

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Курсовая работа по теме:

"Программа моделирования детского конструктора LEGO"

Студент: Косарев А.А.

Руководитель: Барышникова М.Ю.

Цель и задачи курсовой работы

Цель работы - разработать программу моделирования детского конструктора LEGO.

Для реализации поставленной цели следует решить следующие задачи:

- изучить модели представления объектов и выбрать подходящую;
- выбрать алгоритмы для отображения объектов на сцене;
- выбрать механизм размещения объектов;
- выбрать язык программирования и среды разработки;
- реализовать выбранные алгоритмы отображения объектов;
- реализовать программное обеспечение с пользовательским интерфейсом, позволяющее собирать конструкции из блоков LEGO.

Объекты сцены

Три варианта отображения объекта:

- Каркасная
- Поверхностная
- Твердотельная

Способ задания поверхности:

- Аналитический способ
- Полигональная сетка

Способ хранения полигональной модели:

- Вершинное представление
- Список граней
- Таблица углов

Примеры деталей LEGO

Алгоритмы построения изображения

Критерии	Алгоритмы			
	Робертса	Варнока	Обратной трассировки лучей	Использующий z -буфер
Объем вычислений	Растет как зависимость от квадрата числа объектов	Растет как зависимость N M от числа пикселей N и о бъектов М	Средний, мало зависит от геометрической сложности сцены, легко распараллеливается	Растет как зависимость NM от числа пикселей N и объектов М
Сложность реализации	Сложен с математической точки зрения	Легкая в случае прямоугольных окон и выпуклых многоугольников, иначе усложняется	Высокая	Низкая
Рабочее пространство	Пространство объекта	Пространство изображения	Пространство изображения	Пространство изображения
Отрисовка теней	Необходимо использовать дополнитель ные подходы для отрисовки теней	Необходимо использовать дополнительные подходы для отрисовки теней	Тени отрисовываются по ходу работы алгоритма	Есть возможность доработки для отображения теней

Таблица сравнения рассмотренных алгоритмов

Алгоритм, использующий z-буфер

Алгоритм:

- 1) заполнение буфера кадра фоновый значением интенсивности (цвета);
- 2) заполнение z-буфера минимальным значением Z;
- 3) преобразование каждого многоугольника в растровую форму в произвольном порядке;
- 4) вычисление для каждого пикселя с координатами (x, y), принадлежащего многоугольнику, его глубины Z(x, y);
- 5) сравнение глубины Z(x, y) со значением Zбуф(x, y), хранящимся в Z-буфере для пикселя теми же координатами (x, y). Если Z(x, y) > Zбуф(x, y), то записать атрибут очередного многоугольника в буфер кадра и Zбуф(x, y) заменить на значение Z(x, y).

Схема алгоритма

Интерфейс программы

Основное окно программы

Некоторые окна ввода информации об объектах

Примеры работы программы

Исследование времени работы алгоритма, использующего z-буфер

Заключение

Поставленная цель выполнена: разработана программа моделирования детского конструктора LEGO.

Решены все поставленные задачи:

- изучены модели представления объектов и выбрана подходящую;
- выбраны алгоритмы для отображения объектов на сцене;
- выбран механизм размещения объектов;
- выбран язык программирования и среда разработки;
- реализованы выбранные алгоритмы отображения объектов;
- реализовано программное обеспечение с пользовательским интерфейсом, позволяющее собирать конструкции из блоков LEGO.