Math221 – Mathematics for Computer Science

S3-2024 Assignment 1

(Each question carries 10 marks)

- 1. Let Z be the set of integers, \mathbb{R} be the set of real numbers, N be the set of natural numbers, $A = \{x \in \mathbb{R}: -5 < x \le 5\}$ and $B = \{x \in \mathbb{N}: -5 < x \le 5\}$. Find the following and specify them either directly or using set builder notations:
 - (i) (Z-R)
 - (ii) (N-R)
 - (iii) (N-Z).
 - (iv) (A B)
 - (v) $\{9,3,8\} \cap (\{-9,9\} \cup \{1,10\})$
- 2. Use element argument method to prove that for any two sets A and B, if $A \subseteq B$, then $P(A) \subseteq P(B)$, where P(A) and P(B) are power sets of A and B respectively. You must state your reasons clearly for every statement in your proof.
- 3. Prove using mathematical induction that if a and r are real numbers and $r \neq 1$,

$$\sum_{i=0}^{n} ar^{i} = \frac{a(r^{n+1} - 1)}{r - 1}$$

for all $n \ge 0$.

- 4. Let $x \in R$. Prove that if $b^2 + 7b + 777$ is an irrational number, then b irrational numbers.
- 5. Using substitution method to prove the following equivalence:

$$(\sim\!\!x \Rightarrow y \lor z) \equiv (\sim\!\!x \land \sim\!\!y \Rightarrow z)$$

6. Let *P*, *Q* and *R* be simplest statements. Determine whether the following statement is a tautology, contradiction or contingent statement:

$$(Q \land P \Rightarrow R) \Rightarrow Q \land R$$

- 7. Prove that for any integer $m \in \mathbb{Z}$, $m^2 + 3m + 9$ is odd.
- 8. Specify the following statement in symbolic form:
 - (i) The sum of an odd integer and an even integer is odd.
 - (ii) Some integers are not natural numbers.
 - (iii) There are computes that do not use any Microsoft product.
- 9. Determine whether the following statements are True or False.
 - (i) $\{a, b\} \not\subset \{a, b\};$
 - (ii) $\emptyset \subseteq P(\{a, b\});$
 - (iii) $\emptyset \in P(\{a, b\});$
 - (iv) $\varnothing \subseteq P(\{a, b\});$
 - (v) $\emptyset \in \{\{\emptyset\}\};$
 - (vi) $\varnothing \subseteq \{\varnothing, a, b\};$
 - (vii) $\{\emptyset\} \in P(\{a,b\});$

10. Start from vertex e, find a minimum spanning tree (MST) of the following graph using *Prim*'s algorithm: Show the minimum weight and the sequence of edges in the MST according to the order added.

