《基础物理实验》实验报告

一: 实验内容

(一) 实验目的:

了解虚拟仪器与 LabVIEW,并利用 LabVIEW 进行温度计、电压输入输出、伏安法测电阻程序设计,并利用后两者与硬件相连进行实验。

(二)实验仪器:

计算机,LabVIEW 2014,NI ELVIS II+,导线若干, 100Ω 标准电阻, 51Ω 与 $1k \Omega$ 电阻 各一个,稳压二极管一个,热电偶等。

(三)实验原理:

(根据新学期要求,下面将简述实验原理)

- 1. LabVIEW 为图形编程语言,使用界面分为前面板与程序框图两个主要部分。前面板用于模拟真实仪器的前面板,放置不同的输入组件与显示组件;程序框图利用各种函数组件,进行程序框图的创造,反映仪器的内部结构。
- 2. NI ELVIS II+是虚拟仪器综合实验平台硬件,有模拟多种电学仪器的功能,其有面包板,可以直接利用导线连接各个接口。"+""-"区域一竖列连通,字母区域每行连通,接口亦为每行连通。当导线插入后需要穿过夹子穿到底。
 - 3. 伏安法测电阻的硬件电路图如下:

图 1 伏安法测电阻原理图

(四)实验内容:

模拟温度测量程序设计

1. 实验原理:

本实验是模拟利用电压测量温度的装置,并得到华氏、摄氏温度。两种温度之间的转换 关系为摄氏温度=(华氏温度-32)÷1.8。

2. 实验步骤:

- (1)新建文件,在前面板上按对应位置放置温度计、垂直滑动杆开关、显示控件(表示输出温度值)、输入控件(表示采集的电压值)。
- (2) 创建程序框图。其思路是先将电压转换为对应的华氏温度,然后判断所输出的数据类型,分成华氏输出与摄氏输出两条计算路径,最后输出在温度计上。结束后关闭程序。
 - (3) 经运行程序,能够根据要求输出不同输入电压、不同单位的温度值。
- 3. 程序框图及前面板:

如下图所示:

图 2 模拟温度测量 程序框图及前面板

选做实验: 使用真实热电偶元件创立温度测量程序

1.实验原理:

通过测量热电偶的电压,并利用 Labview 内置的转换功能,实现温度的测量,和摄氏/ 华氏温度的转换。

2.实验步骤:

- (1)新建文件,创建前面板(与创建模拟温度计时相同)。放入加法函数、乘法函数、选择函数以及 DAQ 助手。
- (2) 创建程序框图,将所需要的对象放入程序框图中之后用连线工具连接,并在需要的地方创建数值常量。

- (3) 用香蕉转针型线连接热电偶和测量端。
- (4)运行 VI 程序,使程序运行于连续运行模式。测量不同处的温度(例如空气和人体等,此处测量环境空气温度),改变温度值单位,观察程序运行情况并记录。结束后关闭程序。

从前面板可以看出,环境温度此时为23.833摄氏度,符合常识。

3. 程序框图及前面板:

如下图所示:

图 3 热电偶测量环境温度 程序框图及前面板

模拟电压输入输出设计

1.实验原理:

本实验需要构建的装置包含电压采集与电压输出两部分虚拟装置。由于需要等待 100ms 后采集,故框图中需要使用 While 循环。程序中的两部分分别模拟电压表和电源。 2.实验步骤:

- (1)新建文件,在前面板上按对应位置放置输入输出两个物理通道、显示控件(表示电压测量值)、输入控件(表示电压输出值)。
- (2) 创建程序框图。将两个物理通道分别进行 AI 电压输入、AO 电压输入,然后经过 While 循环,最后输出。
- (3) 打开 ELVIS 电源和原型板电源,连接硬件,电源正极为 AO,负极为 Ground。AI+与 AI-分别为电压测量正负端。

- (4)运行程序,选择与设备编号相符合的 ao 或 ai 通道,输入电压值,开始测量。结束后关闭程序。
- 3. 程序框图及前面板:

如下图所示:

图 4 模拟电压输入输出 程序框图与前面板

在前面板中可以看出, 当输入电压为 1.26V 时, 测量电压同为 1.26V。

利用虚拟仪器测量伏安特性

1.实验原理:

通过总电压减去标准电阻电压得到待测元件电压,通过标准电阻电压除以标准电阻阻值得到待测元件电流,相除即能得到阻值。

2. 实验步骤:

- (1)新建文件,前面板放置 4 个输入控件表示测量电压步长、测量数据点数、标准电阻阻值、时间间隔,放置一个开关,放置一个显示控件来显示待测阻值测量值,放入一个数据显示表格与 X-Y 图工具记录电压电流数值。
- (2)程序框图由 While 循环内套 5 帧平铺式结构组成, 5 帧分别具有输出电压、等待、 采集电压并处理数据、等待、使得结束时输出电压为 0 的功能。利用移位寄存器进行数据实 时显示。
 - (3) 搭建硬件电路。主电路由 ao 出发,经过 100 Ω标准电阻与待测电阻后最后回到

Ground。选取两组 ai 分别接在标准电阻两端与两个电阻整体的两端。

(4)运行程序。分别测量两个待测电阻的电阻值。分析实验结果。之后测量并绘制稳压二极管伏安特性曲线。改变"输出电压步长"为负值时,可以在电阻两端加反向电压。最后将数据导出至 Excel 中。

实物电路图如下所示:

图 5 实物电路图

3. 程序框图及前面板:

如下图所示:

图 6 测量伏安曲线 程序框图

下面分别给出 51 Ω、1000 Ω 电阻以及二极管的前面板:

图 751Ω前面板

图 8 1000 Ω前面板

图 9 二极管前面板

从图中可以看出,50 Ω 和 1000 Ω 电阻的测量结果都符合得很好,二极管在测量时分别测量了正向与反向的伏安曲线,但截图时漏掉了一个,只截取了反向的情况。

4.实验数据与处理分析:

(1) 51 Ω 电阻

测量 51Ω电阻的伏安特性实验数据如下:

表 1 测量 51 Ω 电阻的伏安特性实验数据表

电流(A)	7.50E-06	0.0003392	0.00066446	0.000986499	0.0013182	0.00164668
电压 (V)	-0.000644078	0.0157799	0.03317	0. 0502381	0.0673062	0. 0840522
电流(A)	0.00197516	0.00230042	0.00263856	0.00296704	0.0032923	0.00362078
电压 (V)	0.0995101	0. 117544	0. 133002	0. 15007	0. 167782	0. 184851
电流(A)	0.00395248	0.00427774	0.00460944	0.00493792	0.00527284	0.0055981
电压 (V)	0.200953	0. 217377	0. 234767	0. 252157	0. 267937	0. 285327
电流(A)	0.00592658	0.00625506	0.00658676			
电压 (V)	0.302073	0. 319463	0. 334921			

使用 Excel 绘制图像与线性拟合如下:

图 10 测量 51Ω电阻的伏安特性

从图中可看出,测量电阻的阻值为 51.08Ω ,相对误差 0.1568%,相对误差极小。相关指数为 1,说明测得数据线性相关程度极好。而截距的绝对值较小也说明了测量比较精确。

(2) 1000 Ω 电阻

测量 1000Ω电阻的伏安特性实验数据如下:

表 2 测量 1000 Ω 电阻的伏安特性实验数据表

电	凡流(A)	7.50E-06	0.000464795	0.00091887	0.00137617	0.00183346	0.00227788
电	見压 (V)	-0.000966117	0. 453109	0.907185	1. 36126	1.81502	2. 27006
电	凡流(A)	0.00272873	0.00318925	0.00364654	0.0040974	0.00455469	0.00501199
电	凡压 (V)	2. 72382	3. 17855	3. 63102	4. 08607	4. 53952	4. 99393
电	坦流(A)	0.00545962	0.00591048	0.00637422	0.00682829	0.00727915	0.00773322
电	見压 (V)	5. 44802	5. 90308	6. 35622	6. 80999	7. 26442	7. 71917

电流(A)	0.00818408	0.00864138	0.0089763		
电压 (V)	8. 17328	8. 62707	8. 95977		

使用 Excel 绘制图像与线性拟合如下:

图 11 测量 1000 Ω 电阻的伏安特性

从图中可看出,测量电阻的阻值为 999.53Ω ,相对误差 0.047%,相对误差极小。相关指数为 1,说明测得数据线性相关程度极好。而截距的绝对值较小也说明了测量比较精确。

前面两种电阻的结果都符合得很好,说明虚拟仪器的精度相当高。

(3) 二极管

测量二极管的伏安特性实验数据如下(实验时使用的是发光二极管):

第一组数据为二极管**正向(设置步长为0.5V)**:

表 3 测量二极管正向的伏安特性实验数据表

电流(A)	1.39E-05	5. 26E-05	0. 000123434	1. 39E-05	2. 04E-05	3.00E-05
电压 (V)	-0.00128816	0. 494974	0. 987695	1. 49845	1. 99794	2. 49646
电流(A)	0.0025194	0.00625828	0.0102967	0. 0105897	0.0104963	0.0104384
电压 (V)	2. 74572	2.86842	2. 96021	2. 96247	2. 96086	2. 95893
电流(A)	0.0103965	0. 0103643	0.0103417	0. 0103256	0.0103063	0.0102967
电压 (V)	2.95732	2. 95796	2. 95603	2. 95538	2. 95474	2. 95345
电流(A)	0.0102902	0. 0102773	0.0102709			
电压 (V)	2. 95345	2. 95313	2. 95313			

使用 Excel 绘制图像与线性拟合如下:

图 12 二极管正向伏安特性

正向导通时,其正向压降大约为 2.9V 左右。经网络查询,常用的普通发光二极管的正向导通压降的范围为 2.7V-3.3V,与事实相符。

对于反向电压,数据如下所示:

表 4 测量二极管反向的伏安特性实验数据表

电流(A)	-0.00161019	0. 498839	0. 998322	1. 49877	1. 99858	2. 49968
电压 (V)	1.72E-05	7.50E-06	1.39E-05	1.39E-05	1.07E-05	7. 50E-06
电流(A)	2. 99949	3. 49866	3. 99815	4. 49861	4. 99842	5. 48472
电压 (V)	4.28E-06	1.39E-05	1.39E-05	1.07E-05	1.39E-05	0.000149197
电流(A)	5. 99807	6. 49918	6. 9755	7. 49851	7. 99835	8. 49851
电压 (V)	1.07E-05	7.50E-06	0. 000232927	1.39E-05	1.39E-05	1.39E-05
电流(A)	1.07E-05	2.04E-05	0.000806157			
电压 (V)	1.07E-05	2.04E-05	0. 000806157			

使用 Excel 绘制图像与线性拟合如下:

图 13 二极管反向伏安特性

反向导通时,其反向压降大约为 10V 左右。经网络查询,常用的普通发光二极管的反向导通压降较大,一般在 5V 以上,实验结果与事实相符。

除此之外,我更改了输入电压的步长,采用步长为 0.4V。得到的正向伏安特性数据如下表:

表 5 测量二极管正向的伏安特性(0.4V步长)实验数据表

电流 (A)	1.39E-05	1. 72E-05	7. 50E-06	1. 72E-05	1. 72E-05	1.07E-05
电压 (V)	-0.00161019	0. 39804	0. 799302	1. 19831	1. 59796	1.99858
电流(A)	7. 50E-06	0.0011765	0.0039557	0.0070344	0. 0102838	0.0105768
电压 (V)	2.39888	2. 68099	2.80079	2.89	2. 9615	2.96504
电流(A)	0. 0104867	0. 0104255	0.0103868	0. 0103611	0. 0103353	0.0103192
电压 (V)	2. 96247	2. 96021	2. 95925	2. 95796	2. 95764	2. 95699
电流(A)	0. 0102999	0. 0102902	0.0102806			
电压 (V)	2.95699	2. 95635	2. 95506			

使用 Excel 绘制图像与线性拟合如下:

图 14 二极管正向伏安特性曲线(0.4V 步长)

可以看出正向导通电压仍为 2.9~3.0V, 但曲线变化相较 0.5V 步长的图像更加平滑。

二: 总结

虚拟仪器实验使用图形编程语言,相较其他编程语言更容易上手。在其他基础物理实验中,数据记录的过程大多都是依靠人工读取示波器等仪器的示数,自然会有较大的误差。同时,如示波器这样的仪器无法对数据进行自由地四则运算,导致不能直接通过图像得到我们需要的数据,最后还需要人工重新计算,非常费时费力。

除此之外,虚拟仪器测得的数据误差很小,比如对电阻伏安特性的线性拟合实验,相关指数接近于1,对比其他的物理实验则大多存在较高的系统误差。理论上线性相关的值经过拟合后,误差往往较理论值较大,且相关指数都较低。

对于虚拟实验中存在的问题。比如热电偶实验中,电路接触不良的问题较为突出,会出现在测量过程中数据剧烈跳变的情况。这说明虚拟实验在硬件上的要求较高,实验仪器仍有改进的空间。