Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116U06C101	Applied Mathematics - I							
		TH		F	•	,	TUT	Total
Teaching Scheme(Hrs.)		03			-		01*	04
Credits Assigned	03				01		04	
	Marks							
Examination	CA		ECE	CENTAL Z	0	D	P&O	Total
Scheme	ISE	IA	ESE	TW	O	P	1 &0	Total
	30	20	50	25				125

^{*} Batch wise Tutorial

Course prerequisites

- Differentiation Methods
- Basics of Complex numbers
- Basics of Matrices, Inverse and Adjoint of Matrix

Course Objectives

The objective of the course is to impart knowledge of De-Moivre's theorem, hyperbolic functions and logarithm of complex numbers. The course clarifies the concept of partial differentiation and its applications. The concept of rank of matrix, solving system of linear equations, Eigen values and Eigen vectors is also conveyed.

Course Outcomes

At the end of successful completion of the course the student will be able to

- CO1. Solve problems involving different forms and properties of complex numbers, hyperbolic functions and logarithm of complex numbers.
- CO2. Apply the concept of rank of a matrix and numerical methods to solve system of linear equations.
- CO3. Find Eigen values, Eigen vectors of a matrix, apply Cayley-Hamilton theorem, diagonalise a matrix and find functions of square matrices.
- CO4. Find partial derivatives of multivariable functions, apply the concept of partial differentiation to find maxima and minima of multivariable functions (2-3 variables)
- CO5. Apply Euler's theorem to prove results related to Homogeneous functions.

KJSCE 2020 FY BTech Revision 1.0 Page **1** of **3**

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO		
No.	No.	Joy Numbers Hymerhelic Eventions and Legewithm of	12	CO1		
1		Complex Numbers, Hyperbolic Functions and Logarithm of Complex Number				
	1.1	Statement of De Moivre's theorem and related examples				
	1.2	Powers and roots of complex numbers				
	1.3	Circular functions of complex number and hyperbolic				
		functions				
	1.4	Inverse circular and inverse hyperbolic functions				
	1.5	Logarithmic functions				
	1.6	Separation of real and imaginary parts				
		#Self-learning topics: Expansion of $sin^n\theta$, $cos^n\theta$ in				
		terms of sine and cosine of multiples of angle θ and				
		expansion of $sinn\theta$, $cosn\theta$ in powers of $sin\theta$, $cos\theta$				
2		x Theory: Rank of Matrix	8	CO 2		
	2.1	Types of matrices: Hermitian, Skew-Hermitian, Unitary				
	2.2	and Orthogonal matrix				
	2.2	Rank of a matrix using row echelon forms, reduction to normal form, and PAQ form				
	2.3	System of homogeneous and non-homogeneous				
	2.3	equations, their consistency and solutions				
	2.4	Linearly dependent and independent vectors				
	2.5	Solution of system of linear algebraic equations by				
		(a) Gauss Seidal method (b) Jacobi iteration method				
		#Self-learning topics: Symmetric, Skew-symmetric				
		matrices and properties, Properties of adjoint and inverse				
		of a matrix				
3	Matri	x Theory: Eigen values & Eigen vectors	12	CO 3		
	3.1	Characteristic equation, Eigen values and Eigen vectors,				
		Properties of eigen values and eigen vectors				
	3.2	Statement of Cayley-Hamilton theorem, Examples based				
		on verification and application of Cayley-Hamilton				
		theorem				
	3.3	Similarity of matrices, Diagonalisation of a matrix				
	3.4	Functions of square matrix, Derogatory and non-				
4	D4:-	derogatory matrices, Minimal polynomial	9	CO4		
4	4.1	Al Differentiation and Application Functions of several variables, Partial derivatives of first	9	CO4		
	4.1	and higher order (definition using limits and simple				
		problems)				
	4.0	1				
	4.2	Differentiation of composite functions and Total				
	4.2	differentials Maxima and minima of a function of two independent				
	4.3	Maxima and minima of a function of two independent				
	4.4	variables Introduction of Jacobian of two and three independent				
	4.4	Introduction of Jacobian of two and three independent				
L		variables (simple problems)		<u> </u>		

KJSCE 2020 FY BTech Revision 1.0 Page **2** of **3**

Somaiya Vidyavihar University K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Homogeneous Functions			CO5	
	5.1 Euler's theorem on homogeneous functions with two and				
	three independent variables (statement only) and problems				
	5.2 Deductions(Corollaries) from Euler's theorem (statements				
		only) and problems			
		Total	45		

Text Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition
		Mathematics	Publications,	2014
			India	
2.	Shanti Narayan	A text book of Matrices	S. Chand, India	10 th Edition
	-			2004
3.	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition
	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012
			India	

Reference Books

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and	
No.			Publisher with	Year of	
			country	Publication	
1.	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition	
		Mathematics	Limited, India	2015	
2.	Dennis G. Zill and	Advanced Engineering	Narosa	3 rd Edition	
	Michael R. Cullen	Mathematics	Publication	2010	
			India		
3.	Glyn James	Advanced Modern	Pearson	4 th Edition	
		Engineering Mathematic	Publication India	2010	
4.	Ramana B.V.	Higher Engineering	Tata Mcgraw	34th Edition	
		Mathematics Hill New Delhi,		(reprint) 2019	
			India		

Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in Tutorials.

Term-Work will consist of Tutorials covering entire syllabus. Students will be graded based on continuous assessment of their term work

KJSCE 2020 FY BTech Revision 1.0 Page **3** of **3**