GV: Nguyễn Tuấn Anh - 0973691357

Học sinh: Ngày tháng:

Lớp: Tờ số:

§5. LŨY THÙA CỦA MỘT SỐ HỮU TỈ

I. TÓM TẮT LÝ THUYẾT 1. Định nghĩa: Lũy thừa bậc n của một số hữu tỉ x, kí hiệu x^n , là tích của n thừa số x (n là số tự nhiên lớn hơn 1). X_n

$$=\underbrace{x}_{n}\cdot \underbrace{x}_{n}\cdot \underbrace{x$$

2. Các phép toán về lũy thừa - Tích hai lũy thừa cùng cơ số: $x^m.x^n=x^{m+n}$ ($x\in \mathcal{J}$, m , $n\in \square$) . - Thương hai lũy thừa cùng cơ số: $x^m:x^n=x^{m-n}$ ($x\in \mathcal{J}$ *, m , $n\in \square$, $m\geq n$

) - Lũy thừa của lũy thừa: (x m) n = x $^{m+n}$ (x \in \circlearrowleft , m , n \in \square) - Lũy thừa của một tích: (

$$(x,y)^n = x^n$$
. $(x,y) \in \mathcal{J}$, $(x,y) \in \mathcal{J}$, $(x,y) \in \mathcal{J}$

 $_{n}(x, y \in \mathcal{J}, n \in \square)$ - Hai lũy thừa bằng nhau:

• Nếu x n = x n thì m = n với ($x \neq 0$; $x \neq \pm 1$). • Nếu x n = y n thì x = y nếu n lẻ, x = \pm y nếu

n chỗn. - Chú ý: $x^{2n} \ge 0$ với $x \forall \in \mathcal{F}$; x^{2n+1} cùng dấu với dấu của ; $x(-x)^{2n} = x^{2n}$ và $(-x)^{2n} = x^{2n}$

) $^{2\,n+1}$ = - $_{X}$ $^{2\,n+1}$ II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Sử dụng định nghĩa của lũy

thừa với số mũ tự nhiên. Phương pháp: Sử dụng định nghĩa lũy thừa của một số hữu tỉ: $^{\rm X}$ $^{\rm n}$

 $=\underbrace{x}_{n} \cdot \underbrace{x}_{n} \cdot \underbrace{x}_{n}$

$$\neq$$
 0. Bài 1.1: Tính: a) (| (-3²) |)⁴; (| (-¹3) |)³; (| (-¹7

 $\frac{1}{3}$, (-0.6) $\frac{4}{3}$, (1.56) $\frac{1}{9}$. Bài 1.2: Viết các tích sau dưới dạng lũy thừa: a) 3.27.9. b) 25.5.125;

c)
2
 3 . 4 9 . 27 8 . d) 2.16.8; e) 49.7.343; f) 3 4 . 16 9 . 27 64 . g) 4.32: 2 3 . 16

$$^{1}_{2}$$

Dạng 2. Tính tích và thương của hai lũy thừa Phương pháp giải: Ta sử dụng các công thức về tích hai lũy thừa ở trên Bài 2.1: Thực hiện phép tính:

$$(| () |)^{h}()$$

GV: Nguyễn Tuấn Anh - 0973691357

$$1^{2}2^{11}$$
 5. 14

$$(| (2;) |)^2; b)$$

5
 ; 3 ; (| () |)(| (-) |) h) 3 3 .9 $^{-1}$. Bài 2.2: Thực hiện phép tính:

a)

$$(\ |\ (\)\ |\)(\ |\ (\)\ |\)g)$$

$$2_{20}^{b}$$

15
 $^{c)}$ 3 2 2 2 3 1 .81 2

$$\frac{1}{3}$$
 2 d) $4.256.2^{624}$ e) E = $\frac{4}{6}.9_{5}$ + $\frac{120}{8}$ 4.3 12 - 6 + $\frac{11}{2}$ 17. F = $\frac{4}{2}.25_{2}$ +

32.125 $2_{3}.5_{2}$ Dạng 3. Tìm số mũ, cơ số của một lũy thừa Phương pháp: Sử dụng các t.chất sau: + Nếu x m = x n thì m = n với ($x \neq 0$; $x \neq \pm 1$). + Nếu x n = y n thì x = y nếu n lẻ, x = \pm y nếu n chẵn. Bài 3.1. Điền số thích hợp vào ô vuông: a) $16\frac{1}{2}$

; -
$$_{125}$$
 64 = $_{3}$; c) 0,01 = (0,1). a)
= (| () | $_{J}$ b) 64 = $_{3}$; b) - $_{27}$ 8 = (| (- $_{3}$ 2

 $0.25 = {}^{2}$. Bài 3.2: Tìm các số nguyên ,x y biết: a) $(x - 1.2)^{2} = 4$; b) $(x + 1)^{3} = -125$; c) 3 ${}^{4x} = 27$; d) $(x + 1.5)^{8} + (2.7 - y)^{10} = 0$; e) $4 : 3 \cdot 3.4^{-5} \cdot 3$

.2 7 ; $_{x_x}$ = Bài 3.3: Tìm các số nguyên ,x y biết: a)(x - 2) 3 = 64 ; b) x 2020 + x = 0 ; c) 2 $^{4x-}$ = 32; d)(x + 1,5) 2 + (y - 2,5) 10 = 0; e) 3 x + 25 = 26.2 2 + 2.3 0 f) 3 $^{-2}$.3 4 .3 x = 3 7 . Dạng 4. So sánh lũy thừa Phương pháp: Để so sánh lũy thừa ta thực hiện như sau: - Biến đổi các lũy thừa cần so sánh về dạng có cùng số mũ hoặc cùng cơ số. - Có thể sử dụng lũy thừa

trung gian để so sánh. Bài 4.1: So sánh: a) ₂ 1₂₄và 1_{3 16}; b)

Tìm số nguyên ,n biết: a) 25 < 5 $^{n} < 625$; b) 3.27 > 3 $^{n} \ge 9$; c) $16 \le 8$ $^{n} \le 64$. d) 49 < 7 $^{n} < 343$; e) 9 < 9 $^{n} \le 243$; f) $121 \ge 11$ $^{n} \ge 1$.