

Features

- Uses CRM(CQ) advanced SkyMOS2 technology
- Extremely low on-resistance R_{DS(on)}
- Excellent Q_qxR_{DS(on)} product(FOM)
- Qualified according to JEDEC criteria

Applications

- Synchronous Rectification for AC/DC Quick Charger
- Battery management
- UPS (Uninterrupible Power Supplies)

Product Summary

V _{DS}	100V
R _{DS(on)@10V typ}	11mΩ
R _{DS(on)@4.5V typ}	13.5mΩ
I_D	58A

100% Avalanche Tested

CRSM120N10L2

Package Marking and Ordering Information

Part #	Marking	Package	Packing	Reel Size	Tape Width	Qty
CRSM120N10L2	SM120N10L2	DFN5X6	Tape&Reel	N/A	N/A	5000pcs

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	100	V
Continuous drain current			
T _C = 25°C (Package limit)	I_{D}	60	Α
T _C = 25°C (Silicon limit)	I _D	58	
T _C = 100°C (Silicon limit)		36	
Pulsed drain current ($T_C = 25$ °C, t_p limited by T_{jmax})	$I_{D\;pulse}$	232	Α
Avalanche energy, single pulse (L=0.5mH, Rg=25 Ω) ^[1]	E _{AS}	64	mJ
Gate-Source voltage	V_{GS}	±20	V
Power dissipation ($T_C = 25^{\circ}C$)	P _{tot}	78.1	W
Operating junction and storage temperature	T_j , T_{stg}	-55+150	°C

Notes:1.EAS was tested at $Tj = 25^{\circ}$, ID = 16A.

Thermal Resistance

Parameter	Symbol	Max	Unit
Thermal resistance, junction – case	R_{thJL}	1.60	°C/W
Thermal resistance, junction – ambient	R_{thJA}	47.0	°C/ vv

Electrical Characteristic (at Tj = 25 °C, unless otherwise specified)

Davameter	Cumbal	Value			Unit	Test Condition	
Parameter	Symbol	min.	typ.	max.	Unit	Test Condition	
Static Characteristic							
Drain-source breakdown voltage	BV _{DSS}	100	-	-	V	V _{GS} =0V, I _D =250uA	
Gate threshold voltage	V _{GS(th)}	1.4	1.8	2.2	V	$V_{DS}=V_{GS}$, $I_{D}=250$ uA	
						V_{DS} =100V, V_{GS} =0V	
Zero gate voltage drain current	I_{DSS}	-	0.02	1	μΑ	T _j =25°C	
		-	-	10		T _j =125°C	
Gate-source leakage current	I_{GSS}	-	10	100	nA	V_{GS} =±20V, V_{DS} =0V	
Drain-source on-state	D	-	11.0	13.2	m0	$V_{GS} = 10V, I_D = 30A$	
resistance	R _{DS(on)}	-	13.5	16.9	mΩ	V_{GS} =4.5V, I_{D} =24A	
Transconductance	g_{fs}	-	70	-	S	V_{DS} =5V, I_{D} =30A	

Dynamic Characteristic

Input Capacitance	C _{iss}	-	1618	2266			
Output Capacitance	C _{oss}	-	277	388	pF	V_{GS} =0V, V_{DS} =50V,	
Reverse Transfer Capacitance	C _{rss}	-	22	44		f=1MHz	
Gate Total Charge	Q_{G}	-	28.2	40			
Gate-Source charge	Q_{gs}	-	6.5	-	nC	V_{GS} =10V, V_{DS} =50V, I_{D} =30A, f=1MHz	
Gate-Drain charge	Q_{gd}	-	4.5	-			
Turn-on delay time	t _{d(on)}	-	30	-			
Rise time	t _r	-	81	-	no	$V_{GS}=10V$, $V_{DD}=50V$, $R_{G_ext}=2.7\Omega$	
Turn-off delay time	t _{d(off)}	-	24	-	ns		
Fall time	t _f	-	7	-			
Gate resistance	R_G	-	1.62	-	Ω	V_{GS} =0V, V_{DS} =0V, f=1MHz	

SkyMOS2 N-MOSFET 100V, $11m\Omega$, 58A

Body Diode Characteristic

Parameter	Symbol	Value			Unit	: Test Condition
Parameter	Syllibol	min.	typ.	max.	Oilit	Test Condition
Body Diode Forward Voltage	V_{SD}	-	0.87	1	V	V _{GS} =0V,I _{SD} =30A
Body Diode Reverse Recovery Time	t _{rr}	-	45	-	ns	I _F =30A, dI/dt=300A/μ
Body Diode Reverse Recovery Charge	Q _{rr}	-	240	-	nC	s

Typical Performance Characteristics

Fig 2: Transfer Characteristics 100 90 $V_{DS}=5V$ 80 70 60 **€** 50 40 30 125°C 20 25°C 10 5 0 1 3 $V_{GS}(V)$

2.0 1.8 R_{DS(on)}_Normalized 1.6 $V_{GS}=10V$ I_D=30A 1.4 V_{GS}=4.5V 1.2 $I_D = 30A$ 1.0 0.8 75 25 100 125 150 Tj - Junction Temperature (°C)

Fig 8: Body-diode Forward
Characteristics

100

100

125°C

25°C

1

0.1

0.2

0.4

0.6

0.8

1.2

1.4

V_{sp} - Diode Forward Voltage(V)

Fig 9: Power Dissipation 90 80 70 60 P_{tot} (W) 50 40 30 20 10 0 0 25 50 75 100 125 150 T_C - Case Temperature (°C)

Qg (nC)

Fig 11: Safe Operating Area 1000 1us Limited by 100 Rds(on) **(**∀) ° 10 1 Single pulse Tc=25 °C 0.1 1 V_{DS} (V) 0.1 10 100

10

1

1E-05

0.0001

0.001

0.01

t_p (sec)

0.1

Fig 12: Max. Transient Thermal Impedance

Test Circuit & Waveform

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Sumb al	Dimensions 1	In Millimeters	Dimension	s In Inches
Symbol	Min.	Max.	Min.	Max.
Α	0.80	1.20	0.031	0.047
A1	0.00	0.05	0.000	0.002
b	0.30	0.51	0.012	0.020
С	0.15	0.35	0.006	0.014
D	4.80	5.40	0.189	0.213
е	1.27	BSC	0.05	0 BSC
E	5.66	6.06	0.223	0.239
G	0.30	0.71	0.012	0.028
Н	5.90	6.35	0.232	0.250
J	3.32	3.92	0.131	0.154
K	3.61	4.25	0.142	0.167
L1	0.05	0.25	0.002	0.010
L2	0.00	0.15	0.000	0.006
R	0.25	REF	0.01	0 REF
θ	0°	12°	0°	12°

SkyMOS2 N-MOSFET 100V, $11m\Omega$, 58A

Revision History

Revison	Date	Major changes
1.0	2019-1-3	Release of formal version.
2.0	2019-6-25	Supplement package outline info.

Disclaimer

Unless otherwise specified in the datasheet, the product is designed and qulified as a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability, such as automotive, aviation/aerospace and life-support devices or systems.

Any and all semicondutor products have certain probability to fail or malfunction, which may result in personal injury, death or property damage. Customer are solely responsible for providing adequate safe measures when design their systems.

CRM(CQ) reserves the right to improve product design, function and reliability without notice.

