Math 445 Number Theory

November 3, 2004

From last time: If $x \notin \mathbb{Q}$ and $b \in \mathbb{Z}$ with $1 \leq b < k_{n+1}$, then for any $a \in \mathbb{Z}$, $|bx - a| \geq |k_n x - h_n|$.

Another sense in which convergents are the best possible rational approximations:

If $x \notin \mathbb{Q}$ and $a, b \in \mathbb{Z}$ have $|x - \frac{a}{b}| < \frac{1}{2b^2}$, then $\frac{a}{b} = \frac{h_n}{k}$ for some n.

The idea: if not, then $|ak_n - bh_n| \ge 1$ for every n. But since $k_n \to \infty$ as $n \to \infty$, there is an n with $k_n \le b < k_{n+1}$. Then from above we know that $|xk_n - h_n| \le |xb - a| = |x - \frac{a}{h}| \cdot |b| < \frac{1}{2h^2} |b| = \frac{1}{2h}$. So $|x - \frac{h_n}{k_n}| < \frac{1}{2hk_n}$, and then

$$\frac{1}{bk_n} \le \frac{|bh_n - ak_n|}{bk_n} = \left|\frac{a}{b} - \frac{h_n}{k_n}\right| = \left|\left(\frac{a}{b} - x\right) + \left(x - \frac{h_n}{k_n}\right)\right| \le \left|\frac{a}{b} - x\right| + \left|x - \frac{h_n}{k_n}\right| < \frac{1}{2b^2} + \frac{1}{2bk_n}. \text{ So } \frac{1}{2bk_n} = \frac{1}{bk_n} - \frac{1}{2bk_n} \le \frac{1}{2b^2}, \text{ so } \frac{1}{bk_n} = \frac{1}{bk_n} - \frac{1}{bk_n} \le \frac{1}{bk_n} = \frac{1}{bk_n} - \frac{1}{$$

 $2b^2 < 2bk_n$, so $b < k_n$, a contradiction. So $\frac{a}{b} = \frac{h_n}{k}$ for some n.

Pell's Equation: solve $x^2 - ny^2 = N$ with $x, y \in \mathbb{Z}$. (WOLOG, $x, y \ge 0$)

If n < 0, then $N = x^2 - ny^2 \ge x^2 + y^2 \Rightarrow x, y \le \sqrt{N}$; can check all cases.

If $n = m^2$ is a perfect square, then $N = x^2 - ny^2 = (x - my)(x + my) \Rightarrow x - my = a, x + my = b$ with ab = N, and so 2x = a + b, 2my = b - a. Again, we can just check all factorizations N = ab to see what works.

If n>0 is not a perfact square, then we can use the continued fraction expansion of \sqrt{n} to shed light on the solutions. If N>0,

then
$$N = x^2 - ny^2 = (x - \sqrt{ny})(x + \sqrt{ny})$$
, so $0 < \frac{N}{x + \sqrt{ny}} = x - \sqrt{ny}$, so $\frac{|N|}{|x + \sqrt{ny}| \cdot |y|} = |\sqrt{n} - \frac{x}{y}|$.

And since $x - \sqrt{ny} > 0$, $x > \sqrt{ny}$, so $\frac{x}{\sqrt{ny}} > 1$ so $\frac{x}{\sqrt{ny}} + 1 = \frac{x + \sqrt{ny}}{\sqrt{ny}} > 2$, so $x + \sqrt{ny} > 2\sqrt{ny}$ so

$$|\sqrt{n} - \frac{x}{y}| = \frac{|N|}{|x + \sqrt{ny}| \cdot |y|} < \frac{|N|}{2\sqrt{n}|y| \cdot |y|} = \frac{|N|}{\sqrt{n}} \cdot \frac{1}{2y^2}$$
.

So if $0 < N < \sqrt{n}$, then $x^2 - ny^2 = N \Rightarrow |\sqrt{n} - \frac{x}{y}| < \frac{1}{2y^2} \Rightarrow \frac{x}{y}$ is a <u>convergent</u> of \sqrt{n} .

(A similar argument works for $-\sqrt{n} < N < 0$.)

Which makes it more interesting to understand the convergents of \sqrt{n} ! The basic idea: x has a repeating continued fraction expansion $x = [a_0, \ldots, a_n, \overline{b_0, \ldots, b_m}] \Leftrightarrow x = r + s\sqrt{t}$ for some $r, s \in \mathbb{Q}$, $t \in \mathbb{Z}$.

To see this, set $\alpha = [\overline{b_0, \ldots, b_m}]$, so $x = [a_0, \ldots, a_n, \alpha]$. If $[a_0, \ldots, a_n] = \frac{h_n}{k}$, then $x = [a_0, \ldots, a_n, \alpha] = \frac{h_n \alpha + h_{n-1}}{k}$.

$$r_{0}+s_{0}\sqrt{t}, \text{ then } x = \frac{h_{n}(r_{0}+s_{0}\sqrt{t})+h_{n-1}}{k_{n}(r_{0}+s_{0}\sqrt{t})+k_{n-1}} = \frac{(h_{n}s_{0})\sqrt{t})+(h_{n}r_{0}+h_{n-1})}{(k_{n}s_{0})\sqrt{t})+(k_{n}r_{0}+h_{n-1})} = \frac{((h_{n}s_{0})\sqrt{t})+(h_{n}r_{0}+h_{n-1})}{k_{n}^{2}s_{0}^{2}t-(k_{n}r_{0}+h_{n-1})^{2}} = \frac{((h_{n}s_{0})\sqrt{t})+(h_{n}r_{0}+h_{n-1})}{k_{n}^{2}s_{0}^{2}t-(k_{n}r_{0}+h_{n-1})^{2}} = \frac{((h_{n}s_{0})\sqrt{t})+(h_{n}r_{0}+h_{n-1})}{k_{n}^{2}s_{0}^{2}t-(k_{n}r_{0}+h_{n-1})^{2}} + \frac{((k_{n}s_{0})(h_{n}r_{0}+h_{n-1})-(h_{n}s_{0})(k_{n}r_{0}+h_{n-1}))}{k_{n}^{2}s_{0}^{2}t-(k_{n}r_{0}+h_{n-1})^{2}}\sqrt{t} = r + s\sqrt{t} \text{ with } r, s \in \mathbb{Q}.$$

$$= \frac{n_n \kappa_n s_0^2 t - (n_n r_0 + n_{n-1})(\kappa_n r_0 + n_{n-1})}{k_n^2 s_0^2 t - (k_n r_0 + h_{n-1})^2} + \frac{((\kappa_n s_0)(n_n r_0 + h_{n-1}) - (n_n s_0)(\kappa_n r_0 + h_{n-1}))}{k_n^2 s_0^2 t - (k_n r_0 + h_{n-1})^2} \sqrt{t} = r + s\sqrt{t} \text{ with } r, s \in \mathbb{Q}.$$