Lenguajes Formales y Computabilidad | FAMAF - UNC

Combos de definiciones y convenciones notacionales y los Combos de teoremas

27.06.2025

Matias Viola

Contenido

Contenido

1.	Con	vencio	nes	1
2.	Con	ıbos de	e definiciones y convenciones notacionales	1
	2.1.	Combo	o 1: Defina:	1
			Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo	
			$\langle s_1, s_2, \rangle$	
		2.1.3.	« f es una función Σ -mixta»	
		2.1.4.	•	
		2.1.5.	$R(f, \rho)$: Recursion primitiva sobre variable alfabética con valores numéricos.	
			1	
	2.2.	Combo	o 2: Defina:	2
			$d \stackrel{n}{\vdash} d'$ y $d \stackrel{*}{\vdash} d'$	
			L(M)	
			«f es una función de tipo (n,m,s) »	
		2.2.4.	(x)	
		2.2.5.	$(x)_i$	
	2.3.		o 3: Defina:	
			Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente	
			enumerable	3
		2.3.2.	s^{\leq}	
		2.3.3.	*<	3
		2.3.4.	# [≤]	3
	2.4.		o 4: Defina cuando una función $f:D_f\subseteq\omega^n imes\Sigma^{*m} o\omega$ es llamada Σ -	
			vamente computable y defina «el procedimiento P computa a la función f » .	3
	2.5.		o 5: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente	
			ntable y defina: «el procedimiento efectivo P decide la pertenencia a S » \ldots	4
	2.6.	Combo	o 6: Defina cuando un conjunto $S\subseteq\omega^n imes\Sigma^{*m}$ es llamado Σ -efectivamente	
		enume	erable y defina: «el procedimiento efectivo P enumera a S »	4
	2.7.	Combo	o 7: Defina cuando una función $f:D_f\subseteq\omega^n imes\Sigma^{*m} o\omega$ es llamada Σ -Turing	ĵ
		compu	itable y defina «la máquina de Turing M computa a la función f »	4
	2.8.	Combo	o 8: Defina:	4
		2.8.1.	$M(P)$ Minimización de variable numérica \ldots	4
		2.8.2.	Lt	5
		2.8.3.	Conjunto rectangular	5
		2.8.4.	« S es un conjunto de tipo (n,m) »	5
	2.9.	Combo	0 9	5
		2.9.1.	Conjunto rectangular	5
		2.9.2.	« I es una instrucción de S^Σ »	5
		2.9.3.	« P es un programa de S^Σ »	5
		2.9.4.	I_i^P	5

Contenido

		2.9.5. $n(P)$	6
		2.9.6. Bas	6
	2.10.	Combo 10: Defina relativo al lenguaje S^{Σ} :	6
		2.10.1. «estado»	
		2.10.2. «descripción instantánea»	6
		$2.10.3. \ S_P$	6
		2.10.4. «estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\alpha})$ »	
		2.10.5. « P se detiene (luego de t pasos), partiendo desde el estado $(\vec{x}, \vec{\alpha})$ »	
	2.11.	Combo 11: Defina:	7
		2.11.1. $\Psi_P^{n,m,\#}$	7
		2.11.2. «f es Σ -computable» y « P computa a f »	7
		2.11.3. $M^{\leq}(P)$ Minimización de variable alfabética	
	2.12.	Combo 12: Defina cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -computable, cuando es llamado Σ -enumerable y defina «el programa P enumera a S »	7
	2.13.	Combo 13	
		$2.13.1. \ i^{n,m}$	
		2.13.2. $E_{\#}^{n,m}$	
		$E_{\pm}^{m,m} + E_{*}^{n,m} + E_{*}^{n,m}$	
		$E_{\#_{i}}^{m,m}$ 2.13.4. $E_{\#_{i}}^{m,m}$	
		$E_{*,m}^{n,m}$	
		2.13.6. Halt ^{n,m}	9
		2.13.7. $T^{n,m}$	9
		2.13.8. AutoHalt $^{\Sigma}$	9
		2.13.9. Los conjuntos A y N	9
	2.14.	Combo 14: Explique en forma detallada la notación lambda	9
	2.15.	Combo 15: Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: $[\mathrm{V2}\leftarrow\mathrm{f}(\mathrm{V1},\mathrm{W1})]$	
	2.16.	Combo 16: Dado un predicado $p:D_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es	
		qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1]	
	2.17.	Combo 17: Defina el concepto de función y desarrolle las tres Convenciones	
		Notacionales asociadas a dicho concepto	11
3.	Com	abos de teoremas	11
	3.1.	Combo 1	11
		3.1.1. Proposición: Caracterización de conjuntos Σ -pr	11
		3.1.2. Teorema: Neumann vence a Gödel	12
	3.2.	Combo 2	13
		3.2.1. Lema 20: Lema de división por casos para funciones Σ -pr	13
		3.2.2. Proposición: Caracterización básica de conjuntos Σ -enumerables	13
	3.3.	Combo 3	14
	3.4.	Combo 4	14
	3.5.	Combo 5	14

Contenido

	3.6.	Combo 6	14
	3.7.	Combo 7	15
	3.8.	Combo 8	
	3.9.	Combo 9	15
4. Utilidade			15
	4.1.	Lema 14	15
	4.2.	Def Conjuntos Σ -pr	15
		Lema 15	
	4.4.	Lema 16	16
		Lema 17	
	4.6.	Lema 18	16
	4.7.	Proposición 19.	16
	4.8.	Lema 20: Lema de division por casos para funciones Σ -pr	16
	4 9	Lema 22	16

1. Convenciones

1. Convenciones

Si no se especifica lo contrario, usaremos las siguientes convenciones:

- 1. $x, y, z, u, v, w, n, m, k, ... \in \omega$
- 2. $\alpha, \beta, \gamma, \delta, \varepsilon, \psi, \eta, \dots \in \Sigma^*$
- 3. $O \in \{\omega, \Sigma^*\}$
- 4. «tq» es «tal que»
- 5. Σ -pr es « Σ -primitivo recursivo»
- 6. Sea $f: \mathrm{Dom}_f \to \{0,1\}$, entonces f es un predicado.

2. Combos de definiciones y convenciones notacionales

2.1. Combo 1: Defina:

2.1.1. Cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -recursivo cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ sea Σ -recursiva.

2.1.2. $\langle s_1, s_2, \ldots \rangle$

Dada una infinitupla $(s_1,s_2,\ldots)\in\omega^{[\mathbb{N}]}$ usaremos $\langle s_1,s_2,\ldots\rangle$ para denotar al numero $\prod_{i=1}^\infty \mathrm{pr}(i)^{s_i}$

2.1.3. «f es una función Σ -mixta»

Sea Σ un alfabeto finito. Una función f es $\Sigma\text{-mixta}$ si:

- 1. $(\exists n, m \in \omega) \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m}$
- 2. $\operatorname{Im}_f \subseteq O$

2.1.4. «familia Σ -indexada de funciones»

Dado un alfabeto Σ , una familia Σ -indexada de funciones sera una función $\varrho: \Sigma \to \operatorname{Im}_G$ donde Im_G es el conjunto de funciones $\varrho(a)$ asociadas a cada $a \in \Sigma$.

NOTACIÓN: Si ϱ es una familia Σ -indexada de funciones, entonces para $a \in \Sigma$, escribiremos ϱ_a en lugar de $\varrho(a)$.

2.1.5. $R(f, \varrho)$: Recursion primitiva sobre variable alfabética con valores numéricos.

Sean $S_1,...,S_n\subseteq \omega$ y $L_1,...,L_m\subseteq \Sigma^*$ conjuntos no vacíos.

Sea una función $f:S_1\times \ldots \times S_n\times L_1\times \ldots \times L_m \to \omega.$

Sea una familia Σ -indexada de funciones $\varrho_a:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\times\Sigma^*\to\omega$ para cada $a\in\Sigma$.

$$\begin{split} R(f,\varrho): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* &\to \omega \\ (\vec{x},\vec{\alpha},\varepsilon) &\to f(\vec{x},\vec{\alpha}) \\ (\vec{x},\vec{\alpha},\alpha a) &\to \varrho_a(R(f,\varrho)(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha) \end{split}$$

También diremos que $R(f,\varrho)$ es obtenida por recursion primitiva a partir de f y ϱ .

2.2. Combo 2: Defina:

2.2.1.
$$d \stackrel{n}{\vdash} d'$$
 y $d \stackrel{*}{\vdash} d'$

(no hace falta que defina ⊢)

- $d \stackrel{n}{\vdash} d'$ si $(\exists d_2,...,d_n \in \text{Des}) d \vdash d_2 \vdash ... \vdash d_n \vdash d'$.
- $d \stackrel{*}{\vdash} d'$ sii $(\exists n \in \omega) d \stackrel{n}{\vdash} d'$

2.2.2. L(M)

Llamamos $\mathcal{L}(M)$ al conjunto formado por todas las palabras que son aceptadas por alcance de estado final.

Una palabra $\alpha_1...\alpha_n \in \Sigma^*$ es aceptada por M por alcance de estado final si partiendo de $Bq_0\alpha_1...\alpha_nB...$ en algún momento de la computación M esta en un estado de F.

2.2.3. «f es una función de tipo (n, m, s)»

Dada una función Σ -mixta f,

- Si $f = \emptyset$, entonces es una función de tipo (n, m, s) cualquiera sean $n, m \in \omega$ y $s \in \{\#, *\}$.
- Si $f \neq \emptyset$, entonces hay únicos $n, m \in \omega$ tales que $D_f \subseteq \omega^n \times \Sigma^{*m}$.
 - Si $I_f \subseteq \omega$, entonces es una función de tipo (n, m, #).
 - Si $I_f \subseteq \Sigma^*$, entonces es una función de tipo (n, m, *).

De esta forma, cuando $f \neq \emptyset$, hablaremos de «el tipo de f» para referirnos a esta única terna (n, m, s).

2.2.4. (x)

Dado $x \in \mathbb{N}$, usaremos (x) para denotar a la única infinitupla $(s_1, s_2, \ldots) \in \omega^{[\mathbb{N}]}$ tq $x = \langle s_1, s_2, \ldots \rangle = \prod_{i=1}^{\infty} \operatorname{pr}(i)^{s_i}$

$2.2.5. (x)_i$

Dados $x,i\in\mathbb{N}$, usaremos $(x)_i$ para denotar a s_i de $(s_1,s_2,\ldots)=(x).$

Se le suele llamar la «i-esima bajada de x» al numero $(x)_i$ (al «bajar» el i-esimo exponente de la única posible factorización de x como producto de primos).

2.3. Combo 3: Defina:

2.3.1. Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivamente enumerable

(no hace falta que defina «función Σ -recursiva»)

Diremos que un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ sera llamado Σ -recursivamente enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}=p_i^{n,m}\circ F$ sea Σ -recursiva para cada $i\in\{1,...,n+m\}$.

2.3.2. s^{\leq}

Sea \leq un orden sobre Σ^* .

$$\begin{split} S^{\leq} : \Sigma^* &\to \Sigma^* \\ (a_n)^m &\to (a_1)^{m+1} \\ \alpha a_i (a_n)^m &\to \alpha a_{i+1} (a_1)^m \text{ con } 1 \leq i < n \end{split}$$

$2.3.3. * \le$

Sea \leq un orden sobre Σ^* .

$$*^{\leq}: \omega \to \Sigma^{*}$$

$$0 \to \varepsilon$$

$$i+1 \to s^{\leq}(*^{\leq}(i))$$

2.3.4. #≤

Sea \leq un orden sobre Σ^* .

$$\begin{split} \#^{\leq} : \Sigma^* &\to \omega \\ \varepsilon &\to 0 \\ a_{i_k} ... a_{i_0} &\to i_k n^k + ... + i_0 n^0 \end{split}$$

2.4. Combo 4: Defina cuando una función $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -efectivamente computable y defina «el procedimiento P computa a la función f»

Sea O. Una función Σ -mixta $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to O$ sera llamada Σ -efectivamente computable si hay un procedimiento efectivo P tq

- 1. El conjunto de datos de entrada de P es $\omega^n \times \Sigma^{*m}$
- 2. El conjunto de datos de salida esta contenido en \mathcal{O} .
- 3. Si $(\vec{x}, \vec{\alpha}) \in \mathrm{Dom}_f$, entonces P se detiene partiendo de $(\vec{x}, \vec{\alpha})$, dando como dato de salida $f(\vec{x}, \vec{\alpha})$.
- 4. Si $(\vec{x},\vec{\alpha})\in\omega^n imes\Sigma^{*m}-{
 m Dom}_f$, entonces P no se detiene partiendo desde $(\vec{x},\vec{\alpha})$

En ambos casos diremos que P computa a la función f.

Obs: $f = \emptyset$ es un procedimiento que nunca se detiene cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n, m, O y Σ .

2.5. Combo 5: Defina cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina: «el procedimiento efectivo P decide la pertenencia a S»

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -efectivamente computable cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ sea Σ -efectivamente computable.

Si P es un procedimiento efectivo el cual computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$, entonces diremos que P decide la pertenencia a S, con res_pecto al conjunto $\omega^n \times \Sigma^{*m}$.

Obs: $f = \emptyset$ es un procedimiento que siempre da 0 cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n, m, O y Σ .

2.6. Combo 6: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente enumerable y defina: «el procedimiento efectivo P enumera a S»

Un conjunto $S\subseteq \omega^n\times \Sigma^{*m}$ sera llamado Σ -efectivamente enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ sea Σ -efectivamente computable, para cada $i\in\{1,...,n+m\}$.

2.7. Combo 7: Defina cuando una función $f:D_f\subseteq\omega^n\times\Sigma^{*^m}\to\omega$ es llamada Σ -Turing computable y defina «la máquina de Turing M computa a la función f»

Diremos que una función $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -Turing computable si existe una máquina de Turing con unit, $M=(Q,\Sigma^*,\Gamma,\delta,q_0,B,\nu,F)$ tq:

- 1. Si $(\vec{x},\vec{\alpha})\in \mathrm{Dom}_f$, entonces hay un $p\in Q$ tq $\lfloor q_0B\nu^{x_1}B...B\nu^{x_n}B\alpha_1B...B\alpha_m\rfloor \overset{*}{\vdash} \lfloor pBf(\vec{x},\vec{\alpha})\rfloor$ y $\lfloor pBf(\vec{x},\vec{\alpha})\rfloor$ $\not\vdash$ d para cada $d\in \mathrm{Des}$
- 2. Si $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} \mathrm{Dom}_f$, entonces M no se detiene partiendo de $\lfloor q_0 B \nu^{x_1} B ... B \nu^{x_n} B \alpha_1 B ... B \alpha_m \rfloor$.

Cuando una maquina de Turing con unit M cumpla ambos items, diremos que M computa a la función f o que f es computada por M.

Cabe destacar que la condición $\lfloor pBf(\vec{x},\vec{\alpha}) \rfloor \not\vdash d$ para cada $d \in \text{Des}$ es equivalente a que (p,B) no este en el dominio de δ o que si lo este y que la tercer coordenada de $\delta(p,B)$ sea L.

2.8. Combo 8: Defina:

2.8.1. M(P) Minimización de variable numérica

Sea Σ un alfabeto finito y sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m}$. Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega$ tq $P(t, \vec{x}, \vec{\alpha}) = 1$, usaremos $\min_t P(t, \vec{x}, \vec{\alpha})$ para denotar al menor de tales t's.

Definimos $M(P) = \lambda \vec{x} \vec{\alpha} [\min_t P(t, \vec{x}, \vec{\alpha})]$

Diremos que M(P) es obtenida por minimización de variable numérica a partir de P.

Obs: M(P) esta definida solo para aquellas (n+m)-uplas $(\vec{x}, \vec{\alpha})$ para las cuales hay al menos un t to se da $P(t, \vec{x}, \vec{\alpha}) = 1$

2.8.2. Lt

Lt: $\mathbb{N} \to \omega$ $1 \to 0$ $x \to \max_i (x)_i \neq 0$

2.8.3. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

2.8.4. «S es un conjunto de tipo (n, m)»

Dado un conjunto Σ -mixto $S \neq \emptyset$, decimos que S es un conjunto de tipo (n,m) para referirnos a los únicos $n,m \in \omega$ tq $S \subseteq \omega^n \times \Sigma^{*m}$

 \emptyset es un conjunto de tipo (n,m) cualesquiera sean $n,m\in\omega$ por lo cual cuando hablemos de el tipo de un conjunto deberemos estar seguros de que dicho conjunto es no vacío.

2.9. Combo 9

2.9.1. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

2.9.2. «I es una instrucción de S^{Σ} »

Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} o una palabra de la forma αI , donde $\alpha \in \{L\overline{n} : n \in \mathbb{N}\}$ y I es una instrucción básica de S^{Σ} . Llamamos Ins^{Σ} al conjunto de todas las instrucciones de S^{Σ} .

2.9.3. «P es un programa de S^{Σ} »

Un programa de S^Σ es una palabra de la forma $I_1I_2...I_n$ donde $n\geq 1,I_1,...,I_n\in \mathrm{Ins}^\Sigma$ y se cumple la ley de los GOTO.

Ley de los GOTO: Para cada $i \in \{1,...,n\}$, si GOTO $L\overline{m}$ es un tramo final de I_i , entonces existe $j \in \{1,...,n\}$ tq I_j tiene label $L\overline{m}$.

2.9.4.
$$I_i^P$$

$$\lambda i P \big[I_i^P \big] : \omega \times \operatorname{Pro}^{\Sigma} \to \Sigma^*$$

$$(i, P) \to \begin{cases} \text{i-esima instrucción de P si } i \in \{1, \dots, n(P)\} \\ \varepsilon & \text{si } i \notin \{1, \dots, n(P)\} \end{cases}$$

$$\lambda P[n(P)] : \operatorname{Pro}^{\Sigma} \to \omega$$

$$P \to m \text{ tq } P = I_1 I_2 ... I_m$$

2.9.6. Bas

$$\begin{split} \operatorname{Bas}: \operatorname{Ins}^{\Sigma} & \to \left(\Sigma \cup \Sigma_{p}\right)^{*} \\ & I \to \left\{ \begin{smallmatrix} J & \text{si } I \text{ es de la forma } L\overline{k}J \text{ con } J \in \operatorname{Ins}^{\Sigma} \\ I & \text{c.c.} \end{smallmatrix} \right. \end{split}$$

2.10. Combo 10: Defina relativo al lenguaje S^{Σ} :

2.10.1. «estado»

Es un par
$$(\vec{x},\vec{\sigma})=((s_1,s_2,\ldots),(\sigma_1,\sigma_2,\ldots))\in\omega^{[\mathbb{N}]}\times\Sigma^{*[\mathbb{N}]}$$

Si $i \geq 1$, entonces diremos que s_i es el valor de la variable $N\bar{i}$ y α_i es el valor de la variable $P\bar{i}$ en el estado $(\vec{x}, \vec{\sigma})$.

2.10.2. «descripción instantánea»

Es una terna $(i, \vec{x}, \vec{\sigma}) \in \mathrm{Des}^\Sigma = \omega \times \omega^{[\mathbb{N}]} \times \Sigma^{*[\mathbb{N}]}$ tq $(\vec{x}, \vec{\sigma})$ es un estado.

Si $i\in\{1,...,n(P)\}$, $(i,\vec{x},\vec{\sigma})$ nos dice que las variables están en el estado $(\vec{x},\vec{\sigma})$ y que la instrucción que debemos realizar es I_i^P

$2.10.3. S_P$

Dado un programa P.

$$S_P: \mathrm{Des}^\Sigma \to \mathrm{Des}^\Sigma$$

$$\begin{pmatrix} (i,\vec{x},\vec{\sigma}) & \text{si } i \not\in \{1,\dots,n(P)\} \\ (i+1,(s_1,\dots,s_k-1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} - 1 \\ (i+1,(s_1,\dots,s_k+1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} + 1 \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{n} \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow 0 \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } N\overline{k} \neq 0 \operatorname{GOTO } L\overline{m} \wedge s_k = 0 \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } N\overline{k} \neq 0 \operatorname{GOTO } L\overline{m} \wedge s_k \neq 0 \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \cdot a \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{n} \\ (i+1,\vec{s},(\sigma_1,\dots,\varepsilon,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow E \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 = a \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 \neq a \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{GOTO } L\overline{m} \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{SKIP} \\ \end{pmatrix}$$

2.10.4. «estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\alpha})$ »

Dado un programa P y la descripción instantánea obtenida luego de t pasos desde el estado $(\vec{x}, \vec{\sigma})$

$$\overbrace{S_P(...S_P(S_P(1,\vec{x},\vec{\sigma}))...)}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

diremos que $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t
 pasos, partiendo del estado $(\vec{x}, \vec{\sigma})$.

2.10.5. «P se detiene (luego de t pasos), partiendo desde el estado

$$(ec{x},ec{lpha})$$
»

Dado $S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta})$, si su primer coordenada j es igual a n(P) + 1, diremos que P se detiene (luego de t pasos), partiendo desde el estado $(\vec{x}, \vec{\sigma})$.

2.11. Combo 11: Defina:

2.11.1. $\Psi_P^{\mathrm{n,m,\#}}$

Dado $P \in \text{Pro}^{\Sigma}$.

$$\begin{split} D_{\Psi_P^{n,m,\#}} &= \{(\vec{x},\vec{\sigma}) \in \omega^n \times \Sigma^{*m} : P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\|\} \\ \Psi_P^{n,m,\#} &: D_{\Psi_P^{n,m,\#}} \to \omega \\ &\qquad \qquad (\vec{x},\vec{\sigma}) \to \text{valor de } N_1 \text{ cuando } P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\| \end{split}$$

2.11.2. «f es Σ -computable» y «P computa a f»

Dado $s,O\in\{(\#,\omega),(*,\Sigma^*)\}$. Una función Σ -mixta $f:S\subseteq\omega^n\times\Sigma^{*m}\to O$ sera llamada Σ -computable si hay un programa P de S^Σ tq $f=\Psi_P^{n,m,s}$.

En tal caso diremos que la función f es computada por P.

2.11.3. $M^{\leq}(P)$ Minimización de variable alfabética

Sea que $\Sigma \neq \emptyset$. Sea \leq un orden total sobre Σ , \leq puede ser naturalmente extendido a un orden total sobre Σ^* . Sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^*$ un predicado. Cuando $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ es tq existe al menos un $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$.

Definimos
$$M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} \left[\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$

Diremos que $M^{\leq}(P)$ es obtenida por minimización de variable alfabética a partir de P.

Obs: $M^{\leq}(P)$ esta definida solo para aquellas (n+m)-uplas $(\vec{x},\vec{\alpha})$ para las cuales hay al menos un α tq se da $P(\vec{x},\vec{\alpha},\alpha)=1$

2.12. Combo 12: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable, cuando es llamado Σ -enumerable y defina «el programa P enumera a S»

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -computable.

Un conjunto $S\subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -enumerable cuando sea vacío o haya una función sobreyectiva $F: \omega \to S$ tq $F_{(i)}$ sea Σ -computable, para cada $i \in \{1, ..., n+m\}$.

Nótese que, un conjunto no vacío $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -enumerable sii hay programas $P_1,...,P_{n+m}$ con dato de entrada $x \in \omega$ tales que:

$$S = \operatorname{Im} \left[\Psi_{P_1}^{1,0,\#}, ..., \Psi_{P_n}^{1,0,\#}, \Psi_{P_{n+1}}^{1,0,*}, ..., \Psi_{P_{n+m}}^{1,0,*} \right]$$

Como puede notarse, los programas $P_1, ..., P_{n+m}$ puestos secuencialmente a funcionar desde el estado $\|x\|$ producen, en forma natural, un procedimiento efectivo que enumera a S. Es decir que los programas $P_1, ..., P_{n+m}$ enumeran a S.

2.13. Combo 13

Defina:

$$2.13.1. i^{n,m}$$

$$\begin{split} i^{n,m} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\to \omega \\ (0, \vec{x}, \vec{\alpha}, P) &\to 1 \\ (t, \vec{x}, \vec{\alpha}, P) &\to j \text{ tq } \overbrace{S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...)}^{\text{t veces}} = (j, \vec{u}, \vec{\eta}) \end{split}$$

$$2.13.2.\ E_{\#}^{n,m}$$

$$\begin{split} 2.13.2. \ E^{n,m}_{\#} \\ E^{n,m}_{\#} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\rightarrow \omega^{[\mathbb{N}]} \\ & (0, \vec{x}, \vec{\alpha}, P) \rightarrow (x_1, ..., x_n, 0, ...) \\ & (t, \vec{x}, \vec{\alpha}, P) \rightarrow \vec{u} \ \operatorname{tq} \ \overbrace{S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta})}^{\text{t veces}} \end{split}$$

$$\begin{split} 2.13.3. \ E^{n,m}_{\#} + E^{n,m}_{*} \\ E^{n,m}_{*} : \omega \times \omega^{n} \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^{*[\mathbb{N}]} \\ (0, \vec{x}, \vec{\alpha}, P) &\to (\alpha_{1}, ..., \alpha_{n}, \varepsilon, ...) \\ (t, \vec{x}, \vec{\alpha}, P) &\to \vec{\eta} \text{ tq} \ \overbrace{S_{P}(...S_{P}(S_{P}(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta}) \end{split}$$

$$\begin{aligned} &2.13.4.\ E_{\#_j}^{n,m} \\ &E_{\#_j}^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \mathrm{Pro}^{\Sigma} \to \omega \\ &E_{\#_i}^{n,m} = p_j^{n,m} \circ E_{\#}^{n,m} \end{aligned}$$

$$\begin{aligned} &2.13.5.\ E^{n,m}_{*_j}\\ &E^{n,m}_{*_j}:\omega\times\omega^n\times\Sigma^{*^m}\times\operatorname{Pro}^\Sigma\to\Sigma^*\\ &E^{n,m}_{*_i}=p^{n,m}_j\circ E^{n,m}_* \end{aligned}$$

2.13.6. $Halt^{n,m}$

$$\begin{aligned} \operatorname{Halt}^{n,m} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\to \{0,1\} \\ (t,\vec{x},\vec{\sigma},P) &\to i^{n,m}(t,\vec{x},\vec{\alpha},P) = n(P) + 1 \end{aligned}$$

$2.13.7. T^{n,m}$

$$\begin{split} \operatorname{Dom}_{T^{n,m}} &= \{(\vec{x},\vec{\sigma},P): P \text{ se detiene partiendo de} \parallel x_1,...,x_n,\alpha_1,...,\alpha_m \parallel \} \\ T^{n,m} &: \operatorname{Dom}_{T^{n,m}} \to \omega \\ &\quad (t,\vec{x},\vec{\sigma},P) \to \min_t (\operatorname{Halt}^{n,m}(t,\vec{x},\vec{\sigma},P)) \end{split}$$

2.13.8. AutoHalt $^{\Sigma}$

Dado
$$\Sigma \supseteq \Sigma_p$$

$${\rm AutoHalt}^\Sigma: {\rm Pro}^\Sigma \to \{0,1\}$$

$$P \to (\exists t \in \omega) {\rm Halt}^{0,1}(t,P,P)$$

2.13.9. Los conjuntos A y N

Dado
$$\Sigma \supseteq \Sigma_p$$

$$A = \left\{ P \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(P) \right\}$$

$$N = \left\{ P \in \operatorname{Pro}^{\Sigma} : \neg \operatorname{AutoHalt}^{\Sigma}(P) \right\}$$

2.14. Combo 14: Explique en forma detallada la notación lambda

Usamos la notación lambda de Church de la forma descrita a continuación.

Esta notación se define en función de un alfabeto finito previamente fijado, que denotaremos por Σ .

Solo se usan expresiones tq:

- 1. Variables permitidas:
 - Se usan variables numéricas que se valúan en números de (ω) , y se denotan por letras como x,y,z,u,v,w,n,m,k,...
 - Se usan variables alfabéticas que se valúan en palabras sobre el alfabeto Σ . Se denotan por letras como $\alpha, \beta, \gamma, \delta, \varepsilon, \psi, \eta, ...$
- 2. **Dominio parcial**: Las expresiones lambda pueden ser **parcialmente definidas**. Es decir, puede haber valuaciones de sus variables para las cuales la expresión no este definida.
- 3. Libertad sintáctica: Las expresiones pueden ser descritas informalmente.
- 4. Valores booleanos: Consideramos que las expresiones booleanas toman valores en el conjunto $\{0,1\}\subseteq\omega$ (usando 0 para falso y 1 para verdadero).

Dado un alfabeto Σ a las expresiones que cumplan las características dadas anteriormente las llamaremos lambdificables con respecto a Σ .

2.15. Combo 15: Dada una función $f: \mathrm{Dom}_f \subseteq \omega \times \Sigma^* \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [V2 \leftarrow f(V1,W1)]

Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$ Σ-computable, la palabra

$$V\overline{2} \leftarrow f(V1, W1)$$

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, V2, W1
- 2. No tiene labels oficiales.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})$ la cual es un programa de S^{Σ} .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}, N\overline{k_2}, P\overline{j_1}$ valores x_1, x_2, α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \text{Dom}_P$, luego de una cantidad finita de pasos el programa se detiene llegando a un estado e' tq:
 - 1. e' asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$;
 - 2. e' solo difiere de e en el valor de $N\overline{k_2}$ y en las variables que reemplazaron a las auxiliares de M.

La palabra $N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right)$ se denomina la expansión del macro $V2 \leftarrow f(V1, W1)$ respecto de la elección concreta de variables y labels realizada.

2.16. Combo 16: Dado un predicado $p:D_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1]

Dado un predicado $P: \mathrm{Dom}_P \subseteq \omega \times \Sigma^* \to \{0,1\}$ Σ -computable, la palabra

[IF
$$P(V1, W1)$$
 GOTO $A1$]

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, W1
- 2. A1 es su único label oficial.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \right] \text{ GOTO } L\overline{z_1}$ la cual, si se cumple la ley del GOTO respecto a $L\overline{z_1}$, es un programa de S^{Σ} .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}$, $P\overline{j_1}$ valores x_1 , α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \mathrm{Dom}_P$, luego de una cantidad finita de pasos:
 - 1. Si $P(x_1, \alpha_1) = 1$, se salta al label $L\overline{z_1}$.
 - 2. Si $P(x_1, \alpha_1) = 0$, el programa se detiene.

En ambos casos, el estado alcanzado e' solo puede diferir de e en las variables que reemplazaron a las auxiliares de M.

La palabra $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO } L\overline{z_1} \right]$ se denomina la expansión del macro $\left[\text{IF } P (V1, W1) \text{ GOTO } A1 \right]$ respecto de la elección concreta de variables y labels realizada.

2.17. Combo 17: Defina el concepto de función y desarrolle las tres Convenciones Notacionales asociadas a dicho concepto

Una función es un conjunto de pares tq, si $(x, y) \in f$ y $(x, z) \in f$, entonces y = z.

Dada una función f, definimos:

- $\operatorname{Dom}_f = \{x: (x,y) \in f \text{ para algún } y\}$
- $\operatorname{Im}_f = \{ y : (x, y) \in f \text{ para algún } x \}$

Las convenciones notacionales son:

- Dado $x\in {\rm Dom}_f$, usaremos f(x) para denotar al único $y\in {\rm Im}_f$ tq $(x,y)\in f.$
- Escribimos $f:S\subseteq A\to B$ para expresar que f es una función tq $\mathrm{Dom}_f=S\subseteq A$ y $\mathrm{Im}_f\subseteq B$. También escribimos $f:A\to B$ si S=A. En tal contexto llamaremos a B conjunto de llegada.
- Muchas veces para definir una función f, lo haremos dando su dominio y su regla de asignación. Esto determina por completo a f ya que $f = \{(x, f(x)) : x \in \text{Dom}_f\}$.

Básico Con conjunto de llegada y flechas Con flechas y por casos

$$\begin{array}{lll} \mathrm{Dom}_f = \omega & & f: \omega \to \omega & & f: \mathbb{N} \to \omega \\ f(x) = 23x & & x \to 23x & & x \to \begin{cases} x+1 & \mathrm{si} \; \mathbf{x} \; \mathrm{es} \; \mathrm{par} \\ x+2 & \mathrm{si} \; \mathbf{x} \; \mathrm{es} \; \mathrm{impar} \end{cases} \end{array}$$

3. Combos de teoremas

3.1. Combo 1

3.1.1. Proposición: Caracterización de conjuntos Σ -pr

Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Entonces, S es Σ -pr sii S es el dominio de alguna función Σ -pr. (En la inducción de la prueba hacer solo el caso de la composición)

Prueba \Rightarrow

Sea S $\Sigma\text{-pr.}$

Entonces, $\chi_S^{\omega^n \times \Sigma^{*^m}}$ es Σ -pr para algún $n, m \in \omega$.

Para ese caso, pred o $\chi_S^{\omega^n \times \Sigma^{*^m}}$ es una función Σ -pr y $S = \mathrm{Dom}_{\mathrm{pred} \ \circ \chi_S^{\omega^n \times \Sigma^{*^m}}}$

Prueba ←

Sea S el dominio de una función Σ -pr $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$. Probaremos por inducción en k que Dom_F es Σ -pr, para cada $F \in \mathrm{PR}_k^\Sigma$:

- $\text{1. Caso} \quad k=0 \text{:} \quad \operatorname{PR}_0^\Sigma = \left\{ \operatorname{suc}, \operatorname{pred}, C_0^{0,0}, C_\varepsilon^{0,0} \right\} \cup \left\{ d_a : a \in \Sigma \right\} \cup \left\{ p_j^{n,m} : 1 \leq j \leq n+m \right\} \\ \text{Los dominios de las funciones suc}, C_0^{0,0}, C_\varepsilon^{0,0}, d_a, p_j^{n,m} \text{ son de la forma } \omega^n \times \Sigma^{*m} \text{ y } \omega \text{ y } \Sigma^*$ son Σ -pr, por el «Lema 16» son Σ -pr. Finalmente, $\chi^{\omega}_{\mathrm{Dom}_{\mathrm{Pred}}} = \lambda x [x \neq 0]$ es Σ -pr, por definición $\mathrm{Dom}_{\mathrm{Pred}}$ es Σ -pr
- 2. Supongamos que Dom_F es Σ -pr $\forall F \in \mathrm{PR}_k^{\Sigma}$.
- 3. Sea $F \in \mathbf{PR}^{\Sigma}_{k+1}$. Veremos entonces que \mathbf{Dom}_F es Σ -pr solo para el caso de composición: Si $F = \emptyset$, entonces es claro que $\mathrm{Dom}_F = \emptyset$ es Σ -pr.

Sea $F = g \circ [g_1,...,g_{n+m}]$ no vacío, con $g,g_1,...,g_{n+m} \in PR_k^{\Sigma}$.

- $g: \mathrm{Dom}_q \subseteq \omega^n \times \Sigma^{*m} \to O$
- $\begin{array}{l} \bullet \quad g_i: \mathrm{Dom}_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \omega \text{ para } i=1,...,n \\ \bullet \quad g_i: \mathrm{Dom}_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \Sigma^* \text{ para } i=n+1,...,n+m \end{array}$

Por hipótesis inductiva, los conjuntos Dom_a , Dom_a , son Σ -pr.

Por «Lema 15», $S = \bigcap_{i=1}^{n+m} \text{Dom}_{g_i}$ es Σ -pr.

$$\text{Por "Lema 20"}, \chi_{\text{Dom}_F}^{\omega^k \times \Sigma^{*l}}(\vec{x}, \vec{\alpha}) = \begin{cases} \chi_{\text{Dom}_g}^{\omega^n \times \Sigma^{*m}} \circ [g_1, \dots, g_{n+m}] & \text{si } (\vec{x}, \vec{\alpha}) \in S \\ C_0^{k, \, l} & \text{si } (\vec{x}, \vec{\alpha}) \in \omega^k \times \Sigma^{*l} - S \end{cases} \text{ es } \Sigma \text{-pr.}$$

Por lo tanto Dom_F es Σ -pr

3.1.2. Teorema: Neumann vence a Gödel

Si h es Σ -recursiva, entonces h es Σ -computable. (En la inducción de la prueba hacer solo el caso $h = R(f, \varrho)$, con $I_h \subseteq \omega$)

Prueba:

Probaremos por inducción en k que: Si $h \in R_k^{\Sigma}$, entonces h es Σ -computable:

- 1. Caso k=0: $\mathbf{R}_0^{\Sigma} = \mathbf{P}\mathbf{R}_0^{\Sigma} = \left\{ \text{suc, pred}, C_0^{0,0}, C_{\varepsilon}^{0,0} \right\} \cup \left\{ d_a : a \in \Sigma \right\} \cup \left\{ p_j^{n,m} : 1 \leq j \leq n + 2 \right\}$ m Por lo que dados los programas que los computan (dejado al lector), entonces son Σ --computables.
- 2. Supongamos que $h \in R_k^{\Sigma} \Rightarrow h$ es Σ -computable.
- 3. Veamos que $h \in R_{k+1}^{\Sigma} R_k \Rightarrow h$ es Σ -computable para el caso $h = R(f, \varrho)$ con $\mathrm{Im}_h \subseteq \omega$. Sean
 - $\Sigma = \{a_1, ..., a_r\}$
 - $\bullet \ \left(f \in R_k^\Sigma \right) \! f : S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$
 - $(\forall a \in \Sigma, \varrho_a \in R_k^{\Sigma})\varrho_a : \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$

Por hipótesis inductiva, f y cada ϱ_a son Σ -computables por lo que existen sus macros. Recordemos:

$$\begin{split} R(f,\varrho): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* &\to \omega \\ (\vec{x},\vec{\alpha},\varepsilon) &\to f(\vec{x},\vec{\alpha}) \\ (\vec{x},\vec{\alpha},\alpha a) &\to \varrho_a(R(f,\varrho)(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha) \end{split}$$

Entonces, construimos el siguiente programa usando macros:

$$N\overline{n+1} \leftarrow f(N1,...,N\overline{n},P1,...,P\overline{m})$$

$$L\overline{r+1}: \text{IF } P\overline{m+1} \text{ BEGINS } a_1 \text{ GOTO } L1$$

$$\vdots$$

$$\text{IF } P\overline{m+1} \text{ BEGINS } a_r \text{ GOTO } Lr$$

$$\text{GOTO } L\overline{r+2}$$

$$L1: P\overline{m+1} \leftarrow \sim P\overline{m+1}$$

$$N\overline{n+1} \leftarrow \varrho_{a_1} \left(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m}, P\overline{m+2} \right)$$

$$P\overline{m+2} \leftarrow P\overline{m+2}.a_1$$

$$\text{GOTO } L\overline{r+1}$$

$$\vdots$$

$$Lr: P\overline{m+1} \leftarrow \sim P\overline{m+1}$$

$$N\overline{n+1} \leftarrow \varrho_{a_r} \left(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m}, P\overline{m+2} \right)$$

$$P\overline{m+2} \leftarrow P\overline{m+2}.a_r$$

$$\text{GOTO } L\overline{r+1}$$

$$L\overline{r+2}: N1 \leftarrow N\overline{n+1}$$

Este programa computa h.

3.2. Combo 2

3.2.1. Lema 20: Lema de división por casos para funciones Σ -pr

Si $f_i: \mathrm{Dom}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O$ para i=1,...,k son Σ -pr tq si $i \neq j \Rightarrow \mathrm{Dom}_{f_i} \cap \mathrm{Dom}_{f_j} = \emptyset$, entonces la función $f = \bigcup_{i=1}^k f_i$ es también Σ -pr. (Hacer el caso $O = \Sigma^*, k = 2, n = 2$ y m = 1)

Prueba:

Supongamos
$$O=\Sigma^*,\,i=1,2,\,n=2$$
 y $m=1.$ Sean $f_i:\mathrm{Dom}_{f_i}\subseteq\omega^2\times\Sigma^{*2}\to\Sigma^*$ Σ -pr tq si $i\neq j\Rightarrow\mathrm{Dom}_{f_i}\cap\mathrm{Dom}_{f_j}=\emptyset.$ Por «Lema 18», existen funciones Σ -totales Σ -pr $\overline{f}_i:\omega^2\times\Sigma^{*2}\to\Sigma^*$ tq $f_i=\overline{f}_i|_{\mathrm{Dom}_{f_i}}.$ Por «Proposición 19», los conjuntos Dom_{f_1} y Dom_{f_2} son Σ -pr. Por lo tanto, por «Lema 15», también lo es su unión: $\mathrm{Dom}_{f_1}\cup\mathrm{Dom}_{f_2}.$ Finalmente, por «Lema 17»,

$$f_1 \cup f_2 = \Big(\lambda \alpha \beta [\alpha \beta] \circ \Big[\lambda x \alpha [\alpha^x] \circ \Big[\chi_{\mathrm{Dom}_{f_1}}^{\omega^n \times \Sigma^{*^m}}, \overline{f}_1\Big] \cup \lambda x \alpha [\alpha^x] \circ \Big[\chi_{\mathrm{Dom}_{f_2}}^{\omega^n \times \Sigma^{*^m}}, \overline{f}_2\Big]\Big]\Big)|_{\mathrm{Dom}_{f_1} \cup \mathrm{Dom}_{f_2}}$$
 es Σ -pr.

3.2.2. Proposición: Caracterización básica de conjuntos Σ -enumerables

Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- 1. S es Σ -enumerable
- 2. Hay un programa $P \in \operatorname{Pro}^{\Sigma}$ tq:

1. Para cada $x \in \omega$, P se detiene partiendo desde el estado $[\![x]\!]$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$, donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$

2. Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m)\in S$ hay un $x\in\omega$ tq P se detiene partiendo desde el estado $[\![x]\!]$ y llega a un estado como en $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

(Hacer el caso n = 2 y m = 1)

3.3. Combo 3

- 1. **Teorema** (Gödel vence a Neumann): Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -computable, entonces f es Σ -recursiva
- 2. **Teorema** (Caracterización de conjuntos Σ -efectivamente computables): Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:
- (a) S es Σ -efectivamente computable (b) S y $(\omega^n \times \Sigma^{*m}) S$ son Σ -efectivamente enumerables (Hacer solo $(b) \to (a)$)

3.4. Combo 4

- 1. **Proposición** (Caracterización básica de conjuntos Σ -enumerables): (igual a Combo 2, hacer caso $n=2,\,m=1$)
- 2. **Lema** (Lema de la sumatoria): Sea Σ un alfabeto finito. Si $f:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\to\omega$ es Σ -pr, con $S_i\subseteq\omega$ y $L_j\subseteq\Sigma^*$ no vacíos, entonces

$$\lambda xy\vec{x}\vec{\alpha}.\sum_{t}=x^{y}f(t,\vec{x},\vec{\alpha})$$
es $\Sigma\text{-pr}$

3.5. Combo 5

- 1. **Lema**: Sea $\Sigma=@,\%,!$ y $f:S_1\times S_2\times L_1\times L_2\to \omega$, con $S_1,S_2\subseteq \omega$ y $L_1,L_2\subseteq \Sigma^*$ no vacíos. Sea ϱ una familia Σ -indexada de funciones $\varrho_a:\omega\times S_1\times S_2\times L_1\times L_2\times \Sigma^*\to \omega$ para cada $a\in \Sigma$.
- Si f y cada ϱ_a son Σ -efectivamente computables, entonces $R(f,\varrho)$ lo es. (Ejercicio de la Guía 5)
- 1. Lema (Lema de cuantificación acotada): Sea $p:S\times S_1\times ...\times S_n\times L_1\times ...\times L_m\to \omega$ un predicado Σ -pr, y $\bar S\subseteq S$ un conjunto Σ -pr Entonces

$$\lambda x\vec{x}\vec{\alpha}\Big[\Big(\forall t\in\bar{S}\Big)_{t\leq x}P(t,\vec{x},\vec{\alpha})\Big]$$
es $\Sigma\text{-pr}$

3.6. Combo 6

- 1. **Lema**: Si $S\subseteq \omega^n\times \Sigma^{*m}$ es Σ -efectivamente computable, entonces S es Σ -efectivamente enumerable
- 2. **Teorema** (Caracterización de conjuntos Σ -r.e.): Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:
- (1) S es Σ -recursivamente enumerable (2) S= IF, para alguna $F:D_F\subseteq \omega^k\times \Sigma^{*l}\to \omega^n\times \Sigma^{*m}$ tq cada F(i) es Σ -recursiva (3) $S=D_f$, para alguna función Σ -recursiva f (Hacer la prueba de $(2)\to(3)$, con k=l=1 y n=m=2)

3.7. Combo 7

1. Lema (Lema de minimización acotada): Sean $n,m\geq 0$. Sea $p:D_{\nu}\subseteq\omega\times\omega^n\times\Sigma^{*m}\to\omega$ un predicado Σ -pr

- (a) M(P) es Σ -recursiva (b) Si existe una función $f:\omega^n\times \Sigma^{*m}\to\omega$ Σ -pr tq $M(P)(\vec{x},\vec{\alpha})=\min_t P(t,\vec{x},\vec{\alpha})\leq f(\vec{x},\vec{\alpha})$, entonces M(P) es Σ -pr
- 1. Lema: Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to O$ es Σ -recursiva y $S\subseteq D_f$ es Σ -r.e., entonces f|S es Σ -recursiva

(Hacer solo el caso S no vacío, n=m=1 y $O=\Sigma^*$)

3.8. Combo 8

- 1. **Lema**: Si $\Sigma \supseteq \Sigma_n$, entonces AutoHalt $^{\Sigma}$ no es Σ -recursivo
- 2. **Teorema**: Si $\Sigma \supseteq \Sigma_p$, entonces AutoHalt $^\Sigma$ no es Σ -efectivamente computable
- 3. Lema: Sea $A=p\in \operatorname{Pro}^\Sigma$: Auto $\operatorname{Halt}^{\Sigma(P)}=1$, entonces A es Σ -r.e. y no Σ -recursivo Además, el conjunto $N=p\in \operatorname{Pro}^\Sigma$: Auto $\operatorname{Halt}^{\Sigma(P)}=0$ no es Σ -r.e.
- 1. **Teorema** (Neumann vence a Gödel): Si h es Σ -recursiva, entonces h es Σ -computable (Hacer solo el caso h=M(P))

3.9. Combo 9

1. Lema (Lema de división por casos para funciones Σ -recursivas): Supongamos $f_i:D_{f_i}\subseteq \omega^n\times \Sigma^{*m}\to O$ para i=1,...,k, tales que $D_{f_i}\Rightarrow D_{f_j}=\emptyset$ para $i\neq j$. Entonces $f_1\models...\models f_k$ es Σ -recursiva

(Hacer el caso k=2, n=m=1 y $O=\omega$)

1. **Teorema** (Gödel vence a Neumann): Si $f:D_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es Σ -computable, entonces f es Σ -recursiva

4. Utilidades

4.1. Lema 14.

Sean $P: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$ y $Q: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$ Σ -pr, entonces también lo son: $(P \vee Q), (P \wedge Q)$ y $\neg P$.

4.2. Def Conjuntos Σ -pr

Un conjunto Σ -mixto $S \subseteq \omega^n \times \Sigma^{*m}$ se llama Σ -recursivo primitivo si su función característica $\chi_S^{\omega^n \times \Sigma^{*m}} \equiv \lambda \vec{x} \vec{\alpha} [(\vec{x}, \vec{\alpha}) \in S]$ es Σ -pr

4.3. Lema 15.

Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -pr, entonces también lo son: $S_1 \cup S_2, S_1 \cap S_2$ y $S_1 - S_2$.

4. Utilidades 16

4.4. Lema 16.

Sean $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacíos.

Entonces $S_1\times...\times S_n\times L_1\times...\times L_m$ es $\Sigma\text{-pr}$ si
i $S_1,...,S_n,L_1,...,L_m$ son $\Sigma\text{-pr}$

4.5. Lema 17.

Sea $f:\mathrm{Dom}_f\subseteq\omega^n imes\Sigma^{*m} o O$ una función Σ -pr. Si $S\subseteq\mathrm{Dom}_f$ es Σ -pr, entonces la función $f|_S$ también es Σ -pr

4.6. Lema 18.

Si $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -pr, entonces existe una función $\overline{f}: \omega^n \times \Sigma^{*m} \to O$ Σ -pr tal que $f = \overline{f}|_{\mathrm{Dom}_f}$.

4.7. Proposición 19.

Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Entonces, S es Σ -pr sii S es el dominio de alguna función Σ -pr.

4.8. Lema 20: Lema de division por casos para funciones Σ -pr

Si $f_i: \mathrm{Dom}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O$ para i=1,...,k son Σ -pr tq si $i \neq j \Rightarrow \mathrm{Dom}_{f_i} \cap \mathrm{Dom}_{f_j} = \emptyset$, entonces la función $f = \bigcup_{i=1}^k f_i$ es también Σ -pr.

4.9. Lema 22.

Sea Sigma un alfabeto finito.

- (a) SI $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_m\to\omega$ es Σ -pr, con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ no vacíos, entonces, las funciones $\lambda xy\vec{x}\vec{\alpha}.\sum_{t=x}^y f(t,\vec{x},\vec{\alpha})$ y $\lambda xy\vec{x}\vec{\alpha}.\prod_{t=x}^y f(t,\vec{x},\vec{\alpha})$ son también Σ -pr
- (b) Si $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_m\to \Sigma^*$ es Σ -pr, con $S_1,...,S_n\subseteq \omega$ y $L_1,...,L_m\subseteq \Sigma^*$ no vacíos, entonces la función $\lambda xy\vec{x}\vec{\alpha}.$ $\subset_{t=x} f(t,\vec{x},\vec{\alpha})$ es Σ -pr