Name: Majd Kawak / NetID: mkawa025 / CodeForces ID: mkawa025 / Student ID: 862273310

Due: 23:59, Wed 11/09, 2022

A. Longest decreasing subsequence

Submission#: 180250359

In this program, firstly I declared an *int* that would hold array size, then I declare an *array* with *int size*. I move on to input all values and store them inside my *array*. I declare a function called *compute_LDS* that takes my *array* and it's *size* as parameters. Inside *compute_LDS* I declare a *vector* that would hold *LDS* value at each index, initialize all *vector* elements to 1 (its longest length at each index value). Then I go through my *array* elements (*ints*) using double *for* loop, computing each *LDS* value in my *vector* iteratively using Recurrence Relation below:

$$l_i = max \begin{cases} 1 \\ max \\ 0 < j < i, a_j > a_i \end{cases} \{(l_j + 1)$$

Lastly, I display max value in my vector which refers to max LDS value. Total time complexity = $O(n^2)$.

B. Weighted Edit Distance

Submission#: 180261248

In this program, I start with declaring an two *int* to hold my string A and B sizes. I move on to declaring two *vector* with string sizes(A and B respectively). After inputing both strings, I create a DP Matrix table to hold computed values. Then I declare a function called $compute_DP$ that takes both my strings(A and B) with their sizes and my DP matrix as parameters. Inside $compute_DP$ I compute all DP values iteratively using recursion below: Recurrence Relation below:

$$DP[i][j] = \begin{cases} max\{i,j\} & \text{(when } i = 0 \lor j = 0) \\ DP[i-1][j-1] & \text{(when } i > 0 \land j > 0 \land x_i = y_j) \\ min \begin{cases} DP[i][j-1] + cost_of_inserting \\ DP[i-1][j] + cost_of_deleting \\ DP[i-1][j-1] + cost_of_replacing \end{cases} & \text{(when } i > 0 \land j > 0 \land x_i \neq y_j) \end{cases}$$

Where:

 $\begin{aligned} cost_of_inserting &= y_j \ value \ at \ B[j] \\ cost_of_deleting &= x_i \ value \ at \ A[i] \\ cost_of_replacing &= |x_i - y_j| \end{aligned}$

Lastly, I display last element computed at DP[A.size][B.size] that refers to our min cost to transform A to B. Total time complexity = O(m*n) where (m = A.size) and n = B.size).

C. Longest Unimodal Subsequence

Submission#: 180263692

In this program, firstly I declared an int that would hold array size, then I declare an array with int size. I move on to input all values and store them inside my array. Then I declare a function called $compute_LUS$ that takes my array and it's size as parameters. Inside $compute_LUS$ I compute LIS on all my array elements from LEFT \rightarrow RIGHT iteratively, saving each index LIS value inside a vector called lis_Index_Val using Recurrence Relation below:

$$l_i = max \begin{cases} 1\\ max\\ 0 < j < i, a_j < a_i \end{cases} \{(l_j + 1)$$

Then I compute LDS on all my array elements from RIGHT \rightarrow LEFT iteratively, saving each index LDS value inside a vector called lds_Index_Val using Recurrence Relation below:

$$l_i = max \begin{cases} 1 \\ max \\ 0 < j < i, a_j > a_i \end{cases} \{(l_j + 1)$$

Lastly I compute LUS max value using Longest Bitonic Subsequence logic, declare an array called lus_Index_Val of size identical to my original array. Iterate through all indices using Recurrence Relation below:

$$lus_Index_Val[i] = (lis_Index_Val[i] + lds_Index_Val[i])) - 1$$

(where we subtract 1 to remove index double counted in LIS and LDS)

Lastly, I display max value in my $array \ lus_Index_Val$ which refers to max LUS value. Total time complexity $= O(n^2) + O(n^2) + O(n) = O(n^2)$.

References

- $[1] \ \ geeks for geeks \ \ Longest \ \ Decreasing \ \ Subsequence \ \ https://www.geeks for geeks.org/longest-decreasing-subsequence/$
- [2] Sun, Yihan. "Lecture Dynamic Programming" CS 141, University of California Riverside. pdf presentation.
- [3] geeksforgeeks Longest Bitonic Subsequence https://www.geeksforgeeks.org/longest-bitonic-subsequence-dp-15/