Практика № 2

Программа с использованием виртуальных функций и абстрактных классов

абстрактный Определить базовый класс моделирующий Shape, абстрактную геометрическую фигуру. Указанный класс содержит компонент (символьная строка), char* значением которого наименование фигуры. Класс должен содержать конструктор по умолчанию, заполняющий строку name значением "Фигура не определена", конструктор, заполняющий строку наименованием фигуры (например, "Круг", "Треугольник", "Трапеция" и т.д.), виртуальный деструктор, а также метод SaveToFile(), который записывает в текстовый файл наименование фигуры, значения её площади и периметра, вычисляемых при помощи чистых виртуальных функций Area и Perimeter, которые конкретизируются в производных от Shape классах. Имя файла передается из командной строки.

Необходимо определить три производных класса, моделирующие определенные геометрические фигуры в соответствие с вариантом задания. Каждый производный от **Figure** класс должен содержать **необходимые** компонентные данные, конструктор по умолчанию, конструктор с параметрами, инициализирующий собственные компонентные данные и обеспечивающий инициализацию компонентной переменной базового класса, деструктор и переопределения унаследованных из базового класса чистых виртуальных функций **Area** и **Perimeter**

В функции **main** необходимо создать статический массив из указателей на объекты базового класса, выполнив их инициализацию адресами объектов производных классов таким образом, чтобы продемонстрировать вызовы конструкторов по умолчанию и конструкторов с параметрами для всех разработанных производных классов и продемонстрировать тем самым "приведение вверх" при вызовах метода **SaveToFile()** объектов базового класса, приведенных к типу производного.

Примерный вид полученного в результате файла приведен на рисунке.

Варианты заданий

№ вари- анта	Фигура 1 (способ вычис- ления площади)	Фигура 2 (способ вычис- ления площади)	Фигура 3 (способ вычис- ления площади)
1	Равносторонний тре- угольник (по высоте)	Произвольная трапеция (по четырем сторонам)	Сектор кольца (по двум радиусам и углу)
2	Произвольный треугольник (по стороне и двум углам)	Правильный много- угольник (по стороне)	Сектор круга (по углу и радиусу)
3	Произвольная трапеция (по двум сторонам и высоте)	Сегмент круга (по углу и радиусу)	Произвольный треугольник (формула Герона)
4	Параллелограмм (стороне и высоте)	Сектор круга (по углу и радиусу)	Равнобедренная трапеция (через стороны)
5	Параллелограмм (через диагонали и углы между ними)	Кольцо ^Т (по двум радиу- сам)	Равнобедренный тре- угольник (по высоте и основанию)
6	Ромб (по двум диагоналям)	Равнобедренный тре- угольник (по высоте и основанию)	Сектор кольца (по двум радиусам и углу)
7	Ромб (по двум непарал- лельным сторонам и уг- лу между ними)	Сегмент круга (по углу и радиусу)	Прямоугольный тре- угольник (по катетам)
8	Ромб (по одной диагона- ли и углу)	Сектор кольца (по двум радиусам и углу)	Равносторонний тре- угольник (по высоте и основанию)
9	Произвольная трапеция (по двум основаниям и высоте)	Прямоугольный тре- угольник (по гипотенузе и двум прилежащим уг- лам)	Ромб (по двум диагоналям)
10	Равнобедренная трапеция (через стороны)	Равносторонний тре- угольник (по высоте и основанию)	Параллелограмм (по двум непараллельным сторонам и углу между ними)
11	Произвольная трапеция (по двум диагоналям и углу между ними)	Произвольный треугольник (по двум сторонам и углу между ними)	Круг (по радиусу)
12	Произвольная трапеция (по четырем сторонам)	Произвольный треугольник (по высоте и основанию)	Правильный много- угольник (по стороне и количеству сторон)
13	Правильный много- угольник (по радиусу описанной окружности и количеству сторон)	Равнобедренный тре- угольник (по двум раз- ным сторонам)	Ромб (по одной диагона- ли и углу)
14	Сегмент круга (по углу и радиусу)	Равносторонний тре- угольник (по стороне)	Параллелограмм (по двум непараллельным сторонам и углу между ними)
15	Сектор круга (по углу и радиусу)	Равносторонний тре- угольник (по стороне)	Параллелограмм (по стороне и высоте)

-

 $^{^{1}}$ Под периметром кольца условно понимаем сумму длин окружностей, которые образуют кольцо.

№ вари-	Фигура 1 (способ вычис-	Фигура 2 (способ вычис-	Фигура 3 (способ вычис-
анта	ления площади)	ления площади)	ления площади)
16	Кольцо (по двум радиу-	Произвольный треуголь-	Параллелограмм (через
	сам)	ник (по двум сторонам и	диагонали и углы между
		углу между ними)	ними)
17	Сектор кольца (по двум	Произвольный треуголь-	Ромб (по двум диагона-
	радиусам и углу)	ник (по высоте и основанию)	лям)
18	Произвольная трапеция	Параллелограмм (через	Произвольный треуголь-
	(по четырем сторонам)	диагонали и углы между ними)	ник (формула Герона)
19	Произвольная трапеция	Параллелограмм (по	Ромб (по двум непарал-
	(по четырем сторонам)	двум непараллельным	лельным сторонам и уг-
		сторонам и углу между	лу между ними)
		ними)	
20	Равнобедренный тре-	Прямоугольный тре-	Ромб (по одной диагона-
	угольник (по высоте и	угольник (по катету, ги-	ли и противолежащему
	основанию)	потенузе и углу между	углу)
		ними)	
21	Сегмент круга (по углу и	Ромб (по двум непарал-	Произвольная трапеция
	радиусу)	лельным сторонам и уг-	(по двум сторонам и вы-
		лу между ними)	соте)
22	Равносторонний тре-	Ромб (по одной диагона-	Правильный много-
	угольник (по высоте и	ли и углу)	угольник (по стороне)
	основанию)		
23	Произвольный треуголь-	Параллелограмм (по	Произвольная трапеция
	ник (по двум сторонам и	двум непараллельным	(по двум диагоналям и
	углу между ними)	сторона и углу между	углу между ними)
		ними)	
24	Параллелограмм (по	Равнобедренная трапе-	Равнобедренный тре-
	стороне и высоте)	ция (через стороны)	угольник (по двум раз-
			ным сторонам)
25	Равносторонний тре-	Произвольная трапеция	Ромб (по двум диагона-
	угольник (по стороне)	(по двум диагоналям и	лям)
		углу между ними)	

Формулы для расчета площадей плоских фигур приведены в приложении 1. При расчетах необходимо помнить, что мерой параметра тригонометрических функций из библиотеки **<math.h>** является **радиан**. В качестве значения числа π в программе необходимо использовать предопределенную константу **M_PI** (определена в библиотеке **<math.h>**).

Произвольный треугольник (формула Герона)	a b	$S = \sqrt{p(p - a)(p - b)(p - c)}$
Равнобедренный треугольник (по высоте и основанию)	a h	$S = \frac{1}{2}bh$
Равнобедренный треугольник (по двум разным сторонам)	a h	$S = \frac{b}{4}\sqrt{4a^2 - b^2}$
Равносторонний треугольник (по стороне)	a h a	$S = \frac{\sqrt{3}}{4} a^2$
Равносторонний треугольник (по высоте)	a h a	$S = rac{h^2}{\sqrt{3}}$
Произвольный треугольник (по двум сторонам и углу между ними)	a B c	$S = \frac{1}{2} \frac{bc}{sin(\alpha)}$

Произвольный треугольник (по стороне и двум углам)	a V B	$S = \frac{\alpha^2}{2} \cdot \frac{\sin(\beta)\sin(\gamma)}{\sin(\beta + \gamma)} = \frac{\alpha^2}{2} \cdot \frac{\sin(\beta)\sin(\gamma)}{\sin(\alpha)}$
Параллелограмм (по двум непараллельным сторона и углу между ними)	b a a b	$S = ab \cdot \sin \alpha = ab \cdot \sin \beta$
Параллелограмм (через диагонали и углы между ними)	a d B	$S = \frac{1}{2}Dd \cdot \sin \alpha = \frac{1}{2}Dd \cdot \sin \beta$
Ромб (по двум диагоналям)	a a a a	$S = \frac{D \cdot d}{2}$
Ромб (по двум непараллельным сторонам и углу между ними)	a a a	$S = a^2 \sin \alpha = a^2 \sin \beta$
Ромб (по одной диагонали и уг-лу)	a a a a	$S = \frac{1}{2}D^2 tg(\alpha/2) = \frac{1}{2}d^2 tg(\beta/2)$

Равнобедренная трапеция (через стороны)	c d c a	$S = \frac{a+b}{2}\sqrt{c^2 - \frac{(a-b)^2}{4}}$
Произвольная трапеция (по четырем сторонам)	c d	$S = \frac{a+b}{2} \sqrt{c^2 - \left(\frac{(a-b)^2 + c^2 - d^2}{2(a-b)}\right)^2}$
Произвольная трапеция (по двум диагоналям и углу между ними)	d ₁ B d ₂	$S = \frac{d_1 d_2}{2} sin\alpha = \frac{d_1 d_2}{2} sin\beta$
Правильный многоугольник (по стороне)	a a a	$S = \frac{n\alpha^2}{4 \operatorname{tg}(\frac{180^{\circ}}{n})}$
Сегмент круга	A R O	$S = \frac{1}{2} R^2 \left(\frac{\pi \alpha}{180^{\circ}} - \sin \alpha \right)$
Сектор круга (по углу и радиусу)	A O	$S = \frac{\pi r^2 \alpha}{360^{\circ}}$

Кольцо (по двум радиусам)	O R	$S = \pi(R^2 - r^2)$
Сектор кольца (по двум радиу- сам и углу)	A r O	$S = \frac{\pi\alpha}{360^{\circ}} (\mathbf{R}^2 - \mathbf{r}^2)$