Statistical Graphics: Non Data Components of Graphs

Objective

Objective

Define design principles for bar charts and line charts

Axes, Legends and Scales

Heckbert's Labeling Algorithm

Data range

105 - 543

Data range

2.03-2.17

Nice Numbers

```
const ntick ← 5;
                                           desired number of tick marks
loose_label: label the data range from min to max loosely.
  (tight method is similar)
procedure loose_label(min, max: real);
nfrac: int;
d: real;
                                           tick mark spacing
graphmin, graphmax: real;
                                            graph range min and max
range, x: real;
begin
  range ← nicenum(max - min, false);
  d ← nicenum(range / (ntick - 1), true);
  graphmin ← floor(min/d)*d;
  graphmax ← ceiling(max/d)*d;
  nfrac \leftarrow max(-floor(log10(d)), 0);
                                           number of fractional digits to show
  for x \leftarrow \text{graphmin to graphmax} + .5*d step d do
    put tick mark at x, with a numerical label showing nirac fraction digits
    endloop:
  endproc loose_label;
nicenum: find a "nice" number approximately equal to x.
Round the number if round = true, take ceiling if round = false.
function nicenum(x: real; round: boolean): real;
exp: int;
                                            exponent of x
                                           fractional part of x
f: real:
                                            nice, rounded fraction
nf: real;
begin
  \exp \leftarrow \text{floor}(\log 10(x));
  f \leftarrow x/\exp(10., \exp);
                                            between 1 and 10
```

```
if round then if f < 1.5 then nf \leftarrow 1.; else if f < 3. then nf \leftarrow 2.; else if f < 7. then nf \leftarrow 5.; else nf \leftarrow 10.; else if f \le 1. then nf \leftarrow 1.; else if f \le 2. then nf \leftarrow 2.; else if f \le 5. then nf \leftarrow 5.; else nf \leftarrow 10.; return nf*expt(10., exp); endfunc nicenum;
```

P. Heckbert. Nice numbers for graph labels. In A. Glassner, editor, Graphics Gems, pages 61–63 657–659. Academic Press, Boston, 1990.

Heckbert's Labeling Algorithm

Problem

For small numbers, the range of labels can be much larger than the data range.

Solution

Drop labels which overlap or fall outside the data range

This leads to unevenly spaced labels or axes with only one label

Extension of Wilkinson's Algorithm

Extension of Wilkinson's Algorithm

Coverage =
$$1 - \frac{1}{2} \frac{(d_{max} - l_{max})^2 + (d_{min} - l_{min})^2}{[.1(d_{max} - d_{min})]^2}$$

Legibility =
$$\frac{format + font_{size} + orientation + overlap}{4}$$