Mathematics for Machine Learning

— Vector Calculus

Backpropagation & Automatic Differentiation

Joseph Chuang-Chieh Lin

Department of Computer Science & Engineering, National Taiwan Ocean University

Fall 2025

Credits for the resource

- The slides are based on the textbooks:
 - Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong: Mathematics for Machine Learning. Cambridge University Press. 2020.
 - Arnold J. Insel, Lawrence E. Spence, Stephen H. Friedberg: Linear Algebra, 4th Edition. Prentice Hall. 2013.
 - Howard Anton, Chris Rorres, Anton Kaul: Elementary Linear Algebra, 12th Edition. Wiley. 2019.
- We could partially refer to the monograph: Francesco Orabona: A Modern Introduction to Online Learning. https://arxiv.org/abs/1912.13213

Outline

Backpropagation

Automatic Differentiation

Outline

Backpropagation

2 Automatic Differentiation

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

Apply the chain rule, we can compute its gradient:

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

Apply the chain rule, we can compute its gradient:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{2x + 2x \exp(x^2)}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2))(2x + 2x \exp(x^2))$$

$$= 2x \left(\frac{1}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2))\right) (1 + \exp(x^2)).$$

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

Apply the chain rule, we can compute its gradient:

$$\frac{\mathrm{d}f}{\mathrm{d}x} = \frac{2x + 2x \exp(x^2)}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2))(2x + 2x \exp(x^2))$$

$$= 2x \left(\frac{1}{2\sqrt{x^2 + \exp(x^2)}} - \sin(x^2 + \exp(x^2))\right)(1 + \exp(x^2)).$$

- Impractical to write it explicitly.
- The implementation of the gradient could be expensive.

Gradients in a Deep Network

$$\mathbf{y} = (f_k \circ f_{k-1} \circ \cdots \circ f_1)(\mathbf{x}) = f_k(f_{k-1}(\cdots (f_1(\mathbf{x}))\cdots)).$$

- x: inputs (e.g., images).
- y: observations (e.g., class labels).
- f_i , i = 1, ..., K: functions with their own parameters.

Gradients in a Deep Network

$$\mathbf{y} = (f_k \circ f_{k-1} \circ \cdots \circ f_1)(\mathbf{x}) = f_k(f_{k-1}(\cdots (f_1(\mathbf{x}))\cdots)).$$

- x: inputs (e.g., images).
- y: observations (e.g., class labels).
- f_i , i = 1, ..., K: functions with their own parameters.
 - $f_i(\mathbf{x}_{i-1}) = \sigma(\mathbf{A}_{i-1}\mathbf{x}_{i-1} + \mathbf{b}_{i-1})$, in the *i*th layer.
 - \mathbf{x}_{i-1} : the output of layer i-1.
 - σ : activation function (e.g., $1/(1 + e^{-x})$, tanh(x), rectified linear unit (ReLU), etc.).
 - $\mathbf{f}_0 := \mathbf{x};$ $\mathbf{f}_i := \sigma_i(\mathbf{A}_{i-1}\mathbf{f}_{i-1} + \mathbf{b}_{i-1}), i = 1, ..., K.$

- ullet To obtain the gradients w.r.t. the parameter set $m{ heta}$:
 - $\theta = \{A_0, b_0, \dots, A_{k-1}, b_{K-1}\}.$
 - The squared loss: $L(\theta) = \|\mathbf{y} \mathbf{f}_K(\theta, \mathbf{x})\|^2$.
 - $\theta_j = \{ \mathbf{A}_j, \mathbf{b}_j \}$, for $j = 0, 1, \dots, K 1$.

- To obtain the gradients w.r.t. the parameter set θ :
 - $\theta = \{ \mathbf{A}_0, \mathbf{b}_0, \dots, \mathbf{A}_{k-1}, \mathbf{b}_{K-1} \}.$
 - The squared loss: $L(\theta) = \|\mathbf{y} \mathbf{f}_K(\theta, \mathbf{x})\|^2$.
 - $\theta_j = \{ \mathbf{A}_j, \mathbf{b}_j \}$, for $j = 0, 1, \dots, K 1$.
- By the chain rule:

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial \mathbf{f}_K} \frac{\partial \mathbf{f}_K}{\partial \boldsymbol{\theta}_{K-1}}$$

- ullet To obtain the gradients w.r.t. the parameter set $m{ heta}$:
 - $\theta = \{A_0, b_0, \dots, A_{k-1}, b_{K-1}\}.$
 - The squared loss: $L(\theta) = \|\mathbf{y} \mathbf{f}_K(\theta, \mathbf{x})\|^2$.
 - $\theta_i = \{ \mathbf{A}_i, \mathbf{b}_i \}$, for $j = 0, 1, \dots, K 1$.
- By the chain rule:

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-1}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \boldsymbol{\theta}_{K-1}}$$

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{K-2}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \frac{\partial \mathbf{f}_{K-1}}{\partial \boldsymbol{\theta}_{K-2}}$$

- ullet To obtain the gradients w.r.t. the parameter set $m{ heta}$:
 - $\theta = \{ \mathbf{A}_0, \mathbf{b}_0, \dots, \mathbf{A}_{k-1}, \mathbf{b}_{K-1} \}.$
 - The squared loss: $L(\theta) = \|\mathbf{y} \mathbf{f}_K(\theta, \mathbf{x})\|^2$.
 - $\theta_i = \{ \mathbf{A}_i, \mathbf{b}_i \}$, for $j = 0, 1, \dots, K 1$.
- By the chain rule:

$$\frac{\partial L}{\partial \theta_{K-1}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \theta_{K-1}}$$

$$\frac{\partial L}{\partial \theta_{K-2}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \frac{\partial \mathbf{f}_{K-1}}{\partial \theta_{K-2}}$$

$$\frac{\partial L}{\partial \theta_{K-3}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \frac{\partial \mathbf{f}_{K-1}}{\partial \mathbf{f}_{K-2}} \frac{\partial \mathbf{f}_{K-2}}{\partial \theta_{K-3}}$$

- To obtain the gradients w.r.t. the parameter set θ :
 - $\theta = \{ \mathbf{A}_0, \mathbf{b}_0, \dots, \mathbf{A}_{k-1}, \mathbf{b}_{K-1} \}.$
 - The squared loss: $L(\theta) = \|\mathbf{y} \mathbf{f}_K(\theta, \mathbf{x})\|^2$.
 - $\theta_i = \{ \mathbf{A}_i, \mathbf{b}_i \}$, for $j = 0, 1, \dots, K 1$.
- By the chain rule:

$$\frac{\partial L}{\partial \theta_{K-1}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \theta_{K-1}}$$

$$\frac{\partial L}{\partial \theta_{K-2}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \frac{\partial \mathbf{f}_{K-1}}{\partial \theta_{K-2}}$$

$$\frac{\partial L}{\partial \theta_{K-3}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \frac{\partial \mathbf{f}_{K-1}}{\partial \mathbf{f}_{K-2}} \frac{\partial \mathbf{f}_{K-2}}{\partial \theta_{K-3}}$$

:

• Partial derivatives of the output of a layer w.r.t. (1) its inputs or (2) its parameters.

What have we learnt?

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{i+1}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \cdots \frac{\partial \mathbf{f}_{i+3}}{\partial \mathbf{f}_{i+2}} \frac{\partial \mathbf{f}_{i+2}}{\partial \boldsymbol{\theta}_{i+1}} \\
\frac{\partial L}{\partial \boldsymbol{\theta}_{i}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \cdots \frac{\partial \mathbf{f}_{i+3}}{\partial \mathbf{f}_{i+2}} \underbrace{\frac{\partial \mathbf{f}_{i+2}}{\partial \mathbf{f}_{i+1}} \frac{\partial \mathbf{f}_{i+1}}{\partial \boldsymbol{\theta}_{i}}}_{\text{not reused yet}}$$

What have we learnt?

$$\frac{\partial L}{\partial \boldsymbol{\theta}_{i+1}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \cdots \frac{\partial \mathbf{f}_{i+3}}{\partial \mathbf{f}_{i+2}} \frac{\partial \mathbf{f}_{i+2}}{\partial \boldsymbol{\theta}_{i+1}} \\
\frac{\partial L}{\partial \boldsymbol{\theta}_{i}} = \frac{\partial L}{\partial \mathbf{f}_{K}} \frac{\partial \mathbf{f}_{K}}{\partial \mathbf{f}_{K-1}} \cdots \frac{\partial \mathbf{f}_{i+3}}{\partial \mathbf{f}_{i+2}} \frac{\partial \mathbf{f}_{i+2}}{\partial \mathbf{f}_{i+1}} \frac{\partial \mathbf{f}_{i+1}}{\partial \boldsymbol{\theta}_{i}}$$
not reused yet

Hence the name backpropagation.

Forward Pass

Backward Pass

Outline

Backpropagation

2 Automatic Differentiation

Automatic Differentiation

- A set of techniques to numerically evaluate the "exact" (up to machine precision) gradient of a function by working with intermediate variables & chain rule.
- Complicated functions can be computed automatically.
 - It just applies a series of elementary arithmetic operations.
- Note that our goal is to make computation of the derivatives be efficiently programmable and reusable.

Forward Mode & Reverse Mode

• Input: x; Output: y; Intermediate variables a, b.

Reverse Mode (backpropagation):

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \left(\frac{\mathrm{d}y}{\mathrm{d}b}\frac{\mathrm{d}b}{\mathrm{d}a}\right)\frac{\mathrm{d}a}{\mathrm{d}x}$$

Forward Mode:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}b} \left(\frac{\mathrm{d}b}{\mathrm{d}a} \frac{\mathrm{d}a}{\mathrm{d}x} \right)$$

Example

Example (Reverse Mode)

Consider the function

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

Introducing intermediate variables:

$$a = x^{2}$$

$$b = \exp(a)$$

$$c = a + b$$

$$d = \sqrt{c}$$

$$e = \cos(c)$$

$$f = d + e$$

Example

$$f(x) = \sqrt{x^2 + \exp(x^2)} + \cos(x^2 + \exp(x^2)).$$

$$a = x^{2}$$

$$b = \exp(a)$$

$$c = a + b$$

$$d = \sqrt{c}$$

$$e = \cos(c)$$

$$f = d + e$$

$$\frac{\partial a}{\partial x} = 2x$$

$$\frac{\partial b}{\partial a} = \exp(a)$$

$$\frac{\partial c}{\partial a} = 1 = \frac{\partial c}{\partial b}$$

$$\frac{\partial d}{\partial c} = \frac{1}{\sqrt{c}}$$

$$\frac{\partial e}{\partial c} = -\sin(c)$$

$$\frac{\partial f}{\partial d} = 1 = \frac{\partial f}{\partial e}$$

Compute $\frac{\partial f}{\partial x}$

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial c}$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b}$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial f}{\partial c} \frac{\partial c}{\partial a}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x}$$

Compute $\frac{\partial f}{\partial x}$

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial c} = 1 \cdot \frac{1}{2\sqrt{c}} + 1 \cdot (-\sin(c))$$

$$\frac{\partial f}{\partial b} = \frac{\partial f}{\partial c} \frac{\partial c}{\partial b} = \frac{\partial f}{\partial c} \cdot 1$$

$$\frac{\partial f}{\partial a} = \frac{\partial f}{\partial b} \frac{\partial b}{\partial a} + \frac{\partial f}{\partial c} \frac{\partial c}{\partial a} = \frac{\partial f}{\partial b} \exp(a) + \frac{\partial f}{\partial c} \cdot 1$$

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x} = \frac{\partial f}{\partial a} \cdot 2x.$$

Automatic Differentiation in General

Automatic Differentiation in General

- x_1, \ldots, x_d : input variables
- x_{d+1}, \ldots, x_{D-1} : intermediate variables
- x_D : the output variable

The computation graph can be expressed as

For
$$i = d + 1, ..., D$$
: $x_i = g_i(x_{pa(x_i)}),$

where $g_i(\cdot)$ are (elementary) functions, $x_{pa(x_i)}$ are parent nodes of x_i .

Automatic Differentiation in General

Automatic Differentiation in General

- x_1, \ldots, x_d : input variables
- x_{d+1}, \ldots, x_{D-1} : intermediate variables
- x_D : the output variable

The computation graph can be expressed as

For
$$i = d + 1, ..., D$$
: $x_i = g_i(x_{pa(x_i)})$, (forward propagation)

where $g_i(\cdot)$ are (elementary) functions, $x_{pa(x_i)}$ are parent nodes of x_i .

$$f = x_D \Longrightarrow \frac{\partial f}{\partial x_D} = 1.$$

Automatic Differentiation in General

Automatic Differentiation in General

- x_1, \ldots, x_d : input variables
- x_{d+1}, \dots, x_{D-1} : intermediate variables
- x_D: the output variable

The computation graph can be expressed as

For
$$i = d + 1, ..., D$$
: $x_i = g_i(x_{pa(x_i)})$, (forward propagation)

where $g_i(\cdot)$ are (elementary) functions, $x_{pa(x_i)}$ are parent nodes of x_i .

$$f = x_D \Longrightarrow \frac{\partial f}{\partial x_D} = 1.$$

$$\frac{\partial f}{\partial x_i} = \sum_{x_j: x_i \in \mathsf{pa}(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial x_j}{\partial x_i} = \sum_{x_j: x_i \in \mathsf{pa}(x_j)} \frac{\partial f}{\partial x_j} \frac{\partial g_j}{\partial x_i}. \text{ (backpropagation)}$$

Automatic Differentiation

- A set of techniques to numerically evaluate the "exact" (up to machine precision) gradient of a function.
 - By intermediate variables & chain rule.
- Complicated functions can be computed automatically, whenever it can be expressed as a computation graph and the elementary functions are differentiable.
- Programming structures, such as for loops and if statements, require more care as well.

Example (Softmax with In)

$$f(x) = \ln\left(\frac{\exp(x_1)}{\exp(x_1) + \exp(x_2) + \exp(x_3)}\right).$$

$$x_1 \longrightarrow \exp(\cdot) \longrightarrow a$$

$$x_2 \longrightarrow \exp(\cdot) \longrightarrow b$$

$$x_3 \longrightarrow \exp(\cdot) \longrightarrow c$$

ML Math - Vector Calculus Automatic Differentiation

$$a = \exp(x_1) \qquad \frac{\partial f}{\partial e} = 1/e.$$

$$b = \exp(x_2) \qquad \frac{\partial f}{\partial d} = \frac{\partial f}{\partial e} \frac{\partial e}{\partial d} = \frac{1}{e} \left(-\frac{a}{d^2} \right) = -\frac{1}{d},$$

$$d = a + b + c \qquad \frac{\partial f}{\partial a} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial a} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial a} = -\frac{1}{d} \cdot 1 + \frac{1}{e} \frac{1}{d} = -\frac{1}{d} + \frac{1}{a}$$

$$e = a/d \qquad \frac{\partial f}{\partial a} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial a} + \frac{\partial f}{\partial e} \frac{\partial e}{\partial a} = -\frac{1}{d} \cdot 1 + \frac{1}{e} \frac{1}{d} = -\frac{1}{d} + \frac{1}{a}$$

$$\frac{\partial f}{\partial c} = \frac{\partial f}{\partial d} \frac{\partial d}{\partial c} = -\frac{1}{d}$$

$$\frac{\partial f}{\partial x_1} = \frac{\partial f}{\partial a} \frac{\partial a}{\partial x_1} = \left(-\frac{1}{d} + \frac{1}{a} \right) a = -\frac{a}{d} + 1.$$

4 D > 4 D > 4 E > 4 E > E *) Q (

Example: KL-divergence

• Note:
$$\frac{\partial D_{\mathsf{KL}(\mathbf{q}\parallel\mathbf{p})}}{\partial p_i} = q_i \frac{\mathrm{d}}{\mathrm{d}p_i} \left(\ln \left(\frac{q_i}{p_i} \right) \right) = q_i \cdot \frac{p_i}{q_i} \left(- \frac{q_i}{p_i^2} \right) = -\frac{q_i}{p_i}.$$

Example

$$\begin{aligned} \text{CE} &\approx -y \cdot \log \sigma(z) + (1-y) \cdot \log(1-\sigma(z)) \\ z &= \mathbf{x} \mathbf{W}_1 \mathbf{W}_2 + b \\ \sigma(z) &= \frac{1}{1+e^{-z}} \end{aligned}$$

Example

```
Created on Wed Nov 1 09:20:33 2023
@author: jcclin
import torch
x = torch.randn(10, 5) # input tensor
y = torch.zeros(10, 1) # expected output
w1 = torch.randn(5, 3, requires grad=True)
w2 = torch.randn(3, 1, requires_grad=True)
b = torch.randn(1, requires grad=True)
z = torch.matmul(x, w1)
r = torch.matmul(z, w2) + b
loss = torch.nn.functional.binary cross entropy with logits(r, y)
print(f"Gradient function for z = {z.grad fn}")
print(f"Gradient function for loss = {loss.grad fn}")
loss.backward()
print(wl.grad)
print(w2.grad)
print(b.grad)
```

Discussions