

ПЕРІОДИЧНА СИСТЕМА ТА ЕЛЕКТРОННА КОНФІГУРАЦІЯ

4-й ESO

Електронна конфігурація

Електронна конфігурація — це **розподіл електронів атома** на **атомних орбіталях** (s, p, d y f). **Діаграма Мьоллера** допомагає нам знати, у якому **порядку** мають бути **заповнені** різні **орбіталі**, слідуючи за **стрілками**.

Основний стан

Стан мінімальної енергії. Електрони слідують Діаграму Мьоллера.

Схвильовані стани

Порядок заповнення орбіталей не відповідає Діаграмі Мьоллера.

Заборонені стани

Деякі **орбіталі** мають **більше електронів** ніж **дозволено** $\left(\frac{s p d 1}{2 6 10 14}\right)$

Валентні електрони

Електрони валентності знаходяться в **зовнішній оболонці атома**, будучи **відповідальними** за **взаємодії** між **атомами** та **утворення з'єднаннь**.

Періодична система елементів

Періодична таблиця елементів організовує відомі 118 елементів у 7 періодів (рядки) та 18 груп (стовпців), впорядковані за їх атомним номером Z.

Класифікація хімічних елементів

Хімічні елементи можна загалом класифікувати на метали, напівметали, неметали та благородні гази, на основі їх загальних фізичних та хімічних властивості:

Метали

Блискучій зовнішній вигляд, вони **хороші провідники тепла** та **електрики** та утворюють **сплави** з іншими металами. Більшість із них **тверді** при навколишній *Т*.

Утворення іонів Вони мають тенденцію віддавати електрони, утворюючи катіони (іони із зарядом Θ). Приклади: Li \longrightarrow Li⁺ + 1 e⁻; Mg \longrightarrow Mg²⁺ + 2 e⁻; Al \longrightarrow Al³⁺ + 3 e⁻.

Напівметали

Крихкі/ламкі тверді речовини з металевим виглядом які є напівпровідниками та поводяться як неметали.

Неметали

Зовнішній вигляд *тымяний*, вони погані провідники тепла та електрики і крихкі. Вони можуть бути твердими, рідинами або газоподібними за температури навколишнього середовища.

Утворення іонів Вони мають тенденцію **захоплювати електрони**, утворюючи **аніони** (іони із зарядом \bigcirc). **Приклади**: Cl + 1 e⁻ \longrightarrow Cl⁻; O + 2 e⁻ \longrightarrow O²⁻; P + 3 e⁻ \longrightarrow P³⁻.

Благородні гази

He, Ne, Ar, Kr, Xe у 🚱 Rn. Без запаху та безбарвні одноатомні гази, які ледве реагують хімічно, оскільки мають вісім електронів у своїй зовнішній оболонці.

B3nica.svg.