实变函数

- 1. σ 代数与可测: 设 $X = \mathbb{R}^n$, 集类 $\Sigma = \{E \subset \mathbb{R}^n\}$ 满足下面的三个性质, 则称 Σ 为一个 σ 代数, 称 (\mathbb{R}^n , Σ) 为可测空间, 称 $E \in \Sigma$ 为可测集:
 - (a) 平庸封闭: ϕ , $\mathbb{R}^n \subset \Sigma$;
 - (b) 余运算封闭: 若 $E \in \Sigma$, 则 $E^c = \mathbb{R}^n \setminus E \in \Sigma$;
 - (c) 可列并封闭: 若 $E_i \in \Sigma, i \in \mathbb{N}$, 则 $\bigcup_{i=1}^{\infty} E_i \in \Sigma$;
 - i. (或) 可列交封闭: 若 $E_i \in \Sigma$, $i \in \mathbb{N}$, 则 $\bigcap_{i=0}^{\infty} E_i \in \Sigma$;
- 2. 不等号定义: 设 $X = \mathbb{R}^n$, $a = (a_1, ..., a_n)^T$, $b = (b_1, ..., b_n)^T \in \mathbb{R}^n$, 若 $a_i \leq b_i$, $1 \leq i \leq n$, 则称 $a \leq b$;
 - (a) 半开半闭区间: $(a, b] = \{x \in \mathbb{R}^n, a_i < x \le b_i, 1 \le i \le n\};$
- 3. 测度: 对集类 $\mathfrak{C} = \{(a,b], a,b \in \mathbb{R}^n, a < b\}$, 定义测度 $m : \mathfrak{C} \to [0,+\infty]((a,b] \to m(a,b]), m(a,b] = \prod_{i=1}^n (b_i a_i);$
- 4. 集类生成的 σ 代数: 设 $X = \mathbb{R}^n$, 集类 $\mathfrak{C} = \{(a,b]\}$, 则 $\exists !\sigma$ 代数 $\sigma(\mathfrak{C})$ 使得 $\mathfrak{C} \subset \sigma(\mathfrak{C})$, 且若还有一个 σ 代数 Σ 满足 $\mathfrak{C} \subset \Sigma$, 则 $\sigma(\mathfrak{C}) \subset \Sigma$. 称 $\sigma(\mathfrak{C})$ 为由 \mathfrak{C} 生成的 σ 代数;
 - (a) Borel σ 代数: $\sigma(\mathfrak{C}) = \beta$. 可测空间 (\mathbb{R}^n, β) 称为 Borel 可测空间, \mathbb{R}^n 上的子集 $B \in \beta$ 作为 β 的元素被称为 Borel 可测集;
 - i. $\beta = \sigma(\{(a,b]\}) = \sigma(\{(a,b)\}) = \sigma(\{[a,b]\}) = \sigma(\{\mathcal{F},\mathcal{F},\mathcal{F}\});$
 - ii. 子集 B 的测度: $m(B) = \inf\{\sum_{n=1}^{\infty} m(I_n), B \subset \bigcup_{n=1}^{\infty}\}$, 其中 I_n 为 半开半闭区间;
 - (b) Borel 测度空间: 装配了测度 m 的 Borel 可测空间 (\mathbb{R}^n, β, m);
 - i. $m(\phi) = 0$;
 - ii. 可列可加性: 若可列个 Borel 可测集 $B_i \in \beta, i \in \mathbb{N}$, 且它们两两不交 $B_i \cap B_j = \phi$, 则 $m(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} m(B_i)$;
 - (c) Lebesgue σ 代数: 称 $\bar{\beta} = \mu = \sigma(\{z \subset B | B \in \beta, m(B) = 0\} \cup \beta)$ 即全部零测度集的全体子集为 Lebesgue σ 代数, 称 $E \in \bar{\beta}$ 为 Lebesgue 可测集;

- 5. 测度的性质:
 - (a) 可数集 $E = \{x_i, i \in \mathbb{N}\} \in \mu, m(E) = 0;$
 - (b) $\{x_0\} \in \mu, m(\{x_0\}) = 0;$
 - (c) 次可加性: $m(\bigcup_{i=1}^{\infty} E_i) \leq \sum_{i=1}^{\infty} (E_i);$
 - (d) 下连续性: 若 $\{E_i\}_{i=1}^{\infty} \subset \mu, E_1 \subset E_2 \subset ... \subset E_i \subset ..., 则 m(\bigcup_{i=1}^{\infty} E_i) = m(\lim_{i \to \infty} E_i) = \lim_{i \to \infty} m(E_i);$
 - (e) 上连续性: 若 $\{E_i\}_{i=1}^{\infty} \subset \mu, ... \subset E_i \subset ... \subset E_2 \subset E_1$, 且 $m(E_1) < +\infty$, 则 $m(\cap_{i=1}^{\infty} E_i) = m(\lim_{i \to \infty} E_i) = \lim_{i \to \infty} m(E_i)$;
 - (f) 若 $E \subset \mu, x_0 \in \mathbb{R}^n, E + x_0 = \{x + x_0, x \in E\}$, 则 $m(E) = m(E + x_0)$;
- 6. 可测函数: 函数 $f: (\mathbb{R}^n, \mu) \to (\mathbb{R}, \beta)$, 若 $\forall B \subset \mathbb{R}$ (Borel 可测集) 有 $f^{-1}(B) \subset \mathbb{R}^n$ (Lebesgue 可测集), 则称 f 为可测函数;
 - (a) 设函数 $f: E \to \mathbb{R}$, $E \in \mu$ (Lebesgue 可测集), 若 $\forall B \subset \mathbb{R}$ (Borel 可测集), 有 $f^{-1}(B) \subset \mathbb{R}^n$ 是 Lebesgue 可测集, 则称 $f \in E$ 上的可测函数;
 - ℝ) 是 Lebesgue 可测集;

(b) $f: E \to \mathbb{R}$ 是可测函数 $\Leftrightarrow \forall t \in \mathbb{R}, f^{-1}(t, +\infty)$ (或 $f^{-1}[t, +\infty), f^{-1}(-\infty, t), f^{-1}(-\infty, t], f^{-1}(a, t)$

- 7. 几乎处处: a.e. 表示几乎处处, 即除去零测集 $m(\{x \in E : f_k(x) \to f(x)\}) = 0$ 外的部分;
- 8. 控制收敛定理: 设 $\{f_k(x)\}_{k=1}^{\infty}: E \subset \mathbb{R}^n \to \mathbb{R}, f_k(x) \in L(E), k \in \mathbb{N}$ 即 Lebesgue 可积, 且 $\lim_{k \to +\infty} f_k(x) \to f(x), a.e.x \in E$, 存在 $F(x) \in L(E)$ 使得 $|f_k(x)| \leq F(x), a.e.x \in E, \forall k \in \mathbb{N}$, 则 $\lim_{k \to +\infty} \int_E f_k(x) dx = \int_E \lim_{k \to +\infty} f_k(x) dx = \int_E f(x) dx$;
- 9. 函数 $f,g:E\subset\mathbb{R}^n\to\mathbb{R}$ 可测, 若 $f(x)=g(x),a.e.x\in E,$ 则 $\int_E f(x)dx=\int_E g(x)dx;$
- 10. 设 $E \subset \mathbb{R}^n$ 是 Lebesgue 可测集, 函数 $f : E \to \mathbb{R}$ 是可测函数, 等价类 $[f] = \{g : E \to \mathbb{R}$ 是可测函数, $g(x) = f(x), a.e.x \in E\}$, 代表元 $f \in [f]$, 对任意 $f_1, f_2 \in [f]$, 有 $\int_E f_1(x) dx = \int_E f_2(x) dx$;

- 11. L^P 空间: 给定 $1 \le P < +\infty, L^P(E) := \{[f]: f: E \to \mathbb{R}$ 是可测函数, $\int_E |f(x)|^P dx < +\infty\}$. 当 $P = +\infty$ 时, $L^\infty(E) = \{[f]: f: E \to \mathbb{R}$ 是可测函数, $\inf_{z \in E, m(z) = 0} \left(\sup_{E \setminus Z} |f(x)|\right) < +\infty\}$. 有时可以用代表元 f 代替等价类 [f], 而省略 [f];
 - (a) L^P 赋范空间: 当 $1 \leq P < +\infty$, $X = L^P(E)$, $||\cdot||_P : L^P(E) \to \mathbb{R}(f \to ||f||_P)$, $||f||_P = \left(\int_E |f(x)|^P dx\right)^{\frac{1}{P}} < +\infty$. 当 $P = +\infty$, $||\cdot|| : L^\infty(E) \to \mathbb{R}(f \to ||f||_\infty)$, $||f||_\infty = \inf_{m(z)=0, z \in E} \left(\sup_{E \setminus Z} |f(x)|\right) < +\infty$. 则 $(L^P, ||\cdot||_P)$ 是赋范空间;
 - i. $L^P(E)$, $1 \le P \le +\infty$ 是完备赋范空间 (巴拿赫空间);
 - ii. 当 $1 \le P < +\infty$ 时, $L^P(E)$ 是可分空间; 当 $P = +\infty$ 时, $L^P(E)$ 是不可分空间;
 - (b) L^P 线性空间: 空间 $X = L^P(E), 1 \le P \le +\infty$, 数域 $K = \mathbb{R}$, 加法 $+: X \times X \to X((f,g) \to f+g, (f+g)(x) = f(x)+g(x), \forall x \in E)$, 数乘 $\cdot: K \times X \to X((\alpha,f) \to \alpha f, (\alpha f)(x) = \alpha f(x), \forall x \in E)$, 则 $(L^P(R), \mathbb{R}, +, \cdot)$ 是线性空间;
- 12. Holder 不等式: 若 $f \in L^P(E), g \in L^q(E), \frac{1}{p} + \frac{1}{q} = 1, 则 \int_E |f(x)g(x)| dx \le \left(\int_E |f(x)|^p dx\right)^{\frac{1}{p}} \left(\int_E |g(x)|^q dx\right)^{\frac{1}{q}}.$ 即 $||fg||_1 \le ||f||_p ||g||_q$;
 - (a) 当 p = q = 2 时, Holder 不等式退化为柯西-许瓦兹不等式;
 - (b) $\stackrel{.}{=}$ $m(E) < +\infty, 1 \le P_1 < P_2 < +\infty,$ $\stackrel{.}{=}$ $L^{P_2}(E) \subset L^{P_1}(E);$
- 13. 勒让德多项式: 在 L^2 上的基 $\{1, t, t^2, ..., t^n, ...\}$ 经过施密特正交化后得到的正交规范基;