Chapter 2

Systems of linear equations

- 1. Different faces of linear transformation
- 2. Solution of a linear system. Echelon forms

Exercise 2.1. Write the systems of equations below in matrix form.

Exercise 2.2. Find all solutions of the vector equation

$$x_1\mathbf{v_1} + x_2\mathbf{v_2} + x_3\mathbf{v_3} = \mathbf{0}$$

where $\mathbf{v_1}=(1,1,0)^T$, $\mathbf{x_2}=(0,1,1)^T$ and $\mathbf{v_3}=(1,0,1)^T$. What conclusion can you make about linear independence (dependence) of the system of vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$.

Proof. The echelon form of the system is

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

so, clearly the solution to this equation is $x_1 = x_2 = x_3 = 0$.

Conclusion. If the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ are linearly independence, then the above equation has unique solution, namely $x_1 = x_2 = x_3 = 0$.

If the vectors $\mathbf{v_1}$, $\mathbf{v_2}$, $\mathbf{v_3}$ are linearly dependence, then there exists α , β , γ (some of them are non-zero) such that

$$\alpha \mathbf{v_1} + \beta \mathbf{v_2} + \gamma \mathbf{v_3} = \mathbf{0}$$

Therefore, the solution to the above equation is

$$\begin{cases} x_1 = \alpha t \\ x_2 = \beta t \\ x_3 = \gamma t \end{cases}$$

for some $t \in \mathbb{R}$.

3. Analyzing pivots

Exercise 3.6. Prove or disprove. If the columns of a square $(n \times n)$ matrix are linearly independence, so are the columns of A^2 .

Proof. Since A is a square matrix, and columns vectors are linearly independence, so

has pivot in every column

 \implies has pivot in evry row

 \implies A is invertable

 \implies A^2 also invertable

 \implies A^2 has pivot every column and row

Therefore, the column vectors of A^2 also independence.

Exercise 3.7. Prove or disprove. If the columns of a square $(n \times n)$ matrix are linearly independence, so are the columns of A^3 .

Exercise 3.8. Show that if the equation $A\mathbf{x} = \mathbf{0}$ has unique solution, then A is left invertable.

Proof. Because A has unique solution, then it has pivot in every column. Therfore, $\# col \leq \# row$, so we let $m \times n$ be the size of A where $n \leq m$ Let R be the reduced echelon form of A, hence there exists $E = E_k \cdots E_2 E_1$ such that R = EA. Observe that, R would look like

$$R = \begin{pmatrix} \boxed{1} & 0 & \cdots & 0 \\ 0 & \boxed{1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \boxed{1} \\ 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Using matrix muliplication gives us $R^TR = I_n$. We obtain that

$$R^{\mathrm{T}}EA = R^{\mathrm{T}}T = I_n$$

Therfore, A is left invertable, and R^TE is its left inverse.

4. Find A^{-1} by row reduction

5. Dimension

Exercise 5.1. True or false.

- a). Every vector space that is generated by a finite set has a basis;
- b). Every vector space has a (finite) basis;

2

- c). A vector space cannot have more that one basis;
- d). A vector space has a finite basis, then the number of vectors in every basis is the same;
- e). The dimension of \mathbb{P}_n is n;
- f). The dimension of $M_{m \times n}$ is m + n;
- g). If vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ generate (span) the vector space V, then every vector in V can be written as a linear combination of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ in only one way;
- h). Every subspace of a finite-dimensional space is finite-dimensional.
- i). If V is a vector space having dimension n, then V has exactly one subspace of dimension 0, and exactly one subspace of dimension n.
- *Proof.* a). **True.** That finite set which generated a vector space is the spanning set itself. Since it's finite, it contains a basis.
 - b). **False.** Take $\mathbb{R}[x]$ for example.
 - c). **False.** In \mathbb{R}^2 , one can choose

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \quad \text{or} \quad \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

as a basis.

d). True. As proved in the above theorems,

independence vectors
$$\leq$$
 dim V

generating vectors \geq dim V

hence the number of any basis in V must be exactly dim V vectors.

e). **False.** In \mathbb{P}_n , the standard basis is

$$1, t, t^2, \ldots, t^n$$

which has n + 1 vectors. Hence $\dim \mathbb{P}_n = n + 1$

f). **False.** The standard basis in $M_{m \times n}$ is

$$\{\mathbf{e}_{11}, \mathbf{e}_{12}, \ldots, \mathbf{e}_{mn}\}$$

has $m \times n$ vectors. Hence $\dim M_{m \times n} = mn$

g). False. span doesn't guarantee uniqueness.

h). **True.** Let *W* be a subspace of *V*. Because dim *V* finite, we can find

$$\mathcal{A} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subset V$$

that spans V. WLOG, we assume that none of vectors in \mathcal{A} belongs to W (the unluckiest case.) We can choose $\mathbf{w_1} \in W$ such that $\mathbf{w_1} \neq \mathbf{0}$. Then

$$\mathbf{w_1} = \alpha_1 \mathbf{v_1} + \dots + \alpha_n \mathbf{v_n}$$

Because $\mathbf{w_1} \neq 0$, we're sure some of the α_i 's are non-zero, say α_1 . Then the new system

$$\mathcal{A}_1 = \{w_1, v_2, \dots, v_n\}$$

still spans the space V. Now, if $\mathcal{B}_1 := \{\mathbf{w_1}\}$ doesn't span W, we can repeat the above procedure and find $\mathbf{w_2}$. We can do this at most n times, because once we reach the nth step, we have the new system $\mathcal{A}_n \subset W$ that spans the whole space V.

Therfore, after some finite $k \le n$ step, we have

$$\mathcal{B}_k = \{\mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_k}\} \subset W$$

spans *W*. Hence, *W* is finite dimensional.

i). Not sure.

Exercise 5.2. Prove that if V is a vector space having dimension n, then a system of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ in V is linearly independent iff it spans V.

6. Change of basis

Exercise 6.3. Find the change of coordinates matrix that changes the coordinates in basis $\{1, 1+t\}$ in \mathbb{P}_1 to the coordinates in the basis $\{1-t, 2t\}$.

Proof. Let's denote $\mathcal{A} = \{1, 1+t\}$ and $\mathcal{B} = \{1-t, 2t\}$. Let \mathcal{S} be the standard basis in \mathbb{P}_1 . Therefore, the matrix that transforms from vector in basis \mathcal{A} to basis \mathcal{B} is $[\mathcal{B}\mathcal{A}] = [\mathcal{B}\mathcal{S}][\mathcal{S}\mathcal{A}]$. We have

$$[\mathcal{S}\mathcal{A}] = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

and

$$[\mathcal{BS}] = [\mathcal{SB}]^{-1} = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}^{-1} = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$$

Therefore,

$$[\mathcal{B}\mathcal{A}] = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Exercise 6.4. Let T be the ...

Proof. In standard basis, T looks like

$$[T] = \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix}.$$

Let $\mathcal{B} = \{(1,1)^T, (1,2)^T\}$. In basis \mathcal{B} , the transformation would look like

$$[T]_{\mathcal{BB}} = [\mathcal{BS}][T][\mathcal{SB}]$$

And we have

$$[\mathcal{SB}] = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

so

$$[\mathcal{BS}] = [\mathcal{SB}]^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

Therefore, the transformation $[T]_{\mathcal{BB}}$ in basis \mathcal{B} is

$$[T]_{\mathcal{BB}} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$$

Exercise 6.5. Prove that if *A* and *B* are similar matrices, then trace A = trace B.

Proof. Because A and B are similar, then there exists an invertable matrix Q such that $A = Q^{-1}BQ$. Observe that

$$A = Q^{-1} \cdot BQ$$
 and $B = BQ \cdot Q^{-1}$

This implies that trace A = trace B.