术语表

波函数理论与近似

英文简称	中文术语	英文术语
	第一性	ab initio
WFT	波函数理论	wavefunction theory
SCF	自洽场	self-consistent field
post-HF	(专指波函数理论的)后自洽场	post Hartree-Fock
	规范原点	gauge origin
RPA	无规相近似	random phase approximation
OO	轨道优化	orbital-optimized
SS	自旋相同	same-spin
OS	自旋相反	opposite-spin
SCS	自旋组分缩放	spin-component-scaled
PT	微扰	perturbation
CI	组态相互作用	configuration interaction
Full-CI	完全组态相互作用	full configuration interaction
CC	偶合簇	coupled-cluster
CEPA	耦合电子对近似	coupled electron pair approximation
CPF	耦合电子对泛函	coupled pair functional
IEPA	独立电子对近似	independent electron pair approximation
	(非)限制性方法	(un)restricted
QMC	量子蒙特卡洛	quantum Monte Carlo
DMC	扩散蒙特卡洛	diffusion Monte Carlo
VMC	变分蒙特卡洛	variational Monte Carlo
	正交变换不变性	unitary invariance
	大小可延展性	size extensivity

密度泛函理论与近似

英文简称	中文术语	英文术语
DFT	密度泛函理论	density functional theory
DFA	密度泛函近似	density functional approximation
post-SCF	后自洽场	post self-consistent field
	无(电子)相互作用体系	noninteracting system
	N 可表示性	N-representability
xc	交换相关效应	exchange-correlation effect
LDA	局域密度近似	local density apprioximation
LSDA	局域密度近似	local spin-density apprioximation
GGA	广义梯度近似	generalized gradient approximation
meta-GGA	广义梯度的梯度近似	meta-generalized gradient approximation
hyb	杂化(泛函)	hybrid (functional)
NL	离域	non-local
	半定域	semi-local
RSH	长短程分离杂化(泛函)	range-separate hybrid (functional)
	局域混合(泛函)	local hybrid (functional)
DH	双杂化(泛函)	doubly hybrid (functional)
xDH	XYG3型双杂化(泛函)	XYG3-type doubly hybrid (functional)
bDH	B2PLYP型双杂化(泛函)	B2PLYP-type doubly hybrid (functional)
DSD	弥散矫正的 SCS DH	dispersion corrected SCS DH
AC	绝热路径	adiabatic connection
GLPT2	二阶 Görling-Levy 微扰	2 nd -order Görling-Levy perturbation
OEP	有效优化势	optimized effective potential

程序、技术、误差量标术语

英文简称	中文术语	英文术语
RI	恒等算符简化 (近似)	resolution-of-identity (approximation)
FPA		focal-point analysis
CBS	完备基组(极限)	complete basis set (limit)
WTMAD-2	(GMTKN55) 第二型加权平均绝对值误差	weighted mean absolute deviation (scheme 2)
MEPUB	平均键绝对值误差	mean unsigned error per bond
DRAM	动态随机访问内存	dynamic random access memory
THC	张量超分解	tensor hyper-contraction

化学概念术语

英文简称	中文术语	英文术语
НОМО	最高占据分子轨道	highest occupied molecular orbital
LUMO	最低非占分子轨道	lowest unoccupied molecular orbital
HOMO/LUMO gap	HOMO 与 LUMO 能级差	energy gap between HOMO and LUMO

波函数方法

方法简称	方法全程	参考文献
HF	Hartree-Fock	1–3
MPn	<i>n</i> -th order Møller-Plesset perturbation	4
CCSD	coupled-cluster singles and doubles	5–6
CCSD(T)	CCSD with perturbative triplets	7
IEPA	independent electron-pair approximation	8–9
sIEPA	screened IEPA	10
MP2/cr	(scheme I of) corrected MP2	11

密度泛函方法

方法名称 提出年代 参考文献

原子轨道基组

基组家族	基组名称	基组基数 ζ	参考文献
Karlsruhe	def2-TZVPP	3	12–23
	def2-QZVPP	4	12–24
	def2-QZVPPD	4	12–25
	def2-universal-jkfit	(auxiliary)	23,26
	daug-def2-universal-jkfit	(auxiliary)	23,26–27
	def2-TZVPP-rifit	(auxiliary)	28-30
	def2-QZVPP-rifit	(auxiliary)	28–29
	def2-QZVPPD-rifit	(auxiliary)	28–31

参考文献

- [1] HARTREE D R. The Wave Mechanics of an Atom with a non-Coulomb Central Field. Part III. Term Values and Intensities in Series in Optical Spectra[J/OL]. Math. Proc. Cambridge Philos. Soc., 1928, 24(3): 426-437[2022-06-26]. https://www.cambridge.org/core/product/identifier/S0305004100015954/type/journal_article. DOI: 10.1017/S0305004100015954.
- [2] FOCK V. Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems[J/OL]. Z. für Phys., 1930, 61(1-2): 126-148[2022-06-26]. http://link.springer.com/10.1007/BF01340294.
- [3] SLATER J C. A Simplification of the Hartree-Fock Method[J/OL]. Phys. Rev., 1951, 81(3): 385-390[2022-06-26]. https://link.aps.org/doi/10.1103/PhysRev.81. 385.
- [4] MøLLER C, PLESSET M S. Note on an Approximation Treatment for Many-Electron Systems[J/OL]. Phys. Rev., 1934, 46(7): 618-622[2021-07-15]. https://link.aps.org/doi/10.1103/PhysRev.46.618.
- [5] ČížEK J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods[J/OL]. J. Chem. Phys., 1966, 45(11): 4256-4266 [2022-06-16]. http://aip.scitation.org/doi/10.1063/1.1727484.
- [6] ČížEK J. On the Use of the Cluster Expansion and the Technique of Diagrams in Calculations of Correlation Effects in Atoms and Molecules[M/OL]//LEFEBVRE R, MOSER C. Advances in Chemical Physics: Vol. 14. Hoboken, New Jersey: John Wiley & Sons, Inc., 1969: 35-89[2021-07-15]. https://onlinelibrary.wiley.com/doi/10.1002/9780470143599.ch2.
- [7] RAGHAVACHARI K, TRUCKS G W, POPLE J A, et al. A fifth-order perturbation comparison of electron correlation theories[J/OL]. Chem. Phys. Lett., 1989, 157(6): 479-483[2022-03-02]. https://linkinghub.elsevier.com/retrieve/pii/S0009 261489873956. DOI: 10.1016/S0009-2614(89)87395-6.

- [8] SINANOğLU O. Many-Electron Theory of Atoms, Molecules and Their Interactions[M/OL]//Advances in Chemical Physics: Advances in Chemical Physics. 1964: 315-412[2023-03-09]. https://doi.org/10.1002/9780470143520.ch7.
- [9] NESBET R K. Electronic Correlation in Atoms and Molecules[M/OL]//Advances in Chemical Physics: Advances in Chemical Physics. 1965: 321-363[2023-03-09]. https://doi.org/10.1002/9780470143551.ch4.
- [10] ZHANG I Y, RINKE P, PERDEW J P, et al. Towards Efficient Orbital-Dependent Density Functionals for Weak and Strong Correlation[J/OL]. Phys. Rev. Lett., 2016, 117(13): 133002[2020-09-10]. https://link.aps.org/doi/10.1103/PhysRev Lett.117.133002.
- [11] DYKSTRA C E, DAVIDSON E R. Enhanced second-order treatment of electron pair correlation[J/OL]. Int. J. Quantum Chem., 2000, 78(4): 226-236. http://dx.doi.org/10.1002/(SICI)1097-461X(2000)78:4<226::AID-QUA4>3.0.CO;2-N.
- [12] DOLG M, STOLL H, PREUSS H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds[J/OL]. Theor. Chim. Acta, 1993, 85(6): 441-450[2023-07-25]. http://link.springer.com/10.1007/BF01112983.
- [13] DOLG M, STOLL H, SAVIN A, et al. Energy-adjusted pseudopotentials for the rare earth elements[J/OL]. Theor. Chim. Acta, 1989, 75(3): 173-194[2023-07-25]. http://link.springer.com/10.1007/BF00528565.
- [14] PETERSON K A, FIGGEN D, GOLL E, et al. Systematically convergent basis sets with relativistic pseudopotentials. II. Small-core pseudopotentials and correlation consistent basis sets for the post-*d* group 16–18 elements[J/OL]. J. Chem. Phys., 2003, 119(21): 11113-11123[2023-07-25]. https://pubs.aip.org/jcp/article/119/2 1/11113/448316/Systematically-convergent-basis-sets-with. DOI: 10.1063/1.16 22924.
- [15] METZ B, STOLL H, DOLG M. Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-*d* main group elements: Application to PbH and PbO[J/OL]. J. Chem. Phys., 2000, 113(7): 2563-2569[2023-07-25]. https://pubs.aip.org/jcp/article/113/7/2563/456980/Small-core-multiconfiguration-Dirac-Hartree-Fock. DOI: 10.1063/1.1305880.

- [16] METZ B, SCHWEIZER M, STOLL H, et al. A small-core multiconfiguration Dirac-Hartree-Fock-adjusted pseudopotential for Tl-application to TlX (X = F, Cl, Br, I)[J/OL]. Theor. Chem. Acc., 2000, 104(1): 22-28[2023-07-25]. http://link.springer.com/10.1007/s002149900101.
- [17] LEININGER T, NICKLASS A, KüCHLE W, et al. The accuracy of the pseudopotential approximation: non-frozen-core effects for spectroscopic constants of alkali fluorides XF (X = K, Rb, Cs)[J/OL]. Chem. Phys. Lett., 1996, 255(4-6): 274-280[2023-07-25]. https://linkinghub.elsevier.com/retrieve/pii/00092614960 0382X. DOI: 10.1016/0009-2614(96)00382-X.
- [18] KAUPP M, SCHLEYER P V R, STOLL H, et al. Pseudopotential approaches to Ca, Sr, and Ba hydrides. Why are some alkaline earth MX₂ compounds bent? [J/OL]. J. Chem. Phys., 1991, 94(2): 1360-1366[2023-07-25]. https://pubs.aip.org/jcp/article/94/2/1360/694465/Pseudopotential-approaches-to-Ca-Sr-and-Ba. DOI: 10.1063/1.459993.
- [19] ANDRAE D, HäUßERMANN U, DOLG M, et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements[J/OL]. Theor. Chim. Acta, 1990, 77(2): 123-141[2023-07-25]. http://link.springer.com/10.1007/BF01 114537.
- [20] WEIGEND F, AHLRICHS R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy[J/OL]. Phys. Chem. Chem. Phys., 2005, 7(18): 3297[2022-03-02]. http://xlink.rsc.org/?DOI=b508541a. DOI: 10.1039/b508541a.
- [21] CAO X, DOLG M. Valence basis sets for relativistic energy-consistent small-core lanthanide pseudopotentials[J/OL]. J. Chem. Phys., 2001, 115(16): 7348-7355 [2023-07-25]. https://pubs.aip.org/jcp/article/115/16/7348/458396/Valence-basi s-sets-for-relativistic-energy. DOI: 10.1063/1.1406535.
- [22] DOLG M, STOLL H, PREUSS H. Energy-adjusted *ab initio* pseudopotentials for the rare earth elements[J/OL]. J. Chem. Phys., 1989, 90(3): 1730-1734[2023-07-25]. https://pubs.aip.org/jcp/article/90/3/1730/95906/Energy-adjusted-ab-init io-pseudopotentials-for-the. DOI: 10.1063/1.456066.
- [23] GULDE R, POLLAK P, WEIGEND F. Error-Balanced Segmented Contracted Basis Sets of Double-ζ to Quadruple-ζ Valence Quality for the Lanthanides[J/OL].

- J. Chem. Theory Comput., 2012, 8(11): 4062-4068[2023-07-25]. https://pubs.acs.org/doi/10.1021/ct300302u.
- [24] WEIGEND F, FURCHE F, AHLRICHS R. Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr[J/OL]. J. Chem. Phys., 2003, 119(24): 12753-12762[2022-03-02]. http://aip.scitation.org/doi/10.1063/1.1627293.
- [25] RAPPOPORT D, FURCHE F. Property-optimized Gaussian basis sets for molecular response calculations[J/OL]. J. Chem. Phys., 2010, 133(13): 134105[2022-03-02]. http://aip.scitation.org/doi/10.1063/1.3484283.
- [26] WEIGEND F. Hartree–Fock exchange fitting basis sets for H to Rn[J/OL]. J. Comput. Chem., 2008, 29(2): 167-175[2022-03-02]. https://onlinelibrary.wiley.com/doi/10.1002/jcc.20702.
- [27] WOON D E, DUNNING T H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties[J/OL]. J. Chem. Phys., 1994, 100(4): 2975-2988[2021-07-06]. http://aip.scitation.org/doi/10.1063/1.466439.
- [28] HELLWEG A, HäTTIG C, HöFENER S, et al. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn[J/OL]. Theor. Chem. Acc., 2007, 117(4): 587-597[2022-03-02]. http://link.springer.com/10.1 007/s00214-007-0250-5.
- [29] HäTTIG C. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr[J/OL]. Phys. Chem. Chem. Phys., 2005, 7(1): 59-66[2021-07-06]. http://xlink.rsc.org/?DOI=B415208E. DOI: 10.1039/B415208E.
- [30] WEIGEND F, HäSER M, PATZELT H, et al. RI-MP2: optimized auxiliary basis sets and demonstration of efficiency[J/OL]. Chem. Phys. Lett., 1998, 294(1-3): 143-152[2022-03-02]. https://linkinghub.elsevier.com/retrieve/pii/S0009261498 008628. DOI: 10.1016/S0009-2614(98)00862-8.
- [31] HELLWEG A, RAPPOPORT D. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations[J/OL]. Phys. Chem. Chem. Phys., 2015, 17(2): 1010-1017[2022-03-02]. http://xlink.rsc.org/?DOI=C4CP04286G. DOI: 10.1039/C4CP04286G.