Deep Reinforcement Learning for Robotic Grasping from Octrees Learning Manipulation from Compact 3D Observations

Andrej Orsula Robotics

Master's Thesis

Department of Electronic Systems

Aalborg University https://es.aau.dk

AALBORG UNIVERSITY

STUDENT REPORT

	•	41		
٠.	ľ	ıtı	Δ	•
				•

Deep Reinforcement Learning for Robotic Grasping from Octrees

Theme:

Master's Thesis

Programme:

Robotics

Author:

Andrej Orsula¹

Supervisor:

Simon Bøgh

Number of Pages:

12

Submission Date:

April 10, 2021

Abstract	
----------	--

TODO: Abstract

¹aorsul16@student.aau.dk

Contents

Re	esumė		V			
Pr	eface		vi			
1	Introduction					
2	Related Work					
	2.1	Robotic Grasping	2			
		2.1.1 Empirical Approaches	2			
		2.1.2 Learning-Based Approaches	2			
	2.2	Learning from 3D	2			
		2.2.1 3D Data Representations	2			
3	Back	kground	3			
	3.1	Model-Free Reinforcement Learning	3			
		3.1.1 Markov Chain	3			
		3.1.2 Markov Decision Process	3			
		3.1.3 Q-Learning	3			
		3.1.4 Value-Based Reinforcement Learning	3			
		3.1.5 Policy-Based Reinforcement Learning	3			
	3.2	Actor Critic	3			
		3.2.1 Deep Deterministic Policy Gradient (DDPG)	3			
		3.2.2 Twin Delayed Deep Deterministic (TD3)	3			
		3.2.3 Soft Actor Critic (SAC)	3			
		3.2.4 Truncated Quantile Critics (TQC)	3			
	3.3	Function Approximation	3			
		3.3.1 Neural Networks	3			
4	Prob	olem Formulation	4			
	4.1	Observation Space	4			
		4.1.1 Observation Stacking	4			
	4.2	Action Space	4			
	4.3	Reward Function	4			
5	Met	hods	5			
	5.1	Curriculum Learning	5			
	5.2	Demonstration Bootstrapping	5			
	5.3	Domain Randomization	5			
6	Imn	lementation	6			

	6.1	Simulation Environment	6
		6.1.1 Selection	6
		6.1.2 Simulating with Ignition Gazebo	6
	6.2	OpenAI Gym Environment	6
		6.2.1 Gym-Ignition	6
	6.3	Stable Baselines3	6
	6.4	Network Architecture	6
		6.4.1 PyTorch	6
		6.4.2 Feature Extractor	6
		6.4.3 Actor Critic Networks	6
	6.5	Hyperparameter Optimisation with Optuna	6
7	Expe	erimental Evaluation	7
	7.1	Experimental Setup	7
	7.2	Results	7
	7.3	Ablation Studies	7
8	Disc	ussion	8
•	•		•
9	Conc	clusion	9
10	Futu	re Work	10
Bił	oliogr	aphy	11
Аp	pend	ices	12
_	A	Low-Level Controller	12
	В	Dataset	12
	C	Hyperparameters	12
	D	Full Results	12

Resumé

TODO: Resumé in Danish

Preface

TODO: Preface

Test citation (TODO: remove test citation): (Name, 2000)

Glossary

- **2D** Two-dimensional
- 3D Three-dimensional

1 Introduction

2 Related Work

- 2.1 Robotic Grasping
- 2.1.1 Empirical Approaches
- 2.1.2 Learning-Based Approaches
- 2.2 Learning from 3D
- 2.2.1 3D Data Representations

Mesh

Point Cloud

Voxel Grid

Octree

3 Background

- 3.1.1 Markov Chain
- 3.1.2 Markov Decision Process
- 3.1.3 Q-Learning
- 3.1.4 Value-Based Reinforcement Learning
- 3.1.5 Policy-Based Reinforcement Learning
- 3.2 Actor Critic
- 3.2.1 Deep Deterministic Policy Gradient (DDPG)
- 3.2.2 Twin Delayed Deep Deterministic (TD3)
- 3.2.3 Soft Actor Critic (SAC)
- 3.2.4 Truncated Quantile Critics (TQC)
- 3.3 Function Approximation
- 3.3.1 Neural Networks

4 Problem Formulation

- 4.1 Observation Space
- 4.1.1 Observation Stacking
- 4.2 Action Space
- 4.3 Reward Function

5 Methods

- 5.1 Curriculum Learning
- 5.2 Demonstration Bootstrapping
- 5.3 Domain Randomization

6 Implementation

\sim 4	0:			
6.1	Simi	IIATIAN	$ \mathbf{n}$	onment
U. I	JIIIL	паноп		/I II I I I G I I L

6.1.1 Selection

Mu.JoCo

PyBullet

Gazebo Classic

Ignition Gazebo

6.1.2 Simulating with Ignition Gazebo

Controller

Middleware - ROS 2

Motion Planning - MoveIt 2

6.2 OpenAl Gym Environment

- 6.2.1 Gym-Ignition
- 6.3 Stable Baselines3
- 6.4 Network Architecture
- 6.4.1 PyTorch
- 6.4.2 Feature Extractor
- 6.4.3 Actor Critic Networks
- 6.5 Hyperparameter Optimisation with Optuna

7 Experimental Evaluation

- 7.1 Experimental Setup
- 7.2 Results
- 7.3 Ablation Studies

8 Discussion

9 Conclusion

10 Future Work

Bibliography

Name, R. (2000). Fascinating title. Journal of Testing 420(69), 69-420.

Appendices

- **A** Low-Level Controller
- **B** Dataset
- **C** Hyperparameters
- **D** Full Results