§9. Метод математической индукции. Неравенство Бернулли

Метод математической индукции применяется для доказательства истинности утверждения $\alpha(n)$ для $\forall n \in \mathbb{N}$, при этом должны быть выполнены следующие два условия:

- 1). Утверждение $\alpha(n)$ истинно для n=1 база индукции.
- 2). Из гипотезы: утверждение $\alpha(n)$ верно при n=k (k- любое натуральное число) следует, что оно истинно и при n=k+1- индукционный шаг.

Пример 9.1. Доказать, что неравенство Бернулли $(1+a)^n \ge 1+na$ верно при $\forall n \in \mathbb{N}$ и $\forall a \ge -1$.

▶ Заметим, что при a = -1 справедливость неравенства Бернулли очевидна. Далее предполагаем, что $a \neq -1$.

При n=1 имеем верное равенство 1+a=1+a. Гипотеза: данное неравенство верно при n=k, т.е. неравенство $(1+a)^k \ge 1+ka$ верно при $\forall k \in \mathbb{N}$. Проверяя гипотезу, умножим обе части последнего неравенства на 1+a, получим:

$$(1+a)^{k+1} \ge (1+ka)(1+a)$$
 или

$$(1+a)^{k+1} \ge 1+ka+a+ka^2=1+(k+1)a+ka^2\ge 1+(k+1)a$$
. Итак,

 $(1+a)^{k+1} \ge 1 + (k+1)a$, а это и означает, что неравенство Бернулли верно при n=k+1. Отсюда следует, что оно верно и для $\forall n \in \mathbb{N}$ и $\forall a \ge -1$.