

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS NON-LINÉAIRES

Méthode de dichotomie

3^{ème} année

Exercice introductif

Soit La fonction

$$f(x) = x - \frac{1}{5}\sin(x) - \frac{1}{2}.$$

- ① Justifier que l'équation f(x) = 0 admet une unique solution x^* dans $[0, \pi]$.
- ② Calculer $f(\frac{\pi}{2})$, puis en déduire que $x^* \in [0, \frac{\pi}{2}]$.
- 3 De même, calculer $f(\frac{\pi}{4})$, puis en déduire que $x^* \in [0, \frac{\pi}{4}]$.
- Que constatez vous.

Correction

- ① f est continue et strictement croissante sur $[0,\pi]$ avec f(0)<0 et $f(\pi)>0$, d'où d'après le théorème des valeurs intermédiaires (TVI), f(x)=0 admet une unique solution x^* dans $[0,\pi]$.
- ② Si on calcule la valeur de f en $\frac{\pi}{2}$ le point milieu de $[0,\pi]$, on constate que $f(\frac{\pi}{2}) = \frac{\pi}{2} 0.7 > 0$ et puissque f(0) < 0, alors $x^* \in [0,\frac{\pi}{2}]$.
- 3 De même, Si on calcule la valeur de f en $\frac{\pi}{4}$ le point milieu de $[0, \frac{\pi}{2}]$ cette fois, on constate que $f(\frac{\pi}{4}) = 0, 14 > 0$ et f(0) < 0 qui montre que $x^* \in [0, \frac{\pi}{4}]$.
- 4 Il est clair qu'une répétition de ce procédé donne un encadrement de plus en plus précis de la solution cherchée et fournit une méthode dite de dichotomie consiste à construire une suite $(x_n)_{n\in\mathbb{N}}$ qui converge vers x^* .

Présentation et étapes de la méthode de dichotomie

"Basée sur le théorème des valeurs intermédiaires (TVI), la méthode de dichotomie consiste à chercher la solution d'une manière itérative".

• **Etape 1:** On considère une fonction f continue sur un intervalle [a,b] et on suppose que f admet une unique racine $x^* \in]a,b[$ telle que f(a).f(b) < 0.

On note par $a_0=a,b_0=b$ et $x_0=\frac{a_0+b_0}{2}$ le point milieu de l'intervalle $[a_0,b_0]$.

- ① Si $f(x_0) = 0$, alors $x^* = x_0$ et le problème est résolu.
- ② Si $f(x_0) \neq 0$, on détermine le signe de $f(a_0).f(x_0)$.
 - ightharpoonup Si $f(a_0).f(x_0)<0$, alors $x^*\in]a_0,x_0[$. Dans ce cas, on considère $a_1=a_0$ et $b_1=x_0$.
 - ightharpoonup Si $f(x_0).f(b_0)<0$, alors $x^*\in]x_0,b_0[$. Dans ce cas, on considère $a_1=x_0$ et $b_1=b_0$.
- ③ On détermine x_1 le milieu du nouveau intervalle $[a_1,b_1]$ pour l'utiliser dans l'étape $2:x_1=\frac{a_1+b_1}{2}$.

Illustration graphique de l'étape 1

• On pose $a_1 = x_0$, $b_1 = b_0$ et $x_1 = \frac{a_1 + b_1}{2}$.

Principe de la méthode.

- **Etape 2:** On procède de la même manière sur $[a_1, b_1]$.
- ① Si $f(x_1) = 0$, alors $x^* = x_1$ et le problème est résolu.
- ② Si $f(x_1) \neq 0$, on détermine le signe de $f(a_1).f(x_1)$.
 - ightharpoonup Si $f(a_1).f(x_1)<0$, alors $x^*\in]a_1,x_1[$. Dans ce cas, on considère $a_2=a_1$ et $b_2=x_1$.
 - ightharpoonup Si $f(x_1).f(b_1)<0$, alors $x^*\in]x_1,b_1[$. Dans ce cas, on considère $a_2=x_1$ et $b_2=b_1$.
- On détermine x_2 le milieu du nouveau intervalle $[a_2, b_2]$ pour l'utiliser dans l'étape 3 : $x_2 = \frac{a_2 + b_2}{2}$.

Illustration graphique de l'étape 2

• On pose $a_2 = a_1$, $b_2 = x_1$ et $x_2 = \frac{a_2 + b_2}{2}$.

• Etape n:

De manière itérative, on construit trois suites $(a_n)_{n\geq 0}$, $(b_n)_{n\geq 0}$, et $(x_n)_{n\geq 0}$, telles que $x_n=\frac{a_n+b_n}{2}$.

En effet, à une étape n donnée :

- ① Si $f(x_n) = 0$, alors $x^* = x_n$ et le problème est résolu.
- ② Si $f(x_n) \neq 0$, on détermine le signe de $f(a_n).f(x_n)$.
 - ightharpoonup Si $f(a_n).f(x_n)<0$, alors $x^*\in]a_n,x_n[$. Dans ce cas, on considère $a_{n+1}=a_n$ et $b_{n+1}=x_n$.
 - ightharpoonup Si $f(x_n).f(b_n)<0$, alors $x^*\in]x_n,b_n[$. Dans ce cas, on considère $a_{n+1}=x_n$ et $b_{n+1}=b_n$.
- 3 On détermine x_{n+1} le milieu du nouveau intervalle $[a_{n+1},b_{n+1}]$ pour l'utiliser dans l'étape n+1: $x_{n+1}=\frac{a_{n+1}+b_{n+1}}{2}$.

Étude de convergence de la méthode de dichotomie:

Soient f une fonction continue sur [a,b], vérifiant f(a).f(b) < 0 et $x^* \in]a,b[$ l'unique solution de l'équation f(x) = 0.

Si $(x_n)_{n\in\mathbb{N}}$ est la suite générée par l'algorithme de dichotomie, **alors** on a:

- **1** La suite $(x_n)_{n\in\mathbb{N}}$ converge vers x^* .
- 2 On a l'estimation suivante:

$$|x^* - x_n| \le \frac{b-a}{2^{n+1}}, \quad n \ge 0.$$

L'estimation $|x^* - x_n| \le \frac{b-a}{2^{n+1}}$, mentionnée ci-dessus, nous permet de justifier que la méthode de dichotomie est convergente puisque

$$\lim_{n \to +\infty} |x^* - x_n| = 0, \ car \ 0 < \frac{1}{2} < 1$$

Test d'arrêt

En pratique, on ne peut pas faire un nombre infini d'itérations alors on utilise un critère d'arrêt en donnant une valeur de précision (ou de tolérance) ε .

Ce critère d'arrêt consiste à choisir à priori une tolérance ε et à arrêter le procédé lorsque

$$|b_n - a_n| \le \varepsilon.$$

Pour atteindre ce critère, il suffit d'avoir n qui vérifie:

$$n \ge \log_2\left(\frac{b-a}{\varepsilon}\right).$$

On a

En effet, en arrêtant le procédé, la longueur de l'intervalle $[a_n, b_n]$, $|b_n - a_n| = \frac{b-a}{2^n}$.

Or $|b_n - a_n| \le \varepsilon \Rightarrow \frac{b-a}{2^n} \le \varepsilon$ et on peut calculer à l'avance le nombre minimal d'itérations $N_{\varepsilon} \in \mathbb{N}$ assurant la précision ε .

$$\frac{b-a}{2^n} \le \varepsilon \Leftrightarrow \frac{b-a}{\varepsilon} \le 2^n$$
$$\Leftrightarrow n \ge \log_2\left(\frac{b-a}{\varepsilon}\right).$$

Ici log_2 est la fonction logarithme de base 2 définie par

$$\log_2(x) = \frac{\log(x)}{\log(2)}.$$

Exercice

Soit
$$f(x) = x^3 - 3x - 1$$
, $I = [-1, 1]$.

- ① Montrer que f admet un unique $x^* \in]-1,1[$ tel que $f(x^*)=0.$
- ② Trouver le nombre minimal d'itérations pour estimer x^* à une tolérance $\varepsilon = 10^{-6}$?

Correction

- f est continue et dérivable sur et dérivable sur [-1,1]. Ainsi, on a $f'(x) = 3x^2 - 3 < 0 \text{ sur } [-1, 1].$ f est continue et décroissante sur [-1,1], de plus f(-1).f(1) < 0 alors d'après le TVI f(x) = 0 admet une unique solution dans]-1,1[.
- On a

$$\Leftrightarrow n \ge \log_2\left(\frac{b-a}{\varepsilon}\right).$$

Pour $\varepsilon = 10^{-6}$, On trouve $n \ge \log_2\left(\frac{2}{10^{-6}}\right) \implies n \ge 20.93$..

Le nombre minimal d'itérations pour estimer x^* à une tolérance $\varepsilon = 10^{-6}$ est 21.

ESPRIT QUP Maths Analyse Numérique

Exercice asynchrone

Soit
$$f(x) = e^x + 3\sqrt{x} - 2$$
, $I = [0, 1]$.

- ① D'après la représentation graphique ci-dessous, montrer que f admet un unique $x^* \in]0,1[$ tel que $f(x^*)=0.$
- ② Trouver le nombre minimal d'itérations pour estimer x^* à une tolérance $\varepsilon = 10^{-10}$?

Algorithme de la méthode.

- Choisir un intervalle $[a_0, b_0]$ tel que $f(a_0).f(b_0) < 0$.
- Initialiser ϵ et le nombre d'itérations maximal N_{max} que l'on se fixe.

$$\bullet \ x_0 = \frac{a_0 + b_0}{2}.$$

- n = 0
- tant que $(f(x_n) \neq 0 \& |b_n a_n| > \epsilon \& n < N_{max})$ faire
 - ▶ si $f(a_n).f(x_n) < 0$ alors $a_{n+1} = a_n$ et $b_{n+1} = x_n$.
 - ▶ sinon $a_{n+1} = x_n$ et $b_{n+1} = b_n$.
- fin
- $\bullet x^* \approx x_n.$