Capstone Project

Docks availability prediction (Bicing)

Sherezade Fuentes Julian Maria Monserrat Martínez Demian Moschin Pierucci Núria Romero Herreros Roger Salvador Guasch

Profesores: Mariona Carós Roca Pere Gilabert Roca

Contenido

- Limpieza y preprocesamiento de los datos. ¿Realmente debemos usar los datos del año 2020?
- Variables extras añadidas al dataset base.
 ¿Qué puede afectar a la predicción de huecos disponibles en una estación del Bicing?
- Selección de variables y modelos predictivos.

 Balance entre una precisión óptima y optimización de la complejidad.
- Insights de los datos.
 Identificar patrones de uso de las estaciones del Bicing.
- Web App
 Visualización de las predicciones

Dataset and additional features

First dataset and extra variables

Variable	Description	
station_id	Bicing station id	
year	year	
month	month	
day	day	
hour	hour	
ctx-1	mean percentage of docks available 1 hour before	
ctx-2	mean percentage of docks available 2 hours before	
ctx-3	mean percentage of docks available 3 hours before	
ctx-4	mean percentage of docks available 4 hours before	

Issues with large data

Other features not included: weather, distance to beach and mountain.

2020 not included

<u>Difficulties</u>: calculate nearby_avg_ctx1, select distances, etc.

Improvements: all station info. play with distances

Variable	Description
lat	latitude
lon	longitude
altitude	altitude
post_code	postal code
neighborhood	neighborhood
capacity	capacity
nearby_stations	number of Bicing nearby stations (<300m)
nearby_stations_list	list of Bicing nearby stations (<300m)
nearby_avg_ctx1	mean dock availability of the nearby stations in the previous hour
near_transport	is near a public transport station (<200)
near_college	is near a college (<300)
nearby_colleges	number of nearby colleges (<300)
near_library	is near a library (<200)
near_museum	is near a museum (<200)
near_theater	is near a theater or cinema (<200)
near_bar	is near a bar or club (<200)
nearby_bars	number of nearby bars or clubs (<200)
day_info	day of the week
is_weekend	is weekend
is_holiday	is holiday
is_not_workday	is non working day
hour_info	moment of the day
season_info	season

Data Exploration and Feature Selection

Feature selection based on:

- **Correlation Heatmap** → *Numerical variables*
- **Boxplots** → *Exploring categorical variables*
- **Feature importance** → Applying some predictive models

Time of the day Altitude Post code Workday Nearby Stations

Correlation Heatmap of Numeric Variables

Split, Transformation and Modelization

Train / Validation / Test

- Train/Validation → 80/20 from 2021, 2022 and 2023
- Test → Kaggle → First months of 2024

Data Transformation

- OneHotEncoder → Binary: 0 or 1
- MinMaxScaler → Range from 0 to 1

Predictive models

- **Linear Regression**→ Simple but less accurate
- XGBoost → Better approach than Linear Regression, specially with categorical features
- Light GBM → Best performance with rmse: 0.0957699 and R2 Score: 0.8691991
- Neural Network → Accuracy very similar to Light GBM but adds complexity and computation time

<pre>percentage_docks_available ctx-1 ctx-2</pre>	float64 float64 float64
post_code	category
hour	category
altitude	int64
is_not_workday	int64
dtype: object	

Feature	Importance
ctx-1	379500.767302
ctx-2	35996.876162
post_code	7553.171606
hour	5734.648390
altitude	2858.569710
is_not_workday	878.583539
	ctx-1 ctx-2 post_code hour altitude

Visualization of Stations in Barcelona Map

- Objetivo Principal: buscar rutas o movimientos entre estaciones más eficientes
- Objetivo: clasificar las estaciones por su disponibilidad usual y localizarlas para observar los diferentes comportamientos.
- ¿Su capacidad máxima depende de la localización?
- ¿La localización tiene algo que ver con su estado usual?

Visualization of Stations 371, 57 and 473. Week number 11

Visualization of March of availability on 371

Franjas destacables:

- 00:00 06:00
- 06:00 12:00
- 12:00 17:00
- 17:00 24:00

Wishlist and Future steps

- ¿Qué necesitaríamos para seguir trabajando?
- Registrar de las entradas y salidas de bicis de las estaciones.
- Actualización de la Base de Datos y limpieza.
- Próximos pasos en la investigación
- Estudiar el comportamiento de estaciones próximas
- Estudio de patrones en días especiales: de frío, de calor, festivos...
- Estudio especial a los casos en que las estaciones están o siempre vacías o siempre llenas.

Product proposal: Web App predictor

Meta:

Ofrecer una manera amigable de elegir una bicicleta para alquiler, tomando decisiones más inteligentes utilizando nuestro modelo predictivo

Pero, cómo podemos productizar esto y hacerlo de acceso público?

Demo

User Interface

Backend Prediction API

```
Sport os
import uvicorn
import joblib
from pydantic import BaseModel
from fastapi import FastAPI, HTTPException
model = None
class PredictionRequest(BaseModel):
class PredictionResponse(BaseModel):
def load model():
   global model
   if model is None:
       model = joblib.load('model.pkl')
async def root():
   return {"message": "Welcome to our ML prediction algorithm! "}
def predict(request: PredictionRequest):
@app.get("/healthcheck/")
def healthcheck():
   return 'Health - OK'
    uvicorn.run(app, host="0.0.0.0", port=os.environ.get('PORT', 8000))
```


 Por razones de limitaciones en nuestro hosting service, vamos a utilizar un modelo sin entrenamiento dinámico

Demo

MUCHAS GRACIAS POR SU ATENCIÓN

¿PREGUNTAS?

