SEGURIDAD DE LA INFORMACIÓN

TEMA 2

TÉCNICAS CRIPTOGRÁFICAS BÁSICAS

(Y SERVICIOS DE SEGURIDAD ASOCIADOS)

KIT-KAT

GRUPOA	Sem	Hora	Practica	Lugar	Docente
2023-09-12	М	12:45-14:30		2.0.5	CAT, RRP
2023-09-14 (EXCEPCIÓN)	J	8:45-10:30		2.0.5	CAT
2023-09-18	L	10:45-12:30		2.0.5	CAT
2023-09-19	М	12:45-14:30	🧝 (MAT)	LAB_3.1.9	RRP
2023-09-21	J	8:45-10:30	2	LAB_3.1.7	RRP
2023-09-25	L	10:45-12:30		2.0.5	CAT
2023-09-26	М	12:45-14:30	🧝 (MAT)	LAB_3.1.9	RRP
2023-09-28	J	8:45-10:30	8	LAB_3.1.7	RRP

GRUPO B	Sem	Hora	Practica	Lugar	Docente
2023-09-12	М	8:45-10:30		3.0.11	CAT, RRP
2023-09-15	V	8:45-10:30		3.0.11	CAT
2023-09-18	L	12:45-14:30		3.0.11	CAT
2023-09-19	М	8:45-10:30	2	LAB_3.1.6	RRC
2023-09-22	V	8:45-10:30	2	LAB_3.1.2	RRC
2023-09-25	L	12:45-14:30		3.0.11	CAT
2023-09-26	М	8:45-10:30	2	LAB_3.1.6	RRC
2023-09-29	V	8:45-10:30	2	LAB_3.1.2	RRC

Indice del tema (I)

- Introducción a la criptografía clásica
 - Cifrados por sustitución y transposición. Ejemplos
 - Cifrado producto
 - Cifrado Vernam (one-time pad)
- Algoritmos simétricos
 - Fundamentos
 - Algoritmo DES
 - Algoritmo triple-DES
 - Algoritmo AES
 - Otros algoritmos simétricos
 - Modos de operación para algoritmos simétricos
 - Ventajas y desventajas de los algoritmos simétricos

Indice del tema (II)

- Algoritmos asimétricos (o de clave pública)
 - Cifrado/descifrado
 - Firma Digital
 - Intercambio de Claves
 - Algoritmo de Diffie-Hellman
 - Algoritmo RSA
- Otras primitivas criptográficas
 - Funciones hash
 - Códigos de autenticación de mensajes
- Referencias bibliográficas

Introducción a la criptografía SEGURIDAD DE LA INFORMACIÓN - Tema 2: Técnicas Criptográficas Básicas

Criptografía, Criptoanálisis, Criptología

• Ya se sabe por el tema anterior que un **algoritmo de cifrado** es un mecanismo fundamental para el desarrollo de servicios de seguridad, como puede ser la confidencialidad

- Criptografía: ciencia que estudia cómo mantener la seguridad en los mensajes (M)
 - usando, entre otros mecanismos, los algoritmos de cifrado
- Criptoanálisis: ciencia que estudia cómo romper los textos cifrados
- Criptología: Criptografía + Criptoanálisis

- El algoritmo de cifrado es un mecanismo que transforma un texto en claro en texto ininteligible
 - Su objetivo es dar cobertura al servicio de <u>CONFIDENCIALIDAD</u>
 - El ALGORITMO DE CIFRADO, caracterizado por E (del inglés "encrypt"),
 opera sobre el texto en claro M (mensaje) para producir el texto cifrado C
 (criptograma)

- La transformación inversa de un texto cifrado a un texto en claro, se denomina ALGORITMO DE DESCIFRADO
 - El algoritmo se denota por la letra D ("decrypt") y opera sobre C para producir el mensaje M

• Se cumple también que:

$$D(E(M)) = M$$

• Ejemplo:

- 1. A genera un texto en claro: "Hola"
- 2. A computa: E("Hola") = "&93!"
- 3. A envía a B el criptograma: "&93!"
- 4. B computa: D("&93!"): "Hola"

Criptografía clásica

- Antes de la existencia de ordenadores, la criptografía clásica consistía en algoritmos basados en caracteres
- Estos algoritmos se basaban en dos técnicas principales:
 - Cifrado por sustitución:
 - Objetivo: cada carácter del texto en claro se sustituye por otro carácter en el texto cifrado
 - $-A \rightarrow V$
 - $V \rightarrow W$
 - **–** ...
 - Cifrado por transposición:
 - Objetivo: realizar una permutación con respecto a las posiciones que ocupan los símbolos en el mensaje en claro
 - HOLA → ALHO

EJEMPLOS SUSTITUCIÓN

SEGURIDAD DE LA INFORMACIÓN - Tema 2: Técnicas Criptográficas Básicas

Ejemplo 1: cifrado por sustitución César

- Objetivo:
 - Cada carácter de texto en claro se reemplaza por aquel posicionado a tres posiciones a la derecha (módulo 27)

$$C: M \rightarrow M + 3 \pmod{27}$$

Ejemplo texto cifrado:

WX WDPELHQ, EUXWR, KLMR PLR

¿Cómo sería el descifrado de este texto cifrado?

• Se puede generalizar a un sistema de cifrado con 27 posibles combinaciones

$$C: M \rightarrow M + i \pmod{27}$$
 $1 \le i \le 27$

• El algoritmo proporciona ventajas al criptoanalista, porque la frecuencia de aparición de las letras es bien conocida. Así:

Eng	glish									Sp	anish								
T A O N	12.4% 8.9% 8.0% 7.6% 7.0% 6.7%	H S R D	6.1% 4.6%	U M W C	2.5% 2.3% 2.2%	G Y P B V	2.0% 2.0% 1.6% 1.3% 0.8%	K Q X J Z	0.7% 0.1% 0.1% 0.1% 0.0%		13.0% 11.1% 9.7% 8.2% 8.0% 7.7%	S T C D	6.9% 5.3% 5.2% 4.5% 3.6%	U P M G B	3.6% 3.0% 2.9% 1.4% 1.3%	V F Y H Q	1.0% 0.8% 0.7% 0.6% 0.6%	J Z X W K	0.3% 0.3% 0.2% 0.1% 0.0%

Ejemplo 2: cifrado por sustitución homofónico

- Se basa en la idea de asignar a un símbolo del alfabeto fuente varios del alfabeto cifrado, solventando el problema de la frecuencia de letras
 - Correspondencia uno a muchos ⇒

 al cifrar un mensaje podemos obtener
 varios criptogramas
 - Ejemplo:

Letra	% (redondeado)	Símbolos asignados
A	8	10, 11, 23, 45, 76, 79, 87, 98
L	6	02, 15, 21, 25, 56, 60
N	3	44, 63, 71
0	8	04, 16, 28, 29, 37, 52, 69, 90
P	2	30,88
T	2	24,77

"PLATON" se cifra como "882110772963"

Ejemplo 3: cifrado por sustitución POLIalfabética

• Alfabeto para posiciones impares:

• Alfabeto para posiciones pares:

• Cifrado del texto: "HOLA A TODOS"

Descifrado:

[Intipedia]

Ejemplo 3: cifrado por sustitución POLIalfabética

• Alfabeto para posiciones impares:

• Alfabeto para posiciones pares:

• Cifrado del texto: "HOLA A TODOS"

Н	0	L	Α	A	Т	0	D	0	S
N	Ñ	b	Z	V	Н	t	Υ	t	С

Descifrado:

N	Ñ	b	Z	V	Н	t	Υ	t	С
Н	0	L	Α	Α	Т	0	D	0	S

EJEMPLOS TRANSPOSICIÓN SEGURIDAD DE LA INFORMACIÓN - Tema 2: Técnicas Criptográficas Básicas

Ejemplo 4: cifrado por transposición

• Objetivo: el texto en claro se escribe como secuencia de filas (con una cierta profundidad X) y se lee como secuencia de columnas

Restricción a nivel de fila

Н	0	L	Α	М	U	N
D	0	Υ	Α	S	ĺ	С
О	N	Т	0	D	0	I

- Ejemplo:
 - "EN ANDALUCIA, EL MULHACEN Y EL VELETA, SON LAS MONTAÑAS MAS ALTAS" - profundidad 26
 - ENANDALUCIAELMULHACENYELVE Hay que quitar los espacios, los símbolos, etc.
 - Mensaje cifrado:
 ELNEATNADSAOLNULCAISAMEOLNMTUALÑHAASCMEANSYAELLTVAES
 - Mensaje descifrado: **ELNEATNADSAOLNULCAISA**

Ejemplo 5: cifrado por transposición con CLAVE

• Se podría complicar el procedimiento anterior, estableciendo una restricción en el número de columnas cuyo valor va a depender del tamaño que tenga una clave

Н	0	L	А	М	U	N
D	0	Υ	Α	S	ĺ	С
0	Ν	Т	0	D	0	I

Restricción a nivel de columna

- Ejemplo:
 - Texto en claro: "HOLA A TODOS, QUE TENGÁIS UN BUEN DÍA"
 - Clave: "SECRETO" con un tamaño de 7

S	Ε	C	R	Е	Т	0

[Intipedia]

Ejemplo 5: cifrado por transposición con CLAVE

- Ejemplo:
 - Texto en claro: "HOLA A TODOS, QUE TENGÁIS UN BUEN DÍA"
 - Clave: "SECRETO" con un tamaño de 7

S	Е	С	R	Е	Т	0
Н	0	L	А	А	Т	0
D	0	S	Q	U	Е	Т
Е	N	G	А	Í	S	U
N	В	U	N	D	1	А

- Podemos fortalecer la seguridad si añadimos más restricciones:
 - Por ejemplo, coger las letras de aquellas <u>columnas</u> por orden alfabético del secreto, es decir: C, E, E, O, R, S, T, resultando en: "LSGUOONBAUIDOTUAAQANHDENTESI"

Cifrado Producto

- Combinación de algoritmos: sustitución y transposición
- Se pueden considerar como la aplicación sucesiva de varios cifrados $E_{\rm i}$

$$E = E_1 . E_2 . \cdots . E_r$$

 $E (M) = E_1 (E_2 (\cdots (E_r (M)))$

• La composición de funciones de descifrado D_i se realiza en orden inverso

$$D = D_r \cdot D_{r-1} \cdots D_1$$

$$M = D(C) = D_r (D_{r-1} (... (D_1 (C)))$$

- Es un esquema utilizado para obtener un alto grado de seguridad con sistemas relativamente sencillos aplicados reiterativamente
- Dan lugar a sistemas de cifrado complejos, seguros y difíciles de atacar, así como fácilmente trasladables a un ordenador

EJEMPLOS CIFRADO DE PRODUCTO

SEGURIDAD DE LA INFORMACIÓN - Tema 2: Técnicas Criptográficas Básicas

Ejemplo 6: métodos polialfabéticos y nomenclátores [Intipedia]

- Se hace uso del disco de Alberti junto con nomenclátores
 - Los nomenclátores consisten en asociar a determinadas palabras códigos específicos

 El proceso debería ser
--

- Cifrado: 1) nomenclátores, y 2) disco de Alberti
- Descifrado: 1) disco de Alberti y 2) nomenclátores

Felipe II	123
Rey	124
Walshingan	122

- Se desea <u>descifrar</u> el siguiente texto: "baa&hpmiyvsvoiylrlxckngkl"
- Usaremos el disco y las siguientes condiciones:
 - Cada diez letras descifradas, se ha de girar el disco externo (de las mayúsculas) dos posiciones en el sentido de las agujas del reloj
 - En el disco de Alberti, la **u** se identifica con la **v** al cifrar
 - Al descifrar, por el sentido de la frase, se puede conocer si se ha de escribir una u otra letra

Ejemplo 6: métodos polialfabéticos y nomenclátores [Intipedia]

- Funcionamiento para cifrar:
 - Posicionar los disco en el estado inicial

b	а	а	&	Н	р	m	i	Y	V
1	2								

"baa&hpmiyvsvoiylrlxckngkl"

 Con el disco externo girar 2 posiciones en el sentido de las agujas del reloj (sólo en cada diez letras descifrada):

S	V	0	i	Y	I	r	I	Х	С
Z	F								

"baa&hpmiyvsvoiylrlxckngkl"

Ejemplo 6: métodos polialfabéticos y nomenclátores [Intipedia]

Con el disco externo volver a girar 2 posiciones en el sentido de las agujas

del reloj:

k	n	g	k	L
2	4	1	2	3

"baa&hpmiyvsvoiylrlxckngkl"

- Por consiguiente, el texto en claro es:

b	а	а	&	Н	р	r	1	i		Υ		V	
1	2	2	М	V	E	-	₹	Т		0		ļ	
S	v	0	I	Υ	ı	r		I	Х		C		
N	F	0	R	М	А	D		Α	L		1		

k	n	g	k	L
2	4	1	2	3

"1 2 2 M V E R T O I N F O R M A D A L 1 2 4 1 2 3"

Si, además, añadimos los nomenclátores + la restricción de la V → U:

Felipe II	123
Rey	124
Walshingan	122

"WALSHINGAN MUERTO INFORMAD AL REY FELIPE II"

Ejemplo 7: Cifrado Vernam

- Aplica el concepto de one-time pad (OTP)
- Un one-time pad es un *conjunto infinito y*no repetitivo de letras aleatorias
- Cada letra del pad se usa para cifrar una única letra del texto en claro, en módulo *n* (longitud del alfabeto)

Texto: THIS IS SECRET

OTP: X VHE UW NOPGCZ

Cifrado: QCPW CO FSRXHS

One-time pad booklet and microdot reader, concealed in a toy truck and used by an illegal agent that operated in Canada

© Canadian Security Intelligence Service

• Ejemplo:

 Aquí se observan grupos de tres filas, que se corresponden con texto en claro (en decimal), clave y criptograma

Fuente: http://bit.ly/2cqBu8D

Cifrado: (carácter del texto en claro + key) + mod 27

Descifrado: (carácter del criptograma - key) + mod 27

Fuente: http://www.caslab.cl/che.php

• Ejemplo:

 En los ordenadores, el OTP aleatorio de longitud infinita se combina mediante XOR con el texto en claro. Ejemplo:

Texto en claro OTP	1	1	0	0	1	0	1	1	0	0	0	1	1	0	1	0	0	1	1	0	1	1	\oplus
OTP	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	=
Criptograma OTP	0	1	0	1	0	0	0	1	1	0	1	0	1	1	1	0	1	0	1	0	0	1	\oplus
OTP	1	0	0	1	1	0	1	0	1	0	1	1	0	1	0	0	1	1	0	0	1	0	=
Texto en claro	1	1	0	0	1	0	1	1	0	0	0	1	1	0	1	0	0	1	1	0	1	1	

- Inconvenientes del cifrado Vernam:
 - las letras del OTP (o bits si se usa en ordenador) han de generarse aleatoriamente
 - el OTP no se vuelve a usar

RELACIÓN DE EJERCICIOS (CASA)

1. Considerando el alfabeto inglés (sin incluir la ñ) y un desplazamiento de 3 posiciones para el proceso de cifrado o descifrado, aplicar la técnica de sustitución Caesar para cifrar el siguiente texto:

"EL PATIO DE MI CASA ES PARTICULAR"

SOLUCIÓN: HO SDWLR GH PL FDVD HV SDUWLFXODU

2. Dado el criptograma C = "FMIRZIRMHS E PE EWMKREXYVE HI WIKYVMHEH HI PE MRJSVQEGMSR" descifrar el contenido del mismo, sabiendo, además, que hay que usar la técnica de sustitución Caesar con un desplazamiento de 4 posiciones modulo n=26 (Alfabeto inglés)

SOLUCIÓN: BIENVENIDO A LA ASIGNATURA DE SEGURIDAD DE LA INFORMACIÓN

3. El siguiente algoritmo aplicará una sustitución monoalfabética, pero esta vez teniendo en cuenta la siguiente regla: $C_i = M_i + K_i \mod 26$ donde K representa una clave de longitud L. El objetivo es cifrar el texto original usando el alfabeto inglés

¿Cuál sería el criptograma del mensaje M = "HOLA AMIGOS" usando una clave K = CIFRA?

Nota: (i) se empieza a contar desde la posición 0 (A del alfabeto); (ii) se puede repetir la clave K tantas veces como sea necesario

A	В	С	D	Ε	F	G	Н	I	J	K	L	M	N	0	Р	Q	R	S	Т	U	V	W	X	Y	Z
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Н	0	L	Α	Α	М	I	G	0	S
7	14	11	0	0	12	8	6	14	18
С	1	F	R	Α	С	1	F	R	A
+2	+8	+5	+17	+0	+2	+8	+5	+17	+0
J	W	Q	R	Α	0	Q	L	F	S
9	22	16	17	0	14	16	11	31→5	18

SOLUCIÓN: JWQR AOQLFS

• Con https://cryptii.com,es possible probar algunos otros algoritmos de cifrado clásicos y básicos

