ECKERT

Version 2019 User's Manual

Yuishin Kikuchi April 13, 2020

Contents

Chapter 0	Introduction	1
0.1	What is ECKERT	1
0.2	Audiences	1
0.3	Supporting functions	2
0.4	Operating Environments	2
0.5	Disclaimer	2
Chapter 1	Preparation	3
1.1	Installation and Uninstallation	3
1.2	How to read this manual	3
1.3	Format of this document	4
Chapter 2	Display and Operations	5
2.1	Launch and Terminate	5
2.2	Display of calculation mode	5
2.3	Calculation mode and states display	7
2.4	Stack display	9
2.5	Message display	11
2.6	Configuration mode display	12
2.7	Fundamental operation	13
2.8	Input numeric values	14
2.9	Value with SI or binary prefix	15
2.10	Examples of value input	16
2.11	When error messages displayed	17
Chapter 3	Configuration Mode	19
3.1	Settings in configuration mode	19
3.2	Settings in calculation mode	21
3.3	Keywords of settings in calculation mode	25
3.4	Next/previous pages in stack	26
3.5	Next/previous pages in register	27
3.6	View full string of data	28
3.7	Version display	28
Chapter 4	Fundamental operations – four arithmetics	29

4.1	Elementary stack operations	29
4.2	Four arithmetic operations	31
4.3	Multiple arithmetics	32
4.4	Elementary functions	34
4.5	Concept of RPN	34
Chapter 5	Mathematical Functions	35
5.1	How to use math functions	35
5.2	Exponent and logarithm	35
5.3	Trigonometric functions	36
5.4	Hyperbolic functions	37
5.5	Stats functions	37
5.6	Integer roundings	38
5.7	Integer functions	38
Chapter 6	Useful Functions	39
6.1	Percent calculations	39
6.2	Time conversion	40
6.3	DMS conversion	41
6.4	Whole stack calculations	41
6.5	Multiply by prefix	42
6.6	Divide by prefix	43
6.7	Angle conversion	44
6.8	Angle calculation	44
6.9	Ratio	45
6.10	Random numbers	45
6.11	Cast	45
6.12	Calculations for engineers	46
6.13	Calculation for earthquakes	46
6.14	Health calculations	46
Chapter 7	Complex Calculations	47
7.1	Display of complex numbers	47
7.2	How to make complex numbers	48
7.3	Complex calculations	49
7.4	Disassemble complex	50
7.5	7-5. Complex functions	50
Chapter 8	Logical Calculations	51
8.1	Unsigned decimal and Boolean	51
8.2	Bit length	51
8.3	8-3. N-ary number switching	51
8.4	Input binary and Boolean	52
8.5	Fundamental logical calculations	53

8.6	Bit shift	53
8.7	Rotate	53
8.8	Other functions that support unsigned integer	54
8.9	Whole-stack logical calcultions	54
Chapter 9	Vector Calculations	55
9.1	Display of vectors	55
9.2	Making of vector	55
9.3	Extract element from tuple	57
9.4	Four arithmetics of vectors	58
9.5	Inner / outer product	58
9.6	Norms of vectors	59
9.7	Transpose vectors	59
Chapter 10	Matrix Calculations	61
10.1	Display of matrices	61
10.2	Making matrices	61
10.3	Get element or tuple from matrix	63
10.4	Four arithmetics of matrices	65
10.5	Determinant and inverse matrix	65
10.6	Transpose matrix	66
10.7	Other matrix functions	66
Chapter 11	Register Operations	67
11.1	What is register	67
11.2	Register display	67
11.3	Store to selected register	68
11.4	Load from selected register	69
11.5	Delete selected register	71
11.6	Register calculation	71
11.7	Register clear	7 3
11.8	Strings and registers	73
Chapter 12	Stack Operations	75
12.1	Special stack operations	75
12.2	Fundamental stack operations	75
12.3	Order changing functions	 75
12.4	Duplicate and overwrite functions	77
12.5	Removal functions	81
12.6	Other stack operations	83
Chapter 13	Unit Conversions	85
13.1	Supporting units	85
13.1	How to use unit conversion function	85

13.3	Units of length	86
13.4	Units of length inverse	86
13.5	Units of area	87
13.6	Units of area inverse	87
13.7	Units of volume	88
13.8	Units of volume inverse	89
13.9	Units of time	89
13.10	Units of time inverse	89
13.11	Units of mass	90
13.12	Units of velocity	90
13.13	Units of acceleration	91
13.14	Units of force	91
13.15	Units of pressure	91
13.16	Units of energy	92
13.17	Units of temperature	92
Chapter 14	Math / Scientific / Engineering constants	93
14.1	Input constants	93
14.2	Math constants	93
14.3	Fundamental physical constants	93
14.4	Electromagnetics	94
14.5	Nuclear physics	94
14.6	Physicochemistry	95
14.7	Agreement value	96
14.8	Planck unit	96
14.9	Astronomy	97
14.10	Paper size	97
Chapter 15	Other functions	99
15.1	All clear	99
15.1	All reset	99
15.2	Undo / redo	99
15.4	JSON output	99
15.5	·	وو 100
15.6		100
15.7		101 101
13.7	Special startup	101
Chapter 16	Messages 1	03
16.1	Error messages	103
16.2	Notice messages	104
16.3	Confirm messages	104
Chapter 17	Technical Information 1	05
17.1		105 105

17.2	Calculation precision	105
17.3	Mathematical definitions	106
Chapter 18	Troubleshootings	109
18.1	I have no idea to operate this software	109
18.2	I'd like to view full data	109
18.3	I'd like to change rational or floating display	109
18.4	I'd like to change complex display	109
18.5	I'd like to view all values in the stack and the registers	110
18.6	I saw doubtful calculation result	110
18.7	Stopped by errors	110
18.8	I found doubtful behaviors	111

Chapter 0

Introduction

0.1 What is ECKERT

ECKERT is a calculator software with command line interface, whose name is short for Engineering Calculator with KEyboard and Refined Tools.

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2019 Yuishin Kikuchi
HOMURA: (FD) (Rad) (Hex) (Dword)
Std: 9/15, Stack: 6, History: 0/10
 # TYPE
                                                   VALUE
                                                      12
 6: Integer :
 5: Floating :
                                                     1.5
 4: Complex :
                                            3/25 - 14/25
                                       [[2, 3], [3, 4]]
Z: Matrix
Y: Rational :
                                                   2.1/4
                                (1 + i2, 2 + i3, 3 + i4)
X: Tuple(Col) :
MAKE COLUMN TUPLE
Ready to operate
```

Watching the display, type keywords and values to calculate. This software adopts RPN (Reverse Polish Notation), so you do not have to use parenthnesses to determine calculation priorities.

0.2 Audiences

ECKERT is recommended for following users:

Physical or Chemical scientists, electrical scientists, machine engineer, architect, civil engineer, medical scientists, pharmacists, sologists and so on.

0.3 Supporting functions

- SI prefix, binary prefix*1
- Rational calculations
- Complex calculations
- Exponent and logarithm
- Trigonometric func
- Hyperbolic func
- Percent calculation
- Include/exclude tax
- Multiply/divide by prefix

- Multiply/divide by 2π
- Decibel conversion
- Base conversion
- Logical calculations
- Vector calculations
- Matrix calculations
- Register functions*2
- Unit conversions*3
- Math/sci constants*3

0.4 Operating Environments

Windows 7, Windows 8, Windows 8.1 and the latter versions.

0.5 Disclaimer

This software and the manual of this software is copyrighted to Yuishin Kikuchi. ECKERT is FREE FOR USE and NO WARRANTY.

If you find bugs or unnatural specifications, please send messages to me.

Contact: mailto:only.my.truth@gmail.com

I NEED YOUR HELP!

This user's manual was translated from Japanese version. If you find the English in the document something wrong, please send reports to me, thanks.

これは日本語からの翻訳です。不自然な英語表現にお気づきの際はご連絡ください。

^{*1} Numeric formats such as '12k' (12 kilos) or '32u' (32 micros) and so on.

 $^{^{*2}}$ You can store data from stack to register, also can load/delete from register.

^{*3 2014} CODATA

Chapter 1

Preparation

1.1 Installation and Uninstallation

You can find eckert86.exe and eckert64.exe in the package. The both are executable files. The file eckert86.exe is for 32-bit Windows system and the file eckert64.exe is for 64-bit Windows system. Please check your system.

Each exe file is independent so you can delete unused one. This software does not change registories in your system. Thus, this is portable.

The installation of thie software is just copying.

The uninstallation is just delete. You can also delete the config file.

1.2 How to read this manual

This manual explains whole functions of ECKERT and it is just user's manual so the fundmental mathematical definitions are omitted.

If you do not know RPN calculator, please read chapter 2 and 4 first. If you get used to the operations, read chapter 5, 6, 7 and 11.

If you know about RPN calculator, you can read chapter 4 diagonally to make comprehension of the operations of this software.

To configurate display digits or value format, please read chapter 3.

1.3 Format of this document

This manual uses following format:

Important thngs

Things to notice

Command input

Command is shown like **INPUT**. Just type and press enter to operate.

This software adopts stack concept, which is one of data storage structures. Please read chapter 3 to get more information about stack. This manual uses tables like following to describe a state of a stack.

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	12
Х:	Floating	:	1.5

The column TYPE means data type and the column VALUE means data value.

This document uses list in following format to show functions.

Function	Keyword	R	D	Math
Add	ADD, +	2	2	Y + X
Subtract	SUB, -	2	2	Y - X

The column Function means function name and the column Keyword means command to call corresponding function.

Please refer chapter 4 to get more information about reading list like above one.

Chapter 2

Display and Operations

2.1 Launch and Terminate

Just double click the executable file to launch.

Type **EXIT**, **QUIT**, or **Q** and press enter to terminate the program. Inputs are non-capital-sensitive except for numerical value input.

Function	Keyword
Terminate	EXIT,
	QUIT, Q

Special start up is available. Please refer chapter 15.

2.2 Display of calculation mode

The following chart is the display of calculation mode:

```
Engineering Calculator with KEyboard and Refined Tools
(C) 2014-2019 Yuishin Kikuchi
HOMURA: (FD) (Rad) (Hex) (Dword)
Std: 9/15, Stack: 6, History: 0/10
 # TYPE
                                                   VALUE
 6: Integer :
 5: Floating :
                                                     1.5
                                            3/25 - 14/25
 4: Complex
Z: Matrix
                                         [[2, 3], [3, 4]]
Y: Rational :
                                                   2.1/4
                                (1 + i2, 2 + i3, 3 + i4)
X: Tuple(Col) :
MAKE COLUMN TUPLE
Ready to operate
```

The first two lines mean name of this software and the copyright.

Following a split line, calculation config and states display.

```
HOMURA: (FD) (Rad) (Hex) (Dword) [i.a/b]
Std: 9/15, Stack: 6, History: 0/10
```

Below a doubly split line, you can find stack display there.

# TY	PE	:	VALUE
6: In	teger	:	12
5: Fl	oating	:	1.5
4: Co	mplex	:	3/25 - 14/25
Z: Ma	trix	:	[[2, 3], [3, 4]]
Y: Ra	tional	:	2.1/4
X: Tu	ple(Col)	:	(1 + i2, 2 + i3, 3 + i4)

The right column is data number, the center is data type, and the left is value.

Below the stack display is 2-line message are.

```
MAKE COLUMN TUPLE
Ready to operate
```

The bottom of the display is input field.

```
>
```

Go on to the next section to make comprehension of reading the display.

2.3 Calculation mode and states display

You can find 2-line calculation mode and states display.

```
HOMURA: (FD) (Rad) (Hex) (Dword) [i.a/b]
Std: 9/15, Stack: 6, History: 0/10
```

In the first line, you can notice symbols in the following table:

2.3.1 Decimal display

Symbol	State
(AD)	Auto Decimal display
(FD)	Force Decimal display
(FF)	Force Fractional display

2.3.2 Angle mode

Symbol	State
(Deg)	Degree mode
(Rad)	Radian mode
(Gra)	Grade mode

2.3.3 Unsigned integer display

Symbol	State
(Bin)	Binary display
(Oct)	Octal display
(Sdec)	Signed decimal display
(Udec)	Unsigned decimal display
(Hex)	Hexadecimal display

2.3.4 Logical calculation

Symbol	State
(Byte)	8-bit mode
(Word)	16-bit mode
(Dword)	32-bit mode
(Qword)	64-bit mode

2.3.5 General

Symbol	State
[Reg]	Register display
[Eul]	Euler display
[Eul(Pi)]	Euler display (π radians)
[i.a/b]	Mixed fractional display

(Symbol) selected in each class is always displayed.

[Symbol] is displayed if the mode is enabled.

```
HOMURA: (FD) (Rad) (Hex) (Dword) [i.a/b]
```

You can see display above and you get force fractional display, radian, hexadecimal display, 32-bit and mixed fractional display mode.

There are three sections in the second line. The first consists of decimal display mode and display digits.

Symbol	State
Std	Standard display
Fix	Fixed display
Sci	Scientific display
Eng	Engineering display

The fraction Int/Int in the first section means this: the first means the current display digits and the second is the number of max digits you can set in the selected display mode. To change the number of digits, please read chapter 3.

The second is the number of elements in the stack. If the number is zero, Empty is displayed.

The third is history display.

Display	State
OFF	History is disabled
Init	Initial state
Int/Int	(Described later)

The fraction Int/int in the second section means this: the first integer is the times that you have called undo and the second integer is the items in the history.

```
Std: 6/15, Stack: 6, History: 0/10
```

You get that the decimal display mode is standard display mode and the current number of selected (standard) display digits is 6 and the maximum number of digits you can set is 15. There are 11 elements in the stack. The number of history items is 10 and the pointer for older history is 4.

2.4 Stack display

Learn the concept of stack.

# TYPE	:	VALUE
6: Integer	:	12
5: Floating	:	1.5
4: Complex	:	3/25 - 14/25
Z: Matrix	:	[[2, 3], [3, 4]]
Y: Rational	:	2.1/4
<pre>X: Tuple(Col)</pre>	:	(1 + i2, 2 + i3, 3 + i4)

Stack is one of the data containers. This software has one stack.

In each line in the stack display contains item number, data type and value. A data type means a kind of a number. If a data type is integer, Integer is displayed in the TYPE column and if the type is rational number, Rational is displayed.

This manual shows the stack like below:

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	12
Х:	Floating	:	1.5

The stack size is unlimited.

X is the bottom of the stack. Y is the second bottom and Z is the third bottom. After that, the data numbers are displayed as integers such as 4, 5... The data in X is called just X, the data in Y is just Y, and so on.

Go on to the next page and make comprehension of stack graphically.

You can see a stack like a pile of cards. You draw one by one from the top of the pile and you put into the pile one by one.

#	TYPE	:	VALUE
Z:		:	
Υ:	Integer	:	1
X:	Integer	:	2

Please look at the chart above. There are some cards. You put a card '1' and card '2' in turn.

This situation is expressed like below:

_				
	#	TYPE	:	VALUE
	Z:		:	
	Υ:		:	
	Х:	Integer	:	1

See addition with stack.

You draw 2 cards from the top and you put the value of 1 + 2 on the top.

This is the fundamental flow of calculation with stack.

#	TYPE	:	VALUE
Z:		:	
Υ:	Integer	:	1
Х:	Integer	:	2
> +			

Operate addition

#	TYPE	:	VALUE
Z:		:	
Υ:		:	
Х:	Integer	:	3

There are 3 fundamental operations: add (push), remove (drop) and execution. ECKERT handles these data types:

Symbol	State
Error	String value means error
String	String value
Integer	Integer

from prev page

Symbol	State
Floating	Floating point number
Rational	Rational number
Infinity	Infinity
Complex	Complex number
Boolean	Boolean (true of false)
Byte	8-bit unsigned integer
Word	16-bit unsigned integer
Dword	32-bit unsigned integer
Qword	64-bit unsigned integer
Tuple[Row]	Row vector
Tuple(Col)	Column vector
Matrix	Matrix

2.5 Message display

In the message display, the last called function and error / notice / confirm message are displayed.

```
MAKE COLUMN TUPLE
Ready to operate
```

In the first line is called function and the second line is the other messages.

If unoperatable commands such as division by zero is input, the operation is stopped and an error message is displayed in the second line.

```
[!] ADD Y+X
Error: Too few arguments
```

If there is error or notice message, the message is displayed second line with a symbol in the first line.

Symbol	State	
[!]	Operation is terminated by	
	error	
[i]	Unordinal operation	
[C]	Waiting input or confirm	

For more information, please read chapter 16.

If [?] is displayed, it means that there are software bugs. Please send me a bug report.

2.6 Configuration mode display

Type **CONFIG** to go to configuration display.

```
Engineering Calculator with KEyboard and Refined Tools

(C) 2014-2019 Yuishin Kikuchi

CONFIGURATION MODE

Interface
History size (hist): 10
Display width (width): 79
Display lines (lines): 11

Management
Load config (load)
Save config (save)
Reset config (reset)

ECKERT Config
Type "calc" or "homura" to quit config
```

```
Interface
History size (hist): 10
Display width (width): 79
Display lines (lines): 11
```

Maximum history size, display width and the number of stack display lines are shown. Please read chapter 3 to configurate these.

```
Management
Load config (load)
Save config (save)
Reset config (reset)
```

Those are command for config management.

2.7 Fundamental operation

Input keywords or values to operate. Only half-width (one byte) characters are supported.

Type one or several space-splitted keywords or values and hit enter to calculate or configurate. If the number of tokens, which are keywords or numerical values, is not single, each token is processed in turn.

This way, "type and enter" is the flow of the operations. Please notice that the display changes only pressing enter. Then, only SI or binary prefixes are case-sensitive, the others are not.

This software supports only printable characters input.

For instance, type like below to operate add and multiply in turn.

+ *

Some keywords are aliases, in other words, some ones are connected with the same function. And more, there are some keywords depend on calculation modes.

Type numerical values to input. You can put space-splitted values in order.

1 2

You can even mix values and keywords.

§ 2 5 /

Go on to the next section to get how to input numeric values.

2.8 Input numeric values

This section shows how to input numeric values in this software.

2.8.1 Integer and decimal fraction

Just type an integer value to input an integer.

Just type a value with decimal point to decimal fraction. You can omit integer part (like \mathbb{R} . 2) or decimal part (like \mathbb{R} 1.).

2.8.2 Exponential

Type a decimal value and append E or e and a decimal exponent.

For instance, 6.02×10^{-23} is expressed like 6.02E-23 and 1.01325×10^5 is expressed like 1.01325E5.

2.8.3 Complex number

Positive imaginary unit is 🚦 i or 📳 + i and negative imaginary unit is 📳 - i.

You can pure imaginary number with prefixing i to integer, decimal fraction, or exponential notation.

Non-case-sensitive.

2.8.4 Infinity

```
Positive infinity is INF, +INF or +INFINITY, Negative infinity is -INF or -INFINITY.
```

2.8.5 Boolean

True value is [TRUE] or [TRUE] and false value is [TRUE] or [TRUE] or [TRUE] and false value is

2.8.6 Unsigned decimal value

Prefix u and type integer without sign and spaces.

2.8.7 N-base value

Binary: Prefix **0b**. Octal: Prefix **0o**. Hex: Prefix **0x**.

2.9 Value with SI or binary prefix

You can append SI or binary prefix to integer, decimal, exponential and imaginary value. SI and binary prefixes are case-sensitive.

Symbol	Name	Value	Symbol	Name	Value
da	DECA	×10 ⁺⁰¹	d	DECI	×10 ⁻⁰¹
h	HECT0	$\times 10^{+02}$	С	CENTI	$\times 10^{-02}$
K, k	KIL0	$\times 10^{+03}$	m	MILLI	$\times 10^{-03}$
М	MEGA	$\times 10^{+06}$	u	MICR0	$\times 10^{-06}$
G	GIGA	$\times 10^{+09}$	n	NANO	$\times 10^{-09}$
T	TERA	$\times 10^{+12}$	р	PICO	$\times 10^{-12}$
Р	PETA	$\times 10^{+15}$	f	FEMT0	$\times 10^{-15}$
Е	EXA	$\times 10^{+18}$	а	ATT0	$\times 10^{-18}$
Z	ZETTA	$\times 10^{+21}$	Z	ZEPT0	$\times 10^{-21}$
Υ	Y0TTA	$\times 10^{+24}$	у	Y0CT0	$\times 10^{-24}$
Ki, ki	KIBI	$\times 1024^{1}$			
Mi, mi	MEBI	$\times 1024^{2}$			
Gi, gi	GIBI	$\times 1024^{3}$			
Ti, ti	TEBI	$\times 1024^{4}$			
Pi, pi	PEBI	$\times 1024^{5}$			
Ei, ei	EXBI	$\times 1024^{6}$			
Zi, zi	ZEBI	×1024 ⁷			
Yi, yi	YOBI	×1024 ⁸			

You can use binary prefixes alias.

2.10 Examples of value input

You can also input math or scientific constants with keywords. Please read chapter 14 to get more information.

Name	Keyword	Value				
PI	PI	3.141	592	653	589	79
Napier's	Е	2.718	281	828	459	05
constant						
Euler-Mascheroni	EG	0.577	215	664	901	533
constant						

In addition to these, you can input string value. Use double quotation to input string value.

String This is test"

You can use string to put memos in the register or use macro function.

2.11 When error messages displayed

When the error occurs while operating some functions, the operating and the left unoperated functions are cancelled. This means, the state is the before one cancelled operation. And then, the error messages are shown.

If you see error messages, you can operate as usual. Input commands and if the operations are successful, error messages are disappeared.

Even if operating space-splitted tokens, the functions called one by one, so this software do not stop the operations if no errors.

§50/

(You can make sense of the notation if you read chapter 4.)

For instance, if you input like above, the error "division by zero" occurs. But the push operations are done, so the value 5 and the value 0 is added into the stack and the division cancelled with the stack keeped.

If the error messages are shown, undo and redo are recommended. Please read chapter 15 to get more information.

If you look at the list of error messages, please read chapter 16.

Function	Keyword
Undo	UNDO, U
Redo	REDO, R

Please read Chapter 15 to get more information.

The error message list is in Chapter 16.

When unsupported inputs are detected, the error message below is displayed:

[!] OPERATIONAL ERROR Error: Unsupported operation or notation

If you see this, please check the spelling.

Even if the keyword is supported, you can see this when the calculation mode or state is not inappropriate, or greater than one settings-changing keywords.

Chapter 3

Configuration Mode

3.1 Settings in configuration mode

You can set max history size, display width and the number of lines of stack display in configuration mode.

Please type the keyword **CONFIG** to go to config mode. Input keyword **HOMURA** or **CALC** to return to calculation mode.

3.1.1 Max history size

Type HIST and an integer. You can input splited-tokens like hist 10. You can set the size to 0 to disable history function. The default max history size is 10.

Type below to set the max history size to 20.

🧵 hist 20

3.1.2 Display width

Type WIDTH and an integer. You can input splited-tokens like width 79. If the value is less than the least width, the least width is set.

The default display width is 79 and the least size is 60.

Type below to set the display width to 69.

🔋 width 69

3.1.3 Number of stack lines

Type [LINES] and an integer without +/-. You can input splited-tokens like [LINES] 11. If the value is less than the least number, the least number is set.

The default number of stack lines is 11 and the least is 4.

Type below to set the number of stack lines to 20.

🔋 lines 20

3.1.4 Management of config

You can save configurations as a **config** file. You can use the following functions to manage **config** file.

Chapter 3 Configuration Mode

Function	Keyword
Load config file	LOAD
Save config file	SAVE
Reset config	RESET,
	RST

If the config file exists, this software loads it on startup. So the max history size and display width are restored automatically.

You can load config file explicitly with **ELOAD** function.

The function **RESET** sets all settings in config mode to default. However, this function does not save or change a config file.

3.1.5 Functions in configuration mode

Here is the list of keywords for configuration mode:

Function	Keyword
Config mode	CONFIG
Calculation mode	CALC,
	HOMURA
History size	HIST
Display width	WIDTH
Number of stack lines	LINES
Load config file	LOAD
Save config file	SAVE
Reset config	RESET,
	RST

3.2 Settings in calculation mode

Angle mode, type display and number of display digits can be changed in calculation mode.

3.2.1 Rational display mode

When the decimal display is set to standard, you can choose rational number display following:

Auto decimal display

If a rational number can be displayed as finite decimal display, show a decimal fraction. In other cases, show a fraction.

Force decimal display

All rational numbers are displayed as decimal fraction.

Force fractional display

All rational numbers are displayed as standard fraction.

To choose mode, use the followingkeywords:

Mode	Keyword	Display
Auto decimal display	AD	(AD)
Force decimal display	FD	(FD)
Force fractional display	FF	(FF)

The default rational display mode is Force decimal.

3.2.2 Angle mode

You can choose angle unit with setting angle mode. Angle mode affects trigonometric functions.

To choose mode, use the keywords below:

Mode	Keyword	Display
Degree	DEG	(Deg)
Radian	RAD	(Rad)
Grade	GRAD, GRA	(Gra)

This mode is connected with **SIN**, **ARG** and so on. The default angle mode is Radian.

3.2.3 N-ary number display mode

You can select the display of 8-bit ,16-bit, 32-bit and 64-bit data.

To choose mode, use the following keywords:

Chapter 3 Configuration Mode

Mode	Keyword	Display
Binary display	BIN	(Bin)
Octal display	0CT	(0ct)
Signed decimal display	SDEC	(Sdec)
Unsigned decimal	UDEC	(Udec)
display		
Hexadecimal display	HEX	(Hex)

The default N-ary number display mode is Hexadecimal.

3.2.4 N-bit input mode

You can choose the binary size to input from 8, 16, 32 or 64 bits. If unsigned decimal with 'u' is detected, the value is generated as selected bit mode.

To choose mode, use the keywords below:

Mode	Keyword	Display
8-bit mode	BYTE	(Byte)
16-bit mode	WORD	(Word)
32-bit mode	DWORD	(Dword)
64-bit mode	QWORD	(Qword)

The default size is 32-bit.

3.2.5 Type display

You can switch the type display in the stack display on/off. Input "TYPE" without any other keywords to switch.

The default type display is enabled.

3.2.6 Register display

You can enable or disable the register display. Use the keywords REG or REGISTER to switch the display. Register is displayed above the stack. If the register display is enabled, the stack display gets smaller.

When register display is enabled, the symbol [Reg] is displayed.

The default setting is disabled.

3.2.7 Euler display

You can switch the complex number display: a+ib (rectangular) or $r \exp(i\theta)$ (polar) style. Use the keyword **EULER** or **EULER** to switch.

If the Euler display is enabled, the symbol [Eul] is displayed.

The argument of Euler display is depends on angle mode.

Mode	Math	Display
Rectangular	5 + 12 <i>i</i>	5 + i12
Polar (deg)	13∠67 [deg]	13 exp(+i67.d)
Polar (rad)	13∠1.3[rad]	13 exp(+i1.3)
		13 exp(+i0.41 Pi)
Polar (gra)	13∠75[gra]	13 exp(+i75.g)

If you select radian, you can convert the argument to π radians. To switch the display, type PIRAD or PRAD. When π radian mode is enabled and Euler display is also enabled, then the symbol [Eul(Pi)] is displayed.

The default setting is disabled.

3.2.8 Mixed fractional display

You can get mixed fractional display. Use FRACTION or FRAC to enable/disable mixed fractional display.

The display of rational number is below:

Value	Provisional	Mixed	Decimal
+3/2	3/2	1.1/2	1.5
-6/5	-6/5	-1.1/5	-1.2

If the mode is enabled, the symbol [i.a/b] is displayed.

The default setting is disabled.

3.2.9 Decimal display

You can choose decimal display mode. There are four modes: standard, fixed, exponential and engineering.

Standard display

Value display changes flexibly. Rational number display depends on the rational display mode.

Fixed display

Fix the digits of decimal part. Integers and rational numbers are displayed as decimal.

Scientific display

All scalars are displayed as scientific notation such as 1.2E+10. The range of mantissa m is $0 \le m < 1000$. Integers and rational numbers are displayed as decimal.

Engineering display

All scalars are displayed as scientific notation such as 12E+10. The range of mantissa m is $0 \le m < 1000$. Integer and rational number is displayed as decimal.

To choose display mode, use the following keywords:

Chapter 3 Configuration Mode

Mode	Keyword	Display
Standard display	STD	Std
Fixed display	FIX	Fix
Scientific display	SCI	Sci
Engineering display	ENG	Eng

Rational number is displayed as decimal without in standard mode.

The default display mode is standard.

3.2.10 Decimal digits

You can change the digits of decimal. Here is the list of "digit" meaning:

Mode	Meaning of "digits"
Standard	Significant digits
Fixed	Digits in decimal part
Scientific	Significant digits
Engineering	Significant digits

Use the keyword DISP or DIGIT and input an integer to set the number of digits.

If you would set to 3 digits, type below:

You can set digits in each mode.

The maximum number of digits exists in each mode. Too large number is read as max and too small number does as minimum.

Mode	Minimum	Maximum
Standard	1	15
Fixed	0	15
Scientific	1	15
Engineering	1	15

Example: 10 times of π (= 31.4159265358979)

Std: 5/15 31.416
Fix: 5/15 31.41593
Sci: 5/15 3.1416E+01
Eng: 5/15 31.416E+00

The default numbers of digits are all 9.

If you put any other tokens after digit settings like 🛭 disp 10 36, these are ignored.

3.3 Keywords of settings in calculation mode

Here is the list of keywords of settings in calculation mode:

Mode	Keyword	Display
Auto decimal display	AD	(AD)
Force decimal display	FD	(FD)
Force fractional display	FF	(FF)
Degree mode	DEG	(Deg)
Radian mode	RAD	(Rad)
Grade mode	GRA, GRAD	(Gra)
Binary display	BIN	(Bin)
Octal display	0CT	(0ct)
Signed decimal display	SDEC	(Sdec)
Unsigned decimal	UDEC	(Udec)
display		
Hexadecimal display	HEX	(Hex)
8-bit mode	BYTE	(Byte)
16-bit mode	WORD	(Word)
32-bit mode	DWORD	(Dword)
64-bit mode	QWORD	(Qword)
Type display	TYPE	
Register display	REG	[Reg]
Euler display	EULER,	[Eul]
	EUL	
π radian argument	PIRAD,	[Eul(Pi)]
display	PRAD	
Mixed fraction display	FRACTION,	[i.a/b]
	FRAC	
Standard decimal	STD	Std
display		
Fixed decimal display	FIX	Fix
Scientific decimal	SCI	Sci
display		
Engineering decimal	ENG	Eng
display		
Set number of digits	DISP,	
	DIGIT	

3.4 Next/previous pages in stack

If there are many elements in the stack, you cannot see the all data.

```
Std: 9/15, Stack: 11, History: 0/10
  TYPE
                                      VALUE
^ .....
6: Integer
                                         6
                                         7
5: Integer
                                         8
4: Integer
                                         9
Z: Integer
Y: Integer
                                        10
X: Integer
                                        11
PUSH Integer
Ready to operate
```

If you need to see unshown data, use stack page function. There are 11 data in stack but only 6 is shown in the chart above.

Use the keyword NEXT or NO to turn to the next page.

```
Std: 9/15, Stack: 11, History: 0/10
       _____
# TYPE
                                         VALUE
-:
11: Integer :
                                            1
                                            2
10: Integer
                                            3
9: Integer
8: Integer
                                            4
7: Integer
                                            5
NEXT PAGE of STACK
Ready to operate
```

Use the keyword PREV or PP to turn to the previous page. If you would like to return to first page, use the keyword FIRST or FST.

If a stack-changing function is called, the page is set to first.

Function	Keyword
Next page of stack	NEXT, N
Previous page of stack	PREV, P
First page of stack	FIRST,
	FST

3.5 Next/previous pages in register

This software has registers which is used for saving location of data. There are 26 registers in this software: RA to RZ. You can not view all registers at once without changing the number of stack lines.

Look at the following chart. RA to RC are displayed but the others are not.

```
      Std: 9/15, Stack: 3, History: 0/10

      # TYPE : VALUE

      RA: Floating : 3.14159265

      RB: : RC: :

      Z: Integer : 4

      Y: Integer : 5

      X: Integer : 6

      NEXT PAGE of STACK

      Ready to operate
```

You can change the register page. Type REGNEXT or RN to change to next page of registers.

On the other hand, type REGPREV or RP to change to previous page of registers. The keyword REGFIRST or RF is for returning to first page of the registers. Here is the list of register page functions:

Function	Keyword
Next page of registers	REGNEXT,
	RN
Previous page of	REGPREV,
registers	RP
First page of registers	REGFIRST,
	RF

3.6 View full string of data

In case of the value display is too long, only the left part is displayed. The following chart is the stack which has a complex number consists of 2 rationals but the right part is omited.

```
# TYPE : VALUE

-: : :
-: : :
-: : :
X: Complex : 2432902008176640000/243290200817664000...
```

To view full data, use the keywords VIEW or V.

Function	Keyword
View full data	VIEW, V

```
STACK VIEW
=========

X: Complex:
2432902008176640000/2432902008176640001 + i24329020081766400
00/2432902008176640001

(Press Return or Enter)
>
```

View mode shows data, which are displayed in calculation mode. Press Enter to return to calculation mode.

3.7 Version display

Type the keyword **VER** or **VERSION** to display current version.

Function	Keyword
Version display	VERSION,
	VER

If you find bugs in this app, please send reports to me with the version.

Chapter 4

Fundamental operations – four arithmetics

This chapter includes the most important things about operating this software, like RPN. So please read carefully.

4.1 Elementary stack operations

Let's input an integer.

j 12

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Integer	:	12

12 is added into X in the stack display area.

Next, type one more integer.

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	12
X:	Integer	:	9

The data 9 is added into X.

This way, addition is executed into X.

The next, input decimals. You can put tokens with spaces.

1.6 6.0e-23

Chapter 4 Fundamental operations – four arithmetics

#	TYPE	:	VALUE
4:	Integer	:	12
Z:	Integer	:	9
Υ:	Floating	:	1.6
X:	Floating	:	6E-23

This way, just write numbers to add into the stack. The addition into the bottom of the stack is called push.

Type DROP or to remove the data at the bottom of the stack. The removal of the bottom of the bottom of the stack is called drop.

#	TYPE	:	VALUE
 4:		:	
Z:	Integer	:	12
Υ:	Integer	:	9
Χ:	Floating	:	1.6

Just hit enter without any input to duplicate the bottom of the stack (X) and push.

The keyword **DUP** call the same function.

(Just hit enter)

#	TYPE	:	VALUE
4:	Integer	:	12
Z:	Integer	:	9
Υ:	Floating	:	1.6
X:	Floating	:	1.6

Type CLEAR or CLR to empty the stack.

clear

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:		:	

Here is the list of keywords described in this section:

Function	Keyword	R	D
Push		0	0
Drop	DROP, \	1	1
Duplicate [1]	DUP	1	1
Clear stack	CLEAR,	N>0	Ν
	CLR		

^[1] You can call the function just hitting enter without any input.

4.2 Four arithmetic operations

The four arithmetics are the basics of calculating with this software.

Use following keywords to calculate the four arithmetics:

Function	Keyword	R	D	Math
Add	ADD, +	2	2	Y + X
Subtract	SUB, -	2	2	Y - X
Multiply	MUL, *	2	2	$Y \times X$
Divide	DIV, /	2	2	$Y \div X$
Modulo	MOD, %	2	2	$Y \mod X$
Quotient and remainder	ОМ	2	2	$Y \leftarrow Y \div X$
	ŲľI			$X \leftarrow Y \mod X$

Please try following the tutlrial.

The first step is a simple addition. Challenge 2 + 3. Push two numbers as following:

2 3

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	2
X:	Integer	:	3

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Integer	:	5

You can see X is 5, which is the the result of Y + X (= 2 + 3). The previous Y and X are removed. Your inputs mean the pushing 2 and 3 before adding.

Following this, try this:

9 -

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Integer	:	-4

You get X is -4. You have pushed 9 and called subtraction. You can see this software calculates with using the bottom of the stack.

Chapter 4 Fundamental operations – four arithmetics

Function	Keyword	R	D	Math
Add	ADD, +	2	2	Y + X

This manual uses tables like above one. The column R is the number of required data. If you call the function without the stack containing enough data, error messages are displayed. The column D is the number of dropped data.

Addition requires two data. Once the function is called, two data are dropped and the result of Y+X is pushed. The other arithmetics are similar with addition.

In the case of not-enough data, you see error messages like following:

4.3 Multiple arithmetics

Try higher level operations.

Calculate the area of the trapezoid: the upper base is 2, the lower is 1, the hight is 5. The formula of of calculating this is:

$$5 \times (2 + 1) \div 2$$

You can read this like the multiplication of 5 and (2+1). First, push 5 and the result of 2+1, and call multiply. The final step is halfing.

Type as following to calculate at one time.

However, this expression is difficult for the beginners. I divided this into the steps: (1) – (5). Read carefully and operate to understand easily.

(1) Push 5, 2 and 1

5 2 1

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	5
Υ:	Integer	:	2
Χ:	Integer	:	1

(2) Add

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	5
Х:	Integer	:	3

(3) Multiply

*

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Integer	:	15

(4) Push 2

Cmd 2

#	TYPE	:	VALUE
4	•	:	
Z		:	
Υ	Integer	:	15
X	Integer	:	2

(5) Divide

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Rational	:	7.5

You can calculate with pushing and calling functions in appropriate order without parentheses.

4.4 Elementary functions

Here is the list of elementary functions without the four arithmetics:

Function	Keyword	R	D	Math
Increment	INC, ++	1	1	X + 1
Decrement	DEC,	1	1	<i>X</i> − 1
Absolute value	ABS	1	1	$Y \times X$
Negate	PM, NEG	1	1	-X
Invert (incl. matrix)	INV	1	1	X^{-1}

You can increment or decrement only integers. Increment is adding 1 and decrement is adding -1.

For example, type this to find the inverse of 5:

§5 inv

These functions require one argument.

4.5 Concept of RPN

You have to put opeartion 'latter' with calculating with stack. The notation of expression is called Reverse Polish Notation (RPN).

हुँ 2 1 -

RPN don't require any brackets. If you get used to this idea, you can put sequently calculations like following.

1 5 6 * pm

Chapter 5

Mathematical Functions

5.1 How to use math functions

This software supports many math functions. Please notice that the usages of these functions are similar with the usage of the ones of four arithmetics. Push first and call functions.

Some functions have restricted domains.

5.2 Exponent and logarithm

Use the following keywords with operating exponents and logarithms.

Function	Keyword	R	D	Math
Square	SQ	1	1	X^2
Square root	SQRT	1	1	\sqrt{X}
Cube root	CBRT	1	1	$\sqrt[3]{X}$
Hypotenuse	HYP0T	2	2	$\sqrt{ Y ^2 + X ^2}$
Power	POW, ^,	2	2	Y^X
	**			
N-th root	NRT	2	2	sqrt[X]Y
Natural exponent	EXP	1	1	exp(X)
Power of 10	TPOW	1	1	10 ^X
Power of 2	BPOW	1	1	2^X
Logarithm of X to base Y	LOGB	2	2	$\log_Y(X)$
Natural logarithm	LN	1	1	$\log_e(X)$
Common logarithm	LOG	1	1	$\log_1 0(X)$
Binary logarithm	LB	1	1	$log_2(X)$

5.3 Trigonometric functions

Here is the list of trigonometric and inverse trigonometric functions:

Function	Keyword	R	D	Math
Sine	SIN	1	1	sin(X)
Cosine	COS	1	1	cos(X)
Tangent	TAN	1	1	tan(X)
Arcsine	ASIN	1	1	arcsin(X)
Arccosine	ACOS	1	1	arccos(X)
Arctangent	ATAN	1	1	arctan(X)

These keywords depend on the angle mode. If you input **sin** in degree mode, this software calls "sin (degree)".

The radian trigonometric functions are here:

Function	Keyword	R	D	Math
Sine (rad)	SINR	1	1	sin(X)[rad]
Coine (rad)	COSR	1	1	cos(X)[rad]
Tangent (rad)	TANR	1	1	tan(X)[rad]
Arcsine (rad)	ASINR	1	1	arcsin(X)[rad]
Arccosine (rad)	AC0SR	1	1	arccos(X)[rad]
Arctangent (rad)	ATANR	1	1	arctan(X)[rad]

The degree trigonometric functions are here:

Function	Keyword	R	D	Math
Sine (deg)	SIND	1	1	sin(X)[deg]
Coine (deg)	COSD	1	1	cos(X)[deg]
Tangent (deg)	TAND	1	1	tan(X)[deg]
Arcsine (deg)	ASIND	1	1	arcsin(X)[deg]
Arccosine (deg)	ACOSD	1	1	arccos(X)[deg]
Arctangent (deg)	ATAND	1	1	arctan(X)[deg]

The grade trigonometric functions are here:

Function	Keyword	R	D	Math
Sine (gra)	SING	1	1	sin(X)[gra]
Cosine (gra)	COSG	1	1	cos(X)[gra]
Tangent (gra)	TANG	1	1	tan(X)[gra]
Arcsine (gra)	ASING	1	1	arcsin(X)[gra]
Arccosine (gra)	ACOSG	1	1	arccos(X)[gra]

to next page

from prev page

Function	Keyword	R	D	Math
Arctangent (gra)	ATANG	1	1	arctan(X)[gra]

EX 1 sin(30) (mode dependent)

👸 30 sin

EX 2 cos(52°)

§ 52 tand

5.4 Hyperbolic functions

Use following keywords to calculate hyperbolic functions:

Function	Keyword	R	D	Math
Hyperbolic sine	SINH	1	1	sinh(X)
Hyperbolic cosine	COSH	1	1	cosh(X)
Hyperbolic tangent	TANH	1	1	tanh(X)
Inverse hyperbolic sine	ASINH	1	1	asinh(X)
Inverse hyperbolic cosine	AC0SH	1	1	acosh(X)
Inverse hyperbolic tangent	ATANH	1	1	$\operatorname{atanh}(X)$

EX 1 cosh(1.2)

1.2 cosh

5.5 Stats functions

Stats functions are here:

Function	Keyword	R	D	Math
Beta function	BETA	2	2	B(Y,X)
Gamma function	GAMMA	1	1	$\Gamma(X)$
Logarithm of gamma function	LNGAMMA	1	1	$\log_e \Gamma(X) $
Error function	ERF	1	1	erf(X)
Complementary error	ERFC	1	1	$1 - \operatorname{erf}(X)$
function				

EX 1 B(0.5, 1.6)

₹0.5 1.6 beta

EX 2 Γ(2)

💈 2 gamma

5.6 Integer roundings

Integer roundings are here:

Function	Keyword	R	D	Math
Floor function	FLOOR,	1	1	
	FLR			
Ceiling function	CEIL	1	1	[X]
Round	ROUND,	1	1	[X+0.5]
	RND			

EX 1
$$\begin{bmatrix} -2.2 \end{bmatrix}$$

 $\begin{bmatrix} -2.2 \end{bmatrix}$ flr
EX 2 $\begin{bmatrix} \pi \end{bmatrix}$
 $\begin{bmatrix} \pi \end{bmatrix}$ pi ceil

5.7 Integer functions

Functions for integers such as GCD and LCM are here:

Function	Keyword	R	D	Math
Factorial	FACT, !	1	1	X!
Greatest common divisor	GCD	1	1	GCD(Y, X)
Least common multiple	LCM	1	1	LCM(Y, X)
Permutations	PERM	1	1	P(Y,X)
				$=\frac{Y!}{(Y-X)!}$
Combinations	COMB	1	1	C(Y,X)
(binomial coefficient)				$=\frac{Y!}{X!(Y-X)!}$

Chapter 6

Useful Functions

6.1 Percent calculations

Percent calculations such as including tax are here:

Function	Keyword	R	D	Math
X percent of Y	PERC, PC	2	1	<i>Y</i> × <i>X</i> /100
Delta percent between Y and X	DPERC, DP	2	2	$\frac{X-Y}{Y} \times 100$
Include tax	INTAX	2	2	$\frac{Y \times (100 + X)}{100}$
Exclude tax	EXTAX	2	2	$\frac{Y \times 100}{100 + X}$

These functions support only scalars.

EX 1 3% of 5.15

§ 5.15 3 pc

EX 2 Delta-% between 1.2 and 1.3

🔋 1.2 1.3 dp

EX 3 Include 8% tax to 1250

1250 8 intax

EX 4 Exclude 8% tax from 120

120 8 extax

6.2 Time conversion

Conversions between sec, min, hour, day and week are here.

Function	Keyword	R	D	Math
Seconds to minutes	ST0M	1	1	X/60
Seconds to hours	ST0H	1	1	X/3600
Seconds to days	ST0D	1	1	X/86400
Seconds to weeks	ST0W	1	1	X/604800
Minutes to seconds	MT0S	1	1	$X \times 60$
Minutes to hours	MTOH	1	1	<i>X</i> /60
Minutes to days	MTOD	1	1	X/1440
Minutes to weeks	MTOW	1	1	X/10080
Hours to seconds	HT0S	1	1	<i>X</i> × 3600
Hours to minutes	НТОМ	1	1	$X \times 60$
Hours to days	HTOD	1	1	X/24
Hours to weeks	HTOW	1	1	X/168
Days to seconds	DT0S	1	1	<i>X</i> × 86400
Days to minutes	DTOM	1	1	<i>X</i> × 1440
Days to hours	DTOH	1	1	$X \times 24$
Days to weeks	DTOW	1	1	<i>X</i> /7
Weeks to seconds	WT0S	1	1	$X \times 604800$
Weeks to minutes	WTOM	1	1	<i>X</i> × 10080
Weeks to hours	WTOH	1	1	$X \times 168$
Weeks to days	WTOD	1	1	<i>X</i> × 7

These functions support only scalars.

EX 2 45 mins to hours

345 mtoh

EX 1 65536 secs to days

🥫 65536 stod

6.3 DMS conversion

DMS conversion divides a scalar value into degrees / minutes / seconds. Inverse DMS conversion combines degrees / minutes / seconds into a value.

Function	Keyword	R	D	Math
				$Z \leftarrow D$
Decimal deg to deg/min/sec	TODMS	1	1	$Y \leftarrow M$
				$X \leftarrow S$
Deg/min/sec to decimal deg	DMST0	3	3	$Z + \frac{Y}{60} + \frac{X}{3600}$

These functions support only scalars.

EX 1 4096 sec to h:m:s

34096 stoh todms

EX 2 30°20′10″ to degrees

🔋 30 20 10 dmsto

6.4 Whole stack calculations

You can find sum or infinite product in the stack.

Function	Keyword	R	D	Math
Sum of sequence	SUM	N>1	Ν	$\sum_{i=1}^{n} x_i$
Product of sequence	PROD	N>1	Ν	$\prod_{i=1}^{n} x_i$
Arithmetic average	AVR	N>1	Ν	$\frac{1}{n}\sum_{i=1}^{n}x_{i}$
Geometric average	GAVR	N>1	Ν	$\sqrt[n]{\prod_{i=1}^n x_i}$
Harmonic average	HAVR	N>1	Ν	$\frac{n}{\prod_{i=1}^{n} x_i^{-1}}$

If there are errors in the process of the functions, the calculation is cancelled and the stack keeps on.

Other versions available:

Function	Keyword	R	D	Math
Partial sum of sequence	PSUM	N>2	M+1	
Partial product of sequence	PPR0D	N>2	M+1	
Partial arithmetic average	PAVR	N>2	M+1	
Partial geometric average	PGAVR	N>2	M+1	
Partial harmonic average	PHAVR	N>2	M+1	
Sum of sequence without	SUMW	N>1	0	
drop				
Product of sequence without	PRODW	N>1	0	
drop				

from prev page

Function	Keyword	R	D	Math
Arithmetic average without	AVRW	N>1	0	
drop				
Geometric average without	GAVRW	N>1	0	
drop				
Harmonic average without	HAVRW	N>1	0	
drop				
Partial sum of sequence	PSUMW	N>2	1	
without drop				
Partial product of sequence	PPR0DW	N>2	1	
without drop				
Partial arithmetic average	PAVRW	N>2	1	
without drop				
Partial geometric average	PGAVRW	N>2	1	
without drop				
Partial harmonic average	PHAVRW	N>2	1	
without drop				

6.5 Multiply by prefix

Multiplication by prefix means the removal of prefix. For instance, if you have to get meter from kilometer, multiply by 1000, which means kilo.

Here is the list of multiplications by prefix:

Function	Keyword	R	D	Math
Multiply by yocto	Y0CT0	1	1	$X \times 10^{-24}$
Multiply by zepto	ZEPT0	1	1	$X \times 10^{-21}$
Multiply by atto	ATT0	1	1	$X \times 10^{-18}$
Multiply by femto	FEMT0	1	1	$X \times 10^{-15}$
Multiply by pico	PICO	1	1	$X \times 10^{-12}$
Multiply by nano	NANO	1	1	$X \times 10^{-09}$
Multiply by micro	MICR0	1	1	$X \times 10^{-06}$
Multiply by milli	MILLI	1	1	$X \times 10^{-03}$
Multiply by centi	CENTI	1	1	$X \times 10^{-02}$
Multiply by deci	DECI	1	1	$X \times 10^{-01}$
Multiply by deca	DECA	1	1	$X \times 10^{+01}$
Multiply by hecto	НЕСТО	1	1	$X \times 10^{+02}$
Multiply by kilo	KIL0	1	1	$X \times 10^{+03}$
Multiply by mega	MEGA	1	1	$X \times 10^{+06}$
Multiply by giga	GIGA	1	1	$X \times 10^{+09}$
Multiply by tera	TERA	1	1	$X \times 10^{+12}$

from prev page

Function	Keyword	R	D	Math
Multiply by peta	PETA	1	1	$X \times 10^{+15}$
Multiply by exa	EXA	1	1	$X \times 10^{+18}$
Multiply by zetta	ZETTA	1	1	$X \times 10^{+21}$
Multiply by yotta	Y0TTA	1	1	$X \times 10^{+24}$
Multiply by kibi	KIBI	1	1	$X \times 2^{10}$
Multiply by mebi	MEBI	1	1	$X \times 2^{20}$
Multiply by gibi	GIBI	1	1	$X \times 2^{30}$
Multiply by tebi	TEBI	1	1	$X \times 2^{40}$
Multiply by pebi	PEBI	1	1	$X \times 2^{50}$
Multiply by exbi	EXBI	1	1	$X \times 2^{60}$
Multiply by zebi	ZEBI	1	1	$X \times 2^{70}$
Multiply by yobi	YOBI	1	1	$X \times 2^{80}$

6.6 Divide by prefix

Division by prefix means the addition of prefix. For instance, if you have to get millimeter from meter, divide by 0.001, which means milli.

Here is the list of divisions by prefix:

Function	Keyword	R	D	Math
Divide by yocto	Т0Ү0СТ0	1	1	$X/10^{-24}$
Divide by zepto	T0ZEPT0	1	1	$X/10^{-21}$
Divide by atto	T0ATT0	1	1	$X/10^{-18}$
Divide by femto	T0FEMT0	1	1	$X/10^{-15}$
Divide by pico	TOPICO	1	1	$X/10^{-12}$
Divide by nano	TONANO	1	1	$X/10^{-09}$
Divide by micro	TOMICRO	1	1	$X/10^{-06}$
Divide by milli	TOMILLI	1	1	$X/10^{-03}$
Divide by centi	TOCENTI	1	1	$X/10^{-02}$
Divide by deci	TODECI	1	1	$X/10^{-01}$
Divide by deca	TODECA	1	1	$X/10^{+01}$
Divide by hecto	T0HECT0	1	1	$X/10^{+02}$
Divide by kilo	T0KIL0	1	1	$X/10^{+03}$
Divide by mega	TOMEGA	1	1	$X/10^{+06}$
Divide by giga	TOGIGA	1	1	$X/10^{+09}$
Divide by tera	T0TERA	1	1	$X/10^{+12}$
Divide by peta	TOPETA	1	1	$X/10^{+15}$
Divide by exa	T0EXA	1	1	$X/10^{+18}$
Divide by zetta	T0ZETTA	1	1	$X/10^{+21}$
Divide by yotta	TOYOTTA	1	1	X/10 ⁺²⁴

from prev page

Function	Keyword	R	D	Math
Divide by kibi	T0KIBI	1	1	$X/2^{10}$
Divide by mebi	TOMEBI	1	1	$X/2^{20}$
Divide by gibi	TOGIBI	1	1	$X/2^{30}$
Divide by tebi	TOTEBI	1	1	$X/2^{40}$
Divide by pebi	TOPEBI	1	1	$X/2^{50}$
Divide by exbi	T0EXBI	1	1	$X/2^{60}$
Divide by zebi	T0ZEBI	1	1	$X/2^{70}$
Divide by yobi	TOYOBI	1	1	$X/2^{80}$

6.7 Angle conversion

Angle conversions here:

Function	Keyword	R	D	Math
Radian to degree	RT0D	1	1	$180X/\pi$
Radian to grade	RT0G	1	1	$200X/\pi$
Degree to radian	DTOR	1	1	$\pi X/180$
Degree to grade	DTOG	1	1	10 <i>X</i> /9
Grade to radian	GT0R	1	1	$\pi X/200$
Grade to degree	GTOD	1	1	9 <i>X</i> /10

6.8 Angle calculation

Complementary / supprementaly angle:

Function		Keyword	R	D	Math
Complementary angle	e [1]	CANG	1	1	
Complementary	angle	CANGR	1	1	$\pi/2-X$
(Radian)					
Complementary	angle	CANGD	1	1	90 - X
(Degree)					
Complementary	angle	CANGG	1	1	100 - X
(Grade)					
Supplementary angle	· [1]	SANG	1	1	
Supplementary	angle	SANGR	1	1	$\pi - X$
(Radian)					
Supplementary	angle	SANGD	1	1	180 − <i>X</i>
(Degree)					
Supplementary angle	(Grade)	SANGG	1	1	200 – X

[1] Depends on angle mode

6.9 Ratio

Convert a rational number into two integers.

Function	Keyword	R	D	Math
Ratio	RATI0	1	1	$Y \leftarrow Numerator$
				$X \leftarrow Denominator$

6.10 Random numbers

You can generate random numbers:

Function	Keyword	R	D	Math
Random integer	RAND	0	0	Push Int
Random floating	FRAND	0	0	Push Flt

A random integer has 63 bits and random floating is generated from a random integer. The algorithm of random generator is mersenne twister.

6.11 Cast

You can cast data types:

Function	Keyword	R	D	Math
Cast into integer	TOINT	1	1	
Cast into floating	T0FLT	1	1	
Cast into rational	TORAT	1	1	
Cast into bool	T0B00L	1	1	
Cast into byte	T0BYTE	1	1	
Cast into word	TOWORD	1	1	
Cast into dword	TODWORD	1	1	
Cast into qword	TOQWORD	1	1	
Cast into word (Sign extend)	TOSWORD	1	1	
Cast into dword (Sign extend)	TOSDWORD	1	1	
Cast into qword (Sign extend)	TOSQWORD	1	1	

You can approximate floating to rational with "cast into rational". The approximation is using continued fraction.

6.12 Calculations for engineers

These are useful calculations for engineers:

Function	Keyword	R	D	Math
Multiply by 2π	TPIX	1	1	$2\pi X$
Divide by 2π	DTPI	1	1	$X/2\pi$
Parallel	PARA	1	1	$(Y^{-1} + X^{-1})^{-1}$
To decibel	TODB	1	1	$10 \log_{10} X $
Decibel to	DBT0	1	1	$10^{X/10}$

6.13 Calculation for earthquakes

You can calculate magnitude of earthquakes

Function	Keyword	R	D	Math
Joule to magnitude of EQ	TOEQM	1	1	$(\log_{10}(X-4.8))/1.5$
Magnitude of EQ to joule	EQMTO	1	1	10 ^{4.8+1.5} X

6.14 Health calculations

These calculations are extras:

Function	Keyword	R	D	Math
Discomfort index	DISCOM	2	2	$0.81Y - 0.01X \times$
				(0.99Y - 14.3) +
				46.3
Body mass index	BMI	2	2	$\frac{X}{(Y/100)^2}$

Chapter 7

Complex Calculations

7.1 Display of complex numbers

This software displays complex numbers as following:

Mode	Math	Display
Rectangular	5 + 12 <i>i</i>	5 + i12
Polar (deg)	13∠67 [deg]	13 exp(+i67.d)
Polar (rad)	13∠1.3[rad]	13 exp(+i1.3)
		13 exp(+i0.41 Pi)
Euler (gra)	13∠ 7 5[gra]	13 exp(+i75.g)

Type **EULER** or **EUL** to toggle Euler mode. If Euler mode is enabled, complex numbers are shown as polar display.

The argument display depends on angle mode. Use the keywords **FIDEG**, **FIRAD** or **GRA** to change angle mode.

If you select radian, you can convert the argument to π radians. To switch the display, type \P PIRAD or \P PRAD.

Mode	Keyword	Display
Euler display	EULER,	[Eul]
	EUL	
Degree mode	DEG	(Deg)
Radian mode	RAD	(Rad)
Grade mode	GRAD, GRA	(Gra)
π radian mode	PIRAD,	[Eul(Pi)]
	PRAD	

When Euler display is on, even scalars are treated as complex numbers so its argument is displayed if its value is not 0.

7.2 How to make complex numbers

There are three ways to make complex numbers.

Real and imaginary part accept only scalars.

7.2.1 Input imaginary and add or subtract

Try to make 2 + i3.

§ 2 i3 +

7.2.2 Make complex from real and imaginary part

Push real and imaginary part in turn and make complex. Use the keyword MKCMP or MKC to make complex from rectangular.

§ 2 3

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	2
Х:	Integer	:	3

<u></u>₹ mkc

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Complex	:	2 + i3

7.2.3 Make complex from absolute value and argument

Push absolute value and argument in turn and make complex. Use the keyword MKE to make complex from polar.

This keyword depends on angle mode. For example, make 1.5∠30° in degree mode.

§ 1.5 30

_	#	TYPE	:	VALUE
	4:		:	
			•	
	Z:		:	
	Υ:	Floating	:	1.5
	Χ:	Integer	:	30

mke

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Complex	:	1.29903811 + i0.75

Radian version is MKER.

Degree version is MKED.

Grade version is MKEG.

You can generate complex with following keywords:

Function			Keyword	R	D	Math
Make	complex	from	MKCMP,	2	2	Y + iX
rectangula	r		MKC			
Make comp	olex from po	ar	MKE	2	2	$Y \angle X$
Make con	nplex from	polar	MKER	2	2	$Y \angle X[rad]$
(radian)						
Make con	nplex from	polar	MKED	2	2	$Y \angle X[\deg]$
(degree)						
Make con	nplex from	polar	MKEG	2	2	<i>Y∠X</i> [gra]
(grade)						

7.3 Complex calculations

You can operate complex calculations:

Function	Keyword	R	D	Math
Real part	RE	1	1	Re(X)
lmaginary part	IM	1	1	Im(X)
Complex argument	ARG	1	1	$\operatorname{arg} X$
Complex argument (rad)	ARGR	1	1	$\operatorname{arg} X[\operatorname{rad}]$
Complex argument (deg)	ARGD	1	1	$\operatorname{arg} X[\operatorname{rad}]$
Complex argument (gra)	ARGG	1	1	$\operatorname{arg} X[\operatorname{rad}]$
Complex conjugation	CONJ	1	1	<i>X</i> *

Complex magnitude is **ABS**.

 $\boxed{\mathsf{EX}\ 1}$ arg(1+i2)

🔋 1 2 mkc arg

EX 2 Re(15∠32°)

15 32 mked re

EX 3 $(6 + i3)^*$

🥫 6 3 mkc conj

7.4 Disassemble complex

You can disassemble complex numbers:

Function			Keyword	R	D	Math
Real and imaginary			REIM	1	1	$Y \leftarrow \operatorname{Re}(X)$
Magnitude and argument			MAGA	1	1	$X \leftarrow \operatorname{Im}(X)$ $Y \leftarrow X $ $X \leftarrow \operatorname{arg} X$
Magnitude (radian)	and	argument	MAGAR	1	1	$Y \leftarrow X $ $X \leftarrow \arg X[\text{rad}]$
Magnitude (degree)	and	argument	MAGAD	1	1	$Y \leftarrow X $ $X \leftarrow \arg X[\deg]$
Magnitude (grade)	and	argument	MAGAG	1	1	$Y \leftarrow X $ $X \leftarrow \arg X[\operatorname{gra}]$

EX 1 15∠32° to Re/Im part

🔋 15 32 mked reim

|EX 2| 5 + i3 to magnitude and arg (deg)

5 3 mkc magad

7.5 7-5. Complex functions

This software supports complex functions:

- Square root, cube root
- Power, logarithm
- Trigonometric functions
- Hyperbolic functions

Complex trigonometric functions are available only in radian.

Chapter 8

Logical Calculations

8.1 Unsigned decimal and Boolean

This software displays unsigned decimal and Boolean as following:

Mode	Math	Display
Boolean	TRUE	Т
	FALSE	F
Binary mode	255	0b11111111
Octal mode	255	0377
Signed decimal mode	255	-1
Unsigned decimal mode	255	255
Hexadecimal mode	255	0xFF

8.2 Bit length

You can operate logical calculations in calculation mode.

This software supports 8, 16, 32, 64 bits. The bit length setting is shown in the display.

Switch the mode to change the bit length.

Mode	Keyword	Display
8-bit mode	BYTE	(Byte)
16-bit mode	WORD	(Word)
32-bit mode	DWORD	(Dword)
64-bit mode	QWORD	(Qword)

Set bit length and the bit length symbol changes.

Please notice that if you input too large value for selected bit length, the software masks its lower N-bit (N is selected length) and push the result.

8.3 8-3. N-ary number switching

You can find N-ary number mode in the display.

Use the keywords to switch N-ary number display mode:

Mode	Keyword	Display	
Binary display	BIN	(Bin)	
Octal display	0CT	(0ct)	
Signed decimal display	SDEC	(Sdec)	
Unsigned decimal	UDEC	(Udec)	
display			
Hexadecimal display	HEX	(Hex)	

Set N-ary and the N-ary symbol changes.

8.4 Input binary and Boolean

Input value as binary (unsigned integer) to operate logical calculations.

Boolean

True value is [TRUE] or [TRUE] and false value is [TRUE] or [TRUE] or [TRUE]

Unsigned

Type u and postfix non-signed integer.

Bin value

Type **0b** and postfix binary expression using **0** and **1**.

Oct value

Type **00** and postfix octal expression using **0** to **7**.

Hex value

Type **0x** and postfix hexadecimal expression using 0 to 9 and A to F.

The input data is shown as selected N-ary display mode. For example, input binary 0b1010 and the display is 0x0000000A in hexadecimal mode.

🖁 0b1010

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Dword	:	0×0000000A

You can push binaries and Booleans at one time.

t f

VALUE	:	TYPE	#
	:		4:
0×000000A	:	Dword	Z:
Т	:	Boolean	Υ:
F	:	Boolean	Χ:

8.5 Fundamental logical calculations

Here is the list of fundamental logical calculations:

Function	Keyword	R	D	Math
Bitwise NOT	NOT, ~	1	1	\overline{X}
Bitwise AND	AND, &	2	2	$Y \wedge X$
Bitwise OR	OR,	2	2	$Y \vee X$
Bitwise XOR	X0R	2	2	$Y \oplus X$
Bitwise NAND	NAND	2	2	$\overline{(Y \wedge X)}$
Bitwise NOR	NOR	2	2	$\overline{(Y \vee X)}$

EX 1 0x1234 & 0b0111

👸 0x1234 0b0111 and

EX 2 not(65535)

🔋 u65535 not

8.6 Bit shift

Bit shift functions are here:

Function	Keyword	R	D	Math
Shift left	SHL, <<	1	1	X << 1
Shift logical right	SHR, >>	1	1	X >> 1
Shift arithmetic right	SAR, >»	1	1	X >>> 1
Shift Left (N times)	SHLC	2	2	X << N
Shift Right (N times)	SHRC	2	2	X >> N
Shift Arithmetic Right (N	SARC	2	2	X >>> N
times)				
Shift byte left	SBL	1	1	X << 8
Shift byte right	SBR	1	1	X >> 8
Shift nibble left	SNL	1	1	X << 4
Shift nibble right	SNR	1	1	X >> 4

EX 1 0x1234 & 0b0111

🔋 0x1234 0b0111 and

EX 2 not (65535)

🖁 u65535 not

8.7 Rotate

Bit rotates are here:

Function	Keyword	R	D	Math
Rotate left	R0L	1	1	Rotate X Left
Rotate right	ROR	1	1	Rotate X Right

EX 1 rol(31)

8.8 Other functions that support unsigned integer

Function	Keyword	R	D	Math
Increment	INC, ++	1	1	X + 1
Decrement	DEC,	1	1	<i>X</i> − 1
Add	ADD, +	2	2	Y + X
Subtract	SUB	2, -	2	Y - X
Multiply	MUL	2, *	2	$Y \times X$
Divide	DIV	2, /	2	Y/X
Negate	NEG, PM	1	1	-X

The addition of 2 Booleans is XOR, and the multiplication of 2 Booleans is AND. If you increment Boolean, the result is always true.

8.9 Whole-stack logical calcultions

You can operate logical calculations for whole-stack.

Function	Keyword	R D	Math
All AND	ALLAND	N>1 N	$x_1 \wedge x_2 \dots$
All OR	ALL0R	N>1 N	$x_1 \vee x_2 \dots$
All XOR	ALLXOR	N>1 N	$x_1 \oplus x_2 \dots$

Chapter 9

Vector Calculations

9.1 Display of vectors

This software displays vectors as following:

Mode	Ma	th		Display
Horizontal [Row]	[1	2	3]	[1, 2, 3]
Vertical (Col)	(3	2	1)	(3, 2, 1)

9.2 Making of vector

You can include scalars, complex numbers or even binaries in vectors.

The input of vectors is complicated. I recommend using register function. Please read chapter 11 to get more information.

You can make vector with the following keywords:

Function	Keyword	R	D	Math
Make row tuple	MRTUP	Ν	Ν	Push Tup.R
Make column tuple	MCTUP	Ν	Ν	Push Tup.C

There are three steps for making a vector:

Push elements of a vector

Push data in turn.

Push the number of elements the vector contains

Set the dimension of the vector.

Call making function

The vector is pushed.

You can include integers, floatings, rationals, complexes, Booleans and unsigned integers in a vector.

Chapter 9 Vector Calculations

Let's make row tuple [1 + i2 6].

(1) Push elements

🚦 1 2 mkc 6

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Complex	:	1 + i2
Х:	Integer	:	6

(2) Push number of elements

2

#	TYPE	:	VALUE
4:		:	
Z:	Complex	:	1 + i2
Υ:	Integer	:	6
Χ:	Integer	:	2

(3) Make row tuple

mrtup

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Tuple[Row]	:	[1 + i2, 6]

Making column tuple is similar with this case.

You can make unit vectors easily.

Function	Keyword	R	D	Math
Make row unit tuple	MRUTUP	2	2	Push Tup.R
Make column unit tuple	MCUTUP	2	2	Push Tup.C

These functions requires 2 arguments: a dimension and a position.

- Push a integer as a dimension
- Push a integer as a position (starting with 1)
- Call making function

Let's make (0 1 0).

(1) Push the dimension

3

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Integer	:	3

(2) Push the position

⁷ 2

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	3
Х:	Integer	:	2

(3) Make column unit tuple

mcutup

#	TYPE	:		V۸	LUE
4:		:			
Z:		:			
Υ:		:			
X:	Tuple(Col)	:	(0	, 1,	0)

9.3 Extract element from tuple

Use the keyword TGET to extract one element from a tuple.

Please make sure Y is a tuple and X is an integer as a position (starting with 1) to extract.

Function	Keyword	R	D	Math
Get element from tuple	TGET	2	2	Extract

This function drops 2 data, so the vector from that you extract is dropped. I recommend storing the tuple to a register and call to extract.

Please read chapter 11 to make comprehension of using register function.

You can crave a tuple into elements.

Function	Keyword	R	D	Math
Crave up	CUT,	1	1	
	CRAVE			

The used tuple is dropped and the extracted elements are pushed in turn.

Let us extract the second element from (6 9 12).

(0) Make sure that the tuple exists

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Tuple[Col]	:	(6, 9, 12)

(1) Set a position

Cmd_d

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Tuple[Col]	:	(6, 9, 12)
Х:	Integer	:	2

(2) Extract

👸 tget

	#	TYPE	:	VALUE
	4:		:	
	Z:		:	
	Υ:		:	
_	Χ:	Integer	:	9

9.4 Four arithmetics of vectors

The four aritmetics keywords of vectors are same as those of scalars.

$$\begin{bmatrix} \text{EX 1} \end{bmatrix}$$
 (3 2 1) + (5 6 9)

🔋 3 2 1 3 mctup

5 6 9 3 mctup

Cmd.

Please check that the calculations are defined.

9.5 Inner / outer product

Use the keywords to calculate inner / outer product:

Function	Keyword	R	D	Math
Inner product	INNER,	2	2	$\vec{Y}\cdot\vec{X}$
	DOT			
Outer product	OUTER,	2	2	$ec{Y} imes ec{X}$
	CR0SS			

Outer product suppots only 3-dimensional tuples.

🔋 3 2 1 3 mctup

🥫 7 8 9 3 mctup

₫ dot

EX 2
$$(1 \ 2 \ 3) \times (4 \ 5 \ 6)$$

🚪 1 2 3 3 mctup

🥻 4 5 6 3 mctup

cross

9.6 Norms of vectors

Here is the keywords of norms of vectors:

Function	Keyword	R	D	Math
Euclid norm	NORM	1	1	$\sqrt{\sum_{i=1}^{\infty} x_i ^2}$
Euclid norm squared	NSQ	1	1	$\sum_{i=1}^{\infty} x_i ^2$
Lp-norm	PNORM	2	2	$\left(\sum_{i=1}^{\infty} y_i ^x\right)^{1/X}$
Max norm	MAXNORM	1	1	$\max(x_1 ,\ldots, x_n)$

Euclid norm, Euclid norm squared ana maxnorm require one vector.

For example, type following to find the Euclid norm of [3 5 7].

Lp-norm requires one vector and an integer as a dimension.

Type following to find the third norm of [7 8 9].

🧵 7 8 9 3 mrtup 3 pnorm

9.7 Transpose vectors

Use the keyword **TRANS** to transpose vectors.

Function	Keyword	R	D	Math
Transpose	TRANS	1	1	X^{T}

This function supports matrices.

Chapter 10

Matrix Calculations

10.1 Display of matrices

This software handles matrices as tuples of row tuples.

Mode	Math	Display
	1 2 3	
-	4 5 6	[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
	7 8 9	

10.2 Making matrices

This software supports matrix calculations. Matrices of this software can include scalars, complexes, Booleans and unsigned integers.

The input of matrices is complicated. I recommend using register function. Please read chapter 11 to get more information.

Use the keyword MKMAT to make a matrix.

Function	Keyword	R	D	Math
Make matrix	MKMAT	Ν	Ν	Push Mat

There are three steps for making a matrix:

Prepare same dimensional and directional vectors

Make sure vectors are all row or all column.

Push an integer as a number of vectors

The integer must be greater than zero.

Call making function

Make a matrix from vectors.

Matrices include row tuples. The data types that tuples cannot include are not supported in matrices.

Let's input matrix *A*:

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

(1-1) Make two row vectors

🔋 1 2 2 mrtup 3 4 2 mrtup

_				
	#	TYPE	:	VALUE
	4:		:	
	Z:		:	
	Υ:	Tuple[Row]	:	[1, 2]
	Χ:	Tuple[Row]	:	[3, 4]

(1-2) Set a number of vectors

ji 2

#	TYPE	:	VALUE
4:		:	
Z:	Tuple[Row]	:	[1, 2]
Υ:	Tuple[Row]	:	[3, 4]
X:	Integer	:	2

(1-3) Make matrix

mkmat

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Matrix	:	[[1, 2], [3, 4]]

(2-1) Push two column tuple

1 3 2 mctup 2 4 2 mctup

#	TYPE	:	VAL	.UE
4:		:		
Z:		:		
Υ:	Tuple(Col)	:	(1,	3)
Х:	Tuple(Col)	:	(2,	4)

(2-2) Set a number of vectors

C_{md}

#	TYPE	:	VALUE
4:		:	
Z:	Tuple(Col)	:	(1, 3)
Υ:	Tuple(Col)	:	(2, 4)
Х:	Integer	:	2

(2-3) Make matrix

🧵 mkmat

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Matrix	:	[[1, 2], [3, 4]]

Make sure the sizes and directions of all vectors to make a matrix are same.

You can make a unit matrix easily. Use the keyword MKUMAT.

Function	Keyword	R	D	Math
Make unit matrix	MKUMAT	1	1	Push Mat

Set an integer as a dimension and call the function. For instance, input this to make 3-dim unit matrix:

3 mkumat

10.3 Get element or tuple from matrix

Get a tuple or a element from matrix to use following keywords:

Function	Keyword	R	D	Math
Get element from matrix	MGET	3	3	Extract
Get row tuple from matrix	MGETR	2	2	Extract
Get column tuple from matrix	MGETC	2	2	Extract

These functions drop a matrix. I recommend using register function. Please read chapter 11 to get more information about registers.

You can crave up matrices.

Function	Keyword	R	D	Math
Crave up	CUT,	1	1	
	CRAVE			

A matrix is craved up into row tuples and they are pushed in turn. Go on to the next pages to get usages of MGET, MGETR and MGETC.

10.3.1 Get an element from matrix

You can get a tuple from a matrix. MGETR is the row tuple version and MGETC is the column tuple version.

Use the keyword MGET to get an element from a matrix.

Make sure Z is matrix, Y is position i, X is position j. The position counting starts with 1.

Try to extract element (1,2) from matrix [[1, 2], [3, 4]].

(0) Matrix is pushed

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Matrix	:	[[1, 2], [3, 4]]

(1) Select a position of an element

§ 1 2

#	TYPE	:	VALUE
4:		:	
Z:	Matrix	:	[[1, 2], [3, 4]]
Υ:	Integer	:	1
Х:	Integer	:	2

(2) Get an element from matrix

mget

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Integer	:	2

10.3.2 Get tuple from matrix

You can get a tuple from a matrix. MGETR is the row tuple version and MGETC is the column tuple version.

Make sure Y is matrix and X is position. The position counting starts with 1.

Try to extract second column tuple from [[1, 2], [3, 4]].

(0) Matrix is pushed

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Χ:	Matrix	:	[[1, 2], [3, 4]]

(1) Select a position

Cmd 2

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Matrix	:	[[1, 2], [3, 4]]
Х:	Integer	:	2

(2) Get a column tuple from matrix

mgetc

#	TYPE	:	VAL	LUE
4:		:		
Z:		:		
Υ:		:		
X:	Tuple(Col)	:	(2,	4)

10.4 Four arithmetics of matrices

The four arithmetics keywords are similar with those of scalars.

10.5 Determinant and inverse matrix

Here is determinant and finding inverse matrix:

Function	Keyword	R	D	Math
Determinant	DET	1	1	$\det X$
Invert	INV	1	1	X^{-1}

These functions support only square matrices. You cannot find inverse matrix of A if the determinant of A is zero.

Chapter 10 Matrix Calculations

EX 1
$$\begin{bmatrix} \sqrt{2} & 1 \\ 1 & \sqrt{2} \end{bmatrix}^{-1}$$
 2 sqrt 1 2 mrtup 1 2 sqrt 2 mrtup 2 mkmat inv

10.6 Transpose matrix

Here is the list of transpose functions:

Function	Keyword	R	D	Math
Transpose	TRANS	1	1	X^{T}
Hermitian transpose	HTRANS,	1	1	$(X^{T})^*$
	HCONJ			

Hermitian transpose function transposes matrix or vector and conjugate each element in it.

10.7 Other matrix functions

Here is the list of other matrix functions:

Function	Keyword	R	D	Math
Trace	TRACE	1	1	tr(X)

Trace function supports only square matrices.

Chapter 11

Register Operations

11.1 What is register

A register is kind of a memory. Each register in this software is independent of the stack. You can calculate more quickly with register function. There are 26 registers: RA – RZ.

You can store one data to each register and can load or delete any time. Even if the stack is changed or cleared, the registers keep on.

Registers can hold any data: scalars, vectors, errors even strings.

This manual uses following tables:

#	TYPE	:	VALUE
RA:		:	
RB:		:	
Z:		:	
Υ:		:	
Х:		:	

This table shows X, Y, Z in a stack and RA and RB in registers.

11.2 Register display

Type REGISTER or REG to switch register display. If register display is enabled, the symbol [Reg] is displayed.

Chapter 11 Register Operations

You can change display page of registers:

Function	Keyword
Switch register display	REGISTER,
	REG
Next page of registers	REGNEXT,
	RN
Previous page of	REGPREV,
registers	RP
First page of registers	REGFIRST,
	RF

See also chapter 3 and chapter 4.

Switching register display function and register page changing functions do not affect registers. So you can use registers without displaying registers.

11.3 Store to selected register

You can store X to selected register. Then X is dropped.

Use the following keywords to storing functions:

Function	Keyword	R	D
Store to RA	STRA	1	1
Store to RB	STRB	1	1
÷	:		
Store to RZ	STRZ	1	1

Use the format STR? and replace? by one alphabet.

Let's store the integer 5 to RA.

(1) Push

Cmd 5

# TYPE : VAL	UE
ΡΛ.	
IVA .	
RB: :	
Z: :	
Y: :	
X: Integer :	5

(2) Store to RA

§ stra

#	TYPE	:	VALUE
RA:	Integer	:	5
RB:		:	
Z:		:	
Υ:		:	
Х:		:	

If the selected register has data, the data is overwritten.

(1) Initial state

#	TYPE	:	VALUE
RA:	Integer	:	5
RB:		:	
Z:		:	
Υ:		:	
X:	Integer	:	7

(2) Push

G G

#	TYPE	:	VALUE
RA:	Integer	:	5
RB:		:	
Z:		:	
Υ:	Integer	:	7
X:	Integer	:	9

(3) Overwrite RA

§ stra

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:		:	
Z:		:	
Υ:		:	
X:	Integer	:	7

Cases of RB - RZ are similar with this.

11.4 Load from selected register

You can load from selected register to X. The selected register keeps its data. If it has no data, error message is displayed.

Use the following keywors to load:

Chapter 11 Register Operations

Function	Keyword	R	D
Load RA	LDRA	0	0
Load RB	LDRB	0	0
:	:		
Load RZ	LDRZ	0	0

Use the format <code>[] LDR?</code> and replace ? by one alphabet.

Try to add RA and RB.

(1) Initial state

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:		:	
X:		:	

(2) Load RA

👸 ldra

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:		:	
X:	Integer	:	9

(3) Load RB

ldrb

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:	Integer	:	9
X:	Integer	:	4

(4) Add

+ Cmd

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:		:	
Χ:	Integer	:	13

Cases of RC – RZ are similar with this.

11.5 Delete selected register

You can remove data in selected register.

Use the following keywords to delete selected register:

Function	Keyword	R	D
Delete RA	DELRA	0	0
Delete RB	DELRB	0	0
÷	:		
Delete RZ	DELRZ	0	0

Use the format **DELR?** and replace ? by one alphabet.

(1) Initial state

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:		:	
Х:		:	

(2) Delete RA

delra

#	TYPE	:	VALUE
RA:		:	
RB:	Integer	:	4
Z:		:	
Υ:		:	
X:		:	

11.6 Register calculation

You can calculate with selected register and store the result to it. Here is the list of register calculations:

Function	Keyword	R	D	Math
Register increment	IR?, ++R?	0	0	$R \leftarrow R + 1$
Register decrement	DR?,R?	0	0	$R \leftarrow R - 1$
Register addition	ADDR?,	1	1	$R \leftarrow R + X$
	+R?			

to next page

Chapter 11 Register Operations

from prev page

Function	Keyword	R	D	Math
Register subtraction	SUBR?,	1	1	$R \leftarrow R - X$
	-R?			
Register multiplication	MULR?,	1	1	$R \leftarrow R \times X$
	*R?			
Register division	DIVR?,	1	1	<i>R</i> ← <i>R</i> 竅Ч
	/R?			

Operate register calculations to drop one data and overwrite selected register with the result.

Example: register addition and register increment

(1) Initial state

#	TYPE	:	VALUE
RA:	Integer	:	9
RB:	Integer	:	4
Z:		:	
Υ:		:	
Х:		:	

(2) Increment RA

jira

#	TYPE	:	VALUE
RA:	Integer	:	10
RB:	Integer	:	4
Z:		:	
Υ:		:	
Х:		:	

(3) Push

^{pi} 1.2

#	TYPE	:	VALUE
RA:	Integer	:	10
RB:	Integer	:	4
Z:		:	
Υ:		:	
X:	Floating	:	1.2

(4) Add to RB

#rb

#	TYPE	:	VALUE
RA:	Integer	:	10
RB:	Floating	:	5.2
Z:		:	
Υ:		:	
Χ:		:	

11.7 Register clear

You can clear all registers:

Function	Keyword	R	D	Math
Register clear	REGCLEAR,	0	0	
	RCLR			

If you would like to delte one or some registers, use delete functions.

You can clear registers and stack with the keyword <code>[AC]</code>. It is all clear function.

11.8 Strings and registers

The registers accept strings. You can put a landmark to registers with strings.

The macro and registers combo is very affective.

See also chapter 15.

Chapter 12

Stack Operations

12.1 Special stack operations

You can remove, insert or duplicate data or change the order of elements in the stack. There are many special stack operations.

12.2 Fundamental stack operations

Here is the list of fundamental stack operations:

Function	Keyword	R	D	Math
Drop	DROP, \	1	1	
Duplicate [1]	DUP	1	1	
Stack clear	CLEAR,	N>0	Ν	
	CLR			

^[1] Press enter without any input to call the function

12.3 Order changing functions

Here is the list of order changing functions:

Function	Keyword	R	D	Math
Swap	SWAP, \$	2	0	
Rotate	R0T	3	0	
Unrotate	UNR0T	3	0	
Roll	R0LL	Ν	1	
Roll D	ROLLD	Ν	1	

12.3.1 Swap

Swap function swaps 2 data at bottom of the stack. This function requires 2 arguments. The keywords are **SWAP** and **S**.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
Х:	Rational	:	9/4

(2) Swap

👸 swap

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Rational	:	9/4
X:	Integer	:	3

12.3.2 Rotate

Rotate function rotates Z, Y, X. This function requires 3 arguments.

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} Y \\ X \\ Z \end{pmatrix}$$

The keyword is **§ ROT**.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
Χ:	Rational	:	9/4

(2) Rotate

🧃 rot

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Rational	:	9/4
X:	Integer	:	3

12.3.3 Unrotate

Rotate function rotates Z, Y, X reversely. This function requires 3 arguments.

$$\begin{pmatrix} Z \\ Y \\ X \end{pmatrix} \to \begin{pmatrix} X \\ Z \\ Y \end{pmatrix}$$

The keyword is **UNROT**.

12.3.4 Roll

Roll function rotates data from selected position through X. The selected data is moved to X. The keyword is \mathbb{R} ROLL.

The keyword is ROLL.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
Х:	Rational	:	9/4

(2) Set a position

Cmd.

#	TYPE	:	VALUE
4:	Integer	:	256
Z:	Rational	:	9/4
Υ:	Integer	:	3
Χ:	Integer	:	3

(3) Roll

₹ roll

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	3
Υ:	Rational	:	9/4
X:	Integer	:	256

12.3.5 Roll D

Roll function rotates data from selected position through X reversely. X is moved to selected position.

The keyword is ROLLD.

12.4 Duplicate and overwrite functions

Here is the list of duplicate and overwrite functions:

Function	Keyword	R	D
Over	OVER, O	2	0
Pick	PICK	Ν	0

to next page

Chapter 12 Stack Operations

from prev page

Function	Keyword	R	D
Unpick	UNPICK	Ν	1
Duplicate last 2 items	XY, YX,	2	0
	DUP2		
Duplicate twice	DUPDUP	1	0
Duplicate 2nd last item N	NDUPN	1	1
times and push N			

12.4.1 Over

Over function duplicates Y and push it. The keywords are $\frac{1}{2}$ OVER and $\frac{1}{2}$ O. The keyword is $\frac{1}{2}$ OVER or $\frac{1}{2}$ O.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	16
Х:	Integer	:	32

(2) Over

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	16
Υ:	Integer	:	32
Х:	Integer	:	16

12.4.2 Pick

Pick function duplicates data in selected position.

The keyword is PICK.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
X:	Rational	:	9/4

(2) Set a position

C_{md}

	T)/DE		
#	TYPE	:	VALUE
4:	Integer	:	256
Z:	Integer	:	3
Υ:	Rational	:	9/4
Χ:	Integer	:	3

(3) Pick

§ pick

#	TYPE	:	VALUE
4:	Integer	:	256
Z:	Integer	:	3
Υ:	Rational	:	9/4
X:	Integer	:	256

12.4.3 Unpick

Unpick function replaces data in selected position X by Y.

The keyword is **UNPICK**.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	256
Χ:	Integer	:	3

(2) Push

§ 64

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
Х:	Integer	:	64

(3) Push a position

2

#	TYPE	:	VALUE
4:	Integer	:	256
Z:	Integer	:	3
Υ:	Integer	:	64
Х:	Integer	:	2

(4) Unpick

unpick

Chapter 12 Stack Operations

#	TYPE	:	VALUE
	IIFL	•	VALUL
4:		:	
Z:		:	
Υ:	Integer	:	64
Х:	Integer	:	3

12.4.4 Duplicate last 2 items

Duplicate last 2 items function duplicates Y and X and push them in turn.

The keywords are 🖁 XY , 🖥 YX and 📳 DUP2 .

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	16
Х:	Integer	:	32

(2) Duplicate last 2 items

ğ xy

#	TYPE	:	VALUE
4:	Integer	:	16
Z:	Integer	:	32
Υ:	Integer	:	16
X:	Integer	:	32

12.4.5 Duplicate twice

Duplicate twice function operate duplicate function twice.

The keywords are **3** dupdup and **3** dd.

12.4.6 Duplicate last item N times and push N

Duplicate last N-1 items and push N function drops X and duplicate Y X times and then push X.

The keyword is NDUPN.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	16
Х:	Integer	:	32

(2) Set a number of items

C g

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	16
Υ:	Integer	:	32
Х:	Integer	:	2

(3) Duplicate 2nd last item N times and push N

👸 ndupn

#	TYPE	:	VALUE
4:	Integer	:	16
Z:	Integer	:	32
Υ:	Integer	:	32
Χ:	Integer	:	2

12.5 Removal functions

Here is the list of removal functions:

Function	Keyword	R	D
Drop 2 items	DROP2, \\	2	2
Drop 3 items	DROP3,	3	3
	\\\		
Drop N items	DROPN	N+1	N+1
Nip	NIP	2	2
Nip N-th item	NIPN	Ν	2

The details are here:

12.5.1 Drop 2 items

Drop 2 items function drops 2 items.

The keywords are DROP2 and \\\.

12.5.2 Drop 3 items

Drop 3 items function drops 3 items.

The keywords are DROP3 and \\\.

12.5.3 Drop N items

Drop N items function drops X + 1 items. The keyword is $\mathbb{E} DROPN$.

(1) Initial state

Chapter 12 Stack Operations

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	256
Υ:	Integer	:	3
Χ:	Rational	:	9/4

(2) Push a number of items to drop

Cmd.

#	TYPE	:	VALUE
4:	Integer	:	256
Z:	Integer	:	3
Υ:	Rational	:	9/4
X:	Integer	:	2

(3) Drop N items

👸 dropn

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	Integer	:	256

12.5.4 Nip

Nip function removes Y.

The keyword is NIP.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	16
Χ:	Integer	:	32

(2) Nip

nip

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Integer	:	32

12.5.5 Nip N-th item

Nip N function removes data in the position X - 1.

The keyword is NIPN.

(1) Initial state

#	TYPE	:	VALUE
4:		:	
Z:	Integer	:	64
Υ:	Integer	:	16
Х:	Integer	:	32

(2) Set a position

S Gmd

#	TYPE	:	VALUE
4:	Integer	:	64
Z:	Integer	:	16
Υ:	Integer	:	32
Х:	Integer	:	3

(3) Nip N

🧃 nipn

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:	Integer	:	16
X:	Integer	:	32

12.6 Other stack operations

Here is the list of ther stack operations:

Function	Keyword	R	D
Number of stack items	DEPTH	0	0

Number of stack items function pushes the number of data in stack.

Chapter 13

Unit Conversions

See also chapter 6 to get more information about conversions.

13.1 Supporting units

This software supports the units:

•	length	inv of volume
---	--------	---------------------------------

acceleration

- inv of length
- time

• force

• area

- inv of time
- pressure

- inv of area
- mass

• energy

• volume

velocity

• temperature

These conversion functions support only scalars.

13.2 How to use unit conversion function

Type CONV or CV to call unit conversion. Then type 2 units to convert. The keyword REC or Z calls previous conversion.

Function	Keyword	R	D	Math
Unit conversion	CONV, CV	1	1	Unit conversion
Unit conversion (redo)	REC, Z	1	1	Unit conversion
				(Redo)

You can convert X with calling the function and type "from unit" and "to unit". For example, type this to convert inches into centimeter.

conv in cm

If the each unit has different dimension, the combination is error.

13.3 Units of length

Here is the list of units of length:

Unit		Keyword	Ratio
Meter	[m]	М	1
Kilometer	[km]	KM	1 E+03
Centimeter	[cm]	CM	1 E-02
Millimeter	[mm]	MM	1 E-03
Nautical mile*1	[nmi]	NMI	1 852
Yard*1	[yd]	YD	0.914 4
Foot*1	[ft]	FT	0.304 8
Inch*1	[in]	IN	0.025 4
Mile*1	[mi]	MI	1 609.344
Fathom*2	[fath]	FATH	1.828 8
Pica*2	[pc]	PC	127/30000
Point*2	[pt]	PT	127/360000
Shaku* ⁴		SHAKU	10/33
Sun*4		SUN	1/33
Ken* ⁴		KEN	20/11
Jou ^{*4}		JOU	100/33
Chou*4		CHOU	1200/11
Ri*4		RI	43200/11

13.4 Units of length inverse

Here is the list of units of length inverse:

Unit		Keyword	Ratio
Per meter	[1/m]	/M	1
Per kilometer	[1/km]	/KM	1 E-03
Per centimeter	[1/cm]	/CM	1 E+02
Per millimeter	[1/mm]	/MM	1 E+03
Per nautical mile	[1/nmi]	/NMI	1/1852
Per yard	[1/yd]	/YD	1250/1143
Per foot	[1/ft]	/FT	1250/381
Per inch	[1/in]	/IN	5000/127

to next page

^{*1} International unit

^{*2} British fathom

 $^{^{*3}}$ PostScript unit

^{*4} Japanese traditional unit

from prev page

Unit		Keyword	Ratio
Per mile	[1/mi]	/MI	125/201168
Per fathom	[1/fath]	/FATH	625/1143
Per pica	[1/pc]	/PC	30000/127
Per point	[1/pt]	/PT	360000/127
Per <i>Shaku</i>		/SHAKU	3.3
Per Sun		/SUN	33
Per Ken		/KEN	0.55
Per <i>Jou</i>		/J0U	0.33
Per Chou		/CHOU	11/1200
Per <i>Ri</i>		/RI	11/43200

13.5 Units of area

Here is the list of units of area:

Unit		Keyword	Ratio
Square meter	[m ²]	M2	1
Square kilometer	$[km^2]$	KM2	1 E+06
Square centimeter	$[cm^2]$	CM2	1 E-04
Square millimeter	$[mm^2]$	MM2	1 E-06
Are	[a]	ARE	1 E+02
Hectare	[ha]	НА	1 E+04
Acre	[ac]	ACRE	4 046.856 422 4
Square yard	$[yd^2]$	YD2	0.836 127 36
Square foot	$[ft^2]$	FT2	9.290 304 E-02
Square inch	$[in^2]$	IN2	6.451 6 E-04
Square mile	$[mi^2]$	MI2	2 589 988.110 336
Tsubo		TSUB0	400/121
Isse		ISSE	12000/121
Ittan		ITTAN	120000/121
Choubu		CH0UBU	1200000/121

13.6 Units of area inverse

Here is the list of units of area inverse:

Unit		Keyword	Ratio
Per square meter	[1/m ²]	/M2	1
Per square kilometer	$[1/km^2]$	/KM2	1 E-06

to next page

from prev page

Unit			Keyword	Ratio
Per	square	[1/cm ²]	/CM2	1 E+04
centimeter				
Per	square	$[1/\text{mm}^2]$	/MM2	1 E+06
millimeter				
Per are		[1/a]	/ARE	1 E-02
Per hectare	9	[1/ha]	/HA	1 E-04
Per acre		[1/ac]	/ACRE	78125/316160658
Per square	yard	$[1/yd^2]$	/YD2	1562500/1306449
Per square	foot	$[1/ft^2]$	/FT2	1562500/145161
Per square	inch	$[1/in^2]$	/IN2	25000000/16129
Per square	mile	$[1/mi^2]$	/MI2	15625/40468564224
Per tsubo			/TSUB0	121/400
Per isse			/ISSE	121/12000
Per ittan			/ITTAN	121/120000
Per choubu	ı		/CHOUBU	121/1200000

13.7 Units of volume

Here is the list of units of volume:

Unit		Keyword	Ratio
Cubic meter	$[m^3]$	M3	1
Cubic kilometer	$[\mathrm{km}^3]$	KM3	1 E+09
Cubic centimeter	$[cm^3]$	CM3	1 E-06
Cubic millimeter	$[\mathrm{mm}^3]$	MM3	1 E-09
Liter	[L]	L	1 E-03
Deciliter	[dL]	DL	1 E-04
Kiloliter	[kL]	KL	1
Milliliter	[mL]	ML	1 E-06
Cubic yard	[yd ³]	YD3	0.764 554 857 984
Cubic foot	$[ft^3]$	FT3	0.028 316 846 592
Cubic inch	$[in^3]$	IN3	1.638 706 4 E-05
Cubic mile	$[mi^3]$	MI3	4 168 181 825.440 579 584
UK gallon	$[gal_{imp}]$	IMG	4.546 09 E-03
US gallon	$[gal_{us}]$	USG	3.785 411 784 E-03
Gou		GOU	2401/13310000
Shou		SH0U	2401/1331000
Itto		ITTO	2401/133100
Koku		K0KU	2401/13310

13.8 Units of volume inverse

Here is the list of units of volume inverse:

Unit		Keyword	Ratio
Per cubic meter	$[1/m^3]$	/M3	1
Per cubic kilometer	$[1/km^3]$	/KM3	1 E-09
Per cubic centimeter	$[1/cm^3]$	/CM3	1 E+06
Per cubic millimeter	$[1/\mathrm{mm}^3]$	/MM3	1 E+09
Per liter	[1/L]	/L	1 E+03
Per deciliter	[1/dL]	/DL	1 E+04
Per kiloliter	[1/kL]	/KL	1
Per milliliter	[1/mL]	/ML	1 E+06
Per cubic yard	[1/yd ³]	/YD3	1953125000/1493271207
Per cubic foot	$[1/\mathrm{ft}^3]$	/FT3	1953125000/55306341
Per cubic inch	[1/in ³]	/IN3	125000000000/2048383
Per cubic mile	$[1/mi^3]$	/MI3	1953125/8140980127813632
Per UK gallon	$[1/gal_{imp}]$	/IMG	10000000/454609
Per US gallon	$[1/gal_{us}]$	/USG	125000000000/473176473
Per gou		/GOU	13310000/2401
Per shou		/SHOU	1331000/2401
Per itto		/ITTO	133100/2401
Per koku		/K0KU	13310/2401

13.9 Units of time

Here is the list of units of time:

Unit		Keyword	Ratio
Second	[s]	SEC, S	1
Minute	[min]	MIN	60
Hour	[h]	HOUR, H	3 600
Day	[d]	DAY, C	86 400
Week	[wk]	WEEK, WK	604 800
Normal year	[yr]	YEAR, YR	31 536 000
Gregolian year		GYEAR	31 556 952
Julian year		JYEAR	31 557 600

13.10 Units of time inverse

Here is the list of units of time inverse:

Chapter 13 Unit Conversions

Unit		Keyword	Ratio
Per second	[1/s]	/SEC, /S	1
Per minute	[1/min]	/MIN	1/60
Per hour	[1/h]	/HOUR, /H	1/3600
Per day	[1/d]	/DAY, /D	1/86400
Per week	[1/wk]	/WEEK,	1/604800
		/WK	
Per normal year	[1/yr]	/YEAR,	1/31536000
		/YR	
Per Gregolian year		/GYEAR	1/31556952
Per Julian year		/JYEAR	1/31557600

13.11 Units of mass

Here is the list of units of mass:

Unit		Keyword	Ratio
Kilogram	[kg]	KG	1
Gram	[g]	G	1 E-03
Milligram	[mg]	MG	1 E-06
Metric ton	[t]	TON	1 E+03
Long ton	[lt]	LTON	1 016.046 908 8
Short ton	[st]	STON	907.184 74
Once	[ozav]	0Z	0.028 349 523 125
Pound	[lbav]	LB	0.453 592 37
Kan		KAN	3.75
Ryou		RY0U	3.75 E-02
Momme		MOMME	3.75 E-03
Kin		KIN	0.6

13.12 Units of velocity

Here is the list of units of velocity:

Unit		Keyword	Ratio
Meter per second	[m/s]	M/S	1
Meter per minute	[m/min]	M/MIN	1/60
Kilometer per second	[km/s]	KM/S	1 E+03
Kilometer per hour	[km/h]	KM/H, KPH	5/18
Inch per second	[ips]	IPS	0.025 4
Foot per second	[fps]	FPS	0.304 8

to next page

from prev page

Unit		Keyword	Ratio
Mile per hour	[mph]	MPH	0.447 04
Knot	[kn]	KN, KT	463/900

13.13 Units of acceleration

Here is the list of units of acceleration:

Unit		Keyword	Ratio
Meter per square	$[m/s^2]$	M/S2	1
second			
Kilometer per hour	[km/h/s]	KM/H/S,	5/18
per second		KPH/S	
Gal	[Gal]	GAL	1 E-02
Inch per ssquare	[ips ²]	IPS2	0.025 4
econd			
Foot per square	$[fps^2]$	FPS2	0.304 8
second			
Mile per hour per	[mph/s]	MPH/S	0.447 04
second			
Knot per second	[kn/s]	KN/S	463/900

13.14 Units of force

Here is the list of units of force:

Unit		Keyword	Ratio
Newton	[N]	NEWTON	1
Dynne	[dyn]	DYN	1 E-05
Kilogram weight	[kgf]	KGF	9.806 65
Gram weight	[gf]	GF	9.806 65 E-03

13.15 Units of pressure

Here is the list of units of pressure:

Unit		Keyword	Ratio
Pascal	[Pa]	PA	1
Hectopascal	[hPa]	HPA	1 E+02
Kilopascal	[kPa]	KPA	1 E+03

from prev page

Unit			Keyword	Ratio
Megapascal		[MPa]	MPA	1 E+06
Bar		[bar]	BAR	1 E+05
Millimeter	of	[mmHg]	MMHG	101325/760
mercury				
Inch of mercury		[inHg]	INHG	3 386.388 64

13.16 Units of energy

Here is the list of units of energy:

Unit		Keyword	Ratio
Joule	[J]	J	1
Kilojoule	[kJ]	KJ	1 E+03
Megajoule	[MJ]	MJ	1 E+06
Electronvolt	[eV]	EV	1.602 176 620 8 E-19
Kilo-electronvolt	[keV]	KEV	1.602 176 620 8 E-16
Mega-electronvolt	[MeV]	MEV	1.602 176 620 8 E-13
Giga-electronvolt	[GeV]	GEV	1.602 176 620 8 E-10
Thermochemical	$[cal_th]$	CAL	4.184
calorie			
Kilocalorie	$[kcal_{th}]$	KCAL	4 184
Ton of TNT	$[t_{TNT}]$	TTNT	4.184 E+09
Kilowatt hour	[kWh]	KWH	3.6 E+06
British thermal unit	[Btu]	BTU	1055.06

13.17 Units of temperature

Here is the list of units of temperature:

Unit		Keyword	D-ratio		Zero
Kelvin	[K]	KEL		1	0
Celsius	[°C]	DEGC		1	-273.15
Rankine	[si°R]	DEGR		5/9	0
Fahrenheit	[°F]	DEGF		5/9	-459.67

The values of absolute temperature of Celsius and Fahrenheit are not same.

For instance, conversion from Celcius to Fahrenheit is following:

$$\theta$$
[°C] = $(\theta + 273.15) \times \frac{9}{5} - 459.67$ [°F]

Chapter 14

Math / Scientific / Engineering constants

14.1 Input constants

This software supports many math / scientific / engineering constants. Type a keyword to push a constant.

The source of the values of scientific constants is 2014 CODATA.

14.2 Math constants

Here is the list of math constants:

Name	Keyword	Value
PI	PI	3.141 592 653 589 79
Napier's	E	2.718 281 828 459 05
constant		
Euler-Mascheroni	EG	0.577 215 664 901 533
constant		

14.3 Fundamental physical constants

Here is the list of fundamental constants in physics:

Name	Syr	nbol	Keyword	Value
Speed of light in	c_0	[m/s]	LIGHT, C0	299 792 458
vacum				
Magnetic	μ_0	[H/m]	MAGNETIC,	1.256 637 061 436 E-06
constant			MUO	
Electric constant	$arepsilon_0$	[F/m]	ELECTRIC,	8.854 187 817 620 E-12
			EPS0	
Characteristic	Z_0	$[\Omega]$	IMPEDANCE,	376.730 313 461
impedance of			Z0	
vacum				

to next page

Chapter 14 Math / Scientific / Engineering constants

from prev page

Name	Symbol	Keyword	Value
Gravitation	G_0 [m ³ /kg/s ²]	GRAVITATION,	6.674 08 E-11
constant		NEWTONIAN	
Planck constant	h [Js]	PLANCK, H	6.626 070 040 E-34
Reduced Planck	[Js]	RPLANCK,	1.054 571 800 E-34
constant		HBAR	

14.4 Electromagnetics

Here is the list of constants in electromagnetics:

Name	Symbol	Keyword	Value
Elementary	e [C]	ECHARGE,	1.602 176 620 8 E-19
charge		EV0LT	
Magnetic flux	Φ_0 [Wb]	Q.FLUX	2.067 833 831 E-15
quantum			
Conductance	G_0 [S]	Q.CONDUCT	7.748 091 731 0 E-05
quantum			
Resistance	R_0 $[\Omega]$	Q.RESIST	12 906.403 727 8
quantum			
Josephson	K_J [Hz/V]	JOSEPHSON	483 597.852 5 E-09
constant			
von Klitzing	R_K $[\Omega]$	KLITZING	25 812.807 455 5
constant			
Bohr magneton	μ_B [J/T]	B.MAGNETON	927.400 999 4 E-26
Nuclear	μ_N [J/T]	N.MAGNETON	5.050 783 699 E-27
magneton			

14.5 Nuclear physics

Here is the list of constants in nuclear physics:

Name	Symbol	Keyword	Value
Fine-structure	α [1]	FSTRUCT	7.297 352 566 4 E-03
constant			
Rydberg	R_{∞} [m ⁻¹]	RYDBERG	10 973 731.568 508
constant			
Bohr radius	a_0 [m]	B.RADIUS	0.529 177 210 67 E-10
Hartree energy	E_h [J]	HARTREE	4.359 744 650 E-18

Constants connected with electron:

Name	Symbol	Keyword	Value
Mass of electron	m_e [kg]	E.MASS	9.109 383 56 E-31
Compton	λ_e [m]	E.COMPTON	2.426 310 236 7 E-12
wavelength			
of electron			

from prev page

Name	Symbol	Keyword	Value
Classical	r_e [m]	E.RADIUS	2.817 940 322 7 E-15
electron radius Magnetic moment of	$\mu_{ m e}$ [J/T]	E.MAGNETIC	-928.476 462 0 E-26
electron Gyromagnetic ratio of electron	$\gamma_e \left[s^{-1} T^{-1} \right]$	E.GYRO	1.760 859 644 E+11

Constants connected with proton:

Name	Syn	nbol	Keyword	Value
Mass of proton	m_p	[kg]	P.MASS	1.672 621 898 E-27
Compton	λ_p	[m]	P.COMPTON	1.321 409 853 96 E-15
wavelength				
of proton				
Magnetic	μ_p	[J/T]	P.MAGNETIC	1.410 606 787 3 E-26
moment of				
proton				
Gyromagnetic	γ_p	$[s^{-1}T^{-1}]$	P.GYRO	2.675 221 900 E+08
ratio of proton				

Constants connected with neutron:

Name	Symbol	Keyword	Value
Mass of neutron	m_n [kg]	N.MASS	1.674 927 471 E-27
Compton	λ_n [m]	N.COMPTON	1.319 590 904 81 E-15
wavelength			
of neutron			
Magnetic	μ_n [J/T]	N.MAGNETIC	-0.966 236 50 E-26
moment of			
neutron			
Gyromagnetic	$\gamma_n = [s^{-1}T^{-1}]$	N.GYRO	1.832 471 72 E+08
ratio of neutron			

Other constants in nuclear physics:

Name	Symbol	Keyword	Value
Mass of muon	m_{μ} [kg]	MU.MASS	1.883 531 594 E-28
Magnetic	$\mu_{\mu} = [J/T]$	MU.MAGNETIC	-4.490 448 26 E-26
moment of			
muon			
Mass of tauon	m_{τ} [kg]	TAU.MASS	3.167 47 E-27

14.6 Physicochemistry

Here is the list of constants in physicochemistry:

Chapter 14 Math / Scientific / Engineering constants

Name	Syn	nbol	Keyword	Value
Boltzmann	k	[J/K]	BOLTZMANN	1.380 648 52 E-23
constant				
Avogadro	N_A	$[\text{mol}^{-1}]$	AV0GADR0	6.022 140 857 E+23
constant				
Atomic mass	m_u	[kg]	DALTON	1.660 539 040 E-27
constant				
Faraday	F	[C/mol]	FARADAY	96 485.332 89
constant				
Molar gas	R	$[J K^{-1} mol^{-1}]$	GAS	8.314 4598
constant	17	[3/ 1]	MOLV	22 412 062 5 02
Molar volume*1	V_m	[m³/mot]	MOLV	22.413 962 E-03
(m³) Molar volume*¹	W	[1 /m al]	MOLVL	22.413 962
	v _m	[L/mol]	MULVL	22.413 902
(L) Loschmidt's	n.	$[m^{-3}]$	LOSCHMIDT	2.686 7811 E+25
constant*1	n_0	[111]	LOSCULITAI	2.000 /011 E+23

Here is the list of constants in thermal radiation:

Name	Syn	nbol	Keyword	Value
Stefan-Boltzmann	σ	$[W m^{-2} K^{-4}]$	STEFAN	5.670 367 E-08
constant				
First radiation	<i>c</i> ₁	$[W m^2]$	F.RAD	3.741 771 790 E-16
constant				
Second	<i>c</i> ₂	[m K]	S.RAD	1.438 777 36 E-02
radiation				
constant				

14.7 Agreement value

Here is the list of agreement values:

Name	Symbol	Keyword	Value
Standard gravity	g_n [m/s ²]	GRAVITY	9.806 65
Standard	1atm[Pa]	ATM	10 1325
atmosphere			
Zero degrees	0°C [K]	ZEROD	273.15
Celsius in Kelvin			

14.8 Planck unit

Here is the list of Planck unit:

^{*1} In 0 degrees centigrade and standard atomosphere pressure (273.15[K], 1[atm]).

Name	Symbol	Keyword	Value
Planck mass	m_P [kg]	PL.MASS	2.176 470 E-08
Planck energy	E_P [GeV]	PL.ENERGY	1.220 910 E+19
Planck	T_P [K]	PL.TEMP	1.416 808 E+32
temperature			
Planck length	l_P [m]	PL.LENGTH	1.616 229 E-35
Planck time	t_P [s]	PL.TIME	5.391 16 E-44

14.9 Astronomy

Here is the list of constants of astronomy:

Name	Symbol	Keyword	Value
Astronomical	AU [m]	ASTR0	149 597 870 700
unit			
Parsec	pc [m]	PARSEC	3.085 677 581 E+16
Light year	ly [m]	LYEAR	9 460 730 472 580 800

14.10 Paper size

Here is the list of constants of paper size:

Name		Keyword	Value	Name		Keyword	Value
Short side	of	A0.S	841	Long side	of	A0.L	1189
A0(mm)				A0(mm)			
Short side	of	A1.S	594	Long side	of	A1.L	841
A1(mm)				A1(mm)			
Short side	of	A2.S	420	Long side	of	A2.L	594
A2(mm)				A2(mm)			
Short side	of	A3.S	297	Long side	of	A3.L	420
A3(mm)				A3(mm)			
Short side	of	A4.S	210	Long side	of	A4.L	297
A4(mm)				A4(mm)			
Short side	of	A5.S	148	Long side	of	A5.L	210
A5(mm)				A5(mm)			
Short side	of	A6.S	105	Long side	of	A6.L	148
A6(mm)				A6(mm)			
Short side	of	A7.S	74	Long side	of	A7.L	105
A7(mm)				A7(mm)			
Short side	of	A8.S	52	Long side	of	A8.L	74
A8(mm)				A8(mm)			
Short side	of	A9.S	37	Long side	of	A9.L	52
A9(mm)				A9(mm)			
Short side	of	B0.S	1030	Long side	of	B0.L	1456
B0(mm)				B0(mm)			
Short side	of	B1.S	728	Long side	of	B1.L	1030
B1(mm)				B1(mm)			
							to pout page

to next page

Chapter 14 Math / Scientific / Engineering constants

from prev page

Name	Keyword	Value	Name	Keyword	Value
Short side of	B2.S	515	Long side of	B2.L	728
B2(mm)			B2(mm)		
Short side of	B3.S	364	Long side of	B3.L	515
B3(mm)			B3(mm)		
Short side of	B4.S	257	Long side of	B4.L	364
B4(mm)			B4(mm)		
Short side of	B5.S	182	Long side of	B5.L	257
B5(mm)			B5(mm)		
Short side of	B6.S	128	Long side of	B6.L	182
B6(mm)			B6(mm)		
Short side of	B7.S	91	Long side of	B7.L	128
B7(mm)			B7(mm)		
Short side of	B8.S	64	Long side of	B8.L	91
B8(mm)			B8(mm)		
Short side of	B9.S	45	Long side of	B9.L	64
B9(mm)			B9(mm)		
letter short (mm)	LET.S	215.9	letter long (mm)	LET.L	279.4
legal short (mm)	LEG.S	215.9	legal long (mm)	LEG.L	355.6
letter short	LET.SI	8.5	letter long (inch)	LET.LI	11
(inch)					
legal short (inch)	LEG.SI	8.5	legal long (inch)	LEG.LI	14

Chapter 15

Other functions

15.1 All clear

You can clear stack and registers with all clear function.

Keyword
AC
CLEAR,
CLR
REGCLEAR,
RCLR

You can use undo after you call clear functions.

15.2 All reset

Type RESET or RST to reset all settings without those in config mode. Call the function and type YES or NO to confirm.

15.3 Undo / redo

Undo and redo function is available:

Function	Keyword
Undo	UNDO, U
Redo	REDO, R

See also chapter 2 and chapter 3.

15.4 JSON output

Type JSON or OUT to output JSON formatted text file.

Function	Keyword
JSON output	JSON

This software output files to the directory it exists. The format of file name is following:

eckert_YYYY_MMDD_HHMMSS.json

Output JSON file and its file name is displayed in message area. You can save stack and registers states.

15.5 Macro function

This software supports macro with strings.

Function	Keyword	R	D
Run macro	RUN	1	1

Macro function reads X as a string and operate.

Here is an example of using macro function:

(1) Push string "2 3 +"

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
X:	String	:	2 3 +

(2) Run macro

g run

#	TYPE	:	VALUE
4:		:	
Z:		:	
Υ:		:	
Х:	Integer	:	5

You can make easy user defined function with macro function.

For example, the macro string of RA + $\sqrt{\text{RB} \times \text{RC}}$ is "ldra ldrb ldrc * sqrt +". Store it to RE.

Set RA, RB and RC. Then load RE and run macro to calculate RA + $\sqrt{RB \times RC}$.

You cannot include keyword RUN, which is macro, in a string for macro function. This specification is for avoiding infinite loop.

Cimilando como acomatinado de mada abancaisas disculado

Similarly, you cannot include mode-changing, display-changing keywords.

15.6 Test precisions

You can test precisions of this software.

Function	Keyword	R	D	Math
Radix of floating	RADIX	0	0	Push Int
Machine epsilon	EPSILON	0	0	Push Flt

These functions are for debugging.

15.7 Special startup

This software supports command line arguments.

Argument	Setting
- d	Do not clear display
- j	JSON file output
-jd	JSON display (console)
	Split for JSON expression

If you would like to keep display buffers, use 🚪 - d option.

eckert64.exe -d

JSON file output and JSON display uses 3 -- . Write expressions after 3 -- . Example:

Replace -j -- 1 2 3 sum stra pi exp strz sum dup i mul 2

Replace -j into -j to display upon console.

Chapter 16

Messages

16.1 Error messages

The list of error messages in this software is following:

- Bad argument count
- Bad argument type
- Bad element
- Bad matrix size
- Bad tuple size
- Determinant is zero
- Division by zero
- Empty input
- Failed to output file
- Final page of register
- Final page of stack
- First page of register
- First page of stack
- From _____ to ____ : INVALID (Unit conversion)
- Invalid conversion
- Invalid input
- Invalid range
- Invalid value
- Latest history
- Logarithm of zero
- Maximum integer
- Minimum integer
- Negative-th power of zero
- No history
- No older history
- Not a positive integer
- Registers are empty
- Selected register is empty

- Stack and registers are empty
- Stack is empty
- Too few arguments
- Too large or small input
- Too large to operate
- Unsupported in current version
- Unsupported operation or notation
- Zero-th power of zero

16.2 Notice messages

The list of notice messages is following:

- Error calculation
- Floating overflow
- Integer overflow
- Rational overflow

16.3 Confirm messages

The list of confirm messages is here:

- Cancelled
- Done
- From _____ to ____ (Unit conversion)
- Input integer
- Maximum value set
- Minimum value set
- 0K? Y/N
- Setting completed

Chapter 17

Technical Information

17.1 Supporting types

The list of data types this software supports is following:

Туре	Value range	Class
Integer	64-bit integer	Scalar
Floating	long double	Scalar
Rational	Pair of 64-bit integers	Scalar
Complex	Pair of scalars	Number
Boolean	True, False	Unsigned
Byte	Unsigned 8-bit	Unsigned
Word	Unsigned 16-bit	Unsigned
Dword	Unsigned 32-bit	Unsigned
Qword	Unsigned 64-bit	Unsigned
Tuple	Tuple of scalars ortuple of binaries	Tuple
Matrix	Tuple of tuples	Tuple
Infinity	Positive, negative, complex	Not a number
String	String	Not a number
Error	String	Not a number

If integer overflow occurs, the calculation is retried as floating point number. If floating-point overflow occurs, the result of calculation is handled as Infinity.

17.2 Calculation precision

The concept of this software is useful for engineers, but no accuracy assurances. So this software is not suitable for high precision calculations.

The internal precision of this software is displayed with calculation settings. The data are using binaries, so floating-point calculations cause calculation errors. Then, this software does not correct calculation errors.

17.3 Mathematical definitions

Mathematical definitions this software adopts is following:

17.3.1 Remainde of integers (Modulo)

Remainde of integers is defined as:

Α	В	Quotient	Remainder
Neg	Neg	$(-A) \div (-B)$	$-((-A) \mod (-B))$
Neg	Pos	$(-A) \div (-B)$	$-((-A) \mod (-B))$
Zero	Nonzero	0	0
Pos	Neg	$-(A \div (-B)$	$(-A) \mod B$
Pos	Pos	$A \div B$	$A \mod B$

17.3.2 Odd number-th root of negative value

The odd number-th root, such as cubic root or 5th root of negative value is not defined in range of real number. For instance, the cubic root of -1 is not -1.

The odd number-th root is defined in complex number:

$$\sqrt[n]{a+ib} = \sqrt[n]{r} \exp(i\theta/n)$$
$$= \sqrt[n]{r}(\cos(\theta/n)) + i\sin(\theta/n)$$

17.3.3 Definition of complex numbers

Complex absolution and argument are defined as:

$$abs(a+ib) = r = \sqrt{a^2 + b^2}$$

$$arg(a+ib) = \theta = \begin{cases} atan(b/a) & (a > 0) \\ \pi/2 & (a = 0, b > 0) \\ -\pi/2 & (a = 0, b < 0) \\ \pi - atan(b/a) & (a > 0, b > 0) \\ atan(b/a) - \pi & (a < 0, b < 0) \\ Error & (a = b = 0) \end{cases}$$

This is the basics of complex functions.

17.3.4 Complex functions

Here is the table of definitions of complex functions.

Function	Definition
Sqiare root	$\sqrt{a+ib} = \sqrt{r}(\cos(\theta/2) + i\sin(\theta/2))$
Cube root	$\sqrt[3]{a+ib} = \sqrt[3]{r}(\cos(\theta/3) + i\sin(\theta/3))$
Exponent	$\exp(a+ib) = \exp(a)(\cos a + i\sin b)$
Natural log	$ ln(a+ib) = ln r + i\theta $
Power	$(a+ib)^{c+id} = r^c e^{-d\theta} [\cos(c\theta + d\ln r) + i\sin(c\theta + d\ln r)]$
sin	$\sin(a+ib) = \sin a \cosh b + i \cos a \sinh b$
cos	$\cos(a+ib) = \cos a \cosh b - i \sin a \sinh b$
tan	$\tan(a+ib) = \frac{1}{2} \cdot \frac{\sin 2a}{\cos^2 a + \sinh^2 b} + i\frac{1}{2} \cdot \frac{\sinh 2b}{\cos^2 a + \sinh^2 b}$
asin	$asin(z) = -i \ln(\sqrt{1 - z^2} + zi)$
acos	$a\cos(z) = -i\ln(z + i\sqrt{1 - z^2})$
atan	$\operatorname{atan}(z) = \frac{i}{2} \ln \left(\frac{i+z}{i-z} \right) (z \neq \pm i)$
sinh	$\sinh(a+ib) = \sinh a \cos b + i \cosh a \sin b$
cosh	$\cosh(a+ib) = \cosh a \cos b + i \sinh a \sin b$
tanh	$\tanh(a+ib) = \frac{\sinh 2a}{\cosh 2a + \cos 2b} + i \frac{\sin 2b}{\cosh 2a + \cos 2b}$
asinh	$asinh(z) = ln(z + \sqrt{z^2 + 1})$
acosh	$\operatorname{acosh}(z) = \ln(z + \sqrt{z+1}\sqrt{z-1})$
atanh	$\operatorname{atanh}(z) = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right) (z \neq \pm 1)$

Chapter 18

Troubleshootings

18.1 I have no idea to operate this software

Please restart this software and read chapter 4.

This software adopts RPN-style (stack). You can make comprehension of it with reading chapter 4 so please read it carefully.

18.2 I'd like to view full data

If you find . . . in stack or register display, type v to show full data (VIEW mode). Press enter to return to calculation mode from view mode.

18.3 I'd like to change rational or floating display

Use the following keywords to change rational or floating display:

Function	Keyword	
Auto decimal di	AD	
Force decimal d	FD	
Force floating d	FF	
Standard	decimal	STD
display		
Fixed decimal d	FIX	
Scientific	decimal	SCI
display		
Engineering	decimal	ENG
display		

Please read chapter 3 to get more information.

18.4 I'd like to change complex display

Type **EUL** to switch complex number display. The argument of complex display depends on angle mode.

Please read chapter 3 to get more information.

18.5 I'd like to view all values in the stack and the registers

JSON output function is recommended. Please read chapter 15.

If you would like to look at some data, try page-flipping function. Please read chapter 3 to get more information.

18.6 I saw doubtful calculation result

Restart the software and retry.

Supported numbers in this software are expressed in binary so the calculations may have small errors. The expected answer is 0.1 but this shows 0.0999...? That is within the spec.

18.6.1 Check keywords

Did not you type wrong spelling? Check the keywords.

18.6.2 Check display mode

Were not you confused by display mode? Try another display mode and check the value. Please read chapter 3 to change modes.

18.6.3 Check angle mode

Did you noticed the unit of angle in your calculation? Trigonometric functions depend on angle mode. So a called trigonometric function is determined by a keyword and angle mode.

Please read chapter 3 to change modes.

18.6.4 Check range of value

Some functions may cause large errors depending on range of value. For instance, input a large value to trigonometric functions to make unreliable results.

See also chapter 17.

18.6.5 Check the order of calculations

If the expression is changeable in math, calculators may make small errors. Please calculate by changing orders with consideration of less error.

18.7 Stopped by errors

Check types or values of data. For instance, the factorial of floating-point number is not defined.

18.7.1 Check types

You can check the type of data in the second left column in the stack display. If types are not shown, type TYPE to display. Check types of arguments of functions.

18.7.2 Check values

Did you input error value? Some functions have undefined input. For example, logarithm of 0 is undefined.

18.7.3 Check sizes of vectors and matrices

Please notice that the calculations of vectors or matrices are defined.

18.7.4 Read error messages

The messages may help you to detect operational errors.

18.8 I found doubtful behaviors

If you find bugs or unnatural specifications, please send messages to me.

Contact: mailto:only.my.truth@gmail.com