

Problem 1H.

Problem 1I.

 $X1,i+1 = 171X1,i \mod 30269$

 $X2,i+1 = 172X2,i \mod 30307$

 $X3,i+1 = 170X3,i \mod 30323$

= (X1,i+1/30269 + X2,i+1/30307 + X3,i+1/30323) - Floor((X1,i+1/30269 + X2,i+1/30307 + X2,i+1/30307))

X3,i+1/30323))

Problem 2B.

Problem 5. INIVERSE METHOD: $F(x) = \int_{1}^{x} \frac{3x^{2}}{2} dx = \left[\frac{x^{3}}{2}\right]^{x} = \frac{x^{3}}{2} + \frac{1}{2}, -1 \le x \le 1$ $F(x) = U = \frac{x^3}{2} + \frac{1}{2} \rightarrow \frac{x^3}{2} = U - \frac{1}{2} \rightarrow x^3 = 2U - 1$ X= 3/2U-1 COMPOSITION METHOD: $f(x) = \frac{5}{7}f'(x) + \frac{5}{7}f^{5}(x)$ $x_{3}+1=A$ $f_1(x) = 3x^2, -1 \le x < 0 \rightarrow F_1(x) = x^3 + 1$ $f_2(x) = 3x^2, 0 \le x \le 1 \rightarrow F_2(x) = x^3$ $U, V \sim Unif(0, 1)$ If $U \leq \frac{1}{2}$, $X = \sqrt[3]{V-1}$ otherwise $X = \sqrt[3]{V}$ Problem 6. f(x)= 20x (1-x)3, 0 ≤ x ≤ 1 (a) max $f(x) \equiv \max \ln(f(x))$ W.L.O.G. $\ln f(x) = \ln(20 \times (1-x)^3) = \ln(20 \times) + \ln((1-x)^3)$ = ln(20) + ln(x) + 3ln(1-x) $\frac{3}{9 \ln f(x)} = \frac{x}{1} - \frac{1-x}{3} = 0 \Rightarrow \frac{x}{1} = \frac{1-x}{3} \Rightarrow \frac{x}{(1-x)} = 3$ $1-x=3x \rightarrow 4x=1 \rightarrow x=\frac{1}{4}$ $f(x) = f(\frac{1}{4}) = 20(\frac{1}{4})(\frac{3}{4})^3 = \frac{540}{256} = 2.109$ (b) $C = \int_{0}^{1} 2.109 dx = [2.109 x]_{0}^{1} = \frac{540}{256}$ $h(x) = \frac{t(x)}{590/256} = 1$, $g(x) = \frac{f(x)}{540/256} = \frac{265}{27} \times (1-x)^3$ do U, U2 NU(0,1) until U1 = 265 (Y (1-4)3) neturn X= Y (c) c iterations until realization on ang 1) In this case, 540 Herations

Problem 7. $f(x)=20x(1-x)^3$, $0 \le x \le 1 \rightarrow P=\frac{1}{20}$ to make function Repeat generate UNU(0,35) and VNU(0,1/8) Z= V/u Until U2 < Z(1-Z)3 mean # of
times to generate = $\frac{2}{181/171} = \frac{2(u*(v*-0))}{7/2} = \frac{2(3\sqrt{3}(\frac{1}{8}))}{10}$ a single obs return X=Z $V(z) = \sqrt{Pf(z)} = \sqrt{2(1-z)^3}$ $V(z) = z \sqrt{Pf(z)} = z \sqrt{2(1-z)^3}$ V*= -Problem 8. (a) $E[X] = \frac{1}{2}(-1) + \frac{1}{2}(1) = 0$ $E[X^2] = \frac{1}{2}(-1)^2 + \frac{1}{2}(1)^2 = 1$ $Var(X) = E[X^2] - (E[X])^2 = 1 - 0$ Problem 9. The naive algorithm is are follows ... $T_{i+1} = T_i - \frac{1}{\lambda(T_i)} ln(U_{i+1})$ You can end up skipping intervals. This paper posits that the algorithm for generating an NHPPuse acceptance/rejection. Find maximal x* and generate according to it. Accept w/ probability 1(Ti)