Models and Technology Sommersemester 2024

Alle Angaben ohne Gewähr. Keine Garantie auf Vollständigkeit oder Richtigkeit.

1	Introduction						
	1.1	What is Access Control?					
	1.2	Creating and enforcing policies					
2	Four	dations					
	2.1	Design Principles					
		2.1.1 Design Principles of Saltzer and Schroeder (1975)					
		2.1.2 A Contemporary Look at Saltzer and Schroeder's 1975 Design Principles					
	2.2	Policy Administration: Who is in charge of setting policies?					
		2.2.1 Discretionary Access Control (DAC)					
		2.2.2 Mandatory Access Control (MAC)					
	2.3	Access Control Matrix (ACM)					
		2.3.1 Primitive Operations					
		2.3.2 Commands					
		2.3.3 Commands: Example					
		2.3.4 Leak, Safety, Safety Question					

Models and Technology Sommersemester 2024

1 Introduction

1.1 What is Access Control?

1.1.1 Definition according to OSI Basic Reference Model (1989)

- Access Control: "The prevention of unauthorized use of a resource"
- Authorization: "The granting of rights, which includes the granting of access based on access rights"
- Listed as a **security service**: "This service provides protection against unauthorized use of resources"
- Based on **policies**: "The control of access will be in accordance with various security policies"

1.1.2 Aspects of Access Control

- **Policy**: Focus on models, specification of security policies (What does it mean to be secure?)
- **Enforcement**: Focus on technologies, design and implementation of systems (How do we make it secure?)

1.2 Creating and enforcing policies

Classification by [Nobi, 2022]:

- Policy Authoring/Engineering: Define a policy model and access control rules
- Policy Verification and Testing: Test for leaks or contradictory privileges
- Policy Administration: Maintain and update policies/configurations
- Policy Enforcement

2 Foundations

2.1 Design Principles

2.1.1 Design Principles of Saltzer and Schroeder (1975)

Saltzer and Schroeder [Saltzer and Schroeder, 1975] proposed the following design principles for secure systems:

- Economy of mechanism: Keep the design as simple and small as possible
- Fail-safe defaults: Base access decisions on permission, not exclusion (default is lack of access)
- Complete mediation: Every access to every object must be checked
- Open design: Security through obscurity is not a good idea
- Separation of privilege: Divide access rights into multiple parts
- Least privilege: Give programs and users only the permissions they need for the job
- Least common mechanism: Minimize shared mechanisms
- Psychological acceptability: Make security mechanisms easy to use and understand

2.1.2 A Contemporary Look at Saltzer and Schroeder's 1975 Design Principles

Richard Smith [Smith, 2012] took a contemporary look at the design principles and found that most of them are still relevant today. He listed the following principles:

- Continuous improvement: Security is a process, not a product
- Least privilege
- **Defense in depth**: Use multiple layers of security

Models and Technology Sommersemester 2024

- Open design
- Chain of control: Ensure that trustworhy software is being executed
- Deny by default: Default should be lack of access
- Transitive trust: Trust should be transitive
- Separation of duty: Critical tasks should be divided among multiple individuals or entities

2.2 Policy Administration: Who is in charge of setting policies?

2.2.1 Discretionary Access Control (DAC)

In **Discretionary Access Control (DAC)** each resource is assigned an owner. The owner can decide who has access to the resource.

2.2.2 Mandatory Access Control (MAC)

In Mandatory Access Control (MAC) access is controlled by the system, not the owner. The system enforces access control based on a system-wide policy.

2.3 Access Control Matrix (ACM)

The **Protection State** of a system consists of all components and their privileges over each other. The **Access Control Matrix (ACM)** encodes the protection state.

	s_1	 Sn	01	 Om
s_1				
:				
Sn				

- Subjects $S = \{s_1, \ldots, s_n\}$
- Objects $O = S \cup \{o_1, \ldots, o_m\}$
- Rights $R = \{r_1, ..., r_k\}$
- Entries $A[s_i, o_i] \subseteq R$

2.3.1 Primitive Operations

- **create subject** *s*; **create object** *o* (Creates new column/row)
- **destroy subject** *s*; **destroy object** *o* (Removes column/row)
- **enter** *r* **into** A[s, o] (Adds right *r* for subject *s* over object *o*)
- **delete** r **from** A[s, o] (Removes right r for subject s over object o)

Modification of the ACM usually requires executing a sequence of operations.

2.3.2 Commands

If all conditions are met, all operations (conjunction \land) are executed, otherwise nothing happens.

Models and Technology Sommersemester 2024

2.3.3 Commands: Example

```
command make.file(p, f)

create object f;

center own into A[p, f];

enter r into A[p, f];

enter w into A[p, f];
```

2.3.4 Leak, Safety, Safety Question

- **Leak**: Addings a right r where there was not one before is called *leaking*
- **Safety**: If a system S, beginning in initial state s_0 cannot leak right r, it is safe with respect to the right r
- Safety Question: Does there exist one algorithm whether an arbitrary protection system S with initial state s_0 is safe with respect to a generic right r?

The Safety Question is decicable for **mono-operational** commands. In general, the Safety Question is undecidable.

Models and Technology Sommersemester 2024

References

[Nobi, 2022] Nobi, M. N. (2022). *Towards Machine Learning Based Access Control.* PhD thesis, The University of Texas at San Antonio.

[Saltzer and Schroeder, 1975] Saltzer, J. and Schroeder, M. (1975). The protection of information in computer systems. *Proceedings of the IEEE*, 63(9):1278–1308.

[Smith, 2012] Smith, R. E. (2012). A contemporary look at saltzer and schroeder's 1975 design principles. *IEEE Security and Privacy*, 10(6):20–25.