Transformers

Introdução

O que é um modelo de língua?

- Objetivo: Prever um termo dado um contexto
- Aplicações
 - Autocomplete de Texto
 - Transfer Learning
- Tipos de modelos de língua
 - Probabilísticos
 - Sequências
 - Atenção

Modelos Probabilísticos

É um modelo que visa estimar a probabilidade de um termo dado um contexto.

Exemplo de modelos: N Gramas, Word2Vec

Problemas:

- Baixa complexidade
- Não levam em conta a sequência das palavras

P(próxima palavra) = P(Termo | O Grupo Turing é)

Termo	Probabilidade
Legal	60%
Abacaxi	0.01%

Modelos Sequenciais

Redes neurais recorrentes (RNN) são uma classe de redes neurais poderosa para modelar dados de sequência, como séries temporais ou linguagem natural.

Problemas:

- Processamento Sequencial
- Perda de informação com textos extensos
- Vanishing Gradients

Modelos de Atenção

Classe de rede neurais poderosa para modelar sequências paralelamente, utilizando mecanismos de atenção.

Problema:

Custo e Tempo de treinamento

Modelos de Atenção

Muitos parâmetros

Exemplo de Transformers: T5 do Google

Podem ser treinados para executar mais de uma tarefa.

Mecanismos de Atenção

Υ	Pesos	Y-com-pesos
3	2	6
4	1.7	6.8
5	1.5	7.5
6	1	6
5	0.8	4

Self Attention - Introdução

Ela é a minha amiga e as outras são as primas dela

Significado linguístico não é determinado pela proximidade!

Como podemos encontrar esse relacionamento de forma automática?

Self Attention - Introdução

Recapitulando - Word embeddings

Os números não representam essas propriedades diretamente, mas podemos pensar nesses valores como uma codificação delas

- castelo
- país
- riqueza
- coroa

- avião
- computador
- chinelo
- óculos

Compartilham significado mesmo sem proximidade!

Manga da minha camiseta

Versão contextualizada

$$W11V1 + W12V2 + W13V3 + W14V4 = Y1$$

Manga da minha camiseta

$$W11V1 + W12V2 + W13V3 + W14V4 = Y1$$

Recalculamos todos os vetores em função de V1!

Manga da minha camiseta

W11V1 + W12V2 + W13V3 + W14V4 = Y1

Recalculamos todos os vetores em função de V1!

Multi Head Attention

Multi-Head Attention - Introdução

Vamos ver mais um exemplo. Em relação a "deu", para quais outras palavras queremos dar atenção?

Será que temos atenção suficiente no nosso modelo?

O que temos até agora é...

Multi-head Attention

Transformer

Um pouco de contexto

- Antes dos transformers, a arquitetura mais utilizada era a de RNNs
- As RNNs utilizam um mecanismo de recorrência, ou seja, uma frase precisa ser processada sequencialmente, uma palavra por vez
- No contexto de seq2seq, foi observado que layers de atenção melhoraram muito a performance das redes
 - Ou seja, as melhores soluções (para tradução especialmente) utilizavam tanto recorrência como atenção

A arquitetura transformer

- No final de 2017 foi publicado o paper "Attention is all you need", como o próprio nome diz, foi proposta uma arquitetura de rede neural em que a recorrência era "jogada fora" ficando apenas com o mecanismo de atenção
- Jogar a recorrência fora não sai de graça em geral as redes transformers precisam de várias camadas para terem bom desempenho, ao contrário das redes recorrentes
- Nesse tipo de rede, o tipo de camada principal é a vista "multi-headed-attention"

Paralelização - o grande diferencial

- Como as redes transformers n\u00e3o precisam processar as palavras de forma sequencial, como as RNNs, \u00e9 permitida que as opera\u00f3\u00f3es sejam paralelizadas.
 - Numa RNN a frase "oi tudo bem?" teria a palavra "oi" processada, e o resultado desse processamento seria input para o processamento de "tudo" e assim em diante
 - Numa rede transformer a frase "oi tudo bem?" é processada inteira ao mesmo tempo
- Essa paralelização permite que seja feito um uso mais efetivo das GPUs
 - GPUs tem muito mais cores do que CPUs
 - A evolução das GPUs está muito mais acelerada do que as das CPUs
- Com a paralelização, as arquiteturas mais e mais profundas se tornaram praticáveis - esses modelos gigantes tem tidos resultados impressionantes

O primeiro transformer

- Encoder-Decoder
- Positional encoding
- Teacher forcing

Multi-Head Attention

