Állandó együtthatós homogén lineáris differenciálegyenletek

Szili László

A lineáris differenciálegyenletek elméletéből tudjuk, hogy egy inhomogén lineáris differenciálegyenlet-rendszer megoldásának előállításához elég ismernünk a homogén egyenlet egy alaprendszerét. Ennek előállítására azonban csak állandó együtthatós esetben van általános módszer. A két "klasszikus" eljárást ismerteti pl. Tóth János és Simon L. Péter könyve (Differenciálegyenletek, Typotex Kiadó, 2005). A továbbiakban B. van Rootselaar 1985-ben publikált (Amer. Math. Monthly 92 (1985), 321–327) eljárását ismertetjük.

1. Kezdetiérték-problémák megoldása

Adott $n \times n$ -es komplex A mátrix esetén keressük az

$$x'(t) = Ax(t)$$

homogén lineáris differenciálegyenlet komplex értékű megoldásait.

Ismertnek vesszük azt a tényt, hogy minden $c \in \mathbb{C}^n$ vektorra az

$$(1) x'(t) = Ax(t), x(0) = c$$

kezdetiérték-probléma globálisan egyértelműen oldható meg, és a teljes megoldás az egész $\mathbb R$ intervallumon értelmezve van.

Tegyük fel, hogy a $\varphi: \mathbb{R} \to \mathbb{C}^n$ függvény (1) teljes megoldása, azaz

$$\varphi'(t) = A\varphi(t) \quad (t \in \mathbb{R}), \qquad \varphi(0) = c.$$

Ekkor $\varphi''(t)=A\varphi'(t)=A^2\varphi(t), \ \ \varphi'''(t)=A^2\varphi'(t)=A^3\varphi(t),\dots$ alapján

(2)
$$\varphi^{(k)}(t) = A^k \varphi(t), \quad \varphi^{(k)}(0) = A^k c \quad (k = 0, 1, \dots, n-1).$$

Tekintsük az A mátrix karakterisztikus polinomját:

$$K_A(\lambda) := \det(\lambda E - A) = \lambda^n + a_{n-1}\lambda^{n-1} + \dots + a_1\lambda + a_0,$$

ahol E az n-dimenziós egységmátrix. Jelölje $\lambda_1, \lambda_2, \ldots, \lambda_p$ ennek különböző komplex gyökeit, és legyen ezek multiplicitása rendre m_1, m_2, \ldots, m_p .

A lineáris algebrából ismert Cayley-Hamilton-tétel szerint az A mátrix gyöke a karakterisztikus polinomjának, azaz

$$A^{n} + a_{n-1}A^{n-1} + a_{1}A + a_{0}E = \mathbf{0} \in \mathbb{C}^{n \times n},$$

ahol $\mathbf 0$ az n-dimenziós nullmátrix. Ezt az egyenletet $\varphi(t)$ -vel megszorozva

$$A^{n}\varphi(t) + a_{n-1}A^{n-1}\varphi(t) + \dots + a_{1}A\varphi(t) + a_{0}\varphi(t) = \mathbf{0} \in \mathbb{C}^{n} \qquad (t \in \mathbb{R})$$

adódik, amiből (2) felhasználásával azt kapjuk, hogy

$$\varphi^{(n)}(t) + a_{n-1}\varphi^{(n-1)}(t) + \dots + a_1\varphi'(t) + a_0\varphi(t) = \mathbf{0} \in \mathbb{C}^n \qquad (t \in \mathbb{R}).$$

(Az utóbbi két esetben $\mathbf{0}$ az n-dimenziós nullvektort jelöli.) Ez azt jelenti, hogy a $\varphi: \mathbb{R} \to \mathbb{C}^n$ függvény megoldása az

(3)
$$x^{(n)}(t) + a_{n-1}x^{(n-1)}(t) + \dots + a_1x'(t) + a_0x(t) = \mathbf{0}$$

vektoregyenletnek. Ennek mindegyik komponense egy n-edrendű, állandó együtthatós homogén lineáris differenciálegyenlet, ezért az általános megoldása explicit alakban előállítható. Figyeljük meg azt is, hogy mindegyik egyenlet karakterisztikus polinomja éppen az A mátrix karakterisztikus polinomja.

Ismeretes, hogy mindegyik komponensben az m_j -szeres λ_j (j = 1, 2, ..., p) gyökhöz tartozó lineárisan független megoldások:

(4)
$$\frac{t^k}{k!}e^{\lambda_j t} \qquad (k=0,1,\ldots,m_j-1).$$

(Az $\frac{1}{k!}$ helyett bármilyen 0-tól különböző számokat vehetnénk. Az együtthatók ezen megválasztásának az előnyét később lehet majd látni.) Rendezzük ezeket a függvényeket egyetlen oszlopvektorba növekvő j indexek és csökkenő t hatványok szerint, és az így kapott $\mathbb{R} \to \mathbb{C}^n$ típusú vektorfüggvényt jelöljük f-fel:

(5)
$$f(t) := \begin{bmatrix} \frac{t^{m_1 - 1}}{(m_1 - 1)!} e^{\lambda_1 t} \\ \vdots \\ t e^{\lambda_1 t} \\ e^{\lambda_1 t} \\ \vdots \\ \frac{t^{m_p - 1}}{(m_p - 1)!} e^{\lambda_p t} \\ \vdots \\ t e^{\lambda_p t} \\ e^{\lambda_p t} \end{bmatrix} \qquad (t \in \mathbb{R}).$$

Egyszerűen meggondolható az, hogy (3) általános megoldása Rf(t) $(t \in \mathbb{R})$, ahol R tetszőleges $n \times n$ -es komplex mátrix. Következésképpen az (1) kezdetiértékproblémának a φ teljes megoldásához létezik olyan $R \in \mathbb{C}^{n \times n}$ mátrix, hogy

(6)
$$\varphi(t) = Rf(t) \quad (t \in \mathbb{R}).$$

Ezután már csak az R mátrixot kell meghatároznunk. (6)-ból

$$\varphi^{(k)}(t) = Rf^{(k)}(t) \qquad (k = 0, 1, \dots, n-1)$$

adódik, ezért

(7)
$$\varphi^{(k)}(0) = Rf^{(k)}(0) \qquad (k = 0, 1, \dots, n-1).$$

Vezessük most be a következő jelöléseket:

$$W[\varphi;t] := [\varphi(t), \varphi'(t), \varphi''(t), \dots, \varphi^{(n-1)}(t)] \in \mathbb{C}^{n \times n} \qquad (t \in \mathbb{R});$$
(a \varphi f\text{\tiggsy\'eny} Wronszki-f\'ele m\'atrixa)

(8)
$$G(c) := W[\varphi; 0] = [\varphi(0), \varphi'(0), \varphi''(0), \dots, \varphi^{(n-1)}(0)] = (l. (2))$$
$$= [c, Ac, A^{2}c, \dots, A^{n-1}c] \in \mathbb{C}^{n \times n};$$
$$F(0) := W[f; 0] = [f(0), f'(0), f''(0), \dots, f^{(n-1)}(0)] \in \mathbb{C}^{n \times n}.$$

Vegyük észre azt, hogy ezekkel (7) így is írható:

$$G(c) = RF(0).$$

Az $F(0) \in \mathbb{C}^{n \times n}$ mátrix invertálható, ezért

$$R = G(c)F^{-1}(0).$$

A fenti gondolatmenetet visszafele alkalmazva adódik, hogy ezzel az R mátrixszal képzett $\varphi(t)=Rf(t)$ ($t\in\mathbb{R}$) függvény valóban megoldása a (1) kezdetiértékproblémának. Beláttuk tehát a következő állítást:

Tétel. Tetszőleges $A \in \mathbb{C}^{n \times n}$ mátrix és $c \in \mathbb{C}^n$ vektor esetén az

$$x'(t) = Ax(t), \qquad x(0) = c$$

kezdetiérték-probléma teljes megoldása a

(9)
$$\varphi(t) = G(c)F^{-1}(0)f(t) \qquad (t \in \mathbb{R})$$

függvény, ahol f az (5) alatti vektorfüggvény, G(c) és F(0) pedig a (8)-ban értelmezett mátrixok.

2. Az általános megoldás előállítása

Ismeretes, hogy az

$$(10) x'(t) = Ax(t)$$

homogén lineáris differenciálegyenlet teljes megoldásainak \mathcal{M}_h -val jelölt halmaza a $C^1(\mathbb{R}, \mathbb{C}^n)$ – \mathbb{C} feletti – lineáris tér egy n-dimenziós altere. Ennek egy bázisát (azaz (10) n számú lineárisan független megoldását, vagyis a fenti homogén lineáris differenciálegyenlet-rendzser egy alaprendszerét) megkapjuk, ha (1)-ben c-nek például az e_i (i = 1, 2, ..., n) kanonikus egységvektorokat választjuk. A

(11)
$$\varphi_i(t) := G(e_i)F^{-1}(0)f(t) \qquad (t \in \mathbb{R}; \quad i = 1, 2, \dots, n)$$

vektorértékű függvények tehát a (10) egyenlet lineárisan független megoldásai, és (10) általános megoldása

$$\varphi = \sum_{i=1}^{n} c_i \varphi_i \qquad (c_i \in \mathbb{C}, i = 1, 2, \dots, n),$$

azaz

$$\mathcal{M}_h = \left\{ \sum_{i=1}^n c_i \varphi_i \mid c_i \in \mathbb{C}, \quad i = 1, 2, \dots, n \right\}.$$

A fentiek alapján egy állandó együtthatós homogén lineáris differenciálegyenlet általános megoldását a következőképpen állítjuk elő:

- 1. lépés: meghatározzuk az A mátrix sajátértékeit;
- 2. lépés: felírjuk a (5) alatti $f: \mathbb{R} \to \mathbb{C}^n$ vektorfüggvényt;
- 3. lépés: kiszámoljuk az F(0) mátrixot (l. (8)), majd ezt invertáljuk;
- **4. lépés:** meghatározzuk a $G(e_i) = \left[e_i, Ae_i, A^2e_i, \dots, A^{n-1}e_i\right] \quad (i = 1, 2, \dots, n)$ mátrixokat:
- **5. lépés:** végül kiszámítjuk a $G(e_i)F^{-1}(0)f(t)$ (i = 1, 2, ..., n) szorzatokat, és felírjuk az általános megoldást.

3. Valós megoldások

Valós együtthatómátrix (azaz $A \in \mathbb{R}^{n \times n}$) esetén kereshetjük az x' = Ax egyenlet valós értékű ($\mathbb{R} \to \mathbb{R}^n$ típusú) megoldásait.

A lineáris differenciálegyenletek általános elméletéből azt is tudjuk, hogy ennek megoldáshalmaza a $C^1(\mathbb{R}, \mathbb{R}^n)$ – \mathbb{R} -feletti – lineáris tér egy n-dimenziós altere.

Az ismertetett módszert ekkor is használhatjuk; sőt azt is láthatjuk, hogy a (11)-ben definiált függvények mindegyike \mathbb{R}^n (valós!!) értékű, mivel ezek az

$$x' = Ax, \qquad x(0) = e_i$$

kezdetiérték-problémák teljes megoldásai. (Érdemes megfigyelni, hogy f(t)-nek, illetve $F^{-1}(0)$ -nak lehetnek ugyan komplex komponensei, de a fentiek alapján az $F^{-1}(0)f(t)$ szorzat mindegyik komponense már szükségképpen valós!!!)

A valós általános megoldás tehát

$$\sum_{i=1}^{n} c_i \varphi_i, \text{ ahol } c_i \in \mathbb{R}, i = 1, 2, \dots, n.$$

4. Példák

1. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

1. megoldás (a Tétel alapján): Az $A := \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$ mátrix sajátértékei a

$$\det\begin{bmatrix} 2-\lambda & 1\\ 3 & 4-\lambda \end{bmatrix} = \lambda^2 - 6\lambda + 5 = (\lambda - 1)(\lambda - 5)$$

karakterisztikus polinom gyökei: $\lambda_1 = 1, \lambda_2 = 5.$

Az f vektorfüggvény (l. (5)) tehát

$$f(t) := \begin{bmatrix} e^{\lambda_1 t} \\ e^{\lambda_2 t} \end{bmatrix} = \begin{bmatrix} e^t \\ e^{5t} \end{bmatrix} \qquad (t \in \mathbb{R}),$$

így (l. (8))

$$F(0) := \begin{bmatrix} f(0), f'(0) \end{bmatrix} = \begin{bmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 5 \end{bmatrix},$$

következésképpen

$$F^{-1}(0) = \begin{bmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix}.$$

Mivel
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 és $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix}.$$

Az egyenletünk két lineárisan független megoldása tehát

$$\varphi_1(t) := G(e_1)F^{-1}(0)f(t) = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} e^t \\ e^{5t} \end{bmatrix} = \begin{bmatrix} \frac{3}{4}e^t + \frac{1}{4}e^{5t} \\ -\frac{3}{4}e^t + \frac{3}{4}e^{5t} \end{bmatrix};
\varphi_2(t) := G(e_2)F^{-1}(0)f(t) = \begin{bmatrix} 0 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} \frac{5}{4} & -\frac{1}{4} \\ -\frac{1}{4} & \frac{1}{4} \end{bmatrix} \begin{bmatrix} e^t \\ e^{5t} \end{bmatrix} = \begin{bmatrix} -\frac{1}{4}e^t + \frac{1}{4}e^{5t} \\ \frac{1}{4}e^t + \frac{3}{4}e^{5t} \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) \qquad (t \in \mathbb{R}; c_1, c_2 \in \mathbb{C});$$

a $val \acute{o}s$ általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) \qquad (t \in \mathbb{R}; c_1, c_2 \in \mathbb{R}). \blacksquare$$

2. megoldás (sajátvektorokkal): Az A mátrix sajátértékei $\lambda_1=1,\ \lambda_2=5,$ sajátvektorai pedig:

$$s^{(1)} = \begin{bmatrix} -1\\1 \end{bmatrix} \qquad s^{(2)} = \begin{bmatrix} 1\\3 \end{bmatrix},$$

ezért a

$$\varphi_1(t) := s^{(1)} e^{\lambda_1 t} = \begin{bmatrix} -e^t \\ e^t \end{bmatrix}, \qquad \varphi_2(t) := s^{(2)} e^{\lambda_2 t} = \begin{bmatrix} e^{5t} \\ 3e^{5t} \end{bmatrix} \qquad (t \in \mathbb{R})$$

függvények az egyenletünk lineárisan független megoldásai. A komplex általános megoldást most a következő alakban kapjuk:

$$\varphi(t) := \begin{bmatrix} -c_1 e^t + c_2 e^{5t} \\ c_1 e^t + 3c_2 e^{5t} \end{bmatrix} \qquad (t \in \mathbb{R}),$$

ahol c_1, c_2 tetszőleges komplex számok. A valós megoldásokat is ugyanebben az alakban kapjuk meg, tetszőleges c_1, c_2 valós együtthatókkal.

2. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

1. megoldás (a Tétel alapján): Az $A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$ mátrix sajátértékei $\lambda_{1,2} = 3 =: \lambda$. Az f vektorfüggvény (l. (5)) ebben az esetben

$$f(t) := \begin{bmatrix} te^{\lambda t} \\ e^{\lambda t} \end{bmatrix} = \begin{bmatrix} te^{3t} \\ e^{3t} \end{bmatrix} \qquad (t \in \mathbb{R}),$$

így (l. (8))

$$F(0) := [f(0), f'(0)] = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix},$$

következésképpen

$$F^{-1}(0) = \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix}.$$

Mivel
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 és $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 3 \end{bmatrix}.$$

Az egyenletünk két lineárisan független megoldása tehát

$$\varphi_1(t) := G(e_1)F^{-1}(0)f(t) = \begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} te^{3t} \\ e^{3t} \end{bmatrix} = \begin{bmatrix} e^{3t} \\ 0 \end{bmatrix};$$
$$\varphi_2(t) := G(e_2)F^{-1}(0)f(t) = \begin{bmatrix} 0 & 0 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -3 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} te^{3t} \\ e^{3t} \end{bmatrix} = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) = \begin{bmatrix} c_1 e^{3t} \\ c_2 e^{3t} \end{bmatrix} \qquad (t \in \mathbb{R}; \quad c_1, c_2 \in \mathbb{C}).$$

A valós megoldásokat is ugyanebben az alakban kapjuk meg, tetszőleges c_1, c_2 valós együtthatókkal. \blacksquare

2. megoldás (sajátvektorokkal): Az A mátrix sajátértékei $\lambda_{1,2}=3=:\lambda$. Ehhez a kétszeres sajátértékhez most két lineárisan független sajátvektor tartozik (a sík minden vektora sajátvektor), ilyenek például az

$$s^{(1)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad s^{(2)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix},$$

vektorok, ezért a

$$\varphi_1(t) := s^{(1)} e^{\lambda t} = \begin{bmatrix} e^{3t} \\ 0 \end{bmatrix}, \qquad \varphi_2(t) := s^{(2)} e^{\lambda t} = \begin{bmatrix} 0 \\ e^{3t} \end{bmatrix} \qquad (t \in \mathbb{R})$$

függvények az egyenletünk lineárisan független megoldásai. Az általános megoldást most ugyanabban az alakban kapjuk, mint az 1. megoldásban. ■

3. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

Megoldás (a Tétel alapján): Az $A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$ mátrix sajátértékei $\lambda_{1,2} = 2 =: \lambda$.

Az f vektorfüggvény (l. (5)) ebben az esetben

$$f(t) := \begin{bmatrix} te^{\lambda t} \\ e^{\lambda t} \end{bmatrix} = \begin{bmatrix} te^{2t} \\ e^{2t} \end{bmatrix}$$
 $(t \in \mathbb{R}),$

$$F(0) := \begin{bmatrix} f(0), f'(0) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix},$$

következésképpen

$$F^{-1}(0) = \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix}.$$

Mivel
$$e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 és $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}.$$

Az egyenletünk két lineárisan független megoldása tehát

$$\varphi_1(t) := G(e_1)F^{-1}(0)f(t) = \begin{bmatrix} 1 & 3 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} (t+1)e^{2t} \\ -te^{2t} \end{bmatrix};$$

$$\varphi_2(t) := G(e_2)F^{-1}(0)f(t) = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} te^{2t} \\ (1-t)e^{2t} \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) = \begin{bmatrix} ((c_1 + c_2)t + c_1)e^{2t} \\ (-(c_1 + c_2)t + c_2)e^{2t} \end{bmatrix} \qquad (t \in \mathbb{R}; \ c_1, c_2 \in \mathbb{C}).$$

A valós megoldásokat is ugyanebben az alakban kapjuk meg, tetszőleges c_1, c_2 valós együtthatókkal. \blacksquare

Megjegyzés. A feladatbeli A mátrix kétszeres sajátértékéhez most csak egy lineárisan független sajátvektor tartozik (ez a mátrix nem diagonalizálható), ezért a sajátvektorokkal tanult tétel most nem alkalmazható.

4. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}' = \begin{bmatrix} 4 & -1 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

1. megoldás (a Tétel alapján): Az $A:=\begin{bmatrix}4&-1\\5&2\end{bmatrix}$ mátrix sajátértékei: $\lambda_1=3+2i,$ $\lambda_2=3-2i.$

Az f vektorfüggvény (l. (5)) tehát

$$f(t) := \begin{bmatrix} e^{\lambda_1 t} \\ e^{\lambda_2 t} \end{bmatrix} = \begin{bmatrix} e^{(3+2i)t} \\ e^{(3-2i)t} \end{bmatrix} \qquad (t \in \mathbb{R}),$$

így (l. (8))

$$F(0) := [f(0), f'(0)] = \begin{bmatrix} 1 & \lambda_1 \\ 1 & \lambda_2 \end{bmatrix} = \begin{bmatrix} 1 & 3+2i \\ 1 & 3-2i \end{bmatrix},$$

következésképpen

$$F^{-1}(0) = \begin{bmatrix} \frac{2+3i}{4} & \frac{2-3i}{4} \\ -\frac{i}{4} & \frac{i}{4} \end{bmatrix}.$$

Mivel $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ és $e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 5 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix}.$$

Az egyenletünk két lineárisan független megoldása tehát

$$\varphi_{1}(t) := G(e_{1})F^{-1}(0)f(t) = \begin{bmatrix} 1 & 4 \\ 0 & 5 \end{bmatrix} \begin{bmatrix} \frac{2+3i}{4} & \frac{2-3i}{4} \\ -\frac{i}{4} & \frac{i}{4} \end{bmatrix} \begin{bmatrix} e^{(3+2i)t} \\ e^{(3-2i)t} \end{bmatrix} = \begin{bmatrix} \frac{2+i}{4}e^{(3-2i)t} + \frac{2-i}{4}e^{(3+2i)t} \\ \frac{5i}{4}e^{(3-2i)t} - \frac{5i}{4}e^{(3+2i)t} \end{bmatrix} = \begin{bmatrix} \frac{1}{2}e^{3t}(2\cos(2t) + \sin(2t)) \\ \frac{5}{2}e^{3t}\sin(2t) \end{bmatrix};$$

$$\varphi_2(t) := G(e_2)F^{-1}(0)f(t) = \begin{bmatrix} 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} \frac{2+3i}{4} & \frac{2-3i}{4} \\ -\frac{i}{4} & \frac{i}{4} \end{bmatrix} \begin{bmatrix} e^{(3+2i)t} \\ e^{(3-2i)t} \end{bmatrix} = \begin{bmatrix} -\frac{i}{4}e^{(3-2i)t} + \frac{i}{4}e^{(3+2i)t} \\ \frac{2-i}{4}e^{(3-2i)t} + \frac{2+i}{4}e^{(3+2i)t} \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}e^{3t}\sin(2t) \\ \frac{1}{2}e^{3t}(2\cos(2t) - \sin(2t)) \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) \qquad (t \in \mathbb{R}; c_1, c_2 \in \mathbb{C});$$

a valós általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t)$$
 $(t \in \mathbb{R}; c_1, c_2 \in \mathbb{R}).$

2. megoldás (sajátvektorokkal): Az A mátrix sajátértékei $\lambda_1 = 3 + 2i$, $\lambda_2 = 3 - 2i$, sajátvektorai pedig:

$$s^{(1)} = \begin{bmatrix} 1+2i \\ 5 \end{bmatrix}, \qquad s^{(2)} = \begin{bmatrix} 1-2i \\ 5 \end{bmatrix},$$

ezért a

$$\varphi_1(t) := s^{(1)} e^{\lambda_1 t} = \begin{bmatrix} (1+2i)e^{(3+2i)t} \\ 5e^{(3+2i)t} \end{bmatrix} \qquad (t \in \mathbb{R}),$$

 $\varphi_2(t) := s^{(2)} e^{\lambda_2 t} = \begin{bmatrix} (1-2i)e^{(3-2i)t} \\ 5e^{(3-2i)t} \end{bmatrix} \qquad (t \in \mathbb{R})$

függvények az egyenletünk lineárisan független *komplex* megoldásai. A *komplex* általános megoldás:

$$\varphi(t) := c_1 \varphi_1(t) + c_2 \varphi_2(t) \qquad (t \in \mathbb{R}),$$

ahol c_1, c_2 tetszőleges komplex számok.

A valós megoldások előállítása. Mivel az A együtthatómátrix valós, ezért az egyenletnek van két lineárisan független valós megoldása is. Az A mátrix valós voltából az is következik, hogy

$$\lambda_2 = \overline{\lambda_1}, \quad s^{(2)} = \overline{s^{(1)}} \quad \text{\'es} \quad \varphi_2(t) = \overline{\varphi_1(t)},$$

ahol tetszőleges $z \in \mathbb{C}$ esetén \overline{z} a z komplex szám konjugáltja.

Azt is tudjuk azonban, hogy ebben az esetben a φ_1 komplex megoldás valós része és képzetes része az x'=Ax egyenlet lineárisan független valós megoldásai. Következésképpen a

$$\operatorname{Re} \varphi_1(t) = \begin{bmatrix} \left(\cos(2t) - 2\sin(2t)\right)e^{3t} \\ 5e^{3t}\cos(2t) \end{bmatrix} \qquad (t \in \mathbb{R}),$$

$$\operatorname{Im} \varphi_1(t) = \begin{bmatrix} \left(2\cos(2t) + \sin(2t)\right)e^{3t} \\ 5e^{3t}\sin(2t) \end{bmatrix} \qquad (t \in \mathbb{R})$$

függvények az egyenletünk lineárisan független valós megoldásai. A valós általános megoldás tehát ezek valós lineáris kombinációja. ■

5. Az F(0) mátrix meghatározása

Figyeljük meg, hogy az x'=Ax egyenlet megoldásainak előállításához a 2. pontban vázolt eljárás mátrix sajátértékeinek és inverzének meghatározásán túl egyetlen "kritikus" lépést, nevezetesen az F(0) mátrix kiszámolását tartalmazza. F(0) elemei $\frac{t^k}{k!}e^{\lambda t}$ $(t\in\mathbb{R})$ alakú függvények deriváltjainak a 0 pontban vett helyettesítési értékei. Ezek "közvetlen" meghatározása tartalmaz némi technikai nehézséget, ezért érdemes más lehetőséget keresni.

Vezessük be az

$$f_{j,k}(t) := \frac{t^k}{k!} e^{\lambda_j t}$$
 $(t \in \mathbb{R}; \ j = 1, 2, \dots, p, \ k = 0, 1, \dots, m_j - 1)$

függvényeket. Az f függvény (l. (5)) tehát

$$f = \begin{bmatrix} f_{1,m_1-1} \\ \vdots \\ f_{1,0} \\ \vdots \\ f_{p,m_p-1} \\ \vdots \\ f_{p,0} \end{bmatrix}.$$

A $K_A(\lambda)$ karakterisztikus polinom m_j -szeres λ_j gyökéhez az F(0) mátrixban m_j számú sor tartozik. Ezekben a sorokban rendre a következő elemek állnak:

$$f_{j,m_{j}-1}(0), \quad f'_{j,m_{j}-1}(0), \quad f''_{j,m_{j}-1}(0), \quad \dots, \quad f^{(n-1)}_{j,m_{j}-1}(0)$$

$$\vdots$$

$$f_{j,1}(0), \quad f'_{j,1}(0), \quad f''_{j,1}(0), \quad \dots, \quad f^{(n-1)}_{j,1}(0)$$

$$f_{j,0}(0), \quad f''_{j,0}(0), \quad \dots, \quad f^{(n-1)}_{j,0}(0).$$

Itt az utolsó sor elemei az $f_{j,0}(t)=e^{\lambda_j t}$ és $f_{j,0}^{(i)}(t)=\lambda_j^i e^{\lambda_j t}$ $(t\in\mathbb{R};\ i=0,1,2,\ldots)$ felhasználásával

(12)
$$1, \qquad \lambda_j, \qquad \lambda_j^2, \qquad \lambda_j^3, \qquad \dots, \qquad \lambda_j^{n-1}.$$

Mivel $k = 1, 2, \dots$ esetén

$$f'_{j,k}(t) = \frac{t^{k-1}}{(k-1)!} e^{\lambda_j t} + \lambda_j \frac{t^k}{k!} e^{\lambda_j t} = f_{j,k-1}(t) + \lambda_j f_{j,k}(t),$$

ezért

$$f_{j,k}^{(i)}(t) = f_{j,k-1}^{(i-1)}(t) + \lambda_j f_{j,k}^{(i-1)}(t)$$
 $(i = 1, 2, ...),$

következésképpen a kiszámolandó elemekre az

(13)
$$f_{j,k}^{(i)}(0) = f_{j,k-1}^{(i-1)}(0) + \lambda_j f_{j,k}^{(i-1)}(0) \qquad (i = 1, 2, \ldots)$$

rekurzív formula érvényes az

(14)
$$f_{j,k}^{(0)}(0) = f_{j,k}(0) = 0 \qquad (k = 1, 2, ...),$$
$$f_{i,0}^{(i)}(0) = \lambda_i^i \qquad (i = 0, 1, 2, ...)$$

kezdőértékekkel.

Ezek felhasználásával az F(0) mátrix szóban forgó része már egyszerűen megadható (λ_i helyett λ -t írunk):

	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	
(15)	0	0	0	0	0	0	0	0	1	
	0	0	0	0	0	0	0	1	8λ	
	0	0	0	0	0	0	1	7λ	$28\lambda^2$	
	0	0	0	0	0	1	6λ	$21\lambda^2$	$56\lambda^3$	
	0	0	0	0	1	5λ	$15\lambda^2$	$35\lambda^3$	$70\lambda^4$	
	0	0	0	1	4λ	$10\lambda^2$	$20\lambda^3$	$35\lambda^4$	$56\lambda^5$	
	0	0	1	3λ	$6\lambda^2$	$10\lambda^3$	$15\lambda^4$	$21\lambda^5$	$28\lambda^6$	
	0	1	2λ	$3\lambda^2$	$4\lambda^3$	$5\lambda^4$	$6\lambda^5$	$7\lambda^6$	$8\lambda^7$	
	1	λ	λ^2	λ^3	λ^4	λ^5	λ^6	λ^7	λ^8	

Vegyük észre, hogy a λ -hatványok 0-tól különböző együtthatói a Pascal-háromszög elemei (a (4) formulában ezért vettük az $\frac{1}{k!}$ együtthatót), így könnyű memorizálni és programozni is a fenti mátrixot.

6. További példák

5. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}' = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 2 & -1 \\ 2 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

Megoldás (a Tétel alapján): Az $A:=\begin{bmatrix}3&0&-1\\2&2&-1\\2&0&0\end{bmatrix}$ mátrix sajátértékei: $\lambda_1=1,$

 $\lambda_{2.3} = 2.$

Az f vektorfüggvény (l. (5)) tehát

$$f(t) := \begin{bmatrix} e^t \\ te^{2t} \\ e^{2t} \end{bmatrix} \qquad (t \in \mathbb{R}).$$

Az F(0) mátrix:

$$F(0) := [f(0), f'(0), f''(0)] = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 4 \\ 1 & 2 & 4 \end{bmatrix}.$$

Itt az első sor elemeit rögtön felírhatjuk. A 2. és a 3. sor a $\lambda_{2,3} = 2$ kétszeres sajátértékhez tartozik, ezért az elemeit legegyszerűbben a (15) mátrix utolsó két sorából kapjuk meg ($\lambda = 2$ -vel).

$$F^{-1}(0) = \begin{bmatrix} 4 & 2 & -3 \\ -4 & -3 & 4 \\ 1 & 1 & -1 \end{bmatrix}.$$

Mivel
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ és $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1, A^2e_1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 7 \\ 0 & 2 & 8 \\ 0 & 2 & 6 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2, A^2e_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix},$$

$$G(e_3) = [e_3, Ae_3, A^2e_3] = \begin{bmatrix} 0 & -1 & -3 \\ 0 & -1 & -4 \\ 1 & 0 & -2 \end{bmatrix}.$$

Az egyenletünk három lineárisan független megoldása tehát

$$\varphi_{1}(t) = G(e_{1})F^{-1}(0)f(t) = \begin{bmatrix} 1 & 3 & 7 \\ 0 & 2 & 8 \\ 0 & 2 & 6 \end{bmatrix} \begin{bmatrix} 4 & 2 & -3 \\ -4 & -3 & 4 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} e^{t} \\ te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} -e^{t} + 2e^{2t} \\ 2te^{2t} \\ -2e^{t} + 2e^{2t} \end{bmatrix};$$

$$\varphi_{2}(t) = G(e_{2})F^{-1}(0)f(t) = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 2 & 4 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 & 2 & -3 \\ -4 & -3 & 4 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} e^{t} \\ te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} 0 \\ e^{2t} \\ 0 \end{bmatrix};$$

$$\varphi_{3}(t) = G(e_{3})F^{-1}(0)f(t) = \begin{bmatrix} 0 & -1 & -3 \\ 0 & -1 & -4 \\ 1 & 0 & -2 \end{bmatrix} \begin{bmatrix} 4 & 2 & -3 \\ -4 & -3 & 4 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} e^{t} \\ te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} e^{t} - e^{2t} \\ -te^{2t} \\ 2e^{t} - e^{2t} \end{bmatrix}$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) + c_3 \varphi_3(t) \qquad (t \in \mathbb{R}; \quad c_1, c_2, c_3 \in \mathbb{C});$$

a valós általános megoldást ugyanebből valós c_1, c_2, c_3 együtthatókkal kapjuk meg.

Megjegyzés. Az együtthatómátrix kétszeres sajátértékéhez ebben az esetben csak egy lineárisan független sajátvektor tartozik (a mátrix nem diagonalizálható), ezért a sajátvektorokkal tanult tétel most nem alkalmazható.

6. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}' = \begin{bmatrix} 4 & -1 & 0 \\ 3 & 1 & -1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

Megoldás (a Tétel alapján): Az $A:=\begin{bmatrix}4&-1&0\\3&1&-1\\1&0&1\end{bmatrix}$ mátrix sajátértékei: $\lambda_{1,2,3}=2.$

Az f vektorfüggvény (l. (5)) tehát

$$f(t) := \begin{bmatrix} \frac{t^2}{2}e^{2t} \\ te^{2t} \\ e^{2t} \end{bmatrix} \qquad (t \in \mathbb{R}).$$

Az F(0) mátrix:

$$F(0) := [f(0), f'(0), f''(0)] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 4 \\ 1 & 2 & 4 \end{bmatrix}.$$

A sajátérték most háromszoros, ezért F(0) elemeit legegyszerűbben a (15) mátrix utolsó három sorából kapjuk meg ($\lambda = 2$ -vel).

$$F^{-1}(0) = \begin{bmatrix} 4 & -2 & 1 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Mivel
$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
, $e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ és $A^2 = \begin{bmatrix} 13 & -5 & 1 \\ 14 & -2 & -2 \\ 5 & -1 & 1 \end{bmatrix}$, ezért

$$G(e_1) = \begin{bmatrix} e_1, Ae_1, A^2e_1 \end{bmatrix} = \begin{bmatrix} 1 & 4 & 13 \\ 0 & 3 & 14 \\ 0 & 1 & 5 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} e_2, Ae_2, A^2e_2 \end{bmatrix} = \begin{bmatrix} 0 & -1 & -5 \\ 1 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix},$$

$$G(e_3) = [e_3, Ae_3, A^2e_3] = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix}.$$

Az egyenletünk három lineárisan független megoldása tehát

$$\varphi_{1}(t) = G(e_{1})F^{-1}(0)f(t) = \begin{bmatrix} 1 & 4 & 13 \\ 0 & 3 & 14 \\ 0 & 1 & 5 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{t^{2}}{2}e^{2t} \\ te^{2t} \end{bmatrix} = \begin{bmatrix} \frac{t^{2}+4t+2}{2}e^{2t} \\ t(t+3)e^{2t} \\ \frac{t(t+2)}{2}e^{2t} \end{bmatrix};$$

$$\varphi_{2}(t) = G(e_{2})F^{-1}(0)f(t) = \begin{bmatrix} 0 & -1 & -5 \\ 1 & 1 & -2 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{t^{2}}{2}e^{2t} \\ te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} -\frac{t^{2}+2t}{2}e^{2t} \\ -(t^{2}+t-1)e^{2t} \\ -\frac{t^{2}}{2}e^{2t} \end{bmatrix};$$

$$\varphi_{3}(t) = G(e_{3})F^{-1}(0)f(t) = \begin{bmatrix} 0 & 0 & 1 \\ 0 & -1 & -2 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & -2 & 1 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{t^{2}}{2}e^{2t} \\ te^{2t} \\ e^{2t} \end{bmatrix} = \begin{bmatrix} \frac{t^{2}}{2}e^{2t} \\ (t^{2}-t)e^{2t} \\ \frac{t^{2}-2t+2}{2}e^{2t} \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) + c_3 \varphi_3(t) \qquad (t \in \mathbb{R}; c_1, c_2, c_3 \in \mathbb{C});$$

a valós általános megoldást ugyanebből valós c_1, c_2, c_3 együtthatókkal kapjuk meg.

Megjegyzés. Az együtthatómátrix háromszoros sajátértékéhez ebben az esetben csak egy lineárisan független sajátvektor tartozik (a mátrix nem diagonalizálható), ezért a sajátvektorokkal tanult tétel most nem alkalmazható.

7. példa. Határozzuk meg az

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}' = \begin{bmatrix} 3 & -2 & -1 \\ 3 & -4 & -3 \\ 2 & -4 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

differenciálegyenlet-rendszer komplex, illetve valós értékű általános megoldását.

Megoldás (a Tétel alapján): Az
$$A := \begin{bmatrix} 3 & -2 & -1 \\ 3 & -4 & -3 \\ 2 & -4 & 0 \end{bmatrix}$$
 mátrix sajátértékei: $\lambda_1 = -5$, $\lambda_{2,3} = 2$.

$$f(t) = \begin{bmatrix} e^{-5t} \\ te^{2t} \\ e^{2t} \end{bmatrix}, \quad F(0) = [f(0), f'(0) f''(0)] = \begin{bmatrix} 1 & -5 & 25 \\ 0 & 1 & 4 \\ 1 & 2 & 4 \end{bmatrix};$$

$$F^{-1}(0) = \frac{1}{49} \begin{bmatrix} 4 & -70 & 45 \\ -4 & 21 & 4 \\ 1 & 7 & -1 \end{bmatrix};$$

$$G(e_1) = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 3 & -9 \\ 0 & 2 & -6 \end{bmatrix}, \quad G(e_2) = \begin{bmatrix} 0 & -2 & 6 \\ 1 & -4 & 22 \\ 0 & -4 & 12 \end{bmatrix}, \quad G(e_3) = \begin{bmatrix} 0 & -1 & 3 \\ 0 & -3 & 9 \\ 1 & 0 & 10 \end{bmatrix}.$$

Az egyenlet három lineárisan független megoldása

$$\varphi_{1}(t) = G(e_{1})F^{-1}(0)f(t) = \frac{1}{7} \begin{bmatrix} -e^{-5t} + 8e^{2t} \\ -3e^{-5t} + 3e^{2t} \\ -2e^{-5t} + 2e^{2t} \end{bmatrix};$$

$$\varphi_{2}(t) = G(e_{2})F^{-1}(0)f(t) = \frac{1}{7} \begin{bmatrix} 2e^{-5t} - 2e^{2t} \\ 6e^{-5t} + e^{2t} \\ 4e^{-5t} - 4e^{2t} \end{bmatrix};$$

$$\varphi_{3}(t) = G(e_{3})F^{-1}(0)f(t) = \frac{1}{7} \begin{bmatrix} e^{-5t} - e^{2t} \\ 3e^{-5t} - 3e^{2t} \\ 2e^{-5t} + 5e^{2t} \end{bmatrix}.$$

Az egyenlet komplex általános megoldása:

$$\varphi(t) = c_1 \varphi_1(t) + c_2 \varphi_2(t) + c_3 \varphi_3(t)$$
 $(t \in \mathbb{R}; c_1, c_2, c_3 \in \mathbb{C});$

a valós általános megoldást ugyanebből valós c_1, c_2, c_3 együtthatókkal kapjuk meg.

Megjegyzés. Az A együtthatómátrixnak van három lineárisan független sajátvektora (azaz A diagonalizálható). A kétszeres 2 sajátértékhez most tartozik két lineárisan független sajátvektor: például

$$s^{(2)} := \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 és $s^{(3)} := \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$.

A $\lambda_1 = -5$ -höz tartozó sajátvektor pedig például

$$s^{(1)} := \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}.$$

Az egyenlet általános megoldása tehát:

$$\varphi(t) = c_1 s^{(1)} e^{-5t} + c_2 s^{(2)} e^{2t} + c_3 s^{(3)} e^{2t} \qquad (t \in \mathbb{R}, c_1, c_2, c_3 \in \mathbb{R} \text{ vagy } \mathbb{C}).$$