Information Fusion for Environmental Health Assessment

Who? Hawk Weisman hawk@hawkweisman.me http://hawkweisman.me

From? Department of Computer Science Allegheny College

When? March 6th, 2015

Problem

- Assessing the health of an ecosystem...
 - ...is difficult
 - 2 ...is time-consuming
 - ...requires specially-trained professionals

Problem

- Assessing the health of an ecosystem...
 - 1 ...is difficult
 - ...is time-consuming
- 3 ...requires specially-trained professionals
- How to prioritize regions for assessment?

■ Summarize and classify information from multiple sources into a single score

- Summarize and classify information from multiple sources into a single score
 - 1 Discretize region into cells

- Summarize and classify information from multiple sources into a single score
 - 1 Discretize region into cells
 - 2 Machine learning:

- Summarize and classify information from multiple sources into a single score
 - Discretize region into cells
 - 2 Machine learning:
 - Assign scores to known healthy and unhealthy sites

- Summarize and classify information from multiple sources into a single score
 - Discretize region into cells
 - 2 Machine learning:
 - Assign scores to known healthy and unhealthy sites
 - Train classifier with scores (k-fold cross-validation)

- Summarize and classify information from multiple sources into a single score
 - Discretize region into cells
 - 2 Machine learning:
 - Assign scores to known healthy and unhealthy sites
 - Train classifier with scores (k-fold cross-validation)
 - 3 Information fusion:
 - Develop error model for sensors

- Summarize and classify information from multiple sources into a single score
 - Discretize region into cells
 - 2 Machine learning:
 - Assign scores to known healthy and unhealthy sites
 - Train classifier with scores (k-fold cross-validation)
 - Information fusion:
 - Develop error model for sensors
 - Determine value of information in different situations

Summarize and classify information from multiple sources into a single score

- Summarize and classify information from multiple sources into a single score
 - 1 Inexpensive sensors

- Summarize and classify information from multiple sources into a single score
- Inexpensive sensors
 - Soil: moisture, pH, temperature

- Summarize and classify information from multiple sources into a single score
 - 1 Inexpensive sensors
 - **Soil:** moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature

- Summarize and classify information from multiple sources into a single score
 - 1 Inexpensive sensors
 - Soil: moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors

- Summarize and classify information from multiple sources into a single score
- Inexpensive sensors
 - **Soil:** moisture, pH, temperature
- Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors
- Remotely-sensed data

- Summarize and classify information from multiple sources into a single score
- Inexpensive sensors
 - Soil: moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors
- 2 Remotely-sensed data
- Satellite imagery: visual, IR

- Summarize and classify information from multiple sources into a single score
- Inexpensive sensors
 - Soil: moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors
- 2 Remotely-sensed data
- Satellite imagery: visual, IR
 - Aerial photography

- Summarize and classify information from multiple sources into a single score
 - 1 Inexpensive sensors
 - Soil: moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors
 - 2 Remotely-sensed data
 - Satellite imagery: visual, IR
 - Aerial photography
 - Past records

- Summarize and classify information from multiple sources into a single score
- 1 Inexpensive sensors
 - **Soil:** moisture, pH, temperature
 - Water: pH, dissolved oxygen, temperature
 - Atomosphere: gas pollutant sensors
- 2 Remotely-sensed data
 - Satellite imagery: visual, IR
 - Aerial photography
- 3 Past records
 - Temperature, rainfall, etc

Summarize and classify information from multiple sources into a single score

- Summarize and classify information from multiple sources into a single score
 - 1 Use classifier to generate health score

- Summarize and classify information from multiple sources into a single score
 - 1 Use classifier to generate health score
 - 2 Output to GIS, produce heat maps

- Summarize and classify information from multiple sources into a single score
 - 1 Use classifier to generate health score
 - 2 Output to GIS, produce heat maps
 - 3 Prioritize least-healthy areas for investigation

■ Testing the classifier

- Testing the classifier
 - 1 Simulated inputs

- Testing the classifier
 - 1 Simulated inputs
- 2 Real sites with expected scores

- Testing the classifier
 - Simulated inputs
 - 2 Real sites with expected scores
 - k-fold cross-validation

- Testing the classifier
 - 1 Simulated inputs
- 2 Real sites with expected scores
- 3 k-fold cross-validation
- Assessing the Whole System

- Testing the classifier
- 1 Simulated inputs
- 2 Real sites with expected scores
- 3 k-fold cross-validation
- Assessing the Whole System
- 1 Release to environmental health organizations and professionals

- Testing the classifier
- 1 Simulated inputs
- 2 Real sites with expected scores
- 3 k-fold cross-validation
- Assessing the Whole System
- Release to environmental health organizations and professionals
- 2 Collect feedback and assessments

1 Cost: may be expensive at scale

- 1 Cost: may be expensive at scale
- 2 Computationally Expensive: running classifier over large data sets

- 1 Cost: may be expensive at scale
- Computationally Expensive: running classifier over large data sets
- 3 Intedisciplinary: need input from other fields

Questions?