Подготовка к ЦТ Физика Вариант 1

При расчетах принять:

Модуль ускорения свободного падения $g = 10 \text{ м/c}^2$	Скорость света в вакууме $c = 3 \cdot 10^8 \text{ м/c}$				
Постоянная Авогадро $N_A = 6,02 \cdot 10^{23} \text{ моль}^{-1}$	Постоянная Больцмана $k = 1,38 \cdot 10^{-23} \text{Дж/K}$				
Электрическая постоянная $\varepsilon_0 = 8,85 \cdot 10^{-12} \frac{\Phi}{M}$; $\frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \frac{H \cdot M^2}{K\pi^2}$	Элементарный заряд $e = 1,6 \cdot 10^{-19} \text{ Кл}$				
Универсальная газовая постоянная $R = 8,31 \frac{\mathcal{Д} ж}{\text{моль} \cdot K}$	Гравитационная постоянная $G = 6,67 \cdot 10^{-11} \frac{H \cdot m^2}{\kappa z^2}$				
$1 \text{ эВ} = 1,6 \cdot 10^{-19} \text{ Дж}$ $\pi = 3,14;$ $\sqrt{2} = 1,41;$ $\sqrt{3} = 1,73;$ $\sqrt{5} = 2,24$	Постоянная Планка $h = 6.63 \cdot 10^{-34} \text{Дж} \cdot \text{с}$				

Множители и приставки для образования десятичных кратных и дольных единиц.

Множитель	10^{12}	10^{9}	10^{6}	10^{3}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}
Приставка	тера	гига	мега	кило	санти	милли	микро	нано	пико
Обозначение приставки	T	Γ	M	К	c	M	МК	Н	П

Часть А

1		1) 770 / 3
A6	На границе раздела двух несмешивающихся жидкостей, имеющих плотности $\rho_1 = 400$ кг/м 3 и $\rho_2 = 2\rho_1$, плавает шарик (см. рисунок). Какой должна быть плотность шарика ρ , чтобы выше границе раздела жидкостей была одна четверть его объёма?	1) 550 κγ/m ³ ; 2) 600 κγ/m ³ ; 3) 650 κγ/m ³ ; 4) 700 κγ/m ³ ; 5) 750 κγ/m ³ .
A7	При температуре t = 0 °C вода кристаллизуется и переходит из жидкого состояния в твёрдое. Что происходит в процессе кристаллизации с её температурой и внутренней энергией? 1) температура уменьшается, внутренняя энергия не изменяется; 2) температура уменьшается, внутренняя энергия уменьшается; 3) температура не изменяется, внутренняя энергия уменьшается; 4) температура не изменяется, внутренняя энергия не изменяется; 5) температура не изменяется, внутренняя энергия увеличивается.	1) 1; 2) 2; 3) 3; 4) 4; 5) 5.
A8	Если давление идеального газа $p=39$ кПа, а его плотность $\rho=1,3$ кг/м³, то средняя квадратичная скорость $\langle \upsilon_{\kappa s} \rangle$ молекул газа равна:	1) 300 m/c; 2) 400 m/c; 3) 500 m/c; 4) 600 m/c; 5) 750 m/c.
A9	Относительная влажность воздуха в комнате $\varphi = 60\%$. Давление насыщенного водяного пара при той же температуре равно $p_{\rm H} = 2.5~{\rm k\Pi a}$. Атмосферное давление равно $p_{\rm a} = 100~{\rm k\Pi a}$. Чему равно парциальное давление p водяного пара в комнате?	1) 1,0 κΠa; 2) 1,5 κΠa; 3) 4,0 κΠa; 4) 40 κΠa; 5) 60 κΠa.
A10	Температура нагревателя идеального теплового двигателя, работающего по циклу Карно, $T_1=600~\mathrm{K}$. Температура холодильника этого двигателя на $\left \Delta T\right =200~\mathrm{K}$ ниже температуры нагревателя. Если мощность двигателя $P=30~\mathrm{kBt}$, то рабочее тело ежесекундно передает холодильнику количество теплоты Q_2 , равное:	1) 10 кДж; 2) 20 кДж; 3) 30 кДж; 4) 40 кДж; 5) 60 кДж.
A11	Какое направление имеет вектор напряжённости E электрического поля, созданного двумя разноимёнными зарядами $+q$ и $-q$ $(q>0)$ в точке O (см. рис.)? 1) \rightarrow 2) \leftarrow 3) \uparrow 4) \downarrow \bullet $+q$	1) 1; 2) 2; 3) 3; 4) 4.
A12	Участок цепи состоит из двух последовательно соединённых цилиндрических проводников, сопротивление первого из которых равно R , а второго $2R$. Во сколько раз увеличится общее сопротивление этого участка, если удельное сопротивление и длину первого проводника увеличить в 2 раза?	1) в 1,5 раза; 2) в 2 раза; 3) в 2,5 раза; 4) в 3 раза; 5) в 4 раза.
A13	Протон p влетает в зазор между полюсами электромагнита со скоростью \bar{v} , направленной горизонтально. Вектор индукции \bar{B} магнитного поля направлен вертикально (см. рисунок). Как направлена действующая на электрон сила Лоренца \bar{F} ? 1) от наблюдателя \otimes 2) к наблюдателю \odot 3) горизонтально вправо \rightarrow 4) вертикально вверх \uparrow	1) 1; 2) 2; 3) 3; 4) 4.
A14	Плоская горизонтальная фигура площадью $S=0,1$ м 2 , ограниченная проводящим контуром сопротивлением $R=5$ Ом, находится в однородном магнитном поле. Проекция вектора магнитной индукции на вертикальную ось OZ медленно и равномерно возрастает от начального значения $B_{1z}=0,7$ Тл до конечного значения $B_{2z}=4,7$ Тл. За это время по контуру протечёт заряд q , равный:	1) 40 мКл; 2) 80 мКл; 3) 125 мКл; 4) 160 мКл; 5) 188 мКл.
A15	Резистор, сопротивление которого $R=50$ Ом, включен в цепь переменного тока. Если напряжение на резисторе изменяется с течением времени по закону $U=U_0 \sin \omega t$, где $U_0=140$ В, то действующее значение силы тока $I_{\mathcal{I}}$ в цепи равно:	1) 2,0 A 2) 2,2 A 3) 2,8 A 4) 3,5 A 5) 4,0 A
A16	На рисунке показан ход двух лучей от точечного источника света A через тонкую линзу.	1) 3 cm; 2) 4 cm; 3) 5 cm; 4) 8 cm; 5) 9 cm.

A17	Источник монохроматического света заменили на другой, более высокой частоты. Как изменились при этом длина световой волны и энергия фотона в световом пучке?									
	1) длина волны уменьшилась, энергия фотона уменьшилась; 2) длина волны уменьшилась, энергия фотона не изменилась; 3) длина волны уменьшилась, энергия фотона увеличилась;									
1.40	4) длина волны увеличилась, энергия фотона уменьшилась; 5) длина волны увеличилась, энергия фотона увеличилась;	1) 1.5								
A18	Период полураспада радиоактивного изотопа кальция $^{45}_{20}$ Са составляет 164 суток. Если изначально было $4\cdot 10^{24}$ атомов $^{45}_{20}$ Са, то во сколько раз уменьшится их чис-	1) в 1,5 раза; 2) в 2 раза; 3) в 3 раза;								
	ло через 328 суток?	4) в 4 раза; 5) в 8 раз.								

Часть В

Ответы, полученные при выполнении заданий части В запишите в бланке ответов. Искомые величины, обозначенные многоточием должны быть вычислены в указанных в заданиях единицах.

B1.	Стрела, пущенная вертикально вверх со скоростью $v_0 = 12$ м/с, два раза оказывается на высоте $h = 4$ м Промежуток времени между двумя этими событиями равен мс.
B2.	Два груза массами соответственно $M_1 = 1$ кг и $M_2 = 2$ кг, лежащие на гладкой горизонтальной поверхности, связаны невесомой и нерастяжимой нитью. На грузы действуют силы F_1 и F_2 , как показано на рисунке. Сила натяжения нити $T = 15$ Н. Если модуль силы $F_2 = 21$ Н, то модуль силы F_1 равен H .
В3.	Снаряд массой $m = 900$ г, летящий со скоростью $\upsilon = 100$ м/с, разрывается на два осколка. Один из осколков лети под углом $\alpha = 90^\circ$ к первоначальному направлению, а второй – под углом $\beta = 60^\circ$. Если скорость второго осколка $\upsilon_2 = 400$ м/с, то его масса m_2 равна г.
B4.	Пластилиновая пуля массой $m=9$ г летит горизонтально со скоростью υ_0 и попадает в груз массой $M=81$ г неподвижно висящий на нити длиной $l=40$ см. В результате этого груз с прилипшей к нему пулей начинает совершать колебания. Если максимальный угол отклонения нити от вертикали при этом равен $\alpha=60^\circ$, то скорости пули υ_0 перед попаданием в груз равна $\mathbf{m/c}$.
B5.	При уменьшении абсолютной температуры на $ \Delta T $ = 600 К средняя кинетическая энергия теплового движения молекул неона уменьшилась в 4 раза. Начальная температура T_1 газа была равна К .
B6.	Для определения удельной теплоёмкости вещества тело массой $m_1 = 450$ г, нагретое до температуры $t_1 = 100$ °C опустили в калориметр, содержащий $m_2 = 200$ г воды ($c_B = 4200$ Дж/(кг·°C). Начальная температура калориметра водой $t_2 = 21$ °C. Послу установления теплового равновесия температура тела и воды стала равна $t = 30$ °C. Если теплоёмкостью калориметра пренебречь, то удельная теплоёмкость вещества исследуемого тела c_1 равна Дж/(кг·°C)
B7.	Один моль аргона, находящийся в цилиндре при температуре $T_1 = 600 \ \mathrm{K}$ и давлении $p_1 = 4 \cdot 10^5 \ \mathrm{\Pia}$, расширяется подновременно охлаждается так, что его давление при расширении обратно пропорционально квадрату объёма Конечное давление газа $p_2 = 1 \cdot 10^5 \ \mathrm{\Pia}$. Если газ при расширении отдал холодильнику количество теплоть $Q = 1246,5 \ \mathrm{Дж}$, то работа газа A при расширении равна $\mathrm{Дж}$.
B8.	Уровни энергии электрона в атоме водорода задаются формулой $E_n = -\frac{13.6}{n^2}$ $_2B$, где $n=1,2,3,$ При переходи атома из состояния E_2 в состояние E_1 атом испускает фотон. Попав на поверхность фотокатода, фотон выбивае фотоэлектрон. Длина волны света, соответствующая красной границе фотоэффекта для материала поверхность фотокатода, $\lambda_{\rm kp} = 300$ нм. Максимально возможная кинетическая энергия фотоэлектронов $E_{\rm k\ max}$, равна эВ.
B9.	Два точечных положительных заряда: $q_1 = 50$ нКл и $q_2 = 80$ нКл — находятся в вакууме на расстоянии $L = 1$ м друг от друга. Величина напряженности E , электрического поля этих зарядов в точке A , расположенной на прямой, соединяющей заряды, на расстоянии L от первого заряда (см. рисунок),

B10. Источник востоянного тока с ЭДС ϵ и внутренним сопротивлением r=0.8 Ом подсоединён к параллельно соединённым резисторам $R_1 = 4$ Ом, $R_2 = 2$ Ом и конденсатору. Если энергия электрического поля конденсатора равна $W=25~{\rm mk}$ Дж, а его ёмкость $C=2~{\rm mk}$ Ф, то ЭДС ϵ источника тока равна ... В. Пылинка, имеющая массу $m = 1.10^{-8}$ г и заряд $q = -1.8.10^{-14}$ Кл, влетает в B11. электрическое поле конденсатора в точке, находящейся посередине между его пластинами (см. рисунок). Длина пластин конденсатора l=10 см, расстояние между пластинами d = 1 см, напряжение на пластинах конденсатора U = 5 кВ. Если силой тяжести пренебречь, то минимальная скорость v, c которой пылинка должна влететь в конденсатор, чтобы она смогла пролететь его насквозь, равна ... м/с B12. В электрической цепи, показанной на рисунке, ЭДС источника ε = 12 В, внутреннее сопротивление r=1 Ом, ёмкость конденсатора C=2 мФ, индуктивность катушки L=36 мГн и сопротивление лампы $R=5\,$ Ом. В начальный момент времени ключ K замкнут. После размыкания ключа в лампе выделится энергия W равная ... мДж

Ответы

П	одготовка	к ИТ]
П	одготовка	кПТ	

№ задачи	A1	A2	A3	A4	A5	A6	A7	A8	A9
№ ответа	2	2	2	3	5	4	3	1	2
№ задачи	A10	A11	A12	A13	A14	A15	A16	A17	A18
№ ответа	5	3	2	2	2	1	1	3	4

№ задачи	B1	B2	В3	B4	B5	B6	В7	B8	B9	B10	B11	B12
№ ответа	1600	12	450	20	800	240	2493	6	630	8	30	172