Avaliação do Desempenho 1: Métricas

Sistemas de Computação Licenciatura em Ciências da Computação João Luís Sobral, 2023

 Para prever o desempenho (T_{EXEC} – tempo de execução) de um dado programa num determinado processador é necessário um modelo que relacione o desempenho com as características do sistema de computação (hw+sw)

Um programa numa máquina executa num determinado número médio de ciclos de relógio (#CC):
clock cycles

T_{EXEC} = # clock cycles * Tcc
ou
T_{EXEC} = # clock cycles / f

 De que depende o número médio de ciclos necessários para executar um programa?

• Um programador quer escolher entre dois segmentos de código diferentes para um mesmo algoritmo. Qual o mais rápido?

Tipo de Instrução	СРІ		
Α	1		
В	2		
С	3		

Código	Número de Instruções				
	А	В	С		
1	2000	1000	100		
2	100	1000	1000		

$$T_{EXEC1} = \frac{(1*2000 + 2*1000 + 3*100)}{f} = \frac{4300}{f}$$

$$T_{EXEC2} = \frac{(1*100 + 2*1000 + 3*1000)}{f} = \frac{5100}{f}$$

 Calcule o tempo de execução do programa abaixo numa máquina com um relógio de 2 GHz e CPI (médio) de 1.5

```
movl 10, %ecx
movl 0, %eax
ciclo:
addl %ecx, %eax
decl %ecx
jnz ciclo
```

#I = 32

NOTA: O número de instruções a considerar é o número de instruções **executadas.**

Texec =
$$32 * 1.5 / 2E9 = 24E-9 s = 24 ns$$

Como determinar o CPI?

- Uma aproximação grosseira será dizer que uma máquina apresenta um determinado CPI, independentemente do tipo de instruções.
 - Se tivermos a possibilidade de medir #CC e #I então CPI = #CC / #I
- Diferentes tipos de instruções exibem valores de CPI diferentes:
 - Divisões exigem mais ciclos do que adições ou multiplicações
 - Acessos à memória exigem mais ciclos do que acessos a registos
 - Operações em vírgula flutuante podem exigir mais ciclos do que operações com inteiros
- O CPI pode ser determinado para cada classe de instruções, sendo o CPI médio (ou CPI_{global}) calculado multiplicando a frequência de cada instrução pelo seu CPI:

$$CPI_{global} = \sum_{i=1}^{n} CPI_{i} * F_{i}$$
 onde $F_{i} = \frac{\# I_{i}}{\# I}$

– Exemplo:

Operação	Freq (Fi)	Ciclos por Instr. (CPI <i>i</i>)	CPI <i>i</i> x F <i>i</i>	(% tempo)
ALU	50%	1	0,5	(33%)
Load	20%	2	0,4	(27%)
Store	10%	2	0,2	(13%)
Branch	20%	2	0,4	(27%)
		$\Sigma_{=}$	1,5	-

Combinação típica (mix)

CPI_{global} para este exemplo

Atenção:

- Desempenho de pico usa o menor CPI

Exemplo 1: Aumentar a frequência do relógio (diminuir Tcc) implica frequentemente um aumento do CPI!

Explicação: Entre outros factores, deve-se considerar o tempo de acesso à memória (Tmem). Se Tcc diminui e Tmem se mantiver, então serão necessários mais ciclos para aceder à memória.

$$f_1 = 1GHz$$
 $f_2 = 2GHz$ $T_{cc1} = 1ns$ $T_{cc2} = 0.5ns$ $T_{mem} = 40ns$ $T_{mem} = 40ns$ $Ciclos_{mem1} = 40$ $Ciclos_{mem2} = 80$

Conclusão: Apesar de Tcc diminuir para metade, Texec não diminui para metade, pois o número de ciclos de acesso à memória aumenta.

Exemplo 2: Diminuir o número de instruções (#I) recorrendo a instruções mais complexas resulta num aumento do CPI!

Explicação: As instruções mais complexas realizam o trabalho de várias instruções simples, mas podem necessitar de mais ciclos para o completar, resultando num aumento do CPI. Este é um dos argumentos dos defensores de arquitecturas RISC.

Conclusão: O número de instruções diminui, mas o ganho em tempo de execução não diminui na mesma proporção, devido ao aumento do CPI.

	Tem impacto em		
	#1	СРІ	Тсс
Algoritmo	S	(S)	
Linguagem	S	(S)	
Compilador	S	(S)	
Conj. Instruções (ISA)	S	S	
Organização		S	S
Tecnologia			S

Texe = #I x CPI x Tcc

#I – depende do algoritmo, da linguagem de programação, do compilador e da arquitectura (ISA)

CPI – depende da arquitectura (ISA), da mistura de instruções efectivamente utilizadas, da organização do processador e da organização dos restantes componentes do sistema (ex., memória)

f – depende da organização do processador e da tecnologia utilizada

"A única métrica completa e fiável para avaliar o desempenho de um computador é o tempo de execução"

As métricas CPI, f e #I não podem ser avaliadas isoladamente, devendo ser sempre consideradas em conjunto, pois dependem umas das outras.

Texe = #I x 1/#cores × 1/SIMD × CPI × (CPI = IPC) Tcc (Tcc = 1/f) Peak FLOPs =

Number of cores ×

FLOPS per instruction ×

Instruction per cycle ×

Cycles per second

(Task-Level Parallelism) (SIMD and FMA) (Instruction Level Parallelism) (Frequency)

CPU	80286	80386	80486	Pentium	Pentium Pro	Pentium 4	Core i7
Ano	1982	1985	1989	1993	1997	2001	2010
Tipo	16 bits	32 bits	pipelined 5-stage Cache L1	Super- escalar 2-way	OOO 3-way	OOO super- pipelined Cache L2	OOO 4-way Cache L3
Freq.	12,5 MHz	16 MHz	25 MHz	66 MHz	200 MHz	1,5 GHz	3,3 GHz
Core/ chip	1	1	1	1	1	1	4
MIPS	2	6	25	132	600	4500	50000
Latência (#CC)	1 6	5	5	5	10	22	14