

Profa. Cristiane Paim Semestre 2018-1

Gráfico de Contorno das Raízes

Em muitos problemas é necessário conhecer o efeito da variação de mais de um parâmetro sobre a localização dos polos de malha fechada de um sistema.

O diagrama do Lugar das Raízes quando mais de um parâmetro varia chama-se Contorno das Raízes.

É construído traçando-se o Lugar das Raízes considerando um parâmetro fixo e o outro variando, e vice-versa.

Seja o sistema:

Traçar o contorno das Raízes para os parâmetros K_1 e K_2 variando de 0 a $+\infty$.

Para o sistema, a FTMF é dada por:

$$T(s) = \frac{K_1}{s(s + K_2) + K_1}$$

Portanto,

$$\Delta(s) = s^2 + K_2 s + K_1$$

1ª parte: Fixar K_2 variar $0 < K_1 < +\infty$

$$K_2 \equiv 0 \quad \rightarrow \quad \Delta(s) = s^2 + K_1 = 0$$

Portanto, o Lugar das Raízes será traçado para

$$1 + K_1 \frac{1}{s^2} = 0$$

Lugar das Raízes para K₁ > 0

Eixo real: ∄

Assíntotas: $\theta_a = \pm 90^\circ$

Ângulos de Partida: $\phi = \pm 90^{\circ}$

existe apenas em s=0 (K₁=0)

Ramificação:

existe apenas em s=0 (K₁=0)

Lugar das Raízes para $K_1 > 0$

2ª parte: Fixar K_1 variar $0 < K_2 < +∞$

Para $K_2 \neq 0$

$$\Delta(s) = 1 + K_2 \frac{s}{s^2 + K_1} = 0$$

Assim, o Lugar das Raízes será traçado para $0 < K_2 < +\infty$ considerando valores fixos de K_1 .

Para $K_1 = 1$

$$\Delta(s) = 1 + K_2 \frac{s}{s^2 + 1} = 0 \qquad \Rightarrow \begin{cases} p_{1,2} = \pm j \\ z = 0 \end{cases}$$

Eixo real: $(-\infty, 0]$

Assíntotas: $\theta_a = 180^\circ$

Cruzamento com eixo imaginário: apenas em $s=\pm j$ ($K_1=1$)

Ramificação:

$$K_2 = -\left(\frac{s^2 + 1}{s}\right) \implies \frac{dK_2}{ds} = s^2 - 1 = 0$$

Portanto,

$$s = \pm 1 \implies \begin{cases} s = -1 \in LR \implies K_2 = 2 \\ s = 1 \notin LR \end{cases}$$

Lugar das Raízes para $K_1 = 1 e 0 < K_2 < +\infty$

Para demais valores de $K_{1,}$ o Lugar das Raízes terá forma semelhante, mudando os polos iniciais e as respectivas ramificações.

K ₁	polos	Ramificação	
2	$p_{1,2} = \pm \sqrt{2}$	s=-√2	K ₂ =2,83
3	$p_{1,2} = \pm \sqrt{3}$	s=-√3	$K_2 = 3,46$
4	$p_{1,2} = \pm \sqrt{4}$	s=-√4	K ₂ =4
5	$p_{1,2} = \pm \sqrt{5}$	s=-√5	$K_2 = 4,47$

Lembrando que os polos de malha fechada serão dados por

$$p_{1,2} = \frac{-K_2 \pm \sqrt{K_2^2 - 4K_1}}{2}$$

para valores fixos de K_2 , a parte real é constante e representa uma reta em $-K_2/2$.

Por exemplo,

$$K_2 = 2 \rightarrow p_{1,2} = -1 \pm \frac{\sqrt{4 - 4K_1}}{2}$$

Utilização do Contorno das Raízes

Para o sistema anterior, deseja-se garantir uma especificação de tempo de acomodação para a resposta ao degrau.

$$t_s = \frac{4}{\xi \omega_n} < 4 \quad \Rightarrow \quad \xi \omega_n > 1 \quad \Longrightarrow \quad \text{Reta passando em -1}$$

Neste caso, do gráfico do Contorno das Raízes, observa-se que para atender essa especificação:

$$K_1 > 2$$
 e $K_2 > 1$

De forma similar, se a especificação fosse alterada para:

$$t_s = \frac{4}{\xi \omega_n} < 2 \implies \xi \omega_n > 2$$
Reta passando em -2

Chegaria se a

$$K_1 > 4$$
 e $K_2 > 4$

E se a especificação fosse alterada para:

$$\xi \omega_n > 1.5$$
 $(t_s < 2.67)$

Como os valores de K₁ e K₂ seriam obtidos?

Como visto anteriormente, a parte real é constante e representa uma reta em -K₂/2. Portanto, para garantir a especificação

$$K_2 > 3$$

O valor de K₁ pode ser obtido resolvendo

$$\Delta(s) = s^2 + 3s + K_1 = 0$$
 para $s = -1.5 + j\omega$

cuja solução é K₁ = 2,25.

(reta em $K_2 = 3$)

Portanto, para garantir um tempo de acomodação menor do que 2,67 segundos:

$$K_2 > 3$$
 e $K_1 > 2,25$

Suponha que deseja-se garantir também um sobressinal menor do que 4,32%, ou seja,

$$\xi > \frac{\sqrt{2}}{2} \implies \theta < 45^{\circ}$$

Neste caso, a interseção do LR com a especificação de coeficiente de amortecimento pode ser obtida resolvendo:

$$\Delta(s) = s^2 + K_2 s + K_1 = 0$$
 para $s = \sigma(-1 + j\sigma)$

$$\theta = 45^{\circ}$$

Substituindo s na eq. característica, tem-se

$$\Delta(s) = -j2\sigma^2 - K_2\sigma + jK_2\sigma + K_1 = 0$$

$$\begin{cases} K_1 - K_2 \sigma = 0 & \sigma = 0 \text{ ou } K_2 = 2\sigma \\ \sigma(K_2 - 2\sigma) = 0 \end{cases}$$

$$\sigma = 0$$
 $\rightarrow K_1 = 0$ (origem)
 $\sigma = K_2/2$ $\rightarrow K_1 = K_2^2/2$

Para garantir a especificação de tempo de acomodação (intersecção com a reta passando em -1,5) é necessário K₂>3.

Considerando o valor mínimo $K_2 \equiv 3$, chega-se a $K_1 > 4.5$.

Assim, para atender ambas as especificações:

$$K_2 \equiv 3$$
 e $K_1 > 4.5$

Outras combinações podem ser obtidas.

Por exemplo:

$$K_1 \equiv 5 \rightarrow K_2 > ?$$

$$K_1 \equiv 5 \rightarrow K_2 > 3,16$$

São sistemas que são estáveis para faixas de valores de ganho.

Na prática, este tipo de sistema é indesejável uma vez que os valores de ganho são críticos para a garantia de estabilidade.

Exemplo 1:

$$G(s) = \frac{s^2 + 2s + 4}{s(s+4)(s+6)(s^2+1,41s+1)}$$

 $z_{1,2} = -1 \pm j1,73$

$$p_1 = 0$$
 $p_2 = -4$
 $p_3 = -6$
 $p_{4.5} = -0.707 \pm j0.707$

Portanto, o sistema é estável para duas faixas de valores de ganho :

$$0 < K < 16$$

 $66,5 < K < 165,5$

Obs: os valores obtidos analiticamente.

Exemplo 2:

$$G(s) = \frac{s+1}{s(s-1)(s^2+4s+16)}$$

$$p_1 = 0$$
 $z_{1,2} = -1$ $p_2 = 1$ $p_{3,4} = -2 \pm j3,46$

Sistemas Condicionalmente Estáveis

Sistemas Condicionalmente Estáveis

Sistemas Condicionalmente Estáveis

Assim, o sistema é estável para 24,6 < K < 35,6.

Sistemas com atraso

O Lugar das Raízes para sistemas com atraso pode ser traçado de duas formas:

- Forma Exata: as condições de módulo e fase são aplicadas à função de transferência com atraso. O LR será traçado a partir de valores calculados.
- Forma Aproximada: o atraso é representado através de uma aproximação de Padé, e desta forma, podem ser utilizadas as regras usuais para o traçado do LR.

Uma função de transferência com único atraso pode ser escrita como:

$$G(s) = e^{-Ls}\overline{G}(s)$$

sendo L uma constante positiva, que representa um atraso em segundos.

Considerando

$$s = \sigma + j\omega$$

tem-se

$$G(\sigma + j\omega) = e^{-L\sigma} e^{-jL\omega} \overline{G}(\sigma + j\omega)$$

Sabendo que

$$\angle e^{-L\sigma} = 0$$

$$\angle e^{-jL\omega} = \angle(\cos(\omega L) - j\sin(\omega L))$$

$$= -L\omega \quad \text{(radianos)}$$

a condição de fase será escrita como

$$\angle G(\sigma + j\omega) = -L\omega + \angle \overline{G}(\sigma + j\omega) = \pi(2q+1)$$

ou
$$\angle \overline{G}(\sigma + j\omega) = \pi(2q+1) + L\omega$$

= $180^{\circ}(2q+1) + 57,3^{\circ}L\omega$

Assim, o Lugar das Raízes será traçado fixando-se ω procurando σ que verifique a condição de fase. O processo é repetido para todos os valores possíveis de ω .

Observe que, para cada valor de q existe um Lugar das Raízes diferente. Além disso, existe um número infinito de ramos no LR.

Entretanto, pode ser feita uma análise simplificada considerando apenas q=0.

Desta forma, o Lugar das Raízes exato é traçado a partir de

$$\angle \overline{G}(\sigma + j\omega) = \pi + L\omega$$
$$= 180^{\circ} + 57.3^{\circ} L\omega$$

calculando σ para (infinitos) valores fixos de ω .

Seja a FTMA

$$G(s) = \frac{2e^{-4s}}{100s + 1}$$

ou seja,

$$\overline{G}(s) = \frac{2}{100s+1}$$
 e $L=4$

A condição de fase será dada por:

$$\angle \overline{G}(\sigma + j\omega) = \pi + L\omega$$

Sendo

$$s = \sigma + j\omega$$

tem-se

$$\angle \overline{G}(\sigma + j\omega) = \angle 2 - \angle (100(\sigma + j\omega) + 1)$$
$$= 0 - tg^{-1} \left(\frac{100\omega}{1 + 100\sigma}\right)$$

Substituindo na condição de fase

$$-tg^{-1}\left(\frac{100\omega}{1+100\sigma}\right) = \pi + 4\omega$$

Após manipulações:

$$\sigma = \frac{100\omega - tg(\pi + 4\omega)}{100 tg(\pi + 4\omega)}$$

Considerando ω = [-5 : 0,01 : 5], obtém-se o LR a seguir.

Do gráfico (ou dos valores calculados), observa-se que o primeiro cruzamento com eixo imaginário ocorre em ω =0,4.

A estabilidade pode ser obtida através da condição de módulo:

$$|G(s)| = \frac{1}{K} \Rightarrow \left|\frac{2e^{-4s}}{100s+1}\right| = \frac{1}{K}$$

Para s = j0,4

$$2K \left| e^{-4 \times j0,4} \right| = \left| (100 \times j0,4) + 1 \right|$$
$$2K = \sqrt{40^2 + 1^2} \implies K = 20,01$$

Portanto, o sistema é estável para 0 < K < 20.

Lugar das Raízes Aproximado

Neste caso, o atraso é representado por uma aproximação de Padé de ordem apropriada.

Padé(0,1)
$$\rightarrow e^{-Ls} = \frac{1}{Ls+1}$$

Padé(1,1) $\rightarrow e^{-Ls} = \frac{2-Ls}{2+Ls}$

Padé(2,2) $\rightarrow e^{-Ls} = \frac{1-(Ls/2)s+(Ls)^2/12}{1+(Ls/2)s+(Ls)^2/12}$

Exemplo - Lugar das Raízes Aproximado

Do exemplo anterior:

ou seja,

$$\overline{G}(s) = \frac{2}{100s+1}$$
 e $L=4$

Aproximação de Padé (0,1)

$$e^{-Ls} = \frac{1}{Ls+1} \rightarrow e^{-4s} = \frac{1}{4s+1}$$

$$G_1(s) = \frac{2}{(4s+1)(100s+1)} = \frac{0,005}{(s+0,01)(s+0,25)}$$

Aproximação de Padé (0,1)

Sistema estável para qualquer valor K > 0.

Exemplo - Lugar das Raízes Aproximado

Aproximação de Padé (1,1)

$$e^{-Ls} = \frac{2 - Ls}{2 + Ls} \rightarrow e^{-4s} = \frac{2 - 4s}{2 + 4s}$$

ou seja,

$$G_2(s) = \frac{2(2-4s)}{(2+4s)(100s+1)} = \frac{-0,02(s-0,5)}{(s+0,01)(s+0,5)}$$

Aproximação de Padé (1,1)

Sistema estável para 0 < K < 25,5.

Exemplo - Lugar das Raízes Aproximado

Aproximação de Padé (2,2)

$$e^{-Ls} = \frac{1 - (Ls/2)s + (Ls)^2/12}{1 + (Ls/2)s + (Ls)^2/12}$$

$$e^{-4s} = \frac{s^2 - 1,5s + 0,75}{s^2 + 1,5s + 0,75}$$

Exemplo - Lugar das Raízes Aproximado

$$G_3(s) = \frac{2(s^2 - 1,5s + 0,75)}{(s^2 + 1,5s + 0,75)(100s + 1)}$$
$$= \frac{0,02(s^2 - 1,5s + 0,75)}{(s^2 + 1,5s + 0,75)(s + 0,01)}$$

$$z_{1,2} = 0.75 \pm j0.43$$

 $p_{1,2} = -0.75 \pm j0.43$
 $p_{3} = -0.01$

Aproximação de Padé (2,2)

Sistema estável para 0< K < 20,7.