Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра интеллектуальных информационных технологий

по дисциплине «Модели решения	аторной работе №1 в задач в интеллектуальных системах» в задачи на конвейерной архитектуре»
Выполнили:	студенты группы 821702 Анискович А.Д Терехович И.Д
Проверил:	Крачковский Д.Я

Цель:

Реализовать и исследовать модель решения на конвейерной архитектуре задачи вычисления попарного произведения (деления) компонентов двух векторов чисел.

Вариант задания: 5

Алгоритм вычисления целочисленного частного пары 4-разрядных чисел делением с восстановлением частичного остатка.

Выполнение задания:

1. Схема работы конвейера для числа входных элементов, равного трем:

Такт 1	4 разряд res = 0000			
Такт 2	4 разряд res = 0000	3 разряд res = 0000		
Такт 3	4 разряд res = 0000	3 разряд res = 0001	2 разряд res = 0001	
Такт 4		3 разряд res = 0001	2 разряд res = 0010	1 разряд res = 0011 rem = 0001
Такт 5			2 разряд res = 0010	1 разряд res = 0101 rem = 0000
Такт 6				1 разряд res = 0100 rem = 0000
	Первый Этап	Второй Этап	Третий Этап	Четвертый Этап

Таблица 1. Схема работы конвейера

Примечание: перевод чисел из десятичной системы счисления в десятичную и обратно вычисляется автоматически.

2. Исходные данные:

- а. m количество пар чисел (не является фиксированной величиной, в данном случае равно 3).
- b. p = 4 разрядность попарно умножаемых чисел.
- с. n = 4 -количество процессорных элементов в системе.
- d. r = 3 ранг задачи (количество объектов, которые в процессе решения задачи могли бы обрабатываться параллельно).
- е. t = 1 время счета на этапах сбалансированного конвейера.
- f. 3 пары чисел: <7, 2>, <5, 1>, <8, 2>.

3. Построение графиков:

График 1. График зависимости коэффициента ускорения K_y от ранга задачи r.

График 2. График зависимости коэффициента ускорения K_y от количества элементов n.

График 3. График зависимости эффективности е от ранга задачи г.

График 4. График зависимости эффективности е от количества элементов п.

Ответы на вопросы:

1. Вопрос:

Проверить, что модель создана верно: программа работает правильно.

Ответ:

Проверка правильности работы программы:

a.
$$7/2 = 3$$
 (остаток 1)

b.
$$5/1=5$$

c.
$$8/2=4$$

Следовательно, программа работает верно.

2. Вопрос:

Объяснить на графиках точки перегиба и асимптоты.

Ответ:

Асимптоты означают, что рост производительности конвейера ограничен и зависит от количества процессорных элементов и объектов.

3. Вопрос:

Спрогнозировать, как изменится вид графиков при изменении параметров модели; если модель позволяет, то проверить на ней правильность ответа.

Ответ:

Если увеличивается ранг задачи r, то коэффициент ускорения и эффективность уменьшаются, что видно из вышеприведенных графиков.

4. Вопрос:

Каково соотношение между параметрами n, r, m, p модели сбалансированного конвейера?

Ответ:

а. т - задается пользователем.

b.
$$p = 4$$
.

c.
$$n = r = 3$$
.

5. Дано:

Пусть имеется некоторая характеристика h (эффективность е или ускорение K_v) и для нее выполняется:

a.
$$h(n_1; r_1) = h(n_2; r_2);$$

b.
$$n_1 > n_2$$
.

Вопрос:

Каким будет соотношение между r_1 и r_2 ?

Ответ:

$$r_1 < r_2$$
.

6. Дано:

- а. несбалансированный конвейер (заданы конкретные значения: n, t_i времена выполнения обработки на этапах конвейера);
 - b. e₀ некоторое фиксированное значение эффективности.

Определить:

Значение r_0 , при котором выполняется $e(n; r_0) > e_0$.

Ответ:

Так как в результате построения графика получилась гипербола, большему значению х соответствует меньшее значение у. Значит, чтобы значение е было больше e_0 , величина r должна находиться в интервале $r \in (0; r_0)$.

7. Вопрос:

Для несбалансированного конвейера (использовать исходные данные предыдущего вопроса) определить $\lim_{r\to\infty} (e(r;r))$.

Ответ:

Предел эффективности при $r \to \infty$ равен 0.

8. Дано:

Несбалансированный конвейер (использовать исходные данные предыдущего вопроса).

Вопрос:

Каким образом можно перестроить данный конвейер, чтобы для заданного r_0 выполнялось $e(n;r_0) > e_0$?

Ответ:

Изменить структуру конвейера так, чтобы число r принадлежало интервалу r € $(0; r_0)$.

9. Дано:

Несбалансированный конвейер (использовать исходные данные предыдущего вопроса) и значение минимального кванта времени t_0 (условной временной единицы).

Вопрос:

Каким образом нужно перестроить данный конвейер, чтобы получить максимально быстрый конвейер?

Ответ:

Необходимо разделить его на столько этапов, чтобы время каждого этапа было равно.

Вывод:

В результате выполнения лабораторной работы была реализована модель сбалансированного конвейера для вычисления произведения пары 8-разрядных чисел умножением со старших разрядов со сдвигом частичной суммы влево.

Реализованная модель была проверена на работоспособность и правильность получаемых результатов. Данная модель позволяет ускорить процесс вычисления результата. Были исследованы числовые характеристики конвейерной архитектуры, а именно коэффициент ускорения и эффективность при решении поставленной задачи.