Chapter 8 Security

A note on the use of these PowerPoint slides:

We're making these slides freely available to all (faculty, students, readers). They're in PowerPoint form so you see the animations; and can add, modify, and delete slides (including this one) and slide content to suit your needs. They obviously represent a *lot* of work on our part. In return for use, we only ask the following:

- If you use these slides (e.g., in a class) that you mention their source (after all, we'd like people to use our book!)
- If you post any slides on a www site, that you note that they are adapted from (or perhaps identical to) our slides, and note our copyright of this material.

For a revision history, see the slide note for this page.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2023 J.F Kurose and K.W. Ross, All Rights Reserved

Computer Networking: A Top-Down Approach

8th edition Jim Kurose, Keith Ross Pearson, 2020

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Securing TCP connections: TLS
- Network layer security: IPsec

- 802.11 (WiFi)
- 4G/5G
- Operational security: firewalls and IDS

Arriving mobile must:

- associate with access point: (establish) communication over wireless link
- authenticate to network

- 1 discovery of security capabilities:
 - AP advertises its presence, forms of authentication and encryption provided
 - device requests specific forms authentication, encryption desired

although device, AP already exchanging messages, device not yet authenticated, does not have encryption keys

- 2 mutual authentication and shared symmetric key derivation:
 - AS, mobile already have shared common secret (e.g., password)
 - AS, mobile use shared secret, nonces (prevent relay attacks), cryptographic hashing (ensure message integrity) to authenticating each other
 - AS, mobile derive symmetric session key

802.11: WPA3 handshake

- ⓐ AS generates $Nonce_{AS}$, sends to mobile
- **b** mobile receives *Nonce_{AS}*
 - generates Nonce_M
 - generates symmetric shared session key K_{M-AP} using $Nonce_{AS}$, $Nonce_{M}$, and initial shared secret
 - sends *Nonce_M*, and HMAC-signed value using Nonce_{AS} and initial shared secret
- \bigcirc AS derives symmetric shared session key K_{M-AP}

- 3 shared symmetric session key distribution (e.g., for AES encryption)
 - same key derived at mobile, AS
 - AS informs AP of the shared symmetric session

- 4 encrypted communication between mobile and remote host via AP
 - same key derived at mobile, AS
 - AS informs AP of the shared symmetric session

 Extensible Authentication Protocol (EAP) [RFC 3748] defines end-to-end request/response protocol between mobile device, AS

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Securing TCP connections: TLS
- Network layer security: IPsec

- 802.11 (WiFi)
- 4G/5G
- Operational security: firewalls and IDS

- arriving mobile must:
 - associate with BS: (establish) communication over 4G wireless link
 - authenticate itself to network, and authenticate network
- notable differences from WiFi
 - mobile's SIMcard provides global identity, contains shared keys
 - services in visited network depend on (paid) service subscription in home network

- mobile, BS use derived session key K_{BS-M} to encrypt communications over 4G link
- MME in visited network + HHS in home network, together play role of WiFi AS
 - ultimate authenticator is HSS
 - trust and business relationship between visited and home networks

- authentication request to home network HSS
 - mobile sends attach message (containing its IMSI, visited network info) relayed from BS to visited MME to home HHS
 - IMSI identifies mobile's home network

- b HSS use shared-in-advance secret key, K_{HSS-M}, to derive authentication token, *auth_token*, and expected authentication response token, *xres_{HSS}*
 - auth_token contains info encrypted by HSS using K_{HSS-M}, allowing mobile to know that whoever computed auth_token knows shared-in-advance secret
 - mobile has authenticated network
 - visited HSS keeps *xres_{HSS}* for later use

- © authentication response from mobile:
 - mobile computes res_M using its secret key to make same cryptographic calculation that HSS made to compute $xres_{HSS}$ and sends res_M to MME

- d mobile is authenticated by network:
 - MMS compares mobile-computed value of res_M with the HSS-computed value of $xres_{HSS}$. If they match, mobile is authenticated ! (why?)
 - MMS informs BS that mobile is authenticated, generates keys for BS

Authentication, encryption: from 4G to 5G

- 4G: MME in visited network makes authentication decision
- 5G: home network provides authentication decision
 - visited MME plays "middleman" role but can still reject
- 4G: uses shared-in-advance keys
- 5G: keys not shared in advance for IoT
- 4G: device IMSI transmitted in cleartext to BS
- 5G: public key crypto used to encrypt IMSI

Chapter 8 outline

- What is network security?
- Principles of cryptography
- Authentication, message integrity
- Securing e-mail
- Securing TCP connections: TLS
- Network layer security: IPsec
- Security in wireless and mobile networks
- Operational security: firewalls and IDS

Firewalls

firewall

isolates organization's internal network from larger Internet, allowing some packets to pass, blocking others

Firewalls: why

prevent denial of service attacks:

 SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections

prevent illegal modification/access of internal data

• e.g., attacker replaces CIA's homepage with something else

allow only authorized access to inside network

set of authenticated users/hosts

three types of firewalls:

- stateless packet filters
- stateful packet filters
- application gateways

- internal network connected to Internet via router firewall
- filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source, destination port numbers
 - ICMP message type
 - TCP SYN, ACK bits

Stateless packet filtering: example

- example 1: block incoming and outgoing datagrams with IP protocol field = 17 and with either source or dest port = 23
 - result: all incoming, outgoing UDP flows and telnet connections are blocked
- example 2: block inbound TCP segments with ACK=0
 - result: prevents external clients from making TCP connections with internal clients, but allows internal clients to connect to outside

Stateless packet filtering: more examples

Policy	Firewall Setting			
no outside Web access	drop all outgoing packets to any IP address, port 80			
no incoming TCP connections, except those for institution's public Web server only.	drop all incoming TCP SYN packets to any IP except 130.207.244.203, port 80			
prevent Web-radios from eating up the available bandwidth.	drop all incoming UDP packets - except DNS and router broadcasts.			
prevent your network from being used for a smurf DoS attack.	drop all ICMP packets going to a "broadcast" address (e.g. 130.207.255.255)			
prevent your network from being tracerouted	drop all outgoing ICMP TTL expired traffic			

Access Control Lists

ACL: table of rules, applied top to bottom to incoming packets: (action, condition) pairs: looks like OpenFlow forwarding (Ch. 4)!

action	source address	dest address	protocol	source port	dest port	flag bit
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53	
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023	
deny	all	all	all	all	all	all

Stateful packet filtering

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense," e.g., dest port = 80, ACK bit set, even though no TCP connection established:

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- stateful packet filter: track status of every TCP connection
 - track connection setup (SYN), teardown (FIN): determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Stateful packet filtering

ACL augmented to indicate need to check connection state table before admitting packet

action	source address	dest address	proto	source port	dest port	flag bit	check connection
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

Application gateways

- filter packets on application data as well as on IP/TCP/UDP fields.
- example: allow select internal users to telnet outside

- 1. require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host
 - gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway

Limitations of firewalls, gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- if multiple apps need special treatment, each has own app. gateway
- client software must know how to contact gateway
 - e.g., must set IP address of proxy in Web browser

- filters often use all or nothing policy for UDP
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks

Intrusion detection systems

- packet filtering:
 - operates on TCP/IP headers only
 - no correlation check among sessions
- IDS: intrusion detection system
 - deep packet inspection: look at packet contents (e.g., check character strings in packet against database of known virus, attack strings)
 - examine correlation among multiple packets
 - port scanning
 - network mapping
 - DoS attack

Intrusion detection systems

multiple IDSs: different types of checking at different locations

Network Security (summary)

basic techniques.....

- cryptography (symmetric and public key)
- message integrity
- end-point authentication

.... used in many different security scenarios

- secure email
- secure transport (TLS)
- IP sec
- 802.11, 4G/5G

operational security: firewalls and IDS

