SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

21 février 2024

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

Recap

Recap

Puissance statistique

Détermination de la taille d'échantillon

- ► Objectifs de l'étude
- ► Formulation d'hypothèse
- ► Collecte des données : plan d'échantillonage
- ► Analyse des données : choix du test statistique
- ► Décision et interprétation

Recap

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

► Objectifs de l'étude

► Formulation d'hypothèse

► Collecte des données : plan d'échantillonage

► Analyse des données : **choix du test statistique**

Décision et interprétation

Comment choisir le test statistique ?

Inférence statistique

Les conditions pour les choix du test

► Test de normalité (Shapiro-Wilk)

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

uissance tatistique

Détermination de la taille d'échantillon

Inférence statistique

Les conditions pour les choix du test

- ► Test de normalité (Shapiro-Wilk)
- ► Test de homogénéité des variances
 - ► Test F pour les données normalement distribuées
 - ► Test de Levene

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

^Puissance tatistique

Détermination de la taille d'échantillon

Les conditions pour les choix du test

- ► Test de normalité (Shapiro-Wilk)
- ► Test de homogénéité des variances
 - ► Test F pour les données normalement distribuées
 - ► Test de Levene

Les paramètres à étudier

- ► La moyenne d'un échantillon ou la différence entre deux échantillons appariés
 - Test t avec paired=TRUE pour les données normalement distribuées
 - ► Test de Wilcoxon pour échantillons appariés

Inférence statistique

SYS865 Inférence statistique avec programmation R

Les conditions pour les choix du test

- ► Test de normalité (Shapiro-Wilk)
- ► Test de homogénéité des variances
 - ► Test F pour les données normalement distribuées
 - ► Test de Levene

Les paramètres à étudier

- La moyenne d'un échantillon ou la différence entre deux échantillons appariés
 - ► Test t avec paired=TRUE pour les données normalement distribuées
 - ► Test de Wilcoxon pour échantillons appariés
- Les moyennes des deux échantillons indépendants
 - ► Test t par défault pour les données normalement distribuées
 - ► Test de rang somme de Wilcoxon

Ornwipa Thamsuwan

Recap

uissance tatistique

Détermination de la taille d'échantillon

Erreur statistique (retour)

Erreur type I (α) : Rejeter H_0 quand H_0 est vraie.

Erreur type II (β) : Ne pas rejeter H_0 quand H_0 est fausse.

Normal Probability Distributions of Glucose by Outcome

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Puissance

Détermination de la taille d'échantillon

Erreur statistique (retour)

"Power" $(1 - \beta)$: Correctement rejeter H_0 quand H_0 est fausse, ou quand H_1 est vraie.

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

Puissance statistique

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

Puissance statistique

Détermination de la taille d'échantillon

		Reality	
		Positive	Negative
Study findings	Positive	True positive (Power) (1 – β)	False positive Type I error (α)
	Negative	False negative Type II error (β)	True negative

Figure 1: Tableau de contingence

- 1. Définir les hypothèses et décider du type de test t
- ▶ **Hypothèse nulle** (H_0) : Il n'existe aucune différence entre les groupes que vous comparez.
- **Hypothèse alternative** (H_1) : Il existe une différence significative.
- ▶ Décidez si l'on réalise un test t unilatéral (si l'on attend une différence dans une direction spécifique) ou bilatéral (en cas où les différences dans les deux directions sont pertinentes).

- 1. Définir les hypothèses et décider du type de test t
- ▶ **Hypothèse nulle** (H_0) : Il n'existe aucune différence entre les groupes que vous comparez.
- **Hypothèse alternative** (H_1) : Il existe une différence significative.
- Décidez si l'on réalise un test t unilatéral (si l'on attend une différence dans une direction spécifique) ou bilatéral (en cas où les différences dans les deux directions sont pertinentes).
- 2. Choisir un niveau de signification (α). Typiquement, $\alpha=0.05$.

- 1. Définir les hypothèses et décider du type de test t
- **Hypothèse nulle** (H_0) : Il n'existe aucune différence entre les groupes que vous comparez.
- **Hypothèse alternative** (H_1): Il existe une différence significative.
- ▶ Décidez si l'on réalise un test t unilatéral (si l'on attend une différence dans une direction spécifique) ou bilatéral (en cas où les différences dans les deux directions sont pertinentes).
- **2.** Choisir un niveau de signification (α). Typiquement, $\alpha = 0.05$.
- 3. Supposer que la taille de l'échantillon (n) pour chaque groupe est donnée.

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

4. Déterminer la taille de l'effet

La taille de l'effet de Cohen's d est définie comme:

$$d = \frac{\mu_1 - \mu_2}{SD_{\text{poolis\'ee}}}$$

Où μ_1 et μ_2 sont les moyennes des deux groupes, et $SD_{\text{poolisée}}$ est l'écart-type poolisé, calculé en fonction des écarts-types des deux groupes.

Calcul de puissance statistique

SYS865 Inférence statistique avec programmation R

4. Déterminer la taille de l'effet

La taille de l'effet de Cohen's d est définie comme:

$$d = \frac{\mu_1 - \mu_2}{SD_{\text{poolisée}}}$$

Où μ_1 et μ_2 sont les moyennes des deux groupes, et $SD_{\text{poolisée}}$ est l'écart-type poolisé, calculé en fonction des écarts-types des deux groupes.

$$SD_{\mathsf{poolis\acute{e}e}} = \sqrt{rac{(n_1 - 1) imes SD_1^2 + (n_2 - 1) imes SD_2^2}{n_1 + n_2 - 2}}$$

Où n_1 et n_2 sont les tailles d'échantillon des deux groupes, et SD_1 et SD_2 sont les déviations standard des deux groupes.

Thamsuwan

Recap Puissance

statistique

Détermination de

Calcul de la puissance statistique

5. Calculer ou estimer la puissance $(1 - \beta)$ avec R

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

Puissance statistique

Détermination de la taille

D'autre option du logiciel: G*Power

```
5. Calculer ou estimer la puissance (1 - \beta) avec R
```

Paramètres

```
effect_size <- 0.5
n1 < -30
n2 < -40
alpha <- 0.05
```

5. Calculer ou estimer la puissance $(1 - \beta)$ avec R

Paramètres

alpha <- 0.05

Calcul des degrés de liberté

Ornwipa Thamsuwan

Recan

Puissance statistique

Détermination de la taille

t_critical <- qt(1 - alpha / 2, df)

Puissance statistique

Détermination de la taille

D'autre option du logiciel : G*Power

[1] 1.995469

t_critical

Calcul de la valeur t critique

La fonction qt() fournit le quantile de la distribution t.

[1] 2.070197

Le paramètre de non-centralité représente à quel point l'effet réel est éloigné de l'hypothèse nulle dans le contexte d'une hypothèse alternative spécifique.

Le paramètre de non-centralité est ajusté pour les tailles d'échantillon inégales en utilisant la formule suivante :

$$ncp = ext{effect size} imes \sqrt{rac{n_1 imes n_2}{n_1 + n_2}}$$

Ornwipa Thamsuwan

Recap

Puissance statistique Détermination de

power <- 1 - pt(t critical, df, ncp)</pre>

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

[1] 0.5322582

power

Calcul de la puissance

La fonction pt() donne la fonction de répartition (c'est-à-dire, la probabilité cumulée) pour la distribution t.

Puissance statistique

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

Si nous n'avons pas encore collecté de données . . .

Et nous voulons connaître la taille de l'échantillon pour atteindre une puissance statistique prédéfinie . . .

Détermination de la taille d'échantillon

SYS865 Inférence statistique avec programmation R

Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recap

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

SYS865 Inférence statistique avec programmation R

> Ornwipa Thamsuwan

Recan

Puissance statistique

Détermination de la taille d'échantillon

D'autre option du logiciel : G*Power

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower

Figure 2: G*Power