Artificial Neural Networks Technology

3.0 History of Neural Networks

the study of the human brain is thousands of years old. With the advent of modern electronics, it was only natural to try to harness this thinking process. The first step toward artificial neural networks came in 1943 when Warren McCulloch, a neurophysiologist, and a young mathematician, Walter Pitts, wrote a paper on how neurons might work. They modeled a simple neural network with electrical circuits.

Reinforcing this concept of neurons and how they work was a book written by Donald Hebb. The *Organization of Behavior* was written in 1949. It pointed out that neural pathways are strengthened each time that they are used.

As computers advanced into their infancy of the 1950s, it became possible to begin to model the rudiments of these theories concerning human thought. Nathanial Rochester from the IBM research laboratories led the first effort to simulate a neural network. That first attempt failed. But later attempts were successful. It was during this time that traditional computing began to flower and, as it did, the emphasis in computing left the neural research in the background.

Yet, throughout this time, advocates of "thinking machines" continued to argue their cases. In 1956 the Dartmouth Summer Research Project on Artificial Intelligence provided a boost to both artificial intelligence and neural networks. One of the outcomes of this process was to stimulate research in both the intelligent side, AI, as it is known throughout the industry, and in the much lower level neural processing part of the brain.

In the years following the Dartmouth Project, John von Neumann suggested imitating simple neuron functions by using telegraph relays or vacuum tubes. Also, Frank Rosenblatt, a neuro-biologist of Cornell, began work on the Perceptron. He was intrigued with the operation of the eye of a fly. Much of the processing which tells a fly to flee is done in its eye. The Perceptron, which resulted from this research, was built in hardware and is the oldest neural network still in use today. A single-layer perceptron was found to be useful in classifying a continuous-valued set of inputs into one of two classes. The perceptron computes a weighted sum of the inputs, subtracts a threshold, and passes one of two possible values out as the result. Unfortunately, the perceptron is limited and was proven as such during the "disillusioned years" in Marvin Minsky and Seymour Papert's 1969 book *Perceptrons*.

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed models they called ADALINE and MADALINE. These models were named for their use of Multiple ADAptive LINear Elements. MADALINE was the first neural network to be applied to a real world problem. It is an adaptive filter which eliminates echoes on phone lines. This neural network is still in commercial use.

Unfortunately, these earlier successes caused people to exaggerate the potential of neural networks, particularly in light of the limitation in the electronics then available. This excessive hype, which flowed out of the academic and technical worlds, infected the general literature of the time. Disappointment set in as promises were unfilled. Also, a fear set in as writers began to ponder what effect "thinking machines" would have on man. Asimov's series on robots revealed the effects on man's morals and values when machines where capable of doing all of mankind's work. Other writers created more sinister computers, such as HAL from the movie 2001.

These fears, combined with unfulfilled, outrageous claims, caused respected voices to critique the neural network research. The result was to halt much of the funding. This period of stunted growth lasted through 1981.

In 1982 several events caused a renewed interest. John Hopfield of Caltech presented a paper to the national Academy of Sciences. Hopfield's approach was not to simply model brains but to create useful devices. With clarity and mathematical analysis, he showed how such networks could work and what they could do. Yet, Hopfield's biggest asset was his charisma. He was articulate, likeable, and a champion of a dormant technology.

At the same time, another event occurred. A conference was held in Kyoto, Japan. This conference was the US-Japan Joint Conference on Cooperative/Competitive Neural Networks. Japan subsequently announced their Fifth Generation effort. US periodicals picked up that story, generating a worry that the US could be left behind. Soon funding was flowing once again.

By 1985 the American Institute of Physics began what has become an annual meeting - Neural Networks for Computing. By 1987, the Institute of Electrical and Electronic Engineer's (IEEE) first International Conference on Neural Networks drew more than 1,800 attendees.

By 1989 at the Neural Networks for Defense meeting Bernard Widrow told his audience that they were engaged in World War IV, "World War III never happened," where the battlefields are world trade and manufacturing. The 1990 US Department of Defense Small Business Innovation Research Program named 16 topics which specifically targeted neural networks with an additional 13 mentioning the possible use of neural networks.

Today, neural networks discussions are occurring everywhere. Their promise seems very bright as nature itself is the proof that this kind of thing works. Yet, its future, indeed the very key to the whole technology, lies in hardware development. Currently most neural network development is simply proving that the principal works. This research is developing neural networks that, due to processing limitations, take weeks to learn. To take these prototypes out of the lab and put them into use requires specialized chips. Companies are working on three types of neuro chips - digital, analog, and optical. Some companies are working on creating a "silicon compiler" to generate a neural network Application Specific Integrated Circuit (ASIC). These ASICs and neuron-like digital chips appear to be the wave of the near future. Ultimately, optical chips look very promising. Yet, it may be years before optical chips see the light of day in commercial applications.

