→ Pandas task

import pandas as pd

Displaying the first few rows of the dataset
print(data.head())

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
0	6	148	72	35	0	33.6
1	1	85	66	29	0	26.6
2	8	183	64	0	0	23.3
3	1	89	66	23	94	28.1
4	0	137	40	35	168	43.1

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

#Displaying first 10 data points
data.head(10)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age	Outcome	
0	6	148	72	35	0	33.6	0.627	50	1	ılı
1	1	85	66	29	0	26.6	0.351	31	0	
2	8	183	64	0	0	23.3	0.672	32	1	
3	1	89	66	23	94	28.1	0.167	21	0	
4	0	137	40	35	168	43.1	2.288	33	1	
5	5	116	74	0	0	25.6	0.201	30	0	
6	3	78	50	32	88	31.0	0.248	26	1	
7	10	115	0	0	0	35.3	0.134	29	0	
8	2	197	70	45	543	30.5	0.158	53	1	
9	8	125	96	0	0	0.0	0.232	54	1	

#Displaying last 10 data points
data.tail(10)

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age	Outcome	-
758	1	106	76	0	0	37.5	0.197	26	0	ıl.
759	6	190	92	0	0	35.5	0.278	66	1	
760	2	88	58	26	16	28.4	0.766	22	0	
761	9	170	74	31	0	44.0	0.403	43	1	
762	9	89	62	0	0	22.5	0.142	33	0	
763	10	101	76	48	180	32.9	0.171	63	0	
764	2	122	70	27	0	36.8	0.340	27	0	
765	5	121	72	23	112	26.2	0.245	30	0	
766	1	126	60	0	0	30.1	0.349	47	1	
767	1	93	70	31	0	30.4	0.315	23	0	

len(data)

768

#dimension of data
data.shape

1768 0

#determinig types of data included in the dataset data.dtypes

Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 int64 Insulin BMI float64 DiabetesPedigreeFunction float64 int64 Age Outcome int64 dtype: object

#knowing the mean & s.d of each feature involved data.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Ou [.]
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.0
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.3
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.4
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.0
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.0
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.0
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.0
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.0

From the above described data we can see the various factors are impacting the samples diagnosed with diabetes

#knowing about null values present in each feature data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype				
0	Pregnancies	768 non-null	int64				
1	Glucose	768 non-null	int64				
2	BloodPressure	768 non-null	int64				
3	SkinThickness	768 non-null	int64				
4	Insulin	768 non-null	int64				
5	BMI	768 non-null	float64				
6	DiabetesPedigreeFunction	768 non-null	float64				
7	Age	768 non-null	int64				
8	Outcome	768 non-null	int64				
dtvp	dtypes: float64(2), int64(7)						

memory usage: 54.1 KB

To check wether null values present or not data.isnull().sum()

Pregnancies a 0 Glucose BloodPressure 0 SkinThickness 0 Insulin 0 ${\tt DiabetesPedigreeFunction}$ 0 0 Age 0 Outcome dtype: int64

#we are going to drop the null values row data.dropna(inplace=True)

#As null values are not present, in order to handle them we can find mean of each feature and replace the null value with mea data["Glucose"].fillna(data["Glucose"].mean(), inplace=True) data["BloodPressure"].fillna(data["BloodPressure"].mean(), inplace=True)

data["SkinThickness"].fillna(data["SkinThickness"].median(), inplace=True) data["Insulin"].fillna(data["Insulin"].median(), inplace=True)

data["BMI"].fillna(data["BMI"].mean(), inplace=True)

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

_			-		
	#	Column	Non-	-Null Count	Dtype
_					
	0	Pregnancies	768	non-null	int64
	1	Glucose	768	non-null	int64
	2	BloodPressure	768	non-null	int64
	3	SkinThickness	768	non-null	int64
	4	Insulin	768	non-null	int64
	5	BMI	768	non-null	float64
	6	DiabetesPedigreeFunction	768	non-null	float64
	7	Age	768	non-null	int64
	8	Outcome	768	non-null	int64
d	typ	es: float64(2), int64(7)			
m	emo	ry usage: 54.1 KB			

#we are treating X as input and Y as Output...which says diabetes is present or not
X = data[['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age']]
X

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	Age	\blacksquare
0	6	148	72	35	0	33.6	0.627	50	ılı
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows \times 8 columns

```
Y =data[['Outcome']]
```

	Outcome	\blacksquare
0	1	ıl.
1	0	
2	1	
3	0	
4	1	
763	0	
764	0	
765	0	
766	1	
767	0	
768 row	e v 1 columns	2

768 rows x 1 columns

data.Age.describe()

count mean std min 25% 50% 75% max	768.000000 33.240885 11.760232 21.000000 24.000000 29.000000 41.000000
wame:	Age, dtype: float64

data.corr()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	${\bf Diabetes Pedigree Function}$	
Pregnancies	1.000000	0.129459	0.141282	-0.081672	-0.073535	0.017683	-0.033523	0.5
Glucose	0.129459	1.000000	0.152590	0.057328	0.331357	0.221071	0.137337	0.2
BloodPressure	0.141282	0.152590	1.000000	0.207371	0.088933	0.281805	0.041265	0.2
SkinThickness	-0.081672	0.057328	0.207371	1.000000	0.436783	0.392573	0.183928	-0.1
Insulin	-0.073535	0.331357	0.088933	0.436783	1.000000	0.197859	0.185071	-0.0
ВМІ	0.017683	0.221071	0.281805	0.392573	0.197859	1.000000	0.140647	0.0
DiabetesPedigreeFunction	-0.033523	0.137337	0.041265	0.183928	0.185071	0.140647	1.000000	0.0
Age	0.544341	0.263514	0.239528	-0.113970	-0.042163	0.036242	0.033561	1.0
Outcome	0.221898	0.466581	0.065068	0.074752	0.130548	0.292695	0.173844	0.2

Analysing Glucose

```
mean_glucose_diabetic = data[data["Outcome"] == 1]["Glucose"].mean()
mean_glucose_non_diabetic = data[data["Outcome"] == 0]["Glucose"].mean()

print("Mean Glucose Level:")
print("Diabetic Patients:", mean_glucose_diabetic)
print("Non-Diabetic Patients:", mean_glucose_non_diabetic)
```

Mean Glucose Level: Diabetic Patients: 141.25746268656715 Non-Diabetic Patients: 109.98

We are anlaysing the age factors for diabetes

```
average_age_diabetic = data[data["Outcome"] == 1]["Age"].mean()
average_age_non_diabetic = data[data["Outcome"] == 0]["Age"].mean()

print("Average Age:")
print("Diabetic Patients:", average_age_diabetic)
print("Non-Diabetic Patients:", average_age_non_diabetic)
```

Average Age: Diabetic Patients: 37.06716417910448 Non-Diabetic Patients: 31.19

Total Diagnosed

```
percentage_diabetic = (data["Outcome"].sum() / data["Outcome"].count()) * 100
print("\nPercentage of Diabetic Patients in the Dataset:", percentage_diabetic, "%")
```

Percentage of Diabetic Patients in the Dataset: 34.89583333333333 %

PLOTTING THE DATA

```
#green representing----No Diabetes
#red representing----- Diabetes

plt.figure(figsize=(12,17))
data['Outcome'].value_counts().plot(kind='bar', color=['green', 'red'])
plt.xlabel('Outcome (0: No Diabetes, 1: Diabetes)')
plt.ylabel('Count')
plt.title('Diabetes vs. Non-Diabetes Distribution')
plt.show()
```

Diabetes vs. Non-Diabetes Distribution

 \supseteq

Chances of being diagnosed with diabetes with Pregnancies

```
#Chances of being diagnosed with diabetes with Pregnancies
plt.figure(figsize=(8, 6))
data.groupby('Pregnancies')['Outcome'].mean().plot(kind='bar')
plt.xlabel('Number of Pregnancies')
plt.ylabel('Diabetes Probability')
plt.title('Diabetes Probability based on Number of Pregnancies')
plt.show()
```

