

- 一、英维目的
 - (1) 了解硅光电池的主要多数和基本特征
 - (2)研究太阳能电池板的负载特性
- 二. 妄维仪器

硅光电池,太阳能电池板,光源,光功率计,聚光透镜,滤光片,毫安表, 伏特表,电阻箱,偏振器.

三. 实验原理

1. 硅光电池

Ec为导带, Ev为价带.

当能障小于入射光电子能量时,光子会被半导体吸收,并在半导体内产生电 子和空穴对,电子和空穴在半导体内电场的作用下会向不同的方向集合以而 产生光生电动势, 当当接入负载后便能产生电流

硅光电池的理论模型是由理想电流源,理想二极管,并联电阻Rsh,电阻Rs

为老照时理想电源的输出电流;Id为光照时通过理想二极管的电流 精况下II=I。(eft-1).由基尔霍夫定律可得: I(HRin)=Iph-1in-1ia

指导教师签字:__

课程名称:					
The	实验名称:	实验日期:	年	В	-
级:	教学班级:	学号:	姓	么.	н

I为硅光电池的输出电流,U为输出电压

一般情况下可认为 Rsh = ∞, Rs = 0. 则 I = Iph - Id = Iph - I. (e^{\$v}-1) 由此可得:

O负载被短路时: U=0, Iph = Isc

②不接入负载时: I=0,可得 Uoc=专ln[==+1]

Uoc为开踏电压、XIsc为短路电流、Io.P是常数.

如果Isc与光照强度有线性关系,则Uoc与光照强度满足对数关年2.太阳能电池板

太阳能电池板的原理与硅光电池一样,电阳能电池板的输出电池流越小,输出电压越大.

太阳能电池板的填充因子FF= Pm 是代表太阳能电池性能优为的一个重要多数。

四、实验内容

实验装置如图

. 石光 *源条件下, 测量硅光电池正向偏性压的伏安特性

连接线路,并测出伏安特性曲线U-I

指导教师签字:___

课程名称:	实验名称:	实验日坝:	征	FI	
班 级:	教学:班级:	学 号:	h/1:	17.	E
(2) 担报所经验 +尼	£ 14 1 7	H 11: -2	~11	3.11	

- 程務所得數据,经出InI—U曲线并求出日和I。的值
- 2. 测量硅光电池的光照特性
- (1) 测出距离白光源 20 cm 处光照强度 J。(标准, 然后改变太阳能电池板到电源的距离 X, 并测出 X处的光照强度 J和此时 Isc 的值。经出 Isc 和对光强度 于。之间的关系曲线, 并求出 Isc 从船 和与相对光强于,之间近似关系函数
- (2) 改变两交叉偏振片的夹角叉,测出对应的短路电流,并绘出Isc-义曲线,根括马吕斯定律,若Isc-义曲线为余弦平方曲线,则可证明硅光电池线性响应区的存在
- 3.测量光电池的光谱响应

将与种滤色片分别装在支架架上,并把支架放在光源与光电池之间,然后在同一位置,测量各个短路电流,并经出Isc-入关系曲线。

- 生测量太阳能电池板的负载特性。
 - ①测绘出太阳能 电池极的输出电压与给定负载 电阻的关系曲线
- 回发出负载电阻出输出功率的关系曲线
- ②求出太阳能电池板的最大输出功率 Pm 以及对应的负载电阻Re 和填充因子FF。

指导教师签字:	
---------	--

课程名标:

班 级:

教学班级:

一种 一种 一种 一种

1. U/V 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

I/mA 0 0.0197 0.0524 0.1034 0.1842 0.464 0.745 1.203 25 3.8

2-
$$1sc = 7.6 \text{ mA}$$
 7.6 mA
 R_R/Ω

0 100 200 300 400 500 600 100 800 900

U/V 0.1234 1.608 2.43 3.09 3.81 4.51 4.15 4.91 5.03

1/mA 7.6 7.5 7.4 7.3 7.2 7.2 6.9 6.6 5.9 5.5

 R_R/Ω 1000 100 1200 1300 1400 1500 2000 3000 4000 1500

U/V 5.09 5.13 5.16 5.19 5.21 5.23 5.29 5.35 5.37 5.70

 I/mA 5.0 4.6 4.2 3.9 3.7 3.4 2.6 1.719 1.308 1.024

10002

指导教师签字:_

THE LANGE HE BOTH FARE STATE

级:

教学研究。

3.

班

Rn 152	610	620	630	640	650	660	670	680	690
UN	4.30	4.44	4.48	4.53	4.58	4.63	4.67	4.71	4.75
I/mA	7.0	7.0	6.9	8-9	6.9	6.8	6.8	6-8	6-7
Rn/52	710	720	730	740	7.50	760	770	180	790
UN	4-82	4.84	4.86	4.88	9.89	4.91	4-92	4.9.3	4.95
IJm A	6-6	6.5	6.5	6.4	6.4	6.3	6.2	6-2	6-1

 课程名称:
 实验名称:
 实验日期:
 年
 月

 班 级:
 数学班级:
 学 号:
 姓 名:

1. $\lim_{D \to 0} \ln |a| = -\infty$ $\ln(0.0197) = -3.92714$ $\ln(0.0524) = -2.94885$ $\ln(0.1034) = -2.26915$ $\ln(0.1842) = -1.69173$ $\ln(0.292) = -1.231$ $\beta = \frac{1.33.+4.05}{5} = 1.076$ 2. $P_1 = 0.1234 \times 7.6 = 6.93784$

2. $P_1 = 0.1234 \times 7.6 = 6.93789$ $P_2 = 0.853 \times 7.5 = 6.3975$ $P_3 = 1.608 \times 7.4 = 11.8992$ $P_4 = 2.43 \times 7.3 = 17.739$ $P_5 = 3.09 \times 7.2 = 22.248$ $P_6 = 3.87 \times 7.2 = 27.864$ $P_7 = 4.51 \times 6.9 = 31.119$ $P_8 = 4.75 \times 6.6 = 31.35$ $P_9 = 4.97 \times 5.9 = 29.323$

P10 = 503 x 5.5 = 27.66 5

 $\frac{\ln(3.0)}{\ln(0.464)} = -0.76787$ In (0.745) = -0,29437 la (+.203) = 0.184818 ln(2.0) = 0.693147 (n (3.8) = 1.335001 la Is = -4.05 P11 = 5.09 x 5.0 = = == 25.45 P12 = 5.13 × 4.6 = 23.598 P13 = 5.16 x 4.2 = 21.672 P14= 5.19 × \$ 3.9 = 20.241 Pis = 5-21 × 3.7 = 19.277 P16 = 5.23 x 3.4 = 17.782 P17 = 5.29 x 2.6 = 13.754 P18 = 5.35 × 1.719 = 9.19665 P19 = 5.37× 1-308 = 7.02396 P20= 5.40 X 1.024 = 5.5298

实验报告

 课程名称:
 实验名称:
 实验日期:
 年
 月

 班
 级:
 教学班级:
 学
 号:
 姓
 名:

 $P_1 = 4.39 \times 7.0 = 30.73$ $P_2 = 4.44 \times 7.0 = 31.08$ $P_3 = 4.48 \times 6.9 = 30.912$ $P_4 = 4.5 \times 6.9 = 31.257$ $P_5 = 4.58 \times 6.9 = 31.257$ $P_6 = 4.63 \times 6.8 = 31.484$ $P_7 = 4.67 \times 6.8 = 31.756$ $P_8 = 4.71 \times 6.8 = 32.028$ $P_9 = 4.75 \times 6.7 = 31.825$

 $FF = \frac{32.028}{7.6 \times 1.50} = 0.766$

 $P_{10} = 4.8 \times 6.6 = 31.812$ $P_{11} = 4.84 \times 6.5 = 31.64 \times 31.46$ $P_{12} = 4.86 \times 6.5 = 31.59$ $P_{13} = 4.88 \times 6.4 = 31.232$ $P_{14} = 4.89 \times 6.4 = 31.296$ $P_{15} = 4.91 \times 6.3 = 30.933$ $P_{15} = 4.92 \times 6.2 = 30.504$ $P_{17} = 4.93 \times 6.2 = 30.504$ $P_{17} = 4.93 \times 6.2 = 30.504$

BELING INSTITUTE OF TECHNOLOGY

实验报告

课程名称:	实验名称:	实验日期:	年	E	日
班 级:					
34:	新·宗·托·绍·	学 号.	tr.1=	× .	

UN	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	上,0
I/mA	0	0.0197	0.0524	0.1034	0.1842	0.292	0.464	0.745	1.203	2.0	3.8
InI	-00	-3.92714	-2.9 4885	-2.26915	-1.69173	- 1.23	-0.76781	-0.29437	0.184818	0-693197	1.33500

B= 1.076

ln Is = -4.05

Is = 0.0174

-										
Ra/s	.0	100	200	300	400	£00.	600	100	800	900
U/V	0.123	+ 0.853	1-608	2.43	3.09	3.87	4.51	4.75	4.97	5.03
I/mA	7-6	7.5	7.4	7.3	7.2	7.2	6.9	6.6	1.9	5.5
P/W	0.93784	6.3975	11.8992	17.739	22.248	27.864	31.119	31.35	29.323	27.665
						All resembles in				
1/1	4.09	5.13	5.16	5.19	5,21	5.23	5,29	5.35	5.37	5.40
					District Control of the last of	the Commence of the last				
/W	25.45	23.598	21.672	20.241	19.277	17.182	13.754	9.1966	5 7.023	96 3.5298
-	U/V I/mA RR/SZ I/V /mA	U/V 0.1234 I/mA 7-6 P/W 0.93184 RR/SZ 1000 J/V 5.09 /mA 5.0	U/V 0.1234 0.853 I/mA 7-6 7-5 P/W 0.93184 6.3975 RR/S2 1000 1100 J/V 5.09 5.13 /mA 5.0 4.6	U/V 0.1234 0.8±3 1.608 I/mA 7.6 7.5 7.4 P/W 0.93784 6.3975 11.8992 Re/S2 1000 1100 1200 J/V ±.09 ±.13 5.16 /mA ±.0 4.6 4.2	U/V 0.1234 0.8±3 1.608 2.43 I/mA 7.6 7.4 7.4 7.3 P/W 0.93184 6.3975 11.8992 17.739 RR/12 1000 1100 1200 1300 J/V ±.09 ±.13 5.16 5.19 /mA ±.0 4.6 4.2 3.9	U/V 0.1234 0.8±3 1.608 2.43 3.09 I/mA 7.6 7.5 7.4 7.3 7.2 P/W 0.93784 6.3975 11.8992 17.739 22.248 RR/12 1000 1100 1200 1300 1400 J/V ±.09 ±.13 5.16 5.19 5.21 /mA ±.0 4.6 4.2 3.9 3.7	U/V 0.1234 0.8±3 1.608 2.43 3.09 3.87 I/mA 7.6 7.4 7.4 7.3 7.2 7.2 P/W 0.93784 6.3975 11.8992 17.739 22.248 27.864 Re/S2 1000 1100 1200 1300 1400 1500 J/V 5.09 5.13 5.16 5.19 5.21 5.23 /mA 5.0 4.6 4.2 3.9 3.7 3.4	U/V 0.1234 0.8±3 1.608 2.43 3.09 3.87 4.51 I/mA 7.6 7.5 7.4 7.3 7.2 1.2 6.9 P/W 0.93784 6.3975 11.8992 17.739 22.248 27.864 31.119 Re/S2 1000 1100 1200 1300 1400 1500 2000 J/V 5.09 5.13 5.16 5.19 5.21 5.23 5.29 I/mA 5.0 4.6 4.2 3.9 3.7 3.4 2.6	U/V 0.1234 0.8±3 1.608 2.43 3.09 3.87 4.±1 4.75 I/mA 7.6 7.5 7.4 7.3 7.2 7.2 6.9 6.6 P/W 0.93784 6.3975 11.8992 17.739 22.248 27.864 31.119 31.35 Re/12 1000 1100 1200 1300 1400 1500 2000 3000 J/V 5.09 5.13 5.16 5.19 5.21 5.23 5.29 5.35 I/mA 5.0 4.6 4.2 3.9 3.7 3.4 2.6 1.719	U/V 0.1234 0.8±3 1.608 2.43 3.09 3.87 4.51 4.75 4.97 I/mA 7-6 7.5 7.4 7.3 7.2 1.2 6.9 6.6 5.9 P/W. 0.93784 6.3975 11.8992 17.739 22.248 27.864 31.119 31.35 29.323 Re/SZ 1000 1100 1200 1300 1400 1500 2000 3000 4000

Isc = 1.6 m A

Voc = 5.50V

初步最佳匹配负载: R=70002

指导教师签字:

址

RRS	\$10	#20	830	640	650	660	670	680	690
					4.58				_
_					6.9				
					31.602				
Re/s2	710	720	73.	740	750.	760	770	780	190
U/V	4.82	4.84	4-86	4-88	4.89	4.91	4.92	4-93	4.95
[/mA	6-6	6.5	6.5	6.4	6.4	6.3	6.2	6.2	6.1
/W 3	31.812	31-46	31-59	31.232	31.296	30.933	30,504	30,566	30,1

$$P_{\text{max}} = 32.028 \text{ W}$$

$$FF = \frac{P_{\text{max}}}{I_{\text{Sc}} U_{\text{OC}}} = \frac{32.028}{0.166}$$

实验报告

课程名称:	51 11 10 10 The			
班 级:	实验名称:	实验日期:	年	·
17 +		一 学 号:	姓名	

思考题

好开,太阳能电池结蓄电池 充电,晚上闭台开头关,电池结蓄电池 泡供电,同时因二极管的存在,电 流不会倒流回太阳能电池板