T-Test Materials

Brier Gallihugh, M.S.

2024-07-11

Table of contents

An Introduction to T-tests	1
Assumptions of T-tests	. 1
Normality of Residuals	. 1
Graphical Depiction of Normality of Residuals	2
Statistical Depiction of Normality of Residuals	3
Homogeneity of Variance	3
Graphical Depiction of Homogeneity of Variance	3
Statistical Depiction of Homogeneity of Variance	
Running a T-test	

An Introduction to T-tests

Assumptions of T-tests

Normality of Residuals

```
library(tidyverse)

data <- starwars %>%
   filter(sex == "male" | sex == "female")

model <- lm(height ~ sex, data = data)

residuals <- data.frame(res = residuals(model))

problem <- residuals %>% filter(res > 2.5 | res < -2.5)

nrow(problem)/nrow(data)</pre>
```

Line 4

Filtering for male the female using the filter() function

Line 6

Running a linear regression (that is a t-test here) to get residuals

Line 8

Calculate residuals for the observations

Line 10

Find potentially problematic observations

```
[1] 0.8421053
```

Graphical Depiction of Normality of Residuals

Line 1

We are plotting the residuals here. We give ggplot a geom (i.e., histogram)

Line 2

We also give some other arguments like a density distribution.

Lines 3-8

Here we are basically providing what is needed to draw a normal distribution given the data using the stat_function() function. The col and linewidth arguments simply change the colr and size of the normal curve. The theme_classic() just changes some aesthetic things. I personally prefer this theme for all ggplot2 graphs

Line 10

print will show us the graph output

Statistical Depiction of Normality of Residuals

We can also test the assumption statistically using the shapiro.test() function here

```
shapiro.test(residuals$res)
```

```
Shapiro-Wilk normality test

data: residuals$res

W = 0.84834, p-value = 5.13e-07
```

Homogeneity of Variance

Homogeneity of variance is important even for a basic t-test. Below is how we might go about testing this assumption.

Graphical Depiction of Homogeneity of Variance

Lines 1-2

Graphically we can represent this as a boxplot with the group variable as the x and the outcome as the y. We see this here

Lines 3-4

We again provide a geom for ggplot2 to use and provide a theme() choice here

Statistical Depiction of Homogeneity of Variance

We can also test the assumption using the Bartlett test. This can be shown below

```
Bartlett.test(height ~ sex,data)

Bartlett test of homogeneity of variances

data: height by sex
Bartlett's K-squared = 9.6316, df = 1, p-value = 0.001913
```

Running a T-test

```
t.test(height ~ sex, data = data)
```

Line 1

The t.test() function will take a DV and IV argument as well as the dataframe used. We can see this here

Welch Two Sample t-test

data: height by sex

t = -1.1817, df = 48.471, p-value = 0.2431

alternative hypothesis: true difference in means between group female and group

male is not equal to 0

95 percent confidence interval:

-20.396341 5.293584

sample estimates:

mean in group female mean in group male

171.5714 179.1228