Theorem: Markov's inequality

For any c, r > 0,

$$P(|X| \ge c) \le \frac{E[|X|^r]}{c^{(r)}}.$$

Proof

$$P(|X| \ge c) \Leftrightarrow P(|X|^r \ge c^r) \le \frac{E[|X|^r]}{c^r}.$$

by generalized Markov's inequality.

Theorem: Chebyshev's inequality

Suppose X is a r.v. with mean $\mu = E[X]$, $\sigma^2 = Var[X]$. For any k > 0, then

$$P(|X - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}.$$

or

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

Proved by Markov:

Proof

$$P(|X - \mu| \ge k\sigma) = P((X - \mu)^2 \ge k^2 \sigma^2) \le \frac{E(X - \mu)^2}{k^2 \sigma^2}$$
$$= \frac{\text{Var}[X]}{k^2 \sigma^2}$$
$$= \frac{\sigma^2}{k^2 \sigma^2}$$
$$= \frac{1}{k^2}$$

Theorem: Jensen's inequality

If g is a convex function, then

$$g(E[X]) \le E[g(X)].$$

If g is concave, -g is convex. The sign thus flips.

Prove by picture. Compare the tangent and graph of $g(\mu)$.

Theorem: Holder's inequality

Take $p,g\geq 1$ such that $\frac{1}{p}+\frac{1}{q}=1$ (Holder conjugates). Then

$$E[|XY|] \le (E[|X|^p])^{\frac{1}{p}} \cdot (E[|Y|^q])^{\frac{1}{q}}.$$

We allow p=1 and $q=\infty$ or vice versa.

6. Law of Large Numbers

Definition: distribution of r.v.

The **distribution** of a r.v. X is the probability measure on \mathbb{R} , denoted by $P_X(\cdot)$, defined $\forall A \subseteq \mathbb{R}$ as

$$P_X(A) = P(\{\omega : X(\omega) \in A\}).$$

Show that this is a probability measure. (empty set is 0, countable additivity, outputs [0,1]).

Theorem: Strong Law of Large Numbers (SLLN)

Suppose that (X_n) is a sequence of independent and identically distributed r.v. (i.i.d.) with $\mu = E[X_n]$ and $E[X_n^4] < \infty$. Then

$$\overline{X_n} := \frac{1}{n} \sum_{i=1}^n X_i \xrightarrow{a.s.} \mu.$$

i.e.

$$P\left(\lim_{n\to\infty}\overline{X_n}=\mu\right)=1.$$

Note. The last condition is always true for simple r.v.

Proof

Transform X so that $\mu = 0$. Consider $E[S_n^4]$. Most terms are just 0, except for

- $E[X_i^2X_j^2]=(\sigma^2)^2$. There are 3n(n-1) choices for 4 different sets of indices.
- $E[X_i^4] < C < \infty$. There are n choices.

So

$$\begin{split} E[S_n^4] &\leq C \cdot n + 3n(n-1)(\sigma^2)^2 \\ &= C \cdot n + 3n^2(\sigma^2)^2 - 3n(\sigma^2)^2 \\ &\leq C \cdot n + 3n^2(\sigma^2)^2 \\ &\leq C \cdot n^2 + 3n^2(\sigma^2)^2 \\ &= kn^2 \qquad \text{where } k = C + 3(\sigma^2)^2 < \infty \end{split}$$

Let $\varepsilon > 0$, use generalized Markov inequality with $g(x) = x^4$,

$$P(|S_n| \ge n\varepsilon) = P(|S_n|^4 \ge n^4 \varepsilon^4)$$

$$= P(S_n^4 \ge n^4 \varepsilon^4)$$

$$\le \frac{E[S_n^4]}{n^4 \varepsilon^4}$$

$$\le \frac{kn^2}{n^4 \varepsilon^4}$$

$$= \frac{k}{n^2 \varepsilon^4}$$

So by Chebyshev,

$$P(|\overline{X_n} - 0| \ge \varepsilon) = P(|\overline{X_n}| \ge \varepsilon)$$

$$= P(|S_n| \ge n\varepsilon)$$

$$\ge \frac{k}{n^2 \varepsilon^4} \to 0 \text{ as } n \to \infty$$

Hence, $\overline{X_n} \xrightarrow{p} 0$.

Note that

$$\sum_{n=1}^{\infty} P(|S_n| \ge n\varepsilon) \ge \frac{k}{\varepsilon^4} \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

By Borel-Cantelli (i), $P(\limsup_n A_n) = 0$ or $P(A_n \ i.o.) = 0$, or $P(|S_n| \ge n\varepsilon \ i.o.) = 0 \Rightarrow P(|\overline{X_n}| \ge \varepsilon \ i.o.) = 0$ for all $\varepsilon > 0$. This is equivalent to

$$P(\lim_{n\to\infty}\overline{X_n}=0)=1.$$

Note. The weak law is just convergence in probability instead.

Thus, $\overline{X_n} \xrightarrow{a.s.} 0$.

Measure

Definition: Borel sets

In \mathbb{R}^n , the σ -field generated by the open rectangles $\{(x_1, \ldots, x_n) : a_i < x_i < b, i = 1, 2, \ldots, n\}$ is called the **Borel sets on** \mathbb{R}^n , denoted by $\mathcal{B}(\mathbb{R}^n)$.

Definition

Let \mathcal{A} be a class/collection of sets in Ω . Let $\Omega_0 \subseteq \Omega$ be a set of points.

$$\mathcal{A} \cap \Omega_0 := \{ A \cap \Omega_0 : A \in \mathcal{A} \}.$$

Note. This is another collection of sets of points.

Theorem: 10.1

Let $\Omega_0 \subseteq \Omega$.

- (i) \mathcal{F} is a σ -field on $\Omega \Rightarrow \mathcal{F}_0 := \mathcal{F} \cap \Omega_0$ is a σ -field on Ω_0 .
- (ii) If $\mathcal{F} = \sigma(\mathcal{A})$ on $\Omega \Rightarrow \mathcal{F}_0 \coloneqq \mathcal{F} \cap \Omega_0 = \sigma(\mathcal{A} \cap \Omega_0)$.

Example. $\omega = \mathbb{R}, \Omega_0 = [0,1]$. This theorem implies that $\mathcal{B}([0,1]) = \mathcal{B}(\mathbb{R}) \cap [0,1]$.

Proof

- (i) By definition.
- (ii) By double containment.

 \subseteq : define

$$\mathcal{G} = \{ A \subseteq \Omega : A \cap \Omega_0 \in \sigma(\mathcal{A} \cap \Omega_0) \}.$$

and want to show $\mathcal{F} \subseteq \mathcal{G}$.

Claim. $A \subseteq \mathcal{G}$.

$$A \in \mathcal{A} \Rightarrow A \cap \Omega_0 \in \mathcal{A} \cap \Omega_0 \subseteq \sigma(\mathcal{A} \cap \Omega_0).$$

Claim. \mathcal{G} is a σ -field on Ω .

The goal is to show that \mathcal{F} is the smallest σ -field containing \mathcal{A} , so \mathcal{G} as another σ -field containing \mathcal{A} must contain \mathcal{F} .

- (i) $\Omega \cap \Omega_0 = \Omega_0 \in \sigma(A \cap \Omega_0)$ since it is a σ -field on Ω_0 .
- (ii) Take $A \in \mathcal{G}$,

 $(\Omega \setminus A) \cap \Omega_0 = \Omega_0 \setminus (A \cap \Omega_0)$ by a picture $\in \sigma(A \cap \Omega_0)$ as the complement in Ω_0

(iii) Take $A_1, A_2, \ldots \in \mathcal{G}$.

$$\left(\bigcup_{n=1}^{\infty} A_n\right) \cap \Omega_0 = \bigcup_{n=1}^{\infty} (A_n \cap \Omega_0) \in \sigma(\mathcal{A} \cap \Omega_0).$$

 \supseteq : $\mathcal{A} \cap \Omega_0 \in \sigma(\mathcal{A}) \cap \Omega_0$ since $\mathcal{A} \subseteq \sigma(\mathcal{A})$. Then $\mathcal{A} \cap \Omega_0 \in \mathcal{F} \cap \Omega_0 = \mathcal{F}_0$ which is a σ -field on Ω_0 by part (i). So as the smallest σ -field containing $\mathcal{A} \cap \Omega_0$, $\sigma(\mathcal{A} \cap \Omega_0) \subseteq \mathcal{F}_0 = \sigma(\mathcal{A}) \cap \Omega_0$.

Definition

Suppose (Ω, \mathcal{F}) . A general measure $\mu : \mathcal{F} \to [0, \infty]$ satisfies

- (i) $\mu(\emptyset) = 0$.
- (ii) countable additivity of disjoint $A_1, A_2, \ldots \in \mathcal{F}$.

Definition: sigma-finite

The measure space $(\Omega, \mathcal{F}, \mu)$ is a σ -finite space if Ω can be written as a countable union of \mathcal{F} -sets, A_1, A_2, \ldots (not necessarily disjoint), with $\mu(A_n) < \infty$ for all n. Then we say μ is σ -finite.

Note. finite measure $\Rightarrow \sigma$ -finite.

 σ -finite \Rightarrow finite.

Example. $(\mathbb{R}, \mathcal{B}, \lambda)$, $\lambda(\mathbb{R}) = \infty$. But $\mathbb{R} = \bigcup_{n=-\infty}^{\infty} [n, n+1) \Rightarrow \lambda([n, n+1)) = 1 < \infty$.

Definition

 μ is **concentrated** on $A \in \mathcal{F}$ if $\mu(A^c) = 0$.

Note. μ is concentrated on the support of μ .

Definition: discrete measure

A measure μ is **discrete** if Ω is discrete and if, for any $A \in \mathcal{F}$, $\mu(A) = \sum_{\omega \in A} \mu(\{\omega\})$.

0.1 properties of a general measure μ

- 1) monotone: $A \subseteq B \Rightarrow \mu(A) \leq \mu(B)$. Since $\mu(B) = \mu(A) + \mu(B \setminus A)$.
- 2) finite subadditivity.
- 3) countable subadditivity.
- 4) continuity from below: $A_1, A_2, \ldots \in \mathcal{F}, A \in \mathcal{F}$, then $A_n \uparrow A \Rightarrow \mu(A_n) \uparrow \mu(A)$.
- 5) continuity from above: $A_n \downarrow A$ and $\mu(A_1) < \infty$, then $\mu(A_n) \downarrow \mu(A)$.

Example. $\mu(A_1) = \mu(A_2) + \mu(A_1 \setminus A_2) \Rightarrow \mu(A_1 \setminus A_2) = \mu(A_1) - \mu(A_2)$, which only makes sense if $\mu(A_1) < \infty$. Then

$$\mu(A_1) - \mu(A_n) = \mu(A_1 \setminus A_n) \uparrow \mu(A_1 \setminus A)$$
 by $4 = \mu(A_1 \setminus A) = \mu(A_1) - \mu(A)$.

Theorem: inclusion-exclusion

$$\mu\left(\bigcup_{i=1}^{n} A_{n}\right) = \sum_{i=1}^{n} \mu(A_{i}) - \sum_{i< j}^{n} \mu(A_{i} \cap A_{j}) + \dots + (-1)^{n-1} \mu(A_{1} \cap \dots \cap A_{n})$$

Theorem: 10.3

Let \mathcal{P} be a π -system. Suppose that μ_1 and μ_2 are two measures on $\sigma(\mathcal{P})$ that are σ -finite on \mathcal{P} and agree on \mathcal{P} , then they agree on $\sigma(\mathcal{P})$.

Proof

Let $A \in \mathcal{P}$. Define

$$\mathscr{L}_A := \{ B \in \sigma(\mathcal{P}) : \mu_1(A \cap B) = \mu_2(A \cap B) \}.$$

Claim. $\mathcal{P} \subseteq \mathcal{L}_A$.

Take any $B \in \mathcal{P}$. Then $A \cap B \in \mathcal{P}$ by π -system. Then $\mu_1(A \cap B) = \mu_2(A \cap B) \Rightarrow B \in \mathcal{L}_A$.

Claim. \mathcal{L}_A is a λ -system.

Since $\mathcal{P} \subseteq \mathcal{L}_A$, by Dynkin's Theorem, $\sigma(\mathcal{P}) \subseteq \mathcal{L}_A$.

 μ_1, μ_2 are σ -finite on $\mathcal{P} \Rightarrow \exists A_1, A_2, \ldots \in \mathcal{P}$ such that $\mathcal{P} = \bigcup_{n=1}^{\infty} A_n$ and $\mu_1(A_n) = \mu_2(A_n) < \infty$. Then by inclusion-exclusion,

$$\mu_{\alpha}\left(\bigcup_{i=1}^{n}(A_{i}\cap B)\right)=\ldots$$

for $\alpha = 1, 2$. Take any $B \in \sigma(\mathcal{P})$. Then $B \in \mathcal{L}_A$ by $\sigma(\mathcal{P}) \subseteq \mathcal{L}_A$. Since the intersections of A_i is in \mathcal{P} as it is a π -system, this implies that the RHS of inclusion-exclusion agree for $\alpha = 1, 2$. Then LHS also agree:

$$\mu_1\left(\bigcup_{i=1}^n (A_i \cap B)\right) = \mu_2\left(\bigcup_{i=1}^n (A_i \cap B)\right).$$

Denote the union as C_n . Since A_n cover \mathcal{P} , and $C_n \uparrow B$, by continuity from below, TODO $\mu_1(B) = \mu_2(B)$.