

THIRD QUARTERLY PROGRESS REPORT

MANUFACTURING METHODS AND TECHNOLOGY (MM & T)
MEASURE FOR FABRICATION OF THIN FILM ALUMINUM
DXIDE (AI₂O₃) ION BARRIER 18MM MICROCHANNEL
PLATES

(TITLE UNCLASSIFIED)

1 JANUARY 1977 TO 31 MARCH 1977 CONTRACT NO. DAABO7 - 76 - C - 0043

U. S. ARMY ELECTRONICS COMMAND
PRODUCTION DIVISION
PRODUCTION INTEGRATION BRANCH
FORT MONMOUTH, NEW JERSEY 07703

III Electro-Optical Products Division
7635 Plantation Road, Roanoke, Va. 24019

"Approved for public release, distribution unlimited."

"The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents."

"This project has been accomplished as part of the US Army (Manufacturing and Technology) Program, which has as its objective the timely establishment of manufacturing processes, techniques or equipment to insure the efficient production of current or future defense programs."

"Destroy this report when it is no longer needed. Do not return it to the originator."

SECURITY CLASSIFICATION OF THIS PAGE (When Dara Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
9	MANUFACTURING METHODS AND TECHNOLOGY (MM&T) MEASURE FOR FABRICATION OF THIN FILM ALUMINUM	5. TYPE OF REPORT & PERIOD COVERED
	OXIDE (A1'203) ION BARRIER 18MM MICROCHANNEL PLATES.	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(3)
_	P. HUTHOR(S)	a. Contract on Grant Romozato
(10)	Dan buggan //5	DAABØ7-76-C-0Ø43
	9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	ITT ELECTRO-OPTICAL PRODUCTS DIVISION	
	P. O. BOX 7065 ROANOKE, VIRGINIA 24019	276 9746
	II. CONTROLLING OFFICE NAME AND ADDRESS	Tune 1977
	U.S. ARMY ELECTRONICS COMMAND PRODUCT DIVISION, PRODUCTION INTEGRATION BRANCH FORT MONMOUTH, NEW JERSEY 07703	June 1977 T3. NUMBER OF PASES 35
	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	SAME AS ABOVE (12)39	UNCLASSIFIED
		15a. DECLASSIFICATION DOWNGRAPING
	16. DISTRIBUTION STATEMENT (of this Report)	L
	"Approved for public release, distribution unlimi	tted," D D C
	Douarterly pragress rept.	NO 3 TROPPIDED
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different tro	Report) NVV
	18. SUPPLEMENTARY NOTES	
	16. SUPPLEMENTANT NOTES	
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	
	MICROCHANNEL PLATES, THIN FILM ALUMINUM OXIDE,	ION BARRIER
	20. ABSTRACT (Continue on reverse side II necessary and identify by block number) (W) Effort during the third quarter of the contra fabrication and testing of the second submission of addition, tasks continued during the report period uniform firepolishing of entire MCP input surface structure, 2) improved MCP surface quality by opti of MCP's and 3) employment of thicker laquer films	ct was concentrated on of 10 engineering samples. In include: 1) achievement of by using a mesh heater mizing prepolish condition to improve Al 0 quality.
	(W) The new Varian evaporator was completed and us evaporations. To achieve better thickness control	, a dual shutter system was

DD , JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Darm

SECURITY CLASSIFICATION OF THIS PAGEOFFIAN Date Entered)

BLOCK 20. (Continued)

employed. Several flood gun designs were tested in the present engineering demountable testhead to achieve higher electron density for improved viewing of $A1^{4}_{2}0^{3}_{3}$ film defects. We Several MCP's were coated with very thick $A1^{4}_{2}0^{4}_{3}$ films to study $A1^{4}_{2}0^{3}_{3}$ film defects. The bakeable demountable test system was completely assembled and is now undergoing heat and pressure tests.

NTIS		Section
DDC	Buff S	ection _
UNANNOUN JUSTIFICAT		
BY		
DISTRIBUT	TION/AVAPLABE	ITY CODES
	ALL	SPLCIAL
Λ		
	1	1

MMTE FOR A1203 ION BARRIER MCPs

THIRD QUARTERLY REPORT

CONTRACT NUMBER DAAB07-76-C-0043

Prepared For PROCUREMENT DIVISION, FORT MONMOUTH PROCUREMENT AND PRODUCTION DIRECTORATE U. S. ARMY ELECTRONICS COMMAND FORT MONMOUTH, N. J. 07703

> Prepared By Dan Duggan

"Approved for public release; distribution unlimited."

APPROVED BY:

A. R. Asam, Manager MCP, Fiber Optic Waveguide and Cabling Operations

APPROVED BY:

M. F. Toohig, Vice Press Director of Engineering Vice President &

ABSTRACT (U)

- (U) Effort during the third quarter of the contract was concentrated on fabrication and testing of the second submission of 10 engineering samples. In addition, tasks continued during the report period include: 1) achievement of uniform fire polishing of entire MCP input surface by using a mesh heater structure, 2) improved MCP surface quality by optimizing prepolish condition of MCP's and 3) employment of thicker lacquer films to improve Al₂O₃ quality.
- (U) The new Varian evaporator was completed and used to perform all ${\rm Al}_2{\rm O}_3$ evaporations. To achieve better thickness control, a dual shutter system was employed. Several flood gun designs were tested in the present engineering demountable test head to achieve higher electron density for improved viewing of ${\rm Al}_2{\rm O}_3$ film defects.
- (U) Several MCP's were coated with very thick ${\rm Al}_2{\rm O}_3$ films to study ${\rm Al}_2{\rm O}_3$ film defects. The bakeable demountable test system was completely assembled and is now undergoing heat and pressure tests.

TABLE OF CONTENTS

	TITI	Е	PA	AGE				
	ABST	ABSTRACT						
1.0	INTE	TRODUCTION						
2.0	TECH	NICAL DISCUSSION		2				
	2.1	Al ₂ 0 ₃ Ion Barrier Forma	tion	2				
		2.1.1 MCP Surface Clear 2.1.2 Improved Lacquer 2.1.3 Al ₂ 0 ₃ Ion Barrie	ning ing Technique r Evaporation	2 2 3				
		2.1.3.1 Vacuum Films	2 3	3				
		2.1.3.2 Al ₂ 0 ₃ F with Va	ilm Evaporation rian Evaporator	6				
	2.2	MCP Surface Quality Imp	rovement	7				
		2.2.1 Grinding and Pol 2.2.2 Fire Polishing	ishing	7 9				
	2.3	Testing of Al ₂ 0 ₃ Ion Ba	rrier Films	9				
		2.3.1 Tube Construction 2.3.2 Flood Gun MCP Te	sting 1	9				
		2.3.3 Defect Study usin Films	ng Thick Al ₂ 0 ₃ 1	1				
	2.4	Bakeable and Demountable System	e Vacuum Test	.3				
	2.5	Preparation and Delivery Submission of 10 Engine		. 7				

TABLE OF CONTENTS (Continued)

	TITLE	PAGE
3.0	CONCLUSIONS	19
4.0	SCHEDULE	20
5.0	CONFERENCES AND REPORTS	20
	5.1 Conferences5.2 Reports	20 20
6.0	GLOSSARY	31
7.0	DISTRIBUTION LIST	3 2 3 3 3 4 3 5

LIST OF ILLUSTRATIONS

		FIGURE
1.0	NORMAL PRODUCTION MCP SURFACE AFTER CHEMICAL ETCHING AND CLEANING	1
2.0	IMPROVED "PRE-POLISH CONDITION MCP SURFACE AFTER CHEMICAL ETCHING AND CLEANING	2
3.0	REJECT A1 $_2$ 0 $_3$ FILMED MCP AS VIEWED WITH FLOOD GUN 2	3
4.0	PHOTOGRAPH OF LARGE HOLE IN THE LACQUER FILM	4
5.0	SMALL 3-4 MICRON HOLE IN LACQUER FILM	5
6.0	SPLITS IN LACQUER FILM	6
7.0	PARTICLE UNDER A1 ₂ 0 ₃ FILM	7
8.0	TEST CHAMBER AND PUMPING SYSTEM	8
9.0	BAKEABLE DEMOUNTABLE TEST CHAMBER	. 9
10.0	TEST DATA SHEET MCP #542-30	10
11.0	TEST DATA SHEET MCP #542-33	11
12.0	TEST DATA SHEET MCP #542-32	12
13.0	TEST DATA SHEET MCP #542-26	13
14.0	TEST DATA SHEET MCP #464-T1	14
15.0	TEST DATA SHEET MCP #464-T6	15
16.0	TEST DATA SHEET MCP #464-T5	16
17.0	TEST DATA SHEET MCP #542-19	17

LIST OF ILLUSTRATIONS

(Continued)

						FIGURE
18.0	TEST	DATA	SHEET	MCP	#542-29	18
19.0	TEST	DATA	SHEET	MCP	#508-20	19

- 1.0 INTRODUCTION (U)
- (U) The purchase description DAAB07-76-R-0035 calls for a manufacturing methods and technology measure (MMTE) for "Aluminum Oxide" Al₂0₃ which meet the MCP 003 requirements. The objective of this program is to establish a production capability for the purpose of meeting estimated military needs for a period of two years after completion of the contract, and to establish a base in plans which may be used to meet expanded requirements. The MMTE will include all work under Paragraphs 3.1 and 3.2 of ECIPPR No. 15 necessary to establish capability to manufacture aluminum oxide ion barrier microchannel plates on a pilot line basis including fabrication of engineering samples and confirmatory samples as specified in the contract. Included in this program as part of the engineering phase are the investigation of improvements in surface conditions and cleanliness for MCP's to be filmed, salvage of Al₂O₃ ion barrier MCP's, filming process control, the achievement of optimum performance characteristics for ion barrier MCP's and the design and fabrication of specialized test equipment.

- 2.0 TECHNICAL DISCUSSION (U)
- 2.1 $A1_20_3$ Ion Barrier Formation (U)
- 2.1.1 MCP Surface Cleaning (U)
- (U) In addition to closer inspection and particle picking of MCP's prior to filming, edge grinding of the polished MCP has been introduced as part of the cleaning process. During the standard polishing process, cerium oxide particles are embedded into the beveled edge of the MCP as it shifts position in the polishing holder during the polishing operation. To remove embedded particles, the polished MCP is edge ground which is accomplished by loading the MCP into a vacuum chuck, rotating the plate and grinding the exposed edge with a honing tool. Edge grinding has resulted in much cleaner plates and has reduced the number of type A and B holes in the Al₂0₃ film.
- 2.1.2 Improved Lacquering Techniques (U)
- (U) Investigations of improved lacquering techniques have included use of an overflow lacquering tank for achieving a cleaner water surface, control of lacquer thickness, and investigation of lacquer set up and drying time.

 During the last portion of this quarter, attempts were made to lacquer funneled plates on another program. In filming funneled plates, the lacquer is only supported by very thin edges of the MCP matrix glass. Using the standard lacquering process, lacquer films sagged and ruptured when stretched across the funneled active area

of the MCP. Sagging and rupturing was eliminated by employing a thicker lacquer film. Thicker lacquer films can be produced by slightly increasing the temperature of the water bath. Warmer water speeds up the drying process of the lacquer and therefore, limits spreading of the lacquer on the water surface. This technique was successfully used to lacquer and film funneled MCP's.

The same technique was then applied to standard plates and test results have shown that thicker films effectively reduce the number of type A holes in the finished plate.

- $2.1.3 \text{ Al}_20_3$ Ion Barrier Evaporation (U)
- 2.1.3.1 Vacuum Baking of $A1_20_3$ Films (U)
 - (U) Prior to completion of the second submission of engineering samples, it was found that vacuum baking of ${\rm Al}_2{\rm O}_3$ ion barrier MCP's resulted in thinning of the ${\rm Al}_2{\rm O}_3$ film and hence in a reduction in dead voltage and gain change between 800 and 1000 volts input landing energies. The same decrease in dead voltage was measured in tubes after processing in a parallel tube program.
 - (U) To confirm these results, several ion barrier plates were vacuum baked at 375°C for 8 hours. The test results are shown in Table I.
 - (U) These test results show that vacuum baking of ion barrier MCP's reduced the thickness of ${\rm Al}_2{}^0{}_3$ ion barrier films. The average reduction in gain change and in dead voltage was 40%. To compensate for the reduction in film thickness during vacuum bake, the thickness of the ${\rm Al}_2{}^0{}_3$ film

Table I (U)

Plate #	Thickness	Prior to Bake Gain Change/ Dead Voltage	After Bake Gain Change/ Dead Voltage
538-11	45 R	8%/ 80 Vdc	5%/60 Vdc
538-09	47 A	7.5%/ 85 Vdc	4%/30 Vdc
538-19	42 R	7.7% 80 Vdc	5%/50 Vdc
538-16	42 R	6% / 80 Vdc	4%/30 Vdc
538 - 07	42 R	5% / 45 Vdc	0%/ 0 Vdc

was increased. Additional MCP's were prepared with a 63 Å thick ${\rm Al}_2{\rm 0}_3$ film. The test results, before and after vacuum bake, are shown in Table II.

Table II (U)

Plate #	Thickness	Prior to Bake Gain Change/ Dead Voltage	After Bake Gain Change/ Dead Voltage
317-27	63 Å	15%/ 260 Vdc	5.3%/190 Vdc
538-26	63 A	16%/ 270 Vdc	11.3%/170 Vdc
317-32	63 A	18%/ 250 Vdc	16%/ 210 Vdc
317-30	63 A	16%/ 260 Vdc	15%/ 180 Vdc
317-24	63 A	15%/ 230 Vdc	13%/ 180 Vdc
317-45	63 A	15.5%/ 240 Vdc	15%/ 180 Vdc
538-21	63 R	15%/ 225 Vdc	13.5%/165 Vdc

(U) In contrast to the results shown in Table I, the second experiment yielded a drop in gain change and dead voltage of only 25%.

(U) In addition to the above tests, three MCP's from Table I were rebaked at 375°C for 8 hours. The test results are shown in Table III which show that the second vacuum bake does not affect the gain change and dead voltage appreciably.

Table III (U)

Plate#	Thickness	Prior Bake Gain Change/ Dead Voltage	After Bake Gain Change/ Dead Voltage	After 2nd Bake Gain Change/ Dead Voltage
538-19	42 8	7.7%/80 Vdc	5%/50 Vdc	4%/ 10 Vdc
538-09	47 A	7.5%/85 Vdc	4%/30 Vdc	5.8%/ 45 Vdc
538-11	45 R	8%/ 80 Vdc	5%/60 Vdc	5%/ 50 Vdc

(U) Based on the results shown in Table II additional plates were evaporated with a 55 % thick Al $_2$ 0 $_3$ film. As shown in Table IV, a gain change of slightly less than 10% and a dead voltage of 150 Vdc were achieved after vacuum bake.

Table IV (U)

Plate #	Thickness	Before Bake Gain Change/ Dead Voltage	After Bake Gain Change/ Dead Voltage
542-32	55 A	10%/200 Vdc	7%/140 Vdc
542-33	55 R	11%/185 Vdc	9%/140 Vdc

(U) These experiments have shown that the required maximum gain change of 10% and maximum dead voltage of 150V can be met with a 55 $^{\rm A}$ thick Al $_2$ 0 $_3$ film after a vacuum bake at 375 $^{\rm O}$ C for 8 hours.

- 2.1.3.2 $A1_20_3$ Film Evaporation With Varian Evaporator. (U)
 - (U) During this report period, the new oil free Varian Evaporator was made operational. Experiments were performed to establish evaporation conditions and to achieve ${\rm Al}_2{}^0{}_3$ film characteristics with respect to gain change and dead voltage identical to those achieved with ${\rm Al}_2{}^0{}_3$ films prepared with the Veeco evaporator. Identical film characteristics were achieved with a deposited film thickness of ${\rm 40\text{-}42A}$ as compared to 55Å with the Veeco evaporator. The reduced film thickness may be attributed to the lower vacuum pressure during evaporation. The new evaporator maintains a vacuum pressure of 5 x ${\rm 10}^{-6}$ Torr during evaporation as compared to an average of 5 x ${\rm 10}^{-5}$ Torr with the Veeco evaporator.
 - (U) To establish accurate rate control and deposition, a dual shutter system was designed and installed in the Varian evaporator. The dual system consists of a scissors shutter which is located directly below the MCP substrate holder and an evaporant outgassing shutter which is located directly above the E-gun hearth. The "scissors" shutter consists of two semi-circular plates and a circular cutout in the closed position which is in line with the sensor head and the evaporant source. After initial outgassing of the Al₂0₃ evaporant in the evaporation boat, the outgassing shutter is swung open to expose the thickness monitor to the vapor stream. The evaporation rate is then adjusted to 1 to 2A per second. During this adjustment period, the scissors shutter is in the closed position to protect the MCP's from Al, 0, vapors. The outgassing shutter is then moved over the evaporation boat

to re-zero the thickness monitor. The scissors shutter is then opened and the outgassing shutter is then quickly swung open. After 40\AA of Al_20_3 have been evaporated, the outgassing shutter and scissors shutter are closed again. This dual shuttering technique has greatly improved Al_20_3 deposition control. Al_20_3 films of desired thickness can now be produced on a reproducible basis.

- 2.2 MCP Surface Quality Improvement (U)
- 2.2.1 Grinding and Polishing (U)
- To improve the pre-polish condition of the MCP surface, twenty-two MCP's were ground with a mixture of 5 micron particle grinding compound and Cerite polishing compound mixed in a ratio of 4:1. MCP surfaces were then polished by utilizing the standard production polishing process. After removal of the core glass in 10% solution of HCl, the surface of the MCP did not reveal any scratches which normally appear at this stage. A photograph of the surface of a standard MCP is shown in Figure #1. Surface scratches can be seen on the matrix of the MCP. As a comparison, Figure #2 shows the etched surface of an MCP which has been prepared with the improved pre-polish technique. No surface scratches can be detected. To confirm these results, a second group of MCP's will be prepared during the 4th quarter with the improved prepolish technique.

FIGURE #1 (U) Normal Production MCP Surface After Chemical Etching and Cleaning.

FIGURE #2 (U) Improved "Pre-Polish" Condition MCP Surface After Chemical Etching and Cleaning.

2.2.2 Fire Polishing (U)

- (U) Fire polishing experiments were continued utilizing a square tantalum heating mesh. These experiments have produced uniform fire polishing action across the entire MCP surface.
- (U) Fire polishing is accomplished in the following manner. The MCP is located in vacuum with a heat source in close proximity to the input side. The heat source is activated which then raises the glass surface to just below the melting temperature. To achieve a smooth and uniform fire polished surface, the temperature is peaked to the melting point and then reduced to room temperature.
- (U) This technique has resulted in one uniformly fire polished MCP. However, subsequent experiements have clearly demonstrated that fire polishing conditions are extremely difficult to reproduce. The decision was then made to discontinue this technique in favor of the more successful pre-polish technique.
- 2.3 Testing of Al_2O_3 Ion Barrier Films (U)
- 2.3.1 Tube Construction (U)
 - (U) In preparation for the confirmatory sample phase of the contract, two test tubes were constructed with ${\rm Al}_2{\rm 0}_3$ ion barrier MCP's. Both tubes were built using production sub assemblies and utilizing standard Generation II production facilities. Special handling of filmed MCP's

was introduced to insure that the ${\rm Al}_2{\rm O}_3$ film was not picked or blown clean during assembly and exhaust loading operations. After both tubes were completed, testing at 5 volts landing energy revealed many more "hole" defects in the ${\rm Al}_2{\rm O}_3$ film than had been detected by the demountable test head using UV excitation of an aluminized quartz cathode as the emission source. The appearance of more holes in the ${\rm Al}_2{\rm O}_3$ film of the finished tubes may be related to tube processing techniques or more holes may be detectable with the higher electron density from the photocathode. To determine if more holes can be detected with higher electron density, the demountable test head was equipped with a flood gun capable of higher electron emission than the presently employed UV excited aluminized quartz cathode.

- (U) Both tubes were assembled and exhausted without difficulty. For simplicity, the tubes were assembled using the single seal method and the MCP was outgassed with a standard GEN II flood gun.
- 2.3.2 Flood Gun MCP Testing (U)
 - (U) Our present engineering demountable test station is equipped with two test heads. One of the test heads was modified for flood gun viewing of ${\rm Al}_2{\rm O}_3$ filmed MCP's whereas the second test head is equipped with a UV excitation source. A standard GEN II MCP outgassing gun was modified to achieve flood gun electron excitation of the ${\rm Al}_2{\rm O}_3$ ion barrier MCP. Despite employment of a mesh

between the flood gun and the test MCP, the uniformity of the flood beam was poor. However, sufficient testing was performed to determine that the flood gun viewing system is capable of detecting all holes which are detectable with the UV excited test head, and in addition, the flood gun viewing system is capable of resolving smaller holes in the film than could be detected with the UV excited test head.

- 2.3.3 Defect Study Using Thick $A1_20_3$ Films. (U)
 - (U) In an effort to correlate film defects which are detectable by electron viewing with film defects which are visually detectable under the Leitz microscope, MCP's were prepared with thick ${\rm Al_20_3}$ films. One MCP was evaporated with 500% of ${\rm Al_20_3}$. The second sample was evaporated with 250% of ${\rm Al_20_3}$. Thicker films facilitate visual detection of very small (2-3 micron) defects in the ${\rm Al_20_3}$ film.
- (U) Figure #3 shows a plate when viewed with the flood gun. This MCP was originally rejected in the UV test head for an excessive number of type A and B holes. After rejection, it was re-evaporated with 500 additional A of Al₂0₃ for defect studies. In Figure #4, the large bright spot appearing near the edge of the MCP at the bottom of the photograph was located visually and photographed using the Leitz microscope. This defect is illustrated in Figure #4, and apparently is a break in the lacquer film exposing an area of at least six single channels. Close examination of the defect revealed a raised edge around the periphery of the defect

FIGURE #3 (U) Photograph of Reject ${\rm A1_2^0_3}$. Filmed MCP as Viewed with the Flood Gun Test Head.

FIGURE #4 (U) Photograph of Large Hole in the Lacquer Film Probably Present Prior to ${\rm Al_2^{0}_{3}}$ Evaporation.

which consists of the rolled lip of the lacquer film. Other defects in thick ${\rm Al}_2{}^0{}_3$ film MCP's are illustrated in Figures 5, 6, and 7. Additional tests will be required to determine and isolate causes for film defects.

- 2.4 Bakeable and Demountable Vacuum Test System (U)
 - (U) The demountable system was completely assembled at the end of the third quarter. A photograph of the assembled system is shown in Figure #8. The delayed SCR heat controller has since been received. The entire system is presently undergoing heat and pressure tests.
 - (U) The entire vacuum system has been leak checked. A nude UHV gauge has been installed in the chamber to permit pressure testing of the demountable chamber during heat cycling. A photograph of the demountable chamber is shown in Figure #9.
 - (U) After all leak checking at room temperature and at 375°C has been completed, the internal fixturing will be installed. The internal fixturing consists of 1) a fixed circular plate containing either aluminized cathodes or openings for flood gun electrons arranged in a circle, 2) a rotatable plate containing six ceramic nests arranged in a circle and 3) a support stand which locates the six ceramic nests directly below viewing ports which are situated on top of the chamber.

FIGURE #5 (U) Completed MCP With ${\rm A1_20_3}$ Film Illustrating a Small 3-4 Micron Hole in Lacquer Film. Hole May Be Caused by ${\rm A1_20_3}$ "Pop-Up" During Evaporation. Appears as Defect in Demountable.

FIGURE #6 (U) Completed MCP With Al₂0₃ Film

Illustrating Splits in Lacquer

Film. May Be Weakness in Lacquer.

Appears as Defect in Demountable.

FIGURE #7 (U) Dust Particles Under ${\rm Al}_2{\rm O}_3$ Film. Appears as Defect in Demountable.

FIGURE #8 (U) Photograph of Test Chamber and Pumping System.

FIGURE #9 (U) Bakeable Demountable Test Chamber.

16

- (U) Each ceramic nest contains a test MCP and a phosphor faceplate which can be rotated over any of the fixed outgas or test positions. This arrangement permits each MCP to be electron scrubbed with a flood gun and tested with either a flood gun or UV excited aluminized cathode for electrical characteristics and ion barrier film quality.
- (U) Electrical connections to the MCP input and output, aluminized cathodes and flood gun electrodes are made through the bottom section of the chamber. High voltage connections to the six phosphor plates are already mounted in the top portion of the chamber.
- 2.5 Preparation and Delivery of Second Submission of 10 Engineering Samples (U)
- (U) The second submission of ten (10) engineering samples was submitted on February 28, 1977. Catagory II requirements for these samples include nine non-bake requirements and two requirements after bake. Each MCP after it had been tested and met the nine non-bake requirements was individually loaded into a tube body and baked for 8 hours at 375°C. The vacuum bake requirements for catagory II tests were also met. The MCP's were then retested in the demountable test head for correlation of test results. Test data for the 10 engineering samples are given in Table V. Detailed test data for each MCP are presented in Figures 10 through 19.
- (U) The engineering demountable test head and the new bakeable demountable system need to be equipped with

L	JN	IC	LA	SS	IF	ED
		-				

3.3.1.7.3	RESTS- TANCE (x10 ⁸ OHMS)	1+6×10 ⁸ Ω	3.6	4.7	3.0	3.0	4.4	2.9	3.5	3.4	3.8	4.9
3.3.1.7.1	GAIN	3000 MIN AT 900V	28000	23666	23666	19000	14333	23666	24660	17270	21666	19330
3.3.2 3.3.1.7 4.5.2.1.0 4.5.2.2	MICRO- SCOPIC WHISKER GROWTH	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
3.3.1.6.2	HALATION, HOT SPOTS & FIELD EMISSION	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE
3.3.1.5.3	OTHER HOLE DEFECTS	c	0	0	0	0	0	0	0	0	0	0
3.3.1.5.2	TYPE B HOLES	S MAX	2	2	-	-	1	-	-	0	1	2
3.3.1.5.1	TYPE A HOLES	30 MAX	2	3	2	12	2	9	25	15	10	3
3.3.1.4	RESIS- TANCE (x10 ⁸ OHMS)	1+5×10 ⁸ n	3.9	5.0	5.0	3.1	4.8	3.2	3.7	3.5	4.0	5.0
3.3.1.3	DARK	8.5x10-16 MAX	0	0	0	0	0	0	0	0	0	0
3.3.1.2	GAIN	4000 MIN	2000	8000	2000	5333	6333	5333	9995	7575	6333	8900
3.3.1.1	PENE- TRATION VOLTAGE	10% MAX	8.0	0.6	7.0	10.0	7.0	7.0	8.0	0.6	10.0	8.0
REQUIREMENT 3.3.1.1 TEST 4.5.2.1	TITLE	SPECIFI- CATION MCP #	542-30	∞ 542-33	542-32	542-26	464-T1	464-T6	464-TS	542-19	542-29	508-20

2ND GROUP ENGINEERING SAMPLES
TEST SUMMARY SHEET

Table V.

MCP-003 3-4-77

900 VOLTS MCP INPUT PENETRATION (VI) AL2O1

VOLTS	OUTPUT CURRENT	GAIN
100 E &	4.2 X10- 9	
200	8.0 XIO- 9	
300	1.45 X10- 8	
400	2.1 X10- 8	
500	2.9 X10-8	
600	3.55 ×10-8	
700	4.1 X10-8	
900	4.45 X10- 8	
900	4.7 X10-8	
1000	4.8 x10-8	

MCP S/N	542-30
VENDOR	ITT
DATE TESTED	3-2-77
DIA.	0.975 inches
THICKNESS	
CONDUCTIVITY: B.	1 A.B. 1 T.B.
@ 500V_1.2	28 1.25 1.1 µ omps
MICCOV 2.5	8 2.78 2.35 amps
INPUT: 1.5 x 10-12	AMPS/CM3

WCL				
VOLTS	OUIPUT CURRENT	GAIN	BKGD]
500	2.0 axp- 10	6.6		
600	1,2 exp- 9	40		
700	7 0 0x1>-	222		LEFORE
000	3.7 exp- 8	1233		PAKE
900	1.5 0xp- 7	5000		800 VEK
1000	4.7 0×p- 7	15666	0	1
MCP				-
AOFLE	OUTPUT CURRENT	GAIN	BKGD.	
500	9.0 exp- 10	30		
000	8.0 oxp- 9	266		
700	5.3 exp- 8	176c		AFTER
800	2.75 exp- 7	9166		BAIC
900	8.4 exp- 7	28000		800 VEK
1000	1.2 exp- 6	40000	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
200	3.7 exp-11	7.0		
600	3.3 oxp- 10	63		
700	2.2 oxp- 9	420		TEST
800	1.1 exp- 8	2100		BEILLI
900	4.4 exp- 8	8410		800 VEK
1000	1.4 exp- 7	25700	0	

BEST AVAILABLE COPY

Figure 10. TEST DATA SHEET MCP #542-30

19

900 VOLTS MCP INPUT PENETRATION (VI) AL₁O₁

VOLTS	OUTPUT CURRENT	GAIN
100 E k	2.7 x10-9	
200	5.2 x10-9	
300	9.1 x10-9	
100	1.5 x10-9	
500	2.1 x10-8	
600	2.5 ×10-8	
700	3.0 X10-8	
800	3.2 X10-8	
500	3.4 X10-8	
1000	3.5 x10-8	

MCP S/N	542-33		
VENDOR	117		
DATE TESTED	3-1-77		
DIA.	0.975 inches		
THICKNESS .	21.6 mile		
CONDUCTIVITY: R.	f A. B. I T. B.		
@ soov 0.9	0.9 19.9 y omp		
DIOCOV 2.0	2.05 2.0 µ ampi		
INPUT: 1.5 × 10-12	AMPS/CM2		

WCL				
VOLIS	OUTPUT CURRENT	GAIN	BKGD	
500	2.0 exp-10	6.6		
600	1.2 **** 9	6.3		
200	1.2 ***** 9	400		15FORE
800	6.0 "rp- 3	2000		DAKE
200	2.4 exp- 7	8000		806 TEE
1000	6-1 *** 7	_20313	-0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGO.	
500	1.0 exp- 9	33		
600	8.0 axp. 9	266		
700	6.0 exp-8	2000		AFIRE
600	3-0 0xn- 7	10000		PAK
900	7.0 0×p-7	23333		800 AEK
1000	1 0 1xp- 6	33333	9	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	2.8 *xp-11	5.3		
600	2.4 °ep- 10	45		
700	1.5 exp- 9	286		1537
800	7.6 0xn- 0	1453		BEHCH
200	3.2 0.5. 8	6118		300 VEK
1000	1.1 exp- 7	21032	0	

BEST AVAILABLE COPY

Figure 11. TEST DATA SHEET MCP #542-33

20

MCP S/N	542-32
VENDOR	ITT
DATE TESTED	2-25-77
DIA.	0.975 inches
THICKNESS	21.6 mils
CONDUCTIVITY:B.	A.B.IT.B.
@ 500v 0.92	1.0 0.9 µ amp
Olocov 2.0	1 2.15 2.0 u amp
INPUT: 1.5 × 10-12	

MCP				
VOLIS	OUIPUT CURRENT	GAIN	UXGD	
500	2.0 exp-10	6.6		
400	1.3 exp- 9	43		
700	8.0 oxp- 9	266		LEFORE
800	3.9 exp- 8	1300		FARE
900	1.5 exp- 7	5000		800 VEK
1000	4.4 exp- 7	14666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD	
500	9.0 exp-10	30		
٥٥٥ .	9.5 0xp- 9	316		
700	6.0 exp-8	2000		AFTER
800	2.9 0×n-7	9666		BAKE 800 VEK
200	7.1 0xp- 7	23666		1 600 VER
1000	1.0 exp-6	33333	O	
MCP				
VOLTS	GUTPUT CURRENT	GAIN	BKGD.	1
500	2.6 0xp-11	5.0		
600	2.3 0xp-10	44		
700	1.5 exp-9	286		TEST
800	7.1 uxn- q	1357		BENCH
900	3.0 exp-8	5730		800 VEK
1000	1.0 exp-7	19100	0	

900 VOLTS MCP INPUT PENETRATION (VI) ALTOI

VOLTS	OUTPUT CURRENT	GAIN
100 E k	2.8 X10-9	
200	5.3 XIO- 9	
300	9.3 x10- 9	
400	1.4 x10-8	
500	2.0 x10-8	
000	2.4 x10-8	
700	2.7 x10-8	
800	2.9 x10-8	
700	3.0 X10.8	
1000	3.1 x10-8	

Figure 12. TEST DATA SHEET MCP #542-32

900 VOLTS MCP INPUT PENETRATION (VI) AL₂O₂

VOLTS	OUTPUT CURRENT	GAIN
100 E k	2.8 X10-9	
200	5.1 x10-9	
300	8.7 x10-9	
400	1.4 X10-8	
500	2.0 x10-8	
600	2.5 x10-8	
700	2.9 X10-8	
800	3.15 x10-8	
700	3.33 x10.8	
1000	3.50 x10-8	

	542-26
MCP S/N	ITT
VENDOR	
DATE TESTED	2-23-77
DIA.	0.975 inches
THICKNESS	21.6 mils
CONDUCTIVITY:B.	1 A.B. 1 T.B.
	1.55 1.3 µ amps
@iccov 3.2	3.3 2.8 u amps
INPUTE 1 5 x 10-12	

MCP				
VOLTS	OUTPUT CURRENT	GAIN	BKGD	1
500	2.0 axp- 10	6.6		
600	1.5 exp- 9	50		
700	9.3 exp- 9	310		LEFORE
800	4 1 exp- 8	1366		BAKE
900	1.6 exp- 7	5333		800 VEK
1000	5.1 exp- 7	17000	0	1000 121
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	7.0 exp-10	23		
600	4.8 exp- 9	160		
700	3 3 axb- 8	1100		AFTER
800	1.65 exp. 7	5500		BAK
900	c , exp- ,	19000		800 VEK
1000	9.5 wxp- 7	31666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	1
500	1.1 exp- 10	21		
600	3.3 0xp-10	63		
700	1.8 exp- 9	344		TEST
000	8 1 0xp- 9	1550		BENCH
900	3.2 exp- 8	6110		800 VEK
1000	9.0 exp- 8	17200	0	

BEST AVAILABLE COPY

Figure 13. TEST DATA SHEET MCP #542-26

MCP S/N	464-T1
VENDOR	ITT
DATE TESTED	2-22-77
DIA.	0.975 inches
THICKNESS	21.8 mils
CONDUCTIVITY:3.	A.B. T.B.
	1.05 1.0 µ amps
Olocov 2.1	1 2.3 2.1 µ amps
INPUT: 1.5 x 10-12	AMPS/CM2

MCP				
VOLTS	OUTPUT CURRENT	GAIN	BKGD]
500	2.0 0xp-10	6.7		
400	1.4 9xp- 9	46		
700	9.0 exp- 9	300		LEFORE
800	4.6 exp- 8	1533		BAKE
700	1.9 exp- 7	_6333		800 VEK
1000	5.6 mm 7	18666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	4.0 cxp-10	13		
600	3.5 axp. 9	116		
700	2.2 exp- 8	733		AFTER
800	1.05 0×n- 7	3500		INK
900	4.3 0xp- 7	14333		300 VEK
1000	7.8 exp- 7	26000	0	
MCP				
VOLTS	OUTPUT CURRENT	GAIN	BKGD.	1
500	1.7 oxp-11	4.8		
600	1.55 oxp-10	45		
700	1.05 exp- 3	298		TEGT
000	5 1 0xn- 0	1448		BENCH
900	2.15 0×p- 8	6107		800 VEK
1000	7.0 exp- 8	19880	0	

900 VOLTS MCP INPUT PENETRATION (VI) AL101

	GAIN	T CURRENT	IS OUTPU	VOLIS
		X10-9	O E 2.4	100 E
		X10-9	0 4.4	200
		x10-9	0 7.2	300
		X10-3	0 1.1	400
		X10-8	0 1.5	500
		x10-9	0 1.3	600
		X10-8	0 2.0	700
		x10-8	0 2.2	300
7.0%		X10-3	0 2.3	900
)		x10-3 _	2.33	1000

BEST AVAILABLE COPY

Figure 14. TEST DATA SHEET MCP 464-T1

	900 VOLTS	MCP
INPUT	PENETRATION	(VI) AL101

C	UTPUT	CURREN	GAL	N _
	3.9	×10-9		
	6.4)	x10-9		
	1.1	×10-9		
	1.5	x10-8		
	2.0	K10-8		
	2.3	10-8		
T	2.55	x10-8		
T	2.7	x10-8		,
T	2.8	X10-8		7.02
T	2.9	8-01X		

MCP S/N	464-T6	
VENDOR	ITT	
DATE TESTED	2-15-77	
DIA.	0.975	inches
THICKNESS	21.8	_mils
CONDUCTIVITE:B.	1 A.B. I T.B	
@ 500v 1.4	1.6 11.4	n awbe
@locov 3.1	13.4 13.0	y omps
INPUT: 1.5 × 10-12	AMPS/CM2	

VOLIS	OUTPUT CURRCIAT	GAIN	BKGD	
500	2.4 exp- 10	8.0		
600	1.2 °×p- 9	40		
700	9.0 0×12- 9	300		LEFOUE
800	5-0 °×12- 8	1666		BAKE
700	1.6 exp- 7	5333		800 VEK
1000	6.5 oup- 7	21666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	7.0 exp-10	23		
600	6.0 exp- 9	200		
700	4.1 exp- 8	1366		AFTER
800	2-1 9×n- 7	7000		PAKE
900	7.1 949- 7	23666		800 AEK
1000	1.1 oxp- 6	36660	0	
MCP				
VOLTS	OUTPUT CURRENT	GAIN	IIKGD.	1
500	2.2 exp-11	42		
600	1.9 axp- 10	36		
700	1-3 exb. 3	248		TEGT
800	6.4 0×n- 9	1223		BENCH
900	2.7 0rp- 8	5160		800 VEK
1000	9.4 exp- 8	17970	0	

BEST AVAILABLE COPY

Figure 15. TEST DATA SHEET MCP #464-T6

900 VOLTS MCP

VOLTS	OUTPUT CURRENT	GAIN
100 E k	4.5 x10-9	
200	9.0 X10-9	
300	1.6 XIO- 8	
400	2.4 x10-8	
500	3.2 X10-8	
600	3.9 x10-8	
700	4.4 x10-8	
800	4.7 x10-8	
900	5.0 X10-8	
1000	5.1 x10-8	

7.5%

MCP S/N	464-T5
VENDOR	ITT
DATE TESTED	2-16-77
DIA.	0.975 inches
THICKNESS	mils
CONDUCTIVITY: B.	1 A. B. I T. B.
	1.3 11.15 cmp
@10cov 2.7	12.85 12.4 µ amps
INPUT: 1.5 × 10-12	AMPS/CM2

VOLTS	OUTPUT CURRENT	GAIN	BKGD]
500	2.5 exp-10	8.3		
400	1.3 exp- 9	43		
700	9.0 exp- 9	300		LEFOR
800	4.4 oxp- 8	1466		BAKI
900	1 7 0xp- 7	5666		800 VE
1000	5.7 oxp- 7	19000	0	1
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	7.0 exp-10	23		1
600	6.6 axp. a	220		
700	4.4 exp- 8	1466		AFI
800	2.33 exp- 7	1766		B.
900	7.4 exp- 7	34660		800 VE
1000	11 axb. 6	36666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD	1
500	3.6 exp-11	6.8		
000	3.3 exp-10	63		
700	2.2 oxp- 9	420		TEST
000	1.2 080- 8	2290		BENCE
900	4.7 exp- 8	3980		600 VE
1000	1.5 exp- 7	28600	0	

BEST AVAILABLE COPY

Figure 16. TEST DATA SHEET MCP #464-T5

900 VOLTS MCP INPUT PENETRATION (VI) AL10;

VOLTS	OUTPUT CURRENT	GAIN
100 E &	3.3 X10-9	
200	6.0 X10-9	
300	1.0 X10-8	
400	1.7 X10-8	
500	2.3 X10-8	
600	3.0 X10-8	
700	3.45X10-8	
800	3.85×10-8	
700	4.05X10-8	1
1000	4.2 X10-8)

MCP S/N	542-19
VENDOR	ITT
DATE TESTED	2-28-77
DIA.	0.975 inches
THICKNESS	21.6 mils
CONDUCTIVITY: B.	A.B. I T.B.
@ 500V 1.3	A.B. T.B. 1.35 1.3 p cmps
@10cov 2.85	2.95 2.7 µ amps
INPUT: 1.5 × 10-12	AMPS/CM2

MCP				
VOLTS	OUTPUT CURRENT	GAIN	BKGD	
500	4.0 0×p-10	12		
600	2.3 nxp- 9	69		
700	1.3 "xp- 8	390		LEFORE
800	6.5 exp- 8	1969		PAKE
200	2.5 exp- 7	7575		800 VEK
1000	6.6 axp- 7	_20000	0	
MCP				
VOLIZ	OUTPUT CURRENT	GAIN	DKGD.	
500	8.0 0×010	24		
600	3.8 axp-9	175		
700	3.7 exp-8	1121		AFTER
800	1.6 oxn-7	4848		DVKI
700	5.7 exp-7	17270		800 VEK
1000	9.0 mxp-7	27272	0	
MCP				
VOLTS	OUTPUT CURRENT	GAIN	BKGD.	1
500	3.8 exp- 11	7.2		
600	3.2 axp- 10	61		
700	2.0 exp- 9	382		TEGT
800	9.3 oxn- 9	1778		BENCH
900	3.7 exp- 8	7070		800 VEK
1000	1.1 exp- 7	21000	0	1

BEST AVAILABLE COPY

Figure 17. TEST DATA SHEET MCP #542-19

	900 VOLTS MCP
INPUT	PENETRATION (VI) ALTO

VOLTS	OUTPUT CURRENT	GAIN
100 E k	6.5 X10-9	
200	1.3 X10-8	
300	2.3 XIO- 8	
400	3.6 X10-8	
500	5.2 X10-8	
600	6.5 X10-8	
700	7.6 X10-8	
800	8.4 X10-8	
900	8.9 X10-a	
1000	9.3 X10-8	

MCP S/N	542-29	
VENDOR	ITT	
DATE TESTED	3-3-77	
DIA.	0.975	inches
THICKNESS	21.6	mils
CONDUCTIVITY:B.	1 A. B. I T.	R.
@ 500V 1.1	5 1.2 1.2	n ambs
Diocov 2.5	2.65 2.4	u amps
INPUT: 1.5 x 10-12	AMPS/CM2	

MCP

1000

exp- 7

VOLTS	OUTPUT CURRENT	GAIN	BKGD	1
500	2.5 exp-10	8.3		
600	2.4 exp- 9	. 80]
700	9.0 exp- 9	300		LEFORE
800	4.7 exp- 8	1566		BAKE
900	1.9 0xp- 7	6333		800 VEK
1000	5.6 exp- 7	18666	0	
MCP				
VOITS	OUTPUT CURRENT	GAIN	BKCD.	
500	8.5 exp-10	28		
600	6.0 exp- 9	200		
700	4.3 exp- 8	1433		AFTER
800	2.1 exp- 7	7000		LAK
900	6.5 UMP- 7	21666		800 VEK
1000	9.5 exp- 7	31666	0	
MCP				
VOLIS	OUTPUT CURRENT	GAIN	BKGD.	
500	6.8 0xp-11	13		
600	5.9 axp-10	1113		
700	3.7 exp- 9	707		TEST
800	1.9 exp- 8	3630		BENCH
900	7.0 9xp- 8	13400-		800 VEK
1000			-	1

BEST AVAILABLE COPY

Figure 18. TEST DATA SHEET MCP #542-29

	900 VOLTS MCP
INPUT	PENETRATION (VI) AL10:

VOLTS	OUTPUT CURRENT	GAIN
100 E k	5.4 X10-9	
200	1.1 X10-8	
300	1.3 ×10-8	
400	2.6 X10-8	
500	3.4 X10-8	
600	4.1 X10-8	
700	4.6 XIO-8	
800	4.9 X10-8	
900	5.12 X10-8	
1000	5.25 x10-8	

MCP S/N	508-20
VENDOR	ITT
DATE TESTED	2-17-77
DIA.	0.975 inches
THICKNESS	22.2 mils
CONDUCTIVITY @ 500V	B. A.B. T.B.
@10cov1	.95 2.05 2.8µ amp

MCP					
VOLTS	OUTPUT CUR	RENT	GAIN	BKGD	
500	3.0 oxp-	10	10		
600	2.4 exp-	9	80		
700	1.5 exp-	8	500		LEFORE
800	7.1 exp-	8	2366		BAKE
900	2.67 0xp-	7	8900		800 VEK
1000	6.1 osp-	_7	20133	0	
MCP					
VOLIS	OUIPUT CUR	RENT	GAIN	BKGD.	
500	1.3 exp-	9	4.3		
600	3.6 exp-	8	1200		
700	7.0 exp-	3	2333		AFTER
800	3.0 exp-	7	10000		BAKO
900	5.8 exp-	7	19330		800 VEK
1000	8.3 uxp-	7	27666	0	
MCP					
VOLTS	OUTPUT CUE	RENT	GAIN	aKGD.	1
500	5.7 exp-	11	11		
600	5.0 exp-	10	96		
700	3.2 exp-	9	610		TEST
800	1.6 exp-	8	2050		BENCH
900	6.0 exp-	9	11500		SCO VEN
1000	1 6 exp-	7	20500	0	

BEST AVAILABLE COPY

Figure 19. TEST DATA SHEET MCP #508-20

flood gun testing capability to simulate tube test conditions.

3.0 CONCLUSIONS (U)

- (U) Careful picking and cleaning of MCP's prior to lacquering and the addition of an edge grind to remove polishing compound have resulted in a cleaner MCP and hence, in a reduction of type A and B holes. It was also established that the application of a thicker lacquer film further reduced the number of type A and B holes. Higher quality ion barrier films can now be produced at high yield by utilizing the oil-free Varian evaporator and a dual shutter system to precisely control deposition rate and film thickness.
- (U) Smooth MCP surfaces have been achieved with the introduction of a prepolish technique which eliminates scratches. Because of difficulties encountered in reproducing uniform fire polished surfaces, the fire polish technique was discontinued in favor of the pre-polish technique.
- (U) Evaluation of $Al_2\theta_3$ filmed MCP's in the demountable test head and in tubes, has indicated that film quality evaluation is strongly dependent on test technique employed. To increase test reliability and to achieve better correlation with evaluation in tubes, both the engineering demountable test head and the newly constructed bakeable and demountable system will be equipped with a flood gun arrangement.

- 4.0 SCHEDULE (U)

 Effort planned for the next quarter include:
- 4.1 Complete debugging of Bakeable Demountable Test
 System. (U)
- 4.2 Fabricate and Test Five (5) Engineering Samples to Category III Requirements. (U)
- 4.3 Install Flood Gun Viewing Device for Al_20_3 MCP Evaluation in both Demountable Systems. (U)
- 4.4 Continue investigation of defects and elimination of defects by using thick ${\rm Al}_2{\rm O}_3$ filmed MCP's. (U)
- 4.5 Complete MCP Surface Improvement by Utilizing Prepolish Technique. (U)
- 5.0 CONFERENCES AND REPORTS (U)
- 5.1 Conferences (U)
- (U) Mr. John Rennie visited ITT EOPD on March 10th and 11th and reviewed progress to date and planning for 4th quarter.
- 5.2 Reports (U)
- (U) The draft copy of the second quarterly report has been submitted. Monthly progress letters for January, February, and March have been submitted.

6.0 GLOSSARY (U)

A - Angstrom

 $A1_20_3$ - Chemical abbreviation for aluminum oxide

Lacquer - An organic liquid which is applied to the

MCP to temporarily cover the channel holes.

After a smooth sheet of $A1_20_3$ is evaporated

on top of the lacquer, the lacquer is

removed by baking in oxygen.

MCP - Microchannel plate

7.0 DISTRIBUTION LIST (U)

ADDRESSES	NO, OF COPIES
Bell Telephone Laboratories, Inc. Mountain Avenue ATTN: Dr. Eugene I. Gordon Director, Pattern Generation Tech Lab Murray Hill, NJ 07974	1
Westinghouse Electric Corporation Defense & Electronics Systems Center Baltimore/Washington International Airport P. O. Box 1693 ATTN: Dr. James A. Hall Baltimore, Maryland 21203	1
General Electric Company Corporate Research & Development P. O. Box 8 ATTN: Dr. Rowland W. Redington Schenectady, NY 12301	1
Leland Stanford Jr. University Department of Public Safety 711 Serra Street ATTN: Dr. William E. Spicer Stanford, California 94305	1
RCA Corporation David Sarnoff Research Center P. O. Box 432 ATTN: Dr. Brown Williams Princeton, NJ 08540	1
The Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road ATTN: Dr. Charles Feldman Laurel, Maryland 20810	1

ADDRESSES	NO. OF COPIES
MIT Lincoln Laboratory P. O. Box 73 ATTN: Dr. Frank L. McNamara Lexington, MA 02173	1
Palisades Institute for Research Services, Inc. 201 Varick Street ATTN: Mr. Tom Henion New York, NY 10014	1
RCA Corporation Electro Optics & Devices/Picture Tube Div P. O. Box 1140 ATTN: Mr. Richard Hangen Lancaster, PA 17604	1
Varo, Inc. P. O. Box 401146 ATTN: Mr. Rayburn Wright Garland, Texas 75040	1
Litton Industries, Inc. Electron Tube Division 960 Industrial Road ATTN: Mr. Arnold Davis San Carlos, CA 94070	1
Galileo Electric Optics Corporation Galileo Park ATTN: Mr. G. Batchelder Sturbridge, MA 01518	1
Varian Associates, Inc. 611 Hansen Way ATTN: Dr. P. Hess Palo Alto, CA 94304	1
Ni-Tec Incorporated 7426 Linder Avenue ATTN: Mr. C. B. Polivka Skokie, Illinois 60076	1
University of California, Los Angeles Office of Contract & Grant Administration 405 Hilgard Avenue ATTN: Dr. J. MacKenzie Los Angeles, CA 90024	1

ADDRESSES	NO. OF COPIES
Director US Army ECOM Night Vision Laboratory ATTN: DRSEL-NV-FIR - Dr. Edward T. Hutcheson Fort Monmouth, NJ 07703	1
Commander US Army ECOM ATTN: DRSEL-TL-BD - Dr. Elliott Schlam Fort Monmouth, NJ 07703	1
Commander US Army Electronics Command ATTN: DRSEL-TL-BD - Mr. Munsey E. Crost Fort Monmouth, NJ 07703	1
Director, Ballistic Missile Defense Advanced Technology Center ATTN: Mr. Fourney M. Hoke (ATC-0) P. O. Box 1500 Huntsville, AL 35807	1
Director US Army ECOM Night Vision Laboratory ATTN: DRSEL-NV-FIR - Mr. Herbert K. Pollehn Fort Belvoir, VA 22060	1
Mr. Stephen B. Campana (Code 20212) Naval Air Development Center Warminister, PA 18974	1
Naval Research Laboratory ATTN: Dr. Wilford D. Baker, Code 5262 4555 Overlook Avenue, S.W. Washington, D.C. 20375	1
Dr. Alvin D. Schnitzler The Institute for Defense Analyses Science and Technology Division 400 Army-Navy Drive Arlington, VA 22202	1
Commander, AFAL ATTN: AFAL/DHE-1, Dr. Ronald A. Belt (Bldg 620) Wright Patterson AFB, OH 45433	1

ADDRESSES	NO. OF COPIES
Commander, RADC ATTN: ISCA/Mr. Murray Kesselman Griffiss AFB, NY 13441	1
NASA - Langley Research Center Langley Station ATTN: Dr. Roger A. Breckenridge, M/S 473 Hampton, VA 23665	1
Director, National Security Agency ATTN: Mr. Paul J. Boudreaux, R522 Fort George G. Meade, MD 20755	1
Director US Army Industrial Base Engineering Activity ATTN: DRXIB-MT (Mr. C. E. McBurney) Rock Island, IL 61201	1
Commander US Army Electronics Command ATTN: DRSEL-RV-EV - (Mr. C. O'Rourke) Fort Belvoir, VA 22050	1
Director Night Vision Laboratory ATTN: DRSEL-NV-SD - (Mr. J. Rennie) Fort Belvoir, VA 22060	1
Commander US Army Electronics Command ATTN: DRSEL-PP-I-PI-1 - (Mr. W. Peltz) Fort Monmouth, NJ 07703	1
Director Night Vision Laboratory DRSEL-NV-SD ATTN: Mr. S. Carts Fort Belvoir, VA 22060	1
Defense Documentation Center ATTN: DDC-IRS 5010 Duke Street Cameron Station (Bldg 5) Alexandria, VA 22314	1