

(11)Publication number:

11-251108

(43)Date of publication of application: 17.09.1999

(51)Int.CL

H01C 7/04

(21)Application number: 10-047838

(71)Applicant: NIPPON SOKEN INC

DENSO CORP

(22)Date of filing:

27.02.1998

(72)Inventor:

YAMADA MASANORI

OGATA IPPEI KUZUOKA KAORU

(54) THERMISTOR ELEMENT AND ITS MANUFACTURE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a thermistor element the changes in the resistance value of which is small, even when the element has heat history between the room temperature and 1,000° C and which has stable characteristics and a resistance value between 50 and 100k Ω in a temperature range from the room temperature to 1,000° C.

SOLUTION: The element section of a thermistor element is composed of a mixed sintered body aY(Cr0.5Mn0.5)O3.bAl2O3 of a perovskite type compound Y (Cr0.5Mn0.5)O3 and Al2O3 or a mixed sintered body aY(Cr0.5Mn0.5)O3.b (Y2O3+Al2 O3) of the compound Y(Cr0.5Mn0.5)O3, Y2O3, and Al2O3. In the compound, the molar fractions (a) and (b) are set to satisfy the relations, 0.05≤ a<1.0, 0<b≤0.95, and a+b=1.

LEGAL STATUS

[Date of request for examination]

08.08.2000

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3362659

[Date of registration]

25,10,2002

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-251108

(43)公開日 平成11年(1999)9月17日

(51) Int.Cl.⁶

H01C 7/04

識別記号

化号

FΙ

H01C 7/04

審査請求 未請求 請求項の数17 OL (全 18 頁)

(71)出顧人 000004695 (21)出願番号 特顯平10-47838 株式会社日本自動車部品総合研究所 受知県西尾市下羽角町岩谷14番地 (22)出顧日 平成10年(1998) 2月27日 (71) 出顧人 000004260 株式会社デンソー 爱知県刈谷市昭和町1丁目1番地 (72)発明者 山田 正徳 爱知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 緒方 逸平 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (74)代理人 弁理士 伊藤 洋二 (外1名) 最終頁に続く

(54) 【発明の名称】 サーミスタ素子およびその製造方法

(57)【要約】

【課題】 室温 \sim 1000 ℃の熱履歴等においても抵抗値の変化が小さく安定した特性を有し、室温 \sim 1000 ℃の温度範囲において抵抗値を500 \sim 100 k \odot 2 としたサーミスタ素子を得る。

【特許請求の範囲】

【請求項1】 組成物 (M1M2) O, において、M1 は元素周期律表第2A族及びLaを除く第3A族の元素 から選択される少なくとも1種以上の元素であり、M2 は元素周期律表第2 B族、第3 B族、第4 A族、第5 A 族、第6 A族、第7 A族及び第8族の元素から選択され る少なくとも1種以上の元素であり、

前記(M1M2)O, とA1、O, との混合焼結体(M 1M2)O,・A1,O,からなるサーミスタ素子。

【請求項2】 前記(M1M2)O,のモル分率をa、 前記Al,O,のモル分率をbとし、これらモル分率a およびbが、0.05≦a<1.0、0<b≦0.9 5、a+b=1の関係を満足することを特徴とする請求 項1に記載のサーミスタ素子。

【請求項3】 組成物 (M1M2) O, において、M1 は元素周期律表第2A族及びLaを除く第3A族の元素 から選択される少なくとも1種以上の元素であり、M2 は元素周期律表第2 B族、第3 B族、第4 A族、第5 A 族、第6 A族、第7 A族及び第8族の元素から選択され る少なくとも1種以上の元素であり、

前記(M1M2)O,とY,O,とA1,O,との混合 焼結体 (M1M2) O, ·Y, O, ·A1, O, からな るサーミスタ素子。

【請求項4】 前記 (M1M2) O, のモル分率をa、 前記Y、〇」と前記AI、〇」とを合計したモル分率を bとし、これらモル分率aおよびbが、0.05≦a< 1. 0、0 < b ≤ 0. 95、a + b = 1の関係を満足す ることを特徴とする請求項3に記載のサーミスタ素子。 【請求項5】 前記M1は、Y、Ce、Pr、Nd、S m, Eu, Gd, Dy, Ho, Er, Yb, Mg, C a、Sr、Ba、Scから選択する1種以上の元素であ り、前記M2は、Ti、V、Cr、Mn、Fe、Co、 Ni, Zn, Al, Ga, Zr, Nb, Mo, Hf, T a、Wから選択する1種以上の元素であることを特徴と する請求項1ないし4のいずれか1つに記載のサーミス タ素子。

【請求項6】 前記MlはY、前記M2はCrとMnで あり、前記 (M1M2) O, はY (CrMn) O, であ ることを特徴とする請求項5に記載のサーミスタ素子。 【請求項7】 CaO、CaCO,およびCaSiO, のうち少なくとも1種とSiO,とからなる焼結助剤が 含有されていることを特徴とする請求項1ないし6のい ずれか1つに記載のサーミスタ素子。

【請求項8】 請求項1ないし7のいずれか1つのサー ミスタ素子を有することを特徴とする温度センサ。

【請求項9】 請求項1または2に記載のサーミスタ素 子を製造する製造方法において、

仮焼成により前記A1、O,よりも平均粒径が大きい前 記(M1M2)O」を得て、

この (M1M2) O, と前記A1, O, とを混合して粉 50 用い、

砕し、粉砕後におけるとの混合物の平均粒径を混合前の 前記Al、O、の平均粒径以下とした後、所定形状に成 形、焼成することを特徴とするサーミスタ素子の製造方 法。

【請求項10】 請求項1または2に記載のサーミスタ 素子を製造する製造方法において、

前記M2の原料を前記M1の原料と共に混合して粉砕 し、粉砕後におけるこの混合粉砕物の平均粒径を混合前 の前記M 1 の原料の平均粒径以下でかつ0.5μm以下 とした後に、仮焼成により前記(M1M2)O,を得

前記仮焼成により得られた前記(M1M2)〇,と前記 A1、〇、とを混合した後、所定形状に成形、焼成する ことを特徴とするサーミスタ素子の製造方法。

【請求項11】 前記仮焼成により得られた前記(M1 M2)O,と前記AI、O,とを混合して粉砕し、粉砕 後におけるこの混合物の平均粒径を混合前の前記A1, O,の平均粒径以下とした後、所定形状に成形、焼成す ることを特徴とする請求項10に記載のサーミスタ素子 20 の製造方法。

【請求項12】 請求項3に記載のサーミスタ素子を製 造する製造方法において、

仮焼成により前記Al、O、よりも平均粒径が大きい前 記 (M1M2) O, を得て、

この (M1M2) O, と前記Y, O, と前記A1, O, とを混合して粉砕し、粉砕後におけるこの混合物の平均 粒径を混合前の前記Y、O、および前記A1、O、の平 均粒径以下とした後、所定形状に成形、焼成することを 特徴とするサーミスタ素子の製造方法。

【請求項13】 請求項3に記載のサーミスタ素子を製 30 造する製造方法において、

前記M2の原料を前記M1の原料と共に混合して粉砕 し、粉砕後におけるこの混合粉砕物の平均粒径を混合前 の前記M1の原料の平均粒径以下でかつ0.5 μm以下 とした後に、仮焼成により前記(M1M2)O,を得 て、

前記仮焼成により得られた前記(M1M2)〇,と前記 Y、O、と前記Al、O、とを混合した後、所定形状に 成形、焼成することを特徴とするサーミスタ素子の製造 40 方法。

【請求項14】 前記仮焼成により得られた前記(M1 M2)O,と前記Y,O,と前記A1,O,とを混合し て粉砕し、粉砕後におけるこの混合物の平均粒径を混合 前の前記Y、O、および前記Al、O、の平均粒径以下 とした後、所定形状に成形、焼成することを特徴とする 請求項13に記載のサーミスタ素子の製造方法。

【請求項15】 請求項3に記載のサーミスタ素子を製 造する製造方法において、

前記M1の原料として少なくともY,O,を含むものを

Application No.: NEW APPLICATION Docket No.: NIW-006US

bis(dimethylthiocarbamoyl)disulfide (common name: thiram, melting point: 155 to 156°C), N-(2,3-dichloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide (common name: fenhexamid, melting point: 153°C), manganese ethylenebis(dithiocarbamate) (polymeric) complex with zinc salt (common name: mancozeb, melting point: 192°C or above), 3-(3,5-dichlorophenyl)-N-isopropyl-2,4-dioxoimidazolydine-1-carboxamide (common name: iprodione, melting point: 134°C), 3'-isopropoxy-o-toluanilide (common name: mepronil, melting point: 92 to 93°C) (1RS, 2RS, 5RS; 1RS, 2RS, 5RS)-2-(4-chlorobenzyl)-5-isopropyl-1-(1H-1,2,4-triazole-1-ylmethyl)cyclopentanol (common name: ipconazole, melting point: 91 to 119°C), and the like.

族、第4A族、第5A族、第6A族、第7A族及び第8 族の元素から選択される少なくとも1種以上の元素である)が好ましいことを実験的に見いだした。

【0009】とこで、Laは吸湿性が高く、大気中の水分と反応して不安定な水酸化物を作りサーミスタ素子を破壊する等の問題があるため、M2として用いない。一方、混合する相手方の材料としては、検討の結果、比較的高い抵抗値を有し且つサーミスタ材料の抵抗値を安定化するA1、O、(酸化アルミニウム)が好ましいことを実験的に見いだした。

【0010】請求項1記載の発明は、上記(M1M2) 〇, とA1, 〇, を混合焼結して混合焼結体(M1M 2)〇, ・A1, 〇, からなるサーミスタ素子としたも のである。このサーミスタ素子を温度センサに組み込ん で素子の抵抗値特性を調査したところ、室温~1000 ℃の熱履歴等においても抵抗値の変化が数%と小さく安 定であり、室温~1000℃の温度域において、抵抗値 は500~100kのであることが確認できた。

【0011】よって、請求項1記載の発明においては、室温~1000℃の高温域にわたって温度を検知可能で、室温~1000℃の熱履歴等においても抵抗値の変化が小さく安定した特性を持つサーミスタ素子、いわゆるワイドレンジ型サーミスタ素子を提供することができる。また、本発明者等の検討によれば、上記のペロブスカイト系化合物(M1M2)〇,における各元素は、請求項5記載の発明のように、M1は、Y、Ce、Pr、Nd、Sm、Eu、Gd、Dy、Ho、Er、Yb、Mg、Ca、Sr、Ba、Scから選択する1種以上の元素であり、M2は、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Al、Ga、Zr、Nb、Mo、Hf、Ta、Wから選択する1種以上の元素であることが実用上好ましい。

【0012】さらに、(M1M2)〇,とA1、〇,との混合比について検討を進めた結果、その混合比が所定範囲であれば、すなわち、請求項2記載の発明のように、上記の(M1M2)〇,のモル分率をa、上記のA1、〇,のモル分率をbとした場合、これらのモル分率aおよびbが、 $0.05 \le a < 1.0$ 、 $0 < b \le 0.9$ 5、a + b = 1の関係にあれば、より確実に請求項1記載の発明の効果を達成できることがわかった。

【0013】また、このように広い範囲でモル分率を変えることができるので、(M1M2)〇,とA1、〇,との両者を適宜混合、焼成することにより、抵抗値、抵抗温度係数を広い範囲で種々制御できる。また、上記混合焼結体(M1M2)〇,・A1、〇,において、(M1M2)〇,の相手としてA1、〇,とともにY、〇,(酸化イットリウム)を含むものであってもよいことが、実験的にわかった。

 Y, O, ・A1, O, からなるサーミスタ素子を提供する。本発明によれば、請求項1記載のサーミスタ素子と同様の効果を実現できる。そして、(M1M2)O, のモル分率 a 及びY, O, と A1, O, とを合計したモル分率を bが、請求項4記載の所定関係を満足すれば、より確実に請求項3記載の発明の効果を達成できることがわかった。

【0015】また、焼結体においては、各粒子の焼結性等を向上させるために焼結助剤を添加するが、種々の焼結助剤について実験検討の結果、請求項1~請求項5記載の混合焼結体については、請求項7記載の発明のように、CaO、CaCO、およびCaSiO、のうち少なくとも1種とSiO、とからなる焼結助剤を用いることが好ましいことがわかった。それによって、焼結密度等に優れたワイドレンジ型サーミスタ素子が得られる。【0016】ところで、実験を進めていくうちに、上記

混合焼結体(M1M2)O、・A1、O、および混合焼 結体(M1M2)O,·Y,O,·A1,O,(以下、 両混合焼結体をまとめて混合焼結体という)からなるサ ーミスタ素子を用いた温度センサにおいて、作製したセ ンサごとの検出温度精度が、室温~1000℃の温度域 で±20~30°Cのレベルにばらつくことがわかった。 【0017】 ことで、これら混合焼結体は、通常M1や M2の酸化物を仮焼成して(M1M2)O,を得た(第 1の調製工程)後、A1、O,或いはY、O,およびA 1,O, (以下、A1,O,等と略す)と混合して成形 焼成する(第2の調製工程) ことで得られる。なお、混 合焼結体(M1M2)O, ·Y, O, ·A1, O, にお いてM1にYが含まれる場合には、第1の調製工程にて 予めM1の原料としてのY, O, を過剰に加えて、仮焼 成により (M1M2) O, の代わりに (M1M2) O, ·Y,O, を得てもよい。この場合、第2の調製工程に て、最終的に所望組成比の混合焼結体となるように、仮 焼成により得られた(M1M2)O, ·Y, O, に適宜 Al,O,等を混合する。

【0018】 ここにおいて、よりいっそうの温度精度の向上(センサ毎の検出温度精度ばらつき低減)という面から、調合、成形、焼成条件等、サーミスタ素子の製造工程における各条件について調査を進めた。その結果、まず、上記温度精度のばらつきは、仮焼成により得られる(M1M2)〇,・Y,〇,(以下、仮焼成体という)の平均粒径がA1,〇,等の平均粒径よりも大きく、両者が均一に混合せず混合焼結体の組成がばらつき、結果として、サーミスタ素子の抵抗がばらつくことに起因することがわかった。よって、焼結前の混合状態において、仮焼成体の平均粒径をA1、〇,等の平均粒径と同等とすれば、組成の均一混合が実現できると考え検討を行った。

【0019】その結果、請求項9、請求項12及び請求 50 項15記載の発明のように、仮焼成体を、A1、O,等

と混合、粉砕し、この混合物の平均粒径を、混合前のA 1,0,等の平均粒径以下とすればよいことが実験的に わかった。すなわち、請求項9、請求項12及び請求項 15の製造方法(第1の製造方法)を用いれば、微粒化 により、仮焼成体とAl、O、等との均一混合が図られ て、混合焼結体の組成変動が低減されるので、サーミス タ素子の抵抗値のばらつきを低減できる。従って、より 良好なセンサ温度精度(センサ毎の温度精度ばらつきの 少ない)を可能とするワイドレンジ型サーミスタ素子を 提供できる。

【0020】更に、混合焼結体からなるサーミスタ素子 を用いた温度センサの検出温度精度の向上の面から、サ ーミスタ素子の製造方法について調査を進めた結果、仮 焼成体自体の組成ばらつきが、結果的に混合焼結体の組 成ばらつき(つまり、サーミスタ素子の抵抗値ばらつ き) に影響することがわかった。ここで、仮焼成体自体 の組成ばらつきの原因について検討した一例を、仮焼成 体Y(Cr。、Mn。、、)O,を用いる場合、すなわち (M1M2) O, においてM1=Y、M2=Cr及びM nの場合について述べる。

【0021】Y (Cr., Mn.,) O, の調製は、例 えば、次のように行う(図1参照)。M1の原料である Y, O, (平均粒径約1μm)と、M2の原料であるC r,O, (平均粒径約4μm)及びMn,O, (平均粒 径約7μm)とを、Y:Cr:Mn=1:0.5:0. 5のモル比で調合し、従来よりのボールミル等で混合・ 粉砕し、この混合物を1000℃以上で仮焼成して、Y (Cr., Mn.,)O, を得る。

【0022】とこで、ボールミル等での混合・粉砕で は、混合・粉砕後の平均粒径は約2μmが限界で、また 30 Cr, O, 及びMn, O, の平均粒径はY, O, の平均 粒径に比べて大きい。従って、Y,O,とCr,O,と Mn、O,の混合物を仮焼成反応によって得られるY (Cr., Mn.,)O,は、各々の原料のY,O,、 Cr、O,、Mn、O,の粒径差により、Y:Cr:M n=1:0.5:0.5からずれた組成物、例えば、 Y:Cr:Mn=1:0.6:0.4組成物からY:C r:Mn=1:0.4:0.6組成物まで種々の組成物 を含む混合物となる。

[0023] ch5Y: Cr: Mn = 1:0.6:0.4組成物からY:Cr:Mn=1:0.4:0.6組成 物は、各々異なる抵抗値、抵抗温度係数(β値)を持つ ために素子ごとに抵抗が変動し、素子抵抗値のばらつき の原因となっている。また原料のY2O1、Cr 、O、、Mn、O、の一部(組成比からずれたもの)が 未反応物として残存する場合は、素子抵抗値のバラツキ の原因にもなっている。

【0024】ここで、仮焼成体を得る第1の調製工程に おいて、混合・粉砕条件について検討を行った結果、ボ ールミルよりも粉砕能力の高い、例えば媒体攪拌ミル等 50 とし、サーミスタ素子を得る第2の調製工程とに分かれ

によってM2の原料をM1の原料と共に混合・粉砕し て、混合・粉砕後の原料混合物(混合粉砕物)の平均粒 径を混合前のM1の原料の平均粒径以下でかつ0.5 μ m以下となるように微粒化すれば上記不具合を抑制で き、実用レベルである温度精度±10℃以下となること が実験的にわかった。

【0025】請求項10、請求項13及び請求項16記 載の製造方法 (第2の製造方法) は上記知見に基づいて なされたものであり、M1の原料とM2の原料とを混合 ・粉砕する混合工程で、M2の原料をM1の原料と共に 混合・粉砕して、この混合粉砕物の平均粒径を混合前の M1の原料の平均粒径以下でかつ0.5μm以下とした 後、仮焼成により仮焼成体を得て、Al、O、等と混合 後、所定形状に成形、焼成することを特徴としている。 【0026】それによって、M1及びM2の原料の均一 微粒化により、仮焼成体組成の均一混合が図られるの で、仮焼成体組成ばらつきの低減、及び原料未反応物の 存在の抑制が実現でき、サーミスタ素子の抵抗値のばら つきを低減できる。従って、より良好なセンサ温度精度 20 を可能とするワイドレンジ型サーミスタ素子を提供でき

【0027】また、請求項11、請求項14及び請求項 17の発明は、請求項9、請求項12及び請求項15記 載の製造方法(つまり、第1の製造方法)に、それぞ れ、請求項10、請求項13及び請求項16記載の製造 方法(つまり、第2の製造方法)を組み合わせたもので あり、両製造方法の効果の組合せにより、より高いレベ ルでサーミスタ素子の抵抗値のばらつきを低減できる。 [0028]

【発明の実施の形態】(第1実施形態)本発明のペロブ スカイト系材料組成物(M1M2)O,において、例え ば、M1の元素は、周期律表の第2A族としては、M g、Ca、Sr、Ba、第3A族としては、Laを除く Y, Ce, Pr, Nd, Sm, Eu, Gd, Dy, H o、Er、Yb、Sc等から選択できる。

【0029】また、例えばM2の元素は、第2B族とし てはZn、第3B族としては、Al、Ga、第4A族と しては、Ti、Zr、Hf、第5A族としては、V、N b、Ta、第6 A族としてはCr、Mo、W、第7 A族 40 としては、Mn、Tc、Re、第8族としては、Fe、 Co、Ni、Ru、Rh、Pd、Os、Ir、Ptから 選択できる。

【0030】CCで、混合焼結体(M1M2)O, · A 1, O, および (M1M2) O, ·Y, O, ·A1, O ,の製造方法について述べる。その製造工程は、大きく は、仮焼成により仮焼成体((M1M2)O,又は(M 1M2) O, ·Y, O,)を得る第1の調製工程と、得 られた仮焼成体とAl,O,等(Al,O,、又は、Y , O, とAI, O,)を調合して所定形状の混合焼結体 る。

【0031】第1の調製工程では、M1及びM2の原料であるM1の酸化物(M1Ox)やM2の酸化物(M2Ox)等を調合して(調合1)、混合、粉砕(混合工程)した後、仮焼成(例えば1000℃~1500℃程度)する(仮焼成工程)ととにより仮焼成体を得ることができる。そして、第2の調製工程では、得られた仮焼成体を、所望の抵抗値と抵抗温度係数となるようにA1、O、等と調合する(調合2)。調合2にて調合された混合物(仮焼成体とA1、O、等との混合物)を粉砕し(粉砕工程)、Pt等のリード線を組み込み、所望の形状に金型等で成形(成形工程)して焼成(例えば1400℃~1600℃程度)を行う(焼成工程)と、混合焼結体からなるサーミスタ素子が得られる。

9

【0032】なお、混合焼結体(M1M2)〇,・Y,〇,・A1、〇,においてM1にYが含まれる場合には、上述のように、調合1にて予めM1の酸化物としてのY,〇,を加えて、同様に混合及び仮焼成の各工程を経て仮焼成体(M1M2)〇,・Y、〇,を得、その後、所望組成比の混合焼結体となるように、仮焼成体(M1M2)〇,・Y、〇,に適宜A1、〇,等を混合して混合焼結体を得る。

【0033】ところで、上記の第2の調製工程においては、CaO、CaCO」およびCaSiO」のうち少なくとも1種とSiO」とを焼結助剤として、仮焼成体とA1、O、等との混合物に添加すれば、焼結密度がより向上する。それによって、サーミスタ素子の抵抗値が安定したり、焼成温度の変動に対して抵抗値のばらつきが低減できる。

【0034】このようにして得られたサーミスタ素子は、ベロブスカイト系化合物である(M1M2)〇,とA1, 〇,(またはA1, 〇,とY, 〇,)とが粒界を介して均一混合された混合焼結体となっている。得られたサーミスタ素子を一般的な温度センサアッシーに組み込み温度センサとする。そして、温度センサを高温炉に入れ、室温(例えば27°C)から100°Cの温度範囲における抵抗値及び抵抗温度係数 β 、更に、室温 \sim 100°Cの熱履歴における抵抗変化率 Δ Rの各特性を測定する。

【0035】 CCで β は、 β (* K) = 1 n (R/R。) / (1/K-1/K。) で表される。なお、1 n は自然対数、R及びR。は、各々大気中で室温(300 * K) 及び1000 $\mathbb C$ (1273 * K) におけるサーミスタ素子の抵抗値を示す。また、抵抗変化率 Δ Rは、各温度センサにて、大気中1100 $\mathbb C$ で100時間放置の高温耐久試験の温度センサの抵抗値変化について表すものであり、式 Δ R(%)= (R'、/R。) ×100-100で表される。なお、R。は所定温度 t (例えば500 $\mathbb C$) における初期抵抗値、R"。は100時間放置後の所定温度 t における抵抗値を示す。

【0036】その結果、室温~1000℃の温度範囲において、R、は50 Ω ~100k Ω であり、 β は2000~4000(*K)に調整可能とでき、 Δ Rも数%程度のレベルを安定して実現できることが確認できた(図5等参照)。ここで、上記のR、範囲、 β 、 Δ Rの各値をより確実に実現するには、a(M1M2)O,・bA1、O,におけるモル分率a、bが、0.05≦a<1.0、0

りたが分率a、bが、0.05≦a<1.0、0

ことが好ましい。また、よって、本実施形態によれば、室温~1000℃の高温域にわたって温度を検知可能で、室温~1000℃の熱履歴等においても抵抗値の変化が小さく安定した特性を持つワイドレンジ型サーミスタ素子を提供することができる。

【0037】また、温度抵抗係数βは、従来のサーミスタ素子よりも小さい2000~4000(°K)に調整で可能とできるため、温度変動に伴う抵抗値のばらつきを小さいものとすることができる。

(第2実施形態)本第2実施形態は、解決する手段の欄にて述べた第1の製造方法に係る混合焼結体の製造方法 20 を提供するもので、上記第1実施形態と同様に第1及び第2の調製工程を有するが、次の様にしたことが特徴である。

【0038】すなわち、上記第2の調製工程中、調合さ れた仮焼成体とAl、O、等との混合物を粉砕する工程 (粉砕工程) において、粉砕後におけるこの混合物の平 均粒径を混合前のAl、O、等の平均粒径以下とする。 以下、この点について主として述べる。本第2実施形態 の製造方法は、上記第1実施形態の製造方法によるサー ミスタ素子を組み込んだ温度センサについてセンサの温 度精度を調査したところ、センサ毎に温度精度がばらつ いていたという結果に基づいて見出された。ここで、温 度精度の評価方法は、例えば、次のようにして行った。 【0039】作製した多数(例えば100台)の温度セ ンサの抵抗値-温度データから、所定温度(例えば50 0℃)の抵抗値の標準偏差σ(シグマ)を算出し、標準 偏差 σ の6倍を抵抗値のばらつき幅(両側)とし、この 抵抗値ばらつき幅を温度換算した値を半分にした値Aと して、温度精度±A℃と表記して評価する。その結果、 センサ毎の温度精度±A℃は、±20~30℃にばらつ 40 いていることがわかった。

【0040】一方、サーミスタ材料をSEM、EPMA等により観察したところ、上記第1実施形態において、第1の調製工程にて得られる仮焼成体の平均粒径(例えば(M1M2) 〇,の場合、 $2\sim5\,\mu$ m)が、これと混合されるA1。〇,等の平均粒径(例えばA1。〇,の場合、 $0.6\,\mu$ m以下)よりも大きいため、両者が均一に混合せず混合焼結体の組成分布がばらつくことがわかった。

【0041】そこで、更に上記第1実施形態の第2の調製工程中において、調合され、粉砕された後の混合物

(仮焼成体とA1、O,等との混合物)の平均粒径を種々変えてこの平均粒径と温度精度±A℃との関係を調査した。その結果、第2の調製工程の粉砕工程において、前記の混合物の平均粒径を、混合前のA1、O,等の平均粒径以下とすれば、温度精度±A℃は、±10℃以下に低減できることがわかった(図7参照)。

【0042】ここで、平均粒径を微粒化するための粉砕手段としては、媒体攪拌ミル等を用いることができる。また、媒体攪拌ミルの粉砕媒体としてはZrO、製のボール(例えばゆ0.5mm)等を用いることができる。本第2実施形態によれば、第2の調製工程の粉砕工程において、仮焼成体とAl、O、等の微粒化により均一混合が図られて、混合焼結体の組成変動が低減されるので、サーミスタ素子の抵抗値のばらつきを低減できる。【0043】従って、上記第1実施形態の効果に加えて、室温~1000℃の温度域において、より良好なセンサ温度精度(センサ毎の温度精度ばらつきの少ない)を可能とするワイドレンジ型サーミスタ素子を提供できる。

(第3実施形態)本第3実施形態は、解決する手段の欄 にて述べた第2の製造方法に係る混合焼結体の製造方法 を提供するもので、上記第1実施形態と同様に第1及び 第2の調製工程を有するが、次の様にしたことが特徴で ある。

【0044】すなわち、本実施形態では、上記第1の調製工程中、調合1にて調合されたM1の酸化物及びM2の酸化物等を混合、粉砕する工程(混合工程)において、M2の原料をM1の原料と共に混合・粉砕して、この混合粉砕物の平均粒径を混合前のM1の原料の平均粒径以下でかつ0.5μm以下とし、仮焼成により仮焼成30体を得ることを特徴とする。

【0045】 ことにおいて、上記混合、粉砕(混合工程)の粉砕は、上記第2実施形態にて述べた媒体攪拌ミル等により行うことができる。その後、第2の調製工程において、仮焼成体とA120,等とを調合し、粉砕して、Pt等のリード線を組み込み、所望の形状に金型等で成形して焼成を行うと、混合焼結体からなるサーミスタ素子が得られる。

【0046】本実施形態では、M1及びM2の原料の均一微粒化により組成の均一混合が図られるので、仮焼成 40体の組成ばらつきの低減、及び原料未反応物の存在の抑制が実現でき、サーミスタ素子の抵抗値のばらつきを低減できる。従って、上記第1実施形態の効果に加えて、室温~1000℃の温度域において、より良好なセンサ温度精度(センサ毎の温度精度ばらつきの少ない)を可能とするワイドレンジ型サーミスタ素子を提供できる。【0047】なお、第2の調製工程の粉砕工程における粉砕は、ボールミル等による粉砕でもよいが、第2実施形態と同様に媒体撹拌ミル等を用いたものとしてもよい。それによって、上記した本実施形態の効果に加え 50

て、粉砕工程の後工程の成形及び焼成工程において、仮 焼成体とAl。O、等との均一混合が図られ混合焼結体 の組成変動が低減されるという上記第2実施形態の効果 が付与され、より高いレベルでサーミスタ素子の抵抗値 のばらつきを低減できる。

【0048】また、第2及び第3実施形態のワイドレンジ型サーミスタ素子を用いた温度センサは、温度精度が±10℃以下に抑制されているので、高度な温度精度を要求されるマップ制御装置、例えば自動車の排気ガス用の酸素センサの温度モニタ等に用いて好適である。次に、上記各実施形態を以下に示す実施例1~実施例8と比較例1及び2とにより、更に詳述するが、上記各実施形態はこれら実施例に限定されるものではない。【0049】

【実施例】(実施例1)本実施例1は、(M1M2)O ,において、M1としてY、M2としてCrおよびMn を選択したY(Cr., Mn.,)O, とA1, O, と から、Y(Cr., Mn.,)O, ・A1, O, の混合 焼結体を得るものである。

【0050】本実施例1のサーミスタ素子の製造工程を 図1に示す。この製造工程は、大きくは、図中の調合1 からY(Cr., Mn.,)O, を得る迄の第1の調製 工程と、得られたY(Cro., Mno.,)O,とAl, 〇, とを調合(調合2)してサーミスタ素子を得る迄第 2の調製工程とに分かれる。第1の調製工程では、ま ず、いずれの純度も99.9%以上のY, O, とCr, O, とMn、O, を用意し、Y:Cr:Mnのモル比 が、2:1:1となるようにY, O, とCr, O, とM n, O, を秤量して、全量500gとする(調合1)。 【0051】この秤量物を混合するため、ボールミルと してA1, O, またはZr, O, 製玉石φ15を2. 5 kg、φ20を2.5 kg入れた樹脂製ポット (容量5. リットル)を用い、このポットに、Y、O、とCr、O ,とMn、O,の全量を入れ、純水1500ccを加え た後に、60 r p m で 6~12時間混合する(混合工 程)。ここで、混合処理後の混合スラリーをレーザ式粒 度計で評価した結果、平均粒径は1.7μmであった (図7参照)。

【0052】混合処理後に得られたY, O, とCr, O, とMn, O, の混合スラリーを磁器製の蒸発皿に移し、熱風乾燥機にて150℃で12時間以上乾燥し、Y, O,とCr, O, とMn, O, との混合固形体を得る。続いて、この混合固形体をライカイ機で粗粉砕し、#30メッシュ篩いを通し、Y, O, とCr, O, とMn, O, との混合粉体を得る。

【0053】仮焼成工程では、この混合粉体を、99. 3%A1, O, 製ルツボに入れ、大気中で高温炉にて1 100~1300℃で1~2時間仮焼成し、Y(Cr 。, Mn。,)O, を得る。仮焼成で塊状の固形となっ 50 たY(Cr。, Mn。,)O,をライカイ機で粗粉砕

し、#30メッシュ篩いを通し、粉体とする。このY (Cr。, Mn。,) O, は、単独でサーミスタ材料として用いた場合、低抵抗および1000~4000(*K)の低抵抗温度係数を示す。ワイドレンジ型サーミスタ材料としては、このY (Cr。, Mn。,) O, と、サーミスタの抵抗値を安定化する材料であるA1, O, を用いる。

13

【0054】第2の調製工程では、まず、所望の抵抗値と抵抗温度係数となるように、Y(Cro., Mno.,) O,: A1, O,の調合モル比(モル分率)を、40: 60となるように粉体とされたY(Cro., Mno.,) O,と市販の粉体のA1,O,(純度99.9%以上、平均粒径0.6μm)とを秤量し全量500gとする。【0055】CCで、Y(Cro., Mno.,)O,とA1,O,のモル分率を各々a、b(a+b=1)とすれば、これらaおよびbは上記調合モル比と一致し、a=0.38、b=0.62となる。また、焼成時に1500~1650℃の範囲で液相となるSiO,、CaCO,を焼結助剤として用い、前記のY(Cro., Mno.,)O,とA1,O,の全量(500g)に対して、SiO,は3重量%、CaCO,は4.5重量%を添加する(調合2)。

【0056】続いて、粉砕工程(図中、混合・粉砕)では、上記のY(Cro.s. Mno.s.)O、とAl.z. O、とSiO.s. とCaCO.s. とを、ボールミルとしてのAl.s. O、またはZr.s. O、製玉石 ϕ 15を2.5 kg、 ϕ 20を2.5 kg入れた樹脂製ポット(容量5リットル)に入れ、純水1500ccを加えた後に、60rpmで4時間以上混合、粉砕する。

【0057】また、上記の粉砕工程では、 $Y(Cr_0., Mn_0., 0)$ O, EAl_1 O, の固形分に対して、バインダーとしてポリビニルアルコール(PVA)を $Y(Cr_0., Mn_0., 0)$ O, EAl_1 O, EO 混合粉 EO 20 度分かける。 ここで、粉砕後の混合粉砕スラリーをレーザ式粒度計で評価した結果、平均粒径はEO 2. EO 5 EO 2. EO 3. EO 2. EO 2. EO 2. EO 3. EO 2. EO 3. EO 4. EO

【0058】混合、粉砕後に得たY(Cro., Mno.,) O, とAl, O, の混合粉砕スラリーをスプレードライヤで造粒、乾燥し、Y(Cro., Mno.,) O, とAl,O, の混合粉体を得る。この混合粉体をサーミスタ原料とする。続いて、成形工程(金型成形)では、このサーミスタ原料を用いて、外径×長さがゆ0.3mm×10.5mmで、材質がPt100(純白金)をリード線として、リード線をインサートして外径ゆ1.74mmの金型にて圧力約1000kgf/cm²で成形し、リード線が形成された外径ゆ1.75mmのサーミスタ素子の成形体を得る。

【0059】焼成工程では、サーミスタ素子の成形体を、A1,O,製波型セッタに並べ、大気中1400~1600℃で1~2時間焼成し、混合焼結体aY(Cr

。, Mn。,) O, · b A 1, O, からなる外径の1. 60 mmのサーミスタ素子を得る。図2に、得られたサーミスタ素子1を示す。平行な2本のリード線11、12の各端部が、外径の1. 60 mmの円柱形の素子部13に埋設された形となっている。このサーミスタ素子1は、図3および図4に示す一般的な温度センサアッシーに組み込み温度センサとする。

【0060】サーミスタ素子1は、図3に示すように、筒状の耐熱性の金属ケース2内に配置されている。また、図示しないが、リード線11、12は、金属バイプ3の内部を通る金属バイブのリード線31、32に接続されている。なお、図4に示すように、金属パイブ3の内部には、マグネシア粉体33が充填されており、金属パイプ3内のリード線31、32の絶縁性を確保している。以上のように、温度センサが構成されている。

【0061】なお、以下、本実施例および他の実施例2~実施例8、および比較例1、比較例2において、作製されるサーミスタ素子および温度センサは、図2ないし図4のものと同構造であり、説明を省略する。ただし、20 素子部13を構成する混合焼結体の材料組成は、各例におけるものとなっているのは勿論である。さらに、上記の第2の調製工程において、Y(Cro., Mno.,)O,:A1,O,の調合モル比を、95:5および5:95となるように秤量し、以下、同様の手順にてサーミスタ素子を作製し、温度センサに組み込む。ここで、本実施例の各素子は、Y(Cro., Mno.,)O,:A1,O,の調合モル比(a:bに一致)が、40:60、95:5、5:95の順に、素子番号1、素子番号2、素子番号3とする。

【0062】番号1~3の素子を組み込んだ温度センサを、高温炉に入れ、室温(27℃)から1000℃まで、上記第1実施形態に記載のように、抵抗値の温度特性を評価した。評価結果を図5の表に示す。ここで、図5には、後述の実施例2~実施例4のサーミスタ素子の抵抗値温度特性の評価結果も示してある。先に結論を述べると、実施例1~実施例4は、それぞれ同じ混合焼結体を、異なる製法で製造したものであるが、図5からわかるように、異なる製法であっても、調合モル比a: b 毎に同様の抵抗値温度特性が得られている。

【0063】図5に示すように、本実施例1のサーミスタ素子は、aY(CrMn)O,・bA1,O,のモル分率(a+b=1)が、0.05≦a<1.0、0
 ≤0.95の範囲において、温度センサとして必要な502~100k2の低抵抗値であり、抵抗温度係数βについても、2000~4000(*K)を示し、抵抗値、抵抗温度係数を広い範囲で制御が可能である。それ故、室温から1000℃の高温域にわたって温度を検知することができる。

【0064】また、高温耐久試験(抵抗変化率△R)の 50 結果からも、抵抗値の変化の少ない安定した特性を持つ ワイドレンジ型サーミスタ材料を提供することができる ことがわかる。従って、本実施例1のサーミスタ素子は 本発明の目的を達成する。

15

(実施例2)本実施例2では、Y(Cr。, Mn。,)
O, とAl, O, との混合焼結体(Ml=Y、M2=Cr、Mn)を得るための原料として、まず、Y(Cr。, Mn。,) O, を調製する。本実施例2のサーミスタ素子の製造工程を図6に示す。本例は上記第2の実施形態で述べた第1の製造方法に係る製造方法であり、第2の調整工程における粉砕工程をボールミルでなく媒体 10 攪拌ミルにて行う。

【0066】第1の調製工程(図中、調合1からY(Cro, Mno,)O, 迄)では、まず、Y(Cro, Mno,)O, は、Y, O, とCr, O, とMn, O, とをモル比(Y: Cr: Mn)が2:1:1となるように、Y, O, を秤量し、全量500gとする(調合1)。この秤量物を混合するため、ボールミルとしてA1, O, 又はZrO, 製玉石 ϕ 15をZ2.5 kg、 ϕ 20をZ2.5 kgを入れた樹脂製ポット(容量5リットル)を用い、このポットに入れ、純水Z3.5 kg、Z4.0 を用い、このポットに入れ、純水Z500 ccを加えた後、60rpmで4時間混合する(混合工程)。ここで、混合処理後の混合スラリーをレーザ式粉度計で評価した結果、平均粒径は1.7Z1.0 cm。

【0067】混合処理後に得たY、O、とCr、O、とMn、O、の混合スラリーを磁器製蒸発皿に移し、熱風乾燥機にて100~150℃で12~17時間乾燥し、Y、O、とCr、O、とMn、O、の混合物を得る。Y、O、とCr、O、とMn、O、の混合固形体をライカイ機で粗粉砕し、#30メッシュ篩いで通し、Y、O、とCr、O、とMn、O、の混合物粉体を得る。

【0068】仮焼成工程では、このY, O, とCr, O, とMn, O, の混合物粉体を、99.3%Al, O, 製ルツボに入れ、常圧雰囲気(空気中)で高温炉にて1100℃で2時間熱処理し、Y(Cr, Mn,) O, を得る。熱処理の塊状の固形となったY(Cr, Mn,) O, は、ライカイ機で粗粉砕し、#30メッシュ篩いで通し、粉体とする。

【 0 0 6 9 】 本サーミスタ材料は、上記Y (C r 。, M n 。,) O, と A l 。 O, と を用いる。第 2 の調製工程 (図中、調合 2 以降) では、まず、所望の抵抗値と抵抗 温度係数となるように、Y (C r 。, M n 。,) O

(平均粒径2~5μm)とAl₂O₃(平均粒径0.6μm)とを調合モル比(Y(Cr_{0.3}, Mn_{0.3},)
 O₃:Al₂O₃)が40:60となるようにY(Cr_{0.3}, Mn_{0.3},)O₃とAl₂O₃を秤量し合計2000gとする。

16

【0070】また、焼成時に1500~1650℃の範囲で液相となるSiO,、CaCO,を焼結助剤として用い、前記Y(Cro., Mno.,)O,とA1,O,合計2000gに対して、SiO,は3重量%の60g、CaCO,は4.5重量%の90gを添加する(調合2)。従って、Y(Cro., Mno.,)O,とY,O,とSiO,とCaCO,とを合計した2150gを粉砕原料とする。

【0071】次いで粉砕工程(図中、混合・粉砕)では、サーミスタ原料の微粒化を行うために、媒体攪拌ミルとしてパールミル装置(アシザワ(株)製 RV1 V、有効容積:1.0リットル 実容量:0.5リットル)を使用する。このパールミル装置による操作条件は、粉砕媒体としてジルコニア製ボール直径0.5mmを3.0kg使用し攪拌槽体積の80%をジルコニア製ボールで充填する。

【0072】操作条件は、周速12m/sec、回転数3110rpmとする。なお、粉砕原料2150gに対して分散媒に蒸留水を4.5リットル用い、同時にバインダーと離型剤と分散剤とを添加して10時間の混合・粉砕を行う。バインダーとしてはポリビニルアルコール(PVA)を粉砕原料100g当り1g添加する。粉砕処理したサーミスタ材料の原料スラリーをレーザ式粉度計で評価した結果、平均粒径は0.4μmであった(図7参照)。これは、混合前のA1、O,の平均粒径0.6μmよりも小さい。

【0073】得られたサーミスタ材料の原料スラリー は、スプレードライヤで乾燥室入口温度200℃、出口 温度120℃の条件で造粒・乾燥する。得られたサーミ スタ材料の造粒粉は平均粒径30μmの球状で、この造 粒粉を用いてサーミスタ素子の成形を行う。成形工程は 金型成形法で行い、オス金型にPt100(φ0.3× 10.5)をリード線として装填し、φ1.74のメス 金型に造粒粉を入れ、圧力約1000kgf/cm²で 成形し、リード線が付与されたサーミスタ素子の成形体 を得る。そして、焼成工程では、サーミスタ素子の成形 体を、A1,O,製の波型セッタに置き、1500~1 600℃で1~2時間焼成し、サーミスタ素子を得る。 【0074】得られたサーミスタ素子及びこのサーミス タ素子を組み込んだ温度センサは、図2~図4に示すも のと同一構造である。さらに、上記の第2の調製工程に おいて、Y(Cr., Mn.,)O,:Al,O,の調 合モル比を、95:5および5:95となるように秤量 し、同様の手順にてサーミスタ素子を作製し、温度セン 50 サに組み込む。

[0075] ととで、本実施例2の各素子は、Y(Cro, Mno,)O,:Al,O,の調合モル比a:bが、40:60、95:5、5:95の順に、素子番号4、素子番号5、素子番号6とする。素子番号4~6のサーミスタ素子の温度センサにおける抵抗値温度特性を評価した結果を図5に示す。本実施例2のサーミスタ素子も、抵抗値温度特性に関して、実施例1と同様の効果を有するサーミスタ素子を提供できる。

17

【0076】また、本実施例2のサーミスタ素子につい て、上記第2実施形態にて述べた方法にて温度精度の評 価を行った。その結果を図7に示す。ここで図7は、実 施例1~実施例8のサーミスタ素子(a:b=40:6 0) について、上記第2実施形態にて述べた方法にて求 めた温度精度(±A℃)を示す表である。なお、図7 中、Y (CrMn) O, は、Y (Cro.s Mno.s) O ,を表す。また、図中、粉砕時の原料成分は、第2の調 製工程の粉砕工程における原料成分(本例では、Y(C r., Mn., O, とY, O,)を示す。また、混合 後の平均粒径(μm)は、第1の調製工程の混合工程に て混合処理後の混合スラリーにおける平均粒径(本例で 20 は、上記1.7 µm)を示し、粉砕後の平均粒径(µ m)は、第2の調製工程の粉砕工程にて粉砕後の原料ス ラリーにおける平均粒径(本例では、上記0.4μm) を示す。他の実施例1及び実施例3~実施例8において も同様である。

【0077】本実施例2の素子番号4(a:b=40:60)のサーミスタ素子について、その温度精度は、従来法で製造した実施例1の素子番号(a:b=40:60)のサーミスタ素子($\pm 23^{\circ}$ C)に比べて、 $\pm 10^{\circ}$ Cと良好な値が得られた。

(実施例3)本実施例3では、Y,O,とCr,O,とMn,O,とCaCO,を原料に、Y(Cr., Mn,)O,・Al,O,の混合焼結体(M1=Y、M2=Cr、Mn)を得る。本実施例2のサーミスタ素子の製造工程を図8に示す。

【0078】本実施例は、上記第2及び第3実施形態にて述べた第1の製造方法と第2の製造方法を組み合わせたものである。本例では、第1の調製工程(図中、調合1からY(Cron, Mnon,)O,・Y,O,)の混合工程、及び第2の調製工程(図中、調合2以降)の粉砕工程において、共に媒体撹拌ミルを用いる。まず、いずれの純度も99.9%以上のY,O,とCron,とMn,O,とCaCO,を用意する。調合1では、サーミスタ素子として所望の抵抗値と抵抗温度係数となるように、これら各成分を調合する。

【0079】調合は、上記実施例1と同様に、Y:Cr:Mnのモル比が2:1:1となるように、Y,O,とCr,O,とMn,O,を秤量して全量2000gとする。さらにCaCO,を36g添加し、Y,O,とCr,O,とMn,O,のとCaCO,を合計した203

6 g を混合原料とする(調合1)。次いで、混合工程では、原料を微粒化するために媒体攪拌ミルを用いる。本 実施例の媒体攪拌ミルは、上記実施例2と同様のパール ミル装置を用い、混合条件も同様としている。

【0080】操作条件は、周速12m/sec、回転数3110rpmで行う。なお、粉砕原料2036gに対して分散媒に蒸留水を4.5リットル用い、同時に分散剤とバインダーを添加して10時間の混合、粉砕を行う。バインダーとしては、ポリビニルアルコール(PVA)を混合原料2036g当り20g添加する。上記混合工程にて、混合・粉砕処理したサーミスタ材料の原料スラリーをレーザ式粒度計で評価した結果、平均粒径は0.3μmであった(図7参照)。これは混合前のY20,の平均粒径(1.0μm)よりも小さく且つ0.5μmより小さい。

【0081】得られた原料スラリーは、スプレードライヤで乾燥室入口温度200°C、出口温度120°Cの条件で乾燥する。得られたサーミスタ原料粒は平均粒径30 μ mの球状で、との原料粉を99.3%A1, O, 製ルツボに入れ、高温炉で大気中にて $1100\sim1300$ °Cで $1\sim2$ 時間仮焼成し、Y(Cr₀, Mn₀,) O, を得る(仮焼成工程)。

【0082】仮焼成で塊状の固形となったY(Cro.standskip Mno.standskip)O,をライカイ機で粗粉砕し、#30 メッシュ篩いで通し、Y(Cro.standskip Mno.standskip)O,の粉体を得る。次いで実施例1と同様に、調合2において、上記Y(Cro.standskip (Cro.standskip Mno.standskip)O,の粉体とA1、O,(平均粒径O.6 μ m)を用意する。Y(Cro.standskip Mno.standskip)O,とA1、O,との調合モル比は40:60とし、秤量して全量2000gとする。

【0083】粉砕工程では上記混合工程と同様にバールミル装置を使用する。そして、調合2で用意された前駆体に、分散剤、バインダー、離型剤を添加し、混合・粉砕して微粒化する。このパールミル装置による粉砕条件は、上記混合工程の条件と同じである。粉砕処理をしたサーミスタ材料の原料スラリーをレーザ式粒度計で評価した結果、平均粒径は0.3μmであった(図7参照)。これは、調合2にて調合(混合)する前のA1、O,の平均粒径0.6μmよりも小さい。

40 【0084】粉砕後に得たY(Cr。, Mn。,)O, ·Al, O, のスラリーは、上記乾燥工程の条件同様に、スプレードライヤで造粒し、Y(Cr。, Mn。,)O, ·Al, O, の造粒粉を得る。この造粒粉を用いてサーミスタ素子の成形を行う。成形工程は金型成形法で行い、オス金型にPtl00(ゆ0.3mm×10.5mm)をリード線として装填し、外径ゆ1.89mmのメス金型にY(Cr。, Mn。,)O, ·Al, O, の造粒粉を入れ、圧力約1000Kgf/cm²で成形し、リード線が付与されたサーミスタ素子の成形50体を得る。

【0085】サーミスタ素子の成形体は、A1,O,製液型セッタに並べ、大気中1400~1600℃で1~2時間焼成し、外径φ1.60mmサーミスタ素子(混合焼結体)を得る。このサーミスタ素子を温度センサアッシーに組み込み、温度センサとする。これらサーミスタ素子及び温度センサの構造は、図2ないし図4のものと同構造である。

【0086】さらに、調合2で、Y(Cr。, Mn。,)O,:A1,O,の調合モル比(a:b)が、95:5及び5:95となるように調製したサーミスタ原料で、同様にサーミスタ素子を製作し、温度センサに組み込んだ。本実施例3において、上記モル比a:bが、40:60、95:5、5:95の順に、素子番号7、素子番号8、素子番号9とし、それらの抵抗値温度特性の評価結果を図5に示した。本実施例3のサーミスタ素子も、抵抗値温度特性に関して、実施例1と同様の効果を有するサーミスタ素子を提供できる。

【0087】また、本実施例3の素子番号7(a:b=40:60)のサーミスタ素子について、上記第2実施 形態にて述べた方法にて温度精度の評価を行った結果を 図7に示す。本実施例による温度センサの温度精度は、 従来法で製造した実施例1(± 23 °C)及び上記実施例 2(± 10 °C)に比べて、 ± 5 °Cと良好な値が得られ た。

【0088】(実施例4)本実施例4は、Y(Cr。, Mn。,)O,とAl,O,から、Y(Cr。,Mn。,)O,・Al,O,の混合焼結体(Ml=Y、M2=Cr、Mn)を得る。本実施例4のサーミスタ素子の製造工程を図9に示す。本実施例4は、上記第3実施形態にて述べた第2の製造方法に係るものである。本例では、第1の調製工程(図中、調合1からY(Cr。,Mn。,)O,)の混合工程において媒体攪拌ミルを、及び第2の調製工程(図中、調合2以降)の粉砕工程においてボールミルを用いる。つまり、上記実施例3における粉砕工程で媒体攪拌ミルの代わりにボールミルを用いる。

【0089】本実施例の第1の調製工程は、上記実施例3と同様であり、説明を省略する。なお、本実施例4においても、調合1において、混合工程にて混合・粉砕処理したサーミスタ材料の原料スラリーをレーザ式粒度計40で評価した結果、平均粒径は0.3μm(図7参照)であった。そして、第1の調製工程から、仮焼成されたY(Cros, Mnos,) O,の粉体を得る。

【0090】調合2では。サーミスタ素子として所望の抵抗値と抵抗温度係数とすべく、 $aY(Cro., Mno.,)O, \cdot bAl.O, Oaebが、<math>a:b=40:60$ となるように、 $Y(Cro., Mno.,)O, (粉体) と Al.O, (平均粒径0.6 <math>\mu$ m) とを秤量して全量2000gとする。次いで、粉砕工程では、調合2で秤量されたY(Cro., Mno.,)O, と Al.O,

との秤量物を混合・粉砕するために、ボールミル装置を 使用する。このボールミル装置による粉砕条件として は、A1, O, 製玉石φ15を10kg、φ20を10 kgを入れた樹脂製ポット(容量20リットル)の中 に、上記混合秤量物2000gを入れ、純水6000c cを加えた後、60rpmで6時間混合・粉砕する。 【0091】粉砕処理したサーミスタ材料の原料スラリ ーをレーザ式粒度計で評価した結果、平均粒径1.6μ mであった(図7参照)。これは、調合2にて調合する 前のA1, O, の平均粒径 0. 6 μmよりも大きい。ま た、粉砕工程で、分散剤、バインダー、離型剤を添加 し、同時に粉砕する。粉砕後に得たY(Cras Mn 。,)O, ·Al, O, のスラリーは、実施例2と同様 に、造粒、金型成形、焼成し、サーミスタ素子を得る。 このサーミスタ素子は、実施例2と同様に、温度センサ アッシーに組み込み、温度センサとする。これらサーミ スタ素子及び温度センサの構造は、図2ないし図4のも のと同構造である。

【0092】さらに、調合2で、Y(Cro., Mno.,)O,:A1。O,の調合モル比(a:b)が、95:5及び5:95となるように調製したサーミスタ原料で、同様にサーミスタ素子を製作し、温度センサに組み込んだ。本実施例4において、上記モル比a:bが、40:60、95:5、5:95の順に、素子番号10、素子番号11、素子番号12とし、それらの抵抗値温度特性の評価結果を図5に示した。本実施例4のサーミスタ素子も、抵抗値温度特性に関して、実施例1と同様の効果を有するサーミスタ素子を提供できる。

【0093】また、本実施例4の素子番号10(a:b=40:60)のサーミスタ素子について、上記第2実施形態にて述べた方法にて温度精度の評価を行った結果を図7に示す。本実施例による温度センサの温度精度は、従来法で製造した実施例1(±23℃)に比べて、±9℃と良好な値が得られた。

(比較例1)比較例1として、抵抗値を安定化するA1、O,及び(Y,O,+A1、O,)を用いないで、Y(Cr.,Mn.,)O,を単独組成とするサーミスタ素子を用いる温度センサについて説明する。

50 【0095】従って、本比較例1におけるY(Cr.,

Mn。、)O、単独組成のサーミスタ素子は、本発明の 目的とする温度センサの素子としては使用できない。

21

(比較例2)比較例2として、抵抗値を安定化するA1 , O, 及び (Y, O, +A1, O,) を用いないで、Y TiO,を単独組成とするサーミスタ素子を用いる温度 センサについて説明する。温度センサとして評価した結 果を図10の表に示す。抵抗値特性の評価方法は、実施 例1と同様に行った。

【0096】図10から明らかなように、YTiO,単 独組成のサーミスタ素子では、室温(27℃)の低温域 での抵抗値が著しく高く、1000kQより大となるた め温度を検出できない。また、髙温耐久試験の結果から も、抵抗変化率ARが、±20%を越え、安定した抵抗 値の温度特性を持つサーミスタ素子を提供することがで きない。

【0097】従って、YTiO、単独組成のサーミスタ 素子は、本発明の目的とする温度センサの素子としては 使用できない。ところで、以上のごとく、実施例1~実 施例4を比較すると、いずれのサーミスタ素子も、本発 明の目的である良好な抵抗値の温度特性を示すが、セン 20 サの温度精度においては、実施例2~実施例4すなわち 上記第2及び第3実施形態にて示した製造方法が、従来 製法よりも優れているといえる。

【0098】つまり、実施例2~実施例4記載の製造方 法では、良好な抵抗値の温度特性を達成しつつ、サーミ スタ材料の微粒化により組成の均一混合をはかり、混合 焼結体(M1M2)O、・A1、O、の組成変動を低減 することで、センサ毎の抵抗値のバラツキを低減でき る。上記実施例1~4は混合焼結体Y(Cr., Mn 。,) O, ・A 1, O, を得るものであったが、以下に 30 示す実施例5~8は混合焼結体Y(Cr., Mn.,) O, ·Y, O, ·Al, O, を得るものである。なお、 混合工程及び粉砕工程におけるボールミル又は媒体撹拌 ミルの適用について、実施例5、6、7、8は、それぞ れ実施例1、2、3、4に対応している。

【0099】(実施例5)本実施例5の製造工程を図1 1に示す。本例は、実施例1と同様に第1の調製工程 (図中、調合1からY(Crass Mnass)Os)を行 い、Y (Cro.s Mnoss) Osの粉体を得、更に、Y , O, とAl, O, を加えて第2の調整工程(図中、調 合2以降)を行うものであり、混合工程及び粉砕工程共 にボールミルを用いる。

【0100】調合2でサーミスタ素子として所望の抵抗 値と抵抗温度係数となるように、aY(Cr., Mn o.,) O, ·b (A1, O, +Y, O,) のaとbが、 a:b=40:60で、且つAl, O,:Y, O, の比 が、50:10となるようにY(Cr., Mn.,)O **, とAl, O, とY, O, を秤量して全量2000gと** する。

【0101】秤量したY(Cr., Mn.,)O, とA 50 【0107】また、高温耐久試験(抵抗変化率△R)の

1, O, とY, O, を、実施例1と同様に粉砕処理(粉 砕工程) したサーミスタ材料の原料スラリーをレーザ式 粒度計で評価した結果、平均粒径は2. 3 µmであった (図7参照)。これは、混合前のY, O, の平均粒径約 1μm及びΑ1, Ο, の平均粒径約0. 6μmよりも大 きい。

【0102】粉砕後に得たY (Cr., Mn.,) O, とA1、O、とY、O、の混合粉砕スラリーをスプレー ドライヤで造粒し、Y(Crasy Mnasses)O」とAl , O, とY, O, の混合造粒粉を得る。続いて、成形工 程では、この混合造粒粉を用いて、外径・長さがゆり、 3mm×10.5mmで材質がPt100(純白金)を リード線として、リード線をインサートして外径 φ1. 89mmの金型にて圧力約1000Kgf/cm'で成 形し、リード線が形成された外径 φ1.89 mmのサー ミスタ素子の成形を得る。

【0103】そして、焼成工程にて、サーミスタ素子の 成形体をA1、O,製波型セッタに並べ、大気中140 0~1600℃で1~2時間焼成し、外径φ1.60m mのサーミスタ素子を得る。このサーミスタ素子を実施 例1と同様に、温度センサアッシーに組み込み、温度セ ンサとする。作製されたサーミスタ素子および温度セン サは、図2ないし図4のものと同構造である。

【0104】さらに、上記の第2の調製工程において、 $aY (Cr_{0.}, Mn_{0.}, O_{3} \cdot b (Al_{2} O_{3} + Y_{2})$ O,) の調合モル比a:bが、a:b=95:5及び 5:95 (ここで、Al, O,:Y, O, の比は50: 10)となるように秤量し、以下、同様の手順にてサー ミスタ素子を作製し、温度センサに組み込んだ。こと で、本実施例の各素子は、調合モル比a:bが、40: 60、95:5、5:95の順に、素子番号13、素子 番号14、素子番号15とする。

【0105】番号13~15の素子を組み込んだ温度セ ンサについて、実施例1と同様に抵抗値の温度特性を評 価した。評価結果を図12の表に示す。ここで、図12 には、後述の実施例6~実施例8のサーミスタ素子の抵 抗値温度特性の評価結果も示してある。先に結論を述べ ると、実施例5~実施例8は、それぞれ同じ混合焼結体 を、異なる製法で製造したものであるが、図12からわ かるように、異なる製法であっても、調合モル比a:b 毎に同様の抵抗値温度特性が得られている。

【0106】図12に示す様に、本実施例5のサーミス タ素子は、aY(Cro., Mno.,)O, ·b(Al, O, +Y, O,)のモル分率 (a+b=1)が、0.0 5≦a<1.0、0<b≦0.95の範囲において温度 センサとして必要な502~100k2の低抵抗値であ り、抵抗温度係数8についても、2000~4000 (K)を示し、それ故、室温から1000℃の髙温域に わたって温度を検知できる。

結果からも、抵抗値の変化の少ない安定した特性を持つ サーミスタ素子を提供することができる。従って、本例 のサーミスタ素子は本発明の目的を達成する。また、本 実施例5の素子番号13(a:b=40:60)のサー ミスタ素子を用いた温度センサは、温度精度として±2

23

2 ℃が得られた(図7参照)。 【0108】 (実施例6)本実施例6の製造工程を図1 3に示す。本例は、実施例2と同様にY(Cr., Mn 。、)O,の粉体を得、更に、Y,O,とA 1,O,を 加えて第2の調整工程(図中、調合2以降)にて媒体攪 拌ミルによる粉砕を行うものである。調合2でサーミス タ素子として所望の抵抗値と抵抗温度係数となるよう κ , aY (Cr_{0.5} Mn_{0.5}) O₃ · b (Al₂ O₃ Y , O,) のaとbが、a: b = 40:60 (A1 , O, : Y, O, 比は50:10) となるように、Y

(Cro., Mno.,) O, とAl, O, とY, O, を秤

量して全量2000gとする。

【0109】秤量したY(Cr., Mn.,)O,とA 1, O, とY, O, を、実施例2と同様に粉砕処理(粉 砕工程) したサーミスタ材料の原料スラリーをレーザ式 20 粒度計で評価した結果、平均粒径は0.3 µmであった (図7参照)。 これは、混合前のY、O, の平均粒径約 1 μ m 及び A 1, 0, の平均粒径約0. 6 μ m よりも小 さい。

【0110】粉砕後に得たY (Cr., Mn.,) O, とAl, O, とY, O, の混合粉砕スラリーを、上記実 施例5と同様に処理し、混合造粒粉を得る。続いて、と の混合造粒粉を用いて、上記実施例5と同様に成形工 程、及び、焼成工程を行い、外径 φ1.60 mmのサー ミスタ素子を得る。このサーミスタ素子を実施例1と同 30 様に、温度センサアッシーに組み込み、温度センサとす る。作製されたサーミスタ素子および温度センサは、図 2ないし図4のものと同構造である。

【0111】さらに、上記の第2の調製工程において、 $aY (Cr_{0.5} Mn_{0.5}) O_3 \cdot b (Al_2 O_3 + Y_2)$ O₃) の調合モル比a:bが、a:b=95:5及び 5:95 (ここで、Al, O,:Y, O,の比は50: 10)となるように秤量し、以下、同様の手順にてサー ミスタ素子を作製し、温度センサに組み込んだ。こと で、本実施例の各素子は、調合モル比a:bが、40: 60、95:5、5:95の順に、素子番号16、素子 番号17、素子番号18とする。

【0112】番号16~18の素子を組み込んだ温度セ ンサについて、実施例1と同様に抵抗値の温度特性を評 価した結果を図12の表に示す。本実施例6のサーミス タ素子も、抵抗値温度特性に関して、実施例5と同様の 効果を有するサーミスタ素子を提供できる。また、本実 施例6の素子番号16 (a:b=40:60)のサーミ スタ素子を用いた温度センサの温度精度は、従来法で製 造した実施例5 (±22℃)に比べて、±9℃と良好な 50 5に示す。本例は、実施例4と同様に第1の調製工程

値が得られた(図7参照)。

【0113】(実施例7)本実施例7の製造工程を図1 4に示す。本例は実施例3と同様に、第1の調製工程 (図中、調合1からY(Cro., Mno.,)O,)にて 媒体攪拌ミルを用い、Y(Cro., Mno.,)O, の粉 体を得、更にY、O、とA1、O、を加えて第2の調整 工程(図中、調合2以降)にて媒体攪拌ミルによる粉砕 を行うものである。

【0114】調合2では、サーミスタ素子として所望の 抵抗値と抵抗温度係数となるように、aY(Cr., M n.,,) O, · b (Al, O, Y, O,) のaとbが、 a:b=40:60(Al,O,:Y,O,比は50: 10) となるように、Y (Cro., Mno.,) O, とA 1, O, とY, O, を秤量して全量2000gとする。 【0115】秤量したY(Cr., Mn.,)O, とA 1, O, とY, O, を、実施例3と同様に粉砕処理(粉 砕工程)したサーミスタ材料の原料スラリーをレーザ式 粒度計で評価した結果、平均粒径は0.3μmであった (図7参照)。 Cれは、混合前のY、O, の平均粒径約 1μm及びΑ1, Ο, の平均粒径約0.6μmよりも小

【0116】粉砕後に得たY (Cr., Mn.,) O, とAl, O, とY, O, の混合粉砕スラリーを、上記実 施例5と同様に処理し、混合造粒粉を得る。続いて、と の混合造粒粉を用いて、上記実施例5と同様に成形工 程、及び、焼成工程を行い、外径φ1.60mmのサー ミスタ素子を得る。このサーミスタ素子を実施例1と同 様に、温度センサアッシーに組み込み、温度センサとす る。作製されたサーミスタ素子および温度センサは、図 2ないし図4のものと同構造である。

【0117】さらに、上記の第2の調製工程において、 $aY (Cr_{0.5} Mn_{0.5}) O_3 \cdot b (Al_2 O_3 + Y_2)$ O₃) の調合モル比a:bが、a:b=95:5及び 5:95 (ここで、A1, O,:Y, O,の比は50: 10)となるように秤量し、以下、同様の手順にてサー ミスタ素子を作製し、温度センサに組み込んだ。ここ で、本実施例の各素子は、調合モル比a:bが、40: 60、95:5、5:95の順に、素子番号19、素子 番号20、素子番号21とする。

【0118】番号19~21の素子を組み込んだ温度セ ンサについて、実施例1と同様に抵抗値の温度特性を評 価した結果を図12の表に示す。本実施例7のサーミス タ素子も、抵抗値温度特性に関して、実施例5と同様の 効果を有するサーミスタ素子を提供できる。また、本実 施例7の素子番号19 (a:b=40:60)のサーミ スタ素子を用いた温度センサの温度精度は、実施例5 (±22°C)及び実施例6に比べて、±5°Cと良好な値 が得られた(図7参照)。

【0119】(実施例8)本実施例8の製造工程を図1

(図中、調合1からY(Cro., Mno.,)O,)を行い、Y(Cro., Mno.,)O, の粉体を得、更に、Y, O, とAl, O, を加えて第2の調整工程(図中、調合2以降)を行うものであり、混合工程にてボールミル、粉砕工程にて媒体攪拌ミルを用いる。

【0120】調合2では、サーミスタ素子として所望の抵抗値と抵抗温度係数となるように、 $aY(Cro., Mno.,)O, \cdot b(Al.O, Y.O,)$ のaとbが、a:b=40:60(Al.O, :Y.O,) 比は50:10)となるように、Y(Cro., Mno.,)O, とAl.O, とY.O, を秤量して全量2000gとする。【0121】秤量したY(Cro., Mno.,)O, とAl.O, とY.O, を、実施例4と同様に粉砕処理(粉砕工程)したサーミスタ材料の原料スラリーをレーザ式粒度計で評価した結果、平均粒径は1.5 μ mであった(図7参照)。これは、混合前のY.O, の平均粒径約1 μ m及びAl.O, の平均粒径約0.6 μ mよりも大きい。

【0122】粉砕後に得たY(Cro., Mno.,)O, とA1.O,とY,O,の混合粉砕スラリーを、上記実 20 施例5と同様に処理し、混合造粒粉を得る。続いて、この混合造粒粉を用いて、上記実施例5と同様に成形工程、及び、焼成工程を行い、外径φ1.60mmのサーミスタ素子を得る。このサーミスタ素子を実施例1と同様に、温度センサアッシーに組み込み、温度センサとする。作製されたサーミスタ素子および温度センサは、図2ないし図4のものと同構造である。

【0123】さらに、上記の第2の調製工程において、aY(Cro., Mno.,)O, ·b(Al, O, +Y, O,)の調合モル比a:bが、a:b=95:5及び5:95(CCで、Al, O, :Y, O, の比は50:10)となるように秤量し、以下、同様の手順にてサーミスタ素子を作製し、温度センサに組み込んだ。CCで、本実施例の各素子は、調合モル比a:bが、40:60、95:5、5:95の順に、素子番号22、素子番号23、素子番号24とする。

【0124】番号22~24の素子を組み込んだ温度センサについて、実施例1と同様に抵抗値の温度特性を評価した結果を図12の表に示す。本実施例8のサーミスタ素子も、抵抗値温度特性に関して、実施例5と同様の効果を有するサーミスタ素子を提供できる。また、本実施例8の素子番号22(a:b=40:60)のサーミスタ素子を用いた温度センサの温度精度は、実施例5(±22℃)に比べて、±9℃と良好な値が得られた(図7参照)。

いるといえる。つまり、実施例6〜実施例8記載の製造方法では、良好な抵抗値の温度特性を達成しつつ、サーミスタ材料の微粒化により組成の均一混合をはかり、混合焼結体(M1M2)O,・Y,O,・A1,O,の組成変動を低減することで、センサ毎の抵抗値のバラツキを低減できる。

【0126】(他の変形例)なお、Y, O, 等のイットリア化合物と、Cr, O, 等のクロム化合物と、Mn, O, 等のマンガン化合物と、Al, O, 等のアルミニウム化合物から、上記実施例1~8のようなY(CrMn)O, と、Al, O, (またはAl, O, とY, O,)の混合焼結体からなるワイドレンジ型サーミスタ素子を調製できることはいうまでもない。

【0127】また、上記の実施例1~8では、第1の調製工程において、仮焼成前の乾燥を熱風乾燥して混合固形体をライカイ機で租粉砕して仮焼成を行っているが、組成の均一性を図るために、混合工程でバインダーを添加し、スプレードライヤにより造粒、乾燥した混合粉を仮焼成を実施することによっても、ワイドレンジ型サーミスタ素子を提供することができる。

【0128】同様に、組成の均一性を図るために、サーミスタ素子の製造工程の仮焼成を2回以上実施することによってもワイドレンジ型サーミスタ素子を提供することができる。上記各実施例1~8では、リード線の線径、長さをφ0.3×10.5 (mm)、材質をPt100(純白金)としていたが、温度センサの形状、寸法及び温度センサの使用環境条件に応じて、リード線の形状、線径、長さを任意に選択でき、リード線の材質はPt100(純白金)のみならず、サーミスタ素子の焼成30温度に耐えうる融点を持ち、リード線としての導電性が得られる、例えばPt80Ir20(白金80%、イリジウム20%)等の高融点金属も使用できる。

【0129】さらに、リード線抜けを防止する目的で、断面形状を円形以外、例えば矩形、半円等の形状とすることも可能であり、リード線表面にローレット加工等で凹凸を付与し、サーミスタ素子のリード線として使用してもよい。また、上記各実施例1~8では、サーミスタ素子の成形方法としてリード線をインサートして、金型成形を行っているが、サーミスタ原料(粉体)を用いて円柱成形体を成形後に、リード線を付与するための穴を開け、リード線を装填して焼成することで、リード線を形成し、サーミスタ素子を得ることができる。

【0130】また、上記円柱成形体を焼成後にリード線を形成し、サーミスタ素子を得ることも可能である。また、サーミスタ素子の原料にバインダー、樹脂材料等を混合添加して、押し出し成形に好適な粘度、固さに調整し、押し出し成形により、リード線を付与するための穴が形成されたサーミスタ素子の成形体を得、リード線を装填して焼成することで、リード線を形成したサーミスタ素スを得ることができる。

【0131】また、サーミスタ素子の原料に、バインダー、樹脂材料等を混合添加して、シート成形に好適な粘度、固さに調整し、厚さ200μmのシート状のサーミスタシートを得る。このサーミスタシートを5枚積層し厚さを1mmとし、金型により外径がゆ1.8mmリード線を付与するための穴を直径ゆ0.4mmで形成されたサーミスタ素子の成形体を得、リード線を装填して焼成することで、リード線を形成したサーミスタ素子の成形体を得ることができる。

【0132】なお、上記実施例5~実施例8において、 10 ある。 調合1にてY, O, を多めに入れて仮焼成してY, O, が過剰の仮焼成体Y(Cro, Mno,)O, ·Y, O におけるが、 を作り、その後、調合2にて混合焼結体が所望の組成 比となるように、Y, O, 及びA1, O, を加えるようにしてもよい。以上、本発明について述べてきたが、本 発明のサーミスタ素子は、上記のごとく、低抵抗値及び 低抵抗温度係数(例えば100~4000(*K))を示す(M1M2)O, と、サーミスタ素子の抵抗値を 安定化する材料であるA1, O, (またはY, O, とA 1, O,)との混合焼結体よりなるa((M1M2)O,) である。 、)・b(Y, O, +A1,O,)の一般式で示される材料 を示す図表である。 【図11】

【0133】そのため、両者を適宜混合、焼成することにより、抵抗値及び抵抗温度係数を広い範囲で種々制御できるため、室温~1000℃の広い温度域に渡って温度を検知可能で、室温~1000℃の熱履歴等の信頼性の点からも抵抗値の変化がない安定した特性を持つサーミスタ材料を提供することができる(上記実施例1~8)。

【0134】また、本発明のサーミスタ素子の製造方法では、サーミスタ原料の微粒化により組成の均一混合を図り、組成変動を低減することで、サーミスタ素子の抵抗値のばらつきを低減し、室温~1000℃において温度精度が±10℃以下に向上し(従来製造方法では、±23℃程度)、温度センサの高精度化が可能となるサーミスタ素子を提供できる(実施例2~4及び実施例6~*

*8)。 【図面の簡単な説明】

【図1】本発明の実施例1のサーミスタ素子の製造工程 図である。

【図2】上記実施例1 におけるサーミスタ素子の構成図である。

【図3】図2のサーミスタ素子を用いた温度センサの断面構成図である。

【図4】図3の温度センサの金属バイブの断面構成図で10 ある。

【図5】本発明の実施例1~実施例4のサーミスタ素子 における抵抗値温度特性を示す図表である。

【図6】本発明の実施例2のサーミスタ素子の製造工程 図である。

【図7】本発明の実施例1~実施例8のサーミスタ素子におけるセンサ温度精度を示す図表である。

【図8】本発明の実施例3のサーミスタ素子の製造工程 図である。

【図9】本発明の実施例4のサーミスタ素子の製造工程 0 図である。

【図10】本発明の比較例のサーミスタ素子の抵抗特性 を示す図表である。

【図11】本発明の実施例5のサーミスタ素子の製造工程図である。

【図12】本発明の実施例5~実施例8のサーミスタ素 子における抵抗値温度特性を示す図表である。

【図13】本発明の実施例6のサーミスタ素子の製造工程図である。

【図14】本発明の実施例7のサーミスタ素子の製造工 30 程図である。

【図15】本発明の実施例8のサーミスタ素子の製造工程図である。

【符号の説明】

1…サーミスタ素子、2…金属ケース、3…金属バイプ、11、12…リード線、13…素子部、31、32 …リード線、33…マグネシア粉体。

【図5】

集子 番号	原料組成(モル%)		抵抗値 (KΩ)		抵抗温度保敷	抵抗変化率
	Y (CrQ5MnQ5) 03	A1203	室温 (2.7℃)	1000°C	β (° K)	ΔR (%)
1.4. 7,10	40	60	50	0.07	2580	-50
2,5, 8,11	95	5	30	0.05	2510	-50
3.6, 9,12	5	95	100	Q.1	2710	-50

【図7】

	_	粉砕時の原料成分	混合後の 平均粒径 (μm)	粉砕後の 平均粒径(μm)	温度精度(℃)
実施例	1	Y (CrMn) 03, A1203	1.7	2.5	±23
実施例	2	Y (CrMn) 03, A1203	1.7	0.4	±10
実施例	3	Y (CrMn) 03, A1203	0.3	0.3	±5
実施例	4	Y (CrMn) 03, A1203	0.3	1.6	±9
灵施例	5	Y (CrMn) 03, A1203, Y203	1.7	2.3	±22
実施例	6	Y (CrMn) 03, A1203, Y203	1.7	0.3	±9
実施例	7	Y (CrMn) 03, A1203, Y203	0.3	0.3	±5
実施例	8	Y (CrMn) 03, A1203, Y203	0.3	1.5	±9

【図9】

【図10】

【図12】

素子 番号	原料機成(モル%)		抵抗値(KΩ)		抵抗温度保養	抵抗変化率
	Y (Cra5Mna5) 03	A1203+Y203	查温 (27℃)	1000°C	₿ (° K)	AR (%)
13,16, 19,22	40	60	50	008	2530	-50
14,17, 20,23	95	5	30	0.05	2510	-50
15,18, 21,24	5	95	100	0.17	2500	-5.0

【図15】

フロントページの続き

(72)発明者 葛岡 馨

愛知県刈谷市昭和町1丁目1番地 株式会 社デンソー内