

Rings & Fields 101

Bambordé Baldé | Co-Founder at Zaiku Group | Twitter: @zaikubalde • zaikugroup.com • October 2, 2020

Big thanks to Amir Ebrahimi for lecture 01 errata!

Community Chat Moderators

{Rolf Lobo, Soham Pal, Harshit Garg, Barry Burd}

Refined Foundation Module

Rings and Fields 101 #1

Matrix Analysis #1

Quantum Matrix Operators #2

Group Theory 101 #1 Linear Operators #2 Complex Hilbert Spaces #2

Naive Set Theory Overview #1

Complex Vector spaces #1

Matrix Groups: GL(n, C) & U(n) #3

Completed

#n is the number of live lectures

Lecture Agenda Summary

- 2. Ring Axioms
- 3. Ring Examples
- 4. Integral Domains
- 5. 2x2 Complex Matrix Ring
- 6. Matrix Ring Commutators
- 7. Definition of Field
- 8. Study Material Comment

Additive Groups Recap

Definition

Recall that an additive group is an abelian group (G, +) i.e. a group satisfying the following conditions:

- 1. $g_1 + g_2 = g_2 + g_1$ for all $g_1, g_2 \in G$
- 2. There exists an element $0 \in G$ such that for all $g \in G$, 0 + g = g + 0 = g (identity or zero element)
- 3. $g_1 + (g_2 + g_3) = (g_1 + g_2) + g_3$ for all g_1, g_2, g_3 in G (associative)
- 4. For all $g \in G$ there exists $-g \in G$ such that g + -g = 0 (inverse)
- Examples of additive groups:
 - 1. $(\mathbb{Z}, +)$
 - 2. $(\mathbb{R}, +)$
 - 3. $(\mathbb{C},+)$
 - 4. $(\mathbb{C}^2, +)$

Definition (1.0)

A ring is a triple $(R, +, \times)$ where R is a non-empty set and + and \times are closed binary operations on R satisfying the following axioms:

- 1. (R, +) is an additive group
- 2. $A \times (B \times C) = (A \times B) \times C$ for all $A, B, C \in R$ (associative)
- 3. $A \times (B + C) = (A \times B) + (A \times C)$ for all $A, B, C \in R$ (distributive)
- Sometimes mathematicians drop the associativity condition. In that case the ring is called a non-associative ring if associativity doesn't hold!
- From now on, whenever convenient we'll just write AB instead of $A \times B$ to denote the product of two ring elements $A, B \in R$.

Definition (1.1)

A ring $(R, +, \times)$ is called commutative (or abelian) if AB = BA for all $A, B \in R$. Else R is called noncommutative (or non abelian).

Examples of Rings

Which of the following triples are ring?

- 1. $(\mathbb{Z}, +, \times)$
- 2. $(2\mathbb{Z},+,\times)$
- 3. $(\mathbb{Q}, +, \times)$
- 4. $(\mathbb{R},+,\times)$
- 5. $(\mathbb{C},+,\times)$
- Which of the examples above are abelian? Are they all abelian rings?

Definition (1.2)

 $(R, +, \times)$ is called a ring with multiplicative identity (or just identity) if there exists an element $1 \in R$ such that $1A = A1 = A \ \forall A \in R$.

Which of the rings above has an identity?

Proposition (1.0)

Let $(R, +, \times)$ be a ring. Then the following identities hold:

- 1. $A \times 0 = 0$ for all $A \in R$
- 2. $A \times -B = -A \times B$ for all $A, B \in R$
- 3. $-A \times -B = A \times B$ for all $A, B \in R$

Proof:

1. Lets first observe that $A \times 0 = A \times (0+0) = A \times 0 + A \times 0$. Now because R is a group under + then $A \times 0 = 0$ because 0 is the only element in (R, +) that can satisfy $A \times 0 = A \times 0 + A \times 0$ i.e. 0 is the only element in (R, +) that when added to itself the result remains itself.

Will leave the remaining proof parts for you as homework challenge!

Definition (1.3)

A ring $(R, +, \times)$ is finite if its underlying set is finite, otherwise it's infinite.

- ▶ The rings $(\mathbb{Z}, +, \times)$, $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ and $(\mathbb{C}, +, \times)$ are obviously infinite.
- ▶ The set $\mathbb{F}_2 = \{0, 1\}$ with the + and \times tables defined below does form a finite ring. Is it a ring with identity? Also, is it abelian?

Convention: Sometimes I may just write R instead of $(R, +, \times)$.

Definition (1.4)

Let R be a ring with a multiplicative identity 1. The characteristics of R is defined as $\operatorname{Char}(R) = n$ where n is the smallest positive integer such that $n \times 1 = 0$ where $n \times 1 = 1 + 1 + 1 \dots + 1$ (sum n times). If no such n exists we say $\operatorname{Char}(R) = 0$

Try figure out what the following characteristics are:

- 1. $Char(\mathbb{Z})$
- 2. Char(ℚ)
- 3. $Char(\mathbb{R})$
- **4**. Char(ℂ)
- 5. $Char(\mathbb{F}_2)$

Definition (1.5)

Let R be a ring and let $S \subseteq R$. We say S is a subring of R if S is also a ring under the same binary operations as R.

Integral Domains

Definition (1.6)

Let R be an abelian ring with a multiplicative identity 1. R is an integral domain if ab = 0 if only if a = 0 or b = 0.

Which of the following rings are integral domains?

- $ightharpoonup \mathbb{F}_2$
- $ightharpoonup \mathbb{Z}_4 = \{0, 1, 2, 3\}$ where + and \times are mod4 operations.

2 x 2 Complex Matrix Ring

Definition (1.7)

We can define the set of all 2×2 matrices with entries in $\mathbb C$ as

$$M_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C} \right\}.$$

Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$ be two elements of $M_2(\mathbb{C})$. We can

define the notion of multiplication \times for A and B as follows:

$$A \times B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} (a \times e) + (b \times g) & (a \times f) + (b \times h) \\ (c \times e) + (d \times g) & (c \times f) + (d \times h) \end{pmatrix}$$

Addition is defined as
$$A + B = \begin{pmatrix} a & b \\ c & d \end{pmatrix} + \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} a + e & b + f \\ c + g & d + h \end{pmatrix}$$

With the above rules, we can prove that $M_2(\mathbb{C})$ is a ring with identity $1 = \mathbb{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Is it an integral domain?

Properties of $M_2(\mathbb{C})$

- ▶ $M_2(\mathbb{C})$ is of course a non abelian ring i.e. AB = BA doesn't hold for all $A, B \in M_2(\mathbb{C})$. For example consider $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Following the multiplication rules, $AB = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ whereas $BA = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.
- ▶ Three special elements of $M_2(\mathbb{C})$ that are very important in quantum mechanics are the Pauli matrices:

$$\sigma_{x} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \, \sigma_{y} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \, \sigma_{z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

▶ $M_2(\mathbb{C})$ is an example of what we call \mathbb{C}^* - algebra! In quantum mechanics, the set of all bounded operators on a Hilbert space forms a special type of \mathbb{C}^* - algebra called von Neumann algebra.

$M_2(\mathbb{C})$ Commutator

Definition (1.8)

Let $A, B \in M_2(\mathbb{C})$. The commutator of A and B is defined as [A, B] = AB + (-BA) or in a less abstract algebra fashion [A, B] = AB - BA.

As a homework challenge, verify if the following identities hold:

- 1. For all $A, B \in M_2(\mathbb{C})$, [A, B] = 0 iff A and B commute.
- 2. [A, B] = -[B, A] for all $A, B \in M_2(\mathbb{C})$.
- 3. [A, B + C] = [A, B] + [A, C] for all $A, B, C \in M_2(\mathbb{C})$.
- 4. [AB, C] = A[B, C] + [A, C]B for all $A, B, C \in M_2(\mathbb{C})$.
- 5. [A, BC] = B[A, C] + [A, B]C for all $A, B, C \in M_2(\mathbb{C})$.
- 6. $[\alpha A, B] = [A, \alpha B] = \alpha [A, B]$ for all $A, B, C \in M_2(\mathbb{C})$ and $\forall \alpha \in \mathbb{C}$.
- In the advanced module of the course we'll also deal with anti-commutators defined as $\{A, B\} = AB + BA!$

Pauli Matrices Commutator Challenge

Let
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ be the Pauli

matrices. Calculate the following commutators:

- 1. $[\sigma_x, \sigma_y]$
- 2. $[\sigma_y, \sigma_x]$
- 3. $[\sigma_X, \sigma_Z]$
- 4. $[\sigma_z, \sigma_x]$
- 5. $[\sigma_y, \sigma_z]$
- 6. $[\sigma_z, \sigma_y]$

What Is a Field?

Definition (1.9)

A field is a triple $(F, +, \times)$ satisfying the following axioms:

- 1. $(F, +, \times)$ is an integral domain
- 2. Every non-zero element $a \in F$ has a multiplicative inverse a^{-1} i.e. $aa^{-1} = a^{-1}a = 1$

Which of the following integral domains are fields?

- 1. Z
- 2. Q
- 3. R
- 4. C
- $5. \mathbb{F}_2$
- Let p be a prime number and let $\mathbb{F}_p = \{0,....p-1\}$. Can \mathbb{F}_p be made into a field? If yes, what is the Char(\mathbb{F}_p)?

Abstract Algebra

Theory and Applications

Prof. Thomas W. Judson

Where should you focus?

Section 16 Rings (*Pages 192 - 208*)

• GitHub (Curated study materials): github.com/quantumformalism

• YouTube: Search Zaiku Group

• Twitter: @ZaikuGroup

• Gitter: gitter.im/quantumformalism/community