ICLR 2024 Spotlight

Improving Domain Generalization with Domain Relations

Huaxiu Yao^{1,2*}, Xinyu Yang^{3*}, Xinyi Pan⁴, Shengchao Liu⁵, Pang Wei Koh⁶, Chelsea Finn¹
¹Stanford University, ²UNC-Chapel Hill, ³CMU, ⁴UCLA, ⁵Caltech, ⁶University of Washington

24.03.21 Sangyoon Lee

Motivation

Domain Shift

Applying a trained model to **new domains** (differ from training domains)

Motivation

Domain Shift

Applying a trained model to **new domains** (differ from training domains)

Robust model that can be **generalized** to overall domains.

Motivation

Domain Shift

Prior approach

→ Single model that is domain invariant

This work ...

Construct a domain-specific model for a new domain seen at test time.

- (1) Model may perform better if they were *specialized to a given domain*.
- (2) Different domains can exhibit strong correlations with non-general features.

Background

Out-of-Distribution Generalization

Problem: predicting the label $y \in \mathcal{Y}$ based on the input features $x \in \mathcal{X}$

 P^{tr} : train distribution, P^{ts} : test distribution

Traditional Objective =
$$\arg\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim P^{tr}}[l(f_{\theta}(x), y)]$$

Distribution shift $\rightarrow P^{tr} \neq P^{ts}$

This work considers a setting where **overall distribution** is drawn from **a set of domains** $\mathfrak{D} = \{1, ..., D\}$.

→ Domain ID of training and test datapoints are available!

Background

Domain Relations and Domain Meta-Data

Key Idea: **Domain Relations** → Domain Shift

Domain meta-data $\mathcal{M} = \{m_i\}_{i=1}^D$

: depict the distinctive properties of each domain.

Domain relations (Domain Similarity Matrix $\mathcal{A} = \{a_{ij}\}_{i=1}^{D}$)

: similarity or relatedness between different domains.

→ strength of the relationship between domains i and j

 ${\it D}^{3}{\it G}$: Leveraging domain distances for out-of-domain generalization

 ${\it D}^{3}{\it G}$: Leveraging domain distances for out-of-domain generalization

 ${\it D}^{3}{\it G}$: Leveraging domain distances for out-of-domain generalization

 ${\it D}^{3}{\it G}$: Leveraging domain distances for out-of-domain generalization

Building Domain-Specific Models

Training Stage.

Multi-headed neural network comprising N^{tr} heads. (N^{tr} : Number of training domains)

Input datapoint (x, y) from domain $d \rightarrow$ prediction made by d_{th} head : $f^{(d)}(x) = h^{(d)}(e(x))$

Minimizing the **predictivie risk**:

$$\boldsymbol{L_{pred}} = \mathbb{E}_{d \in \mathcal{D}^{tr}} \mathbb{E}_{(x,y) \sim P_d} [l(f^{(d)}(x), y)].$$

Building Domain-Specific Models

Training Stage. (with limited data)

Difficulties in training domain-specific predictor

→ similar domains tend to have similar predictive functions

Relation-aware consistency regularizer

$$L_{rel} = \mathbb{E}_{d \in \mathcal{D}^{tr}} \mathbb{E}_{(x,y) \sim P_d} \left[l \left(\frac{\sum_{j=1, j \neq d}^{N^{tr}} a_{dj} f^{(j)}(x)}{\sum_{k=1, k \neq d}^{N^{tr}} a_{dk}}, y \right) \right].$$

$$L = L_{pred} + \lambda L_{rel}$$

- (1) rely more on predictions made by similar domains
- (2) strengthen the relations between predictors and help training predictors for domains with insufficient data

Building Domain-Specific Models

Test Stage.

 D^3G constructs test domain-specific models based on the same assumption.

→ similar domains have similar predictive functions.

Prediction
$$\widehat{y} = \frac{\sum_{d=1}^{N^{tr}} a_{dt} f^{(d)}(x)}{\sum_{k=1}^{N^{tr}} a_{kt}}$$

Extracting and Refining Domain Relations

Domain Relations : $\mathcal{A} = \left\{a_{ij}
ight\}_{i,j=1}^{D}$

→ Derived from domain meta-data

How to define?

Domain Relations = Fixed Relations + Learned Relations

$$a_{ij} = \beta a_{ij}^g + (1 - \beta) a_{ij}^l$$

Extracting and Refining Domain Relations

Fixed relations (directly collecting from domain-meta data)

(1) a relation graph in domain meta-data

(2) pairwise similarity calculated from each domain's meta-data

Learned relations

fixed relations may not fully reflect accurate application-specific domain relation

$$a_{ij}^{l} = \frac{1}{R} \sum_{r=1}^{R} \cos(w_r \odot g(m_i), w_r \odot g(m_j))$$

Training and Test Procedure of D^3G

Algorithm 1 Training and Test Procedure of D³G

```
Require: Training and test data, relation combining coefficient \beta, loss balanced coefficient \lambda, meta-data
    \{m_d\}_{d=1}^D of all domains, learning rate \gamma
 1: /* Training stage
                                                                                                                           */
2: Initialize all learnable parameters
3: Extract fixed relations \{a_{ij}^g\}_{i,j=1}^{N^{tr}}.
4: while not converge do
       Compute learned relations \{a_{ij}^l\}_{i,j=1}^{N^{tr}} and obtain the final domain relations by equation 6.
 5:
       for each example (x, y, d) do
6:
          Calculated supervised loss \mathcal{L}_{pred} by equation 2.
          Computed consistency loss \mathcal{L}_{rel} by equation 3 using domain relations.
       Update learnable parameters with learning rate \gamma.
10: /* Test stage
                                                                                                                           */
11: for each test domain t do
       Obtain the relations between the test domain and training domains \{a_{dt}\}_{d=1}^{N^{tr}}
12:
13:
       for each example (x, y, t) do
14:
          Computed the prediction \hat{y} by equation 4.
```

11: **for** each test domain t **do**

Training and Test Procedure of D^3G

Algorithm 1 Training and Test Procedure of D³G

```
Require: Training and test data, relation combining coefficient \beta, loss balanced coefficient \lambda, meta-data
     \{m_d\}_{d=1}^D of all domains, learning rate \gamma
 1: /* Training stage
                                                                                                                           a_{ij}^{l} = \frac{1}{R} \sum_{r=1}^{R} \cos(w_r \odot g(m_i), w_r \odot g(m_j))
a_{ij} = \beta a_{ij}^g + (1 - \beta) a_{ij}^l
 2: Initialize all learnable parameters
 3: Extract fixed relations \{a_{ij}^g\}_{i,j=1}^{N^{tr}}.
 4: while not converge do
        Compute learned relations \{a_{ij}^l\}_{i,j=1}^{N^{tr}} and obtain the final domain relations by equation 6.
 6:
        for each example (x, y, d) do
           Calculated supervised loss \mathcal{L}_{pred} by equation 2.
                                                                                                                              L = L_{nred} + \lambda L_{rel}
            Computed consistency loss \mathcal{L}_{rel} by equation 3 using domain relations.
        Update learnable parameters with learning rate \overline{\gamma}.
10: /* Test stage
                                                                                                                                               */
```

12: Obtain the relations between the test domain and training domains $\{a_{dt}\}_{d=1}^{N^{tr}}$

13: for each example (x, y, t) do
14: Computed the prediction ŷ by equation 4.

$$\hat{y} = \frac{\sum_{d=1}^{N^{tr}} a_{dt} f^{(d)}(x)}{\sum_{k=1}^{N^{tr}} a_{kt}}$$

Experiments

Illustrative Toy Task

Experiments

Performance between D^3G and other baselines

	TPT-48 (MSE ↓)			FMoW (Worst Acc. ↑)		ChEMBL-STRING (ROC-AUC↑)	
	$N (24) \rightarrow S (24)$	$E(24) \rightarrow W(24)$	FMoW-Asia	FMoW-WILDS	$PPI_{>50}$	$PPI_{>100}$	
	Region Shift	Region Shift	Region Shift	Region-Time Shift	Protein Shift	Protein Shift	
ERM	0.445 ± 0.029	0.328 ± 0.033	$ 26.05 \pm 3.84\% $	$34.87 \pm 0.41\%$	$ 74.11 \pm 0.35\%$	$71.91 \pm 0.24\%$	
GroupDRO	0.413 ± 0.045	0.434 ± 0.082	$26.24 \pm 1.85\%$	$31.16 \pm 2.12\%$	$73.98 \pm 0.25\%$	$71.55 \pm 0.59\%$	
IRM	0.429 ± 0.043	0.262 ± 0.034	$25.02 \pm 2.38\%$	$32.54 \pm 1.92\%$	$52.71 \pm 0.50\%$	$51.73 \pm 1.54\%$	
IB-IRM	0.416 ± 0.009	$\overline{0.272 \pm 0.026}$	$26.30 \pm 1.51\%$	$34.94 \pm 1.38\%$	$52.12 \pm 0.91\%$	$52.33 \pm 1.06\%$	
IB-ERM	0.458 ± 0.032	0.273 ± 0.030	$26.78 \pm 1.34\%$	$35.52 \pm 0.79\%$	$74.69 \pm 0.14\%$	$73.32 \pm 0.21\%$	
V-REx	0.412 ± 0.042	0.343 ± 0.021	$26.63 \pm 0.93\%$	$37.64 \pm 0.92\%$	$71.46 \pm 1.47\%$	$\overline{69.37 \pm 0.85\%}$	
DANN	0.394 ± 0.019	0.515 ± 0.156	$25.62 \pm 1.59\%$	$\overline{33.78 \pm 1.55\%}$	$73.49 \pm 0.45\%$	$72.22 \pm 0.10\%$	
CORAL	0.401 ± 0.022	0.283 ± 0.048	$25.87 \pm 1.97\%$	$36.53 \pm 0.15\%$	$75.42 \pm 0.15\%$	$73.10 \pm 0.14\%$	
MMD	0.409 ± 0.067	0.279 ± 0.026	$25.06 \pm 2.19\%$	$35.48 \pm 1.81\%$	$75.11 \pm 0.27\%$	$73.30 \pm 0.50\%$	
RSC	0.421 ± 0.040	0.330 ± 0.068	$25.73 \pm 0.70\%$	$34.59 \pm 0.42\%$	$74.83 \pm 0.68\%$	$72.47 \pm 0.38\%$	
CAD	n/a	n/a	$26.13 \pm 1.82\%$	$35.17 \pm 1.73\%$	$75.17 \pm 0.64\%$	$72.92 \pm 0.39\%$	
SelfReg	n/a	n/a	$24.81 \pm 1.77\%$	$37.33 \pm 0.87\%$	$75.42 \pm 0.42\%$	$72.63 \pm 0.71\%$	
Mixup	0.574 ± 0.030	0.357 ± 0.011	$26.99 \pm 1.27\%$	$35.67 \pm 0.53\%$	$74.40 \pm 0.54\%$	$71.31 \pm 1.06\%$	
LISA	0.467 ± 0.032	0.345 ± 0.014	$26.05 \pm 2.09\%$	$34.59 \pm 1.28\%$	$74.30 \pm 0.59\%$	$71.45 \pm 0.44\%$	
MAT	0.423 ± 0.027	0.291 ± 0.024	$25.92 \pm 2.83\%$	$35.07 \pm 0.84\%$	$74.73 \pm 0.30\%$	$72.07 \pm 0.81\%$	
AdaGraph	n/a	n/a	$ 25.91 \pm 0.59\% $	$35.42 \pm 0.55\%$	$ 74.02 \pm 0.42\%$	$72.10 \pm 0.06\%$	
RaMoE	0.372 ± 0.035	0.311 ± 0.060	$26.65 \pm 0.46\%$	$36.51 \pm 0.71\%$	$74.99 \pm 0.22\%$	$71.48 \pm 0.49\%$	
mDSDI	0.445 ± 0.027	0.315 ± 0.089	$25.54 \pm 0.46\%$	$36.35 \pm 0.45\%$	$75.09 \pm 0.47\%$	$71.23 \pm 0.69\%$	
ADDAR	0.403 ± 0.061	0.287 ± 0.040	$25.87 \pm 1.01\%$	$35.77 \pm 0.70\%$	$74.55 \pm 0.54\%$	$71.93 \pm 0.33\%$	
GRDA	0.373 ± 0.040	0.355 ± 0.068	$26.57 \pm 0.70\%$	$34.41 \pm 0.42\%$	$75.01 \pm 0.68\%$	$73.57 \pm 0.38\%$	
DRM	0.571 ± 0.038	0.557 ± 0.027	$25.22 \pm 2.33\%$	$36.39 \pm 0.76\%$	$74.34 \pm 0.48\%$	$72.41 \pm 0.76\%$	
LLE	0.603 ± 0.041	0.467 ± 0.047	$26.37 \pm 1.19\%$	$35.83 \pm 1.00\%$	$74.01 \pm 0.63\%$	$71.68 \pm 0.61\%$	
DDN	0.537 ± 0.024	0.601 ± 0.038	$26.77 \pm 1.72\%$	$35.13 \pm 0.62\%$	$75.17 \pm 0.61\%$	$72.71 \pm 0.59\%$	
TRO	0.371 ± 0.054	0.281 ± 0.066	$26.87 \pm 1.26\%$	$37.48 \pm 0.55\%$	$74.85 \pm 0.27\%$	$72.49 \pm 0.36\%$	
D ³ G (ours)	0.342 ± 0.019	0.236 ± 0.063	$28.12 \pm 0.28\%$	$39.47 \pm 0.57\%$	$ $ 78.67 \pm 0.16%	77.24 \pm 0.30%	

Domain-invariant learning approaches

Domain-specific learning approaches

Conclusion

Contributions

- 1) Novel method called D^3G
- 2) Leverages the connections between different domains & employs a domain-relationship aware weighting system (With domain meta-data)
- 3) Evaluate the **effectiveness** of D^3G

Q&A

Out-of-distribution Generalization

Previous works

- (1) minimizing the divergence of feature distributions
- (2) generating more domains and enhancing the consistency among representations
- (3) find a predictor that is invariant across domains by imposing an explicit regularizer

Appendix

Appendix

Table 10: Comparison of using different relations. The results on FMoW and ChEMBL-STRING are reported. In this case, when no relations are used, we take the average of predictions across all domains.

Fixed	Learned	FMoW (Worst Acc. ↑)		ChEMBL-STRING (ROC-AUC ↑)		
relations	relations	FMoW-Asia	FMoW-WILDS	$PPI_{>50}$	$PPI_{>100}$	
		$26.93 \pm 0.47\%$	$35.32 \pm 0.66\%$	$76.17 \pm 0.21\%$	$73.38 \pm 0.13\%$	
\checkmark		$27.43 \pm 0.41\%$	$39.37 \pm 0.34\%$	$77.66 \pm 0.32\%$	$76.59 \pm 0.40\%$	
	\checkmark	$21.18 \pm 2.30\%$	$36.41 \pm 1.09\%$	$77.09 \pm 0.94\%$	$75.57 \pm 1.20\%$	
√	√	$ $ 28.12 \pm 0.28%	$\textbf{39.47} \pm \textbf{0.57}\%$	78.67 \pm 0.16%	77.24 \pm 0.30%	

Table 11: Full results of comparison between D³G with domain-specific fine-tuning.

Model	FMoW (W	orst Acc. †)	ChEMBL (ROC-AUC↑)		
	FMoW-Asia	FMoW-WILDS	$PPI_{>50}$	$PPI_{>100}$	
ERM	$26.05 \pm 3.84\%$	$34.87 \pm 0.41\%$	$74.11 \pm 0.35\%$	$71.91 \pm 0.24\%$	
CORAL	$25.87 \pm 1.97\%$	$36.53 \pm 0.15\%$	$75.42 \pm 0.15\%$	$73.10 \pm 0.14\%$	
RW-FT	$27.03 \pm 1.03\%$	$36.39 \pm 1.28\%$	$76.31 \pm 0.35\%$	$74.30 \pm 0.40\%$	
$\mathbf{D}^{3}\mathbf{G}$	$ $ 28.12 \pm 0.28%	$\textbf{39.47} \pm \textbf{0.57}\%$	$ $ 78.67 \pm 0.16%	$\textbf{77.24} \pm \textbf{0.30}\%$	