

دانشكده مهندسي كامپيوتر

تكلیف كامپیوتری درس فرایندهای تصادفی

طرح مسئله:

سیستم با تابع تبدیل زیر را در نظر بگیرید (q اپراتور شیفت زمانی است، یعنی ($q^nx(t)=x(t+n)$): (۱)

$$H(q) = \frac{1 + 0.5q^{-1}}{1 - 1.5q^{-1} + 0.7q^{-2}}$$

$$v(t) = H(q)e(t)$$

در حقیقت H(q) فیلتری فرضی است که قرار است در دو حالت زیر، سیگنال تصادفی فرضی e(t) به عنوان ورودی به آن اعمال و خروجی v(t) مشاهده و بررسی گردد:

الف: ورودی e(t) یک نویز سفید گوسی با میانگین صفر و واریانس $\gamma=1$ است. یعنی ورودی دنباله ای از متغیرهای تصادفی مستقل با تابع چگالی احتمال نرمال N(0,1) میباشد.

ب: ورودی e(t) بر اساس رابطه زیر مشخص میشود:

(٢)

$$e(t) = \begin{cases} 0 & \text{with probability } 1 - \mu \\ r & \text{with probability } \mu \end{cases}$$

در این رابطه، au خود یک متغیر تصادفی نرمال با تابع چگالی احتمال N(0,1) است. μ نیز عددی بین صفر و یک میباشد.

بر اساس مشخصه فیلتر در رابطه (۱)، ارتباط بین ورودی e(t) و خروجی v(t) به شکل زیر نمایش داده می شود:

(٣)

$$v(t) = 1.5v(t-1) - 0.7v(t-2) + e(t) + 0.5e(t-1)$$

مسئله برای دو حالت الف و ب (دو مقدار مختلف برای μ) شبیه سازی و مشخصات رفتاری ورودی فیلتر و خروجی فیلتر به عنوان سیگنال های تصادفی تحلیل گردد. در انتها اثر تغییر واریانس برای هر دو حالت الف و ب بررسی گردد.

بررسی ایستایی:

فرض کنید n تابع نمونه از سیگنال v(t) داریم:

$$v_i(t), i = 1 \dots n$$

میانگین سیگنال v(t) با ۱۰۰ تابع نمونه، ۱۰۰۰۰ تابع نمونه و ۱۰۰۰۰۰ تابع نمونه رسم نمایید.

همبستگی هر لحظه دلخواه t_1 از سیگنال تصادفی v(t) با لحظه دلخواه t_2 با استفاده از توابع نمونه، بر اساس رابطه زیر محاسبه می شود:

(4)

$$E[v(t_1)v(t_2)] = R_v(t_1, t_2) \cong \frac{\sum_{i=1}^n v_i(t_1)v_i(t_2)}{n}$$

علت به کار بردن علامت \cong در رابطه فوق این است که مطابق قانون ضعف اعداد بزرگ، میانگین آماری موجود $E[v(t_1)v(t_2)]=1$ در سمت راست رابطه (۴)، در صورت بزرگ بودن n میتواند تقریب خوبی از $R_v(t_1,t_2)=1$ باشد و در صورت میل کردن n به سمت بینهایت، علامت $R_v(t_1,t_2)=1$ باشد و در صورت میل کردن n به سمت بینهایت، علامت و به تساوی تبدیل میشود. در شبیه سازی ها تعداد توابع نمونه را به ترتیب ۱۰۰۰، ۱۰۰ و برای به دلیل اینکه امکان شبیه سازی برای همه لحظات وجود ندارد، برای t_1 به ترتیب لحظات ۱۰، ۲۰ سید. t_2 و برای t_3 به ترتیب لحظات ۱۳، ۲۳ سید. t_3 و برای t_4 به ترتیب لحظات ۱۳، ۲۳ سید.

(Δ**)**

$$R_v(t, t + \tau) \cong \frac{\sum_{i=1}^n v_i(t) v_i(t + \tau)}{n}$$

$$t = 10, 20, 30, \dots, 90$$

$$\tau = 3$$

$$n = 100, 10^4, 10^6$$

همین کار را برای au = 0 تکرار کنید.

طيف فركانسى:

الف) طیف فرکانسی یک تحقق از سیگنال v(t) را رسم و همچنین تاثیر افزایش طول پنجره زمانی را مشاهده کنید.

ب) میانگین طیف فرکانسی چند تابع نمونه از سیگنال v(t) را رسم و تاثیر افزایش طول پنجره زمانی و توابع نمونه را مشاهده کنید.

ج) طیف فرکانسی تابع همبستگی سیگنال را رسم و با نتایج قسمت الف و ب مقایسه کنید.