ALGEBRAIZATION OF FORMAL M-SCHEMES

1. Some 2-categorical limits

Consider a category \mathcal{C} and its endofunctor $T: \mathcal{C} \to \mathcal{C}$. Our goal is to construct certain 2-categorical limit associated with a pair (\mathcal{C}, T) . Consider pairs (X, u) consisting of an object X of \mathcal{C} and an isomorphism $u: T(X) \to X$ in \mathcal{C} . If (X, u) and (Y, w) are two such pairs, then a morphism $f: (X, u) \to (Y, u)$ is a morphism $f: X \to Y$ in \mathcal{C} such that the following square

$$T(X) \xrightarrow{u} X$$

$$T(f) \downarrow \qquad \qquad \downarrow f$$

$$T(Y) \xrightarrow{m} Y$$

is commutative. This data give rise to a category $\mathcal{C}(T)$. There exists a forgetful functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ that sends a morphism $f:(X,u)\to(Y,w)$ to $f:X\to Y$. Moreover, there exists a natural isomorphism $\sigma:T\cdot\pi\Rightarrow\pi$ such that the component of σ on an object (X,u) of $\mathcal{C}(T)$ is u. The next result states that the data above form a certain 2-categorical limit.

Theorem 1.1. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Suppose that D is a category, $P : D \to C$ is a functor and $\tau : T \cdot P \Rightarrow P$ is a natural isomorphisms. Then there exists a unique functor $F : D \to C(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$.

Proof. Suppose that $F : \mathcal{D} \to \mathcal{C}(T)$ is a functor such that $P = \pi \cdot F$ and $\sigma_F = \tau$. Pick an object X of \mathcal{D} . Then we have $\pi \cdot F(X) = P(X)$ and $\sigma_{F(X)} = \tau_X$. This implies that

$$F(X) = (P(X), \tau_X : T(P(X)) \rightarrow P(X))$$

Next if $f: X \to Y$ is a morphism in \mathcal{D} , then we derive that $\pi(F(f)) = P(f)$. Hence F(f) = P(f). This implies that there exists at most one functor F satisfying the properties above. Note also that formulas

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in \mathcal{D} and a morphism $f: X \to Y$ in \mathcal{D} , give rise to a functor that satisfy $P = \pi \cdot F$ and $\sigma_F = \tau$. This establishes existence and the uniqueness of F.

Assume now that the pair (C, T) consists of a monoidal category C and a monoidal endofunctor T. Then there exists a canonical monoidal structure on C(T). We define $(-) \otimes_{C(T)} (-)$ by formula

$$(X,u)\otimes_{\mathcal{C}(T)}(Y,w)=\left(X\otimes_{\mathcal{C}}Y,(u\otimes_{\mathcal{C}}w)\cdot m_{X,Y}\right)$$

where

$$m_{X,Y}: T(X \otimes_{\mathcal{C}} Y) \to T(X) \otimes_{\mathcal{C}} T(Y)$$

is the tensor preserving isomorphism of *T*. We also define the unit

$$I_{\mathcal{C}(T)} = (I, T(I) \cong I)$$

where isomorphism $T(I) \cong I$ is precisely the unit preserving isomorphism of the monoidal functor T. The associativity natural isomorphism for $(-) \otimes_{\mathcal{C}(T)} (-)$ and right, left units for $I_{\mathcal{C}(T)}$ in $\mathcal{C}(T)$ are associavity natural isomorphism and right, left units for \mathcal{C} , respectively. The structure makes a functor $\pi:\mathcal{C}(T)\to\mathcal{C}$ strict monoidal and σ a monoidal natural isomorphism. The next result states that the data with these extra monoidal structure form a 2-categorical limit in the 2-category of monoidal categories.

1

Theorem 1.2. Let (C,T) be a pair consiting of a monoidal category and its monoidal endofunctor $T:C\to T$ *C.* Suppose that \mathcal{D} is a monoidal category, $P: \mathcal{D} \to \mathcal{C}$ is a monoidal functor and $\tau: T\cdot P \Rightarrow P$ is a monoidal natural isomorphisms. Then there exists a unique monoidal functor $F: \mathcal{D} \to \mathcal{C}(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$ as monoidal functors and monoidal transformations.

Proof. Note that *F* must be defined as it was described in the proof of Theorem 1.1. Namely we must have

$$F(X) = (P(X), \tau_X : T(P(X)) \to P(X)), F(f) = P(f)$$

for an object X in \mathcal{C} and a morphism $f: X \to Y$ in \mathcal{C} .

Suppose now that F admits a structure of a monoidal functor such that $P = \pi \cdot F$ as monoidal functors. Let

$$\left\{m_{X,Y}^F: F(X \otimes_{\mathcal{D}} Y) \to F(X) \otimes_{\mathcal{C}(T)} F(Y)\right\}_{X,Y \in \mathcal{C}'} \phi^F: F(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

be the data forming that structure. Since π is a strict monoidal functor and $P = \pi \cdot F$ as monoidal functors, we derive that for any objects X, Y of C

$$\pi(m_{X,Y}^F): P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$$

is the tensor preserving isomorphism $m_{X,Y}^P: P(X \otimes_{\mathcal{D}} Y) \to P(X) \otimes_{\mathcal{C}} P(Y)$ of the monoidal functor P. By the same argument

$$\pi(\phi_F): P(I_{\mathcal{D}}) \to I_{\mathcal{C}(T)}$$

is the unit preserving isomorphism $\phi^P: P(I_D) \to I_{\mathcal{C}(T)}$ of P. Thus we deduce that for any objects X,Y of \mathcal{C} we have $m_{X,Y}^F = m_{X,Y}^P$ and $\phi^F = \phi^P$. This implies that there exists at most one monoidal functor F such that $P = \pi \cdot F$ as monoidal functors. On the other hand define $m_{X,Y}^F = m_{X,Y}^P$ for objects X,Y in \mathcal{C} and $\phi^F = \phi^P$. We check now that F as a sum of the following F and F are the following F are the following F and F are the following F are the following F are the following F and F are the following F and F are the following F and F are the following F are the following F are the following F and F are the following F are the following F and F are the fol

equipped with these data is a monoidal functor. Fix objects X, Y in C. The square

$$T(P(X \otimes_{\mathcal{D}} Y)) \xrightarrow{\tau_{X \otimes_{\mathcal{C}} Y}} P(X \otimes_{\mathcal{C}} Y)$$

$$T(m_{X,Y}^{p}) \downarrow \qquad \qquad \downarrow^{m_{X,Y}^{p}}$$

$$T(P(X) \otimes_{\mathcal{C}} P(Y)) \xrightarrow{(\tau_{X} \otimes_{\mathcal{C}} \tau_{Y}) \cdot m_{P(X), P(Y)}^{T}} P(X) \otimes_{\mathcal{C}} P(Y)$$

is commutative due to the fact that $\tau:T\cdot P\Rightarrow P$ is a monoidal natural isomorphisms. This implies that $m_{X,Y}^F$ is a morphism in $\mathcal{C}(T)$. It follows that $m_{X,Y}^F$ is a natural isomorphism and due to the definition of associativity in C(T), we derive its compatibility with $m_{X,Y}^F$. Similarly, since the square

$$T(P(I_{\mathcal{D}})) \xrightarrow{\tau_{I_{\mathcal{D}}}} P(I_{\mathcal{D}})$$

$$T(\phi^{P}) \downarrow \qquad \qquad \downarrow \phi^{P}$$

$$T(I_{\mathcal{C}}) \xrightarrow{\phi^{T}} I_{\mathcal{C}}$$

is commutative, we deduce that ϕ^F is a morphism in C(T). By definition of left and right unit in $\mathcal{C}(T)$, we derive their compatibility with ϕ^F . This finishes the verification of the fact that F with $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F is a monoidal functor. Definitions of $\{m_{X,Y}^F\}_{X,Y\in\mathcal{C}}$ and ϕ^F show that the identities $P = \pi \cdot F$ holds on the level of monoidal structures. Since the 2-forgetful functor from

2-category of monoidal categories into 2-category of categories is faithful on 2-cells, the identity $\sigma_F = \tau$ of natural isomorphisms is also the identity of monoidal natural isomorphisms.

Theorem 1.3. Let (C, T) be a pair consiting of a category and its endofunctor $T : C \to C$. Assume that T preserves colomits. Then the following assertions hold.

- **(1)** $\pi: \mathcal{C}(T) \to \mathcal{C}$ creates colimits.
- **(2)** Suppose that \mathcal{D} is a category, $P: \mathcal{D} \to \mathcal{C}$ a functor preserving small colimits and $\tau: T \cdot P \Rightarrow P$ a natural isomorphisms. Then the unique functor $F: \mathcal{D} \to \mathcal{C}(T)$ such that $P = \pi \cdot F$ and $\sigma_F = \tau$ preserves small colimits.

Proof. Let I be a small category and $D: I \to \mathcal{C}(T)$ be a diagram such that the composition $\pi \cdot D: I \to \mathcal{C}$ admits a colimit given by cocone $(X, \{g_i\}_{i \in I})$. Since T preserves colimits, we derive that $(T(X), \{T(u_i)\}_{i \in I})$ is a colimit of $T \cdot \pi \cdot D: I \to \mathcal{C}$. Now $\sigma_D: T \cdot \pi \cdot D \to \pi \cdot D$ is a natural isomorphism. Hence there exists a unique arrow $u: T(X) \to X$ such that $u \cdot T(g_i) = g_i \cdot \sigma_{D(i)}$ for $i \in I$. Clearly u is an isomorphism and hence (X, u) is an object of $\mathcal{C}(T)$. Moreover, the family $\{g_i\}_{i \in I}$ together with (X, u) is a colimiting cocone over D. This proves (1). Now (2) is a consequence of (1).

Now we apply the results above to certain more general diagrams of categories.

Definition 1.4. A diagram

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

of categories and functors is called a telescope of categories.

Definition 1.5. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal cocontinuous functors. Then a 2-categorical limit of the telescope consists of a monoidal category \mathcal{C} , a family of monoidal cocontinuous functors $\{\pi_n: \mathcal{C} \to \mathcal{C}_n\}_{n \in \mathbb{N}}$ and a family of monoidal natural isomorphisms $\{\sigma_n: F_{n+1} \cdot \pi_{n+1} \Rightarrow \pi_n\}_{n \in \mathbb{N}}$ such that the following universal property holds. For any monoidal category \mathcal{D} , family $\{P_n: \mathcal{D} \to \mathcal{C}_n\}_{n \in \mathbb{N}}$ of cocontinuous monoidal functors and a family $\{\tau_n: F_n P_{n+1} \Rightarrow P_n\}_{n \in \mathbb{N}}$ of monoidal natural isomorphisms there exists a unique monoidal cocontinuous functor $F: \mathcal{D} \to \mathcal{C}$ satisfying $P_n = \pi_n \cdot F$ and $(\sigma_n)_F = \tau_n$ for every $n \in \mathbb{N}$.

Corollary 1.6. Let

$$\dots \xrightarrow{F_{n+1}} \mathcal{C}_{n+1} \xrightarrow{F_n} \mathcal{C}_n \xrightarrow{F_{n-1}} \dots \xrightarrow{F_2} \mathcal{C}_2 \xrightarrow{F_1} \mathcal{C}_1 \xrightarrow{F_0} \mathcal{C}_0$$

be a telescope of monoidal categories and monoidal cocontinuous functors. Then its 2-limit exists.

Proof. We decompose the task of constructing its 2-limit as follows. First note that one may form a product $C = \prod_{n \in \mathbb{N}} C_n$. Next the functors $\{F_n\}_{n \in \mathbb{N}}$ induce an endofunctor $T = \prod_{n \in \mathbb{N}} F_n \times t$, where **1** is the terminal category (it has single object and single identity arrow) and $t : C_0 \to \mathbf{1}$ is the unique functor. Consider the category C(T). We define $\{\pi_n : C(T) \to C_n\}_{n \in \mathbb{N}}$ to be a family of functors given by coordinates of $\pi : C(T) \to C$ and $\{\sigma_n : F_n \cdot \pi_{n+1} \Rightarrow \pi_n\}_{n \in \mathbb{N}}$ to be a family of natural isomorphisms given by coordinates of $\sigma : \pi \cdot T \Rightarrow \pi$. Now this data form a 2-limit of the telescope by compilation of Theorem **1.2** and Theorem **1.3**.

2. FORMAL **G**-SCHEMES

This section is devoted to introducing some notions from formal geometry that are central in this notes. We fix a group scheme G over k.

Definition 2.1. A formal **G**-scheme consists of a sequence $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ of **G**-schemes together with **G**-equivariant closed immersions

$$Z_0 \longrightarrow Z_1 \longrightarrow ... \longrightarrow Z_n \longrightarrow Z_{n+1} \longrightarrow ...$$

satisfying the following assertions.

- (1) We have $Z_0 = Z_n^{\mathbf{G}}$ scheme-theoretically for every $n \in \mathbb{N}$.
- (2) Let \mathcal{I}_n be an ideal of \mathcal{O}_{Z_n} defining Z_0 . Then for every $m \le n$ the subscheme $Z_m \subset Z_n$ is defined by \mathcal{I}_n^{m+1} .

Example 2.2. Let Z be a **G**-scheme. Consider a quasi-coherent ideal \mathcal{I} of fixed point subscheme $Z^{\mathbf{G}}$ of Z. Then for every $n \in \mathbb{N}$ ideal \mathcal{I}^n is **G**-equivariant and hence

$$V(\mathcal{I}) \longrightarrow V(\mathcal{I}^2) \longrightarrow \dots \longrightarrow V(\mathcal{I}^n) \longrightarrow \dots$$

is a formal **G**-scheme. We denote it by \widehat{Z} .

Definition 2.3. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ and $\mathcal{W} = \{W_n\}_{n \in \mathbb{N}}$ are formal **G**-schemes. Then *a morphism* $f: \mathcal{Z} \to \mathcal{W}$ of formal **G**-schemes consists of a family of **G**-equivariant morphisms $f = \{f_n: Z_n \to W_n\}_{n \in \mathbb{N}}$ such that the diagram

$$Z_{0} \longleftrightarrow Z_{1} \longleftrightarrow \dots \longleftrightarrow Z_{n} \longleftrightarrow Z_{n+1} \longleftrightarrow \dots$$

$$f_{0} \downarrow \qquad \qquad f_{1} \downarrow \qquad \qquad f_{n+1} \downarrow \qquad \dots$$

$$W_{0} \longleftrightarrow W_{1} \longleftrightarrow \dots \longleftrightarrow W_{n} \longleftrightarrow W_{n+1} \longleftrightarrow \dots$$

is commutative.

Definition 2.4. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **G**-scheme. Then there we have the corresponding telescope of monoidal categories

...
$$\longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_{n+1}) \longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_n) \longrightarrow ... \longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_2) \longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_1) \longrightarrow \mathfrak{Qcoh}_{\mathbf{G}}(Z_0)$$

and cocontinuous monoidal functors given by restricting **G**-equivariant quasi-coherent sheaves to closed **G**-subschemes. Then we define a category $\mathfrak{Qcoh}(\mathcal{Z})$ of quasi-coherent sheaves on \mathcal{Z} as a monoidal category which is a 2-limit of the telescope above. This category is defined uniquely up to a monoidal equivalence.

Let Z be a **G**-scheme and let \mathcal{I} be a quasi-coherent ideal of $Z^{\mathbf{G}}$. We have a commutative diagram

in the category of **G**-schemes. Thus restriction functors $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}_{\mathbf{G}}(V(\mathcal{I}^n))$ for $n \in \mathbb{N}$ induce a unique cocontinuous monoidal functor $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}(\widehat{Z})$.

Definition 2.5. Let Z be a **G**-scheme. Then a unique cocontinuous monoidal functor $\mathfrak{Qcoh}_{\mathbf{G}}(Z) \to \mathfrak{Qcoh}(\widehat{Z})$ is called *the comparison functor*.

Definition 2.6. Let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **G**-scheme. A **G**-scheme Z is called *an algebraization of* Z if the following two conditions are satisfied.

- (1) \mathcal{Z} is isomorphic to \widehat{Z} in the category of formal **G**-schemes.
- (2) The comparison functor $\mathfrak{Q}\mathfrak{coh}_{\mathbf{G}}(Z) \to \mathfrak{Q}\mathfrak{coh}(\widehat{Z})$ is an equivalence of monoidal categories.

3. Preliminaries

3.1. Toruses.

Definition 3.1. Let T be an affine algebraic group over k. Suppose that there exists $n \in \mathbb{N}$ such that for every algebraically closed extension K of k there exists an isomorphism

$$T_K \cong G_{m,K} \times G_{m,K} \times ... \times G_{m,K}$$

n times

of group schemes over *k*. Then *T* is called *a torus over k*.

Example 3.2. If $T \cong G_{m,K} \times G_{m,K} \times ... \times G_{m,K}$, then T is a torus. We call toruses T of this form S of this

toruses.

Example 3.3. Assume that the characteristic of k is not 2. Define

$$S^1 = \operatorname{Spec} k[x, y]/(x^2 + y^2 - 1)$$

a scheme over k and let $\mathfrak{P}_{\mathbf{S}^1}$ be its functor of points. Then for every k-algebra A we have

$$\mathfrak{P}_{\mathbf{S}^1}(A) = \{(u, v) \in A \times A \mid u^2 + v^2 = 1\}$$

There is also a morphism $\mathfrak{P}_{S^1} \times \mathfrak{P}_{S^1} \to \mathfrak{P}_{S^1}$ of *k*-functors given by

$$\mathfrak{P}_{\mathbf{S}^{1}}(A) \times \mathfrak{P}_{\mathbf{S}^{1}}(A) \to \mathfrak{P}_{\mathbf{S}^{1}} \ni ((u_{1}, v_{1}), (u_{2}, v_{2})) \mapsto (u_{1}u_{2} - v_{1}v_{2}, u_{1}v_{2} + u_{2}v_{1}) \in \mathfrak{P}_{\mathbf{S}^{1}}(A)$$

for every k-algebra A. This makes \mathfrak{P}_{S^1} into a group k-functor. Thus S^1 with the group structure described above is an affine algebraic group over k. We call it *the circle group over k*.

Now suppose that K is an algebraically closed extension of k. Consider an element $i \in K$ such that $i^2 = -1$. For every K-algebra A we have a map

$$\mathfrak{P}_{\mathbf{S}^1}(A) \ni (u,v) \mapsto u + iv \in A^*$$

First note that this map is bijective. Indeed, its inverse is given by

$$A^* \ni a \mapsto \left(\frac{1}{2}(a+a^{-1}), \frac{1}{2i}(a-a^{-1})\right) \in \mathfrak{P}_{\mathbf{S}^1}(A)$$

Moreover, the map $\mathfrak{P}_{S^1}(A) \to A^*$ is a homomorphism of abstract groups. Thus \mathfrak{P}_{S^1} restricted to the category \mathbf{Alg}_K of K-algebras is isomorphic with $\mathfrak{P}_{G_{m,K}}$ as a group k-functor. Hence

$$\mathbf{S}_K^1 \cong \mathbb{G}_{m,K}$$

as algebraic group schemes over K. Hence S^1 is a torus over k. Now assume that $k = \mathbb{R}$. Then abstract groups

$$\mathfrak{P}_{\mathbf{S}^1}(\mathbb{R}) = \{ z \in \mathbb{C} \mid |z| = 1 \} \subseteq \mathbb{C}^*, \mathbb{R}^*$$

are not isomorphic. Indeed, the left hand side group has infinite torsion subgroup and the right hand side group has torsion subgroup equal to $\{-1,1\}$. This imlies that over \mathbb{R} algebraic groups \mathbb{S}^1 and \mathbb{G}_m are not isomorphic. Hence \mathbb{S}^1 is not a split torus over \mathbb{R} .

LS TODO: Większość z wyników, które tutaj są, powinna być w teoretyczym wstępie. Idea jest taka, by tutaj w zasadzie tylko przygotować notację do dowodu głównego twierdzenia.

3.2. Locally linear schemes.

Definition 3.4. Let **M** be a monoid *k*-scheme and let *X* be a **M**-scheme. Suppose that each point of *X* admits an open affine **M**-stable neighborhood. Then we say that *X* is *a locally linear* **M**-scheme.

Proposition 3.5. Let M be an affine monoid k-scheme and let X be a M-scheme. Suppose that there exists a quasi-coherent M-equivariant ideal \mathcal{I} on X with nilpotent sections. Consider an open subset U of X. Then the following are equivalent.

- (1) *U* is **M**-stable.
- **(2)** $U \cap V(\mathcal{I})$ is **M**-stable.

Proof. Let $\alpha: \mathbf{M} \times X \to X$ be the action of \mathbf{M} on X. Fix open subset U of X. If U is \mathbf{M} -stable, then $U \cap V(\mathcal{I})$ is \mathbf{M} -stable. So suppose that $U \cap V(\mathcal{I})$ is \mathbf{M} -stable. Since \mathcal{I} has nilpotent sections and \mathbf{M} is affine, we derive that closed immersions $U \cap V(\mathcal{I}) \to U$ and $\mathbf{M} \times (U \cap V(\mathcal{I})) \to \mathbf{M} \times U$ induce homeomorphisms on topological spaces. Consider the commutative diagram

where the bottom horizontal arrow is the induced action on $U \cap V(\mathcal{I})$ and vertical morphisms are homeomorphisms. The commutativity of the diagram implies that $\alpha(\mathbf{M} \times U)$ is contained set-theoretically in U. Since U is open in X, we derive that morphism of schemes $\alpha_{|\mathbf{M} \times U|}$ factors through U. Hence U is \mathbf{M} -stable.

Corollary 3.6. Let M be an affine monoid k-scheme and let X be a M-scheme. Suppose that there exists a quasi-coherent M-equivariant ideal \mathcal{I} on X such that $\mathcal{I}^n = 0$ for $n \in \mathbb{N}$. Consider an open subset U of X. Then the following are equivalent.

- **(1)** *U is* **M**-stable and affine.
- **(2)** $U \cap V(\mathcal{I})$ *is* **M**-stable and affine.

Proof. Since $\mathcal{I}^n = 0$, we derive that U is affine if and only if $U \cap V(\mathcal{I})$ is affine. Combining this with Proposition 3.5, we deduce the result.

Corollary 3.7. Let \mathbf{M} be an affine monoid k-scheme and let X be a \mathbf{M} -scheme. Suppose that there exists a quasi-coherent \mathbf{M} -equivariant ideal \mathcal{I} on X such that $\mathcal{I}^n = 0$ for $n \in \mathbb{N}$. Then X is locally linear \mathbf{M} -scheme if and only if $V(\mathcal{I})$ is locally linear \mathbf{M} -scheme.

Proof. This is a consequence of Corollary 3.6.

3.3. Affine monoid schemes with zero.

Proposition 3.8. Let M be an affine monoid k-scheme with zero and let X be a locally linear M-scheme. Then there exists an affine M-equivariant morphism

$$X \xrightarrow{r} X^{\mathbf{M}}$$

such that $r_{|XM} = 1_{XM}$.

Proof. Consider the action $\alpha : \mathbf{M} \times X \to X$ of \mathbf{M} on X. Since X is locally linear and \mathbf{M} is affine, we derive that α is an affine morphism of k-schemes. Now if \mathbf{o} is a zero of \mathbf{M} , then we define a morphism

$$X \xrightarrow{\cong} \mathbf{o} \times X \longleftrightarrow \mathbf{M} \times X \xrightarrow{\alpha} X$$

The morphism above is affine (as a composition of affine morphisms) and induces multiplication by \mathbf{o} on functors of points $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$. Now $\mathbf{o} \cdot (-) : \mathfrak{P}_X \to \mathfrak{P}_X$ factors as an $fP_{\mathbf{M}}$ -equivariant epimorphism $\mathfrak{P}_X \twoheadrightarrow \mathfrak{P}_{X^{\mathbf{M}}}$ composed with a closed immersion $\mathfrak{P}_{X^{\mathbf{M}}} \hookrightarrow \mathfrak{P}_X$. The $\mathfrak{P}_{\mathbf{M}}$ -equivariant epimorphism $\mathfrak{P}_X \to \mathfrak{P}_{X^{\mathbf{M}}}$ corresponds to a \mathbf{M} -equivariant morphism $r : X \to X^{\mathbf{M}}$ of k-schemes such that $r_{|X^{\mathbf{M}}|} = 1_{X^{\mathbf{M}}}$. Moreover, the composition of r with a closed immersion $X^{\mathbf{M}} \hookrightarrow X$ is an affine morphism. Thus r is affine.

3.4. Results on linear representations.

Proposition 3.9. Let M be an affine monoid k-scheme and let V be a representation of M. Then for every k-algebra A the natural morphism of A-modules

$$V^{\mathbf{M}} \otimes_k A \to (A \otimes_k V)^{\mathbf{M}_A}$$

is an isomorphism.

Proof. Note that we have a left exact sequence of k-vector spaces defining invariants

$$0 \longrightarrow V^{\mathbf{M}} \longrightarrow V \xrightarrow{\Delta-p} \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_k V$$

where $\Delta: V \to \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_k V$ is the coaction and $p: V \to \Gamma(\mathbf{M}, \mathcal{O}_{\mathbf{M}}) \otimes_k V$ is the trivial coaction defined by formula $p(v) = 1 \otimes v$ for every v in V. Now tensoring the sequence with k-algebra A yields a left exact sequence

$$0 \longrightarrow V^{\mathbf{M}} \otimes_k A \longrightarrow A \otimes_k V \xrightarrow{\Delta_A - p_A} \Gamma(\mathbf{M}_A, \mathcal{O}_{\mathbf{M}_A}) \otimes_A (A \otimes_k V)$$

where Δ_A is the coaction on $A \otimes_k V$ induced by Δ and p_A is the trivial coaction on $A \otimes_k V$. This shows that $V^{\mathbf{M}} \otimes_k A \to (A \otimes_k V)^{\mathbf{M}_A}$ is an isomorphism.

Proposition 3.10. Let G be an affine group k-scheme and let V, W be representations of G. If V is finite dimensional, then for every k-algebra A the canonical morphism

$$A \otimes_k \operatorname{Hom}_{\mathbf{G}}(V, W) \longrightarrow \operatorname{Hom}_{\mathbf{G}_A} (A \otimes_k V, A \otimes_k W)$$

is an isomorphism of A-modules.

Proof. Fix a k-algebra A. Since V is finite dimensional, for every k-algebra B there exists an isomorphism $B \otimes_k \operatorname{Hom}_k(V,W) \to \operatorname{Hom}_B(B \otimes_k V, B \otimes_k W)$ of B-modules natural in B. This implies that $\operatorname{Hom}_k(V,W)$ is a representation of G via the action given by formula

$$(g \cdot f)(v) = g \cdot f(g^{-1} \cdot v)$$

where $f \in \operatorname{Hom}_B(B \otimes_k V, B \otimes_k W)$, $v \in B \otimes_k V$ and $g \in \mathfrak{P}_{\mathbf{G}}(B)$. Similarly $\operatorname{Hom}_A(A \otimes_k V, A \otimes_k W)$ is a representation of \mathbf{G}_K and the canonical isomorphism $A \otimes_k \operatorname{Hom}_k(V, W) \to \operatorname{Hom}_A(A \otimes_k V, A \otimes_k W)$

of A-modules is G_A -equivariant. Now we apply Proposition 3.9 to derive a chain of isomorphisms

$$\operatorname{Hom}_{A}(A \otimes_{k} V, A \otimes_{k} W)^{\mathbf{G}_{A}} \cong (A \otimes_{k} \operatorname{Hom}_{k}(V, W))^{\mathbf{G}_{A}} \cong A \otimes_{k} \operatorname{Hom}_{k}(V, W)^{\mathbf{G}_{A}}$$

of A-modules. Since we have identifications

$$\operatorname{Hom}_{\mathbf{G}_A}(A\otimes_k V, A\otimes_k W)\cong \operatorname{Hom}_A(A\otimes_k V, A\otimes_k W)^{\mathbf{G}_A}$$
, $\operatorname{Hom}_{\mathbf{G}}(V, W)\cong \operatorname{Hom}_k(V, W)^{\mathbf{G}}$ we deduce the statement.

Proposition 3.11. Let **G** be an affine group scheme over k and let $\mathfrak G$ be a monoid k-functor. Denote by Λ the set of isomorphism classes of irreducible **G**-representations. Suppose that V is a representation of both G and & and assume that their actions on V commute. Assume that V is completely reducible as a **G**-representation and consider the decomposition

$$V = \bigoplus_{\lambda \in \Lambda} V_{\lambda}$$

onto isotypic components with respect to the action of G. Then for every λ in Λ the subspace V_{λ} is a \mathfrak{G} -subrepresentation of V.

LS TODO:

3.5. M-equivariant quasi-coherent sheaves.

3.6. Kempf monoids.

Proof.

Definition 3.12. Let **M** be a monoid *k*-scheme. Suppose that the following conditions hold.

- (1) **M** is affine, geometrically connected and geometrically normal.
- (2) There exists zero o in M.
- (3) There exists a torus T over k contained in the center of M such that the closure cl(T) of T in **M** contains **o**.

Then **M** is called *Kempf monoid*.

Let **M** be a Kempf monoid and let **G** be its group of units. If V is a representation of **G** and λ is a class in Λ , then we denote by $V[\lambda] \subseteq V$ the sum of all irreducible T-subpresentations of V of isomorphism type λ . Since T is a central subgroup of G, we derive by Proposition 3.11 that $V[\lambda]$ is a **G**-representation of *V*.

Suppose that Z is a k-scheme with trivial action of M. If \mathcal{F} is a quasi-coherent sheaf on Z equipped with **G**-action, then we denote by $\mathcal{F}[\lambda]$ a sheaf given by

$$U \mapsto \mathcal{F}(U)[\lambda]$$

for every open affine subset U of Z. Then $\mathcal{F}[\lambda] \subseteq \mathcal{F}$ is a **G**-quasi-coherent subsheaf of \mathcal{F} .

3.7. Formal M-schemes.

Definition 3.13. Let **M** be a monoid *k*-scheme having **G** as the group of units. A formal **M**-scheme is a formal **G**-scheme $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ such that for each $n \in \mathbb{N}$ scheme Z_n is **M**-scheme and the sequence of closed immersions

$$Z_0 \longrightarrow Z_1 \longrightarrow ... \hookrightarrow Z_n \hookrightarrow Z_{n+1} \hookrightarrow ...$$

consists of M-equivariant morphisms.

Let **M** be an affine monoid *k*-scheme with zero and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. Suppose that **M** is a monoid with zero. Then by Proposition 3.8, we derive that \mathcal{Z} is a part of the commutative diagram

Uzupełnić dowód w

oparciu o Stwierdzenie 3.10.

LS TODO:

Tu trzeba zdefiniować i następnie opisać przypadek schematu z trywialnym działaniem, bo on jest najważniejszy

LS TODO:

Tutaj trzeba zdefiniować monoidy Kempfa. Najpierw trzeba porządnie spisać dowód algebraizacji, żeby mieć poprawną definicję

LS TODO: (or rather Jelisiejew :D)

in which vertical morphisms $r_n: Z_n \twoheadrightarrow Z_0$ are affine morphisms such that $r_{n|Z_0} = 1_{Z_0}$. This implies that Z_n is affine over Z_0 for each $n \in \mathbb{N}$ and hence we write $\operatorname{Spec}_{Z_0} \mathcal{A}_n$ for $n \in \mathbb{N}$, where \mathcal{A}_n is a quasi-coherent Z_0 -algebra equipped with the action of \mathbf{M} . Moreover, we have $\mathcal{A}_0 = \mathcal{O}_{Z_0}$. The diagram above induces the following sequence of epimorphisms

...
$$\longrightarrow$$
 $A_{n+1} \longrightarrow A_n \longrightarrow A_1 \longrightarrow A_1 \longrightarrow A_0 = \mathcal{O}_{Z_0}$

of quasi-coherent \mathcal{O}_{Z_0} -algebras with **M**-action. Denote by **G** the group of units of **M**. If **G** is schematically dense in **M** (for instance if **M** is integral), then we have $Z_0 = Z_n^{\mathbf{G}} = Z_n^{\mathbf{M}}$ and hence Z_0 admits trivial **M**-action. This alternative description of formal **M**-schemes will be used in the proof of the main theorem.

4. FORMAL FUNCTORS AND REPRESENTABILITY - OLD

Theorem 4.1 (Algebraization of a formal $\overline{\mathbf{G}}$ -scheme). Let $\mathcal{Z} = \{Z_n\}$ be a formal $\overline{\mathbf{G}}$ -scheme. Then there exists a colimit

$$Z = \operatorname{colim}_n Z_n$$

in the category of locally linear $\overline{\mathbf{G}}$ -schemes and Z is the unique algebraization of Z. If in addition Z is locally Noetherian, then π_Z is of finite type. If Z is locally Noetherian and Z_0 is of finite type, then also Z is of finite type.

Now we spell out the main idea of the proof: the $\overline{\mathbf{G}}$ -scheme Z required in Theorem 4.1 is equal to Spec $Z_0\mathcal{A}$, where \mathcal{A} is the limit of \mathcal{A}_n in the category of $\overline{\mathbf{G}}$ -algebras; in other words each isotypic component of \mathcal{A} is the limit of isotypic components of \mathcal{A}_n . Our first goal is to prove a stabilization result. We denote by $\mathrm{Irr}(\mathbf{G})$ the set of isomorphism types of irreducible \mathbf{G} -representations and by $\mathrm{Irr}(\overline{\mathbf{G}}) \subset \mathrm{Irr}(\mathbf{G})$ the subset of $\overline{\mathbf{G}}$ -representations. For $\lambda \in \mathrm{Irr}(\mathbf{G})$ and a quasi-coherent $\overline{\mathbf{G}}$ -module \mathcal{C} on Z_0 we denote by $\mathcal{C}[\lambda] \subset \mathcal{C}$ the $\overline{\mathbf{G}}$ -submodule such that $H^0(\mathcal{U}, \mathcal{C}[\lambda]) \subset H^0(\mathcal{U}, \mathcal{C})$ is the union of all \mathbf{G} -subrepresentations of $H^0(\mathcal{U}, \mathcal{C})$ isomorphic to λ (i.e., the isotypic component of λ).

Lemma 4.1.1 (stabilization on an isotypic component). Let $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$. Then there exists a number $n_{\lambda} \in \mathbb{N}$ such that the following holds. Let $\mathcal{Z} = \{Z_n\}$ be a formal $\overline{\mathbf{G}}$ -scheme and $\{A_{n+1} \twoheadrightarrow A_n\}$ be the associated sequence of quasi-coherent $\overline{\mathbf{G}}$ -algebras. Then for every $n > n_{\lambda}$ the surjection

$$\mathcal{A}_n[\lambda] \twoheadrightarrow \mathcal{A}_{n-1}[\lambda]$$

is an isomorphism. If $\lambda_0 \in \operatorname{Irr}(\overline{\mathbf{G}})$ is the trivial representation, then we may take $n_{\lambda_0} = 0$.

Proof of Lemma **4.1.1**. The claims are preserved under field extension, so we may assume our field is algebraically closed (hence perfect) so we may use the Kempf's torus. Fix a grading on $k[\overline{\mathbf{G}}]$ induced by a Kempf's torus for k as in Corollary **??**. Denote by $A_{\lambda} \subseteq \mathbb{N}$ the set of weights which appear in $k[\mathbf{G}]_{\lambda}$. Since $\dim_k k[\mathbf{G}]_{\lambda}$ is finite by Proposition **??**, the set A_{λ} is finite. Put

$$n_{\lambda} = \sup A_{\lambda}$$
.

Fix $n > n_{\lambda}$ and let $\mathcal{I}_n = \ker(\mathcal{A}_n \to \mathcal{A}_0)$. Then we have a decomposition with respect to the chosen torus

$$\mathcal{A}_n = \bigoplus_{i>0} (\mathcal{A}_n)[i],$$

By Corollary **??**, we have $\mathcal{I}_n = \bigoplus_{i \geq 1} (\mathcal{A}_n)[i]$. Since $n > n_\lambda$ we have

$$\mathcal{I}_n^n \subset \bigoplus_{i \geq n} (\mathcal{A}_n)[i] \subseteq \bigoplus_{i \notin A_\lambda} (\mathcal{A}_n)[i]$$

Hence, $\mathcal{I}_n^n[\lambda] = 0$. But $\mathcal{I}_n^n[\lambda] = \ker(\mathcal{A}_n[\lambda] \to \mathcal{A}_{n-1}[\lambda])$, thus $\mathcal{A}_n[\lambda] \to \mathcal{A}_{n-1}[\lambda]$ is an isomorphism. Finally note that $A_{\lambda_0} = \{0\}$. This implies that $n_{\lambda_0} = 0$.

Proof of Theorem **4.1**. Let A_n be the quasi-coherent $\overline{\mathbf{G}}$ -algebras as in (??). For $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$ we define $A[\lambda] := A_n[\lambda]$, where $n \geq n_\lambda$ as in Lemma **4.1.1**.

$$\mathcal{A} = \bigoplus_{\lambda \in \mathrm{Irr}(\overline{\mathbf{G}})} \mathcal{A}[\lambda] = \bigoplus_{\lambda \in \mathrm{Irr}(\overline{\mathbf{G}})} \mathcal{A}_{n_{\lambda}}[\lambda].$$

Clearly $\mathcal{A}[\lambda_0] = \mathcal{A}_0 = \mathcal{O}_{Z_0}$ canonically (where λ_0 is the trivial representation), hence \mathcal{A} is an \mathcal{O}_{Z_0} -module. Actually $\mathcal{A} = \lim_n \mathcal{A}_n$ in the category of quasi-coherent $\overline{\mathbf{G}}$ -modules on Z_0 . We construct the algebra structure on \mathcal{A} . For this pick $\eta_1, \eta_2 \in \operatorname{Irr}(\overline{\mathbf{G}})$. Fix the finite set $\{\lambda_1, \ldots, \lambda_s\} \subseteq \operatorname{Irr}(\overline{\mathbf{G}})$ of representations which appear in $k[\overline{\mathbf{G}}]_{\eta_1} \otimes_k k[\overline{\mathbf{G}}]_{\eta_2}$. Then, for every $n \in \mathbb{N}$, we have the multiplication

$$\mathcal{A}_n[\eta_1] \otimes_k \mathcal{A}_n[\eta_2] \to \mathcal{A}_n[\eta_1] \cdot \mathcal{A}_n[\eta_2] \subseteq \bigoplus_{i=1}^s \mathcal{A}_n[\lambda_i]$$

and by Lemma 4.1.1 these morphisms can be identified for $n \ge \sup\{n_{\eta_1}, n_{\eta_2}, n_{\lambda_1}, ..., n_{\lambda_s}\}$. We define

$$\mathcal{A}[\eta_1] \otimes_k \mathcal{A}[\eta_2] \to \bigoplus_{i=1}^s \mathcal{A}[\lambda_i] \subseteq \mathcal{A}$$

as a morphism induced by the multiplication morphism for any $n \ge \sup\{n_{\eta_1}, n_{\eta_2}, n_{\lambda_1}, \dots, n_{\lambda_s}\}$. This gives an \mathcal{O}_{Z_0} -algebra structure on \mathcal{A} , so \mathcal{A} is in fact the limit of \mathcal{A}_n is the category of $\overline{\mathbf{G}}$ -algebras. Note that from the description of \mathcal{A} it follows that for every $n \in \mathbb{N}$ we have a surjective morphism $p_n : \mathcal{A} \twoheadrightarrow \mathcal{A}_n$ of $\overline{\mathbf{G}}$ -algebras. We denote its kernel by \mathcal{J}_n and we put $\mathcal{J} := \mathcal{J}_0$. The natural injection $\mathcal{O}_{Z_0} = \mathcal{A}_0 \to \mathcal{A}$ is a section of p_0 , so that we have

$$\mathcal{J} = \bigoplus_{\lambda \in \operatorname{Irr}(\overline{\mathbf{G}}) \setminus \{\lambda_0\}} \mathcal{A}[\lambda].$$

We also denote by \mathcal{I}_n the kernel of $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_0 = \mathcal{O}_{Z_0}$ for $n \in \mathbb{N}$. Then $\mathcal{I}_n = \mathcal{J}/\mathcal{J}_n$. Fix $m \in \mathbb{N}$ and consider $n \in \mathbb{N}$ such that $n \ge m$. Since \mathcal{Z} is a formal $\overline{\mathbf{G}}$ -scheme, the sheaf \mathcal{I}_n^{m+1} is the kernel of the morphism $\mathcal{A}_n \twoheadrightarrow \mathcal{A}_m$. Thus

$$\mathcal{J}_m/\mathcal{J}_n = \mathcal{I}_n^{m+1} = (\mathcal{J}^{m+1} + \mathcal{J}_n)/\mathcal{J}_n.$$

Both \mathcal{J}_m and \mathcal{J}^{m+1} are $\operatorname{Irr}(\overline{\mathbf{G}})$ -graded and for given $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$ and $n \gg 0$ the isotypic component $\mathcal{J}_n[\lambda]$ is zero by Lemma 4.1.1. Hence $\mathcal{J}_m = \mathcal{J}^{m+1}$ for every $m \in \mathbb{N}$. We define

$$Z = \operatorname{Spec}_{Z_0}(\mathcal{A})$$

and we denote by $\pi: Z \to Z_0$ the structural morphism. The scheme Z inherits a $\overline{\mathbf{G}}$ -action from \mathcal{A} . For every $n \in \mathbb{N}$ the zero-set of $\mathcal{J}^{n+1} \subseteq \mathcal{A}$ is a $\overline{\mathbf{G}}$ -scheme isomorphic to Z_n . Hence \mathcal{Z} is isomorphic to \widehat{Z} . Thus Z is an algebraization of \mathcal{Z} . Since $\mathcal{A} = \lim \mathcal{A}_n$, we have $Z = \operatorname{colim} Z_n$ in the category of locally linear $\overline{\mathbf{G}}$ -schemes.

It remains to prove uniqueness of algebraization. Let $Z' = \operatorname{Spec}_{Z_0} \mathcal{A}'$ be an algebraization of $Z = \{Z_n\}$. Then $Z_n \hookrightarrow Z'$, so by the universal property of colimit, we obtain a $\overline{\mathbf{G}}$ -morphism $Z \to Z'$, corresponding to $\mathcal{A}' \to \mathcal{A}$. It induces epimorphisms $\mathcal{A}' \twoheadrightarrow \mathcal{A}_n$ for all n. For each $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$, the composition

$$\mathcal{A}'[\lambda] \to \mathcal{A}[\lambda] \simeq \mathcal{A}_{n_{\lambda}}[\lambda]$$

is an epimorphism, hence $\mathcal{A}' \to \mathcal{A}$ is an epimorphism. The kernel of $\mathcal{A}' \to \mathcal{A}$ is equal to

$$\bigcap_{n} \ker(\mathcal{A}' \to \mathcal{A}_n) = \bigcap_{n} \ker(\mathcal{A}' \to \mathcal{A}_0)^n.$$

To prove that this kernel is zero, we may enlarge the field to an algebraically closed field, so the result follows from Corollary ??.

Assume that each scheme Z_n is locally Noetherian over k. Then \mathcal{I}_n is a coherent \mathcal{A}_n -module, thus $\mathcal{I}_n^i/\mathcal{I}^{i+1}$ is a coherent \mathcal{A}_0 -module for all i. The series

$$0 = \mathcal{I}_n^{n+1} \subset \mathcal{I}^n \subset \ldots \subset \mathcal{I} \subset \mathcal{A}_n$$

has coherent subquotients, hence \mathcal{A}_n is a coherent \mathcal{O}_{Z_n} -algebra. Thus $\mathcal{A}[\lambda]$ is a coherent \mathcal{O}_{Z_0} -module for every $\lambda \in \operatorname{Irr}(\overline{\mathbf{G}})$. The claim that π is of finite type is local on $Z^{\mathbf{G}}$, hence we may assume that $Z^{\mathbf{G}}$ is quasi-compact. The sheaf $\mathcal{J}/\mathcal{J}^2 \subseteq \mathcal{A}_1$ is coherent so there exists a finite set $\lambda_1, \ldots, \lambda_r \in \operatorname{Irr}(\overline{\mathbf{G}}) \setminus \{\lambda_0\}$ such that the morphism

$$\bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \to \mathcal{J}/\mathcal{J}^2$$

induced by $\mathcal{A} \twoheadrightarrow \mathcal{A}_2$ is surjective. Let $\mathcal{B} \subset \mathcal{A}$ be the quasi-coherent \mathcal{O}_{Z_0} -subalgebra generated by the coherent subsheaf $\mathcal{M} := \bigoplus_{i=1}^r \mathcal{A}[\lambda_i] \subseteq \mathcal{A}$. Let \overline{k} be an algebraic closure of k and let $\mathcal{A}' = \mathcal{A} \otimes \overline{k}$. Fix a Kempf's torus over \overline{k} and the associated grading $\mathcal{A}' = \bigoplus_{i \geq 0} \mathcal{A}'[i]$ as in Corollary ??. Then $\mathcal{J} = \bigoplus_{i \geq 1} \mathcal{A}'[i]$ is a graded ideal and $\mathcal{J}/\mathcal{J}^2$ is generated by the graded (coherent) subsheaf $\mathcal{M}' = \bigoplus_{i=1}^r \mathcal{A}'[\lambda_i]$. By graded Nakayama's lemma, the ideal \mathcal{J} itself is generated by (the elements of) \mathcal{M}' . Then by induction on the degree, \mathcal{A}' is generated by \mathcal{M}' as an algebra. In other words, $\mathcal{A}' = \mathcal{B} \otimes \overline{k}$. Thus also $\mathcal{A} = \mathcal{B}$ and so \mathcal{A} is of finite type over \mathcal{O}_{Z_0} .

5. ALGEBRAIZATION OF FORMAL M-SCHEMES

Now we prove the main result.

Theorem 5.1. Let **M** be a Kempf monoid with unit group **G** and let $\mathcal{Z} = \{Z_n\}_{n \in \mathbb{N}}$ be a formal **M**-scheme. Then there exists an algebraization Z of Z. Moreover, the following assertions hold.

- (1) Z is M-scheme.
- **(2)** The canonical morphism $\pi: Z \to Z_0$ is an affine morphism.

Moreover, if Z is locally noetherian, then π is of finite type.

Let G be the group of units of M. According to the fact that M is integral, we derive that G is schematically dense in M and hence Z_0 admits trivial M-action. Since M has zero, formal M-scheme $\mathcal Z$ corresponds to a sequence

...
$$\longrightarrow$$
 A_{n+1} \longrightarrow A_n \longrightarrow ... \longrightarrow A_1 \longrightarrow $A_0 = \mathcal{O}_{Z_0}$

of **M**-quasi-coherent \mathcal{O}_{Z_0} -algebras such that $Z_n = \operatorname{Spec}_{Z_0} \mathcal{A}_n$ for every $n \in \mathbb{N}$. Next since **M** is a Kempf monoid, there exists a closed subgroup T of the center Z(G) such that T is a torus and the scheme-theoretic closure \overline{T} of T in **M** contains the zero **o** of **M**. Denote by Λ the isomorphism classes of irreducible representations of T. The proof of the theorem is based on the following results.

Lemma 5.1.1. Let K be an algebraically closed field over k. Then the following assertions hold.

- (1) $\overline{T}_K = \operatorname{Spec} K \times_{\operatorname{Spec} k} \overline{T}$ is an affine toric variety with torus T_K .
- **(2)** There exists an abstract submonoid S of the character group $\mathcal{X}(T_K)$ such that

$$\overline{T}_K = \operatorname{Spec} K[S]$$

as T_K -varieties, where K[S] is monoid K-algebra of S.

(3) K-subspace

$$\mathfrak{m} = \bigoplus_{\chi \in S \setminus \{0\}} K \cdot \chi \subseteq \bigoplus_{\chi \in S} K \cdot \chi = K[S]$$

is an ideal of K[S] and for every finite subset A of $\mathcal{X}(T_K)$ there exists $n_A \in \mathbb{N}$ such that for all $n \ge n_A$ we have

$$K \cdot \chi \notin \mathfrak{m}^n$$

for every $\chi \in A$.

Proof of the lemma. Note that $T \hookrightarrow \overline{T}$ is schematically dense open T-equivariant immersion of affine k-schemes. Since K is flat over k, we derive that $T_K \hookrightarrow \overline{T}_K$ is schematically dense open T_K -immersion. Thus \overline{T}_K is integral affine T_K -scheme and hence \overline{T}_K is a affine toric variety having T_K as a torus. Moreover, zero of \mathbf{M} is contained in \overline{T} . Thus \overline{T}_K admits a fixed K-point with respect to T_K -action. Now the lemma follows by basic affine toric geometry.

LS TODO: dokładniej ten dowód, lub odniesienie do KOKSA. Nie ma Kempfa HAHA!

Lemma 5.1.2 (Stabilization). Fix λ in Λ . Then there exists a number $n_{\lambda} \in \mathbb{N}$ such that the following holds. Let $\mathcal{Z} = \{Z_n\}$ be a formal **M**-scheme and $\{A_{n+1} \twoheadrightarrow A_n\}_{n \in \mathbb{N}}$ be the associated sequence of quasicoherent **M**-algebras. Then for every $n > n_{\lambda}$ the surjection

$$\mathcal{A}_{n+1}[\lambda] \longrightarrow \mathcal{A}_n[\lambda]$$

is an isomorphism. If λ_0 is the isomorphism type of trivial representation of G, then $n_{\lambda_0} = 0$.

Proof of the lemma. Fix an algebraically closed field K over k. Consider an irreducible representation V of T in λ . Then $V_K = K \otimes_k V$ is an irreducible representation of T_K . Since V_K is finite dimensional over K, it follows that V_K as a T_K -representation decomposes onto finitely many character spaces of T_K . Say

$$V_K = \bigoplus_{\chi \in A_\lambda} V_K[\chi]$$

for some finite subset $A_{\lambda} \subseteq \mathcal{X}(T_K)$, where $\mathcal{X}(T_K)$ is the character group of T_K . Next we use Lemma 5.1.1. We can write

$$\overline{T}_K = \operatorname{Spec} K[S], \mathfrak{m} = \bigoplus_{\chi \in S \setminus \{0\}} K \cdot \chi \subseteq \bigoplus_{\chi \in S} K \cdot \chi = K[S]$$

and moreover, there exists $n_{\lambda} \in \mathbb{N}$ such that for every $n \ge n_{\lambda}$ we have $K \cdot \chi \notin \mathfrak{m}^n$ for every $\chi \in A_{\lambda}$. Next A_n is a quasi-coherent \overline{T} -sheaf on Z_0 for every $n \in \mathbb{N}$. Hence

$$K \otimes_k \mathcal{A}_n = \bigoplus_{\chi \in S} \left(K \otimes_k \mathcal{A}_n\right) \left[\chi\right]$$

for every $n \in \mathbb{N}$.

REFERENCES

[Lang, 2005] Lang, S. (2005). Algebra. Graduate Texts in Mathematics. Springer New York.

[Mac Lane, 1998] Mac Lane, S. (1998). Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition.