

Lecture 6

- Second-Order Circuits

Second-Order Circuits

- Two energy storage elements
- Analysis: basically determine voltage or current as a function of time
- A second-order circuit is characterized by a second-order differential equation.

Outline

- Natural Response Series/Parallel RLC circuit Source-free
- Step Response of a Series/Parallel RLC Circuit
 With Independent Source
- General 2nd-order circuits

Source-Free Series RLC Circuit

Source-Free Series RLC Circuit

$$\frac{d^2v}{d^2t} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$$

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

Example

The switch has been closed for a long time. It is open at

t = 0. Find

 $v(0^+), dv(0^+)/dt$

• $i(0^+)$, $di(0^+)/dt$

 $\begin{array}{c|c}
4\Omega & i \\
\hline
\end{array}$ $\begin{array}{c}
4\Omega & i \\
\hline
\end{array}$ 0.25 H

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or

Exercise

- Assume the circuit has reached steady state at $t=0^-$. Find
 - $v(0^+), dv(0^+)/dt$
 - $i(0^+)$, $di(0^+)/dt$

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Case 1: Overdamped $(\alpha > \omega_0)$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}} \qquad \qquad s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

An example

 V_c = 2e^(-t)+3e^(-t/2)

Case 2: Critically Damped ($\alpha = \omega_0$)

$$\frac{d^{2}v}{dt^{2}} + \frac{R}{L}\frac{dv}{dt} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0 s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^{2} - \frac{1}{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}} \qquad s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$s_1 = s_2 = -\alpha = -\frac{R}{2L}$$

Case 2: Critically Damped ($\alpha = \omega_0$)

$$v(t) = (A_1t + A_2)e^{-\alpha t}$$

Case 3: Underdamped ($\alpha < \omega_0$)

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}}$$

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha + j\omega_{d}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha - \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha - j\omega_{d}$$

where
$$j = \sqrt{-1}$$
 and $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

- ω_0 is often called the resonant frequency;
- ω_d is called the damping frequency.

The natural response

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

becomes

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

- Exponential $e^{-\alpha t}$ * Sine/Cosine term
 - **Exponentially damped, time constant =** $1/\alpha$
 - •Oscillatory, period $T = \frac{2\pi}{\omega_d}$

Example

