Babeş-Bolyai University, Faculty of Mathematics and Computer Science

Analysis for Computer Science

Year: 2015/2016

Exercise Set #4

1. Find the sum of the following series:

a)
$$\sum_{n\geq 2} \left(-\frac{5}{9}\right)^n$$
, b) $\sum_{n\geq 1} \left(\frac{1}{2}\right)^{2n}$, c) $\sum_{n\geq 2} \ln\left(1-\frac{1}{n^2}\right)$, d) $\sum_{n\geq 0} \frac{1}{(n+p)(n+1+p)}$, where $p>0$, e) $\sum_{n\geq 1} \frac{1}{n(n+1)(n+2)}$, f) $\sum_{n\geq 1} \frac{1}{(3n-2)(3n+1)}$, g) $\sum_{n\geq 1} \left(\sqrt{n+2}-2\sqrt{n+1}+\sqrt{n}\right)$, h) $\sum_{n\geq 1} \frac{n+1}{2^n}$.

2. Let $\sum_{n\geq 1} x_n$ be a convergent series with nonnegative terms. Study which of the following series are convergent:

a)
$$\sum_{n\geq 1} \frac{x_n}{1+x_n}$$
, b) $\sum_{n\geq 1} x_n^2$, c) $\sum_{n\geq 1} \sqrt{x_n}$, d) $\sum_{n\geq 1} \frac{\sqrt{x_n}}{n}$.

3. Study if the following series are convergent or divergent:

a)
$$\sum_{n\geq 1} \sin n$$
, b) $\sum_{n\geq 1} \frac{5^{n/2}}{n2^n}$, c) $\sum_{n\geq 1} \frac{e^n}{n+3^n}$, d) $\sum_{n\geq 1} \frac{1}{\sqrt{n+1}}$, e) $\sum_{n\geq 1} \frac{1}{n^2 - \ln n + \sin n}$, f) $\sum_{n\geq 1} \frac{2^n n!}{n^n}$,

g)
$$\sum_{n\geq 1} \frac{n^2}{2^{n^2}}$$
, h) $\sum_{n\geq 1} (\arctan n)^n$, i) $\sum_{n\geq 1} \frac{n^2}{\left(2+\frac{1}{n}\right)^n}$, j) $\sum_{n\geq 1} \left(1+\frac{1}{n}\right)^{-n^2}$, k) $\sum_{n\geq 1} \frac{1\cdot 3\cdot \ldots \cdot (2n-1)}{2\cdot 4\cdot \ldots \cdot (2n)}$,

1)
$$\sum_{n\geq 1} (2-\sqrt{e}) \cdot (2-\sqrt[3]{e}) \cdot \dots \cdot (2-\sqrt[n]{e}) \quad \text{Hint: } \forall n \in \mathbb{N}^*, e < \left(1+\frac{1}{n}\right)^{n+1},$$

$$\mathrm{m)} \sum_{n \geq 1} \frac{n^n}{e^n n!} \quad \mathrm{Hint:} \ \lim_{n \to \infty} n \left(e - \left(1 + \frac{1}{n} \right)^n \right) = \frac{e}{2}, \quad \mathrm{n)} \sum_{n \geq 1} \frac{a(a+1) \cdot \ldots \cdot (a+n)}{n(n+1) \cdot \ldots \cdot (2n)}, \ \mathrm{where} \ a \in \mathbb{R}.$$

4. Study if the following series are convergent, absolutely convergent or divergent:

a)
$$\sum_{n\geq 1} \frac{\sin n}{n^2}$$
, b) $\sum_{n\geq 1} (-1)^{n+1} \frac{(n+1)^n}{n^{n+2}}$, c) $\sum_{n\geq 1} \frac{(-1)^{n+1}}{\sqrt{n}}$, d) $\sum_{n\geq 1} \frac{(-1)^{n+1}}{\sqrt{n(n+1)}}$,

e)
$$\sum_{n\geq 1} \frac{a^n}{1+a^{2n}}$$
, where $a\in \mathbb{R}$.

5. Let (x_n) be a decreasing sequence in $[0, +\infty)$ such that $\lim_{n \to \infty} x_n = 0$. Show that the series $\sum_{n \ge 1} (-1)^{n+1} \frac{x_1 + x_2 + \ldots + x_n}{n}$ is convergent.

1