La matrice del cambiamento delle coordinate.

1) Sia $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ una base di uno spazio vettoriale V, ed \mathbf{u} un vettore di V. Poiche' \mathcal{B} e' una base allora esiste un unico vettore numerico (colonna) $\mathbf{x} = (x_1, \dots, x_n)^T \in \mathbf{R}^n$ tale che

$$\mathbf{u} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_n \mathbf{b}_n.$$

Denoteremo tale vettore anche con il simbolo

$$[\mathbf{u}]_{\mathcal{B}} := \mathbf{x},$$

e lo chiameremo il vettore delle coordinate di ${\bf u}$ rispetto all base ${\cal B}$.

2) Siano $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ e $\mathcal{B}' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ basi per un dato spazio vettoriale V. Si definisce matrice del cambiamento delle coordinate di V dalla base \mathcal{B}' alla base \mathcal{B} quella matrice quadrata P $n \times n$ la cui j-esima colonna e' data dal vettore numerico $[\mathbf{b}'_j]_{\mathcal{B}}$ delle coordinate di \mathbf{b}'_j rispetto alla base \mathcal{B} . Denoteremo tale matrice anche con il simbolo

$$M_{\mathcal{B}}^{\mathcal{B}'}(id_V) := P.$$

Proposizione Siano $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ e $\mathcal{B}' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ basi per un dato spazio vettoriale V. Denotiamo con P la matrice del cambiamento delle coordinate di V dalla base \mathcal{B}' alla base \mathcal{B} . Per ogni vettore \mathbf{u} di V denotiamo con $\mathbf{x} = (x_1, \dots, x_n)^T$ le coordinate di \mathbf{u} rispetto alla base \mathcal{B} , e con $\mathbf{x}' = (x'_1, \dots, x'_n)^T$ le coordinate di \mathbf{u} rispetto alla base \mathcal{B}' . Allora si ha:

$$\mathbf{x} = P\mathbf{x}'$$

cioe'

$$[\mathbf{u}]_{\mathcal{B}} = M_{\mathcal{B}}^{\mathcal{B}'}(id_V) \cdot [\mathbf{u}]_{\mathcal{B}'}.$$

Dimostrazione. Denotiamo con (a_{ij}) la matrice P. Quindi per definizione abbiamo per ogni $j = 1, \ldots, n$

$$\mathbf{b}_j' = \sum_{i=1}^n a_{ij} \mathbf{b}_i.$$

Sempre per definizione di coordinate abbiamo

$$\mathbf{u} = \sum_{j=1}^{n} x_j' \mathbf{b}_j'.$$

Sostituendo l'espressione precedente abbiamo

$$\mathbf{u} = \sum_{i=1}^{n} x_j' \left(\sum_{i=1}^{n} a_{ij} \mathbf{b}_i \right).$$

Ora, per ogni i = 1, ..., n, utilizzando le proprieta' associativa, commutativa e distributiva, possiamo raccogliere nell'espressione a destra i vari coefficienti con cui appare il vettore \mathbf{b}_i , ed otteniamo

$$\mathbf{u} = \sum_{j=1}^{n} x'_{j} \left(\sum_{i=1}^{n} a_{ij} \mathbf{b}_{i} \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} a_{ij} x'_{j} \right) \mathbf{b}_{i}.$$

Il che implica che la coordinata i-esima di $\mathbf u$ rispetto alla base $\mathcal B$ e' proprio $\sum_{j=1}^n a_{ij} x_j'$. Cioe'

$$x_i = \sum_{j=1}^n a_{ij} x_j'.$$

Cio' significa che, per ogni i = 1, ..., n, x_i si ottiene facendo il prodotto punto tra il vettore $(a_{i1}, a_{i2}, ..., a_{in})$ (che e' la riga i-esima di P) per il vettore $(x'_1, x'_2, ..., x'_n)$. Per la stessa definizione di prodotto riga per colonna tra matrici cio' equivale a dire che

