

CMT10XXX Isolated CAN Transceiver

1 Features

- Safety-related certifications
 - DIN VDE V 0884-11: 2017-01
 - UL 1577 component recognition program
 - CSA component notice 5A
 - CQC approval per GB4943.1-2022
 - Fully compatible with the ISO11898-2 standard
- Up to 5 kV_{RMS} insulation voltage
- Power supply voltage

VDD1 : 2.5V to 5.5VVDD2 : 4.5V to 5.5V

■ Data rate: 1Mbps (CMT1050)

5Mbps (CMT1042/CMT1052)

- Bus fault protection of -70V to +70V
- Common-Mode Voltage Range: ±30 V
- Transmit data (TXD) dominant time out function
- Over current and over temperature protection
- Ideal Passive, High Impedance Bus and Logic Terminals
 When Unpowered
- High CMTI: 150kV/us

■ HBM ESD tolerance on bus pins: 6 kV

■ Operation temperature: -40°C to 125°C

■ Low loop delay: <220 ns

- High system level EMC performance: Enhanced system level ESD, EFT, Surge immunity
- (WB) SOIC16, DUB8 and SOW8L package

2 Applications

- Isolated CAN Bus
- AC and servo drives
- Solar inverters
- PLC and DCS communication modules
- Battery charging and management
- Elevators and escalators
- Industrial power supplies

3 Description

The CMT10XXX is an isolated CAN transceiver which fully compatible with the ISO11898-2 standard. The CMT10XXX integrated two channel digital isolators and a high reliability CAN transceiver. The digital isolator is silicon oxide isolation based on CMOSTEK capacity isolation technology. The high integrated solution can help to simplify system design and improve reliability. The CMT10XXX device is safety certified by UL1577 support 5 kV_{rms} insulation withstand voltages, while providing high electromagnetic immunity and low emissions. The data rate of the CMT10XXX is up to 5Mbps. The CMT10XXX provides thermal protection and transmit data dominant time out function.

Device Information

器件型号	封装	封装尺寸(标称值) (mm)
CMT1050	SOW8L	5.85 * 7.50
CMT1050W		10.30 * 7.50
CMT1052W	SOIC16-WB	10.30 * 7.50
CMT1042W		10.30 * 7.50
CMT1050U	DUB8	6.35 * 9.20

Table of Contents

1	Feat	ures	1
2	Appl	lications	1
3	Desc	cription	1
4	Abso	olute Maximum Ratings	3
5	Reco	ommended Operating Conditions	3
		mal Information	
		Description	
		cal Application	
0		• •	
	8.1	Typical Application Schematic	
	8.2	PCB Layout Guidelines	
		meter Measurement Circuit Setup	
10	Elect	trical Specifications	11
	10.1	Electrical Characteristics	11
	10.2	Switching Electrical Characteristics	13
	10.3	Insulation Specifications	14
	10.4	Safety-related Certifications	
	10.5	Safety Limiting Values	16
11	Fund	ction Description	17
	11.1	Function Overview	17
	11.2	Functional Modes	17
	11.3	Standby mode	17
	11.4	Bus Dominant Time-out Function	18
	11.5	TXD Dominat Time-out Function	
	11.6	Current Protection	
	11.7	Over Temperature Protection	18
12	Pack	kaging Information	19
	12.1	CMT10XXX SOW8L Packaging	19
	12.2	CMT10XXX Wide Body SOIC-16 Packaging	20
	12.3	CMT10XXX DUB8 Packaging	21
13	Orde	ering Information	22
14	Таре	and Reel Information	23
15	Revi	se History	26
16	Conf	tacts	27

4 Absolute Maximum Ratings

Table 1. Absolute Maximum Ratings[1]

Parameters	Symbol	Condition	Min.	Max.	Unit
Power supply voltage[2]	VDD1, VDD2		-0.5	6.5	V
Maximum input voltage	V _{IN}		-0.4	VDD+0.4	V
Maximum BUS pin voltage	V _{CANH} , V _{CANL}		-70	+70	V
Output current	Io		-15	15	mA
Operating Temperature	Topr		-40	125	℃
Storage temperature	T _{STG}		-65	150	℃
	HBM			±6000	V
Electrostatic discharge	CDM			15 125 150	V

Notes:

- [1]. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
- [2]. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values.

5 Recommended Operating Conditions

Table 2. Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit	Comments
Supply voltage, controller side VD		2.5		5.5	V	
Supply voltage, bus side	VDD ₂	4.5	5	5.5	V	
Voltage at bus pins (separately or common mode)	V _I or V _{IC}	-30		30	V	
High level input voltage	V _{IH}	0.7*VDD1		5.5	V	TXD
Low level input voltage	V _{IL}	0		0.3*VDD1	V	TXD
Lligh level cutsus august	1	-70			A	Driver
High level output current	I _{OH}	-6			mA	Receiver
Low level output current			70	70	mA	Driver
Low level output current	l _{OL}		6	6	IIIA	Receiver
Operating temperature	T _A	-40		125	$^{\circ}$	
Junction temperature	TJ	-40		150	$^{\circ}$	

6 Thermal Information

Table 3. Thermal Information

Parameters	Symbol	SOW8L	(WB) SOIC16	Unit
Junction-to-ambient thermal resistance	θ_{JA}	100	69.9	
Junction-to-board thermal resistance	θ_{JB}	51.8	29	°C/W
Junction-to-case (top) thermal resistance	θ _{JC} (top)	40.8	31.8	

Rev 0.3 | 4/27 www.hoperf.com

7 Pin Description

Figure 1. CMT1050X Pin Configuration

Table 4.CMT1050X Pin Description

Pin Name	Pin number			Description
riii Naiile	CMT1050W	CMT1050	CMT1050U	Description
VDD1	1	1	1	Power supply for isolator side 1
RXD	3	2	2	CAN receive data output (LOW for dominant and HIGH for recessive bus states)
TXD	6	3	3	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)
GND1	2,7,8	4	4	Ground reference for Isolator Side 1

Rev 0.3 | 5/27

Pin Name	Pin number			Description
GND2	9,10,15	5	5	Ground reference for Isolator Bus Side
CANH	13	7 7		High-level CAN bus line
CANL	12	6	6	Low-level CAN bus line
VDD2	16	8	8	Power supply for isolator side 2.
NC	4,5,11,14			No Connection

Figure 2. CMT1042W And CMT1052W Pin Configuration

Table 5. CMT1052X/CMT1042X Pin Description

Din Name	Pin number		Description			
Pin Name	CMT1052W CMT1042W		Description			
VDD1	1	1	Power supply for isolator side 1			
TXD	3	6	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)			
RXD	5	3	CAN receive data output (LOW for dominant and HIGH for recessive bus states)			
GND1	2,8	2,7,8	Ground reference for Isolator Side 1			
GND2	9,10,15	9,10,15	Ground reference for Isolator Bus Side			
CANH	13	13	High-level CAN bus line			
CANL	12	12	Low-level CAN bus line			
VDD2	11,16	16	Power supply for Bus Side, PIN11 must be connected externally to PIN16			

Rev 0.3 | 6/27

Pin Name	Pin number		Description			
NC	4,6,7 4,5,11,14		No Connection			
STB	14		Standby mode control input			

8 Typical Application

8.1 Typical Application Schematic

Figure 3. Typical Application Schematic

Note: users should be careful not to connect ground and VDD reversely.

8.2 PCB Layout Guidelines

Figure 4. Recommended PCB Layout (Top layer)

9 Parameter Measurement Circuit Setup

Figure 5. Driver Voltage, Current and Test Definition

Rev 0.3 | 8/27 www.hoperf.com

Figure 6. Bus Logic State Voltage Definitions

Figure 7. Driver VOD with Common-mode Loading Test Circuit

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 n

B. C_L includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 8. Driver Test Circuit and Voltage Waveform

Figure 9. Receiver Voltage and Current Definition

Rev 0.3 | 9/27

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_i \leq$ 6ns, Zo = 50Ω

B. C_L includes instrumentation and fixture capacitance within ±20%.

Figure 10. Receiver Test Circuit and Voltage Waveform

Figure 11. t_{LOOP} Test Circuit and Voltage Waveform

A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 125kHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_l \leq$ 6ns, t_l

B. C_L includes instrumentation and fixture capacitance within $\pm 20\%$.

Figure 12. Dominant Time-out Test Circuit and Voltage Waveform

Figure 13. Driver Short-Circuit Current Test Circuit and Waveform

Figure 14. Common-Mode Transient Immunity Test Circuit

10 Electrical Specifications

10.1 Electrical Characteristics

VDD1 = 2.5V ~ 5V, VDD2 = 4.5V~5.5V, T_A = -40 to 125 °C. Unless otherwise noted, Typical values are at VDD1= 3.3V, VDD2 = 5V, T_A = 25 °C)

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit			
Supply Voltage	VDD1		2.5		5.5	V			
	VDD2		4.5	5	5.5	V			
	IDD1	$VDD_1 = 3.3 \text{ V}, TXD = 0$		2.2	3.50	A			
Logio cido cumply current		$VDD_1 = 3.3 \text{ V}, TXD = VDD1$		1.1	2.00	mA			
Logic side supply current		$VDD_1 = 5 V$, $TXD = 0$		2.2	3.50	A			
		$VDD_1 = 5 V, TXD = VDD1$		1.1	2.00	- mA			

Table 6. Electrical Characteristics

		VI = 0V, $R_{load} = 60 \Omega$		46	70	
Bus side supply current	IDD2	$VI = VDD_2$		5.3	10	- mA
Thermal-shutdown Threshold	T _{TS}		155	165	180	$^{\circ}$
Common Mode Transient Immunity	CMTI		±100	±150		kV/us
Logic Side						1
High level input voltage	V _{IH}	TXD pin	0.7*V _{DD1}			V
Low level input voltage	V _{IL}	TXD pin			0.3*V _{DD1}	V
High level input current	I _{IH}	TXD pin		0		uA
Low level input current	I _{IL}	TXD pin	-15			uA
High level output voltage	V _{OH}	I _{OH} =-4mA, RXD pin	V _{DD1} - 0.4			V
Low level output voltage	V _{OL}	I _{OL} = 4mA, RXD pin			0.4	V
Input Capacitance	C _{IN}	TXD pin		6.5		pF
Driver		1				1
CANH output voltage (Dominant)	V_{OH}	TXD=0 V, R _{LOAD} = 60 Ω	2.8	3.4	4.5	V
CANL output voltage (Dominant)	$V_{OL(D)}$	TXD=0 V, R _{LOAD} = 60 Ω	0.8	1.2	2.25	V
CAN bus output voltage (Recessive)	$V_{O(R)}$	TXD=VDD1, R _{LOAD} = 60 Ω	2	0.5*V _{DD2}	3	V
Differential output voltage (Dominant)	$V_{\text{OD(D)}}$	VDD=5V, TXD=0, $R_{load} = 60$	1.5		3	V
Differential output voltage	$V_{\text{OD(R)}}$	VDD=5V, TXD= V_{IO} , R_{load} = 60 Ω	-0.05		0.05	V
(Recessive)	V OD(R)	VDD=5V, TXD=V _{IO} , No load.	-0.1		0.1	
		TXD=0V, $t < t_{to(dom)TXD}$. $V_{CANH} = -30V$	-100		-40	
Dominant short-circuit output current	I _{O(SC)DOM}	TXD=0V, $t < t_{to(dom)TXD}$. $V_{CANL}=30V$	40		100	mA
Recessive short-circuit output current	I _{O(SC)REC}	Normal/Silent mode; Vtxd=VDD1; V _{CANH} = V _{CANL} =-27V to +30V	-6		6	mA
Receiver						
Positive-going bus input threshold voltage	V _{IT+}			750	900	mV
Negative-going bus input threshold voltage	V _{IT} -		500	650		mV
Hysteresis voltage	V _{HYS}			100		mV
Power-off (unpowered) bus input leakage current	I _{IOFF(LKG)}	V _{CANH} = V _{CANL} =5V, VDD=0V, VIO=0V	-5		5	uA
Input capacitance to ground	C_{l}	CANH or CANL		13		pF
Differential input	C_{ID}			5		pF
Differential input resistance	R _{ID}		20		40	kΩ
Input resistance	R _{IN}		15	30	40	kΩ
Input resistance matching	RI _{MATCH}	CANH = CANL	-5		+5	%
Common-mode voltage range	V _{COM}		-30		+30	V

10.2 Switching Electrical Characteristics

VDD1 = 2.5V ~ 5V, VDD2 = 4.5V~5.5V, T_A = -40 to 125 °C. Unless otherwise noted, Typical values are at VDD1= 3.3V, VDD2 = 5V, T_A = 25 °C)

Table 7. Switching Electrical Characteristics

Parameters	Symbol	Condition	Min.	Тур.	Max.	Unit
Loop delay1	T _{LOOP1}	Driver input to receiver output, Recessive to Dominant		120	220	ns
Loop delay2	T_{LOOP2}	Driver input to receiver output, Dominant to Recessive		100	220	ns
Transmitted recessive bit width	T _{bit(bus)}	$T_{bit(TXD)} = 500 \text{ns}$ $T_{bit(TXD)} = 200 \text{ns}$	435 155	488 186	530 210	ns
	_	T _{bit(TXD)} = 500ns	400	490	550	
Bit time on RXD pin	$T_{bit(RXD)}$	T _{bit(TXD)} = 200ns	150	191	240	ns
Driver						
Propagation delay time, recessive -to- dominant output	t _{PLH}		76	73		ns
Propagation delay time, dominant-to-recessive output	t _{PHL}	Ç,		63		ns
Differential output signal rise time	t _r			62		ns
Differential output signal fall time	t _f			60		ns
Bus dominant time-out time	t _{TXD_DTO}	, 0	800	1900	4000	us
Receiver						
Propagation delay time, low to high level output	t _{РLН}			58		ns
Propagation delay time, high to low level output	tрнL			46		ns
RXD signal rise time	t _r			1		ns
RXD signal fall time	t _r			1		ns

10.3 Insulation Specifications

Table 8. Insulation and Safety Related Specifications

		rand barety Related openineations	Value SOW8L WB SOIC-16			
Description	Sym	Condition			Unit	
Min. External clearance ^[1] (air gap)	CLR	The shortest terminal-to-terminal distance through air	8.0	8.0	mm	
External creepage ^[1] (tracking)	CRP	The shortest terminal-to-terminal distance across the package surface	8.0	8.0	mm	
Distance through insulation	DTI	Minimum internal gap	18		um	
Comparative tracking index	CTI	DIN EN 60112 (VDE 0303-11);	>600		٧	
Material group	-	IEC 60112	I		-	
		Rated mains voltage ≤ 150 V _{RMS}	I to IV	I to IV	-	
Installation Classification per DIN		Rated mains voltage ≤ 300 V _{RMS}	I to IV	I to IV	-	
VDE 0110	-	Rated mains voltage ≤ 600 V _{RMS}	I to IV	I to IV		
		Rated mains voltage≤ 1000 V _{RMS}	I to III	I tollI	-	
Installation Classification perDIN VDE	V 0884-11:20	17-01 ^[2]				
Climatic Category			40/125	/21		
Pollution Degree		Per DIN VDE 0110	2			
Maximum repetitive isolation voltage	V _{IORM}		1414	1	V_{pk}	
		AC voltage (sine wave); Time dependent dielectric breakdown	1000)	V_{RMS}	
Maximum isolation working voltage	V _{IOWM}	DC voltage	1414	1	V_{DC}	
Input to output test voltage, method B1	$V_{pd(m)}$	$\begin{aligned} V_{\text{ini,b}} &= V_{\text{iotm}}, \ V_{\text{pd(m)}} &= V_{\text{iom}}^* 1.875, \\ t_{\text{ini}} &= t_{\text{m}} = 1 \ \text{sec}, \end{aligned}$	<5		рс	
Input to output test voltage, method A. After environmental tests subgroup 1	$V_{pd(m)}$	$\begin{aligned} &V_{\text{ini.a}}\text{=}\ V_{\text{iotm}},\ V_{\text{pd(m)}}\text{=}\ V_{\text{iom}}\text{*}1.6,\\ &t_{\text{ini}}\text{=}\ 60\ \text{sec},\ t_{\text{m}}=10\ \text{sec}, \end{aligned}$	<5		рс	
Input to output test voltage, method A. After input and output safety test subgroup 2 and subgroup 3	$V_{\text{pd}(m)}$	$\begin{aligned} &V_{\text{ini.a}} \!= V_{\text{iotm}}, V_{\text{pd(m)}} \!\!= V_{\text{iom}}^* \! 1.2, \\ &t_{\text{ini}} \!\!= 60 \text{ sec, } t_{\text{m}} \!\!= 10 \text{ sec,} \end{aligned}$	<5		рс	
Maximum transient isolation voltage	V_{IOTM}	t = 60 s (qualification);	7000		V_{pk}	
Maximum surge isolation voltage[3]	V _{IOSM}	Test method per IEC62368-1, 1.2/50 us waveform, V _{TEST} = 1.6 x V _{IOSM}	6250		V_{pk}	
Isolation capacitance, input to output ^[5]	C _{IO}	f = 1 MHz	1.2		pF	
la clation accistance in a second second		$V_{IO} = 500 \text{ V}, T_{amb} = T_s$	>10 ⁹)	_	
Isolation resistance, input to output ^[5]	R_{IO}	V _{IO} = 500 V, 100 °C ≤ T _{amb} ≤ 125 °C	>10 ¹	1	Ω	
UL 1577				l		
Withstand isolation voltage	V _{ISO}	$V_{TEST} = 1.2 \times V_{ISO}$, $t = 1 \text{ s } (100\%$ production)	5000)	V _{RMS}	

Notes:

- [1]. Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these specifications.
- [2]. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
- [3]. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
- [4]. Apparent charge is electrical discharge caused by a partial discharge (pd).
- [5]. All pins on each side of the barrier are tied together creating a two-terminal device.

Rev 0.3 | 15/27 www.hoperf.com

10.4 Safety-related Certifications

Table 9. Safety-related Certifications

VDE	UL		CQC	TUV
DIN VDE V0884- 11:2017-01	UL 1577 Component Recognition Program	Approved under CSA Component Acceptance Notice 5A	GB 4943.1-2011	EN 61010-1:2010 (3rd Ed) and EN 60950- 1:2006/A2: 2013
Certificate number: pending	Certificate number: UL-US-2439077-1	Certificate number: UL-CA-2429797-0	Certificate number: CQC11-471543-2022	Certificate number: pending

10.5 Safety Limiting Values

Reinfored isolation safety-limiting values as outlined in VDE-0884-11 of CMT10XXX

Table 10. Safety Limiting Values

Parameters	Test Condition	Value	Unit
Sofoty cumply nower	$R_{\theta JA} = 100 \text{ °C/W},$	1250	mW
Safety supply power	$T_J = 150$ °C, $T_A = 25$ °C	1250	mA
Safety supply current	$R_{\theta JA} = 100 \text{ °C/W}, V_1 = 5 \text{ V},$ $T_J = 150 \text{ °C}, T_A = 25 \text{ °C}$	250	W
Satefy temperature		150	${\mathbb C}$

^{1.} Calculate with the junction-to-air thermal resistance, $R_{\theta JA}$, of SOP8 (300mil) package which is that of a device installed on a low effective thermal conductivity test board (1s) according to JESD51-3.

Figure 15. CMT10XXX Thermal derating Curve, Dependence of Safety Limiting Values with Case Temperature per DIN VDE V 0884-11

Rev 0.3 | 16/27 www.hoperf.com

11 Function Description

11.1 Function Overview

The CMT10XXX is an isolated CAN transceiver which fully compatible with the ISO11898-2 standard. The CMT10XXX integrated two channel digital isolators and a high reliability CAN transceiver. The digital isolator is silicon oxide isolation based on CMOSTEK capacity isolation technology. The high integrated solution can help to simplify system design and improve reliability. The CMT10XXX device is safty certified by UL1577 support $5 \, \text{kV}_{rms}$ insulation withstand voltages, while providing high electromagnetic immunity and low emissions. The data rate of the CMT10XXX is up to 5Mbps. The CMT10XXX provides thermal protection and transmit data dominant time out function.

11.2 Functional Modes

The table below lists the functional modes of the CMT10XXX.

BUS STATE TXD CANH CANL L Н **Dominant** Н Ζ Ζ Recessive Ζ Ζ Open Recessive Notes: H = high level; L = low level; Z = common mode (recessive) bias to VDD/2

Table 11. Driver Function Table

Table 1	12	Receiver	Function	Table

V _{ID} = CANH-CANL	RXD	BUS STATE			
V _{ID} ≥0.9V	L	Dominant			
$0.5 < V_{ID} < 0.9V$	X	Uncertain			
V _{ID} ≤0.5V	Н	Recessive			
Open	Н	Recessive			
Notes: H = high level; L=low level; X=uncertain					

11.3 Standby mode

The CMT10XXX cannot transmit or receive regular CAN messages in Standby mode. Only the isolator and low-power CAN receiver are active, monitoring the bus lines for activity. The bus wake-up filter ensures that only bus dominant and bus recessive states that persist longer than t_{fltr(wake)bus}are reflected on the RXD pin. To reduce current consumption, the CAN bus is terminated to GND and not biased to VDD2/2 as in Normal mode. Standby mode is selected by setting pin STB HIGH. An internal pull-up ensures that Standby mode is selected by default when pin STB is not connected.

In Standby mode;

- The CAN transmitter is off
- The normal CAN receiver is off
- The low-power CAN receiver is active
- · CANH and CANL are biased to GND
- The signal received at the low-power CAN receiver is reflected on pin RXD

The isolation function of the CMT10XXX is not disabled in Standby mode. Overall quiescent current is not reduced significantly in this mode. The CMT10XXX is not designated to support CAN bus wake-up functionality with very low quiescent currents.

11.4 Bus Dominant Time-out Function

In standby mode, a "bus dominant time-out" timer is started when the CAN bus changes from recessive to dominant state. If the dominant state on the bus persists for longer than $t_{to(dom)bus}$, the RXD pin is forced HIGH

11.5 TXD Dominat Time-out Function

A TXD dominant time-out timer circuit prevents the bus lines from being driven to a permanent dominant state(blocking all network communication) if pin TXD is forced permanently LOW by a hardware or software application failure. The timer is triggered by a negative edge on pin TXD.

If the duration of the LOW level on pin TXD exceeds the internal timer value (T_{txd_dto}), the transmitter is disabled, drving the bus lines into a recessive state. The timer is reset by a positive edge on pin TXD.

11.6 Current Protection

Acurrent-limiting circuit protects the transmitter output stage from damage caused by accidental short-circuit to either positive or negative supply voltage, although power dissipation increases during this fault condition.

11.7 Over Temperature Protection

The output drivers are protected against over-temperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature T_{ts}, the output drivers will be disabled until the virtual junction temperature becomes lower than Tts and TXD becomes recessive again.

By including the TXD condition, the occurrence of output driver oscillation due to temperture drifts is avoided.

Rev 0.3 | 18/27

12 Packaging Information

The packaging information of the CMT10XXX is shown in the figures below.

12.1 CMT10XXX SOW8L Packaging

CONTROLLING DIMENSION:MM

Symbol		MM	
Syllibot	MIN.	NOM.	MAX.
Α			2.80
A1	0.36		0.46
A2	2.20	2.30	2.40
А3		0.25	
Q	0.97 1.02		1.07
b	0.31	0.41	0.51
С	0.13		0.33
D	5.75	5.85	5.95
E	7.40	7.50	7.60
E1	11.25	11.50	11.75
е		1.27 b	sc
L		2.00 b	sc
Lp	0.50		1.00
Υ	0.10		
θ	0 º		8º

NOTES 1.0 COPLANCRITY APPLIES TO LEADS, CORNER LEADS AND DIE ATTAACH PAD.

Figure 16. CMT10XXX SOW8L Packaging

Figure 17. CMT10XXX SOW8L Package Board Layout Example

Rev 0.3 | 19/27

12.2 CMT10XXX Wide Body SOIC-16 Packaging

Figure 18. CMT10XXX SOIC 16 Package Shape and Dimension in Millimeter

www.hoperf.com

Figure 19. SOIC-16 Package Board Layout Example

12.3 CMT10XXX DUB8 Packaging

Figure 20. DUB8 Packaging

Rev 0.3 | 21/27

	SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	А	3.58		4.19
STAND OFF	A1	0.38		0.58
MOLD THICKNESS	A2	3.20		3.61
LEAD WIDTH	ь	0.36		0.56
	b1		0.99 REF	
	b2		1.524 REF	
L/F THICKNESS	С	0.20		0.36
BODY SIZE	D	9.27		9.37
BODY SIZE	E1	6.20		6.60
	E2	10.11		10.69
LEAD PITCH	е		2.54 E	3SC
LEAD LENGTH	L	1.15		1.45
	θ	0,		8 *
LEAD OFFSET	aaa		0.254	

Table 13. DUB8 Packaging Scale

13 Ordering Information

Table 14. Part Number List

Part Number	MOQ	Isolation Rating (kV)	Max Data Rate (Mbps)	Temperature	Package	MSL
CMT1050	1000	5	1	-40 to 125℃	SOW8L	3
CMT1050W	1000	5	1	-40 to 125℃	WB SOIC-16	3
CMT1052W	1000	5	5	-40 to 125℃	WB SOIC-16	3
CMT1042W	1000	5	5	-40 to 125℃	WB SOIC-16	3
CMT1050U	1000	5	1	-40 to 125℃	DUB8	3

www.hoperf.com

14 Tape and Reel Information

	PRODUCT SPECIFICATION							
TAPE WIDTH	Ø A ±2.0	Ø N ±2.0	W1	W2 (Max)	W3	(MIN)		
08MM	330	178	8.4 +1.5	14.4		5.5		
12MM	330	178	12.4 +2.0	18.4	SHALL ACCOMMODATE TAPE WIDTH WITHOUT NTERFERENCE	5.5		
16MM	330	178	16.4 +2.0	22.4		5.5		
24MM	330	178	24.4 +2.0	30.4		5.5		
32MM	330	178	32.4 +2.0	38.4		5.5		

SURFACE RESISTIVITY						
LEGEND	SR RANGE	TYPE	COLOUR			
Α	BELOW 10 ¹²	ANTISTATIC	ALL TYPES			
В	10 ⁶ TO 10 ¹¹	STATIC DISSIPATIVE	BLACK ONLY			
С	105 & BELOW 105	CONDUCTIVE(GENERIC)	BLACK ONLY			
E	10° TO 10 ¹¹	ANTISTATIC(COATED)	ALL TYPES			

Figure 21. CMT10XXX Tape and Reel Information (for all packages)

Rev 0.3 | 23/27 www.hoperf.com

Figure 22. CMT10XXX SOIC-8 Tape and Reel Information

Figure 23. CMT10XXX SOIC-16 Tape and Reel Information

15 Revise History

Table 15. Revise Records

Version No.	Chapter	Description	Date
0.1	All	Initial version	2023/09/26
0.2	8.2	Modified the typical application diagram	2023/11/14
All 7		Added data rate 1Mbps of CMT1050.	0004/0/47
		Update pin arrangement of CMT1042W	2024/6/17
0.3	A II	Update the UL certificate No	2024/10/30
	All	Add MSL level in order information	2024/12/3

Rev 0.3 | 26/27 www.hoperf.com

16 Contacts

Shenzhen Hope Microelectronics Co., Ltd.

Address: 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district, Nanshan, Shenzhen, GD, P.R. China

Tel: +86-755-82973805 / 4001-189-180

Fax: +86-755-82973550

Post Code: 518052

Sales: sales@hoperf.com
Website: www.hoperf.com

Copyright. Shenzhen Hope Microelectronics Co., Ltd. All rights are reserved.

The information furnished by HOPERF is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of HOPERF and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of HOPERF. HOPERF products are not authorized for use as critical components in life support devices or systems without express written approval of HOPERF. The HOPERF logo is a registered trademark of Shenzhen Hope Microelectronics Co., Ltd. All other names are the property of their respective owners.