MA 106 : LINEAR ALGEBRA : SPRING 2023 SOLUTIONS OF TUTORIAL PROBLEMS ASSIGNMENTS 4-7

1. Tutorial Problems about vector spaces

(1) Obtain the REF of the following matrices. Use them to find rank and nullity of the matrix. Also write down a basis for the range. Finally obtain the RCF and use to write down a basis for the null space.

(i)
$$\begin{bmatrix} 1 & -2 & 1 \\ 3 & 5 & 1 \\ 4 & 3 & 2 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 1 & 1 & -1 \\ 3 & 4 & 0 \\ 2 & -3 & 1 \\ 5 & 1 & 1 \end{bmatrix}$$
.

Solution: (ii)
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 3 & 4 & 0 \\ 2 & -3 & 1 \\ 5 & 1 & 1 \end{bmatrix} \xrightarrow{R_2 - 3R_1} \xrightarrow{R_3 - 2R_1} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ 0 & -5 & 3 \\ 0 & -4 & 6 \end{bmatrix}$$

$$\begin{bmatrix} R_3 + 5R_2 \\ R_4 + 4R_2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 18 \\ 0 & 0 & 18 \end{bmatrix} \xrightarrow{R_4 - R_3} \longrightarrow B = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 18 \\ 0 & 0 & 0 \end{bmatrix}$$
.

As there are three pivots in B rank A=3. The three columns of A form a basis for $\mathcal{C}(A)$. The nullity is zero by the rank-nullity theorem. The row canonical form is the 3×4 matrix whose first three rows and the first 3 columns form I_3 and the last row is a zero vector.

(2) Show that the only possible subspaces of \mathbb{R}^3 are the zero space $\{0\}$, lines passing through the origin, planes passing through the origin and the whole space.

Solution: Clearly the above mentioned spaces are subspaces. Since the dimension of \mathbb{R}^3 is 3, any subspace V has dimension ≤ 3 . If the dimension is zero then V has no nonzero elements and hence V=(0). If the dimension is 1 then $V=L(\{\mathbf{v}\})$ where \mathbf{v} is a non zero vector. This consists of precisely all scalar multiples of \mathbf{v} and hence is a line passing through the origin. If the dimension is two, then V=L(v,u). So, we get the set of points of the form $\alpha v+\beta u$ for

1

- $\alpha, \beta \in \mathbb{R}$. This is precisely the plane through the origin containing the two vectors v, u. Finally if the dimension is 3, then the subspace must be the whole of \mathbb{R}^3 , for otherwise, there will be four linearly independent elements in \mathbb{R}^3 .
- (3) A **hyperplane** in \mathbb{R}^n is defined to be the set u+W where $u\in\mathbb{R}^n$ and W is a subspace of \mathbb{R}^n having dimension n-1. Prove that a hyperplane in \mathbb{R}^n is the set of solutions of a single linear equation $a_1x_1+a_2x_2+\cdots+a_nx_n=b$ where $a_1,\ldots,a_n,b\in\mathbb{R}$.

Solution: Let $B=\{u_1,u_2,\ldots,u_{n-1}\}$ be a basis of W. Let x_1,x_2,\ldots,x_n be indeterminates. Let A be the $n\times (n-1)$ matrix whose column vectors are u_1,u_2,\ldots,u_{n-1} . Then the homogeneous system of linear equations $[x_1\ x_2\ \ldots\ x_n]A=0$ has a nontrivial solution, say $x_1=a_1,x_2=a_2,\ldots,x_n=a_n$. Then u_1,u_2,\ldots,u_{n-1} are solutions to $a_1x_1+a_2x_2+\cdots+a_nx_n=0$. Since $a_1x_1+a_2x_2+\cdots+a_nx_n=b$ has a nontrivial solution say u. Hence the set of all solutions is u+W.

- (4) Consider the following subsets of the space $M_n(\mathbb{C})$ of $n \times n$ complex matrices :
 - (a) $\operatorname{Sym}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = A^T\}$ of symmetric matrices.
 - (b) $\operatorname{Herm}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = A^*\}$ of Hermitian matrices.
 - (c) $\operatorname{Skew}_n(\mathbb{C}) = \{A \in M_n(\mathbb{C}) : A = -A^*\}$ of skew-Hermitian Matrices.

Show that each of them is an \mathbb{R} -vector subspace of $M_n(\mathbb{C})$ and compute their dimension by explicitly writing down a basis for each of them.

Solution: :(a) This is a complex vector subspace with basis

$${E_{ii} : 1 \le i \le n} \cup {E_{ij} + E_{ji} : 1 \le i < j \le n}.$$

Therefore its complex dimension is n(n+1)/2 and its real dimension is n(n+1).

(b) This is defined by linear equations over real numbers and hence is a real subspace. The set

$${E_{ii}} \cup {E_{ij} + E_{ii} : i < j} \cup {\iota(E_{ij} - E_{ij}) : i < j}$$

is a basis. Hence the dimension is n^2 . It is not a complex subspace, because $\iota(E_{12}+E_{21})$ is not Hermitian.

(c) This is also defined by real linear equations and hence is a real subspace. The set

$$\{iE_{ii}\} \cup \{i(E_{ii} + E_{ii}) : i < j\} \cup \{E_{ii} - E_{ii} : i < j\}$$

is a basis and hence its dimension is also n^2 . It is not a complex subspace.

(5) Let $P_n[x]$ denote the vector space consisting of the zero polynomial and all real polynomials of degree $\leq n$, where n is fixed. Let S be a subset of all polynomials p(x) in $P_n[x]$ satisfying the following conditions. Check whether S is a subspace; if so, find the dimension of S. (i) p(0) = 0; (ii) p is an odd function; (iii) p(0) = p''(0) = 0.

Solution: (i) Yes. $\{x, x^2, \dots, x^n\}$ is basis. So, the dimension is n.

- (ii) Recall that p is odd means p(-x) = -p(x). By comparing coefficients on either side we see that all even degree terms vanish. This set is then spanned by $1, x^3, \ldots, x^k$ where k = largest odd number < n.
- (iii) Yes. The given condition is equivalent to say that the constant term and the degree 2 term are missing. $\{x, x^3, x^4, \dots, x^n\}$ is basis. So, the dimension is n-1, $(n \ge 2)$.
- (6) Examine whether the following sets are linearly independent.
 - (a) $\{(a,b),(c,d)\}\subset \mathbb{R}^2$, with $ad-bc\neq 0$.
 - (b) For $\alpha_1, \ldots, \alpha_k$ distinct real numbers, the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ where $\mathbf{v}_i = (1, \alpha_i, \alpha_i^2, \ldots, \alpha_i^{k-1})$.
 - (c) $\{1, \cos x, \cos 2x, \dots, \cos nx\}.$
 - (d) $\{1, \sin x, \sin 2x, \dots, \sin nx\}.$
 - (e) $\{e^x, xe^x, \dots, x^ne^x\}.$
 - **Solution:** (a) The 2×2 matrix A whose row vectors are (a,b) and (c,d) is invertible as its determinant is nonzero. Hence the row space is 2-dimensional and rank A=2.
 - (b) Suppose $\sum_{i=1}^k \beta_i \mathbf{v}_i = 0$. This is the same as the matrix equation $V\mathbf{b} = 0$ where $V = V(\alpha_1, \dots, \alpha_k)$ is the Vadermonde matrix and $\mathbf{b} = (\beta_1, \dots, \beta_k)^t$. Since we know that the Vandermonde determinant is nonzero for distinct $\alpha_i's$, it follows that the matrix V is invertible. Hence the equation has only the zero as solution. Therefore $\mathbf{b} = 0$ which means $\beta_i = 0$ for all i. Hence v_1, v_2, \dots, v_k are linearly independent.
 - (c) Let $\sum_{r=0}^{n} \beta_r \cos rx = 0$. Differentiating 2k times and putting x = 0, for $k = 0, \ldots, n-1$ we get,

$$\sum_{r=0}^n \beta_r(r)^{2k} = 0.$$

Now take $\alpha_r = r^2$ for r = 0, 1, ..., n, we get $\sum_{r=0}^n \beta_r \mathbf{v}_r = 0$. Hence by (b), $\beta_r = 0$ for all r.

- (d) Here differentiate once and use (c).
- (e) Suppose $\sum_{i=0}^{n} \beta_i x^i e^x = 0$ Since e^x is never zero this yields $\sum_{i=0}^{n} \beta_i x^i = 0$. Since we know that $\{1, x, \ldots, x^n\}$ are linearly independent, it follows that $\beta_i = 0$ for all i.

(7) Find a basis for the subspace $W = \{(x,y,z) \in \mathbb{R}^3 \mid x-2y+3z=0\}$. Let P be the xy-plane. Find a basis of $W \cap P$. Find a basis of the subspace of all vectors in \mathbb{R}^3 which are perpendicular to the plane W.

Solution: $W = \{(x,y,z) \mid x-2y+3z=0.\}$. We write x=2y-3z. Hence (x,y,z)=(2y-3z,y,z)=y(2,1,0)+z(-3,0,1). This shows that W is a 2-dimensional subspace spanned by the linearly independent vectors u=(2,1,0) and v=(-3,0,1). The vectors in $W\cap P$ Have their z-component zero. Hence $W\cap P=\{(2y,y,0)\}$. Thus $\{(2,1,0)\}$ is a basis of $W\cap P$. It is clear that (1,-2,3) is perpendicular to the plane W. The subspace of vectors that are perpendicular to W is one-dimensional and (2,1,0) is a basis.

2. Tutorial problems about linear transformations

(1) Define
$$f: \mathbb{R}^5 \longrightarrow \mathbb{R}^3$$
 by

$$f((x_1, x_2, x_3, x_4, x_5)^t) = (2x_3 - 2x_4 + x_5, 2x_2 - 8x_3 + 14x_4 - 5x_5, x_2 + 3x_3 + x_5)^t.$$

Find bases for the null-space and the range of f, using the row echelon form of the matrix of f with respect to standard bases.

Solution: We first write down the associated matrix and then perform row operations on it to bring it to an REF:

$$\begin{bmatrix} 0 & 0 & 2 & -2 & 1 \\ 0 & 2 & -8 & 14 & -5 \\ 0 & 1 & 3 & 0 & 1 \end{bmatrix} R_1 \sim R_2 \longrightarrow \begin{bmatrix} 0 & 2 & -8 & 14 & -5 \\ 0 & 0 & 2 & -2 & 1 \\ 0 & 1 & 3 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} R_1/2 \\ R_3 - R_1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & -4 & 7 & -5/2 \\ 0 & 0 & 2 & -2 & 1 \\ 0 & 0 & 7 & -7 & 7/2 \end{bmatrix}$$

$$\begin{bmatrix} R_2/2 \\ R_3 - 7R2 \end{bmatrix} \longrightarrow B = \begin{bmatrix} 0 & 1 & -4 & 7 & -5/2 \\ 0 & 0 & 1 & -1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus the pivotal columns of B are the 2nd, and 3rd. Accordingly, the columns $(0,2,1)^2$, $(2,-8,-1)^t$ give a basis for the range of f. Hence the rank of f is 2. The nullity is therefore equal to 3. We continue to perform row operations on B above to obtain

$$J(A) = \left| \begin{array}{ccccc} 0 & 1 & 0 & 3 & -1/2 \\ 0 & 0 & 1 & -1 & 1/2 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right|.$$

Now the method for writing down the general solution of J(A)x=0 tells us how to write down a basis for the null space also, viz., consider the problem for homogeneous equation, i.e., with $\mathbf{b}=0$. We know the general solution is given by $x_2=-3x_4+x_5/2$; $x_3=x_4-x_5/2$. Here x_1,x_4 and x_5 are free variables. Therefore, by putting special values for them we obtain $(1,0,0,0,0)^t$, $(0,-3,1,1,0)^t$, $(0,1/2,-1/2,0,1)^t$ belonging to $\mathcal{N}(A)$. Since these are linearly independent they give a basis for the null space.

- (2) Find the range and null-space of the following linear transformations. Also find the rank and nullity wherever applicable.
 - (a) $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ defined by $T(x_1, x_2)^t = (x_1 + x_2, x_1)^t$.
 - (b) $T: C^1(0,1) \longrightarrow C(0,1)$ defined by $T(f)(x) = f'(x)e^x$.

Solution: (a) The associated matrix is $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$. The range is \mathbb{R}^2 and $\operatorname{null}(T) = (0)$. (b) If $f \in \operatorname{null}(T)$ then f'(x) = 0. As f is continuous, it is a constant function. Conversely all constant functions are mapped to the zero function by T. Thus the null space of T consists of all constant functions.

(3) Find a linear transformation $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ such that the set of all vectors satisfying $4x_1 - 3x_2 + x_3 = 0$ is – (i) the null-space of T. (ii) the range of T.

Solution: We first observe that the vectors which satisfy the given equation form plane in \mathbb{R}^3 . So, we pick up to independent vectors in it, say, $(3,4,0,)^t$, $(0,1,3)^t$. We then pick up another vector which does not lie in the plane, say a vector perpendicular to it, viz. $(4,-3,1)^t$. These three vectors then form a basis for \mathbb{R}^3 . So, a linear map on \mathbb{R}^3 will be completely determined if we know its value on these three vectors.

- (i) Take $T(3,4,0)^t = 0 = T(0,1,3)^t$ and $T(4,-3,1)^t = e_1$. Then the null space of T will be precisely the given plane.
- (ii) Take $T(\mathbf{e}_1) = (3,4,0)^t$, $T(\mathbf{e}_2) = (0,1,3)^t$ and $T(\mathbf{e}_3) = 0$. Then the range of T will be precisely the given plane.
- (4) Let $\mathcal{P}[x]$ denote the space of all real polynomials in one variable. Let

$$V = \{ p(x) \in \mathcal{P}[x] : p(0) = 0 \}.$$

Prove that taking the derivative defines a one-to-one linear transformation from $D:V\longrightarrow \mathcal{P}$ and $D^{-1}(p)(x)=\int_0^x p(t)\,dt$.

Solution: [Hint.] Use the fundamental theorem of Calculus.

- (5) Let $f: V \longrightarrow W$ be a linear transformation.
 - (a) Suppose f is injective and $S \subset V$ is linearly independent. Then show that f(S) is linearly independent.
 - (b) Suppose f is onto and S spans V. Then show that f(S) spans W.
 - (c) Suppose S is a basis for V and f is an isomorphism then show that f(S) is a basis for W. **Solution:** (a) Let $\sum_{i=1}^k \alpha_i f(\mathbf{v}_i) = 0$ where \mathbf{v}_i distinct elements of S. Then $f(\sum_i \alpha_i \mathbf{v}_i) = 0$ and since f is injective we have $\sum_i \alpha_i \mathbf{v}_i = 0$. But since S is linearly independent it follows that $\alpha_1 = \cdots = \alpha_k = 0$.
 - (b) Given $\mathbf{w} \in W$ take $\mathbf{v} \in V$ such that $f(\mathbf{v}) = \mathbf{w}$. Write $\mathbf{v} = \sum_i \alpha_i \mathbf{v}_i \in L(S)$. Then $\mathbf{w} = f(\sum_i \alpha_i \mathbf{v}_i) = \sum_i \alpha_i f(\mathbf{v}_i) \in L(f(S))$.
 - (c) Combine (a) and (b).
- (6) Let V be a finite dimensional vector space and $f:V\longrightarrow V$ be a linear map. Prove that the following are equivalent:
 - (i) f is an isomorphism.
 - (ii) f is injective.
 - (iii) f is surjective.
 - (iv) there exist $g:V\longrightarrow V$ such that $g\circ f=Id_V$.
 - (v) there exists $h:V\longrightarrow V$ such that $f\circ h=Id_V$.

Solution: Clearly (i) implies all the other statements. So it remains to show that each one of the other statements implies (i). Let S be a basis for V. Clearly, S has n elements where $n = \dim V$.

- (ii) \Longrightarrow (i) Let f be injective. Then by the above exercise, f(S) is linearly independent. If $L(f(S)) \neq V$ then there exists an element $\mathbf{v} \in V \setminus f(S)$. But then $f(S) \cup \{\mathbf{v}\}$ will be a L.I. set with more elements than the dimension of V which is a contradiction. Hence L(f(S)) = V. This in turn means that f(V) = f(L(S)) = V.
- (iii) \Longrightarrow (i) Let f be surjective. Assume $\mathcal{N}(f) \neq \{0\}$. Pick a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ for it and complete it to a basis S for V. Since f is surjective, f(S) spans V. But f(S) has at most n-k non zero elements. This means k=0. Hence $\mathcal{N}(f)=0$. That means f is injective.

- (iv) \Longrightarrow (ii) Suppose $f(\mathbf{v}) = 0$. Then $0 = g(0) = g(f(\mathbf{v})) = \mathbf{v}$. Hence $\mathcal{N}(f) = \{0\}$ and this means f is injective.
- (v) \Longrightarrow (iii) Let $\mathbf{w} \in V$ be any. Then $f(h(\mathbf{w})) = \mathbf{w}$. This implies that f is onto.
- (7) Consider the linear transformations $T_1:U\longrightarrow V$ and $T_2:V\longrightarrow W$. If T_2 is one-one then show that $rank(T_2\circ T_1)=rank(T_1)$.

Solution: Recall that by the rank of a linear map we mean the dimension of its image. Now $\mathcal{R}(T_2 \circ T_1) = T_2(\mathcal{R}(T_1))$. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis for $\mathcal{R}(T_1)$. Then $\{T_2(\mathbf{v}_1), \dots, T_2(\mathbf{v}_k)\}$ is L.I. But clearly it also spans the image of $T_2 \circ T_1$. Hence it is a basis for $T_2(T_1(U))$. So, the dimension of the image of $T_2 \circ T_1$ is equal to K.

3. Tutorial problems about Inner product spaces

(1) Find the projection \mathbf{p} of \mathbf{b} onto the column space of A by solving $A^tAx = A^tb$ and p = Ax:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}.$$

Solution: Clearly, $A^t A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} x_1 + x_2 \\ x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$. Hence $x_2 = 3$ and $x_1 = -1$ and $p = Ax = (2,3,0)^t$.

(2) If P is a real square matrix with $P^2 = P$, show that $(I - P)^2 = I - P$. Suppose P is the matrix of projection onto the columns space of A. Find the space onto which I - P projects.

Solution: Let W = C(A). As (I - P)(u) = u - P(u), $\langle u - P(u), P(u) \rangle = 0$. Thus I - P projects vectors into $N(A^t)$.

(3) Let the columns of A be linearly independent and $P = A(A^tA)^{-1}A^t$. Show that P is symmetric and $P^2 = P$.

Solution: Note that rank $A = \operatorname{rank} A^t A = n$. Thus $A^t A$ is invertible. Since the normal equations are $A^t A x = A^t b$, we have $x = (A^t A)^{-1} A^t b$. Thus $P_{C(A)}(b) = A x = A(A^t A)^{-1} A^t b$.

This shows that the matrix of projection map $P: \mathbb{R}^n \to C(A)$ is $P = A(A^tA)^{-1}A^t$. Check that $P^2 = A(A^tA)^{-1}(A^tA(A^tA)^{-1})A^t = P$.

- (4) In the vector space C[1,e], define $\langle f,g\rangle=\int_1^e\log xf(x)g(x)\,dx$.
 - (a) if $f(x) = \sqrt{x}$, compute $||f|| = \langle f, f \rangle^{1/2}$.
 - (b) Find a linear polynomial g(x) = ax + b that is orthogonal to f(x) = 1.

Solution: (a)
$$||f||^2 = \int_1^e x \log x \, dx = (e^2 + 1)/4$$

(b)
$$0 = \langle f, ax + b \rangle = \int_1^e (ax + b) \log x \, dx$$

$$0 = \langle f, ax + b \rangle = \int_1^e (ax + b) \log x \, dx$$
$$= a \int_1^e x \log x \, dx + b \int_1^e \log x \, dx$$
$$= \frac{a(e^2 + 1)}{4} + b.$$

Thus $b = -\frac{1}{4}a(e^2 + 1)$ and $ax + b = ax - \frac{1}{4}a(e^2 + 1)$ is orthogonal to 1.

- (5) (a) To find the projection matrix onto the plane x y 2z = 0, choose two linearly independent vectors u, v in the plane and let A be the matrix whose column vectors are u, v. Now find $P = A(A^tA)^{-1}A^t$.
 - (b) Let e be a vector perpendicular to the plane L: x-y-2z=0. Find the projection matrix $Q=\frac{ee^t}{e^te}$. Show that P=I-Q is the matrix of projection onto L.

Solution: We view the plane as the null space of the matrix $\begin{bmatrix} 1 & -1 & -2 \end{bmatrix}$. The vectors in the plane are (y+2z,y,z)=y(1,1,0)+z(2,0,1). Then a basis of this space is given by $(1,1,0)^t,(2,0,1)^t$. Hence we take the matrix A to be

$$A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Thus
$$A^t A = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 5 \end{bmatrix}$$
 and $(A^t A)^{-1} = \frac{1}{6} \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix}$. Then the projection matrix is

$$P = A(A^{t}A)^{-1}A^{t} = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \frac{1}{6} \begin{bmatrix} 5 & -2 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{6} \begin{bmatrix} 5 & 1 & 2 \\ 1 & 5 & -2 \\ 2 & -2 & 2 \end{bmatrix}.$$

(b) Since the row space of the matrix $\begin{bmatrix} 1 & 2 & -1 \end{bmatrix}$ is orthogonal to the nullspace, as above, we may take $e = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$. Thus we have

$$Q = \frac{ee^t}{e^t e} = 1/6 \begin{bmatrix} 1 & 2 & -1 \\ 2 & 4 & -2 \\ -1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 1/6 & 1/3 & -1/6 \\ 1/3 & 2/3 & -1/3 \\ -1/6 & -1/3 & 1/6 \end{bmatrix}.$$

Hence
$$P = I - Q = \begin{bmatrix} 5/6 & -1/3 & 1/6 \\ -1/3 & 1/3 & 1/3 \\ 1/6 & 1/3 & 5/6 \end{bmatrix}$$
.

(6) Let $u \in \mathbb{R}^n$ be a unit vector. Let $H_u = I - 2uu^t$. Show that H is an orthogonal matrix. Find $H_u(v)$ for any $v \in L(u)^{\perp}$. Find $H_u(\alpha u)$ for any $\alpha \in \mathbb{R}$. Describe the action of H_u geometrically. Using this find the matrix of the linear transformation $R : \mathbb{R}^2 \to \mathbb{R}^2$ which reflects vectors with respect to the line $y = x \tan \theta$. Find the linear transformation $T : \mathbb{R}^3 \to \mathbb{R}^3$ Which reflects vectors with respect to the plane x + y + z = 0.

Solution: Write $H=H_u$. Then $H^tH=(I-2uu^t)(I-2uu^t)=I-4uu^t+4uu^tuu^t=I$. Hence H is orthogonal. Let $v\perp u$. Then $H(v)=v-2uu^tv=v$. Let $\alpha\in\mathbb{R}$. Then $H(\alpha u)=\alpha u-2\alpha uu^tu=-\alpha u$. This show that H is a reflection with respect to the hyperplane perpendicular to u. Now we find the matrix that induces reflection across the line $L:y=\tan\theta x$.

The vector
$$u = (-\sin\theta, \cos\theta)^t \perp L$$
. Hence $H = I - 2uu^t = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$.

(7) Let $V=C[0,1]=\{f:[0,1]\to\mathbb{R}\mid f\text{ is continuous}\}$ with inner product given by $\langle f,g\rangle=\int_0^\pi f(t)g(t)dt.$ Let $x_n(t)=\cos nt$ for $n=0,1,2\ldots$ Prove that the functions y_0,y_1,y_2,\ldots

given by

$$y_0(t) = \frac{1}{\sqrt{\pi}}$$
 and $y_n(t) = \sqrt{\frac{2}{\pi}} \cos nt$ for $n \ge 1$

form an orthonormal set spanning the same subspace as x_0, x_1, x_2, \ldots

Solution: See the lecture slides.

4. Tutorial problems about eigenvalues and eigenvectors

(1) Let u be a unit vector in \mathbb{R}^n . Define $H=I-2uu^t$. Find all the eigenvalues and eigenvectors of H. Find a geometric interpretation of $T_H:\mathbb{R}^n\to\mathbb{R}^n$ given by $T_H(v)=Hv$ for all $v\in\mathbb{R}^n$.

Solution: Note that H is a real symmetric matrix, since $H^t = I - (2uu^t)^t = I - 2uu^t$. Thus it is diagonalizable. Now $H(u) = u - 2uu^t u = -u$. Hence u is an eigenvector for the eigenvalue -1. If $v \perp u$ then $H(v) = v - 2uu^t v = v$. Thus all the nonzero vectors in the space $P = u^\perp = \{v \in \mathbb{R}^n \mid u \perp v\}$ are eigenvectors with eigenvalue 1. Since $\dim P = n - 1$, a basis of P along with P0 is a basis of eigenvectors for P1. In fact P1 is a reflection with respect to the hyperplane P1.

(2) If $A, A' \in \mathbb{F}^{n \times n}$ are **similar**, i.e. $A' = P^{-1}AP$ for some invertible $n \times n$ matrix $P \in \mathbb{F}^{n \times n}$. Show that (a) A and A' have same eigenvalues (b) if \mathbf{v} is an eigenvector of A then $P^{-1}\mathbf{v}$ is an eigenvector of A'.

Solution: For a nonzero vector \mathbf{v} we have $P^{-1}\mathbf{v} \neq 0$. Now $A\mathbf{v} = \lambda \mathbf{v}$ iff $P^{-1}AP(P^{-1}\mathbf{v}) = \lambda P^{-1}\mathbf{v}$. This proves both (i) and (ii).

(3) Let A be $n \times n$ complex matrix. Prove that (i) 0 is an eigenvalue of A if and only if A is singular. (ii) if λ is an eigenvalue of A then it is also an eigenvalue of A^t (iii) If x is an eigenvector of A corresponding to λ then x need not be an eigenvector of A^t corresponding to λ .

Solution: (i) 0 is an eigenvalue iff 0 is a root of the characteristic polynomial $\chi_A(\lambda) = det(A - \lambda I)$. Putting $\lambda = 0$, we get det(A = 0). This implies that A is singular.

(ii) $\chi_A(\lambda) = det(A - \lambda I) = \det(A - \lambda)^t = det(A^t - \lambda I) = \chi_{A^t}(\lambda)$. Since the eigenvalues are nothing but roots of the characteristic polynomial, the conclusion follows.

(iii) Take $A=\begin{bmatrix}0&1\\-1&0\end{bmatrix}$. The eigenvalues are $\pm \imath$. Corresponding to the eigenvalue \imath we have

 $(1,i)^t$ is an eigenvector for A but not for A^t .

(4) Show that the map $T: C^{\infty}[0,1] \to C^{\infty}[0,1]$ given by $T(f)(x) = \int_0^x f(t)dt$ has no eigenvalue while every real number is an eigenvalue of $T(f)(x) = \frac{df(x)}{dx}$.

Solution: If T has an eigenvector f with eigenvalue α then $T(f) = \int_0^x f(t)dt = \alpha f(x)$. By the fundamental theorem of Calculus, $f(x) = \alpha f(x)$. As f(x) is nonzero, $\alpha = 1$. But then f'(x) = f(x) For all x. Hence $f(x) = e^x$. But $T(e^x) = e^x - 1 \neq e^x$. If $T(f)(x) = \frac{df(x)}{dx}$ then $T(e^{rx}) = re^{rx}$ for all $r \in \mathbb{R}$. Thus every real number is an eigenvalue of T.

(5) Let $A \in \mathbb{C}^{n \times n}$ and $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a complex polynomial of degree n.. Suppose that λ is an eigenvalue of A. Show that $f(\lambda)$ is an eigenvalue of f(A). Find all the eigenvalues of f(A).

Solution: Let Au=zu for a nonzero vector u and a complex number z. Then f(A)u=f(z)u. Thus f(z) is an eigenvalue of f(A) with u as an eigenvector. Conversely, if z is an eigenvalue of f(A) with eigenvector u then f(A)u=zu. Consider the complex polynomial f(x)-z. Let z_1,z_2,\ldots,z_n be all the roots of f(x)-z. Then $f(x)-z=a_n(x-z_1)\ldots(x-z_n)$. Hence $f(A)-zI=a_n\prod_{i=1}^n(A-z_iI)$. Take determinant on both sides to get $\det(f(A)-zI)=0=a_n\prod_{i=1}^n\det(A-z_iI)$. Hence for some j, $\det(A-z_iI)=0$. Hence $z=f(z_i)$.

(6) Find the characteristic polynomial, eigenspaces and their dimensions of the matrix J_n which is the $n \times n$ matrix with each of its entry equal to 1. Is J_n diagonalisable?

Solution: Note that J_n is a real symmetric matrix. Thus it is diagonalizable. As J_n is a rank one matrix, $det J_n = 0$. Hence 0 is an eigenvalue of J_n . The eigenspace E_0 is the solution vectors of the equation $x_1 + \ldots + x_n = 0$. Thus the dim $E_0 = n - 1$. Hence the algebraic multiplicity of 0 is n - 1. Note that $J_n((1, 1, \ldots, 1)^t = n(1, 1, \ldots, 1)^t$. Hence n is an eigenvalue of J_n . It follows that $\chi_{J_n}(x) = x^{n-1}(x-n)$.

(7) Let $\{u,v\}$ be an orthonormal basis of \mathbb{R}^2 . Let $A=uv^t$. Find all the eigenvalues of A.

Solution: Let $w \perp v$. Then $Aw = uv^tw = 0$. So E_0 contains the 1-dimensional subspace v^{\perp} . If $u = (a, b)^t$ and $v = (c, d)^t$ then $\operatorname{tr} A = ac + bd = 0$. Hence the only eigenvalue of A is 0.

- (8) Let A be a square matrix. Prove the following statements.
 - (i) The eigenvalues of A are real if A is Hermitian or real symmetric.
 - (ii) The eigenvalues of A are either 0 or purely imaginary if A is skew Hermitian.
 - (iii) The eigenvalues of A are of modulus equal to 1, if A is unitary.
 - (iv) A^tA has only non negative eigenvalues, if A is real.

Solution: Let $\mu \in \mathbb{K}$, $\mathbf{v} \neq 0$ be such that $A\mathbf{v} = \mu \mathbf{v}$.

- (i) Suppose A is Hermitian, i.e., $A=A^*$. Then $\mu \|\mathbf{v}\|^2 = \mu(\mathbf{v}^*\mathbf{v}) = \mathbf{v}^*(\mu\mathbf{v}) = \mathbf{v}^*(A\mathbf{v}) = (\mathbf{v}^*A^*)\mathbf{v} = (A\mathbf{v})^*\mathbf{v} = \bar{\mu}\mathbf{v}^*\mathbf{v} = \bar{\mu}\|\mathbf{v}\|^2$. Hence $\mu = \bar{\mu}$ and so, μ is real. Since a real symmetric matrix is hermitian, the second case follows.
- (ii) In the above proof, if A were skew-Hermitian, we get $\mu \|\mathbf{v}\|^2 = -\bar{\mu} \|\mathbf{v}\|^2$. Hence $\mu = -\bar{\mu}$ which means $\mu = 0$ or purely imaginary.
- (iii) Since A is unitary, $\langle \mathbf{v}, \mathbf{v} \rangle = \langle A\mathbf{v}, A\mathbf{v} \rangle = \langle \mu \mathbf{v}, \mu \mathbf{v} \rangle = \mu \bar{\mu} \langle \mathbf{v}, \mathbf{v} \rangle$ which means that $|\mu|^2 = \mu \bar{\mu} = 1$.
- (iv) Take $\mathbf{v} = \sum_{i=1}^{n} \mathbf{e}_{i}$. If A_{i} denotes the columns of A then it follows that $A\mathbf{v} = \sum_{i=1}^{n} A_{i} = \mathbf{v}$ (since A is Markov). This shows that 1 is an eigenvalue of A.
- (v) Since A^tA is real symmetric, its eigenvalues are real. Let $A^tA\mathbf{u}=\lambda\mathbf{u}$. Then $\lambda\|\mathbf{u}\|^2=\lambda\mathbf{u}^t\mathbf{u}=\mathbf{u}^t(\lambda\mathbf{u})=\mathbf{u}^t(A^tA\mathbf{u})=(\mathbf{u}^tA^t)A\mathbf{u}=(A\mathbf{u})^t(A\mathbf{u})=\|A\mathbf{u}\|^2$. Therefore $\lambda\geq 0$.
- (9) A self-adjoint matrix A, i.e. $A^* = A$, is called **positive definite** if $\langle A x, x \rangle > 0$ for all nonzero $x \in \mathbb{C}^n$. Show that a self-adjoint matrix is positive definite if and only if all eigenvalues of A are positive.

Solution: A real symmetric matrix is congruent to a diagonal matrix. Since congruence does not change the positivity (check this), and since the eigenvalues are the diagonal entries of the diagonal form, the result follows.

(10) Let A be a self-adjoint matrix. If $\langle Ax, x \rangle = 0$ for all $x \in \mathbb{C}^n$, then show that A = O. Deduce that if $||Ax|| = ||A^*x||$ for all $x \in \mathbb{C}^n$, then A is a normal matrix, and if ||Ax|| = ||x|| for all $x \in \mathbb{C}^n$, then A is a unitary matrix.

Solution: Since A is self-adjoint, $A^* = A$ and A has an orthonormal basis of eigenvectors. Let u be a unit eigenvector with eigenvalue a. As a is real, $\langle Au, u \rangle = u^*au = a = 0$. Thus

all eigenvalues are zero. Thus A=0. Now let $||Ax||=||A^*x||$ for all $x\in\mathbb{C}^n$. Therefore, $x^*A^*Ax=x^*AA^*x$. Since A^*A , AA^* are self-adjoint, so is there difference. Hence $x^*(A^*A-AA^*)x=0$ for all x. Hence $AA^*=A^*A$. Thus A is normal. Now let ||Ax||=||x|| for all x. This means that $x^*A^*Ax=x^*x$. Hence $x^*(AA^*-I)x=0$ for all x. But AA^*-I is self-adjoint. Hence $AA^*=I$. Thus A is unitary.

- (11) Let a be a nonzero real number and $A = \begin{bmatrix} 0 & a \\ -a & 0 \end{bmatrix}$.
 - (a) Find an orthonormal set of eigenvectors of A.
 - (b) Find a unitary matrix C such that $C^{-1}AC$ is a diagonal matrix.
 - (c) Prove: there is no real orthogonal matrix C such that $C^{-1}AC$ is a diagonal matrix.

Solution: (a) The characteristic polynomial of A is $f(x) = x^2 + a^2$. Hence $x = \pm ia$. If $u = (x,y)^t$ is an eigenvector for the eigenvalue ia then $A(x,y)^t = (ya,-ax)^t = (iax,iay)^t$. Thus $(i,1)^t$ is an eigenvector for the eigenvalue ia Similarly, $(1,i)^t$ is an eigenvector for the eigenvalue -ia.

- (b) The columns of the unitary matrix C consists of unit eigenvectors for the eigenvalues. Hence $C = \left[\begin{array}{cc} i/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & i/\sqrt{2} \end{array}\right].$
- (12) Let C be the locus of the equation $ax^2 + bxy + cy^2 + dx + ey + f = 0$. Using eigenvalues of the symmetric matrix A so that $ax^2 + bxy + cy^2 = [x \ y]A[x \ y]^t$, show that C is ellipse, hyperbola or parabola according as the discriminant $4ac b^2$ is positive, negative or zero.