Diskretne strukture UNI Vaje 9

1. Na množici naravnih števil \mathbb{N} definiramo relacijo R:

$$xRy \Leftrightarrow 5 \text{ deli } x + 4y.$$

Pokaži, da je R ekvivalenčna relacija in določi ekvivalenčne razrede.

R reflerima?
 ∀x: xRx?
 ∀x: 5 deli x+4x?
 ∀x: 5 deli 5x? Ja, 5 medono deli 5x.

R simetricina? ∀x ∀y: (xRy ⇒ yRx)?
 ∀x ∀y: (5 duli x+4y ⇒ 5 duli y+4x)? Ja. Če 5 duli x+4y, potem duli tuoli 5(x+y) - (x+4y) = 5x+5y-x-4y=y+4x. B

• R transitiona? ∀x∀y¥2: (xRy AyR2 ⇒ xR2)?

∀x∀y¥2: (5 deli x+4y in 5 deli y+42 ⇒ 5 deli x+42)? Ya, če 5 deli x+4y in y+42,

potom deli hedi esolo

(x+4y)+(y+42)=x+42+5y-

Potem pa deli tudi (x+4y)+(y+4z)-5y = x+4z, Zen deli ex Elene na levi.

⇒ Ker je R reflerirma, simetricha in tranzitiona, je errivalencina.

Eknivalenčni nazndi?

$$[0] = \{m; 5 \text{ deli } 0 + 4m? = \{0, 5, 10, 15, ...\}$$

$$[1] = \{m; 5 \text{ deli } 1 + 4m? = \{1, 6, 11, 16, ...\}$$

$$\vdots$$

$$Jsti ruzultat.$$

Vsako maramo sterilo je

IN = [0] U [1] U [2] U [3] U [4]

2. Na množici $A = \{0, 1, 2, \dots, 11\}$ definiramo relacijo

$$xRy \Leftrightarrow |x-y| \in \{2,4\}$$

- (a) Nariši grafe relacije $R,\,R^2$ in R^+
- (b) Katere izmed relacij so refleksivne, simetrične, tranzitivne?
- (c) Določi ekvivalenčne razrede tistih od relacij R, R^2 in R^+ , ki so ekvivalenčne.

(a) Nariši grafe relacije R, R^2 in R^+

Ker lahro gumo
le 2 ali 4 murta.
Mapry ali mazaj,

me morumo priti iz
sodih steril v liha
ali drahno.

 $R^{+}=RUR^{2}UR^{3}UR^{4}U\cdots=$ tranzitirna ovojuica relacije R= Majmanjša tranzitirna relacija, Ri vedruje R

 R^2

 $\mathbb{R}^{+} \longrightarrow \text{poljulno stevilo korakov a grafu za } \mathbb{R}$

, ,	0	2	4	6	8	10	1	3	5	7	9	11	*
ŏ	1	1	1	4	4	0	0	0	0	0	0	٥	
2	1	1	1	1	1	1	٥	0	0	0	٥	0	
4	1	~	1	1	1	1	0	0	٥	٥	٥	٥	
۵	1	1	1	1	1	1	0	0	٥	٥	٥	٥	
8	1	1	1	1	1	~	o	0	0	٥	ο	٥	
10	٥	1	1	1	1	1	0	0	٥	0	0	0	
1	0	٥	0	٥	٥	٥	1	1	1	1	4	٥	
3	0	٥	٥	٥	٥	0	1	1	1	1	1	1	
5	٥	٥	٥	0	0	٥	1	1	1	1	1	7	
7	0	0	0	0	٥	٥	1	1	1	1	1	1	
9	٥	٥	٥	٥	0	0	1	1	1	1	1	1	
11	0	٥	0	٥	٥	0	٥	1	1	1	1	1	

i-te vostice in
j-tega stolpca
pomuni, da labbo
n duch tronshih
preidemo od i do j;
O pomuni, da mi
povezane od i do j

1 ma krizisču

 $a \stackrel{+2}{\rightarrow} a + 2 \stackrel{-2}{\rightarrow} a$ ali $a \stackrel{-2}{\rightarrow} a - 2 \stackrel{+2}{\rightarrow} a$ \longrightarrow Zomke $a \stackrel{+4}{\rightarrow} a + 4 \stackrel{-2}{\rightarrow} a + 2$ ali $a \stackrel{-4}{\rightarrow} a - 4 \stackrel{+2}{\rightarrow} a - 2$ ali $a \rightarrow a - 2 \rightarrow a + 4$ ali $a \rightarrow a + 2 \rightarrow a - 4$ ali ... \longrightarrow 2 maprij/mazaj $a \stackrel{+2}{\rightarrow} a + 2 \stackrel{+2}{\rightarrow} a + 4$ ali $a \stackrel{-2}{\rightarrow} a - 2 \stackrel{-2}{\rightarrow} a - 4$ \longrightarrow 4 maprij/mazaj $a \stackrel{+2}{\rightarrow} a + 2 \stackrel{+4}{\rightarrow} a + 6$ ali $a \stackrel{-2}{\rightarrow} a - 2 \stackrel{-4}{\rightarrow} a - 4$ ali ... \longrightarrow 6 maprij/mazaj $a \rightarrow a + 4 \rightarrow a + 8$ ali $a \rightarrow a - 4 \rightarrow a - 8 \longrightarrow$ 8 maprij/mazaj

(b) Katere izmed relacij so refleksivne, simetrične, tranzitivne?

Ker je |x-y|=|y-x|, je R sinutrična. Ker je R sinutrična, sta tudi R^2 in R^4 sinutrični. Ker je R sinutrična, je R^2 reflerrima. Ker je R^2 reflerrima. R^4 je tranzitima, ren je tranzitima ovojnica.

R mi nyllonima, hen 71R1. R mi transzitima, hen je OR4 in 4R8 in 70R8. R2 mi transzitima, hen je OR28 in 8R210 in 70R210.

(c) Določi ekvivalenčne razrede tistih od relacij R, R^2 in R^+ , ki so ekvivalenčne. Ekrivalenčna je R^+ , ku je rufterirma, simetrična in tranzitirma. $[0] = \{0,2,4,6,8,10\}$, $[1] = \{1,3,5,7,9,11\}$. 3. Naj bo B_n množica naravnih števil od 0 do 2^n-1 . Ta števila predstavimo v dvojiškem zapisu; število $b\in B_n$ zapišemo kot $b=\mathsf{b}_n\cdots\mathsf{b}_2\mathsf{b}_1$, kjer so števke b_i enake 0 ali 1. Na B_n definiramo relacijo $\leq \mathsf{z}$

$$a \leq b \quad \Leftrightarrow \quad \forall i \, (\mathsf{a}_i \leq \mathsf{b}_i).$$

- (a) Ali velja: $2 \le 3, 5 \le 8, 4 \le 5$?
- (b) Prepričaj se, da je \preceq relacija delne urejenosti.
- (c) Skiciraj Hassejev diagram te delne urejenosti v primeru n=3.
- (d) Ali je \preceq relacija linearne urejenosti? Za kateri n oziroma zakaj ne? Kako to sledi iz Hassejevega diagrama?
- (e) Preveri, da velja implikacija: Če $a \leq b$, potem $a \leq b$.
- (a) Ali velja: $2 \leq 3$, $5 \leq 8$, $4 \leq 5$?

- (b) Prepričaj se, da je \leq relacija delne urejenosti.
 - ≤ ruflièrima?

 ∀a: a ≤ a?

 ∀a ∀b (a ≤ b ∧ b ≤ a ⇒ a = b)?

 ∀a ∀i: ai ≤ ai)?

 ∀a ∀b (∀i: ai ≤ bi ∧ ∀j: bj ≤ aj ⇒ a = b)?

 ∀a ∀b (∀i: ai ≤ bi ∧ ∀i: bi ≤ ai ⇒ a = b)?

 ∀a ∀b (∀i (ai ≤ bi ∧ bi ≤ ai) ⇒ a = b)?

 ∀a ∀b (∀i (ai ≤ bi ∧ bi ≤ ai) ⇒ a = b)?

 ∀a ∀b (∀i (ai ≤ bi ∧ bi ≤ ai) ⇒ a = b)?

 ∀a ∀b (∀i (ai ≤ bi ∧ bi ≤ ai) ⇒ a = b)?

 ∀a ∀b (∀i (ai ≤ bi ∧ bi ≤ ai) ⇒ a = b)?
 - \(\pm \) transitiona?

$$\forall a \forall b \forall c \ (a \preccurlyeq b \land b \preccurlyeq c \Rightarrow a \preccurlyeq c)$$
?
 $\forall a \forall b \forall c \ (\forall i : a_i \leqslant b_i \land \forall i : b_i \leqslant c_i \Rightarrow \forall i : a_i \leqslant c_i)$?

d'aj bodo a, b, c ∈ Bn poljulni in maj velja ∀i: ai ≤ bi ∧ ∀i: bi ≤ ci ~ 1. Potem je ∀i (ai ≤ bi ∧ bi ≤ ci) ~ 1.

Jz (ai ≤ bi ∧ bi ≤ ci) sledi ai ≤ ci, hen je ≤ transzitirma. Tory je ∀i: ai ≤ ci ~ 1. ■

ie transzitirma

(c) Skiciraj Hassejev diagram te delne urejenosti v primeru n=3.

(d) Ali je \preceq relacija linearne urejenosti? Za kateri n oziroma zakaj ne? Kako to sledi iz Hassejevega diagrama?

Za M=1 je linearma urejenost. Za M>1 mi linearma urejenost, her mista poljubna dva elementa Bn primerljiva.

 d^{2} pr. $za \times = 10000 - 0$ in y = 0100 - 0 ne relia nih $x \le y$ nih $y \le x$.

Če bi bila linearma unjenent, potem bi bil pripadajoči Harrejev diagnom louz razvejišč:

Relacija R ma A je <u>linearna unjenos</u>t, če je R delna unjenost in za vse x, y E A velja xRy Vy Rx.

(e) Preveri, da velja implikacija: Če $a \leq b$, potem $a \leq b$.

Naj lo a≤b. Potem je Vi: ai≤bi, zato je

$$\alpha = \sum_{i=1}^{m} a_i \cdot 2^{i-1} \le \sum_{i=1}^{m} b_i \cdot 2^{i-1} = b$$
.

 $a = a_n a_{n-1} \cdots a_{1(2)} \Rightarrow a = \sum_{i=1}^n a_i \cdot 2^{i-1}$ dugishi zapis

4. Na množici števil $\mathbb{N} \setminus \{0\}$ definiramo relacijo R:

$$aRb \Leftrightarrow \gcd(a,b) > 3.$$

- (a) Pokaži, da je $R \subseteq R^2$.
- (b) Ali je relacija R refleksivna, simetrična ali tranzitivna?
- (c) Ali je relacija \mathbb{R}^2 refleksivna, simetrična ali tranzitivna?
- (a) Pokaži, da je $R \subseteq R^2$.

Za a > 3 je god(a,a) = a > 3, zato je aRa.

Za a=1,2,3 je 7aRa. Za a=1,2,3 in nx $b\in NN (0)$ je $gcd(a,b) \in a \in 3$, tenj 7aRb. Ken je gcd(a,b) = gcd(b,a), velja hudi 7bRa. Tonj so a=1,2,3 izolinome točke (n grafu relacije R ni mobenih povezav n ali iz a=1,2,3).

Naj bo $(a,b) \in \mathbb{R}$. Potem je a \mathbb{R} b in a>3. Ku je a>3, je a \mathbb{R} a. Ku je a \mathbb{R} a in a \mathbb{R} b, je a \mathbb{R}^2 b oxinoma $(a,b) \in \mathbb{R}^2$. Touj je $\mathbb{R} \subseteq \mathbb{R}^2$.

- (b) Ali je relacija R refleksivna, simetrična ali tranzitivna?
 - · R ni reflerrima, ren 71R1.
 - R je simetrična, her je $aRb \Leftrightarrow gcd(a,b) > 3 \Leftrightarrow gcd(b,a) > 3 \Leftrightarrow bRa$.
 - · R mi tranzitima, les je 4R20 12OR5 174R5.
- (c) Ali je relacija \mathbb{R}^2 refleksivna, simetrična ali tranzitivna?
 - · R² mi reflerrima, ren 71R²1.
 - · R'je simetricina, her je R simetricina.
 - R^2 je transzitirna: 1,2 in 3 miso del moberne poti dolžine 2, za vx a,c $\stackrel{>}{_{\sim}}$ 4 pa velja aR^2c , her je aRac in acRc. Tory je $\forall a\,\forall b\,\forall c: (aR^2\,b\,\Lambda\,bR^2c\Rightarrow aRc^2)\sim 1$, her je leva stran implihacije magažna (če je hakni od a,brc manyiši od 4) ali pa je dema stran pravitna (če so vri večji od 4).

5. V množici celih števil $\mathbb Z$ je dana relacija

$$xRy \Leftrightarrow 7 \text{ deli } x^2 - y^2.$$

- (a) Dokaži, da je relacija R ekvivalenčna.
- (b) Določi ekvivalenčni razred $[1]_R$ števila 1.
- (c) Določi moč faktorske množice \mathbb{Z}/R .
- (a) Dokaži, da je relacija R ekvivalenčna.

• R simultationa?

$$\forall x : xRx$$
?

 $\forall x : 7 \text{ deli } x^2 - x^2$?

 $\forall x : 7 \text{ deli } x^2 - x^2$?

 $\forall x : 7 \text{ deli } 0 \checkmark$
 $0 = 7 \cdot 0$

• R simultationa?

 $\forall x \text{ deli } b \Leftrightarrow b = a \cdot k \text{ in the } k \in \mathbb{Z}$
 $\forall x \text{ deli } b \Leftrightarrow b = a \cdot k \text{ in the } k \in \mathbb{Z}$
 $\forall x \text{ deli } b \Leftrightarrow b = a \cdot k \text{ in the } k \in \mathbb{Z}$

alb = a deli b

alb = a

• R transitiona? $\forall x \forall y \forall z \ (xRy \ \Lambda yRz \Rightarrow xRz)?$ $\forall x \forall y \forall z \ (7 \ deli \ x^2-y^2 \ in \ y^2-z^2 \Rightarrow 7 \ deli \ x^2-z^2) \sqrt{\frac{1}{2}}$ $\stackrel{\text{ Linearno}}{\text{ Linearno}}$ $\stackrel{\text{ Linearno}}{\text{ Linearno}}$ $\stackrel{\text{ Linearno}}{\text{ Linearno}}$

 $a \mid x \land a \mid y \Rightarrow a \mid dx + by xa ne d_1b \in \mathbb{Z}$ $\bar{c}e \ a \ duli \ due \ \bar{s}terili, \ deli \ tudi \ poljulmo \ celo$ linearmo \(\text{2}cmlinacijo \ \text{teh \ dueh \ \cdotseril} \)

Ker je R suffernima, simetricina in transzitema, je etrrivalencina.

(b) Določi ekvivalenčni razred
$$[1]_R$$
 števila 1.
 $[1] = \{ x \in \mathbb{Z} ; xR1 \} = \{ x \in \mathbb{Z} ; 7 \text{ deli: } x^2 - 1 \} = \{ 1, -1, 6, -6, 8, -8, 13, -13, 15, -15, 20, -20, ... \}$

(c) Določi moč faktorske množice \mathbb{Z}/R .

mnozica errivalencinih razndov

$$[0] = \{x \in \mathcal{H}; xR0\} = \{x \in \mathcal{H}; 7 \text{ det}; x^{2}\} = \{0, 7, -7, 14, -14, 21, -21, ...\}$$

$$[\lambda] = \{x \in \mathcal{H}; xR2\} = \{x \in \mathcal{H}; 7 \text{ det}; x^{2} - 4\} = \{2, -2, 5, -5, 9, -9, 12, -12, 16, -16, 19, -19, ...\}$$

$$[3] = \{x \in \mathcal{H}; xR3\} = \{x \in \mathcal{H}; 7 \text{ det}; x^{2} - 9\} = \{x \in \mathcal{H}; 7 \text{ det}; x^{2} - 2\} = \{3, -3, 4, -4, 10, -10, 11, -11, ...\}$$

$$[0] \cup [1] \cup [2] \cup [3] = \mathcal{H} \Rightarrow \mathcal{H} R = \{[0], [1], [2], [3]\} \Rightarrow |\mathcal{H} R | = 4$$

Imamo 4 različne ozvivalenčne razrede.

	[3]		[4]	[0]	[1]	[2]	[3]	[3]	[2]	[4]	[0]	[1]
Knajše:	М	-2	-1	0	1	2	3	ч	5	6	7	8
q	m²	4	1	0	1	4	9	16	25	36	49	64
	M2 % 7	2	1	0	1	ч	2	2	4	1	0	1

6. Na množici $\mathbb{N} \setminus \{0\}$ je dana relacija:

$$aRb \Leftrightarrow a \text{ deli } b^2.$$

- (a) Dokaži, da je relacija R refleksivna.
- (b) Ali je R tranzitivna? Dokaži ali pa poišči protiprimer!
- (c) Dokaži implikacijo: Če obstaja $k \in \mathbb{N}$, da a deli b^{2^k} , potem velja aR^*b .
- (a) Dokaži, da je relacija R refleksivna.

$$\forall a \in |N \setminus \{0\}: a \ deli \ a^2 \Rightarrow \forall a : a Ra \Rightarrow R$$
 je referenma

(b) Ali je R tranzitivna? Dokaži ali pa poišči protiprimer!

mi tranzitima

(c) Dokaži implikacijo: Če obstaja $k \in \mathbb{N}$, da a deli b^{2^k} , potem velja aR^*b .

Prudpostavimo, da za nuz 2 a duli b^{2^k} . Če je slučajmo a = b, potem je aR^0b in je

aR*b ⇔ a=b ali aRb ali aR²b ali... art => a=b ali art ali pa 3c1,...,cu,daje arc1rc2r...rcurb

• $\tilde{C}e$ je k=0, potem a duli $b^1=b$, zaho a duli b^2 in je aRb. Tory spet aR*b. · Če je k=1, potema duli b², zato je spet aRb in aR*b.

· Če pa je le>1, potem

primero

a deli
$$b^{2^{k}} = (b^{2^{k-1}})^2$$
, $b^{2^{k-1}}$ deli $(b^{2^{k-2}})^2$, $b^{2^{k-1}}$ deli $(b^{2^{k-3}})^2$, ..., b^2 deli b^2 ,

zato je aR b2k-1, b2k-1 R b2k-2, b2k-2 R b2k-3, ..., b2Rb, tory je aRb in je aRb. Jz prudpostavre, da a deli b^{2^k} , tery sledi, da je aR^*b .