

Cálculo Numérico

Práctico 1 Ingeniería en Informática

Fecha: 14/8/2019

INTRODUCCIÓN A OCTAVE Y ERRORES

Los ejercicios indicados con * son parte del Obligatorio

Ejercicio 1

Graficar las funciones: $\cos 2x$, sen 4x y 2 sen x para $x \in [0, 2\pi]$.

- a. En primer lugar, realizar las gráficas por separado.
- b. Luego graficar la 3 conjuntamente. Estudiar el comando hold on

Ejercicio 2

Se desea implementar la Media Cuadrática, para ello considere $x = [x_1, x_2, ..., x_n]$ y calcule:

$$MC = \sqrt{\frac{\sum_{i=1}^{n} x_i^2}{n}}$$

Ejercicio 3*

Considere la definición de k dígitos significativos de un número vista en clase:

$$\left|\frac{z-\tilde{z}}{z}\right| < 5 \times 10^{-k}$$

Otros autores definen la cota como 0.5×10^{-k} ó $0.5 \times 10^{2-k}$.

Considere un conjunto de 5 valores distintos y compare las 3 definiciones, ¿cuál resulta ser la más exacta para el conjunto propuesto?.

Ejercicio 4

Dado el siguiente código:

```
%% MacLaurin de exp(x) en a=0
function expmaclaurin(x, pasos)
clc
et=0:
                    %% error verdadero
                    %% error relativo
er=0:
aprox=0;
                    %% valor aproximado
                    %% valor anterior
ant=0;
                    %% valor verdadero
verdadero=exp(x);
fprintf('Valor verdadero: %2.5f \n\n',verdadero);
for k=0:pasos-1
    ant=aprox;
    aprox=aprox+(x^k/factorial(k));
    et=(abs(verdadero-aprox)/verdadero)*100;
```

Complete el código para generar la siguiente salida:

```
Valor verdadero: 2.71828

Paso: 0 Aprox: 1.00000 Error verdadero: 63.21%

Paso: 1 Aprox: 2.00000 Error verdadero: 26.42% Error relativo: 50.00%

Paso: 2 Aprox: 2.50000 Error verdadero: 8.03% Error relativo: 20.00%

Paso: 3 Aprox: 2.66667 Error verdadero: 1.90% Error relativo: 6.25%

Paso: 4 Aprox: 2.70833 Error verdadero: 0.37% Error relativo: 1.54%

Paso: 5 Aprox: 2.71667 Error verdadero: 0.06% Error relativo: 0.31%

Paso: 6 Aprox: 2.71896 Error verdadero: 0.01% Error relativo: 0.05%

Paso: 7 Aprox: 2.71825 Error verdadero: 0.00% Error relativo: 0.01%

Paso: 8 Aprox: 2.71828 Error verdadero: 0.00% Error relativo: 0.00%

Paso: 9 Aprox: 2.71828 Error verdadero: 0.00% Error relativo: 0.00%
```

Ejercicio 5*

- Modificar el algoritmo para que se detenga cuando alcance un valor de tolerancia de $10^{-2}\,\%$
- Graficar los errores (ordenadas) vs. la cantidad de iteraciones (abscisas)

Ejercicio 6

La sucesión de Fibonacci está definida por la siguiente relación de recurrencia:

$$f_n = f_{n-1} + f_{n-2}$$
; $f_1 = 1, f_2 = 1$

- a. Implementarla en Octave usando la instrucción for..end
- b. Ídem usando while..end
- c. Ídem usando do..until

Ejercicio 7*

Sea la ecuación $x^3 - 3x^2 - 6x + 8 = 0$ de la cual se quiere hallar las raíces. Para ello se despeja x de la siguiente forma:

$$x = \sqrt{3x + 6 - \frac{8}{x}}$$

Esta ecuación se puede resolver iterativamente plantéandola de la siguiente forma:

$$x_{i+1} = \sqrt{3x + 6 - \frac{8}{x_i}}, \quad x_0 = 2$$

Generar una tabla con las siguientes columnas: i, x_i , error absoluto, error relativo porcentual. Realice 20 iteraciones y verifique que el valor de x_i sea raíz.

Ejercicio 8*

La fórmula para el cálculo de raíces tiene milenios. Uno de los primeros métodos es acreditado a los babilonios. Posteriormente Herón de Alejandría (ingeniero y matemático griego, 10-70~AC) propuso un método para calcular la raíz de un número S el cual se resume en el siguiente seudocódigo:

Paso 1. $x_0 \approx \sqrt{S}$ % comenzar con un valor inicial aprox. a la raíz

Paso 2.
$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{s}{x_n} \right)$$

Paso 3. Repetir el paso 2 hasta obtener la precisión deseada.

se cumple que
$$\sqrt{S} = \lim_{n \to \infty} x_n$$

Se pide:

- a. Aproximar la raíz de 100 usando como valores iniciales $x_0 = \{50,1,-5\}$ y realizando 10 pasos.
- b. Realizar el siguiente gráfico:

¿qué concluye?.

Ejercicio 9

Aplicando la ecuación anterior se quiere calcular $\sqrt{2}$. Considerando $x_0 = 1$ construya el siguiente cuadro:

	Error relativo estimado	Error relativo exacto
$x_0 = 1$	$ x_n - x_{n+1} / x_{n+1} $	$ \sqrt{2} - x_{n+1} / \sqrt{2} $
$x_1 = 1.5.$	0.333333	0.0606602
$x_2 = 1.4166666666666666666666666666666666666$	0.0588235	0.00173461
$x_3 = 1.4142156862745098039$	0.0017331	$1.5018250929351827\times 10^{-6}$
$x_4 = 1.4142135623746899106$	$1.5018239652057424\times 10^{-6}$	$1.1276404038266872\times 10^{-12}$
$x_5 = 1.4142135623730950488$	$1.1277376112344212\times 10^{-12}$	0.

Investigue y aplique el comando fprintf() para la construcción del mismo.

Ejercicio 10

Considere la matriz de Hilbert de 10x10:

Calcule la norma $||H||_{\infty}$