Outline - Axiomatic Semantics - Hoare Logic

Programming Languages and Compiler Design

Axiomatic Semantics - Hoare Logic

Yliès Falcone, Jean-Claude Fernandez

 $\begin{array}{c} \text{Master of Sciences in Informatics at Grenoble (MoSIG)} \\ \text{Master 1 info} \end{array}$

Univ. Grenoble Alpes (Université Joseph Fourier, Grenoble INP)

Academic Year 2015 - 2016

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

1 | 37

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Aviomatic Semantics for Total Correctness

Summary

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Partial Correctness and Total Correctness

Verifying Properties with NOS

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctnes

Summary

Partial correctness and total correctness

Goal: specify an "input / output" relationship that the program must satisfy.

Example (Program Fact)

$$y := 1;$$

while $\neg(x = 1)$ do $(y := y * x; x := x - 1)$ od

► Partial Correctness:

If the initial value of x is n > 0 and if the program terminates **then** the final value of y is n!

► Total Correctness:

If the initial value of x is n > 0 then the program terminates and the final value of y is n!

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Partial Correctness and Total Correctness

Verifying Properties with NOS

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

4 | 37

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

5 | 37

Verifying semantic properties - a motivating example

How can we prove the (partial) correctness of Fact using NOS?

Fact:

$$y := 1;$$

while $\neg(x = 1)$ do $(y := y * x; x := x - 1)$ od

Formalization:

(Fact,
$$\sigma$$
) $\to \sigma'$ implies $\sigma'(y) = \sigma(x)!$ and $\sigma(x) > 0$

Stage 1 Correctness of the loop body.

Stage 2 Correctness of the loop.

Stage 3 Correction of the program.

 \hookrightarrow Study of the derivation tree.

Verifying semantic properties - a motivating example (ctd)

Correctness of Fact

Stage 1 The loop body satisfies:

if
$$(y := y * x; x := x - 1, \sigma) \rightarrow \sigma''$$
 and $\sigma(x)'' > 0$
then $\sigma(y) * \sigma(x)! = \sigma''(y) * \sigma''(x)!$ and $\sigma(x) > 0$.

Stage 2 The loop satisfies:

if (while
$$\neg(x=1)$$
 do $y:=y*x; x:=x-1$ od $,\sigma)\to\sigma'$ then $\sigma(y)*\sigma(x)!=\sigma'(y)$ and $\sigma'(x)=1$ and $\sigma(x)>0$.

Stage 3 Partial correctness of the program:

if
$$(\mathsf{Fact}, \sigma) \to \sigma'$$

then $\sigma'(y) = \sigma(x)!$ and $\sigma(x) > 0$.

Lessons learned from the motivating example

Proving semantic properties about programs could be done using OS.

But: This does not scale:

- tedious.
- ► long.
- not practical,
- ▶ too closely connected to the semantics.

We want to focus on the essential properties we want to prove.

We will exhibit the essential properties of the language constructs.

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctnes

Summary

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

10 | 37

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

11 | 37

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Hoare Triples

The Assertion Language
The inference system - Hoar

Properties of the Semantics: soundness and completeness

Axiomatic Semantics for Total Correctness

Summary

Hoare Triple on a example

Example (Program Fact)

```
\{x = n \land n > 0\}
y := 1;
while \neg(x = 1) do (y := y * x; x := x - 1) od \{y = n! \land n > 0\}
```

▶ Precondition: $\{x = n \land n > 0\}$

▶ Post-condition: $\{y = n! \land n > 0\}$.

We will use an assertion language to specify pre and post conditions.

Hoare Triple

Idea: specify properties of programs as assertions (i.e., "claims").

Definition (Hoare Triple - Assertion)

- ► S a statement
- ▶ P a pre-condition
- Q a post-condition

Meaning:

if P holds in the initial state (before executing S),

if the execution of S on that state *terminates*.

then Q will holds in the state in which S terminates.

We say that $\{P\}$ S $\{Q\}$ holds.

Remark It is not necessary that S terminates if P is satisfied.

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

Outline - Axiomatic Semantics - Hoare Logic

Axiomatic Semantics for Partial Correctness

The Assertion Language

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

15 | 37

The assertion language

Example (Program Fact)

$$\{x = n \land n > 0\}$$

y := 1;
while $\neg(x = 1)$ do $(y := y * x; x := x - 1)$ od $\{y = n! \land n > 0\}$

Remark Specifying an "input/output" relation, we could not replace $\{y = n! \land n > 0\}$ by $\{y = x! \land x > 0\}$

n is a logical variable:

- must not appear in the program,
- used to "remember the initial values of program variables".

Two kinds of variables:

- program variables (Var),
- logical variables.

The assertion language: predicates

Intuition: a Boolean expression b defines a predicate $\mathcal{B}[b]: \mathsf{State} \to \{\mathsf{tt}, \mathsf{ff}\}$

Definition (Predicate)

A predicate is a function from **State** to {tt, ff} described using the syntactic category Bexp extended with logical variables.

For a predicate P, we note $P(\sigma) \in \{\mathbf{tt}, \mathbf{ff}\}$ the evaluation of P on σ .

Example (Predicate)

$$P_1 \equiv x = n$$

$$\bullet$$
 $\sigma_1 = [x \mapsto n]$

$$P_1 = x - n$$

$$P_2 \equiv n > 0 \land x = n!$$

$$P_2 \equiv n > 0 \land x = n!$$

$$P_3 \equiv n > 0 \land x = n!$$

$$\sigma_2 = [x \mapsto n+1]$$

$$P_2' \equiv x = n \land y = n!$$

$$P_1(\sigma_1) = \mathbf{tt}$$

$$ightharpoonup P_2(\sigma_2) = \mathbf{ff}$$

$$P_2'(\sigma_3) = \begin{cases} \mathbf{tt} & \text{if } n = 3 \\ \mathbf{ff} & \text{otherwise} \end{cases}$$

14 | 37

The assertion language: predicates (ctd)

Notations:

▶ $P_1 \wedge P_2$: $(P_1 \wedge P_2)(\sigma) = P_1(\sigma)$ and $P_2(\sigma)$

▶ $P_1 \vee P_2$: $(P_1 \vee P_2)(\sigma) = P_1(\sigma)$ or $P_2(\sigma)$

 $ightharpoonup \neg P: (\neg P)(\sigma) = \neg (P(\sigma))$

▶ P[a/x]: P where each occurrence of x is replaced by a

▶ $P_1 \Rightarrow P_2$: $\forall \sigma \in \text{State} : P_1(\sigma) \text{ implies } P_2(\sigma)$

Example (Predicate)

Recall that $P_1 \equiv x = n$ and $P_2 \equiv x = n!$: $(P_1 \land P_2)([x \mapsto 2]) = \text{tt} \qquad (P_1 \land P_2)([x \mapsto 4]) = \text{ff}$

▶ $(P_1 \land P_2')([x \mapsto 3, y \mapsto 6] = \mathsf{tt}$ ▶ $(P_1 \land P_2')([x \mapsto 3, y \mapsto 8]) = \mathsf{ff}$

Outline - Axiomatic Semantics - Hoare Logic

Axiomatic Semantics for Partial Correctness

The inference system - Hoare Calculus

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

18 | 37

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

19 | 37

The inference system - Hoare Calculus

Partial correctness assertions will be specified by an inference system (axioms and rules).

(Similarly to inference trees in Natural Operational Semantics).

Formulae are of the form:

- ▶ $S \in$ Stm: a statement in language While.
- \triangleright {P} and {Q} are predicates.

The inference system: axioms (schemes)

Definition (Axioms)

$$\{P\} \operatorname{skip} \{P\}$$
$$\{P[a/x]\} x := a \{P\}$$

"Schemes" that need to be instantiated for a particular choice of P.

The inference system: inference rules

Deducing assertion about compound from assertions about constituents.

Definition (Inference Rules)

Compositional statements:

$$\frac{\{P\}\ S_1\ \{Q\}\qquad \{Q\}\ S_2\ \{R\}}{\{P\}\ S_1; S_2\ \{R\}}$$

Conditional statements:

$$\frac{\{b \land P\} S_1 \{Q\} \quad \{\neg b \land P\} S_2 \{Q\}}{\{P\} \text{ if } b \text{ then } S_1 \text{ else } S_2 \text{ fi } \{Q\}}$$

Iterative statements:

$$\frac{\{b \land P\} \ S \ \{P\}}{\{P\} \text{ while } b \text{ do } S \text{ od } \{\neg b \land P\}}$$

Consequence: If $P \Rightarrow P'$ and $Q' \Rightarrow Q$, then:

$$\frac{\{P'\}\ S\ \{Q'\}}{\{P\}\ S\ \{Q\}}$$

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

Comparison with Natural Operational Semantics

We have defined a set of rules and axioms.

Natural Operational Semantics	Axiomatic Semantics
Axioms	Axioms
Inference rules	Inference rules
Derivation trees	Inference trees
=	=
description/proof of a computation	proof of a property
expressed at the root	expressed at the root
Leaves = Instance of axioms	Leaves = Instance of axioms
Internal nodes = instances of rules	Internal nodes = instances of rules

22 | 37 Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

23 | 37

Proving properties using the inference system

An inference tree gives a proof of the property expressed at its root.

Notation

When inferring $\{P\}$ S $\{Q\}$ (with rules and axioms) we note:

$$\vdash \{P\} S \{Q\}$$

Example (Proving properties)

$$ightharpoonup | \{x > 0\} \ y := 1 \ \{x = x * y\}$$

Exercise: a proof

Prove that

⊢ {True} while *true* do skip od {True}

where $\forall \sigma \in \mathsf{State} : \mathsf{True}(\sigma) = \mathsf{tt}$

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Hoare Iriples

The Assertion Language

The inference system - Hoare Calculus

Properties of the Semantics: soundness and completeness

Axiomatic Semantics for Total Correctnes

Summary

Properties of the semantics

Definition (Semantic equivalence between programs)

 S_1 and S_2 are provably equivalent according to the axiomatic semantics if

- ▶ for all pre-conditions P,
- ▶ for all post-conditions Q:

$$\vdash \{P\} S_1 \{Q\} \text{ iff } \vdash \{P\} S_2 \{Q\}$$

Proving a property of the axiomatic semantics:

Induction on the shape of Inference trees

In order to prove a given property Prop for all inference trees:

- ▶ Prove Prop holds for all simple trees, i.e., axioms
- Prove Prop holds for all composite inference trees. For each rule:
 - ► Assume Prop holds for its premises

 → Induction Hypothesis
 - Assume the conditions of the rule are satisfied
 - ► Prove Prop holds for the conclusion

Soundness and completeness of Hoare logic

Definition (Validity of a Hoare triple)

The triple $\{P\}$ S $\{Q\}$ is valid, noted

$$\models \{P\} \ S \ \{Q\}$$

iff for all states σ, σ' :

- ▶ If $P(\sigma)$ and $(S, \sigma) \rightarrow \sigma'$
- ▶ then $Q(\sigma')$.

We say that S is partially correct wrt. P and Q.

Correctness (We can infer only valid triples)

If
$$\vdash \{P\} S \{Q\}$$
 then $\models \{P\} S \{Q\}$

Completeness (We can infer all valid triples)

If
$$\models \{P\} S \{Q\}$$
 then $\vdash \{P\} S \{Q\}$

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

28 | 37

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

29 | 37

Soundness of Hoare logic

Proof by induction on the shape of the inference tree to infer $\{P\}$ S $\{Q\}$.

- [ass] Suppose $(x := a, \sigma) \to \sigma'$ and $P[a/x](\sigma) = \mathbf{tt}$. [ass^{ns}] gives $\sigma' = \sigma[x \mapsto \mathcal{A}[a]\sigma]$. $P(\sigma') = \mathbf{tt}$ (from correctness of substitution).
- [skip] Straightforward.
- [comp] Suppose $(S_1; S_2, \sigma) \to \sigma''$, $\vDash \{P\}$ S_1 $\{Q\}$, $\{Q\}$ S_2 $\{R\}$, and $P(\sigma) = \mathbf{tt}$. [comp^{ns}] gives $(S_1, \sigma) \to \sigma'$ and $(S_2, \sigma') \to \sigma''$. From $(S_1, \sigma) \to \sigma'$ and $\vDash \{P\}$ S_1 $\{Q\}$, we get $Q(\sigma') = \mathbf{tt}$. From $(S_2, \sigma') \to \sigma''$ and $\vDash \{Q\}$ S_2 $\{R\}$, we get $Q(\sigma') = \mathbf{tt}$.
 - [if] Suppose (if b then S_1 else S_2 fi, σ) $\to \sigma'$, $\vDash \{b \land P\}$ S_1 $\{Q\}$ and $\vDash \{\neg b \land P\}$ S_2 $\{Q\}$.

Two cases:

- ▶ $\mathcal{B}[b]\sigma = \mathbf{tt}$ then $(P \land b)(\sigma) = \mathbf{tt}$. [if_{ns}] gives $(S_1, \sigma) \to \sigma'$. $\models \{b \land P\} S_1 \{Q\}$ gives $Q(\sigma') = \mathbf{tt}$.
- ▶ $\mathcal{B}[b]\sigma = \mathbf{ff}$. Similar.

Soundness of Hoare logic

Proof by induction on the shape of the inference tree to infer $\{P\}$ S $\{Q\}$

```
[while] Suppose (while b do S od ,\sigma) \to \sigma'' and \vdash \{b \land P\} S \{P\} (We want to prove \vdash \{P\} while b do S od \{\neg b \land P\}) Two cases:
```

- ▶ $\mathcal{B}[b]\sigma = \mathbf{tt}$ then $(S, \sigma) \to \sigma'$ and (while b do S od $, \sigma') \to \sigma''$ $(b \land P)(\sigma) = \mathbf{tt}$ and $\vdash \{b \land P\} S \{P\}$ gives $P(\sigma') = \mathbf{tt}$. IH on (while b do S od $, \sigma') \to \sigma''$ gives $(\neg b \land P)(\sigma'') = \mathbf{tt}$. ▶ $\mathcal{B}[b]\sigma = \mathbf{ff}$ then $\sigma' = \sigma''$ and $(\neg b \land P)(\sigma'') = \mathbf{tt}$.
- [cons] Suppose $\vDash \{P'\}\ S\ \{Q'\}\$, $P\Rightarrow P'$ and $Q'\Rightarrow Q$. Suppose $(S,\sigma)\to\sigma'$ and $P(\sigma)=\mathbf{tt}$. From $P(\sigma)=\mathbf{tt}$ and $P\Rightarrow P'$, we get $P'(\sigma)$. From $P'(\sigma)=\mathbf{tt}$ and $P\Rightarrow P'$, we get $P'(\sigma)$. From $P'(\sigma)=\mathbf{tt}$ and $P'\Rightarrow P'$, we get $P'(\sigma)$.

Outline - Axiomatic Semantics - Hoare Logic

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

The inference system: axioms (schemes)

Definition (Axioms)

$$\{P\} \text{ skip } \{ \Downarrow P \}$$
$$\{P[a/x]\} \ x := a \{ \Downarrow P \}$$

"Schemes" that need to be instantiated for a particular choice of P.

Total correctness assertions

Partial vs Total correctness.

Triples of the form:

if the precondition *P* is fulfilled

then (S is guaranteed to terminate (\downarrow)

and the final state will satisfy the post-condition Q

Inference of a triple

$$\vdash \{P\} \ S \ \{ \Downarrow \ Q \}$$

Validity of Hoare triples

$$\models \{P\} \ S \ \{\Downarrow \ Q\}$$

iff
$$\forall \sigma \in \mathbf{State} : P(\sigma)$$
 implies $\exists \sigma' \in \mathbf{State} : \left\{ \begin{array}{l} Q(\sigma') = \mathbf{tt} \\ (S, \sigma) \to \sigma' \end{array} \right.$

32 | 37 Univ. Grenoble Alpes, MoSIG 1 PLCD - M1 info SLPC, Axiomatic Semantics - Hoare Logic

33 | 37

The inference system: inference rules

Definition (Inference Rules)

Compositional statements:

$$\frac{\{P\}\ S_1\ \{\Downarrow\ Q\}\qquad \{Q\}\ S_2\ \{\Downarrow\ R\}}{\{P\}\ S_1; S_2\ \{\Downarrow\ R\}}$$

Conditional statements:

$$\frac{\{b \land P\} \ S_1 \ \{\Downarrow \ Q\} \quad \{\neg b \land P\} \ S_2 \ \{\Downarrow \ Q\}}{\{P\} \ \text{if } b \ \text{then } S_1 \ \text{else } S_2 \ \text{fi} \ \{\Downarrow \ Q\}}$$

Iterative statements:

$$\frac{\{P(z+1)\}\ S\ \{\Downarrow\ P(z)\}}{\{\exists z\in\mathbb{N}.P(z)\}\ \text{while }b\ \text{ do }S\text{ od }\{\Downarrow\ P(0)\}}\qquad\qquad \blacktriangleright\ P(z+1)\Rightarrow\mathcal{B}[b]$$

Consequence: If $P \Rightarrow P'$ and $Q' \Rightarrow Q$, then:

$$\frac{\{P'\}\ S\ \{\Downarrow\ Q'\}}{\{P\}\ S\ \{\Downarrow\ Q\}}$$

Outline - Axiomatic Semantics - Hoare Logic

Summary

Introduction

Axiomatic Semantics for Partial Correctness

Axiomatic Semantics for Total Correctness

Summary

Axiomatic Semantics

- ► Focus on the essential properties.
- ► Hoare triple.
- ► Hoare calculus inference system.
- ► Soundness and completeness of Hoare logic.
- ▶ Partial vs total correctness of programs.