Model evaluation and selection

V. Kitov

Imperial College London Department of Physics

January 2015

Table of Contents

- Error rate properties
- 2 Confusion matrix
- 3 ROC curves
- 4 Properties of machine learning algorithms

Sample usage

- Holdout
- Cross-validation
- Stratified cross-validation

Comments

- Bayes minimum error rate theoretical lower bound
- Training error rate optimistically biased
- Test error rate pessimistically biased (since part of data used for error estimation)

Holdout estimate of error rate distribution

Let e be the probability of making error on previously unseen object. Probability of observing k errors on test sample of size n:

$$p(k|e,n) = \binom{n}{k} e^{k} (1-e)^{n-k}$$

Then

$$p(e|k,n) = \frac{p(e,k|n)}{p(k|n)} = \frac{p(k|e,n)p(e|n)}{\int p(k|n)p(e|n)de}$$

Assuming that $p(e|n) \equiv const$, we obtain

$$p(e|k,n) = \frac{p(k|e,n)}{\int p(k|n)de} \propto e^{k}(1-e)^{n-k}$$

Since beta-distribution

$$Be(x|\alpha,\beta) = [\Gamma(\alpha+\beta)/(\Gamma(\alpha)\Gamma(\beta))]x^{\alpha-1}(1-x)^{\beta-1}$$
 it follows that $p(e|k,n) \sim Be(k+1,n-k+1)$

Discriminability vs. reliability

- Discriminability measures how well classes are classified
 - Error rate is discriminability measure
- Reliability how well class probabilities are estimated
 - Likelihood $(y_i \text{ is the class of } x_i)$:

$$\prod_{i=1}^n \widehat{p}(y_i|x_i)$$

Brier score:

$$\frac{1}{n}\sum_{i=1}^{n}\sum_{c=1}^{C}\left(\mathbb{I}[x_{i}\in\omega_{c}]-\widehat{p}(\omega_{c}|x_{i})\right)^{2}$$

• Example of good discriminability and poor reliability

Limitation of error rate

- Proportion of errors E
- Proportion of correct classifications 1 E
- Average cost

Limitation of error rate

- Proportion of errors E
- Proportion of correct classifications 1 E
- Average cost

Limitation

These methods give general performance, without suggesting improvement.

Table of Contents

- Error rate properties
- 2 Confusion matrix
- 3 ROC curves
- 4 Properties of machine learning algorithms

Confusion matrix

 w_{ij} - number of objects, belonging to ω_i but classified as ω_j .

Confusion matrix visualized

Which pair of classes contribute maximum errors?

Confusion matrix visualized

Which pair of classes contribute maximum errors?

Possible solution

Consider hierarchical 2-layer classifier:

- on first layer pairs (ω_1, ω_2) and (ω_3, ω_6) are treated as single classes ω_{12} and ω_{36}
- second layer discriminates individual classes inside grouped classes

2-class case

Confusion matrix:

Estimated class

		+	-
ue class	+	True positives	False negatives
	-	False positives	True negatives

2-class case

Confusion matrix:

Estimated class

		+	-
True class	+	True positives	False negatives
	-	False positives	True negatives

Derived performance measures:

Accuracy:	$\frac{TP+TN}{P+N}$	Error rate:	FP+FN P+N
FPR:	FP N	TPR:	TP P
Precision:	TP TP+FP	Recall:	TP P
F-measure:	$\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$	F_{eta} -measure:	$\frac{1}{\frac{\beta^2}{1+\beta^2}\frac{1}{Precision} + \frac{1}{1+\beta^2}\frac{1}{Recall}}$

Table of Contents

- Error rate properties
- 2 Confusion matrix
- 3 ROC curves
- 4 Properties of machine learning algorithms

Parametrization of predicted class proportions

Bayes minimum risk solution: assign x to ω_1 if

$$\lambda_1 p(\omega_1) p(x|\omega_1) > \lambda_2 p(\omega_2) p(x|\omega_2)$$

This condition is equivalent to

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} > \frac{\lambda_2 p(\omega_2)}{\lambda_1 p(\omega_1)} = \mu_1$$

Neyman-Pearson decision: assign x to ω_1 if

$$\frac{p(x|\omega_1)}{p(x|\omega_2)} > \mu_2$$

where μ_2 is selected so that

$$\int_{\Omega_1} p(x|\omega_2) dx = \varepsilon_0$$

Discriminant functions example: assign x to ω_1 if $\frac{g_1(x)}{g_2(x)} > \mu$.

ROC curve

As μ increases, the algorithm becomes more inclinable to select class ω_1 (positive class).

- TPR=1 $-\varepsilon_1$ increases
- FPR= ε_2 also increases

ROC properties

- Bayes minimum error, Bayes minimum risk, Newman-Pearson decision rules represent points on the ROC curve.
- Diagonal represents random guessing
- Loss is equal to

$$L = \lambda_2 p(\omega_2) \varepsilon_2 + \lambda_1 p(\omega_1) \varepsilon_1 = \lambda_2 p(\omega_2) \varepsilon_2 - \lambda_1 p(\omega_1) (1 - \varepsilon_1) + \lambda_1 p(\omega_1)$$

- At optimality point iso-loss surface is tangent to ROC curve with slope tangent equal to $\frac{\lambda_2 p(\omega_2)}{\lambda_1 p(\omega_1)}$
- Better ROC curves are more concave
- Performance characteristic: area under curve (AUC).
- AUC is also the probability that for random $x_1 \in \omega_1$ and $x_2 \in \omega_2$ if would be true that: $\widehat{p}(\omega_1|x_1) > \widehat{p}(\omega_2|x)$
- Convex hull union of algorithms

Table of Contents

- Error rate properties
- 2 Confusion matrix
- 3 ROC curves
- 4 Properties of machine learning algorithms

Properties of machine learning algorithms

- Accuracy achieved on observed data
- Generalization ability (robustness) expected accuracy decrease on new data
- Online/offline ability to adapt to new data without full recomputation
- Efficiency
 - computational complexity
 - to train the model
 - to apply the model to new observation
 - to adapt to new information (if online)
 - memory requirements
 - scalability

Properties of machine learning algorithms

- Data constraints
 - assumptions about data distribution
 - flexibility to adapt to data if data assumptions are violated
 - ability to operate well in multidimentional features space
 - possibility to work with discrete/continuous variables or both
- Usability
 - simplicity of maintaince
 - number of user-specified parameters
 - expertise needed to set user-specified parameters
 - simplicity of algorithm logic
 - interpretability of results
- Technical questions:
 - Availability of implicit feature selection
 - Necessity to normalize features before use

Performance assessment caveats

- Quality metric may be different in 3 stages:
 - inside algorithm tuning
 - inside model evaluation
 - real quality in operating conditions
- Population drift: operating conditions may differ from the test set.