

Resultados: Brecha entre Efecto Especulación y Fundamentos en el Tipo de Cambio Nominal Paralelo

- Se entrenaron algoritmos de machine learning para pronóstico del tipo de cambio con base en la evolución de sus fundamentos.[1]
- Se observa una brecha entre el pronóstico y la serie observada del tipo de cambio paralelo desde el segundo semestre de 2023.
- La brecha entre el pronóstico (según los fundamentos del tipo de cambio) y el tipo de cambio paralelo puede ser entendida como el efecto especulativo.

Nota: [1] La muestra utilizada para el entrenamiento de los algoritmos es 2005-Ene. al 2018-Dic.. Este periodo se caracteriza por la ausencia de un mercado paralelo y situaciones económicas atípicas, con fundamentos estables del tipo de cambio. Los algoritmos empleados fueron Ridge, Gradient Boost Regressor y Random Forest, y el resultado es un promedio de las estimaciones. Las variables predictoras utilizadas como proxys de los fundamentos del tipo de cambio incluyen: IGAE, inversión pública, balance fiscal del SPNF, exportaciones e importaciones, precios unitarios de exportaciones, reservas internacionales, recaudación aduanera, agregados monetarios (M1, M2, M3), IPC, depósitos, y el índice de tipo de cambio multilateral.

Elaboración: Unidad de Análisis y Estudios Fiscales

Metodología: Brecha entre Efecto Especulación y Fundamentos en el Tipo de Cambio Nominal Paralelo

Datos:

- Muestra de datos para entrenamiento y validación: Enero 2005 a Diciembre 2018.
- Aleatoriamente se asigna el 80% de estos datos para entrenamiento y el 20% para validación.

Variables predictoras: Los determinantes o fundamentos del tipo de cambio nominal hacen referencia a los factores que influyen en el comportamiento de dicha variable. Se consideraron como proxys los fundamentos del tipo de cambio tomados de los documentos de Ogun (2015), Onour y Cameron (1997), Montiel, P. y Ostry (1994), y Kamin (1993).

Algoritmos de Machine Learning

Los modelos utilizados son Ridge Regression, Gradient Boosting Regressor y Random Forest.

- Ridge Regression es una técnica de regresión que penaliza la magnitud de los coeficientes para evitar el sobreajuste.
- Gradient Boosting construye un modelo mediante una secuencia de modelos, corrigiendo errores sucesivamente.
- Random Forest combina múltiples árboles de decisión para obtener una predicción robusta mediante bootstrap y selección aleatoria de predictores.

Métricas de evaluación

Las métricas de evaluación utilizadas para comparar el rendimiento de los modelos fueron el Error Cuadrático Medio (MSE), el Coeficiente de Determinación de Validación (R²) y el Error Absoluto Medio de Validación (MAE). En todos los casos, los modelos entrenados mostraron un buen desempeño, indicando una alta capacidad predictiva.

Nota: Ogun, O. (2015). Determination of Parallel Market Exchange Rate Premium. Modern Economy, 6(2), 289-293. DOI: 10.4236/me.2015.62026; Onour, I., and Cameron (1997). "Parallel market premia and misalignment of official exchange rates." *Journal of economic development* 22.1; Montiel, P. J., & Ostry, J. D. (1994). The parallel market premium: is it a reliable indicator of real exchange rate misalignment in developing countries? *Staff Papers*, 41(1), 55-75; Kamin, S. B. (1993). Devaluation, exchange controls, and black markets for foreign exchange in developing countries. Journal of Development Economics, 40(1), 151-169.