Algoritmi i strukture podataka

- predavanja -

3. Rekurzija

Osnovna ideja rekurzije

Rekurzija:

jednadžba ili nejednadžba koja opisuje funkciju korištenjem njezine vrijednosti izračunate za manji skup podataka

- funkcija poziva samu sebe, ali definicija ne smije biti cirkularna (tj. mora imati završetak)
- procedura poziva samu sebe:

rekurzija:

vidi: rekurzija

rekurzija:

ako nije jasno što je to,

vidi: rekurzija

Implementacija

- rekurzivni programi (programski kod) su kraći, ali je izvođenje programa dulje
- za pohranjivanje rezultata i povratak iz rekurzije koristi se struktura podataka stog

Rekurzivna definicija

- Rekurzivna definicija funkcije: funkcija poziva samu sebe, ali definicija ne smije biti cirkularna (tj. mora imati završetak)
- Primjer: rekurzivna definicija skupa prirodnih brojeva N
 - 1. $1 \in N$
 - 2. ako je $n \in \mathbb{N}$, onda je $n + 1 \in \mathbb{N}$
- Primjer:
 - Zašto se dug napravljen kreditnom karticom ne može platiti istom kreditnom karticom?

Primjeri rekurzija

faktorijeli:

$$n! = n \cdot (n - 1)! = n \cdot (n - 1) \cdots 2 \cdot 1$$

Fibonaccijevi brojevi:

$$F_n = F_{n-1} + F_{n-2}$$

zlatni omjer (zlatni rez):

$$\phi = 1 + 1 / \phi = (1 + 1 / (1 + 1 / ...)) = (1 + \sqrt{5}) / 2 \approx 1.618$$

Kochova pahuljica (Helge von Koch, 1904.)

Rješavanje rekurzije (1)

- koristi se strategija podijeli, pa vladaj (lat. divide et impera, engl. divide and conquer)
 - pripisuje se Filipu II Makedonskom, ali su istu ideju koristili Julije
 Cezar (također i divide ut regnes), Machiavelli, Napoleon, itd. (wiki)

u kontekstu rekurzije:
 početni se problem podijeli u manje, lakše rješive potprobleme

Rješavanje rekurzije (2)

- svaki korak rekurzije sastoji se od tri dijela (Cormen et al. 2009):
 - podijeli početni problem u manje potprobleme
 - za potproblem:
 ulazni skup je podskup originalnog ulaznog skupa podataka, gdje
 podskup može biti samo za jedan član manji od početnog skupa ili
 može biti npr. trećina, polovica, itd. osnovnog skupa podataka
 - riješi potproblem ili rekurzivno ili izravno (ako je potproblem dovoljno malen, tj. ako se došlo do osnovnog slučaja)
 - riješi početni problem kombiniranjem rješenja potproblema

Rješavanje rekurzije (3)

osnovni slučajevi

 uvijek moraju postojati osnovni slučajevi koji se rješavaju bez rekurzije

napredovanje

 za slučajeve koji se rješavaju rekurzivno, svaki sljedeći rekurzivni poziv mora se približiti osnovnim slučajevima

pravilo projektiranja

podrazumijeva se da svaki rekurzivni poziv funkcionira

pravilo neponavljanja

 ne dopustiti da se isti problem rješava odvojenim rekurzivnim pozivima, jer to rezultira umnažanjem posla (npr. Fibonaccijevi brojevi, str. 18)

Primjer: elementarna rekurzija i sistemski stog

V
pov. adr.
· 3
V
pov. adr.
2
V
pov. adr.
1

Primjer: izračunavanje faktorijela (1)

jedan od jednostavnih rekurzivnih algoritama jest izračunavanje n! za n >= 0

```
0! = 1
 1! = 1
 n! = n * (n-1)!
primjer: 4!
 k = fakt (4)
   = 4 * fakt (3)
   = 4 * 3 * fakt (2)
   = 4 * 3 * <u>2 * fakt (1)</u>
```

```
int fakt(int n) {
   if (n <= 1) {
     return 1;
   } else {
     return n * fakt(n-1);
   }
}</pre>
```

$$T(n) = \begin{cases} \mathbf{\Theta}(\mathbf{1}) & ako \ je \ n = \mathbf{0} \\ c + T(n-1) \ ako \ je \ n > \mathbf{0} \end{cases}$$

$$T(n) = c + T(n - 1) = c + c + T(n - 2)$$

= $c + c + ... + T(1)$
= $nc + \Theta(1) = \Theta(n)$

Primjer: izračunavanje faktorijela (2)

Factorial.cpp

Zadatak za vježbu: potenciranje rekurzijom (1)

Exponentiation.cpp

- Napisati funkciju koja prima dva cjelobrojna argumenta x i y i vraća preko povratne vrijednosti x^y.
- Poziv funkcije:

Zadatak za vježbu: potenciranje rekurzijom (2)

Sadržaj stoga za poziv funkcije: pot(2,5)

powr (2,5)	powr (2,4)	powr (2,3)	powr (2,2)	powr (2,1)	powr (2,0)	return 1	return 2*1	return 2*2	return 2*4	return 2*8	return 2*16
					(2,0)	1					
				(2,1)	(2,1)	(2,1)	2				
			(2,2)	(2,2)	(2,2)	(2,2)	(2,2)	4			
		(2,3)	(2,3)	(2,3)	(2,3)	(2,3)	(2,3)	(2,3)	8		
	(2,4)	(2,4)	(2,4)	(2,4)	(2,4)	(2,4)	(2,4)	(2,4)	(2,4)	16	
(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	(2,5)	32

Zadatak za vježbu: potenciranje rekurzijom (3)

Što bi se dogodilo kada bi bila izostavljena linija:

 funkcija bi samu sebe pozivala beskonačno puta i nikada ne bi vratila neku vrijednost u glavni program, npr.

Zadatci za vježbu

Napisati <u>nerekurzivnu</u> funkciju koja prima dva cjelobrojna argumenta x
 i y i vraća vrijednost x^y.

```
int pownr(long x, long y) {
   int retval = 1;
   for (int i = 0; i < y; i++)
     retval *= x;
   return retval;
}</pre>
```

- Napisati funkcije koja ispisuju sve brojeve do n (rastući niz) ili od n (padajući niz) na razne načine.

 PrintRecursive.cpp
- 3. Napisati rekurzivnu funkciju koja računa n-ti član aritmetičkog niza:

$$a_n = a_1 + (n - 1)d$$

ArithmeticSequence.cpp

Tipovi rekurzija

Prema trenutku u kojemu se funkcija rekurzivno poziva:

- na početku funkcije (engl. *head recursion*): prva naredba je rek. poziv
- na sredini funkcije (engl. middle recursion): rek. poziv je u sredini funkcije
- na kraju (repu) funkcije (engl. tail recursion): rekurzivni poziv je posljednja akcija u funkciji, tj. povratna vrijednost se nakon rek. poziva odmah vraća iz funkcije

```
int fakt(int n) {
   if (n <= 1) {
     return 1;
   } else {
     return n * fakt(n-1);
   }
}</pre>
```

```
int fakt(int n, int rez = 1) {
   if (n <= 1) {
     return rez;
   } else {
     return fakt(n - 1, n * rez);
   }
}</pre>
```

Prednost rekurzivnog poziva na kraju funkcije

Tko želi znati više ©

- poziv rekurzije na kraju funkcije zahtijeva da se sva stanja algoritma prate preko argumenata funkcije, tj. ne koriste se lokalne varijable
- ovakav poziv rekurzije na kraju funkcije (engl. tail recursion)
 pretpostavlja micanje okvira stoga prije sljedećeg rek. poziva
- zbog toga, takva je rekurzija slična petlji ili goto naredbi (goto prva_naredba_u_funkciji)
- većina prevoditelja (engl. compiler) prepoznaje tu situaciju i obavlja optimizaciju programskog koda, tj. uklanja rekurziju
- ako prevoditelj ne prepozna situaciju, onda se obavlja rekurzivni poziv

Rekurzivni poziv u sredini funkcije

```
Projekti (Debugging) - Microsoft Visual Studio
    View Project Build Debug Team Tools Test R Tools Analyze Window Help
     1 + 1 Release + x86
                                            ▼ 🔻 🔀 Stack Frame: main
                ▼ E Lifecycle Events ▼ Thread: [14348] Main Thread
                   → (Global Scope)
                                        - Ø fakt(int n)
                                                              Address: main(void)
         #include <iostream>

    Viewing Options

                                                               int fakt(int n) {
         using namespace std;
                                                               00E31000 push
                                                                                          esi
     4
                                                               00E31001 mov
                                                                                          esi,ecx
         pint fakt(int n) {
                                                                    if (n <= 1) {
              if (n <= 1) {
                                                               00E31003 cmp
                                                                                          esi,1
     6
                                                               00E31006 jg
                                                                                          fakt+0Fh (0E3100Fh)
                    return 1;
                                                                         return 1;
             )| }
     8
                                                               00E31008 mov
                                                                                          eax,1
     9
              else {
                                                               00E3100D pop
                                                                                          esi
                    return n * fakt(n - 1);
    10
    11
    12
                                                               00F3100F ret
    13
        pint main() {
    14
                                                                    else {
              int f = fakt(4);
    15
                                                                         return n * fakt(n - 1);
              cout << f << endl;</pre>
    16
                                                                                          ecx, [esi-1]
                                                               00F3100F lea
                                                               00E31012 call
                                                                                          fakt (0E31000h
    17
            return 0;
                                                               Q0E31017 imul
                                                                                          eax,esi
    18
                                                               00E3101A pop
                                                                                          esi
    19
                                                              Disassembly Output Breakpoints Exception Settings Watch 1 Call Stack Solution Explorer R Help
```

Rekurzivni poziv na kraju funkcije

```
₽ Quick Launch (Ctrl+Q)
Projekti (Debugging) - Microsoft Visual Studio
    View Project Build Debug Team Tools Test R Tools Analyze Window Help
                                           1 → 2 ■ ■ 1 7 → C → Release → x86
                ▼ E Lifecycle Events ▼ Thread: [6520] Main Thread
                  → (Global Scope)
                                      → Ø fakt(int n, int rez)
                                                            Address: fakt(int, int)
         using namespace std;

▼ Viewing Options

                                                                  if (n <= 1) {
                                                             01271000 cmp
                                                                                       ecx,1
        int fakt(int n, int rez = 1) {
                                                             01271003 jle
                                                                                       fakt+0Eh (0127100Eh)
              if (n <= 1) { ≤2ms elapsed
                                                                      return rez;
                   return rez;
     6
                                                                  else {
              else {
     8
                                                                      return fakt(n - 1, n * rez);
                   return fakt(n - 1, n * rez);
     9
                                                             01271005
                                                                       imul
                                                                                       edx,ecx
    10
                                                             01271008
                                                                         dec
                                                                                       ecx
                                                             01271009 cmp
                                                                                       ecx,1
    11
                                                             0127100C jg
                                                                                       fakt+5h (01271005h)
    12
    13
        pint main() {
    14
              int f = fakt(4);
                                                                                       eax,edx
                                                             0127100E mov
              cout << f << endl;</pre>
    15
                                                             01271010 ret
    16
             return 0;
                                                             --- No source file
    17
                                                             01271011 int
    18
                                                             01271012 int
                                                             01271013 int
                                                             01271014 int
                                                             01271015
                                                                       int
```

Leonardo Pisano Fibonacci

- Fibonacci (Pisa, ~1170. g. –
 Pisa, ~1250. g.)
- godine 1202. Liber abaci :
 - uvođenje hindu-arapskih brojeva
 - modus Indorum (indijska metoda)
 - simultane linearne jednadžbe
 - trgovački matematički problemi
 - izračun profita
 - preračunavanje valuta

Fibonaccijevi brojevi

1, 1, 2, 3, 5, 8, 13, 21, 34, ... (koji je sljedeći?)
 F₀ = F₁ = 1
 F_i = F_{i-2} + F_{i-1}; i > 1

- program je vrlo kratak i potpuno odgovara matematičkoj definiciji
- učinkovitost je vrlo niska

```
int F(int n) {
   if (n <= 1)
     return 1;
   else
     return F(n-2) + F(n-1);
}</pre>
```

Fibonaccijevi brojevi – rekurzivno rješenje

```
RetValFibonacci F(int n) override {
    if (n <= 1)
        return RetValFibonacci{ 1 };
    else
        return F(n - 2) + F(n - 1);
};</pre>
```

Vrijeme izvođenja: $O(\varphi^n)$

Memorijska potrošnja: *O(1)*

Fibonaccijevi brojevi – izvođenje programa

Fibonaccijevi brojevi - vrijeme izvođenja rekurzivne funkcije (1)

$$T(n) = \begin{cases} \theta(1) & ako \ je \ n \le 1 \\ T(n-1) + T(n-2) + \theta(1) & ako \ je \ n > 0 \end{cases}$$

$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$

$$\leq 2T(n-1) + \Theta(1)$$

$$\leq 2 \cdot [2T(n-2) + \Theta(1)] + \Theta(1) = 2^{2}T(n-2) + 2\Theta(1) + \Theta(1)$$

$$\leq 2^{2} \cdot [2T(n-3) + \Theta(1)] + 2\Theta(1) + \Theta(1) = 2^{3}T(n-3) + 2^{2}\Theta(1) + 2\Theta(1) + \Theta(1)$$
...
$$\leq 2^{n-1}T(1) + (2^{n-2} + ... + 2 + 1)\Theta(1) = (2^{n-1} + ... + 2 + 1)\Theta(1)$$

$$= O(2^{n})$$

Fibonaccijevi brojevi - vrijeme izvođenja rekurzivne funkcije (2)

$$T(n) = \begin{cases} \Theta(1) & ako \ je \ n \le 1 \\ T(n-1) + T(n-2) + \Theta(1) & ako \ je \ n > 0 \end{cases}$$

- prema slici sa str. 18 **pretpostavimo** da je broj koraka $T(n) = O(2^n)$ (eksponencijalna složenost)
- dokaz matematičkom indukcijom:
 - za n = 1: $T(1) = \Theta(1)$
 - pretpostavimo da vrijedi $T(n-1) = O(2^{n-1})$

Tada slijedi:
$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$

$$= O(2^{n-1}) + O(2^{n-2}) + \Theta(1)$$

$$= O(2^{n-1} + 2^{n-2})$$

$$= O(2^n/2 + 2^n/4) = O(2 \cdot 2^n/4 + 2^n/4) = O(3/4 \cdot 2^n)$$

$$= O(2^n)$$

Koristili smo: O(f(n)) + O(g(n)) = O(f(n) + g(n))

Fibonaccijevi brojevi - vrijeme izvođenja rekurzivne funkcije (3)

■ za
$$n > 1$$
: $T(n) = T(n-1) + T(n-2) + \Theta(1)$
= $T(n-1) + T(n-2)$ (*)

Određivanja vremena izvođenja:

- pretpostavimo da vrijeme izvođenja T(n) raste eksponencijalno s bazom a
- promatramo jednadžbu (*) kao: $a^n = a^{n-1} + a^{n-2}$
- nakon dijeljenja jednadžbe s a^{n-2} dobijemo: $a^2 = a + 1$, čija su rješenja: $a_{1,2} = \frac{1 \pm \sqrt{5}}{2}$, odnosno $a_1 = (1 + \sqrt{5}) / 2 = \varphi \approx 1.618$
- matematičkom indukcijom možemo potvrditi $T(n) = \Theta(a^n)$ za $a = \varphi \approx 1.618$, tj. $T(n) = \Theta(\varphi^n)$

Fibonaccijevi brojevi - vrijeme izvođenja rekurzivne funkcije (4)

■
$$za \ n > 1$$
: $T(n) = T(n-1) + T(n-2) + \Theta(1)$
= $T(n-1) + T(n-2)$ (*)

Određivanja vremena izvođenja:

- sam izraz (*) za računanje T(n) predstavlja Fibonaccijev broj
- vrijeme računanja n-tog člana Fibonaccijevog niza jednako je zbroju vremena potrebnih za računanje prethodna dva člana niz
- Fibonaccijev broj F_i može se napisati kao:

$$F_i = \left| \frac{\varphi^i}{\sqrt{5}} + \frac{1}{2} \right|$$
 gdje je $\varphi \approx 1.618$ (zlatni rez) (uz $F_1 = F_2 = 1$)

■ zato vrijedi: $T(n) = F_n = \Theta(\varphi^n)$

Fibonaccijevi brojevi - vrijeme izvođenja rekurzivne funkcije (5)

$$T(n) = \begin{cases} \Theta(1) & ako \ je \ n \le 1 \\ T(n-1) + T(n-2) + \Theta(1) & ako \ je \ n > 0 \end{cases}$$

- $T(n) = \Theta(\varphi^n)$
- slika na str. 18:
 - broj listova stabla je F_n
 - broj unutarnjih čvorova je $F_n 1$
 - ukupan broj čvorova je $2F_n 1$, uz vrijeme izvođenja akcija u pojedinom čvoru $\Theta(1)$

Rekurzija vs dinamičko programiranje

Fibonaccijevi brojevi – dinamičko programiranje

- <u>Problem:</u> ako želimo rekurzivno izračunati F_6 , onda npr. F_2 trebamo izračunati 5 puta (str. 18)
- Kako ovakav rekurzivan problem riješiti učinkovitije?
- ako ne želimo svaki put iznova računati F₂, možemo ga pohraniti u polje
 - pri prvome pozivu F_2 ćemo izračunati
 - u svim ostalim pozivima, koristit ćemo vrijednost pohranjenu u polju
- umjesto ponovnog računanja istog potproblema rekurzijom, rezultat (rješenje) potproblema se pohranjuje u memoriji, npr. polju (eng. memoization)
 - → dinamičko programiranje

Dinamičko programiranje

Kada koristiti?

- kada se potproblemi preklapaju (tj. kada se isti potproblem treba riješiti više puta)
- kada se problem može riješiti korištenjem rješenja potproblema

Dva pristupa:

- top-down: koristi se rekurzija, ali tako da se sprema rezultat svakog potproblema (npr. u polje ili tablicu raspršenog adresiranja)
- bottom-up: prvo se rješavaju najmanji problemi, a zatim se na temelju njih rješavaju veći

```
int *arrF;
RetValFibonacci FibonacciTopDown(int n) {
   if (arrF[n] > 0) return RetValFibonacci{arrF[n]};
   RetValFibonacci r{1};
   if (n > 1)
      r = FibonacciTopDown(n - 1) + FibonacciTopDown(n - 2);
   arrF[n] = r.Fn;
   return r;
RetValFibonacci F(int n) override { // public
   arrF = new int[n + 1];
   for (auto i = 0; i <= n; i++) arrF[i] = 0;
   RetValFibonacci r = FibonacciTopDown(n);
   delete[] arrF;
   return RetValFibonacci r;
                                       Vrijeme izvođenja: O(n)
                                       Memorijska potrošnja: O(n)
```

Dinamičko programiranje – bottom-up (1)

Fibonacci.cpp

```
RetValFibonacci F(int n) override {
      int *F = new int[std::max(2, n + 1)];
      F[0] = 1;
      F[1] = 1;
      for (int i = 2; i <= n; i++) {
             F[i] = F[i - 1] + F[i - 2];
      int Fn = F[n];
      delete[] F;
      return RetValFibonacci{ Fn };
};
```

Vrijeme izvođenja: *O(n)*

Memorijska potrošnja: *O(n)*

Dinamičko programiranje – bottom-up (2)

Fibonacci.cpp

```
RetValFibonacci F(int n) override {
       int F0 = 1, F1 = 1, Fn;
       if (n <= 1) return (Fn = 1);
      for (int i = 2; i <= n; i++) {
             Fn = F0 + F1;
             F0 = F1;
             F1 = Fn;
       return RetValFibonacci{ Fn };
};
```

Vrijeme izvođenja: O(n)

Memorijska potrošnja: *O(1)*

Primjeri rekurzija

Najveća zajednička mjera

EuclidGCD.cpp

jedan od najstarijih algoritama je Euklidov postupak (~300. g. pr. Kr.) za pronalaženje najveće zajedničke mjere (nzm) (ili najvećeg zajedničkog djelitelja; nzd) dva nenegativna cijela broja:

```
ako je b = 0
nzm = a
inače
nzm = \text{najveća zajednička mjera od } b \text{ i}
\text{ostatka dijeljenja } a \text{ sa } b
```

Najveća zajednička mjera – primjer i funkcija

primjer:

```
nzm(22,8) = nzm(8,6) = nzm(6,2) = nzm(2,0) = 2

nzm(21,13) = nzm(13,8) = nzm(8,5) = nzm(5,3) =

nzm(3,2) = nzm(2,1) = nzm(1,0) = 1

nzm(21,0) = 21

nzm(0,21) = nzm(21,0) = 21
```

rekurzivna funkcija:

```
int nzm (int a, int b) {
   if (b == 0) return a;
   return nzm (b, a % b);
}
```

Najveća zajednička mjera – složenost (1)

rekurzivna funkcija:

```
int nzm (int a, int b) {
    if(b == 0) return a;
    return nzm (b, a % b);
}
```

- $T(a, 0) = \Theta(1)$
- $T(a,b) = 1 + T(b,r_0) = 2 + T(r_0,r_1) = \dots = n + T(r_{n-2},r_{n-1}) = n + 1$
- koliki je *n*?
- promatramo najlošiji slučaj: kada je ostatak u svakom pozivu rekurzije maksimalan

Najveća zajednička mjera – složenost (2)

- $T(a, 0) = \Theta(1)$
- $T(a, b) = 1 + T(b, r_0) = 2 + T(r_0, r_1) = ...$
- najlošiji slučaj: kada je ostatak u svakom pozivu rekurzije maksimalan
- neka a_i i b_i označavaju a i b u i-tom koraku i neka je a > b
- vrijedi: $a_{i+2} \le a_i / 2$ (a je nakon svaka dva rekurzivna poziva manji barem dva puta)
 - ako je $b_i \le a_i / 2$, onda tvrdnja vrijedi
 - inače, $b_{i+1} = a_i \% b_i \le a_i / 2$; kako je $a_{i+2} = b_{i+1}$, onda slijedi $a_{i+2} \le a_i / 2$
- n je najviše $2\log_2 a$, pa je vrijeme izvođenja: $O(\log a)$

Traženje člana polja

Searching.cpp

 Rekurzivni postupak za traženje indeksa zadnjeg člana jednodimenzionalnog polja od n članova koji ima vrijednost item.

```
najlošiji slučaj: T(n) = \begin{cases} \Theta(1) & ako je \ n \leq 1 \\ T(n-1) + \Theta(1) & ako je \ n > 1 \end{cases} \Rightarrow T(n) = \Theta(n) najbolji slučaj: \Theta(1) uvijek
```

Pretraživanje s ograničavačem

Searching.cpp

pretraživanje je brže ako se prethodno u polje prošireno za jedan član stavi tzv. ograničivač (sentinel) A[n] = x;

```
int trazi1 (tip A[], tip x, int i){
   if(A[i] == x) return i;
   return trazi1 (A, x, i+1);
}
```

poziv:

```
tip i;
A[n] = x;
if ((i = trazi1 (A, x, 0)) == n) ...
```

```
najlošiji slučaj: T(n) = \begin{cases} \Theta(1) & ako \ je \ n \leq 1 \\ T(n-1) + \Theta(1) & ako \ je \ n > 1 \end{cases} \Rightarrow T(n) = \Theta(n)
najbolji slučaj: \Theta(1) uvijek
```

Traženje najvećeg člana polja

MaxElem.cpp

određivanje indeksa najvećeg člana u polju od n članova

```
int maxclan (int A[], int i, int n) {
  int imax;
  if (i >= n-1) return n-1;
  imax = maxclan (A, i + 1, n);
  if (A[i] > A[imax]) return i;
  return imax;
}
```

$$T(n) = \begin{cases} \Theta(1) & \text{ako je } n \leq 1 \\ T(n-1) + \Theta(1) & \text{ako je } n > 1 \end{cases} \Rightarrow T(n) = \Theta(n)$$

Primjer pogreške

IncorrectRecursion.cpp

```
int failed (int n) {
   if (n == 0) return 0;
   return failed (n / 3 + 1) + n - 1;
}
```

- za vrijednost n = 1 rekurzivni poziv je opet s argumentom 1
 - nema napredovanja prema osnovnom slučaju
- program ne radi niti za druge vrijednosti argumenta:
 - npr. za n = 4, rekurzivno se poziva failed s argumentom 4/3 + 1 = 2, zatim 2/3 + 1 = 1 i dalje stalno 1/3 + 1 = 1

Rekurzija – složeniji primjeri

Kamate

Interest.cpp

- Zadana suma novaca oročena je u banci na zadani broj godina n uz zadanu godišnju kamatnu stopu p. Napisati program koji računa dobivenu sumu nakon isteka oročenja. Odredite T(n).
- $g_n = g_0 \cdot \left(1 + \frac{p}{100}\right)^n$
- g_n glavnica nakon n godina, g_0 početna glavnica

```
float kamrac (float g, int n, float p) {
    // g - glavnica
    // n - trajanje oročenja u godinama
    // p - kamatna stopa u postotcima
    if (n <= 0) return g;
    else return (1 + p / 100) * kamrac(g, n - 1, p);
}</pre>
```

Obrtaljka

Palindrome.cpp

- Napišite program koji će rekurzivno provjeriti je li zadana riječ ili rečenica duljine n obrtaljka (palindrom). U ulaznom nizu podataka zanemarite razmak i sve znakove interpunkcije.
 - Primjeri:
 - UDOVICA BACI VODU
 - ON VIDI DIVNO
 - U RIMU UMIRU
 - ANA NABRA PAR BANANA
- Naputak: ako u palindromu izbacite prvo i posljednje slovo, preostali tekst također mora biti obrtaljka
- Odredite *T(n)*.

Hanojski tornjevi (1)

- Zadani su štapovi I (izvor), O (odredište), P (pomoćni).
- Na prvom štapu (I) ima n diskova različite veličine postavljenih tako da veći nikad ne dolazi iznad manjeg.
- Uz minimalni broj operacija preselite sve diskove na O, jedan po jedan.
 Disk se smije postaviti ili na prazan štap ili tako da je manji disk na većem.
 - Animacija:
 https://en.wikipedia.org/wiki/Tower of Hanoi#/media/File:Tower of Hanoi 4.gif

https://www.ocf.berkeley.edu/~shidi/cs61a/wiki/Towers_of_Hanoi

Hanojski tornjevi (2)

- Algoritam rješenja:
 - ignorirati donji (najveći) disk i riješiti problem za n-1 diskova, ali tako da premještamo diskove sa štapa I na štap P koristeći O kao pomoćni
 - sada se najveći disk nalazi na I, a ostalih n-1 na P
 - preseliti najveći disk sa I na O
 - preseliti n-1 diskova s P na O koristeći I kao pomoćni (problem je već riješen za n-1 diskova)

Hanojski tornjevi (3)

Vrijeme izvođenja:

■
$$T(1) = \Theta(1)$$

■ $T(n) = T(n-1) + \Theta(1) + T(n-1)$
= $2 \cdot T(n-1) + \Theta(1)$
= $2 \cdot (2 \cdot T(n-2) + \Theta(1)) + \Theta(1)$
= $2 \cdot (2 \cdot (2T(n-3) + \Theta(1)) + \Theta(1)) + \Theta(1)$
= $2^3 \cdot T(n-3) + (2^2 + 2^1 + 2^0) \cdot \Theta(1)$
...
= $2^{n-1} \cdot T(1) + (2^{n-2} + ... + 2^0) \cdot \Theta(1)$
= $(2^{n-1} + ... + 2^0) \cdot \Theta(1)$
= $(2^n - 1) / (2 - 1) \cdot \Theta(1)$
= $\Theta(2^n)$

Problem postavljanja n kraljica na šahovsku ploču

- problem određivanja pozicija 8 kraljica na šahovskoj ploči, tako da se one međusobno ne napadaju
- općenitiji problem: postaviti n kraljica na šahovsku ploču n x n tako da se međusobno ne napadaju
 - rješenja postoje za $n \ge 4$ (za n = 2 i n = 3 ne postoje rješenja)
- zagonetku je postavio šahist Max Bezzel (1848.) i od tada su mnogi matematičari (uključujući Gaussa) radili na rješavanju toga problema
- Dijkstra je 1972. objavio detaljan opis algoritma za rješenje ovoga problema korištenjem postupka praćenja unatrag (engl. depth first backtracking)

Postavljanje kraljica za n = 2

K₂?

- Kraljicu K₁ postavimo u prvi stupac i <u>prvi</u> redak.
- Možemo li postaviti kraljicu K₂ u drugi stupac?
- Nije moguće, jer K₁ napada K₂ u bilo kojem retku drugog stupca.
- Kraljicu K₁ postavimo u prvi stupac i <u>drugi</u> redak.
- Možemo li postaviti kraljicu K₂ u drugi stupac?
- Nije moguće, jer K₁ napada K₂ u bilo kojem retku drugog stupca.
- Zaključak: ne postoji rješenje za n = 2.

Postavljanje kraljica za n = 3 (1)

- Kraljicu K₁ postavimo u prvi stupac i prvi redak.
- Možemo li postaviti kraljicu K₂ u drugi stupac?
- K₂ možemo postaviti samo u treći redak u drugom stupcu.
- S obzirom da K₂ ne može biti u prvom ili drugom retku, onda uopće ne ispitujemo kombinacije s
 K₃ koje bi uključivale te pozicije K₂
- Kraljicu K₁ postavimo u prvi stupac i <u>prvi</u> redak.
- Kraljicu K₂ postavimo u drugi stupac i <u>treći</u> redak.
- Možemo li postaviti kraljicu K₃ u treći stupac?
- K₃ ne možemo postaviti u treći stupac, pa zaključujemo da ne postoji rješenje gdje je K₁ u prvom retku prvoga stupca.

Postavljanje kraljica za n = 3 (2)

S obzirom da ne postoji rješenje u kojemu bi K₁ bila u prvom retku, vraćamo se natrag i postavljamo K₁ u <u>drugi</u> redak, pa zatim ponavljamo postupak traženja mogućih pozicija za K₂ i K₃.

 Ponovit ćemo isti postupak i za K₁ u trećem retku prvoga stupca.

Zaključak:

S obzirom da K₁ ne može biti niti u jednome retku (a da se pri tome kraljice međusobno ne napadaju), zaključujemo da ne postoji rješenje za n = 3.

n kraljica (1)

Algoritam rješenja:

Queens.cpp

- promatramo stupce na šahovskoj ploči od prvoga prema zadnjemu
- u svaki postavljamo jednu kraljicu
- promatramo ploču u situaciji kada je već postavljeno i kraljica (u i različitih stupaca) koje se međusobno ne napadaju
- želimo postaviti i + 1 kraljicu tako da ona ne napada niti jednu od već postavljenih kraljica i da se ostale kraljice mogu postaviti uz uvjet nenapadanja

napomena: postoje 92 različita rješenja za n = 8

n kraljica (2)

- koristimo princip praćenja unatrag (engl. backtracking)
 - poziciju kraljice zapisujemo kao par (stupac, redak)
 - prva se kraljica postavlja u prvi stupac i prvi redak
 - sljedeća se kraljica pokušava postaviti u prvi sljedeći stupac *i*, a unutar *i*-tog stupac u prvi mogući redak r tako da ne napada niti jednu već postavljenu kraljicu
 - ako takav stupac ne postoji, program se vraća u posljednje stanje koje je bilo dobro (*praćenje unatrag*) i onda pokušava postaviti kraljicu u sljedeći **redak** (*r* + 1) u *i*-tom stupcu
- <u>Napomena:</u> čim jedna kraljica ne može biti postavljena u neki redak, sve kombinacije drugih kraljica koje bi uključivale tu poziciju više se ne provjeravaju, jer je jasno da ne vode rješenju.