Липецкий государственный технический университет

Кафедра прикладной маг	гематики
------------------------	----------

Отчет по лабораторной работе по предмету "Численные методы"

Студент		$\underline{\Pi}$ естова А.Ю.
	подпись, дата	фамилия, инициалы
Группа <u>ПМ-19-1</u>		
Руководитель		
		Орешина М.Н.
ученая степень, ученое звание	полнись, дата	 фамилия, инициалы

Липецк 2021 г.

Содержание

1	Задание кафедры:						•						•	•	•	2
f 2	Хол работы:														•	3

1 Задание кафедры:

Необходимо нарисовать графики функций и их приближений многочленами, построенными с помощью ранее написанных программ, а также оценить погрешность приближения.

Сравнение с исходной функцией по M=25 точкам выписать в таблицу и все графики необходимо нарисовать по этим M=25 точкам. Должно быть 15 столбцов в таблице (исходная функция, 7 приближений и разность). Последняя строка - максимум разности.

Для этого нужно задать такие входные параметры программ:

- 1. интерполяционный многочлен: n=3, m=7;
- 2. интерполяционный многочлен: n=6, m=3;
- 3. МНК линейный: n=25, m=0;
- 4. МНК линейный: n=13, m=1;
- 5. МНК квадратичный: n=25, m=0;
- $6. \ \mathrm{MHK} \$ квадратичный: $n=13, \ m=1;$

2 Ход работы:

8.
$$e^{5x} - e^{2x} + 1$$

Рисунок 1. Исходная функция.

Стенерируем 25 точек и вычислим значение функции в них.

Исходная						
х	f(x)					
-2.00	0.98					
-1.83	0.97					
-1.67	0.96					
-1.50	0.95					
-1.33	0.93					
-1.17	0.91					
-1.00	0.87					
-0.83	0.83					
-0.67	0.77					
-0.50	0.71					
-0.33	0.68					
-0.17	0.72					
0.00	1.00					
0.17	1.91					
0.33	4.35					
0.50	10.46					
0.67	25.24					
0.83	60.21					
1.00	142.02					
1.17	332.18					
1.33	772.38					
1.50	1788.96					
1.67	4133.23					
1.83	9534.54					
2.00	21972.87					

Рисунок 2. Исходные данные.

В программе введем 4 пары значений и вычислим приближение. Найдем значения разности и найдем максимум среди них.

Δ1	1 (n=3,	, m=7)
9109.87	x	f(x)
0.00	-2.00	0.98
745.46	-1.83	746.43
1192.92	-1.67	1193.88
1384.88	-1.50	1385.83
1363.85	-1.34	1364.78
1172.34	-1.17	1173.25
852.87	-1.00	853.74
447.91	-0.84	448.74
0.00	-0.67	0.77
451.65	-0.50	-450.94
860.33	-0.34	-859.65
1182.63	-0.17	-1181.91
1375.23	0.00	-1374.23
1395.05	0.17	-1393.14
1199.53	0.34	-1195.18
747.34	0.50	-736.88
0.00	0.67	25.24
1064.76	0.84	1124.97
2467.31	1.00	2609.33
4188.64	1.17	4520.82
6129.56	1.34	6901.94
8006.24	1.50	9795.20
9109.87	1.67	13243.10
7753.66	1.83	17288.20
0.03	2.00	21972.90

Рисунок 3.

В программе введем 7 пар значений и вычислим другие. Найдем значения разности и найдем максимум среди них.

Δ2	2 (n=6, m=3)				
2496.16	Х	f(x)			
0.00	-2.00	0.98			
376.91	-1.83	-375.94			
344.48	-1.67	-343.52			
168.88	-1.50	-167.93			
0.00	-1.33	0.93			
95.47	-1.17	96.37			
110.77	-1.00	111.65			
67.37	-0.84	68.20			
0.00	-0.67	0.77			
57.68	-0.50	-56.96			
79.50	-0.34	-78.82			
56.98	-0.17	-56.26			
0.00	0.00	1.00			
65.87	0.17	67.78			
106.37	0.34	110.72			
89.49	0.50	99.95			
0.00	0.67	25.24			
142.22	0.84	-82.02			
274.35	1.00	-132.32			
279.19	1.17	52.99			
0.00	1.33	772.38			
726.98	1.50	2515.94			
1824.41	1.67	5957.64			
2496.16	1.83	12030.70			
0.03	2.00	21972.90			

Рисунок 4.

Метод наименьших квадратов: В программе введем 25 пар значений и вычислим другие. Найдем значения погрешности и найдем максимум.

Линейный:

Δ3	3 (n=25, m=0)					
16399.40	х	f(x)				
2471.28	-2.00	-2470.30				
2129.41	-1.83	-2128.44				
1807.65	-1.67	-1806.69				
1465.78	-1.50	-1464.83				
1123.90	-1.33	-1122.97				
802.12	-1.17	-801.22				
460.23	-1.00	-459.36				
118.32	-0.83	-117.50				
203.48	-0.67	204.25				
545.40	-0.50	546.11				
887.30	-0.33	887.97				
1209.00	-0.17	1209.72				
1550.59	0.00	1551.59				
1891.54	0.17	1893.45				
2210.85	0.33	2215.20				
2546.60	0.50	2557.06				
2873.68	0.67	2898.92				
3160.46	0.83	3220.67				
3420.51	1.00	3562.53				
3572.21	1.17	3904.39				
3453.76	1.33	4226.14				
2779.04	1.50	4568.00				
776.63	1.67	4909.86				
4302.93	1.83	5231.61				
16399.40	2.00	5573.47				

Рисунок 5.

Квадратичный:

Δ5	5 (n=	25, m=0)
11384.57	х	f(x)
2543.52	-2.00	2544.50
1607.90	-1.83	1608.87
830.91	-1.67	831.88
115.44	-1.50	116.39
486.62	-1.33	-485.69
949.66	-1.17	-948.76
1331.56	-1.00	-1330.69
1600.06	-0.83	-1599.23
1749.14	-0.67	-1748.37
1797.47	-0.50	-1796.76
1732.42	-0.33	-1731.74
1567.68	-0.17	-1566.96
1282.80	0.00	-1281.80
885.14	0.17	-883.24
408.87	0.33	-404.52
203.72	0.50	214.19
921.06	0.67	946.30
1678.73	0.83	1738.94
2549.17	1.00	2691.19
3424.67	1.17	3756.85
4091.04	1.33	4863.42
4360.26	1.50	6149.22
3415.20	1.67	7548.43
565.62	1.83	8968.92
11384.57	2.00	10588.30

Рисунок 7.

В программе введем 13 пар значений и вычислим другие. Найдем значения погрешности и найдем максимум. Линейный:

Δ4	4 (n=13, m=1)					
14748.13	х	f(x)				
3063.21	-2	-3062.2				
2638.87	-1.835	-2637.9				
2214.52	-1.67	-2213.6				
1777.31	-1.5	-1776.4				
1340.10	-1.33	-1339.2				
915.73	-1.165	-914.83				
491.36	-1	-490.49				
66.98	-0.835	-66.153				
357.41	-0.67	358.184				
794.67	-0.5	795.381				
1231.90	-0.33	1232.58				
1656.19	-0.165	1656.91				
2080.25	0	2081.25				
2503.68	0.165	2505.59				
2925.58	0.33	2929.93				
3356.66	0.5	3367.12				
3779.08	0.67	3804.32				
4168.45	0.835	4228.66				
4510.98	1	4653				
4745.15	1.165	5077.33				
4729.29	1.33	5501.67				
4149.91	1.5	5938.87				
2242.83	1.67	6376.06				
2734.14	1.835	6800.4				
14748.13	2	7224.74				

Рисунок 8.

Квадратичный:

Δ6	6 (n=13	, m=1)
8939.57	х	f(x)
2745.30		2746.28
1665.62	-1.835	1666.59
715.35	-1.67	716.316
128.34	-1.5	-127.39
834.64	-1.33	-833.71
1388.79	-1.165	-1387.9
1813.49	-1	-1812.6
2108.78	-0.835	-2108
2274.62	-0.67	-2273.9
2310.13	-0.5	-2309.4
2208.28	-0.33	-2207.6
1978.11	-0.165	-1977.4
1618.76	0	-1617.8
1130.63	0.165	-1128.7
514.59	0.33	-510.25
251.86	0.5	262.328
1147.05	0.67	1172.29
2126.65	0.835	2186.86
3188.84	1	3330.86
4272.10	1.165	4604.28
5234.74	1.33	6007.12
5798.88	1.5	7587.84
5172.71	1.67	9305.94
1570.36	1.835	11104.9
8939.57	2	13033.3

Рисунок 9.

Построим графики полученных функций, чтобы сравнить их с исходным (светло-синий).

Рисунок 10.

Построим графики отклонений полученных функций от исходной.

Рисунок 11.

Вычисление оценки погрешностей: Лагранж

$$\max_{x \in [a,b]} |R_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} |\Pi_{n+1}(x)|.$$

Рисунок 12.

Найдем производную 4-го порядка от исходной функции

$$(625e^{3x} - 16)e^{2x}$$

 $MAX[\Pi n+1(x)]=MAX[(x+2)(x-0.67)(x+0.67)(x-2)]=1.795$

Найдем экстремум от 4-й производной исходной функции на отрезке [-2;2] fmax = 13765667.551

Теоретическая оценка погрешности по формуле = 1029557

Расчетная оценка: 9109,87

Вычисление оценки погрешностей: Ньютон

$$\max_{x \in [a,b]} |R_n(x)| \le \frac{M_{n+1}}{(n+1)!} \max_{x \in [a,b]} |\Pi_{n+1}(x)|.$$

Рисунок 13.

Найдем производную 7-го порядка от исходной функции

$$(78125e^{3x} - 128)e^{2x}$$

 $\texttt{MAX} [\Pi n + 1(x)] = \texttt{MAX} [(x+2)(x+1.33)(x-0.67)(x-0)(x-1.33)(x-0.67)(x-2)] = 12.466$

Найдем экстремум от 7-й производной исходной функции на отрезке [-2;2] fmax = 1720810651.656

Теоретическая оценка погрешности по формуле = 4256274

Расчетная оценка: 2496,16

Вычисление оценки погрешностей линейным методом наименьших квадратов:

Посчитаем квадраты и сумму по столбцам (желтый цвет) и корень из суммы / на количество n (зеленый цвет)

Δ3^2	$\Delta4^2$
6107233.39	9383266.10
4534406.30	
3267615.03	4904119.06
2148513.25	
1263155.23	1795872.81
643402.84	
211810.18	241437.01
14000.48	
41404.89	127743.28
297460.94	
787298.70	1517588.80
1461685.67	
2404329.35	4327440.06
3577941.11	
4887872.07	8559037.32
6485150.11	
8258048.48	14281461.09
9988535.20	
11699860.59	20348903.54
12760663.98	
11928457.60	22366183.17
7723080.68	
603153.57	5030284.70
18515217.69	
268940243.11	217507269.03
388550540.44	310390605.96
3942.337076	4886.327911

Для n=25:

Теоретическая оценка погрешности по формуле = 3942,337076 Расчетная оценка: 16399,40

Для n=13:

Теоретическая оценка погрешности по формуле = 4886,327911 Расчетная оценка: 14747,13 Вычисление оценки погрешностей квадратическим методом наименьших квадратов:

Посчитаем квадраты и сумму по столбцам (желтый цвет) и корень из суммы / на количество n (зеленый цвет)

Δ5^2		Δ6^2
	6469485.19	7536662.59
	2585327.80	
	690418.80	511727.67
	13326.68	
	236798.82	696631.92
	901857.83	
	1773055.77	3288751.07
	2560181.21	
	3059498.01	5173905.59
	3230913.52	
	3001263.32	4876480.50
	2457614.52	
	1645575.84	2620383.94
	783473.46	
	167172.02	264805.70
	41502.16	
	848347.92	1315728.39
	2818149.18	
	6498246.77	10168674.38
1	1728345.14	
1	6736607.64	27402502.05
1	9011894.50	
1	1663588.44	26756924.81
	319927.44	
12	9608380.46	79915869.68
	8850952.44	
3	025.564096	3621.825382

Для n=25:

Теоретическая оценка погрешности по формуле = 3025,564096

Расчетная оценка: 11384,57

Для n=13:

Теоретическая оценка погрешности по формуле = 3621,825382

Расчетная оценка: 8939,57