

Bayesian Inference

Thursday 24th November, 2016

Israel<mark>tëch</mark> challenge

1 Introduction - order of the day

2 Bayesian Inference

3 Conclusion

Order of the Day

- diving a bit deeper into statistical inference
- statistics some religious aspects
- estimation there's more to life than maximum likelihood estimation

"Probability Arithmetics"

Probability - simple arithmatics

Two $\fbox{\it fair}$ coins X and Y and one $\fbox{\it fair}$ dice Z

"Probability Arithmetics"

Probability - simple arithmatics

Two $\fbox{\it fair}$ coins X and Y and one $\fbox{\it fair}$ dice Z

- ▶ sum ≈ logical OR
 - What's the probability of the dice landing on 1 or 6

$$P(Z = 1) + P(Z = 6) = 1/6 + 1/6$$

"Probability Arithmetics"

Probability - simple arithmatics

Two $\fbox{\it fair}$ coins X and Y and one $\fbox{\it fair}$ dice Z

- ▶ sum ≈ logical OR
 - What's the probability of the dice landing on 1 or 6

$$P(Z = 1) + P(Z = 6) = 1/6 + 1/6$$

- ▶ product \approx logical AND
 - What's the probability of both coins landing on heads?

$$P(X = H) \cdot P(Y = H) = 0.5 \cdot 0.5$$

Israel<mark>lëch</mark> challenge

$$P(A \text{ or } B) \stackrel{?}{=} P(A) + P(B)$$

$$P(A \text{ or } B) \stackrel{?}{=} P(A) + P(B)$$

- When is this true?
 - A and B are disjoint events
- ► And if not?
 - \blacksquare X, Y are fair coins

$$P(or(X = 1, Y = 1)) = 0.5 + 0.5$$

Logical OR

Darts

areas

Darts

$$P(A) = P(and(A, \overline{B})) + P(and(A, B))$$

$$P(B) = P\left(and\left(\overline{A}, B\right)\right) + P\left(and\left(A, B\right)\right)$$

Logical OR

Israel<mark>lëch</mark> challenge

Darts

$$P(A) = P(and(A, \overline{B})) + P(and(A, B))$$

$$P(B) = P(and(\overline{A}, B)) + P(and(A, B))$$

$$P(or(A, B)) = P(A) + P(B) - P(and(A, B))$$

Joined Probability

- X someone falling asleep in the first row
- Y someone falling asleep in the last row

Joined Probability

$$P(X,Y) \stackrel{?}{=} P(X) \cdot P(Y)$$

$$P(X,Y) \stackrel{?}{=} P(X) \cdot P(Y)$$

- ightharpoonup X a fair coin
- Y the same coin

The probability X = Y = 1?

$$P(X = 1) \cdot P(Y = 1) \stackrel{???}{=} 0.25$$

Joined Probability

$$P(X,Y) \stackrel{?}{=} P(X) \cdot P(Y)$$

▶ When is this true?

Joined Probability

$$P(X,Y) \stackrel{?}{=} P(X) \cdot P(Y)$$

- ▶ When is this true?
 - $lue{X}$ is independent of Y

$$P(X,Y) \stackrel{?}{=} P(X) \cdot P(Y)$$

- ▶ When is this true?
 - lacksquare X is independent of Y
- ► And if not?
 - $P(X,Y) = P(X \mid Y) P(Y)$

Conditional Probability

 $P(X \mid Y)$ - probability of X conditional on Y returning to the previous example:

$$P(X \mid Y) = \begin{cases} 1, & X = Y \\ 0, & X \neq Y \end{cases}$$

therefore

$$P(X = 1, Y = 1) = P(X = 1 | Y = 1) \cdot P(Y = 1)$$

= 0.5

Another perspective

- ightharpoonup A a Fellow sitting in class
- ▶ B the Fellow is listening

Calculate
$$P(B=1 \mid A=1)$$

ightharpoonup start with $P\left(B=1,A=1\right)$

Conditional Probability

Israellëch challenge

Another perspective

- ightharpoonup A a Fellow sitting in class
- ▶ B the Fellow is listening

Calculate
$$P(B = 1 \mid A = 1)$$

- ightharpoonup start with $P\left(B=1,A=1\right)$
- b divide by the probability of what's given P(A = 1)

The Law of Total Probability

description	probability	
summery days	0.65	
wintery days	0.35	
rain on summery days	6.03	
rain on wintery days	0.1	

what's the probability of rain?

The Law of Total Probability

description	probability
summery days	0.65
wintery days	0.35
rain on summery days	0.03
rain on wintery days	0.1

what's the probability of rain?

$$P(rain) = P(rain \mid summery) \cdot P(summery) + P(rain \mid wintery) \cdot P(wintery)$$
$$= 0.03 \cdot 0.65 + 0.1 \cdot 0.35$$

The Law of Total Probability

$$P(X) = \sum_{y} P(X \mid Y = y) P(Y = y)$$

We know that

$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

▶ Can we compute $P(Y \mid X)$ from

$$P(X), P(Y), P(X \mid Y)$$
?

Israellëch challenge

$$P(Y \mid X) = \frac{P(X, Y)}{P(X)}$$

Israellëch challenge

$$P(Y \mid X) = \frac{P(X,Y)}{P(X)}$$
$$= \frac{P(X \mid Y) P(Y)}{P(X)}$$

Israellëch challenge

$$P(Y \mid X) = \frac{P(X \mid Y) P(Y)}{P(X)}$$

Bayesian Vs. Frequentist Statistics

Question: What's the probability of rain today?

Bayesian Vs. Frequentist Statistics

Question: What's the probability of rain today?

- ▶ We can estimate
- ightharpoonup Given N days
 - we can estimate what's the proportion of rainy days
 - rain on a given day is deterministic
 - no probability

What's your opinion?

Bayesian Vs. Frequentist Statistics

Bayesian

Probability can model our belief or uncertainty regarding the world

Frequentist

Probability is a limit of frequency

1 Introduction - order of the day

2 Bayesian Inference

3 Conclusion

Maximum Likelihood Revisited

Example: estimating coin parameter p

- coin tossed 10 times 8 heads, 2 tails
- how would you estimate p?

Example: estimating coin parameter p

- coin tossed 10 times 8 heads, 2 tails
- how would you estimate p?
- inside information previous coins

$$p = \begin{cases} 0.3, & 9 \text{ out of } 10\\ 0.8, & 1 \text{ out of } 10 \end{cases}$$

can you use this information?

Example: estimating coin parameter p

- ▶ coin tossed 10 times 8 heads, 2 tails
- how would you estimate p?
- inside information previous coins

$$p = \begin{cases} 0.3, & 9 \text{ out of } 10\\ 0.8, & 1 \text{ out of } 10 \end{cases}$$

- can you use this information?
- ► MLE no
- \triangleright if p is a constant what's the point?

Maximum Likelihood Revisited

Example: estimating coin parameter p

- ▶ if you are willing to go Bayesian, there is a way
- ightharpoonup compute probability (uncertainty) for p using Bayes Theorem

in this problem	name	formula
our inside information	prior distribution	$P\left(p\right)$
our uncertainty regarding p given the data	posterior distribution	$P(p \mid X)$

an alternative to MLE

$$\theta_{map} = \arg\max_{\theta} P\left(\theta \mid data\right)$$

an alternative to MLE

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} P(\theta \mid data)$$
$$= \underset{\theta}{\operatorname{arg max}} \frac{P(data \mid \theta) P(\theta)}{P(data)}$$

an alternative to MLE

$$\theta_{map} = \arg\max_{\theta} P\left(\theta \mid data\right)$$

problem

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} \frac{P(data \mid \theta) P(\theta)}{P(data)}$$

an alternative to MLE

$$\theta_{map} = \arg\max_{\theta} P\left(\theta \mid data\right)$$

problem

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} \frac{P(data \mid \theta) P(\theta)}{P(data)}$$

ightharpoonup data is given - same for all heta

Maximum a Posteriori Estimation

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} P \left(data \mid \theta \right) P \left(\theta \right)$$

What season is this?

we observe a week with two days of rain

prior	likelihood
P(summery) = 0.65	$P(rain \mid summery) = 0.03$
P(wintery) = 0.35	$P(rain \mid wintery) = 0.1$

What season is this?

we observe a week with two days of rain

prior	likelihood
P(summery) = 0.65	$P(rain \mid summery) = 0.03$
P(wintery) = 0.35	$P(rain \mid wintery) = 0.1$

$$\theta_{map} = \underset{wintery,summery}{\arg\max} \left\{ \begin{array}{l} 0.65 \cdot 0.03^2 \cdot 0.97^5, & \theta = summery \\ \\ 0.35 \cdot 0.1^2 \cdot 0.9^5, & \theta = wintery \end{array} \right.$$

What season is this?

we observe a week with two days of rain

prior	likelihood
P(summery) = 0.65	$P(rain \mid summery) = 0.03$
P(wintery) = 0.35	$P(rain \mid wintery) = 0.1$

$$\theta_{map} = \underset{wintery,summery}{\arg\max} \begin{cases} 0.0005, & \theta = summery \\ 0.002, & \theta = wintery \end{cases}$$

Back to the coin

whiteboard

Back to the coin

whiteboard

$$p_{map} = \underset{0.3,0.8}{\operatorname{arg\,max}} \left\{ \begin{array}{l} 0.00067, & p = 0.8 \\ \\ 0.000029, & p = 0.3 \end{array} \right.$$

Israel<mark>lëch</mark> challenge

normal - normal

$$D = X_1, \ldots, X_n$$

- lacksquare height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- lacktriangle mean height across countries $heta \sim \mathcal{N}\left(\phi,\zeta^2
 ight)$

Israellëch challenge

normal - normal

$$D = X_1, \ldots, X_n$$

- ightharpoonup height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- ▶ mean height across countries $\theta \sim \mathcal{N}\left(\phi, \zeta^2\right)$

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} P(D \mid \theta) P(\theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \left(\frac{1}{\sqrt{2\pi\zeta^2}} e^{-\frac{(\theta - \phi)^2}{2\zeta^2}} \right) \prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(X_i - \theta)^2}{2\sigma^2}} \right)$$

$$D = X_1, \ldots, X_n$$

- ightharpoonup height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- lacktriangle mean height across countries $heta \sim \mathcal{N}\left(\phi,\zeta^2\right)$

$$\theta_{map} = \underset{\theta}{\operatorname{arg max}} P(D \mid \theta) P(\theta)$$

$$= \underset{\theta}{\operatorname{arg\,max}} \left(\frac{1}{\sqrt{2\pi\zeta^2}\sqrt{2\pi\sigma^2}} e^{-\frac{(\theta-\phi)^2}{2\zeta^2} + \sum_{i=1}^n -\frac{(X_i-\theta)^2}{2\sigma^2}} \right)$$

$$D = X_1, \ldots, X_n$$

- ightharpoonup height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- ightharpoonup mean height across countries $heta\sim\mathcal{N}\left(\phi,\zeta^2
 ight)$

$$\theta_{map} = \arg\max_{\theta} \left\{ -\frac{(\theta - \phi)^2}{2\zeta^2} + \sum_{i=1}^n -\frac{(X_i - \theta)^2}{2\sigma^2} \right\}$$
$$= \arg\min_{\theta} \left\{ \frac{\sigma^2}{\zeta^2} (\theta - \phi)^2 + \sum_{i=1}^n (X_i - \theta)^2 \right\}$$

estimating mean height in Israel from samples

$$D = X_1, \ldots, X_n$$

- lacksquare height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- lacktriangle mean height across countries $heta \sim \mathcal{N}\left(\phi, \zeta^2\right)$
- ▶ if the problem is nice (this one is)
- find the unique minimizer

derivative

estimating mean height in Israel from samples $D = X_1, \dots, X_n$

- ▶ height $H \sim \mathcal{N}\left(\theta, \sigma^2\right)$
- lacktriangle mean height across countries $heta \sim \mathcal{N}\left(\phi,\zeta^2
 ight)$

$$\frac{d}{d\theta} \left\{ \frac{\sigma^2}{\zeta^2} (\theta - \phi)^2 + \sum_{i=1}^n (X_i - \theta)^2 \right\} \stackrel{!}{=} 0$$

$$\frac{\sigma^2}{\zeta^2}(\theta - \phi) = -n\theta + \sum_{i=1}^n X_i$$

$$D = X_1, \dots, X_n$$

- ightharpoonup height $H \sim \mathcal{N}\left(heta, \sigma^2
 ight)$
- lacktriangle mean height across countries $heta \sim \mathcal{N}\left(\phi,\zeta^2
 ight)$

$$\theta_{map} = \frac{\sum_{i=1}^{n} X_i + \phi \frac{\sigma^2}{\zeta^2}}{n + \frac{\sigma^2}{\zeta^2}}$$

coin example

- ightharpoonup prior p=0.8 only 10% of the time
- ▶ intuition $p_{mle} = 0.8 \Rightarrow P(p = 0.8)$ will increase
- ▶ update $P(p \mid data) \rightarrow P(p)$

Bayesian Inference

Bayesian Updating

we all do it, all the time

- \blacktriangleright bus to class 10min
- \triangleright walk to class 15min
- \blacktriangleright a bus is quicker 95% of the time
- lacktriangle last few days horrible traffic bus time 25min
- estimation of best method of travel will begin to change

Is the philosophy good?

- a matter of opinion
- probability is a modeling tool
- don't be an extremist

Is the practice good?

- are assumptions good?
- depends on the assumptions

Is the practice good?

- are assumptions good?
- depends on the assumptions
 - you lost something at your house
 - you think you remember where
 - start from there, expand search
 - you remember correctly find item faster
 - you remember incorrectly find item slower

Is the practice good?

- are assumptions good?
- depends on the assumptions
 - you see people going right or left to avoid an obstacle
 - assume best choice is normally distributed
 - choose the mean
 - bump into the obstacle

Is the practice good?

- are assumptions good?
- depends on the assumptions

discussion - assumptions

Israellëch challenge

1 Introduction - order of the day

2 Bayesian Inference

3 Conclusion

Conclusion

- joined and conditional probability
- Bayesian Vs. Frequetist statistics
- Bayesian Inference
- MAP estimator