RIP y OSPF

Álvaro González Sotillo

23 de marzo de 2020

Índice

1.	Introducción	1
2.	Métrica del enrutamiento	1
3.	Ejemplo de enrutamiento redundante	2
4.	RIP y OSPF	4
5.	RIP	4
6.	OSPF	5
7.	Distancia administrativa (Cisco)	5
8.	Referencias	6

1. Introducción

- El protocolo IP se pensó para tener más de una ruta a cada destino
- De esta forma, la red era tolerante a fallos
- Pero hasta ahora, solo utilizamos una ruta para cada destino

2. Métrica del enrutamiento

- Las tablas de rutas pueden tener más de una ruta para un destino
 - Ejemplo: la ruta 0.0.0.0/0 (para ir a Internet) es aplicable también a la red local
- IP decide qué ruta aplicar de la siguiente forma
 - Calcula todas las rutas aplicables
 - Se queda con la de menor métrica
 - En implementaciones reales, también se usan otros criterios
 - o Flags de la ruta
 - o Tipo de enlace (VPN, loopback...)

<pre>media/enrutamiento-redundante.svg.pdf</pre>	
media/enrutamiento-redundante.svg.pdf	
media/enrutamiento-redundante.svg.pdf	
<pre>media/enrutamiento-redundante.svg.pdf</pre>	
<pre>media/enrutamiento-redundante.svg.pdf</pre>	
media/enrutamiento-redundante.svg.pdf	
media/enrutamiento-redundante.svg.pdf	
<pre>media/enrutamiento-redundante.svg.pdf</pre>	
<pre>media/enrutamiento-redundante.svg.pdf</pre>	
<pre>media/enrutamiento-redundante.svg.pdf</pre>	
media/enrutamiento-redundante.svg.pdf	

3.1. Tabla de enrutamiento de A

IP	Máscara	$\operatorname{Gateway}$	Métrica
192.168.1.0	/24	(yo mismo)	
192.168.2.0	/24	10.0.2.2	1
192.168.2.0	/24	10.0.1.2	3
192.168.3.0	/24	10.0.1.2	1
192.168.3.0	/24	10.0.2.2	3
192.168.4.0	/24	10.0.1.2	2
192.168.4.0	/24	10.0.1.2	2

3.2. Tabla de enrutamiento de B

IP	Máscara	$\operatorname{Gateway}$	Métrica
192.168.2.0	/24	(yo mismo)	
192.168.1.0	/24	10.0.2.1	1
192.168.1.0	/24	10.0.3.2	3
192.168.3.0	/24	10.0.2.1	2
192.168.3.0	/24	10.0.3.2	2
192.168.4.0	/24	10.0.3.2	1
192.168.4.0	$^{'}/24$	10.0.2.1	3

3.3. Tablas de enrutamiento de C y D

■ Se dejan como ejercicio

3.4. Resultado

- \blacksquare Si el enlace entre A y C se rompe
 - $\bullet\,$ A envía los paquetes de 192.168.3.0/24 a B
- B seguirá enviando los paquetes de 192.168.3.0/24 a A

3.5. Ejercicio

Enlace a fichero PKT

4. RIP y OSPF

- Añadir rutas es una tarea rutinaria
 - Para llegar allí pasa por aquí...
- Los propios routers pueden **anunciar** qué redes pueden alcanzar
- Los propios routers pueden detectar problemas y dejar de utilizar algunas rutas

5. RIP

- Routing Information Protocol
- RIPv1: Solo soporta redes con clase
- RIPv2: Estandar actual, soporta VLSM y CIDR
- Periódicamente, cada router anuncia sus redes alcanzables
- \blacksquare Una ruta caduca cuando no es actualizada en un tiempo, y se considera inalcanzable
- Cuando pasa un tiempo con la ruta caducada, se borra de la tabla de rutas

5.1. Ventajas de RIP

- Simple
- Soportado por casi todos los routers

5.2. Desventajas de RIP

- Su métrica es solo el número de saltos (sin ancho de banda, congestión...)
- Solo redes pequeñas (máximo de 16 saltos)
- El tiempo de convergencia (descubrimiento de cambios de la red) es largo

5.3. RIP en Cisco

- Se debe permitir al router anunciar cada una de las redes a las que está directamente conectado
- Acepta información RIP por las interfaces de las redes anunciadas

```
Router(config) #router rip
Router(config-router) #network 192.168.1.0
Router(config-router) #network 200.200.1.0
```

5.4. Interfaces pasivas

- La información de RIP se envia por todas las interfaces que se anuncian
- Si no hay routers por una red anunciada, estos mensajes no tienen sentido
- Una interfaz pasiva se anuncia por otras interfaces, pero no se envían anuncios por ellas

```
Router(config) #router rip
Router(config-router) #passive-interface FastEthernet 0/1
```

5.5. Ejercicio

Repite el ejercicio de añadir rutas redundantes, pero de forma automática (con RIP), en vez de con rutas estáticas

6. OSPF

- Open Shortest Path First
- Más complejo que RIP
- No tiene sus desventajas
- Adecuado para redes grandes

7. Distancia administrativa (Cisco)

7.1. Formas de descubrir rutas

- Las rutas conocidas llegan por diferentes vías:
 - Redes directamente conectadas a interfaces
 - Rutas estáticas
 - OSPF
 - RIP
 - . . .
- No todos las vías son igual de confiables:
 - Las redes directamente conectadas seguro que funcionan
 - Las rutas estáticas las determina un administrador, que seguro que está en lo cierto
 - $\bullet\,$ OSFP es más fiable que RIP
 - Hay más formas (BGP, EIGRP...)

7.2. Distancia administrativa

- Un router CISCO determina cuál es la menor distancia administrativa entre sus rutas
- Después, elige la ruta a aplicar entre la menor **métrica**
- Es una práctica común
 - Configurar los routers para que autodescubran las rutas
 - Crear una ruta estática por si falla el autodescubrimiento

Vía de descubrimiento	Distancia administrativa
Red directamente conectada	0
Ruta estática (por defecto)	1
OSPF	110
RIP	120
Ruta estática (flotante, de backup)	Cualquier número

8. Referencias

- Formatos:
 - Transparencias
 - PDF
- Creado con:
 - Emacs
 - org-reveal
 - Latex