\blacksquare TABLE 9.4 Low Reynolds Number Drag Coefficients (Ref. 7) (Re = $\rho UD/\mu, A = \pi D^2/4)$

	C_D	24.0/Re	22.2/Re 。
	Object	c. Sphere $u \rightarrow 0$	d. Hemisphere
$C_D = \mathfrak{D}/(\rho U^2 A/2)$	(for Re $\lesssim 1$)	20.4/Re	13.6/Re
	Object	a. Circular disk normal to flow $U \longrightarrow Q \longrightarrow D$	b. Circular disk parallel to flow $v \rightarrow \bigcap_{D \rightarrow D}$

EVALUATION SOLUTION CHARACTER OF THE GRAND OF REPRODUCTION OF REPRODUCTION OF REPRODUCTION OF REPRODUCTION OF REPRODUCTION OF THE DIAGRAPH OF THE CONTRACT O

Reynolds number Re = $\rho UD/\mu$	Re = 10 ⁵	Re = 10 ⁵	 Re = 2 × 10 ⁴	Re > 10 ⁴	Re > 10 ⁴	Re > 10 ⁴	Re > 10 ⁴	Re > 104	Re = 10 ⁵
Drag coefficient $C_D = \frac{20}{2}\rho U^2 A$	$ \begin{array}{c cccc} RID & C_D & \\ \hline 0 & 2.2 \\ 0.02 & 2.0 \\ 0.17 & 1.2 \\ 0.33 & 1.0 \\ \end{array} $	$ \begin{array}{c c} R/D & C_D \\ \hline & & & \\ \hline & & \\ \hline & & & \\ \hline & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline $	1.1 1.1	↓ 2.15	1.80 1.65	2.05	1.98	1.0	6(D) C _D 50.1 1.9 0.5 2.5 1.0 2.2 2.0 1.6 3.0 1.6
Reference area A $(b = \text{length})$	A = bD	A = bD.	A = bD	A = bD	A = bD	A = bD	$\dot{A} = bD$	A = bD	A = bD
Shape	Square rod with rounded corners	Rounded D equiliteral triangle	Semicircular shell	Semicircular Cylinder	D STANDS T-beam	- I-bearn	Angle	Hexagon ————————————————————————————————————	Rectangle

■ FIGURE 9.28 Typical drag coefficients for regular two-dimensional objects (Refs. 5, 6).

Source: Munson, Joung + Okiishi
Fundenstals of Fluid Mechanics, Str F.D.