

Ross Girshick

Facebook Al Research (FAIR)

Work done at Microsoft Research

Fast Region-based ConvNets (R-CNNs) for Object Detection

Object detection renaissance (2013-present)

Object detection renaissance (2013-present)

Object detection renaissance (2013-present)

Region-based convnets (R-CNNs)

- R-CNN (aka "slow R-CNN") [Girshick et al. CVPR14]
- SPP-net [He et al. ECCV14]

Regions of Interest (RoI) from a proposal method (~2k)

Slow R-CNN Apply bounding-box regressors Bbox reg **SVMs** Classify regions with SVMs Bbox reg **SVMs** Bbox reg SVMs Forward each region through ConvNet ConvNet ConvNet ConvNet Warped image regions Regions of Interest (RoI) from a proposal method (~2k) Input image

Ad hoc training objectives

- Fine-tune network with softmax classifier (log loss)
- Train post-hoc linear SVMs (hinge loss)
- Train post-hoc bounding-box regressors (squared loss)

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training is slow (84h), takes a lot of disk space

- Ad hoc training objectives
 - Fine-tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressions (least squares)
- Training is slow (84h), takes a lot of disk space
- Inference (detection) is slow
 - 47s / image with VGG16 [Simonyan & Zisserman. ICLR15]
 - Fixed by SPP-net [He et al. ECCV14]

Classify regions with SVMs Bbox reg SVMs Fully-connected layers **FCs** Spatial Pyramid Pooling (SPP) layer Regions of "conv5" feature map of image Interest (Rols) from a proposal Forward whole image through ConvNet method ConvNet Input image

Apply bounding-box regressors

What's good about SPP-net?

• Fixes one issue with R-CNN: makes testing fast

What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (25h), takes a lot of disk space

What's wrong with SPP-net?

- Inherits the rest of R-CNN's problems
 - Ad hoc training objectives
 - Training is slow (though faster), takes a lot of disk space
- Introduces a new problem: cannot update parameters below SPP layer during training

SPP-net: the main limitation

• Fast test-time, like SPP-net

- Fast test-time, like SPP-net
- One network, trained in one stage

- Fast test-time, like SPP-net
- One network, trained in one stage
- Higher mean average precision than slow R-CNN and SPP-net

Fast R-CNN (training)

Fast R-CNN Log loss + smooth L1 loss (training) Linear + Linear softmax **FCs** ConvNet

Multi-task loss

Fast R-CNN Log loss + smooth L1 loss Multi-task loss (training) Linear + Linear softmax **FCs** Trainable ConvNet

Obstacle #1: Differentiable Rol pooling

Region of Interest (RoI) pooling must be (sub-) differentiable to train conv layers

Obstacle #1: Differentiable Rol

$$\frac{\partial L}{\partial x_i} = \sum_{r} \sum_{j}^{\text{input } i; \text{ 0 o/w}} \left[i = i^*(r, j)\right] \frac{\partial L}{\partial y_{rj}}$$
Partial Over regions r , Partial from for x_i locations j next layer

Slow R-CNN and SPP-net use region-wise sampling to make mini-batches

- Sample 128 example RoIs uniformly at random
- Examples will come from different images with high probability

Note the receptive field for one example Rol is often very large

Worst case: the receptive field is the entire image

Worst case cost per mini-batch (crude model of computational complexity)

input size for Fast R-CNN

input size for slow R-CNN

128*600*1000 / (128*224 *224) = 12x more computation than slow R-CNN

Solution: use hierarchical sampling to build minibatches

Solution: use hierarchical sampling to build minibatches

 Sample a small number of images
 (2)

Solution: use hierarchical sampling to build minibatches

- Sample a small number of images
 (2)
- Sample many examples from each image (64)

Use the test-time trick from SPP-net during training

 Share computation between overlapping examples from the same image

Cost per mini-batch compared to slow R-CNN (same crude cost model)

• 2*600*1000 / (128*224*224) = 0.19x less

computation than slow R-CNN

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

- [1] Girshick et al. CVPR14.
- [2] He et al. ECCV14.

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

- [1] Girshick et al. CVPR14.
- [2] He et al. ECCV14.

Main results

	Fast R-CNN	R-CNN [1]	SPP-net [2]
Train time (h)	9.5	84	25
- Speedup	8.8x	1x	3.4x
Test time / image	0.32s	47.0s	2.3s
Test speedup	146x	1x	20x
mAP	66.9%	66.0%	63.1%

Timings exclude object proposal time, which is equal for all methods. All methods use VGG16 from Simonyan and Zisserman.

- [1] Girshick et al. CVPR14.
- [2] He et al. ECCV14.

Further test-time speedups

Fully connected layers take 45% of the forward pass time

Further test-time speedups

Compress these layers with truncated SVD

J. Xue, J. Li, and Y. Gong.

Restructuring of deep neural network acoustic models with singular value decomposition. *Interspeech*, 2013.

Further test-time speedups

Without SVD With SVD

Other findings

End-to-end training matters

	Fast R-CNN (VGG16)		
Fine-tune layers	≥ fc6	≥ conv3_1	≥ conv2_1
VOC07 mAP	61.4%	66.9%	67.2%
Test time per image	0.32s	0.32s	0.32s

1.4x slower training

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained without a bbox regressor

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Trained with a bbox regressor, but it's disabled at test time

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Post hoc bbox regressor, used at test time

	Fast R-CNN (VGG16)			
Multi-task training?		Υ		Υ
Stage-wise training?			Υ	
Test-time bbox reg.			Υ	Υ
VOC07 mAP	62.6%	63.4%	64.0%	66.9%

Multi-task objective, using bbox regressors at test time

What's still wrong?

- Out-of-network region proposals
 - Selective search: 2s / im; EdgeBoxes: 0.2s / im
- Fortunately, we have a solution
 - Our follow-up work was presented last week at NIPS

Shaoqing Ren, Kaiming He, Ross Girshick & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." NIPS 2015.

Fast R-CNN take-aways

- End-to-end training of deep ConvNets for detection
- Fast training times
- Open source for easy experimentation
 "I think [the Fast R-CNN] code is average-somewhat above
 average for what it is." sporkles on r/MachineLearning
- A large number of ImageNet detection and COCO detection methods are built on Fast R-CNN Checkout the ImageNet / COCO Challenge workshop on Thursday!

Reproducible research – get the code!

Thanks!

rbg@fb.com

Softmax works well (vs. post hoc SVMs)

Method (VGG16)	classifier	VOC07 mAP
Slow R-CNN	Post hoc SVM	66.0%
Fast R-CNN	Post hoc SVM	66.8%
Fast R-CNN	Softmax	66.9%

More proposals is harmful

