HW2 CE303

	MWZ	U	505								
	Part of the Control	w. of	5/1-4.1	1900	0						
P1:		1011	COLZ	Col3	col 4	cd5	C.			. 1	
	poll !	1	1	O	1	6	KUV -			E 4	
	row2	1 .	6	l	0	(=)		Fil		Tr.	
	ronz		0	6	(6					
	row4	6	1	(1	6					
	ron 5	9	1	6	1	١	710		X -25	Å	
	row6	1	0	1	-	0					
		*									
	C	014	Lomineste	اد) ا	2 20	Col	2 3	rem	ones		
				9 001							
	h	LOII	6013	Col	4-6	15	- 75	J+ 38	DA =		N C
	roul		O	1		0	-				
	row2	l	. 1	C	>	l			21-		
	ronz	l	0	l		0		Ini	1		
	10 m 4	0	1	l	(Ć	1				
	row5	0	0	, 1			0	*			
		{	l	1	*	5			7		
			9								
	F	cow	3 domi	untes	Ron	1	so f	ow.	3 13	remoi	ud.
	R	low	b domi	nates	Ron	,4 =	20 R	on k	2 13	remor	w.J
				·							
		Col1	Col 2	lo	14 4	015					

0

l

0

0

0

1

1

0

Rowl

RowZ

Row4

Row5

l

0

0

This is

the yelic core so we

branch & bound

Problem 3:

	signed?	width	base	int val
8'b00001000	No	8	bin	8
16'hABCD	No	16	hex	43981
4'sb1110	Yes	4	bin	-2
4'd12	No	4	dec	12
4'b1100	No	4	bin	12
8'shFF	Yes	8	hex	-1
8'sb00011100	Yes	8	bin	28
12'h2A8	No	12	hex	680
6'sb111101	Yes	6	bin	-3
12'03456	No	12	oct	1838

Problem 4:

endmodule

alarm.v:

```
//top module

module alarm(PANIC, EN, EXIT, WINDOW, DOOR, GARAGE, ALARM);

input PANIC,EN,EXIT,WINDOW,DOOR,GARAGE;

output ALARM;

wire gate1,gate2,gate3;

nand(gate1,WINDOW,DOOR,GARAGE);

not(gate2,EXIT);

and(gate3,EN,gate2,gate1);

or(ALARM,gate3,PANIC);
```

[`]timescale 1ns/10ps

```
alarm_test.v:
`timescale 1ns/10ps
module alarm_test;
 reg PANIC, EN, EXIT, WINDOW, DOOR, GARAGE;
 wire ALARM;
 alarm doubile(
   PANIC, EN, EXIT, WINDOW, DOOR, GARAGE, ALARM
 );
 initial
   begin
     // first case - should be alarm = 1
     assign PANIC = 1;
     assign EN = 1;
     assign EXIT = 1;
     assign WINDOW = 1;
     assign DOOR = 1;
     assign GARAGE = 0;
     #20
     // second case - should be alarm = 0
     assign PANIC = 0;
     #20
     // third case - should be alarm = 1
     assign EXIT = 0;
```

```
#20
// fourth case - should be alarm = 0
assign EN = 0;
#20
$finish;
end
endmodule
```


Simulation output