Bit-Precise Neural Network Verification

Edoardo Manino

The University of Manchester

15 January 2025

Today

Why this presentation?

- A microcosm of spec debates
- What SONNX can be used for

Agenda

- Brief introduction
- NN verification
- C language for float NN spec
- Performance of software verifiers
- Issues and future work

Feel free to ask questions!

Systems and Software Security (S3) Group

L. Cordeiro (Software Security)

R. Banach (Formal Methods)

M. Mustafa (Applied Cryptography)

N. Zhang (loT Security)

E. Manino (Al Security)

B. Magri (Cryptography)

(Trustworthy AI)

D. Dresner (System Governance)

A. Creswell (cyber and AI)

G. Smith (Former director of GCHQ)

- Part of the Computer Science department at UoM
- ► Academic Centre of Excellence in Cyber Security Research

ESBMC: A Logic-based Verification Platform

Logic-based automated reasoning for verifying the safety and security of Al and software systems

Background: neural network verification

Mainstream approach (à la VNN-COMP)

- ▶ Neural network in high-level format (ONNX, PyTorch...)
- "Simple" property in FOL fragment (pre- and post-conditions)

Background: safety property example

Robustness property

- Pick an input x and a classifier f
- $\forall x', ||x x'|| < \epsilon \implies f(x) = f(x')$

"Classic ML" mindset

- $f: \mathbb{R}^n \to \mathbb{R}^m$
- ► VNN-COMP assumption

"Real-world" networks

- $ightharpoonup f: \mathbb{F}^n o \mathbb{F}^m$
- ▶ Or even $f: \mathbb{Z}^n \to \mathbb{Z}^m$

Implementation effects (1)

Can we expect consistent behaviour across devices?

- ► Cidon et al., Characterizing and taming model instability across edge devices, 2021
- ► Wang et al, SysNoise: exploring and benchmarking trainin-deployment system inconsistency, 2023
- Schlögl et al., Causes and Effects of Unanticipated Numerical Deviations in Neural Network Inference Frameworks, 2023

Many low-level sources of noise!

- ▶ Pre-processing: .jpg→tensor (iDCT, interpolation, colour)
- Model inference: convolutions, upsampling, floats, quantize
- ▶ Post-processing: tensor→bounding box (rounding coordinates)

Up to 6% accuracy fluctuation¹

¹Cidon [2021] runs MobileNetV2 on photos taken from five different phones.

Implementation effects (2)

Can we trust NN verifiers?

- VNN-COMP compares the best neural network verifiers
- Let's reproduce one of their results!

Benchmark: reach_prob_density/robot_11

- ▶ A ReLU network with architecture $5 \times 64 \times 64 \times 64 \times 5$
- ▶ Input assumption: $x_0 \in [-1.8, -1.2] \land x_1 \in [-1.8, -1.2]...$
- ▶ Output assertion: $y_0 \ge 0.27 \land y_1 \in [-0.17, 0.17]...$

Five tools return a counterexample!

▶ αβ-CROWN, Marabou, nnenum, VeriNet, Peregrinn

But none of them violates the output assertion²

²With the plain C code from onnx2c and the MinGW-w64 compiler.

YOU PROVED THAT AML MODELIS SAFE

YOUR GUARANTEE IS IMPLEMENTATION DEPENDENT

Bit-precise neural network verification

We need more precision!

- ▶ Bit-precise machine arithmetic (float or integer)
- Exact order of operations (requires knowledge of software)
- Guarantees sound proofs (unless the hardware is misbehaving)

Develop yet another software verifier

Check the performance of existing ones

NeuroCodeBench (1)

Neural network specification

- Produce microcontroller-style C code
- Use keras2c, onnx2c for translation

Safety property specification

- Add explicit pre- and post-conditions in the code
- E.g. assert(x >= 0.4287175f);

Benchmarking goals

- Compatibility: follow SV-COMP conventions
- Scalability: from small to "large" instances
- Correctness: verdicts must be known (do not rely on SV)

NeuroCodeBench (2)

Benchmark Category	Safe	Unsafe	Ground Truth
math_functions	33	11	A Priori
activation_functions	40	16	A Priori
hopfield_nets	47	33	A Priori
poly_approx	48	48	Brute Force
reach_prob_density	22	13	VNN-COMP'22
reinforcement_learning	103	193	VNN-COMP'22
Total	293	314	

Table: Overview of *NeuroCodeBench*. The "Unsafe" column comprises all properties for which a counterexample exists. The "Ground Truth" column reports the source of our verdicts.

NeuroCodeBench (3)

Functions from math.h

- expf, expm1f, logf, log1pf
- acosf, asinf, atanhf, cosf, sinf, tanhf
- erff, fabsf, fmaxf, sqrtf

Activation functions

Elu, Gelu, Logistic, ReLU, Softmax, Softplus, Softsign, TanH

Safety properties (Examples)

- ▶ Output bounds: $expf(x) \ge 1 + x$
- Periodicity: $sinf(x) = sinf(x + 2\pi)$
- ▶ Symmetry: tanhf(x) = -tanhf(-x)
- ▶ Inversion: expf(logpf(x)) = x

Benchmark Category

math_functions
activation_functions
hopfield_nets
poly_approx
reach_prob_density
reinforcement_learning

```
#include <verifier_functions.h>

#include <math.h>

#include <math.h>

float elu(float x)

fix >= 0.0f)

return x;

else
return expm1f(x);

}
```

NeuroCodeBench (4)

Classic Hopfield Networks

- Recurrent architecture
- Hard-coded Hebbian weights
- Error-correcting behaviour

Our idea

- Reconstruct a single $x = (1, 1, \dots, 1)$
- Use either softsign or tanh activations
- Vary code width and num of iterations

Safety properties

- ▶ Make $x_i \in [-1, +1]$ for i < half width
- ► Can the network reach x = (1, ..., 1)?

Benchmark Category

math_functions
activation_functions
hopfield_nets
poly_approx

reach_prob_density reinforcement_learning

NeuroCodeBench (5)

Transfer function approximation

- Very common in engineering
- Approximate electrical equivalent

Our idea

- Fourth-order oscillating polynomial
- ▶ ReLUs, 1–4 layers, 16–1024 width

Safety properties

- Robustness of approximation
- ▶ $|\mathsf{network}(x) \mathsf{poly}(x)| \le \epsilon$
- for x around the worst-case

Benchmark Category

math_functions
activation_functions
hopfield_nets
poly_approx
reach_prob_density
reinforcement_learning

NeuroCodeBench (6)

Importing VNN-COMP benchmarks

- ► Choose categories from 2022 edition
- with very small neural networks

Converting to plain C code

- Turn ONNX into plain C with onnx2c
- Microcontroller-style minimalism

Safety properties

- Keep the original VNN-LIB properties
- Encode them as assert/assume
- Check validity of counterexamples

Benchmark Category

math_functions
activation_functions
hopfield_nets
poly_approx
reach_prob_density
reinforcement_learning

NeuroCodeBench (7)

Benchmark Category	Safe	Unsafe	Ground Truth
math_functions	33	11	A Priori
activation_functions	40	16	A Priori
hopfield_nets	47	33	A Priori
poly_approx	48	48	Brute Force
reach_prob_density	22	13	VNN-COMP'22
reinforcement_learning	103	193	VNN-COMP'22
Total	293	314	

Table: Overview of *NeuroCodeBench*. The "Unsafe" column comprises all properties for which a counterexample exists. The "Ground Truth" column reports the source of our verdicts.

A short story (1)

Figure: top software verifiers after 900 seconds (August 2023).

Experiments with off-the-shelf verifiers

- ▶ We pick the top scoring tools from SV-COMP 2022
- We keep the same settings of the reachability category
- Some of these tools have competed for decades
- Variety of techniques: BMC, automata, portfolios

A short story (2)

Figure: top software verifiers after 900 seconds (August 2023).

Our opinion

- No support of mathematical libraries → incorrect results
- ightharpoonup Cannot scale to large programs ightharpoonup unknown result (timeout)

Is there anything else at play here?

A short story (3)

Reproducibility goal

- Submit NeuroCodeBench to SV-COMP 2023
- Experiments run by independent team
- Tool authors have a chance to fix bugs

Community engagement (October 2023)

- ► After some discussion³ NeuroCodeBench is approved
- ▶ All future editions of SV-COMP will use it

Improve ESBMC (November 2023)

- At Manchester, we develop one of the top software verifiers
- NeuroCodeBench is breaking our own tool too!

³https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/issues/1396

A short story (4)

Figure: top software verifiers before SV-COMP (August 2023).

Figure: top software verifiers after SV-COMP (December 2023).

A short story (5)

Figure: all software verifiers on NeuroCodeBench (December 2023).

Figure: all software verifiers on NeuroCodeBench (December 2023).

or so they thought...

Summary

Short benchmark paper

- NeuroCodeBench: a plain C neural network benchmark for software verification. AFRiTS workshop @ SBMF 2023.
- https://arxiv.org/abs/2309.03617
- https://github.com/emanino/plain_c_nn_benchmark
- Extended (journal) version in a few months

Position paper on PL, NN & verification

- Neural Network Verification is a Programming Language Challenge. Accepted @ ESOP 2025.
- https://arxiv.org/abs/2501.05867

Any questions?