General Index to Volumes 1 and 2

In this index, page numbers 1 through 934 refer to Volume 1, *Numerical Recipes in Fortran 77*, while page numbers 935 through 1446 refer to Volume 2, *Numerical Recipes in Fortran 90*. Front matter in Volume 1 is indicated by page numbers in the range 1/i through 1/xxxi, while front matter in Volume 2 is indicated 2/i through 2/xx.

```
Abstract data types 2/xiii, 1030
                                                   Alpha AXP 2/xix
Accelerated convergence of series 160ff.,
                                                   Alternating-direction implicit method (ADI)
      1070
                                                          847, 861f., 906
                                                   Alternating series 160f., 1070
Accuracy 19f.
   achievable in minimization 392, 397, 404
                                                   Alternative extended Simpson's rule 128
   achievable in root finding 346f.
                                                   American National Standards Institute (ANSI)
   contrasted with fidelity 832, 840
                                                          2/x, 2/xiii
   CPU different from memory 181
                                                   Amoeba 403
   vs. stability 704, 729, 830, 844
                                                      see also Simplex, method of Nelder and
Accuracy parameters 1362f.
                                                         Mead
Acknowledgments 1/xvi, 2/ix
                                                   Amplification factor 828, 830, 832, 840, 845f.
Ada 2/x
                                                   Amplitude error 831
Adams-Bashford-Moulton method 741
                                                   Analog-to-digital converter 812, 886
Adams' stopping criterion 366
                                                   Analyticity 195
Adaptive integration 123, 135, 703, 708ff.,
                                                   Analyze/factorize/operate package 64, 824
       720, 726, 731f., 737, 742ff., 788, 1298ff.,
                                                   Anderson-Darling statistic 621
       1303, 1308f.
                                                   Andrew's sine 697
   Monte Carlo 306ff., 1161ff.
                                                   Annealing, method of simulated 387f., 436ff.,
Addition, multiple precision 907, 1353
                                                          1219ff.
Addition theorem, elliptic integrals 255
                                                      assessment 447
ADI (alternating direction implicit) method
                                                      for continuous variables 437, 443ff., 1222
      847, 861f., 906
                                                      schedule 438
Adjoint operator 867
                                                      thermodynamic analogy 437
Adobe Illustrator 1/xvi, 2/xx
                                                      traveling salesman problem 438ff., 1219ff.
Advective equation 826
                                                   ANSI (American National Standards Institute)
AGM (arithmetic geometric mean) 906
                                                          2/x. 2/xiii
Airy function 204, 234, 243f.
                                                   Antonov-Saleev variant of Sobol' sequence
   routine for 244f., 1121
                                                          300, 1160
Aitken's delta squared process 160
                                                   any() intrinsic function 945, 948
Aitken's interpolation algorithm 102
                                                   APL (computer language) 2/xi
Algol 2/x, 2/xiv
                                                   Apple 1/xxiii
Algorithms, non-numerical 881ff., 1343ff.
                                                      Macintosh 2/xix, 4, 886
Aliasing 495, 569
                                                   Approximate inverse of matrix 49
   see also Fourier transform
                                                   Approximation of functions 99, 1043
all() intrinsic function 945, 948
                                                      by Chebyshev polynomials 185f., 513,
All-poles model 566
   see also Maximum entropy method (MEM)
                                                      Padé approximant 194ff., 1080f.
All-zeros model 566
                                                      by rational functions 197ff., 1081f.
   see also Periodogram
                                                      by wavelets 594f., 782
Allocatable array 938, 941, 952ff., 1197,
       1212, 1266, 1293, 1306, 1336
                                                      see also Fitting
allocate statement 938f., 941, 953f., 1197,
                                                   Argument
      1266, 1293, 1306, 1336
                                                      keyword 2/xiv, 947f., 1341
                                                      optional 2/xiv, 947f., 1092, 1228, 1230,
allocated() intrinsic function 938, 952ff.,
       1197, 1266, 1293
                                                          1256, 1272, 1275, 1340
Allocation status 938, 952ff., 961, 1197,
                                                   Argument checking 994f., 1086, 1090, 1092,
       1266, 1293
```

Arithmetic	swapping elements of two arrays 991,
arbitrary precision 881, 906ff., 1352ff.	1015, 1365ff.
floating point 881, 1343	target 938
IEEE standard 276, 882, 1343	three-dimensional, in Fortran 90 1248 transformational functions 948ff.
rounding 882, 1343 Arithmetic coding 881, 902ff., 1349ff.	unary and binary functions 949
Arithmetic-geometric mean (AGM) method	undefined status 952ff., 961, 1266, 129
906	zero-length 944
Arithmetic-if statement 2/xi	Array section 2/xiii, 943ff., 960
Arithmetic progression 971f., 996, 1072,	matches by shape 944
1127, 1365, 1371f.	pointer alias 939, 944f., 1286, 1333
Array 953ff.	skew 2/xii, 945, 960, 985, 1284
allocatable 938, 941, 952ff., 1197, 1212,	vs. eoshift 1078
1266, 1293, 1306, 1336 allocated with pointer 941	array_copy() utility function 988, 991, 103 1153, 1278, 1328
allocation 953	arth() utility function 972, 974, 988, 996,
array manipulation functions 950	1072, 1086, 1127
array sections 939, 941, 943ff.	replaces do-list 968
of arrays 2/xii, 956, 1336	Artificial viscosity 831, 837
associated pointer 953f.	Ascending transformation, elliptic integrals
assumed-shape 942	256
automatic 938, 954, 1197, 1212, 1336	ASCII character set 6, 888, 896, 902 Assembly language 269
centered subarray of 113	assert() utility function 988, 994, 1086, 10
conformable to a scalar 942f., 965, 1094 constructor 2/xii, 968, 971, 1022, 1052,	1249
1055, 1127	assert_eq() utility function 988, 995, 1022
copying 991, 1034, 1327f., 1365f.	associated() intrinsic function 952f.
cumulative product 997f., 1072, 1086,	Associated Legendre polynomials 246ff.,
1375	1122f., 1319
cumulative sum 997, 1280f., 1365, 1375	recurrence relation for 247
deallocation 938, 953f., 1197, 1266, 1293	relation to Legendre polynomials 246 Association, measures of 604, 622ff., 127:
disassociated pointer 953	Assumed-shape array 942
extents 938, 949	Asymptotic series 161
in Fortran 90 941 increasing storage for 955, 1070, 1302	exponential integral 218
index loss 967f.	Attenuation factors 583, 1261
index table 1173ff.	Autocorrelation 492
indices 942	in linear prediction 558
inquiry functions 948ff.	use of FFT 538f., 1254
intrinsic procedures 2/xiii, 948ff.	Wiener-Khinchin theorem 492, 566f. AUTODIN-II polynomial 890
of length 0 944	Automatic array 938, 954, 1197, 1212, 13
of length 1 949	specifying size of 938, 954
location of first "true" 993, 1041, 1369 location of maximum value 993, 1015,	Automatic deallocation 2/xv, 961
1017, 1365, 1369	Autonomous differential equations 729f.
location of minimum value 993, 1369f.	Autoregressive model (AR) see Maximum
manipulation functions 950, 1247	tropy method (MEM)
masked swapping of elements in two arrays	Average deviation of distribution 605, 126 Averaging kernel, in Backus-Gilbert method
1368	807
operations on 942, 949, 964ff., 969, 1026,	307
1040, 1050, 1200, 1326	B
outer product 949, 1076 parallel features 941ff., 964ff., 985	B acksubstitution 33ff., 39, 42, 92, 1017
passing variable number of arguments to	in band diagonal matrix 46, 1021 in Cholesky decomposition 90, 1039
function 1022	complex equations 41
of pointers forbidden 956, 1337	direct for computing $\mathbf{A}^{-1} \cdot \mathbf{B}$ 40
rank 938, 949	with QR decomposition 93, 1040
reallocation 955, 992, 1070f., 1365, 1368f.	relaxation solution of boundary value pr
reduction functions 948ff.	lems 755, 1316
shape 938, 944, 949	in singular value decomposition 56, 10
size 938 skew sections 945, 985	Backtracking 419
stride 944	in quasi-Newton methods 376f., 1195 Backus-Gilbert method 806ff.
subscript bounds 942	Backus, John 2/x
subscript triplet 944	Backward deflation 363

rtran 90 1248 ns 948ff. ons 949 961, 1266, 1293 960 ., 1286, 1333 85, 1284 988, 991, 1034, 974, 988, 996, elliptic integrals , 896, 902 8, 994, 1086, 1090, 988, 995, 1022 on 952f. omials 246ff., 764, ynomials 246 504, 622ff., 1275 261 m 492, 566f. 890 1197, 1212, 1336 954 v, 961 uations 729f. see Maximum enution 605, 1269 s-Gilbert method

, 42, 92, 1017 46, 1021 ion 90, 1039 $^{-1} \cdot {\bf B} = 40$ 93, 1040 oundary value probposition 56, 1022f. ls 376f., 1195 6ff. Backward deflation 363

Bader-Deuflhard method 730, 735, 1310f. Bairstow's method 364, 370, 1193 Balancing 476f., 1230f. Band diagonal matrix 42ff., 1019 backsubstitution 46, 1021 LU decomposition 45, 1020 multiply by vector 44, 1019 storage 44, 1019	Biconjugate gradient method elliptic partial differential equations 824 preconditioning 78f., 824, 1037 for sparse system 77, 599, 1034ff. Bicubic interpolation 118f., 1049f. Bicubic spline 120f., 1050f. Big-endian 293 Bilinear interpolation 117
Band-pass filter 551, 554f. wavelets 584, 592f. Bandwidth limited function 495	Binary constant, initialization 959 Binomial coefficients 206ff., 1087f. recurrences for 209
Bank accounts, checksum for 894	Binomial probability function 208
Bar codes, checksum for 894	cumulative 222f.
Bartlett window 547, 1254ff.	deviates from 281, 285f., 1155
Base case, of recursive procedure 958	Binormal distribution 631, 690
Base of representation 19, 882, 1343	Biorthogonality 77
BASIC, Numerical Recipes in 1, 2/x, 2/xviii	Bisection 111, 359, 1045f.
Basis functions in general linear least squares	compared to minimum bracketing 390ff.
665	minimum finding with derivatives 399
Bayes' Theorem 810	root finding 343, 346f., 352f., 390, 469,
Bayesian	1184f.
approach to inverse problems 799, 810f.,	BISYNCH 890
816f.	Bit 18
contrasted with frequentist 810	manipulation functions see Bitwise logical
vs. historic maximum entropy method 816f.	functions
views on straight line fitting 664	reversal in fast Fourier transform (FFT) 499f., 525
Bays' shuffle 270	bit_size() intrinsic function 951
Bernoulli number 132	Bitwise logical functions 2/xiii, 17, 287,
Bessel functions 223ff., 234ff., 936, 1101ff.	890f., 951
asymptotic form 223f., 229f.	Block-by-block method 788
complex 204	Block of statements 7
continued fraction 234, 239	Bode's rule 126
double precision 223	Boltzmann probability distribution 437
fractional order 223, 234ff., 1115ff.	Boltzmann's constant 437
Miller's algorithm 175, 228, 1106	Bootstrap method 686f.
modified 229ff.	Bordering method for Toeplitz matrix 85f.
modified, fractional order 239ff.	Borwein and Borwein method for π 906,
modified, normalization formula 232, 240	1357
modified, routines for 230ff., 1109ff. normalization formula 175	Boundary 155f., 425f., 745
parallel computation of 1107ff.	Boundary conditions
recurrence relation 172, 224, 232, 234	for differential equations 701f. initial value problems 702
reflection formulas 236	in multigrid method 868f.
reflection formulas, modified functions	partial differential equations 508, 819ff.,
241	848ff.
routines for 225ff., 236ff., 1101ff.	for spheroidal harmonics 764
routines for modified functions 241ff.,	two-point boundary value problems 702,
1118	745ff., 1314ff.
series for 160, 223	Boundary value problems see Differential
series for K_{ν} 241	equations; Elliptic partial differential
series for Y_{ν} 235	equations; Two-point boundary value
spherical 234, 245, 1121f.	problems
turning point 234	Box-Muller algorithm for normal deviate 279f.
Wronskian 234, 239	1152
Best-fit parameters 650, 656, 660, 698, 1285ff. <i>see also</i> Fitting	Bracketing
e	of function minimum 343, 390ff., 402, 1201f.
Beta function 206ff., 1089	of roots 341, 343ff., 353f., 362, 364, 369,
incomplete see Incomplete beta function BFGS algorithm see Broyden-Fletcher-Goldfarb-	390, 1183f.
Shanno algorithm	Branch cut, for hypergeometric function 203
Bias, of exponent 19	Branching 9
Bias, removal in linear prediction 563	Break iteration 14
Biconjugacy 77	

Brent's method	Characteristics of partial differential equations
minimization 389, 395ff., 660f., 1204ff.,	818
1286	Chebyshev acceleration in successive over-
minimization, using derivative 389, 399,	relaxation (SOR) 859f., 1332
1205	Chebyshev approximation 84, 124, 183, 184ff.,
root finding 341, 349, 660f., 1188f., 1286	1076ff.
Broadcast (parallel capability) 965ff.	Clenshaw-Curtis quadrature 190
Broyden-Fletcher-Goldfarb-Shanno algorithm	Clenshaw's recurrence formula 187, 1076
390, 418ff., 1215 Provider's method 272, 282f, 286, 1100f	coefficients for 185f., 1076
Broyden's method 373, 382f., 386, 1199f.	contrasted with Padé approximation 195
singular Jacobian 386 btest() intrinsic function 951	derivative of approximated function 183,
Bubble sort 321, 1168	189, 1077f.
Bugs 4	economization of series 192f., 195, 1080
in compilers 1/xvii	for error function 214, 1095
how to report 1/iv, 2/iv	even function 188
Bulirsch-Stoer	and fast cosine transform 513
algorithm for rational function interpolation	gamma functions 236, 1118
105f., 1043	integral of approximated function 189, 1078
method (differential equations) 202, 263,	odd function 188
702f., 706, 716, 718ff., 726, 740, 1138,	polynomial fits derived from 191, 1078
1303ff.	rational function 197ff., 1081f.
method (differential equations), stepsize	•
control 719, 726	Remes exchange algorithm for filter 553 Chebyshev polynomials 184ff., 1076ff.
for second order equations 726, 1307	continuous orthonormality 184
Burg's LP algorithm 561, 1256	discrete orthonormality 185
Byte 18	explicit formulas for 184
	formula for x^k in terms of 193, 1080
C (programming language) 13, 2/viii	Check digit 894, 1345f.
and case construct 1010	Checksum 881, 888
Numerical Recipes in 1, 2/x, 2/xvii	cyclic redundancy (CRC) 888ff., 1344f.
C++ 1/xiv, 2/viii, 2/xvi, 7f.	Cherry, sundae without a 809
class templates 1083, 1106	Chi-by-eye 651
Calendar algorithms 1f., 13ff., 1010ff.	Chi-square fitting see Fitting; Least squares
Calibration 653	fitting
Capital letters in programs 3, 937	Chi-square probability function 209ff., 215,
Cards, sorting a hand of 321	615, 654, 798, 1272
Carlson's elliptic integrals 255f., 1128ff.	as boundary of confidence region 688f.
case construct 2/xiv, 1010	related to incomplete gamma function 215
trapping errors 1036	Chi-square test 614f.
Cash-Karp parameters 710, 1299f.	for binned data 614f., 1272
Cauchy probability distribution see Lorentzian	chi-by-eye 651
probability distribution	and confidence limit estimation 688f.
Cauchy problem for partial differential equa-	for contingency table 623ff., 1275
tions 818f.	degrees of freedom 615f.
Cayley's representation of $\exp(-iHt)$ 844	for inverse problems 797
CCITT (Comité Consultatif International Télégraphique et Téléphonique) 889f., 901	least squares fitting 653ff., 1285
CCITT polynomial 889f.	nonlinear models 675ff., 1292
ceiling() intrinsic function 947	rule of thumb 655
Center of mass 295ff.	for straight line fitting 655ff., 1285
Central limit theorem 652f.	for straight line fitting, errors in both coor-
Central tendency, measures of 604ff., 1269	dinates 660, 1286ff.
Change of variable	for two binned data sets 616, 1272
in integration 137ff., 788, 1056ff.	unequal size samples 617
in Monte Carlo integration 298	Chip rate 290
in probability distribution 279	Chirp signal 556
Character functions 952	Cholesky decomposition 89f., 423, 455, 1038
Character variables, in Fortran 90 1183	backsubstitution 90, 1039
Characteristic polynomial	operation count 90
digital filter 554	pivoting 90
eigensystems 449, 469	solution of normal equations 668
linear prediction 559	Circulant 585
matrix with a specified 368, 1193	Class, data type 7
of recurrence relation 175	Clenshaw-Curtis quadrature 124, 190, 512f.

Clenshaw's recurrence formula 176f., 191, 1078	Complex plane fractal structure for Newton's rule 360f.
for Chebyshev polynomials 187, 1076 stability 176f.	path integration for function evaluation 201ff., 263, 1138
Clocking errors 891	poles in 105, 160, 202f., 206, 554, 566,
CM computers (Thinking Machines Inc.) 964	718f.
CM Fortran 2/xv	Complex systems of linear equations 41f.
cn function 261, 1137f. Coarse-grid correction 864f.	Compression of data 596f. Concordant pair for Kendall's tau 637, 1281
Coarse-to-fine operator 864, 1337	Condition number 53, 78
Coding	Confidence level 687, 691ff.
arithmetic 902ff., 1349ff.	Confidence limits
checksums 888, 1344	bootstrap method 687f.
decoding a Huffman-encoded message	and chi-square 688f.
900, 1349	confidence region, confidence interval 687 on estimated model parameters 684ff.
Huffman 896f., 1346ff. run-length 901	by Monte Carlo simulation 684ff.
variable length code 896, 1346ff.	from singular value decomposition (SVD)
Ziv-Lempel 896	693f.
see also Arithmetic coding; Huffman cod-	Confluent hypergeometric function 204, 239
ing	Conformable arrays 942f., 1094
Coefficients	Conjugate directions 408f., 414ff., 1210
binomial 208, 1087f.	Conjugate gradient method
for Gaussian quadrature 140ff., 1059ff. for Gaussian quadrature, nonclassical weight	biconjugate 77, 1034 compared to variable metric method 418
function 151ff., 788f., 1064	elliptic partial differential equations 824
for quadrature formulas 125ff., 789, 1328	for minimization 390, 413ff., 804, 815,
Cohen, Malcolm 2/xiv Column degeneracy 22	1210, 1214 minimum residual method 78
Column operations on matrix 29, 31f.	preconditioner 78f., 1037
Column totals 624	for sparse system 77ff., 599, 1034
Combinatorial minimization see Annealing	and wavelets 599
Comité Consultatif International Télégraphique	Conservative differential equations 726, 1307
et Téléphonique (CCITT) 889f., 901	Constrained linear inversion method 799ff.
Common block	Constrained linear optimization see Linear pro-
obsolescent 2/xif. superseded by internal subprogram 957,	gramming Constrained optimization 387
1067	Constraints, deterministic 804ff.
superseded by module 940, 953, 1298,	Constraints, linear 423
1320, 1322, 1324, 1330	CONTAINS statement 954, 957, 1067, 1134,
Communication costs, in parallel processing	1202
969, 981, 1250	Contingency coefficient C 625, 1275
Communication theory, use in adaptive integration 721	Contingency table 622ff., 638, 1275f. statistics based on chi-square 623ff., 1275
Communications protocol 888	statistics based on entropy 626ff., 1275f.
Comparison function for rejection method	Continued fraction 163ff.
281	Bessel functions 234
Compilers 964, 1364	convergence criterion 165
CM Fortran 968	equivalence transformation 166
DEC (Digital Equipment Corp.) 2/viii	evaluation 163ff.
IBM (International Business Machines) 2/viii	evaluation along with normalization condi- tion 240
Microsoft Fortran PowerStation 2/viii	even and odd parts 166, 211, 216
NAG (Numerical Algorithms Group) 2/viii,	even part 249, 251
2/xiv	exponential integral 216
for parallel supercomputers 2/viii	Fresnel integral 248f.
Complementary error function 1094f.	incomplete beta function 219f., 1099f.
see Error function Complete elliptic integral see Elliptic integrals	incomplete gamma function 211, 1092f. Lentz's method 165, 212
Complex arithmetic 171f.	modified Lentz's method 165
avoidance of in path integration 203	Pincherle's theorem 175
cubic equations 179f.	ratio of Bessel functions 239
for linear equations 41	rational function approximation 164, 211,
quadratic equations 178	219f.
Complex error function 252	recurrence for evaluating 164f.

and recurrence relation 175	linear correlation coefficient 630ff., 658,
sine and cosine integrals 250f.	1276
Steed's method 164f.	linear related to least square fitting 630,
tangent function 164	658
typography for 163	nonparametric or rank statistical 633ff.,
Continuous variable (statistics) 623	
Control structures 7ff., 2/xiv	among parameters in a fit 657, 667, 670 in random number generators 268
bad 15	Spearman rank-order coefficient 634f.,
named 959, 1219, 1305	1277
Convergence	sum squared difference of ranks 634,
accelerated, for series 160ff., 1070	1277
of algorithm for pi 906 criteria for 347, 392, 404, 483, 488, 679,	Cosine function, recurrence 172
759	Cosine integral 248, 250ff., 1125f.
eigenvalues accelerated by shifting 470f.	continued fraction 250
golden ratio 349, 399	routine for 251f., 1125
of golden section search 392f.	series 250
of Levenberg-Marquardt method 679	Cosine transform see Fast Fourier transform
linear 346, 393	(FFT); Fourier transform
of QL method 470f.	Coulomb wave function 204, 234
quadratic 49, 351, 356, 409f., 419, 906	count() intrinsic function 948
rate 346f., 353, 356	Courant condition 829, 832ff., 836
recurrence relation 175	multidimensional 846
of Ridders' method 351	Courant-Friedrichs-Lewy stability criterion see
series vs. continued fraction 163f.	Courant condition
and spectral radius 856ff., 862	Covariance
Conversion intrinsic functions 946f.	a priori 700
Convex sets, use in inverse problems 804	in general linear least squares 667, 671,
Convolution	1288ff.
denoted by asterisk 492	matrix, by Cholesky decomposition 91, 667
finite impulse response (FIR) 531	matrix, of errors 796, 808
of functions 492, 503f.	matrix, is inverse of Hessian matrix 679
of large data sets 536f.	matrix, when it is meaningful 690ff.
for multiple precision arithmetic 909,	in nonlinear models 679, 681, 1292
1354	relation to chi-square 690ff.
multiplication as 909, 1354	from singular value decomposition (SVD)
necessity for optimal filtering 535	693f.
overlap-add method 537	in straight line fitting 657
overlap-save method 536f.	cpu_time() intrinsic function (Fortran 95) 961
and polynomial interpolation 113	CR method see Cyclic reduction (CR)
relation to wavelet transform 585	Cramer's V 625, 1275
theorem 492, 531ff., 546	Crank-Nicholson method 840, 844, 846
theorem, discrete 531ff. treatment of end effects 533	Cray computers 964
use of FFT 523, 531ff., 1253	CRC (cyclic redundancy check) 888ff., 1344f
wraparound problem 533	CRC-12 890
Cooley-Tukey FFT algorithm 503, 1250	CRC-16 polynomial 890
parallel version 1239f.	CRC-CCITT 890
Co-processor, floating point 886	Creativity, essay on 9
Copyright rules 1/xx, 2/xix	Critical (Nyquist) sampling 494, 543
Cornwell-Evans algorithm 816	Cross (denotes matrix outer product) 66 Crosstabulation analysis 623
Corporate promotion ladder 328	see also Contingency table
Corrected two-pass algorithm 607, 1269	Crout's algorithm 36ff., 45, 1017
Correction, in multigrid method 863	cshift() intrinsic function 950
Correlation coefficient (linear) 630ff., 1276	communication bottleneck 969
Correlation function 492	Cubic equations 178ff., 360
autocorrelation 492, 539, 558	Cubic spline interpolation 107ff., 1044f.
and Fourier transforms 492	see also Spline
theorem 492, 538	cumprod() utility function 974, 988, 997,
treatment of end effects 538f.	1072, 1086
using FFT 538f., 1254	cumsum() utility function 974, 989, 997,
Wiener-Khinchin theorem 492, 566f.	1280, 1305
Correlation, statistical 603f., 622	Cumulant, of a polynomial 977, 999, 1071f.,
Kendall's tau 634, 637ff., 1279	1192

Cumulative binomial distribution 222f.	intrinsic 937
Cumulative Poisson function 214	LGT (default logical type) 1361
related to incomplete gamma function 214	nrtype.f90 1361f.
Curvature matrix see Hessian matrix	passing complex as real 1140
cycle statement 959, 1219	SP (single precision) 1361f.
Cycle, in multigrid method 865	SPC (single precision complex) 1361
Cyclic Jacobi method 459, 1225	user-defined 1346
Cyclic reduction (CR) 848f., 852ff.	DAUB4 584ff., 588, 590f., 594, 1264f.
linear recurrences 974	DAUB6 586
tridiagonal systems 976, 1018	DAUB12 598
Cyclic redundancy check (CRC) 888ff., 1344f.	DAUB20 590f., 1265
Cyclic tridiagonal systems 67, 1030	Daubechies wavelet coefficients 584ff., 588,
	590f., 594, 598, 1264ff. Davidon-Fletcher-Powell algorithm 390, 418ff.,
D .C. (direct current) 492	1215
Danielson-Lanczos lemma 498f., 525, 1235ff.	Dawson's integral 252ff., 600, 1127f.
DAP Fortran 2/xi	approximation for 252f.
Data	routine for 253f., 1127
assigning keys to 889	dble() intrinsic function (deprecated) 947
continuous vs. binned 614	deallocate statement 938f., 953f., 1197, 1266,
entropy 626ff., 896, 1275	1293
essay on 603	Deallocation, of allocatable array 938, 953f.,
fitting 650ff., 1285ff.	1197, 1266, 1293
fraudulent 655	Debugging 8
glitches in 653	DEC (Digital Equipment Corp.) 1/xxiii, 2/xix,
iid (independent and identically distributed)	886
686	Alpha AXP 2/viii
modeling 650ff., 1285ff.	Fortran 90 compiler 2/viii
serial port 892	quadruple precision option 1362 VAX 4
smoothing 604, 644ff., 1283f.	Decomposition <i>see</i> Cholesky decomposition;
statistical tests 603ff., 1269ff.	LU decomposition; QR decomposition;
unevenly or irregularly sampled 569, 574,	Singular value decomposition (SVD)
648f., 1258ff. use of CRCs in manipulating 889	Deconvolution 535, 540, 1253
windowing 545ff., 1254	see also Convolution; Fast Fourier trans-
see also Statistical tests	form (FFT); Fourier transform
Data compression 596f., 881	Defect, in multigrid method 863
arithmetic coding 902ff., 1349ff.	Deferred approach to the limit see Richard-
cosine transform 513	son's deferred approach to the limit
Huffman coding 896f., 902, 1346ff.	Deflation
linear predictive coding (LPC) 563ff.	of matrix 471
lossless 896	of polynomials 362ff., 370f., 977
Data Encryption Standard (DES) 290ff., 1144,	Degeneracy of linear algebraic equations 22,
1147f., 1156ff.	53, 57, 670
Data hiding 956ff., 1209, 1293, 1296	Degenerate kernel 785
Data parallelism 941, 964ff., 985	Degenerate minimization principle 795
DATA statement 959	Degrees of freedom 615f., 654, 691 Dekker, T.J. 353
for binary, octal, hexadecimal constants	Demonstration programs 3, 936
959 repeat count feature 959	Deprecated features
superseded by initialization expression	common block 2/xif., 940, 953, 957,
943, 959, 1127	1067, 1298, 1320, 1322, 1324, 1330
Data type 18, 936	dble() intrinsic function 947
accuracy parameters 1362f.	EQUIVALENCE statement 2/xif., 1161,
character 1183	1286
derived 2/xiii, 937, 1030, 1336, 1346	statement function 1057, 1256
derived, for array of arrays 956, 1336	Derivatives
derived, initialization 2/xv	computation via Chebyshev approximation
derived, for Numerical Recipes 1361	183, 189, 1077f.
derived, storage allocation 955	computation via Savitzky-Golay filters
DP (double precision) 1361f.	183, 645
DPC (double precision complex) 1361	matrix of first partial see Jacobian determi-
I1B (1 byte integer) 1361	nant
I2B (2 byte integer) 1361 I4B (4 byte integer) 1361	matrix of second partial see Hessian ma- trix
17D (4 Dyle Illiegel) 1301	uia

path integration for function evaluation numerical computation 180ff., 379, 645, 732, 750, 771, 1075, 1197, 1309 201ff., 263, 1138 of polynomial 167, 978, 1071f. predictor-corrector methods 702, 730, use in optimization 388f., 399, 1205ff. 740ff reduction to first-order sets 701, 745 Derived data type see Data type, derived DES see Data Encryption Standard relaxation method 746f., 753ff., 1316ff. relaxation method, example of 764ff., Descending transformation, elliptic integrals 256 1319ff. Descent direction 376, 382, 419 r.h.s. independent of x 729f. Rosenbrock methods for stiff 730, 1308f. Descriptive statistics 603ff., 1269ff. Runge-Kutta method 702, 704ff., 708ff., see also Statistical tests Design matrix 645, 665, 795, 801, 1082 731, 740, 1297f., 1308 Runge-Kutta method, high-order 705, Determinant 25, 41 Deviates, random see Random deviates 1297 Runge-Kutta-Fehlberg method 709ff., DFP algorithm see Davidon-Fletcher-Powell 1298 algorithm scaling stepsize to required accuracy 709 diagadd() utility function 985, 989, 1004 second order 726, 1307 diagmult() utility function 985, 989, 1004, semi-implicit differencing 730 1294 semi-implicit Euler method 730, 735f. Diagonal dominance 43, 679, 780, 856 Difference equations, finite see Finite differsemi-implicit extrapolation method 730, 735f., 1311ff. ence equations (FDEs) semi-implicit midpoint rule 735f., 1310f. Difference operator 161 shooting method 746, 749ff., 1314ff. Differential equations 701ff., 1297ff. accuracy vs. stability 704, 729 shooting method, example 770ff., 1321ff. similarity to Volterra integral equations Adams-Bashforth-Moulton schemes 741 adaptive stepsize control 703, 708ff., 719, singular points 718f., 751, 775ff., 1315f., 726, 731, 737, 742f., 1298ff., 1303ff., 1323ff. 1308f., 1311ff. step doubling 708f. algebraically difficult sets 763 backward Euler's method 729 stepsize control 703, 708ff., 719, 726, 731, 737, 742f., 1298, 1303ff., 1308f. Bader-Deuflhard method for stiff 730, stiff 703, 727ff., 1308ff. 735, 1310f. stiff methods compared 739 boundary conditions 701f., 745ff., 749, 751f., 771, 1314ff. Stoermer's rule 726, 1307 see also Partial differential equations; Two-Bulirsch-Stoer method 202, 263, 702, 706, 716, 718ff., 740, 1138, 1303 point boundary value problems Diffusion equation 818, 838ff., 855 Bulirsch-Stoer method for conservative equations 726, 1307 Crank-Nicholson method 840, 844, 846 comparison of methods 702f., 739f., 743 Forward Time Centered Space (FTCS) conservative 726, 1307 839ff., 855 implicit differencing 840 danger of too small stepsize 714 eigenvalue problem 748, 764ff., 770ff., multidimensional 846 1319ff. Digamma function 216 embedded Runge-Kutta method 709f., Digital filtering see Filter 731, 1298, 1308 Dihedral group D_5 894 equivalence of multistep and multivalue dim optional argument 948 methods 743 Dimensional expansion 965ff. Euler's method 702, 704, 728f. Dimensions (units) 678 forward Euler's method 728 Diminishing increment sort 322, 1168 free boundary problem 748, 776 Dirac delta function 284, 780 high-order implicit methods 730ff., 1308ff. Direct method see Periodogram implicit differencing 729, 740, 1308 Direct methods for linear algebraic equations initial value problems 702 26, 1014 internal boundary conditions 775ff. Direct product see Outer product of matrices internal singular points 775ff. Direction of largest decrease 410f. interpolation on right-hand sides 111 Direction numbers, Sobol's sequence 300 Kaps-Rentrop method for stiff 730, 1308 Direction-set methods for minimization 389, local extrapolation 709 406f., 1210ff. modified midpoint method 716f., 719, Dirichlet boundary conditions 820, 840, 850, 1302f. 856, 858 multistep methods 740ff. Disclaimer of warranty 1/xx, 2/xvii Discordant pair for Kendall's tau 637, 1281 multivalue methods 740 order of method 704f., 719 Discrete convolution theorem 531ff.

Discrete Fourier transform (DFT) 495ff.,	fast Givens reduction 463
1235ff.	generalized eigenproblem 455
as approximate continuous transform 497	Givens reduction 462f.
see also Fast Fourier transform (FFT)	
	Hermitian matrix 475
Discrete optimization 436ff., 1219ff.	Hessenberg matrix 453, 470, 476ff., 488,
Discriminant 178, 457	1232
Diskettes	Householder transformation 453, 462ff.,
are ANSI standard 3	469, 473, 475, 478, 1227f., 1231
how to order 1/xxi, 2/xvii	
	ill-conditioned eigenvalues 477
Dispersion 831	implicit shifts 472ff., 1228f.
DISPO see Savitzky-Golay filters	and integral equations 779, 785
Dissipation, numerical 830	invariance under similarity transform 452
Divergent series 161	inverse iteration 455, 469, 476, 487ff.,
Divide and conquer algorithm 1226, 1229	1230
Division 1229, 1229	
	Jacobi transformation 453, 456ff., 462,
complex 171	475, 489, 1225f.
multiple precision 910f., 1356	left eigenvalues 451
of polynomials 169, 362, 370, 1072	list of tasks 454f.
dn function 261, 1137f.	
Do-list, implied 968, 971, 1127	multiple eigenvalues 489
•	nonlinear 455
Do-loop 2/xiv	nonsymmetric matrix 476ff., 1230ff.
Do-until iteration 14	operation count of balancing 476
Do-while iteration 13	operation count of Givens reduction 463
Dogleg step methods 386	
Domain of integration 155f.	operation count of Householder reduction
Dominant solution of recurrence relation 174	467
	operation count of inverse iteration 488
Dot (denotes matrix multiplication) 23	operation count of Jacobi method 460
dot_product() intrinsic function 945, 949,	operation count of QL method 470, 473
969, 1216	
Double exponential error distribution 696	operation count of QR method for Hessen-
Double precision	berg matrices 484
converting to 1362	operation count of reduction to Hessenberg
	form 479
as refuge of scoundrels 882	orthogonality 450
use in iterative improvement 47, 1022	
Double root 341	parallel algorithms 1226, 1229
Downhill simplex method see Simplex, method	polynomial roots and 368, 1193
of Nelder and Mead	QL method 469ff., 475, 488f.
DP, defined 937	QL method with implicit shifts 472ff.,
	1228f.
Driver programs 3	
Dual viewpoint, in multigrid method 875	QR method 52, 453, 456, 469ff., 1228
Duplication theorem, elliptic integrals 256	QR method for Hessenberg matrices 480ff.,
DWT (discrete wavelet transform) see Wavelet	1232ff.
transform	real, symmetric matrix 150, 467, 785,
	1225, 1228
Dynamical allocation of storage 2/xiii, 869,	
938, 941f., 953ff., 1327, 1336	reduction to Hessenberg form 478f., 1231
garbage collection 956	right eigenvalues 451
increasing 955, 1070, 1302	shifting eigenvalues 449, 470f., 480
-	special matrices 454
	termination criterion 484, 488
_	tridiagonal matrix 453, 469ff., 488, 1228
E ardley, D.M. 338	undiagonal matrix 433, 40911., 466, 1226
EBCDIC 890	
	Eigenvalue and eigenvector, defined 449
Economization of power series 192f., 195.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations
Economization of power series 192f., 195,	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations
1080	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff.
1080 Eigensystems 449ff., 1225ff.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368,
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193
1080 Eigensystems 449ff., 1225ff.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961,
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469 completeness 450	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942,
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942, 946f., 961, 986, 1015, 1083, 1097f.
1080 Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469 completeness 450	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942,
Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469 completeness 450 defective 450, 476, 489 deflation 471	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942, 946f., 961, 986, 1015, 1083, 1097f.
Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469 completeness 450 defective 450, 476, 489 deflation 471 degenerate eigenvalues 449ff.	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942, 946f., 961, 986, 1015, 1083, 1097f. Elimination see Gaussian elimination Ellipse in confidence limit estimation 688
Eigensystems 449ff., 1225ff. balancing matrix 476f., 1230f. bounds on eigenvalues 50 calculation of few eigenvalues 454, 488 canned routines 454f. characteristic polynomial 449, 469 completeness 450 defective 450, 476, 489 deflation 471	Eigenvalue and eigenvector, defined 449 Eigenvalue problem for differential equations 748, 764ff., 770ff., 1319ff. Eigenvalues and polynomial root finding 368, 1193 EISPACK 454, 475 Electromagnetic potential 519 ELEMENTAL attribute (Fortran 95) 961, 1084 Elemental functions 2/xiii, 2/xv, 940, 942, 946f., 961, 986, 1015, 1083, 1097f. Elimination see Gaussian elimination

Carlson's forms and algorithms 255f.,	relative truncation 875
1128ff.	roundoff 180f., 881, 1362
Cauchy principal value 256f.	series, advantage of an even 132f., 717,
duplication theorem 256 Legendre 254ff., 260f., 1135ff.	1362 systematic vs. statistical 653, 1362
routines for 257ff., 1128ff.	truncation 20f., 180, 399, 709, 881, 1362
symmetric form 255	varieties found by check digits 895
Weierstrass 255	varieties of, in PDEs 831ff.
Elliptic partial differential equations 818,	see also Roundoff error
1332ff.	Error function 213f., 601, 1094f.
alternating-direction implicit method (ADI)	approximation via sampling theorem 601
861f., 906	Chebyshev approximation 214, 1095
analyze/factorize/operate package 824	complex 252
biconjugate gradient method 824	for Fisher's z-transformation 632, 1276
boundary conditions 820 comparison of rapid methods 854	relation to Dawson's integral 252, 1127 relation to Fresnel integrals 248
conjugate gradient method 824	relation to incomplete gamma function
cyclic reduction 848f., 852ff.	213
Fourier analysis and cyclic reduction (FACR)	routine for 214, 1094
848ff., 854	for significance of correlation 631, 1276
Gauss-Seidel method 855, 864ff., 876,	for sum squared difference of ranks 635,
1338, 1341	1277
incomplete Cholesky conjugate gradient	Error handling in programs 2/xii, 2/xvi, 3,
method (ICCG) 824	994f., 1036, 1370f.
Jacobi's method 855f., 864	Estimation of parameters see Fitting; Maxi-
matrix methods 824 multigrid method 824, 862ff., 1009, 1334ff.	mum likelihood estimate Estimation of power spectrum 542ff., 565ff.,
rapid (Fourier) method 824, 848ff.	1254ff., 1258
relaxation method 823, 854ff., 1332	Euler equation (fluid flow) 831
strongly implicit procedure 824	Euler-Maclaurin summation formula 132, 135
successive over-relaxation (SOR) 857ff.,	Euler's constant 216ff., 250
862, 866, 1332	Euler's method for differential equations 702,
elsewhere construct 943	704, 728f.
Emacs, GNU 1/xvi	Euler's transformation 160f., 1070
Embedded Runge-Kutta method 709f., 731,	generalized form 162f.
1298, 1308	Evaluation of functions see Function
Encapsulation, in programs 7	Even and odd parts, of continued fraction 166, 211, 216
Encryption 290, 1156 enddo statement 12, 17	Even parity 888
Entropy 896	Exception handling in programs see Error han-
of data 626ff., 811, 1275	dling in programs
EOM (end of message) 902	exit statement 959, 1219
eoshift() intrinsic function 950	Explicit differencing 827
communication bottleneck 969	Exponent in floating point format 19, 882,
vector shift argument 1019f.	1343
vs. array section 1078	exponent intrinsic function 1107
epsilon() intrinsic function 951, 1189	Exponential deviate 278, 1151f.
Equality constraints 423	Exponential integral 215ff., 1096f.
Equations 250	asymptotic expansion 218
cubic 178ff., 360	continued fraction 216
normal (fitting) 645, 666ff., 800, 1288 quadratic 20, 178	recurrence relation 172 related to incomplete gamma function 215
see also Differential equations; Partial dif-	relation to cosine integral 250
ferential equations; Root finding	routine for $Ei(x)$ 218, 1097
Equivalence classes 337f., 1180	routine for $E_n(x)$ 216, 1657 routine for $E_n(x)$ 217, 1096
EQUIVALENCE statement 2/xif., 1161, 1286	series 216
Equivalence transformation 166	Exponential probability distribution 570
Error	Extended midpoint rule 124f., 129f., 135,
checksums for preventing 891	1054f.
clocking 891	Extended Simpson's rule 128, 788, 790
double exponential distribution 696	Extended Simpson's three-eighths rule 789
local truncation 875	Extended trapezoidal rule 125, 127, 130ff.,
Lorentzian distribution 696f.	135, 786, 1052ff., 1326
in multigrid method 863	roundoff error 132
nonnormal 653, 690, 694ff.	Extirpolation (so-called) 574, 1261

Extrapolation 99ff. in Bulirsch-Stoer method 718ff., 726, 1305ff.	Fourier integrals 577ff., 1261 Fourier integrals, infinite range 583 Hamming window 547
differential equations 702	Hann window 547
by linear prediction 557ff., 1256f.	history 498
local 709	IIR filter 553ff.
maximum entropy method as type of 567	image processing 803, 805
polynomial 724, 726, 740, 1305f.	integrals using 124
rational function 718ff., 726, 1306f.	inverse of cosine transform 512ff.
relation to interpolation 101	inverse of sine transform 511
for Romberg integration 134	large data sets 525
see also Interpolation	leakage 544
Extremization see Minimization	memory-local algorithm 528
F	multidimensional 515ff., 1236f., 1241, 1246, 1251
F -distribution probability function 222	for multiple precision arithmetic 906
F-test for differences of variances 611, 613,	for multiple precision multiplication 909,
1271	1354
FACR see Fourier analysis and cyclic reduc-	number-theoretic transforms 503f.
tion (FACR)	operation count 498
Facsimile standard 901 Factorial	optimal (Wiener) filtering 539ff., 558
double (denoted "!!") 247	order of storage in 501
evaluation of 159, 1072, 1086	parallel algorithms 981ff., 1235ff.
relation to gamma function 206	partial differential equations 824, 848ff.
routine for 207f., 1086ff.	Parzen window 547
False position 347ff., 1185f.	periodicity of 497
Family tree 338	periodogram 543ff., 566
FAS (full approximation storage algorithm)	power spectrum estimation 542ff., 1254ff.
874. 1339ff.	for quadrature 124
Fast Fourier transform (FFT) 498ff., 881,	of real data in 2D and 3D 519ff., 1248f.
981, 1235f.	of real functions 504ff., 519ff., 1242f.,
alternative algorithms 503f.	1248f.
as approximation to continuous transform	related algorithms 503f.
497	row-parallel algorithm 981, 1235f.
Bartlett window 547, 1254	Sande-Tukey algorithm 503
bit reversal 499f., 525	sine transform 508ff., 850, 1245
and Clenshaw-Curtis quadrature 190	Singleton's algorithm 525
column-parallel algorithm 981, 1237ff.	six-step framework 983, 1240 square window 546, 1254
communication bottleneck 969, 981, 1250	timing 982
convolution 503f., 523, 531ff., 909, 1253,	treatment of end effects in convolution
1354	533
convolution of large data sets 536f.	treatment of end effects in correlation
Cooley-Tukey algorithm 503, 1250	538f.
Cooley-Tukey algorithm, parallel 1239f. correlation 538f., 1254	Tukey's trick for frequency doubling 575
cosine transform 190, 511ff., 851, 1245f.	use in smoothing data 645
cosine transform, second form 513, 852,	used for Lomb periodogram 574, 1259
1246	variance of power spectrum estimate 544f.
Danielson-Lanczos lemma 498f., 525	549
data sets not a power of 2 503	virtual memory machine 528
data smoothing 645	Welch window 547, 1254
data windowing 545ff., 1254	Winograd algorithms 503
decimation-in-frequency algorithm 503	see also Discrete Fourier transform (DFT);
decimation-in-time algorithm 503	Fourier transform; Spectral density
discrete autocorrelation 539, 1254	Faure sequence 300
discrete convolution theorem 531ff.	Fax (facsimile) Group 3 standard 901
discrete correlation theorem 538	Feasible vector 424
at double frequency 575	FFT see Fast Fourier transform (FFT)
effect of caching 982	Field, in data record 329
endpoint corrections 578f., 1261ff.	Figure-of-merit function 650
external storage 525	Filon's method 583
figures of merit for data windows 548	Filter 551ff.
filtering 551ff. FIR filter 553	acausal 552 bilinear transformation method 554
four stan framawork 083 1230	causal 552 644

characteristic polynomial 554 data smoothing 644f., 1283f.	an exponential 674 freezing parameters in 668, 700
digital 551ff. DISPO 644	Gaussians, a sum of 682, 1294 general linear least squares 665ff., 1288,
by fast Fourier transform (FFT) 523, 551ff.	1290f. Kalman filter 700
finite impulse response (FIR) 531, 552 homogeneous modes of 554	K–S test, caution regarding 621f. least squares 651ff., 1285
infinite impulse response (IIR) 552ff., 566	Legendre polynomials 674, 1291f.
Kalman 700 linear 552ff.	Levenberg-Marquardt method 678ff., 816, 1292f.
low-pass for smoothing 644ff., 1283f. nonrecursive 552	linear regression 655ff., 1285ff. maximum likelihood estimation 652f.,
optimal (Wiener) 535, 539ff., 558, 644 quadrature mirror 585, 593	694ff. Monte Carlo simulation 622, 654, 684ff.
realizable 552, 554f. recursive 552ff., 566	multidimensional 675 nonlinear models 675ff., 1292f.
Remes exchange algorithm 553	nonlinear models, advanced methods 683
Savitzky-Golay 183, 644ff., 1283f.	nonlinear problems that are linear 674
stability of 554f. in the time domain 551ff.	nonnormal errors 656, 690, 694ff.
Fine-to-coarse operator 864, 1337	polynomial 83, 114, 191, 645, 665, 674, 1078, 1291
Finite difference equations (FDEs) 753, 763, 774	by rational Chebyshev approximation 197ff 1081f.
alternating-direction implicit method (ADI)	robust methods 694ff., 1294
847, 861f. art not science 829	of sharp spectral features 566 standard (probable) errors on fitted pa-
Cayley's form for unitary operator 844	rameters 657f., 661, 667, 671, 684ff.,
Courant condition 829, 832ff., 836	1285f., 1288, 1290
Courant condition (multidimensional) 846	straight line 655ff., 667f., 698, 1285ff.,
Crank-Nicholson method 840, 844, 846	1294ff.
eigenmodes of 827f. explicit vs. implicit schemes 827	straight line, errors in both coordinates 660ff., 1286ff.
forward Euler 826f.	see also Error; Least squares fitting; Max-
Forward Time Centered Space (FTCS)	imum likelihood estimate; Robust esti-
827ff., 839ff., 843, 855	mation
implicit scheme 840	Fived point formet 18
Lax method 828ff., 836 Lax method (multidimensional) 845f.	Fixed point format 18 Fletcher-Powell algorithm <i>see</i> Davidon-Fletcher-
mesh drifting instability 834f.	Powell algorithm
numerical derivatives 181	Fletcher-Reeves algorithm 390, 414ff., 1214
partial differential equations 821ff.	Floating point co-processor 886
in relaxation methods 753ff.	Floating point format 18ff., 882, 1343
staggered leapfrog method 833f. two-step Lax-Wendroff method 835ff.	care in numerical derivatives 181 IEEE 276, 882, 1343
upwind differencing 832f., 837	floor() intrinsic function 948
see also Partial differential equations	Flux-conservative initial value problems 825ff.
Finite element methods, partial differential	FMG (full multigrid method) 863, 868, 1334ff.
equations 824	FOR iteration 9f., 12
Finite impulse response (FIR) 531	forall statement 2/xii, 2/xv, 960, 964, 986 access to associated index 968
Finkelstein, S. 1/xvi, 2/ix FIR (finite impulse response) filter 552	skew array sections 985, 1007
Fisher's z-transformation 631f., 1276	Formats of numbers 18ff., 882, 1343
Fitting 650ff., 1285ff.	Fortran 9
basis functions 665	arithmetic-if statement 2/xi
by Chebyshev approximation 185f., 1076	COMMON block 2/xif., 953, 957
chi-square 653ff., 1285ff. confidence levels related to chi-square val-	deprecated features 2/xif., 947, 1057, 1161, 1256, 1286
ues 691ff.	dynamical allocation of storage 869, 1336
confidence levels from singular value de- composition (SVD) 693f.	EQUIVALENCE statement 2/xif., 1161, 1286
confidence limits on fitted parameters 684ff.	evolution of 2/xivff.
covariance matrix not always meaningful	exception handling 2/xii, 2/xvi
651, 690	filenames 935
degeneracy of parameters 674	Fortran 2000 (planned) 2/xvi

Fortran 95 2/xv, 945, 947, 1084, 1100, 1364	CONTAINS statement 954, 957, 985, 1067, 1134, 1202
HPF (High-Performance Fortran) 2/xvf.	control structure 2/xiv, 959, 1219, 1305
Numerical Recipes in 2/x, 2/xvii, 1	conversion elemental functions 946
obsolescent features 2/xif.	count() intrinsic function 948
side effects 960	cshift() intrinsic function 950, 969
see also Fortran 90	cycle statement 959, 1219
Fortran D 2/xv	data hiding 956ff., 1209
Fortran 77 1/xix	data parallelism 964
bit manipulation functions 17	DATA statement 959
hexadecimal constants 17	data types 937, 1336, 1346, 1361
Fortran 8x 2/xi, 2/xiii	deallocate statement 938f., 953f., 1197,
Fortran 90 3	1266, 1293
abstract data types 2/xiii, 1030	deallocating array 938, 953f., 1197, 1266,
all() intrinsic function 945, 948	1293
allocatable array 938, 941, 953ff., 1197,	defined types 956
1212, 1266, 1293, 1306, 1336	deprecated features 947, 1057, 1161,
allocate statement 938f., 941, 953f., 1197,	1256, 1286
1266, 1293, 1306, 1336	derived types 937, 955
allocated() intrinsic function 938, 952ff.,	dimensional expansion 965ff.
1197, 1266, 1293	do-loop 2/xiv
any() intrinsic function 945, 948	dot_product() intrinsic function 945, 949,
array allocation and deallocation 953	969, 1216
array of arrays 2/xii, 956, 1336	dynamical allocation of storage 2/xiii,
array constructor 2/xii, 968, 971, 1022,	938, 941f., 953ff., 1327, 1336
1052, 1055, 1127	elemental functions 940, 942, 946f., 951,
array constructor with implied do-list 968,	1015, 1083, 1364
971 array extents 938, 949	elsewhere construct 943 eoshift() intrinsic function 950, 969, 1019f.,
array features 941ff., 953ff.	1078
array intrinsic procedures 2/xiii, 948ff.	epsilon() intrinsic function 951, 1189
array of length 0 944	evolution 2/xivff., 959, 987f.
array of length 1 949	example 936
array manipulation functions 950	exit statement 959, 1219
array parallel operations 964f.	exponent() intrinsic function 1107
array rank 938, 949	floor() intrinsic function 948
array reallocation 955	Fortran tip icon 1009
array section 2/xiif., 2/xiii, 939, 941ff.,	garbage collection 956
960, 1078, 1284, 1286, 1333	gather-scatter operations 2/xiif., 969, 981,
array shape 938, 949	984, 1002, 1032, 1034, 1250
array size 938, 942	generic interface 2/xiii, 1083
array transpose 981f.	generic procedures 939, 1015, 1083, 1094,
array unary and binary functions 949	1096, 1364
associated() intrinsic function 952f.	global variables 955, 957, 1210
associated pointer 953f.	history 2/xff.
assumed-shape array 942	huge() intrinsic function 951
automatic array 938, 954, 1197, 1212,	iand() intrinsic function 951
1336	ibclr() intrinsic function 951
backwards-compatibility 935, 946	ibits() intrinsic function 951
bit manipulation functions 2/xiii, 951	ibset() intrinsic function 951
bit_size() intrinsic function 951	ieor() intrinsic function 951
broadcasts 965f.	IMPLICIT NONE statement 2/xiv, 936
btest() intrinsic function 951	implied do-list 968, 971, 1127
case construct 1010, 1036	index loss 967f.
case insensitive 937	initialization expression 943, 959, 1012,
ceiling() intrinsic function 947	1127
character functions 952	inquiry functions 948
character variables 1183 cmplx function 1125	integer model 1144, 1149, 1156 INTENT attribute 1072, 1092
	interface 939, 942, 1067, 1084, 1384
communication bottlenecks 969, 981,	
1250 compatibility with Fortran 77 935, 946	internal subprogram 2/xii, 2/xiv, 957, 1057, 1067, 1202f., 1256, 1302
compilers 2/viii, 2/xiv, 1364	interprocessor communication 969, 981,
compiling 936	1250
conformable arrays 942f., 1094	intrinsic data types 937
comornatic arrays 7721., 1077	mamore data types 131

pointer 2/xiiif., 938f., 941, 944f., 952ff., intrinsic procedures 939, 945ff., 987, 1016 ior() intrinsic function 951 1067, 1070, 1197, 1210, 1212, 1266, ishft() intrinsic function 951 1302, 1327, 1336 ishftc() intrinsic function 951 pointer to function (missing) 1067 ISO (International Standards Organization) portability 963 2/xf., 2/xiiif. present() intrinsic function 952 PRIVATE attribute 957, 1067 keyword argument 2/xiv, 947f., 1341 product() intrinsic function 948 kind() intrinsic function 951 KIND parameter 937, 946, 1125, 1144, programming conventions 937 PUBLIC attribute 957, 1067 1192, 1254, 1261, 1284, 1361 language features 935ff. quick start 936 radix() intrinsic function 1231 lbound() intrinsic function 949 lexical comparison 952 random_number() intrinsic function 1141, linear algebra 969f., 1000ff., 1018f., 1026, 1143 1040, 1200, 1326 random_seed() intrinsic function 1141 linear recurrence 971, 988 real() intrinsic function 947, 1125 RECURSIVE keyword 958, 1065, 1067 linking 936 literal constant 937, 1361 recursive procedure 2/xiv, 958, 1065, 1067, 1166 logo for tips 2/viii, 1009 mask 948, 967f., 1006f., 1038, 1102, reduction functions 948 1200, 1226, 1305, 1333f., 1368, 1378, reshape() intrinsic function 950, 969, 1247 1382 RESULT keyword 958, 1073 matmul() intrinsic function 945, 949, 969, SAVE attribute 953f., 958f., 1052, 1070, 1026, 1040, 1050, 1076, 1200, 1216, 1266, 1293 1290, 1326 scale() intrinsic function 1107 scatter-with-combine (missing function) maxexponent() intrinsic function 1107 maxloc() intrinsic function 949, 961, 984 992f., 1015 scope 956ff. maxval() intrinsic function 945, 948, 961, scoping units 939 select case statement 2/xiv, 1010, 1036 1016, 1273 memory leaks 953, 956, 1327 shape() intrinsic function 938, 949 memory management 938, 953ff. size() intrinsic function 938, 942, 945, merge() intrinsic function 945, 950, 1010, 948 1094f., 1099f. skew sections 985 Metcalf and Reid (M&R) 935 sparse matrix representation 1030 minloc() intrinsic function 949, 961, 992f. specification statement 2/xiv minval() intrinsic function 948, 961 spread() intrinsic function 945, 950, 966ff., missing language features 983ff., 987ff. 969, 1000, 1094, 1290f. modularization 956f. statement functions deprecated 1057 MODULE facility 2/xiii, 936f., 939f., 953f., 957, 1067, 1298, 1320, 1322, stride (of an array) 944 structure constructor 2/xii 1324, 1330, 1346 subscript triplet 944 sum() intrinsic function 945, 948, 966 MODULE subprograms 940 modulo() intrinsic function 946, 1156 tiny() intrinsic function 952 named constant 940, 1012, 1361 transformational functions 948 named control structure 959, 1219, 1305 transpose() intrinsic function 950, 960, 969, 981, 1247 nearest() intrinsic function 952, 1146 nested where construct forbidden 943 tricks 1009, 1072, 1146, 1274, 1278, 1280 not() intrinsic function 951 truncation elemental functions 946 nullify statement 953f., 1070, 1302 type checking 1140 numerical representation functions 951 ubound() intrinsic function 949 ONLY option 941, 957, 1067 undefined pointer 953 operator overloading 2/xiif. unpack() intrinsic function 950, 964, 969 operator, user-defined 2/xii USE statement 936, 939f., 954, 957, 1067, optional argument 2/xiv, 947f., 1092, 1384 1228, 1230, 1256, 1272, 1275, 1340 utility functions 987ff. outer product 969f. vector subscripts 2/xiif., 969, 981, 984, overloading 940, 1083, 1102 1002, 1032, 1034, 1250 pack() intrinsic function 945, 950, 964, visibility 956ff., 1209, 1293, 1296 WG5 technical committee 2/xi, 2/xiii, 969, 991, 1170, 1176, 1178 pack, for selective evaluation 1087 2/xvf. parallel extensions 2/xv, 959ff., 964, 981, where construct 943, 985, 1060, 1291 X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 984, 987, 1002, 1032 parallel programming 963ff. 959, 964, 968, 990 PARAMETER attribute 1012 zero-length array 944

see also Intrinsic procedures	power spectral density (PSD) 492f.
see also Fortran Fortran 95 947, 959ff.	power spectrum estimation by FFT 542ff., 1254ff.
allocatable variables 961 blocks 960	power spectrum estimation by maximum entropy method 565ff., 1258
cpu_time() intrinsic function 961	properties of 491f.
elemental functions 2/xiii, 2/xv, 940, 961,	sampling theorem 495, 543, 545, 600
986, 1015, 1083f., 1097f. forall statement 2/xii, 2/xv, 960, 964, 968,	scalings of 491 significance of a peak in 570
986, 1007 initialization of derived data type 2/xv	sine transform 508ff., 850, 1245 symmetries of 491
initialization of pointer 2/xv, 961	uneven sampling, fast algorithm 574f.,
minor changes from Fortran 90 961	1259
modified intrinsic functions 961	unevenly sampled data 569ff., 574, 1258
nested where construct 2/xv, 960, 1100	and wavelets 592f.
pointer association status 961	Wiener-Khinchin theorem 492, 558, 566f.
pointers 961 PURE attribute 2/xv, 960f., 964, 986	see also Fast Fourier transform (FFT); Spectral density
SAVE attribute 961	Fractal region 360f.
side effects 960	Fractional step methods 847f.
and skew array section 945, 985	Fredholm alternative 780
see also Fortran	Fredholm equations 779f.
Fortran 2000 2/xvi	eigenvalue problems 780, 785
Forward deflation 363	error estimate in solution 784
Forward Fular differencing 826f	first kind 779 Fredholm alternative 780
Forward Euler differencing 826f. Forward Time Centered Space see FTCS	homogeneous, second kind 785, 1325
Four-step framework, for FFT 983, 1239	homogeneous vs. inhomogeneous 779f.
Fourier analysis and cyclic reduction (FACR)	ill-conditioned 780
848f., 854	infinite range 789
Fourier integrals	inverse problems 780, 795ff.
attenuation factors 583, 1261	kernel 779f.
endpoint corrections 578f., 1261	nonlinear 781
tail integration by parts 583	Nystrom method 782ff., 789, 1325
use of fast Fourier transform (FFT) 577ff., 1261ff.	product Nystrom method 789, 1328ff. second kind 779f., 782ff., 1325, 1331
Fourier transform 99, 490ff., 1235ff.	with singularities 788, 1328ff.
aliasing 495, 569	with singularities, worked example 792,
approximation of Dawson's integral 253	1328ff.
autocorrelation 492	subtraction of singularity 789
basis functions compared 508f.	symmetric kernel 785
contrasted with wavelet transform 584,	see also Inverse problems
594 convolution 492, 503f., 531ff., 909, 1253,	Frequency domain 490 Frequency spectrum <i>see</i> Fast Fourier transform
1354	(FFT)
correlation 492, 538f., 1254	Frequentist, contrasted with Bayesian 810
cosine transform 190, 511ff., 851, 1245f.	Fresnel integrals 248ff.
cosine transform, second form 513, 852,	asymptotic form 249
1246	continued fraction 248f.
critical sampling 494, 543, 545 definition 490	routine for 249f., 1123 series 248
discrete Fourier transform (DFT) 184,	Friday the Thirteenth 14f., 1011f.
495ff.	FTCS (forward time centered space) 827ff.,
Gaussian function 600	839ff., 843
image processing 803, 805	stability of 827ff., 839ff., 855
infinite range 583	Full approximation storage (FAS) algorithm
inverse of discrete Fourier transform 497	874, 1339ff.
method for partial differential equations	Full moon 14f., 936, 1011f.
848ff.	Full Multigrid method (FMG) 863, 868, 1334ff.
missing data 569 missing data, fast algorithm 574f., 1259	Full Newton methods, nonlinear least squares 683
Nyquist frequency 494ff., 520, 543, 545,	Full pivoting 29, 1014
569, 571	Full weighting 867
optimal (Wiener) filtering 539ff., 558	Function
Parseval's theorem 492, 498, 544	Airy 204, 243f., 1121

approximation 99ff., 184ff., 1043, 1076ff. Functional iteration, for implicit equations associated Legendre polynomial 246ff., 764, 1122f., 1319 FWHM (full width at half maximum) 548f. autocorrelation of 492 bandwidth limited 495 Bessel 172, 204, 223ff., 234, 1101ff., **G**amma deviate 282f., 1153f. 1115ff. Gamma function 206ff., 1085 beta 209, 1089 incomplete see Incomplete gamma funcbinomial coefficients 208f., 1087f. branch cuts of 202f. Garbage collection 956 chi-square probability 215, 798 Gather-scatter operations 2/xiif., 984, 1002, complex 202 1032, 1034 confluent hypergeometric 204, 239 communication bottleneck 969, 981, 1250 convolution of 492 many-to-one 984, 1002, 1032, 1034 correlation of 492 Gauss-Chebyshev integration 141, 144, 512f. cosine integral 250f., 1123f. Gauss-Hermite integration 144, 789 abscissas and weights 147, 1062 Coulomb wave 204, 234 cumulative binomial probability 222f. normalization 147 cumulative Poisson 209ff. Gauss-Jacobi integration 144 abscissas and weights 148, 1063 Dawson's integral 252ff., 600, 1127f. Gauss-Jordan elimination 27ff., 33, 64, 1014f. digamma 216 operation count 34, 39 elliptic integrals 254ff., 906, 1128ff. solution of normal equations 667, 1288 error 213f., 248, 252, 601, 631, 635, storage requirements 30 1094f., 1127, 1276f. Gauss-Kronrod quadrature 154 evaluation 159ff., 1070ff. Gauss-Laguerre integration 144, 789, 1060 evaluation by path integration 201ff., 263, Gauss-Legendre integration 145f., 1059 1138 see also Gaussian integration exponential integral 172, 215ff., 250, Gauss-Lobatto quadrature 154, 190, 512 1096f. Gauss-Radau quadrature 154 F-distribution probability 222 Gauss-Seidel method (relaxation) 855, 857, Fresnel integral 248ff., 1123 864ff., 1338 gamma 206, 1085 nonlinear 876, 1341 hypergeometric 202f., 263ff., 1138ff. Gauss transformation 256 incomplete beta 219ff., 610, 1098ff., 1269 Gaussian (normal) distribution 267, 652, 798 incomplete gamma 209ff., 615, 654, 657f., central limit theorem 652f. 1089ff., 1272, 1285 deviates from 279f., 571, 1152 inverse hyperbolic 178, 255 kurtosis of 606 inverse trigonometric 255 multivariate 690 Jacobian elliptic 261, 1137f. semi-invariants of 608 Kolmogorov-Smirnov probability 618f., tails compared to Poisson 653 640, 1274, 1281 two-dimensional (binormal) 631 Legendre polynomial 172, 246, 674, 1122, variance of skewness of 606 1291 Gaussian elimination 33f., 51, 55, 1014f. logarithm 255 fill-in 45, 64 modified Bessel 229ff., 1109ff. integral equations 786, 1326 modified Bessel, fractional order 239ff., operation count 34 1118ff. outer product variant 1017 overloading 1083 in reduction to Hessenberg form 478, parallel evaluation 986, 1009, 1084, 1087, 1090, 1102, 1128, 1134 relaxation solution of boundary value probpath integration to evaluate 201ff. lems 753ff., 777, 1316 pathological 99f., 343 Gaussian function Poisson cumulant 214 Hardy's theorem on Fourier transforms representations of 490 600 routine for plotting a 342, 1182 see also Gaussian (normal) distribution sine and cosine integrals 248, 250ff., Gaussian integration 127, 140ff., 789, 1059ff. 1125f. calculation of abscissas and weights 142ff., sn, dn, cn 261, 1137f. 1009, 1059ff. spherical harmonics 246ff., 1122 error estimate in solution 784 spheroidal harmonic 764ff., 770ff., 1319ff., extensions of 153f. 1323ff. Golub-Welsch algorithm for weights and Student's probability 221f. abscissas 150, 1064 variable number of arguments 1022 for integral equations 781, 783, 1325 Weber 204 from known recurrence relation 150, 1064

Gravitational potential 519

Gray code 300, 881, 886ff., 1344 nonclassical weight function 151ff., 788f., 1064f., 1328f. Greenbaum, A. 79 and orthogonal polynomials 142, 1009, Gregorian calendar 13, 16, 1011, 1013 1061 Grid square 116f. Group, dihedral 894, 1345 parallel calculation of formulas 1009, 1061 Guard digits 882, 1343 preassigned nodes 153f. weight function $\log x$ 153 weight functions 140ff., 788f., 1059ff., **H**alf weighting 867, 1337 1328f. Halton's quasi-random sequence 300 Gear's method (stiff ODEs) 730 Hamming window 547 Geiger counter 266 Hamming's motto 341 Generalized eigenvalue problems 455 Hann window 547 Generalized minimum residual method (GM-Harmonic analysis see Fourier transform RES) 78 Hashing 293, 1144, 1148, 1156 Generic interface see Interface, generic for random number seeds 1147f. Generic procedures 939, 1083, 1094, 1096, HDLC checksum 890 1364 Heap (data structure) 327f., 336, 897, 1179 elemental 940, 942, 946f., 1015, 1083 Heapsort 320, 327f., 336, 1171f., 1179 Geometric progression 972, 996f., 1365, Helmholtz equation 852 1372ff. Hermite polynomials 144, 147 geop() utility function 972, 974, 989, 996, approximation of roots 1062 1127 Hermitian matrix 450ff., 475 Geophysics, use of Backus-Gilbert method Hertz (unit of frequency) 490 809 Hessenberg matrix 94, 453, 470, 476ff., 488, Gerchberg-Saxton algorithm 805 1231 get_diag() utility function 985, 989, 1005, see also Matrix 1226 Hessian matrix 382, 408, 415f., 419f., 676ff., Gilbert and Sullivan 714 803, 815 Givens reduction 462f., 473 is inverse of covariance matrix 667, 679 fast 463 second derivatives in 676 operation count 463 Hexadecimal constants 17f., 276, 293 Glassman, A.J. 180 initialization 959 Global optimization 387f., 436ff., 650, 1219ff. Hierarchically band diagonal matrix 598 Hierarchy of program structure 6ff. continuous variables 443f., 1222 Global variables 940, 953f., 1210 High-order not same as high-accuracy 100f., allocatable array method 954, 1197, 1212, 124, 389, 399, 705, 709, 741 High-pass filter 551 1266, 1287, 1298 communicated via internal subprogram High-Performance Fortran (HPF) 2/xvf., 964, 981, 984 954, 957f., 1067, 1226 danger of 957, 1209, 1293, 1296 scatter-with-add 1032 pointer method 954, 1197, 1212, 1266, Hilbert matrix 83 1287, 1302 Home page, Numerical Recipes 1/xx, 2/xvii Globally convergent Homogeneous linear equations 53 Hook step methods 386 minimization 418ff., 1215 Hotelling's method for matrix inverse 49, 598 root finding 373, 376ff., 382, 749f., 752, Householder transformation 52, 453, 462ff., 1196, 1314f. 469, 473, 475, 478, 481ff., 1227f. GMRES (generalized minimum residual method) operation count 467 78 in QR decomposition 92, 1039 GNU Emacs 1/xvi HPF see High-Performance Fortran Godunov's method 837 Huffman coding 564, 881, 896f., 902, 1346ff. Golden mean (golden ratio) 21, 349, 392f., huge() intrinsic function 951 Golden section search 341, 389ff., 395, 1202ff. Hyperbolic functions, explicit formulas for inverse 178 Golub-Welsch algorithm, for Gaussian quadra-Hyperbolic partial differential equations 818 ture 150, 1064 advective equation 826 Goodness-of-fit 650, 654, 657f., 662, 690, flux-conservative initial value problems 1285 GOTO statements, danger of 9, 959 825ff. Hypergeometric function 202f., 263ff. Gram-Schmidt routine for 264f., 1138 biorthogonalization 415f. Hypothesis, null 603 orthogonalization 94, 450f., 1039 SVD as alternative to 58 Graphics, function plotting 342, 1182f.

2B, defined 937

I4B, defined 937	Increment of linear congruential generator
iand() intrinsic function 951	268
ibclr() intrinsic function 951	Indentation of blocks 9
ibits() intrinsic function 951	Index 934ff., 1446ff.
IBM 1/xxiii, 2/xix	
	this entry 1464
bad random number generator 268	Index loss 967f., 1038
Fortran 90 compiler 2/viii	Index table 320, 329f., 1173ff., 1176
PC 4, 276, 293, 886	Inequality constraints 423
PC-RT 4	Inheritance 8
radix base for floating point arithmetic	Initial value problems 702, 818f.
476	see also Differential equations;
RS6000 2/viii, 4	Partial differential equations
IBM checksum 894	Initialization of derived data type 2/xv
ibset() intrinsic function 951	Initialization expression 943, 959, 1012, 1127
ICCG (incomplete Cholesky conjugate gradient	
method) 824	Injection operator 864, 1337
ICF (intrinsic correlation function) model 817	Instability see Stability
	Integer model, in Fortran 90 1144, 1149,
Identity (unit) matrix 25	1156
IEEE floating point format 276, 882f., 1343	Integer programming 436
ieor() intrinsic function 951	Integral equations 779ff.
if statement, arithmetic 2/xi	adaptive stepsize control 788
if structure 12f.	block-by-block method 788
ifirstloc() utility function 989, 993, 1041,	correspondence with linear algebraic equa-
1346	tions 779ff.
IIR (infinite impulse response) filter 552ff.,	
566	degenerate kernel 785
Ill-conditioned integral equations 780	eigenvalue problems 780, 785
Image processing 519, 803	error estimate in solution 784
cosine transform 513	Fredholm 779f., 782ff., 1325, 1331
	Fredholm alternative 780
fast Fourier transform (FFT) 519, 523,	homogeneous, second kind 785, 1325
803	ill-conditioned 780
as an inverse problem 803	infinite range 789
maximum entropy method (MEM) 809ff.	inverse problems 780, 795ff.
from modulus of Fourier transform 805	kernel 779
wavelet transform 596f., 1267f.	
imaxloc() utility function 989, 993, 1017	nonlinear 781, 787
iminloc() utility function 989, 993, 1046,	Nystrom method 782ff., 789, 1325
1076	product Nystrom method 789, 1328ff.
Implicit	with singularities 788ff., 1328ff.
function theorem 340	with singularities, worked example 792,
pivoting 30, 1014	1328ff.
	subtraction of singularity 789
shifts in QL method 472ff.	symmetric kernel 785
Implicit differencing 827	unstable quadrature 787f.
for diffusion equation 840	Volterra 780f., 786ff., 1326f.
for stiff equations 729, 740, 1308	wavelets 782
IMPLICIT NONE statement 2/xiv, 936	
Implied do-list 968, 971, 1127	see also Inverse problems
Importance sampling, in Monte Carlo 306f.	Integral operator, wavelet approximation of
Improper integrals 135ff., 1055	597, 782
Impulse response function 531, 540, 552	Integration of functions 123ff., 1052ff.
IMSL 1/xxiii, 2/xx, 26, 64, 205, 364, 369,	cosine integrals 250, 1125
454	Fourier integrals 577ff., 1261
In-place selection 335, 1178f.	Fourier integrals, infinite range 583
Included file, superseded by module 940	Fresnel integrals 248, 1123
	Gauss-Hermite 147f., 1062
Incomplete beta function 219ff., 1098ff.	Gauss-Jacobi 148, 1063
for F-test 613, 1271	· · · · · · · · · · · · · · · · · · ·
routine for 220f., 1097	Gauss-Laguerre 146, 1060
for Student's t 610, 613, 1269	Gauss-Legendre 145, 1059
Incomplete Cholesky conjugate gradient method	integrals that are elliptic integrals 254
(ICCG) 824	path integration 201ff.
Incomplete gamma function 209ff., 1089ff.	sine integrals 250, 1125
for chi-square 615, 654, 657f., 1272, 1285	see also Quadrature
deviates from 282f., 1153	Integro-differential equations 782
in mode estimation 610	INTENT attribute 1072, 1092
routine for 211f., 1089	Interface (Fortran 90) 939, 942, 1067
1000000 101 2111, 1007	(I OILIUII /O) /J/, /T/, IOO/

for communication between program parts	conversion elemental 946
957, 1209, 1293, 1296	elemental 940, 942, 946f., 951, 1083,
explicit 939, 942, 1067, 1384	1364
generic 2/xiii, 940, 1015, 1083, 1094,	generic 939, 1083f., 1364
1096	lexical comparison 952
implicit 939	numeric inquiry 2/xiv, 1107, 1231, 1343
for Numerical Recipes 1384ff.	numerical 946, 951f.
Interface block 939, 1084, 1384	numerical representation 951
Interface, in programs 2, 8 Intermediate value theorem 343	pack used for sorting 1171
Internal subprogram (Fortran 90) 2/xiv, 954,	random_number 1143
957, 1067, 1202f., 1226	real 1254
nesting of 2/xii	top 10 945
resembles C macro 1302	truncation 946f.
supersedes statement function 1057, 1256	see also Fortran 90 Inverse hyperbolic function 178, 255
International Standards Organization (ISO)	
2/xf., 2/xiii	Inverse iteration <i>see</i> Eigensystems Inverse problems 779, 795ff.
Internet, availability of code over 1/xx, 2/xvii	Backus-Gilbert method 806ff.
Interpolation 99ff.	Bayesian approach 799, 810f., 816f.
Aitken's algorithm 102	central idea 799
avoid 2-stage method 100	constrained linear inversion method 799ff.
avoid in Fourier analysis 569	data inversion 807
bicubic 118f., 1049f.	deterministic constraints 804ff.
bilinear 117	in geophysics 809
caution on high-order 100	Gerchberg-Saxton algorithm 805
coefficients of polynomial 100, 113ff.,	incomplete Fourier coefficients 813
191, 575, 1047f., 1078	and integral equations 780
for computing Fourier integrals 578	linear regularization 799ff.
error estimates for 100	maximum entropy method (MEM) 810,
of functions with poles 104ff., 1043f.	815f.
inverse quadratic 353, 395ff., 1204	MEM demystified 814
multidimensional 101f., 116ff., 1049ff.	Phillips-Twomey method 799ff.
in multigrid method 866, 1337	principal solution 797
Neville's algorithm 102f., 182, 1043 Nystrom 783, 1326	regularization 796ff.
offset arrays 104, 113	regularizing operator 798
operation count for 100	stabilizing functional 798
operator 864, 1337	Tikhonov-Miller regularization 799ff.
order of 100	trade-off curve 795
and ordinary differential equations 101	trade-off curve, Backus-Gilbert method
oscillations of polynomial 100, 116, 389,	809
399	two-dimensional regularization 803
parabolic, for minimum finding 395, 1204	use of conjugate gradient minimization
polynomial 99, 102ff., 182, 1043	804, 815
rational Chebyshev approximation 197ff.,	use of convex sets 804
1081	use of Fourier transform 803, 805
rational function 99, 104ff., 194ff., 225,	Van Cittert's method 804
718ff., 726, 1043f., 1080, 1306	Inverse quadratic interpolation 353, 395ff.,
reverse (extirpolation) 574, 1261	1204
spline 100, 107ff., 120f., 1044f., 1050f.	Inverse response kernel, in Backus-Gilbert
trigonometric 99	method 807 Inverse trigonometric function 255
see also Fitting	ior() intrinsic function 951
Interprocessor communication 969, 981	ISBN (International Standard Book Number)
Interval variable (statistics) 623 Intrinsic correlation function (ICF) model 817	checksum 894
Intrinsic data types 937	ishft() intrinsic function 951
Intrinsic data types 937 Intrinsic procedures	ishftc() intrinsic function 951
array inquiry 938, 942, 948ff.	ISO (International Standards Organization)
array manipulation 950	2/xf., 2/xiii
array reduction 948	Iterated integrals 155
array unary and binary functions 949	Iteration 9f.
backwards-compatibility 946	functional 740f.
bit manipulation 2/xiii, 951	to improve solution of linear algebraic
character 952	equations 47ff., 195, 1022
cmplx 1254	for linear algebraic equations 26

required for two-point boundary value problems 745	Laguerre polynomials, approximation of roots 1061
in root finding 340f.	Laguerre's method 341, 365f., 1191f.
Iteration matrix 856	Lanczos lemma 498f.
ITPACK 71	Lanczos method for gamma function 206,
Iverson, John 2/xi	1085
	Landen transformation 256
J acobi matrix, for Gaussian quadrature 150,	LAPACK 26, 1230
1064	Laplace's equation 246, 818
Jacobi polynomials, approximation of roots	see also Poisson equation
1064	Las Vegas 625 Latin square or hypercube 305f.
Jacobi transformation (or rotation) 94, 453,	Laurent series 566
456ff., 462, 475, 489, 1041, 1225	Lax method 828ff., 836, 845f.
Jacobian determinant 279, 774	multidimensional 845f.
Jacobian elliptic functions 261, 1137f.	Lax-Wendroff method 835ff.
Jacobian matrix 374, 376, 379, 382, 731,	lbound() intrinsic function 949
1197f., 1309	Leakage in power spectrum estimation 544,
singular in Newton's rule 386	548
Jacobi's method (relaxation) 855ff., 864	Leakage width 548f.
Jenkins-Traub method 369	Leapfrog method 833f.
Julian Day 1, 13, 16, 936, 1010ff. Jump transposition errors 895	Least squares filters see Savitzky-Golay filters
Jump transposition errors 893	Least squares fitting 645, 651ff., 655ff., 660ff.,
	665ff., 1285f., 1288f.
K -S test <i>see</i> Kolmogorov-Smirnov test	contrasted to general minimization prob-
Kalman filter 700	lems 684ff.
Kanji 2/xii	degeneracies in 671f., 674 Fourier components 570
Kaps-Rentrop method 730, 1308	as M-estimate for normal errors 696
Kendall's tau 634, 637ff., 1279	as maximum likelihood estimator 652
Kennedy, Ken 2/xv	as method for smoothing data 645, 1283
Kepler's equation 1061	Fourier components 1258
Kermit checksum 889	freezing parameters in 668, 700
Kernel 779	general linear case 665ff., 1288, 1290f.
averaging, in Backus-Gilbert method 807 degenerate 785	Levenberg-Marquardt method 678ff., 816,
finite rank 785	1292f.
inverse response 807	Lomb periodogram 570, 1258
separable 785	multidimensional 675
singular 788f., 1328	nonlinear 386, 675ff., 816, 1292
symmetric 785	nonlinear, advanced methods 683
Keys used in sorting 329, 889	normal equations 645, 666f., 800, 1288
Keyword argument 2/xiv, 947f., 1341	normal equations often singular 670, 674 optimal (Wiener) filtering 540f.
kind() intrinsic function 951	QR method in 94, 668
KIND parameter 946, 1261, 1284	for rational Chebyshev approximation
and cmplx() intrinsic function 1125, 1192, 1254	199f., 1081f.
default 937	relation to linear correlation 630, 658
for Numerical Recipes 1361	Savitzky-Golay filter as 645, 1283
for random numbers 1144	singular value decomposition (SVD) 25f.,
and real() intrinsic function 1125	51ff., 199f., 670ff., 1081, 1290
Kolmogorov-Smirnov test 614, 617ff., 694,	skewed by outliers 653
1273f.	for spectral analysis 570, 1258
two-dimensional 640, 1281ff.	standard (probable) errors on fitted parame-
variants 620ff., 640, 1281	ters 667, 671
Kuiper's statistic 621	weighted 652
Kurtosis 606, 608, 1269	see also Fitting L'Ecuyer's long period random generator 271,
	273
L -estimate 694	Least squares fitting
Labels, statement 9	standard (probable) errors on fitted parame-
Lag 492, 538, 553	ters 1288, 1290
Lagged Fibonacci generator 1142, 1148ff.	weighted 1285
Lagrange multiplier 795	Left eigenvalues or eigenvectors 451
Lagrange's formula for polynomial interpola-	Legal matters 1/xx, 2/xvii
tion 84, 102f., 575, 578	Legendre elliptic integral see Elliptic integrals

Legendre polynomials 246, 1122	summary of tasks 25f.
fitting data to 674, 1291f.	Toeplitz 82, 85ff., 195, 1038
recurrence relation 172	tridiagonal 26, 42f., 64, 109, 150, 453f.,
shifted monic 151	462ff., 469ff., 488, 839f., 853, 861f.,
see also Associated Legendre polynomials;	1018f., 1227ff.
Spherical harmonics	Vandermonde 82ff., 114, 1037, 1047
Lehmer-Schur algorithm 369	wavelet solution 597ff., 782
Lemarie's wavelet 593	Woodbury formula 68ff., 83
Lentz's method for continued fraction 165,	see also Eigensystems
212	Linear congruential random number generator
Lepage, P. 309	267ff., 1142 choice of constants for 274ff.
Leptokurtic distribution 606 Levenberg-Marquardt algorithm 386, 678ff.,	Linear constraints 423
816, 1292	Linear convergence 346, 393
advanced implementation 683	Linear correlation (statistics) 630ff., 1276
Levinson's method 86, 1038	Linear dependency
Lewis, H.W. 275	constructing orthonormal basis 58, 94
Lexical comparison functions 952	of directions in N-dimensional space 409
LGT, defined 937	in linear algebraic equations 22f.
License information 1/xx, 2/xviiff.	Linear equations see Differential equations;
Limbo 356	Integral equations; Linear algebraic
Limit cycle, in Laguerre's method 365	equations
Line minimization see Minimization, along a	Linear inversion method, constrained 799ff.
ray	Linear prediction 557ff.
Line search see Minimization, along a ray	characteristic polynomial 559
Linear algebra, intrinsic functions for paral-	coefficients 557ff., 1256
lelization 969f., 1026, 1040, 1200,	compared to maximum entropy method
1326	558
Linear algebraic equations 22ff., 1014	compared with regularization 801
band diagonal 43ff., 1019	contrasted to polynomial extrapolation
biconjugate gradient method 77, 1034ff.	560
Cholesky decomposition 89f., 423, 455,	related to optimal filtering 558
668, 1038f.	removal of bias in 563 stability 559f., 1257
complex 41 computing $\mathbf{A}^{-1} \cdot \mathbf{B}$ 40	Linear predictive coding (LPC) 563ff.
conjugate gradient method 77ff., 599,	Linear programming 387, 423ff., 1216ff.
1034	artificial variables 429
cyclic tridiagonal 67, 1030	auxiliary objective function 430
direct methods 26, 64, 1014, 1030	basic variables 426
Fortran 90 vs. library routines 1016	composite simplex algorithm 435
Gauss-Jordan elimination 27ff., 1014	constraints 423
Gaussian elimination 33f., 1014f.	convergence criteria 432
Hilbert matrix 83	degenerate feasible vector 429
Hotelling's method 49, 598	dual problem 435
and integral equations 779ff., 783, 1325 iterative improvement 47ff., 195, 1022	equality constraints 423 feasible basis vector 426
iterative methods 26, 77ff., 1034	feasible vector 424
large sets of 23	fundamental theorem 426
least squares solution 53ff., 57f., 199f.,	inequality constraints 423
671, 1081, 1290	left-hand variables 426
LU decomposition 34ff., 195, 386, 732,	nonbasic variables 426
783, 786, 801, 1016, 1022, 1325f.	normal form 426
nonsingular 23	objective function 424
overdetermined 25f., 199, 670, 797	optimal feasible vector 424
partitioned 70	pivot element 428f.
QR decomposition 91f., 382, 386, 668,	primal-dual algorithm 435
1039f., 1199	primal problem 435
row vs. column elimination 31f.	reduction to normal form 429ff.
Schultz's method 49, 598	restricted normal form 426ff.
Sherman-Morrison formula 65ff., 83	revised simplex method 435
singular 22, 53, 58, 199, 670	right-hand variables 426
singular value decomposition (SVD) 51ff.,	simplex method 402, 423ff., 431ff., 1216ff.
199f., 670ff., 797, 1022, 1081, 1290	slack variables 429 tableau 427
sparse 23, 43, 63ff., 732, 804, 1020f., 1030	vertex of simplex 426
1030	vertex of simplex 420

Linear recurrence see Recurrence relation	mask 1006f., 1102, 1200, 1226, 1305, 1333f.,
Linear regression 655ff., 660ff., 1285ff.	1368, 1378, 1382
see also Fitting	optional argument 948
Linear regularization 799ff.	optional argument, facilitates parallelism
LINPACK 26	967f., 1038
Literal constant 937, 1361	Mass, center of 295ff.
Little-endian 293	MasterCard checksum 894
Local extrapolation 709	Mathematical Center (Amsterdam) 353
Local extremum 387f., 437	Mathematical intrinsic functions 946, 951f.
Localization of roots see Bracketing	matmul() intrinsic function 945, 949, 969,
Logarithmic function 255 Lomb periodogram method of spectral analysis	1026, 1040, 1050, 1076, 1200, 1216,
569f., 1258f.	1290, 1326
fast algorithm 574f., 1259	Matrix 23ff.
Loops 9f.	add vector to diagonal 1004, 1234, 1366,
Lorentzian probability distribution 282, 696f.	1381
Low-pass filter 551, 644f., 1283f.	approximation of 58f., 598f.
Lower subscript 944	band diagonal 42ff., 64, 1019 band triangular 64
lower_triangle() utility function 989, 1007,	banded 26, 454
1200	bidiagonal 52
LP coefficients see Linear prediction	block diagonal 64, 754
LPC (linear predictive coding) 563ff.	block triangular 64
LU decomposition 34ff., 47f., 51, 55, 64, 97,	block tridiagonal 64
374, 667, 732, 1016, 1022	bordered 64
for $\mathbf{A}^{-1} \cdot \mathbf{B}$ 40	characteristic polynomial 449, 469
backsubstitution 39, 1017	Cholesky decomposition 89f., 423, 455,
band diagonal matrix 43ff., 1020	668, 1038f.
complex equations 41f.	column augmented 28, 1014
Crout's algorithm 36ff., 45, 1017	complex 41
for integral equations 783, 786, 1325f.	condition number 53, 78
for inverse iteration of eigenvectors 488	create unit matrix 1006, 1382
for inverse problems 801	curvature 677
for matrix determinant 41	cyclic banded 64
for matrix inverse 40, 1016	cyclic tridiagonal 67, 1030
for nonlinear sets of equations 374, 386,	defective 450, 476, 489
1196	of derivatives see Hessian matrix; Jacobian
operation count 36, 39	determinant
outer product Gaussian elimination 1017	design (fitting) 645, 665, 801, 1082
for Padé approximant 195, 1080	determinant of 25, 41
pivoting 37f., 1017 repeated backsubstitution 40, 46	diagonal of sparse matrix 1033ff.
solution of linear algebraic equations 40,	diagonalization 452ff., 1225ff.
1017	elementary row and column operations
solution of normal equations 667	28f.
for Toeplitz matrix 87	finite differencing of partial differential
Lucifer 290	equations 821ff.
	get diagonal 985, 1005, 1226f., 1366,
Man at 10 10 15 15	1381f.
M &R (Metcalf and Reid) 935	Hermitian 450, 454, 475
M-estimates 694ff.	Hermitian conjugate 450
how to compute 697f.	Hessenberg 94, 453, 470, 476ff., 488, 1231ff.
local 695ff.	Hessian see Hessian matrix
see also Maximum likelihood estimate	hierarchically band diagonal 598
Machine accuracy 19f., 881f., 1189, 1343	Hilbert 83
Macintosh, <i>see</i> Apple Macintosh Maehly's procedure 364, 371	identity 25
• •	ill-conditioned 53, 56, 114
Magic in MEM image restoration 814	indexed storage of 71f., 1030
in Padé approximation 195	and integral equations 779, 783, 1325
Mantissa in floating point format 19, 882,	inverse 25, 27, 34, 40, 65ff., 70, 95ff.,
909, 1343	1014, 1016f.
Marginals 624	inverse, approximate 49
Marquardt method (least squares fitting) 678ff.,	inverse by Hotelling's method 49, 598
816, 1292f.	inverse by Schultz's method 49, 598
Marsaglia shift register 1142, 1148ff.	inverse multiplied by a matrix 40
Marsaglia, G. 1142, 1149	iteration for inverse 49, 598

Jacobi transformation 453, 456ff., 462,	maxexponent() intrinsic function 1107
1225f.	Maximization see Minimization
Jacobian 731, 1309	Maximum entropy method (MEM) 565ff.,
logical dimension 24	1258
lower triangular 34f., 89, 781, 1016	algorithms for image restoration 815f.
lower triangular mask 1007, 1200, 1382	Bayesian 816f.
multiplication denoted by dot 23	Cornwell-Evans algorithm 816
multiplication, intrinsic function 949, 969,	demystified 814
•	historic vs. Bayesian 816f.
1026, 1040, 1050, 1200, 1326	
norm 50	image restoration 809ff.
normal 450ff.	intrinsic correlation function (ICF) model
nullity 53	817
nullspace 25, 53f., 449, 795	for inverse problems 809ff.
orthogonal 91, 450, 463ff., 587	operation count 567
orthogonal transformation 452, 463ff.,	see also Linear prediction
469, 1227	Maximum likelihood estimate (M-estimates)
orthonormal basis 58, 94	690, 694ff.
outer product denoted by cross 66, 420	and Bayes' Theorem 811
partitioning for determinant 70	chi-square test 690
partitioning for inverse 70	defined 652
pattern multiply of sparse 74	how to compute 697f.
	110W to compute 09/1.
physical dimension 24	mean absolute deviation 696, 698, 1294
positive definite 26, 89f., 668, 1038	relation to least squares 652
QR decomposition 91f., 382, 386, 668,	maxloc() intrinsic function 949, 992f., 1015
1039, 1199	modified in Fortran 95 961
range 53	maxval() intrinsic function 945, 948, 961,
rank 53	1016, 1273
residual 49	Maxwell's equations 825f.
row and column indices 23	Mean(s)
row vs. column operations 31f.	of distribution 604f., 608f., 1269
self-adjoint 450	statistical differences between two 609ff.,
set diagonal elements 1005, 1200, 1366,	1269f.
1382	Mean absolute deviation of distribution 605,
	696, 1294
similarity transform 452ff., 456, 476, 478,	
482	related to median 698
singular 53f., 58, 449	Measurement errors 650
singular value decomposition 26, 51ff.,	Median 320
797	calculating 333
sparse 23, 63ff., 71, 598, 732, 754, 804,	of distribution 605, 608f.
1030ff.	as L-estimate 694
special forms 26	role in robust straight line fitting 698
splitting in relaxation method 856f.	by selection 698, 1294
spread 808	Median-of-three, in Quicksort 324
square root of 423, 455	MEM see Maximum entropy method (MEM)
symmetric 26, 89, 450, 454, 462ff., 668,	Memory leak 953, 956, 1071, 1327
785, 1038, 1225, 1227	Memory management 938, 941f., 953ff.,
threshold multiply of sparse 74, 1031	1327, 1336
Toeplitz 82, 85ff., 195, 1038	merge construct 945, 950, 1099f.
transpose() intrinsic function 950	for conditional scalar expression 1010,
transpose of sparse 73f., 1033	1094f.
triangular 453	contrasted with where 1023
tridiagonal 26, 42f., 64, 109, 150, 453f.,	parallelization 1011
462ff., 469ff., 488, 839f., 853, 861f.,	Merge-with-dummy-values idiom 1090
1018f., 1227ff.	Merit function 650
tridiagonal with fringes 822	in general linear least squares 665
unitary 450	for inverse problems 797
updating 94, 382, 386, 1041, 1199	nonlinear models 675
upper triangular 34f., 91, 1016	for straight line fitting 656, 698
upper triangular mask 1006, 1226, 1305,	for straight line fitting, errors in both coor-
1382	dinates 660, 1286
	Mesh-drift instability 834f.
Vandermonde 82ff., 114, 1037, 1047	
see also Eigensystems	Mesokurtic distribution 606
Matrix equations see Linear algebraic equa-	Metcalf, Michael 2/viii
tions	see also M&R
Matterhorn 606	Method of regularization 799ff.

Metropolis algorithm 437f., 1219	MIPS 886
Microsoft 1/xxii, 2/xix	Missing data problem 569
Microsoft Fortran PowerStation 2/viii	Mississippi River 438f., 447
Midpoint method see Modified midpoint method;	MMP (massively multiprocessor) machines
Semi-implicit midpoint rule	965ff., 974, 981, 984, 1016ff., 1021,
Mikado, or Town of Titipu 714	1045, 1226ff., 1250
Miller's algorithm 175, 228, 1106	Mode of distribution 605, 609
MIMD machines (Multiple Instruction Multiple	Modeling of data see Fitting
Data) 964, 985, 1071, 1084	Model-trust region 386, 683
Minimal solution of recurrence relation 174	Modes, homogeneous, of recursive filters 554
Minimax polynomial 186, 198, 1076	Modified Bessel functions see Bessel func-
Minimax rational function 198	tions
Minimization 387ff.	Modified Lentz's method, for continued frac-
along a ray 77, 376f., 389, 406ff., 412f.,	tions 165
415f., 418, 1195f., 1211, 1213	
annealing, method of simulated 387f.,	Modified midpoint method 716ff., 720, 1302f.
436ff., 1219ff.	Modified moments 152
	Modula-2 7
bracketing of minimum 390ff., 402, 1201f.	Modular arithmetic, without overflow 269,
Brent's method 389, 395ff., 399, 660f.,	271, 275
1204ff., 1286	Modular programming 2/xiii, 7f., 956ff.,
Broyden-Fletcher-Goldfarb-Shanno algo-	1209, 1293, 1296, 1346
rithm 390, 418ff., 1215	MODULE facility 2/xiii, 936f., 939f., 957,
chi-square 653ff., 675ff., 1285, 1292	1067, 1298, 1320, 1322, 1324, 1330,
choice of methods 388f.	1346
combinatorial 436f., 1219	initializing random number generator 1144ff.
conjugate gradient method 390, 413ff.,	in nr.f90 936, 941f., 1362, 1384ff.
804, 815, 1210, 1214	in nrtype.f90 936f., 1361f.
convergence rate 393, 409	in nrutil.f90 936, 1070, 1362, 1364ff.
Davidon-Fletcher-Powell algorithm 390,	sparse matrix 1031
418ff., 1215	undefined variables on exit 953, 1266
degenerate 795	Module subprogram 940
direction-set methods 389, 406ff., 1210ff.	modulo() intrinsic function 946, 1156
downhill simplex method 389, 402ff.,	Modulus of linear congruential generator 268
444, 697f., 1208, 1222ff.	Moments Moments
finding best-fit parameters 650	
Fletcher-Reeves algorithm 390, 414ff.,	of distribution 604ff., 1269
1214	filter that preserves 645
functional 795	modified problem of 151f.
global 387f., 443f., 650, 1219, 1222	problem of 83
globally convergent multidimensional 418,	and quadrature formulas 791, 1328
1215	semi-invariants 608
golden section search 390ff., 395, 1202ff.	Monic polynomial 142f.
multidimensional 388f., 402ff., 1208ff.,	Monotonicity constraint, in upwind differenc-
1214	ing 837
in nonlinear model fitting 675f., 1292	Monte Carlo 155ff., 267
Polak-Ribiere algorithm 389, 414ff., 1214	adaptive 306ff., 1161ff.
Powell's method 389, 402, 406ff., 1210ff.	bootstrap method 686f.
quasi-Newton methods 376, 390, 418ff.,	comparison of sampling methods 309
1215	exploration of binary tree 290
	importance sampling 306f.
and root finding 375 scaling of variables 420	integration 124, 155ff., 295ff., 306ff.,
	1161
by searching smaller subspaces 815 steepest descent method 414, 804	integration, recursive 314ff., 1164ff.
termination criterion 392, 404	integration, using Sobol' sequence 304
	integration, VEGAS algorithm 309ff.,
use in finding double roots 341	1161
use for sparse linear systems 77ff.	
using derivatives 389f., 399ff., 1205ff.	and Kolmogorov-Smirnov statistic 622, 640
variable metric methods 390, 418ff., 1215	
see also Linear programming	partial differential equations 824
Minimum residual method, for sparse system	quasi-random sequences in 299ff.
78	quick and dirty 686f.
minloc() intrinsic function 949, 992f.	recursive 306ff., 314ff., 1161, 1164ff.
modified in Fortran 95 961	significance of Lomb periodogram 570
MINPACK 683	simulation of data 654, 684ff., 690
minval() intrinsic function 948, 961	stratified sampling 308f., 314, 1164

speeding up FMG algorithm 873 Moon, calculate phases of 1f., 14f., 936, 1010f. stopping criterion 875f. Mother functions 584 straight injection 867 Mother Nature 684, 686 symbol of operator 866f. use of Richardson extrapolation 869 Moving average (MA) model 566 V-cycle 865, 1336 Moving window averaging 644 Mozart 9 W-cycle 865, 1336 zebra relaxation 866 MS 1/xxii, 2/xix Muller's method 364, 372 Multiple precision arithmetic 906ff., 1352ff. Multiple roots 341, 362 Multidimensional Multiplication, complex 171 confidence levels of fitting 688f. data, use of binning 623 Fourier transform 515ff., 1241, 1246, Multiplication, multiple precision 907, 909, 1353f. Multiplier of linear congruential generator 1251 Fourier transform, real data 519ff., 1248f. Multistep and multivalue methods (ODEs) initial value problems 844ff. integrals 124, 155ff., 295ff., 306ff., 1065ff., 740ff. see also Differential Equations; Predictor-1161ff. corrector methods interpolation 116ff., 1049ff. Multivariate normal distribution 690 Kolmogorov-Smirnov test 640, 1281 Murphy's Law 407 least squares fitting 675 Musical scores 5f. minimization 402ff., 406ff., 413ff., 1208ff., 1214f., 1222ff. Monte Carlo integration 295ff., 306ff., **N**AG 1/xxiii, 2/xx, 26, 64, 205, 454 1161ff. Fortran 90 compiler 2/viii, 2/xiv normal (Gaussian) distribution 690 Named constant 940 optimization 388f. initialization 1012 partial differential equations 844ff. for Numerical Recipes 1361 root finding 340ff., 358, 370, 372ff., 746, Named control structure 959, 1219, 1305 749f., 752, 754, 1194ff., 1314ff. National Science Foundation (U.S.) 1/xvii, search using quasi-random sequence 300 1/xix, 2/ix secant method 373, 382f., 1199f. Natural cubic spline 109, 1044f. wavelet transform 595, 1267f. Navier-Stokes equation 830f. Multigrid method 824, 862ff., 1334ff. nearest() intrinsic function 952, 1146 avoid SOR 866 Needle, eye of (minimization) 403 boundary conditions 868f. Negation, multiple precision 907, 1353f. choice of operators 868 Negentropy 811, 896 coarse-to-fine operator 864, 1337 Nelder-Mead minimization method 389, 402, coarse-grid correction 864f. 1208 cycle 865 Nested iteration 868 dual viewpoint 875 Neumann boundary conditions 820, 840, 851, fine-to-coarse operator 864, 1337 858 full approximation storage (FAS) algorithm Neutrino 640 874, 1339ff. Neville's algorithm 102f., 105, 134, 182, full multigrid method (FMG) 863, 868, 1043 1334ff. Newton-Cotes formulas 125ff., 140 full weighting 867 Newton-Raphson method see Newton's rule Gauss-Seidel relaxation 865f., 1338 Newton's rule 143f., 180, 341, 355ff., 362, half weighting 867, 1337 364, 469, 1059, 1189 importance of adjoint operator 867 with backtracking 376, 1196 injection operator 864, 1337 caution on use of numerical derivatives interpolation operator 864, 1337 line relaxation 866 fractal domain of convergence 360f. local truncation error 875 globally convergent multidimensional 373, Newton's rule 874, 876, 1339, 1341 376ff., 382, 749f., 752, 1196, 1199, nonlinear equations 874ff., 1339ff. 1314f. nonlinear Gauss-Seidel relaxation 876, for matrix inverse 49, 598 1341 in multidimensions 370, 372ff., 749f., odd-even ordering 866, 869, 1338 752, 754, 1194ff., 1314ff. operation count 862 in nonlinear multigrid 874, 876, 1339, prolongation operator 864, 1337 1341 recursive nature 865, 1009, 1336 nonlinear Volterra equations 787 relative truncation error 875 for reciprocal of number 911, 1355 relaxation as smoothing operator 865 safe 359, 1190 restriction operator 864, 1337 scaling of variables 381

' 1 1 1' 200	Name of all interpreting and Organization
singular Jacobian 386	Numerical integration see Quadrature
solving stiff ODEs 740	Numerical intrinsic functions 946, 951f.
for square root of number 912, 1356	Numerical Recipes
Niederreiter sequence 300	compatibility with First Edition 4
NL2SOL 683	Example Book 3
Noise	Fortran 90 types 936f., 1361
bursty 889	how to get programs 1/xx, 2/xvii
effect on maximum entropy method 567	how to report bugs 1/iv, 2/iv
equivalent bandwidth 548	interface blocks (Fortran 90) 937, 941f.,
fitting data which contains 647f., 650	1084, 1384ff.
model, for optimal filtering 541	no warranty on 1/xx, 2/xvii
Nominal variable (statistics) 623	plan of two-volume edition 1/xiii
Nonexpansive projection operator 805	table of dependencies 921ff., 1434ff.
Non-interfering directions see Conjugate direc-	as trademark 1/xxiii, 2/xx
tions	utility functions (Fortran 90) 936f., 945,
Nonlinear eigenvalue problems 455	968, 970, 972ff., 977, 984, 987ff., 1015,
Nonlinear elliptic equations, multigrid method	1071f., 1361ff.
874ff., 1339ff.	Numerical Recipes Software 1/xv, 1/xxiiff.,
Nonlinear equations, in MEM inverse prob-	2/xviiff.
lems 813	address and fax number 1/iv, 1/xxii, 2/iv,
Nonlinear equations, roots of 340ff.	2/xix
Nonlinear instability 831	Web home page 1/xx, 2/xvii
•	Nyquist frequency 494ff., 520, 543, 545,
Nonlinear integral equations 781, 787	569ff.
Nonlinear programming 436 Nonnegativity constraints 423	Nystrom method 782f., 789, 1325
· .	product version 789, 1331
Nonparametric statistics 633ff., 1277ff.	product version 769, 1331
Nonpolynomial complete (NP-complete) 438	
Norm, of matrix 50	•
Normal (Gaussian) distribution 267, 652, 682,	O bject extensibility 8
798, 1294	Objective function 424
central limit theorem 652f.	Object-oriented programming 2/xvi, 2, 8
deviates from 279f., 571, 1152	Oblateness parameter 764
kurtosis of 607	Obsolete features see Fortran, Obsolescent fea-
multivariate 690	tures
semi-invariants of 608	Octal constant, initialization 959
tails compared to Poisson 653	Odd-even ordering
two-dimensional (binormal) 631	allows parallelization 1333
variance of skewness of 606	in Gauss-Seidel relaxation 866, 869, 1338
Normal equations (fitting) 26, 645, 666ff.,	in successive over-relaxation (SOR) 859,
795, 800, 1288	1332
often are singular 670	Odd parity 888
Normalization 175	OEM information 1/xxii
of Bessel functions 175	One-sided power spectral density 492
of floating-point representation 19, 882,	ONLY option, for USE statement 941, 957,
1343	1067
of functions 142, 765	Operation count
of modified Bessel functions 232	balancing 476
not() intrinsic function 951	Bessel function evaluation 228
Notch filter 551, 555f.	bisection method 346
NP-complete problem 438	Cholesky decomposition 90
nr.f90 (module file) 936, 1362, 1384ff.	coefficients of interpolating polynomial
nrerror() utility function 989, 995	114f.
nrtype.f90 (module file) 936f.	complex multiplication 97
named constants 1361	cubic spline interpolation 109
nrutil.f90 (module file) 936, 1070, 1362,	evaluating polynomial 168
1364ff.	fast Fourier transform (FFT) 498
table of contents 1364	Gauss-Jordan elimination 34, 39
Null hypothesis 603	Gaussian elimination 34
nullify statement 953f., 1070, 1302	Givens reduction 463
Nullity 53	Householder reduction 467
Nullspace 25, 53f., 449, 795	interpolation 100
Number-theoretic transforms 503f.	inverse iteration 488
Numeric inquiry functions 2/xiv, 1107, 1231,	iterative improvement 48
1343	Jacobi transformation 460
Numerical derivatives 180ff., 645, 1075	Kendall's tau 637

linear congruential generator 268	outersum() utility function 989, 1001
LU decomposition 36, 39	Outgoing wave boundary conditions 820
matrix inversion 97	Outlier 605, 653, 656, 694, 697
matrix multiplication 96 maximum entropy method 567	see also Robust estimation Overcorrection 857
multidimensional minimization 413f.	Overflow 882, 1343
multigrid method 862	how to avoid in modulo multiplication
multiplication 909	269
polynomial evaluation 97f., 168	in complex arithmetic 171
QL method 470, 473	Overlap-add and overlap-save methods 536f.
QR decomposition 92	Overloading
QR method for Hessenberg matrices 484	operator 2/xiif.
reduction to Hessenberg form 479	procedures 940, 1015, 1083, 1094, 1096 Overrelaxation parameter 857, 1332
selection by partitioning 333 sorting 320ff.	choice of 858
Spearman rank-order coefficient 638	choice of 350
Toeplitz matrix 83	
Vandermonde matrix 83	P ack() intrinsic function 945, 950, 964, 991,
Operator overloading 2/xiif., 7	1031
Operator splitting 823, 847f., 861	communication bottleneck 969
Operator, user-defined 2/xii	for index table 1176
Optimal feasible vector 424	for partition-exchange 1170
Optimal (Wiener) filtering 535, 539ff., 558, 644	for selection 1178 for selective evaluation 1087
compared with regularization 801	Pack-unpack idiom 1087, 1134, 1153
Optimization see Minimization	Padé approximant 194ff., 1080f.
Optimization of code 2/xiii	Padé approximation 105
Optional argument 2/xiv, 947f., 1092, 1228,	Parabolic interpolation 395, 1204
1230, 1256, 1272, 1275, 1340	Parabolic partial differential equations 818,
dim 948	838ff.
mask 948, 968, 1038	Parallel axis theorem 308
testing for 952 Ordering Numerical Recipes 1/xxf., 2/xviif.	Parallel programming 2/xv, 941, 958ff., 962ff., 965f., 968f., 987
Ordinal variable (statistics) 623	array operations 964f.
Ordinary differential equations see Differential	array ranking 1278f.
equations	band diagonal linear equations 1021
Orthogonal see Orthonormal functions; Or-	Bessel functions 1107ff.
thonormal polynomials	broadcasts 965ff.
Orthogonal transformation 452, 463ff., 469,	C and C++ 2/viii
584, 1227 Orthonormal basis, constructing 58, 94, 1039	communication costs 969, 981, 1250
Orthonormal functions 142, 246	counting do-loops 1015 cyclic reduction 974
Orthonormal polynomials	deflation 977ff.
Chebyshev 144, 184ff., 1076ff.	design matrix 1082
construct for arbitrary weight 151ff., 1064	dimensional expansion 965ff.
in Gauss-Hermite integration 147, 1062	eigensystems 1226, 1229f.
and Gaussian quadrature 142, 1009, 1061	fast Fourier transform (FFT) 981, 1235ff.,
Gaussian weights from recurrence 150,	1250 in Forton 00 062ff
1064 Hermite 144, 1062	in Fortran 90 963ff. Fortran 90 tricks 1009, 1274, 1278, 1280
Jacobi 144, 1063	function evaluation 986, 1009, 1084f.,
Laguerre 144, 1060	1087, 1090, 1102, 1128, 1134
Legendre 144, 1059	Gaussian quadrature 1009, 1061
weight function $\log x$ 153	geometric progressions 972
Orthonormality 51, 142, 463	index loss 967f., 1038
Outer product Gaussian elimination 1017	index table 1176f.
Outer product of matrices (denoted by cross) 66, 420, 949, 969f., 989, 1000ff., 1017,	interprocessor communication 981 Kendall's tau 1280
1026, 1040, 1076, 1200, 1216, 1275	linear algebra 969f., 1000ff., 1018f., 1026,
outerand() utility function 989, 1002, 1015	1040, 1200, 1326
outerdiff() utility function 989, 1001	linear recurrence 973f., 1073ff.
outerdiv() utility function 989, 1001	logo 2/viii, 1009
outerprod() utility function 970, 989, 1000,	masks 967f., 1006f., 1038, 1102, 1200,
1017, 1026, 1040, 1076, 1200, 1216,	1226, 1305, 1333f., 1368, 1378, 1382
1275	merge statement 1010

cyclic reduction (CR) method 848f., 852ff. MIMD (multiple instruction, multiple data) 964, 985f., 1084 diffusion equation 818, 838ff., 846, 855 MMP (massively multiprocessor) machines Dirichlet boundary conditions 508, 820, 965ff., 974, 984, 1016ff., 1226ff., 1250 840, 850, 856, 858 nrutil.f90 (module file) 1364ff. elliptic, defined 818 odd-even ordering 1333 error, varieties of 831ff. one-dimensional FFT 982f. explicit vs. implicit differencing 827 parallel note icon 1009 FACR method 854 partial differential equations 1333 finite difference method 821ff. in-place selection 1178f. finite element methods 824 polynomial coefficients from roots 980 flux-conservative initial value problems polynomial evaluation 972f., 977, 998 825ff. random numbers 1009, 1141ff. forward Euler differencing 826f. recursive doubling 973f., 976f., 979, 988, Forward Time Centered Space (FTCS) 999, 1071ff. 827ff., 839ff., 843, 855 scatter-with-combine 984, 1002f., 1032f. Fourier analysis and cyclic reduction (FACR) second order recurrence 974f., 1074 848ff., 854 SIMD (Single Instruction Multiple Data) Gauss-Seidel method (relaxation) 855, 964, 985f., 1009, 1084f. 864ff., 876, 1338, 1341 singular value decomposition (SVD) 1026 Godunov's method 837 sorting 1167ff., 1171, 1176f. Helmholtz equation 852 special functions 1009 hyperbolic 818, 825f. SSP (small-scale parallel) machines 965ff., implicit differencing 840 984, 1010ff., 1016ff., 1059f., 1226ff., incomplete Cholesky conjugate gradient 1250 method (ICCG) 824 subvector scaling 972, 974, 996, 1000 inhomogeneous boundary conditions 850f. successive over-relaxation (SOR) 1333 initial value problems 818f. supercomputers 2/viii, 962 initial value problems, recommendations on SVD algorithm 1026 838ff. synthetic division 977ff., 999, 1048, 1071f., Jacobi's method (relaxation) 855ff., 864 1079, 1192 Laplace's equation 818 tridiagonal systems 975f., 1018, 1229f. Lax method 828ff., 836, 845f. utilities 1364ff. Lax method (multidimensional) 845f. vector reduction 972f., 977, 998 matrix methods 824 vs. serial programming 965, 987 mesh-drift instability 834f. PARAMETER attribute 1012 Monte Carlo methods 824 Parameters in fitting function 651, 684ff. multidimensional initial value problems Parity bit 888 844ff. Park and Miller minimal standard random genmultigrid method 824, 862ff., 1009, 1334ff. erator 269, 1142 Neumann boundary conditions 508, 820, Parkinson's Law 328 840, 851, 858 Parseval's Theorem 492, 544 nonlinear diffusion equation 842 discrete form 498 nonlinear instability 831 Partial differential equations 818ff., 1332ff. numerical dissipation or viscosity 830 advective equation 826 operator splitting 823, 847f., 861 alternating-direction implicit method (ADI) outgoing wave boundary conditions 820 847, 861f. parabolic 818, 838ff. amplification factor 828, 834 parallel computing 1333 analyze/factorize/operate package 824 periodic boundary conditions 850, 858 artificial viscosity 831, 837 piecewise parabolic method (PPM) 837 biconjugate gradient method 824 Poisson equation 818, 852 boundary conditions 819ff. rapid (Fourier) methods 508ff., 824, 848ff. boundary value problems 819, 848 relaxation methods 823, 854ff., 1332f. Cauchy problem 818f. Schrödinger equation 842ff. caution on high-order methods 844f. second-order accuracy 833ff., 840 Cayley's form 844 shock 831, 837 characteristics 818 sparse matrices from 64 Chebyshev acceleration 859f., 1332 spectral methods 825 classification of 818f. spectral radius 856ff., 862 comparison of rapid methods 854 stability vs. accuracy 830 conjugate gradient method 824 stability vs. efficiency 821 Courant condition 829, 832ff., 836 Courant condition (multidimensional) 846 staggered grids 513, 852 Crank-Nicholson method 840, 842, 844, staggered leapfrog method 833f. 846 strongly implicit procedure 824

successive over-relaxation (SOR) 857ff.,	Plane rotation see Givens reduction; Jacobi
862, 866, 1332f.	transformation (or rotation)
time splitting 847f., 861	Platykurtic distribution 606
two-step Lax-Wendroff method 835ff.	Plotting of functions 342, 1182f.
upwind differencing 832f., 837	POCS (projection onto convex sets) 805
variational methods 824	Poetry 5f.
varieties of error 831ff.	Pointer (Fortran 90) 2/xiiif., 938f., 944f.,
von Neumann stability analysis 827f.,	953ff., 1197, 1212, 1266
830, 833f., 840	as alias 939, 944f., 1286, 1333
wave equation 818, 825f.	allocating an array 941 allocating storage for derived type 955
see also Elliptic partial differential equa-	for array of arrays 956, 1336
tions; Finite difference equations (FDEs) Partial pivoting 29	array of, forbidden 956, 1337
Partition-exchange 323, 333	associated with target 938f., 944f., 952f.,
and pack() intrinsic function 1170	1197
Partitioned matrix, inverse of 70	in Fortran 95 961
Party tricks 95ff., 168	to function, forbidden 1067, 1210
Parzen window 547	initialization to null 2/xv, 961
Pascal, Numerical Recipes in 2/x, 2/xvii, 1	returning array of unknown size 955f.,
Pass-the-buck idiom 1102, 1128	1184, 1259, 1261, 1327
Path integration, for function evaluation 201ff.,	undefined status 952f., 961, 1070, 1266,
263, 1138	1302
Pattern multiply of sparse matrices 74	Poisson equation 519, 818, 852
PBCG (preconditioned biconjugate gradient	Poisson probability function
method) 78f., 824	cumulative 214
PC methods see Predictor-corrector methods	deviates from 281, 283ff., 571, 1154 semi-invariants of 608
PCGPACK 71	tails compared to Gaussian 653
PDEs see Partial differential equations	Poisson process 278, 282ff., 1153
Pearson's r 630ff., 1276	Polak-Ribiere algorithm 390, 414ff., 1214
PECE method 741	Poles see Complex plane, poles in
Pentagon, symmetries of 895 Percentile 320	Polishing of roots 356, 363ff., 370f., 1193
	poly() utility function 973, 977, 989, 998,
Period of linear congruential generator 268 Periodic boundary conditions 850, 858	1072, 1096, 1192, 1258, 1284
Periodogram 543ff., 566, 1258ff.	Polymorphism 8
Lomb's normalized 569f., 574f., 1258ff.	Polynomial interpolation 99, 102ff., 1043
variance of 544f.	Aitken's algorithm 102
Perl (programming language) 1/xvi	in Bulirsch-Stoer method 724, 726, 1305
Perron's theorems, for convergence of recur-	coefficients for 113ff., 1047f.
rence relations 174f.	Lagrange's formula 84, 102f.
Perturbation methods for matrix inversion	multidimensional 116ff., 1049ff. Neville's algorithm 102f., 105, 134, 182,
65ff.	1043
Phase error 831	pathology in determining coefficients for
Phase-locked loop 700	116
Phi statistic 625	in predictor-corrector method 740
Phillips-Twomey method 799ff.	smoothing filters 645
Pi, computation of 906ff., 1352ff., 1357f.	see also Interpolation
Piecewise parabolic method (PPM) 837	Polynomials 167ff.
Pincherle's theorem 175	algebraic manipulations 169, 1072
Pivot element 29, 33, 757	approximate roots of Hermite polynomials
in linear programming 428f. Pivoting 27, 29ff., 46, 66, 90, 1014	1062
full 29, 1014	approximate roots of Jacobi polynomials
implicit 30, 38, 1014, 1017	1064
in LU decomposition 37f., 1017	approximate roots of Laguerre polynomials 1061
partial 29, 33, 37f., 1017	approximating modified Bessel functions
and QR decomposition 92	230
in reduction to Hessenberg form 478	approximation from Chebyshev coefficients
in relaxation method 757	191, 1078f.
as row and column operations 32	AUTODIN-II 890
for tridiagonal systems 43	CCITT 889f.
Pixel 519, 596, 803, 811	characteristic 368, 1193
PL/1 2/x	characteristic, for digital filters 554, 559,
Planck's constant 842	1257

characteristic, for eigenvalues of matrix	compared to other methods 740
449, 469	fallacy of multiple correction 741
Chebyshev 184ff., 1076ff.	with fixed number of iterations 741
coefficients from roots 980	functional iteration vs. Newton's rule 742
CRC-16 890	multivalue compared with multistep 742ff.
cumulants of 977, 999, 1071f., 1192,	starting and stopping 742, 744
1365, 1378f.	stepsize control 742f. present() intrinsic function 952
deflation 362ff., 370f., 977 derivatives of 167, 978, 1071	Prime numbers 915
division 84, 169, 362, 370, 977, 1072	Primitive polynomials modulo 2 287ff., 301f.,
evaluation of 167, 972, 977, 998f., 1071,	889
1258, 1365, 1376ff.	Principal directions 408f., 1210
evaluation of derivatives 167, 978, 1071	Principal solution, of inverse problem 797
extrapolation in Bulirsch-Stoer method	PRIVATE attribute 957, 1067
724, 726, 1305f.	Prize, \$1000 offered 272, 1141, 1150f.
extrapolation in Romberg integration 134	Probability see Random number generator;
fitting 83, 114, 191, 645, 665, 674, 1078f.,	Statistical tests
1291	Probability density, change of variables in
generator for CRC 889	278f.
ill-conditioned 362	Procedure see Program(s); Subprogram
masked evaluation of 1378	Process loss 548
matrix method for roots 368, 1193	product() intrinsic function 948
minimax 186, 198, 1076	Product Nystrom method 789, 1331
monic 142f.	Program(s)
multiplication 169	as black boxes 1/xviii, 6, 26, 52, 205,
operation count for 168	341, 406
orthonormal 142, 184, 1009, 1061	dependencies 921ff., 1434ff.
parallel operations on 977ff., 998f., 1071f.,	encapsulation 7 interfaces 2, 8
1192	modularization 7f.
primitive modulo 2 287ff., 301f., 889	organization 5ff.
roots of 178ff., 362ff., 368, 1191ff. shifting of 192f., 978, 1079	type declarations 2
stopping criterion in root finding 366	typography of 2f., 12, 937
poly_term() utility function 974, 977, 989,	validation 3f.
999, 1071f., 1192	Programming, serial vs. parallel 965, 987
Port, serial data 892	Projection onto convex sets (POCS) 805
Portability 3, 963	Projection operator, nonexpansive 805
Portable random number generator see Ran-	Prolongation operator 864, 1337
dom number generator	Protocol, for communications 888
Positive definite matrix, testing for 90	PSD (power spectral density) see Fourier
Positivity constraints 423	transform; Spectral density
Postal Service (U.S.), barcode 894	Pseudo-random numbers 266ff., 1141ff.
PostScript 1/xvi, 1/xxiii, 2/xx	PUBLIC attribute 957, 1067
Powell's method 389, 402, 406ff., 1210ff.	Puns, particularly bad 167, 744, 747
Power (in a signal) 492f.	PURE attribute 2/xv, 960f., 964, 986 put_diag() utility function 985, 990, 1005,
Power series 159ff., 167, 195	1200
economization of 192f., 1061, 1080	Pyramidal algorithm 586, 1264
Padé approximant of 194ff., 1080f.	Pythagoreans 392
Power spectral density see Fourier transform;	Tythagoreans 372
Spectral density Power spectrum estimation <i>see</i> Fourier trans-	
form; Spectral density	Q L see Eigensystems
PowerStation, Microsoft Fortran 2/xix	QR see Eigensystems
PPM (piecewise parabolic method) 837	QR decomposition 91f., 382, 386, 1039f.,
Precision	1199
converting to double 1362	backsubstitution 92, 1040
floating point 882, 937, 1343, 1361ff.	and least squares 668
multiple 906ff., 1352ff., 1362	operation count 92
Preconditioned biconjugate gradient method	pivoting 92
(PBCG) 78f.	updating 94, 382, 386, 1041, 1199
Preconditioning, in conjugate gradient methods	use for orthonormal basis 58, 94
824	Quadratic
Predictor-corrector methods 702, 730, 740ff.	convergence 49, 256, 351, 356, 409f.,
Adams-Bashforth-Moulton schemes 741	419, 906
adaptive order methods 744	equations 20, 178, 391, 457

interpolation 353, 364	Quantum mechanics, Uncertainty Principle
programming 436	600
Quadrature 123ff., 1052ff.	Quartile value 320 Quasi-Newton methods for minimization 390,
adaptive 123, 190, 788	418ff., 1215
alternative extended Simpson's rule 128	Quasi-random sequence 299ff., 318, 881, 888
arbitrary weight function 151ff., 789, 1064, 1328	Halton's 300
automatic 154	for Monte Carlo integration 304, 309, 318
Bode's rule 126	Sobol's 300ff., 1160
change of variable in 137ff., 788, 1056ff.	see also Random number generator
by Chebyshev fitting 124, 189, 1078	Quicksort 320, 323ff., 330, 333, 1169f.
classical formulas for 124ff.	Quotient-difference algorithm 164
Clenshaw-Curtis 124, 190, 512f.	
closed formulas 125, 127f.	
and computer science 881	R -estimates 694
by cubic splines 124	Radioactive decay 278
error estimate in solution 784	Radix base for floating point arithmetic 476, 882, 907, 913, 1231, 1343, 1357
extended midpoint rule 129f., 135, 1054f.	Radix conversion 902, 906, 913, 1357
extended rules 127ff., 134f., 786, 788ff., 1326, 1328	radix() intrinsic function 1231
extended Simpson's rule 128	Radix sort 1172
Fourier integrals 577ff., 1261ff.	Ramanujan's identity for π 915
Fourier integrals, infinite range 583	Random bits, generation of 287ff., 1159f.
Gauss-Chebyshev 144, 512f.	Random deviates 266ff., 1141ff.
Gauss-Hermite 144, 789, 1062	binomial 285f., 1155
Gauss-Jacobi 144, 1063	exponential 278, 1151f.
Gauss-Kronrod 154	gamma distribution 282f., 1153 Gaussian 267, 279f., 571, 798, 1152f.
Gauss-Laguerre 144, 789, 1060	normal 267, 279f., 571, 1796, 1132f.
Gauss-Legendre 144, 783, 789, 1059,	Poisson 283ff., 571, 1154f.
1325 Cover Lebette 154 100 512	quasi-random sequences 299ff., 881, 888,
Gauss-Lobatto 154, 190, 512 Gauss-Radau 154	1160f.
Gaussian integration 127, 140ff., 781,	uniform 267ff., 1158f., 1166
783, 788f., 1009, 1059ff., 1325, 1328f.	uniform integer 270, 274ff.
Gaussian integration, nonclassical weight	Random number generator 266ff., 1141ff.
function 151ff., 788f., 1064f., 1328f.	bitwise operations 287 Box-Muller algorithm 279, 1152
for improper integrals 135ff., 789, 1055,	Data Encryption Standard 290ff., 1144,
1328	1156ff.
for integral equations 781f., 786, 1325ff.	good choices for modulus, multiplier and
Monte Carlo 124, 155ff., 295ff., 306ff., 1161ff.	increment 274ff.
multidimensional 124, 155ff., 1052, 1065ff.	initializing 1144ff.
multidimensional, by recursion 1052,	for integer-valued probability distribution
1065	283f., 1154
Newton-Cotes formulas 125ff., 140	integer vs. real implementation 273 L'Ecuyer's long period 271f.
open formulas 125ff., 129f., 135	lagged Fibonacci generator 1142, 1148ff.
related to differential equations 123	linear congruential generator 267ff., 1142
related to predictor-corrector methods 740	machine language 269
Romberg integration 124, 134f., 137, 182,	Marsaglia shift register 1142, 1148ff.
717, 788, 1054f., 1065, 1067	Minimal Standard, Park and Miller's 269,
semi-open formulas 130 Simpson's rule 126, 133, 136f., 583, 782,	1142
788ff., 1053	nonrandomness of low-order bits 268f.
Simpson's three-eighths rule 126, 789f.	parallel 1009 perfect 272, 1141, 1150f.
singularity removal 137ff., 788, 1057ff.,	planes, numbers lie on 268
1328ff.	portable 269ff., 1142
singularity removal, worked example 792,	primitive polynomials modulo 2 287ff.
1328ff.	pseudo-DES 291, 1144, 1156ff.
trapezoidal rule 125, 127, 130ff., 134f.,	quasi-random sequences 299ff., 881, 888,
579, 583, 782, 786, 1052ff., 1326f.	1160f.
using FFTs 124	quick and dirty 274
weight function $\log x$ 153 see also Integration of functions	quicker and dirtier 275 in Quicksort 324
Quadrature mirror filter 585, 593	random access to <i>n</i> th number 293
Z	random decess to rem mamber 2/3

random bits 287ff., 1159f.	continued fraction evaluation 164f.
recommendations 276f.	convergence 175
rejection method 281ff.	cosine function 172, 500
serial 1141f.	
	cyclic reduction 974
shuffling procedure 270, 272	dominant solution 174
in simulated annealing method 438	exponential integrals 172
spectral test 274	gamma function 206
state space 1143f.	generation of random bits 287f.
state space exhaustion 1141	geometric progression 972, 996
subtractive method 273, 1143	Golden Mean 21
system-supplied 267f.	Legendre polynomials 172
timings 276f., 1151	minimal vs. dominant solution 174
transformation method 277ff.	modified Bessel function 232
trick for trigonometric functions 280	Neville's 103, 182
Random numbers see Monte Carlo; Random	orthonormal polynomials 142
deviates	Perron's theorems 174f.
Random walk 20	Pincherle's theorem 175
random_number() intrinsic function 1141,	for polynomial cumulants 977, 999, 1071f.
1143	polynomial interpolation 103, 183
random_seed() intrinsic function 1141	primitive polynomials modulo 2 287f.
RANDU, infamous routine 268	random number generator 268
Range 53f.	rational function interpolation 105f., 1043
Rank (matrix) 53	recursive doubling 973, 977, 988, 999,
	1071f., 1073
kernel of finite 785	
Rank (sorting) 320, 332, 1176	second order 974f., 1074
Rank (statistics) 633ff., 694f., 1277	sequence of trig functions 173
Kendall's tau 637ff., 1279	sine function 172, 500
Spearman correlation coefficient 634f.,	spherical harmonics 247
1277ff.	stability of 21, 173ff., 177, 224f., 227f.,
sum squared differences of 634, 1277	232, 247, 975
Ratio variable (statistics) 623	trig functions 572
Rational Chebyshev approximation 197ff.,	weight of Gaussian quadrature 144f.
1081f.	Recursion
Rational function 99, 167ff., 194ff., 1080f.	in Fortran 90 958
approximation for Bessel functions 225	in multigrid method 865, 1009, 1336
approximation for continued fraction 164,	Recursive doubling 973f., 979
211, 219f.	cumulants of polynomial 977, 999, 1071f.
	linear recurrences 973, 988, 1073
Chebyshev approximation 197ff., 1081f.	
evaluation of 170, 1072f.	tridiagonal systems 976
extrapolation in Bulirsch-Stoer method	RECURSIVE keyword 958, 1065, 1067
718ff., 726, 1306f.	Recursive Monte Carlo integration 306ff.,
interpolation and extrapolation using 99,	1161
104ff., 194ff., 718ff., 726	Recursive procedure 2/xiv, 958, 1065, 1067,
as power spectrum estimate 566	1166
interpolation and extrapolation using 1043f.,	as parallelization tool 958
	•
1080ff., 1306	base case 958
minimax 198	for multigrid method 1009, 1336
Re-entrant procedure 1052	re-entrant 1052
real() intrinsic function, ambiguity of 947	Recursive stratified sampling 314ff., 1164ff.
Realizable (causal) 552, 554f.	Red-black see Odd-even ordering
reallocate() utility function 955, 990, 992,	Reduction functions 948ff.
1070, 1302	Reduction of variance in Monte Carlo integra-
Rearranging see Sorting	tion 299, 306ff.
Reciprocal, multiple precision 910f., 1355f.	References (explanation) 4f.
Record, in data file 329	References (general bibliography) 916ff.,
Recurrence relation 172ff., 971ff.	1359f.
arithmetic progression 971f., 996	Reflection formula for gamma function 206
associated Legendre polynomials 247	Regula falsi (false position) 347ff., 1185f.
Bessel function 172, 224, 227f., 234	Regularity condition 775
binomial coefficients 209	Regularization
Bulirsch-Stoer 105f.	compared with optimal filtering 801
characteristic polynomial of tridiagonal	constrained linear inversion method 799ff.
matrix 469	of inverse problems 796ff.
Clenshaw's recurrence formula 176f.	linear 799ff.
and continued fraction 175	nonlinear 813

use of a priori covariances 700 objective criterion 802 Phillips-Twomey method 799ff. see also Statistical tests Tikhonov-Miller 799ff. Romberg integration 124, 134f., 137, 182, trade-off curve 799 717, 788, 1054f., 1065 Root finding 143, 340ff., 1009, 1059 two-dimensional 803 zeroth order 797 advanced implementations of Newton's rule see also Inverse problems Regularizing operator 798 Bairstow's method 364, 370, 1193 Reid, John 2/xiv, 2/xvi bisection 343, 346f., 352f., 359, 390, 469, 698, 1184f. Rejection method for random number generator 281ff. bracketing of roots 341, 343ff., 353f., 362, 364, 369, 1183f. Relaxation method Brent's method 341, 349, 660f., 1188f., for algebraically difficult sets 763 automated allocation of mesh points 774f., Broyden's method 373, 382f., 386, 1199 compared with multidimensional minimizacomputation of spheroidal harmonics 764ff., 1319ff. tion 375 for differential equations 746f., 753ff., complex analytic functions 364 in complex plane 204 1316ff. elliptic partial differential equations 823, convergence criteria 347, 374 854ff., 1332f. deflation of polynomials 362ff., 370f., example 764ff., 1319ff. 1192 Gauss-Seidel method 855, 864ff., 876, without derivatives 354 1338, 1341 double root 341 internal boundary conditions 775ff. eigenvalue methods 368, 1193 internal singular points 775ff. false position 347ff., 1185f. Jacobi's method 855f., 864 Jenkins-Traub method 369 Laguerre's method 341, 366f., 1191f. successive over-relaxation (SOR) 857ff., Lehmer-Schur algorithm 369 862, 866, 1332f. see also Multigrid method Maehly's procedure 364, 371 Remes algorithms matrix method 368, 1193 exchange algorithm 553 Muller's method 364, 372 multiple roots 341 for minimax rational function 199 reshape() intrinsic function 950 Newton's rule 143f., 180, 341, 355ff., 362, 364, 370, 372ff., 376, 469, 740, communication bottleneck 969 749f., 754, 787, 874, 876, 911f., 1059, order keyword 1050, 1246 Residual 49, 54, 78 1189, 1194, 1196, 1314ff., 1339, 1341, 1355f. in multigrid method 863, 1338 Resolution function, in Backus-Gilbert method pathological cases 343, 356, 362, 372 polynomials 341, 362ff., 449, 1191f. 807 Response function 531 in relaxation method 754, 1316 Restriction operator 864, 1337 Ridders' method 341, 349, 351, 1187 root-polishing 356, 363ff., 369ff., 1193 RESULT keyword 958, 1073 Reward, \$1000 offered 272, 1141, 1150f. safe Newton's rule 359, 1190 secant method 347ff., 358, 364, 399, Richardson's deferred approach to the limit 134, 137, 182, 702, 718ff., 726, 788, 1186f. in shooting method 746, 749f., 1314f. 869 see also Bulirsch-Stoer method singular Jacobian in Newton's rule 386 Richtmyer artificial viscosity 837 stopping criterion for polynomials 366 use of minimum finding 341 Ridders' method, for numerical derivatives 182, 1075 using derivatives 355ff., 1189 zero suppression 372 Ridders' method, root finding 341, 349, 351, 1187 see also Roots Riemann shock problem 837 Root polishing 356, 363ff., 369ff., 1193 Right eigenvalues and eigenvectors 451 Rise/fall time 548f. Chebyshev polynomials 184 Robust estimation 653, 694ff., 700, 1294 complex nth root of unity 999f., 1379 Andrew's sine 697 cubic equations 179f. average deviation 605 Hermite polynomials, approximate 1062 Jacobi polynomials, approximate 1064 double exponential errors 696 Kalman filtering 700 Laguerre polynomials, approximate 1061 Lorentzian errors 696f. multiple 341, 364ff., 1192 mean absolute deviation 605 nonlinear equations 340ff. polynomials 341, 362ff., 449, 1191f. nonparametric correlation 633ff., 1277 Tukey's biweight 697 quadratic equations 178

reflection in unit circle 560, 1257	Sampling theorem 495, 543
square, multiple precision 912, 1356	for numerical approximation 600ff.
see also Root finding Rosenbrock method 730, 1308	Sande-Tukey FFT algorithm 503
compared with semi-implicit extrapolation	SAVE attribute 953f., 958f., 961, 1052, 1070 1266, 1293
739	redundant use of 958f.
stepsize control 731, 1308f.	SAVE statements 3
Roundoff error 20, 881, 1362	Savitzky-Golay filters
bracketing a minimum 399	for data smoothing 644ff., 1283f.
compile time vs. run time 1012	for numerical derivatives 183, 645
conjugate gradient method 824	scale() intrinsic function 1107
eigensystems 458, 467, 470, 473, 476, 479, 483	Scallop loss 548
extended trapezoidal rule 132	Scatter-with-combine functions 984, 1002f.,
general linear least squares 668, 672	1032, 1366, 1380f. scatter_add() utility function 984, 990, 1002,
graceful 883, 1343	1032
hardware aspects 882, 1343	scatter_max() utility function 984, 990, 1003
Householder reduction 466	Schonfelder, Lawrie 2/xi
IEEE standard 882f., 1343 interpolation 100	Schrage's algorithm 269
least squares fitting 658, 668	Schrödinger equation 842ff.
Levenberg-Marquardt method 679	Schultz's method for matrix inverse 49, 598
linear algebraic equations 23, 27, 29, 47,	Scope 956ff., 1209, 1293, 1296
56, 84, 1022	Scoping unit 939 SDLC checksum 890
linear predictive coding (LPC) 564	Searching
magnification of 20, 47, 1022	with correlated values 111, 1046f.
maximum entropy method (MEM) 567 measuring 881f., 1343	an ordered table 110f., 1045f.
multidimensional minimization 418, 422	selection 333, 1177f.
multiple roots 362	Secant method 341, 347ff., 358, 364, 399,
numerical derivatives 180f.	1186f.
recurrence relations 173	Broyden's method 382f., 1199f.
reduction to Hessenberg form 479	multidimensional (Broyden's) 373, 382f.,
series 164f.	Second Euler-Maclaurin summation formula
straight line fitting 658 variance 607	135f.
Row degeneracy 22	Second order differential equations 726, 130
Row-indexed sparse storage 71f., 1030	Seed of random number generator 267, 1146
transpose 73f.	select case statement 2/xiv, 1010, 1036
Row operations on matrix 28, 31f.	Selection 320, 333, 1177f.
Row totals 624	find m largest elements 336, 1179f.
RSS algorithm 314ff., 1164 RST properties (reflexive, symmetric, transi-	heap algorithm 336, 1179 for median 698, 1294
tive) 338	operation count 333
Runge-Kutta method 702, 704ff., 731, 740,	by packing 1178
1297ff., 1308	parallel algorithms 1178
Cash-Karp parameters 710, 1299f.	by partition-exchange 333, 1177f.
embedded 709f., 731, 1298, 1308	without rearrangement 335, 1178f.
high-order 705 quality control 722	timings 336
stepsize control 708ff.	use to find median 609
Run-length encoding 901	Semi-implicit Euler method 730, 735f. Semi-implicit extrapolation method 730,
Runge-Kutta method	735f., 1310f.
high-order 1297	compared with Rosenbrock method 739
stepsize control 1298f.	stepsize control 737, 1311f.
Rybicki, G.B. 84ff., 114, 145, 252, 522, 574,	Semi-implicit midpoint rule 735f., 1310f.
600	Semi-invariants of a distribution 608
0	Sentinel, in Quicksort 324, 333
S -box for Data Encryption Standard 1148	Separable kernel 785
Sampling	Separation of variables 246 Serial computing
importance 306f. Latin square or hypercube 305f.	convergence of quadrature 1060
recursive stratified 314ff., 1164	random numbers 1141
stratified 308f.	sorting 1167
uneven or irregular 569, 648f., 1258	Serial data port 892

Series 159ff.	method of Nelder and Mead 389, 402ff.,
accelerating convergence of 159ff.	444, 697f., 1208f., 1222ff.
alternating 160f., 1070	use in simulated annealing 444, 1222ff.
asymptotic 161	Simpson's rule 124ff., 128, 133, 136f., 583,
Bessel function K_{ν} 241	782, 788f., 1053f.
Bessel function Y_{ν} 235	Simpson's three-eighths rule 126, 789f.
Bessel functions 160, 223	Simulated annealing see Annealing, method of
cosine integral 250	simulated
divergent 161	Simulation see Monte Carlo
economization 192f., 195, 1080	Sine function
Euler's transformation 160f., 1070	evaluated from $tan(\theta/2)$ 173
exponential integral 216, 218	recurrence 172
Fresnel integral 248	series 160
hypergeometric 202, 263, 1138	Sine integral 248, 250ff., 1123, 1125f.
incomplete beta function 219	continued fraction 250
incomplete gamma function 210, 1090f.	series 250
Laurent 566	see also Cosine integral
relation to continued fractions 163f.	Sine transform see Fast Fourier transform
roundoff error in 164f.	(FFT); Fourier transform
sine and cosine integrals 250	Singleton's algorithm for FFT 525
sine function 160	Singular value decomposition (SVD) 23, 25,
Taylor 355f., 408, 702, 709, 754, 759	51ff., 1022
transformation of 160ff., 1070	approximation of matrices 58f.
van Wijngaarden's algorithm 161, 1070	backsubstitution 56, 1022f.
Shaft encoder 886	and bases for nullspace and range 53
Shakespeare 9	confidence levels from 693f.
Shampine's Rosenbrock parameters 732, 1308	covariance matrix 693f.
shape() intrinsic function 938, 949	fewer equations than unknowns 57
Shell algorithm (Shell's sort) 321ff., 1168	for inverse problems 797 and least squares 54ff., 199f., 668, 670ff.
Sherman-Morrison formula 65ff., 83, 382	*
Shifting of eigenvalues 449, 470f., 480	1081, 1290f. in minimization 410
Shock wave 831, 837	more equations than unknowns 57f.
Shooting method computation of spheroidal harmonics 772,	parallel algorithms 1026
1321ff.	and rational Chebyshev approximation
for differential equations 746, 749ff.,	199f., 1081f.
770ff., 1314ff., 1321ff.	of square matrix 53ff., 1023
for difficult cases 753, 1315f.	use for ill-conditioned matrices 56, 58,
example 770ff., 1321ff.	449
interior fitting point 752, 1315f., 1323ff.	use for orthonormal basis 58, 94
Shuffling to improve random number generator	Singularities
270, 272	of hypergeometric function 203, 263
Side effects	in integral equations 788ff., 1328
prevented by data hiding 957, 1209, 1293,	in integral equations, worked example
1296	792, 1328ff.
and PURE subprograms 960	in integrands 135ff., 788, 1055, 1328ff.
Sidelobe fall-off 548	removal in numerical integration 137ff.,
Sidelobe level 548	788, 1057ff., 1328ff.
sign() intrinsic function, modified in Fortran 95	Singularity, subtraction of the 789
961	SIPSOL 824
Signal, bandwidth limited 495	Six-step framework, for FFT 983, 1240
Significance (numerical) 19	size() intrinsic function 938, 942, 945, 948
Significance (statistical) 609f.	Skew array section 2/xii, 945, 960, 985, 1284
one- vs. two-sided 632	Skewness of distribution 606, 608, 1269
peak in Lomb periodogram 570	Smoothing
of 2-d K-S test 640, 1281	of data 114, 644ff., 1283f.
two-tailed 613	of data in integral equations 781
SIMD machines (Single Instruction Multiple	importance in multigrid method 865
Data) 964, 985f., 1009, 1084f.	sn function 261, 1137f.
Similarity transform 452ff., 456, 476, 478,	Snyder, N.L. 1/xvi
482	Sobol's quasi-random sequence 300ff., 1160f
Simplex	Sonata 9
defined 402	Sonnet 9
method in linear programming 389, 402,	Sorting 320ff., 1167ff.
423ff., 431ff., 1216ff.	bubble sort 1168

bubble sort cautioned against 321 compared to selection 333 covariance matrix 669, 681, 1289	routine for 247f., 1122 stable recurrence for 247 table of 246
eigenvectors 461f., 1227 Heapsort 320, 327f., 336, 1171f., 1179 index table 320, 329f., 1170, 1173ff., 1176	see also Associated Legendre polynomials Spheroidal harmonics 764ff., 770ff., 1319ff. boundary conditions 765 normalization 765
operation count 320ff.	routine for 768ff., 1319ff., 1323ff.
by packing 1171	Spline 100
parallel algorithms 1168, 1171f., 1176	cubic 107ff., 1044f.
Quicksort 320, 323ff., 330, 333, 1169f.	gives tridiagonal system 109
radix sort 1172 rank table 320, 332, 1176	natural 109, 1044f. operation count 109
ranking 329, 1176	two-dimensional (bicubic) 120f., 1050f.
by reshaping array slices 1168 Shell's method 321ff., 1168	spread() intrinsic function 945, 950, 969, 1000, 1094, 1290f.
straight insertion 321f., 461f., 1167, 1227	and dimensional expansion 966ff.
SP, defined 937	Spread matrix 808
SPARC or SPARCstation 1/xxii, 2/xix, 4	Spread spectrum 290
Sparse linear equations 23, 63ff., 732, 1030 band diagonal 43, 1019ff.	Square root, complex 172 Square root, multiple precision 912, 1356f.
biconjugate gradient method 77, 599,	Square window 546, 1254ff.
1034	SSP (small-scale parallel) machines 965ff.,
data type for 1030	972, 974, 984, 1011, 1016ff., 1021,
indexed storage 71f., 1030	1059f., 1226ff., 1250
in inverse problems 804	Stability 20f.
minimum residual method 78 named patterns 64, 822	of Clenshaw's recurrence 177 Courant condition 829, 832ff., 836, 846
partial differential equations 822ff.	diffusion equation 840
relaxation method for boundary value prob-	of Gauss-Jordan elimination 27, 29
lems 754, 1316	of implicit differencing 729, 840
row-indexed storage 71f., 1030	mesh-drift in PDEs 834f.
wavelet transform 584, 598	nonlinear 831, 837
see also Matrix	partial differential equations 820, 827f.
Spearman rank-order coefficient 634f., 694f., 1277 Special functions <i>see</i> Function	of polynomial deflation 363 in quadrature solution of Volterra equation 787f.
Spectral analysis see Fourier transform; Periodogram	of recurrence relations 173ff., 177, 224f., 227f., 232, 247
Spectral density 541	and stiff differential equations 728f.
and data windowing 545ff.	von Neumann analysis for PDEs 827f.,
figures of merit for data windows 548f.	830, 833f., 840
normalization conventions 542f.	see also Accuracy
one-sided PSD 492	Stabilized Kolmogorov-Smirnov test 621 Stabilizing functional 798
periodogram 543ff., 566, 1258ff. power spectral density (PSD) 492f.	Staggered leapfrog method 833f.
power spectral density (182) 1921. power spectral density per unit time 493	Standard (probable) errors 1288, 1290
power spectrum estimation by FFT 542ff.,	Standard deviation
1254ff.	of a distribution 605, 1269
power spectrum estimation by MEM 565ff.,	of Fisher's z 632
1258 two-sided PSD 493	of linear correlation coefficient 630 of sum squared difference of ranks 635,
variance reduction in spectral estimation	1277
545	Standard (probable) errors 610, 656, 661,
Spectral lines, how to smooth 644	667, 671, 684
Spectral methods for partial differential equa-	Stars, as text separator 1009
tions 825	Statement function, superseded by internal sub
Spectral radius 856ff., 862	program 1057, 1256
Spectral test for random number generator 274	Statement labels 9 Statistical error 653
Spectrum see Fourier transform	Statistical tests 603ff., 1269ff.
Spherical Bessel functions 234	Anderson-Darling 621
routine for 245, 1121	average deviation 605, 1269
Spherical harmonics 246ff.	bootstrap method 686f.
orthogonality 246	chi-square 614f., 623ff., 1272, 1275f.

contingency coefficient C 625, 1275	Stiff equations 703, 727ff., 1308ff.
contingency tables 622ff., 638, 1275f.	Kaps-Rentrop method 730, 1308
correlation 603f. Cramer's V 625, 1275	methods compared 739 predictor-corrector method 730
difference of distributions 614ff., 1272	r.h.s. independent of $x = 729$ f.
difference of means 609ff. 1269f.	Rosenbrock method 730, 1308
difference of variances 611, 613, 1271	scaling of variables 730
entropy measures of association 626ff.,	semi-implicit extrapolation method 730,
1275f.	1310f.
F-test 611, 613, 1271	semi-implicit midpoint rule 735f., 1310f.
Fisher's z-transformation 631f., 1276	Stiff functions 100, 399
general paradigm 603	Stirling's approximation 206, 812
Kendall's tau 634, 637ff., 1279	Stoermer's rule 726, 1307
Kolmogorov-Smirnov 614, 617ff., 640,	Stopping criterion, in multigrid method 875f.
694, 1273f., 1281	Stopping criterion, in polynomial root finding
Kuiper's statistic 621	366
kurtosis 606, 608, 1269 L-estimates 694	Storage
linear correlation coefficient 630ff., 1276	band diagonal matrix 44, 1019 sparse matrices 71f., 1030
M-estimates 694ff.	Storage association 2/xiv
mean 603ff., 608ff., 1269f.	Straight injection 867
measures of association 604, 622ff., 1275	Straight insertion 321f., 461f., 1167, 1227
measures of central tendency 604ff., 1269	Straight line fitting 655ff., 667f., 1285ff.
median 605, 694	errors in both coordinates 660ff., 1286ff.
mode 605	robust estimation 698, 1294ff.
moments 604ff., 608, 1269	Strassen's fast matrix algorithms 96f.
nonparametric correlation 633ff., 1277	Stratified sampling, Monte Carlo 308f., 314
Pearson's r 630ff., 1276	Stride (of an array) 944
for periodic signal 570	communication bottleneck 969
phi statistic 625	Strongly implicit procedure (SIPSOL) 824
R-estimates 694	Structure constructor 2/xii
rank correlation 633ff., 1277	Structured programming 5ff.
robust 605, 634, 694ff. semi-invariants 608	Student's probability distribution 221f. Student's t-test
for shift vs. for spread 620f.	for correlation 631
significance 609f., 1269ff.	for difference of means 610, 1269
significance, one- vs. two-sided 613, 632	for difference of means (paired samples)
skewness 606, 608, 1269	612, 1271
Spearman rank-order coefficient 634f.,	for difference of means (unequal variances)
694f., 1277	611, 1270
standard deviation 605, 1269	for difference of ranks 635, 1277
strength vs. significance 609f., 622	Spearman rank-order coefficient 634,
Student's t 610, 631, 1269	1277
Student's t, for correlation 631	Sturmian sequence 469
Student's t, paired samples 612, 1271 Student's t, Spearman rank-order coeffi-	Sub-random sequences see Quasi-random se-
cient 634, 1277	quence Subprogram 938
Student's t, unequal variances 611, 1270	for data hiding 957, 1209, 1293, 1296
sum squared difference of ranks 635,	internal 954, 957, 1057, 1067, 1226, 1256
1277	in module 940
Tukey's trimean 694	undefined variables on exit 952f., 961,
two-dimensional 640, 1281ff.	1070, 1266, 1293, 1302
variance 603ff., 607f., 612f., 1269ff.	Subscript triplet (for array) 944
Wilcoxon 694	Subtraction, multiple precision 907, 1353
see also Error; Robust estimation	Subtractive method for random number genera-
Steak, without sizzle 809	tor 273, 1143
Steed's method	Subvector scaling 972, 974, 996, 1000
Bessel functions 234, 239	Successive over-relaxation (SOR) 857ff., 862,
continued fractions 164f. Steepest descent method 414	1332f. bad in multigrid method 866
in inverse problems 804	Chebyshev acceleration 859f., 1332f.
Step	choice of overrelaxation parameter 858
doubling 130, 708f., 1052	with logical mask 1333f.
tripling 136, 1055	parallelization 1333
Stieltjes, procedure of 151	sum() intrinsic function 945, 948, 966

Sum squared difference of ranks 634, 1277	serial algorithm 1018f.
Sums see Series	see also Matrix
Sun 1/xxii, 2/xix, 886	Trigonometric
SPARCstation 1/xxii, 2/xix, 4	functions, linear sequences 173
Supernova 1987A 640	functions, recurrence relation 172, 572
SVD see Singular value decomposition (SVD)	functions, $tan(\theta/2)$ as minimal 173
swap() utility function 987, 990f., 1015, 1210	interpolation 99
Symbol, of operator 866f.	solution of cubic equation 179f.
Synthetic division 84, 167, 362, 370	Truncation error 20f., 399, 709, 881, 1362
parallel algorithms 977ff., 999, 1048,	in multigrid method 875
1071f., 1079, 1192	in numerical derivatives 180
repeated 978f.	Tukey's biweight 697
Systematic errors 653	Tukey's trimean 694
bystematic errors 055	
	Turbo Pascal (Borland) 8
T ableau (interpolation) 103, 183	Twin errors 895
Tangent function, continued fraction 163	Two-dimensional see Multidimensional
Target, for pointer 938f., 945, 952f.	Two-dimensional K–S test 640, 1281ff.
Taylor series 180, 355f., 408, 702, 709, 742,	Two-pass algorithm for variance 607, 1269
754, 759	Two-point boundary value problems 702,
Test programs 3	745ff., 1314ff.
	automated allocation of mesh points 774f.,
Thermodynamics, analogy for simulated an-	777
nealing 437	boundary conditions 745ff., 749, 751f.,
Thinking Machines, Inc. 964	771, 1314ff.
Threshold multiply of sparse matrices 74,	difficult cases 753, 1315f.
1031	eigenvalue problem for differential equa-
Tides 560f.	tions 748, 764ff., 770ff., 1319ff.
Tikhonov-Miller regularization 799ff.	free boundary problem 748, 776
Time domain 490	grid (mesh) points 746f., 754, 774f., 777
Time splitting 847f., 861	internal boundary conditions 775ff.
tiny() intrinsic function 952	internal singular points 775ff.
Toeplitz matrix 82, 85ff., 195, 1038	linear requires no iteration 751
LU decomposition 87	•
new, fast algorithms 88f.	multiple shooting 753
nonsymmetric 86ff., 1038	problems reducible to standard form 748
Tongue twisters 333	regularity condition 775
Torus 297f., 304	relaxation method 746f., 753ff., 1316ff.
Trade-off curve 795, 809	relaxation method, example of 764ff.,
Trademarks 1/xxii, 2/xixf.	1319
Transformation	shooting to a fitting point 751ff., 1315f.,
Gauss 256	1323ff.
Landen 256	shooting method 746, 749ff., 770ff., 1314ff.,
method for random number generator 277ff.	1321ff.
•	shooting method, example of 770ff., 1321ff.
Transformational functions 948ff.	singular endpoints 751, 764, 771, 1315f.,
Transforms, number theoretic 503f.	1319ff.
Transport error 831ff.	see also Elliptic partial differential equa-
transpose() intrinsic function 950, 960, 969,	tions
981, 1050, 1246	Two-sided exponential error distribution 696
Transpose of sparse matrix 73f.	Two-sided power spectral density 493
Trapezoidal rule 125, 127, 130ff., 134f., 579,	Two-step Lax-Wendroff method 835ff.
583, 782, 786, 1052, 1326f.	Two-volume edition, plan of 1/xiii
Traveling salesman problem 438ff., 1219ff.	
Tridiagonal matrix 42, 63, 150, 453f., 488,	Two's complement arithmetic 1144
839f., 1018f.	Type declarations, explicit vs. implicit 2
in alternating-direction implicit method	
(ADI) 861f.	
from cubic spline 109	U bound() intrinsic function 949
cyclic 67, 1030	ULTRIX 1/xxiii, 2/xix
in cyclic reduction 853	Uncertainty coefficient 628
eigenvalues 469ff., 1228	Uncertainty principle 600
with fringes 822	Undefined status, of arrays and pointers 952f.,
from operator splitting 861f.	961, 1070, 1266, 1293, 1302
from operator spinting 6011.	701, 1070, 1200, 1273, 1302

Underflow, in IEEE arithmetic 883, 1343

Uniform deviates see Random deviates, uni-

Underrelaxation 857

form

from operator splitting 861f.
parallel algorithm 975, 1018, 1229f.
recursive splitting 1229f.
reduction of symmetric matrix to 462ff.,

470, 1227f.

outer operations on vectors 1000ff., 1379f. Unitary (function) 843f. outer product of vectors 1000f., 1076, Unitary (matrix) see Matrix unit_matrix() utility function 985, 990, 1006, 1365f., 1379 1216, 1226, 1325 outer quotient of vectors 1001, 1379 UNIX 1/xxiii, 2/viii, 2/xix, 4, 17, 276, 293, outer sum of vectors 1001, 1379f. 886 overloading 1364 partial cumulants of a polynomial 999, Upper Hessenberg matrix see Hessenberg ma-1071, 1192f., 1365, 1378f. trix U.S. Postal Service barcode 894 polynomial evaluation 996, 998f., 1258, 1365, 1376ff. unpack() intrinsic function 950, 964 scatter-with-add 1002f., 1032f., 1366, communication bottleneck 969 1380f. Upper subscript 944 scatter-with-combine 1002f., 1032f., 1380f. upper_triangle() utility function 990, 1006, scatter-with-max 1003f., 1366, 1381 1226, 1305 set diagonal elements of matrix 1005, Upwind differencing 832f., 837 1200, 1366, 1382 USE statement 936, 939f., 954, 957, 1067, skew operation on matrices 1004ff., 1381ff. 1384 swap elements of two arrays 991, 1015, USES keyword in program listings 2 1365ff. Utility functions 987ff., 1364ff. upper triangular mask 1006, 1226, 1305, add vector to matrix diagonal 1004, 1234, 1382 1366, 1381 alphabetical listing 988ff. argument checking 994f., 1370f. **V**-cycle 865, 1336 arithmetic progression 996, 1072, 1127, vabs() utility function 990, 1008, 1290 1365, 1371f. Validation of Numerical Recipes procedures array reallocation 992, 1070f., 1365, 1368f. assertion of numerical equality 995, 1022, Valley, long or narrow 403, 407, 410 1365, 1370f. Van Cittert's method 804 compared to intrinsics 990ff. Van Wijngaarden-Dekker-Brent method see complex *n*th root of unity 999f., 1379 Brent's method copying arrays 991, 1034, 1327f., 1365f. Vandermonde matrix 82ff., 114, 1037, 1047 create unit matrix 1006, 1382 Variable length code 896, 1346ff. cumulative product of an array 997f., Variable metric method 390, 418ff., 1215 1072, 1086, 1375 compared to conjugate gradient method cumulative sum of an array 997, 1280f., 418 1365, 1375 Variable step-size integration 123, 135, 703, data types 1361 707ff., 720, 726, 731, 737, 742ff., 1298ff., elemental functions 1364 1303, 1308f., 1311ff. error handling 994f., 1036, 1370f. Variance(s) generic functions 1364 correlation 605 geometric progression 996f., 1365, 1372ff. of distribution 603ff., 608, 611, 613, 1269 get diagonal of matrix 1005, 1226f., 1366, pooled 610 1381f. reduction of (in Monte Carlo) 299, 306ff. length of a vector 1008, 1383 statistical differences between two 609, linear recurrence 996 1271 location in an array 992ff., 1015, 1017ff. two-pass algorithm for computing 607, location of first logical "true" 993, 1041, 1269 see also Covariance location of maximum array value 993, Variational methods, partial differential equa-1015, 1017, 1365, 1369 tions 824 location of minimum array value 993, VAX 275, 293 1369f. Vector(s) logical assertion 994, 1086, 1090, 1092, length 1008, 1383 1365, 1370 norms 1036 lower triangular mask 1007, 1200, 1382 outer difference 1001, 1366, 1380 masked polynomial evaluation 1378 outer operations 1000ff., 1379f. masked swap of elements in two arrays outer product 1000f., 1076, 1365f., 1379 Vector reduction 972, 977, 998 moving data 990ff., 1015 Vector subscripts 2/xiif., 984, 1002, 1032, multiply vector into matrix diagonal 1004f., 1034 1366, 1381 communication bottleneck 969, 981, 1250 nrutil.f90 (module file) 1364ff. VEGAS algorithm for Monte Carlo 309ff., outer difference of vectors 1001, 1366, 1161 1380 Verhoeff's algorithm for checksums 894f., outer logical and of vectors 1002 1345

Tr. 1 6 1 6 17 170	
Viète's formulas for cubic roots 179 Vienna Fortran 2/xv	Weighting, full vs. half in multigrid 867
	Weights for Gaussian quadrature 140ff., 788f.
Virus, computer 889 Viscosity	1059ff., 1328f.
artificial 831, 837	nonclassical weight function 151ff., 788f.,
numerical 830f., 837	1064f., 1328f.
Visibility 956ff., 1209, 1293, 1296	Welch window 547, 1254ff.
VMS 1/xxii, 2/xix	WG5 (ISO/IEC JTC1/SC22/WG5 Committee)
Volterra equations 780f., 1326	2/xiff.
adaptive stepsize control 788	where construct 943, 1291
analogy with ODEs 786	contrasted with merge 1023 for iteration of a vector 1060
block-by-block method 788	nested 2/xv, 943, 960, 1100
first kind 781, 786	not MIMD 985
nonlinear 781, 787	While iteration 13
second kind 781, 786ff., 1326f.	Wiener filtering 535, 539ff., 558, 644
unstable quadrature 787f.	compared to regularization 801
von Neuman, John 963, 965	Wiener-Khinchin theorem 492, 558, 566f.
von Neumann-Richtmyer artificial viscosity 837	Wilcoxon test 694
von Neumann stability analysis for PDEs 827f.,	Window function
830, 833f., 840	Bartlett 547, 1254ff.
Vowellish (coding example) 896f., 902	flat-topped 549
vowemen (coung chample) ovon, voz	Hamming 547
	Hann 547
W -cycle 865, 1336	Parzen 547
Warranty, disclaimer of 1/xx, 2/xvii	square 544, 546, 1254ff. Welch 547, 1254ff.
Wave equation 246, 818, 825f.	Windowing for spectral estimation 1255f.
Wavelet transform 584ff., 1264ff.	Windows 95 2/xix
appearance of wavelets 590ff.	Windows NT 2/xix
approximation condition of order p 585	Winograd Fourier transform algorithms 503
coefficient values 586, 589, 1265	Woodbury formula 68ff., 83
contrasted with Fourier transform 584,	Wordlength 18
594	Workspace, reallocation in Fortran 90 1070f.
Daubechies wavelet filter coefficients 584ff.,	World Wide Web, Numerical Recipes site
588, 590f., 594, 598, 1264ff.	1/xx, 2/xvii
detail information 585	Wraparound
discrete wavelet transform (DWT) 586f., 1264	in integer arithmetic 1146, 1148
DWT (discrete wavelet transform) 586f.,	order for storing spectrum 501
1264ff.	problem in convolution 533
eliminating wrap-around 587	Wronskian, of Bessel functions 234, 239
fast solution of linear equations 597ff.	
filters 592f.	X .25 protocol 890
and Fourier domain 592f.	X3J3 Committee 2/viii, 2/xff., 2/xv, 947, 959,
image processing 596f.	964, 968, 990
for integral equations 782	XMODEM checksum 889
inverse 587	X-ray diffraction pattern, processing of 805
Lemarie's wavelet 593	,,,
of linear operator 597ff.	
mother-function coefficient 587 mother functions 584	Y ale Sparse Matrix Package 64, 71
multidimensional 595, 1267f.	
nonsmoothness of wavelets 591	
pyramidal algorithm 586, 1264	Z -transform 554, 559, 565
quadrature mirror filter 585	Z-transformation, Fisher's 631f., 1276
smooth information 585	Zaman, A. 1149
truncation 594f.	Zealots 814
wavelet filter coefficient 584, 587	Zebra relaxation 866
wavelets 584, 590ff.	Zero contours 372
Wavelets see Wavelet transform	Zero-length array 944
Weber function 204	Zeroth-order regularization 796ff.
Weighted Kolmogorov-Smirnov test 621	Zip code, barcode for 894
Weighted least-squares fitting see Least squares	Ziv-Lempel compression 896
fitting	zroots_unity() utility function 974, 990, 999