н	CI	CI	Н
1-1-123	S	н	· H	Н	Н	, н	Ме
1-1-124	S	н	. Н	H	н	MeO	н
1-1-125	5	Н.	Н	н	Н	Н	NO2
1-1-126	S.	н	н	Н	н	Н	MeO _,
1-1-127	S	н	Н	H _.	. н	Н	F
1-1-128	S.	н	н	н	Н	н	CI
1-1-129	S	н	н	Н	н	OCF3	Н
1-1-130	5	Н	н	н	Н	CN	Н
1-1-131	S	Н	Н	н	н	н	CN

1-1-132	S	н	н	Н	Н	Н	СООН
1-1-133	S	. н	н	н	н	ОН	н
1-1-134	S.	н	Н	н	н	Н	ОН
1-1-135	CIOH	н	Н	Ĥ	Н	NO2	Н
1-1-136	CIOH	. н	н	н	Н	Ме	Н
1-1-137	CIOH	Н	Н	Н	н	CI	н
1-1-138	CIOH	Н	Н	Н	Н	F	Н
1-1-139	CIOH	н	н	н	н	CF3	н
1-1-140	CIOH	н	H	H	Н	СООН	H
1-1-141	CIOH	н	н	н	CI	CI	Н
1-1-142	CIOH	Н	н	Н	Н	н	Me
1-1-143		н	Н	H	н	MeO	н

1-1-144	CI OH	Н	Н	н	н	Н	NO2
1-1-145	CIOH	Н	Н	H	Н	Н	MeO
1-1-146	CIOH	н	Н	н	н	Н	F
1-1-147	CIOH	Н	Н	н	н	H _,	CI
1-1-148	CIOH	Н	н	н	н	OCF3	Н
1-1-149	CIOH	Н .	н	н	Н	CN	Н .
1-1-150	CIOH	. н	н -	н	н	н	CN
1-1-151	CIOH	Н	н	н	н	н	соон
1-1-152	CIOH			H		ОН	Н
1-1-153	CI OH	н	H .		Н		ОН

 $\langle Table \ 1-2 \rangle X = Single Bond, q = 0, r = 0, Y = -(R4)C=C(R5)-$

Compound No.	R1	R2	R3	R4	R5	R6	R7
1-2-1	MeN	Н	Н	H _.	н	н	н
1-2-2		Н	Н	Н	Н	Н	н
1-2-3		Н	H ,	н	Н	Н	н
1-2-4	CI	н	Н	Н	Н	н	Н .
1-2-5		Н	Н	Н	Н	н	н
1-2-6	F ₃ C	Н	• Н	Н	Н	Н	н
1-2-7		H	н	Н	н	н	н
1-2-8	NC C	н	Н	Н	Н .	H	н
1-2-9	O ₂	н	н	H	н	Ħ	Н
1-2-10	MeCOC	Н	н	Н	H	Н	Н

1-2-11	MeO	H	н	н	Н	н	Н
1-2-12		Н	н	н	Н	Н	н
1-2-13		Н	н	Н	Н	Н	Н
1-2-14	Q	Н	Н	Н	н	н	н
1-2-15	HN	Н	Н	н	Н	н	Н
1-2-16	N _{Me}	н	Н	Н	Н	, Н	н
1-2-17		Н	Н	Н	н	н	Н
1-2-18	\sqrt{s}	Н	Н	H	Н	H .	Н
1-2-19	C_{s}	Н	н	Н	н	н	Н
1-2-20	N	Н	Н	Н	H	Н.	н
1-2-21	N N	н	H	Н	Н	H	н

1-2-22	N.	н	н	н	Н	. Н	Н
1-2-23	Z,	Н	н	н	Н	н	н
1-2-24	S.	Н	н	н	н	н	н
1-2-25	LN N	н	Н	н	Н	н	Н
1-2-26	HN.N	н	Н	Ĥ	н	, H	Н
1-2-27	N N	н	·H	Н	H .	н	н
1-2-28		Н	Н	Н	н	н	Н
1-2-29	N Me	н	н	Н	Н	Н	н
1-2-30		Н	H	н	Н	н	Н
1-2-31	CN	Н	H·	Н	Н	Н	Н
1-2-32		н	н	Н		Н	Н

1-2-33		н	Н	Н	н	н	Н
1-2-34	CI	Н	Н	H	н	H	Н
1-2-35	CI CI	н	Н	н	Н	Н	н
1-2-36	CI	Н	Н	H	Н	Н	Н
1-2-37	O ₂ N	Н	Н	Н	Н.	н	Н
1-2-38	F ₃ C	Н	Н	н	н	н	H.
1-2-39	Br	Н	н	Н	Н	Н	Н
1-2-40		Н	Н	н	н	H* ,	Н
1-2-41	НО	Н	H	н	Н	H	Н
1-2-42	но	н	н	Н	н	Н.	н
1-2-43	N C	Н	н	н	. H	н	н

1-2-44	H	Н	Н	Н	Н	Н	Н
1-2-45		Н	Н	H ´	н	н	,H
1-2-46	~°Q	Н	н	Н	H	Н	Н
1-2-47		н	н	н	н	Н	H
1-2-48		Н	Н	H	н	Н	Н
1-2-49		н	H	Н	Н	Н	н
1-2-50		ͺΗ	н	Н	Н	H	H
1-2-51		н	н	H	Н	Н	• Н
1-2-52	QJ.	Ĥ	н	Н	Н	Н	н
1-2-53	CI CI	Н	н	Н	н	Н	Н
1-2-54		н	Н	Н	Н	H	н

1-2-55		н	н	н	Н	Н	Н
1-2-56	OMe MeN	H.	Н	Н	Н	Н	Н
1-2-57	MeN	H '.	Н	H	Н	н	н
1-2-58	F	н	H	Н	·н	Н	Н
1-2-59	N	H	н	Н	Н	н	. Н
1-2-60	F	н	H	н	Н	Н	Н
1-2-61	MeO	Н	н	н	Н	н	н
1-2-62	Y° ().	Н	Н	H	Н	Н	н
1-2-63	O°C.	Н	н		Н	н	н
1-2-64	F ₃ CO	н			Н	н	٠н
1-2-65	CI	Н	н	н	н	н	н

1-2-66	F ₃ C	Н	н	Н	н	Н	· H
1-2-67	ноос	Н	Н	н	н	H	н
1-2-68	F ₃ C CF ₃	Н	Н	Н	Н	Н	Н
1-2-69	НО	Н	Н	Н	Н	Н	H .
1-2-70	O _o C.	Н	H	Н	Н	Н	, н
1-2-71		Н	н	Н	Н	Н	Н
1-2-72	Br	Н	H	H.	H.	н	Н
1-2-73	NC .	Н	н	Н	Н	Н	Н
1-2-74	MeO	н	. H	н	н	н	н
1-2-75	O ₂ N	Н	Н		Н	Н	ìН
1-2-76		н	Н	н	H	н	н

1-2-77	CI CI	н	Н	Н	н	Н	н
1-2-78	OMe OMe	H	Н	н	н	н	н
1-2-79	OEt	Н	Н	н	Н	н	н
1-2-80		Н	н	н	Н	н	Н
1-2-81	HO	Н	Н	Н	H	Н	Н
1-2-82	F	H	н	Н	Н	н	н
1-2-83	MeO	Н	H	н	Н	Ĥ	Н
1-2-84	Br	н	Н	н	н	Н	н
1-2-85	MeO Br	н	Н	H	H .	H ,	н
1-2-86		Н	н	Н	н	н	Н
1-2-87	O ₂ N HO	н	н	н	н	н	н

1-2-88	O ₂ N	Н	Ή	н	н	Н .	н
1-2-89	CI O ₂ N	H	н	Н	Н	H	н
1-2-90		. H	н	н	H	н	н
1-2-91		н	н	Н	Н	н	н
1-2-92	O ₀ C.	Н	Н	Н	Н	н	н
1-2-93	MeO	H	Н	Н	Н	н	Н
1-2-94	N	н	Н	Н	Н	н	н
1-2-95	OMe	н	Н	Н .	Н	H	н
1-2-96	OEt	H	н	H	н	н .	н
1-2-97	EtO	Н	Н	н	v Н	Н	н
1-2-98	ОН	Н	H	Н	н	Н	н

1-2-99	COOH	Н	н	н	н	н	Н
1-2-100	OMe OH	Н	н	н	Н	н	н
1-2-101	MeO	H ·	н	н	Н	н	Н
1-2-102	ОН	Н	Н	Н	Н	Н	Н
1-2-103	MeO HO	Н	Н	н	Н	н	Н
1-2-104	Br	н	H	н	·H	.	н
1-2-105	OMe MeO OMe	· H	Н	Н	н	н	н
1-2-106	CICI	н	Н	Н	Н	н	Н
1-2-107	F F	н	Н	н	н	н	н
1-2-108	CF ₃ CI	. · ·	Н	н	н	Н	н
1-2-109	F ₃ C	н	н	н	н	Н	н

1-2-110	ОН	Н	н	H	Н	Н	Н
1-2-111	OMe NO ₂	Н	Н	н	Н	Н	Н
1-2-112	NH	· . H	Н	Н	Н	н	н
1-2-113	S.	Н.	н	Н .	, н	Н	Н
1-2-114		Н	Н	Н .	H	Н	н
1-2-115		н	н	н	Н	н	H
1-2-116	N	н	Н	Н	Н	Н	Н
1-2-117	CI	Н	Н	Н	Н	н	Н
1-2-118	Вг	н	H	н .		н	Н
1-2-119	O ₂ N OH	н	н	н	н	H	Н .
1-2-120	O_2N	Н	н	Н	н	Н	н

1-2-121	FULL	н	H	н	н	Н	н
1-2-122	ОН	н	Н	н	н	н	н
1-2-123	MeO	н	н	H	H ·	н	Н.
1-2-124	Br	Н .	н	н	н	Н	H .
1-2-125	Br	Н	Н	Н	н	н	н
1-2-126	МеОООН	Н	Н	н	н	н	Н
1-2-127	Br	Н	Н	Н	Н	н	Н
1-2-128	O ₂ N CI	H	Н	н	Н	н	Н
1-2-129	MeO OEt	н	Н	н	Н	Н	н
	F	Н	н	н	н	Н	н
1-2-131	CIF	н	н	н	н	н	Н

1-2-132	EtO OEt	Н	Н	н	н	Н	Н.
1-2-133	Eto	н	Н	н	н	н	н
1-2-134	F	н	Н	н	н	Н	н
1-2-135	CI NO ₂	н	Н	н	н	Н	, н
1-2-136	MeO	H	н	H	Н	н	H
1-2-137	F ₃ CO OH	. н	н	H	Н	Н	H
1-2-138		H	H .	·	н	H	Н
1-2-139	MeO COOH	Н	Н	H	Н	Н	Н
1-2-140	HO	н	н	H	Н	H,	Ĥ
1-2-141	CIN S.	Н	н	Н	Н	Н	н
1-2-142		Н	н	Н	н	н	Н

1-2-143	CI	н	н	н	Н	H	н
1-2-144		Н	н	н	H	H	н
1-2-145	MeO	н	Н	н	Н	н	н
1-2-146	N.C.	H	Н	н	Н	Н	Н
1-2-147	S	. н	н	н	н	н	н
1-2-148	ОН	. н	Н	Н	Н	н .	Н
1-2-149		Н	Н	Н	. H	н	н
1-2-150	CIOH	Н	Н	Н	Н	Н	Н
1-2-151	ОН	Н	н	H	Н	н	н
1-2-152	ОН	Н	Н	н	н	Н	Н
1-2-153	OAc	H	Н	Н	H	н	Н

1-2-154	· CI NH2	Н	Н	Н	Н	Н	Н
1-2-155	NO ₂	H·	Н	Н	Н	Н	Н
1-2-156	O ₂ N	Н	Н	н	н	Н	Н
1-2-157	F.	н	Н	Н	Н	Н	н
1-2-158	NH ₂	н	Н	н	Н	Ĥ	H
1-2-159	F ₃ CS	н	н	· H 、	Н	Н	Н
1-2-160	ОН	н	н	Н	Н	H	H
1-2-161	СООН	Н	н	н	Н	Н	Н
1-2-162	CIOH	 Н	Н	H	Н	Н	H
1-2-163	N.	∙н	Н	н	н	Н	н
1-2-164	F ₂ HCO	н	н	н	H	н	·H

1-2-165	СІ	Н	н	Н	н	н	н
1-2-166	ОН	н	Н	Н	Н	н	Н
1-2-167	F ₃ C OH	н	Н	Н	Н	н	Н
1-2-168	CF ₃ OH	н	н	н	Н	H.	Н
1-2-169	CIOH	H	Ĥ	н	н	н	Н
1-2-170		H	н	н	Н	Н	н
1-2-171		Н	н	Н	Н	. н	H
1-2-172	MeO MeN	н	. н	н	Н	н	Н
1-2-173	MeN	н	Ĥ	Н	н	н	-
1-2-174	MeN	н	H	Н	Н	н	Н
1-2-175		Н	H	Н	н	Н	Н

1-2-176		н	н	Н	Н	Н	н
1-2-177	MeN	Н	Н	Н	Н	Н	н
1-2-178	MeN	Н	Н	Н	Н	н	Н
1-2-179	MeN	н	Н	н	н	Н	Н
1-2-180	MeN	H .	н	. н	н	Н	H

	$\langle Table 1-3 \rangle X = Sing$	gle Bor	nd, q =	0, r=	0, Y :	= -(R4)C=C(R5)-	
Compound No.	R1	R2	R3	R4	R5	R6	R7
1-3-1		н	н	Н	н	Н	H H O O
1-3-2	CI	н	н	н	н	н	, N O
1-3-3		H	Ή	н	Н	Н	H O N H
1-3-4		Н	н	н	Ĥ	н	$N \longrightarrow N \longrightarrow$
1-3-5		н	н	Н	H	H	H N N H
1-3-6	CI	H	н	н	н	н	H H O O
1-3-7	CI	н	н	Н	н	H O	H
1-3-8	CI	н	н	Н	, Н	$\stackrel{H}{\underset{O}{\bigvee}} NH_2$	н
1-3-9	CI	Н	н	н	H	н	H O
1-3-10	CI	H	Н.	н	. H	н	, N 0
. 1-3-11	CI	н	н	н	Н	н	· N N N N N N N N N N N N N N N N N N N

1-3-12	CI	н	Н	н	·н	н	H
1-3-13	CI	H	н	н	Н	Н	H 0 0 0
1-3-14	CI	Н	н .	н	н	H	, N N N N N N N N N N N N N N N N N N N
1-3-15	CI	н Н	н	н	H	Н	H N O
1-3-16	CI	н	H	н	н	, н ,	HON
1-3-17	CI	н	н	н	Н	н	HN
1-3-18	CI	, , H ,	н	Н	н	H	H N O
1-3-19	CI	Н	н	н	H	н	H
1-3-20	CI	Н	Н	Н	Н	н .	COOMe
1-3-21	CI		н	H ²	н	н	H
1-3-22	CI	н	Н	н	Н	н	H

1-3-23	CI	н	Н	н	н	н	, N O O
1-3-24	CI	н	н	н	н	Н	H NO2
1-3-25	CI	н	н	н	Н	Н	H N S O
1-3-26	CI	Н	Н	Н	Н	H [']	HNS
1-3-27	CI	н	н	Н	н	н	H
1-3-28	CI CI	Н	н	Ή	Н	Н	H
1-3-29	CI	н	н	н	H [.]	H .	H O
1-3-30	CI	н	н	н	н	н	H
1-3-31	CI	н	н	Н	н	н	, N O
1-3-32		н	н	н	ĻН	Н	H
1-3-33	CI	H	Н	Ĥ	н	Н	H N O

1-3-34	CI	Н	н	н	н	Н	H
1-3-35	CI	н	Н	Н	н	Н	H
1-3-36	CI	Н	Н	Н	, H	н	$N \longrightarrow 0$
1-3-37	CI	Н	н	н	Н	н	H O
1-3-38	CI	н	Н	Н	н	н	H
1-3-39	CI	H	н	н	н	н	H
1-3-40	CI	н	н	Н	Н	H	H
1-3-41	CI CI	Н	н	н	н	H	H
						Н	
	CI					H	
1-3-44	CI	н	н	н	н	н	H N COOMe

Н

1-3-45	CI	·H	н	н	Н	H	, N
1-3-46	CI	H	н	H	н	. н	. N
1-3-47	CI	н	н	н	н	Ĥ	H O O
1-3-48	CI	н	H	Н	H .	Н	H N H
1-3-49	CI	н	н	Н	н	H H	H OH
1-3-50	CI	н	. H	н	Н	Ή ,	$N \longrightarrow NH_2$
1-3-51	CI	н	Н	н	н	H	$N \longrightarrow N \longrightarrow$
1-3-52	CI	Н	Н	н	Н	H	Н
1-3-53	CI	Н	н	н	Н	, N	, н
	CI						н
1-3-55	CI	H	н	н	H	H	Н

1-3-56	CI	н	н	н	Н	, N O	н
1-3-57	CI	н	н	Н	н	H	H N _S
1-3-58	CI CI	н	н	н	Н	H N.S O ₂	. Н
1-3-59	CI	Н	Н	Н	н	Н	HHN
1-3-60	CI CI	Н	Н.	н	н	H H N N	н
1-3-61	CI	H .	Н	, Н.,	Н	н	NH2
1-3-62	CI CI	Ή	н	н	H	NH2	н
1-3-63	CI CI	н	н	Ħ	н	н	H COOMe
1-3-64	CI	н	н	H	Н	н .	H
1-3-65	CI	н	Н	Н	н	н	$N \longrightarrow N$
1-3-66		н	H.	н	н	H	H

1-3-67		н	· H	н	н	н	, N 0
1-3-68	Q	н	н	н	н	н	H 00
1-3-69		н	н	н	н	н	$H \longrightarrow NH_2$
1-3-70	Q	н	н	н	н	. H	H OH
1-3-71		Н.	н	н	н	н	H
1-3-72		н	Н	н	. Н	н	H N COOMe
1-3-73		н	н	н	H	Н	H O
1-3-74		н	н	н	н	. н	H O
1-3-75	<u>Q</u>	н	н	н	н	н 💎 🗀	, N COOMe
1-3-76		н	н	н	Н	н	H N N
1-3-77		н	н	н	Н	н	, N N

1-3-78		н	н	Н	н -	н	N H N
1-3-79		н	H	н	Н	н	H N _S
1-3-80		н	н	H	н	н .	H N O
1-3-81		Ĥ	Н	H	н	н.	H N O
1-3-82	Q	н	н	н	н	н	, N O
1-3-83	Q	Н	H ,	н	н	′ Н	$\stackrel{H}{\underset{O}{\bigvee}} NH_2$
1-3-84		H	н	н	н	н	H OH
1-3-85		н	Н	н	н	н .	H O
1-3-86		н	н	н	н	н	H COOMe
1-3-87	Q	Н	Н	Н.	Н	н	, N O
1-3-88		Н	н	н	н	H	h N

1-3-89	Q	н	ŀΗ	н	Н	н	N COOMe
1-3-90	Q	. H	н	Н	H	н	, N N
1-3-91	Q	н	н	н	н	H	H
1-3-92		н	н	н	Н	H	H H N N
1-3-93		н.	Н	Н	н	н.	H N.S O ₂
1-3-94	CIOH	н	н	н	Н	н	H N H
1-3-95	СІ	H	H	н	H	Н	H
1-3-96	CIOH	н	н	н	Н	H	H
1-3-97	CI	H	н	н	н	н	$N \longrightarrow 0$
1-3-98	CI	Н	н	H	н	Н	$H \longrightarrow NH_2$
	CI OH	н	н	н	н	H	H O OH

1-3-100	CIOH	Н	Н	н	Н	н	N O O
1-3-101	CI	H	н	н	н	н	H COOMe
1-3-102	CIOH	н	H	Н	Н	Н	, N
1-3-103	CIOH	Н	Н	Н	н	Н	H
1-3-104	CIOH	н	H	н	н ·	Н	H COOMe
1-3-105	CIOH	н	н	- H .	Н	Н	H N
1-3-106	CI	Н	н	н	н	н .	H N N
1-3-107	CI	Н	н	н	н	н	H H N N
	CI					H	H N.S O ₂
1-3-109	CIOH	H	н	н	н	н	H N H
1-3-110	CIOH	Н	H	Н	н	Н	$\begin{array}{c c} H & H \\ \hline & N \\ \hline & O \\ \end{array}$

1-3-111	CIOH	н	н	н	Н	.· . H	H N O
1-3-112	СІОН	н	н	н	н	н .	, N O
1-3-113	CIOH	н	Н	н	Н	н	H O
1-3-114	CIOH	н	Н	Н	Н	н	H N NH2 NH2
1-3-115	CIOH	н	н	Ĥ	н	н	H OH
1-3-116	CIOH	н	Н	н	н	.+ н	H O
1-3-117	CIOH	н	Н	Ή	H	Н	H N COOMe
1-3-118	CI OH	н	н	н	H	н	
1-3-119	CIOH	н	Н	Н	н	н	H
1-3-120	CIOH	Н	Н	Н	н	Н.	N COOMe
1-3-121	CIOH	H	H	н	н	н	H N O

1-3-122	CIOH	H	н	Н	Н		Ή	, N N N
	Cl	н	н	н	н		н	H H N
1-3-124	CIOH	Н	Н	Н	н		н	H N _S
1-3-125	Вг	н	н	H	H		Н	H N N H
1-3-126	Br	н	н	н	н		н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1-3-127	Вг	н	Н	н	н	,	н	H
1-3-128	Вг	н	н	Н	н		н	, N O
1-3-129	Br		н				н	, N O
1-3-130	Br	H-	Н	н	Н		H .	H N N NH₂
1-3-131	Вг	н	Н	H	н	•	н	H O OH
1-3-132	Br	H	H ,	н	н		Н	H O O

1-3-133	Br	н	н	н	н	н	H N COOMe
1-3-134	Вг	н	н	н	н	Н	, N
1-3-135	Br	н	н	H	Н	H	H
1-3-136	Вг	н	. , Н	Н	Н	Н	COOMe
1-3-137	Вг	н	Н	н	ŀН	H	H N
1-3-138	Вг	Н	Н	Н	н	. H	$N \longrightarrow N$
1-3-139	Br	H.	Н	н	н	H	H H N N
1-3-140	Br OH	н	H	н	H	H	H N _S
1-3-141	Mani					Н	H N H
1-3-142	MeN	н	H	Н	н	ч	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1-3-143	MeN	Н	н	н	Н	Н	H N O

1-3-144	MeN	н	н	Н	н	н	H O
1-3-145	MeN	н	н	H	н .	Н	, N O
1-3-146	MeN	н	н	н	н	Н	H N N NH ₂
1-3-147	MeN	н	н	H	н .	Н	H O OH
1-3-148	MeN	н	н	н	н.	· н	$N \longrightarrow 0$
1-3-149	MeN	н	н	H	H	н .	H COOMe
1-3-150	MeN	н	н	Н	Н	н	H O
1-3-151	MeN	н	H	н	н	н	, N
1-3-152	MeN	н	н	н	Н .	н	H COOMe
1-3-153	MeN	Н	н	н	H .	н	H N N
•	MeN						, N N

1-3-155	MeN	н	н	н	н	Н	H H O
1-3-156	MeN	н	Н	Н.	H		H N S O ₂
1-3-157	S.	н	Н	н	н .	Н	, N N N
1-3-158	S	H	Н	Н	Н	н	$\begin{array}{c} H \\ N \\ O \\ O \\ \end{array}$
1-3-159	S	H	н	Н	Н	H	H N O
1-3-160	S.	н	н	Н	Н	H	, N O
1-3-161	S.	Н	Н	н	н .	н	H N O
1-3-162	S.J.	н	Н	Н	н	Н	N N N NH ₂
1-3-163	S	Н	н	Н	н	H 	H OH
1-3-164	S.						N O O
1-3-165	5	н	Н	н	н	H	H COOMe

•							· •
1-3-166	\$	Н	н	Н	Н	Н	H O
1-3-167	S	н	н	н	Н	Н	H O
1-3-168	S	н	н	н	н	Н	H N O COOMe
1-3-169		н	н	н	н	H .	H
1-3-170	S	н	н	н	H	Н	H N N
1-3-171	S	н	Н .	н	Н	H	N H H N
1-3-172 ´	S	н	Н	Н	H.		H N O ₂
1-3-173	CI	н	Н	Н	Н	H O N H	H .
1-3-174	CI	Н	Н	Н	Н	$\begin{array}{c} H \\ N \\ O \end{array}$	н
1-3-175 C		н	Н	Н	Н,	, N OH	н
1-3-176		н	н	Н	Н	H N COOMe	н

1-3-177	CI	н	H	н .	Н	H COOMe	н
1-3-178	CI	н	н	н.	н	H N	н
1-3-179	CI					H N N	н
1-3-180	CI CI	н	Н	Н	Н	H N O	Н
1-3-181	CI	н	н	Н	н	H	Н
1-3-182	CI	•				H H N N	н
1-3-183	CI	Н	н	Н	н	H N _S O ₂	Н
1-3-184		Н	Н	H	н	H N N H	н
1-3-185		н	Н	н	н	$N \longrightarrow N \longrightarrow$	Н
1-3-186		н	н	н	н	H N O	н
1-3-187		Ηv	н	н .	н	H N	н

1-3-188	н	Н	Н	н	, N O	н
1-3-189	Н	н	н	Н	H NH ₂	Н
1-3-190	н	Н	Н.	н	H OH	н
1-3-191	Н	н	н	н	H N O O	н
1-3-192					H COOMe	н
1-3-193	н	н	H	Н	H	Н
1-3-194	Н.	н	Н	Н	H	Н
1-3-195	H				H N COOMe	H
1-3-196	н	H	н	H	H N N	H :
1-3-197	H				H N N	н
1-3-198	Н	н	н	н	H H N N O	н

1-3-199		Н .	н	н	Н	H N.S O ₂	н
1-3-200	Q	Н	н	Н	н	H N N H	н
1-3-201		H	н	н	н	$ \begin{array}{c} H \\ N \\ O \end{array} $	н
1-3-202		Н	Н	H	н	H N O	н
1-3-203		. н	н	Н	н	, N	н
1-3-204		н	Н	Н	н	H N O	Н
1-3-205		н	н	н	H	NH ₂	Н
1-3-206		н	Н	н	H	H OH	н
1-3-207		н	н	н	Н	H	н
1-3-208		н	н	н	Н	H N COOMe	н
1-3-209		Н	н	н	н	H O	H

					H N COOMe	н
1-3-244	CIOH	н	н	н	H N N	н
1-3-245	CIOH	н	н	н	$H \longrightarrow N \longrightarrow N$	н
1-3-246	CIOH	Н	Н	H	H H N N N N N	Н
1-3-247	СІ ОН	Н	н	н	H N S O2	н
1-3-248	Вг	Н	н	H ,	$H \longrightarrow N \longrightarrow $	Н
1-3-249	Br	Н	Н	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н
1-3-250	Вг				H NO	н.
1-3-251	Br	н	н.	н	H NO	н
1-3-252	Br	н	н	H	H .N O	Н
1-3-253	Вг	н	н	н	$H \longrightarrow N \longrightarrow NH_2$	Н

1-3-254	Вг	н	Н	н	H NOOH	н
1-3-255	Вг	Н	Н	Н	$H \longrightarrow H \longrightarrow O \longrightarrow O$	Н
1-3-256	Br	н	н	Н	H N COOMe	Н
1-3-257	Br	н	H	Н	H N O	Н
1-3-258	Вг	н	н	н	H N	н
1-3-259	Br	н	Ĥ	H	H N COOMe	H .
1-3-260	Вг	н	н	н	$H \longrightarrow H \longrightarrow N$	Н
1-3-261	Вг	н	н	н.	$H \longrightarrow N \longrightarrow N$	н
1-3-262					H H H N N	н
1-3-263	Вг	н	Н	Н	H N _S	н
1-3-264	MeN	H	н	H.	H N N N	н

1-3-277	MeN	н	н	н	H N N	н
1-3-278	MeN				$H \longrightarrow N \longrightarrow N$	н
1-3-279	MeN	Н	н	н	H H H	Н
1-3-280	MeN	Н	H	н	H N S O2	H
1-3-281	S	Н	н	Н	$H \xrightarrow{N} N \xrightarrow{O} N$	Ĥ
1-3-282	S	H	H	H	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н
1-3-283	S	н	н	н	H N O	Н
1-3-284	\$	H	н	н .	H N O	н
1-3-285	S	н	Н	н	H , N , O ,	H
1-3-286	S	Н	н	Н ,	$H \longrightarrow H \longrightarrow NH_2$	Н
1-3-287	S	н	н	н	H N OH	Н

1-3-288	S	Н	н	Н	H , N C	Н
1-3-289	5	н	н	н	H N COOMe	н
1-3-290	S	н	н	н	H N	н
1-3-291	S.	Н	н.	Н	H H	н
1-3-292	S	н	н	н	H N COOMe	Н
1-3-293	S	Н	н	н	$H \longrightarrow N \longrightarrow N$	Н
1-3-294	S	[:] Н	н	н	$H \longrightarrow N \longrightarrow N$	H
1-3-295	S				H N N	H
1-3-296	S.	н	Η,	н	H N _S	Н

(Table 1-4) $X = \text{Single Bond}, q = 0, r = 0, Y = -(R4)C = C(R5) -$											
Compound No.	R1	R2	R3	R4	R5	R6	R7				
1-4-1	СІОН	н	Н	н	н	Н	OMe				
1-4-2	CIOH	н	Н	н ·	н	H	OMe				
1-4-3	Вг	Н	Н	н	`. H	Н	OMe				
1-4-4	O ₂ N OH	н	Н	Н	н	Н	OMe				
1-4-5		н .	Н	н	Н	н	OMe				
1-4-6	MeN	н	Н	н	н	, H	OMe				
1-4-7	S	н	н	Н	Н	н	OMe				
1-4-8	Q	н	н	H	н	н	OMe				
1-4-9	CI	H	H	Н	н	н	OMe				
1-4-10	CI OH		Н	Н	н	Н	H N O				
1-4-11	Вг	н	. H	Н	Н	н	N O				

1-4-12	O ₂ N OH	н	Н	H	Н	Н	N O
1-4-13	CIOH						O H
1-4-14		н	H	Н	, Н Э	н	H N O
1-4-15	MeN	Н	н	н	н	н	N O
1-4-16	S	н	Н	н			N O
1-4-17	Q	Н	Н	н	Н	Н	N O
1-4-18	CIOH	Н	Н	Н			O N H
1-4-19	CIOH	· Ĥ	H	н	Н		O N
1-4-20	CIOH	Н	H	Н		н	N
1-4-21	CIOH	Н	Н	Н	Н	н	N O
1-4-22	CI OH	•		н		H	N N N N N N N N N N N N N N N N N N N
1-4-23	CI	н	н	Н	Н	н	O N N

1-4-24	CI	н	Н	н	Н	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1-4-25	CI	. н	Н	н	н	н	N COOEt
1-4-26	CI	н	Н	н	н	н	O N H
1-4-27	CI	н	Н	н	н	Н	H O
1-4-28	CI	н	H	н.	н	Н	N H
1-4-29	CI	н					O H
1-4-30	CI	Н	н	Н	н	. н	$\bigcap_{N \longrightarrow NH_2} NH_2$
1-4-31		н	н ,	н	Н	Н	OEt
1-4-32	Q.,	Н 、	н	н	н	н	N N N
1-4-33	Q.,	Н					$0 \qquad H \qquad N \qquad N$
1-4-34		Н	H	Н	н	н	O N COOEt H
1-4-35		н	н	Н	н	Н	O N COOMe H

1-4-36	Q.,	н	н	н	Н	н	H O O
1-4-37	Q	н	н	Н	н	H	N H
1-4-38		н	н	H	н	н	OEt
1-4-39	Q	н	· Н	н	н .	н	N N N
1-4-40		Н	н	н	н	н	N H O
.1-4-41		н	н	н	н	н	N COOEt
1-4-42		н	н	н	н	н	COOMe
1-4-43	Q	н	Н	Н .	н	Н	N H
1-4-44	Q	н	Н	н	, , H	н	O H
1-4-45	CI	н	н	н	Н	н	O OEt
1-4-46	CI CH OH	н	н	H	Н	н	N N
1-4-47	CIOH	н	н	Н	н	н	$\begin{array}{c} O \\ H \\ N \\ N \\ \end{array}$

1-4-48	CIOH	Н	Н	н	н	H	N COOEt
1-4-49	CI	н	н	Н		н	Н
1-4-50	CIOH	Н	H .				N H
1-4-51	CIOH	H	H	Н	н .	Н	O H
1-4-52	CIOH	Н	н	н	н	н	OEt
1-4-53	CIOH	H	H	Н	Н	H	N N
1-4-54	CIOH	Н	н				$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1-4-55	CIOH	H	Н	Н	н	н	N COOEt
1-4-56	CIOH	н	н	Н			O N H
1-4-57	CIOH	H ·	н	н	н	Н	O N H
1-4-58	CI OH OH Br	н	Н	Н	Н	Н	O N H
1-4-59	Br		н	Н	н	н	OEt

1-4-60	Br	Н	Н	н	Н	, н	O N N
1-4-61	Вг	Н					N H N H
1-4-62	Вг	Н	н	Н	н	Н	N COOEt
1-4-63	Вг	н	н	Н		Н	H
1-4-64	Вг	Н	н				N H
· 1-4-65	Br	н	н	Н	Н.	Н	N H
1-4-66	MeN	н	Н	Н	Н	н	OEt
1-4-67	MeN	Н	н	н	н	Н	Н
1-4-68	MeN	Н.	н	H 、	н	Н	O H N O
1-4-69	MeN						O N COOEt H
1-4-70	MeN	Н .	н	н	н	н	O N COOMe H
1-4-71	MeN	H	н	H .	н	Н	N H

1-4-72	MeN	н	н	н	н	н	N H
1-4-73		н	н	н .	Н	H -	OEt
1-4-74	\$	н	Н	н	н	Н	O N N
1-4-75	S	н	H	н	Н	Н	N N N N N N N N N N N N N N N N N N N
1-4-76	S	H	н	н	Н	[*] H	N COOEt
1-4-77		н	Н	н	Н	H	O N H
1-4-78	s .	н	Н	Н	Н	н	N H
1-4-79	S	, Н	н	н	н	Н	O N N

$\langle Table 1-5 \rangle X = Single Bond, q = 0, r = 0, Y = -(R4)C=C(R5)-$											
Compound No.	R1	R2	R3	R4	R5	R6	R7				
1-5-1	СІОН	н	Н	H	Н	COOEt	н				
1-5-2	CIOH	н.	Н	н	Н	COOEt	H				
1-5-3		Н	Н	н	Н	COOEt	Н				
1-5-4	Q	Н	Н	н	н	COOEt	н				
1-5-5	CIOH	н	Н	Н	H	COOCH(Me)2	н				
1-5-6	CIOH	Н	H ,	Н	Н	COOCH(Me)2	н				
1-5-7		Н	н	H	н	COOCH(Me)2	н				
1-5-8		Н	Н	H	н	COOCH(Me)2	н				
1-5-9		н .	H	н	H	COOMe	Ĥ				
1-5-10		н	н	Н	H	COOMe	Н				
1-5-11	CIOH	н	Н	н	H	COOMe	H,				

1-5-12	O ₂ N OH	Н	H	н	Н	COOMe	Н
1-5-13	S.	• Н	Н	Н	Н	COOMe	H
1-5-14	CIOH	н	Me	н	H	COOMe	н
1-5-15		н	Me	Н	. H	COOMe	Н
1-5-16	Q	H'	Me	Н	н	COOMe	н
1-5-17	CIOH	Н	Me	H .	СООМе	Н	Н
1-5-18		н	Me	H .	COOMe	H	н
1-5-19	Q	H	Ме	 Н	СООМе	.	Н,
1-5-20		н	H	н	Н	соон	Н
1-5-21	MeN	H	н	н	Н	соон	н
1-5-22	Br				. н		н
1-5-23		H	Н	Н	H	N N	н

1-5-24	Н	н	Н	н	N N N N N N N N N N N N N N N N N N N	н
1-5-25	н .	н	Н	н	N N N O	Н
1-5-26	н	н ·	н	н	O N COOMe	н
1-5-27	н	н	H	н	N O	н
1-5-28	н	н	H	Н	N H	, H
1-5-29	Н	H	н	Н	O N	Н
1-5-30	Н	H .	Н.	н	O N H	Н
1-5-31	. н	Н	н	н	O H	H
1-5-32	н	н	н	H -	O N H	н
1-5-33	н	Н	н	Н	O H H	н
1-5-34	н	н	н	н	O N COOEt	Н
1-5-35	н	н	н	Н	O N OH	н

1-5-36	Q	Н	н	н	н	N COOH	н
1-5-37		Н	Н	н	н	N N H	н
1-5-38	Q	н	Н	н	н	N H	н
1-5-39		Н	н	н	н	N N N	н
1-5-40	Q	Н	н	н	Ĥ	N H N O	Н.
1-5-41		Н	Н	Н	. H	$\begin{array}{c} O \\ H \\ \end{array}$	Н
1-5-42		H	Ħ	н	Н	N COOEt	н
1-5-43	Q	Н	Н	Н	н	O N H	'nН
1-5-44		Н.	н	н	н	O N COOMe	н
1-5-45		H	. Н	H	н	H O	H
1-5-46	Q	Н	н	Н	H	O N H	н
1-5-47	Q					_	Н

1-5-48	MeN	н	н	н	Н	H N N	н
1-5-49	MeN	, H	н	Н	н	N N N	н
1-5-50	MeN	н	Н	н	Н	O N COOMe	н
1-5-51	MeN	н	Н	н .	H .	H O	н
1-5-52	MeN	Н	н	H	н	N H	Н
1-5-53	MeN	н				O N	н
1-5-54	CI	н	н	Н	н	O N H	н
1-5-55	CIOH	н	Н	н	Н	H N	Н
1-5-56	СІОН	H	Н	Н	н	N H N O	н
1-5-57	CIOH	H	Н	Н	Н	N H O	H
1-5-58	CIOH	н	Н	Н	Н	N COOEt	Н
1-5-59	CIOH	Н	н	н	Н	O N COOMe	н

			_				
1-5-60	CI OH	н	Н	H	н	O N O N	Н
1-5-61	CIOH	н	Н	н	Н	O H	н
1-5-62	CIOH	н	н	н	H	O N	Н
1-5-63	CI	H.	Н	H .	н	H N N	н
1-5-64	CI	Н	H	н	н	N N N	н
1-5-65	CI	н	н	Н	Н	N N N O	Н
1-5-66	CI	н	Н.	Н	н	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	н
1-5-67	CI	н	Н	н	н	N COOEt	Н
1-5-68	CI	н	н	· н	н	O N H	H
1-5-69	CI	н	Н	н	Н	O N COOMe	Н
1-5-70	CI	н	Н.	н	н	N H	н
1-5-71	CI CI	H	Н	н	Н	O N	н

1-5-72	cı C.	н	н	н	н	O H	н
1-5-73		н	н	_. н	Н	N.OMe Me	Н
1-5-74		н	н	Н	н	O N-OMe Me	H
1-5-75	MeN	н	н	Н	н	O N OMe Me	н
1-5-76	CI	н	Н .	Н	н	O NOMe Me	н
1-5-77	CI	Н	H	Н	H	O N O Me	н
1-5-78		Н	н	Н	Н	ON	Н
1-5-79		, H	н	Н.	н	O N	Н
1-5-80	MeN	н	Н	н	н	O N	н
1-5-81	CI	н	Н	Н	Н	N N	Н
	CI CI					O N	н
1-5-83		н	н	н	н	O NH	Н

1-5-84		н	H	н	н,	NH	H
1-5-85	MeN	н	Н	Н	н	NH	Н
1-5-86	СІ	н .	Н	Н	н	NH	H
1-5-87	CI C.	н	Н	Н	н	NH	н
1-5-88	CI	н	Н .	Н	н	N H	н
1-5-89	CI	Н				N COOEt	н
1-5-90	CI	н	н	Н	н	O N H	Н
1-5-91	CI	н	Н	Н	н .	H N N	H
1-5-92	CI	н	Н	Н	н	$0 \\ N \\ $	Н
1-5-93	CI	Н	Н	Н	н	O N COOMe	Н
1-5-94	CI CI	н	Н	Н	Н	N O	Н
1-5-95	CI	Н	н	н	н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н

1-5-96	CI	Н	Н	Н	н	H	Н
1-5-97	CI	Н	Н	н	. Н	NH ₂	Н
1-5-98	CI	н	н ,	н	Н	O N COOH H	H
1-5-99	CI	н	Н	н	Н	N OH	Ĥ
1-5-100	CI	н	н	H	Н	N N N	H
1-5-101	CI	н,	н	н	H	N N N	H
1-5-102	CI	н	н	н	н	O H	H
1-5-103	CI	н	н	н	н	O N H	н
1-5-104	CI	H	н	н	н	N H	н
1-5-105	CI	Ή	н	H	Н .	O N	н
1-5-106	CI	н	н	н	H	O N CF ₃	н
1-5-107	CI	Н	. Н	н	Н	O N N	Н

1-5-108	CI	н	н	н	н	N F	Н
1-5-109	CI	н	Н	н	н	N O O	H .
1-5-110	CI	Н	H,	н ,	н	COOEt	Н
1-5-111	CI	н .	н	Н	н	$\begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	н .
1-5-112	CI	· H	н	н	н	N N N	Н
1-5-113	CI	н	Н	, H	· H ,	N H	н
1-5-114	CI	н	H	н	н	N CN	, H
1-5-115	CI	н	Н	н	н	N O	Н
1-5-116	CI	н .	Н	н	H	O H	Н
1-5-117						O N H	н
1-5-118	CI	н	Н	н	н	O H	н
1-5-119	CI	н	н	н	Н	O N N	н

1-5-120	CI	н	н	Н	н	N N H	н
1-5-121	CI CI	н	н	н	Н	, H H	Н
1-5-122	CI	н	Н	, н	Н.	N H	н
1-5-123	CI	H .	н	н	н	O N	н
1-5-124	CI	н	Н .	н	н	N H	н
1-5-125	CI	н	Н	H	Н	O N	Н
1-5-126	CI	- Н	н	H	Н	H	Н
1-5-127	CI	н ,	Н	н	Ĥ	H	Н
1-5-128	CI	н	Н	Н	Н	N N	Н
1-5-129	CI CI	н	Н	Н	Н	N H	H
1-5-130	CI CI					, H N	
1-5-131	CI	H·	н	н	н	O N N	н

1-5-132	CI	н	н	· H	Н	O H	Н
1-5-133	CI CI	н	Н	н		Н	Н
1-5-134	CI	н	Н	Н	Н	O H	н
1-5-135	CI	H	Н	H	н	N H	Н
1-5-136	CI	н	Н	н	н	O N O	μ
1-5-137	CI	н	Н	н	H	Н	Н
1-5-138	CI	H .	Н	н	н	O H	H
1-5-139	CI	н	H	Н	н .	O H	Н
1-5-140	CI	Н		Н		11	H
1-5-141	CI	н	H	Н	Н	O H	, H
1-5-142	CI	н	Н	Н	Н	, H N	н
1-5-143	CI	н	Н	н	н	H N L	н

1-5-144	CI	Н	н	Н	н	N H	, H
1-5-145	CI	Н				N N	H
1-5-146	CI	Н	Н	н ̂	н	N O	Н
1-5-147	CI	Н	Н	н	Н	O N N	H
1-5-148	CI CI	Н	H	н	H	$\bigcup_{h}^{h} \bigvee_{o}^{o}$	н
1-5-149	CI	Н	.H	н	Н .	O H	н
1-5-150	CI	Н	Н	н	H .	O H	н
1-5-151	CI	Н .	Ĥ	н	H	O N	н
1-5-152	CI	H	H	н	Н	N H	Н
1-5-153	CI	Н	н	н	Н	$\bigcup_{N}^{H} \bigvee_{N} \bigvee_{N}$	н
1-5-154		Н	Н	н	Н	N O	· H
1-5-155	CI	Н	Н	Н	Н	N N N	н

1-5-156	CI	Н	н	Н	Н	O N N	н
1-5-157	CI	н	н	н	н		н
1-5-158	CI	. Н	Н	H	Н	N O	Н
1-5-159	CI	н	Н	Н	Н	N	Н
1-5-160	CI	н	н	Н	н	NO	Н
1-5-161	CI	Н	н	н	Н	O N Me	н
1-5-162	CI	н	н	Н	н	O N	Н
1-5-163	CI	н	Н	Н	н	Me N O	Н
1-5-164	CI	н	H	Н	H	N N	Н
1-5-165	CI CI	н	; H	H	н	N CONHMe	Н
1-5-166	CI	н	н	н .	н	O N CONH₂ H	н
1-5-167	CI CI					O H O	Н

1-5-168	CI	н	н	Н	Н	O N CONH ₂ H	Н
1-5-169	CI	Н	′ H	н	Н	N CN	H
1-5-170	CI	Н				N N	н
1-5-171	CI	Н				N CI	н
1-5-172	CI	н	Н	H	н	$0 \\ N \\ N \\ N$	н.
1-5-173	CI	н	Н	Н	. н	N H	Н
1-5-174	CI	н	Н	Н	Н	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	н
1-5-175	CI	Н	H	н	H	$\begin{array}{c} O \\ M \\ \end{array}$	H
1-5-176	CI	н	н			O N N	н
1-5-177	CI	Н	, н .	н	Н	O N N	Н
1-5-178	CI	Ĥ	н	н		O H N	H
1-5-179	CI	Н	н	н	н	Q _N ~o	н

1-5-180	CI	н	н	Н		Н	н
1-5-181	CI	н	н	н	Н	H CI	Н
1-5-182	CI	н	н	н .	н	N N	H
1-5-183	CI	H	Н	н	Н	H	н
1-5-184	Q	· . H	н	н	н	~^ОН	´ H
1-5-185		Н	н	н	Н	ОН	Н
1-5-186		. H	Н	Н	Н	CN	н
1-5-187		Н	Н	Н	Н	ОН	н
1-5-188		Н	Н	н	Н	0	Н
1-5-189		H	Н	Н	H	0	Н
1-5-190		Н	н	Н	Н	0	Н
1-5-191	CI	н	н	Н	н	O N N S	. Н

1-5-192	CI	н	Н	Н	. н	O N N	н
1-5-193	CI	Н	н	Н	Н	· · · · · · · · · · · · · · · · · · ·	н
1-5-194	CI	. H	Н	н	н	O N	Н
1-5-195	CI	Н				O L _N .OMe Me	. н
1-5-196		Ή	Н	н	Н	O N COOEt H	Н
1-5-197	CI	Н	Н .	н	н	OMe	н
1-5-198	CIOH	Н	н	·Н	н	N O	H
1-5-199	CIOH	н	н.	н	, H	N N N	Н
1-5-200	CIOH	Н	Н			$\begin{array}{c} O \\ H \\ O \\ \end{array}$	Н
1-5-201	CIOH	н				N COOEt	Н
1-5-202	CIOH	н				O N COOMe H	Н
1-5-203	CIOH	н	н	н	Н	O H H	н

	-						
1-5-204	CIOH	н	н	н	Н	N H	н
1-5-205	Вг	Н	н	н	н	OMe	Н
1-5-206	Вг	Н	н	н	н	OEt	н.
1-5-207	Вг	н .	Н	н	Н	O H H	н
1-5-208	Вг	Н	H	Н	н	H N N	н
1-5-209	Br	Н	Н	Н	н	N H O	н
1-5-210	Вг	H	H .			N COOEt	Н
1-5-211	Br	Н	н	Н	н	O N COOMe H	Н
1-5-212	Вг	Н	н.	H	н	O N H	н
1-5-213	Вг	Н	Н	H	Н	N H	H
1-5-214	MeN	Н	H.	Н	н	OMe	Н
1-5-215	MeN	н	н	тн	н	OEt	Н

1-5-216	MeN	н	н	Н	Н	N O	н
1-5-217	MeN	н	н	Н	Н	N N N	H
1-5-218	MeN	Н	н	н	н	N COOEt	н
1-5-219	S	н .	Н	Н	Н	OEt	H .
1-5-220	S	н .	н	н	Н	N H	н
1-5-221	\$	н	Н	н	н	O N N	Н
1-5-222		H	н	н	Н	N H O	, H′
1-5-223	S	Н	н	н	Н	N COOEt	н
1-5-224	\$	н	Н	Н		O N COOMe	Н
1-5-225	\$	н	Н	н	н	O H	н
1-5-226	S	н	н	н	Н	N H	Н

$\langle \text{Table 1-6} \rangle$ X = Single Bond, q = 0, r = 0, Y = -(R4)C=C(R5)-										
Compound No.	R1	R2	R3	R4	R5	R6	R7			
1-6-1	CI	н,	Et	Н	н	Н	н			
1-6-2	CI	Et	Et	н	н	н	н			
1-6-3	CI	, СН2С6Н5	CH2C6H5	H	Н	Н	Н			
1-6-4	CI	н	CH2C6H5	Ĥ	н	Н	H			
1-6-5	CI	(CH2)5CH3	(CH2)5CH3	H	. H	Н	Н			
1-6-6	CI	H	(CH2)5CH3	H .	Н	н	H			
1-6-7	CI	(CH2)3C6H5	(CH2)3C6H5	H	Н	н	Н			
1-6-8	CI	н '	(CH2)3 <u>C</u> 6H5	Н	Н	H	Н			
1-6-9	CI	H	CH2COOMe	Н	H	H	Н			
1-6-10	CI	н	(CH2)4COOEt	Н	н	Н	н			

	CI						
1-6-11	CI	H	(CH2)3NH2	Н	Н	Н	Н
1-6-12	CI	н	(CH2)2CONH2	Н	н	Н	H
1-6-13	CI	н	(CH2)2COOH	Н	н	Н	н
1-6-14	CI	Н	(CH2)2CN	Н	Ή	Η,	н
1-6-15	CI	. H	(CH2)2COOEt	Ή.	H	Н	н
1-6-16		н	Et	Н	Н	Н	Н
1-6-17		Et	Et	н	н	н	Н
1-6-18		CH2C6H5	CH2C6H5	Н	н	н	Н
1-6-19		Н	CH2C6H5	н	H	н	, H
1-6-20		(CH2)5CH3	(CH2)5CH3	Н	Н	Н.	Н
1-6-21		н	(CH2)5CH3	н	н	Н	н

1-6-22		(CH2)3C6H5	(CH2)3C6H5	Н	Н	Н	Н
1-6-23		H	(CH2)3C6H5	н	н	н	Н
1-6-24		H	CH2COOMe	н	н	H ,	H
1-6-25		Н	(CH2)4COOEt	н	н	н	н
1-6-26		H	(CH2)3NH2	Н	Н	H	н
1-6-27		н	(CH2)2CONH2	н	Н	Н	Н
1-6-28		Н	(CH2)2COOH	н	н	, H	н
1-6-29		Н	(CH2)2CN	н	н	н	Н
1-6-30		H	(CH2)2COOEt	Н	н	Н	Н
1-6-31	<u> </u>	H .	Et	H .	н	н	н
1-6-32		Et	. Et	н	H	н	Н

1-6-33		CH2C6H5	CH2C6H5	Н	н	Н	Н
1-6-34		н .	CH2C6H5	Н	н	н	н
1-6-35		(CH2)5CH3	(CH2)5CH3	H	Н	н	H 、
1-6-36		Н	(CH2)5CH3	н	Н	н	Н
1-6-37		(CH2)3C6H5	(CH2)3C6H5	н	Н	н	н
1-6-38		Н	(CH2)3C6H5	н	Н	н	H _.
1-6-39		н	CH2COOMe	H	н	H	Н
1-6-40	<u> </u>	H	(CH2)4COOEt	Н	Н	`н	н
1-6-41		· H	(CH2)3NH2	н	н	Н	Н
1-6-42		Н	(CH2)2CONH2	н	н	Н	Н
1-6-43		н .	(CH2)2COOH	н	Н	Н	Н

1-6-44		н	(CH2)2CN	Н	Ĥ	н	н
1-6-45		н	(CH2)2COOEt	н	Н	н	н
1-6-46	CIOH	Н 1	Et	Н	н	Н	Н
1-6-47	CIOH	Et	Et	н	Н	н	н
1-6-48	CI	CH2C6H5	CH2C6H5	Н	н	Н	н
1-6-49	CICH	H	CH2C6H5	Н	Н	Н	Н
1-6-50	CICH	(CH2)5CH3	(CH2)5CH3	н	Н	Н	. [*]
1-6-51	CIOH	Н	(CH2)5CH3	н	H	н	н
1-6-52	CI	(CH2)3C6H5	(CH2)3C6H5	н	Н	Н	Н
1-6-53	CIOH	Н	(CH2)3C6H5	Н	Н	Н	н
1-6-54	CI	H	CH2COOMe	н	н	н	Н

1-6-55	CI	н .	(CH2)4COOEt	Н	Н	Н	н
1-6-56	CI OH	н .	(CH2)3NH2	н	н	н	Н
1-6-57	CIOH	н	(CH2)2CONH2	н	н	٠Н	н
1-6-58	CICH	Н	(CH2)2COOH	H	н	н	н
1-6-59	CIOH	H .	(CH2)2CN	н	H	H	Н
1-6-60	CIOH	Н	(CH2)2COOEt	Н	Н	Н	H
1-6-61	CIOH	H	Et	H .	Н	Н	Н
1-6-62	CIOH	Et	Et	H	Н	н	, H
1-6-63	CIOH	CH2C6H5	CH2C6H5	н	н	н	H
1-6-64	CIOH	H	CH2C6H5	Н	н	H	Н
1-6-65	CIOH	(CH2)5CH3	(CH2)5CH3	H	Н	Н.	Н

1-6-66	CIOH	H	(CH2)5CH3	Н	Н	Н	н
1-6-67	CIOH	(CH2)3C6H5	(CH2)3C6H5	н	н	н	Н
1-6-68	CIOH	н	(CH2)3C6H5	Н	н	Н	н
1-6-69	CIOH	н	СҢ2СООМе	H	Н	н	H.
1-6-70	CIOH	н	(CH2)4COOEt	н	Н	н	н
1-6-71	CIOH	н	(CH2)3NH2	н	н .	H	Н
1-6-72	CIOH	н	(CH2)2CONH2	н	H	Н	H
1-6-73	CIOH	н	(CH2)2COOH	Н	H .	H	H ·
1-6-74	CIOH	н ,	(CH2)2CN	Н	н	H	H ·
1-6-75	CIOH	н	(CH2)2COOEt	н	H	н	Н.
1-6-76	Br	н	Et	Н	Н	н	Н

1-6-77	Br	Et	Et	н	Н	Н	• Н
1-6-78	Br	CH2C6H5	CH2C6H5	Н	Н	Н	Н
1-6-79	Вг	H	CH2C6H5	, Н	, Н ,	н	H
1-6-80	Вг	(CH2)5CH3	(CH2)5CH3	н	н	н	н
1-6-81	Br	Н	(CH2)5CH3	Ĥ	Н	н	н
1-6-82	Br	(CH2)3C6H5	(CH2)3C6H5	Н	Н	н	H
1-6-83	Вг	Н	(CH2)3C6H5	Н	H	Н	Н
1-6-84	Br	Н	CH2COOMe	н	Ĥ	Н	Н
1-6-85	Br	Н	(CH2)4COOEt	H ·	н	н	H
1-6-86	Вг	H	(CH2)3NH2	Н	Н	Н	н
1-6-87	Вг	Н	(CH2)2CONH2	н	н	Н	н

1-6-88	Br	H .	(СН2)2СООН	H	Н	Н	Н
1-6-89	Вг	Н	(CH2)2CN	н	Н	Н	н
1-6-90	Вг	H	(CH2)2COOEt	Н	н	Н	н
1-6-91	MeN	Н	Et	н	H	Н	Н
1-6-92	MeN	Et	Et	Н	Н	н	Н
1-6-93	MeN	CH2C6H5	CH2C6H5	Н	Н	Н	Н
1-6-94	MeN	Н	CH2C6H5	Н	Н	н	Н
1-6-95	MeN	(CH2)5CH3	(CH2)5CH3	н	Н	Н	Н
1-6-96	MeN	H	(CH2)5CH3	Н	н	Н	H
1-6-97	MeN	(CH2)3C6H5	(CH2)3C6H5	Н	Н	н	н
1-6-98	MeN	н	(CH2)3C6H5	H	Н	H	н

1-6-99	MeN	, н	CH2COOMe	н	Н	Н	Н
1-6-100	MeN	н	(CH2)4COOEt	H ·	. Н	н	н
1-6-101	MeN	, н	(CH2)3NH2	Н	Н	Н	Н
1-6-102	MeN	н	(CH2)2CONH2	Н	Н -	Н	н
1-6-103	MeN	Н	(CH2)2COOH	Н	Н	Н	н
1-6-104	M eN	Н	(CH2)2CN	н	Н	Н	Н
1-6-105	MeN	н	(CH2)2COOEt	Н	Н	Н	Н
1-6-106	S.	Н	Et	H	H	н	н
1-6-107	S.	Et	Et	н	Н	н	Н
1-6-108	S	CH2C6H5	CH2C6H5	Н	H	Н	Н
1-6-109	S	н	CH2C6H5	н	H ·	н	н

1-6-110	S	(CH2)5CH3	(CH2)5CH3	Н	Н	Н _.	Н
1-6-111	S.	н .	(CH2)5CH3	Н	н	н	Н
1-6-112	S	(CH2)3C6H5	(CH2)3C6H5	Н	Н	н	, н
1-6-113	S	н	(CH2)3C6H5	Н	н	н	H
1-6-114	S	H [.]	CH2COOMe	' н	н	н	Н
1-6-115	S	н	(CH2)4COOEt	Н.	н	Н	Н
1-6-116	S	н	(CH2)3NH2	н	н	H	н
1-6-117	S	н	(CH2)2CONH2	н	н	Н	н
1-6-118	S	н	(CH2)2COOH	н	Н	Н	н
1-6-119	S	н	(CH2)2CN	н	Н	Н	н
1-6-120	5	н	(CH2)2COOEt		н,		Н

X = -CO-, q = 0, r = 0, Y = -(R4)C=C(R5)-

Table 2

Compound No. 2—	R1-(CH2)p	R2	R3	R4	R5	R6	R7
1	CI	н	н	н	Н	н	н
2	CI	н	н	н	CI	н	н
3		н	н .	н	Н	Н	н
4		H	н	Н	CI	н	Н
5 ,	CI	Н	н _.	н	н	Ĥ	н
6	CI CI	Н	н	Н	н	H .	Н
7	CI CI	н	н	н	н	н	н
8		Н	н	Н	н	н	н.
9	MeO	н	Н	н	, Н	н	н
10	Q	н	н	н	н	Н	Н
11	CIOH	н	н	н	н	Н	Н
12	Вг	н	, H	н	н	н	н

13	Br	н	н	н	, н	н	н
14	Br	н	н	н	Н	н	н
15	Br	, н	н	н	н	н	н
16	CIOH	н	н	н	н	н	н
17	CI	н	н	н	н	H .	н
18	Men	, н ′	Н	н	H ,	н	н
19	S.	н	Ĥ	н	н	н	н
20	MeO	н	Н	н	· H	н	Н
21	O ₂ N	Н	н	н	н .	н	н
22	MeO	н	н	H	Ĥ	н	н
23		н	н	H	Н	н	Н
24		н	н	H	н	Н	н
25		Н	н	н	н	н	н

26	CIOH	н	н	н	н	н	н
27	NC OH	н	н	н	н	н	н
28	F ₃ C OH	н	н .	н	H	. Н	н
29	CF ₃ OH	н	н	н	Н	н	н
30	СІ	H	H .	H .	н	н	н
31		н	н	н	Н	н	н
32	F	Н	н	н	Н	Н	н
33	Br	н	н	Н	н	Н	н
34	F ₃ C	н	н	н	н	н	. Н
35	но	н	н	Ĥ	Н	н	Н
36	NC .	н	• Н	н	H	н	Ĥ
37	O ₂		н	H .	H	н	н
38	MeCCC	Н	н.	, н	Н	н	н

39	N C	н	н	н	н	н	н
40	MeO	н	н	н	н	Н	н
41	~°Q.	. н	н	н	н	Н	н
42		Н	н .	н	н	н .	н
43	TO C.	н	н	н	н	н	н
44	10.	н	н	н	Н	н	н
45		н	Н	·H	н	н	Н
46	O°C.	н	Н	н	H	н	н
47		Н	H	н	н	Н	н
48	o H	н	н	H ,	Н	н	Н
49		н	Н	н	· н	H	Н
50		н	н	H	H .	н	н
51	Q.	н	н	H·	н	н	н

52	CN .	Н	н	н	H-	Н	Н.
53	CI	н	н	.H	H	н	н
54		н	н	` н	н	н	н
55		н	. н	н	н	н	Н
56		н	н	н	н	н	н
57	F ₃ C	н	н	Ĥ	Н	н	н
58	CI F	н	н .	н	н	н	Н
59	CI	Н	· н	н	н	H	Н
60		н	н	н	н	н	H
61	F ₃ C	н	н	н	н	Ĥ	н
62	F ₃ CO	Н	н	н	Н	н	Н
63	MeO F	н	Н	√ Н	Н	Н	н
64	O_2N	н	н	н	Н	н	н

65	O ₂ N	H	н	н	н	н	н
66	F.	н	н	н	н	н	Н
67	F ₃ CS	н	н	н	н	н	н
68	CI	н '	н	Н	н	Н	н
69	F ₂ HC	н	H	н	н	н	н
70	Ç,	Н	н	Н	н	H	H ·
71	NO ₂	Н	н	н	· H	н	н
72	СООН	н	н	н	н	н	н
73	Br	Н	н	н	н	H.	н
74	<u></u>	Н	Н	н	Н	н	н
75	F	, H	н	H	H	н	н
76	CICI	н	н	н	: H	н	н
77	NC	н	н	Н	Н	н	н

78	но	н	н .	н	н -	н	н
79	EtO	H	н	Н	н	н	н
80	CI O ₂ N	H	н	Н	н	н	н
81	CI	н	н	н	н	н	н
82	F	H .	н ,	н	н .	н	Н
83	F Br	н	н	н	, Н .	н	н
84	F ₃ C F	н	Н	н	н	н	н
85	HO	н	н	н .	н.	н .	H .
86	F	Н	н	н	н	Н	н
87	MeO Br	H	н	н	H ,	н	н
88	MeOOEt	н	н .	H .	н	н	н
· ·89	MeO	н	н	н	н	н`	н
90 .	MeO	н	н	Н	, . Н	н	н

91	O ₂ N CI	н	н	н	н	н	, H
92	MeO	н	н	н	H	н	н
93		н	н .	H	н	н	н
94	CI	н	н	н	н	н	н
95		н	н	н.	н	н	н
96	0.0.	н	н	н	н	Н	н
97	MeO HO	Н	н	н	н	. Н	Н
98	CF ₃ CI	Н	н	н	Н	н	н
99	HO O ₂ N	Н	Н	н	Н	H	н
100	OMe OMe	Н	н	н .	н	Н	н
. 101	EtO OEt	н	Н	н	Н	н	Н
102	но 0	н	н	н	н	н	н

103 .	OMe OMe	Н	н .	н	н	Н	н
104	F.C.	, н	Н	н	н	н	н
105	OMe COOH	н	н	Н	, н	H	н
106	CI NO ₂	Н	· H	н	н	Н	н
107	но	н	н .	н	Н	Н	Н
108	MeO	н	H .	Н	н	, H ,	н
109	EtO Eto	H	н .	Н	Н	н	н
110	ноос	Н	н	н	н	н	н
111	НО	н	į H	Н	Н	Н	H
112	O ₂ N /	Н	Н	H	н	н	н
113	F ₃ C	H	Ĵ H	H	н	Н	н
114	OMe NO ₂	н	н	н	н	н	н
115		н	H .	н	. н	н	н

116	MeN	Н .	Ĥ	н	н	н	н
117	OMe	н	н	Н	н	н	н
118		н .	H	н	. н	Н	н
119	MeN	Н	н .	Н.	H	н	н
. 120	₽N.	H	н.	н	н	• Н	Н
121	OH	H	` н	н	н	н	н
122	OAc	· H	Н	Н	н	н	н
123	ОН	н	н	н	Н	Н	н
124	NH	н	н .	Н	н	Н	н
125	N.	н	н	Н	н	н	н
126	MeN	н	н	н	Н	н	. н
127		Ĥ	Н	н	Н	н	н

128	Ç.	н	н	н	н	Н	н
129	OEt	н	H	н	н	н .	н
130	HN	Н	н,	Н	н	H	н
131	MeN	н .	н	Н	н	Н	Ĥ
132	N _{Me}	Н	н	н	Н	Н	н
133-	MeN	н	н	н	н	н	н
134	MeN	. н	н	н	н	н	н
135	OMe	H .	н	Н	H	н	н
136	S	н	н	Н	H	H	Ĥ
137	N Me	н	н	H	н		н
138	MeN	н	. н	н	н	н	н

139	NN.	н	н	н	н	н	н
140	Q _N	H	н .	Н	н	н .	н
141	MeO MeN	н	H .	. н	н	н	Н
142	Q_{s}	Н	н	н	н	н	н
143	MeO	H .	н	Н	н	н	Н
144		H	н	н	н	н	н
145	MeO	н	н	, Н	н	н	н
146	Br	н	H	н	н .	Н	Н
147	, N	H	н `	н `	н	н	н
148		Н	H	н	Н	н	. н
149	℃Q	н	н	Н	н	. н	н
150	ĈQ.	H	н	н	н	н	н

151		н	н	н .	н	Н	н
152		н	H	н	н	н	н
153		н	Н	н	н	H	Н
154		Н	Н .	Н	н	Н	Н
155		н	Н	H 	Н	н	Н
156		Н	н	н .	Н	Н .	н
157	OH.	н	. Н	Н	Н	Н	H
158	O ₂ N OH	Н	Н	H ,	н .	H	н
159	СІ	н	. H	н	н	Н	н
160	ОН	н	Н	н	н	H	н
161	FOH	Н	н	н	н	н	Н.
162	ОН	н	Н	н	Н	Н	, н
163	CI NH ₂	н	н	н	н	н	н

164	ОН	Н	н	н	н	Н	н
165	NH ₂	н	н	н	н .	н	Н
166	OH	Н	н Н	н	′ н	Н	Н
167	F ₃ CO OH	н	Н	н	н	н	н
168	OMe OH	н	н	н	н	Н	н
169	ОН	н	н	н	н	н	Н
170	OEt OH	Н	н	н	н	H	Н
171	СООН	н	н	н	• н	н	Н
172	ОН	H	н	Н	ļН	H	Н
173		Н	н	н	, н	Н	Н
174	CN.	н			н	Н	. н
175	S HZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	н	н	н	н	н	Н
176	E's	н	н	н	н	н	н

177	HN N	н	н	н -	. Н	н	н
178	N. J.	н	. н	н	н ,	н	н
179		н	Н	н	Н	н	H .
180	CI	н	H,	н	н	н	н
181 .	\sqrt{s} .	н	н	н	н .	н	н
182	THE STATE OF THE S	н	н	н .	н	н	н
183	N.	Н	н .	н .	Н .	H	Н
184	N	н	н	н	н	н	н
185	2	н	н	· н	н	Н	Н
186	CIOH	н	н	Н	CI	H .	н
187	O ₂ N OH	н	н	H .	CI	Н	H
188	МеО	н	Н	H	CI	H	Н
189	cı C	н	н	н	CI	н	н

190	Br	. Н	н	н	CI	н	Н
191	O ₂ N	н	н	н .	CI	Н	•н
192	MeO	н .	Н	н	CI	H	н
193	CIOH	н	H	н	CI	н	н
194	MeN	н	н	H	CI	Н	н
195	\$	н	Н	Н	CI	н	H
196	Q.	н	н	Н	CI	н	н
197		н	н	н	CI	. Н	Н
198	Br	н	н	Н	Cl	н	Н
199		н	H _.	H	CI .	· . Н	н
200		н	н	н -	CI	н .	Н
201	CIOH	н	н	CI	н	Ĥ.	Н
202	CIOH	_. н	н	н	OMe	Н	н

		•	-				
203	CIOH	∙н	н	Н	COOMe	н	H
204	CIOH	н	Н	н	. н	CI	н
205	CIOH	н	н	н	н	COOMe	н
206	CIOH	н	н	н .	н	н	CI
207	CIOH	Н	н	н	OCF3	н	H [,]
208	CIOH	i H	н	COOMe	Н	н	н
209	CIOH	н	н	Н	CF3	н	Н
210	CIOH	Н	н	Н	Me	Н	Н
211	CIOH	Ħ .	H -	Н	F	н	н
212	CIOH	н	Н	н	ОН	н	H
213	CIOH	н	H	Н	NO2	Н	н
214	CIOH	н	н	Н	F	F	н
215	CI OH	н	н	F	H	н	н

			•				
216	CI OH	н	н	Ме	H	н	н
217	CIOH	, H	н	н	CN	н	Н
218	CI	н	н	CI	н	н .	н
219	CI	н	н	н	OMe	, H	. н
220	CIOH	н	н	н	COOMe	н	н
221	CIOH	н	Н	Н	н	CI	н
222	CI	н	н	н	· н	COOMe	н
223	CICH	. н	н	· н	Н	н	CI
224	CI	н	н	н	OCF3	н .	Н
225	CI	н	н	COOMe	Н	н	Н
226	СІ	Н	н	н	CF3	. н	н
227	CI	Н	н	н	Me	н	Н
228	СІ	н	н	н	F	н	н

229		н	н	CI	н	н	н
230		н	н	н	OMe	н .	н
231 .		н	н	н	COOMe	н	Н
232		н	н	н	Н	CI	н
233		н	`н	н	Н	COOMe	н .
234		н	н	Н	Н	н	CI
235		н .	H	н	OCF3	н	H
236		н	H	COOMe	н	н	н
237		н	H	Н	CF3	н	н
238		H.	н	н	Ме	н	н
239		` н	н	Н	F	н	H
240		н	н	CI	H ⁻	Н	Н
241	Q	н	н	н	OMe	н	н

242	Q	н	н	Н	СООМе	н .	н
· 243	Q	н	H	н	н	CI	н
244	Q	н	н	н	Н	COOMe	н
245	. 0	н	н	н	н	н	CI
246		н	н	н	OCF3	н	н
247		н	н	COOMe	н	н	н
248		н	• н	, н	CF3	н	н
249	0	н	н	Н	Me	. н	» н
250		н	н	н	F	н	Ĥ
251	СІ ОН	Н	н	н	H	Н	COOMe
252	CIOH	н	. н	Н	н	F	н
253	CIOH	н	н	H ,	Н	н	F
254	CIOH	Н	н	H	н	Ме	н

		100	,				
255	CIOH	н	н	н	н	Н	Ме
256	CIOH	н	Н	OMe	н	Н	н
257	CIOH	н	н	н	н	ОМе	н
258	CIOH	н	H	н	H .	H	OMe
259	CIOH	Н	н	CF3	н	н	Н
260	CIOH	• н	н	н	н	CF3	н
261	CIOH	Н	н	Н	Н	н	CF3
262	CIOH	н	н	он	H	н	н
263	CIOH	н	H .	н	H	ОН	н
264	CIOH	н	H	н	Н	н	ОН
265	CIOH	. н	н	OCF3	н	Н	н
266	CIOH	н	Н	. _. H	н	OCF3	н
267	CIOH	н .	н	Н	н	н	OCF3

268	CIOH	н	Н	NO2	н	н	Н
269	CIOH	Н	н	H	н	NO2	Н
270	CIOH	н	н	н	Н	Н	NO2
271	CIOH	H	Н	CN	Н	H	н
. 272	CIOH	н	H .	н	Н	CN	Н
273	CIOH	H 1	Н	н	н	Н	CN
274	CIOH	H .	Н	. Br	H	H	н
275	CIOH	H	Н	н	Br.	H	н
276	CIOH	H	H	н	н	Br	н
277	CIOH	н	Н	н	н .	н	Br
278	CIOH	. Н	H	соон	H	H	H
279	CIOH	н	H	H .	соон	н	н
280	CIOH	н	н	H ·	н	соон	Н

281	CIOH	н	н	Н	н	н	соон
282	CIOH	н	н	NHCOMe	н	Н	н
283	CIOH	н	н .	н	NHCOMe	н	н
284	CIOH	н	· н	н	н	NHCOMe	Н
285	CIOH	н	н	H .	H	н	NHCOMe
286	CIOH	н	H	SO2NH2	н	н	н
287	CIOH	н	н	H	SO2NH2	н	н
288	CIOH	H ·	н	Н	н	SO2NH2	Н
289	CIOH	н	н	H	Н	н	SO2NH2
290	CIOH	Н	н	Ме	Ме	н	н
291	CIOH	н	H	Ме	н	Ме	H
292	CIOH	н	н	н	Me	Ме	н
293	CIOH	н	н	F	F ·	н	н

294	CI	, н	н	F	Н	F	н
295	CI	, н	н	н	F	. F	н
296	CI	, н	н	CI	CI	н	Н
297	CI	, н	н	CI	. н	CI	н .
298	CI	н	H-	н	CI	CI	н
299	CI	, н	Н	Ме	, F	н	н
300	CI	H	H	Ме	CI	Н	н.
301	CI	Н	н	Ме	ОН	H	н
302	CI	, н	н	Me	OMe	н	н
303	CI	н .	н	F	Ме	H	н
304	CI	, н	Ĥ	F	CI	н	н
305	CI	н ,	н	F	ОН	н	н
306	CI	н .	н	F	OMe	H	н

307	CIOH	н	Ħ	CI	Ме	н	н
308	CIOH	н	н	CI	F	н	н
309	CIOH	н	н	CI	он	H	н
310	CIOH	Н	н	CI	ОМе	. Н	н
- 311	CI	н	. Н	H	Н	Н	СООМе
312	CI	н	н	F	н	H	н
313	CI	н	н	н	н	F	н
314	CI	н	н	н	н	н	F
315	CI OH	Н	н .	Me	н	н	н
316	СІ	н	н	Н	н	Me	H
317	СІ	н	н	. Н	н	н	Ме
318	CICH	н	н	OMe	Н	н	н
319	CI OH -	н	н	н	Н	OMe	, н

320	СІ	н	н	н . Н	н	н	OMe
321	CIOH	н	н	CF3	н	н	н
322	CIOH	н	н	H .	н	CF3	н .
323	CIOH	Н	н	H	н	н	CF3
324	СІ	н	Н	ОН	н	н	н .
325	СІ	н	· н	н	он	н	H
326	СІ	H .	н	Н	н	ОН	н
327	СІ	н	H	Н	Н	н	ОН
328	CI	н	н	OCF3	н	н	Н
329	CI OH	Ή	H	Н	н	OCF3	н
330	CIOH	н	H	н	н	н	OCF3
331	CIOH	н	н	NO2	н	н	Н
332	CI	н	н	н	NO2	н	н

333	CIOH	н	н	н	н	NO2	Н
334	CI CH	н	н	н	н	н	NO2
335	СІ	н	н	. CN	н	Н	н
336	CIOH	н	н	.	CN	, Н	н
337	CIOH	• Н	н	н	н	СИ	н
338	CIOH	н .	н	н	н	Н	CN
339	СІ	н	Н	Br	,	Н	н
340	CIOH	н	н	н	Br	Н	н
341	CIOH	н	н .	Н	Н	Br	Н
342	СІ	н	н	н	н	н	Br
343	СІ	н	н	соон	• н	н	н
344 .	СІ	н	. н	н	соон	н	н
345	СІ	н	, Н	Н	н	соон	н

346	CIOH	н	н	н	н	н	соон
347	CI	н	н	NHCOMe	н	н	н
348	CI	н	н	н	NHCOMe	н	н
349	CI	Н	н	н	Н	NHCOMe	н
350	CI	· н	. Н	Н	н	н.	NHCOMe
351	CIOH	н	н	SO2NH2	н	. н	н
352	CIOH	н	Н	н	SO2NH2	н	н
353	СІ	н	H	н	н	SO2NH2	н
354	CI	н	Н	н	H	н	SO2NH2
355	СІ	<u>;</u> н	. Н	Me	Me	н	н
356 .	CI	н	н	Me	н	Ме	н
357	CIOH	н	н	н	Ме	Ме	н
358	CIOH	н	н	F	F	Н	н

359	CIOH	н	Н	F	н	F	н
360	CICH	н	н	н	F	F	н
361	CICH	Н	н	CI	CI	н	н
362	CIOH	Н	н	CI	н	Cİ	н
363	СІСІОН	H	H	н	CI	CI	н
364	CIOH	н	н	Me	F	н	н
365	СІ	н	н .	Me	CI	H	н
366	СІСІОН	н	Н	Me	ОН	н	Н
367 ·	СІ	. н	н	М́е	OMe	н	н
368	СІ	н	н	F	Me	н	н
369	СІСІОН	н	н	F	CI	ŀН	н
370 .	CI	н	н	F .	ОН	н	н
371	СІОН	н	н .	F	OMe	н	. Н

372	CIOH	Н	н .	CI	Ме	н	н
373	CIOH	н	н	CI	F	н	н
37,4	CIOH	н	н	CI	ОН	н	н
375	CI OH	н	н	CI	OMe	н	н
376		н	н	н	н	н	COOMe
377		н	н	F	н	н	н
378		H-	н	н	н	F	н
379		Н.	н,	н	н	н	F
380		H	н	Me	Н -	н	н
381		н	н	H	н	Me	Н
382		н	Н	н	н	Н	Me
383		Н	H	OMe	н	н	Н
384		н	н	н	н	OMe	н

385	Q	н	Н	н	н	н	ОМе
386		н .	н	CF3	н	Н.	н
387		н	н	H . ·	н	CF3	H
388		н	н	н	н	н	CF3
389		, Н	н	ОН	н	н	н
390		н	, Н	н	ОН	н	н
391		Н	н	н	н	ОН	Н
392	Q	н	Н	н	н	н	он ^
393		н	н .	OCF3	н	н	н
394		н -	Н	н	H	OCF3	н
395		Н	Н	н	н	Н .	OCF3
396		н	н	NO2	н	н	Н
397		Н	н .	н `	NO2	н	н

398		н	н	н	H	NO2	. н
399		- H	Н	н	н	н	NO2
400	Q.	Н.	н	CN	н	. н	н
401		н	н	·	CN	н	Н
402		Н	н	Н	н	CN	н
403		Н	н	Н	H	Н	CN
404		н	н .	Br	н	н	н
405		Н	. н	н	Br	н	. н
406		н	н	Н	н	Br	. н
407		н	н	н	н	Н	Br
408		Н	н	соон	н	н	н
409 .		н	H .	Ή ·	соон	Н	н
410		н	Н	Н	н	соон	н

411	Q.,	н	н	н	н	н	соон
412		н	н	NHCOMe	н	н	н
413	Q	н	H [.]	Н	NHCOMe	Н	н
414	Q.	н	н	н .	н	NHCOMe	н
415	Q.	н	H	н	н	н	NHCOMe
416		н	н	SO2NH2	н	н	н
417		н	н	н	SO2NH2	н	н (
418		н	н	. н	н	SO2NH2	H
419		. н	н _.	н	н	н	SO2NH2
420		н	н	Me	Ме	н	н
421		н	н	Ме	н	Me	н
422		Н	н	н	Me	Me	н
423		н	Н	F	, F ,	Н	Н

424	Q	н	н	F ·	Н	F	H
425		н	н	Н	F	F	н
426		н .	н	CI .	CI ·	Н	н
427		H	н	CI	Н	CI	н.
428		н	H	Н	Cl ·	·CI	н
429		н	н	Me	F .	н	н
430		H	Н	Ме	· Cl	H ,	н
431		H	н	Me	ОН	H	H
432		Н	н	Ме	OMe	н	н
433		н	н	F	Me	Н	н
434		н	н	F	CI	н	н
435		н	Н	F	ОН	н	н
436		н	н	F ·	OMe	н	н

437	Q.	н	н	CI	Ме	н.	н
438		н	н	CI	F	н	. н
439		н	н	CI	ОН	Н	н
440		н	н	Cl	OMe	н	н
441	Br	н	н	CI	н	н	н
442	BrOH	Н	н	н	OMe	н	н
443	Вг	Н	н	н	COOMe	Н	н
444	Вг	Н	н	н	н	Cl	н
445	Br	н	н	н	Н	COOMe	н
446	Вг	. н	н	Н	H	н	CI
447	Br	H	. н	н '	OCF3	н	н
448	Вг	н	н	COOMe	· H	н	Н
449	Вг	, н	н	н	CF3	н	н

450	Br	н	н	н	Ме	н	н
451	Br	н	н	н	F	H	н
452	Br	Н	н	н	ОН	H .	н
453	Вг	н	н `	Н	NO2	н	н
454	BrOH	н	н	н	F	F	Н
455	Вг	H	н .	F	н	Н .	н
456	Вг	н	н	Me	н	Н	н
457	Вг	Н	н	н	CN	. н	н
458	MeN	н	н	CI	н	н	н
459	MeN	н	н	'н	ОМе	н	н
460	MeN	н	н	н	COOMe	н	н
461	MeN	н	н	н	н	CI	н
462	MeN	Н	н	н	н	COOMe	н

463	-	MeN		н	н	н	н	н	CI
464		MeN		н	н	н	OCF3	H	н
465		MeN		Н	н	COOMe	н	н	н
466		MeN		н	н	Н	CF3	н	H
467		MeN		н	н	н	Me	Н	н
468		MeN	•	н	. н	. н	F	Н	H
469	•	MeN		н	н	н	ОН	Н	н
470	•	MeN	·	н	Н	Н	NO2	н	н
471	**	MeN		н	H	н	F	F	н
472		MeN		н	Н	F	н	н	н
473		MeN		н	н	Me	Н	'н	Н
474		MeN		н.	Н	Н	CN	н	<u>н</u>
475	·	S		н	н	CI	Н	Н	н

476	\$	н	н	н	OMe	н	н
477	\$	н	н	'н	COOMe	н	н
478	S.	н	н	н	н	Cl	н
479	S.	н	н	Н	н .	COOMe	н
480	S	н	. н	H	н	н	CI
481	S.	н	н	Н	OCF3	н	н
482	S	н	н	СООМе	н	н	н
483	S	н	н	н	CF3	н	н
484	S	н	•• Н .	н	Me	н	н
485	S	н	Н	H	F	Н	٠Н
486	S	н	н	Н	он	H .	н
487	S.J.	H	н	H	NO2	н	н
488	S.	н	н	н	F	F .	н

489	S	н	н	F	н	Н	н
490	S	н	н	Ме	н	н	Н
491	S	н	н	н	CN	H	Н
492	CIOH	н	Ме	н	н	н	Н
493	СІ	н	Ме	Н	н	H	H
494		н	Ме	н	ή	Н	н
495		н	Ме	н	н	н	н
496	F OH	H .	Н	н	н	H	н
497	CI	H	Н	F	н	н	н
498	CI CH	н	н	CI	Н	н	Н
499	CI	н	н	Ме	н	н	н
500	СІ	н	H	Et	н	н	н
501	F OH	н	н	· OMe	н	н	н

502	CI	Н	н	OEt	н	н	н
503	CI	н	н	CF3	н	н	н
504	CI	н	н	OCF3	н	н _.	Н
505	CI	н	н	NO2	H	H	Н
506	CI	н	н	NH2	н	н	н
507	FOH	н	н	он	H .	н	н
508	CI	н	H	CN	н	н	Н
509	CI	н	н	COMe	н	Н	H
510	CI	н	٠Н	COOMe	н	н	н
511	CI	н	н	Н	F.	. н	н
512	CI	H	н	н	CI	н	н
513	CI	H	H	н .	Ме	Н	H
514	CI	Н	н	н .	Et	н	Н

515	FOH	н	н	н	ОМе	н	н
516 ′	F OH	н	н	н	OEt	н	н
517	F OH	н	н	ļН	CF3	н	Н
518	CI	н	Н	H .	OCF3	н	н
519	CI	H	H	Н	NO2	н	H
520	CI	. Н	Н	Н	NH2	н	Н.
521	CI	Н	н	н .	он	н	Н
522	OH CI	H	Н	н	CN	н	н
523	CIF	н	н .	H	СОМе	н.	н
524	CIFOH	н	H	H	COOMe	н	Н
525	CIF	н	. Н	F	F	н	н
526	CIFOH	н	н	F	CI	н .	Н
527	CI	н	Н	F	Me	н	Н

528	CI CH	н	н	F	Et .	н	н
529	F OH	H	Н	F	OMe	н	н
530	СІ	H	н	F	OEt	H	н
531	F OH	н	. н	F	CF3	H .	н
532	CI	Н	н	F	OCF3	. н.	н
533	F OH	Н	H	CI ·	F	н	Н
534	CI	н	н	CI ·	CI	н	Н
535	CI	н	н	CI	Me	• H	н .
536	F OH	н	Н	CI	Et	н	H
537	CI	Н	H	CI	OMe	н	н
538	СІ	н	н	CI	OEt	Н	Н
539	CI	Н	H	CI	CF3	н	н
540	CI	н	н	CI	OCF3	н	H

541	FOH	. н	H	Me	F	н	н
542	FOH	н	·н	Ме	CI	н	н
543	F OH	н	н	Ме	Ме	н	н
544	F OH	н	н 	Me	Et	н	н
545	CI	н.	н	Ме	ОМе	н	н
546	CI	н	н	Ме	OEt	H	н
547	CI	H .	н	Ме	CF3	н	н
548	CI	н	н	Me	OCF3	н	н
549	СІ	н	н	ОМе	F	н .	H
550	CI	н	Н	OMe .	CI	н	н
551	СІ	н	н	ОМе	Ме	н	н
552	CI	н	н	OMe	Et	н	н
553	СІ	н	н	OMe	OMe	.	н

554	F OH	н	н	OMe	OEt	н	н
555	СІ	н	н	OMe	CF3	н	н
556	F OH	н	н	OMe	OCF3	н	Н
557	OMe	Н	H	Н	H	н	н
558 .	OMe OH OMe	н	н	F	н	н	, Н
559	CIOH	Н	н	'CI	н	н	н
560	OMe	н	н	Ме	н	H	н
561	OMe	H	н	Et	н	н	н
562	OMe	н	н	OMe ,	н	H .	н
563	OMe OH	н	н	н	F.	н	H
564	OMe	Н	H	н	CI	н	н
565	OMe	н	, н	н	Ме	н	н
566	OMe	н	н	Н	Et	Н	н

						r	
567	OMe	н	н	• Н	OMe	н	. н
568	OMe	н	н	F	F	н	н
569	OMe	н	н	F	CI	н	н
570	OMe	H	н	F	Me	" H "	н
571	OMe	. н	н	F	Et ,	н .	н
572	OMe	H	н '	F	OMe	н	н
573	OMe	н	н	CI	F	н	н
574	OMe CI OH	· • H	н	CI	CI	н	н
575	OMe	н	· . Н	CI .	Me	н	н .
576	OMe	H .	, н ́	CI ·	Et	Н	н
577	OMe OH CI	н	Н	CI	OMe	н	н
578	OMe OH	н	н	Me	F	Н	н
579	OMe	н	Н	Ме	CI	н	н

580	OMe	н	н	Me	Ме	н	, H
581	OMe	н	н	Ме	Et	н	н
582	OMe	н	Н	Me	OMe	Н	н
583	OMe	н	н	Et .	F	Н	н
584	OMe OH CI	н	н	Et	CI	н	н
585	OMe OH CI	н	H.	Et	Ме	Н	H
586	OMe OH.	н	H	Et	Et	Н	H
587	OMe	н	н	Et	ОМе	н	н
588	OMe	н	H	ОМе	F .	н	н
589	OMe	н	н	ОМе	CI	н	н
590	OMe OH CI	н	Н	OMe	Ме	н	н
591	OMe	н	н	OMe	Et	н	н
592	OMe	. н	н	OMe	OMe	н	н

593	CIOH	н	н	Ме	CN	н	н
594	CIOH	н	н	н	. CN	Me	н
595	CIOH	Н	н	н	CN	н	Me
· 596	CIOH	н	н	Ме	Br	н	н
597	CIOH	н	н	н	Br	Ме	н .
598	CIOH	н	Н	н	Br ·	Н	Ме
599	CIOH	н	• н	Me	H	F	н
600	CIOH	н	н	Me	н	н	F
601	CIOH	н	н	F	н .`	Me	Н
602	CIOH	н	Н	F	H	н	Ме
603	CIOH	H	н	Me	Н	н	Ме
604	CIOH	.	Н	H	ОМе	Ме	н
605	CIOH	H	н,	н	ОН .	Ме	н

606	CI OH	Н	н	NH2	Н	Н	н
607	СІ ОН	н	н	н	NH2	н	Н
608	СІ ОН	Н	н	н	Н	NH2	н
609	CIOH	Н.	н	Et	н	H	н
610	CIOH	н .	. н	н	Et .	н	H
611	CIOH	н	, н	н	н	Et	Н
612	CIOH	H	н	iPr	H	н	н
613	CIOH	н	н	н	iPr	н	н
614	CIOH	н		н	Н	iPr	н
615	CIOH	н	н	Ph	н	H	Н
616	CIOH	Н	н	Н	Ph	н .	. н
617	CIOH	H	н	н	н	Ph	н ,
618	CIOH	Н	Н	OEt	н	H	н

		• •					
619	CIOH	н	н	н	OEt	Н	н
620 .	CIOH	н	, н	н	н	OEt	н
· 621	CI OH	н	н	OiPr	н	H	н
622	CIOH	н .	н	н	OiPr	н	н
623	CIOH	н	н	H	н	OiPr	н
624	CIOH	н	н	OPh	Н	н	н
625	CIOH	н	н	н Н	OPh	н	Н
626	CIOH	Н	н	н	H	OPh	Н
627	CIOH	Н	н	SO2Me	н	H	Н
628	CIOH	н	н	H	SO2Me	н	н
629	CIOH	H	H	н	Н	SO2Me	н
630	CIOH	н	н	SO2Et	н	. H	Н
631	CIOH	н .	н	н	SO2Et	н	Н

			=		·		
632	CIOH	н	н	н	.H	SO2Et	н
633	CIOH	Н	н	SO2iPr	н	н `	н
634	CIOH	н	н	Н	SO2iPr	Н	H .
635	CIOH	H	н	н	н	SO2iPr	н
636	CIOH	H	н	SO2Ph	н	н	н
637	CIOH	H	Н	н	SO2Ph	н	н
638	СІОН	Н .	. H	н	Н	SO2Ph	н
639	CI CI OH	Ĥ	Н	SO2Me	Me	н	H
640	CI ĆI OH	H	н	SO2Me	Н	Me .	н
641	CI CI OH	н	Н	Ме	SO2Me	н	н
642	CI	н	Н	н .	SO2Me	Me	н
643	CI CI OH	H	Н	SO2Me	F	H	н
644	CIOH	Н	H	SO2Me	н	F	H

645	CI	ОН	Н	н	F	SO2Me	н	н
646	CI	ОН	н	н	н	SO2Me	F	Н
647	CI	ОН	H ⁻	н	SO2NMe2	_. н	Н	н
648	CI	ОН	н	н	Н,	SO2NMe2	н	н
649	CI	ОН	Н	н	H	.	SO2NMe2	н
650	CI	ОН	Н	Н	SO2Et2	Н	н	H
651	CI	ОН	н	Н	H .	SO2Et2	н	н
652	CI	ОН	н	Н	H	H	SO2Et2	н
653	CI	ОН	н .	Н	SO2NMe2	Ме	, н	н
654	CI	ОН	H	Н	SO2NMe2	H·	Ме	н
655	CI	OH	H 1	Н	Ме	SO2NMe2	Н	Н
656	CI	OH	H 1	Н	н	SO2NMe2	Ме	н
657	CI	OH I	1 1	-i :	SO2NMe2	F ·	н	н

658	CIOH	н	н	SO2NMe2	Н	F	н
659	CIOH	H	н	·F	SO2NMe2	н	н
660	CIOH	н	н	н	SO2NMe2	F	н
661	CIOH	н	н	NHCOEt	н	H	н
662	CIOH	н	н	Н	NHCOEt	н	Ĥ
663	CIOH	н	. H	н	•	NHCOEt	н
664	CIOH	н	н	NHCOiPr	н	н	н
665	CIOH	н	Н	н	NHCOiPr	н	н
666	CIOH	Н	Н	. Н	н	NHCOiPr	н
667	F OH	н	н	Ме	CN	H 7	н
668	F OH	н	Ĥ	н	CN	Me	н
669	CI	н	н	н	CN	Н	Ме
670	CI	н	н	Ме	Br	. H	. Н

			• • •	•				
671		FOH	н	н	Н	Br	Me	Н
672		CI OH	н	н	Н	Br	н	Ме
673	·	СІ	Н	н	Ме	н	, F	Н
674		СІ	н	н	Ме	н	н ·	F
675		F OH	н	н	F	н	Ме	. н
676		СІ	н	н.	F	н	н	Ме
677		СІ	Н	Н	Ме	н	Н	Ме
678		CI	н	н	н	ОМе	Ме	H
679		CICOH	н	н	н	ОН	Me	н
680	• .	F OH	Н	Н	NH2	н	н	ьH
681		FOH	н	н	. н	NH2	н	н
682		СІ	Н	н	н	н	NH2	Н
683		CIOH	H .	н	Et	н	н	Н

		•	• •				
684	СІ	н	H	н	Et	н	H
685	СІ	н	Н	.	H	Et	н
686	СІ	Н	н	iPr	н	н	н
687	СІСОН	н	H	. н	iPr	н	н
688	СІ БОН	н	н	н	н	\ iPr	Н
689	СІ	н	н	Ph	н	H	H
690	СІ БОН	Н	н	н	Ph	н	н
691	CI	Н	н	Н	н	Ph	н
692	CI	Н	н	OEt	Н	Н	H
693	CI F OH	н	·н	н	OEt	Н	н .
694	CI F	н	н	н	H	OEt	н
695	CI	н	,	OiPr	н	H	н
696	СІ	н	Н	н	OiPr	н	н

698 CI F OH H H H OPh H H H OPh H F OH F OH H H H H OPh H H H H H H OPh H H H H H H OPh H H H H H H H OPh H H H H H OPh H H H H H H OPh H H H H H H H OPh H H H H H H H OPh H H H H H H H OPh H H H H H H H H H H OPh H H H H H H H H H H H H H H H H H H H			* -	_		•		
699. CI F OH H H H OPh H H TOO CI F OH H H H SO2Me H H TOO CI F OH H H H SO2Me H H TOO CI F OH H H H SO2Me H H TOO CI F OH H H H SO2Me H H TOO CI F OH H H H SO2Et H H TOO CI F OH H H H SO2Et H H TOO CI F OH H H H SO2Et H H TOO CI F OH H H H SO2Et H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H SO2ET H H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H SO2ET H TOO CI F OH H H H H H H SO2ET H TOO CI F OH H H H H H H SO2ET H TOO CI F OH H H H H H H SO2ET H TOO CI F OH H H H H H H SO2ET H TOO CI F OH H H H H H H SO2ET H TOO CI F OH H H H H H H H SO2ET H TOO CI F OH H TOO CI F OH H H H H H H H SO2ET H TOO CI F OH H H H H H H H H SO2ET H TOO CI F OH H H H H H H H H TOO CI F OH H H H H H H H H SO2ET H TOO CI F OH H H H H H H H H TOO CI F OH H H H H H H H H TOO CI F OH H H H H H H H H TOO CI F OH H H H H H H H TOO CI F OH H H H H H H H TOO CI F OH H H H H H H H TOO CI F OH H H H H H H TOO CI F OH H H H H H H TOO CI F OH H H H H H H TOO CI F OH H H H H H H TOO CI F OH H H H H H H TOO CI F OH H H H H TOO CI F OH H H H H H TOO CI F OH H H H H H TOO CI F OH H	697		н	н	н	н	OiPr	н
700 CI FOH H H H H H OPh H FOH FOH FOH H H H SOZMe H H FOH FOH H H SOZMe H FOH FOH H H SOZET H FOH H H SOZET FOH H H SOZET H FOH H H SOZET H FOH H H SOZET FOH H H SOZET H H FOH H H SOZET H H FOH H H H SOZET H FOH H H H SOZET H H FOH H H H SOZET H FOH H H H H H H SOZET H FOH H H H H H H H SOZET H FOH H H H H H H H H SOZET H FOH H H H H H H H H SOZET H FOH H H H H H H H H H H H H	698		н	Н	OPh	н -	н	Н
701 CI OH H H H H H H H OPh F OH CI F OH H H H SO2Me H F OH H H H SO2Me H F OH H H H SO2Et H H TO5 TO6 CI F OH H H H SO2Et H H TO7 TO6 CI F OH H H H SO2Et H H TO7 TO7 TO8 F OH H H H SO2iPr H H TO9 TO9	699		н	н .	н	OPh	н .	н
702 FOH H H H SOZME H H FOH TOS FOH H H H SOZET H FOH H H SOZET H H FOH TOS FOH H H H SOZET H H TOS FOH H H H SOZET H TOS FOH H H H H H SOZET H TOS FOH H H H H SOZET H TOS FOH H H H H H SOZET H TOS FOH H H H TOS FOH H H H H H H H SOZET H TOS FOH H H H TOS FOH H H H H H H H H H H H SOZET H TOS FOH H H H TOS FOH TOS FOH H H H H H H H H H SOZET H TOS FOH	700		, н	Н	н	н	OPh	Н
702 CI FOH H H H H SO2Me H FOH TOH H H H H SO2Me H FOH TOH H H H SO2Et H H FOH TOH H H H SO2Et H H TOH TOH H H H SO2ET H H TOH TOH TOH TOH TOH TOH TOH TOH TO	701		н	Н	SO2Me	н	н	Н
704 CI F OH H H H H SO2Et H H H F 705 CI F OH H H H SO2Et H H 707 708 F OH H H H SO2iPr H H H SO2iPr H H H SO2iPr H H H SO2iPr H H SO2iPr H H H SO2iPr H	702	OH	н	н	н	SO2Me	н	Н
704 CI FOH H H H SOZET H H FOH CI FOH H H SOZET H H TOT TOT CI FOH H H SOZET H H H SOZET H H TOT TOT TOT TOT TOT TOT	703		H .	н	. н	н	SO2Me	н
705 CI F OH H H H SO2Et H 706 CI F OH H H SO2iPr H H 708 F OH H H H SO2iPr H H 709	704		. Н	н	SO2Et	н	Н	н
706 OH H H H H SO2Et H 707 CI F OH H H H SO2iPr H H T09 T09	705	CI CI	н	H",	н	SO2Et	Н	н
707 OH H H SO2iPr H H H TO8 OH CI F OH H H H H SO2iPr H H H SO2iPr H H H SO2iPr H H SO2iPr H H H SO2iPr H TO9	706	OH	н .	н	н		SO2Et	H
708 OH H H H SO2iPr H H 709 OH H H H SO2iPr H	707	CI		H	SO2iPr	Н	н	Н
709 H H H H SOZIPr H	708	ОН		н	н	SO2iPr	Н	H .
	709		н	н	н	н	S02iPr	Н

710	FOH	н	н	SO2Ph	Н	Н	н
711	F OH	н	н	н	SO2Ph	н	н
712	CI	н .	н	н	н	SO2Ph	н
713	CI	н	н	SO2Me	Ме	Н	н
714	CI	н	H	SO2Me	н	Ме	н
715	CI	н . н	н	Me	SO2Me	н	н
716	CI	н	нν	н	SO2Me	Ме	н
717	CI	H	н	SO2Me	F	н	н
718	CI	н	н	SO2Me	н	F	Н
719	CI	н	н	F	SO2Me	· н	Н
720	CI	н	н	H	SO2Me	F	н
721	CI	н	н	SO2NMe2	H	н	н
722	CI	н	н	Н	SO2NMe2	н	н

		F			•			
723		CIOH	н	H	н	Н	SO2NMe2	н
724		СІ	н .	H	SO2Et2	н	н	н
725		FOH	Н	Н	н	SO2Et2	н	н
726		FOH	Н	Н	н	н	SO2Et2	н
727	·	FOH	н	н	SO2NMe2	Me	н	Н
728		FOH	H	н	SO2NMe2	н	Ме	н
729		CI OH	Н	H	Ме	SO2NMe2	н	н
, 730	÷	F OH	н	н	н	SO2NMe2	Ме	н
731		СІ	Н	Н	SO2NMe2	F	н	н
732		СІ	н	н	SO2NMe2	. H	F	н
733		F OH	H	Н	F	SO2NMe2	н	н
734		CI F OH	H	H .	н	SO2NMe2	F	н
735		CI	н	н	NHCOEt	н	Н	н

736	СІ	н	н	. н	NHCOEt	н	н
737	CI OH	. н	Н.	Н	н	NHCOEt	н
738	F OH	н	н	NHCOiPr	н	н [.]	н
739	CI	Н	Н	н	NHCOiPr	н	, .
· 740	CI	H	Ĥ	н	Н	NHCOiPr	Н
741	CIOH	.	н	F	Н	н	F
742	FOH	н	н	F	н	н	F.

$$X = -SO2-, q = 0, r = 0, Y = -(R4)C=C(R5)-$$

Table 3

Compound No. 3—	R1-(CH2) _p	R2	R3	R4	R5	R6	R7
1	CI CI OH	н	н	н	н	н	н
2	Q	н	н	н	н	н	н
3	CIOH	н	н	н	Н	Н	н
4	Q	н	н	н	н	н	н
	CIOH	н	H	н	Me	н	н
6	CIOH	н	н	н	Me	н	н
7		н	Н	н	Ме	Н	н
 8	CIOH	н	н	н	F	H .	н
9	CI OH	н	н		F .	н	н
10		н	н	Н	F	н	н
11	CI	н	н	н	н	н	н

12	CI CI	Н	н .	н	CI	Н	н
13		н	н	н	CI	н	н
14	CI.	н	н	H	H	н	н
15	CI	н	н	н	н	н	н
16	CI	Н	н	Н	н	Н	н
17		н	н	Н	н	Н	н
18	MeO	Н	н	н	н ·	н	H
19	Вг	н	.H	н	н	н	н
20	OMe	, H	н	н	н	н	н
21	Br F	н	Н	H	н	н	н
22	Br	н	Н	н	н	н	н .
23	F	Н	н	н	н	н	н

24	MeN	н	н	н	H .	н	н
25 _.	S.	н	н.	Н	.	н .	н
26	MeO	н	н	н	н	н	Н
27	O ₂ N	H.	н	н	н	н	Н
28	MeO	н	н	н	н	H	н
29		Н	Н	н	н	н	н
30		H	Н	н.	н	н	H .
31		H,	H ,	н	н	н	н .
32	CIOH	н	н	н	н	н	н
33	NC OH	н	H ,	н	н	н	Н
34	F ₃ C OH	Н	н	н	H	н	н
35	CF ₃ OH	н	н	н	• н	н	· .

36	CIOH	н	H -	н	Н	н	Н
37		Н	н	Н	н	н	Н
38	F.C.	н	н	н	Н	н	н
39	Br.	H	н	н	н	н	н
40	F ₃ C	н	н	н .	н	н .	н
41	НО	н	н	Н	Н	н	н
42	NC	H .	н	н	н	н	. н
43	O ₂	Н	н	H	, H	н	н
44 .	MeCCC	н	н	н	н	н	н
45	-N	н	н		Н	н	н
46	MeO	н	н	н	н	н	н
47		н	н	н	н	н	Н

48	~°Q	н	H	н	н	Ĥ	н
49	Y°C.	н	н	н	н	н	н
50		н	н	н	H	н	н
51		н	н	н	Ή	H	н
52	O°Q.	н	H	н	н	H	н
53		н	н,	H .	н .	н	н
54		н	Н	н	н	н	Ή
55		Н	н	н	н	н	.Н
56		Н	н	н	н	н	Н
57		Н	н	н	н	Н	н
58	CN	н	н	Н	н	H .	н
59	CI	н	н	н	н .	н	н

60	Q	н	н	н	н	н	н
61		н	н	н	н	н	Н
62		Н	H	н	н	н	. Н
63	F ₃ C	H	н .	н	н	н	н
64	CIF	н	н	н	н	Н	H
65	CI	н	H	н	н	н	н
66		н	н	н	н	н	н
67	F ₃ C	н	н	н	н	н	Н
68	F ₃ CO	н	н	Н	н	н	н
69	Meo	Н	Н	н	н	н	н
70	O_2N	н	н	н	H	н	н
71	O ₂ N	н	. н	н	н	н	н

72	F.	Н	Н	н	н	н	н
73	F ₃ CS	Н	н	н	Н	н	н .
74	CI CI	н	н	н	н	н	н
75	F ₂ HC	Н	н	н '	н .	н	. н
76	Ç,	Н	н	н	н	н	н
77	NO ₂	н	н	H .	H	Н	н
78	СООН	H	H	н	н	н	Н
79 _.	Br	н	н	н	Н	н	н
80	<u></u>	н	н	Н	н	н	Ĥ
81	F	·	н.	н ,		н	H
82	CI	H	Н	· ′ н	н	Н	н
83	NC .	н	н	н	н	H .	н

84	но	н	н	н	н	н	н
85	EtO	Н	н	н	н	н	н
86	CI O ₂ N	н	,	н	н .	н	н
87	CI	н	н	Н	н	н	н
88	F	н	н	н	Н	н	н
89	Br	н . •	Н	н	Н	н	н
90	F ₃ C	н	н	н	н	н	н
91	HO	н	н	Н	H	, н	н
92	F F	н	н	н	н	н	н
93	MeO Br	н	Н	н	н	н	н
94	MeO OEt	н	' Н -	Н	н	н	н
95	MeO	н	н	н	н	н	н

96	MeO	н	н	н	¹ H	н	Н
97	O ₂ N CI	н	н	н	н	н	н .
98	MeO	н	н	н	н	н	н
99		н	н	н	Н	н	н
100	CI CI	н …	н	н	н	н	H
101	O O	Н	н	H	н	Н	н
102	Q _o Q	н	Н	н	н	н	н
103	MeO	н	н	Н	н	н	н
104	CF ₃ CI	Η′	H	н	н	н	н .
105	HO O ₂ N	н	н	н	н	н	н
106	OMe OMe	н	H	н	н	н	н .

107	EtO OEt	н	н	н	н	н	н
108	но	н	н	н	Н	н	н
109	OMe MeO OMe	н Н	Н	н	н	н	н
110	, OF	н	н	н	н	н	Н
111	OMe MeO COOH	н	Н	н	н	. н	, H
112	CI NO ₂	н	н	н	Н	н	Н
113	НО	н	н	Н	/ H	н	H
114	MeO	H	н	; H	н	н.	н
115	EtO EtO	н	н	н	Н	H	н
116	ноос	н	н	н	н	, н	н
117	НО	 Н ,	н	H	н	н	н
118	O ₂ N HO	н	н	н	н	н	н

119	F ₃ C	н	н	. н	н	н	н
120	OMe NO ₂	н	н	H [*]	Н	н	н
121		н	н	н	Н	н	н
122	MeN	н	н	н	н	H	Н
123	OMe	н	н	Н	H	н	H
124	Col.	н	н	н	н	H	н
125	MeN	Н	н	H	. H	н	H
126	N	н	н	н	Ĥ	н	н.
127	OH.	н	н	н	Н	н	н
128	OAc	н	н	н	н	Н.	н
129	ОН	н	н	н .	н	Н	н
130	NH	н	н	H .	н	н	н

131	N. C.	н	н	н	н	н	Н
132	MeN	н	н	н	н	H´	н
133		н	H	н	н	H	н
134		н	н	н	н	н	Н
135	OEt .	н	н	н	н	н	н
. 136	HN	н	н	н	н	Н	н
137	MeN	н	. н	H ,	н	н	н
138	N _{Me}	н	н	н	Н	, H	н
139	MeN	н .	н [*]	, Н	Н	н	н `
140	MeNOMe	н	н	н	Н	н	н
141	OMe	н	н	н	н	н	н
142	S	н	н	н	н	н	н

143	N Me	н	н	Н.	Н	н	н
144	MeN	н	н		н	н	Н
145	N.	H	н	н	н	н	н
146	N N	н	Н	н	н	H	н
147	MeO	н	н	н	Н	н	н
148	\mathbb{Q}_{s}	Н	Н	. н	Н	Н	н
149	MeO.	н	н	H	H	н	н
150		Н	н	н	н	н .	н
151	MeO	н	H	н.	Н.	H *	н
152	Br	H	Н	н	• н	н	н
153	_N	н	н	H	н	н	н

154		н	н	н	Н	н	н
155	20	н	Ĥ	н	Н	н	н
156	Ĉ.	н	н	н	н	Н	H
157		н	н	Н	Н	H	н
158		н	H	H	н ;	н	н
159		н	H .	H	н	н	H
160		н	н	н	Н	н	н
161		н	Н	н	н ,	н	H .
162		. н	H .	H	н	н	н
163	ОН	H	н	н	Н	Н	Ĥ
164	U214	н	Ĥ	н	Н	н	H
165	СІ	н	н	н	н	н	н

166	ОН	H .	н	H	н	н	н
167.	F OH	Н	. н	н	н	н	н
168	ОН	н	н	н	н	H	н
169	CI NH ₂	н	н	н	н	н	н
170	ОН	н	н	н	· н	н	н
171	NH ₂	н	н	Н	Н	н	H
172	OH	н	н	н	н _.	н	н
173	F ₃ CO OH	н	н	н	н	н	н
174	OMe OH	н	Н	н	н	н	Н
175	ОН	н	Н	н	н	н	н
176	OEt OH	Н	н	н	н	· Н	н
177	COOH	н	Н	н	н	н	н

178 ·	ОН	H	H	н	н	н	н
179		H .	н	н	н	н	н
180		н	н	н	н	H	Н
181		Н	н	н	н	н	H
182	√s ×	Н	Н	Н	н	н	н
183	HN.N	н	Н	н	н	н	н
184	N-X	Н	H	н	н	H	Н
185		Н	, Н	н .	Н	Н	н
186 C		н	Н	н	н	Ĥ	н
187	₹	н	н	н	н	Н	н .
188	N. H.	н	н	н	н	н	н
189	Č.	H	н	н	н	н	н

190	CN.	Н	н	н	Н	н,	н
191	N .	н	н	H	н	н	н
192	CI	н	н	. Н	CI	H	н
193	O ₂ N OH	н	н	Н	CI	н	н
194	MeO	н	н	H	ČI	н	Н
195	CI	н	н	н	CI	н	` н
196	Br .	н	н	н	CI	H	н
197	O ₂ N	H	. н	н	CI	н	Н
198	MeO	н	н	н Н	CI	н	н
199	CI OH	н	н .	н	CI	н	н
200	MeN	Н	н	H	CI	н	H
201	S	н	н	н	CI	н	н

-

202		н	н	н	Cl	H	н
203		н	н	н	CI	н	н
204	Вг	Н	Ĥ	н	CI	н	н
205		н	H	н	CI	н	н
206		. Н	н	н	CI	н .	Ĥ
207	CIOH	н .	H	CI	н	н	н
208	CIOH	н	н	н	ÖMe	н	н
209	CIOH	н	н	н	COOMe	н	н
210 ´	CIOH	н	Н	н	н	Cl	H
211	CIOH	н	H	н	н .	COOMe	, н
212	С	н	н	н	н	н _.	CI
213	CI OH	н	н	н	OCF3	н	Н

214	CIOH	н	H .	COOMe	н	н	н
215	CIOH	н	н	н	CF3	н.	н -
216	CIOH	н	Н	н	он	н	н
217	CIOH	н	н	Н	NO2	н	н
218	CIOH	н	Н	H	F	F	н
219	CIOH	H	н	F	н	H	н
220	CIOH	н	н	Me	н	н	н
221	CIOH	н	н`	н	CN	н	н
222	CI	н	H .	CI	н,	н	н
223	CI	н	н	н	OMe	н	н
224	CI	н	н	н	COOMe	н	H
225	CI	н	н	Н .	н	CI	Н

226	CIOH	н	н	н	н	СООМе	н
227	CIOH	н	н	н	н	н	CI
228	CIOH	н	н	н	OCF3	н	н
229	CI OH	н .	н	COOMe	н	н	н
230	CIOH	Н	н	ŀН	CF3	Н	н
231	CIOH	н.	Н	н .	ОН	Н	н
232	CICH	н	н _:	н	NO2	н	, Н
233	СІ	н	н	н	, F	F	н
234	СІ	н	Н	`F	н	H´	н
235	СІ	н	H	Ме	н	н	Н
236	CI	н	н	н	CN	н	н
237		н	н	CI	Н .	н	н

238		Q		н	н	н	ОМе	н	н
239				н	н	н	COOMe	н	н
240				н	· . н	H	н	CI	н
241	. 1			н .	н	н	н	COOMe	ιн
242				н	н	н	н	H	CI
243			•	н	н	н	OCF3	н	н
244				н	Н	COOMe	н	н .	н
245		<u>.</u> .		н	н	Н	CF3	н	н
246		Q.		H	н	н	. ОН	_. н	H
247		Q.	·	н	н	н	NO2	Н	н
248				н	Н	н	F	F .	н
249	,		·	н	н	F	н	н	н

250		н	н	Ме	н	н	н
251		н	н	н	CN	н	н
252	Q	н	н	CI	H	н	H
253		H	Н	н	OMe	н '	н
254		н	н	н	COOMe	` H .	Н
255		н .	Н	Н	Ή	CI ·	H
256		H	н	н	н .	COOMe	Н
257		H	н	. н	н	н	CI
258		н	Ĥ	н	OCF3	н	H
259		н	Н	COOMe	Н	н	Н
260		н	н	н	CF3	н	Н
261		Н	н	. н	Me	н	н

262		Н	н	н	F	н	н
263		н -	н	H _.	ОН	Н	н
264	Q	H	H	. н	NO2	н	н
265	Q	н	н	н	F	F	н
266		н	н	F	H	Н	н
267		. н	н	Me	1H	·	н
268		н	н	н	CN	н	Н
269	CIOH	н	н	н	н	H	COOMe
270	CIOH	н	н	н	н	F	н
271	CIOH	• н	н	н	н	н	F
272	OH	н	н	н	н	· Me	н
273	CIOH	н		н		н	Me

274	CIOH	н	н	ОМе	Н	н	Н
275	CIOH	н	Н	н	Н	ОМе	н
276	CIOH	н	н	н	н	Н	OMe
277	CIOH	н	н	CF3	н	н	н
278	CIOH	н	н	н •	н	CF3	H
279	CIOH	н	н	Н	н	н	CF3
280	CIOH	н	н ,	ОН	Н	H	Н
281	CIOH	Н	Н	н	Н	он -	н
282	CIOH	. н	H	н	н	н	ОН
283	CIOH	н	н	OCF3	н	н	н
284	CIOH	н	Н,	н	Н.	OCF3	Н
285	CIOH	H	н	н	н	н	OCF3

286		CIOH	н	н	NO2	н	Н	н
287		CIOH	н	н	Н	н	NO2	н
288		CIOH	н	н	н	н	Н	NO2
289		CIOH	н	н	CN	н	н	н
290		CIOH	н	. н	Н	н	CN	н
291		CIOH	н	н	, Н	Н	Н	CN
292		CIOH	н	н	Br	н	Н	н
293		CIOH	н	н	- Н	Br	Н	н
294	•	CIOH	н	н	н	н	Br	Н
295		CIOH	н	н	Н	Н	н	Br
296		CIOH	. н	н	соон	н	H	н
297		CIOH	н	Н	н	соон	н	н .

298	CIOH	н	н	н	н	соон	н
299	CIOH	н	·н	н	н	н	соон
300	CIOH	н	H	NHCOMe	·н	н	н
301	CIOH	Н	, н	н	NHCOMe	н	ìн
302	CIOH	н	н	Н	н	NHCOMe	н ,
303	CIOH	н	н	Н	Н	н	NHCOMe
304	CIOH	н	н	SO2NH2	н	н	н
305	CIOH	н	Н	H	SO2NH2	н .	,
306	CI OH	н	Н	н	н	SO2NH2	·H
307	CI CI OH	H .	н	Н	H	н	SO2NH2
308	СІОН	. Н	н	Me	Me	н	н
309	CI CI OH	н	н	Me	Н	Ме	н

310		CIOH	н	н	н	Me	Ме	н
311		CIOH	н .	н	F	F	н	н
312		CIOH	н	. Н	F	Н	F	H
313		CIOH	н	н	н	F	F	н
314		CIOH	Н	н	CI	CI	н	н
315		CIOH	н	H	CI	н	CI	н
316	-	CIOH	н	· Н	. н	CI	CI	н
317		CIOH	H .	н	Me	F	н`	н
318		CIOH	н	н	Me	CI .	н	н
319		CIOH	н	H	Me	он	H	н
320	·	CI OH	Н	Н	Me	ОМе	н	н
321		CIOH	н	н	F	Me	H	н

322		CI CI OH	Н	н	F	CI	Н	н
323		CI OH	н	н	F	ОН	н	н
324		CIOH	н	н	F	ОМе	Н	, н
325		CIOH	н	Н	CI	Ме	H	H
326		CIOH	н	н,	CI	F	Н	н
327		CIOH	H ,	н	CI	ОН	Н .	н
328		CIOH	н	Н	CI	OMe	Н	н
329		CIOH	н	н	н	н	.	COOMe
330		CIOH	н .	н	Н	Н	F	н
331	·	CIOH	н	н	Н	н	. н	F
332		CI	н	н	н	H	Me	н
333		CI	н	н	н	Н	н	Me

334	CIOH	н	н	ОМе	н	н	н
335	СІ	н	н	н	н	OMe	н
336	CIOH	Н	н	H	н	н	OMe
337	CIOH	н	Ж	CF3	H .	н	н
338	СІ	н	н	н	н	CF3	н
339	СІ	н	н	н	• Н	н	CF3
340	СІОН	н	н	ОН	н	ŀН	Н
341	СІОН	н	н	Н	н.	он	н
342	СІОН	н	н	н	н	н	он
343	CIOH	н	н	OCF3	Н	н	н
344	CIOH		н	Н	н	OCF3	н
345	CIOH	H	н	Н	н	н	OCF3

346	CIOH	н	Н	NO2	н	н	н
347	CIOH	Н	н	Н	н	NO2	н
348	CIOH	н	н	н	н	н	NO2
349	СІ	н	н	CN	Н.	н	н
350	CI	н	H	н	н	CN	н
351	CI	Н	Н	н	н	Н	CN
352	СІ	Н	H	Br	н	н	н
353	CI	н	н	н	Br	Н	н
354	CI	н	н	н	н	Br	н
355	CIOH	н	Н.	н	н	н	Br
356	CI	н	Н	соон	н	н	н
357	CI	н	Н		соон	н	н

358	CI	н	Н	н	н	СООН	H
359	CI	н	н	н	н	н	соон
360	CIOH	н	н	NHCOMe	н	н	.н
361	CI	н	H .	н	NHCOMe	H .	н
362	CI	н	, н	: H	н	NHCOMe	Н
363	СІ	. н	н	Н	H .	н	NHCOMe
364	CIOH	н	. н	SO2NH2	Н	н	н
365	CIOH	Н	н	н	SO2NH2	н .	н
366	CI	н	н	Н	. Н	SO2NH2	н
367	CI	н	н		н .	н	SO2NH2
368	CI	н	н	Me	Me	н	н
369	CIOH	н	H	Me	н	Me	н

370	CI	н	Н	н	Me	Me	н
371	CICH	н	Н	. F	F	н	н
372	CICH	н	Н	F	н	F	н
373	CIOH	H	Н	н	F	F	H
374	CIOH	н	Н	CI	CI	н	н
375	CIOH	н .	Н	CI	H	CI	н
376	CIOH	. H	Н	н	CI	CI	н
377	CIOH	н	н	Me	F	н	H
378	CIOH	н	н	Me	CI	H-	н
379	CI	н	н	Me	ОН	н	н
380	CICH	н	н	Me	OMe	н	Н
381	CICH	н .	н	F	Me	н	н

382	Сі	н	Н	F	CI	н	н
383	СІ	н	н .	F	он	н	н
384	СІ	-	Н	F	OMe	н	н
385	CI		н	CI	Me	H	н
386	CI	н	н ,	CI	F	н	н
387	СІ	. н	н	CI ·	ОН	н	н
388	СІ	н	н	CI	ОМе	н	H
389		н	н,	H .	н	H	COOMe
390		н	н′	н	н	F	H
391	Q	н	н	н	н	н	F
392		н	н	н	н	Me	н
. 393	Q	н	н	н	н	Н	Me

394	Q.	Н	н	OMe	н	Н	н
395 .		н	н	н	н	OMe	н
396		Н	н	н	н _.	н	OMe
397		н	н	CF3	н	н	н
398		Н	Ĥ	н	н	CF3	н ,
399		H	н	н	' н	· н	CF3
400		н	H	ОН	н	·H	н
401		н	н	н	н	он	. Н
402		н	н	Н	н	н	он
403	Q	н	Н	OCF3	Н	н	Н
404	Q	• н	н	н	н	OCF3	H _.
405		н	н	H	н	н	OCF3

406		н	н	NO2	н	H	н
407		н	н	н	н	NO2	н
408	Q	н	н	н	Н	н	NO2
409		н	н	CN	н	н	н
410		н	н	н	н	CN	н
411		1 н	н	н	н	н	CN
412		Н	н	Br	H	н	н
413		н	H	н	Br	H	н
414		н	Н.,	н	H•	Br	н
415		Н	н	н	н	н	Br
416		н	н	соон	Н	¹H	Н
417		н	н	н	соон	н	н

418	<u>.</u>	н	н	н	н	соон	н
419		н	н	н	Н	н	соон
420		н	н	NHCOMe	н	н	Н
421		н	Н	н	NHCOMe	н .	Н
422		H	н	н	н	NHCOMe	Н
423		н	н	н .	н	Н	NHCOMe
424		н	н	SO2NH2	Н	H	H
425		н	H .	Н	SO2NH2	н	н
426		н	H .	н ,	H `	SO2NH2	н
427	·	н	н	-Н	н	H	SO2NH2
428	Q.,	н .	н	Ме	Me	н	• Н
429		н	н	Me	н	Ме	· н

430	Q.,	н	Н	н	Me	Ме	н
431	Q	н	н	. F	F	н	Н
432	Q	н	н	F	н	F	н
433		н	н	н	F	F	н
434		н	Н	CI	CI	н	н
435		н	н	CI	н	CI	Н .
436		н	н	н	CI	CI	н
437		H	н	Me	F	н	н
438		H	н	Me	Cl	н	н
439		н	н	Me	он	, н	н
440		н	н	Ме	OMe	н	н
441		н	н	F	, Me	н	н

442		н	н	F	CI	н	н
443		н	н	F	он	н .	н
444		н .	· н	F	ОМе	н	H
445		н	н	CI	Ме	H	н
446		н	н	CI	F	н	н
447		H ,	н	CI	ОН	н	н
448		н	н	CI	ОМе	н	н
449	Вг	н	н	CI	н	н	н
450	Вг	н	н	. Н	ОМе	Н	н
451	Вг	н	н	н	COOMe	н	н
452	Br	н	н	Н	н	CI	н
453	Вг	н	H	н	н	COOMe	н

454	Вг	н	н	н	н	.н	CI
455	Вг ОН	н	н	н	OCF3	н	н
456	Br	н	н	COOMe	н	н	н
457	Вг	н	н	` н	CF3	н	н
458	Вг	н	н	H	Me	н	н
459	Вг	Н	н ,	н	F	н	н
460	Вг	н	H	н [.]	он	H .	н
461 .	Br	Н	н	н	NO2	н	н
462	Br	н	н	н	F	, F	н
463	Вг	н	н	F	н	н	н
464	Br OH	Н	н	Me	н	н	Н
465	Вг	н	н	н	CN	Н	н

466	MeN	н	н	CI	Н	. н	н
467	MeN	н	н	н	OMe	н	н
468	MeN	Н	Н	н	COOMe	н .	Н
469	MeN	н	н	н	н	CI	н
470	MeN	н	н	н	н	COOMe	н
471	MeN	н	н	н	Н.	н	CI
472	MeN	н	·. Н	н	OCF3	н	н
473	MeN	. Н	н	COOMe	H	н	Н
474	MeN	н	н	н	CF3	Н	H .
475	MeN	н	. н	н	Me	н	H.
476	MeN		н	н	F	H	н
477	MeN	н	н	н	он	Н	н

478	MeN	н	н	н	NO2	н	н
479	MeN	н	Н	H .	F	F	н
480	MeN	н	н	F	н	н .	H
481	MeN	н .	н	Ме	Н	н	Н
482	MeN	Н	н	н	CN	н	Н
483	S.	Н	н	CI	н ·	н	Н
484	S	Н	Н	Н	OMe .	н	. Н
485	S	н	н	н	COOMe	н	н
486	S	н	Н	н	н	CI	н
487	S	H	н	н	н с	ООМе	н.
488	S	н	н	н .	Н	Н	CI
489	S	н	н	н	OCF3	н	н

490	\$	н	н	COOMe	. н	н	н
491	\$	н	н	н	CF3	н	н
492	\$	н	н	н	Me	н	н
493	\$	н	, Н	н	F	н	н
494	S	, H	н	н	он	Н	н
495	S	н	Н	н	NO2	н	н
496	S	н	H	н	F	F	. Н
497	S	н	н	F	н	H	н
498	S	Н	н	Ме	н	н	Н
499	S	н	н	н	CN	н	н
500	CIOH	н	Ме	Н	Н	Н	_. Н
501	СІ	н .	Me	н	Н	н	н

502		н	Me	н	Н	Н	Н
503		н	Ме	Н	Н	Н	Н
504	CIOH	н	н	н	Et	н	н
505	CI	н	н	H	Et	H .	н ·
506		н	H	н	Et	н	н
507		Н	н	H	Et	Ĥ	н
508	CI	н	н	H	н	н	н
509	СІ	н	н	F	н	н	н
510	CI	н	н	·CI	н	н .	н
511	CI	н	н	Ме	н	н	н
512	CI	н	н	Et	н	н	н
513	CI	H	н	OMe	н	н	н

514	CI	н	н	OEt	н	Н	н
515	CI	н	Н	CF3	н	н	н
516	CI	Н	н	OCF3	н	н	Н
517	СІ	н	н	NO2	н	н	н
518	СІОН	H	н	NH2	н	H	Н
519	CI	н	H	ОН	н	н	н
520	CI	H	Н	CN	н	н	Н
521	CI	H	н	COMe	н	Н	Н
522	CI	н	H	COOMe	H	Н	н
523	СІ	н	н	н	F	Н	н
524	CI	Н	Н	Н	CI	н	н
525	CI	н	Н	Н	Me	н	н

526	CI	н	н	н	Et	н	н
527	CI	. H	н	н	OMe	Н	н
528	CI	н	Н	н	OEt	н	` Н
529	CI OH	н	, H	Н .	CF3	H	н
530	CI	н	н	н	OCF3	н	н
531	CI	н	Н	н	NO2	н	н
532	СІ	н	н	Н	NH2	н	н
533	CI	, н	· н	н	ОН	н	н
534	CI	н	H	н	CN	Н	Н
535	F OH	н	н	н	СОМе	Н	Н
536	CI OH	н	н	н	COOMe	Н	н
537	CI	• н	н	F	F	H	н

538	·	CI	н	н	F	CI	н	н
539		CI	н	. н	F	Ме	н	н
540		CI	н	н	F	Et	н	н .
541		F OH	н	Н	. F	OMe	н	H
542		СІ	н	H	F	OEt	н	н
543		CI	H	Н	F	CF3	н	н
544		СІ	н	н	F	OCF3	н	H _.
545		CI	H	н	CI	F	н	н
[°] 546		CI	H	н	CI	CI	н	н
547		CI	н	н	CI	. Me	н	н
548		CI	н	н	CI	Et	н	н
549		CI	н	H	CI	OMe	н	H

550	F OH	н	" н	CI	OEt .	н	н
551	F OH	н	н	CI	CF3	н	н
552	FOH	н	н	CI	OCF3	н	н
553	F OH	H	н	Ме	F	н .	н
554	СІ	н	н	Me	CI	н	н
555	CI CI	н	н	Me	Me	н	н
556	СІ	н .	Н	Ме	Et	н	H
557	CI	Н	н	Me	OMe	н	н
558	СІ	н	Н	Me ·	OEt	н	Н
559	CI CI	H	Н	Me	CF3	н	н
560	CI CI	н	Η	Ме	OCF3	н	н
561	F OH	н	Н	OMe .	F	н	н

562	CI	н	н	, OMe	CI	н	н
563	CI	н	н	ОМе	Me	Н	н
564	CI	н,	H .	ОМе	Et	н	н
565	CI	Η̈́	н	ОМе	OMe	Н	н
566	F OH	н	н	ОМе	OEt	H	Н
567 .	CI	·H	Ĥ	OMe ·	CF3	Н	н
568	CI	H	н .	ОМе	OCF3	н .	н
569	OMe	н	н	н	н	H	H .
570	OMe	н	н	F	н .	H	Н
571	OMe	н	• Н	CI	н	Н	н
572	OMe	н	H	Me	H .	н	н
573	OMe	н	Н	Et	н	н	н

574	OMe	н	н	OMe	н	н	н
575	OMe	н	H	Н	F	H	н
576	OMe	н	Н	н	CI	H .	Н
577 ·	OMe	н	Н	н	Ме	н	н
578	OMe	н	Н	н	Et	Н	Ή
579	OMe	н	Н	н	OMe	Н	н
580	OMe OH CI	н	Н	F	F	H	н
581	OMe	н	H	F	CI	Н	, H ,
582	OMe	H	н	F	Me	Н	н
583	OMe	н	H	F	Et	н	H
584	OMe	н	Н	· · F	OMe	н	н
585 ·	OMe	н	Н	CI	F	н	н

		QMe		•				
586		CIOH	н	н	CI	CI	н	н
587	-	OMe OH	н	н	CI	Me	н	н
588		OMe OH CI	н	н	CI	Et	н	н
589	,	OMe OH CI	н	н	CI	OMe	H	н
590		OMe OH CI	н	Н	Me	F	н	H
591		OMe OH CI	Н	н	Me	CI	н	н
592		OMe OH	н	н	Ме	Ме	н	Н
593		OMe OH CI	н .	н	Me	Et	н	Н
594		OMe OH CI	н	н	Me	ОМе	н	Н
595		OMe OH	Н .	н	Et	. F	н	н
596		OMe	Н	н	Et	CI	н	Н
597		OMe OH CI	н	н	Et	Ме	н .	н

598		OMe OH CI	H	н	Et	Et	н	н
599		OMe	Н	H	Et	ОМе	н	н
600		OMe OH CI	н	H	ОМе	F	Н	н
601		OMe	н	н	OMe	CI	н	. н
602		OMe	н	н	OMe	Ме	н	н
603 .		OMe OH CI	H	` н	ОМе	Et	н	Н
604	·	OMe OH	н	н	OMe	ОМе	Н	н
605		CIOH	н	Н	Me	CN	н	н
606	`	CIOH	н	н .	н	CN	Ме	н
607		CIOH	н	. н	н	CN	Н	Ме
608		CIOH	H	н	Me	Br	н	н
609		CIOH	н	н	н	Br	Me	н

610		CIOH	н	н	н	Br _.	н	Ме
611		CIOH	Н .	н	Ме	Н	F	Н
612		CIOH	н	H	Ме	Н	н	F
613		CIOH	н	н	F	. н	Me	н
614		CIOH	н	н	F	Н	н	Ме
615		CIOH	н	н	Me	Н	н	Me
616		CIOH	н	н	H	ОМе	Ме	н
617	-	CIOH	, H	н	н	он	Me	Н
618		CIOH	Н	. H	NH2	н	н	Н
619	٠, .	CIOH	н	н	н	NH2	н	. Н
620	:	CIOH	Н	Н	. Н	н	NH2	н
621		CIOH	Н	Н	Et	H	н	н

622		CIOH	Н	н	н	Et	н	н
623	-	CIOH	н	н	Н	Н	Et	н
624		CIOH	H .	н	iPr	н	н	н
625		CI OH	н	Н	н	iPr	н	н
626		CIOH	н	н	Н	н	iPr.	н
627		CIOH	· н	Н	Ph	н	н	н
628		CIOH	H .	н	н	Ph	н	Н
629		CIOH	н	н	н .	н	Ph	H
630		CIOH	н	н	OEt	н .	н	н
631		CIOH	Н	н	н	OEt	H .	н
632		CIOH	н	н	н	. н	OEt	. н
633		CIOH	н	н	OiPr	н	н	н

634		CIOH	н	н	н	OiPr	н	н
635		CIOH	н	H	н	н	OiPr	н
636		CIOH	н	. н	OPh	н	н	н
637		CIOH	н	н	н	OPh	н	н
638		CIOH	н	н	н	Н	OPh	н
639		CIOH	н .	Н	SO2Me	, н	н	Н
640		CIOH	н	H	H :	SO2Me	н	н
641	· .	CIOH	н	. Н	н	н	SO2Me	н
642		CIOH	н	Н	SO2Et	н ,	н _.	н
643		CIOH	н	н	н		н	· н
644		CIOH	н	H	н	н .	SO2Et	н
645		CIOH	н	н	SO2iPr	н	н	-H

646	CIOH	н	н	н	SO2iPr	н	н
647	CIOH	· H	н	. н	н	SO2iPr	н
648	CIOH	н	н	SO2Ph	н	Н	н
649	CIOH	н	н	н	SO2Ph	H·	Н
650	CIOH	н	H	н	н	SO2Ph	н
651	CIOH	. н	н.	SO2Me	Me	н	н .
652 .	CIOH	н	, н	SO2Me	н	Ме	н
653	CIOH	н	H	Ме	SO2Me	н .	н
654	CI OH	н	н	н	SO2Me	, Me	н
655	CIOH	н	н	SO2Me	F	H	н
656	CIOH	Н	н	SO2Me	н	F	Н
657	CIOH	н	н	F	SO2Me	Н	н,

658	CI CI OH	н	н	Н	SO2Me	F	н
659	CI OH	н	н	SO2NMe	2 H	н -	н
660	CIOH	. Н.	н	٠Н	SO2NMe2	: н	н
661	CI OH	н	Н	н	н	SO2NMe2	н
662	CIOH	н .	н	SO2Et2	н	н	н
663	CIOH	н	н	Н	SO2Et2	н	н
664	CIOH	н	н	Н	.	SO2Et2	н
665	CIOH	Н	н	SO2NMe2	Me	н .	н
666	CIOH	Н	H	SO2NMe2	н	Me	н
667	CIOH	н	н .	Me S	SO2NMe2	н	н
668	CIOH	н	н	н :	SO2NMe2	Me	н
669	CI CI OH	н	н	SO2NMe2	F	н	н

670	CIOH	н	н	SO2NMe2	: н	F	н
671	CIOH	н	н	F	SO2NMe2	н	н
672	CIOH	н	н	н	SO2NMe2	F .	н
673	CIOH	Н	Н	NHCOEt	н	· н	н
674	CIOH	н	ļН	н	NHCOEt	н	H
675	CIOH	н	н	H	Н	NHCOEt	н
676 、	CIOH	н	н	NHCOiPr	н	Н	н
677	CIOH	Ħ	н	н	NHCOiPr	н	H
678	CIOH	н	Н	н	н	NHCOiPr	н
679	CI	,	н	Me _.	CN	н	н
680	CI	н	н	Н,	CN	Me	н
681	CI	Н	Н	н	CN	H	Ме

682	FOH	н	н	Me	Br	Н	н
683	FOH	н	н	н	Br	Me	н
684	F OH	н _	н	н	Br	. н	Me .
685	F OH	н	н	Ме	н	F ·	н
686	CI OH	н	н	Ме	н	н	F
687	CI	н	н	F	н	[·] Me	н
688	CI	н	Н	F	н	Н	Ме
689	CI	н .	н	Ме	н	н	Ме
690	CI	н	н	н	ОМе	Ме	H
691	CI	н	н	н	он	Ме	н
692	CI	н	н	NH2	н	Н	н
693	CI	н	н	н	NH2	H .	н

694	,	CI	н	н	н,	н	NH2	н
695		FOH	н	н	Et	H	н	н
696		F OH	н	н	н	Et	н	н
697		F OH	н	н	. ⁻ Н	н	Et	н
698		F OH	н .	н	iPr	Н	н	н
699		CI	н	• н	н	iPr	Н	н
700		CI	н	H	н	н	iPr	Н
701		F OH	Н	н	Ph	н	н	н
702		F OH	н	н	Н	Ph	н	н
703		CI	. н	н	н	н	Ph	н
704		CI	н	н	· OEt	H	н	н
705		F OH	н	н	н	OEt	Н	н

706	F OH	н	н	н		OEt	Н
707	Г	н	н	OiPr	н	н	н
708	FOH	н	н	н	OiPr	н	н
709	FOH	н	н	н	Н	OiPr	н
710	FOH	н	н	OPh	Н	н	н
711	FOH	Н	н	н	.OPh	н	н
712	FOH	н	Н	н	н	OPh	н
713	F OH	н	H.	SO2Me	н	·H	H,
714	FOH	н	н	H , .	SO2Me	н	H
715	CI	н	н	н	н	SO2Me	н
716	F OH	н	н	SO2Et	н	.Н.	, · н
717	CI	н	н	н	SO2Et	н	н

718		CI	н	н	н	н	SO2Et	н
719		CI FOH	н	н	SO2iPr	н	_. H	- Н
720		F OH	н	н	, н	SO2iPr	н	H
721		FOH	н	н	н	н	S02iPr	н
722	-	F OH	н	н	SO2Ph	н	н	Н
723		F OH	н	Н	н	SO2Ph	н	н
724		CI	н	н	н	Н	SO2Ph	н
725		CI	н	н	SO2Me	Ме	н	н
726		CI	н	н	SO2Me	н	Me	Н
727		CI	Н	н	Me	SO2Me	н	н
728		CI	H	н	н	SO2Me	Me	Ħ `
729		CI	н	н	SO2Me	F	н	н

730	F OH	н	н	SO2Me	н	F	н
731	CI	н	н	F	SO2Me	н	н
732	CI	н	Ĥ	н	SO2Me	F	Н
733 [°]	CI	н	н,	SO2NMe2	2 H	н	н
734	CI	Н	н	н	SO2NMe2	? Н	н
735	CI	н	н	Н	н	SO2NMe2	н
736	CI	н	Н	SO2Et2	н	Н	н
737	СІ	н	н	н	SO2Et2	н .	н
738	F OH	. н	н	н	н	SO2Et2	н
739	FOH	. н	H	SO2NMe2	Ме	Н	н
740	СІ	н .	н	SO2NMe2	н	Ме	н
741	CI	н	н	Me S	SO2NMe2	н	н

742	F OH	н	н	н	SO2NMe	2 Me	н
743	CI	Н .	н	SO2NMe	2 F	H	н
744	CI	н	н	SO2NMe	2 Н	F	н
745	СІ	. н	н	F	SO2NMe2	? Н	н
746	FOH	н	н	н	SO2NMe2	? F	н
747	FOH	н	H _.	NHCOEt	н	, н	н
748	F OH	н	н	н	NHCOEt	Н	н
749	CI OH.	н	н	н	н	NHCOEt	Н
750	CI OH .	н	н	NHCOiPr	н	H	н
751	CI	` . Н	н	Н	NHCOiPr	Н	H
752	CI	Н	, н	н	н	NHCÖiPr	н
753	CI OH	н	н	·F	н	н	F,

754 F OH H H F H H F

Table 4

l able 4		•		•			<u> </u>
Compound No. 4—	R1-(CH2)p	R2	R3	R4	R5	R6	R7
1	CI	Н	н	Н	н	н	н
2	CIOH	н	н	н	н	Н	н
3	CIOH	н	н	Н	н	н	·H
4		н	н	н	н	Н	н
5		н	н	н	н	н	н
6	CIOH	н :	н	н	OCF3	н	H
7	СІ ОН	н	н	н	CI	н	н
8	CIOH	н	Н	н	Me	, H	н
9	CIOH	н	, н	н	F	н .	н
10	CIOH	н	н	Me	н	н	н
11	CIOH	Н	· H	н	ОН	н	H

12	CI	н	н	н	CI	н	н
13		н	н	н	CI	н	н
14	CI	H .	н .	н	Н	н	н
15	CI	н	H	н	н	н	Н
16	CI	н	н	H	н	н	Н
17		н	н	н	н	н	H
18	MeO	н	н	н	. н	н	Н
19	Br	Н	н	н	н .	н	н
20	Br	н	, н	н	Н	- н	Н
21	Br	н	н	н	Н	н	Ħ,
22	Br	н	н	н	н	н	. н
23	F	н	Н	н	н,	н	н

24	MeN	н	н .	н	н	H	н
25	S	н	H	н	н	н	н
26	MeO	н	н	н	н ,	н	н
27	O ₂ N	H	н	н	н	н	н
28	MeO	н	н	н	н	н	н
29		н	Н	Н	Н	н	н
30		н	н	н	н	Н	Н
31		н	н	н	н	н	н
32	CI OH	н	н	н	Н	н	н
33		H	н	н	н	H .	н
34	CI OH CF3 OH CI	н	H	н	Н	н	н
35	CF ₃ OH	н	н	н	н	н	н

36	СІОН	н	н	н	н	н	н
37		н	н	н	н	н	н
38	F.	н	н	н	н	н	н
39	Br	н	н	н	Н	н .	н
40	F ₃ C	н	H	н	Н	н	н
41	но	н	H	н	Н	н	H
42	NC C	Н	н	Н	н	н	н
43	O ₂	н	н	, н	Н	Н	н
44	Месс	н	н	н	Н	н	н
45	, N	н	н	н	н	Н	
46	MeO	H	н	н	Н	н	Н
47	~°C.	н	н	н .	н	Н	н

48		н	н	Н	Н	н	н
49	Y° ()	Н	н	н	Н	н	н
50		н	н	н	н	н	н
51 .		н	н	н́	н	н	H
52	O°C.	Н	н	н	н	н	н
53		н	н	Н	н	н	н
54		·H	H	н	н .	н	н
55		н	н	н	н	н	н
56		н	н	н	H.	H	.
57		H	H	н	н	H	Н
58	CN	Н	н	н	H	. н	н
59	CI	н	н	н	н	н	н

60		н	Н	Н	н	н	н
61		н	н	н	н	Н	н
62		н	н	H	Н	н	н
63	F ₃ C	н	н	н	H .	Н	н .
64	CIF	н	н	н	н	Н	н
65	CI	Н	Н	н	Н	н	н
· 66		н	H.	н	н	Н	н
67	F ₃ C	н	н	н	н	Ĥ	н
68	F ₃ CO	H .	н	н	н	Н	H
69	O_2N	н	н · .		H	н	н
70	O ₂ N F	н		Н	Н	Н	н
71	O ₂ N	н	Н	Н	H ·	н	н

72	F	Н	н	. н	н	н	н
73	F ₃ CS	н	н	н	н	н	H
74	CI CI	н	н .	н	н	н	Н
75	F ₂ HC	Н	н	н	н	Н	н
76	F	н	н	, Н	н	н	н
77	NO ₂	н	н	н	н	н	н
78	СООН	н	н	н	H -	н .	н
79	Br	н	н	H	н	н	н
80		н	н	н	н	н	н
81	F	н	:	н	н	н	н
82	CI	н.	Н	н	н	н	н
83	NC .	н	н	н	н	н	н.

84		но	н	н	H	н	н	н
85		Eto	н	н	н	н	н	н
86		CI O ₂ N	н	н	Н	н	н	н .
87	:	CICI	н	н	H	. Н	н	н
88		F F	н	Н	Н	Н	н	Н
89		F _{Br} .	н	Н	Н	H	н	Н
90	٠.	F₃C F	н	н	H	Н	н	Н.
91		HO	н	н	н	н	н	н
92		F F	н	н	н	н	H	н
93		MeO Br	Н	н	H	н	Н	н
94		MeO OEt	н	н	н	Н	Н	н
95		MeO	н	н	н	н	н	н

96	MeO	н	н	н	н	н	н
97	O ₂ N CI	н	н	н	н	н	н
98	MeO	н	Н	н	н	н	н
99		н	н	н	H	н	Н
· 100	CI	н	н	H	H	Н	н
101		Н	Н	H	Н	н	н
102	0.0.	н	н	_. н	н	н	н
103	MeO	н	н	н	H	H	н
104	CF ₃ CI	н	н	н	Н	Н	, H
105	HO O ₂ N	н	н	н	Н	н	н
106	OMe OMe	. н	Н	н	н	н	н

107	EtO OEt	н	н	Н	н	н	н
108	но	H .	н .	H	н	н	н
109	OMe MeO OMe	н	н	н	н	н	н
110	OF CO.	н	н	Н	н	н	н
111	OMe MeO COOH	н :	Н	н	н	н	н
112	CI NO ₂	H	н	н	Н	н	н
113	но	Н	Н	н	Н	Н	н
114	MeO	н	н	н	Н	Н	Н
115	EtO EtO	н	н	H .	н .	н	н
116	HOOC	н	н	н	Н	н	н
117	НО	н	H	н	н	н	н
118	O ₂ N HO	н	н	н	н	Н	н

119	F ₃ C	н	Н	н	н	Н	н
120	OMe NO ₂	н	H	н	H	н	н
121		н	н	Н	н	н	н
122	MeN	Н	н	Н	H	Н	н
123	OMe	н -	H	н	H	Ĥ	н
124		Н	н	н	н	Н	Н
125	MeN	н	Н	н	Н	н	Н
126	N.	Н	н	н	Н	н	н
127	ОН	Н	н	Н	н	Н	н
128	OAC	Н .	Ĥ	н	н	н	н
129	ОН	н	Н	' н	н	н	н
130	NH	н	н [.]	н	н	н	н

131	N	н	н	н	н	н	H
132	MeN	н	н	н	н	н	н
. 133 [*]		н	н	Н.	н	н	н
134	Q	· н	н	н	н	н	н.
135	OEt	, н	н	н	н	н	H
136	HN	н	H	Н	Н	н	н
137	MeN	н	H	н	Н ,	Н	н
138	N _{Me}	н	н	Н.	н	H	Н
139	MeN	н	H .	н	н	Н	H
140	MeN	н`	н	н	н	н	
141	OMe	н	Н	н .	н	н	Н
142	S.	н	н	н .	н	н	н

143	N N Me	н	н	н	н	н	н
144	MeN	н	н	н	н	н	н
145		н	н	н	H	н	н
146	ZZ.	н	Н	н	н .	н	. н
147	MeO MeN	Н	н	н	H	Н .	н
148	Q_{s}	н	н	н .	, н	н	н
149	MeO	 Н	н	н	н	н	н
150		.	н	н	н	н	н
151	MeO	н	н	Н	Н	н	н
152	Br	н	н	н	н	н	н
153		н	н	н	н	н	н
154		н	н	н	н	, н	н

155	CO	н	Н	н	Н	Н .	н
156		н	н	н	н	н	н
157		н	н	н	H	н	н
158		H .	н	н	н	н	н
159		н	н	Н	н	н	н
160		н	н	н	н	н	н
161		н	Н	н	Н	Н.	н
162		Н	н	н	н	н	н
163	I OH	н	н	н,	H	н	н
164	O ₂ N OH	Н	н	н	н	н	н
165	O ₂ N OH	н	н	н	н	H .	н
166	СІ	н	н	н	н	н	Н

167	F OH	н .	H	Н	н	н	н
168	ОН	н	н	н	н	н .	н
169	CI NH ₂	н	Н	н	н	н	н
170	ОН	н	- Н	н	н	Н	н
171	NH ₂	н :	н	н	н	н	н
172	OH	н	н	Н	н	H	н
173	F ₃ CO OH	н	н	Н	н	H	Н
174	OMe OH	н .	н .	н	Н	н	н
175	OH	Н	н	н	н	. Н	н
176	OEt	H	н	н	H .	н	Н
177	СООН	н	н	н	н	н	н
178	ОН	н	н	н	н	н	н

179		н	н	н	н	Н	н
180	√ _N	н	н	н	н	н	н
181	TN.	н	н	н	н	н	н
182	Cs.	н	н	H _.	H	H	н
183	HN. _N	н	н	н .	н	н	н
184	N. N	H	н	н .	H	н	· н
185		н	н	Н .	н	н	н
186	CI CO	н	H	н	н	Н	. H
187	\sqrt{s} .	Н	н	н	Н	Н	н
188	Z Z Z	н	Н	н	н	н	Н
189	N	H	H	н	H	н	Н.
190	· N	н	н	Н	Н	Н	н

191	N	н	н	H	н	۰н	Н
192	CIOH	н	н .	н	CI	н	н
193	O ₂ N OH	н	н	н	CI	н	н
194	МеО	н	н	н	CI	H	н
195	CI	н	н	н	CI ·	н	н
196	Br	н	н	н	CI	н	н
197	O ₂ N	н	н	. Н	- CI	н	н
198	MeO	H.	Н	H	CI	н	н
199	MeN	н	н	н	CI	H	н
200	S.	н	н	н	CI	н	н
201		н	н	Н	CI .	Ĥ	н
202		Н	H	н	CI	Н	н

203	Вг	Н	н	н	CI	н	н
204		Н	н	Н	CI	н	н _.
205		н	н	Н	CI	Н	н
206	CIOH	н	н	CI _.	н	н	н
207	CIOH	н	н	Н	ОМе	Н	н
208	CIOH	H	·H	н	COOMe	н	н
209	CIOH	н '	н	н	н	CI	н
210,	CIOH	н	Н	Н	Н	COOMe	н
211	CIOH	н	Н	· H	H .	Н	CI
212	CIOH	н	н	COOMe	H .	н	н
213	CIOH	н	н	н	CF3		н
214 •	CIOH	н	н	н	NO2	н	н

215	CI	н.	н	н	F	F	Н
213	CI CI		п	-	r	-	П
216	CI OH	Н	н	F	н	н	н
217	CIOH	н	н	н	CN	H	н
218	CIOH	н	Н	Ć	н	н	н
219	СІ	н	н	Н	OMe	н	н
220	CI	н	Н	н	COOMe	Н	Н
221	CI	н	н	Н	н	CI	Н
222	CIOH	н	н	н	н .	COOMe	Ĥ
223	CIOH	н	н	н	H	н	CI
224	CIOH	н	н	H	OCF3	н	Н
225	CIOH	н	н	COOMe	н	н	н
226	CIOH	н	H	н	CF3	н	н

227	CIOH	н	н	н	Me	н	н
228	CI	Н	Н-	Η	F	н	н
229	CIOH	н	н	H	. OH	. н	н
230	CIOH	н	н	н	NO2	н	н
231	CIOH	н	н	н	F	F	н
232	СІ	н	н	F	н	н	н
233	СІ	H	н	Me	н ^ .	Н	н
234	СІ	н	'н	н -	CN	н	н
235		н	Н	CI	н	н.	Н
236		н	н	н	ОМе	н	H
237		н	н	н	COOMe	н	н
238	<u>Q</u>	н.	н	Н	H	CI	н

239	Q	н	н	н	н	СООМе	н
240		н	н	н	н	н	CI
241		н	н	н	OCF3	н	н
242		н	н	COOMe	н	H	Н
243		н	Н	Ĥ	CF3	. н	н
244		н	Н	н	Ме	H	н
245		Н	н	н	F	н	н
246		н	Н	н	ОН	н	н
247		н	н	н	NO2	н	н
248		н	н	н	F	· F .	Н
249		н	н	F	н	Н	н
250		н	н	Ме	н	Н	н

251	Q.	н	н	H .	CN	Н	н
252		. н	Н	CI	н	Н	н
253	Q	н	н	н	OMe	н	н
254		Н	н	н	COOMe	н .	н.
255		Н	H .	Н	н	CI	н
256		н	Н	Н	н	COOMe	н
257		н	Н	н	н	н	CI
258		·	Н	н	OCF3	Н	н
259		, H	Н	COOMe	-Н	н	н
260		н	н	н	CF3	н	н
261 [°]		н	Н	Ĥ	Ме	н	н
262		. Н	н	H	F	н	н.

263	Q.,.	н	н	н	он	н	н
264	Q	. н	н	Н	NO2	н.	н
265		н	н	н	F	F	н
266		н	н	· F	н	н	н
267	Q	Н	Ĥ	Me	н	н	н
268		Н	н	Ή	CN	н	н
269	CIOH	Н	н	Н	н	н	COOMe
270	CI OH	H	н	Н	Н	F	'- Н
271	CI OH	н	н	н .	н	н	F
272	CI OH	н	H	н	н	Ме	н
273	CI CI OH	н	н	н	н	н	Me
274	CI OH	н	Н	ОМе	н .	н	н

275	CIOH	н	н	н	н	OMe	н
276	CIOH	Н	н	н	н	н	OMe
277	CIOH	н	Н	CF3	н	н	н
278	CIOH	н	н	н	н	CF3	н .
279	CIOH	н	Н	н	н	н	CF3
280	CIOH	н	н	ОН	н	н	н
281	CIOH	Н	н	н	н	ОН	н
282	CIOH	н	Н.	H	н	н	ОН
283	CIOH	Н	н	OCF3	н	н	н
284	CIOH	Н	Н	. н	н	OCF3	н
285	CIOH	н	Н	Н	н	н	OCF3
286	CIOH	н	н	NO2	Н	н	н

287	CIOH	н	н	н	н	NO2	н
288	CIOH	н	н,	н	н	н	NO2
289	CIOH	н	н	CN	н	н	н
290	CIOH	Н	Н	н	н	CN	Ή
291	CIOH	н	н	н	н	Н	CN
292	CIOH	Н	н	Br ,	н	н	. н
293	CIOH	H.	Н	н	Br	н	Н
294	CIOH	н	н	• н	`н	Br	Н
295	CIOH	н	н	Ħ	н́	н	Br
296	CI OH	н	н	соон	н	н	Н ,
297	CI OH	н	н	н	соон	н	н
298	CI CI OH	Н	н	н	Н	соон	н

299	CIOH	н	н	Н	Н	н	соон
300	CIOH	Н	н	NHCOMe	н	н	н
301	CIOH	н	Н	н	NHCOMe	н	н
302	CIOH	н	н	н	Н	NHCOMe	H
303	CIOH	Н	н	н	н .	н	NHCOMe
304	CIOH	н	н	SO2NH2	н	н	н
305	CIOH	H :	н	н	SO2NH2	н	H
306	CIOH	н	н	н	Н	SO2NH2	н
307	CIOH	н .	H	н	H	н .	SO2NH2
308	CIOH	н	н	Me	Me	H .	н
309	CIOH	н	H	Ме	н	Ме	н
310	CIOH	н	н	н	Me	Me	н

311	CIOH	н	н	F	F	н	н
312	CIOH	н	н	F	н	F	н
313	CIOH	н	н	н	· F	F	н
314	CIOH	н	н	CI	CI	н	н
315	CIOH	н	Н.	CI	Ĥ	CI	н
316	CIOH	н	н	н	CI	CI	н
317	CIOH	н	Н	Ме	F	н	н
318	CIOH	H .	Н	Ме	CI	н	H
319	CIOH	н	. Н . :	Ме	он	н	Н,
320	CI OH	н	н	Ме	ОМе	н	н
321	CIOH	н	н	F	Ме	н	н
322	CIOH	н	н	F	CI	н	н

323	CIOH	н	н	F	он	н	н
324	CIOH	н .	н	F	OMe	н	. н
325	CIOH	н	н	CI	Ме	н	н
326	CIOH	н	н	CI	F	н	Н
327	CIOH	ΗΣ	н	CI	ОН	н	H
328	CIOH	н	н	CI	ОМе	н	Н
329	CI	н	H	н	н	н	COOMe
330	CI	н	H	н,	Н	F	н
331	CI	H	н	н	, н	н.	F,
332	CI	н	Н	н	н	Me	н
333	CI	н	Н	, Н	Н	н	Me
334	CI	Н	н	OMe	н _.	н	н

3 35	CIOH	н	н	н	н	ОМе	н
336	CIOH	н	н	н	н	н	OMe
337	CIOH	н	н	CF3	н	н	н
338	CIOH	н	, н	н .	н	CF3	н
339	СІОН	н	н	н	н	н	CF3
340	CI	н	н	он	H .	н	н
341	СІ	: н	н	н	н	ОН .	н
342	CI	н	н	н	н	. н	ОН
343	CI	Н	н	OCF3	н	н	н
344	CI	н	н	н	H	OCF3	н
345	CI	î H	Н	н	н	н	OCF3
346	CI	н	н	NO2	н	Н	н

347	CIOH	Н	н	Н	, Н	NO2	·H
348	CIOH	н	н	н	н	Н	NO2
349	CIOH	н	н	CN	н	н	Н
350	СІ	н	н	н	н	CN ·	H
351	CIOH	н	н	н	H.	н	CN
352	CIOH	н .	H	Br	н	н	н
353	CIOH	, н	н	н	Br	Н	н
354	СІ	н	н	 Н	н	Br	н
355	CIOH	н	н	н	н、	н	Br
356	СІОН	н	, Н	соон	н	н	н
357	СІОН	н	Н	H	соон	н	н
358	СІОН	Н	н	н	н	СООН	н

359	CIOH	н	н	н	н	н	соон
360	СІОН	н	н	NHCOMe	н	н	н
361	CI OH	н	Н	Н	NHCOMe	н	н
362	CI	н	н	Н	н	NHCOMe	н
363	СІ	н	Н	н	Н	н	NHCOMe
364	CI	H	н	SO2NH2	Н	н	н
365	СІ	н	н	н	SO2NH2	н	н
366	СІ	н	н	н	н	SO2NH2	н
367	CI	, н	н	Н	Н	н	SO2NH2
368	СІ	н	н	Me	Me	Н	н .
369	СІ ОН	н	н	Me	н	Ме	н
370	СІ	н	н	н	Ме	Ме	н

371	CI OH	н	н	F	F	н	н
372	CI OH	. н	н	F	H _.	F	н
373	CIOH	н	٠н	н	F	F	н
374	СІ	н	н	CI	CI	н	н
375	CIOH	н	н	CI	н	CI	н
376	CI	н	Ħ	н	CI	CI	н
377	CI	н	. Н	Me	F	н	н
378	CI	н	н	Me	CI	н	н
379	CI	н	н	Me ·	он	н	н
380	CI	H	н	Me	OMe	Н	н
381	CI	н	н	F	Me	н	Н
382	CI	н	н	F	CI	н	Н

383	CI OH	н	н	F	он	н	Н
384	CIOH	. н	Н	F [°]	ОМе	Н	H
385	CI	н	н	CI	Me	н	H
386	CIOH	. н	н	CI	F	н	н .
387	CIOH	. H	н	CI	он	н	н
388	CIOH	н	Н	CI	ОМе	н .	н
389		н	н	н	Ή	н	COOMe
390	Q	H	н	H	H	F	Н
391		н	Н1	. Н	н	н.	F
392	Q.	Н .	н	н	н	Me	H .
393	Q	н	н́	н	H	н	Me
394		н	н	OMe	· H	н	н

395	Q	Н	н	Н	н	ОМе	н
396	Q.	н	Н	н	н	Н	OMe
397		н	н	CF3	н	н	н
398		н	н	н	н	CF3	н .
399		н	н	H	н	Н	CF3
400		н	H.	ОН	H	H	н
401		. н	н	Н	Н	ОН	н
402		н	H	н	H	н	он
403		н	н	OCF3	н	H	н ;
404		н	Н	Н	н	OCF3	н
405		Н	H	н	Н	Н	OCF3
406		H	Н	NO2	н	н	н

407		Q.,		Н	Н	н	Н	NO2	н
408		Q		н	н ·	н	н	H	NO2
409				н	. и Н	CN	н	.	H
410	•			н	н	н	н	CN	н
411			•	н	, н	Н	Н	Н	CN
412				н	н	Br	н	н	H ´
413				н	н	н	Br	н	н
414				н	н	н	Н	Br	н
415				н	Н.	H	н	H	Br
416				H ,	H	соон	н	H	н
417			-	Н	H .	н	соон	н	н
418				н	н	н	`н	СООН	н

419		н	н	н	, н	н	соон
, 420		н	н	NHCOMe	э _. Н	н	н
421		н	н	н	NHCOMe	ь Н	н
422		н	н	н	н.	NHCOMe	e H
423	Q.	Н	н	н	н -	н	NHCOMe
424		н	H	SO2NH2	н	H	H
425		н .	н	н	SO2NH2	.Н.	н
426		н	н	н	н	SO2NH2	н
427		н	н	Н	н	H	SO2NH2
428		н	Н	Me	Ме		н
429		Н	н	Ме	н	Me	. н
430		Н	н	Н	Ме	Ме	н

431	н	Н .	F	F .	н	н
432	н	H	F	н	F	н
433	н	н	н	F	F	н
434	H .	н	CI	CI	н	н
435	н	н	CI	н	CI	Ħ
436	н	н	н	CI	CI	Н
437	H	н .	Ме	F	н	, н
438	H	н	Me	CI -	н	н
439	н	н	Ме	- ОН	Ĥ	н
440	н	н	Me	ОМе	н	н
441	н	H _.	F	Me	н	н
442	н .	н	F	CI	н	н

443		н	H	F	ОН	н	н
444		н	н	F	OMe	н	н
445		н	н	CI	Ме	·H	н
446		Ή	н	CI	F	н	н
447		н	н	CI	ОН	н	H
448		н	н	CI	ОМе	н	н
449	Вг	н	н	CI	н	н	н
450	Вг	н	н	н	ОМе	н	н
451	Br	н .	н	н	COOMe	н	н
452	Вг	н	н	н	н	CI	н
453	Вг	. н	. Н	H	н	COOMe	н
454	Br	н	Н	н	н	н	CI

455	Вг	н	н	н	OCF3	н	н
456	Вг	н	н	COOMe	н	н	н
457	Вг	н	н	н	CF3	н	н .
458	Вг	н	н	н	Ме	H	н
459	Вг	н	н	н	F	н	Н
460	Вг	н	н	Н	он	Н	н
461	Вг	н	н	н	NO2	H	н
462	Вг	н	н	н	F	F	H '
463	Br	н	н	, F	н	н	H
464	Вг	н	н	Me .	Н	н	н
465	Вг	н	н	н	CN	Н	н
466	MeN	н	н	CI	н	н	н

467	MeN		H	H	н	OMe	н	н
468	MeN		H	Н	н	COOMe	н	н
469	MeN	. .	н	Н	н	н	CI	н
470 _.	MeN		н	н .	н	н	COOMe	н
471	MeN			Н	н	н	н	CI
472	MeN		н	н	н	OCF3	Н	н
473	MeN		н	H	COOMe	н	н .	н
474	MeN		н	н	н	CF3	н	н
475	MeN		н	н	н	Ме	н	H
476	MeN	.	н	н	н -	F	н	н
477	MeN.		н	н	н	ОН	н	н
478	Men.		н	н	н	NO2	н	н

479	MeN	н	н	н	F	F	н
480 .	MeN	н	Н	F	н	н	, Н
481	MeN	н	Н	Ме	н	н	н
482	MeN	н	Н	н	CN	н	Н
483	5	н	н	CI	Н	н	н
484	\$	н	H	н	OMe	н	н
485	\$. н	н	н	COOMe	н	н
486	\$	Н	н	H	H	CI	н
487	\$	н	н	н	Н	COOMe	н
488	s.	н	н	н	н	н	CI
489	\$	н	Н	Н	OCF3	н	н
490	\$	` н	н	COOMe	н	н	Н

491	S	н	H	н	CF3	н	н.
492	S	н	н	н	Me	н	н
493	S.	н	н	н	F	. Н	н
494	S.	н	Н	н	ОН .	H	H
495	s.	н	H	н	NO2	Н	н
496	5	Н	н	Н .	F	F -	- Н
497	S.	н	н	F	. н	н	Н
498	S.	Н	Н	Ме	н	н	Н
499	S	H	н	н	CN	н	Н
500	CIOH	н	Ме	н	Н	н	Н
501	СІ	Н	Me	Н	Н	Н	н
502		н	Ме	н	Н.	Ή	н

503		Н	Ме	н	Н	н	Н
504	F OH	н	н	н	н	н	H
505	CI	н	н	F	н	н	н
506	CI	H .	н	CI	н	н	н
507	CI	. Н	Н	Me	н	н	н
508	FOH	н	н	Et	н	н	н
509	CI F OH	н	н	ОМе	H .	H	н
510	FOH	н	н	OEt	н	н	н
511	CI	н	н	CF3	н	H .	н
512	CI	н	H	OCF3	н	н	н
513	CI	н	н :	NO2	Н	н	н
514	F OH	н	н	NH2	н	н	н

515	CI	н	н	ОН	H .	н	н
516	F OH	н	н	CN	н	н	Н
517	F OH	Н	H	COMe	H .	Н	н
518	CI	н	H 	COOMe	н	н	н
519	CI	н	н	н	F	н	Н
520	F OH	н	н	Н	CI	н	Н
521	CI F OH	н	н	Н	Ме	н	. н
522	CI	· н	Н	H .	Et	Н	н
523	CI OH	н	н	н	OMe	н	н
524	CI F OH	Н	н	н	OEt	н	н
525	CI CI OH	н	н	Н	CF3	н	н
526	F OH	Н	Н	Н	OCF3	н	н

527	СІ ОН	н	н	н	NO2	н	Н
528	CI OH	, Н	н	н	NH2	н	Н
529	CI	н	н	н	он	н	н
530	CI	н .	Н	Н	CN	н	н
531	F OH	н	Н	Н	COMe .	н	н
532	СІ	н	Н	н	COOMe	н	н
533	CI	н	н	F	F	H	Н
534	F OH	н	Н	F	CI	Н	. н
535	CI	, н	H	F	Me	н	н
536	CI	н	н	F	Et	н	н
537	FOH	н	н	· F	OMe	н	н
538	CI	Н	, н	F	OEt	н	H

539		FOH	н	Н	F	CF3	н	н
540		F OH	н	• Н	F	OCF3	H	H
541		CI OH	н .	н	Cl	Ė	н	н
542		F OH	н	H [.]	CI	CI	Н	н
543		F OH	, н	H	CI	Ме	Н	н
544		FOH	н	н	CI	Et	н	H
545		F OH	н	Н	CI	ОМе	H .	н
546		CI	. Н	н	CI	OEt	н	· H
547		F OH	н	н	CI	· CF3	н	н
548	-	CI	н	Н	CI	OCF3	н	н
549		F OH	н	Н	Ме	F	н	н
550		CI OH	Н	Н	Me	CI	Н	н

551		F OH	Н	н	Ме	Me .	н	Н
552		F OH	н	Н	Me	Et	н	н
553		CI OH	н	н	Me _.	OMe	н	н
554		CI	н,	н	Me	OEt	н	н
555		FOH	H	Н	Me	CF3	н	н
556		FOH	н	н	Ме	OCF3	н	н
557		FOH	н	н	OMe	F	н	н
558	·	F OH:	н	H	OMe	CI	н	н
559		CI	Н	н	ОМе	Ме	H	Н
5 60		СІ	Н	н	OMe	Et	н	Н
561		CI OH	н	н	ОМе	OMe	н	Н
562		FOH	н	H	ОМе	OEt .	н	н

563

CI

H

H

OMe

CF3

H

H

564

Table 5

Compound No. 5—	R1-(CH2)p	R2	R3	R6	R7
1	CIOH	Н	н	н	н
2 .	CI	H	Н	н	н
3	CI	Н	н	н	н _.
. 4	Q	. н	н	H	н '
5		, , H	н	Н	н
6	CI	H	H	н	н
7	CI	Н	н	н	н
8	CI	Н	Н	н	н
9.		H	н	н,	н
10	MeO	н	н	н	н
11	Q	H	Н	Н	н

12	CI OH	н	н	н	н
13	Br	. н	н	н	н
14	Br	н	н	Н	н
15	Br	н	H	н	н
16	Br	. н	. H	H	н
17	F _{CI}	н	н	H .	н
18	MeN	н	Н	н	Н
19	S	Н	н	н	н
20	MeO	Н	H	H .	н
21	O ₂ N	н	Н	н	н
22	MeO	н	н	н	н
23		Н	н	н.	н

24	Q.,	Н	н	Н	Н
25		н	н	н	н
26	BrOH	Н	н	. н	н
27	NC OH	Н	- Н	н	н
28 .	CI OH	н	н	H:	Н
29	CF ₃ OH	н	н .	н	н
30	CIOH	,	н	н	н
31		н	н	н ,	н
32	F	H	н .	н	н
33	Br	н	н	н .	H
34	F ₃ C	Н	н	Н	н
35	но	н .	н	н	н

36	NC C	н	н	н	н
37	O ₂	н	н	н	н
38	MeCC	, H	н	н .	н
39	, N	Н	н	Ħ,	н
40	MeO	н	н	H .	н
41		н	н	н	н
42	~°C.	H .	H .	н	н
43	Y°C	н .	н	H	н .
44		н	н	. н	 н
45		н	н	н	Н
46	O°Q.	н	н	н	н
47		н	н	н .	Н

48		н	н	H,	н	
49		н	н	н	н	
50		н	Н	H .	H	
51		н	Н	н .	н	
52	CN	н .	н	н	н	
53	. CI	Н	. н	н	н	
54		Н	н ்	н	н	٠
55		н	H	н	н	
56		н	Н	н	н Н	
57	F ₃ C	н	н	н	н .	
58	CI F	H	н	н .	н .	
59	CI	н	н	н	н	

60		H	н	н	н
61	F ₃ C	Н	, H	Н	н
62	F ₃ CO.	н	н	н	н
63	MeO	н	Н	н	Н
64	O_2N	Н	н	Н	н
65	O ₂ N	Н	н	Н	н
66	F	: H	н	н	н
67	F ₃ CS	н	н	Н	, н
68	CI CI	н	н	н	н
69	F ₂ HC	H.	н	н ,	н
70	F.	н	н	H	Н
71	NO ₂	н	н	н	н

72	СООН	н	н	н	н
73	Br	н	н	н	н
74		н	н	н	н
75	F	н	н	н	Н.
76	CICI	н`.	Н	н	н
77	NC NC	H	н .	н •	н
78	но	Н	н	н	н
79	EIO	н	н	н	н
80	CI O ₂ N	н	н	н .	н
81	CI CI	н	н	н	н
82	F F	н	H	.н	H.
83	F Br	н	Н	н	н

84	F₃C F	Н	н	Н	н
85	HO CI	н	н	н	н
86	F	н	н	н	Н
87	MeO Br	Н	н .	н	н _.
88	MeOOEt	н	н	н	н
89	MeO	н	н	н	H
90	MeO	н .	Н	H	н
91	O ₂ N CI	н	н	н	H
92	MeO	·. Н	н	н	н
93		H	н	н	н
94	CI	н	н	н	н

95	O C.	н	н	н	Н
96	0.0.	H	Н	н	н
97	HO	н	Н	н	н
98	CF ₃	н	н	н	н
99 .	HO O ₂ N	H	Н	н	H
100	OMe	н	н	н	н
101	EtO OEt	н	н	н	н
102	но	н	н	н`	н
103	OMe MeO OMe	н	н	н	н
104		Н	Н	н	• н
105	OMe MeO COOH	н	н	н	н
106	CI NO ₂	н	н	н	н

107	но	н	н	н	н
108	MeO	н	н	н	H
109	EtO	н	H	н	н
110	ноос	н	н	н	Н
111	но	н	н	н	н
112	O ₂ N HO	H	H	Н	. н
113	F ₃ C	н	H .	Н	н
114	OMe NO ₂	H	н	Н	н
115		н	· H	Н	н
116	MeN	H	н	н	H
117	OMe	н	н	н .	Н
118		н	Н	н	н

119		MeN	н	н	Н	н
120		N.	Н	Н	н	н
121		OH .	H	н	н	H .
122		OAc	н .	Н	Н	н
123		ОН	н	н ,	H .	H _.
124		NH	н	н	Н	Н
125		N.	H	н .	н	H .
126	•	MeN	н	н	н	н
127			Н	н	н	н
128			н .	Н	H .	н
129		OEt .	н	н	Н	н
130		HN	н	н	н	н

131	MeN	н	н	н	н
132	N Me	н	н	·H	н
133 ~	MeN	н	Н	н	н
134	MeN	н	н	н	н
135	OMe	H·	н	н ,	н
136	S	н	н	H .	н
137	N N Me	н	Н	ਜੇ	н
138	MeN	н .	н	н _.	н
139	N.	н	н	Н	н
140	Q _N	.	Н	н	н
141	MeO	н	. Н	Н	н
142	C.	н	Н	н	н

143		MeO	н	н	н	н
144	-		н	н	н	н
145		MeO	н	Н	Н	н
146		Br	н	н	н	н
147		-N-C	н	н	н	н
148			н	н´	н	н.
149		₹°.	. н	н	н	н
150			H	н	H	н
151			н	н	н	H ·
152			н	н	Н	н Н
153			H .	н	H .	н
154			н	н	н	н

155		н	н	н	н
156		н	н	н	н
_. 157	ОН	н	Н	Н	н
·158	O ₂ N OH	Н	н	н	н
159	CIOH	Н	н	. н	н
160	ОН	н	н	н	н
161	FOH	н	Н	н	н
162	ОН	Н	н	н	н
163	CI NH ₂	н	H	н	н
164	ОН	ŀН	. н	н	Н
165	NH ₂	н	Н	Н	н
166	ОН	н	н	Н	н

167	F ₃ CO OH	н	н	Н	н
168	ОМе	н	н	н	н
169	ОН	н.	Н	н	н
170	OEt	н	Н	н	н
171	СООН	Н	н	H	н
172	ОН	* H	н	н	н
173		н	н .	н	н
174	CN.	н	н	н	н
175	N.	Ĥ·	./ H	н	н
176	Cs.	н	н,	н	н
177	HN N	Н	H .	н	н
178	N. X.	н	н	н	н

179	O _N	н	н	н	н
180	CI CO	н	H .	н	н.
181	S	н	н '	н	н
182	N. C.	н	н	н	н
183	N	н	н	Н	Н ,
184	N.	н	н .	н	н
185	N.	н .	н	н	н
186	CIOH	, Н	н	н	н
187	O ₂ N OH	н	н	H .	Н
188	MeO	н .	н	н	н
189	CI	н	н	н	н
190	Br	н	н	н	Н

191	O ₂ N	н	н	н	н
192	MeO	, н	н	н	Н
193	CIOH	н	 Н	н	н
194	MeN	н	·н	н	н
195	S.	H	н	н	· н
196		н	H .	н	н
197		Н	н	н	Н
198	Вг	н	н	н	н .
199		н	н	Н	н
200		H	н	н	н
201	CIOH	н	н	CI	н
202	CIOH	н.	н	COOMe	н

203	CI OH	Н	н	OMe	Н
204	CIOH	Н	н	OCF3	н
205	CIOH	н	н	CF3	н
206	CIOH	н	н	Me	H
207	CIOH	н	н	F	Н
208	CIOH	H	н	NO2	н
209	CIOH	. Н	н	CN	н
210	CI CI OH	H	н	ОН	н
211	CI	Н	н	н	H .
212	CI	н	н	CI.	н
213	CI	Н	H	COOMe	н
214	CI	Н	н	OMe	н

215	СІ	н	, н	OCF3	н
216	СІ	H	Н	CF3	н
217	СІ	н	н	Ме	H
218	СІ	н	н	F	н
219	СІ	,н	н	NO2	н
220	СІ	, н	н	CN	н
221	CI	н	н	ОН	н
222		· н	н	н	H
223		н	. н	CI	н
224	Q	н	н	СООМе	н
225	Q	н	н	ОМе	H
226		н	н	OCF3	н

227	Q.	н	н	CF3	н
228		н	Ĥ	Ме	Н
229		H _.	н	F .	н
230		н`	н	NO2	н
231		н	H .	CN	H
232		н	н	• он	Н
233		н	н	H .	н
234		н	н	CI	н
235		н	н	СООМе	н
236		Н	н	OMe	н
237		н	н	· OCF3	н
238		H	Н	CF3	н

239		н	н	Me	_. H
240	Q	н	н	F	н
241	, Q.,.	н	H	NO2	н
242		н.	н	CN	н
243		н	. н	ОН	н
244	Br	н	н	н	H
245	Br	н	н .	CI	н
246	Br	н	н	COOMe	н
247	Br	н	н	OMe ·	н
248	Br	Н	н	OCF3	н
249	Вг	, н	н	CF3	н
250	Br	н	н	Ме	н

251		Br	н	н	F	н
252		Вг	. H	н	NO2	н
253		Вг	н	H	CN	Н
254	,	Вг	н ,	н	он	н
255		MeN	н	Н	H	Н
256		MeN	н .	н	ĊI	н
257		MeN	н	н	СООМе	Н
258		MeN	н .	н	ОМе	н
259		MeN	. H	Н	OCF3	Н
260		MeN	н	Н	CF3	н
261		MeN	H	н	Me	н
262		MeN	н	Н	F	н .

263	MeN	н	н	NO2	н
264	MeN	н	н	CN	н
265	MeN	н	н	он	н
266	S.	н	н	Н	н
267	S	н	н .	CI	Н
268	S	н	н	COOMe	Н .
269	S	н	н	OMe	Н
270	S	Ĥ	н	OCF3	H
271	S	н	н	CF3	н
272	S	н .	Н	Me	- Н
273	S	. н	н	F	•н. •
274	S	н	н	NO2	н

275 H H CN H
276 H H OH H

X = -CO-, q = 0, r = 0, Y = -N(R8)-

Table 6

lable b						
Compound No. 6—	R1-(CH2)p	R2	R3	R6	R7	R8
1	CIOH	н .	н	н .	н	Ме
2	CI	н	н	н	н	Me
3	CI	н	н	н	· н	Ме
4		Н	. н	н	н	Me
5		н	н	н	н	Me
6	CI	н	н	н	н	Me
7	CI	н	н	н	• • н	Ме
8	CI	н,	· н	н	Н	Ме
9		н	н	. н	н	Ме
10	MeO	Н	н	Н	Н	Me
11	Q	н	н	н	Н	Me

12	CIOH	Н	н	н	н	Ме
13	Вг	н.	н	н	н	Me
14	Br	н	н	Н.	Н	Me
15	Br	н	н	H	н	Ме
16	Br	н	н	Н	н	Ме
17	F _{CI}	H	н	H 7	H	. Me
18	MeN	Н	н	н	Ĥ.	Me
19	s s	Н	Н	H .	н	Me
20	MeO	н	Н	H	. н	Me
21	O ₂ N	н ,	Н	Н	н	Me
22	MeO	н	н	. н	н	Me
23		н	н	н	н .	Me

•						
24		н	н	н	н	Ме
25		н	н	н	н	Ме
26	CIOH	н .	н	н	<u>н</u>	Ме
27	NCOH	• н	н	H	н .	Me ·
28	CI OH F₃C	, н	H	Н	н	Ме
29	CF ₃ OH	H	н -	н	н	Me
30	СІ	Н	H	н	Н	Ме
31		н	H	н	H .	Ме
32	F	н	Н	н	Н	Ме
33	Br	н	Н	Н	н	Me :
34	F ₃ C	н	H .	н	н ,	Ме
35	но	н	н	н	н	· Me

36	NC .	н	н	н	н	Ме
37	O ₂	н	н	H _.	н	Me
38	MeCOC	н	н	н .	н	Ме
39	, N	н	н	н	н	Ме
40	MeO	H	н	н	Н	Ме
41		H	Н	н	н	Ме
42		Н	Н	н	н	Me
43	70	Н	н	н	H	Ме
44		н	Н	Н	H	Ме
45		н [°]	н	н	н	Ме
46	000.	н	н	н	н	Ме
47 ·		н	н	н	н	Me

48	J. T.	н	н	н	н	Me
49	S	н	н	Н	н	Me
50		н	H .	Н	н	Me
51	Q	н	н	H	Н	Me .
52	CN	H	н	H .	н	Me
53	CI	н ,	н	Н	H	Me
54		Н	н	H	н	Me
55		Н	н	н	Н	Ме
56		н	Н	н	н	Me
57	F ₃ C	H	H	н	н	Me
58	CI F	н	н	н	н	Me
59	CI	' н'	н	н	Н	Me

60	<u></u>	н	н	н	H	Ме
61	F ₃ C	н	н	н	H	Ме
62	F ₃ CO ,	н .	н	н	н	Ме
63 .	MeO	Н	н	н	н	Me
64	O_2N	н	H	н	н	Me
65	O ₂ N	H	Н	Н	н	Ме
66	F	н	н	H	н	Me
67	F ₃ CS	Ή	Н	Н	н	Me
68	CI CI	H	н	н	н	Ме
69	F ₂ HC F	н	н	н	н	Ме
70	NO ₂	н	н	н	н	Ме
71	NO ₂	н	. Н	н	н	Ме

72	COOH	Н	н	н	н	Ме
73	Br	Н	н	н	н	Ме
74		н	н	Н	н	Ме
75	F.	н	Н	н .	н	Ме
76	CICI	Н	H	н	Н	Me
77	NC .	Н	Н	н	н	Me
78	но	н	Н	н	н	Me
79	EtO	н	Н	н	Н	Ме
80	CI O ₂ N	н	н	Ĥ	Н	Me
81	CICI	н	Н	н	н	Ме
82	F F	Н	. H	н	H	Me
83	F Br	н	н	Н	н	Ме

84	F ₃ C F	н	н	н	н	Ме
85	HO	Н	н	н	н	Ме
86	F	н	н	н	н	Ме
87	MeO Br	Н.	Н	н	н	Ме
88	MeOOEt	н	Н	н	н	Ме
89 ´	MeO	н	н	н	' н	Ме
90	MeO	н	н ,	н	н	Me
91	O ₂ N CI	н	Н	н	н	Ме
92	MeO	н	Н	Н	н	Me
93		Н	Н ,	н	н	Me
94	CI	н	н	H	н .	Ме

95		н	н	н	н	Ме
- 96	0.0.	н	н	н	н	Ме
97	MeO HO	н	.н	н .	н	Ме
98	CF ₃ CI	н	н	н	H .	Me
99	HO O ₂ N	н	, н	н	н	Ме
100	OMe	Ĥ	н	н	H	Ме
101	EtO, OEt	н	н	н	Н	Me
102	HO	н	н	н	н	Me
103	OMe MeO OMe	н	н	н .	.	Me
104	F Co	н	H	н	Н,	Me
105	MeO COOH	н	н	H	н	Ме
106	CI NO ₂	н.	н	н	н _	Ме

107	НО	н	Н	н	н	Ме
108	MeO	н	н	H ,	Н	Ме
109	EtO	н	: н	H	Н	Ме
110	ноос	н	н	н	H	Ме
111	НО	Н	н	Н	н	Ме
112	O₂N HO	н	н	н	H	Me
113	F ₃ C	Н	н	н	Н	Ме
114	OMe NO ₂	н	н	H	н	Ме
115		н	Н	H	н	Ме
116	MeN	H	H _.	н	н	Ме
117	OMe	н	н	. Н	н	Ме
118	C)	н	н	Н	н	Me

119	MeN	н	н	н	н	Me
120	N	н	н	· H	н	Ме
121		, Н	н	H	н	Ме
122	ÖH OAc	н	н	н	н	Me
123	ОАС	н.	н	н	Н	Me
124	NH	Н	н	н	н	Me
125	N N	н	Н	н	H .	Me
126	MeN	н	Н	, H	н	Me
127	<u>.</u>	н	н ,	н .	н	Ме
128	Q.	н	н	н	н	Me
129		Н	н	н	н	Me
. 130	ÖEt HN	Н	н	н	н	Me

131	MeN	н	√H°	н	н	Me
132	N _N Me	н	• н	H	н	, Me
· 133	MeN	н	н	Н	Н	Ме
134	MeN	н	н	н	н	Ме
135	OMe	н	Н	н	н	Me
136	S	н	н .	Н	н .	Me
137	N N Me	н	H	H	н	Me
138	MeN	н	н	н	Н	Ме
139		н	Н	н	H	Me
140	Q _N	н	н	H	н	Me
141	MeO MeN	н	н	н	Н	Me

142	Q_{s}	н	н	_. н	н	Ме
143	MeO	н	н	н	н	Ме
144		н	н	H .	н	Ме
145	MeO	н	н	н	H	Me
146	Br	н	н	н .	н	Ме
147	, N	H .	н	н	н	Ме
. 148		H	н	H	H	Me
149	200	н	Н	н	н	Me
150		Н	н	н .	H	Ме
151		н	н	` н	н	Ме
152		Н	н	,н	н .	Me
153		н	н	H ,	н .	Ме

154		н	н	н	н	Ме
155		н	Н	Н	н	Me
156		н	H	н	н	Me
157	ОН	н	Н	н	Н	Ме
158	O ₂ N OH	н	н	H	Н	Me
159	СІ	н	Н	н ′	. Н	Ме
160	ОН	н	Н	н	н	Me
161	F OH	′ H	H	Н	н	Ме
162	ОН	H -	H	H	н	Ме
163	CI NH2	н .	н	н	н	Ме
164	ОН	н	H	н	Н	Me
165	NH ₂	` , н	н	н	н	ì Me

166	ОН	н	H	н	н	Ме
167	F ₃ CO OH	н	н	н	н	Ме
168	OMe OH	н	н	н	н	Ме
169	ОН	н	н	н	Н	Ме
170	OEt	н	н	Н	н	Me
171	СООН	н	Ĥ	н	Н.	Ме
172	ОН	н	н	н	, н	·Me
173		н .	н	н.	н	Ме
174	S.	Н	н	н	н	Me [°]
175	N N N	H	Н.	н	н	Ме
176	NH N	н	Н	H	Н	Me
177	HN.N	н	н	н	н	Ме

178	N. T.	н	н	н	н	Ме
179	O _N	н	н	н.	н	Ме
180	CI CI	н	н	н	н	Ме
181	√ _s	н	н	н	н	Me
182	NH H	н	Н	н	н	Ме
183 .	C _N	н	н	н	. Н	Ме
184	C ^N	Н	н	н	н	Ме
185	N N	н	н	н	н	Ме
186	CIOH	H	н	, Н	Н	Me
187	O ₂ N OH	н	Н	н	н	Ме
188	МеО	н	H	н	н	Me
189	CI	н	н	н	н	Me

190	Br	- н	Н	н	н	Ме
191	O ₂ N	Н	н	н	• н	Ме
192	MeO	. н	н	Н	н	Ме
193	CIOH	н	Н	Н	н	Ме
194	MeN	Н	н	н	н	Me
195	S	H	Н	• н	. н	Ме
196		н	Н	. H ·	н	Me
197	Q	Н	н	H	н	Me
198	Br	н	н	Н	Н	Me
199		·н	н	Н	H	Ме
200		н	н	н	Н	Me
201	CIOH	н	н	CI	н	Ме

202	CIOH	. н	н	COOMe	н	Ме
203	СІОН	н	н	OMe	н	Ме
204	CIOH	н	н	OCF3	н	Me
205	CIOH	н	н	CF3	н	Ме
206	CIOH	H	. н	Me .	н	Me ,
207	CIOH	н	· H	F	н	Me
208	CIOH	н	н	NO2	н	Me
209	CIOH	н	Н	CN	н	Me
210	CIOH	Н	н	он	H	Me
211	СІ	н	н	н	н.	Me
212	СІ	Н	н	CI	н	Me
213	СІ	н	н	COOMe	н	Ме

214	CI	н	н	ОМе	н	Ме
215	СІ	н	н	OCF3	Н	Ме
216	СІ	н	н	CF3	н	Me
217	CI	н	н	Ме	н	Me
218	CI	н	н	F.	H .	Ме
219	CI	н	. н	NO2	Н	Ме
220	СІ	н	н .	CN	н	Ме
221	CIOH	Н	н	он	H	Ме
222		н	н	н	н	Ме
223	<u>.</u>	н	н	CI	н	Me `
224		н	н	COOMe	н	Me
225		н	н	OMe	н	Me

226	н	Н	OCF3	н	Me
227	н	н	CF3	н .	Me
228	н	н	Me	н	Ме
229	H · · ·	н	F	н	Ме
230	н	н	NO2	н	Ме
231	Н	Н	CN	н	Ме
232	н	. Н	он	H	Ме
233	Н	н	н	Н	Me
234	н	н	CI	н	Ме
235	н	н	COOMe	Н	Ме
236	н	H	OMe	н	Me
237	н	н	OCF3	н	Ме

238	Q	н	н	CF3	н	Ме
239		н	н	Ме	н	Ме
240		. Н	н	F	н	Ме
241	Q	н	н	NO2	н	Me
242		н	н	CN	н	Me
243	0	н	н	он	н	Ме
244	Вг	H ,	н	н	Н	Ме
245	Вг	. н	н	CI	н	Ме
246	Вг	н	н	СООМе	н .	Ме
247	Вг	н	Н	OMe	н	· Me
248	Вг	н	H	OCF3	н	Me
249	Вг	н	н	CF3	н	Me

250	Br	н	н	Me	Н	Me
251	Br	Н	Н	F	н	Me
252	Br	Н	н	NO2	н .	Me
253	Вг	Н	н .	CN	н	Me
254	Вг	н	н -	ОН .	н ,	Ме
255	MeN	Н	н	н .	Н	Ме
256	MeN	н	н	CI	н	Ме
257	MeN	н	н	СООМе	н	Ме
258	MeN	н	H	OMe	н	Ме
259	MeN	H 	Н	OCF3	н	Ме
260	MeN	н	н	CF3	н	Me
261	MeN	н	H	Ме	н	Ме

262	MeN	<i>.</i> н	н	F	н	Me
263	MeN	н	н	NO2	н	Ме
264	MeN	н	н	CN	н	Ме
265	MeN	н	H	ОН	н .	Ме
266	S	Н	н	Н	н	Me
267	S	н	н	CI	н	Ме
268	S	н	н	COOMe	н	Ме
269	S.	н	н	OMe .	н	Ме
270	S	·н	н	OCF3	н	Ме
271	S	н	: H	CF3	н .	Ме
272	S.	н	н	Me	н	Ме
273	S	н	н	F	H	Ме

274	s	н	н	NO2	H.	· Me
275	S	н	н	CN	н	Ме
276	S	н	н	ОН	н	Me

$$X = -CO-, q = 1, r = 0, Y = -(R4)C=C(R5)-$$

Table 7

Table 7							
Compound No. 7-	R1-(CH2)p	R2	R3	R4	R5	R6	R7
1	CI		н	н	H.	Н	н
2	CI	н	Н	н	CI	н	H
3		н	н	н	н	н	н
4		н	н	н	CI	н	н
5	CI	. н	н	н	Н	н	. Н
6 .	CI	н .	, Н	н	н	н	н
7	CI.	н	Н	н	н	н	н
8		н	н	Н	Н	н	н
9	MeO	н	н	н	н	н	н
10		н	н	н	Н	н	н
11	СІ	н	Н	н	н	н	н

12	Вг	. н	н	H	н	Н	Н
13	Br	н	н	н	н	н	н
14	Br	н	Н	H .	н	H	н
15	Br	н	н	н	н	н	н
16	CIOH	Н	Ĥ,	Н	H	н	н
17	CI	Н	н	н	н	н	н
18	MeN	Н	н	н	н	н	Н
19	S	Н	н	H	н	Н	Н
20	MeO	H	н	н	Н	н	H
21	O ₂ N	Н	н	H	H	н	
22	Meo	Н	н	н		н	Н
23		н	н	н	н	н	н

24		н _.	н .	н	н	н	н
25		н	н	н	н	н	Ħ,
26	CI OH	н	н	н	H	н	н
27	NC OH	н	н	H	н	н	н
28	F ₃ C OH	н	н ·	H	н	н	н
29	CF ₃ OH	ıН	н	H	н	н	. н
30	СІОН	н	н	H `	н	н	H
31		н	н	н	Н	н	. н
32	F	н	 H ·	H.	Н	н	Н
33	Br	н	н	н .	н	Н	н
34	F ₃ C	н.	_, H	н	н	H	Н
35	но	н	н	н		н	н

36	NC	н	н'	Н	н	н	н
37	O ₂	Н	н	н	Н .	н .	Н
38	MeCOC	н	н	Н	н	н	н
39	-N	н ,	н	Н	н	н	.H
40	MeO	н	н	н	, н	н	Н
41		н	Н	н	н	• н	Н
42	~°C.	н	Н	н	Н	Н	н
43	Y° ()	н	н	н	н	н	Н
44		н	Н	н	H	Н .	н
45		Н	н	н	н	H	Н
46	O°C.	H .	н	н	Н	Н	H
47		н	н	Н	н	н	н

48	o H	H	· н	Н	н	н	н
49	J.	н.	н	н	н	н	н
50		Н	• Н	н	Н	н	н
51		Н	н	н	H	н	Н
52	CN	н	Н	H	Н	н	н
53	CI .	н	H	н	н	н	н
54		н	Н	н	н	н	н
55		H ,	н	н	н	н	н
56		н	H	н	, н	н	н
57	F ₃ C	Н	Н	Н	н	н	н
58	CIF	н	н	н	н	н	н
59	CI	т. Н	H	н	н	н	н

60		н	н	н	н	Н	н
61	F ₃ C	н	н	н	Н	́ н	н
62	F ₃ CO	н	н	н	Н	н	н
63	MeO	н	н	н,	Н	н	н
64	O_2N	н	н	н	н	н	н
65	O ₂ N	Н	н	H	H	н .	н .
66	F	н	н,	н.	Н	н	H,
67	F ₃ CS	н	H	Н	Н	Н	н
68	CI CI	н	. н	Н	Н	Н	H
69	F ₂ HC F	- Н _.	н	н	н	Н	Н
70	F	н	н	H	н	н	н
71	NO ₂	н	н	н	н	н	н

72	СООН	·H .	н	н	н	н ,	н
73	Br	н	н	н	н	н	н
74		. Н	н	н	н	н	н
75	F	н	н	н	Ĥ	н	н
76	CI_CI	н	н	н	н	Н	H
77 ·	NC .	н	н	• н	Н	н	Н
78	но	Н	Н	н	н	н	н
79	EtO	н	н	Н	н	H	н
. 80	CI O ₂ N	н	Н	н	н	н	· н
81	CICI	н	н	н	н	н	н
82	F	н	н	н	н	_. н	н
83	F Br	н	н	н	н	н	н

84		F ₃ C F	н	н	н	н	н	н
85		HO	Н	н	н	н	н	н
86	·	F	H	н	н	н	н	н
87		MeO Br	н	н	H	н	H	н
8 8		MeOOEt	Ĥ	н	н	н	н	н
89		MeO	н	H.	н	H	н	н
90		MeO	н	н	н	. н	н	н
91		O ₂ N CI	. н	н	H	н	н	н
92		MeO	н	н	н	н	н	н
93	·		Н	н	н	н	H	н

	CI						
94		н	н	н	Н	н	н
95		Н	Н	Н	н	Н	н
96	O _o O.	н	н	н	н	н	н
97	MeO	н	H 、	н	н	н	н
98	CF ₃ CI	н	н	H -	н	н	н .
99	HO O ₂ N	н	н	H	н	н	н
100	OMe	н	н.	н	н	н	H:
101	EtO OEt	н .	н	н	н	н	н
102	но	Н	н	н	н	H,	H
103	OMe MeO OMe	Н	н	н	H	н	н
104	Co.	Н	н	н	н	н	н

105	MeO COOH	н	н	н	н	н	н
106	CI NO ₂	н	н	н	н	н	н
107	но	н	н	н	н	`н -	н
108	MeO	н	H	н	н	H	н
109	EtO	н	н	н	H	н	н
110	ноос	Н	н	н	н	н	H
111	но	Н	н	н	н	н	н
112	O ₂ N HO	H	н	. н	н	· н	н
113	F ₃ C	Н	Н ,	н	Н	н	Н
114	OMe NO ₂	н	н	н,	Н	н	н
115		Н	н	н	н	н	н
116	MeN	н	н	н	н	Н	н

117	OMe	н	H	н	Н	н	н
118		н	н	н	н	.H	н
119	MeN	н	H	H	н ,	Н	н
120	N.	н	н	н	н	H	Н
121	ОН	н	Н	н	Н	H	H
122	OAc .	H	н	Н	Н	Н	н
123	ОН	н	н	Н	Н	- н	н
124	NH	H .	н	н	н	н	н
125	N. C.	Н	Н	Н	н	н	н
126	MeN	н	, н	н	· н	H	Н
127		н 、	Н	н	H	H	н
128		н	н	н	н	н	н

129	OEt .		H ·	н	н	н	н
130	HN	н	Н	н	·H	н	н
131	MeN	. н	Н	н	н	н	н
132	N _{Me}	н	Н	Н	н	н	н
133	MeN	н	Н	н .	н	н	н
134	MeN	н .	Н .	н	н	H	н
135	OMe MeN	н	Н	Н	н	н	н
136	S.	н	Н	Н	н	H	н
137	N N Me	н	н	н	н	Н	Н
138	MeN	Н	н	Н	н	н .	н
139	N.	. Н	Н	н	Н .	н	н

140	Q _N	н	н	Н	Н	н	H
141	MeN	н	н	н	Н	н	Н
142	$Q_{\mathbf{s}}$	н	н	н	Н	н	н
143	MeO	н	н	н	н	н	Н
144		Н	н	H	н	н	Н
145	MeO	н	н	н	Н	· H	н
146	Br	Н	н	Н	·H	н	н
147	N. C.	н	H	н	н	н	.
148		н	н	н	н	. Н	H .
149	****	н	H	н	н	н	н
150		н	н	н,	н	Ή	Н
151		Н	н	H 1	н	H	н

152		н	Н	н	н	Н	н
153		н	н	н ,	н	н	H
154		н	н	н	н	н '	.Н.
155		н	н	н	н	н	н
156		н	н	Н	н ·	н	н
157	OH	н	н	н	н	н	H
158	O ₂ N OH	H	н	н	H	н	Н
159	СІ	н	н	н	н	н	н
160	ОН	н	н	.н	н	н	н
161	FUCH	н	н	н	н	н,	н
162	ОН	н	н	н	н	н	н
163	CI NH ₂	н	н	н	н	н	н

164	ОН	н	н	н	Н	н	н
165	NH ₂	н	н	н	н	н	H
166	ОН	н	н	н	Н	H .	н
167	F ₃ CO OH	,н	н	н	Н	н	н
168	OMe OH	н	н	н	н	н `	Н
169	ОН	ч. э н	н	н	н	н	н
170	OEt OH	н	н	н	Н	. H .	н
171	СООН	Н	н	н.	н	н	Н
172	ОН	н	H	н	н	н	H
173		H	н	∙н	н	н	н
174	√N.	н	н	н	н	н	н
175	NH NH	н	н	н	н	н	н

176	√s ^N	н	н	н	н	н	, н
177	HN.N	н	н	н	н	н	н
178	O _N	н	н	н	н	H .	н
179		н	н	н	Н	н	. н
180	CI	н	Н	Н	н	н	н
181	\sqrt{s}	Н	н	н	н	н	н
182	NH H	Н	н	н	H	н	н
183	N.	н	н	H	н	н	н
184	N	н	н	н	Н	H	Н
185	N C	н	, н	н	н	• н	, H
186	CI	.· H	н	н	CI	н	Н
187	O ₂ N OH	н	н	н	CI	н	н

188	МеО	н	н	н	CI	Н.	н
189	cı	Н	н	н	CI	н	н
190	Br	н	н	н	CI	н	н .
191	O ₂ N	н	н	н	CI	н	н
192	MeO	н	H	Н	CI	Н	н
193	CIOH	н	н	н	CI	н	н
194	MeN	н	н ,	н	CI	н	н
195	S	н	Н	н	CI	н	н
196		н	н	н	CI	н	н
197		н	н	Н	. CI	н	н
198	Вг	н _.	н	H	CI .	н	H .
199		н	н	н .	CI	н	. Н

200		н	Н	н	CI	н	Н
201	CIOH	н	н	CI	н	н	н
202	CIOH	Н	H	н	OMe	н	н
203	CIOH	н	н	н	COOMe	н	н
204	CIOH	н [н ,	Н .	н	CI	н
205	CIOH	н	н	Н	н	COOMe	н
206	CIOH	H	н	Н	Н	н	CI
207	CIOH	н	н	н	OCF3	H	н
208	CIOH	н	н	COOMe	H	н .	н
209	CIOH	н	н	н ·	CF3	н	Н
210	CI OH	н	н	н	Ме	Н	н
211	CIOH	, H	Н.	н	F	Н∵	H

212		CIOH	н	н	н	он	н	н
213		CIOH	н	н	н	NO2	н	н
214	·	CIOH	Н	н	н	F	F	н
215		CIOH	н	н	F	Н	н	н
216		CIOH	Н	н	Me	Н	H	Н
217		CIOH	Н	н	н	CN	н	н
218		CI	н.	H	CI	н .	н	н
219		CI	н	н	H	ОМе	н	н
220		СІ	н	Н.	Н	COOMe	: н	н
221		CI	н	н	н	Н	CI	н
222	4.	CI	Н .	н	. Н	Н	COOMe	н
223		CI	н	н	н	н	н	CI

224	CIOH	н	н	н	OCF3	н	н
225	CIOH	н	н	COOMe	н	н	н
226	CIOH	н	н	н	CF3	н	н
227	CIOH	н	н	н	Me	н	н ′
228	CIOH	н	н	Н.	F	н	н
229	CIOH	н	Н	н '	ОН	н	н
230	CIOH	н .	Н	. н	NO2	н	н
231	CIOH	н	Н	н	F	F	н
232	СІ	н	н	F	н	· H	н
233	CIOH	н	н	Ме	н	н	н
234	СІ	Н	Н	н	CN	н	н
235		н	н	CI	н	н	н

236		Q	н	н	н	ОМе	н	н
237			٠н	Н	н	COOMe	н	н
238	• •		н	H	н	н	CI	H·
239			н	H	н	н	COOMe	н
240			Н	Н	н	н	H .	CI
241	• .		н	н	н	OCF3	н	н
242		Q	н	н	COOMe	н .	н .	н
243			н	H	н	CF3	"Н	Н
244		Q	Н	н	н	Ме	н	н
245		Q	·H	н	н .	F	н	Н
246			Н	н	н	он	н	H
247			н	н	н	NO2	Ĥ	н

248	н	н	н.	F	F	н
249	н	н	F	н	н	H
250	н	н	Me	н	н	н
251	н	н	H .	CN	н .	Н
252	н	н	CI	н	н	н
253	н	H	н	OMe	н	H
254	н	н	н	COOMe	н .	н
255	н	н	н	Н	CI ·	н
256	н	н	н	н	COOMe	н
257	н	н ,	Н	н	н .	CI
258	н	н	Н	OCF3	н	н
259	н	н .	COOMe	н	н	н

260	Q	н	н	н	CF3	н	н
261	Q	HĨ	н	. н	Ме	н	н
262		н	H	н	F	Н	н
263	Q	н	н	H	он	μ	н
264		н	н	H	NO2	H :	н
265		H _.	н .	н -	F	F	. н
266	Q	н	Н	F	н	Н	н
267	Q	, н	Н	Me	H	н	Н
268	Q	н	н	н	CN	H·	н
269	CIOH	н	н		н	Н	COOMe
270	CIOH	н	н	Н	н	F	н
271	CI OH	н	н	, н	н	-н	F

272		CIOH	H .	н	Н	н	Me	H
273	·	CIOH	н	н	Н	н	Н	Me
274		CIOH	н	н	OMe	Н	н :	, H
275		CIOH	н	н	Н	н	OMe	н
276		CIOH	Н .	Н	Н	H j	н	OMe
277		CIOH	н	Н	CF3	H	н	H
278	•	CIOH	Н	н	H	Н	CF3	Н
279		CIOH	н	Н	Н	н	н -	CF3
280		CIOH	Н	н	ОН	н	Н	н
281		CIOH	. н	н	Н	н	ОН	н
282		CIOH	Н	н	н	. н	н	ОН
283		CIOH	н	н	OCF3	н	н	Н

284	CIOH	н	н	н	н	OCF3	н
285	CIOH	н	н	н	н	H	OCF3
286	CIOH	н	н	NO2	н	н	н
287	CIOH	H	н	н	н	NO2	н
288 ⁻	CIOH	н	н	н	н	н	NO2
289	CIOH	н	н	CN	H .	н	Н
290	CIOH	н	н	H	н	CN	H
291	CIOH	·. н	н	Ή	Н	н	CN
292	CIOH	. н	н	Br	н	н .	н
293	CIOH	н	н	H	Br	H	H
294	CIOH	н	н	Н	н	Br	Н
295	CIOH	. н	H ·	н	н	н	Br

296	CIOH	н	н	соон	н	н	н
297	CIOH	Н	н	н	соон	н	н
298	CIOH	Н	н	н	н	соон	н
299	CIOH	н	Н	н	н	н	соон
300	CIOH	н	н	NHCOMe	н	н ·	He
301	CIOH	Н	н	н	NHCOMe	. H	, H
302	CIOH	н	н	н	Н	NHCOMe	н
303	CIOH	н	Н	н	н	н .	NHCOMe
304	CI OH	н	H	SO2NH2	H	н	н
305	CIOH	H	н	Н	SO2NH2	н '	н _
306	CIOH	Н	H	н	н	SO2NH2	н
307	CIOH	н	Н	н	н	Н	SO2NH2

308		CIOH	н	н	Me	Me	н	н
309		CIOH	н	H	Me	н	Me	н
310		CIOH	H	н	н	Ме	Ме	Ή
311		CIOH	Н	н	F	F	н	Н
312		CIOH	н	н	F	н	F	н
313	·	CIOH	н	н	н.	, F	F	н
314	•	CIOH	н	н	CI	Cl	н	н
315		CIOH	н	н	CI	H	CI	н
316		CIOH	н	н .	н	Cl	CI	٠Н
317		CIOH	н	н	Ме	F	н	ŀН
318		CIOH	н	н	Ме	CI	н	н
319		CIOH	н	н	Me	ОН	н	Н

320	CIOH	н	н	Ме	ОМе	н	Н
321	CIOH	н	н	F	Ме	н	. н
322	CIOH	н	н	F	CI	Н	Н
323	CIOH	н	н	F	ОН	Н	H
324	CIOH	Н	н	F	OMe	н	·Η
325	CIOH	н	н	CI	Me	H	н
326	CIOH	н	н	CI	F	н	н
327	CIOH	_, H	Н	CI	ОН	Н	.н
328	CIOH	` н	н	CI	OMe	н	н .
329	CI	H	Н	н	н	H	COOMe
330	CI	. н	н	н	, - Н	F	н
331	CI	н.	н	н	н	Н	F

332	CI	ŀ	- I	1 F	н н	Ме	н
333	CICH	ŀ	-i I	4 F	ı H	н	Ме
334	CI	, F	1 1	н ол	∕le H	н	H
335	CI	ŀ	4 I	-1 I-	н н	OMe	н
336	CI	ŀ	4 ł		н н	Н.	OMe
337	CIOH	· .	-l	, H CF	- 3 н	Н	Ĥ
338	CIOH	ŀ	- I	- H	г н	CF3	• н
339	CI	ŀ	H F	4 F	н н	Н	CF3
340	CIOH	ŀ	1 F	H O	н н	н	н
341	CIOH	H	- H	н н	і . н	он	н
342	CI	ŀ	1 1	н н	і н	н	он
343	CI OH	ŀ	1 H	1 OC	F3 H	н	н

344		CI	н	. н	н	н	OCF3	н
345		CI	н	н	н	н	н	OCF3
346		CI	н	н	NO2	н	н	н
347		CI	н	н	н	н	NO2	н
348	,	CI	• н	н	,	н	н	NO2
349		CI	:н	н	CN	Н	н	н
350		CI	н	н	н	Н	CN	н
351		CIOH	н		н	Н ,	н	CN .
352		CI	Н	Н	Br	н	н	н -
353		CI	н	н	н .	Br	Н	н
354		CI	Н	н	н	Н	Br	н
355		CI	н	н	Н	н	н	Br

356	CI	н	Н	соон	н	н	н
357	CI	H	н	н	соон	н	Н
358	CI CH	Н	н	н	н	соон	н
359	CI	н	н	н	н	H .	соон
360	CI	Н	н	NHCOMe	н	н	H
361	CI	. н	н	н	NHCOMe	н,	н
362	CI	н	н	н	н	NHCOMe	: Н
363	CI	H	н	Н	н	н	NHCOMe
364	CI	н	н	SO2NH2	н -	н	н
365	CI	. н	н	Н	SO2NH2	н	H
366	CI	H .	н	Н	н	SO2NH2	н
367	CIOH	н	н	н	н	н.	SO2NH2

368	CI	н	н	Ме	Ме	н	н
369	CI	н	н	Мe	н	Me	н
370	CI	н	н	н	Ме	Ме	Н
371	CI	н	н	F	F	н	н
372	CI	н	н	F	н	F	н
373	CIOH	Н	Н	н _.	F	F	Н
374	CI	н	н	CI	CI	н	н
375	CIOH	Н	н	CI	н	CI	н
376	CI	н	н	Н	CI	CI	Н
377	CIOH	н	н	Ме	É	н	н
378	CIOH	н	н	Ме	CI	н	н
379	CIOH	H	`н	Me	ОН	н	н

380	СІ	Н	н	Ме	ОМе	н	. н .
381	CIOH	н	н	F	Ме	н	н
382	СІ	н	н	F	.CI	н	н
383	СІ	н	. н	F	ОН	н	н
384	CIOH	н	н	F	ОМе	н ·	н
385	СІ	Н	Н	CI	Ме	н	н
386	СІ	, н	, Н	CI	F	н	н
387	СІ	н	н	CI	ОН	H .	H .
388	CI	н	н	CI	OMe	. Н	Н
389		н	н	H	н	н	COOMe
390			н	• н	н	· F	Н
391		н	H .	Н	н .	н	F

392	, н	н	н	н	Ме	H -
393	н	н	н	н	Н	Me
394	н	н	OMe	• н	Н	н
395	٠н	Н	н	н	ОМе	ң
396	н	Н	н	н <i>'</i>	H	OMe
397	н	н	CF3	н	Н	н
398	H	н	н	н	CF3	н
399	н	н	н	H	н	CF3
400	н	Н	ОН	н	н	Н
401	н	н	H	н	OH .	
402	н	н	. Н		н	ОН
403	н	н	OCF3	н	н	, н

404	Н	н	Н	н	OCF3	н
405	н	н	, H	н	н	OCF3
406	H	Н	NO2	Н	н	н
407	Н	Н	н	н	NO2	н
408	: H	Н.	н	н	H	NO2
409	н	H .	CN	н,	н	н
410	H	Н	н	н	CN	н
411	Н	Н	Н	н	н	CN
412	Н	Н	Br	Н	н .	н
413	·H	Н	н	Br	н	Н
414	н	H	н	н	Br ``	Н
415	н	н	н	Н	н	Br

416	Q.	н	н	соон	н	. н	н
417		н	н	н	соон	H	н
418		н	н	н	н	соон	н
419	Q	н	н	н	н	н	соон
420		н	н	NHCOMe	н	н .	н _.
421	Q.	н	н	н	NHCOMe	н	н
422 _.		н	H	. н	н	NHCOMe	н
423	Q.	н	Н	н	н	н	NHCOMe
424		н	Н	SO2NH2	н	Н	н
425	Q.	Н	н	н	SO2NH2	н	н
426	Q	н	н	н	н	SO2NH2	н
427	Q.	Н	н	н	Н	н	SO2NH2

428	н	. н	Ме	Me	н	н
429	н	Н	Ме	Н	Ме	- н
430	н	н	н	Me	Ме	H,
_. 431	н	н	F	F	н	н
432	н	н	F	н	F	H.
433	н	н	H	F	F	H
434	• н	н	CI	.CI	н	н
435	н	н	CI	н	CI	н .
436	н.	Н	н	CI	CI	H
437	Н	н	Ме	F	н	н
438	н	н	Ме	CI	н	н
439	н	н	Me	он	Н	н

440		Н	н	Ме	ОМе	н	Н
441 ·		н	H ·	·F	Ме	Н	H
442		н	н	F	CI	н	н
443		н	н.	F	ОН	н	н
444		н	н	F	OMe	н	н
445		н	н	CI	Ме	н	. н
446		Н	н	CI	F	н	н
447		Н	н	CI	он .	H	н
448		н	н	CI	OMe	н	н
449	Вг	H	, H	CI	Н .	н.	н
450	Вг	н	H	н	OMe	н	Н
451	Вг	Н	н	н	COOMe	н	н

452	Br	OH.	н	Н	н	н	CI	н
453	Br	ОН	H	н	Н	Н	COOMe	н
454	Br	С.	н	н	H	н	н .	CI
455	Br	ОН	н	н	н	OCF3	н	Н
456	Br	ОН	H	Н	COOMe	н	H ,	н
457	Br	ОН	н	н	н	CF3	н	н
458	Br	ОН	н	н	н .	Ме	н	н
459	Br	ОН	н	н	н .	F	н	Н
460	Br ⁻	ОН	н	н	Н	он	H	н
461	· Br	OH	н	Н	н	NO2	н	н
462	Br	OH.	н	н	н	F	F	н
463	Br´	OH	н	н	F	н	н	H

464	Br	н	. Н	Me	н	н	н
465	Br	н	н	Н	CN	н	н
466	MeN	H	н	CI	н	н	н
467	MeN	Н	н	н	OMe	н	. H
468	MeN	н	н	н	COOMe	н	·н
469	MeN	н	н	. Н	. н	CI	н
470	MeN	н	н	н	Н	COOMe	н
471	MeN	н	н	н	н	н	CI
472	MeN	н	. н	Н	OCF3	н	н
473	MeN	н	Н	COOMe	H	н	H
474	MeN	н	н	н	CF3	. н	н
475	MeN	н	Н	н	Ме	H	н

476	MeN	н	н	н	F	н	н
477	MeN	н	Н	н	ОН	Н	н
478	MeN	н	н	H	NO2	н	н
479	MeN	н	н	н	F	F	н
480	MeN	H	н	F	Н	н	н
481	MeN	н	Н	Me	H	н	. Н
482	MeN	н	н	н	CN	н	н
483	S	Н	н	CI	н	H _	н
484	S	н	н	н	OMe	н	н
485	S	H	. н	Н	COOMe	H .	н
486	S.	н	н	Н	н	CI	н
487	S	н	н	н	Н	COOMe	н

488		\$		н	н	н	н	н	CI
489		S.		Н	н	н	OCF3	н	н
490		S.		н	н	СООМе	н	н	н .
491		S		Н	н	н	CF3	н .	н
492	· .	S		н	н	. н	Ме	Н	н
493	,	S.		н	н	н	F	. Н	Н
494		S		н	Н	μ	ОН	н	н
495		S.		Н	Н	Н	ŅO2	н	Н
496	. ·	\$		н	н	н	F	F	H
497		\$	-		н	F	Н	н	н
498		S	·	Н	н	Me	H	• н	н
499		S.		Н	н	н	CN	н	H

500		CI OH ,	н -	Ме	н	н	н	Н
501		CI	н	Ме	н	н	н	Н
502			н	Me	н	Н	H .	Н _
503			н	Ме	Н	Н	Н	Н
504		CI F OH	н	н	Н	н	н	. н
505		CI	H	Н	F	H	Н	Н
506		CI OH	H	н	CI	н	н	н
507	÷	CI	Н	H	Me	Н	H .	Н,
508		CI	н	Н	Et	н	Н	. Н
509	•	CI	н	H _.	OMe	H	Н	Н
510	•	CI	н	H	OEt	н	н .	Н
511		CI	н	H	CF3	н	н	Н .

512	CI	н	н	OCF3	н	н	, н
513	FOH	н	н	NO2	н '	н	н
514	F OH	· н	H.	NH2	н	н	н
515	CI	н	H .	ОН	н	н	Н
516	F OH	н	н	CN	н	H .	н
517	CI	н	н	COMe	Н	H	H
518	F OH	н	H	COOMe	Ħ	 Н	н
∙519	FOH	Н	н	н (F	н	Н
520	СІ	H	Н	н	CI	н	Н
521	CI F OH	н	Н	Н	Me 、	н	н
522	СІ	H	Н.	н	Et	H	Н
523	FOH	н	н	н	OMe	Н	н

524		F OH	н	Н	н	OEt	н	н
525		СІ БОН	н	Н	н	CF3	н	Ή
526		CI OH	н	H _.	H .	OCF3	н	н
527		F OH	н	н	H .	NO2	н	н
528		CI OH	Н	н .	, H	NH2	н	н
529		F OH	н	н	н	он	н	H
530	•	CI	н	н	н	CN	H	H
531		CI	H	н	н	COMe	н	Н
532		F OH	. H	H	H .	СООМе	н	Н
533		CI	н .	н	F	F .	н	н
534		CI	н	, н	F	CI	Н.	н
535		F OH	н	н	F	Ме	н	н

536		CI	н	н	F	Et	, н	н
537		FOH	н	н	F	OMe	н	н
538		CI	н	н́	F	OEt	н	н
539		F OH	н	Н	F	CF3	Н	н
540		CI	н	Н	F _.	OCF3	Н	Н
541	• •	CI	н	н .	CI	F	н	Н
542		CI	• н	н 、	CI	CI	н	н
543		CI	н `	H	CI	Ме	н	н
544		CI	Н	н .	CI	Et	н	H
545		CI OH	н	н	CI	OMe	н	H
546		CI	H	Н	CI	OEt	н	н
547		FOH	Н	н	CI	CF3	н	н

548	CI F OH	н	Н	Cl	OCF3	Н	H
549	FOH	н	н	Ме	F	Н	Н
550	FOH	H	н	· Me	CI	н	н
551	FOH	, H	н	Me	Ме	Н	: н
552	FOH	Н	H	Me	Et	Н	Ĥ
553	CI F OH	Н	Н	Me 	ОМе	.: H	. Н
554	FOH	ŀН	н	Me	OEt	н	H
555	F OH	н	Н	Ме	CF3	Н	н
556	CI	н	н	Ме	OCF3	.	, н
557	CI	. Н	H	OMe	F	н	. н
558	CI	н	н	OMe	CI	н	н
559	FOH	н	н	OMe	Me	н	н

560	F OH	Н	н	ОМе	Et	н	н
561	CI	н	· н	ОМе	OMe	Н	н
562	CI	н	н	ОМе	OEt	н	н
563	CI	н	н	OMe	CF3	н	Н
564	БОН	H	н	OMe	OCF3	н	н

X = -CS-, q = 0, r = 0, Y = -(R4)C=C(R5)-

Table 8							
Compound No. 8-	R1-(CH2)p	R2	R3	R4	R5	R6	R7
1	CI CI	н	н	н	н	Н	н
2 ,	CI	н .	н	Н	CI	н	н
, 3		Н	H	H	н	Н	н
4		н	H	н	CI	н	н
5	CI	н	н.	н	н	H	H
6	CI .	н	н	, н	Н	Н	н
. 7	CI	н	н	н	н	н	н
8		Н	н	н	н	н	н
9	MeO	Н	Н	н •,	н	н	н .
. 10		н	н	н	н	н	н
11	CIOH	Н	н	Н	н	н	н

12	Br	. н	н	н	н	н	н
13	Br	н	н	'n	н	. Н	н
14	Br F.	н	"H	`- Н	н	н	н
15	Br	н	н	H	н	Н	н
16	CIOH	Н	н	н	н	н	Н
1 7	CI	Н	н	н́	Н	н	Н
18	MeN	н	Н	Н	н	Н	Н
19	S	·H	н ,	. н	н	H	н
20	МеО	Н	н	н	н	н	н
21	O ₂ N	н	н	н	н ,	н	Н
22	MeO	. н	Н	Н	н	н	Н
23		н	Н	н	Ĥ	н	н

24	Q	н	н	н	н	н	н
25		н	н	н	н	н	н
26	CIOH	н	н	н	H	н	н
27	NC OH	н	н	н	, н	н	н
28	F ₃ C OH	н	н	H	н	н	н
`29	CF ₃ OH	н	н	н	н	н	н
30	CIOH	н	н	н	н	H .	Н
31		н .	н	H	Н	Н	н .
32	F	н	н	н	H .	H	н
33	Br	н	н	н	н	. н	H
34	F ₃ C	н	н	, H	н	н .	Н .
35	но С	н	н	Н	н	н	н

	NC .			•			
36	NC C	H	н	Н	н	н	н
37	O ₂	Н .	Н	н	н	H	H
38	MeCOC	Н	H	Н	, H	H	Н
3 9	, N	Н	н	н [′]	н	н	Н
40	MeO	Н	Н	н	н	Н	H
41		Н	н	H	Н	Н	Н
42		Н	н	H	Н	. H	н
43	YOU	H	н	н	н	Н	н
44		н	н	н	н	н	н
45		. н	Н	н	н	н	н
46	O°C.	н	, н ,	н	н	. н	H `
47		н	н	н	н .	н	н

48	J. J.	H .	Н	н	н	н	н
49	J.	н	н	н	н	н	н
50		н	н	н	Н	н	н
51		н	н	н [`]	Н	н	н
52	CN	н	Н	н	н	н	н
53	CI	н	Ĥ	н	н	, Н,	, н
54		н .	н	н	н	н	н
55		н	н	Н	Н	н	н
56		Н	н	н	н	Н	н
57 ·	F ₃ C	Н	Н	н	н	н	Н
58 .	CIF	н	Н	н	н	н	н
59	CI	н	н	Н	н	н	н

60		Н .	н	н	н.	H	н
61	F ₃ C	н	н	н	н	. н	Н
62	F ₃ CO	н	н	н	н	н	н
63	MeO	н .	н	н	н	н	H
64	O ₂ N F	н	н	Н	н	н	н
65	O ₂ N	н	н	н	٠Н	н	Н
66	F	н	н	Н	H	н	н .
67	F ₃ CS	н	Н	н	H	H /	н
68	CI	н	н	н	н	н	н
69	F ₂ HC F	Н	н	н .	н .	Н	н
70	ÇF	н	 Н ,	Н	н	н	н
71	NO ₂	н .	н	н	н	н	н

72	СООН	н	Н	Н	н	н	н
73	Br OEt	н	н	н	Н	н	H
74		н	н	н	н	н	H .
75	F .	Ĥ	н	Н	Н	н	н
76	CICI	н	Ή	Н	н	Н	 Н
77	NC .	н	Н	H .	H	н	н
78	но	н	H	Н	н	Н	H
79	EtO	н	н	н	н	н	Н
80	CI O ₂ N	Н.	н	н	н	н	H
81	CICI	н	н	H	н	H .	н
82	CI CI	н	н	н	н	н	н
83 .	F Br	н	н	н ,	н	н	н

84	F ₃ C F	Н	н	н	H	н	н
85	HO	н	н	н	Н	н	н
86	F F	н	Н	н	H .	Н	н
87	MeO Br	н	н	н	н	н	н
88	MeOOEt	Н	н	н	н	H	н
89	MeO	н	н	н	н	н	н
90	MeO	Н	н	н	н	н	. н
91	O ₂ N CI	H .	н.	н	н .	H	н
92	MeO	н	н	н	н	H .	н
93		н .	н	н. н.	н	н	H

94		н	н	н .	Н	H	Н
95		н	н	H	н	Н	н
96	Q_0Q_{\cdot}	н	н	н	н	н	н
97	MeO	н	н	н	н	н	: H
98	CF ₃	· H	н	H	H _.	н	н
99	HO O ₂ N	н	н	H .	Н	H	н
100	OMe	`н -	Н	H	н	н	н
101	EtO OEt	Н	н	H	н	н	н .
102	но	н	H .	н	н	н	н
103	OMe MeO OMe	н	н	н	н	н	н
104	O.C.	н .	н	н	н	_н,	Н

105	OMe COOH	н	н	н	н	н	Н
106 :	CI NO ₂	н	н	н	н	H	н
107	НО	н	н	H _.	Н	Н	н
108	MeO	н	н .	; H	Н	н	н
109	EtO	н	н	н	н	H	н
110	ноос	н.	н ,	н	H	H	н .
111	но	Н	н	н	н	н	н
112	O ₂ N HO	н	Н	н	Н	н .	н
113	F ₃ C	H	н	Н	н	н	н
114	OMe NO ₂	н	Н	Н	Н	н	н
115		Н	H	н	н	н	н
116	MeN	н	H	н	Н	н	Н

117		OMe	н	н	н	н	Н	Н
118		Q	н	н	н	н	н	н
119		MeN	Н	н	н	н	H	н
120		N	н	н	н	н .	H.	Н
121	•	OH .	н	Н	Н	н	Н	H .
122		OAc	н	Н	Н	н .	н	н
123		ОН	н	Н.	H .	н	Н	н
124		NH	Н	H ·	. н	Н	Н	H
125		N. J.	н	Н	H	H	н	н
126		MeN	н	н .	н	н	н	н
127			н	н	н	н	н	н
128		.	н	н.	н	н	н	н

129		OEt	H	н	н	. Н	Н	н
130		HN	н	н	н	Н .	н	н
131		MeN	н	н	н	н	н	H,
132		N _{Me}	Н	н .	н	н	н	н
133		MeN	н	н	н	н	Н	н
134	•	MeN	н	Н -	Н	Н	н	н ·
135		OMe	Н	н	Ή	, H	н	н
136		S	н	н	Н	н	Н	н
137		N Me	H	Н	H	Н	Н	н
138		MeN	н	н.	н	н	Н	H
139	,	N	н	H	н	н	н	н

14 <u>0</u>	Q _N	н	н	н	н	н .	н
141	MeO	н	н	Н	н	н	н
142	C.	н	H	н	н	н	. н
143	MeO	Н	н	H	Н	н	, н
144		. Н	н .	Н	н	H ,	Н
145	MeO	н	н	Н	H	Н	н
146	Br	н	н	н	н	н	н
147	N C	н .	H	н Н	н	н	н
148		н	н	Н	н	Н	' н
149	₹°00.	H .	н	н	Ĥ	H	н
150 ·		н	Н	н	н	н	н :
151		н	н	н	н	н	Н

•							
152		Н	н	н	н	н	н
153		н	н	н	Н	н	н
154		н	н	Н	н	н	н
155		. н	н	н	н	H .	н
156		н	н	н	н	н	н
157	OH	н	н	H	н	н	н
158	O ₂ N OH	н	н	H	Н	н	н
159	СІ ОН	н	н	Н	H	н	Н
160	ОН	н .	н	Н	' н'	H	н
161	FUCH	н	н	н	н	Н	н
162	ОН	н	н	н	н	н	Н
163	CI NH ₂	н	н	н	н	Н	Н

164	C) OH	н	н	н	н	н	н
165	NH ₂	н	н	н	н	н	н
166	OH	н	н	Н	н	н	н
167	F ₃ CO OH	н	Н	н	н	н	• н
168	OMe	н	Н	_. н	н	н	н
169	ОН	Ĥ	Н	н	н	н	. н
170	OEt OH	H.	н	н	н .	н	н
171	СООН	н	H	н	н	н	н
172	ОН	Н	н	Н	Н	н	н
173		н	н	н	н	Н	Н
174	CN.		Н		н		н
175	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	н	H	н	н	н	H

176	√ _S N	н	н	н	н	. н	н
177	HN. _N	н	н	н	н	н`	н
178	N. J.	H	н	н	н	н′	н
179		н	н .	н -	н	н .	Н
180	CI	Н	н ,	H .	н	н	н
181	S	н	н	н	н	н	н '
182	NH H	н ′	Н	н	н	н	н
183	₩.	н	H	Н	H,	н ,	Н
184	(N)	н	H .	Н	, н	н	н
185	N. C.	н	н	н	Н	н	н
186	CIOH	н	н	Н	CI	Н	н
187	O ₂ N OH	н	Н	н	· CI	н	, н

188	Мео	н	н	Ĥ	CI	н	. н
189	CI	н	н	н	CI	н	. Н
190	Br	н	Н	н́-	CI	 Н	н
191	O ₂ N	н	н	н	CI	н	н
192	MeO	н	н	н	CI	н	н
193	CIOH	н	н	н	CI	Н	Н
194	MeN	.⊁ H	н	н	CI	Н	Н
195	S	 Н	н	Н	CI	н	н
196		н	н	Н	CI	н	. н
197		н	н	н	· CI	Н	н
198	Вг	н	H	н	CI	н	н
199		H.	н	Н	CI	н	н

200			Н	н	н	CI	H	н
201		CIOH	н	Н	CI	н	н	н
202	÷	CIOH	н	н	н	OMe	. н	н
203		CIOH	н	н	н	COOMe	н	н
204		CIOH	н	н	н	Н	· CI	н
205		CIOH	н	н	Н	н	COOMe	н
206	,	CIOH	н	н	. · Н	н	н .	CI
207		CIOH	н	н	н	OCF3	н	н
208		CIOH	н	H.	COOMe	H	н	н
209		CIOH	н	н	, н	CF3	. H	н
⁻ 210	•.	CIOH	. н	н	н	Ме	н	Н
211		CIOH	. н	н	Н	F	н	Н

212	CIOH	. н	н	н	он	н	н
213,	CIOH	н	н	H .	NO2	н	, H
214	CIOH	н	н	н	F٠	F	Н
215	CIOH	н	н	F	н	н	Н
216	CIOH	н	Н	Me	н	H	Н
217	CIOH	н	н	н	CN ·	н .	Н
218	CIOH	н	н,	CI	. н	н .	н
219	CIOH	н	н	н	ОМе	н	н
220	CIOH	н	Н	Н.	COOMe	[.]	Н
221	CIOH	н	Н	H	н	CI	н
222	CI	 Н	H .	н	н	COOMe	н
223	CIOH	Н	н	Н	н	Н	CI

224	CI	н	Н -	н	OCF3	н	Н
225	CI OH	н	н	COOMe	н	н	н
226	СІ ОН	н	н	н	CF3	н	н
227	CI	. н	н	н	Me	Н	, н
228	CI	н	н	н -	F	Н	н
229	СІ	н	н	н	ОН	н .	Н
230	CI	н	н	Н	NO2	н	н
231	CI	н	H	н	F	F	н
232	CI OH	н	н	· F	Н	н	н
233	СІ ОН	н	Н	Ме	H	н	н
234	CIOH	н	н	н	CN	н	н
235		н	Н	CI	н	н	н

236	Q	н	н	н	OMe	Н	н
237		н	H _.	н	COOMe	н	н
238		н	Н	Н	н	CI	н
239		н	н	н	Н	COOMe	н
240		н	Н	H	н	Н	CI
241		н .	н	H	OCF3	H	н
242		н ^{\}}	Н	COOMe	н	: H	H
243		H .	Н	н	CF3	·. H	Н
244		н	Ħ	Н	Ме	н	н
245 ·		н	н	н .	F	Н	н
246		н	н	н	он	. Н	Η
247	Q	н	н	, н	NO2	н	, н

248	Q.	н	·н	н	F	F	н	
249		н	н	_F	н	н	н	
250		Н	н	Ме	н	н	н	
251		Н	н	н	CN	. н	н	
252	Q	н	н	CI	н	н	н	
253	Q	H ,	н	н	OMe	н	Н	
254		н	н	н	COOMe	Н	н	
255		н	н	н	н	CI	н	
256		н	н	н	н	COOMe ·	н .	
257		H	н	н	н	н	CI	
258	Q	н	H	н	OCF3	H	H	
259		н	н	COOMe	Н	н	н	

·

260		н	н	н	CF3	н	н
261		н	н	н	Me	н	н
· 262		н	н	н	F	н	н
263		н	H	н	ОН	н	н
264		H	Н	н	NO2	н	н
265		н	• Н	Н	F.	F	н
266		Н	Н	F	н	н	н
267		н	Н	Ме	н	н	н
268		Н	н	н	CN	H ^r	H
269	CIOH	н -	н	н	н .	H	COOMe
270	CI OH	н ·	н	н	н	F	H
271	CIOH	н	н	H	Н	н	F

272	CIOH	н	н	н	н	Me	н .
273	CIOH	н	н	н	н	н	Ме
274	CIOH	. H	Н	OMe	н	н	н
275	CIOH	н	н	H	н	OMe [:]	н
276	CIOH	H	н	н .	н	н	OMe
277	CIOH	н	·. Н	CF3	Н	н	н
278	CIOH	H	н	Н	Н	CF3	н
279	CIOH	. Н	н	н	н	H	CF3
280	CIOH	Н	н	ОН	H	н	н
281	CIOH	н	н	н .	н	OH	Н
282	CIOH	н	H	н	н	н	ОН
283	CIOH	Н	Н.	OCF3	н	Н	н

	ĊI					*	
284	СІ	н	н	Ή	н	OCF3	н
285	CIOH	н	н	н	н	H	OCF3
286	CIOH	н	н	NO2	н ,	н .	н
2.87	CIOH	н	н	• н	н	NO2	, н
288	CIOH	н	Ή	н	н	H .	NO2
289	CIOH	н	н	CN	н	H	н
290	CIOH	Н	н	н	Н	CN	н
291	CIOH	Н	н	Н	` Н	н	CN
292	CIOH	н	н.	Br	н	н	H
293	CI	Н	н	Н	Br	H	н
294	CIOH	н	н	н	н	Br	Н
295	CIOH	н	н	н	н	н	Br

296		CIOH	н	н	соон	H	. Н	н
297		CIOH	Н	н	н	соон	н	н
298		CIOH	н	н	н	н	соон	H
299		CIOH	,	н ·	н	н	Н	соон
300		CIOH	Н	н	NHCOMe	н	н	н
301		CIOH	н	H	Н	NHCOMe	н .	н
302		CIOH	Н .	н	н	, н	NHCOMe	н
303		CIOH	н	н	Н	Н	н	NHCOMe
304		CIOH	H	H ⁻	SO2NH2	н	н	H _.
305		CIOH	н	H	н	SO2NH2	Н	н
306	·	CIOH	H	н	н .	Н	SO2NH2	н
307		CIOH	Н	Н	н	н .	н	SO2NH2

			•					
308	,	CI OH	н	Н	Ме	Me	н	н
309	•	CIOH	н	н	Me	Н	Ме	Н
310		CIOH	н	н	· н	Ме	Me	н
311		CIOH	н	н	F	F	н	н
312	·	CIOH	н	н	F	Н	F	H 1
313		CI OH	н	Н	н	F	F	н
314		CIOH	н	н	CI	CĮ .	H .	н '
315	·	CIOH	н	Н	CI	н	CI	н
316		СІОН	н	н	н	CI 	CI	н
317		CIOH	н	н	Me	F	н	Н
318		CIOH	н	Н	Me	CI	н	н
319		CIOH	Н	н	Ме	он	н	н

320	CIOH	Н	н	Me	OMe	н	Н
321	CIOH	н	H .	F	Ме	н	н
322	CIOH	н	н	F	CI	н	н
323	CIOH	н	н	F	он	Н	H .
324	CIOH	Н	н	F	ОМе	н	н
325	CIOH	, H	Н	CI	Ме	Н	H
326	CIOH	н	н	CI	F	н	` н
327	CIOH	н	н	CI	он	H .	н .
328	CIOH	н	н	CI	OMe	H	H
329	СІ	н		н	`н	н	COOMe
330	СІ	н	Н	н	н	F	Н
331	СІ	Н	Н	н	н	н	F

332	CI	н	H	н	н	Ме	Н
333	CI	Н	н	н	н	н .	М́е
334	CI	Н	н	OMe	н	н	н
335	CI	Н	Н .	Н	н	OMe	н
336	CIOH	н	Н	н	н	н	OMe
337	CICH	н	н	CF3	н	н	н
338	CIOH	н	н	Н	H	CF3	н
339	CIOH	Н	. н	н	н	н	CF3
340	CIOH	н	н	. ОН	н	н	н
341	CIOH	н	н	н	Н	он	н
342	CIOH	Н	н	н	н	н	ОН
343	CIOH	н	. н	OCF3	н	н	Н

344	CIOH	н	н	н	н	OCF3	н	
345	СІ	н	н	H	н	н	OCF3	
346	СІОН	Н	Н	NO2	Н	Н	н	
347	СІОН	н	н	н	Н	NO2	н	
348	СІОН	н	Н	н	H'	н	NO2	
349	CIOH	н	н	CN	н	н	н	
350	CIOH	Н	н	н	Н	CN	н	
351	CIOH	н	H	н	н ,	Н	CN	
352	CIOH	Н	н	Br	н	. н	н	
353	СІ	н	Н	н	Br	н	н	
3 ⁵ 54	СІ	н	н	н	Н	Br	н	
355	сі	н	н	Н	н		Br	

356	CIOH	н	н,	соон	н	н	Н
357	CIOH	н	н	н	соон	н	н
358	CI	н	Н	н	н	соон	н
359	CI	н [.]	н.	н	Н		соон
360	СІ	Н	н	NHCOMe	Н	н	. н
361	СІ	. н	Ņ.	H 1	NHCOMe	н .	н
362	СІ	н	, Н	н	н	NHCOMe	e H
363	СІ	н	Н	н	н	н	NHCOMe
364	СІ	, н	н	SO2NH2	H .	Н	н
365	СІ	н	н	н	SO2NH2	Н	н
366	CI	н	н	н	н	SO2NH2	H
367	CI	. н	н	Н	н	н	SO2NH2

368	CIOH	н	н	Ме	Ме	Н	н
369	СІ	н	н	Me	н	Ме	н
370	CIOH	н	н	н	Me	Ме	н
371	CIOH	. H	н	F	F	н	н
372	CI	Н	Н	F	н	F	н
373	CI	н	н	H	F	F	н
374	CI	н	н	CI.	CI	н	H
375	СІ	н	Н	CI	н	CI '	Н
376	CI	н	Н	н	CI	CI	H
377	СІ	Н	н	Ме	F	н .	н
378	СІ	н	H :	Me	CI	н	н
379	CI	н	н	Me	ОН	н	н

380	CIOH	н	Н	Me	ОМе	н	н
381	CIOH	н	н	F	Me	н	н
382	CIOH	н	н	F	CI	н	н
383	CIOH	н	н	F	он	н	н
384	CIOH	н	н	F	OMe	H	н
385	СІ	Н.	н	CI	Me	H	н
386	CI	н	Н	CI	F	Н	Н
387	CI	н	н	CI	он .	н	н
388	CI	н	н	CI	ОМе	н	Н
389		Н	Н.	н	н	H	COOMe
390		н,	н	н	н	F	Н .
391		н	Н	H	; H	H ,	F

392	Н	н	н	н	Me	н
393	н	н	н	Н	н	Ме
394	н	. н	OMe .	н	н	н
395	H	н	Н	Н	ОМе	Н
396	н	Н	н	н	H .	ОМе
397	. Н	н	CF3	н ·	н	H
398	H .	н .	н .	н	CF3	H
399	, H	н	н	н .	н	. CF3
400	т , н	н	ОН	н	Н	Н
401	н	н	Н	н	ОН	Н.
402	• н	Н	H .	. н	н .	ОН
403	н	н	OCF3	Н	н	Н

404		Н	H	н	н	OCF3	н
405		н	Н	н	н	н	OCF3
406		Н	. Н	NO2	н	н	н
407		н	н	н	н	NO2	н
408		н	н	н	н	н	NO2
409		н	Н	CN	H	н	н
410		н	. н	н	Н	CN .	H
411		н	н	н	Н	н	CN
412		Н.	н	Br	н	Н	н
413	Q	H	н	н	Br ,	н	Н'
414		н	H	Н	Н	Br	н,
415		н	H	н	н .	н	Br

416	н	Н	соон	н	н	н
417	н	Н	н	соон	н	н
418	н.	Н	н	н	соон	Н
419	H	H.	н	н	H	соон
420	н	 Н	NHCOMe	: н	н	н
421	н	Н	н	NHCOMe	нÌ	н .
422	н	Н	н	Н	NHCOMe	н
423	н .	Н	. н.	н	н	NHCOMe
424	Н	Н	SO2NH2	н	н.	н
425	н .	н		SO2NH2	н	н
426	н	н	н	н		н
427	н	н	н	н	н	SO2NH2

428	н	н	Me	Ме	н	н
429	H	н	Ме	н	Ме	Н
430	н	H	H	Ме	Me	н
431	н	н	F	F	Н	н
432	н	н	F	Н	F	Н
433	H .	н	н .	F	F	H
434	H	н	CI	CI .	н	н
435	н	Н	CI	Н	CI	н
436	_, H	Н	H	CI	CI	н
437	н	Н	Ме	F	н	Н
438	н	Н	Me	CI	н	Н
439	Н	н	Ме	ОН	н	н

440		н	.· H	Me	ОМе	Н	Н
441		н	н	F	Ме	Н	н
442	Q	н	Н	F	CI	н	н
443		н	н	F	ОН	Н	Н
444		н Н	н .	F	OMe	H	н.
445		н	Ή	CI	Ме	. н	. н
446		Н	н	CI	, F	н -	, н
447		н .	Н	CI	ОН	н	н
448		н,	Н	CI	OMe	н	н
449	Br	н	н	CI	н	н	Н
450	Вг	,H	н	н	OMe	н	Н
451	Вг	н	н	. н	COOMe	Н	н

452	Br OH	Н	н.	н	н	CI	н
453	Вг	н	н	н	н	СООМе	Н
454	Вг	H _. .	н	Н	Н	н	CI
455	Вг	Н	н	н	OCF3	Н	н
456	Вг	· н	Н	COOMe	н	н	н
457	Вг	н	H .	н	CF3	н	н
458	Вг	Н	н	н -	Me	• н	н
4 59 [′]	Вг	н	н	н	F	H	н
460	Вг	н	н	н	ОН	H	Н
461 ·	Вг	н	Н	н	NO2	н	н
462	Вг	н	н	н	F	F	н
463	Вг	н	н	F	н	Н	н

464	Br OH	н	н	Ме	н	.	н .
465	Br	Н	н	н	CN	н	н
466	MeN	н	н	CI	н	н	н
: 467	MeN	н	н	н	ОМе	Н	н
468	MeN	н	н	н	COOMe	н	н
469	MeN	H,	н	Н	Н	CI	. н
470	MeN	н .	н _.	н	н	COOMe	н
471	MeN	н	н	н	н	H	CI
472	MeN	н	н	н	OCF3	H	H
473	MeN	н	н	 COOMe	н	н	н
474	MeN	н	н	н	CF3	н	н
475	MeN	н	Н	н	Ме	н	н

476		MeN	н	н	Н	F	Н	Н
477		MeN	н	н	н .	он	н	н
478		MeN	н	н	Н	NO2	н	н
479		MeN	н	н	н	F	F	н
480	·	MeN	Н	н	F	н	н	н
481		MeN	н .	н	Me	н	н	н
482		MeN	H	н	н	CN	H	H
483		S.	H	н	CI	н	Н	н
484		S	Н	н	. н	OMe	н	н
485		S	н	н	н	COOMe	н	н
486		S	н	н	Н	н	CI	н
487		S	' н	н	Н	Н	COOMe	н

488		S.	٠.	н	н	н	H	н	CI
489		\$		н	н	н	OCF3	н	н
490	·	S.		н	н	COOMe	н	н	н
491		S.		Н	н	H	CF3	н	н
492		\$		н	н	н	Me .	. н	н
493		s.	· .	Н	н	н	F	н	н
494	·:	S.		н	н	Н	ОН	н	н
495				н	н	н	NO2	н	Н .
496		S		Н ,	н	н	F	F .	Н
497		S.			н	F	н.	н	н
498		S.		н	Н	Ме	н	н ·	н
499	·	S		н	Н	н	CN	н	Н

500	CIOH	н	Ме	Н	Н	H	Н
501	CICH	н	Ме	· н	Н.	Н	н
502		Н	Me	H	Н	Н	Н.
503		Н	Me	Н	н	H	н
504	CI CI OH	Н	H	, н	, н	H ´	H
505	CI	н	Н	F	н	н	н
506	СІ	н	H .	Cl	н	н	н
507	СІ	, Н	н	Ме	Н	н	Н
508	CI	Н	H	Et	Н	н	н
509	СІ	н	Н	OMe	H	н	Н
510	CI OH	H .	Н	OEt	Н	н	н
511	CI FOH	н	н	CF3	н	H.	н

512	FOH	н	н	OCF3	н	н	H
513	F OH	Н	н	NO2	н.	н	н
514	F OH	Н	Н	NH2	Н	н	, H
515	CI	H	Н .	ОН	н	Н	н
516	CI	н	н	CN	н	н	н
517	CI	н	н	СОМе	Ĥ	H	Н
518	CI	H	н	COOMe	H	н	н
519	CI	Н	н	н .	F	H .	н
520	CI	Н	н	н	CI	н	H
521	CI	Ħ,	н	н	Me	H .	H
522	CI	н	H	н	Et	н	н :
523	FOH	Н	H	н	OMe	н	Н

		_						
524		СІ ОН	н	н	н	OEt	н	Н
525		F OH	н .	н	н	CF3	н	н
526	,	CI	н	н	Н	OCF3	н	н
527		СІ	н	н	н	NO2	Н	н
528		F OH	Н	Н	н	NH2	Н	н
529		F OH	н	н	н	ОН	н	н
530		CI OH	Н	Н	Н	CN	н	н
531		CI	Н	Н	Н	COMe	н	Н
532	· ·	CI	н	Н	н	COOMe	н	Н
533		CI	н	H .	F	F`	н	 Н
534		CI	Н	н	F	CI	н	. H
535		F OH	H	н	F	Me .	н	н

536	CI F OH	н	Н	F	Et	H	.н
537	F OH	н	н	F	. OMe	Н	н
538	СІ	н	н	F	OEt	н	н
539 ·	СІ	н	н	F	CF3	н	н
540	F OH	Н	H	F	OCF3	н	н
541	F OH	. Н	Н	CI	F	н	Н
542	F OH	. H	Н	CI	CI	н	н
543	F OH	H	H	CI	Me	н	н
544	F OH	н	H	CI	Et	н	н
545	CI	н	н	CI	OMe	H .	H
546	CI	н ,	. н	CI	OEt	н	Н
547	CI	. н	н	CI	CF3	H	Н

548	F OH	н	н	CI	OCF3	Н	н
549	CI OH	н	н	Me	F	н	н.
550	F OH	н	н	Ме	Cl	н	н
551	F OH	, н	н	Me	Me	н	н
552	FOH	н	н	. Ме	Et	. Н	Н
553	F OH	н	Η	Me	[·] OMe ·	н	н
554	F OH	н	H	Me	OEt	н	Н
555	FOH	н	Н	Me	CF3	Н.	н
556	F OH	н .	н	Me	OCF3	н	Н
557	СІ	н,	н	ОМе	F	н`	. н
558	СІ	н	Н	OMe	CI	н	Н
559	СІ	н	н	OMe	Ме	H	н

560	CI	н	н	OMe	Et	H	н
561	CIOH	Н	н	OMe	OMe	н	н
562	F OH	н	Н	OMe	OEt	н	н
563	CI	Н	н	ОМе	CF3	н	н
564	FOH	н	н	OMe	OCF3	н	н

The present invention also encompasses pharmaceutically acceptable acid adducts of the aforementioned piperidine compounds. As examples of suitable acids there may be mentioned inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid and carbonic acid, or organic acids such as maleic acid, citric acid, malic acid, tartaric acid, fumaric acid, methanesulfonic acid, trifluoroacetic acid and formic acid.

The invention further encompasses C_1 - C_6 alkyl adducts of cyclic amine compounds such as, for example, 1-(4-chlorobenzyl)-1-methyl-4-[{2-benzimidazolyl}aminomethyl]piperidinium iodide. As preferred examples of alkyl groups for C_1 - C_6 alkyl adducts there may be mentioned methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl, tert-pentyl, 2-methylpentyl and 1-ethylbutyl, among which methyl and ethyl are especially preferred. As preferred examples of counter anions to the ammonium cation there may be mentioned halide anions such as fluoride, chloride, bromide and iodide.

The compounds represented by formula (I) of the invention may contain optically active carbons, and therefore include racemic forms and all possible optically active forms.

When R^3 of the compound represented by formula (I) is hydrogen, the structure represented by formula (I) will be indistinguishable from the structure represented by formula (II) below, and formulas (I) and (II) will represent the same compound. When R^3 is hydrogen, therefore, the invention includes both the structures of formula (I) and formula (II).

The compounds represented by formula (I) may be produced by any of the general production processes described below.

<Production Process 1>

One equivalent of a compound represented by the following formula (III):

$$\begin{array}{c|c}
R^{3}N & X-(CH_{2})_{q} & Y \\
N & N-(CH_{2})_{r} & R^{7}
\end{array}$$
(III)

(wherein R^2 , R^3 , X, q, r, Y, R^6 and R^7 have the same definitions as in formula (I))

is treated with 0.1-10 equivalents of an alkylating reagent represented by the following formula (IV):

$$R^1$$
-(CH₂)_p-Z (IV)

(wherein R¹ and p have the same definitions as in formula (I), and Z represents a halogen, alkylsulfonyloxy or arylsulfonyloxy)

in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

The reaction of Production Process 1 may be smoothly carried out using a base containing an inorganic salt such as potassium carbonate, calcium carbonate or sodium hydrogen carbonate, an amine such as triethylamine, diisopropylethylamine or pyridine, or a polymer supporting base such as (piperidinomethyl)polystyrene,

(morpholinomethyl) polystyrene,

(diethylaminomethyl)polystyrene or poly(4-vinylpyridine).

The reaction of Production Process 1 will sometimes be accelerated by addition of an iodide such as potassium iodide or sodium iodide.

The compounds of formula (III) may be synthesized by known processes described in the relevant literature. <Production Process 2>

One equivalent of an aldehyde represented by the following formula (V):

$$R^{1}$$
-(CH₂)_{p-1}-CHO (V)

(where R^1 and p have the same respective definitions as in formula (I))

is treated with 0.1-10 equivalents of a compound represented by formula (III), in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

The reaction of Production Process 2 is generally referred to as reductive amination, and the reaction may be conducted under conditions with a catalyst containing a metal such as palladium, platinum, nickel or rhodium, a hydride complex such as aluminum lithium hydride, sodium borohydride, sodium cyanoborohydride or sodium triacetoxyborohydride, catalytic hydrogenation with borane, or electrolytic reduction.

<Production Process 3>

One equivalent of a compound represented by the following formula (VI):

$$R^{3}N \xrightarrow{X-(CH_{2})_{q}} NH_{2}$$

$$R^{1} \xrightarrow{(CH_{2})_{p}} N \xrightarrow{R^{2}} R^{2} \qquad (VI)$$

(wherein R^1 , p, R^2 , R^3 , X, q and r have the same definitions as in formula (I))

is treated with 0.1-10 equivalents of a carboxylic acid or its reactive derivative, in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

Reactive derivatives of carboxylic acids include highly reactive carboxylic acid derivatives ordinarily used in organic synthetic chemistry, such as, for example, acid halides, acid anhydrides or mixed anhydrides.

The reaction of Production Process 3 may be smoothly carried out using an appropriate amount of a dehydrating agent such as molecular sieve and a condensation agent such as dicyclohexylcarbodiimide (DCC), N-ethyl-N'-(3dimethylaminopropyl)carbodiimide (EDCI or WSC), carbodiimidazole (CDI), N-hydroxysuccinimide (HOSu), Nhydroxybenzotriazole (HOBT), benzotriazol-1yloxytris(pyrrolidino)phosphonium, hexafluorophosphate (PyBOP), 2-(1H-benzotriazol-1-yl)-1,1,3,3tetramethyluronium hexafluorophosphate (HBTU), 2-(1Hbenzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate (TBTU), 2-(5-norbornane-2,3dicarboxyimide) -1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU), O-(N-succinimidyl)-1,1,3,3tetramethyluronium tetrafluoroborate (TSTU) or bromotris(pyrrolidino)phosphonium hexafluorophosphate (PyBrop).

The reaction of Production Process 3 may be smoothly carried out using a base indicated for Production Process 1.

The compounds of formula (VI) may be synthesized by known processes described in the relevant literature. <Production Process 4>

One equivalent of a compound represented by the

following formula (VII):

$$\begin{array}{c|c} R^3N & X-(CH_2)_q \\ \hline & N & N-(CH_2)_r \end{array}$$

(wherein R^1 , p, R^2 , R^3 , X, q and r have the same definitions as in formula (I))

is treated with 0.1-10 equivalents of an amine, in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

The reaction of Production Process 4 can proceed smoothly by using appropriate amounts of the same dehydrating agents, condensation agents or bases used in Production Process 3.

The compounds of formula (VII) may be synthesized by known processes described in the relevant literature. <Production Process 5>

One equivalent of a compound represented by the following formula (VIII):

$$R^{1}$$
 (CH₂)_p N N^{2} NH (VIII)

(wherein R^1 , R^2 and p have the same definitions as in formula (I))

is treated with 0.1-10 equivalents of an acid anhydride represented by the following formula (IX):

$$O \xrightarrow{X-(CH_2)_q} O \xrightarrow{N-(CH_2)_r} (IX)$$

(wherein R^3 , q and r have the same definitions as in formula (I), and X represents CO)

in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

The reaction of Production Process 5 may be smoothly carried out using a base indicated for Production Process 1.

`The compounds of formula (VIII) and (IX) may be synthesized by known processes described in the relevant literature.

<Production Process 6>

One equivalent of a compound represented by the following formula (X):

$$R^1$$
 $(CH_2)_p$ N NHR^2 (X)

(wherein ${\mbox{R}}^1, \ {\mbox{R}}^2$ and p have the same definitions as in formula (I))

is treated with 0.1-10 equivalents of a sulfanyl or sulfinyl compound represented by the following formula (XI):

$$\begin{array}{c|c}
R^{3}N & X^{-(CH_{2})_{q}} \\
S & N^{-(CH_{2})_{r}}
\end{array}$$
(XI)

(wherein R^3 , X, q and r have the same definitions as in formula (I), and s represents 0 or 1), in the presence or in the absence of a solvent, to produce a compound represented by formula (I).

The reaction of Production Process 6 may be smoothly carried out using a base indicated for Production Process 1, or a suitable acid (hydrochloric acid, sulfuric acid, acetic acid, benzoic acid, toluenesulfonic acid, methanesulfonic acid or the like).

The compounds of formula (X) and (XI) may be synthesized by known processes described in the relevant literature.

When the compounds of each of Production Processes 1-6 contain functional groups which react with the substrates used under the respective reaction conditions or functional groups which generally can adversely affect reactions in organic synthetic chemistry, such functional groups may be protected with appropriate known protective groups, and then subjected to the reaction of the production processes and subsequently deprotected using known steps, to obtain the compounds of formula (I).

The compounds of the invention may also be produced by utilizing known reactions ordinarily employed in organic synthetic chemistry, such as alkylation, acylation or reduction, for further conversion of (one or more of) the substituents of the compounds produced by Production Processes 1-6.

In each of Production Processes 1-6, the reaction may be conducted using a halogenated carbon compound such as dichloromethane or chloroform, an aromatic hydrocarbon such as benzene or toluene, an ether such as diethyl ether or tetrahydrofuran, an ester such as ethyl acetate, an aprotic polar solvent such as dimethylformamide, dimethylsulfoxide or acetonitrile, or an alcohol such as methanol, ethanol or isopropyl alcohol.

In each of Production Processes 1-6 the reaction temperature is in the range of -78°C and +150°C, and preferably between 0°C and 100°C. Upon completion of the reaction, ordinary separation and purification procedures such as concentration, filtration, extraction, solid phase extraction, recrystallization or chromatography may be employed to isolate the piperidine derivatives represented

by formula (I). These may then be converted to pharmaceutically acceptable acid adducts or $C_1\text{-}C_6$ alkyl adducts by ordinary methods.

The compounds represented by formula (I), their pharmaceutically acceptable acid adducts or their pharmaceutically acceptable C1-C6 alkyl adducts may be used in therapeutically effective doses together with pharmaceutically acceptable carriers and/or diluents for preparation of pharmaceutical compositions, as drugs for inhibiting binding of CCR3 ligands such as eotaxins to CCR3 on target cells, as drugs with activity of inhibiting the physiological effects of binding of CCR3 ligands such as eotaxins to their target cells, and as therapeutic and/or prophylactic agents for diseases believed to be associated with CCR3. Specifically, the 4,4-piperidine derivatives represented by formula (I), their pharmaceutically acceptable acid adducts or their pharmaceutically acceptable C_1 - C_6 alkyl adducts may be administered orally or parenterally, such as intravenously, subcutaneously, intramuscularly, percutaneously or intrarectally. .

The dosage form for oral administration may be, for example, tablets, pills, granules, powder, a solution, a suspension, capsules or the like.

Tablets may be molded by an ordinary method using, for example, an excipient such as lactose, starch or microcrystalline cellulose, a binder such as carboxymethyl cellulose, methyl cellulose or polyvinylpyrrolidone and a disintegrator such as sodium alginate, sodium hydrogen carbonate or lauryl sodium sulfate.

Pills, powders or granules may also be molded by ordinary methods using the aforementioned excipients and the like. Solutions and suspensions may be formed by ordinary methods using, for example, glycerin esters such

as tricaprylin or triacetin and/or alcohols such as ethanol. Capsules may be prepared by filling capsules made of gelatin or the like with granules, powders and/or solutions.

Dosage forms for subcutaneous, intramuscular or intravenous administration include injections in the form of aqueous or non-aqueous solutions. Aqueous solutions may employ, for example, physiological saline. Non-aqueous solutions may employ, for example, propylene glycol, polyethylene glycol, olive oil or ethyl oleate, with addition of antiseptic agents and/or stabilizers or the like as necessary. Injections are sterilized by appropriate filtration through a bacteria-capturing filter or treatment with addition of a sterilizing agent.

As examples of dosage forms for percutaneous administration there may be mentioned ointments and creams, among which ointments may be formed using fats and oils such as castor oil or olive oil, or vaseline, and creams may be formed by ordinary methods using emulsifying agents such as fatty oils or diethylene glycol or sorbitan monofatty acid esters.

For intrarectal administration there may be used ordinary suppositories such as gelatin soft capsules.

The dosage of a piperidine derivative of the invention, its pharmaceutically acceptable acid adduct or its pharmaceutically acceptable $C_1\text{--}C_6$ alkyl adduct will differ depending on the type of disease, the route of administration, the age and gender of the patient and the severity of the disease, but it will normally be 1-500 mg/day per adult.

Examples

The present invention will now be explained in greater detail through the following examples. The

invention, however, is not limited to these examples. The compound numbers referred to in the examples are those assigned to the compounds listed as preferred examples in the tables. The example numbers correspond to the compound numbers of the compounds produced in those examples.

[Reference Example 1-1-1]

Synthesis of C-[1-(3,4-dichloro-benzyl)-piperidin-4-yl]methylamine

After dissolving 4-aminomethyl-piperidine (10 g) in acetonitrile (250 ml), 3,4-dichlorobenzyl chloride (5.8 g) and potassium carbonate (5 g) were added at room temperature, and the mixture was stirred at 60° C overnight. The reaction mixture was filtered, the solvent was removed under reduced pressure, and the obtained residue was purified by thin-layer silica gel chromatography (dichloromethane/methanol/triethylamine = 85/7/7) to obtain C-[1-(3,4-dichloro-benzyl)-piperidin-4-yl]-methylamine. The compound was identified by LC-MS.

Yield: 6 g (75%), Purity: 100%, Found: ESI/MS m/e 273.2.

[Reference Example 1-1-2]

Synthesis of 1-(2-amino-phenyl-3-[1-(3,4-dichloro-benzyl)
piperidin-4-ylmethyl]-thiourea

After dissolving C-[1-(3,4-dichloro-benzyl)piperidin-4-yl]-methylamine (80 mg) in acetonitrile (2 ml),
thiocarbonyldiimidazole (80 mg) and imidazole (6 mg) were
added at 0°C. The mixture was stirred at room temperature
for 2 hours and 30 minutes, and then 3-nitro-1,2phenylenediamine (66 mg) was added and the temperature was
raised to 50°C prior to stirring for 12 hours. The
reaction mixture was filtered, the solvent was removed
under reduced pressure, and the obtained residue was
purified by thin-layer silica gel chromatography
(hexane/ethyl acetate/dichloromethane/methanol =

60/25/10/5) to obtain 1-(2-amino-phenyl-3-[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-thiourea. The compound was identified by LC-MS.

Yield: 75 mg (61%), Purity: 100%, Found: ESI/MS m/e 423.1.

[Example 1-1-1]

Synthesis of (1H-benzoimidazol-2-yl)-[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amine

After adding ethanol (1 ml) to 1-(2-amino-phenyl-3-[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-thiourea (11 mg, 0.025 mmol), mercury (II) oxide red (16 mg, 0.074 mmol) and sulfur (0.3 mg, 0.0094 mmol) were added at room temperature, and the mixture was refluxed for 7 hours. The mercury was filtered with celite, and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography (hexane/dichloromethane/methanol/triethylamine = 40/25/20/10/5) to obtain (1H-benzoimidazol-2-yl)-[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amine. The compound

Yield: 8 mg (83%), Purity: 100%, Found: ESI/MS m/e 389.1. [Example 1-1-2 to Example 1-1-11]

Compound Nos. 1-1-2 to 1-1-11 were synthesized in the same manner as Reference Example 1-1-1, Reference Example 1-1-2 and Example 1-1-1, using the corresponding starting materials. The results are shown in Table 9.

Table 9

was identified by LC-MS.

Compound	Yield (mg)	Yield (%)	MW	M+1
No. 1-1-	Tierd (mg)	ileid (8)	1111	. 1111
1	8	83	389.3	389.1
2	30	68	434.3	434.2
3	13	32	403.4	403.2

4	5	. 12	423.8	423.1
5	7	16	407.3	407.1
6	13	28	457.3	457.2
7	4	9	433.3	433.2
8	23	50	458.2	458.9
9	4	10	403.4	403.1
10	13	32	419.4	419.0
11	9	[,] 21	434.3	434.1

[Reference Example 1-2-1]

Synthesis of 4-aminomethyl-piperidine-1-carboxylic acid tert-butyl ester

After dissolving 4-aminomethylpiperidine (5.00 g, 43.8 mmol) in toluene (90 mL), benzaldehyde (4.45 mL, 43.8 mmol) was added, a Dean-Stark trap was fitted, and the mixture was heated to reflux for 2 hours. mixture was cooled to room temperature, di-t-butyl dicarbonate (11.5 mL, 43.8 mmol) was added in 5 divided portions, and the mixture was stirred at room temperature for 4 hours. After concentrating the reaction mixture under reduced pressure, an aqueous potassium hydrogen sulfate solution (1.0 M, 70 mL, 70 mmol) was added in an ice bath, and the mixture was vigorously stirred for 1 hour. It was then washed with diethyl ether (30 mL \times 2 times), and 2N aqueous sodium hydroxide was added to the aqueous layer to adjust the pH to approximately 7. The aqueous solution was adjusted to a pH of approximately 7 and then washed with ethyl acetate (30 mL \times 3 times), and 2N sodium hydroxide was added to the aqueous layer to adjust the pH to approximately 12. The aqueous solution was then adjusted to a pH of approximately 12 and extracted with ethyl acetate (50 mL \times 4 times), after which the obtained organic layer was dried over anhydrous magnesium sulfate.

It was then concentrated under reduced pressure to obtain 4-aminomethyl-piperidine-1-carboxylic acid tert-butyl ester. Yield: 6.49 g (70%).

[Reference Example 1-2-2]

Synthesis of 4-[(1H-benzimidazol-2-ylamino)-methyl]piperidine-1-carboxylic acid tert-butyl ester

After dissolving 4-aminomethyl-piperidine-1carboxylic acid tert-butyl ester (3.18 g, 14.8 mmol) in acetonitrile (20 mL), a suspension of thiocarbonyldiimidazole (3.17 g, 17.8 mmol) and imidazole (302 mg, 4.45 mmol) in acetonitrile (30 mL) was added dropwise thereto in an ice bath. The temperature was raised to room temperature, the mixture was stirred for 90 minutes, o-phenylenediamine (1.93 g, 17.8 mmol) was added thereto, and the mixture was stirred at 50°C for 2 hours. Diisopropylcarbodiimide (3.4 mL, 22.2 mmol) was further added, and the mixture was stirred at 80°C for 3 hours. The mixture was cooled, concentrated under reduced pressure, and then dissolved in ethyl acetate (200 mL) and washed with water (100 mL \times 2 times) and brine (100 mL). It was then dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The concentrated residue was purified by silica gel column chromatography (dichloromethane/methanol = 19/1 → dichloromethane/methanol/triethylamine = 10/1/1) to obtain 4-[(1H-benzimidazol-2-ylamino)-methyl]-piperidine-1carboxylic acid tert-butyl ester.

[Reference Example 1-2-3]
Synthesis of (1H-benzimidazol-2-yl)-piperidin-4-ylmethyl-

Yield: 4.33 g (89%).

amine

After dissolving 4-[(1H-benzimidazol-2-ylamino)-methyl]-piperidine-1-carboxylic acid tert-butyl ester (4.33

g, 13.1 mmol) in methanol (10 mL), a 4N hydrogen chloride1,4-dioxane solution (33 mL, 131 mmol) was added in small
portions at a time in an ice bath, and the mixture was
stirred at room temperature for 3 hours. The reaction
mixture was cooled on ice, 2N aqueous sodium hydroxide was
added to adjust the pH to approximately 11. Salt was added
to the aqueous solution to saturation, and the organic
layer obtained by extraction with 1-butanol (100 mL x 3
times) was washed with saturated brine and then dried over
anhydrous sodium sulfate. The dried 1-butanol was
concentrated under reduced pressure to obtain (1Hbenzimidazol-2-yl)-piperidin-4-ylmethyl-amine.
Yield: 3.0 g (100%).

[Example 1-2-1]

Synthesis of (1H-benzimidazol-2-yl)-[1-(1-methyl-1H-indol-2-ylmethyl)-piperidin-4-ylmethyl]-amine

After adding 1-methyl-1H-indole-2-carboaldehyde (0.26 mmol) and sodium triacetoxyborohydride (0.26 mmol) to a solution of (1H-benzimidazol-2-yl)-piperidin-4-ylmethylamine (20.0 mg, 0.09 mmol) in dimethylformamide-acetic acid (10:1) (1.0 ml), the mixture was stirred at room temperature overnight. Methanol (1.0 ml) was added to the reaction mixture to suspend the reaction, and after stirring for 1 hour, the solution was passed through SCX (Bond Elute SCX500MG: cationic ion-exchange resin, Varian). The SCX was washed with methanol and then with a mixed solution of chloroform/methanol (1/1), and elution was performed with a 2N ammonia-methanol solution. The solvent was distilled off under reduced pressure to obtain (1Hbenzimidazol-2-yl)-[1-(1-methyl-1H-indol-2-ylmethyl)piperidin-4-ylmethyl]-amine. The compound was identified by LC-MS.

Yield: 18 mg (54%), Purity: 86%, Found: ESI/MS m/e

374.2(M+1).

[Example 1-2-2 to Example 1-2-169]

Compound Nos. 1-2-2 to 1-2-169 were synthesized in the same manner as Example 1-2-1, using the corresponding starting materials. The results are shown in Table 10.

[Reference Example 1-2-4]
Synthesis of 4-phenylbutylaldehyde

After adding molecular sieves MS4A (desiccant, trade name of Wako Pure Chemical Industries) (451.5 mg) to a solution of pyridinium dichromate (451.5 mg, 1.20 mmol) in dichloromethane (3.33 ml), the mixture was stirred for 1 hour. Next, 4-phenylbutanol (154 µl, 1.00 mmol) was added to the suspension and the mixture was stirred at room temperature for 1.5 hours. The reaction suspension was filtered with silica gel, and the filtrate was concentrated under reduced pressure to obtain 4-phenylbutylaldehyde. Yield: 38.45 mg (26%).

[Example 1-2-170]

Synthesis of (1H-benzimidazol-2-yl)-[1-(4-phenyl-butyl)-piperidin-4-ylmethyl]-amine

After adding acetic acid (28.6 µl) and sodium triacetoxyborohydride (52.99 mg, 0.25 mmol) to a mixed solution of (1H-benzimidazol-2-yl)-piperidin-4-ylmethyl-amine (30.32 mg, 0.10 mmol) and a mixed solution of the obtained 4-phenylbutylaldehyde (38.45 mg) in dichloroethane (1.0 ml) and dimethylformamide (0.5 ml), the mixture was stirred at room temperature overnight. The reaction suspension was passed through SCX (Bond Elute SCX500MG), and the SCX was washed with a mixed solution of chloroform-methanol (1:1). This was followed by elution with a 2N ammonia-methanol solution, and the solvent was then distilled off under reduced pressure to obtain a residue. The residue was purified by preparative HPLC to obtain (1H-

benzimidazol-2-yl)-[1-(4-phenyl-butyl)-piperidin-4-ylmethyl]-amine. The compound was identified by LC-MS. Yield: 19.44 mg (54%), Purity: 89.8%, Found: ESI/MS m/e 363.2(M+1).

[Example 1-2-171]

Compound No. 1-2-171 was synthesized in the same manner as Example 1-2-170, using an aldehyde starting material synthesized according to Reference Example 1-2-4. The results are shown in Table 10.

[Example 1-2-172]

Synthesis of (1H-benzimidazol-2-yl)-[1-(6-methoxy-1-methyl-1H-indol-3-ylmethyl)-piperidin-4-ylmethyl]-amine

After adding anhydrous acetonitrile (2 ml) to a mixture of (1H-benzimidazol-2-yl)-piperidin-4-ylmethyl-amine (20 mg, 0.09 mmol), (6-methoxy-1-methyl-1H-indol-3-ylmethyl)-trimethylammonium iodide (0.1 mmol) and anhydrous potassium carbonate (5 mg, 0.11 mmol), the mixture was stirred at 50°C for 12 hours. The mixture was cooled to room temperature and then passed through a silica gel short column and purified by preparative HPLC to obtain (1H-benzimidazol-2-yl)-[1-(6-methoxy-1-methyl-1H-indol-3-ylmethyl)-piperidin-4-ylmethyl]-amine. The compound was identified by LC-MS.

Yield: 5.66 mg (13%), Purity: 96.3%, Found: ESI/MS m/e 404.4(M+1).

[Example 1-2-173 to Example 1-2-180]

Compound Nos. 1-2-173 to 1-2-180 were synthesized according to Example 1-2-172, from the corresponding halides or quaternary ammonium halides. The results are shown in Table 10.

Table 10

Compound	Yield (mg)	Yield (%)	MW .	M+1
1	18	54	373.5	374.2
2	29	54	370.5	371.2
3 .	11	41	320.4	321.2
4	23	76	354.9	355.2
5	9	29	334.5	335.2
6	28	82	. 388.4	389.2
7	23	74	362.5	363.2
. 8	21	71	345.4	346.2
9	33	96	398.5	399.2
10.	16	. 48	378.5	379.2
11	21	68	350.5	351.2
12	16	82	326.5	327.2
13	8	40	334.5	335.2
14	19	91	348.5	349.3
15	25	78	359.5	360.2
16	18	54	373.5	374.2
17	12	42	310.4	311.2
18	21	70	326.5	327.1
19	22	62	390.6	391.2
20	14	48	321.4	322.2
21	15	53	321.4	322.2
22	15	46	371.5	372.2
23	14	41	371.5	372.2
24	17	57	327.5	328.1
25	21	· 75	310.4	311.2
26	22	79	310.4	311.2
27	24	65	414.6	415.2
28	6	17	413.6	414.2
29	23	69	374.5	375.2

30	20	70	334.5	335.6
31	15	50	345.4	346.5
32	22	63	396.5	397.2
33	21	68	350.5	351.2
34	18	58	354.9	355.3
35	. 15	43	389.3	389.4
36	21 .	68	354.9	355.3
37	16	51	365.4	366.3
38	15	45	388.4	389.4
39	15	43	399.3	399.1
40	16	.54	334.5	335.4
41	15	53	336.4	337.2
42	22	74	336.4	337.2
43	13	41	363.5	364.2
44	18	54	377.5	378.2
45	21	. 68	364.5	365.2
46	11	33	378.5	379.2
47	15	46	378.5	379.2
48	17	45	426.6	427.2
49	23	63	426.6	. 427.2
50	22	69	370.5	371.4
51	21	66	364.5	365.3
52	18	57	360.5	361.2
53	21	57	420.9	421.5
54	21	55	396.5	397.4
55	. 7	20	388.5	389.3
56	10	41	403.5	404.2
57	3	13	387.5	388.2
58	22	100	338.4	339.2
59	22	67	321.4	322.2
60	19	56	338.4	339.1
61	24	68	350.5	351.2

62	23	100	378.5	379.2
63	- 30	100	412.5	413.2
64	17	70	404.4	405.1
65	28	100	389.3	389.1
66	14	57	406.4	407.1
67	. 30	83	364.4	365.1
68	20	43	456.4	457.1
69	28	78	352.4	353.2
70	29	69	412.5	413.2
71.	33	78	426.6	427.2
72	34	86	399.3	400.1
73	28	82	345.4	346.2
74	24	54	442.6	443.2
75.	25	68	365.4	366.2
76	. 35	81	426.6	427.2
77	26	57	447.0	447.2
78	28	72	380.5	381.2
. 79	22	58	380.5	381.2
80	17	78	362.5	363.2
81	20	90	370.9	371.1
82	20	90	372.9	373.1
83	19	69	456.6	457.2
84	8	32	417.3	417.1
85	12	47	429.4	429.2
86	17	69	408.5	409.3
87	18	79	381.4	382.2
88	20	87	381.4	382.2
89	11	46	399.9	400.1
90	20	88	378.5	379.2
91	16 ·	73	364.4	365.2
92	15	58	430.5	431.3
93	16	67	400.5	401.3
	<i>-</i> ــــــــــــــــــــــــــــــــــــ		·	

94	20	81	413.6	414.3
95	12	50	400.5	401.3
96	13	52	414.6	415.3
97	19	78	408.5	409.3
98	22	62	350.5	351.5
99	10	27	380.4	381.2
100	29	80	366.5	367.1
101	3	6	456.6	457.3
102	. 13	37	352.4	353.2
103	15	40	366.5	367.2
104	15	. 56	449.4	450.2
105	15	61	410.5	411.3
106	16	69	389.3	- 389.2
. 107	11	51	356.4	357.2
108	10	39	422.9	423.2
109	10	41	406.4	407.2
110	2	- 8	392.5	393.7
111	4	15	395.5	396.3
112	6	27	359.5	360.3
113	16	47	376.5	377.3
114	19	50	420.6	421.4
115	4	11	420.6	421.4
116	14	40	401.5	402.4
117	17	54	370.9	371.2
118	14	39	415.3	417.1 (Br)
119	8	25	381.4	382.2
120	7	21	383.4	384.2
121	10	32	354.4	355.2
122	6	17	392.5	393.3
123	18	56	368.5	369.2
124	22	61	417.3	419.1 (Br)
125	26	69	429.4	429.2

126	21	67	366.5	367.3
127	27	85	443.4	445.2 (Br)
128	23	66	399.9	400.2
129	31	91	394.5	395.3
130	20	61	370.4	371.2
131	30	91	372.9	373.2
132	22	60	422.6	423.2
133	22	70	364.5	365.2
134	22	72	352.5	353.2
135	19	. 57	399.9	400.1
136	24 .	74	378.5	379.2
137	3	91	420.4	421.3
138	11	35	348.5	349.3
139	10	28	424.5	425.3
140	8	25	380.5	381.2
141	20	51	455.6	456.3
142	13	37	404.6	405.3
143 .	13	38	389.3	389.1
144	17	43	450.5	451.3
145	20	58	400.5	401.3
146	24	63	437.6	438.3
147	21	61	390.6	391.2
148	5	17	336.4	337.1
149	11	33	364.4	365.1
150	7	19	405.3	405.1
151	. 2	6	386.5	387.1
152	. 5	14	386.5	387.1
153	1	4	428.5	429.2
154	8	8	369.9	370.1
155	.6	20	365.4	366.1
156	5	16	365.4	366.1
157	6	20	338.4	366.1

158	10	12	335.5	336.1
159	11	29	420.5	421.1
160	9	23	462.3	463.1
161	17	53	364.4	365.1
162	10	26	449.8	451.0 (Br)
163	23	23	371.5	372.1
164	17	17	386.4	387.1
165	7	20	384.9	385.1
166	5 .	10	588.2	589.0
167	14	38	438.9	439.2
168	. 9	23	438.9	439.1.
169	15	46	370.9	371.1
170	19	54	362.5	363.2
171	31	82	376.5	377.3
172	6	13	403.5	404.4
173	3	8	387.5	388.3
174	6	18	387.5	388.2
175	23	70	384.5	385.2
176	9	27	384.5	385.2
177	8	22	401.6	402.3
178	5	13	387.5	388.2
179	7	20	387.5	388.4
180	2	5 .	449.6	450.5

[Reference Example 1-3-1]

Synthesis of 4-[(4-nitro-1H-benzimidazol-2-ylamino)-methyl]-piperidine-1-carboxylic acid tert-butyl ester

After dissolving 4-aminomethyl-piperidine-1-carboxylic acid tert-butyl ester (2 g) in acetonitrile (100 ml), thiocarbonyldiimidazole (2 g) and imidazole (0.2 g) were added at 0°C. The mixture was stirred at room temperature for 2 hours and 30 minutes, 3-nitro-1,2-

phenylenediamine (2.1 g) was added, the temperature was raised to 50° C, and the mixture was stirred for 12 hours. Diisopropylcarbodiimide (2.4 g) was added, the mixture was refluxed for 3 hours and 30 minutes, and then the solvent was removed under reduced pressure and the obtained residue was purified by silica gel chromatography (dichloromethane/hexane = $7/3 \rightarrow 1/0$) to obtain 4-[(4-nitro-1H-benzimidazol-2-ylamino)-methyl]-piperidine-1-carboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 3.5 g (100%), Purity: 95%, Found: ESI/MS m/e 376.4(M+1).

[Reference Example 1-3-2]
Synthesis of (4-nitro-1H-benzimidazol-2-yl)-piperidin-4ylmethyl-amine

After dissolving 4-[(4-nitro-1H-benzimidazol-2-ylamino)-methyl]-piperidine-1-carboxylic acid tert-butyl ester (13 mg) in methanol (1 ml), a 4N hydrogen chloride-1,4-dioxane solution (1 ml) was added and the mixture was stirred at 60°C for 1 hour. The solvent was distilled off under reduced pressure, aqueous sodium hydroxide and dichloromethane were added to the obtained residue, and extraction was performed with dichloromethane. The solvent was distilled off under reduced pressure to obtain (4-nitro-1H-benzimidazol-2-yl)-piperidin-4-ylmethyl-amine. The compound was identified by LC-MS.

Yield: 8 mg (83%), Purity: 100%, Found: ESI/MS m/e

[Reference Example 1-3-3]

Synthesis of (1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(4-nitro-1H-benzimidazol-2-yl)-amine

276.1(M+1).

After adding 1-naphthoaldehyde (3 mmol) and sodium triacetoxyborohydride (3 mmol) to a solution of (4-nitro-

1H-benzimidazol-2-yl)-piperidin-4-ylmethyl-amine (450 mg, 1 mmol) in dimethylformamide-acetic acid (10:1) (7 mL), the mixture was stirred at room temperature overnight. Water and dichloromethane were added, and extraction was performed with dichloromethane. The solvent was removed under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate/triethylamine = $100/0 \rightarrow 98/2$) to obtain (1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(4-nitro-1H-benzimidazol-2-yl)-amine. The compound was identified by LC-MS.

Yield: 500 mg (100%), Purity: 100%, Found: ESI/MS m/e 394.0(M+1).

[Reference Example 1-3-4]
Synthesis of 4-amino-2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-benzimidazole-1-carboxylic acid tert-butyl ester

After dissolving (1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(4-nitro-1H-benzimidazol-2-yl)-amine (500 mg) in 1,4-dioxane (15 ml), di-t-butyl dicarbonate (1 g) was added and the mixture was stirred at 50°C for 2 hours. The solvent was removed under reduced pressure, and the obtained residue was washed with hexane (5 ml x 5 times). The residue was dissolved in tetrahydrofuran (10 ml), Raney nickel (500 mg) was added, and the mixture was stirred at room temperature overnight under a hydrogen stream. The reaction mixture was filtered with celite, and then the solvent was distilled off under reduced pressure to obtain 4-amino-2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-benzimidazole-1-carboxylic acid tert-butyl ester. The compound was identified by LC-MS.
Yield: 200 mg (39%), Purity: 100%, Found: ESI/MS m/e

Yield: 200 mg (39%), Purity: 100%, Found: ESI/MS m/e 464.3(M+1).

[Example 1-3-1]

Synthesis of 3-acetylamino-N-{2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazol-4-yl}-propionamide

After dissolving 4-amino-2-[(1-naphthalen-1-ylmethylpiperidin-4-ylmethyl)-amino]-benzimidazole-1-carboxylic acid tert-butyl ester (0.02 mmol) in tetrahydrofuran (1 ml), diisopropylcarbodiimide (0.05 mmol), 1-hydroxybenzotriazole monohydrate (0.05 mmol) and 3-acetylaminopropionic acid (0.05 mmol) were added and the mixture was stirred at room temperature overnight. After adding a 4N hydrogen chloride-1,4-dioxane solution (1 ml) to the reaction mixture, it was stirred at 50°C for 1 hour, the solvent was removed under reduced pressure, and then dichloromethane and 5N aqueous sodium hydroxide were added to the obtained The organic layer was passed residue prior to stirring. through SCX (Bond Elute SCX500MG), and after washing the SCX with methanol, elution was performed with a 2N ammoniamethanol solution. The solvent was distilled off under reduced pressure to obtain 3-acetylamino-N-{2-[(1naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1Hbenzimidazol-4-yl}-propionamide. The compound was identified by LC-MS.

Yield: 0.4 mg (4%), Purity: 100%, Found: ESI/MS m/e 499.3(M+1).

[Example 1-3-2 to Example 1-3-8]

Compound Nos. 1-3-2 to 1-3-8 were synthesized in the same manner as Reference Examples 1-3-1 to 1-3-4 and Example 1-3-1, using the corresponding starting materials. The results are shown in Table 11.

[Example 1-3-9]

Synthesis of N-(2-{[1-(3,4-dichlorobenzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazol-4-yl)-butylamide

After dissolving 4-amino-2-{[1-(3,4-dichlorobenzyl)piperidin-4-ylmethyl]-amino}-benzimidazole-1-carboxylic acid tert-butyl ester (10 mg, 0.02 mmol) in tetrahydrofuran (1 ml), triethylamine (5.6 μ l, 0.04 mmol) and butyryl chloride (8.3 μ l, 0.08 mmol) were added and the mixture was stirred at room temperature for 1 hour and 30 minutes. After adding a 4N hydrogen chloride-1,4-dioxane solution (1 ml) to the reaction mixture, it was stirred at 50°C for 2 The solvent was removed under reduced pressure, hours. dichloromethane and 5N aqueous sodium hydroxide were added to the obtained residue, and after stirring, the organic layer was passed through SCX (Bond Elute SCX500MG). SCX was washed with methanol and elution was performed with a 2N ammonia-methanol solution. The solvent was distilled off under reduced pressure to obtain N-(2-{[1-(3,4dichlorobenzyl)-piperidin-4-ylmethyl]-amino}-1Hbenzimidazol-4-yl)-butylamide. The compound was identified by LC-MS.

Yield: 4.9 mg (52%), Purity: 100%, Found: ESI/MS m/e 474.0(M+1).

The 4-amino-2-{[1-(3,4-dichlorobenzyl)-piperidin-4-ylmethyl]-amino}-benzimidazole-1-carboxylic acid tert-butyl ester starting material was synthesized in the same manner as Reference Examples 1-3-1 to 1-3-4, using the corresponding starting materials.

[Example 1-3-10 to Example 1-3-56]

Compound Nos. 1-3-10 to 1-3-56 were synthesized in the same manner as Example 1-3-9, using the corresponding starting materials. The results are shown in Table 11.

[Example 1-3-57]

Synthesis of propane-1-sulfonic acid (2-{[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazol-4-yl)-amide

After dissolving 4-amino-2-{[1-(3,4-dichloro-benzyl)piperidin-4-ylmethyl]-amino}-benzimidazole-1-carboxylic acid tert-butyl ester (10 mg, 0.02 mmol) in tetrahydrofuran (1 ml), triethylamine (0.04 mmol) and propane-1-sulfonyl chloride (0.08 mmol) were added and the mixture was stirred at room temperature overnight. After adding a 4N hydrogen chloride-1,4-dioxane solution (1 ml) to the reaction mixture, it was stirred at 50°C for 1 hour. The solvent was removed under reduced pressure, dichloromethane and 5N aqueous sodium hydroxide were added to the obtained residue, and after stirring, the organic layer was passed through SCX (Bond Elute SCX500MG). The SCX was washed with methanol and elution was performed with a 2N ammoniamethanol solution. The solvent was distilled off under reduced pressure to obtain propane-1-sulfonic acid (2-{[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amino}-1Hbenzimidazol-4-yl)-amide. The compound was identified by LC-MS.

Yield: 0.8 mg (8%), Purity: 100%, Found: ESI/MS m/e 510.1(M+1).

[Example 1-3-58]

Compound No. 1-3-58 was synthesized in the same manner as Example 1-3-57, using the corresponding starting materials. The results are shown in Table 11.

[Example 1-3-59]

Synthesis of $1-(2-\{[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazol-4-yl)-3-ethyl-urea$

After dissolving 4-amino-2-{[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amino}-benzimidazole-1-carboxylic acid tert-butyl ester (10 mg, 0.02 mmol) in acetonitrile (1 ml), ethyl isocyanate (0.08 mmol) was added and the mixture was stirred at room temperature overnight. After adding a 4N hydrogen chloride-1,4-dioxane solution (1 ml) to the

reaction mixture, it was stirred at 50°C for 1 hour and then the reaction mixture was passed through SCX (Bond Elute SCX500MG). The SCX was washed with methanol and elution was performed with a 2N ammonia-methanol solution. The solvent was distilled off under reduced pressure to obtain $1-(2-\{[1-(3,4-\text{dichloro-benzyl})-\text{piperidin-4-ylmethyl}]-\text{amino}\}-1\text{H-benzimidazol-4-yl})-3-\text{ethyl-urea}$. The compound was identified by LC-MS.

Yield: 1.6 mg (17%), Purity: 96%, Found: ESI/MS m/e 475.1(M+1).

[Example 1-3-60]

Compound No. 1-3-60 was synthesized in the same manner as Example 1-3-59, using the corresponding starting materials. The results are shown in Table 11.

[Example 1-3-61]

Synthesis of N2-[1-(3,4-dichlorobenzyl)-piperidin-4-ylmethyl]-1H-benzimidazole-2,4-diamine

After dissolving 4-amino-2-{[1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-amino}-benzimidazole-1-carboxylic acid tert-butyl ester (10 mg, 0.02 mmol) in methanol (1 ml), a 4N hydrogen chloride-1,4-dioxane solution (1 ml) was added and the mixture was stirred at 50°C for 1 hour. The reaction mixture was passed through SCX (Bond Elute SCX500MG), the SCX was washed with methanol, and then elution was performed with a 2N ammonia-methanol solution. The solvent was distilled off under reduced pressure to obtain N2-[1-(3,4-dichlorobenzyl)-piperidin-4-ylmethyl]-1H-benzimidazole-2,4-diamine. The compound was identified by LC-MS.

Yield: 6.5 mg (80%), Purity: 100%, Found: ESI/MS m/e 404.1(M+1).

[Example 1-3-62]

Compound No. 1-3-62 was synthesized in the same

manner as Example 1-3-61, using the corresponding starting materials. The results are shown in Table 11.

Table 11

Compound No. 1-3-	Yield (mg)	Yield (%)	MW .	M+1
1	0.4	4	498.6	499.3
2	2	24	490.4	489.9
3	4	39	462.6	463.3
4	5	50	476.6	477.1
5	1	12	484.6	485.4
6	2	23	499.0	499.1
7	3	29	490.4	490.1
8	3	30	475.4	475.1
9	5	52	474.4	474.0
10	4	16	488.5	488.4
11	4	12	565.5	565.4
12	4	14	557.5	557.5
13	24	92	520.5	520.4
14	. 1	3	551.5	551.5
15	39	100	514.5	514.4
16	2	8	499.4	499.4
17	28	- 100	509.4	509.5
18	30	100	506.5	506.4
19	. 3	11	488.5	488.4
20	1	4	546.5	546.4
21	30	100	509.4	509.5
22	31	100	509.4	509.5
23	29	100	552.5	552.4
24	1	4	553.4	553.4
25	14	53	528.5	528.4
26	17	67	514.5	514.4

27	2	. 8	498.4	498.4
28	19	73	514.5	514.4
29	15	. 57	528.5	528.4
30	17	68	500.5	500.5
31	4	15	486.4	486.4
32	21	89	472.4	472.4
33	20	86	460.4	460.4
34	40	100	458.4	458.4
35	16	66	476.4	476.3
36	19	69	552.5	538.4
37	19	80	474.4	474.2
38	19	76	488.5	488.3
39	19	. 71	522.5	522.5
40	1	4	538.5	538.4
41	3	11	542.9	542.4
42	17	65	508.5	508.4
43	. 5	22	446.4	446.1
44	7	68	518.4	518.0
45	. 8	76	522.5	522.0
46	9	88	536.5	536.3
47	2 .	6	504.4	504.0
48	2	7	503.4	503.3
49	3 .	10	476.4	476.0
50	2	6	475.4	475.2
51	· 5	19	517.5	517.1
52	6	67	446.4	446.1
53	6	55	536.5	536.3
54	5	47	474.4	474.0
55	2	23	522.5	522.0
56	1	10	504.4	503.9
57	1	8	510.5	510.1
. 58	4	37	510.5	510.2

59	2	17	475.4	475.1
60	2	17	475.4	475.0
61	7	80	404.3	404.1
62	9	72	404.3	404.,1

[Reference Example 1-4-1]

Synthesis of 3-nitrophthalic acid

4-nitroisobenzofuran-1,3-dione (20.0 g, 0.104 mol) was added in small portions at a time to an aqueous ammonia solution (28%, 28 ml) heated to 50°C. After stirring for 30 minutes, the reaction mixture was cooled on ice, and the precipitate was filtered out and dried to obtain an ammonium salt. The salt was suspended in water (40 ml), and then concentrated hydrochloric acid was added dropwise to adjust the pH to approximately 2. The precipitated solid was filtered and dried to obtain 3-nitrophthalic acid. The compound was identified by NMR.

Yield: 12.3 g (56%).

 1 H-NMR (270 MHz, CD₃OD): $\delta 8.28$ (1H, dd, J=7.6, 1.2Hz), 8.25(1H, dd, J=7.8, 1.2Hz), 7.72(1H, dd, J=7.8, 7.6Hz) ppm.

[Reference Example 1-4-2]

Synthesis of 2-amino-3-nitrobenzoic acid

Potassium hydroxide (4.27 g, 76.2 mmol) was dissolved in water (22 ml), and bromine (0.463 ml, 9.50 mmol) was added dropwise while cooling on ice. After adding 3-nitrophthalic acid (2.00 g, 9.52 mmol) to thorough dissolution, the mixture was stirred at 60°C for 3 hours, and stirring was continued overnight at room temperature. The reaction mixture was cooled on ice, and an orange precipitate was filtered out. It was then dissolved in 20 ml of water, and concentrated hydrochloric acid was added dropwise to adjust the pH to 4. After cooling on ice, the yellow precipitate was filtered out and dried to obtain 2-

amino-3-nitrobenzoic acid. The compound was identified by NMR.

Yield: 1.03 g (59%).

 $^{1}H-NMR$ (270 MHz, CD₃OD): $\delta 8.33(1H,dd,J=8.4,1.7Hz)$,

8.27(1H, dd, J=7.6, 1.7Hz), 6.67(1H, dd, J=8.7, 7.6 Hz) ppm.

[Reference Example 1-4-3]

Synthesis of 2-amino-3-nitrobenzoic acid methyl ester

After dissolving 2-amino-3-nitrobenzoic acid (1.00 g, 5.49 mmol) in methanol (40 ml), sulfuric acid (0.50 ml) was added and the mixture was heated to reflux for 2 days. The reaction mixture was cooled to room temperature, and then the pH was adjusted to approximately 9 with saturated aqueous sodium bicarbonate and the mixture was concentrated under reduced pressure to approximately 10 ml. Water (20 ml) was added, the mixture was extracted with ethyl acetate (10 ml x 3 times), and the obtained organic layer was dried over anhydrous magnesium sulfate. It was then concentrated under reduced pressure, and the produced crystals were dried to obtain 2-amino-3-nitrobenzoic acid methyl ester. The compound was identified by NMR.

Yield: 661.4 mg (61%).

¹H-NMR (270 MHz, CDCl₃): δ8.50(br), 8.37(1H,dd,J=8.6,1.4 Hz), 8.23(1H,dd,J=7.6,1.4 Hz), 6.65(1H,dd,J=8.6,7.6Hz), 3.92(3H,s) ppm.

[Reference Example 1-4-4].

Synthesis of 2,3-diaminobenzoic acid methyl ester

After dissolving 2-amino-3-nitrobenzoic acid methyl ester (661 mg, 3.37 mmol) in methanol (30 ml), 10% palladium-carbon powder (5 mol%) was added under a nitrogen stream, and the mixture was stirred for 1 hour under a hydrogen atmosphere. The reaction mixture was filtered through celite, and the obtained filtrate was concentrated under reduced pressure. The residue was purified by silica

gel column chromatography (n-hexane/ethyl acetate = 2/1) to obtain 2,3-diaminobenzoic acid methyl ester. The compound was identified by NMR.

Yield: 517.2 mg (92%).

¹H-NMR (270 MHz, CDCl₃): δ7.46(1H,dd,J=8.2Hz,1.5Hz), 6.85(1H,dd,J=8.2Hz,1.5Hz), 6.60(1H,t,J=8.2Hz), 5.53(br), 3.87(3H,s), 3.35(br) ppm.

[Reference Example 1-4-5]

Synthesis of 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester

After dissolving 4-aminomethyl-piperidine-1carboxylic acid tert-butyl ester (3.29 g, 15.4 mmol) in acetonitrile (40 ml), the mixture was cooled in an ice bath. A solution of 1,1-thiocarbonyldiimidazole (3.28 g, 18.4 mmol) and imidazole (314 mg, 4.6 mmol) in acetonitrile (30 ml) was added dropwise thereto, and the mixture was stirred for 2 hours while raising the temperature to room temperature. After adding 2,3-diaminobenzoic acid methyl ester (3.07 g, 18.5 mmol) to the reaction mixture, it was stirred at 50°C overnight. Diisopropylcarbodiimide (2.84 ml, 18.5 mmol) was then added and the mixture was stirred The residue obtained by concentrating at 80°C for 2 hours. the reaction mixture under reduced pressure was purified by silica gel column chromatography (n-hexane/ethyl acetate = $3/2 \rightarrow \text{ethyl acetate/methanol/triethylamine} = 10/1/0.1)$ to obtain 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)amino]-1H-benzimidazole-4-carboxylic acid methyl ester. The compound was identified by LC-MS.

Yield: $5.47 \text{ g} \cdot (91.4\%)$, [M+1] = 389.2.

[Reference Example 1-4-6]

Synthesis of 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester

After dissolving 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester (2.28 g, 5.87 mmol) in methanol (3 ml), a 4N hydrogen chloride-1,4-dioxane solution (10 ml, 40 mmol) was added and the mixture was stirred at room temperature overnight. The precipitated crystals were filtered out, washed with ethyl acetate and then dried to obtain 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester. The compound was identified by LC-MS.

Yield: 1.19 g (56.1%), [M+1] = 289.2.

[Example 1-4-1]

Synthesis of 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid methyl ester

After dissolving 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester (20 mg, 0.055 mmol) in dimethylsulfoxide-acetic acid (10:1), 2-hydroxy-3,5-dichlorobenzaldehyde (32.0 mg, 0.166 mmol) and sodium triacetoxyborohydride (35.0 mg, 0.166 mg) were added and the mixture was stirred at 50°C for 2 days. Methanol (1 ml) was added to the reaction mixture, and then after stirring for 1 minute, it was purified by SCX solid phase extraction (Bond Elute SCX500MG). The product was further purified by preparative HPLC to obtain 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid methyl ester. The compound was identified by LC-MS.

Yield: 10.1 mg (39.3%), Purity: 94.0%, [M+1] = 463.1 [Example 1-4-2 to Example 1-4-9]

Compound Nos. 1-4-2 to 1-4-9 were synthesized in the same manner as Example 1-4-1, using the corresponding starting materials. The results are shown in Table 12.

[Reference Example 1-4-7]

Synthesis of 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid

After dissolving 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid methyl ester (5.47 g, 14.1 mmol) in methanol (60 ml), an aqueous lithium hydroxide solution (4 mol/L, 20 ml, 80 mmol) was added and the mixture was stirred at 50°C overnight. The reaction mixture was cooled in an ice bath, and 6N hydrochloric acid (5 ml) was added dropwise. Stirring was continued for 1 hour in an ice bath while gradually adding 1N hydrochloric acid, to adjust the pH to approximately 7.5. The precipitate was filtered out and washed with ethyl acetate and water. It was then dried under reduced pressure to obtain 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid. The compound was identified by LC-MS.

Yield: 3.68 g (69.7%), [M+1] = 375.2.

[Reference Example 1-4-8]

Synthesis of 4-{[4-(2-methoxy-ethylcarbamoyl)-1H-benzimidazol-2-ylamino]-methyl}-piperidine-1-carboxylic acid tert-butyl ester

After suspending 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid (1.20 g, 3.20 mmol) in a mixed solvent of dimethylformamide and tetrahydrofuran (1:1, 20 ml), 1-hydroxybenzotriazole monohydrate (737 mg, 4.81 mmol) and 2-methoxyethylamine (0.42 ml, 4.8 mmol) were added. 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (1.90 g, 6.40 mmol) was further added, and then the mixture was stirred at room temperature for 4 hours. Water (100 ml) was added to the reaction mixture, extraction was preferred with ethyl acetate (150 ml x 3 times), and the organic

layer was washed with saturated brine (100 ml) and then dried over anhydrous magnesium sulfate. The residue obtained by concentrating this under reduced pressure was purified by silica gel column chromatography (ethyl acetate/methanol = 30/1) to obtain 4-{[4-(2-methoxy-ethylcarbamoyl)-1H-benzimidazol-2-ylamino]-methyl}-piperidine-1-carboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 1.30 g (94.1%), Purity: [M+1] = 432.2.

[Reference Example 1-4-9]

Synthesis of 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid (2-methoxy-ethyl)-amide

After dissolving 4-{[4-(2-methoxy-ethylcarbamoyl)-1H-benzimidazol-2-ylamino]-methyl}-piperidine-1-carboxylic acid tert-butyl ester (1.30 g, 3.01 mmol) in methanol (1 ml), a 4N hydrogen chloride-1,4-dioxane solution (7.0 ml, 28.0 mmol) was added and the mixture was stirred at 50°C for 1 hour. The reaction mixture was concentrated under reduced pressure and vacuum dried to obtain 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid (2-methoxy-ethyl)-amide. The compound was identified by LC-MS. Yield: 1.23 g (100%), Purity: [M+1] = 332.2.

[Example 1-4-10]

Synthesis of 2-{[1-(5-chloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid (2-methoxy-ethyl)-amide

After dissolving 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-4-carboxylic acid (2-methoxy-ethyl)-amide (20 mg, 0.049 mmol) in dimethylsulfoxide-acetic acid (10:1, 0.50 ml), 2-hydroxy-5-chlorobenzaldehyde (23 mg, 0.15 mmol) and sodium triacetoxyborohydride (31 mg, 0.15 mg) were added and the mixture was stirred at 50°C for 2 days. Methanol (1 ml) was added to the reaction mixture, and

after stirring for 1 minute, the mixture was purified by SCX solid phase extraction (Bond Elute SCX500MG). The product was further purified by preparative HPLC to obtain 2-{[1-(5-chloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid (2-methoxy-ethyl)-amide. The compound was identified by LC-MS.

Yield: 9.4 mg (40.6%), Purity: 94.0%, [M+1] = 472.2.

[Example 1-4-11 to Example 1-4-17]

Compound Nos. 1-4-11 to 1-4-17 were synthesized in the same manner as Example 1-4-10, using the corresponding starting materials. The results are shown in Table 12.

[Reference Example 1-4-10]

Synthesis of 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic
acid

After suspending 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid methyl ester (993 mg, 2.14 mmol) in methanol (10 ml), an aqueous lithium hydroxide solution (4M, 5.4 ml, 21.4 mmol) was added. The reaction mixture was stirred at 50°C for 2 hours and then cooled to room . temperature. 1N hydrochloric acid was added dropwise to adjust the pH to approximately 6.0. Ethyl acetate (1 ml) was then added and the mixture was stirred for 3 hours, after which the precipitate was filtered out to obtain 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid. The compound was identified by LC-MS.

Yield: 802.6 mg (83.5%), [M+1] = 449.1.

[Example 1-4-18]

Synthesis of 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4-ylmethyl]-amino}-lH-benzimidazole-4-carboxylic acid isopropylamide

2-{[1-(3,5-Dichloro-2-hydroxy-benzyl)-piperidin-4ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid (30.0 mg, 0.0668 mmol) was suspended in dimethylformamide (0.50 ml). After adding 1-hydroxybenzotriazole monohydrate (30.6 mg, 0.200 mmol), isopropylamine (11.8 mg, 0.200 mmol) and diisopropylcarbodiimide (30.8 μ l, 0.200 mmol) thereto, the mixture was stirred at 40°C overnight. Methanol (2 ml) was added to the reaction mixture, and after stirring for 10 minutes, the reaction mixture was passed through SCX (Bond Elute SCX500MG) and the SCX was washed with methanol. After elution with a 2N ammonia-methanol solution, the solvent was distilled off under reduced pressure to obtain The residue was purified by preparative HPLC to a residue. obtain 2-{[1-(3,5-dichloro-2-hydroxy-benzyl)-piperidin-4ylmethyl]-amino}-1H-benzimidazole-4-carboxylic acid isopropylamide. The compound was identified by LC-MS. Yield: 25.6 mg (78.1%), Purity: 97.3%, [M+1] = 490.1

[Example 1-4-19 to Example 1-4-30]

Compound Nos. 1-4-19 to 1-4-30 were synthesized in the same manner as Example 1-4-18, using the corresponding starting materials. The results are shown in Table 12.

Table 12

Table 12	÷	•		
Compound	Yield (mg)	Yield (%)	MW	M+1
No. 1-4-	lieid (mg)		****	
1	.10	39	463.4	463.1
2	19	80	428.9	429.1 ,
3 .	28	100	473.4	473.1
4	18	74	439.5	440.1
5	26	100	428.5	429.2
6	28	. 100	431.5	432.2
7	28	100	434.6	435.1
8	24	98	406.5	407.2
9	294	• 44	447.4	447.1
10	9	41	472.0	472.2
11	11	42	516.4	518.1(Br)
12	17	74	482.5	483.2
13	12	4.9	506.4	506.1
14	6	27	471.6	472.2
· 15	10	43	474.6	475.2
16	14	59	477.6	478.2
17	22 .	96	449.6	450.2
18	26	78	490.4	490.1
19	18	56	476.4	476.1
20	24	68	520.5	520.2
21	23	66	518.4	518.1
22	4	22	517.5	517.3
23	9	51	503.5	503.3
24	13	67	575.5	575.3
25	2	12	518.4	518.3
26	21	116	518.4	518.3
27	11	62	490.4	490.2
. 28	11	61	522.5	522.3
				

29	13	69	536.5	536.3
30 .	7	84	475.4	475.2

[Reference Example 1-5-1]

Synthesis of 3,4-diaminobenzoic acid ethyl ester

3,4-Diaminobenzoic acid (2.003 g, 13.17 mmol) and triphenylphosphine (4.248 g, 16.20 mmol) were suspended in toluene (20 ml) and tetrahydrofuran (10 ml). Ethanol (2 ml) was then added, diisopropyl azodicarboxylate (2.5 ml, 9.96 mmol) was added dropwise to the obtained light brown suspension, and the mixture was stirred at room temperature for 3.5 hours. Isopropyl azodicarboxylate (1.5 ml, 5.98 mmol) was further added dropwise, the mixture was stirred at room temperature for 1 hour, and the obtained reaction mixture was extracted with 1N hydrochloric acid (100 ml x 2 times), after which the aqueous layer was washed with 50 ml of ethyl acetate. After adding 2N aqueous sodium hydroxide to the aqueous layer to raise the pH to 11 or higher, the precipitate was extracted with ethyl acetate (100 ml x 2 The organic layer was washed with saturated brine (50 ml) and dried overnight over anhydrous sodium sulfate. The desiccant was filtered out and the filtrate was concentrated to obtain 3,4-diaminobenzoic acid ethyl ester The compound was identified by as a faint yellow solid. LC-MS.

Yield: 1.547 g (65%), Found: ESI/MS m/e 181.1(M+1).

The following compounds were also synthesized in the same manner as Reference Example 1-5-1, using the corresponding starting materials.

- 3,4-Diaminobenzoic acid isopropyl ester: Yield = 1.302 g (49%)
- 3,4-Diaminobenzoic acid isobutyl ester: Yield = 2.014 g (72%)

3,4-Diaminobenzoic acid benzyl ester: Yield = 0.331 g (10%) 3,4-Diaminobenzoic acid cyclohexyl ester: Yield = 0.245 g (8%)

[Reference Example 1-5-2]

Synthesis of 2-[(1-tert-butoxycarbonyl-piperidin-4ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid ethyl
ester

4-Aminomethyl-piperidine-1-carboxylic acid tert-butyl ester (0.394 g, 1.84 mmol) was dissolved in acetonitrile (3 ml). A solution of thiocarbonyldiimidazole (0.340 g, 1.91 mmol) and imidazole (0.052 g, 0.77 mmol) in acetonitrile (6 ml) was added dropwise over 3 minutes, at 0°C. The mixture was stirred at room temperature for 1 hour, 3,4diaminobenzoic acid ethyl ester (0.371 g, 2.06 mmol) was added to the reaction mixture, and the mixture was stirred at 50°C for 5.5 hours. Diisopropylcarbodiimide (0.32 ml) was further added, and the mixture was stirred overnight at Saturated brine was then added to the obtained 50°C. reaction mixture, extraction was performed with ethyl acetate (100 ml), and the organic layer was dried overnight over anhydrous sodium sulfate. After filtering out the desiccant and concentrating the filtrate, the obtained light brown oil was purified by silica gel column chromatography (dichloromethane/methanol = $49/1 \rightarrow 19/1$) to obtain 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)amino]-1H-benzimidazole-5-carboxylic acid ethyl ester as a vellow amorphous solid.

Yield: 0.838 g (%), Found: ESI/MS m/e 403.2(M+1).

[Reference Example 1-5-3]

Synthesis of 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid ethyl ester

After dissolving the 2-[(1-tert-butoxycarbonyl-piperidin-4-ylmethyl)-amino]-lH-benzimidazole-5-carboxylic

acid ethyl ester in tetrahydrofuran (2 ml), a 4N hydrogen chloride/1,4-dioxane solution (3 ml) was added. Since a precipitate was produced, ethanol (5 ml) was added to dissolve it and the solution was stirred at room temperature overnight. The reaction mixture was concentrated to obtain 2-[(piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid ethyl ester as a red amorphous solid. The compound was identified by LC-MS. Yield: 0.942 g (100%), Found: ESI/MS m/e 303.1(M+1).

[Example 1-5-1]

Synthesis of 2-{[1-(3,5-dichloro-2-hydroxybenzyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-5-carboxylic acid ethyl ester

After adding 3,5-dichloro-2-hydroxybenzaldehyde (0.3 mmol) and sodium triacetoxyborohydride (0.3 mmol) to a solution of 2-[(piperidin-4-ylmethyl)-amino]-1Hbenzimidazole-5-carboxylic acid ethyl ester (0.1 mmol) in dimethylformamide-acetic acid (10:1) (1.0 ml), the mixture was stirred at room temperature overnight. Methanol (1.0 ml) was added to the reaction mixture to suspend the reaction, and after stirring for 1 hour, the solution was passed through SCX (Bond Elute SCX500MG). SCX was washed with methanol and then with a mixed solution of chloroform/methanol (1/1), and elution was performed with a 0.5N ammonia-dioxane solution. The solvent was distilled off under reduced pressure, and the obtained residue was subjected to preparative HPLC to obtain 2-{[1-(3,5-dichloro-2-hydroxybenzyl)-piperidin-4-ylmethyl]amino}-1H-benzimidazole-5-carboxylic acid ethyl ester. The compound was identified by LC-MS. Yield: 1.6 mg (3.4%), Purity: 98%, Found: ESI/MS m/e

[Example 1-5-2 to Example 1-5-8]

477.1 (M+1).

Compound Nos. 1-5-2 to 1-5-8 were synthesized in the same manner as Reference Examples 1-5-1 to 1-5-3 and Example 1-5-1, using the corresponding starting materials. The results are shown in Table 13.

[Reference Example 1-5-4]

Synthesis of 3,4-diaminobenzoic acid methyl ester

Thionyl chloride (13.0 ml, 180 mmol) was slowly added dropwise at 0°C to a solution of 3,4-diaminobenzoic acid (25.0 g, 164 mmol) in methanol (164 ml). After stirring the mixture at room temperature overnight, it was further stirred at 80°C overnight. The reaction mixture was cooled to room temperature, and the precipitated solid was filtered out and washed with methanol. The filtrate was concentrated under reduced pressure and the obtained solid was filtered out and washed with methanol. All of the obtained solid was dried under reduced pressure at 60°C to obtain 3,4-diaminobenzoic acid methyl ester. The compound was identified by NMR.

Yield: 31.16 g (79%).

 $^{1}\text{H-NMR}$ (270 MHz, CDCl₃): 3.76(s,3H), 6.85(d,1H,J=8.6Hz), 7.63(dd,1H,J=1.9,8.6Hz), 7.78(d,1H,J=1.9Hz).

[Example 1-5-9 to Example 1-5-13]

Compound Nos. 1-5-9 to 1-5-13 were synthesized in the same manner as Reference Example 1-5-4, Reference Example 1-5-2, Reference Example 1-5-3 and Example 1-5-1, using the corresponding starting materials. The results are shown in Table 13.

[Reference Example 1-5-5]

Synthesis of 4-methylamino-3-nitrobenzoic acid methyl ester
After dissolving 4-fluoro-3-nitrobenzoic acid methyl
ester (507.3 mg, 2.55 mmol) in tetrahydrofuran (1 ml),
methylamine (2.0 M tetrahydrofuran solution, 2.55 ml, 5.09
mmol) was added in an ice bath, and the mixture was stirred

at room temperature overnight. The reaction mixture was concentrated under reduced pressure and dissolved in ethyl acetate (20 ml), and after washing in saturated aqueous sodium bicarbonate and brine, it was dried over anhydrous magnesium sulfate. It was then concentrated under reduced pressure, the obtained residue was dissolved in a methylamine-tetrahydrofuran solution (2.0 M, 3 ml), and upon sealing, the solution was stirred at 50°C for 5 hours. The reaction mixture was concentrated under reduced pressure and dissolved in ethyl acetate (30 ml), and the solution was washed with saturated aqueous sodium bicarbonate and brine and then dried over anhydrous magnesium sulfate. The dried product was concentrated under reduced pressure to obtain 4-methylamino-3-nitrobenzoic acid methyl ester. The compound was identified by LC-MS:

Yield: 540 mg (100%), [M+1] = 211.1.

[Reference Example 1-5-6]

Synthesis of 3-amino-4-methylaminobenzoic acid methyl ester

After dissolving 4-methylamino-3-nitrobenzoic acid methyl ester (540 mg, 2.5 mmol) in ethyl acetate-methanol (2:1) (20 ml), 10% palladium-carbon powder (5 mol%) was added thereto under a nitrogen atmosphere. The mixture was stirred for 4 hours under a hydrogen atmosphere, and then the reaction mixture was filtered through celite. The filtrate was concentrated under reduced pressure to obtain 3-amino-4-methylaminobenzoic acid methyl ester. The compound was identified by LC-MS.

Yield: 441 mg (100%), [M+1] = 181.1.

[Example 1-5-14 to Example 1-5-16]

Compound Nos. 1-5-14 to 1-5-16 were synthesized in the same manner as Reference Example 1-5-5, Reference Example 1-5-6, Reference Example 1-5-2, Reference Example

1-5-3 and Example 1-5-1, using the corresponding starting materials. The results are shown in Table 13.

[Reference Example 1-5-7]

Synthesis of 4-tert-butoxycarbonylamino-3-nitrobenzoic acid methyl ester

After dissolving 4-amino-3-nitrobenzoic acid methyl ester (1.03 g, 5.25 mmol) in tetrahydrofuran (50 ml), sodium bis(trimethylsilyl)amide (1.0 M tetrahydrofuran solution, 10.5 ml, 10.5 mmol) was added and the mixture was stirred at room temperature for 15 minutes. A solution of dibutyl dicarbonate (1.44 ml, 6.30 mmol) in tetrahydrofuran (10 ml) was added dropwise thereto, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was concentrated under reduced pressure, and 1N hydrochloric acid was added to the residue to adjust the pH to approximately 6. The mixture was then extracted with ethyl acetate (100 ml \times 3 times), and the obtained organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. The residue obtained by concentration under reduced pressure was purified by silica gel column chromatography (n-hexane/ethyl acetate = 9/1) to obtain 4-tert-butoxycarbonylamino-3-nitrobenzoic acid methyl ester. The compound was identified by LC-MS. Yield: 1.11 g (71.4%), [M+1] = 297.1.

[Reference Example 1-5-8]

Synthesis of 3-amino-4-tert-butoxycarbonylaminobenzoic acid methyl ester

4-tert-Butoxycarbonylamino-3-nitrobenzoic acid methyl ester (1.11 g, 3.75 mmol) was dissolved in ethyl acetate-methanol (1:1) (30 ml). Next, 10% palladium-carbon powder (200 mg, 5 mol%) was added to the aqueous solution under a nitrogen atmosphere, and the mixture was stirred overnight under a hydrogen atmosphere. The reaction mixture was

filtered with celite, and the filtrate was concentrated under reduced pressure to obtain 3-amino-4-tert-butoxycarbonylaminobenzoic acid methyl ester. The compound was identified by LC-MS.

Yield: 924.1 mg (92.3%), [M+1] = 267.3.

[Reference Example 1-5-9]

Synthesis of 4-tert-butoxycarbonylamino-3-(2-nitro-benzenesulfonylamino)-benzoic acid methyl ester

After dissolving 3-amino-4-tertbutoxycarbonylaminobenzoic acid methyl ester (817.3 mg, 3.07 mmol) in dichloromethane (10 ml), pyridine (0.373 ml, 4.60 mmol) and 2-nitrobenzenesulfonyl chloride (815 mg, 3.68 mmol) were added in an ice bath, and the mixture was stirred at room temperature for 4 hours. Pyridine (0.050 ml) and 2-nitrobenzenesulfonyl chloride (135 mg) were added, and stirring was continued for 2 hours. The reaction mixture was concentrated under reduced pressure, water (30 ml) was added, and then extraction was performed with ethyl acetate (20 ml \times 3 times). The obtained organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the crystallized residue was suspended in nhexane-ethyl acetate (4:1), filtered, and dried to obtain 4-tert-butoxycarbonylamino-3-(2-nitrobenzenesulfonylamino) -benzoic acid methyl ester. compound was identified by LC-MS.

Yield: 1.23 g (88.7%).

[Reference Example 1-5-10]

Synthesis of 4-tert-butoxycarbonylamino-3-[methyl-(2-nitro-benzenesulfonyl)-amino]-benzoic acid methyl ester

After dissolving 4-tert-butoxycarbonylamino-3-(2-nitro-benzenesulfonylamino)-benzoic acid methyl ester (1.23 g, 2.73 mmol) in dimethylformamide (10 ml), potassium

carbonate (1.13 g, 8.16 mmol) and methyl iodide (0.254 ml, 4.09 mmol) were added in an ice bath, and the mixture was stirred at room temperature for 2 hours. Water (100 ml) was added to the reaction mixture, and extraction was performed with ethyl acetate (40 ml x 4 times). The obtained organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. After concentration under reduced pressure, the crystallized residue was dried to obtain 4-tert-butoxycarbonylamino-3-[methyl-(2-nitro-benzenesulfonyl)-amino]-benzoic acid methyl ester. The compound was identified by LC-MS. Yield: 1.41 g (100%).

[Reference Example 1-5-11]

Synthesis of 4-tert-butoxycarbonylamino-3-methylamino-benzoic acid methyl ester

After dissolving 4-tert-butoxycarbonylamino-3-[methyl-(2-nitro-benzenesulfonyl)-amino]-benzoic acid methyl ester (1.41 g, 2.73 mmol) in dimethylformamide (10 ml), potassium carbonate (1.13 g, 8.16 mmol) and thiophenol (0.307 ml, 2.99 mmol) were added in an ice bath, and the mixture was stirred at room temperature for 1 hour. (100 ml) was added to the reaction mixture, and extraction was performed with ethyl acetate (40 ml x 3 times). obtained organic layer was washed with saturated brine and then dried over anhydrous magnesium sulfate. The residue obtained by concentration under reduced pressure was purified by silica gel column chromatography (nhexane/ethyl acetate = 85/15) to obtain 4-tertbutoxycarbonylamino-3-methylamino-benzoic acid methyl ester. The compound was identified by LC-MS. Yield: 794.3 mg (62.7%), [M+1] = 281.1.

[Reference Example 1-5-12]

Synthesis of 4-amino-3-methylaminobenzoic acid methyl ester

After dissolving 4-tert-butoxycarbonylamino-3methylaminobenzoic acid methyl ester (794.3 mg, 2.83 mmol) in methanol (7.0 ml), a 4N hydrogen chloride-1,4-dioxane solution (3.54 ml, 14.3 mmol) was added in an ice bath, and the mixture was stirred at room temperature for 30 minutes. An equivalent amount of the 4N hydrogen chloride-1,4dioxane solution was further added, and the mixture was stirred at 40°C for 30 minutes. The reaction mixture was poured into ice-cooled saturated aqueous sodium bicarbonate, and was extracted with ethyl acetate (30 ml \times 3). obtained organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The residue obtained by concentration under reduced pressure was purified by silica gel column chromatography (nhexane/ethyl acetate = $4/1 \rightarrow 3/2 \rightarrow 1/1$) to obtain 4-amino-3-methylaminobenzoic acid methyl ester. The compound was identified by LC-MS.

Yield: 342.7 mg (67.2%), [M+1] = 181.1.

[Example 1-5-17 to Example 1-5-19]

Compound Nos. 1-5-17 to 1-5-19 were synthesized in the same manner as Reference Examples 1-5-7 to 1-5-12, Reference Example 1-5-2, Reference Example 1-5-3 and Example 1-5-1, using the corresponding starting materials. The results are shown in Table 13.

[Example 1-5-20]

Synthesis of 2-{[1-(3-phenyl-propyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-5-carboxylic acid

After suspending 2-{[1-(3-phenyl-propyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-5-carboxylic acid methyl ester (3.2 mmol) in methanol (10 ml), a 4N lithium hydroxide aqueous solution (5.4 ml, 21.4 mmol) was added. The reaction mixture was stirred at 50°C for 2 hours and then cooled to room temperature. Next, 1N hydrochloric

acid was added dropwise to adjust the pH to approximately 6.0. Ethyl acetate (1 ml) was added to the aqueous solution and the mixture was stirred for 3 hours, and then the precipitate was filtered out to obtain 2-{[1-(3-phenyl-propyl)-piperidin-4-ylmethyl]-amino}-1H-benzimidazole-5-carboxylic acid. The compound was identified by LC-MS. Yield: 1.01 g (79.9%), Purity: 98.5%, [M+1] = 393.1.

[Example 1-5-21 to Example 1-5-22]

Compound Nos. 1-5-21 to 1-5-22 were synthesized in the same manner as Example 1-5-20, using the corresponding starting materials. The results are shown in Table 13.

[Example 1-5-23]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid (2-dimethyl)-amide

2-[(1-Naphthalen-1-ylmethyl-piperidin-4-ylmethyl)amino]-1H-benzimidazole-5-carboxylic acid (20.0 mg, 0.0480 mmol) and 1-hydroxybenzotriazole monohydrate (22.0 mg, 0.145 mmol) were dissolved in tetrahydrofurandimethylformamide (1:1, 0.500 ml). After then adding N, Ndimethylethylenediamine (0.0160 ml, 0.145 mmol) and N, Ndiisopropylcarbodiimide (0.0220 ml, 0.145 mmol) thereto, the mixture was stirred at room temperature overnight. Water (2 ml) was added to the reaction mixture, and after stirring for 10 minutes, extraction was performed with ethyl acetate (1 ml \times 3 times). The obtained ethyl acetate layer was purified by SCX solid phase extraction and then purified by preparative HPLC to obtain 2-[(1-naphthalen-1ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5carboxylic acid (2-dimethyl)-amide. The compound was identified by LC-MS.

Yield: 10.5 mg (45.1%), Purity: 100%, [M+1] = 485.4 [Example 1-5-24 to Example 1-5-190]

Compound Nos. 1-5-24 to 1-5-190 were synthesized in the same manner as Example 1-5-23, using the corresponding starting materials. The results are shown in Table 13.

[Reference Example 1-5-13]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-benzimidazole-1,5-dicarboxylic acid 1-tert-butyl ester 5-methyl ester

After dissolving 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid methyl ester (1 g, 2.33 mmol) in 1,4-dioxane (25 ml), di-t-butyl dicarbonate (1017 mg, 4.66 mmol) was added and the mixture was stirred at 80°C for 11 hours. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (dichloromethane/methanol/TEA = 85/10/5) to obtain 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-benzimidazole-1,5-dicarboxylic acid 1-tert-butyl ester 5-methyl ester. The compound was identified by LC-MS. Yield: 1.1 g (96%), LC-MS (529.2 m/z M+1).

[Example 1-5-191]

Synthesis of {2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazol-5-yl}-methanol

After dissolving 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-benzimidazole-1,5-dicarboxylic acid 1-tert-butyl ester 5-methyl ester (940 mg, 1.78 mmol) in dry tetrahydrofuran (18 ml) under a nitrogen stream, aluminum lithium hydride (135 mg, 3.56 mmol) was added at 0°C, and the mixture was stirred for 3 hours. Saturated aqueous sodium sulfate was added, and then the solvent was distilled off under reduced pressure. Since the residue contained water, it was dissolved in ethyl acetate and washed with saturated brine, and the solvent was then distilled off under reduced pressure to obtain a residue.

The residue was purified by silica gel column chromatography (dichloromethane/methanol/TEA = 90/5/5) to obtain {2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazol-5-yl}-methanol.

Yield: 822 mg (91%), Purity: 89.3%, LC-MS (401.2 m/z M+1).

[Example 1-5-192]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboaldehyde

A solution of 1-hydroxy-1-oxo-1H-1 λ^5 benzo[d][1,2]iodoxol-3-one (846 mg, 3.02 mmol) in dimethylsulfoxide (10 ml) was added to a solution of {2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1Hbenzimidazol-5-yl}-methanol (807 mg, 2.01 mmol) in dimethylsulfoxide (10 ml), and the mixture was stirred at room temperature for 9 hours. The reaction mixture was poured into ice water (200 ml) and stirred at room temperature for 30 minutes, after which ethyl acetate was added and stirring was continued vigorously for 10 minutes for extraction. After washing with saturated aqueous sodium bicarbonate and saturated brine, the mixture was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (ethyl acetate/methanol = 9/1). This was further purified by preparative HPLC to obtain 2-[(1-naphthalen-1-ylmethylpiperidin-4-ylmethyl)-amino]-1H-benzimidazole-5carboaldehyde.

Yield: 34 mg (4%), Purity: 100%, LC-MS (399.2 m/z M+1).

• [Example 1-5-193]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carbonitrile

After dissolving 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-

carboaldehyde (2.7 mg, 0.0570 mmol) in anhydrous dimethylformamide (1 ml) under a nitrogen stream, hydroxylamine hydrochloride (8 mg, 0.115 mmol) and one drop of 6N hydrochloric acid were added and the mixture was stirred at 80°C for 2 hours and 30 minutes. Two drops of 5N aqueous sodium hydroxide were then added, and after extraction with ethyl acetate, extraction was repeated with dichloromethane. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain a residue. Anhydrous dimethylformamide (1 ml) and nine drops of a 4N hydrogen chloride/1,4-dioxane solution were added to the residue, and the mixture was stirred at 100°C for 12 hours. After neutralization with 5N aqueous sodium hydroxide, the same extraction procedure was carried out and the obtained residue was purified by thin-layer silica gel chromatography (dichloromethane/methanol/triethylamine = 85/10/5) to obtain 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)amino]-1H-benzimidazole-5-carbonitrile. Yield: 29%, Purity: 99.3%, Yield: 6.6 mg. LC-MS (396.3 m/z M+1).

[Reference Example 1-5-14]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazole-5-carboxylic acid methyl ester

After dissolving 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazole-5-carboxylic acid methyl ester (1 g, 2.33 mmol) in anhydrous tetrahydrofuran (30 ml) under a nitrogen stream, the mixture was cooled to 0°C. Next, 60% sodium hydride (187 mg, 4.89 mmol) was added and the mixture was stirred at 0°C

for 72 minutes. 2-(Trimethylsilyl)ethoxymethyl chloride (815.8 mg, 4.89 mmol) was further added, the mixture was stirred at 0°C for 30 minutes, and then water was added. The solution was extracted with ethyl acetate and then with dichloromethane, and each extract was washed with saturated brine and then combined and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure, and the obtained residue was purified by silica gel column chromatography (ethyl acetate/hexane = 2/3 → 3/2 → 1/0) to obtain 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazole-5-carboxylic acid methyl ester. The compound was identified by LC-MS.

Yield: 624 mg (39%), Purity: 95.1%, LC-MS (689.3 m/z M+1).

Synthesis of [2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-methanol

[Reference Example 1-5-15]

After dissolving 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazole-5-carboxylic acid methyl ester (624 mg, 0.91 mmol) in anhydrous tetrahydrofuran (10 ml) under a nitrogen stream, aluminum lithium hydride (72.4 mg, 1.82 mmol) was added at 0°C, and the mixture was stirred for 2 hours. After then adding a saturated aqueous sodium sulfate solution, extraction was performed with ethyl acetate and then with dichloromethane. Each extract was washed with saturated brine, and then combined and dried over anhydrous sodium sulfate. The solvent was distilled off under reduced pressure to obtain [2-[(1-naphthalen-1-ylmethyl-

piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol5-yl]-methanol. The compound was identified by LC-MS.
Yield: 568 mg (95%), Purity: 89.4%, LC-MS (661.4 m/z M+1).

[Reference Example 1-5-16]

Synthesis of 2-[(1-naphthalen-1-ylmethyl-piperidin-4ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2trimethylsilanyl-ethoxymethyl)-1H-benzimidazole-5carboaldehyde

A solution of [2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]methanol (467 mg, 0.71 mmol) in dimethylsulfoxide (5 ml) was added to a solution of 297 mg of 1-hydroxy-1-oxo-1H- $1\lambda^5$ -benzo[d][1,2]iodoxol-3-one (1.06 mmol) in dimethylsulfoxide (5 ml), and the mixture was stirred at room temperature for 18 hours. The reaction mixture was poured into ice water (200 ml) and stirred at room temperature for 30 minutes, after which ethyl acetate was added and stirring was continued vigorously for 10 minutes for extraction. After washing with saturated aqueous sodium bicarbonate and then with saturated brine, the mixture was dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain 2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2trimethylsilanyl-ethoxymethyl)-1H-benzimidazole-5carboaldehyde.

Yield: 475 mg (100%), Purity: 83.2%, LC-MS (659.3 m/z M+1).
[Reference Example 1-5-17]

Synthesis of 1-[2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-

propan-1-ol

After dissolving 2-[(1-naphthalen-1-ylmethylpiperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1Hbenzimidazole-5-carboaldehyde (86 mg, 0.131 mmol) in anhydrous tetrahydrofuran (1.2 ml) under a nitrogen stream, ethylmagnesium bromide (0.26 ml, 1M tetrahydrofuran solution) was added at 0°C, and the mixture was stirred at room temperature for 13 minutes. Saturated aqueous ammonium chloride was added, and extraction was performed with ethyl acetate. The organic layer was washed with saturated brine and then dried over sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 1-[2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2trimethylsilanyl-ethoxymethyl)-amino]-1-(2trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]propan-1-ol.

Yield: 92.5 mg (100%), Purity: 88%, LC-MS (689.3 m/z M+1). [Example 1-5-194]

Synthesis of 1-{2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazol-5-yl}-propan-1-ol

After dissolving 1-[2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-propan-1-ol (50 mg, 0.073 mmol) in anhydrous dimethylformamide (2 ml), tetrabutylammonium fluoride (0.5 ml, 1.0 M tetrahydrofuran solution) was added and the mixture was stirred at 100°C for 13 hours. Ethyl acetate and water were added, after which the aqueous layer was adjusted to pH 11 and extracted with ethyl acetate. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the obtained

residue was purified by thin-layer silica gel chromatography (ethyl acetate/methanol = 4/1). The purified product was further purified by preparative HPLC to obtain 1-{2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-amino]-1H-benzimidazol-5-yl}-propan-1-ol. Yield: 1.08 mg (3%), Purity: 100%, LC-MS (429.2 m/z M+1).

[Reference Example 1-5-18]

Synthesis of 1-[2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)-amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-propan-1-one

A solution of 1-[2-[(1-naphthalen-1-ylmethylpiperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-propan-1-ol (72 mg, 0.10 mmol) in dimethylsulfoxide (1 ml) was added to a solution of 1-hydroxy-1-oxo-1H-1 λ^5 benzo[d][1,2]iodoxol-3-one (44 mg, 0.157 mmol) in dimethylsulfoxide (1 ml), and the mixture was stirred at room temperature for 18 hours. The reaction mixture was poured into ice water (50 ml) and stirred at room temperature for 30 minutes, after which ethyl acetate was added and stirring was continued vigorously for 10 minutes for extraction. After washing with saturated aqueous sodium bicarbonate and then with saturated brine, the mixture was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 1-[2-[(1-naphthalen-1-ylmethyl-piperidin-4-ylmethyl)-(2trimethylsilanyl-ethoxymethyl)-amino]-1-(2trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]propan-1-one.

Yield: 64 mg (89%), Purity: 92.8%, LC-MS (687.4 m/z M+1). [Example 1-5-195]

Synthesis of 1-{2-[(1-naphthalen-1-ylmethyl-piperidin-4-

ylmethyl)-amino]-1H-benzimidazol-5-yl}-propan-1-one

After dissolving 1-[2-[(1-naphthalen-1-ylmethylpiperidin-4-ylmethyl)-(2-trimethylsilanyl-ethoxymethyl)amino]-1-(2-trimethylsilanyl-ethoxymethyl)-1H-benzimidazol-5-yl]-propan-1-one (32 mg, 0.047 mmol) in anhydrous dimethylformamide (1 ml), tetrabutylammonium fluoride (0.8 ml, 1.0 M tetrahydrofuran solution) and water (5 µl) were added, and the mixture was stirred at 100°C for 2 hours and 30 minutes. Water and ethyl acetate were added, and extraction was performed with ethyl acetate. The organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure, and the obtained residue was purified by thin-layer silica gel chromatography (dichloromethane/methanol/TEA = 85/10/1). The purified product was further purified by preparative HPLC and thinlayer silica gel chromatography (dichloromethane/methanol = 8/2) to obtain 1-{2-[(1-naphthalen-1-ylmethyl-piperidin-4ylmethyl)-amino]-1H-benzimidazol-5-yl}-propan-1-one. Yield: 2.04 mg (10%), Purity: 100%, LC-MS (427.2 m/z M+1).

[Example 1-5-196 and Example 1-5-197]

Compound Nos. 1-5-196 and 1-5-197 were synthesized in the same manner as Example 1-5-195, using the corresponding starting materials. The results are shown in Table 13.

Table 13

Compound				
No. 1-5-	Yield (mg)	Yield (%)	MW	M+1
1	2	3	477.4	477.1
·2	14	31	442.9	443.1
3	15	-35	442.6	443.2
4	12	29	420.6	421.2
5	1	. 2	491.4	491.2
6	4	9 .	457.0	457.2
7	11	26	456.6	457.2
8	21	52	434.6	435.2
9	48	92	428.5	429.1
10	51	100	406.5	407.2
11	8	20	463.4	463.1
12	13	36	439.5	440.1
13	500	58	434.6	435.1
14	19	28	477.4	477.1
15	41	100	442.6	443.2
16	45	100	. 420.6	421.2
17	6	- 24	477.4	477.1
18	23	99	442.6	443.2
19	24	100	420.6	421.2
20	1010	80	392.5	393.1
21	994	93	417.5	418.1
22	458	67	459.3	459.4
23	11	45	484.6	485.4
24	10	43	498.6	499.4
25	39	100	556.7	557.5
26	13	53	499.6	500.3
27	13	57	471.6	472.3
28	12	51	503.6	504.4

29	4	16	517.7	518.4
30	17	51	455.6	456.4
31	12	35	469.6	470.3
32	- 8	23	483.7	484.4
33	3	10	469.6	470.4
34	7	18	499.6	500.4
35 .	17	52	457.6	458.4
36	, 15	43	471.6	472.3
37	6	19	456.6	457.4
38	25	100	433.6	434.2
39	10	43	462.6	463.2
40	4	16	476.6	477.2
. 41	7	27	534.7	535.3
42	9	. 36	477.6	478.2
43	8	36	435.6	436.2
4.4	29	100	477.6	478.2
45	27	100	449.6	450.2
46	29	100	481.6	482.3
47.	29	100	495.7	496.3
48	14	.61	458.6	459.2
49	9	. 39	487.7	488.3
50	11	47	502.6	503.3
51	.10	42	474.6	475.2
52	9	39	506.7	507.2
53	10	38	520.7	521.3
54	11	24	456.0	456.2
55	13	27	485.0	485.2
56	8	16	499.0	499.2
57	9	16	557.1	557.2
58	16	32	500.0	500.1
59	. 10	20 ,	500.0	500.2
60	15	32	472.0	472.2

61	17	34	504.0	504.1
62	19	37	518.1	518.2
63	21	48	440.0	440.2
64	8	17	469.0	469.1
65	23	48	483.0	483.2
66	19	35	541.1	541.2
67	. 9	19	484.0	484.2
68	. 2	5	442.0	442.1
69	11	23	484.0	484.1
70	26 .	53	488.0	488.2
71	29	58	502.1	502.2
72	21	46	456.0	456.1
73	14	31	457.6	458.2
74	15	34 .	435.6	436.2
75	5	. 11	460.6	461.2
76 ,	14	31	458.0	458.1
77	11	25	442.0	442.1
78	14	32	441.6	442.2
79	12	29	419.6	420.2
80	10	22	444.6	445.2
81	15	34	442.0	442.2
82	10	23	426.0	426.1
83	9	21	427.5	428.2
84	10	25	405.5	406.2
85	2	5	430.6	431.2
86	10	23	427.9	428.1
87	23	56	411.9	412.2
88	12	45	522.5	522.0
89	13	52	518.4	518.1
90	6	. 29	474.4	474.0
.91	11	. 47	503.5	503.1
92	10	41	517.5	517.1

93	6	26	518.4	518.1
94	5	20	490.4	490.0
95	11	42	575.5	575.1
96	9	37	536.5	536.0
97	18	60	475.4	475.2
98	24	92	490.4	490.0
. 99	12	28	476.4	476.0
100	8 .	15	. 557.5	557.3
101	5	10	543.5	543.3
102	5	9	526.5	526.3
103	5	8	538.5	538.1
104	5	10	516.5	516.3
105	5	10	542.6	. 542.3
106	8	16	514.4	514.2
107	2	5	486.4	486.2
. 108	4	9	478.4	484.3
109	4	7	544.5	544.2
110	11	20	546.5	546.3
111	3	5	560.5	560.3
112	10	20	517.5	517.2
113	12	22	530.5	531.3
114	10	21	471.4	471.1
115	3	5	532.5	532.3
116	7	14	472.4	473.3
117	10	18	516.5	516.3
·118	9	18	502.5	502.0
119	7	14	543.5	543.3
120	. 3	6	486.4	486.3
121	- 4	8	502.5	502.3
122	10	19	528.5	528.2
123	7	14	502.5	502.0
124	9	18	488.5	488.2

125	7	13	570.6	570.2
126	. 33	70	472.4	473.3
127	20	38	542.6	543.3
128	33	60	545.6	545.3
129	24	. 47	516.5	517.3
130	31	56	545.6	545.4
131	28	55	502.5	503.3
132	32	70	460.4	461.2
133	2.3	45	518.5	519.3
134	. 25	48	530.5	531.3
135	23	. 45	502.5	503.3
136	23	44	518.5	519.3
137	19	37	520.5	521.3
138	16	30	528.5	529.3
139	19	36	528.5	529.3
140	33	70	470.4	471.3
141	19	. 34	556.6	557.4
142	15	. 30	517.5	517.3
143	17	34	488.5	489.3
144	20	41	488.5	489.3
145	20	41	488.5	489.3
146	7	14	516.5	517.3
147	22	41	531.5	529.3
148	17	30	559.5	559.3
149	16	34	474.4	475.2
150	21	41	500.5	501.3
151	15	29	514.5	515.3
152	9	. 18	504.5	505.3
153	34	58	573.6	573.4
154	28	-56	504.5	504.3
155	35	61	571.6	571.4
156	31	59	529.5	529.3

157 28 48 587.6 587.4 158 20 36 546.5 547.3 159 3 6 500.5 500.2 160 2 3 502.4 502.3 161 2 4 528.5 528.2 162 1 2 516.5 516.3 163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3	•				
159 3 6 500.5 500.2 160 2 3 502.4 502.3 161 2 4 528.5 528.2 162 1 2 516.5 516.3 163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21	157	28	48	587.6	587.4
160 2 3 502.4 502.3 161 2 4 528.5 528.2 162 1 2 516.5 516.3 163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5	158	20	36	546.5	547.3
161 2 4 528.5 528.2 162 1 2 516.5 516.3 163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 178 5	159	3	6	500.5	500.2
161 2 4 528.5 528.2 162 1 2 516.5 516.3 163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6	160	2.	3	502.4	502.3
163 1 2 532.5 532.3 164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9	161	2	4	528.5	528.2
164 2 4 517.5 517.3 165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	162	1	2	516.5	516.3
165 36 71 503.4 503.3 166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	163	1 .	2	532.5	532.3
166 19 38 489.4 489.2 167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	164	2	4	517.5	517.3
167 6 10 550.5 550.3 168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	165	36	71	503.4	503.3
168 3 6 503.4 503.3 169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	166	19	38	489.4	489.2
169 2 4 485.4 485.2 170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	167	6	10	550.5	550.3
170 1 2 502.5 502.1 171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	168	3	6	503.4	. 503.3
171 2 3 508.9 508.1 172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	169	2	4	485.4	485.2
172 4 6 559.6 559.3 173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	170	1	2	502.5	502.1
173 3 6 502.5 502.0 174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	171	2	3	508.9	508.1
174 22 37 589.6 589.4 175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	172	4	6	559.6	559.3
175 21 35 603.6 603.3 176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	173	3	6	502.5	502.0
176 5 10 523.5 523.2 177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	174	22	37	589.6	589.4
177 6 12 523.5 523.2 178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	175	21	35	603.6	603.3
178 5 10 523.5 523.2 179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	176	5	10	523.5.	
179 5 11 504.5 504.3 180 7 14 508.5 508.2 181 2 3 520.9 520.2	177	6	12	523.5	
180 7 14 508.5 508.2 181 2 3 520.9 520.2	178	5	10	523.5	523.2
181 2 3 520.9 520.2	179	. 5	11	504.5	504.3
	180	7	14	508.5	508.2
182 2 3 488.5 488.2	181	2	3	520.9	520.2
	182	2	3	488.5	488.2
183 4 7 538.5 538.1	183	4	7	538.5	538.1
184 821 100 400.5 401.2	184	821	100	400.5	401.2
185 34 4 398.5 399.2	185	34	4	398.5	399.2
186 7 29 395.5 396.3	186	7	29	395.5	396.3
187 1 3 428.6 429.2	187	1	3	428.6	429.2
188 2 9 426.6 427.2	188	2	9	426.6	427.2

189	4	1	412.5	413.2
190	3 ,	1	440.6	441.2
191	822	91	400.5	401.2
192	34	4	398.6	399.2
193	7	29	395.6	396.3
194	1	3	428.5	429.2
195	2	10	426.6	427.2
196	7	18	499.0	500.4
197	871	41	428.0	429.2

[Example 1-6-1]

Synthesis of [1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-(1-ethyl-1H-benzimidazol-2-yl)-amine

After dissolving (1H-benzimidazol-2-yl)-[1-(3,4dichloro-benzyl)-piperidin-4-ylmethyl]-amine (20 mg, 0.05 mmol) in dimethylformamide (1 ml), ethyl bromide (0.075 mmol) and sodium hydride (0.1 mmol) were added, and the mixture was stirred at room temperature for 3 hours and 30 minutes. Ice and diluted hydrochloric acid were added to the reaction mixture to suspend the reaction, and the solution was passed through SCX (Bond Elute SCX500MG). SCX was washed with methanol and elution was performed with a 2N ammonia-methanol solution, after which the obtained eluate was distilled off under reduced pressure. residue was purified by thin-layer silica gel chromatography (hexane/ethyl acetate/dichloromethane/methanol = 60/25/10/5) to obtain [1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-(1-ethyl-1Hbenzimidazol-2-yl)-amine and [1-(3,4-dichloro-benzyl)piperidin-4-ylmethyl]-ethyl-(1-ethyl-1H-benzimidazol-2-yl)amine. The compounds were identified by LC-MS. Yield: 5.8 mg (28%), Purity: 100%, Found: ESI/MS m/e 417.0 (M+1).

[Example 1-6-2]

Compound No. 1-6-2, [1-(3,4-dichloro-benzyl)-piperidin-4-ylmethyl]-ethyl-(1-ethyl-1H-benzimidazol-2-yl)-amine, was synthesized in the same manner as Example 1-6-1, using the corresponding starting materials.

Yield: 7.7 mg (35%), Purity: 100%, Found: ESI/MS m/e 445.1(M+1).

[Example 1-6-3 to Example 1-6-15]

Compound Nos. 1-6-3 to 1-6-15 were synthesized in the same manner as Example 1-6-1, using the corresponding starting materials. The results are shown in Table 14.

Table 14

Compound No.1-6-	Yield (mg)	Yield (%)	MW	M+1
1	6	2.8	417.4	417.0
2	8	35	445.4	445.1
3	15	52	569.6	569.3
4	6	23	479.5	479.3
5	. 6	20	557.6	557.2
6	6	26	473.5	473.1
7	1	3	625.7	625.4
8	9	34	507.5	507.3
9	2	7	461.4	461.2
10	6	24	517.5	517.2
· 11	-3	13	446.4	446.2
12	. 3	15	460.4	, 460.1
13	8	33	461.4	461.2
14	4	20	442.4	443.1
15	6	24	489.4	489.2

<Synthesis of quinazolinone derivatives (1)>

[Reference Example 2-1]

Synthesis of {1-[(3,4-dichlorophenyl)methyl]-4piperidyl}methylamine

After dissolving 4-aminomethylpiperidine (13.7 g, 120 mmol) in acetonitrile (200 ml), potassium carbonate (11.057 g, 80 mmol) and 3,4-dichlorobenzyl chloride (7.818 g, 40 mmol) were added and the mixture was stirred at 60°C overnight. After completion of the reaction, the reaction mixture was filtered and the solvent was distilled off. Purification was performed by silica gel column chromatography (dichloromethane/methanol/triethylamine = 90/5/5) to obtain {1-[(3,4-dichlorophenyl)methyl]-4-piperidyl}methylamine. The compound was identified by LC-MS.

Yield: 10.8 g (quantitative, M+1 = 273.1.

[Reference Example 2-2]

Synthesis of N-{[({1-[(3,4-dichlorophenyl)methyl](4-piperidyl)}methyl)amino]thioxomethyl}(fluoren-9-ylmethoxy)carboxamide

After dissolving {1-[(3,4-dichlorophenyl)methyl]-4-piperidyl}methylamine (1325 mg, 4.84 mmol) in tetrahydrofuran (20 ml), FmocNCS (9-fluorenylmethoxycarbonyl isothiocyanate) (1498 mg, 5.32 mmol) was added, and the mixture was stirred at room temperature overnight. After completion of the reaction, the reaction mixture was concentrated and purified by silica gel column chromatography (hexane/ethyl acetate = 85/15) to obtain N-{[({1-[(3,4-dichlorophenyl)methyl](4-piperidyl)}methyl)amino]thioxomethyl}(fluoren-9-ylmethoxy)carboxamide. The compound was identified by LC-MS.

Yield: 2624 mg (98%), M+1 = 554.1.
[Reference Example 2-3]

Synthesis of amino[({1-[(3,4-dichlorophenyl)methyl](4-piperidyl)}methyl)amino]methane-1-thione

After dissolving $N-\{[(\{1-[(3,4$ dichlorophenyl)methyl](4-piperidyl)}methyl)amino] thioxomethyl)(fluoren-9-ylmethoxy)carboxamide (553 mg, 1 mmol) in DMF (4 ml), piperidine (0.989 ml, 10 mmol) was added and the mixture was stirred at room temperature Upon completion of the reaction, water (20 ml) overnight. was added and extraction was performed with ethyl acetate (20 ml \times 3 times). The extracted organic layer was washed with water (100 ml \times 2 times) and then with saturated brine, dried over anhydrous sodium sulfate, and then filtered and Purification was performed by silica gel concentrated. column chromatography (ethyl acetate/methanol = $1/0 \rightarrow 4/1$) to obtain amino[({1-[(3,4-dichlorophenyl)methyl](4piperidyl) } methyl) amino] methane-1-thione. The compound was identified by LC-MS.

Yield: 284 mg (86%), M+1 = 332.0.

[Reference Example 2-4]

Synthesis of ({1-[(3,4-dichlorophenyl)methyl](4-piperidyl)}methyl)(iminomethylthiomethyl)amine

After dissolving amino[({1-[(3,4-dichlorophenyl)methyl](4-piperidyl)}methyl)amino]methane-1-thione (148 mg, 0.446 mmol) in tetrahydrofuran (5 ml), methyl iodide (71 mg, 0.491 mmol) was added and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the mixture was concentrated and dried under reduced pressure in a desiccator to obtain ({1-[(3,4-dichlorophenyl)methyl](4-

piperidyl) methyl) (iminomethylthiomethyl) amine. The compound was identified by LC-MS.

Yield: 211 mg (quantitative), M+1 = 346.1.

[Example 2-1]

Synthesis of 2-[({1-[(3,4-dichlorophenyl)methyl]-4-piperidyl}methyl)amino]hydroquinazolin-4-one

After dissolving ($\{1-[(3,4-\text{dichlorophenyl})\text{methyl}](4-)$ piperidyl) methyl) (iminomethylthiomethyl) amine (70 mg, 0.148 mmol) and isatoic anhydride (27 mg, 0.163 mmol) in DMF (1.5 ml), the mixture was stirred at 80°C for 2 hours. A 2N aqueous sodium hydroxide solution (1 ml) was added to suspend the reaction. Water (15 ml) was added, and extraction was performed with ethyl acetate (15 ml x 3 times). The extracted organic layer was washed with water (50 ml x 2 times) and then with saturated brine, dried over anhydrous sodium sulfate, and then filtered and concentrated. Purification was performed by silica gel column chromatography (ethyl acetate/methanol = $1/0 \rightarrow 4/1$) to obtain $2-[(\{1-[(3,4-\text{dichlorophenyl})\text{methyl}]-4-\text{piperidyl}\text{methyl})\text{amino}]\text{hydroquinazolin-4-one}$. The compound was identified by LC-MS.

Yield: 27 mg (44%), M+1 = 417.1.

[Examples 2-2 and 2-3]

Compound Nos. 2-2 and 2-3 were synthesized by the same method as Example 2-1, using the corresponding reactants. The results are shown in Table 15.

<Synthesis of quinazolinone derivatives (2)>

[Reference Example 2-5]

Synthesis of 2-methylthiohydroquinazolin-4-one

After dissolving 2-mercapto-4(3H)quinazolinone (25 mmol, 4.45 g) in a mixed aqueous solution of water (100 ml) and 2N NaOH (1.1 eq, 14 ml), MeI (1.1 eq, 1.72 ml) was added and the mixture was stirred at room temperature for 2 hours and 30 minutes. Upon completion of the reaction, the mixture was filtered, 180 ml of water was added for washing, and drying was performed in a desiccator for 4 hours. The compound was identified by LC-MS.

quantitative yield, Yield: 5.5 g, M+1 = 192.9.

[Example 2-4]

Synthesis of 2-({[1-(naphthylmethyl)-4-piperidyl]methyl}amino)hydroquinazolin-4-one

After dissolving [1-(naphthylmethyl)-4-piperidyl]methylamine (4.4 mmol, 1122 mg) in DMA (15 ml), NEt₃ (1.5 eq, 920 µL) and 2-methylthiohydroquinazolin-4-one (2 eq, 1690 mg) were added. The mixture was stirred at 100°C overnight, and upon completion of the reaction, it was extracted with ethyl acetate (50 ml x 3 times), washed with water (150 ml x 2 times), and dried over sodium sulfate. After concentration, purification was performed by column chromatography (Hex/AcOEt = 1/9, AcOEt x 2). The compound was identified by LC-MS.

Yield: 159 mg (10%), M+1 = 399.3.

<Synthesis of quinazolinone derivatives (3)>

Synthesis of [2-[(4-piperidylmethyl)amino]hydroquinazolin-

4-one hydrochloride

[Reference Example 2-6]

Preparation of 1-Boc-4-aminomethylpiperidine

After dissolving 4-aminomethylpiperidine (10.0 g, 87.6 mmol) in toluene (175 mL), benzaldehyde (8.90 mL, 87.6 mmol) was added, a Dean-Stark trap was fitted, and the mixture was heated to reflux for 1 hour. The reaction mixture was cooled to room temperature, and then di-t-butyl dicarbonate (20.1 mL, 87.6 mmol) was added in 4 portions over a period of one hour, and the mixture was stirred overnight. The reaction mixture was concentrated under reduced pressure, and then aqueous potassium hydrogen sulfate (1:0 M, 140 mL, 140 mmol) was added to the resulting residue in an ice bath and the mixture was stirred for 2 hours. The aqueous solution was washed with diethyl ether (100 mL), and 1N aqueous sodium hydroxide was

added to adjust the pH to approximately 7. This aqueous solution was washed with ethyl acetate (200 mL), and then a 1N aqueous sodium hydroxide solution was added to adjust the pH to approximately 12 and extraction was performed with ethyl acetate (100 mL x 3 times). The obtained organic layer was washed with saturated brine and then dried over anhydrous sodium sulfate. It was then concentrated under reduced pressure, and vacuum dried. The compound was identified by LC-MS.

Yield: 16.04 g (85%), M+23 = 237.1.

[Reference Example 2-7]

Synthesis of [({[fluoren-9-ylmethoxy]carbonylamino} thioxomethyl)amino]methyl]piperidinecarboxylic acid tert-butyl ester

After dissolving 1-Boc-4-aminomethylpiperidine (2140 mg, 10 mmol) in tetrahydrofuran (25 ml), FmocNCS (3091 mg, 11 mmol) was added and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the reaction mixture was concentrated, and then purified by silica gel column chromatography (hexane/ethyl acetate = $85/15 \rightarrow 4/1$) to obtain [({[fluoren-9-ylmethoxy]carbonylamino}thioxomethyl)amino]methyl] piperidinecarboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 4445 mg (90%), M+1 = 496.2.

[Reference Example 2-8]

Synthesis of 4-{[(aminothioxomethyl)amino]methyl} piperidinecarboxylic acid tert-butyl ester

After dissolving ({[fluoren-9-ylmethoxy]carbonylamino}thioxomethyl)amino]methyl]
piperidinecarboxylic acid tert-butyl ester (2000 mg, 4.04 mmol) in DMF (20 ml), piperidine (7.99 ml, 80.8 mmol) was added and the mixture was stirred at room temperature

overnight. Upon completion of the reaction, water (100 ml) was added and extraction was performed with ethyl acetate (100 ml x 3 times). The extracted organic layer was washed with water (300 ml x 2 times) and saturated brine, and then dried over anhydrous sodium sulfate, filtered out and concentrated. Purification was performed by silica gel column chromatography (hexane/ethyl acetate = 1/1 → ethyl acetate) to obtain 4-{[(aminothioxomethyl)amino]methyl} piperidinecarboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 1075 mg (98%), M+1 = 274.1.

[Reference Example 2-9]

Synthesis of 4-{[(iminomethylthiomethyl)amino]methyl} piperidinecarboxylic acid tert-butyl ester hydroiodide

After dissolving 4-{[(aminothioxomethyl)amino]methyl} piperidinecarboxylic acid tert-butyl ester (1075 mg, 3.94 mmol) in tetrahydrofuran (30 ml), methyl iodide (616 mg, 4.33 mmol) was added and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the mixture was concentrated and dried under reduced pressure in a desiccator to obtain 4-

{[(iminomethylthiomethyl)amino]methyl}piperidinecarboxylic acid tert-butyl ester hydroiodide. The compound was identified by LC-MS.

Yield: 1597 mg (98%), M+1 = 288.1.

[Reference Example 2-10]

Synthesis of 4-{[(4-oxohydroquinazolin-2-

yl)amino]methyl}piperidinecarboxylic acid tert-butyl ester

After dissolving 4-

{[(iminomethylthiomethyl)amino]methyl}piperidinecarboxylic acid tert-butyl ester hydroiodide (1722 mg, 4.15 mmol) in DMF (20 ml), triethylamine (0.868 ml, 6.23 mmol) and isatoic anhydride (2029 mg, 12.45 mmol) were added, and the

mixture was stirred at 80°C for 2 hours. A 2N aqueous sodium hydroxide solution (10 ml) was added to suspend the reaction. Water (100 ml) was then added, and extraction was performed with ethyl acetate (100 ml x 3 times). The extracted organic layer was washed with water (100 ml x 2 times) and then with saturated brine, and was then dried over anhydrous sodium sulfate, filtered and concentrated. Purification was performed by silica gel column chromatography (hexane/ethyl acetate = $1/1 \rightarrow 1/2$) to obtain $4-\{[(4-\text{oxohydroquinazolin-}2-\text{yl})\text{amino}]\text{methyl}\}$ piperidinecarboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 685 mg (46%), M+1 = 359.1.

[Reference Example 2-11]

Synthesis of 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride

After dissolving 4-{[(4-oxohydroquinazolin-2-yl)amino]methyl}piperidinecarboxylic acid tert-butyl ester (685 mg, 1.91 mmol) in methanol (5 ml), 4N hydrochloric acid dioxane (5 ml) was added and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the mixture was concentrated and dried under reduced pressure in a desiccator to obtain 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride. The compound was identified by LC-MS.

Yield: 581 mg (quantitative), M+1 = 259.1.

Synthesis of [2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one

[Reference Example 2-12]

Synthesis of (1-benzyl-4-piperidyl) methylamine

After dissolving 4-aminomethylpiperidine (5.754 ml, 50 mmol) in acetonitrile (200 ml), potassium carbonate (13.82 g, 100 mmol) and benzyl chloride (17.13 g, 150 mmol)

were added and the mixture was stirred at 60°C overnight. Upon completion of the reaction, the reaction mixture was filtered and the solvent was distilled off. A developing solvent $(\text{CH}_2\text{Cl}_2/\text{MeOH/NEt}_3 = 90/5/5)$ was used for purification by silica gel column chromatography to obtain (1-benzyl-4-piperidyl) methylamine. The compound was identified by LC-MS.

Yield: 9.277 g (91%), M+1 = 205.2.

[Reference Example 2-13]

Synthesis of 2-({[1-benzyl-4-

piperidyl]methyl}amino)hydroquinazolin-4-one

The (1-benzyl-4-piperidyl)methylamine was used to synthesize 2-({[1-benzyl-4-

piperidyl]methyl}amino)hydroquinazolin-4-one in the same manner as Reference Examples 2-7 (Yield: 84%), 2-8 (Yield: 73%), 2-9 (quantitative yield) and 2-10 (Yield: 73%).

[Reference Example 2-14]

Synthesis of 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one

After dissolving 2-({[1-benzyl-4-piperidyl]methyl}amino)hydroquinazolin-4-one (880 mg, 2.53 mmol) in methanol (80 mL), nitrogen substitution was carried out. Palladium hydroxide (100 mg) was added and the mixture was stirred at 60°C for 4 hours under a hydrogen atmosphere. The reaction mixture was cooled to room temperature, nitrogen substitution was carried out, and filtration was performed through celite. The filtrate was concentrated under reduced pressure to obtain 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one. The compound was identified by LC-MS.

Yield: 588 mg (86%), M+1 = 259.1.

[Example 2-5]

Synthesis of $2-[({1-[(2-chlorophenyl)methyl]-4-}]$

piperidyl}methyl)amino]hydroquinazolin-4-one

After dissolving 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride (0.1 mmol, 33 mg, Reference Example 2-11) or 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one (0.1 mmol) in DMF/acetic acid (10/1, 1 ml), 2-chlorobenzaldehyde (0.3 mmol, 0.034 ml) and NaBH(OAc)₃ (0.3 mmol, 64 mg) were added and the mixture was stirred at room temperature overnight. Next, 1 ml of MeOH was added to suspend the reaction. The reaction mixture was then poured into SCX (Bond Elute SCX500MG). After washing with CHCl₃/MeOH (= 1/1, 5 ml x 2 times), elution was performed with 5 ml of a 2N NH₃/MeOH solution. A centrifugal concentrator was used for distilling off of the solvent to obtain 2-[({1-[(2-chlorophenyl)methyl]-4-piperidyl}methyl)amino] hydroquinazolin-4-one.

Yield: 15 mg (39%), Purity: 92-96% M+1 = 383.1.

[Examples 2-6 to 2-30, Examples 2-186 to 2-200]

Compound Nos. 2-6 to 2-30 and Compound Nos. 2-186 to 2--200 were synthesized by the same method as Example 2-5, using the corresponding reactants. The results are shown in Table 15.

Synthesis of [2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride analogs

[Reference Example 2-15]

Synthesis of 2-amino-5-(methoxycarbonyl)benzoic acid

After dissolving 2-amino-5-iodobenzoic acid (4 mmol, 1052~mg) in DMF (10 ml) and MeOH (5 ml), NEt $_3$ (3 eq, 1.67 ml) was added. Next, palladium acetate (0.1 eq, 90 mg) and dppp (0.1 eq, 165 mg) were added, carbon monoxide substitution was carried out, and the mixture was stirred at 80°C for 5 hours. Upon completion of the reaction, acetic acid (2.5 ml) was added to suspend the reaction.

Water (50 ml) was added, and extraction was performed with ethyl acetate (50 ml x 3 times). The organic layer was washed with water (100° ml x 2 times) and then dried over sodium sulfate. After concentration, a developing solvent ($\text{Hex/AcOEt} = 4/1 \rightarrow 1/1$) was used for purification by silica gel chromatography to obtain 2-amino-5- (methoxycarbonyl)benzoic acid. The compound was identified by LC-MS.

Yield: 618 mg (79%), M+1 = 196.0.

<Synthesis of substituted isatoic anhydrides (1)>

[Reference Example 2-16]

Synthesis of 2-(Boc)amino-6-chlorobenzoic acid

After dissolving 2-amino-6-chlorobenzoic acid (1.13 g, 6.59 mmol) in tetrahydrofuran (5.0 mL), a solution of sodium bistrimethylsilylamide/1.0 M in THF (19.8 mL, 19.8 mmol) was added dropwise. After stirring this mixture for 15 minutes, a solution of (Boc)₂O (1.82 mL, 7.91 mmol) in tetrahydrofuran (2.0 mL) was added dropwise, and the mixture was stirred for 3 hours. Water (20 mL) and 1N hydrochloric acid (about 25 mL) were added to the reaction mixture to adjust the pH to approximately 4. It was then extracted with ethyl acetate (40 mL \times 3 times), and the obtained organic layer was washed with water (50 mL \times 2 times) and saturated brine (50 mL), and then dried over anhydrous magnesium sulfate. The dried product was concentrated under reduced pressure to obtain a concentrated residue, which was then purified by silica gel column chromatography (methylene chloride:methanol:acetic acid = 95:5:1) to obtain 2-(Boc)amino-6-chlorobenzoic acid. The compound was identified by LC-MS and NMR.

Yield: 1.62 g (90%), M+23 = 294.0.

 1 H-NMR (270 MHz, CDCl₃): $\delta 8.40(1H,s)$, 8.04(1H,d,J=8.2Hz), 7.35(1H,t,J=8.2 Hz), 7.13(1H,d,J=8.2 Hz), 1.52(9H,s) ppm.

The following intermediates were synthesized by the same method as Reference Example 2-16, using the corresponding reactants.

2-(Boc) amino-3-chlorobenzoic acid: Yield = 3.58 g (70%), M+23 = 294.0.

2-(Boc)amino-5-methoxycarbonylbenzoic acid: Yield = 988 mg (49%), M+1 = 296.1.

[Reference Example 2-17]

Synthesis of 5-chloroisatoic anhydride

After suspending 2-(Boc)amino-6-chlorobenzoic acid (1.51 g, 5.56 mmol) in toluene (20 mL), the mixture was heated to reflux. Oxalyl chloride (0.572 mL, 6.67 mmol) was added dropwise thereto, and the mixture was vigorously stirred for 10 minutes. After cooling the reaction mixture on ice, the precipitated crystals were filtered out, washed with n-hexane and dried in a desiccator to obtain 5-chloroisatoic anhydride.

Yield: 769 mg (70%), M+1 = 198.0.

 1 H-NMR (270 MHz, DMSO-d6): δ 11.8(1H,s), 7.65(1H,t,J=8.2Hz), 7.30(1H,d,J=8.2Hz), 7.10(1H,d,J=8.2Hz) ppm.

The following intermediates were synthesized by the same method as Reference Example 2-17, using the corresponding reactants.

8-Chloroisatoic anhydride: Yield = 1.42 g (55%), M+1 = 197.9.

6-Methoxycarbonylisatoic anhydride: Yield = 397 mg (57%), M+1 = 222.0.

6-Trifluoromethylisatoic anhydride: Yield = 1.52 g (50%), M+1 = 232.0.

<Synthesis of substituted isatoic anhydrides (2)>
 [Reference Example 2-18]

Synthesis of 6-(trifluoromethoxy)isatoic anhydride

After dissolving 5-(trifluoromethoxy)anthranilic acid

(2.221 g, 10.04 mmol) in THF (25 mL), triphosgene (1.08 g) was added and the mixture was stirred at room temperature overnight. Upon completion of the reaction, the solvent was removed and the residue was dried under reduced pressure. It was then washed with acetone and hexane, and subsequently dried under reduced pressure in a desiccator to obtain 6-(trifluoromethoxy)isatoic anhydride. The compound was identified by LC-MS.

Yield: 1.516 g (61%), M+1 = 248.0.

The following intermediates were synthesized in the same manner as Reference Example 2-18 using the corresponding reactants.

6-Nitroisatoic anhydride: Yield = 0.889 g (43%), M+1 = 208.9.

6-Methylisatoic anhydride: Yield = 1.251 g (70%), M+1 = 178.0.

5-Carboxylisatoic anhydride: Yield = 1.352 g (65%), M+1 = 208.0.

6-Fluoroisatoic anhydride: M+1 = 182.0.

6-Hydroxyisatoic anhydride: M+1 = 180.0.

6-Methoxyisatoic anhydride: M+1 = 194.0.

5-Methylisatoic anhydride: M+1 = 178.0.

6-Acetamideisatoic anhydride: Yield = 0.4 g (9%),

 $^{1}H-NMR$ (200 MHz, DMSO): $\delta 2.05(s,3H)$, 7.05(d,1H),

7.85(dd,1H), 8.25(d,1H), 10.15(s,1H).

<Synthesis of substituted isatoic anhydrides (3)>

[Reference Example 2-19]

Synthesis of N-(3,4-dimethylphenyl)-2-hydroxyimino-acetamide

To a mixed solution comprising a solution of chloral (73.8 g, 0.41 mol) and sodium sulfate (1066 g) in water (2.5 ml) and a solution of 3,4-dimethylamine (50 g, 0.41 mol) and concentrated hydrochloric acid (35.4 ml) in water

(600 ml) there was added a solution of hydroxylamine (90 g, 0.41 mmol) in water (500 ml), and the mixture was stirred for one hour while heating to reflux. The obtained hot solution was filtered, and the obtained precipitate was washed with water and dichloromethane to obtain N-(3,4-dimethylphenyl)-2-hydroxylimino-acetamide.

Yield: 63 g (80%).

[Reference Example 2-20.]

Synthesis of 4,5-dimethyl-1H-indole-2,3-dione

To a solution of concentrated sulfuric acid (85 ml) in water (17 ml) there was slowly added N-(3,4-dimethylphenyl)-2-hydroxyimino-acetamide (30 g, 0.156 mmol), and the mixture was stirred at 85°C for 2 hours. The obtained solution was poured into ice water, and the precipitated orange solid was filtered out. The obtained solid was dissolved in 10% aqueous sodium hydroxide, active carbon was added, and the mixture was stirred. The obtained solution was filtered, and acetic acid was used for acidification to obtain 4,5-dimethyl-1H-indole-2,3-dione as crystals.

Yield: 9.8 g (30%)

 $^{1}H-NMR$ (200 MHz, DMSO-d6): 2.25(s,3H), 2.55(s,3H),

6.95(d,2H), 7.50(d,2H), 10.55(bs,1H)

[Reference Example 2-21]

Synthesis of 6-amino-2,3-dimethylbenzoic acid

A solution of 4,5-dimethyl-1H-indole-2,3-dione (9.8 g, 0.056 mmol) and sodium hydroxide (8.1 g, 0.2 mol) in water (80 ml) was heated to 85°C, and then 10% aqueous hydrogen peroxide (43 ml) was slowly added. The obtained solution was stirred at 85°C for 2 hours and then cooled to room temperature and filtered. Sulfuric acid was used for acidification of the filtrate to obtain 6-amino-2,3-dimethylbenzoic acid as crystals.

```
Yield: 3.6 g (38%)
^{1}H-NMR (200 MHz, DMSO-d6): 2.05(s,3H), 2.15(s,3H),
6.50(d,2H), 6.92(d,2H)
      [Reference Example 2-22]
Synthesis of 5,6-dimethylisatoic anhydride
      5,6-Dimethylisatoic anhydride was synthesized by the
same method as Reference Example 2-18 using 6-amino-2,3-
dimethylbenzoic acid (1 g, 6 mmol).
Yield: 500 mg (92%)
^{1}H-NMR (200, DMSO): 2.25(s,3H), 2.55(s,3H), 6.92(d,2H),
7.50(d,2H), 10.65(bs,1H)
      The following isatoic anhydrides were synthesized by
the same method as Reference Examples 2-19 to -22, using
the corresponding reactants.
5-Methyl-6-fluoroisatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 2.45(s,3H), 6.75(dd,1H),
7.45 (dd, 1H), 11.0 (bs, 1H).
5-Methyl-6-bromoisatoic anhydride:
^{1}H-NMR (200, DMSO): 2.75(s,3H), 6.85(d,1H), 7.95(d,1H),
10.75 (bs, 1H)
6-(N,N-dimethylaminosulfonyl)isatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 2.65(s,6H), 7.35(d,1H),
8.05(s,1H), 8.15(d,1H), 11.2(bs,1H)
6-Methoxy-7-methylisatoic anhydride:
M+1 = 208.0
5-Methyl-6-methoxyisatoic anhydride:
M+1 = 208.0
6,7-Dimethylisatoic anhydride:
^{1}H-NMR (200, DMSO): 2.24(s,3H), 2.29(s,3H), 6.91(s,1H),
7.66(s,1H), 10.60(bs,1H).
5,7-Dimethylisatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 6.91(s,1H), 6.79(s,1H),
2.56(s,3H), 2.32(s,3H)
```

```
6-Ethylisatoic anhydride:
<sup>1</sup>H-NMR (200, DMSO): 7.73(s,1H), 7.65(d,1H), 7.09(d,1H),
2.64(q,2H),1.18(t,3H)
6-Ethoxyisatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 1.35(t,3H), 4.05(q,2H),
7.05(d,1H), 7.35(d,1H), 7.45(dd,1H), 10.5(bs,1H)
5-Methyl-8-fluoroisatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 2.56(s,3H), 7.05(dd,1H),
7.55 (dd, 1H)
5,8-Dimethylisatoic anhydride:
^{1}H-NMR (200 MHz, DMSO-d6): 2.27(s,3H), 2.56(s,3H),
7.00(d,1H), 7.45(d,1H)
6-Isopropylisatoic anhydride:
<sup>1</sup>H-NMR (200, DMSO): 7.73(s,1H), 7.65(d,1H), 7.10(d,1H),
2.95(h,1H), 1.20(d,6H)
6-Sulfonylphenylisatoic anhydride:
<sup>1</sup>H-NMR (200 MHz, DMSO-d6): 7.35(d,1H), 7.65(m,3H),
8.00 (m, 2H), 8.25 (dd, 1H), 8.35 (d, 1H), 11.30 (s, 1H)
<Synthesis of substituted isatoic anhydrides (4)>
       [Reference Example 2-23]
```

Synthesis of 2-amino-5-methylsulfanylbenzoic acid

A 4N aqueous sodium hydroxide solution (42 m) was added to an aqueous solution (500 ml) containing 5-chloro-2-nitrobenzoic acid (50 g, 0.25 mmol). After adding a solution of Na_2S (66 g, 0.8 mol) in water (150 ml) to the obtained solution, the mixture was stirred at 55°C for 2.5 Next, a 20% aqueous sodium hydroxide solution (50 ml) and dimethylsulfuric acid (63 ml, 0.66 mmol) were added to the solution, and the mixture was stirred at 80°C for 1 hour. Hydrochloric acid was added to the resulting solution, and the separated precipitate was filtered out and washed with ether to obtain 2-amino-5methylsulfanylbenzoic acid.

Yield: 14 g (26%)

[Reference Example 2-24]

Synthesis of 2-amino-5-methylsulfonylbenzoic acid

m-Chloroperbenzoic acid (42.7 g, 0.165 mmol) was added to a solution of 2-amino-5-methylsulfanylbenzoic acid (12 g, 0.055 mol) in dichloromethane and acetone, and the mixture was stirred at room temperature for 3 hours. The precipitated solid was filtered out and washed with ether and dichloromethane to obtain 2-amino-5-methylsulfonylbenzoic acid.

Yield: 4 g (30%)

 $^{1}H-NMR$ (200 MHz, DMSO-d6): 3.15(s,3H), 6.95(dd,1H),

7.55(bs,2H), 7.77(dd,1H), 8.25(d,1H)

[Reference Example 2-25]

Synthesis of 6-methanesulfonylisatoic anhydride

6-Methanesulfonylisatoic anhydride was synthesized by the same method as Reference Example 11 using 2-amino-5-methylsulfonylbenzoic acid (2 g, 9.6 mmol).

Yield: 1500 mg (66%)

 $^{1}H-NMR$ (200 MHz, DMSO-d6): 3.35(s,3H), 7.35(d,1H),

8.25 (dd, 1H), 8.35 (d, 1H), 9.90 (s, 1H)

[Reference Example 2-26]

Synthesis of 2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride analogs

The following intermediates were synthesized in the same manner as Reference Example 2-10 and Reference Example 2-11, for the isatoic anhydrous synthesized by Reference Example 2-17 or 2-18.

5-Chloro-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

8-Chloro-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Methoxycarbonyl-2-[(4-

piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Trifluoromethyl-2-[(4-

piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Trifluoromethoxy-2-[(4-

piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Nitro-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Methyl-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

5-Methoxycarbonyl-2-[(4-

piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Fluoro-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Hydroxy-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

6-Methoxy-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

5-Methyl-2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride.

[Examples 2-201 to 2-250, 499, 511, 513, 565]

Compound Nos. 2-201 to 2-250, 499, 511, 513 and 565 were synthesized by the same method as Example 2-5, using the corresponding synthesized 2-[(4-

piperidylmethyl)amino]hydroquinazolin-4-one hydrochloride analogs and reactants of Reference Examples 2-15 to 2-19. The results are shown in Table 15.

Synthesis of 3-N-alkylquinazolinone derivatives

[Reference Example 2-27]

Synthesis of 4-({[(methylamino)thioxomethyl]amino}methyl)
piperidine carboxylic acid tert-butyl ester

After dissolving 1-Boc-4-aminomethylpiperidine (642 mg, 3 mmol) in THF (8 ml), methyl isothiocyanate (241 mg, 3.3 mmol) was added and the mixture was stirred at room

temperature overnight. Upon completion of the reaction, purification was performed by silica gel column chromatography (Hex/AcOEt = 1/4) to obtain 4- ({[(methylamino)thioxomethyl]amino}methyl)piperidine carboxylic acid tert-butyl ester. The compound was identified by LC-MS.

Yield: 839 mg (98%), M+1 = 288.1.

[Reference Example 2-28]

Synthesis of 3-methyl-2-[(4-piperidylmethyl)amino]-3-hydroquinazolin-4-one hydrochloride

3-Methyl-2-[(4-piperidylmethyl)amino]-3-hydroquinazolin-4-one hydrochloride was synthesized in the same manner as Reference Example 2-9 (Yield: 1171 mg (94%)), Reference Example 2-10 (Yield: 331 mg (33%)) and Reference Example 2-11 (Yield: 116 mg, quantitative).

Yield: 116 mg (quantitative), M+1 = 273.1.

[Examples 2-492 to 2-495]

Compound Nos. 2-492 to 2-495 were synthesized by the same method as Example 2-5, using the corresponding reactants for the compounds synthesized by Reference Examples 2-20 and 2-21. The results are shown in Table 15.

Table 15

Compound No. 2-	Yield (mg)	Yield (%)	MW	M+1
1	270	44	416.1	417.1
2	25.0	38	450.1	453.2 (Cl x 3)
3	4.1	6	432.2	433.2
4	159.0	10	398.2	399.3
5	15.0	39 ·	382.1	383.1
6	21.0	55	382.1	383.1
7	25.0	65	382.1	383.1
8	23.3	92	378.2	379.1
.9	36.0	100	378.2	379.1
10	22.6	. 97	376.2	377.2
11	23.2	97	398.2	399.1
12	25.3	95	442.1	443.0
13	27.7	100	456.1	458.1 (Br)
14	19.3	72	444.1	445.0
15	24.8	97	426.1	427.1
16	23.3	90	432.1	433.1
17	23.3	97	400.1	401.1
18	24.3	90	401.2	402.2
19	29.1	100	404.2	405.2
20	11.9	50	394.2	395.2
21	13.1	55	393.2	394.2
22	12.1	53	378.2	379.2
23	17.0	71	398.2	399.2
24	12.5	60	348.2	349.2
25	7.6	35	362.2	363.2
26	1.6	3	476.0	479.0 (Br)
27	6.0	15	389.2	390.2
	<u></u>		L	

29 12.0 28 466.1 467.1 30 14.0 40 398.2 399.1 186 15.0 57 432.1 433.0 187 25.8 95 443.1 444.1 188 25.0 96 428.2 429.1 189 21.6 85 416.1 417.1 190 22.6 80 460.1 463.0 (Br 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3 198 16.5 57 476.1 479 (Br	l l l l r,Cl)
186 15.0 57 432.1 433.0 187 25.8 95 443.1 444.1 188 25.0 96 428.2 429.1 189 21.6 85 416.1 417.1 190 22.6 80 460.1 463.0 (B) 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	l l l r,Cl)
187 25.8 95 443.1 444.1 188 25.0 96 428.2 429.1 189 21.6 85 416.1 417.1 190 22.6 80 460.1 463.0 (B) 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	l l r,Cl)
188 25.0 96 428.2 429.1 189 21.6 85 416.1 417.1 190 22.6 80 460.1 463.0 (Br 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	l l r,Cl)
189 21.6 85 416.1 417.1 190 22.6 80 460.1 463.0 (Br 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	l r,Cl)
190 22.6 80 460.1 463.0 (Br 191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	r,Cl)
191 24.4 93 427.1 428.3 192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	
192 26.6 96 412.2 413.3 193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	1
193 21.3 75 466.1 467.3 194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	
194 17.2 65 435.2 436.2 195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	1
195 24.2 90 438.1 439.3 196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	1
196 21.4 92 382.2 383.3 197 22.5 90 410.2 411.3	2
197 22.5 90 410.2 411.1	1
197	1
198 16.5 57 476.1 479 (Br.	1
	,·C1)
199 7.8 30 432.2 433.	1 .
200 6.3 26 396.2 397.	1
201 1.0 5 466.1 469.1 (0	Cl x
202 4.7 34 462.1 463.0	0
203 4.0 21 490.1 491.	1
204 4.8 34 466.1 469.0 (0	Cl x
205 2.0 41 490.1 491.	Ō
206 2.5 14 466.1 467.	0
207 2.8 14 516.1 517.	1
208 2.9 15 490.1 491.	
209 3.9 19 500.1 501.	1
210 2.4 12 446.1 447.	
211 5.0 26 450.1 451.	
212 2.5 13 448.1 449.	1

213	4.0	9	477.1	478.0
214	20.0	37	468.1	469.1
215	7.0	13	450.1	451.0
216	2.8	6	446.1	447.1
217	3.0	8	457.1	458.1
218	2.2	13	432.1	433.0
219	9.5	74	428.2	429.3
220	5.5	31	456.2	. 457.1
221	5.2	40	432.1	433.1
222	3.1	68	456.2	457.2
223	6.7	40	432.1	433.1
224	5.0	27	482.1	483.1
225	3.5	20	456.2	457.2
226	3.4	18	466.1	467.1
227	3.0	17	412.2	413.1
228	5.9	33	416.1	417.0
229	4.0	23	432.2	433.1
230	2.0	23	428.2	429.2
231	1.0	6	456.2	457.2
232	1.6	. 9	432.2	433.2
233	1.7	9	456.2	457.3
234	7.2	43	432.2	433.1
235	8.5	46	482.2	483.1
236	2.6	15	456.2	457.2
237	2.0	11	466.2	467.2
238	3.7	21	412.2	413.2
239	5.3	30	416.2	417.1
240	6.3	38	410.2	411.2
. 241	2.9	36	406.2	407.3
242	9.2	55	434.2	435.2
243	10.2	62	410.2	411.2
244	21.1	121	434.2	435.2

245	10.0	63	410.2	411.1
246	15.7	89	460.2	461.2
247	2.1	13	434.2	435.2
248	5.8	33	444.2	445.2
249	4.4	26	390.2	391.2
250	7.6	45	394.2	395.1
492	5.0	17	446.1	447.1
493	9.0	31	412.2	413.2
494	16.0	55	412.2	413.2
495	15.0	52	390.2	391.2
499	12.0	38	430.9	431.1
511	10.0	. 32	434.9	435.1
513	6.0	. 16	430.9	431.1
565	9.2	26	442.9	443.1

Synthesis of benzothiadiazine derivatives

[Reference Example 3-1]

Synthesis of 7-fluoro-2H, 4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione

After dissolving chlorosulfonyl isocyanate (3.29 mL, 37.8 mmol) in nitroethane (45 mL), the mixture was cooled to -80°C. A solution of 4-fluoroaniline (3.50 g, 31.5 mmol) in nitromethane (5 mL) was then added dropwise thereto over a period of 10 minutes. The reaction mixture was heated to 0°C, and aluminum chloride (5.33 g, 40.0 mmol) was added. After heating to reflux for 30 minutes, the reaction mixture was cooled to room temperature and then poured into ice water (120 mL). The precipitated crystals were filtered out and dried to obtain 7-fluoro-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione.

Yield: 3.72 g (55%), M+1 = 217.0.

7-Methyl-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione

(4.24 g, 67%), 7-ethyl-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione (2.6 g, 37%) and 7-methoxy-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione (1.09 g, 16%) were synthesized in the same manner as Reference Example 3-1.

[Reference Example 3-2]

Synthesis of 2-amino-5-fluorobenzenesulfonamide

After suspending 7-fluoro-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione (3.00 g, 13.9 mmol) in 50% sulfuric acid (90 mL), the mixture was stirred at 130°C for 1 hour. The reaction mixture was cooled in an ice bath while adding 40% aqueous sodium hydroxide for neutralization. The aqueous solution was concentrated under reduced pressure to 200 mL, and the precipitate was filtered out. It was then suspended in ethyl acetate (100 mL), and the insoluble portion was filtered out. The filtrate was concentrated under reduced pressure and dried to obtain 2-amino-5-fluorobenzenesulfonamide.

Yield: 2.27 g (86%), M+1 = 191.0.

2-Amino-5-methylbenzenesulfonamide (Yield: 958 mg (55%)), 2-amino-5-ethylbenzenesulfonamide (Yield: 1.4 g (64%)) and 2-amino-5-methoxybenzenesulfonamide (Yield: 696 mg (72%)) were synthesized in the same manner as Reference Example 3-2.

[Reference Example 3-3]

Synthesis of 2-bromo-4,5-dimethylnitrobenzene

After measuring out 10.02 g of 4,5-dimethyl-2-nitroaniline (60.3 mmol) into a 300 mL round-bottomed flask equipped with a magnetic stirrer, 30 mL of 48% aqueous hydrobromic acid and 30 mL of water were added, and the mixture was vigorously stirred. The suspension became orange. The orange suspension was directly cooled on an ice water-salt bath, and then an aqueous solution of 4.422 g (64.1 mmol) of sodium nitrite in 24 mL of water was added

dropwise to the orange suspension while keeping the liquid temperature from exceeding 5°C. Completion of the dropwise addition resulted in conversion of the reaction mixture to a light brown solution. The light brown solution was stirred on the ice water bath.

Next, 30 mL of 48% aqueous hydrobromic acid and 11.85 (82.6 mmol) g of copper (I) bromide were placed in a 1 L Erlenmeyer flask equipped with a magnetic stirrer, and the previously obtained light brown solution was added dropwise over a period of 5 minutes while cooling and stirring on an ice water bath. After completion of the dropwise addition, the mixture was stirred for 20 minutes on the ice-water bath, and then heated on a 80°C oil bath while vigorously stirring.

Heating was terminated after 1 hour, and upon stirring overnight at room temperature, the reaction mixture was extracted with ethyl acetate (300 mL x 2 times), and the organic layers were combined and washed with 5N hydrochloric acid, saturated sodium bicarbonate water and saturated brine in that order. The organic layer was dried over anhydrous sodium sulfate, and then the desiccant was removed by filtration under reduced pressure and the filtrate was concentrated to obtain a yellowish brown solid. The yellowish brown solid was purified by silica gel column chromatography (Hex:EtOAc = 10:1) to obtain light brown needle-like crystals. The light brown needle-like crystals were recrystallized from hexane to obtain 2-bromo-4,5-dimethylnitrobenzene as yellow needle-like crystals.

Yield: 6.637 g (47.9%)

 $^{1}\text{H-NMR}$ (270 MHz, CDCl₃): $\delta 2.29(3\text{H,s})$, 2.31(3H,s), 7.49(1H,s), 7.69(1H,s).

[Reference Example 3-4]
Synthesis of 2-bromo-4,5-dimethylaniline

After measuring out 1.006 g (4.375 mmol) of 2-bromo-4,5-dimethylnitrobenzene into a 100 mL round-bottomed flask equipped with a magnetic stirrer, 10 mL of 2-methoxyethanol and 10 mL of water were added and the mixture was stirred to create a suspension. After adding 2.799 g (10.07 mmol) of sodium hydrosulfite thereto, it was heated on a 100°C oil bath while vigorously stirring. After 2.5 hours, the resulting faint yellow suspension was heated and stirred, while adding 10 mL of water until the insoluble portion disappeared to produce a faint yellow solution. To the faint yellow solution there was added dropwise 10 mL of concentrated hydrochloric acid over a period of 5 minutes, after which the mixture was refluxed for 20 minutes.

Next, the temperature of the reaction mixture was lowered to room temperature, and upon adding sodium carbonate in powder form to neutralize the reaction mixture, a faint brownish white precipitate separated at approximately pH 7-8. The collected precipitate was dried to obtain 2-bromo-4,5-dimethylaniline as a white solid. Yield: 0.832 g (95.0%).

 $^{1}\text{H-NMR}$ (270-MHz, CDCl₃): δ 2.13(6H,s), 6.59 (1H,s), 7.16(1H,s).

[Reference Example 3-5]

Synthesis of 5-bromo-7,8-dimethyl-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione

The title compound was obtained in the same manner as Reference Example 3-1.

Yield: 5.27 g (83%), M+1 = 304.9.

 $^{1}\text{H-NMR}$ (270 MHz, CD₃OD): δ 7.69(1H,s), 2.55(3H,s), 2.31(3H,s)

[Reference Example 3-6]
Synthesis of 7,8-dimethyl-2H,4H-benzo[e]1,2,4-thiadiazine1,1,3-trione

5-Bromo-7,8-dimethyl-2H,4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione (5.27 g, 17.3 mmol) was suspended in methanol (60 mL), and then ammonium formate (5.45 g, 86.5 mmol, 5 eq) was added and nitrogen substitution was performed.

Next, 10% palladium-carbon powder (1.84 g, 1.73 mmol, 10 mol%) was added and the mixture was heated to reflux for 4 hours. The reaction mixture was cooled to room temperature and filtered through celite. The filtrate was cooled on ice and the precipitated crystals were filtered out and dried to obtain 7,8-dimethyl-2H, 4H-benzo[e]1,2,4-thiadiazine-1,1,3-trione.

Yield: 3.66 g (94%), M+1 = 227.0.

 1 H-NMR (270 MHz, CD₃OD): δ 7.19(1H,d,J=8.3Hz),

6.78(1H,d,J=8.3Hz), 2.57(3H,s), 2.26(3H,s).

[Reference Example 3-7]

Synthesis of 2-amino-5,6-dimethylbenzenesulfonamide

The title compound was obtained in the same manner as Reference Example 3-2.

Yield: 1.98 g (61%), M+1 = 201.1.

 1 H-NMR (270 MHz, DMSO-d6): δ 7.20(2H,s), 6.98(1H,d,J=8.4 Hz), 6.55(1H,d,J=8.4Hz), 5.98(2H,s), 2.39(3H,s), 2.10(3H,s)

2-Amino-6-methylbenzenesulfonamide was synthesized in the same manner as Reference Examples 3-3 to 3-7, using 4methyl-2-nitroaniline as the starting material.

Yield: 555 mg (45%).

 1 H-NMR (270 MHz, DMSO): $\delta 2.48(3H,s)$, 6.12(2H,s),

6.40(1H,d,J=7.0Hz), 6.62(1H,d,J=8.1Hz), 6.99-

7.04(1H, dd, J=8.1Hz, J=7.0Hz), 7.19(2H, s)

[Reference Example 3-8]

Synthesis of 4-{[(7-fluoro-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-yl)amino]methyl}piperidine carboxylic acid tert-butyl ester

After dissolving 1-N-Boc-4-aminomethylpiperidine

(1.08 g, 5.04 mmol) in acetonitrile (8.0 mL), the mixture was cooled to 0°C. A solution of 1,1'thiocarbonyldiimidazole (988 mg, 5.54 mmol) and imidazole (103 mg, 1.51 mmol) in acetonitrile (10 mL) was added dropwise thereto, and the mixture was stirred at room temperature for 2 hours. Next, 2-amino-5fluorobenzenesulfonamide (1.25 g, 6.55 mmol) and dimethylaminopyridine (739 mg, 6.05 mmol) were added to the reaction mixture, which was then stirred at 80°C overnight. Diisopropylcarbodiimide (0.233 mL, 1.51 mmol) was added thereto, and the mixture was stirred for 1 hour. reaction mixture was cooled to room temperature and then concentrated under reduced pressure, and the residue was dissolved in ethyl acetate (50 mL). This was washed with water (20 mL) and saturated brine (20 mL), and then dried over anhydrous sodium sulfate. The residue obtained by concentration under reduced pressure was purified by silica gel column chromatography (n-hexane:ethyl acetate = 3:2 → 2:3) to obtain 4-{[(7-fluoro-1,1-dioxo-4H-benzo[e]1,2,4thiadiazin-3-yl)amino]methyl}piperidine carboxylic acid tert-butyl ester.

Yield: 1.66 g (80%), M-Boc+2H = 313.1.

The following compounds were synthesized in the same manner as Reference Example 3-8.

- 4-{[(1,1-Dioxo-4H-benzo[e]1,2,4-thiadiazin-3-
- yl)amino]methyl}piperidine carboxylic acid tert-butyl ester: Yield = 132 mg (67%).
- 4-{[(7-Methyl-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-yl)amino]methyl}piperidine carboxylic acid tert-butyl ester: Yield = 681 mg (49%).
- 4-{[(7-Methoxy-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-yl)amino]methyl}piperidine carboxylic acid tert-butyl ester: Yield = 766 mg (63%).

```
4-{[(7-Ethyl-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-
yl)amino]methyl}piperidine carboxylic acid tert-butyl
ester: Yield = 525 \text{ mg} (36\%).
4-{[(8-Methyl-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-
yl)amino]methyl}piperidine carboxylic acid tert-butyl
ester: Yield = 203 \text{ mg} (44\%).
4-{[(7,8-Dimethyl-1,1-dioxo-4H-benzo[e]1,2,4-thiadiazin-3-
yl)amino]methyl}piperidine carboxylic acid tert-butyl
ester: Yield = 175 \text{ mg} (30%).
      [Reference Example 3-9]
Synthesis of 7-fluoro-3-[(4-piperidylmethyl)amino]-4H-
benzo[e]1,2,4-thiadiazine-1,1-dione hydrochloride
      7-fluoro-3-[(4-piperidylmethyl)amino]-4H-
benzo[e]1,2,4-thiadiazine-1,1-dione was obtained in the
same manner as Reference Example 2-11. Yield: 497 mg (90%),
M+1 = 313.1.
      The following compounds were synthesized in the same
manner as Reference Example 3-9.
7-Methyl-3-[(4-piperidylmethyl)amino]-4H-benzo[e]1,2,4-
thiadiazine-1,1-dione hydrochloride: Yield = 691 mg
(quantitative).
3-[(4-Piperidylmethyl)amino]-4H-benzo[e]1,2,4-thiadiazine-
1,1-dione hydrochloride: quantitative yield, Yield = 116 mg,
M+1 = 295.1.
7-Methoxy-3-[(4-piperidylmethyl)amino]-4H-benzo[e]1,2,4-
thiadiazine-1,1-dione hydrochloride: Yield = 505 mg (79%),
M+1 = 325.0.
7-Ethyl-3-[(4-piperidylmethyl)amino]-4H-benzo[e]1,2,4-
thiadiazine-1,1-dione hydrochloride: Yield = 470 mg
(quantitative, M+1 = 323.1).
8-Methyl-3-[(4-piperidylmethyl)amino]-4H-benzo[e]1,2,4-
thiadiazine-1,1-dione hydrochloride: Yield = 97 mg (63%),
M+1 = 309.1.
```

7,8-Dimethyl-3-[(4-piperidylmethyl)amino]-4H-benzo[e]1,2,4-thiadiazine-1,1-dione hydrochloride: Yield = 44 mg (89%), M+1 = 323.1.

[Examples 3-1 to 3-10, 3-208, 220, 223, 235, 238, 368, 504, 505, 511, 523, 525 to 527, 555, 577]

Compound Nos. 3-1 to 3-10, 3-208, 220, 223, 235, 238, 368, 504, 505, 511, 523, 525 to 527, 555 and 577 were synthesized in the same manner as Example 2-5, using the corresponding reactants for the compounds synthesized in Reference Examples 3-1 to 3-9. The results are shown in Table 16.

Table 16

Compound No. 3-	Yield (mg)	Yield (%)	MW	M+1
1	10.0	35	468.0	469.0
2	7.0	26	434.1	435.1
3	9.0	34	434.1	435.0
4	13.0	52	412.1	413.1
, 5	25.2	66.2	482.1	483.0
, 6.	20.8	58.9	448.1	449.1
7	25.4	71.9	448.2	449.2
8	9.9	26.1	486.1	487.0
9	20.5	58.1	452.1	453.1
10	38.3	· 100	452.2	453.1
208	20.4	54	499.4	499.0
220	4.7	11	483.4	483.0
223	28.7	81	465.0	465.1
235	8.1	21	449.0	449.1
238	34.1	97	464.6	465.2
368	4,5	12	463.0	463.1
504	4.0	. 13	497.4	497.1
505	10.0	35	463.0	463.1
511	9.8	24	467.0	467.0
523	15.0	50	470.9	471.1
525	5.4	13	467.0	467.1
526	8.0	27	481.0	481.1
527	18.0	60	483.0	483.1
555	17.2	37	481.0	481.1
577	9.4	25.	479.1	479.0

Synthesis of dihydroquinazoline derivatives

[Reference Example 4-1]

Synthesis of 4-(dihydroquinazoline-2-aminomethyl)piperidine hydrochloride

After dissolving 1-Boc-4-(aminomethyl)piperidine (350 mg, 1.6 mmol) in CH₃CN (15 ml), thiocarbonyldiimidazole (350 mg, 1.9 mmol) was added and the mixture was stirred at room temperature for 1 hour. 2-Aminobenzylamine (240 mg, 1.9 mmol) was added to the reaction mixture, which was then stirred at room temperature for one hour. The solvent was distilled off under reduced pressure to obtain 1-Boc-4-(2-aminobenzylthioureamethyl)piperidine. The compound was identified by LC-MS.

M+1 = 379.2.

After dissolving the 1-Boc-4-(2-aminobenzylthioureamethyl)piperidine in EtOH (30 ml), mercury oxide (800 mg) was added and the mixture was refluxed for 1 hour. The solvent was distilled off under reduced pressure to obtain 1-Boc-4-(dihydroquinazoline-2-aminomethyl)piperidine. The compound was identified by LC-MS.

M+1 = 345.2.

After dissolving the 1-Boc-4-(dihydroquinazoline-2-aminomethyl)piperidine in methanol (10 ml), a 4N hydrogen chloride/1,4-dioxane solution (16 ml) was added and the mixture was stirred at 50°C for 90 minutes. The solvent was distilled off under reduced pressure to obtain 4-(dihydroquinazoline-2-aminomethyl)piperidine hydrochloride. The compound was identified by LC-MS.

Yield: 449 mg (89%), M+1 = 245.1.

[Examples 4-1 to 4-5]

Compound Nos. 4-1 to 4-5 were synthesized in the same manner as Example 2-5, using the corresponding reactants.

The results are shown in Table 17.

[Example 4-7]

Synthesis of 2,4-dichloro-6-[(4-{[(6-chloro(1,4-dihydroquinazolin-2-yl))amino]methyl}piperidyl)methyl] phenol

After dissolving Compound No. 2-193 (2.5 mg, 0.028 mmol) in THF (0.5 mL), a 1N BH_3/THF solution (0.56 ml, 0.56 mmol) was added and the mixture was stirred at 80°C for 24 hours. A 5N NaOH aqueous solution (0.5 mL) was added to the obtained solution, and the mixture was stirred at 80°C The obtained solution was extracted with for 5 hours. ethyl acetate (2 mL x 2 times), transferred to Sep-Pak-Dry (trade name of Varian, sodium sulfate cartridge) for drying, and then transferred to SCX (Bond Elute SCX500MG). was washed with a CHCl₃/MeOH (1/1) mixed solution (5 mL) and then eluted with a 2N NH3/MeOH solution (5 mL). eluate was concentrated and purified with a preparative HPLC system to obtain 2,4-dichloro-6-[(4-{[(6-chloro(1,4dihydroguinazolin-2-yl))amino]methyl}piperidyl) methyl]phenol.

Yield: 2.3 mg (19%), M+1 = 453.0.

[Examples 4-6, 4-8 to 4-11]

Compound Nos. 4-6 and 4-8 to 4-11 were synthesized in the same manner as Example 4-2, using the corresponding reactants. The results are shown in Table 17.

Table 17

Compound No. 4-	Yield (mg)	Yield (%)	MW	M+1
1	3.6	10	402.2	403.2
2	2.7	16	418.1	419.0
. 3	7.7	50	384.1	385.1
4	1.0	7 · ·	384.1	385.1
5	6.6	61	362.2	363.2

6	2.6	25	502.1	503.1
7	2.3	19	452.1	453.0
8	1.4	3	432.2	433.1
9	6.3	12	436.1	437.1
10	2.1	4	432.2	433.1
11	2.8	6	434.1	435.1

Synthesis of 2-[(4-piperidinylmethyl)amino]hydrothiopheno [3,2,d]pyrimidin-4-one derivatives

[Reference Example 5-1]

Synthesis of 3-{[(phenylcarbonylamino)thioxomethyl]amino} thiophene-2-carboxylic acid methyl ester

A solution of benzoyl isothiocyanate (1038 mg, 6.36 mmol) in acetone (3 mL) was added to a solution of 3-aminothiophene-2-carboxylic acid methyl ester (500 mg, 3.18 mmol) in acetone (3 mL). The mixture was stirred at room temperature for 10 hours and then concentrated, and the residue was purified by silica gel chromatography (Hex/EtOAc = 10/1) to obtain 3-{[(phenylcarbonylamino) thioxomethyl]amino}thiophene-2-carboxylic acid methyl ester. Yield: 866 mg (85%), M+1 = 321.0.

[Reference Example 5-2]
Synthesis of potassium hydrothiopheno[3,2,d]pyrimidin-4one-2-thiolate

A solution of 3-{[(phenylcarbonylamino)thioxomethyl] amino}thiophene-2-carboxylic acid methyl ester (866 mg, 2.7 mmol) in EtOH (3 mL) was added to a solution of KOH (303 mg, 5.4 mmol) in EtOH (10 mL). The mixture was stirred for 3 hours while heating to reflux, and the separated white precipitate was filtered out. It was then washed with EtOH (5 mL x 2 times) and dried under reduced pressure to obtain potassium hydrothiopheno[3,2,d]pyrimidin-4-one-2-thiolate. Yield: 476 mg (79%).

MeI (133 µL, 2.14 mmol) was added to an aqueous solution (10 mL) of potassium hydrothiopheno[3,2,d]pyrimidin-4-one-2-thiolate (476 mg, 2.14 mmol). The mixture was stirred at room temperature for 3 hours, and the separated white precipitate was filtered out. It was then washed with water (5 mL x 2 times) and dried under reduced pressure to obtain 2-methylthiohydrothiopheno[3,2,d]pyrimidin-4-one. Yield: 337 mg (79%). NMR (DMSO-d₆): δ H 2.49(s,1H), 7.26(d,J=5.4,1H), 8.08(d,J=5.4,1H)

[Reference Example 5-4]

Synthesis of 2-[(1-Boc-4-piperidinylmethyl)amino] hydrothiopheno[3,2,d]pyrimidin-4-one

After adding 287 mg of 60% 3-chloroperbenzoic acid (1.0 mmol) to a solution of 200 mg (1.0 mmol) of 2methylthiohydrothiopheno[3,2,d]pyrimidin-4-one in chloroform (5 mL) while cooling on ice, the mixture was stirred at room temperature for 2 hours. The obtained solution was concentrated, and then 235 mg (1.1 mmol) of the compound 1-Boc-4-aminomethylpiperidine, 0.2 mL (1.5 mmol) of triethylamine and diglyme (diethyleneglycol dimethyl ether) (5 mL) were added. The obtained solution was stirred at 180°C for 10 hours, and then water (10 mL) was added, and the mixture was extracted with ethyl acetate (5 mL x 2 times) and dried over magnesium sulfate. filtration, the filtrate was concentrated and the residue was purified by silica gel chromatography (Hex/EtOAc = 1/1 \rightarrow 0/1) to obtain 2-[(1-Boc-4-piperidinylmethyl)amino]

hydrothiopheno[3,2,d]pyrimidin-4-one.

Yield: 160 mg (44%).

LC/MS (LC/MSD): (M+H)+ = 365.1 (Found:) M = 364.16 (calculated).

[Reference Example 5-5]

Synthesis of 2-[(4-piperidinylmethyl)amino]hydrothiopheno [3,2,d]pyrimidin-4-one

The compound was synthesized in the same manner as Reference Example 2-11.

Yield: 135 mg (90%), M+1 = 265.1.

[Example 5-1]

Compound No. 5-1 was synthesized by the same method as Example 2-5, using the compounds synthesized by Reference Examples 5-1 to 5-5. The results are shown in Table 18.

Table 18

Compound No. 5-	Yield (mg)	Yield (%)	MW	M+1
1	17.0	42	438.0	439.0

Synthesis of 5-methyl-2-[(4- piperidinylmethyl)amino] hydropyrrolo[3,2,d]pyrimidin-4-one derivatives

[Reference Example 6-1]

Synthesis of 5-methyl-2-[(4- piperidinylmethyl)amino] hydropyrrolo[3,2,d]pyrimidin-4-one

The title compound was obtained by synthesis in the same manner as Reference Examples 5-1 to 5-5, using 3-amino-1-methylpyrrolo-2-carboxylic acid ethyl ester as the starting material.

Yield: 245 mg (92%), M+1 = 262.1 (Found:) M = 261.1 (calculated).

[Example 6-1]

Compound No. 6-1 was synthesized by the same method as Example 2-5, using the compound synthesized by Reference Example 6-1. The results are shown in Table 19.

Table 19

Compound No. 6-	Yield (mg)	Yield (%)	MW	. M+1
1	4.0	11	436.3	436.1

Synthesis of 2-[(4-piperidinylmethyl)amino]-1H,5H-benzo[f]1,3-diazepin-4-one derivatives

[Reference Example 7-1]

Synthesis of 4-{[({[2-(carbamoylmethyl)phenyl]amino} thioxomethyl)amino]methyl}piperidine carboxylic acid tertbutyl ester

After dissolving 1-N-Boc-4-aminomethylpiperidine (869 mg, 4.06 mmol) in acetonitrile (10 mL), a solution of thiocarbonyldiimidazole (794 mg, 4.46 mmol) and imidazole (82.9 mg, 1.22 mmol) in acetonitrile (15 mL) was added dropwise in an ice bath, and the mixture was stirred at room temperature for 4 hours. After then adding 2-(2-aminophenyl)acetamide (670 mg, 4.46 mmol) thereto, the mixture was stirred overnight at 60°C. The reaction mixture was concentrated under reduced pressure and the obtained residue was purified by silica gel column chromatography (methylene chloride/methanol = $65:1 \rightarrow 49:1$) to obtain the title compound.

Yield: 1.41 g (85%), M+1 = 407.2 (found), M = 406.2 (calculated).

[Reference Example 7-2]

Synthesis of 4-{[(4-oxo-1H, 5H-benzo[f]1,3-diazepin-2-yl)amino]methyl}piperidine carboxylic acid tert-butyl ester

After dissolving 4-{[({[2-(carbamoylmethyl)phenyl]

amino}thioxomethyl)amino]methyl}piperidine carboxylic acid tert-butyl ester (410 mg, 1.01 mmol) in tetrahydrofuran (15 mL), N,N'-dicyclohexylcarbodiimide (208 mg, 1.01 mmol) was added and the mixture was stirred at room temperature for 6 hours. The filtrate obtained by filtering the insoluble portion was concentrated under reduced pressure, and the concentrate was suspended in a solution of n-hexane:ethyl acetate = 1:2 (3 mL). The insoluble portion was refiltered, and the residue obtained by concentrating the filtrate under reduced pressure was purified by silica gel column chromatography (n-hexane/ethyl acetate = $2/3 \rightarrow 1/2$) to obtain the title compound. Yield: 193 mg (51%). 13 C-NMR (100 MHz, CDCl₃): δ =156.6, 155.0, 136.1, 129.6, 129.2, 126.6, 126.2, 117.9, 79.7, 45.6, 36.7, 29.7, 28.5, 20.5

¹H-NMR (400 MHz, CDCl₃): δ =7.38(1H,d,J=7.3Hz), 7.18-7.32(3H,m), 7.14(1H,s), 5.43(1H,s), 4.07(2H,s), 3.71(2H,s), 3.06(1H,s), 2.65(2H,m), 1.61(3H,m), 1.48(9H,s), 1.05(2H,m)

[Reference Example 7-3]

Synthesis of 2-[(4-piperidinylmethyl)amino]-1H,5H-benzo[f]1,3-diazepin-4-one

The title compound was synthesized in the same manner as Reference Example 2-11, using $4-\{[(4-oxo-1H, 5H-benzo[f]1,3-diazepin-2-yl)amino]methyl\}$ piperidine carboxylic acid tert-butyl ester as the starting material. Yield: 218 mg (quantitative, M+1 = 273.1 (Found:) M = 272.2 (calculated).

[Example 7-1]

Compound Nos. 7-16 and 7-504 were synthesized by the same method as Example 2-5, using reactants for the compounds synthesized by Reference Examples 7-1 to 7-3. The results are shown in Table 20.

Table 20

Compound No. 7-	Yield (mg)	Yield (%)	MW	M+1
16	4.0	10	447.4	447.1
504	6.0	16	430.9	431.1

Synthesis of [2-[(4-piperidylmethyl)amino]hydroquinazolin-4-one derivatives

[Example 8-16]

Synthesis of 2-[({1-[(3,5-dichloro-2-hydroxy-phenyl)methyl]-4-piperidyl}methyl)amino]hydroquinazoline-4-thione

After placing 5.7 mg (0.0132 mol) of Compound No. 2-16 in a 15 mL round-bottomed flask equipped with a magnetic stirrer, it was dissolved in 1 g of phosphorous oxychloride and the solution was stirred for one hour at a bath temperature of 120°C. The phosphorus oxychloride was distilled off by concentration under reduced pressure, and then 84.2 mg (1.106 mmol) of thiourea and 4 mL of 1,4dioxane were added and the mixture was refluxed for 1 hour. After distilling off the solvent, the residue was suspended in methanol, solid phase extraction was performed with an SCX column, and the eluate obtained by elution with a 2 M ammonia/methanol solution was concentrated and purified by preparative HPLC. The fraction containing the target substance was concentrated to obtain 2-[({1-[(3,5-dichloro-2-hydroxy-phenyl)methyl]-4-piperidyl}methyl)amino] hydroquinazoline-4-thione as a colorless powder. results are shown in Table 21.

Table 21

Compound No. 8-	Yield (mg)	Yield (%)	MW	M+1
16	0.6	10	449.4	449.1

[Example 9]

Measurement of inhibiting power of test compounds against eotaxin-induced intracellular calcium concentration increase in CCR3-expressing cells

K562 cells stably expressing CCR3 receptor were used in the following method for measurement of the inhibiting power of compounds of the invention against intracellular calcium concentration increase.

The CCR3-expressing K562 cells were suspended in HBSS solution (Hanks' Balanced Salt Solution, Gibco BRL) containing 10 mM HEPES (N-[2-hydroxyethyl]piperazine-N'-[2ethanesulfonic acid], Gibco BRL), and then 1 mM Fura-2 acetoxymethyl ester (product of Dojin Kagaku) was added to a final concentration of 1 μM and the mixture was incubated at 37°C for 30 minutes. After rinsing the cells, they were added simultaneously with the test compound into a 96-well white plate (Falcon), the agonist was added after 5 minutes, the mixture was excited at 340 nm and 380 nm, and the 340/380 ratio was monitored to measure the intracellular calcium concentration. Human eotaxin (product of Genzyme Techne) (0.5 $\mu g/ml$) was used as an The inhibiting power of the test compound was determined by measuring the intracellular calcium concentration upon treatment of the CCR3-expressing K562 cells with the test compound 5 minutes before eotaxin stimulation, and calculating the suppression by the following formula.

Suppression (%) = $\{1-(A-B)/(C-B)\} \times 100$

(A: Intracellular calcium concentration upon stimulation with eotaxin after treatment with test compound, B: Intracellular calcium concentration without stimulation, C: Intracellular calcium concentration upon stimulation with eotaxin without treatment with test compound)

The inhibiting power of piperidine derivatives of the invention was measured, and for example, the compounds having the Compound Nos. listed below demonstrated inhibiting power of 20-50%, 50-80% or 80% or greater, at 10 μM or 2 μM concentrations of the compounds.

The following compounds exhibited 20-50% inhibition at 10 μM concentration:

Compound No. 1-: 1-7, 1-9, 2-5, 2-6, 2-8, 2-12, 2-13, 2-15, 2-16, 2-18, 2-21, 2-22, 2-24, 2-29, 2-31, 2-35, 2-43, 2-45, 2-48, 2-56, 2-70, 2-71, 2-77, 2-85, 2-96, 2-100 to 2-103, 2-107, 2-108, 2-116, 2-128, 2-129, 2-136, 2-141, 2-146, 2-147, 2-176 to 2-180, 3-8, 3-55, 3-56, 3-58, 5-37, 5-98, 5-104, 5-113, 5-118, 5-122, 5-125, 5-127, 5-141, 6-4 to 6-6, 6-8

The following compounds exhibited 50-80% inhibition at 10 μM concentration:

Compound No. 1-: 1-3 to 1-6, 1-10, 1-11, 2-2 to 2-4, 2-23, 2-30, 2-33, 2-34, 2-39, 2-41, 2-42, 2-47, 2-49, 2-51, 2-54, 2-57, 2-60, 2-61, 2-64 to 2-66, 2-73, 2-80 to 2-82, 2-84, 2-89 to 2-91, 2-95, 2-106, 2-109, 2-112, 2-113, 2-115, 2-120, 2-122, 2-123, 2-127, 2-130, 2-133, 2-134, 2-137, 2-138, 2-142, 2-142, 2-170, 2-173 to 2-175, 3-7, 3-9, 4-29, 5-20, 5-21, 5-30, 5-36, 5-39, 5-40, 5-42 to 5-45, 5-49, 5-65, 5-72, 5-96, 5-97, 5-99, 5-101 to 5-103, 5-108, 5-109, 5-111, 5-115, 5-117, 5-119, 5-121, 5-128 to 5-130, 5-134, 5-135, 5-137 to 5-139, 5-142, 5-147, 5-148, 5-154 to 5-158, 5-167, 5-168, 5-174, 5-175, 5-180, 5-181, 5-183

The following compounds exhibited ≥80% inhibition at 10 µM concentration:

Compound No. 1-: 1-1, 1-8, 2-1, 2-14, 2-36 to 2-38, 2-40, 2-50, 2-52, 2-72, 2-75, 2-98, 2-117 to 2-119, 2-121, 2-124 to 2-126, 2-131, 2-149 to 2-151, 2-153, 2-154, 3-2, 3-13, 3-15, 3-17,3-18, 3-21 to 3-23, 3-25, 3-26, 3-28 to 3-30, 3-32 to 3-38, 3-42 to 3-52, 3-59, 3-61, 3-62, 5-22 to 5-29, 5-31 to 5-35, 5-38, 5-41, 5-46 to 5-48, 5-50 to 5-64, 5-66 to 5-71, 5-88 to 5-93, 5-95, 5-107, 5-110, 5-114, 5-116, 5-120, 5-123, 5-124, 5-126, 5-131 to 5-133, 5-136, 5-140, 5-143 to 5-146, 5-149 to 5-153, 5-159 to 5-166, 5-169 to 5-173, 5-176 to 5-179, 5-182, 6-7, 6-9, 6-11 to 6-13, 6-15 Compound No. 2-: 1

Compound No. 4-: 1

The following compounds exhibited 20-50% inhibition at 2 μM concentration:

Compound No. 1-: 2-156 to 2-159, 2-163, 2-164, 3-14, 3-24, 3-27, 3-40, 4-1, 4-3, 4-4, 4-6, 5-15, 5-16, 5-74, 5-75, 5-77, 5-79, 5-82, 5-84, 5-85

Compound No.2-: 5, 7, 8, 13, 22, 24, 200, 232, 243, 245, 247,

The following compounds exhibited 50-80% inhibition at 2 μM concentration:

Compound No. 1-: 2-166, 2-168, 2-169, 3-4, 3-11, 3-16, 3-31, 4-12, 4-15 to 4-17, 5-7, 5-8, 5-14, 5-19, 5-73, 5-76, 5-78, 5-80, 5-81, 5-83, 5-86, 5-188

Compound No. 2-: 6, 10, 14, 16, 17, 20, 21, 23, 29, 196, 205, 221, 223, 224, 234, 237, 244, 495

Compound No. 4-: 5

Compound No. 7-: 504

The following compounds exhibited $\geq 80\%$ inhibition at 2 μM concentration:

Compound No. 1-: 2-160, 2-162, 2-165, 2-167, 3-1, 3-3, 3-5,

3-6, 4-10, 4-11, 4-13, 4-14, 4-18 to 4-21, 5-1 to 5-6, 5-9 to 5-13, 5-17, 5-18, 5-184 to 5-187, 5-189, 5-190 Compound No. 2-: 11, 12, 15, 18, 19, 26 to 28, 30, 186 to 195, 197 to 199, 201 to 204, 206 to 220, 225 to 231, 235, 236, 238 to 242, 246, 248 to 250, 499, 511, 513, 565 Compound No. 3-: 1-10, 208, 220, 223, 235, 238, 368, 504, 505, 511, 523, 525, 526, 527, 555, 577

Compound No. 4-: 2 to 4, 6 to 11

Compound No. 6-: 1

Compound No. 7-: 16, 504

Compound No. 8-: 16

[Example 10]

Measurement of inhibiting power against eotaxin binding to CCR3-expressing cells

Human CCR3-expressing L1.2 cells were suspended in assay buffer [RPMI1640 (phenol red free), 25 mM HEPES (pH7.4), 0.1% NaN3, 0.1% gelatin, 0.08% CHAPS] to prepare a 5 x 10^5 /mL whole cell suspension. A solution of the test compound diluted with assay buffer was prepared as the test compound solution. A solution of [125 I]-labeled human eotaxin (Amersham) diluted with assay buffer to 1 μ Ci/mL was prepared as the labeled ligand solution. After dispensing 25 μ L of the test compound solution, 25 μ L of the labeled ligand solution and 50 μ L of the whole cell suspension in that order into each well of a 96-well microplate (Falcon) covered with 0.5% BSA and stirring (100 μ L of reaction solution), incubation was performed at 25°C for 90 minutes.

After completion of the reaction, a 96-well filter plate (Millipore) containing filters immersed in 0.5% polyethyleneimine solution was used for filter filtration of the reaction mixture, with washing of the filters four times with 150 μ L of cold washing buffer (assay buffer +

0.5 M NaCl) (filtering was performed after adding 150 μL of cold washing buffer). The filters were blow-dried, and then 25 μL of liquid scintillator (MicroScient-O, Packard) was added to each well and the radioactivity incorporated in each membrane fraction on the filter was measured by a Top Count (Packard).

The count upon addition of 100 ng of unlabeled human eotaxin instead of the test compound was subtracted as the non-specific adsorption, to calculate the inhibiting power of the test compound against binding of human eotaxin to the CCR3 expressing cells, with 100% as the count with no addition of the test compound.

Inhibiting power (%) = $\{1-(A-B)/(C-B)\}\ x\ 100$ (A: Count upon addition of test compound, B: Count upon addition of 100 ng of unlabeled human eotaxin, C: Count upon addition of [^{125}I]-labeled human eotaxin alone)

[Example 11]

Measurement of inhibiting power of test compounds on eotaxin-induced cell migration of CCR3-expressing cells

L1.2 cells stably expressing CCR3 receptor were used to measure the inhibiting power of compounds of the invention against cell migration, by the following method.

The test compound was suspended in 0.5% BSA-containing RPMI1640 (Gibco BRL) solution and human eotaxin (product of Genzyme Techne) (20 ng/mL) was added as an agonist, and then the mixture was placed in the lower compartment of a 96-well chemotaxis chamber (Neuro Probe, Inc.) and a special chemotaxis chamber filter was inserted in the upper compartment. After adding the same test compound and CCR3-expressing L1.2 cells to the upper compartment, incubation was performed at 37°C for 2 hours.

Upon completion of the reaction, the special filter was stained with a screening blood staining solution (Diff-

Quick, Kokusai Shiyaku Co., Ltd.), the absorbance at 550 nm was measured, and the suppression (%) was calculated according to the following formula.

Suppression (%) = $\{1-(A-B)/(C-B)\}\ x\ 100$ (A: Cell migration upon eotaxin stimulation of CCR3-expressing L1.2 cells treated with test compound, B: cell migration without stimulation, C: cell migration upon eotaxin stimulation without treatment with test compound)

Upon measurement of several of the compounds of the invention as test compounds in Examples 10 and 11, the inhibiting power was found to be essentially the same as in Example 9.

Industrial Applicability

The compounds represented by formula (I) of the present invention exhibit activity which inhibits binding of CCR3 ligands such as eotaxins to their target cells and activity of inhibiting the physiological effects of binding of CCR3 ligands such as eotaxins to their target cells, and can therefore be utilized as CCR3 antagonists.