♣ 2.1節まとめ: Basic Linear Model and Transfer Functions

☑ この節の目的

PLLの**線形モデル**を使って、各ノイズ源が出力にどう影響するかを定量的に捉えるための**伝達関数**を 導出する。

◆ PLLの基本構造(Fig. 2.1)

ブロック	説明
PD (Phase Detector)	φոREF:基準信号由来のノイズ + inPD:位相検出器自体のノイズ
LF (Loop Filter)	vnLF:RCネットワークに起因する熱雑音など
VCO	φ _n VCO:最も強く影響するノイズ源、1/f² or 1/f³のプロファイル
Divider	φηDIV:分周器の雑音(整数Nなら熱雑音、分数NならDSM由来ノイズも)

◆ 開ループ伝達関数(HOL(s))

$$H_{ ext{OL}}(s) = rac{K_{ ext{PD}} \cdot K_{ ext{VCO}} \cdot H_{ ext{LF}}(s)}{N_1 s}$$

→ VCOが"積分器"として機能するため、s分の1が含まれる

◆ H_LF(s) の例(Fig. 2.2)

- 2次RCフィルタを想定
- 零点 $\omega_z=1/RC_1$ 、極 $\omega_p=1/RC_1+1/RC_2$
- 伝達関数には極・零点のバランスで周波数特性が決まる

◆ 各ノイズ源に対する伝達関数(出力への影響)

名称	数式	特性
$H_{\mathrm{REF,OUT}}(s)$	$rac{N_1 H_{ m OL}(s)}{1 + H_{ m OL}(s)}$	LPF型(低周波ノイズが通る)
$H_{ m PD,OUT}(s)$	$rac{N_1}{K_{ ext{PD}}} \cdot H_{ ext{LPF}}(s)$	LPF型
$H_{ m LF,OUT}(s)$	$rac{K_{ m VCO}}{s} \cdot rac{1}{1 + H_{ m OL}(s)}$	BPF型(中心はω_UG)
$H_{ m VCO,OUT}(s)$	$rac{1}{1+H_{ ext{OL}}(s)}$	HPF型(高周波ノイズが通る)
$H_{ m DIV,OUT}(s)$	$-H_{ m LPF}(s)$	LPF型(マイナス極性)

◆ 等価ノイズ源とトレードオフ(Fig. 2.3~2.5)

- ノイズ源を**基準側(φ,REF、inPD、φ,DIV)とVCO側(φ,VCO)**に分類
- PLLのLPF特性で前者を、HPF特性で後者を抑える
- \rightarrow 帯域 (ω UG) をどこに設定するかでトレードオフ

☑ 結果:

状況	結果
ω_UGが広すぎると	VCOノイズは減るけど、基準系ノイズが通る
ω_UGが狭すぎると	基準系ノイズは減るけど、VCOノイズが支配的になる
◎ ベストは?	両者のバランスが取れた帯域に設計する(例:Fig. 2.4(a) で最小ジッター)

まとめ(カジュアルver)

PLLって、ただ周波数を合わせるだけじゃなくて、**"どのノイズをどれくらい許容するか"っていう設** 計**そのものがめちゃ重要**。

各ノイズ源が"通りやすい"か"通りにくい"かは、**ループ全体の周波数応答(伝達関数)**で決まってる。

だから「設計=周波数バランス」ってこと。

☀ 2.2節 まとめ:Quantization Noise and Fractional Spurs

☑ 背景:Fractional-N PLLの便利さと課題

内容	説明
Fractional-N PLLとは?	分周比を非整数にして、 きめ細かい周波数設定 ができるPLL
何が課題?	分周比を"整数しか使えない"ので、 DSMで近似 する必要がある
問題点	① 量子化ノイズ ② 周期性によるスパー(spur)

◆ 2.2.1:Delta-Sigma Modulation(DSM)の仕組みと量子化ノイ ズ

ポイント	内容
DSMの役割	分数分周比を 整数の列で近似 する(例:2, 3, 2, 2)
問題	切り捨て誤差(量子化ノイズ)が出る。 このノイズがPLL出力に漏れるとPNが悪化
対策	DSMで**ノイズを高周波に押し出す(ノイズシェーピング)**ことで、 PLLのLPFで除去可能にする

◆ 2.2.2:Fractional Spurs の原因と対策

原因	説明
スパーとは?	分周比の変動パターンが 周期的 だと、スペクトルに鋭いトーン (spur)が立つ
ランダマイズしても	擬似乱数でも完全には周期性を排除できず、スパーは残る

原因	説明
非線形性が原因でも出る	CPやSPDなどの 非線形ブロック でノイズが折り返され、 低周波スパーとして出てくる
スパーはLPFで除去できない?	スパーは 低周波に現れる ため、 PLLの帯域とバッティングしてしまい除去困難

◆ 2.2.3:量子化ノイズとスパーの抑制手法(Prior Arts)

★ 方法①:ノイズキャンセル(DTC/IDAC)

- DSMの誤差を予測 → **電流や時間で"打ち消す"**
- ① キャリブレーションが必要(LMS, LUT補正)
- ① ロック時間が長くなる、実装が複雑、予測が困難

△ 方法②:ノイズシェーピング周波数を上げる

- DSMクロック (=f REF) を高速化 → ノイズが高域に行く
- 方法:高周波Xtal、参照PLL/Multiplier、2段分周など
- ① 回路が複雑化、電力増、スパー出やすくなる、Xtalのコスト増

方法③:FIR的なノイズ除去(信号合成)

- MMD出力を**遅らせてズラす** → 重み付き合成でノイズだけキャンセル
- 信号成分は共通なので影響を受けない
- ◆ ② 複数MMDやPD、ディレイの一致性が必要で回路が大がかり

まとめのまとめ:各手法の特徴とトレードオフ

手法	特徴	メリット	デメリット
DTC/IDAC補償	誤差を打ち消す	ノイズ源を直接消せる	キャリブレーション必須、 複雑化
高f_REF化	ノイズを高域に逃がす	シンプルで効果大	高価・ノイズ源追加・ 消費電力増

手法	特徴	メリット	デメリット
FIR構造	信号合成でノイズ相殺	PLL構造をいじらず高精度	実装コスト・ マッチングが難しい

ひとこと要約

「Fractional-N PLLって便利だけど、その精密さゆえにノイズやスパーが悩みの種。 でも、**ノイズを"打ち消す"・"逃がす"・"平均して消す"**っていう3つの視点で、いろんなアプロー チが取られている」

■ 2.3節 Chapter Summary — 一文に込められた大事なこと

「この章では、PLL設計の基礎、重要なトレードオフ、そして分数型PLLの課題とその対策について解説しました。」

✓ 要するに、第2章は**「PLLって何?」「Fractional-Nで何が難しい?」「どう工夫されてきた?」**を 一通り学ぶ章だったってこと。

第2章全体のまとめ:PLLの基礎と Fractional-N設計の世界

☑ 2.1節:基本モデルとノイズ解析

- PLLを線形モデルで近似して、ループ伝達関数を導出
- 各ノイズ源の影響を、周波数応答(LPF/BPF/HPF)として定量化
- **ループ帯域(ωUG) **の設定でノイズのトレードオフが決まる
- 参考値:ωUG ≈ 1.5MHzでジッター最小(図2.4)

☑ 2.2節:Fractional-N PLLの課題と対策

⑤ 問題

- DSMで非整数の分周比を作るけど:
 - 。 🎯 量子化ノイズが出る
 - 。 **⑥** 分周比の周期性でスパーが出る(Fractional Spurs)

☆ 対策

分類	内容
	DTC/IDACで予測して打ち消す(キャリブレーション必要)
△ ノイズ周波数押し上げ	f_REFやDSMクロックを高くして、ノイズを高域へ逃がす
FIR構造	複数信号を時間ずらして重ね合わせ、ノイズだけ相殺する

☑ 2.3節:全体まとめ

- PLL設計は**「精度×ノイズ×安定性」**のせめぎ合い
- Fractional-N PLLでは「**非整数性**」を得る代償として「**ノイズとスパー**」が増える
- 対処法にはそれぞれトレードオフがある
- 設計の"センス"が問われる世界