אינפי 2מ'

מרצה אחראית: מיכל קליינשטרן

תוכן העניינים

3	פרק 1. אינטגרל לא מסוים
3	1. הפונקציה הקדומה
4	2. כללים למציאת פונקציה קדומה
7	פרק 2. אינטגרל מסוים
7	1. חלוקה של קטע, סכום דרבו עליון ותחתון
9	2. אינטגרל עליון, אינטגרל תחתון, אינטגרביליות
17	3. תנאים שקולים לאינטגרביליות
20	4. סכומי רימן
22	5. תנאים מספיקים לאינטגרביליות
25	6. תכונות של פונקציות אינטגרביליות
30	7. משפט ערך הביניים האינטגרלי
33	פרק 3. המשפט היסודי של החדו"א
33	1. פונקציה צוברת שטח
35	2. המשפט היסודי בגרסה הפשוטה ונוסחת ניוטון-לייבניץ
37	3. כלל לייבניץ לאינטגרל מסוים
38	4. המשפט היסודי - הגרסה המלאה
40	5. שיטות אינטגרציה של אינטגרל מסוים ויישומים של המשפט היסודי
49	פרק 4. אינטגרל מוכלל
49	1. סוגים של אינטגרלים מוכללים
56	2. קריטריון קושי להתכנסות אינטגרל מוכלל
57	3. מבחני התכנסות עבור אינטגרנד אי שלילי
62	4. התכנסות בהחלט
63	5. התכנסות בתנאי
64	6. מבחן דיריכלה ומבחן אבל

אינטגרל לא מסוים

1. הפונקציה הקדומה

בהינתן $f\left(x\right)$, נשאל איזו פונקציה צריך לגזור כך ש- $f\left(x\right)$ היא הנגזרת. לדוגמה:

$$f(x) = x$$
$$F(x) = \frac{x^2}{2}$$

F'(x)=f(x) אם מתקיים F(x) אם הפונקציה הפונקציה הפונקציה נקראת נקראת הפונקציה אם הפונקציה הפונקצי

I בקטע בקטע הפונקציה קדומה של פונקציה קונקציה פונקציה בקטע פונקציה בקטע ההא אזי האוסף של כל הפונקציות הקדומות של $f\left(x
ight)$ בקטע הוא אזי האוסף של כל הפונקציות הקדומות של

הוכחה.

- $G'\left(x
 ight)=F\left(x
 ight)+$ כך ש- $c_{1}\in\mathbb{R}$ כלומר, קיים $G\left(x
 ight)\in\{F\left(x
 ight)+c\mid c\in\mathbb{R}\}$ כלומר, קיים $G'\left(x
 ight)=f\left(x
 ight)$ כנדרש. $G'\left(x
 ight)=f\left(x
 ight)$
 - $.G\left(x
 ight)\in\left\{ F\left(x
 ight)+c\mid c\in\mathbb{R}
 ight\}$, וצ"ל , $f\left(x
 ight)$ פונקציה קדומה של , $G\left(x
 ight)$ נגדיר:

$$H\left(x\right) = F\left(x\right) - G\left(x\right)$$

גזירה נסכום של גזירות ומתקיים H(x)

$$H'\left(x
ight)=F'\left(x
ight)-G'\left(x
ight)=0$$
כמסקנה מלגראנז' $H'\left(x
ight)=F'\left(x
ight)+C\iff H'\left(x
ight)=c$

 $\int f\left(x\right)dx$: $f\left(x\right)$ שימון הפונקציה הקדומה של

.1.1 אינטגרלים מיידיים.

$$\int \cos x dx = \sin x + C \quad (1)$$

$$\int \sin x dx = -\cos x + C$$
 (2)

$$\int e^x dx = e^x + C$$
 (3)

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad \mbox{(4)}$$

$$\int \frac{1}{x^2+1} = \arctan x + C \quad \mbox{(5)}$$

הערה 1.1 לא לכל פונקציה יש פונקציה קדומה.

למשל לפונקציה:

$$f(x) = \begin{cases} 0 & -1 \le x \le 0\\ 1 & 0 < x \le 1 \end{cases}$$

ראינו באינפי 1 (משפט דארבו) שהיא לא יכולה להיות נגזרת בכל קטע שמכיל את 0, למשל בקטע [-1,1].

אם ננסה למצוא קדומה, נקבל:

$$F(x) = \begin{cases} c_1 & -1 \le x \le 0 \\ x + c_2 & 0 < x \le 1 \end{cases}$$

 $c_1=c_2$ תהיה ביפה, כלומר על מנת שתהיה הזירה, נדרשת תהיה האזירה ב-0, על מנת בכלל לא האזירה ב-0, ולכן בפרט בכלל לא האזירה ב-0, ולכן בפרט דער האזירה שלה:

$$F'_{+}\left(0\right) = \lim_{x \to 0^{+}} \frac{F\left(x\right) - F\left(0\right)}{x - 0} = \lim_{x \to 0^{+}} \frac{\left(x + c\right) - c}{x} = 1 \neq 0 = \lim_{x \to 0^{-}} \frac{c - c}{x - 0} = F'_{-}\left(0\right)$$

הערה 1.2 לא תמיד ניתן למצוא נוסחה אנליטית לפונקציה קדומה. למשל:

$$\int e^{x^2}$$

2. כללים למציאת פונקציה קדומה

.2.1 לינאריות האינטגרל הלא מסוים.

אזי , $a\in\mathbb{R}$ יהי (1)

$$\int af(x) dx = a \int f(x) dx$$

:אדיטיביות (2)

$$\int (f+g)(x) dx = \int f(x) dx + \int g(x) dx$$

:מתקיים. גזירות, מונקציות u,v פונקציות מתקיים. מתקיים. אינטגרציה בחלקים.

$$(uv)' = u'v + uv' \iff (uv)' - u'v = uv'$$

ולכן:

$$\int uv' = \int \left((uv)' - u'v \right) \underbrace{=}_{\text{purpuly}} uv - \int u'v$$

נוסחת האינטגרציה בחלקים:

$$\int uv' = uv - \int u'v$$

דוגמה 1.1 חשבו את האינטגרלים הבאים:

 $\int xe^{x}dx = xe^{x} - \int 1 \cdot e^{x}dx = xe^{x} - e^{x} + c$ $\begin{bmatrix} u = x & u' = 1 \\ v' = e^{x} & v = e^{x} \end{bmatrix}$ $\int \arctan xdx = \int 1 \cdot \arctan xdx = \begin{bmatrix} u = \arctan x & u' = \frac{1}{1+x^{2}} \\ v' = 1 & v = x \end{bmatrix}$

2.3. שיטת ההצבה. תזכורת: כלל השרשרת:

$$(F(g(x)))' = F'(g(x)) \cdot g'(x)$$

פונקציה $f:J \to I$ ותהא ותהא בקטע f(x) פונ' קדומה של פונ' פונ' בקטע ההא פונ' בקטע גירה והפיכה בך בק $x=\varphi(t)$

אזי:

$$\int f(x) dx = \int f(\varphi(t)) \cdot \varphi'(t) dt$$

דוגמה 1.2

$$\int e^{x^2} 2x dx = ex^2 + c$$

נשתמש במשפט:

$$\begin{cases} x = \varphi\left(t\right) = \sqrt{t} \\ \varphi'\left(t\right) = \frac{1}{2\sqrt{t}} \end{cases} \implies \int e^{x^2} 2x dx = \int \underbrace{e^{\left(\sqrt{t}\right)^2} 2 \cdot \sqrt{t}}_{f\left(\varphi\left(t\right)\right)} \cdot \frac{1}{2\sqrt{t}} dt = \int e^t dt = e^t + c = e^{x^2} + c$$
 בדרך כלל נציב את הפונקציה ההפוכה ונכתוב כך:

כלל נציב את הפונקציה ההפוכה ונכתוב כך:
$$\int e^{x^2} 2x dx = \int e^{t} dt = e^t + c = e^{x^2} + c$$

$$\begin{cases} t = x^2 \\ dt = 2x dx \end{cases}$$

xמטרה: להגדיר שטח בין גרף של פונקציה מוגדרת וחסומה בקטע חסום לבין ציר ה-

- חישוב אינטגרל רימן (אינטגרל מסוים) לפי דארבו.
- כל הפונקציות בדיון יהיו פונקציות חסומות בקטע ולאו דוקא רציפות!

1. חלוקה של קטע, סכום דרבו עליון ותחתון

.1.1 חלוקה של קטע.

. יהיו ממשיים מספרים ממשיים a < b יהיו

ות: חלוקה של [a,b] היא קבוצה סופית של נקודות:

$$P = a = x_0 < x_1 < \ldots < x_n = b$$

 $oldsymbol{:}[0,1]$ ניקח חלוקה כלשהי של הקטע ניקח דוגמה 2.1

 $.P=0,rac{1}{8},rac{1}{3},rac{1}{2},rac{3}{4},1$ עבור

הערה 2.1 חלוקה P כזו הינה קבוצה סדורה!

למעשה, מחלקים את הקטע [a,b] ל-n קטעים לאו בהכרח שוויס. $\Delta x_i=x_i-x_{i-1}$ בסמן את הקטע ה-i ע"י ע"י i, ואת אורכו ב-i, ואת נדיר 2 קירובים מלמעלה ומלמטה.

:לכל $1 \leq i \leq n$ לכל

$$M_i = \sup \{ f(x) \mid x_{i-1} \le x \le x_i \}$$

 $m_i = \inf \{ f(x) \mid x_{i-1} \le x \le x_i \}$

הערה 2.2 סופרימום ואינפימום קיימים כי דרשנו f חסומה, אך מקסימום ומינימום לא בהכרח קיימים כי לא דרשנו רציפות.

.1.2 סכום דארבו.

 $f\left(x
ight)$ סכוס דארכו לחלוקה - המתאים ארכו סכוס סכוס הגדרה 2.2 סכוס דארכו ארכו פונקציה

$$U(f,P) = \sum_{i=1}^{n} M_i \Delta x_i$$

 $f\left(x
ight)$ ולפונקציה P המתאים לחלוקה ארכו הארכו דארכו סכוס אגדרה 2.3

$$L(f, P) = \sum_{i=1}^{n} m_i \Delta x_i$$

2.3 הערה

10

• נשים לב:

$$M_i=\sup_{x\in[x_{i-1},x_i]}f\left(x
ight)\geq\inf_{x\in[x_{i-1},x_i]}f\left(x
ight)=m_i$$
 ולכן $U\left(f,P
ight)\geq L\left(f,P
ight)$

: מתקיים:
$$1 \leq i \leq n$$
 , $\mathbf{M} = \sup_{[a,b]} f\left(x\right)$, $\mathbf{m} = \inf_{[a,b]} f\left(x\right)$

- (1) $m \leq m_i$
- (2) $M \geq M_i$
- (3) $m \leq M$

טענה [a,b] אזי מתקיים: חלוקה P תהא 2.1 טענה

$$M(b-a) \ge U(f,P) \ge L(f,P) \ge m(b-a)$$

 $U\left(f,P
ight)\geq L\left(f,P
ight)$ הוכחה. ראינו כבר כי מתקיים עתה:

 $L\left(f,P
ight)\geq m\left(b-a
ight)$ ובאותו אופן סה"כ לפי הערה 2.3 מתקבל מש"ל.

f(x) = x בקטע דוגמה ב.2 בקטע f(x) = x ביקח חלוקה ל-x

$$P_n=\left\{0,rac{1}{n}<rac{2}{n}<\ldots<rac{n-1}{n}<1
ight\}$$
 לכל $\Delta x_i=rac{1}{n}$ מתקיים $1\leq i\leq n$ לכל $M_i=rac{i}{n}$ מנוסף, בנוסף,

שכום עליוו:

$$U(f, P_n) = \sum_{i=1}^{n} M_i \Delta x_i = \sum_{i=1}^{n} \underbrace{\frac{i}{n}}_{M_i} \underbrace{\frac{1}{n}}_{\Delta x_i} = \frac{1}{n!} \underbrace{\frac{n(n+1)}{2}}_{N_i} = \frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n} > \frac{1}{2}$$

סכום תחתון:

$$L\left(f,P_{n}\right) = \sum_{i=1}^{n} \frac{i-1}{n} \cdot \frac{1}{n} = \frac{1}{n^{2}} \sum_{i=1}^{n} i - 1 = \frac{1}{n^{\frac{1}{2}}} \frac{n(n-1)}{2} = \frac{n-1}{2n} = \frac{1}{2} - \frac{1}{2n} < \frac{1}{2}$$

2. אינטגרל עליון, אינטגרל תחתון, אינטגרביליות

.2.1 גישת דרבו.

[a,b] תהא בקטע וחסומה בקטע בקטע מוגדרה אינטגרל עליון של [a,b] מוגדר להיות:

$$\int_{a}^{\bar{b}} f = \inf_{P} U(f, P)$$

הגדרה (a,b) בקטע של f בקטע (a,b) אינטגרל החתון של בקטע מוגדרת מוגדרת מוגדרה (a,b) מוגדר להיות:

$$\int_{\bar{a}}^{b} f = \sup_{P} L(f, P)$$

אם: [a,b] אם, ק[a,b] אם: אינטגרבילית אינטגרבילית האדרה 2.6

$$\int_{a}^{\bar{b}} f = \int_{a}^{b} f$$

הערה 2.4 למעשה מדובר באינטגרביליות לפי דארבו. אין חשיבות לכינוי מאחר שאלו שקולות.

[0,1] הערה 2.5 ראינו שפונקציית דיריכלה לא אינטגרבילית הימן, למשל בקטע

$$\int_{a}^{\bar{b}} D = 1 \neq 0 = \int_{a}^{b} D$$

 $\mbox{,}[a,b]$ אינטגרבילית רימן אינטגרבילית fאם 2.6 הערה

אז השטח בין גרף הפונקציה לציר x מסומן באופן הבא:

$$\int_{a}^{b} f(x) \underbrace{dx}_{\text{"}\Delta x\text{"}}$$

.[a,b] בקטע בקטע $f\left(x
ight)=c$ באוגמה P תהא תהא חלוקה כלשהי של הקטע $M_i=c$ מתקיים: $1\leq i\leq n$ לכל $m_i=c$

$$U(f, P) = \sum_{i=1}^{n} M_i \Delta x_i$$

$$= c \sum_{i=1}^{n} (x_i - x_{i-1})$$

$$= c ((x_1 - x_0) + (x_2 - x_1) + \dots + (x_n - x_{n-1}))$$

$$= c (b - a)$$

:ולכן: , $L\left(f,P\right)=c\left(b-a\right)$ ולכן: מצד שני, באותו האופן

$$\sup_{P}L\left(f,P\right) =\inf_{P}U\left(f,P\right)$$

:כלומר, f אינטגרבילית רימן לפי ההגדרה, ומתקיים

$$\int_{a}^{b} c dx = c \left(b - a \right)$$

f(x) = x בקטע 1.6 בקטע f(x) = x

U
$$(f,P_n)=rac{1}{2}+rac{1}{2n}$$
 עבור חלוקה ל- n קטעים שווים, ראינו:
$$\mathrm{L}\ (f,P_n)=rac{1}{2}-rac{1}{2n}$$
 מאינפי 1,

$$\inf_{n} U\left(f, P_{n}\right) = \frac{1}{2}$$

נשתמש בטענה שנוכיח בהמשך:

$$\int_{a}^{b} f \le \int_{a}^{\bar{b}} f$$

מתקיים:

$$\{U\left(f,P_{n}\right)\}\subseteq\{U\left(f,P\right)\}$$

-ומכאן ש

$$\frac{1}{2} = \inf_{n} U(f, P_n) \ge \inf_{P} U(f, P)$$

$$\frac{1}{2} = \sup_{n} L(f, P_n) \le \sup_{P} L(f, P)$$

:סה״כ

$$\frac{1}{2} \le \int_{\underline{a}}^{b} f \le \int_{a}^{\overline{b}} f \le \frac{1}{2}$$

ומתקיים: ,[a,b] אינטגרבילית רימן אינטגרבילית לימן ולכן

$$\int_{a}^{b}f=\frac{1}{2}$$

$$.f\left(x\right) =x^{2}\text{ (צור 1) Figure 1.0}$$
 הרגיל: לכצע פעולה דומה עבור

.2.2 עידון.

[a,b] תהא P חלוקה של הקטע .P תהא P' אם P' נאמר שר P'

 $P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1
ight\}$ ניקח ניקח ב.5 תלוקה של הקטע חלוקה של חלוקה של

:נגדיר

$$P' = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$$

P מתקיים ש- P' עידון של

.Pשל עידון איד $P'' = \left\{0, \frac{1}{4}, \frac{1}{2}, \frac{2}{3}, 1\right\}$ אחת, לעומת זאת,

 $f\left(x
ight)=x^{2}$ נראה דוגמה למה שעושה עידון לסכום העליון ולסכום התחתון: נקח 2.6 דוגמה בקטע [0,1] בקטע

$$P = \left\{0, \frac{1}{3}, \frac{2}{3}, 1
ight\}$$
 ניקח את החלוקה

$$U(f,P) = \sum_{i=1}^{3} M_i \Delta x_i = \frac{1}{3} \left(\frac{1}{3} + \frac{4}{9} + 1 \right) = \frac{4}{27}$$

עתה ניקח את העידון:

$$P' = \left\{0, \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, 1\right\}$$

$$U\left(f,P'\right) = \sum_{i=1}^{4} M_i \Delta x_i = M_1 \cdot \frac{1}{3} + \underbrace{M_2 \cdot \left(\frac{1}{2} - \frac{1}{3}\right) + M_3 \cdot \left(\frac{2}{3} - \frac{1}{2}\right)}_{\text{הקטע שבו הוספנו נקודה}} + M_4 \cdot \left(1 - \frac{2}{3}\right)$$

קיבלנו:

$$U(f, P') \le U(f, P)$$

משפט 2.1 משפט העידון:

. תהא $f:[a,b] o\mathbb{R}$ חסומה

[a,b] חלוקה של חקטע P

:מתקיים P' של עידון

$$U\left(f,P'\right) \leq U\left(f,P\right)$$

$$L(f, P') \ge L(f, P)$$

הוכחה. עבור הסכום העליון באינדוקציה:

 $:\!\!P'$ את לקבל מנת על רחלוקה לחלוקה שהוספנו - N מספר על מנת באינדוקציה נוכיח

: n = 1 בסיס האינדוקציה: ניקח

.אחת נקודה אחת ע"י הוספת מ-P'

 \tilde{x} הוספנו את הנקודה $[x_{i_0-1},x_{i_0}]$ כך שבקטע בקטע ל $1 \leq i_0 \leq n$ הוספנו מסמן:

$$w_{1} = \sup \{ f(x) \mid \{x_{i_{0}-1}, \tilde{x}\} \}$$

$$w_{2} = \sup \{ f(x) \mid \{\tilde{x}, x_{i_{0}}\} \}$$

ואז:

$$U(f, P) = \sum_{i=1}^{n} M_{i} \Delta x_{i} = \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} \Delta x_{i_{0}}$$

$$U(f, P') = \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + w_{1} (\tilde{x} - x_{i-1}) + w_{2} (x_{i_{0}} - \tilde{x})$$

$$\leq \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} (\tilde{x} - x_{i-1}) + M_{i_{0}} (x_{i_{0}} - \tilde{x})$$

$$= \sum_{\substack{i=1\\i \neq i_{0}}}^{n} M_{i} \Delta x_{i} + M_{i_{0}} \Delta x_{i_{0}} = \boxed{U(f, P)}$$

 $U\left(f,P'\right)\leq U\left(f,P\right)$ אז נקודות, אז נקודות מ-P התקבלה מ-P התקבלה אם איי הוספת N נקודות, אזי: איי הוספת N+1 התקבלה מ-P התקבלה מ-P איי הוספת N+1

$$U(f, P') \le U(f, P)$$

 $ilde x_1, ilde x_2,\dots, ilde x_N, ilde x_{N+1}$ נניח שהוספנו ל-P את הנקודות: $P'=P\cup\{ ilde x_1,\dots, ilde x_N\}\,, ilde P=P'\cup\{ ilde x_{N+1}\}$ נסמן: אבל אז.

$$U\left(f, \tilde{P}\right) \underbrace{\leq}_{\text{מבסיס האינדוקציה}} U\left(f, P'\right) \underbrace{\leq}_{\text{מהנחת האינדוקציה}} U\left(f, P'\right)$$

ינסמן: P, נסמן, עבור חלוקה P, נסמן:

$$\lambda\left(P\right) = \max_{1 \le i \le n} \left\{ \Delta x_i \right\}$$

אובייקט אה נקרא פרמטר החלוקה / קוטר החלוקה, ובפועל מדובר במקטע הכי ארוך בחלוקה. בחלוקה P

הערה 2.7 האינטואיציה היא שברגע שיודעים שהמקטע הארוך ביותר מקיים אילוץ מסוים, קל וחומר שהחלוקה כולה תתנהג בצורה נוחה.

בנוסף נסמן:

$$K = \sup\{|f(x)| \mid x \in [a, b]\}$$

אזי הוספת N נקודות, אזי איזי של עידון אם עידון אם (ממשפט העידון) מסקנה 2.1 מסקנה ע"י

$$\underbrace{\left(U\left(f,P\right)-L\left(f,P\right)\right)}_{\omega\left(f,P\right)}-\underbrace{\left(U\left(f,P'\right)-L\left(f,P'\right)\right)}_{\omega\left(f,P'\right)}\leq4NK\cdot\lambda\left(P\right)$$
 מכונה התנודה

כלומר,

16

$$0 \le \omega(f, P) - \omega(f, P') \le 4NK \cdot \lambda(f, P)$$

. חסומה $f:[a,b] o\mathbb{R}$ תהא 2.2 טענה

אזי, לכל שתי חלוקות P,Q מתקיים:

$$L\left(f,P\right) \leq U\left(f,Q\right)$$

הערה 2.8 המשמעות היא שיש יחס סדר בין כל הסכומים התחתונים לסכומים התחתונים: כל סכום עליון **גדול תמיד** מכל סכום תחתון.

הוכחה. נגדיר עידון משותף:

$$P' = P \cup Q$$

Q עידון של P וגם עידון של P'

מתקיים:

$$L\left(f,P\right)\underbrace{\leq}_{\text{ממשפט העידון}}L\left(f,P'\right)\underbrace{\leq}_{\text{ראינו}}U\left(f,P'\right)\underbrace{\leq}_{\text{ממשפט העידון}}U\left(f,Q\right)$$

מסקנה 2.2 אם נגדיר:

$$A=\{U\left(f,P\right)\mid [a,b]$$
 של P חלוקה לכל
$$B=\{L\left(f,P\right)\mid [a,b] \text{ whith } P$$
 לכל חלוקה לכל $a>b$ מתקיים $a\in A,\ b\in B$ אזי לכל

:משפט 2.2 תהא תהא $f:[a,b] o\mathbb{R}$ תהא

$$m(b-a) \le \underbrace{\int_{\underline{a}}^{b} f}_{\sup B} \le \underbrace{\int_{\underline{a}}^{\overline{b}} f}_{\inf A} \le M(b-a)$$

 $m=\inf_{[a,b]}f$, אור $m=\sup_{[a,b]}f$ כאשר בפרט, אם אינטגרבילית ב-[a,b], אזינ

$$m(b-a) \le \int_a^b f \le M(b-a)$$

:הוכחה. לכל P מתקיים

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

ולכן האינפימום מקיים:

$$m\left(b-a\right) \le \inf_{P} U\left(f,P\right) = \int_{a}^{\bar{b}} f$$

באופן דומה,

$$M\left(b-a\right) \ge \sup_{P} L\left(f,P\right) = \int_{a}^{b} f$$

המשך ההוכחה - תרגיל

המשך הוכחה של מיכל מסמסטר חורף קודם:

 $S=\sup A$ נסמן מלעיל, מאינפי א קבוצה א קבוצה קבוצה א קבוצה ומי: תהא

 $.a \leq S$ מתקיים $a \in A$ (1)

$$a>S-arepsilon$$
 כך ש- $a\in A$ קיים $arepsilon>0$ (2)

. חלוקות קבועות לשהן חלוקות P,Qיהיו

 $L\left(f,P
ight)\leq U\left(f,Q
ight)$ לפי טענה 2.2, מתקיים בפרט

 $A = \{L\left(f,P\right) \mid$ חלוקה $P\}$ הקבוצה של מלמעלה חסם $U\left(f,Q\right) \iff$

$$\int_{a}^{b} f = \sup A \le U(f, Q) \iff$$

וזה מהגדרת סופרימום כחסם מלמעלה הקטן ביותר.

מאחר שזה מתקיים לכל חלוקה Q, למעשה קיבלנו ש- $\int_{\underline{a}}^{b}f$ חסם מלמטה לקבוצה

$$B = \{U\left(f,Q\right) \mid$$
 חלוקה Q $\}$

$$\int_a^{\bar{b}} f = \inf B \ge \int_a^b f \iff$$

כאשר מעבר זה נובע מהגדרת אינפימום כחסם מלמטה הגדול ביותר.

:משפט 2.3 תהא $f:[a,b] o\mathbb{R}$ תהא

$$m\left(b-a\right) \leq \int_{\underline{a}}^{b} f \leq \int_{a}^{\overline{b}} f \leq M\left(b-a\right)$$

הוכחה.

לכל חלוקה P מתקיים:

$$m(b-a) \le L(f,P) \le U(f,P) \le M(b-a)$$

ממשפט,

$$m(b-a) \le \sup_{P} L(f,p) \le M(b-a)$$

$$m(b-a) \le \inf_{P} U(f,p) \le M(b-a)$$

$$\int_{\underline{a}}^{b} f \ge m \left(b - a \right), \int_{a}^{\overline{b}} f \le M \left(b - a \right) \iff$$

: [a,b] ניקח חלוקה כלשהי על כלשהי עיקח ניקח

 $L\left(f,P\right)\leq U\left(f,Q\right)$, $\left[a,b\right]$ של הקטע של חלוקה לכל לכל משפט, לפי

$$\implies \int_{a}^{b} f = \sup_{P} L\left(f, P\right) \le U\left(f, Q\right)$$

 $\int_{\underline{a}}^{b}f\leq U\left(f,Q\right)$ מתקיים Qחלוקה לכל עכשיו עכשיו

$$\int_{a}^{\overline{b}}f=\inf_{Q}U\left(f,Q\right) \geq\int_{\underline{a}}^{b}f\iff$$

3. תנאים שקולים לאינטגרביליות

פוטיבציה: רוצים לפצוא דרכים יותר פשוטות להוכיח אינטגרביליות של פונקציה. קשה פאוד להוכיח ישירות לפי ההגדרה

משפט 2.4 (תנאים שקולים לאינטגרביליות) תהא תהא אוי התנאים שקולים לאינטגרביליות ההא הבאים שקולים:

- [a,b] אינטגרבילית אינטגרבילית f (1)
- -ע כך P כך חלוקה $\varepsilon>0$ לכל (2)

$$\omega\left(f,P\right)\coloneq U\left(f,P\right)-L\left(f,P\right)<\varepsilon$$

(התנודה קטנה כרצוננו)

(3) מתקיים: $\lambda\left(f,P\right)<\delta$ המקיימת חלוקה שלכל כך לכך $\delta>0$ מתקיים, $\varepsilon>0$

$$\omega\left(f,P\right)<\varepsilon$$

. טריוויאלי. (3) \Longrightarrow (2) נשים לב: 2.9 הערה

.[0,1] נוכיח בעזרת אינטגרבילית אינטגר $f\left(x\right)=x^{2}$ שהפונקציה (2) בעזרת נוכיח נוכיח ביש נוכיח בעזרת (2) אינטגרבילית בקטע $\varepsilon>0$ לכל לכל לכל לכל לכל לכל חלוקה P של חלוקה $\varepsilon>0$

$$\omega\left(f,P\right)<\varepsilon$$

הוכחה: יהא $\varepsilon>0$. נסתכל על חלוקה P_n ל-חn נסתכל על גסתכל לוס. באורך שווה, כלומר לכל לכל לכל $\Delta x_i=\frac{1}{n}$

$$\implies \boxed{\mathbf{m}_i = f\left(\frac{i-1}{n}\right) = \frac{(i-1)^2}{n^2}}$$

$$\boxed{\mathbf{M}_i = f\left(\frac{i}{n}\right) = \frac{i^2}{n^2}}$$

$$U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n} \left(M_{i} - m_{i}\right) \Delta x_{i}$$

$$= \sum_{i=1}^{n} \left(f\left(\frac{i}{n}\right) - f\left(\frac{i-1}{n}\right)\right) \frac{1}{n} \quad \underset{\text{define}}{=} \quad \frac{1}{n} \left(f\left(1\right) - f\left(0\right)\right) = \frac{1}{n} < \varepsilon$$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ יתקיים ואז יתקיים $n=\left\lceil \frac{1}{\varepsilon}\right\rceil +1$ כך ע- P_{n} חלוקה הקיים $\varepsilon>0$ לכל לכל

. הוכחת המשפט

$$(2) \Leftarrow (1)$$

נתון f אינטגרביליות, כלומר

$$\int_{a}^{\bar{b}}f=\inf_{P}U\left(f,P\right)=\sup_{P}L\left(f,P\right)=\int_{a}^{b}f$$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ ע" כך ש- P סלוקה חלוקה $\varepsilon>0$ לכל לכל לכל יימת האים $\varepsilon>0$ יימת יהא יהא

:קיימת חלוקה P_1 כך שמתקיים

$$U(f,P) < \int_{a}^{\overline{b}} + \frac{\varepsilon}{2}$$

:קיימת חלוקה P_2 כך שמתקיים

$$L(f,P) > \int_{\underline{a}}^{b} f - \frac{\varepsilon}{2}$$

. ניקח עידון משותף $P=P_1\cup P_2$ של שתי ניקח ניקח משפט העידון:

$$\begin{cases} U(f,P) \leq U(f,P_1) \leq \int_a^{\bar{b}} f + \frac{\varepsilon}{2} \\ L(f,P) \geq L(f,P_1) \geq \int_{\underline{a}}^{\underline{b}} f - \frac{\varepsilon}{2} \end{cases}$$

. $\int_{\underline{a}}^{b}f=\int_{a}^{\overline{b}}f$ נתון f אינטגרבילית, ולכן ולכן , שני אינטגרבילית, נחסר בין שתי המשוואות ונקבל בדיוק $\omega\left(f,P
ight)<arepsilon$ נחסר בין שתי המשוואות

$$(3) \Leftarrow (2)$$

$$.U\left(f,P
ight)-L\left(f,P
ight) כך ש- P כך קיימת חלוקה $\delta=rac{arepsilon}{8NK}$ עבור עבור $\varepsilon>0$$$

$$U\left(f, ilde{P}
ight) - L\left(f, ilde{P}
ight) < rac{arepsilon}{2}$$
 מהנתון קיימת חלוקה $ilde{P}$ כך שמתקיים
$$\left[.\lambda\left(P\right) < \delta \right.$$
 תהא P חלוקה כלשהי המקיימת

(עידון משותף). $Q=P\cup ilde{P}$ החלוקה

לפי מסקנה ממשפט העידון,

$$\begin{split} \left(U\left(f,P\right)-L\left(f,P\right)\right)-\left(U\left(f,Q\right)-L\left(f,Q\right)\right) &\leq 4NK\lambda\left(P\right) \\ U\left(f,P\right)-L\left(f,P\right) &\leq \left(U\left(f,Q\right)-L\left(f,Q\right)\right)+4NK\lambda\left(P\right) \\ &\overset{\leq}{\underset{\tilde{P}}{\sim}} \left(U\left(f,\tilde{P}\right)-L\left(f,\tilde{P}\right)\right)+4NK\lambda\left(P\right) \\ &\leq \frac{\varepsilon}{2}+4NK\lambda\left(P\right) \underbrace{=\varepsilon}_{\underset{\text{Truy}}{\sim}} \varepsilon \end{split}$$

נוכיח (2) כוכיח נוכיח (1) ביו (1) כוכיח (1) נתון: לכל arepsilon > 0 קיימת חלוקה P כך ש- arepsilon > 0 קיימת לכל פיימת f אינטגרבילית, כלומר f

$$\underbrace{\int_{\underline{a}}^{b} f}_{\sup_{P} \{L(f, P)\}} = \underbrace{\int_{\underline{a}}^{\overline{b}} f}_{\inf_{P} \{U(f, P)\}}$$

$$\int_{a}^{\overline{b}}f\underbrace{\leq}_{\text{הגדרת הסופרימום}}U\left(f,P\right)\underbrace{\leq}_{P\text{ הגדרת הסופרימום}}L\left(f,P\right)+\varepsilon\underbrace{\leq}_{\text{הגדרת הינפימום}}\int_{\underline{a}}^{b}f+\varepsilon$$

(מתקיים: לכל לכל $\varepsilon>0$ מתקיים:

$$0 \le \int_a^{\bar{b}} f - \int_{\underline{a}}^b f < \varepsilon \implies \int_a^{\bar{b}} f = \int_{\underline{a}}^b f$$

4. סכומי רימן

.(בכל הנקודות בקטע) מוגדרת (בכל תהא תהא (סכום רימן) מוגדרה ל
 $f:[a,b]\to\mathbb{R}$ תהא

[a,b] תהא P חלוקה של הקטע

. כרצוננו. בכל תת-קטע $x_{i-1} \leq c_i \leq x_i$ נבחר נקודה $1 \leq i \leq n$ כרצוננו.

יי: מוגדר ע"י: רימן המתאים לחלוקה P ולבחירת הנקודות סכום רימן המתאים לחלוקה

$$R(f, P, c_i) := \sum_{i=1}^{n} f(c_i) \Delta x_i$$

2.10 הערה

22

- (1) לא דרשנו (בינתיים) חסימות של הפונקציה.
- (2) סכום רימן אינו הכללה של סכום דרבו, כי f לא בהכרח רציפה, ואז סכום דארבו לאו דוקא יכול להתקבל כסכום רימן (למשל: הסופרימום הוא אולי לא נקודה בקטע).

$$f\left(x
ight)=x^{2}\left[0,1
ight]$$
 ניקח ניקח חלוקה P = $\left\{0,rac{1}{2},1
ight\}$

$$U(f,P) = \sum_{i=1}^{2} M_i \Delta x_i = \frac{1}{2} \left(\frac{1}{4} + 1 \right) = \frac{5}{8}$$

$$L(f, P) = \sum_{i=1}^{2} M_i \Delta x_i = \frac{1}{2} \left(0 + \frac{1}{4} \right) = \frac{1}{8}$$

כעת ננסה באמצעות סכום רימן:

$$R(f, P, c_i) = \frac{1}{2} \left(f\left(\frac{1}{3}\right) + f\left(\frac{7}{8}\right) \right) = \dots = \frac{53}{128}$$

טענה c_i מתקיים: לכל מחניחו) לכל מתקיים:

$$L(f, P) \leq R(f, P, c_i) \leq U(f, P)$$

23 . סכומי רימן

4.1. הגדרת רימן לאינטגרביליות.

הערה 2.11 צריך להוכיח שקילות להגדרת דרבו!

 $f:[a,b]
ightarrow \mathbb{R}$ תהא (אינטגרביליות לפי לפי אינטגרביליות אינטגרביליות לפי 2.9

אזי $\varepsilon>0$ קיימת $\varepsilon>0$ קיים אזי $I\in\mathbb{R}$ קיים אזי f קיימת בקטע הינטגרבילית בקטע אזי f אזי אינטגרבילית בקטע אזי (a,b], אולכל המקיים: שלכל חלוקה בחירה של נקודות אולכל המקיימת (a,b), אולכל בחירה של נקודות המקיימת אולכל המקיימת אולכל בחירה של המקיימת אולכל המקיימת אולכל בחירה של המקיימת אולכל המקיימת אולכל המקיים:

$$\left| \sum_{i=1}^{n} R\left(f, P, c_{I}\right) - I \right| < \varepsilon$$

(הערות) 2.12 הערות

- $I=\int_a^b f$:מתקיים ומתקיים את (2.9) אז הוא יחיד, ומתקיים (1)
 - חסומה f אם פונקציה f מקיימת את (2.9), אז f חסומה.

הוכחת ההערות.

.(2.9) את המקיים $J \neq I$ המקיים את (2.9).

J עבור $\delta_2>0$ ו- $\delta_1>0$ עבור $\delta_1>0$ עבור .arepsilon>0 יהא

 $\delta = \min\left\{\delta_1, \delta_2
ight\}$ נסתכל על

 $.\lambda\left(P\right)<\delta$ תהא חלוקה חלוקה Pתהא תהא

יהיו $x_{i-1} \le c_i \le x_i$ כלשהן:

$$0 \leq |I-J| = \left|I - \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} + \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - J\right|$$

$$\leq \left|I - \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i}\right| + \left|\sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - J\right| < \varepsilon$$

 $I=J \iff 0 \leq |I-J| < arepsilon$ מתקיים arepsilon > 0 הוכחנו שלכל

המקיימת P המקיימת $\delta>0$ כך שלכל כך קיים $\varepsilon=\frac{1}{2}$ המקיימת (2.9) לפי (2.9) לפי (2.9) לפי $x_{i-1}\leq c_i\leq x_i$ אלכל בחירה של ל $\lambda\left(P\right)<\delta$

$$\left| \sum_{i=1}^{n} f(c_i) \Delta x_i - I \right| < \frac{1}{2}$$

[a,b]-נניח בשלילה ש-f לא חסומה ב-

.(בה"כ מלמעלה) שבו f לא חסומה (בה"כ מלמעלה) אקיים תת-קטע (1 שקיים תת-קטע (1 אינפי 1)

 $f\left(x_{0}\right)>M$ -פך כך $x_{0}\in\left[x_{j-1},x_{j}\right]$ קיים Mלכל לכל תוזכוות:

$$M=f\left(c_{j}
ight)+rac{1}{\Delta x_{j}}$$
 ניקח:

- כך ער גי
$$x_{j-1} \leq d_j \leq x_j$$
 כך ער (**)
$$f\left(d_j\right) > f\left(c_j\right) + \frac{1}{\Delta x_j}$$

(**) מתקיים d_j ו- ו- $d_i=c_i$ מתקיים מלכל j כך שלכל מתקיים נקח חלוקה לפי לפי שלכל לפי תנאי רימן:

$$\left| \sum_{i=1}^{n} f(d_i) \, \Delta x_i - I \right| < \frac{1}{2}$$

:אבל כעת

$$1 = \frac{1}{2} + \frac{1}{2} = \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - I \right| + \left| \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} - I \right| \geq \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - I + I - \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} \right|$$

$$= \left| \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x_{i} - \sum_{i=1}^{n} f\left(d_{i}\right) \Delta x_{i} \right| \quad \underbrace{=}_{i=1} \int_{0}^{n} \left| f\left(c_{i}\right) - f\left(d_{i}\right) \right| \left| \Delta x_{j} \right| > \frac{1}{\Delta x_{j}} \Delta x_{j} = 1$$

ולכן סתירה.

5. תנאים מספיקים לאינטגרביליות

מוניטונית, מונטוטונית $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרבילית רימן בקטע אזי f אינטגרבילית רימן בקטע ל

הערה 2.13 נרצה להוכיח כי f אינטגרבילית לפי דארבו, בשביל זה נראה כי היא חסומה.

. נתון כי f מונוטונית, נניח בה״כ מונוטונית עולה. הוכח.

 $x \in [a,b]$ מוגדרת בכל נקודה בקטע, כלומר לכל f

$$f(a) \le f(x) \le f(b)$$

[a,b]-ם חסומה $f \Leftarrow$

-נוכיח שלכל [a,b] של הקטע P קיימת חלוקה $\varepsilon>0$ כך שלכל

$$\omega(f, P) = U(f, P) - L(f, P) < \varepsilon$$

 $. \varepsilon > 0$ יהא

. $\Delta x_i=rac{b-a}{n}$ נסתכל על חלוקה [a,b], כלומר שווים של הקטע ל-nל ל-nל תלוקה ל- $m_i=f\left(x_{i-1}\right)$ ו- $M_i=f\left(x_i\right)$

$$\omega\left(f,P\right) = U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n}\left(M_{i} - m_{i}\right)\Delta x_{i} = \sum_{i=1}^{n}\left(f\left(x_{i}\right) - f\left(x_{i-1}\right)\right)\Delta x_{i} \underbrace{\underbrace{\qquad \qquad \qquad }}_{n} \underbrace{\qquad \qquad b - a}_{n} \cdot \left(f\left(b\right) - f\left(a\right)\right)$$

$$U\left(f,P\right) - L\left(f,P\right) = \frac{b - a}{n}\left(f\left(b\right) - f\left(a\right)\right) \iff$$

$$n > \frac{(b-a)(f(b)-f(a))}{\varepsilon}$$
 שבה P_n חלוקה חלוקה $\varepsilon > 0$ לכל \Longleftrightarrow

$$.U\left(f,P_{n}
ight) -L\left(f,P_{n}
ight) המקיימת$$

הערה 2.14 משפט זה מאפשר להגדיר כל פונקציה מונוטונית בקטע סגור כאינטגרבילית.

דוגמה 2.9 (פונקציות מונוטוניות שאינטגרביליות בקטע חסום)

$$\left[0,1\right]$$
 בקטע $f\left(x
ight) =x^{2}$ (1)

$$[1,2]$$
 בקטע $f(x) = \frac{1}{x}$ (2)

. מספר אי רציפות אי פופי סופי - [0,10] בקטע בקטע (3)

$$f(x) = \begin{cases} 1 - \frac{1}{2^{n-1}} & x \in \left[1 - \frac{1}{2^{n-1}}, 1 - \frac{1}{2^n}\right] \\ 1 & x = 1 \end{cases}$$
 (4)

. פונקציה או הינה מונוטונית בקטע [0,1], ולכן על פי המשפט אינטגרבילית שם

רציפה, $f:[a,b] o \mathbb{R}$ תהא תהא אינטגרביליות גוררת אינטגרביליות (רציפות ביר

[a,b]- אזי אינטגרבילית רימן f

תזכורת:

- (ווירשטראס) ומינימום מקסימום ומקבלת היא היא חסומה אז היא רציפה בקטע (ווירשטראס) אם f
 - (סנטור היינה) אם f רציפה בקטע סגור אז היא רציפה בו במ"ש (קנטור היינה)
- $x,y\in [a,b]$ כך שלכל $\delta>0$ קיימת arepsilon>0 כך שלכל I בתחום רציפה במ"ש בתחום $|f\left(x
 ight)-f\left(y
 ight)|<arepsilon$, מתקיים: $|x-y|<\delta$

. הוכחת המשפט:. כאמור fרציפה בקטע סגור, ולכן חסומה בו לפי ויירשטראס. אור המשפט:. כאמור β ס קיימת $(P)<\delta$ המקיימת שלכל של [a,b] של שלכל חלוקה $\delta>0$ קיימת $\varepsilon>0$ קיימת מתקיים:

$$\omega\left(f,P\right) = U\left(f,P\right) - L\left(f,P\right) < \varepsilon$$

 $.\varepsilon > 0$ יהי

לכל סגור, ולכן קיימת לפי פנטור היינה, ולכן עדיפה לבי שלכל $\delta>0$ סגור, ולכן רציפה לפי לפי תציפה לבי המקיימים אולכן מתקיים וא חמקיים וואר אוליים וואר אוליים ביימים אולכן $|x-y|<\delta$ מתקיימים אוליים אולכן מתקיים אולכן מתקיים וואר אוליים וואר אוליים וואר אוליים וואר אולכן שלכו וואר אולכן שלכו וואר אולכן שלכו וואר אולכן ווא

 $|x_i-x_{i-1}|<\delta$, $1\leq i\leq n$ לכל לכל המקיימת המקיימת המקיימת לשהי המקיימת המקיימת לכל $[x_{i-1},x_i]$ ולכן מקבלת שם מקסימום ומינימום (רציפה בקטע סגור).

$$x_{i-1} \leq t_1 \leq x_i$$
 כך ש- $M_i = f\left(t_i
ight)$ לכן קיימים: $m_i = f\left(s_i
ight)$

מתקיים:

$$M_{i} - m_{i} = f(t_{i}) - f(s_{i}) < \frac{\varepsilon}{b - a} \iff |t_{i} - s_{i}| \le x_{i} - x_{i-1} < \delta$$

$$U(f, P) - L(f, P) = \sum_{i=1}^{n} (M_{i} - m_{i}) \Delta x_{i} < \sum_{i=1}^{n} \frac{\varepsilon}{b - a} \Delta x_{i} = \varepsilon \iff$$

משפט 2.7 (רציפה פרט למספר סופי של נקודות) תהא $f:[a,b] o\mathbb{R}$ משפט 2.7 משפט עם נק' אי רציפות מסוג עיקרית).

[a,b] אינטגרבילית רימן אינט מספר סופי של נקודות, אזי אינטגרבילית למספר אם רציפה אם f

$$[0,1]$$
 אינטגרבילית רימן אינטגרבילית $f\left(x
ight)=egin{cases} f\left(x
ight)=\sinrac{1}{x} & x
eq 0 \ 0 & x=0 \end{cases}$

6. תכונות של פונקציות אינטגרביליות

הגדרה 2.10 (סימונים מקובלים)

$$\int_a^b f = -\int_b^a f \quad \text{(1)}$$

$$\int_a^a f = 0 \quad \text{(2)}$$

$$\int_a^a f = 0$$
 (2)

. שלילית אז האינטגרל היה בסימן מינוס f אם f

(a < b < c)[a,b] ו- [a,b] ו- [a,b] ו- (אדיטיביות) אינטגרבילית ההא אינטגרבילית (אדיטיביות) ומתקיים: [a,c] ומתקיים אינטגרבילית אינטגרבילית אינטגרבילית

$$\int_{a}^{c} f = \int_{a}^{b} f + \int_{b}^{c} f$$

הוכחה:.
$$f \Leftrightarrow \begin{cases} a,c \\ b \end{cases}$$
 חסומה בקטע $f \Leftrightarrow (a,c)$ אינט' ב- $[a,b] \Leftrightarrow (a,c)$ חסומה בקטע $f \Leftrightarrow (a,c) \Leftrightarrow (a,c)$ אינטג' ב- $[a,c] \Leftrightarrow (a,c)$ חסומה בקטע $f \Leftrightarrow (a,c)$

 $.U\left(f,P\right)-L\left(f,P\right)<\varepsilon$ עם כך של הקטע של חלוקה חלוקה $\varepsilon>0$ קיימת שלכל נוכיח נוכיח שלכל

 $.\varepsilon > 0$ יהא

 $L\left(f,P_{1}
ight)-L\left(f,P_{1}
ight)<rac{arepsilon}{2}$ של הקטע כך של קיימת חלוקה קיימת חלוקה קיימת פאינטגרביליות קיימת חלוקה וחלוקה או הקטע פון איימת חלוקה איינטגרביליות פון היימת חלוקה חלוקה איינטגרביליות פון היימת חלוקה היימת חלוקה וחלוקה איינטגרביליות פון היימת חלוקה וחלוקה היימת חלוקה וחלוקה וחלוקה היימת חלוקה וחלוקה וחלול

 $U\left(f,P_{2}
ight)-L\left(f,P_{2}
ight)<rac{arepsilon}{2}$ -של הקטע כך של חלוקה חלוקה ,[b,c] באופן דומה עבור

 $P : P : P_1 \cup P_2$ נסתכל על החלוקה

$$P_1 = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

$$P_2 = \{b = y_0 < y_1 < \dots < y_n = c\}$$

$$\text{(****)} \quad U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{n} \left(M_{i}^{1} - m_{i}^{1}\right) \Delta x_{i} + \sum_{i=1}^{n} \left(M_{i}^{2} - m_{i}^{2}\right) \Delta y_{i} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

[a,c] אינטגרבילית בקטע $f \Leftarrow=$

$$\int_a^c f = \int_a^b f + \int_b^c f$$
 נשאר להוכיח

$$L\left(f,P_{2}
ight)\leq\int_{b}^{c}f\leq U\left(f,P_{2}
ight)$$
 מים, $L\left(f,P_{1}
ight)\leq\int_{a}^{b}f\leq U\left(f,P_{1}
ight)$ (*)-מי

$$\underbrace{L\left(f,P_{1}\right)+L\left(f,P_{2}\right)}_{L\left(f,P\right)} \leq \int_{a}^{b} f + \int_{b}^{c} f \leq \underbrace{U\left(f,P_{1}\right)+L\left(f,P_{2}\right)}_{U\left(f,P\right)} \iff$$

$$L\left(f,P
ight) \leq \int_{a}^{c}f \leq U\left(f,P
ight)$$
 מהוכחת אינטגרביליות מתקיים:

נחסר בין המשוואות ונקבל:

$$\begin{split} -\left(U\left(P,f\right)-L\left(P,f\right)\right) &\leq \int_{a}^{c} f - \left(\int_{a}^{b} f + \int_{b}^{c} f\right) \leq U\left(f,P\right) - L\left(f,P\right) \\ 0 &\leq \left|\int_{a}^{c} f - \left(\int_{a}^{b} f + \int_{b}^{c} f\right)\right| \leq U\left(f,P\right) - L\left(f,P\right) \underset{\text{(ext) 20}}{<} \varepsilon &\iff \\ \end{split}$$

כפי שראינו פעמים רבות - שוויון.

משפט 2.9 (אדיטיביות עם אוריינטציה) תהא f אינטגרבילית בקטעים המתאימים, אזי:

$$\int_{a}^{b} f + \int_{b}^{c} f = \int_{a}^{c} f$$

וזה ללא כל חשיבות לסדר בין a, b, c.

_____ צריך להוכיח את כל האפשרויות:

- .((2.10) אם a=b=c אם (1)
 - .וכחנו. a < b < c אם
- (3) את כל שאר הווריאציות ניתן להוכיח בקלות באמצעות ההגדרות והדברים שהוכחנו.

[a,b] אינטגרביליות אינטגרביליות תהא לתת-קטע) תהא אינטגרביליות משפט 2.10 משפט אינטגרביליות אינטגרביליות המ $c,d \leq b$ אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית מוע אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית מוע אינטגרבילית אונטגרבילית אונטגרבילית אונטגרבילית אינטגרבילית אינטגרבילית אונטגרבילית אונטגרבילית אינטגרבילית אונטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אונטגרבילית אינטגרבילית אינטגרבילית

 $.\varepsilon>0$ הוכחה. יהי

-פך [a,b] כך של הקטע Q של חלוקה קיימת בי[a,b], בי ביליות של ביליות מהגדרת אינטגרביליות של

$$U(Q, f) - L(Q, f) < \varepsilon$$

.(עידון שבו הקטע הקצוות של הקצוות שבו (עידון שבו (עידון שבו הקטע הפנימי). $P' = Q \cup \{c,d\}$

 $U\left(f,P'\right)-L\left(f,P'\right)\leq U\left(f,P\right)-L\left(f,P\right)$ ממשפט העידון, משפט העידון, ווי, $P:=P'\cap [c,d]:$ נגדיר: ענדיר: $P:=P'\cap [c,d]$

$$Q = \{ a = x_0 < x_1 < \dots < x_n = b \}$$

$$P' = \left\{ a = x_0 < x_1 < \dots < \underbrace{x_i = c < \dots < x_{i+k} = d}_{P} < \dots < x_n = b \right\}$$

$$\implies U\left(f,P\right) - L\left(f,P\right) = \sum_{i=1}^{k} \underbrace{\left(M_{i} - m_{i}\right)}_{\geq 0} \underbrace{\Delta x_{i}}_{\geq 0} \qquad \underbrace{\leq}_{P \text{ includes and private and privat$$

משפט 2.11 (תכונות)

מתקיים: $x \in [a,b]$ מתקיים: [a,b] מתקיים: אינטגרבילית אינטגרבילית בקטע

[a,b] אינטגרבילית בקטע $(\varphi\circ f)(x)$ אינסגרבילית בקטע $\varphi:[c,d] o\mathbb{R}$ אזי לכל

lpha f + g הפונקציה $lpha \in \mathbb{R}$ אזי לכל (מינאריות) אינטגרביליות בקטע היינטגרביליות ומתקיים: (a, b] הפונקציה הפונקציה אינטגרבילית בקטע

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

(בהוכחה כדאי לפצל ל-2 משפטים)

הערה בקטע לכן להסתכל על כל הפונקציות האינטגרבילוית בקטע לכן להסתכל ניתן בארה ביתרה לכן להסתכל על להסתכל אופרטור ה-+.

30

$$\int_a^b f \geq 0$$
אזי (אי-שליליות, הא הא היכטגרבילית אינטגרבילית (אי-שליליות) (3)

[a,b] בקטע אינטגרבילית fנתון : נתון אי-שליליות הוכחת הוכחת י

$$\sup_{P}\left\{L\left(f,P\right)\right\}=\inf_{P}\left\{U\left(f,P\right)\right\}=\int_{a}^{b}f\iff$$
 נתון $f\geq0$ לכל $f\geq0$

$$L\left(f,P
ight)\geq0$$
 מתקיים P לכל

$$\int_{a}^{b} f \ge 0 \iff \sup_{P} \left\{ L\left(f, P\right) \right\} \ge 0 \iff$$

[a,b] אינטגרביליות בקטע f,g יהיו (4) (מונוטוניות האינטגרל) (4) $\int_a^b f \le \int_a^b g$ אזי $f(x) \le g(x)$ מתקיים $a \le x \le b$

 $.h\left(x\right)\coloneqq g\left(x\right)-f\left(x\right)\underbrace{\geq}_{\text{מהנתון}}0$ נגדיר: נגדיר: הוכחת מונוטוניות האינטגרל.

אינטגרבילית מלינאריות, ולפי תכונה (אי-שליליות), מתקיים: $h\left(x\right)$

$$\int_{a}^{b} (g - f) \ge 0 \iff \int_{a}^{b} h \ge 0$$

$$\int_{a}^{b} g \ge \int_{a}^{b} f \iff \int_{a}^{b} g - \int_{a}^{b} f \ge 0 \iff \int_{a}^{b} f \ge 0$$

אזי: [a,b] אינטגרבילית בקטע אינטגרלי) אינטגרבילית המשולש האינטגרלי) (5)

$$\left| \int_{a}^{b} f \right| \le \int_{a}^{b} |f|$$

 $|f| \leq f \leq |f|$ מתקיים: מתכונות ערך מחלט, מתקיים: הוכחת אש"מ אינטגרלי.

$$\int_a^b -|f| \leq \int_a^b f \leq \int_a^b |f| \underset{\text{distribe}}{\Longleftrightarrow}$$
 ממונוטוניות האינטגרל
$$-\int_a^b |f| \leq \int_a^b f \leq \int_a^b |f| \underset{\text{distribe}}{\Longleftrightarrow}$$

$$\left|\int_a^b f\right| \leq \int_a^b |f| \underset{\text{urg aints}}{\Longleftrightarrow}$$

31

טענה 2.4 (רציפות במספר סופי של נקודות גוררת אינטגרביליות)

תהא $f:[a,b] o \mathbb{R}$ חסומה חוציפה פרט למספר סופי של נקודות. אזי f:[a,b] איי אינטגרבילית בקטע [a,b]

$$f(x) = egin{cases} \sin rac{1}{x} & x
eq 0 \\ 0 & x = 0 \end{cases}$$
 אינטגרבילית בקטע 2.11 אינטגרבילית בקטע

טענה 2.5 (שינוי במספר סופי של נקודות לא משפיע על האינטגרל)

[a,b] אינטגרבילית בקטע f תהא

תהא תהא קבי טופי של נקודות, בד $g:[a,b]\to\mathbb{R}$ תהא תהא תהא ק $g:[a,b]\to\mathbb{R}$ מתקיים: $f\left(x\right)=g\left(x\right)$

 $.\int_a^b f = \int_a^b g$ אזי אינטגרבילית, ומתקיים: g

.6.1 נקודות למחשבה (תרגילים בנושא אי-שליליות).

- $x\in [a,b]$ לכל לכל $f\leq 0$ מה קורה אם (1)
 - $a \le x \le b$ לכל f > 0 מה אם (2)
 - $f(x_0) > 0$ שבה x_0 (3)
 - (3) + רציפה f (4)

מסקנה 2.3 (נוכל ליצור הרבה פונקציות אינטגרביליות)

אז: [a,b] אז: אם f אינטגרבילית בקטע

- [a,b]אינטגרבילית ב- f^n , $n\in\mathbb{N}$ לכל (1)
 - [a,b]- אינטגרבילית | f (2)
- [a,b]. אינטגרבילית היו $\inf_{[a,b]}|f|>0$ אינטגרבילית (3) אם דוגמה:

נתבונן בפונקציה:

$$f(x) = \begin{cases} x & x \neq 0 \\ 5 & x = 0 \end{cases}$$

האם $\frac{1}{f}$ אינטגרבילית בקטע [0,1]? $\inf_{[0,1]} f = 0 \text{ (2)}$.inf $\inf_{[0,1]} f = 0$ השובה: לא, כי

 $\mbox{,}[a,b]$ אינטגרביליות אינטגרבילית היא אינטגרביליות היא אינטגרביליות פונ' אינטגרביליות (מכפלת היא אינטגרביליות היא אינטגרבילית היא $f\cdot g$ אינטגרבילית בקטע ו[a,b]

הוכחה.

$$f \cdot g = \frac{1}{2} (f+g)^2 - f^2 - g^2$$

לפי התכונות והמסקנות.

7. משפט ערך הביניים האינטגרלי

סענה 2.6 (משפט ערך הביניים האינטגרלי) תהא f פונקציה רציפה בקטע בקטע [a,b] ותהא g פונקציה אינטגרבילית חיובית ממש בקטע בקטע g אזי, קיימת נקודה $a \leq c \leq b$ כך שמתקיים:

$$\int_{a}^{b} f \cdot g = f(c) \int_{a}^{b} g$$

תעיון ההוכחה. f רציפה בקטע סגור בקטע מקסימום ומינימום. $x \in [a,b]$ עלכל כך שלכל $M,m \in \mathbb{R}$

$$m \le f(x) \le M$$

נכפות: ותכונות ותכונות לפתח, ונקבל לפתח, ונמשיך בקטע בקטע ב-0 בקטע נוספות:

$$m \le \frac{\int_a^b fg}{\int_a^b g} \le M$$

. צריך אחלק למקרים עבור אחניים, שארית ארית עבור עבור אריק לחלק למקרים עבור ארית ארית ארית החוכחה של האובדה ש-m,M מתקבלים כמקסימום וכמינימום בקטע.

הערה 2.16 אינטואיציה עבור $g\left(x\right)=1$ מדמה סוג של "ממוצע" במקרה הרציף של אינטגרל. האינטגרל מדומה לסכום שמחלקים ב"מספר האיברים" - אורך הקטע (בדומה לממוצע רגיל).

אינטואיציה עבור $g\left(x
ight)$ כללי: אם רצוננו בממוצע משוקלל, $g\left(x
ight)$ מייצגת את ערך של לולכן צריכה להיות חיובית ממש) סה"כ נקבל:

$$\frac{\int_{a}^{b} f \cdot g}{\int_{a}^{b} g} = f(c)$$

. באשר - $f\left(c\right)$ את קיומו את כדי להבטיח רציפה הממוצע. בריכה להיות רציפה כדי להבטיח

$$\mathbf{f}\left(x
ight)=\sin x$$
 בקטע ניקח:
$$\mathbf{g}\left(x
ight)=x+1>0$$

:לפי המשפט, קיימת $c \leq 1$ כך שמתקיים

$$\int_{0}^{1} \left(x+1 \right) \sin x dx = \sin \left(c \right) \int_{0}^{1} \left(x+1 \right) dx = \sin \left(c \right) \left(\int_{0}^{1} x dx + \int_{0}^{1} 1 dx \right) = \sin \left(c \right) \left(\frac{1}{2} + 1 \right) = \frac{3}{2} \sin \left(c \right)$$

המשפט היסודי של החדו"א

1. פונקציה צוברת שטח

לכל [a,x] אינטגרבילית רימן אינטגרבילית תהא אינטגרבית תהא תהא אונסת עוברת שטח) הגדרה 3.1 (פונקציה צוברת שטח) :נגדיר $a \le x \le b$

$$F\left(x\right) \triangleq \int_{a}^{x} f\left(t\right) \mathrm{d}t$$

[a,b] אינטגרבילית רימן בכל אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית אינטגרבילית

$$F(x) = \int_{a}^{x} 2dx$$
 בונחע נחישבע $= 2(x-a)$

. אינטגרבילית כי מונוטונית
$$f\left(x\right)=\begin{cases} 0 & 0\leq x<1\\ 1 & 1\leq x<2\\ 2 & 2\leq x\leq 3 \end{cases}$$
 דוגמה 3.2 אינטגרבילית כי מונוטונית.

$$0 \leq x < 1$$
 עבור

$$F\left(x\right)=\int_{0}^{x}f\left(t\right)\mathrm{d}t=\int_{0}^{x}0\mathrm{d}t=0$$

$$2x<2 \ \text{ עבור}$$

$$F\left(x\right)=\int_{0}^{x}f\left(t\right)\mathrm{d}t=\int_{0}^{1}0\mathrm{d}t+\int_{1}^{x}1dt=0+1\cdot\left(x-1\right)=x-1$$

2 < x < 3 עבור

$$F\left(x\right) = \int_{0}^{x} f\left(t\right) \mathrm{d}t = \int_{0}^{1} 0 \mathrm{d}t + \int_{1}^{2} 1 dt + \int_{2}^{x} 2 dt = 0 + 1 + 2\left(x - 2\right) = 2x - 3$$
 קיבלנו:

$$F(x) = \begin{cases} 0 & 0 \le x < 1 \\ x - 1 & 1 \le x < 2 \\ 2x - 3 & 2 \le x \le 3 \end{cases}$$

שאלות לגבי התוצאה:

- אם זה מקרי? F(x) רציפה. האם זה מקרי?
- אם זה מקרי? האם היירה בכל הנקודות למעט נקודות התפר. האם $F\left(x\right)$
- פונקציה שלילית וש-f אי שלילית וש-F מונוטונית עולה, באופן שמזכיר את הקשר בין פונקציה פונקציה אלנגזרת. האם זה מקרי?

משפט 3.1 (הפונקציה צוברת השטח של אינטגרבילית רציפה בקטע)

[a,b]ב- ב-עיפה $F\left(x\right)=\int_{a}^{x}f$ הפונקציה אזי הפונקע, [a,b]רציפה ב-קטע אינטגרבילית אינטגרבילית הפונקציה הפונקציה אזי הפונקציה ב

הוכחה. נוכיח ש- $F\left(x
ight)$ רציפה במ"ש.

,[a,b] נתון אינטגרבילית אינטגרבילית f

$$[a,b]$$
 חסומה בקטע הסומה $f \iff$. $|f\left(x\right)| \leq M$ - כך ש $0 < M \in \mathbb{R}$

 $a \le x < y \le b$ יהיו

$$\left|F\left(y
ight)-F\left(x
ight)
ight| = \left|\int_{a}^{y}f-\int_{a}^{x}f
ight| = \left|\int_{a}^{y}f+\int_{x}^{a}f
ight| = \left|\int_{x}^{y}f
ight|$$

$$\leq \int_x^y |f| \leq \int_x^y M \underbrace{=}_{\text{Micolicity}} M |y-x|$$
 אינטגרל של קבוע

 $\left| F\left(y\right) -F\left(x\right) \right| \leq M\left| y-x\right|$ מתקיים ,
 $a\leq x< y\leq b$ לכל כי סה"כ קיבלנו כי לכל

ליפשיצית $F \Leftarrow=$

רציפה במ"ש $F \iff$

רציפה. $F \Leftarrow =$

הערה 3.1 המלצה כדי לנתק את המחשבה האוטומטית שאם עושים אינטגרל, הפונקציה שבפנים תמיד רציפה:

הוכיחו שפונקציית רימן / פונקציית תומה / פופקורן / הגשם הנופל:

$$f\left(x\right)=\begin{cases} \frac{1}{q} & x=\frac{p}{q}\in\mathbb{Q}, q\neq0, \text{ where } 0, \\ 0 & x\not\in\mathbb{Q} \end{cases}$$

.[0,1] אינטגרבילית רימן אינטגרבילית

נקודות אי הרציפות הן המספרים הרציונליים (כן מנייה), והפונקציה רציפה עבור כל המספרים האי-רציונליים.

$$F(x) = \int_{a}^{x} f$$
 הגדרנו 3.2 הערה

, $F\left(x
ight)=\int_a^x f$ הגדרנו 3.2 הערה 3.2 הערה אבל אפשר לקבוע כל נקודה $a\leq x_0\leq b$ יהיה לקבוע על F יהיה לחביר: $G\left(x
ight)=\int_{x_0}^x f$ האבל אפשר לקבוע ל יהיה נכון לא יהיה שנוכיח על F יהיה האבל אפרן:

$$F\left(x\right) = \int_{a}^{x} f \underbrace{=}_{\text{recycled}} \int_{a}^{x_{0}} f + \int_{x_{0}}^{x} f = C + G\left(x\right)$$

. נבדלות בקבוע $F,\ G$ כלומר,

הערה 3.3 באופן כללי, נגזרת של פונקציה כלשהי לא בהכרח אינטגרבילית.

בקטע $F\left(x
ight)=\ln x$ הפונקציה הפונקציה לא אינטגרבילית שלה שהנגזרת קדומה פונקציה דוגמה 3.3 (פונקציה אינטגרבילית) $f(x) = F'(x) = \frac{1}{x}$ גזירה, והנגזרת שלה היא (0,1)

. סלומה אינה שכן בקטע בקטע אינה אינטגרבילית $f\left(x\right)$ אבל היא היא היא היא היא אינטגרבילית אינה אינט היא היא דומה, אבל

2. המשפט היסודי בגרסה הפשוטה ונוסחת ניוטון-לייבניץ

משפט 3.2 (המשפט היסודי של החדו"א - גרסה פשוטה)

. פונקציה אינטגרבילית פונקציה $f:[a,b] o \mathbb{R}$

 $x \in [a,b]$: נגדיר לכל

$$F(x) = \int_{a}^{x} f(t) dt$$

אם הנקודה $a \leq x_0 \leq b$ גזירה בנקודה אזי אזי $F\left(x\right)$ אזי אזי הנקודה אז רציפה בנקודה אזי אזי אזי אזי ה

$$F'(x_0) = f(x_0)$$

. הערה x_0 אם x_0 נקודת קצה של הקטע, אז הכוונה לרציפות/גזירות חד-צדדיות.

הוכחת המשפט היסודי בגרסה הפשוטה.

$$\lim_{x \to x_0^+} \frac{F(x) - F(x_0)}{x - x_0} = f(x_0)$$

תהא מצד מירות לכד גזירות מצד ממין (תוכיחו לכד גזירות מצד שמאל). $a \leq x_0 \leq b$

 $a \leq x_0 < x < x_0 + \delta$ בריך להוכיח: לכל $\delta > 0$ קיימת $\delta > 0$ כך שלכל לכל לכל לכל מתקיים:

$$\left| \frac{F(x) - F(x_0)}{x - x_0} - f(x_0) \right| < \varepsilon$$

יהא $\varepsilon > 0$ יהא

נתון ש-f רציפה, ולכן קיימת $x_0 < x < x_0 + \delta_1$ כך שלכל ה $\delta_1 > 0$ מתקיים:

$$|f(t) - f(x_0)| < \varepsilon$$

עבור x כנדרש מתקיים: $\delta = \min\{b-x_0,\delta_1\}$ עבור

$$\left|\frac{F\left(x\right)-F\left(x_{0}\right)}{x-x_{0}}-f\left(x_{0}\right)\right|=\frac{1}{x-x_{0}}\left|\int_{a}^{x}f-\int_{a}^{x_{0}}f-\underbrace{f\left(x_{0}\right)}_{\text{wide field of }}\cdot\underbrace{\underbrace{\left(x-x_{0}\right)}_{\left[x_{0},x\right]\text{ wide field of }}}\right|$$

$$\underset{\text{The field of }}{=}\frac{1}{x-x_{0}}\left|\int_{x_{0}}^{x}f-\int_{x_{0}}^{x}f\left(x_{0}\right)\right|\underbrace{\underset{\text{The field of }}{=}}\frac{1}{x-x_{0}}\left|\int_{x_{0}}^{x}\left(f-f\left(x_{0}\right)\right)\right|$$

$$\underset{\text{Sumary field of }}{\leq}\frac{1}{x-x_{0}}\int_{x_{0}}^{x}\left|f\left(t\right)-f\left(x_{0}\right)\right|\,\mathrm{d}t\underbrace{\underset{\text{The field of }}{\leq}}\frac{1}{x-x_{0}}\int_{x_{0}}^{x}\varepsilon\mathrm{d}t=\varepsilon$$

מסקנה 3.1 לכל פונקציה רציפה בקטע סגור יש פונקציה קדומה, כי עבור:

$$F(x) = \int_{a}^{x} f(t) dt$$

 $F'\left(x
ight)=f\left(x
ight)$ מתקיים מתקיים לכל לפי המשפט לפי בקטע, לפי הקודה בקטע, לפי וזו בדיוק ההגדרה של פונקציה קדומה.

שאלות

(1) האם תמיד נוכל למצוא פונקציה אנליטית קדומה (נוסחה)?

- לא, אבל "נוכל" לחשב את האינטגרל המסוים.

דוגמאות לפונקציות ללא פונקציה אנליטית קדומה:

$$f(x) = \frac{\sin x}{x}$$
 (x)

$$f(x) = e^{x^2} \quad (1)$$

$$f(x) = \sin(x^2)$$
 (x)

$$f(x) = \frac{e^x}{x}$$
 (ד)

צ"ל:

טענה 3.1 (נוסחת ניוטון-לייבניץ (N-L) תהא א $f:[a,b] o\mathbb{R}$ חתהא פונקציה פונקציה (נוסחת ניוטון-לייבניץ קדומה של f, אזי:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

.
$$G\left(x
ight)=\int_{a}^{x}f\left(t
ight)\mathrm{d}t$$
 :נגדיר

f לפי המשפט היסודי, $G\left(x
ight)$ היא פונקציה קדומה של

 $\left(G'\left(x
ight)=f\left(x
ight)$ מתקיים x מתקיים בכל נקודה בקטע, ולכן לכל f

$$G\left(x
ight)=F\left(x
ight)+C$$
 -פיים כך ש- קיים \subset כד שי ידוע: פונקציות קדומות נבדלות בקבוע

$$F\left(b
ight)-F\left(a
ight)$$
 בונקציות קדומות $\left(G\left(b
ight)+C
ight)-\left(G\left(a
ight)+C
ight)=G\left(b
ight)-G\left(a
ight)$

$$= \int_a^b f - \int_a^a f = \int_{\int_a^a f = 0}^b f$$

דוגמה 3.4

$$\int_0^1 x^2 \mathrm{d}x = \left. \frac{x^3}{3} \right|_0^1 = \frac{1}{3}$$

דוגמה 3.5

$$\int_{-\pi}^{\pi} \cos^2 x \, \mathrm{d}x = \int_{-\pi}^{\pi} \frac{1}{2} \left(1 + \cos \left(2x \right) \right) \, \mathrm{d}x = \left. \frac{1}{2} \left(x + \frac{\sin \left(2x \right)}{2} \right) \right|_{-\pi}^{\pi} = \pi$$

3. כלל לייבניץ לאינטגרל מסוים

דוגמה 3.6 (מוטיבציה)

$$G\left(x
ight)=\int_{\cos x:=lpha(x)}^{7x^2:=eta(x)}\sin\left(t
ight)\mathrm{d}t$$
 (1) האם עותר לעשות?) - כו

 $:G\left(x
ight)$ נמצא את

$$G(x) = -\cos t|_{\cos x}^{7x^2} = -(\cos(7x^2) - \cos(\cos(x)))$$

נגוזר לפי כלל השרשרת:

$$G'\left(x\right) = -\sin\left(\cos x\right)\left(-\sin x\right) - \left(-\sin\left(7x^2\right)\right) \cdot 14x = \sin\left(7x^2\right) \cdot 14x - \sin\left(\cos x\right)\left(-\sin x\right)$$

$$\underbrace{=}_{\text{Deco}} f\left(\beta\left(x\right)\right) \cdot \beta'\left(x\right) - f\left(\alpha\left(x\right)\right) \cdot \alpha'\left(x\right)$$

$$F\left(x
ight)=\int_{a}^{x}e^{t^{2}}\mathrm{d}t$$
 \Longrightarrow $F'\left(x
ight)=e^{t^{2}}$ נגדיר:
$$G\left(x
ight)=F\left(x^{3}
ight)=\int_{a}^{x^{3}}e^{t^{2}}\mathrm{d}t$$

$$G(x) = F(x^3) = \int_a^{x^3} e^{t^2} dt$$

מתקיים:

$$G'(x) = F'(x^3) \cdot 3x^2 = e^{(x^3)^2} \cdot 3x^2$$

f אינטגרל מסוים) תהא f רציפה בקטע (אינטגרל לייבניץ לאינטגרל (כלל לייבניץ האינטגרל מסוים)

יות אזי: $a \leq \alpha\left(x\right), \beta\left(x\right) \leq b$ ש- פונקציות גזירות כך פונקציות מירות כך מונקציות מירות כך פונקציות מירות כ

$$G\left(x\right) = \int_{\alpha(x)}^{\beta(x)} f$$

גזירה, ומתקיים:

$$G'(x) = f(\beta(x)) \cdot \beta'(x) - f(\alpha(x)) \cdot \alpha'(x)$$

<u>ללא הוכחה.</u>

4. המשפט היסודי - הגרסה המלאה

משפט 3.4 (המשפט היסודי - הגרסה המלאה)

[a,b] רציפה בקטע אינטגרבילית בקטע ותהא [a,b] ותהא

אם לכל f הפונקציה של נקודות, הפונקציה אולי למספר אולי למספר אולי $a \leq x \leq b$ אם לכל

אזי:
$$F'(x) = f(x)$$

$$\int_{a}^{b} f = F(b) - F(a)$$

הערה 3.5 למעשה מדובר בסוג של "הרחבה" לנוסחת ניוטון לייבניץ, למקרים בהם אין פונקציה קדומה, אבל כן יש פונקציה רציפה שאינה גזירה רק במספר סופי של נקודות.

דוגמה 3.7

$$f(x) = \begin{cases} x & 0 \le x \le 1\\ \sin x & 1 \le x \le 2 \end{cases}$$

[0,2] אינטגרבילית בקטע

"ננחש":

$$F(x) = \begin{cases} \frac{x^2}{2} & 0 \le x < 1\\ -\cos x & 1 \le x \le 2 \end{cases}$$

לא רציפה ולכן לא ניתן להפעיל את המשפט, Fאבל אם "נדאג" ש-Fתהיה המשפט יעבוד. אבל אם "נדאג" ש-F

הוכחת המשפט היסודי בגרסה המלאה.

נשתמש בהגדרת רימן לאינטגרביליות:

 $I=\int_a^b f$:ונסמן, [a,b] אינטגרכילית אינטגרכילית אינטגרכילית אינטגרכילית

$$I=F\left(b
ight) -F\left(a
ight)$$
 צריך להוכיח:

 $\{y_1,\dots,y_k\}$ ע"י $F'\neq f$ ע"י לא גזירה עדהן לא הנקודות שבהן F לא תהא תהא תהא חלוקה כלשהי המקיימת לע $\{Q\}<\delta$ נגדיר עידון של

$$P = Q \cup \{y_1, \dots, y_k\}$$

 $.\lambda\left(P
ight)\leq\lambda\left(Q
ight)<\delta$ מתקיים

לכל $i \leq n$ מספר הנקודות בחלוקה $i \leq n$, לכל מספר הנקודות מספר הנקודות מספר אנירה בקטע הפתוח (x_{i-1},x_i), מהנתון ומהחלוקה, F רציפה בF'(x)=f(x) , $x_{i-1}< x< x_i$

:לפי לגראנז', קיימת נקודה $x_{i-1} < c_i < x_i$, כך שמתקיים

$$\frac{F(x_i) - F(x_{i-1})}{x_i - x_{i-1}} = f(c_i)$$

$$\implies \varepsilon > \left| \sum_{i=1}^{n} f(c_i) \Delta x_i - I \right| = \left| \sum_{i=1}^{n} \left(F(x_i) - F(x_{i-1}) \right) - I \right|$$

$$|F(b) - F(a) - I| < \varepsilon$$
 , $\varepsilon > 0$ לכל

$$F(b) - F(a) = I$$

5. שיטות אינטגרציה של אינטגרל מסוים ויישומים של המשפט היסודי

.5.1 שיטות אינטגרציה של אינטגרל מסוים.

.[a,b] עטענה 3.2 (אינטגרציה בחלקים) תהיינה ע $u\left(x
ight)$ תהיינה בקטע סענה 3.2 (אינטגרציה בחלקים)

אם u,v גזירות בקטע [a,b] (פרט אולי למספר סופי של נקודות), ובנוסף u',v' אינטגרביליות ב- [a,b] , אזי:

$$\int_a^b u'v = \left. uv \right|_a^b - \int_a^b uv'$$

דוגמה 3.8 חשבו:

$$\int_{-\pi}^{\pi} x \sin x dx = \underbrace{\qquad \qquad \qquad }_{\substack{u = x \\ u' = 1 \ \ \, v = -\cos x}} -x \cos x \big|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos x dx$$

$$= -(-\pi - \pi) + \sin x|_{-\pi}^{\pi} = 2\pi$$

תרגול עצמי:

$$\int_{-\pi}^{\pi} x \cos x \mathrm{d}x = 0$$

הוכחת אינטגרציה בחלקים. נתון u,v רציפות וגזירות. $F \coloneqq u \cdot v \;.$ נגדיר: $x \mapsto F \coloneqq u \cdot v$

וע"י העברת אגפים נקבל את השוויון הרצוי.

,[a,b] עטענה (שיטת ההצבה) תהא $f:[a,b] o \mathbb{R}$ תהא (שיטת ההצבה)

ותא: [a,b] רציפה של נקודות) וגזירה (פרט אולי למספר סופי של נקודות) עינות א $\psi:[\alpha,\beta]\to[a,b]$ נתון עי ψ אינטגרבילית, ו- $\psi:[\alpha,\beta]$ אינטגרבילית, וי עינטגרבילית, וי

$$\int_{a}^{b} f(x) dx = \int_{a}^{\beta} f(\psi(t)) \cdot \psi'(t) dt$$

דוגמה 3.9

(ו) חשבו:

$$\int_{0}^{1} \sqrt{1 - x^{2}} dx = \int_{x(t) = \psi(t) = \sin t} \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2} t} \cdot \cos t dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

$$= \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} dt dt = \int_{0}^{\frac{\pi}{2}} \cos^{2} t dt$$

 $x=\sin t$ בפועל בשיטת ההצבה לרוב רושמים: $\mathrm{d}x=\cos t\mathrm{d}t$

$$\int_0^\pi \sin x \mathrm{d}x$$
 $t = \sin x$ $\mathrm{d}t = \cos x \mathrm{d}x$

$$\int_0^\pi \sin x \mathrm{d}x = \int_0^0 (\mathrm{awen}) \, \mathrm{d}t = 0$$

:0-בפועל קל להשתכנע שהאינטגרל שונה מ

 $x=\psi\left(t
ight)$ בסדר? - לפי המשפט בריך לסמן את את צריך לסמן - לפי לפי המשפט , $t=\psi\left(x
ight)=\sin x$ בהצבה שביצענו לעיל, ניסינו להציב

 $f\left(t
ight)=\left($ משהו עבור (משהו) מפעילים את מפעילים אנחנו כלומר כלומר כלומר בקטע .[0,0] $:=\left[a,b\right]$

, ונשים הרציפות והגזירות, עת תנאי הרציפות והגזירות, $\psi\left(x\right)$ ב-נתבונן ב- $\psi\left(x\right)$ ואמנם:

$$0 = \psi\left(a\right) = \sin 0 = 0$$

$$\pi \neq \psi\left(b\right) = \sin 0 = 0$$

כלומר, תנאי המשפט לא מתקיימים ולכן המעבר לא אפשרי.

לעומת זאת, אם ψ הייתה חד-חד-ערכית בתחום המתאים (ולכן גם הפיכה בו כי רציפה), היינו יכולים לבצע את המעבר כפי שרצינו.

 $\int_a^b f =$ - פדומה F קדומה לכן ולכן הוכחת שיטת f קדומה (תון ש- fרציפה בקטע הוכחת הוכחת הוכחת $F\left(b\right) - F\left(a\right)$

 $:G\left(t
ight) =F\left(\psi \left(t
ight)
ight)$ נסתכל על הפונקציה:

- . רציפה רציפת רציפות $G\left(t
 ight)$ (1)
- :מתקיים גזירות, ומתקיים גזירה כהרכבת גזירות, ומתקיים

$$G'\left(t
ight)$$
 בלל השרשרת $F'\left(\psi\left(t
ight)
ight)\cdot\psi'\left(t
ight)=f\left(\psi\left(t
ight)
ight)\cdot\psi'\left(t
ight)$

רציפות ו- ψ' אינטגרבילית, רציפה הרכבה של הציפה הציפה $f\left(\psi\left(t\right)\right)$ (3) ולכן $f\left(\psi\left(t\right)\right)\cdot\psi'\left(t\right)$ אינטגרבילית.

לכן לפי המשפט היסודי,

$$\int_{\alpha}^{\beta} f(\psi(t)) \cdot \psi'(t) dt = \int_{\alpha}^{\beta} G'(t) dt = G(\beta) - G(\alpha) =$$

$$F(\psi(\beta)) - F(\psi(\alpha)) = F(b) - F(a) = \int_{a}^{b} f(a) dt = G(\beta) - G(\alpha) = G(\alpha) - G(\alpha) - G(\alpha) - G(\alpha) = G(\alpha) - G(\alpha) -$$

דוגמה 3.10 חשבו:

$$\int_0^1 \frac{e^x}{e^{2x} + 1} dx$$

[0,1] נשים לב שהפונקציה הפיכה בתחום

$$t=e^x$$

$$\mathrm{d}t=e^xdx \iff \ln t=x$$
נציב:

$$\begin{split} \int_0^1 \frac{e^x}{e^{2x}+1} dx &= \int_1^e \frac{\frac{1}{\xi}}{t^2+1} \cdot \frac{1}{\xi} \mathrm{d}t = \int_1^e \frac{1}{t^2+1} \mathrm{d}t \iff \\ &= \arctan t|_1^e = \arctan e - \frac{\pi}{4} \end{split}$$

.5.2 שימושים ויישומים של אינטגרל מסוים.

.5.2.1 חישובי שטח.

$$f\left(x
ight) =x$$
 בקטע בקטע $rac{f\left(x
ight) =x}{g\left(x
ight) =x^{2}}$ בקטע בקטע הפונקציות:

$$S = \int_0^1 \left(x - x^2 \right) dx + \int_1^2 \left(x^2 - x \right) dx = \left(\frac{x^2}{2} - \frac{x^3}{3} \right) \Big|_0^1 + \left(\frac{x^3}{3} - \frac{x^2}{2} \right) \Big|_1^2 = 1$$

באמצעות המשפט היסודי בגרסה המלאה, ניתן גם לחשב:

$$S = \int_0^2 \left| x - x^2 \right| \mathrm{d}x$$

בין השטח הכלוא ק[a,b] אינטגרביליות אינטגרבילות שתי פונקציות שתי בהינתן שתי בהינתן שתי פונקציות שווה:

$$S = \int_{a}^{b} |f - g|$$

5.2.2. חישוב גבולות.

f אינטגרבילית בקטע ע"י גבול סכומי דרבו/רימן) תהא אינטגרבילית אינטגרל ע"י גבול סכומי אינטגרל משפט 3.5 משפט

:אז לכל סדרה של חלוקות או המקיימת לכל סדרה או חלוקות או לכל

$$\lim_{n\to\infty}\lambda\left(P_n\right)=0$$

מתקיים:

$$\lim_{n\rightarrow\infty}L\left(f,P_{n}\right)=\lim_{n\rightarrow\infty}U\left(f,P_{n}\right)=\int_{a}^{b}f$$

 $: \!\! x_{i-1}^{(n)} \leq c_i^{(n)} \leq x_i^{(n)}$ ובנוסף, לכל בחירה של

$$\lim_{n \to \infty} R\left(f, c_i^{(n)}, P_n\right) = \int_a^b f$$

 $.\lambda\left(P_{n}\right)=\frac{1}{n}$ שבהן שבהן עבור חלוקות את תנסו תנסו תנסו

דוגמה 3.12 חשבו:

$$\lim_{n \to \infty} \frac{\sin \frac{1}{n} + \sin \frac{2}{n} + \ldots + \sin \frac{n}{n}}{n} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \sin \frac{k}{n} = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{k}{n} \cdot \underbrace{\frac{1}{n}}_{f(c_i)} \underbrace{\frac{1}{n}}_{\Delta x_i}$$

 $f\left(x
ight)=\sin\left(x
ight)$ מזכיר סכום רימן עבור מזכיר חלוקת הקטע [0,1] עבור חלוקת הקטע

ולכן לפי המשפט:

$$\lim_{n\to\infty}\frac{\sin\frac{1}{n}+\sin\frac{2}{n}+\ldots+\sin\frac{n}{n}}{n}=\int_0^1\sin x\mathrm{d}x=\cos 1-1$$

.5.2.3 חישוב מסה בהינתו הצפיפות ליחידת שטח (פיסיקה).

.5.2.4 אורך העקום.

נחלק את הקטע למספר חופי של תת למספר [a,b] למספר הקטע נחשב:

$$\ell_i = \sqrt{(x_i - x_{i-1})^2 + (f(x_i) - f(x_{i-1})^2)}$$

ואז אורך העקום:

$$\implies L = \sum_{i=1}^{n} \ell_{i} = \sum_{i=1}^{n} \sqrt{(x_{i} - x_{i-1})^{2} + (f(x_{i}) - f(x_{i-1})^{2})} = \sum_{i=1}^{n} \underbrace{|x_{i} - x_{i-1}|}_{\Delta x_{i}} \sqrt{1 + \left(\frac{f(x_{i}) - f(x_{i-1})}{x_{i} - x_{i-1}}\right)^{2}}$$

-ט כך c_i קיימת לגראנז', פיימת לנדרוש ש-

$$\left(\frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}\right) = f'(c_i)$$

$$L = \sum_{i=1}^{n} \sqrt{1 + \left(f'\left(c_{i}\right)\right)^{2}} \underset{n \to \infty}{\longrightarrow} \int_{a}^{b} \sqrt{1 + \left(f'\right)^{2}} \mathrm{d}x$$

דוגמה 3.13 נחשב אורך של רבע מעגל, ובעזרת זה נמצא היקף של מעגל:

$$f(x) = \sqrt{1 - x^2}$$

$$\implies f'(x) = \frac{-2x}{2\sqrt{1 - x^2}} = \frac{-x}{\sqrt{1 - x^2}}$$

$$\sqrt{1 + (f')^2} = \sqrt{1 + \frac{x^2}{1 - x^2}} = \sqrt{\frac{1}{1 - x^2}} = \frac{1}{\sqrt{1 - x^2}}$$

$$L$$
אורך של רבע מעגל = $\int_{-rac{\sqrt{2}}{2}}^{rac{\sqrt{2}}{2}} rac{1}{\sqrt{1-x^2}} \mathrm{d}x = \arcsin x|_{-rac{\sqrt{2}}{2}}^{rac{\sqrt{2}}{2}} = rac{\pi}{2}$

 $.4L=2\pi$ היקף מעגל ברדיוס היקף מעגל \Longleftarrow

פרק 4

אינטגרל מוכלל

1. סוגים של אינטגרלים מוכללים

הגדרה 4.1 (אינטגרל מוכלל בתחום לא חסום) תהא $f:[a,\infty]\to\mathbb{R}$ תהא חסום לא מוכלל בתחום לא [a,M]לכל האכל לכל אם קיים הגבול

$$\lim_{M \to \infty} \int_{a}^{M} f\left(x\right) \mathrm{d}x$$

נגדיר:

$$\int_{a}^{\infty} f\left(x\right) \mathrm{d}x \triangleq \lim_{M \to \infty} \int_{a}^{M} f\left(x\right) \mathrm{d}x$$

- אם הגבול קיים (מספר סופי), נאמר שהאינטגרל פתכנס.
- אם הגבול לא קיים, נאמר שהאינטגרל פתכזר (ואז האינטגרל המוכלל אינו מוגדר!)

. אם אבל מוגדר המוכלל האינטגרל אז האינטגרל אבל אבל אם 4.1 הערה הערה $\int_a^\infty f = \pm \infty$

דוגמה 4.1 (חשבו אם קיים)

$$\int_0^\infty e^{-x} \mathrm{d}x$$

נסמן M>0 לכל [0,M] אינטגרבילית בכל אינטגרבילית אינטגרבילית לכל $f\left(x\right)=e^{-x}$

52 אינטגרל מוכלל

$$\int_0^M e^{-x} \mathrm{d}x = -e^{-x} \Big|_0^M = -\left(e^{-M} - e^{-0}\right) = 1 - e^{-M} \underset{M \to \infty}{\longrightarrow} 1$$

$$\implies \int_0^\infty e^{-x} \mathrm{d}x = 1$$

$$\int_0^\infty \sin x \mathrm{d}x$$

(נחשב: f ,M>0 , לכל f ,M>0 , לכל גרבילית בקטע f

$$\int_0^M \sin x \mathrm{d}x = -\cos x \big|_0^M = -\left(\cos M - \cos 0\right) = \underbrace{1 - \cos \left(M\right)}_{\text{the position}}$$

לכן אינטגרל זה מתבדר.

$$\int_0^\infty \frac{1}{1+x^2} \mathrm{d}x$$

 $:\!M>0$ לכל $\left[0,M\right]$ לכלת בקטע ,
 $f\left(x\right)=\frac{1}{1+x^{2}}$ נגדיר נגדיר

$$\int_0^M \frac{1}{1+x^2} \mathrm{d}x = \arctan M|_0^M = \arctan M \underset{M \to \infty}{\longrightarrow} \frac{\pi}{2}$$

(4) ה-ד-ו-ג-מ-ה

(2)

(3)

נבדוק עבור אילו ערכים של $P \in \mathbb{R}$, האינטגרל הבא מתכנס:

$$\int_{1}^{\infty} \frac{1}{r^{P}} \mathrm{d}x$$

- . עבור מתבדר, $\int_1^\infty \frac{1}{x^P} = \infty$ נקבל $P \leq 0$ עבור
 - :עבור P=1, נקבל

$$\int_{1}^{M} \frac{1}{x} dx = \ln x \Big|_{1}^{M} = \ln M \xrightarrow[M \to \infty]{} \infty$$

מתבדר.

:עבור $P \neq 1$, נקבל •

$$\int_{1}^{M} \frac{1}{x^{P}} dx = \frac{x^{-P+1}}{-P+1} \bigg|_{1}^{M} = \frac{M^{-P+1}}{-P+1} - \frac{1}{1-P}$$

$$1 - P < 0$$
 עבור $P > 1$, נקבל

$$\frac{M^{1-P}}{1-P} \xrightarrow[M \to \infty]{} 0 \iff$$

כלומר - מתכנס.

$$1 - P > 0$$
 נקבל $0 < P < 1$ עבור -

$$\frac{M^{1-P}}{1-P} \underset{M \to \infty}{\longrightarrow} \infty \Leftarrow$$

כלומר, האינטגרל מתבדר.

לסיכום:

$$\int_{1}^{\infty} \frac{1}{x^{P}} \mathrm{d}x$$

P>1 מתכנס אם"ם

. מתבדר $\int_1^\infty \frac{1}{\sqrt{x}}$ אבל אבל מתכנס, מתבדר $\int_1^\infty \frac{1}{x^2} \mathrm{d}x$

. מתבדר, גם אם האינטגרל, $\int_a^\infty f = \pm \infty$ גם אם 4.2 הערה הערה

. הערה אינטגרל הוא הוא $\int_a^\infty f$ 4.3 הערה

:הערה 4.4 באופן דומה מגדירים

$$\int_{-\infty}^{a} f = \lim_{m \to -\infty} \int_{m}^{a} f$$

הערה 4.5 (אדיטיביות עבור אינטגרל מוכלל שידוע כי מתכנס)

אם $\int_a^\infty f$ מתכנס, אז:

$$\int_{a}^{\infty} f = \int_{a}^{b} f + \int_{b}^{\infty} f$$

 $.b \geq a$ עבור

דוגמה 4.3 חשבו אם מתכנס:

אינטגרל מוכלל 4. אינטגרל מוכלל

$$\int_{-\infty}^{\infty} x \mathrm{d}x$$

:אסור לעשות

$$\int_{-\infty}^{\infty} x dx \neq \lim_{M \to \infty} \int_{-M}^{M} x dx = \lim_{M \to \infty} 0 = 0$$

$((-\infty,\infty)$ הערה 4.6 (אינטגרל מוכלל בקטע אינטגרל

. נקודה כלשהי קותהא $c\in\mathbb{R}$ ותהא ותהא קכל קטע בכל אינטגרבילית אינטגרבילית האינטגרלים האינטגרלים הבאים התכנסו: $\int_{-\infty}^\infty f$ על מנת לבדוק התכנסות של

$$\int_{-\infty}^c f, \quad \int_c^\infty f$$
 . $\int_{-\infty}^\infty f = \int_{-\infty}^c f + \int_c^\infty f$ אוא

 $:\int_{-\infty}^{\infty}x\mathrm{d}x$ את נבדוק 4.4 נבדוק

$$\int_0^M x \mathrm{d}x = \left. \frac{x^2}{2} \right|_0^M = \frac{M^2}{2} \underset{M \to \infty}{\longrightarrow} \infty$$

.כלומר $\int_{-\infty}^{\infty} x \mathrm{d}x$ מתבדר

הגדרה 4.2 (נקודה סינגולרית של פונקציה) תהא f מוגדרת פונקציה של יכולה להיות הח x_0 של יכולה x_0 של יבדדית) של י

(יכולה להיות אדדית), אם בכל סביבה של x_0 אם היא נקודה סינגולרית של היות אם בכל מביבה של x_0 אינה היא f

דוגמה 4.5 למשל, עבור הפונקציה:

$$f(x) = \begin{cases} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

. היא נקודת סינגולריות $x_0=0$

 $f:(a,b] o \mathbb{R}$ אינטגרל חסום בתחום אל פונקציה של פונקציה מוכלל אינטגרל (אינטגרל מוכלל של פונקציה אינטגרבילית בקטע בקטע [x,b] לכל

$$\int_{a}^{b} f = \lim_{x \to a} \int_{x}^{b} f$$

אם הגבול קיים, נאמר שהאינטגרל מתכוס.

. היא א נקודת היא אין צורך בגבול - וזה אינטגרל רגיל. הערה a נשים לב שאם a נשים לב שאם היא לא נקודת סינגולריות, אז אין צורך בגבול

הערה 4.8 נקודת הסינגולריות יכולה להיות b, ואז נגדיר:

$$\int_{a}^{b} f = \lim_{x \to b^{-}} \int_{a}^{x} f$$

הערה 4.9 אם יש נקודת סינגולריות בתוך הקטע - נפצל ונדרוש התכנסות של שני האינטגרלים המוכללים.

דוגמה 4.6

(1)

(2)

$$\int_0^1 \frac{1}{\sqrt{x}} \mathrm{d}x = \lim_{x \to 0^+} \int_x^1 \frac{1}{\sqrt{t}} \mathrm{d}t = \lim_{x \to 0^+} 2\sqrt{x} \big|_x^1 = \lim_{x \to 0^+} \left(2 - 2\sqrt{x}\right) = 2$$

ולכן האינטגרל מתכנס.

$$\int_0^1 \frac{\sin x}{x} \mathrm{d}x$$
 מה לגבי

זה לא אינטגרל מוכלל! 0 אינה נקודת סינגולריות, וניתן לחשב אינטגרל זה באופן רגיל (מספר סופי של נקודות לא משנה את האינטגרל).

(3) לא מתקיים:

$$\int_{-1}^{1} \frac{1}{x^2} dx \neq -\frac{1}{x} \Big|_{-1}^{1} = -2$$

 $x_0=0$ כי יש נקודת סינגולריות בנקודה

(4) נבדוק התכנסות של

$$\int_0^1 \frac{1}{x^P} \mathrm{d}x$$

- אינטגרבילית! רציפה וחסומה, ולכן אינטגרבילית! אינטגרבילית: פור יא וורכלל : $P \leq 0$
 - P=1 נבדוק עבור

$$\int_0^1 \frac{1}{x} \mathrm{d}x = \lim_{x \to 0^+} \ln t \big|_x^1 = \lim_{x \to 0^+} \left(\ln 1 - \ln x \right) = \infty$$
 מתבדר.

4. אינטגרל מוכלל

56

 $:1 \neq P > 0$ עבור •

$$\int_x^1 \frac{1}{t^P} \mathrm{d}t = \left. \frac{t^{-P+1}}{-P+1} \right|_x^1 = \frac{1}{1-P} - \frac{x^{1-P}}{1-P}$$

$$: 0 < P < 1 \quad \text{where} \quad \cdot$$

$$x^{1-P} \underset{x \to 0^+}{\to} 0$$

$$\int_0^1 \frac{1}{x^P} \mathrm{d}x = \frac{1}{1 - P}$$

:P>1 עבור •

$$x^{1-P} \xrightarrow[x \to 0^+]{} \infty$$

ולכן האינטגרל מתבדר.

לסיכום:

$$0 < P < 1 \iff$$
מתכנס מתכנס $\int_0^1 \frac{1}{x^P} \mathrm{d}x$ האינטגרל

הגדרה 4.4 (אינטגרל מוכלל של פונקציה לא חסומה בתחום לא חסום)

הגדרנו אינטגרל מוכלל עבור תחום לא חסום ועבור פונקציה לא חסומה. מה קורה אם יש "משני הסוגים"?

צריך לפצל לסכום סופי של אינטגרלים.

רק אם כל המחוברים בסכום מתכנסים, אז האינטגרל מתכנס.

דוגמה 4.7

$$\int_{-1}^{1} \frac{1}{4x^2 - 1} \mathrm{d}x = ?$$

 $4x^2 - 1 = 0$ נבדוק מתי

$$x = \pm \frac{1}{2} \iff x^2 = \frac{1}{4} \iff 4x^2 - 1 = 0$$

ואז:

$$\int_{-1}^{1} \underbrace{\frac{1}{4x^{2} - 1}}_{f(x)} dx$$

$$= \int_{-1}^{-\frac{1}{2}} f(x) dx + \int_{-\frac{1}{2}}^{0} f(x) dx + \int_{0}^{\frac{1}{2}} f(x) dx + \int_{\frac{1}{2}}^{1} f(x) dx$$

(0-1) התכנסות אינטגרל מוכלל בקטע לא חסום א מעידה על התכנסות הפונקציה ל-

 $\lim_{x o \infty} f\left(x
ight) = 0$ מתכנס, האם בהכרח מתכנס, מתכנס, שאלה: אם נתון

תשובה: לא.

.[a,M] אינט בכל קטע אינטגרבילית רק אינטגרבילית ראיפה, רק לווא ליקח למשל:

$$f(x) = \begin{cases} 0 & x \notin \mathbb{N} \\ 1 & x \in \mathbb{N} \end{cases}$$

|M>a| ומתקיים לכל |a,M| ומתקיים לכל קטע למספר פופי של נקודות בכל הציפה פרט למספר הופי של נקודות בכל ה

$$\int_{a}^{M} f = 0$$

 $.\infty$ בול ב-הין אין לי $f\left(x\right)$ ל-כן מתכנס, $\lim_{M\rightarrow\infty}\int_{a}^{M}f=0$ ולכן

(2) (פונקציית אוהלים)

נראה שגם עבור פונקציה רציפה הדבר אינו הכרחי. נגדיר למשל את הפונקצייה הרציפה הבאה (f):

(נקבל: הינו בדיוק $\frac{1}{2^k}$, וכך נקבל: שטח כל משולש S_k

אינטגרל מוכלל 4. אינטגרל מוכלל

$$\int_{0}^{\infty}f\left(x\right)\mathrm{d}x=\lim_{n\rightarrow\infty}\sum_{k=1}^{n}2^{-k}\underbrace{=}_{\text{ חנד סיות}}\frac{\frac{1}{2}}{1-\frac{1}{2}}=1$$

 $x o \infty$ אבל לפונקציה f אין גבול אבל

(3) דוגמה נוספת:

$$\int_{1}^{\infty} \sin\left(x^2\right) dx$$

 $\lim_{x o \infty} \sin\left(x^2
ight)$ לא קיים.

הערה מתכנסים מוכללים מתכנסים, לינאריות האינטגרלים מתכנסים , $lpha\in\mathbb{R}$ מתכנסים, אזי לכל $\int_a^b g$, $\int_a^b f$

$$\int_{a}^{b} (\alpha f + g) = \alpha \int_{a}^{b} f + \int_{a}^{b} g$$

 $\pm\infty$ או b או a או סינגולרית, או b או a יתכן

2. קריטריון קושי להתכנסות אינטגרל מוכלל

הערה 4.12 (תזכורת מאינפי 1מ' - התכנסות לפי קושי)

$$\underline{x o \infty}$$
 נבור

 $x,y>x_0$ כך שלכל ביים $x_0>a$ קיים לכל כל הגבול האבול הגבול הגבול לכל היים $\lim_{x\to\infty}f\left(x
ight)$ מתקיים ווו $|f\left(x
ight)-f\left(y
ight)|<arepsilon$

עבור גבול בנקודה:

x,y קיים לכל $\delta>0$ קיימת $\varepsilon>0$ קיים הגבול $\lim_{x\to x_0}f(x)$ הגבול הגבול ווו $|f(x)-f(y)|<\varepsilon$ מתקיים $0<|y-x_0|<\delta$ וגם $0<|x-x_0|<\delta$

משפט 4.1 (קריטריון קושי להתכנסות אינטגרל מוכלל)

A,M>a לכל [a,M] אינטגרבילית אינטגרבילית $f:[a,\infty] o\mathbb{R}$ (1)

אם: אם ורק אם מתכנס מתכנס המוכלל המוכלל אזי האינטגרל המוכלל

 $y>x>X_0$ כך שלכל , $X_0>a$ קיים $\varepsilon>0$

$$\left| \int_{x}^{y} f \right| < \varepsilon$$

a < x < b לכל (x,b] אינטגרבילית בקטע אינטגרבילית אינטגרבילית בקטע אינטגרבילית לכל \iff מתכנס מתכנס לכל $\delta > 0$ קיימת $\int_a^b f$ איי מתקיים:

$$\left| \int_{x}^{y} f \right| < \varepsilon$$

הוכחות (1) דומה לחישוב שמופיע בדוגמה (4.11).

תנסו להוכיח את (2).

.P>1 מתכנס עבור החליסו מישר איש פווי קריטריון בעזרת בעזרת תוכיחו עצמי: תרגול עצמי: תרגול

3. מבחני התכנסות עבור אינטגרנד אי שלילי

משפט 4.2 (האינטגרל המוחלט מתכנס אם"ם הפונקציה צוברת השטח חסומה)

- אזי ,M>a לכל [a,M] אהינטגרבילית בקטע ג $x\in [a,\infty)$ לכל לכל (1) תהא הא $f\geq 0$ מתכנס המכנס המכנס f
- , אינטגרבילית בקטע [x,b] לכל אינטגרבילית אינטגרבילית אינטגרביל לכל אינטגרב $f \geq 0$ תהא לכל תהא לכל מתכנס האינf מתכנס לf

יולה: עולה: $F\left(x\right)$ - מונוטונית עולה: נוכיח נוכיח נוכיח נוכיח הוכחת נוכיח נוכיח נוכיח אונים ביש

 $:F\left(x
ight) \leq F\left(y
ight)$ יהיו, a< x< y

$$F\left(y\right) = \int_{a}^{y} f = \int_{a}^{x} f + \int_{x}^{y} f = F\left(x\right) + \underbrace{\int_{x}^{y} f}_{\text{converse of } x} \ge F\left(x\right)$$

הוכחנו באינפי 1מ', אם $F\left(x\right)$ מונוטונית הוכחנו באינפי 1מ', אם ומ', אחם הוכחנו הרחב, חסופה. $F\left(x\right)$ חסופה אחם הוק אחם ווק אחם הוק חסופה.

 $\int_a^\infty f < \infty$ מתכנס, מתכנס, מתכנס, אם הערה 1.13 (סימון מקוצר להתכנסות אינטגרל מוכלל) אם הערה 4.13 (סימון מקוצר להתכנסות אינטגרל מוכלל

משפט 4.3 (מבחן השוואה) תהינה f,g פונקציות אי-שליליות בקרן (מבחן השוואה) משפט 4.3 (מבחן השוואה) לכל $g\left(x\right)=f\left(x\right)\leq g\left(x\right)$ כך ש $f\left(x\right)=f\left(x\right)$ לכל $f\left(x\right)=f\left(x\right)$ לכל $f\left(x\right)=f\left(x\right)$ לכל $f\left(x\right)=f\left(x\right)$ לכל מבחן השוואה

.אם
$$\int_a^\infty f$$
 מתכנס, אז $\int_a^\infty g$ מתכנס

באופן שקול:

. אם
$$\int_a^\infty g$$
 מתבדר, אז $\int_a^\infty f$ מתבדר

דוגמה 4.8 בדקו התכנסות:

(1)

$$\int_{5}^{\infty} \underbrace{\frac{1}{x^2 + \sqrt[3]{x}}}_{f(x) > 0} dx$$

נשים לב שמתקיים:

$$\frac{1}{x^2 + \sqrt[3]{x}} \le \underbrace{\frac{1}{x^2}}_{g(x)}$$

הוכחנו $\int_{5}^{\infty} \frac{1}{x^2} \mathrm{d}x \iff \int_{1}^{\infty} \frac{1}{x^2} \mathrm{d}x$ הוכחנו

. ולכן לפי מבחן ההשוואה, $\int_5^\infty \frac{1}{x^2+\sqrt[3]{x}} \mathrm{d}x$ מתכנס

(2)

$$\int_0^1 \frac{1}{\underbrace{x^2 + x}} \, \mathrm{d}x$$

 $x^2 + x < 2x \iff x^2 < x \iff 0 < x \le 1$ מתקיים:

$$\underbrace{\frac{1}{x^2 + x}}_{f(x)} > \underbrace{\frac{1}{2x}}_{g(x)} \iff$$

מתבדר,
$$\textstyle\int_0^1 \frac{1}{2x} \mathrm{d}x = \frac{1}{2} \int_0^1 \frac{1}{x} \mathrm{d}x$$

. מתבדר $\int_0^1 \frac{1}{x^2+x} \mathrm{d}x$ מתבדר ההשוואה ולכן ממבחן

הוכחת המשפט. נסמן:

$$G\left(x\right) = \int_{a}^{x} g \qquad F\left(x\right) = \int_{a}^{x} f$$

 $G(x) \leq K$, $x \in [a,\infty)$ מתכנס $G(x) \iff G(x) \iff \int_a^\infty g$ מתכנס מתכנס מתכנס ממונוטוניות: מהנתון ש- $f \leq g$, מתקיים ממונוטוניות:

$$F(x) = \int_{a}^{x} f \le \int_{a}^{x} g = G(x)$$

מתכנס. $\int_a^\infty f \iff F(x) \iff$

דוגמה 4.9 נניח שנרצה לבדוק התכנסות של:

$$\int_{5}^{\infty} \underbrace{\frac{1}{x^2 - \sqrt[3]{x}}}_{f(x) > 0} dx$$

"קשה" להשתמש במשפט.

משפט 4.4 (מבחן השוואה גבולי)

M>a לכל [a,M] אינטגרביליות בקטע (a,∞) אינטליות אי-שליליות אי-שליליות אי-שליליות אינט אינטגרביליות אי

אט ב
$$f(x)=0$$
 אוי: $\lim_{x o\infty} \frac{f(x)}{g(x)}=L$ אם לווו $\int_a^\infty g\iff 0$ מתכנס התכנס התכנס החדיו. כלומר, $\int_a^\infty f$ ו- $\int_a^\infty g$ מתכנסים או מתבדרים יחדיו.

דוגמה 4.10 הערה: לצורך פתרון תרגילים כאלה כדאי לזכור את טיילור. נבדוק:

$$\lim_{x\to\infty}\frac{\frac{1}{x^2-\sqrt[3]{x}}}{\frac{1}{x^2}}=\lim_{x\to\infty}\frac{x^2}{x^2-\sqrt[3]{x}}=1\coloneqq L$$
ידוע $\int_{5}^{\infty}\frac{1}{x^2}\mathrm{d}x$ מתכנס, ולכן גם $\int_{1}^{\infty}\frac{1}{x^2}\mathrm{d}x$ מתכנס

. מתכנס
$$\int_{5}^{\infty} \frac{1}{x^2 - \sqrt[3]{x}} dx \iff$$

הוכחת המשפט. נתון:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L$$

ינים: $x>x_0$ כך שלכל $x>x_0>a$ מתקיים:

$$\frac{L}{2} = L - \frac{L}{2} < \frac{f(x)}{g(x)} < L + \frac{L}{2} = \frac{3L}{2}$$

 $f\left(x
ight)<rac{3L}{2}g\left(x
ight)$, החל ממקום מסוים : $rac{f\left(x
ight)}{g\left(x
ight)}<rac{3L}{2}$

אם $\int_a^\infty \frac{3L}{2}g$ מתכנס, אז $\int_a^\infty g$ מתכנס. ולכן לפי מבחן השוואה $\int_a^\infty f$ מתכנס

 $g\left(x
ight) < rac{2}{L}f\left(x
ight)$ מסוים, מחל ממקום : $rac{L}{2} < rac{f\left(x
ight)}{g\left(x
ight)}$

אם $\int_a^\infty \frac{2}{L} f\left(x\right) \mathrm{d}x$ גם אז גם $\int_a^\infty f\left(x\right) \mathrm{d}x$ אם אם אם $\int_a^\infty f\left(x\right) \mathrm{d}x$ מתכנס. ולכן לפי מבחן השוואה, אם $\int_a^\infty f$ מתכנס.

."הערה g- החל ממקום מסוים הרבה יותר קטנה f אז הרבה L=0 אם 4.14 הערה הערה את $\int_a^\infty f$ מתכנס, אז $\int_a^\infty g$ מתכנס.

דוגמה 4.11 בדקו התכנסות:

(1)

$$\int_0^1 \frac{1}{1 - \cos x} \mathrm{d}x$$

.(0,1] בתחום $g\left(x\right)=\frac{1}{1-\cos x}>0$ בתחום נשים לפונקציה או יש נקודת סינגולריות ב- $\cos x$ לפי פיתוח טיילור של $\cos x$ נקבל:

$$\cos x = 1 - \frac{x^2}{2} + o\left(x^2\right)$$

$$\implies 1 - \cos x = \frac{x^2}{2} + o\left(x^2\right)$$

 $f(x) = \frac{1}{x^2} > 0$ ננסה להשוות לפונקציה:

$$L = \lim_{x \to 0^{+}} \frac{\frac{1}{1 - \cos x}}{\frac{1}{x^{2}}} = \lim_{x \to 0^{+}} \frac{x^{2}}{1 - \cos x} = \lim_{x \to 0^{+}} \underbrace{\frac{x^{2}}{\sin^{2} x}}_{(\frac{x}{\sin x})^{2}} (1 + \cos x) = 2$$

, ולכן לפי מבחן ההשוואה הגבולי מתכנסים או מתבדרים יחדיו. L=2. מתבדר $\int_0^1 \frac{1}{1-\cos x}$ גם ולכן מתבדר, מתבדר $\int_0^1 \frac{1}{x^2} \mathrm{d}x$ יכי ראינו

 $\int_0^1 \frac{1}{x\sqrt{1-x}} \mathrm{d}x$

. $\{0,1\}$ יש 2 נקודות סינגולריות: $\int_0^{\frac12} \frac1{x\sqrt{1-x}} + \int_{\frac12}^1 \frac1{x\sqrt{1-x}} \mathrm{d}x$ נסתכל על

(2)

a>0 לכל $\left[a,rac{1}{2}
ight]$ בתחום $f\left(x
ight)>0$ נשים לב

 $x\in\left[a,rac{1}{2}
ight]$ לכל $g\left(x
ight)=rac{1}{x}>0$ ניקח

$$\lim_{x \to 0^{+}} \frac{f(x)}{g(x)} = \lim_{x \to 0^{+}} \frac{\frac{1}{x\sqrt{1-x}}}{\frac{1}{x}} = \lim_{x \to 0^{+}} \frac{1}{\sqrt{1-x}} = 1$$

מתבדר ה $\int_0^1 rac{1}{x\sqrt{1-x}}$ מתבדר, גם $\int_0^{rac{1}{2}} rac{1}{x} \mathrm{d}x$ מאחר ש

(3) (דוגמה לטעות בשימוש במבחן ההשוואה)

$$\int_{1}^{\infty} \frac{\cos x}{x^2} \mathrm{d}x$$

 $.rac{\cos x}{x^2} \leq rac{1}{x^2}$: מתקיים: $\int_1^\infty rac{\cos x}{x^2}$ מתכנס, ולכן גם $\int_1^\infty rac{\cos x}{x^2}$ מתכנס, ולכן אינו כי

אי אפשר להשתמש במכחן ההשוואה, כי $\frac{\cos x}{x^2}$ לא תמיד אי שלילית בתחום!

ננסה להשתמש בקריטריון קושי:

 $\left|\int_x^y rac{\cos t}{t^2} \mathrm{d}t
ight| < arepsilon$ מתקיים: arepsilon > 0 סיים arepsilon > 0 מתקיים:

4. אינטגרל מוכלל

$$\begin{split} \left| \int_{x}^{y} \frac{\cos t}{t^{2}} \mathrm{d}t \right| & \underbrace{\leq}_{\text{NUIUSILITY}} \int_{x}^{y} \left| \frac{\cos t}{t^{2}} \right| \mathrm{d}t \underbrace{\leq}_{x} \int_{x}^{y} \frac{1}{t^{2}} \mathrm{d}t \\ & = -\frac{1}{t} \bigg|_{x}^{y} = -\left(\frac{1}{y} - \frac{1}{x}\right) < \frac{1}{x} < \frac{1}{x_{0}} = \varepsilon \end{split}$$

ולכן לפי תנאי קושי, האינטגרל הנ"ל מתכנס.

4. התכנסות בהחלט

: מתכנס $\int_{1}^{\infty}\left|\frac{\cos x}{x^{2}}\right|\mathrm{d}x$ כעת, נחזור לדוגמה הקודמת ונבדוק מתכנס לאור כעת, כעת, נחזור לדוגמה

$$\left| rac{\cos x}{x^2}
ight| = rac{\left|\cos x
ight|}{x^2} \leq rac{1}{x^2}$$
 . מתכנס, ולכן גם $\int_1^\infty \left| rac{\cos x}{x^2}
ight|$ מתכנס, ולכן גם

. (השטח הקטן), אז גם $f\left(x\right)$ יתכנס השטח הגדול מתכנס ("השטח הגדול מתכנס ($f\left(x\right)$), מתכנס (השטח הגדול הגיוני שאם

הגדרה 4.5 (התכנסות בהחלט)

- .x>a לכל [a,x] לכל בקטע (1) תהא f אינטגרבילית אמענס. לאמר שיר $\int_a^\infty f$ מתכנס.
- a < x < b לכל [x,b] לכל בקטע אינטגרבילית אינטגרבילית (2) נאמר אם $\int_a^b |f|$ מתכנס.

הערה 4.16 כלומר, האינטגרל מדוגמה (4.12) הוא פתכוס כהחלט.

.|f|=f אם חידוש, פה אין פה $f\geq 0$ אם 4.17 הערה אם אם f אם אם f אם f

משפט 4.5 (התכנסות בהחלט גוררת התכנסות) עבור (2):

אס החלט, אזי אם $\int_a^b f$ אזי אם אל לכל [x,b] אם קסעע בקטע אינטגרבילית אינטגרבילית לכל לכל .אזי $\int_a^b f$ מתכנס

מתקיים: $a < x, y < a + \delta$ כך שלכל $\delta > 0$ קיימת $\varepsilon > 0$ מתקיים:

$$\left| \int_{a}^{b} f \right| < \varepsilon$$

 $(\int_a^b |f|$ און) און (זה תנאי קושי עכור)

יהי $\varepsilon>0$ יהי $a< x,y< a+\delta$ כך שלכל $\delta>0$ קיימת קיימת מתכנס, כלומר ה $\int_a^b |f|$ מתכנס, כלומר היימת $(.\int_a^b |f| \ ($ ואה תנאי קושי עכור $\left| \int_a^b |f|
ight| < arepsilon$ נניח בה"כ: $a < x < y < a + \delta$

$$\left|\int_{x}^{y}f\right| \leq \int_{x}^{y}\left|f\right| \leq \varepsilon$$
 נתון אש"מ אינטגרלי

5. התכנסות בתנאי

דוגמה 4.13 בדקו התכנסות של:

$$\int_{1}^{\infty} \frac{\sin x}{x} \mathrm{d}x$$

נבדוק התכנסות בהחלט:

$$\left|\frac{\sin x}{x}\right| \le \frac{1}{|x|} = \frac{1}{x}$$

לא עוזר!

יולכן ניתן להגיד: רולכן $|\sin x| \leq 1$, ולכן ניתן להגיד:

$$\frac{|\sin x|}{x} \ge \frac{\sin^2 x}{x} = \underbrace{\frac{1 - \cos(2x)}{2x}} \ge 0$$

$$\int_1^\infty \frac{1 - \cos 2x}{2x} \mathrm{d}x = \underbrace{\int_1^\infty \frac{1}{2x} \mathrm{d}x}_{\text{парта - дагор - сов 2x}} - \underbrace{\int_1^\infty \frac{\cos 2x}{2x} \mathrm{d}x}_{\text{парта - дагор - сов 2x}}$$

 $\int_1^\infty \left| rac{\sin x}{x}
ight| \mathrm{d}x$ סה"כ, לכן מתבדר, מתבדר, לכן מתבדר הח"כ, האם ניתן להסיק ש- $\int_1^\infty rac{\sin x}{x} \mathrm{d}x$ מתבדר?

לא מהמשפט. כל מה שניתן להסיק זה שהוא לא מתכנס בהחלט!

4. אינטגרל מוכלל

התכנסות בהחלט לא עזרה. נחזור להגדרה:

$$\int_{1}^{M} \frac{\sin x}{x} \mathrm{d}x = \left[\begin{array}{c} u = \frac{1}{x} & u' = -\frac{1}{x^2} \\ v' = \sin x & v = -\cos x \end{array} \right] = -\frac{\cos x}{x} \Big|_{1}^{M} - \int_{1}^{M} \frac{\cos x}{x^2} \mathrm{d}x$$

$$= -\left[\begin{array}{c} \cos M \\ M > 1 \end{array} \right] - \cos M - \cos 1 - \cos 1 - \left[\begin{array}{c} \cos x \\ 1 \end{array} \right] - \left[\begin{array}{c$$

. קיבלנו $\int_1^\infty \left| \frac{\sin x}{x} \right| \mathrm{d}x$ מתכנס, וגם $\int_1^\infty \frac{\sin x}{x} \mathrm{d}x$ קיבלנו

הגדרה 4.6 (התכנסות בתנאי) נאמר ש- $\int_a^\infty f$ מתכנס בתנאי (אם התכנס, אבל לא בהחלט. $\int_a^\infty f dx$ (אפי דוגמה 4.19). הערה 4.19 למשל: $\int_1^\infty \frac{\sin x}{x} dx$

6. מבחן דיריכלה ומבחן אבל

משפט 4.6 (מבחן דיריכלה) תהינה f,g פונקציות המוגדרות בתחום (a,∞), המקיימת את התנאים הבאים:

- $[a,\infty)$ -ביפה ב-f (1)
- $[a,\infty)$ -ם חסומה $F\left(x
 ight)=\int_{a}^{x}f$ השטח הפונקציה צוברת השטח (2)
 - $.[a,\infty)$ -ברציפות ב-(3)
 - (עולה או יורדת), כך שמתקיים: g

$$\lim_{x \to \infty} g\left(x\right) = 0$$

.אזי
$$\int_a^\infty f \cdot g$$
 מתכנס

. הערה 4.20 נשים לב שלא דרשנו אי שליליות! זה פרט חשוב לגבי האופן שבו משתמשים במבחן

התכנסות התכנסות מסיבה או (ביווק מסיבה לא מבטיח התכנסות של הבטחת תנאי (2) הערה 4.21 תנאי (2) במשפט או במקרה התכנסות במקרה או במקרה או שליליות).

דוגמה 4.14

$$\int_{1}^{\infty} rac{\cos x}{x^2} \mathrm{d}x$$

$$.f\left(x
ight) = \cos x, g\left(x
ight) = rac{1}{x^2} \; \mathrm{np}$$
ניקח

, מונוטונית יורדת וגזירה ברציפות , $g\left(x
ight)=rac{1}{x^{2}}\mathop{\longrightarrow}\limits_{x o\infty}0$

וכן $F\left(x
ight)=\sin x\Big|_{a}^{x}$ החום, בתחום בתחום ליציפה בתחום, $f\left(x
ight)=\cos x$ ולכן לפי דיריכלה האינטגרל מתכנס.

$$\int_{a}^{M} f \cdot g = \begin{bmatrix} u = g & u' = g' \\ v' = f & v = F \end{bmatrix}$$

$$= F \cdot g|_{a}^{M} - \int_{a}^{M} F \cdot g' = \underbrace{F\left(M\right)}_{\text{ПОТЕЛТ }} \cdot \underbrace{g\left(M\right)}_{M \to \infty} - \underbrace{F\left(a\right)}_{\text{USIT}} g\left(a\right) - \int_{a}^{M} F \cdot g'$$

$$= 0$$

 $: \int_a^M F \cdot g'$ כעת נבדוק התכנסות של

 $\left|F\left(x\right)\right|\leq K$ מתקיים x>aכך שלכל
 K>0קיים כיים כיי חסומה F $: \int_a^M f \cdot g'$ נבדוק התכנסות בהחלט של

$$\int_{a}^{M}\left|F\cdot g'\right| \leq \int_{a}^{M}K\cdot\left|g'\right| \underbrace{=}_{\text{(*)}}K\int_{a}^{M}g'\underbrace{=}_{\text{ גזירה ברציפות}}K\cdot\left|g\right|_{a}^{M} = K\left(\underbrace{g\left(M\right)}_{\substack{M\to\infty\\M\to\infty}}-\underbrace{g\left(M\right)}_{\substack{0}\to\infty}-\underbrace{g\left(a\right)}_{\substack{M\to\infty\\M\to\infty}}\right)$$

 $(g' \geq 0 \iff$ מונוטונית, ולכן g' לא משנה סימן (נניח בה"כ g עולה g' מונוטונית, ולכן (*)

ולכן מתכנס השוואה) מתכנס בהחלט מתכנס מתכנס מתכנס הלכן ולכן מתכנס מתכנס בהחלט מתכנס מתכנס. $\int_{a}^{\infty} f \cdot g \iff$

(כך שמתקיים: , $[a,\infty)$ משפט 4.7 מהינה משפט להינה תהינה f,g מוגדרות משפט

- . רציפה בקרן f (1)
- .מתכנס $\int_{a}^{\infty} f$ (2)
- $[a,\infty)$ מונוטונית חסומה, גזירה ברציפות מונוטונית g (3)

. אזי $\int_a^\infty f \cdot g$ מתכנס

הערה 4.22 רמז להוכחת המשפט: g מונוטונית חסומה, ולכן מתכנסת לפי אינפי 1מ'.