解析几何答案

陈家宝

目录

1 向量与坐标

1.1 向量的定义、加法和数乘

- 1. 证明: $\overrightarrow{PA_1} + \overrightarrow{PA_2} + \cdots + \overrightarrow{PA_n} = \left(\overrightarrow{OA_1} \overrightarrow{OP_1}\right) + \left(\overrightarrow{OA_2} \overrightarrow{OP_2}\right) + \cdots + \left(\overrightarrow{OA_n} \overrightarrow{OP_n}\right) = \overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} n\overrightarrow{OP}, \ \ \ \overrightarrow{OA_1} + \overrightarrow{OA_2} + \cdots + \overrightarrow{OA_n} = \mathbf{0}, \ \ \ \ \ \overrightarrow{PA_1} + \overrightarrow{PA_2} + \cdots + \overrightarrow{PA_n} = -n\overrightarrow{OP} = n\overrightarrow{OP}.$
- 2. (a) $(\mu \nu)(\mathbf{a} \mathbf{b}) (\mu + \nu)(\mathbf{a} \mathbf{b}) = \mu \mathbf{a} \mu \mathbf{b} \nu \mathbf{a} + \nu \mathbf{b} \mu \mathbf{a} + \mu \mathbf{b} \nu \mathbf{a} + \nu \mathbf{b} = -2\nu \mathbf{a} + 2\nu \mathbf{b}$.

(b)
$$\mathbf{D} = \begin{vmatrix} 3 & 4 \\ 2 & -3 \end{vmatrix} = -17, \mathbf{D_x} = \begin{vmatrix} \mathbf{a} & 4 \\ \mathbf{b} & -3 \end{vmatrix} = -3\mathbf{a} - 4\mathbf{b}, \mathbf{D_y} = \begin{vmatrix} 3 & \mathbf{a} \\ 3 & \mathbf{b} \end{vmatrix}, \mathbf{x} = \frac{D_x}{D} = \frac{3}{17}\mathbf{a} + \frac{4}{17}\mathbf{b}, \mathbf{y} = \frac{D_y}{D} = -\frac{3}{17}\mathbf{b} + \frac{2}{17}\mathbf{a}.$$

- 3. (1)**a** \perp **b**, (2)**a**, **b** 同向,(3)**a**, **b** 反向,且 $|\mathbf{a}| \geq |\mathbf{b}|(4)$ **a**, **b** 反向,(5)**a**, **b** 同向,且 $|\mathbf{a}| \geq |\mathbf{b}|$.
- 4. 证明: 若 $\lambda + \mu < 0, -\lambda < 0$, 由情形 1, 得 $[(\lambda + \mu) + (-\lambda)]$ **a** = $(\lambda + \mu)$ **a** + $(-\lambda)$ **a**, 即 μ **a** = $(\lambda + \mu)$ **a** λ **a**, 从而 $(\lambda + \mu)$ **a** = λ **a** + μ **a** 得证.

1.2 向量的线性相关性

1. (1) 错, 当 $\mathbf{a} = \mathbf{0}$ 时; (2) 错, 当 $\mathbf{a} = \mathbf{0}$ 时.

1 向量与坐标 2

2. 设 $\lambda \mathbf{c} + \mu \mathbf{d} = \mathbf{0}, \lambda (2\mathbf{a} - \mathbf{b}) + \mu (3\mathbf{a} - 2\mathbf{b}) = \mathbf{0}, (2\lambda + 3\mu)\mathbf{a} + (-\lambda - 2\mu)\mathbf{b} = \mathbf{0}.$ 由于 \mathbf{a}, \mathbf{b} 不共线,所以 $\begin{cases} 2\lambda + 3\mu = 0, & \mathbb{Z} & 2 & 3 \\ \lambda + 2\mu = 0. & \mathbb{Z} & 1 & 2 \end{cases} = 1 \neq 0, \text{ 所以}$ $\lambda = \mu = 0$,即 \mathbf{c}, \mathbf{d} 线性无关.

- 3. 证明: $\overrightarrow{AB}//\overrightarrow{CD}$, $E \setminus F$ 分别为梯形腰 $BC \setminus AD$ 上的中点,连接 EF 交 AC 于点 H, 则 H 为 AC 的中点, $\overrightarrow{FH} = \frac{1}{2}\overrightarrow{DC}$, $\overrightarrow{HE} = \frac{1}{2}\overrightarrow{AB}$, $\overrightarrow{FE} = \overrightarrow{FH} + \overrightarrow{HE} = \frac{1}{2}\left(\overrightarrow{DC} + \overrightarrow{AB}\right)$, 因为 $\overrightarrow{AB}//\overrightarrow{CD}$, 而 \overrightarrow{AB} 与 \overrightarrow{CD} 方向一致,所以 $\left|\overrightarrow{FE}\right| = \frac{1}{2}\left(\left|\overrightarrow{AB}\right| + \left|\overrightarrow{DC}\right|\right)$.
- 4. 设 $\mathbf{a} = \lambda \mathbf{b} + \mu \mathbf{c}$,则

$$\mathbf{a} = -\mathbf{e_1} + 3\mathbf{e_2} + 2\mathbf{e_3} = 2\lambda\mathbf{e_1} - 6\lambda\mathbf{e_2} + 2\lambda\mathbf{e_3} - 3\mu\mathbf{e_1} + 12\mu\mathbf{e_2} + 11\mu\mathbf{e_3},$$

 $\mathbb{R}\mathbb{I}$

$$(-1 - 4\lambda + 3\mu) \mathbf{e_1} + (3 + 6\lambda - 12\mu) \mathbf{e_2} + (2 - 2\lambda - 11\mu) \mathbf{e_3} = \mathbf{0},$$

又 e_1 、 e_2 、 e_3 线性相关,有

$$\begin{cases}
-1 - 4\lambda + 3\mu = 0 \\
3 + 6\lambda - 12\mu = 0 \\
2 - 2\lambda - 11\mu = 0.
\end{cases}$$

解得 $\lambda = -\frac{1}{10}, \mu = \frac{1}{5}$,所以 $\mathbf{a} = \frac{1}{10}\mathbf{b} + \frac{1}{5}\mathbf{c}$.

- 5. C.
- 6. $\overrightarrow{B}\overrightarrow{RD} = \lambda \overrightarrow{AD}, \overrightarrow{RE} = \mu \overrightarrow{BE}, \ \overrightarrow{M}$ $\overrightarrow{RD} = \lambda \overrightarrow{AB} + \frac{1}{3}\mu \overrightarrow{BC}, \overrightarrow{RE} = \overrightarrow{RD} + \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \mu \overrightarrow{BC} + \frac{1}{3}\mu \overrightarrow{CA},$ $\overrightarrow{D}\overrightarrow{AB} = \lambda \overrightarrow{AB} + \frac{1}{3}\mu \overrightarrow{BC}, \overrightarrow{RE} = \overrightarrow{RD} + \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \mu \overrightarrow{BC} + \frac{1}{3}\mu \overrightarrow{CA},$ $\overrightarrow{D}\overrightarrow{AB} = \lambda \overrightarrow{AB} + \frac{1}{3}\mu \overrightarrow{BC}, \overrightarrow{RE} = \overrightarrow{RD} + \frac{2}{3}\overrightarrow{BC} + \frac{1}{3}\overrightarrow{CA} = \mu \overrightarrow{BC} + \frac{1}{3}\mu \overrightarrow{CA},$

$$\overrightarrow{RD} = \left(\frac{2}{3}\mu - \frac{1}{3}\right)\overrightarrow{BC} + \frac{1}{3}\left(1 - \mu\right)\overrightarrow{AB} = \lambda\overrightarrow{AB} + \frac{1}{3}\lambda\overrightarrow{BC},$$

推得

$$\begin{cases} \frac{2}{3}\mu - \frac{1}{3} = \frac{1}{3}\lambda, \\ \frac{1}{3}(1-\mu) = \lambda \end{cases}$$

解得

$$\begin{cases} \lambda = \frac{1}{7} \\ \mu = \frac{4}{7} \end{cases}$$

所以 $RD = \frac{1}{7}AD, RE = \frac{4}{7}BE.$

1 向量与坐标 3

7. 由题得

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{PA} + \overrightarrow{OP} + \overrightarrow{PB} + \overrightarrow{OP} + \overrightarrow{PC} + \overrightarrow{OP} = \left(\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}\right) + 3\overrightarrow{OP},$$

$$\nabla \overrightarrow{CP} = 2\overrightarrow{PG} = \overrightarrow{PA} + \overrightarrow{PB}, \text{ 所以 } \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} = \mathbf{0}, \text{ 则 } \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}$$
 得证.

- 8. $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = 4\overrightarrow{OP} + \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC} + \overrightarrow{PD} = 4\overrightarrow{OP} + 2\overrightarrow{PH} + 2\overrightarrow{PG} = 4\overrightarrow{OP}$
- 9. "⇒" 因为 $A \setminus B \setminus C$ 三点共线,所以存在不全为 0 的实数 $k \setminus l$ 满足 $k\overrightarrow{AB} + l\overrightarrow{AC} = \mathbf{0}$,即 $k\left(\overrightarrow{OB} \overrightarrow{OA}\right) + l\left(\overrightarrow{OC} \overrightarrow{OA}\right) = \mathbf{0}$,化简得 $-(k+l)\overrightarrow{OA} + k\overrightarrow{OB} + l\overrightarrow{OC} = \mathbf{0}$,分别取 $\lambda = -(k+l)$, $\mu = k, \gamma = l$,得证.

" \Leftarrow " 因为 $\lambda = -(\mu + \gamma)$,设 $\lambda \neq 0$,则 μ 、 γ 不全为 0, $-(\mu + \gamma)$ \overrightarrow{OA} + $\mu\overrightarrow{OB}$ + $\gamma\overrightarrow{OC}$ = $\mathbf{0}$, 化简得 $\mu\left(\overrightarrow{OB} - \overrightarrow{OA}\right)$ + $\gamma\left(\overrightarrow{OC} - \overrightarrow{OA}\right)$ = $\mathbf{0}$,即 $\mu\overrightarrow{AB}$ + $\gamma\overrightarrow{AC}$ = $\mathbf{0}$,故 A、B、C 三点共线.

10. "⇒" 因为 P_1, P_2, P_3, P_4 四点共面,所以 $\overrightarrow{P_1P_2}, \overrightarrow{P_1P_3}, \overrightarrow{P_1P_4}$ 线性相关,存在不全为 0 的 m, n, p 使得 $m\overrightarrow{P_1P_2} + n\overrightarrow{P_1P_3} + p\overrightarrow{P_1P_4} = \mathbf{0}$, 即

$$m\left(\overrightarrow{OP_2} - \overrightarrow{OP_1}\right) + n\left(\overrightarrow{OP_3} - \overrightarrow{OP_1}\right) + p\left(\overrightarrow{OP_4} - \overrightarrow{OP_1}\right) = \mathbf{0},$$

即

$$-(m+n+p)\mathbf{n} + m\mathbf{r_2} + n\mathbf{r_3} + p\mathbf{r_4} = \mathbf{0},$$

 $m+n+p=\lambda_1, \lambda_2=m, \lambda_3=n, \lambda_4=p,$ 得证.

" \leftarrow " 设 $\lambda_1 \neq 0$,则 $\lambda_1 = -(\lambda_2 + \lambda_3 + \lambda_4)$,所以 $\lambda_2, \lambda_3, \lambda_4$ 不全为 0,

$$-(\lambda_2 + \lambda_3 + \lambda_4) \mathbf{r_1} + \lambda_2 \mathbf{r_2} + \lambda_3 \mathbf{r_3} + \lambda_4 \mathbf{r_4} = \mathbf{0},$$

因此 P_1, P_2, P_3, P_4 四点共面.

- 11. A, B, C 三点不共线 $\Leftrightarrow \overrightarrow{AB}, \overrightarrow{AC}$ 不共线 \Leftrightarrow 点 P 在 π 上 $\Leftrightarrow \overrightarrow{AP} = \mu \overrightarrow{AB} + \gamma \overrightarrow{AC} (\mu, \gamma \in \mathbb{R}) \Leftrightarrow \overrightarrow{OP} \overrightarrow{OA} = \mu \left(\overrightarrow{OB} \overrightarrow{OA}\right) + \gamma \left(\overrightarrow{OC} \overrightarrow{OA}\right) \Leftrightarrow \overrightarrow{OP} = (1 \mu \gamma) \overrightarrow{OA} + \mu \overrightarrow{OB} + \gamma \overrightarrow{OC},$ 取 $\gamma = 1 \mu \gamma$, 得证.
- 12. $(1)\overrightarrow{AD} = \frac{2}{3}\mathbf{e_1} + \frac{1}{3}\mathbf{e_2}, \overrightarrow{AE} = \frac{1}{3}\mathbf{e_1} + \frac{2}{3}\mathbf{e_2}$ (2) 由角平分线的性质得 $\frac{|\overrightarrow{BT}|}{|\overrightarrow{TC}|} = \frac{\mathbf{e_1}}{\mathbf{e_2}}, \ \ \ \overrightarrow{BT} \ \ \ \overrightarrow{DT} \ \ \ \ \ \ \overrightarrow{DT} \ \ \ \ \ \ \ \overrightarrow{BT} = \overline{TC}$ 同向,则 $\overrightarrow{BT} = \overline{TC}$

1 向量与坐标 4

$$\frac{\mathbf{e_1}}{\mathbf{e_2}}\overrightarrow{TC},\overrightarrow{BT} = \overrightarrow{AT} - \overrightarrow{AB},\overrightarrow{TC} = \overrightarrow{AC} - \overrightarrow{AT},$$
因此 $\overrightarrow{AT} - \overrightarrow{AB} = \frac{\mathbf{e_1}}{\mathbf{e_2}} \left(\overrightarrow{AC} - \overrightarrow{AT} \right),$ 得 $\overrightarrow{AT} = \frac{|e_1| + |e_2|}{|e_1| + |e_2|} \mathbf{e_1}.$

1.3 标架与坐标