《普通化学 H》各知识点的学习要求

知识点	学习要求		
第一章			
理想气体状态方程			掌握
真实气体状态方程		理解	
真实气体的临界状态	了解		
饱和蒸汽压概念			掌握
饱和蒸汽压与温度关系			掌握
饱和蒸汽压与体系(液体)压力关系	了解		
液体凝固点与压力的关系	了解		
理想溶液、稀溶液饱和蒸汽压			掌握
稀溶液依数性 (沸点、凝固点)		理解	
表面张力的概念		理解	
弯曲液面的附加压力	了解		
小液滴的饱和蒸汽压		理解	
液体内部气泡中的蒸汽压		理解	
过饱和现象: 过热液体、过冷蒸汽		理解	
第二章			
内能、焓的概念		理解	
功、热的概念		理解	
体积功计算(可逆、不可逆)			掌握
热力学第一定律			掌握
热的计算		理解	
可逆热不同于不可逆热(概念)		理解	
焓与焓变的概念		理解	
焓变与恒压热(相变热、反应热)的关系		理解	
内能增量与恒容热的关系		理解	
热容(恒压热容、恒容热容)		理解	
热容用于热(焓或内能增量)的计算			掌握
用标准摩尔生成焓计算恒压反应热			掌握
恒压反应热与恒容反应热的关系		理解	
恒压热(相变热、反应热)与温度的关系			掌握
熵的定义	了解		
熵判据		理解	
熵变的计算			掌握
自由能定义		理解	
自由能判据		理解	
自由能增量计算(要求如下)		•	
理想气体恒温膨胀(压缩)过程的 ΔG			掌握
相变(可逆、不可逆)过程的 ΔG			掌握

温度变化对自由能的影响	了解		
混合过程的 ΔG	了解		
化学反应标准 ΔG (298K)	7,7,1		掌握
组分分压(浓度)与 ΔG 的关系(2-27 式)		理解	V V
化学平衡		. , , , ,	掌握
温度对化学平衡的影响			掌握
反应自发进行的方向的判断			掌握
电离平衡		理解	
沉淀平衡		理解	
		1	
第三章			
电化学的热力学本质		理解	
电极的种类	了解		
电极电势的产生		理解	
相对电极电势		理解	
电极电势的能斯特方程			掌握
盐桥	了解		
电动势的能斯特方程			掌握
用电动势解决以下化学问题			
利用电动势测定溶液中离子浓度		理解	
利用电动势测定化学反应平衡常数			掌握
利用电动势判断物质氧化还原的能力大小		理解	
第四章			
反应速率定义		理解	
反应速率与浓度关系(要求如下)			
基元反应质量作用定律			掌握
零级、一级、二级反应的速率方程			掌握
零级、一级、二级反应速率方程的解			掌握
反应的半衰期			掌握
对行反应、平行反应、连续反应概念	了解		
链反应概念	了解		
反应速率与温度的关系			掌握
活化能			掌握
过渡态理论对反应活化能的解释		理解	
碰撞理论对反应速率的解释	了解		
吸附脱附平衡及其在色谱中的应用	了解		
第五章	T		
晶体结构的周期性、对称性		理解	
晶体X射线衍射原理	了解		
晶体中电子云密度的分布	了解		
X射线衍射测定生物大分子结构	了解		

键长和键角的规律性	 了解		
核外电子的波动性	了/// 了解		
薛定谔方程及其解	了/// 了解		
量子数	了/// 了解		
量子数与原子轨道的关系	J 加午	理解	
原子轨道能量量子化的概念	 了解	生卅	
1-30 号元素原子核外电子排布的规律	1 卅十		掌握
共价键的形成(σ键、π键)			
sp ³ 、sp ² 、sp 杂化轨道			
-			
杂化轨道对分子结构的解释		тн Ал	掌握
分子间作用力		理解	
ない。立			
第六章		тш Ьл	
有机化合物的分类	→ ħπ	理解	
有机化合物的命名	了解		
有机化合物的官能团及其主要类型	了解		W be
有机分子的化学键(单、双、离域、大π键)			掌握
杂化轨道对有机分子结构的解释		理解	
芳香性		理解	
休克尔规则		理解	
杂环化合物的分类	了解		
某些典型杂环化合物的结构、化学键		理解	
天然有机化合物	了解		
分子的手性		理解	
手性碳原子命名		理解	
手性化合物结构、性质特征		理解	
外消旋体拆分的原理	了解		
有机化合物的反应规律	了解		
生物体内的有机化学反应	了解		
蛋白质合成	了解		
第七章			
配合物的组成和结构		理解	
配位多面体		理解	
用杂化轨道解释配位键			掌握
配体的配位方式		理解	
配体交换和配位平衡			掌握
配合物的异构现象		理解	
功能配合物	了解		
'		-	
第八章			
原子发射光谱原理		理解	
原子发射光谱分析	了解		

原子吸收光谱原理		理解	
原子吸收光谱分析	了解		
分子振动频率与 Hooke 定律		理解	
红外光谱原理		理解	
红外光谱定性分析与定量分析	了解		
红外光谱应用	了解		
色谱分析原理		理解	
气相色谱	了解		
色谱定性与定量分析		理解	
液相色谱	了解		

了解:一般性了解、知道(知识性的)

理解: 能利用有关理论、原理分析、解答问题 掌握: 会计算、判断、分析、解答问题、做题目