Introduction to the Million Songs Dataset

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Jamen LongData Scientist at Nike

Explicit vs implicit

Explicit Ratings

Explicit vs implicit (cont.)

Explicit Ratings

Implicit Ratings

= Low Confidence Rating

= High Confidence Rating

Implicit refresher II

Explicit Ratings

Implicit Ratings

= Low Confidence Rating

= High Confidence Rating

Introduction to the Million Songs Dataset

Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian Whitman, and Paul Lamere. The Million Song Dataset. In Proceedings of the 12th International Society for Music Information Retrieval Conference (SIMIR 20122), 2011.

Add zeros sample

```
ratings.show()
```

```
+----+
|userId|songId|num_plays|
+----+
| 10| 22| 5|
| 38| 99| 1|
| 38| 77| 3|
| 42| 99| 1|
+----+
```


Cross join intro

```
users = ratings.select("userId").distinct()
users.show()
|userId|
     10|
     38|
     42|
songs = ratings.select("songId").distinct()
songs.show()
+----+
|songId|
     22|
     77|
     99|
```


Cross join output

```
cross_join = users.crossJoin(songs)
cross_join.show()
```

```
|userId|songId|
    10|
           22|
    10|
           77|
           99|
    10|
           22|
    38|
           77|
    38|
           99|
    38|
           22|
    42
    42|
           77|
    42|
           99|
```


Joining back original ratings data

```
|userId|songId|num_plays|
   10|
         22| 5|
   10|
          77| null|
          99|
                null|
   10|
          22|
                null|
   38|
   381
          77|
                   3|
   38|
          99|
          22|
                 null|
   421
          77|
                 null|
   42
   42
          99|
```

Filling in with zero

```
|userId|songId|num_plays|
         22|
                   5|
   10|
         77|
   10|
          99|
                   0|
   10|
   38|
          22
                   0 |
          77|
                   3|
   38|
          99|
   38|
          22|
   42|
   42|
          77|
                   0 |
   42
          99|
```

Add zeros function

```
def add_zeros(df):
    # Extracts distinct users
    users = df.select("userId").distinct()
   # Extracts distinct songs
    songs = df.select("songId").distinct()
    # Joins users and songs, fills blanks with 0
    cross_join = users.crossJoin(items) \
                .join(df, ["userId", "songId"], "left").fillna(0)
    return cross_join
```

Let's practice!

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Evaluating implicit ratings models

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Jamen Long
Data Scientist at Nike

Why RMSE worked before

userId	movield	rating	explicit rating prediction
1	2112	5	4.88
1	303	3.5	3.96
2	5	3	2.78
2	77	2	2.89
3	913	1.5	2.11
3	44	4	3.56
3	6	4.5	4.67
	•		γ

Predictions reflect actual ratings.
RMSE makes sense here.

Why RMSE doesn't work now

userId	movield	num_plays	implicit rating prediction
1	2112	16	1.755
1	303	3	.88
2	5	1	.01
2	77	2	.5
3	913	1	.08
3	44	21	1.98
3	6	4	.98

Different metrics.

RMSE doesn't make sense here.

(ROEM) Rank Ordering Error Metric

$$ext{ROEM} = rac{\sum_{u,i} r_{u,i}^t ext{rank}_{u,i}}{\sum_{u,i} r_{u,i}^t}$$

ROEM bad predictions

bad_prediction.show()

```
|userId |songId|plays|badPreds|percRank|
    111|
            22
                   3 | 0.0001 |
                                 1.000|
    111|
                        0.999
                                 0.000|
                   0 |
                         0.08|
                                 0.500|
    111|
           321
                   0|0.000003|
    222
            84|
                                 1.000|
    2221
           821
                         0.88
                                 0.000|
                         0.73
                                 0.500|
    222
          91|
                         0.90|
    333|
          2112
                                 0.000|
                         0.80|
    333|
            42|
                                 0.500|
                   0|
                         0.01
    333|
                                 1.000
```


ROEM: PercRank * plays

```
bp = bad_predictions.withColumn("np*rank", col("badPreds")*col("percRank"))
bp.show()
```

```
|userId |songId|num_plays|badPreds|percRank|np*rank|
                                     1.000|
    111|
            22
                       3 | 0.0001 |
                                               3.00
                                               0.00|
                            0.999
                                      0.000
    1111
    111|
                       0 |
                                      0.500|
                                               0.00
           321
                             0.08
            84|
                       0|0.000003|
                                      1.000|
                                               0.00
    222
    2221
           821
                             0.881
                                      0.000
                                               0.00
                       2|
                             0.73
                                      0.500|
                                               1.00|
            91|
    222
          2112
                                      0.000
                                               0.00
    333|
                             0.90
                                               1.00|
    333|
            42
                       2
                             0.80|
                                      0.500
    333|
                             0.01
                                      1.000|
                                               0.00
```


ROEM: bad predictions

```
|userId |songId|num_plays|badPreds|percRank|np*rank|
    111|
           22
                     3 0.0001 1.000
                                         3.00
    111|
                          0.999
                                  0.000|
                                          0.00
    1111
          321 l
                           0.081
                                  0.500|
                                           0.00
    2221
                     0|0.000003|
                                  1.000|
                                          0.00
          821
                                  0.000|
                                           0.00
    222
                           0.88
           911
    222
                           0.73
                                  0.500
                                          1.00|
                           0.90|
                                  0.000|
    333|
         2112
                                          0.001
                           0.80
    3331
                                  0.500|
                                          1.00|
    333 l
            6|
                           0.01
                                  1.000|
                                           0.001
```

```
numerator = bp.groupBy().sum("np*rank").collect()[0][0]
denominator = bp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
```

```
ROEM: 5.0 / 9 = 0.556
```


Good predictions

```
gp = good_predictions.withColumn("np*rank", col("goodPreds")*col("percRank"))
gp.show()
```

```
userId |songId|num_plays|goodPreds|percRank|np*rank|
   111|
           22
                     3 1.1
                                 0.000| 0.000|
   111
                        0.01|
                                   0.5\overline{00} 0.000
           77|
                                  1.000| 0.000|
           99|
                         0.008
   111
   2221
           22
                         0.0003
                                  1.000| 0.000|
                                   0.000|
   222
           77
                            1.5
                                          0.000
                         1.4
                                   0.500
                                         1.000
   222
           99|
                           0.90|
                                   0.500|
                                          0.000|
           22
   3331
                                   0.000|
                          1.6
   333 l
           77
                                          0.000
                           0.01
   333|
                                   1.000 | 0.000 |
```

ROEM: good predictions

```
|userId |songId|num_plays|goodPreds|percRank|np*rank|
                     3 | 1.1 | 0.000 | 0.000 |
    111|
           22
    111|
                     0 0.01
                                 0.500| 0.000|
    1111
                          0.008
                                  1.000| 0.000|
    2221
                         0.0003|
                                  1.000| 0.000|
                            1.5
                                   0.000| 0.000|
    222
           77|
           99|
                     2 1.4
                                 0.500| 1.000|
    222
                           0.90
                                 0.500| 0.000|
    333 l
           22
                          1.6
                                   0.000| 0.000|
    333 l
    333 l
           99|
                           0.01 | 1.000 | 0.000 |
```

```
numerator = gp.groupBy().sum("np*rank").collect()[0][0]
denominator = gp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
```

```
ROEM: 1.0 / 9 = 0.1111
```


ROEM: link to function on GitHub

```
|userId |songId|num_plays|goodPreds|percRank|np*rank|
                     3 | 1.1 | 0.000 | 0.000 |
    111|
           22
    111|
                     0 0.01
                                  0.500| 0.000|
    1111
                           0.008
                                  1.000| 0.000|
    2221
                          0.0003
                                  1.000 | 0.000 |
                            1.5
                                   0.000 | 0.000 |
    222
           99|
                     2 | 1.4 | 0.500 | 1.000 |
    222
                            0.90
                                  0.500| 0.000|
    333|
                           1.6
                                   0.000| 0.000|
    333 l
    333 l
                            0.01 | 1.000 | 0.000 |
```

```
numerator = gp.groupBy().sum("np*rank").collect()[0][0]
denominator = gp.groupBy().sum("num_plays").collect()[0][0]
print ("ROEM: "), numerator * 1.0/ denominator
```

```
ROEM: 1.0 / 9 = 0.1111
```


Building several ROEM models

```
(train, test) = implicit_ratings.randomSplit([.8, .2])
# Empty list to be filled with models
model_list = []
# Complete each of the hyperparameter value lists
ranks = [10, 20, 30, 40]
maxIters = [10, 20, 30, 40]
regParams = [.05, .1, .15]
alphas = [20, 40, 60, 80]
# For loop will automatically create and store ALS models
for r in ranks:
    for mi in maxIters:
        for rp in regParams:
            for a in alphas:
                model_list.append(ALS(userCol= "userId", itemCol= "songId",
                ratingCol= "num_plays", rank = r, maxIter = mi, regParam = rp,
                alpha = a, coldStartStrategy="drop", nonnegative = True,
                implicitPrefs = True))
```

Error output

```
for model in model_list:
    # Fits each model to the training data
    trained_model = model.fit(train)
   # Generates test predictions
    predictions = trained_model.transform(test)
    # Evaluates each model's performance
    ROEM(predictions)
```

Let's practice!

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Overview of binary, implicit ratings

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Jamen Long
Data Scientist at Nike

Binary ratings

binary_movie_ratings.show()

```
|userId|movieId|binary_rating|
   26|
        474
        2529 1
   26
                       0|
   26
        26
   26
        1950|
   26
        4823
       72011|
   26 | 142507 |
   38|
        1325
        6011|
   38 l
```


Class imbalance

getSparsity(binary_ratings)

Sparsity: .993

Item weighting

• Item Weighting: Movies with more user views = higher weight

Item weighting and user weighting

- Item Weighting: Movies with more user views = higher weight
- User Weighting: Users that have seen more movies will have lower weights applied to unseen movies

Let's practice!

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Course recap

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

Jamen LongData Scientist at Nike

Course summary

Three types of data

- Explicit Ratings
- Implicit Ratings using user behavior counts
- Implicit Ratings using binary user behavior

Things to bear in mind

• The more data the better

Things to bear in mind (cont.)

- The more data the better
- The best model evaluation is whether actual users take your recommendations

Resources

- McKinsey&Company: "How Retailers Can Keep Up With Consumers"
- ALS Data Preparation: Wide to Long Function
- Hu, Koren, Volinsky: "Collaborative Filtering for Implicit Feedback Datasets"
- GitHub Repo: Cross Validation With Implicit Ratings in Pyspark
- Pan, Zhou, Cao, Liu, Lukose, Scholz, Yang: "One Class Collaborative Filtering"

Let's practice!

BUILDING RECOMMENDATION ENGINES WITH PYSPARK

