import numpy as np

import pandas as pd

ab=pd.read_csv('abalone.csv')

import matplotlib.pyplot as plt

import seaborn as sns

sns.displot(ab['Length'])

<seaborn.axisgrid.FacetGrid at 0x7faaf145df10>

sns.countplot(ab['Sex'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P
 FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7faaee695b90>

sns.distplot(ab['Diameter'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7faaee555290>

sns.displot(ab['Height'])

<seaborn.axisgrid.FacetGrid at 0x7faaee50e390>

sns.displot(ab['Whole weight'])

<seaborn.axisgrid.FacetGrid at 0x7faaee2206d0>

sns.distplot(ab['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarnin
warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7faaee62b390>

sns.barplot(ab['Sex'],ab['Length'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pas FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7faaee11f050>

sns.scatterplot(ab['Viscera weight'],ab['Shell weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7faaed5ac150>

sns.boxplot(ab['Sex'],ab['Diameter'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7faaed58fc90>

sns.scatterplot(ab['Whole weight'],ab['Shucked weight'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: P FutureWarning

```
<matplotlib.axes._subplots.AxesSubplot at 0x7faaed452890>
```


ab.isnull().sum()

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
Rings	0
dtype: int64	

ab.replace({'Sex':{'M':1,'F':0,'I':10}},inplace=True)

X=ab.drop(columns=['Rings'],axis=1)

Y=ab['Rings']

ab.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	int64
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64

dtypes: float64(7), int64(2)

memory usage: 293.8 KB

from sklearn.model_selection import train_test_split

```
X_train, X_test, Y_train, Y_test= train_test_split(X, Y, test_size=0.2, random_state=2)
print(X.shape,X_train.shape,X_test.shape)
        (4177, 8) (3341, 8) (836, 8)

from sklearn.ensemble import RandomForestRegressor

model3= RandomForestRegressor()
model3.fit(X_train, Y_train)
        RandomForestRegressor()

test_data_prediction= model3.predict(X_test)

model3.score(X_train, Y_train)
        0.934936769612555
```

Colab paid products - Cancel contracts here

✓ 0s completed at 6:43 AM

×