From raw materials to crystalline silicon wafers

Overview

- Segregation
- Metallurgical grade Si (MG Si)
- Silanes
- Polysilicon (poly Si)
- Monocrystalline Si (sc-Si)
 - Cz Si
 - FZ Si
- Multicrystalline Si (mc-Si)
 - mc-Si wafers
 - Silicon sheets and ribbons (S&R Si)
- Defect engineering

Silicon for solar cells

Si for solar cells

- Solar cells are made up of different types of Si
 - Thin-film Si (amorphous, microcrystalline, crystalline)
 - Requires silanes
 - Quantity and cost are not critical, only very thin films are used
 - Crystalline Si substrates
 - Mono- and multicrystalline Si grown by different processes from melts of poly-Si
 - Quantity and cost are critical, high material consumption
 - Q: "How pure must Si be if it is to be used in a solar cell?"

Segregation

- When Si solidifies, a homogenous melt will generally NOT result in a homogenous solid!
 - Different concentration gradients of impurities appear as a result of different segregation coefficients (k₀)

$$k_0 = X_{sol}/X_{liq}$$

- X_{sol}: equilibrium concentration in a solid
- X_{liq}: equilibrium concentration in a melt
- During a real solidification process, the effective segregation coefficient k_{eff} will depend on several factors, including the mixing of the melt
 - Poor mixing: $k_{eff} = 1$
 - Good mixing: $k_{eff} = k_0$

Example segregation coefficients

- Elements with k₀>1 accumulate in the bottom of the material
- Elements with k₀~1 remain relatively homogenously distributed
- Elements with k₀<<1 can be effectively removed from the material during solidification
 - Accumulation towards top

Element	\mathbf{k}_0
В	0.8
Р	0.35
0	0.25 – 1.25
С	0.07
Al	0.02
Cu	4E-4
Ti	3.6E-4
Fe	8E-6
Ni	8E-6
Со	8E-6

Luque and Hegedus: "PV Handbook"

A silicon-based Norway

Elkem Solar/Google Earth/SINTEF/NTNU

The Norwegian Research Centre for Solar Cell Technology

Raw materials

Quartz (SiO₂)

Coke/coal (C)

Step 1: metallurgical silicon

MG Si

- Purity specification
 - Minimum > 96 % Si
 - Typically ~ 98.5 % Si
- Total, global production 2000 about 1 000 000 MT
- Made by carbothermic reduction of silica
 - Overall reaction

$$SiO_2(s) + 2C(s) = Si(l) + 2CO(g)$$

- Raw materials selected for achieving the highest possible purity
 - SiO₂: NOT usually sand, but lumpy quartz (10 100 mm)
 - C: MG C, charcoal, coke

MG Si – arc furnace

Silica fumes are mostly *fines*, particles with \emptyset < 1 μ m

Liquid Si metal

MG Si – arc furnace

- Arc furnace
 - T: 1900 2100 °C
 - Si yield: 80 90 %
 - Much of the remainder is made of silica fumes
- Si(I) is subsequently refined
 - Treated with oxidative gases and slag-forming additives
 - Silica (SiO₂), lime (CaO), limestone (CaCO₃)...

Example:
$$4AI + 3(SiO_2) = 3Si(I) + 2AI_2O_3$$

- Some elements (Al, Ca, Mg...) are oxidized, form particles (slag) and can be removed from the Si melt by gravity or mechanically
- T reduced to 1500 1700 °C

MG-Si – casting

- Refined Si melt is often casted by pouring it into a cast iron mold
- The molten Si solidifies and becomes multicrystalline Si
- Si is subsequently crushed into lumps of useful size
 - Up to 100 mm
 - Additional fines created during crushing removed

MG Si – typical impurities

Element	0	Fe	Al	Ca	С	Mg	Ti	Mn
Low (ppm)	100	300	300	20	50	5	100	10
High (ppm)	5000	25000	5000	2000	1500	200	1000	300
Element	Zr	V	Cu	Cr	Ni	Mo	Р	В
Low (ppm)	5	1	5	5	10	1	5	5
High (ppm)	300	300	100	150	100	10	70	100

Luque and Hegedus: "PV Handbook"

Step 2: solar grade silicon / polysilicon

Polysilicon

- Use of Si in semiconductor devices and solar cells require impurity levels in the ppb range
- Main approach:
 - 1. Form volatile Si hydride (silane)
 - 2. Purify silane
 - Decompose silane to ultra-pure Si through pyrolysis or chemical vapour deposition (CVD)
 - 4. Recycle by-products

Production of polysilicon

- Three main methods
 - Siemens process
 - Thermal decomposition of trichlorosilane on heated Si rod
 - Union Carbide process
 - Thermal decomposition of monosilane on heated Si rod
 - Ethyl corporation process
 - Thermal decomposition of monosilane on fluidized bed of heated Si particles

The Siemens Process

Thermal decomposition of trichlorosilane on heated Si rod

- 1. HSiCl₃ is prepared by hydrochlorination of MG Si at ~ 350 °C
 - Si(s) + 3HCl = $HSiCl_3 + H_2$
 - HSiCl₃ is easy to purify and has a high deposition rate of Si
- 2. A competing, unwanted reaction is
 - Si(s) + 4HCl = SiCl₄ + 2H2₂
- 3. High-purity HSiCl₃ is diluted with pure H and introduced into a deposition reactor ("bell jar")

The Siemens Process

HSiCl₃ is decomposed at ~ 1100 °C

- The main reactions are
 - $2HSiCl_3 = SiH_2Cl_2 + SiCl_4$
 - $SiH_2Cl_2 = Si + 2HCl$
 - H_2 + $HSiCl_3$ = Si + 3HCl
 - $HCI + HSiCI_3 = H_2 + SiCI_4$
- Many by-products form
 - 3 4 moles of SiCl₄ for each mole of
 - Before, much of this could be used in the production of silica
 - Recycling back to SiCl₄ a solution e.g. $SiCl_4 + H_2 = SiHCl_3 + HCl$

The Siemens Process

Thermal decomposition of trichlorosilane on heated Si rod

- The dominant process in the Si industry
- Several drawbacks including
 - High energy consumption
 - Batch process: aborted runs (e.g. power failure) causes waste
 - Large amount of by-products must be handled

Fluidized bed reactors

- Fluidized bed reactor
 - Small Si seed grains form a socalled "fluidized bed" when gas streams of SiH₄ and H₂ flow upwards through the reactor
- End product: granules, not rods
 - Can be used for crystallization processes requiring continuous feeding
 - Can not be straight-forward be used for FZ Si fabrication

Fluidized bed reactors

- Benefits
 - Reduced energy consumption
 - Continuous operation
- Drawbacks
 - Si powder forms
 - Much H absorbed in deposited poly-Si

Novel concept: CCVDR

- Concept:
 - Centrifugal CVD reactor
- Benefits
 - Reduced energy consumption
 - High silane utilization

Large scale process plants

Metallurgical routes

- Avoid costly silane production and decomposition
- Utilize metallurgical processes
 - Slagging
 - Leaching
 - Directional solidification

The poly Si industry

Ceccaroli & Lohne – 2003

- Historically mostly dedicated to the semiconductor industry
- Capital-intensive industry
 - A 1000 MT unit might cost 100M US\$
- High comsumption of energy
 - About 100 kWh/kg
- Only a handful of plants (~ 10) in operation
- Increases value of Si
 - MG Si ~ 1 kg/US\$

Poly Si ~ 20 kg/US\$

(1 000 000 MT/y)

(20 000 MT/y)

Poly Si – typical impurities

Lowest grade Si used to make mc-Si wafers (Ceccaroli & Lohne – 2003)

Element	O	Fe	Al	Ca	С	Mg	Ti	Mn
MG Si (ppm) Poly Si	100 - 5000 < 5	300 - 25000 < 0.1	300 - 5000 < 0.1	20 - 2000 < 0.1	50 - 1500 < 4	5 - 200 -	100 - 1000 < 0.1	10 - 300 -
(ppm) Element	Zr	V	Cu	Cr	Ni	Мо	Р	В
MG Si	5 - 300	1 - 300	5 - 100	5 - 150	10 - 100	1 - 10	5 - 70	5 - 100
Poly Si (ppm)	-	1	1	-	-	-	< 0.1	< 0.3

Luque and Hegedus: "PV Handbook"

Past feedstock for Si solar cells

- Si selected from less-expensive 2nd grade Si
 - Rejects from crystal growth
 - Heads and tops (Cz) are rejected and re-uesd
 - Ingots from aborted runs
 - Ingots that fail to meet certain criteria
 - Pot scrap
 - Rejects from poly Si production
 - Chunks and rods from aborted runs
 - Broken or imperfect seed rods
 - Rod sections with unacceptable purity
- Expensive semiconductor grade Si hitherto has made up the rest

Designated solar grade Si feedstock

- There is much ongoing effort related to the development of production processes of Si designated for solar cells
- A range of different concepts
 - Further exploit segregation during crystallization
 - Metallurgical routes
 - Raw material choices, leaching, slagging,
 - Modified poly Si processes
 - Fluidized bed

Step 3: silicon crystallization

Growth of Si crystals

- Monocrystalline Si
 - Czochralski (Cz) Si
 - Float zone (FZ) Si
- Multicrystalline Si
 - Directional solidification
- Wafering
- Si ribbons, sheets and foils

Czochralski (Cz) Si

- Monocrystalline Si
- Puller used to draw growing crystal slowly from melt
- Purified by segregation
- Necking used to make dislocation-free material
- Can pull <100> Si
- Standard pull speed 0.5-1.2 mm/min
- Typical length: 40 150 cm
- Diameters for PV often 100 or 150 mm

Czochralski (Cz) Si

- O contamination from crucible large, typically ~10¹⁸/cm³
- Light-induced degradation
- Circular ingots must be cut into semisquare shape for good area filling in modules

Float zone (FZ) Si

- Monocrystalline Si
- Heated coil creates local melt

Multicrystalline (mc) Si

- Fabricated using Bridgman technique or block-casting
 - Bridgman: one crucible used both for melting and crystallizaton
 - Block-casting: one crucible for melting, another for crystallization
- Directional solidification of Si
- SiN used for avoiding sticking
- Typical crystallization speeds: 1cm/h

Multicrystalline (mc) Si

- Causes grain boundaries, twinning and dislocations
- O contamination from crucible can be significant, typically
 - $\sim 1-5\cdot 10^{17}$ /cm³
- C can cause formation of SiC particles, mostly towards the ingot top
- SiN particles can also be found
- Transition metals most important with respect to efficiency

Multicrystalline (mc) Si

REC ScanWafer

Mono-like Si

- Idea:
 - Use low casting process to obtain high quality, mono-like material
- Principles:
 - Seeding
 - Dendritic growth

High Performance MultiCrystalline Si

- Idea:
 - Control structural properties of material to reduce dislocation-related losses

Step 4: wafering

Meyer Burger

Fig. 5: Trend of minimum wafer thickness processed in mass production of solar cells.

Wafer thickness reduction has the following implications:

- 1. Cost reduction through reduced wafer pricing by reduction of poly-silicon use.
- 2. Need for innovative handling concepts for thinner wafers to reduce wafer breakage.
- 3. Need for new cell concepts suitable for achieving high efficiencies on thin wafers.
- 4. Need for new interconnection and encapsulation concepts suitable for thin wafers.

Two competing technologies

Slurry / SiC

Marstein

Wafering

- Sawing costs substantial part of wafer production costs
- Currently, multi-wire sawing most commonly used
 - 1. Ingot is cut into suitable blocks
 - 2. Blocks cut into wafers, all wafers cut simultaneously
- Steel wire used with slurry and SiC abrasive particles
- Typical wafer thicknesses: 250 300 µm
- Typical wafer diameters: 5", 156 med mer
- Large material losses (~50 %?)
- Surface after wafering damaged ("as cut")

Wafers

Cool concepts of the week

Ribbons, sheets and foils

- A range of techniques aim at producing mc-Si wafers without sawing
 - Edge-defined film-fed growth (EFG)
 - Schott Solar
 - String ribbon
 - Evergreen, Sovello
 - Dendritic web production
 - Ribbon growth on substrate (RGS)
 - **ECN**

Ribbons, sheets and foils

Edge-defined film-fed growth(EFG)

String ribbon

Ribbons, sheets and foils

Ribbon growth on substrate

EFG

RWE

String ribbon

Evergreen

Comparing R&S Si

	Pull speed [cm/min]	Width [cm]	Crystallinity	Defects	Thickness [µm]	Best η [%]
WEB	1 – 3	5 – 8	(111) twin planes, boundary in sheet	O main impurity, dislocations: 10^3-10^4 cm ⁻²	75 – 150	17.3
EFG	1 – 2 (octagonal)	3 – 5"	Columnar grains in growth direction	C main impuriry, dislocations 10 ⁵ –10 ⁶ cm ⁻²	250 – 350	15-16
STR	1 – 2	5 – 8	Columnar grains through thickness	C and O, dislocations 5·10 ⁵ cm ⁻²	100 – 300	15-16
RGS	600 – 1000	5"	Columnar grains through thickness	C and O dislocations 10 ⁵ –10 ⁷ cm ⁻²	300 - 400	12

G. Hahn

