

		 		 Sui	ojeci	t Co	ae: 1	BC2	303
Roll No:									

Printed Page: 1 of 2

BTECH (SEM III) THEORY EXAMINATION 2023-24 DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS M.MARKS: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	$2 \times 7 =$	= 14
Q no.	Question	Marks	C
			O
a.	Determine the greatest lower bound and least upper bound of the set {2,	2	1 .
	$3, 6$ }, if they exist, in the Poset (D24, $/$).		
b.	Express power set of each of these sets.	2	1
	$(1) \{\emptyset, \{\emptyset\}\}$		
	2) {a,{a}}		
c.	Investigate whether the function $f(x) = x^2 - 1$ is injective or not for	2	2
	f: R→R.		
d.	Express $E(x, y, z) = xy + y'z$ into its complete sum-of-products form.	2	2
e.	Construct inverse of the following statement "If I wake up early	2	3
	in the morning, then I will be healthy."		
f.	Show that identity element is unique in a group.	2	4
g.	Compare Euler circuit and Hamiltonian circuit.	2	5

SECTION B

2.	Attempt any three of the following:	$7 \times 3 =$	= 21
Q no.	Question	Marks	CO
a.	Construct the Hasse Diagram for $(P(S), \subseteq)$ where $P(S)$ is a power	•7	1
	set defined on set S={a, b, c}. Determine whether it is a Lattice		
	or not.		
b.	Solve the following Boolean functions using K-map:	7	2
	(i) $F(A,B,C,D) = \sum (m0,m1,m2,m4,m5,m6,m8,m9,m12,m13,m14)$		
	(ii) $F(A,B,C,D) = \sum (0,2,5,7,8,10,13,15)$		
c.	Show the validity of the following argument:	7	3
	hypotheses: "It is not sunny this afternoon and it is colder than m		
	yesterday. We will go swimming only if it is sunny. If we do not go		
	swimming, then we will take a canoe trip. If we take a canoe trip, then		
	we will be home by sunset.		
	conclusion: "We will be home by sunset."		
d.	Let $G = \{1, -1, i, -i\}$ with the binary operation multiplication be	7	4
	an algebraic structure, where $i = \sqrt{-1}$ then determine whether G is		
	an Abelian group. Also if G is cyclic Group, then determine the		
	generator of G.		
e.	Explain Pigeon hole principle. Describe generalized form of Pigeon hole	7	5
	principle. If 6 colors are to paint 37 homes. Show that at least 7 of them		
	will be of same color.		

				Su	bject	t Co	de:	RC2	303
Roll No:									

Printed Page: 2 of 2

BTECH (SEM III) THEORY EXAMINATION 2023-24 DISCRETE STRUCTURES & THEORY OF LOGIC

TIME: 3HRS M.MARKS: 70

SECTION C

3.	Attempt any one part of the following:	$7 \times 1 =$	= 7
Q no.	Question	Marks	CO
a.	Let R be a binary relation on the set of all strings of 0 and 1 such that R	7	1
	$= \{(a,b): a \text{ and } b \text{ have same number of } 0\text{'s}\}.$ Show that whether R is		
	reflexive, symmetric, transitive or a partial order relation.		
b.	Show that (D42, /) is lattice. Compare the distributive and	7	1
	complemented lattice with example.	5 //	

4.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	= 7
Q no.	Question	Marks	CO
a.	Solve the following Boolean function using K-map:	7	2
	F(A,B,C) = (1,2,5,7) and $D(0,4,6)$ using SOP.		
b.	If f: R \rightarrow R, g: R \rightarrow R and h: R \rightarrow R defined by f(x) = $3x^2+2$, g(x) = $7x-5$	7	2
	and $h(x) = 1/x$. Compute the following composition functions.		
	(i) (fogoh)(x) (ii) (gog)(x) (iii) (goh)(x)		

5.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	₹.
Q no.	Question	Marks	CO
a.	Test the validity of the following argument.	7	3
	"If there was a ball game, then traveling was difficult. If they arrived on	(X).	
	time, then traveling was not difficult. They arrived on time. Therefore,		
	There was no ball game."	*	
b.	Describe ∃ and ∀ Quantifiers with example. "There is someone who got	7	3
	an A in the course" convert this sentence into predicate logic using		
	quantifiers. Prove the following argument. All man are mortal. Socrates		
	is a man. Therefore, Socrates is mortal.		

6.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	= 7
Q no.	Question	Marks	CO
a.	Describe Algebraic structure, semigroup, monoid and group. Also	7	4
4	explain the relationship among them.		
b.	Consider group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication modulo 7.	7	4
	(a) Construct the multiplication table of G.		
	(b) Compute 2^{-1} , 3^{-1} , 6^{-1}		
	(c) Compute the orders and subgroups generated by 2 and 3.		
	(d) Is G cyclic?		

7.	Attempt any <i>one</i> part of the following:	$7 \times 1 =$	= 7
Q no.	Question	Marks	CO
a.	Compare bipartite and complete graph with example. Draw K _{3,4} and K ₅ .	7	5
	Explain why these two graphs are not planar.		
b.	Show that $K_{3,3}$ satisfies in equality $ E \le 3 V - 6$, but it is non-	7	5
	planar.(V=No. of Vertices, E=No. of Edges, R=No. of Regions)		