

兆福科技股份有限公司

SPECIFICATION

SPEC. NO.	•		KEV· _	2.0	_
DATE:	2018, Ju	ıly16	_		
PRODUCT	NAME:	WSDT-752	PB SC		

	APPROVED	CHECKED	PREPARED	DCC ISSUE
NAME				

GIGAFU

WSDT-752B SC

ARM Cortex M3 + Bluetooth Low Energy with Antenna Module

Product Specification Sheet

Revision History

Dete	Davisian Contant	Davised Dv	Varaion
Date	Revision Content	Revised By	Version
2015/03/31	- Original release	R&D	1.0
	 Modify voltages ratings 		
2015/07/08	 Add power consumption 	Ander	1.1
	- Replace outline dimension		
2015/07/08	- Modify RF Specification	May	1.2
2015/07/13	- Add Antenna keep out area size	Ander	1.3
2015/09/09	- Update Operating Temperature	Ander	1.4
2015/09/09	- Update Power Consumption	Ander	1.4
2015/10/21	- Modify 7.1 schematic	Peter	1.5
2015/11/04	- Renamed	Peter	1.6
2015/12/30	- Modify temperature of operation	Peter	1.7
2013/12/30	and storage	1 6161	1.7
2018/05/14	- Modify General Specification	Geoffrey	1.8
2018/07/12	- Add FCC/IC Statement	Geoffrey	1.9
2018/07/16	- Add Label Drawing	Geoffrey	2.0

Contents

Revision History	i
Contents	ii
1. Introduction	1
1.1 DESCRIPTION	1
1.2 APPLICATIONS	1
2. FEATURES	2
3. General Specification	4
3.1 General Specification	4
3.2 Voltages	4
3.2.1 Absolute Maximum Ratings	4
3.2.2 Recommended Operating Ratings	4
3.3 Power Consumption	5
3.3.1 BLE Power Consumption	5
4. Main CPU Overview	6
4.1 CM3 Features	6
5. RF Specification	7
5.1 BLE Specification	7
6. Ceramic Chip Antenna Specification	10
6.1 Description Value	
7. Pinout Information	11
7.1 Schematic Diagram	
7.2 Pin Descriptions	
7.3 Pin Number Define	13
8. Software Overview	14
8.1 Software tool installation	14
8.2 WSDT-752B_SC board GPIO configuration file path	14
8.3 PIN define in header file Board.h	
9. Module Dimensions	15
9.1 Outline Dimension (Unit: mm)	
9.2 Recommended Footprint (Unit: mm)	

10. Recommended Reflow Profile	19
11. Label Drawing	20
12. Packing Information	21
12.1 Packing Dimension	21
13.Statement	22
13.1 FCC Statement:	22
13.2 ISED Statement:	22
13.3 FCC Label Instructions	23

1. Introduction

GIGAFU Technology would like to announce a low-cost and low-power consumption module which has of the BLE functionalities. The highly integrated WSDT-752B_SC with RF front end BLE module makes the possibilities of Bluetooth Low Energy HID and other applications.

1.1 DESCRIPTION

The WSDT-752B_SC is very low active and low power mode current consumption as well as fast mode transitions provide excellent battery lifetime and allows operation on small coin cell batteries and in energy harvesting applications.

Integrated a powerful 32-bit Cortex M3 running at 48 MHz has more than 30% more processing power per MHz than Cortex M0 based systems and significantly more than 8 and 16-bit processors.

The Bluetooth Low Energy Controller is embedded into ROM and are partly running on a separate ARM Cortex M0 dedicated for radio purpose. This improves overall system performance and power consumption as well as frees up FLASH memory for the application.

1.2 APPLICATIONS

Consumer electronics

Mobile phone accessories

Sports & Fitness equipment

HID applications

Home Automation and Lighting Control

Alarm and Security

Electronic Shelf Labeling

Proximity Tags

Medical and Healthcare

Remote Controls

Wireless Sensor Networks

2. FEATURES

- Lead Free design which is compliant with RoHS requirements.
- Integrated Ceramic Chip Antenna
- Integrated Power Inductor 10uH for DC/DC converter
- 2.4 GHz RF transceiver compatible with Bluetooth 4.2 low energy and proprietary communication protocols
- Programmable GFSK modulation mode.
- ❖ Supports data rates between 50 kbps and 5 Mbps
- ❖ Programmable output power up to +5 dBm
- Suitable for systems targeting compliance with worldwide radio frequency regulations
- All Digital Peripheral Pins can be Routed to any GPIO
- ❖ 4 General-purpose Timer Modules (8x 16-bit or 4x 32 bit-timer, PWM each)
- 12-bit ADC, 200-ksamples/s, 8 channel analog MUX
- Continuous Time Comparator
- Ultra-low-power analog comparator
- ❖ Programmable Current Source
- ◆ SPI

- True Random Number Generator (TRNG)
- Real-time clock
- Support for 8 capacitive sensing channels
- Integrated Temperature Sensor
- Very few external components
- Low-speed clock can be derived from high-speed crystal

System Block Diagram

3. General Specification

3.1 General Specification

Model Name	WSDT-752B_SC
Product Description	BLE module
Dimension	10.0 mm x 10.0 mm x 1.5 mm (W*L*T)
Operating temperature	-10°C to +65°C
Storage temperature	-20°C to +85°C
Humidity	Operating Humidity 10% to 80% Non-Condensing Storage Humidity 5% to 95% (Non-Condensing)
Weight	0.023 g +/- 10g

3.2 Voltages

3.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VDDS	Module Voltage	-0.2	4.0	V
VDDS2	Module Voltage	-0.2	4.0	V
VDDS_DCDC	Module Voltage	-0.2	4.0	V

3.2.2 Recommended Operating Ratings

Test conditions: At room temperature 25°C					
Symbol Min. Typ. Max. Unit					
VDD 2.16 3.3 3.465 V					

3.3 Power Consumption

3.3.1 BLE Power Consumption

Test conditions: TX mode @VDD=3.3V; Temp=25°C

Current@VDD

Test at 25℃/3.3V (Default FW@ROM)						
Power Mode	Description	Current (Peak)				
Initialize	DUT link to Smart RF Studio	2.7mA				
Tx Continuous	Transmit Packet Continously@1.82dBm	8.1mA				
Rx Continuous	Receive Packet Continuously	7.2mA				
Tx Packet	Transmit Packet to Golden Sample	3.5mA				
RX Packet	Receive Packet From Golden Sample	7.5mA				
	After Press Reset Button ,enter	238uA				
Broadcast	advertising state for 10 sec then enter Standby Mode(Specific FW)	10uA 1.4uA (Typical)				

Deep Sleep mode (timer on)

3.3V	Тур.	Max.	Unit
Broadcast		238	uA
Srandby Mode	1.4	10	uA

4. Main CPU Overview

The WSDT-752B_SC contains an ARM® Cortex™ M3 (CM3) 32-bit CPU, which runs the application and protocol stack in the product, and the protocol stack in the wireless network processor (WNP) products.

4.1 CM3 Features

32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications

Outstanding processing performance combined with fast interrupt handling Thumb®-2 mixed 16- and 32-bit instruction set delivers the high performance expected of a 32-bit ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications:

-Atomic bit manipulation (bit-banding), delivering maximum memory use and streamlined peripheral control

-Unaligned data access, enabling data to be efficiently packed into memory Fast code execution permits slower processor clock or increases sleep mode time

Harvard architecture characterized by separate buses for instruction and data Efficient process core, system and memories

Hardware division and fast digital-signal-processing oriented multiply accumulate

Saturating arithmetic for signal processing

Deterministic, high-performance interrupt handling for time-critical applications

Enhanced system debug with extensive breakpoint and trace capabilities Serial wire trace reduce the number of pins required for debugging and tracing

Migration from the ARM7™ processor family for better performance and power efficiency

Optimized for single-cycle flash memory use

Ultra-low power consumption with integrated sleep modes

48 MHz operation – the operating frequency can be dynamically altered to minimize power requirements.

1.25 DMIPS / MHz

5. RF Specification

5.1 BLE Specification

1 Mbps GFSK (Bluetooth low energy)

Conditions: VDD=3.3V; Temp:25°C. Using Anisu CombiTest with MT8852B

TX

Output Power						
TX PARAMETER	limit	MIN	TYP	MAX	UNIT	
Output power	>-20		0.00	2.4	dDm	
@2402MHz	<+10		0.92	2.4	dBm	
Peak to Average Power @2402MHz	<3dB		0.14		dB	
Output power	>-20		0.74		dBm	
@2440MHz	<+10		0.74		UDIII	
Peak to Average Power @2440MHz	<3dB		0.13		dB	
Output power	>-20		0.39		dBm	
@2480MHz	<+10		0.39		UDIII	
Peak to Average Power @2480MHz	<3dB		0.14		dB	
	Carrier Freq	uency Offse	et and Drift		•	
TX PARAMETER	limit	MIN	TYP	MAX	UNIT	
Frequency Offset @2402MHz	≦±150 kHz	-0.9	5.7	10.6	KHz	
Drift Rate / 50 μs	≦20 kHz / 50		40.05		121.1	
@2402MHz	μs		10.65		KHz	
Max Drift @2402MHz	≦50 kHz		-10		KHz	
Frequency Offset @2440MHz	≦±150 kHz	2.5	6.5	9.9	KHz	
Drift Rate / 50 μs	\leq 20 kHz / 50		7 27		KHz	
@2440MHz	μs		-7.37		INΠZ	
Max Drift @2440MHz	≦50 kHz		-7		KHz	
Frequency Offset @2480MHz	≦±150 kHz	-0.2	5.1	7.1	KHz	

GIGAFU TECH

IoT & Wireless solution							
Drift Rate / 50 μs	≦20 kHz / 50		-8.85		KHz		
@2480MHz	μs						
Max Drift	≦50 kHz		-11		KHz		
@2480MHz		(' O					
Modulation Characteristics							
TX PARAMETER	limit	MIN	TYP	MAX	UNIT		
F1avg	225 kHz <						
@2402MHz	F1avg < 275		252	263	KHz		
@2402IVII 12	kHz						
F2max	>= 185 kHz		201		KHz		
@2402MHz	>= 100 KHZ		201		NΠZ		
'F2max' Pass Rate	. 00.0 %		400		0/		
@2402MHz	> 99.9 %		100		%		
F1/F2 ratio	2.22		0.0				
@2402MHz	>= 0.80		20				
	225 kHz <						
F1avg	F1avg < 275		261.2	271.4	KHz		
@2440MHz	kHz						
F2max							
@2440MHz	>= 185 kHz		214.4		KHz		
'F2max' Pass Rate							
@2440MHz	> 99.9 %		100		%		
F1/F2 ratio							
@2440MHz	>= 0.80		20				
@2440IVII 12	225 1447 4						
F1avg	225 kHz <		202	070.7	1/11-		
@2480MHz	F1avg < 275		262	273.7	KHz		
	kHz						
F2max	>= 185 kHz		210		KHz		
@2480MHz							
'F2max' Pass Rate	> 99.9 %		100		%		
@2480MHz	75.5				, 0		
F1/F2 ratio	>= 0.80		20				
@2480MHz	0.00						

Receiver sei	nsitivity(Power	Level: -90.0	dBm, Dirty T.	x Status: O	<u></u>
RX PARAMETER	limit	MIN	TYP	MAX	UNIT
Frame Error Rate@2402MHz	<= 30.800 %		12.6		%
Frame Error Rate@2440MHz	<= 30.800 %		21.07		%
Frame Error Rater @2480MHz	<= 30.800 %		14.74		%
PER Report Integri	ty(Power Level	: -30.0 dBm,	Packet Num	ber Mode: F	Random)
RX PARAMETER	limit	MIN	TYP	MAX	UNIT
Frame Error Rate@2402MHz	50.0 % <= PER <= 65.4 %		50.4		%
Frame Error Rate@2440MHz	50.0 % <= PER <= 65.4 %		50.4		%
Frame Error Rate@2480MHz	50.0 % <= PER <= 65.4 %		50.3		%
<u>Maxim</u>	um Input Signa	I Level(Pow	er Level: -10.	0 dBm)	
RX PARAMETER	limit	MIN	TYP	MAX	UNIT
Fame Error Rate @2402MHz	<= 30.800 %		0.8		%
Frame Error Rate@2440MHz	<= 30.800 %		0.8		%
Frame Error Rate@2480MHz	<= 30.800 %		0.733		%

6. Ceramic Chip Antenna Specification

6.1 Description Value

DESCRIPTION	VALUE
Working Frequency	2.45 GHz
Bandwidth	170 MHz (Typ.)
VSWR	2.0 (Max.)
Polarization	Linear
Azimuth Beamwidth	Omni-directional
Peak Gain	5.88 dBi (Typ.)
Impedance	50 Ω
Maximum Power	1 W
Termination	Ni / Sn (Environmentally-Friendly Leadless)

7. Pinout Information

7.1 Schematic Diagram

7.2 Pin Descriptions

PIN NAME	PIN	PIN TYPE	DESCRIPTION
DIO 0	1	Digital I/O	GPIO, ULP Sensor Interface, LED driving
DIO_0		Digital I/O	capability , 2mA / 4mA / 8mA
DIO 1	2	Digital I/O	GPIO, ULP Sensor Interface, LED driving
DIO_1	2	Digital I/O	capability , 2mA / 4mA / 8mA , UART_TX
DIO 3	3	Digital I/O	GPIO, ULP Sensor Interface, LED driving
DIO_2	3	Digital I/O	capability , 2mA / 4mA / 8mA , UART_RX
GND	4	Power	Ground
VDDS2	5	Power	3.3V DIO supply
JTAG_TMSC	6	Digital I/O	JTAG TMSC
JTAG_TCKC	7	Digital I/O	JTAG TCKC
DIO 3 8		Digital I/O	JTAG_TDO , High drive capability , 2mA /
DIO_3	0	Digital I/O	4mA / 8mA
DIO 4	9	Digital I/O	JTAG_TDI , High drive capability , 2mA /
DIO_4	Ŋ	Digital I/O	4mA / 8mA
NC	10		No Connector

GIGAFU TECH

GND	o T &	Wireless so Power	lution Ground
VDDS DCDC	12	Power	3.3V DC/DC supply.
RESET_N	13	Digital input	Reset, active-low. No internal pull-up
DIO_5	14	Digital/Analog I/O	GPIO, ULP Sensor Interface, Analog
DIO_6	15	Digital/Analog I/O	GPIO, ULP Sensor Interface, Analog
DIO 7	40	Digital/Agalog I/O	GPIO, ULP Sensor Interface, Analog /
DIO_7	16	Digital/Analog I/O	I2C_SCL
DIO 0	47	D:::1:1/A1 1/O	GPIO, ULP Sensor Interface, Analog /
DIO_8	17	Digital/Analog I/O	I2C_SDA
NC	18		No Connector
DIO_9	19	Digital/Analog I/O	GPIO, ULP Sensor Interface, Analog
GND	20	Power	Ground
VDDS	21	Power	3.3V main chip supply
GND	22	Power	Ground
NC	23		No Connector
GND	24	Power	Ground
NC	25		No Connector
GND	26	Power	Ground
NC	27		No Connector
GND	28	Power	Ground
GND	29	Power	Ground
GND	30	Power	Ground
GND	31	Power	Ground
GND	H1~H9	Power	Ground

7.3 Pin Number Define

TOP VIEW

98765432129 30

19 21 23 25 1 20 22 24 26

8. Software Overview

8.1 Software tool installation

Follow TI document "CC2640 BLE Software Developer's Guide" to setup compiler tool, BSP and related tools.

8.2 WSDT-752B_SC board GPIO configuration file path

...\Projects\ble\common\cc26xx\boards\WSDT-752B_SC

Source files:

...\CC2640EM_4XS\board.h ...\CC2640EM_4XS\board.c

8.3 PIN define in header file Board.h

//	UART	Board

#define Board_UART_TX	IOID_1
#define Board_UART_RX	IOID_2

#define Board_UART_CTS PIN_UNASSIGNED #define Board_UART_RTS PIN_UNASSIGNED

// I2C Board

#define Board_I2C_SCL	IOID_7
#define Board_I2C_SDA	IOID_8

//Customer Define

#define Board_DIO_0	IOID_0
#define Board_DIO_5	IOID_5
#define Board_DIO_6	IOID_6
#define Board_DIO_9	IOID_9

9. Module Dimensions

9.1 Outline Dimension (Unit: mm)

TOP VIEW

Note1: 3.018mm * 10mm, This is antenna keep out area in the your application.

GIGAFU TECH

9.2 Recommended Footprint (Unit: mm)

10. Recommended Reflow Profile

- 1. Referred to IPC/JEDEC standard
- 2. Peak Temperature: <260°C
- 3. Cycle of Reflow: 2 times max.
- 4. Nitrogen reflow is recommended, less than 2000ppm of oxygen concentration.
- 5. If the shelf time is exceeded, be sure baking step to remove the moisture from the component.

11. Label Drawing

(Unit: mm)

12. Packing Information

12.1 Packing Dimension

TBD

13.Statement

13.1 FCC Statement:

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference, and
- (2) This device must accept any interference received, including interference that may cause undesired operation.

13.2 ISED Statement:

This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Le present appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisee aux deux conditions suivantes : (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioelectrique subi, meme si le brouillage est susceptible d'en compromettre le fonctionnement.

In accordance with FCC Part 15C and RSP-100, this module is listed as a Modular Transmitter device.

Changes or modifications not expressly approved by the manufacturer could void the user's authority to operate the equipment.

The antenna of this transmitter must not be co-located or operating in conjunction with any other antenna or transmitters within a host device, except in accordance with FCC multitransmitter product approval procedures.

13.3 FCC Label Instructions

The outside of final products that contains this module device must display a label referring to the enclosed module. This exterior label can use wording such as the following: "Contains Transmitter Module FCC ID: <u>ZQ6-WSDT752BSC</u>" or "Contains FCC ID: <u>ZQ6-WSDT752BSC</u>" any similar wording that expresses the same meaning may be used.

Additionally, there must be the following sentence on the device, unless it is too small to carry it:

"This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

(1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation."

If the final product is to be sold in Canada, then this exterior label should use wording such as the following: "Contains Transmitter Module IC: <u>11956A-WSDT752BSC</u>"