Lecture 4: Ionization and Recombination

Paul van der Werf

Course Contents

- 1. Introduction and ecology of the interstellar medium
- 2. Physical conditions and radiative processes
- 3. The atomic interstellar medium
- Ionization and recombination
- 5. Photoionization and HII regions
- 6. Collisional excitation and nebular diagnostics
- 7. Molecular energy levels and excitation
- 8. Interstellar dust
- 9. Thermal balance
- 10. Molecular clouds
- 11. Shocks, supernova remnants and the 3-phase ISM
- 12. Extragalactic ISM and outlook

Today's Lecture

- Photoionization & recombination
- 2. Recombination lines

Ionization processes

- 1. Photoionization (WIM & HII regions)
- 2. Collisional ionization (SNRs not covered in this course)
- 3. Cosmic ray ionization (molecular cloud interiors important for astrochemistry)

In this lecture: photoionization

The Warm Ionized Medium and HII Regions

composite $H\alpha$ map compiled by Finkbeiner from WHAM, VTSS & SHASSA

Evolved HII Region: The Rosette Nebula

Ionization-recombination balance

photoionization rate = recombination rate

- photoionization rate = # photoionizations per unit of volume and unit of time
- recombination rate = # recombinations per unit of volume and unit of time

Photoionization

$$X + hv \rightarrow X^+ + e^-$$

cylinder length: c dt

photoionization cross section: $\sigma_{pi}(v)$ ("photoelectric photoionization")

photoionization rate

$$\zeta_{\rm pi} = \int_{\nu_0}^{\infty} n_X \frac{u_\nu}{h\nu} \sigma_{\rm pi}(\nu) c \, d\nu$$

[cm⁻³ s⁻¹]

NB: really should consider photoionization from every state separately but in practice almost every particle is in ground state

Photoionization cross sections

figure from Draine

For hydrogenic atoms (1 electron): to good approximation

$$\sigma_{\rm pi} = \sigma_0 \left(\frac{h\nu}{Z^2 I_{\rm H}}\right)^{-3}$$

for $hv > Z^2 I_H$

Z = nuclear charge

 I_{H} = hydrogen ionization potential = 13.6 eV $(\lambda_{0} = 912 \text{ Å})$

 σ_0 = photoionization cross section at the ionization edge = $6.3 \cdot 10^{-18} \, \text{Z}^2 \, \text{cm}^2$

NB: for multi-electron atoms more complex (inner shell absorption etc)

Recombination

$$X^+ + e^- \rightarrow X + hv$$

with the election captured in any state *nl* that was previously unoccupied (Pauli principle)

("radiative recombination")

Now consider all states *nl* separately

Recombination rate into
$$nl$$
 $\zeta_{nl} = n_e n_{X^+} \int_0^\infty \sigma_{nl}(v) v f_v(T_k) dv = \alpha_{nl}(T_k) n_e n_{X^+}$ [cm⁻³ s⁻¹]

With
$$\alpha_{\text{tot}}(T_k) = \sum_{nl} \alpha_{nl}(T_k)$$
 we can write $\zeta_{rr} = \alpha_{\text{tot}}(T_k)n_e n_{\text{X}^+}$

$$\zeta_{rr} = \alpha_{\text{tot}}(T_k) n_e n_{X^+}$$

 $\alpha_{\rm tot}(T_k)$ [cm³ s⁻¹] is the total recombination coefficient.

Photoionization equilibrium

$$\zeta_{pi} = \zeta_{rr}$$
 so

$$\int_{\nu_0}^{\infty} n_X \frac{u_{\nu}}{h\nu} \sigma_{\rm pi}(\nu) c \, d\nu = \alpha_{\rm tot}(T_k) n_e n_{\rm X^+}$$

- must be solved numerically
- note ionization goes as (density)¹ but recombination as (density)² so high density favours recombination (and therefore higher neutral fraction)

Today's Lecture

- 1. Photoionization & recombination
- Recombination lines

Recombination lines

recombination into any level nl

- → radiative decay
- → photon emission spectrum: recombination lines

Important: recombination line flux is proportional to recombination rate (see later)

- Hydrogen recombination lines are a key probe of ionization, star formation, etc.
- Recombination lines can also be detected for helium (and in some cases carbon)

Hydrogen quantum numbers and energy levels

 Discrete energy levels, characterized by three quantum numbers n, l, m

$$n = 1, 2, 3, 4, ...$$
 principal quantum number $l = 0, 1, 2, ... n-1$ angular momentum quantum number $m = -l, -l+1, ... l-1, l$ magnetic quantum number

Level energies independent of *l* and *m*:

$$E_n = -hcR_{\rm H}\frac{1}{n^2}$$

with $R_{\rm H}$ = 109677.585 cm⁻¹ : Rydberg constant for H

Hydrogen spectrum

Some important hydrogen lines

```
\lambda_{\text{vac}} = 1215.68 \,\text{Å} (space UV)
Lyα:
         \lambda_{air} = 6562.73 Å
Ηα:
                                    (red)
                                                   3-2
         \lambda_{air} = 4861.33 \text{ Å}
                                   (blue) 4-2
H<sub>β</sub>:
                                                                   Balmer lines
     \lambda_{air} = 4340.47 \text{ Å}
                                   (blue) 5-2
Ηγ:
         \lambda_{air} = 4101.47 \text{ Å}
                                    (violet)
                                                   6-2
Ηδ:
         \lambda_{air}= 1.875 μm
                                    (poor transmission)
Paα:
                                    (difficult)
Br\alpha: \lambda_{air}= 4.051 \mum
Bry: \lambda_{air}= 2.166 µm
                                    (in infrared K band)
```

Hydrogen: Case A and Case B recombination

Case A: all recombination lines optically thin

$$\alpha_{\mathcal{A}}(T_k) = \sum_{n=1}^{\infty} \sum_{l=0}^{n-1} \alpha_{nl}(T_k)$$

 Case B: all Lyman lines are optically thick, all other recombination lines are optically thin

$$lpha_{\mathrm{B}}(T_k) = \sum_{n=2}^{\infty} \sum_{l=0}^{n-1} lpha_{nl}(T_k) = lpha_{\mathrm{A}}(T_k) - lpha_{1s}(T_k)$$
 ground state

since every Lyman line (and continuum) photon (which connect to the ground state) is reabsorbed.

The "on-the-spot" approximation

Under Case B conditions, photons emitted in the Lyman lines (or the Lyman continuum) during the recombination process and subsequent decay are reabsorbed.

"On-the-spot" approximation: this reabsorption happens at the place where the photons were emitted.

→ net effect: as if those photons were not there in the first place

Broadly speaking:

- ISM conditions are always Case B
- IGM conditions can be Case A

Hydrogen recombination line spectrum (1)

For hydrogen

$$A_{n+1,n} \approx \frac{5.3 \cdot 10^9}{n^5} \,\mathrm{s}^{-1}$$
 so for $n \approx 100$, $t_{\rm rad} \approx 1 \,\mathrm{s}$.

This is also approximately the time between collisions.

→ for n << 100, spontaneous transitions dominate and collisions can be ignored.</p>

So recombination line spectrum (line ratios) can "simply" be calculated from:

- 1. Einstein A coefficients
- 2. Case A or B (in Case B, all Einstein A's for the Lyman lines are set to 0).
- 3. $\alpha_{nl}(T_k)$: slow function of T_k which is always ~ 8000 K for WIM

Hydrogen recombination line spectrum (2)

Recombination rate $\zeta_{rr} = \alpha_{\rm B}(T_k)n_e n_p$

$$\zeta_{rr} = \alpha_{\rm B}(T_k) n_e n_p$$

Now let $\alpha_{nl \to n'l'}(T_k) / \alpha_B(T_k)$ be the fraction of recombinations that produce a photon in the $nl \rightarrow n'l'$ transition.

Then the photon production rate in the $nl \rightarrow n'l'$ line is

$$\alpha_{nl \to n'l'}(T_k)n_e n_p$$

and the emissivity in this line then is $j_{\nu} = \frac{h\nu_{ul}}{4\pi} \alpha_{nl \to n'l'} (T_k) n_e n_p \varphi_{\nu}$

$$j_{\nu} = \frac{h\nu_{ul}}{4\pi} \alpha_{nl \to n'l'} (T_k) n_e n_p \varphi_{\nu}$$

See Draine, Table 14.2, where $\alpha_{nl \to n'l'}(T_k)$ is written, e.g., for H α , as $\alpha_{\rm eff. H}\alpha$

Hydrogen recombination line spectrum

Table 14.2 Case B Hydrogen Recombination Spectrum^a for $n_e = 10^3 \, \text{cm}^{-3}$

		T(K)	
	5000	10,000	20,000
$\alpha_B ({\rm cm}^3 {\rm s}^{-1})$	4.53×10^{-13}	2.59×10^{-13}	1.43×10^{-13}
$lpha_{ ext{eff},2s}/lpha_B$	0.305	0.325	0.356
$\alpha_{\rm eff, H\alpha} (\rm cm^3 s^{-1})$	2.20×10^{-13}	1.17×10^{-13}	5.96×10^{-14}
$\alpha_{\rm eff,H\beta} (\rm cm^3s^{-1})$	5.40×10^{-14}	3.03×10^{-14}	1.61×10^{-14}
$4\pi j_{{\rm H}\beta}/n_e n_p ({\rm erg cm}^3 {\rm s}^{-1})$	2.21×10^{-25}	1.24×10^{-25}	6.58×10^{-26}
Balmer-line intensities relativ	e to H β 0.48627 μ	um	
$j_{ m Hlpha}$ 0.65646 $/j_{ m Heta}$	3.03	2.86	2.74
$j_{{ m H}eta}$ 0.48627 $/j_{{ m H}eta}$	1.	1.	1.
$j_{ m H\gamma}$ 0.43418 $/j_{ m Heta}$	0.459	0.469	0.475
j H δ 0.41030 $/j$ H eta	0.252	0.259	0.264
$j_{ m H\epsilon0.39713}/j_{ m Heta}$	0.154	0.159	0.163
jH8 0.38902 $/j$ H eta	0.102	0.105	0.106
jн9 0.38365 $/j$ н eta	0.0711	0.0732	0.0746
jн100.37990 $/j$ н eta	0.0517	0.0531	0.0540
Paschen $(n \to 3)$ line intensit	ies relative to corr	responding Balme	er lines
$j_{\mathrm{P}\alpha1.8756}/j_{\mathrm{H}\beta}$	0.405	0.336	0.283
$j_{{ m P}eta}$ 1.2821 $/j_{{ m H}\gamma}$ 0.43418	0.399	0.347	0.305
j P γ 1.0941 $/j$ H δ 0.41030	0.391	0.348	0.311
$j_{{ m P}\delta1.0052}/j_{{ m H}\epsilon0.39713}$	0.386	0.348	0.314
$j_{\text{P}\epsilon0.95487}/j_{\text{H}80.38902}$	0.382	0.348	0.316
$j_{\rm P90.92317}/j_{\rm H90.38365}$	0.380	0.347	0.317
$j_{ m P100.90175}/j_{ m H100.37990}$	0.380	0.347	0.317
Brackett $(n \rightarrow 4)$ line intensit	ies relative to cor	responding Balme	er lines
$j_{\mathrm{Br}lpha}_{4.0523}/j_{\mathrm{H}\gamma}_{0.43418}$	0.223	0.169	0.131
$j_{\rm Br} \beta 2.6259 / j_{\rm H} \delta 0.41030$	0.219	0.174	0.141
$j_{{\rm Br}\gamma2.1661}/j_{{ m H}\epsilon0.39713}$	0.212	0.174	0.144
$j_{{ m Br}\delta1.9451}/j_{ m H80.38902}$	0.208	0.173	0.145
$j_{{ m Br}\epsilon1.8179}/j_{{ m H}90.38365}$	0.204	0.173	0.146
$j_{\rm Br101.7367}/j_{\rm H100.37990}$	0.202	0.172	0.146

HII Region spectra

Galaxy spectra

For discussion

• Assume we can image $H\alpha$ and $H\beta$ emission from an HII region. How can we correct for extinction?

 Does it matter whether the dust is located in a foreground absorbing cloud or is mixed with the ionized gas?

Recombination lines: key points (so far)

- Recombination lines result from the downward cascade following recombination in ionized gas
- Recombination to the ground-state leads to ionizing photons; these immediately lead to ionization ("on-the-spot" approximation)
- In Galactic conditions, case B recombination is valid: Lyman lines (lines connecting to the ground state) optically thick, all other lines optically thin
- Recombination spectrum (line ratios) for n<<100 is independent of density (spontaneous decay more rapid than collisions); temperature comes in through T-dependence of recombination coefficient α ; but T of HII regions fairly uniform 5000-10000 K; so only weak T-dependence
- High n (radio) recombination lines are much more complicated: density dependence and stimulated emission

Next lecture

HII Regions

- 1. Strömgren spheres
- 2. Radio emission from HII regions
- 3. Calculating Star Formation Rates
- 4. Structure of HII regions
- 5. HII regions containing heavy elements
- 6. Dusty HII regions
- 7. Ultracompact HII regions
- 8. HII region evolution