3.2 Нормальні форми булевих функцій

3.2.1 Диз'юнктивні та кон'юнктивні розкладання булевих функцій

Введемо двійковий параметр σ і позначення x^{σ} :

$$x, \sigma \in B = \{0,1\}, \quad x^{\sigma} = \begin{cases} \overline{x}, & \text{якщо } \sigma = 0 \\ x, & \text{якщо } \sigma = 1 \end{cases}.$$

Теорема 1 (про диз'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ **за** k **змінними).** Будь-яку булеву функцію $f(x_1, x_2, ..., x_n)$ можна зобразити в такій формі:

$$f(x_1, ..., x_k, x_{k+1}, ..., x_n) =$$

$$= \bigvee_{(\sigma_1, \sigma_2, ..., \sigma_k)} x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_k^{\sigma_k} \wedge f(\sigma_1, \sigma_2, ..., \sigma_k, x_{k+1}, ..., x_n).$$
 (1)

Приклад. Записати диз'юнктивне розкладання функції $f(x, y, z, t) = (\overline{x \wedge y \vee \overline{z}}) \wedge t$ за змінними x, z.

Розв'язок. Скористаємося теоремою про розкладання:

$$f(x, y, z, t) = \bigvee_{(\sigma_1, \sigma_2)} x^{\sigma_1} \wedge z^{\sigma_2} \wedge f(\sigma_1, y, \sigma_2, t) =$$

$$= x^0 \wedge z^0 \wedge f(0, y, 0, t) \vee x^0 \wedge z^1 \wedge f(0, y, 1, t) \vee$$

$$\vee x^1 \wedge z^0 \wedge f(1, y, 0, t) \vee x^1 \wedge z^1 \wedge f(1, y, 1, t) =$$

$$= \overline{x} \wedge \overline{z} \wedge f(0, y, 0, t) \vee \overline{x} \wedge z \wedge f(0, y, 1, t) \vee$$

$$\vee x \wedge \overline{z} \wedge f(1, y, 0, t) \vee x \wedge z \wedge f(1, y, 1, t).$$

Обчислимо значення
$$f\left(x,\,y,\,z,\,t\right) = \left(\overline{x \wedge y \vee \overline{z}}\right) \wedge t$$
:
$$f\left(0,\,y,\,0,\,t\right) = \left(\overline{0 \wedge y \vee \overline{0}}\right) \wedge t = \left(\overline{0 \vee 1}\right) \wedge t = \left(\overline{1}\right) \wedge t = 0 \wedge t = 0,$$

$$f\left(0,\,y,\,1,\,t\right) = \left(\overline{0 \wedge y \vee \overline{1}}\right) \wedge t = \left(\overline{0 \vee 0}\right) \wedge t = 1 \wedge t = t,$$

$$f\left(1,\,y,\,0,\,t\right) = \left(\overline{1 \wedge y \vee \overline{0}}\right) \wedge t = \left(\overline{y \vee 1}\right) \wedge t = \left(\overline{1}\right) \wedge t = 0 \wedge t = 0,$$

$$f\left(1,\,y,\,1,\,t\right) = \left(\overline{1 \wedge y \vee \overline{1}}\right) \wedge t = \left(\overline{y \vee 0}\right) \wedge t = \overline{y} \wedge t.$$

Підставимо одержані значення f(0, y, 0, t), f(0, y, 1, t), f(1, y, 0, t), f(1, y, 1, t) у формулу диз'юнктивного розкладання за змінними x, z:

$$f(x, y, z, t) = \overline{x} \wedge \overline{z} \wedge 0 \vee \overline{x} \wedge z \wedge t \vee x \wedge \overline{z} \wedge 0 \vee x \wedge z \wedge \overline{y} \wedge t =$$
$$= \overline{x} \wedge z \wedge t \vee x \wedge z \wedge \overline{y} \wedge t.$$

Наслідок 1 (диз'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ за однією змінною).

Будь-яку булеву функцію $f(x_1, x_2, ..., x_n)$ можна зобразити у такій формі:

$$f(x_1, x_2, ..., x_n) = \bigvee_{\sigma_i} x_i^{\sigma_i} \wedge f(x_1, x_2, ..., x_{i-1}, \sigma_i, x_{i+1}, ..., x_n).$$
 (2)

Приклад. Записати диз'юнктивне розкладання функції $f(x, y, z, t) = (\overline{xy \vee \overline{z}})t$ за змінною x.

<u>Розв'язок</u>. Скористаємося наслідком теореми про розкладання:

$$f(x, y, z, t) = \overline{x} \wedge f(0, y, z, t) \vee x \wedge f(1, y, z, t).$$

Обчислимо значення функції f(x, y, z, t) при x = 0 та x = 1:

$$f(0, y, z, t) = (\overline{0} \wedge y \vee \overline{z})t = (\overline{0} \vee \overline{z})t = (\overline{z})t = zt,$$

$$f(1, y, z, t) = (\overline{1} \wedge y \vee \overline{z})t = (\overline{y} \vee \overline{z})t = \overline{y}zt.$$

Підставимо одержані значення f(0, y, z, t) і f(1, y, z, t) у формулу диз'юнктивного розкладання, отримаємо

$$f(x, y, z, t) = \overline{x} \wedge f(0, y, z, t) \vee x \wedge f(1, y, z, t) =$$
$$= \overline{x} z t \vee x \overline{y} z t.$$

Наслідок 2 (диз'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ за всіма n змінними).

Будь-яку булеву функцію $f(x_1, x_2, ..., x_n) \neq 0$ можна зобразити у такій формі:

$$f(x_1, x_2, ..., x_n) = \bigvee_{\substack{(\sigma_1, \sigma_2, ..., \sigma_n) \\ f(\sigma_1, \sigma_2, ..., \sigma_n) = 1}} x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n}.$$
(3)

Дійсно, запишемо співвідношення (1) для випадку k = n:

$$f\left(x_{1},...,x_{n}\right) = \bigvee_{\left(\sigma_{1},\sigma_{2},...,\sigma_{n}\right)} x_{1}^{\sigma_{1}} \wedge x_{2}^{\sigma_{2}} \wedge ... \wedge x_{n}^{\sigma_{n}} \wedge f\left(\sigma_{1},\sigma_{2},...,\sigma_{n}\right).$$

Зауваження.

Якщо $f(\sigma_1, \sigma_2, ..., \sigma_n) = 0$, то

$$x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n} \wedge f(\sigma_1, \sigma_2, ..., \sigma_n) = 0;$$

якщо $f(\sigma_1, \sigma_2, ..., \sigma_n) = 1$, то

$$x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n} \wedge f(\sigma_1, \sigma_2, ..., \sigma_n) = x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n}.$$

Приклад. Отримати диз'юнктивне розкладання функції $f(x, y, z) = xy \lor \overline{z}$ за всіма змінними.

<u>Розв'язок</u>. Визначимо значення функції на кожній з інтерпретацій:

$$f(0,0,0) = 0 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0,0,1) = 0 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(0,1,0) = 0 \land 1 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0,1,1) = 0 \land 1 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(1,0,0) = 1 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(1,0,1) = 1 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

 $f(1,1,0) = 1 \land 1 \lor \overline{0} = 1 \lor 1 = 1,$
 $f(1,1,1) = 1 \land 1 \lor \overline{1} = 1 \lor 0 = 1.$

Використовуючи формулу (3), одержимо:

$$f(x, y, z) = x^{0}y^{0}z^{0} \lor x^{0}y^{1}z^{0} \lor x^{1}y^{0}z^{0} \lor x^{1}y^{1}z^{0} \lor x^{1}y^{1}z^{1} =$$

$$= \overline{x} \overline{y} \overline{z} \lor \overline{x} y \overline{z} \lor x \overline{y} \overline{z} \lor x y \overline{z} \lor x y z.$$

Означення. Елементарною кон'юнкцією називається кон'юнкція будь-якого числа булевих змінних, що взяті із запереченням або без нього, в якій кожна змінна зустрічається не більше одного разу. Елементарною кон'юнкцією, що містить нуль змінних, будемо вважати константу 1.

Приклад. $x \wedge y \wedge z$ та $x \wedge \overline{y} \wedge \overline{z}$ є елементарними кон'юнкціями, а $x \wedge \overline{y} \wedge \overline{z}$ — ні.

Означення. Диз'юнктивною нормальною формою (ДНФ) називається формула, що зображена у вигляді диз'юнкції елементарних кон'юнкцій.

Означення. Елементарна кон'юнкція $x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n}$ називається конституентою одиниці (мінтермом) функції $f(\sigma_1, \sigma_2, ..., \sigma_n)$, якщо $f(\sigma_1, \sigma_2, ..., \sigma_n) = 1$, тобто інтерпретація, яка обертає в одиницю дану елементарну кон'юнкцію, обертає в одиницю і функцію f.

Властивості конституенти одиниці:

- 1. Конституента одиниці дорівнює одиниці тільки на відповідній їй інтерпретації.
- 2. Значення конституенти одиниці однозначно визначається номером відповідної інтерпретації.
- 3. Кон'юнкція будь-якого числа різних конституент одиниці функції дорівнює нулю.

Приклад. Елементарна кон'юнкція $x \wedge \overline{y}$ є конституєнтою одиниці функції двох змінних f(x, y) на інтерпретації (1, 0), оскільки $x \wedge \overline{y} = x^1 \wedge y^0$ і $x \wedge \overline{y} = 1$.

Приклад. Елементарна кон'юнкція $x \wedge y \wedge z$ є конституєнтою одиниці функції трьох змінних f(x, y, z) на інтерпретації (1, 1, 1), оскільки $x \wedge y \wedge z = x^1 \wedge y^1 \wedge z^1$ і $x \wedge y \wedge z = 1$.

Означення. Досконалою диз'юнктивною нормальною формою (ДДНФ) булевої функції називається формула, що зображена у вигляді диз'юнкції конституент одиниці даної функції.

Будь-яка булева функція має одну ДДНФ і кілька ДНФ.

Будь-яка ДНФ утворюється внаслідок більшого або меншого скорочення ДДНФ, причому від будь-якої ДНФ можна перейти до ДДНФ.

Властивості ДДНФ:

- . в ДДНФ немає однакових доданків;
- жоден із доданків не містить двох однакових співмножників;
- жоден із доданків не містить змінну разом із її запереченням;
- . в кожному окремому доданку ϵ як співмножник або змінна x_i , або її заперечення для будь-якого i = 1, 2, ..., n.

ДДНФ функції містить тільки операції \land , \lor , \neg , отже, застосувавши до ДДНФ принцип двоїстості, можна одержати двоїсте зображення, яке називається кон'юнктивним розкладанням.

Теорема 2 (про кон'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ за k змінними). Будь-яку булеву функцію $f(x_1, x_2, ..., x_n)$ можна зобразити у такій формі: $f(x_1, ..., x_k, x_{k+1}, ..., x_n) = \bigcap_{(\sigma_1, \sigma_2, ..., \sigma_k)} x_1^{\overline{\sigma_1}} \vee x_2^{\overline{\sigma_2}} \vee ... \vee x_k^{\overline{\sigma_k}} \vee f(\sigma_1, \sigma_2, ..., \sigma_k, x_{k+1}, ..., x_n).$ (4)

Приклад. Знайти кон'юнктивне розкладання функції $f(x, y, z, t) = (xy \lor \overline{z})t$ за змінними x, t.

Розв'язок. За формулою (4) маємо:

$$f(x, y, z, t) = (x^{\overline{0}} \vee t^{\overline{0}} \vee f(0, y, z, 0)) \wedge (x^{\overline{0}} \vee t^{\overline{1}} \vee f(0, y, z, 1)) \wedge (x^{\overline{1}} \vee t^{\overline{0}} \vee f(1, y, z, 0)) \wedge (x^{\overline{1}} \vee t^{\overline{1}} \vee f(1, y, z, 1)) =$$

$$= (x \vee t \vee f(0, y, z, 0)) (x \vee \overline{t} \vee f(0, y, z, 1)) \wedge (\overline{x} \vee t \vee f(1, y, z, 0)) (\overline{x} \vee \overline{t} \vee f(1, y, z, 1)).$$

Використовуючи формули

$$f(0, y, z, 0) = (0 \land y \lor \overline{z}) \land 0 = (0 \lor \overline{z}) \land 0 = (\overline{z}) \land 0 = 0,$$

$$f(0, y, z, 1) = (0 \land y \lor \overline{z}) \land 1 = (0 \lor \overline{z}) \land 1 = (\overline{z}) \land 1 = \overline{z},$$

$$f(1, y, z, 0) = (1 \land y \lor \overline{z}) \land 0 = (y \lor \overline{z}) \land 0 = 0,$$

$$f(1, y, z, 1) = (1 \land y \lor \overline{z}) \land 1 = (y \lor \overline{z}) \land 1 = y \lor \overline{z},$$

одержимо шукане кон'юнктивне розкладання:

$$f(x, y, z, t) = (x \lor t \lor 0)(x \lor \overline{t} \lor \overline{z})(\overline{x} \lor t \lor 0)(\overline{x} \lor \overline{t} \lor (y \lor \overline{z})) =$$
$$= (x \lor t)(x \lor \overline{t} \lor \overline{z})(\overline{x} \lor t)(\overline{x} \lor \overline{t} \lor y \lor \overline{z}).$$

Наслідок 3 (кон'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ за однією змінною). Будь-яку булеву функцію $f(x_1, x_2, ..., x_n)$ можна зобразити у такій формі:

$$f(x_1, x_2, ..., x_n) = \bigwedge_{\sigma_i} x_i^{\overline{\sigma_i}} \vee f(x_1, x_2, ..., x_{i-1}, \sigma_i, x_{i+1}, ..., x_n).$$
 (5)

Приклад. Одержати кон'юнктивне розкладання функції $f(x, y, z) = xy \vee \overline{z}$ за змінною x.

Розв'язок. Скористаємося попереднім наслідком:

$$f(x, y, z) = (x^{\overline{0}} \lor f(0, y, z)) \land (x^{\overline{1}} \lor f(1, y, z)) =$$

$$= (x \lor f(0, y, z)) \land (\overline{x} \lor f(1, y, z)) =$$

$$= (x \lor (0 \land y \lor \overline{z})) \land (\overline{x} \lor (1 \land y \lor \overline{z})) =$$

$$= (x \lor \overline{z}) \land (\overline{x} \lor y \lor \overline{z}).$$

Наслідок 4 (кон'юнктивне розкладання булевої функції $f(x_1, x_2, ..., x_n)$ за всіма змінними). Будь-яку булеву функцію $f(x_1, x_2, ..., x_n) \neq 1$ можна зобразити у такій формі:

$$f(x_1, x_2, ..., x_n) = \bigwedge_{\substack{(\sigma_1, \sigma_2, ..., \sigma_k) \\ f(\sigma_1, \sigma_2, ..., \sigma_k) = 0}} x_1^{\overline{\sigma_1}} \vee x_2^{\overline{\sigma_2}} \vee ... \vee x_n^{\overline{\sigma_n}}.$$
 (6)

Дійсно, при k = n

$$f(x_1, x_2, ..., x_n) = \bigwedge_{(\sigma_1, \sigma_2, ..., \sigma_n)} x_1^{\overline{\sigma}_1} \vee x_2^{\overline{\sigma}_2} \vee ... \vee x_n^{\overline{\sigma}_n} \vee f(\sigma_1, \sigma_2, ..., \sigma_n)$$

Якщо
$$f(\sigma_1, \sigma_2, ..., \sigma_n) = 0$$
, то

$$x_1^{\overline{\sigma}_1} \vee x_2^{\overline{\sigma}_2} \vee ... \vee x_n^{\overline{\sigma}_n} \vee f(\sigma_1, \sigma_2, ..., \sigma_n) = x_1^{\overline{\sigma}_1} \vee x_2^{\overline{\sigma}_2} \vee ... \vee x_n^{\overline{\sigma}_n};$$

якщо
$$f(\sigma_1, \sigma_2, ..., \sigma_n) = 1$$
, то

$$x_1^{\overline{\sigma}_1} \vee x_2^{\overline{\sigma}_2} \vee ... \vee x_n^{\overline{\sigma}_n} \vee f(\sigma_1, \sigma_2, ..., \sigma_n) = 1.$$

Приклад. Одержати кон'юнктивне розкладання функції $f(x, y, z) = xy \lor \overline{z}$ за всіма змінними.

<u>Розв'язок</u>. Визначимо значення функції на кожній з інтерпретацій:

$$f(0,0,0) = 0 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0,0,1) = 0 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(0,1,0) = 0 \land 1 \lor \overline{0} = 0 \lor 1 = 1,$$

$$f(0,1,1) = 0 \land 1 \lor \overline{1} = 0 \lor 0 = 0,$$

$$f(1,0,0) = 1 \land 0 \lor \overline{0} = 0 \lor 1 = 1,$$

Приклад. Одержати кон'юнктивне розкладання функції $f(x, y, z) = xy \lor \overline{z}$ за всіма змінними.

$$f(1,0,1) = 1 \land 0 \lor \overline{1} = 0 \lor 0 = 0,$$

 $f(1,1,0) = 1 \land 1 \lor \overline{0} = 1 \lor 1 = 1,$
 $f(1,1,1) = 1 \land 1 \lor \overline{1} = 1 \lor 0 = 1.$

За формулою (б) одержуємо

$$f(x, y, z) = (x^{1} \lor y^{1} \lor z^{0}) \land (x^{1} \lor y^{0} \lor z^{0}) \land (x^{0} \lor y^{1} \lor z^{0}) =$$

$$= (x \lor y \lor \overline{z}) \land (x \lor \overline{y} \lor \overline{z}) \land (\overline{x} \lor y \lor \overline{z}).$$

Означення. Елементарною диз'юнкцією називається диз'юнкція будь-якого числа булевих змінних, що взяті із запереченням або без нього, в якій кожна змінна зустрічається не більше одного разу.

Елементарною диз'юнкцією, що містить нуль змінних, будемо вважати константу 0.

Приклад. $x \lor y$ та $x \lor \overline{y} \lor z$ є елементарними диз'юнкціями, а $x \lor \overline{y \lor z}$ — ні.

Означення. *Кон'юнктивною нормальною формою* (*КНФ*) називається формула, що зображена у вигляді кон'юнкції елементарних диз'юнкцій.

Означення. Елементарна диз'юнкція $x_1^{\sigma_1} \vee x_2^{\sigma_2} \vee ... \vee x_n^{\sigma_n}$ називається *конституентою нуля (макстермом)* функції $f(x_1, x_2, ..., x_n)$, якщо $f(\sigma_1, \sigma_2, ..., \sigma_n) = 0$, тобто інтерпретація, яка обертає в нуль дану елементарну диз'юнкцію, обертає в нуль і функцію f.

Властивості конституенти нуля:

- 1. Конституента нуля дорівнює нулю тільки на відповідній їй інтерпретації.
- 2. Конституента нуля однозначно визначається номером відповідної їй інтерпретації.
- 3. Диз'юнкція будь-якого числа різних конституент нуля функції дорівнює одиниці.

Приклад. Елементарна диз'юнкція $x \vee \overline{y}$ є конституєнтою нуля функції двох змінних f(x, y) на інтерпретації (0, 1), оскільки $x \vee \overline{y} = x^1 \vee y^0 = x^{\overline{0}} \vee y^{\overline{1}}$, отже, на інтерпретації (x, y) = (0, 1) виконано рівність $x \vee \overline{y} = 0$.

Приклад. Елементарна диз'юнкція $x \lor y \lor z \in \mathbb{R}$ конституентою нуля функції трьох змінних f(x, y, z) на інтерпретації (0, 0, 0). Дійсно, $x \lor y \lor z = x^1 \lor y^1 \lor z^1 = x^{\bar{0}} \lor y^{\bar{0}} \lor z^{\bar{0}}$, отже, диз'юнкція $x \lor y \lor z$ дорівнює нулю на інтерпретації (0, 0, 0) = (x, y, z).

Означення. Досконалою кон'юнктивною нормальною формою (ДКНФ) функції називається формула, що зображена у вигляді кон'юнкції конституент нуля даної функції.

Будь-яка булева функція має одну ДКНФ (кількість її членів дорівнює кількості нульових значень функції) і декілька КНФ.

Властивості ДКНФ:

- . в ДКНФ немає однакових співмножників;
- жоден із співмножників не містить двох однакових доданків;
- жоден із співмножників не містить якої-небудь змінної разом з її запереченням;
- . в кожному окремому співмножнику є як складова або змінна x_i , або її заперечення для будь-якого i=1,2,...,n.

Висновки:

- 1. Для кожної булевої функції $f(x_1, x_2, ..., x_n)$, що не є константою нуль, існує зображення у вигляді ДДНФ.
- 2. Для кожної булевої функції $f(x_1, x_2, ..., x_n)$, що не є константою одиниця, існує зображення у вигляді ДКНФ.
- 3. Дві різні булеві функції не можуть мати однакові ДДНФ або ДКНФ.
- 4. Для кожної булевої функції $f(x_1, x_2, ..., x_n)$ існує зображення у вигляді формули булевої алгебри, що містить тільки операції диз'юнкції, кон'юнкції та заперечення.

3.2.2 Нормальні форми зображення булевих функцій

Для кожної інтерпретації функції існують єдині відповідні їй конституента одиниці та конституента нуля. Тому різних конституент одиниці та нуля для функції n змінних $f(x_1, x_2, ..., x_n)$ існує стільки ж, скільки й інтерпретацій цієї функції — 2^n .

Кількість різних ДДНФ (ДКНФ) дорівнює кількості упорядкованих наборів 2^n булевих констант і дорівнює 2^{2^n} .

Кількість різних булевих функцій від n змінних також становить 2^{2^n} .

Отже, для кожної булевої функції існує єдина ДДНФ (ДКНФ).

Приклад. Конституенти одиниці та нуля, що відповідають інтерпретаціям функцій трьох змінних:

Номер	Інтерпретація			Конституента	Конституента
інтерпретації	x_1	x_2	x_{a}	одиниці	нуля
0	0	0	0	$\overline{x}\overline{y}\overline{z}$	$x \lor y \lor z$
1	0	0	1	$\bar{x}\bar{y}z$	$x \vee y \vee \overline{z}$
3	0	1	1	$\bar{x}yz$	$x \vee \overline{y} \vee \overline{z}$
4	1	0	0	x y z	$\overline{x} \lor y \lor z$
5	1	0	1	$x\overline{y}z$	$\bar{x} \vee y \vee \bar{z}$
6	1	1	0	$xy\overline{z}$	$\overline{x} \vee \overline{y} \vee z$
7	1	1	1	хуг	$\overline{x} \vee \overline{y} \vee \overline{z}$

Алгоритм переходу від таблиці істинності булевої функції до ДДНФ

- 1. Виділити всі інтерпретації $(\sigma_1, \sigma_2, ..., \sigma_n)$, на яких значення функції дорівнює одиниці.
- 2. Записати конституенти одиниці виду $x_1^{\sigma_1} \wedge x_2^{\sigma_2} \wedge ... \wedge x_n^{\sigma_n}$, що відповідають відзначеним інтерпретаціям.
- 3. Одержати ДДНФ функції за допомогою з'єднання операцією диз'юнкції записаних конституент одиниці.

Приклад. Одержати ДДНФ для функції $f_8(x, y) = x \downarrow y = \overline{x \lor y}.$

Розв'язок. Побудуємо таблицю істинності

\mathcal{X}	y	$f_8(x,y)$
0	0	1
0	1	0
1	0	0
1	1	0

$$f_8(x, y) = x^0 y^0 = \overline{x} \overline{y}$$
.

Алгоритм переходу від таблиці істинності булевої функції до ДКНФ

- 1. Виділити всі інтерпретації $(\sigma_1, \sigma_2, ..., \sigma_n)$, на яких значення функції дорівнює нулю.
- 2. Записати конституенти нуля виду $x_1^{\overline{\sigma}_1} \vee x_2^{\overline{\sigma}_2} \vee ... \vee x_n^{\overline{\sigma}_n}$, що відповідають виділеним інтерпретаціям.
- 3. Записавши кон'юнкцію конституент нуля, одержати ДКНФ функції.

Приклад. Одержати ДКНФ для функції $f_8(x, y) = x \downarrow y = \overline{x \lor y}$.

Розв'язок. За таблицею істинності

χ	y	$f_8(x,y)$
0	0	1
0	1	0
1	0	0
1	1	0

маємо

$$f_8(x,y) = (x^{\overline{0}} \vee y^{\overline{1}})(x^{\overline{1}} \vee y^{\overline{0}})(x^{\overline{1}} \vee y^{\overline{0}})(x^{\overline{1}} \vee y^{\overline{1}}) = (x \vee \overline{y})(\overline{x} \vee y)(\overline{x} \vee \overline{y}).$$

Приклад. Для функції $f(x, y, z) = x y \overline{z} \vee \overline{x} y z \vee \overline{x} \overline{y} \overline{z}$, що задана ДДНФ, побудувати її таблицю істинності.

<u>Розв'язок</u>. Конституентам одиниці $x y \overline{z}$, $\overline{x} y z$, $\overline{x} \overline{y} \overline{z}$ відповідають інтерпретації (1, 1, 0), (0, 1, 1), (0, 0, 0).

\mathcal{X}	y	\mathcal{Z}	f(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

Приклад. Для функції

$$g(x, y, z) = (x \lor y \lor \overline{z}) \land (\overline{x} \lor y \lor z) \land (\overline{x} \lor \overline{y} \lor \overline{z}),$$

що задана ДКНФ, побудувати її таблицю істинності.

<u>Розв'язок</u>. Конституентам нуля $x \lor y \lor \overline{z}$, $\overline{x} \lor y \lor z$, $\overline{x} \lor \overline{y} \lor \overline{z}$ відповідають інтерпретації (0, 0, 1), (1, 0, 0), (1, 1, 1).

\mathcal{X}	y	\mathcal{Z}	g(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Алгоритм переходу від довільної формули алгебри логіки до ДДНФ

- 1. Виключити константи, використовуючи закони дій з константами.
- 2. Опустити знаки заперечення безпосередньо на змінні, використовуючи закони де Моргана.

Алгоритм переходу від довільної формули алгебри логіки до ДДНФ

3. Використовуючи дистрибутивний закон, розкрити дужки. До одержаних елементарних кон'юнкцій застосувати закони ідемпотентності й протиріччя, спростити їх і звести подібні. Результатом виконання вказаних дій є одержання ДНФ булевої функції.

Алгоритм переходу від довільної формули алгебри логіки до ДДНФ

- 4. Побудувати конституенти одиниці функції введенням у кожну елементарну кон'юнкцію відсутніх змінних, використовуючи закон виключеного третього.
- 5. За допомогою дистрибутивного закону розкрити дужки і звести подібні, використовуючи закон ідемпотентності. Одержана формула відповідає ДДНФ функції.

Алгоритм переходу від довільної формули алгебри логіки до ДКНФ

- 1. Виключити константи, використовуючи закони дій з константами.
- 2. Опустити знаки заперечення безпосередньо на змінні, використовуючи закони де Моргана.

Алгоритм переходу від довільної формули алгебри логіки до ДКНФ

3. За допомогою використання дистрибутивного закону, звести функцію до виду кон'юнкції елементарних диз'юнкцій. До одержаних елементарних диз'юнкцій застосувати закони ідемпотентності й виключеного третього, спростити їх і звести подібні. Результатом виконання вказаних дій є одержання КНФ булевої функції.

Алгоритм переходу від довільної формули алгебри логіки до ДКНФ

- 4. Побудувати конституенти нуля функції введенням у кожну елементарну диз'юнкцію відсутніх змінних, використовуючи закон протиріччя.
- 5. За допомогою дистрибутивного закону звести функцію до виду кон'юнкції конституент нуля і спростити формулу, використовуючи закон ідемпотентності. Одержана формула є ДКНФ функції.

Приклад. Задану булеву функцію звести до ДДНФ та ДКНФ шляхом алгебраїчних перетворень

$$f(x, y, z) = xy \lor (x(\overline{y} \lor z) \lor yz).$$

Розв'язок.

$$f(x, y, z) = xy \vee \overline{(x(\overline{y} \vee z) \vee yz)} = xy \vee \overline{((\overline{x} \vee \overline{y} \vee z))} \wedge \overline{(yz)} = xy \vee \overline{((\overline{x} \vee y\overline{z}) \wedge (\overline{y} \vee \overline{z}))} = xy \vee \overline{((\overline{x} \vee y\overline{z}) \wedge (\overline{y} \vee \overline{z}))} = xy \vee \overline{((\overline{x} \vee y\overline{z}) \wedge (\overline{y} \vee \overline{z}))} = xy \vee \overline{((\overline{x} \vee y\overline{z}) \wedge (\overline{y} \vee \overline{z}))}.$$

Побудуємо ДНФ:

$$f(x, y, z) = xy \lor (\overline{x} \lor y \overline{z})(\overline{y} \lor \overline{z}) =$$

$$= xy \lor (\overline{x} \overline{y} \lor \overline{x} \overline{z} \lor y \overline{z} \overline{y} \lor y \overline{z} \overline{z}) =$$

$$= [x \land \overline{x} = 0, x \land x = x] =$$

$$= xy \lor \overline{x} \overline{y} \lor \overline{x} \overline{z} \lor y \overline{z}.$$

За законом виключеного третього $x \vee \overline{x} = 1$:

$$f(x, y, z) = xy \vee \overline{x} \ \overline{y} \vee \overline{x} \ \overline{z} \vee y\overline{z} =$$

$$= xy(z \vee \overline{z}) \vee \overline{x} \ \overline{y}(z \vee \overline{z}) \vee \overline{x} (y \vee \overline{y}) \overline{z} \vee (x \vee \overline{x}) y\overline{z}.$$

Розкриємо дужки і зведемо подібні:

$$f(x, y, z) = xy(z \vee \overline{z}) \vee \overline{x} \ \overline{y}(z \vee \overline{z}) \vee \overline{x} \ (y \vee \overline{y}) \overline{z} \vee (x \vee \overline{x}) y \overline{z} =$$

$$= xyz \vee \underline{xy\overline{z}} \vee \overline{x} \ \overline{y} \ z \vee \underline{\overline{x}} \ \overline{y} \ \overline{z} \vee$$

$$\vee \overline{x} \ y \ \overline{z} \vee \underline{\overline{x}} \ \overline{y} \ \overline{z} \vee \underline{xyz} \vee \overline{x} \ y \ \overline{z} =$$

$$= xyz \vee xy\overline{z} \vee \overline{x} \ \overline{y} \ z \vee \overline{x} \ \overline{y} \ \overline{z} \vee \overline{x} \ y \ \overline{z}.$$

Побудуємо ДКНФ даної функції.

$$f(x, y, z) = xy \lor (\overline{x} \lor (y \land \overline{z}))(\overline{y} \lor \overline{z}) =$$

$$= [x \lor (y \land z) = (x \lor y) \land (x \lor z)] =$$

$$= xy \lor (\overline{x} \lor y)(\overline{x} \lor \overline{z})(\overline{y} \lor \overline{z}) =$$

$$= (x \lor (\overline{x} \lor y)(\overline{x} \lor \overline{z})(\overline{y} \lor \overline{z})) (y \lor (\overline{x} \lor y)(\overline{x} \lor \overline{z})(\overline{y} \lor \overline{z})) =$$

$$= (\underline{x} \lor \overline{x} \lor y)(\underline{x} \lor \overline{x} \lor \overline{z})(x \lor \overline{y} \lor \overline{z}) \land$$

$$\land (y \lor \overline{x} \lor y)(y \lor \overline{x} \lor \overline{z})(\underline{y} \lor \overline{y} \lor \overline{z}) =$$

$$= [x \lor \overline{x} = 1, x \lor 1 = 1] =$$

$$= 1 \cdot 1 \cdot (x \vee \overline{y} \vee \overline{z}) (\overline{x} \vee y) (\overline{x} \vee y \vee \overline{z}) \cdot 1 =$$
$$(x \vee \overline{y} \vee \overline{z}) (\overline{x} \vee y) (\overline{x} \vee y \vee \overline{z}).$$

$$f(x, y, z) = [x \wedge \overline{x} = 0] =$$

$$= (x \vee \overline{y} \vee \overline{z})(\overline{x} \vee y \vee (z \wedge \overline{z}))(\overline{x} \vee y \vee \overline{z}) =$$

$$= (x \vee \overline{y} \vee \overline{z})(\overline{x} \vee y \vee z)(\overline{x} \vee y \vee \overline{z})(\overline{x} \vee y \vee \overline{z}) =$$

$$= (x \vee \overline{y} \vee \overline{z})(\overline{x} \vee y \vee z)(\overline{x} \vee y \vee \overline{z}).$$