Importing Data

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import seaborn as sns
from matplotlib import pyplot as plt

from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error, mean_squared_log_error
```

Disable Warnings

```
In [2]: import warnings
  warnings.filterwarnings("ignore")
  warnings.simplefilter("ignore")
```

Loading Data

```
In [3]: data = pd.read_csv("/kaggle/input/gdp-analysis-dataset/world.csv")
In [4]: data
```

Out[4]:

		Country	Region	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	Infa mortal (f 10 birtl
	0	Afghanistan	ASIA (EX. NEAR EAST)	31056997	647500	48,0	0,00	23,06	163,
	1	Albania	EASTERN EUROPE	3581655	28748	124,6	1,26	-4,93	21,
	2	Algeria	NORTHERN AFRICA	32930091	2381740	13,8	0,04	-0,39	
	3	American Samoa	OCEANIA	57794	199	290,4	58,29	-20,71	9,
	4	Andorra	WESTERN EUROPE	71201	468	152,1	0,00	6,6	4,
	•••								
	222	West Bank	NEAR EAST	2460492	5860	419,9	0,00	2,98	19,
	223	Western Sahara	NORTHERN AFRICA	273008	266000	1,0	0,42	NaN	N
	224	Yemen	NEAR EAST	21456188	527970	40,6	0,36	0	6
2	225	Zambia	SUB- SAHARAN AFRICA	11502010	752614	15,3	0,00	0	88,
	226	Zimbabwe	SUB- SAHARAN AFRICA	12236805	390580	31,3	0,00	0	67,
227 rows × 20 columns									
	4								

In [5]: data.info()

> <class 'pandas.core.frame.DataFrame'> RangeIndex: 227 entries, 0 to 226 Data columns (total 20 columns):

#	Column	Non-Null Count	Dtype
0	Country	227 non-null	object
1	Region	227 non-null	object
2	Population	227 non-null	int64
3	Area (sq. mi.)	227 non-null	int64
4	Pop. Density (per sq. mi.)	227 non-null	object
5	Coastline (coast/area ratio)	227 non-null	object
6	Net migration	224 non-null	object
7	Infant mortality (per 1000 births)	224 non-null	object
8	GDP (\$ per capita)	226 non-null	float64
9	Literacy (%)	209 non-null	object
10	Phones (per 1000)	223 non-null	object
11	Arable (%)	225 non-null	object
12	Crops (%)	225 non-null	object
13	Other (%)	225 non-null	object
14	Climate	205 non-null	object
15	Birthrate	224 non-null	object
16	Deathrate	223 non-null	object
17	Agriculture	212 non-null	object
18	Industry	211 non-null	object
19	Service	212 non-null	object

dtypes: float64(1), int64(2), object(17)

memory usage: 35.6+ KB

In [6]: data.describe()

Out[6]:

	Population	Area (sq. mi.)	GDP (\$ per capita)
count	2.270000e+02	2.270000e+02	226.000000
mean	2.874028e+07	5.982270e+05	9689.823009
std	1.178913e+08	1.790282e+06	10049.138513
min	7.026000e+03	2.000000e+00	500.000000
25%	4.376240e+05	4.647500e+03	1900.000000
50%	4.786994e+06	8.660000e+04	5550.000000
75%	1.749777e+07	4.418110e+05	15700.000000
max	1.313974e+09	1.707520e+07	55100.000000

In [7]: data.isna().sum

```
Country Region Population Area (sq.
Out[7]: <bound method DataFrame.sum of
         mi.)
              Pop. Density (per sq. mi.) \
         0
                False
                        False
                                                                                  Fals
                                     False
                                                     False
         е
         1
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         е
         2
                False
                       False
                                     False
                                                     False
                                                                                  Fals
         е
                                                                                  Fals
         3
                False
                       False
                                     False
                                                     False
         е
         4
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         е
         . .
                  . . .
                         . . .
         . . .
         222
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         e
         223
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         224
                False
                                     False
                                                     False
                                                                                  Fals
                        False
         е
         225
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         e
                                                                                  Fals
         226
                False
                       False
                                     False
                                                     False
         е
              Coastline (coast/area ratio) Net migration \
         0
                                      False
                                                     False
                                      False
                                                     False
         1
         2
                                      False
                                                     False
         3
                                      False
                                                     False
         4
                                      False
                                                     False
                                        . . .
                                                       . . .
         222
                                      False
                                                     False
         223
                                      False
                                                      True
         224
                                      False
                                                     False
         225
                                      False
                                                     False
         226
                                      False
                                                     False
              Infant mortality (per 1000 births) GDP ($ per capita) Literacy (%)
         \
         0
                                            False
                                                                 False
                                                                               False
         1
                                            False
                                                                 False
                                                                               False
         2
                                            False
                                                                 False
                                                                               False
         3
                                            False
                                                                 False
                                                                               False
         4
                                            False
                                                                 False
                                                                               False
                                                                   . . .
                                                                                 . . .
                                              . . .
         222
                                            False
                                                                 False
                                                                                True
         223
                                             True
                                                                 True
                                                                                True
         224
                                            False
                                                                 False
                                                                               False
         225
                                            False
                                                                 False
                                                                               False
         226
                                            False
                                                                 False
                                                                               False
              Phones (per 1000) Arable (%) Crops (%) Other (%) Climate Birthrat
         е
                          False
                                       False
                                                              False
                                                                       False
                                                                                  Fals
         0
                                                  False
         е
```

	1		False	False	False	False	False	Fals
2	e 2		False	False	False	False	False	Fals
	e 3		False	False	False	False	False	Fals
	e 4		False	False	False	False	False	Fals
	e 							
	222		False	False	False	False	False	Fals
	e 223		True	False	False	False	False	Tru
	e 224		False	False	False	False	False	Fals
	e 225		False	False	False	False	False	Fals
	e 226		False	False	False	False	False	Fals
	е							
	0 1 2 3 4	Deathrate False False False False False False False	False	False False False True True				
	223 224 225	True False False	True False False	True False False	False False			
	226	False	False	False	False			

[227 rows x 20 columns]>

In [8]: data.isnull().sum()

```
0
Out[8]: Country
         Region
                                                 0
         Population
                                                 0
         Area (sq. mi.)
                                                 0
         Pop. Density (per sq. mi.)
                                                 0
         Coastline (coast/area ratio)
                                                 0
                                                  3
         Net migration
         Infant mortality (per 1000 births)
                                                 3
                                                 1
         GDP ($ per capita)
         Literacy (%)
                                                18
         Phones (per 1000)
                                                 4
        Arable (%)
                                                 2
         Crops (%)
                                                 2
         Other (%)
                                                 2
         Climate
                                                22
         Birthrate
                                                 3
                                                 4
         Deathrate
         Agriculture
                                                15
         Industry
                                                16
         Service
                                                15
         dtype: int64
```

In [9]: data.isna().sum

```
Country Region Population Area (sq.
Out[9]: <bound method DataFrame.sum of
         mi.)
              Pop. Density (per sq. mi.) \
         0
                False
                        False
                                                                                  Fals
                                     False
                                                     False
         е
         1
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         е
         2
                False
                       False
                                     False
                                                     False
                                                                                  Fals
         е
                                                                                  Fals
         3
                False
                       False
                                     False
                                                     False
         е
         4
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         е
         . .
                  . . .
                         . . .
         . . .
         222
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         e
         223
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         224
                False
                                     False
                                                     False
                                                                                  Fals
                        False
         е
         225
                False
                        False
                                     False
                                                     False
                                                                                  Fals
         e
                                                                                  Fals
         226
                False
                       False
                                     False
                                                     False
         е
              Coastline (coast/area ratio) Net migration \
         0
                                      False
                                                     False
                                      False
                                                     False
         1
         2
                                      False
                                                     False
         3
                                      False
                                                     False
         4
                                      False
                                                     False
                                        . . .
                                                       . . .
         222
                                      False
                                                     False
         223
                                      False
                                                      True
         224
                                      False
                                                     False
         225
                                      False
                                                     False
         226
                                      False
                                                     False
              Infant mortality (per 1000 births) GDP ($ per capita) Literacy (%)
         \
         0
                                            False
                                                                 False
                                                                               False
         1
                                            False
                                                                 False
                                                                               False
         2
                                            False
                                                                 False
                                                                               False
         3
                                            False
                                                                 False
                                                                               False
         4
                                            False
                                                                 False
                                                                               False
                                                                  . . .
                                                                                 . . .
                                              . . .
         222
                                            False
                                                                 False
                                                                                True
         223
                                             True
                                                                 True
                                                                                True
         224
                                            False
                                                                 False
                                                                               False
         225
                                            False
                                                                 False
                                                                               False
         226
                                            False
                                                                 False
                                                                               False
              Phones (per 1000) Arable (%) Crops (%) Other (%) Climate Birthrat
         е
                          False
                                       False
                                                              False
                                                                       False
                                                                                  Fals
         0
                                                  False
         е
```

1		False	False	False	False	False	Fals
e 2		False	False	False	False	False	Fals
e 3		False	False	False	False	False	Fals
e 4		False	False	False	False	False	Fals
e 							
222		False	False	False	False	False	Fals
e 223		True	False	False	False	False	Tru
e 224		False	False	False	False	False	Fals
e 225		False	False	False	False	False	Fals
e 226		False	False	False	False	False	Fals
е							
0	Deathrate False	Agriculture False	-				
1	False		False				
2	False		False	False			
3	False		True	True			
4	False	True	True	True			
222	False	False	False	False			
223	True	True					
224	False	False					
225	False		False				
226	False	False	False	False			
[227	may 12 12 20	anlmmals					

[227 rows x 20 columns]>

Data Preparation - Filling Missing Values

Out[10]:

GDP (\$ per capita) Literacy (%) Agriculture

Region			
ASIA (EX. NEAR EAST)	3450.0	90.60	0.1610
BALTICS	11400.0	99.80	0.0400
C.W. OF IND. STATES	3450.0	99.05	0.1980
EASTERN EUROPE	9100.0	98.60	0.0815
LATIN AMER. & CARIB	6300.0	94.05	0.0700
NEAR EAST	9250.0	83.00	0.0350
NORTHERN AFRICA	6000.0	70.00	0.1320
NORTHERN AMERICA	29800.0	97.50	0.0100
OCEANIA	5000.0	95.00	0.1505
SUB-SAHARAN AFRICA	1300.0	62.95	0.2760
WESTERN EUROPE	27200.0	99.00	0.0220

```
0
Out[12]: Country
          Region
                                                  0
          Population
                                                  0
          Area (sq. mi.)
                                                  0
          Pop. Density (per sq. mi.)
                                                  0
          Coastline (coast/area ratio)
                                                  0
          Net migration
          Infant mortality (per 1000 births)
                                                  0
                                                  0
          GDP ($ per capita)
          Literacy (%)
          Phones (per 1000)
                                                  0
                                                  0
          Arable (%)
                                                  0
          Crops (%)
          Other (%)
                                                  0
          Climate
          Birthrate
                                                  0
                                                  0
          Deathrate
                                                  0
          Agriculture
                                                  0
          Industry
          Service
                                                  0
          dtype: int64
In [13]: data.isnull().sum() # Confirming All Missing Values are Filled
Out[13]: Country
                                                  0
          Region
                                                  0
                                                  0
          Population
          Area (sq. mi.)
                                                  0
          Pop. Density (per sq. mi.)
                                                  0
          Coastline (coast/area ratio)
                                                  0
                                                  0
          Net migration
          Infant mortality (per 1000 births)
                                                  0
          GDP ($ per capita)
                                                  0
          Literacy (%)
          Phones (per 1000)
                                                  0
          Arable (%)
                                                  0
          Crops (%)
                                                  0
          Other (%)
                                                  0
                                                  0
          Climate
                                                  0
          Birthrate
                                                  0
          Deathrate
```

Data Exploration

Top Countries with highest GDP per capita

```
In [14]: fig, ax = plt.subplots(figsize=(16,6))
top_gdp_countries = data.sort_values('GDP ($ per capita)',ascending=False).h
mean = pd.DataFrame({'Country':['World mean'], 'GDP ($ per capita)':[data['Gups = pd.concat([top gdp countries[['Country','GDP ($ per capita)']],mean],
```

0

0

Agriculture

Industry Service dtype: int64

```
sns.barplot(x='Country',y='GDP ($ per capita)',data=gdps, palette='Set3')
ax.set_xlabel(ax.get_xlabel(),labelpad=15)
ax.set_ylabel(ax.get_ylabel(),labelpad=30)
ax.xaxis.label.set_fontsize(16)
ax.yaxis.label.set_fontsize(16)
plt.xticks(rotation=90)
plt.show()
```


Top Factors affecting GDP per capita

```
In [15]: fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(20,12))
         plt.subplots adjust(hspace=0.4)
         corr to gdp = pd.Series()
         for col in data.columns.values[2:]:
             if ((col!='GDP ($ per capita)')&(col!='Climate')):
                 corr to gdp[col] = data['GDP ($ per capita)'].corr(data[col])
         abs corr to gdp = corr to gdp.abs().sort values(ascending=False)
         corr to gdp = corr to gdp.loc[abs corr to gdp.index]
         for i in range(2):
             for j in range(3):
                 sns.regplot(x=corr to gdp.index.values[i*3+j], y='GDP ($ per capita)
                            ax=axes[i,j], fit reg=False, marker='.')
                 title = 'correlation='+str(corr to gdp[i*3+j])
                 axes[i,j].set title(title)
         axes[1,2].set xlim(0,102)
         plt.show()
```


Countries with low Birthrate and low GDP per capita

```
In [16]: data.loc[(data['Birthrate']<14)&(data['GDP ($ per capita)']<10000)]</pre>
```

Out[16]:

	Country	Region	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	Ir mort bi
9	Armenia	C.W. OF IND. STATES	2976372	29800	99.9	0.00	-6.47	2
18	Belarus	C.W. OF IND. STATES	10293011	207600	49.6	0.00	2.54	
25	Bosnia & Herzegovina	EASTERN EUROPE	4498976	51129	88.0	0.04	0.31	4
30	Bulgaria	EASTERN EUROPE	7385367	110910	66.6	0.32	-4.58	2
42	China	ASIA (EX. NEAR EAST)	1313973713	9596960	136.9	0.15	-0.40	
51	Cuba	LATIN AMER. & CARIB	11382820	110860	102.7	3.37	-1.58	
75	Georgia	C.W. OF IND. STATES	4661473	69700	66.9	0.44	-4.70	
123	Macedonia	EASTERN EUROPE	2050554	25333	80.9	0.00	-1.45	1
168	Romania	EASTERN EUROPE	22303552	237500	93.9	0.09	-0.13	2
169	Russia	C.W. OF IND. STATES	142893540	17075200	8.4	0.22	1.02	
171	Saint Helena	SUB- SAHARAN AFRICA	7502	413	18.2	14.53	0.00	1
174	St Pierre & Miquelon	NORTHERN AMERICA	7026	242	29.0	49.59	-4.86	
181	Serbia	EASTERN EUROPE	9396411	88361	106.3	0.00	-1.33	,
201	Thailand	ASIA (EX. NEAR EAST)	64631595	514000	125.7	0.63	0.00	2
204	Trinidad & Tobago	LATIN AMER. & CARIB	1065842	5128	207.9	7.06	-10.83	:
211	Ukraine	C.W. OF IND.	46710816	603700	77.4	0.46	-0.39	2

Country	Region	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	lr mort bi
	STATES						

Modeling

Training and Testing

```
In [17]: LE = LabelEncoder()
  data['Region_label'] = LE.fit_transform(data['Region'])
  data['Climate_label'] = LE.fit_transform(data['Climate'])
  data.sample()
```

Out[17]:		Country	Region	Population	Area (sq. mi.)	Pop. Density (per sq. mi.)	Coastline (coast/area ratio)	Net migration	Infant mortality (per 1000 births)	GDP (pe capita
	41	Chile	LATIN AMER. &	16134219	756950	21.3	0.85	0.0	8.8	9900.

1 rows × 22 columns

CARIB

```
In [19]: modell = LinearRegression()
    modell.fit(train_X, train_Y)
    train_pred_Y = modell.predict(train_X)
    test_pred_Y = modell.predict(test_X)
    train_pred_Y = pd.Series(train_pred_Y.clip(0, train_pred_Y.max()), index=train_test_pred_Y = pd.Series(test_pred_Y.clip(0, test_pred_Y.max()), index=test_Y
    rmse_train = np.sqrt(mean_squared_error(train_pred_Y, train_Y))
```

```
msle_train = mean_squared_log_error(train_pred_Y, train_Y)
rmse_test = np.sqrt(mean_squared_error(test_pred_Y, test_Y))
msle_test = mean_squared_log_error(test_pred_Y, test_Y)

print('rmse_train:',rmse_train,'msle_train:',msle_train)
print('rmse_test:',rmse_test,'msle_test:',msle_test)
```

rmse_train: 4549.818294037232 msle_train: 4.8419048234242945 rmse test: 5241.662851209217 msle test: 7.360124480705821

```
In [20]: model2 = RandomForestRegressor(n estimators = 50,
                                       max depth = 6,
                                       min weight fraction leaf = 0.05,
                                       max features = 0.8,
                                       random state = 42)
         model2.fit(train X, train Y)
         train pred Y = model2.predict(train X)
         test pred Y = model2.predict(test X)
         train pred Y = pd.Series(train pred Y.clip(0, train pred Y.max()), index=train
         test pred Y = pd.Series(test pred Y.clip(0, test pred Y.max()), index=test Y
         rmse train = np.sqrt(mean squared error(train pred Y, train Y))
         msle train = mean squared log error(train pred Y, train Y)
         rmse test = np.sqrt(mean squared error(test pred Y, test Y))
         msle test = mean squared log error(test pred Y, test Y)
         print('rmse train:',rmse train,'msle train:',msle train)
         print('rmse test:',rmse test,'msle test:',msle test)
```

rmse_train: 2961.008564233517 msle_train: 0.1653562494625042 rmse test: 4627.463993433253 msle test: 0.28797532498173684

Visualization of Results

```
In [21]: plt.figure(figsize=(18,12))
         train test Y = pd.concat([train Y, test Y])
         train test pred Y = pd.concat([train pred Y, test pred Y])
         data shuffled = data.loc[train test Y.index]
         label = data shuffled['Country']
                                                 ':'red',
         colors = {'ASIA (EX. NEAR EAST)
                                                       ':'orange',
                   'EASTERN EUROPE
                   'NORTHERN AFRICA
                                                       ':'gold',
                                                       ':'green',
                   'OCEANTA
                                                       ':'blue',
                   'WESTERN EUROPE
                   'SUB-SAHARAN AFRICA
                                                        ':'purple',
                   'LATIN AMER. & CARIB ':'olive',
                   'C.W. OF IND. STATES ':'cyan',
                   'NEAR EAST
                                                        ':'hotpink',
                   'NORTHERN AMERICA
                                                        ':'lightseagreen',
                   'BALTICS
                                                        ':'rosybrown'}
         for region, color in colors.items():
             X = train test Y.loc[data shuffled['Region']==region]
```

```
Y = train test pred Y.loc[data shuffled['Region']==region]
    ax = sns.regplot(x=X, y=Y, marker='.', fit_reg=False, color=color, scatt
plt.legend(loc=4,prop={'size': 12})
ax.set_xlabel('GDP ($ per capita) ground truth',labelpad=40)
ax.set ylabel('GDP ($ per capita) predicted',labelpad=40)
ax.xaxis.label.set fontsize(24)
ax.yaxis.label.set fontsize(24)
ax.tick params(labelsize=12)
x = np.linspace(-1000,50000,100) # 100 linearly spaced numbers
y = x
plt.plot(x,y,c='gray')
plt.xlim(-1000,60000)
plt.ylim(-1000,40000)
for i in range(0,train test Y.shape[0]):
    if((data shuffled['Area (sq. mi.)'].iloc[i]>8e5) |
       (data shuffled['Population'].iloc[i]>1e8) |
       (data shuffled['GDP ($ per capita)'].iloc[i]>10000)):
        plt.text(train test Y.iloc[i]+200, train test pred Y.iloc[i]-200, la
```


GDP (\$ per capita) ground truth

Total GDP

Top Countries

```
In [22]: data['Total_GDP ($)'] = data['GDP ($ per capita)'] * data['Population']
top_gdp_countries = data.sort_values('Total_GDP ($)',ascending=False).head(1
```

```
other = pd.DataFrame({'Country':['Other'], 'Total_GDP ($)':[data['Total_GDP]]
gdps = pd.concat([top_gdp_countries[['Country', 'Total_GDP] ($)']],other],ignc

fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(20,7),gridspec_kw = {'wistans.barplot(x='Country',y='Total_GDP] ($)',data=gdps,ax=axes[0],palette='Set3axes[0].set_xlabel('Country',labelpad=30,fontsize=16)

axes[0].set_ylabel('Total_GDP',labelpad=30,fontsize=16)

colors = sns.color_palette("Set3", gdps.shape[0]).as_hex()
axes[1].pie(gdps['Total_GDP] ($)'], labels=gdps['Country'],colors=colors,autcaxes[1].axis('equal')
plt.show()
```



```
In [23]: Rank1 = data[['Country','Total_GDP ($)']].sort_values('Total_GDP ($)', ascer
Rank2 = data[['Country','GDP ($ per capita)']].sort_values('GDP ($ per capit
Rank1 = pd.Series(Rank1.index.values+1, index=Rank1.Country)
Rank2 = pd.Series(Rank2.index.values+1, index=Rank2.Country)
Rank_change = (Rank2-Rank1).sort_values(ascending=False)
print('Rank of total GDP - Rank of GDP per capita:')
Rank_change.loc[top_gdp_countries.Country]
```

Rank of total GDP - Rank of GDP per capita:

```
Out[23]: Country
          United States
                                 1
          China
                               118
          Japan
                                14
          India
                               146
          Germany
                                15
          France
                                15
          United Kingdom
                                12
                                17
          Italy
          Brazil
                                84
          Russia
                                75
          dtype: int64
```

Factors affecting Total GDP

```
abs corr to gdp = corr to gdp.abs().sort values(ascending=False)
 corr to gdp = corr to gdp.loc[abs corr to gdp.index]
 print(corr to gdp)
                                       0.639528
Population
Area (sq. mi.)
                                       0.556396
Phones (per 1000)
                                       0.233484
Birthrate
                                      -0.166889
Agriculture
                                      -0.139516
Arable (%)
                                       0.129928
Climate label
                                       0.125791
Infant mortality (per 1000 births)
                                      -0.122076
Literacy (%)
                                       0.099417
Service
                                       0.085096
Region label
                                      -0.079745
Crops (%)
                                      -0.077078
Coastline (coast/area ratio)
                                      -0.065211
```

-0.064882

0.054632

0.050399

-0.035820

-0.028487

Industry

Net migration

Other (%)

Deathrate
Pop. Density (per sq. mi.)

dtype: float64

Comparison of the Top 10

Land Usage

```
plot_data = top_gdp_countries[['Country','Arable (%)', 'Crops (%)', 'Other (
In [26]:
            plot_data = plot_data.set_index('Country')
            ax = plot_data.plot.bar(stacked=True, figsize=(10,6))
            ax.legend(bbox_to_anchor=(1, 1))
            plt.show()
                                                                                                   Arable (%)
          100
                                                                                                   Crops (%)
                                                                                                   Other (%)
           80
           60
           40
           20
                         China
                                 Japan
                                         India
                                                         France
                                                                  United Kingdom
                                                                          Italy
                                                                                  Brazil
                 United States
                                                 Germany
```

Country