$See \ discussions, stats, and \ author \ profiles \ for \ this \ publication \ at: \ https://www.researchgate.net/publication/275025575$

Advanced Mathematics for Engineering and Applied Sciences

Book · F	February 2015				
CITATIONS	IS	READS			
0		53,249			
1 author	or:				
	William W. Guo				
1	Central Queensland University				
	138 PUBLICATIONS 790 CITATIONS				
	SEE PROFILE				
Some of the authors of this publication are also working on these related projects:					
Project	STEM Education (STEME) View project				
Desired	Dynamic F-Learning Systems Development View project				

WILLIAM W. GUO

ADVANCED MATHEMATICS FOR ENGINEERING AND APPLIED SCIENCES

SECOND EDITION

Advanced Mathematics for Engineering and Applied Sciences

Second Edition

William W. Guo
Central Queensland University Australia

Preface

This book has been written as a designated textbook for university students studying engineering and some areas of applied sciences to continue knowledge building in mathematics after successfully completing a course in elementary calculus. Such an advanced mathematics course needs to cover a wide range of topics of applied mathematics for solving practical problems. For engineering students in US universities, the typical scheme of a comprehensive delivery of such an advanced mathematics course takes four consecutive semesters with at least 4 contact hours per week. Some good textbooks in advanced mathematics used in US universities are also popular in Australian universities for students studying engineering and some areas of applied sciences.

However, the advanced mathematics course in many Australian universities is taught over one semester. Choosing about a quarter of the contents from any US textbook in advanced mathematics for Australian students is always a difficult task in terms of maintaining the continuity and coherence among the chosen topics taught over a single semester. Recently I had direct experience in teaching two large groups of students in engineering mathematics at different levels. The feedback from many students revealed that they were dissatisfied with the discontinuity and incoherence among the chosen topics from the US-oriented textbook. Being a data processing scientist for 30 years of my career whose professional and research activities have been directly or indirectly associated with many areas of advanced mathematics, I took a similar view.

This book is designed to be delivered over one semester of 12–13 teaching weeks with at least 4 contact hours per week. As many scientific and engineering problems are associated with solving ordinary differential equations (ODEs) at an intermediate level and solving partial differential equations (PDEs) at an advanced level, the six chapters in this book together lead students from solving ODEs using various techniques to solving simple PDEs with knowledge and skills gained from the first five chapters. This logic flow is shown in the following diagram.

Based on good practices shared by other authors, my own experiences as an engineering student in the past, and then as a data processing scientist, this book has been written with the following general features:

- A cohesive logical flow that streamlines relevant topics together from solving ODEs to solving PDEs;
- A close connection between mathematical knowledge gained from completing previous math courses to the new topics in this book;
- A gradual increase in the level of difficulty with a smoother transition between two different themes in the same chapter and between two different chapters;
- Loose coupling among the middle chapters (Chapters 2–5) so that the chapters can be delivered almost independently;
- Providing many simple examples to make the book teachable for instructors and understandable for students through self learning;
- Providing real life applications of advanced mathematics in science and engineering.

For a semester-long course, some advanced topics in engineering mathematics, such as 2D/3D Fourier series and Fourier transforms, Bessel functions and Legendre functions, and computer-aided workshops, such as practicing numeric computation using *Matlab* or *Mathematica*, cannot be covered in 12 teaching weeks. Ideally these should be delivered in another subsequent mathematics course.

I am grateful to many engineering students at Central Queensland University who studied engineering mathematics courses in the 2013 academic year. It is the students' strong desire to learn mathematics, their active engagement with the teaching and learning processes, their earnest effort on both individual and group assignments, and their trust in my ability to assist them in achieving the best possible learning outcomes that inspired me to write this designated textbook in advanced mathematics for Australian engineering and science students. Their every endeavour deserves our special attention and full support as educators. Feedback, comments and suggestions on this first edition from students and other readers are most welcome and much appreciated. Special thanks go to the Customs Team at Pearson Australia for their great assistance to make the book published and available in a very short period of time.

Proof reading was done during the Christmas and New Year period by Harry, my son who has recently graduated with a Bachelor of Laws and a Bachelor of Commence from The University of Western Australia. His knowledge in laws offered little help in a mathematical context, but his advice brought changes to my writing style from 'scientific writing' for scientists towards 'plain writing' for junior undergraduate students. His criticism of my frequent use of long and complex sentences led to the significant reduction of such sentences in the final version. This book was written mostly on weekends and holidays during the past six months. I am deeply grateful to my wife Anna for her whole-hearted support throughout the entire journey.

William Guo January 2014

A Note for Second Edition

It was a great success in improving student learning outcomes and experience by adopting the first edition of this textbook for the second-year engineering students in Semester 1 of 2014 at Central Queensland University Australia. The overwhelming positive feedback from so many students made this course "2014 CQUniversity Student Voice Commendation". This honour is also a reflection of the tremendous effort on achieving quality teaching made by the teaching team during the semester.

Many students and colleagues have helped find out numerous typos in mathematical formulas, texts, tables, and diagrams since the book was released in February 2014. These found typos have been corrected in this new edition. According to the feedback from students through various communications, students like the structure, coverage of contents, and extensive use of worked examples throughout the text. As a result, this new edition keeps these aspects unchanged.

A number of students suggested leaving more spare spaces in the book so that students can take important notes nearby the key concepts or examples during a lecture, a tutorial, or even watching the recorded videos. Other students suggested using a colour scheme to better differentiate different (sub)sections and themes that were presented in the first edition using a simple black-white scheme. These two suggestions have been partly adopted in this new edition by both using dividing lines before or after a (sub)section/theme or an example and providing a spare space immediately after a (sub)section/theme or an example wherever possible. To keep the price of the book low, a grey scheme for (sub)headlines and dividing lines is used, instead of a colour scheme.

Two Appendixes are also included in this new edition to provide students with references to differentiations and integrations respectively.

Many students also expressed an interest in studying another mathematical course/unit after completing this one. It would be much better to have another elective mathematical course/unit for the students to keep advancing mathematical knowledge and problem solving skills in various engineering applications. This can only happen by the time when electives are made available in a new engineering curriculum. A few students suggested me writing a new mathematical textbook tailored to our first-year engineering students, just like this tailored book for our second-year students. This is certainly a great suggestion but also means a huge commitment. We might be able to make this happen in the future driven by our "can-do" approach.

My sincere appreciation goes to my students and colleagues at Central Queensland University for their encouragement and support all the time. This new version was done mostly on weekends in the past ten months. Once again I am very grateful to my wife Anna for her whole-hearted support throughout seemingly an endless journey.

Professor William Guo School of Engineering & Technology Central Queensland University Australia December 2014

Table of Contents

Preface	i
Chapter 1 Ordinary Differential Equations	1
1.1 Essentials of ordinary differential equations	1
1.1.1 Concepts of ordinary differential equations (ODEs)	1
1.1.2 Classification of ODEs	5
1.2 Direct integration & separation of variables	8
1.2.1 Direct integration.	8
1.2.2 Separation of variables	11
1.2.3 Exact differential equations	14
1.3 First-order linear ODEs	18
1.3.1 Solving first-order linear ODEs by integrating factors	18
1.3.2 The structure of general solutions of linear ODEs	22
1.3.3 Bernoulli equations	25
1.4 Second-order linear ODEs	29
1.4.1 The structure of general solutions to second-order linear ODEs	29
1.4.2 Second-order constant-coefficient homogeneous linear ODEs	31
1.4.3 Second-order constant-coefficient inhomogeneous linear ODEs	35
1.5 Euler equations and systems of ODEs	43
1.5.1 Euler equations	43
1.5.2 Systems of ODEs	45
1.6 Applications of ODEs	49
1.6.1 Procedure of modelling and simulation	49
1.6.2 Applications of ODEs	50
Chapter 2 Laplace Transforms	67
2.1 Fundamentals of Laplace transforms	67
2.1.1 The concept of Laplace transforms	67
2.1.2 Laplace transforms of common functions	69

2.1.3 Properties of Laplace transforms	70
2.2 Inverse Laplace transforms	81
2.2.1 The concept of inverse Laplace transforms	81
2.2.2 Solving inverse Laplace transforms using partial fractions	82
2.3 The convolution theorem	85
2.3.1 The concept of convolution.	85
2.3.2 The convolution theorem	86
2.4 Applications of Laplace transforms	91
2.4.1 Solving ODEs by Laplace transforms	91
2.4.2 Solving systems of ODEs by Laplace transforms	95
2.4.3* Transfer functions of linear systems	97
Chapter 3 Linear Algebra and Applications	101
3.1 Review of linear algebra	101
3.1.1 Fundamentals of matrices and vectors	101
3.1.2 Basic operations of matrices and vectors	104
3.1.3 Determinants and basic operations	110
3.1.4 The inverse of a matrix	116
3.2 Solving linear systems of equations	124
3.2.1 Linear systems, coefficient matrices, and augmented matrices	124
3.2.2 General properties of linear systems of equations	126
3.2.3 Solving linear systems by Cramer's rule	127
3.2.4 Solving linear systems by Gauss elimination	130
3.2.5 Solving linear systems using the inverse of a matrix	134
3.2.6 Solving linear systems by Gauss-Jordan elimination	138
3.3 Eigenvalues and eigenvectors	144
3.3.1 Eigenvalues	144
3.3.2 Eigenvectors	147
3.4 Applications of linear algebra	152
3.4.1 Solving engineering and science problems by matrix operations	152

3.4.2 Solving ODEs by eigenvalues and eigenvectors	160
Chapter 4 Numeric Methods	173
4.1 Introduction to numeric methods	173
4.1.1 The general procedure of numeric computation	173
4.1.2 Errors in numeric computation	174
4.1.3 Concepts of some numeric methods	175
4.2 Interpolation	
4.2.1 Lagrange interpolations	179
4.2.2 Newton's divided difference interpolations	184
4.2.3 Cubic spline interpolations	188
4.3 Curve fitting by the least squares method	194
4.3.1 Concepts of curve fitting and the least squares method	194
4.3.2 Linear regression	195
4.3.3 Quadratic fitting	199
4.4 Numeric methods for solving ODEs	203
4.4.1 Euler methods	203
4.4.2 Runge-Kutta methods	207
*4.4.3 Numeric methods for systems of ODEs and higher-order ODEs	210
Chapter 5 Fourier Series	215
5.1 The concepts of Fourier series	215
5.2 Fourier sine and cosine series.	224
5.2.1 Fourier series of even and odd functions	224
5.2.2 Half-range expansion	228
5.3 Fourier series of functions with any period	233
5.3.1 Fourier series of functions with period $p = 2L$	233
5.3.2 Parseval's theorem	238
*5.3.3 Complex notation of Fourier series	239
5.4 Applications of Fourier series	242
5.4.1 Component analysis of periodic functions with Parseval's theorem	242

5.4.2 Solving ODEs using Fourier series	244
* 5.4.3 Principles of time-domain signal filtering by Fourier series	246
Chapter 6 Partial Differential Equations	253
6.1 Essentials of partial differential equations	253
6.1.1 Basic concepts of partial differential equations (PDEs)	253
6.1.2 Solutions of PDEs	254
6.2 Solving simple PDEs	259
General References	271
Appendix A: Differentiation	273
Appendix B: Integration	275

General References

- [1] Birkhoff, G., and Rota, G. C. Ordinary Differential Equations, 4th Edition, USA, 1989.
- [2] Croft, A., and Davison, R. Mathematics for Engineers, 3rd Edition, Pearson, England, 2010.
- [3] Croft, A., Davison, R., Hargreaves, M., and Flint, J. Engineering Mathematics, 4th Edition, Pearson, England, 2013.
- [4] Gillett, P. Calculus and Analytic Geometry, D.C. Heath and Company, USA, 1981.
- [5] Guo, W.W. Magnetic petrophysics and density investigations of the Hamersley Province, Western Australia: implications for magnetic and gravity interpretation, The University of Western Australia, Perth, 1999.
- [6] Guo, W.W. and Xue, H. An incorporative statistic and neural approach for crop yield modelling and forecasting, *Neural Computing & Applications*, 2, 109–117, 2012.
- [7] Guo, W.W. A novel application of neural networks for instant iron-ore grade estimation, *Expert Systems with Applications*, 37, 8729–8735, 2010.
- [8] Guo, W.W., Li, M.M., Whymark, G. and Li, Z.X. Mutual complement between statistical and neural network approaches for rock magnetism data analysis, *Expert Systems with Applications*, 36, 9678–9682, 2009.
- [9] Hao, Z., Xie, G., Fang, W., Wang, G. Linear Algebra, 3rd Edition, Higher Education Press, Beijing, 2008.
- [10] Johnson, R., and Bhattacharyya, G. K. Statistics: Principles and Methods, 3rd Edition, Wiley, UAS, 1996
- [11] Kreyszig, E. Advanced Engineering Mathematics, 10th Edition, Wiley, UAS, 2011.
- [12] Proakis, J. G., and Manolakis, D. G. Digital Signal Processing, 3rd Edition, Prentice Hall, USA, 1996.
- [13] Weiers, R. M. Introduction to Business Statistics, Duxbury, 2002.
- [14] Xue, L. Numeric Methods, Electronics Industry Press, Beijing, 2007.
- [15] Zauderer, E. Partial Differential Equations of Applied Mathematics, 3rd Edition, Wiley, USA, 2006.
- [16] Zhang, Y. Integral Transforms, 4th Edition, Higher Education Press, Beijing, 2003.
- [17] Zwillinger, D. Handbook of Differential Equations, 3rd Edition, Academic Press, USA, 1998.