Supplementary Online Materials for ipmr: Flexibly implement Integral Projection Models in R

Contents

Figure S1																								2	2
Table S1.													 												

Figure S1

Figure S1: The usage of integral projection models (IPMs) has increased rapidly since their introduction. Cumulative number of publications using matrix projection models (MPMs, red) and IPMs (black) (A) and number of publications per year for each type of model (B). IPMs have been adopted rapidly since their introduction in 2000. Unfortunately, software packages to assist with their implementation have not kept pace with their theoretical advancements and applications to ever more complex demographic data.

Table S1

Table S1: Table of species, kingdom, and publications for papers that contain Integral Projection Models. This table is not exhaustive and does not include some papers for which species and kingdom information is not relevant (e.g. papers developing new theory relying on simulated data).

Species	Kingdom	Full Citation
Gadus morhua	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
		predator specialization in size-selective fisheries. Marine Ecology Progress Series.
		Vol 564: 127-143.
Melanogrammus	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
aeglefinus		predator specialization in size-selective fisheries. Marine Ecology Progress Series.
		Vol 564: 127-143.
Merlangius	Animalia	Aalto, E. A., Baskett, M. L. (2017). Post-harvest recovery dynamics depend on
merlangus		predator specialization in size-selective fisheries. Marine Ecology Progress Series.
	77	Vol 564: 127-143.
Artemisia tripartita	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
D. I.	DI :	embarrassment of niches. Ecology Letters 13: 1019-1029
Pseudoroegneria	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
spicata	DI +	embarrassment of niches. Ecology Letters 13: 1019-1029
Hesperostipa comata	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
D 1	DI 4	embarrassment of niches. Ecology Letters 13: 1019-1029
Poa secunda	Plantae	Adler PB, Ellner SP & Levine JM (2010) Coexistence of perennial plants: an
At: tit it .	D14	embarrassment of niches. Ecology Letters 13: 1019-1029 Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
Artemisia tripartita	Plantae	
		(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence from observations and experiments. Ecology, 99(7), 1621-1632.
Hesperostipa comata	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
Hesperosupa comata	1 lamae	(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
		from observations and experiments. Ecology, 99(7), 1621-1632.
Pseudoroegneria	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
spicata	1 Idilide	(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
Spicata		from observations and experiments. Ecology, 99(7), 1621-1632.
Poa secunda	Plantae	Adler, P. B., Kleinhesselink, A., Hooker, G., Taylor, J. B., Teller, B., & Ellner, S. P.
	1011000	(2018). Weak interspecific interactions in a sagebrush steppe? Conflicting evidence
		from observations and experiments. Ecology, 99(7), 1621-1632.
Prenanthes roanensis	Plantae	Aikens, M. L. (2013). Population Dynamics Across the Range of the Southern
		Appalachian Endemic Plant, Prenanthes Roanensis (Doctoral dissertation,
		University of Virginia).
		2 0 7

Prenanthes roanensis	Plantae	Aikens, M. L., & Roach, D. A. (2014). Population dynamics in central and edge populations of a narrowly endemic plant. Ecology, 95(7), 1850-1860.
Artemisia tripartita	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
711 telliisia tiipai tita	1 minac	of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Pseudoroegneria	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
spicata		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Hesperostipa comata	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Poa secunda	Plantae	Alder PB, Dalgleish HJ & Ellner SP (2012) Forecasting plant community impacts
		of climate variability and change: when do competitive interactions matter?
		Journal of Ecology 100: 478-487
Astragalus utahensis	Plantae	Baer, K. C., & Maron, J. L. (2018). Pre?dispersal seed predation and pollen
		limitation constrain population growth across the geographic distribution of
		Astragalus utahensis. Journal of Ecology, 106(4), 1646-1659.
Astragalus utahensis	Plantae	Baer, K., & Maron, J. (2018). Declining demographic performance and dispersal
		limitation influence the geographic distribution of the perennial forb, Astragalus
		utahensis (fabaceae). Journal of Ecology.
Poecilia reticulata	Animalia	Basar RD, Lopez-Sepulcre A, Reznick DN & Travis J (2013) Experimental evidence
		for density-dependent regulation and selection on Trinidadian guppy life history.
D 111 1 1 1		American Naturalist 181: 25-38
Poecilia reticulata	Animalia	Bassar, R. D., Childs, D. Z., Rees, M., Tuljapurkar, S., Reznick, D. N., Coulson, T.
		(2016). The effects of asymmetric competition on the life history of Trinidadian
Poecilia reticulata	Animalia	guppies. Ecology Letters. Bassar, R. D., Heatherly, T., Marshall, M. C., Thomas, S. A., Flecker, A. S., &
Poecilia reticulata	Animalia	· · · · · · · · · · · · · · · · · · ·
		Reznick, D. N. (2015). Population size?structure?dependent fitness and ecosystem
Salvelinus fontinalis	Animalia	consequences in Trinidadian guppies. Journal of Animal Ecology. Bassar, R. D., Letcher, B. H., Nislow, K. H., Whiteley, A. R. (2016). Changes in
Sarvennus fontinans	Allillalla	seasonal climate outpace compensatory density-dependence in eastern brook trout.
		Global Change Biology.
Poecilia reticulata	Animalia	Bassar, R. D., Lopez-Sepulcre, A., Reznick, D. N., & Travis, J. (2013).
1 Occilia iculculana	Timmana	Experimental evidence for density-dependent regulation and selection on
		Trinidadian guppy life histories. The American Naturalist, 181(1), 25-38.
		Trimedian Suppy me instories. The trineflean tratalant, 101(1), 20-90.

Cyprinodontiformes	Animalia	Bassar, R. D., Simon, T., Roberts, W., Travis, J., Reznick, D. N. (2016). The
spp		evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple
		community. Evolution.
Poecilia reticulata	Animalia	Bassar, R. D., Simon, T., Roberts, W., Travis, J., Reznick, D. N. (2016). The
		evolution of coexistence: Reciprocal adaptation promotes the assembly of a simple
		community. Evolution.
Bertholletia Excelsa	Plantae	Bertwell, T. D., Kainer, K. A., Cropper Jr, W. P., Staudhammer, C. L., & de
		Oliveira Wadt, L. H. (2018). Are Brazil nut populations threatened by fruit
		harvest?. Biotropica, $50(1)$, $50-59$.
Arisaema triphyllum	Plantae	Bialic-Murphy, L., Heckel, C.D., McElderry, R.M., & Kalisz, S. (2019) Deer
		indirectly alter the reproductive strategy and operational sex ratio of an
		unpalatable forest perennial. American Naturalist 195 (1), 56-69
Schiedea obovata	Plantae	Bialic?Murphy, L., & Gaoue, O. G. (2018). Low interannual precipitation has a
		greater negative effect than seedling herbivory on the population dynamics of a
		short?lived shrub, Schiedea obovata. Ecology and evolution, 8(1), 176-184.
Ursus arctos	Animalia	Bled, F., Belant, J. L., Van Daele, L. J., Svoboda, N., Gustine, D., Hilderbrand, G.,
		& Barnes Jr, V. G. (2017). Using multiple data types and integrated population
		models to improve our knowledge of apex predator population dynamics. Ecology
		and evolution, $7(22)$, $9531-9543$.
Boswellia papyrifera	Plantae	Bongers, F., Groenendijk, P., Bekele, T., Birhane, E., Damtew, A., Decuyper, M.,
		& Lemenih, M. (2019). Frankincense in peril. Nature Sustainability, 2, 602-610.
Cirsium canescens	Plantae	Briggs J, Dabbs K, Holm M, Lubben J, Rebarber R, Tenhumberg B &
		Riser-Espinoza D (2010) Structured population dynamics: an introdution to
		integral modeling. Mathematical Magazine 83: 243-257
Ambystoma bishopi	Animalia	Brooks, G.M. (2020) Chapter 4: Population viability of an endangered amphibian
		under future management scenarios, In: On the use of demographic models to
		inform amphibian conservation and management: a case study of the Reticulated
		Flatwoods Salamander.
Daphnia magna	Animalia	Bruijning, M. (2019) Persisting in an ever-changing world: Integrating plastic and
		genetic responses across the life cycle. (PhD Dissertation, Radboud University
		Nijmegen)
Daphnia magna	Animalia	Bruijning, M., ten Berge, A. C., & Jongejans, E. (2018). Population?level responses
		to temperature, density and clonal differences in Daphnia magna as revealed by
		integral projection modelling. Functional Ecology, 32(10), 2407-2422.

Alchornea costaricensis	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Cecropia insignis	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Cecropia obtusifolia	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Simarouba amara	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Pouteria reticulata	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Protium tenuifolium	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Triplaris cumingiana	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Virola sebifera	Plantae	Bruijning, M., Visser, M. D., Muller-Landau, H. C., Wright, S. J., Comita, L. S., Hubbell, S. P., De Kroon, H., Jongejans, E. (2017). Surviving in a Cosexual World: A Cost-Benefit Analysis of Dioecy in Tropical Trees. The American Naturalist. Vol. 189, No. 3.
Crematogaster laevis	Animalia	Bruna, E. M., Izzo, T. J., Inouye, B. D., & Vasconcelos, H. L. (2014). Effect of mutualist partner identity on plant demography. Ecology, 95(12), 3237-3243.
Pheidole minutula	Animalia	Bruna, E. M., Izzo, T. J., Inouye, B. D., & Vasconcelos, H. L. (2014). Effect of mutualist partner identity on plant demography. Ecology, 95(12), 3237-3243.

Gorgonia ventalina	Animalia	Bruno JF, Ellner SP, Vu I, Kim K & Harvell CD (2011) Impacts of aspergillosis on sea fan coral demography: modeling a moving target. Ecological Monographs 81: 123-139
Monstastraea annularis	Animalia	Burgess, H. R. (2011). Integral Projection Models and analysis of patch dynamics of the reef building coral Monstastraea annularis.
Dioon caputoi	Plantae	Cabrera? Toledo, D., González? Astorga, J., Vovides, A. P., Casas, A., Vargas? Ponce, O., Carrillo? Reyes, P., & Vega, E. (2019). Surviving background extinction: Inferences from historic and current dynamics in the contrasting population structures of two endemic Mexican cycads. Population Ecology, 61(1), 62-73.
Dioon Planifolium	Plantae	Cabrera? Toledo, D., González? Astorga, J., Vovides, A. P., Casas, A., Vargas? Ponce, O., Carrillo? Reyes, P., & Vega, E. (2019). Surviving background extinction: Inferences from historic and current dynamics in the contrasting population structures of two endemic Mexican cycads. Population Ecology, 61(1), 62-73.
Bugula neritina	Animalia	Cameron, H., Coulson, T., & Marshall, D. J. (2019) Size and density mediate transitions between competition and facilitation. Ecology Letters. DOI: 10.1111/ele.13381
Watersipora subtorquata	Animalia	Cameron, H., Coulson, T., & Marshall, D. J. (2019) Size and density mediate transitions between competition and facilitation. Ecology Letters. DOI: 10.1111/ele.13381
Ipomopsis aggregata	Plantae	Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a subalpine plant. Proceedings of the National Academy of Sciences, 201820096.
Ipomopsis tenuituba	Plantae	Campbell, D. R. (2019). Early snowmelt projected to cause population decline in a subalpine plant. Proceedings of the National Academy of Sciences, 201820096.
Miliusa horsfieldii	Plantae	Caughlin TT, Ferguson JM, Lichstein JW, Zuidema PA, Bunyavejchewin S, Levey DJ. 2015 Loss of animal seed dispersal increases extinction risk in a tropical tree species due to pervasive negative density dependence across life stages. Proc. R. Soc. B 282: 20142095. http://dx.doi.org/10.1098/rspb.2014.2095
Carphephorus bellidifolius	Plantae	Caughlin, T. T., Damschen, E. I., Haddad, N. M., Levey, D. J., Warneke, C., & Brudvig, L. A. (2019). Landscape heterogeneity is key to forecasting outcomes of plant reintroduction. Ecological Applications, 29(2), e01850.
Liatris squarrulosa	Plantae	Caughlin, T. T., Damschen, E. I., Haddad, N. M., Levey, D. J., Warneke, C., & Brudvig, L. A. (2019). Landscape heterogeneity is key to forecasting outcomes of plant reintroduction. Ecological Applications, 29(2), e01850.
Plantago lanceolata	Plantae	Chen, S. (2018) Modelling plant populations - do clonality and seed ecology matter? A study on Plantago lanceolata using integral projection models (IPMs). University of Sydney

Bouteloua eriopoda	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua rothrockii	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Artemisia tripartita	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Pseudoroegneria spicata	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Hesperostipa comata	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Poa secunda	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua curtipendula	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua hirsuta	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Schizachyrium scoparium	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Bouteloua gracilis	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Pascopyrum smithii	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1
Sporobolus flexuosus	Plantae	Chengjin Chu and Peter B. Adler 2015. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecological Monographs 85:373–392. http://dx.doi.org/10.1890/14-1741.1

Ovis aries	Animalia	Childs DZ, Coulson TN, Pemberton JM, Clutton-Brock TH & Rees M (2011) Predicting trait values and measuring selection in complex life histories: reproductive allocation decisions in Soay sheep. Ecology Letters 14: 985-992
Carlina vulgaris	Plantae	Childs DZ, Rees M, Rose KE, Grubb PJ & Ellner SP (2003) Evolution of complex
Carmia vargaris	1 Idilide	floweirng strategies: an age- and size-structured integral projection model.
		Proceedings: Biological Sciences 270: 1829-1838
Carlina vulgaris	Plantae	Childs DZ, Rees M, Rose KE, Grubb PY & Ellner SP (2004) Evolution of
O .		size-dependent flowering in a variable environment: construction and analysis of a
		stochastic integral projection model. Proceedings: Biological Sciences 271: 425-434
Parus major	Animalia	Childs, D. Z., Sheldon, B. C., & Rees, M. (2016). The evolution of labile traits in
v		sex?and age?structured populations. Journal of Animal Ecology, 85(2), 329-342.
Bouteloua eripoda	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Bouteloua rothrockii	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Heteropogon	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
contortus		structure?. Journal of ecology, 102(2), 531-543.
Hilaria belangeri	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Hesperostipa comata	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Koeleria maculata	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Poa secunda	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Pseudoroegneria	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
spicata		structure?. Journal of ecology, 102(2), 531-543.
Astridia longiseta	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
		structure?. Journal of ecology, 102(2), 531-543.
Boutelona	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
curtipendula		structure?. Journal of ecology, 102(2), 531-543.
Boutelona gracilis	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
D + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	D1	structure?. Journal of ecology, 102(2), 531-543.
Boutelona hirsuta	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
26.11.1	D1 .	structure?. Journal of ecology, 102(2), 531-543.
Muhlenbergia	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
arenacea		structure?. Journal of ecology, 102(2), 531-543.

Scleropogon brevifoloius	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age structure?. Journal of ecology, 102(2), 531-543.
Sporobplus flexuosus	Plantae	Chu, C., & Adler, P. B. (2014). When should plant population models include age
Sporospias nendosas		structure?. Journal of ecology, 102(2), 531-543.
Poa alsodes	Plantae	Chung, Y. A., Miller, T. E., & Rudgers, J. A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology.
Poa sylvestris	Plantae	Chung, Y. A., Miller, T. E., & Rudgers, J. A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. Journal of Ecology.
Dianthus morisianus	Plantae	Cogoni, D., Sulis, E., Bacchetta, G., & Fenu, G. (2019). The unpredictable fate of the single population of a threatened narrow endemic Mediterranean plant. Biodiversity and Conservation, 1-15.
Koeleria macrantha	Plantae	Collins, C.G., Bohner, T.F., & Diez J.M. (2019) Plant-soil feedbacks and faciliation influence the demography of herbaceous alpine species in response to woody plant range expansion. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2019.00417
Eriogonum ovalifolium	Plantae	Collins, C.G., Bohner, T.F., & Diez J.M. (2019) Plant-soil feedbacks and faciliation influence the demography of herbaceous alpine species in response to woody plant range expansion. Frontiers in Ecology and Evolution. DOI: 10.3389/fevo.2019.00417
Lupinus tidestromii	Plantae	Compagnoni A., Pardini E., & Knight T.M. (2020) Increasing temperature threatens an already endangered coastal dune plant. bioRxiv. DOI: 10.1101/2020.08.02.2333288
Opuntia imbricata	Plantae	Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. L., Sneck, M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, H., Miller, T. E. X. (2016). The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs.
Orchis purpurea	Plantae	Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. L., Sneck, M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, H., Miller, T. E. X. (2016). The effect of demographic correlations on the stochastic population dynamics of perennial plants. Ecological Monographs.
Canis lupus	Animalia	Coulson T (2001) Modeling effects of environmental change on wolf population dynamics, trait evolution, and life history. Science 334: 1275-1278
Ovis aries	Animalia	Coulson T (2012) Integral projection models, their construction and use in posing hypotheses in ecology. Oikos 121: 1337-1350
Ovis aries	Animalia	Coulson T, Tuljapurkar S & Childs DZ (2010) Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology 79: 1226-1240

Ovis aries	Animalia	Coulson, T., Tuljapurkar, S., & Childs, D. Z. (2010). Using evolutionary demography to link life history theory, quantitative genetics and population ecology. Journal of Animal Ecology, 79(6), 1226-1240.
Ailanthus altissima	Plantae	Crandall, R. M., & Knight, T. M. (2018). Role of multiple invasion mechanisms and their interaction in regulating the population dynamics of an exotic tree. Journal of applied ecology, 55(2), 885-894.
Viola biflora L var rockiana	Plantae	Cui, H., Töpper, J. P., Yang, Y., Vandvik, V., & Wang, G. (2018). Plastic population effects and conservative leaf traits in a reciprocal transplant experiment simulating climate warming in the Himalayas. Frontiers in plant science, 9.
Ranunculus weyleri	Plantae	Cursach, J., Besnard, A., Rita, J., & Fréville, H. (2013). Demographic variation and conservation of the narrow endemic plant Ranunculus weyleri. Acta Oecologica, 53, 102-109.
Cyclindriopuntia imbricata	Plantae	Czachura, K., & Miller T.E.X. (2020) Demographic back-casting reveals that subtle dimensions of climate change have strong effects on population viability. Journal of Ecology. DOI: 10.1111/1365-2745.13471
Actaea spicata	Plantae	Dahlgren JP & Ehrlén J (2009) Linking environmental variation to population dynamics of a forest herb. Journal of Ecology 97: 666-674
Borderea pyrenaica	Plantae	Dahlgren JP, García MB & Ehrlén J (2011) Nonlinear relationships between vital rates and state variables in demographic models. Ecology 92: 1181-1187
Acatea spicata	Plantae	Dahlgren, J. P., & Ehrlén, J. (2011). Incorporating environmental change over succession in an integral projection model of population dynamics of a forest herb. Oikos, 120(8), 1183-1190.
Fumana procumbens	Plantae	Dahlgren, J. P., Bengtsson, K., Ehrlen J. (2016). The demography of climate- driven and density- regulated population dynamics in a perennial plant. Ecology, 97(4), 899-907
Lathyrus vernus	Plantae	Dahlgren, J. P., Östergård, H., & Ehrlén, J. (2014). Local environment and density-dependent feedbacks determine population growth in a forest herb. Oecologia, 176(4), 1023-1032.
Pseudoroegneria spicata	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate influences the demography of three dominant sagebrush steppe plants. Ecology 92: 75-85
Hesperostipa comata	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate influences the demography of three dominant sagebrush steppe plants. Ecology 92: 75-85
Artemisia tripartita	Plantae	Dalgleish HJ, Koons DN, Hooten MB, Moffet CA & Adler PB (2011) Climate influences the demography of three dominant sagebrush steppe plants. Ecology 92: 75-85

Polygonum cuspidatum	Plantae	Dauer JT & Jongejans E (2013) Elucidating the population dynamics of Japanese knotweed using integral projection models. PLOS ONE in 8:e75181
Poecilia reticulata	Animalia	De Bona, S. (2019) Dispersal, habitat use, and the invasion dynamics of introduced
1 occina reviculava	Timmana	populations: A case study on the Guppy. (Doctoral Dissertation, University of
		Jyvaskyla)
Coryphantha	Plantae	de Valpine P (2009) Stochastic development in biologically structured population
robbinsorum		models. Ecology 90: 2889-2901
Rhizoglyphus robini	Animalia	Deere, J. A., Coulson, T., Cubaynes, S., & Smallegange, I. M. (2017). Unsuccessful
		dispersal affects life history characteristics of natal populations: The role of
		dispersal related variation in vital rates. Ecological Modelling, 366, 37-47.
Rhizoglyphus robini	Animalia	Deere, J.A., van den Berg, I., Roth, G., Smallegange, I.M. (2020) Modelling the
		impact of dispersal on a natal population that exhibits boom-bust dynamics.
V	D14	bioRxiv. DOI: 10.1101/402198
Yermo xanthocephalus	Plantae	Dibner, R.R, Peterson, M. L., Louthan, A. M., & Doak, D.F. (2019). Multiple mechanisms confer stability to isolated populations of a rare endemic plant.
xantnocepharus		Ecological Monographs 89 (2): e01360.
Goodyera pubescens	Plantae	Diez, J. M., Giladi, I., Warren, R., & Pulliam, H. R. (2014). Probabilistic and
doody ord pubescens	1 Idilide	spatially variable niches inferred from demography. Journal of ecology, 102(2),
		544-554.
Salvia nubicola	Plantae	Dostálek, T., Rokaya, M. B., & Münzbergová, Z. (2018). Altitude, habitat type and
		herbivore damage interact in their effects on plant population dynamics. PloS one,
		13(12), e0209149.
Heracleum	Plantae	Drake, J. P. (2019). An Integral Projection Model for Giant Hogweed (Master's
mantegazzianum		thesis, University of Waterloo).
Cirsium canescens	Plantae	Eager, E. A. (2012). Modeling and mathematical analysis of plant models in
Cirsium canescens	Plantae	ecology (Doctoral dissertation, University of Nebraska). Eager, E. A., Rebarber, R. (2016). Sensitivity and elasticity analysis of a Lur'e
Cirsium canescens	Ганае	system used to model a population subject to density-dependent reproduction.
		Mathematical Biosciences.
Cirsium palustre	Plantae	Eager, E. A., Rebarber, R., & Tenhumberg, B. (2014). Global asymptotic stability
r		of plant-seed bank models. Journal of mathematical biology, 69(1), 1-37.
Helianthus annuus	Plantae	Eager, E. A., Rebarber, R., & Tenhumberg, B. (2014). Modeling and Analysis of a
		Density-Dependent Stochastic Integral Projection Model for a Disturbance
		Specialist Plant and Its Seed Bank. Bulletin of mathematical biology, 76(7),
		1809-1834.
Aconitum	Plantae	Easterling MR, Ellner SP & Dixon PM (2000) Size-specific sensitivity: applying a
noveborancense		new structured population model. Ecology 81: 694-708

Fumana procumbens	Plantae	Edelfeldt, S., Bengtsson, K., & Dahlgren, J. P. (2019). Demographic senescence and
		effects on population dynamics of a perennial plant. Ecology, e02742.
Acropora hyacinthus	Animalia	Edmunds, P. J., Burgess, S. C., Putnam, H. M., Baskett, M. L., Bramanti, L.,
		Fabina, N. S., & Gates, R. D. (2014). Evaluating the causal basis of ecological
		success within the scleractinia: an integral projection model approach. Marine
		Biology, 161(12), 2719-2734.
Actaea spicata	Plantae	Ehrlén, J., Raabova, J., & Dahlgren, J. P. (2015). Flowering schedule in a perennial
		plant-Life-history trade-offs, seed predation and total offspring fitness. Ecology.
Balanophyllia	Animalia	Elahi, R., Sebens, K. P., De Leo, G. A. (2016). Ocean warming and the demography
elegans		oi declines in coral body size. Marine Ecology Progress Series. Vol. 560: 147-158.
Opuntia imbricata	Plantae	Elderd, B. D., & Miller, T. E. (2015). Quantifying demographic uncertainty:
		Bayesian methods for Integral Projection Models (IPMs). Ecological Monographs.
Onopordum	Plantae	Ellner SP & Rees M (2006) Integral projection models for species with complex
illyricum		demography. American Naturalist 167: 410-428
Onopordum	Plantae	Ellner SP & Rees M (2007) Stochastic stable population growth in integral
illyricum		projection models: theory and application. Journal of Mathematical Biology 54:
		227-256
Lepidium latifolium	Plantae	Ellner SP & Schreiber SJ (2012) Temporarilly variable dispersal and demography
		can accelerate the spread of invading species. Theoretical Population Biology 82:
		283-298
Artemisia tripartita	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
		storage effect using simulations instead of math. Ecology Letters.
Hesperostipa comata	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
		storage effect using simulations instead of math. Ecology Letters.
Poa secunda	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
		storage effect using simulations instead of math. Ecology Letters.
Pseudoroegneria	Plantae	Ellner, S. P., Snyder, R. E., Adler, P. B. (2016). How to quantify the temporal
spicata		storage effect using simulations instead of math. Ecology Letters.
Ctenopharyngodon	Animalia	Erickson, R. A., Eager, E. A., Kocovsky, P. M., Glover, D. C., Kallis, J. L., & Long,
idella		K. R. (2018). A spatially discrete, integral projection model and its application to
		invasive carp. Ecological Modelling, 387, 163-171.
Gadus morua	Animalia	Färber, L., Durant, J. M., Vindenes, Y., & Langangen, Ø. (2018). Increased early
		offspring growth can offset the costs of long-distance spawning migration in fish.

Mammillaria	Plantae	Ferrer-Cervantes, M.E., Méndez-González, M.E., Quintana-Ascencio, PF.,
gaumeri		Dorantes, A., Dzib, G. & Durán, R. (2012) Population dynamics of the cactus
		Mammillaria gaumeri: an integral projection model approach. Population Ecology,
		54, 321-334.
Ferocactus wislizeni	Plantae	Ford, K. R., Ness, J. H., Bronstein, J. L., & Morris, W. F. (2015). The
		demographic consequences of mutualism: ants increase host-plant fruit production
		but not population growth. Oecologia, 1-12.
Veratrum album	Plantae	Franco, D., Guiver, C., Logemann, H., & Perán, J. (2019). Boundedness,
		persistence and stability for classes of forced difference equations arising in
		population ecology. Journal of Mathematical Biology, 1-48.
Pinus halepensis	Plantae	García-Callejas, D., Molowny-Horas, R., Retana, J. (2016). Projecting the
		distribution and abundance of Mediterranean tree species under climate change: a
		demographic approach. Journal of Plant Ecology.
Borderea pyrenaica	Plantae	García MB, Dahlgren JP & Ehrlén J (2011) No evidence of senescence in a
		300-year-old mountain herb. Journal of Ecology 99: 1424-1430
Astrocaryum	Plantae	García, N., Zuidema, P. A., Galeano, G., & Bernal, R. (2016). Demography and
chambira		sustainable management of two fiber?producing Astrocaryum palms in Colombia.
		Biotropica, 48(5), 598-607.
Astrocaryum	Plantae	García, N., Zuidema, P. A., Galeano, G., & Bernal, R. (2016). Demography and
standleyanum		sustainable management of two fiber?producing Astrocaryum palms in Colombia.
		Biotropica, 48(5), 598-607.
Oenothera	Plantae	Godfray, H. Charles J., and Mark Rees. "Population growth rates: issues and an
glazioviana		application." Philosophical Transactions of the Royal Society B: Biological
		Sciences 357.1425 (2002): 1307-1319.
Mammillaria	Plantae	González EJ & Martorell C (2013) Reconstructing shifts in vital rates driven by
dixanthocentron		long-term environmental change: a new demographic method based on readily
		available data. Ecology and Evolution 3: 2273–2284
Cryptantha flava	Plantae	González, E. J., Martorell, C., & Bolker, B. M. (2016). Inverse estimation of
		integral projection model parameters using time series of population?level
		data.Methods in Ecology and Evolution, 7(2), 147-156.
Mammillaria	Plantae	González, E. J., Rees, M., & Martorell, C. (2013). Identifying the demographic
dixanthocentron		processes relevant for species conservation in human-impacted areas: does the
		model matter?. Oecologia, 171(2), 347-356.
Mammillaria	Plantae	González, E. J., Rees, M., & Martorell, C. (2013). Identifying the demographic
hernandezii		processes relevant for species conservation in human-impacted areas: does the
		model matter?. Oecologia, 171(2), 347-356.

Dendroctonus ponderosae	Animalia	Goodsman, D. W., Aukema, B. H., McDowell, N. G., Middleton, R. S., & Xu, C. (2018). Incorporating variability in simulations of seasonally forced phenology using integral projection models. Ecology and evolution, 8(1), 162-175.
Lathyrus vernus	Plantae	Greiser, C., Hylander, K., Meineri, E., Luoto, M., & Ehrlen, J. (2020) Climate limitation at the cold edge: contrasting perspectives from species distribution modelling and a transplant experiment. Ecography 43: 1-11.
Arisaema triphyllum	Plantae	Heckel, C. (2015). The influence of indirect effects of large herbivores on the life history and population dynamics of unpalatable forest herb species (Doctoral dissertation, University of Pittsburgh).
Vaccinium myrtillus	Plantae	Hegland SJ, Jongejans E & Rydgren K (2010) Investigating the interaction between ungulate grazing and resource effects on Vaccinium myrtillus populations with integral projection models. Oecology 163: 695-706
Gaillardia aristata	Plantae	Hegstad, R. J., & Maron, J. L. (2019). Productivity and related soil properties mediate the population?level consequences of rodent seed predation on Blanketflower, Gaillardia aristata. Journal of Ecology, 107(1), 34-44.
Veratrum album	Plantae	Hesse E, Rees M & Müller-Schärer (2008) Life-history variation in contrasting habitats: flowering decision in a clonal perennial herb (Veratrum album). American Naturalist 172: 196-213
Carduus nutans	Plantae	Hindle, B. J., Rees, M., Sheppard, A. W., Quintana? Ascencio, P. F., Menges, E. S., & Childs, D. Z. (2017). Exploring population responses to environmental change when there is never enough data: a factor analytic approach. Methods in Ecology and Evolution.
Eryngium cuneifolium	Plantae	Hindle, B. J., Rees, M., Sheppard, A. W., Quintana? Ascencio, P. F., Menges, E. S., & Childs, D. Z. (2017). Exploring population responses to environmental change when there is never enough data: a factor analytic approach. Methods in Ecology and Evolution.
Canis lupus	Animalia	Horne, J. S., Ausband, D. E., Hurley, M. A., Struthers, J., Berg, J. E., & Groth, K. (2019). Integrated population model to improve knowledge and management of Idaho wolves. The Journal of Wildlife Management, 83(1), 32-42.
Psidium cattleianum	Plantae	Horvitz, C. C., Denslow, J. S., Johnson, T., Gaoue, O., & Uowolo, A. (2018). Unexplained variability among spatial replicates in transient elasticity: implications for evolutionary ecology and management of invasive species. Population ecology, 60(1-2), 61-75.
Euterpe precatoria	Plantae	Isaza, C., Bernal, R., Galeano, G., & Martorell, C. (2017). Demography of Euterpe precatoria and Mauritia flexuosa in the Amazon: application of integral projection models for their harvest. Biotropica, 49(5), 653-664.

Mauritia flexuosa	Plantae	Isaza, C., Bernal, R., Galeano, G., & Martorell, C. (2017). Demography of Euterpe precatoria and Mauritia flexuosa in the Amazon: application of integral projection models for their harvest. Biotropica, 49(5), 653-664.
Oenocarpus bataua	Plantae	Isaza, C., Martorell, C., Cevallos, D., Galeano, G., Valencia, R., Balslev, H. (2016). Demography of Oenocarpus bataua and implications for sustainable harvest of its fruit in western Amazon. Population Ecology.
Orchis purpurea	Plantae	Jacquemyn H, Brys R & Jongejans E (2010) Size-dependent flowering and costs of reproduction affect population dynamics in a tuberous perennial woodland orchid. Journal of Ecology 98: 1204-1215
Zootoca vivipara	Animalia	Jaffré, M.; Le Galliard, J.F. (2016). Population viability analysis of plant and animal populations with stochastic integral projection models. Oecologia
Chamaedorea elegans	Plantae	Jansen M, Zuidema PA, Anten NPR & Martinez-Ramos M (2012) Strong persistent growth differences govern individual performance and population dynamics in a tropical forest understory palm. Journal of Ecoloy 100: 1224-1232
Chamaedorea elegans	Plantae	Jansen, M., Anten, N. P., Bongers, F., Martínez?Ramos, M., & Zuidema, P. A. (2018). Towards smarter harvesting from natural palm populations by sparing the individuals that contribute most to population growth or productivity. Journal of applied ecology, 55(4), 1682-1691.
NDY	Animalia	Jason Matthiopoulos, John Fieberg, Geert Aarts, Hawthorne L. Beyer, Juan M. Morales, and Daniel T. Haydon 2015. Establishing the link between habitat selection and animal population dynamics. Ecological Monographs 85:413–436. http://dx.doi.org/10.1890/14-2244.1
Sistrurus catenatus	Animalia	Jones, P. C. (2012). Demographic analysis and integral projection modeling of the Eastern Massasauga (Sistrurus catenatus catenatus) (Doctoral dissertation, NORTHERN ILLINOIS UNIVERSITY).
Carduus nutans	Plantae	Jongejans E, Shea K, Skarpaas O, Kelly D & Ellner SP (2011) Importance of individual and environmental variation for invasive species spread: a spatial integral projection model. Ecology 92: 86-97
Acropora sp; Pocillopora sp; Porites sp;	Animalia	Kayal, M., Lenihan, H. S., Brooks, A. J., Holbrook, S. J., Schmitt, R. J., & Kendall, B. E. (2018). Predicting coral community recovery using multi?species population dynamics models. Ecology letters.
Asclepias curassavica	Plantae	Kellett, K. M., & Shefferson, R. P. (2018). Temporal variation in reproductive costs and payoffs shapes the flowering strategy of a neotropical milkweed, Asclepias curassavica. Population ecology, 60(1-2), 77-87.
Ovis aries	Animalia	Kentie, R., Clegg, S.M., Tuljapurkar, S., Gaillard, J-M., Coulson, T. (2020) Life-history strategy varies with the strength of competition in a food-limited ungulate population. Ecology Letters. DOI: 10.1111/ele.13470

Limosa limosa limosa	Animalia	Kentie, R., Coulson, T., Hooijmeijer, J. C., Howison, R. A., Loonstra, A. J., Verhoeven, M. A., & Piersma, T. (2018). Warming springs and habitat
		alteration interact to impact timing of breeding and population dynamics in a
		migratory bird. Global change biology.
Ostrea lurida	Animalia	Kimbro, D. L., White, J. W., & Grosholz, E. D. (2018). The dynamics of open
		populations: integration of top-down, bottom-up and supply?side influences on
		intertidal oysters. Oikos.
Carapa guianensis	Plantae	Klimas, C. M., Cropper Jr, W. P., Kainer, K. A., & de Oliveira Wadt, L. H. (2017).
		Multimodel Projections for Evaluating Sustainable Timber and Seed Harvest of
		Carapa guianensis. Forest Science, 64(1), 15-27.
Phyteuma spicatum	Plantae	Kolb A (2012) Differential effects of herbivory and pathogen infestation on plant
		population dynamics. Plant Ecology 213: 315-326
Phyteuma spicatum	Plantae	Kolb A, Dahlgren JP & Ehrlén (2010) Population size affects vital rates but not
		population growth rate of a perennial plant. Ecology 91: 3210-3217
Campanula	Plantae	Kuss P, Rees M, Ægisdóttir HH, Ellner SP & Stöcklin J (2008) Evolutionary
thyrsoides		demography of long-lived monocarpic perennials: a time-lagged integral projection
		model. Journal of Ecology 96: 821-832
Cervus canadensis	Animalia	Lachish, S., Brandell, E., Craft, M., Dobson, A., Hudson, P., Macnulty, D., &
		Coulson, T. (2019) Investigating the dynamics of elk population size and body mass
7.1.		in a seasonal environment using a mechanistic integral projection model. Am Nat
Echinomastus	Plantae	Larios, E., Gonzalez, E.J., Rosen, P.C., Pate, A., & Holm, P. (2020) Population
erectocentrus var		projections of an endangered cactus suggest little impact of climate change.
acunensis	DI +	Oecologia. DOI: 10.1007/s00442-020-04595-y
Fallopia japonica	Plantae	Lavallée, F., Smadi, C., Alvarez, I., Reineking, B., Martin, F. M., Dommanget, F.,
		& Martin, S. (2019). A stochastic individual based model for the growth of a stand
		of Japanese knotweed including mowing as a management technique. arXiv preprint
D + 1 '	A · 1·	arXiv:1902.06971.
Branta leucopsis	Animalia	Layton-Matthews, K. (2020) Demographic consequences of rapid climate change
A :1	DI /	and density dependence in migratory Arctic Geese. PhD Thesis.
Ailanthus altissima	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
		models for 14 alien plant species in the presence and absence of above?ground
D 1.4	DI /	competition. Ecology, e02681.
Euonymus alatus	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection
		models for 14 alien plant species in the presence and absence of above?ground
		competition. Ecology, e02681.

Ligustrum obtusifolium	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection models for 14 alien plant species in the presence and absence of above?ground competition. Ecology, e02681.
Lonicera maackii	Plantae	Levin, S. C., Crandall, R. M., & Knight, T. M. (2019). Population projection models for 14 alien plant species in the presence and absence of above?ground competition. Ecology, e02681.
Artemisia ordosica	Plantae	Li S-L, Yu F-H, Werger MJA, Dong M & Zuidema PA (2011) Habitat-specific demography across dune fixation stages in a semi-arid sandland: understanding the expansion, stabilization and decline of a dominant shrub. Journal of Ecology 99: 610-620
Hedysarum laeve	Plantae	Li, S. L., Yu, F. H., Werger, M. J., Dong, M., During, H. J., & Zuidema, P. A. (2015). Mobile dune fixation by a fast-growing clonal plant: a full life-cycle analysis. Scientific reports, 5.
Caragana intermedia	Plantae	Li, S. L., Yu, F. H., Werger, M. J., Dong, M., Ramula, S., & Zuidema, P. A. (2013). Understanding the effects of a new grazing policy: the impact of seasonal grazing on shrub demography in the I nner M ongolian steppe. Journal of Applied Ecology, 50(6), 1377-1386.
Aquila fasciata	Animalia	Lieury, N., Besnard, A., Ponchon, C., Ravayrol, A., Millon, A. (2016). Geographically isolated but demographically connected: Immigration supports efficient conservation actions in the recovery of a range-margin population of the Bonelli's eagle in France. Biological Conservation 195.
Ambrosia artemisiifolia	Plantae	Lommen, S. T. E., Jongejans, E., Leitsch-Vitalos, M., Tokarska-Guzik, B., Zalai, M., Müller-Schärer, H., Karrer, G. (2018). Time to cut: population models reveal how to mow invasive common ragweed cost-effectively. NeoBiota (39):: 53-78
Porites divaricata	Animalia	Lord K.S. (2020) The importance of mangroves as habitat for corals. Reef Encounter 35(1): 36-40.
Hibiscus meyeri	Plantae	Louthan, A. M., Pringle, R. M., Goheen, J. R., Palmer, T. M., Morris, W. F., & Doak, D. F. (2018). Aridity weakens population-level effects of multiple species interactions on Hibiscus meyeri. Proceedings of the National Academy of Sciences, 115(3), 543-548.
Aconitum noveboracense	Plantae	Louthan, A., & Doak, D. (2018). Measurement error of state variables creates substantial bias in results of demographic population models. Ecology, 99(10), 2308-2317.
Ostrea edulis	Animalia	Lown, A.E. (2019) Community ecology and population dynamics of the European native oyster (Ostrea edulis) in Essex, UK: A baseline for the management of the Blackwater, Crouch, Roach and Colne Estuaries Marine Conservation Zone. (PhD Dissertation, University of Essex)

Acropora hyacinthus	Animalia	Madin JS, Hughes TP & Connolly SR (2012) Calcification, storm damage and population resilience of tabular corals under climate change. PLoS One 7: 1-10
Marmota flaviventer	Animalia	Maldonado? Chaparro, A. A., Blumstein, D. T., Armitage, K. B., & Childs, D. Z.
		(2018). Transient LTRE analysis reveals the demographic and trait?mediated
		processes that buffer population growth. Ecology letters, 21(11), 1693-1703.
Phoenix loureiroi	Plantae	Mandle, L., Ticktin, T., & Zuidema, P. A. (2015). Resilience of palm populations to
		disturbance is determined by interactive effects of fire, herbivory and harvest.
		Journal of Ecology.
Ovis canadensis	Animalia	Manlove, Kezia, et al. "Disease introduction is associated with a phase transition in
		bighorn sheep demographics." Ecology 97.10 (2016): 2593-2602.
Hymanaea courbaril	Plantae	Marques, I., Vidal, E., Tomazello-Filho, M., & Groenendijk, P. (2019) Applying tree
		rings and population models to improve future timber yield projections of
		Hymenaea courbaril (Jatoba) in the Eastern Amazon. Pesq. Flor. Bras. 39.
Microchloa kunthii	Plantae	Martorell, C., & Martínez?Ballesté, A. (2019). Stress and disturbance determine
		the demographic dynamics of two grass species along a grazing gradient in Southern
		Mexico. Population Ecology, 61(2), 160-170.
Cryptomeria	Plantae	Matsushita, M., Takata, K., Hitsuma, G., Yagihashi, T., Noguchi, M., Shibata, M.,
japonica		& Masaki, T. (2015). A novel growth model evaluating age–size effect on long?term
		trends in tree growth. Functional Ecology.
Alliaria petiolata	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
		change both facilitates and inhibits invasive plant ranges in New England. PNAS
D 1 1 1 1 11	T)1 +	Vol. 114, Issue 16.
Berberis thunbergii	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
		change both facilitates and inhibits invasive plant ranges in New England. PNAS
T: 1 1:	D14	Vol. 114, Issue 16.
Lindera benzoin	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
		change both facilitates and inhibits invasive plant ranges in New England. PNAS Vol. 114, Issue 16.
Turritis glabra	Plantae	Merow, C., Bois, S. T., Allen, J. M., Xie, Y., Silander Jr., J. A. (2017). Climate
Turrius giabra	Plantae	change both facilitates and inhibits invasive plant ranges in New England. PNAS
		Vol. 114, Issue 16.
Protea repens	Plantae	Merow, C., Latimer, A. M., Wilson, A. M., McMahon, S. M., Rebelo, A. G.,
1 Totea Tepens	1 lamac	Silander Jr, J. A. (2014). On using integral projection modes to generate
		demographically driven predictions of species distributions: development and
		validation using sparse data. Ecography 32: 1167-1183
Arabidopsis thaliana	Plantae	Metcalf CJE & Mitchell-Olds T (2009) Life history in a model system: opening the
111 asia opolo citaliana	I lallowe	black box with Arabidopsis thaliana. Ecology Letters 12: 593-600
		State Set with Intertacpose themana. Decress 12. 000 000

Cecropia obtusifolia	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Cecropia insignis	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Simarouba amara	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Minquartia	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
guianensis		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Balizia elegans	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Hymenolobium	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
mesoamericanum		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Lecythis ampla	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Dipteryx panamensis	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Hyeronima	Plantae	Metcalf CJE, Horvitz CC, Tuljapurkar S & Clark DA (2009) A time to grow and a
alchorneoides		time to die: a new way to analyze the dynamics of size, light, age, and death of
		tropical trees. Ecology 90: 2766-2778
Hypericum	Plantae	Metcalf CJE, McMahon SM, Salguero-Gómez R & Jongejans E (2013) IPMpack: an
cumulicola		R package for Integral Projection Models. Methods in Ecology and Evolution 4:
		195-200
Carduus nutans	Plantae	Metcalf CJE, Rees M, Buckley YM & Sheppard AW (2009) Seed predators and the
		evolutionary stable flowering staregy in the invasive plant Carduus nutans.
		Evolutionary Ecology 23: 893-906
Oenothera	Plantae	Metcalf CJE, Rose KE & Rees M (2003) Evolutionary demography of monocarpic
glazioviana		perennials. Trends in Ecology and Evolution 18: 471-180

Carlina vulgaris	Plantae	Metcalf, C. J. E., Ellner, S., Childs, D. Z., Salguero?Gómez, R., Merow, C.,
		McMahon, S. M., & Rees, M. (2015). Statistical modeling of annual variation for
		inference on stochastic population dynamics using Integral Projection Models.
		Methods in Ecology and Evolution.
Ovis aries	Animalia	Metcalf, C. J. E., Ellner, S., Childs, D. Z., Salguero?Gómez, R., Merow, C.,
		McMahon, S. M., & Rees, M. (2015). Statistical modeling of annual variation for
		inference on stochastic population dynamics using Integral Projection Models.
		Methods in Ecology and Evolution.
Opuntia imbricata	Plantae	Miller TEX, Louda SM, Rose KA & Eckberg JO (2009) Impacts of insect herbivory
		on cactus population dynamics: experimental demography across an environmental
		gradient. Ecological Monographs 79: 155-172
Orchis purpurea	Plantae	Miller TEX, Williams JL, Jongejans E, Brys R & Jacquemyn H (2012)
		Evolutionary demography of iteroparous plants: incorporating non-lethal costs of
		reproduction into integral projection models. Proc Roy Soc B, 279: 2831-2840
Pinus halepensis	Plantae	Molowny Horas, R., & Espelta, J.M. (2013). Modelos integrales de proyección como
		instrumentos para la gestón medioambiental forestal. En J.A. Blanco (Ed.).
		Aplicaciones de modelos ecológicos a la gesti ón de recursos naturales . (pp.
		125-140). Barcelona: OmniaScience.
Nothofagus dombeyi	Plantae	Molowny? Horas, R., Suarez, M. L., & Lloret, F. (2017). Changes in the natural
		dynamics of Nothofagus dombeyi forests: population modeling with increasing
		drought frequencies. Ecosphere, 8(3), e01708.
Corallium rubrum	Animalia	Montero?Serra, I., Garrabou, J., Doak, D. F., Ledoux, J. B., & Linares, C. Marine
		protected areas enhance structural complexity but do not buffer the consequences of
		ocean warming for an overexploited precious coral. Journal of Applied Ecology.
Crassostrea gigas	Animalia	Moore, J. L., Lipcius, R. N., Puckett, B., Schreiber, S. J. (2016). The demographic
		consequences of growing older and bigger oyster populations. Ecological
		Applications.
Pometia spp	Plantae	Murdjoko, A., Marsono, D., Sandono, R., Hadisusanto, S. (2016). Population
		Dynamics of Pometia for The Period of Post-Selective Logging in Tropical
		Rainforest, Southern Papua, Indonesia. Biosaintifika: Journal of Biology & Biology
		Education 8 (3). 320-329.
Fraxinus excelsior	Plantae	Needham, J., Merow, C., Butt, N., Malhi, Y., Marthews, T. R., Morecroft, M., &
		McMahon, S. M. (2016). Forest community response to invasive pathogens: the
		case of ash dieback in a British woodland. Journal of Ecology, 104(2), 315-330.

Prioria copaifera	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.
Calophyllum	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
longifolium		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.
Garcinia intermedia	Plantae	Needham, J., Merow, C., Chang-Yang, C. H., Caswell, H., & McMahon, S. M.
		(2018). Inferring forest fate from demographic data: from vital rates to population
		dynamic models. Proceedings of the Royal Society B: Biological Sciences,
		285(1874), 20172050.
Sebastes mystinus	Animalia	Nickols, K. J., White, J. W., Malone, D., Carr, M. H., Starr, R. M., Baskett, M. L.,
		& Botsford, L. W. (2019). Setting ecological expectations for adaptive
		management of marine protected areas. Journal of Applied Ecology.
Dracocephalum	Plantae	Nicolè F, Dahlgren JP, Vivat A, Till-Bottraud & Ehrlén J (2011) Interdependent
austriacum		effects of habitat quality and climate on population growth of an endangered plant.
		Journal of Ecology 99: 1211-1218
4 coral species	Animalia	Noriega, M.A. (2019) Competition and coexistance of reef-corals (PhD Dissertation,
		James Cook University)
Ivesia lycopodioides	Plantae	Oldfather, M. F. (2018). Population and Community Dynamics of Alpine Plants in
A Gray var		a Changing Climate Across Topographically Heterogeneous Landscapes (Doctoral
scandularis		dissertation, UC Berkeley).
Ivesia lycopodioides	Plantae	Oldfather, M. F., & Ackerly, D. D. (2018). Microclimate and demography interact
var scandularis		to shape stable population dynamics across the range of an alpine plant. New
		Phytologist.
Veronica officinalis	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.
Veronica alpina	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.
Viola palustris	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From
		facilitation to competition: temperature-driven shift in dominant plant interactions
		affects population dynamics in semi-natural grasslands. Global Change Biology.

Viola biflora	Plantae	Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., Klanderud, K. (2016). From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in semi-natural grasslands. Global Change Biology.
Marmota flaviventris	Animalia	Ozgul A, Childs DZ, Oli MK, Armitage KB, Blumstein DT, Olson LE, Tuljapurkar S & Coulson T (2010) Coupled dynamics of body mass and population growth in response to environmental change. Nature 466: 482-485
Sancassania berlesei	Animalia	Ozgul A, Coulson T, Reynolds A, Cameron TC & Benton TG (2012) Population responses to perturbations: the importance of trait-based analysis illustrated through a microcosm experiment. American Naturalist 179: 582-594
Suricata suricatta	Animalia	Paniw, M., Maag, N., Cozzi, G., Clutton-Brock, T., & Ozgul, A. (2019). Life history responses of meerkats to seasonal changes in extreme environments. Science, 363(6427), 631-635.
Drosophyllum lusitanicum	Plantae	Paniw, M., Quintana-Ascencio, P. F., Ojeda, F., Salguero-Gómez, R. (2016). Accounting for uncertainty in dormant life stages in stochastic demographic models. Oikos.
Drosophyllum lusitanicum	Plantae	Paniw, M., Quintana-Ascencio, P. F., Ojeda, F., Salguero-Gómez, R. (2017). Interacting livestock and fire may both threaten and increase viability of a fire-adapted Mediterranean carnivorous plant. Journal of Applied Ecology.
Aeonium arboreum	Plantae	Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing species distribution models with field data (Doctoral dissertation, Lincoln University).
Aeonium haworthii	Plantae	Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing species distribution models with field data (Doctoral dissertation, Lincoln University).
Cotyledon orbiculata	Plantae	Pannell, J. L. (2016). Climatic limitation of alien weeds in New Zealand: enhancing species distribution models with field data (Doctoral dissertation, Lincoln University).
Rhinella marina	Animalia	Perkins TA, Phillips BL, Baskett ML & Hastings A (2013) Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecology Letters 16: 1079–1087
Sebastes auriculatus	Animalia	Perkins, N.R., Prall, M., Chakraborty A., White, J.W., Baskett, M.L., & Morgan S.G. (2020) Quantifying the statistical power of monitoring programs for marine protected areas. Ecological Applications. DOI: 10.1002/eap.2215
Celtis zenkeri	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Staudtia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
kamerunensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.

Coelocaryon preussii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations: unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Musanga	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cecropioides	1 Iantae	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Carapa procera	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
Carapa procera	Talloac	unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Garcinia punctata	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Dasylepis seretii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Trichilia rubescens	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion? PloS one, 9(6), e98254.
Rinorea oblongifolia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pycnanthus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
angolensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pancovia laurentii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Trilepisium	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
madagascariense		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Diospyros iturensis	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Petersianthus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
macrocarpus		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Eribroma oblongum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Synsepalum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
stipulatum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Trichilia prieurieana	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Scottellia coriacea	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes chevalieri	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Angylocalyx	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
pynaertii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.

Manilkara	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
mabokensis		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Manilkara	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
pellegriniana		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Polyalthia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
suaveolens		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pausinystalia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
macroceras		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Entandrophragma	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cylindricum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Macaranga paxii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Celtis mildbraedii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Guarea laurentii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Diospyros	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
canaliculata		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes gilgiana	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Cola lateritia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Strombosia	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
grandifolia		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Dialium guineense	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Diospyros crassiflora	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Corynanthe	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
pachyceras		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Triplochiton	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
scleroxylon		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Lecaniodiscus	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
cupanioides	7.1	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Anonidium mannii	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.

Cola nitida	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
T	D1 /	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Funtumia elastica	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
G	D1 +	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Santiria trimera	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
	D1	unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Pouteria altissima	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Chrysophyllum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
africanum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Celtis adolfi-friderici	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Strombosiopsis	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
tetrandra		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Aubrevillea	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
kerstingii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes spp	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Ricinodendron	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
heudelotii		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Entandrophragma	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
angolense		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Drypetes obanensis	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Khaya anthotheca	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Albizia glaberrima	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Chrysophyllum	Plantae	Picard, N., & Liang, J. (2014). Matrix models for size-structured populations:
lacourtianum		unrealistic fast growth or simply diffusion?. PloS one, 9(6), e98254.
Ovis canadensis	Animalia	Pigeon, G., Festa-Bianchet, M., Coltman, D. W., Pelletier, F. (2016). Intense
		selective hunting leads to artificial evolution in horn size. Evolutionary Applications.
Capreolus capreolus	Animalia	Plard, F., Gaillard, JM., Coulson, T., Delorme, D., Warnant, C., Michallet, J.,
		Tuljapurkar, S., Krishnakumar, S., Bonenfant, C. (2015), Quantifying the influence
		of measured and unmeasured individual differences on demography. Journal of
		Animal Ecology. doi: 10.1111/1365-2656.12393
		3.30

Capreolus capreolus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Delorme, D., Warnant, C., & Bonenfant, C. (2014). Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol, 12(4), e1001828.
Cervus elaphus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Delorme, D., Warnant, C., & Bonenfant, C. (2014). Mismatch between birth date and vegetation phenology slows the demography of roe deer. PLoS Biol, 12(4), e1001828.
Cervus elaphus	Animalia	Plard, F., Gaillard, J. M., Coulson, T., Hewison, A. M., Douhard, M., Klein, F., & Bonenfant, C. (2015). The influence of birth date via body mass on individual fitness in a long-lived mammal. Ecology.
Upupa epops	Plantae	Plard, F., Schindler, S., Arlettaz, R., & Schaub, M. (2018). Sex-specific heterogeneity in fixed morphological traits influences individual fitness in a monogamous bird population. The American Naturalist, 191(1), 106-119.
Pimephales promelas	Animalia	Pollesch, N.L., Flynn, K.M., Kadlec, S.M., Swintek, J.A., & Etterson, M.A. Developing integral projection models for ecotoxicology. URL: https://scse.d.umn.edu/sites/scse.d.umn.edu/files/polleschnate_paper_2_12062019.pdf
Cervus elaphus	Animalia	Pozo, R. A., Schindler, S., Cubaynes, S., Cusack, J. J., Coulson, T., Malo, A. F., Modeling the Impact of Selective Harvesting on Red Deer Antlers. J Wildlife Manage.
Plesiastrea versipora	Animalia	Precoda, K., Baird, A. H., Madsen, A., Mizerek, T., Sommer, B., Su, S. N., & Madin, J. S. (2018). How does a widespread reef coral maintain a population in an isolated environment?. Marine Ecology Progress Series, 594, 85-94.
Hypericum cumulicola	Plantae	Quintana? Ascencio, P. F., Koontz, S. M., Ochocki, B., Sclater, V. L., López? Borghesi, F., Li, H., & Menges, E. S. Assessing the roles of seed bank, seed dispersal and historical disturbances for metapopulation persistence of a pyrogenic herb. Journal of Ecology.
Hypericum cumulicola	Plantae	Quintana? Ascencio, P. F., Koontz, S. M., Smith, S. A., Sclater, V. L., David, A. S., & Menges, E. S. (2018). Predicting landscape? level distribution and abundance: Integrating demography, fire, elevation and landscape habitat configuration. Journal of Ecology, 106(6), 2395-2408.
Cirsium palustre	Plantae	Ramula S, Rees M & Buckley YM (2009) Integral projection models perform beter for small demographic data sets than matrix populatio models: a case study of two perennial herbs. Journal of Applied Ecology 46: 1048-1053
Primula veris	Plantae	Ramula S, Rees M & Buckley YM (2009) Integral projection models perform beter for small demographic data sets than matrix populatio models: a case study of two perennial herbs. Journal of Applied Ecology 46: 1048-1053
Lupinus polyphyllus	Plantae	Ramula S. (2020) Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biological Invasions 22: 3163-3173.

Lupinus polyphyllus	Plantae	Ramula, S. (2014). Linking vital rates to invasiveness of a perennial herb.
D 1 1 1	Tol.	Oecologia, 174(4), 1255-1264.
Dendrophylax	Plantae	Raventós, J., González, E., Mújica, E., & Doak, D. F. (2015). Population Viability
lindenii		Analysis of the Epiphytic Ghost Orchid (Dendrophylax lindenii) in Cuba.
G: ·	DI 4	Biotropica, 47(2), 179-189.
Cirsium canescens	Plantae	Rebarber R, Tenhumberg B & Townley S (2012) Global asymptotic stability of
		density dependent integral population projection models. Theoretical Population Biology 81: 81-87
Pedicularis	Plantae	Record, S. (2010). Conservation while under invasion: Insights from a rare
lanceolata	ганае	hemiparasitic plant, swamp lousewort (Pedicularis lanceolata Michx.).
Ranunculus	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
	Flamae	
austro-oreganus		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate manipulations differentially affect plant population dynamics within versus beyond
Sidelcea malviflora	Plantae	northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494 Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
Sideicea maivinora	Plantae	
		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
3.6:	DI /	northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Microseris laciniata	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
A 1 .1	DI +	northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Achnatherum	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
lemmonii		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
	TOI.	northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Festuca roemeri	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Danthonia	Plantae	Reed, P.B., Peterson, M.L., Pfeifer-Meister, L.E., Morris, W.F., Doak, D.F., Roy,
californica		B.A., Johnson, B.R., Bailes, G.T., Nelson, A.A., & Bridgham, S.D. (2020) Climate
		manipulations differentially affect plant population dynamics within versus beyond
		northern range limits. Journal of Ecology. DOI: 10.1111/1365-2745.13494
Carlina vulgaris	Plantae	Rees M & Ellner SP (2009) Integral projection models for populations in temporally
		varying environments. Ecological Monographs 79: 575-594

Carlina vulgaris	Plantae	Rees M, Childs DZ, Metcalf JC, Rose KE, Sheppard AW & Grubb PJ (2006) Seed
		dormancy and delayed flowering in monocarpic plants: selective interactions in a
		stochastic environment. The American Naturalist 168: 53-71
Carduus nutans	Plantae	Rees M, Childs DZ, Metcalf JC, Rose KE, Sheppard AW & Grubb PJ (2006) Seed
		dormancy and delayed flowering in monocarpic plants: selective interactions in a
		stochastic environment. The American Naturalist 168: 53-71
Oenothera	Plantae	Rees, M., & Rose, K. E. (2002). Evolution of flowering strategies in Oenothera
glazioviana		glazioviana: an integral projection model approach. Proceedings of the Royal
		Society of London B: Biological Sciences, 269(1499), 1509-1515.
Marmota ?aviventris	Animalia	Rees, M., Childs, D. Z., & Ellner, S. P. (2014). Building integral projection models:
		a user's guide. Journal of Animal Ecology, 83(3), 528-545.
Ovis aries	Animalia	Rees, M., Childs, D. Z., & Ellner, S. P. (2014). Building integral projection models:
		a user's guide. Journal of Animal Ecology, 83(3), 528-545.
Agelaius tricolor	Animalia	Robinson, O. J., Ruiz-Gutierrez, V., Fink, D., Meese, R. J., Holyoak, M., & Cooch,
		E. G. (2018). Using citizen science data in integrated population models to inform
		conservation. Biological Conservation, 227, 361-368.
Actea spicata	Plantae	Roemer, G., Christiansen, D.M., de Buhr, H., Hylander, K., Jones, O.R., Merinero,
		S., Reitzel, K., Ehrlen, J., & Dahlgren, J.P. (2020). Drivers of large-scale spatial
		demographic variation in a perennial plant. DOI: 10.1101/2020.02.29.969428
Cirsium canescens	Plantae	Rose KE, Louda SM & Rees M (2005) Demographic and evolutionary impacts of
		native and invasive herbivores on Cirsium canescens. Ecology 86: 453-465
Nerodia sipedon	Animalia	Rose, J.P., & Todd, B.D. (2020) Targeting eradication of introduced watersnakes
		using integral projection models. Animal Conservation. DOI: 10.1111/acv.12590
Cirsium altissimum	Plantae	Rose, K. E., Russell, F. L., & Louda, S. M. (2011). Integral projection model of
		insect herbivore effects on Cirsium altissimum populations along productivity
		gradients. Ecosphere, 2(8), art97.
Podarcis lilfordi	Animalia	Rotger, A., Igual, J.M., & Tavecchia, G. (2020) Contrastic size-dependent life
		history strategies of an insular lizard. Current Zoology 2020: 1-9. DOI:
		10.1093/cz/zoaa019
Cryptantha flava	Plantae	Salguero-Gómez R, Siewert W, Casper BB & Tielbörger K (2012) A demographic
V -		approach to study effects of climate change in desert plants. Philosophical
		Transaction of the Royal Society Series B 367: 3100-3114
Urocitellus	Animalia	Schindler S, Neuhaus P, Gaillard J-M & Coulson T (2013) The influence of
columbianus		nonrandom mating on population growth. American Naturalist 182: 28–41
Tridacna maxima	Animalia	Schreiber, S. J., & Moore, J. L. (2018). The structured demography of open
		populations in fluctuating environments. Methods in Ecology and Evolution, 9(6),
		1569-1580.
		1

Cryptantha flava	Plantae	Schreiber, S., & Ross, N. (2016). Individual-based Integral Projection Models: The role of size-structure on extinction risk and establishment success. Methods in Ecology and Evolution.
Cirsium vulgare	Plantae	Schultz, E. L. (2018) Populations in a changing world: the effects of environmental variation on species with complex life histories. Rice University
Achyranthes japonica	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection models to compare population dynamics of four closely related species. Population Ecology.
Amaranthus palmeri	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection models to compare population dynamics of four closely related species. Population Ecology.
Amaranthus tuberculatus	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection models to compare population dynamics of four closely related species. Population Ecology.
Iresine rhizomatosa	Plantae	Schwartz, L. M., Gibson, D. J., Young, B. G. (2016). Using integral projection models to compare population dynamics of four closely related species. Population Ecology.
Melaleuca quinquenervia	Plantae	Sevillano Garcia Mayeya, L. (2010). The Effects of Biological Control Agents on Population Growth and Spread of Melaleuca quinquenervia.
Erythranthe cardinalis	Plantae	Sheth, S. N., & Angert, A. L. (2018). Demographic compensation does not rescue populations at a trailing range edge. Proceedings of the National Academy of Sciences, 115(10), 2413-2418.
Pseudoroegneria spicata	Plantae	Shriver, R.K., Campbell, E., Dailey, C., Gaya, H., Hill, A., Kuzminski, S., Miller-Bartley, M., Moen, K., Moettus, R., Oschrin, E., Reese, D., Simonson, M., Willson, A, & Parker, T.H. (2020) Local landscape position impacts demographic rates in a widespread North American steppe bunchgrass. DOI: 10.32942/osf.io/8pdwg
Aurinia saxatilis ssp saxatilis	Plantae	Šimáková, T. (2018). Population biology of rock outcrop plant Aurinia saxatilis ssp saxatilis.
Ovis aries	Animalia	Simmonds, E. G., & Coulson, T. (2015). Analysis of phenotypic change in relation to climatic drivers in a population of Soay sheep Ovis aries. Oikos, 124(5), 543-552.
Rhizoglyphus robini	Animalia	Smallegange, I. M., & Ens, H. M. (2018). Trait?based predictions and responses from laboratory mite populations to harvesting in stochastic environments. Journal of Animal Ecology, 87(4), 893-905.
Rhizoglyphus robini	Animalia	Smallegange, I. M., Caswell, H., Toorians, M. E. M., de Roos, A. M. (2016). Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models. Methods in Ecology and Evolution.

Manta alfredi	Animalia	Smallegange, I. M., Caswell, H., Toorians, M. E. M., de Roos, A. M. (2016). Mechanistic description of population dynamics using dynamic energy budget theory incorporated into integral projection models. Methods in Ecology and Evolution.
Rhizoglyphus robini	Animalia	Smallegange, I. M., Deere, J. A., & Coulson, T. (2014). Correlative changes in
Tunzogiy pirus Tobilii	Allillalla	life-history variables in response to environmental change in a model organism. The
		American Naturalist, 183(6), 784-797.
Rhizoglyphus robini	Animalia	Smallegange, I. M., Deere, J. A., & Coulson, T. (2014). Correlative changes in
		life-history variables in response to environmental change in a model organism. The
		American Naturalist, 183(6), 784-797.
Dacrydium elatum	Plantae	Snyder, E. S., Ellner, S. P. (2016). We Happy Few: Using Structured Population
		Models to Identidy the Decisive Events in the Lives of Exceptional Individuals. The
		American Naturalist, Vol. 188, No. 2.
Rheum nobile	Plantae	Song, B., Stoll, P., Peng, D., Sun, H., & Stoecklin, J. (2019) Demography of the
		giant monocarpic herb Rheum nobile in the Himalayas and the effect of
		disturbances by grazing. Annals of Botany. DOI: 10.1093/aob/mcz178
Esox lucius	Animalia	Stubberud, M. W., Vindenes, Y., Vollestad, L.A., Winfield, I.J., Stenseth, N. C., &
		Langangen, O. (2019) Effects of size- and sex-selective harvesting: An integral
		projection model approach. Ecology & Evolution. DOI: 10.1002/ece3.5719
Helianthemum	Plantae	Sulis, E., Bacchetta, G., Cogoni, D., & Fenu, G. (2018). Short-term population
caputfelis		dynamics of Helianthemum caput-felis, a perennial Mediterranean coastal plant: a
		key element for an effective conservation programme. Systematics and Biodiversity, 1-10.
Cirsium vulgare	Plantae	Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L., & Louda, S. M. (2015).
		Integral projection models show exotic thistle is more limited than native thistle by
		ambient competition and herbivory. Ecosphere, 6(4), art69.
Cirsium altissimum	Plantae	Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L., & Louda, S. M. (2015).
		Integral projection models show exotic thistle is more limited than native thistle by
		ambient competition and herbivory. Ecosphere, 6(4), art69.
Tillandsia	Plantae	Ticktin, T., Mondragón, D., and Gaoue, O.G. (2016). Host genus and rainfall drive
macdougallii		the population dynamics of a vascular epiphyte. Ecosphere 7.11
Ovis canadensis	Animalia	Traill, L. W., Schindler, S., & Coulson, T. (2014). Demography, not inheritance,
		drives phenotypic change in hunted bighorn sheep. Proceedings of the National
C 11:4 : :	D1 +	Academy of Sciences, 111(36), 13223-13228.
Callitris intratropica	Plantae	Trauernicht, C., Murphy, B. P., Prior, L. D., Lawes, M. J., & Bowman, D. M.
		(2016). Human-Imposed, Fine-Grained Patch Burning Explains the Population
		Stability of a Fire-Sensitive Conifer in a Frequently Burnt Northern Australia Savanna. Ecosystems, 1-14.
		Savanna. Ecosystems, 1-14.

Bouteloua eriopoda	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Sporobolus ?exuosus	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua eriopoda	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua rothrockii	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
curtipendula		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua hirsuta	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Schizachyrium	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
scoparium		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Bouteloua gracilis	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Hesperostipa comata	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Pascopyrum smithii	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Poa secunda	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.
Artemisia tripartita	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017).
		Environmental responses, not species interactions, determine synchrony of dominant
		species in semiarid grasslands. Ecology.

Hesperostipa comata Plantae Predennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Plan	Pseudoroegneria spicata	Plantae	Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017). Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology.
Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology. Poa secunda Plantae Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017). Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology. Bouteloua gracilis Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera	Hesperostipa comata	Plantae	1 9
Plantae Tredennick, A. T., De Mazancourt, C., Loreau, M., Adler, P. B. (2017). Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology. Bouteloua gracilis Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martforell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martfnez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	F		
Environmental responses, not species interactions, determine synchrony of dominant species in semiarid grasslands. Ecology. Bouteloua gracilis Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics in teractions between disturbances both amplify and dampen populatin dynamics in the relations between demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			species in semiarid grasslands. Ecology.
Bouteloua gracilis Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martfnez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Poa secunda	Plantae	
Bouteloua gracilis Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum squamatum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
Hesperostipa comata			1 9
Hesperostipa comata Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Bouteloua gracilis	Plantae	
Pascopyrum smithii	TT	DI 4	
Pascopyrum smithii Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Squamatum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Hesperostipa comata	Plantae	
De secunda Plantae Plantae Plantae Plantae Plantae Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Chu&Adler 2015 Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Squamatum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	D	D14	
Poa secunda Plantae Tredennick, A. T., Hooten, M. B., Adler, P. B. (2016). Do we need demographic data to forecast plant population dynamics? bioRxiv. NYD; 15 as Plantae Tredennick, A., Teller, B. J., Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Pascopyrum simum	Flantae	
Adata to forecast plant population dynamics? bioRxiv. NYD; 15 as Chu&Adler 2015 Chu&Adler P. B., Hooker, G., & Ellner, S. P. (2018). Cenvironmental variation. bioRxiv, 329771. Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Clirey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Poa secunda	Plantae	
NYD; 15 as Chu&Adler 2015 Chu&Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum ChuAdler 2015 Chu&Adler 2015 Chu&Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. ChuAdler 2015 ChuAdler 2015 Chu&Adler, P. B., Hooker, G., & Ellner, S. P. (2018). Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. ChuBadler 2015 ChuAdler 2015 ChuAdler 2015 ChuAdler 2015 ChuBadler 2015 ChuBa	1 oa secunda	1 minuc	
Chu&Adler 2015 Size-by-environment interactions: a neglected dimension of species' responses to environmental variation. bioRxiv, 329771. Helianthemum Squamatum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	NYD: 15 as	Plantae	
Helianthemum Plantae Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors and disturbance on plant demography. Liatris ohlingerae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
Squamatum Liatris ohlingerae Plantae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
Squamatum Liatris ohlingerae Plantae Plantae Tye, M. R., Menges, E. S., Weekley, C. (2016). A demographic ménage à trois: interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Helianthemum	Plantae	Tye, M. (2014). Integral projection models reveal interactive effects of biotic factors
interactions between disturbances both amplify and dampen populatin dynamics if an endemic plant. Journal of Ecology. Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	squamatum		
Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Liatris ohlingerae	Plantae	
Geum radiatum Plantae Ulrey, C., Quintana-Ascencio, P., Kauffman, G., Smith, A. B., Menges, E. S. (2016). Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
Life at the top: Long-term demography, microclimatic refugia, and responses to climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
climate change for a high-elevation southern Appalachian endemic plant. Biological Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and	Geum radiatum	Plantae	
Conservation 200 (2016) 80-92. Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
Opuntia rastrera Plantae Ureta, C., Martorell, C., Cuervo-Robayo, A. P., Mandujano, M. C., Martínez-Meyer, E. (2018). Inferring space from time: On the relationship between demography and			
E. (2018). Inferring space from time: On the relationship between demography and	Onuntia nagtuona	Dlantas	
, , , , , , , , , , , , , , , , , , , ,	Opuntia rastrera	Flantae	
chivitoninental sultability in the desert plan O. lasticia. I los Olie 19(0). Co201949			. , ,
Mammillaria Plantae Ureta, C., Martorell, C., Hortal, J., & Fornoni, J. (2012). Assessing extinction risks	Mammillaria	Plantae	-
dixanthocentron under the combined effects of climate change and human disturbance through the		1 10111000	
analysis of life-history plasticity. Perspectives in Plant Ecology, Evolution and			
Systematics, 14(6), 393-401.			* - * - * - * - * - * - * - * - * - * -

Mammillaria hernandezii	Plantae	Ureta, C., Martorell, C., Hortal, J., & Fornoni, J. (2012). Assessing extinction risks under the combined effects of climate change and human disturbance through the analysis of life-history plasticity. Perspectives in Plant Ecology, Evolution and
		Systematics, 14(6), 393-401.
Microtus ochrogaster	Animalia	Van Benthem, K. J., Froy, H., Coulson, T., Getz, L. L., Oli, M. K., Ozgul, A.
		(2017). Trait – demography relationships underlying small mammal population
		?uctuations. Journal of Animal Ecology, 86: 348-358.
Succisa pratensis	Plantae	van der Meer S, Dahlgren JP, Mildén M & Ehrlén J (2013) Differential effects of
		abandonment on the demography of the grassland perennial Succisa pratensis.
TT: 1	DI +	Population Ecology, in press
Himantoglossum	Plantae	Van der Meer, S., Jacquemyn, H., Carey, P. D., Jongejans, E. (2016). Recent range
hircinum		expansion of a terrestrial orchid corresponds with climate-driven variation in ist
T :: 1.1	A: 1: -	population dynamics. Oecologia.
Lepomis gibbosus	Animalia	van Kleef, H. H., & Jongejans, E. (2014, September). Identifying drivers of pumpkinseed invasiveness using population models. In Aquatic Invasions (Vol. 9,
		No. 3, pp. 315-326). Regional Euro-Asian Biological Invasions Centre (REABIC).
Esox lucius	Animalia	Vindenes, Y., Edeline, E., Ohlberger, J., Langangen, Ø., Winfield, I. J., Stenseth, N.
ESOX Tuctus	Allillalla	C., & Vøllestad, L. A. (2014). Effects of climate change on trait-based dynamics of
		a top predator in freshwater ecosystems. The American Naturalist, 183(2), 243-256.
Esox lucius	Animalia	Vindenes, Y., Langangen, Ø., Winfield, I. J., Vøllestad, L. A. (2016). Fitness
LBOX Tuctus	2 minimana	consequences of early life conditions and maternal size effects in a freshwater top
		predator. Journal of Animal Ecology, (85), 692-704
33 tree species	Plantae	Visser, M. D., Schnitzer, S. A., Muller?Landau, H. C., Jongejans, E., de Kroon, H.,
•		Comita, L. S., & Wright, S. J. (2018). Tree species vary widely in their tolerance
		for liana infestation: A case study of differential host response to generalist
		parasites. journal of ecology, 106(2), 781-794.
Primula farinosa	Plantae	von Euler T, Ågren J & Ehrlén J (2013) Environmental context influences both the
		intensity of seed predation and plant demographic sensitivity to attack. Ecology in
		press
Crocodylus niloticus	Animalia	Wallace W, Leslie A & Coulson T. 2012. Re-evaluating the effect of harvesting
		regimes on Nile crocodiles using an integral projection models. In press
Calathea crotalifera	Plantae	Westerband, A. C., Horvitz, C. C. (2017). Photosynthetic rates influence the
		population dynamics of understory herbs in stochastic light environments. Ecology,
77.10	7.1	98 (2): 370-381.
Heliconia tortuosa	Plantae	Westerband, A. C., Horvitz, C. C. (2017). Photosynthetic rates influence the
		population dynamics of understory herbs in stochastic light environments. Ecology,
		98 (2): 370-381.

Sebastes mystinus	Animalia	White, J. W., Nickols, K. J., Malone, D., Carr, M. H., Starr, R. M., Cordoleani, F., Baskett, M. L., Hastings, A., Botsford, L. W. (2016). Fitting state-space integral projection models to size-structured time series data to estimate unknown parameters. Ecological Applications.
Sebastes carnatus	Animalia	White, J. W., Nickols, K. J., Malone, D., Carr, M. H., Starr, R. M., Cordoleani, F., Baskett, M. L., Hastings, A., Botsford, L. W. (2016). Fitting state-space integral projection models to size-structured time series data to estimate unknown
		parameters. Ecological Applications.
Rana mucosa	Animalia	Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., McCallum, H. I., & Briggs, C. J. (2016). Integral Projection Models for host–parasite systems with an application to amphibian chytrid fungus. Methods in Ecology and Evolution.
Anemone patens	Plantae	Williams JL & Crone EE (2006) The impact of invasive grasses on the population growth of Anemone patens, a long-lived native forb. Ecology 87: 3200-3208
Cynoglossum officinale	Plantae	Williams JL (2009) Flowering life-history strategies differ between the native and introduced ranges of a monocarpic perennial. American Naturalist 174: 660-672
Cynoglossum officinale	Plantae	Williams JL, Auge H & Maron JL (2010) Testing hypotheses for exotic plant success: parallel experiments in the native and introduced ranges. Ecology 91: 1355-1366
Agrostics hyemalis	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from integral projection models. Ecology 93: 2008-2014
Anemone patens	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from integral projection models. Ecology 93: 2008-2014
Opuntia imbricata	Plantae	Williams JL, Miller TX & Ellner SP (2012) Avoiding unintentional eviction from integral projection models. Ecology 93: 2008-2014
Grus americana	Animalia	Wilson, S., Gil-Weir, K. C., Clark, R. G., Robertson, G. J., & Bidwell, M. T. (2016). Integrated population modeling to assess demographic variation and contributions to population growth for endangered whooping cranes. Biological Conservation, 197, 1-7.
Pinus massoniana	Plantae	Yang, X., Li, S., Shen, B., Wu, Y., Sun, S., Liu, R., & Li, S. L. (2018). Demographic strategies of a dominant tree species in response to logging in a degraded subtropical forest in Southeast China. Annals of Forest Science, 75(3), 84.
Tridacna maxima	Animalia	Yau, A. J. Y. (2011). Size-based approaches to modeling and managing local populations: A case study using an artisanal fishery for giant clams, Tridacna maxima. University of California, Santa Barbara.
Tridacna maxima	Animalia	Yau, A. J., Lenihan, H. S., & Kendall, B. E. (2014). Fishery management priorities vary with self-recruitment in sedentary marine populations. Ecological Applications, 24(6), 1490-1504.

Agrostis hyemalis	Plantae	Yule, K. M., Miller, T. E., & Rudgers, J. A. (2013). Costs, benefits, and loss of
		vertically transmitted symbionts affect host population dynamics. Oikos, 122(10),
		1512-1520.
Poulsenia armata	Plantae	Zambrano, J., & Salguero?Gómez, R. (2014). Forest fragmentation alters the
		population dynamics of a late?successional tropical tree. Biotropica, 46(5), 556-564.
Poulsenia armata	Plantae	Zambrano, J., & Salguero?Gómez, R. (2014). Forest Fragmentation Alters the
		Population Dynamics of a Late?successional Tropical Tree. Biotropica, 46(5),
		556-564.
Annamocarya	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
sinensis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Calocedrus	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
macrolepis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Dacrydium elatum	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Manglietia fordiana	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Parashorea chinensis	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355
Pinus	Plantae	Zuidema PA, Jongejans E, Chien PD, During HJ & Schieving F (2010) Integral
kwangtungensis		projection models for trees: a new parameterization method and a validation of
		model output. Journal of Ecology 98: 345-355