

Lens Driver IC for camcorder and security-camera

Overview

MS41929 is a lens motor driver IC for camcorder and securitycamera featuring the functions of Iris control.

Voltage drive system and several torque ripple correction techniques enable super- low noise microstep drive.

MS41929 integrated a DC motor driver featuring Infrared Rejector driver

MS41929 can use 27MHz passive crystal instead Of oscillator.

Features

- Voltage drive system 256-step microstep drivers (2 systems)
 H-bridge max current 0.5A
- Motor control by 4-line serial data communication
- 2 systems of open-drain for driving LED
- Infrared Rejector DC motor driver, max current 0.5A
- passive crystal
- QFN32 package

Applications

- Camcorder
- Security-camera

Package

Part Number	Package	Marking
MS41929	QFN32(0505X0.75-0.5)	MS41929

Contents

Block Diagram	3
Absolute Maximum Ratings	3
Electrical Characteristics	5
Pin Diagram	9
Pin Descriptions	10
Function description	11
a)Serial Interface	11
b)Register detail description	15
c) Micro Stepping Motor Driver	16
d) Test signals	27
e) LED Driver	30
f) Reset/Protect circuit	31
g) Infrared Rejector	32
h) application note	33
Application Circuit Example	33
Package information	

Block Diagram

Absolute Maximum Ratings

(Note) Absolute maximum ratings are limit values which do not result in damages to this IC, and IC operation is not guaranteed at these limit values.

Parameter	Symbol	Rating	Unit	Notes
Controller supply voltage	DVDD	-0.3~+4.0	٧	*1
Supply voltage for motor controller	MVCCx ,VDD5	-0.3~+6.0	V	*1
Power dissipation	P _D	141.1	mW	*2
Operating ambient temperature	Topr	−20~+85	°C	*3
Storage temperature	Tstg	-55∼+12 5	°C	*3

Motor driver 1 (focus, zoom) H bridge drive current	I _{M1(CD)}	±0.5	A/ch	_
Instantaneous H bridge drive current	I _{M(pluse)}	±0.6	A/ch	_
Digital input voltage	Vin	-0.3~(DVDD + 0.3)	V	*4
ESD	нвм	±3k	V	-

(Notes)

- *1 : The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.
- *2 : The power dissipation shown is the value at Ta = 85°C for the independent (unmounted) IC package without a heat sink.

 When using this IC, refer to the PD-Ta diagram of the package standard and design the heat radiation with sufficient margin so

allowable value might not be exceeded based on the conditions of power supply voltage, load, and ambient temperature.

- *3 : Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for Ta = 25°C.
- *4 : (DVDD + 0.3) V must not be exceeded 4.0 V.

Operating Supply Voltage Range

_						
Parameter	Symbol	Min	Тур	Max	Unit	Notes
Summit valters reserve	DVDD	2.7	3.1	3.6	V	*4
Supply voltage range	MVCCx	3.0	4.8	5.5	7 '	"1

(Note)

Allowable Current and Voltage Range

(Notes)

- > Allowable current and voltage ranges are limit ranges which do not result in damages to this IC, and IC operation is not guaranteed within these limit ranges.
- > Voltage values, unless otherwise specified, are with respect to GND.
- > GND is voltage for GNDD, GND5, MGNDA, and MGNDB. GND = GNDD = GND5 = MGNDA = MGNDB
- VCC3V is voltage for DVDD.VCC3V = DVDD
- > Do not apply external currents or voltages to any pin not specifically mentioned.
- > For the circuit currents, "+" denotes current flowing into the IC, and "-" denotes current flowing out of the IC.

Pin No	Pin name	Rating	Unit	Notes
24	OSCIN	-0.3~ (DVDD + 0.3)	٧	*1
23	OSCOUT	-0.3~ (DVDD + 0.3)	V	*1
27	cs	-0.3~ (DVDD + 0.3)	V	*1
26	SCK	-0.3∼ (DVDD + 0.3)	V	*1
29	SIN	-0.3~ (DVDD + 0.3)	V	*1
30	VD_FZ	-0.3~ (DVDD + 0.3)	V	*1

^{*1 :} The values under the condition not exceeding the above absolute maximum ratings and the power dissipation.

1	RSTB	-0.3~ (DVDD + 0.3)	V	*1
8	OUTD2	±0.5	Α	_
10	OUTD1	±0.5	Α	_
11	OUTC2	±0.5	Α	_
13	OUTC1	±0.5	Α	_
14	OUTB2	±0.5	Α	_
16	OUTB1	±0.5	Α	_
17	OUTA2	±0.5	Α	_
19	OUTA1	±0.5	Α	_
7	OUTE1	±0.5	Α	_
5	OUTE2	±0.5	Α	_
20	LED1	30	mA	_
21	LED2	30	mA	_

(Note)

Electrical Characteristics

(Note)

- > MVCCx = VDD 5 = 4.8 V, DVDD = 3.1 V
- > Ta = 25°C±2°C unless otherwise specified.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit		
Current circuit, Common circuit								
MVCC supply current on Reset	I _{Omdisable}	No load, no 27 MHz input	_	0	3.0	μΑ		
MVCC supply current on Enable	I _{menable}	Output open	_	0.5	1.5	mA		
3 V supply current on Reset	Icc3 _{reset}	No 27 MHz input	_	0	10.0	μΑ		
3 V supply current on Enable	Icc3 _{enable}	Output open	_	3.6	20.0	mA		
Supply current on Standby	ICCstandby	RSTB = High, output open, 27 MHz input, Total current	_	5.0	10.0	mA		
Supply current when FZ is Enable	ICC _{ps}	RSTB = High, output open, 27 MHz input, FZ = Enable, Total current	_	6.0	12.0	mA		
Digital input / output								
High-level input	V	RSTB	0.54×		DVDD	V		
nigii-level iliput	$V_{in(H)}$	KOID	DVDD	1	+0.3	V		
Low-level input	$V_{in(L)}$	RSTB	-0.3	_	0.2× DVDD	V		
SOUT High-level output	V _{out(H)} : SDATA	[SOUT] 1mA (Source)	DVDD -0.5	_	_	V		

^{*1 : (}DVDD3 + 0.3) V must not be exceeded 4.0 V

SOUT High-level output	V _{out(L)} : SDATA	[SOUT] 1mA (Sink)	_	_	0.5	V
PLS1 to 2 High-level output	V _{out(H)} : MUX	_	0.9× DVDD	_	-	V
PLS1 to 2 Low-level output	V _{out(L)} : MUX	_	_	_	0.1× DVDD	V
Input pull-down resistance	R _{pullret}	RSTB	50	100	200	kΩ

D	0	O I'll		-		11.24
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Motor driver 1 (focus, zoom)						
H bridge ON resistance	R _{onFZ}	IM = 100mA	0.6	0.8	1.4	Ω
H bridge leak current	I _{leakFZ}	_	_	_	0.8	μΑ
LED driver						
Output ON resistance	R _{onLED}	IM = 20mA, 5Vcell	1.2	1.6	2.6	Ω
Output leak current	I _{leakLED}	_	_	_	0.8	μA
Infrared Rejector driver (DRIV	/ERE) VD	D5=5V,RL=20Ω,T=25℃				
Output ON resistance	Roncut	loutE=300mA		1.1		Ω
H bridge leak current	l _{leakE}	-	_	_	0.8	μA
Output enable time	T7	RL=20Ω			300	ns
Output disable time	Т8	RL=20Ω			300	ns
delay time, INx high to OUTx	Т9	RL=20Ω			160	ns
Delay time, INx low to OUTx low	T10	RL=20Ω			160	ns
Output rise time	T11	RL=20Ω	30		188	ns
Output fall time	T12	RL=20Ω	30		188	ns
Delay time, SPI IN to OUTx change	T13	SPI control,RL=20Ω		25*TSC K		s

Serial port input						
Serial clock	Sclock	_	1	_	5	MHz
SCK low time	Ts1	_	100	_	_	ns
SCK high time	Ts2	-	100	_	_	ns
CS setup time	Ts3	_	60	_	_	ns
CS hold time	Ts4	_	60	_	_	ns
CS disable high time	Ts5	_	100	_	_	ns
SIN setup time	Ts6	_	50	_	_	ns
SIN hold time	Ts7	-	50	_	_	ns
SOUT delay time	Ts8	1	_	_	60	ns
SOUT hold time	Ts9	1	60	_	_	ns
SOUT Enable-Hi-Z time	Ts10	_	_	_	60	ns
SOUT Hi-Z-Enable time	Ts11	_	_	_	60	ns
Sout C load	Tsc	_	_	_	40	pF
Digtal input/output						
High-level input threshold voltage	V _{in(H)}	SCK,SIN,CS,OSCIN, VD_FZ	_	1.36	_	V
Low-level input threshold voltage	$V_{in(L)}$	SCK,SIN,CS,OSCIN, VD_FZ	_	1.02	_	v
RSTB signal pulse width	T _{rst}	_	100	_	_	μs
Input hysteresis width	$V_{ m hysin}$	SCK,SIN,CS,OSCIN, VD_FZ	_	0.34	_	٧
Video sync. signal width	VD _w	_	80	_	_	μs
CS signal wait time 1	T _(VD-CS)	_	400	_	_	ns
CS signal wait time 2	T _(CS-DT1)	_	5	_	_	μs
Pulse generator	ı		1	1	1	
Pulse start resolution for pulse 1	PL1wait	OSCIN = 27MHz	_	20.1	_	μs
Pulse resolution for pulse 1	PL1width	OSCIN = 27MHz	_	1.2	_	μs
Pulse start resolution for pulse 2	PL2wait	OSCIN = 27MHz	_	20.1	_	μs

Thermal shutdown						
Thermal shutdown operation temperature	Ttsd	_	_	145	_	°C
Thermal shutdown hysteresis temperature	ΔTtsd	-	ı	35	_	°C
Supply voltage monitor circui	t					
3.3 V Reset operation	Vrston	_	_	2.48	_	٧
3.3 V Reset hysteresis width	Vrsthys	_	_	0.2	_	٧
VDD5, MVCCx Reset operation	VrstFZon	-	_	2.42	_	V
VDD5, MVCCx Reset hysteresis width	VrstFZhys	_	ı	0.21	_	V

Pin diagram

QFN32

Pin Descriptions

Pin NO.	Pin name		
QFN32		I/O	Description
2	IN1	Input	Infrared Rejector logic in1
3	IN2	Input	Infrared Rejector logic in2
5	OUTE2	Output	Infrared Rejector motor out2
4	VDD5	Power	Power for Infrared Rejector
6	GND5	Ground	Groud for Infrared Rejector
7	OUTE1	Output	Infrared Rejector motor out1
8	OUTD2	Output	Motor output D2
9	MVCCB	Power	Power supply for motor B
10	OUTD1	Output	Motor output D1
11	OUTC2	Output	Motor output C2
12	MGNDB	Ground	GND for motor B
13	OUTC1	Output	Motor output C1
14	OUTB2	Output	Motor output B2
15	MVCCA	Power	Power supply for motor A
16	OUTB1	Output	Motor output B1
17	OUTA2	Output	Motor output A2
18	MGNDA	Ground	GND for motor A
19	OUTA1	Output	Motor output A1
20	LED1	Input	Open-drain 1 for driving LED
21	LED2	Input	Open-drain 2 for driving LED
22	GNDD	Ground	Digital GND
23	OSCOUT	Inout	OSC output (cryctal 2)
24	OSCIN	Inout	OSC input (cryctal 1)
25	DVDD	Power	3 V digital power supply
28	SOUT	Output	Serial data output
27	cs	Input	Chip select signal input
26	SCK	Input	Serial clock input
29	SIN	Input	Serial data input
30	VD_FZ	Input	Focus zoom sync. signal input
31	PLS1	Output	Pulse 1 output
32	PLS2	Output	Pulse 2 output
1	RSTB	Input	Reset signal input

Function Description

a)Serial Interface

figure 1. Date write

figure 2. Data read

(Note)

- 1) CS default value of each cycle (Write / Read mode) starts from Low-level.
- 2) It is necessary to input the system clock OSCIN at write mode.

Serial Interface Specifications:

Data transfer starts at the rising edge of CS, and stops at the falling edge of CS.

One unit of data is 24 bits. (24 bits of the following format are called a data set in this book.)

Address and data are serially input from SIN pin in synchronization with the data clock SCK at CS = 1.

Data is retrieved at the rising edge of SCK.

Moreover, data is output from SOUT pin at data readout. (Data is output at the rising edge of SCK.)

SOUT outputs Hi-Z at CS = 0, and outputs "0" except data readout at CS = 1.

The control circuit of serial interface is reset at CS = 0.

Date Format:

0	1	2	3	4	5	6	7
A0	A1	A2	A3	A4	A5	C0	C1
8	9	10	11	12	13	14	15
D0	D1	D2	D3	D4	D5	D6	D7
16	17	18	19	20	21	22	23
D8	D9	D10	D11	D12	D13	D14	D15

C0: Register write / read selection 0: write mode, 1: read mode

C1: Unused

A5 to A0 : Address of register D15 to D0 : Data written in register

Register Map:

	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0BH			Rese	erved			MOD ESEL	Reser ved	TEST EN1			Rese	erved			
20H		PWMRES[1: PWMMODE[4:0]										DT1	[7:0]		•	
21H									TEST EN2				FZ	TEST[4	4:0]	
22H		PHMODAB[5:0]										DT2A	\[7:0]			
23H	PPWB[7:0]								PPWA[7:0]							
24H			MICRO::0	OAB[1)]	LEDB	ENDI SAB	BRA KEAB		PSUMAB[7:0]							
25H							I	NTCTA	AB[15:0)]						
27H				Р	HMOD	CD[5:	0]		DT2B[7:0]							
28H		PPWD[7:0]								PPWC[7:0]						
29H		MICROCD[1 LEDA SCD KEC CWG									ļ	PSUMO	CD[7:0]			
2AH							I	NTCTC	CD[15:0)]						

Register List:

Address	Register name / Bit wide	Function	Page
0Bh	TESTEN1	Test mode enable 1	28
	MODESEL_FZ	VD_FZ polarity selection	16
	DT1[7:0]	Start point wait time	20
20h	PWMMODE[4:0]	Micro step output PWM frequency	22
	PWMRES[1:0]	Micro step output PWM resolution	22
21h	FZTEST[4:0]	PLS1/2 pin output signal selection	28
2111	TESTEN2	Test mode enable 2	28
22h	DT2A[7:0]	α motor start point excitation wait time	21
2211	PHMODAB[5:0]	α motor phase correction	23
006	PPWA[7:0]	Driver A peak pulse width	23
23h	PPWB[7:0]	Driver B peak pulse width	23
	PSUMAB[7:0]	α motor step count number	24
	CCWCWAB	α motor rotation direction	24
0.41-	BRAKEAB	α motor brake	25
24h	ENDISAB	α motor enable/disable control	25
	LEDB	LED B output control	31
	MICROAB[1:0]	α motor sine wave division number	26
25h	INTCTAB[15:0]	α motor step cycle	26
071-	DT2B[7:0]	β motor start point excitation wait time	21
27h	PHMODCD[5:0]	β motor phase correction	23
206	PPWC[7:0]	Driver C peak pulse width	23
28h	PPWD[7:0]	Driver D peak pulse width	23
	PSUMCD[7:0]	β motor step count number	24
	CCWCWCD	β motor rotation direction	24
001-	BRAKECD	β motor brake	25
29h	ENDISCD	β motor enable/disable control	25
	LEDA	LED A output control	30
	MICROCD[1:0]	β motor sine wave division number	26
2Ah	INTCTCD[15:0]	β motor step cycle	26
	SEL	Infrared Rejector input model selector	32
2Ch	IN1	Infrared Rejector SPI model input1	32
	IN2	Infrared Rejector SPI model input2	32

Note: All the SIF functions containing a data register are formatted at RSTB = 0.

Register Setup Timing:

Address	Register Name	Setup Timing
0Bh	TESTEN1	CS
OBIT	MODESEL_FZ	CS
	DT1[7:0]	VD_FZ
20h	PWMMODE[4:0]	DT1
	PWMRES[1:0]	DT1
21h	FZTEST[4:0]	CS
2111	TESTEN2	CS
22h	DT2A[7:0]	DT1
2211	PHMODAB[5:0]	DT2A
23h	PPWA[7:0]	DT1
2311	PPWB[7:0]	DT1
	PSUMAB[7:0]	DT2A
	CCWCWAB	DT2A
24h	BRAKEAB	DT2A
2 4 11	ENDISAB	DT1 or DT2A*
	LEDB	CS
	MICROAB[1:0]	DT2A
25h	INTCTAB[15:0]	DT2A
27h	DT2B[7:0]	DT1
2711	PHMODCD[5:0]	DT2B
28h	PPWC[7:0]	DT1
2011	PPWD[7:0]	DT1
	PSUMCD[7:0]	DT2B
	CCWCWCD	DT2B
29h	BRAKECD	DT2B
2311	ENDISCD	DT1 or DT2B*
	LEDA	CS
	MICROCD[1:0]	DT2B
2Ah	INTCTCD[15:0]	DT2B

In principle, the setup of registers for micro step should be performed during the interval of start point wait (Refer to the figure in page 15). The data which is written at timing except the interval of start point wait can be also received. However, ifthe write operation continues after the reflecting timing such as the end of start point excitation wait, the setup reflection timing may not be performed at the intended timing (Refer to the following figure). For example, if the data 1 to 4 which is updated at the end of start point excitation wait are written as the following figure, data 1 and 2 is updated at the timing a, anddata 3 and 4 is updated at the timing b. Even if the

data is written continuously like this, the update timing may be shifted to 1VD.

Due to the above reason, the setup of registers should be performed during the interval of start point wait in order to reflect the updated content certainly.

In this LSI, reflection timing and rotation timing of a stepping motor are based on the rising edge of VD_IS and

VD_FZ respectively. The polarities of VD_IS and VD_FZ which are used for the internal processing can be set by thefollowing setup.

b) Register detail description

MODESEL_FZ (VD_FZ polarity selection)

	Addres	ss		0Bh		In	Initial value		0						
D15	D14	D13	D12	D11	D10	D9	D8 MODE SEL F	D7	D6	D5	D4	D3	D2	D1	D0
							Z								

MODESEL_FZ respectively set the polarities of VD_FZ signals which is input tothis IC.

When setting to "0", the polarity is based on the rising edge of VD_FZ inputted.

When setting to "1", the polarity is based on the falling edge of VD_FZ inputted.

Setup value	VD polarity
0	Non-inverting
1	Inverting

c) Micro Stepping Motor Driver

Block Diagram

This block is a stepping motor driver for focus and zoom, and the following setup can be performed by serial control.(The following description is for α motor: driver A/B. β motor: driver C/D is the same function as α motor.)

Main setup parameters

- 1) Phase correction: The phase difference between a driver A and a driver B is on the basis of 90 degree, and can be adjusted from –22.5 degree to +21.8 degree.

 • PHMODAB[5:0]
- 2) Amplitude correction: It is possible to set the load current of driver A/B independently. • PPWA[7:0], PPWB[7:0]
- 3) PWM frequency : PWM driver chopping frequency is set. • PWMMODE[4:0], PWMRES[1:0]
- 4) Quasi-sine wave: Number of divisions can be set to 64, 128 and 256. • MICROAB[1:0]
- 5) Stepping cycle: Motor rotation speed is set. The rotation speed is constant regardless of number of divisions of quasi-sine wave.

 • INTCTAB[15:0]

Setup Timing for Each Setup

Setup timing and number of times are shown as follows.

Since the setups for address 27h to 2Ah are the same as those of 22h to 25h, the descriptions for address 27h to 2Ah are omitted.

If each setup is set once, the setup is reflected at every VD pulses. Therefore, when the same setup is performed at two or more VD pulses, it is unnecessary to write at every VD pulse.

DT1[7:0] (Start point wait, Address 20h)

Update timing is set. After hard reset release (Pin 39 RSTB : Low \rightarrow High), this setup should be performed before starting to excite and drive a motor.

Since this setup is updated by the start of VD, it is unnecessary to write during the start point wait.

PWMMODE[4:0], PWMRES[1:0] (Micro step output PWM frequency setup, Address 20h)

Micro step output PWM frequency is set. After hard reset release (Pin 39 RSTB : Low to High), this setup should be performed before starting to excite and drive a motor (DT1 ends).

DT2A[7:0] (Start point excitation wait, Address 22h)

Updated timing is set. After hard reset release (Pin 39 RSTB : Low \rightarrow High), this setup should be performed before starting to excite and drive a motor (DT1 ends).

PHMODAB[5:0] (Phase correction, Address 22h)

The correlation phase difference between coil A and B is corrected, and the driving noise is reduced. Since the amount of suitable phase correction depends on the rotation direction or rotation speed, the change of this setup should be performed simultaneously with the changes of the rotations direction (CCWCWAB) or rotation speed (INTCTAB), or it should be performed when a motor does not rotate.

PPWA[7:0], PPWB[7:0] (Peak pulse width, Address 23h)

PWM maximum duty is set. This setup should be performed before starting to excite and drive a motor (DT1 ends).

PSUMAB[7:0] (Step count number, Address 24h)

The amount of motor rotations in 1 VD interval is set. Every time VD pulse is input, the motor keeps rotating depending on the amount of rotations. Therefore, set to "0" in order to stop rotation of the motor.

When the amount of rotations which exceeds 1 VD interval is set, the amount of rotations of a part which

exceeds 1 VD interval is cancelled

CCWCWAB (Rotation direction, Address 24h)

Rotation direction is set. This setup should be performed just before switching the rotation direction.

BRAKEAB (Brake setup, Address 24h)

A current is set to 0 by braking. Since it becomes impossible to get the excitation position of a motor by braking, this setup should not be preformed except for the case of stopping immediately.

ENDISAB (Motor enable/disable setup, Address 24h)

Enable of a motor is set. Since a motor pin is Hi-Z when it is set to "Disable", do not set to "Disable" while a motor keeps rotating.

LEDA (LED setup, Address 24h)

LED ON/OFF is set. The setup is performed at the falling edge of CS.

(It is understood that it is not related to driving a motor. It is possible to turn ON/OFF independently.)

MICROAB[1:0] (Number of sine wave divisions, Address 24h)

Number of sine wave divisions is set. Even if this setup is changed, the amount of rotations and rotation speed do not vary.

If only the control which the number of divisions varies depending on the rotation speed is not performed, the problem dose not occur if it is set once after hard reset release (Pin 39 RSTB : Low \rightarrow High).

INTCTAB[15:0] (Pulse cycle, Address 25h)

Pulse cycle is set. Rotation speed is determined by this setup.

How to adjust register setting for micro stepping motor driver

In order to control lens, it is required to set motor rotation speed and amount of rotation per VD. Register settings relating to speed and amount of rotation are:

INTCTxx[15:0]: set time of each step (that is, the rotation speed)

PSUMxx[7:0]: amount of rotation per VD period

When driving the motor continuously for several VD period, it is best to match rotation time (per VD) to VD period.

Below is a method to calculate INTCTxx[15:0] and PSUMxx[7:0] for smooth motor rotation.

1) Calculate INTCTxx[15:0] from desired rotation speed.

INTCTxx[15:0] × 768 = OSCIN frequency / rotation frequency

Calculate PSUMxx[7:0] from INTCTxx[15:0]. Round off if the result of PSUMxx[7:0] is not integer.
 When the below equation is satisfied, the rotation time is equal to VD period, and smooth rotation is realized.

INTCTxx[15:0] × PSUMxx[7:0] × 24 = OSCIN frequency / VD frequency

3) If PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from the equation in 2).

Example) OSCIN frequency = 27 MHz, VD frequency = 60 Hz
Calculate PSUMxx[7:0] and INTCTxx[15:0] to rotate motor at 800 pps (1-2 phase).
800 pps = 100 Hz, so from equation in 1),

$$INTCTxx[15:0] = 27 MHz / (100 Hz \times 768) = 352$$

Next, calculate PSUMxx[7:0] from equation in 2):

$$PSUMxx[7:0] = 1/(60 Hz) \times 27 MHz / (352 \times 24) = 53$$

Since PSUMxx[7:0] is rounded off, recalculate INTCTxx[15:0] from equation in 2):

$$INTCTxx[15:0] = 1/(60 \text{ Hz}) \times 27 \text{ MHz} / (53 \times 24) = 354$$

Refer to pages 24 and 26 for detail of PSUMxx[7:0] and INTCTxx[15:0].

If the value of left-hand side in 2) is smaller than right-hand side, the rotation time will be shorter than VD period and will cause discontinuous rotation. If left-hand side is smaller, the rotation time that exceeds 1 VD will be cancelled.

Detail descriptions of register

DT1[7:0] (Start point wait time)

,	Addres	S		20h		lni	Initial Value		ie 0Ah							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	
											DT1	[7:0]				

DT1[7:0] sets the delay time (start point wait time) until the data written in the serial data communication sends to the output.

It becomes possible to excite a motor after a start point wait switches "1" to "0". The start point wait starts to count after the rising edge of video sync signal (VD_FZ).

Since start point wait time is the trigger required for data acquisition, be sure to set to other than "0". When the value of register is "0", the data cannot be updated.

Refer to page 19 for the relationship of VD FZ and start point wait time.

DT1	Start point wait
0	Prohibition
1	303.4µs
255	77.4ms
n	n×8192/27MHz

DT2A[7:0](Start point excitation wait α motor)

Α	Addres	s		22h		lni	Initial Valu		ue 03h		03h				
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
											DT2A	\[7:0]			

DT2B[7:0](Start point excitation wait β motor)

P	Addres	s		27h		27h		27h		27h		Init	Initial Value		03h						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0						
											DT2E	3[7:0]									

DT2A[7:0] and DT2B[7:0] set the delay time (start point excitation wait) until α motor and β motor start rotation.

Motor rotation starts after start point excitation wait switches "1" to "0". The start point excitation wait starts to count after the falling edge of start point wait.

Since the falling edge is the trigger pulse which is required for data acquisition, be sure to input the data of other than "0". When the value of register is "0", the data cannot be updated.

Refer to page 19 for the relationship of VD_FZ and start point excitation wait time.

DT1	Start point excitation wait
0	Prohibition
1	303.4µs
255	77.4ms
n	n×8192/27MHz

PWMMODE[4:0] (Micro step output PWM frequency)

Α	Addres	s		20h		Init	ial Va	lue		1Ch					
D15	D14	D13	D12	D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				PWM	MODE	E[4:0]									

PWMRES[1:0] (Micro step output PWM frequency resolution)

	Addre	SS		20h		Init	ial Va	lue		1					
D1	5 D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	PW	MRES													

PWMMODE[4:0] sets the frequency division value of system clock, OSCIN, which is used as the standard of PWM signal for micro step output. PWMMODE[4:0] can set in the range from 1 to 31. PWM frequency at PWMMODE = 0 is the same as that at PWMMODE = 1.

PWMRES[1:0] sets the resolution of frequency division value set by PWMMODE[4:0].

PWM frequency is calculated by the following formula.

PWM frequency = OSCIN frequency / ((PWMMODE×2³) × 2_{PWMRES})

Table for the specific PWM frequency set by PWMMODE[4:0] and PWMRES[1:0] at OSCIN = 27 MHz..

			•				
	PV	VMRES(kH	IZ)		P\	WMRES(kH	Z)
PWMMODE	0	1	2	PWMMODE	0	1	2
1	3375.0	1687.5	843.8	17	198.5	99.3	49.6
2	1687.5	843.8	421.9	18	187.5	93.8	46.9
3	1125.0	526.5	281.3	19	177.6	88.8	44.4
4	843.8	421.9	210.9	20	168.8	84.4	42.2
5	675.0	337.5	168.8	21	160.7	80.4	40.2
6	526.5	281.3	140.6	22	153.4	76.7	38.4
7	482.1	241.1	120.5	23	146.7	73.4	36.7
8	421.9	210.9	105.5	24	140.6	70.3	35.2
9	375.0	187.5	93.8	25	135.0	67.5	33.8
10	337.5	168.8	84.4	26	129.8	64.9	32.5
11	306.8	153.4	76.7	27	125.0	62.5	31.3
12	281.3	140.6	70.3	28	120.5	60.3	30.1
13	259.6	129.8	64.9	29	116.4	58.2	29.1
14	241.1	120.5	60.3	30	112.5	56.3	28.1
15	225.0	112.5	56.3	31	108.9	54.4	27.2
16	210.9	105.5	52.7				

PHMODAB[5:0] (Phase correction α motor)

Α	Addres	s		22h		Init	ial Va	lue		0					
D15	D14	14 D13 D12 D11 D10		D9	D8	D7	D6	D5	D4	D3	D2	D1	D0		
			PI	HMOE)AB[5:	0]									

PHMODCD[5:0] (Phase correction β motor)

A	Addres	s		27h		Init	ial Va	lue		0					
D15	D14	D13	D12	12 D11 D10			D8	D7	D6	D5	D4	D3	D2	D1	D0
			PI	HMOD	CD[5:	0]									

Current phase differences of α motor and β motor shifts from 90 degree by PHMODAB[5:0] and PHMODCD[5:0]

respectively. Setup resolution is 0.7 degree, and data is set in two's complement.

PHMODAB	Amount of phase
	correction
000000	±0°
000001	+0.7°
011111	+21.80°
100000	-22.50°
111111	-0.7°
Resolution	360°/512 = 0.70°

Stepping motor is configured so that phase difference between coils becomes 90 degree. However, the phase difference may shift from 90 degree due to the variation of a motor.

Therefore, even if phase difference in current waveform is exactly 90 degree, driving noise may occur due to the occurrence of rotation torque ripple.

This setup is for reducing the torque ripple which is occurred by the variation of a motor.

PPWA[7:0] (Driver A peak pulse width)

PPWB[7:0] (Driver B peak pulse width)

	Ad	dres	S	,	23h		Init	ial Va	lue		0,0					
D1	5 E	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		•		PPWI	B[7:0]							PPW	A[7:0]			

PPWC[7:0] (Driver C peak pulse width))

PPWD[7:0] (Driver D peak pulse width)

		(51110	000	60.00	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							•			
P	Addres	ss		28h		Init	ial Va	lue		0,0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
			PPWI	D[7:0]							PPW	C[7:0]			

PPWA[7:0] to PPWD[7:0] set the maximum duty of PWM at the position which the currents in driver A to D are peak value respectively. The maximum duty is calculated by the following formula.

Driver X Maximum duty = PPWx / (PWMMODE × 8)

When PPWx = 0 is set, coil current becomes 0.

when the duty exceeding 100% is set, Since the duty does not certainly exceed 100% at PWM operation in this case, the peak point of sine wave (current waveform) becomes flat.

(Example) When PPWA[7:0] = 200, PWMMODE[4:0] = 28 is set, maximum duty of driver A will be $200 / (28 \times 8) = 0.89$

PSUMAB[7:0] (α motor step count number)

Α	ddres	s		24h		lni	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
										F	AB[7:0)]			

PSUMCD[7:0] (β motor step count number)

	Д	ddres	s		29h		lni	tial Val	ue		0					
ı	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
											F	SUM	CD[7:0)]		

PSUMAB[7:0] and PSUMCD[7:0] set the number of step counts of α motor and β motor respectively.

Since the number of setup step counts is converted to 256-step inside, the amount of rotation becomes the same regardless of the number of divisions.

To stop the rotation of a motor, set PSUMxx[7:0] = 0.

2		Number of steps	
Setting value	64-step conversion	128-step conversion	256-step conversion
0	0	0	0
1	2	4	8
255	510	1020	2040
n	2n	4n	8n

If maximum duty is set to other than "0" at PSUMxx[7:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0.

Example) When PSUMAB[7:0] = 8 is set, the amount of rotation is 16 steps (64-step conversion). This is 16/64 = 1/4 of a sine wave. The amount of rotation becomes 1/4 of a sine wave also in 128 and 256-step conversion.

CCWCWAB (a motor rotation direction)

Д	ddres	s		24h		lni	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						(CWCWA	R							

CCWCWCD (β motor rotation direction)

A	Addres	s		29h		lni	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						(CWCWC	D							

CCWCWAB and CCWCWCD set the rotation direction of α motor and β motor respectively.

Setup value	Motor rotation direction
0	Forward
1	Reverse

BRAKEAB (α motor brake)

A	Addres	s		24h		Ini	tial Val	ue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					В	RAKEAI	}								

BRAKECD (β motor brake)

A	Address		29h			Initial Value			0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
					В	RAKECI)								

BRAKEAB and BRAKECD set the brake mode of α motor and β motor respectively.

Setup value	α motor brake
0	Normal operation
1	Brake mode

Both of upper-side P-ch MOSs of output H bridge turn on in brake mode. The brake mode is not used in normal operation, and is used for emergency shutdown. It is recommended to use only in abnormal state.

ENDISAB(αmotor Enable/Disable)

A	Address		24h			Initial Value			0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				E	NDISA	В									

ENDISCD(βmotor Enable/Disable)

Address		29h			Initial Value			0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				I	ENDISC	D									

ENDISAB and ENDISCD configure the setting for output stage control of α motor and β motor respectively. The output becomes the state of OFF (Hi-Z) at ENDISxx = 0. However, internal excitation position counter keeps counting even ENDISxx = 0. Therefore, when stopping the motor during normal operation, set PSUMxx[7:0] = 0 (not ENDISxx = 0).

	,
Setup value	Motor output condition
0	Output OFF (Hi-Z)
1	Output ON

MICROAB(α motor quasi-sin wave division number)

A	Address		24h			Initial Value			0						
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		MICF	ROAB												

MICROCD(β motor quasi-sine wave division number)

A	Address		29h		Initial Value			0							
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
		MICR	ROCD												

MICROAB[1:0] and MICROCD[1:0] set the number of quasi-sine wave divisions for α motor and β motor respectively. Waveform example for 64 divisions is on page 27

	•	

MICROAB	Number of divisions
00	256
01	256
10	128
11	64

INTCTAB(α motor step cycle setup)

A	Addres	s		25h		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						IN	ITCTA	\B[15:	0]						

INTCTCD(β motor step cycle setup)

Д	Addres	s		2Ah		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
						IN	ITCTC	D[15:	0]						

INTCTAB[15:0] and INTCDCD[15:0] set the step cycle of α motor and β motor respectively. Since the step cycle is converted to 64-step inside, motor rotation speed becomes the same regardless of the number of divisions set by MICROxx[1:0].

Setup value		Step cycle	
Octop value	64-step	128-step	256-step
0	0	0	0
1	444ns	222ns	111ns
Max	29.1ms	14。6ms	7.3ms

n 12n/27MHz	6n/27MHz	3n/27MHz
-------------	----------	----------

If maximum duty is set to other than "0" at INTCTxx[15:0] = 0, the position is held in the state of excitation. If a motor can hold the position by cogging torque without motor current, the position is held even if the maximum duty is set to 0.

e. g.) If ITCTAB[15:0] = 400 is set, time of 1 step for 64-step is $12 \times 400 / 27$ MHz = 0.178 ms Therefore, period of one sinusoidal wave cycle is 11.4 ms (87.9 Hz).

This is the same for 128-step and 256-step.

64 divisions quasi-sine wave :

(1) Forward rotation

d)Test signals

FZTEST[4:0] (Test signal output setup)

Α	ddres	s		21h		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
												FZ1	EST[4:0]	

TESTEN1(Test enable 1)

A	Addres	s		0Bh		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							-	TESTEN	1						

TESTEN2(Test enable 2)

A	Addres	s	ŕ	21h		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
							T	ESTEN:	2						

FZTEST[4:0] makes a choice of the test signal which is output to PLS1 and PLS2 pins.

TESTEN1 (0Bh) and TESTEN2 (21h) should be set to "1" in order to enable the test signal.

Since the test signal used in our company is output, do not set other than the setups described in the following table.

Setup	Step	cycle	Description
Value	PLS1	PLS2	Description
1	Start point wait	0	"H" output during start point wait
2	Start point excitation wait A	Start point excitation wait B	"H" output during start point excitation wait
3	ENDISAB	ENDISCD	ENDISxx setting
4	CCWCWAB	CCWCWCD	CCWCWxx setting
5	Pulse output monitorA	Pulse output monitorB	During motor rotation, "H"/"L" changes at the speed of 64-step
6	PWM cycle monitor	0	PWM frequency signal for micro step
7	Pulse completion output A	Pulse completion output B	"H" output during motor rotation

Waveform for each test signal is described below.

Start point excitation wait

ENDISxx

CCWCWxx

Pulse output monitor

For 128-step and 256-step, "H"/"L" of PLS1/2 changes every 2 and 4 steps respectively.

PWM cycle monitor

Pulse completion output

e)LED Driver

LEDA (LED A setup)

A	Addres	s		29h		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				LED A											

LEDB (LED B setup)

Α	ddres	s		24h		Init	ial Va	lue		0					
D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
				LED											
				В											

LEDA and LEDB set the output of LED A and LED B respectively.

Setup value	LED output
0	OFF
1	ON

f) Reset / Protection circuit

Block Diagram / Specifications

Stop direction (Enable \rightarrow Disable) is shown as above. The specifications are shown as follows.

10110110.				
	COMMON	Focus/Zoom output	LED	Infrared Rejector
RSTB pin	Disable	Logic rese	t→ Outpu	t OFF
Thermal shutdown (TSD)	×	Out	put OFF	
Under-voltage lock-out (UVLO)	×	Logic rese	t → Outpu	t OFF

g) Infrared Rejector driver

Infrared Rejector driver is a DC motor driver with a H bridge control system. There is two way to control the DC motor: direct model or SPI model. 2Ch bit2 = '1',system feature SPI model, '0' direct model.

Register for Infrared Rejector as below:

	Address		2Ch		Initial Value			0								
D.	15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
														SEL	IN1	ln2

Direct mode SEL='0'	el	SPI model SEL='1'	Output state			
IN1	IN2	Register 2Ch value	OUTE1	OUTE2	Motor state	
0	0	0004h	Z	Z	Coast	
0	1	0005h	L	Н	reverse	
1	0	0006h	Н	L	forward	
1	1	0007h	L	L	brake	

When power up ,SEL ='0' system works in direct model.

Infrared Rejector direct model timing:

T7, T8, T9, T10<=300ns, please refer to page 7.

Infrared Rejector SPI model timing:

When in SPI model, Data transfer starts at the rising edge of CS, and stops at the falling edge of CS. One unit of data is 24 bits, The dealy time between SPI In to OUTx is Tsclk*25.

e.g When SPI clock is 0.5MHz, then the delay time :

Tdspi = 1/0.5M*25 = 50us

So H bridge control PWM frequency will be less than 10kHz

h) application notice

1.Start / Stop sequence

The Start / Stop sequence of power supply, RSTB, and OSCIN is shown as follows.

2. Input capacitance of input pin

Input capacitance of input pin is 10pF or less.

3. Timing of OSCIN and VD signal

Since the processing which VD signal (VD_FZ) is synchronized with OSCIN is performed in this IC, OSCIN and VD signal do not have restrictions of input timing.

Application Circuit Example

(Note): we can use a crystal between pin23,24 to generate 27MHz clock signal or input a clock to pin 24 from other device

Package information

QFN32:

