Q21S3D Страница 1 из 3

15. Кельтские мотивы

Семейство Хильды — группа тёмных углеродных астероидов главного пояса. На специальном бланке ответов изображены траектории двух астероидов семейства Хильды в связанной с Юпитером вращающейся системе отсчёта. Объясните, почему траектории имеют такой вид. Определите большие полуоси и эксцентриситеты орбит астероидов и периоды их движения. Отметьте на бланке положения точек Лагранжа системы Солнце–Юпитер. Сделайте выводы.

16. Фотометрия галактик

В работе Baggett et al. (1998) выполнялась декомпозиция балдж/диск для 659 спиральных галактик: для них определялись параметры интенсивности излучения от диска и балджа. При этом распределение интенсивности балджа моделировалось законом де Вокулёра:

$$I_B(r) = I_e \cdot 10^{-3.33[(R/R_e)^{1/4}-1]},$$

а распределение интенсивности по диску, в самом простом случае, экспоненциальной функцией:

$$I_D(R) = I_0 \cdot e^{-R/R_d}.$$

В данной задаче нас интересует распределение в плоскости диска, поэтому величина R обозначает расстояние от центра галактики в плоскости диска, выраженное в угловых секундах; соответственно, R_e и R_d также выражены в угловых секундах. I_e и I_0 — поверхностная интенсивность с квадратной секунды; μ_e и μ_0 — поверхностные яркости, выраженные в звёздных величинах квадратной секунды, получающиеся приведением I_e и I_0 к звёздным величинам.

В таблице приведены значения поверхностных яркостей (в $^{\rm m}/\Box''$) в зависимости от R. Постройте график зависимости m(R) и найдите параметры μ_e , μ_0 , R_e , R_d .

к зиоиче 10. Фотомстрия силиктик										
R, "	m	R, "	m	R, "	m	R, "	m	R, "	m	
0.0	-0.52	2.2	17.63	5.0	20.20	9.5	20.75	14.4	21.01	
0.1	7.80	2.5	17.87	5.5	20.34	10.0	20.68	14.8	21.03	
0.2	9.38	2.8	18.64	5.9	20.42	10.5	20.81	15.5	21.07	
0.3	10.43	3.0	18.71	6.4	20.50	11.0	20.84	16.2	21.10	
0.5	11.62	3.4	19.18	6.7	20.64	11.5	20.86	17.1	21.17	
0.7	13.41	3.7	19.46	7.0	20.57	12.0	20.99	18.2	21.20	
1.0	14.27	4.0	19.60	7.5	20.82	12.5	20.91	19.0	21.24	
1.3	15.47	4.3	19.89	8.0	20.66	13.0	20.94	19.8	21.28	
1.7	16.35	4.5	19.99	8.5	20.49	13.5	20.79	20.5	21.32	
2.0	17.23	4.7	20.08	9.0	20.72	14.0	20.89	21.0	21.34	

К задаче 16. Фотометрия галактик

1 2 3 4 5 6 7 8 9 10

11 12 13 14 16 17 18 19 20

Q21S3D Страница 2 из 3

17. Распределяй и властвуй

В таблице приведены координаты звёзд некоторого рассеянного скопления. Постройте гистограмму усреднённого радиального распределения количества звёзд на площадке $0.03^{\circ} \times 0.03^{\circ}$. Предложите адекватную аппроксимацию полученной зависимости и найдите её параметры.

К задаче 17. Распределяй и властвуй

α, °	δ,°	α,°	δ,°	α,°	δ, °	α, °	δ,°	α,°	δ, °
14.777	-72.175	14.801	-72.203	14.584	-72.197	15.095	-72.161	14.378	-72.129
14.763	-72.178	14.683	-72.188	14.936	-72.212	14.544	-72.249	15.172	-72.220
14.764	-72.173	14.796	-72.206	14.924	-72.133	14.667	-72.273	14.360	-72.140
14.787	-72.177	14.865	-72.189	14.962	-72.149	14.622	-72.083	14.345	-72.157
14.772	-72.181	14.667	-72.171	14.958	-72.207	14.779	-72.072	14.649	-72.303
14.768	-72.182	14.736	-72.207	14.847	-72.113	15.036	-72.243	15.206	-72.169
14.790	-72.172	14.693	-72.152	14.753	-72.243	14.490	-72.239	14.703	-72.309
14.793	-72.179	14.783	-72.141	14.733	-72.244	15.023	-72.251	15.192	-72.219
14.798	-72.176	14.762	-72.212	14.736	-72.106	14.682	-72.280	14.426	-72.263
14.791	-72.183	14.732	-72.211	14.635	-72.234	14.685	-72.282	14.522	-72.290
14.751	-72.168	14.649	-72.186	14.981	-72.210	15.035	-72.101	14.594	-72.303
14.803	-72.181	14.799	-72.137	14.569	-72.216	14.412	-72.159	14.855	-72.313
14.809	-72.179	14.676	-72.204	14.979	-72.134	14.662	-72.283	14.465	-72.072
14.798	-72.166	14.710	-72.213	15.011	-72.201	15.064	-72.245	14.898	-72.040
14.802	-72.186	14.679	-72.209	14.680	-72.102	14.638	-72.282	14.370	-72.105
14.807	-72.186	14.647	-72.199	14.805	-72.096	14.803	-72.290	14.326	-72.133
14.813	-72.184	14.781	-72.130	14.511	-72.195	15.129	-72.138	15.101	-72.278
14.821	-72.182	14.700	-72.217	14.603	-72.111	14.475	-72.250	14.896	-72.036
14.814	-72.187	14.855	-72.216	14.601	-72.243	14.578	-72.074	14.827	-72.031
14.770	-72.194	14.620	-72.189	15.008	-72.223	14.604	-72.069	14.438	-72.072
14.710	-72.174	14.828	-72.222	15.002	-72.228	14.380	-72.181	14.772	-72.029
14.786	-72.195	14.686	-72.219	14.595	-72.247	14.414	-72.228	15.218	-72.121
14.823	-72.190	14.621	-72.153	14.972	-72.109	14.569	-72.071	14.603	-72.316
14.842	-72.175	14.633	-72.207	14.531	-72.231	14.565	-72.282	15.190	-72.098
14.752	-72.198	14.613	-72.153	14.552	-72.112	14.365	-72.179	15.007	-72.309
14.840	-72.186	14.743	-72.230	14.670	-72.087	15.049	-72.268	14.605	-72.319
14.793	-72.200	14.596	-72.189	14.699	-72.269	15.179	-72.193	14.273	-72.164
14.709	-72.158	14.930	-72.205	14.480	-72.214	14.650	-72.297	15.266	-72.150
14.836	-72.194	14.829	-72.231	15.088	-72.162	15.136	-72.238	14.700	-72.329
14.712	-72.197	14.578	-72.169	14.451	-72.161	14.550	-72.067	15.251	-72.228

Q21S3D Страница 3 из 3

18. Бумажная Луна

На специальном бланке ответов напечатан негатив композитной фотографии солнечного затмения, которую сделали вблизи города Шилин-Гол (Внутренняя Монголия, Китай: 44° с. ш., 116° в. д.) перед заходом Солнца 10 июня 2021 г. Определите фазу затмения и оцените, сколько времени прошло от его начала. Что произошло раньше: окончание затмения или заход Солнца за математический горизонт?

19. Великий Архивариус

На специальном бланке ответов отмечены точечный источник света A и его изображение A', полученное при помощи тонкой линзы. Изображение линзы со временем выцвело, так что удалось восстановить только положение главной оптической оси. Однако мы просим вас построить изображение B' источника B. Построение обоснуйте.

20. В трёх соснах

Перед вами спектр астрономического объекта. Определите его тип и спектральный класс (если возможно), а также расстояние до него.

К задаче 20. В трёх соснах

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 19 20

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 20

					•	
					B	
					D	
	•					
	A /					
	A'					
		: :===================================				
			А			
			4			