Алгоритм выработки управления на очередной шаг

$$\dot{z} = A(t)z + B(t)u + C(t)v,
t \in [t_0, T], \quad z \in \mathbb{R}^n,
u \in \mathbf{P} \subset \mathbb{R}^p, \quad v \in \mathbf{Q} \subset \mathbb{R}^q,
z(T) \in \mathbf{M} + \mathbf{M}^{\perp}.$$
(1)

$$\dot{x} = D(t)u + E(t)v,
t \in [t_0, T], \ x \in \mathbb{R}^d, \ u \in \mathbf{P}, \ v \in \mathbf{Q},
D(t) = X_{s_1, s_2, \dots, s_d}(T, t)B(t),
E(t) = X_{s_1, s_2, \dots, s_d}(T, t)C(t),
x(T) \in \mathbf{M}.$$
(2)

$$\mathcal{P}_i = (-\Delta)D(t_i)P, \ \mathcal{Q}_i = -\Delta E(t_i)Q$$

Исходная фазовая переменная $z\in\mathbb{R}^n$, эквивалентная $x\in\mathbb{R}^d$, $1\leqslant \dim x\leqslant \dim z$. Сечения максимального стабильного моста в моменты времени $t_i\colon W_i\subset\mathbb{R}^d$.

Дано: $x \in \mathbb{R}^n$ Найти: $u \in P$

- 1. Найти ближайшую точку $h \in W_i$ к x;
- 2. В \mathcal{P}_i найти точку p, такую, что $\langle h-x,p\rangle$ максимальное;
- 3. Найти любую точку $u \in P$, такую что $proj(u, \mathcal{P}_i) = p$;