Занятие 6 Композиции алгоритмов

Кантонистова Е.О.

ПЛАН ЗАНЯТИЯ

- Разложение ошибки
- Случайный лес
- Градиентный бустинг
- Практика

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

- Модель переобучена?
- Модель плохо предсказывает целевую переменную?
- В самих данных много неточностей (шумов)

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - смещение.

Смещение показывает, насколько в среднем модель хорошо предсказывает целевую переменную:

- √ маленькое смещение хорошее предсказание
- √ большое смещение плохое предсказание

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - разброс (дисперсия).

Большой разброс означает, что ошибка очень чувствительна к изменению обучающей выборки, т.е.:

√ большой разброс – сильно переобученная модель

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

- Bias(a(x)) смещение.
- Var(a(x)) разброс (дисперсия).
- σ^2 неустранимая ошибка **шум**.

СМЕЩЕНИЕ И РАЗБРОС

BIAS-VARIANCE TRADEOFF underfitting overfitting zone zone generalization error bias variance capacity optimal capacity

БУТСТРЭП

Дана выборка X.

Бутстрэп: равномерно возьмем из выборки X l объектов с возвращением (т.е. в новой выборке будут повторяющиеся объекты). Получим выборку X_1 .

ullet Повторяем процедуру N раз, получаем выборки $X_1,\dots,X_N.$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

 ${}^{\leftarrow}$ помощью бутстрэпа мы получили выборки $X_1, \dots, X_3.$

Обучим по каждой из них модель – получим базовые алгоритмы $b_1(x), \dots, b_3(x)$.

• Построим новую функцию регрессии:

$$a(x) = \frac{1}{3} \sum_{j=1}^{3} b_j(x)$$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

СМЕЩЕНИЕ И РАЗБРОС У БЭГГИНГА

- 1) **Бэггинг не ухудшает смещенность модели**, т.е. смещение $a_N(x)$ равно смещению одного базового алгоритма.
- 2) Если базовые алгоритмы достаточно разные, то **дисперсия бэггинга** $a_N(x)$ в N раз меньше дисперсии отдельных базовых алгоритмов.

© СЛУЧАЙНЫЙ ЛЕС (RANDOM FOREST)

- Возьмем в качестве базовых алгоритмов для бэггинга **решающие деревья**, т.е. каждое случайное дерево $b_i(x)$ построено по своей подвыборке X_i .
- В каждой вершине дерева будем искать *разбиение не по* всем признакам, а по подмножеству признаков.

ГРАДИЕНТНЫЙ БУСТИНГ

БУСТИНГ

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

БУСТИНГ

Пусть x – объект, y – правильный ответ на этом объекте.

• Бустинг строит деревья *по очереди*, затем предсказания деревьев *суммируются*.

• Например, после двух шагов бустинга композиция имеет вид: $a(x) = b_1(x) + b_2(x)$

• Следующее решающее дерево $b_3(x)$ старается предсказать ошибку композиции a(x). То есть целевая переменная для этого дерева

$$y_{new} = y - a(x)$$

БУСТИНГ

ПЕРЕОБУЧЕНИЕ БУСТИНГА

- На каждой итерации бустинга мы уменьшаем ошибку на тренировочных данных, то есть, всё больше переобучаемся.
- Поэтому надо подбирать такое число деревьев в бустинге, чтобы ошибка на тесте была наименьшей.

ИТОГИ

- Оба способа построить композицию алгоритмов случайный лес и градиентный бустинг дают отличные сильные модели.
- У каждой из этих моделей свои особенности, за счёт которых они показывают хорошее качество.
- На практике нужно пробовать обе модели и смотреть, какая сработает лучше.