Part 1

Step 2: Replace the rectangular pulse with a root raised cosine pulse, with a roll-off factor of β =0.5 and a truncated pulse duration of L=128 symbol periods.

Step 3: Test the simulator in the presence of noise. Increase the message word length to Na=1000 bits and simulate $N_f=1000$ message words. Use $\beta=0.5$, but reduce L to 4. For EbN0/ in the range of 0 dB to 10 dB with a step size of 1 dB, plot the BER vs. EbN0/ in a graph, along with the theoretical BER for when the channel is not band-limited. The theoretical and experimental bit error rates should be very similar.

Next, rerun your simulation with β =0.1 and L=4. There should now be a big difference between the theoretical and experimental results.

Rerun your simulation with β =0.1 and L=16. The theoretical and experimental results should now match closely.

Step 4: Using the techniques you learned in Lab #1, calculate and plot the power spectral density of the transmitted bandpass signal, $v_c(t)$. Use the following parameters: N_a =1000 bits, T=0.01 seconds, η =64 samples per symbol, and a carrier frequency of f_c =800 Hz. Use a root raised cosine filter with parameters β =0.5 and L=4. Use N_f =1000 frames to get smooth results.

(1+beta)/T = 1.5/0.001 = 150

881.511 - 718.489 = 163.022

Try changing the parameters a bit to see their effects on the PSD. For β =0.5, try different values of L (e.g., with L \in {2,4,8,32}, if possible plotting them all in the same graph). Observe that the sidelobes decrease with larger L, and the null-to-null bandwidth comes closer to $(1+\beta)/T$.

L = 2

L = 4

L = 6

For L=16, try different values of β (e.g., with $\beta \in \{0,0.2,0.5,0.8,1\}$). Observe that the null-to-null bandwidth changes with β , and the sidelobes decrease with larger β .

Beta = 0

Beta = 0.2

Beta = 0.5

Beta = 0.8

Beta = 1 For L=4 and $\beta=0.5$, try different values of T (with $T\in\{0.02,0.01,0.007\}$).

T = 0.02

T = 0.01

T = 0.007

Part 2

Step 2: Modify your simulator to use a band-limited channel.

Step 3: Run your simulator with T=0.01, β =0.5, and L=4. Observe that the performance is nearly identical to the ideal case, while still having a throughput of 200 bits per second.

