In Defense of Classical Image Processing: Fast Depth Completion on the CPU

J.Ku, A.Harakeh, L. Waslander

Presenter: Mohammad Sadegh Abadijou

Presentaition Headlines

- Introduction
- Newer Approaches
- Paper Method
- Results

1

INTRODUCTION

What is Depth Completion?

Introduction

- Depth Perception
 - The procedure to Find Depth in 2D
- Depth Estimation
 - Depth Completion
 - Converting Sparse DEPTH Dense map to Depth map

Introduction

Application

- Augmented reality
- Robotics and object trajectory estimation
- Haze and Fog removal
- Portrait mode

2

NEWER APPROACHES

Faster but on GPU

PENet-2020

- More Accurate
- Faster (GPU)
- Supervised

	RMSE	MAE	Run Time
PENet[9]	730.08	210	0.04
Classic Method [1]	1288.46	302.6	0.011

Monodepth-2019

- More Accurate
- Faster (GPU)
- Unsupervised
- Multi Loss

3

PAPER METHOD

Dive into Classical Image Processing.

8 STEPS TO REDEMPTION

The Authors have used morphology many times

Step 1 – Depth Inverted

Input

How?

Result = 100 - Input

Why?

Reduce the difference between Valid pixels and Empty pixels to prevent negative impact of dilation on edges.

Result

Step 1 – Depth Inverted

```
s1_inverted_depths = np.copy(depths_in)
valid_pixels = (s1_inverted_depths > 0.1)
s1_inverted_depths[valid_pixels] = \
    max_depth - s1_inverted_depths[valid_pixels]
```


Step 2 – Dilating With Custom Kernel

Input

How?

Dilating with 3*3,5*5, 7*7 diamond filter

We can use cross filter here

Why?

To Extend Efficient Pixels

Step 2 – Dilating With Custom Kernel

```
dilated far = cv2.dilate(
   dilation kernel far)
dilated med = cv2.dilate(
   np.multiply(s1 inverted depths, valid pixels med),
dilated near = cv2.\overline{dilate}
valid pixels near = (dilated near > 0.1)
valid pixels med = (dilated med > 0.1)
valid pixels far = (dilated far > 0.1)
s2 dilated depths = np.copy(s1 inverted depths)
s2 dilated depths[valid pixels med] = dilated med[valid pixels med]
s2 dilated depths[valid pixels near] = dilated near[valid pixels near]
```


Step 3 – Small Hole Closure

Input

How?

- 1- Closing with 5*5 full filter
- 2- Using Median filter for denoising

7*7 and 3*3 decrease RMSE

Why?

Fill small holes which is remaining from previous step

Result

Step 3 – Small Hole Closure

Step 4 – Medium Hole Fill

Input

How?

1- Dilating on unchanged pixel with 7*7 Full filter

Why?

Fill Medium Holes

Result

Step 4 - Small Hole Fill

```
top_mask = np.ones(depths_in.shape, dtype=np.bool)
for pixel_col_idx in range(s4_blurred_depths.shape[1]):
    pixel_col = s4_blurred_depths[:, pixel_col_idx]
    top_pixel_row = np.argmax(pixel_col > 0.1)
    top_mask[0:top_pixel_row, pixel_col_idx] = False

valid_pixels = (s4_blurred_depths > 0.1)
empty_pixels = ~valid_pixels & top_mask

dilated = cv2.dilate(s4_blurred_depths, kernels.FULL_KERNEL_7)
s5_dilated_depths = np.copy(s4_blurred_depths)
s5_dilated_depths[empty_pixels] = dilated[empty_pixels]
```


Step 5 – Extension to Top of Frame

Input

How?

the top value along each column is extrapolated to the top of the image, providing a denser depth map output.

Why?

To account for tall objects such as trees, poles, and buildings To account for tall objects such as trees, poles, and buildings that extend above the top of LIDAR points

Step 5 – Extension to Top of Frame

Step 6 - Large Hole Fill

How?

Why?

Step 6 - Large Hole Fill

```
s7_blurred_depths = np.copy(s6_extended_depths)
for i in range(6):
    empty_pixels = (s7_blurred_depths < 0.1) & top_mask
    dilated = cv2.dilate(s7_blurred_depths, kernels.FULL_KERNEL_31)
    s7_blurred_depths[empty_pixels] = dilated[empty_pixels]</pre>
```


Step 7 - Median and Gaussian Blur

Input

How?

- $1-5 \times 5$ kernel median blur
- 2-5 x 5 kernel Gaussian blur

Why?

To remove these outliers

Step 7 - Median and Gaussian Blur

```
s7_blurred_depths = np.copy(s6_extended_depths)
for i in range(6):
    empty_pixels = (s7_blurred_depths < 0.1) & top_mask
    dilated = cv2.dilate(s7_blurred_depths, kernels.FULL_KERNEL_31)
    s7_blurred_depths[empty_pixels] = dilated[empty_pixels]

blurred = cv2.medianBlur(s7_blurred_depths, 5)
valid_pixels = (s7_blurred_depths > 0.1) & top_mask
s7_blurred_depths[valid_pixels] = blurred[valid_pixels]
blurred = cv2.GaussianBlur(s7_blurred_depths, (5, 5), 0)
valid_pixels = (s7_blurred_depths > 0.1) & top_mask
s7_blurred_depths[valid_pixels] = blurred[valid_pixels]
```


Step 8 – Depth Inversion

Input

How?

Result = 100 - Input

Why?

Result

Step 8 – Depth Inversion

```
s8_inverted_depths = np.copy(s7_blurred_depths)
valid_pixels = np.where(s8_inverted_depths > 0.1)
s8_inverted_depths[valid_pixels] = \
    max_depth - s8_inverted_depths[valid_pixels]
depths_out = s8_inverted_depths
```

4

RESULT

Method	iRMSE (1/km)	iMAE (1/km)	RMSE (mm)	MAE (mm)	Runtime (s)
NadarayaW	6.34	1.84	1852.60	416.77	0.05
SparseConvs	4.94	1.78	1601.33	481.27	0.01
NN+CNN	3.25	1.29	1419.75	416.14	0.02
Ours (IP-Basic)	3.78	1.29	1288.46	302.60	0.011

	Dataset	RMSE	MAE
Paper Implementation	KITTI Test Set	1288.46	302.6
My Implementation	KITTI Validation Cropped	1651.34	696.7

An Issue

