Base et Dimension MAT1741 A Automne 2012

Joseph Khoury Departement des Mathmatiques Université d'Ottawa

Base

Définition

Soit V un espace vectoriel et $\{v_1, v_2, \dots, v_n\} \subset V$. On dit que $\{v_1, v_2, \dots, v_n\}$ est une base de V si

- $\{v_1, v_2, \dots, v_n\}$ est linéairement indépendant.

Exemples

Démontrez que les ensembles suivants sont une base pour leurs espaces vectoriels respectifs.

- $\{(1,0),(0,1)\}, \mathbb{R}^2$;
- \bullet {(1,-1),(1,1)}, \mathbb{R}^2 ;
- $\{(2,1,0),(-1,0,1)\}, S = \{(x,y,z) \in \mathbb{R}^3 \mid x-2y+z=0\};$
- $\bullet \ \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}, \ W = \{A \in M_{2,2} \, | \, A = A^t\};$
- $\{1, \cos x, \sin x\}, Q = \mathcal{L}\{1, \cos x, \sin x\};$

Exemples (suite)

• Soit $V=\mathbb{R}^n$. Pour un entier $j\in\{1,2,\ldots,n\}$ on définit $e_j=(0,\ldots,0,\underbrace{1}_{j^e}\text{ coordonnée})$

$$\{e_1, e_2, \ldots, e_n\}, \mathbb{R}^n$$
.

 $\underline{\mathsf{Question}}$: Est-ce que chaque base de V contient le même nombre d'éléments ?

e.g. $\{(1,0),(0,1)\}$ et $\{(1,-1),(1,1)\}$ sont des bases paur $\mathbb{R}^2.$

Théorème

Soit V un espace vectoriel et supposons que $\{v_1, v_2, \dots, v_n\}$ et $\{w_1, w_2, \dots, w_m\}$ sont des bases de V. Alors, n = m.

<u>Démonstration</u>: Rappel

taille de tout ensemble de générateur de V

 \geq

taille de tout ensemble linéairement indépendant de V

Puisque $\{v_1, v_2, \dots, v_n\}$ engendre V et que $\{w_1, w_2, \dots, w_m\}$ est linéairement indépendant

$$n \ge m$$

Puisque $\{w_1, w_2, \dots, w_m\}$ engendre V et $\{v_1, v_2, \dots, v_n\}$ est linéairement indépendant

$$m \ge n$$

$$\Rightarrow n = m$$
.

Définition

Soit V un espace vectoriel. S'il existe une base $\{v_1, v_2, \ldots, v_n\}$ (c.à.d. il y a un nombre fini d'éléments), on dit que la dimension de V est n, et on écrit dim V = n.

Autrement (c.à.d. si V n'a pas de base fini), on dit que V est de dimension infinie, et on écrit dim $V=\infty$.

Par convention, dim $\{0\} = 0$.

Exemples

- dim $\mathbb{R}^2 = 2$.
- dim $\mathbb{R}^n = n$, puisque $\{e_1, e_2, \dots, e_n\}$ est une base de \mathbb{R}^n .
- Soit $W = \left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\}$, alors dim W = 3 puisque on a vu que $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$

est une base pour \hat{W} .

 $\begin{array}{c} \bullet \ \operatorname{dim} M_{2,2} = 4 \ \operatorname{puisque} \\ \left. \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \\ \operatorname{est \ une \ base \ pour \ } M_{2,2}. \end{array}$

Exemples

$$\mathbf{M}_{p,q} = \left\{ \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1q} \\ a_{21} & a_{22} & \dots & a_{2q} \\ \vdots & \vdots & \vdots & \vdots \\ a_{p1} & a_{p2} & \dots & a_{pq} \end{pmatrix} \mid a_{ij} \in \mathbb{R} \right\}$$

est un espace vectoriel. dim $M_{p,q} = pq$.

- $S = \{(x, y, z) \in \mathbb{R}^3 | x 2y + z = 0\}, \text{ dim } S = 2 \text{ puisque}$ $\{(2,1,0),(-1,0,1)\}$ est une base de S.
- dim $\mathbb{P}_2 = 3$, puisque $\{1, t, t^2\}$ est une base de \mathbb{P}_2 .
- $\mathbb{P}_m = \{ \text{ polynôme de degré } \leq m \} \text{ est un espace vectoriel.}$ $\dim \mathbb{P}_m = m+1$.

Exemples

• $V = F(\mathbb{R})$ (ou V = F([a, b])), dim $V = \infty$.

<u>Démonstration</u>: Supposons que $F(\mathbb{R})$ est de dimension $n < \infty$. Alors tout ensemble linéairement indépendant d'él'ements de V contient au plus n éléments. Par contre, voici un ensemble linéairement indépendant d'éléments de V qui contient n+1 éléments :

$$\underbrace{\{1,x,x^2,\ldots,x^n\}}_{n+1 \text{ éléments}} \subset F(\mathbb{R})$$

Ceci contredit le fait que dim V = n.

$$\Rightarrow \dim F(\mathbb{R}) = \infty$$

Remarque

taille de tout ensemble linéairement indépendant $\leq \dim V \leq$ taille de tout ensemble générateur de V

Théorème

Soit V un espace vectoriel de dimension finie, dim $V=n<\infty$

- Si $\{v_1, v_2, \ldots, v_m\}$ (m < n) est linéairement indépendant, il existe $v_{m+1}, v_{m+2}, \ldots, v_n$ tel que $\{v_1, v_2, \ldots, v_m, v_{m+1}, v_{m+2}, \ldots, v_n\}$ est une base de V.
- ② $Si \{w_1, w_2, \ldots, w_l\}$ (l > n) engendre V, il existe des indices i_1, i_2, \ldots, i_n tel que $\{w_{i_1}, w_{i_2}, \ldots, w_{i_n}\}$ est une base de V.

Exemples

- $V = \mathbb{R}^3$, dim V = 3. L'ensemble $\{(1,0,1),(0,1,0)\}$ est linéairement indépendant mais ce n'est pas une base de \mathbb{R}^3 .
- $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \right\} \text{ engendre}$ $D = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a,b \in \mathbb{R} \right\}, \text{ mais ce n'est pas une base de } D.$

<u>Résumé</u> : Soit V un espace vectoriel avec dim $V = n < \infty$. Alors,

- **1** Tout ensemble linéairement indépendant $\{v_1, v_2, \dots, v_n\}$ est une base de V (c.à.d. engendre V aussi).
- 2 Tout ensemble générateur $\{w_1, w_2, \dots, w_n\}$ est une base de V (c.à.d. linéairement indépendant aussi).

Dimensions de sous-espaces vectoriels

Théorème

Soit V un espace vectoriel de dimesion $\dim V = n < \infty$. Soit U un sous-espace vectoriel de V. Alors,

$$\dim U < \dim V$$
,

et

$$\dim U = \dim V \Leftrightarrow U = V$$
.

Propriété à propos des bases

Soit l'espace vectoriel V de dim $V=n<\infty$ et $\mathcal{B}=\{v_1,v_2,\ldots,v_n\}$ une base de V. pour tout $v\in V$, il existe des scalaires uniques a_1,a_2,\ldots,a_n tel que

$$v = a_1v_1 + a_2v_2 + \ldots + a_nv_n$$

<u>Démonstration</u>: Supposons que $v = a_1v_1 + a_2v_2 + ... + a_nv_n$ et $v = b_1v_1 + b_2v_2 + ... + b_nv_n$,

$$v - v = 0 = (a_1 - b_1)v_1 + (a_2 - b_2)v_2 + \dots + (a_n - b_n)v_n$$

$$\begin{vmatrix} a_1 - b_1 = 0 \\ a_2 - b_2 = 0 \\ \vdots \\ a_n - b_n = 0 \end{vmatrix} \Rightarrow \begin{vmatrix} a_1 = b_1 \\ a_2 = b_2 \\ \vdots \\ a_n = b_n \end{vmatrix}$$

Donc, les scalaires a_1, a_2, \ldots, a_n sont déterminées de manière unique. On les appelles les coordonnée de v par rapport à la base \mathcal{B} .