20CS6037: Machine Learning Instructor: Anca Ralescu

SMO Algorithm

Assigned 10/20/2016 Due 11/03/2016 (11:59PM on BB)

You are to write in MATLAB your own implementation of SMO algorithm along the following lines:

- Given $S = \{(x_i, y_i); y_i = \pm 1; i = 1, ..., l\}$ linearly separable training set, $\epsilon > 0$, find the optimal separating hyperplane using the steps 1-10 shown below.
- Let K denote a kernel on $S \times S$. Here, since the data is linearly separable, you can use $K_{ij} = K(x_i, x_j) =$ $x_i \cdot x_j$, where \cdot denotes the dot product.
- Denote by E_i the following expression:

$$E_{i} = \left(\sum_{j=1}^{l} \alpha_{j} y_{j} K(x_{i}, x_{j}) + b\right) - y_{i}, i = 1, 2$$

- 1. Initialize $\alpha = \{\alpha_1, \dots, \alpha_l\}$ randomly subject to constraint $\sum_{i=1}^l y_i \alpha_i = 0$. Set b = 0.
- 2. Calculate the weight vector $w = \sum_{i=1}^{l} \alpha_i y_i x_i$;
- 3. Calculate KKT conditions:

$$KKT(i) = \alpha(i)\{y_i(\langle w, x_i \rangle + b) - 1\}$$

- 4. Pick x_1, x_2 :
 - (a) Let $i_1 = argmax_{i=1,...,l}KKT(i)$.
 - (b) Pick $x_1 = x_{i_1}$.
 - (c) Calculate $e(i) = E(1) E(i) = \sum_{j=1}^{l} \alpha_j y_j (K_{j1} K_{ji}) + y_i y_1 K_{ij}$
 - (d) Let $i_2 = argmax_i |e(i)|$.
 - (e) Pick $x_2 = x_{i_2}$.
 - (f) Calculate $k = K_{11} + K_{22} 2 * K_{12}$
- 5. Update α_2 :

$$\alpha_2^{new} = \alpha_2^{old} + \frac{y_2 E(2)}{k}$$

6. Update α_1 :

$$\alpha_1^{new} = \alpha_1^{old} + y_1 y_2 (\alpha_2^{old} - \alpha_2^{new})$$

- 7. For i = 1, ..., l, if $\alpha_i < \epsilon$, $\alpha_i \leftarrow 0$;
- 8. Select $\alpha_i > 0$, calculate b (from KKT conditions)
- 9. Test for classification;
- 10. Repeat from Step 2. until classified.

Please document your program.

I will supply you with a data set on which to run your final result. Please upload your program along with results on Blackboard.