REMARKS

By the foregoing amendment, claims 1-3, 5-7 and 11 have been amended to better

state the invention applicants currently intend to claim in this case. It is to be particularly noted that

independent claims 1 and 11 have been broadened by the amendments.

With respect to the election of species requirement, applicants herewith elect the

species of Fig. 4C. It is considered that claims 1, 2 and 11-13 inclusive read on the elected species.

It is also believed that claims 1 and 11-13 are generic.

The Examiner's attention is further directed to the existence of commonly assigned

application Serial No. 09/821,214 naming the same inventors, inventors Brost and Lamich, as

inventors in that case as well. As of this date, to applicants' knowledge, the co-pending application

has been assigned to Art Unit 3743, but the identity of the Examiner in that Art Unit is not known.

The co-pending application should be closely checked to avoid any question of conflict of claims.

An action on the merits is awaited.

Respectfully submitted,

WOOD, PHILLIPS, VanSANTEN,

CLARK & MORTIMER

By

Date: January 2, 2002

500 West Madison Street

Wm. A. VanSanten Reg. No. 22,810

Suite 3800

Chicago, IL 60661

(312) 876-1800

MARKED-UP VERSION OF CLAIMS

1. (Amended) A radiator comprising:

a radiator core defining a front and a rear face thereof and including a plurality of generally rectangular shaped tubes interleaved with layers of fins for passage of air through said core; and a collecting tank attached to said core in a fluid tight manner to provide fluid communication between said tubes and said collecting tank;

said tubes each having a pair of side walls extending through said core and joined by end walls at said front and rear faces of said core;

said tubes each terminating at one end thereof in a formed segment wherein said end walls of each tube are bifurcated for a distance from said one end of the tube, [with said bifurcation terminating in a rounded end of said bifurcation at said distance from said one end,] and at least one of said side walls is directed away from the other side wall to be adapted to contact a side wall of an adjacent tube in the core;

said [adapted] <u>directed</u> side wall being joined in a fluid tight manner to said contacted side wall of said adjacent tube;

said collecting tank having walls thereof extending over said front and rear faces of said core past said bifurcation of said end walls and joined in a fluid tight manner to said end walls of said tubes along and beyond said bifurcation to thereby form a fluid tight joint between said walls of said collecting tank and said end walls of said tubes.

- 2. (Amended) The radiator of claim 1 wherein both side walls are <u>directed away from each</u> other to be adapted to contact an adjacent tube.
- 3. (Amended) The radiator of claim 1 wherein said bifurcation is formed by a slot opening at said one end of said tube and having sides spaced by a slot width joined at said distance from one end by a smooth curve forming [said] a rounded end of said bifurcation.
- 5. (Amended) The radiator of claim 1 wherein said side wall of said tube includes a longitudinal rib which is removed from a flattened portion of said [adapted] <u>directed</u> side wall by compressing said flattened portion in a constrained manner such that material in said rib flows out of said flattened portion and partially into said end walls of said tube, to thereby provide flat joining surfaces of said [adapted] <u>directed</u> side wall and said end walls to facilitate joining said [adapted] <u>directed</u> side wall in a fluid tight manner to said contacted side wall of said adjacent tube and joining said collecting tank having walls to said end walls and joined in a fluid tight manner.
- 6. (Amended) The radiator of claim 1 wherein said [adapted] <u>directed</u> side wall being is attached to said contacted side wall by a compression bond in addition to being joined in said fluid tight manner to said contacted side wall of said adjacent tube.
- 7. (Amended) The radiator of claim 1 wherein said end walls are bifurcated in an asymmetrical manner with respect to said side walls with a larger portion of said bifurcated end wall

joined to a first one of said side walls, and a smaller portion of said bifurcated end wall joined to the second side wall of said tube, and only said second side wall being [adapted] <u>directed</u> and joined to said contacted side wall of said adjacent tube.

- 11. (Amended) A method for fabricating a header-less radiator comprising:
- fabricating a plurality of tubes, each having a generally rectangular cross section comprised of a pair of spaced side walls joined by a pair of end walls;
- adapting one end of each of said tubes to provide a formed segment having said end walls bifurcated for a distance from said one end and at least one side wall in said formed segment adapted to contact and seal against a side wall of an adjacent one of said tubes when said tubes are joined together in an interleaved configuration with layers of fin to form a radiator core[, said bifurcation terminating in a smooth curve at said distance from said one end of the tubes];
- assembling a radiator core in a manner defining a front and a rear face thereof and including said plurality of generally rectangular shaped tubes interleaved with layers of fins for passage of air through said core;
- said side walls of said tubes extending through said core with said end walls at said front and rear faces of said core; and with said adapted side walls in said formed segments of said tubes contacting a side wall of an adjacent tube in the core;
- joining each said adapted side wall in said formed segments in a fluid tight manner to said contacted side wall of said adjacent tube;

attaching a collecting tank having walls thereof extending over said front and rear faces of said core past said bifurcation of said end walls; and

joining said collecting tank in a fluid tight manner to said end walls of said tubes along and beyond said bifurcation to thereby form a fluid tight joint between said walls of said collecting tank and said end walls of said tubes.