TRINITY CATHOLIC COLLEGE

2005

Higher School Certificate Half Yearly Examination

Chemistry

PART A - MULTIPLE CHOICE - 10 MARKS

- 1. Bromine water can be used to distinguish between which of the two substances below?
- (A) Ethane and octane (B) Octane and octene (C) Ethene and octene (D) Ethane and ethanol
- 2. Which of the following states what happens to the high molecular weight fractions in crude oil during the process of catalytic cracking?
- (A) They combine to form higher molecular weight compounds
- (B) They add together without loss of electrons
- (C) They break down into lower molecular weight compounds
- (D) They form by the elimination of a small molecule.
- **3.** The molar heat of combustion of ethanol is -1367 kJ mol⁻¹. What does this mean?
- (A) It needs 1367 kJ of energy to completely burn one mole of ethanol
- (B) 1367 kJ of energy is used up when 46.1 g of ethanol undergoes complete combustion
- (C) The chemical energy of ethanol is decreased by 1367 kJ when one mole of ethanol is converted to carbon dioxide and water
- (D) There is a transfer of 1367 kJ from the environment to ethanol during the complete combustion of one mole of ethanol
- **4.** Four beakers, each containing a metal chloride solution, were set up in a laboratory. Beaker A contained CuCl₂, Beaker B contained PbCl₂, Beaker C contained FeCl₂ and Beaker D contained NaCl. What would happen in each beaker when a piece of steel wool was placed into the beaker?
- (A) No reaction in any beaker
- (B) The steel wool would displace the metal ions in Beaker A only
- (C) The steel wool would displace the metal ions in Beaker D only
- (D) The steel wool would displace the metal ions in Beakers A and B only
- **5.** Americium-241 is a radioisoptope used in domestic smoke detectors. The production of this transuranic element in a nuclear reactor is represented by the equation below.

$$^{239}_{94}$$
 Pu + 2 "X" $\rightarrow ^{241}_{94}$ Pu $\rightarrow ^{241}_{95}$ Am + "Y"

What are the names of the particles represented by the letters "X' and "Y"?

	X	Y
(A)	neutron	electron
(B)	electron	proton
(C)	neutron	proton
(D)	proton	electron

6. The table below shows the colour change of a variety of indicators at different pH values.

Indicators	pH:	1	2	. 3	4	5	6	7	8	9	10	11	12	13	14
Methyl orange	8		red	-		•				- yel	low				-
Bromocresol green		•	yell	ow -	٠	•	_	_		— bl	lue –				•
Phenol red		•	-	— у	ellov	w		٠	•			red			-
Phenolphthalein		+		—c	olou	rless	_		•	4			red -		•

Kim used four indicators to help work out if a liquid was an acid or a base

Each indicator was added to a separate test tube of the same liquid. Kim recorded the final colour in each test tube.

Test tube	Indicator added	Final colour
1	Methyl orange	Yellow
2	Bromocresol green	Blue
3	Phenol red	Yellow
4	Phenolphthalein	Colourless

What is Kim's liquid?

- (A) Acid, pH 6
- (C) Acid, pH 8

- (B) Base, pH 6
- (D) Base, pH 8
- **7.** A can of carbonated soft drink contains some interesting equilibria.

Which of the following sets of conditions favours the formation of H₂CO₃(aq)?

- (A) Low pH and low pressure
- (B) Low pH and high pressure
- (C) High pH and low pressure
- (D) High pH and high pressure
- **8.** In the following diagram the elements from the periodic table are arranged into three groups.

What type of oxides are groups X, Y and Z?

	Group X	Group Y	Group Z
(A)	Amphoteric	Acidic	Basic
(B)	Acidic	Amphoteric	Basic
(C)	Basic	Acidic	Amphoteric
(D)	Basic	Amphoteric	Acidic

- **9.** Which of the following is a dilute, strong acid?
- (A) 0.05 mol L⁻¹ HCl

(B) 5.00 mol L⁻¹ HCl

(C) 0.05 mol L⁻¹ CH₃COOH

- (D) 5.00 mol L⁻¹ CH₃COOH
- 10. What is the IUPAC (systematic) name for this ester?

- (A) Ethyl methanoate
- (C) Methyl methanoate

- (B) Ethyl ethanoate
- (D) Methyl ethanoate

Part B: Total Marks (60)

Question 11 (4 marks)

Discuss the benefits associated with the use of radioisotopes in either industry or medicine. [4]

Question 12 (5 marks)

Chlorine is used for the manufacture of C₂H₃C1, a monomer that undergoes addition polymerisation.

- (a) Draw the full structural formula for C₂H₃C1 and give the systematic name for the monomer. [2]
- (b) Evaluate the usefulness of the polymer formed from C₂H₃Cl. [3]

Question 13 (5 marks)

During your practical work you performed a first-hand investigation to carry out the fermentation of glucose.

- (a) Describe the conditions under which this fermentation was carried out. [2]
- (b) Explain how mass changes were used to monitor the fermentation process. A suitable equation should be included in your answer. [3]

Question 14 (5 marks)

Ethanol is widely used as a solvent. Most ethanol required for industrial use is produced using raw materials obtained from the refining of petroleum.

- (a) Write an equation for the production of ethanol, identifying any catalysts required. [2]
- (b) Describe and account for two uses of ethanol as a solvent. [3]

Question 15 (5 marks)

A simple galvanic cell can be made using a lead electrode standing in a lead nitrate solution and an iron electrode standing in an iron nitrate solution.

- (a) Suggest materials that could be used to make Q. Explain your choice. [2]
- (b) Determine the cell voltage under standard conditions. [3]

Question 16 (6 marks)

Evaluate the use or potential use of a specific named biopolymer that you have studied. [6]

Question 17 (5 marks)

A student determined the concentration of acetic acid (ethanoic acid) in some white vinegar by titrating a sample of the vinegar that had been diluted, accurately, by a factor of 5. A standardised 0.0950 molL⁻¹ sodium hydroxide solution was used for the titration. The student's results are shown below.

Volume of diluted vinegar = 25.0 mL					
Volume of standardised sodium hydroxide solution (mL):					
1 st titration	34.2				
2 nd titration	33.5				
3 rd titration	33.7				
4 th titration	33.6				

(a) The following indicators were available for the student to use.

Indicator	Colour Change	pH range			
Methyl orange	red-yellow	3.1-4.4			
Bromocresol green	yellow-blue	3.8 -5.4			
Bromothymol blue	yellow-blue	6.2 - 7.6			
Phenolphthalein	colourless-red	8.3 -10.0			

Explain which of these indicators would be best for this titration. [2]

(b) Calculate the concentration of acetic acid (ethanoic acid) in the undiluted vinegar. [3]

Question 18 (3 marks)

A student dissolved some NaHCO₃ in a small amount of water. She knew that HCO₃ (aq) could react in each of the following ways.

OR:
$$(I) \quad HCO_{3}(aq) + H_{2}O(l) \leftrightarrow H_{2}CO_{3}(aq) + OH(aq)$$

$$(II) \quad HCO_{3}(aq) + H_{2}O(l) \leftrightarrow CO_{3}^{2-}(aq) + H_{3}O^{+}(aq)$$

- (a) Name the type of behaviour being shown by HCO₃ (aq). [1]
- (b) Describe a simple test you could perform to determine whether reaction I or II is more likely to occur. Give the expected result for your test. [2]

Question 19 (3 marks)

Explain the purpose of the apparatus below for preparing an ester.

Question 20 (6 marks)

A sample of lignite, a high sulfur content coal, was analysed and found to contain 4.32% sulfur.

- (a) Calculate the volume of sulfur dioxide, at 25°C and 100 kPa that would be produced by burning 1.0 kg of lignite coal. [3]
- (b) Assess the impact, on the environment, of using lignite as a fuel. [3]

Question 21 (6 marks)

Different theories of acids and bases were developed by Lavoisier, Davy, Arrhenius and Bronsted-Lowry. Sulfuric acid, H_2SO_4 was classified as an acid by all of these scientists.

Explain how each of their theories predicts that H₂SO₄ is an acid. Support your answer by using equations where appropriate. [6]

Question 22 (7 marks)

You planned and performed a first-hand investigation to measure the pH of identical concentrations of strong and weak acids.

- (a) Describe the procedure carried out. Identify the independent an dependent variables as well as those that needed to be kept constant. [5]
- (b) Identify a hazard in this experiment and outline a precaution to minimise this hazard. [2]