TUGAS 2

Anggota:

- 1. Ahmad Idza Anafin / 5027241017
- 2. Paundra Pujo Darmawan / 5027241008
- 3. Nafis Faqih Allmuzaky M. / 5027241095
- 4. M Fatihul Qolbi A. / 5027241023

EXERCISE 1

Aturan Empiris

Pada suatu Distribusi Normal, terdapat sejumlah kondisi yang dipastikan bernilai benar, yakni sebagian data yang ditunjukkan dalam persentase, akan berada di suatu angka Standar Deviasi tertentu dari nilai Mean.

Macam-macam Aturan Empiris

- Jika nilai Standar Deviasi sebesar 1, maka sebanyak 68% nilai data akan berada di dalamnya.
- Sedangkan jika nilai Standar Deviasi sebesar 2, maka sebanyak 95% nilai data akan berada di dalamnya.
- Namun apabila nilai Standar Deviasi sebesar 3, maka sebanyak 99,7% nilai data akan berada di dalamnya.

Kerjakan:

Tinggi badan siswa di sebuah sekolah mengikuti distribusi normal dengan rata-rata 160 cm dan standar deviasi 7 cm. Gunakan Aturan Empiris untuk menjawab pertanyaan berikut:

- Berapa rentang tinggi badan di mana sekitar 68% siswa berada?
- Berapa rentang tinggi badan di mana sekitar 95% siswa berada?
- Berapa rentang tinggi badan di mana sekitar 99.7% siswa berada?

Jawaban:

Dengan penjelasan aturan empiris diatas, dapat diketahui rentang tiap siswa adalah :

• 68% = 153cm - 167cm

- 95% = 146cm 174cm
- 99.7% = 139cm 181cm

Menggunakan python3, kita dapat menggambar kurva nya.

```
import matplotlib.pyplot as plt
  2 import numpy as np
3 from scipy.stats import norm
  5 mean = 160
       std_dev = 7
x_min = 130
x_max = 190
10 x = np.linspace(x_min, x_max, 1000)
12 y = norm.pdf(x, mean, std_dev)
14 plt.plot(x, y, label='Normal Distribution')
15
plt.axvline(mean, color='red', linestyle='dashed', linewidth=1, label='Mean')

plt.axvline(mean + std_dev, color='blue', linestyle='dashed', linewidth=1, label='Mean + 1 Standard Deviation')

plt.axvline(mean - std_dev, color='blue', linestyle='dashed', linewidth=1, label='Mean - 1 Standard Deviation')

plt.axvline(mean + 2*std_dev, color='green', linestyle='dashed', linewidth=1, label='Mean + 2 Standard Deviations')

plt.axvline(mean - 2*std_dev, color='green', linestyle='dashed', linewidth=1, label='Mean - 2 Standard Deviations')
       23
24
25
        plt.xlabel('Height (cm)')
plt.ylabel('Probability Density')
26
        plt.title('Normal Distribution with Empirical Rule')
29
        plt.legend()
        plt.show()
```


EXERCISE 2

• Kerjakan:

Dalam sebuah uji coba, waktu reaksi dari sejumlah pengemudi diukur. Diketahui bahwa waktu reaksi rata-rata adalah 0,8 detik dengan standar deviasi 0,1 detik. Berdasarkan Aturan Empiris, tentukan rentang waktu reaksi di mana:

- 68% pengemudi berada
- 95% pengemudi berada
- 99.7% pengemudi berada

Penyelesaian:

Diket:

Standar Deviasi: 0,1 s

Mean: 0,8 s

Ditanya : Rentang waktu (Δt) dalam aturan empiris ?

Jawab:

68 %: 0,7s - 0,9s

95%: 0,6s - 1,0s

99,7 %: 0,5s - 1,1s

```
import matplotlib.pyplot as plt
import numpy as np
import numpy a
```


EXERCISE 3

• Jelaskan dan pelajari tentang Teorema Chebyshev (Chebyshev's Theorem)

"Teorema Chebyshev menyatakan bahwa proporsi tertentu dari setiap kumpulan data harus berada dalam rentang tertentu di sekitar nilai rata-rata pusat yang ditentukan oleh deviasi standar data"

- Sebuah perusahaan mencatat waktu produksi barang dengan rata-rata 40 menit dan standar deviasi 5 menit. Gunakan Teorema Chebyshev untuk menjawab pertanyaan berikut:
 - Berapa proporsi minimum waktu produksi yang berada dalam jarak
 3 standar deviasi dari rata-rata?

Teorema Chebyshev menyatakan bahwa untuk setiap variabel acak dengan rata-rata μ dan standar deviasi σ , proporsi dari data yang berada dalam jarak k standar deviasi dari rata-rata setidaknya adalah:

$$1-rac{1}{k^2}$$

Pada soal k = 3, jadi

Dari waktu produksi akan berada dalam interval [40–5*k,40+5*k][40 - 5*k, 40 + 5*k][40–5*k,40+5*k] atau [25,55][25,55] menit.

EXERCISE 4

k=2

 $1 - \frac{2}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} = 0.75$ atau 75%

75% karyawan memiliki penghasilan dalam rentang:

Batas bawah: $Rp5.000.000 - 2 \times Rp500.000 = Rp4.000.000$

Batas atas: $Rp5.000.000 + 2 \times Rp500.000 = Rp6.000.000$

Jadi 75% karyawan memiliki penghasilan antara Rp4.000.000 dan Rp6.000.000.