

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Ian S. Zagon, et al. **Examiner:** R. Landsman
Serial No.: 09/431,843 **Art Unit:** 1646
Filed: November 2, 1999 **Docket:** 13038
For: NOVEL NUCLEIC ACID MOLECULES
ENCODING OPIOID GROWTH FACTOR
RECEPTORS **Dated:** June 19, 2000

Assistant Commissioner for Patents
Washington, D.C. 20231

STATEMENT UNDER 37 C.F.R. § 1.821(f)

Sir:

I hereby state that the content of the substitute paper and computer readable copies of the Sequence Listing submitted in accordance with 37 C.F.R. § 1.821(c) and (e), respectively, are the same.

Respectfully submitted,

A handwritten signature in black ink.

Frank S. DiGiglio
Registration No. 31,346

SCULLY, SCOTT, MURPHY & PRESSER
400 Garden City Plaza
Garden City, New York 11530
(516) 742-4343
FSD/XZ:ab

CERTIFICATE OF MAILING UNDER 37 C.F.R. §1.8(a)

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, D.C. 20231 on June 19, 2000.

Dated: June 19, 2000

A handwritten signature in black ink.

PATENT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: Ian S. Zagon, et al. **Examiner:** R. Landsman
Serial No.: 09/431,843 **Art Unit:** 1646
Filed: November 2, 1999 **Docket:** 13038
For: NOVEL NUCLEIC ACID MOLECULES **Date:** June 19, 2000
ENCODING OPIOID GROWTH FACTOR
RECEPTORS

Assistant Commissioner for Patents
Washington, DC 20231

Response to Notice to Comply under 37 C.F.R. § 1.821

Sir:

In response to the Office Communication dated May 19, 2000 and in accordance with the provisions in 37 C.F.R. §1.821, Applicants submit herewith a substitute paper and a substitute computer readable copy of the Sequence Listing, along with a Statement Under 37 C.F.R. § 1.821(f), stating that these copies are identical. A copy of the Notice to Comply is also

CERTIFICATE OF MAILING UNDER 37 C.F.R. § 1.8(a)

I hereby certify that this correspondence is being deposited with the United States Postal Service as first class mail in an envelope addressed to: Assistant Commissioner for Patents, Washington, DC 20231 on June 19, 2000.

Dated: June 19 2000

Michelle Spina

enclosed. Applicants respectfully submit that the content of the paper and computer copies of the sequence listing does not introduce new matter.

Respectfully submitted,

Frank S. DiGiglio
Registration No. 31,346

SCULLY, SCOTT, MURPHY & PRESSER
400 Garden City Plaza
Garden City, New York 11530
(516) 742-4343

FSD/XZ:ab

JUN 21 2000

Application No.: C91431341

**NOTICE TO COMPLY WITH REQUIREMENTS FOR PATENT APPLICATIONS CONTAINING
NUCLEOTIDE SEQUENCE AND/OR AMINO ACID SEQUENCE DISCLOSURES**

The nucleotide and/or amino acid sequence disclosure contained in this application does not comply with the requirements for such a disclosure as set forth in 37 C.F.R. 1.821 - 1.825 for the following reason(s):

1. This application clearly fails to comply with the requirements of 37 C.F.R. 1.821-1.825. Applicant's attention is directed to these regulations, published at 1114 OG 29, May 15, 1990 and at 55 FR 18230, May 1, 1990.

2. This application does not contain, as a separate part of the disclosure on paper copy, a "Sequence Listing" as required by 37 C.F.R. 1.821(c).

3. A copy of the "Sequence Listing" in computer readable form has not been submitted as required by 37 C.F.R. 1.821(e).

4. A copy of the "Sequence Listing" in computer readable form has been submitted. However, the content of the computer readable form does not comply with the requirements of 37 C.F.R. 1.822 and/or 1.823, as indicated on the attached copy of the marked-up "Raw Sequence Listing."

5. The computer readable form that has been filed with this application has been found to be damaged and/or unreadable as indicated on the attached CRF Diskette Problem Report. A Substitute computer readable form must be submitted as required by 37 C.F.R. 1.825(d).

6. The paper copy of the "Sequence Listing" is not the same as the computer readable from of the "Sequence Listing" as required by 37 C.F.R. 1.821(e).

7. Other:

Applicant Must Provide:

An initial or substitute computer readable form (CRF) copy of the "Sequence Listing".

An initial or substitute paper copy of the "Sequence Listing", as well as an amendment directing its entry into the specification.

A statement that the content of the paper and computer readable copies are the same and, where applicable, include no new matter, as required by 37 C.F.R. 1.821(e) or 1.821(f) or 1.821(g) or 1.825(b) or 1.825(d).

For questions regarding compliance to these requirements, please contact:

For Rules Interpretation, call (703) 308-4216

For CRF Submission Help, call (703) 308-4212

For PatentIn software help, call (703) 308-6856

PLEASE RETURN A COPY OF THIS NOTICE WITH YOUR RESPONSE

SEQUENCE LISTING

<110> Zagon S., Ian
Verderame, Michael
Allen, Sandra
McLaughlin J., Patricia

<120> NOVEL NUCLEIC ACID MOLECULES ENCODING OPIOID GROWTH FACTOR RECEPTORS

<130> Penn State

<140> 09/431,843

<141> 1999-11-02

<160> 18

<170> PatentIn Ver. 2.1

<210> 1

<211> 2250

<212> DNA

<213> Rattus norvegicus

<400> 1

tgggctcagc cacgccccag ggtgccccca gtgggactag ttcttcattc tggcagctgc 60
acacatctgt cagtgggaa atgtcaggc tctcactctc ctctcctcac tatccttcc 120
gcagaaagcg ggtcctcctg cttgtcgagt atggacgacc cggaactgcga ttccacctgg 180
gaggaggaga gcgaggagga tggcgaggat ggccaggcgg atgatacgc acgtgaggac 240
acgggcgacg atgacggcga cgccggaggag gcacggccaa gcctgttcca gtccaggatg 300
acagggtacc gaaactggcg tgctatgcag gacatgcaaa gataccggca caactacccg 360
gatttgacag atcaagactg caatggtgac atgtcaacc ttagcttcta caaaaatgag 420
atctgcttcc agccaaatgg ggctctcatc gaggacattc ttcagaactg gaaagacaac 480
tatgacctcc tggaagagaa tcactcctac atccagtggc tggcttccct gcgggaacca 540
ggagtgaact ggcacgccaa gcccctcacc ctgaaggagg ttgaggcatt taaaagctcc 600
aaggaagtca gagagcgtct tgtccgggcc tatgagctca tgctggctt ctatgggttc 660
caccttgagg accggggcac gggtgctgta tgccgtgcac agaacttcca gccgcgttc 720
cacaatctga acagccacag ccacaacaac ctgcgttatta cacgcattc caagtcactg 780
ggtgagctgg gcttagaaca ctaccaggca cccctggtcc gcttcttcct ggaggagacc 840
cttgtacagc acaaactgcc cagcgtgcgc cagagtgccc tggactactt cctgttcgct 900

gtgcgctgcc ggcaccagcg ccgggagctt gtgtactttg cctggagca cttcaagcct 960
cgccgagagt ttgtctgggg gccccgtgac aagctgcgga gattcaagcc ccagaccata 1020
ccccagccac tgacgggacc agggcaggca gataaaagatg agggctccag ggaccctcc 1080
caagaggctg gcaccccagg tcggacctgt ggatctggaa gggacctgag tggggacagt 1140
ggaacagctg aggatccctc actgctgaac acaaagccct cagatggggg aaccttggat 1200
ggaaaccaga gggatgaagc taagtccctg agtcccaagg agagcaagaa aaggaagttg 1260
gaggggaaca ggcaggagca ggtcccagg gaggcagatc cccagggtgt ctctgaggt 1320
gagaaaattg cccttaacct tgaggagtgt gcccttagcc ctatcagcca ggagcccagg 1380
gaggctgaac cgcctgtcc tgtggccagg gtggctaatg aggtaaagaaa gcggaggaag 1440
gtggaggaag gggctgaggg tcatggagta gtcagtaaca ctcaa atgca ggccagtgc 1500
ctgcctccta ccccttcaga gtgtcctgag gcccaaagg atggaaatgg gccagaggac 1560
tcaa acagcc aggttgggc agaggattcc aaaagccagg tggggccgga ggatccaaac 1620
agccaggtgg ggctggagga cccaa acagc caggtcggc cagaggaccc aaacagccag 1680
gtcgggcccag aggacccaaa cagccaggc gggccagagg acccaa acag ccaggtcggg 1740
ccagaggacc caaacagccaa ggtggtggg ccagagcaag ctgcctctaa gagccctgtg 1800
gaggaccctg actctgacac tatgggaacc tcagtggatg agtcagagga gttggcaagg 1860
attgaggcct ctgctgaacc cccaa acct tagaggtgca tctcagtcct actcagccca 1920
ctgcaggggg tttctgagtc cagagctctg ccgtaggctc ttcttggtgc cccacagtgc 1980
tggcctctcc ctatggtca ctgaggtggc caccagaggg actgaggccc tgccctcagg 2040
gaaggccaaag gccttcagaa ccctccttac ctcactgtgt ctcctccac tgccctctga 2100
gccctgcgtt gtgatcagac cctaagggtc tagagggagg ggctcttca ttagtcttgt 2160
gccaa gtcgag gcctttctg aataaactct ttagactttg tcaaaaaaaaaaaaaaaa 2220
aaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2250

<210> 2
<211> 580
<212> PRT
<213> Rattus norvegicus

<400> 2
Met Asp Asp Pro Asp Cys Asp Ser Thr Trp Glu Glu Glu Ser Glu Glu
1 5 10 15

Asp Gly Glu Asp Gly Gln Ala Asp Asp Thr Thr Asp Glu Asp Thr Gly
20 25 30

Asp Asp Asp Gly Asp Ala Glu Glu Ala Arg Pro Ser Leu Phe Gln Ser
35 40 45

Arg Met Thr Gly Tyr Arg Asn Trp Arg Ala Met Gln Asp Met Gln Arg
50 55 60

Tyr Arg His Asn Tyr Pro Asp Leu Thr Asp Gln Asp Cys Asn Gly Asp
65 70 75 80

Met Cys Asn Leu Ser Phe Tyr Lys Asn Glu Ile Cys Phe Gln Pro Asn
85 90 95

Gly Ala Leu Ile Glu Asp Ile Leu Gln Asn Trp Lys Asp Asn Tyr Asp
100 105 110

Leu Leu Glu Glu Asn His Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg
115 120 125

Glu Pro Gly Val Asn Trp His Ala Lys Pro Leu Thr Leu Lys Glu Val
130 135 140

Glu Ala Phe Lys Ser Ser Lys Glu Val Arg Glu Arg Leu Val Arg Ala
145 150 155 160

Tyr Glu Leu Met Leu Gly Phe Tyr Gly Phe His Leu Glu Asp Arg Gly
165 170 175

Thr Gly Ala Val Cys Arg Ala Gln Asn Phe Gln Pro Arg Phe His Asn
180 185 190

Leu Asn Ser His Ser His Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys
195 200 205

Ser Leu Gly Glu Leu Gly Leu Glu His Tyr Gln Ala Pro Leu Val Arg
210 215 220

Phe Phe Leu Glu Glu Thr Leu Val Gln His Lys Leu Pro Ser Val Arg
225 230 235 240

Gln Ser Ala Leu Asp Tyr Phe Leu Phe Ala Val Arg Cys Arg His Gln
245 250 255

Arg Arg Glu Leu Val Tyr Phe Ala Trp Glu His Phe Lys Pro Arg Arg
260 265 270

Glu Phe Val Trp Gly Pro Arg Asp Lys Leu Arg Arg Phe Lys Pro Gln
275 280 285

Thr Ile Pro Gln Pro Leu Thr Gly Pro Gly Gln Ala Asp Lys Asp Glu
290 295 300

Gly Ser Arg Asp Pro Ser Gln Glu Ala Gly Thr Gln Gly Arg Thr Cys
305 310 315 320

Gly Ser Gly Arg Asp Leu Ser Gly Asp Ser Gly Thr Ala Glu Asp Pro
325 330 335

Ser Leu Leu Asn Thr Lys Pro Ser Asp Gly Gly Thr Leu Asp Gly Asn
340 345 350

Gln Arg Asp Glu Ala Lys Ser Leu Ser Pro Lys Glu Ser Lys Lys Arg
355 360 365

Lys Leu Glu Gly Asn Arg Gln Glu Gln Val Pro Gly Glu Ala Asp Pro
370 375 380

Gln Gly Val Ser Glu Val Glu Lys Ile Ala Leu Asn Leu Glu Glu Cys
385 390 395 400

Ala Leu Ser Pro Ile Ser Gln Glu Pro Arg Glu Ala Glu Pro Pro Cys
405 410 415

Pro Val Ala Arg Val Ala Asn Glu Val Arg Lys Arg Arg Lys Val Glu
420 425 430

Glu Gly Ala Glu Gly Asp Gly Val Val Ser Asn Thr Gln Met Gln Ala
435 440 445

Ser Ala Leu Pro Pro Thr Pro Ser Glu Cys Pro Glu Ala Gln Lys Asp
450 455 460

Gly Asn Gly Pro Glu Asp Ser Asn Ser Gln Val Gly Ala Glu Asp Ser
465 470 475 480

Lys Ser Gln Val Gly Pro Glu Asp Pro Asn Ser Gln Val Gly Leu Glu
485 490 495

Asp Pro Asn Ser Gln Val Gly Pro Glu Asp Pro Asn Ser Gln Val Gly
500 505 510

Pro Glu Asp Pro Asn Ser Gln Val Gly Pro Glu Asp Pro Asn Ser Gln
515 520 525

Val Gly Pro Glu Asp Pro Asn Ser Gln Val Val Gly Pro Glu Gln Ala
530 535 540

Ala Ser Lys Ser Pro Val Glu Asp Pro Asp Ser Asp Thr Met Gly Thr
545 550 555 560

Ser Val Asp Glu Ser Glu Glu Leu Ala Arg Ile Glu Ala Ser Ala Glu
565 570 575

Pro Pro Lys Pro
580

<210> 3
<211> 987
<212> DNA
<213> Rattus norvegicus

<220>
<221> unsure
<222> (164)
<223> n is unsure

<220>
<221> unsure
<222> (179)
<223> n is unsure

<220>
<221> unsure
<222> (184)
<223> n is unsure

<220>
<221> unsure
<222> (213)
<223> n is unsure

<220>
<221> unsure
<222> (240)
<223> n is unsure

<220>
<221> unsure
<222> (555)
<223> n is unsure

<220>
<221> unsure
<222> (622)
<223> n is unsure

<400> 3
cattgggccg acgtcgcatg ctcctctaga ctcgaggaat tcggggccca gggtgtctct 60
gaggttagaga aaattgcctt taaccttgag gagttgtgccc ttagccctat cagccaggag 120
cccaggagg stgaaccgccc ctgtcctgtg gccagggtgg ctanaatgag gtaagaaang 180
cgggnaggaag gtggaggaag gggctgaggg tgnatggagt agtcagtaac actyaaatgn 240
caggccagtg ccctgcctcc tacccttca gagttgtcctg aggccccaaa ggatgggaat 300
gggccagagg actcaaacag ccaggttggg gcagaggatt ccaaaagcca ggtggggccg 360
gaggatccaa acagccaggt ggggctggag gacccaaaca gccaggtcgg gccagaggac 420
ccaaacagcc aggtcgccg agaggacca aacagccagg tcgggcccaga ggacccaaac 480
agccaggtcg ggccagagga cccaaacagc caggtggtgg ggccagagca agctgcctct 540
aagagccctg tgganggacc ctgactctga cactatggga acctcagtgg atgagtca 600

ggagttggca aggattgagg cnytgctga acccccuaag ccttagaggt gcatttcagt 660
cctactcagc ccactgcagg gggtttctga gtccagagct ctgccgtagg ctcttcttgg 720
tgccccacag tgctggcctc tccctastgg tcactgaggt ggccaccaga gggactgagg 780
ccctgccctc aggaaaggcc aaggccttca gaaccctcct tacctcaactg tgtcctcctc 840
caactgccctc tgagccctgc gttgtgatca gaccctaagg gtctagaggg aggggcctct 900
tcattagtct ggtgccaagt gaggccttt ctgaataaac tcttagact ttgtcaaaaa 960
aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaa 987

<210> 4
<211> 2290
<212> DNA
<213> Homo sapiens

<400> 4
tagaattcag cggccgctga attctagccg agcatggacg accccgactg cgactccacc 60
tgggaggagg acgaggagga tgcggaggac gcggaggacg aggactgcga ggacggcgag 120
gccgcggcg cgagggacgc ggacgcaggg gacgaggacg aggagtcgga ggagccgcgg 180
gcggcgccgc ccagctcggt ccagtcaga atgacagggt ccagaaactg gcgagccacg 240
agggacatgt gtaggtatcg gcacaactat ccggatctgg tggAACGAGA ctgcaatggg 300
gacacgccaa acctgagttt ctacagaaat gagatccgct tcctgcccaa cggctgtttc 360
attgaggaca ttcttcagaa ctggacggac aactatgacc tccttgagga caatcactcc 420
tacatccagt ggctgtttcc tctgcgagaa ccaggagtga actggcatgc caagccctc 480
acgctcaggg aggtcgaggt gttaaaagc tcccaggaga tccaggagcg gcttgtccgg 540
gcctacgagc tcacgctggg cttctacggg atccggctgg aggaccgagg cacgggcacg 600
gtggcccgag cacagaacta ccagaagcgc ttccagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgcat cctcaagtcg ccgtgtgagc tgagcctcga gcacttccag 720
gcgccactgg tccgcttctt cctggaggag acgctggtgc ggccggagct gccgggggtg 780
cgccagagtg ccctggacta cttcatgttc gccgtgcgt gcccacacca gcccggccag 840
ctgggtgcact tcgcctggga gcacttccgg ccccgctgca agttcgtctg gggggcccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgccccatc cgctcgaggg ctccaggaag 960
gtggaggagg aaggaagccc cggggacccc gaccacgagg ccagcaccca gggtcggacc 1020

tgtgggccag agcatagcaa gggtgaaaaa agggtggacg agggggccca gccacggagc 1080
gtggagcccc aggatgcggg acccctggag aggagccagg gggatgaggc agggggccac 1140
gggaaagata ggccggagcc cttaagcccc aaagagagca agaagaggaa gctggagctg 1200
agccggcgaa agcagccgcc cacagagcca ggccctcaga gtgcctcaga ggtggagaag 1260
atcgctctga atttggaggg gtgtgccctc agccaggca gcctcaggac ggggacccag 1320
gaagtggcg gtcaggaccc tggggaggca gtgcagccct gccgccaacc cctggagcc 1380
agggtggccg acaaggtgag gaagcggagg aaggtggatg agggtgctgg ggacagtgt 1440
gcggtggcca gtgggtgtc ccagaccttg gcccttggcg ggtcccctgc cccatcgaaa 1500
caccccaagg ctggacacag tgagaacggg gttgaggagg acacagaagg tcgaacgggg 1560
cccaaagaag gtacccctgg gagcccatcg gagacccag gccccagccc agcaggacct 1620
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1680
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1740
acaagggatg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1800
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1860
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1920
acaagggatg agccagccaa ggcggggag gcagcagagt tgcagkacgc agaggtggag 1980
tcttctgcca agtctggaa gccttaagga aaggagtgcc cgtcggcgta ttggctcc 2040
tgtccctgct gcaggggctg gggcctccgg agcttgctgc gggctccct caggctctgc 2100
ttcgtgaccc gtgacccatg acccacagtg ctggcctccct gtggggccac tatagcarsc 2160
accagaagcc gcgaggccct cagggaaagcc caaggcctgc agaagcctcc tggcctggct 2220
gtgtcttccc caccagctc tcccctgcgc ccctgtctt gtaaattgac cttctggag 2280
tggggggcg 2290

<210> 5
<211> 2408
<212> DNA
<213> Homo sapiens

<400> 5
tagaatttag cggccgctga attctagccg agcatggacg accccgactg cgactccacc 60
tgggaggagg acgaggagga tgcggaggac gcggaggacg aggactgcga ggacggcgag 120

gcgcggcg cgagggacgc ggacgcagg gacgaggacg aggagtcgga ggagccgcgg 180
gcggcgcggc ccagctcggtt ccagtccaga atgacagggat ccagaaactg gcgagccacg 240
agggacatgt gtaggtatcg gcacaactat ccggatctgg tggAACGAGA ctgcaatggg 300
gacacgcca acctgagttt ctacagaaat gagatccgct tcctgccc aa cggctgtttc 360
attgaggaca ttcttcagaa ctggacggac aactatgacc tcottgagga caatcactcc 420
tacatccagt ggctgtttcc tctgcgagaa ccaggagtga actggcatgc caagcccc 480
acgctcagg aggtcgaggt gttaaaaagc tcccaggaga tccaggagcg gcttgtccgg 540
gcctacgagc tcacatgtggg cttctacggg atccggctgg aggaccgagg cacgggcacg 600
gtgggccgag cacagaacta ccagaagcgc ttccagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgc cat cctcaagtcg ccgtgtgagc tgagcctcga gcacttccag 720
gcgccactgg tccgcttctt cctggaggag acgctggtgc ggccggagct gccgggggtg 780
cgccagagtg ccctggacta cttcatgttc gccgtgcgt gccgacacca gcccggccag 840
ctggtgact tcgcctggga gcacttccgg ccccgctgca agttcgtctg gggggcccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgccgcata cgctcgaggg ctccaggaag 960
gtggaggagg aaggaagccc cggggacccc gaccacgagg ccagcaccca gggtcggacc 1020
tgtgagccag agcatagcaa ggggtggggc agggtgacg agggggccca gccacggagc 1080
gtggagccccc agatgcggg acccctggag aggagccagg gggatgaggc agggggccac 1140
gggaaagata ggccggagcc cttaagcccc aaagagagca agaagaggaa gctggagctg 1200
agccggcg ggccggcc cacagggccaa gcccctcaga gtgcctcaga ggtggagaag 1260
atcgctctga atttggagggt gtgtgcctc agccaggca gcctcaggac ggggacccag 1320
gaagtggcg gtcaggaccc tggggaggca gtgcagccct gcccacacc cctggagcc 1380
agggtggccg acaaggtgag gaagcggagg aaggtggatg aggtactgg ggacagtgc 1440
gcgggtggcca gtgggtgtgc ccagaccttg gcccctgg ggtcccctgc cccatcgggg 1500
caccccaagg ctggacacag tgagaacggg gttgaggagg acacagaagg tcgaacgggg 1560
cccaaagaag gtacccctgg gagcccatcg gagacccag gcccacccc agcaggaccc 1620
gcaggggacg agccagccaa gacccatcg gagacccag gcccacccc ggcaggaccc 1680
acaagggatg agccagccga gagcccatcg gagacccag gccccggccc ggcaggaccc 1740
gcaggggacg agccagccga gagcccatcg gagacccag gccccggccc ggcaggaccc 1800

gcaggggacg agccagccaa gatcccatcg gagaccccag gccccagccc ggcaggacct 1860
acaaggatg agccagccga gagcccatcg gagaccccag gcccccggccc ggcaggacct 1920
gcaggggacg agccagccga gagcccatcg gagaccccag gcccccggccc ggcaggacct 1980
gcaggggacg agccagccga gagcccatcg gagaccccag gccccagccc ggcaggacct 2040
acaaggatg agccagccaa ggccccggag gcagcagagt tgcaggacgc agaggtggag 2100
tcttcgtcca agtctggaa gccttaagga aaggagtgcc cgtcggcgtc ttggtcctcc 2160
tgtccctgct gcaggggctg gggcctccgg agctgctgcg ggctccctc aggctctgct 2220
tcgtgaccgg tgacccatga cccacagtgc tggcctcctg tggggccact atagcagcca 2280
ccagaagccg cgaggccctc agggaaagccc aaggcctgca gaagcctcct ggcctggctg 2340
tgtcttcccc acccagctct cccctgcgcc cctgtctttg taaattgacc cttctggagt 2400
ggggggcg 2408

<210> 6
<211> 697
<212> PRT
<213> Homo sapiens

<400> 6
Met Asp Asp Pro Asp Cys Asp Ser Thr Trp Glu Glu Asp Glu Glu Asp
1 5 10 15

Ala Glu Asp Ala Glu Asp Glu Asp Cys Glu Asp Gly Glu Ala Ala Gly
20 25 30

Ala Arg Asp Ala Asp Ala Gly Asp Glu Asp Glu Glu Ser Glu Glu Pro
35 40 45

Arg Ala Ala Arg Pro Ser Ser Phe Gln Ser Arg Met Thr Gly Ser Arg
50 55 60

Asn Trp Arg Ala Thr Arg Asp Met Cys Arg Tyr Arg His Asn Tyr Pro
65 70 75 80

Asp Leu Val Glu Arg Asp Cys Asn Gly Asp Thr Pro Asn Leu Ser Phe
85 90 95

Tyr Arg Asn Glu Ile Arg Phe Leu Pro Asn Gly Cys Phe Ile Glu Asp
100 105 110

Ile Leu Gln Asn Trp Thr Asp Asn Tyr Asp Leu Leu Glu Asp Asn His
115 120 125

Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg Glu Pro Gly Val Asn Trp
130 135 140

His Ala Lys Pro Leu Thr Leu Arg Glu Val Glu Val Phe Lys Ser Ser
145 150 155 160

Gln Glu Ile Gln Glu Arg Leu Val Arg Ala Tyr Glu Leu Met Leu Gly
165 170 175

Phe Tyr Gly Ile Arg Leu Glu Asp Arg Gly Thr Gly Thr Val Gly Arg
180 185 190

Ala Gln Asn Tyr Gln Lys Arg Phe Gln Asn Leu Asn Trp Arg Ser His
195 200 205

Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys Ser Pro Cys Glu Leu Ser
210 215 220

Leu Glu His Phe Gln Ala Pro Leu Val Arg Phe Phe Leu Glu Glu Thr
225 230 235 240

Leu Val Arg Arg Glu Leu Pro Gly Val Arg Gln Ser Ala Leu Asp Tyr
245 250 255

Phe Met Phe Ala Val Arg Cys Arg His Gln Arg Arg Gln Leu Val His
260 265 270

Phe Ala Trp Glu His Phe Arg Pro Arg Cys Lys Phe Val Trp Gly Pro
275 280 285

Gln Asp Lys Leu Arg Arg Phe Lys Pro Ser Ser Leu Pro His Pro Leu
290 295 300

Glu Gly Ser Arg Lys Val Glu Glu Glu Gly Ser Pro Gly Asp Pro Asp
305 310 315 320

His Glu Ala Ser Thr Gln Gly Arg Thr Cys Glu Pro Glu His Ser Lys
325 330 335

Gly Gly Gly Arg Val Asp Glu Gly Pro Gln Pro Arg Ser Val Glu Pro
340 345 350

Gln Asp Ala Gly Pro Leu Glu Arg Ser Gln Gly Asp Glu Ala Gly Gly
355 360 365

His Gly Glu Asp Arg Pro Glu Pro Leu Ser Pro Lys Glu Ser Lys Lys
370 375 380

Arg Lys Leu Glu Leu Ser Arg Arg Glu Gln Pro Pro Thr Gly Pro Gly
385 390 395 400

Pro Gln Ser Ala Ser Glu Val Glu Lys Ile Ala Leu Asn Leu Glu Gly
405 410 415

Cys Ala Leu Ser Gln Gly Ser Leu Arg Thr Gly Thr Gln Glu Val Gly
420 425 430

Gly Gln Asp Pro Gly Glu Ala Val Gln Pro Cys Arg Gln Pro Leu Gly
435 440 445

Ala Arg Val Ala Asp Lys Val Arg Lys Arg Arg Lys Val Asp Glu Gly
450 455 460

Thr Gly Asp Ser Ala Ala Val Ala Ser Gly Gly Ala Gln Thr Leu Ala
465 470 475 480

Leu Ala Gly Ser Pro Ala Pro Ser Gly His Pro Lys Ala Gly His Ser
485 490 495

Glu Asn Gly Val Glu Glu Asp Thr Glu Gly Arg Thr Gly Pro Lys Glu
500 505 510

Gly Thr Pro Gly Ser Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly
515 520 525

Pro Ala Gly Asp Glu Pro Ala Lys Thr Pro Ser Glu Thr Pro Gly Pro
530 535 540

Ser Pro Ala Gly Pro Thr Arg Asp Glu Pro Ala Glu Ser Pro Ser Glu
545 550 555 560

Thr Pro Gly Pro Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu
565 570 575

Ser Pro Ser Glu Thr Pro Gly Pro Arg Pro Ala Gly Pro Ala Gly Asp
580 585 590

Glu Pro Ala Lys Ile Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly
595 600 605

Pro Thr Arg Asp Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro
610 615 620

Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu
625 630 635 640

Thr Pro Gly Pro Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu
645 650 655

Ser Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly Pro Thr Arg Asp
660 665 670

Glu Pro Ala Lys Ala Gly Glu Ala Ala Glu Leu Gln Asp Ala Glu Val
675 680 685

Glu Ser Ser Ala Lys Ser Gly Lys Pro
690 695

<210> 7
<211> 1601
<212> DNA
<213> Homo sapiens

<400> 7
tagaattcag cggccgctga attctagccg agcatggacg acccccactg cgactccacc 60
tgggaggagg acgaggagga tgcggaggac gcggaggacg aggactgcga ggacggcgag 120
gccgcggcg cgagggacgc ggacgcagg gacgaggacg aggactcgga ggagccgcgg 180
gcggcgccgc ccagctcggt ccagtcaga atgacagggt ccagaaactg gcgagccacg 240
agggacatgt gtaggtatcg gcacaactat ccggatctgg tggAACGAGA ctgcaatggg 300
gacacgccaa acctgagttt ctacagaaat gagatccgct tcctgccccaa cggctgtttc 360
attgaggaca ttcttcagaa ctggacggac aactatgacc tccttgagga caatcactcc 420
tacatccagt ggctgtttcc tctgcgagaa ccaggagtga actggcatgc caagccctc 480
acgctcaggg aggtcgaggt gttaaaagc tcccaggaga tccaggagcg gcttgtccgg 540
gcctacgagc tcacgtctgg cttctacggg atccggctgg aggaccgagg cacgggcacg 600
gtggggccgag cacagaacta ccagaagcgc ttccagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgcat cctcaagtcg ccgtgtgagc tgagcctcga gcacttccag 720
gcgccactgg tccgcttctt cctggaggag acgctggtgc ggcgggagct gccgggggtg 780
cggcagagtg ccctggacta cttcatgttc gccgtgcgt gccgacacca ggcggccag 840
ctgggtgcact tcgcctggga gcacttccgg ccccgctgca agttcgtctg gggggcccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgcccgcac cgctcgaggg ctccaggaag 960
gtggaggagg aaggaagccc cggggacccc gaccacgagg ccagcaccca gggtcggacc 1020
tgtggccag agcatagcaa gggtgggggc agggtgacg agggggcccca gccacggagc 1080
gtggagccccc aggatgcggg acccctggag aggagccagg gggatgagggc agggggccac 1140
gggaaagata ggccggagcc cttaaagccccc aaagagagca agaagagggaa gctggagctg 1200
agccggcggg agcagccgcc cacagagcca ggcctcaga gtgcctcaga ggtggagaag 1260
atcgctctga atttggagggt gtgtgcctc agccaggacg gcctcaggac ggggacccag 1320
gaagtggcg gtcaggaccc tggggaggcc tcctgtccct gctgcagggg ctggggccctc 1380
cgagactgt gcggtctccc ctcaggctct gttcgtgac ccgtacccca tgacccacag 1440
tgctggccct ctgtggggcc actatagcag ccaccagaag ccgcgaggcc ctcaggaaag 1500
cccaaggcct gcaggagcct cctggcctgg ctgtgtcttc cccacccagc tctccctgc 1560
gccccctgtct ttgtaaattg acccttctgg agtggggggc g 1601

<210> 8
<211> 461
<212> PRT
<213> Homo sapiens

<400> 8

Met	Asp	Asp	Pro	Asp	Cys	Asp	Ser	Thr	Trp	Glu	Glu	Asp	Glu	Glu	Asp
1				5					10						15

Ala Glu Asp Ala Glu Asp Glu Asp Cys Glu Asp Gly Glu Ala Ala Gly

	20				25							30			
--	----	--	--	--	----	--	--	--	--	--	--	----	--	--	--

Ala Arg Asp Ala Asp Ala Gly Asp Glu Asp Glu Glu Ser Glu Glu Pro

	35				40					45					
--	----	--	--	--	----	--	--	--	--	----	--	--	--	--	--

Arg Ala Ala Arg Pro Ser Ser Phe Gln Ser Arg Met Thr Gly Ser Arg

	50				55				60						
--	----	--	--	--	----	--	--	--	----	--	--	--	--	--	--

Asn Trp Arg Ala Thr Arg Asp Met Cys Arg Tyr Arg His Asn Tyr Pro

	65				70			75			80				
--	----	--	--	--	----	--	--	----	--	--	----	--	--	--	--

Asp Leu Val Glu Arg Asp Cys Asn Gly Asp Thr Pro Asn Leu Ser Phe

	85				90					95					
--	----	--	--	--	----	--	--	--	--	----	--	--	--	--	--

Tyr Arg Asn Glu Ile Arg Phe Leu Pro Asn Gly Cys Phe Ile Glu Asp

	100				105				110						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Ile Leu Gln Asn Trp Thr Asp Asn Tyr Asp Leu Leu Glu Asp Asn His

	115				120				125						
--	-----	--	--	--	-----	--	--	--	-----	--	--	--	--	--	--

Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg Glu Pro Gly Val Asn Trp

	130				135			140							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

His Ala Lys Pro Leu Thr Leu Arg Glu Val Glu Val Phe Lys Ser Ser

	145				150			155			160				
--	-----	--	--	--	-----	--	--	-----	--	--	-----	--	--	--	--

Gln Glu Ile Gln Glu Arg Leu Val Arg Ala Tyr Glu Leu Met Leu Gly

	165				170			175							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Phe Tyr Gly Ile Arg Leu Glu Asp Arg Gly Thr Gly Thr Val Gly Arg

	180				185			190							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Ala Gln Asn Tyr Gln Lys Arg Phe Gln Asn Leu Asn Trp Arg Ser His

	195				200			205							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys Ser Pro Cys Glu Leu Ser

	210				215			220							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Leu Glu His Phe Gln Ala Pro Leu Val Arg Phe Phe Leu Glu Glu Thr

	225				230			235			240				
--	-----	--	--	--	-----	--	--	-----	--	--	-----	--	--	--	--

Leu Val Arg Arg Glu Leu Pro Gly Val Arg Gln Ser Ala Leu Asp Tyr

	245				250			255							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Phe Met Phe Ala Val Arg Cys Arg His Gln Arg Arg Gln Leu Val His

	260				265			270							
--	-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Phe Ala Trp Glu His Phe Arg Pro Arg Cys Lys Phe Val Trp Gly Pro
275 280 285

Gln Asp Lys Leu Arg Arg Phe Lys Pro Ser Ser Leu Pro His Pro Leu
290 295 300

Glu Gly Ser Arg Lys Val Glu Glu Glu Gly Ser Pro Gly Asp Pro Asp
305 310 315 320

His Glu Ala Ser Thr Gln Gly Arg Thr Cys Gly Pro Glu His Ser Lys
325 330 335

Gly Gly Gly Arg Val Asp Glu Gly Pro Gln Pro Arg Ser Val Glu Pro
340 345 350

Gln Asp Ala Gly Pro Leu Glu Arg Ser Gln Gly Asp Glu Ala Gly Gly
355 360 365

His Gly Glu Asp Arg Pro Glu Pro Leu Ser Pro Lys Glu Ser Lys Lys
370 375 380

Arg Lys Leu Glu Leu Ser Arg Arg Glu Gln Pro Pro Thr Glu Pro Gly
385 390 395 400

Pro Gln Ser Ala Ser Glu Val Glu Lys Ile Ala Leu Asn Leu Glu Gly
405 410 415

Cys Ala Leu Ser Gln Gly Ser Leu Arg Thr Gly Thr Gln Glu Val Gly
420 425 430

Gly Gln Asp Pro Gly Glu Ala Ser Cys Pro Cys Cys Arg Gly Trp Gly
435 440 445

Leu Arg Ser Cys Cys Gly Leu Pro Ser Gly Ser Ala Ser ..
450 455 460

<210> 9
<211> 2348
<212> DNA
<213> Homo sapiens

<400> 9
tagaattcag cggccgctga attctagccg agcatggacg acccccactg cgactccacc 60
tgggaggagg acgaggagga tgcggaggac gcggaggacg aggactgcga ggacggcgag 120
gccgcggcg cgagggacgc ggacgcagg gacgaggacg aggagtcgga ggagccgcgg 180
gcggcgcggc ccagctcggt ccagtccaga atgacagggc ccagaaactg gcgagccacg 240
agggacatgt gtaggtatcg gcacaactat ccggatctgg tggAACGAGA ctgcaatggg 300
gacacgccaa acctgagttt ctacagaaat gagatccgct tcctgccccaa cggctgtttc 360

attgaggaca ttcttcagaa ctggacggac aactatgacc tccttgagga caatcactcc 420
tacatccagt ggctgtttcc tctgcgagaa ccaggagtga actggcatgc caagcccctc 480
acgctcaggg aggtcgaggt gttaaaagc tcccaggaga tccaggagcg gcttgtccgg 540
gcctacgagc tcatgctggg cttctacggg atccggctgg aggaccgagg cacgggcacg 600
gtgggcccag cacagaacta ccagaagcgc ttccagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgcac cctcaagtgc cggtgtgagc tgagcctcga gcacttccag 720
gcccactgg tccgcttctt cctggaggag acgctgggc ggcgggagct gccgggggtg 780
cggcagagtg ccctggacta cttcatgttc gccgtgcgc gccgacacca gcccggccag 840
ctggtgcaact tcgcctggg gcaacttccgg ccccgctgca agtcgtctg gggggcccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgcccgcac cgctcgaggg ctccaggaag 960
gtggaggagg aaggaagccc cggggaccgg gaccacgagg ccagcaccca ggttcggacc 1020
tgtggccag agcatagcaa gggtgggggc agggtgggacg agggggccca gccacggagc 1080
gtggagcccc aggatgcggg acccctggag aggagccagg gggatgaggg agggggccac 1140
gggaaagata gcccggagcc cttaagcccc aaagagagca agaagaggaa gctggagctg 1200
agccggcggg agcagccgcc cacagagcca gcccctcaga gtgcctcaga ggtggagaag 1260
atcgctctga atttggaggg gtgtgccctc agccaggca gcctcaggac ggggacccag 1320
gaagtggcg gtcaggaccc tggggaggca gtgcagccct gccgccaacc cctggagcc 1380
agggtggccg acaaggtgag gaagcggagg aaggtggatg agggtgctgg ggacagtgc 1440
gcggtggcca gtggtggtc ccagaccttg gcccctggc ggtcccctgc cccatgggg 1500
caccccaagg ctggacacag tgagaacggg gttgaggagg acacagaagg tcgaacgggg 1560
cccaaagaag gtacccctgg gagcccatcg gagacccag gccccagccc agcaggacct 1620
gcaggggacg agccagccga gagcccatcg gagacccag gccccggccc agcaggacct 1680
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1740
acaagggatg agccagccga gagcccatcg gagacccag gccccggccc ggcaggacct 1800
gcaggggacg agccagccga gagcccatcg gagacccag gccccggccc ggcaggacct 1860
gcaggggacg aaccagccga gagcccatcg gagacccag gccccagccc ggcaggacct 1920
acaagggatg agccagccaa ggcgggggag gcagcagagt tgcaggacgc agaggtggag 2040

tcttctgcca agtctggaa gccttaagga aaggagtgcc cgtcggcgtc ttggtcctcc 2100
tgtccctgct gcaggggctg gggcctccgg agctgctgcg gactcccctc aggctctgct 2160
tcgtgaccccg tgacccatga cccacagtgc tggcctcctg tggggccact atagcagcca 2220
ccagaagccg cgaggccctc aggaaagccc aaggcctgca gaagcctcct ggcctggctg 2280
tgtcttcccc acccagctct cccctgcgcc cctgtcttg taaattgacc cttctggagt 2340
ggggggcg 2348

<210> 10
<211> 677
<212> PRT
<213> Homo sapiens

<400> 10
Met Asp Asp Pro Asp Cys Asp Ser Thr Trp Glu Glu Asp Glu Glu Asp
1 5 10 15

Ala Glu Asp Ala Glu Asp Glu Asp Cys Glu Asp Gly Glu Ala Ala Gly
20 25 30

Ala Arg Asp Ala Asp Ala Gly Asp Glu Asp Glu Glu Ser Glu Glu Pro
35 40 45

Arg Ala Ala Arg Pro Ser Ser Phe Gln Ser Arg Met Thr Gly Ser Arg
50 55 60

Asn Trp Arg Ala Thr Arg Asp Met Cys Arg Tyr Arg His Asn Tyr Pro
65 70 75 80

Asp Leu Val Glu Arg Asp Cys Asn Gly Asp Thr Pro Asn Leu Ser Phe
85 90 95

Tyr Arg Asn Glu Ile Arg Phe Leu Pro Asn Gly Cys Phe Ile Glu Asp
100 105 110

Ile Leu Gln Asn Trp Thr Asp Asn Tyr Asp Leu Leu Glu Asp Asn His
115 120 125

Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg Glu Pro Gly Val Asn Trp
130 135 140

His Ala Lys Pro Leu Thr Leu Arg Glu Val Glu Val Phe Lys Ser Ser
145 150 155 160

Gln Glu Ile Gln Glu Arg Leu Val Arg Ala Tyr Glu Leu Met Leu Gly
165 170 175

Phe Tyr Gly Ile Arg Leu Glu Asp Arg Gly Thr Gly Thr Val Gly Arg
180 185 190

Ala Gln Asn Tyr Gln Lys Arg Phe Gln Asn Leu Asn Trp Arg Ser His
195 200 205

Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys Ser Pro Cys Glu Leu Ser
210 215 220

Leu Glu His Phe Gln Ala Pro Leu Val Arg Phe Phe Leu Glu Glu Thr
225 230 235 240

Leu Val Arg Arg Glu Leu Pro Gly Val Arg Gln Ser Ala Leu Asp Tyr
245 250 255

Phe Met Phe Ala Val Arg Cys Arg His Gln Arg Arg Gln Leu Val His
260 265 270

Phe Ala Trp Glu His Phe Arg Pro Arg Cys Lys Phe Val Trp Gly Pro
275 280 285

Gln Asp Lys Leu Arg Arg Phe Lys Pro Ser Ser Leu Pro His Pro Leu
290 295 300

Glu Gly Ser Arg Lys Val Glu Glu Glu Gly Ser Pro Gly Asp Pro Asp
305 310 315 320

His Glu Ala Ser Thr Gln Gly Arg Thr Cys Gly Pro Glu His Ser Lys
325 330 335

Gly Gly Gly Arg Val Asp Glu Gly Pro Gln Pro Arg Ser Val Glu Pro
340 345 350

Gln Asp Ala Gly Pro Leu Glu Arg Ser Gln Gly Asp Glu Ala Gly Gly
355 360 365

His Gly Glu Asp Arg Pro Glu Pro Leu Ser Pro Lys Glu Ser Lys Lys
370 375 380

Arg Lys Leu Glu Leu Ser Arg Arg Glu Gln Pro Pro Thr Glu Pro Gly
385 390 395 400

Pro Gln Ser Ala Ser Glu Val Glu Lys Ile Ala Leu Asn Leu Glu Gly
405 410 415

Cys Ala Leu Ser Gln Gly Ser Leu Arg Thr Gly Thr Gln Glu Val Gly
420 425 430

Gly Gln Asp Pro Gly Glu Ala Val Gln Pro Cys Arg Gln Pro Leu Gly
435 440 445

Ala Arg Val Ala Asp Lys Val Arg Lys Arg Arg Lys Val Asp Glu Gly
450 455 460

Ala Gly Asp Ser Ala Ala Val Ala Ser Gly Gly Ala Gln Thr Leu Ala
465 470 475 480

Leu Ala Gly Ser Pro Ala Pro Ser Gly His Pro Lys Ala Gly His Ser
485 490 495

Glu Asn Gly Val Glu Glu Asp Thr Glu Gly Arg Thr Gly Pro Lys Glu
500 505 510

Gly Thr Pro Gly Ser Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly
515 520 525

Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro
530 535 540

Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu
545 550 555 560

Thr Pro Gly Leu Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu
565 570 575

Thr Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly Pro Thr Arg Asp
580 585 590

Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro Arg Pro Ala Gly
595 600 605

Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro
610 615 620

Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu
625 630 635 640

Thr Pro Gly Pro Ser Pro Ala Gly Pro Thr Arg Asp Glu Pro Ala Lys
645 650 655

Ala Gly Glu Ala Ala Glu Leu Gln Asp Ala Glu Val Glu Ser Ser Ala
660 665 670

Lys Ser Gly Lys Pro
675

<210> 11
<211> 2289
<212> DNA
<213> Homo sapiens

<400> 11
tagaattcag cggccgctga attctagccg agcatggacg acccccactg cgactccacc 60
tgggaggagg acgaggaggta tgccggaggac gcggaggacg aggactgcga ggacggcgag 120
gccgcggcg cgagggacgc ggacgcagg gacgaggacg aggactcgga ggagccgcgg 180
gcggcgccgc ccagctcggt ccagtccaga atgacagggt ccagaaactg gcgagccacg 240
agggacatgt gtaggtatcg gcacaactat ccggatctgg tggAACGAGA ctgcaatggg 300
gacacgccaa acctgagttt ctacagaaat gagatccgct tcctgccccaa cggctgtttc 360

attgaggaca ttcttcagaa ctggacggac aactatgacc tccttgagga caatcactcc 420
tacatccagt ggctgtttcc tctgcgagaa ccaggagtga actggcatgc caagccccctc 480
acgctcaggg aggtcgaggt gttaaaagc tcccaggaga tccaggagcg gcttgtccgg 540
gcctacgagc tcatgctggg cttctacggg atccggctgg aggaccgagg cacgggcacg 600
gtgggcccag cacagaacta ccagaagcgc ttccagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgcac cctcaagtgc cggtgtgagc tgagcctcga gcacttccag 720
gcccactgg tccgcttctt cctggaggag acgctgggtgc ggccggagct gccgggggtg 780
cggcagagtg ccctggacta cttcatgttc gccgtgcgc gccgacacca gcccggccag 840
ctggtgcaact tcgcctggga gcacttccgg ccccgctgca agttcgtctg gggggcccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgccccatc cgctcgaggg ctccaggaag 960
gtggaggagg aaggaagccc cggggacccc gaccacgagg ccagcaccca ggttcggacc 1020
tgtggccag agcatagcaa gggtgaaaaa agggtgggacg agggggcccaa gccacggagc 1080
gtggagccccc aggatgcggg acccctggag aggagccagg gggatgaggc agggggccac 1140
gggaaagata ggccggagcc cttaagcccc aaagagagca agaagaggaa gctggagctg 1200
agccggcggg agcagccgcc cacagagcca ggccctcaga gtgcctcaga ggtggagaag 1260
atcgctctga atttggaggg gtgtgccctc agccaggca gcctcaggac ggggacccag 1320
gaagtggcg gtcaggaccc tggggaggca gtgcagccct gccgccaacc cctggagcc 1380
agggtggccg acaaggttag gaagcggagg aaggtggatg agggtgctgg ggacagtgc 1440
gcggtggcca gtgggtgtgc ccagaccttg gccctggcg ggtccctgc cccatgggg 1500
caccccaagg ctggacacag tgagaacggg gttgaggagg acacagaagg tcgaacgggg 1560
cccaaagaag gtacccctgg gagcccatcg gagacccag gccccagccc agcaggaccc 1620
gcaggggacg agccagccga gagcccatcg gagacccag gccccggccc ggcaggaccc 1680
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggaccc 1740
acaagggatg agccagccga gagcccatcg gagacccag gccccggccc ggcaggaccc 1800
gcaggggacg agccagccga gagcccatcg gagacccag gccccccccc ggcaggaccc 1860
gcaggggacg agccagccga gagcccatcg gagacccag gccccagccc ggcaggaccc 1920
acaagggatg agccagccaa ggcggggag gcagcagagt tgcaggacgc agaggtggag 1980
tcttctgcca agtctggaa gccttaagga aaggagtgcc cgtcggcgtc ttggcctcc 2040

tgtccctgct gcaggggctg gggcctccgg agctgctgcg ggctcccctc aggctctgct 2100
tcgtgaccccg tgacccatga cccacagtgc tggcctcctg tggggccact atagcagcca 2160
ccagaagccg cgaggccctc aggaaagccc aaggcctgca gaagcctcct ggcctggctg 2220
tgtcttcccc acccagctct cccctgcgcc cctgtcttg taaattgacc cttctggagt 2280
ggggggcgg 2289

<210> 12
<211> 657
<212> PRT
<213> Homo sapiens

<400> 12
Met Asp Asp Pro Asp Cys Asp Ser Thr Trp Glu Glu Asp Glu Glu Asp
1 5 10 15

Ala Glu Asp Ala Glu Asp Glu Asp Cys Glu Asp Gly Glu Ala Ala Gly
20 25 30

Ala Arg Asp Ala Asp Ala Gly Asp Glu Asp Glu Glu Ser Glu Glu Pro
35 40 45

Arg Ala Ala Arg Pro Ser Ser Phe Gln Ser Arg Met Thr Gly Ser Arg
50 55 60

Asn Trp Arg Ala Thr Arg Asp Met Cys Arg Tyr Arg His Asn Tyr Pro
65 70 75 80

Asp Leu Val Glu Arg Asp Cys Asn Gly Asp Thr Pro Asn Leu Ser Phe
85 90 95

Tyr Arg Asn Glu Ile Arg Phe Leu Pro Asn Gly Cys Phe Ile Glu Asp
100 105 110

Ile Leu Gln Asn Trp Thr Asp Asn Tyr Asp Leu Leu Glu Asp Asn His
115 120 125

Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg Glu Pro Gly Val Asn Trp
130 135 140

His Ala Lys Pro Leu Thr Leu Arg Glu Val Glu Val Phe Lys Ser Ser
145 150 155 160

Gln Glu Ile Gln Glu Arg Leu Val Arg Ala Tyr Glu Leu Met Leu Gly
165 170 175

Phe Tyr Gly Ile Arg Leu Glu Asp Arg Gly Thr Gly Thr Val Gly Arg
180 185 190

Ala Gln Asn Tyr Gln Lys Arg Phe Gln Asn Leu Asn Trp Arg Ser His
195 200 205

Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys Ser Pro Cys Glu Leu Ser
210 215 220

Leu Glu His Phe Gln Ala Pro Leu Val Arg Phe Phe Leu Glu Glu Thr
225 230 235 240

Leu Val Arg Arg Glu Leu Pro Gly Val Arg Gln Ser Ala Leu Asp Tyr
245 250 255

Phe Met Phe Ala Val Arg Cys Arg His Gln Arg Arg Gln Leu Val His
260 265 270

Phe Ala Trp Glu His Phe Arg Pro Arg Cys Lys Phe Val Trp Gly Pro
275 280 285

Gln Asp Lys Leu Arg Arg Phe Lys Pro Ser Ser Leu Pro His Pro Leu
290 295 300

Glu Gly Ser Arg Lys Val Glu Glu Gly Ser Pro Gly Asp Pro Asp
305 310 315 320

His Glu Ala Ser Thr Gln Gly Arg Thr Cys Gly Pro Glu His Ser Lys
325 330 335

Gly Gly Gly Arg Val Asp Glu Gly Pro Gln Pro Arg Ser Val Glu Pro
340 345 350

Gln Asp Ala Gly Pro Leu Glu Arg Ser Gln Gly Asp Glu Ala Gly Gly
355 360 365

His Gly Glu Asp Arg Pro Glu Pro Leu Ser Pro Lys Glu Ser Lys Lys
370 375 380

Arg Lys Leu Glu Leu Ser Arg Arg Glu Gln Pro Pro Thr Glu Pro Gly
385 390 395 400

Pro Gln Ser Ala Ser Glu Val Glu Lys Ile Ala Leu Asn Leu Glu Gly
405 410 415

Cys Ala Leu Ser Gln Gly Ser Leu Arg Thr Gly Thr Gln Glu Val Gly
420 425 430

Gly Gln Asp Pro Gly Glu Ala Val Gln Pro Cys Arg Gln Pro Leu Gly
435 440 445

Ala Arg Val Ala Asp Lys Val Arg Lys Arg Arg Lys Val Asp Glu Gly
450 455 460

Ala Gly Asp Ser Ala Ala Val Ala Ser Gly Gly Ala Gln Thr Leu Ala
465 470 475 480

Leu Ala Gly Ser Pro Ala Pro Ser Gly His Pro Lys Ala Gly His Ser
485 490 495

Glu Asn Gly Val Glu Glu Asp Thr Glu Gly Arg Thr Gly Pro Lys Glu
500 505 510

Gly Thr Pro Gly Ser Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly
515 520 525

Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro
530 535 540

Arg Pro Ala Gly Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu
545 550 555 560

Thr Pro Gly Pro Ser Pro Ala Gly Pro Thr Arg Asp Glu Pro Ala Glu
565 570 575

Ser Pro Ser Glu Thr Pro Gly Pro Arg Pro Ala Gly Pro Ala Gly Asp
580 585 590

Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro Arg Pro Ala Gly
595 600 605

Pro Ala Gly Asp Glu Pro Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro
610 615 620

Ser Pro Ala Gly Pro Thr Arg Asp Glu Pro Ala Lys Ala Gly Glu Ala
625 630 635 640

Ala Glu Leu Gln Asp Ala Glu Val Glu Ser Ser Ala Lys Ser Gly Lys
645 650 655

Pro

<210> 13

<211> 1232

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> (51)

<223> n is unsure

<400> 13

tagaattcag cggccgctga attctagccg agcatggacg acccccactg ncgactccac 60
ctgggaggag gacgaggagg atgcggagga cgccggaggac gaggactgcg aggacggcga 120
ggccgcccgc gcgaggacg cggacgcagg ggacgaggac gaggagtcgg aggagccgcg 180
ggcggcgcgg cccagctcgt tccagtccag aatgacaggg tccagaaaact ggcgagccac 240
gagggacatg tgttaggtatc ggcacaacta tccggatctg gtgaaacgag actgcaatgg 300
ggacacgcca aacctgagtt tctacagaaa tgagatccgc ttccctgcccc acggctgttt 360
cattgaggac attcttcaga actggacgga caactatgac ctccttgagg acaatcactc 420

ctacatccag tggctgttgc ctctgcgaga accaggagtg aactggcatg ccaagcccc 480
cacgctcagg gaggtcgagg tgttaaaag ctcccaggag atccaggagc ggcttgtccg 540
ggcctacgag ctcatgctgg gcttctacgg gatccggctg gaggaccgag gcacgggcac 600
ggtgggccga gcacagaact accagaagcg cttcagaacc tgaactggcg cagccacaac 660
aacctccgca tcacacgcat cctcaagtgc ccgtgtgagc tgagcctcga gcacttccag 720
gcccactgg tccgcttctt cctggaggag acgctggtgc ggccggagct gccgggggtg 780
cggcagagtgc ccctggacta cttcatgttc gccgtgcgc gccgacacca gcgccgcccag 840
ctggtgcaact tcgcctggaa gcacttccgg ccccgctgca agttcgtctg ggggccccaa 900
gacaagctgc ggaggttcaa gcccagctct ctgcccgcatt cgctcgaggg ctccaggaag 960
gtggaggagg aaggacctgc aaaaaacggag ccagccgaga gcccatcgaa gacccaggc 1020
cccagcccg caggacctac aaggatgag ccagccaagg cggggaggc agaaggctgc 1080
tgcctggctg tgtcttccca cccagctctc ccctgcgcctt ctgtcttgc taatcgaccc 1140
ttctggagcg gggggcggcg ggcagggctt gccttctta gtctgatgcc aagcaaggcc 1200
tttctgaat aaattcattt gacttcgaa aa 1232

<210> 14
<211> 392
<212> PRT
<213> Homo sapiens

<400> 14

Met Asp Asp Pro Asp Cys Asp Ser Thr Trp Glu Glu Asp Glu Glu Asp
1 5 10 15

Ala Glu Asp Ala Glu Asp Glu Asp Cys Glu Asp Gly Glu Ala Ala Gly
20 25 30

Ala Arg Asp Ala Asp Ala Gly Asp Glu Asp Glu Glu Ser Glu Glu Pro
35 40 45

Arg Ala Ala Arg Pro Ser Ser Phe Gln Ser Arg Met Thr Gly Ser Arg
50 55 60

Asn Trp Arg Ala Thr Arg Asp Met Cys Arg Tyr Arg His Asn Tyr Pro
65 70 75 80

Asp Leu Val Glu Arg Asp Cys Asn Gly Asp Thr Pro Asn Leu Ser Phe
85 90 95

Tyr Arg Asn Glu Ile Arg Phe Leu Pro Asn Gly Cys Phe Ile Glu Asp
100 105 110

Ile Leu Gln Asn Trp Thr Asp Asn Tyr Asp Leu Leu Glu Asp Asn His
115 120 125

Ser Tyr Ile Gln Trp Leu Phe Pro Leu Arg Glu Pro Gly Val Asn Trp
130 135 140

His Ala Lys Pro Leu Thr Leu Arg Glu Val Glu Val Phe Lys Ser Ser
145 150 155 160

Gln Glu Ile Gln Glu Arg Leu Val Arg Ala Tyr Glu Leu Met Leu Gly
165 170 175

Phe Tyr Gly Ile Arg Leu Glu Asp Arg Gly Thr Gly Thr Val Gly Arg
180 185 190

Ala Gln Asn Tyr Gln Lys Arg Phe Gln Asn Leu Asn Trp Arg Ser His
195 200 205

Asn Asn Leu Arg Ile Thr Arg Ile Leu Lys Ser Pro Cys Glu Leu Ser
210 215 220

Leu Glu His Phe Gln Ala Pro Leu Val Arg Phe Phe Leu Glu Glu Thr
225 230 235 240

Leu Val Arg Arg Glu Leu Pro Gly Val Arg Gln Ser Ala Leu Asp Tyr
245 250 255

Phe Met Phe Ala Val Arg Cys Arg His Gln Arg Arg Gln Leu Val His
260 265 270

Phe Ala Trp Glu His Phe Arg Pro Arg Cys Lys Phe Val Trp Gly Pro
275 280 285

Gln Asp Lys Leu Arg Arg Phe Lys Pro Ser Ser Leu Pro His Pro Leu
290 295 300

Glu Gly Ser Arg Lys Val Glu Glu Glu Gly Pro Ala Gly Asp Glu Pro
305 310 315 320

Ala Glu Ser Pro Ser Glu Thr Pro Gly Pro Ser Pro Ala Gly Pro Thr
325 330 335

Arg Asp Glu Pro Ala Lys Ala Gly Glu Ala Glu Ala Cys Cys Leu Ala
340 345 350

Val Ser Ser His Pro Ala Leu Pro Cys Ala Pro Val Phe Val Asn Arg
355 360 365

Pro Phe Trp Ser Gly Gly Arg Arg Ala Gly Leu Ala Phe Leu Ser Leu
370 375 380

Met Pro Ser Lys Ala Phe Ser Glu
385 390

<210> 15

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:antisense
primer for rat OGFr

<400> 15
gactcaggga cttagttca tcc 23

<210> 16
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:scrambled
primer

<400> 16
atagatacta cgccggctgt cct 23

<210> 17
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:antisense
primer for human OGFr

<400> 17
ggtcgtccat gctcggttag aat 23

<210> 18
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:scrambled
primer

<400> 18
gtgcagtgcata tgctctccg tga 23