3. Mode of Convergence

3.1. L^p -spaces and Inequalities

3.2. Tail Probabilities and Moments

3.3. Limit Sets

Definition

For a sequence $\{A_n : n \geq 1\}$ of subsets of Ω , we define the *limit superior* and the *limit inferior* by

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k \quad \text{and} \quad \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k.$$

If $\lim \inf_n A_n = \lim \sup_n A_n = A$, then we say that the limit of A_n exists and we write $\lim_n A_n = A$.

Remark

1. Note that $\omega \in \limsup_n A_n$ if and only if $\omega \in A_n$ infinitely often(i.o) in n:

$$\limsup A_n = \{\omega \in \Omega : \forall n \geq 1 \ \exists k \geq n \ \text{s.t.} \ \omega \in A_k\} = \{\omega \in \Omega : \omega \in A_n \ \text{i.o.}(n)\};$$

and $\omega \in \liminf_n A_n$ if and only if $\omega \in A_n$ for all but finitely many(almost all) n:

$$\liminf A_n = \{\omega \in \Omega : \exists n \ge 1 \text{ s.t. } \omega \in A_k \ \forall k \ge n\} = \{\omega \in \Omega : \omega \in A_n \text{ a.a.}(n)\}.$$

2. From 1. it is clear that $\liminf_n A_n \subset \limsup_n A_n$ and that

$$I_{\limsup_{n} A_n} = \limsup_{n} I_{A_n}$$
 and $I_{\liminf_{n} A_n} = \liminf_{n} I_{A_n}$

- Note: $I_{\limsup_n A_n} = I_{\bigcap_n \{\bigcup_{k \geq n} A_n\}} = \bigwedge_n I_{\bigcup_{k \geq n} A_n} = \bigwedge_n \bigvee_{k \geq n} I_{A_n} = \limsup_n I_{A_n}$.
- 3. By de Morgan's law, $(\limsup_n A_n)^c = \liminf_n A_n^c$ or equivalently $(\liminf_n A_n)^c = \limsup_n A_n^c$.
 - Note: $(\limsup_n A_n)^c = (\bigcap_n \bigcup_{k \ge n} A_n)^c = \bigcup_n \bigcap_{k \ge n} A_n^c = \liminf_n A_n^c$
- 4. The *limit superior* and the *limit inferior* can be expressed as monotone limits:

$$\bigcap_{k=n}^{\infty} A_n \uparrow \liminf_n A_n, \quad \bigcup_{k=n}^{\infty} A_n \downarrow \limsup_n A_n \quad \text{as } n \to \infty.$$

Theorem

If (Ω, \mathcal{F}, P) is a probability space, and $A_n \in \mathcal{F}, n \geq 1$, then

- 1. $P(\liminf_n A_n) \le \liminf_n P(A_n) \le \limsup_n P(A_n) \le P(\limsup_n A_n);$
- 2. if $A_n \to A$, then $P(A_n) \to P(A)$.

Theorem (Borel-Cantelli lemma : convergence half)

If $\sum_{k=n}^{\infty} \mu(A_k) < \infty$ for some $n \ge 1$, then $\mu(\limsup_n A_n) = 0$.

3.4. Convergence in Measure

Theorem(Almost Everywhere Convergence)

The followings are equivalent;

- 1. $f_n \to f$ a.e.
- 2. $\mu(\{\omega : |f_n(\omega) f(\omega)| > \epsilon \text{ i.o.}(n)\}) = 0 \text{ for all } \epsilon > 0.$
- 3. $\mu(\{\omega : |f_n(\omega) f(\omega)| > 1/k \text{ i.o.}(n)\}) = 0 \text{ for all integer } k \ge 1.$

Corollary

If for each $\epsilon > 0$, there exists an $n \ge 1$ such that $\sum_{k=n}^{\infty} \mu[|f_k - f| > \epsilon] < \infty$, then $f_n \to f$ a.e.

${\bf Definition}({\bf Convergence\ in\ Measure})$

A sequence of measurable function $\{f_n : n \geq 1\}$ converges in measure to a measurable function f (written $f_n \stackrel{\mu}{\to} f$) if

$$\mu(\{\omega: |f_n(\omega) - f(\omega)| > \epsilon\}) \to 0$$
 as $n \to \infty$, for all $\epsilon > 0$.

In special case of random variables, we say that X_n converges in probability to X (written $X_n \stackrel{\mu}{\to} X$) if

$$P(|X_n - X| > \epsilon) \to 0$$
 as $n \to \infty$, for all $\epsilon > 0$.

Proposition

If $f_n \stackrel{\mu}{\to} f$ and $f_n \stackrel{\mu}{\to} g$, then f = g a.e.

Theorem

If $f_n \stackrel{\mu}{\to} f$, then there exists a subsequence $\{f_{n_k} : k \geq 1\}$ for which $f_{n_k} \to f$ a.e.

Theorem(Dominated Convergence in Measure)

If $f_n \stackrel{\mu}{\to} f$ and if there exists an integrable function g for which $|f_n| \leq g$ a.e. for all $n \geq 1$, then f_n , and f are integrable and $\int f_n \ d\mu \to \int f \ d\mu$ as $n \to \infty$.

Definition

A sequence of measurable functions $\{f_n : n \geq 1\}$ is **Cauchy in measure** if for all $\epsilon > 0$,

$$\mu(\{\omega : |f_m(\omega) - f_n(\omega)| > \epsilon\}) \to 0 \text{ as } m, n \to \infty.$$

In special case of random variables, we say that X_n Cauchy in probability to if for all $\epsilon > 0$,

$$P(|X_m - X_n| > \epsilon) \to 0$$
 as $m, n \to \infty$.

Remark

An equivalent formation is

$$\sup_{m \ge n} \mu(\{\omega : |f_m(\omega) - f_n(\omega)| > \epsilon\}) \to 0 \quad \text{as } n \to \infty.$$

Similarly,

$$\sup_{m \ge n} P(|X_m - X_n| > \epsilon) \to 0 \quad \text{as } n \to \infty.$$

${\bf Theorem (Completeness\ for\ Convergence\ in\ Measure)}$

A sequence of measurable functions $\{f_n: n \geq 1\}$ is Cauchy in measure

if and only if there exists a measurable function f for which $f_n \stackrel{\mu}{\to} f$ as $n \to \infty$.

* Cauchy in measure \iff convergence in measure.

3.5. Convergence in L^p

Definition

A sequence $\{f_n : n \ge 1\}$ of L^p functions, 0 is said to**converge in** $<math>L^p$ to a measurable function f (written $f_n \stackrel{L^p}{\to} f$) if

$$\int |f_n - f|^p d\mu \to 0 \quad \text{as } n \to \infty.$$

In special case, if X_n and X are random variables $X_n \stackrel{L^p}{\to} X$,

$$\int |X_n - X|^p d\mu \to 0 \quad \text{as } n \to \infty,$$

then we sometimes say that X_n converges to X in pth mean.

For $1 \le p < \infty$, $f_n \xrightarrow{L^p} f$ is equivalent to $||f_n - f||_p \to 0$, and this is also the definition for the case $p = \infty$,

i.e., a sequence $\{f_n, n \ge 1\}$ of L^{∞} functions is said to converge in L^{∞} to a measurable function f if $||f_n - f||_{\infty} \to 0$ as $n \to \infty$.

Proposition

If $f_n \stackrel{L^p}{\to} f$ form some $0 , then <math>f \in L^p$.

Theorem

If $f_n \stackrel{L^p}{\to} f$ form some $0 , then <math>f_n \stackrel{\mu}{\to} f$.

Theorem(Riesz-Fisher)

For $0 , the space <math>L^p$ is complete:

a sequence of L^p function converges in L^p if and only if the sequence is Cauchy in L^p .

3.6. Convergence of Random Variables

Theorem(Borel-Cantelli Lemma: convergence half)

If $\sum_{n=1}^{\infty} P(A_n) < \infty$, then $P(\limsup_n A_n) = 0$.

Theorem

The followings are equivalent:

- 1. $X_n \to X$ a.s.
- 2. $P(|X_n X| > \epsilon \text{ i.o}(n)) = 0 \text{ for all } \epsilon > 0.$
- 3. $P(|X_n X| > 1/k \text{ i.o}(n)) = 0 \text{ for all(integer) } k \ge 1.$

Concllor

If $\sum_{n=1}^{\infty} P(|X_n - X| > \epsilon) < \infty$ for all $\epsilon > 0$, then $X_n \to X$ a.s.

Theorem

If $X_n \stackrel{\Pr}{\to} X$, then there exists a subsequence $\{X_{n_k} : k \geq 1\}$ for which $X_{n_k} \to X$ a.s.

Theorem

A sequence of random variables $\{X_n : n \ge 1\}$ is Cauchy in probability if and only if there exists a random variable X for which $X_n \stackrel{\Pr}{\to} X$ as $n \to \infty$.

• Completeness for convergence in measure.

Theorem

If $X_n \stackrel{L^p}{\to} X$ for some $0 , then <math>X_n \stackrel{\Pr}{\to} X$.

• L^p convergence \implies convergence in measure.

Theorem(Riesz-Fisher)

For $0 , the space <math>L^p$ is complete: a sequence $\{X_n, n \ge 1\}$ of random variables converges in pth mean(i.e., there exists an $X \in L^p$ s.t. $||X_n - X||_p \to 0$) if and only if the sequence is Cauchy in L^p (i.e., $||X_m - X_n||_p \to 0$ as $m, n \to \infty$).

Theorem

 $X_n \to X$ a.s. if and only if $\sup_{m \ge n} |X_m - X| \stackrel{\Pr}{\to} 0$ as $n \to \infty$.

Corollary

If $X_n \to X$ a.s., then $X_n \stackrel{\Pr}{\to} X$.

Theorem

 $\{X_n: n \geq 1\}$ converges a.s. if and only if $\sup_{m \geq n} |X_m - X_n| \stackrel{\Pr}{\to} 0$ as $n \to \infty$.

Theorem

 $X_n \xrightarrow{\Pr} X$ if and only if for every subsequence $\{X_{n_k}, k \ge 1\}$ there exists a further subsequence $\{X_{n_{k_j}}, j \ge 1\}$ such that $X_{n_{k_j}} \to X$ a.s.

${\bf Theorem (Continuous\ Mapping\ Theorem\ for\ convergence\ in\ probability:\ first\ version)}$

If $X_n \stackrel{\Pr}{\to} X$ and $f : \mathbb{R} \to \mathbb{R}$ is continuous, then $f(X_n) \stackrel{\Pr}{\to} f(X)$.

Lemma

Let $f: \mathbb{R} \to \mathbb{R}$. Then, the set $D_f = \{x \in \mathbb{R} : \text{ f is discontinuous at } x\}$ is a Borel set.

Theorem(Continuous Mapping Theorem for convergence in probability: first version)

Let $f: \mathbb{R} \to \mathbb{R}$ be Borel measurable, and let D_f be the set of discontinuity points of f.

If $X_n \stackrel{\Pr}{\to} X$ and $P(X \in D_f) = 0$, then $X_n \stackrel{\Pr}{\to} X$.

3.7. Uniform Integrability

Definition

A family of random variables $\{X_t, t \in T\}$ is uniformly integrable (u.i) if

$$\sup_{t \in T} \int_{|X_t| > \alpha} |X_t| \ dP \to 0 \quad \text{as} \quad \alpha \to \infty.$$

Remark

If X_t has distribution function $F_t, t \in T$, then the uniform integrability condition can be written as

$$\sup_{t \in T} \int_{(-\infty,\alpha) \cup (\alpha,\infty)} |x| dF_t(x) \to 0 \quad \text{as} \quad \alpha \to \infty.$$

Example

If Y is integrable random variable and $|X_t| \leq Y$ for all $t \in T$, then $\{X_t, t \in T\}$ is u.i.

Example

Suppose $P(X_n = n) = 1/n = P(X_n = 0), n \ge 1$. Then, $E(X_n) = 1$ for all $n \ge 1$. But, for any $\alpha > 0$

$$|X_n|I(|X_n|>\alpha) = \begin{cases} X_n, & \text{if } n>\alpha, \\ 0, & \text{if } n\leq\alpha. \end{cases} \implies E(|X_n|I(|X_n|>\alpha)) = \begin{cases} E(X_n)=1, & \text{if } n>\alpha, \\ 0, & \text{if } n\leq\alpha. \end{cases}$$

Thus, $\sup_n E(|X_n|I(|X_n| > \alpha)) = 1$ for all $\alpha > 0$ (not u.i.).

Theorem(Crystal Ball Condition)

If for some p > 1, $\sup_{t \in T} E(|X_t|^p) < \infty$, then $\{X_t, t \in T\}$ is uniformly integrable.

Corollary

If for some 0 ,

$$\sup_{t \in T} E(|X_t|^p) < \infty,$$

then $\{|X_t|^q, t \in T\}$ is uniformly integrable for all 0 < q < p.

Theorem(An alternative Definition of UI)

The family of random variables $\{X_t, t \in T\}$ is u.i. if and only if

- 1. $\sup_{t \in T} E(|X_t|) < \infty$ (integrability);
- 2. for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$P(A) < \delta \implies \sup_{t \in T} \int_A |X_t| dP < \epsilon.$$

Lemma

If $X_n \stackrel{L^p}{\to} X$ for some $0 , then <math>E(|X_n|^p) \to E(|X|^p)$.

Lemma

 $X_n \stackrel{L^p}{\to} X$ if and only if

- 1. $X_n \stackrel{\Pr}{\to} X$;
- 2. $\{|X_n|^p, n \ge 1\}$ is uniformly integrable.

Theorem(Uniform Integrability Criterion)

Suppose that $\{X_n, n \geq 1\} \subset L^p$ for some $0 , and <math>X_n \stackrel{\Pr}{\to} X$. Then, the followings are equivalent:

- 1. $\{|X_n|^p\}$ is uniformly integrable;
- $2. X_n \stackrel{L^p}{\to} X;$
- 3. $E(|X_n|^p) \to E(|X|^p) < \infty$.

Futhermore, if p is an integer, then each of these condition implies

4. $E(X_n^p) \to E(X^p)$.

4. Independence

4.1. Independent Events

Definition

Two events $A, B \in \mathcal{F}$ are **independent** if $P(A \cap B) = P(A)P(B)$.

Definition

Events $A_1, \ldots A_n$ are independent if

$$P(A_{i_1} \cap \dots \cap A_{i_m}) = P(A_{i_1}) \cdots P(A_{i_m})$$

for all $2 \le m \le n$ and $1 \le i_1 < \dots < i_m \le n$.

Lemma

Events A_1, \ldots, A_n are independent if and only if

$$P(B_1 \cap \cdots \cap B_n) = P(B_1) \cdots P(B_n)$$

for all B_1, \ldots, B_n where for each $i = 1, \ldots, n$, either $B_i = A_i$ or $B_i = \Omega$.

Definition

Events $A_t, t \in T$ are independent if for every finite collection of distinct indicies $\{t_1, \ldots, t_n\} \subset T$,

$$P(A_{t_1} \cap \cdots \cap A_{t_n}) = P(A_{t_1}) \cdots P(A_{t_n}).$$

Equivalently, events $A_t, t \in T$ are independent if and only if the events in every finite subcollection are independent.

Definition(Independent Classes of Events)

Classes of events A_1, \ldots, A_n are independent if for every choice of events $A_i \in A_i$, $i = 1, \ldots, n$, the events A_1, \ldots, A_n are independent.

Lemma

Classes of events $\mathcal{A}_1,\ldots,\mathcal{A}_n$ are independent if and only if

$$P(B_1 \cap \dots \cap B_n) = P(B_1) \dots P(B_n) \tag{*}$$

for all $B_i \in \mathcal{B}_i$, i = 1, ..., n, where $\mathcal{B}_i = \mathcal{A}_i \cup \{\Omega\}$.

Theorem

If A_1, \ldots, A_n are independent π -systems, then $\sigma(A_1), \ldots, \sigma(A_n)$ are independent σ -fields.

Definition

Classes of events $A_t, t \in T$ are independent if for every finite collection of distinct indicies, $t_1, \ldots, t_n \in T$ and events $A_{t_i}, t \in A_{t_i}, t = 1, \ldots, n$, the events A_{t_1}, \ldots, A_{t_n} are independent.

Corollary If A_{i} , $t \in T$ as

If $A_t, t \in T$ are independent π -systems, then $\sigma(A_t), t \in T$ are independent σ -fields.

4.2. Independent Classes of Events

Definition

The σ -field generated by a random variable X, denoted $\sigma(X)$ is the smallest σ -field w.r.t which X is measurable (as a mapping into $(\mathbb{R}, \mathcal{R})$).

Similarly, the σ -field generated by a random vector $X = (X_1, \dots, X_k)$, again denoted $\sigma(X)$ is the smallest σ -field w.r.t which X is measurable (as a mapping into $(\mathbb{R}^k, \mathcal{R}^k)$).

Finally, the σ -field generated by an arbitrary collection of random variables $\{X_t, t \in T\}$ (defined on a common probability space (Ω, \mathcal{F}, P)), is the smallest σ -field w.r.t which all $X_t, t \in T$ are measurable. This σ -field is denoted $\sigma(X_t, t \in T)$.

Theorem

Let $X = (X_1, \dots, X_k)$ be a random vector. Then

- 1. $\sigma(X) = \sigma(X_1, \dots, X_k) = \{X^{-1}(H) : H \in \mathcal{R}^k\}$
- 2. A random variable Y is $\sigma(X)$ -measurable if and only if Y = f(X) for some Borel measurable function $f: \mathbb{R}^k \to \mathbb{R}$.

Proposition

For a random variable X,

$$\sigma(X) = \sigma\left(\left\{\omega : X(\omega) \le x, x \in \mathbb{R}\right\}\right) = \sigma\left(\left\{X^{-1}((-\infty, x]), x \in \mathbb{R}\right\}\right).$$

Definition

Random variables (random vectors) $X_1, \dots X_k$ are independent if the σ -fields $\sigma(X_1), \dots, \sigma(X_k)$ are independent, or equivalently, if

$$P(X_1 \in H_1, \dots X_k \in H_k) = P(X_1 \in H_1) \dots P(X_k \in H_k)$$
 for all $H_1, \dots, H_k \in \mathbb{R}^1$.

Theorem

Random variables X_1, \ldots, X_k are independent if and only if

$$\mu = \mu_1 \times \cdots \times \mu_k$$
, (product measure),

or equivalently,

$$F(x) = F_1(x_1) \cdots F_k(x_k)$$
 for all $x = (x_1, \dots, x_k) \in \mathbb{R}^k$.

Theorem

If X_1, \ldots, X_k are independent random variables and g_1, \ldots, g_k are Borel measurable functions, then $g_1(X_1), \ldots, g_k(X_k)$ are independent random variables.

Theorem

If X and Y are independent random variables, either both nonnegative or both integrable, then

E(XY) = E(X)E(Y).

Theorem

Suppose that X and Y are independent random vectors (k and m dimensional, respectively) with respective distributions P_X and P_Y . Let $g: \mathbb{R}^{k+m} \to \mathbb{R}$ be a Borel measurable function, and let $A \in \mathcal{R}^m$. if either g is nonnegative, or g(X,Y) is integrable, then

$$E[g(X,Y)I_A(Y)] = \int_A E[g(X,y)]dP_Y(y).$$

4.3. Convolution

Definition

If μ and ν are probability measures on $(\mathbb{R}, \mathcal{R})$, then the measure $\mu * \nu$ defined by

$$(\mu * \nu)(H) = \int_{-\infty}^{\infty} \nu(H - x) \ d\mu(x), \quad H \in \mathcal{R},$$

is called the **convolution** of μ and ν .

If F and G are the distribution functions corresponding to μ and ν , respectively, then the distribution function corresponding to $\mu \times \nu$ is given by

$$(F*G)(y) = (\mu*\nu)((-\infty,y]) = \int_{-\infty}^{\infty} \nu((-\infty,y]-x)d\mu(x) = \int_{-\infty}^{\infty} \nu((-\infty,y-x])d\mu(x) = \int_{-\infty}^{\infty} G(y-x)d\mu(x) = \int_{-\infty}^{\infty} G(y-x)dF(x) \implies (F*G)(y) = \int_{-\infty}^{\infty} G(y-x)dF(x) = \int_{-\infty}^{\infty} G(y-x)dF(x$$

4.4. Borel-Cantelli Lemma

Lemma (Borel-Cantelli: convergence half)

Let $A_n, n \ge 1$ be a sequence of events in a probability space (Ω, \mathcal{F}, P) .

If
$$\sum_{n=1} P(A_n) < \infty$$
, then $P(A_n \text{ i.o}(n)) = 0$.

Lemma (Borel-Cantelli: divergence half)

Let $A_n, n \ge 1$ be a sequence of **independent** events.

If
$$\sum_{n=1} P(A_n) = \infty$$
, then $P(A_n \text{ i.o}(n)) = 1$.

Corollary(Borel's Zero-One Law)

Let $A_n, n \geq 1$ be independent events. Then, if

$$\sum_{n=1}^{\infty} P(A_n) < \infty \quad \text{ or } \sum_{n=1}^{\infty} P(A_n) = \infty,$$

then,

$$P(A_n \text{ i.o}(n)) = 0 \text{ or } 1, \text{ respectively.}$$

4.5. Kolmogorov's Zero-One Law

Definition(Tail Events)

If $\{X_n, n \geq 1\}$ is a sequence of random variables on (Ω, \mathcal{F}, P) , then the **tail** σ -**field** determined by $\{X_n\}$ is given by

$$\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(X_n, X_{n+1}, \ldots).$$

If $A \in \mathcal{T}$, then A is called a **tail event**.

Example

 $\{\omega \in \Omega : \sum_{n=1}^{\infty} X_n(\omega) \text{ converges } \} \in \mathcal{T}, \text{ because}$

$$\left\{\omega \in \Omega : \sum_{n=1}^{\infty} X_n(\omega) \text{ converges }\right\} = \left\{\omega \in \Omega : \sum_{n=m}^{\infty} X_n(\omega) \text{ converges }\right\} \in \sigma(X_m, X_{m+1}, \ldots) \ \forall m \geq 1 \implies \left\{\omega \in \Omega : \sum_{n=1}^{\infty} X_n(\omega) \text{ converges }\right\} \in \bigcap_{m=1}^{\infty} \sigma(X_m, X_{m+1}, \ldots).$$

${\bf Theorem(Kolmogorov's~Zero-One~Law)}$

If $\{X_n, n \geq 1\}$ is a sequence of independent random variables and A is a tail event, then either P(A) = 0 or P(A) = 1

5. Random Series, Weak and Strong Laws

5.1. Convergence of Random Series

${\bf Theorem (Kolmogorov's\ Maximal\ Inequality)}$

Suppose that X_1, \ldots, X_n are **independent** random variables with **mean 0**, and let $S_n = \sum_{i=1}^n X_i, n \ge 1$. Then for any $\alpha > 0$,

$$P\left(\max_{1\leq j\leq n}\{|S_j|\geq \alpha\}\right)\leq \frac{1}{\alpha^2}\mathrm{Var}(S_n).$$

${\bf Theorem (Etemadi's\ maximal\ inequality)}$

If X_1, \ldots, X_n are **independent** random variables, then for any $\alpha > 0$,

$$P(\max_{1 \le j \le n} |S_j| \ge 3\alpha) \le 3 \max_{1 \le j \le n} P(|S_j| \ge \alpha)$$

Theorem(Kolmogorov's Convergence Criterion)

If X_1, X_2, \ldots are **independent mean 0** random variables with $\sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$, then $\sum_{n=1}^{\infty} X_n$ converges a.s. and in L^2 . Moreover, $E(\sum_{n=1}^{\infty} X_n) = 0$ and $\operatorname{Var}(\sum_{n=1}^{\infty} X_n) = \sum_{n=1}^{\infty} \operatorname{Var}(X_n)$.

${\bf Theorem (Levy's\ Theorem)}$

If X_1, X_2, \ldots are **independent** random variables, then as $n \to \infty$,

$$S_n \to S_\infty$$
 a.s. $(\exists \text{ a r.v. } S_\infty) \iff S_n \stackrel{\Pr}{\to} S_\infty$.

Corollary

If X_1, X_2, \ldots are independent, mean 0, uniformly bounded random variables, then

 $\sum_{n=1}^{\infty} X_n$ converges a.s. $\iff \sum_{n=1}^{\infty} \operatorname{Var}(X_n) < \infty$.

Lemma

If X_1, X_2, \ldots , and $X_1^*, X_2^* \ldots$ are sequensces of random variables with identical finite dimensional distributions, i.e., with

$$(X_1,\ldots,X_n)\sim (X_1^*,\ldots,X_n^*)\quad\forall\ n\geq 1,$$

then X_n converges a.s. $\iff X_n^*$ converges a.s.

Lemma

For independent, uniformly bounded random variables $X_n, n \geq 1$,

if $\sum_{n=1}^{\infty} X_n$ converges a.s., then $\sum_{n=1}^{\infty} E(X_n)$ converges.

5.2. Strong Laws of Large Numbers

${\bf Definition (Tail\ Equivalence)}$

Two sequences of random variables $\{X_n, n \geq 1\}$ and $\{X_n^*, n \geq 1\}$ are tail equivalent if

$$\sum_{n=1}^{\infty} P(X_n \neq X_n^*) < \infty.$$

Remark

If $\{X_n, n \geq 1\}$ and $\{X_n^*, n \geq 1\}$ are tail equivalent, then by the convergence-half of the Borel-Cantelli lemma,

$$P(X_n \neq X_n^* \text{ i.o}(n)) = 0,$$

i.e.,

$$P(X_n = X_n^* \text{ a.a}(n)) = 1,$$

i.e., for almost all ω , there exists N_{ω} s.t. $X_n(\omega) = X_n^*(\omega)$ for all $n \geq N(\omega)$. From this, it follows that for tail equivalent sequences,

- 1. $\sum_{n=1}^{\infty} (X_n X_n^*)$ converges a.s.
- 2. $\sum_{n=1}^{\infty} X_n$ converges a.s. $\iff \sum_{n=1}^{\infty} X_n^*$ converges a.s.
- 3. If $a_n \to \infty$, then

$$\frac{1}{a_n} \sum_{i=1}^n X_i$$
 converges a.s. $\iff \frac{1}{a_n} \sum_{i=1}^n X_i^*$ converges a.s.

Theorem(Kolmogorov's Three Series Theorem)

Suppose that X_1, X_2, \ldots are **independent** random variables. Then,

 $\sum_{n=1}^{\infty} X_n$ converges a.s. $\iff \exists c > 0$ s.t. the following holds:

- 1. $\sum_{n=1}^{\infty} P(|X_n| > c) < \infty;$
- 2. $\sum_{n=1}^{\infty} E\left(X_n I_{\{|X_n| \leq c\}}\right)$ converges;
- 3. $\sum_{n=1}^{\infty} \operatorname{Var} \left(X_n I_{\{|X_n| \le c\}} \right) < \infty.$

Furthermore $\sum_{n=1}^{\infty} X_n$ converges a.s. \implies 1,2,3 hold for all c > 0 (not exists, for all).

Theorem(Marcinkiewicz-Zygmund Convergence Theorem)

Suppose that $0 , and let <math>X_1, X_2, \ldots$ be **i.i.d** L^p random variable. Define

$$Y_n = n^{-\frac{1}{p}} X_n I_{\{n^{-1/p}|X_n| \le 1\}}, \quad n \ge 1.$$

Then,

$$\sum_{n=1}^{\infty} \left[n^{-1/p} X_n - E(Y_n) \right] \quad \text{converges a.s.}$$

Moreover, if either

- 1. 0 , or
- 2. $1 and <math>E(X_1) = 0$,

then

$$\sum_{n=1}^{\infty} n^{-1/p} X_n \quad \text{converges a.s.}$$

Theorem (Cesaro Averages)

If $x_n \in \mathbb{R}, n \ge 0$ and $x_n \to x_0$ as $n \to \infty$, then

$$\frac{1}{n}\sum_{k=1}^{n}x_k\to x_0\quad \text{ as } n\to\infty.$$

Lemma (Kronecker's Lemma)

For real sequences $\{x_n, n \ge 1\}$ and $\{a_n, n \ge 1\}$, with $0 < a_n \uparrow \infty$,

then

if

$$\sum_{k=1}^{\infty} \frac{x_k}{a_k}$$
 converges (to a finite limit),

 $\frac{1}{a_n} \sum_{k=1}^n x_k \to 0 \quad \text{as} \quad n \to \infty.$

Theorem (Marcinkiewicz-Zygmund Strong Law)

Suppose that X_1, X_2, \ldots are **i.i.d** random variables, and 0 . Then, for some <math>c > 0,

$$\frac{S_n - nc}{n^{1/p}} \to 0 \quad \text{a.s.} \iff E(|X_1|^p) < \infty.$$

Moreover,

- 1. if $1 \le p < 2$, then, necessarily $c = E(X_1)$;
- 2. if 0 , c is arbitrary (could be 0).

Corollary (Classical Strong Law of Large Numbers)

Let X_1, X_2, \ldots , be **i.i.d** random variables. Then,

- 1. $S_n/n \to E(X_1)$ a.s. $\iff X_1 \in L^1$.
- 2. If E(X_1) exists (possibly $-\infty, \infty$), then $S_n/n \to E(X_1)$ a.s.

5.3. The Glivenko-Cantelli Theorem

Theorem (Glivenko-Cantelli Theorem)

Let X_1, X_2, \ldots be i.i.d(finite-valued) r.vs with common distribution function F, and let F_n be the empirical distribution function based on X_1, \ldots, X_n , i.e.,

$$F_{n,\omega}(x) = \frac{1}{n} \sum_{k=1}^{n} I_{\{X_k \le x\}}(\omega), \quad -\infty < x < \infty, \ \omega \in \Omega.$$

Then,

$$\sup_{-\infty < x < \infty} |F_n(x) - F(x)| \to 0 \quad \text{a.s.},$$

i.e., for almost all ω , $F_{n,\omega}$ converges uniformly to F as $n \to \infty$.

5.4. Weak Laws of Large Numbers

Theorem(ChebyShev Weak Law of Large Numbers)

Let $S_n = \sum_{i=1}^n X_i, n \ge 1$, where X_1, X_2, \ldots are L^2 random variables (not necessarily i.i.d). If $b_n, n \ge 1$, are positive constants satisfying $Var(S_n) = o(b_n^2)$, then

$$\frac{S_n - E(S_n)}{b_n} \xrightarrow{L^2} 0 \quad \text{and consequently} \quad \frac{S_n - E(S_n)}{b_n} \xrightarrow{\Pr} 0.$$

Corollary (L^2 Weak Law)

Let X_1, X_2, \ldots are **uncorrelated** L^2 random variables, with $E(X_n) = \mu$, and $Var(X_n) \leq C < \infty$ for all $n \geq 1$. Then

$$\frac{S_n}{n} \xrightarrow{L^2} \mu$$
 and consequently $\frac{S_n}{n} \xrightarrow{\Pr} \mu$.

Theorem (Chevyshev WLLN for Random Arrays)

Suppose $X_{n,i}$, $1 \le i \le m_n$, $n \ge 1$, are L^2 random variables (defined on the samme probability space), and let $S_n = \sum_{i=1}^{m_n} X_{n,i}$, $n \ge 1$. If for some sequence of positive constants (b_n) ,

$$\frac{\operatorname{Var}(S_n)}{b_n^2} \to 0 \quad \text{as } n \to \infty,$$

then

$$\frac{S_n - E(S_n)}{b_n} \xrightarrow{L^2} 0 \text{ and consequently } \frac{S_n - E(S_n)}{b_n} \xrightarrow{\Pr} 0.$$

Theorem (A Weak Law for Triangular Arrays)

For each $n \ge 1$, suppose that $X_{n,i}, 1 \le i \le m_n$ are **independent** random variables, and let $S_n = \sum_{i=1}^{m_n} X_{n,i}$. Suppose further that $0 < b_n \to \infty$ and define

$$X_{n,i}^* = X_{n,i} I_{\{|X_{n,i}| \le b_n\}}, \text{ and } a_n = \sum_{i=1}^{m_n} E(X_{n,i}^*), n \ge 1.$$

If both

1.
$$\sum_{i=1}^{m_n} P(|X_{n,i}| > b_n) \to 0$$
 as $n \to \infty$, and

2.
$$\frac{1}{b_n^2} \sum_{i=1}^{m_n} E(X_{n,i}^*) \to 0 \text{ as } n \to \infty,$$

thon

$$\frac{S_n - a_n}{b_n} \stackrel{\Pr}{\to} 0 \quad \text{as } n \to \infty.$$

Theorem (Feller's Weak Law of Large Numbers)

Let X_1, X_2, \ldots be **i.i.d** random variables with

$$nP(|X_1| > n) \to 0 \quad \text{as } n \to \infty.$$

Let
$$\mu_n = E(X_1 I_{\{|X_1| \le n\}})$$
. Then,

$$\frac{S_n}{n} - \mu_n \stackrel{\Pr}{\to} 0.$$

6. Weak Convergence

6.1. Weak Convergence of Probability Distributions

Definition (Weak Convergence)

A sequence of distribution functions $\{F_n, n \geq 1\}$ converges weakly to a distribution function F if

$$F_n(x) \to F(x)$$

for all continuity point x of F (written $F_x \leadsto F$).

If μ_n and μ are probability measures on $(\mathbb{R}, \mathcal{R})$, with distribution functions F_n and F_n , respectively, then μ_n converges weakly to μ if $F_n \rightsquigarrow F$ (written $\mu_n \rightsquigarrow \mu$).

Finally suppose X_n and X are r.vs with distribution functions F_n and F, respectively. If $F_n \leadsto F$, then we say X_n converges in distribution to X (written $X_n \leadsto X$).

Proposition

If $F_n \leadsto F$ and $F_n \leadsto G$, then F = G.

Proposition

$$X_n \rightsquigarrow X \not\Rightarrow X_n \stackrel{\Pr}{\to} X.$$

Theorem

If $X_n \leadsto c$ for some real constant c, then $X_n \stackrel{\Pr}{\to} c$.

Theorem (Skorohod Representation Theorem)

Suppose that $\mu_n, n \geq 1$ and μ are probability measures on $(\mathbb{R}, \mathcal{R})$ with $\mu_n \rightsquigarrow \mu$.

Then, there exists a probability space (Ω, \mathcal{F}, P) and random variables $Y_n, n \geq 1$ and Y, defined on (Ω, \mathcal{F}, P) such that Y_n has distribution μ_n for all $n \geq 1$, Y has distribution μ_n and $Y_n \to Y$ a.s.

Theorem (General Definition of Weak Convergence)

Let $C_b(\mathbb{R})$ denote the space of **bounded**, **continuous** real-valued functions on \mathbb{R} .

For real-valued random variables $X_n, n \geq 1$, and X,

$$X_n \leadsto X \iff E[g(X_n)] \to E[g(X)] \quad \forall \ g \in C_b(\mathbb{R}).$$

$$\mu_n \leadsto \mu \iff \int g \ d\mu_n \to \int g \ d\mu \quad \forall \ g \in C_b(\mathbb{R}).$$

For probability distribution functions on $(\mathbb{R}, \mathcal{R})$, and for distribution functions,

$$F_n \leadsto F \iff \int g \ dF_n \to \int g \ dF \quad \forall \ g \in C_b(\mathbb{R}).$$

Corollary

Equivalently,

$$X_n \stackrel{\Pr}{\to} X \implies X_n \leadsto X.$$

Theorem (Continuous Mapping Theorem for Convergence in Distribution)

If $X_n \rightsquigarrow X$ and if $g: \mathbb{R} \to \mathbb{R}$ is Borel measurable with $P(X \in D_g) = 0$, then $g(X_n) \rightsquigarrow g(X)$.

6.2. Tightness

Theorem (Portmanteau Theorem)

For probability measures $\mu_n, n \geq 1$ and μ on $(\mathbb{R}, \mathcal{R})$, the following are equivalent:

- 1. $\mu_n \leadsto \mu$;
- 2. $\liminf_n \mu_n(B) \ge \mu(B)$ for all open $B \in \mathbb{R}$;
- 3. $\limsup_n \mu_n(C) \leq \mu(C)$ for all closed $C \in \mathbb{R}$;
- 4. $\lim_n \mu_n(A) = \mu(A)$ for all μ -continuity sets, i.e., for all $A \in \mathcal{R}$ with $\mu(\partial A) = 0$.

Theorem (Helly's selection theorem)

For any sequence of distribution functions $\{F_n, n \geq 1\}$, there exists a subsequence, $\{F_{n_k}, k \geq 1\}$, and a subdistribution function F (nondecreasing, right-continuous, $0 \leq F(x) \leq 1$ for all $x \in \mathbb{R}$) such that

$$F_{n_k}(x) \to F(x)$$
 for all $x \in C_F$.

${\bf Definition} \ ({\bf Tightness})$

A sequence of probability measures $\{\mu_n, n \geq 1\}$ on $(\mathbb{R}, \mathcal{R})$ is **tight** if for every $\epsilon > 0$, there exists $\mathcal{M} = \mathcal{M}_{\epsilon} > 0$ s.t.

$$\mu_n([-\mathcal{M}, \mathcal{M}]) > 1 - \epsilon \text{ for all } n \ge 1.$$

Proposition

A finite collection of probability measures on $(\mathbb{R}, \mathcal{R})$ is tight.

Theorem (Prohorov's theorem)

A sequence of probability measures $\{\mu_n, n \geq 1\}$ is tight

 \iff for every subsequence $\{\mu_{n_k}, k \geq 1\}$, \exists a further subsequence $\{\mu_{n_{kj}}, j \geq 1\}$ and a probability measure μ s.t. $\mu_{n_{kj}} \leadsto \mu$.

Corollary

the sequence of measures $\{\mu_n, n \geq 1\}$ converges weakly \implies it is tight.

Corollary

If $\{\mu_n, n \geq 1\}$ is tight, and if each weakly convergent subsequence converges to the same probability measure, then $\mu_n \rightsquigarrow \mu$.

6.3. Slutsky's Theorem

Definition

A sequence of random variables $\{X_n, n \ge 1\}$ is **bounded in probability** if their associated distributions are tight, i.e., for any $\epsilon > 0$, there exists a constant $\mathcal{M} > 0$ s.t.

$$P(|X_n| \le \mathcal{M}) > 1 - \epsilon$$
 for all $n \ge 1$.

Lemma

If $\{X_n\}$ is bounded in probability and $Y_n \leadsto 0$, then $X_n Y_n \leadsto 0$.

Definition

If $X_n \rightsquigarrow 0$ (or equivalently, $X_n \stackrel{\Pr}{\rightarrow} 0$), then we write $X_n = o_p(1)$.

If $\{X_n, n \geq 1\}$ is bounded in probability, then we write $X_n = O_p(1)$.

Lemma (Converging Together Lemma)

$$X_n \leadsto X$$
 and $Y_n \leadsto Y \implies Y_n \leadsto X$

Theorem (Slutsky's Theorem)

If for all $n \ge 1$, X_n , A_n , and B_n are random variables defined on the same probability space, with $X_n \leadsto X$, $A_n \leadsto a$, and $B_n \leadsto b$, $a, b \in \mathbb{R}$, then

$$A_n X_n + B_n \leadsto aX + b.$$

6.4. Convergence of Moments

Theorem

 $X_n \leadsto X \implies E[|X|] \le \liminf_n E[|X_n|].$

Theorem

If $X_n \rightsquigarrow X$ and $\{X_n, n \geq 1\}$ is **uniformly integrable**, then X is integrable and $E[X_n] \rightarrow E[X]$.

Corollary

If $X_n \leadsto X$ and if $\sup_{n \ge 1} E\left[|X_n|^{k+\epsilon}\right] < \infty$ for some integer $k \ge 1$, and some $\epsilon > 0$, then X^k is integrable and $E[X_n^k] \to E[X^k]$.

6.5. Total Variation: Scheffe's Theorem

Remark

For probability measures μ_n and μ on $(\mathbb{R}, \mathcal{R})$, below conditions are $(3 \implies 2 \implies 1)$ (progressively stronger forms);

- 1. $\mu_n \leadsto \mu$.
- 2. $\mu(A) \to \mu(A)$ for all $A \in \mathcal{R}$.
- 3. $\sup_{A \in \mathcal{R}} |\mu_n(A) \mu(A)| \to 0$.

Lemma

If μ and ν are probability measures, with densities f and g w.r.t some dominating measure γ , then

$$\sup_{A \in \mathcal{F}} |\mu(A) - \nu(A)| = \frac{1}{2} \int |f - g| d\gamma.$$

Theorem (Scheffe's Theorem)

 $\mu_n, n \geq 1$ and μ are probability measures having densities f_n and f, respectively, w.r.t some dominating measure γ . If

$$f_n \to f$$
 γ -a.e. as $n \to \infty$,

then μ_n converges to μ in total variation norm, i.e.,

$$\sup_{A \in \mathcal{R}} |\mu_n(A) - \mu(A)| \to 0.$$

7. Characteristic Functions

7.1. Integrals of Complex-Valued Functions

Remark

Let \mathbb{C} represent the field of complex numbers. If $z = x + iy \in \mathbb{C}$, where $x, y \in \mathbb{R}$, then x = Real(z) and y = Image(z) are called the real and imaginary parts of z, and $|z| = \sqrt{x^2 + y^2}$ and $\bar{z} = x - iy$ are called the modulus and the complex conjucate of z, respectively.

Recall that in its polar representation, z is written in the form

$$z = |z|e^{i\theta} = |z|(\cos\theta + i\sin\theta),$$

and the angle $\theta = \arg z$, measured in radians, is called the argument of z. Of course, θ is determined by the equations $\cos \theta = x/|z|$ and $\sin \theta = y/|z|$.

Remark

For a measure space $(\Omega, \mathcal{F}, \mu)$, and a function $f: \Omega \to \mathbb{C}$, with f = g + ih, where $g, h: \Omega \to \mathbb{R}$, the function f is (Borel) measurable if and only if both its real and imagenary parts g and h are measurable, and we define

$$\int f \ d\mu = \int g \ d\mu + i \int h \ d\mu,$$

as long as both integrals on the right hand side exists. Similarly we say that f is integrable if

$$\int |f| \ d\mu < \infty,$$

and since $|f| = (g^2 + h^2)^{1/2} \le |g| + |h|$ while both $|g| \le |f|$ and $|h| \le |f|$, we see that f is integrable if and only if both its real and imaginary parts are integrable.

Remark (Modulus Inequality)

If f is integrable w.r.t μ , then for any $\theta \in \mathbb{R}$, we have

$$\left| \int f \ d\mu \right| \le \int |f| \ d\mu.$$

7.2. Definition and Derivatives of the Characteristic Function

Definition

or

The **characteristic function** of a probability measure μ on $(\mathbb{R}, \mathcal{R})$ is the function $\phi : \mathbb{R} \to \mathbb{C}$ defined by

$$\phi(t) = \int e^{itx} d\mu(x) = \int \cos(tx) d\mu(x) + i \int \sin(tx) d\mu(x).$$

If F is the distribution function corresponding to μ , or if X is a random variable with distribution μ , then we say that F or X has characteristic function ϕ . Of course we then may write

$$\phi(t) = \int e^{itx} dF(x) = \int \cos(tx) \ dF(x) + i \int \sin(tx) \ dF(x),$$

 $\phi(t) = E\left[e^{itX}\right] = E\left[\cos(tX)\right] + iE\left[\sin(tX)\right].$

Proposition (Elementary Properties of the Characterisric Function)

Let ϕ be the characteristic function of a random variable X. Then,

- 1. $\phi(0) = 1$;
- 2. $|\phi(t)| \le 1$ (Modulus Inequality);
- 3. ϕ is uniformly continuous;
- 4. $\operatorname{Re}\{\phi(t)\}=E[\cos(tX)]$ is an even function of t, and $\operatorname{Im}\{\phi(t)\}=E[\sin(tX)]$ is odd;
- 5. $\phi(-t) = \overline{\phi(t)};$
- 6. For $a, b \in \mathbb{R}$, $\phi_{aX+b}(t) = e^{ibt}\phi_X(at)$, in particular, $\phi_{-X}(t) = \phi_X(-t) = \overline{\phi_X(t)}$.
- 7. ϕ_X is a real valued function $\iff X$ is symmetrically distributed about the origin i.e., $-X \sim X$.
- 8. If X and Y are independent, then $\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t)$.

Lemma

For any $x \in \mathbb{R}$,

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min \left\{ \frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right\}.$$

Thus, we have at n = 0, and n = 1,

1.
$$|e^{ix} - 1| \le \min\{|x|, 2\},\$$

2.
$$\left| e^{ix} - (1+ix) \right| \le \min \left\{ \frac{|x|^2}{2}, 2|x| \right\}$$
.

Lemma

If $E[|X|^n] < \infty$ for some integer $n \ge 1$, then $\phi(t) = E[e^{itX}]$ satisfies

$$\left| \phi(t) - \sum_{k=0}^{n} \frac{(it)^k}{k!} E(X^k) \right| \le E\left[\min\left\{ \frac{|tX|^{n+1}}{(n+1)!}, \frac{2|tX|^n}{n!} \right\} \right].$$

Theorem

If $E[|X|^n] < \infty$ for some integer $n \ge 1$, then

$$\phi(t) = \sum_{k=0}^{n} \frac{(it)^k}{k!} E(X^k) + R_n(t),$$

where $R_n(t) = o(|t|^n)$ as $t \to 0$.

7.3. Fourier Inversion Theorem

Theorem (Fourier Inversion Theorem)

Suppose that μ is a probability measure with probability distribution function F and characteristic function ϕ . If

$$\int_{-\infty}^{\infty} |\phi(t)| dt < \infty$$

then μ has a bounded, uniformly continuous density given by

$$f(x) = F'(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi(t) dt.$$

7.4. Levy Continuity Theorem

Lemma

If μ is a probability measure with characteristic function ϕ , then for any u > 0,

$$\frac{1}{u} \int_{-u}^{u} [1 - \phi(t)] dt \ge \mu(\{x : |x| \ge 2/u\}).$$

Theorem (Levy Continuity Theorem)

Let $\mu_n, n \geq 1$ be probability measures with characteristic functions ϕ_n . Then,

- 1. $\mu_n \leadsto \mu \iff \phi_n(t) \to \phi(t)$ for all $t \in \mathbb{R}$ where $\phi(t)$ is char.func of μ .
- 2. $\phi_n(t) \to g(t)$ for all $t \in \mathbb{R}$ and g is continuous at $t = 0 \implies g$ is the characteristic function of μ , and $\mu_n \leadsto \mu$.

Corollary

Suppose that $g(t) = \lim_{n \to \infty} \phi_n(t)$ exists for each $t \in \mathbb{R}$, and that $\{\mu_n, n \ge 1\}$ is tight. Then there exists a prob measure μ s.t. $\mu_n \leadsto \mu$ and μ has characteristic function g.

8. The Central Limit Theorem

8.1. The Central Limit Theorem

Theorem (Classical CLT for i.i.d Summands)

If $X_n, n \ge 1$ are **i.i.d** random variables with $E(X_1) = c$ and $Var(X_1) = \sigma^2$, where $0 < \sigma^2 < \infty$, then

$$\frac{S_n - nc}{\sigma \sqrt{n}} \leadsto Z \sim N(0, 1).$$

Theorem (Linderberg-Feller Central Limit Theorem)

Suppose that for $n \geq 1, X_{n,1}, \dots, X_{n,r_n}$ are **independent** random variables with

 $E(X_{n,k}) = 0$ and $\sigma_{n,k}^2 = E(X_{n,k}^2) < \infty$, $k = 1, ..., r_n$. $S_n = X_{n,1} + \dots + X_{n,r_n}$ and $s_n^2 = \sigma_{n,1}^2 + \dots + \sigma_{n,r_n}^2$,

and assume that $s_n^2 > 0$ for n large. Then

- 1. $\frac{S_n}{s_n} \rightsquigarrow Z \sim (0,1) \text{ as } n \to \infty;$
- 2. $\frac{\max_{1 \le k \le r_n} \sigma_{n,k}^2}{s_n^2} \to 0 \text{ as } n \to \infty,$

are necessary and sufficient that the ${\bf Linderberg}$ ${\bf condition}$ hold:

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{\{|X_{n,k}| \ge \epsilon s_n\}} X_{n,k} \ dP = 0 \quad \text{for all} \quad \epsilon > 0.$$

Proposition

Let

If $X_n, n \geq 1$ are independent random variables with

and $s_n^2 = \sum_{k=1}^n \sigma_k^2$, then the Linderberg condition

 $v_n = \sum_{k=1}^{n} v_k$, then the Emdersel's condition

$$E(X_n) = 0$$
 and $Var(X_n) = \sigma_n^2, n \ge 1,$

$$\lim_{n\to\infty}\frac{1}{s_n^2}\sum_{k=1}^{r_n}\int_{\{|X_{n,k}|\geq\epsilon s_n\}}X_{n,k}\ dP=0\quad\text{for all}\quad\epsilon>0,$$

$$\lim_{n \to \infty} \frac{1}{s_n^2} \sum_{k=1}^{r_n} \int_{\{|X_{n,k}| \ge \epsilon s_k\}} X_{n,k} dP = 0 \quad \text{for all} \quad \epsilon > 0.$$

Examples

is equivalent to

Let $1 \le \alpha < \infty$ and let $X_n, n \ge 1$ be **independent** random variables with

and

$$P(X_n = n^{\alpha}) = P(X_n = -n^{\alpha}) = \frac{1}{6}n^{-2(\alpha - 1)},$$

 $P(X_n = 0) = 1 - \frac{1}{3}n^{-2(\alpha - 1)}.$

9. Conditioning

- 9.1. Conditional Expectations
- 9.2. Properties of Conditional Expectation
- 9.3. Conditional Expectations as Projections