

EEG/MEG 1:

Epoching and AveragingOlaf Hauk

olaf.hauk@mrc-cbu.cam.ac.uk

Event-Related Potentials and Fields (ERPs and ERFs)

Data Averaging

Continuous "raw" data:

Averaged data:

http://imaging.mrc-cbu.cam.ac.uk/meg/IntroEEGMEG

Event-Related Potentials

Event-Related Fields

Information may get lost or distorted during averaging

Tallon-Baudry & Bertrand, TICS 1999

Temporal jitter across trials has a larger effect on higher frequencies, and they are more likely to be attenuated by averaging.

Parametric vs Factorial Designs

Consider parametric analysis/GLM if stimulus variables are continuous.

(still less common in EEG/MEG than in fMRI analysis)

Parametric vs Factorial Designs

Factorial designs may not always be feasible, e.g. in naturalistic paradigms.

The Multivariate Temporal Response Function (mTRF) Toolbox

EEG with eye movements

Dimigen, JEP-G 2011, https://pubmed.ncbi.nlm.nih.gov/21744985/

Deconvolution of EEG signals – UNFOLD toolbox

Thank you

