Causal discovery

Credit: Neal

Refresher

We have considered two settings

- RCTs [*T* ⊥⊥ (*Y*(0), *Y*(1))]
- Neyman Rubin model $[T \perp \!\!\! \perp (Y(0), Y(1))|X]$

Refresher

Under these assumptions, we have addressed several questions

Estimate the Average Treatment Effect (ATE)

$$ATE := \mathbb{E}[Y_i(1) - Y_i(0)]$$

 Taking into account Heteregeneous Treatment Effects and estimate the Conditional Average Treatment Effect (CATE)

$$CATE(x) := \mathbb{E}[Y_i(1) - Y_i(0)|X = x]$$

Refresher

Underlying assumptions in Course 1-Course 3

- The graph is assumed to be known
- It involves only three variables

Some natural questions

- What about more complex situations?
 Some answers in Course 4
- How can we learn the graph?
 Some answers in Course 5

Challenges and principles

- Theory
 - Sometimes infeasible!
- Experts
 - Sometimes infeasible!
- Experimentations
 - Sometimes infeasible
 - Sometimes unethical
 - Costly
- Observations
 - Correlation does not imply causation!

Challenges and principles

- In general, causal discovery from observational data is not possible.
- But it is possible under additional assumptions.
- Several approaches in the litterature
 - Constraint based methods: run local tests of independence to create constraints on space of possible graphs.
 - Noise based methods: find footprints in the noise that imply causal asymmetry.
 - ...

Main steps

- Find skelton
- Find v-structures
- Orient other edges using basic rules

Algorithm 1 SGS

```
Input: P(V)
```

Output: CPDAG \mathcal{G}^*

- 1: Form the complete undirected graph \mathcal{G}^* on vertex set \mathcal{V}
- 2: **for** all X Y in \mathcal{G}^*

and subsets $S \subseteq \mathcal{V} \setminus \{X, Y\}$ **do**

- 3: **if** $\exists S \subseteq V \setminus \{X, Y\}$ such that $X \perp \!\!\!\perp_P Y \mid S$ **then**
- 4: Delete edge X Y from \mathcal{G}^*
- 5: end if
- 6: end for
- 7: **for** all X Z Y in \mathcal{G}^* such that $X \notin Adj(Y, \mathcal{G})$ **do**
- 8: **if** $\not\ni S \subseteq V \setminus \{X, Y\}$ such that $Z \in S$ and $X \perp \!\!\!\perp_P Y \mid S$ **then**
- 9: Orient $X \to Z \leftarrow Y$ in \mathcal{G}^*
- 10: **end if**
- 11: end for
- 12: Recursively apply rules R1-R3 until no more edges can be oriented
- 13: Return \mathcal{G}^*

Fork, chains and v-structures

R1:

R2:

R3:

Basic rules

Blocked paths

A path is said to be blocked by a set of vertices Z if:

- it contains a chain $A \rightarrow B \rightarrow C$ or a fork $A \leftarrow B \rightarrow C$ and $B \in Z$, or
- it contains a collider $A \rightarrow B \leftarrow C$ such that no descendant of B is in Z

Definition

Two (sets of) nodes X and Y are d-separated by a set of nodes Z if all of the paths between (any node in) X and (any node in) Y are blocked by Z. We denote $X \perp\!\!\!\perp_G Y|Z$

Theorem

Two DAGs G_1 and G_2 have the same d-separations iff they have the same skeleton and the same v-structures.

Are T and Y d separated by

- the empty set?
- {*W*₂} ?
- $\{W_2, M_1\}$?
- $\{W_1, M_2\}$?
- $\{W_1, M_2, X_2\}$?

For this DAG : $C \perp\!\!\!\perp_G G | \{X\}$ and $C \not\perp\!\!\!\perp_G G | \{X, H\}$

Link with the conditional independency concept?

- Markov assumption : $X \perp \!\!\! \perp_G Y | Z$ then $X \perp \!\!\! \perp_{\mathbb{P}} Y | Z$
- We can assume that the converse holds, this is the faithfulness assumption

Markov equivalence class

- Under these two assumptions, estimate the d separation in a graph consists in estimating conditional dependencies
- Graphs having the same d separation are said to be Markov equivalent

Completed partially directed acyclic graph (CPDAG)

Let [G] be the Markov equivalence class of a DAG G. The CPDAG G^* of G is the graph:

- With the same skeleton as G;
- Where an edge is directed in G iff it occurs as a directed edge with the same orientation in every graph in [G];
- All other edges are undirected.

- CPDAG coincide with Markov quivalnce classes undr two additional assumption: causal sufficiency (no latent variables) and acyclicity
- Rules R1-R3 ensure these assumptions

- PC algorithm : optimized vrsion of SGS
- Infer causal structure with the PC algorithm?
 - Infer mutual dependencies between variables: skeleton of the causal graph
 - Distinguish between causes and effects: orientation of the v-structures of the causal graph

Independence tests: some examples

Type of variable An example of independence te		
Discrete	χ^2 test	
Gaussian	Test based on the precision matrix	
Non Gaussian continuous	Non parametric tests	

See notebook CI.ipynb for more details

An example

Figure: The initial graph is complete

An example

Figure: One conditions with respect to $S = \emptyset$

Figure: B and C are separated with respect to A

Figure: A and E are separated with respect to D

Figure: B and E are separated with respect to D

Figure: C and E are separated with respect to D

Figure: A and D are separated with respect to {B, C}

Figure: D is not in the set of nodes separating B and C

An example

Algorithm 1 The PC_{pop}-algorithm

1: **INPUT:** Vertex Set V, Conditional Independence Information

18: **until** for each ordered pair of adjacent nodes $i, i: |ad i(C, i) \setminus \{i\}| < \ell$.

2: **OUTPUT:** Estimated skeleton *C*, separation sets *S* (only needed when directing the skeleton afterwards)

```
3: Form the complete undirected graph \tilde{C} on the vertex set V.
```

```
4: \ell = -1; C = \tilde{C}
 5: repeat
 6:
        \ell = \ell + 1
 7:
        repeat
           Select a (new) ordered pair of nodes i, i that are adjacent in C such that |ad i(C,i) \setminus \{i\}| > \ell
 8:
           repeat
 9.
              Choose (new) \mathbf{k} \subseteq ad j(C, i) \setminus \{j\} with |\mathbf{k}| = \ell.
10:
              if i and j are conditionally independent given k then
11:
12.
                 Delete edge i, i
                 Denote this new graph by C
13.
                 Save k in S(i, j) and S(j, i)
14:
              end if
15:
16:
           until edge i, j is deleted or all \mathbf{k} \subseteq adj(C, i) \setminus \{j\} with |\mathbf{k}| = \ell have been chosen
        until all ordered pairs of adjacent variables i and j such that |adj(C,i) \setminus \{j\}| > \ell and k \subseteq I
17:
        ad j(C,i) \setminus \{j\} with |\mathbf{k}| = \ell have been tested for conditional independence
```

An example

Algorithm 2 Extending the skeleton to a CPDAG

INPUT: Skeleton G_{skel} , separation sets S

OUTPUT: CPDAG G

for all pairs of nonadjacent variables i, j with common neighbour k **do**

if $k \notin S(i, j)$ then Replace i - k - j in G_{skel} by $i \rightarrow k \leftarrow j$

end if

end for

In the resulting PDAG, try to orient as many undirected edges as possible by repeated application of the following three rules:

R1 Orient j - k into $j \to k$ whenever there is an arrow $i \to j$ such that i and k are nonadjacent.

R2 Orient i - j into $i \rightarrow j$ whenever there is a chain $i \rightarrow k \rightarrow j$.

R3 Orient i - j into $i \to j$ whenever there are two chains $i - k \to j$ and $i - l \to j$ such that k and l are nonadjacent.

R4 Orient i-j into $i \to j$ whenever there are two chains $i-k \to l$ and $k \to l \to j$ such that k and l are nonadjacent.

Cause or consequence?

- Can we distinguish cause from effect?
- That is distinguish between these two causal graphs

$$X \rightarrow Y$$

or

$$Y \rightarrow X$$

using observational data.

Not always possible!

Cause or consequence?

The example of linear structural equation [f linear]

X cause *Y* if there exists $a \in \mathbb{R}$, ε^Y s.t.

$$Y = aX + \varepsilon^{Y}, X \perp \!\!\! \perp \varepsilon^{Y}.$$

Distinguish cause from consequence? [Shimizu et al., 2006]

Assume that $Y = aX + \epsilon^Y, X \perp \!\!\! \perp \epsilon^Y$ where all r.v. are continuous. Then

$$\exists b \in \mathbb{R}, \varepsilon^X \text{ s.t. } X = bY + \varepsilon^X, Y \perp \!\!\!\perp \varepsilon^X$$

iff (X, ε^X) are Gaussian random variables.

Existence of a non-linear extension of this result.

More on the Bigaussian case (1)

See notebook noise.ipynb

Causal model in the Bigaussian case

Let $(X, Y) \sim \mathcal{N}((0, 0), \Sigma)$.

$$Y = aX + \varepsilon^Y, \varepsilon^Y \perp X$$
 where $X, \varepsilon^Y \sim \mathcal{N}(0, \sigma)$ with $a = C_{X,Y}/V_X$

- Caveat : X = ¹/_a(Y − ε^Y) but ε^Y ≠ Y : ε^Y and Y not independants. Non causal model.
- There exists (b, ϵ^X) s.t.

$$X = bY + \epsilon^X, \epsilon^X \perp X,$$

with
$$b = \frac{aV_X}{a^2V_X + V_{\epsilon_Y}}$$

More on the Bigaussian case (2)

Simulations : sample size n = 2000.

	1	2
1	10.00	3.00
2	3.00	2.00

Table: Σ

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	0.0234	0.0336	0.70	0.4868
X	0.3081	0.0110	28.03	0.0000

Table: Residual standard error: 1.063 on 998 degrees of freedom. Multiple R-squared: 0.4405, Adjusted R-squared: 0.44 ; F-statistic: 785.8 on 1 and 998 DF, p-value: < 2.2e-16

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.0052	0.0725	-0.07	0.9430
Υ	1.4300	0.0510	28.03	0.0000

Table: Residual standard error: 2.291 on 998 degrees of freedom; Multiple R-squared: 0.4405, Adjusted R-squared: 0.44 ;F-statistic: 785.8 on 1 and 998 DF, p-value: < 2.2e – 16

More on the Bigaussian case (3)

Figure: In Gaussian case, we cannot distinguish cause from effect

Non Gaussian example

Model

$$Z \sim \mathcal{N}(0,1), X = Z^3, \epsilon^Y \sim \mathcal{N}(0,9) \text{ and } Y = 2X + \epsilon^Y$$

Non Gaussian example

- In the NON Gaussian setting cause can be distinguished from effect
- Independence tested and accepted for couples (X, ϵ^Y) , (X, eRegYsurX) but not (Y, ϵ^Y) , ni (Y, eRegXsurY).
- X has an influence on Y but Y does not influence X.

Theorem (LiNGAM)

Assume a linear SCM with graph G = (V, E) and a compatible distribution P(V) such that or all $Y \in V$

$$Y = \sum_{X \in Pa(Y)} a_{xy} X + \xi_Y$$

where all ξ_Y are jointly independent and non-Gaussian distributed. Additionally, we require that for all $Y \in V$, $X \in Pa(Y)$, $axy \neq 0$. Then, the graph G is identifiable from P(V).

```
Algorithm 1 LiNGAM
Input: P(V)
Output: G
 1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_n\}
 2: Let S = \{1, \dots, p\} and T = []
 3: repeat
 4: H = []
       for i \in S do
          for j \in S \setminus \{i\} do
              \hat{\xi}_{ij} = X_j - \frac{cov(X_i, X_j)}{var(X_i)} X_i
           end for
          h = \sum_{j \in S \setminus \{i\}} \hat{I}(X_i, \hat{\xi}_{ij})
           H = [H, h]
10:
        end for
11:
     i^* = arg \min_{i \in S} H
13: S = S \setminus \{i^*\}
14: T = [T, i^*]
15: \forall j \in S, X_i = \hat{\zeta}_{i+i}
16: until |S| = 0
17: Append(T, S<sub>0</sub>)
18: Construct a strictly lower triangular matrix by following the order in \mathcal{T}, and estimate the connec-
     tion strengths a_{i,i} by using some conventional covariance-based regression.
19: if a_{i,i} > 0 then
     Add X_i \rightarrow X_i to G
21: end if
22: Return G
```

Theorem (Anm)

Assume a linear SCM with graph G = (V, E) and a compatible distribution P(V) such that or all $Y \in V$

$$Y = f((X \in Pa(Y)) + \xi_Y$$

where all ξ_Y are jointly independent. Then, the graph G is identifiable from P(V).

ANM

```
Algorithm 2 ANM
Input: P(V)
Output: 9
  1: Form an empty graph \mathcal{G} on vertex set \mathcal{V} = \{X_1, \dots, X_p\}
  2: Let S = \{1, \dots, p\} and T = []
  3: repeat
          H = []
          for i \in S do
  5:
              \hat{f}_i: Regress X^i on \{X_i\}_{i \in S \setminus \{i\}}
              \hat{\xi}_{,i} = X_i - \hat{t}_{,i}(X_i)
              h = \mathcal{I}(\{X_i\}_{i \in S \setminus \{i\}}, \mathcal{E}_{i})
              H = [H, h]
  9:
10:
          end for
          i^* = arg \min_{i \in S} H
11.
          S = S \setminus \{i^*\}
12.
          \mathcal{T} = [i^*, \mathcal{T}]
14: until |S| = 0
15: for i \in \{2, \dots, p\} do
          for i \in \{T_1, \dots, T_{i-1}\} do
16:
               \hat{f}_i: Regress X^i on \{X_k\}_{k\in\{\mathcal{T}_1,\cdots,\mathcal{T}_{i-1}\}\setminus\{i\}}
17:
              \hat{\mathcal{E}}_i = X_i - \hat{f}_i(X_i)
18:
              if \{X_k\}_{k\in\{\mathcal{T}_1,\cdots,\mathcal{T}_{j-1}\}\setminus\{l\}}\not\perp_P \xi_j then
19
                  Add X_i \rightarrow X_i to \mathcal{G}
20:
21:
              end if
          end for
22:
23: end for
24: Return G
```