(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date 4 September 2003 (04.09.2003)

PCT

(10) International Publication Number WO 03/072057 A2

(51) International Patent Classification7:

A61K

(21) International Application Number: PCT/US03/05965

(22) International Filing Date: 27 February 2003 (27.02.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/359,866

27 February 2002 (27.02.2002) U

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

US

60/359,866 (CON)

Filed on

27 February 2002 (27.02.2002)

(71) Applicant (for all designated States except US): BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM [US/US]; 201 West 7th St., Austin, TX 78701 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HASSENBUSCH, Samuel, J. [US/US]; 4040 Southwestern Road, Houston, TX 77005 (US). JOHANSEN, Mary, Jane [US/US]; 1811 Birnam Glen Drive, Sugar Land, TX 77479 (US). GRADERT, Tamara, L. [US/US]; 312 Smith Road, Bastrop, TX 78602 (US). SATTERFIELD, William, C. [—/US]; 1685 Upper Elgin River Road, Elgin, TX 78621 (US). TRISSEL, Larry [US/US]; 2920 Carnegie Street, Houston, TX 77005-3911 (US).

(74) Agent: HIGHLANDER, Steven, L.; Fulbright & Jaworski L.L.P., 600 Congress Avenue, Suite 2400, Austin, Tx 78701 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: INTRASPINAL CONTINUOUS INFUSION OF MIDAZOLAM HYDROCHLORIDE FOR THE TREATMENT OF PAIN

(57) Abstract: The invention provides a preservative-free midazolam hydrochloride formulation that is less toxic, and more effective than present opioid therapies for alleviation of pain. Additionally, by an intrathecal infusion system for continuous administration of preservative-free midazolam hydrochloride the present invention circumvents breakthrough pain episodes often encountered with other means of opioid administration. The present invention further provides a novel method of treating pain that is of either non-neuropathic or neuropathic origin. Overall that present invention provides a method of treating cancer pain in patients by continuous intrathecal infusion of preservative-free midazolam hydrochloride.

DESCRIPTION

INTRASPINAL CONTINUOUS INFUSION OF MIDAZOLAM HYDROCHLORIDE FOR THE TREATMENT OF PAIN

5

10

15

20

25

30

BACKGROUND OF THE INVENTION

The present invention claims priority to U.S. Provisional Patent Application Serial No: 60/359,866 filed on February 27, 2002. The entire text of the above-referenced disclosure is specifically incorporated herein by reference. without disclaimer.

1. Field of the Invention

The present invention relates generally to the fields of pharmacology and pharmacotherapy. More particularly, it concerns methods for treating pain. In particular, the present invention relates to methods for treating pain by intraspinal administration of a benzodiazepine-GABAA receptor agonist, midazolam hydrochloride.

2. Description of Related Art

Many if not most ailments of the body cause pain. Generally, pain is experienced when the free nerve endings which constitute the pain receptors in the skin, as well as in certain internal tissues, are subjected to mechanical, thermal or chemical stimuli. The pain receptors transmit signals along afferent neurons into the central nervous system and then to the brain. Sometimes pain results when the nerve pathways themselves are injured. Pain is felt when the brain receives the signal from nerves to which damage is occurring. All types of pain are transmitted this way, including cancer pain.

The causes of pain can include inflammation, injury, disease or by treatments, muscle spasm and the onset of a neuropathic event or syndrome. Ineffectively treated pain can be devastating to the person experiencing it by limiting function, reducing mobility, complicating sleep, and dramatically interfering with the quality of life.

Pain caused by disease, or treatment thereof, is common in people with cancer, although not all people with cancer experience pain. Approximately 30% to 50% of

people with cancer experience pain while undergoing treatment, and 70% to 90% of people with advanced cancer experience pain (Leasage and Portenoy, 1999).

Currently, pain that is mild to moderate is treated with nonsteroidal antiinflammatory drugs (NSAIDS). However, if the pain is not relieved by NSAIDS alone, treatment with a fixed-dose combination containing codeine or oxycodone with aspirin or acetaminophen is implemented. If pain is not well-controlled at that dose level, use of a single entity opioid such as oxycodone is usually a further treatment option.

For pain that is moderate to severe, opioids (morphine, oxycodone, codeine, methadone, levorphanol, and fentanyl) are the major class of analgesics used because of their effectiveness, ease of titration, and favorable risk-to-benefit ratio. Morphine is the only such opioid designated by the World Health Organization as the preferred analgesic. Currently morphine is the only FDA approved analgesic for intrathecal therapy in treating pain. However, morphine as well as other opioids, are associated with significant side effects and are often ineffective at treating neuropathic pain.

For the treatment of pain, various studies have employed the use of midazolam hydrochloride in combination with morphine or other opioids. Animal studies using a sheep or dog model have also used bolus administration of midazolam. The efficacy and toxicity observed in these studies have been documented in the art (Serrao et al., 1990, 1992; Schoeffler et al., 1991; Madsen et al., 1990; Aguliar et al., 1994; Kyles et al., 1995). These studies utilized a midazolam preparation containing a preservative, and/or utilized bolus administration of the drug; and/or used the drug in combination with other analgesics such as the opioid morphine. A few of the animal studies have utilized a preservative-free midazolam hydrochloride for bolus administration.

SUMMARY OF THE INVENTION

The present invention overcomes the deficiencies in the art by providing a novel approach to the treatment of pain of either non-neuropathic or neuropathic origin. Thus, in accordance with the present invention, there is provided a method for treating pain in a subject comprising intraspinal administration to said subject of an analgesic formulation comprising preservative-free midazolam, wherein said formulation is substantially free of other analgesic substances. In one embodiment, the treatment is for neuropathic pain or non-neuropathic pain. In a particular

5

10

15

20

25

embodiment, high doses of midazolam are provided at the daily dose of at least about 1.0 mg. In another particular embodiment, high doses of midazolam are provided at the daily dose of at least about 5.0 mg. In yet another embodiment, doses of midazolam are provided at the daily dose of at least about 10.0 mg. In still yet another embodiment, midazolam is provided at a daily dose of at least about 15.0 mg.

It is contemplated that the formulation of midazolam may be administered gradually over a time period of greater than one minute; greater than ten minutes; greater than thirty minutes; greater than sixty minutes; greater than one-hundred twenty minutes; greater than four hours; greater than eight hours; greater than twelve eight hours; greater than twenty-four hours. It is further contemplated that the formulation of midazolam may be administered by a continuous infusion pump implanted subcutaneously in a subject having cancer.

In further embodiments, the subject may have cancer pain, again of a neuropathic or non-neuropathic origin. The subject may be opioid tolerant, or may suffer from opioid-resistant neuropathic pain. In still yet another embodiment, the subject is a human. In a further embodiment, the analgesic formulation of midazolam comprises at about 2.5 to about 5.0 mg/ml. In a particular embodiment, toxicity of preservative free midazolam is measured during treatment, and a dose modification is made based on the toxicity measurement. In further embodiments, pain relief is measured during treatment and dose modification is made based on the pain relief measurement.

In further embodiments of the present invention it is contemplated that the daily dose of midazolam hydrochloride is at least or at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 mg.

In the context of the present invention, "cancer pain" is pain, which can be caused by the disease itself or by treatments that may be non-neuropathic, or neuropathic in origin.

BRIEF DESCRIPTION OF THE DRAWINGS

The following drawings form part of the present specification and are included to further demonstrate certain aspects of the present invention. The invention may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein.

5

10

15

20

25

FIG. 1 - Structure of midazolam hydrochloride.

FIG. 2 - Continuous infusion system model in sheep.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

A. The Present Invention

5

10

15

20

25

30

The present invention concerns the use of a midazolam preparation that is preservative-free for the treatment of pain, such as non-neuropathic pain or neuropathic pain by intrathecal infusion. The invention further seeks to provide treatment for pain associated with or arising from a subject having cancer.

Since some subjects develop tolerance to the intraspinal infusion of opioids; and in other subjects the narcotic infusion produces side effects such as nausea, vomiting, sedation, and urinary retention; the present invention further contemplates an alternative method of treating pain to overcome these deficiencies. Tolerance of opioids such as morphine can develop to the point where intrathecal doses as high as 50 mg/day are ineffective in controlling pain. The present invention therefore seeks to provide an alternative for morphine, the only FDA approved intrathecal infusion treatment for pain that is both safe and less toxic.

The major advantages of the present invention as compared to current usage of midazolam are: (1) a midazolam preparation that is preservative-free and therefore less toxic than commonly used midazolam preparations containing preservatives such as benzyl alcohol; and (2) a continuous intraspinal infusion model for delivery of midazolam in the treatment of pain.

Another major advantage of the present invention is that intraspinal infusion of midazolam hydrochloride produces most, if not all, of its effects at the spinal levels rather than at the brainstem or peripheral nerve sites. Therefore, utilizing this spinal route of administration allows for delivery of midazolam hydrochloride in close proximity to target receptors resulting in higher local concentration of analgesics at their site of action, as well as providing pain relief that is often superior to that achieved when drugs are administered by other routes. Smaller doses can be delivered with minimal systemic exposure, thereby reducing the potential for side effects to develop. Additionally, an implantable infusion system allows for continuous infusion of drug to steady-state conditions, which will avoid breakthrough pain episodes often experienced with bolus administration.

B. Analgesia/Pain

5

10

15

20

25

30

The present invention seeks to overcome the deficiencies of current therapies in treating pain that is of a neuropathic or non-neuropathic origin by using preservative-free midazolam hydrochloride intraspinally/intrathecally. Pain can be divided into two broad categories: non-neuropathic (nociceptive) and neuropathic (non-nociceptive). These types of pain differ in their causes, symptoms, and responses to analgesics.

1. Non-Neuropathic Pain

Non-neuropathic (nociceptive or somatic) pain results from direct stimulation of intact afferent nerve endings and is characterized usually as dull, sharp or aching pain which is responsive to analgesics. Some examples of nociceptive pain include: bone pain (e.g., from a fracture, bone metastases, etc.); pain elicited by tissue injury; pressure pain; cancer pain. This type of pain can also be well controlled if the painful stimulus can be removed or treated with surgery, radiation therapy, or chemotherapy.

Non-neuropathic pain may also be acute or chronic or inflammatory. Acute pain usually starts suddenly, may be sharp, and often triggers visible bodily reactions such as sweating, elevated blood pressure, and more. Chronic pain lasts, and pain is considered chronic when it lasts beyond the normal time expected for an injury to heal or an illness to resolve. Inflammatory pain can occur when tissue is damaged, as can result from surgery or due to an adverse physical, chemical or thermal event or to infection by a biologic agent.

Although these types of non-neuropathic pain can be treated with current analgesics, there many drawbacks and deficiencies such as widespread systemic distribution of the drug, undesirable side effects, and short drug efficacy durations which necessitate frequent drug readministration with possible resulting drug resistance. The present invention therefore seeks to overcomes these drawbacks and deficiencies in treating non-neuropathic pain.

2. Neuropathic Pain

Other types of pain that may be treated by preservative-free midazolam hydrochloride include neuropathic pain. Neuropathic pain is a persistent or chronic pain syndrome that can result from damage to the nervous system, the peripheral nerves, the dorsal root ganglion or dorsal root, or to the central nervous system. This

type of pain may exhibit opioid resistance or require higher opioid doses to achieve pain relief. Cancer pain is one such type of pain related to neuropathic pain and caused by tumor or treatment-related nerve damage, shingles, post-herpetic neuralgia, and phantom limb pain.

Current methods to treat neuropathic pain, such as by local anesthetic blocks targeted to trigger points, peripheral nerves, plexi, dorsal roots, and to the sympathetic nervous system have only short-lived anti-nociceptive effects. Additionally, longer lasting analgesic treatment methods, such as blocks by phenol injection or cryotherapy raise a considerable risk of irreversible functional impairment. Furthermore, chronic epidural or intrathecal (collectively "intraspinal") administration of drugs such as clonidine, steroids, opioids or midazolam (containing preservative) The present invention have significant side effects and questionable efficacy. therefore provides an alternative to safely and effectively treat neuropathic pain, such midazolam hydrochloride preservative-free using pain, cancer as intraspinally/intrathecally.

3. Assessing/Rating Pain

Due to the multidimensional nature of pain, use of pain assessment tools provides more complete information on the nature of the pain and the effectiveness of pain treatments. Both qualitative and quantitative pain assessment are an important part of any study involving pain treatment. Qualitative description of the location, frequency and characteristics of the pain is important to assess pain type described above. As is known to those skilled in the art, the McGill Pain Questionnaire has been validated and found reliable in many studies including those involving cancer pain treatments (Graham et al., 1980; Kremer et al., 1882; Littman et al., 1985; Jensen et al., 1993).

Quantification of pain intensity can be assessed by asking the subject to rate the pain using numeric or visual scales at multiple intervals, tracking the pain over time, and with changes in therapy. The most reproducible and consistent methods are: (1) the visual analog scale (VAS), which uses a 10 cm horizontal measuring bar extending from no pain to worst pain, and (2) the verbal digital scale (VDS) which involves numerically rating the pain on scales of 0 to 10 or 0 to 100 (Melzack et al., 1975; Ahles et al., 1983; Merskey et al., 1986; Bonica et al., 1990). These types of pain assessment tools may be used in the present invention to determine the efficacy

5

10

15

20

25

of preservative-free midazolam hydrochloride in treating subjects experiencing pain, *i.e.*, cancer pain.

C. Intraspinal/Intrathecal Infusion

5

10

15

20

25

30

Current drug infusion methods for the treatment of pain relate primarily to morphine, the only approved FDA analgesic for treating pain intrathecally. The present invention applies particularly to intrathecal drug infusion of preservative-free midazolam hydrochloride in the treatment of cancer pain. In the treatment of some types of pain such as in cancer pain, more invasive alternative treatments may be required to achieve pain control other than systemically-administered opioid analgesics.

Therapeutic administration of certain drugs intraspinally, that is to either the epidural space or to the intrathecal space, is known to those skilled in the art. Administration of a drug directly to the intrathecal space can be by either spinal tap injection or by catheterization. Intrathecal drug administration can avoid the inactivation of some drugs when taken orally as well and the systemic effects of oral or intravenous administration. Additionally, intrathecal administration permits use of an effective dose which is only a fraction of the effective dose required by oral or parenteral administration. Furthermore, the intrathecal space is generally wide enough to accommodate a small catheter, thereby enabling chronic drug delivery systems. Moreover, it is known to one skilled in the art, to treat pain by intraspinal administration of the opioids morphine and fentanyl (Gianno et al., 1996).

1. Intraspinal Midazolam Therapy

Midazolam infusion. The pump is filled with 18 mL (capacity) midazolam hydrochloride (2.5 or 5.0 mg/ml). The dead space within the pump and catheter tubing is then primed with 400 μ l the midazolam solution (pump and tubing dead space is 360 to 380 μ l). The dosing rate begins at 1 mg/day, and is escalated as described below.

Dose escalation. Doses as contemplated with the present invention are chosen based on the prior art. Sedation and somnolence have been the toxicities reported with 1-5 mg/day. Starting on Day 1 of the study, the pump is programmed for an increasing infusion rate. Intrasubject dose escalation is performed every 2 weeks over

an 8 week period according to the following schema: Pump Rate for Course 1: week 1: 1 mg/day; week 3: 2 mg/day; week 5: 3 mg/day; week 7: 4 mg/day; week 9: 5 mg/day; week 11: Pain response is qualitatively and quantitatively assessed as previously described.

5 D. Route of Administration

The Pump Implantation Procedure

Using the intraspinal route of administration, effective analgesics such as preservative-free midazolam hydrochloride can exert their activity at sites in the spinal cord, with limited exposure to brainstem and midbrain levels, and essentially no exposure to supratentorial brain structures. Because of this localization to the effector site, spinally administered analgesics can be given at lower doses, thereby also minimizing systemic exposure and offering relief from pain.

Implanted spinal infusion pumps, and programmable pumps (pumps with infusion rates that can be changed through the skin via radiotelemetry) are well known to those skilled in the art. Of these, the most common is the SynchroMed® infusion pump (Medtronic, Inc., Minneapolis, MN), used in the present invention. Studies at multiple institutions have demonstrated the reliability of this pump for drug infusion, with a device-related complication rate of approximately 6% and a rate of overinfusion of 1.4%. A low infection rate of 2% shown with use of this pump and spinal catheter system also demonstrates its safety for use in cancer subjects. The pump has the ability to infuse at rates of 0.002-0.90 ml/hr with a reservoir volume of 18 ml. The sideport at the edge of the pump allows aspiration of fluid in the catheter as well as cerebrospinal fluid for flushing of the catheter. The location chosen for the spinal catheter tip is dependent on the length of the spinal catheter and safety with regard to avoidance of spinal cord damage.

Implanting an intrathecal catheter and pump is a surgical procedure that takes 1-2 hours to complete. The pump itself is about the size of a hockey puck allows for the infusion of analgesic substances such as preservative-free midazolam hydrochloride into the cerebral spinal fluid. Infusion is usually accomplished with a thin catheter implanted in the spinal canal and connected to a pump which resides under the skin in the abdomen. The placement of the spinal catheter is performed with a puncture at the L1-2 or L2-3 level of the spinal cord, with passage of the catheter tip between the T7 to T11 level. The pump is then placed in the subcutaneous fat of the

10

15

20

25

abdomen, just below the ribs. A tube connecting the pump and the intrathecal catheter goes around the flank.

In the present invention, the pump delivers very small doses of a substance (i.e., preservative-free midazolam hydrochloride) into the spinal fluid. Because of the direct nature of delivery of this substance, much lower doses are required to achieve good pain relief than required with oral medications. In addition, side effects of oral or systemic medications are seen far less frequently with intrathecal infusion. The pump is filled at the time of surgery and a low dose of narcotic is begun after surgery. The pump is easily refilled with little discomfort to the subject, and dose changes can be made with a special radiofrequency transmitter placed over the skin. The implanted pump can be programmed for continuous or intermittent infusion of the drug through the intrathecally located catheter. In the present invention, the pump is programmed for continuous infusion of preservative-free midazolam hydrochloride.

Before infusing midazolam through a permanently implanted intrathecal pump, subjects undergo infusion of a narcotic (usually morphine) into their spinal canal in order to see whether they obtain benefit opioids given by this route of administration. In addition, possible side-effects with intrathecal narcotics can be judged. If subjects do not obtain adequate pain relief or experience intolerable side effects with opioid intraspinal infusion, the intraspinal opioid dose is converted to a systemic opioid dose and midazolam intraspinal therapy provided.

2. Test Infusion of Opioids

a. Calculation of systemic equivalent doses of intraspinal opioid. The opioid dose being administered intraspinally is first converted to systemic morphine equivalents. This conversion is based on approximate equipotent doses of opioids for different routes of delivery (e.g., intrathecal, epidural, systemic, oral) according to the following:

		<u>IV</u>	<u>IT</u>	<u>PO</u>
	Oxycodone	200	10	600
30	Hydromorphone	33	1.7	100
•	Morphine	200	10	600

5

10

15

20

These formulas are based upon published studies of analgesic potency, and experience of the principal investigator with epidural and intrathecal infusions of these agents. Intrathecal infusion of morphine sulfate or hydromorphone has been found to be approximately 20 times more potent than intravenous infusion. Intrathecal infusion of hydromorphone has been found to be approximately 6 times more potent than intrathecal infusion of morphine sulfate. Oral doses may be increased from systemic equivalents by a factor of 3 to account approximately for different absorption rates between systemic and oral delivery.

b. Conversion of opioid spinal infusion to systemic infusion or oral therapy.

The spinal infusion of opioid (morphine sulfate or hydromorphone) may be tapered off over one week prior to the initiation of midazolam therapy, and systemic dosing begun. Oral therapy is the preferred route for conversion from the spinal opioid infusion. The basal morphine dose is adjusted daily for pain relief during the week prior to midazolam initiation, until a stable morphine dose for pain relief is achieved. Two days prior to the start of midazolam therapy, the spinal infusion tubing is then flushed with saline by running the pump at 30 µL/hr for 48 hr.

The maximum allowed for each individual dose of rescue medication will be 15% of the total daily narcotic dose administered systemically (in morphine systemic equivalents). Rescue dose frequency will follow a schedule appropriate for the route of delivery (e.g., hourly for intravenous delivery, 4 hr for oral).

E. Combination Treatment/Therapies

In the present invention although preservative-free midazolam hydrochloride as a single agent is the preferred method of intraspinal/intrathecal infusion in treating cancer pain, it is further contemplated that other agents known in the art for treating pain may be combined with the present invention to further alleviate pain. In order to increase the effectiveness of a given therapy, it may be desirable to combine various compositions of analgesics with the preservative-free midazolam preparation of the present invention. It is further contemplated that, non-opioids, a surgical therapeutic agent (e.g., a surgical procedure) or a combination thereof, may be combined with

5

10

15

20

25

preservative-free midazolam hydrochloride for intraspinal/intrathecal infusion in the treatment of pain.

Cancer pain can often be relieved by treatment with chemotherapy, hormonal therapy, surgery, radiotherapy, nerve blocks, psychological techniques, or a combination of these. However, the mainstay of chronic cancer pain management is opioid therapy. Drugs used to treat cancer pain include non-opioids, opioids, and adjuvant drugs.

The treatment of pain may employ a multifaceted approach of various medications and strategies such as: (a) nonsteroidal anti-inflammatory drugs, (b) antidepressants, (c) oral anti-arrhythmic medications (e.g., mexilitine hydrochloride if an intravenous infusion of xylocaine provides temporary relief), (d) adrenergic blocking compounds (e.g., propranolol hydrochloride, phentolamine), (e) calcium channel blocking agents, (f) anticonvulsants, and (g) aggressive physical and occupational therapy. In addition to these medications, sympathetic blocks and/or denervations, transcutaneous electrical nerve stimulation (Bonica, 1990; Hassenbusch et al., 1990 Nishiyama et al., 1999), intravenous phentolamine infusions, and regional (Bier-Block) guanethidine injections also have been utilized (Kyles et al., 1995; Valentine et al., 1996).

Therefore, the present invention contemplates the use of intraspinal/intrathecal infusion of preservative-free midazolam hydrochloride in combination with other modalities.

1. Non-opioids

Non-opioids such as aspirin, or a nonsteroidal anti-inflammatory drug (NSAID) are effective for the treatment of mild pain. NSAIDs are preferred for the pain of bone metastases. The non-opioids all have an analgesic ceiling, that is, above a certain dose no further analgesic activity is to be expected. These non-opioids may be given in combination with preservative-free midazolam hydrochloride in the present invention to further alleviate cancer pain.

2. Calcium Channel Blockers/Antagonist

These aid in blocking the influx of calcium into cells. Ziconotide is the preferred calcium channel blocker in the treatment of pain. Other examples of a calcium channel blocker, that may be used with the present invention include: an

5

10

15

20

25

arylalkylamine (e.g., bepridile, diltiazem, fendiline, gallopamil, prenylamine, terodiline, verapamil); a dihydropyridine derivative (felodipine, isradipine, nicardipine, nifedipine, nimodipine, nisoldipine, nitrendipine); a piperazine derivative (e.g., cinnarizine, flunarizine, lidoflazine); or a miscellaneous calcium channel blocker such as bencyclane, etafenone, magnesium, mibefradil or perhexiline. In certain embodiments a calcium channel blocker comprises a long-acting dihydropyridine (nifedipine-type) calcium antagonist.

3. Adjuvant Drugs

Other drugs which include corticosteroids, anticonvulsants, antidepressants, local anesthetics, and stimulants, may be given in combination with midazolam hydrochloride in the present invention. This is done to increase the effectiveness of the pain medication, treat symptoms, and relieve specific types of pain. Antidepressant or anti-convulsant medications are used to treat neuropathic pain

4. Alpha-Adrenergic Agonists

Activation of these receptors have been shown to have antinociceptive properties. Epidural clonidine has been used in the treatment of chronic pain in humans. It is usually administered as an adjunct agent because of possible significant adverse cardiovascular effects, including bradycardia and hypotension.

5. Sodium Channel Agonists

Another route to pain relief is by opening sodium channels. Local anesthetics work via this mechanism. Bupivacaine is most commonly used. Local anesthetics are limited by the nature of their nonspecific blockade. Potential serious side effects are periods of orthostatic hypotension and bradyapnea. Other examples sodium channel agonists include lidocaine (xylocaine), tocainide (tonocard) and mexiletine (mexitil).

6. Radiation Therapy

Local or whole-body radiation therapy may increase the effectiveness of pain medication and other noninvasive therapies by directly affecting the cause of the pain (for example, by reducing tumor size).

25

5

10

7. Surgery

Surgery may be used to remove part or all of a tumor to reduce pain directly, relieve symptoms of obstruction or compression, and improve outcome, even increasing long-term survival.

5 8. Nerve Blocks

A nerve block is the injection of either a local anesthetic or a drug that inactivates nerves to control otherwise uncontrollable pain. Nerve blocks can be used to determine the source of pain, to treat painful conditions that respond to nerve blocks, to predict how the pain will respond to long-term treatments, and to prevent pain following procedures.

9. Neurologic Interventions

Surgery can be performed to implant devices that deliver drugs or electrically stimulate the nerves. In rare cases, surgery may be done to destroy a nerve or nerves that are part of the pain pathway.

15 F. Examples

10

20

The following examples are included to demonstrate preferred embodiments of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventor to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

25 EXAMPLE 1

Toxicity and Nociceptive Testing of Midazolam in the Acute Pain Sheep Model-Open-Label (Known dose) Trial

The inventors have completed a toxicity and efficacy study of intrathecal midazolam hydrochloride in 15 sheep instrumented with Medtronic SynchroMed® infusion systems. The surgical procedure and the hardware used in these animals was

analogous to that utilized in humans. The first sheep was tested for toxicity only (3 mg/day), and all subsequent animals tested for both toxicity and analgesic activity.

Open-label (known dose) trial: A trial with known midazolam doses was performed in the first 7 sheep. Animals were administered 3 mg/day (N=1), 5 mg/day (N=1), 10 mg/day (N=1), and 15 mg/day (N=4) for 43 days. These doses were chosen based upon previous intrathecal bolus dose studies in rats and humans, with conversion of from species to species based on cerebral spinal fluid (CSF) production rate and total CSF volume. Analgesic activity was assessed using a mechanical stimulus device which produces a stimulus of acute pain by application of force via a blunt needle applied to the shaved front foreleg of the animal. Force is applied with increasing pressure until the animal lifts its leg in response to the painful stimulus. To evaluate the analgesic effect of midazolam, response latencies were expressed as a percentage of the maximum possible effect, %MPE. The response latency is defined as follows:

% MPE = Postdrug response-predrug response X 100 Cutoff-predrug response

All treated animals exhibited significant pain relief. On most treatment days, sheep receiving midazolam had an increase in pain tolerance equivalent to 30 to 100% of maximal possible effect. The continuous infusion of midazolam in the open label sheep did not produce any behavioral, toxicological, or histopathologic changes related to the midazolam infusion in any subject.

5

10

15

Midazolam Sheep Nociceptive Testing and Physiological Data Midazolam Sheep # 518 Sandbur Slim (Sandy), Dose 5 mg/day

Mechanical Stimulus	Allodynia	7	Gait	Blood pressure	od	Pulse Rate	Body Temp.
Warm	-	Cold	Normal	Sys	Dia	Normal	Normal
45°C		၁့	0			55 - 115	101.3 –
					-		104.0
88		11	0	190	71	140	102.2
16	-	7	0	185	90	140	101.8
7	-	0	0	180	103	84	102.0
7	-	0	0	150	53	68	101.0
4		2	0	141	99	89	102.0
4	_	9	0	152	38	94	101.8
0	_	-	0	147	48	90	101.6
4		9	0	169	65	72	102.8
	-		U	164	70	66	102.0

No clinical symptoms

Open Label Sheep Midazolam Sheep #498 Toad, Dose 10 mg/day

										_			_			1	_	_	٦.	
•	Body	Тетр.	Normal	101.3	104.0	103.2	000	102.0	104.2		102.8	102 4	102.7	101.8	101.8		103.0	103.2	11224	
	Pulse	Rate	Normal	55 - 115		103		98	70		95	17	;	104	29	3	68	10	2	
	Blood	Pressure	Dia			2		86	3	()	99	00.	109	71	66	3	59	03	30	
	В	Pr	Svs			147		177	5	140	136		156	153	1.0	110	153		149	
	Gait		Normal	0	>	0	>	0		>	٥	>	0	c		>	c	>	0	
	Allodmia		Cold	ره رو	ر د	17	1/	-		∞	C	7	9	C	7	∞ —	4		က	
	Alloc		Worm	Wallii	_ئ ک	1	>	~			2	19	2					7	7	
	Moshaniaal	Mechanicai	OLIMINAS 0/1/CDE	Yawire			•	100	100	68 48	2500	17.95	75.01	17:01	43.92	100	201	91.74	62.1	
		Lay	-				Raseline		Day 1	Day 2	Uay 3	Day 7	7516	Day 13	Day 22	20, 20	Day 27	Day 36	Day 43	プログレン

No clinical symptoms

Open Label Sheep Midazolam Sheep #457 Tazz, Dose 15 mg/day

Body	Temp.	Normal	101.3 -	104.0	102.0	100.8	102.2	103.0	102.2	102.0	100.8	102.2
Pulse	Rate	Normal	55 - 115		98	138	LL	<i>74</i>	91	62	82	74
Blood	pressure	Dia		-	7.5	83	1.2	89	0/	23	88	22
B	pre	sys			191	151	154	145	151	154	147	135
Gait		Normal	0		0	0	0	0	0	0	0	0
ynia		Cold	၁့၅	•	4	3	4	4	3	1	1	0
Allodynia		Warm	45°C		37	9/	0	3	3	2	4	0
Mechanical	Stimulus	%MPE				-20.1	55.90	100	80.56	72.67	40.7	77.99
Day					Baseline	Day 1	Day 7	Day 15	Day 22	Day 29	Day 36	Day 43

No clinical symptoms

Open Label Sheep

Sheep: Wacko #83 Midazolam dose: 15 mg/day

						_	_		_	_		_	_			1	7	
Rody	r r	Temp.	Normal	101.3 - 104.0	102.2	102.0	102.0	102.4	102 6	106.0	102.4	102 6	102.0	102.0	102.6	102 6	102.0	
Duleo	I MISC	Rate	Normal	55 - 115	133		104	86	5	7,7	86	5	7,7	66	78	1000	C	
77	oa	sure	Dia		48	2	60	45	ŗ	4/	42	;	7	99	5	2	2/	ĺ
210	2000	pressure	Sys	,	127	121	148	166		130	106		102	132	5	3	128	
	Gan	•	Normal	0	-	>	0	6	,	0	0		0	c	,	0	0	
	mia		Cold	وه ر		40	_	2	4	m		1	9	7		2	0	
	Allodynia		Worm	7657	2 4	y		1	,	11		0	4	٥			0	
	Mechanical	Crimulus	O. MDE	70 IMI 07		•	33 30	20.00	-100.01	54 46		75.71	100	201	-4.82	-61.25	40 89	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	Dan	ra'				Baseline	71	Day 1	Day 3	7.2.7	Day /	Day 15	70,, 27	Day 22	Day 29	Day 36	De.: 42	_

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Open Label Sheep

Sheep: Yacko #91

Midazolam dose: 15 mg/day

Day	Mechanical	Allodynia	mia	Gait	Blood	po	Pulse	Body
	Stimulus				pres	pressure	Rate	Temp.
	%MPE	Warm	Cold	Normal	Sys	Dia	Normal	Normal
		45°C	၁့၅	0			55 - 115	101.3 - 104.0
Baseline	6	2	43	0	144	61	147	101.6
Day 1	10.18	6	15	0	138	65	115	102.8
Day 3	49.16	5	6	0	143	55	80	102.8
Day 7	21.31	12	6	0	156	99	84	102.6
Day 15	100	5	1	0	110	44	98	103.0
Day 22	78.04	2	0	0	156	64	72	102.0
Day 29	100	3		0	151	32	82	104.4*
	41.57	1	2	0	160	99	99	103.0
Day 43	58.36	7	6	0	149	09	69	102.2

*Temperature taken after nociceptive testing.

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Open Label Sheep

Sheep: Dot #85

Midazolam dose: 15 mg/day

			0		T	T			T							
Rody	Temp.	No. maı	101.3 -104.0	102.2	7 201	105.4	103.0	103.0	707.0	102.6	102.0	102.0	104.6*	0 201	103.0	
Della	r uise Rate	Normal	55 - 115	03	6	92	68	70	90	117		82	72		99	
- 7	oa sure	Dia		3,6	C	89	49	,	/9	65	3	53	11		27	
100	biood pressure	Svs		,	17/	128	109		110	133	5	130	128	120	120	
	GALI	Normal	0	, ,	0	0	0	>	0	<	>	0			0	,
		Cold	200		39	14	,	7	0	,	7	0	,	3	۶	,
	ALLODYNIA	Worm	Wallill ASOC	2	4	1	, ,	7	2		3	C	,		v	`
	Mechanical Stimulus	%MPE			•	58 30	50.00	/0./7	70 07	2001	92.59	92.88	00.00	68.63	73 77	00.00
	Day				Baseline	1	Day 1	Day 3	Day 7	Day /	Day 15	5	Day 22	Day 29		70.00

*Temperature taken after nociceptive testing.

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Open Label Sheep

Midazolam Sheep: Bloodwork

Midazolam Sheep # 473, Red Dose: 3 mg/day

There was not any pain testing done on this animal

Hematology

						_			_	7
% s:	Atyp	nym								
olute Value	Eosin	0-10			3	,	1	9	2	
ınt: q Abso	Seg	10-50			99		59	40	9٤	3
erential Cou	no Lymph Seg Eosin At	40-75			31		39	53	9	3
Diff	Mono	9-0							,	7
Platlet	Count	× 10³	크	250-750	573		999	336	2,90	707
MCHC	G/dI	31-34			31.7		32.2	31.5	21.1	21.1
MCH	Pg	8-12			9.5		9.7	9.3	70	4.4
MCV	Ħ	28-40			30.1		30.0	29.6	000	20.7
Het	%	27-45			38.2		33.0	41.0		41.5
Hgb	g/di	9-15			12.1		11.3	12.9		12.9
RBC	x 10 ⁶ /μl	9-15			11.62		11.0	12.50		13.73
WBC	x 10 ³ /µl	4-12			6.2		8.5	5.1		3.4
Dav	}				Baseline	Presurgery	Day 1	Day 15		Day 43

		_	~			\neg	
K+ mEq/l 3.9-5.4	4.4	7,7		4.6	4,5	3	
Na+ mEq/l 139-152	151	153	3	152	150	2	
Cl- mEq/l 95-103	105			114	901	801	
CPK	544	200	392	86	ę	82	
Phos mg/dl 5-7.3	6.7		6.9	5.8		5.3	
Gamma GT U/L 25-59	7.		69	65		58	
Choles- terol mg/dl	77		72	70		78	
Albu- min g/dl 2.4-3	7	5	3.4	3.7		3.4	
Total Prot g/dl 6-7.9	, ,	5.0	6.5	47	3	6.4	
BUN mg/dl 8-20	=	=	01	٤	2	15	
Glu- cose mg/di	10.	171	91	16	*	29	
Creat- inine mg/dl		7:1	0.1	:	7:1	1.5	
Alk Phos U/L	/02-00	48	17		95	73	
AST U/L		278	230		82	19	,
ALT U/L		71	3	;	_	~	,
TotalBi li mg/di0. 14-0.32		0.7	0.0	3,5	0.	00	2
Day		Baseline		Lay 1	Day 15	Day 43	Cay T

Open Label Sheep Midazolam Sheep # 518, Sandbur Slim (Sandy), dose 5 mg/day

_
\sim
7
~,
\sim
~
_
\sim
\sim
æ
_
_
2.
v
_

							,	_	_		_	_	1		_
9	Atyp	lym						_			,	- -			7/2
values ,	Eosi	-	0-10	,				_		?		4			;
q Absolute	Seg	10.50	3	Ş	2	20	2	21		33	3	47			
rential Count:	Mono Lymph Seg Eosi A	70.75	C/-Ot	٩	49	30	77	47	-	ç	30	48			
Diffe	Mono		0		4										
Platlet	Count	103	x 107/μl 250 750	001-007	393	١	047	1	540	3	533	977	440		
MCHC	7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	10/5 5	31-34		29.4		31.4		30.1		31.3		30.7		Chemistries
MUM	MOH	Pg	8-12		8 9		96		03		9.6		9.6		Ç
1000	i K	로	28-40	-	20.3	20.0	30.6	20.0	30.7	3		1	31.1		
	HCI	%	27-45		42.0	45.0	0.55	22.0	22.0	22.0	33.0	3:55	44.6		
[:	Hgo	g/di	9-15		5.5	14.3	40.5	7.71	44.0	11.5	116	77.0	13.7		
	RBC	x 10°/µl	9-15		•	14.2		11.44		10.72	90 5	17.00	12 54	14.71	
	WBC	× 10³	<u>H</u>	4-12		5.1	; -	8.4	; -	6.4	;		7	0.7	
	Day					Baseline		Day 1		Day 3		Lay 15	7573	Lay 45	

-		_	Т	-	T		Τ	7		٦		
¥	mEq/1	47		40		4.4	ŀ	0.4	7 7	?		
+gZ	mEq/1 139- 152	150	130	157	5	151		15	3	751		
5	mEq/1 95-103	957	2	901	001	1.		112		==		
700	70		473		148	024	50	172		787		
20,00	rnos mg/dl 5-7.3		7.7		7.2	:	2.7	15	;	6.4		
,	Gamma GT U/L 25-59		98		20		22	S	2	89	3	
	Choles- terol mg/dl		08	3	90		82	1	ž	ş	6	
onino	Albu- min G/dl 2.4-3		,		3.6	2.0	~		4.	,	3.3	
Cilcimento	Total Prot G/dl 6-7.9			:	;	ر.	99	2	6.7		6.2	
	BUN mg/dl 8-20			7		12	١	_	-	2	_	
	Glu- cose mg/dl 42-76			5		œ œ	١	77.1	2.4	-	68	
	Creatinine mg/dl			1.3	7.5	Ξ		1.4	۱	0.1	1.7	
	Alk Phos U/L 68-387			100	201	157		66	١	3	õ	ì
	AST			20.	(8)	112	3	6		7	7	2
	ALT			3	31.0	23	12.0	10.0		13.0	3	22
	Total Bili mg/dl		0.32		0.3	٤	7.0	0.1		<u>-</u>	;	3
	Day				Baseline		Cay -	Pay 2	Cay 5	Day 15		Day 43

Open Label Sheep Midazolam Sheep #498, Toad, Dose 10 mg/day

nes %	e.	lym 0-3				2 1	2 1
solute Valu	Eosin	0-10		15			
ount: q Abs	Seg	10-50		31		89	68
Differential Count: q Absolute Values %	Lymph	40-75		52		28	28
Ö	Mono	9-0		2		-	3
	Bands						∞
Platlet	Count	x 10 ³ /µl	250-750	325	65	760	592 42
MCHC	g/dl	31-34		9.5	33.0	24.0	29.7
MCH	bg	8-12		9.1	90	?	9.2
MCV	4	28-40		31.0	30.1		31.1
Het	%	27-	45	35.0	31.0		44.8
Hgb	g/dl	9-15		12.0	11.1		13.3
RBC	x 10 ⁶ /μl	9-15		11.29	11.53		14.39
WBC	x 10³/µl	4-12		5.4	0.9		9.8
Day				Baseline	Day 1		Day 15

K+ mEq/1 3.9-5.4	4.1	4.4	5.1	4.0
Na+ mEq/l 139-152	147	151	151	148
Cl- mEq/1 95-103	105	113	111	111
CPK U/L	83	68	154	203
Phos Mg/ dl 5- 7.3	7.0	3.8	6.4	5.8
Gamma GT U/L 25-59	99	74	8	65
Chole sterol Mg/di	09	63	63	29
Albu -min g/dl 2.4-3	3.5	3.9	3.4	3.6
Total Prot g/dl 6-7.9	6.2	6.4	6.7	6.1
BUN Mg/dl 8-20	12	9.0	16	13
Glu- Cose mg/dl 42-76	111	131	78	11
Creatinine mg/dl 1-2.7	1.6	1.6	1.8	1.5
Alk phos U/L 68- 387	51	45	87	87
AST U/L	08	56	98	68
ALT U/L	5.0	8.0	7.0	8.0
Total Bilim g/dl 0.14-	0.1	0.2	0.1	0.1
Day	Baseline	Day 1	Day 15	Day 43

Open Label Sheep Midazolam Sheep # 457, Tazz dose 15 mg/day

_	T	Т	_	T	_	Т		Γ	_	1	
	-	Bands									
%		Atyp lym									
solute Value	2000	Eosin 0-10	1.7	-	_	-			7		
1 Country Al	at Country of Art	Seg 10-50	;	17	E	2	7,	1,7	73	6.7	
Differentia	Differentia	Mono Lymph Seg Bosin Atyp 0-6 40-75 10-50 0-10 lym		_ 5		97		-	9,	8	
		Mono 0-6						~	,	7	
	Platlet	Count x 10 ³ /µl	221 057	ademate	- Land	176	213	45		I mavailable*	
	MCHC	g/dl 31-34		21.0	21.0	306	COC	308		313	211
	Ξ.	pg 8-12		٤	2		10.7	10.6	10.01	115	211
	NU.	fl 28-40			57.7		33.4	1,70	34.4	. 1.66	33.7
	17.5	761 % 27-45			37.40		34.4		35.4		40.4
		Hgb g/dl 9-15			9 =		10.5		10.9		12.6
		KBC x 10 ⁶ /μl 9-15			10 53	3	898		8.72		10.98
		WBC x 10³/µl 4-12			171	10.1	0 11		154		11.2
		Day				Baseline	1	Lay I	Day 15	Day 13	Day 43

* Platelet clumps observed

		Т	_	_	٦		
K+ mEq/l 3.9- 5.4	4.4		4.4	4.0			
Na+ mEq/l 139-152	147		150	145	3		
Cl- mEq/1 95-103	108		111	.03	10/		
CPK	5	177	73		7		
Phos mg/dl 5-7.3	;	7.0	4.7		5.9		
Gamma GT U/L 25-59	1	ž	7.2	7,	61		
Choles terol mg/dl		29	37	S	×		
Albu -min g/dl 2.4-	·	2.8	,	5.3	11		
Total Prot g/dl 6-7.9	- 1	۷0		5.9	63	;	
BUN mg/dl 8-20		14	5	ನ	ب	2	
Glu- cose mg/dl 42-76		5	7	8	ļ	6/	
Creatinine mg/dl			=	11		1.4	
Alk Phos U/L 68-	387	٩	43	63	1	105	
AST U/L			82	. 35	3	8	
ALT			9	=	-	12	
Total Bili mg/dl 0.14-	0.33	2	0.1	5	7.5	0.1	:
Day			Day 1	15	Day 13	Day 43	2

Open Label Sheep Midazolam Sheep #83, Wacko dose 15 mg/day

		_	_	, .
Atyp lym				2
Baso	-			
Eosin 0-10		-	-	3
Seg 10-50	37	39	29	22
Lymph 40-75	58	55	89	20
Mono 0-6	4	5	2	3
Count x 10³/μl 250-750	657	879	296	576
g/dl 31-34	34.1	34.0	34.7	31.1
pg 8-12	11.9	11.3	11.4	11.1
fl 28-40	34.8	33.2	33.0	32.5
27.45	34.6	37.2	33.2	34.9
9-15	11.8	12.7	11.5	11.9
х 10°/µ1 9-15	9.95	11.2	10.0	10.7
× 10, 4-12	6.03	5.32	4.39	4.77
	Baseline	Day 1	Day 15	Day 43
	$\times 10^{6} \mu J$ g/d $\%$ fl pg g/dl Count Mono Lymph Seg Eosin Baso 9-15 27-45 28-40 8-12 31-34 $\times 10^{3} \mu J$ 0-6 40-75 10-50 0-10	x 10° x 10° kµl gydl % fl pg gydl Count Mono Lymph Seg Eosin Baso /µl 9-15 27-45 28-40 8-12 31-34 x 10³/µl 0-6 40-75 10-50 0-10 4-12 4-12 250-750 250-750 40-75 10-50 0-10 0-10 1e 6.03 9.95 11.8 34.6 34.8 11.9 34.1 657 4 58 37 1	x 10^5 x 10^6 /µlg/dl%flpgg/dlCountMonoLymphSegEosinBaso μ l9-1527-4528-408-1231-34x 10^3 /µl0-640-7510-500-104-124-1234.634.811.934.16574583715.3211.212.737.233.211.334.0879555391	x 10° x 10° x 10° y 10° flpgg/dlCountMonoLymphSegEosinBaso4-129-1527-4528-408-1231-34x 10° /µl0-640-7510-500-10ne6.039.9511.834.634.811.934.16574583715.3211.212.737.233.211.334.087955539154.3910.011.533.233.011.434.7296268291

					,		
K+	mEq/l	3.9-	5.4		4.2	4.5	4.9
Na+	mEq/1	139-152			148	147	149
מ	mEq/1	95-103			110	110	109
CPK	U/L				65	107	49
Phos	lp/gm	5-7.3			7.1	5.1	6.2
Gamma	GT	N/L	25-59		62	72	54
Choles			-		47	65	52
Albu	-mim-	g/dl	2.4-	n	3.3	3.3	3.6
Total	Prot	g/dl	6-7-9		6.1	5.9	9.9
BUN	mg/dl	8-20			8	06	14
Glu-	cose	mg/dl	42-76		8/	99	83
Creat-	inine	lb/gm	1-2.7		1.4	1.2	1.3
Alk	Phos	ΩT	%	387	48	06	96
AST	N/L				102	52	53
, ,	UL				0	8	9
	Bili	lp/gu	0.14-	0.32	0.1	0.1	0.1
Day					Day 1	Day 15	Day 43

Open Label Sheep Midazolam Sheep #91, Yacko dose 15 mg/day

_			_	_	_	_	1	7		
	Atyp lym									
ues 70	Baso	_								
bsolute val	Eosin 0-10			_		17		n		
Count: q A	Seg 10-50	73	, ,	76	2	44		25		
Differential	Lymph Seg Eosin Basc 40-75 10-50 0-10	;	777	7	77	44	F	41		
	Mono 0-6	,	^	,	7			2		
Platlet	Count x 10 ³ /μl 250-750		218		250	070	040	808	200	
MCHC	g/dl 31-34		32.3		33.7		34.0	366	33.0	
MOH	Pg 8-12		10.6		10.7		10.8		10.4	
100	n f f f f f f f f f f f f f f f f f f f		23.0	34:7	318	515	31.8		30.9	
	нсі % 27-45		21.2	51.3	20.2	77.67	3.0		36.3	
	Hgb g/dl 9-15		195	10.1	700	7.84	10.8	2	12.2	
	RBC x 10 ⁶ /μl 9-15			- -	9, 0	9.18	10.01	2.21	8.	
	WBC x 10³/μl 4-12			11.2		7.09	513	5.13	5 33	20:00
	Day			Baseline		Day 1		Lay 15	Dov. 43	752-1

+ 9- 9,1	ره 	Ι.	4	4.6	7	
H	4.		4.	4	-	
Na+ mEq/l 139-152	149		148	147		
Cl- mEq/l 95-103	112		108	100	3	
CPK	S	7,	26	2	5	
Phos mg/dl 5-7.3	53	0.2	6.1	,		
Gamma GT U/L 25-59		70	09		28	
Choles terol mg/dl		4	3	3	99	
Albu -min g/dl 2.4-		33	2.2	5	3.6	
Total Prot g/dl 6-7.9		6.1	(7.0	6.4	
BUN mg/dl 8-20		0	. ;	2	14	
Glu- cose mg/dl 42-76		77		83	81	
Creatinine mg/dl		71	2	1:3	1.5	
Alk Phos U/L 68-	387	123	727	162	174	
AST		;	0	8	2	3
ALT		,	-	10	١	^
Total Bili mg/di 0.14-	0.32	[0.1	0.0		0.1
Day			Day 1	Day 15		Day 45

Open Label Sheep Midazolam Sheep #85, Dot dose 15 mg/day

× κ κ		Hgp	Het	MCV	MCH	MCHC	Platlet		Differe	ntial Count	Differential Count: q Absolute Values %	Values %	
゠	х 10°/µl	[þ&	%	4	8d	lþ/8	Count	Mono	Lymph	Seg	Eosin	Baso	Atvo
	9-15	9-15	27-45	28-40	8-12	31-34	x 10³/µi	9-0	40-75	10-50	0-10		, EX
							250-750						•
5.13	10.2	10.6	33.3	32.7	10.4	31.9	838		19	37		-	-
4.78	8.57	9.2	28.0	32.7	10.7	32.8	994	_	22	75	-	-	
5.13	10.0	10.8	31.8	31.8	10.8	34.0	848		44	44	12		
3.13	9.44	11.9	34.7	36.8	12.6	34.1	604	3	75	18	4		
ı													

	95-103 139-152 3.9- 5.4	139-152	139-152
CPK UL		66	99
Phos mg/dl	5-7.3	5-7.3	5.7.3
Gamma	U/L 25-59	U/L 25-59 68	U/L 25-59 68 54
Choles terol	m/au	mg/ui	111g/cti 52 58
Albu -min 9/d1	2.4-	3.4	3.4
Total Prot	6-7-9	6-7.9	6-7.9 6.1 5.4
BUN mg/dl 8-20		10	10
Glu- cose mg/dl	42-76	42-76	42-76 75 N/A
Creat- inine mg/dl	1-2.7	1-2.7	1-2.7
Alk Phos U/L	68-	68- 387 50	68- 387 50 54
ASI		76	76
I otal ALI Bili U/L mg/di		7	7
Bili mg/dl	0.14-	0.14-0.32	0.14- 0.32 0.1
Day		Day 1	Day 1 Day 15

Open Label Sheep CSF Fluid Analysis and Routine Cultures

Sheep	S	Gross Exam	RBCC	RBC Count (/µl)	WB	WBC Count	Tota	Total Protein	Gluco	Glucose (mg/dl)	Routin	Routine Cultures
•						(/µl)	۳	(mg/dl)				
	Perio	Post	Peri	Post	Peri	Post	Peri	Post	Peri	Post	Pre-op	Post Mortum
	perati	Mortum	oper	Mortum	oper	Mortum	oper	Mortum	oper	Mortum		
	ve		ative		ative		anve		arrive		17	Comple
Red	color	coloriess,	38	772	0	4	N/A	N/A	AN N	A/A	Growth	contaminated
#473	less,	clear									}	at collection
	clear									64	N.	No Growth
Toad	N/A	colorless,	N/A	2160	N/A	36	N/A	39.6	A/N	4	Growth	11 1010 011
#498		clear];	,	Nic	No Growth
Sandy	N/A	colorless,	N/A	99	N/A	506	N/A	46.1	Ψ/N	ဝှ	Growth	
#518		clear								2.5	272	No Growth
Tazz	¥N Y	colorless,	N/A	113	N/A	49	N/A	28	Y Y) S	Growth	
#457		clear								7,	بزا	No Growth
Wacko	color	colorless,	N/A	134	color	11	23	37	A A	¢4	Growth	
#83	less,	clear			less,							
	clear				1000	٩	5	613	င့	30	Š	No Growth
Yacko	color	colorless,	220	625	<u>~</u>	a —		7.10	} 	}	Growth	
#91	less,	clear										
	clear					,	;	0 00	1	30	Ņ	No Growth
Dot	color	colorless,	250	02 	N/A	4	7 7	0.67	;	3	Growth	
#82	less,	clear										
	clear											

EXAMPLE 2

<u>Toxicity and Nociceptive Testing of Midazolam in the Acute Pain Sheep Model – Closed Label trial</u>

As in Example 1, a closed-label (investigators blinded as to dose) study was subsequently performed with 8 sheep which were administered 5 mg/day (N=3), 15 mg/day (N=3), or saline control (N=2). In this study, all sheep again exhibited significant pain relief. Five and 15 mg/day of intrathecal midazolam produced increases in pain tolerance from 10 to 100% of maximal possible effect in most animals. The continuous infusion of midazolam in the closed label sheep did not produce any behavioral, toxicological, or histopathologic changes related to the midazolam infusion in any of the animals studied.

5

Double Blinded Sheep

Sheep: Chicken Hawk Ovine #87

Midazolam dose: 5 mg/day

		_				7	-		1			1				1
Body Temp.	Normal	101 3 - 104 0	0.101 - 0.101	102.6	102.4		102.6	102.8	201	102.2	102.6	102.0	2122	102.2	102.6	1
Pulse Rate	Normal	26 115	23 - 113	94	75	5	83	23	03	101	79	00	00	84	8	70
Blood pressure	si C	<u>.</u>		20	3	70	37	6.5	55	51	44		ဌ	69	3 5	48
Blood 1	C. r.o	က်		124		711	127		122	132	120	OCT	126	151		130
Gait	1.00	Normai	0	c	, ,	0	C	,	0	6	,	>	0	6	>	0
ynia	:	g S	၁့၅	78	5	2	7	,	6	35	3	3	0		4	17
Allodynia		Warm	20°C	12	3	∞		2	7	. 5	777	11	c	, ,	0	7
Mechanical Stimulus	%IME				•	53 14	17.50	-1.01	42.07	10:64-	100	100	100	100	100	100
Day				:	Baseline	Day 1	Day 1	Day 3		Day /	Day 15	Day 22	6	Day 79	Day 36	Day 43

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Wiley Coyote Ovine #464

Midazolam dose: Control

Day	Mechanical	Allodynia	ynia	Gait	Blood	Blood pressure	Pulse	Body
	Stimulus %MPE						Rate	Тетр.
		Warm	Cold	Normal	Sys	Dia	Normal	Normal
		25°C	၁့၅	0			55 - 115	101.3 - 104.0
Baseline	ı	109	48	0	133	74	117	102.0
Day 1	72.70	4	7	0	157	92	72	104.6
Day 3	65.98	7	4	0	152	20	83	101.2
Day 7	93.97	∞	11	0	150	2.2	<i>L</i> 9	102.4
Day 15	4.39	123	32	0	132	99	84	102.4
Day 22	33.68	2	1	0	131	58	83	102.0
Day 29	27.30	17	8	0	120	38	70	102.0
Day 36	100	2	0	0	136	46	98	102.8
Day 43	1.2	79	7	0	115	45	91	101.4

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction. *Battery failure in pump, pump replaced with new pump.

Double Blinded Sheep

Sheep: Roadrunner Ovine #84

Midazolam dose: 15 mg/day

Day	Mechanical Stimulus	Allodynia	nia	Gait	Blood pressure	ressure	Pulse Rate	Body Temp.	
	%WFE						-	Nimol	
		Warm	Cold	Normal	Sys	Dia	Normal	Normai	
•		دده <i>ل</i>	ر ا	0			55 - 115	101.3 - 104.0	
•		200			1.46	77	107	101.8	
Baseline	•	83	137	0	140	¥	101	0 101	
	11 40	4	13	0	137	75	06	101.8	
Day 1	711.70	- 1	: -		127	77	76	101.6	
Dav 3	10.57		_	Λ	13/			0 00,	_
5 (52	7 02	28	45	0	124	49	104	102.2	
Day /	-4.03	707	2		122	77	78	104.0	
Day 15	-5.25	33	_	>	132			102.4	
2535	17.75	26	7	0	116	42	74	102.4	
Day 77	11.12		,	<	137	50	130	102.0	_
Day 29	8.63	40	0	>			701	101.8	_
	9.70	×	4	0	137	51	174	20101	_
Day 36	0.70	2	. ,	,	144	QV	11	102.6	
Day 43	2.35	7	-	0	144	F			
				•		1 TT 1.1.		resortion	

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Porky Ovine # 402

Midazolam dose: 5 mg/day

Body	Temp.	Normal	101.3 - 104.0	101.4	102.0	102.6	102.0	101.0	102.6	101.2	102.0	102.2
Pulse	Rate	Normal	55 - 115	102	<i>L</i> 8	66	68	100	90	98	87	108
Blood pressure		Dia		9/	92	20	42	<i>L</i> 9	25	89	41	40
Blood		Sys		151	148	107	140	133	113	135	134	147
Gait		Normal	0	0	0	0	0	0	0	0	0	0
ynia		Cold	၁့၅	68	55	41	28	23	27	24	43	12
Allodynia		Warm	55°C	57	10	62	32	3	82	46	32	8
Mechanical	Stimulus %MPE			•	61.99	71.35	17.94	100	77.60	86.71	-3.70	77.17
Day				Baseline	Day 1	Day 3	Day 7	Day 15	Day 22	Day 29	Day 36	Day 43

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Petunia Ovine # 439

Midazolam dose: 15 mg/day

						_		_	_		τ	$\neg \tau$		_	¬
Body Temp.	Normal	101.3 - 104.0	102.0	0.00	102.0	102.8	102.0	105.0	102.0	103.0	1010	101.0	102.0	102 4	102:1
Pulse Rate	Normal	55 - 115	108		68	72	7.0	4/	69	99	3 ;	63	71		26
ressure	Dia		36	3	34	49		44	32	76	07	32	15	3	49
Blood pressure	Svs		130	130	133	152		126	132		123	114	900	120	142
Gait	Normal	0		0	0	٥	>	0		,	0	0	, ,	0	0
nia	Cold		3		6	,	7	0	٥	>	14	-	. .	٥	0
Allodynia	Worm	Wallill 660C	200	7	30	25	41	0			m	38	90		0
Mechanical Stimulus	701VIF TO			•	0.46	04:0	-35.29	1 24	17:51	31.7/	-102.63	50.21	30.31	-161.15	48.45
Day				Raseline	Danson C	Day 1	Day 3		Day /	Day 15	Day 22		Day 29	Day 36	Day 43

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Elmer Fudd Ovine # 437

Midazolam dose: 5 mg/day

Body	Temp.	Normal	101.3 - 104.0	102.0	102.2	102.2	102.8	101.4	102.2	102.0	101.8	102.0
Pulse	Rate	Normal	55 - 115	92	87	20	80	70	83	79	73	85
ressure		Dia		09	89	64	51.	40	70	43	31	99
Blood pressure		Sys		191	122	138	119	131	150	136	139	120
Gait		Normal	0	0	0	0	0	0	0	0	0	0
ynia		Cold	၁့၅	9	5	2	9	0	2	0	0	4
Allodynia		Warm	55°C	26	2	2	7	0	2	3	0	4
Mechanical	Stimulus %MPE			•	54.51	82.22	52.39	10.50	83.41	67.50	100	4.35
Day	•			Baseline	Day 1	Day 3	Day 7			Day 29	Day 36	Day 43

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Marvin Martian Ovine #814

Midazolam dose: Control

			_				_			$\overline{}$	1		1						- 1	
ביקים	Temp		77.	Normal	101.3 - 104.0	103.0	7 007	105.4	103.2		103.0	102.4		103.0	101.8		102.8	102.8	2020	
ָרָבְיּבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִבְּיִב	Puise Date	Marc	-	Normal	55 - 115	00		9	90	2	98	80	20	103	10	1,	96	0.7	/0	
	essare			Dia		173	ţ	59		00	57		60	58	36	0/	62		6	
	Blood pressure			Sys	•	22,	139	110		130	129		160	130		144	146	2	151	
	Gait			Normal	C	. «	0	0	,	0	C		0	٥	>	0	c	>	0	
	ymia			Cold	٥	2	32	4	,	9			0		>	4	,	7	0	1
	Allodynia			Warm	7024	200	103	S	8	40	-	-	C.	۶	5	45		12	-	•
	Mechanical	Stimulus	%MPE				í	700	9.80	13.25		-40.74	10.40		-13.06	30 07	32.07	-43.71	100	201
	Day						Baceline	Dascinic	Day 1	Des. 2	Day 3	Day 7	716	Day 13	Day 22	6	Day 29	Day 36	9	1)av 4.4

Necropsy: catheter placement confirmed as intrathecal, no gross lesions noted. Histology: no histologic changes were

observed.

Double Blinded Sheep

Sheep: Leghorn II Ovine #815

Midazolam dose: 15 mg/day

Day	Mechanical	Allodynia	ymia	Gait	Blood p	Blood pressure	Pulse	Body
	Stimulus						Rate	Temp.
	%MPE	Warm	Cold	Normal	Sys	Dia	Normal	Normal
		20°C	၁့၅	0			55 - 115	101.3 - 104.0
Baseline	•	107	171	0	95	63	114	102.4
Day 1	33.49	78	16*	0	130	<i>L</i> 9	111	104.2
Day 3	3.95	65	3	0	152	58	144	102.4
Day 7	100	5	12	0	143	20	88	102.4
Day 15	24.84	14	0	0	152	71	125	102.8
Day 22	14.02	2	26	0	160	<i>L</i> 8	121	102.4
Day 29	66.23	0	0	0	138	43	<i>L</i> 6	102.8
Day 36	100	2	2	0	145	99	68	102.2
Day 43	47.41	22	29	0	130	35	87	102.6

Necropsy: catheter placement confirmed as intrathecal. No obvious lesions where detected in the spinal cord, meninges or vertebral canal associated with the intrathecal catheter. Histology: mild catheter reaction.

Double Blinded Sheep

Sheep: Chicken Hawk, ovine #87

Dose: 5 mg/day

Hematology

	r	_	Т	_	1	_	Г	_	1
	Atyp Iym	_		0	١	<u> </u>	-	<u>-</u>	
Values %	Lymph Seg Baso Eosin 40-75 10-50 0-10	·	,	7		4	,	<u>^</u>	
Absolute	Baso	•	>	c	,	-		-	
1 Count: q	Seg 10-50	S	CC	36	3	29		37	
Oifferentia	Lymph 40-75	;	41	33	CC	69	3	23	
	Mono 0-6		4	,	,	4	-	(*)	
Platlet	Count x 10 ³ /µl 250-750		848	900	1280	1010	1010	801	•
MCHC	g/dl 31-34		34.2		34.3	25,	33.0	22.0	0.00
MCH	Pg 8-12		11.0	ı	30.9	1	10.4	40.5	10.3
VOV.	n n n 28-40		203	25	30.19		30.8	1000	31./
7	#Ct % 27-45		21.5		34.1		29.8	1	32.3
	Hgb g/dl 9-15		10.0	10.0	117		10.0		10.7
	RBC x 10 ⁶ /μl 9-15		22.0	7.11	110	211.5	0.70		10.2
	WBC x 10³/μl 4-12		9,	9.18	00.9	0.00	2 60	3:5	5.13
	Day			Baseline	7	Day 1	Day 15	Day 13	Day 43

Chemistries

_		_	_	_	_	_	1		
‡	mEq/l 3.9-5.4	4.5		4.7		0.0			
‡	mEq/l 139-152	150	25	148		147			
ב	mEq/1 95-103	110	711	2	2	108			
ממט	1 5	3	163	307	47.7	19			
10	mg/dl 5-7.3		9.9	5	2	3,4	2.0		
	Gamma GT U/L 25-59		55		4	,	S		
	Choles- terol mg/dl		7	:	19		- 62		
	Albu- min g/dl 2.4-3		3.3	3,5	ď		3.8		
	Total Prot g/dl	7.7.	6.3	7.0	63	3	6.5		
	BUN mg/dl 8-20		:	4	:	-	14		
	Glu- cose mg/di	42-76	42-70		۱	5	S	2	
	Creat- inine mg/dl	/.7-		1.3		1.3	-		
	Alk Phos U/L	787 97	100-00	54		5	٤	149	
	AST			ç	3	28		62	
	보유기			L	-	9		∞	
	TotalBili mg/dl0.1 4-0.32			5		0	;	 0	
	Day				- 2 2	1,00	CI (BC)	Day 43	

Double Blinded Sheep

Sheep: Wiley Coyote Ovine # 464

Control Hematology

Day	WBC	RBC	Hgb	Het	MCV	MCH	MCHC	Platlet		Dif	Differential Count: q Absolute Values %	nt: q Absoli	ute Values	%	
	x 10 ³ /μί	x 10 ⁶ /μl	Ip/8	%	=	pg	g/di	Count	Bands	Mono	Lymph	Seg	Eosin	Atyp	Baso
	4-12	9-15	9-15	27-45	28-40	8-12	31-34	х 10³/µl		9-0	40-75	10-50	0-10	<u>E</u>	0-3
								250-750							1
Baseline	6.32	11.8	13.4	38.4	32.2	11.3	35.1	066	0	4	33	39	24	0	0
Day 1	5.58	10.9	12.3	35.8	32.9	11.3	34.3	988	0	4	36	57	3	0	0
Day 15	5.21	12.0	13.0	38.1	31.8	10.8	34.1	616	0	5	41	40	13	0	1
Day 43	4.13	12.4	13.2	38.9	31.5	10.7	33.9	9 <i>LL</i>	0	3	99	36	4	0	1

K+ mEq/l 3.9-5.4	45	4.7	5.5
Na+ mEq/l 139-152	151	150	147
Cl- mEq/1 95-103	113	110	111
CPK U/L	196	135	61
Phos Mg/ dl 5- 7.3	5.6	7.4	0.9
Gamma GT U/L 25-59	44	51	47
Chole sterol Mg/dl	51	41	72
Albu -min g/dl 2.4-3	3.2	3.4	3.4
Total Prot g/dl 6-7.9	6.1	6.2	6.0
BUN Mg/dl 8-20	10	16	16
Glu- Cose mg/dl 42-76	103	84	75
Creatinine mg/dl 1-2.7	1.3	1.4	1.1
Alk phos U/L 68- 387	74	115	151
AST U/L	125	59	89
ALT U/L	18	3	6
Total Bilim g/dl 0.14- 0.32	0.1	0.1	0.1
Day	Day 1	Day 15	Day 43

Double Blinded Sheep

Midazolam Sheep #84, Roadrunner dose 15 mg/day-

Hematology

_	— Т		Τ	_	Τ	_	Г	٦	
	Atyp Iym	٠					-	-	
alues %	Baso								
solute V	Eosin 0-10	٧	,	œ	۰	12	١	7	
Count: q Al	Seg 10-50	33	32	74	1	44		53	
Differential (Lymph Seg Eosin Baso 40-75 10-50 0-10	,	70	۶	45	44		67	
	Mono 0-6	ļ	_	,	~			_	
Dieflot	Count x 10 ³ /µl		721		962	070	840	7.77	į
CILON	g/dl 31-34		35.7		36.1		34.0	34.0	V.#.C
	Pg 8-12		10.7	2	110	2	10.8	:	6.1
	MCV fl 28-40		20.0	20.0	20.4	30.4	31.8		34.7
	Hct % 27-45		41.0	41.7	25.7	33.7	31.8		35.0
	Hgb g/dl 9-15		١	0.01	9	12.9	10.8	200	11.9
	RBC x 10 ⁶ /μl 9-15			14.0		11.7	100	10.0	10.1
	wвс x 10³/µi 4-12			5.79		5.39	3	5.13	5.15
	Day			Raceline		Day 1	1	Day 15	Day 43

	4.8	Ι.	~	_	,		
K+ mEq/l 3.9- 5.4	4.8		<u>4</u>	-			
Na+ mEq/l 139-152	148		150	140	147		
Cl- mEq/l 95-103	=		111	90,	108		
CPK U/L	8	2	53		102		
Phos mg/dl 5-7.3	6.3	7.0	99	3	7.1		
Gamma GT U/L 25-59		<u></u>	63	70	95		
Choles terol mg/dl	,	4	13	20	22		
Albu-min g/dl 2.4-		ر در		3.7	73.5	5	
Total Prot g/dl 6-7.9		20	;	6.4	0,0	2.0	
BUN mg/dl 8-20		_	-	=	;	=	
Glu- cose mg/dl 42-76		9	Ê	99		74	
Creatinine mg/dl		,	1.2	13		1:2	
Alk Phos U/L 68-	387	5	25	ĕ		143	
AST U/L			20	Vy	3	65	
ALT			<u>_</u>	,	1	7	
Total Bili mg/dl 0.14-	0.32		0.3	,	0.1	0.1	
Day			Day 1	4	Lay 15	Day 43	-

Double Blinded Sheep
Sheep: Porky Ovine # 402
Dose: 5 mg/day
Hematology

WBC		RBC	Hgb	Hct	MCV	MCH	MCHC	Platlet		Differentia	Differential Count: q Absolute Values %	Absolute V	alues %	
ე*	=	x 106/µl	g/dl	%	ᄄ	pg	g/dl	Count	Mono	Lymph	Seg	Eosin	Atyp	Bands
-12		9-15	9-15	27-45	28-40	8-12	31-34	x 10 ³ /µl	9-0	40-75	10-50	0-10	lym	
								250-750						
3.53	3	10.9	13.5	40.7	37.2	12.4	33.2	215	2	48	48	2	0	0
3.47	7	10.9	13.4	40.4	37.1	12.3	33.1	319	5	41	53	П	0	0
3.17	7	8.23	10.2	31.4	38.2	12.3	32.3	173	5	33	19	1	0	0
نہ	3.59	10.4	12.2	39.2	37.6	12.0	31.8	214	5	40	49	5	-	0

					- 1	 1	
K+	mEq/l	3.9-5.4			4.6	4.2	4.8
Na+	mEq/I	139-152			153	150	147
ರ	mEq/1	95-103			115	112	108
CPK	U/L				73	94	93
Phos	mg/dl	5-7.3			7.5	48	5.9
Gamma	GT	U/L	25-59		46	74	42
Choles-	terol	mg/dl			71	3.5	62
Albu	-mim-	g/dl	2.4-	3	3.5	3.9	3.5
Total	Prot	g/dl	6-2-9		8.9	7.4	6.4
BUN	mg/dl	8-20			10	14	17
-n _I D	esoo	mg/dl	42-76		72	68	61
Creat-	inine	mg/dl	1-2.7		1.3	1.2	1.3
Alk	Phos	U/L	-89	387	37	33	55
AST	Ω/Γ				29	69	59
ALT	U/L				3	∞	13
Total	Bili	mg/dl	0.14-	0.32	0	0.2	0.1
Day					Day 1	Day 15	Day 43

Double Blinded Sheep

Sheep: Petunia Ovine # 439

Dose 15 mg/day

_
6
0
_
0
==
a
\Box
- 5-
. •
_

_			_		_	-	_	٦		
	Bands	0		_	۱	>	٥	٥		
ines 70	Atyp lym	0	,	7		_	-	-		
solute va	Bosin 0-10	130	3			7	,	,		
Differential Count: q Absolute values 70	Seg 10-50	22	17	40	2	48		4.		
Differentia	Lymp h 40-75	5	22	20	3	46		47		
	Mono 0-6		_	٧	0	60		4		
Platiet	Count x 10 ³ /µl 250-750		489	3.6	•61/	606	2000	356		
MCHC	G/dl 31-34		34.2	3	33.9	22.7	7.70	102		
MCD	pg 8-12		11.5		11.3		7.11	113	711.7	
1001	fl 18-40		33.6	255	33.3		34.2	24.1	7.4.1	
:	нст % 27-45		41.1	11:1	42.4		30.8	3,5	30.0	
	Hgb g/dl 9-15		0 71	7.4.7	144		10.1	١	11.8	
	RBC x 10 ⁶ /μl 9-15		35	7.71	12.7	1.5.1	9.05		10.5	
	WBC x 10 ³ /μl 4-12		9	3.12	200	76.7	3.6		2.3	
	Day			Baseline	-	Day 1	Pay 15	17ay 13	Dav 43	

Platelet clumps observed

4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 + 4 +	5.4	1	4.3	\ \	1	
K+ mEq/l 3.9- 5.4	5.		 4:	4	1	
Na+ mEq/l 139-152	152		150	1,16	2	
Cl- mEq/l 95-103	112	777	110	٤	3	
CPK	6	t 0	105		71	
Phos mg/dl 5-7.3	10	7.9	4.0		6.2	
Gamma GT U/L 25-59		х 4	72	٤	11	
Choles terol mg/dl	;	09	17	5	જ	
Albu -min g/dl 2.4-	,	3.6	,	4.0	3.6	
Total Prot g/dl 6-7.9		9.9		7.7	6.3	
BUN mg/dl 8-20		2	:	4	17	
Glu- cose mg/dl 42-76		7.1	-	8	9	3
Creatinine mg/dl		-	=	1.2	5	2
Alk Phos U/L 68-	387	٤	£	29	1	4
AST U/L		١	107	94	. ;	26
ALT			0	-	•	0
Total Bili mg/dl 0.14-	0.32		0	0 3	3	0.1
Day			Day 1	Day 15	Cr (m)	Day 43

Double Blinded Sheep

Sheep: Elmer Fudd Ovine # 437

Dose 5 mg/day Hematology

sin Atyp Bands				
Lymph Seg Eosin Atyp 40-75 10-50 0-10 lym		51 54		
		35	35	35 31 39
Mono 0-6		6	6 9	6 9 2
Platlet Count x 10 ³ /µl	250-750	250-750	250-750 562 788	250-750 562 788 677
G/dl 31-34		34.7	34.7	34.7
MCH Pg 8-12		12.0	12.0	11.4
MCV fl 28-40		34.5	34.5	34.5 33.4 32.8
Hct % 27-45		38.5	38.5	38.5
Hgb g/dl 9-15		13.4	13.4	13.4
κΒC x 10 ⁶ /μl 9-15		11.2	11.2	11.2 10.8 11.4
wbC x 10³/μl 4-12		5.32	5.32	5.32 6.6 4.99
Ça Ç		Baselin e	Baselin e Day 1	Baselin e Day 1

K+	mEq/1	3.9-	5.4		4.7	4.7	4.3
Na+	mEq/l	139-152			150	149	147
ರ	mEq/1	95-103			109	109	108
CPK	N/L				49	11	64
	mg/di				5.9	9'9	6.2
Gamma	GT	T/n	25-59		15	54	48
Choles	terol	lp/gu			78	74	90
Albu	-inin-	lp/g	2.4-	3	4.1	3.8	4.1
Total	Prot	g/di	6-2-9		7.4	8.9	9.9
BUN	mg/dl	8-20			11	15	16
Glu-	cose	mg/dl	42-76		104	73	83
Creat-	inine	lp/gu	1-2.7		1.3	1.2	1.3
Alk	Phos	U/L	-89	387	49	8	72
AST	ΩVΓ				0/	<i>L</i> 9	61
ALT	ULL				∞	9	6
Total	Bili	lp/gm	0.14-	0.32	0.1	0.1	0.1
Day					Day 1	Day 15	Day 43

Double Blinded Sheep

Sheep: Marvin Martian Ovine #814

Control

Hematology

_		_	_	_	_		_	_	7	
	Baso	_	-	_		_	1	>		
alues %	Atyp Iym	٥		c	,	0	,	>		
bsolute V	Bosin 0-10	۰	٥	-		00		~		
Count: q A	Seg 10-50	٤	7	17	5	24		28		
Differential	Lymph Seg Bosin Atyp 40-75 10-50 0-10 lym	,	/0	03	00	779	5	5	;	
	Mono 0-6		_	,	c	,		<	,	
Platlet	Count x 10 ³ /µl 250-750		512		853•	107	160	777	100	
MCHC	G/dl 31-34		34.2		34.6		34.4	,	33.9	
MCH	Pg 8-12		10.9		10.6		10.9		10.8	
ACV	fl 28-40		318	215	30.6		31.7		31.7	
177	mei % 27-45		13.0	23.7	34.0		30.0		30.5	
17.11	ngo g/dl 9-15		11.6	11.0	11.8	2	10.3		10.4	
200	κΒC x 10 ⁶ /μl 9-15		200	10.0	111	11.1	070)	9.63	
	WBC x 10³/μl 4-12		1		206	(%)	6.10	2.10	6.9	
	Day			Baseline		Day	2	L Cay IS	Day 43	: 6

Platelet clumps observed

γ	_	_	_	_	\neg	
K+ mEq/1 3.9- 5.4	4.3		 8.	9		
Na+ mEq/l 139-152	149	È,	146	147	14/	
Cl- mEq/l 95-103	111	111	108			
CPK U/L	2	22	11		69	
Phos mg/dl 5-7.3	(0.0	8.7	3	9.7	
Gamma GT U/L 25-59	1	45	46	۶	20	
Choles terol mg/dl		74	۶	(2)	78	
Albu-min g/dl 2.4-		3.8	,	4.0	4.0	
Total Prot g/di 6-7.9		6.9		5.9	8	
BUN mg/dl 8-20		10	3	6	5	3
Glu- cose mg/dl 42-76		100	3	8	5	*
Creatinine mg/dl		-	1.0	6.0		2:
Alk Phos U/L 68-	387	۶	70	198		2
AST U/L			Z X	92	2	23
ALT U/L		1	0	7		6
Total Bili mg/dl 0.14-	0.32		0.1	5	;	0.1
Day			Day 1	Day 15	Day 13	Day 43

Double Blinded Sheep

Sheep: Leghorn II. Ovine # 815 Dose 15 mg/day Hematology

alues %	Atyp Baso	lym		0 0	0 0	0	1-
Differential Count: q Absolute Values %	Eosin	0-10		4	2	16	2
Count: q	Seg	10-50		14	28	24	18
Differentia	Lymph	40-75		79	58	65	1.1
	Mono	9-0		3	2	1	2
Platlet	Count	х 10³/µl	250-750	516	828	861	345
MCHC	G/dI	31-34		33.9	34.0	32.7	33.7
MCH	pg	8-12		10.7	10.6	10.4	10.5
MCV	Œ	28-40		31.5	31.1	31.8	31.2
Hct	%	27-45		36.9	34.7	38.0	36.4
Hgp	ib/g	9-15		12.5	11.8	12.4	12.3
RBC	× 10 ⁶ /μl	9-15		11.7	11.1	12.0	11.7
WBC	x 10³/µl	4-12		6.73	6.07	6.64	6.11
Day				Baseline	Day 1	Day 15	Day 43

	K+	mEq/1	3.9-	5.4		5.0	4.8	5.7
	Na+	mEq/1	139-152			146	146	146
	CI-	mEq/1	95-103			108	106	109
	CPK	U/L				94	100	96
	Phos	mg/dl	5-7.3			8.3	6.4	6.9
	Gamma	GT	N/L	25-59		80	<i>L</i> 8	73
	Choles	terol	mg/di			89	74	80
	Albu	-min	g/dl	2.4-	,	3.5	3.6	3.6
				6-2-9		6.3	7.1	6.9
	NNE	mg/dl	8-20			19	25	26
		cose					82	ŀ
	Creat-	inine	lp/gm	68- 1-2.7		6.0	1.1	1.0
į	Alk	Phos	ML U	-89-	38/	117	154	179
	AST	NT.				117	72	78
	ALT	N/L	_			14	10	15
	Total	Bili	lp/gm	0.14-	0.32	0	0.1	0.1
	Day					Day 1)ay 15)ay 43

CSF Fluid Analysis and Routine Cultures Double Blinded Study

Routine Cultures		Post Mortum		No Growth		No Growth		Mr. C. C. ath	mwoio ovi	71. O. 1. 44.	III MOID ON	No Growth				No Growth	1	No Growth				
Routine		Pre-op		No	Growth	ζŽ	Growth	;	Growth	;	Growth	N.	Growth			ž	Growth	Ş	Growth			
Glucose (mg/dl)	(Post	Mortum	47		34	5		ક્		25		10			38	3	2	ţ	-		
Gluco		Peri	oper ative	38	3	Ş	₹		47		51	1	2	Ş	8	0,7	3	23	ર —			
Total Protein	(mg/dl)	Post	Mortum	30	}	2	74		73		9		47			96	ત્ર	1	તે 			
Tota	E 5	Peri	oper	2.2	7	į	4/		45		42.7		45.1		46	;	5 7		જ —			
÷	was Counti	Post	Mortum	,	†		53		12		08		77				∞ 					
Ì	ğ ≱	Peri	oper	arra .	-						1		-		0		<u> </u>					
	RBC Count (/µl)	Post	Mortum		4		1325		480	-	725		4250				8		7			
	RBCC	Peri	oper	BUIVE	m		1735	*	2615	*	785		10		-		14		6			
	Exam	Doct	Mortum		Colorless	clear	Colorless	cloudy	Colorless	cloudy	Colorless	clear	Pale pink	Cloudy**	**		Colorless	clear	Colorless	clear		
	Gross Exam	Donionem	tive		Colorless	clear	Colorless	clear	Colorless	clear	Colorless	clear	Colorless	clear	Colorless	clear	Colorless	clear	Colorless	clear		
	Sheep		_		Chicken Hawk	#87	Wiley Coyote	#464	Roadrunner #84		Porky #402		Petunia #439		Elmer Fudd	# 437	Marvin Martian	#814	Leghorn II #815	(repeat of	Leghorn)	#88

* Nicked a vessel when threading catheter cephalad into the subarachnoid space (blood in CSF)

*** Not able to obtain sample

^{**} Sample contaminated with blood during collection

EXAMPLE 3

Toxicity Testing of Midazolam in the Pig Model - Closed Label Trial

Another closed label study was performed in pigs. This study was performed in response to implications of possible species-related toxicity reported by researchers in Turkey and France (Malinovsky et al., 1991; Svensson et al., 1995; Erdine et al, 1999). These three studies demonstrated neurotoxicity in the rat and rabbit models following intrathecal bolus doses of midazolam. Rats were administered single or multiple bolus doses for 20 days. Rabbits were administered bolus injections of 0.1% midazolam (pH 3.3) in 0.3 ml or preservative-free midazolam (pH 3.5) in 0.3 ml for one day or five consecutive days. To further assess the safety of spinally administered midazolam by continuous infusion in a second species, three pigs were instrumented with Medtronic SynchroMed® intrathecal infusion systems. Pigs were administered 15 mg/day (N=2), or saline control (N=1). No clinical or gross changes at necropsy were observed in any animal. Histology revealed a foreign body reaction to the catheter, however, there was no evidence of toxicity related to the midazolam infusion.

5

10

MIDAZOLAM SWINE DATA

Changes	gs.	le pigs. The spinal reaction seen in this protocol; but less	Il the pigs.
Histopathological Changes	Most foreign body reaction in all the pigs.	The least foreign body reaction in all the pigs. The spinal reaction was more severe than any of the sheep seen in this protocol; but less severe than the other pigs.	Second most foreign body reaction in all the pigs.
Drug Dose	15 mg	15 mg	Control
Clinical Symptoms	none	none	none
Final Weight	147	170	191
Pre-drug Weight	104	121	104
Name	Percy	Pete	Prudence

										(1)	Douting	Denting Cultures
			000	4.77	WDC Count (hill)	_	Total Prote	in (mg/dl)	Glucose	(mg/di)	Kouthe	Cultures
Curine	Gross Exam	Exam	KBC Count (at)		WDC CO					30.00		Post
200	Derionera	Post	Periopera	Post	Periopera	Post	Periopera Post	Post	Post Periopera Fost	Mortim	Pre-op	Mortum
	tive	Mortim	tive	Mortum	tive	lortum	tive	MOTULIAL	A I		SIX.	ž
	247								;	-	2	2
	Colorless	Colorless	49	1.350	-	888	40	73	6		Growth	Growth
rercy	clear	cloudy	<u>.</u>								No	°N.
	Pik	Colorless	10.050	Û	1	117	53	39	51	31	Growth	Growth
Pete	10.00	clear	10,230	>	:							1
	cloudy	CIONI							Not	ć	2 N	0 Z,
rudenc	Pink	Colorless	2.990	7	51	316	29	\$	ag.	96	Growth	Growth
ø	cloudy	clear										

EXAMPLE 4

Testing of the Neuropathic Pain Model in Sheep

The neuropathic pain model further defined the efficacy of a new preservativefree formulation for the treatment of neuropathic pain before proceeding to clinical trials in subjects with this syndrome. The efficacy and toxicity of continuous infusion intrathecal midazolam in the sheep model of neuropathic pain was determined.

The neuropathic pain model in the sheep is created by placing four tight ligatures around the median, radial, or ulnar nerve (or a combination thereof) with 0-chromic gut suture. This method produces a chronic painful peripheral mononeuropathy which may be related to those conditions seen in humans with causalgia and reflex sympathetic dystrophy. To date, the onset of neuropathic pain has occurred 1 to 9 days postoperatively, as evidenced by the display of painful behavior such as hyperalgesia, not bearing weight or holding the operated leg off the ground. The duration of the painful behavior lasted 16 to 62 days. However, three of the eight animals studied thus far did not develop neuropathic pain after observation for up to 43 days. It has been difficult to identify a segment of the median nerve that is consistently appropriate to achieve the neuropathic pain behavior. The inventors are continuing to test different segments of the median nerve and other mixed sensory/motor nerves to consistently produce this behavior. Of the five animals that developed neuropathic pain, three were treated with intrathecal morphine or midazolam as single agents.

In the sheep with neuropathic pain treated by midazolam alone, intrathecal administration of midazolam was initiated at 3 to 5 mg/day and the dose was escalated to up to 15 mg/day. Midazolam alone produced significant analgesia. This analgesia was documented using a mechanical stimulus device and/or behavior monitoring. Results of monitoring by the mechanical stimulus device are shown in the following table for Sheep #819. The mechanical stimulus device measures pressure applied to a blunt pin against the foreleg. The pressure at which the animal lifts its leg in response to the painful stimulus is documented. In the sheep monitored by this device, administration of intrathecal midazolam allowed endurance of up to 18 Newtons of pressure (cut off to prevent tissue damage was set at 19.99 N) compared to the baseline (pretreatment) pressure endured of 9.59 N.

5

10

15

20

25

EXAMPLE 5

Evaluation of Behavior in the Neuropathic Pain Sheep Model

To evaluate animal behavior, the Observer 3.0 software (Noldus Information Technology, The Netherlands) was used to aid docmentation of a daily record of multiple traits. Percentages calculated reflect the percentage of time that the animal displayed a certain behavior during a 15-minute observation period per day, administered at the same time each day. The behavior was then interpreted into a visual analog pain score (VAS), where 0 represents no pain and 100 represents severe pain. Results are shown in the following tables. On most days, VAS scores averaged approximately 30 while receiving intrathecal midazolam 3 to 6 mg/day compared to pretreatment scores during saline treatment from 60 to 95 (midazolam-naive).

In addition to the increase in pain tolerance documented by the mechanical stimulus device, the VAS score for the first sheep (Rowdy) averaged 30% while receiving midazolam 5 mg/day. Higher doses appeared to produce less analgesia in this animal as evidenced by signs of increased pain after dose escalation to 15 mg/day. Midazolam was discontinued in this animal and treatment was initiated with intrathecal morphine/clonidine. Following 6 days of treatment with morphine the sheep began to limp on the right rear leg and began biting herself and pulling wool out of her skin. This behavior continued sporadically the remaining 13 days of treatment with morphine/clonidine. Gross and microscopic evaluation of the spinal tissue revealed swelling and inflammation surrounding the catheter tip which was located on the right lateral side and produced mild to moderate spinal cord compression. Development of inflammatory lesions is consistent with our previous animal studies investigating the toxicity of intrathecal morphine.

In a second sheep (# 980 Dudley), treatment of neuropathic pain was initially begun with morphine 1 mg/day, which was gradually increased to 6 mg/day without adequate pain relief (average pain score during this period of 76%). After 13 days of morphine treatment, the dose was increased to 6.5 mg/day which provided sufficient relief (pain score of 20%). The morphine was stopped to re-establish the neuropathic pain syndrome, which returned in 9 days. At this time, 3 mg/day of midazolam alone was initiated for 13 days and provided significant pain relief (average pain score of 32%). To again re-establish the neuropathic pain syndrome, the midazolam infusion was stopped. Neuropathic pain returned in 3 days, and midazolam 3 mg/day

5

10

15

20

25

reinstituted. Midazolam dose was escalated to 5 mg/day over a 7 day period without adequate pain relief (average pain score 65%). On the eighth day, the dose was increased to 6 mg/day which produced adequate pain relief for the remainder of the study (average pain score 35%). At necropsy, this animal did not exhibit any spinal cord lesions associated with the administration of midazolam. It is also important to note that no significant inflammatory lesions were observed in any sheep receiving midazolam alone in the acute pain sheep study.

A third animal (# 604 Clint) exhibiting neuropathic pain received morphine alone. For the first 13 days of morphine infusion at 6 mg/day, the pain scored average 43%. The morphine was then stopped on several occasions with return of neuropathic pain. Infusions begun with either morphine or saline resulted in average pain scores between 30 - 50%. However, while on morphine therapy the animal exhibited restlessness, pain behaviors such as biting itself near the area of the catheter tip, and frequently laying down. These behaviors would subside somewhat during saline infusion periods. At necropsy, a cavitated lesion in the spinal cord in front of the catheter tip was found, measuring $0.8 \text{ cm}(L) \times 0.5 \text{ cm}(W) \times 0.3 \text{ cm}(Depth)$.

Data from these animals demonstrate that intrathecal midazolam up to 5 mg/day had analgesic activity against neuropathic pain and was tolerated well as an alternative to morphine. It is possible that higher doses of midazolam could produce some degree of hyperalgesia, thereby reducing analgesic effects. Further study may help refine optimal dosages.

5

10

15

Sheep - Rowdy-#819

											_			$\overline{}$	\neg	-т	_					\neg
Respiration s per minute	24	40	*	44		24				3	2 2	;		40	48	09	40	00	52			
Pulse	7					2					104			33			99		112			
Blood preassure	120/69					145/74					144/82			158/90			135/75		129/68			
Mechanical Stimulus device	N65.6					7.08N					18.0N			13.5N			11.4N		4.86N			
Other behavior				Laying	down 1.73%	Not	wieght	uo	operated leg	16.98%		Observe	leg 0.56%	2000					Laying	down 1.23%,	wagging	0.44%
Holding unoperated leg off the ground		3.43%	2.60%	6.46%		4.51%					1.90%	0.24%		2.26%	0.39%	1.35%	0.90%	0.56%	2.68%			
Standing		43.96%	76.23%	10.31%		20.74%					10.13%	7.79%		22 77%	50.42%	13.19%	18.38%	8:05%	21.65%			-
Walking		4 32%	0.98%	2.09%		2.02%					5.84%	4.56%		7002 9	2/25	0.92%	5.07%	4.22%	7.06%			
Holding operated leg off the ground		7051.9	20.13%	2 04%		8.05%				,	1.50%	2.49%		2 150/	3.1070	2.00%	\$77%	6.24%	11.48%			
Eating		11 530/	70000	76 569%	8/0C:0/	47.69%					80.63%	84.36%		7007	02.42%	45.00%	%8809	83.94%	45.42%			
Pain Score		1	3 %	2 5	8	95				•	30	2			2 5	2,5	S	2 2	S	3		
Dose			Salme	Same	au lines	saline					5 mo	5 mg			S mg	Sm ,	SIL	2 2 2	e line			_
Date		Baseline	2-19-01	2-70-01	10-17-0	5-22-01					5 23 01	5-24-01			5-25-01	5-26-01	2-28-01	5-29-01	5 21 01	10-16-6		

				_	_	_								
	36	80	09	3,6	3		4		40					
Pulse	122								8					
Blood preassure	136/75						142/78		143/77					
Mechanical Stimulus device	13.7N						7.8N		7.0N					
Other behavior	Eating lying down 0.29%						Standing ruminati	ng 27.17%	Standing ruminati	ng 70.19%	Pulling	wool	1.11%	Bleating 0.86%
Holding unoperated leg off the ground	0.88%			/002.0	0.79%	1.14%	2.68%		0.81%					
Standing	12.71%			,000	0.38%	31.75%	31.53%		13.79%					
Walking	%50.9				6.86%	16.10%	2.06%		1.40%					
Holding operated leg off the ground	6.06%				6.30%	7.45%	36.97%		8.55%					
Eating	74.01%				85.68%	43.56%	0		3.29%					
Pain Score	50	20	2 6	2	8	09	97		40					
Dose	10 mg	10 20	SIII ()	IO mg	10 mg	_			15 mg					
Date	6-1-01	1000	10-7-0	6-3-01	6-4-01	6-5-01	6-6-01		6-7-01					

*observation failure N = Newtons

Sheep # 980: Dudley

													$-\tau$		
Resp per min.	50	22	43	}	Q A	}	22		ç	3		24	3	<u> </u>	
Other behavior	0		Drink	0.5%	c	>	c	.	Dyminofi	numman	standing 2.69%	0	- 1	Kuminati ng	standing 15.2%
Grind teeth	12.59 %	3.24%	7 85%	6,50.7	0 100%	0.1378	1 30%	27.5	2 20/	5.5%		0.76%		0	
Laying down	2.89%	0	c	>		>	_	>		>		0		<u> </u>	
Observe Operated leg	0	%96.0		0		Þ	0 1007	0.1970	i de la companya de l	0.47%		0		0	
70	76.3%	64.84%	7007	25.68%		85.03%	797407	04./4%		60.52%		77.18%		69.53%	
Holding unoperated leg off the ground	2.51%	0.105%		0.22%		0	,	0		0		0		0	
Standing	0.10%	0		20.72%		3.15%		17.34%		0		0		0	
Walking	4.43%	2.79%		0.735%		1.17%		0.47%		3.64%		1.16%		2.36%	
Holding operated leg off the ground	2.51%	26.59%		17.75%		3.12%		15.88%	·	21.62%		20.91%		5.2%	
Eating	0	1.47%		1.55%		7.36%		0		7.76%		0		4.72%	•
Pain Score	%06	%06		83%		78%		%06		85%		85%	<u> </u>	83%	
Study Day	0	1		2		3		4		5		7		∞	
Dose per day	salin	MS .	mg T	MS	1 mg	MS .	E	MS	2 mg	MS	3 mg	W _O	3 mg	MS	4 mg
Date	Base	% & E	- 5 7 7	∞	4 2	~ 3	- 52 03	∞	26-	\$ ∞	27- 02	0	5 65 8	3 &	92 -02

,		<u> </u>				
Resp per min.		78	32	64	24	31
Other behavior	Eating lying 0.7%, Ruminati ng standing 0.1%	Ruminati ng standing 5.65%, pulling wool 0.28%, pawing ground 0.85%	Ruminati ng standing 9.7%, bleating 0.98%	0	0	0
Grind teeth	0	0	0	0	0	0.24%
Laying down	0	1.59%	0	43.57%	100%	0
Observe Operated leg	0.28%	0	0	%99.0	0	0
Not bearing weight on operated leg	69.1%	85.9%	72.14%	35.43%	0	66.17%
Holding unoperated leg off the ground	0	0.19%	0	0.52%	0	0
Standing	0	0	0	%66.0	0	10.8%
Walking	1.61%	2.05%	3.83%	%20.6	0	3.72%
Holding operated leg off the ground	19.58%	3.52%	13.34%	%21.6	0	3.53%
Eating	8.72%	0	0	0	0	15.7%
Pain Score	83%	%58	85%	%08	%06	73%
Study Day	6	10	11	12	14	15
Dose per day	MS 5 mg	MS 5 mg	MS 5 mg	MS	MS 6.5	MS 6.5
Date	8- 31- 02	9-1-	9-2- 02		9-5-	9-6-

Date	Dose per day	Study Day	Date Dose Study Pain per Day Score day	Eating	Holding operated leg off the ground	Walking	Walking Standing	Holding unoperated leg off the ground	Not bearing weight on operated	Observe Laying Operated down leg	Laying	Grind teeth	Other behavior	Resp per min.
9-8-		17	20%	20% 35.29% 0.	0.18%	0	0	0	51.43%	51.43% 0.47% 0.6%	%9:0	0	Eating lying 9.31%	28
MS:	mg Morph	mg mg MS: Morphine Sulfate	fate											

Resp per min.	40	32	35	26	24	36
Other behavior	Ruminati ng standing 0.94%	Ruminati ng standing 9.7%, Bleating	0	0	Eating lying 10.06%	Bleating 0.11%
Grind teeth	0	0	1.26	0	0	0.05
Laying down	100%	0	0	0	0	0
Observe Operated leg	0	0	0	0.17%	1.01%	0
Not bearing weight on operated		62.54%	49.27%	50.74%	52.26%	68.44%
Holding unoperated leg off the ground		0.67%	0.17%	0	0	0
Standing	0	0	36.77%	0	0	12.38%
Walking		13.56%	0.73%	0	1.25%	%8.0
Holding operated leg off the ground		1.87%	11.36%	1.93%	4.08%	11.03%
Eating	0	20.42 %	0.44%	47.16	% 31.35 %	7.21%
Pain Score	%08	15%	%59	25%	40%	33%
Study Day	18	19	70	21	22	23
Dose per day	Stop- ped pump	0	0	0	0	0
Date	9-9-	9-10-	9-11-	9-12-	9-13-	9-14-

	- 1	T	Γ	r 			т т		
Resp per min.	36	35	24	34	26	29	30	42	28
Other behavior	0	Ruminati ng laying down 0.21%	0	Eating lying 1.69%	Drinking 0.6%	Drinking 0.17% Defaecati on 0.65%	0	Ruminati ng laying down 98.28%, Ruminati ng standing 0.48%	0
Grind teeth	0	0	5.33	0	0	0	0	0	0
Laying down	0	8.39%	0	1.24%	31.54%	8.76%	2.35%	1.24%	0
Observe Operated leg	0	1.3%	9.12%	1.7%	1.05%	0	0	0	0
Not bearing weight on operated	leg 97.73%	65.76%	65.37%	50.46%	39.78%	19.93%	16.08%	0	0
Holding unoperated leg off the ground	0	0	0.67%	1.08%	0.39%	0	0	0	0
Standing	0	0.18%	0	0	0	30.48%	0	0	0
Walking	1.12%	2.64%	4.36%	%96'0	2.85%	2.63%	%59'0	0	100%
Holding operated leg off the ground	0.38%	5.81%	14.88%	8.23%	3.1%	0.21%	37.84%	0	0
Eating	0.77%	15.72 %	0.28%	25.15 %	23.81	37.18 %	43.1%	0	0
Pain Score	35%	40%	%02	%89	73%	30%	48%	25%	20%
Study Day	24	25	26	0	1	2	3	4	5
Dose per day	0	0	0	MDZ 2 mg	MDZ 2 mg	MDZ 2 mg	MDZ 2 mg	MDZ 2 mg	MDZ 2 mg
Date	9-15- 02	9-16- 02	9-17-	9-18- 02	9-19- 02	9-20- 02	9-21- 02	9-22- 02	9-23- 02

Resp per min.		~		0	38	44	42	40	72	& &	51
Other Res behavior per min	Ruminati 35 ng laying down 50%, Eating lying 1.14%	0 48		Drinking 50 0.6% Defaecati on 0.49%	0 3	Defaecati 4 on 0.545%	0	0		Ruminati 4 ng laying down 17.51%	0
Grind teeth	0	0	0	0	0	0	0	0	0	0	0
Laying down	0	0	2.18%	0	0.035%	0	0	0	0	82.49%	0
Observe Operated leg	0	0.23%	0.12%	0.57%	0	0	0.15%	0.27%	0	0	0
Not bearing weight on operated	7.73%	21.84%	29.65%	38.68%	10.91%	15.8%	49.84%	40.36%	%20.96	0	35.43%
Holding unoperated leg off the ground	0	0	0	0	0	0	0	0	0	0	0
Standing	0	0	33.05%	0	0	1.33%	1.34%	0	0.31%	0	1.02%
Walking	2.0%	0.32%	0	0.29%	0.25%	2.31%	1.5%	0.61%	%80.0	0	1.14%
Holding operated leg off the ground	0	0	0.72%	0.28%	0.55%	0.77%	1.95%	3.31%	3.54%	0	3.62%
Eating	39.13	77.62	34.30	59.11 %	88.18	% 79.26 %	20.23	% 55.46	80	0	58.58
Pain Score	%09	15%	23%	30%	15%	15%	35%	%02	%09	%09	%09
Study Day	9	7	∞	6	12	0	-	0		2	3
Dose per day	MDZ 3 mg	MDZ	MDZ 3 mg	MDZ 3 mg	MDZ	3 mg Stop- ped	dund	MDZ	3 mg MDZ	ADZ 3 mg	MDZ 3 mg
Date	9-24-	9-25-	9-26-	9-27- 02	9-30-	02 10-1- 02	10-2-	10.4	10-5-	10-6- 02	10-7-

				,	~	
Resp per nnin.	58	32	36	40	36	42
Other behavior	Bleating 0.76%	Ruminati ng standing 0.41%	Ruminati ng standing 1.4%	0	Pawing ground 0.78%, Eating lying 0.21%	Pawing ground 0.64 %, Pulling wool 0.26%, Defaccati on 0.94%
Grind	0	0	o	0	0	0
Laying down	0	0	0	0	0	0
Observe Operated leg	1.51%	0	0	1.11%	0.36%	0.07%
Not bearing weight on operated leg	29.65%	%66'65	%8.06	33.78%	22.96%	13.73%
Holding unoperated leg off the ground	0.36%	0	0	0	0	0
Standing	0.52%	0	0	0	0	0
Walking	1.09%	2.08%	4.21%	%68'0	0	1.79%
Holding operated leg off the ground	2.78%	28.77%	2.03%	3.13%	0.71%	0.58%
Eating	36.49 %	8.76%	1.56%	61.09 %	73.59 %	% %
Pain Score	%05	85%	85%	75%	28%	13%
Study Day	9	8	6	10	11	12
Dose per day	MDZ 4 mg	MDZ 5 mg	MDZ 5 mg	MDZ 6 mg	SUM 9	6 mg
Date	10-02	10- 12-02	10- 13-02	10- 14-02	10- 15-02	10- 16-02

Sheep # 604 Clint

Date	Day of Study	Dose per Day	Pain Score
12-7-01	0	6 mg Morphine	60%
12-8-01	1	6 mg Morphine	60%
12-9-01	2	6 mg Morphine	60%
12-11-01	4	6 mg Morphine	45%
12-12-01	5	6 mg Morphine	30%
12-13-01	6	6 mg Morphine	35%
12-14-01	7	6 mg Morphine	40%
12-15-01	8	6 mg Morphine	50%
12-16-01	9	6 mg Morphine	40%
12-17-01	10	6 mg Morphine	33%
12-18-01	11	6 mg Morphine	35%
12-19-01	12	6 mg Morphine	35%
12-20-01	0	6 mg Morphine	33% Changed to saline at 1:30 PM
12-21-01	1	Saline	33%
12-22-01	2	Saline	33%
12-23-01	3	Saline	45%
12-24-01	4	Saline	45%
12-25-01	5	Saline	45%
12-26-01	6	Saline	53%
12-27-01	7	Saline	50%
12-28-01	8	Saline	60% Changed to 6 mg Morphine at 2:48 PM
12-29-01	1	6 mg Morphine	50%
12-30-01	2	6 mg Morphine	40%
12-31-01	3	6 mg Morphine	38%
1-1-02	4	6 mg Morphine	40%
1-2-02	5	6 mg Morphine	30%
1-3-02	6	6 mg Morphine	33%
1-4-02	7	6 mg Morphine	30%
1-5-02	. 8	6 mg Morphine	30%
1-6-02	9	6 mg Morphine	30%

Date	Day of Study	Dose per Day	Pain Score
1-7-02	10	6 mg Morphine	30%
1-8-02	11	6 mg Morphine	30%
1-9-02	12	6 mg Morphine	15% Refilled pump with saline at 9:44 AM
1-10-02	1	Saline	30%
1-11-02	2	Saline	35%
1-12-02	3	Saline	40%
1-13-02	4	Saline	38%
1-14-02	5	Saline	28%
1-15-02	6	Saline	30%
1-16-02	7	Saline	48%
1-17-02	8	Saline	48%
1-18-02	9	Saline	45%
1-19-02	10	Saline	45%
1-20-02	11	Saline	45%
1-21-02	12	Saline	45%
1-22-02	13	Saline	53%
1-23-02	14	Saline	20%
1-24-02	15	Saline	43%
1-25-02	16	Saline	23%
1-26-02	17	Saline	55%
1-27-02	18	Saline	50%
1-29-02	20	Saline	10%
1-30-02	21	Saline	33%
1-31-02	22	Saline	30%
2-1-02	23	Saline	18%
2-2-02	24	Saline	20%
2-3-02	25	Saline	10%
2-4-02	26	Saline	5%
2-5-02	27	Saline	0% Neuropathic pain no longer present

EXAMPLE 6 Experimental Procedures – Acute Pain Model

Testing of Midazolam Hydrochloride

Drug formulation and stability testing for preservative—free midazolam for intrathecal use was performed using HPLC with the final drug concentration at 2.5 or 5.00 mg/ml in normal saline (ingredients: NaCl 0.9% and 0.45% respectively). The concentrations of 2.5 and 5.0 mg/ml are similar to that used in the human and animal studies to date.

Monitoring

5

10

15

20

25

30

Daily rectal temperatures were taken and any behavioral/motor changes were noted. Gait monitoring will be conducted as described below based on a four-grade scale for the evaluation of behavioral and motor changes. Grade 0: animal standing, sheep is able to rise and ambulate without any difficulty. Grade 1: Shuffling of either rear leg or slight limp; slight distortion of normal spinal axis. Grade 2: Loss of righting reflex in one of the rear legs, sheep able to stand without assistance, but with some difficulty. Grade 3: Inability to maintain standing posture; attempts to help animal stand are unsuccessful.

Indirect blood pressure, pulse recording, pain testing (mechanical stimulus device, cold and warm water baths see description in procedure) and weight were taken on days 1, 3, 7, 15, 22, 29, 36, and 43. Venous blood samples (15 ml drawn from the jugular vein with Vacutainer brand blood collection tubes) for complete blood count, electrolytes, and extended blood chemistry were drawn on days 1, 15, and 43 (mild procedure only light hand restraint necessary).

On day 43 after venous blood samples were taken, animals were euthanized (Beuthanasia 1 ml/4.5 kg IV bolus injection). CSF samples were obtained for analysis (1-2 ml drawn from L-7/S-1 after a laminectomy was performed to expose the dura) of glucose, total protein, and cell differential.

Animal Preparation and Surgery

Intrathecal catheters and Medtronic infusion pump placements were done in one anesthetic episode under aseptic conditions. Preanesthetic medications consisting of 1 gram of cefazolin and 0.4 mg glycopyrrolate were administered IV prior to induction. Anesthesia was induced with an intravenous bolus cocktail of 0.2 mg/kg diazepam and

6.0 mg/kg ketamine. Animal was intubated with a 8.00 to 10 mm ID cuffed Murphy endotracheal tube. Anesthesia was maintained with halothane or isoflurane at an inspired concentration of approximately 2-3% in oxygen (Ohio ventilator). Distention of the rumen and attendant ventilatory depression were avoided by oral rumen cannulation with a large-bore stomach tube. Body temperature was supported by use of a circulating water pad. Intravenous fluids (0.9% NaCl) were administered throughout the procedure, and vital signs were monitored with an electrocardiogram temperature respirator monitor (Vet/Ox Plus).

After sterile preparation of the surgical field, a midline incision was made over L-6 to S-2 to expose the muscle fascia. A 16-G Tuohy needle was inserted into the intravertebral space at L-7/S-1. The needle was slowly advanced until the dura was punctured and CSF was freely flowing out of the hub of the needle. An intraspinal catheter (4 french ID 0.6 mm x OD 1.2 mm) was threaded into the Tuohy needle and advanced cephalad into the subarachnoid space 10 cm to the approximate level of L-5. The catheter was secured to the muscle fascia with 2-0 silk suture. A pocket was fashioned in the left para lumbar fossa, and the catheter was tunneled to that area with a tunneling device and connected to the pump. The pump was anchored to the muscle in three locations at approximately 90-120 degree intervals with 2-0 silk or 0 braunamid suture. The pump was filled with sterile saline and programmed at the time of surgery to deliver 1 ml/day. The wounds were flushed with a saline/gentamicin solution followed by a local anesthetic. Wounds were closed in layers with vicryl suture. Analgesics (torbugesic 5 mg, IM or morphine up to 10 mg per dose) were administered before sheep emerged from anesthesia and again in the evening and the following morning when the sheep was given antibiotic injections and then as needed thereafter. The postoperative antibiotic regiment consisted of two days of 1 gm cefazolin IM twice daily and then 5 ml Benza-Pen (Penicillin a Benzathine and Penicillin G Procaine) SQ once daily for an additional 3 days.

Although no toxicity or problems were expected from the placement of the spinal catheter and the implanted pump, each animal was observed for any evidence of neurological deficit for 7 days after placement of the catheter and pump.

Pain Testing in the Acute Pain Model

In the sheep model for continuous intrathecal infusion of test substances, testing procedures were developed to determine analgesic activity of an agent.

5

10

15

20

25

Mechanical Pain Thresholds

5

10

20

25

A mechanical stimulus device was used for the pain stimulus. It has a movable blunt pin that supplies pressure to a clipped area in front of the anterior aspect of the radius just above the carpus with increasing force. The pressure from the pin causes the animal to lift its leg, which indicates to the operator to shut the device off. The force applied to the pin was measured by strain gauges that are incorporated into the device on the leg. The output from the strain gauges was recorded on a millivoltmeter in the control box. The mechanical pressure device was fitted to one leg and a dummy device was fitted to the other leg. The sheep was allowed to acclimate to the device. Five baseline test trials were made and averaged (predrug response). To compare the effects of midazolam, the data were accumulated over the testing period, and all response latencies were expressed as percentage of the maximum possible effect (MPE) where:

% MPE = Postdrug response-predrug response X 100 Cutoff-predrug response

This test will be conducted prior to starting the sheep being started on drug and again on days 1, 3, 7, 15, 22, 29, 36, 43. The mechanical stimulus device has been developed and validated (Nolan et al. 1987; Kyles et al., 1995) for pain testing in the sheep model.

Thermal Pain Thresholds

Heat. Thresholds to heat stimuli were determined by walking the sheep into a warm water foot bath (maximum temperature not to exceed 55°C). Prior to drug administration baseline values were recorded by counting the number of times the sheep lifted each leg. This value was then compared to the post drug value on day 1, 7, 15, 22, 29, 36, and 43.

Cold. Thresholds to cold stimuli were determined by walking the sheep into a cold water foot bath (minimum temperature not to fall below 6°C). Prior to drug administration baseline values were recorded by counting the number of times the sheep lifted each leg. This value was then compared to the post drug value on day 1, 7, 15, 22, 29, 36, and 43.

EXAMPLE 7

Experimental Procedures Neuropathic Pain Model

Pain Testing in the Neuropathic Pain Model

A mechanical stimulus device as described in Example 6, and/or behavior monitoring as described in Example 5 is used to test analgesic effect in the neuropathic pain model. To compare the effects of midazolam using the mechanical stimulus device, the data were accumulated over the testing period, and all response latencies were expressed as percentage of the maximum possible effect (MPE) where:

% MPE = Postdrug response-predrug response X 100 Cutoff-predrug response

This test will be conducted prior to initiation of midazolam infusion and again on days 1, 3, 7, 15, 22, 29, 36, 43 during infusion. The mechanical stimulus device has been developed and validated (Nolan *et al.* 1987; Kyles *et al.*, 1995) for pain testing in the sheep model.

15 Surgery

5

10

All surgery will be performed under general anesthesia and sterile conditions. Studies are conducted in strict compliance with Guide for the Care and Use of Laboratory Animals and PHS policy on Humane Care and Use of Laboratory Animals.

20 Preoperative Evaluation

Approximately three days prior to surgery each sheep will undergo a 15-minute baseline behavior evaluation. The observations made in this evaluation include, a computerized behavior software recording (the Observer) for 15 minutes - gait monitoring- and recording of pain perception via visual analog scale-using the Observer. In some animals, recording of vital signs (blood pressure, heart rate, respirations per minute) will be performed using the Observer. Baseline values for pain perception are recorded via the mechanical stimulus device and/or behavior monitoring will also be performed at this time.

Gait monitoring will be conducted as described below based on a four-grade scale for the evaluation of behavioral and motor changes. Grade 0: animal standing, sheep is able to rise and ambulate without any difficulty. Grade 1: Shuffling of either

25

rear leg or slight limp; slight distortion of normal spinal axis. Grade 2: Loss of righting reflex in one of the rear legs, sheep able to stand without assistance, but with some difficulty. Grade 3: Inability to maintain standing posture; attempts to help animal stand are unsuccessful.

5 Surgical Procedures

10

15

20

25

30

#1 Sheep instrumented with spinal catheters for probe placement and a subcutaneous spinal infusion pump for drug delivery.

#2 Sheep equipped with arterial and venous subcutaneous femoral ports and the medial, radial, ulnar nerve are ligated (or a combination thereof) to induce neuropathic pain in the animal.

Postoperative Evaluation

The sheep will be observed daily postoperatively. Beginning three days postoperatively (or earlier if the sheep displays neuropathic pain), the sheep will undergo daily observations and behavior tests as previously performed for baseline neuropathic pain measurement. Observations of neuropathic pain development include changes in ambulation, alertness, appetite, urination, defecation, herding activity, body temperature and pain behaviors. This daily behavior is recorded utilizing the observer (an observational software system). If the sheep does not exhibit neuropathic pain it will receive 0.63 mg naloxone. It is possible that animals not exhibiting neuropathic pain may have endogenous opioidergic systems that are tonically activated under pathologically painful conditions, which may inhibit or mask the development of the neuropathic pain. Naloxone will inactivate this endogenous pathway. Once the sheep exhibits neuropathic pain the studies will begin.

Intrathecal Midazolam Efficacy Studies for Neuropathic Pain

Midazolam-niave and nonsteady-state anesthetized studies. The subcutaneous pump filled with saline will be replaced with midazolam (5.0 mg/ml) and programmed to deliver a bolus of 5 mg midazolam, followed by up to 15 mg/day continuous infusion of the desired dose.

Microdialysis sampling on the first day of drug infusion will be performed in some sheep. For this, sheep will be placed under general anesthesia for probe placements in lumbar tissue and lumbar and thoracic CSF. Microdialysis probes will

be placed in lumbar CNS tissue percutaneously at L7-S1, two regions of CSF (T10, and L7 spinal levels), and blood to determine midazolam concentration at these regions. Probes will be perfused with an artificial CSF solution at a low flow rate of 2 µL/min. These probes have a 4 mm loop semipermeable membrane at their tip composed of regenerated cellulose (MW cutoff, 18 kD) which allows the passive diffusion of drugs and analytes across a concentration gradient and into the probe effluent. Following placement of microdialysis probes, baseline samples will be collected over one 10 minute interval. After drug infusion has begun, dialysate samples will be continuously collected in 10 minute intervals via a fraction collector for up to three hours.

Once the study is complete probes are removed and the animal will receive 30 mg/kg methylprednisolone sodium succinate IV over a 15-minute period to prevent nervous tissue injury from the temporary probe placement. The animal is then taken off general anesthesia, and allowed to recover. Once recovered, the animal will be placed in an indoor pen and allowed to rest for at least two hours. Following this resting period, the animal will be evaluated for pain relief utilizing the mechanical stimulus device. The sheep will then be returned to the indoor pen and the Observer will be used to evaluate the sheep's behavior.

Midazolam steady-state unanesthetized studies. Microdialysis sampling in awake animals will be performed in some sheep while on therapy. For this, sheep will be placed in a sling inside a movable cart to minimize postural movements. The concentration of midazolam should be at steady state. The same experimental procedure will be followed as explained above, except without the placement of the tissue probes. Samples from probes in CSF will be collected for 3 hours post placement of probes. These microdialysis experiments can be performed once every other week during treatment.

Periodic evaluations of analgesic effect of drug treatment will be performed utilizing the mechanical stimulus device and/or behavior monitoring. The pumps may be programmed to stop the infusion to observe if the animal returns to a neuropathic pain state. Observations and analgesic tests will be performed as for baseline pain assessments once neuropathic pain has returned. Off therapy, the animal will exhibit neuropathic pain usually within 1-3 days. If this pain behavior does not return within 7 days off therapy, the sheep will receive 0.63 mg naloxone. After neuropathic pain is reestablished and recorded, midazolam treatment will be resumed via pump

5

10

15

20

25

programmed to infuse another bolus of 5 mg midazolam, followed by up to 15 mg/day continuous infusion of the desired dose.

Toxicity Testing of Chronically Administered Intrathecal Midazolam

Animals will be observed daily for any signs of clinical toxicity such as limping and loss of appetite. At necropsy the spinal cord will be examined for any gross changes. Histopathologic evaluation will be performed on all animals after drug studies are complete. These examinations will detect any neurotoxicity that may be present due to the spinal infusion of midazolam.

Pharmacokinetics

5

10

15

20

25

30

Microdialysis methods will be used to determine the steady-state and nonsteady-state pharmacokinetic profile of intrathecally administered midazolam in plasma, CSF, and CNS tissue in the sheep model.

Terminal Tissue Study

On the last day of drug delivery, day 51 post drug initiation (or sooner if neuropathic pain fails to return) a terminal tissue study may be performed. In these studies the sheep will be anesthetized. Microdialysis probes will be placed in three regions of spinal cord tissue and 3 regions of CSF (cisterna magna, T10, and L7 spinal levels), and in venous blood for determination of pharmacokinetic profiles. Partial laminectomies will be performed at these locations to provide adequate visualization of the insertion points and assure proper placement of the probes To place probes in tissue, a small incision is made in the dura and a 16-G introducer is inserted through the incision into the cord. The probe is placed through the introducer and inserted into the cord tissue, the introducer is removed. The probes for CSF sampling are placed through the same incision in the dura. A small introducer is inserted into the incision to elevate the dura while the probe is inserted into the subarachnoid space. The tissue and CSF probes are sealed into place with gel foam and tissue adhesive.

Placement of probes within the cord tissue will be confirmed at the end of each tissue experiment by perfusing the dialysis probes with methylene blue dye for 5 minutes, with subsequent dissection at necropsy by the senior research assistant to assure proper placement.

This model allows for directly sampling from the blood, thoracic, lumbar, and cisternal CSF, and cord tissue. Dialysate samples will be analyzed for midazolam concentration by gas chromatography/mass spectrometry. Pharmacokinetic parameters will be derived by fitting a two or three compartment model to all site-specific drug concentrations. ADAPT II pharmacokinetic software will be used to fit the data. In addition, concentration-time data will be analyzed using a modified signoid Emax model, and will allow generation of a model which integrates measured plasma and local drug concentration data in order to determine "effect compartment" drug concentrations and relate this information to pharmacodynamic outcome (efficacy).

All of the compositions, methods and apparati disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions, methods and apparati and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit and scope of the invention. More specifically, it will be apparent that certain agents which are both chemically and physiologically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.

5

10

15

REFERENCES

The following references, to the extent that they provide exemplary procedural or other details supplementary to those set forth herein, are specifically incorporated herein by reference.

5 Aguilar et al., Pain, 59:317-320, 1994.

Ahles et al., Pain, 17:277-288, 1983.

Bonica, In: The Management of Pain, Philadelphia, Lea and Febiger (Eds.), 582-585; 410-411, 1990.

Erdine et al., Pain, 80:419-423, 1999.

Gianno et al., In: Intrathecal Drug Therapy for Spasticity and Pain, Springer-Verlag, 1996.

Graham et al., Pain, 8:377-387, 1980.

Hassenbusch et al., J. Neurosurg., 73:405-409,1990.

Jensen et al., Pain, 55:195-203, 1993.

15 Kremer et al., Pain, 12:153-163, 1982.

Kyles et al. British J. Pharmacology, 108(4):97-913;1995.

Kyles et al., J. Veterinary Pharmacologic. Ther., 18:54-60;1995

Lesage et al., J. Moffitt Cancer Center, 6(2):136-145, 1999.

Littman et al., Clin. Pharmacol. Ther., 38:16-23, 1985.

20 Madsen et al., Pain, 5(suppl):S242, 1990.

Malinovsky et al., Anesthesiology, 75:91-97, 1991.

Melzack et al., Pain, 1:277-299, 1975.

Merskey, Pain, 3:S1-225, 1986.

Nishiyama et al., Anesthesiology, 91(2):531-537, 1999.

Nolan et al., J. Pharmacological Methods, 17:39-49;1987.

Schoeffler et al., Reg. Anesthesiology, 16:329-332, 1991.

Schofield et al., Nature, 328:221-227, 1987.

Serrao et al., European J. Anesthesiology,7:115-122, 1990.

Svensson et al., Reg. Anesthesiology, 20:426-434, 1995.

Valentine et al., European J. Anesthesiology, 13:5589-5593, 1996.

CLAIMS

1. A method for treating pain in a subject comprising intraspinal administration to said subject of an analgesic formulation comprising preservative-free midazolam, wherein said formulation is substantially free of other analgesic substances.

- 2. The method of claim 1, wherein the treatment is for neuropathic pain.
- 3. The method of claim 1, wherein the treatment is for non-neuropathic pain.
- 4. The method of claim 1, wherein midazolam is provided at high doses.
- 5. The method of claim 4, wherein the daily dose of midazolam is at least about 1.0 mg.
 - 6. The method of claim 5, wherein the daily dose of midazolam is at least about 5.0 mg.
 - 7. The method of claim 6, wherein the daily dose of midazolam is at least about 10.0 mg.
- 15 8. The method of claim 7, wherein the daily dose of midazolam is at least about 15.0 mg.
 - 9. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than one minute.
- The method of claim 1, wherein said formulation is administered gradually over a time period of greater than ten minutes.
 - 11. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than thirty minutes.
 - 12. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than sixty minutes.
- 25 13. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than one-hundred twenty minutes.

14. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than four hours.

- 15. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than eight hours.
- 5 16. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than twelve eight hours.
 - 17. The method of claim 1, wherein said formulation is administered gradually over a time period of greater than twenty-four hours.
- 18. The method of claim 9, wherein said formulation is administered by a continuous infusion pump.
 - 19. The method of claim 18, wherein said pump is implanted subcutaneously in said subject.
 - 20. The method of claim 1, wherein said subject has cancer.
 - 21. The method of claim 20, wherein said subject has cancer pain.
- 15 22. The method of claim 20, wherein the cancer pain is a neuropathic pain.
 - 23. The method of claim 20, wherein the cancer pain is a non-neuropathic pain.
 - 24. The method of claim 1, wherein said subject is opioid tolerant.
 - 25. The method of claim 1, wherein said subject suffers from opioid-resistant neuropathic pain.
- 20 26. The method of claim 1, wherein said subject is a human.
 - 27. The method of claim 1, wherein said analgesic formulation comprises midazolam at about 2.5 to about 5.0 mg/ml.
 - 28. The method of claim 1, wherein toxicity is measured during treatment.

29. The method of claim 28, wherein a dose modification is made based on said toxicity measurement.

- 30. The method of claim 1, wherein pain relief is measured during treatment.
- 31. The method of claim 30, wherein a dose modification is made based on said pain relief measurement.

FIG. 1

2/2

FIG. 2