1 Main Equations

$$\frac{\partial A}{\partial t} = p(I, q)A - l_{bg}A - v\frac{\partial A}{\partial z} + d\frac{\partial^2 A}{\partial z^2}$$

$$\frac{\partial R_b}{\partial t} = \rho(q, R_d)A - l_{bg}Rb - v\frac{\partial R_b}{\partial z} + d\frac{\partial^2 R_b}{\partial z^2}$$

$$\frac{\partial R_d}{\partial t} = -\rho(q, R_d)A + l_{bg}Rb + d\frac{\partial^2 R_d}{\partial z^2}$$

$$I(z) = I_0 exp - \left(\int_0^z kAdz + k_{bg}z\right)$$

$$\frac{\partial R_s}{\partial t} = vR_b(z_m ax) - rR_s$$

2 Other Equations

Algal nutrient quota: $q = \frac{R_b}{A}$ **Note:** this calculation for q is correct as long as v = d in equation $\frac{\partial A}{\partial t}$?

Specific algal growth rate: $p(I,q) = \mu_{max} \left(\frac{q - q_{min}}{q} \right) \frac{I}{h + I}$

Specific algal nutrient uptake rate: $\rho(q, R_d) = \rho_{max} \left(\frac{q_{max} - q}{q_{max} - q_{min}}\right) \frac{R_d}{m + R_d}$

3 First Order Equations

$$A'_{1} = A_{2}$$

$$A'_{2} = \frac{1}{d} (vA_{2} - p(I, q)A_{1} + l_{bg}A_{1})$$

$$R'_{b1} = R_{b2}$$

$$R'_{b2} = \frac{1}{d} (vR_{b2} - \rho(q, R_{d1})A_{1} - l_{bg}R_{b1})$$

$$R'_{d1} = R_{d2}$$

$$R'_{d2} = \frac{1}{d} (\rho(q, R_{d1})A_{1} - l_{bg}R_{b1})$$

$$I' = -(kA_{1} + k_{bg})I$$

Boundary Conditions 4

$$vA_1(0) - dA_2(0) = 0$$
 $A_2(z_{max}) = 0$
 $vR_{b1}(0) - dR_{b2}(0) = 0$ $R_{b2}(z_{max}) = 0$
 $R_{d2}(0) = 0$ $dR_{d2}(z_{max}) - vR_{b1}(z_{max}) = 0$
 $I(0) = I_0$

5 Values

Initial guesses for shooting method taken from the Standard Model:

$$A_1 = 100 \, mg \, C \, m^{-3}$$

$$R_{b1} = 2.2 \, mg \, P \, m^{-3}$$

$$R_{d1} = 30 \, mg \, P \, m^{-3}$$

But currently using $R_{b1} = 5*(q_{min}A_1)$ to keep uptake function positive and $R_{d1} = 89.333$.

Following the $Standard\ Model$

d = 0.01 - 1,000	v = 0.25
$z_{max} = 10 - 60$	$I_0 = 300$
h = 120	$l_{bg} = 0.1$
k = 0.0003	$k_{bg} = 0.4$
$\mu_{max} = 1.2$	$\rho_{max} = 0.2$
$q_{min} = 0.004$	$q_{max} = 0.04$
m = 15	

Redfield Ratio: 0.022 mg P mg C - 1