8 ـ قياس ناقلية محلول

1ـ مقدمت:

تعرف المقادير الفيزيائية لاستخدامها في الاجابة عن تساؤلاتنا ولاستخدامها في تسهيل لوازم حياتنا اليومية . ففي الكهرباء يستخدم مقدار المقاومة الكهربائية R كمؤشر على صعوبة مرور التيار الكهربائي في النواقل الصلبة وفي المحاليل .

- هل يمكن تعريف مقدار فيزيائي يدلنا عل سهولة مرور تيار كهربائي في هذه النواقل الكهربائية ؟
- ـ كيف ذلك ؟ وكيف نقيسه ؟ وما هي مواصفات آلت قياسه ؟
 - ما هي متغيراته في حالة المحاليل الشاردية ؟

2_ الوسائل والمواد المستعملة:

- مخلاط؛ أسلاك توصيل كهربائية
- مولد للتواترات المنخفضة GBF.
 - أمبير متر؛ فولتمتر
- صفيحتان من النحاس (طولها العام العام النحاس (طولها العام) ، $l=10.0~{\rm cm}$
 - محلول كلور الصوديوم.
 - وعاء زجاجي Cristallisoir .

3 خطوات العمل:

ندرس تغیرات الناقلیة G لمحلول G_{aq}^+,Cl^- عند درجة الحرارة \dots (درجة حرارة المخبر) بدلالة أحد المقادير : $C \cdot S \cdot L$ حيث:

نه الصفيحتين؛ L: البعد بين الصفيحتين، S: سطح الجزء المغمور من الصفيحتين؛ L: البعد بين الصفيحتين، طول كل واحدة منهما C0 وعرضها C1.

U=2V يُضبط المولد على توتر ثابت

نشاط 1: علاقة الناقلية G بالتركيز C.

- . $L=4.7~{
 m cm}$, $S=15~{
 m cm}^2$: نُبقي قيمتي S و $L=4.7~{
 m cm}$
 - نقيس الناقلية G لمحلول NaCl من أجل تراكيز مختلفة.
 - . $G = f_1(C)$ الجدول وارسم المنحنى أكمل الجدول

C(mol.L ⁻¹)	$10,00\times10^{-3}$	$5,00\times10^{-3}$	$2,50\times10^{-3}$	$1,25\times10^{-3}$
I(mA)	7,0	3,7	2,1	1,2
G(mS)				

- استنتج العلاقة التي تربط الناقلية G بالتركيز C للمحلول الشاردي.

نشاط 2: علاقة الناقاية G بالسطح S.

. $C=0.01~{
m mol.}L^{-1}$ ، $L=4~{
m cm}$: نُبقي الآن قيمتي L و $C=0.01~{
m mol.}L^{-1}$

- نغمر السطح المعتبر S ونقيس في كل مرة الناقلية G للمحلول.

S (cm ²)	22,95	15,30	10,20	5,10
I (mA)	8,20	6,20	4,10	2,00
G (mS)				

. $G = f_2(S)$ الجدول وارسم المنحنى الجدول وارسم

- استنتج العلاقة التي تربط الناقلية G بالسطح S المغمور في المحلول.

نشاط 3: علاقة الناقلية G بالبعد L بين الصفيحتين.

 $S = 20.4 \text{ cm}^2$ و $C = 0.01 \text{ mol.L}^{-1}$ و $C = 0.01 \text{ mol.L}^{-1}$ و $C = 0.01 \text{ mol.L}^{-1}$

- نغير في البعد L بين الصفيحتين ونقيس في كل مرة الناقلية G للمحلول.

L (cm)	2.0	4.7	6.5	8.8
I(mA)	9.8	7.9	6.7	5.7
$\frac{1}{L} (\text{cm}^{-1})$				
G(mS)				

- . $G=f_3\left(rac{1}{L}
 ight)$ و $G=f_4\left(L
 ight)$: اكمل الجدول وارسم البيان
 - . L و $\frac{1}{L}$ بالمقدار G و L .
 - ماذا تستنتج؟

الخلاصة

- 1- أكتب فقرة تلخص فيها مدى ارتباط العوامل المدروسة سابقا بقيمة ناقلية المحلول.
 - 2- صغ علاقة رياضية تربط بين أبعاد خلية القياس والناقلية G.
- 3- اقترح طريقة لاستغلال الخلية المدروسة سابقا في قياس قيمة ناقلية محاليل أخرى.