Universidade Estadual de Campinas

FACULDADE DE ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO

EE881 – Princípios de Comunicações Prova 1 – A 06/04/2010

RA: ______ Nome: ______ Ass.: _____

Questão	Valor	Nota
1	2,5	
2	1,0	
3	3,0	
4	2,5	
5	1,0	
Soma	10,0	

Questão 1:

Considere o sinal $g(t) = A_0 + A_1 \cos(2\pi f_1 t + \theta_1)$.

- 1. Determine sua função de auto-correlação $R_g(\tau)$.
- 2. Qual o valor de $R_g(0)$ e qual o seu significado?
- 3. Perde-se alguma informação sobre g(t) quando observamos apenas $R_g(\tau)$?

Questão 2:

Considere a densidade espectral de potência de um sinal g(t) mostrada na Figura 1. Encontre a potência média deste sinal.

Questão 3:

O sinal AM $s(t) = A_c[1+k_am(t)]\cos(2\pi f_c t)$ é aplicado ao sistema da Figura 2. Assuma que $|k_am(t)| < 1$ para todo t e que o sinal m(t) é limitado a uma faixa de W Hz e que $f_c > 2W$.

- 1. Mostre que m(t) pode ser obtido da saída $v_3(t)$.
- 2. Esboce o espectro de frequências de $v_1(t)$ e $v_2(t)$.

Questão 4:

O sinal de mensagem $m(t) = A_m \cos(2\pi f_m t)$ é usado para gerar a modulação linear

$$s(t) = \frac{1}{2}aA_mA_c\cos(2\pi(f_c + f_m)t) + \frac{1}{2}(1 - a)A_mA_c\cos(2\pi(f_c - f_m)t)$$

- 1. Encontre a componente em quadratura de s(t).
- 2. Como podemos classificar esta modulação? Justifique.

Questão 5:

Dado o espectro de um sinal de faixa-estreita mostrado na Figura 3, encontre a sua representação complexa em banda básica, $\tilde{s}(t)$.

Figura 2

Figura 3

