DEDEKIND'S TRANSPOSITION PRINCIPLE AND

ISOTOPIC ALGEBRAS WITH NONISOMORPHIC CONGRUENCE LATTICES

William DeMeo

williamdemeo@gmail.com

University of South Carolina

AMS Spring Western Sectional Meeting University of Colorado, Boulder, CO

April 13-14, 2013

These slides and other resources are available at http://williamdemeo.wordpress.com

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $[x, y]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $L = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For
$$x, y \in L$$
, let $[x, y]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a,b \in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a \wedge b,a]\!]$ and $[\![b,a \vee b]\!]$.

DEDEKIND'S TRANSPOSITION PRINCIPLE

FOR MODULAR LATTICES

Notation

Let $\mathbf{L} = \langle L, \wedge, \vee \rangle$ be a lattice with $a \in L$.

Let φ_a and ψ_a be the *perspectivity maps*

$$\varphi_a(x) = x \wedge a$$
 and $\psi_a(x) = x \vee a$

For $x, y \in L$, let $[\![x, y]\!]_L = \{z \in L \mid x \leqslant z \leqslant y\}$.

THEOREM (DEDEKIND'S TRANSPOSITION PRINCIPLE)

L is modular iff for all $a,b \in L$ the maps φ_a and ψ_b are inverse lattice isomorphisms of $[\![a \wedge b,a]\!]$ and $[\![b,a \vee b]\!]$.

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let $\operatorname{Eq} X$ be the lattice of equivalence relations on X.

If L is a sublattice of $\operatorname{Eq} X$ with $\eta, \theta \in L$, then we define

$$[\![\eta,\theta]\!]_L=\{\gamma\in L\mid \eta\leqslant\gamma\leqslant\theta\}.$$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

If L is a sublattice of $\operatorname{Eq} X$ with $\eta, \theta \in L$, then we define

$$[\![\eta,\theta]\!]_L=\{\gamma\in L\mid \eta\leqslant\gamma\leqslant\theta\}.$$

For $\beta \in \operatorname{Eq} X$, let $[\![\eta,\theta]\!]_L^\beta$ be the set of relations in $[\![\eta,\theta]\!]_L$ that permute with β ,

$$[\![\eta,\theta]\!]_{\scriptscriptstyle L}^\beta=\{\gamma\in L\mid \eta\leqslant\gamma\leqslant\theta \text{ and }\gamma\circ\beta=\beta\circ\gamma\}.$$

ANOTHER TRANSPOSITION PRINCIPLE

FOR LATTICES OF EQUIVALENCE RELATIONS

Let X be a set and let Eq X be the lattice of equivalence relations on X.

If *L* is a sublattice of Eq*X* with $\eta, \theta \in L$, then we define

$$\llbracket \eta, \theta \rrbracket_L = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \}.$$

For $\beta \in \text{Eq} X$, let $[\![\eta, \theta]\!]_L^\beta$ be the set of relations in $[\![\eta, \theta]\!]_L$ that permute with β ,

$$\llbracket \eta, \theta \rrbracket_L^\beta = \{ \gamma \in L \mid \eta \leqslant \gamma \leqslant \theta \text{ and } \gamma \circ \beta = \beta \circ \gamma \}.$$

LEMMA

Suppose α and β are permuting relations in $L \leqslant \text{Eq} X$.

Then
$$[\![\beta,\alpha\vee\beta]\!]_L\cong [\![\alpha\wedge\beta,\alpha]\!]_L^\beta\leqslant [\![\alpha\wedge\beta,\alpha]\!]_L$$
.

DEDEKIND'S RULE

The proof requires the following version of *Dedekind's Rule:*

LEMMA

Suppose $\alpha, \beta, \gamma \in L \leqslant \operatorname{Eq} X$ and $\alpha \leqslant \beta$.

Then the following identities of subsets of X^2 hold:

$$\alpha\circ(\beta\cap\gamma)=\beta\cap(\alpha\circ\gamma)$$

$$(\beta\cap\gamma)\circ\alpha=\beta\cap(\gamma\circ\alpha)$$

Let A, B, C be algebras of the same type.

A and B are *isotopic over* C, denoted A \sim_C B, if there is an isomorphism

$$\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} \times \mathbf{C}$$
 that leaves the second coordinate fixed

i.e.
$$(\forall a \in A) (\forall c \in C)$$
 $\varphi(a,c) = (\varphi_1(a,c),c)$

Let A, B, C be algebras of the same type.

A and B are isotopic over C, denoted A \sim_C B, if there is an isomorphism

$$arphi: \mathbf{A} imes \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} imes \mathbf{C}$$
 that leaves the second coordinate fixed
$$\mathrm{i.e.} \ \, (\forall a \in A) \, (\forall c \in C) \quad \, \varphi(a,c) = (\varphi_1(a,c),c)$$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C. It is easy to verify that \sim is an equivalence relation.

Let A, B, C be algebras of the same type.

A and B are isotopic over C, denoted A \sim_C B, if there is an isomorphism

$$arphi: \mathbf{A} imes \mathbf{C} \overset{\cong}{\longrightarrow} \mathbf{B} imes \mathbf{C}$$
 that leaves the second coordinate fixed i.e. $(\forall a \in A) \, (\forall c \in C) \quad \varphi(a,c) = (\varphi_1(a,c),c)$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A\sim_C B$ and $Con(A\times C)$ happens to be modular, then we write $A\sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

Let A, B, C be algebras of the same type.

A and B are isotopic over C, denoted A \sim_C B, if there is an isomorphism

$$\varphi: \mathbf{A} \times \mathbf{C} \stackrel{\cong}{\longrightarrow} \mathbf{B} \times \mathbf{C}$$
 that leaves the second coordinate fixed i.e. $(\forall a \in A) \ (\forall c \in C) \quad \varphi(a,c) = (\varphi_1(a,c),c)$

We say that A and B are *isotopic*, denoted $A \sim B$, if $A \sim_C B$ for some C.

If $A \sim_C B$ and $Con(A \times C)$ happens to be modular, then we write $A \sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

We call A and B *modular isotopic in one step*, denoted A \sim_1^{mod} B, if they are modular isotopic over some C.

Let A, B, C be algebras of the same type.

A and B are isotopic over C, denoted A \sim_C B, if there is an isomorphism

$$\varphi : \mathbf{A} \times \mathbf{C} \xrightarrow{\cong} \mathbf{B} \times \mathbf{C}$$
 that leaves the second coordinate fixed i.e. $(\forall a \in A) \ (\forall c \in C)$ $\varphi(a,c) = (\varphi_1(a,c),c)$

We say that **A** and **B** are *isotopic*, denoted
$$A \sim B$$
, if $A \sim_C B$ for some **C**.

If $A\sim_C B$ and $Con(A\times C)$ happens to be modular, then we write $A\sim_C^{mod} B$ and say that A and B are *modular isotopic over* C.

We call A and B modular isotopic in one step, denoted A \sim_1^{mod} B, if they are modular isotopic over some C.

We call ${\bf A}$ and ${\bf B}$ are *modular isotopic*, denoted ${\bf A} \sim^{\rm mod} {\bf B}$, if $({\bf A},{\bf B})$ is in the transitive closure of $\sim_1^{\rm mod}$.

Lemma 11. If $\mathbf{A} \sim^{\text{mod}} \mathbf{B}$ then $\text{Con } \mathbf{A} \cong \text{Con } \mathbf{B}$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Lemma 11. If $A \sim^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A \sim B$ implies $\operatorname{Con} A \cong \operatorname{Con} B$?

Lemma 11. If $A \sim^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

As you have guessed, the answer is no!

The perspectivity map that is so useful when $\mathrm{Con}(\mathbf{A}\times\mathbf{C})$ is modular can fail *miserably* in the non-modular case...

Lemma 11. If $A \sim^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

As you have guessed, the answer is no!

The perspectivity map that is so useful when $Con(A \times C)$ is modular can fail miserably in the non-modular case... even when $A \cong B!$

Lemma 11. If $A \sim^{\text{mod}} B$ then $\text{Con } A \cong \text{Con } B$.

The proof is a nice/easy application of Dedekind's Transposition Principle.

Could we use the same strategy with the non-modular version of the transposition principle to show that $A\sim B$ implies $\operatorname{Con} A\cong\operatorname{Con} B$?

As you have guessed, the answer is no!

The perspectivity map that is so useful when $Con(A \times C)$ is modular can fail *miserably* in the non-modular case... *even when* $A \cong B!$

But this only shows that the same argument doesn't work...

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B$.

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

We describe a class of examples in which $A \sim B$ and $\operatorname{Con} A \ncong \operatorname{Con} B$.

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

We describe a class of examples in which $A \sim B$ and $Con A \ncong Con B$.

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

A group G is called a *Dedekind group* if every subgroup of G is normal.

We describe a class of examples in which $A \sim B$ and $Con A \ncong Con B$.

The examples show that congruence lattices of isotopic algebras can differ arbitrarily in size.

For any group G, let Sub(G) denote the lattice of subgroups of G.

A group G is called a *Dedekind group* if every subgroup of G is normal.

Let *S* be any group and let *D* denote the *diagonal subgroup* of $S \times S$,

$$D = \{(x, x) \mid x \in S\}$$

The interval $[\![D,S\times S]\!]\leqslant \operatorname{Sub}(S\times S)$ is described by the following

LEMMA

The filter above the diagonal subgroup of $S \times S$ is isomorphic to the lattice of normal subgroups of S.

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$.

Let $D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$.

Let
$$D=\{(x_1,x_2)\in G\mid x_1=x_2\},\quad T_1=S_1\times\langle 1\rangle,\quad T_2=\langle 1\rangle\times S_2.$$

Then $D \cong T_1 \cong T_2$, and these are pair-wise compliments:

$$\langle T_1, T_2 \rangle = \langle T_1, D \rangle = \langle D, T_2 \rangle = G$$

 $T_1 \cap D = D \cap T_2 = T_1 \cap T_2 = \langle (1, 1) \rangle$

Let S be a group, and let $G = S_1 \times S_2$, where $S_1 \cong S_2 \cong S$.

Let
$$D = \{(x_1, x_2) \in G \mid x_1 = x_2\}, \quad T_1 = S_1 \times \langle 1 \rangle, \quad T_2 = \langle 1 \rangle \times S_2.$$

Then $D \cong T_1 \cong T_2$, and these are pair-wise compliments:

$$\langle T_1, T_2 \rangle = \langle T_1, D \rangle = \langle D, T_2 \rangle = G$$

 $T_1 \cap D = D \cap T_2 = T_1 \cap T_2 = \langle (1, 1) \rangle$

Let $A = \langle G/T_1, G^A \rangle =$ the algebra with universe the left cosets of T_1 in G, and basic operations the left multiplications by elements of G.

For each $g \in G$ the operation $g^{\mathbf{A}} \in G^{\mathbf{A}}$ is defined by

$$g^{\mathbf{A}}(xT_1)=(gx)T_1 \qquad (xT_1\in G/T_1).$$

Define the algebra $\mathbf{C} = \langle G/T_2, G^{\mathbf{C}} \rangle$ similarly.

The algebra ${\bf B}$ will have universe B=G/D, but we define the action of G on B with a twist.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi\subseteq (A\times C)\times (B\times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi\subseteq (A\times C)\times (B\times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

$$\varphi \colon \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$$
 is an isomorphism.

The algebra **B** will have universe B = G/D, but we define the action of G on B with a twist.

For each $g = (g_1, g_2) \in G$, for each $(x_1, x_2)D \in G/D$, define

$$g^{\mathbf{B}}((x_1,x_2)D)=(g_2x_1,g_1x_2)D.$$

Let $\mathbf{B} = \langle G/D, G^{\mathbf{B}} \rangle$, where $G^{\mathbf{B}} = \{g^{\mathbf{B}} \mid g \in G\}$.

Consider the binary relation $\varphi\subseteq (A\times C)\times (B\times C)$ that associates to each ordered pair

$$((x_1,x_2)T_1,(y_1,y_2)T_2) \in A \times C$$

the pair

$$((x_2, y_1)D, (y_1, y_2)T_2) \in B \times C$$

It is easy to verify that this relation is a function, and in fact

$$\varphi \colon \mathbf{A} \times \mathbf{C} \to \mathbf{B} \times \mathbf{C}$$
 is an isomorphism.

Since φ leaves second coordinates fixed, $\mathbf{A} \sim_{\mathbf{C}} \mathbf{B}$.

Compare $\operatorname{\mathsf{Con}} A$ and $\operatorname{\mathsf{Con}} B.$

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

Compare Con A and Con B.

 $\operatorname{Con} \mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$, so $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

Compare $\operatorname{Con} A$ and $\operatorname{Con} B$.

Con $\mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$, so Con $\mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

 $\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \ncong \operatorname{Con} \mathbf{A}$.

Compare Con A and Con B.

Con
$$\mathbf{A} \cong \llbracket T_1, G \rrbracket \leqslant \operatorname{Sub}(G)$$
, so Con $\mathbf{A} \cong \operatorname{Sub}(S)$.

 $\operatorname{Con} \mathbf{B}$ is isomorphic to the lattice of normal subgroups of S.

$$\operatorname{Con} \mathbf{B} \cong \operatorname{NSub}(S) \leqslant \operatorname{Sub}(S) \cong \operatorname{Con} \mathbf{A}$$

So, if S is any non-Dedekind group, $\operatorname{Con} \mathbf{B} \ncong \operatorname{Con} \mathbf{A}$.

If S is a nonabelian simple group, then $\operatorname{Con} \mathbf{B} \cong \mathbf{2}$, while $\operatorname{Con} \mathbf{A} \cong \operatorname{Sub}(S)$ can be arbitrarily large.