

Security (CS4028)

Lecture 5. Asymmetric Cryptography I

Chunyan Mu

chunyan.mu@abdn.ac.uk

The School of Natural and Computing Sciences

Schedule

	Week	Lecture 1	Lecture 2	Tutorial
	1	Intro to course & security	Intro to Crypto	-
	2	Symmetric Crypto	Hash	Math for crypto
\Rightarrow	3	Asymmetric Crypto-1	Asymmetric Crypto-2	Symmetric Crypto
	4	Signatures	Zero Knowledge Proof	Asymmetric Crypto
	5	Certificates	Authentication	Signature & certificates
	6	Access Control	AC models	Authentication
	7	Information flow	Security Management	Access control
	8	Protocols	Communications	Concepts & management
	9	Network security	Network security	Protocols and communications
	10	Advanced topics	Advanced topics	Network
	11	Revision		

Lecture 5: Public key cryptography I

Last lecture

Hash and MACs

This lecture

- understand mathematical ideas behind public key cryptography
- understand how the RSA algorithm works, including:
 - key generation, encryption and decryption

Outline

Asymmetric-key Cryptography: an overview

Basic mathematical background

Modular arithmetic

Prime

EEA

Inverse modulo

Totient funcaction

Modular exponentiation

RSA

overview the keys

how it works

example

Summary

Outline

Asymmetric-key Cryptography: an overview

Basic mathematical background

Modular arithmetic

Prime

EEA

Inverse modulo

Totient funcaction

Modular exponentiation

RSA

overview

the keys

how it works

example

Summary

Public key cryptography

- ▶ In symmetric cryto, pairs of communicating peers share the same key to secure the communication (in some way).
- ▶ In asymmetric crypto., they use different-but-related keys.

Two Roles of Modern Cryptography

- ► **Communication**: encrypt/decrypt with key
 - ► **Symmetric**: different communicating parties use the <u>same</u> secret key for both encryption and decryption
 - Asymmetric: different parties use different private keys/secrets
- ▶ Authentication, Data Integrity: creation of a "fingerprint" or "message digest" for a digital object (e.g. a message or files) and that is hard to fake and that identifies the creator.
 - digital signatures, certificates

Public-private key pairs

- ▶ Many asymmetric schemes involve public- private key pairs.
- Let the private key be s (for secret).
- Let the public key be v (for visible).

Asymmetric Encryption

- Encrypt E with public key and decrypt D with private key.
- ▶ E.g., sending a secret, symmetric session key as the message.
- ► Anyone with the public key can send a confidential message to the owner of the private key
- ▶ Need D(s, E(v, m)) = m, for all inputs m.

Asymmetric Signature

- Encrypt. with the private key, decrypt with public
- Anyone with the public key can verify that the message was signed by someone who has the private key.
- ► E.g., RSA signatures
- ▶ Need D(v, E(s, m)) = m, for all inputs m.

Basic ideas of Public-key Cryptography

Trapdoor Function

- ► The main idea behind public-key cryptography is the concept of the trapdoor function:
 - ▶ a function that is easy to compute in one direction,
 - but difficult to compute in the opposite direction (finding its inverse) without special information (a secret), called 'trapdoor'.
- Trapdoor functions are widely used in cryptography:
 - the secret relates to (deriving) a private key.

Basic ideas of Public-key Cryptography

Trapdoor Function

- ▶ *f* is easy to compute
- $ightharpoonup f^{-1}$ is difficult to compute

12 / 45

Basic ideas of Public-key Cryptography

Trapdoor Function

- Some trapdoors are based on 'simple' number theoretic problems.
 - Discrete knapsack, discrete logarithm problem, prime factorisation, . . .
- ▶ Some based on generalisation of these
 - ► E.g. to Group-theoretic problems, elliptic curves, shortest-vector problems in lattice-based cryptography, . . .

Basic ideas of public-key crypto

Example: Trapdoor Function

When n is large, $n = p \times q$ is a one-way function.

- ▶ Given p, q, calculate: $\rightarrow n$ (easy)
- ▶ Given n, calculate: p, q (difficult)

Basic ideas of public-key crypto

Example: Trapdoor Function

When n is large, $n = p \times q$ is a one-way function.

- ▶ Given p, q, calculate: $\rightarrow n$ (easy)
- ▶ Given n, calculate: p, q (difficult)

Discrete Logarithm Problem (DLP)

When n is large, the function $y = x^k \mod n$ is a trapdoor one-way function.

- ▶ Given x, k and n, calculate: $\rightarrow y$ (easy)
- ▶ Given y, x and n, calculate: k (difficult)

Outline

Asymmetric-key Cryptography: an overview

Basic mathematical background

Modular arithmetic

Prime

EEA

Inverse modulo

Totient funcaction

Modular exponentiation

RSA

overview the keys how it works example

Summary

Definition: congruence modulo n

Given an integer n > 1, called a modulus, two integers a and b are said to be congruent modulo n, if there is an integer k such that a - b = kn.

Congruence modulo *n* is denoted by:

$$a \equiv b \pmod{n}$$

If a is non-negative, and 0 < b < n, you can think of b as the remainder of a when divided by n, or the residue of a modulo n

Examples

```
25 \equiv 1 \pmod{4}
25 \equiv 1 \pmod{3}
38 \equiv 8 \pmod{15}
43 \equiv 1 \pmod{3}
43 \equiv 7 \pmod{12}
43 \equiv 13 \pmod{15}
43 \equiv 14 \pmod{29}
```

Properties

Modular arithmetic is just like normal arithmetic: commutative; associative; distributive

```
(a + b) \mod n = ((a \mod n) + (b \mod n)) \mod n

(a - b) \mod n = ((a \mod n) - (b \mod n)) \mod n

(a \times b) \mod n = ((a \mod n) \times (b \mod n)) \mod n

(a \times (b + c)) \mod n = (((a \times b) \mod n) + ((a \times c) \mod n)) \mod n
```

Example

```
(39 + 57) \mod 12
= ((39 \mod 12) + (57 \mod 12)) \mod 12
= ((3 \mod 12) + (9 \mod 12)) \mod 12
= 12 \mod 12
= 0 \mod 12
```

Try one

17424 mod 12 =?

Prime numbers

Definition

- ▶ A prime number *p* is an integer greater than 1 whose only factors are 1 and itself: no other number evenly divides it.
- A prime number p is an integer greater than 1 such that $p \equiv 0 \pmod{n}$ iff n = 1 or n = p

Examples

```
\begin{array}{l} 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, \dots, 73, 79, \dots, \\ 2591, \dots, 2365347734339, \dots, 2^{756839} - 1 \end{array}
```

Relatively prime numbers

Definition

- ► Two numbers *a* and *b* are relatively prime <u>iff.</u> they have no factors in common other than 1
- i.e., , their greatest common divisor is equal to 1: gcd(a, b) = 1

Examples

$$(2,3), (3,4), (4,5), (5,6); \ldots, (16,81), \ldots$$

Relatively prime numbers

Euclid's algorithm to compute gcd(a, b)

gcd(a, b) recursive version

1: **if** b = 0 **then**

2: return a

3: **else**

4: return $gcd(b, a \mod b)$

5: end if

gcd(a, b) iterative version

1: g = b2: **while** (a > 0)3: g = a4: $a = b \mod a$ 5: b = g6: **print** "g =", g

Example

а	b	a mod b
2322	654	360
654	360	294
360	294	66
294	66	30
66	30	6
30	6	0
6	0	-

а	b	g	a > 0
12	18	18	T
6	12	12	Т
0	6	6	F

What does it do?

Computes gcd(a, b), as well as number x and y such that ax + by = d

Example

- Note hat gcd(3,5) = 1, find x and y s.t. 3x + 5y = 1
- by trial and error, we find the following pairs:
 - $x = 2, y = -1: 3 \times 2 + 5 \times (-1) = 1$
 - $x = -3, y = 1: 3 \times (-3) + 5 \times (2) = 1$
 - $x = -13, y = 8: 3 \times (-13)2 + 5 \times (8) = 1$

The algorithm

```
Find integers x and y such that ax + by = d where d = gcd(a, b)

1: if b = 0 then

2: return (a, 1, 0)

3: else

4: (d', x', y') \leftarrow \text{EEA}(b, a \mod b)

5: (d, x, y) \leftarrow (d', y', (x' - \lfloor a/b \rfloor y'))

6: return (d, x, y)

7: end if
```

Example

Find the d, x and y, by running EEA for the numbers a=2322 and b=654.

а	b	a mod b	[a / b]	d	Х	у
2322	654	360	3	6	20	$-11 - 20 \times 3 = -71$
654	360	294	1	6	-11	$9 - (-11) \times 1 = 20$
360	294	66	1	6	9	$-2 - 9 \times 1 = -11$
294	66	30	4	6	-2	$1 - (-2) \times 4 = 9$
66	30	6	2	6	1	$0 - 2 \times 1 = -2$
30	6	0	5	6	0	$1 - 0 \times 5 = 1$
6	0	-	-	6	1	0

EEA is used to find inverses, when they exist.

Remarks

- Find y such that $ay = 1 \pmod{b}$ with given a < b
 - if a and b are relatively prime, there exists a unique solution y
 - if a and b are non-relatively prime, there is no solution
- ▶ Equivalent to finding y and z such that ay + bz = 1

What is it?

- Remember inverse?
 - the inverse of 4 is $\frac{1}{4}$ since $4 \times \frac{1}{4} = 1$
- ▶ In modular world, the problem is more complicated: $4 \times ? \equiv 1 \pmod{7}$
 - \blacktriangleright by trial and error we can see x=2
 - the equation is equivalent to finding an x and y s.t.

$$4x + 7y = 1$$

the general problem is finding an x s.t.

$$1 \equiv (a \times x) \mod n$$

▶ this is also written as: $a^{-1} \equiv x \mod n$

The modular inverse problem is a lot more difficult to solve

- sometimes it has a solution, sometimes not, e.g.,
 - ▶ the inverse of 5 mod 14: $1 \equiv (5 \times ?) \mod 14 \rightarrow 3$
 - ▶ however, the inverse of 2 mod 14: $1 \equiv (2 \times ?) \mod 14 \rightarrow \text{no solution!}$

The modular inverse problem is a lot more difficult to solve

- sometimes it has a solution, sometimes not, e.g.,
 - ▶ the inverse of 5 mod 14: $1 \equiv (5 \times ?) \mod 14 \rightarrow 3$
 - ▶ however, the inverse of 2 mod 14: $1 \equiv (2 \times ?) \mod 14 \rightarrow \text{no solution!}$

How to find it?

- **EEA** is used to find **inverses** of a modulo n.
- ▶ We call EEA(a, n) and we get the result (d, x, y):
 - ightharpoonup if d=1 then the inverse of a modulo n is x,
 - ▶ if $d \neq 1$, then a has no inverse modulo n.

Example: $11^{-1} \mod 35$

Equivalent to find x, y s.t. 11x + 35y = 1 by running EEA.

а	b	a mod b	[a/b]	d	X	у
11	35	11	0	1	16	$-5-0 \times 16 = -5$
35	11	2	3	1	-5	$1-3 \times (-5) = 16$
11	2	1	5	1	1	$0-5 \times 1 = -5$
2	1	0	2	1	0	$1-2 \times 0 = 1$
1	0	-	-	1	1	0

What is $11^{-1} \mod 35$ then?

Example: $11^{-1} \mod 35$

Equivalent to find x, y s.t. 11x + 35y = 1 by running EEA.

а	b	a mod b	[a / b]	d	X	у
11	35	11	0	1		$-5-0 \times 16 = -5$
35	11	2	3	1	-5	$1-3 \times (-5) = 16$
11	2	1	5	1	1	$0-5 \times 1 = -5$
2	1	0	2	1	0	$1-2 \times 0 = 1$
1	0	-	-	1	1	0

What is 11^{-1} mod 35 then?

Try one:

$$8^{-1} \mod 25$$
, $4^{-1} \mod 9$, $4^{-1} \mod 10$

The Euler's Totient Function

Euler's totient function

- ▶ also called "Euler Phi function", written as $\phi(n)$
- ▶ $\forall n > 1$, $\phi(n)$ is the number of positive integers < n, that are relatively prime to n.
- e.g., $\phi(24) = 8$, since there are 8 totatives of 24: 1, 5, 7, 11, 13, 17, 19, 23

How to compute $\phi(n)$ in general case?

if $n=p_1^{e_1}\cdot p_2^{e_2}\cdot \cdots \cdot p_k^{e_k}$, where p_1,\ldots,p_k are distinct primes, then

$$\phi(n) = (p_1 - 1) \cdot p_1^{e_1 - 1} \cdot \ldots \cdot (p_k - 1) \cdot p_k^{e_k - 1}$$

e.g.,
$$n = 24 = 2^3 \cdot 3$$
, hence $\phi(24) = 1 \cdot 2^2 \cdot 2 \cdot 3^0 = 8$

The Euler's Totient Function

Special cases

- ▶ if *n* is prime, then $\phi(n) = n 1$,
 - e.g., n = 13, $\phi(13) = 12$
- if n = pq where p, q are different prime numbers, then $\phi(n) = (p-1)(q-1)$,
 - e.g., $n = 143 = 13 \times 11$, $\phi(143) = 120$
- ▶ if $n = p^a$ where p is prime then $\phi(n) = (p-1)p^{a-1}$,
 - e.g., $n = 9 = 3^2$, $\phi(9) = (3-1) \times 3^1 = 6$

Modular Exponentiation

Basic idea

Given number a, b, n, compute $a^b \mod n$

Two ways to compute it

- ▶ Brute force: $\overbrace{a \cdot a \cdot \cdots \cdot a \mod n}^{b}$ slow for large value of b!
- Repeated squaring:
 - 1. write the exponent b in binary
 - 2. ignore the first digit
 - 3. read the digit from left to right: if 0 then square the number; if 1 then square the number and multiply the result by *a*

Modular Exponentiation

Example: 3¹¹ by repeated squaring

- ▶ write 11 in binary: 1011₂.
- ▶ ignore the first digit, so we have: 011.
- ▶ now from left to right we see:
 - ▶ 0, so we square the number: $3^2 = 9$ (1 multiplication)
 - ▶ 1, so we square the number and then multiply with 3: $3^5 = 9^2 \times 3 = 81 \times 3 = 243$ (2 multiplications)
 - ▶ 1, so we square the number and then multiply with 3: $3^{11} = 243^2 \times 3 = 59049 \times 3 = 177147$ (2 multiplications)
- ▶ we computed 3¹¹, with only 5 multiplications instead of 10.

Modular Exponentiation

Example: 3¹¹ by repeated squaring

▶ We can represent this example in a table:

b	1	0	1	1
Z	3	$3^2 = 9$	$9^2 \times 3 = 243$	$243^2 \times 3 = 177147$

► We can reduce the intermediate results modulo *n* in modular arithmetic

b	1	0	1	1
Z	3	$3^2 = 9 \mod 12$ = 9	$9^2 \times 3 = 243 \mod 12$ =3	$3^2 \times 3 \mod 12$ =3

Outline

Asymmetric-key Cryptography: an overview

Basic mathematical background

Modular arithmetic

Prime

EEA

Inverse modulo

Totient funcaction

Modular exponentiation

RSA

overview the keys

how it works

example

Summary

RSA: Rivest-Shamir-Adleman

History

- ► Clifford Cocks, a British mathematician, described an equivalent system in an internal document in 1973 (not revealed until 1998 due to its top secret classification).
- Rivest, Shamir, and Adleman devised RSA independently of Cocks' work.
- ► The RSA algorithm was publicly described in 1978 by Ron Rivest, Adi Shamir, and Leonard Adleman at MIT

RSA: Rivest-Shamir-Adleman

Operation

The RSA algorithm involves three steps:

- key generation
- encryption
- decryption

RSA: overview

The keys

- Keys: public key (encryption), and private key (decryption)
- Keys generation:
 - ightharpoonup Choose two different large random prime numbers p, q
 - ightharpoonup Compute $n = p \times q$
 - Calculate totient $\phi(n) = (p-1) \times (q-1)$
 - Choose the encryption key e such that $e < \phi(n)$, and e and $\phi(n)$ are relatively prime
 - Compute the decryption key d such that $ed = 1 \mod \phi(n)$
 - ▶ d is the inverse of e modulo $\phi(n)$, can be calculated by using Extended Euclid's Algorithm (EEA)
 - e and n are public, and d is private

An online inverse of modulo calculator: https://planetcalc.com/3311/

RSA: Encryption and Decryption

Encryption of a message m

- 1. Divide m into numerical blocks m_i which is smaller than n
- 2. compute $c_i = m_i^e \mod n$
- 3. aggregate all c_i to obtain the final ciphertext c (represented by a set of blocks (c_i)).

Decryption

- 1. Obtain c in numerical blocks c_i
- 2. Compute $m_i = c_i^d \mod n$
- 3. Aggregate all m_i to obtain the plaintext m.

RSA: how it works

Why the RSA decipher works?

```
M^{\phi(n)} \equiv 1 \pmod{n} (by Fermat's little theorem) M^{k\cdot\phi(n)} \equiv 1 \pmod{n} M\cdot M^{k\cdot\phi(n)} \equiv M\cdot 1 \pmod{n} M^{k\cdot\phi(n)+1} \equiv M \pmod{n} M^{ed} \equiv M \pmod{n} (since ed \equiv 1 \pmod{\phi(n)})
```

RSA: an example

A complete example: key, encryption and decryption

1. Consider p = 37 and q = 59 then

$$n = p \times q = 2183$$
 (PUBLIC)

and we compute

$$\phi(n) = (p-1) \times (q-1) = 36 \times 58 = 2088$$

- 2. Randomly pick up e=83 (PUBLIC) then d=1283, such that $83\times d=1$ mod 2088 by using Extended Euclid's Algorithm (EEA).
 - you could also use an online inverse of modulo calculator, e.g., : https://planetcalc.com/3311/

RSA: an example

Example: key, encryption and decryption

- 3. Consider m = 57747639217438, $c = E_{RSA(83,2183)}(m)$:
 - $m_1 = 577$, $m_2 = 476$, $m_3 = 392$, $m_4 = 174$, $m_5 = 038$ (padding)
 - $c_1 = 577^{83} \mod 2183 = 425$
 - $c_2 = 476^{83} \mod 2183 = 1478$
 - **...** ...

 $e=83=\langle 1010011\rangle_2$, we compute c as follows:

		\	- / •	_,			
i	6	5	4	3	2	1	0
bi	1	0	1	0	0	1	$ \begin{array}{c} 1\\425 \rightarrow c_1\\1478 \rightarrow c_2 \end{array} $
m_1	577	1113	938	95	293	420	$425 \rightarrow c_1$
m_2	476	1727	316	1621	1492	94	$1478 \rightarrow c_2$
:		•				:	

You could also use the online PowerMod calculator to compute these, e.g., : https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

RSA: an example

Example: key, encryption and decryption

- 4. Consider $c = 425, 1478, 1350, ..., m = D_{RSA}(c)$
 - $m_1 = 425^{1283} \mod 2183 = 577$
 - $m_2 = 1478^{1283} \mod 2183 = 476$
 - **...** ...

Exercise

- ightharpoonup Compute c_3 , c_4 and c_5
- ightharpoonup Compute m_3 , m_4 and m_5

Outline

Asymmetric-key Cryptography: an overview

Basic mathematical background

Modular arithmetic

Prime

EEA

Inverse modulo

Totient funcaction

Modular exponentiation

RSA

overview

the keys

how it works

example

Summary

Summary

This lecture

- ► Mathematical background
- RSA: key generation, encryption and decryption

Next lecture

- Diffie-Hellman key exchange
- ▶ ElGamal: key generation, signature, encryption and decryption