BOIDS + PHYSICS + VECTORS + PYGAME = AWESOME!!

References:

• Wikipedia 🙂

PYGAME + VECTORS

- **Examples:**
 - [Draw a circle at a math3d.VectorN as position]
 - [Make a velocity vector use dt!]
 - [Make character track mouse]
 - ["Oriented points"]

WORLD'S SHORTEST EXPLANATION OF ACCELERATION

Position update (from the example)

$$\overrightarrow{newPos} = \overrightarrow{oldPos} + \overrightarrow{vel} * \Delta t$$

- Acceleration
 - Gradually increasing velocity
 - Mimics real-life objects (can't start / stop on a dime)
 - Velocity update:

$$\overline{newVel} = \overline{oldVel} + \overline{acceleration} * \Delta t$$

- Just do this (and the position update) once per frame.
- Side-note:
 - This update method is called Newton-Euler1
 - It's actually the worst!
 - Doesn't handle variable frame rates well
 - Better solution (but more complex)
 - Runga-Kutta
 - **-**

GRAVITY

- Gravity produces an acceleration on objects
- Assuming we're on the earth, it points downwards

TERMINAL VELOCITY

- In real life, there's a maximum speed objects can go
 - Theoretically the speed of light.
 - On earth, there's wind resistance.
- In games, we often impose a terminal velocity
 - More numerically stable.
 - More consistent gameplay experience.
 - A little more like real life.
- [Develop the formula]

BOIDS

- Developed by Craig Reynolds (Sony?) ca 1986
- The "Boston-y" way of saying birds[©]
- Flocks of birds, fish, zombies, t-rex, etc.
 - Emergent Behavior
- We apply various accelerations to an individual boid
 - Seek-center
 - Align
 - Seek-mouse
 - •
- Weighting of acceleration vectors