Runge Kutta Methods and Higher Order ODEs

4th order Runge Kutta method

$$y_{i+1} = y_i + \frac{\Delta x}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{\Delta x}{2}, y_i + \frac{\Delta x}{2} \times k_1\right)$$

$$k_3 = f\left(x_i + \frac{\Delta x}{2}, y_i + \frac{\Delta x}{2} \times k_2\right)$$

$$k_4 = f(x_i + \Delta x, y_i + \Delta x \times k_3)$$

find yill based DX on Xi. Vi and DX

4 factors
for 4th order
pk.

EXAMPLE
$$\frac{dy}{dx} = \frac{x^3 + 1}{y} \quad y(0) = 2 \quad 0 \le x \le 10, \Delta x = 0.5$$
find y₁ compare weighting factors

$$K_1 = f/X_0, y_0) = 0 + 1 = \frac{1}{2}$$

$$k_2 = f(X_0 + \frac{\partial X}{2}, Y_0 + \frac{\partial X}{2}, k_1) = \frac{(0.25)^3 + 1}{(2 + 0.25)(1/2)} = 0.478$$

$$k_3 = (0.75)^3 + 1$$

$$= 0.479$$

$$(2 + 0.25(0.478))$$

$$k_{y} = 0.502$$

$$\frac{1}{1} = \frac{2}{6} + \frac{0.5}{6} \left(0.5 + \frac{2}{0.478} \right) + \frac{2}{0.479} + \frac{0.502}{0.479}$$

$$= 2.243$$

$$x_{1} = 0.5 \quad y_{1} = 2.243$$

$$f_{ind} \quad y_{2} = y_{1} + \frac{\Delta x}{6} \left(k_{1} + 2k_{2} + 2k_{3} + k_{4} \right)$$

$$Calculate \quad k_{1} > k_{4}$$

$$f_{ind} \quad y_{2} = 7.550$$

$\Delta y = 0.5$	K								
X	X .	k_1	k_2	k_3	k_4	y_new	y_exact	error	
0	2.00	0.500	0.478	0.479	0.502	2.243	2.00	0.00E+00	
0.5	2.243	0.502	0.600	0.594	0.787	2.550	2.24	3.14E-06	
1	2.55	0.784	1.076	1.048	1.423	3.087	2.55	2.95E-05	
1.5	3.09	1.417	1.848	1.792	2.259	4.000	3.09	1.55E-04	
2	4.00	2.250	2.716	2.648	3.122	5.342	4.00	3.75E-04	
2.5	5.34	3.112	3.562	3.497	3.949	7.107	5.34	5.20E-04	
8	45.48	11.281	11.647	11.625	11.994	51.294	45.48	2.13E-04	
8.5	51.29	11.992	12.358	12.337	12.704	57.468	51.29	1.96E-04	
9	57.47	12.703	13.067	13.048	13.414	63.997	57.47	1.80E-04	
9.5	64.00	13.413	13.777	13.758	14.123	70.880	64.00	1.66E-04	
10	70.8803	14.122	14.486	14.468	14.832	78.119	70.8802	1.54E-04	
	RK						exact	L	
-0	xcellent	accu	racs	even	with	. 4x			
			, ,			••			
- explicit formulation, no iteration required									

All "one step" numerical ODE solution methods can be used to solve higher order ODES

Consider 2nd order IVP

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = e^{-x} \qquad y(0) = 1 \qquad \frac{dy(0)}{dx} = 0$$
let $\frac{dy}{dx} = 0$
becomes $\frac{dy}{dx} + xy + y = e^{-x}$
becomes $\frac{dy}{dx} + xy + y = e^{-x}$

forms set of 2 first order equations

EXAMPLE – solve with explicit Euler method for $\Delta x = 0.5$

$$\frac{dy}{dx} = v \quad y(0) = 1$$

$$\frac{dv}{dx} = e^{-x} - xv - y \quad v(0) = 0$$

$$\begin{cases} y_{i+1} = y_i + \Delta x \cdot f(x_i, y_i, v_i) \\ = y_i + \Delta x \cdot v_i \end{cases}$$

$$= y_i + \Delta x \cdot f(x_i, y_i, v_i)$$

$$= y_i + \Delta x \cdot f(x_i, y_i, v_i)$$

$$= v_i + \Delta x \cdot (e^{-x_i} - x_i, v_i - y_i)$$

$$\Rightarrow tort \quad at \quad i = 0, \quad x_0 = 0, \quad y_0 = 1, \quad v_0 = 0$$

$$\begin{cases} y_i = 1 + 0.5(0) & v_i = 0 + 0.5(e^{-0} - 0.1) \\ y_i = 1 & v_i = 0 \end{cases}$$

i	X _i	y _i	V _i	y _{i+1}	V _{i+1}
0	0	1	0	1	0
1	0.5	1	0	1+0.5(0) = 1	$0 + 0.5 \left(e^{-0.5} - 1 \right)$ $= -0.197$
2	l	1	-0.197	0.902	-0.464

Solution

Same Solution properties as
Solution; first order equations

E & Ax for exp. Enter

Smaller Ax gues histor

accuracy, or switch

methods

EXAMPLE – solve with 4th order Runge Kutta for $\Delta x = 0.2$ at x = 0.8

$$\frac{d^{2}y}{dx^{2}} = \sqrt{x+y} \qquad y(0) = 1 \qquad \frac{dy(0)}{dx} = 0$$

$$\frac{dy}{dx} = V \qquad y/0 = 1$$

$$\frac{dy}{dx} = \sqrt{x+y} \qquad y(0) = 0$$

$$\frac{dy}{dx} = \sqrt{x+y} \qquad y(0) = 1$$

$$\frac{dy}{d$$

$$\frac{dy}{dx} = v \quad y(0) = 1 \qquad \frac{dv}{dx} = \sqrt{x + y} \quad v(0) = 0$$

$$\frac{f_{ind} \ y_{i}}{f_{ind} \ k} \quad values \quad v \quad order$$

$$k_{i,si} = f_{i}(x_{0}, y_{0}, v_{0}) = 0 \qquad k_{i,s2} = \sqrt{0 + i} = 1$$

$$k_{2,i} = f_{i}\left(0 + \frac{\Delta y}{2}, 1 + \frac{\Delta y}{2}, k_{i,i}, 0 + \frac{\Delta x}{2}, k_{i,s2}\right)$$

$$= 0 + \frac{0.2}{2}(1) = 0.1$$

$$k_{2,2} = f_{2}\left(0 + \frac{\Delta y}{2}, 1 + \frac{\Delta y}{2}, k_{i,i}, 0 + \frac{\Delta y}{2}, k_{i,s2}\right)$$

$$= \sqrt{0.2} + 1 + \frac{0.2}{2}(0) = 1.0488$$

$$\frac{dy}{dx} = \sqrt{x+y} \qquad y(0) = 1 \qquad \qquad \frac{dv}{dx} = \sqrt{x+y} \qquad v(0) = 0$$

$$k_{1,1} = 0$$
 $k_{1,2} = 1$

$$k_{2,1} = 0.1$$
 $k_{2,2} = 1.0488$

$$k_{3,1} = 0.1049$$
 $k_{3,2} = 1.054$

$$k_{4,1} = 0.2107$$
 $k_{4,2} = 1.109$

$$V_{1} = O + 0.2 (1 + 2(1.0488) + 2(1.054) + 1.109)$$

$$= O \cdot 2104 - needed to find y_{2}$$

6/15/2023

<u>Results</u>

$$y(0.8) = 1.3666$$

- -> accurate prediction of higher order IVPs
- -> complicated! needs computer for calculations
- -> can also be applied to systems of equations problems.