Catene di Markov Anno 2007/08

S. Bonaccorsi

November 23, 2007

Outline

Passeggiate casuali con barriere

ldentità di Wald

Passeggiata casuale a stati numerabil

Passeggiate casuali con barriere

Modello di schema di prove ripetute: una successione di variabili aleatorie discrete $\{X_n\}$ indipendenti ed equidistribuite. Successione di variabili aleatorie

$$S_n = x + X_1 + \cdots + X_n, \qquad n \geq 1,$$

dove $x \in \mathbb{R}$ e $S_0 = x$ indica la condizione iniziale del sistema. È facile convincersi che $\{S_n\}$ è una catena di Markov (dato lo stato attuale del sistema S_n , la posizione al tempo n+1 dipende solo dalla distribuzione di X_{n+1} e non da quella delle variabili ai tempi precedenti).

Introduzione di barriere

Nel caso di una evoluzione non banale, in cui cioè $\mathbb{P}(X_1=0)<1$, allora lo spazio degli stati E del sistema è infinitamente numerabile. Se vogliamo evitare che questo accada, fissiamo due valori a < b, con $a \le x \le b$, per cui il sistema, giunto in a (oppure in b), evolve in maniera banale (rimane costante in a, oppure in b, rispettivamente). In tal modo, possiamo scrivere

$$E = \{a, a+1, \ldots, b-1, b\}$$

e la matrice di transizione associata al sistema è una matrice finita *P*.

Esempio: passeggiata casuale semplice

Consideriamo la seguente distribuzione per *X*:

$$X = \begin{cases} -1, & q \\ 0, & r \\ 1, & p. \end{cases}$$

ossia ad ogni passo il sistema può salire di una unità, rimanere costante, scendere di una unità. L'evoluzione non è banale se r < 1, come da ora in poi supporremo. Se ad esempio le X fossero le variabili del lancio di una moneta equilibrata, sarebbe $p = q = \frac{1}{2}$, r = 0.

Esempio: passeggiata casuale semplice

Siano a < b le barriere scelte, $a \le x \le b$; la matrice di transizione del sistema ha la forma

$$P = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ q & r & p & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & q & r & p & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & \dots & \dots & \dots & \dots & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & q & r & p & 0 \\ 0 & 0 & 0 & 0 & \dots & 0 & q & r & p \\ 0 & 0 & 0 & 0 & \dots & 0 & 0 & 0 & 1 \end{pmatrix}$$

L'analisi della matrice conduce a riconoscere in *a* e *b* due stati *assorbenti*: per ognuno di essi è positiva la probabilità di ingresso, e nulla la probabilità di uscita dallo stato (essi comunicano solo con se stessi). Tutti gli altri stati si classificano come stati transitori.

Probabilità di assorbimento

Per una passeggiata casuale con barriere studiamo il tempo di arrivo in uno stato assorbente. Indichiamo con \mathcal{T} la variabile aleatoria definita da

$$T = \inf\{n \ge 1 : S_n \le a \text{ oppure } S_n = b\}.$$

T è il primo istante in cui la catena di Markov S_n tocca una barriera; il valore S_T deve essere pertanto uguale ad a oppure a b. È possibile dimostrare che per un sistema non banale (ossia, ripetiamo, con $\mathbb{P}(X=0)$ < 1) T è finita.

A questo punto, possiamo rispondere alle principali domande di una passeggiata casuale con barriere:

- se la condizione iniziale è x, qual è la probabilità di raggiungere b prima di a?
- qual è il tempo medio E(T) necessario per raggiungere una delle barriere?

Riassunto del sistema

- $E = \{a, a + 1, \dots, b 1, b\}$
- $S_0 = x$: stato iniziale
- $S_{n+1} = S_n + X_{n+1}$: evoluzione del sistema

•
$$X \sim \begin{cases} -1 & q \\ 0 & r : \text{ evoluzione a un passo} \\ 1 & p \end{cases}$$

- $\mathbb{E}[X] = p q$, $Var[X] = (p + q) (p q)^2$
- T_a (risp., T_b) è la v.a. che conta il tempo di arrivo del sistema nello stato a (risp., b)
- T = min{T_a, T_b} è la v.a. che conta il tempo di arrivo in una barriera
- S_T è la v.a. che rappresenta lo stato del sistema al momento di arrivo in una barriera

•
$$S_T \sim \begin{cases} a & \mathbb{P}(T_a < T_b) \\ b & \mathbb{P}(T_b < T_a) = 1 - \mathbb{P}(T_a < T_b). \end{cases}$$

Identità di Wald

Per una passeggiata casuale senza barriere, possiamo calcolare $\mathbb{E}(S_n)$, per $n \geq 1$, utilizzando la linearità della funzione media e l'equidistribuzione delle variabili aleatorie X_i :

$$\mathbb{E}(S_n) = x + n\mathbb{E}(X).$$

La prima identità di Wald calcola il valore medio S_T di una passeggiata casuale con barriere al tempo di arrivo su una barriera:

$$\mathbb{E}(S_T) = x + \mathbb{E}(T)\mathbb{E}(X).$$

Seconda identità di Wald

Quanto vale, per una passeggiata casuale senza barriere, la varianza di S_n ? Sfruttando l'indipendenza supposta delle variabili X_i , si ha

$$\operatorname{Var}(S_n) = n \operatorname{Var}(X)$$
.

Nel caso di v.a. con media $\mu=0$ e varianza σ^2 finita, in analogia con la formula precedente, la *seconda identità di Wald* calcola la varianza $Var(S_T)$ di una passeggiata casuale con barriere *al tempo di arrivo su una barriera*:

$$\operatorname{Var}(S_T) = \mathbb{E}(T) \operatorname{Var}(X).$$

Passeggiata casuale semplice simmetrica

Diremo che la passeggiata casuale è simmetrica se p = q: si ha allora

$$\mathbb{E}(X) = 0, \qquad \operatorname{Var}(X) = p + q = 1 - r.$$

Nel caso di una passeggiata casuale simmetrica, le identità di Wald consentono di calcolare il tempo medio di vita (prima di raggiungere una barriera) e la probabilità di uscita dalla barriera superiore (risp., inferiore).

Passeggiata casuale semplice simmetrica – 2

Iniziamo dalla relazione

$$\mathbb{P}(S_T = a) + \mathbb{P}(S_T = b) = 1;$$

si ha

$$\mathbb{E}(S_T) = a \cdot \mathbb{P}(S_T = a) + b\mathbb{P}(S_T = b) = a + (b - a)\mathbb{P}(S_T = b).$$

Dalla prima identità di Wald si ottiene

$$X = \mathbb{E}(S_T) = a + (b - a)\mathbb{P}(S_T = b)$$

ossia

$$\mathbb{P}(S_T = b) = \frac{(x-a)}{(b-a)}, \qquad \mathbb{P}(S_T = a) = \frac{(b-x)}{(b-a)}.$$

Passeggiata casuale semplice simmetrica – 3

Passiamo ora a calcolare il tempo medio $\mathbb{E}(\mathcal{T})$. Per questo, è necessario utilizzare la seconda identità di Wald. Iniziamo con il calcolare

$$\mathbb{E}(S_T^2) = a^2 + (b^2 - a^2)\mathbb{P}(S_T = b),$$

da cui

$$\operatorname{Var}(S_T) = \mathbb{E}(S_T^2) - (\mathbb{E}(S_T))^2 = a^2 + (b^2 - a^2) \frac{(x-a)}{(b-a)} - x^2;$$

questa espressione si semplifica e si ottiene

$$Var(S_T) = (b-x)(x-a).$$

Dalla seconda identità di Wald, si ha anche

$$\operatorname{Var}(S_T) = \mathbb{E}(T)\operatorname{Var}(X),$$

quindi

$$\mathbb{E}(T) = \frac{1}{\operatorname{Var}(X)}(b-x)(x-a).$$

Esempio

Consideriamo due amici che giocano al rosso e nero su una roulette. Sia A=5\$ il capitale del primo giocatore e B=10\$ il capitale del secondo; se esce rosso, il primo giocatore riceve 1\$ dal secondo, se esce nero paga 1\$, se esce zero (verde) si ripete la scommessa.

Calcolare la probabilità che il giocatore con capitale minore vinca e il tempo atteso di gioco.

Indichiamo con S_n^x il capitale del primo giocatore: si tratta di una passeggiata casuale simmetrica ($p=q=\frac{18}{37},\,r=\frac{1}{37}$) con barriere a=0 (il primo giocatore perde tutto) e b=15 (il primo giocatore vince).

Esempio

Dalla prima identità di Wald si ottiene $\mathbb{E}[S_T^x] = x$, ma è anche

$$x = \mathbb{E}[S_T^x] = a\mathbb{P}(S_T^x = a) + b\mathbb{P}(S_T^x = b)$$

$$\implies \qquad \mathbb{P}(S_T^x) = \frac{x - a}{b - a} = \frac{1}{3}.$$

Dalla seconda identità di Wald si ottiene infine

$$\mathbb{E}[T] = \frac{\operatorname{Var}[S_T^X]}{\operatorname{Var}[X]} = \frac{37}{36}50 \simeq 51, 4$$

ossia in media per ogni partita si giocano più di 50 mani e il primo giocatore vince un terzo delle partite.

Passeggiata casuale non simmetrica

Consideriamo ora il caso $p \neq q$. Non abbiamo a disposizione la seconda diseguaglianza di Wald (ricordiamo che questa affermazione richiede $\mathbb{E}[X]=0$); possiamo però affrontare il problema direttamente. Per semplificare i conti, supporremo a=0.

Indichiamo con $f(x) = \mathbb{P}(S_T = b \mid S_0 = x)$: un attimo di riflessione ci porta alla seguente relazione:

$$f(x) = pf(x+1) + qf(x-1) + rf(x),$$

che è una equazione alle differenze, con dati al bordo f(0) = 0, f(b) = 1. La soluzione è data dalla formula

$$f(x) = \mathbb{P}(S_T = b \mid S_0 = x) = \frac{1 - (q/p)^x}{1 - (q/p)^b}.$$

Possiamo allora calcolare il valor medio di S_T^x :

$$\mathbb{E}[S_T^x] = bf(x),$$

e infine dalla prima identità di Wald si ottiene che il numero

Esempio. Caso non simmetrico

Modifichiamo l'esempio precedente: per aiutare il più povero, gli aumentiamo le probabilità di vittoria. Avevamo A=5\$ il capitale del primo giocatore e B=10\$ il capitale del secondo; se esce rosso o zero, il primo giocatore riceve 1\$ dal secondo, se esce nero paga 1\$. Vogliamo ancora calcolare la probabilità che il giocatore con capitale minore vinca e il tempo atteso di gioco.

Indichiamo con S_n^x il capitale del primo giocatore: si tratta di una passeggiata casuale non-simmetrica ($p = \frac{18}{37}$, $q = \frac{17}{37}$) con barriere a = 0 (il primo giocatore perde tutto) e b = 15 (il primo giocatore vince), e capitale iniziale x = 5.

Esempio. Caso non simmetrico

Utilizziamo la formula per calcolare la probabilità di vittoria

$$\mathbb{P}(S_T = b \mid S_0 = x) = \frac{1 - (17/18)^5}{1 - (17/18)^{15}} \simeq 0,43$$

quindi in media il capitale finale del primo giocatore è $\mathbb{E}[S_T] \simeq 6, 5 > 5$ (in media, il primo giocatore vince 1,5\$ a partita).

Dalla prima identità di Wald si ottiene la durata media di una partita: $\mathbb{E}[T] \simeq 54,6$.

Outline

Passeggiate casuali con barriere Identità di Wald

Passeggiata casuale a stati numerabili

Definizioni

Per ogni stato $x \in E$, poniamo $T^x = \min\{n \mid X_n = x, X_0 = x\}$ il tempo di primo ritorno in x per una catena che parte da x. Diremo che uno stato è transitorio se

$$\rho_X = \mathbb{P}(T^X < +\infty) = \sum_{n \geq 1} \rho_{X,X}^{(n)} < 1,$$

e ricorrente se $\rho_X = 1$.

Osserviamo che se x è ricorrente allora $\sum_{n\geq 1} \mathbb{P}(T^x = n) = 1$,

quindi T^x è una v.a. (in senso classico) mentre se x è transitorio, T^x è una v.a. in senso esteso, cioè ammettiamo che T^x possa assumere valore $+\infty$ con probabilità positiva.

Ricorrenza

Se x è transitorio, necessariamente $\mathbb{E}[T^x] = +\infty$; se x è ricorrente, allora T^x è una v.a., di cui possiamo calcolare la media. Se risulta $\mathbb{E}[T^x] < +\infty$, allora diremo che x è *ricorrente positivo*, mentre se $\mathbb{E}[T^x] = +\infty$, diremo che x è *ricorrente nullo*.

Da questa definizione segue che se x è ricorrente e $x \rightarrow y$, allora anche y è ricorrente; allora, una catena irriducibile ha tutti gli stati che sono ricorrenti oppure transitori, ed una catena finita ha sempre almeno uno stato ricorrente.

Ricorrenza e numero di ritorni

Possiamo anche calcolare il numero di volte che una catena raggiunge lo stato x; per semplicità, supporremo che lo stesso x sia lo stato iniziale (parleremo quindi di ritorni); poniamo N_x il numero di ritorni a partire dallo stato x. Se x è ricorrente, allora

$$\mathbb{P}(N_x = m) = 0 \qquad \forall m \in \mathbb{N},$$

cioè $\mathbb{P}(N_x = +\infty) = 1$; se invece x è transitorio,

$$\mathbb{P}(N_{x}=m)=\rho_{x}^{m}(1-\rho_{x}) \qquad \forall m \in \mathbb{N},$$

e quindi $\mathbb{P}(N_x < \infty) = 1$ e inoltre $\mathbb{E}[N_x] = \frac{\rho_x}{1-\rho_x}$. Si ha inoltre il seguente criterio per determinare se uno stato è ricorrente oppure transitorio, che generalizza la definizione: dato una coppia di stati $x, y \in E$, se la serie $\sum_{n > 1} p_{y,x}^{(n)}$ è

convergente allora lo stato x è *transitorio*, se la serie è divergente allora lo stato x è *ricorrente*.

Ricorrenza e numero di ritorni

Terminiamo con la seguente distinzione tra gli stati ricorrenti per le catene a stati numerabili. Indichiamo con $m_x = \mathbb{E}[T^x]$ il tempo medio di ritorno in x. Se lo stato è transitorio, abbiamo visto che $\mathbb{E}[T^x] = \infty$; se lo stato è ricorrente, la media può esistere finita oppure essere infinita. Diremo che lo stato è ricorrente positivo se $\mathbb{E}[T^x] < \infty$, altrimenti diremo che lo stato è ricorrente nullo.

Vale la seguente caratterizzazione: per una catena irriducibile a stati ricorrenti, o tutti gli stati sono ricorrenti positivi, oppure sono ricorrenti nulli.

Ricorrenza e numero di ritorni

Con le stesse notazioni della sezione precedente, poniamo N_x^n il numero di ritorni a partire dallo stato x effettuati entro il passo n-esimo.

Theorem

Per una catena irriducibile si ha

$$\lim_{n\to\infty}\frac{1}{n}N_x^n=\frac{1}{m_x},$$

Inoltre, se $m_X < \infty$ e poniamo $\pi_X = \frac{1}{m_X}$, allora $\pi = (\pi_1, \pi_2, ...)$ è l'unica distribuzione invariante della catena. Viceversa, se $m_X = +\infty$ per un qualche $x \in E$, allora non esiste alcuna distribuzione invariante.

Passeggiata casuale a stati numerabili

Consideriamo il seguente processo (nascita e morte): se ad un tempo n ho x individui, al passo n+1 ne avrò x-1, x oppure x+1 con probabilità, rispettivamente, q, r, p, dove p>0, q>0, p+q+r=1,

ma se al tempo n ho 0 individui, allora ho una probabilità $p_0 > 0$ di passare in 1 (immigrazione)

Allora la catena è irriducibile (tutti gli stati comunicano), quindi tutti gli stati sono o ricorrenti o transitori; vogliamo vedere quale alternativa prevale.

Ricorrenza e transienza

Indichiamo con ρ_0^i la probabilità di arrivare in 0 a partire dallo stato i: vale la formula

$$\rho_0 = p_{0,0} + p_{0,1} \rho_0^1,$$

quindi 0 è ricorrente se e solo se $\rho_0^1=1$, ossia se e solo se $\mathbb{P}(\tau_0^1<+\infty)=1$ dove τ_0^1 è il tempo di primo passaggio da 0 partendo da 1. Consideriamo uno stato $M\in E$: allora

$$\mathbb{P}(\tau_0^1 < \infty) \geq \mathbb{P}(\tau_0^1 < \tau_M^1)$$

(a sinistra ho tutte le traiettorie che arrivano in 0, a destra tutte le traiettorie che arrivano in 0 senza toccare il livello M). Il lato destro, d'altra parte, è la probabilità di bancarotta in un gioco con barriere 0 e M, partendo dal livello 1, quindi è pari a

$$\mathbb{P}(\tau_0^1 < \tau_M^1) = 1 - f(1) = 1 - \frac{1 - (q/p)}{1 - (q/p)^M} = \frac{(q/p) - (q/p)^M}{1 - (q/p)^M}$$

se
$$p \neq q$$
, e $\mathbb{P}(\tau_0^1 < \tau_M^1) = \frac{M-x}{M}$ se $p = q$.

Ricorrenza e transienza

Studiamo il limite per $M \to \infty$ di queste relazioni: se (q/p) < 1 allora

$$\lim_{M \to \infty} \frac{(q/p) - (q/p)^M}{1 - (q/p)^M} = \frac{q}{p} < 1;$$

se $(q/p) \ge 1$ allora

$$\lim_{M\to\infty}\mathbb{P}(\tau_0^1<\tau_M^1)=1.$$

Quindi, se $q/p \ge 1$ si ottiene che $\mathbb{P}(\tau_0^1 < \infty) = 1$ e quindi tutti gli stati sono ricorrenti, se q/p < 1 allora tutti gli stati sono transitori. In questo caso, in particolare, fissato comunque un insieme di stati $\{0,1,2,\ldots,N\}$, dopo un tempo finito la catena di Markov lascerà questo insieme per non tornarci più, quindi $\lim_{n\to\infty} X_n = +\infty$.

Distribuzione invariante

In questo esempio, possiamo anche calcolare la distribuzione invariante (quando esiste). Iniziamo con il fissare $q \geq p$, altrimenti la catena è transitoria e non esiste la misura invariante. Indichiamo con $\pi = (\pi_0, \pi_1, \dots)$ la distribuzione invariante. Allora vale

$$\begin{cases} \pi_0 = \pi_0 r_0 + \pi_1 q, \\ \pi_1 = \pi_0 p_0 + \pi_1 r + \pi_2 q, \\ \pi_2 = \pi_1 p + \pi_2 r + \pi_3 q, \\ \dots \\ \pi_n = \pi_{n-1} p + \pi_n r + \pi_{n+1} q \end{cases}$$

che posso anche scrivere (r = 1 - p - q, $r_0 = 1 - p_0$)

$$\begin{cases} \pi_0 p_0 = \pi_1 q, \pi_1 q - \pi_0 p_0 = \pi_2 q - \pi_1 p, \dots \\ \pi_n q - \pi_{n-1} p = \pi_{n+1} q - \pi_n r \end{cases}$$

Distribuzione invariante

Per ricorrenza si ottiene

$$\begin{cases} \pi_1 = \pi_0 \frac{\rho_0}{q}, \pi_2 = \pi_1 \frac{\rho}{q} = \pi_0 \frac{\rho_0 \rho}{q^2}, \dots \\ \pi_{n+1} = \pi_0 \frac{\rho_0 \rho^n}{q^{n+1}}. \end{cases}$$

Rimane da determinare π_0 ; dalla relazione $\sum_n \pi_n = 1$ si ottiene

$$1 = \pi_0 + \pi_0 \frac{p_0}{q} \sum_{n=0}^{\infty} (p/q)^n$$

e quindi, se p < q, si ottiene

$$\pi_0 = \frac{q-p}{q-p+p_0}, \qquad \pi_{n+1} = \frac{q-p}{q-p+p_0} \frac{p_0 p^n}{q^{n+1}}.$$

Concludiamo osservando che nel caso p = q tutti gli stati sono ricorrenti nulli e non esiste distribuzione invariante.

Una catena di clienti

Consideriamo una situazione in cui ogni minuto viene evasa esattamente una persona della coda (se ce n'è) mentre ne arrivano altre con una distribuzione f_n , $n=0,1,\ldots$; sia μ la media del numero di clienti in arrivo. Indichiamo con X_n il numero di clienti in coda al tempo n: X_n è una catena di Markov e

$$p_{0,k} = f(k), \qquad p_{j,k} = f(k-j+1), \ j \ge 1, k \ge j-1.$$

Una catena di clienti

Nel caso che $\mu>1$ la catena è chiaramente transiente: ogni minuto, in media, arrivano più clienti di quanti ne serviamo. Supponiamo che la catena sia irriducibile (QUALI CONDIZIONI?). Allora la catena nel caso $\mu\leq 1$ è ricorrente. Possiamo mostrare che nel caso ricorrente vale

$$m_0 = \frac{1}{1-\mu}$$

e quindi la catena è ricorrente positiva se $\mu <$ 1, ricorrente nulla se $\mu =$ 1.