

Charlottesville, VA USA www.isotemp.com

PHONE: (434) 295-3101 FAX: (434) 977-1849

CRYSTAL OSCILLATOR SPECIFICATION

This specification defines the operating characteristics of an ovenized crystal oscillator. Long term stability is assured through use of premium components.

REV	DESCRIPTION OF REVISION	BY	APV	DATE
_		TST	TST	12-11-2000
А	7.3. was 125-543. 1.5. was 40% to 60%.	BTG	TST	01-20-2004
В	7.3. was 125-569.	LRB	JRD	04-07-2005

	CODE ID	MODEL NO.	PAGE OF	F TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, VA. USA	31785	OCXO 143-3	1	3	114-1003	В

frequency occurs at time of shipment)

Charlottesville, VA USA www.isotemp.com

1.	OUTPUT 1.1. Frequency 1.2. Waveform 1.3. Level 1.4. Load 1.5. Duty cycle	10.000 MHz Rectangular HCMOS 20 pF 45% to 55% @ +2.5 VDC
2.	1.6. Spurious FREQUENCY STABILITY 2.1. Ambient 2.2. Aging	< -60 dBc < $\pm 2 \times 10^{-8}$ from 0°C to +70°C (referenced to +25°C)
	a. At time of shipment b. After indefinite storage i. Daily ii. Yearly iii. 10 years 2.3. Voltage 2.4. Warm-up 2.5. Phase noise a. @ 10 Hz b. @ 100 Hz	<pre>< $\pm 1 \times 10^{-9} / \text{day}$ < $\pm 1 \times 10^{-9} \text{ after } 30 \text{ days}$ < $\pm 1 \times 10^{-7}$ < $\pm 3.5 \times 10^{-7}$ < $\pm 1 \times 10^{-8} / \pm 5 \% \text{ change}$ < $\pm 1 \times 10^{-8} \text{ in } 3 \text{ minutes } @ +25°C$ (referenced to 4 hours) < -115 dBc < -135 dBc</pre>
3.	ELECTRICAL FREQUENCY ADJUSTMENT (PIN 3.1. Range 3.2. Control	= "VCO INPUT") > $\pm 4 \times 10^{-7}$ < $\pm 10 \times 10^{-7}$ (At time of shipment) (Referenced to nominal frequency) 0 VDC to Vref (+4 VDC) or a 20 k Ω potentiometer connected
	3.3. Slope 3.4. Center	between the "REFERENCE VOLTAGE" pin and "0 VOLTS & CASE" pin with wiper connected to "VCO INPUT" pin. Positive +2.0 VDC ±0.6 VDC (control voltage at which nominal

ISOTEMP RESEARCH INC.	CODE ID	MODEL NO.	PAGE OF	F TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, VA. USA	31785	OCXO 143-3	2	3	114-1003	В

< ±10% > 50 k Ω

3.5. Linearity

3.6. Input impedance

Charlottesville, VA USA www.isotemp.com

4. INPUT POWER (PIN = "+VDC")

4.1. Voltage +5 VDC ±5%

4.2. Current < 700 mA @ turn on < 1.5 Watts @ +25 °C

5. REFERENCE VOLTAGE (PIN = "REFERENCE VOLTAGE"), an output

5.1. Voltage +4 VDC $\pm 5\%$

5.2. Load > 4 $k\Omega$

5.3. Temperature stability < ±0.010 VDC

(Over temperature range in 2.1.)

6. ENVIRONMENTAL

6.1. Humidity MIL-STD-202, Method 103B, Test

Condition A (95% R.H. @ +40°C,

non-condensing, 240 hours)

6.2. Storage temperature -50°C to +105°C

6.3. Vibration (non-operating) MIL-STD-202 Method 201A. (0.06" Total

p-p, 10 to 55 Hz)

6.4. Shock (non-operating) MIL-STD-202, Method 213B, Test

Condition J.

(30 g, 11 ms half-sine)

6.5. Seal MIL-STD-202 Method 112C, Test

Condition D.

7. MECHANICAL

7.1. Applicable series OCXO 143 series

7.2. Model number OCXO 143-3
7.3. Outline drawing 125-606

NOTE: This unit is available with Sine wave output as OCXO 143-2.

ISOTEMP RESEARCH I		CODE ID	MODEL NO.	PAGE O	F TOTAL	DWG. NO.	REV.
CHARLOTTESVILLE, V. USA	Α.	31785	OCXO 143-3	3	3	114-1003	В

(VIEW FROM TOP)

PIN CONNECTIONS						
PIN	PIN FUNCTION					
1	VCO INPUT					
(See Note 1)	NOT CONNECTED					
2	REFERENCE VOLTAGE					
(See Note 1)	NOT CONNECTED					
3	+VDC					
4	R.F. OUTPUT					
5	0 VOLTS & CASE					

Note 1. If the specification does not specify parameters for either PIN1 or PIN2 then that respective PIN is NOT internally CONNECTED.

 $\frac{\text{INCH}}{\text{mm}} \text{ (REFERENCE ONLY)}$

ISOTEMP RESEARCH,INC. **OSCILLATORS** Charlottesville, Virgina USA CODE I.D. NO. NAME: OUTLINE DRAWING SCALE: 2:1 DATE: 09-23-2002 31785 (OCXO 143 SERIES) DWN. BY: DAG APPR'D. BY: TST **TOLERANCES** UNLESS OTHERWISE SPECIFIED: ANGES: ±1 DEGREE FRACTIONS: ±1/32 INCH DECIMALS: .XX \pm .015, .XXX \pm .010 INCH MATERIAL: STEEL FINISH: NICKEL MARK: LABEL LET REVISION APP DATE