Tracing of Curves Polar form

Tracing of a Polar Curve

List of points to be examined

- Symmetry
- Tangents at the pole
- Asymptotes of the curve
- Points of intersection
- Direction of the tangent
- Points of intersection
- Sign of derivatives
- Loops
- Region of Existence

Symmetrical about the line $\theta = 0$: If the equation remains unaltered when θ is replaced by $-\theta$.

In other words if, $f(r, -\theta) = f(r, \theta)$

Example: $r = a(1 \pm cos\theta)$

mne.

> Symmetrical about the line $\theta = \frac{\pi}{2}$:

If the equation remains unaltered when θ is replaced by $\pi - \theta$.

In other words if, $f(r, \pi - \theta) = f(r, \theta)$.

Example: $r = a(1 \pm \sin\theta)$

- > Symmetrical about the pole:
 - If the equation remains unaltered when r is replaced by
- r. If the equation contains even powers of r.

In other words if, $f(-r, \theta) = f(r, \theta)$.

Example: $r^2 = a\cos 2\theta$

> Symmetrical about the pole:

If the equation remains unaltered when θ is replaced by $\pi + \theta$.

In other words if, $f(r, \theta) = f(r, \pi + \theta)$.

Example: $r = 4tan\theta$

> Symmetrical about the line $\theta = \frac{\pi}{4}$:

If the equation remains unaltered when θ is replaced by $\frac{\pi}{2} - \theta$. In other words if , $f(r, \theta) = f\left(r, \frac{\pi}{2} - \theta\right)$.

> Symmetrical about the line $\theta = \frac{3\pi}{4}$:

If the equation remains unaltered when θ is replaced by

$$\frac{3\pi}{2} - \theta$$
. In other words if, $f(r, \theta) = f\left(r, \frac{3\pi}{2} - \theta\right)$.

Example:r=asin2θ

Pole:

If $r = f(\theta_1) = 0$ for some $\theta = \theta_1 = \text{constant}$ then the curve passes through the pole and the tangent at the pole is $\theta = \theta_1$.

- At $\theta = \pi$, $r^2 = 4sin2\theta = 0$. Therefore the curve through the pole and $\theta = \pi$ is the tangent at the pole.
- At $\theta = \pi/4$, $r^2 = 4\cos 2\theta = 0$. Therefore the curve through the pole and $\theta = \pi/4$ is the tangent at the pole.

Asymptote:

- An asymptote to the curve exists if $\lim_{\theta \to \theta_1} r = \infty$ and is given by the equation $rsin(\theta \theta_1) = f'(\theta_1)$ where θ_1 is the solution of $\frac{1}{f(\theta)} = 0$.
- Example : For the curve, $r^2 cos 2\theta = a^2$, the asymptotes are $\theta = \pm \frac{\pi}{4}$

Points of Intersection:

The points of intersection of the curve with the initial line, the line $\theta = \pi/2$, the line $\theta = \frac{\pi}{4}$ and the line $\theta = \frac{3\pi}{4}$ can be obtained by putting $\theta = 0$, $\theta = \frac{\pi}{2}$, $\theta = \frac{\pi}{4}$ and $\theta = \frac{3\pi}{4}$ respectively in the given equation.

Points of Intersection:

Examples:

- The curve $r = a(1 + \cos\theta)$ intersects
- the line $\theta = 0$ at (2a, 0)
- the line $\theta = \pi$ at $(0, \pi)$
- the line $\theta = \frac{\pi}{2}$ at $\left(a, \frac{\pi}{2}\right)$ the line $\theta = \frac{3\pi}{2}$ at $\left(a, \frac{3\pi}{2}\right)$

mie.

Points of Intersection:

Examples:

- 2. The curve $r = a \sin 2\theta$ intersects
- the line $\theta = \frac{\pi}{4}$ at $\left(a, \frac{\pi}{4}\right)$
- the line $\theta = \frac{3\pi}{4}$ at $\left(a, \frac{3\pi}{4}\right)$

Region or Extent:

If a and b are the least and greatest values of r such that a < r < b then the curve lies in the annulus region between the two circles of radii a and b.

Example: For the curve $r = asin2\theta$, since maximum value of $sin2\theta$ is 1, the curve lies within the circle r = a.

The curve does not exist for those values of θ at which r is imaginary.

Example: For the curve $r^2 = a^2 cos 2\theta$, in the interval $\frac{\pi}{4} < \theta < \frac{3\pi}{4}$, $cos 2\theta$ is negative and hence r is imaginary.

Therefore the curve does not exist in this region.

For equations involving periodic functions generally θ varies from 0 to 2π .

Direction of the tangent:

Determine Ø where Ø is the angle between the radius vector and the tangent.

Using
$$tan\emptyset = r \frac{d\theta}{dr}$$

The angle Ø gives the direction of the tangent at the point of intersection.

Derivative:

- If $\frac{dr}{d\theta} > 0$, then the curve increases.
- If $\frac{dr}{d\theta} < 0$, then the curve decreases.

Loop:

Example: The curve intersects the initial line at the points A(0,0) and B(a,0). Also the curve is symmetric about the initial line. Hence a loop of the curve exists between the points A and B.

Note:

If the curve,

- intersects any line at the points A and B,
- is symmetric about that line

Then a loop of the curve exists between the points A and B.

Curves of the type $r = a\sin(n\theta)$ and $r = a\cos(n\theta)$ (are called roses) consist of either n and 2n similar loops (also called as leaves) according as n is odd or even.

Examples:

 $ightharpoonup 1. r = asin2\theta$

Examples:

 $ightharpoonup 2. r = asin3\theta$

Examples:

 \rightarrow 3. $r = acos3\theta$

$$r = 2\cos 2\theta$$
 $r = 3\cos 5\theta$ $r = 2\cos 4\theta$

 $r = 2\sin 2\theta$ $r = 3\sin 5\theta$ $r = 2\sin 4\theta$

Three leaved Rose: r=a sin3θ, a>0

1.Symmetry:

Curve is symmetric about the line $\theta = \frac{\pi}{2}$ passing through the pole.

2. Asymptote:

No asymptote since r is always finite for θ .

Three leaved Rose: r=a sin3θ

3. Pole & tangents at the pole:

The curve passes through the pole when $r = asin3\theta = 0$ i.e. when $\theta = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3}$. The tangents to the curve at the pole are given by $\theta = 0, \theta = \frac{\pi}{3}, \theta = \frac{2\pi}{3}, \theta = \pi, \theta = \frac{4\pi}{3}, \theta = \frac{5\pi}{3}$.

4. Intersection:

Curve meets the line $\theta = \frac{\pi}{2}$ at r = -a.

Three leaved Rose: r=a sin3θ

5.Direction of the tangent:

$$tan\emptyset = r\frac{d\theta}{dr}.$$

$$tan\emptyset = \frac{1}{3}tan3\theta.$$

At point(-a, $\pi/2$), $tan\emptyset = \frac{1}{3}tan\frac{3\pi}{2} \to \infty$, $\emptyset = \frac{\pi}{2}$. Thus, the tangent is perpendicular to the line $\theta = \frac{\pi}{2}$.

6. Region:

Maximum value of r is a. So the curve Lies within the circle r = a. For n=3 the curve consists of 3 loops.

Three leaved Rose: r=a sin3θ

▶ 7. Variation of $r \& \theta$ (period of the function is $T = \frac{2\pi}{3}$)

$\boldsymbol{\theta}$	0	π	π	π	π	5π	π	7π	2π
		12	6	4	3	$\frac{5\pi}{12}$	2	12	3
3θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$	$\frac{7\pi}{4}$	2π
r	0	.7a		.7a		7a			

Four leaved Rose: $r = a\cos 2\theta$, $\alpha > 0$

1.Symmetry:

a. Curve is symmetric about the initial line since $r(-\theta) = r(\theta)$

b. Curve is symmetric about the line $\theta = \frac{\pi}{2}$ since $r(\pi - \theta) = a\cos 2(\pi - \theta) = a\cos 2\theta = r(\theta)$

2. Asymptote:

No asymptote since r is always finite for θ

3. Pole & tangents at the pole:

The curve passes through the pole when $r = acos 2\theta = 0$ i.e. when $\theta = \frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$. The tangents to the curve at the pole are given by $\theta = \frac{\pi}{4}$, $\theta = \frac{3\pi}{4}$, $\theta = \frac{5\pi}{4}$, $\theta = \frac{7\pi}{4}$.

4. Intersection:

Points of intersection of the curve with the initial line are (a,0) & (a,π) . The intersection with the line $\theta=\frac{\pi}{2}$ are $(-a,\frac{\pi}{2})$ & $(-a,\frac{3\pi}{2})$.

5.Direction of the tangent:

$$tan\emptyset = r\frac{d\theta}{dr}.$$

$$tan\emptyset = -\frac{1}{2}cot2\theta.$$

At point (a,0),
$$tan\emptyset = -\frac{1}{2}\cot(0) \rightarrow \infty$$
, $\emptyset = \frac{\pi}{2}$.

Thus, the tangent is perpendicular to the initial line.

6. Region:

Maximum value of r is a. So the curve lies within the circle r = a. For n=2 the curve consists of **4 loops**.

▶ 7. Variation of $r \& \theta$ (period of the function is $T = \pi$)

θ	0	$\frac{\pi}{8}$	$\frac{\pi}{4}$	$\frac{3\pi}{8}$	$\frac{\pi}{2}$	$\frac{5\pi}{8}$	$\frac{3\pi}{4}$	$\frac{7\pi}{8}$	π
2θ	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	3π	7π	2π
r	a	.7a	0	7a	-a	7a	0	.7a	a

Limacon

- Limacons are polar curves whose equations are of the form
- $r = a+b\sin\theta$, $r = a-b\sin\theta$,
- $r = a + b\cos\theta$, r= a-bcos θ with a>0, b>0.

We get a Limacon with inner loop if a < b;

Cardiod if a=b;

Dimpled Limacon if a>b.

For the curve $r = a + bcos\theta$ (Limacon of pascal) consider three cases a<b, a=b, a>b

Limacon r=a+bcos θ , $\alpha > 0$ b> 0 Case 1: a<b

- **1.Symmetry:** Curve is symmetric about the initial line $\theta = 0$.
- **2.** Asymptote: No asymptote since r is always finite for θ .
- 3. Pole & tangents at the pole: It lies on the curve.

If
$$r = 0$$
, $\cos \theta = \frac{-a}{b} > -1$. Therefore $\theta = \cos^{-1} \left(\frac{-a}{b} \right)$ is the tangent at origin.

4.Intersection: Curve meets the initial line $\theta = 0$,

$$\theta = \frac{\pi}{2}$$
, $\theta = \pi$ at (a+b,0), $(a, \frac{\pi}{2})$ & $(a - b, \pi)$ respectively.

Limacon r=a+bcos θ , $\alpha > 0$ b> 0

5. Direction of the tangent:
$$tan\emptyset = r\frac{d\theta}{dr}$$

$$tan\emptyset = \frac{a+bcos\theta}{-bsin\theta}$$

At point (a+b,0); $tan\emptyset \rightarrow \infty$, $\emptyset = \frac{\pi}{2}$.

Thus, the tangent is perpendicular to the initial line.

At point $(a, \frac{\pi}{2})$; $\emptyset = tan^{-1} \left(\frac{-a}{b}\right) = \pi - tan^{-1} \left(\frac{a}{b}\right)$

Thus the tangent makes an angle $\pi - tan^{-1} \left(\frac{a}{b}\right)$ with the line $\theta = \frac{\pi}{2}$.

At point $(a - b, \pi)$ $(2a, \pi)$; $tan\emptyset \to \infty$, $\emptyset = \frac{\pi}{2}$.

Thus the tangent is perpendicular to the line $\dot{\theta} = \pi$.

Limacon r=a+bcos θ , $\alpha > 0$ b> 0

6. Region: Since maximum value of $\cos \theta = 1$, $r \le a+b$. Thus the entire curve lies inside the circle r = a+b. 7. Variations of r and θ :

Θ	0	$\pi/3$	π/2	2π/3	π
r	a+b	a+b/2	a	a-b/2	a-b

Limacon r=a+bcos θ , $\alpha > 0$ b> 0

- Minimum value of r=a-b<0, thus r is negative for some values of θ .
- Here a-b<0. Therefore for some values of θ , r is negative. Thus a smaller loop exists between 0 and C.

Limacon $r=a+b\cos\theta$, a < b

Cardioid: $r = a(1 + cos\theta)$

Case2: a=b

- 1.Symmetry: Curve is symmetric about the initial line
- **2. Asymptote**: No asymptote since r is always finite for θ .
- 3. Pole & tangents at the pole: The curve passes through the pole since $r = a(1 + cos\pi) = 0$. The tangent to the curve at pole is $\theta = \pi$
- **4. Intersection**: Curve meets the initial line at (2a,0) &

$$(0, \pi)$$
 and meets $\theta = \frac{\pi}{2}$ at $(a, \frac{\pi}{2})$ & $(a, \frac{3\pi}{2})$

Cardioid: $r = a(1 + cos\theta)$

5. Direction of the tangent: $tan\emptyset = r\frac{d\theta}{dr}$ $tan\emptyset = r\frac{d\theta}{dr} = tan\left(\frac{\pi}{2} + \frac{\theta}{2}\right). \quad \text{So } \emptyset = \frac{\pi}{2} + \frac{\theta}{2}.$

At point (2a, 0); $\emptyset = \pi/2$, thus the tangent is perpendicular to the line $\theta = 0$.

6. Region: Since maximum value of cos $\theta = +1$, the maximum value of r is 2a. Thus, the whole curve lies within a circle of radius 2a.

7. Variation of $r \& \theta$ (period of the function is $T = 2\pi$)

Ө	0	$\pi/3$	$\pi/2$	$2\pi/3$	π	$4\pi/3$	$3\pi/2$	$11\pi/6$	2π
r	2a	3a/2	a	a/2	0	a/2	a	3a/2	2a

Cardioid: $r = a(1 + cos\theta)$

Limacon r=a+bcos θ , $\alpha > 0$ b> 0 Case 3: a>b

- **1.Symmetry:** Curve is symmetric about the initial line $\theta = 0$.
- **2.** Asymptote: No asymptote since r is always finite for θ .
- **3. Pole :** It does not lie on the curve. If r = 0, $\cos \theta = \frac{-a}{b} < -1$ which is not possible. Thus $r \neq 0$ for any values of θ .
- **4. Intersection**: Curve meets the initial line $\theta = 0$,

$$\theta = \frac{\pi}{2}$$
, $\theta = \pi$ at (a+b,0), $(a, \frac{\pi}{2})$ & $(a - b, \pi)$ respectively.

Limacon r=a+bcos θ , $\alpha > 0$ b> 0

5. Direction of the tangent:
$$tan\emptyset = r\frac{d\theta}{dr}$$

$$tan\emptyset = \frac{a+bcos\theta}{-bsin\theta}$$

At point (a+b,0); $tan\emptyset \rightarrow \infty$, $\emptyset = \frac{\pi}{2}$.

Thus, the tangent is perpendicular to the initial line.

At point $(a, \frac{\pi}{2})$; $\emptyset = tan^{-1} \left(\frac{-a}{b}\right) = \pi - tan^{-1} \left(\frac{a}{b}\right)$

Thus the tangent makes an angle $\pi - tan^{-1} \left(\frac{a}{b}\right)$ with the line $\theta = \frac{\pi}{2}$.

At point $(a - b, \pi)$ (2a, π); $tan\emptyset \to \infty$, $\emptyset = \frac{\pi}{2}$.

Thus the tangent is perpendicular to the line $\dot{\theta} = \pi$.

Limacon r=a+bcos θ , a > 0 b> 0

- 6. Region: Since minimum value of $\cos \theta = -1$, the minimum value of r is a-b. Curve lies with in a circle of radius a+b since $\cos \theta$ maximum value is 1.
- ightharpoonup 7. Variation of $r \& \theta$:

Ө	0	$\pi/3$	$\pi/2$	2π/3	π
r	a+b	a+b/2	a	a-b/2	a-b

Limacon $r=a+b\cos\theta$, a>b

Cardioid: $r = a(1 - cos\theta)$

Case2: a=b

- 1.Symmetry: Curve is symmetric about the initial line
- **2. Asymptote**: No asymptote since r is always finite for θ .
- 3. Pole & tangents at the pole: The curve passes through the pole since $r = a(1 cos\theta) = 0$. The tangent to the curve at pole is $\theta = 0$
- **4. Intersection**: Curve meets the initial line at (0,0) & $(2a, \pi)$ and meets $\theta = \frac{\pi}{2}$ at $(a, \frac{\pi}{2})$ & $(a, \frac{3\pi}{2})$

Cardioid: $r = a(1 - cos\theta)$

5. Direction of the tangent: $tan\emptyset = r\frac{d\theta}{dr}$

$$tan\emptyset = r\frac{d\theta}{dr} = tan\frac{\theta}{2}$$
. So $\emptyset = \frac{\theta}{2}$.

At point(a, $\pi/2$); $\emptyset = \pi/4$, thus the tangent makes an angle $\pi/4$ with the line $\theta = \frac{\pi}{2}$.

At point (2a, π); $\emptyset = \pi/2$, thus the tangent is perpendicular to the line $\theta = \pi$.

6. Region: Since minimum value of $\cos \theta = -1$, the maximum value of r is 2a. Thus, the whole curve lies within a circle with centre at the pole and radius 2a.

7. Variation of $r \& \theta$ (period of the function is $T = 2\pi$)

θ	0	$\frac{\pi}{-}$		2π					2π
		3	2	3		3	2	6	
r	0	$\frac{a}{2}$	a	$\frac{3a}{2}$	2 a	$\frac{3a}{2}$	a	$\frac{a}{2}$	0

Cardioid: $r = a(1 - cos\theta)$

