STUDI KERJA PROTEKSI RELAI OCR DAN GFR PADA PENYULANG ULUWATU SETELAH REKONFIGURASI

Galih Budi Santosa¹, I Gede Dyana Arjana², I Wayan Arta Wijaya³

¹Mahasiswa Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

^{2,3}Dosen Program Studi Teknik Elektro, Fakultas Teknik, Universitas Udayana

Bukit Jimbaran, Bali

Email: 1galihbudi@student.unud.ac.id, 2dyanaarjana@ee.unud.ac.id, 3artawijaya@ee.unud.ac.id

ABSTRAK

PT. PLN (Persero) Area Bali Selatan membangun GIS Pecatu meratakan beban, meningkatkan pelayanan serta keandalan sistem penyaluran tenaga listrik. Perpindahan beban listrik menuju GIS Pecatu merubah konfigurasi Penyulang Pecatu menjadi Penyulang Uluwatu dan Penyulang Labuan Sait. Perubahan arus beban dan impedansi jaringan membawa dampak pada arus gangguan hubung singkat. Perhitungan arus gangguan hubung singkat menjadi dasar penentuan waktu kerja relai OCR dan GFR antara *recloser* dengan PMT pangkal penyulang. *Setting* waktu regulasi PLN pada awal proteksi yaitu 0,1 detik menghilangkan arus gangguan lebih cepat dibandingkan standar IEC 60255 sebesar 0,3 detik. Hasil penelitan didapatkan nilai waktu Tms regulasi PLN sebesar 0,076 SI dan 0,033 SI. Hasil perhitungan Tms standar IEC 60255 didapatkan waktu (Tms) 0,23 SI dan 0,09 SI. Hasil simulasi *setting* relai regulasi PLN dan IEC 60255 berkerja dengan baik dengan nilai *grading time* 0,2 – 0,4 detik.

Kata kunci: Gangguan hubung singkat, OCR, GFR, recloser

ABSTRACT

PT. PLN (Persero) South Bali Area built the Pecatu GIS to level the load, improve service and reliability of the electricity distribution system. The transfer of electrical loads to the Pecatu GIS changes the configuration of the Pecatu feeder to the Uluwatu feeder and the Labuan Sait feeder. Changes in load current and network impedance have an impact on short-circuit fault currents. The calculation of short-circuit fault current becomes the basis for determining the working time of the OCR and GFR relays between the recloser and the feeder base PMT. The relay working time based of the PLN regulation setting protection at 0,1 seconds to eliminate fault currents and IEC 60255 standard take 0,3 seconds to eliminate fault currents. The results of the study showed that the time value of PLN's regulation Tms was 0,076 SI and 0,033 SI. The results of the calculation of (Tms) standard IEC 60255 obtained time (Tms) 0,23 SI and 0,09 SI. The simulation results of the PLN regulation relay settings and IEC 60255 work well with a grading time value of 0,2 – 0,4 seconds.

Key Words: Short circuit fault, OCR, GFR, recloser

1. PENDAHULUAN

PT. PLN (Persero) Area Bali Selatan membangun GIS Pecatu sebagai bentuk peningkatan pelayanan dan kehandalan sistem tenaga listrik yang ada di sistem Bali. Penambahan GIS Pecatu membuat perubahan konfigurasi sistem penyaluran tegangan menengah. Perubahan nilai arus dan impedansi jaringan berimbas pada nilai

arus gangguan hubung singkat, sehingga menyebabkan sistem proteksi saluran perlu distribusi disetting ulang untuk mendapatkan kinerja yang andal dan selektif meliputi setting waktu (Tms) dan arus setting (I_{set}) [1].

Penyetelan over current relay (OCR) dan ground fault relay (GFR) harus sesuai syarat seperti kecepatan operasi,

sensitivitas yang baik, selektifitas, keandalan, stabilitas dan pertimbangan ekonomis dimaksudkan untuk menjamin kontinuitas penyaluran daya sistem [2]. Setting kerja relai OCR dan berdasarkan regulasi PLN berbeda dengan standar IEC 60255 tentang setting waku relai. Waktu relai yang digunakan oleh PLN adalah 0,1 detik, berbeda dengan standar yang dikeluarkan IEC yakni 0,3 detik bertujuan menghilangkan arus gangguan dengan cepat. Relai proteksi di lokasi yang berbeda dapat mendekati arus gangguan sesuai kebutuhan sistem [3]. Koordinasi peralatan proteksi dibutuhkan sistem dalam mengisolasi gangguan sesuai kebutuhan.

2. TINJAUAN PUSTAKA

2.1 Sistem Tenaga Listrik Penyulang Uluwatu

Penyulang Uluwatu memiliki panjang saluran 27,69 kms terdiri dari kabel udara (SUTM) MVTIC 150 mm², dan A3CS 150 mm² dan kabel tanam (SKTM) XLPE 240 mm². Daya terpasang penyulang 11250 kVA dengan jumlah 76 buah transformator distribusi menggunakan sistem operasi openloop disuplay dari Trafo 1x60 MVA GIS Pecatu [4].

2.2 Gangguan Hubung Singkat

Gangguan sistem pada distribusi terdiri dari gangguan hubung singkat 1 phasa ke tanah, hubung singkat 2 phasa dan hubung singkat 3 phasa. Nilai arus gangguan hubung singkat sistem jaringan 20 kV mengaplikasikan persamaan [5]:

 Gangguan hubung singkat 1 phasa ke tanah

$$I_{SC1\emptyset} = \frac{3V_{LN}}{Z_1 + Z_2 + Z_0} \tag{1}$$

2. Gangguan hubung singkat 2 phasa

$$I_{SC2\emptyset} = \frac{v_{LL}}{z_1 + z_2} \tag{2}$$

3. Gangguan hubung singkat 3 phasa

$$I_{SC3\emptyset} = \frac{v_{LN}}{Z_1} \tag{3}$$

Keterangan:

 $I_{SC1\emptyset}$ = Arus gangguan hubung singkat satu phasa ke tanah (A)

 $I_{SC2\emptyset}$ = Arus gangguan hubung singkat 2 phasa (A)

 $I_{SC3\emptyset}$ = Arus gangguan hubung singkat

3 phasa (A)

 V_{LN} = Tegangan phasa netral (V)

 V_{LL} = Tegangan antara 2 phasa (V)

 Z_1 = Impedansi urutan positif (Ohm)

 Z_2 = Impedansi urutan negatif (Ohm)

 Z_0 = Impedansi urutan nol (Ohm)

2.3 Impedansi Sumber

Besar nilai impendansi sumber sisi tegangan 150 kV dan 20 kV dicari menggunakan persamaan [5]:

Impedansi sumber 150 kV

$$Z_{s150kV} = \frac{kV_p^2}{MVA_{hs}} \tag{4}$$

Impedansi sumber 20 kV

$$Z_{s20kV} = \frac{kV_s^2}{kV_n^2} x Z_{s150kV}$$
 (5)

Keterangan:

 Z_{s150kV} = Impedansi sumber sisi tegangan 150 kV (Ohm)

 Z_{s20kV} = Impedansi sumber sisi tegangan 20 kV (Ohm)

 kV_p = Tegangan sisi primer (V)

 kV_s = Tegangan sisi sekunder (V)

2.4 Impedansi Transformator

Impedansi yang dihitung adalah nilai reaktansi transformator menggunakan persamaan [5]:

$$X_t = \frac{V_s^2 Z_t}{\frac{s}{1000}} \tag{6}$$

Keterangan:

 X_t = Reaktansi trafo (Ohm)

 $V_{\rm s}$ = Tegangan nominal sisi sekunder (V)

 $Z_t = \text{Impedansi (Ohm)}$

S = Daya trafo (VA)

2.5 Impedansi Penyulang

Gangguan hubung singkat 1 phasa ketanah, 2 phasa, dan 3 phasa memiliki impedansi berbeda sesuai gangguan dan tegangan yang memasok arus ke titik gangguan. Perhitungan impedansi urutan positif, negatif, nol dan ekuivalen penyulang dari sumber tegangan sampai titik gangguan adalah sebagai berikut [5]:

- Impedansi urutan positif dan negatif
 Z₁ = Z₂ = Panjang Penyulang (km) x
 Z_{1 penghantar (Ohm)} (7
- 2. Impedansi urutan nol

 Z_0 = Panjang Penyulang (km) x Z_0

penghantar (Ohm) (8

3. Impedansi ekuivalen urutan positif dan negatif

$$Z_{1eq} = Z_{2eq} = Z_{sumber} + X_{1T} + Z_1$$
 (9)

4. Impedansi ekuivalen urutan nol

$$Z_{0eq} = X_{0T} + 3R_N + Z_0$$
 (10)

Keterangan:

 Z_1 = Impedansi urutan positif (Ohm)

 Z_2 = Impedansi urutan negatif (Ohm)

 Z_0 = Impedansi urutan nol (Ohm)

 Z_{1eq} = Impedansi ekuivalen jaringan urutan positif (Ohm)

 Z_{2eq} = Impedansi ekuivalen jaringan urutan negatif (Ohm)

 Z_{0eq} = Impedansi ekuivalen jaringan urutan nol (Ohm)

 X_{1T} = Reaktansi trafo urutan positif (Ohm)

 X_{0T} = Reaktansi trafo urutan nol (Ohm)

 R_N = Resistansi Pentanahan (Ohm)

 Z_{sumber} = Impedansi sumber (Ohm)

 Z_{1pengh} = Impedansi penghantar urutan positif (Ohm)

 Z_{2pengh} = Impedansi penghantar urutan negatif (Ohm)

 Z_{0pengh} = Impedansi penghantar urutan nol (Ohm)

2.5 Sistem Proteksi

Gangguan distribusi sistem sepenuhnya hampir merupakan gangguan hubung singkat yang menimbulkan arus proteksi cukup besar. Sistem mengamankan peralatan listrik mencegah membatasi kerusakan sehingga kelangsungan penyaluran listrik dapat dipertahankan [6]. Alat pengaman diperlukan untuk melepaskan atau membuka sistem terganggu, sehingga arus gangguan dapat dihilangkan. Syarat-syarat sistem proteksi pada sistem tenaga listrik antara lain sistem proteksi harus dapat mengisolir gangguan dengan cepat dan sensitif, dalam hal ini digambarkan dengan perhitungan setting relai yang tepat. Sistem proteksi juga harus selektif dan handal, hal ini digambarkan dengan koordinasi antar relai dalam sistem proteksi.

2.5 Recloser

Recloser (penutup balik) merupakan peralatan pengaman sistem distribusi yang berfungsi mengamankan suatu sistem dari arus lebih yang diakibatkan adanya gangguan hubung singkat [9].

2.5.1 Over Current Relay (OCR)

Relai berprinsip pada kenaikan arus terhadap nilai setting pengaman dalam jangka waktu yang telah ditentukan. OCR mendeteksi arus gangguan antar phasa. Time multiple setting (Tms) menentukan setting waktu kerja relai memerintah pemutus tenaga bekerja (trip) sesuai dengan karakteristik waktunya [5] . Setting arus dan waktu kerja (Tms) OCR dicari menggunakan persamaan [1],[10],[11]:

Setting arus primer

 $I_{Set\ primer} = 1.05\ s/d\ 1.3\ x\ I_{Nominal}\ (11)$

Setting arus sekunder

$$I_{Set\ sekunder} = I_{Set(primer)} x \frac{1}{Rasio\ CT}$$
 (12)

Setting Waktu Tms

$$Tms = \frac{t x \left(\left(\frac{I_f}{I_{set}} \right)^{\beta} \right) - 1}{\sigma}$$
 (13)

Keterangan:

 $I_{Set\ primer}$ = Setelan arus primer (A)

 $I_{Set\ sekunder}$ = Setelan arus sekunder (A)

 $I_{Nominal}$ = Arus nominal trafo (A)

 $Rasio\ CT$ = Rasio trafo arus

Tms = Time multiple setting (SI)

t = Waktu kerja relai (s)

 I_f = Arus gangguan (A)

 I_{set} = Arus setting (A)

 $\alpha \ dan \ \beta$ = Konstanta jenis karakteristik

relay inverse

2.5.2 Ground Fault Relay (GFR)

GFR mendeteksi kenaikan arus netral pada saluran akibat arus gangguan hubung singkat 1 phasa ketanah. Setting arus GFR dapat dihitung menggunakan persamaan [1]:

$$I_{Set\ primer} = 6\% \frac{s}{d} 12\% x I_{HS\ terkecil}$$
 (14)

Keterangan:

 $I_{Set\ primer}$ = Setelan arus primer (A)

 $I_{HS \ terkecil}$ = Arus hubung singkat terkecil (A)

3. METODOLOGI PENELITIAN

Tempat pelaksanaan penelitan di Penyulang Uluwatu GIS Pecatu pada bulan Mei-Juni 2021. Tahapan analisis penelitian sebagai berikut:

- 1. Pengumpulan data parameter teknis saluran Penyulang Uluwatu GIS Pecatu.
- 2. Menghitung nilai Impedansi sumber, impedansi transformator, impedansi penyulang dan impedansi ekuivalen.
- 3. Menghitung arus gangguan hubung singkat 1 phasa ketanah, 2 phasa dan 3 phasa.
- 4. Menghitung *setting* waktu kerja relai OCR dan GFR.
- Melakukan pengujian hasil nilai setting relai OCR dan GFR Penyulang Uluwatu pada software ETAP.
- Menganalisis hasil simulasi dan menarik kesimpulan dari analisis yang telah dilakukan.

4. HASIL DAN PEMBAHASAN

4.1 Impedansi Penyulang Uluwatu

Impedansi ekuivalen Penyulang Uluwatu berasal dari penjumlahan nilai impedansi pada sistem yaitu: impedansi sumber, impedansi transformator, dan impendansi penyulang [9].

Gambar 1. Impedansi Penyulang Uluwatu

4.1.1 Impedansi Sumber

Impedansi sumber tegangan 150 kV dihitung menggunakan persamaan (4):

$$Z_{s150kV} = \frac{kV_p^2}{MVA_{hs}}$$
$$= \frac{150^2}{2269.41}$$
$$= 9.914 Ohm$$

Impedansi sumber tegangan 20 kV dihitung menggunakan persamaan (5):

$$Z_{s20kV} = \frac{kV_s^2}{kV_p^2} x Z_{s150kV}$$
$$= \frac{20^2}{150^2} x 9.914 \ Ohm$$
$$= 0.176 \ Ohm$$

4.1.2 Impedansi Transformator

Impendasi trafo dihitung dengan menggunakan persamaan (6):

$$X_{tr} = \frac{V_s^2 Z_t}{\frac{S}{1000}}$$

$$=\frac{20^2 \times 12.5\%}{\frac{60000}{1000}}$$
$$= 0.834 \ Ohm$$

4.1.3 Impedansi Penyulang

Saluran Penyulang Uluwatu terdiri dari 3 penghantar campuran yakni kabel udara (SUTM) MVTIC 150 mm², dan A3CS 150 mm² dan kabel tanam (SKTM) XLPE 240 mm².

Penyulang terbagi menjadi 2 zona dihubungkan recloser Temu Dewi. Impedansi jaringan digunakan adalah panjang lokasi 1% dan 100% pajang jaringan masing-masing zona [1]. Perhitungan nilai impedansi urutan positif, urutan negatif dan urutan nol dicari dengan persamaan (7) dan (8):

$$\begin{split} Z_1 &= Z_{2\text{Peny}} = Z_{1\text{A3CS}} + Z_{1\text{MVTIC}} + Z_{1\text{XLPE}} \\ &= (1.253 + \text{j} \ 2.112) + (0.610 + \text{j} \ 0.308) \\ &+ (0.141 + \text{j} \ 0.109) \\ &= 2.005 + \text{j} \ 2.530 \ \text{Ohm} \\ \\ Z_{0\text{Peny}} &= Z_{0\text{A3CS}} + Z_{0\text{MVTIC}} + Z_{0\text{XLPE}} \\ &= (2.199 + \text{j} \ 10.342) + (1.055 + \text{j} \ 0.924) + \\ &\quad (0.310 + \text{j} \ 0.0327) \\ &= 3.565 + \text{j} \ 11.299 \ \text{Ohm} \end{split}$$

Data nilai impedansi Penyulang Uluwatu masing-masing zona ditunjukan pada Tabel 1.

Tabel 1. Impedansi Penyulang Uluwatu Zona 1 dan Zona 2

Panjang Jaringan		Urutan Positif Z ₁ =Z ₂ (Ohm)		Urutan Nol Z ₀ (Ohm)	
		R	jX	R	jΧ
Zona 1	1%	0.0200	0.0253	0.0356	0.1129
	100%	2.0053	2.5304	3.5654	11.2997
Zona 2	1%	0.0343	0.0401	0.0599	0.1812
	100%	3.4310	4.0114	5.9933	18.125

4.1.4 Impedansi Ekuivalen

Perhitungan impedansi ekuivalen Penyulang Uluwatu digunakan untuk menghitung arus gangguan hubung singkat pada jaringan diperoleh dengan persamaan (9) dan (10):

$$\begin{split} Z_{1eq} &= Z_{2eq} = Z_{sumber} + X_{1T} + Z_{1penyulang100\%} \\ &= j \ 0,176 + j \ 0,834 + 2,0053 + j \ 142,815 \\ &= 2,0053 + j \ 3,5400 \ 0 hm \\ Z_{0eq} &= X_{0T} + 3_{RN} + Z_{0penyulang100\%} \\ &= j \ 7,93 + 3 \times 40 + 3,5654 + j \ 11,2997 \end{split}$$

= 123,5654 + j 19,6331 Ohm

Nilai impedansi ekuivalen Penyulang Uluwatu masing-masing zona dilihat pada Tabel 2.

Tabel 2. Impedansi Ekuivalen Penyulang Uluwatu Zona 1 dan Zona 2

Panjang Jaringan		Urutan Positif		Urutan Nol	
		$Z_1=Z_2$ (Ohm)		Z ₀ (Ohm)	
		R	jΧ	R	jΧ
Zona 1	1%	0,02005	1,0348	120,0356	8,44633
	100%	2,0053	3,5400	123,5654	19,6331
Zona 2	1%	2,0391	3,5801	123,6253	19,8143
	100%	5,4363	7,5515	129,5588	37,7589

4.2 Gangguan Hubung Singkat

Besar arus gangguan hubung singkat penyulang dicari menggunakan persamaan (1), (2) dan (3):

1. Arus gangguan 1 phasa ketanah

$$\begin{split} I_{SC2\emptyset} &= \frac{V_{LL}}{Z_{1eq\,100\%\,zona\,1} + Z_{2eq\,100\%\,zona\,1}} \\ &= \frac{\frac{3\times20000}{\sqrt{3}}}{2\times(Z_{1eq\,100\%\,zona\,1}) + Z_{0eq\,100\%\,zona\,1}} \\ &= \frac{34641,016}{2\times(2,0053+j\,3,5400\,) + (123,5654+j\,19,6331)} \\ &= \frac{34641,016}{\sqrt{(4,0106+j\,7,080\,)^2 + (123,5654+j\,19,6331)^2}} \\ &= 259,965\,A \end{split}$$

2. Arus gangguan 2 phasa

$$\begin{split} I_{SC2\emptyset} &= \frac{V_{LL}}{Z_{1eq\ 100\%\ zona\ 1} + Z_{2eq\ 100\%\ zona\ 1}} \\ &= \frac{20000}{2 \times (Z_{1eq\ 100\%\ zona\ 1})} \\ &= \frac{20000}{2 \times (2,0053 + j\ 3,5400\)} \\ &= \frac{20000}{2 \times \sqrt{2,0053^2 + j\ 3,5400\ ^2}} \\ &= 2457,890\ A \end{split}$$

3. Arus gangguan 3 phasa

$$I_{SC3\emptyset} = \frac{V_{LN}}{Z_{1eq \ 100\% \ zona \ 1}}$$

$$= \frac{\frac{20000}{\sqrt{3}}}{2,0053 + j \ 3,5400}$$

$$= \frac{11,547}{\sqrt{2,0053^2 + j \ 3,5400^2}}$$

$$= 2838,127 \text{ A}$$

Nilai arus gangguan hubung singkat 1 phasa ke tanah, 2 phasa, dan 3 phasa Penyulang Uluwatu dilihat pada Tabel 3.

Tabel 3. Arus Gangguan Hubung Singkat Penyulang Uluwatu

Panjang Jaringan		I _{SC1Ø (A)}	I _{SC2Ø (A)}	I _{SC3Ø (A)}
Zona 1	1%	283,009	9661,011	11155,575
Zona i	100%	259,965	2457,890	2838,127
Zona 2	1%	259,592	2426,974	2802,428
	100%	225,588	1074,714	1240,973

4.3 Setting Relai OCR dan GFR Kondisi Eksisting

Setting OCR dan GFR Penyulang Uluwatu kondisi eksisting berdasarkan regulasi PT. PLN (Persero) Area Bali Selatan.

1. Setting Arus Relai OCR

Besar nilai arus nominal (I_{nom}) mengalir pada recloser sebesar 15,04 A dan outgoing penyulang sebesar 31,95 A digunakan untuk mencari nilai setting arus ($I_{set\ primer}$) dan arus ($I_{set\ secunder}$) OCR dengan persamaan (11) dan (12):

Sisi Recloser

$$I_{Set \ primer} = 1.2 \ x \ I_{Nominal}$$

$$= 1.2 \ x \ 15.04$$

$$= 18.048 \ A$$

$$I_{Set \ secunder} = I_{Set \ primer} \times \frac{1}{Rasio \ CTs}$$

$$= 18.048 \times \frac{1}{\frac{300}{5}}$$

$$= 0.3 \ A$$

Sisi Outgoing Penyulang

$$I_{Set\ primer} = 1,2\ x\ I_{Nominal}$$

= 1,2 x 31,95
= 38,34 A
 $I_{Set\ secunder} = I_{Set\ primer} \times \frac{1}{Rasio\ CTs}$
= 38,34 $\times \frac{1}{\frac{600}{5}}$
= 0,3195 A

2. Setting Tms Relai OCR

Perhitungan waktu kerja OCR pada sisi *recloser* dan *outgoing* penyulang dicari menggunakan persamaan (13):

Sisi Recloser

$$t = \frac{a \times Tms}{\left(\left(\frac{I_f}{I_{set \ primer}}\right)^{\beta}\right) - 1}$$

$$0.1 = \frac{0.14 \, x \, Tms}{\left(\left(\frac{2802,428}{18,048}\right)^{0.02}\right) - 1}$$

Tms = 0.076 SI

Sisi Outgoing Penyulang

$$t = \frac{a \ x \ Tms}{\left(\left(\frac{I_f}{I_{set \ primer}}\right)^{\beta}\right) - 1}$$

$$0,3 = \frac{0,14 \ x \ Tms}{\left(\left(\frac{2802,428}{38,34}\right)^{0,02}\right) - 1}$$

$$Tms = 0.256 SI$$

3. Setting Arus Relai GFR

Arus gangguan hubung singkat 1 phasa ketanah terkecil pada masing-masing zona digunakan untuk menghitung nilai setting arus (*I*_{set primer}) dan arus (*I*_{set secunder}) pada relai GFR menggunakan persamaan (12) dan (14):

Sisi Recloser

$$I_{Set\ primer} = 12\ \%\ x\ I_{HS\ 1phasa}$$

$$= 0,12\ x\ 225,588$$

$$= 27,07\ A$$

$$I_{Set\ sekunder} = I_{Set\ primer} x \frac{1}{Rasio\ CT}$$

$$= 27,07\ x \frac{1}{\frac{300}{5}}$$

$$= 0,45\ A$$

Sisi Outgoing Penyulang

$$I_{Set\ primer} = 10\ \%\ x\ I_{HS\ 1phasa}$$

$$= 0.1\ x\ 259,97$$

$$= 25,997\ A$$

$$I_{Set\ sekunder} = I_{Set\ primer}\ x\ \frac{1}{Rasio\ CT}$$

$$= 25,997\ x\ \frac{1}{\frac{600}{5}}$$

$$= 0.216\ A$$

4. Setting Tms Relai GFR

Perhitungan waktu kerja relai GFR pada sisi *recloser* dan *outgoing* penyulang dicari menggunakan persamaan (13):

Sisi Recloser

$$t = \frac{a \ x \ Tms}{\left(\left(\frac{I_f}{I_{set}}\right)^{\beta}\right) - 1}$$

$$0,1 = \frac{0,14 \ x \ Tms}{\left(\left(\frac{259,59}{27,07}\right)^{0,02}\right) - 1}$$

$$Tms = 0,033 \ SI$$

Sisi Outgoing Penyulang

$$t = \frac{a x Tms}{\left(\left(\frac{I_f}{I_{set}}\right)^{\beta}\right) - 1}$$

$$0,3 = \frac{0,14 x Tms}{\left(\left(\frac{259,588}{21,6}\right)^{0,02}\right) - 1}$$

Nilai *setting* OCR dan GFR regulasi PLN ditunjukan pada Tabel 4.

Tabel 4. Setting Relai OCR dan GFR menurut standar IEC 60255

Setting		Recloser	<i>Outgoing</i> Penyulang
OCR	I _{set primer} (A)	18.048	38.340
	I _{set sec} (A)	0.301	0.320
	Tms	0.076	0.256
	t	0.1	0.298
GFR	I _{set primer} (A)	27.071	25.959
	I _{set sec} (A)	0.451	0.216
	Tms	0.033	0.135
	t	0.1	0.385

4.4 Setting Relai OCR dan GFR Standar IEC 60255

Data setting arus dan waktu kerja (Tms) relai OCR dan GFR pada Penyulang Uluwatu berdasarkan standar IEC 60255 sebagai berikut :

Tabel 5. Setting Relai OCR dan GFR menurut standar IEC 60255

Setting		Recloser	<i>Outgoing</i> Penyulang
	I _{set primer} (A)	15,79	33,54
OCR	I _{set sec} (A)	0,26	0,27
	Tms	0,23	0,46
	t	0,3	0,52
GFR	I _{set primer} (A)	27,07	25,95
	I _{set sec} (A)	0,45	0,21
	Tms	0,09	0,23
	t	0,3	0,67

4.4 Analisa Koordinasi Relai OCR dan GFR Penyulang Uluwatu

Simulasi dilakukan menggunakan "star-protective device coordination" dengan memasukan parameter data setting relai kondisi eksisting dan standar IEC 60255 dimasukan kedalam software ETAP

Gambar 2. Kurva Koodinasi Relai (a) OCR kondisi eksisting, (b) GFR kondisi eksisting, (c) OCR standar IEC 60255, (d) GFR standar IEC 60255

Kurva koordinasi relai OCR dan GFR antara *recloser* dengan *outgoing* penyulang pada Gambar 2 menunjukan ketika terjadi gangguan pada ujung jaringan maka relai OCR dan GFR pada sisi *recloser* bekerja terlebih dahulu dan relai pada *outgoing* sebagai back up protection sistem dalam posisi stand by. Gambar 2 (a) dan (c) menunjukan *setting* nilai arus relai OCR sesuai regulasi PLN 0.301 A lebih besar dibandingkan *setting* arus IEC 60255 sebesar 0.26 A bertujuan relai tidak bekerja terhadap nilai arus gangguan kecil.

Waktu kerja relai OCR dan GFR regulasi PLN awal proteksi sebesar 0,1 detik lebih kecil dibandingkan standar IEC 60255 yaitu 0,3 detik bertujuan menghilangkan arus gangguan lebih cepat. Koordinasi relai OCR dan GFR sesuai regulasi PLN dengan IEC 60255 sudah cukup selektif, dengan nilai grading time OCR regulasi PLN 0,617 detik dan standar IEC 0,521 detik, GFR regulasi PLN 0.213 detik, dan standar IEC 0.331 detik sesuai standar sensitifitas dan kecepatan relai IEEE 242-1986 dan IEC 60255 yaitu batas waktu kerja antara dua buah relai sebesar 0,2-0,4 detik [11], [12].

(c)

5. KESIMPULAN

Kesimpulan dari analisis dapat dituangkan kedalam beberapa poin sebagai berikut:

- Kondisi setting arus berdasarkan regulasi PT. PLN (Persero) Area Bali Selatan didapatkan arus setting OCR sebesar 0.301 A (recloser) / 0.32 A (pangkal penyulang) lebih besar dari setting berdasarkan standar IEC 60255 didapatkan arus setting OCR sebesar 0.26 A (recloser) / 0.27 A (pangkal penyulang) menyebabkan frekuensi PMT bekerja menurun sehingga memperpanjang umur peralatan.
- 2. Kondisi setting waktu Tms regulasi PT. PLN (Persero) Area Bali Selatan didapatkan waktu Tms OCR sebesar 0.076 SI (recloser) / 0.256 SI (pangkal penyulang) lebih cepat dari setting waktu Tms berdasarkan standar IEC 60255 didapatkan waktu Tms OCR sebesar 0.23 SI (recloser) / 0.46 SI (pangkal penyulang) menyebabkan arus gangguan cepat menghilang sebab tidak ada sumber tegangan.
- Hasil simulasi koordinasi proteksi relai OCR dan GFR pada penyulang Uluwatu berdasarkan regulasi PT, PLN (Persero) Area Bali Selatan dan Teori sudah sesuai dengan standar IEEE 242-1986 dan IEC 60255 dengan nilai nilai grading time antara relai yang berdekatan sebesar 0,2-0,4 detik.

6. DAFTAR PUSTAKA

- [1] Wahyudi Sarimun N. *Proteksi Sistem Distribusi Tenaga Listrik*. Depok:
 Garamond. 2016
- [2] Shahnas Anisa. Analisis Setting Over Current Relay (OCR) dan Ground Fault Relay (GFR) Pada Recloser Hangtuah Feeder Kulim PT.PLN (Persero) Area Pekanbaru Riau: UIN SUSKA RIAU. 2019
- [3] Rudianto Putra Pratama.

 Perancangan Sistem Proteksi (Over

 Current dan Ground Fault Relay)

 Untuk Koordinasi Pengaman Sistem

- Kelistrikan PT. Semen Gresik Pabrik Tuban IV. E-journal Teknik ITS.
- [4] PT. PLN (Persero) Area Bali Selatan. Data Aset Distribusi PT, PLN (Persero) Area Bali Selatan. Denpasar. 2020
- [5] PT. PLN (Persero) APD Bali. ProteksiPLN APD Bali. Denpasar.2015
- [6] Engla Pafela, Eddi Hamdani. Studi Penyetelan Relay Arus Lebih (OCR) Pada Gardu Induk Teluk Lembu Pekanbaru. E-Jounnal Jom FTEKNIK. 2017. Vol.4, No.1
- [7] Isa Abdullah, Juningtyastuti, Susatyo Handoko. Evaluasi Setting Relay OCR, GFR dan Recloser Pasca Rekonfigurasi Penyulang Distribusi Pada Trafo 2 Gardu Induk Srondol Semarang Menggunakan Etap 12.6.0.
 E-Jurnal TRANSIENT.2016.Vol.5, No.3
- [8] Indra Gunawan. Analisa Resetting
 Over Current Relay dan Ground
 Fault Relay pada Trafo 60 MVA
 150/20 kV dan Penyulang 20 kV
 Gardu Induk Padang Sambian. Bukit
 Jimbaran : Universitas Udayana.
 2018
- [9] A. A Gde Agung Semarabawa, Tjok. Gede Indra Partha, I Gede Dyana Arjana. Analisis Ressetting Proteksi Over Current Relay, Ground Fault Relay dan Recloser Pada Penyulang Abang dan Feeder Amed Setelah Rekonfigurasi.E-Journal SPEKTRUM. 2019. Vol.6, No.4
- [10] British Standart 142. Electical Protection Relays Spesification for Thermal Electrical Relays. London. 1991
- [11] GEC Alshtom. *Protective Relays Application Guide*. Stafford.
 England.1987
- [12] IEEE Standart Association 242. Recommended Practice for Protection and Coordination of Industrial and Commercial Power System. New York.1986