Spectral Graph Embedding

Social Networks Analysis and Graph Algorithms

Prof. Carlos Castillo — https://chato.cl/teach

Sources

- J. Leskovec (2016). Defining the graph laplacian [video]
- E. Terzi (2013). Graph cuts The part on spectral graph partitioning
- D. A. Spielman (2009): The Laplacian
- URLs cited in the footer of slides

Graphs are nice, but ...

- They describe only local relationships
- We would like to understand a global structure
- ullet We will try to transform a graph into a more familiar object: a cloud of points in R^k

Graphs are nice, but ...

- They describe only local relationships
- We would like to understand a global structure
- ullet We will try to transform a graph into a more familiar object: a cloud of points in R^k

What is a graph embedding?

- A graph embedding is a mapping from a graph to a vector space
- If the vector space is \mathbb{R}^2 you can think of an embedding as a way of *drawing* a graph on paper

Exercise: draw this graph

```
V = \{v1, v2, ..., v8\} E = \{ (v1, v2), (v2, v3), (v3, v4), (v4, v1), (v5, v6), (v6, v7), (v7, v8), (v8, v5), (v1, v5), (v2, v6), (v3, v7), (v4, v8) \}
```

Draw this graph on paper

What constitutes a good drawing?

2D graph embeddings in NetworkX

```
import matplotlib.pyplot as plt
import networkx as nx
G = nx.hypercube_graph(3)
display(list(G.edges()))
```

```
plt.figure(figsize=(6,6))
nx.draw_spectral(G)
_ = plt.show()
```


In a good graph embedding ...

- Pairs of nodes that are connected to each other should be close
- Pairs of nodes that are not connected should be far
- Compromises will need to be made

Random graph projection (2D)

- Start a BFS from a random node, that has x=1, and nodes visited have ascending x
- Start a BFS from another random node, which has y=1, and nodes visited have ascending y
- Project node i to position (x_i, y_i)

Exercise: random projection

- Given this graph
- Pick a random node *u*
 - Distances from u are the x positions
- Pick a random node v
 - $\overline{}$ Distances from v are the y positions
- Draw the graph in an R² plane

Eigenvectors of the adjacency matrix

Properties of adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

How many non-zeros are in every row of A?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix}$$

Adjacency matrix of G=(V,E)

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

What is y_i?

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

Adjacency matrix of G=(V,E)

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

What is $A \cdot x$? Think of x as a set of labels/values:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \qquad \begin{aligned} y_i &= \sum_{j:(j,i) \in E} x_j \\ \vdots \\ y_n \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$
Ax is a vector whose ith coordinate contains the sum of

$$y_i = \sum_{j:(j,i)\in E} x_j$$

coordinate contains the sum of the x_i who are in-neighbors of i

Spectral graph theory ...

- Studies the eigenvalues and eigenvectors of a graph matrix
 - Adjacency matrix $Ax = \lambda x$
 - Laplacian matrix (next)
- Suppose graph is d-regular: $k_i = d \ \forall i$
- What is the value of
- What does that imply?

An eigenvector of a d-regular graph

• Suppose graph is d-regular, i.e. all nodes have degree d:

$$\begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} = \begin{bmatrix} d \\ d \\ \vdots \\ d \end{bmatrix} = d \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

• Hence, $[1, 1, ..., 1]^T$ is an eigenvector of eigenvalue d

Disconnected graphs

Suppose the graph is regular and disconnected

Then its adjacency matrix has block structure:

$$A = \begin{bmatrix} S & 0 \\ 0 & S' \end{bmatrix}$$

Disconnected graphs

Suppose the graph is regular and disconnected

Let
$$x_i^S = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \in S' \end{cases}$$

Disconnected graphs

Suppose the graph is regular and disconnected

$$Ax^S = dx^S$$

$$Ax^{S'} = dx^{S'}$$

- What is the multiplicity of eigenvalue d?
- What happens if there are more than 2 connected components?

In general

Disconnected graph

$$\lambda_1 = \lambda_2$$

Almost disconnected graph

$$\lambda_1 \approx \lambda_2$$

Small "eigengap"

Graph Laplacian

Adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 \end{bmatrix}_{26/55}$$

Degree matrix

$$D_{ij} = \begin{cases} k_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$D = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{bmatrix}$$

Laplacian matrix

$$L = D - A$$

$$L = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix}$$

Laplacian matrix L = D - A

- Symmetric
- Eigenvalues non-negative and real
- Eigenvectors real and orthogonal

$L \vec{1} =$	$\begin{bmatrix} 3 \\ -1 \\ -1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$	$ \begin{array}{c} -1 \\ 2 \\ -1 \\ 0 \\ 0 \\ \end{array} $	$ \begin{array}{r} -1 \\ -1 \\ 3 \\ -1 \\ 0 \\ 0 \end{array} $	$0 \\ 0 \\ -1 \\ 3 \\ -1$	$ \begin{array}{c} -1 \\ 0 \\ 0 \\ -1 \\ 3 \\ \end{array} $	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -1 \\ 2 \end{bmatrix}$	\[\begin{picture} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1	=?
	$\begin{bmatrix} -1 \\ 0 \end{bmatrix}$	0	0	-1	-1	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	

Constant vector is eigenvector of L

• The constant vector $\mathbf{x} = [1,1,...,1]^T$ is an eigenvector, and has eigenvalue 0

$$Lx = \begin{bmatrix} 3 & -1 & -1 & 0 & -1 & 0 \\ -1 & 2 & -1 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & -1 & -1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} = 0 \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Is this true for this graph or for any graph?

If the graph is disconnected

- If the graph is disconnected into two components, the same argument as for the adjacency matrix applies, and $\lambda_1=\lambda_2=0$
- The multiplicity of eigenvalue 0 is equal to the number of connected components

 $x^T L x$

Prove this!

• Prove that $\sum_{(i,j)\in E}(x_i-x_j)^2=x^TLx$

$$L = D - A$$

$$D_{ij} = \begin{cases} k_i & \text{if } i = j \\ 0 & \text{otherwise} \end{cases} \quad A_{ij} = \begin{cases} 1 & \text{if } (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Think of this quantity as the "stress" produced by the assignment of node labels x

x^TLx and graph cuts

- Suppose (S, S') is a cut of graph G
- Set $x_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \in S' \end{cases}$

$$|c(S, S')| = 2$$

$$x^{T}Lx = \sum_{(i,j)\in E} (x_i - x_j)^2 = \sum_{(i,j)\in c(S,S')} 1^2 = |c(S,S')|$$

Important fact

For symmetric matrices

$$\lambda_2 = \min_{x} \frac{x^T M x}{x^T x}$$

Second eigenvector

• Orthogonal to the first one:

$$x \cdot \vec{1} = 0 \Rightarrow \sum_{i} x_i = 0$$

• Normal: $\sum_{i} x_i^2 = 1$

$$\lambda_2 = \min_{x} \frac{x^T L x}{x^T x} = \min_{x: \sum x_i = 0} \frac{x^T L x}{\sum x_i^2} = \min_{x: \sum x_i = 0} \sum_{(i,j) \in E} (x_i - x_j)^2$$

What does this mean?

$$\lambda_2 = \min_{x:\sum x_i = 0} \sum_{(i,j)\in E} (x_i - x_j)^2$$

Example Graph 1

$$L = \begin{bmatrix} -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & 4 \end{bmatrix}$$

Example Graph 1 (second eigenvalue)

$$L = \begin{bmatrix} -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}$$

 $v_2 = \begin{bmatrix} 0.383 \\ 0.383 \\ 0.383 \\ -0.383 \\ -0.383 \\ -0.383 \\ -0.247 \end{bmatrix}$

0.247

Example Graph 1, projected in R¹

Example Graph 1, communities

Example Graph 2

$$L = \begin{bmatrix} 4 & -1 & -1 & -1 & 0 & 0 & 0 & -1 \\ -1 & 3 & -1 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & 3 & -1 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & 4 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 4 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & 3 & -1 & -1 \\ 0 & 0 & 0 & 0 & -1 & -1 & 3 & -1 \\ -1 & 0 & 0 & 0 & -1 & -1 & -1 & 4 \end{bmatrix}$$

$$\lambda_1 = 0$$
$$\lambda_2 = 0.764$$

Example Graph 3

8

$$\lambda_1 = 0$$
$$\lambda_2 = 0.748$$

Example Graph 3, projected (where to cut?)

Example Graph 3, projected (where to cut?)

A graph with two communities in R¹

A graph with four communities in R¹

A graph with four communities in R²

Second eigenvector

Third eigenvector

A graph with four communities in R² (cont)

A barbell graph in R² (code)

```
B = nx.barbell graph(10,2)
 plt.figure(figsize=(6,6))
 nx.draw networkx(B)
   = plt.show()
 plt.figure(figsize=(6,6))
 nx.draw_spectral(B)
   = plt.show()
Graph Laplacian
```

Dodecahedral graph in 3D

g = nx.dodecahedral_graph()
pos = nx.spectral_layout(g, dim=3)
network_plot_3D_alt(g, 60, pos)

Application: spectral clustering

Generating data

```
from sklearn.datasets import
   make blobs
  = 1000
x, = make_blobs(
   n_samples=N,
   centers=3,
   cluster std=1.2)
plt.figure(figsize=(8,8))
plt.scatter(x[:,0], x[:,1])
plt.show()
```


Connect nodes to k=5 nearest neighbors

```
from sklearn.neighbors
  import NearestNeighbors
nbrs = NearestNeighbors(
   .fit(x)
distances, neighbors =
   nbrs.kneighbors(x)
G = nx.Graph()
for neighbor list in neighbors:
   source node = neighbor list[0]
   for target index in range(1,
       len(neighbor_list)):
       target node = neighbor list[target ind
       G.add edge(source node, target node)
```


Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

Perform spectral embedding

nx.draw_spectral(G, with_labels=True)

Summary

Things to remember

- Graph Laplacian
- Laplacian and graph components
- Spectral graph embedding

Exercises for this topic

- Mining of Massive Datasets (2014) by Leskovec et al.
 - Exercises 10.4.6