

Epigenomics Data Analysis:DNA Methylation

Louella Vasquez 25-09-22

Schedule for Monday

Monday (22 September 2025)

DNA methylation with Illumina array and Bisulfite-seq

09:00 - 09:30 Welcome

09:30 - 10:15 Introduction to DNA methylation + Overview Array Exercises

10:15 - 10:30 Uppmax set up + break

10:30 - 12:00 Exercises Array Workflow

12:00 - 13:00 lunch (offline)

13:00 - 14:00 Methylation methods & technologies (Jessica Nordlund)

14:00 - 14:15 Break

14:15 - 14:30 Methylation Exercises Overview II: Methylation Sequencing

14:30 - 16:00 Exercises Methylation Sequencing

16:00 - 17:00 Daily challenge (offline)

Epigenome regulates gene expression via chromosomal alteration that does not involve changes in the DNA sequence

DNA methylation is a stable, heritable chemical modification

5mC in the genome

- predominantly in CpG (Cytosine-phosphate-Guanine) dinucleotides in metazoan genomes
 - ~28M CpGs in humans
 - 60–80% methylated in somatic cells
- CpGs in CG-dense regions are CpG islands (CGIs)
 - 200-2000 bp with >50% GC-content
 - CGIs tend to be in promoters, unmethylated for transcribed genes
- non-CpG methylation has been mainly observed in hESCs and neuronal cells in humans
 - CHH, CHG where H = A, C or T

Nature Reviews | Genetics

Key functions of DNA methylation

Tissue specific gene regulation Suppression of transposable elements

Essential for normal development Genomic imprinting
X-chromosome inactivation

Ageing

Global hypomethylation is proportional to age

Cancer

• Global hypomethylation and locus-specific hypermethylation of CpG islands

Nature Reviews | Genetics

Consortia with large-scale profiling of DNA methylation

Project	Website	Goals/Aims
ENCODE/Roadmap	http://www.roadmapepigenomics.org/	Reference epigenomes across a variety of human cell types
ICGC	https://icgc.org/	Comprehensive catalogs of genomic abnormalities in tumors in 50
		different cancer types (some DNA methylation)
TCGA	https://tcga-data.nci.nih.gov/tcga/	Twenty-five tumor types; gene expression profiling, copy number variation
		profiling, SNP genotyping, DNA methylation profiling, microRNA profiling
BLUEPRINT	http://www.blueprint-epigenome.eu/	Distinct types of haematopoietic cells from healthy individuals
		and malignant leukaemic counterparts; at least 100 reference epigenomes

DNAM measurement

Differentiate mC from

© > T Bisulfite conversion

A: 5'-GACCGTTCCAGGTCCAGCAGTGCGCT-3'

B: 3'-CTGGCAAGGTCCAGGTCGTCACGCGA-5'

A: 5'-GATCGTTTTAGGTTTAGTAGTGCGTT-3'

B: 3'-TTGGCAAGGTTTAGGTTGTTATGCGA-5'

DNA amplification

Methylation Array

Bisulfite conversion

Used for both array and sequencing

$$\begin{array}{ll} \bullet & C \rightarrow U \rightarrow (PCR) \rightarrow T \\ \bullet & mC \rightarrow C \rightarrow (PCR) \rightarrow C \end{array}$$

•
$$mC \rightarrow C \rightarrow (PCR) \rightarrow C$$

Compare with reference genome

DNA Methylation Array: Human Methylation BeadChip

DNA Methylation Array: Human Methylation BeadChip

DNA Methylation Array: Human Methylation BeadChip

- ✓ genome-wide
- single nucleotide resolution
- ✓ low cost, ease of use
- widely used in population scale studies
- ✓ high reproducibility and reliability
- ✓ compatible with FFPE tissues
- ✓ a few non CpG probes
- well established bioinformatics solutions

	HM450	EPICv1	EPICv2 (unique prefixes)	EPICv2 (all probes)
Total Probes	486,427	866,553	931,293	937,690
cg probes	482,421 (99.18%)	862,927 (99.6%)	926,858 (99.5%)	933,252 (99.5%)
ch probes	3,091 (0.641%)	2,932 (0.34%)	2,914 (0.31%)	2,914 (0.31%)
rs probes	65 (0.013%)	59 (0.0068%)	62 (0.0067%)	65 (0.0069%)
ct probes	850 (0.175%)	635 (0.073%)	635 (0.068%)	635 (0.068%)
nv probes	0 (0%)	0 (0%)	824 (0.88%)	824 (.088%)
Infinium-I	135,501 (27.9%)	142,158 (16.4%)	127,028 (13.6%)	128,295 (13.7%)
Infinium-II	350,926 (72.1%)	724,395 (83.6%)	804,362 (86.4%)	809,395 (86.3%)

"cg": CpG cytosine methylation probes; "ch": non-CG cytosine methylation probes; "rs": common SNP probes; "nv": probes for somatic mutations found in cancer; and "ct": quality control probes.

Infinium Bead Technology: Type I and Type II probes

Silica bead affixed with oligonucleotide containing 23 base address and 50 base probe sequence

CTACAAATACGACACCCGCAACCCATATTTCATATATTATCTCATTTAAC

- Bisulfite converted DNA is hybridised to the probe
- Single base extension of the probe with fluorescence **ddNTP**
- Fluorescence signal detects the C as thymine (T) if originally unmethylated or C if methylated.
- Infinium-I chemistry has one color channel & two bead types
 - Methylated (M) and Unmethylated (U) beads
- Infinium-II uses one bead type and two color channels

green for M, red for U

Measurement of Methylation Values

Beta value

- Bounded value between 0 to 1
- Fraction of cells with a methylated C
- Easier to interpret

M value

- Log ratio between
 M and U intensities
- +M value, M > U
- M value, M < U
- Used in statistical model testing

Analysis Pipeline

Import raw data files (IDAT) 450k analysis pipeline Probe filtering (detection p-value, bead count, SNPs) Background correction Adjustment for type II bias Cell composition correction methylumi Batch effect analysis minfi wateRmelon Batch effect correction ChAMP Calculation of differentially methylated RnBeads positions (DMPs) Identification of differentially methylated regions (DMRs) Copy number variation analysis Biological interpretation

Freely available pa	ckages for Infinium 450k data analysis.	as of 2018
Package	Use	
ChAMP	Comprehensive suite of functions; automated pipeline	
СОНСАР	CpG island analysis and gene expression data integration	
Comb-p	DMR calling	
DMRcate	DMR calling	
Epigenetic clock	Predictor of sample age	
EWasher	Reference-free cell composition correction	
FastDMA	Quantile normalisation and DMP/DMR calling	
IMA	Preprocessing including normalisation methods; Pipeline op	otion
Lumi	Background correction, general normalisation	
Marmal-aid	450k database for data integration	
MethylAid	Interface for interactive sample QC	
Methylumi	Comprehensive suite of functions	
Minfi	Comprehensive suite of functions	
NIMBL	Matlab code for QC and DMP calling	
RefFreeEWAS	Reference-free cell composition correction	
RnBeads	Comprehensive suite of functions	
shinyMethyl	Interface for interactive sample QC	
wateRmelon	Preprocessing including performance metrics and numerous	normalisation methods

Import raw methylation data

- Raw IDAT files are in folder named after chip ID Red/Green signal intensity files per sample
- IDAT file name format

```
5975827018 R06C02 Grn.idat
5975827018 R06C02 Red.idat
<chip barcode> <chip position> <channel>
```

Sample annotation CSV file

```
1 dataDirectory <- "/sw/courses/epigenomics/DNAmethylation/array data/"</pre>
2 # read in the sample sheet for the experiment
  targets <- read.metharray.sheet(dataDirectory, pattern="SampleSheet.csv")
4 # read in the raw data from the IDAT files
5 rgSet <- read.metharray.exp(targets=targets)</pre>
6 # Go from intensity data to methylation levels
7 MSet <- preprocessRaw(rgSet)</pre>
```


Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

```
# Calculate the detection p-values
detP <- detectionP(rgSet)
# examine mean detection p-values across all samples to identify any failed
barplot(colMeans(detP), las=2, cex.names=0.8, ylab="Mean detection p-values
abline(h=0.05,col="red")</pre>
```


Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

Control: BISULFITE CONVERSION II

Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

QC Probes

Control Probe	Purpose	
Staining	measure efficiency and sensitivity of staining step (independent of hybridisation/extension step)	
Extension	test efficiency of extension of A, T, C and G nucleotides from a hairpin probe (sample-independent). The perfect match hairpin controls should result in high signal, and the mismatch probes in low signal	
Hybridization	test the overall performance of Infinium assay using synthetic targets (not DNA) at 3 concentrations	
Target removal	test efficiency of stripping step after extension	
Bisulphite conversion	test efficiency of bisulphite conversion by query of C/T polymorphism	
Specificity controls check for non-specific detection of methylation signal over unmethylated background. Specificity controls are designed non-polymorphic T sites (G/T mismatch)		
Non-polymorphic	norphic query a non polymorphic base A, T, C and G to test overall performance of the assay from amplification to detection	
Negative	randomly permutated bisulphite-converted sequences containing no CpGs. They should not hybridise to DNA. The mean of these probes determines the system background	

Quality Control to flag mislabelled samples

12.8

13.0

Median intensity of M vs U

Beta value distribution

Probes detection P value

Internal control probes

Bisulfite conversion

Hybridization

Extension

Negative controls

Gender check

13.2

13.4

X chr, median total intensity (log2)

13.6

13.8

14.0

Probe Filtering

remove probes with high detection P value

median P > 0.01 across samples, P > 0.01 in nth% of samples

remove probes overlapping SNPs

minfi::dropLociWithSnps

MAF > 0.05

drop probes in X, Y chromosome

remove <u>cross reactive probes</u>

Preprocessing, correction and normalisation

Within array:

- Dye bias correction
- Background correction
- Type I/II probe bias correction

Across array:

- starting material
- labelling efficiency

Normalisation in minfi

	Dye Bias	Background Correction	Type I/II Probe bias	Within array normalisatio	Across array normalisatio
preprocessRaw	-	-	-	-	-
preprocessIllumina	•	•	-	•	•
preprocessSWAN	-	-	•	•	-
preprocessQuantil e	-	-	•	•	V
preprocessNoob	•	•	-	-	-
preprocessFunnor	•	~	v	•	V

Differentially Methylated Probes (DMPs)

- Perform a statistical test to find any significant association between the methylation state of a CpG and the phenotype of interest

 T-test, ANOVA

 - Wilcoxon rank-sum, Kruskall Wallis test, Fisher's exact
 - Linear model, logistic regression, mixed effects model, Beta Binomial
- minfi uses limma functionality

 Use M-values
- Phenotype could be categorical or continuous cancer vs normal, between tissue types, smokers vs not
 - age, blood pressure, BMI
- Other sources of variation can be accounted for
 - E.g., plate-to-plate, lot-to-lot variance covariate in the model

 - ComBat
 - SVA (Surrogate Variable Analysis)
 - RUVŠea

Unadjusted

Adjusted: RUV-inverse

Differentially Methylated Regions (DMRs)

DMRs can be defined:

heuristically / De novo

<u>Bumphunter</u>, <u>DMRcate</u>, <u>ProbeLasso</u>, <u>comb-p</u>

functional units

CpG islands, gene bodies, promoters

WGBS

Sequencing-based methylation profiling

	Enzyme digestion	Affinity enrichment	Sodium bisulfite
Principles	Some restriction enzymes, such as <i>Hpa</i> II and <i>Sma</i> I, are inhibited by 5 ^{me} C in the CpG.	Affinity enrichment uses antibodies specific for 5 ^{me} C or methyl-binding proteins with affinity for profiling of DNA methylation.	Sodium bisulfite chemically turns unmethylated cytosine into uracil, hence enabling methylation detection.
Method example	Methyl-seq *MCA-seq *HELP-seq *MSCC	*MeDIP-seq *MIRA-seq	*RRBS *WGBS *BSPP

*MCA: methylated CpG island amplification; *HELP: HpaII tiny fragment enrichment by ligation-mediated PCR; *MSCC: methylation-sensitive cut counting; *MeDIP-seq: methylated DNA immunoprecipitation; *MIRA: methylated CpG island recovery assay; *RRBS: reduced representation bisulfite sequencing; *WGBS: whole genome bisulfite sequencing; *BSPP: bisulfite padlock probes.

WGBS workflow

Tissue, Blood, etc

DNA Extraction

Bisulfite Treatment

Data Analysis

Sequencing

Library Construction

Effect of bisulfite treatment of DNA

2 different PCR products and 4 different sequence strands from one genomic locus Each of these 4 sequence strands can theoretically exist in any possible conversion state

Effect of bisulfite treatment of DNA

Non-directional library: all four strands

Directional library: OT and OB

PBAT library: CTOT and CTOB

3 letter alignment of BS-converted reads

sequence of interest TTGGCATGTTTAAACGTT C>T / 5' TTGGTATGTTTAAATGTT...3' 5'...TTAACATATTTAAACATT...3' TTGGTATGTTTAAATGTT. ...CCAACATATTTAAACACT... ...GGTTGTATAAATTTGTGA... ...AACCATACAAATTTACAA... forward strand G -> A converted genome forward strand C -> T converted genome (equals reverse strand C -> T conversion) 5'...CCGGCATGTTTAAACGCT...3' read sequence TTGGCATGTTTAAACGTTA genomic sequence CCGGCATGTTTAAACGCTA methylation call XZ...H......Z.h..

Fully bisulfite convert read (as both forward and reverse strand)

Align to bisulfite converted genomes

Read all 4 alignment outputs and extract the unmodified genomic sequence if the sequence could be mapped uniquely

Methylation Call

h unmethylated C in CHH context

H methylated C in CHH context

x unmethylated C in CHG context

X methylated C in CHG context

z unmethylated C in CpG context

Z methylated C in CpG context

Methylation calls

methylation call

xz..H......Z.h.

methylated C in CHH context

Quality control: base call quality

Quality control: adapter contamination

1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 84-85

after trimming

1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 84-85 Position in read (bp)

mapped Quality control

Bisulfite conversion efficiency

non CpG sites in mammalian genome should have > 99.5% conversion in a good experiment Spike-in controls e.g., phage Lambda

DNA degradation during bisulfite conversion unique alignment rates read length after trimming

Remove C>T SNPs

Deduplication recommended for WGBS, not for RRBS

nf-core/methylseq is a bioinformatics analysis pipeline for BS-seq


```
filtered.myobj = filterByCoverage(myobj, lo.count = 10,
                  lo.perc = NULL, hi.count = NULL, hi.perc = 99.9)
                       Methylation % per
     Input option 2
                             base
                              read()
                                                                 Filtering by coverage
                                                                   filterByCoverage()
                                      Descriptive statistics
                                        getMethylationStats()
                                        getCoverageStats()
                                                                    Window/region
                                                                  based methylation
                                                                        scores
    Correlation
                                                                    regionCounts()
                                                                   tileMethylCounts()
   getCorrelation()
                         Sample merge
                             unite()
Clustering and PCA
  clusterSamples()
   PCASamples()
                          Differential
                          methylation
                        calculate DiffMeth()
   Annotation
                          Visualization
                                                 Coercion to
                                                                     Further analysis by
                                              bioconductor and R
annotate.WithFeature()
                            bedgraph()
                          diffMethPerChr()
                                                   objects
 and similar functions
                                                 as() getData()
```


Differential Methylation

Remove CpGs with little variation
Remove CpGs that overlap C>T SNPs

No replicates: Fisher's exact test

With replicates:

Logistic regression

Beta Binomial

Overdispersion correction

Covariates can be included in the model

