metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

{4,4'-Dimethyl-2,2'-[(2,2-dimethyl-propane-1,3-diyl)bis(nitrilomethanylyl-idene)]diphenolato}nickel(II) monohydrate

Hadi Kargar, a* Reza Kia, b,c Zahra Sharafi and Muhammad Nawaz Tahir a*

^aDepartment of Chemistry, Payame Noor University, PO Box 19395-3697 Tehran, Iran, ^bX-ray Crystallography Lab., Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, ^dDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, and ^eDepartment of Physics, University of Sargodha, Punjab, Pakistan Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir_uos@yahoo.com

Received 11 December 2011; accepted 16 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.031; wR factor = 0.083; data-to-parameter ratio = 20.5.

In the title compound, $[Ni(C_{21}H_{24}N_2O_2)]\cdot H_2O$, both the complex molecule and the water molecule lie on a twofold rotation axis. The Ni^{II} ion is coordinated in a distorted square-planar geometry by the tetradentate ligand. The dihedral angle between the two symmetry-related benzene rings is 47.12 (8)°. In the crystal, pairs of symmetry-related $O-H\cdots O$ hydrogen bonds form $R_2^2(6)$ ring motifs. In addition, there are weak intermolecular $C-H\cdots O$ hydrogen bonds, and $\pi-\pi$ stacking interactions with a centroid-centroid distance of 3.4760 (8) Å.

Related literature

For related structures, see for example: Fun *et al.* (2008); Kargar *et al.* (2008, 2011); Rayati *et al.* (2011); Kia *et al.* (2010). For standard bond lengths, see: Allen *et al.* (1987). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data

[Ni($C_{21}H_{24}N_2O_2$)]·H₂O $V = 2055.01 (11) \text{ Å}^3$ $M_r = 413.15$ Z = 4 Monoclinic, C2/c Mo $K\alpha$ radiation $\mu = 0.97 \text{ mm}^{-1}$ b = 15.9424 (5) Å T = 296 K c = 9.9965 (3) Å $0.25 \times 0.12 \times 0.08 \text{ mm}$ $\beta = 104.736 (1)^\circ$

Data collection

 $\begin{array}{ll} \mbox{Bruker SMART APEXII CCD} & 17468 \mbox{ measured reflections} \\ \mbox{area-detector diffractometer} & 2557 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 2131 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{ Bruker}, 2005) & R_{\rm int} = 0.040 \\ \mbox{} T_{\rm min} = 0.794, \ T_{\rm max} = 0.927 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.031 & 125 \ {\rm parameters} \\ WR(F^2) = 0.083 & {\rm H-atom\ parameters\ constrained} \\ S = 1.06 & \Delta\rho_{\rm max} = 0.21\ {\rm e\ \mathring{A}^{-3}} \\ 2557\ {\rm reflections} & \Delta\rho_{\rm min} = -0.31\ {\rm e\ \mathring{A}^{-3}} \end{array}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} O1W-H1\cdotsO1^{i}\\ C3-H3A\cdotsO1W^{ii} \end{array} $	0.98	1.92	2.781 (2)	145
	0.93	2.55	3.477 (2)	173

Symmetry codes: (i) -x, y, $-z + \frac{1}{2}$; (ii) $-x + \frac{1}{2}$, $-y + \frac{3}{2}$, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5396).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). *J. Chem. Soc. Perkin Trans.* 2, pp. S1–19.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Fun, H.-K., Kia, R. & Kargar, H. (2008). *Acta Cryst.* E64, o1895–o1896. Kargar, H., Fun, H.-K. & Kia, R. (2008). *Acta Cryst.* E64, m1541–m1542. Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). *Acta Cryst.* E67, o614. Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). *Acta Cryst.* E66, o2296. Rayati, S., Ghaemi, A. & Notash, B. (2011). *Acta Cryst.* E67, m448. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

supplementary m	aterials	

Acta Cryst. (2012). E68, m82 [doi:10.1107/S1600536811054262]

{4,4'-Dimethyl-2,2'-[(2,2-dimethylpropane-1,3-diyl)bis(nitrilomethanylylidene)]diphenolato}nickel(II) monohydrate

H. Kargar, R. Kia, Z. Sharafi and M. N. Tahir

Comment

In continuation of our work on the crystal structures of a Schiff base ligands and complexes (Fun *et al.*, 2008; Kargar *et al.*, 2008,2011; Rayati *et al.*, 2011; Kia *et al.*, 2010), we have determined the X-ray structure of the title compound.

The molecular structure of the title compound is ahown in Fig. 1. The asymmetric unit comprises half of Schiff base complex and half a water molecule. The Ni^{II} ion, the central carbon atom of the diamine segment (C10) and the O atom of water molecule lie on a two-fold rotation axis. The coordination geometry of Ni1 is distorted square-planar formed by the tetradentate ligand. The bond lengths (Allen *et al.*, 1987) and angles are within the normal ranges and are comparable to related structures (Fun *et al.* 2008; Kargar *et al.* 2008; Rayati *et al.*, 2011). The dihedral angle between the two symmetry related benzene rings is 47.12 (8)°. A pair of symmetry related intermolecular O—H···O hydrogen bonds form an $R^2_2(6)$ ring motif (Bernstein *et al.*, 1995). In the crystal, molecules are linked through weak intermolecular C—H···O interactions. The crystal structure is further stabilized by intermolecular π - π interactions [Cg1···Cg1ⁱⁱⁱ = 3.4760 (8)Å; (iii) -x, 1 - y, 1 - z; Cg1 is the centroid of the Ni1/O1/C1/C6/C8/N1 ring].

Experimental

The title compound was synthesized by adding bis(5-methylsalicylaldehyde)-2,2-dimethyl-1,3-propanediimine (2 mmol) to a solution of nickel(II) chloride hexahydrate (2.1 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for half an hour. The resultant solution was filtered. Yellow single crystals of the title compound suitable for *X*-ray structure determination were recrystallized from an ethanol solution of the title compound by slow evaporation of the solvent at room temperature over several days.

Refinement

Hydrogen atoms bonded to C atoms were positioned geometrically with C—H = 0.93-0.97 Å and included in a riding model approximation with U_{iso} (H) = 1.2 or 1.5 U_{eq} (C) The unique water H atom was located in a difference Fourier map and then constrained to ride to the parent atom with U_{iso} (H) = 1.5 U_{eq} (O). A rotating group model was used only for the benzene- substituent methyl group.

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. The dashed lines show hydrogen bonds [symmetry code: (A) -x, y, -z+1/2].

Fig. 2. A partial packing diagram of the title compound viewed approximately along the c-axis showing molecules linked through intermolecular hydrogen bonds (dashed lines). Only the H atoms involved in the interactions are shown.

$\{4,4'-Dimethyl-2,2'-[(2,2-dimethylpropane-1,3-diyl)bis (nitrilomethanylylidene)] diphenolato \} nickel (II) monohydrate \\$

Crystal data

 $[Ni(C_{21}H_{24}N_2O_2)]\cdot H_2O$

 $M_r = 413.15$

Monoclinic, C2/c

Hall symbol: -C 2yc

a = 13.3333 (4) Å

b = 15.9424 (5) Å

c = 9.9965 (3) Å

 $\beta = 104.736 (1)^{\circ}$

 $V = 2055.01 (11) \text{ Å}^3$

2033.01 (11) 11

Z = 4

F(000) = 872

 $D_{\rm x} = 1.335 \; {\rm Mg \; m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

Cell parameters from 3245 reflections

 $\theta=2.8\text{--}27.8^{\circ}$

 $\mu = 0.97 \text{ mm}^{-1}$

T = 296 K

Block, red

 $0.25\times0.12\times0.08~mm$

Data collection

Bruker SMART APEXII CCD area-detector

diffractometer

Radiation source: fine-focus sealed tube

graphite

φ and ω scans

Absorption correction: multi-scan

(SADABS; Bruker, 2005)

 $T_{\min} = 0.794$, $T_{\max} = 0.927$

17468 measured reflections

2557 independent reflections

2131 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.040$

 $\theta_{\text{max}} = 28.3^{\circ}, \, \theta_{\text{min}} = 2.6^{\circ}$

 $h = -17 \rightarrow 16$

 $k = -21 \rightarrow 21$

 $l = -13 \rightarrow 13$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.06	$w = 1/[\sigma^2(F_0^2) + (0.0485P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
2557 reflections	$(\Delta/\sigma)_{\text{max}} < 0.001$
125 parameters	$\Delta \rho_{\text{max}} = 0.21 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.31 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.0000	0.489837 (15)	0.2500	0.03589 (11)
O1	0.09186 (9)	0.57316 (6)	0.34800 (11)	0.0457 (3)
N1	0.04523 (10)	0.40475 (8)	0.39178 (12)	0.0414 (3)
C1	0.16634 (12)	0.56212 (9)	0.46203 (15)	0.0401 (3)
C2	0.23779 (14)	0.62692 (10)	0.50786 (17)	0.0497 (4)
H2A	0.2346	0.6747	0.4537	0.060*
C3	0.31279 (14)	0.62162 (12)	0.63132 (18)	0.0567 (5)
Н3А	0.3589	0.6660	0.6581	0.068*
C4	0.32147 (14)	0.55163 (13)	0.71719 (17)	0.0550(4)
C5	0.25490 (14)	0.48675 (11)	0.67168 (18)	0.0487 (4)
H5A	0.2604	0.4390	0.7265	0.058*
C6	0.17758 (13)	0.48878 (9)	0.54427 (17)	0.0410(3)
C7	0.40114 (17)	0.54821 (18)	0.85526 (19)	0.0817(7)
H7A	0.4556	0.5101	0.8494	0.123*
H7B	0.3687	0.5292	0.9252	0.123*
H7C	0.4297	0.6031	0.8788	0.123*
C8	0.11388 (13)	0.41566 (10)	0.50691 (15)	0.0431 (4)
H8A	0.1230	0.3725	0.5714	0.052*
C9	-0.01669 (14)	0.32780 (10)	0.36982 (16)	0.0488 (4)
H9A	-0.0895	0.3426	0.3512	0.059*
Н9В	0.0006	0.2949	0.4542	0.059*
C10	0.0000	0.27358 (15)	0.2500	0.0564 (7)
C11	0.0973 (2)	0.21930 (15)	0.2981 (2)	0.1038 (9)

H11A	0.1569	0.2548	0.3287	0.	156*	
H11B	0.1057	0.1851	0.2226	0.	156*	
H11C	0.0903	0.1840	0.3729	0.	156*	
O1W	0.0000	0.72531 (1	2) 0.2500	0.	0992 (8)	
H1	-0.0556	0.6878	0.2007	0.	149*	
Atomic displace	ement parameters	(\mathring{A}^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.03715 (18)	0.03024 (16)	0.03666 (16)	0.000	0.00274 (11)	0.000
O1	0.0462 (7)	0.0353 (6)	0.0472 (6)	-0.0002(5)	-0.0032 (5)	0.0020 (5)
N1	0.0448 (8)	0.0367 (7)	0.0424 (7)	-0.0023 (6)	0.0110 (6)	0.0012 (5)
C1	0.0364 (8)	0.0408 (8)	0.0418 (8)	0.0035 (6)	0.0075 (6)	-0.0040 (6)
C2	0.0470 (10)	0.0449 (9)	0.0540 (9)	-0.0035 (7)	0.0069 (8)	-0.0022 (7)
C3	0.0434 (10)	0.0635 (12)	0.0586 (10)	-0.0101 (8)	0.0047 (8)	-0.0118 (9)
C4	0.0391 (10)	0.0794 (13)	0.0432 (9)	-0.0003 (9)	0.0042 (7)	-0.0047 (9)
C5	0.0428 (10)	0.0604 (11)	0.0413 (8)	0.0055 (8)	0.0076 (7)	0.0051 (7)
C6	0.0373 (9)	0.0449 (9)	0.0390(8)	0.0040(7)	0.0065 (7)	-0.0010 (6)
C7	0.0590 (14)	0.121(2)	0.0537 (11)	-0.0122 (13)	-0.0074 (10)	-0.0005 (12)
C8	0.0472 (10)	0.0411 (8)	0.0408 (8)	0.0029(7)	0.0109(7)	0.0055 (6)
C9	0.0603 (11)	0.0394 (9)	0.0494 (9)	-0.0103 (8)	0.0189 (8)	0.0006 (7)
C10	0.0806 (19)	0.0355 (12)	0.0563 (14)	0.000	0.0236 (14)	0.000
C11	0.159(3)	0.0726 (15)	0.0929 (16)	0.0629 (16)	0.0553 (17)	0.0332 (13)
O1W	0.1069 (18)	0.0426 (11)	0.1201 (18)	0.000	-0.0225 (15)	0.000
Geometric para	meters (Å, °)					
Ni1—O1		1.901 (1)	C5—H	I5A	0.93	00
Ni1—O1 ⁱ		1.9010 (10)	C6—C		1.43	
Ni1—N1 ⁱ		1.9436 (12)	C7—H	I7A	0.96	00
Ni1—N1		1.9436 (12)	C7—H		0.96	
O1—C1		1.3194 (17)	C7—H		0.96	
N1—C8		1.2870 (19)	C8—H	I8A	0.93	
N1—C9		1.4638 (19)	C9—C		1.53	
C1—C2		1.401 (2)	C9—H		0.97	
C1—C6		1.415 (2)	C9—H		0.97	00
C2—C3		1.379 (2)	C10—	C11	1.53	2 (2)
C2—H2A		0.9300	C10—		1.53	2 (2)
C3—C4		1.394 (3)	C10—	C9 ⁱ	1.539	9 (2)
С3—Н3А		0.9300	C11—		0.96	
C4—C5		1.364 (3)	C11—		0.96	
C4—C7		1.513 (2)	C11—H11C		0.9600	
C5—C6		1.421 (2)	O1W-		0.9818	
O1—Ni1—O1 ⁱ		91.34 (6)	C4—C	C7—H7A	109	5
O1—Ni1—N1 ⁱ		154.58 (6)		C7—H7B	109	5
O1 ⁱ —Ni1—N1 ⁱ		94.14 (5)	H7A-	-С7—Н7В	109	5
O1 N:1 N1		04.14 (5)		77 1170	100	-

C4—C7—H7C

109.5

94.14 (5)

O1—Ni1—N1

N1 N1 N1 N1 126.63 (9)	O1 ⁱ —Ni1—N1	154.58 (6)	H7A—C7—H7C		109.5
C1-O1-Ni1 126.63 (9)					
C8—N1—C9		* /			
C8-NI-NiI					
C9—N1—Nî1					
O1—C1—C2					
O1−C1−C6 C2−C1−C6 C1−C1−C6 C1−C1−C1−C1−C1−C1−C1−C1−C1−C1−C1−C1−C1−C					
C2—C1—C6 C3—C2—C1 C3—C2—C1 C3—C2—H2A C3—C2—H2A C1—C2—H2B C1—C1—C1—C1—C1—C1—C1—C1—C1—C1—C1—C1—C1—C					
C3—C2—C1 C3—C2—H2A C3—C2—H2A C3—C2—H2A C1—C2—H2A C1—C2—H2A C1—C2—H2B C1—C2—H2B C1—C2—H2B C1—C1—C1II C1—C10—C1II C1—C10—C9 C1—C1—H11 C1—C10—C9 C1—C1—H11 C1—C10—C9 C1—C1—H11 C1—C10—C9 C1—C1—H11 C1—C10—C9 C1—C1—H11 C2—C3—C4—C7 C1—C1—H11 C2—C3—C4—C7 C1—C1—H11 C3—C4—C7 C1—C1—H11 C4—C3—H3A C1—C1—H11B C10—5 C4—C3—H3A C10—C11—H11B C10—5 C4—C3—H3A C10—C11—H11C C10—5 C1—C6—C5 C1—C6—C5 C10—C6—C5 C10—C6—C8 C12.49 (15) C10—C11—H11C C10—5 C1—C6—C8 C12.49 (15) C1—C1—H11C C10—5 C1—C6—C8 C12.49 (15) C1—C1—H11C C10—5 C1—C6—C8 C12.49 (15) C1—C1—H11C C10—5 C1—C6—C8 C10—C10—C1 C10—		` ′			
C3—C2—H2A					
C1—C2—H2A 119.2 C11—C10—C11 ⁱ 111.2 (3) C2—C3—C4 121.84 (17) C11—C10—C9 ⁱ 106.43 (11) C2—C3—H3A 119.1 C11—C10—C9 ⁱ 110.61 (11) C4—C3—H3A 119.1 C11—C10—C9 110.63 (11) C5—C4—C3 117.16 (16) C11 ⁱ —C10—C9 106.43 (11) C5—C4—C7 121.55 (19) C9 ⁱ —C10—C9 111.63 (18) C3—C4—C7 121.28 (19) C10—C11—H11A 109.5 C4—C5—C6 122.98 (17) C10—C11—H11B 109.5 C4—C5—H5A 118.5 C10—C11—H11C 109.5 C1—C6—C5 119.02 (15) H11A—C11—H11C 109.5 C1—C6—C8 123.49 (15) H11B—C11—H11C 109.5 C5—C6—C8 117.48 (14) O1 ⁱ —Ni1—O1—C1 163.48 (15) C7—C4—C5—C6 174.24 (15) N1i—Ni1—O1—C1 8.32 (13) C2—C1—C6—C5 174.24 (15) N1i—Ni1—O1—C1 8.32 (13) C2—C1—C6—C8 174.24 (15) N1i—Ni1—O1—C1 8.32 (13) C2—C1—C6—C8 175.58 (15) N1i—Ni1—N1—C8 10.61 (16) C2—C1—C6—C8 178.70 (16) O1 ⁱ —Ni1—N1—C8 10.61 (16) C2—C1—C6—C8 178.70 (16) O1 ⁱ —Ni1—N1—C8 10.61 (16) C2—C1—C6—C8 178.70 (16) O1 ⁱ —Ni1—N1—C9 70.04 (15) C9—N1—S—C6 7.7 (2) Ni1—Ni1—N1—C9 70.04 (15) C9—N1—S—C6 7.7 (2) Ni1—O1—C1—C2 169.47 (11) C1—C6—C8—N1 5.6 (3) Ni1—N1—C1—C2 169.47 (11) C1—C6—C8—N1 5.6 (3) Ni1—O1—C1—C2 169.47 (11) C1—C6—C8—N1 1.56 (3) Ni1—O1—C1—C2 175.28 (15) C8—N1—O1—C1—C1 12.3 (2) Ni1—O1—C1—C2 175.28 (15) C8—N1—O1—C1—C1 12.3 (2) Ni1—O1—C1—C2 177.33 (18) N1—C9—C10—C11 156.78 (16) C2—C3—C4—C5 2-C3—C4—C5 2-C4—C5—C6 Symmetry codes: (i) ¬x, y, ¬z+1/2.					
C2—C3—H3A 119.1 C11—C10—C9 110.61 (11) C4—C3—H3A 119.1 C11—C10—C9 110.61 (11) C5—C4—C3 117.16 (16) C111—C10—C9 110.63 (11) C5—C4—C7 121.55 (19) C9—C10—C9 111.63 (18) C3—C4—C7 121.28 (19) C10—C11—H11A 109.5 C4—C5—C6 122.98 (17) C10—C11—H11B 109.5 C4—C5—H5A 118.5 H11A—C11—H11B 109.5 C1—C6—C5 119.02 (15) H11A—C11—H11C 109.5 C1—C6—C8 123.49 (15) H11B—C11—H11C 109.5 C5—C6—C8 117.48 (14) O1 ¹ —Ni1—O1—C1 163.48 (15) C7—C4—C5—C6 174.24 (15) N1—Ni1—O1—C1 8.32 (13) C2—C1—C6—C5 4.2 (2) O1—Ni1—N1—C8 1.34 (13) O1—C1—C6—C8 5.0 (2) O1 ¹ —Ni1—N1—C8 100.61 (16) C2—C1—C6—C8 177.58 (15) Ni ¹ —Ni1—N1—C8 156.53 (16) C4—C5—C6—C8 177.90 (16) O1—Ni1—N1—C9 70.04 (15) C9—N1—C8—C6 177.90 (15) Ni ¹ —Ni1—N1—C9 70.04 (15) C9—N1—C8—C6 177.90 (15) Ni ¹ —Ni1—N1—C9 70.04 (15) C9—N1—C8—C6 717.90 (15) Ni ¹ —Ni1—N1—C9 70.04 (15) C9—N1—C8—C6 717.90 (15) Ni ¹ —Ni1—N1—C9 71.99 (11) C4—C5—C6—C8—N1 71.61 (15) Ni ¹ —Ni1—N1—C9 72.28 (8) Ni1—N1—C8—C6 71.70 (16) O1—C1—C2—C3 175.28 (15) C8—N1—C9—C10 71.61 (15) C1—C2—C3—C4 71.71 (16) C1—C2—C3—C4 71.73 (18) N1—C9—C10—C11 156.78 (16) C2—C3—C4—C5 C3—C4—C5 C4—C5—C6 71.73 (18) N1—C9—C10—C11 71.61 (15)	C1—C2—H2A	119.2	C11—C10—C11 ⁱ		111.2 (3)
C4—C3—H3A 119.1 C11—C10—C9 110.61 (11) C5—C4—C3 117.16 (16) C11i—C10—C9 106.43 (11) C5—C4—C7 121.25 (19) C9—C10—C9 111.63 (18) C3—C4—C7 121.28 (19) C10—C11—H11A 109.5 C4—C5—C6 122.98 (17) C10—C11—H11B 109.5 C6—C5—H5A 118.5 C10—C11—H11C 109.5 C1—C6—C5 119.02 (15) H11A—C11—H11C 109.5 C1—C6—C8 123.49 (15) H11B—C11—H11C 109.5 C5—C6—C8 117.48 (14) O1i—Ni1—O1—C1 163.48 (15) C7—C4—C5—C6 178.41 (17) N1i—Ni1—O1—C1 18.32 (13) C2—C1—C6—C5 174.24 (15) N1i—Ni1—O1—C1 18.32 (13) O1—C1—C6—C8 1.34 (13) O1—C1—C6—C8 1.34 (13) O1—C1—C6—C8 1.35 (16) C2—C1—C6—C8 178.58 (15) N1i—N11—N1—C8 10.61 (16) C2—C1—C6—C8 178.70 (16) O1—Ni1—N1—C9 171.99 (11) C4—C5—C6—C8 178.70 (16) O1i—Ni1—N1—C9 70.04 (15) C9—N1—C8—C6 7.77 (2) Ni1—O1—C1—C6 175.28 (15) C6—C1—C2—C3 175.28 (15) C8—N1—C9—C10 110.61 (15) C9—C1—C6—C8—N1 175.14 (16) O1—C1—C2—C3 175.28 (15) C8—N1—C9—C10 110.61 (15) C2—C3—C4—C5 C3 C4—C5—C6 178.70 (16) 175.14 (16) O1—C1—C2—C3 175.28 (15) C8—N1—C9—C10 110.61 (15) C2—C3—C4—C5 C3—C4—C5 C4—C5—C6 177.33 (18) N1—C9—C10—C11 115.63 (18) 110.61 (11) 110.61 (11) 110.64 (11) 110.65 (11) 110.64 (11) 110.64 (11) 110.64 (11) 110.65 (11) 110.65 (11) 110.61 (15) 1	C2—C3—C4	121.84 (17)	C11—C10—C9 ⁱ		106.43 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C2—C3—H3A	119.1	C11 ⁱ —C10—C9 ⁱ		110.61 (11)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C4—C3—H3A	119.1			110.61 (11)
C5—C4—C7	C5—C4—C3	117.16 (16)	C11 ⁱ —C10—C9		
C3—C4—C7	C5—C4—C7				
C4—C5—C6		` ′			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
C6—C5—H5A					
C1—C6—C5 C1—C6—C8 C1—C1—C1—C1 C1—C6—C5 C1—C6—C5 C1—C4—C5—C6 C5 C1—C6—C5 C2—C1—C6—C5 C2—C1—C6—C8 C1—C6—C8 C1—C1—C1—C9 C1—C1—C9 C1—C1—C9 C1—C1—C9 C1—C1—C9 C1—C1—C1—C6 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1 C1—C1—C1—C1 C1—C1—C2 C1—C1—C1 C1—C1—C1—C1 C1—C1—C1—C1 C1—C1—C1 C1—					
C1—C6—C8 C5—C6—C8 C17.48 (14) C1—Ni1—O1—C1 C1 C					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5—C6—C8	117.48 (14)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	01 ⁱ —Ni1—01—C1	163.48 (15)	C7—C4—C5—C6		178.41 (17)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Ni1—O1—C1	-93.95 (16)	O1—C1—C6—C5		-174.24 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1—Ni1—O1—C1	8.32 (13)	C2—C1—C6—C5		4.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1—Ni1—N1—C8	1.34 (13)	O1—C1—C6—C8		5.0(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1 ⁱ —Ni1—N1—C8	-100.61 (16)	C2—C1—C6—C8		-176.58 (15)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1 ⁱ —Ni1—N1—C8	156.53 (16)	C4—C5—C6—C1		-2.0(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		171.99 (11)	C4—C5—C6—C8		178.70 (16)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		` ′			
C6—C1—C2—C3 -3.2 (2) Ni1—N1—C9—C10 71.61 (15) C1—C2—C3—C4 -0.1 (3) N1—C9—C10—C11 82.3 (2) C2—C3—C4—C5 2.4 (3) N1—C9—C10—C11 ⁱ -156.78 (16) C2—C3—C4—C7 -177.33 (18) N1—C9—C10—C9 ⁱ -36.00 (9) C3—C4—C5—C6 -1.3 (3) Symmetry codes: (i) $-x$, y , $-z+1/2$.					
C1—C2—C3—C4					
C2—C3—C4—C5 2.4 (3) N1—C9—C10—C11 i -156.78 (16) C2—C3—C4—C7 -177.33 (18) N1—C9—C10—C9 i -36.00 (9) C3—C4—C5—C6 -1.3 (3) Symmetry codes: (i) $-x$, y , $-z+1/2$. Hydrogen-bond geometry (Å, °)					
C2—C3—C4—C7					
C3—C4—C5—C6 -1.3 (3) Symmetry codes: (i) $-x$, y , $-z+1/2$. Hydrogen-bond geometry (Å, °)					
Symmetry codes: (i) $-x$, y , $-z+1/2$. Hydrogen-bond geometry (Å, °)			1N1—C9—C10—C9		30.00 (3)
Hydrogen-bond geometry (Å, °)		1.5 (3)			
	Symmetry codes. (1) $x, y, 2 \cdot 1/2$.				
D — $H \cdots A$ D — H $H \cdots A$ $D \cdots A$ D — $H \cdots A$	Hydrogen-bond geometry (Å, °)				
	<i>D</i> —H··· <i>A</i>	<i>D</i> —H	$H\cdots A$	D··· A	D— H ··· A

O1W—H1···O1 ⁱⁱ	0.98	1.92	2.781 (2)	145	
C3—H3A···O1W ⁱⁱⁱ	0.93	2.55	3.477 (2)	173	
Symmetry codes: (ii) $-x$, y , $-z+1/2$; (iii) $-x+1/2$, $-y+3/2$, $-z+1$.					

Fig. 1

Fig. 2

