Intégration sur un segment

Sommaire

20.1 Inté	grales d'une fonction continue par morceaux sur un segment 1	
20.1.1	Intégrale d'une fonction en escalier sur un segment	
20.1.2	Intégrale d'une fonction continue par morceaux sur un segment	
20.1.3	Propriétés de l'intégrale des fonctions à valeurs réelles $\dots \dots \dots$	
20.1.4	Intégrales des fonctions à valeurs complexes	
20.2 Dér	ivation et intégration	
20.2.1	Primitives	
20.2.2	Lien entre intégrale et primitive	
20.2.3	Primitives usuelles	
20.2.4	Intégrales et primitives	
20.2.5	Etude d'un exemple	
20.3 Mét	chodes de calcul pratique d'intégrales	
20.3.1	Recherche d'une primitive	
20.3.2	Effectuer un changement de variable $\dots \dots \dots$	
20.3.3	Intégration des fractions rationnelles	
20.3.4	Utilisation des nombres complexes	
20.3.5	L'intégration par parties	

Objectifs :

- Connaître la définition de fonction en escalier sur un segment, et d'intégrale d'une fonction en escalier sur un segment.
- Connaître la définition de fonction continue par morceaux sur un segment.
- Connaître la définition d'intégrale d'une fonction continue par morceaux sur un segment.
- Connaître les différentes propriétés de l'intégrale : linéarité, positivité, croissance, relation de Chasles, inégalité de Cauchy-Schwarz, inégalité de la moyenne.
- Connaître la définition de l'intégrale d'une fonction à valeurs complexes.
- Connaître la définition de primitive d'une fonction.
- Connaître le théorème d'existence de primitives pour les fonctions continues.
- Connaître les primitives usuelles.
- Savoir écrire une primitive comme une intégrale avec un paramètre.
- Savoir calculer des intégrales en utilisant différentes méthodes (calcul direct, changement de variable, décomposition en éléments simples, utilisation des complexes, intégration par parties...)

Dans ce chapitre, nous considérerons deux réels a et b tels que a < b.

20.1 Intégrales d'une fonction continue par morceaux sur un segment

20.1.1 Intégrale d'une fonction en escalier sur un segment

Une fonction $f:[a;b]\to\mathbb{R}$ est dite en escalier s'il existe un entier $n\in\mathbb{N}^*$ et une subdivision $a=a_0< a_1<\ldots< a_{n-1}< a_n=b$ de [a;b] telle que $\forall i\in\{0,\ldots,n-1\},\,\forall x\in]a_i,i+1}$ $[f(x)=\lambda_i\in\mathbb{R}]$.

Définition 1

Soit une fonction f en escalier sur [a;b], avec les mêmes notations que précédemment, le réel $\sum_{i=0}^{n-1} \lambda_i (a_{i+1} - a_i)$ ne dépend pas de la subdivision choisie. Il est appelé intégrale de f sur [a;b] et on le note $\int_a^b f$ ou $\int_a^b f(t)dt$.

Remarque 1

Dans un repère orthornormé direct, on peut interpréter géométriquement l'intégrale $\int_a^b f$ comme la somme d'aires algébriques (c'est à dire d'aires positives ou négatives) de rectangles.

Remarque 2

Les valeurs prises par la fonction f aux points de discontinuité n'influent pas sur la valeurs de l'intégrale $\int_a^b f$.

20.1.2 Intégrale d'une fonction continue par morceaux sur un segment

Théorème 1

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue par morceaux et soit un réel $\varepsilon>0$ fixé. Il existe deux fonctions en escalier sur [a;b] f_1 et f_2 telles que

$$\forall x \in [a; b], f_1(x) \leqslant f(x) \leqslant f_2(x) \text{ et } f_2(x) - f_1(x) \leqslant \varepsilon.$$

Graphiquement, cela signifie qu'on peut encadrer une courbe par des courbes de fonctions en escalier.

FIGURE 20.1 – Encadrement d'une courbe par deux fonctions en escalier

Soit $f:[a;b] \to \mathbb{R}$ une fonction continue par morceaux. Alors les ensembles

$$I(f) = \left\{ \int_a^b \varphi, \ \varphi \text{ est une fonction en escalier sur } [a;b] \text{ telle que } \varphi \leqslant f \right\} \text{ et}$$

$$S(f) = \left\{ \int_a^b \varphi, \, \varphi \text{ est une fonction en escalier sur } [a;b] \text{ telle que } \varphi \geqslant f \right\}$$

admettent respectivement une borne supérieure et une borne inférieure sans $\mathbb R$ qui sont égales.

Définition 2

La borne commune de I(f) et de S(f) est appelée intégrale de f sur [a;b] et est notée $\int_a^b f(t)dt$ ou $\int_{[a;b]} f$.

Remarque 3

- Dans un repère orthonormé direct, on interpréte géométriquement $\int_a^b f$ comme l'aire algébrique de la portion du plan comprise entre les droites d'équations $x=a,\ x=b,$ l'axe des abscisses et la courbe représentative de la fonction f.
- La définition prolonge celle donnée pour les fonctions en escalier ($\varphi = f$ dans ce cas).

Figure 20.2 – L'intégrale comme l'aire algébrique

20.1.3 Propriétés de l'intégrale des fonctions à valeurs réelles

Linéarité de l'intégrale

Notation 1

L'ensemble des fonctions continues par morceaux sur [a;b] est noté $\mathcal{C}_m^0([a;b],\mathbb{R})$.

Proposition 1

L'application

$$\begin{cases}
\mathcal{C}_m^0([a;b],\mathbb{R}) \to \mathbb{R} \\
f \mapsto \int_a^b f
\end{cases}$$

est une forme linéaire.

En d'autres termes $\forall f \in \mathcal{C}_m^0([a;b],\mathbb{R}), \forall g \in \mathcal{C}_m^0([a;b],\mathbb{R}) \text{ et } \forall \lambda \in \mathbb{R}, \int_a^b (\lambda f + g) = \lambda \int_a^b f + \int_a^b g.$

Preuve: Si φ_f et ψ_f sont des fonctions en escalier telles que $\varphi_f \leqslant f \leqslant \psi_f$ et si φ_g et ψ_g sont des fonctions en escalier telles que $\varphi_g \leqslant g \leqslant \psi_g$. Alors pour $\lambda \geqslant 0$ on a

$$\lambda \varphi_f + \varphi_g \leqslant \lambda f + g \leqslant \lambda \psi_f + \psi_g$$

Une combinaison linéaire de fonctions en escalier est une fonction en escalier. On passe alors aux bornes supérieures et inférieures. La démonstration est analogue si $\lambda < 0$.

Relation de Chasles

Théorème 3

Soit $f:[a;b] \to \mathbb{R}$ une fonction continue par morceaux et soit c tel que a < c < b. On a :

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

On a pour $f:[a;b] \to \mathbb{R}$ une fonction continue par morceaux,

$$\int_a^b f = -\int_b^a f.$$

Ordre et intégrales

Proposition 2

Soit $f \in \mathcal{C}_m^0([a;b], \mathbb{R})$. Si $f \geqslant 0$ et si a < b alors $\int_a^b f \geqslant 0$.

De plus, si $f \ge 0$ et ne s'annule qu'en un nombre fini de points, alors $\int_a^b f > 0$.

Preuve : La fonction nulle est une fonction particulière qui minore f. $0 \in I(f)$ avec les mêmes notations. En passant à la borne supérieure de I(f), celle si majore encore l'intégrale de la fonction nulle qui est 0.

Si f ne s'annule qu'en un nombre fini de points, alors pour tout $\varepsilon > 0$, il existe un intervalle [a',b'], inclus dans [a;b] où $f \geqslant \varepsilon$, on a ainsi

$$\int_{a'}^{b'} f \geqslant \int_{a'}^{b'} \varepsilon = (b' - a')\varepsilon > 0$$

D'après la relation de Chasles :

$$\int_{a}^{b} f = \int_{a}^{a'} f + \int_{a'}^{b'} f + \int_{b'}^{b} f$$

Les 1^{re} et 3^{ième} intégrales sont positives ou nulles, la seconde est strictement positive.

Soit a > 0. Quel est le signe de $\int_a^1 \ln(t) dt$?

Y

Proposition 3

Soient f et g deux fonctions continues par morceaux sur [a;b] telles que $f \leq g$.

Alors
$$\int_a^b f \leqslant \int_a^b g$$
.

En particulier on a

$$\left| \int_a^b f \right| \leqslant \int_a^b |f| \, .$$

Preuve : Soit $h = g - f \ge 0$. Par la linéarité de l'intégrale et d'après la proposition 2,

$$\int_{a}^{b} g - \int_{a}^{b} f = \int_{a}^{b} g - f = \int_{a}^{b} h \geqslant 0.$$

On a également pour toute fonction f l'inégalité $-|f| \leq f \leq |f|$, donc en passant à l'intégrale

$$-\int_{a}^{b}|f| \leqslant \int_{a}^{b}f \leqslant \int_{a}^{b}|f|$$

Ce qui donne l'inégalité voulue.

Inégalité de Cauchy-Schwarz

Théorème 4

Soient a et b deux réels distincts, f et g deux fonctions continues par morceaux de [a;b] (ou [b;a]) dans \mathbb{R} . On a :

$$\left(\int_a^b fg\right)^2 \leqslant \left(\int_a^b f^2\right) \left(\int_a^b g^2\right).$$

Preuve : On introduit la fonction P définie par :

$$P(X) = \int_{a}^{b} (f(t) + Xg(t))^{2} dt = \int_{a}^{b} f^{2}(t) dt + 2X \int_{a}^{b} f(t)g(t) dt + X^{2} \int_{a}^{b} g^{2}(t) dt$$

Puisque P(X) est l'intégrale d'une fonction positive, son signe ne change pas $(P \ge 0 \text{ si } a < b, P \le 0 \text{ si } a > b)$. Reste à voir si P est un polynôme de degré 2 ou pas.

Si $\int_a^b g^2(t)dt = 0$. P ne peut pas être de degré 1, car P ne change pas de signe, donc P est constante et donc $\int_a^b f(t)g(t)dt = 0$ et l'inégalité du théorème est vraie.

Si $\int_a^b g^2(t)dt \neq 0$, alors P est un polynôme du second degré dont le signe ne change pas. Ainsi son discriminant est négatif. D'où

$$\Delta = \left(2\int_a^b f(t)g(t)dt\right)^2 - 4\left(\int_a^b f^2(t)dt\right)\left(\int_a^b g^2(t)dt\right) \leqslant 0$$

En divisant par 4, on obtient l'inégalité voulue.

Inégalité de la moyenne

Définition 3

Soit $f:[a;b] \to \mathbb{R}$ une fonction continue par morceaux.

On appelle valeur moyenne de f sur [a;b] le réel $\frac{1}{b-a}\int_a^b f$.

Théorème 5

Soit f une fonction continue sur [a;b] alors il existe $c \in [a;b]$ tel que $f(c) = \frac{1}{b-a} \int_a^b f$.

Remarque 5

Dans un repère orthonormé direct, la valeur moyenne correspond géométriquement à la hauteur d'un rectangle de côtés parallèles aux axes, de base [a;b] et d'aire égale à $\int_a^b f$. Cette hauteur est, pour les fonctions continues, f(c) où c est un point entre a et b.

Le théorème suivant est appelé Inégalité de la moyenne

FIGURE 20.3 – Illustration de la valeur moyenne

Théorème 6

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue par morceaux, $m=\min_{[a;b]}f$ et $M=\max_{[a;b]}f$. On a alors

$$m(b-a) \leqslant \int_a^b f \leqslant M(b-a).$$

soit $m \leqslant \frac{1}{b-a} \int_a^b f \leqslant M$.

Remarque 6

Graphiquement, cela signifie que l'aire $\int_a^b f$ est entre l'aire algébrique du rectangle de côtés parallèles aux axes, de base [a;b] et de hauteur la valeur minimale prise par f et l'aire algébrique du rectangle de côtés parallèles aux axes, de base [a;b] et de hauteur la valeur maximale prise par f.

FIGURE 20.4 – Illustration graphique de l'inégalité de la moyenne

Soit $f:[a;b]\to\mathbb{R}$ une fonction continue par morceaux et M un majorant de |f| sur [a;b]. On a alors

$$\left| \int_{a}^{b} f \right| \leqslant |b - a| M.$$

Pour tout entier n, on définit la suite (u_n) par $u_n = \int_0^1 \frac{x^n}{\sqrt{1+x^2}} dx$.

- 1. Montrer que la suite (u_n) est monotone.
- 2. En déduire qu'elle est convergente.
- 3. Donner un encadrement de u_n puis en déduire la limite de la suite.

20.1.4 Intégrales des fonctions à valeurs complexes

Soit $f:[a;b]\to\mathbb{C}$ une fonction continue par morceaux. On pose :

$$\int_{a}^{b} f = \int_{a}^{b} \operatorname{Re}(f) + i \int_{a}^{b} \operatorname{Im}(f)$$

La linéarité et la relation de Chasles restent vraies.

On peut également établir l'inégalité de la moyenne.

Théorème 7

Soit $f:[a;b]\to\mathbb{C}$ une fonction continue par morceaux et telle que $|f|\leqslant M,$ on a :

$$\left| \int_a^b f \right| \leqslant |b - a| M \quad \text{et} \quad \left| \int_a^b f \right| \leqslant \int_a^b |f|$$

20.2Dérivation et intégration

Dans cette partie I désigne un intervalle non vide de \mathbb{R} .

20.2.1 **Primitives**

Le théorème suivant est admis.

Théorème 8

Soit $f: I \to \mathbb{R}$ une fonction continue. Alors il existe une fonction F dérivable sur I telle que :

$$\forall x \in I, F'(x) = f(x).$$

Définition 5

Sous les conditions du théorème précédent, F est appelée **primitive de** f sur I et on note

$$\forall x \in I, F(x) = \int f(x)dx.$$

Remarque 8

La fonction f admet une infinité de primitives, notons que toute primitive de f sur I s'écrit $F + \lambda$ où λ est une constante.

20.2.2Lien entre intégrale et primitive

Théorème 9

Soit f une fonction continue sur [a;b]. Alors pour toute primitive F de f sur [a;b] on a :

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Exemple 3

Calculer de deux manières différentes l'intégrale $\int_0^{\pi} e^{it} dt$.

Notation 2

Sous les conditions du théorème, on note :

$$\int_a^b f(x)dx = [F(x)]_a^b.$$

Ainsi on peut étendre l'inégalité des accroissements finis pour une fonction à valeurs complexes de classe \mathcal{C}^1 .

Proposition 4

Soient $f \in \mathcal{C}^1([a;b],\mathbb{C}), k \in \mathbb{R}$ tels que $|f'| \leq k$ sur [a;b]. Alors

$$|f(b) - f(a)| \leqslant k |b - a|$$

Preuve :
$$\left| \int_a^b f' \right| = |f(b) - f(a)|$$
. Or, d'après l'inégalité de la moyenne $\left| \int_a^b f' \right| \leqslant |b - a| k$.

20.2.3 Primitives usuelles

Fonction	Primitive	Domaine de définition
e^{ax} avec $a \in \mathbb{R}^*$	$\frac{1}{a}e^{ax}$	\mathbb{R}
x^{α} avec $\alpha \in \mathbb{R} \setminus \mathbb{Z}$	$\frac{\frac{a}{x^{\alpha+1}}}{\frac{\alpha+1}{x^{n+1}}}$	\mathbb{R}_+^*
x^n avec $n \in \mathbb{Z}$ $n < -1$	$\frac{x^{n+1}}{n+1}$ x^{n+1}	\mathbb{R}^*
$x^n \text{ avec } n \in \mathbb{N}$	$\frac{x^{n+1}}{n+1}$	${\mathbb R}$
$\frac{1}{x}$	$\ln x $	\mathbb{R}^*
$\cosh x$	$\sinh x$	\mathbb{R}
$\sinh x$	$\cosh x$	\mathbb{R}
$\tanh x$	$\ln \cosh x$	\mathbb{R}
$ coth x = \frac{1}{\tanh x} $	$\ln \sinh x $	\mathbb{R}^*
$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$	$\tanh x$	\mathbb{R}
$\frac{1}{\sinh^2 x} = \coth^2 x - 1$	$-\coth x$	ℝ*
$\cos x$	$\sin x$	\mathbb{R}
$\sin x$	$-\cos x$	\mathbb{R}
$\tan x$	$-\ln \cos x $	$x \in \mathbb{R} \ x \not\equiv \frac{\pi}{2} \ \mathbf{mod} \ \pi$
$\cot x = \frac{1}{\tan x}$	$\ln \sin x $	$\mathbb{R}\setminus\mathbb{Z}\pi$
$\frac{1}{\cos^2 x} = 1 + \tan^2 x$	$\tan x$	$x \in \mathbb{R} \ x \not\equiv \frac{\pi}{2} \ \mathbf{mod} \ \pi$
$\frac{1}{\sin^2 x} = 1 + \cot^2 x$	$-\cot x$	$\mathbb{R}\setminus\mathbb{Z}\pi$

Primitive	Domaine de définition
$\arcsin x$] - 1;1[
$\arctan x$	\mathbb{R}
$\frac{1}{2}\ln\left \frac{1+x}{1-x}\right $	$\mathbb{R}\setminus\{-1;1\}$
$\ln(x + \sqrt{x^2 + 1})$	\mathbb{R}
$\ln\left x+\sqrt{x^2-1}\right $	$]-\infty;-1[\cup;]1;+\infty[$
	$\arcsin x$ $\arctan x$ $\frac{1}{2} \ln \left \frac{1+x}{1-x} \right $ $\ln(x+\sqrt{x^2+1})$

20.2.4 Intégrales et primitives

Soit $f: I \to \mathbb{C}$ une fonction continue et $a \in I$.

Proposition 5

On considère l'application $F:I\to\mathbb{C}$ définie par

$$\forall x \in I, F(x) = \int_{a}^{x} f(t)dt$$

F est une fonction de x.

F est l'unique primitive de f qui s'annule en a.

Preuve : La preuve de cette proposition repose sur le théorème suivant.

Théorème 10

Avec les mêmes notations F est dérivable (donc continue) sur I et F' = f.

Preuve : Soit $x_0 \in I$. On a :

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = \frac{1}{|x - x_0|} \left| \int_a^x f(t)dt - \int_a^{x_0} f(t)dt - (x - x_0)f(x_0) \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_a^x f(t)dt + \int_{x_0}^a f(t)dt - \int_{x_0}^x f(x_0)dt \right|$$

$$= \frac{1}{|x - x_0|} \left| \int_{x_0}^x (f(t) - f(x_0))dt \right| \leqslant \frac{1}{|x - x_0|} \int_{x_0}^x |f(t) - f(x_0)|dt$$

Or f est continue (en x_0), donc $\forall \varepsilon > 0$, $\exists \eta > 0$ tel que $\forall x \in I$ tel que $|x - x_0| \leq \eta$ alors pour tout t entre x et x_0 tel que $|t - x_0| \leq \eta$ on a $|f(t) - f(x_0)| < \varepsilon$. Ainsi, pour x suffisamment proche de x_0

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| \leqslant \frac{1}{|x - x_0|} \int_{x_0}^x \varepsilon = \varepsilon$$

Donc

$$\lim_{x \to x_0} \left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| = 0$$

ce qui montre que F est dérivable en x_0 et que $F'(x_0) = f(x_0)$. C'est ainsi vrai pour tout élément de I.

Corollaire 2

Si f est de classe \mathcal{C}^k sur I alors, F est de classe \mathcal{C}^{k+1} sur I.

20.2.5 Etude d'un exemple

Exemple 4

Soit la fonction h définie sur $]0, +\infty[$ par $h: t \mapsto \frac{e^t}{t}$. On note H une primitive de h sur $]0, +\infty[$. On considère la fonction G définie par :

$$G: x \mapsto \int_{x}^{x^2} \frac{e^t}{t} dt.$$

- 1. Montrer que G est définie sur $]0, +\infty[$.
- 2. En utilisant la représentation graphique ci-contre de h, donner une interprétation graphique de G(2), de $G\left(\frac{1}{2}\right)$. Que vaut G(1)?
- 3. Donner en fonction de x le signe de G(x).
- 4. Comparer G(x), $e^x \ln(x)$ et $e^{x^2} \ln(x)$. En déduire les limites de G en 0 et en $+\infty$. Déterminer

$$\lim_{x \to +\infty} \frac{G(x)}{x}.$$

- 5. En déduire le comportement de la courbe représentative de G au voisinage de $+\infty$.
- 6. Justifier que G est dérivable sur $]0,+\infty[$ et déterminer
- 7. Montrer que $G'(x) > 0 \iff x^2 x + \ln 2 > 0$. Etablir le tableau de variation de G et tracer sa courbe représentative.

Soit
$$f(x) = \int_x^{2x} \frac{dt}{\sqrt{4+t^4}}$$
.

Soit $f(x) = \int_x^{2x} \frac{dt}{\sqrt{4+t^4}}$. Montrer que f est définie sur $\mathbb R$ et qu'elle est impaire.

Méthodes de calcul pratique d'intégrales 20.3

La méthode utilisée dépendra de la fonction à intégrer. Remarquons que plusieurs méthodes peuvent être utilisées dans certains cas.

20.3.1 Recherche d'une primitive

Pour trouver l'intégrale $\int_a^b f(t)dt$, on peut chercher une primitive de f.

Exemple 6 Calculer

$$\int_0^1 (x^2 - x + 3)e^x dx.$$

 $\int_0^1 (x^2 - x + 3)e^x dx$ On cherchera une primitive sous la forme $(ax^2 + bx + c)e^x$

Effectuer un changement de variable 20.3.2

Règle 2

Soit f une fonction continue sur un intervalle I de \mathbb{R} . Soit u une fonction continue, strictement monotone, dérivable, de dérivée continue sur [a;b] (a et b sont deux réels vérifiant a < b) et telle que :

$$[u(a), u(b)] \subset I$$
 ou $[u(b), u(a)] \subset I$

Alors,

$$\int_{a}^{b} f(u(x))u'(x)dx = \int_{u(a)}^{u(b)} f(t)dt$$

Concrètement un changement de variable comporte trois étapes :

- 1. On effectue le changement de variable t = u(x).
- 2. On dérive dt = u'(x)dx.
- 3. On remplace a par u(a), b par u(b) et x par $u^{-1}(t)$ qu'il faut déterminer.

Exemple 7

Donner une primitive de $x \mapsto \frac{e^x}{1 + e^{2x}}$ sur \mathbb{R} .

Exemple 8

Calculer

$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2(x) \sin(x) dx \text{ et } J = \int_0^{\pi} \cos^3(x) \sin^4(x) dx$$

Les règles suivantes, appelées règles de Bioche ne sont pas à connaître, il peut néanmoins être intéressant de retenir les changements de variables.

Règle 3

Lorsqu'on veut intégrer f une fraction rationnelle en $\sin x$ et $\cos x$, les changements de variable suivants sont utiles :

- $-u = \cos x \operatorname{si} f(-x) = -f(x)$
- $u = \sin x \text{ si } f(\pi x) = -f(x)$
- $u = \tan x \operatorname{si} f(x + \pi) = -f(x)$
- Dans tout autre cas on pose $u = \tan \frac{x}{2}$ et on a $\cos x = \frac{1-u^2}{1+u^2}$, $\sin x = \frac{2u}{1+u^2}$ et $dx = \frac{2du}{1+u^2}$.

Trouver les primitives de $\frac{\sin x}{3 + \sin^2 x}$ et de $\frac{1}{1 - \sin x}$

20.3.3 Intégration des fractions rationnelles

Règle 4

Pour intégrer une fraction rationnelle, on peut la décomposer en éléments simples.

Proposition 6

Une primitive sur \mathbb{C} de $t \mapsto (t-a)^n$ où $a \in \mathbb{C}$ et $n \in \mathbb{Z} \setminus \{-1\}$ est $t \mapsto \frac{(t-a)^{n+1}}{n+1}$.

Preuve : Il suffit de dériver!

 ${\bf Calculer}$

$$I = \int_{1}^{2} \frac{1}{x(x^2 + 1)} dx.$$

${\bf 20.3.4}\quad {\bf Utilisation\ des\ nombres\ complexes}$

Règle 5

Il est parfois judicieux de réécrire le sinus et le cosinus grâce à l'exponentielle complexe.

Exemple 11

Calculer

$$I = \int_0^{\pi} e^{2x} \cos x dx$$
 et $K = \int_0^{\pi} e^{2x} \sin x dx$.

20.3.5 L'intégration par parties

Proposition 7

Soient u et v deux fonctions de classe C^1 sur [a;b]. Alors on a :

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx$$

Preuve : Elle découle directement de :

Proposition 8

Soient u et v deux fonctions de classe \mathcal{C}^1 sur un intervalle I de \mathbb{R} . Alors on a :

$$\int u'(x)v(x)dx = [u(x)v(x)] - \int u(x)v'(x)dx$$

Preuve : On sait que (uv)' = u'v + uv' donc u'v = (uv)' - uv'. On intègre et on obtient le résultat de la proposition.

$$I = \int_{-\frac{\pi}{2}}^{\pi} (-x^2 + 2x - 3)\sin(x)dx.$$

Concrètement la principale difficulté sera de bien choisir la fonction u' à intégrer et la fonction v à dériver. Citons quelques cas remarquables :

- Si la fonction à intégrer comporte un ln on dérive la fonction ln.
- Si la fonction à intégrer comporte une arctan on dérive la fonction arctan.
- Si la fonction à intégrer est de la forme polynôme \times cos, sin ou e^{ax} on dérive le polynôme.

Exemple 13

| Donner les primitives des fonctions suivantes :

$$f(x) = x \ln(x^2 + 1)$$
 $g(x) = x \arctan x$ $h(x) = (-x^2 + 2x - 3) \sin x$

Autoévaluation

Objectifs principaux

Compétences indispensables à acquérir sur ce chapitre.

Objectif	
Connaître la définition d'intégrale comme une aire algébrique	
Savoir utiliser la relation de Chasles	
Savoir majorer ou minorer une intégrale	
Connaître la définition de primitive	
Connaître les primitives usuelles	
Calculer une intégrale par recherche d'une primitive, ou changement de variable	
Réaliser une intégration par parties	

Objectifs secondaires

D'autres points à connaître lorsque les bases sont acquises.

Objectif	
Connaître l'approximation d'une intégrale par la méthode des rectangles	
Connaître l'inégalité de la moyenne	
Intégrer une fonction à valeurs complexes	
Savoir dériver une fonction définie par une intégrale	
Calculer une intégrale d'une fraction rationnelle	
Calculer une intégrale en utilisant l'exponentielle complexe	

Perfectionnement

Pour maîtriser complétement le chapitre.

Objectif	Evaluation
Connaître l'inégalité de Cauchy-Schwarz	
Connaître les règles de Bioche	