Chemistry

Lecture 16

Thermochemistry and energetics of chemical reactions

By: Syed Ali Shan

Outline:

- System, Surrounding and State function
- Definitions of terms used in thermodynamics
- Standard states and standard enthalpy changes
- Energy in chemical reaction (thermal energy)
- ♣ 1st law of thermodynamics
- Left Sign of ΔH
- Enthalpy of reaction
- Hess's law to construct simple energy cycles

Thermodynamics

"The study of all types of energy changes associated with physical and chemical changes"

Thermochemistry

- ❖ Based on 1st law of thermodynamics
- Study of heat changes during chemical reaction

Thermo-chemical Equation:

- Gives the values of heat changes during reaction (measured in terms of the enthalpy changes ΔH)
- The equation that gives physical states of reactants and products
- * When a chemical equation is reversed, the magnitude of the ΔH remains same but its sign is reversed
- The coefficients of various substances of chemical equation represents the number of their respective moles
- * If coefficients in the chemical equation are multiplied or divided by some number, the ΔH value must also be multiplied or divided by the same number

Exothermic Reactions	Endothermic Reactions		
Heat evolved by system	Heat absorbed by system		
ΔH = negative	ΔH = positive		
Temperature of system first rises, then becomes equal to	Temperature of system first decreases, then becomes equal		
room temperature	to room temperature		
Extra heat travels to surrounding thereby increasing 'T' of	Heat travels from surrounding to system, so 'T' of		
surrounding	surrounding decreases		

Heat travels from system to surrounding	Heat travels from surrounding to system	
No. of bond formed is greater than bond breakage	No. of bond formed is lesser than bond breakage	
Most spontaneous reactions are exothermic	Most non-spontaneous reactions are endothermic	
Enthalpy content of reactant is higher than product i.e.	Enthalpy content of reactant is lower than product i.e.	
$H_R > H_P$	$H_R < H_P$	
Products are more stable than reactants	Reactants are more stable than products	
Reactants H, Loss in enthalpy AH is negative AH=H ₃ -H ₄ =-ve Products H,	Products H₁ Gain in enthalpy △H is positive △H=H₁-H₁=+ve Reactants H,	
$C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H = -393.7 \text{ kjmol}^{-1}$	$N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ $\Delta H = +180.5 \text{ kymol}^{-1}$	
Process of Respiration	Photosynthesis and Evaporation	

System:

- ➤ Anything under consideration/experimentation
- > Open system (Both mass & heat can flow across)
- Closed system (Only heat can flow across)
- Isolated system (Both mass & heat cannot flow across)

Surrounding:

- > Everything except the system
- Equilibrium b/w system and surrounding gives reversible reactions

Boundary:

Imaginary line separating system from surrounding

State Function:

- Macroscopic property of system
- > Has initial and final states
- Independent of path followed to bring the change
- **Examples:** Pressure, Temperature, Volume, Internal energy (E), Enthalpy (H), Entropy (S), Gibbs free energy (G) [Δ G > 0 (non-spontaneous process), Δ G < 0 (spontaneous process), Δ G = 0 (process at equilibrium)]
- \triangleright Their absolute values aren't measured but change is measured (ΔE = E₂ E₁)

Internal Energy:

- Sum of all possible energies of the system E = K.E + P.E
- > K.E is due to translational, vibrational and rotational motions of particles
- ➤ P.E is due to all types of attractive forces present in the system
- Units: J, calorie
- ➤ **Joule:** Energy required to move an object or a particle through a distance of 1 meter by a force of 1 Newton
- Calorie: Heat or thermal energy required to raise the temperature of one gram of water from 14.5 to 15.5°C. 1 calorie = 4.18 J

Heat Capacity:

- ➤ The amount of heat required to raise the temperature of given amount of a substance by 1 Kelvin
- Expressed in JK⁻¹
 - Specific heat capacity: The amount of heat required to raise the temperature of one gram of substance by 1 Kelvin
 - Expressed in Jg⁻¹K⁻¹
 - Molar heat capacity: The amount of heat required to raise the temperature of one mole of a substance by 1 Kelvin
 - JK⁻¹mole⁻¹

Modes of Transference of Energy:

Heat (q)	Work (w)		
Energy that flows across the boundary of a system	It is defined as the product of force and distance.		
during a change in its state due to the difference in	In thermo-chemistry, we study pressure-volume		
temperature between the system and the	work		
surroundings. (random form of energy)			
It occurs when there is difference in temperature	Occurs if system involves gaseous substances and		
b/w system and surrounding	there is pressure difference b/w system and		
	surrounding		
Not a state function so path dependent (so $q = q_1 +$	Not a state function so path dependent (so $w = w_1$		
$q_2 + q_3 + \dots$	+ w ₂ + w ₃ +)		
Units; J, kJ, Calories	Units; J, ergs (CGS system)		
q = +ve (Heat absorbed by system)	w = +ve (Work done on system)		
q = -ve (Heat evolved by system)	w = -ve (Work done by system)		
(q + w) is a state function			

1st Law of Thermodynamics

- Also called the law of conservation of energy
- States that energy can neither be created nor destroyed, but can be changed from one form to another
- Internal energy (sum of all possible energies i.e. K.E + P.E) change is given as;

$$\Delta E = q + w$$

 $\Delta E = q - P\Delta V$ (work done by system to move piston upwards, so $w = - P\Delta V$)

$$\Delta E = q_v - P(0)$$
 ($\Delta V = 0$, as volume is constant)

$$\Delta E = q_v$$

 \blacksquare This shows that a change in internal energy of a system, at constant volume is equal to heat absorbed by the system (q_v)

Enthalpy (H):

- Total heat content of system
- Enthalpy is equal to the internal energy, E plus the product of pressure and volume (PV)

$$H = E + PV$$

$$\Delta H = \Delta E + \Delta (PV)$$

$$\Delta H = \Delta E + P\Delta V + V\Delta P$$

$$\Delta H = \Delta E + P\Delta V + V(0) \quad (\Delta P = 0, \text{ as P is constant})$$

$$\Delta H = \Delta E + P\Delta V \text{ (For Gases)} \longrightarrow \text{ (i)} \qquad [\Delta H \approx \Delta E \text{ for liquids/solids as no V changes}]$$

$$\Delta H = q - P\Delta V + P\Delta V$$

$$\Delta H = q_p$$

This shows that change in enthalpy is equal to heat of reaction at constant pressure

Energy Change of Reaction

Standard conditions:

◆ 1 mole, 25°C (298 k), 1 atm

Important Terms:

- Φ $\Delta H = H_P H_R$
- $lack \Delta H^0$ = standard enthalpy change
- $lackrel{}$ ΔE = internal energy change
- $lack \Delta S = entropy change$
- $lack \Delta G$ = free energy change

Enthalpy of Reaction (ΔH^0_r):

- Depends upon;
 - i. Physical states of reactants and products
 - ii. Temperature during reaction
 - iii. Pressure during reaction
 - iv. Quantities (moles) of reactant/product
 - v. Nature of the reactants
- Amount of heat evolved or absorbed when certain number of moles of reactant react completely to give product under standard conditions

$$H_{2 (g)} + 1/2O_{2 (g)} \rightarrow H_2O_{\ell}$$
 $\Delta H = -285.8 \text{ kymol}^{-1}$

$$CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{\ell}\ell_1$$
 $\Delta H = -890.4 \text{ kjmol}^{-1}$

Enthalpy of Formation (ΔH^{0}_{f}):

Amount of heat evolved or absorbed when 1 mole of compound is formed from its elements under standard conditions

$$Mg_{(s)} + 1/2O_{2(g)} \rightarrow MgO_{(s)}$$
 $\Delta H^{0}_{f} = -692 \text{ kymol}^{-1}$
 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H^{0}_{f} = -393.7 \text{ kymol}^{-1}$

Enthalpy of Atomization (ΔH_{at}^0):

Amount of heat absorbed when 1 mole of gaseous atom is formed from its element under standard conditions

$$1/2H_{2 (g)} \rightarrow H_{(g)}$$
 $\Delta H^{0}_{at} = +218 \text{ kymol}^{-1}$
 $1/2Cl_{2 (g)} \rightarrow Cl_{(g)}$ $\Delta H^{0}_{at} = +121 \text{ kymol}^{-1}$

Enthalpy of Neutralization (ΔH^{0}_{n}):

For acid-base reactions

Amount of heat evolved when 1 mole of H⁺ (from acid) reacts with 1 mole of OH⁻ (from base) to form 1 mole of water under standard conditions

$$H^{+}_{(aq)} + OH^{-}_{(aq)} \rightleftharpoons H_2O_{(\ell)}$$
 $\Delta H^{0}_{n} = -57.4 \text{ kjmol}^{-1} \text{ [for strong acid-base]}$

Enthalpy of Combustion (ΔH^0_c):

For substances (either element or compound)

Amount of heat evolved when 1 mole of substance is burnt completely in excess of oxygen under standard conditions

$$C_2H_5OH_{(\ell)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 3H_2O_{(\ell)}$$
 $\Delta H^0_c = -1368 \text{ kjmol}^{-1}$
 $C_{(s)} + O_{2(g)} \rightarrow CO_{2(g)}$ $\Delta H^0_c = -393.7 \text{ kjmol}^{-1}$

Enthalpy of Solution ($\Delta H^0_{sol.}$):

Amount of heat evolved or absorbed when 1 mole of substance is dissolved in so much solvent that further dilution results no detectable heat change under standard conditions

ightharpoonup Ammonium chloride $\ \ ^{\circ}$ $\Delta H^{0}_{sol.} = +16.2 \ kjmol^{-1}$

For $HCl_{(g)}$ \longrightarrow $\Delta H^0_{sol.} = +75 \text{ kjmol}^{-1}$

Measurement of ΔH⁰:

Experimentally by calorime	eters	Calculated by Hess's Law
Glass Calorimeter	Bomb Calorimeter	Applicable for;

ΔH_n^0 is measured	ΔH ⁰ _c is measured	i.	One step reaction
$\Delta H^0_n = q = m \times s \times \Delta T$	$\Delta H_c^0 = d = c \times \Delta L$	ii.	For multi step reactions (specially)
q = heat evolved	c = heat capacity		$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$
m = mass of substance			
S = specific heat(JK ⁻¹ g ⁻¹)			Born-Haber cycle is application of Hess's
ΔT = 'T' change			law used for ionic compounds
Calorimeters only applicab	ole for 1 step reactions		

Hess's Law (Q.16, Q.17, Q.18, Q.19, Q.20)

◆ If a chemical change takes place by several different routes, the overall energy change is the same, regardless of the route by which the chemical change occurs, provided the initial and final conditions are the same

According to Hess's law, $\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$ Mathematically, $\sum \Delta H(\text{cycle}) = 0$

Of course, Hess's law is simply an application of the more fundamental law of conservation of energy. So, $\Sigma\Delta H$ (cycle) = 0

- ΔH for many compounds cannot be measured directly from calorimeter like;
 - ➤ CCl₄ cannot be prepared directly by combining carbon and chlorine. Similarly, it does not decompose easily into its constituent elements.
 - \triangleright Boron oxide (B₂O₃) and aluminium oxide (Al₂O₃) form protective layer of oxides covers the surface of the unreacted element.
 - ➤ Formation of CO cannot be measured directly due to the formation of CO₂ with it.

Enthalpy of formation of CO:

$$\begin{array}{ll} \textbf{C}_{\text{(graphite)}} + \textbf{O}_{\text{2 (g)}} \rightarrow \textbf{CO}_{\text{2 (g)}} & \Delta \textbf{H} = -393.7 \text{ kjmol}^{-1} \\ \textbf{CO}_{\text{(g)}} + 1/2\textbf{O}_{\text{2 (g)}} \rightarrow \textbf{CO}_{\text{2 (g)}} & \Delta \textbf{H}_{1} = -283 \text{ kjmol}^{-1} \\ \textbf{C}_{\text{(graphite)}} + 1/2\textbf{O}_{\text{2 (g)}} \rightarrow \textbf{CO}_{\text{(g)}} & \Delta \textbf{H}_{2} = ? \\ & \Delta \textbf{H} = \Delta \textbf{H}_{1} + \Delta \textbf{H}_{2} \\ & -393.7 = -283 + \Delta \textbf{H}_{2} \\ & \Delta \textbf{H}_{2} = -393.7 + 283 = -110.7 \text{ kjmol}^{-1} \end{array}$$

Formation of Sodium carbonate: verification of Hess's law

Single step process:

2NaOH _(aq) + CO_{2 (g)} → Na₂CO_{3 (aq)} + H₂O (
$$\ell$$
) Δ H = -89.08 kjmol⁻¹

Two step process:

NaOH
$$_{(aq)}$$
 + CO_{2 $_{(g)}$} \rightarrow NaHCO_{3 $_{(aq)}$} $\Delta H_1 = -48.06 \text{ kjmol}^{-1}$

NaOH
$$_{(aq)}$$
 + NaHCO $_{3\,(aq)}$ \rightarrow Na $_2$ CO $_{3\,(aq)}$ + H $_2$ O $_{(\ell)}$ $\Delta H_2 = -41.02 \text{ kymol}^{-1}$ $\Delta H = \Delta H_1 + \Delta H_2$ $-89.08 = -48.06 + (-41.02)$ $-89.08 = -89.08$

Applications:

- Heat of combustion
- Heat of formation
- Indirect enthalpy change measurements
- Lattice energy (Born-Haber cycle)

Q.16: By applying Hess's law, calculate the enthalpy change for the formation of an aqueous solution of NH_4CI from NH_3 gas and HCI gas. The results for the various reactions are as follows;

$$\begin{aligned} \text{NH}_{3 \ (g)} + \text{aq} &\rightarrow \text{NH}_{3 \ (aq)} \\ \text{HCI}_{\ (g)} + \text{aq} &\rightarrow \text{HCI}_{\ (aq)} \\ \\ \text{NH}_{3 \ (aq)} + \text{HCI}_{\ (aq)} &\rightarrow \text{NH}_{4}\text{CI}_{\ (aq)} \\ \end{aligned} \quad \Delta H = -35.16 \ \text{kjmol}^{-1} \\ \\ \Delta H = -72.41 \ \text{kjmol}^{-1} \\ \\ \Delta H = -51.48 \ \text{kjmol}^{-1} \end{aligned}$$

Solution:

Path 1 (Direct route as asked in question)

$$NH_{3 (g)} + HCI_{(g)} \rightarrow NH_4CI_{(aq)}$$
 $\Delta H = ?$

Path 2 (Indirect route as given in question)

$$NH_{3 (g)} + aq \rightarrow NH_{3 (aq)} \qquad \Delta H_{1} = -35.16 \text{ kymol}^{-1}$$

$$HCl_{(g)} + aq \rightarrow HCl_{(aq)} \qquad \Delta H_{2} = -72.41 \text{ kymol}^{-1}$$

$$NH_{3 (aq)} + HCl_{(aq)} \rightarrow NH_{4}Cl_{(aq)} \qquad \Delta H_{3} = -51.48 \text{ kymol}^{-1}$$

$$\Delta H = \Delta H_{1} + \Delta H_{2} + \Delta H_{3}$$

$$\Delta H = (-35.16) + (-72.41) + (-51.48) = -159.05 \text{ kymol}^{-1}$$

Q.17: Calculate the heat of formation of ethyl alcohol from the following information;

- i. Heat of combustion of ethyl alcohol is 1367 kjmol⁻¹
- ii. Heat of formation of carbon dioxide is 393.7 kjmol⁻¹
- iii. Heat of formation of water is 285.8 kjmol⁻¹

Solution:

Heat of combustion of ethyl alcohol is - 1367 kjmol⁻¹

$$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O \rightarrow i \Delta H = -1367 \text{ kjmol}^{-1}$$

Heat of formation of carbon dioxide is - 393.7 kjmol⁻¹

$$C + O_2 \rightarrow CO_2 \rightarrow ii$$
 $\Delta H = -393.7 \text{ kjmol}^{-1}$

Heat of formation of water is – 285.8 kjmol⁻¹

$$H_2 + 1/2O_2 \rightarrow H_2O \rightarrow iii \Delta H = -285.8 \text{ kjmol}^{-1}$$

Requirement is heat of formation of ethyl alcohol;

$$2C + 3H_2 + 1/2O_2 \rightarrow C_2H_5OH$$
 $\Delta H = ?$

Multiply eq. (ii) with 2, eq. (iii) with 3 and then add them

$$2C + 2O_2 \rightarrow 2CO_2 \implies ii$$
 $\Delta H = 2(-393.7 \text{ kjmol}^{-1}) = -787.4 \text{ kjmol}^{-1}$
 $3H_2 + 3/2O_2 \rightarrow 3H_2O \implies iii$ $\Delta H = 3(-285.8 \text{ kjmol}^{-1}) = -857.4 \text{ kjmol}^{-1}$
 $2C + 3H_2 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O \implies iv \Delta H = -1644.8 \text{ kjmol}^{-1}$

Invert eq. (i) [when eq. is inverted sign of ΔH changes] and add it to eq. (iv)

$$2CO_2 + 3H_2O \rightarrow C_2H_5OH + 3O_2 \qquad \Delta H = +1367 \text{ kymol}^{-1}$$

$$2C + 3H_2 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O \qquad \Delta H = -1644.8 \text{ kymol}^{-1}$$

$$2C + 3H_2 + 1/2O_2 \rightarrow C_2H_5OH \qquad \Delta H = -277.8 \text{ kymol}^{-1}$$

SHORT CUT

$$C_2H_5OH + 3O_2$$
 (ΔH not given) \rightarrow 2CO₂ + 3H₂O
 \downarrow -1367 kjmol⁻¹ + ΔH (as for alcohol) = 2(-393.7 kjmol⁻¹) + 3(-285.8 kjmol⁻¹)
 $\Delta H = -787.4 \text{ kjmol}^{-1} + (-857.4 \text{ kjmol}^{-1}) + 1367 \text{ kjmol}^{-1}$

ΔH = - 277.8 kjmol⁻¹

Q.18: If the heats of combustion of C_2H_4 , H_2 and C_2H_6 are -337.2, -68.3 and -372.8 k calories respectively, then calculate the heat of the following reaction; $C_2H_4 + H_2 \rightarrow C_2H_6$

Solution:

Heat of combustion of C₂H₄;

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \rightarrow i \Delta H = -337.2 \text{ k calories}$$

Heat of combustion of H₂;

$$H_2 + 1/2O_2 \rightarrow H_2O \rightarrow ii$$
 $\Delta H = -68.3 \text{ k calories}$

Heat of combustion of C₂H₆:

$$C_2H_6 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O \rightarrow iii$$
 $\Delta H = -372.8 \text{ k calories}$

Requirement is heat of formation of C₂H₆;

$$C_2H_4 + H_2 \rightarrow C_2H_6 \rightarrow iv \quad \Delta H = ?$$

Add eq. (i) and eq. (ii)

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \implies i \qquad \Delta H = -337.2 \text{ k calories}$$

$$H_2 + 1/2O_2 \rightarrow H_2O \implies ii \qquad \Delta H = -68.3 \text{ k calories}$$

$$C_2H_4 + H_2 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O \implies iv \quad \Delta H = -405.5 \text{ k calories}$$

Invert eq. (iii) [when eq. is inverted sign of ΔH changes] and add it to eq. (iv)

$$2CO_2 + 3H_2O \rightarrow C_2H_6 + 7/2O_2$$
 $\Delta H = +372.8 \text{ k calories}$

$$C_2H_4 + H_2 + 7/2O_2 \rightarrow 2CO_2 + 3H_2O \qquad \Delta H = -405.5 \text{ k calories}$$

$$C_2H_4 + H_2 \rightarrow C_2H_6 \qquad \Delta H = -32.7 \text{ k calories}$$

SHORT CUT

 $\Delta H = -337.2 \text{ k calories} - 68.3 \text{ k calories} + 372.8 \text{ k calories}$

$\Delta H = -32.7$ k calories

Q.19: Graphite and diamond are two forms of carbon. The enthalpy of combustion of graphite at 25°C is -393.51 kJmol⁻¹ and that of diamond is -395.41 kJmol⁻¹. What is the enthalpy change of the process Graphite → Diamond at the same temperature?

Solution:

$$C_{(graphite)} + O_2 \rightarrow CO_2 \longrightarrow i$$
 $\Delta H = -393.51 \text{ kJmol}^{-1}$ $C_{(diamond)} + O_2 \rightarrow CO_2 \longrightarrow ii$ $\Delta H = -395.41 \text{ kJmol}^{-1}$

For Graphite → Diamond, invert eq. (ii) and add with eq. (i)

$$C_{\text{(graphite)}} + O_2 \rightarrow CO_2 \qquad \Delta H = -393.51 \text{ kJmol}^{-1}$$

$$CO_2 \rightarrow C_{\text{(diamond)}} + O_2 \qquad \Delta H = +395.41 \text{ kJmol}^{-1}$$

$$C_{\text{(graphite)}} \rightarrow C_{\text{(diamond)}} \qquad \Delta H = +1.9 \text{ kJmol}^{-1}$$

Q.20: If the heat of neutralization of HCl and NaOH is -57.3 kJmol⁻¹ and heat of neutralization of CH_3COOH with NaOH is -55.2 kJmol⁻¹, calculate the enthalpy of ionization of CH_3COOH .

Solution:

$$H^+ + OH^- \rightarrow H_2O \longrightarrow i$$
 $\Delta H = -57.3 \text{ kJmol}^{-1}$
 $CH_3COOH + OH^- \rightarrow H_2O + CH_3COO^- \longrightarrow ii$ $\Delta H = -55.2 \text{ kJmol}^{-1}$

Required:

$$CH_3COOH \rightarrow H^+ + CH_3COO^- \Delta H = ?$$

Invert eq. (i) and add with eq. (ii)

$$CH_3COOH + OH^- \rightarrow H_2O + CH_3COO^- \qquad \Delta H = -55.2 \text{ kJmol}^{-1}$$

$$H_2O \rightarrow H^+ + OH^- \qquad \Delta H = +57.3 \text{ kJmol}^{-1}$$

$$CH_3COOH \rightarrow H^+ + CH_3COO^- \qquad \Delta H = + 2.1 \text{ kJmol}^{-1}$$

Enthalpies of Reactions from enthalpy of formation

Enthalpy of solution = (sum of enthalpies of products) – (sum of enthalpies of reactant)

Q. Calculate ΔH of reaction for the following reaction, which take place when gasoline burns in internal combustion engines. Where the values of ΔH_f^0 are -269 kJ, 0 kJ, -393.5 kJ and -285 kJ for C_8H_{18} , O_2 , CO_2 and H_2O respectively

$$2C_8H_{18} + 25O_2 \rightarrow 16CO_2 + 18H_2O$$

$$\Delta H_{\text{reaction}}^0 = [16 (-393.5) + 18 (-285.8)] - [2 (-269) + 25 (0)]$$

$$\Delta H_{\text{reaction}}^0 = -10902.4 \text{ kJ} = -1.09 \times 10^4 \text{ kJ}$$

Born Haber Cycle (As precaution)

- Used to calculate lattice energy
- Lattice Energy: Energy released when 1 mole of ionic compound is formed from its gaseous ions

 OR energy required to break 1 mole of ionic compound into its gaseous ions
- L.E \(\preceq\) charge, L.E \(\preceq\) 1/size, L.E \(\preceq\) packing of ions [NaF > NaCl > NaBr > NaI]
- **Ⅲ** Information from L.E:
 - Structure of ionic solids
 - Properties of ionic solids
 - Strength of bonding

L.E of NaCl [Q.21 (c) on similar lines]

- Applying Hess's law
- $\triangle H_f = \Delta H_x + \Delta H_\ell$
- $\triangle H_{\ell} = \Delta H_f \Delta H_x$
- \blacksquare To find ΔH_x represents multiple enthalpy changes, so Born Haber cycle is used for the calculation

Na(s) +
$$\frac{1}{2}$$
 Cl₂(g) $\xrightarrow{\Delta H_f}$ NaCl(s)
$$\Delta H_{\chi}$$
Na⁺(g) + Cl⁻(g)

$$\Delta H_{x} = \Delta H_{at(Na)} + \Delta H_{I.E} + \Delta H_{at(CI)} + \Delta H_{E.A}$$

$$\Delta H_{x} = +108 + 496 + 121 - 349$$

$$\Delta H_{x} = +376 \text{ kJmol}^{-1}$$

$$\Delta H \ell = -411 - (+376)$$

 $\Delta H \ell = -787 \text{ kJmol}^{-1}$