02244 Logic for Security Security Protocols The Dolev and Yao Intruder Model

Sebastian Mödersheim

February 5, 2024

Plan for Today

- Recap of last week and something new
- Completion of the Dolev-Yao intruder model
- A decision procedure for Dolev-Yao deductions
- Putting the intruder model to work
 - ★ Outlook on the lazy intruder
- Hand out of the mandatory assignment.

Protocol from last week

```
B->A: NB
```

A->s: A,B,NA,NB s->A: {|A,B,KAB,NA,NB|}sk(A,s), ...

A->B: {|A,B,KAB,NA,NB|}sk(B,s)

- The best way to solve replay is to use challenge repsonse:
 - ★ Participants create a fresh random number like NA and NB.
 - ★ They are included in encrypted messages to prove that the encryption is not older than the fresh numbers.

Protocol from last week

B->A: NB

A->s: A,B,NA,NB
SUMMARY:

s->A: {|A,B,KAB,NA,NB|}sk(A,s), NO_ATTACK_FOUND {|A,B,KAB,NA,NB|}sk(B,s)

A->B: {|A,B,KAB,NA,NB|}sk(B,s)

- The best way to solve replay is to use challenge repsonse:
 - ★ Participants create a fresh random number like NA and NB.
 - ★ They are included in encrypted messages to prove that the encryption is not older than the fresh numbers.
 - ★ We are done. However there is a better way to do this using Diffie-Hellman!

```
Protocol: KeyExchange
Types: Agent A,B,s;
       Number X,Y,g,Payload;
       Function sk:
Knowledge: A: A,B,s,sk(A,s),g;
           B: A,B,s,sk(B,s),g;
            s: A,B,s,sk(A,s),sk(B,s),g;
Actions:
A \rightarrow B: \exp(g,X)
B->s: {| A,B,\exp(g,X),\exp(g,Y) |}sk(B,s)
s\rightarrow A: \{|A,B,\exp(g,X),\exp(g,Y)|\}sk(A,s)
A->B: {| Payload |}exp(exp(g,X),Y)
Goals:
exp(exp(g,X),Y) secret between A,B;
Payload secret between A,B;
A authenticates B on exp(exp(g,X),Y);
B authenticates A on exp(exp(g,X),Y),Payload;
```

Sixth Version

```
A->B: exp(g,X)
B->s: {| A,B,exp(g,X),exp(g,Y) |}sk(B,s)
s->A: {| A,B,exp(g,X),exp(g,Y) |}sk(A,s)
A->B: {| Payload |}exp(exp(g,X),Y)
```

Diffie-Hellman:

- every agent generates a random X and Y
- they exchange $\exp(g, X) \mod p$ and $\exp(g, Y) \mod p$
 - ★ p is a large fixed prime number we omit in OFMC
 - \star g is a fixed generator of the group \mathbb{Z}_p^{\star}
 - \star Both p and g are public
 - \star we omit writing mod p in OFMC
- It is computationally hard to obtain X from $\exp(g,X) \mod p$
- However A and B have now a shared key $\exp(\exp(g, X), Y)$ mod $p = \exp(\exp(g, Y), X)$ mod p

	Classic	
Group	$\mathbb{Z}_p^{\star} = \{1,\ldots,p-1\}$	
Group Op.	$\times: \mathbb{Z}_p^{\star} \times \mathbb{Z}_p^{\star} \to \mathbb{Z}_p^{\star}$	
	(Mult. modulo p)	
Generator	$g \in \mathbb{Z}_p^{\star}$	
Secrets	$X, Y \in \{1, \ldots, p-1\}$	
Half keys	$g^X := \underbrace{g \times \ldots \times g}$	
	$g^Y := \dots$	
Full key	$(g^X)^Y = (g^Y)^X$	

	Classic	Elliptic Curve (ECDH)		
Group	$\mathbb{Z}_p^{\star} = \{1, \dots, p-1\}$	Finite field \mathbb{F} of order n		
Group Op.	$\times: \mathbb{Z}_p^{\star} \times \mathbb{Z}_p^{\star} \to \mathbb{Z}_p^{\star}$	$+: \mathbb{F} \times \mathbb{F} o \mathbb{F}$		
	(Mult. modulo p)	(not quite so intuitive)		
Generator	$g \in \mathbb{Z}_p^{\star}$	g on curve		
Secrets	$X, Y \in \{1, \ldots, p-1\}$	$X, Y \in \{1, \ldots, n-1\}$		
Half keys	$g^X := \underbrace{g \times \ldots \times g}$	$X \cdot g := g + \ldots + g$		
	$g^Y := \dots$	$Y \cdot g := \dots$		
Full key	$(g^X)^Y = (g^Y)^X$	$X \cdot Y \cdot g = Y \cdot X \cdot g$		

	Classic	Elliptic Curve (ECDH)		
Group	$\mathbb{Z}_p^{\star} = \{1,\ldots,p-1\}$	Finite field \mathbb{F} of order n		
Group Op.	$\times: \mathbb{Z}_p^{\star} \times \mathbb{Z}_p^{\star} \to \mathbb{Z}_p^{\star}$	$\times : \mathbb{F} \times \mathbb{F} \to \mathbb{F}$		
	(Mult. modulo p)	(not quite so intuitive)		
Generator	$g \in \mathbb{Z}_p^{\star}$	g on curve		
Secrets	$X, Y \in \{1, \ldots, p-1\}$	$X, Y \in \{1, \ldots, n-1\}$		
Half keys	$g^X := \underbrace{g \times \ldots \times g}$	$g^X := \underbrace{g \times \ldots \times g}$		
	$g^Y := \dots$	$g^Y := \dots$		
Full key	$(g^X)^Y = (g^Y)^X$	$(g^X)^Y = (g^Y)^X$		

Trick: write \times for the group operation also in ECDH.

	Classic	Elliptic Curve (ECDH)		
Group	$\mathbb{Z}_p^{\star} = \{1, \ldots, p-1\}$	Finite field \mathbb{F} of order n		
Group Op.	$\times: \mathbb{Z}_p^{\star} \times \mathbb{Z}_p^{\star} \to \mathbb{Z}_p^{\star}$	$\times : \mathbb{F} imes \mathbb{F} o \mathbb{F}$		
	(Mult. modulo p)	(not quite so intuitive)		
Generator	$g \in \mathbb{Z}_p^\star$	g on curve		
Secrets	$X, Y \in \{1, \ldots, p-1\}$	$X,Y\in\{1,\ldots,n-1\}$		
Half keys	$g^X := \underbrace{g \times \ldots \times g}$	$g^X := \underbrace{g \times \ldots \times g}$		
	$g^Y := \dots$	$g^Y := \dots$		
Full key	$(g^X)^Y = (g^Y)^X$	$(g^X)^Y = (g^Y)^X$		
Typical size	thousand of bits	hundreds of bits		

Trick: write \times for the group operation also in ECDH.

Modeling Agents and Fixed Key-Infrastructures

- Normally variables (uppercase) like A,B,C,...
 - ★ can be played by any concrete (lowercase) agent like a,b,c,...,i
- Special agent: i the intruder
- Honest agent: constant like s for a trusted server
 - ★ Cannot be instantiated (especially the intruder), fixed in all protocol runs
- Given key infrastructures: use functions e.g.
 - \star sk(A,B) the shared key of A and B
 - \star pw(A,B) the password of A at server B
 - ★ pk(A) the public key of A
 - ▶ inv(K) is the private key that belongs to public key K.
 - Note inv and exp are a built-in function (do not declare as a function).
 - ★ Give every role the necessary initial knowledge

AnB: Things to Note

- Identifiers that start with uppercase: variables (E.g., A,B,KAB)
- Identifiers that start with lowercase: constants and functions (E.g., s,pre,sk)
- One should declare a type for all identifiers; OFMC can search for type-flaw attacks when using the option -untyped (in which case all types are ignored).
- The (initial) knowledge of agents MUST NOT contain variables of any type other than Agent.
 - ★ For long-term keys, passwords, etc. use functions like sk(A, B).
- Each variable that does not occur in the initial knowledge is freshly created during the protocol by the first agent who uses it.
 - ★ In the NSSK example, A creates NA, s creates KAB, B creates NB.

Message Term Algebra

for security protocols

Symbol	Arity	Meaning	Public
i	0	name of the intruder	yes
inv	1	private key of a given public key	no
crypt	2	asymmetric encryption	yes
		in AnB: write $\{m\}_k$ for crypt (k, m)	
scrypt	2	symmetric encryption	yes
		in AnB: write $\{ m \}_k$ for scrypt(k, m)	
pair	2	pairing/concatenation	yes
		in AnB: write <i>m</i> , <i>n</i> for pair(m, n)	
$\exp(\cdot,\cdot)$	2	exponentiation modulo fixed prime p	yes
a, b, c, \dots	0	User-defined constants	User-def.
$f(\cdot)$	*	User-defined function symbol f	User-def.

- Call Σ the set of all function symbols and Σ_p the public ones.
- Public functions can be applied by every agent
- inv is not public: the private key of a given public key.

Intruder Deduction

The core of the Dolev-Yao model is a definition what the intruder can do with messages.

- We define a relation $M \vdash m$ where
 - \star M is a set of messages
 - ★ m is a message

expressing that the intruder can derive m, if his knowledge is M.

Example

$$M = \{ k_1, \{ |m_1| \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \}$$

Then we should have for instance:

- $M \vdash m_1$
- $M \vdash m_2$
- M ⊬ m₃
- $M \vdash \{|\langle m_1, m_2 \rangle|\}_{k_1}$

Dolev-Yao Closure

We define $M \vdash t$ as a proof calculus with rules of the form

$$\frac{Premise_1 \dots Premise_n}{Conclusion}$$
 Side-Condition

meaning:

- if we have proved all the premisses
- and the side-condition holds,
- then we have a proof of the conclusion.

The simplest rule is Axiom:

Axiom

$$\overline{M \vdash m}$$
 if $m \in M$ (Axiom)

The intruder can derive every message m that is directly in his knowledge M.

Free Exercise Today

Design your first own proof calculus!

Here are the first two rules to characterize Dolev-Yao's $M \vdash m$:

Axiom

The intruder can derive any message m that is already in his knowledge M:

$$\overline{M \vdash m} \ m \in M$$

Symmetric Decryption

The intruder can decrypt the message $\{|m|\}_k$ if he can derive k, and thus obtain the content m:

$$\frac{M \vdash \{|m|\}_k \quad M \vdash k}{M \vdash m}$$

Define similar rules for symmetric encryption, asymmetric encryption/decryption, signatures/signature verification, hashing, pair and obtaining the components of a pair.

Dolev-Yao Closure: Symmetric Crypto

Symmetric Cryptography

$$\frac{M \vdash m \quad M \vdash k}{M \vdash \{ |m| \}_k} \text{ (EncSym)} \quad \frac{M \vdash \{ |m| \}_k \quad M \vdash k}{M \vdash m} \text{ (DecSym)}$$

- The intruder can encrypt any message m he knows with any key k he knows.
- The intruder can decrypt any message $\{|m|\}_k$ to which he knows the decryption key k.

Example

$$M = \{ k_1, \{ |m_1| \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \}$$

$$\frac{M \vdash \{ |m_1| \}_{k_1}}{M \vdash m_1} \overset{\mathsf{Axiom}}{\mathsf{DecSym}}$$

Note: $M \not\vdash m_3$

Dolev-Yao Closure: Concatenation

Concatenation

$$\frac{M \vdash m_1 \quad M \vdash m_2}{M \vdash \langle m_1, m_2 \rangle} \text{ (Cat)} \quad \frac{M \vdash \langle m_1, m_2 \rangle}{M \vdash m_i} \text{ (Proj}_i)$$

• The intruder can concatenate and split messages.

Example

$$M = \{ k_1, \{ |\langle a, m_1 \rangle | \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \}$$

$$\frac{M \vdash \{ |\langle a, m_1 \rangle | \}_{k_1}}{M \vdash \langle a, m_1 \rangle} \xrightarrow{\text{Axiom DecSym}} \frac{M \vdash \langle a, m_1 \rangle}{M \vdash m_1} \xrightarrow{\text{Proj}_2} \frac{M \vdash m_2}{M \vdash m_2} \xrightarrow{\text{Cat}} Cat$$

Dolev-Yao Closure: Asymmetric Crypto

Asymmetric Cryptography

$$\frac{M \vdash m \quad M \vdash k}{M \vdash \{m\}_k} \text{ (EncAsym)} \quad \frac{M \vdash \{m\}_k \quad M \vdash \mathsf{inv}(k)}{M \vdash m} \text{ (DecAsym)}$$

- The intruder can encrypt any message m he knows with any public key k he knows.
- The intruder can decrypt any message $\{m\}_k$ if he knows the private key inv(k) to the public key k.

Example

$$M = \{ k_1, \text{inv}(k_1), k_2, \{m_1\}_{k_1}, m_2, \{m_3\}_{k_2} \}$$

$$\frac{M \vdash \{m_1\}_{k_1}}{M \vdash m_1} \xrightarrow{\text{Axiom}} \frac{A \text{xiom}}{\text{DecAsym}}$$

Note: $M \not\vdash m_3$

Dolev-Yao Closure: Signatures

Signatures

$$\frac{M \vdash m \quad M \vdash \mathsf{inv}(k)}{M \vdash \{m\}_{\mathsf{inv}(k)}} \; \mathsf{(Sign)} \quad \frac{M \vdash \{m\}_{\mathsf{inv}(k)}}{M \vdash m} \; \mathsf{(OpenSig)}$$

- The intruder can sign any message m he knows with any private key inv(k) he knows.
- The intruder can open any message $\{m\}_{inv(k)}$ that was signed with a private key inv(k).

Example

$$M = \{ k_1, \operatorname{inv}(k_1), k_2, \{m_1\}_{\operatorname{inv}(k_2)}, m_2 \}$$

$$\frac{M \vdash \{m_1\}_{\operatorname{inv}(k_2)}}{M \vdash m_1} \xrightarrow{\text{OpenSig}} \frac{M \vdash \operatorname{inv}(k_1)}{M \vdash \operatorname{inv}(k_1)} \xrightarrow{\text{Sign}}$$

Dolev-Yao Closure: Public Functions

Public Functions

$$\frac{M \vdash m_1 \quad \dots \quad M \vdash m_n}{M \vdash f(m_1, \dots, m_n)}$$
 if $f \in \Sigma_p$ takes n arguments (Compose)

• The intruder can apply any public function f to terms t_i that he knows.

Example

$$M = \{ k_1, k_2, \{ |m_1| \}_{kdf(k_1, k_2)} \}$$
 where kdf is public

$$\frac{\overline{M \vdash \{|m_1|\}_{kdf(k_1,k_2)}} \text{ Axiom } \frac{\overline{M \vdash k_1} \text{ Axiom } \overline{M \vdash k_2} \text{ Compose}}{M \vdash kdf(k_1,k_2)} \text{ DecSym}$$

Note: the rules EncSym, EncAsym, and Cat are just special cases of Compose.

Dolev-Yao Closure: Summary

Dolev-Yao rules

$$\frac{M \vdash m}{M \vdash m} \text{ if } m \in M \text{ (Axiom)}$$

$$\frac{M \vdash m_1 \dots M \vdash m_n}{M \vdash f(m_1, \dots, m_n)} \text{ if } f/n \in \Sigma_p \text{ (Compose)}$$

$$\frac{M \vdash \langle m_1, m_2 \rangle}{M \vdash m_i} \text{ (Proj}_i) \qquad \frac{M \vdash \{m\}_k M \vdash k}{M \vdash m} \text{ (DecSym)}$$

$$\frac{M \vdash \{m\}_k M \vdash \text{inv}(k)}{M \vdash m} \text{ (DecAsym)} \qquad \frac{M \vdash \{m\}_{\text{inv}(k)}}{M \vdash m} \text{ (OpenSig)}$$

The compose rule is for all public functions Σ_p , including $\{|\cdot|\}$. $\{\cdot\}$. $\langle\cdot,\cdot\rangle$

Example: Intruder Deduction

Example

$$M = \{ a, b, i, pk(a), pk(b), pk(i), inv(pk(i)), \{\langle na, a \rangle\}_{pk(i)} \}$$

Can the intruder derive $\{\langle na, a \rangle\}_{pk(b)}$?

Automation

Goal: design (in pseudocode) a decision procedure for Dolev-Yao:

- Given a finite set M of messages (the intruder knowledge)
- and given a message m (the goal)
- Output whether $M \vdash m$ holds.
 - ★ additionally, in the positive case, give the proof.

How to approach this?

Automating Dolev-Yao

Step 1: Composition only

Consider first the following simpler problem:

 M ⊢_c m are those deductions where the intruder does not apply any analysis steps ("composition only"):

Composition Only

$$\overline{M \vdash_{c} m}$$
 if $m \in M$ (Axiom)

$$\frac{M \vdash_{\mathbf{c}} m_1 \dots M \vdash_{\mathbf{c}} m_n}{M \vdash_{\mathbf{c}} f(m_1, \dots, m_n)} \text{ if } f \in \Sigma_p \text{ (Compose)}$$

Example

$$M = \{k_1, k_2, \{|m|\}_{h(k_1, k_2)}\}$$
 where $h \in \Sigma_p$

- $M \vdash_{c} h(k_1, k_2)$
- $M \nvdash_{c} m$
- M ⊢

Automating Dolev-Yao

To check $M \vdash m$:

- Perform the Analysis Steps procedure, augmenting M with all derivable messages.
- Now it suffices to check $M \vdash_{c} m$.

Properties of the algorithm for checking $M \vdash m$:

- Soundness: if algorithm says "yes", then $M \vdash m$.
- Completeness: if $M \vdash m$, then the algorithm says "yes".
 - ★ This is quite tricky to prove.
- Termination: the algorithm never runs into an infinite loop.

Negative Question

Can we thus prove also statements of the form $M \nvdash m$...that a m cannot be derived from M?

Example

$$M = \{ k_1, \{ |m_1| \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \} \not\vdash m_3$$

Negative Question

Can we thus prove also statements of the form $M \nvdash m$...that a m cannot be derived from M?

Example

$$M = \{ k_1, \{ |m_1| \}_{k_1}, m_2, \{ |m_3| \}_{k_2} \} \not\vdash m_3$$

• Yes, due to completeness when our algorithm answers "no", we know there is no derivation for *m*.

```
Protocol: NSPK
Types: Agent A,B;
        Number NA, NB;
        Function pk,h
Knowledge: A: A,pk(A),inv(pk(A)),B,pk(B),h;
             B: B, pk(B), inv(pk(B)), A, pk(A), h
Actions:
A \rightarrow B: \{NA,A\}(pk(B)) \# A \text{ generates } NA
B->A: {NA, NB}(pk(A)) # B generates NB
A \rightarrow B: \{NB\}(pk(B))
Goals:
h(NA, NB) secret between A, B
```

NSPK as A Message Sequence Chart

NSPK as Roles / Strands

- For each Role of the protocol, a program that sends and receives messages (over possibly insecure network)
- Strand: concrete execution of a role: all variables (here A, B, NA, NB) instantiated with concrete values
 * or a prefix thereof (an agent might not finish)

Attacks

An attack is a strand space where the following conditions are met:

- Messages sent by honest agents are received by i
- Messages received by honest agents are sent by i who can compose the message from the messages he has received so far.
- The successful completion violates a goal of the protocol.

Attacks

An attack is a strand space where the following conditions are met:

- Messages sent by honest agents are received by i
- Messages received by honest agents are sent by i who can compose the message from the messages he has received so far.
 - ★ In the example: $\{m_1\} \vdash m_2$
- The successful completion violates a goal of the protocol.

Attacks

An attack is a strand space where the following conditions are met:

- Messages sent by honest agents are received by i
- Messages received by honest agents are sent by i who can compose the message from the messages he has received so far.
 - ★ In the example: $\{m_1\} \vdash m_2$ and $\{m_1, m_3\} \vdash m_4$.
- The successful completion violates a goal of the protocol.

Example:

• NSPK with A = a and B = i

Example:

- NSPK with A = a and B = i
- i needs corrsp. knowledge of role B: i, pk(i), inv(pk(i)), a, pk(a)

Example:

- NSPK with A = a and B = i
- i needs corrsp. knowledge of role B: i, pk(i), inv(pk(i)), a, pk(a)
- a uses a fresh $NA = n_1$.

Example:

- NSPK with A = a and B = i
- i needs corrsp. knowledge of role B: i, pk(i), inv(pk(i)), a, pk(a)
- a uses a fresh $NA = n_1$.
- Afterwards, i should be able to construct the shared key $h(NA, NB) = h(n_1, NB)$

Challenge

Consider the following protocol:

What should the strands for A and B look like? Suppose A = i and B = b, show that the intruder can do all the steps for the A role (similar to how we showed it for NSPK for the B role) if the intruder initially knows i, b, pw(i, b), g, pk(s).

Relevant Research Papers

- David Basin, Sebastian Mödersheim, and Luca Viganò.
 OFMC: A symbolic model checker for security protocols.
 International Journal of Information Security, 4(3), 2005.
- Gavin Lowe. Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR. Software Concepts Tools, 17(3), 1996.
- Jonathan K. Millen and Vitaly Shmatikov. Constraint solving for bounded-process cryptographic protocol analysis. Computer and Communications Security, 2001,
- Roger Needham and Michael Schroeder. Using Encryption for Authentication in Large Networks of Computers.
 Communications of the ACM, 21(12), 1978.
- Michaël Rusinowitch and Mathieu Turuani. Protocol Insecurity with Finite Number of Sessions is NP-complete. Computer Security Foundations Workshop, 2001.