Cryptography: Homework 10

(Deadline: 11:59am, 2019/12/4)

1. (20 points) Show that the plain RSA encryption is correct for any $m \in \{0, 1, ..., N-1\}$. That is, we have that $\mathbf{Dec}(sk, \mathbf{Enc}(pk, m)) = m$ for any $m \in \{0, 1, ..., N-1\}$.

(Hint: gcd(m, N) = 1 or gcd(m, N) > 1)

2. (30 points) In the Paillier's encryption, suppose that $c_1 = ((1+N)^{m_1}r_1^N \mod N^2)$ and $c_2 = ((1+N)^{m_2}r_2^N \mod N^2)$. Show that $c_1 = c_2$ is impossible unless $m_1 \equiv m_2 \pmod N$ and $r_1 \equiv r_2 \pmod N$.

(Hint: $gcd(N, \phi(N)) = 1$; $c_1 = c_2$ if and only if $c_1/c_2 \equiv 1 \pmod{N^2}$)