FUNDAMENTOS DA INTELIGÊNCIA ARTIFICIAL

Aula 08 - Breve introdução às Máquinas de Vetores de Suporte (SVMs)

Prof. Rafael G. Mantovani

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 Exemplo
- 5 Síntese / Próximas Aulas
- 6 Referências

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 Exemplo
- 5 Síntese / Próximas Aulas
- 6 Referências

Introdução

- Máquinas de Vetores de Suporte
 - Support Vector Machines (SVMs)
 - Teoria do Aprendizado Estatístico (TAE)
 - Buscam, em resumo, maximizar a margem de separação entre elementos de duas classes {+1, -1}
 - consistente com o princípio de minimização do Risco Empírico (RE)

Introdução

Definições:

- $^{\square}$ f: é um classificador: dados \rightarrow espaço de classes
- F: todos os classificadores que podem ser gerados por um algoritmo A
- \Box S: conjunto de treinamento (x_i,y_i), N pares
 - usado para gerar um classificador $f' \in F$
 - obter o melhor classificador f*

Exemplo de conjunto de dados de treinamento pertencentes a duas classes classificado segundo três diferentes hipóteses.

TAE :

- condições matemáticas que permitam a escolha de um classificador f* com bom desempenho para os conjuntos de treinamento e teste;
- f* é capaz de classificar os dados de treinamento da forma mais correta possível
- f* produz o menor erro durante o treinamento

SVMs

- Máquinas de Vetores de Suporte
 - originalmente para problemas binários {-1, +1}
 - adaptáveis para problemas mutilasse
 - SVMs lineares → problemas linearmente separáveis
 - SVMs não lineares → problemas mais complexos

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 Exemplo
- 5 Síntese / Próximas Aulas
- 6 Referências

- Definem fronteiras lineares (hiperplanos) para separar dados
 - buscam maximizar a margem de separação entre classes

Margem

 menor distância entre os exemplos do conjunto de treinamento e o hiperplano separador

Vetores suporte

 pontos/exemplos (do dataset original) que ajudam a definir o hiperplano separador de margem mínima

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 Exemplo
- 5 Síntese / Próximas Aulas
- 6 Referências

Como buscamos pela máxima margem ou distância projetada entre X₁ e X₂, buscamos maximizar:

$$d = \mathbf{x_1} - \mathbf{x_2} = \frac{2}{||\mathbf{w}||}$$

Sendo a *distância mínima* entre o hiperplano separador e os dados de treinamento dada por:

$$\frac{1}{||\mathbf{w}||}$$

Logo podemos maximizar esse termo acima ou minimizar o termo abaixo:

$$||\mathbf{w}||$$

Assim, propõe-se o problema de otimização (*primal*):

$$\begin{aligned} & \underset{\mathbf{w}, b}{\text{Minimizar}} & \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{Com as restrições: } & \mathbf{w} \cdot \mathbf{x_i} + \mathbf{b} \geq +\mathbf{1} \ \, \forall \mathbf{i} \\ & \text{e} & \mathbf{w} \cdot \mathbf{x_j} + \mathbf{b} \leq -\mathbf{1} \ \, \forall \mathbf{j} \end{aligned}$$

- As restrições são propostas para que não haja dado de treinamento entre as margens de separação das classes
 - Devido a isso dá-se o nome de SVM Linear com Margens Rígidas
- O problema a ser minimizado é quadrático:
 - Função objetivo é convexa, logo há somente um mínimo, que é o global

Assim, propõe-se o problema de otimização (*primal*):

$$\begin{aligned} & \underset{\mathbf{w}, b}{\text{Minimizar}} & \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{Com as restrições: } & \mathbf{w} \cdot \mathbf{x_i} + \mathbf{b} \geq +\mathbf{1} \ \, \forall \mathbf{i} \\ & \text{e} & \mathbf{w} \cdot \mathbf{x_j} + \mathbf{b} \leq -\mathbf{1} \ \, \forall \mathbf{j} \end{aligned}$$

- As restrições são propostas para que não haja dado de treinamento entre as margens de separação das classes
 - Devido a isso dá-se o nome de SVM Linear com Margens Rígidas
- O problema a ser minimizado é quadrático:
 - Função objetivo é convexa, logo há somente um mínimo, que é o global

Uma vez formulado o problema:

Maximizar:
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j \mathbf{x_i} \cdot \mathbf{x_j}$$
Sujeito a:
$$\begin{cases} \alpha_i \geq 0, \ i = 1, \dots, n \\ \sum_{i=1}^{n} \alpha_i y_i = 0 \end{cases}$$

- Pode-se resolvê-lo conforme visto anteriormente
 - Calculando a derivada parcial de L na direção dos alphas
 - Substituindo os alfas e aplicando a função objetivo original, i.e., aquela que considera a minimização de ||w||²

Algoritmo 3.1 Determinação do hiperplano ótimo para conjuntos linearmente separáveis (Vert, 2001).

- 1: Para cada conjunto de treinamento linearmente separável $S = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)\}$
- 2: Seja $\alpha^* = (\alpha_1^*, \dots, \alpha_n^*)$ a solução do seguinte problema de otimização com restrições:

3: Maximizar:
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j \mathbf{x_i} \cdot \mathbf{x_j}$$

4: Sob as restrições:
$$\begin{cases} \sum_{i=1}^{n} y_i \alpha_i = 0 \\ \alpha_i \ge 0, i = 1, \dots, n \end{cases}$$

5: O par (\mathbf{w}^*, b^*) apresentado a seguir define o hiperplano ótimo.

6:
$$\mathbf{w}^* = \sum_{i=1}^n \alpha_i^* y_i \mathbf{x_i}$$

7:
$$b^* = -\frac{1}{2} \left[\max_{\{i|y_i=-1\}} \left(\mathbf{w}^* \cdot \mathbf{x_i} \right) + \min_{\{i|y_i=+1\}} \left(\mathbf{w}^* \cdot \mathbf{x_i} \right) \right]$$

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 SVMs não-lineares
- 5 Síntese / Próximas Aulas
- 6 Referências

- Uso de SVMs lineares:
 - conjuntos de dados linearmente separáveis
 - ou possuem uma distribuição aproximadamente linear
- Porém há casos em que não é possível dividir satisfatoriamente os dados por um hiperplano

Espaço original

Espaço original

Superfície de decisão não linear

- Kernéis:
 - realizam transformações de espaço
 - comum considerar um kernel sem mesmo saber exatamente o mapeamento que esse faz para os espaço de características
 - Tipos: Polinomial, Gaussiano, Sigmoidal, Linear

Kernels

Tipo de Kernel	Função $K(\mathbf{x_i}, \mathbf{x_j})$ correspondente	Comentários
Polinomial	$(\mathbf{x_i}^T \cdot \mathbf{x_j} + 1)^p$	A potência p deve ser
	(- 3 /	especificada pelo usuário
Gaussiano	$\exp\left(-\frac{1}{2\sigma^2} \ \mathbf{x_i} - \mathbf{x_j}\ ^2\right)$	A amplitude σ^2 é
		especificada pelo usuário
Sigmoidal	$\tanh (\beta_0 \mathbf{x_i} \cdot \mathbf{x_j} + \beta_1)$	Utilizado somente para alguns
Signioidai	tain (β0 x 1 · x 3 + β1)	valores de β_0 e β_1

Tabela 5.1: Sumário dos principais Kernels utilizados nas SVMs (Haykin, 1999).

Kernels

SVMs multiclasse

- Estratégias:
 - 1-contra-todos
 - todos-contra-todos

Exemplo1 [R]

Executando SVMs em um dataset artificial

```
# seeing our data
plot(my.data[,-3], col=(ys+3)/2, pch=19, xlim=c(-1,6), ylim=c(-1,6))

# training a svm
svm.model = e1071::svm(type ~ ., data = my.data, type='C-classification',
kernel='linear', scale = FALSE)
svm.model
```

Exercício 01 (em sala)

- Adaptar o script "testeSVM.R" para plotar o hiperplano separador executando no iris
 - transformar o problema original em um problema de 2 classes
- □ 30 min

Exemplo2 [R]

Executando SVMs no dataset iris (mlr)

```
d library("mlr")

6  # iris (Species)

7  task = mlr::makeClassifTask(id = "iris", data = iris, target = "Species")

8  lrn = mlr::makeLearner(cl = "classif.svm", predict.type = "prob")

9  rdesc = mlr::makeResampleDesc(method = "CV", iters = 10, stratify = TRUE)

10  meas = list(ber, kappa, logloss, multiclass.aunu, timetrain, timepredict, timeboth)

11

12  res = mlr::resample(learner = lrn, task = task, resampling = rdesc, measures = meas,

13  models = FALSE, show.info = TRUE)

14  # print(res)
```

Exercício 02 (em sala)

- Adaptar o script "testeSvmMlr" para comparar SVMs e
 MLPs executando no dataset "vehicle" muticlasse
 - testar diferentes kernels
- 45 min

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 SVMs não-lineares
- 5 Síntese / Próximas Aulas
- 6 Referências

Síntese

SVMs

- teoria do aprendizado estatístico
- SVMs lineares
 - aprendizado redução de margem
- SVMs não-lineares
 - Kernéis
- Exemplo [R]

Próxima Aula

- Paradigma evolucionista
 - Algoritmos Evolutivos
 - Programação Evolutiva
 - Estratégia Evolutiva
 - Algoritmos Genéticos

Roteiro

- 1 Introdução
- 2 Máquinas de Vetores Suporte (SVMs)
- 3 SVMs com margens rígidas
- 4 SVMs não-lineares
- 5 Síntese / Próximas Aulas
- 6 Referências

Literatura Sugerida

(Haykin, 1999)

[Faceli et al, 2011]

Perguntas?

Prof. Rafael G. Mantovani

rgmantovani@uel.br