

Metodologias de Otimização e Apoio à Decisão Data: 12/02/2021 Exame – Época de Recurso Duração: 2h

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. Considere o seguinte problema de Programação Linear:

Maximizar z =
$$[-x_1 + 2x_2; 7x_1 + 21x_2]$$

sujeito a
 $7x_1 + 4x_2 \le 28$
 $-2x_1 + x_2 \le 2$
 $x_1 \ge 0$, $x_2 \ge 0$

[5.00 valores] a) Determine os conjuntos das soluções eficientes e das soluções não dominadas recorrendo à representação gráfica deste problema no espaço de decisão e no espaço dos objetivos;

[0.75 valores] b) Construa a tabela dos ótimos individuais e determine as soluções ideal e anti-ideal.

2. Considere o seguinte problema de Programação Linear Inteira Pura:

Maximizar
$$z = x_1 + 2x_2 + 3x_3$$

sujeito a
 $x_1 + 2x_3 \le 5$
 $2x_1 + x_2 \le 4$
 $x_1 - x_2 - x_3 \le 6$
 $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$
 x_1 , x_2 e x_3 inteiros

Considerando $\mathbf{x_4}$, $\mathbf{x_5}$ e $\mathbf{x_6}$ as variáveis *slack* das 1^a 2^a e 3^a restrições, respetivamente, suponha que se aplicou o algoritmo de Gomory a este mesmo problema e que no final do 1^o passo se obteve o seguinte quadro ótimo:

	Ci	1	2	3	0	0	0	
ΧB	c _B \ x i	X 1	X_2	X 3	X 4	X 5	X 6	b
X 3	3	1/2	0	1	1/2	0	0	5/2
$\mathbf{X_2}$	2	2	1	0	0	1	0	4
X ₆	0	7/2	0	0	1/2	1	1	25/2
zj-cj		9/2	0	0	3/2	2	0	31/2

[5.00 valores]

a) Retire as suas conclusões e se achar necessário prossiga com o 2º passo do referido algoritmo, de forma a resolver o problema apresentado.

[0.75 valores]

b) A restrição x₁ + x₂ + x₃ ≥ 4 poderia constituir uma eventual restrição de corte para este problema? Justifique a sua resposta.

3. Considere o seguinte problema de Programação por Metas:

Minimizar z =
$$\left\{d_1^+, d_2^-, d_3^-\right\}$$

sujeito a
 $x_1 - x_2 + d_1^- - d_1^+ = 1$
 $x_1 + d_2^- - d_2^+ = 1$
 $x_2 + d_3^- - d_3^+ = 2$
 $5x_1 + 3x_2 + d_4^- = 15$
 $x_1 \ge 0, x_2 \ge 0, d_i^- \ge 0, d_i^+ \ge 0 \ (i = 1, 2, 3, 4)$

[5.50 valores] Resolva o problema pelo método gráfico.