Approved For Release STAT 2009/08/19 :

CIA-RDP88-00904R000100120

Approved For Release 2009/08/19 :

CIA-RDP88-00904R000100120

Вторая Мєждународная конференция Организации Объединенных Наций по применению атомной энергии в мирных целях

A/CONF/15/P/2193 USSR ORIGINAL: RUSSIAN

Не подлежит оглашению до официального сообщения на Конференции

25 YEAR RE-REVIEW

ДВОЙНЫЕ ДИАГРАММЫ СОСТОЯНИЯ: $UO_2 - Re_2O_3$, $UO_2 - BeO$, $UO_2 - M_2O$

П.П.Будников, С.Г. Тресвятский, В.И.Кушаковский.

Работа по изучению взаимодействия окислов урана с другими окислами проводилась с 1952 г. по 1956 г. За это время некоторые авторы опубликовали результаты исследования упомянутых выше систем. Однако отличие наших данных от данных, огубликованных в литерату - ре, и различные точки эрения разных авторов на характер взаимодействия в системе ио₂ - м₉ о явились причиной появления настоящето доклада.

МЕТОДИКА ИССЛЕДОВАНИЯ И ИСХОДНЫЕ МАТЕРИАЛЫ.

Для исследования систем были применены следующие методы:

- І. метод отжига и закалки;
- 2. метод высокотемпературного термического анализа;
- З. метод деформации конусов;
- 4. метод плавления образцов или порошков смесей в молибденовых или вольфрамовых тиглях.

Отжиг и закалка образцов производилась в печи с угольной нагревательной трубой (I).

Для создания внутри печи инертной газової среди, через печь пропускался аргон, осущенный над К \mathbf{OH}) и P_2O_5 Имеющийся в аргоне кислород поглощался медными стружками, нагретыми до 600° . Образцы в печи подвешивали на молибденовых проволоках в молибденовых тиг - лях. Температуру измеряли оптическим пирометром с исчезающей нитью, проградуированным в условиях опытов по температурам плавления неко-

торых высокоогнеупорных соединений и эвтектик ($c_a A c_2 O_4$, $M_{g_2} S i O_4$, $A c_2 O_3$, эвтектики в системах $B e O - Th O_2$ $L C a O - Th O_2$, B e O, C a O, M O, $Z z O_2$). Закалка образцов происходила при сбрасывании их в нижнюю часть печи, охлаждаемую снаружи водой.

Фазовый анализ закаленных образцов производили путем снятия порошковых рентгенограмм на отфильтрованном 'Сы -излучении в камерах диаметром 57,86 или II4 мм и просмотра шлифов в отраженном свете. Состав образцов после термической обработки определяли химическим анализом.

Высокотемпературный термический анализ производили по методике, разработанной нами ранее (2). Для измерения температур использовали вольфрамо-молибденовые термопары, применение которых позволяло производить термический анализ до 2200°. Термопары гра дуировали в условиях опытов по температурам плавления высокоогне упорных соединений.

Определение температур плавления методом деформации конусов производили по методике, описанной нами ранее (3).

Метод плавления в тиглях заключался в визуальном определении момента расплавления вещества в тигле и в сценке степени расплавления по характеру мениска расплава после охлаждения тигля. Кроме того, определение температур солидуса и ликвидуса производилось путем сравнения микроструктур или внешнего вида образцов, закаленных с различных температур.

Состав эвтектик определяли жимическим анализом медленно закристаллизованных сплавов, микроструктура которых отвечала структуре чистой эвтектики.

В качестве исходных материалов применяли двускись урана и окислы алюминия, бериллия и магния высокой степени чистоты. Содержание в них примесей по данным спектрального анализа приво - дится в табл. I.

Смеси окислов составлялись через 5-10 мол.%, а в отдельных случаях через I-2 мол.%. Смещение производилось совместным растиранием окислов в ступке.

Результаты спектрального анализа окислов

		- 3 -			
Cr	не опр.		<10 ₋₃	E_0I	4_0I
Mn	нет	3.10-3	<10_3	3.10-4	₄ _0I
°2	нет	<10-4 3.10 3.10 ⁻³	1-01)	не	10-4 10-4
ž	нет	-3 3.10	le T	нет	IO-4
Fe	>10-2	4-0I>	4_0I	5.IO	
i.	10-2	не опр.	не опр.	не опр.	
Si	>10-2 10-2 >10-2	I-OI	не опр.	3.104 10-3 <3.10-3 _{He} onp.	
АС		I0_5	не опр.	10-3	
Са	нет	не опр.	не опр.	3.IO4	10_4
Mg	10-2	I0-2		I_OI	
Be	не опр.		4_0I>	10_4	T0_4
Να	IO_I	<10 ⁻²	нет	I0-2	IO_3
Элемент.	AE, 03	BeO	MgO	4002	Чувств. метода

- 4 -

Результаты рентгенографического исследования образцов из смесей двуокиси урана с окисью алюминия, закаленных с различных темпе-рагур, приведены в таблице 2. 402 - AC. 03 CMCTELIA

Таблица 2.

Результаты исследования образцов из двуониси урана с окисью алюминия.

термической обработки образцов Результаты рентгено-	вания		IO	u0, a=5, 457 EX	uo, ,a=5, 457 KX	υ σ	$\alpha = 55^{\circ}2I$ $u_{O_2}, a=5, 458$ v_{X} $a_{c_2}, a_3 =5_{10}II$ v_{X} ,	$(x=55^{\circ}28)$ uo_{2} , $a=5$, 458 кХ uo_{2} несколько линий $ae_{2}o_{3}$, совпадающих с линия- uu $ae_{2}o_{3}$ на эталонной рентгеногранке.
образцов	условия охлажде- ния		67	закален	="		_11	=
ботки	сре-		ω	вргон	=		=	=
кой обра	время выдерж Ки		2	ћ9	30 14		TO d	30 м
термичеся	Telle Typa 0	b	9	1700	1900		1400	1920
Условия	темпера- тура пред- варитель-	ного обжи- га о _С	5	1600			Расплавлен.	
воре	по хим. анализу	AC203	4	19				
oбра:	ана	AC_03 UO_	က	19				1
Состав образцов пол. %	Эвой	AC_03	2	သ	ပ္ပ		80	65
00	HEXTOBON	uo2	Н	50	20	-	20	35

Прод. табл.2.

	uo ₂₃ a=5,459 кX, несколько линий	ио ₃ а=5,458 кХ,одна линия ястоз , совпадающая с линией на эталон- ной рентгенограм- ме.	u02,a=5,458 KX	uo ₂ ,a=5,458 KX
1 6 1	охл.с	: ! !	Закален.	=
180	Baryym, IO mm	ТОМ аргон	=	 -
- 2	30M	IOM	ф†	34
9	1900	2000	1600	1800
5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Расплав- лен.	
4	62		:	22
m	38	en e		78
2	09	20	40	50
	0+	20	09	08

Из данных, приведенных в табл.2, следует, что в системе ω_{o_2} – ne_2o_3 в интервале температур I400-I900 существуют в равновесии две фазы- двуокись урана и окись алюминия (корунд). Периоды решеток окислов не изменяются с изменением состава и температуры отжига образцов, что указывает на отсутствие в системе новых химических соединений и твердых растворов.

При изучении макроструктуры плавленых образцов, в некоторых сплавах двускиси урана с окисью алюминия было обнаружено наличие двух, а иногда и трех горизонтальных слоев. Изучение мик роструктуры этих слоев показало, что при плавлении или кристал лизации сплавов происходит ликвация вследствие различия удельных весов корунда (4 г/см³), двуокиси урана (II г/см³) и эвтектики (7,4 г/см3 - по расчету). Было установлено, что в сплавах, содержащих избыток окиси алюминия против эвтектического, происходит всплывание кристаллов корунда, а в сплавах, содержащих избыток окиси урана, опускание на дно тигля кристаллов двускиси урана. См.рис. Г и 2. Ликвация происходит наиболее интенсивно при плав лении смесей и слабее - при затвердевании расплавов. Исследование микроструктуры сплавов двускиси урана с окисью алюминия подтвердило сделанный вывод о том, что система $uo_z - ne_z o_z$ является простой эвтектической системой. Эвтектика содержит и 26 мол. % ио $_{2}$. Температура плавления эв -74 мол. % не, о, тектики - $1900 \pm 10^{\circ}$. Это также было подтверждено высокотемпе ратурным термическим анализом. На всех кривых нагревания и ох лаждения, снятых со смесей, содержащих от II до 96 мол. % не $_2$ o_3 , наблюдается эффект кристаллизации или плавления эвтектики при температуре $1900^{\circ} \pm 10^{\circ}$.

В результате проведенных исследований была построена диаграмма состояния $uo_2 - ae_2o_3$, представленная на рис a.

Предлагаемая нами диаграмма состояния системы $uo_2 - sc_2o_3$ отличается от ранее опубликованной Ламбертсоном и Мюллером (4 рис. Зб) отсутствием области расслаивания в жидком состоянии и , в связи с этим, иным положением линий ликвидуса. Причина ошибочных выводов Ламбертсона и Мюллера заключается в том, что они

приняли осаждение кристаллов со, в сплавах со, наши данные об отсутствии в изученной системе новых химических соединений и твердых растворов совпадают с результатами Ламбертсона и Мюллера (4) и Ланга с сотрудниками (5). Результаты исследования Ланга с сотрудниками (6) по определению температур солидуса и ликвидуса смесей, прилегающих к эвтектической, совпадают с нашими результата — ми.

CUCTEMA UO2 - BeO

Результаты рентгенографического исследования фазового состава смесей двускиси урана с окисью бериллия после различной термической обработки приведены в таблице 3.

Из данных, приведенных в табл. З, следует, что в системе uo_2 — Вео в интервале температур $I400-2200^{\circ}$ находятся в равновесии две фазы — двуокись урана и окись бериллия. Периоды решеток двуокиси урана и окиси бериллия не изменяются с изменением состава и температуры, что указывает на отсутствие в системе uo_2 — вео новых химических соединений и твердых растворов. При изучении микроструктур сплавов была обнаружена ликвация по удельному весу, подобная вышеописанной ликвации в сплавах uo_2 — ac_2o_3 . Однако ликвация в системе uo_2 — beo выражена слабее, что объясняется, повидимому, большей вязкостью расплава эвтектики в этой системе.

На основании рентгенографических, микроскопических и термо - графических исследований было установлено, что в системе имеет - ся эвтектика между ω_{o_2} и ϵ_{eo} , содержащая 68 мол % окиси бериллия и 32 мол. % двуокиси урана. Температура плавления эвтектики 2170 \pm 20°. Построенная на основании этих данных диаграмма состояния системы двуокись урана — окись бериллия представлена на рис. 4а.

Наши результаты совпадают с результатами Ланга с сотрудни - ками (5), которые не обнаружили образования новых химических со - единений и твердых растворов в системе ωo_z - εo_z в интервале 800— 1800° . Однако состав эвтектики значительно отличается от состава (63 мол. εo_z Вео), найденного Лангом с сотрудниками (6).

Результаты исследования образцов из смесей

Таблица 3.

UO2 C BeO

бостав	B. MOJ	ол. %		Jene Jene	Условия термической обработки	еской ос	1 — — — — — — — — — — — — — — — — — — —	Peavilthank nehmeno-
Шихтовой	вой	MN XMN	Io xim.		образисв			графического анализа
		21.02	110 y	Terrinana	Rhowe		VOTOTION	
BeO	2011	BeO	201	Do OC	Быдерж- Ки	Среда	• Словин Охлавде- ния	
H	2	က	77	5	. 9	7	8	
100	0			Плавле – ный		аргон	OXJI. C IIE UBB	Pemerka 8.0 ,a=2,698KX c=4, 37 KX, c/a=I,623
7,66	0,3			1700	2 प	Baxyyw 10 mm Pm. cm.	Закален	Решетка ио. и решетка в.о.;а=2,694 кХ, с =4,372 кХ, фа=I,623
8	IO	93	2	I800	2 u	_".	=	uo,; a=5,458 KX, BeO, a=2,693 KX, c=4,37 KX, c/a =1,623
8	10	16	6	1700	2 ч	аргон	=	uq,a=5,458 KX; II BeO
08	20	18	19	2200	IO M	<u> </u>	= 1	uo2, a=5,459 KX
-								

2834-54

Прод.табл.№ 3

6	40, a=5,458 ICX	uo, ,a=5,458 KX	402, a=5,457 KX	ио, а=5,458 кХ	
œ	закален.		=	=	
7	аргон	='	=	=	
9	FOI	ЬI	2 ч	2 ч	
5	1400	2000	1700	1700	
7				79	
3				21	
2	20	30	50	<u></u>	
j=4	80	70	50	20	

CUCTEMA UO2 - MgO

Результаты, полученные нами при рентгенографическом исследовании образцов из двуокиси урана и окиси магния, закаленных с различных температур, приведены в таблице 4.

Из данных, приведенных в табл. 4, следует, что период решетки двускиси урана зависит как от температуры закалки образцов,
так и от содержания в образцах окиси магния. (рис. 5). Для выяснения составов образующихся твердых растворов свободную окись магния из сплавов выщелачивали 3-5М раствором хлористого аммония и
в нерастворимом остатке определяли содержание урана и магния, с
одновременным рентгенографическим определением периода решетки
твердого раствора. Полученная зависимость периода решетки твердого раствора от состава представлена на рис. 6.

То обстоятельство, что растворимость окиси магния в двуокиси урана зависит от избытка окиси магния, указывает, что систе — ма $uo_2 - m_go$ не является истинной конденсированной систе — мой, а является каким—то разрезом тройной системы $uo_2 - m_go$ —о, причем источником кислорода, повидимому, является сама окись магния вследствие ее термической диссоциации при нагревании. Поэтому представляло интерес изучение системы $uo_2 - m_go$ в газовой среде, содержащей кислород, например, в среде воздуха. Повышение растворимости окиси магния в двуокиси урана в этом случае явилось бы подтверждением высказанных точек зрения.

Такие исследования были проведены. Образцы из смесей дву - окиси урана с окисью магния до температуры 1700 нагревали в среде воздуха в криптоловой печи при свободной циркуляции возду-ха.Плавление образцов производилось в вольтовой дуге по методике, описанной нами ранее (7).

Результаты рентгенографических и микроструктурных исследований образцов, нагретых в среде воздуха, приведены в таблице 5.

Из данных, приведенных в табл. 5, следует, что двуокись урана с окисью магния образует в среде воздуха ограниченную область твердых растворов с решеткой двуокиси урана и содержанием окиси магния до 37 мол. % (при т-рах I600-I750°).Зависимость перио -

Таблица 4 табультаты рентренографического исследования смесей двуокиси урана с окисью магния в аргоне.

	м рентгеногра - анализа		G _{Mg} O, KX		700	4,07 ,	4,204	4,205	i; 204	4,205	4,204	:	4.203)				
	Результаты Фического		Quoz, KX	σ	7 43))	5,4553	5,455	5,445	5,443	2,44I	5,438	5,437	5,434	5,434	5,44	5,439	
	териической обработки образцов Темпе- Вреия Условия	охлажде-	11411	œ	ОХ Ш. С	печью	закален.	=	=		=	=		0хл. с	IIE4EE	закален.	=	
ķ	скои оора Вреия	выдерж-		7	30 M		т 0т	ъ 9	ъ †	ъ 9	7,5 q	ъ С	IO M	H H	2 ф	30	ъ 9	i
- 1	- Temme-	parypa	د	9	2300	1	1300 1300	1500	I 700	I 200	I 700	5000	2000	5300	2300	2000	5000	
Vortorial	Предвари-	тельный обжиг		5			ΚУ		†° с • ј мли			MIV)08: I	_0I		20081	Baryym. 2,5,447kX	
2	По хип.	वास्त्रामात्रप्र	701	,†		1) 1			(†	77	Ϋ́			0	77		
Cocras Hor %	110	-	- 1	က		0))			Ç	0 L	က္			C	6		
CocTa	MIXTO-	DOM.	MgO UO2	7 2	I 66	90 TO	0 1								90 10			~! -¦
,	E	1	2	1				. 0	, 0	1 (n C	ν (ט רכ)1	م α)	i

Прод.табл.4

TO	2	Слабые ли-	нии окиси	магния.		**************************************	Линий оки-	си магния	1				
6		5,4515	ני ייני	5,449	5,446	5,435	5,454	5,4587	5,446	5.454	5,456	5,453	
8		закален	=	=	07 04	OXII.C	печью	='	охи•с	печью закален.	=	=	
2		ಚಿ	α		2 4	88 88	T d	ф ф	IO M	2 4	H H	IO M	
9		I700	T200	2000	2000	2300	1700	1700	2300	2000	2000	2300	
5													
4			45					92		80			
က			55					54	***************************************	20			
2		45 7	45	45	45	20	20	20	20	80	8	06	
1 -4	Į. L	ζ.	55	55	55	20	30	30	90	20	LO	01	

- I3 -

да решетки твердых растворов от состава приведена на рис. 7.

На основании этих данных была построена ориентировочная диаграмма состояния системы UO2+x- MgO в среде воздуха в температурном интервале I500-2800°. Построенная диаграмма состояния представлена на рис. 8. Очевидно, что, если кислород способствует растворению M_90 в uo_{2+x} , то нагревание твердых растворов, полученных на воздухе, в бескислородной газовой среде должно приводить к их распаду. Это было подтверждено экспериментально путем нагревания образца твердого раствора, содержащего 33 мол. % мдо , при 2000° в среде аргона. Выпадающую из твердого раствора окись магния обнаруживали микроскопически в шлифе в виде округлых зерен, а период решетки твердого раствора при этом увеличивался с 5,27 кX до 5,45I кX, и в твердом растворе сохранялось только около 3 мол. % окиси магния.

На основании приведенных данных можно было предположить, что в идеализированном виде, без учета окисления двускиси урана кислородом окиси магния при температурах выше 1500° , система $uo_2 - Mg^{\circ}$ является простой эвтектической.

Проведенные определения температур ликвидуса и солидуса этой системы подтвердили правильность сделанного предположения. Построенная на основании этих данных идеализированная диаграмма состояния $uo_2 - m_go$ представлена на рис 9.

Необходимо отметить, что и в этой системе наблюдается ликвация с участием твердых фаз, подобная описанной выше для систем $uo_2 - \theta e_2 O_3$ и $uo_2 - BeO$.

Расслаивание жидких фаз, найденное Ламбертсоном и Мюллером (4, рис. I0), нами обнаружено не было. Установленный состав эвтектики (53 мол $\% M_g O$) также значительно отличается от состава эвтектики, приводимого в вышецитированной работе.

Результаты Ланга с сотрудниками (5), которые не обнаружили взаимодействия между uo_2 и mgo в интервале $400-1800^{\circ}$, подтверждают наши выводы об отсутствии растворимости окиси магния в двуокиси урана стехиометрического состава. Согласно Ламбертсону и Мюллеру (4) в системе uo_2-mgo выше 1200° происходит окисление uo_2 до uo_{2+x} кислородом окиси магния, однако свои выводы эти авторы сделали только на основании понижения периода

Таблица

Результаты рентгенографического и микроструктурного анализов образцов, нагретых на воздухе.

Результаты микрострук-	анализа	6					0дна фаза		= <mark>1</mark>	Jrp Masu		две фазы	
Результаты фазо- вого рентгенов- ского анализа		æ	Решетка изов	Решетка ио <u>.</u> a=5,423	Pemerna uo.	а=0,420 Решетка ио. а=5,426	Pemerka uo,	Atlicated No. Pemerka No	Pemerka uo.	Pemerka u_0 ,	есть линии мао Решетка иог,	а=5,254 Решетка м90 а=4,20	
Содержание	•	2	U02,62	W0 _{2,26}	UO2,241	WO _{2,236}	1 - 1 1 1 1						
Время видерж-	ки (мин)	9	09	0+	15	I.5		30	30	OI	0I		'
Темпера- гура	_{(ဝ}	5	I450	I550	1600	1700	! ! ! !			1600			1
M.	MgO	4						20	34	•			
<u>мол. %</u> По хим. анализу	ио²	3				•	1 6 8	80	99		••••••	t - th. e-stades and stay and	
m	Мво	2				-	01	20	33	22	29		- ·
Соста Шихтовой	NO ₂	} }	100	100 I	I00	100	9	08	29	20	က္သ		i

Прод.табл.5.

 						Округлые зерна, сцементирован- ные эвтектикой	Чистая эвтектика, встречаются от-	TENDERS ACHADN- TEN Mgo ORPYTHE SEPHS Mgo ORPYRCH -	16 эвтектикой.
 	Pemerika uo.	а-3,330 Решетка ио., а=5,266	Pemerra uo, a=5,26	есть линии репетки м ₉ о	Решетка ио, , а=5,455	Решетка ио, , 01 а=5,27 сп	Решетка <i>ио</i> 2, ч ₁ вс	1	с лин лями пре- дыдущей рентге- нограммы Есть линии м90 линии м90
1 2	:								<u> </u>
1 9		12	12		без выд.	Н	Н	H	
1 5	 	I700			2800± I00±	1900 <u>+</u> 50	1750 <u>±</u> 50	1850±30	
1 4	 :							· · · · · · · · · · · · · · · · · · ·	
 က	Ī								
 		33	29			33	20	29	
 	8	67	සි		E00	29	20	ස	

решетки двуокиси урана; твердые растворы авторы не пытались обнаружить никакими другими методами.

Результаты наших исследований по изучению взаимодействия UO2 c MgO в твердых фазах частично совпадают с результа тами Андерсона и Джонсона (8). Как правило, совпадают резуль таты тех опытов, которые Андерсон и Джонсон (8) проводили в тиглях из тантала при высоких температурах, и не совпадают ре зультаты опытов, проведенных в тиглях из окиси магния при низ ких температурах (до 1700°). По их данным максимальная раствов ио₂ наблюдается при IIOO. Однако для опытов римость при низких температурах Андерсон и Джонсон (8) использовали смеси, приготовленные совместным осаждением гидроокисей (M_g^{+2} , U_g^{+1}) и, как указывают сами авторы, частично окисленные. Окисленный осадок являлся источником кислорода, который способствовал растворению окиси магния в двуокиси урана при низких темпе parypax.

J M T E P A T Y P A

- I. Löwenstein E., Elektrische Hochtemperaturöfen bis 3300°C, Z. f. anorg. und allg. Chem., I54, I73-I77, (I926)
- 2. Будников П.П. и Тресвятский С.Г., <u>Методика высокотем</u>пературного термического анализа.
 Огнеупоры, (№ 4), I66-I73, (I955)
- 3. Будников П.П. и Тресвятский С.Г., <u>Диаграмма плавкости системы СаQ.-СаF.</u>,
 ДАН СССР, 89, (№3), 479-482, (1953)
- 4. Lambertson W.A. and Mueller M.H., <u>Uranium Oxide Phase</u>

 <u>Equilibrium Systems: 1, U02-A1203 -, 11, U02-MgO</u>. J.

 Am.Cer.Soc., 36, (Nº IO), 329-334, (1953)
- 5. Lang S.M., Fillmore C.L., Roth R.S., N.B.S. Interim Report to AEC, 1952. / 639mo us "An Annotated Bibliog-raphy of selected References on the Solid-State Reactions of the Uranium Oxides" by Lang S.M. Washington/.
- 6. Lang S.M., Knudsen F.P., Fillmore C.L. and Roth R.S.,
 High-temperature Reaction of Uranium dioxide with various Metal Oxides, N.B.S.C. 568, Washington, 1956.
- 7. Будников П.П. и Тресвятский С.Г. Методика определения температуры ликвидуса и солидуса при изучении диаграмм плавкости и диаграмм состояния высокоогнеупорных окислов. Сб. Физико- химические основы керамики, Промстройиздат, М-1956.
- 8. Anderson J.S, and Johnson K.D.B., The Oxides of Uranium.Part 111. The System UO2-MgO-O.

 J.Chem.Soc., 1731-1737, /1953/.

Рис.І. Полированные вертикальные разрезы сплавов двускиси урана с окисью алю-миния х 2.

І. 78 мол. \$\mathref{A}\mathref{Q}_2\mathref{Q}_3\$, температура 1950°
2. 71 " " 1910°
3. 65 " " 2050°
4. 65 " " 2070°
5. 60 " " 1900°
6. 50 " " 2000°
7. 40 " " 2300°

25-4686

Рис. 2. Микроструктура слитка на границе двух слоев. Светлые округлые зерна и ден-дриты — двуокись урана, окруженная эвтектикой. 50 мол. % Al_2O_5 , т-ра 2000^0 , х 200

Approved For Release 2009/08/19 : CIA-RDP88-00904R000100120024-2

2834-57

Рис.5. Зависимость С ио, от состава и температуры отжига образцов

2834-58

30x 2834