

Problem Tennis

Input file stdin
Output file stdout

Маленький MP любить дивитись тенісні турніри з своєю сім'єю та друзями. Нещодавно він подивився Aвстралійський Відкритий Фінал 2022 по телевізору і помітив, що кожен тенісний м'яч, який використовується гравцями, повинен мати цілу вагу від 0 до w-1 включно. Більш того, може бути декілька різних моделей м'яча з однаковою вагою. Для ваги i, існує v_i різних моделей м'ячів з такою вагою. 1 Mu вважаємо, що будь-які два м'ячі з однаковою вагою та моделлю є ідентичними.

Маленький MP відвідує InfO(1)Sports – один з його улюблених спортивних магазинів в рідному місті. Він з ентузіазмом розуміє, що існує нескінченний запас кожної моделі тенісного м'яча, які він бачив по телевізору минулого місяця. Іншими словами, для кожної ваги i, існує нескінченно багато м'ячів для кожної з v_i моделей цієї ваги.

Маленький MP хоче купити n тенісних м'ячів, але він має обмеження на цю покупку. Припустимо він купує м'ячі з вагами w_1, \ldots, w_n та їх моделі m_1, \ldots, m_n , відповідно. Тоді він потребує, щоб:

$$(w_1 + \ldots + w_n) \mod w \leq x$$
.

Більш того, спортивний магазин має дуже дивний спосіб визначення цін на м'ячі. Ціна послідовності з n м'ячів (яка згадувалась вище) задається як $count^k$, де count - кількість м'ячів в послідовності з вагою monaum mona

Маленький MP зараз зацікавлений в дечому: якщо ми розглянемо усі можливі послідовності з n м'ячів, які задовольняють умови Маленького MP, яка сума їх вартостей? (Послідовність може містити ідентичні м'ячі; порядок **грає роль**. Наприклад, якщо (w,m) позначає м'яч з вагою w та моделлю m, тоді послідовність (1,2),(2,1) відрізняється від послідовності (2,1),(1,2). Тому, дві послідовності вважаються ідентичними, тоді і тільки тоді, коли вони містять ідентичні м'ячі на усіх позиціях.)

Input Data

Перший рядок містить цілі числа n, w, k, x, та y. Другий рядок містить цілі числа v_0 , v_1 , ..., v_{w-1} , що позначають кількість різних моделей тенісних м'ячів для кожної ваги, як описувалось вище.

Output Data

Єдиний рядок має містити одне число: суму вартостей усіх можливих послідовностей, що задовольняють умови Маленького MP по модулю $10^9 + 7$.

Restrictions

- $1 < n < 10^9$
- $1 \le w \le 700$
- $0 \le v_0, v_1, \dots, v_{w-1} \le 10^9$
- $1 \le k \le 2$
- $0 \le x, y < w$

 $^{^{1}}$ Ми керуємось думкою, що якщо $v_{i}=0$, то ніякий м'яч з вагою i не використовувався на цьому тенісному турнірі.

#	Points	n	w	k	х	у	Other constraints
1	7	$\leq 10^{6}$	-	_	= w - 1	= w - 1	_
2	2	_	_	_	= w - 1	= w - 1	-
3	10	_	-	-	_	_	$v_0 = v_1 = \dots = v_{w-1} = 0$
4	15	≤ 50	≤ 50	_	_	_	-
5	4	≤ 2500	≤ 50	_	_	= w - 1	-
6	5	_	_	_	_	= w - 1	$v_0 = v_1 = \dots = v_{w-1}$
7	11	≤ 2500	≤ 50	=1	_	_	-
8	7	_	≤ 50	=1	_	_	-
9	12	≤ 2500	≤ 50	=2	_	_	-
10	7	_	≤ 50	=2	_	_	-
11	9	_	_	=1	_	_	-
12	11	_	-	=2	_	-	-

Знак - в таблиці вище означає, що немає додаткових обмежень для даної змінної (окрім тих обмежень, що дані вище в пункті Restrictions).

Examples

Input file	Output file			
7 3 2 1 1	0			
0 0 0				
1000000 4 1 2 1	0			
0 0 0 0				
1 2 1 1 1	4			
2 2				
1 2 2 1 1	4			
2 2				
2 2 1 1 1	32			
2 2				
1 3 1 1 1	2			
1 1 1				
3 2 1 1 1	714984			
25 37				
6 5 2 3 2	227678571			
1 2 6 70 1				
6 5 1 2 3	398503624			
1 6 70 1 4				
500 4 1 2 3	651382141			
10 20 30 40				

Explanation

Ми позначаємо м'яч з вагою w та моделлю m як (w, m).

В перших двох прикладах, немає м'ячів взагалі. Тому, немає послідовностей м'ячів, які може купити MP, тому їх сума вартостей відповідно рівна 0.

В третьому та четвертому прикладах, м'ячі такі: (0,1),(0,2),(1,1),(1,2). Маленький MP може купити (0,1), або (0,2), або (1,1), або (1,2). Кожна з цих послідовностей має вартість 1 в обох прикладах (оскільки $1^1=1^2=1$). Тому, кінцева сума рівна 4.

В п'ятому прикладі ми маємо ті ж самі можливі м'ячі, але Маленький МР може купити пару м'ячів. Вартість кожної пари – це кількість м'ячів, чия вага не більша 1 і піднести

InfO(1) Cup, Day 1 Ploiești, Romania Saturday 12th February, 2022

k=1 в цю степінь. Тобто вартість буде 2. Тому, кінцева сума рівна 32.

В наступному прикладі, є три можливих м'ячі (0,1),(1,1),(2,1). Він може купити один м'яч, чия вага не більше 1 по модулю 3, тому він може купити або (0,1) або ж (1,1). Обидві з цих послідовностей мають вартість 1, тому сума 2.