Efficient Equality Checking for non-shared Binary Decision Diagrams

Steffan Christ Sølvsten, Jaco van de Pol

March 11, 2022

 $f\leftrightarrow g\equiv \top$

$$f \leftrightarrow g \equiv \top$$

$$\underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathsf{Apply}} + \underbrace{O(\mathsf{sort}(\mathit{N}^2))}_{\mathsf{Reduce}} + \underbrace{O(1))}_{\mathsf{check is} \ \top} = O(\mathsf{sort}(\mathit{N}^2))$$

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

Theorem (Bryant '86)

Let π be a variable order and $f: \mathbb{B}^n \to \mathbb{B}$ then there exists a unique (up to isomorphism) Reduced Ordered Binary Decision Diagram representing f with ordering π .

Trivial cases: $f \not\equiv g$ if there is a mismatch in

•	$N_f \neq N_g$	Number of nodes	O(1) I/Os
•	$L_f eq L_g$	Number of levels	O(1) I/Os

$$lacksquare$$
 $N_{f,i}
eq N_{g,i}$ Number of nodes on a level $O(L/B)$ I/Os

■
$$L_{f,i} \neq L_{g,i}$$
 Label of an *i*th level $O(L/B)$ I/Os

IsIsomorphic(f, g)

- Check whether root v_f of f and root v_g of g have a local violation.
- Check "recursively" whether $low(v_f) \sim low(v_g)$ and $high(v_f) \sim high(v_g)$.

Return false on first violation. If there are no violations then return true.

IsIsomorphic(f, g)

- Check whether root v_f of f and root v_g of g have a local violation.
- Check "recursively" whether $low(v_f) \sim low(v_g)$ and $high(v_f) \sim high(v_g)$.

Return false on first violation. If there are no violations then return true.

$$\underbrace{O(\mathsf{sort}(N^2))}_{\mathsf{Apply'}} + \underbrace{O(\mathsf{sort}(N^2))}_{\mathsf{Reduce}} + \underbrace{O(1))}_{\mathsf{check is}} = O(\mathsf{sort}(N^2))$$

Return false if more than $N_{f,i} = N_{g,i}$ pairs of nodes (v_f, v_g) are checked on level i.

$$O(\operatorname{sort}(N))$$

Observation

The output of Reduce has the following properties

■ Nodes on level i have their identifiers consecutively numbered

$$MAX - N_{f,i} + 1, \dots, MAX - 1, MAX$$
.

■ Nodes on level *i* are output sorted by their children

$$((i_1, id_1), low_1, high_1) <_{lex(i, low, high)} ((i_2, id_2), low_2, high_2)$$
,

where

$$\forall (i, id) : (i, id) < \bot < \top^{-1}$$
.

¹Assuming the BDD is not negated. If that is the case then $(i, id) < \top < \bot$.

Theorem

If G_f and G_g are outputs of Reduce.

 $G_f \sim G_g \iff For \ all \ i \in [0; N) \ the \ node \ G_f[i] \ matches \ G_g[i] \ numerically.$

Proof.

← : Must describe the exact same graph.

 \Rightarrow : Strong induction on BDD levels bottom-up \dots

Theorem

If G_f and G_g are outputs of Reduce.

$$G_f \sim G_g \iff For \ all \ i \in [0; N) \ the \ node \ G_f[i] \ matches \ G_g[i] \ numerically.$$

Proof.

← : Must describe the exact same graph.

 \Rightarrow : Strong induction on BDD levels bottom-up . . .

Corollary

If G_f and G_g are outputs of Reduce then $f \equiv g$ is computable using $2 \cdot N/B$ I/Os.²

²Assuming they are both unnegated (or both negated).

Algorithm	Time (s)		
$f\leftrightarrow g\equiv \top$	0.38		
O(sort(N))	0.058		
$2 \cdot N/B$	0.0006		

Checking the (EPFL Benchmark) sin circuit's single output gate ($|N_f| = |N_g| = 5.76$ MiB).