SABANCI UNIVERSITY Faculty of Engineering and Natural Sciences CS 302 Automata Theory

ANSWERS TO THE FINAL EXAM

Question 1 (20 points)

 $A = (Q_A, \Sigma, \delta_A, q_{0A}, F_A)$ is given by the figure above where $q_{0A} = 1$ and $F_A = \{2,3\}$.

q	σ	q'
1	0	3
1	1	1
2	0	2
2	1	3
3	0	3
3	1	2

(b) By simple inspection : $L_A = 1*.0.(0+1)*$; $L_A{}^c = 1*$

(c) Using Table Filling Algorithm below we observe that states 2 and 3 are equivalent hence minimal state DFA is as shown below.

	1	2	3
1		X	X
2			
3			

Question 2 (20 points)

(a)

q	σ	q'
A	0	ABC
A	1	В
В	0	ABC
В	1	Ø
С	0	<i>A,B,C</i>
С	1	В

(b) DFA table below

q	σ	q'
A*	0	ABC
A	1	В
В	0	ABC
В	1	Ø
ABC(D*)	0	ABC
ABC	1	В
$\mathcal{O}(E)$	0	Ø
Ø	1	Ø

DFA X is as below

Question 3 (20 points)

CFG is $G = (\{S, A, B\}, \{0, 1\}, R, S)$ where the production set R is given below:

$$R: S \rightarrow AB; A \rightarrow 0A1/e; B \rightarrow 1B0/e$$

(a)

null production elimination:

 $S \rightarrow AB/A/B$; $A \rightarrow ZERO A ONE / ZERO ONE$; $B \rightarrow ONE B ZERO / ONE ZERO$ unit production elimination :

 $S \rightarrow AB/ZERO A ONE / ZERO ONE / ONE B ZERO / ONE ZERO ;$

 $A \rightarrow ZERO A ONE / ZERO ONE ; B \rightarrow ONE B ZERO / ONE ZERO$

and the CNF is as below:

 $S \rightarrow AB/X$ ONE / ZERO ONE / Y ZERO /ONE ZERO; $A \rightarrow X$ ONE / ZERO ONE; $B \rightarrow Y$ ZERO /ONE ZERO; $X \rightarrow Z$ ERO A; $Y \rightarrow O$ NE B; ZERO $\rightarrow 0$; ONE $\rightarrow 1$

(b) Note that L_G is given by $L_G = \{0^n \ 1^{n+k} \ 0^k \ ; \ n,k \ge 0\}$ and the PDA P:

$$P = (\{q,f,p,r,s\},\{0,1\},\{0,1,Z_0,Z_1\},\delta,q,Z_0,\{f\})$$

accepts L_G where δ is given below

$$(q, e, Z_0) \rightarrow (f, Z_1)$$

$$(f, 0, Z_1) \rightarrow (q, 0Z_1)$$

$$(q, 0, 0) \rightarrow (q, 00)$$

$$(q, 1, 0) \rightarrow (p, e)$$

$$(p, 1, 0) \rightarrow (p, e)$$

$$(p, 1, Z_1) \rightarrow (r, 1Z_1)$$

$$(r, 1, 1) \rightarrow (r, 11)$$

$$(r, 0, 1) \rightarrow (s, e)$$

$$(s, 0, 1) \rightarrow (s, e)$$

$$(s, e, Z_1) \rightarrow (f, Z_1)$$

 \mathbf{OR} using the standard procedure of converting a \mathbf{CGF} to a \mathbf{PDA} \mathbf{P} by \mathbf{empty} \mathbf{stack} :

$$P = (\{q_0\}, \{0,1\}, \{0,1,Z_0\}, \delta, q_0, Z_0)$$

where $\boldsymbol{\delta}$ is given below

$$(q_0, e, Z_0) \rightarrow (q_0, SZ_0)$$

$$(q_0, e, S) \rightarrow (q_0, AB)$$

$$(q_0, e, A) \rightarrow (q_0, 0A1)$$

$$(q_0, e, A) \rightarrow (q_0, e)$$

$$(q_0, e, B) \rightarrow (q_0, 1B0)$$

$$(q_0, e, B) \rightarrow (q_0, e)$$

$$(q_0, 0, 0) \rightarrow (q_0, e)$$

$$(q_0, 1, 1) \rightarrow (q_0, e)$$

$$(q_0, e, Z_0) \rightarrow (q_0, e)$$

(c) For the first solution **P** is already a **DPDA**; for the second it clearly is **not** a **DPDA**.

Question 4 (20 points)

CFG is given as $G = (\{S, A, B\}, \{0,1\}, R, S)$ where R is given below

$$R: S \rightarrow 0S/1A; A \rightarrow 1B/1S/e; B \rightarrow 0B/0S/e$$

(a) CFG is a right linear grammar and is identified with an NFA as below where variables in G are identified with states in X and thus L_G is regular.

(b) There is a unique parse tree for the string 00110; however, there are other strings for which it is possible to construct two different parse trees (e.g. 11001). Hence, G is an *ambiguous grammar*.

Note: The answer "This is a non-ambiguous grammar, because there is a unique parse tree for the string 00110" will be accepted as well.

Question 5 (20 points)

(a)
$$(s, \# 0^n 1^n) - |_T (h, \# 1^n 0^n)$$

TM	Condition	Next TMs
>A=R	$\sigma = 0$	1.A
	$\sigma = 1$	0 . A
	<i>σ</i> = #	L# .h

(b) We use a 2 tape TM as below and initial condition is : (s, # w , #)

TM	Condition	Next TMs
$>A=R^1R^2$	σ^{I} = #	С
	$\sigma^I = 0$	0 ² .A
	$\sigma^{I} = 1$	$L^{1}.B$
$B=R^1.L^2$	$\sigma^1 = 1 \wedge \sigma^2 = 0$	В
	$\sigma^1 = \# \wedge \sigma^2 = \#$	h
	else	С
$C = \#^{I}$	-	С