Machine Learning SS2013

Ulrike von Luxburg Assignment 05

Arne Schröder

Falk Oswald

Angel Bakardzhiev

May 11, 2013

Exercise 1

Task

Write the following linear program in the standard form by determining A, b, c.

Answer

Substitute x_3 with $x_3' = -x_3$:

Minimize
$$x_1 - 2x_2 - 4x_3'$$

subject to
 $-x_1 + x_2 \ge 1$
 $3x_1 - 2x_3' \le -1$
 $-2x_1 + 5x_3' + 4 \le 0$
 $x_1, x_2, x_3' \le 0$

Standard form:

Minimize $c^T x$ subject to $Ax \le b$ and $x \le 0$ with

$$A = \begin{bmatrix} -1 & 1 & 0 \\ 3 & 0 & -2 \\ -2 & 0 & 5 \end{bmatrix}, b = \begin{bmatrix} 1 \\ -1 \\ 4 \end{bmatrix}, c = \begin{bmatrix} 1 \\ -2 \\ -4 \end{bmatrix}$$

Exercise 4

Task

For any $\gamma > 0$ the solution of $\min_{w,b} \frac{1}{2} ||w||^2$, subject to $y_i \cdot (\langle w, x_i \rangle - b) \ge 1$ is the same as the same one subject to $y_i \cdot (\langle w, x_i \rangle - b) \ge \gamma$.

Answer

$$y_i \cdot (\langle w, x_i \rangle - b) \ge \gamma$$

$$\Leftrightarrow \gamma^{-1} \cdot y_i \cdot (\langle w, x_i \rangle - b) \ge 1$$

$$\Leftrightarrow \gamma^{-1} \cdot y_i \cdot (\langle w, x_i \rangle - b) \ge 1$$