Materials Data Book

2003 Edition

Cambridge University Engineering Department

PHYSICAL CONSTANTS IN SI UNITS

Absolute zero of temperature	– 273.15 °C
Acceleration due to gravity, g	9. 807 m/s ²
Avogadro's number, N_A	6.022x10 ²⁶ /kmol
Base of natural logarithms, e	2.718
Boltzmann's constant, k	1.381 x 10 ⁻²⁶ kJ/K
Faraday's constant, F	9.648 x 10 ⁷ C/kmol
Universal Gas constant, \overline{R}	8.3143 kJ/kmol K
Permeability of vacuum, μ _o	1.257 x 10 ⁻⁶ H/m
Permittivity of vacuum, ε_0	8.854 x 10 ⁻¹² F/m
Planck's constant, h	6.626 x 10 ⁻³⁷ kJ/s
Velocity of light in vacuum, c	2.998 x 10 ⁸ m/s
Volume of perfect gas at STP	22.41 m ³ /kmol

CONVERSION OF UNITS

Angle, θ	1 rad	57.30 °
Energy, U	See inside back cover	
Force, F	1 kgf	9.807 N
	1 lbf	4.448 N
Length, ℓ	1 ft	304.8 mm
	1 inch	25.40 mm
	1 Å	0.1 nm
Mass, M	1 tonne	1000 kg
	1 lb	0.454 kg
Power, P	See inside back cover	
Stress, σ	See inside back cover	
Specific Heat, C _p	1 cal/g.°C	4.188 kJ/kg.K
Stress Intensity, K	1 ksi√in	1.10 MPa √m
Temperature, T	1 °F	0.556 K
Thermal Conductivity, λ	1 cal/s.cm.°C	4.18 W/m.K
Volume, V	1 Imperial gall	$4.546 \times 10^{-3} \text{ m}^3$
	1 US gall	$3.785 \times 10^{-3} \mathrm{m}^3$
Viscosity, η	1 poise	0.1 N.s/m ²
	1 lb ft.s	0.1517 N.s/m ²

CONTENTS

	Page Number
Introduction	3
Sources	3
I. FORMULAE AND DEFINITIONS	
Stress and strain	4
Elastic moduli	4
Stiffness and strength of unidirectional composites	5
Dislocations and plastic flow	5
Fast fracture	6
Statistics of fracture	6
Fatigue	
7	7
Creep	7
Diffusion Heat flow	8 8
Heat now	o
II. PHYSICAL AND MECHANICAL PROPERTIES OF MATERIA	LS
Melting temperature	9
Density	10
Young's modulus	11
Yield stress and tensile strength	12
Fracture toughness	13
Environmental resistance	14
Uniaxial tensile response of selected metals and polymers	15
III. MATERIAL PROPERTY CHARTS	
Young's modulus versus density	16
Strength versus density	17
Young's modulus versus strength	18
Fracture toughness versus strength	19
Maximum service temperature	20
Material price (per kg)	21
IV. PROCESS ATTRIBUTE CHARTS	
Material-process compatibility matrix (shaping)	22
Mass	23
Section thickness	23
Surface roughness	24
Dimensional tolerance	24
Economic batch size	25

V. CLASSIFICATION AND APPLICATIONS OF ENGINEERING MATER	RIALS
Metals: ferrous alloys, non-ferrous alloys	26
Polymers and foams	27
Composites, ceramics, glasses and natural materials	28
VI. EQUILIBRIUM (PHASE) DIAGRAMS	
Copper – Nickel	29
Lead – Tin	29
Iron – Carbon	30
Aluminium – Copper	30
Aluminium – Silicon	31
Copper – Zinc	31
Copper – Tin	32
Titanium-Aluminium	32
Silica – Alumina	33
VII. HEAT TREATMENT OF STEELS	
TTT diagrams and Jominy end-quench hardenability curves for steels	34
VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS	
Atomic properties of selected elements	36
Oxidation properties of selected elements	37
Officiation properties of selected elements	51

INTRODUCTION

The data and information in this booklet have been collected for use in the Materials Courses in Part I of the Engineering Tripos (as well as in Part II, and the Manufacturing Engineering Tripos). Numerical data are presented in tabulated and graphical form, and a summary of useful formulae is included. A list of sources from which the data have been prepared is given below. Tabulated material and process data or information are from the Cambridge Engineering Selector (CES) software (Educational database Level 2), copyright of Granta Design Ltd, and are reproduced by permission; the same data source was used for the material property and process attribute charts.

It must be realised that many material properties (such as toughness) vary between wide limits depending on composition and previous treatment. Any final design should be based on manufacturers' or suppliers' data for the material in question, and not on the data given here.

SOURCES

Cambridge Engineering Selector software (CES 4.1), 2003, Granta Design Limited, Rustat House, 62 Clifton Rd, Cambridge, CB1 7EG

M F Ashby, Materials Selection in Mechanical Design, 1999, Butterworth Heinemann

M F Ashby and D R H Jones, Engineering Materials, Vol. 1, 1996, Butterworth Heinemann

M F Ashby and D R H Jones, Engineering Materials, Vol. 2, 1998, Butterworth Heinemann

M Hansen, Constitution of Binary Alloys, 1958, McGraw Hill

I J Polmear, Light Alloys, 1995, Elsevier

C J Smithells, Metals Reference Book, 6th Ed., 1984, Butterworths

Transformation Characteristics of Nickel Steels, 1952, International Nickel

I. FORMULAE AND DEFINITIONS

STRESS AND STRAIN

$$\sigma_t = \frac{F}{A}$$

$$\sigma_n = \frac{F}{A_o}$$

$$\sigma_n = \frac{F}{A_o}$$
 $\varepsilon_t = \ln\left(\frac{\ell}{\ell_o}\right)$ $\varepsilon_n = \frac{\ell - \ell_o}{\ell_o}$

$$\varepsilon_n = \frac{\ell - \ell_o}{\ell_o}$$

F = normal component of force

 A_o = initial area

A = current area

 ℓ_o = initial length

 ℓ = current length

 σ_t = true stress

 σ_n = nominal stress

 ε_t = true strain

 ε_n = nominal strain

Poisson's ratio,
$$v = -\frac{\text{lateral strain}}{\text{longitudinal strain}}$$

Young's modulus $E = \text{initial slope of } \sigma_t - \varepsilon_t \text{ curve} = \text{initial slope of } \sigma_n - \varepsilon_n \text{ curve.}$

Yield stress σ_{v} is the nominal stress at the limit of elasticity in a tensile test.

Tensile strength σ_{ts} is the nominal stress at maximum load in a tensile test.

Tensile ductility ε_f is the nominal plastic strain at failure in a tensile test. The gauge length of the specimen should also be quoted.

ELASTIC MODULI

$$G = \frac{E}{2(1+\nu)}$$

$$G = \frac{E}{2(1+\nu)} \qquad K = \frac{E}{3(1-2\nu)}$$

For polycrystalline solids, as a rough guide,

$$v \approx \frac{1}{3}$$

Shear Modulus
$$G \approx \frac{3}{8} E$$

$$G \approx \frac{3}{8} E$$

$$K \approx E$$

These approximations break down for rubber and porous solids.

STIFFNESS AND STRENGTH OF UNIDIRECTIONAL COMPOSITES

$$E_{II} = V_f E_f + (1 - V_f) E_m$$

$$E_{\perp} = \left(\frac{V_f}{E_f} + \frac{1 - V_f}{E_m}\right)^{-1}$$

$$\sigma_{ts} = V_f \, \sigma_f^{\rm f} + (1 - V_f) \sigma_y^{\rm m}$$

 E_{II} = composite modulus parallel to fibres (upper bound)

 E_{\perp} = composite modulus transverse to fibres (lower bound)

 V_f = volume fraction of fibres

 E_f = Young's modulus of fibres

 E_m = Young's modulus of matrix

 σ_{ts} = tensile strength of composite parallel to fibres

 $\sigma_f^{\rm f}$ = fracture strength of fibres

 σ_{v}^{m} = yield stress of matrix

DISLOCATIONS AND PLASTIC FLOW

The force per unit length F on a dislocation, of Burger's vector b, due to a remote shear stress τ , is $F = \tau b$. The shear stress τ_v required to move a dislocation on a single slip plane is

$$\tau_y = \frac{cT}{bL}$$
 where $T = \text{line tension (about } \frac{1}{2}Gb^2$, where G is the shear modulus)

L = inter-obstacle distance

c = constant ($c \approx 2 \text{ for strong obstacles}$, c < 2 for weak obstacles)

The shear yield stress k of a polycrystalline solid is related to the shear stress τ_y required to move a dislocation on a single slip plane: $k \approx \frac{3}{2}\tau_y$.

The uniaxial yield stress σ_y of a polycrystalline solid is approximately $\sigma_y = 2k$, where k is the shear yield stress.

Hardness H (in MPa) is given approximately by: $H \approx 3 \sigma_v$.

Vickers Hardness HV is given in kgf/mm², i.e. HV = H / g, where g is the acceleration due to gravity.

FAST FRACTURE

The stress intensity factor, K:

$$K = Y \, \sigma \sqrt{\pi a}$$

Fast fracture occurs when $K = K_{IC}$

In plane strain, the relationship between stress intensity factor K and strain energy release rate G is:

$$K = \sqrt{\frac{EG}{1-v^2}} \approx \sqrt{EG}$$
 (as $v^2 \approx 0.1$)

Plane strain fracture toughness and toughness are thus related by: $K_{IC} = \sqrt{\frac{EG_{IC}}{1 - v^2}} \approx \sqrt{EG_{IC}}$

"Process zone size" at crack tip given approximately by: $r_p = \frac{K_{\rm IC}^2}{\pi \sigma_f^2}$

Note that $K_{\rm IC}$ (and $G_{\rm IC}$) are only valid when conditions for linear elastic fracture mechanics apply (typically the crack length and specimen dimensions must be at least 50 times the process zone size).

In the above:

 σ = remote tensile stress

a = crack length

Y = dimensionless constant dependent on geometry; typically $Y \approx 1$

 $K_{\rm IC}$ = plane strain fracture toughness;

 $G_{\rm IC}$ = critical strain energy release rate, or toughness;

E = Young's modulus

 $\nu = \text{Poisson's ratio}$

 σ_f = failure strength

STATISTICS OF FRACTURE

Weibull distribution, $P_s(V) = \exp \left\{ \int_V - \left(\frac{\sigma}{\sigma_o} \right)^m \frac{dV}{V_o} \right\}$

For constant stress: $P_s(V) = \exp \left\{ -\left(\frac{\sigma}{\sigma_o}\right)^m \frac{V}{V_o} \right\}$

 P_s = survival probability of component

V = volume of component

 σ = tensile stress on component

 $V_o = \text{volume of test sample}$

 σ_o = reference failure stress for volume V_o , which gives $P_s = \frac{1}{\rho} = 0.37$

m =Weibull modulus

FATIGUE

Basquin's Law (high cycle fatigue):

$$\Delta \sigma N_f^{\alpha} = C_1$$

Coffin-Manson Law (low cycle fatigue):

$$\Delta \varepsilon^{p\ell} \, N_f^{\beta} = C_2$$

Goodman's Rule. For the same fatigue life, a stress range $\Delta\sigma$ operating with a mean stress σ_m , is equivalent to a stress range $\Delta\sigma_o$ and zero mean stress, according to the relationship:

$$\Delta \sigma = \Delta \sigma_o \left(1 - \frac{\sigma_m}{\sigma_{ts}} \right)$$

Miner's Rule for cumulative damage (for i loading blocks, each of constant stress amplitude and duration N_i cycles):

$$\sum_{i} \frac{N_i}{N_{fi}} = 1$$

Paris' crack growth law:

$$\frac{d\,a}{d\,N} = A \ \Delta K^n$$

In the above:

 $\Delta \sigma$ = stress range;

 $\Delta \varepsilon^{p\ell}$ = plastic strain range;

 ΔK = tensile stress intensity range;

N = cycles;

 N_f = cycles to failure;

 α , β , C_1 , C_2 , A, n = constants;

a = crack length;

 σ_{ts} = tensile strength.

CREEP

Power law creep: $\dot{\varepsilon}_{ss} = A \sigma^n \exp(-Q/RT)$

 $\dot{\varepsilon}_{ss}$ = steady-state strain-rate

Q = activation energy (kJ/kmol)

R = universal gas constant

T = absolute temperature

A, n = constants

DIFFUSION

Diffusion coefficient: $D = D_o \exp(-Q/RT)$

Fick's diffusion equations:
$$J = -D \frac{dC}{dx}$$
 and $\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$

$$C =$$
concentration $J =$ diffusive flux

$$x = \text{distance}$$
 $D = \text{diffusion coefficient (m}^2/\text{s})$

$$t = \text{time}$$
 $D_o = \text{pre-exponential factor } (\text{m}^2/\text{s})$

$$Q = \text{activation energy (kJ/kmol)}$$

HEAT FLOW

Steady-state 1D heat flow (Fourier's Law): $q = -\lambda \frac{dT}{dx}$

Transient 1D heat flow:
$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial x^2}$$

$$T = \text{temperature (K)}$$
 $\lambda = \text{thermal conductivity (W/m.K)}$

$$q = \text{heat flux per second, per unit area (W/m}^2.s)$$
 $a = \text{thermal diffusivity (m}^2/s)$

For many 1D problems of diffusion and heat flow, the solution for concentration or temperature depends on the error function, erf:

$$C(x,t) = f \left[\operatorname{erf} \left(\frac{x}{2\sqrt{Dt}} \right) \right] \quad \text{or} \quad T(x,t) = f \left[\operatorname{erf} \left(\frac{x}{2\sqrt{at}} \right) \right]$$

A characteristic diffusion distance in all problems is given by $x \approx \sqrt{Dt}$, with the corresponding characteristic heat flow distance in thermal problems being $x \approx \sqrt{at}$.

The error function, and its first derivative, are:

$$\operatorname{erf}(X) = \frac{2}{\sqrt{\pi}} \int_0^X \exp(-y^2) dy$$
 and $\frac{d}{dX} [\operatorname{erf}(X)] = \frac{2}{\sqrt{\pi}} \exp(-X^2)$

The error function integral has no closed form solution – values are given in the Table below.

X	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8
erf(X)	0	0.11	0.22	0.33	0.43	0.52	0.60	0.68	0.74
	ı				ı	ı		ı	
X	0.9	1.0	1.1	1.2	1.3	1.4	1.5	∞	
erf(X)	0.80	0.84	0.88	0.91	0.93	0.95	0.97	1.0	

II. PHYSICAL AND MECHANICAL PROPERTIES OF MATERIALS II.1 MELTING (or SOFTENING) TEMPERATURE, T,,

All data are for melting points at atmospheric pressure. For polymers (and glasses) the data indicate the glass transition (softening) temperature, above which the mechanical properties rapidly fall. Melting temperatures of selected elements are given in section VIII.

Metals Ferrous High Carbon Steels High Carbon Steels Medium Carbon Steels Low Carbon Steels Low Alloy Steels Stainless Steels Aluminium Alloys Copper Alloys Lead Alloys Lead Alloys Inckel Alloys Nickel Alloys Nickel Alloys Nickel Alloys Nickel Alloys Itanium Alloys Nickel Alloys Silica Glass (*) Silica Glass (*) Soda-Lime Glass (*) Soda-Lime Glass (*) Soda-Lime Glass (*) Silica Glass (*) Silican Alumina Alumina Aluminium Nitride Boron Carbide Silicon Silicon Silicon Silicon Silicon Silicon Aluminium/Silicon C FRP GFRP GFRP	Cast Irons High Carbon Steels Medium Carbon Steels Low Carbon Steels Low Steels Steels		
ferrous ferrous chnical chnical olymer	bon Steels Carbon Steels bon Steels y Steels		•
ferrous lasses chnical chnical olymer	bon Steels Carbon Steels bon Steels y Steels		1250
ferrous slasses chnical chnical olymer	Carbon Steels bon Steels y Steels	1289 - 14	1478
ferrous lasses chnical chnical olymer	bon Steels y Steels		1514
ferrous chnical chnical olymer	y Steels	'	1526
ferrous lasses chnical chnical olymer	Stools		1529
ferrous lasses chnical chnical olymer			1450
Porous chnical chnical olymer	m Alloys		229
Porous chnical chnical olymer	Alloys	982 - 10	1082
Porous chnical chnical olymer	oys		328
Porous chnical chnical olymer	um Alloys	447 - 64	649
Porous chnical chnical olymer	loys	ı	1466
Porous Chnical Metal Olymer	Alloys		1682
Porous chnical Metal olymer	ys	375 - 492	32
Porous chnical chnical olymer			
Porous Technical Sites Metal Polymer	ate Glass (*)	,	602
Porous Technical Sites Metal Polymer	eramic (*)		1647
Porous Technical Sites Metal Polymer	ass (*)		1557
Porous Technical Sites Metal Polymer	ne Glass (*)	442 - 59	592
Technical Sites Metal Polymer		•	1227
Technical Sites Metal Polymer	e, typical		1227
Technical Sites Metal Polymer			1427
ssites Metal Polymer			2096
Sites Metal Polymer	m Nitride		2507
Sites Metal Polymer	arbide		2507
Ssites Metal Polymer			1412
Metal Polymer	arbide		2500
Sites Metal Polymer	litride		2496
Metal Polymer	ר Carbide	2827 - 29	2920
Metal Polymer			
Polymer	Aluminium/Silicon Carbide	525 - 627	27
		n/a n/a	
_		5	
Bamboo (*)	(*)	77 - 10	102
Cork (*)		`	102
Leather (*)	(*)		127
Wood, typical	Wood, typical (Longitudinal) (*)	,	102
Wood, typical	Wood, typical (Transverse) (*)	77 - 10)2

		T_m ($^{\circ}$ C)
Polymers 1		
Elastomer	Butyl Rubber(*) EVA(*)	-7363 -7323
	Isoprene (IR) (*)	!
	Natural Rubber (NR) (*)	
	Neoprene (CR) (*)	
	Polyurethane Elastomers (eIPU) (*)	
	Silicone Elastomers (*)	
Thermoplastic	ABS (*)	
	Cellulose Polymers (CA) (*)	
	lonomer (I) (*)	27 - 77
	Nylons (PA) (*)	
	Polycarbonate (PC) (*)	
	PEEK (*)	143 - 199
	Polyethylene (PE) (*)	-2515
	PET (*)	- 89
	Acrylic (PMMA) (*)	
	Acetal (POM) (*)	
	Polypropylene (PP) (*)	
	Polystyrene (PS) (*)	74 - 110
	Polyurethane Thermoplastics (tpPU) (*)	
	PVC	
	Teflon (PTFE)	107 - 123
Thermoset	Epoxies	n/a
	Phenolics	n/a
	Polyester	n/a
Polymer Foams		
	$\widehat{}$	
	Flexible Polymer Foam (LD) (*)	112 - 177
	$\widehat{\Box}$	
	Rigid Polymer Foam (LD) (*)	
	Rigid Polymer Foam (MD)(*) Bigid Bolymor Eggm (HD)(*)	67 - 157
	rigia ruiyillel roalii (nd.) ()	

¹ For full names and acronyms of polymers – see Section V. (*) glass transition (softening) temperature n/a: not applicable (materials decompose, rather than melt)

II.2 DENSITY, ρ

		ρ (Mg/m³)
Metals		
Ferrous	Cast Irons	
	High Carbon Steels	
	Medium Carbon Steels	'
	Low Carbon Steels	
	Low Alloy Steels	
	Stainless Steels	
Non-ferrous	Aluminium Alloys	
	Copper Alloys	8.93 - 8.94
	Lead Alloys	10 - 11.4
	Magnesium Alloys	1.74 - 1.95
	Nickel Alloys	,
	Titanium Alloys	4.4 - 4.8
	Zinc Alloys	4.95 - 7
Ceramics		
Glasses	Borosilicate Glass	2.2 - 2.3
	Glass Ceramic	2.2 - 2.8
	Silica Glass	2.17 - 2.22
	Soda-Lime Glass	
Porous	Brick	1.9 - 2.1
	Concrete, typical	2.2 - 2.6
	Stone	
Technical	Alumina	
	Aluminium Nitride	
	Boron Carbide	2.35 - 2.55
	Silicon	2.3 - 2.35
	Silicon Carbide	
	Silicon Nitride	
	Tungsten Carbide	15.3 - 15.9
Composites		
Metal	Aluminium/Silicon Carbide	
Polymer	CFRP	
	GFRP	1.75 - 1.97
Natural		
	Bamboo	
	Cork	
	Leather	
	Wood, typical (Longitudinal)	9.0 - 9.0
	Wood, typical (Transverse)	0.6 - 0.8

		J) d	p (Mg/m³)	
Polymers 1				
Elastomer	Butyl Rubber	6.0	- 0.9	0.92
	EVA	0.945	-	0.955
	Isoprene (IR)	0.93	-	0.94
	Natural Rubber (NR)	0.92	- 0.9	0.93
	Neoprene (CR)	1.23	-	.25
	Polyurethane Elastomers (eIPU)	1.02	- 1.5	.25
	Silicone Elastomers	1.3	٠.	ω.
Thermoplastic	ABS	1.01	- 7.	1.21
	Cellulose Polymers (CA)	0.98	-	ω
	lonomer (I)	0.93	96.0 -	96
	Nylons (PA)	1.12	·	14
	Polycarbonate (PC)	1.14	-	.2
	PEEK	1.3	-	32
	Polyethylene (PE)	0.939	- 0.9	96.0
	PET	1.29	- 1.4	4
	Acrylic (PMMA)	1.16	- 1.2	.52
	Acetal (POM)	1.39	- 1.4	.43
	Polypropylene (PP)	0.89	- 0.91	91
	Polystyrene (PS)	1.04	- 1.0	1.05
	Polyurethane Thermoplastics (tpPU)	1.12	1.2	1.24
	PVC	1.3	- 7.5	82
	Teflon (PTFE)	2.14	- 2.2	α
Thermoset	Epoxies	1.11	- 1.4	₹+
	Phenolics	1.24	-	.32
	Polyester	1.04	- 1.4	₹+
Polymer Foams				
•	Flexible Polymer Foam (VLD)	0.016	- 0.0	0.035
	Flexible Polymer Foam (LD)	0.038	- 0.0	0.07
	Flexible Polymer Foam (MD)	0.07		0.115
	Rigid Polymer Foam (LD)	0.036	- 0.07	27
	Rigid Polymer Foam (MD)	0.078	.0	0.165
	Rigid Polymer Foam (HD)	0.17	- 0.47	47

¹ For full names and acronyms of polymers – see Section V.

II.3 YOUNG'S MODULUS, E

		E (GPa)
Metals		
Ferrous	Cast Irons	
	High Carbon Steels	
	Medium Carbon Steels	
	Low Carbon Steels	
	Low Alloy Steels	
	Stainless Steels	189 - 210
Non-ferrous	Aluminium Alloys	68 - 82
	Copper Allovs	112 - 148
	Lead Allovs	
	Magnesium Allovs	,
	Nickel Allovs	
	Titaniim Allovs	
	Zinc Allovs	
Ceramics		
Glasses	Borosilicate Glass	61 - 64
	Glass Ceramic	64 - 110
	Silica Glass	68 - 74
	Soda-Lime Glass	68 - 72
Porous	Brick	10 - 50
	Concrete, typical	
	Stone	6.9 - 21
Technical	Alumina	
	Aluminium Nitride	302 - 348
	Boron Carbide	400 - 472
	Silicon	140 - 155
	Silicon Carbide	,
	Silicon Nitride	280 - 310
	Tungsten Carbide	600 - 720
Composites		
Metal	Aluminium/Silicon Carbide	,
Polymer	CFRP	69 - 150
•	GFRP	15 - 28
Natural		
	Bamboo	15 - 20
	Cork	
	Leather	
	Wood, typical (Longitudinal)	6 - 20
	Wood, typical (Transverse)	0.5 - 3

		E	E (GPa)
Polymers 1			
Elastomer	Butyl Rubber EVA	0.001	- 0.002
	Isoprene (IR)	0.0014	- 0.004
	Natural Rubber (NR)	0.0015	- 0.0025
	Neoprene (CR)	0.0007	- 0.002
	Polyurethane Elastomers (eIPU)	0.002	- 0.003
	Silicone Elastomers	0.005	- 0.02
Thermoplastic	ABS	1.	- 2.9
	Cellulose Polymers (CA)	1.6	- 2
	Ionomer (I)	0.2	- 0.424
	Nylons (PA)	2.62	- 3.2
	Polycarbonate (PC)	7	- 2.44
	PEEK	3.5	- 4.2
	Polyethylene (PE)	0.621	- 0.896
	PET	2.76	- 4.14
	Acrylic (PMMA)	2.24	- 3.8
	Acetal (POM)	2.5	- 2
	Polypropylene (PP)	0.896	- 1.55
	Polystyrene (PS)	2.28	- 3.34
	Polyurethane Thermoplastics (tpPU)	1.31	- 2.07
	PVC	2.14	- 4.14
	Teflon (PTFE)	9.0	- 0.552
Thermoset	Epoxies	2.35	- 3.075
	Phenolics	2.76	- 4.83
	Polyester	2.07	- 4.41
Polymer Foams			
	Flexible Polymer Foam (VLD)	0.0003	- 0.001
	Flexible Polymer Foam (LD)	0.001	- 0.003
	Flexible Polymer Foam (MD)	0.004	- 0.012
	Rigid Polymer Foam (LD)	0.023	- 0.08
	Rigid Polymer Foam (MD)	0.08	- 0.2
	Rigid Polymer Foam (HD)	0.2	- 0.48

¹ For full names and acronyms of polymers – see Section V.

II.4 YIELD STRESS, σ_{y} , AND TENSILE STRENGTH, σ_{ts}

		Ω _v (MPa)		عُ فِي	σ _{te} (MPa)
		/ · · · · · ·		2	/
Metais				Ç	0
rerrous	Cast Irons	715 - 790	L	350	1000
	Medium Carbon Steels			410	1200
	Low Carbon Steels			345 -	580
	Low Allov Steels			460 -	1200
	Stainless Steels			480 -	2240
Non-ferrous	Aluminium Alloys	30 - 200		- 89	550
	Copper Alloys	30 - 200		100	. 550
	Lead Alloys	8 - 14		12 -	. 20
	Magnesium Alloys			185 -	475
	Nickel Alloys	70 - 1100		345 -	1200
	Titanium Alloys			300 -	1625
	Zinc Alloys	80 - 450		135 -	520
Ceramics					
Glasses	Borosilicate Glass (*)	,		22 -	. 32
	Glass Ceramic (*)	i	6	- 29	. 177
	Silica Glass (*)		0	45 -	. 155
	Soda-Lime Glass (*)	•		31	32
Porous	Brick (*)			_ 7	4
	Concrete, typical (*)			2	9
	Stone (*)	34 - 248		2	. 17
Technical	Alumina (*)	0099 2200		350	999
	Aluminium Nitride (*)	1970 - 2700		197 -	. 270
	Boron Carbide (*)	2583 - 5687		350 -	. 560
	Silicon (*)			160 -	. 180
	Silicon Carbide (*)			370 -	089
		i		- 069	800
	Tungsten Carbide (*)	3347 - 6833		370 -	. 550
Composites					
Metal	Aluminium/Silicon Carbide			290 -	365
Polymer	CFRP			550 -	
	GFRP	110 - 192		138 -	. 241
Natural				Ç	Ļ
	Darriboo			၀	C
	Cork			0.5	2.5
	Leather			20	. 26
	Wood, typical (Longitudinal)			- 09	100
	Wood, typical (Transverse)	2 - 6		4	ნ

		$\sigma_{ m y}$ (MPa)	M	a)	σ _{ts} (MPa)	Σ	⊃a)
Polymers 1							
Elastomer	Butyl Rubber	2		ဗ	2		10
	EVA	12		18	16		20
	Isoprene (IR)	20		25	20		25
	Natural Rubber (NR)	20	,	30	22		32
	Neoprene (CR)	3.4	,	24	3.4		24
	Polyurethane Elastomers (eIPU)	22	,	51	22		51
	Silicone Elastomers	2.4		5.5	2.4		5.5
Thermoplastic	ABS	18.5	,	51	27.6		55.2
•	Cellulose Polymers (CA)	52		45	25		20
	lonomer (I)	8.3		15.9	17.2		37.2
	Nylons (PA)	20		94.8	06		165
	Polycarbonate (PC)	29		20	09		72.4
	PEEK	9		92	20		103
	Polyethylene (PE)	17.9		29	20.7		44.8
	PET	56.5		62.3	48.3		72.4
	Acrylic (PMMA)	53.8		72.4	48.3		79.6
	Acetal (POM)	48.6		72.4	09		89.6
	Polypropylene (PP)	20.7		37.2	27.6		41.4
	Polystyrene (PS)	28.7		56.2	35.9		56.5
	Polyurethane Thermoplastics (tpPU)	40		53.8	31		62
	PVC	35.4		52.1	40.7		65.1
	Teflon (PTFE)	15		25	20		30
Thermoset	Epoxies	36		7.1.7	42		89.6
	Phenolics	27.6		49.7	34.5		62.1
	Polyester	33		40	41.4		89.6
Polymer Foams							
•	Flexible Polymer Foam (VLD)	0.01		0.12	0.24		0.85
	Flexible Polymer Foam (LD)	0.02		0.3	0.24		2.35
	Flexible Polymer Foam (MD)	0.05	,	0.7	0.43		2.95
	Rigid Polymer Foam (LD)	0.3		1.7	0.45		2.25
	Rigid Polymer Foam (MD)	0.4		3.5	0.65		5.1
	Rigid Polymer Foam (HD)	0.8		12	1.2		12.4

¹ For full names and acronyms of polymers – see Section V.

(*) NB: For ceramics, yield stress is replaced by *compressive strength*, which is more relevant in ceramic design. Note that ceramics are of the order of 10 times stronger in compression than in tension.

II.5 FRACTURE TOUGHNESS (PLANE STRAIN), K_C

		K _C (MPa√m)
Metals		
Ferrous	Cast Irons	22 - 54
	Medium Carbon Steels	
	Low Carbon Steels	
	Low Alloy Steels	14 - 200
	Stainless Steels	62 - 280
Non-ferrous	Aluminium Alloys	
	Copper Alloys	30 - 90
	Lead Alloys	5 - 15
	Magnesium Alloys	12 - 18
	Nickel Alloys	80 - 110
	Titanium Alloys	14 - 120
	Zinc Alloys	10 - 100
Ceramics		
Glasses	Borosilicate Glass	,
	Glass Ceramic	1.4 - 1.7
	Silica Glass	
	Soda-Lime Glass	0.55 - 0.7
Porous	Brick	1 - 2
	Concrete, typical	
	Stone	
Technical	Alumina	
	Aluminium Nitride	
	Boron Carbide	
	Silicon	
	Silicon Carbide	2.5 - 5
	Silicon Nitride	4 - 6
	Tungsten Carbide	2 - 3.8
Composites		
Metal	Aluminium/Silicon Carbide	
Polymer	CTKT	6.1 - 88
I chinal	5	
Natural	Bamboo	5 - 7
	Cork	0.05 - 0.1
	Leather	
	wood, typical (Tlansverse)	

		$K_{ m C}$ (MP	(MPa√m)
Polymers ¹ Elastomer	But/l Rubber	0.07	1	0.1
	EVÁ	0.5		0.7
	Isoprene (IR)	0.07	•	0.1
	Natural Rubber (NR)	0.15		0.25
	Neoprene (CR)	0.1		0.3
	Polyurethane Elastomers (eIPU)	0.2		0.4
	Silicone Elastomers	0.03		0.5
Thermoplastic	ABS	1.19		4.30
	Cellulose Polymers (CA)	~		2.5
	Ionomer (I)	1.14		3.43
	Nylons (PA)	2.22		5.62
	Polycarbonate (PC)	2.1		4.60
	PEEK	2.73		4.30
	Polyethylene (PE)	1.44		1.72
	PET	4.5		5.5
	Acrylic (PMMA)	0.7		1.6
	Acetal (POM)	1.71		4.2
	Polypropylene (PP)	က		4.5
	Polystyrene (PS)	0.7		1.
	Polyurethane Thermoplastics (tpPU)	1.84		4.97
	PVC	1.46		5.12
	Teflon (PTFE)	1.32		1.8
Thermoset	Epoxies	0.4		2.22
	Phenolics	0.79		1.21
	Polyester	1.09		1.70
Polymer Foams				
	Flexible Polymer Foam (VLD)	0.005		0.02
	Flexible Polymer Foam (LD)	0.015		0.05
	Flexible Polymer Foam (MD)	0.03		0.09
	Rigid Polymer Foam (LD)	0.002		0.02
	Rigid Polymer Foam (MD)	0.007		0.049
	Rigid Polymer Foam (HD)	0.024		0.091

¹ For full names and acronyms of polymers – see Section V.

Note: $K_{\rm IC}$ only valid for conditions of linear elastic fracture mechanics (see I. Formulae & Definitions). Plane Strain Toughness, $G_{\rm IC}$, may be estimated from $K_{\rm IC}^2 = E G_{\rm IC}/(1-\nu^2) \approx E G_{\rm IC}$ (as $\nu^2 \approx 0.1$).

II.6 ENVIRONMENTAL RESISTANCE

Wear resistance

Natural Rubber (NR) Neoprene (CR) Neoprene (CR) Silicone Elastomers ABS Cellulose Polymers (CA) Ionomer (I) Nylons (PA) PEEK Polycarbonate (PC) PET Acrylic (PMMA) Acetal (POM) Polystyrene (PS)
e
e
mor Fosme
Flexible Polymer Foams Rigid Polymer Foams

Por full names and acronyms of polymers – see Section V. Ranking: $A = very\ good;\ B = good;\ C = average;\ D = poor;\ E = very\ poor.$

ΔШ

Wear resistance	44440040000	< < a < 0 < < < a < < < < < < < < < < <	
(VU) thgilnu2	4444444444	4444444444	
Salt water	0000040440440	m < < < < < < < < < < <	
Fresh water		m < < < < < < < < < < <	
Flammability	<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	4444444444	< 88 0000
	Cast Irons High Carbon Steels Medium Carbon Steels Low Carbon Steels Low Alloy Steels Stainless Steels Aluminium Alloys Copper Alloys Lead Alloys Nickel Alloys Titanium Alloys Zinc Alloys	Borosilicate Glass Glass Ceramic Silica Glass Soda-Lime Glass Brick, Concrete, Stone Aluminum Nitride Boron Carbide Silicon Silicon Carbide Silicon Carbide Silicon Carbide	Aluminium/Silicon Carbide CFRP GFRP Bamboo Cork Leather Wood
	Metals Ferrous Non-ferrous	Ceramics Glasses Porous Technical	Composites Metal Polymer Natural

II.7 UNIAXIAL TENSILE RESPONSE OF SELECTED METALS & POLYMERS

Figure 2.1 Tensile response of some common metals

Figure 2.2 Tensile response of some common polymers

III. MATERIAL PROPERTY CHARTS

III.1 YOUNG'S MODULUS - DENSITY

Figure 3.1: Young's modulus, E, against density, ρ . The design guide-lines assist in selection of materials for minimum weight, stiffness-limited design.

III.2 STRENGTH - DENSITY

Figure 3.2: Failure strength, σ_f , against density, ρ . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The design guide-lines assist in selection of materials for minimum weight, strength-limited design.

III.3 YOUNG'S MODULUS - STRENGTH

Figure 3.3: Young's modulus, E, against failure strength, σ_f . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The design guide-lines assist in the selection of materials for maximum stored energy, volume-limited design.

III.4 FRACTURE TOUGHNESS - STRENGTH

Figure 3.4: Fracture toughness (plane strain), K_{IC} , against failure strength, σ_f . Failure strength is defined as the *tensile elastic limit* (usually yield stress) for all materials other than ceramics, for which it is the *compressive strength*. The contours show $K_{IC}^2/\pi\sigma_f^2$, which is approximately the diameter of the process zone at a crack tip. Valid application of linear elastic fracture mechanics using K requires that the specimen and crack dimensions are large compared to this process zone. The design guide-lines are used in selecting materials for damage tolerant design.

III.5 MAXIMUM SERVICE TEMPERATURE

Figure 3.5: Maximum service temperature. The shaded bars extend to the maximum service temperature – materials may be used safely for all temperatures up to this value, without significant property degradation. (Note: there is a modest range of maximum service temperature in a given material class – not all variants within a class may be used up to the temperature shown, so caution should be exercised if a material appears close to its limit).

NB: For full names and acronyms of polymers – see Section V.

III.6 MATERIAL PRICE (PER KG)

Figure 3.6: Material price (per kg), C_m (2003 data). C_m represents raw material price/kg, and does not include manufacturing or end-of-life costs.

NB: For full names and acronyms of polymers – see Section V.

IV. PROCESS ATTRIBUTE CHARTS

IV.1 MATERIAL - PROCESS COMPATIBILITY MATRIX (SHAPING)

Figure 4.1a: Metals

Metals		Sand Gasting	Die Casting	Investment Gasting	Rolling/ Forging	noisurtx∃	Sheet Forming	Powder Spodfethods	gninidɔɛM
Ferrous	Ferrous Cast Irons	>	>	>	×	×	×	×	×
	Medium/High Carbon Steels	>	×	>	>	×	×	7	7
	Low Carbon Steels	>	×	7	>	×	7	7	7
	Low Alloy/Stainless Steels	7	7	7	7	×	7	7	7
Non-ferrous Aluminium, Magnesium	Aluminium, Copper, Lead, Magnesium, Zinc Alloys	7	>	7	7	>	^	7	7
	Nickel Alloys	7	>	>	,	×	7	>	>
	Titanium Alloys	×	7	×	>	7	>	7	,

Figure 4.1b: Polymers and Foams

	ı			
Composite Forming	×	×	7	×
Polymer Casting	×	×	>	×
Rotational gnibluoM	>	>	>	>
Compression Moulding	>	>	>	×
wola Moulding	×	>	×	×
Injection Moulding	×	7	×	>
Machining	>	7	×	7
Polymers	Elastomers	Thermoplastics	Thermosets	Polymer Foams

Notes on other materials:

Ceramics are all processed by powder methods, and Glasses are also moulded. Both are difficult to machine.

Polymer Composites are shaped by dedicated forming techniques, and are difficult to machine.

Natural Materials can only be machined, though some woods are also hot formed.

Figure 4.2: Process attribute chart for shaping processes: mass range (kg)

Figure 4.3: Process attribute chart for shaping processes: section thickness (m)

IV.4 SURFACE ROUGHNESS

Figure 4.4: Process attribute chart for shaping processes: surface roughness (µm)

IV.5 DIMENSIONAL TOLERANCE

Figure 4.5: Process attribute chart for shaping processes: dimensional tolerance (mm)

IV.6 ECONOMIC BATCH SIZE

Figure 4.6: Process attribute chart for shaping processes: economic batch size

V. CLASSIFICATION AND APPLICATIONS OF ENGINEERING MATERIALS

V.1 METALS: FERROUS ALLOYS, NON-FERROUS ALLOYS

Metals		Applications
Ferrous	Cast Irons	Automotive parts, engine blocks, machine tool structural parts, lathe beds
	High Carbon Steels	Cutting tools, springs, bearings, cranks, shafts, railway track
	Medium Carbon Steels	General mechanical engineering (tools, bearings, gears, shafts, bearings)
	Low Carbon Steels	Steel structures ("mild steel") – bridges, oil rigs, ships; reinforcement for concrete; automotive parts, car body panels; galvanised sheet; packaging (cans, drums)
	Low Alloy Steels	Springs, tools, ball bearings, automotive parts (gears connecting rods etc)
	Stainless Steels	Transport, chemical and food processing plant, nuclear plant, domestic ware (cutlery, washing machines, stoves), surgical implements, pipes, pressure vessels, liquid gas containers
Non-ferrous	Aluminium Alloys	
	Casting Alloys	Automotive parts (cylinder blocks), domestic appliances (irons)
	Non-heat-treatable Alloys	Electrical conductors, heat exchangers, foil, tubes, saucepans, beverage cans, lightweight ships, architectural panels
	Heat-treatable Alloys	Aerospace engineering, automotive bodies and panels, lightweight structures and ships
	Copper Alloys	Electrical conductors and wire, electronic circuit boards, heat exchangers, boilers, cookware, coinage, sculptures
	Lead Alloys	Roof and wall cladding, solder, X-ray shielding, battery electrodes
	Magnesium Alloys	Automotive castings, wheels, general lightweight castings for transport, nuclear fuel containers; principal alloying addition to Aluminium Alloys
	Nickel Alloys	Gas turbines and jet engines, thermocouples, coinage; alloying addition to austenitic stainless steels
	Titanium Alloys	Aircraft turbine blades; general structural aerospace applications; biomedical implants.
	Zinc Alloys	Die castings (automotive, domestic appliances, toys, handles); coating on galvanised steel

V.2 POLYMERS AND FOAMS

Polymers		Abbreviation	Applications
Elastomer	Butyl Rubber		Tyres, seals, anti-vibration mountings, electrical insulation, tubing
	Ethylene-vinyl-acetate	EVA	Bags, films, packaging, gloves, insulation, running shoes
	Isoprene	≅	Tyres, inner tubes, insulation, tubing, shoes
	Natural Rubber	NR	Gloves, tyres, electrical insulation, tubing
	Polychloroprene (Neoprene)	CR	Wetsuits, O-rings and seals, footware
	Polyurethane Elastomers	el-PU	Packaging, hoses, adhesives, fabric coating
	Silicone Elastomers		Electrical insulation, electronic encapsulation, medical implants
Thermoplastic	Acrylonitrile butadiene styrene	ABS	Communication appliances, automotive interiors, luggage, toys, boats
	Cellulose Polymers	CA	Tool and cutlery handles, decorative trim, pens
	lonomer	_	Packaging, golf balls, blister packs, bottles
	Polyamides (Nylons)	PA	Gears, bearings; plumbing, packaging, bottles, fabrics, textiles, ropes
	Polycarbonate	PC	Safety goggles, shields, helmets; light fittings, medical components
	Polyetheretherketone	PEEK	Electrical connectors, racing car parts, fibre composites
	Polyethylene	PE	Packaging, bags, squeeze tubes, toys, artificial joints
	Polyethylene terephthalate	PET	Blow moulded bottles, film, audio/video tape, sails
	Polymethyl methacrylate (Acrylic)	PMMA	Aircraft windows, lenses, reflectors, lights, compact discs
	Polyoxymethylene (Acetal)	POM	Zips, domestic and appliance parts, handles
	Polypropylene	PP	Ropes, garden furniture, pipes, kettles, electrical insulation, astroturf
	Polystyrene	PS	Toys, packaging, cutlery, audio cassette/CD cases
	Polyurethane Thermoplastics	tp-PU	Cushioning, seating, shoe soles, hoses, car bumpers, insulation
	Polyvinylchloride	PVC	Pipes, gutters, window frames, packaging
	Polytetrafluoroethylene (Teflon)	PTFE	Non-stick coatings, bearings, skis, electrical insulation, tape
Thermoset	Epoxies		Adhesives, fibre composites, electronic encapsulation
	Phenolics		Electrical plugs, sockets, cookware, handles, adhesives
	Polyester		Furniture, boats, sports goods
Polymer Foams	Flexible Polymer Foam		Packaging, buoyancy, cushioning, sponges, sleeping mats
	Rigid Polymer Foam		Thermal insulation, sandwich panels, packaging, buoyancy

V.3 COMPOSITES, CERAMICS, GLASSES AND NATURAL MATERIALS

Composites		Applications
Metal	Aluminium/Silicon Carbide	Automotive parts, sports goods
Polymer	CFRP	Lightweight structural parts (aerospace, bike frames, sports goods, boat hulls and oars, springs)
	GFRP	Boat hulls, automotive parts, chemical plant
Ceramics		
Glasses	Borosilicate Glass	Ovenware, laboratory ware, headlights
	Glass Ceramic	Cookware, lasers, telescope mirrors
	Silica Glass	High performance windows, crucibles, high temperature applications
	Soda-Lime Glass	Windows, bottles, tubing, light bulbs, pottery glazes
Porous	Brick	Buildings
	Concrete	General civil engineering construction
	Stone	Buildings, architecture, sculpture
Technical	Alumina	Cutting tools, spark plugs, microcircuit substrates, valves
	Aluminium Nitride	Microcircuit substrates and heatsinks
	Boron Carbide	Lightweight armour, nozzles, dies, precision tool parts
	Silicon	Microcircuits, semiconductors, precision instruments, IR windows, MEMS
	Silicon Carbide	High temperature equipment, abrasive polishing grits, bearings, armour
	Silicon Nitride	Bearings, cutting tools, dies, engine parts
	Tungsten Carbide	Cutting tools, drills, abrasives
Natural		
	Bamboo	Building, scaffolding, paper, ropes, baskets, furniture
	Cork	Corks and bungs, seals, floats, packaging, flooring
	Leather	Shoes, clothing, bags, drive-belts
	Wood	Construction, flooring, doors, furniture, packaging, sports goods

VI. EQUILIBRIUM (PHASE) DIAGRAMS

Figure 6.1 Copper – Nickel equilibrium diagram

Figure 6.2 Lead – Tin equilibrium diagram

Figure 6.3 Iron – Carbon equilibrium diagram

Figure 6.4 Aluminium – Copper equilibrium diagram

Figure 6.5 Aluminium – Silicon equilibrium diagram

Figure 6.6 Copper – Zinc equilibrium diagram

Figure 6.7 Copper – Tin equilibrium diagram

Figure 6.8 Titanium – Aluminium equilibrium diagram

Figure 6.9 Silica – Alumina equilibrium diagram

VII. HEAT TREATMENT OF STEELS

Figure 7.1 Isothermal transformation diagram for 1% nickel steel, BS503M40 (En12)

Figure 7.2 Jominy end quench curves for 1% nickel steel, BS503M40 (En12)

Figure 7.3 Isothermal transformation diagram for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

Figure 7.2 Jominy end quench curves for 1.5% Ni – Cr – Mo steel, BS817M40 (En24)

VIII. PHYSICAL PROPERTIES OF SELECTED ELEMENTS

ATOMIC PROPERTIES OF SELECTED ELEMENTS

Element	Symbol	Atomic Number	Relative Atomic	Melting Point	Crystal structure 2	Lattice constants	³ (at 20°C)
		rvamber	Weight 1	(°C)	(at 20°C)	a, (b) (Å)	c (Å)
Aluminium	Al	13	26.982	660	f.c.c.	4.0496	
Beryllium	Ве	4	9.012	1280	h.c.p.	2.2856	3.5843
Boron	В	5	10.811	2300	t.	8.73	5.03
Carbon	С	6	12.011	3500	hex.	2.4612	6.7079
Chlorine	CI	17	35.453	- 101	_	_	
Chromium	Cr	24	51.996	1900	b.c.c.	2.8850	
Copper	Cu	29	63.54	1083	f.c.c.	2.5053	
Germanium	Ge	32	72.59	958	d.	5.6575	
Gold	Au	79	196.967	1063	f.c.c.	4.0786	
Hydrogen	Н	1	1.008	- 259	_	_	
Iron	Fe	26	55.847	1534	b.c.c.	2.8663	
Lead	Pb	82	207.19	327	f.c.c.	4.9505	
Magnesium	Mg	12	24.312	650	h.c.p.	3.2094	5.2103
Manganese	Mn	25	54.938	1250	cub.	8.912	
Molybdenum	Мо	42	95.94	2620	b.c.c.	3.1468	
Nickel	Ni	28	58.71	1453	f.c.c.	3.5241	
Niobium	Nb	41	92.906	2420	b.c.c.	3.3007	
Nitrogen	N	7	14.007	- 210	_	_	
Oxygen	0	8	15.999	– 219	_	_	
Phosphorus	Р	15	30.974	44	cub.	7.17 (at – 35°C)	
Silicon	Si	14	28.086	1414	d.	5.4305	
Silver	Ag	47	107.870	961	f.c.c.	4.0862	
Sulphur	S	16	32.064	119	f.c.orth.	10.437, (12.845)	24.369
Tin	Sn	50	118.69	232	b.c.t.	5.8313	3.1812
Titanium	Ti	22	47.90	1670	h.c.p.	2.9504	4.6833
Tungsten	W	74	183.85	3380	b.c.c.	3.1652	
Vanadium	V	23	50.942	1920	b.c.c.	3.0282	
Zinc	Zn	30	65.37	419	h.c.p.	2.6649	4.9468
Zirconium	Zr	40	91.22	1850	h.c.p.	3.2312	5.1476

¹ The values of atomic weight are those in the Report of the International Commission on Atomic Weights (1961). The unit is $1/12^{th}$ of the mass of an atom of C^{12} .

f.c.c. = face-centred cubic; h.c.p. = hexagonal close-packed; b.c.c. = body-centred cubic; t. = tetragonal; hex. = hexagonal; d. = diamond structure; cub. = cubic; f.c.orth. = face-centred orthorhombic; b.c.t. = body-centred tetragonal.

³ Lattice constants are in Ångström units (1 Å = 10^{-10} m)

OXIDATION PROPERTIES OF SELECTED ELEMENTS

Standard electrode potentials (300K, molar solutions)

(at 273K)
of oxidation
Free energy of

Normal hydrogen scale (volts)	- 2.36	- 1.66	- 0.76	- 0.74	- 0.44	- 0.25	- 0.14	- 0.13	0.00	+ 0.15	+ 0.34	+ 0.40	+ 0.77	+ 0.80	+ 1.23	+ 1.42
Oxidation reaction for solution of the metal	$Mg \rightarrow Mg^{2+} + 2e^{-}$	$AI \rightarrow AI^{3+} + 3e^-$	$Zn \rightarrow Zn^{2+} + 2e^-$	$Cr \rightarrow Cr^{3+} + 3e^{-}$	$Fe \rightarrow Fe^{2+} + 2e^{-}$	$Ni \rightarrow Ni^{2+} + 2e^-$	$\operatorname{Sn} o \operatorname{Sn}^{2+} + 2e^-$	$Pb \rightarrow Pb^{2+} + 2e^{-}$	$H_2 \rightarrow 2H^+ + 2e^-$	$\operatorname{Sn}^{2+} o \operatorname{Sn}^{4+} + 2e^-$	$Cu \rightarrow Cu^{2+} + 2e^{-}$	$O_2 + 2H_2O + 4e^- \rightarrow 4(OH)^-$	$Fe^{2^+} o Fe^{3^+} + e^-$	$Ag \rightarrow Ag^{+} + e^{-}$	$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	Au → Au³+ + 3e⁻

Free energy (kJ/mol O ₂)	- 1182	- 1162	- 1045	-1028	- 848	- 836	- 757	- 701	- 636	- 629	- 580	- 534	- 510	- 508	- 439	- 400	- 389	- 309	- 254	- 200	1 2	+ 80
Oxide	BeO	MgO	AI_2O_3	ZrO_2	OiT	SiO_2	Nb_2O_5	Cr_2O_3	ZnO	$3SiO_2 + 2N_2$	$SiO_2 + CO_2$	MoO_2	WO_3	Fe_3O_4	OiN	I	$\frac{1}{2}$	Pb_3O_4	CnO	I	Ag ₂ O	Au ₂ O ₃
Material	Beryllium	Magnesium	Aluminium	Zirconium	Titanium	Silicon	Niobium	Chromium	Zinc	Silicon nitride	Silicon carbide	Molybdenum	Tungsten	Iron	Nickel	Most polymers	Diamond, graphite	Lead	Copper	GFRP	Silver	Gold

CONVERSION OF UNITS – STRESS, PRESSURE AND ELASTIC MODULUS *

	MN/m ² (or MPa)	lb/in ²	kgf/mm ²	bar
MN/m ² (or MPa)	1	1.45 x 10 ²	0.102	10
lb/in ²	6.89 x 10 ⁻³	1	7.03 x 10 ⁻⁴	6.89 x 10 ⁻²
kgf/mm ²	9.81	1.42 x 10 ³	1	98.1
bar	0.10	14.48	1.02 x 10 ⁻²	1

CONVERSION OF UNITS – ENERGY*

	J	cal	eV	ft lbf
J	1	0.239	6.24 x 10 ¹⁸	0.738
cal	4.19	1	2.61 x 10 ¹⁹	3.09
eV	1.60 x 10 ⁻¹⁹	3.83 x 10 ⁻²⁰	1	1.18 x 10 ⁻¹⁹
ft lbf	1.36	0.324	8.46 x 10 ¹⁸	1

CONVERSION OF UNITS - POWER

	kW (kJ/s)	hp	ft lbf/s
kW (kJ/s)	1	1.34	7.38 x 10 ²
hp	0.746	1	5.50 x 10 ²
ft lbf/s	1.36 x 10 ⁻³	1.82 x 10 ⁻³	1

^{*} To convert row unit to column unit, multiply by the number at the column-row intersection, thus 1 MN/m² = 10 bar