Bioinformatics CS300 Chap 2 Computational Manipulation of DNA

Fall 2019
Oliver BONHAM-CARTER

Genes and Alleles

• **Gene**: A distinct sequence of nucleotides forming a piece of a chromosome. In biology, a gene is a sequence of nucleotides in DNA or RNA that codes for a molecule (a *protein*) that has a function. During gene expression, the DNA is first copied into RNA which is then transcribed into protein.

• Allele: One of two or more alternative forms of a gene that arise by mutation and are found at the same place on a chromosome.

Patterns of Inheritance by Alleles

Understanding Alleles

- What is the difference between a gene and an allele?
- Answer: In the context of cystic fibrosis and the CFTR gene
- Mendelian Genetics studies the alleles

- Cystic Fibrosis Transmembrane conductance:
 CFTR
- Gene product is a bad regulator which fails to move water after displacing chloride ions in epithelial (thin tissue) cells
- Water follows chloride ions by osmosis.

 What if water regulation were not possible in the cells and organs?

Cystic Fibrosis

 Inherited medical condition of the secretory glands (producers of mucous and sweat)

Cystic Fibrosis: Symptoms

- Restricted flow in airways from mucous build-ups.
- Suffocation

• What if the the garbage collection crews in Paris went on strike (as they did in 2016)?

 Clubbed fingers: occurs in heart and lung diseases that reduce the amount of oxygen in the blood

ALLEGHENY COLLEGE

- Autosomal recessive type condition: one faulty gene is inherited from both parents (together) in order for the offspring to get this condition
- Modeled via Mendelian Genetics
- Impossible to know that someone is sure to get a condition.

- Cystic Fibrosis Transmembrane conductance:
 CFTR
- Gene product is a bad regulator which fails to move water after displacing chloride ions in epithelial (thin tissue) cells
- Water follows chloride ions by osmosis.
- What happens if water regulation is impossible in the cells and organs?

Three Bad Proteins From the Four

Figure 2.2 The wild-type allele (A) of the CFTR gene produces a chloride transport protein localized in the membrane; three different common CF alleles illustrated here result in variant proteins that are folded incorrectly (ΔF508; B), truncated (G542X; C), or unable to transport chloride (G551D; D).

 Short video of membrane transport proteins https://www.youtube.com/watch?v=EuLVCYrurok

 Gene codes for four different proteins: only one working type to move chloride ions and enable water displacement,

Healthy H_20 Cystic Fibrosis Na Na+ CI

Mucous build-up

Open Reading Frames

- An open reading frame (ORF) is the part of a reading frame that has the ability to be translated into protein.
- An ORF is a continuous stretch of codons that begins with a start codon (usually AUG) and ends at a stop codon (usually UAA, UAG or UGA).

Cite:

https://www.genome.gov/genetics-glossary/Open-Reading-Frame

- Pam Can See The Man and Dog
- Frame shift by one letter!

Reading by triplets

- P amC anS eeT heM ana ndD og
- Frame shift by two letters!
- Pa mCa nSe eTh eMa nan dDo g
- Frame shift by three letters
- Pam Can See The Man and Dog

Notice how the code changes depending on where you start reading? (That is a *frameshift*.)

Open Reading Frames: DNA Example

Note: RF means reading frame, where you start reading the words.

Original: CAATGGCGAATCGACGTGTATAAA

RF1 - 5' - CAA TGG CGA ATC GAC GTG TAT AAA - 3'

RF2 - 5' - C AAT GGC GAA TCG ACG TGT ATA AA - 3'

RF 3 - 5' - CA ATG GCG AAT CGA CGT GTA TAA A - 3'

3' - CAA TGG CGA ATC GAC GTG TAT AAA - 5' - RF 4

3' - C AAT GGC GAA TCG ACG TGT ATA AA - 5' - RF 5

3' - CA ATG GCG AAT CGA CGT GTA TAA A - 5' - RF 6

- Original:
 CAATGGCGAATCGACGTGTATAAA
- Translate is a tool which allows the translation of a nucleotide (DNA/RNA) sequence to a protein sequence.
 - https://web.expasy.org/translate/

Biopython:: SmallTranslator_i.py

Original seqDNA : CAATGGCGAATCGACGTGTATAAA Length : 24

DNA to RNA : CAAUGGCGAAUCGACGUGUAUAAA
RNA to DNA : CAATGGCGAATCGACGTGTATAAA

PROT from RNA : QWRIDVYK

-5'3' Frame 1 QWRIDVYK
-5'3' Frame 2 NGESTCI
-5'3' Frame 3 MANRRV-
-3'5' Frame 1 FIHVDSPL
-3'5' Frame 2 LYTSIRH
3'5' Frame 3 YTRRFAI

Sequence is Carrier?

- How do we determine if a sequence carries the Cystic Fibrosis allele?
- Get DNA sample and translate into protein. Then compare product protein sequence to that of a "working protein"
- Is there a difference between the protein sequences?

Remember the Codon Table?

- DNA triplets read in groups of three called codons, code amino acids
- T's from DNA are read as U's as RNA after transcription

Standard genetic code

1st		2nd base								
base		т		С	A		G		base	
т	TTT	(Phe/F) Phenylalanine	TCT	(Ser/S) Serine	TAT	(Tyr/Y) Tyrosine	TGT	(Cys/C) Cysteine	T	
	TTC		TCC		TAC		TGC		С	
	TTA		TCA	(Sei/S) Seilile	TAA ^[B]	Stop (Ochre)	TGA ^[B]	Stop (Opal)	A	
	TTG		TCG		TAG ^[B]	Stop (Amber)	TGG	(Trp/W) Tryptophan	G	
С	CTT	(Leu/L) Leucine	CCT		CAT	(His/H) Histidine (Gln/Q) Glutamine	CGT	(Arg/R) Arginine	T	
	CTC		CCC	(Pro/P) Proline	CAC		CGC		С	
	CTA		CCA	(FIO/F) FIOIIIIe	CAA		CGA		A	
	CTG		CCG		CAG		CGG		G	
A	ATT		ACT		AAT	(Asn/N) Asparagine	AGT	(Ser/S) Serine	T	
	ATC	(Ile/I) Isoleucine	ACC	(Thr/T) Threonine	AAC	(Asil/N) Asparagille	AGC	(Sel/S) Sellile	С	
	ATA	(Met/M) Methionine	ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	A	
	ATG ^[A]		ACG		AAG	(Lys/K) Lysille	AGG	(Alg/H) Algillille	G	
G	GTT		GCT		GAT	(Asp/D) Aspartic acid	GGT	(Gly/G) Glycine	T	
	GTC	(Val/V) Valine	GCC	(Ala/A) Alanine	GAC		GGC		С	
	GTA		GCA	G.	GAA	(Glu/E) Glutamic acid	GGA		A	
	GTG		GCG		GAG		GGG		G	

Translating DNA to find defects in the protein

Remember: DNA Must Be In 3' to 5' Direction To Find The Sequence

- Unlabeled strands of DNA are assumed to be in the 5' to 3', (left to right) direction.
- A new sequence is given to us for analysis.
- What are the steps to place this sequence into a format for use with bioinformatics tools?

DNA Manipulation Algorithm

A series of steps when handling DNA

- Input: mRNA strand in the 5' → 3' orientation
- Output: amino acid sequence
 - Traverse the string looking at one codon at a time
 - Add one amino acid corresponding to the protein sequence.

WAIT! Why is the 5' to 3' direction so important?! Remember the carbon atoms on DNA?

Review Question 1

In the DNA sequence 5'-AGCT-3', the phosphodiester linkage between the adenine and the guanine connects:

- The 2' end of the adenine to the 4' end of the guanine.
- The 5' end of the adenine to the 3' end of the guanine.
- The 5' end of the guanine to the 1' end of the adenine.
- The 3' end of the adenine to the 5' end of the guanine.

bond

Review Question 1

In the DNA sequence 5'-AGCT-3', the phosphodiester linkage between the adenine and the guanine connects:

- A. The 2' end of the adenine to the 4' end of the guanine.
- The 5' end of the adenine to the 3' end of the guanine.
- C. The 5' end of the guanine to the 1' end of the adenine.
- The 3' end of the adenine to the 5' end of the guanine.

bond