The module of Kähler differentials

Eric Walker cew028@uark.edu

CARES

12 October 2021

Outline

Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

Outline

Topics:

- Why?
- Derivations
- Definition of the Kähler differentials
- Construction of the Kähler differentials
- The first fundamental exact sequence
- The second fundamental exact sequence
- Where do you go from here?

Conventions:

- k is a ring, and all rings are commutative and unital
- a k-algebra is a ring A with a structure map $\varphi: k \to A$

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let's think about differentiation the way your calculus 1 students* think about differentiation:

$$D_x[c] = 0 \text{ if } c \in \mathbf{R}$$

Let's think about differentiation the way your calculus 1 students* think about differentiation:

- $D_x[c] = 0 \text{ if } c \in \mathbf{R}$
- 2 $D_x[x^n] = nx^{n-1}$

Let's think about differentiation the way your calculus 1 students* think about differentiation:

- $D_x[c] = 0 \text{ if } c \in \mathbf{R}$
- 2 $D_x[x^n] = nx^{n-1}$
- 3 $D_x[f+g] = D_x[f] + D_x[g]$

Let's think about differentiation the way your calculus 1 students* think about differentiation:

- 1 $D_x[c] = 0$ if $c \in \mathbf{R}$
- 2 $D_x[x^n] = nx^{n-1}$
- 3 $D_x[f+g] = D_x[f] + D_x[g]$

Let's think about differentiation the way your calculus 1 students* think about differentiation:

- $D_x[c] = 0 \text{ if } c \in \mathbf{R}$
- 2 $D_x[x^n] = nx^{n-1}$
- 3 $D_x[f+g] = D_x[f] + D_x[g]$
- 5 etc.

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_x[-]$ is to know the following rules:

$$D_x[c] = 0 \text{ if } c \in \mathbf{R}$$

2
$$D_x[x^n] = nx^{n-1}$$

3
$$D_x[f+g] = D_x[f] + D_x[g]$$

5 etc.

As algebraists, this is formal symbol moving, not ε -neighborhoods.

Let's think about differentiation the way your calculus 1 students* think about differentiation:

Let $f, g \in \mathbf{R}[x]$. To take a derivative $D_x[-]$ is to know the following rules:

$$D_x[c] = 0 \text{ if } c \in \mathbf{R}$$

2
$$D_x[x^n] = nx^{n-1}$$

3
$$D_x[f+g] = D_x[f] + D_x[g]$$

5 etc.

As algebraists, this is formal symbol moving, not ε -neighborhoods. (But will a geometric picture remain?)

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \to A$). Let M be an A-module.

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \to A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \to M$ such that

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \to A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \to M$ such that

1 $\delta \varphi : k \to M$ is the zero map

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \to A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \to M$ such that

- 1 $\delta \varphi : k \to M$ is the zero map
- 2 δ satisfies the Leibniz rule: for all $f, g \in A$,

$$\delta(fg) = \delta(f)g + f\delta(g).$$

Definition. Let k be a ring. Let A be an k-algebra (i.e., there is a structure map $\varphi: k \to A$). Let M be an A-module. A k-linear derivation of A with coefficients in M is a homomorphism of abelian groups $\delta: A \to M$ such that

- 1 $\delta \varphi : k \to M$ is the zero map
- 2 δ satisfies the Leibniz rule: for all $f, g \in A$,

$$\delta(fg) = \delta(f)g + f\delta(g).$$

This is some of the cal 1 rules... sorta. Is it enough?

Let $f, g \in A$.

1 Sum Rule. $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.

- **1 Sum Rule.** $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

- **1 Sum Rule.** $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$

- **1 Sum Rule.** $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Let $f, g \in A$.

- 1 Sum Rule. $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

Let $f, g \in A$.

- 1 Sum Rule. $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

$$\delta(f^k) = \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1})$$

Let $f, g \in A$.

- **1 Sum Rule.** $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- 2 Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \end{split}$$

Let $f, g \in A$.

- 1 Sum Rule. $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- **2** Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \\ &= \delta(f) f^{k-1} + (k-1) f^{k-1} \delta(f) \end{split}$$

Let $f, g \in A$.

- 1 Sum Rule. $\delta(f+g) = \delta(f) + \delta(g)$, since δ is a homomorphism of abelian groups.
- **2** Power Rule. Let n=2.

$$\delta(f^2) = \delta(f \cdot f) = \delta(f)f + f\delta(f)$$
$$= 2f\delta(f)$$

$$\begin{split} \delta(f^k) &= \delta(f \cdot f^{k-1}) = \delta(f) f^{k-1} + f \delta(f^{k-1}) \\ &= \delta(f) f^{k-1} + f(k-1) f^{k-2} \delta(f) \\ &= \delta(f) f^{k-1} + (k-1) f^{k-1} \delta(f) \\ &= k f^{k-1} \delta(f) \end{split}$$

3 Constant Rule.

3 Constant Rule. What are constants?

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$.

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map.

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi : \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

4 Constant Multiple Rule.

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

4 Constant Multiple Rule.

$$\delta(\varphi(c)\cdot f) = \delta(\varphi(c))f + \varphi(c)\delta(f)$$

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

4 Constant Multiple Rule.

$$\delta(\varphi(c) \cdot f) = \delta(\varphi(c))f + \varphi(c)\delta(f)$$
$$= \varphi(c)\delta(f).$$

3 Constant Rule. What are constants? In the cal 1 example, the constants are $c \in \mathbf{R}$, and polynomials live in $\mathbf{R}[x]$. Since $\mathbf{R}[x]$ is a \mathbf{R} -algebra, \mathbf{R} plays the role of k and $\mathbf{R}[x]$ is A, and $\varphi: \mathbf{R} \to \mathbf{R}[x]$ is the natural map. Even outside the setting of polynomial rings, elements in $\varphi(k) \subseteq A$ are still considered constants. Let $c \in k$.

$$\delta(\varphi(c)) = \delta\varphi(c) = 0.$$

4 Constant Multiple Rule.

$$\delta(\varphi(c) \cdot f) = \delta(\varphi(c))f + \varphi(c)\delta(f)$$
$$= \varphi(c)\delta(f).$$

In almost all contexts we will care about, $\varphi: k \to A$ is injective, so we will typically write c for $\varphi(c)$, and then $\delta(cf) = c\delta(f)$.

Denote the set of all k-linear derivations $\delta:A\to M$ by $\mathrm{Der}_k(A;M).$

Denote the set of all k-linear derivations $\delta: A \to M$ by

$$\operatorname{Der}_k(A;M)$$
.

By the "Constant Multiple Rule," δ is a k-module homomorphism, so $\operatorname{Der}_k(A;M) \subseteq \operatorname{Hom}_k(A,M)$.

Denote the set of all k-linear derivations $\delta: A \to M$ by

$$\operatorname{Der}_k(A;M)$$
.

By the "Constant Multiple Rule," δ is a k-module homomorphism, so $\operatorname{Der}_k(A; M) \subseteq \operatorname{Hom}_k(A, M)$.

Not only that, but $\operatorname{Der}_k(A; M)$ is an A-submodule via the action $(f \cdot \delta)(g) = f\delta(g)$. We can add, subtract, and scale derivations.

Definition of the Kähler differentials Definition. The module of Kähler differentials of A over $k, \ \Omega_{A/k},$

 $\Omega_{A/k}$

Definition. The module of Kähler differentials of A over k, $\Omega_{A/k}$, along with the universal derivation $d: A \to \Omega_{A/k}$, satisfy the following universal property.

$$A \xrightarrow{d} \Omega_{A/k}$$

Definition. The module of Kähler differentials of A over k, $\Omega_{A/k}$, along with the universal derivation $d: A \to \Omega_{A/k}$, satisfy the following universal property.

Let $\delta: A \to M$ be an k-linear derivation.

$$\begin{array}{c}
A \stackrel{d}{\longrightarrow} \Omega_{A/k} \\
\downarrow \\
M
\end{array}$$

Definition. The module of Kähler differentials of A over k, $\Omega_{A/k}$, along with the universal derivation $d: A \to \Omega_{A/k}$, satisfy the following universal property.

Let $\delta:A\to M$ be an k-linear derivation. There exists a unique A-module homomorphism $\Omega_{A/k}\to M$ such that the following diagram commutes.

Definition. The module of Kähler differentials of A over k, $\Omega_{A/k}$, along with the universal derivation $d: A \to \Omega_{A/k}$, satisfy the following universal property.

Let $\delta: A \to M$ be an k-linear derivation. There exists a unique A-module homomorphism $\Omega_{A/k} \to M$ such that the following diagram commutes.

That is, there is an isomorphism of A-modules

$$\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M)$$

given by composition with the universal derivation $d:A \to \Omega_{A/\underline{k}}$.

We should always have universal property concerns!

We should always have universal property concerns!

A super basic exercise: $\Omega_{A/k} = 0$ when $\varphi : k \rightarrow A$.

We should always have universal property concerns!

A super basic exercise: $\Omega_{A/k} = 0$ when $\varphi : k \rightarrow A$. $\varphi(k) = A$ so since $\delta \varphi = 0, \delta : A \rightarrow M$ is 0.

We should always have universal property concerns!

A super basic exercise:
$$\Omega_{A/k} = 0$$
 when $\varphi : k \rightarrow A$. $\varphi(k) = A$ so since $\delta \varphi = 0$, $\delta : A \rightarrow M$ is 0.

$$\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M) = 0$$

We should always have universal property concerns!

A super basic exercise: $\Omega_{A/k} = 0$ when $\varphi : k \rightarrow A$. $\varphi(k) = A$ so since $\delta \varphi = 0$, $\delta : A \rightarrow M$ is 0.

$$\operatorname{Hom}_A(\Omega_{A/k}, M) \cong \operatorname{Der}_k(A; M) = 0$$

But what about in general?

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

$$K = F/\sim$$

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

$$K = F/\sim$$

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

$$K = F/\sim$$

$$\bullet \ d(f+g) = df + dg,$$

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

$$K = F/\sim$$

- $\bullet \ d(f+g) = df + dg,$
- $d(fg) = df \cdot g + f \cdot dg$,

Here's the easiest way to build $\Omega_{A/k}$. Let

$$F = \bigoplus_{f \in A} A \cdot df.$$

Let $d: A \to F$ be d(f) = df. Define

$$K = F/\sim$$

- $\bullet \ d(f+g) = df + dg,$
- $d(fg) = df \cdot g + f \cdot dg$,
- $d\varphi(c) = 0$.

Easy exercise: by construction, K along with the map $d: A \to K$ satisfies the universal property of $\Omega_{A/k}$, d.

Easy exercise: by construction, K along with the map $d: A \to K$ satisfies the universal property of $\Omega_{A/k}$, d.

Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee $d: A \to K$ is a derivation.

Easy exercise: by construction, K along with the map $d: A \to K$ satisfies the universal property of $\Omega_{A/k}$, d.

Idea: this is the formal symbol moving of calculus 1 students. Building K amounts to defining exactly the relations needed, and no more, that guarantee $d: A \to K$ is a derivation.

But this shouldn't necessarily sit well with us: where is the geometry?

Here's the second easiest way to build $\Omega_{A/k}$. Let

$$\mu: A \otimes_k A \to A$$

be
$$\mu(f \otimes g) = fg$$
.

Here's the second easiest way to build $\Omega_{A/k}$. Let

$$\mu: A \otimes_k A \to A$$

be $\mu(f \otimes g) = fg$. Let $I = \ker \mu$. Let

$$K' = I/I^2$$
.

Here's the second easiest way to build $\Omega_{A/k}$. Let

$$\mu: A \otimes_k A \to A$$

be $\mu(f \otimes g) = fg$. Let $I = \ker \mu$. Let

$$K' = I/I^2$$
.

Let $d: A \to K'$ be defined by $d(f) = 1 \otimes f - f \otimes 1$.

Medium exercise: by construction, K' along with the morphism $d: A \to K'$ satisfies the universal property of $\Omega_{A/k}$, d.

Medium exercise: by construction, K' along with the morphism $d:A\to K'$ satisfies the universal property of $\Omega_{A/k},d$. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

Medium exercise: by construction, K' along with the morphism $d: A \to K'$ satisfies the universal property of $\Omega_{A/k}$, d. Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I/I^2 ? There's geometry here!

Medium exercise: by construction, K' along with the morphism $d: A \to K'$ satisfies the universal property of $\Omega_{A/k}$, d.

Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I/I^2 ? There's geometry here!

Thinking in terms of elements of a ring as functions, the module I/I^2 amounts to functions which vanish modulo vanishing to second order.

Medium exercise: by construction, K' along with the morphism $d: A \to K'$ satisfies the universal property of $\Omega_{A/k}$, d.

Algebraic idea: the differential hints that it's ultimately the same algebraic relations, since d forces the Leibniz rule.

But why I/I^2 ? There's geometry here!

Thinking in terms of elements of a ring as functions, the module I/I^2 amounts to functions which vanish modulo vanishing to second order.

You can think: take a Taylor series and truncate it to get the first order differentiation. We'll see more geometry later!

Let $A = k[x_1, ..., x_n]$. What is $\Omega_{A/k}$? We claim it is

 $A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n$.

Let $A = k[x_1, ..., x_n]$. What is $\Omega_{A/k}$? We claim it is

$$A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n$$
.

Let $M = Adx_1 \oplus \cdots \oplus Adx_n$. The partial derivative $\partial_i : A \to Adx_i$ is a derivation, so $\delta = \sum \partial_i$ is a derivation $A \to M$.

$$A$$

$$\delta \downarrow$$

$$A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n$$

Let $A = k[x_1, ..., x_n]$. What is $\Omega_{A/k}$? We claim it is

$$A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n$$
.

Let $M = Adx_1 \oplus \cdots \oplus Adx_n$. The partial derivative $\partial_i : A \to Adx_i$ is a derivation, so $\delta = \sum \partial_i$ is a derivation $A \to M$.

Using the universal property, we get a unique A-module map ψ such that the diagram commutes.

Let $A = k[x_1, ..., x_n]$. What is $\Omega_{A/k}$? We claim it is

$$A \cdot dx_1 \oplus \cdots \oplus A \cdot dx_n$$
.

Let $M = Adx_1 \oplus \cdots \oplus Adx_n$. The partial derivative $\partial_i : A \to Adx_i$ is a derivation, so $\delta = \sum \partial_i$ is a derivation $A \to M$.

Using the universal property, we get a unique A-module map ψ such that the diagram commutes.

Let $\Omega_{A/k} \cong \bigoplus Adf/\sim$, which was our first construction.

 ψ is injective: If $\psi(df) = 0$, then $\delta(f) = 0$, so $\partial_i(f) = 0 dx_i$ for all i. Thus f is x_i -free, i.e., $f \in k$, so df = 0 in $\bigoplus A df / \sim$.

$$\psi\left(dx_{i}\right) = \delta\left(x_{i}\right)$$

$$\psi(dx_i) = \delta(x_i)$$
$$= \sum_{j=1}^{n} \partial_j(x_i)$$

$$\psi(dx_i) = \delta(x_i)$$

$$= \sum_{j=1}^{n} \partial_j(x_i)$$

$$= 1 \cdot dx_i.$$

 ψ is injective: If $\psi(df) = 0$, then $\delta(f) = 0$, so $\partial_i(f) = 0 dx_i$ for all i. Thus f is x_i -free, i.e., $f \in k$, so df = 0 in $\bigoplus A df / \sim$. ψ is surjective: $A dx_1 \oplus \cdots \oplus A dx_n$ has an A-basis $\{1 dx_1, \ldots, 1 dx_n\}$. The element $dx_i \in \bigoplus A df / \sim$ satisfies

$$\psi(dx_i) = \delta(x_i)$$

$$= \sum_{j=1}^{n} \partial_j(x_i)$$

$$= 1 \cdot dx_i.$$

so $\{dx_1,\ldots,dx_n\}\subseteq\bigoplus Adf/\sim$ maps to the basis $\{1dx_1,\ldots,1dx_n\}$ under ψ .

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

$$df = \sum_{i,j} c_{ij} d\left(x^i y^j\right)$$

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$

Construction of the Kähler differentials Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$.

If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

$$df = \sum_{i,j} c_{ij} d(x^{i}y^{j}) = \sum_{i,j} c_{ij} (d(x^{i}) y^{j} + x^{i} d(y^{j}))$$
$$= \sum_{i,j} c_{ij} (ix^{i-1}y^{j} dx + x^{i} j y^{j-1} dy)$$

Construction of the Kähler differentials Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So $\Omega_{A/k}$ is generated as an A-module by dx and dy.

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d(x^{i}y^{j}) = \sum_{i,j} c_{ij} (d(x^{i}) y^{j} + x^{i} d(y^{j}))$$
$$= \sum_{i,j} c_{ij} (ix^{i-1}y^{j} dx + x^{i} j y^{j-1} dy)$$

So $\Omega_{A/k}$ is generated as an A-module by dx and dy. Since $y-x^2=0$ in A, expect $d(y-x^2)=dy-2xdx=0$ in $\Omega_{A/k}$.

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So $\Omega_{A/k}$ is generated as an A-module by dx and dy. Since $y-x^2=0$ in A, expect $d(y-x^2)=dy-2xdx=0$ in $\Omega_{A/k}$. Indeed, one can check that

$$\Omega_{A/k} \to A \cdot dx \oplus A \cdot dy \twoheadrightarrow A \cdot dx \oplus A \cdot dy/(dy - 2xdx)$$

is an isomorphism.

Another example (goal: to generalize)! Let $A = k[x, y]/(y - x^2)$. If $f \in A$, then we can represent

$$f = \sum_{i,j} c_{ij} x^i y^j.$$

An explicit computation:

$$df = \sum_{i,j} c_{ij} d\left(x^{i} y^{j}\right) = \sum_{i,j} c_{ij} \left(d\left(x^{i}\right) y^{j} + x^{i} d\left(y^{j}\right)\right)$$
$$= \sum_{i,j} c_{ij} \left(i x^{i-1} y^{j} dx + x^{i} j y^{j-1} dy\right)$$

So $\Omega_{A/k}$ is generated as an A-module by dx and dy. Since $y-x^2=0$ in A, expect $d(y-x^2)=dy-2xdx=0$ in $\Omega_{A/k}$. Indeed, one can check that

$$\Omega_{A/k} \to A \cdot dx \oplus A \cdot dy \twoheadrightarrow A \cdot dx \oplus A \cdot dy/(dy - 2xdx)$$

is an isomorphism. But that doesn't generalize...

Theorem. Let $k \to R \to S$ be ring maps. The following sequence of S-modules is exact.

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

Theorem. Let $k \to R \to S$ be ring maps. The following sequence of S-modules is exact.

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

Proof.

[00RS].

Before we see #2, let's see an example (which motivates #2).

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to \Omega_{A/k[x,y]} \to 0.$$

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to \Omega_{A/k[x,y]} \to 0.$$

$$k[x,y] \twoheadrightarrow A$$
, so $\Omega_{A/k[x,y]} = 0$.

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

$$k[x,y] \rightarrow A$$
, so $\Omega_{A/k[x,y]} = 0$.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \twoheadrightarrow A$, so $\Omega_{A/k[x,y]} = 0$. We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

$$(k[x,y]\cdot dx \oplus k[x,y]\cdot dy) \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

$$k[x,y] \twoheadrightarrow A$$
, so $\Omega_{A/k[x,y]} = 0$.
We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(k[x,y]\cdot dx \oplus k[x,y]\cdot dy) \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \rightarrow \Omega_{A/k} \rightarrow 0 \rightarrow 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$A \cdot dx \oplus A \cdot dy \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A,

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$\Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(f) \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(f) \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x,y]-module. So we base change to A.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(f) \otimes_{k[x,y]} A \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x,y]-module. So we base change to A.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x,y]-module. So we base change to A.

Before we see #2, let's see an example (which motivates #2). Let $k \hookrightarrow k[x,y] \twoheadrightarrow k[x,y]/(f) = A$ be ring maps. By the FFES,

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \xrightarrow{\psi} \Omega_{A/k} \to 0 \to 0.$$

 $k[x,y] \rightarrow A$, so $\Omega_{A/k[x,y]} = 0$.

We also know $\Omega_{k[x,y]/k} \cong k[x,y]dx \oplus k[x,y]dy$.

Distribute and compute the tensor product base change.

Therefore $\Omega_{A/k}$ is a quotient of $Adx \oplus Ady$. If we knew the kernel of ψ , we'd be happy.

Since f = 0 in A, $df \otimes 1 \in \Omega_{k[x,y]/k} \otimes A$ maps to 0 under ψ . So we might hope to define the following map.

But (f) isn't an A-module, it's a k[x, y]-module. So we base change to A.

Now the above sequence is exact.

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0$$

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get:

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get:

$$(f)_{f^2} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get:

Theorem. Let R woheadrightarrow S be a map of k-algs. Let $I = \ker(R woheadrightarrow S)$. The following sequence of S-modules is exact.

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

$$(f)_{(f^2)} \to \Omega_{k[x,y]/k} \otimes_{k[x,y]} A \to \Omega_{A/k} \to 0$$

What happens when $A \neq k[x,y]/(f)$? E.g., $k[x,y]/(f_1,\ldots,f_s)$? Or, more generally, ring maps $k \to R \twoheadrightarrow S$? The FFES gives us

$$\Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Repeat the same argument as before. We get:

Theorem. Let R woheadrightarrow S be a map of k-algs. Let $I = \ker(R woheadrightarrow S)$. The following sequence of S-modules is exact.

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Proof.

[00RU].

$$I_{I_2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$
Corollary. If $A \cong k[x_1, \dots, x_n]/(f_1, \dots, f_s)$, then
$$\Omega_{A/k} \cong \operatorname{coker} \left[\frac{\partial f_i}{\partial x_j} \right].$$

$$I_{I^2} \xrightarrow{f \mapsto df \otimes 1} \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0$$

Corollary. If $A \cong k[x_1, \ldots, x_n]/(f_1, \ldots, f_s)$, then

$$\Omega_{A/k} \cong \operatorname{coker} \left[\frac{\partial f_i}{\partial x_j} \right].$$

Proof.

Let $R = k[x_1, \ldots, x_n]$, S = A, and observe that

$$df_i = \sum_{j=1}^s \frac{\partial f_i}{\partial x_j} dx_j.$$

The second fundamental exact sequence Examples are now easy:

Examples are now easy:

1 If
$$A = k[x, y]/(x^2 - y^3)$$
, then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

Examples are now easy:

1 If $A = k[x, y]/(x^2 - y^3)$, then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

2 If A' = k[x, y, z]/(xy, xz, yz), then

$$\Omega_{A'/k} \cong \frac{A'dx \oplus A'dy \oplus A'dz}{(xdy + ydx, xdz + zdx, ydz + zdy)}.$$

Examples are now easy:

1 If $A = k[x, y]/(x^2 - y^3)$, then

$$\Omega_{A/k} \cong \frac{Adx \oplus Ady}{(2xdx - 3y^2dy)}.$$

2 If A' = k[x, y, z]/(xy, xz, yz), then

$$\Omega_{A'/k} \cong rac{A'dx \oplus A'dy \oplus A'dz}{(xdy + ydx, xdz + zdx, ydz + zdy)}.$$

3 If $A'' = k[x_1, \dots, x_n]/(f_1, \dots, f_s)$, then

$$\Omega_{A''/k} \cong \frac{A''dx_1 \oplus \cdots A''dx_n}{(df_1, \dots, df_s)}.$$

Geometry can be made more explicit:

Geometry can be made more explicit:

Suppose (R, \mathfrak{m}, k) is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs $k \to R \twoheadrightarrow R/\mathfrak{m} = k$, we get

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to \Omega_{k/k} = 0$$

Geometry can be made more explicit:

Suppose (R, \mathfrak{m}, k) is a local ring, so it can be understood as in correspondence with a point x of some LRS X. Using the map of k-algs $k \to R \twoheadrightarrow R/\mathfrak{m} = k$, we get

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to \Omega_{k/k} = 0$$

But φ is injective too! To see this, we'll use the fact that $\operatorname{Hom}(-,k)$ is left exact, and check that

$$\operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

is surjective.

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$
$$0 \to \operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

$$\mathfrak{m}/\mathfrak{m}^{2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_{R} k \to 0$$
$$0 \to \operatorname{Hom}_{k}(\Omega_{R/k} \otimes_{R} k, k) \xrightarrow{\varphi_{*}} \operatorname{Hom}_{k}(\mathfrak{m}/\mathfrak{m}^{2}, k)$$

Why $\operatorname{Hom}(-, k)$?!?!

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$
$$0 \to \operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

Why $\operatorname{Hom}(-,k)$?!?! Because $\mathfrak{m}/\mathfrak{m}^2$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k)$ is the tangent space, so it's reasonable to look at.

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$
$$0 \to \operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

Why $\operatorname{Hom}(-,k)$?!?! Because $\mathfrak{m}/\mathfrak{m}^2$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k)$ is the tangent space, so it's reasonable to look at.

Idea: To show φ_* is surjective, we show any k-linear morphism $\psi: \mathfrak{m}/\mathfrak{m}^2 \to k$ lifts to $\Omega_{R/k} \otimes_R k \to k$. Define a map $R \to k$ by r = a + b for $a \in k$ and $b \in \mathfrak{m}$; check that $r \mapsto \psi(b)$ is a derivation. Then show φ_* is surjective via universal property of $\Omega_{R/k}$.

$$\mathfrak{m}_{\mathfrak{m}^2} \xrightarrow{\varphi} \Omega_{R/k} \otimes_R k \to 0$$
$$0 \to \operatorname{Hom}_k(\Omega_{R/k} \otimes_R k, k) \xrightarrow{\varphi_*} \operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2, k)$$

Why $\operatorname{Hom}(-,k)$?!?! Because $\mathfrak{m}/\mathfrak{m}^2$ is the Zariski cotangent space at x, and its k-vector space dual $\operatorname{Hom}_k(\mathfrak{m}/\mathfrak{m}^2,k)$ is the tangent space, so it's reasonable to look at.

Idea: To show φ_* is surjective, we show any k-linear morphism $\psi: \mathfrak{m}/\mathfrak{m}^2 \to k$ lifts to $\Omega_{R/k} \otimes_R k \to k$. Define a map $R \to k$ by r = a + b for $a \in k$ and $b \in \mathfrak{m}$; check that $r \mapsto \psi(b)$ is a derivation. Then show φ_* is surjective via universal property of $\Omega_{R/k}$.

So Kähler differentials tell us geometry! $\Omega_{R/k} \otimes_R k \cong \mathfrak{m}/\mathfrak{m}^2$ is the cotangent space.

 $\Omega_{A/k}$ is differentiation in module form. From last year's CARES: J^1A is differentiation in k-algebra form. One might wonder: is there a connection?

 $\Omega_{A/k}$ is differentiation in module form. From last year's CARES: J^1A is differentiation in k-algebra form. One might wonder: is there a connection? Yes! And it's exactly what you hope. The functor Sym: $\mathbf{Mod}_k \to \mathbf{Alg}_k$ is the natural way to take a module to an algebra. And indeed,

$$J^1A \cong \operatorname{Sym} \Omega_{A/k}$$
.

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega^p_{A/k}$ be the pth exterior power of $\Omega_{A/k}$ in the category of A-modules.

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega_{A/k}^p$ be the pth exterior power of $\Omega_{A/k}$ in the category of A-modules.

The differential $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$ satisfies $d^2 = 0$ and there is a multiplicative map $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$, so we get a differential graded algebra / cochain complex $\Omega^{\bullet}_{A/k}$.

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega^p_{A/k}$ be the pth exterior power of $\Omega_{A/k}$ in the category of A-modules.

The differential $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$ satisfies $d^2 = 0$ and there is a multiplicative map $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$, so we get a differential graded algebra / cochain complex $\Omega^{\bullet}_{A/k}$.

Taking cohomology gives us de Rham cohomology

$$h^i(\Omega_{A/k}^{\bullet}) \coloneqq H^i_{dR}(A/k).$$

You can also build out differential forms à la Calculus 3 in the natural way. Let $\Omega^p_{A/k}$ be the pth exterior power of $\Omega_{A/k}$ in the category of A-modules.

The differential $d: \Omega^p_{A/k} \to \Omega^{p+1}_{A/k}$ satisfies $d^2 = 0$ and there is a multiplicative map $\Omega^p_{A/k} \otimes_A \Omega^q_{A/k} \to \Omega^{p+q}_{A/k}$, so we get a differential graded algebra / cochain complex $\Omega^{\bullet}_{A/k}$.

Taking cohomology gives us de Rham cohomology

$$h^i(\Omega_{A/k}^{\:\raisebox{3.5pt}{\text{\circle*{1.5}}}}) \coloneqq H^i_{dR}(A/k).$$

Connect this to Duncan's 15 Sept talk about the Koszul complex and Čech / sheaf cohomology!

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$#1: k \to R \to S \Rightarrow \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0.$$

$$#2: k \to R \xrightarrow{\psi} S \Rightarrow \ker \psi /_{\ker \psi^2} \to \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0.$$

Homological algebra and derived functors: we have two sequences which are exact on the right:

$$#1: k \to R \to S \Rightarrow \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to \Omega_{S/R} \to 0.$$

$$#2: k \to R \xrightarrow{\psi} S \Rightarrow \ker \psi /_{\ker \psi^2} \to \Omega_{R/k} \otimes_R S \to \Omega_{S/k} \to 0.$$

You might want to extend to long exact sequences. This is kinda funky since \mathbf{Alg}_k is not an abelian category. But it can be done homotopically. You get something called the cotangent complex $\mathbf{L}_{A/k}$.

Thank you!

Exact sequences. The Stacks project https://stacks.math.columbia.edu Tags: [00RS] [00RU]

Jet spaces. Jet schemes and singularities, Lawrence Ein & Mircea Mustață $\mathbf{Ex}\ 2.5$

Homotopy and $\mathbf{L}_{A/k}$. An introduction to homological algebra, Charles Weibel §8.8.

DAG IV: Deformation Theory, Jacob Lurie