

Cesar Analide, Paulo Novais, José Neves RNA - Treino Sigmoid (2)

 $f_A(P,E) = \sum_{n} P \times E$ $f_T(A) = \frac{1}{1 + \mathbf{e}^{-A}}$

 $f_{A}(P,E) = \sum_{n} P \times E$ $f_{T}(A) = \frac{1}{1 + \mathbf{e}^{-A}}$

$$f_A(P,E) = \sum_{n} P \times E$$
$$f_T(A) = \frac{1}{1 + \mathbf{e}^{-A}}$$

 $f_A(P,E) = \sum_{A} P \times E$

$$f_{T}(A) = \frac{1}{1 + \mathbf{e}^{-A}}$$

 $f_{A}(P,E) = \sum_{n} P \times E$ $f_{T}(A) = \frac{1}{1 + \mathbf{e}^{-A}}$

$$f_A(P,E) = \sum P \times E$$

$$f_{T}(A) = \frac{1}{1 + \mathbf{e}^{-A}}$$

 $\varepsilon = OUT_{\mathcal{D}} - OUT_{\mathcal{C}}$

 $\mathbf{E} \leftarrow \mathbf{3} = \mathbf{3}$

 $\varepsilon = OUT_{\mathcal{D}} - OUT_{\mathcal{C}}$

 $\mathbf{E} \leftarrow \mathbf{S} \times P$

 $P_{i+1} = P_i + \mathbf{E} \times f_T$

 $f_A(P,E) = \sum_{n} P \times E$ $f_T(A) = \frac{1}{1 + \mathbf{e}^{-A}}$

