1 Lecture 1

2 Lecture 2

Theorem 2.1 (Projection theorem). Let $C \subseteq \mathbb{R}^n$ be a closed convex set. For all points $y \in \mathbb{R}^n$ there is a unique $p_C(y) \in C$ so that $||y - x|| \ge ||y - p_C(y)||$ for all $x \in C$.

Proof. This is a special case of Hilbert's projection theorem, which has an elementary proof on Wikipedia. \Box

Proposition 2.2 (Obtuse angle criterion). Let $C \subseteq \mathbb{R}^n$ be a closed convex set and $y \in \mathbb{R}^n$. Then, for all $x \in C$,

$$\langle y - p_C(y), x - p_C(y) \rangle \le 0.$$

Proof. Let $\lambda \in (0,1)$. As x and $p_C(y)$ are in C, so is any convex combination. By definition of $p_C(y)$ we must have

$$||p_C(y) - y||^2 \le ||\lambda x + (1 - \lambda)p_C(y) - y||^2$$

$$= ||\lambda(x - p_C(y)) - (y - p_C(y))||^2$$

$$= \lambda^2 ||x - p_C(y)||^2 - 2\lambda \langle x - p_C(y), y - p_C(y) \rangle + ||p_C(y) - y||^2.$$

It follows by cancelling and rearranging that

$$\langle y - p_C(y), x - p_C(y) \rangle \le \frac{\lambda}{2} ||x - p_C(y)||^2.$$

As λ can be made arbitrarily small, we are done.

Next we prove the Separating hyperplane theorem. First, a lemma.

Lemma 2.3. Let $C \subseteq \mathbb{R}^n$ be a convex set. The function $y \mapsto p_C(y)$ is continuous.

Proof. Let $\varepsilon > 0$ be arbitrary. Suppose $y, y' \in \mathbb{R}^n$ are such that $||y - y'|| \le \delta$ where $\delta := \varepsilon$. Then, by the Obtuse angle criterion,

$$0 \ge \langle y - p_C(y), p_C(y') - p_C(y) \rangle$$

= $\langle (y - p_C(y')) + (p_C(y') - p_C(y)), p_C(y') - p_C(y) \rangle$
= $\langle y - p_C(y'), p_C(y') - p_C(y) \rangle + ||p_C(y') - p_C(y)||^2$.

It follows that

$$\begin{aligned} ||p_{C}(y') - p_{C}(y)||^{2} &\leq \langle p_{C}(y') - y, p_{C}(y') - p_{C}(y) \rangle \\ &= \langle (p_{C}(y') - y') + (y' - y), p_{C}(y') - p_{C}(y) \rangle \\ &= \langle p_{C}(y') - y', p_{C}(y') - p_{C}(y) \rangle + \langle y' - y, p_{C}(y') - p_{C}(y) \rangle \\ &\leq \langle y' - y, p_{C}(y') - p_{C}(y) \rangle, \end{aligned}$$

where we have used the Obtuse angle criterion in the last inequality. By the Cauchy-Schwarz inequality, we finally obtain

$$||p_C(y') - p_C(y)||^2 \le ||y' - y|| \cdot ||p_C(y') - p_C(y)||,$$

from which it follows that $||p_C(y') - p_C(y)|| \le \varepsilon$ as desired.

Theorem 2.4 (Separating hyperplane theorem). Let $C \subseteq \mathbb{R}^n$ be a convex set and let $y \notin C$. Then there is $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$ such that for all $x \in C$ we have

$$\langle a, x \rangle \leq b$$
 and $\langle a, y \rangle \geq b$.

Proof. The proof for C closed was given in lectures. If C is not closed, take the closure \bar{C} of C and obtain a and b as required. The only case where this does not work is if $y \in \partial C$, so we assume $y \in \partial C$.

Recall that $p \in \partial C$ if and only if every neighbourhood of p contains a point in C and a point not in C.