NAMA: Kahlil Gibran Saputra

NIM: 2109056032

Matkul: Pengolahan Citra Digital

Soal no 1

Matriks yang dibuat: f=[3 9 5 5 3; 9 3 3 9 9; 9 5 5 3 5; 3 3 9 9 3; 5 3 9 5 9]

3	9	5	5	3
9	3	3	9	9
9	5	5	3	5
3	3	9	9	3
5	3	9	5	9

Mask:

0	-1	0
-1	4	-1
0	-1	0

Hasil Konvolusi : Hasil Konvolusi = conv2 (f,mask,'same')

Baris Pertama

$$3 = (3.0) + (9.(-1) + (5.0) + (9.(-1)) + (3.4) + (3.((-1)) + (9.0) + (5.((-1)) + (5.0) = -14)$$

$$3 = (9.0) + (5.(-1) + (5.0) + (3.(-1)) + (3.4) + (9.((-1)) + (5.0) + (5.((-1)) + (3.0) = -10)$$

$$9 = (5.0) + (5.(-1) + (3.0) + (3.(-1)) + (9.4) + (9.((-1)) + (5.0) + (3.((-1)) + (5.0) = 16)$$

Baris Kedua

$$5 = (9.0) + (3.(-1) + (3.0) + (9.(-1)) + (5.4) + (5.((-1)) + (3.0) + (3.((-1)) + (9.0) = 0$$

$$5 = (3.0) + (3.(-1) + (9.0) + (5.(-1)) + (5.4) + (3.((-1)) + (3.0) + (9.((-1)) + (9.0) = 0$$

$$3 = (3.0) + (9.(-1) + (9.0) + (5.(-1)) + (3.4) + (5.((-1)) + (9.0) + (9.((-1)) + (3.0) = -16$$

Baris Ketiga

$$3 = (9.0) + (5.(-1) + (5.0) + (3.(-1)) + (3.4) + (9.((-1)) + (5.0) + (3.((-1)) + (9.0) = -8$$

$$9 = (5.0) + (5.(-1) + (3.0) + (3.(-1)) + (9.4) + (9.((-1)) + (3.0) + (9.((-1)) + (5.0) = 10$$

$$9 = (5.0) + (3.(-1) + (5.0) + (9.(-1)) + (9.4) + (3.((-1)) + (9.0) + (5.((-1)) + (9.0) = 16$$

Hasil pembuktian di Octave

```
# Octave 9.1.0, Fri Apr 05 00:17:13 2024 GMT <unknown@WIN-HST2VUP2MQ0>
f=[3 9 5 5 3; 9 3 3 9 9; 9 5 5 3 5; 3 3 9 9 3; 5 3 9 5 9]
mask=[0 -1 0; -1 4 -1; 0 -1 0]
HasilKonvolusi=conv2(f,mask,'same')
>> f=[3 9 5 5 3; 9 3 3 9 9; 9 5 5 3 5; 3 3 9 9 3; 5 3 9 5 9]
f =
  3
     9
        5
            5
               3
  9
    3 3 9 9
  9
    5 5
           3 5
  3
     3
        9
            9
               3
  5 3 9 5 9
>> mask=[0 -1 0; -1 4 -1; 0 -1 0]
mask =
  0 -1 0
 -1 4 -1
  0 -1 0
>> HasilKonvolusi=conv2(f,mask,'same')
HasilKonvolusi =
  -6
     25
          3 3
                  -2
  21 -14 -10
              16
                  19
  19
      0
           0 -16 5
     -8
          10 16 -11
  -5
  14 -5
           19 -7 28
```

Konvolusi gambar

Soal no 2

a. Program matlabnya

% Citra RGB awal

% Menghitung citra grayscale(soal a)fo = (1/3) * (R + G + B);

50, 70];

80,

subplot(4,1,1); imshow(fo, []); title('citra grayscale');

Hasilnya;

60, 80,

b. Program matlabnya

% Citra RGB awal

$$B = [50, 55, 90, 50, 40; \\ 30, 50, 80, 50, 70; \\ 40, 70, 70, 10, 80; \\ 70, 50, 70, 40, 50; \\$$

60, 80, 80, 50, 70];

```
% Menghitung citra grayscale(soal a)fo = (1/3) * (R +
G + B);
subplot(4,1,1); imshow(fo, []); title('citra grayscale');
% Mengubah ke citra negasi(soal b)
% Menghitung nilai maksimum
max_value = max(fo(:));
% Menghitung citra negatif citra_negatif =
max_value - fo;
```

% Menampilkan citra negatif subplot(4,1,2); imshow(citra_negatif, []); title('citra negatif');

hasilnya;

```
citra negatif =
    35
           45
                   0
                         30
                               50
    40
           30
                  20
                         60
                               30
    30
           20
                         60
                  10
                               20
    20
           40
                  20
                         50
                               30
                        30
    30
           30
                  10
                               10
```

c. Bila pada citra fo dilakukan pemfilteran dengan filter rata-rata (nilai piksel yang dipinggir tidak di proses), bagaimana citra hasilnya?

```
% Citra RGB awal
             R = [50, 40, 90, 80, 50;
                  40, 50, 40, 20, 50;
                  80, 70, 80, 10, 80;
                  50, 40, 70, 60, 50;
                  60, 40, 80, 70, 90];
            G = [65, 40, 90, 50, 30;
                  80, 80, 90, 20, 60;
                  60, 70, 90, 70, 50;
                  90, 60, 70, 20, 80;
                  60, 60, 80, 60, 80];
             B = [50, 55, 90, 50, 40;
                  30, 50, 80, 50, 70;
                  40, 70, 70, 10, 80;
                  70, 50, 70, 40, 50;
                  60, 80, 80, 50, 70];
% Menghitung citra grayscale(soal a)fo = (1/3) * (R +
G + B);
subplot(4,1,1); imshow(fo, []); title('citra grayscale');
% Mengubah ke citra negasi(soal b)
% Menghitung nilai maksimum
max_value = max(fo(:));
% Menghitung citra negatif citra_negatif =
max_value - fo;
% Menampilkan citra negatif
subplot(4,1,2); imshow(citra_negatif, []); title('citra negatif');
% Melakukan pemfilteran dengan filter rata-rata(soal c)filter_rata_rata =
fspecial('average', [3 3]);
% Membuat filter rata-rata 3x3
```

hasil_rata_rata = filter2(filter_rata_rata, fo, 'same'); subplot(4,1,3); imshow(hasil_rata_rata, []); title('filter rata-rata');

hasilnya adalah:

```
hasil rata rata =
   23.3333
             41.1111
                       39.4444
                                  38.8889
                                            21.1111
   37.7778
             64.4444
                       59.4444
                                  58.8889
                                            32.2222
             64.4444
                                            32.2222
   40.0000
                       55.5556
                                  56.6667
   41.1111
             66.6667
                       60.0000
                                  63.3333
                                            37.7778
   26.6667
             43.3333
                       40.0000
                                  43.3333
                                            26.6667
```

d. Bila pada citra fo dilakukan pemfilteran dengan filter median (nilai piksel yang dipinggir tidak di proses), bagaimana citra hasilnya?

```
% Citra RGB awal
             R = [50, 40, 90, 80, 50;
                  40, 50, 40, 20, 50;
                  80, 70, 80, 10, 80;
                  50, 40, 70, 60, 50;
                  60, 40, 80, 70, 90];
            G = [65, 40, 90, 50, 30;
                  80, 80, 90, 20, 60;
                  60, 70, 90, 70, 50;
                  90, 60, 70, 20, 80;
                  60, 60, 80, 60, 80];
             B = [50, 55, 90, 50, 40;
                  30, 50, 80, 50, 70;
                  40, 70, 70, 10, 80;
                  70, 50, 70, 40, 50;
                  60, 80, 80, 50, 70];
% Menghitung citra grayscale(soal a)fo = (1/3) * (R +
subplot(4,1,1); imshow(fo, []); title('citra grayscale');
% Mengubah ke citra negasi(soal b)
% Menghitung nilai maksimum
max_value = max(fo(:));
% Menghitung citra negatif citra_negatif =
max value - fo;
% Menampilkan citra negatif
subplot(4,1,2); imshow(citra_negatif, []); title('citra negatif');
% Melakukan pemfilteran dengan filter rata-rata
filter rata rata = fspecial('average', [3 3]); % Membuat filter rata-rata 3x3
hasil_rata_rata = filter2(filter_rata_rata, fo, 'same');
```

subplot(4,1,3); imshow(hasil_rata_rata, []); title('filter rata-rata');

% Melakukan pemfilteran dengan filter medianhasil_median = medfilt2(fo, [3 3]); subplot(4,1,4); imshow(hasil_median, []); title('filter median')

hasil_median =							
40	0						
60	30						
60	30						
70	40						
60	0						
	60 60 70						

Hasil dari citra yang ditampilkan adalah

