Suites numériques et récurrence

QCM

- 1 b
- 2 b
- 3 a 4 c
- **5** C
- **6 b**

VRAI FAUX

- **Faux.** On peut seulement déduire que la propriété est vraie pour tout $n \ge 4$. Rien ne permet de savoir si la propriété est vraie pour n = 2 et pour n = 3.
- **Paux.** Rien ne permet de savoir si la propriété est vraie pour n = 4.
- $5 \times 2^{0} 4 = 1 \text{ donc } u_{0} \neq 5 \times 2^{0} 4.$

1 Faux. Pour n = 0, $u_0 = -4$ et

 $u_n = 5 \times 2^n - 4$. • Initialisation : Pour $n_0 = 0$, $u_0 = 1$ et $5 \times 2^0 - 4 = 1$ donc P(0) est vraie.

4 **Vrai.** On considère la propriété P(n) :

• Hérédité : On considère un entier quelconque $k \ge 0$. On suppose que P(k) est vraie, c'est-àdire $u_k = 5 \times 2^k - 4$.

 $u_{k+1} = 2u_k + 4 = 2(5 \times 2^k - 4) + 4$ = $5 \times 2^{k+1} - 8 + 4 = 5 \times 2^{k+1} - 4$.

croissante.

est vraie.

On a alors:

Donc
$$P(k + 1)$$
 est vraie.
La propriété est héréditaire.

rang $n_0 = 0$ et elle est héréditaire, donc P(n) est vraie pour tout entier $n \ge 0$, c'est-à-dire que, pour tout entier $n \ge 0$, $u_n = 5 \times 2^n - 4$.

5 Faux. $v_0 = 1$ et $v_1 = -2v_0 + 1 = -2 \times 1 + 1 = -1$.

On a donc $v_1 \le v_0$. Ainsi, la suite (v_n) n'est pas

• Conclusion : La propriété P(n) est vraie au

- **6 Vrai.** Si une suite (u_n) est croissante alors elle est minorée par son premier terme u_0 . Ce résultat se démontre par une récurrence
- immédiate. On considère la propriété $P(n): u_n \ge u_0$ • Initialisation : Pour $n_0 = 0$, $u_0 \ge u_0$ donc P(0)
- Hérédité : On considère un entier quelconque $k \ge 0$. On suppose que P(k) est vraie, c'est-àdire $u_k \ge u_0$.
- On a alors, puisque la suite (u_n) est croissante, $u_{k+1} \ge u_k \ge u_0$. Donc P(k+1) est vraie. La propriété est héréditaire.
- Conclusion : La propriété P(n) est vraie au rang $n_0 = 0$ et elle est héréditaire, donc P(n) est vraie pour tout entier $n \ge 0$, c'est-à-dire que, pour tout entier $n \ge 0$, $u_n \ge u_0$. Donc la suite (u_n) est minorée par son premier terme
- u_0 . **Faux.** Contre-exemple : la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = \frac{1}{n}$ est décroissante et elle est minorée par 0.
- **8 Faux.** Contre-exemple : la suite (u_n) définie pour tout entier $n \ge 1$ par $u_n = 7 \frac{1}{n}$ est majorée par 7 mais n'est pas majorée par 5 (en effet, $u_1 = 6$ et 6 > 5).
- **Vrai.** Pour tout entier naturel n, on $a-1 \le \sin(n) \le 1$. En ajoutant -2 à chaque membre de cette inégalité, on obtient : $-2-1 \le -2 + \sin(n) \le -2 + 1$, c'est-à-dire $-3 \le u_n \le -1$. On en déduit donc que la suite (u_n) est bornée.