Neural Turing Machines

Alex Graves, Greg Wayne & Ivo Danihelka

Aviral Kumar

Indian Institute of Technology Bombay

Table of contents

- 1. Introduction
- 2. Read, Write & Addressing
- 3. Controller
- 4. Experiments

Introduction

RNNs:

- Learn, perform complex data transformations
- Turing-Complete ⇒ simulate arbitrary programs
- Not so simple in practice

LSTM:

- Addresses vanishing gradient and exploding gradient problems
- Can learn over longer durations; selectively forget information

Idea

- Extend the capabilities of Neural Networks by coupling them to external memory sources.
- Add a memory and perform rule-based manipulation
- Learn Programs using inputs and outputs
- Analogous to TM

$$TM = Finite\ State\ Automaton\ +\ Memory\ Tape$$

$$NTM = Neural\ Network\ +\ Memory$$

NTM Architecture

Every component is differentiable \implies gradient descent

Read-Write Architecture

- Blurry reads and writes
- Attentional "focus" mechanism
- Memory location in focus determined by outputs from heads
- Memory = $N \times M$ matrix; $N = \#(\text{memory locations}); M = \text{size}(Mem_i)$
- Outputs define normalised weighting over rows in a memory matrix
- Ability to focus sharply and weakly both

Addressing Mechanisms

Two types: Content-based & Location-based

Content-based Addressing

Focus attention on locations with similar current values and values emitted by controller

Location-based Addressing

Focus attention on specific locations in the memory matrix

Content-based Addressing

M length key vector $\mathbf{k_t}$ (produced by the head) compared to $\mathbf{M_t}(\mathbf{i})$ by similarity measure $S[\cdot,\cdot]$

Positive key strength β_t to amplify or attenuate a focus

Output: Normalised weighting w_t^c

$$w_t^c(i) \leftarrow \frac{exp(\beta_t S[\mathbf{k_t}, \mathbf{M_t(i)}])}{\sum_j exp(\beta_t S[\mathbf{k_t}, \mathbf{M_t(i)}])}$$

In the paper, S is cosine similarity

Location-based addressing

Two issues to handle : random-access jumps, iterations Notion of **shift** of a weighting (used to shift focus across locations)

1. Interpolation

Scalar interpolation gate $g_t \in (0,1)$: Scalar to blend between the weightings $\mathbf{w_t}$ and $\mathbf{w_{(t-1)}}$

Gated weighting: $\mathbf{w}_{t}^{g} \leftarrow g_{t}\mathbf{w}_{t}^{c} + (1 - g_{t})\mathbf{w}_{t-1}^{c}$

2. Shift Weighting (s_t)

Defines a normalised distribution over integer shifts Examples: Softmax, discrete values

Rotation applied to $\mathbf{w_t^g}$ by s_t is given b the circular convolution:

$$\widetilde{w}_t(i) \leftarrow \Big(\sum_{i=0}^{N-1} w_t^g(i) s_t(i-j)\Big) \mod N$$

Sharpening : $w_t(i) \leftarrow \frac{\widetilde{w}_t(i)^{\gamma_t}}{\sum_j \widetilde{w}_t(j)^{\gamma_t}}; \gamma_t \geq 1$

Combined Addressing Modes

Three modes of addressing:

1. Purely Content-based

2. Content-based + Shifting

Allows focus on the top of a specific block and then move to a particular position in the block (Arrays, structures)

3. Rotation without using content

Iterate through a sequence of addresses by advancing same distance at each time step. (Iterators, Loops)

Reading

Weightings are normalised: $\sum_i w_t(i) = 1, 0 \le w_t(i) \le 1, \forall i$ *M*-length read vector $\mathbf{r_t}$ is defined as convex-combination of row vectors $\mathbf{M_t}(\mathbf{i})$ in memory:

$$\mathbf{r_t} \leftarrow \sum_i w_t(i) \mathbf{M_t(i)}$$

Writing

Input and Forget Gates LSTM \implies Write = erase + add

Erase Operation

Read Head emits $\mathbf{e_t}$, $\forall i, \mathbf{e_t}(\mathbf{i}) \in (0,1)$. Reset memory as:

$$\widetilde{\mathbf{M}}_t(i) \leftarrow \mathbf{M}_{t-1}(i)[\mathbf{1} - w_t(i)\mathbf{e_t}]$$

Add Operation

Write Head emits a_t (add vector). Reset memory as:

$$\mathbf{M}_t(i) \leftarrow \widetilde{\mathbf{M}}_t(i) + w_t(i)\mathbf{a_t}$$

- Both erase and add differentiable
- Fine gain control over the memory, as erase and add vectors independent

Controller Architecture

- Controller: A neural network: LSTM-RNN or Feed Forward
- LSTM-RNN's internal memory analogous to RAM (can remember past sequences)
- Feed Forward may require multiple read-write heads (to remember)

Training

- Fully differentiable from beginning to the end
- Trained using Gradient Descent analogous to LSTM
- Used RMSProp (a variant of Stochastic Gradient Descent) to train
- Gradients clipped to the range (-10, 10)
- LSTM NTM had 3 hidden stacked layers

Schematic Diagram - 1

Schematic Diagram - 2

Copy

Test storage and recall of a sequence of information. Trained with sequences of 8 bit randomly chosen vectors, with $L(Seq) \in (1, 20)$.

Generalise the algorithm to longer sequences; not observed in LSTM Networks. Algorithm:

- 1. while input delimiter not seen do
- 2. receive input vector
- 3. write input to head location
- increment head location by 1
- 5. end while
- 6. return head to start location
- 7. while true do
- 8. read output vector from head location
- 9. emit output
- 10. increment head location by 1
- 11. end while

Priority Sort

Inputs: Seq of random binary vectors + a scalar priority for each **Target:** Seq contains the binary vectors sorted according to priorities

- Hash table kind of algorithm learned
- Priority determined locations of write
- Output in order of increasing locations

Observations:

- NTM-LSTM and NSTM-FF both outperform LSTM on this task
- Best results using 8 read-write heads, probably due to better sorting with unary vector operations

Associative Recall

Inputs: A sequence of vectors separated by delimiters

Outputs: Given an input item, output the next item in the previously presented sequence

Observations:

- NTM-LSTM and NTM-FF both learn in 10⁵ episodes, LSTM takes a million
- NTM-FF learns faster than NTM-LSTM
- External memory of more advantage than internal

Algorithm:

- 1. When item delimiter is presented, write compressed representation of the previous three time slices of the item.
- 2. Calculate same representation of query item, use content based lookup to retrieve the item, and then shift by 1 unit to next item.

Comments

- A huge benefit over RNNs and LSTMs is that it can learn generic algorithms, not restricted to properties of inputs/outputs presented.
- The paper could have explained more rigorously (mathematically) the training procedure of NTM and why NTM outperforms LSTM in every task.
- Reinforcement Learning, evolutionary learning could be applied as a future work
- The paper seems to be a bit biased towards proving NTM's performance, but the justification doesn't look enough.
- Alex Graves points out in one of his NIPS tutorials that this framework can now learn shortest path algorithm in a graph.