

Contexto de Negócio

O diagnóstico de doenças cardíacas é feito com base em uma combinação de sinais clínicos e resultados de testes. Os tipos de testes solicitados variam de eletrocardiogramas, tomografia computadorizada (TC) cardíaca, exames de sangue e testes de esforço entre outros.

A definição de doença cardíaca é "...o que acontece quando o suprimento de sangue do seu coração é bloqueado ou interrompido por um acúmulo de substâncias gordurosas nas artérias coronárias...".

Dados Estatísticos

As doenças cardíacas são a principal causa de morte no mundo: mais pessoas morrem anualmente por essas enfermidades do que por qualquer outra causa.

Estima-se que 17,9 milhões de pessoas morreram por doenças cardiovasculares em 2016, representando 31% de todas as mortes em nível global. Destes óbitos, estima-se que 85% ocorrem devido a ataques cardíacos e acidentes vasculares cerebrais (AVCs).

Mais de três quartos das mortes por doenças cardiovasculares ocorrem em países de baixa e média renda.

Das 17 milhões de mortes prematuras (pessoas com menos de 70 anos) por doenças crônicas não transmissíveis, 82% acontecem em países de baixa e média renda e 37% são causadas por doenças cardiovasculares.

Fonte: https://www.paho.org/pt/topicos/doencas-cardiovasculares

Fatores de Risco

Os fatores de risco para doenças cardíacas são:

- Colesterol alto;
- Pressão alta;
- Diabetes;
- Peso;
- Histórico familiar;
- Tabagismo
 - Fonte: https://www.bhf.org.uk/informationsupport/risk-factors

Fonte e Dados utilizados

Fonte:

EWhat Causes Heart Disease? Explaining the Model

Link: <a href="https://www.kaggle.com/tentotheminus9/what-causes-heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-Heart-disease-explaining-the-model#Diagnosing-disease-explaining-the-model#Diagnosing-disease-explaining-the-model#Diagnosing-disease-explaining-the-model#Diagnosing-disease-explaining-the-model#Diagnosing-disease-explaining-explaining-disease-expla

Disease Acesso em 26/12/2021

Autor: ROB HARRAND

Data: 3 anos atrás - 2018

Versão: 14

Dados:

Heart Disease UCI

https://archive.ics.uci.edu/ml/datasets/Heart+Disease

Dicionário de Dados

- Database: Cleveland 303 instâncias; Missing Values: Sim; Dados Balanceados: Sim;
- age: The person's age in years
- sex: The person's sex (1 = male, 0 = female)
- cp: The chest pain experienced (Value 1: typical angina, Value 2: atypical angina, Value 3: non-anginal pain, Value 4: asymptomatic)
- trestbps: The person's resting blood pressure (mm Hg on admission to the hospital)
- chol: The person's cholesterol measurement in mg/dl
- fbs: The person's fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)
- restecg: Resting electrocardiographic measurement (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Estes' criteria)
- thalach: The person's maximum heart rate achieved
- exang: Exercise induced angina (1 = yes; 0 = no)
- oldpeak: ST depression induced by exercise relative to rest ('ST' relates to positions on the ECG plot. See more here)
- slope: the slope of the peak exercise ST segment (Value 1: upsloping, Value 2: flat, Value 3: downsloping)
- ca: The number of major vessels (0-3)
- thal: A blood disorder called thalassemia (3 = normal; 6 = fixed defect; 7 = reversable defect)
- target: Heart disease (0 = no, 1 = yes)

Modelo

Tipo

Modelo de Aprendizado Supervisionado de Classificação Binária.

Algoritmo

RandomForestClassifier

Parâmetros utilizados - Versão original

Resultado (acurácia)

Treinamento: 92,15%

Teste: 81,63%

Modelo - Tunning

Contexto e Escopo

No notebook entregue pelo Data Science, linguagem python, não consta os experimentos de outros modelos nem nenhum hyper tunning no modelo escolhido. Desta forma, o Tunning efetuado faz um experimento de outros modelos e no modelo escolhido é feito o hyper tunning cujo objetivo é ter uma performance melhor no modelo. Essa performance não necessariamente é ter somente um aumento de acurária e sim melhor generalização dos acertos das 2 classes do modelo.

Ferramentas e linguagens

Utilizamos linguagem python 3.8, para os experimentos e validações dos parâmetros a api GridSearchCV e fizemos experimentos de normalização nos dados com a api MinMaxScaler, devido as diferenças de escalas entre as colunas.

Para a criação dos fontes foi utilizado o Jupyter Lab e foi utilizado um ambiente local (notebook Core i5 com 16GB Ram).

Modelo - Tunning

Testes com outros modelos e com normalização

* Normalização

Algoritmo	Versão	Acurácia	Acurária ROC	Acurácia *	Acurária ROC *
XGBClassifier (tst)	4	81.97%	-	-	-
Logistic Regression	3	83.95%	92.33%	82.68%	90.56%
RandomForestClassifier	3	84.27%	89.03%	81.80%	91.42%
XGBClassifier	3	80.60%	88.34%	82.63%	88.64%
Gaussian NB	3	78.50%	86.95%	81.33%	88.32%
Decision Tree Classifier	3	76.03%	76.38%	74.35%	70.44%
KNN	3	62.35%	67.81%	80.55%	86.55%
SVM	3	57.45%	57.19%	78.47%	86.69%
RandomForestClassifier (tst)	2	-	-	81.97%	-
RandomForestClassifier (tst)	1	81.97%	-	-	-

Modelo - Tunning

Conclusão do tunning

O Tunning de versão 1 demonstrou melhor acurária e maior acertos nas 2 targets (0 e 1). Tivemos um aumento de 5% na acurária do treinamento e o mesmo resultado no teste, mas pela métrica de matriz de confusão e relatório de classificação o acerto entre as classes foi equalizado, tornando o algoritmo mais genérico. Não houve diferença significativa com a aplicação de normalização no dataset, desta forma, foi ignorada. O modelo XGBClassifier aparece como promissor, mas para o case, vamos seguir com a decisão do Data Science (Autor) com o RandomForestClassifier, já que a diferença foi muito pequena.

Resultado (acurácia)

Treinamento: 97.93%

Teste: 81.97%

Melhores parâmetros

```
RandomForestClassifier(bootstrap=True, class_weight='balanced', criterion='gini', max_depth=10, max_features='auto',

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=3,

min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=125, n_jobs=None, oob_score=False,

random_state=7, verbose=0, warm_start=False)
```

best params: {'max_depth': 10, 'min_samples_leaf': 3, 'min_samples_split': 2, 'n_estimators': 125}

best score: 0.9244156669776504

Objetivo e Escopo – Case 1 (API)

Objetivo

Através dos dados informados (13 informações) indicar se o paciente tem ou não a probabilidade de ter uma doença cardíaca.

Uso

Ferramenta de simulação para médicos clínicos e/ou laboratórios para indicar um paciente para um tratamento especializado o mais rápido possível.

Escopo

Para o alcance do objetivo acima, foi criado 2 aplicações de arquitetura de micro-serviços, conforme abaixo. As aplicações rodam em containers no AKS e seu build e deploy ocorrem via Azure DEVOPS.

- 1) Web-Site: Foi criado uma APP Web, onde o usuário possa digitar as informações necessárias e clicar no botão "Verificar" para obter o resultado; A página WEB exibirá um Sim junto com a probabilidade ou um Não;
- 2) App de back-End: Essa aplicação expõe o modelo de ML (pkl) do case como um Web-Service REST, tornando-o uma API para servir a APP Web.
- 3) A parte de infra-estrutura de Cloud (Azure) foi feita em Terraform (InfraAsCode)

Objetivo e Escopo – Case 2 (Stream)

Objetivo

Receber dados de pacientes via streaming e indicar se os pacientes têm ou não a probabilidade de ter uma doença cardíaca.

Uso

Ferramenta on-line em streaming que recebe dados de exames de pacientes de laboratórios e armazena os resultados. Com os resultados, a ferramenta pode notificar o(s) médico(s) sobre o caso e proporcionar ao paciente um tratamento mais especializado e mais rápido possível.

Escopo

Para o alcance do objetivo acima, foi criado uma infra-estrutura em cloud (Azure) via script em Terraform para o processamento em streaming dos dados. Utilizado a plataforma Databricks, MLFLOW e o EventHub. Foi criado um notebook para o envio de dados simulando o envio por um laboratório e de um paciente. Após o envio dos dados, os mesmos são processados e registrados / gravados numa delta table do Databricks.

Fora de Escopo

Notificação dos resultados ao(s) médico(s).

Desenho de Solução Case 1 (API)

Front End APP Back End APP

Trigger - Main

DEPLOY

POD 1 – Front End APP

POD 2 - Back End APP (Modelo)

Azure Kubernetes Service (AKS)

Azure **Pipelines**

CI/CD

Stage 1

Stage 2

Build e upload

da imagem

docker

Download da imagem

InfraAsCode - Terraform

Resource Group, AKS, Container Registry, Projects DevOps

Desenho de Solução Case 2 (Stream)

Gerador de Eventos Simulador dos laboratórios

Streaming
Captura dos dados,
preparação, aplicação
do modelo e
armazenamento do
resultado

InfraAsCode - Terraform

Resource Group, Databricks Workspace, EventHub

Registry

Registro dos modelos e versionamento

Experiments
Registro com métricas

Evidências de Funcionamento Case 1 e 2 – Azure Cloud

Evidências de Funcionamento Case 1 (REST) – App Web

Evidências de Funcionamento Case 1 (REST) - Preenchimento

Previsão de Doença Cardíaca

Evidências de Funcionamento Case 1 (REST) - Resultado

Previsão de Doença Cardíaca

Resultado: Não há indícios de doença

Obs.: Atenção, esse resultado é uma previsão, sempre procure um médico cardiologista.

Prever novo paciente

Evidências de Funcionamento Case 1 (REST) - BackEnd

Evidências de Funcionamento Case 1 (REST) - AKS e DevOps

Evidências de Funcionamento Case 1 (REST) - DevOps

Evidências de Funcionamento Case 2 (Stream) – EventHub e Databricks

Evidências de Funcionamento Case 2 (Stream) - Databricks

Evidências de Funcionamento Case 2 (Stream) – Databricks Jobs

Evidências de Funcionamento Case 2 (Stream) – Dados

← → **C** adb-3437317794381320.0.azuredatabricks.net/?o=34373177943

Microsoft Azure Databricks

heart.dadospaciente

2 Refresh

Sample Data:

M

æ

a

B

②

@ £

亖

Д

a

A

②

	l_angina 🔺	st_depression 🔺	st_slope 🔺	num_major_vessels 🔺	thalassemia 🔺	resultado 🔺	probabilidade_Nao 🔺	probabilidade_Sim 🔺	data	_
1		2.3	3	3	3	0	0.7071371365863812	0.292862863413619	2022-01-19	^
2		2.3	2	2	1	0	0.7439762968406025	0.25602370315939765	2022-01-19	
3		2.3	1	2	3	0	0.7466984687845556	0.2533015312154444	2022-01-19	
4		2.3	2	0	3	0	0.5441889914550755	0.4558110085449247	2022-01-19	
5		2.3	3	2	2	0	0.6304289835067894	0.3695710164932105	2022-01-19	
6		2.3	1	0	1	0	0.7356550326746969	0.264344967325303	2022-01-19	
7	4						i	i		

Showing all 24 rows.

Schema:

	col_name	data_type 🔺	comment 🔺
1	pacienteld	string	
2	age	int	
3	sex	int	
4	chest_pain_type	int	
5	resting_blood_pressure	int	
6	cholesterol	int	
7	fasting_blood_sugar	int	

Showing all 21 rows.

Evidências de Funcionamento Case 2 (Stream) - MLFlow

Evidências de Funcionamento Case 2 (Stream) - MLFlow

Evidências de Funcionamento Case 2 (Stream) – MLFlow Experimentos

Evidências de Funcionamento Case 2 (Stream) – MLFlow Experimentos

Fontes e Referências

Case1 – Rest

Geral

(https://github.com/marciodelima/case1 santander engml geral.git)

Front-End

(https://github.com/marciodelima/case1 santander engml frontend.git)

Back-End

(https://github.com/marciodelima/case1 santander engml backend.git)

ase2 – Stream

Fontes

(https://github.com/marciodelima/case2 santander engml stream.git)

Obrigado

