گزارش کار چهارم آزمایشگاهِ معماری کامپیوتر

تهیه و تنظیم: مبین خیبری

شماره دانشجوي: 994421017

استاد راهنما: دكتر حاجىزاده

چکیده:

در این جلسه ابتدا اقداماتِ انجامشده در جلسهی گذشته به طور کلی مرور و سپس با انواع مختلف دیکودرها و شمارندهها و اجزای تشکیلدهندهی آنها آشنایی به عمل آمد.

بعد از پایانِ این بخش، دانشجویان طراحی و پیادهسازیِ قطعهی Latch و مقدماتِ لازم برای طراحیِ یک شمارنده به کمکِ زبانِ سطحبالایِ Verilog را در قالب گروهها آغاز کردند.

در ادامه ابتدا به معرفی کلی شمارنده ها و دیکودرها پرداخته و به کمک چند تصویر و جدول، با ویژگی های مختلف آن ها آشنا می شویم.

شكلِ زير ساختار كلي يك نوع شمارنده را نشان مىدهد:

شمارنده ها (Counters)

شکلِ زیرِ مدارِ داخلی هرکدام از بلوکهای تشکیلدهندهی این شمارنده را نشان میدهد:

مدار داخلی هر بلوک

فیلیپفلاپ نیز، یکی دیگر از قطعاتیست که در آینده با آن سر و کار خواهیم داشت. شکلِ زیر ساختار یک فیلیپفلاپ از نوع D را نشان میدهد:

فيليپ فلاپ D دارای پايه Reset

بهطورِ کلی شمارندهها را میتوان به دو نوع تقسیم کرد:

- شمارنده های آسنکرون (Asynchronous)
 - شمارنده های سنکرون (synchronous)

شكل زير اطلاعاتي را دربارهي شمارندههاي آسنكرونِ صعودي نشان ميدهد:

شمارنده های آسنکرون صعودی (Up Counter):

پالس ساعت	Q_D	Q_C	Q_{B}	Q_{A}
0	0	0	0	0
	0	0	0	1
2	0	0	1	0
1 2 3 4 5 6 7 8	0	0	1	1
4	0	1	O	0
5	0	1	0	1
6	O	1	1	O
7	0	1	1	1
8	1	0	O	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	O	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

5

همچنین اطلاعاتی دربارهی شمارندههای آسنکرونِ نزولی در شکل زیر به نمایش گذاشته شده:

شمارنده های آسنکرون نزولی (Down Counter):

تعداد پالسهای	خروجىها			شمارش دەدھى
پاتستان ساعت ورودی	C	В	A	خروجى
0	1	1	1	7
1	1	1	0	6
2	1	0	1	5
3	1	0	0	4 3 2
4	0	1	1	3
5	0	1	0	2
6	0	0	1	1
7	0	0	0	0
8	1	1	1	7

بازهی شمارشِ اعدادِ یک شمارنده را میتوانیم به کمکِ اعدادِ BCD معین کنیم:

: (Binary Coded Decimal) BCD شمارنده های آسنکرون ده دهی

Q_3	Q_2	Q_1	Q_0	Decimal
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9

در تصویر بعد، مشخصات نوعِ دیگری از شمارندهها با عنوانِ شمارندههای سنکرونِ صعودی را مشاهده می کنید:

Q_3	Q_2	Q_1	Qo	معادل دەدھى
О	O	О	О	0
O	O	O	1	1
O	O	1	O	2
O	O	1	1	3
O	1	O	O	4
O	1	O	1	5
О	1	1	O	6
O	1	1	1	7
1	O	O	O	8
1	O	O	1	9
1	O	1	O	10
1	O	1	1	11
1	1	O	O	12
1	1	O	1	13
1	1	1	O	14
1	1	1	1	15

با ایجادِ تغییراتِ کوچکی میتوانیم قابلیت صعود و نزول را برای یک شمارنده تعبیه کنیم:

• شمارنده های صعودی ونزولی (Up/Down Counter):

$$\text{l=Uiv} \Rightarrow \begin{cases} \text{AND}_{\text{1}}, \text{AND}_{\text{p}}, \text{AND}_{\text{0}} & \text{dist} \\ \text{AND}_{\text{p}}, \text{AND}_{\text{p}}, \text{AND}_{\text{p}} & \text{dist} \end{cases}$$

$$\text{malicies assets} \Rightarrow \begin{cases} \text{AND}_{\text{1}}, \text{AND}_{\text{p}}, \text{AND}_{\text{0}} & \text{dist} \\ \text{AND}_{\text{p}}, \text{AND}_{\text{p}}, \text{AND}_{\text{p}} & \text{dist} \end{cases}$$

$$\text{ead Stircl} = \delta$$

$$\text{dist} \Rightarrow \begin{cases} \text{AND}_{\text{p}}, \text{AND}_{\text{p}}, \text{AND}_{\text{p}} & \text{dist} \\ \text{AND}_{\text{p}}, \text{AND}_{\text{p}}, \text{AND}_{\text{p}} & \text{dist} \end{cases}$$

$$\text{malicies it glue}$$

در ادامه قصد داریم ساختارِ یک Master – Slave D Flip-Flop را شبیهسازی کنیم:

Basic Memory Components Master-Slave D Flip-Flop

برای این منظور، لازم است که ابتدا قطعه کدِ زیر را در محیط نرمافزار ISE برنامهنویسی کنیم:

```
`timescale 1ns/100ps
```

نتیجهی نوشتن این برنامه در تصویر زیر آورده شده است:

حال لازم است در یک ماژولِ مجزا به طراحیِ بخشهای master و slave بپردازیم:

حاصل این کار در شکل زیر آورده شده:

در نهایت لازم است که با نوشتن یک Test Module عملکرد برنامهی طراحی شده را ارزیایی کنیم:

Basic Memory Components

```
initial begin
Master-Slave D Flip-Flop
                                                        // Initialize
                                                         d = 0;
                                                         c = 0;
     module tb master;
                                                         #20 d = 1;
                                                         #20 d = 0;
                                                         #20 d = 1;
         // Inputs
         reg c;
         // Outputs
         wire q;
         wire q b;
         // Instantiate the Unit Under Test
         master slave uut (
             .d(d),
             .c(c),
                                                         #20 d = 1;
             .q(q),
             .q b(q b)
                                                         #20 d = 1;
                                                         #20 d = 1;
         initial repeat (10) #50 c = ~c;
                                                endmodule
```

حاصلِ نوشتن ماژولهای مربوط به قسمتِ Test و شبیهسازیِ برنامه در محیطِ Simulation در تصاویر زیر آورده شدهاند:

