グラフの探索

離散数学・オートマトン 2022 年後期 佐賀大学理工学部 只木進一 ① 深さ優先探索 DFS: Depth-First Search

2 幅優先探索 BFS: Breadth-First Search

有向グラフと探索

指定した頂点から、各頂点への経路を調べる

適切なアルゴリズムを作る

深さ優先探索 DFS: Depth-First Search

- 出発点を定める
- たどれる限り、辺をたどる: 再帰的アルゴリズム
 - それ以上進めなくなるまで
 - 新たな点が無くなるまで
- 道を戻って、別の辺をたどる
- 結果としてできる木 (spanning tree) は、深いものができる

4/44

例 1.1:

例 1.2:

Algorithm 1 DFA アルゴリズム

```
procedure \operatorname{SEARCH}(v,L) for all e \in \delta^+ v do w = \partial^- e if w \not\in L then L.\operatorname{append}(w) \operatorname{SEARCH}(w,L) end if end for end procedure
```

▷ //v から出る全ての辺

実行状況

$$(v_0, [v_0]) \rightarrow (v_1, [v_0, v_1])$$

$$\rightarrow (v_3, [v_0, v_1, v_3])$$

$$\rightarrow (v_2, [v_0, v_1, v_3, v_2])$$

$$\rightarrow (v_5, [v_0, v_1, v_3, v_2, v_5])$$

$$\rightarrow (v_4, [v_0, v_1, v_3, v_2, v_5, v_4])$$

$$\rightarrow (v_6, [v_0, v_1, v_3, v_2, v_5, v_4, v_6])$$

$$\rightarrow (v_8, [v_0, v_1, v_3, v_2, v_5, v_4, v_6, v_8])$$

$$\rightarrow (v_7, [v_0, v_1, v_3, v_2, v_5, v_4, v_6, v_8, v_7])$$

$$\rightarrow (v_9, [v_0, v_1, v_3, v_2, v_5, v_4, v_6, v_8, v_7, v_9])$$

例 1.3:

幅優先探索 BFS: Dreadth-First Search

- 出発点を定める。この点の集合を S₀ とする。
- 新たな頂点がなくなるまで繰り返す
 - ullet S_{i-1} の各点の隣接頂点のうち、未調査の点の集合を S_i とする
- 結果としてできる木 (spanning tree) は、浅いものができる

例 2.1:

例 1.2 に対する BFS の結果

Algorithm 2 BFS アルゴリズム

```
▷ 到達済み頂点のリスト
L = \emptyset
Q = [r]
                                        ▷ 調査すべき頂点の待ち行列
while Q \neq \emptyset do
                                   ▷ 待ち行列の先頭要素を取り出す
   v = Q.\mathsf{poke}()
    for all e \in \delta^+ v do
       w = \partial^- e
       if w \notin L \wedge w \notin Q then
           Q.\mathsf{push}(w)
       end if
    end for
    L.\mathsf{append}(w)
end while
```

待ち行列: Queue

- リストの一種
- 末尾から要素を追加
- 先頭から要素を削除
- First-In-First-Out

例 1.2: 探索の状況

	現在の頂点	L	Q
0		Ø	$[v_0]$
1	v_0	$[v_0]$	$[v_1, v_2, v_3]$
2	v_1	$[v_0, v_1]$	$[v_2, v_3, v_5, v_6]$
3	v_2	$[v_0, v_1, v_2]$	$[v_3, v_5, v_6]$
4	v_3	$[v_0, v_1, v_2, v_3]$	$[v_5, v_6]$
5	v_5	$[v_0, v_1, v_2, v_3, v_5]$	$[v_6, v_4]$
6	v_6	$[v_0, v_1, v_2, v_3, v_5, v_6]$	$[v_4, v_8]$
7	v_4	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4]$	$[v_8]$
8	v_8	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8]$	$[v_7, v_9]$
9	v_7	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8, v_7]$	$[v_9]$
10	v_9	$[v_0, v_1, v_2, v_3, v_5, v_6, v_4, v_8, v_7, v_9]$	Ø

例 1.3: 結果

例 1.3: 探索の状況

	現在の頂点	L	Q
0		Ø	$[v_0]$
1	v_0	$[v_0]$	$[v_1, v_2]$
2	v_1	$[v_0, v_1]$	$[v_2, v_3, v_5, v_6]$
3	v_2	$[v_0, v_1, v_2]$	$[v_3, v_5, v_6, v_9]$
4	v_3	$[v_0, v_1, v_2, v_3]$	$[v_5, v_6, v_9]$
5	v_5	$[v_0, v_1, v_2, v_3, v_5]$	$[v_6, v_9, v_4]$
6	v_6	$[v_0, v_1, v_2, v_3, v_5, v_6]$	$[v_9, v_4, v_8]$
7	v_9	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9]$	$[v_4, v_8]$
8	v_4	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4]$	$[v_8]$
9	v_8	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4, v_8]$	$[v_7]$
10	v_7	$[v_0, v_1, v_2, v_3, v_5, v_6, v_9, v_4, v_8, v_7]$	Ø