

Politechnika Wrocławska

Wydział Matematyki

Kierunek studiów: Matematyka Stosowana

Specjalność: –

Praca dyplomowa – inżynierska

ZASTOSOWANIE METOD BOOTSTRAPOWYCH DO PROGNOZOWANIA WYNIKÓW W ZAWODACH SPORTOWYCH

Michał Cerazy

słowa kluczowe: tutaj podajemy najważniejsze słowa kluczowe (łącznie nie powinny być dłuższe niż 150 znaków).

krótkie streszczenie:

Tutaj piszemy krótkie streszczenie pracy (nie powinno być dłuższe niż 530 znaków).

Opiekun pracy	dr hab. inż. Krzysztof Burnecki		
dyplomowej	Tytuł/stopień naukowy/imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- $b) \ \ kategorii \ BE \ 50 \ (po \ 50 \ latach \ podlegające \ ekspertyzie)$

pieczątka wydziałowa

Wrocław, rok 2018

^{*} niepotrzebne skreślić

Faculty of Pure and Applied Mathematics

Field of study: Applied Mathematics

Specialty: -

Engineering Thesis

APPLICATION OF BOOTSTRAP METHODS TO THE FORECASTING OF SPORTING EVENT RESULTS

Michał Cerazy

keywords:

tutaj podajemy najważniejsze słowa kluczowe w języku angielskim (łącznie nie powinny być dłuższe niż 150 znaków)

short summary:

Tutaj piszemy krótkie streszczenie pracy w języku angielskim (nie powinno być dłuższe niż 530 znaków).

Supervisor	dr hab. inż. Krzysztof Burnecki		
	Title/degree/name and surname	grade	signature

For the purposes of archival thesis qualified to:*

- a) category A (perpetual files)
- b) category BE 50 (subject to expertise after 50 years)

stamp of the faculty

^{*} delete as appropriate

Spis treści

W	$I_{ m step}$	3
1	Opis ligi NBA, jak wyglada sezon	5
2	Teoria, matematyka	9
3	Metodologia, algorytmy3.1 Model uśredniony3.2 Model rywalizacji3.3 Model symulacji fazy pucharowej	
4	Wyniki, porownanie modeli	15
5	Wnioski	17
Po	odsumowanie	19
D	odatek	21

Wstęp

Dzięki powszechnemu dostępowi do internetu i rozpowszechnieniu kultury masowej amerykańska liga koszykarska NBA zyskała popularność na całym świecie, przyciągając do siebie najlepszych graczy i masy fanów. Dzięki nieprzewidywalności i złożoności tego sportu podejmowano wiele prób przewidywania wyników rozgrywek, które często toczyły się inaczej, niż by zakładano (najlepszym tego przykładem może być sezon 2003/2004, kiedy to nisko notowani Detroit Pistons pokonali faworytów w postaci Los Angeles Lakers). Najlepsi analitycy sportowi starają się ?analizować? każdy aspekt gry i jego wpływ na sytuację na boisku, lecz nikt do tej pory nie był w stanie zaproponować skutecznego modelu opisującego przebieg rozgrywek. W niniejszej pracy inżynierskiej podjęto próbę przewidzenia rezultatów wybranego sezonu ligi NBA przy pomocy informacji o wynikach poszczególnych drużyn w poprzednich sezonach.

Opis ligi NBA, jak wyglada sezon

Dodatkowo, od 2004 roku niektóre kluby zmieniły swoje nazwy lub lokalizacje. W niektórych historycznych zestawieniach lub zbiorach danych mogą widnieć jako (podane w formacie nazwa obecna — poprzednia):

- Charlotte Hornets Charlotte Bobcats
- Brooklyn Nets New Jersey Nets
- Oklahoma City Thunder Seattle SuperSonics
- New Orleans Pelicans New Orleans Hornets

Sezon w NBA składa się z dwóch części: zasadniczej i następującej po niej pucharowej (playoffs). W sezonie zasadniczym każda drużyna rozgrywa 82 mecze, grając z każdym innym zespołem od 2 do 4 gier. Terminarz wyznaczany jest wedle następujących reguł:

- 1. drużyny z różnych konferencji grają ze sobą 2 spotkania (1 na wyjedzie i 1 na własnym boisku),
- 2. drużyny z tej samej dywizji grają ze sobą 4 spotkania (2 na wyjedzie i 2 na własnym boisku),

Konferencja Wschodnia			
Atlantic Division	Southeast Division	Central Division	
Boston Celtics	Atlanta Hawks	Chicago Bulls	
Brooklyn Nets	Charlotte Hornets	Cleveland Cavaliers	
New York Knicks	Miami Heat	Detroit Pistons	
Philadelphia 76ers	Orlando Magic	Indiana Pacers	
Toronto Raptors	Washington Wizards	Milwaukee Bucks	

Rysunek 1.1: POPRAW NAZWY NOP I CHO

Konferencja Zachodnia			
Northwest Division	Southwest Division	Pacific Division	
Denver Nuggets	Dallas Mavericks	Golden State Warriors	
Minnesota Timberwolves	Houston Rockets	Los Angeles Clippers	
Oklahoma City Thunder	Memphis Grizzlies	Los Angeles Lakers	
Portland Trail Blazers	New Orleans Pelicans	Phoenix Suns	
Utah Jazztors	San Antonio Spurs	Sacramento Kings	

3. drużyny z tej samej konferencji oraz różnych dywizji grają ze sobą 3 albo 4 spotkania (przynajmniej po jednym na wyjedzie i własnym boisku).

Mecze koszykówki nie mogą zakończyć się remisem (w razie remisu po regulaminowym czasie gry rozgrywa się dogrywki aż do wyłonienia zwycięzcy). Po zakończeniu sezonu następuje wspomniana wyżej faza pucharowa; wchodzi do niej po 8 najlepszych zespołów z każdej konferencji (w razie takiej samej ilości zwycięstw dla obu zespołów decydują mecze bezpośrednie pomiędzy nimi). W tej fazie drużyny grają ze sobą maksymalnie 7 meczów, czyli zespół, który pierwszy wygra 4 mecze, przechodzi do następnego etapu. W fazie Playoff jasno zdefiniowane są lokalizacje odgrywania spotkań — lepszy bilans zwycięstw w sezonie zasadniczym skutkuje przewagą parkietu. Seria spotkań grana jest w formacie 2–2–1–1–1, czyli mecze numer 1, 2, 5 i 7 grane są u lepszej z drużyn. Przy doborze przeciwników w tej fazie bierze się pod uwagę pozycję w tabeli konferencji: drużyna z miejsca pierwszego gra z zespołem o ósmym bilansie w danej konferencji, druga z siódmą, i tak dalej. Zwycięzca serii przechodzi do następnego etapu z czterema drużynami, po którym następują finały konferencji — najlepsze drużyny ze swoich konferencji spotykają się

Drużyna	Ilość zwycięstw
Golden State Warriors	67
Atlanta Hawks	60
Houston Rockets	56
Los Angeles Clippers	56
Memphis Grizzlies	55
San Antonio Spurs	55
Cleveland Cavaliers	53
Portland Trail Blazers	51
Chicago Bulls	50
Dallas Mavericks	50
Toronto Raptors	49
Washington Wizards	46
New Orleans Pelicans	45
Oklahoma City Thunder	45
Milwaukee Bucks	41
Boston Celtics	40
Phoenix Suns	39
Brooklyn Nets	38
Indiana Pacers	38
Utah Jazz	38
Miami Heat	37
Charlotte Hornets	33
Detroit Pistons	32
Denver Nuggets	30
Sacramento Kings	29
Orlando Magic	25
Los Angeles Lakers	21
Philadelphia 76ers	18
New York Knicks	17
Minnesota Timberwolves	16

w finałach NBA. Dla lepszego zrozumienia systemu rozgrywek Playoff ZAMIESZCZONO DRZEWKO PONIŻEJ!!!!!!!!!!

CZY ZAMIEŚCIĆ OPIS GRY? PODSTAWOWE ZASADY ITP?

Wyniki z sezonu regularnego 2014/2015 prezentują się następująco: Playoffs 2015:

Zwycięzca	Przegrany	Wynik		
]	Eastern Conference First Rour	nd		
Atlanta Hawks	Brooklyn Nets	4-2		
Chicago Bulls	Milwaukee Bucks	4-2		
Cleveland Cavaliers	Boston Celtics	4-0		
Washington Wizards	Toronto Raptors	4-0		
	Western Conference First Roun	nd		
Golden State Warriors	New Orleans Pelicans	4-0		
Houston Rockets	Dallas Mavericks	4-1		
Los Angeles Clippers	San Antonio Spurs	4-3		
Memphis Grizzlies	Portland Trail Blazers	4-1		
	Eastern Conference Semifinal	5		
Atlanta Hawks	Washington Wizards	4-2		
Cleveland Cavaliers	Chicago Bulls	4-2		
	Western Conference Semifinal	S		
Golden State Warriors	Memphis Grizzlies	4-2		
Houston Rockets	Los Angeles Clippers	4-3		
	Eastern Conference Finals			
Cleveland Cavaliers	Atlanta Hawks	4-0		
Western Conference Finals				
Golden State Warriors	Houston Rockets	4-1		
	Finals			
Golden State Warriors	Cleveland Cavaliers	4-2		

Teoria, matematyka

Monte Carlo, rozkład jednostajny, bootstrap, rozkład, estymacja, metod nieparametryczne, boxplot, dystrybuanta, wartość oczekiwana?

CZY BADAMY NORMALNOŚĆ? test shapiro-wilka, gęstość rozkładu, rozklad normalny, qqplot?

Metodologia, algorytmy

Czy znając wyniki zakończonych rozgrywek jesteśmy w stanie przewidzieć rezultaty przyszłych zawodów?

Dane, które będą wykorzystywane do symulacji sezonu zostały zebrane ze strony sportowej basketballreference.com.

Na potrzeby tej pracy zebrano wyniki starć pomiędzy drużynami począwszy od sezonu 2004/2005 aż do 2017/2018. Początkowo symulowano rozgrywki w sezonie 2014/2015 w celu wybrania najlepszego modelu, a następnie skorzystano z niego, aby przewidzieć wyniki rozgrywek we wciąż trwającym sezonie 2018/2019. Posiadając ilość wygranych jednej drużyny z drugą na przestrzeni lat dokonano następujących transformacji danych: W zależności od interwału czasowego, jaki będziemy rozpatrywać, zebrano wyniki w określonych rozgrywkach (na przykład, przy wyznaczaniu wyników sezony 2014/2015 i interwale 5 lat, używać będziemy danych z lat 2009 do 2014). Dzięki uzyskanej w ten sposób liczbie wygranych w możemy stosunek zwycięstw do porażek dla wybranych zespołów (przykład: Boston Celtics i Atlanta Hawks grały ze sobą 10 razy, Jastrzębie wygrały zaledwie 4 razy, dlatego też w starciu z Celtami ich stosunek wygranych do przegranych wynosi 0.4). Po zastosowaniu tej metody dla wszystkich zespołów uzyskano macierz o rozmiarze 30 wierszy i kolumn zawierającą prawdopodobieństwa na wygraną z każdym zespołem w lidze.

Podczas prób symulacji dokonano intuicyjnego założenia, wedle którego największy wpływ na postawę sezonu mają rozgrywki bezpośrednio go poprzedzające. W tym celu dobrano system wag — z powodu dynamicznych zmian w lidze, najstarsze sezony otrzymują najmiejszą rangę, która stopniowo zwiększa się, im bliżej do zawodów rozpatrywanych w symulacji. Ważona ilość zwycięstw Z_i i-tej drużyny D_i z j-tą drużyną D_j wynosi

$$Z_{ij} = \sum_{k=1}^{n} (1 + x \cdot k) \cdot R_{ijk}, \tag{3.1}$$

gdzie n to ilość sezonów, z których zaciągamy dane, x ustalona waga kolejnych rozgrywek, a R_{ijk} to wynik starć drużyny D_i z drużyną D_j w k-tym sezonie. Podczas testowania skuteczności modeli dobierano różne wagi w celu znalezienia tego zwracającego najlepsze predykcje.

Podczas symulacji program przechodzi przez dokładnie określony terminarz rozgrywek — drużyna gra z przeciwnikiem tyle razy, ile spotkań wyznaczono w rozkładzie. Algorytmy losowania opisano szczegółowo w ROZDZIALE Z MODELAMI.

Każdy spośród zaproponowanych w tej pracy modeli został przeanalizowany pod względem okresu pobieranych danych oraz wag wpływających na istotność poszczególnych sezonów. Wszystkie symulacje wykonano 10000 razy.

```
5, 10, 15 lat
k=0, k=0.5, k=1
```

3.1 Model uśredniony

Pierwszy ze stworzonych modeli polega na obliczeniu ogólnego stosunku zwycięstw do porażek dla każdej drużyny w wybranym okresie — wszystkie wygrane zespołu zostają podzielone przez łączną liczbę rozegranych spotkań, wynikiem czego jest liczba z przedziału [0,1] określana jako P_i , gdzie i to i-ta drużyna. Algorytm symulowania wyników spotkań między drużynami wygląda następująco:

- 1. wstaw i = 0
- 2. wstaw i = i + 1
 - (a) wstaw j = i
 - (b) znajdź drużyny D_i i D_j
 - (c) odczytaj średnie ilości zwycięstw W_i i W_j dla drużyn D_i i D_j
 - (d) wyznacz prawdopodobieństwo zwycięstwa W_{ij} przez drużynę D_i równe $W_{ij} = \frac{W_i}{W_i + W_j}$
 - (e) w terminarzu znajdź liczbę spotkań S_{ij} pomiędzy drużynami D_i i D_j
 - i. symuluj liczbę U z rozkładu jednostajnego $U \sim U[0,1]$
 - ii. jeżeli $W_{ij} \leq U$, to zwiększ licznik zwycięstw drużyny D_i , w przeciwnym razie zwiększ licznik zwycięstw drużyny D_j
 - iii. powtórz S_{ij} razy
 - (f) wstaw j = j + 1
 - (g) jeżeli $j \leq 30$, to wróć do Punktu (a)
- 3. jeżeli i < 30, to wróć do Punktu 2

3.2 Model rywalizacji

Drugi z zaproponowanych modeli zakłada zwracanie uwagi na historyczne wyniki przeciwko konkretnej drużynie. W zawodowym sporcie niejednokrotnie można trafić na zażarte rywalizacje między dwoma klubami lub zwykłą łatwość w pokonaniu szczególnego przeciwnika. Algorytm symulowania wyników spotkań między drużynami wygląda następująco:

- 1. wstaw i = 0
- 2. wstaw i = i + 1 oraz j = i
 - (a) znajdź drużyny D_i i D_j
 - (b) odczytaj z macierzy wyników stosunek zwycięstw W_{ij} drużyny D_i przeciw drużynie D_j
 - (c) w terminarzu znajdź liczbę spotkań S_{ij} pomiędzy drużynami D_i i D_j
 - i. symuluj liczbę U z rozkładu jednostajnego $U \sim U[0,1]$

- ii. jeżeli $W_{ij} \leq U$, to zwiększ licznik zwycięstw drużyny D_i , w przeciwnym razie zwiększ licznik zwycięstw drużyny D_j
- iii. powtórz S_{ij} razy
- (d) wstaw j = j + 1
- (e) jeżeli j < 30, to wróć do Punktu (a)
- 3. wstaw i = i + 1
- 4. jeżeli i < 30, to wróć do Punktu 2

3.3 Model symulacji fazy pucharowej

Po symulacji całego sezonu, czyli 1230 spotkań, 8 najlepszych drużyn z każdej konferencji przechodzi do fazy Playoff, gdzie toczy rozgrywki zgodnie z systemem opisanym we WSTĘPIE. Na tym etapie rozgrywek symulacja spotkań różni się od części zasadniczej: zamiast jednego z zasugerowanych wcześniej modeli korzysta się ze wcześniejszej symulacji fazy zasadniczej. W celu oddania trendów panujących w wygenerowanych rozgrywkach (a mianowicie potencjalnych kontuzjach, spadkach lub zwyżkach formy), użyta zostaje jedynie informacja o ilości wygranych przed rozpoczęciem Playoffów. Algorytm symulowania tej fazy jest postaci:

- 1. wybierz drużyny D_i i D_j
- 2. odczytaj symulowane ilości zwycięstw W_i i W_j dla wybranych drużyn D_i i D_i
- 3. wyznacz prawdopodobieństwo zwycięstwa W_{ij} przez drużynę D_i równe $W_{ij} = \frac{W_i}{W_i + W_j}$
- 4. wstaw liczniki zwycięstw $Z_i = 0$ i $Z_j = 0$
 - (a) symuluj liczbę U z rozkładu jednostajnego $U \sim U[0,1]$
 - (b) jeżeli $W_{ij} \leq U$, wstaw $Z_i = Z_i + 1$, w przeciwnym razie wstaw $Z_j = Z_j + 1$
 - (c) powtarzaj dopóki $Z_i = 4$ lub $Z_j = 4$
- 5. jeżeli $Z_i = 4$, to przenieś drużynę D_i do następnego etapu, w przeciwnym razie przenieś drużynę D_i

Ilości zwycięstw drużyn w kolejnych symulowanych rozgrywkach są zapisywane i zapamiętywane, podobnie jak informacje o przejściach do kolejnych faz rozgrywek pucharowych.

Wyniki, porownanie modeli

modelowanie okresem, sezonem, wagami, długością próbki? symulacja dla 2018-19?

Wnioski

gęstości symulacji powinny mieć rozkład normalny? niekoniecznie?

Podsumowanie

Dodatek

tabele z prawdopodobieństwami, terminarz sezonu