CONJUNTOS-RELACIONES-FUNCIONES

Profesores del curso:

Ronald Mass ¹

Ángel Ramírez ¹

¹Universidad Nacional de Ingeniería, Lima, Perú

30/03/2020

Tabla de contenidos

- Conjuntos
- 2 Relaciones
- 3 Funciones

Un **conjunto** está formado de objetos que son llamados elementos del conjunto.

La relación básica entre un conjunto y un objeto es la **relación de pertenencia**.

Cuando un objeto x es uno de los elementos de un conjunto A, decimos que x **pertenece** a A y se denota por $x \in A$.

Caso contrario, cuando un objeto x no es uno de los elementos de un conjunto A, decimos que x no pertenece a A y se denota por $x \notin A$.

El método más frecuente de definir un conjunto es por medio de una propiedad común y exclusiva de sus elementos.

Siendo más preciso, partiendo de una propiedad P definimos el conjunto A del modo que sigue:

Si un objeto x satisface la propiedad P entonces $x \in A$, y si x no satisface P entonces $x \notin A$

lo anterior se expresa: $A = \{x \mid x \text{ satisface la propiedad } P\}.$

En ocasiones, la propiedad P se refiere a elementos de un cierto conjunto universal U, en cuyo caso:

$$A = \{x \in U \mid x \text{ satisface la propiedad } P\}$$

Ejemplos:

- **1** $\mathbb{N} = \{1, 2, \dots, \}, \mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}, \text{ etc.}$
- ② Definamos: *U*: conjunto de todos los triángulos. Sea la propiedad *P*: Es un triángulo rectángulo. Luego:
 A = {x ∈ U / x satisface la propiedad P} = Conjunto de todos los triángulos rectángulos.
- Se En cálculo se trabajan con conjuntos de la forma:

$$[a, b] = \{x \in \mathbb{R} / a \le x \le b\}$$

$$[a, b) = \{x \in \mathbb{R} / a \le x < b\}$$

$$\langle a, b] = \{x \in \mathbb{R} / a < x \le b\}$$

$$\langle a, b\rangle = \{x \in \mathbb{R} / a < x < b\}$$

Definition 1 (Conjunto vacío)

Denotado por Ø, es definido así:

Para todo x se cumple que $x \notin \emptyset$

Ejemplo: $\emptyset = \{ x \in \mathbb{N} \ / \ 1 < x < 2 \}.$

Definition 2 (Inclusión)

A es subconjunto de B cuando todo elemento de A es elemento de B. Se denota por $A \subset B$ y se lee "A está contenido en B".

Ejemplo: Sean X conjunto de todos los cuadrados e Y conjunto de todos los rectángulos, entonces $X \subset Y$.

Observación: $A \subset B$ no excluye la posibilidad que A = B. En el caso que $A \subset B$ y $A \neq B$ se dice que A es un subconjunto propio de B. 4□ > 4□ > 4 = > 4 = >

Propiedades de la inclusión:

Se cumple:

- **1** Es reflexiva: $A \subset A$ para todo conjunto A.
- **2** Antisimétrica: Si $A \subset B$ y $B \subset A$ entonces A = B.
- **3** Transitiva: Si $A \subset B$ y $B \subset C$ entonces $A \subset C$.

Definition 3 (Conjunto de partes)

Dado un conjunto A, se denota por $\mathcal{P}(A)$ al conjunto cuyos elementos son los subconjuntos de A.

Observación: $\mathcal{P}(A)$ nunca es vacío porque $\emptyset \in \mathcal{P}(A)$ y $A \in \mathcal{P}(A)$.

Ejemplo: Si $A = \{1, 2, 3\}$ entonces

$$\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Operaciones entre conjuntos

Definition 4 (Unión)

Denotado por $A \cup B$ y está formado por los elementos de A con los elementos de B, es decir:

$$A \cup B = \{x \mid x \in A \quad \lor \quad x \in B\}.$$

Definition 5 (Intersección)

Denotado por $A \cup B$ y está formado por los elementos comunes de A y de B, es decir:

$$A \cap B = \{x \mid x \in A \quad \land \quad x \in B\}.$$

Observación: En el caso que A y B no tienen elementos comunes, entonces $A \cap B = \emptyset$.

Operaciones entre conjuntos

Definition 6 (Diferencia)

Denotado por A-B y está formado por los elementos de A que no pertenecen a B, es decir:

$$A - B = \{x / x \in A \quad \lor \quad x \notin B\}.$$

Definition 7 (Complemento)

Si $B \subset A$ entonces A - B se llama el complemento de B en relación a A. Esto se denota C_AB .

Observación: Es usual tener un conjunto universal U, en este caso, el complemento de A es denotado por CA o A^c . Por tanto, $x \in A^c \Leftrightarrow x \notin A$.

Propiedades de conjuntos

Con la unión:

- **2** $A \cup A = A$.

- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Con la intersección:

- $A \cap A = A.$
- $A \cap B = B \cap A.$

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

Propiedades de conjuntos

Con el complemento:

Sean A, B subconjuntos de un conjunto universal U, luego:

- $(A^c)^c = A.$
- $\textbf{2} \ A \subset B \Leftrightarrow B^c \subset A^c.$
- $(A \cup B)^c = A^c \cap B^c.$
- $(A \cap B)^c = A^c \cup B^c.$

Tamaño de un conjunto

Sea A un conjunto. Si A tiene exactamente n elementos distintos, donde $n \in \mathbb{N}$, decimos que A es un **conjunto finito** y n es la **cardinalidad** de A. La cardinalidad de A es denotada por |A|.

Un conjunto A es **infinito** cuando no es finito.

Producto cartesiano:

El **producto cartesiano** de dos conjuntos A y B es el conjunto $A \times B$ definido por:

$$A \times B = \{(a, b) / a \in A \land b \in B\}.$$

Cuando A = B se tiene el producto cartesiano $A^2 = A \times A$. El subconjunto $\Delta \subset A \times A$ definido por:

$$\Delta = \{(a, a) / a \in A\}$$

es llamado diagonal de A^2 .

El **producto cartesiano** de los conjuntos A_1, A_2, \ldots, A_n denotado por $A_1 \times A_2 \times \ldots \times A_n$, es definido por:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) / a_i \in A_i \text{ para } i = 1, 2, \ldots, n\}.$$

Tabla de contenidos

- Relaciones • Tipos de relaciones

Un subconjunto R del producto cartesiano $A \times B$ es llamado una relación del conjunto A en el conjunto B. Es decir, los elementos de R son pares ordenados (a,b) donde el primer elemento $a \in A$ y el segundo elemento $b \in B$.

Ejemplo 1:

Sea $A = \{a, b, c, d, e\}$ y $B = \{0, 1, 2, 3, 4\}$ entonces:

$$A \times B = \left\{ \begin{array}{l} (a,0), (a,1), (a,2), (a,3), (a,4), \\ (b,0), (b,1), (b,2), (b,3), (b,4), \\ (c,0), (c,1), (c,2), (c,3), (c,4), \\ (d,0), (d,1), (d,2), (d,3), (d,4), \\ (e,0), (e,1), (e,2), (e,3), (e,4) \end{array} \right\}$$

 $R = \{(a,0), (a,1), (a,3), (b,1), (b,2), (c,0), (c,3)\} \subset A \times B$, así R es una relación de A en B.

El ejemplo anterior ilustra que una relación R no contiene un par (x, y) para todo elemento de $x \in A$.

Una relación de A en sí mismo es llamado una relación en A.

Un par ordenado $(a, b) \in R$ es denotado por aRb.

Ejemplo 2: Del Ejemplo 1, calcule los pares (a, b) de la relación R sobre A donde $aRb \Leftrightarrow a \leq b$.

$$R = \left\{ \begin{array}{l} (0,0), (0,1), (0,2), (0,3), \\ (1,1), (1,2), (1,3), \\ (2,2), (2,3), (3,3) \end{array} \right\}$$

Definition 8

Si R es una relación de A en B y S una relación de B en C, la composición de R con S denotada por $R \circ S$ es una relación de A en C definida por:

$$R \circ S = \{(x,y) \mid \exists z \in B \quad tal \ que \quad (x,z) \in R \quad y \quad (y,z) \in S\}.$$

Definition 9 (Relación inversa R^{-1} .)

Sea R una relación de A en B. Definimos la relación inversa R^{-1} de B en A como sigue: $R^{-1} = \{(b, a) \in B \times A / (a, b) \in R\}$. De forma equivalente:

para todo $a \in A$ y $b \in B : (b, a) \in R^{-1} \Leftrightarrow (a, b) \in R$.

Definition 10

R es llamada Reflexiva si y sólo si para todo $a \in A$: aRa.

Definition 11

R es llamada Simétrica si y sólo si para todo a, $b \in A$: si aRb entonces bRa.

Definition 12

R es llamada Transitiva si y sólo si para todo a, b, $c \in A$: Si aRb y bRc entonces aRc.

Definition 13

R es llamada Antisimétrica si y sólo si para todo a, $b \in A$: Si aRb y bRa entonces aRb.

Tipos de relaciones

Ejemplo:

Defina una relación R sobre \mathbb{R} como sigue: para todo número real a,b:

$$aRb \Leftarrow a = b$$
.

Ejemplo:

Defina una relación T sobre \mathbb{Z} como sigue: Para todos los enteros $m, n \in \mathbb{Z}$:

$$mTn \Leftrightarrow 3|(m-n).$$

Esta relación es llamada **congruencia módulo 3**. ¿ T es reflexiva?. ¿ T es simétrica?. ¿ T es transitiva?.

Tabla de contenidos

- Conjuntos
- 2 Relaciones
- 3 Funciones

Función:

Una función f de un conjunto X hacia un conjunto Y denotado por $f:X\to Y$, es una relación de X en Y que satisface dos propiedades:

- Todo elemento en X está relacionado con algún elemento de Y.
- 2 Ningún elemento en X está relacionado con más de un elemento de Y.

Es decir, cualquier elemento $x \in X$ está relacionado con un único elemento $y \in Y$ por la relación f y decimos que f envía x hacia y o que f mapea x en y y se denota $f: x \to y$. El único elemento $y \in Y$ para el cual f envía x es denotado por f(x), es decir: y = f(x).

Definiciones:

Sea f una función de X en Y.

- El conjunto X es llamado el **dominio** de f.
- El conjunto de valores de f es llamado el rango de f o la imagen de X bajo f, es denotado por:

rango de
$$f = \{ y \in Y \mid y = f(x) \text{ para algún } x \in X \}.$$

Oado un elemento y ∈ Y, pueden existir elementos x ∈ X tal que y es su imagen, es decir f(x) = y, entonces x es llamado una preimagen de y o una imagen inversa de y. El conjunto de todas las imágenes inversas de y es llamado la imagen inversa de y, es decir:

la imagen inversa de
$$y = \{x \in X / f(x) = y\}.$$

Definiciones:

Sea $f: X \to Y$ una función, $A \subset X$ y $C \subset Y$, entonces:

1 La **imagen** de *A* se define por:

$$f(A) = \{ y \in Y \mid y = f(x) \text{ para algún } x \in A \}.$$

2 La imagen inversa de C se define por:

$$f^{-1}(C) = \{x \in X / f(x) \in C\}.$$

Ejemplo:

The Action of a Function on Subsets of a Set

Let $X = \{1, 2, 3, 4\}$ and $Y = \{a, b, c, d, e\}$, and define $F: X \rightarrow Y$ by the following arrow diagram:

Let $A = \{1, 4\}, C = \{a, b\}, \text{ and } D = \{c, e\}. \text{ Find } F(A), F(X), F^{-1}(C), \text{ and } F^{-1}(D).$

Solution

$$F(A) = \{b\}$$
 $F(X) = \{a, b, d\}$ $F^{-1}(C) = \{1, 2, 4\}$ $F^{-1}(D) = \emptyset$

Propiedades:

Dada una función $f: A \rightarrow B$.

Para las imágenes:

Sean X e Y subconjuntos de A. Se cumplen:

$$f(X \cap Y) \subset f(X) \cap f(Y).$$

- **3** Si $X \subset Y$ entonces $f(X) \subset f(Y)$.

Para las imágenes inversas o pre-imágenes:

Sean Y y Z subconjuntos de B. Se cumplen:

$$f^{-1}(Y \cup Z) = f^{-1}(Y) \cup f^{-1}(Z).$$

$$f^{-1}(Y \cap Z) = f^{-1}(Y) \cap f^{-1}(Z).$$

• Si
$$Y \subset Z$$
 entonces $f^{-1}(Y) \subset f^{-1}(Z)$.

$$f^{-1}(B) = A.$$

6
$$f^{-1}(\emptyset) = \emptyset$$
.

Sea $f: X \to Y$ una función.

Definition 14 (Función inyectiva)

f es llamada inyectiva cuando para cualesquiera $x, y \in X$ tal que f(x) = f(y) implica que x = y.

Definition 15 (Función sobreyectiva)

f es llamada sobreyectiva cuando para todo $y \in Y$ existe por lo menos un $x \in X$ tal que f(x) = y.

Definition 16 (Función biyectiva)

f es llamada biyectiva cuando es inyectiva y sobreyectiva.

Ejemplo:

Sean A, B conjuntos. Definimos $\mathcal{F}(A, B) = \{f : A \to B / f \text{ es una función}\}$. Sean A, B, C, D conjuntos. Suponga que existe funciones biyectivas $f : A \to C$ y $g : B \to D$, entonces demuestre que existe una función biyectiva entre $\mathcal{F}(A, B)$ y $\mathcal{F}(C, D)$.

Composición de funciones

Sean $f: A \to B$ y $g: B \to C$ funciones tales que el **dominio** de g es igual al **rango** (o contradominio) de f. Definimos la **función compuesta** $g \circ f: A \to C$ que consiste en evaluar primero f y luego aplicar g, es decir:

$$(g \circ f)(x) := g(f(x))$$
 para todo $x \in A$.

Propiedades:

Sean $f: A \to B$, $g: B \to C$ y $h: C \to D$ funciones tales que está bien definido la composición de funciones. Se cumple:

- **1** La composición de funciones es asociativa, es decir: $(h \circ g) \circ f = h \circ (g \circ f)$.
- ② Si f y g son funciones inyectivas entonces $g \circ f$ es inyectiva.
- **3** Si f y g son funciones sobreyectivas entonces $g \circ f$ es sobreyectiva.
- 4 La composición de dos biyecciones es otra biyección.

Sean $f: A \rightarrow B$, $g: B \rightarrow A$ funciones (dom(g) = B).

Definition 17 (Función Inversa a derecha)

Si $g \circ f = id_A : A \to A$, es decir, $(g \circ f)(x) = g(f(x)) = x$ para todo $x \in A$, entonces g es llamada inversa a izquierda de f.

Definition 18 (Función Inversa a izquierda)

Si $f \circ g = id_B : B \to B$, es decir, $(f \circ g)(y) = f(g(y)) = y$ para todo $y \in B$, entonces g es llamada inversa a derecha de f.

Definition 19 (Función inversa)

Si $g \circ f = id_A \ y \ f \circ g = id_B$ (es decir, g es inversa a izquierda y a derecha de f), entonces g es llamada función inversa de f y es denotada por $f^{-1} := g$.

Ejemplo:

Sea $\mathbb{N}=\{1,2,3,\ldots\}$ el conjunto de los números naturales. Definamos $s:\mathbb{N}\to\mathbb{N}$ como s(n)=n+1, la cual es llamada **función shift**. Demuestre que s no tiene inversa a la derecha pero tiene infinitas funciones inversas a la izquierda.

Solución:

- Por contradicción: Suponga que s admite una inversa a derecha "r". Luego: s(r(1)) = 1 entonces 1 + r(1) = 1 esto es $r(1) = 0 \notin \mathbb{N}$. Entonces s no admite inversa a derecha.
- Defina I sobre el conjunto $\{2,3,\ldots,\}\subset\mathbb{N}$ del modo siguiente: I(n)=n-1. Esto permite crear una infinidad de funciones $\{I_i\}$ y cada uno de ellos cumple $I_i(s(n))=(n+1)-1=n$ para todo $n\in\{2,3,\ldots\}$. Así I_i es una inversa a izquierda de s para todo $i=2,3,\ldots$

Propiedades:

- Una función $f: A \rightarrow B$ posee inversa a izquierda si y solamente si f es invectiva.
- ② Una función $f: A \rightarrow B$ posee inversa a derecha si y solamente si f es sobreyectiva.
- **3** Una función $f: A \rightarrow B$ tiene inversa si y sólo si es una biyección.
- O Cuando existe la función inversa, ésta es única.
- **⑤** Si $f: A \to B$ y $g: B \to A$ son biyecciones, entonces es claro que $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

