Matematično-fizikalni praktikum 2020/21

10. naloga: Diferenčne metode za parcialne diferencialne enačbe

Enorazsežna nestacionarna Schödingerjeva enačba

$$\left(i\hbar\frac{\partial}{\partial t} - H\right)\psi(x,t) = 0$$

je osnovno orodje za nerelativistični opis časovnega razvoja kvantnih stanj v različnih potencialih. Tu obravnavamo samo od časa neodvisne hamiltonske operatorje

$$H = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) .$$

Z menjavo spremenljivk $H/\hbar \mapsto H$, $x\sqrt{m/\hbar} \mapsto x$ in $V(x\sqrt{m/\hbar})/\hbar \mapsto V(x)$, efektivno postavimo $\hbar = m = 1$,

$$H = -\frac{1}{2}\frac{\partial^2}{\partial x^2} + V(x) \,. \tag{1}$$

Razvoj stanja $\psi(x,t)$ v stanje $\psi(x,t+\Delta t)$ opišemo s približkom

$$\psi(x, t + \Delta t) = e^{-iH\Delta t}\psi(x, t) \approx \frac{1 - \frac{1}{2}iH\Delta t}{1 + \frac{1}{2}iH\Delta t}\psi(x, t), \qquad (2)$$

ki je unitaren in je reda $\mathcal{O}(\Delta t^3)$. Območje $a \leq x \leq b$ diskretiziramo na krajevno mrežo $x_j = a + j\Delta x$ pri $0 \leq j < N$, $\Delta x = (b-a)/(N-1)$, časovni razvoj pa spremljamo ob časih $t_n = n\Delta t$. Vrednosti valovne funkcije in potenciala v mrežnih točkah ob času t_n označimo $\psi(x_j, t_n) = \psi_j^n$ oziroma $V(x_j) = V_j$. Krajevni odvod izrazimo z diferenco

$$\Psi''(x) \approx \frac{\psi(x + \Delta x, t) - 2\psi(x, t) + \psi(x - \Delta x, t)}{\Delta x^2} = \frac{\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n}{\Delta x^2} .$$

Ko te približke vstavimo v enačbo (2) in razpišemo Hamiltonov operator po enačbi (1), dobimo sistem enačb

$$\psi_j^{n+1} - i\frac{\Delta t}{4\Delta x^2} \left[\psi_{j+1}^{n+1} - 2\psi_j^{n+1} + \psi_{j-1}^{n+1} \right] + i\frac{\Delta t}{2} V_j \psi_j^{n+1} = \psi_j^n + i\frac{\Delta t}{4\Delta x^2} \left[\psi_{j+1}^n - 2\psi_j^n + \psi_{j-1}^n \right] - i\frac{\Delta t}{2} V_j \psi_j^n,$$

v notranjih točkah mreže, medtem ko na robu $(j<0 \text{ in } j\geq N)$ postavimo $\psi_j^n=0$. Vrednosti valovne funkcije v točkah x_j uredimo v vektor

$$\mathbf{\Psi}^n = (\psi_0^n, \psi_1^n, \dots, \psi_{N-1}^n)^T$$

in sistem prepišemo v matrično obliko

$$\mathsf{A}\Psi^{n+1} = \mathsf{A}^*\Psi^n, \qquad \mathsf{A} = \begin{pmatrix} d_1 & a & & & & \\ a & d_2 & a & & & & \\ & a & d_3 & a & & & \\ & & \ddots & \ddots & \ddots & \\ & & a & d_{N-2} & a \\ & & & a & d_{N-1} \end{pmatrix} \,,$$

kjer je

$$b = i\frac{\Delta t}{2\Delta x^2}, \qquad a = -\frac{b}{2}, \qquad d_j = 1 + b + i\frac{\Delta t}{2}V_j.$$

Dobili smo torej matrični sistem, ki ga moramo rešiti v vsakem časovnem koraku, da iz stanja Ψ^n dobimo stanje Ψ^{n+1} . Matrika A in vektor Ψ imata kompleksne elemente, zato račun najlažje opraviš v kompleksni aritmetiki¹.

Naloga: Spremljaj časovni razvoj začetnega stanja

$$\Psi(x,0) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} e^{-\alpha^2(x-\lambda)^2/2}$$

v harmonskem potencialu $V(x)=\frac{1}{2}kx^2$, kjer je v naravnih enotah $\alpha=k^{1/4},~\omega=\sqrt{k}$. Analitična rešitev je koherentno stanje

$$\psi(x,t) = \sqrt{\frac{\alpha}{\sqrt{\pi}}} \exp \left[-\frac{1}{2} \left(\xi - \xi_{\lambda} \cos \omega t \right)^{2} - i \left(\frac{\omega t}{2} + \xi \xi_{\lambda} \sin \omega t - \frac{1}{4} \xi_{\lambda}^{2} \sin 2\omega t \right) \right] ,$$

kjer je $\xi=\alpha x,\ \xi_{\lambda}=\alpha\lambda$. Postavi parametre na $\omega=0.2,\ \lambda=10$. Krajevno mrežo vpni v interval [a,b]=[-40,40] z N=300 aktivnimi točkami. Nihajni čas je $T=2\pi/\omega$ – primerno prilagodi časovni korak Δt in stanje opazuj deset period.

Opazuj še razvoj gaussovskega valovnega paketa

$$\psi(x,0) = (2\pi\sigma_0^2)^{-1/4} e^{ik_0(x-\lambda)} e^{-(x-\lambda)^2/(2\sigma_0)^2}$$

v prostoru brez potenciala. Postavi $\sigma_0=1/20,\ k_0=50\pi,\ \lambda=0.25$ in območje [a,b]=[-0.5,1.5] ter $\Delta t=2\Delta x^2$. Časovni razvoj spremljaj, dokler težišče paketa ne pride do $x\approx 0.75$. Analitična rešitev je

$$\psi(x,t) = \frac{(2\pi\sigma_0^2)^{-1/4}}{\sqrt{1 + it/(2\sigma_0^2)}} \exp\left[\frac{-(x-\lambda)^2/(2\sigma_0)^2 + ik_0(x-\lambda) - ik_0^2t/2}{1 + it/(2\sigma_0^2)}\right]$$

 $Dodatna\ naloga$: Z uporabljenim približkom za drugi odvod reda $\mathcal{O}(\Delta x^2)$ dobimo tridiagonalno matriko. Z diferencami višjih redov dobimio večdiagonalno (pasovno) matriko, a dosežemo tudi večjo krajevno natančnost. Diference višjih redov lahko hitro izračunaš v Mathematici s funkcijo

$$FD[m_n, n_s] := CoefficientList[Normal[Series[x^s Log[x]^m, x, 1, n]/h^m], x];$$

kjer je m red diference (odvoda), n število intervalov širine $h = \Delta x$, ki jih diferenca upošteva, in s število intervalov med točko, kjer diferenco računamo, in skrajno levo točko diferenčne sheme. Zgornjo tritočkovno sheme za drugo diferenco dobimo kot FD[2, 2, 1], saj se razpenja čez n=2 intervala, sredinska točka pa je v točki z indeksom s=1.

Tudi korakanje v času je mogoče izboljšati z uporabo Padéjeve aproksimacije za eksponentno funkcijo, glej [1].

Literatura

[1] W. van Dijk, F. M. Toyama, Phys. Rev. E **75**, 036707 (2007).

¹#include <complex.h> v c, #include <complex> v c++, from cmath import * za kompleksne funkcije v Pythonu (sama kompleksna aritmetika pa je vgrajena).