Ghost Battery

Schema generale logico

Funzionamento

la batteria è scollegabile mediante switch manuale

quando la batteria è collegata il regolatore è acceso e genera i 5V per far funzionare RaspBerry quando USB è connessa da esterno i dati sono passanti e Raspberry rileva USB connessa stesso discorso per USB OTG, se abilitata la scheda è trasparente

quando è connessa una USB esterna Raspberry può decidere di alimentarsi da USB anziché da batteria abilitando lo switch PWR_ENA

quando è connessa una USB esterna Raspberry può decidere di ricaricare la batteria abilitando lo switch CH_ENA

i due non sono mutuamente esclusivi

in caso di USB OTG Raspberry si deve occupare di disabilitare ricarica batteria e alimentazione da USB

Author: Bruno Dalvit version: 0.1c Date: 9/6/2019

Stati

Stati di funzionamento

Stato GhostBattery	Stato RaspBerry	Stato batteria Descrizione			
Battery Off CH_ENA X PWR_ENA Off	Off	Batteria sconnessa e non monitorata/monitorabile	Batteria scollegata mediante switch manuale – Raspberry non alimentato		
Battery Off CH_ENA X PWR_ENA Off	On	Batteria sconnessa e non monitorata/monitorabile manuale – Raspberry alimentato mediante connessione USB (PER_E abilitato), se si sconnette la USB Raspberry muore			
Battery On CH_ENA Off PWR_ENA Off	Off	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile	berry alimentato dai 5 V dello step-up,		
Battery On CH_ENA Off PWR_ENA Off	On	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile	Batteria connessa dunque Raspberry alimentato dai 5 V dello step-up, Raspberry acceso e funzionante anche senza USB esterna, possibilità di gestir (e alimentare) periferiche in modalità USB master		
Battery On CH_ENA On PWR_ENA Off	Off	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile e in carica	Batteria connessa dunque Raspberry alimentato dai 5 V dello step-up, Raspberry spento da software, batteria in carica da USB esterna		
Battery On CH_ENA On PWR_ENA Off	On	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile e in carica	Batteria connessa dunque Raspberry alimentato dai 5 V dello step-up, Raspberry acceso e funzionante anche senza USB esterna, no possibilità di gestire (e alimentare) periferiche in modalità USB master, batteria in carica		
Battery On CH_ENA Off PWR_ENA On	Off	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile, non in carica	Batteria e USB esterna connesse dunque Raspberry alimentato dai 5 V della USB con supporto dello step-up per picchi di assorbimento, Raspberry spento da software, batteria non in carica		
Battery On CH_ENA Off PWR_ENA On	On	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile, non in carica	Batteria e USB esterna connesse dunque Raspberry alimentato dai 5 V della USB con supporto dello step-up per picchi di assorbimento, Raspberry acceso e funzionante, no possibilità di gestire (e alimentare) periferiche in modalità USB master		

Battery On CH_ENA On PWR_ENA On	Off	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile e in carica	Batteria e USB esterna connesse dunque Raspberry alimentato dai 5 V della USB con supporto dello step-up per picchi di assorbimento, Raspberry spento da software, batteria in carica da USB esterna
Battery On CH_ENA On PWR_ENA On	On	Batteria connessa, step- up acceso, Raspberry alimentato, batteria monitorabile e in carica	Batteria e USB esterna connesse dunque Raspberry alimentato dai 5 V della USB con supporto dello step-up per picchi di assorbimento, Raspberry acceso e funzionante anche senza USB esterna, no possibilità di gestire (e alimentare) periferiche in modalità USB master, batteria in carica

Nota: le corrette gestioni di CH_ENA e PWR_ENA sono rimandate al Raspberry.

Forma scheda

LA scheda assumerà l'area colorata di rosso. Main USB è l'ingresso della USB esterna.

Saranno previste due mircoUSB in corrispondenza di USB e PWR del RaspBerry per portare dati e poternza al RaspBerry. In alternativa all amicroUSB PWR è possibile alimentare RaspBerry dai 5V del connettore.

Verranno utilizzati gli ingressi GPIO2 e GPIO3 per I2C monitor della batteria Verranno utilizzati GPIO4 e GPIO14 per abilitare la ricarica della batteria e l'alimentazione mediante uSB esterna.

Nota: sarà necessario fornire dei rimandi cablati per USB dati ed eventualmente per USB PWR, con conseguente ingombro.

L'alternativa è progettare una scheda da posizionare vicina alla batteria di forma totalmente indipendente dal raspberry ma in quel caso è neessario uscire con un cavetto con +%V, GND, SDA, SCL, e i due enable per ricarica alimentazione diretta da USB.

Specifiche

Consumi

fonte: https://raspi.tv/2017/how-much-power-does-pi-zero-w-use

	Zero	Zero W	A+	Α	B+	В	Pi2B	Pi3B
	/mA	/mA	/mA	/mA	/mA	/mA	/mA	/mA
Idling	100	120	100	140	200	360	230	230
Loading LXDE	140	160	130	190	230	400	310	310
Watch 1080p Video	140	170	140	200	240	420	290	290
Shoot 1080p Video	240	230	230	320	330	480	350	350

pertanto un regolatore in grado di fornire 1A è più che sufficiente

Ricarica batteria

Corrente ricarica batteria 0,5C, considerando una batteria da 2000mAh ricarica 1A.

Attualmente la massima corrente di ricarica è pari a 500 mA.

Tempo ricarica ≈ (capacità batteria / 500) * 1,2

esempio batteria da 2000 mAh, tempo ricarica completa \approx (2000 / 500) * 1,2 = 4,8 ore = 4 ore 50 minuti

Migliorie

- 1. circuito misura corrente assorbita da Raspberry per stima consumo in tempo reale
- 2. circuito misura corrente assorbita/erogata da batteria per stima capacità cumulata/residua

- 3. valutare possibilità di carica batteria con corrente superiore a 500 mA
- 4. valutare possibilità di carica batteria da fonte alternativa a USB (e con range di tensione esteso)
- 5. aggiungere uno o più pulsanti gestiti direttamente da Raspberry

Problemi

Item ID	Problem1
Descrizione	per come è fatto ora Raspberry non si accende semplicemente collegandolo alla USB ma deve essere alimentato da batteria e deve essere compiuta un'azione specifica. Stesso discorso per ricarica batteria: viene abilitata solo quando è acceso e la imposta. Problema nel caso di batteria morta o assente
Soluzione 1	invertire la logica, ovvero alimentazione da USB e ricarica batterie sempre attive tranne nel caso in cui Raspberry le disabiliti esplicitamente. FATTO
stato	Implementata in data 5/6/19
Note	Va valutata gestione USB OTG in questo caso

Item ID	Enhancement1
Descrizione	Corrente ricarica batteria limitata a 500 mA, meglio portarla a 1A
Soluzione 1	Utilizzare caricabatterie MCP73830
stato	Soluzione individuata in data 5/6/19
Note	Porta USB non sempre in grado di erogare 1A di corrente