<u> </u>		
Last line	match	
Immitation Learning	TC*	RL
IRL	Given: S,A,T, {I}	S,A,T,R
	Find : R	7C*
This Time		,,
Peer Review		
Transfer and Meta-Lean	nyno	
(raister and / City	~~~ <u>~</u>	
Transfer Learning:	Use experience	from one
Transfer Learning:	set of tasks for	Faster
	learning and better	performance
	on a new task,	
In Rh +ask=MDP		
"source" domain - "targ	et domain	
"shet" = attempt in "t		
"O-shot" = run policy in	target domain	
"1-shot" = try task once	<u>-</u>	
"few-shot"	_	
How is prior know	ledge stored ?	
- Features &		
- Policy (Bad)		
-Q-function		
-Model (Phx	esics)	
	,	
	7 —	
	# [TD	
keep X		

Approaches

Pre-training + Finetuning

Pretrain with robustness and diversity

- Soft - Q-learning

- EPOpt

-CADZRL

Multi-Task RL

Make environment part of the state

s=(rx,ry, gx,gy, ο,,, ο,,)

Problems

- Gradient Interference

- Winner - take -all

In practice, often negative transfer

Actor - Minic

Successor Features - Reason about multiple reward functions at once

Problems all have same S, A,T, y different R

Recall $V^{\pi} = (I - \gamma T^{\pi})^{-1} R^{\pi}$ |5| vector

Q=(I-r=) =

Let $R(s,a) = \theta^T \phi(s,a)$

Features

Feature matrix 1511A columns, Nrows

Fix = \$\phi_i(s,a)\$

15) IAI vectors

Successor Feature: Y"(s, a) = E[=x+ p(s,a)] $Q^{\pi}(s,a) = \Theta^{\mathsf{T}} \Psi^{\pi}(s,a)$

4x(5,a)= \$\phi(5,a) + V \(\big(\varphi,a') \)

Ψη=(I-γ ¬¬¬)~1 ¬ a'=π(s')

$$R'(s,a) = \Theta'^{T} \phi(s,a)$$

$$Q'^{R}(s,a) = \Theta'^{T} \Psi^{R}(s,a)$$

Meta Learning: Learning to Learn in Target domain

$$\frac{RL}{\Theta^* = argmax} E_{\pi_{\Theta}}[R(\tau)]$$

$$= f_{RL}(M)$$

Meta RL

$$\theta^{*} = argmax \geq E_{\pi}[R(\tau)]$$

where $\phi_{i} = f_{\Phi}(M_{i})$

RL2

Approach 1: This is a POMDP

Approach 2: Gradient Based Meta RL MAML

G.B.
Meta RL

$$f_{\theta}(M_i) = \theta + \alpha \nabla_{\theta} J_i(\theta)$$

Meta

Die 0+ a volo)

Env

One shot

Env

Post of 0;

Post of 0;