Университет ИТМО

ТЕСТИРОВАНИЕ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Лабораторная работа №1

ФИО студентов: Готовко Алексей Владимирович Руденко Илья Александрович

Вариант: 235713

Направление подготовки: 09.03.04 (СППО)

Учебная группа: Р33101

ФИО преподавателя: Машина Екатерина Алексеевна

Содержание

1	Зад	ание	2
2	Вы	полнение работы	2
	2.1	Тестирование функции	2
	2.2	Тестирование алгоритма	2
	2.3	Тестирование доменной модели	3
	2.4	Исходный код	4

1 Задание

1. Для указанной функции провести модульное тестирование разложения функции в степенной ряд. Выбрать достаточное тестовое покрытие.

Функция $\cos(x)$.

2. Провести модульное тестирование указанного алгоритма. Для этого выбрать характерные точки внутри алгоритма, и для предложенных самостоятельно наборов исходных данных записать последовательность попадания в характерные точки. Сравнить последовательность попадания с эталонной.

Программный модуль для работы с хеш-таблицей с разрешением коллизий методом цепочек (Hash Integer, visualization).

 $https://www.cs.usfca.edu/{\sim} galles/visualization/BucketSort.html$

3. Сформировать доменную модель для заданного текста. Разработать тестовое покрытие для данной доменной модели.

Описание предметной области:

Голова робота, сидящего в углу, сначала резко дернулась вверх, а затем едва заметно закачалась из стороны в сторону. Он тяжело поднялся на ноги и сделал то, что показалось бы постороннему наблюдателю героической попыткой пересечь комнату. Он остановился перед Триллиан и посмотрел, как будто, сквозь ее левое плечо.

2 Выполнение работы

2.1 Тестирование функции

Для функции $\cos(x)$ рассматривается разложение в ряд Тейлора до седьмого члена в точке $x_0 = 0$. В тесте сравниваются значения функции Math.cos() и функции, считающей значение по вышеописанному ряду, в точках -2.046, -1.0, 0.0, 1.0, 1.28 с погрешностью 10^{-4} .

2.2 Тестирование алгоритма

Для тестирования имплементированного алгоритма был создан специальный класс FunnyInteger, каждая сущность которого характеризуется числом типа int. Функция hashCode() возвращает остаток от деления числа на 7.

Тестовые сценарии:

• Добавление значений в указанном порядке: 12, 3, 1, 10, 5, 12.

Ожидаемые пары index \longrightarrow bucket:

```
1 \longrightarrow 1,
```

 $3 \longrightarrow 3, 10,$

 $5 \longrightarrow 5, 12.$

• Добавление значений в указанном порядке: 32, 25, 18, 4, 11.

Ожидаемые пары index \longrightarrow bucket:

$$4 \longrightarrow 4, 11, 18, 25, 32.$$

• Добавление значений в указанном порядке: 7,14, null, null.

Ожидаемые пары index \longrightarrow bucket:

$$0 \longrightarrow \text{null}, 7, 14.$$

• Добавление значений в указанном порядке: 14, 9, 2, 7, 10, null.

Удаление значений.

Oжидаемые пары Value to delete \longrightarrow was deleted:

 $14 \longrightarrow \text{true},$

 $14 \longrightarrow {\tt false},$

 $1 \longrightarrow {\tt false}.$

Ожидаемые пары index \longrightarrow bucket:

 $0 \longrightarrow \text{null}, 7,$

 $2 \longrightarrow 2, 9,$

 $3 \longrightarrow 10.$

2.3 Тестирование доменной модели

UML-диаграмма классов доменной модели, построенной по данному тексту:

Код тестирования модели:

```
Room room = new Room("room");
   Robot robot = new Robot(
2
            "robot",
            new Robot. Head(),
            Robot.RobotState.SITTING
5
   );
6
   Human human = new Human("Trillian");
   Assertions.assertFalse(robot.approachHuman(human));
   Assertions.assertEquals(Robot.RobotState.SITTING, robot.getState());
10
   Assertions.assertEquals(Robot.Head.HeadState.STILL, robot.getHead().getHeadState());
   Assertions.assertNull(robot.getNearbyHuman());
12
13
   robot.setRoom(room);
   human.setRoom(room);
15
   Assertions.assertTrue(room.containsActor(robot));
16
   Assertions.assertTrue(room.containsActor(human));
17
   Assertions.assertTrue(robot.approachHuman(human));
   Assertions.assertEquals(Robot.RobotState.MOVING, robot.getState());
19
   Assertions.assertEquals(Robot.Head.HeadState.SWINGING, robot.getHead().getHeadState());
20
   Assertions.assertTrue(human.isApproachedBy(robot));
21
   Assertions.assertEquals(human, robot.getNearbyHuman());
22
23
   Assertions.assertTrue(robot.approachHuman(null));
   Assertions.assertFalse(human.isApproachedBy(robot));
25
   Assertions.assertEquals(Robot.RobotState.STAYING, robot.getState());
26
```

2.4 Исходный код

Доступен по ссылке (https://github.com/xGodness/itmo/tree/main/3-year/software-testing/1-lab).