

Computer Science Department

Thesis for Master Degree in Computer Science

GP-GPU: From Data Parallelism to Stream Parallelism

Candidato: Maria Chiara Cecconi

Relatore: Marco Danelutto

Contents

1 Introduction		
	1.1	Goals
		1.1.1 GPU Architecture and Data Parallel
		1.1.2 Other Applications: Stream Parallel
		1.1.3 GP-GPUs and Stream Parallel
	1.2	Expectations
	1.3	Results
	1.4	Tools
2	Tools	
	2.1	CUDA
	2.2	Profilers
		2.2.1 nvprof
		2.2.2 nSight
	2.3	C++
		2.3.1 Visual Studio
	2.4	Python
3	Proj	ject Logic 1
	3.1	Graph on Logic
4	Imp	lementation 1
	4.1	$\label{eq:high-Parallel} \mbox{High Parallel on GPU} \ \ \dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
	4.2	Low Parallel un GPU
	4.3	Data Parallel un GPU
	4.4	CPU and GPU Mix
5	Experiments	
	5.1	What and How
	5.2	Results
	5.3	Some Plots
6	Con	clusions 1

Introduction

This is the first section.

1.1 Goals

The main goal of this thesis is to study GPU's behavior when used for different purposes with respect to the common ones. In particular, we wanted to use a GPU to perform a code that comes closer to a **stream parallel pattern**. Then we observed ongoings, in terms of **completion time** and **speed up**. We now see in detail the concepts we've just introduced.

1.1.1 GPU Architecture and Data Parallel

GPU (Graphics Processing Unit) is a coprocessor, generally known as a highly parallel multiprocessor optimized for visual computing. [1]

- 1.1.2 Other Applications: Stream Parallel
- 1.1.3 GP-GPUs and Stream Parallel
- 1.2 Expectations
- 1.3 Results
- 1.4 Tools

$\mathsf{CHAPTER}\ 2$

Tools

Here the description of tools

2.1 **CUDA**

CUDA,

2.2 Profilers

CUDA Profilers for GPU

2.2.1 nvprof

nvprof,

2.2.2 nSight

nSight,

2.3 C++

C++,

2.3.1 Visual Studio

Visual Studio,

2.4 Python

Project Logic

Logic scheme and description.

3.1 Graph on Logic

Put a really beautiful graph here

Implementation

Specs and code.

4.1 High Parallel on GPU

ij¡56*K, blockSize¿¿¿

4.2 Low Parallel un GPU

jjj1, blockSize¿¿¿

4.3 Data Parallel un GPU

¡¡¡dataSize/blockSize, blockSize¿¿¿

4.4 CPU and GPU Mix

Queue with P and Q chunk exec by respectively CPU and GPU.

Experiments

Experiments bla bla

5.1 What and How

Some explanation

5.2 Results

 ${\bf Results}$

5.3 Some Plots

Conclusions

Some Concl.

Bibliography

[1] D.A. Patterson, J.L. Hennessy, Computer Organization and Design: The Hardware and Software Interface, V Edition. Appendix C by J. Nickolls, D.Kirk.