有一句古话,叫做"国王已死,国王万岁!"它的意思是,老国王已经死去,国王的儿子现在继位。这句话的幽默,就在于这两个"国王"其实指的不是同一个人,而你咋一看还以为它自相矛盾。今天我的话题仿效了这句话,叫做"Lisp已死,Lisp 万岁!"希望到最后你会明白这是什么意思。

首先,我想总结一下 Lisp 的优点。你也许已经知道,Lisp 身上最重要的一些优点,其实已经"遗传"到了几乎每种流行的语言身上

(Java, C#, JavaScript, Python, Ruby, Haskell,)。由于我已经在其他博文里详细的叙述过其中一些,所以现在只把这些 Lisp 的优点简单列出来(关键部分加了链接):

- Lisp 的语法是世界上最精炼,最美观,也是语法分析起来最高效的语法。这是 Lisp 独一无二的,其他语言都没有的优点。有些人喜欢设计看起来很炫的语法,其实都是自找麻烦。为什么这么说呢,请参考这篇《谈语法》。
- Lisp 是第一个可以在程序的任何位置定义函数,并且可以把函数作为值 传递的语言。这样的设计使得它的表达能力非常强大。这种理念被 Python, JavaScript, Ruby等语言所借鉴。
- Lisp 有世界上最强大的宏系统(macro system)。这种宏系统的表达 力几乎达到了理论所允许的极限。如果你只见过 C 语言的"宏",那我可 以告诉你它是完全没法跟 Lisp 的宏系统相提并论的。
- Lisp 是世界上第一个使用垃圾回收(garbage collection)的语言。这种超前的理念,后来被 Java,C# 等语言借鉴。

想不到吧,现代语言的很多优点,其实都是来自于 Lisp — 世界上第二古老的程序语言。所以有人才会说,每一种现代语言都在朝着 Lisp 的方向"进化"。如果你相信了这话,也许就会疑惑,为什么 Lisp 今天没有成为主流,为什么 Lisp Machine 会被 Unix 打败。其实除了商业原因之外,还有技术上的问题。

早期的 Lisp 其实普遍存在一个非常严重的问题: 它使用 dynamic scoping。 所谓 dynamic scoping 就是说,如果你的函数定义里面有"自由变量",那么 这个自由变量的值,会随着函数的"调用位置"的不同而发生变化。

比如下面我定义一个函数 f, 它接受一个参数 y, 然后返回 x 和 y 的积。

```
(setq f
          (let ((x 1))
                (lambda (y) (* x y))))
```

这里 x 对于函数 (lambda (y) (* x y)) 来说是个"自由变量" (free variable) ,因为它不是它的参数。

看着这段代码,你会很自然的认为,因为 x 的值是 1,那么 f 被调用的时候,结果应该等于 $(*\ 1\ y)$,也就是说应该等于 y 的值。可是这在 dynamic scoping 的语言里结果如何呢?我们来看看吧。

(你可以在 emacs 里面试验以下的结果,因为 Emacs Lisp 使用的就是 dynamic scoping。)

如果我们在函数调用的外层定义一个 x, 值为 2:

```
(let ((x 2))
(funcall f 2))
```

因为这个 x 跟 f 定义处的 x 的作用域不同,所以它们不应该互相干扰。所以我们应该得到 2。可是,这段代码返回的结果却为 4。

再来。我们另外定义一个 x, 值为 3:

```
(let ((x 3))
(funcall f 2))
```

我们的期望值还是 2, 可是结果却是 6。

再来。如果我们直接调用:

```
(funcall f 2)
```

你想这次总该得到 2 了吧? 结果, 出错了:

```
Debugger entered--Lisp error: (void-variable x)
  (* x y)
  (lambda (y) (* x y))(2)
  funcall((lambda (y) (* x y)) 2)
  eval_r((funcall f 2) nil)
  eval-last-sexp-1(nil)
  eval-last-sexp(nil)
  call-interactively(eval-last-sexp nil nil)
```

看到问题了吗?f 的行为,随着调用位置的一个"名叫 x"的变量的值而发生变化。而这个 x,跟 f 定义处的 x 其实根本就不是同一个变量,它们只不过名字相同而已。这会导致非常难以发现的错误,也就是早期的 Lisp 最令人头痛的地方。好在现在的大部分语言其实已经吸取了这个教训,所以你不再会遇到这种让人发疯的痛苦。不管是 Scheme, Common Lisp, Haskell, OCaml, Python, JavaScript...... 都不使用 dynamic scoping。

那现在也许你了解了,什么是让人深恶痛绝的 dynamic scoping。如果我告诉你,Lisp Machine 所使用的语言 Lisp Machine Lisp 使用的也是 dynamic scoping,你也许就明白了为什么 Lisp Machine 会失败。因为它跟现在的 Common Lisp 和 Scheme,真的是天壤之别。我宁愿写 C++,Java 或者 Python,也不愿意写 Lisp Machine Lisp 或者 Emacs Lisp。

话说回来,为什么早期的 Lisp 会使用 dynamic scoping 呢? 其实这根本就不是一个有意的"设计",而是一个无意的"巧合"。你几乎什么都不用做,它就成那个样子了。这不是开玩笑,如果你在 emacs 里面显示 f 的值,它会打印出:

```
'(lambda (y) (* x y))
```

这说明 f 的值其实是一个 S 表达式,而不是像 Scheme 一样的"闭包"(closure)。原来,Emacs Lisp 直接把函数定义处的 S 表达式'(lambda (y) (* x y)) 作为了函数的"值",这是一种很幼稚的做法。如果你是第一次实现函数式语言的新手,很有可能就会这样做。Lisp 的设计者当年也是这样的情况。

简单倒是简单,麻烦事接着就来了。调用 f 的时候,比如 (funcall f 2), y 的 值当然来自参数 2, 可是 x 的值是多少呢?答案是:不知道!不知道怎么办?到"外层环境"去找呗,看到哪个就用哪个,看不到就报错。所以你就看到了之前出现的现象,函数的行为随着一个完全无关的变量而变化。如果你单独调用 (funcall f 2) 就会因为找不到 x 的值而出错。

那么正确的实现函数的做法是什么呢?是制造"闭包"(closure)。这也就是Scheme,Common Lisp 以及 Python,C# 的做法。在函数定义被解释或者编译的时候,当时的自由变量(比如 x)的值,会跟函数的代码绑在一起,被放进一种叫做"闭包"的结构里。比如上面的函数,就可以表示成这个样子:(Closure '(lambda (y) (* x y)) '((x . 1)))。

在这里我用 (Closure ...) 表示一个"结构"(就像 C 语言的 struct)。它的第一个部分,是这个函数的定义。第二个部分是 '((x . 1)),它是一个"环境",其实就是一个从变量到值的映射(map)。利用这个映射,我们记住函数定义处的那个 x 的值,而不是在调用的时候才去瞎找。

我不想在这里深入细节。如果你对实现语言感兴趣的话,可以参考我的另一篇 博文《怎样写一个解释器》。它教你如何实现一个正确的,没有以上毛病的解 释器。

与 dynamic scoping 相对的就是"lexical scoping"。我刚才告诉你的闭包,就是 lexical scoping 的实现方法。第一个实现 lexical scoping 的语言,其实不是 Lisp 家族的,而是 Algol 60。"Algol"之所以叫这名字,是因为它的设计初衷是用来实现算法(algorithm)。其实 Algol 比起 Lisp 有很多不足,但在 lexical scoping 这一点上它却做对了。Scheme 从 Algol 60 身上学到了 lexical scoping,成为了第一个使用 lexical scoping 的"Lisp 方言"。9年之后,Lisp 家族的"集大成者" Common Lisp 诞生了,它也采用了 lexical scoping。看来英雄所见略同。

你也许发现了,Lisp 其实不是一种语言,而是很多种语言。这些被人叫做"Lisp 家族"的语言,其实共同点只是它们的"语法":它们都是基于 S 表达式。如果你因此对它们同样赞美的话,那么你赞美的其实只是 S 表达式,而不是这些语言本身。因为一个语言的本质应该是由它的语义决定的,而跟语法没有很大关系。你甚至可以给同一种语言设计多种不同的语法,而不改变这语言的本质。比如,我曾经给 TeX 设计了 Lisp 的语法,我把它叫做 SchTeX (Scheme + TeX)。SchTeX 的文件看起来是这个样子:

```
(documentclass article (11pt))
(document
  (abstract (...))
  (section (First Section)
        ...)
  (section (Second Section)
        ...)
)
```

很明显,虽然这看起来像是 Scheme, 本质却仍然是 TeX。

所以,因为 Scheme 的语法使用 S 表达式,就把 Scheme 叫做 Lisp 的"方言",其实是不大准确的做法。Scheme 和 Emacs Lisp,Common Lisp 其实是三种不同的语言。Racket 曾经叫做 PLT Scheme,但是它跟 Scheme 的区别日益增加,以至于现在 PLT 把它改名叫 Racket。这是有他们的道理的。

所以,你也许明白了为什么这篇文章的标题叫做"Lisp 已死,Lisp 万岁!"因为这句话里面的两个"Lisp"其实是完全不同的语言。"Lisp 已死",其实是说Lisp Machine Lisp 这样的 Lisp,由于严重的设计问题,已经死去。而"Lisp 万岁",是说像 Scheme,Common Lisp 这样的 Lisp,还会继续存在。它们先进于其它语言的地方,也会更多的被借鉴,被发扬广大。

(其实老 Lisp 的死去还有另外一个重要的原因,那就是因为早期的 Lisp 编译器生成的代码效率非常低下。这个问题我留到下一篇博文再讲。)