Chapter 25: All-Pairs Shortest-Paths

Some Algorithms

- ✓ When no negative edges
 - Using Dijkstra's algorithm with array: $O(V^3)$
 - Using Binary heap implementation: O(VE Ig V)
 - Using Fibonacci heap: O(VE + V2log V)
- When no negative cycles
 - Floyd-Warshall [1962]: O(V3) time
- When negative cycles
 - Using Bellman-Ford algorithm: $O(V^2 E) = O(V^4)$
 - Johnson [1977]: O(VE + V2log V) time based on a clever combination of Bellman-Ford and Dijkstra

A dynamic programming approach

- Optimal Substructure (allows recursion)
 - ✓ solution to the problem contains optimal solutions to subproblems.
- Overlapping Subproblems (allows speed up)
 - ✓a recursive algorithm revisits the same subproblem over and over again.
- Compute the value of an optimal solution in a bottom-up fashion.

The structure of an optimal solution

Consider a shortest path p from vertex i
to vertex j, and suppose that p contains
at most m edges. Assume that there are
no negative-weight cycles. Hence, m ≤ n-1
is finite.

The structure of an optimal solution (cont.)

- If i = j, then p has weight 0 and no edge
- If $i \neq j$, we decompose p into $i \stackrel{p}{\sim} k \rightarrow j$ where p' contains at most m-1 edges.
- Moreover, p' is a shortest path from i to k and $\delta(i,j) = \delta(i,k) + w_{kj}$, where $\delta(i,j)$ denote the shortest weight path from i to j

Recursive solution to the all-pairs shortest-path problem

• Define: $l_{ij}^{(m)}$ = minimum weight of any path from i to j that contains at most m edges.

$$\cdot \mid_{ij}(0) = \begin{cases} 0 & \text{if } i = j \\ \infty & \text{if } i \neq j \end{cases}$$

• Then $I_{ij}^{(m)} = \min\{I_{ij}^{(m-1)}, \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}\} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$ (why?)

Recursive solution to the all-pairs shortest-path problem

 Since shortest path from i to j contains at most n-1 edges,

$$\delta(i,j) = I_{ij}^{(n-1)}$$

- Computing the shortest-path weight bottom up:
 - Compute $L^{(1)}$, $L^{(2)}$, ..., $L^{(n-1)}$, where $L^{(m)}=(I_{ij}^{(m)})$ for all i and j
 - Note that $L^{(1)} = W = Adjacency matrix$.

Example:

$$\mathbf{W} = L^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(2)} = L^{(1)} \times W$$

$$L^{(1)} = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix} \times W = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 0 & \infty & \infty & \infty & 6 & 0 \end{bmatrix} = L^{(2)} = \begin{bmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{bmatrix}$$

$$\begin{aligned} & |_{ij}^{(2)} = \min_{1 \le k \le 5} \{|_{ik}^{(1)} + w_{kj}\} \\ & = \min \{|_{i1}^{(1)} + w_{1j,}|_{i2}^{(1)} + w_{2j,}|_{i3}^{(1)} + w_{3j,}|_{i4}^{(1)} + w_{4j,}|_{i5}^{(1)} + w_{5j}\} \\ & |_{14}^{(2)} = \min \{|_{11}^{(1)} + w_{14,}|_{12}^{(1)} + w_{24,}|_{13}^{(1)} + w_{34,}|_{14}^{(1)} + w_{44,}|_{15}^{(1)} + w_{54}\} \\ & = \min\{\infty, 4, \infty, \infty, 2\} = 2 \end{aligned}$$

Matrix Multiplication

Let
$$I^{(m-1)} \rightarrow a$$

 $w \rightarrow b$ $C_{ij} = \sum_{k=1 \text{ to } n} a_{ik} \cdot b_{kj}$
 $I^{(m)} \rightarrow c$ $I_{ij}^{(m)} = \min_{1 \le k \le n} \{I_{ik}^{(m-1)} + w_{kj}\}$
 $+ \rightarrow \bullet$

time complexity: O(n3)

$$L^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$L^{(3)} = L^{(2)} \times W$$

$$L^{(4)} = L^{(3)} \times W$$

EXTENDED-SHORTEST-PATHS(L, W)

• Given matrices L^(m-1) and W return L^(m)

```
1 n \leftarrow L.row
2 Let L' = (l'_{ij}) be a new n x n matrix
3 \text{ for } i = 1 \text{ to } n
4 for j = 1 to n
           |'<sub>ii</sub> = ∞
          for k = 1 to n
                l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})
8 return L'
```

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

$$L^{(1)} = L^{(0)}$$
 • $W = W$
 $L^{(2)} = L^{(1)}$ • $W = W^2$
 $L^{(3)} = L^{(2)}$ • $W = W^3$

$$L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}$$

SLOW-ALL-PAIRS-SHORTEST-PATHS(W)

```
1  n = W.rows
2  L<sup>(1)</sup> = W
3  for m = 2 to n-1
4    let L<sup>(m)</sup> be a new n x n matrix
5  L<sup>(m)</sup> = EXTENDED-SHORTEST-PATHS(L<sup>(m-1)</sup>, W)
6  return L<sup>(n-1)</sup>
```

Time complexity: $O(n^4)$

Improving the running time

$$L^{(1)} = W$$
 $L^{(2)} = W^2 = W \cdot W$
 $L^{(4)} = W^4 = W^2 \cdot W \cdot W = W^2 \cdot W^2$
 \vdots

 $L^{(n)} = W^n = W^{n/2} \cdot W^{n/2}$ i.e., using repeating squaring!

Time complexity: O(n3lg n)

FASTER-ALL-PAIRS-SHORTEST-PATHS

FASTER-ALL-PAIRS-SHORTEST-PATHS(W)

- 1. n = W.row
- $2. L^{(1)} = W$
- 3. m = 1
- 4. while m < n-1
- 5. let $L^{(2m)}$ be a new n x n matrix
- 6. $L^{(2m)} = Extend-Shorest-Path(L^{(m)}, L^{(m)})$
- 7. m = 2m
- 8. return L^(m)

Some Algorithms

- ✓ When no negative edges
 - Using Dijkstra's algorithm with array: $O(V^3)$
 - Using Binary heap implementation: O(VE Ig V)
 - Using Fibonacci heap: O(VE + V2log V)
- When no negative cycles
 - Floyd-Warshall [1962]: O(V3) time
- When negative cycles
 - Using Bellman-Ford algorithm: $O(V^2 E) = O(V^4)$
 - Johnson [1977]: O(VE + V2log V) time based on a clever combination of Bellman-Ford and Dijkstra

The Floyd-Warshall algorithm

- A different dynamic programming formulation
- The structure of a shortest path: Let $V(G)=\{1, 2, ..., n\}$. For any pair of vertices i, j $\in V$, consider all paths from i to j whose intermediate vertices are drawn from $\{1, 2, ..., k\}$, and let p be a minimum weight path among them.

The structure of a shortest path

- If k is not in p, then all intermediate vertices are in {1, 2,..., k-1}.
- If k is an intermediate vertex of p, then p can be decomposed into i $\stackrel{p_1}{\sim}$ k $\stackrel{p_2}{\sim}$ j where p_1 is a shortest path from i to k with all the intermediate vertices in $\{1, 2, ..., k-1\}$ and p_2 is a shortest path from k to j with all the intermediate vertices in $\{1, 2, ..., k-1\}$.

p₁: all intermediate vertices in {1, 2, 3...., k-1}

p₂: all intermediate vertices in {1, 2, 3...., k-1}

P: all intermediate vertices in {1, 2, 3...., k}

A recursive solution to the allpairs shortest path

• Let $d_{ij}^{(k)}$ = the weight of a shortest path from vertex i to vertex j with all intermediate vertices in the set $\{1, 2, ..., k\}$.

$$d_{ij}^{(k)} = w_{ij}$$
 if $k = 0$
= $min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})$ if $k \ge 1$
 $D^{(n)} = (d_{ij}^{(n)})$ the final solution!

FLOYD-WARSHALL(W)

```
1. n = W.rows
 2. D^{(0)} = W
 3. for k = 1 to n
 4. Let D^{(k)} = (d_{ij}^{(k)}) be a new n \times n matrix
 5. for i = 1 to n
 6. for j = 1 to n
                d_{ij}^{(k)} = \min (d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{ki}^{(k-1)})
 8. return D(n)
Complexity: O(n<sup>3</sup>)
```

Example

$$D^{(0)} = \begin{bmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{bmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$d_{ij}^{(1)} = \min (d_{ij}^{(0)}, d_{ik}^{(0)} + d_{kj}^{(0)}) \quad k = 1$$

$$d_{41}^{(1)} = \min (d_{41}^{(0)}, d_{41}^{(0)} + d_{11}^{(0)}) = 2$$

$$d_{42}^{(1)} = \min (d_{42}^{(0)}, d_{41}^{(0)} + d_{12}^{(0)}) = 5$$

$$d_{43}^{(1)} = \min (d_{43}^{(0)}, d_{41}^{(0)} + d_{13}^{(0)}) = -5$$

$$d_{44}^{(1)} = \min (d_{44}^{(0)}, d_{41}^{(0)} + d_{14}^{(0)}) = 0$$

$$d_{45}^{(1)} = \min (d_{45}^{(0)}, d_{41}^{(0)} + d_{15}^{(0)}) = -2$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$k = 1 \qquad \qquad k = 2$$

$$\begin{aligned} &d_{41}^{(2)} = \min \left(d_{41}^{(1)}, \, d_{42}^{(1)} + d_{21}^{(1)} \right) = 2 \\ &d_{42}^{(2)} = \min \left(d_{42}^{(1)}, \, d_{42}^{(1)} + d_{22}^{(1)} \right) = 5 \\ &d_{43}^{(2)} = \min \left(d_{43}^{(1)}, \, d_{42}^{(1)} + d_{23}^{(1)} \right) = -5 \\ &d_{44}^{(2)} = \min \left(d_{44}^{(1)}, \, d_{42}^{(1)} + d_{24}^{(1)} \right) = 0 \\ &d_{45}^{(2)} = \min \left(d_{45}^{(1)}, \, d_{42}^{(1)} + d_{25}^{(1)} \right) = -2 \end{aligned}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$k = 2$$

$$k = 3$$

$$d_{41}^{(3)} = \min (d_{41}^{(2)}, d_{43}^{(2)} + d_{31}^{(2)}) = 2$$

$$D_{42}^{(3)} = \min (d_{42}^{(2)}, d_{43}^{(2)} + d_{32}^{(2)}) = -1$$

$$d_{43}^{(3)} = \min (d_{43}^{(2)}, d_{43}^{(2)} + d_{33}^{(2)}) = -5$$

$$d_{44}^{(3)} = \min (d_{44}^{(2)}, d_{43}^{(2)} + d_{34}^{(2)}) = 0$$

$$d_{45}^{(3)} = \min (d_{45}^{(2)}, d_{43}^{(2)} + d_{35}^{(2)}) = -2$$

Constructing a shortest path

- $\pi^{(0)}$, $\pi^{(1)}$,..., $\pi^{(n)}$
- $\pi_{ij}^{(k)}$: is the predecessor of the vertex j on a shortest path from vertex i with all intermediate vertices in the set $\{1,2,...,k\}$.

$$\pi_{ij}^{(0)} = NIL \text{ if } i=j \text{ or } w_{ij} = \infty$$

$$= i \text{ if } i \neq j \text{ and } w_{ij} < \infty$$

$$\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)} \text{ if } d_{ij}^{(k-1)} \leq d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

$$= \pi_{kj}^{(k-1)} \text{ if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

 p_1 : all intermediate vertices in $\{1, 2, 3...., k-1\}$

p₂: all intermediate vertices in {1, 2, 3...., k-1}

P: all intermediate vertices in {1, 2, 3...., k}

Example

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(0)} = \begin{pmatrix} N & 1 & 1 & N & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & N & N \\ 4 & N & 4 & N & N \\ N & N & N & 5 & N \end{pmatrix} \qquad \Pi^{(1)} = \begin{pmatrix} N & 1 & 1 & N & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & N & N \\ 4 & 1 & 4 & N & 1 \\ N & N & N & 5 & N \end{pmatrix} \quad \mathbf{K} = \begin{pmatrix} N & 1 & 1 & N & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & N & N \\ 4 & 1 & 4 & N & 1 \\ N & N & N & 5 & N \end{pmatrix}$$

$$\pi_{ij}^{(1)} = \pi_{ij}^{(0)}$$
 if $d_{ij}^{(0)} \le d_{ik}^{(0)} + d_{kj}^{(0)}$
= $\pi_{1j}^{(0)}$ if $d_{ij}^{(0)} > d_{i1}^{(0)} + d_{1j}^{(0)}$

Example

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \qquad D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(1)} = \begin{pmatrix} N & 1 & 1 & N & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & N & N \\ 4 & 1 & 4 & N & 1 \\ N & N & N & 5 & N \end{pmatrix}$$

$$K = 1$$

$$K = 2$$

$$\pi_{ij}^{(2)} = \pi_{ij}^{(1)}$$
 if $d_{ij}^{(1)} \le d_{i2}^{(1)} + d_{2j}^{(1)}$
= $\pi_{2j}^{(1)}$ if $d_{ij}^{(1)} > d_{i2}^{(1)} + d_{2j}^{(1)}$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\Pi^{(2)} = \begin{pmatrix} N & 1 & 1 & 2 & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & 2 & 2 \\ 4 & 1 & 4 & N & 1 \\ N & N & N & 5 & N \end{pmatrix} \quad \begin{array}{c} K = 2 \\ \Pi^{(3)} = \begin{pmatrix} N & 1 & 1 & 2 & 1 \\ N & N & N & 2 & 2 \\ N & 3 & N & 2 & 2 \\ 4 & 3 & 4 & N & 1 \\ N & N & N & 5 & N \end{pmatrix} \quad \begin{array}{c} K = 3 \\ \end{array}$$

$$\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)} \quad \text{if } d_{ij}^{(k-1)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

$$= \pi_{kj}^{(k-1)} \quad \text{if } d_{ij}^{(k-1)} > d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$$

$$D^{(4)} = \begin{pmatrix} 0 & 3 & -1 & 4 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix} \qquad D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix} N & 1 & 4 & 2 & 1 \\ 4 & N & 4 & 2 & 1 \end{pmatrix} = \begin{pmatrix} N & 3 & 4 & 5 & 1 \\ 4 & N & 4 & 2 & 1 \end{pmatrix}$$

For example:

The shortest path from 1 -> 2 is: 1 -> 5 -> 4 -> 3 -> 2The shortest path from 2 -> 1 is: 2 -> 4 -> 1The shortest path from 5 -> 2 is: 5 -> 4 -> 3 -> 2

Transitive-Closure of a Directed Graph

- Given a directed graph G=(V, E) with V= {1, 2, ...n}
- We might wish to determine whether G contains a path from i to j for all vertex pairs i, $j \in V$.
- We define the transitive closure of G as the graph G* = (V, E*), where E* = {(i, j): there is a path from vertex i to vertex j in G}

Transitive closure of a directed graph

- Given a directed graph G = (V, E) with V = {1,2,..., n}
- The transitive closure of G is $G^*=(V, E^*)$ where $E^*=\{(i, j)| \text{ there is a path from } i \text{ to } j \text{ in } G\}$.

Modify FLOYD-WARSHALL algorithm:

$$t_{ij}^{(0)} = 0$$
 if $i \neq j$ and $(i,j) \notin E$

1 if $i = j$ or $(i,j) \in E$

for $k \geq 1$
 $t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$

Example

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(0)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \qquad T^{(1)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \quad \mathbf{K=1}$$

$$\begin{array}{cccc}
1 & 2 \\
\uparrow & \uparrow \\
4 & 3
\end{array}$$

$$T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix}$$

$$T^{(2)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{pmatrix} K= 2 \quad T^{(3)} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} K = 3$$

$$t_{ij}^{(k)} = t_{ij}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{kj}^{(k-1)})$$

TRANSITIVE-CLOSURE(G)

```
1 n = |G.V|
   Let T^{(0)} = (t_{ij}^{(0)}) be a new n x n matrix
3 for i = 1 to n
4 for j = 1 to n
5 if i == j or (i, j) \in G.E
                 t_{ii}^{(0)} = 1
          else t_{ij}^{(0)} = 0
                                                  Time complexity: O(n^3)
8 for k = 1 to n
       Let T^{(k)} = (t_{ij}^{(k)}) be a new n \times n matrix
10 for i = 1 to n
11
           for j = 1 to n
                t_{ii}^{(k)} = t_{ii}^{(k-1)} \vee (t_{ik}^{(k-1)} \wedge t_{ki}^{(k-1)})
12
123 return T<sup>(n)</sup>
```

Some Algorithms

- ✓ When no negative edges
 - Using Dijkstra's algorithm: O(V3)
 - Using Binary heap implementation: O(VE Ig V)
 - Using Fibonacci heap: O(VE + V2log V)
- ✓ When no negative cycles
 - Floyd-Warshall [1962]: O(V3) time
- When negative cycles
 - Using Bellman-Ford algorithm: $O(V^2 E) = O(V^4)$
 - Johnson [1977]: O(VE + V2log V) time based on a clever combination of Bellman-Ford and Dijkstra

Johnson's algorithm for sparse graphs

- For sparse graphs, it is asympototically faster than either repeated squaring of matrices or the Floyd-Warshall algorithm
- · Using reweighting technique

Reweighting technique

- If G has negative-weighted edge, we compute a new set of nonnegative weight that allows us to use the same method. The new set of edge weight ŵ satisfies:
- 1. For all pairs of vertices $u, v \in V$, a shortest path from u to v using weight function w is also a shortest path from u to v using the weight function \hat{w}
- 2. $\forall (u,v) \in E(G)$, $\hat{w}(u,v)$ is nonnegative

Reweighting Example

Lemma: (Reweighting doesn't change shortest paths)

• Given a weighted directed graph G = (V, E) with weight function $w:E \rightarrow R$, let $h:V \rightarrow R$ be any function mapping vertices to real numbers. For each edge $(u, v) \in E$, $\hat{w}(u,v) = w(u,v) + h(u) - h(v)$

e.g.

Lemma: (Reweighting doesn't change shortest paths)

- Let $p = \langle v_0, v_1, ..., v_k \rangle$
- Then $w(p) = \delta(v_0, v_k)$ if and only if $\hat{w}(p) = \hat{\delta}(v_0, v_k)$. Also, G has a negative-weight cycle using weight function w iff G has a negative weight cycle using weight function \hat{w} .
- Question: how to setting the value of $h(v_i)$ for all i?

Proof

• First, we show that $\hat{w}(p) = w(p) + h(v_0) - h(v_k)$

$$\hat{\mathbf{w}}(\mathbf{p}) = \sum_{i=1}^{k} \hat{\mathbf{w}}(\mathbf{v}_{i-1}, \mathbf{v}_{i})$$

$$= \sum_{i=1}^{k} (\mathbf{w}(\mathbf{v}_{i-1}, \mathbf{v}_{i}) + \mathbf{h}(\mathbf{v}_{i-1}) - \mathbf{h}(\mathbf{v}_{i}))$$

$$= \sum_{i=1}^{k} \mathbf{w}(\mathbf{v}_{i-1}, \mathbf{v}_{i}) + \mathbf{h}(\mathbf{v}_{0}) - \mathbf{h}(\mathbf{v}_{k})$$

$$= \mathbf{w}(\mathbf{p}) + \mathbf{h}(\mathbf{v}_{0}) - \mathbf{h}(\mathbf{v}_{k})$$

Proof

• Because $h(v_0)$ and $h(v_k)$ do not depend on the path, if one path from v_0 to v_k is shorter than another using weight function w, then it is also shorter using \hat{w} . Thus,

```
w(p) = \delta(v_0, v_k) if and only if \hat{w}(p) = \bar{\delta}(v_0, v_k)
= w(p) + h(v<sub>0</sub>) - h(v<sub>k</sub>)
```

Proof

- G has a negative-weight cycle using w iff G has a negative-weight cycle using ŵ.
- Consider any cycle $C=\langle v_0, v_1, ..., v_k \rangle$ with $v_0 = v_k$. Then $\hat{w}(C) = w(C) + h(v_0) h(v_k) = w(C)$.

Question: how to setting the value of $h(v_i)$ for all i?

Producing nonnegative weight by reweighting

- Given a weighted directed graph G = (V, E)
- We make a new graph $G'=(V', E'), V'=V \cup \{s\}, E'=E \cup \{(s,v): v \in V\}$ and w(s,v)=0, for all v in V
- Let $h(v) = \delta(s, v)$ for all $v \in V$
- We have h(v) ≤ h(u) + w(u, v) if there is no negative weight cycle (why?)
- $\hat{w}(u, v) = w(u, v) + h(u) h(v) \ge 0$

Example:

$$h(v) = \delta(s, v)$$

 $\hat{w}(u, v) = w(u, v) + h(u) - h(v) >= 0$

JOHNSON algorithm

- 1 Computing G', where $G'.V = G.V \cup \{s\}$ and $G'.E = G.E \cup \{(s, v): v \in G.V\}$ and w(s, v) = 0.
- 2 if BELLMAN-FORD(G', w, s)= FALSE
- 3 print "the input graph contains negative weight cycle"
- 4 else for each vertex $v \in G'.V$
- 5 set h(v) to be the value of $\delta(s, v)$ computed by the BF algorithm
- 6 for each edge $(u, v) \in G'.E$, $\hat{w}(u, v) = w(u, v) + h(u) h(v)$

JOHNSON algorithm

```
7 Let D = (d_{ijv}) be a new n \times n matrix
8 for each vertex u \in G.V
   run DIJKSTRA (G, \hat{w}, u) to compute \hat{\delta}(u, v)
      for all v \in V[G].
10 for each vertex v \in G.V
11 d_{uv} = \hat{\delta}(u, v) + h(v) - h(u)
12 return D
Complexity: Using Fibonacci heap O(V2lqV + VE)
Using Binary heap implementation: O(VE Iq V)
```

Practice at home

Exercises: 23.1-7, 23.1-9*, 23.1-10, 23.2-1*, 23.2-4, 23.2-6*, 23.2-8*, 23.3-1, 23.3-2*, 23.3-3, 23.3-5*, 23.3-6

Quiz

- For all-to-all shortest paths with no negative edges
 - The time complexity of using Dijkstra's algorithm with array is O(?)
 - The time complexity of using Binary heap implementation is O(?)
- When no negative cycles
 - The time complexity o Floyd-Warshall is O(?)