

Principal Component Analysis (PCA) (aka Hauptkomponentenanalyse)

Unsupervised Learning

- Supervised Learning: Erkläre Zielgrösse durch erklärende Variablen
 Ergebnis kann validiert werden (Fehlerrate
 - Ergebnis kann validiert werden (Fehlerrate, Kreuzvalidierung)
- Unsupervised Learning: Finde "interessante" Strukturen in Daten (z.B. Gruppen); es gibt keine Zielgrösse Ergebnis kann nicht validiert werden; subjektiv

Beispiel 1: Visualisieren

Wie visualisiert man hochdimensionale (>3) Datensätze?

> head(USArrests)

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

Seminar für Statistik

Beispiel 2: Komprimieren

• Wie komprimiert man viele Variablen in wenige Variablen, die die Daten gut beschreiben?

	Gen 1	Gen 2	 Gen 6829	Gen 6830
Person 1	1.3	4.3	3.1	9.2
Person 2	8.2	5.5	3.2	5.8

	Z 1	Z2	 Z 9	Z10
Person 1	1.3	4.3	3.1	9.2
Person 2	8.2	5.5	3.2	5.8

Beispiel 3: Unterscheiden

Wie erstellt man einen eindimensionalen Index, der Subjekte möglichst gut unterscheidet?

Siebenkampf

Markus Kalisch

PCA: "Gute" Projektion in wenige Dimensionen

"Gut" = Möglichst viel Varianz

PCA: "Bester" Subraum (bzgl. Residuenquadratsumme)

Aus Buch ISLR

PCA: Intuition

Konvention: Zentrieren

ETH zürich

PCA: Intuition

Auf Länge 1 normieren:

$$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) =: (\phi_{11}, \phi_{21})$$

1. Principal Component (PC 1)

PCA: Intuition

Auf Länge 1 normieren:

$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right) =: (\phi_{12}, \phi_{22})$$

2. Principal Component (PC 2)

Seminar für Statistik

Seminar für Statistik

PCA: Basiswechsel $(X_1 = 0.3, X_2 = 0.5)$ $\phi_{11} = \frac{1}{\sqrt{2}}, \phi_{21} = \frac{1}{\sqrt{2}}$ Skalarprodukt: $Z_1 = (X_1, X_2) \cdot (\phi_{11}, \phi_{21}) = X_1 * \phi_{11} + X_2 * \phi_{21} = 0.3 * \frac{1}{\sqrt{2}} + 0.5 * \frac{1}{\sqrt{2}} \approx 0.57$

Skalarprodukt:

$$Z_2 = (X_1, X_2) \cdot (\phi_{12}, \phi_{22}) = X_1 * \phi_{12} + X_2 * \phi_{22} =$$

= $0.3 * \frac{-1}{\sqrt{2}} + 0.5 * \frac{1}{\sqrt{2}} \approx 0.14$

Koord. 1	Koord. 2
----------	----------

"scores"

$$X_1 = 0.3$$

$$X_2 = 0.5$$

$$Z_1 = 0.57$$

$$Z_2 = 0.14$$

Neue Basis:

- Vektor 1: PC1
- Vektor 2: PC2

<i>1</i> 711		iah
	7HT	ICD
	Zui	1011

Koord. 1 Koord. 2

Std. Basis	$X_1 = 0.3$	$X_2 = 0$
505		

PCA: Basiswechsel mit Linearer Algebra

PC Basis $Z_1 = 0.57$ $Z_2 = 0.14$

 Standard Basis und PC Basis sind je eine Orthonormal Basis (Achsen senkrecht, Länge 1)

- Basiswechsel: Rotationsmatrix Φ
- Spalten der Rotationsmatrix sind loadings:

$$\Phi = \begin{pmatrix} PC1 & PC2 \\ 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} \begin{array}{c} X1 \\ X2 \end{array}$$

- Basiswechsel mit Rotationsmatrix ist einfach:
 - Φ: Von PC Basis nach Standardbasis
 - Φ^{-1} : Von Standardbasis nach PC Basis

Bzgl. Std.basis

$$\Phi^{-1} = \begin{pmatrix} X1 & X2 \\ 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix} PC1 ; Z = \Phi^{-1} * X = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} * \begin{pmatrix} 0.3 \\ 0.5 \end{pmatrix} = \begin{pmatrix} 0.57 \\ 0.14 \end{pmatrix}$$

Bzgl. PC Basis "scores"

Wie findet man 1.PC - Mathematik

- Zentriere Daten
- Angenommen, 1. PC ist in Richtung

$$\Phi_1 = (\phi_{11}, \phi_{21}, \dots, \phi_{p1})$$

- Betrachte Datenpunkt i: Koordinaten bzgl. Standardbasis $x_i = (x_{i1}, x_{i2}, ..., x_{ip})$
- Neue erste Koordinate von Datenpunkt x_i:

$$z_{i1} = \Phi_1 * x_i = \phi_{11} * x_{i1} + \phi_{21} * x_{i2} + \dots + \phi_{p1} * x_{ip}$$

- Koordinaten bzgl. PC-Basis $z_i = (z_{i1}, z_{i2}, ..., z_{ip})$
- Kriterium für 1. PC (vgl. Gleichung (10.3) in ISLR):

$$\max_{\phi_{11},\dots,\phi_{p_1}} \left(\widehat{Var}(z_{i_1}) \right) \ sodass \ L"ange \ von \ \Phi_1 = 1$$

Wie findet man 1. PC - Numerik

- Singulärwertzerlegung der Kovarianzmatrix (= Singular Value Decomposition, SVD)
- Schlechtere Alternative:
 Eigenwertzerlegung der Kovarianzmatrix

empfohlen

In R:

 Funktion prcomp verwendet Singulärwertzerlegung der Kovarianzmatrix

 Funktion princomp verwendet Eigenwertzerlegung der Kovarianzmatrix

To scale or not to scale ...

Messungen auf einer Landkarte (z.B. Bodenschätze)

Welche Einheiten?

To scale or not to scale ...

Faustregeln:

- Daten immer zentrieren
- Falls alle Variablen in der gleichen Einheit sind: Nicht skalieren
- Falls Variablen in unterschiedlichen Einheiten sind: Skalieren

Beispiel 1: Visualisierung

> head(USArrests)

	Murder	Assault	UrbanPop	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

Beispiel 1: Interpretation der PCs

```
> pr.out$rotation
PC1 PC2
Murder -0.5358995 0.4181809
Assault -0.5831836 0.1879856
UrbanPop -0.2781909 -0.8728062
Rape -0.5434321 -0.1673186
```

- PC 1 ist gross, wenn v.a. Murder, Assault und Rape klein sind
 - → PC 1 spiegelt "Verbrechen" wieder
- PC 2 ist gross, wenn UrbanPop klein ist
 - → PC 2 spiegelt "Verstädterung" wieder

Seminar für Statistik

Biplot: PC1 vs PC2

- Projektion auf die Ebene mit der grössten Streuung

 West Virginia und Vermont scheinen_ ähnlich; California und Vermont scheinen verschieden

Rot: Projektion der ursprüngl. Koordinatenachsen:

PC1 ~ Verbrechen

PC2 ~ Verstädterung

Neue Basis:

- Vektor 1: PC1

- Vektor 2: PC2

Wie viele PCs?

 Maximale Anzahl PCs: min(Anzahl X-Variablen, Anzahl Samples-1)

0 PCsperfekt komprimiertVarianz in Daten nicht erfasst

alle PCs nicht komprimiert Varianz in Daten perfekt erfasst

Kompromiss

Screeplot: Wie viele PCs bei USArrests?

- Ziel: Möglichst viel Varianz in den Daten erfassen
- Varianz entlang der PCs nimmt ab

Faustregel: 80% der Varianz erklären

→ 2 PCs in diesem Bsp

Beispiel 2: NCI60 Data

	Gen 1	Gen 2	 Gen 6829	Gen 6830
Person 1	0.3	1.18	 -0.34	-1.93
Person 64	0.35	-0.27	 -0.15	1.21

- 64 Krebszell-Linien; je 6830 Gene
- Wie fasst man die Anzahl Gene zusammen ?
- (Vgl. ISLR 10.6.1)

Beispiel 2: NCI60 Data

	Gen 1	Gen 2	 Gen 6829	Gen 6830
Person 1	0.3	1.18	 -0.34	-1.93
Person 64	0.35	-0.27	 -0.15	1.21

	Z1	Z2	 Z9	Z10
Person 1	1.3	4.3	3.1	9.2
Person 64	8.2	5.5	3.2	5.8

Wie viele PCs?

Beispiel 2: Klare Struktur mit nur 2 PCs

Beispiel 2: Scree-Plot

- Die ersten ca. 10 PCs haben grosses PVE; danach flacht Kurve ab
- Mit ca. 30 PCs hat man 80% der Varianz erklärt
- Zum Vergleich: die restlichen PCs erklären nur noch 20% der Varianz

Beispiel 3: Siebenkampf

Wie erstellt man einen eindimensionalen Index, der Subjekte möglichst gut unterscheidet?

Siebenkampf

Bsp 3: Korrelationsmatrix

```
burdles highjump shot run200m longjump javelin run800m hurdles 1.0000000 0.5817409 0.7666860 0.8300371 0.8893472 0.3324779 0.5587794 highjump 0.5817409 1.0000000 0.4646854 0.3909024 0.6626910 0.3480793 0.1523350 shot 0.7666860 0.4646854 1.0000000 0.6694330 0.7840380 0.3430333 0.4082925 run200m 0.8300371 0.3909024 0.6694330 1.0000000 0.8106176 0.4707969 0.5731902 longjump 0.8893472 0.6626910 0.7840380 0.8106176 1.0000000 0.2870826 0.5233809 javelin 0.3324779 0.3480793 0.3430333 0.4707969 0.2870826 1.0000000 0.2559348 run800m 0.5587794 0.1523350 0.4082925 0.5731902 0.5233809 0.2559348 1.0000000
```


Bsp 3: Scree-Plot

PC 1 ist die "Richtung", in der die Punkte am meisten streuen → ideal für Ranking

PC 1 erklärt schon über 60% der Varianz!

PC 1 vs. Olympischer Score

PC 1 gibt den olympischen Score (mit kleinen Ausnahmen) gut wieder.

ETH zürich

