Visualização Plano de Ensino 02/02/17 17:01

PLANO DE ENSINO 2017 UNIFIL

*Documento válido apenas com a assinatura do coordenador do curso

Curso: Ciência da Computação

BACHARELADO Ano: 2º Turma: COMP32A Período: Noturno

Disciplina: COMP2014 Engenharia de Software I

Carga Horária Teórica: 72 Prática: 0 Total: 72

PROFESSORES
SERGIO AKIO TANAKA
COORDENADOR
SERGIO AKIO TANAKA

EMENTA

Introdução ao Processo de Desenvolvimento de Software, Ciclo de Vida, Gerência de Projetos, Métricas, Planejamento, Estimativas. Análise e negociação de requisitos de software. Modelagem e especificação de requisitos de software. Gerenciamento de requisitos.

COMPETÊNCIAS E HABILIDADES

- Compreender os fatos essenciais, os conceitos, os princípios e as teorias relacionadas à Ciência da Computação para o desenvolvimento de software e hardware e suas aplicações;
- Reconhecer a importância do pensamento computacional no cotidiano e sua aplicação em circunstâncias apropriadas e em domínios diversos;
- Identificar e gerenciar os riscos que podem estar envolvidos na operação de equipamentos de computação (incluindo os aspectos de dependabilidade e segurança);
- Identificar e analisar requisitos e especificações para problemas específicos e planejar estratégias para suas soluções;
- Especificar, projetar, implementar, manter e avaliar sistemas de computação, empregando teorias, práticas e ferramentas adequadas;
- Conceber soluções computacionais a partir de decisões visando o equilíbrio de todos os fatores envolvidos;
- Empregar metodologias que visem garantir critérios de qualidade ao longo de todas as etapas de desenvolvimento de uma solução computacional;
- Analisar quanto um sistema baseado em computadores atende os critérios definidos para seu uso corrente e futuro (adequabilidade);
- Gerenciar projetos de desenvolvimento de sistemas computacionais;
- Aplicar temas e princípios recorrentes, como abstração, complexidade, princípio de localidade de referência (caching), compartilhamento de recursos, segurança, concorrência, evolução de sistemas, entre outros, e reconhecer que esses temas e princípios são fundamentais à área de Ciência da Computação;
- Escolher e aplicar boas práticas e técnicas que conduzam ao raciocínio rigoroso no planejamento, na execução e no acompanhamento, na medição e gerenciamento geral da qualidade de sistemas computacionais;
- Aplicar os princípios de gerência, organização e recuperação da informação de vários tipos, incluindo texto imagem som e vídeo;
- Aplicar os princípios de interação humano-computador para avaliar e construir uma grande variedade de produtos incluindo interface do usuário, páginas WEB, sistemas multimídia e sistemas móveis.

PROGRAMA

Conceitos básicos Processo de Desenvolvimento de Software Aquisição de Software Técnicas de Coleta de Dados Gerência de Requisitos

OBJETIVO

Fornecer visão de projeto de sistemas de informação com ênfase na gerência de projetos e na gerência de requisitos. Mostrar a importância da boa definição de requisitos de software no contexto da Engenharia de Software.

METODOLOGIA

Aulas expositivas empregando slides e apresentação visual. Seminários para apresentação de trabalhos de pesquisa; Resolução de exercícios; Estudos dirigidos em sala de aula; Problematização.

CRITÉRIOS DE AVALIAÇÃO

Avaliações somativas na forma de provas discursivas ou objetivas;

Avaliações formativas através dos projetos de implementação, resolução de exercicios e grupos de estudos e pesquisa; O peso de cada atividade nas médias bimestrais fica a critério do professor, bem como a utilização, ou não, de todos os critérios de avaliação

BIBLIOGRAFIA BÁSICA

LARMAN, Craig. Utilizando UML e padrões:

uma introdução à análise e ao projeto orientados a objetos e ao desenvolvimento iterativo. 3. ed. Porto Alegre:

Visualização Plano de Ensino 02/02/17 17:01

Bookman, 2008. 695 p. ISBN 978-85-60031-52-8#196611

PRESSMAN, Roger S.; GRIESI, Ariovaldo; FECCHIO, Mário Moro; ARAKAKI, Reginaldo; ARAKAKI, Julio; ANDRADE, Renato Manzan de (Rev. téc.). Engenharia de software. 7. ed. Porto Alegre: AMGH, 2011. 780 p. ISBN 978-85-63308-33-7.#201412

SOMMERVILLE, Ian. Engenharia de software. 8. ed. São Paulo: Pearson, 2008. 549 p. ISBN 978-85-88639-28-7.#196840

BIBLIOGRAFIA COMPLEMENTAR

BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. UML, guia do usuário. 2. ed. totalmente rev. e atual. Rio de Janeiro: Elsevier, c2006. 474 p. ISBN 85-352-1784-3.#196612

BOOCH, Grady; RUMBAUGH, James; JACOBSON, Ivar. UML: guia do usuário. Rio de Janeiro: Campus, 2000. 472 p. ISBN 8535205624.#40783

FOWLER, Martin. UML essencial: um breve guia para a linguagem-padrão de modelagem de objetos. 3. ed. Porto Alegre: Bookman, 2005. 160 p. ISBN 85-363-0454-5#53273

KRUCHTEN, Philippe; RÜDIGER, Deborah (Trad.). Introdução ao RUP: Rational Unified Process. 2. ed. Rio de Janeiro: Ciência Moderna, 2004. 255 p. ISBN 85-7393-275-9.#52685

VAZQUEZ, Carlos Eduardo; SIMÕES, Guilherme Siqueira; ALBERT, Renato Machado. Análise de pontos de função: medição, estimativas e gerenciamento de projetos de Software. 8. ed. rev. São Paulo: Érica, 2008. 232 p. ISBN 978-85-7194-899-0#196673

PERIÓDICOS E LINKS

www.softex.org.br www.mct.gov.br www.ieee.org www.sei.cmu.edu/cmmi/

CRONOGRAMA

1º Bimestre

06/02 - Apresentação alunos/Professor, Apresentação do Plano de Ensino, Formas de avaliação e Visita a Biblioteca

13/02 - Organização dos Grupos de Trabalho (máximo 4 alunos), definição do nome do projeto, Organização da Interdisciplinariedade (PI) e Prototipação (TELAS) dos projetos.

20/02 - Ciclo de Vida (Clássico, Prototipação, Iterativo, Espiral e Incremental) e Exercícios.

27/02 - Recesso Carnaval

06/03 - Apresentação do protótipo dos projetos + site (ver modelos enviados)

13/03 - Processo de Desenvolvimento de Software (Conceitos básicos, Melhores Práticas, RUP)

13/03 - NAVEGAÇÃO NO RUP (Download dos artefatos de Gerência de Requisitos)

20/03 - Diagrama de Casos de Usos - Conceitos

27/03 - Exercícios de Casos de Uso em uma Ferramenta CASE

03/04 - Estudo de caso prático em relação a Casos de Uso

10/04 - Apresentação dos trabalhos (Eng I e PI)

17/04 - Avaliação

17/04 - Visto de prova e finalização do 1 bimestre

2º Bimestre

24/04 - Gerência de Requisitos - Conceitos

01/05 - FERIADO

08/05 - Diagrama de Implantação

15/05 - Especificação Suplementar (Complementar) versus Diagrama de Implantação (Integração com Sistemas Operacionais e Redes de Computadores)

22/05 - Especificação Suplementar (Complementar) versus Diagrama de Implantação (Integração com Sistemas Operacionais e Redes de Computadores)

29/05 - Documento Visão e Glossário

05/06 - Exercícios sobre Casos de Uso

12/06 - Avaliação referente ao 2 bimestre

19/06 - Visto de Prova e Finalização do 2 bimestre

3º Bimestre

17/07 - Documento Visão

24/07 - Glossário

31/07 - Especificação dos Casos de Uso

07/08 - Semana da Computação

14/08 - Especificação dos Casos de Uso

21/08 - Filme sobre desenvolvimento de Software

28/08 - Filme sobre desenvolvimento de Software

04/09 - Exercícios

11/09 - Apresentação dos trabalhos (ENG I e PI)

18/09 - Visto de Prova e Encerramento do 3 bimestre

4º Bimestre

25/09 - Introdução as Metodologias Ágeis

02/10 - Introdução as Metodologias Ágeis

02/02/17 17:01 Visualização Plano de Ensino

09/10 - Exercícios 16/10 - Diagrama de Atividades 23/10 - Diagrama de Atividades versus BPMN

30/10 - Exercícios

06/11 - Apresentação de trabalhos (ENG I e PI) 13/11 - Avaliação 20/11 - Visto de prova e encerramento do 4 bimestre

OBSERVAÇÃO