Efficient Online and Batch Learning using Forward Backward Splitting

J. Duchi, Y. Singer

Journal of Machine Learning Research, 2009

中田研究室

I2M42340 張 志鋒

What is Machine Learning

Regression 回帰問題

Classification 分類問題

What is Machine Learning

What is Machine Learning

Formulation of Machine Learning

The Goal is to minimize this loss function with regularizer, yielding a regularized sparse solution

Learning

Weight	Height	Class		
1	5	A		
4	0	В		
2	5	A		
7	2	В		
8	4	В		
•••				

 $\min L(w) + R(w)$ find out w^*

Height

5	3	A ? B	
8	4	A ? B	
• • •			

What is the problem?

Convex & Differentiable

凸かつ微分可能

Convex but Non-differentiable

凸かつ微分不可能

What is the problem?

A **sparse matrix** is a matrix populated primarily with **zeros**

$$w^* = \begin{pmatrix} 1 \\ 0.2 \\ 9 \\ 0 \\ 0.7 \\ 1 \end{pmatrix}$$
 で $\bar{w} = \begin{pmatrix} 2 \\ 0 \\ 10 \\ 0 \\ 0 \\ 0 \end{pmatrix}$ そ Accurate Sparse 正確さ び 体性

In machine learning, we prefer sparse solutions

What is the problem?

$$w = \begin{pmatrix} 0.110 \\ 0.994 \end{pmatrix} \qquad w^{2}$$

$$w = \begin{pmatrix} 0.000 \\ 1.000 \end{pmatrix}$$

$$\ell_1$$
-norm: $|w|_1 = |w^{(1)}| + |w^{(2)}| + \dots + |w^{(3)}|$

 ℓ_1 -norm lead to sparse solutions

Approaches of Machine Learning

Batch learning

Online learning

Batch Learning

Weight	Height	Class
1	5	A
4	0	В
2	5	A
7	2	В
8	4	В

 $\min L(w) + R(w)$

Find out w^*

5 3 A?B 8 4 A?B

Use w^* to predict new data

What is Batch Learning

Try to predict w_3

How to update?

That is the question

Classical method: Subgradient method

Classical Methods:
$$w_t \to w_{t+1}$$
Fobos Algorithm: $w_t \to w_{t+\frac{1}{2}} \to w_{t+1}$

Fobos is an online learning algorithm specially for ℓ_1 -regularized problems

Step I: minimize Loss

$$w_{t+\frac{1}{2}} = w_t - \eta_t g_t$$
 where $E[g_t] \in \partial L(w_t)$

Step 2: Regularization

$$w_{t+1} = \underset{w}{\operatorname{argmin}} \left\{ \frac{1}{2} \| w - w_{t+\frac{1}{2}} \|^2 + \eta_t R(w) \right\}$$

Sparsity

Sparsity as function of Fobos steps on $\ell_1\text{-regularized}$ logistic regression

Sparse timing experiments

Comparison of ℓ_1 -projection to Fobos lazy update

Conclusions

- •General framework for stochastic gradient with regularization.
- Lazy updates for efficency in high dimensions
- Fobos is efficient for online learning with sparse data

In my opinion

- The approach of Fobos to Forward-Backward Splitting is interesting.
- •It should be faster if put structural assumptions of problem in it.