${\rm DMFS}$ - problem set 2

Alexander Husted

6. marts 2023

Indhold

L																														
	1.1																													
	1.2																													
	1.3																													
	1.4	d	Ι.																											
,																														
	2.1																													
	2.2	b) .		•	•				•		•					•				•			•		•				
3																														
	3.1	a	٠.																											
	3.2	b) ,																											

1

N	Matrix												Transitive matrix											Reflexive matrix											
		1	2	3	4	5	6	7	8	9	10			1	2	3	4	5	6	7	8	9	10			1	2	3	4	5	6	7	8	9	10
	1	0	1	1	0	1	0	1	0	0	0		1	0	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1
	2	0	0	0	1	0	1	0	0	0	1		2	0	0	0	1	0	1	0	1	0	1		2	0	1	0	1	0	1	0	1	0	1
	3	0	0	0	0	0	1	0	0	1	0		3	0	0	0	0	0	1	0	0	1	0		3	0	0	1	0	0	1	0	0	1	0
	4	0	0	0	0	0	0	0	1	0	0		4	0	0	0	0	0	0	0	1	0	0		4	0	0	0	1	0	0	0	1	0	0
	5	0	0	0	0	0	0	0	0	0	1		5	0	0	0	0	0	0	0	0	0	1		5	0	0	0	0	1	0	0	0	0	1
	6	0	0	0	0	0	0	0	0	0	0		6	0	0	0	0	0	0	0	0	0	0		6	0	0	0	0	0	1	0	0	0	0
	7	0	0	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	0	0	0	0		7	0	0	0	0	0	0	1	0	0	0
	8	0	0	0	0	0	0	0	0	0	0		8	0	0	0	0	0	0	0	0	0	0		8	0	0	0	0	0	0	0	1	0	0
	9	0	0	0	0	0	0	0	0	0	0		9	0	0	0	0	0	0	0	0	0	0		9	0	0	0	0	0	0	0	0	1	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0		10	0	0	0	0	0	0	0	0	0	1

relation S

Figur 1: Representation matrix of Figur 2: Transitive closure of re- Figur 3: Reflexive closure of relalation S

tion S

1.1 \mathbf{a}

The matrix is constructed with rows representing changes in i and columns representing changes in j. If $(a_i, b_i) \in S$, then the position (i,j) is set to 1 and vice versa: if $(a_i, b_i) \notin S$, then position (i,j) is set to 0.

This is represented on the graph as: if vertex i has an edge to vertex j, then the corresponding element is set to 1.

1.2 b

When denoting the transitive closure of the relation S the following needs to be true: $\forall a, b, c \ (a, b) \in T \land (b, c) \in T \Rightarrow (a, c) \in T$

When looking at the graph, this expression means that if a vertex have a path to another vertex, an edge should be added connection the two.

Ex: 2 has an edge to 4 which has an edge to 8. Hence in row 2, columns 4 and 8 should be set to 1.

1.3

When denoting the reflexive closure of the relation T the following needs to be true: $\forall a \ (a, a) \in R$

This is represented as all vertices looping back to themselves on the graph. In the context of matrices, reflexive closure can be denoted as having all the middle-diagonal elements be 1.

1.4 \mathbf{d}

For the relation R we have:

 ${}_{a}R_{b}$ if and only if a|b

Meaning: if $b \mod a = 0$ then $(a, b) \in R$

This relation have been discussed previous in the course, for example in example 4 on p. 128 in KBR.

$\mathbf{2}$

2.1 a

Let j be the number of children j=12 and let m be the amount of collected mushrooms m=77. We let n_i denote the amount of mushrooms each child has collected. We know from the assignment description that $n_i \geq 1$. If all children had collected a different amount of mushrooms we have that: $n = \sum_{i=1}^{j} n_i = 1 + 2 + ... + 12 = 78$

Noticing n > m we have according to the pigeonhole principle, that at least two children must have collected the same amount of mushroom.

To clarify: To get n=m we have to subtract 1 from n, meaning one child n_i must collect one less mushroom (n_i-1) . If we try this with an arbitrary child, lets say the 4th child we get that $n_4-1=n_3$. Hence at least two children (in this example n_4 and n_3) must have collected the same amount of mushrooms.

2.2 b

Let m denote the number of children m = 12

We have that if a prime number p|n then $p \mod (n+1) = 1$ meaning $p \not|(n+1)$. With this knowledge we can conclude that two consecutive numbers n and n+1 have no prime in common, also known as being relative primes.

This can be used to construct n holes of consecutive numbers that we know are relatively prime: $\{1,2\},\{3,4\}...\{21,22\}$. We get that n=11

It follows by the pigeon hole principle that because m > n at least two of the 12 randomly picked numbers will be in the same subset. This is the equivalent to two children drawing sheets with relatively primes.

3

3.1 a

					Tabel	1: (p =	$\Rightarrow (q \wedge r))$	$\Rightarrow ((q \lor \sim$	$(p) \wedge (r \vee \sim p))$	
	p	q	r	$q \wedge r$	$p \Rightarrow (q \land r)$	$\sim q$	$q \lor \sim q$	$r \lor \sim p$	$(q \lor \sim p) \lor (r \lor \sim p)$	$(p \Rightarrow (q \land r)) \Rightarrow ((q \lor \sim p) \land (r \lor \sim p))$
	Τ	Τ	Т	T	T	F	Т	Т	T	\mathbf{T}
	Τ	Τ	F	F	F	F	Т	F	F	${f T}$
	Τ	F	Γ	F	F	F	F	Т	F	${f T}$
İ	Τ	F	F	F	F	F	F	F	F	${f T}$
İ	F	T	Γ	Γ	Γ	Т	Т	Т	Т	${f T}$
İ	F	T	F	F	Γ	Т	Т	Т	Т	${f T}$
	F	F	Т	F	Γ	${ m T}$	Т	Т	T	${f T}$
İ	F	F	F	F	T	T	Т	Т	T	$oldsymbol{ ext{T}}$

We see that the statement is true for all possible values of its propositional variables, therefore it's a tautology.

Table explanation:

- 1. $p \wedge r$: The conjunction between q and r is True when both q and r are True, as seen in rows 1 and 5.
- 2. $p \Rightarrow (q \land r)$: p implies $(q \land r)$ is only False when p is True and $(q \land r)$ is False, as seen in row 2, 3 and 4.
- 3. $q \lor \sim p$: The disjunction between q and $\sim p$ is False only when both are False, as seen in row 3 and 4.
- 4. $r \lor \sim p$: The disjunction between r and $\sim p$ is False only when both are False, as seen in row 2 and 5.
- 5. $(q \lor \sim p) \land (r \lor \sim p)$: The conjunction is True when both are True, as seen in rows 2, 3 and 4.
- 6. $(p\Rightarrow (q\wedge r))\Rightarrow ((q\vee\sim p)\wedge (r\vee\sim p))$: $(p\Rightarrow (q\wedge r))$ implies $((q\vee\sim p)\wedge (r\vee\sim p))$ is only False when $(p\Rightarrow (q\wedge r))$ is True and $(q\vee\sim q)\wedge (r\vee\sim p)$ is False. This is not the case since they are equivalent

$$(p \Rightarrow (q \land r)) \equiv ((q \lor \sim p) \land (r \lor \sim p))$$
. Hence the tautology.

3.2 b

	Tabel 2: $((p \land q) \Rightarrow r) \Rightarrow ((r \lor \sim p) \land (r \lor \sim q))$														
p	q	r	$(p \wedge q)$	$((p \land q) \Rightarrow r)$	$\sim p$	$r \lor \sim p$	$\sim q$	$r \lor \sim q$	$((r \vee \sim p) \land (r \vee \sim q))$						
T	Т	Т	T	Т	F	T	F	T	T						
Т	F	F	F	Т	F	F	Т	Т	F						

We see that when p,q and r is True. $((p \land q) \Rightarrow r)$ is True because p and q is both True, and the conjunction of the to implies something True. $((r \lor \sim p) \land (r \lor \sim q))$ is also True since both $((r \lor \sim p) \land (r \lor \sim q))$ is True.

We see that when p is True, but q and r is False. Then $((p \land q) \Rightarrow r)$ is True, but it implies something false $((r \lor \sim p) \land (r \lor \sim q))$. Therefore in this case $((p \land q) \Rightarrow r) \Rightarrow ((r \lor \sim p) \land (r \lor \sim q))$ is False.

Since the statement can be either True or False it's a contingency.