K-Clique Is Hard on Average for Regular Resolution

Ilario Bonacina bonacina@cs.upc.edu

Dagstuhl, January 30 2018

Motivations

- k-clique is a fundamental NP-complete problem (related to FPT vs W[1])
- regular resolution captures the reasoning power of state-of-theart algorithms to find k-cliques
- for k small (say $k < \sqrt{n}$) the usual tools from proof complexity fail

Main Result (Informal)

Main Theorem (informal)

Let G be an Erdős-Rényi random graph with n vertices (and edge density s.t. G has no k-clique) and $k = o(n^{1/4})$. W.h.p. every regular resolution proof of the fact that G does not contain a k-clique has size $\geq n^{\Omega(k)}$

K-Clique Formula

$$G = (V, E)$$
 graph with $V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k$ and $|V_i| = n/k$

 $x_v = 1$ iff "v belongs to a k-clique (that respects the partition of V)"

Definition

Clique(G, k) is the conjunction of

$$\bigvee_{v \in V_i} x_v \quad \text{for } i \in [k];$$

$$\neg x_u \lor \neg x_v \quad \text{for } u, v \in V, \ \{u, v\} \notin E$$

$$\text{or exists } i \in [k] \ u, v \in V_i$$

Regular Resolution = ROBP

Regular Resolution = ROBP

Regular Resolution = ROBP

Some Background

- Clique(G, k) has resolution refutations of size $\leq (n/k)^{O(k)}$
- Clique(G, k) has resolution refutations of width $\leq k$. So the size-width inequality (at best) implies $2^{\Omega(k^2/n)}$ lower bounds.

for $n^{5/6} \ll k < \frac{n}{3}$ and G an Erdős-Rényi random graph with n vertices (and suitable edge density), w.h.p. all resolution refutations of Clique(G, k) have size $2^{n^{\Omega(1)}}$ [BIS'07]

Some Background

- Clique(G, k) has resolution refutations of size $\leq (n/k)^{O(k)}$
- Clique(G, k) has resolution refutations of width $\leq k$. So the size-width inequality (at best) implies $2^{\Omega(k^2/n)}$ lower bounds.

for $n^{5/6} \ll k < \frac{n}{3}$ and G an Erdős-Rényi random graph with n vertices (and suitable edge density), w.h.p. all resolution refutations of Clique(G, k) have size $2^{n^{\Omega(1)}}$ [BIS'07]

• regular resolution has short (i.e. $f(k)n^{O(1)}$) refutations of Clique(G, k) when G is the (k-1)-partite graph; this is not the case for treelike resolution [BGL'13]

Main Result

Main Theorem

Let $G \sim G(n, p)$ be an Erdős-Rényi random graph with $p \ll n^{-2/(k-1)}$. W.h.p. every regular resolution proof of Clique(G, k) has size $\geq n^{\Omega(k)}$

Main Result

Main Theorem

Let $G \sim G(n, p)$ be an Erdős-Rényi random graph with $p \ll n^{-2/(k-1)}$. W.h.p. every regular resolution proof of Clique(G, k) has size $\geq n^{\Omega(k)}$

- The lower bound degrades nicely for smaller edge density and holds whenever $k = o(n^{1/4})$
- For $G \sim G(n, \frac{1}{2})$ and $k \approx \log n$ the lower bound is $n^{\Omega(\log n)}$

Proof Idea

Lemma 1

If the graph $G = (V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k, E)$ satisfies the property $P(k, r, s, \epsilon)$, then every regular resolution refutation of Clique(G, k) has size $\geq \frac{1}{\sqrt{2}} s^{\epsilon r/2}$

Proof Idea

Lemma 1

If the graph $G = (V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k, E)$ satisfies the property $P(k, r, s, \epsilon)$, then every regular resolution refutation of Clique(G, k) has size $\geq \frac{1}{\sqrt{2}} s^{\epsilon r/2}$

Lemma 2

The Erdős-Rényi random graph $G \sim G(n, p)$ with $p = n^{-4/(k-1)}$ w.h.p. satisfies the property $P(k, r, s, \epsilon)$ with

$$r = \frac{k}{2^{16}} \qquad s = \sqrt{n} \qquad \epsilon = \frac{1}{8}$$

Whenever $k \leq n^{1/8}/\log n$.

(similar parameters work for $p = n^{-2\eta/(k-1)}$ and $k \le n^{1/4-\xi}/\log n$ with $\eta > 1$ and $\xi > 0$)

Proof Idea

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

- (1)
- (2)

Lemma 1

If the graph $G = (V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k, E)$ satisfies the property $P(k, r, s, \epsilon)$, then every regular resolution refutation of Clique(G, k) has size $\geq \frac{1}{\sqrt{2}} s^{\epsilon r/2}$

Lemma 2

The Erdős-Rényi random graph $G \sim G(n, p)$ with $p = n^{-4/(k-1)}$ w.h.p. satisfies the property $P(k, r, s, \epsilon)$ with

$$r = \frac{k}{2^{16}} \qquad s = \sqrt{n} \qquad \epsilon = \frac{1}{8}$$

Whenever $k \leq n^{1/8}/\log n$.

(similar parameters work for $p = n^{-2\eta/(k-1)}$ and $k \le n^{1/4-\xi}/\log n$ with $\eta > 1$ and $\xi > 0$)

Distribution on Paths $\bigvee_{v \in V_i} x_v$

Distribution on Paths

Distribution on Paths $x_{v} = ? 1$ $x_{v} = ? 1$ $x_{v} = ? 1$ $x_{v} = ? 1$ $x_{v} = ? 1$

 $\alpha \sim \mathcal{D}$ if it is constructed as follows:

- if $v \in V_i$ with i forgotten at a or $\beta(a) \cup \{x_v = 1\}$ falsifies a short axiom of Clique(G, k) then continue with $x_v = 0$
- otherwise toss a coin and with prob $s^{-1/(1-\epsilon)}$ continue with $x_v=1$

Distribution on Paths

Clique(G, k)

 $\alpha \sim \mathcal{D}$ if it is constructed as follows:

in all paths passing through a

- if $v \in V_i$ with i forgotten at a or $\beta(a) \cup \{x_v = 1\}$ falsifies a short axiom of Clique(G, k) then continue with $x_v = 0$
- otherwise toss a coin and with prob $s^{-1/(1-\epsilon)}$ continue with $x_v=1$

 $\alpha \sim \mathcal{D}$ if it is constructed as follows:

- if $v \in V_i$ with i forgotten at a or $\beta(a) \cup \{x_v = 1\}$ falsifies a short axiom of Clique(G, k) then continue with $x_v = 0$
- otherwise toss a coin and with prob $s^{-1/(1-\epsilon)}$ continue with $x_v=1$

Useful Pairs
Cliq

Useful Pairs

 $\mathsf{Clique}(G, k)$

Useful Pairs

$$\begin{array}{c|c}
\bullet & X_V \\
v \in V_i
\end{array}$$

$$V_i^0(a) = \{ v \in V_i : \beta(a)(x_v) = 0 \}$$

$$\neg x_u \lor \neg x_v$$

(a, b) is **useful** if exists $i^* \in [k]$ is not forgotten in b st $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense

Useful Pairs

Clique(G, k)

(a, b) is **useful** if exists $i^* \in [k]$ is not forgotten in b st $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense

W is (r, q)-dense if for every $R \subseteq V$ with $|R| \le r$ it holds that $|\Gamma_W(R)| \ge q$

Clique(G, k)

(a,b) is **useful** if exists $i^* \in [k]$ is not forgotten in b st $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r,q)-dense

W is (r, q)-dense if for every $R \subseteq V$ with $|R| \le r$ it holds that $|\Gamma_W(R)| \ge q$

 α usefully traverses (a, b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

A Bottleneck Counting

Claim 1. Every $\alpha \sim \mathcal{D}$ usefully traverses a useful pair

Claim 2. For every useful pair (a, b), the probability that $\alpha \sim \mathcal{D}$ usefully traverses (a, b) is $\leq 2s^{-\epsilon r}$

Hence the size of the ROBP is $\geq \frac{1}{\sqrt{2}} s^{\epsilon r/2}$

Claim 1. Every $\alpha \sim \mathcal{D}$ usefully traverses a useful pair

Clique(G, k)

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

- (1) V_i is (tr, tq)-dense for every $i \in [k]$;
- (2) ...

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Clique(G, k)

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

- (1) V_i is (tr, tq)-dense for every $i \in [k]$;
- (2) ...

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Claim 1. Every $\alpha \sim \mathcal{D}$ usefully traverses a useful pair

Clique(G, k)

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

- (1) V_i is (tr, tq)-dense for every $i \in [k]$;
- (2) ...

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Claim 1. Every $\alpha \sim \mathcal{D}$ usefully traverses a useful pair

Clique(G, k)

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

- (1) V_i is (tr, tq)-dense for every $i \in [k]$;
- (2) ...

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

CASE 1. $|V^{1}(a)| = |\{v \in V : \beta(a)(x_{v}) = 1\}|$ is large.

CASE 2. $|V^1(a)|$ is not large (let $W = V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ and $V^1(\alpha) = 1$ s set by α between a and b)

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

CASE 1. $|V^{1}(a)| = |\{v \in V : \beta(a)(x_{v}) = 1\}|$ is large.

 $\Pr(E) \leq s^{-\epsilon r}$ since in the distribution \mathcal{D} choosing 1s is very unlikely

CASE 2. $|V^1(a)|$ is not large (let $W = V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ and $V^1(\alpha) = 1$ s set by α between a and b)

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

CASE 1. $|V^{1}(a)| = |\{v \in V : \beta(a)(x_{v}) = 1\}|$ is large.

 $\Pr(E) \leq s^{-\epsilon r}$ since in the distribution \mathcal{D} choosing 1s is very unlikely

CASE 2. $|V^1(a)|$ is not large (let $W = V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ and $V^1(\alpha) = 1$ s set by α between a and b)

$$Pr(E) = Pr(E \land |\Gamma_W(V^1(a) \cup V^1(\alpha))| \text{ is large})$$
 (1)

+
$$\Pr(E \wedge |\Gamma_W(V^1(a) \cup V^1(\boldsymbol{\alpha}))| \text{ is not large})$$
 (2)

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a, b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

CASE 1. $|V^{1}(a)| = |\{v \in V : \beta(a)(x_{v}) = 1\}|$ is large.

 $\Pr(E) \leq s^{-\epsilon r}$ since in the distribution \mathcal{D} choosing 1s is very unlikely

CASE 2. $|V^1(a)|$ is not large (let $W = V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ and $V^1(\alpha) = 1$ s set by α between a and b)

$$Pr(E) = Pr(E \land |\Gamma_W(V^1(a) \cup V^1(\alpha))| \text{ is large})$$
 (1)

+
$$\Pr(E \wedge |\Gamma_W(V^1(a) \cup V^1(\boldsymbol{\alpha}))| \text{ is not large})$$
 (2)

- $(1) \le s^{-\epsilon r}$ from the fact that many 0s in W are coin tosses
- $(2) \leq s^{-\epsilon r}$ from $P(k, r, s, \epsilon)$: the ones in $V^{1}(\alpha)$ "are concentrated"

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a,b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Case 1:
$$|V^1(a)| \ge \epsilon r$$

$$\Pr_{\boldsymbol{\alpha} \sim \mathcal{D}}(\boldsymbol{\alpha} \text{ passes through } a) \leq (s^{-1/(1-\epsilon)})^{\epsilon r} \leq s^{-\epsilon r}$$

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.
- *W* is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a, b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Case 2.1: $|V^1(a)| < \epsilon r$

$$\Pr_{\boldsymbol{\alpha} \sim \mathcal{D}}(E \land |\Gamma_{W}(V^{1}(\boldsymbol{a}) \cup V^{1}(\boldsymbol{\alpha}))| \leq rs^{1/(1-\epsilon)} \log s)$$

$$\leq \Pr(|V^{1}(\boldsymbol{\alpha}) \cap S| \geq (1-\epsilon)r)$$

$$\leq {|S| \choose (1-\epsilon)r} (s^{-1/(1-\epsilon)})^{(1-\epsilon)r}$$

property $P(k, r, s, \epsilon)$: there are $t, q \in \mathbb{R}^+$ s.t.

(1) V_i is (tr, tq)-dense for every $i \in [k]$;

(2) for every $W \subseteq V$ (r,q)-dense there is a set $S \subseteq V$ with $|S| \leq s$ s.t. every $R \subseteq V$ with $|R| \le \epsilon r + \lceil k/t \rceil$ and $|\Gamma_W(R)| \le r s^{1/(1-\epsilon)} \log s$ we have that $|R \cap S| \ge r$

Reminder

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.

 $\leq |S|^{(1-\epsilon)r} s^{-r} \\ \leq s^{-\epsilon r}$

- W is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a, b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Case 2.2:
$$|V^1(a)| < \epsilon r$$

$$\Pr_{\boldsymbol{\alpha} \sim \mathcal{D}}(E \wedge |\Gamma_{W}(V^{1}(a) \cup V^{1}(\boldsymbol{\alpha}))| \geq rs^{1/(1-\epsilon)} \log s)$$

$$\leq (1 - s^{-1/(1-\epsilon)})^{rs^{1/(1-\epsilon)} \log s}$$

property $P(k, r, s, \epsilon)$:

there are $t, q \in \mathbb{R}^+$ s.t.

(1) V_i is (tr, tq)-dense for every $i \in [k]$;

(2) for every $W \subseteq V$ (r,q)-dense there is a set $S \subseteq V$ with $|S| \leq s$ s.t. every $R \subseteq V$ with $|R| \le \epsilon r + \lceil k/t \rceil$ and $|\Gamma_W(R)| \le r s^{1/(1-\epsilon)} \log s$ we have that $|R \cap S| \ge r$

Reminder

- (a, b) is **useful** if exists $i^* \in [k]$ not forgotten in b and $V_{i^*}^0(b) \setminus V_{i^*}^0(a)$ is (r, q)-dense.

 $\leq e^{-r \log s}$

 $< s^{-\epsilon r}$

- W is (r, q)-dense if for every $R \subseteq V$, $|R| \le r \to |\Gamma_W(R)| \ge q$.
- α usefully traverses (a, b) if α sets $\leq \lceil k/t \rceil$ variables to 1 between a and b

Conclusions

Take Away Message

- *k*-clique a fundamental problem
- $n^{\Omega(k)}$ l.b. for small-ish k in regular resolution
- w.h.p. for Erdős-Rényi random graphs

Conclusions

Take Away Message

- *k*-clique a fundamental problem
- $n^{\Omega(k)}$ l.b. for small-ish k in regular resolution
- w.h.p. for Erdős-Rényi random graphs

Open Problems

- Ramsey graphs
- General resolution (and stronger systems)

Conclusions

Take Away Message

- *k*-clique a fundamental problem
- $n^{\Omega(k)}$ l.b. for small-ish k in regular resolution
- w.h.p. for Erdős-Rényi random graphs

Open Problems

Ramsey graphs

• General resolution (and stronger systems)