

Power Tables for the One-Sided F Test Used to Determine Differences Between Two Population Variances

David W. Webb

ARL-TR-886

October 1995

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

19951130 077

DTIC QUALITY INSPECTED 5

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden. To Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

	-	•	, , , , , , , , , , , , , , , , , , , ,
1. AGENCY USE ONLY (Leave blan.	k) 2. REPORT DATE October 1995	3. REPORT TYPE AN Final, Nov 1994	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Power Tables for the One-Sid Two Population Variances	ed F Test Used to Determine	Differences Between	PR: 1L161618AH80
6. AUTHOR(S)		· · · · · · · · · · · · · · · · · · ·	
David W. Webb			
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Research Laborato	ory		
ATTN: AMSRL-WT-PB			ARL-TR-886
Aberdeen Proving Ground, M	D 21005-5066	:	
9. SPONSORING / MONITORING AGE	NCY NAME(S) AND ADDRESS(ES		10. SPONSORING / MONITORING AGENCY REPORT NUMBER
11. SUPPLEMENTARY NOTES	·		
11. SUPPLEMENTARY NUTES			
12a. DISTRIBUTION / AVAILABILITY S			12b. DISTRIBUTION CODE
Approved for public release;	listribution is unlimited.		
13. ABSTRACT (Maximum 200 words	;)		
known as the F test. This test us differ. The ratio is compared wi level of the test. The power of if one assumes to know the actu	ses the ratio of the sample varia th a predetermined critical valu the test—that is, the probability al ratio of population variances ificance levels, population variances	ances as a test statistic to be that is dependent upor y of exceeding this critic s. This report details the ances ratios, and sample	is a common statistical hypothesis test of determine if the population variances in the sample sizes and the significance cal value—can be determined a prioric test of the F test and gives extensive the sizes under 100. It is hoped that this are experiments of this type.
			· · · · · · · · · · · · · · · · · · ·
14. SUBJECT TERMS			15. NUMBER OF PAGES 92
hypothesis testing, variance, F	ratio, power, sample size		16. PRICE CODE
17. SECURITY CLASSIFICATION 1	8. SECURITY CLASSIFICATION	19. SECURITY CLASSIFIC	CATION 20. LIMITATION OF ABSTRACT
OF REPORT UNCLASSIFIED	OF THIS PAGE UNCLASSIFIED	OF ABSTRACT UNCLASSIFIED	UL
	~. · ~~		_

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

		Page
1.	INTRODUCTION	1
2.	STATISTICAL HYPOTHESIS TESTING	1
3.	THE F RATIO	2
4.	POWER TABLES	4
5.	EXAMPLE	6
	APPENDIX: POWER TABLES	9
	DISTRIBUTION LIST	91

Accos	sion For	
DTIC Unenn	GRA &I TAB oumced fication	
	ibution/ lability	
pros.	Avail an Spec 2	

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

A problem that frequently arises in experimental studies is determining if the variance of a response variable for one population is greater than the variance of the same response variable for some second population. A sample question might be, "Based on the sample data, is the variation in tensile strength for Steel Lot A greater than the tensile strength variation of Steel Lot B?" The researcher must base his assessment on data collected from random samples from each population. Intuitively, it stands to reason that a correct decision is more likely to be made if the researcher is allowed to collect more data. Therefore, the probability of finding a true difference in population variances increases as one allows the sizes of the random samples to increase. This probability may be quantified if one assumes to know the true population variances. However, such an a priori evaluation of the experiment is not usually conducted.

This document is intended to be a reference manual for the power of the F test, a statistical procedure used to test whether or not one population variance is greater than another. The power of the test equals the probability of inferring from the sample data that one population variance is less than another. It is hoped that the enclosed tables will help test designers to choose appropriate sample sizes for studies in which population variances are to be compared.

2. STATISTICAL HYPOTHESIS TESTING

Determining if one population variance, σ_1^2 , is greater than another population variance, σ_2^2 , is an example of a statistical hypothesis test. In order to conduct such a test, a null hypothesis is postulated. The null hypothesis is an equivalence relationship involving the parameter(s) of interest which the experimenter tries to gather evidence against, and it is denoted by H_0 . In our case, the null hypothesis is H_0 : $\sigma_1^2 = \sigma_2^2$. What we are looking to find in the data is conclusive evidence to support the claim that $\sigma_1^2 > \sigma_2^2$. This relationship is called the alternative hypothesis, and it is denoted by H_a . Alternative hypotheses may be either two-sided, for example $\sigma_1^2 \neq \sigma_2^2$, or they may be one-sided, as is the case with our problem. The choice of a one- or two-sided alternative hypothesis depends upon the researcher's prior beliefs concerning his parameter(s) of interest.

Because of the randomness associated with any experimental data, H_O may be true and yet the observed data lead us to believe that H_a is true. In this case we have made an error, known as a Type I

error, in our inference. The probability of a Type I error is referred to as the significance level of the test and is denoted by the Greek letter "a."

Likewise, the alternative hypothesis may be true; however, the data we collect might not be conclusive enough for us to infer so. In this instance, we fail to reject H_O and make the other possible inferential error, which is known as a Type II error. The probability of a Type II error is denoted by the expression " $(1 - \beta)$." The term β is known as the power of the test, and it represents the probability of rejecting the null hypothesis in favor of the alternative hypothesis—a correct decision if H_a is true!

Naturally, one would like to minimize the chance of making either a Type I or Type II error. By attempting to minimize $(1 - \beta)$, we also try to maximize the power of the test. Table 1 provides a summary of the previous discussion.

"The truth" H_a : $\sigma_2^2 < \sigma_1^2$ $H_O: \sigma_1^2 = \sigma_2^2$ correct decision, made reject H_O in favor of H_a with probability $oldsymbol{eta}$ Type I error, made Conclusion with probability α (power) based on the correct decision, Type II error, made data accept H_O made with with probability collected

probability (1 - α)

 $(1 - \beta)$

Table 1. Possible Outcomes in Statistical Hypothesis Testing

3. THE F RATIO

When the response variable is assumed to be normally distributed (or approximately normally distributed), the F ratio is a test statistic used to determine if one population variance, σ_1^2 , is significantly greater than another population variance, σ_2^2 . Developed by R. A. Fischer at the beginning of the century, this is the most frequently used test statistic for comparing sample variances. The formula for the F ratio is given by $F = s_1^2 / s_2^2$, where each s_i^2 is the sample variance of the observations $\{x_{i,j}\}$ $\{j = 1, 2, \ldots, n_i\}$ coming from a normal population with variance σ_i^2 . The sample variance formula is

$$s_i^2 = \frac{\sum_{j=1}^{n_i} (x_{ij} - \overline{x}_i)^2}{(n_i - 1)}.$$

The F ratio is a random variable having an F distribution with $v_1 = n_1 - 1$ numerator degrees of freedom and $v_2 = n_2 - 1$ denominator degrees of freedom. If F exceeds some critical value, F_C , then we conclude that the variance of the first population is greater than the variance of the second population. F_C is that value having an area of α to its right under the F distribution curve; that is

$$\frac{\Gamma[(v_1 + v_2)/2]}{\Gamma(v_1/2)\Gamma(v_2/2)} \left(\frac{v_1}{v_2}\right)^{v_1/2} \int_{F_C}^{\infty} \frac{x^{(v_1 - 2)/2} \, \partial x}{[1 + (v_1/v_2)x]^{(v_1 + v_2)/2}} = \alpha.$$

Preferably, the analyst selects α prior to the evaluation of the test statistic. Typical values of α range from 0.001 to 0.250 depending upon what the researcher considers "acceptable" risk for a Type I error. Once α is chosen, F_C is determined by iteratively solving the aforementioned equation or referring to tables of the F distribution found in many statistical textbooks.

Holding v_1 and v_2 constant, α and F_C are negatively correlated; that is, increasing α causes F_C to decrease, and vice versa. However, choosing a significance level that is too small has adverse consequences. While decreasing the significance level does give better protection against a Type I error, it reduces the power of the test by making rejection of H_O more difficult when H_a is true. Thus, the significance level and the power of the test are positively correlated. The challenge to the analyst is to select a critical value, F_C , such that the significance level is low enough to afford adequate protection against a Type I error and the power is high enough to detect differences between σ_1^2 and σ_2^2 .

For fixed values of n_1 , n_2 , and α , the power depends only upon the value of the proportion σ_2 / σ_1 . Letting $\sigma_2 / \sigma_1 = k$, we see that $\beta = Pr(\text{rejecting } H_O \text{ when } H_A \text{ is true})$

$$= Pr\left(\frac{s_1^2}{s_2^2} > F_C\right)$$

$$= Pr\left(\frac{s_1^2/\sigma_1^2}{s_2^2/\sigma_2^2} > \frac{1/\sigma_1^2}{1/\sigma_2^2} F_C\right)$$

$$= Pr\left(X > \frac{\sigma_2^2}{\sigma_1^2} F_C\right)$$

$$= Pr\left(X > k^2 F_C\right),$$

where the random variable X has an F distribution with v_1 numerator degrees of freedom and v_2 denominator degrees of freedom.

4. POWER TABLES

The Appendix of this report consists of power tables for the test of hypothesis H_0 : $\sigma_1^2 = \sigma_2^2$ vs. H_a : $\sigma_1^2 > \sigma_2^2$, for the following values of α , k, v_1 , and v_2 .

- 1) α (significance level): 0.01, 0.05, 0.10, and 0.25;
- 2) k (proportion σ_2 / σ_1): 0.30 to 0.60, in increments of 0.10; and 0.70 to 0.95, in increments of 0.05;
- 3) v_1 (numerator degrees of freedom): 5 to 8, in increments of 1; 10 to 20, in increments of 2; and 25 to 100, in increments of 5;
- 4) v_2 (denominator degrees of freedom): same values as v_1 .

Each set of facing pages corresponds to a specific value of α and k, found at the top of each table. Each row of a table corresponds to v_1 , while each column corresponds to v_2 . Table entries are the power of the one-sided F test calculated to three decimal places. Table entries were calculated using the SuperCalc5 spreadsheet and the following approximations to the F distribution.* In each case, X is a random variable having an F distribution with v_1 numerator degrees of freedom and v_2 denominator degrees of freedom.

Case 1 (v_1 even):

$$Pr(X > k^2 F_C) = \phi^{(v_2/2)} \left[1 + \frac{v_2}{2} (1 - \phi) + \frac{v_2(v_2 + 2)}{2 \cdot 4} (1 - \phi)^2 + \dots + \frac{v_2(v_2 + 2) \dots (v_2 + v_1 - 4)}{2 \cdot 4 \cdot \dots \cdot (v_1 - 2) (1 - \phi)^{(v_1 - 2)/2}} \right],$$

where

$$\phi = \frac{v_2}{v_2 + v_1 k^2 F_C};$$

Case 2 (v_2 even):

$$Pr(X > k^{2} F_{C}) = 1 - (1 - \phi)^{(v_{1}/2)} \left[1 + \frac{v_{1}}{2} \phi + \frac{v_{1}(v_{1} + 2)}{2 \cdot 4} \phi^{2} + \dots + \frac{v_{1}(v_{1} + 2) \dots (v_{1} + v_{2} - 4)}{2 \cdot 4 \cdot \dots \cdot (v_{2} - 2)} \phi^{(v_{2} - 2)/2} \right];$$

Case 3 (both v_1 and v_2 odd):

$$Pr(X > k^2 F_C) = 1 - A - B,$$

Abramowitz, M., and I. A. Stegun. <u>Handbook of Mathematical Functions</u>, 6th printing, National Bureau of Standards, U.S. Department of Commerce, Washington, DC, 1967.

where

$$A = \begin{cases} \frac{2}{\pi} \left\{ \theta + \sin\theta \left[\cos\theta + \frac{2}{3} \cos^3\theta + \dots + \frac{2 \cdot 4 \cdot \dots \cdot (v_2 - 3)}{3 \cdot 5 \cdot \dots \cdot (v_2 - 2)} \cos^{v_2 - 2}\theta \right] \right\}, \text{ for } v_2 > 1; \\ \frac{2\theta}{\pi}, \text{ for } v_2 = 1, \end{cases}$$

$$B = \begin{cases} \frac{2}{\sqrt{\pi}} \frac{\left(\frac{v_2 - 1}{2}\right)!}{\left(\frac{v_2 - 2}{2}\right)!} \sin\theta \cos^{v_2}\theta \left\{ 1 + \frac{v_2 + 1}{3} \sin^2\theta + \frac{(v_2 + 1)(v_2 + 3)}{3 \cdot 5} \sin^4\theta + \dots + \frac{(v_2 + 1)(v_2 + 3) \dots (v_1 + v_2 - 4)}{3 \cdot 5 \cdot \dots \cdot (v_1 - 2)} \sin^{v_1 - 3}\theta \right\}, & \text{for } v_1 > 1; \\ 0, & \text{for } v_1 = 1, \end{cases}$$

and

$$\theta = \arctan \sqrt{\frac{v_1}{v_2} k^2 F_C}$$
.

5. EXAMPLE

As an example of how to use the tables, consider an aerodynamics engineer who has made design modifications to a projectile. He believes that these changes can reduce the round-to-round dispersion by 25% and plans to fire 15 rounds of "old" ammunition and 15 rounds of the modified ammunition to test his conjecture. Because the modifications are inexpensive, he is willing to accept a 10% risk of

concluding that the round-to-round dispersion does decrease with his modification, even if there is no difference. If he is to use an F test to analyze his data, what is the power of the test for an actual 25% reduction in dispersion?

The significance level of the test is his probability of wrongfully concluding that the dispersions differ when they are equal, which we are told will be accepted as 10%; so $\alpha = 0.10$. Letting the first sample consist of "old" ammunition and the second sample consist of modified ammunition, the degrees of freedom are $v_1 = 14$ and $v_2 = 14$. If the actual reduction in dispersion is believed to 25%, then $k = \sigma_2 / \sigma_1 = 0.75$. Using the tables on pages 58 and 59 headed by $\alpha = 0.10$ and $\sigma_2 / \sigma_1 = 0.75$, we see that for $v_1 = 14$ and $v_2 = 14$, the power of the one-sided F test is 0.406.

If the engineer is dissatisfied with this value, he may increase the power of the test by either increasing alpha or increasing the sample sizes. Suppose now that the engineer wants the power of the test to be approximately 0.60 without changing the significance level. If he agrees to fire 31 rounds of the old ammunition, how many rounds of modified ammunition should be fired?

Referring to the same table ($\alpha = 0.10$, k = 0.75), we see that for $v_1 = 30$, a power of approximately 0.60 is obtained when $v_2 = 30$. Therefore, he should fire 31 rounds of the modified ammunition to achieve the desired power.

INTENTIONALLY LEFT BLANK.

APPENDIX:

POWER TABLES

α =	.01							ν ₁						
σ_2/σ_1	95	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	6	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013
	7	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.014	0.014	0.014
	8	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014
	10	0.014	0.014	0.014	0.014	0.014	0.014	0.015	0.015	0.015	0.015	0.015	0.015	0.015
	12	0.014	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015
	14	0.015	0.015	0.015	0.015	0.015	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	16	0.015	0.015	0.015	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.017	0.017	0.017
	18	0.015	0.016	0.016	0.016	0.016	0.016	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	20	0.016	0.016	0.016	0.016	0.016	0.017	0.017	0.017	0.017	0.017	0.018	0.018	0.018
	25	0.016	0.016	0.017	0.017	0.017	0.017	0.018	0.018	0.018	0.018	0.019	0.019	0.019
	30	0.016	0.017	0.017	0.017	0.018	0.018	0.018	0.019	0.019	0.019	0.019	0.020	0.020
	35	0.017	0.017	0.017	0.017	0.018	0.018	0.019	0.019	0.019	0.020	0.020	0.021	0.021
ν ₂	40	0.017	0.017	0.017	0.018	0.018	0.019	0.019	0.020	0.020	0.020	0.021	0.021	0.022
	45	0.017	0.017	0.018	0.018	0.019	0.019	0.020	0.020	0.020	0.021	0.021	0.022	0.022
	50	0.017	0.017	0.018	0.018	0.019	0.019	0.020	0.020	0.021	0.021	0.022	0.022	0.023
	55	0.017	0.018	0.018	0.018	0.019	0.020	0.020	0.021	0.021	0.021	0.022	0.023	0.024
	60	0.017	0.018	0.018	0.018	0.019	0.020	0.020	0.021	0.021	0.022	0.023	0.023	0.024
	65	0.017	0.018	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.022	0.023	0.024	0.025
	70	0.017	0.018	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.022	0.023	0.024	0.025
	75	0.017	0.018	0.018	0.019	0.020	0.020	0.021	0.021	0.022	0.022	0.024	0.024	0.025
	80	0.017	0.018	0.018	0.019	0.020	0.020	0.021	0.022	0.022	0.023	0.024	0.025	0.026
	85	0.017	0.018	0.018	0.019	0.020	0.021	0.021	0.022	0.022	0.023	0.024	0.025	0.026
	90	0.017	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.023	0.023	0.024	0.025	0.026
	95	0.018	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.023	0.023	0.024	0.026	0.027
	100	0.018	0.018	0.019	0.019	0.020	0.021	0.021	0.022	0.023	0.023	0.025	0.026	0.027

						ν		, ,				,	α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	95
0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	5	
0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	0.013	6	
0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	7	
0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	0.014	8	
0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	0.015	10	
0.015	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	12	
0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	14	
0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	16	
0.017	0.017	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	18	
0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	20	
0.019	0.019	0.019	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	25	
0.020	0.020	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	30	
0.021	0.021	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.023	0.023	0.023	0.023	35	
0.022	0.022	0.023	0.023	0.023	0.023	0.023	0.023	0.024	0.024	0.024	0.024	0.024	40	V ₂
0.023	0.023	0.023	0.024	0.024	0.024	0.024	0.025	0.025	0.025	0.025	0.025	0.025	45	
0.023	0.024	0.024	0.025	0.025	0.025	0.025	0.025	0.026	0.026	0.026	0.026	0.026	50	
0.024	0.025	0.025	0.025	0.026	0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.027	55	
0.025	0.025	0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.028	0.028	0.028	0.028	60	
0.025	0.026	0.026	0.027	0.027	0.027	0.028	0.028	0.028	0.028	0.029	0.029	0.029	65	
0.026	0.026	0.027	0.027	0.028	0.028	0.028	0.029	0.029	0.029	0.030	0.030	0.030	70	
0.026	0.027	0.027	0.028	0.028	0.029	0.029	0.029	0.030	0.030	0.030	0.031	0.031	75	
0.026	0.027	0.028	0.028	0.029	0.029	0.030	0.030	0.030	0.031	0.031	0.031	0.032	80	
0.027	0.027	0.028	0.029	0.029	0.030	0.030	0.031	0.031	0.031	0.032	0.032	0.032	85	
0.027	0.028	0.029	0.029	0.030	0.030	0.031	0.031	0.032	0.032	0.032	0.033	0.033	90	
0.027	0.028	0.029	0.030	0.030	,0.031	0.031	0.032	0.032	0.033	0.033	0.033	0.034	95	
0.028	0.029	0.029	0.030	0.031	0.031	0.032	0.032	0.033	0.033	0.034	0.034	0.034	100	

α -	.01							v ₁						
σ_2/σ_1	= .90	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016
	6	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017
	7	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.018	0.019
	8	0.018	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.020	0.020	0.020
	10	0.020	0.020	0.020	0.021	0.021	0.021	0.021	0.021	0.021	0.022	0.022	0.022	0.022
	12	0.021	0.021	0.022	0.022	0.022	0.023	0.023	0.023	0.023	0.023	0.024	0.024	0.024
	14	0.022	0.022	0.023	0.023	0.024	0.024	0.024	0.025	0.025	0.025	0.026	0.026	0.026
	16	0.023	0.023	0.024	0.024	0.025	0.025	0.026	0.026	0.027	0.027	0.027	0.028	0.028
	18	0.023	0.024	0.025	0.025	0.026	0.027	0.027	0.028	0.028	0.028	0.029	0.029	0.030
	20	0.024	0.025	0.025	0.026	0.027	0.028	0.028	0.029	0.029	0.030	0.030	0.031	0.032
	25	0.025	0.026	0.027	0.028	0.029	0.030	0.031	0.031	0.032	0.033	0.034	0.035	0.036
	30	0.026	0.027	0.028	0.029	0.030	0.032	0.033	0.034	0.034	0.035	0.037	0.038	0.039
	35	0.027	0.028	0.029	0.030	0.032	0.033	0.034	0.035	0.037	0.037	0.039	.0.041	0.042
ν ₂	40	0.027	0.029	0.030	0.031	0.033	0.034	0.036	0.037	0.038	0.039	0.042	0.043	0.045
	45	0.028	0.029	0.030	0.031	0.034	0.035	0.037	0.038	0.040	0.041	0.044	0.046	0.048
	50	0.028	0.030	0.031	0.032	0.034	0.036	0.038	0.040	0.041	0.042	0.045	0.048	0.050
	55	0.028	0.030	0.031	0.033	0.035	0.037	0.039	0.041	0.042	0.044	0.047	0.050	0.052
	60	0.029	0.030	0.032	0.033	0.035	0.038	0.040	0.041	0.043	0.045	0.048	0.051	0.054
	65	0.029	0.030	0.032	0.033	0.036	0.038	0.040	0.042	0.044	0.046	0.049	0.053	0.056
	70	0.029	0.031	0.032	0.034	0.036	0.039	0.041	0.043	0.045	0.047	0.051	0.054	0.057
	75	0.029	0.031	0.032	0.034	0.037	0.039	0.041	0.044	0.046	0.047	0.052	0.055	0.059
	80	0.029	0.031	0.033	0.034	0.037	0.040	0.042	0.044	0.046	0.048	0.053	0.057	0.060
	85	0.030	0.031	0.033	0.034	0.037	0.040	0.042	0.045	0.047	0.049	0.053	0.058	0.061
	90	0.030	0.031	0.033	0.035	0.038	0.040	0.043	0.045	0.047	0.049	0.054	0.059	0.063
	95	0.030	0.032	0.033	0.035	0.038	0.041	0.043	0.046	0.048	0.050	0.055	0.059	0.064
	100	0.030	0.032	0.033	0.035	0.038	0.041	0.043	0.046	0.048	0.050	0.056	0.060	0.065

						v ₁							α -	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	90
0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	0.016	5	
0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	0.017	6	
0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	7	
0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.020	8	
0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	0.022	10	
0.024	0.024	0.024	0.024	0.024	0.024	0.025	0.025	0.025	0.025	0.025	0.025	0.025	12	
0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	14	
0.028	0.028	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	0.029	16	
0.030	0.030	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.032	0.032	18	
0.032	0.032	0.032	0.033	0.033	0.033	0.033	0.033	0.033	0.034	0.034	0.034	0.034	20	
0.036	0.037	0.037	0.037	0.038	0.038	0.038	0.038	0.039	0.039	0.039	0.039	0.039	25	
0.040	0.041	0.041	0.042	0.042	0.043	0.043	0.043	0.044	0.044	0.044	0.044	0.045	30	
0.043	0.044	0.045	0.046	0.046	0.047	0.047	0.048	0.048	0.049	0.049	0.049	0.050	35	
0.046	0.048	0.049	0.050	0.050	0.051	0.052	0.052	0.053	0.053	0.054	0.054	0.055	40	V ₂
0.049	0.051	0.052	0.053	0.054	0.055	0.056	0.056	0.057	0.058	0.058	0.059	0.059	45	
0.052	0.053	0.055	0.056	0.057	0.058	0.059	0.060	0.061	0.062	0.062	0.063	0.064	50	
0.054	0.056	0.058	0.059	0.061	0.062	0.063	0.064	0.065	0.066	0.067	0.067	0.068	55	
0.056	0.058	0.060	0.062	0.063	0.065	0.066	0.067	0.068	0.069	0.070	0.071	0.072	60	
0.058	0.061	0.063	0.065	0.066	0.068	0.069	0.071	0.072	0.073	0.074	0.075	0.076	65	
0.060	0.063	0.065	0.067	0.069	0.071	0.072	0.074	0.075	0.076	0.078	0.079	0.080	70	
0.062	0.064	0.067	0.069	0.071	0.073	0.075	0.077	0.078	0.080	0.081	0.082	0.084	75	
0.063	0.066	0.069	0.071	0.074	0.076	0.078	0.079	0.081	0.083	0.084	0.086	0.087	80	
0.065	0.068	0.071	0.073	0.076	0.078	0.080	0.082	0.084	0.086	0.087	0.089	0.090	8 5	
0.066	0.069	0.072	0.075	0.078	0.080	0.083	0.085	0.087	0.089	0.090	0.092	0.094	90	
0.067	0.071	0.074	0.077	0.080	0.082	0.085	0.087	0.089	0.091	0.093	0.095	0.097	95	·
0.069	0.072	0.076	0.079	0.082	0.084	0.087	0.089	0.092	0.094	0.096	0.098	0.100	100	

α -	01				•			v ₁						·
σ_2/σ_1	= .85	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.020	0.020	0.020	0.020	0.020	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021
	6	0.022	0.022	0.022	0.022	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023
	7	0.024	0.024	0.024	0.024	0.025	0.025	0.025	0.025	0.025	0.025	0.025	0.026	0.026
	8	0.025	0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.027	0.028	0.028	0.028	0.028
	10	0.028	0.029	0.029	0.030	0.030	0.031	0.031	0.031	0.032	0.032	0.032	0.033	0.033
	12	0.030	0.031	0.032	0.033	0.034	0.034	0.035	0.035	0.036	0.036	0.037	0.037	0.037
	14	0.032	0.033	0.034	0.035	0.036	0.037	0.038	0.039	0.039	0.040	0.041	0.042	0.042
	16	0.034	0.035	0.036	0.037	0.039	0.040	0.041	0.042	0.043	0.044	0.045	0.046	0.047
	18	0.036	0.037	0.038	0.039	0.041	0.043	0.044	0.045	0.046	0.047	0.049	0.050	0.051
	20	0.037	0.038	0.040	0.041	0.043	0.045	0.047	0.048	0.049	0.050	0.052	0.054	0.055
	25	0.039	0.041	0.043	0.045	0.048	0.050	0.052	0.054	0.056	0.057	0.060	0.063	0.065
	30	0.041	0.043	0.046	0.048	0.051	0.054	0.057	0.059	0.061	0.063	0.067	0.071	0.073
	35	0.042	0.045	0.048	0.050	0.054	0.058	0.061	0.064	0.066	0.069	0.074	0.078	0.081
V ₂	40	0.044	0.047	0.049	0.052	0.056	0.060	0.064	0.067	0.070	0.073	0.079	0.084	0.089
	45	0.045	0.048	0.051	0.053	0.058	0.063	0.067	0.071	0.074	0.077	0.084	0.090	0.095
	50	0.045	0.049	0.052	0.055	0.060	0.065	0.069	0.073	0.077	0.081	0.088	0.095	0.101
	55	0.046	0.049	0.053	0.056	0.061	0.066	0.071	0.076	0.080	0.084	0.092	0.100	0.106
	60	0.046	0.050	0.053	0.057	0.063	0.068	0.073	0.078	0.082	0.086	0.096	0.104	0.111
	65	0.047	0.051	0.054	0.057	0.064	0.069	0.075	0.080	0.084	0.089	0.099	0.108	0.116
	70	0.047	0.051	0.055	0.058	0.065	0.071	0.076	0.081	0.086	0.091	0.102	0.111	0.120
	75	0.048	0.052	0.055	0.059	0.065	0.072	0.077	0.083	0.088	0.093	0.104	0.114	0.124
	80	0.048	0.052	0.056	0.059	0.066	0.073	0.078	0.084	0.090	0.095	0.107	0.117	0.127
	85	0.048	0.052	0.056	0.060	0.067	0.073	0.080	0.085	0.091	0.096	0.109	0.120	0.130
	90	0.049	0.053	0.057	0.060	0.067	0.074	0.080	0.086	0.092	0.098	0.111	0.122	0.133
	95	0.049	0.053	0.057	0.061	0.068	0.075	0.081	0.088	0.093	0.099	0.113	0.125	0.136
	100	0.049	0.053	0.057	0.061	0.069	0.075	0.082	0.088	0.095	0.100	0.114	0.127	0.139

						. v ₁							α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	85
0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.021	5	
0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	0.023	6	
0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	7	
0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	8	
0.033	0.033	0.033	0.033	0.033	0.033	0.033	0.034	0.034	0.034	0.034	0.034	0.034	10	
0.038	0.038	0.038	0.038	0.038	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039	12	
0.042	0.043	0.043	0.043	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.044	0.045	14	
0.047	0.048	0.048	0.048	0.049	0.049	0.049	0.049	0.049	0.050	0.050	0.050	0.050	16	
0.052	0.052	0.053	0.053	0.054	0.054	0.054	0.055	0.055	0.055	0.055	0.055	0.056	18	
0.056	0.057	0.057	0.058	0.059	0.059	0.059	0.060	0.060	0.060	0.061	0.061	0.061	20	
0.066	0.068	0.069	0.070	0.071	0.071	0.072	0.073	0.073	0.074	0.074	0.075	0.075	25	
0.076	0.078	0.079	0.081	0.082	0.083	0.084	0.085	0.086	0.087	0.088	0.088	0.089	30	
0.084	0.087	0.089	0.091	0.093	0.095	0.096	0.097	0.099	0.100	0.101	0.101	0.102	35	
0.092	0.096	0.098	0.101	0.103	0.105	0.107	0.109	0.110	0.112	0.113	0.114	0.115	40	V ₂
0.100	0.103	0.107	0.110	0.113	0.115	0.118	0.120	0.122	0.124	0.125	0.127	0.128	45	
0.106	0.111	0.115	0.119	0.122	0.125	0.128	0.130	0.133	0.135	0.137	0.139	0.140	50	
0.112	0.117	0.122	0.126	0.130	0.134	0.137	0.140	0.143	0.145	0.148	0.150	0.152	55	
0.118	0.124	0.129	0.134	0.138	0.142	0.146	0.149	0.153	0.156	0.158	0.161	0.163	60	
0.123	0.129	0.135	0.141	0.146	0.150	0.154	0.158	0.162	0.165	0.168	0.171	0.174	65	
0.128	0.135	0.141	0.147	0.152	0.158	0.162	0.167	0.171	0.174	0.178	0.181	0.184	70	
0.132	0.140	0.147	0.153	0.159	0.165	0.170	0.174	0.179	0.183	0.187	0.191	0.194	75	
0.136	0.144	0.152	0.159	0.165	0.171	0.177	0.182	0.187	0.191	0.196	0.200	0.204	80	
0.140	0.148	0.156	0.164	0.171	0.177	0.183	0.189	0.194	0.199	0.204	0.208	0.213	85	
0.143	0.152	0.161	0.169	0.176	0.183	0.190	0.196	0.201	0.207	0.212	0.217	0.221	90	
0.146	0.156	0.165	0.173	0.181	0.189	0.196	0.202	0.208	0.214	0.219	0.224	0.229	95	
0.149	0.160	0.169	0.178	0.186	0.194	0.201	0.208	0.215	0.221	0.226	0.232	0.237	100	

α =	.01							ν ₁						
σ_2/σ_1	80	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.026	0.026	0.026	0.026	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027
	6	0.029	0.030	0.030	0.030	0.030	0.031	0.031	0.031	0.031	0.031	0.031	0.031	0.031
	7	0.032	0.033	0.033	0.033	0.034	0.034	0.035	0.035	0.035	0.035	0.035	0.036	0.036
	8	0.035	0.036	0.036	0.037	0.038	0.038	0.038	0.039	0.039	0.039	0.040	0.040	0.040
	10	0.040	0.041	0.042	0.043	0.044	0.045	0.046	0.047	0.047	0.047	0.048	0.049	0.049
	12	0.044	0.046	0.047	0.048	0.050	0.052	0.053	0.054	0.055	0.055	0.057	0.058	0.059
	14	0.048	0.050	0.052	0.053	0.056	0.058	0.059	0.061	0.062	0.063	0.065	0.066	0.068
	16	0.051	0.053	0.055	0.057	0.061	0.063	0.065	0.067	0.069	0.070	0.073	0.075	0.077
	18	0.053	0.056	0.059	0.061	0.065	0.068	0.071	0.073	0.075	0.077	0.080	0.083	0.085
	20	0.056	0.059	0.062	0.064	0.069	0.073	0.076	0.079	0.081	0.083	0.088	0.091	0.094
	25	0.060	0.064	0.068	0.071	0.077	0.083	0.087	0.091	0.094	0.098	0.104	0.110	0.114
	30	0.063	0.068	0.073	0.077	0.084	0.090	0.096	0.101	0.106	0.110	0.119	0.126	0.132
	35	0.066	0.071	0.076	0.081	0.089	0.097	0.104	0.110	0.115	0.120	0.131	0.141	0.148
V ₂	40	0.068	0.074	0.079	0.084	0.094	0.102	0.110	0.117	0.123	0.129	0.142	0.154	0.163
	45	0.070	0.076	0.082	0.087	0.097	0.107	0.115	0.123	0.130	0.137	0.152	0.165	0.176
	50	0.071	0.078	0.084	0.090	0.101	0.111	0.120	0.128	0.136	0.144	0.161	0.175	0.188
	55	0.072	0.079	0.086	0.092	0.103	0.114	0.124	0.133	0.142	0.150	0.168	0.185	0.199
	60	0.073	0.080	0.087	0.093	0.106	0.117	0.127	0.137	0.146	0.155	0.175	0.193	0.209
	65	0.074	0.081	0.088	0.095	0.108	0.119	0.130	0.141	0.151	0.160	0.182	0.201	0.218
	70	0.075	0.082	0.089	0.096	0.109	0.122	0.133	0.144	0.154	0.164	0.187	0.207	0.226
	75	0.075	0.083	0.090	0.097	0.111	0.124	0.136	0.147	0.158	0.168	0.192	0.214	0.233
	80	0.076	0.084	0.091	0.099	0.112	0.125	0.138	0.150	0.161	0.172	0.197	0.219	0.240
	85	0.077	0.084	0.092	0.100	0.114	0.127	0.140	0.152	0.164	0.175	0.201	0.225	0.246
	90	0.077	0.085	0.093	0.100	0.115	0.128	0.142	0.154	0.166	0.178	0.205	0.229	0.252
	95	0.077	0.086	0.093	0.101	0.116	0.130	0.143	0.156	0.168	0.180	0.208	0.234	0.257
	100	0.078	0.086	0.094	0.102	0.117	0.131	0.145	0.158	0.171	0.183	0.211	0.238	0.262

						v ₁							α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	80
0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	0.027	5	
0.031	0.031	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	0.032	6	
0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	7	
0.040	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	0.041	8	
0.050	0.050	0.050	0.050	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	10	
0.059	0.060	0.060	0.060	0.061	0.061	0.061	0.061	0.061	0.062	0.062	0.062	0.062	12	
0.069	0.069	0.070	0.070	0.071	0.071	0.072	0.072	0.072	0.072	0.073	0.073	0.073	14	
0.078	0.079	0.080	0.081	0.081	0.082	0.082	0.083	0.083	0.084	0.084	0.084	0.084	16	-
0.087	0.089	0.090	0.091	0.092	0.092	0.093	0.094	0.094	0.095	0.095	0.096	0.096	18	
0.096	0.098	0.100	0.101	0.102	0.103	0.104	0.105	0.106	0.106	0.107	0.107	0.108	20	
0.118	0.121	0.123	0.125	0.127	0.129	0.131	0.132	0.133	0.135	0.136	0.137	0.137	25	
0.137	0.142	0.145	0.149	0.152	0.154	0.157	0.159	0.161	0.163	0.164	0.166	0.167	30	:
0.155	0.161	0.166	0.171	0.175	0.178	0.181	0.184	0.187	0.190	0.192	0.194	0.196	35	
0.171	0.179	0.185	0.191	0.196	0.201	0.205	0.209	0.212	0.215	0.218	0.221	0.223	40	V ₂
0.186	0.195	0.203	0.210	0.216	0.221	0.227	0.231	0.236	0.240	0.243	0.247	0.250	45	
0.200	0.210	0.219	0.227	0.234	0.241	0.247	0.253	0.258	0.262	0.267	0.271	0.275	50	
0.212	0.223	0.233	0.243	0.251	0.259	0.266	0.272	0.278	0.284	0.289	0.294	0.298	55	
0.223	0.235	0.247	0.257	0.267	0.276	0.284	0.291	0.298	0.304	0.310	0.316	0.321	60	
0.233	0.247	0.259	0.271	0.281	0.291	0.300	0.308	0.316	0.323	0.330	0.336	0.342	65	
0.242	0.257	0.271	0.283	0.295	0.305	0.315	0.324	0.333	0.341	0.348	0.355	0.361	70	
0.251	0.267	0.281	0.295	0.307	0.319	0.329	0.339	0.349	0.357	0.365	0.373	0.380	75	
0.259	0.276	0.291	0.306	0.319	0.331	0.343	0.353	0.363	0.372	0.381	0.389	0.397	80	
0.266	0.284	0.300	0.316	0.330	0.343	0.355	0.366	0.377	0.387	0.396	0.405	0.413	85	
0.272	0.291	0.309	0.325	0.340	0.354	0.367	0.379	0.390	0.400	0.410	0.419	0.428	90	
0.279	0.298	0.317	0.334	0.349	0.364	0.377	0.390	0.402	0.413	0.423	0.433	0.442	95	
0.284	0.305	0.324	0.342	0.358	0.373	0.388	0.401	0.413	0.425	0.436	0.446	0.456	100	

α =	.01			i		,		ν ₁						
σ_2/σ_1	75	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.034	0.034	0.034	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.036	0.036	0.036
	6	0.039	0.040	0.040	0.040	0.041	0.041	0.042	0.042	0.042	0.042	0.043	0.043	0.043
	7	0.044	0.045	0.046	0.046	0.047	0.048	0.048	0.049	0.049	0.049	0.050	0.050	0.050
	8	0.049	0.050	0.051	0.052	0.053	0.054	0.055	0.056	0.056	0.056	0.057	0.058	0.058
	10	0.057	0.059	0.061	0.062	0.065	0.066	0.068	0.069	0.070	0.071	0.072	0.074	0.074
	12	0.064	0.067	0.069	0.071	0.075	0.078	0.080	0.082	0.084	0.085	0.088	0.090	0.091
	14	0.070	0.073	0.077	0.080	0.084	0.088	0.092	0.094	0.096	0.098	0.102	0.105	0.108
	16	0.075	0.079	0.083	0.087	0.093	0.098	0.102	0.106	0.109	0.111	0.117	0.121	0.124
	18	0.079	0.084	0.089	0.093	0.101	0.107	0.112	0.116	0.120	0.124	0.130	0.136	0.140
	20	0.083	0.089	0.094	0.099	0.107	0.115	0.121	0.126	0.131	0.135	0.143	0.150	0.156
	25	0.090	0.098	0.104	0.111	0.122	0.131	0.140	0.148	0.154	0.160	0.173	0.183	0.192
	30	0.096	0.104	0.112	0.120	0.133	0.145	0.156	0.165	0.174	0.182	0.199	0.213	0.224
	35	0.100	0.109	0.118	0.127	0.142	0.156	0.168	0.180	0.190	0.200	0.221	0.238	0.253
V ₂	40	0.103	0.114	0.123	0.133	0.150	0.165	0.179	0.192	0.204	0.215	0.240	0.260	0.278
	45	0.106	0.117	0.127	0.137	0.156	0.173	0.188	0.203	0.216	0.228	0.256	0.280	0.300
	- 50	0.108	0.120	0.131	0.141	0.161	0.179	0.196	0.212	0.226	0.240	0.270	0.297	0.320
	55	0.110	0.122	0.134	0.145	0.165	0.185	0.203	0.219	0.235	0.250	0.283	0.312	0.337
	60	0.112	0.124	0.136	0.148	0.169	0.189	0.208	0.226	0.243	0.259	0.294	0.325	0.353
	65	0.113	0.126	0.138	0.150	0.173	0.194	0.213	0.232	0.250	0.266	0.304	0.337	0.367
	70	0.114	0.127	0.140	0.152	0.175	0.197	0.218	0.237	0.256	0.273	0.313	0.348	0.379
	75	0.115	0.129	0.142	0.154	0.178	0.201	0.222	0.242	0.261	0.279	0.321	0.358	0.390
,	80	0.116	0.130	0.143	0.156	0.180	0.204	0.226	0.246	0.266	0.285	0.328	0.367	0.401
	85	0.117	0.131	0.144	0.157	0.182	0.206	0.229	0.250	0.271	0.290	0.335	0.375	0.410
	90	0.118	0.132	0.146	0.159	0.184	0.209	0.232	0.254	0.275	0.295	0.341	0.382	0.419
	95	0.118	0.133	0.147	0.160	0.186	0.211	0.234	0.257	0.278	0.299	0.346	0.389	0.426
	100	0.119	0.134	0.148	0.161	0.188	0.213	0.237	0.260	0.282	0.303	0.351	0.395	0.434

						v ₁	-			A			α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 75
0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	0.036	5	
0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.044	0.044	0.044	0.044	6	
0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.052	0.052	0.052	7	
0.059	0.059	0.059	0.059	0.059	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	8]
0.075	0.076	0.076	0.077	0.077	0.077	0.077	0.078	0.078	0.078	0.078	0.078	0.078	10	
0.092	0.093	0.094	0.095	0.095	0.096	0.096	0.097	0.097	0.097	0.097	0.098	0.098	12	
0.109	0.111	0.112	0.113	0.114	0.115	0.116	0.116	0.117	0.117	0.118	0.118	0.118	14	
0.127	0.129	0.131	0.132	0.133	0.135	0.136	0.137	0.137	0.138	0.139	0.139	0.140	16	
0.144	0.146	0.149	0.151	0.153	0.154	0.156	0.157	0.158	0.159	0.160	0.161	0.162	18	
0.160	0.164	0.167	0.170	0.172	0.174	0.176	0.178	0.179	0.180	0.181	0.183	0.184	20	
0.199	0.205	0.210	0.215	0.219	0.222	0.225	0.228	0.230	0.233	0.235	0.237	0.238	25	
0.234	0.242	0.250	0.256	0.262	0.267	0.272	0.276	0.279	0.283	0.286	0.289	0.291	30	
0.265	0.276	0.286	0.294	0.302	0.309	0.315	0.320	0.325	0.330	0.334	0.338	0.341	35	
0.293	0.306	0.318	0.329	0.338	0.346	0.354	0.361	0.367	0.373	0.378	0.383	0.388	40	V ₂
0.318	0.333	0.347	0.360	0.371	0.381	0.390	0.398	0.405	0.412	0.419	0.425	0.430	45	
0.340	0.357	0.373	0.387	0.400	0.411	0.422	0.431	0.440	0.448	0.456	0.462	0.469	50	
0.359	0.379	0.397	0.412	0.426	0.439	0.451	0.462	0.472	0.481	0.489	0.497	0.504	55	
0.377	0.398	0.417	0.435	0.450	0.464	0.477	0.489	0.500	0.510	0.519	0.528	0.535	60	
0.392	0.416	0.436	0.455	0.472	0.487	0.501	0.514	0.526	0.536	0.546	0.556	0.564	65	
0.407	0.431	0.453	0.473	0.491	0.508	0.523	0.536	0.549	0.560	0.571	0.581	0.590	70	
0.419	0.445	0.469	0.490	0.509	0.526	0.542	0.557	0.570	0.582	0.594	0.604	0.614	75	
0.431	0.458	0.483	0.505	0.525	0.543	0.560	0.575	0.589	0.602	0.614	0.625	0.635	80	
0.442	0.470	0.496	0.519	0.540	0.559	0.576	0.592	0.607	0.620	0.632	0.644	0.654	8 5	
0.451	0.481	0.508	0.532	0.553	0.573	0.591	0.608	0.623	0.637	0.649	0.661	0.672	90	
0.460	0.491	0.518	0.543	0.566	0.586	0.605	0.622	0.637	0.652	0.665	0.677	0.688	95	
0.469	0.500	0.528	0.554	0.577	0.598	0.617	0.635	0.651	0.665	0.679	0.691	0.703	100	

α -	.01							v ₁						
σ_2/σ_1	70	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.044	0.045	0.045	0.046	0.046	0.047	0.047	0.047	0.047	0.047	0.048	0.048	0.048
	6	0.053	0.054	0.054	0.055	0.056	0.057	0.057	0.058	0.058	0.058	0.059	0.059	0.059
	7	0.060	0.062	0.063	0.064	0.066	0.067	0.068	0.069	0.069	0.070	0.071	0.071	0.072
	8	0.068	0.070	0.072	0.073	0.076	0.077	0.079	0.080	0.081	0.082	0.083	0.084	0.085
	10	0.081	0.084	0.087	0.090	0.094	0.097	0.100	0.102	0.104	0.106	0.108	0.111	0.112
	12	0.092	0.097	0.101	0.105	0.111	0.116	0.120	0.124	0.127	0.129	0.134	0.138	0.140
	14	0.101	0.107	0.113	0.118	0.127	0.133	0.139	0.144	0.148	0.152	0.159	0.164	0.168
	16	0.109	0.116	0.123	0.130	0.140	0.149	0.156	0.163	0.168	0.173	0.183	0.190	0.196
	18	0.115	0.124	0.132	0.140	0.152	0.163	0.172	0.180	0.187	0.193	0.205	0.215	0.223
	20	0.121	0.131	0.140	0.149	0.163	0.176	0.186	0.196	0.204	0.211	0.226	0.238	0.248
	25	0.132	0.145	0.156	0.167	0.186	0.202	0.217	0.230	0.241	0.251	0.273	0.291	0.305
	30	0.141	0.155	0.168	0.181	0.203	0.223	0.241	0.257	0.271	0.284	0.313	0.336	0.355
	35	0.147	0.163	0.178	0.191	0.217	0.240	0.260	0.279	0.296	0.312	0.346	0.373	0.397
V ₂	40	0.152	0.169	0.185	0.200	0.228	0.253	0.276	0.297	0.317	0.334	0.373	0.405	0.433
	45	0.156	0.174	0.191	0.207	0.237	0.265	0.290	0.313	0.334	0.354	0.397	0.433	0.463
	50	0.159	0.178	0.196	0.213	0.245	0.274	0.301	0.326	0.349	0.370	0.417	0.456	0.489
	55	0.162	0.182	0.200	0.218	0.251	0.282	0.311	0.337	0.361	0.384	0.434	0.476	0.512
	60	0.164	0.185	0.204	0.222	0.257	0.289	0.319	0.346	0.372	0.396	0.449	0.494	0.532
	65	0.166	0.187	0.207	0.226	0.262	0.295	0.326	0.355	0.382	0.407	0.462	0.509	0.549
	70	0.168	0.189	0.210	0.229	0.266	0.300	0.332	0.362	0.390	0.416	0.474	0.523	0.564
	75	0.170	0.191	0.212	0.232	0.270	0.305	0.338	0.369	0.397	0.424	0.484	0.535	0.578
	80	0.171	0.193	0.214	0.234	0.273	0.309	0.343	0.375	0.404	0.432	0.493	0.545	0.590
	85	0.172	0.195	0.216	0.237	0.276	0.313	0.348	0.380	0.410	0.438	0.501	0.555	0.601
	90	0.173	0.196	0.218	0.239	0.279	0.316	0.352	0.385	0.415	0.444	0.509	0.564	0.610
	95	0.174	0.197	0.219	0.241	0.281	0.319	0.355	0.389	0.420	0.450	0.516	0.572	0.619
	100	0.175	0.198	0.221	0.242	0.283	0.322	0.359	0.393	0.425	0.455	0.522	0.579	0.627

				 	,	ν					***		α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	70
0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	0.048	5	
0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.060	0.061	0.061	6	
0.072	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.074	0.074	0.074	0.074	0.074	7	
0.085	0.086	0.086	0.087	0.087	0.087	0.087	0.088	0.088	0.088	0.088	0.088	0.088	8	
0.113	0.115	0.115	0.116	0.117	0.117	0.118	0.118	0.118	0.119	0.119	0.119	0.119	10	
0.143	0.144	0.146	0.147	0.148	0.149	0.150	0.151	0.151	0.152	0.152	0.153	0.153	12	
0.172	0.175	0.177	0.179	0.181	0.182	0.183	0.185	0.186	0.186	0.187	0.188	0.189	14	
0.201	0.205	0.208	0.211	0.213	0.215	0.217	0.219	0.220	0.222	0.223	0.224	0.225	16	
0.229	0.234	0.238	0.242	0.246	0.248	0.251	0.253	0.255	0.257	0.259	0.260	0.262	18	
0.256	0.262	0.268	0.273	0.277	0.281	0.284	0.287	0.290	0.292	0.294	0.296	0.298	20	
0.318	0.328	0.337	0.344	0.351	0.357	0.362	0.367	0.371	0.375	0.379	0.382	0.385	25	
0.371	0.385	0.397	0.407	0.416	0.425	0.432	0.438	0.444	0.450	0.455	0.459	0.463	30	
0.417	0.434	0.449	0.462	0.473	0.484	0.493	0.501	0.508	0.515	0.521	0.527	0.532	35	
0.456	0.476	0.493	0.509	0.522	0.534	0.545	0.555	0.564	0.572	0.579	0.586	0.592	40	v ₂
0.489	0.512	0.531	0.549	0.564	0.578	0.590	0.601	0.611	0.620	0.628	0.636	0.643	45	
0.518	0.543	0.564	0.583	0.600	0.615	0.629	0.641	0.652	0.661	0.670	0.679	0.686	50	
0.543	0.569	0.593	0.613	0.631	0.647	0.662	0.675	0.686	0.697	0.706	0.715	0.723	55	
0.564	0.593	0.617	0.639	0.658	0.675	0.690	0.704	0.716	0.727	0.737	0.746	0.754	60	
0.583	0.613	0.639	0.662	0.681	0.699	0.715	0.729	0.741	0.753	0.763	0.773	0.781	65	
0.600	0.631	0.658	0.681	0.702	0.720	0.736	0.751	0.764	0.775	0.786	0.795	0.804	70	
0.615	0.647	0.674	0.699	0.720	0.738	0.755	0.770	0.783	0.795	0.805	0.815	0.824	75	
0.628	0.661	0.689	0.714	0.736	0.755	0.771	0.786	0.800	0.811	0.822	0.832	0.840	80	
0.640	0.673	0.702	0.728	0.750	0.769	0.786	0.801	0.814	0.826	0.837	0.846	0.855	85	
0.650	0.685	0.714	0.740	0.762	0.782	0.799	0.814	0.827	0.839	0.850	0.859	0.868	90	
0.660	0.695	0.725	0.751	0.773	0.793	0.810	0.825	0.839	0.850	0.861	0.870	0.879	95	
0.669	0.704	0.734	0.761	0.783	0.803	0.820	0.835	0.849	0.861	0.871	0.880	0.889	100	

α -	.01						•••	v ₁		# -				
σ_2/σ_1	60	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.079	0.081	0.082	0.083	0.084	0.085	0.086	0.087	0.087	0.088	0.088	0.089	0.089
	6	0.098	0.100	0.103	0.105	0.107	0.109	0.111	0.112	0.113	0.114	0.116	0.117	0.118
	7	0.115	0.120	0.123	0.126	0.131	0.134	0.137	0.139	0.141	0.142	0.145	0.147	0.149
	8	0.131	0.138	0.143	0.147	0.154	0.159	0.163	0.166	0.169	0.171	0.176	0.179	0.181
	10	0.160	0.169	0.178	0.185	0.197	0.206	0.213	0.219	0.224	0.229	0.237	0.244	0.249
	12	0.183	0.196	0.208	0.218	0.234	0.248	0.259	0.268	0.276	0.283	0.297	0.307	0.315
	14	0.202	0.218	0.233	0.245	0.267	0.285	0.300	0.313	0.323	0.333	0.352	0.366	0.377
	16	0.217	0.237	0.254	0.269	0.295	0.317	0.336	0.351	0.365	0.377	0.401	0.420	0.434
	18	0.230	0.252	0.272	0.289	0.320	0.345	0.367	0.386	0.402	0.416	0.446	0.468	0.486
	20	0.241	0.265	0.287	0.307	0.341	0.369	0.394	0.416	0.434	0.451	0.485	0.511	0.531
	25	0.263	0.291	0.317	0.340	0.382	0.418	0.449	0.476	0.499	0.520	0.563	0.597	0.623
	30	0.278	0.309	0.338	0.365	0.413	0.453	0.489	0.520	0.547	0.572	0.622	0.660	0.690
	35	0.289	0.323	0.355	0.384	0.436	0.480	0.519	0.554	0.584	0.611	0.665	0.707	0.740
V ₂	40	0.298	0.334	0.367	0.398	0.453	0.501	0.543	0.580	0.612	0.641	0.699	0.743	0.777
	45	0.305	0.342	0.377	0.410	0.468	0.518	0.562	0.601	0.635	0.665	0.725	0.771	0.806
	50	0.311	0.349	0.386	0.419	0.480	0.532	0.578	0.618	0.653	0.684	0.746	0.793	0.828
	55	0.315	0.355	0.392	0.427	0.489	0.544	0.591	0.632	0.668	0.700	0.764	0.810	0.846
	60	0.319	0.360	0.398	0.434	0.498	0.553	0.602	0.644	0.681	0.713	0.778	0.825	0.860
	6 5	0.323	0.364	0.403	0.439	0.505	0.562	0.611	0.654	0.692	0.725	0.790	0.837	0.872
	70	0.326	0.368	0.407	0.444	0.511	0.569	0.619	0.663	0.701	0.734	0.800	0.847	0.882
	75	0.328	0.371	0.411	0.449	0.516	0.575	0.626	0.670	0.709	0.743	0.809	0.856	0.890
	80	0.330	0.374	0.414	0.452	0.521	0.580	0.632	0.677	0.716	0.750	0.816	0.863	0.897
	85	0.332	0.376	0.417	0.456	0.525	0.585	0.638	0.683	0.722	0.756	0.823	0.870	0.903
	90	0.334	0.379	0.420	0.459	0.529	0.590	0.642	0.688	0.728	0.762	0.829	0.875	0.908
	95	0.336	0.380	0.422	0.461	0.532	0.594	0.647	0.693	0.733	0.767	0.834	0.880	0.913
	100	0.337	0.382	0.424	0.464	0.535	0.597	0.651	0.697	0.737	0.772	0.838	0.885	0.917

						v ₁							α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	60
0.089	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.091	0.091	0.091	0.091	5	
0.118	0.119	0.119	0.119	0.120	0.120	0.120	0.120	0.120	0.121	0.121	0.121	0.121	6	
0.150	0.151	0.151	0.152	0.152	0.153	0.153	0.154	0.154	0.154	0.154	0.155	0.155	7	
0.183	0.185	0.186	0.187	0.188	0.188	0.189	0.190	0.190	0.190	0.191	0.191	0.192	8	
0.252	0.255	0.258	0.260	0.262	0.263	0.265	0.266	0.267	0.268	0.269	0.270	0.270	10	
0.321	0.326	0.331	0.334	0.337	0.340	0.342	0.344	0.346	0.348	0.349	0.350	0.352	12	
0.386	0.394	0.400	0.405	0.410	0.414	0.417	0.420	0.423	0.425	0.427	0.429	0.431	14]. :
0.446	0.456	0.464	0.471	0.477	0.482	0.487	0.491	0.494	0.498	0.501	0.503	0.506	16	i
0.500	0.512	0.522	0.531	0.538	0.544	0.550	0.555	0.560	0.564	0.567	0.570	0.573	18	
0.548	0.562	0.574	0.584	0.592	0.600	0.607	0.612	0.618	0.622	0.627	0.630	0.634	20	
0.645	0.663	0.678	0.690	0.701	0.711	0.719	0.726	0.733	0.739	0.744	0.749	0.753	25	
0.715	0.735	0.752	0.766	0.778	0.789	0.798	0.806	0.813	0.819	0.824	0.830	0.834	30	
0.766	0.787	0.805	0.820	0.832	0.843	0.852	0.860	0.867	0.873	0.878	0.883	0.888	35	
0.804	0.826	0.843	0.858	0.870	0.881	0.889	0.897	0.904	0.909	0.914	0.919	0.923	40	V ₂
0.833	0.854	0.872	0.886	0.898	0.908	0.916	0.923	0.929	0.934	0.939	0.943	0.946	45	
0.855	0.876	0.893	0.907	0.918	0.927	0.935	0.941	0.947	0.951	0.955	0.959	0.962	50	
0.872	0.893	0.909	0.922	0.933	0.941	0.948	0.954	0.959	0.963	0.967	0.970	0.972	55	
0.886	0.906	0.922	0.934	0.944	0.952	0.958	0.964	0.968	0.972	0.975	0.977	0.980	60	
0.898	0.917	0.932	0.944	0.953	0.960	0.966	0.971	0.975	0.978	0.981	0.983	0.985	65	
0.907	0.926	0.940	0.951	0.960	0.967	0.972	0.976	0.980	0.982	0.985	0.987	0.988	70	
0.915	0.933	0.947	0.957	0.965	0.971	0.976	0.980	0.983	0.986	0.988	0.990	0.991	75	
0.921	0.939	0.952	0.962	0.970	0.975	0.980	0.983	0.986	0.988	0.990	0.992	0.993	80	
0.927	0.944	0.957	0.966	0.973	0.979	0.983	0.986	0.988	0.990	0.992	0.993	0.994	85	
0.931	0.948	0.960	0.969	0.976	0.981	0.985	0.988	0.990	0.992	0.993	0.995	0.995	90	
0.936	0.952	0.964	0.972	0.979	0.983	0.987	0.990	0.992	0.993	0.995	0.996	0.996	95	
0.939	0.955	0.966	0.975	0.981	0.985	0.988	0.991	0.993	0.994	0.995	0.996	0.997	100	

α =	.01							v ₁	······································					
σ_2/σ_1	= .50	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.146	0.150	0.154	0.156	0.160	0.163	0.166	0.167	0.169	0.170	0.172	0.173	0.175
	6	0.184	0.192	0.198	0.203	0.210	0.216	0.220	0.224	0.227	0.229	0.233	0.237	0.239
	7	0.219	0.230	0.239	0.247	0.259	0.268	0.275	0.281	0.286	0.290	0.297	0.303	0.307
	8	0.250	0.265	0.277	0.288	0.304	0.317	0.328	0.336	0.343	0.349	0.360	0.368	0.374
	10	0.301	0.323	0.341	0.357	0.383	0.404	0.421	0.434	0.446	0.456	0.475	0.489	0.500
	12	0.340	0.367	0.391	0.412	0.447	0.474	0.497	0.515	0.531	0.545	0.571	0.591	0.606
	14	0.370	0.403	0.431	0.456	0.497	0.530	0.557	0.580	0.599	0.616	0.648	0.672	0.690
	16	0.394	0.431	0.462	0.490	0.537	0.575	0.606	0.632	0.653	0.672	0.708	0.735	0.755
	18	0.413	0.453	0.488	0.518	0.570	0.611	0.645	0.673	0.696	0.716	0.755	0.783	0.804
	20	0.429	0.472	0.509	0.541	0.596	0.640	0.676	0.706	0.731	0.752	0.792	0.821	0.842
	25	0.459	0.506	0.547	0.584	0.645	0.694	0.733	0.765	0.792	0.814	0.855	0.883	0.903
	30	0.479	0.529	0.574	0.613	0.678	0.729	0.770	0.803	0.830	0.852	0.892	0.919	0.937
	35	0.493	0.546	0.593	0.634	0.701	0.754	0.796	0.829	0.856	0.877	0.916	0.940	0.956
ν ₂	40	0.504	0.559	0.607	0.649	0.718	0.772	0.815	0.848	0.874	0.895	0.932	0.954	0.968
	45	0.513	0.569	0.618	0.661	0.732	0.786	0.829	0.862	0.887	0.908	0.943	0.963	0.975
,	50	0.520	0.577	0.627	0.671	0.742	0.797	0.840	0.872	0.898	0.918	0.951	0.969	0.980
	55	0.526	0.584	0.634	0.679	0.751	0.806	0.848	0.881	0.906	0.925	0.957	0.974	0.984
	60	0.530	0.589	0.640	0.685	0.758	0.813	0.856	0.888	0.912	0.931	0.961	0.978	0.987
	65	0.534	0.594	0.646	0.691	0.764	0.820	0.861	0.893	0.917	0.936	0.965	0.980	0.989
	70	0.538	0.598	0.650	0.695	0.769	0.825	0.866	0.898	0.922	0.940	0.968	0.982	0.990
	75	0.541	0.601	0.654	0.699	0.774	0.829	0.871	0.902	0.925	0.943	0.970	0.984	0.991
	80	0.543	0.604	0.657	0.703	0.777	0.833	0.874	0.905	0.929	0.946	0.972	0.986	0.992
	85	0.546	0.607	0.660	0.706	0.781	0.836	0.878	0.908	0.931	0.948	0.974	0.987	0.993
	90	0.548	0.609	0.663	0.709	0.784	0.839	0.880	0.911	0.934	0.950	0.976	0.988	0.994
	95	0.550	0.611	0.665	0.711	0.786	0.842	0.883	0.913	0.936	0.952	0.977	0.989	0.994
	100	0.551	0.613	0.667	0.714	0.789	0.844	0.885	0.915	0.937	0.954	0.978	0.989	0.995

						v ₁	•				•		α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	50
0.175	0.176	0.177	0.177	0.177	0.178	0.178	0.178	0.178	0.179	0.179	0.179	0.179	5	
0.241	0.242	0.243	0.244	0.245	0.246	0.246	0.247	0.247	0.248	0.248	0.248	0.249	6]
0.310	0.312	0.314	0.316	0.317	0.319	0.320	0.321	0.321	0.322	0.323	0.323	0.324	7	
0.379	0.383	0.386	0.389	0.391	0.393	0.394	0.396	0.397	0.398	0.399	0.400	0.401	8	
0.508	0.515	0.521	0.526	0.530	0.533	0.536	0.539	0.541	0.543	0.545	0.547	0.548	10	
0.617	0.627	0.635	0.641	0.647	0.652	0.656	0.660	0.663	0.666	0.669	0.671	0.673	12	
0.704	0.715	0.725	0.733	0.739	0.745	0.750	0.754	0.758	0.762	0.765	0.768	0.770	14	
0.770	0.783	0.793	0.802	0.809	0.815	0.820	0.825	0.829	0.833	0.836	0.839	0.842	16	
0.821	0.833	0.844	0.853	0.860	0.866	0.871	0.876	0.880	0.883	0.887	0.889	0.892	18	
0.859	0.871	0.881	0.890	0.897	0.903	0.908	0.912	0.916	0.919	0.922	0.924	0.927	20	
0.918	0.929	0.938	0.945	0.950	0.955	0.959	0.962	0.965	0.967	0.969	0.971	0.972	25	
0.949	0.958	0.965	0.971	0.975	0.978	0.980	0.983	0.984	0.986	0.987	0.988	0.989	30	
0.966	0.974	0.979	0.983	0.986	0.988	0.990	0.992	0.993	0.994	0.994	0.995	0.996	35	
0.977	0.983	0.987	0.990	0.992	0.994	0.995	0.996	0.996	0.997	0.997	0.998	0.998	40	V ₂
0.983	0.988	0.991	0.993	0.995	0.996	0.997	0.998	0.998	0.998	0.999	0.999	0.999	45	
0.987	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	0.999	1.000	50	
0.990	0.993	0.996	0.997	0.998	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	55	
0.992	0.995	0.997	0.998	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	60	
0.993	0.996	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
0.994	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
0.995	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
0.997	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.01		•					ν ₁						
σ_2/σ_1	40	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.276	0.287	0.295	0.302	0.313	0.321	0.327	0.331	0.335	0.338	0.344	0.348	0.351
	6	0.344	0.361	0.375	0.387	0.405	0.418	0.429	0.437	0.444	0.450	0.460	0.468	0.474
	7	0.400	0.424	0.443	0.459	0.485	0.504	0.519	0.531	0.541	0.550	0.566	0.577	0.586
	8	0.447	0.476	0.500	0.520	0.552	0.576	0.595	0.611	0.624	0.634	0.655	0.669	0.680
	10	0.516	0.553	0.584	0.610	0.652	0.684	0.708	0.728	0.744	0.758	0.784	0.801	0.815
	12	0.564	0.607	0.643	0.672	0.720	0.755	0.782	0.804	0.821	0.836	0.862	0.880	0.893
	14	0.599	0.645	0.684	0.716	0.766	0.803	0.831	0.853	0.870	0.884	0.909	0.926	0.937
	16	0.625	0.674	0.714	0.748	0.799	0.837	0.865	0.886	0.903	0.916	0.938	0.952	0.962
	18	0.645	0.695	0.737	0.771	0.824	0.861	0.888	0.909	0.924	0.936	0.956	0.968	0.976
	20	0.660	0.713	0.755	0.790	0.842	0.879	0.906	0.925	0.939	0.950	0.968	0.978	0.984
	25	0.688	0.742	0.786	0.821	0.873	0.908	0.933	0.949	0.962	0.970	0.984	0.990	0.994
	30	0.706	0.762	0.806	0.841	0.892	0.925	0.948	0.963	0.973	0.980	0.990	0.995	0.997
	35	0.719	0.775	0.819	0.854	0.904	0.936	0.957	0.970	0.979	0.985	0.994	0.997	0.998
v ₂	40	0.728	0.785	0.829	0.864	0.913	0.943	0.963	0.975	0.983	0.989	0.995	0.998	0.999
	45	0.735	0.792	0.836	0.871	0.919	0.949	0.967	0.979	0.986	0.991	0.997	0.999	0.999
	50	0.741	0.798	0.842	0.877	0.924	0.953	0.970	0.981	0.988	0.992	0.997	0.999	1.000
	55	0.746	0.803	0.847	0.881	0.928	0.956	0.973	0.983	0.989	0.993	0.998	0.999	1.000
	60	0.750	0.807	0.851	0.885	0.931	0.958	0.975	0.985	0.991	0.994	0.998	0.999	1.000
	65	0.753	0.810	0.854	0.888	0.934	0.960	0.976	0.986	0.991	0.995	0.998	0.999	1.000
	70	0.755	0.813	0.857	0.890	0.936	0.962	0.978	0.987	0.992	0.995	0.999	1.000	1.000
	75	0.758	0.815	0.859	0.892	0.937	0.964	0.979	0.988	0.993	0.996	0.999	1.000	1.000
	80	0.760	0.817	0.861	0.894	0.939	0.965	0.980	0.988	0.993	0.996	0.999	1.000	1.000
	85	0.762	0.819	0.863	0.896	0.940	0.966	0.980	0.989	0.993	0.996	0.999	1.000	1.000
	90	0.763	0.821	0.864	0.897	0.942	0.967	0.981	0.989	0.994	0.996	0.999	1.000	1.000
	95	0.765	0.822	0.866	0.899	0.943	0.968	0.982	0.990	0.994	0.997	0.999	1.000	1.000
	100	0.766	0.823	0.867	0.900	0.944	0.968	0.982	0.990	0.994	0.997	0.999	1.000	1.000

						v ₁			·				α =	.01
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	40
0.354	0.355	0.357	0.358	0.359	0.360	0.361	0.361	0.362	0.363	0.363	0.363	0.364	5	
0.478	0.482	0.485	0.487	0.489	0.491	0.492	0.493	0.495	0.496	0.496	0.497	0.498	6	
0.592	0.597	0.602	0.605	0.608	0.611	0.613	0.615	0.617	0.618	0.620	0.621	0.622	7	
0.688	0.695	0.701	0.705	0.709	0.712	0.715	0.718	0.720	0.722	0.724	0.725	0.727	8	
0.825	0.833	0.839	0.845	0.849	0.853	0.856	0.859	0.862	0.864	0.866	0.868	0.869	10	
0.903	0.910	0.916	0.921	0.925	0.929	0.931	0.934	0.936	0.938	0.940	0.941	0.942	12	
0.945	0.952	0.956	0.960	0.963	0.966	0.968	0.970	0.971	0.973	0.974	0.975	0.976	14	
0.968	0.973	0.977	0.980	0.982	0.984	0.985	0.986	0.987	0.988	0.989	0.989	0.990	16	
0.981	0.985	0.987	0.989	0.991	0.992	0.993	0.994	0.994	0.995	0.995	0.996	0.996	18	
0.988	0.991	0.993	0.994	0.995	0.996	0.996	0.997	0.997	0.998	0.998	0.998	0.998	20	
0.996	0.997	0.998	0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	25]
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	:
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.01							v ₁			***************************************			
σ_2/σ_1	30	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.506	0.528	0.547	0.562	0.584	0.601	0.614	0.624	0.632	0.639	0.651	0.660	0.666
	6	0.595	0.625	0.649	0.669	0.700	0.722	0.739	0.752	0.763	0.772	0.788	0.800	0.808
	7	0.658	0.694	0.722	0.745	0.779	0.804	0.823	0.837	0.849	0.858	0.875	0.887	0.895
	8	0.705	0.743	0.773	0.797	0.833	0.859	0.877	0.891	0.902	0.911	0.927	0.937	0.944
	10	0.765	0.806	0.837	0.861	0.896	0.920	0.936	0.947	0.956	0.962	0.973	0.980	0.984
	12	0.802	0.843	0.873	0.897	0.929	0.949	0.962	0.971	0.978	0.982	0.989	0.993	0.995
	14	0.825	0.866	0.896	0.918	0.948	0.965	0.976	0.983	0.987	0.991	0.995	0.997	0.998
	16	0.842	0.882	0.911	0.932	0.959	0.974	0.983	0.989	0.992	0.995	0.998	0.999	0.999
	18	0.854	0.894	0.922	0.942	0.967	0.980	0.988	0.992	0.995	0.997	0.999	0.999	1.000
	20	0.864	0.902	0.929	0.949	0.972	0.984	0.991	0.994	0.996	0.998	0.999	1.000	1.000
	25	0.879	0.917	0.942	0.959	0.980	0.989	0.994	0.997	0.998	0.999	1.000	1.000	1.000
	30	0.889	0.925	0.949	0.966	0.984	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000
	35	0.896	0.931	0.954	0.970	0.986	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000
v ₂	40	0.900	0.935	0.958	0.972	0.988	0.995	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	45	0.904	0.938	0.960	0.974	0.989	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000
	50	0.907	0.941	0.962	0.976	0.990	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000
	55	0.909	0.942	0.964	0.977	0.991	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000
	60	0.911	0.944	0.965	0.978	0.991	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	65	0.912	0.945	0.966	0.979	0.992	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	70	0.913	0.946	0.967	0.979	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	75	0.915	0.947	0.967	0.980	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	80	0.916	0.948	0.968	0.980	0.993	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	85	0.916	0.949	0.969	0.981	0.993	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	90	0.917	0.949	0.969	0.981	0.993	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	95	0.918	0.950	0.969	0.981	0.993	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	100	0.918	0.950	0.970	0.982	0.993	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000

						v ₁							α -	.01
40	45	50	55	6 0	65	70	75	80	85	90	95	100	σ_2/σ_1	30
0.671	0.675	0.678	0.681	0.683	0.685	0.687	0.688	0.689	0.691	0.692	0.692	0.693	5	
0.814	0.820	0.824	0.827	0.830	0.832	0.834	0.836	0.838	0.839	0.840	0.841	0.842	6	
0.901	0.906	0.910	0.913	0.916	0.918	0.920	0.922	0.923	0.925	0.926	0.927	0.928	7	
0.949	0.953	0.956	0.959	0.961	0.963	0.964	0.965	0.966	0.967	0.968	0.969	0.969	8	
0.987	0.989	0.990	0.991	0.992	0.993	0.993	0.994	0.994	0.995	0.995	0.995	0.995	10	
0.996	0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	12	
0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	·
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α =	.05				· .			ν ₁				.		
σ_2/σ_1	95	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.062	0.062	0.062	0.062	0.062
	6	0.062	0.062	0.062	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063	0.063
	7	0.063	0.063	0.064	0.064	0.064	0.064	0.064	0.065	0.065	0.065	0.065	0.065	0.065
	8	0.064	0.064	0.065	0.065	0.065	0.066	0.066	0.066	0.066	0.066	0.066	0.067	0.067
	10	0.065	0.066	0.066	0.067	0.067	0.068	0.068	0.068	0.069	0.069	0.069	0.069	0.069
	12	0.067	0.067	0.068	0.068	0.069	0.070	0.070	0.070	0.071	0.071	0.071	0.072	0.072
	14	0.068	0.068	0.069	0.069	0.070	0.071	0.072	0.072	0.072	0.073	0.073	0.074	0.074
	16	0.068	0.069	0.070	0.070	0.072	0.072	0.073	0.073	0.074	0.074	0.075	0.076	0.076
	18	0.069	0.070	0.071	0.071	0.073	0.073	0.074	0.075	0.075	0.076	0.077	0.077	0.078
	20	0.069	0.070	0.071	0.072	0.073	0.074	0.075	0.076	0.077	0.077	0.078	0.079	0.080
	25	0.070	0.072	0.073	0.074	0.075	0.076	0.077	0.078	0.079	0.080	0.081	0.082	0.083
	30	0.071	0.072	0.074	0.075	0.076	0.078	0.079	0.080	0.081	0.082	0.084	0.085	0.086
	35	0.072	0.073	0.074	0.075	0.077	0.079	0.081	0.082	0.083	0.084	0.086	0.087	0.089
v ₂	40	0.072	0.074	0.075	0.076	0.078	0.080	0.082	0.083	0.084	0.085	0.088	0.089	0.091
	45	0.072	0.074	0.075	0.077	0.079	0.081	0.083	0.084	0.085	0.087	0.089	0.091	0.093
	50	0.073	0.074	0.076	0.077	0.079	0.082	0.083	0.085	0.086	0.088	0.090	0.093	0.095
	55	0.073	0.075	0.076	0.078	0.080	0.082	0.084	0.086	0.087	0.089	0.092	0.094	0.096
	60	0.073	0.075	0.076	0.078	0.080	0.083	0.085	0.086	0.088	0.089	0.092	0.095	0.097
	65	0.073	0.075	0.077	0.078	0.081	0.083	0.085	0.087	0.089	0.090	0.093	0.096	0.099
	70	0.073	0.075	0.077	0.078	0.081	0.083	0.085	0.087	0.089	0.091	0.094	0.097	0.100
	75	0.074	0.075	0.077	0.079	0.081	0.084	0.086	0.088	0.090	0.091	0.095	0.098	0.101
	80	0.074	0.076	0.077	0.079	0.082	0.084	0.086	0.088	0.090	0.092	0.096	0.099	0.102
	85	0.074	0.076	0.077	0.079	0.082	0.084	0.087	0.089	0.090	0.092	0.096	0.099	0.102
	90	0.074	0.076	0.077	0.079	0.082	0.084	0.087	0.089	0.091	0.093	0.097	0.100	0.103
	95	0.074	0.076	0.078	0.079	0.082	0.085	0.087	0.089	0.091	0.093	0.097	0.101	0.104
	100	0.074	0.076	0.078	0.079	0.082	0.085	0.087	0.089	0.091	0.093	0.098	0.101	0.104

						ν ₁							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	= .9 5
0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	5	
0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	0.064	6]
0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	7	1
0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	0.067	8	1
0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	0.070	10	
0.072	0.072	0.072	0.072	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	0.073	12	·
0.074	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.075	0.076	0.076	0.076	14	
0.076	0.077	0.077	0.077	0.077	0.077	0.078	0.078	0.078	0.078	0.078	0.078	0.078	16	
0.078	0.079	0.079	0.079	0.079	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080	18	
0.080	0.080	0.081	0.081	0.081	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.083	20	
0.084	0.084	0.085	0.085	0.086	0.086	0.086	0.087	0.087	0.087	0.087	0.087	0.088	25	
0.087	0.088	0.089	0.089	0.090	0.090	0.090	0.091	0.091	0.091	0.092	0.092	0.092	30	
0.090	0.091	0.092	0.092	0.093	0.093	0.094	0.094	0.095	0.095	0.095	0.096	0.096	35	
0.092	0.093	0.094	0.095	0.096	0.097	0.097	0.098	0.098	0.099	0.099	0.099	0.100	40	v ₂
0.094	0.096	0.097	0.098	0.099	0.099	0.100	0.101	0.101	0.102	0.102	0.103	0.103	45	
0.096	0.098	0.099	0.100	0.101	0.102	0.103	0.103	0.104	0.105	0.105	0.106	0.106	50	
0.098	0.099	0.101	0.102	0.103	0.104	0.105	0.106	0.107	0.107	0.108	0.109	0.109	55	
0.099	0.101	0.103	0.104	0.105	0.106	0.107	0.108	0.109	0.110	0.110	0.111	0.112	60	
0.101	0.103	0.104	0.106	0.107	0.108	0.109	0.110	0.111	0.112	0.113	0.114	0.114	65	
0.102	0.104	0.106	0.107	0.109	0.110	0.111	0.112	0.113	0.114	0.115	0.116	0.117	70	
0.103	0.105	0.107	0.109	0.110	0.112	0.113	0.114	0.115	0.116	0.117	0.118	0.119	75	
0.104	0.106	0.108	0.110	0.112	0,113	0.115	0.116	0.117	0.118	0.119	0.120	0.121	80	
0.105	0.107	0.109	0.111	0.113	0.115	0.116	0.117	0.119	0.120	0.121	0.122	0.123	85 .	
0.106	0.108	0.110	0.112	0.114	0.116	0.117	0.119	0.120	0.121	0.123	0.124	0.125	90	
0.107	0.109	0.111	0.113	0.115	0.117	0.119	0.120	0.122	0.123	0.124	0.125	0.126	95	
0.107	0.110	0.112	0.114	0.116	0.118	0.120	0.122	0.123	0.124	0.126	0.127	0.128	100	

α =	.05					÷.		v ₁						
σ_2/σ_1	90	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.074	0.075	0.075	0.075	0.075	0.076	0.076	0.076	0.076	0.076	0.076	0.077	0.077
	6	0.077	0.078	0.078	0.079	0.079	0.080	0.080	0.080	0.080	0.080	0.081	0.081	0.081
·	7	0.080	0.081	0.081	0.082	0.082	0.083	0.083	0.084	0.084	0.084	0.085	0.085	0.085
	8	0.082	0.083	0.084	0.084	0.085	0.086	0.087	0.087	0.088	0.088	0.088	0.089	0.089
	10	0.086	0.087	0.088	0.089	0.091	0.092	0.093	0.093	0.094	0.094	0.095	0.096	0.096
	12	0.088	0.090	0.092	0.093	0.095	0.096	0.097	0.098	0.099	0.100	0.101	0.102	0.103
	14	0.091	0.093	0.094	0.096	0.098	0.100	0.102	0.103	0.104	0.105	0.107	0.108	0.109
	16	0.093	0.095	0.097	0.098	0.101	0.104	0.105	0.107	0.108	0.109	0.111	0.113	0.114
	18	0.094	0.097	0.099	0.101	0.104	0.106	0.109	0.110	0.112	0.113	0.116	0.118	0.119
	20	0.095	0.098	0.100	0.103	0.106	0.109	0.111	0.113	0.115	0.117	0.120	0.122	0.124
	25	0.098	0.101	0.104	0.106	0.111	0.114	0.117	0.120	0.122	0.124	0.129	0.132	0.134
	30	0.100	0.103	0.106	0.109	0.114	0.118	0.122	0.125	0.128	0.130	0.136	0.140	0.143
	35	0.101	0.105	0.108	0.111	0.117	0.121	0.126	0.129	0.132	0.135	0.141	0.146	0.151
V ₂	40	0.102	0.106	0.110	0.113	0.119	0.124	0.129	0.133	0.136	0.139	0.146	0.152	0.157
	45	0.103	0.107	0.111	0.114	0.121	0.126	0.131	0.135	0.139	0.143	0.151	0.157	0.163
	50	0.103	0.108	0.112	0.116	0.122	0.128	0.133	0.138	0.142	0.146	0.154	0.162	0.168
	55	0.104	0.109	0.113	0.117	0.123	0.129	0.135	0.140	0.144	0.149	0.158	0.165	0.172
	60	0.105	0.109	0.113	0.117	0.124	0.131	0.136	0.142	0.146	0.151	0.161	0.169	0.176
	65	0.105	0.110	0.114	0.118	0.125	0.132	0.138	0.143	0.148	0.153	0.163	0.172	0.180
	70	0.105	0.110	0.115	0.119	0.126	0.133	0.139	0.145	0.150	0.155	0.165	0.175	0.183
	75	0.106	0.111	0.115	0.119	0.127	0.134	0.140	0.146	0.151	0.156	0.167	0.177	0.186
	80	0.106	0.111	0.115	0.120	0.128	0.135	0.141	0.147	0.153	0.158	0.169	0.179	0.188
	. 8 5	0.106	0.111	0.116	0.120	0.128	0.135	0.142	0.148	0.154	0.159	0.171	0.181	0.191
	90	0.106	0.111	0.116	0.121	0.129	0.136	0.143	0.149	0.155	0.160	0.172	0.183	0.193
	95	0.107	0.112	0.116	0.121	0.129	0.137	0.143	0.150	0.156	0.161	0.174	0.185	0.195
	100	0.107	0.112	0.117	0.121	0.130	0.137	0.144	0.150	0.157	0.162	0.175	0.187	0.197

		•				ν							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	= .90
0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	0.077	5	
0.081	0.081	0.081	0.081	0.081	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	6	
0.085	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.086	7	
0.089	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	0.090	8	
0.097	0.097	0.097	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.098	0.099	0.099	10	
0.104	0.104	0.104	0.105	0.105	0.105	0.105	0.106	0.106	0.106	0.106	0.106	0.106	12	
0.110	0.110	0.111	0.111	0.112	0.112	0.112	0.113	0.113	0.113	0.113	0.113	0.114	14	
0.115	0.116	0.117	0.118	0.118	0.118	0.119	0.119	0.119	0.120	0.120	0.120	0.120	16	
0.121	0.122	0.123	0.123	0.124	0.125	0.125	0.125	0.126	0.126	0.126	0.127	0.127	18	
0.126	0.127	0.128	0.129	0.130	0.130	0.131	0.131	0.132	0.132	0.133	0.133	0.133	20	
0.137	0.138	0.140	0.141	0.142	0.143	0.144	0.145	0.146	0.147	0.147	0.148	0.148	25	
0.146	0.148	0.150	0.152	0.154	0.155	0.156	0.157	0.158	0.159	0.160	0.161	0.162	30	
0.154	0.157	0.160	0.162	0.164	0.166	0.167	0.169	0.170	0.171	0.172	0.173	0.174	35	
0.161	0.165	0.168	0.170	0.173	0.175	0.177	0.179	0.180	0.182	0.183	0.184	0.185	40	V ₂
0.167	0.171	0.175	0.178	0.181	0.183	0.186	0.188	0.190	0.191	0.193	0.195	0.196	45	
0.173	0.177	0.181	0.185	0.188	0.191	0.194	0.196	0.198	0.201	0.202	0.204	0.206	50	
0.178	0.183	0.187	0.191	0.195	0.198	0.201	0.204	0.207	0.209	0.211	0.213	0.215	55	
0.182	0.188	0.193	0.197	0.201	0.205	0.208	0.211	0.214	0.217	0.219	0.221	0.223	60	
0.186	0.192	0.198	0.202	0.207	0.211	0.214	0.218	0.221	0.224	0.226	0.229	0.231	65	
0.190	0.196	0.202	0.207	0.212	0.216	0.220	0.224	0.227	0.231	0.233	0.236	0.239	70	
0.193	0.200	0.206	0.212	0.217	0.221	0.226	0.230	0.233	0.237	0.240	0.243	0.246	75	
0.196	0.203	0.210	0.216	0.221	0.226	0.231	0.235	0.239	0.243	0.246	0.249	0.252	80	
0.199	0.207	0.213	0.220	0.225	0.231	0.235	0.240	0.244	0.248	0.252	0.255	0.259	85	
0.202	0.209	0.217	0.223	0.229	0.235	0.240	0.245	0.249	0.253	0.257	0.261	0.264	90	
0.204	0.212	0.220	0.226	0.233	0.239	0.244	0.249	0.254	0.258	0.262	0.266	0.270	95	
0.206	0.215	0.222	0.229	0.236	0.242	0.248	0.253	0.258	0.263	0.267	0.271	0.275	100	

α -	.05							v ₁						
σ_2/σ_1	85	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.091	0.092	0.092	0.093	0.093	0.094	0.094	0.095	0.095	0.095	0.095	0.096	0.096
į	6	0.096	0.097	0.098	0.099	0.100	0.101	0.102	0.102	0.103	0.103	0.103	0.104	0.104
	7	0.101	0.103	0.104	0.105	0.106	0.107	0.108	0.109	0.110	0.110	0.111	0.112	0.112
	8	0.105	0.107	0.109	0.110	0.112	0.113	0.115	0.115	0.116	0.117	0.118	0.119	0.119
	10	0.112	0.114	0.117	0.118	0.121	0.124	0.125	0.127	0.128	0.129	0.131	0.132	0.134
	12	0.117	0.120	0.123	0.125	0.129	0.132	0.135	0.137	0.139	0.140	0.143	0.145	0.146
	14	0.121	0.125	0.128	0.131	0.136	0.140	0.143	0.146	0.148	0.150	0.153	0.156	0.158
	16	0.124	0.129	0.133	0.136	0.142	0.146	0.150	0.153	0.156	0.158	0.163	0.166	0.169
	18	0.127	0.132	0.136	0.140	0.147	0.152	0.156	0.160	0.163	0.166	0.172	0.176	0.179
	20	0.129	0.135	0.139	0.144	0.151	0.157	0.162	0.166	0.170	0.173	0.180	0.185	0.189
	25	0.134	0.140	0.146	0.151	0.159	0.167	0.173	0.179	0.183	0.188	0.197	0.204	0.210
	30	0.137	0.144	0.150	0.156	0.166	0.175	0.182	0.189	0.194	0.200	0.211	0.220	0.227
	35	0.139	0.147	0.154	0.160	0.171	0.181	0.189	0.196	0.203	0.209	0.222	0.233	0.242
V ₂	40	0.141	0.149	0.156	0.163	0.175	0.185	0.195	0.203	0.211	0.217	0.232	0.245	0.255
	45	0.143	0.151	0.159	0.166	0.178	0.189	0.199	0.208	0.217	0.224	0.241	0.254	0.266
	50	0.144	0.153	0.161	0.168	0.181	0.193	0.203	0.213	0.222	0.230	0.248	0.263	0.276
	55	0.145	0.154	0.162	0.170	0.183	0.196	0.207	0.217	0.226	0.235	0.254	0.271	0.285
	60	0.146	0.155	0.163	0.171	0.185	0.198	0.210	0.221	0.230	0.240	0.260	0.277	0.292
	65	0.147	0.156	0.164	0.172	0.187	0.200	0.212	0.224	0.234	0.243	0.265	0.283	0.299
	70	0.147	0.157	0.165	0.174	0.189	0.202	0.215	0.226	0.237	0.247	0.269	0.288	0.305
	75	0.148	0.157	0.166	0.175	0.190	0.204	0.217	0.229	0.240	0.250	0.273	0.293	0.311
	80	0.148	0.158	0.167	0.176	0.191	0.205	0.219	0.231	0.242	0.253	0.277	0.298	0.316
	85	0.149	0.159	0.168	0.176	0.192	0.207	0.220	0.233	0.244	0.255	0.280	0.302	0.321
	90	0.149	0.159	0.168	0.177	0.193	0.208	0.222	0.234	0.246	0.257	0.283	0.305	0.325
	95	0.150	0.160	0.169	0.178	0.194	0.209	0.223	0.236	0.248	0.260	0.286	0.309	0.329
	100	0.150	0.160	0.169	0.178	0.195	0.210	0.224	0.237	0.250	0.261	0.288	0.312	0.333

					<u> </u>	ν ₁							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	= .85
0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.096	0.097	0.097	0.097	0.097	5	
0.104	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	0.105	6	
0.112	0.113	0.113	0.113	0.113	0.113	0.113	0.114	0.114	0.114	0.114	0.114	0.114	7	
0.120	0.120	0.121	0.121	0.121	0.121	0.122	0.122	0.122	0.122	0.122	0.122	0.122	8	
0.134	0.135	0.136	0.136	0.136	0.137	0.137	0.137	0.138	0.138	0.138	0.138	0.138	10	
0.148	0.149	0.149	0.150	0.151	0.151	0.152	0.152	0.152	0.153	0.153	0.153	0.154	12	
0.160	0.161	0.163	0.163	0.164	0.165	0.166	0.166	0.167	0.167	0.168	0.168	0.168	14	
0.171	0.173	0.175	0.176	0.177	0.178	0.179	0.180	0.180	0.181	0.181	0.182	0.182	16	
0.182	0.184	0.186	0.188	0.189	0.190	0.192	0.193	0.193	0.194	0.195	0.195	0.196	18	
0.192	0.195	0.197	0.199	0.201	0.202	0.204	0.205	0.206	0.207	0.208	0.208	0.209	20	
0.214	0.218	0.222	0.225	0.227	0.229	0.231	0.233	0.235	0.236	0.237	0.239	0.240	25	
0.233	0.238	0.243	0.247	0.250	0.253	0.256	0.258	0.261	0.263	0.265	0.266	0.268	30	
0.249	0.256	0.262	0.266	0.271	0.275	0.278	0.281	0.284	0.287	0.289	0.291	0.293	35	
0.264	0.271	0.278	0.284	0.289	0.294	0.298	0.302	0.305	0.308	0.311	0.314	0.317	40	V ₂
0.276	0.285	0.293	0.299	0.305	0.311	0.316	0.320	0.325	0.328	0.332	0.335	0.338	45	
0.287	0.297	0.306	0.313	0.320	0.326	0.332	0.337	0.342	0.346	0.350	0.354	0.358	50	
0.297	0.308	0.317	0.326	0.333	0.340	0.347	0.353	0.358	0.363	0.368	0.372	0.376	55	
0.305	0.317	0.328	0.337	0.346	0.353	0.360	0.367	0.373	0.378	0.383	0.388	0.392	60	
0.313	0.326	0.337	0.347	0.357	0.365	0.373	0.380	0.386	0.392	0.398	0.403	0.408	65	
0.320	0.334	0.346	0.357	0.367	0.376	0.384	0.392	0.399	0.405	0.411	0.417	0.422	70	
0.327	0.341	0.354	0.365	0.376	0.385	0.394	0.402	0.410	0.417	0.424	0.430	0.435	75	
0.333	0.348	0.361	0.373	0.384	0.394	0.404	0.413	0.421	0.428	0.435	0.441	0.448	80	
0.338	0.354	0.368	0.380	0.392	0.403	0.413	0.422	0.430	0.438	0.446	0.453	0.459	85	
0.343	0.359	0.374	0.387	0.399	0.411	0.421	0.431	0.440	0.448	0.456	0.463	0.470	90	
0.348	0.364	0.379	0.393	0.406	0.418	0.429	0.439	0.448	0.457	0.465	0.473	0.480	95	
0.352	0.369	0.385	0.399	0.412	0.424	0.436	0.446	0.456	0.465	0.474	0.482	0.489	100	

α -	.05							ν ₁						
σ_2/σ_1	80	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.112	0.113	0.114	0.115	0.116	0.117	0.118	0.118	0.119	0.119	0.120	0.120	0.121
	6	0.121	0.123	0.124	0.125	0.127	0.129	0.130	0.131	0.131	0.132	0.133	0.134	0.134
	7	0.128	0.131	0.133	0.135	0.137	0.139	0.141	0.142	0.143	0.144	0.145	0.147	0.147
	8	0.134	0.138	0.140	0.143	0.146	0.149	0.151	0.153	0.154	0.155	0.157	0.159	0.160
	10	0.145	0.149	0.153	0.157	0.162	0.166	0.169	0.172	0.174	0.176	0.179	0.182	0.184
·	12	0.153	0.159	0.164	0.168	0.175	0.180	0.185	0.188	0.191	0.194	0.199	0.203	0.206
	14	0.159	0.166	0.172	0.177	0.186	0.193	0.198	0.203	0.207	0.210	0.217	0.222	0.226
	16	0.165	0.172	0.179	0.185	0.195	0.203	0.210	0.216	0.220	0.225	0.233	0.240	0.245
	18	0.169	0.178	0.185	0.192	0.203	0.212	0.220	0.227	0.233	0.238	0.248	0.256	0.262
	20	0.173	0.182	0.190	0.197	0.210	0.220	0.229	0.237	0.243	0.249	0.261	0.270	0.278
	25	0.180	0.190	0.200	0.209	0.224	0.237	0.248	0.257	0.266	0.274	0.290	0.302	0.312
	30	0.185	0.197	0.207	0.217	0.234	0.249	0.262	0.273	0.284	0.293	0.312	0.328	0.341
	35	0.188	0.201	0.213	0.223	0.242	0.259	0.273	0.286	0.298	0.309	0.331	0.350	0.365
V ₂	40	0.191	0.205	0.217	0.228	0.249	0.266	0.282	0.297	0.310	0.321	0.347	0.368	0.386
	45	0.194	0.208	0.220	0.232	0.254	0.273	0.290	0.305	0.319	0.332	0.360	0.383	0.403
	50	0.196	0.210	0.223	0.236	0.258	0.278	0.296	0.313	0.328	0.341	0.372	0.397	0.418
	55	0.197	0.212	0.226	0.238	0.262	0.283	0.302	0.319	0.335	0.349	0.381	0.408	0.432
	60	0.198	0.214	0.228	0.241	0.265	0.286	0.306	0.324	0.341	0.356	0.390	0.419	0.443
·	65	0.200	0.215	0.229	0.243	0.268	0.290	0.310	0.329	0.346	0.362	0.397	0.428	0.454
	70	0.201	0.216	0.231	0.245	0.270	0.293	0.314	0.333	0.351	0.367	0.404	0.436	0.463
	75	0.201	0.217	0.232	0.246	0.272	0.295	0.317	0.337	0.355	0.372	0.410	0.443	0.471
	80	0.202	0.218	0.233	0.248	0.274	0.298	0.320	0.340	0.359	0.376	0.415	0.449	0.479
	85	0.203	0.219	0.234	0.249	0.275	0.300	0.322	0.343	0.362	0.380	0.420	0.455	0.485
	90	0.204	0.220	0.235	0.250	0.277	0.302	0.324	0.345	0.365	0.383	0.425	0.460	0.491
	95	0.204	0.221	0.236	0.251	0.278	0.303	0.326	0.348	0.368	0.387	0.429	0.465	0.497
	100	0.205	0.221	0.237	0.252	0.279	0.305	0.328	0.350	0.370	0.389	0.432	0.470	0.502

						ν							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	80
0.121	0.121	0.121	0.121	0.121	0.121	0.122	0.122	0.122	0.122	0.122	0.122	0.122	5	
0.135	0.135	0.135	0.135	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	0.136	6	
0.148	0.149	0.149	0.149	0.150	0.150	0.150	0.150	0.150	0.151	0.151	0.151	0.151	7	
0.161	0.162	0.162	0.163	0.163	0.163	0.164	0.164	0.164	0.164	0.165	0.165	0.165	8	
0.185	0.187	0.188	0.189	0.189	0.190	0.190	0.191	0.191	0.192	0.192	0.192	0.193	10	
0.208	0.210	0.212	0.213	0.214	0.215	0.216	0.216	0.217	0.218	0.218	0.219	0.219	12	
0.229	0.232	0.234	0.236	0.237	0.239	0.240	0.241	0.242	0.243	0.243	0.244	0.245	14	
0.249	0.252	0.255	0.257	0.259	0.261	0.263	0.264	0.265	0.266	0.267	0.268	0.269	16	
0.267	0.271	0.275	0.278	0.280	0.282	0.284	0.286	0.288	0.289	0.290	0.292	0.293	18	
0.284	0.289	0.293	0.297	0.300	0.303	0.305	0.307	0.309	0.311	0.312	0.314	0.315	20	
0.321	0.328	0.334	0.339	0.344	0.348	0.352	0.355	0.358	0.360	0.363	0.365	0.367	25	
0.352	0.361	0.369	0.376	0.382	0.387	0.392	0.397	0.400	0.404	0.407	0.410	0.413	30	
0.378	0.389	0.399	0.408	0.415	0.422	0.428	0.433	0.438	0.442	0.446	0.450	0.454	35	
0.401	0.414	0.425	0.435	0.444	0.452	0.459	0.465	0.471	0.476	0.481	0.486	0.490	40	v ₂
0.420	0.435	0.447	0.459	0.469	0.478	0.486	0.493	0.500	0.506	0.512	0.517	0.522	45	
0.437	0.453	0.467	0.480	0.491	0.501	0.510	0.518	0.526	0.533	0.539	0.545	0.550	50	
0.452	0.469	0.485	0.498	0.511	0.522	0.532	0.541	0.549	0.556	0.563	0.570	0.576	55	
0.465	0.483	0.500	0.515	0.528	0.540	0.551	0.560	0.569	0.578	0.585	0.592	0.599	60	
0.476	0.496	0.514	0.529	0.544	0.556	0.568	0.578	0.588	0.597	0.605	0.612	0.619	65	
0.487	0.507	0.526	0.543	0.558	0.571	0.583	0.594	0.604	0.614	0.622	0.630	0.638	70	
0.496	0.518	0.537	0.555	0.570	0.584	0.597	0.609	0.619	0.629	0.638	0.647	0.654	75	
0.504	0.527	0.547	0.565	0.582	0.596	0.610	0.622	0.633	0.643	0.653	0.661	0.670	80	
0.512	0.535	0.556	0.575	0.592	0.607	0.621	0.634	0.645	0.656	0.666	0.675	0.683	85	
0.519	0.543	0.565	0.584	0.602	0.617	0.632	0.645	0.657	0.668	0.678	0.687	0.696	90	,
0.525	0.550	0.572	0.592	0.610	0.627	0.641	0.655	0.667	0.679	0.689	0.699	0.707	95	
0.531	0.557	0.579	0.600	0.618	0.635	0.650	0.664	0.677	0.688	0.699	0.709	0.718	100	

α =	.05							ν ₁						
σ_2/σ_1	75	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.138	0.140	0.142	0.144	0.146	0.147	0.148	0.149	0.150	0.150	0.151	0.152	0.153
	6	0.151	0.154	0.157	0.159	0.162	0.165	0.166	0.168	0.169	0.170	0.172	0.173	0.174
	7	0.162	0.166	0.170	0.173	0.177	0.181	0.183	0.185	0.187	0.188	0.191	0.193	0.194
	8	0.171	0.177	0.181	0.185	0.191	0.195	0.199	0.201	0.204	0.206	0.209	0.212	0.214
	10	0.187	0.194	0.200	0.206	0.214	0.221	0.226	0.231	0.234	0.237	0.243	0.248	0.251
	12	0.199	0.208	0.216	0.223	0.234	0.243	0.250	0.256	0.261	0.265	0.274	0.280	0.285
	14	0.208	0.219	0.228	0.236	0.250	0.261	0.270	0.277	0.284	0.290	0.301	0.309	0.316
	16	0.215	0.228	0.238	0.248	0.264	0.276	0.287	0.296	0.304	0.311	0.325	0.335	0.344
	18	0.222	0.235	0.247	0.257	0.275	0.290	0.302	0.313	0.322	0.330	0.347	0.359	0.369
	20	0.227	0.241	0.254	0.266	0.285	0.302	0.316	0.328	0.338	0.347	0.366	0.381	0.392
	25	0.237	0.253	0.268	0.282	0.305	0.325	0.342	0.357	0.370	0.382	0.407	0.426	0.442
	30	0.244	0.262	0.278	0.293	0.320	0.342	0.362	0.380	0.395	0.409	0.439	0.462	0.481
	35	0.249	0.268	0.286	0.302	0.331	0.356	0.378	0.398	0.415	0.431	0.464	0.491	0.514
V ₂	40	0.253	0.273	0.292	0.309	0.340	0.367	0.390	0.412	0.431	0.448	0.485	0.515	0.540
	45	0.256	0.277	0.297	0.315	0.347	0.375	0.401	0.423	0.444	0.463	0.503	0.535	0.563
	50	0.259	0.281	0.301	0.319	0.353	0.383	0.409	0.433	0.455	0.475	0.517	0.552	0.581
	55	0.261	0.283	0.304	0.323	0.358	0.389	0.417	0.442	0.464	0.485	0.530	0.567	0.597
	60	0.263	0.286	0.307	0.326	0.362	0.394	0.423	0.449	0.472	0.494	0.541	0.579	0.611
	65	0.265	0.288	0.309	0.329	0.366	0.399	0.428	0.455	0.479	0.502	0.550	0.590	0.624
	70	0.266	0.289	0.311	0.332	0.369	0.402	0.433	0.460	0.485	0.508	0.558	0.600	0.634
	75	0.267	0.291	0.313	0.334	0.372	0.406	0.437	0.465	0.491	0.514	0.566	0.608	0.644
	80	0.268	0.292	0.315	0.336	0.374	0.409	0.440	0.469	0.495	0.520	0.572	0.616	0.652
	85	0.269	0.293	0.316	0.337	0.376	0.412	0.444	0.473	0.500	0.524	0.578	0.622	0.660
	90	0.270	0.294	0.317	0.339	0.378	0.414	0.447	0.476	0.503	0.529	0.583	0.628	0.666
	95	0.271	0.295	0.319	0.340	0.380	0.416	0.449	0.479	0.507	0.532	0.588	0.634	0.673
	100	0.271	0.296	0.320	0.341	0.382	0.418	0.452	0.482	0.510	0.536	0.592	0.639	0.678

						v ₁			· ·				α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 75
0.153	0.153	0.153	0.154	0.154	0.154	0.154	0.154	0.154	0.154	0.155	0.155	0.155	5	
0.174	0.175	0.175	0.176	0.176	0.176	0.176	0.177	0.177	0.177	0.177	0.177	0.177	6	
0.195	0.196	0.197	0.197	0.198	0.198	0.199	0.199	0.199	0.199	0.200	0.200	0.200	7	
0.215	0.217	0.217	0.218	0.219	0.220	0.220	0.221	0.221	0.221	0.222	0.222	0.222	8	
0.253	0.256	0.257	0.259	0.260	0.261	0.262	0.263	0.263	0.264	0.265	0.265	0.266	10	
0.289	0.292	0.294	0.296	0.298	0.300	0.301	0.303	0.304	0.305	0.306	0.306	0.307	12	
0.321	0.325	0.329	0.332	0.334	0.336	0.338	0.340	0.342	0.343	0.344	0.345	0.347	14	
0.350	0.356	0.360	0.364	0.368	0.371	0.373	0.375	0.377	0.379	0.381	0.382	0.384	16	
0.377	0.384	0.390	0.394	0.399	0.402	0.405	0.408	0.411	0.413	0.415	0.417	0.419	18	
0.402	0.410	0.417	0.422	0.427	0.432	0.435	0.439	0.442	0.445	0.447	0.449	0.451	20	
0.455	0.466	0.475	0.483	0.490	0.496	0.501	0.506	0.511	0.514	0.518	0.521	0.524	25	
0.497	0.511	0.522	0.533	0.541	0.549	0.556	0.562	0.568	0.573	0.577	0.581	0.585	30	
0.532	0.548	0.562	0.574	0.584	0.593	0.601	0.608	0.615	0.621	0.626	0.631	0.636	35	
0.561	0.579	0.594	0.608	0.619	0.630	0.639	0.647	0.655	0.662	0.668	0.673	0.678	40	v ₂
0.585	0.605	0.622	0.636	0.649	0.661	0.671	0.680	0.688	0.696	0.702	0.708	0.714	45	
0.606	0.627	0.645	0.661	0.675	0.687	0.698	0.708	0.716	0.724	0.732	0.738	0.744	50	
0.623	0.646	0.665	0.682	0.696	0.709	0.721	0.731	0.740	0.749	0.756	0.763	0.770	55	
0.639	0.662	0.682	0.700	0.715	0.728	0.741	0.751	0.761	0.770	0.778	0.785	0.792	60	
0.652	0.676	0.697	0.715	0.731	0.745	0.758	0.769	0.779	0.788	0.796	0.804	0.810	65	
0.663	0.689	0.710	0.729	0.745	0.760	0.773	0.784	0.794	0.804	0.812	0.820	0.826	70	
0.674	0.699	0.722	0.741	0.758	0.773	0.786	0.797	0.808	0.817	0.826	0.833	0.840	75	
0.683	0.709	0.732	0.752	0.769	0.784	0.797	0.809	0.820	0.829	0.838	0.846	0.853	80	
0.691	0.718	0.741	0.761	0.779	0.794	0.808	0.820	0.830	0.840	0.849	0.856	0.863	85	
0.698	0.726	0.749	0.770	0.788	0.803	0.817	0.829	0.840	0.849	0.858	0.866	0.873	90	
0.705	0.733	0.757	0.778	0.795	0.811	0.825	0.837	0.848	0.858	0.866	0.874	0.881	95	
0.711	0.739	0.764	0.785	0.803	0.819	0.832	0.845	0.856	0.865	0.874	0.882	0.889	100	

α =	.05			in-				v ₁						
σ_2/σ_1	70	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.171	0.175	0.177	0.180	0.183	0.185	0.187	0.188	0.189	0.190	0.192	0.193	0.194
	6	0.189	0.194	0.198	0.202	0.207	0.210	0.213	0.215	0.217	0.219	0.221	0.223	0.225
	7	0.205	0.211	0.217	0.221	0.228	0.233	0.237	0.241	0.243	0.246	0.250	0.253	0.255
	8	0.218	0.226	0.233	0.239	0.248	0.254	0.260	0.264	0.268	0.271	0.276	0.281	0.284
	10	0.239	0.250	0.259	0.267	0.281	0.291	0.299	0.306	0.311	0.316	0.325	0.332	0.337
	12	0.255	0.269	0.280	0.291	0.307	0.321	0.332	0.341	0.348	0.355	0.368	0.378	0.385
	14	0.267	0.283	0.297	0.309	0.329	0.346	0.359	0.370	0.380	0.389	0.405	0.418	0.427
	16	0.277	0.295	0.311	0.325	0.348	0.367	0.383	0.396	0.408	0.418	0.438	0.453	0.465
	18	0.286	0.305	0.322	0.337	0.363	0.385	0.403	0.418	0.431	0.443	0.466	0.484	0.498
	20	0.293	0.313	0.332	0.348	0.376	0.400	0.420	0.437	0.452	0.465	0.491	0.512	0.528
	25	0.306	0.329	0.350	0.369	0.402	0.430	0.454	0.475	0.493	0.509	0.542	0.568	0.588
	30	0.315	0.340	0.363	0.384	0.421	0.452	0.479	0.503	0.524	0.542	0.580	0.610	0.634
	35	0.321	0.348	0.373	0.395	0.435	0.469	0.498	0.524	0.547	0.568	0.610	0.643	0.670
V ₂	40	0.327	0.355	0.381	0.404	0.446	0.482	0.514	0.541	0.566	0.588	0.633	0.669	0.698
	45	0.331	0.360	0.387	0.411	0.455	0.493	0.526	0.555	0.581	0.604	0.652	0.690	0.721
	50	0.334	0.364	0.392	0.417	0.462	0.501	0.536	0.566	0.593	0.618	0.668	0.708	0.739
	55	0.337	0.368	0.396	0.422	0.468	0.509	0.544	0.576	0.604	0.629	0.681	0.722	0.755
	60	0.339	0.370	0.399	0.426	0.473	0.515	0.551	0.584	0.613	0.639	0.692	0.734	0.768
	65	0.341	0.373	0.402	0.429	0.478	0.520	0.558	0.591	0.620	0.647	0.702	0.745	0.779
	70	0.343	0.375	0.405	0.432	0.482	0.525	0.563	0.597	0.627	0.654	0.710	0.754	0.789
	75	0.344	0.377	0.407	0.435	0.485	0.529	0.568	0.602	0.633	0.660	0.717	0.762	0.797
	80	0.346	0.379	0.409	0.437	0.488	0.532	0.572	0.607	0.638	0.666	0.724	0.769	0.804
	85	0.347	0.380	0.411	0.439	0.490	0.536	0.575	0.611	0.642	0.671	0.729	0.775	0.811
	90	0.348	0.381	0.412	0.441	0.493	0.538	0.579	0.615	0.646	0.675	0.735	0.781	0.817
	95	0.349	0.383	0.414	0.443	0.495	0.541	0.582	0.618	0.650	0.679	0.739	0.785	0.822
	100	0.350	0.384	0.415	0.444	0.497	0.543	0.584	0.621	0.653	0.683	0.743	0.790	0.826

						ν ₁							α=	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 70
0.194	0.195	0.195	0.196	0.196	0.196	0.196	0.197	0.197	0.197	0.197	0.197	0.197	5	
0.226	0.227	0.228	0.228	0.229	0.229	0.229	0.230	0.230	0.230	0.231	0.231	0.231	6	
0.257	0.258	0.259	0.260	0.261	0.261	0.262	0.263	0.263	0.263	0.264	0.264	0.264	7	
0.286	0.288	0.290	0.291	0.292	0.293	0.294	0.295	0.295	0.296	0.296	0.297	0.297	8	
0.341	0.344	0.347	0.349	0.351	0.353	0.354	0.356	0.357	0.358	0.359	0.359	0.360	10	
0.391	0.396	0.400	0.403	0.406	0.408	0.410	0.412	0.414	0.415	0.417	0.418	0.419	12	
0.435	0.442	0.447	0.451	0.455	0.458	0.461	0.464	0.466	0.468	0.470	0.472	0.473	14	
0.475	0.483	0.489	0.495	0.500	0.504	0.508	0.511	0.514	0.516	0.519	0.521	0.523	16	•
0.510	0.519	0.527	0.534	0.540	0.545	0.549	0.553	0.557	0.560	0.563	0.565	0.568	18	
0.541	0.552	0.561	0.569	0.576	0.581	0.587	0.591	0.595	0.599	0.602	0.605	0.608	20	
0.605	0.619	0.631	0.641	0.650	0.657	0.664	0.670	0.675	0.680	0.684	0.688	0.692	25	
0.654	0.670	0.684	0.696	0.706	0.715	0.723	0.730	0.736	0.741	0.746	0.751	0.755	30	
0.692	0.710	0.725	0.738	0.749	0.759	0.768	0.776	0.782	0.788	0.794	0.799	0.803	35	
0.721	0.741	0.757	0.771	0.783	0.794	0.803	0.811	0.818	0.825	0.830	0.836	0.840	40	V ₂
0.745	0.766	0.783	0.798	0.810	0.821	0.831	0.839	0.846	0.853	0.859	0.864	0.869	45	
0.765	0.786	0.804	0.819	0.832	0.843	0.853	0.861	0.868	0.875	0.881	0.886	0.891	50	
0.781	0.803	0.821	0.836	0.849	0.861	0.870	0.879	0.886	0.893	0.898	0.903	0.908	55 ·	
0.795	0.817	0.836	0.851	0.864	0.875	0.885	0.893	0.900	0.907	0.912	0.917	0.922	60	
0.807	0.829	0.848	0.863	0.876	0.887	0.897	0.905	0.912	0.918	0.924	0.929	0.933	65	
0.817	0.839	0.858	0.873	0.886	0.897	0.907	0.915	0.922	0.928	0.933	0.938	0.942	70	
0.825	0.848	0.867	0.882	0.895	0.906	0.915	0:923	0.930	0.936	0.941	0.945	0.949	75	
0.833	0.856	0.874	0.890	0.902	0.913	0,922	0.930	0.937	0.942	0.947	0.952	0.955	80	
0.839	0.862	0.881	0.896	0.909	0.919	0.928	0.936	0.942	0.948	0.953	0.957	0.961	85	
0.845	0.868	0.887	0.902	0.914	0.925	0.934	0.941	0.947	0.953	0.957	0.961	0.965	90	
0.850	0.873	0.892	0.907	0.919	0.930	0.938	0.946	0.952	0.957	0.961	0.965	0.968	95	
0.855	0.878	0.897	0.912	0.924	0.934	0.942	0.949	0.955	0.960	0.965	0.968	0.972	100	

α =	.05						· · · · ·	ν		·				
σ_2/σ_1	60	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.264	0.271	0.277	0.282	0.289	0.294	0.298	0.302	0.304	0.306	0.310	0.313	0.315
	6	0.295	0.306	0.315	0.322	0.333	0.341	0.347	0.352	0.356	0.360	0.366	0.370	0.374
	7	0.321	0.335	0.346	0.356	0.371	0.382	0.390	0.397	0.403	0.408	0.417	0.424	0.429
	8	0.343	0.360	0.374	0.385	0.404	0.418	0.429	0.438	0.445	0.452	0.464	0.473	0.479
	10	0.377	0.398	0.416	0.432	0.457	0.477	0.493	0.505	0.516	0.525	0.543	0.556	0.566
	12	0.401	0.427	0.449	0.467	0.498	0.523	0.542	0.559	0.572	0.584	0.607	0.623	0.636
	14	0.420	0.449	0.474	0.495	0.530	0.558	0.581	0.601	0.617	0.630	0.657	0.677	0.692
	16	0.435	0.466	0.493	0.517	0.556	0.587	0.613	0.634	0.652	0.668	0.698	0.720	0.737
	18	0.447	0.480	0.509	0.534	0.577	0.611	0.638	0.662	0.681	0.698	0.731	0.755	0.773
	20	0.456	0.491	0.522	0.549	0.594	0.630	0.660	0.684	0.705	0.723	0.758	0.783	0.803
	25	0.474	0.513	0.546	0.576	0.626	0.666	0.699	0.726	0.749	0.769	0.807	0.834	0.855
	30	0.486	0.527	0.563	0.595	0.648	0.691	0.726	0.755	0.779	0.800	0.839	0.867	0.888
v ₂	35	0.495	0.538	0.575	0.608	0.664	0.709	0.745	0.775	0.800	0.822	0.862	0.890	0.910
-2	40	0.502	0.546	0.585	0.619	0.676	0.722	0.760	0.791	0.816	0.838	0.878	0.906	0.925
	45	0.507	0.552	0.592	0.627	0.686	0.733	0.771	0.803	0.829	0.850	0.891	0.918	0.936
	50	0.512	0.557	0.598	0.633	0.693	0.741	0.780	0.812	0.838	0.860	0.900	0.927	0.945
	55	0.515	0.562	0.603	0.639	0.700	0.748	0.788	0.820	0.846	0.868	0.908	0.934	0.951
	60	0.518	0.565	0.607	0.643	0.705	0.754	0.794	0.826	0.853	0.875	0.914	0.940	0.956
. :	65	0.521	0.568	0.610	0.647	0.709	0.759	0.799	0.832	0.858	0.880	0.919	0.944	0.960
	70	0.523	0.571	0.613	0.650	0.713	0.763	0.804	0.836	0.863	0.885	0.923	0.948	0.964
	75	0.525	0.573	0.616	0.653	0.717	0.767	0.808	0.840	0.867	0.888	0.927	0.951	0.966
	80	0.526	0.575	0.618	0.656	0.719	0.770	0.811	0.844	0.870	0.892	0.930	0.954	0.969
	85	0.528	0.577	0.620	0.658	0.722	0.773	0.814	0.847	0.873	0.895	0.933	0.956	0.971
	90	0.529	0.578	0.622	0.660	0.724	0.776	0.817	0.849	0.876	0.897	0.935	0.958	0.972
	95	0.530	0.580	0.623	0.662	0.726	0.778	0.819	0.852	0.878	0.900	0.937	0.960	0.974
	100	0.531	0.581	0.625	0.663	0.728	0.780	0.821	0.854	0.880	0.902	0.939	0.962	0.975

						v ₁							α =	.05
40	45	50	55	60	65	70	75	80	8 5	90	95	100	σ_2/σ_1	60
0.316	0.318	0.319	0.319	0.320	0.321	0.321	0.322	0.322	0.322	0.323	0.323	0.323	5	
0.376	0.378	0.380	0.381	0.383	0.384	0.384	0.385	0.386	0.386	0.387	0.387	0.388	6	
0.432	0.436	0.438	0.440	0.442	0.443	0.445	0.446	0.447	0.448	0.448	0.449	0.450	7	
0.484	0.488	0.492	0.494	0.497	0.499	0.501	0.502	0.504	0.505	0.506	0.507	0.508	8	
0.574	0.580	0.585	0.589	0.593	0.596	0.599	0.601	0.604	0.605	0.607	0.609	0.610	10	
0.646	0.654	0.661	0.667	0.672	0.676	0.679	0.682	0.685	0.688	0.690	0.692	0.694	12	
0.704	0.714	0.722	0.729	0.734	0.739	0.743	0.747	0.750	0.753	0.756	0.758	0.761	14	
0.751	0.761	0.770	0.778	0.784	0.789	0.794	0.798	0.802	0.805	0.808	0.811	0.813	16	
0.788	0.799	0.809	0.817	0.823	0.829	0.834	0.838	0.842	0.846	0.849	0.851	0.854	18	
0.818	0.830	0.839	0.848	0.854	0.860	0.865	0.870	0.874	0.877	0.880	0.883	0.885	20	
0.870	0.883	0.892	0.901	0.907	0.913	0.918	0.922	0.926	0.929	0.932	0.934	0.936	25	
0.903	0.915	0.924	0.932	0.938	0.943	0.948	0.951	0.954	0.957	0.960	0.962	0.964	30	
0.925	0.936	0.944	0.951	0 .9 57	0.961	0.965	0.968	0.971	0.973	0.975	0.977	0.978	35	
0.939	0.950	0.958	0.964	0.969	0.973	0.976	0.979	0.981	0.983	0.984	0.985	0.987	40	V ₂
0.950	0.959	0.967	0.972	0.977	0.980	0.983	0.985	0.987	0.988	0.989	0.991	0.991	45	
0.957	0.967	0.973	0.978	0.982	0.985	0.987	0.989	0.991	0.992	0.993	0.994	0.994	50	
0.963	0.972	0.978	0.982	0.986	0.988	0.990	0.992	0.993	0.994	0.995	0.996	0.996	55	
0.968	0.976	0.981	0.985	0.988	0.991	0.992	0.994	0.995	0.996	0.996	0.997	0.997	60	
0.971	0.979	0.984	0.988	0.991	0.993	0.994	0.995	0.996	0.997	0.997	0.998	0.998	65	
0.974	0.981	0.986	0.990	0.992	0.994	0.995	0.996	0.997	0.997	0.998	0.998	0.999	70	
0.977	0.983	0.988	0.991	0.993	0.995	0.996	0.997	0.998	0.998	0.998	0.999	0.999	75	
0.978	0.985	0.989	0.992	0.994	0.996	0.997	0.997	0.998	0.998	0.999	0.999	0.999	80	
0.980	0.986	0.990	0.993	0.995	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	85	
0.982	0.987	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	1.000	90	
0.983	0.988	0.992	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	1.000	95	
0.984	0.989	0.993	0.995	0.996	0.997	0.998	0.999	0.999	0.999	0.999	1.000	1.000	100	

α -	.05	,					 	v ₁					÷	
σ ₂ /σ ₁	= .50	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.402	0.417	0.428	0.438	0.452	0.462	0.470	0.477	0.482	0.486	0.494	0.500	0.504
	6	0.448	0.468	0.484	0.497	0.517	0.532	0.543	0.553	0.560	0.566	0.578	0.587	0.593
	7	0.485	0.508	0.528	0.544	0.569	0.588	0.603	0.615	0.625	0.633	0.648	0.659	0.667
	8	0.513	0.541	0.563	0.582	0.612	0.634	0.652	0.666	0.677	0.687	0.705	0.718	0.728
	10	0.556	0.589	0.616	0.639	0.675	0.703	0.724	0.741	0.755	0.767	0.790	0.805	0.817
	12	0.585	0.622	0.652	0.678	0.719	0.750	0.773	0.793	0.808	0.821	0.845	0.862	0.874
	14	0.606	0.646	0.679	0.707	0.750	0.783	0.808	0.828	0.845	0.858	0.882	0.899	0.911
	16	0.623	0.664	0.699	0.728	0.774	0.808	0.834	0.854	0.871	0.884	0.908	0.924	0.935
	18	0.635	0.679	0.714	0.745	0.792	0.827	0.853	0.874	0.890	0.903	0.926	0.941	0.952
	20	0.645	0.690	0.727	0.758	0.806	0.841	0.868	0.888	0.904	0.917	0.940	0.954	0.963
	25	0.664	0.710	0.749	0.781	0.831	0.867	0.893	0.913	0.928	0.940	0.960	0.972	0.979
	30	0.676	0.724	0.764	0.797	0.847	0.883	0.909	0.928	0.942	0.953	0.971	0.981	0.987
	35	0.684	0.734	0.774	0.807	0.858	0.894	0.919	0.938	0.952	0.962	0.978	0.987	0.991
V ₂	40	0.691	0.741	0.782	0.815	0.866	0.902	0.927	0.945	0.958	0.968	0.982	0.990	0.994
	45	0.696	0.747	0.788	0.822	0.872	0.908	0.932	0.950	0.962	0.972	0.985	0.992	0.995
	50	0.700	0.751	0.792	0.826	0.877	0.912	0.937	0.954	0.966	0.975	0.987	0.993	0.996
	55	0.703	0.755	0.796	0.830	0.881	0.916	0.940	0.957	0.969	0.977	0.989	0.994	0.997
	60	0.706	0.758	0.799	0.834	0.885	0.919	0.943	0.959	0.971	0.979	0.990	0.995	0.998
	65	0.708	0.760	0.802	0.836	0.887	0.922	0.945	0.961	0.972	0.980	0.991	0.996	0.998
	70	0.710	0.762	0.804	0.839	0.890	0.924	0.947	0.963	0.974	0.981	0.992	0.996	0.998
	75	0.712	0.764	0.806	0.841	0.892	0.926	0.949	0.964	0.975	0.982	0.992	0.997	0.998
	80	0.714	0.766	0.808	0.843	0.893	0.927	0.950	0.965	0.976	0.983	0.993	0.997	0.999
	8 5	0.715	0.767	0.810	0.844	0.895	0.929	0.951	0.967	0.977	0.984	0.993	0.997	0.999
	90	0.716	0.769	0.811	0.845	0.896	0.930	0.952	0.967	0.978	0.985	0.994	0.997	0.999
	95	0.717	0.770	0.812	0.847	0.897	0.931	0.953	0.968	0.978	0.985	0.994	0.998	0.999
	100	0.718	0.771	0.813	0.848	0.898	0.932	0.954	0.969	0.979	0.986	0.994	0.998	0.999

						ν ₁							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	50
0.507	0.509	0.511	0.513	0.515	0.516	0.517	0.518	0.519	0.519	0.520	0.520	0.521	5	
0.598	0.601	0.604	0.607	0.609	0.611	0.613	0.614	0.615	0.616	0.617	0.618	0.619	6	
0.674	0.679	0.683	0.686	0.689	0.691	0.693	0.695	0.697	0.698	0.700	0.701	0.702	7	
0.736	0.742	0.747	0.751	0.754	0.757	0.759	0.762	0.764	0.765	0.767	0.768	0.770	8	
0.826	0.833	0.839	0.843	0.847	0.851	0.854	0.856	0.859	0.861	0.862	0.864	0.865	10	
0.883	0.891	0.896	0.901	0.905	0.909	0.911	0.914	0.916	0.918	0.920	0.921	0.923	12	
0.920	0.927	0.932	0.937	0.940	0.943	0.946	0.948	0.950	0.952	0.953	0.955	0.956	14	
0.944	0.950	0.955	0.959	0.962	0.964	0.966	0.968	0.970	0.971	0.973	0.974	0.975	16	
0.959	0.965	0.969	0.972	0.975	0.977	0.979	0.980	0.982	0.983	0.984	0.984	0.985	18	
0.970	0.975	0.978	0.981	0.983	0.985	0.986	0.988	0.989	0.989	0.990	0.991	0.991	20	
0.984	0.988	0.990	0.992	0.993	0.994	0.995	0.996	0.996	0.997	0.997	0.997	0.997	25	
0.991	0.993	0.995	0.996	0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	30	
0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	35	
0.996	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	ν ₂
0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α =	.05							ν						
σ_2/σ_1	40	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.590	0.613	0.632	0.647	0.669	0.686	0.699	0.709	0.717	0.723	0.735	0.744	0.750
	6	0.643	0.671	0.693	0.712	0.740	0.760	0.775	0.787	0.797	0.805	0.820	0.830	0.837
	7	0.681	0.713	0.738	0.758	0.789	0.811	0.828	0.841	0.852	0.860	0.876	0.886	0.894
	8	0.709	0.743	0.770	0.792	0.825	0.848	0.865	0.879	0.889	0.898	0.913	0.923	0.930
	10	0.748	0.785	0.814	0.837	0.871	0.894	0.911	0.924	0.934	0.941	0.955	0.963	0.969
·	12	0.773	0.811	0.841	0.864	0.898	0.921	0.937	0.948	0.957	0.964	0.974	0.981	0.985
	14	0.790	0.829	0.859	0.883	0.916	0.938	0.952	0.963	0.970	0.976	0.984	0.989	0.992
	16	0.803	0.842	0.872	0.896	0.928	0.949	0.962	0.971	0.978	0.983	0.990	0.994	0.996
	18	0.812	0.852	0.882	0.905	0.937	0.956	0.969	0.977	0.983	0.987	0.993	0.996	0.997
	20	0.820	0.860	0.890	0.912	0.943	0.962	0.974	0.981	0.987	0.990	0.995	0.997	0.998
	25	0.833	0.873	0.902	0.925	0.954	0.971	0.981	0.987	0.991	0.994	0.997	0.999	0.999
	30	0.841	0.881	0.911	0.932	0.960	0.976	0.985	0.991	0.994	0.996	0.998	0.999	1.000
	35	0.847	0.887	0.916	0.937	0.964	0.979	0.987	0.992	0.995	0.997	0.999	1.000	1.000
V ₂	40	0.851	0.891	0.920	0.941	0.967	0.981	0.989	0.994	0.996	0.998	0.999	1.000	1.000
	45	0.855	0.895	0.923	0.944	0.969	0.983	0.990	0.994	0.997	0.998	0.999	1.000	1.000
	50	0.857	0.897	0.925	0.946	0.971	0.984	0.991	0.995	0 .9 97	0.998	1.000	1.000	1.000
	55	0.860	0.899	0.927	0.947	0.972	0.985	0.992	0.995	0.997	0.999	1.000	1.000	1.000
	60	0.861	0.901	0.929	0.949	0.973	0.986	0.992	0.996	0.998	0.999	1.000	1.000	1.000
,	65	0.863	0.902	0.930	0.950	0.974	0.986	0.993	0.996	0.998	0.999	1.000	1.000	1.000
	70	0.864	0.903	0.931	0.951	0.975	0.987	0.993	0.996	0.998	0.999	1.000	1.000	1.000
	75	0.865	0.905	0.932	0.952	0.975	0.987	0.993	0.997	0.998	0.999	1.000	1.000	1.000
	80	0.866	0.905	0.933	0.953	0.976	0.988	0.994	0.997	0.998	0.999	1.000	1.000	1.000
	85	0.867	0.906	0.934	0.953	0.976	0.988	0.994	0.997	0.998	0.999	1.000	1.000	1.000
	90	0.868	0.907	0.934	0.954	0.977	0.988	0.994	0.997	0.998	0.999	1.000	1.000	1.000
	95	0.868	0.908	0.935	0.954	0.977	0.989	0.994	0.997	0.998	0.999	1.000	1.000	1.000
	100	0.869	0.908	0.935	0.955	0.978	0.989	0.994	0.997	0.999	0.999	1.000	1.000	1.000

						ν ₁							α =	.05
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	40
0.755	0.759	0.762	0.764	0.766	0.768	0.770	0.771	0.772	0.773	0.774	0.775	0.776	5	
0.843	0.847	0.851	0.854	0.856	0.858	0.860	0.862	0.863	0.864	0.865	0.866	0.867	6	
0.900	0.904	0.908	0.911	0.913	0.915	0.917	0.919	0.920	0.921	0.922	0.923	0.924	7	
0.936	0.940	0.943	0.946	0.948	0.950	0.951	0.953	0.954	0.955	0.956	0.957	0.958	8	
0.973	0.976	0.978	0.980	0.981	0.982	0.983	0.984	0.985	0.986	0.986	0.987	0.987	10	
0.988	0.990	0.991	0.992	0.993	0.994	0.994	0.995	0.995	0.995	0.996	0.996	0.996	12	
0.994	0.995	0.996	0.997	0.997	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	14	
0.997	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	16	
0.998	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	ν ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α =	.05							ν ₁						
σ_2/σ_1	30	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.796	0.823	0.844	0.859	0.882	0.898	0.909	0.918	0.925	0.930	0.939	0.945	0.950
	6	0.837	0.864	0.885	0.901	0.923	0.938	0.948	0.955	0.961	0.965	0.972	0.977	0.980
	7	0.862	0.890	0.911	0.926	0.946	0.959	0.968	0.974	0.978	0.981	0.987	0.990	0.992
	8	0.880	0.908	0.927	0.941	0.960	0.972	0.979	0.984	0.987	0.989	0.993	0.995	0.996
	10	0.902	0.929	0.947	0.959	0.975	0.984	0.989	0.993	0.995	0.996	0.998	0.999	0.999
	12	0.916	0.941	0.958	0.969	0.983	0.990	0.994	0.996	0.997	0.998	0.999	1.000	1.000
	14	0.924	0.948	0.964	0.975	0.987	0.993	0.996	0.998	0.998	0.999	1,000	1.000	1.000
	16	0.930	0.954	0.969	0.979	0.989	0.995	0.997	0.998	0.999	0.999	1.000	1.000	1.000
	18	0.935	0.957	0.972	0.981	0.991	0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	20	0.938	0.960	0.974	0.983	0.992	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000
	25	0.944	0.965	0.978	0.986	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	30	0.947	0.968	0.980	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	35	0.950	0.970	0.982	0.989	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
V ₂	40	0.952	0.972	0.983	0.990	0.996	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	45	0.953	0.973	0.984	0.990	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	50	0.954	0.973	0.985	0.991	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	55	0.955	0.974	0.985	0.991	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	60	0.956	0.975	0.985	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	65	0.956	0.975	0.986	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	70	0.957	0.975	0.986	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	75	0.957	0.976	0.986	0.992	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	80	0.958	0.976	0.986	0.992	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	85	0.958	0.976	0.987	0.992	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	90	0.958	0.977	0.987	0.993	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	95	0.958	0.977	0.987	0.993	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	100	0.959	0.977	0.987	0.993	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000

						ν							α =	.05
40	45	50	55	60	6 5	70	75	80	85	90	95	100	σ_2/σ_1	30
0.953	0.955	0.957	0.959	0.960	0.961	0.962	0.963	0.964	0.964	0.965	0.965	0.966	5	
0.982	0.984	0.985	0.986	0.987	0.987	0.988	0.989	0.989	0.989	0.990	0.990	0.990	6	
0.993	0.994	0.995	0.995	0.996	0.996	0.996	0.997	0.997	0.997	0.997	0.997	0.997	7	
0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	8	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	10	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	12	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.10				7			ν						
σ_2/σ_1	95	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.119	0.119	0.120	0.120	0.120	0.120	0.121	0.121	0.121	0.121	0.121	0.121	0.121
	6	0.121	0.121	0.122	0.122	0.123	0.123	0.123	0.123	0.124	0.124	0.124	0.124	0.124
	7	0.122	0.123	0.124	0.124	0.125	0.125	0.125	0.126	0.126	0.126	0.127	0.127	0.127
	8	0.124	0.124	0.125	0.126	0.126	0.127	0.127	0.128	0.128	0.128	0.129	0.129	0.129
	10	0.126	0.127	0.128	0.128	0.129	0.130	0.131	0.131	0.132	0.132	0.133	0.133	0.134
	12	0.127	0.129	0.130	0.130	0.132	0.133	0.134	0.134	0.135	0.136	0.136	0.137	0.138
	14	0.129	0.130	0.131	0.132	0.134	0.135	0.136	0.137	0.138	0.138	0.140	0.140	0.141
	16	0.130	0.131	0.132	0.134	0.136	0.137	0.138	0.139	0.140	0.141	0.142	0.143	0.144
	18	0.130	0.132	0.134	0.135	0.137	0.139	0.140	0.141	0.142	0.143	0.145	0.146	0.147
	20	0.131	0.133	0.134	0.136	0.138	0.140	0.141	0.143	0.144	0.145	0.147	0.148	0.149
	25	0.132	0.134	0.136	0.138	0.141	0.143	0.145	0.146	0.148	0.149	0.151	0.153	0.155
	30	0.133	0.136	0.138	0.139	0.142	0.145	0.147	0.149	0.150	0.152	0.155	0.157	0.159
	35	0.134	0.136	0.138	0.140	0.144	0.146	0.149	0.151	0.153	0.154	0.158	0.161	0.163
V ₂	40	0.134	0.137	0.139	0.141	0.145	0.148	0.150	0.153	0.155	0.156	0.160	0.163	0.166
	45	0.135	0.138	0.140	0.142	0.146	0.149	0.152	0.154	0.156	0.158	0.162	0.166	0.169
	50	0.135	0.138	0.140	0.143	0.146	0.150	0.153	0.155	0.158	0.160	0.164	0.168	0.171
	55	0.136	0.138	0.141	0.143	0.147	0.150	0.154	0.156	0.159	0.161	0.166	0.170	0.173
	60	0.136	0.139	0.141	0.143	0.148	0.151	0.154	0.157	0.160	0.162	0.167	0.171	0.175
	65	0.136	0.139	0.141	0.144	0.148	0.152	0.155	0.158	0.161	0.163	0.168	0.173	0.177
	70	0.136	0.139	0.142	0.144	0.148	0.152	0.156	0.159	0.161	0.164	0.169	0.174	0.178
	75	0.136	0.139	0.142	0.144	0.149	0.153	0.156	0.159	0.162	0.165	0.170	0.175	0.179
	80	0.136	0.139	0.142	0.145	0.149	0.153	0.156	0.160	0.163	0.165	0.171	0.176	0.181
	85	0.137	0.140	0.142	0.145	0.149	0.153	0.157	0.160	0.163	0.166	0.172	0.177	0.182
	90	0.137	0.140	0.143	0.145	0.150	0.154	0.157	0.161	0.164	0.166	0.173	0.178	0.183
:	95	0.137	0.140	0.143	0.145	0.150	0.154	0.158	0.161	0.164	0.167	0.173	0.179	0.184
	100	0.137	0.140	0.143	0.145	0.150	0.154	0.158	0.161	0.165	0.167	0.174	0.180	0.185

						ν ₁							α -	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	95
0.121	0.121	0.121	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	0.122	5	
0.124	0.124	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	0.125	6	
0.127	0.127	0.127	0.127	0.127	0.127	0.128	0.128	0.128	0.128	0.128	0.128	0.128	7	
0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	0.130	8	
0.134	0.134	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	0.135	10	
0.138	0.138	0.139	0.139	0.139	0.139	0.139	0.139	0.140	0.140	0.140	0.140	0.140	12	
0.142	0.142	0.142	0.143	0.143	0.143	0.143	0.143	0.144	0.144	0.144	0.144	0.144	14	
0.145	0.145	0.146	0.146	0.146	0.147	0.147	0.147	0.147	0.147	0.148	0.148	0.148	16	
0.148	0.148	0.149	0.149	0.150	0.150	0.150	0.151	0.151	0.151	0.151	0.151	0.151	18	
0.150	0.151	0.152	0.152	0.153	0.153	0.153	0.154	0.154	0.154	0.154	0.155	0.155	20	
0.156	0.157	0.158	0.159	0.159	0.160	0.160	0.161	0.161	0.162	0.162	0.162	0.162	25	
0.161	0.162	0.163	0.164	0.165	0.166	0.166	0.167	0.167	0.168	0.168	0.169	0.169	30	
0.165	0.166	0.168	0.169	0.170	0.171	0.172	0.172	0.173	0.174	0.174	0.175	0.175	35	
0.168	0.170	0.172	0.173	0.174	0.175	0.176	0.177	0.178	0.179	0.179	0.180	0.180	40	V ₂
0.171	0.173	0.175	0.177	0.178	0.179	0.180	0.181	0.182	0.183	0.184	0.185	0.185	45	
0.174	0.176	0.178	0.180	0.181	0.183	0.184	0.185	0.186	0.187	0.188	0.189	0.190	50	
0.176	0.179	0.181	0.183	0.185	0.186	0.188	0.189	0.190	0.191	0.192	0.193	0.194	55	
0.178	0.181	0.183	0.185	0.187	0.189	0.191	0.192	0.193	0.195	0.196	0.197	0.198	60	
0.180	0.183	0.185	0.188	0.190	0.192	0.193	0.195	0.197	0.198	0.199	0.200	0.201	65	
0.182	0.185	0.187	0.190	0.192	0.194	0.196	0.198	0.199	0.201	0.202	0.203	0.205	70	
0.183	0.186	0.189	0.192	0.194	0.197	0.198	0.200	0.202	0.204	0.205	0.206	0.208	75	
0.185	0.188	0.191	0.194	0.196	0.199	0.201	0.203	0.204	0.206	0.208	0.209	0.210	80	
0.186	0.189	0.193	0.195	0.198	0.201	0.203	0.205	0.207	0.209	0.210	0.212	0.213	85	
0.187	0.191	0.194	0.197	0.200	0.202	0.205	0.207	0.209	0.211	0.213	0.214	0.216	90	
0.188	0.192	0.195	0.199	0.201	0.204	0.207	0.209	0.211	0.213	0.215	0.216	0.218	95	
0.189	0.193	0.197	0.200	0.203	0.206	0.208	0.211	0.213	0.215	0.217	0.219	0.220	100	

α =	.10							ν ₁						
σ_2/σ_1	90	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.142	0.143	0.143	0.144	0.145	0.146	0.146	0.146	0.147	0.147	0.147	0.148	0.148
	6	0.146	0.147	0.148	0.149	0.150	0.151	0.152	0.153	0.153	0.153	0.154	0.155	0.155
	7	0.150	0.151	0.153	0.154	0.155	0.157	0.157	0.158	0.159	0.159	0.160	0.161	0.161
	8	0.153	0.155	0.156	0.158	0.160	0.161	0.162	0.163	0.164	0.165	0.166	0.167	0.167
	10	0.157	0.160	0.162	0.164	0.167	0.169	0.171	0.172	0.173	0.174	0.176	0.177	0.178
	12	0.161	0.164	0.167	0.169	0.173	0.175	0.178	0.179	0.181	0.182	0.185	0.186	0.188
	14	0.164	0.168	0.171	0.173	0.177	0.181	0.183	0.186	0.187	0.189	0.192	0.195	0.196
	16	0.166	0.170	0.174	0.177	0.181	0.185	0.188	0.191	0.193	0.195	0.199	0.202	0.204
	18	0.168	0.172	0.176	0.179	0.185	0.189	0.193	0.196	0.198	0.201	0.205	0.208	0.211
	20	0.170	0.174	0.178	0.182	0.188	0.192	0.196	0.200	0.203	0.205	0.211	0.214	0.218
	25	0.173	0.178	0.182	0.187	0.193	0.199	0.204	0.208	0.212	0.215	0.222	0.227	0.231
	30	0.175	0.180	0.185	0.190	0.198	0.204	0.210	0.215	0.219	0.223	0.231	0.238	0.243
	35	0.176	0.182	0.188	0.193	0.201	0.208	0.214	0.220	0.225	0.229	0.239	0.246	0.252
V ₂	40	0.178	0.184	0.190	0.195	0.204	0.211	0.218	0.224	0.230	0.235	0.245	0.253	0.261
	45	0.179	0.185	0.191	0.196	0.206	0.214	0.221	0.228	0.234	0.239	0.250	0.260	0.268
	50	0.179	0.186	0.192	0.198	0.208	0.216	0.224	0.231	0.237	0.243	0.255	0.265	0.274
	55	0.180	0.187	0.193	0.199	0.209	0.218	0.226	0.233	0.240	0.246	0.259	0.270	0.279
	60	0.181	0.188	0.194	0.200	0.210	0.220	0.228	0.235	0.242	0.248	0.262	0.274	0.284
	6 5	0.181	0.188	0.195	0.201	0.211	0.221	0.229	0.237	0.244	0.251	0.265	0.278	0.288
	70	0.182	0.189	0.195	0.201	0.212	0.222	0.231	0.239	0.246	0.253	0.268	0.281	0.292
	75	0.182	0.189	0.196	0.202	0.213	0.223	0.232	0.240	0.248	0.255	0.271	0.284	0.295
	80	0.182	0.190	0.196	0.203	0.214	0.224	0.233	0.242	0.249	0.257	0.273	0.287	0.299
	85	0.182	0.190	0.197	0.203	0.215	0.225	0.234	0.243	0.251	0.258	0.275	0.289	0.301
	90	0.183	0.190	0.197	0.204	0.215	0.226	0.235	0.244	0.252	0.260	0.277	0.291	0.304
	95	0.183	0.191	0.198	0.204	0.216	0.226	0.236	0.245	0.253	0.261	0.278	0.293	0.306
	100	0.183	0.191	0.198	0.204	0.216	0.227	0.237	0.246	0.254	0.262	0.280	0.295	0.309

					100	v ₁					·		α =	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	90
0.148	0.148	0.148	0.148	0.148	0.148	0.148	0.149	0.149	0.149	0.149	0.149	0.149	5	
0.155	0.155	0.155	0.156	0.156	0.156	0.156	0.156	0.156	0.156	0.156	0.156	0.156	6	
0.162	0.162	0.162	0.162	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	0.163	7	
0.168	0.168	0.169	0.169	0.169	0.169	0.169	0.170	0.170	0.170	0.170	0.170	0.170	8	
0.179	0.180	0.180	0.181	0.181	0.181	0.181	0.182	0.182	0.182	0.182	0.182	0.183	10	
0.189	0.190	0.191	0.191	0.192	0.192	0.192	0.193	0.193	0.193	0.194	0.194	0.194	12	
0.198	0.199	0.200	0.201	0.201	0.202	0.203	0.203	0.203	0.204	0.204	0.204	0.205	14	
0.206	0.207	0.209	0.210	0.211	0.211	0.212	0.213	0.213	0.214	0.214	0.214	0.215	16	
0.213	0.215	0.217	0.218	0.219	0.220	0.221	0.221	0.222	0.223	0.223	0.224	0.224	18	
0.220	0.222	0.224	0.225	0.227	0.228	0.229	0.230	0.231	0.231	0.232	0.232	0.233	20	
0.235	0.238	0.240	0.242	0.244	0.246	0.247	0.249	0.250	0.251	0.252	0.253	0.253	25	
0.247	0.251	0.254	0.257	0.259	0.261	0.263	0.265	0.266	0.268	0.269	0.270	0.271	30	
0.258	0.262	0.266	0.269	0.272	0.275	0.277	0.279	0.281	0.283	0.285	0.286	0.287	35	
0.267	0.272	0.276	0.280	0.284	0.287	0.290	0.292	0.295	0.297	0.299	0.300	0.302	40	ν ₂
0.274	0.280	0.285	0.290	0.294	0.298	0.301	0.304	0.306	0.309	0.311	0.313	0.315	45	
0.281	0.288	0.293	0.298	0.303	0.307	0.311	0.314	0.317	0.320	0.323	0.325	0.327	50	
0.287	0.294	0.301	0.306	0.311	0.316	0.320	0.324	0.327	0.330	0.333	0.336	0.338	55	
0.293	0.300	0.307	0.313	0.319	0.324	0.328	0.332	0.336	0.340	0.343	0.346	0.349	60	
0.297	0.306	0.313	0.319	0.325	0.331	0.336	0.340	0.344	0.348	0.352	0.355	0.358	65	
0.302	0.310	0.318	0.325	0.331	0.337	0.343	0.347	0.352	0.356	0.360	0.363	0.367	70	
0.306	0.315	0.323	0.330	0.337	0.343	0.349	0.354	0.359	0.363	0.367	0.371	0.375	75	
0.309	0.319	0.327	0.335	0.342	0.349	0.355	0.360	0.365	0.370	0.374	0.379	0.382	80	
0.313	0.323	0.331	0.340	0.347	0.354	0.360	0.366	0.371	0.376	0.381	0.385	0.389	85	
0.316	0.326	0.335	0.344	0.351	0.359	0.365	0.371	0.377	0.382	0.387	0.392	0.396	90	
0.318	0.329	0.339	0.348	0.356	0.363	0.370	0.376	0.382	0.388	0.393	0.398	0.402	95	
0.321	0.332	0.342	0.351	0.359	0.367	0.374	0.381	0.387	0.393	0.398	0.403	0.408	100	

α =	.10				,			ν		 				
σ_2/σ_1	85	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.169	0.171	0.172	0.173	0.175	0.176	0.177	0.178	0.178	0.179	0.180	0.180	0.181
	6	0.177	0.179	0.181	0.183	0.185	0.187	0.188	0.189	0.190	0.190	0.192	0.193	0.193
	7	0.183	0.186	0.188	0.190	0.193	0.196	0.197	0.199	0.200	0.201	0.203	0.204	0.205
	8	0.188	0.192	0.195	0.197	0.201	0.204	0.206	0.208	0.209	0.211	0.213	0.215	0.216
	10	0.196	0.201	0.205	0.208	0.214	0.218	0.221	0.224	0.226	0.228	0.231	0.234	0.236
	12	0.202	0.208	0.213	0.217	0.224	0.229	0.233	0.237	0.240	0.242	0.247	0.250	0.253
	14	0.207	0.214	0.219	0.224	0.232	0.238	0.244	0.248	0.251	0.255	0.261	0.265	0.269
	16	0.211	0.218	0.225	0.230	0.239	0.246	0.252	0.257	0.262	0.266	0.273	0.279	0.283
	18	0.214	0.222	0.229	0.235	0.245	0.253	0.260	0.266	0.271	0.275	0.284	0.291	0.296
	20	0.217	0.225	0.233	0.239	0.250	0.259	0.267	0.273	0.279	0.284	0.294	0.301	0.308
	25	0.222	0.231	0.240	0.247	0.260	0.271	0.280	0.288	0.295	0.301	0.314	0.324	0.333
	30	0.226	0.236	0.245	0.253	0.268	0.280	0.290	0.300	0.308	0.315	0.331	0.343	0.353
	35	0.228	0.239	0.249	0.258	0.273	0.287	0.298	0.309	0.318	0.326	0.344	0.358	0.370
V ₂	40	0.230	0.242	0.252	0.261	0.278	0.292	0.305	0.316	0.326	0.335	0.355	0.371	0.384
	45	0.232	0.244	0.254	0.264	0.281	0.296	0.310	0.322	0.333	0.343	0.364	0.382	0.397
	50	0.233	0.245	0.256	0.266	0.284	0.300	0.314	0.327	0.339	0.349	0.372	0.391	0.407
	55	0.234	0.247	0.258	0.268	0.287	0.303	0.318	0.331	0.343	0.355	0.379	0.399	0.416
	60	0.235	0.248	0.259	0.270	0.289	0.306	0.321	0.335	0.348	0.359	0.385	0.406	0.425
	65	0.236	0.249	0.260	0.271	0.291	0.308	0.324	0.338	0.351	0.364	0.390	0.413	0.432
	70	0.237	0.250	0.262	0.273	0.293	0.310	0.326	0.341	0.355	0.367	0.395	0.418	0.438
,	75	0.237	0.250	0.262	0.274	0.294	0.312	0.329	0.344	0.358	0.370	0.399	0.423	0.444
	80	0.238	0.251	0.263	0.275	0.295	0.314	0.331	0.346	0.360	0.373	0.403	0.428	0.449
	85	0.238	0.252	0.264	0.275	0.296	0.315	0.332	0.348	0.362	0.376	0.406	0.432	0.454
	90	0.239	0.252	0.265	0.276	0.297	0.316	0.334	0.350	0.365	0.378	0.409	0.435	0.458
	95	0.239	0.253	0.265	0.277	0.298	0.318	0.335	0.351	0.366	0.380	0.412	0.439	0.462
	100	0.239	0.253	0.266	0.278	0.299	0.319	0.336	0.353	0.368	0.382	0.414	0.442	0.466

						ν ₁							α =	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	= .8 5
0.181	0.181	0.181	0.182	0.182	0.182	0.182	0.182	0.182	0.182	0.182	0.182	0.182	5	
0.194	0.194	0.194	0.195	0.195	0.195	0.195	0.195	0.196	0.196	0.196	0.196	0.196	6	
0.206	0.206	0.207	0.207	0.207	0.208	0.208	0.208	0.208	0.208	0.209	0.209	0.209	7	
0.217	0.218	0.218	0.219	0.219	0.220	0.220	0.220	0.220	0.221	0.221	0.221	0.221	8	
0.237	0.238	0.239	0.240	0.241	0.242	0.242	0.243	0.243	0.243	0.244	0.244	0.244	10	
0.255	0.257	0.259	0.260	0.261	0.262	0.262	0.263	0.264	0.264	0.265	0.265	0.266	12	
0.272	0.274	0.276	0.278	0.279	0.280	0.281	0.282	0.283	0.284	0.284	0.285	0.285	14	
0.287	0.289	0.292	0.294	0.296	0.297	0.299	0.300	0.301	0.302	0.303	0.303	0.304	16	
0.300	0.304	0.307	0.309	0.311	0.313	0.315	0.316	0.318	0.319	0.320	0.321	0.322	18	
0.312	0.317	0.320	0.323	0.326	0.328	0.330	0.332	0.333	0.335	0.336	0.337	0.338	20	
0.339	0.345	0.350	0.354	0.358	0.361	0.364	0.366	0.368	0.370	0.372	0.374	0.375	25	
0.361	0.369	0.375	0.380	0.385	0.389	0.392	0.396	0.399	0.401	0.404	0.406	0.408	30	
0.380	0.388	0.396	0.402	0.408	0.413	0.417	0.422	0.425	0.429	0.432	0.434	0.437	35	
0.396	0.405	0.414	0.421	0.428	0.434	0.439	0.444	0.448	0.452	0.456	0.459	0.462	40	V ₂
0.409	0.420	0.430	0.438	0.446	0.453	0.459	0.464	0.469	0.474	0.478	0.482	0.485	45	
0.421	0.433	0.444	0.453	0.461	0.469	0.476	0.482	0.487	0.493	0.497	0.502	0.506	50	
0.431	0.444	0.456	0.466	0.475	0.484	0.491	0.498	0.504	0.510	0.515	0.520	0.524	55	
0.441	0.454	0.467	0.478	0.488	0.497	0.505	0.512	0.519	0.525	0.531	0.536	0.541	60	
0.449	0.463	0.477	0.488	0.499	0.508	0.517	0.525	0.532	0.539	0.545	0.551	0.556	65	
0.456	0.472	0.485	0.498	0.509	0.519	0.528	0.537	0.544	0.551	0.558	0.564	0.570	70	
0.463	0.479	0.493	0.506	0.518	0.529	0.538	0.547	0.555	0.563	0.570	0.576	0.582	75	
0.468	0.485	0.500	0.514	0.526	0.538	0.548	0.557	0.566	0.574	0.581	0.588	0.594	80	
0.474	0.491	0.507	0.521	0.534	0.546	0.556	0.566	0.575	0.583	0.591	0.598	0.605	85	
0.479	0.497	0.513	0.528	0.541	0.553	0.564	0.574	0.584	0.592	0.600	0.608	0.615	90	
0.483	0.502	0.519	0.534	0.547	0.560	0.571	0.582	0.592	0.601	0.609	0.617	0.624	95	
0.487	0.507	0.524	0.539	0.553	0.566	0.578	0.589	0.599	0.608	0.617	0.625	0.632	100	

α -	.10							ν ₁						
σ_2/σ_1	80	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.202	0.205	0.207	0.209	0.212	0.214	0.215	0.217	0.218	0.218	0.220	0.221	0.221
	6	0.213	0.217	0.221	0.223	0.227	0.230	0.232	0.234	0.235	0.236	0.239	0.240	0.241
	7	0.223	0.228	0.232	0.235	0.240	0.244	0.247	0.249	0.251	0.253	0.256	0.258	0.260
	8	0.230	0.236	0.241	0.245	0.252	0.257	0.260	0.263	0.266	0.268	0.272	0.275	0.277
	10	0.243	0.250	0.257	0.262	0.271	0.278	0.283	0.288	0.291	0.294	0.300	0.305	0.308
	12	0.252	0.261	0.269	0.276	0.287	0.295	0.302	0.308	0.313	0.317	0.325	0.331	0.336
	14	0.259	0.270	0.279	0.286	0.299	0.309	0.318	0.325	0.331	0.336	0.346	0.354	0.360
	16	0.265	0.276	0.286	0.295	0.310	0.321	0.331	0.340	0.347	0.353	0.365	0.375	0.382
	18	0.269	0.282	0.293	0.302	0.318	0.332	0.343	0.352	0.360	0.367	0.382	0.393	0.401
	20	0.273	0.287	0.298	0.308	0.326	0.341	0.353	0.363	0.372	0.380	0.397	0.409	0.419
	25	0.281	0.295	0.309	0.320	0.341	0.358	0.373	0.385	0.397	0.406	0.427	0.443	0.456
	30	0.286	0.302	0.316	0.329	0.352	0.371	0.387	0,402	0.415	0.427	0.451	0.470	0.486
	35	0.289	0.306	0.322	0.335	0.360	0.381	0.399	0.415	0.430	0.442	0.470	0.492	0.510
ν ₂	40	0.292	0.310	0.326	0.341	0.366	0.389	0.408	0.426	0.441	0.455	0.485	0.509	0.530
	45	0.295	0.313	0.329	0.345	0.372	0.395	0.416	0.434	0.451	0.466	0.498	0.524	0.546
	50	0.297	0.315	0.332	0.348	0.376	0.400	0.422	0.441	0.459	0.475	0.509	0.537	0.560
	55	0.298	0.317	0.335	0.351	0.379	0.405	0.427	0.447	0.466	0.482	0.518	0.548	0.573
	60	0.300	0.319	0.337	0.353	0.383	0.408	0.432	0.453	0.472	0.489	0.526	0.557	0.583
	65	0.301	0.320	0.338	0.355	0.385	0.412	0.436	0.457	0.477	0.495	0.533	0.566	0.593
	70	0.302	0.322	0.340	0.357	0.387	0.415	0.439	0.461	0.481	0.500	0.540	0.573	0.601
	75	0.302	0.323	0.341	0.358	0.389	0.417	0.442	0.464	0.485	0.504	0.545	0.579	0.608
	80	0.303	0.324	0.342	0.360	0.391	0.419	0.445	0.468	0.489	0.508	0.550	0.585	0.615
	85	0.304	0.324	0.343	0.361	0.393	0.421	0.447	0.470	0.492	0.511	0.554	0.590	0.621
	90	0.304	0.325	0.344	0.362	0.394	0.423	0.449	0.473	0.495	0.515	0.558	0.595	0.626
	95	0.305	0.326	0.345	0.363	0.396	0.425	0.451	0.475	0.497	0.517	0.562	0.599	0.631
	100	0.305	0.326	0.346	0.364	0.397	0.426	0.453	0.477	0.499	0.520	0.565	0.603	0.635

		,,	-		******	ν					·		α -	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	80
0.222	0.222	0.223	0.223	0.223	0.223	0.224	0.224	0.224	0.224	0.224	0.224	0.224	5	
0.242	0.243	0.243	0.244	0.244	0.244	0.245	0.245	0.245	0.245	0.246	0.246	0.246	6	
0.261	0.262	0.263	0.263	0.264	0.264	0.265	0.265	0.265	0.266	0.266	0.266	0.266	7	
0.279	0.280	0.281	0.282	0.283	0.283	0.284	0.284	0.285	0.285	0.285	0.286	0.286	8	
0.311	0.313	0.315	0.316	0.317	0.318	0.319	0.320	0.321	0.321	0.322	0.322	0.323	10	
0.339	0.342	0.345	0.347	0.349	0.350	0.351	0.353	0.354	0.354	0.355	0.356	0.357	12	
0.365	0.369	0.372	0.375	0.377	0.379	0.381	0.382	0.384	0.385	0.386	0.387	0.388	14	
0.388	0.393	0.397	0.400	0.403	0.405	0.408	0.410	0.411	0.413	0.415	0.416	0.417	16	
0.408	0.414	0.419	0.423	0.427	0.430	0.432	0.435	0.437	0.439	0.441	0.442	0.444	18	
0.427	0.434	0.439	0.444	0.448	0.452	0.455	0.458	0.461	0.463	0.465	0.467	0.469	20	
0.467	0.476	0.483	0.490	0.496	0.501	0.505	0.509	0.512	0.516	0.519	0.521	0.524	25	
0.499	0.510	0.519	0.527	0.534	0.540	0.546	0.551	0.556	0.560	0.563	0.567	0.570	30	
0.525	0.537	0.548	0.558	0.566	0.574	0.580	0.586	0.592	0.597	0.601	0.605	0.609	35	
0.546	0.561	0.573	0.584	0.594	0.602	0.610	0.616	0.623	0.628	0.633	0.638	0.642	40	V ₂
0.565	0.580	0.594	0.606	0.617	0.626	0.634	0.642	0.649	0.655	0.661	0.666	0.671	45	
0.580	0.597	0.612	0.625	0.637	0.647	0.656	0.664	0.671	0.678	0.684	0.690	0.695	50	
0.594	0.612	0.628	0.642	0.654	0.665	0.674	0.683	0.691	0.698	0.705	0.711	0.717	55	
0.606	0.625	0.641	0.656	0.669	0.680	0.691	0.700	0.708	0.716	0.723	0.729	0.735	60	
0.616	0.636	0.653	0.669	0.682	0.694	0.705	0.715	0.724	0.732	0.739	0.746	0.752	65	
0.625	0.646	0.664	0.680	0.694	0.706	0.718	0.728	0.737	0.745	0.753	0.760	0.766	70	
0.633	0.654	0.673	0.690	0.704	0.717	0.729	0.740	0.749	0.758	0.766	0.773	0.779	75	
0.640	0.662	0.682	0.699	0.714	0.727	0.739	0.750	0.760	0.769	0.777	0.784	0.791	80	
0.647	0.670	0.689	0.707	0.722	0.736	0.748	0.759	0.769	0.779	0.787	0.794	0.801	85	
0.653	0.676	0.696	0.714	0.730	0.744	0.757	0.768	0.778	0.787	0.796	0.804	0.811	90	
0.658	0.682	0.702	0.721	0.737	0.751	0.764	0.776	0.786	0.795	0.804	0.812	0.819	95	
0.663	0.687	0.708	0.727	0.743	0.758	0.771	0.783	0.793	0.803	0.812	0.820	0.827	100	

α -	.10						4	ν ₁		7				
σ_2/σ_1	75	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.242	0.246	0.250	0.253	0.257	0.260	0.262	0.264	0.265	0.267	0.269	0.270	0.272
	6	0.258	0.264	0.268	0.272	0.278	0.283	0.286	0.289	0.291	0.293	0.296	0.299	0.300
	7	0.270	0.278	0.284	0.289	0.297	0.303	0.308	0.311	0.314	0.317	0.321	0.325	0.327
	8	0.281	0.290	0.297	0.304	0.313	0.321	0.327	0.331	0.335	0.338	0.344	0.349	0.352
	10	0.298	0.309	0.319	0.327	0.340	0.351	0.359	0.365	0.371	0.376	0.385	0.392	0.397
	12	0.310	0.324	0.335	0.345	0.362	0.374	0.385	0.393	0.401	0.407	0.419	0.428	0.435
	14	0.320	0.335	0.348	0.360	0.379	0.394	0.406	0.417	0.426	0.433	0.449	0.460	0.469
	16	0.327	0.344	0.359	0.371	0.393	0.410	0.424	0.437	0.447	0.456	0.474	0.487	0.498
	18	0.334	0.352	0.367	0.381	0.405	0.424	0.440	0.453	0.465	0.475	0.496	0.512	0.524
	20	0.39	0.358	0.375	0.389	0.415	0.435	0.453	0.468	0.481	0.492	0.515	0.533	0.547
•	25	0.348	0.369	0.388	0.405	0.434	0.458	0.479	0.496	0.512	0.526	0.554	0.576	0.593
	30	0.355	0.378	0.398	0.416	0.448	0.475	0.498	0.518	0.535	0.551	0.583	0.608	0.629
	35	0.360	0.384	0.405	0.424	0.458	0.487	0.512	0.534	0.553	0.570	0.606	0.634	0.657
V ₂	40	0.364	0.388	0.411	0.431	0.467	0.497	0.523	0.547	0.567	0.586	0.624	0.654	0.679
	45	0.367	0.392	0.415	0.436	0.473	0.505	0.533	0.557	0.579	0.598	0.639	0.671	0.697
	50	0.369	0.395	0.419	0.440	0.479	0.511	0.540	0.566	0.588	0.609	0.651	0.685	0.712
	55	0.371	0.398	0.422	0.444	0.483	0.517	0.547	0.573	0.596	0.618	0.662	0.697	0.725
	60	0.373	0.400	0.424	0.447	0.487	0.522	0.552	0.579	0.603	0.625	0.671	0.707	0.736
	65	0.374	0.402	0.427	0.449	0.490	0.526	0.557	0.584	0.609	0.631	0.678	0.715	0.746
	70	0.376	0.403	0.428	0.452	0.493	0.529	0.561	0.589	0.614	0.637	0.685	0.723	0.754
	75	0.377	0.405	0.430	0.454	0.495	0.532	0.564	0.593	0.619	0.642	0.691	0.730	0.761
	80	0.378	0.406	0.432	0.455	0.498	0.535	0.567	0.597	0.623	0.646	0.696	0.735	0.767
	85	0.378	0.407	0.433	0.457	0.500	0.537	0.570	0.600	0.626	0.650	0.701	0.741	0.773
	90	0.379	0.408	0.434	0.458	0.501	0.539	0.573	0.603	0.630	0.654	0.705	0.745	0.778
	95	0.380	0.409	0.435	0.459	0.503	0.541	0.575	0.605	0.632	0.657	0.709	0.750	0.783
	100	0.381	0.409	0.436	0.460	0.504	0.543	0.577	0.608	0.635	0.660	0.712	0.753	0.787

						ν ₁							α -	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 75
0.272	0.273	0.274	0.274	0.274	0.275	0.275	0.275	0.276	0.276	0.276	0.276	0.276	5	
0.302	0.303	0.304	0.305	0.305	0.306	0.306	0.307	0.307	0.307	0.307	0.308	0.308	6]
0.329	0.331	0.332	0.333	0.334	0.335	0.335	0.336	0.336	0.337	0.337	0.338	0.338	7	
0.355	0.357	0.359	0,360	0.361	0.362	0.363	0.364	0.365	0.365	0.366	0.366	0.367	8	
0.401	0.404	0.407	0.409	0.411	0.412	0.414	0.415	0.416	0.417	0.418	0.419	0.420	10	
0.441	0.445	0.449	0.452	0.455	0.457	0.459	0.461	0.462	0.464	0.465	0.466	0.467	12]
0.476	0.482	0.486	0.490	0.494	0.497	0.499	0.502	0.504	0.506	0.507	0.509	0.510	14	
0.507	0.514	0.519	0.524	0.529	0.532	0.536	0.538	0.541	0.543	0.545	0.547	0.549	16	
0.534	0.542	0.549	0.555	0.560	0.564	0.568	0.571	0.574	0.577	0.580	0.582	0.584	18	
0.558	0.567	0.575	0.582	0.587	0.592	0.597	0.601	0.604	0.607	0.610	0.613	0.615	20	
0.607	0.619	0.629	0.638	0.645	0.652	0.657	0.662	0.667	0.671	0.675	0.678	0.681	25	
0.645	0.659	0.671	0.681	0.690	0.697	0.704	0.710	0.716	0.720	0.725	0.729	0.732	30	
0.675	0.691	0.704	0.715	0.725	0.734	0.741	0.748	0.754	0.759	0.764	0.769	0.773	35	
0.699	0.716	0.730	0.743	0.753	0.763	0.771	0.778	0.785	0.791	0.796	0.801	0.805	40	ν ₂
0.719	0.737	0.752	0.765	0.776	0.786	0.795	0.803	0.810	0.816	0.821	0.826	0.831	45	
0.735	0.754	0.770	0.784	0.795	0.806	0.815	0.823	0.830	0.836	0.842	0.847	0.852	50	
0.749	0.768	0.785	0.799	0.811	0.822	0.831	0.840	0.847	0.853	0.859	0.865	0.869	55	
0.760	0.781	0.798	0.812	0.825	0.836	0.845	0.854	0.861	0.868	0.874	0.879	0.884	60	
0.770	0.791	0.809	0.823	0.836	0.847	0.857	0.865	0.873	0.880	0.886	0.891	0.896	65	-
0.779	0.800	0.818	0.833	0.846	0.857	0.867	0.876	0.883	0.890	0.896	0.901	0.906	70	
0.787	0.808	0.826	0.842	0.855	0.866	0.876	0.884	0.892	0.899	0.905	0.910	0.915	75	
0.794	0.815	0.834	0.849	0.862	0.874	0.883	0.892	0.900	0.906	0.912	0.917	0.922	80	
0.800	0.822	0.840	0.856	0.869	0.880	0.890	0.899	0.906	0.913	0.919	0.924	0.929	85	
0.805	0.827	0.846	0.861	0.875	0.886	0.896	0.905	0.912	0.919	0.924	0.930	0.934	90	
0.810	0.832	0.851	0.867	0.880	0.891	0.901	0.910	0.917	0.924	0.929	0.935	0.939	95	
0.814	0.837	0.855	0.871	0.885	0.896	0.906	0.914	0.922	0.928	0.934	0.939	0.943	100	

α -	.10					***		v ₁						
σ_2/σ_1	70	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.289	0.295	0.301	0.305	0.311	0.315	0.319	0.322	0.324	0.326	0.329	0.331	0.333
	6	0.310	0.318	0.325	0.331	0.340	0.346	0.351	0.355	0.359	0.361	0.366	0.370	0.373
	7	0.326	0.337	0.346	0.353	0.365	0.373	0.380	0.385	0.390	0.393	0.400	0.405	0.409
	8	0.340	0.353	0.363	0.372	0.386	0.397	0.405	0.412	0.417	0.422	0.431	0.437	0.442
	10	0.362	0.378	0.391	0.403	0.421	0.435	0.447	0.456	0.464	0.471	0.484	0.493	0.500
	12	0.377	0.396	0.412	0.426	0.448	0.466	0.480	0.492	0.502	0.510	0.527	0.539	0.549
	14	0.389	0.410	0.428	0.444	0.469	0.490	0.507	0.521	0.533	0.543	0.563	0.578	0.590
	16	0.399	0.421	0.441	0.458	0.487	0.510	0.529	0.545	0.558	0.570	0.593	0.611	0.624
	18	0.406	0.430	0.451	0.470	0.501	0.526	0.547	0.565	0.580	0.593	0.619	0.638	0.654
	20	0.413	0.438	0.460	0.480	0.513	0.540	0.562	0.581	0.598	0.612	0.641	0.662	0.679
	25	0.424	0.452	0.477	0.498	0.536	0.566	0.592	0.614	0.633	0.650	0.683	0.708	0.728
-	30	0.432	0.462	0.488	0.512	0.552	0.585	0.613	0.638	0.659	0.677	0.714	0.742	0.764
	35	0.438	0.469	0.497	0.521	0.564	0.599	0.629	0.655	0.678	0.697	0.737	0.767	0.790
V ₂	40	0.443	0.475	0.503	0.529	0.573	0.610	0.642	0.669	0.693	0.713	0.755	0.786	0.811
	45	0.446	0.479	0.508	0.535	0.581	0.619	0.652	0.680	0.704	0.726	0.769	0.802	0.827
	50	0.449	0.483	0.513	0.540	0.587	0.626	0.660	0.689	0.714	0.736	0.781	0.814	0.840
	55	0.452	0.486	0.516	0.544	0.592	0.632	0.667	0.696	0.722	0.745	0.790	0.824	0.850
	60	0.454	0.488	0.519	0.547	0.596	0.637	0.672	0.702	0.729	0.752	0.798	0.833	0.859
	65	0.455	0.490	0.521	0.550	0.599	0.641	0.677	0.708	0.735	0.758	0.805	0.840	0.866
	70	0.457	0.492	0.524	0.552	0.603	0.645	0.681	0.712	0.740	0.763	0.811	0.846	0.873
	75	0.458	0.494	0.526	0.555	0.605	0.648	0.685	0.716	0.744	0.768	0.816	0.851	0.878
	80	0.459	0.495	0.527	0.556	0.608	0.651	0.688	0.720	0.748	0.772	0.820	0.856	0.883
	85	0.460	0.496	0.529	0.558	0.610	0.653	0.691	0.723	0.751	0.776	0.824	0.860	0.887
	90	0.461	0.497	0.530	0.560	0.612	0.656	0.693	0.726	0.754	0.779	0.828	0.864	0.891
	95	0.462	0.498	0.531	0.561	0.613	0.658	0.696	0.728	0.757	0.782	0.831	0.867	0.894
	100	0.463	0.499	0.532	0.562	0.615	0.660	0.698	0.731	0.759	0.784	0.834	0.870	0.897

						ν ₁			÷				α =	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	- , .70
0.334	0.335	0.336	0.337	0.337	0.338	0.338	0.339	0.339	0.339	0.340	0.340	0.340	5	
0.375	0.376	0.378	0.379	0.380	0.380	0.381	0.382	0.382	0.383	0.383	0.383	0.384	6	
0.412	0.414	0.416	0.418	0.419	0.420	0.421	0.422	0.423	0.423	0.424	0.424	0.425	7	
0.446	0.449	0.452	0.454	0.455	0.457	0.458	0.459	0.460	0.461	0.462	0.463	0.463	8	
0.506	0.511	0.514	0.517	0.520	0.522	0.524	0.526	0.528	0.529	0.530	0.531	0.533	10	
0.556	0.563	0.568	0.572	0.575	0.579	0.581	0.584	0.586	0.588	0.589	0.591	0.592	12	
0.599	0.607	0.613	0.618	0.623	0.626	0.630	0.633	0.636	0.638	0.640	0.642	0.644	14	
0.635	0.644	0.651	0.658	0.663	0.667	0.671	0.675	0.678	0.681	0.684	0.686	0.688	16	ji s
0.666	0.676	0.684	0.691	0.697	0.703	0.707	0.711	0.715	0.718	0.721	0.724	0.726	18	
0.692	0.703	0.713	0.720	0.727	0.733	0.738	0.742	0.746	0.750	0.753	0.756	0.759	20	
0.744	0.757	0.768	0.777	0.785	0.792	0.798	0.803	0.807	0.812	0.815	0.819	0.822	25	
0.781	0.796	0.807	0.817	0.826	0.833	0.840	0.845	0.850	0.855	0.859	0.862	0.866	30	
0.809	0.824	0.836	0.847	0.856	0.864	0.870	0.876	0.881	0.886	0.890	0.893	0.897	35	
0.830	0.846	0.859	0.869	0.878	0.886	0.893	0.899	0.904	0.908	0.912	0.916	0.919	40	V ₂
0.846	0.862	0.876	0.886	0.896	0.903	0.910	0.916	0.921	0.925	0.929	0.932	0.935	45	
0.860	0.876	0.889	0.900	0.909	0.917	0.923	0.929	0.934	0.938	0.942	0.945	0.948	50	
0.871	0.887	0.900	0.911	0.920	0.927	0.933	0.939	0.944	0.948	0.951	0.954	0.957	55	
0.879	0.896	0.909	0.919	0.928	0.936	0.942	0.947	0.951	0.955	0.959	0.962	0.964	60	
0.887	0.903	0.916	0.927	0.935	0.942	0.948	0.953	0.958	0.961	0.965	0.967	0.970	65	
0.893	0.909	0.922	0.933	0.941	0.948	0.954	0.959	0.963	0.966	0.969	0.972	0.974	70	
0.899	0.915	0.928	0.938	0.946	0.953	0.958	0.963	0.967	0.970	0.973	0.976	0.978	75	
0.903	0.919	0.932	0.942	0.950	0.957	0.962	0.967	0.971	0.974	0.977	0.979	0.981	80	
0.908	0.923	0.936	0.946	0.954	0.960	0.965	0.970	0.974	0.977	0.979	0.981	0.983	85	
0.911	0.927	0.939	0.949	0.957	0.963	0.968	0.972	0.976	0.979	0.981	0.983	0.985	90	
0.914	0.930	0.942	0.952	0.960	0.966	0.971	0.975	0.978	0.981	0.983	0.985	0.987	95	
0.917	0.933	0.945	0.954	0.962	0.968	0.973	0.977	0.980	0.983	0.985	0.987	0.988	100	

α -	10						-	ν						
σ_2/σ_1	60	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.409	0.421	0.431	0.439	0.451	0.459	0.466	0.471	0.476	0.479	0.486	0.491	0.494
	6	0.440	0.456	0.468	0.479	0.495	0.507	0.517	0.524	0.530	0.535	0.545	0.552	0.557
	7	0.464	0.483	0.499	0.512	0.532	0.547	0.559	0.568	0.576	0.583	0.595	0.604	0.611
	8	0.484	0.505	0.523	0.538	0.562	0.580	0.594	0.606	0.615	0.623	0.638	0.649	0.657
	10	0.513	0.539	0.561	0.579	0.609	0.631	0.649	0.664	0.676	0.686	0.705	0.719	0.730
	12	0.534	0.563	0.588	0.609	0.642	0.669	0.689	0.706	0.720	0.732	0.755	0.771	0.784
	14	0.549	0.581	0.608	0.631	0.668	0.697	0.720	0.738	0.754	0.767	0.792	0.810	0.824
	16	0.561	0.595	0.623	0.648	0.688	0.719	0.743	0.763	0.780	0.794	0.821	0.840	0.854
	18	0.570	0.606	0.636	0.661	0.703	0.736	0.762	0.783	0.800	0.815	0.843	0.862	0.877
	20	0.578	0.615	0.646	0.673	0.716	0.750	0.777	0.799	0.817	0.832	0.860	0.880	0.895
	25	0.592	0.631	0.664	0.693	0.740	0.776	0.804	0.828	0.846	0.862	0.891	0.911	0.925
	30	0.601	0.642	0.677	0.707	0.755	0.793	0.823	0.847	0.866	0.882	0.911	0.930	0.944
	35	0.608	0.650	0.686	0.717	0.767	0.805	0.836	0.860	0.879	0.895	0.924	0.943	0.956
V ₂	40	0.613	0.656	0.693	0.724	0.775	0.815	0.846	0.870	0.889	0.905	0.934	0.952	0.964
	45	0.617	0.661	0.698	0.730	0.782	0.822	0.853	0.878	0.897	0.913	0.941	0.958	0.969
	50	0.620	0.665	0.702	0.735	0.787	0.828	0.859	0.884	0.903	0.919	0.946	0.963	0.974
	55	0.623	0.668	0.706	0.739	0.792	0.832	0.864	0.888	0.908	0.923	0.950	0.967	0.977
	60	0.625	0.670	0.709	0.742	0.795	0.836	0.868	0.892	0.912	0.927	0.954	0.970	0.979
	65	0.627	0.673	0.711	0.745	0.799	0.840	0.871	0.896	0.915	0.930	0.957	0.972	0.981
	70	0.629	0.674	0.713	0.747	0.801	0.842	0.874	0.899	0.918	0.933	0.959	0.974	0.983
	75	0.630	0.676	0.715	0.749	0.804	0.845	0.877	0.901	0.920	0.935	0.961	0.975	0.984
	80	0.631	0.678	0.717	0.751	0.806	0.847	0.879	0.903	0.922	0.937	0.963	0.977	0.985
	85	0.632	0.679	0.718	0.752	0.807	0.849	0.881	0.905	0.924	0.939	0.964	0.978	0.986
	90	0.633	0.680	0.720	0.754	0.809	0.850	0.882	0.907	0.926	0.941	0.965	0.979	0.987
	95	0.634	0.681	0.721	0.755	0.810	0.852	0.884	0.908	0.927	0.942	0.966	0.980	0.988
	100	0.635	0.682	0.722	0.756	0.812	0.853	0.885	0.910	0.929	0.943	0.967	0.981	0.988

				•	·	v ₁							α =	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	60
0.497	0.499	0.500	0.502	0.503	0.504	0.505	0.505	0.506	0.507	0.507	0.508	0.508	5	
0.560	0.564	0.566	0.568	0.570	0.571	0.573	0.574	0.575	0.576	0.576	0.577	0.578	6	
0.616	0.620	0.623	0.626	0.628	0.630	0.632	0.633	0.635	0.636	0.637	0.638	0.639	7	
0.663	0.668	0.672	0.675	0.678	0.681	0.683	0.685	0.686	0.688	0.689	0.690	0.691	8	
0.738	0.745	0.750	0.754	0.758	0.761	0.764	0.767	0.769	0.771	0.773	0.774	0.776	10	
0.793	0.801	0.807	0.812	0.817	0.820	0.824	0.826	0.829	0.831	0.833	0.835	0.837	12	
0.834	0.842	0.849	0.855	0.859	0.863	0.867	0.870	0.873	0.875	0.877	0.879	0.881	14	
0.865	0.873	0.880	0.886	0.891	0.895	0.898	0.901	0.904	0.906	0.909	0.910	0.912	16	
0.888	0.897	0.904	0.909	0.914	0.918	0.922	0.925	0.927	0.929	0.931	0.933	0.935	18	
0.906	0.914	0.921	0.927	0.932	0.935	0.939	0.942	0.944	0.946	0.948	0.950	0.951	20	
0.936	0.944	0.950	0.955	0.959	0.963	0.965	0.968	0.970	0.972	0.973	0.974	0.976	25	
0.954	0.961	0.966	0.971	0.974	0.977	0.979	0.981	0.983	0.984	0.985	0.986	0.987	30	
0.965	0.971	0.976	0.980	0.983	0.985	0.987	0.988	0.989	0.990	0.991	0.992	0.993	35	
0.972	0.978	0.982	0.985	0.988	0.990	0.991	0.992	0.993	0.994	0.995	0.995	0.996	40	V ₂
0.977	0.982	0.986	0 .98 9	0.991	0.993	0.994	0.995	0.996	0.996	0.997	0.997	0.997	45	
0.981	0.986	0.989	0.991	0.993	0.994	0.996	0.996	0.997	0.997	0.998	0.998	0.998	50	
0.983	0.988	0.991	0.993	0.995	0.996	0.997	0.997	0.998	0.998	0.998	0.999	0.999	55	
0.986	0.990	0.992	0.994	0.996	0.997	0.997	0.998	0.998	0.999	0.999	0.999	0.999	60	
0.987	0.991	0.994	0.995	0.997	0.997	0.998	0.998	0.999	0.999	0.999	0.999	0.999	65	
0.989	0.992	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	0.999	1.000	1.000	70	
0.990	0.993	0.995	0.997	0.998	0.998	0.999	0.999	0.999	0.999	1.000	1.000	1.000	75	
0.990	0.994	0.996	0.997	0.998	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	80	
0.991	0.994	0.996	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	85	
0.992	0.995	0.997	0.998	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	90	
0.992	0.995	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	95	
0.993	0.995	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.10							ν ₁						
σ ₂ /σ ₁	50	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.562	0.582	0.598	0.610	0.630	0.644	0.654	0.663	0.670	0.675	0.686	0.693	0.699
	6	0.600	0.624	0.643	0.659	0.683	0.701	0.714	0.725	0.734	0.741	0.754	0.763	0.770
	7	0.629	0.656	0.678	0.696	0.723	0.744	0.759	0.771	0.781	0.790	0.805	0.816	0.824
	8	0.650	0.680	0.704	0.724	0.754	0.776	0.794	0.807	0.818	0.827	0.844	0.855	0.864
	10	0.681	0.715	0.742	0.764	0.798	0.823	0.841	0.856	0.868	0.877	0.895	0.907	0.916
	12	0.702	0.738	0.767	0.790	0.826	0.852	0.872	0.887	0.899	0.909	0.926	0.937	0.945
	14	0.717	0.755	0.785	0.809	0.846	0.873	0.893	0.908	0.920	0.929	0.945	0.956	0.963
	16	0.728	0.767	0.798	0.823	0.861	0.888	0.908	0.922	0.934	0.943	0.958	0.968	0.974
	18	0.737	0.777	0.808	0.834	0.872	0.899	0.919	0.933	0.944	0.953	0.967	0.976	0.981
	20	0.744	0.784	0.816	0.842	0.881	0.908	0.927	0.941	0.952	0.960	0.973	0.981	0.986
	25	0.757	0.798	0.831	0.857	0.896	0.922	0.941	0.954	0.964	0.971	0.983	0.989	0.992
	30	0.765	0.807	0.840	0.867	0.906	0.932	0.950	0.962	0.971	0.978	0.988	0.993	0.995
	35	0.771	0.813	0.847	0.873	0.912	0.938	0.955	0.967	0.976	0.982	0.990	0.995	0.997
V ₂	40	0.775	0.818	0.852	0.878	0.917	0.942	0.959	0.971	0.979	0.984	0.992	0.996	0.998
	45	0.778	0.822	0.855	0.882	0.921	0.946	0.962	0.973	0.981	0.986	0.994	0.997	0.998
	50	0.781	0.824	0.859	0.885	0.924	0.948	0.965	0.975	0.983	0.988	0.994	0.997	0.999
	55	0.783	0.827	0.861	0.888	0.926	0.951	0.966	0.977	0.984	0.989	0.995	0.998	0.999
	60	0.785	0.829	0.863	0.890	0.928	0.952	0.968	0.978	0.985	0.990	0.996	0.998	0.999
·	65	0.787	0.830	0.865	0.892	0.930	0.954	0.969	0.979	0.986	0.990	0.996	0.998	0.999
	70	0.788	0.832	0.866	0.893	0.931	0.955	0.970	0.980	0.987	0.991	0.996	0.998	0.999
	75	0.789	0.833	0.867	0.894	0.932	0.956	0.971	0.981	0.987	0.991	0.997	0.999	0.999
	80	0.790	0.834	0.869	0.895	0.933	0.957	0.972	0.981	0.988	0.992	0.997	0.999	0.999
	85	0.791	0.835	0.869	0.896	0.934	0.958	0.972	0.982	0.988	0.992	0.997	0.999	1.000
	90	0.792	0.836	0.870	0.897	0.935	0.958	0.973	0.982	0.988	0.992	0.997	0.999	1.000
	95	0.792	0.837	0.871	0.898	0.936	0.959	0.974	0.983	0.989	0.993	0.997	0.999	1.000
	100	0.793	0.837	0.872	0.899	0.936	0.959	0.974	0.983	0.989	0.993	0.997	0.999	1.000

				·		ν ₁					******		α =	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	~ . 50
0.703	0.706	0.709	0.711	0.713	0.714	0.716	0.717	0.718	0.719	0.720	0.721	0.721	5	
0.776	0.780	0.783	0.786	0.788	0.790	0.792	0.794	0.795	0.796	0.797	0.798	0.799	6	
0.830	0.835	0.839	0.842	0.844	0.847	0.849	0.850	0.852	0.853	0.854	0.856	0.856	7	
0.870	0.875	0.879	0.883	0.885	0.888	0.890	0.892	0.893	0.895	0.896	0.897	0.898	8	
0.922	0.927	0.931	0.934	0.937	0.939	0.941	0.943	0.944	0.946	0.947	0.948	0.949	10	
0.951	0.956	0.959	0.962	0.964	0.966	0.968	0.969	0.970	0.972	0.972	0.973	0.974	12	
0.968	0.972	0.975	0.977	0.979	0.981	0.982	0.983	0.984	0.985	0.985	0.986	0.987	14	
0.979	0.982	0.984	0.986	0.987	0.989	0.990	0.990	0.991	0.992	0.992	0.993	0.993	16	
0.985	0.988	0.990	0.991	0.992	0.993	0.994	0.994	0.995	0.995	0.996	0.996	0.996	18	
0.989	0.991	0.993	0.994	0.995	0.996	0.996	0.997	0.997	0.997	0.998	0.998	0.998	20	
0.995	0.996	0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	25	
0.997	0.998	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	v ₂
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.10							ν ₁						
σ_2/σ_1	40	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.735	0.760	0.779	0.795	0.818	0.834	0.846	0.856	0.863	0.869	0.880	0.888	0.893
-	6	0.770	0.798	0.819	0.836	0.861	0.878	0.891	0.901	0.908	0.914	0.925	0.933	0.938
	7	0.794	0.824	0.846	0.863	0.889	0.907	0.919	0.929	0.936	0.942	0.952	0.959	0.963
	8	0.812	0.842	0.865	0.883	0.909	0.926	0.938	0.947	0.954	0.959	0.968	0.974	0.978
	10	0.836	0.867	0.890	0.908	0.933	0.949	0.960	0.968	0.973	0.977	0.984	0.988	0.991
	12	0.851	0.882	0.906	0.923	0.947	0.962	0.972	0.978	0.983	0.986	0.991	0.994	0.996
	14	0.861	0.893	0.916	0.933	0.956	0.970	0.978	0.984	0.988	0.991	0.995	0.997	0.998
	16	0.869	0.900	0.923	0.940	0.962	0.975	0.983	0.988	0.991	0.994	0.997	0.998	0.999
	18	0.875	0.906	0.929	0.945	0.966	0.979	0.986	0.990	0.993	0.995	0.998	0.999	0.999
	20	0.879	0.911	0.933	0.949	0.970	0.981	0.988	0.992	0.995	0.996	0.998	0.999	1.000
	25	0.887	0.918	0.940	0.956	0.975	0.985	0.991	0.995	0.997	0.998	0.999	1.000	1.000
	30	0.892	0.923	0.945	0.960	0.978	0.988	0.993	0.996	0.997	0.998	0.999	1.000	1.000
	35	0.896	0.926	0.948	0.962	0.980	0.989	0.994	0.997	0.998	0.999	1.000	1.000	1.000
V ₂	40	0.898	0.929	0.950	0.964	0.982	0.990	0.995	0.997	0.998	0.999	1.000	1.000	1.000
	45	0.900	0.931	0.952	0.966	0.983	0.991	0.995	0.997	0.999	0.999	1.000	1.000	1.000
	50	0.902	0.932	0.953	0.967	0.984	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000
	55	0.903	0.934	0.954	0.968	0.984	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000
	60	0.904	0.935	0.955	0.969	0.985	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000
	65	0.905	0.935	0.956	0.969	0.985	0.993	0.996	0.998	0.999	1.000	1.000	1.000	1.000
	70	0.906	0.936	0.956	0.970	0.986	0.993	0.997	0.998	0.999	1.000	1.000	1.000	1.000
	75	0.907	0.937	0.957	0.970	0.986	0.993	0.997	0.998	0.999	1.000	1.000	1.000	1.000
	80	0.907	0.937	0.957	0.971	0.986	0.993	0.997	0.998	0.999	1.000	1.000	1.000	1.000
	85	0.908	0.938	0.958	0.971	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000
	90	0.908	0.938	0.958	0.972	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000
	95	0.909	0.938	0.958	0.972	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000
	100	0.909	0.939	0.959	0.972	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000

			Wiel un			v ₁							α -	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	40
0.897	0.901	0.903	0.905	0.907	0.908	0.910	0.911	0.912	0.913	0.913	0.914	0.915	5	
0.942	0.945	0.947	0.949	0.951	0.952	0.953	0.954	0.955	0.956	0.957	0.957	0.958	6	
0.966	0.969	0.971	0.973	0.974	0.975	0.976	0.977	0.977	0.978	0.978	0.979	0.979	7	
0.980	0.982	0.984	0,985	0.986	0.987	0.987	0.988	0.989	0.989	0.989	0.990	0.990	8	
0.993	0.994	0.995	0.995	0.996	0.996	0.996	0.997	0.997	0.997	0.997	0.997	0.998	10	
0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	12	
0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	·
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	.10			·				v ₁						
σ_2/σ_1	30	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.887	0.909	0.924	0.936	0.952	0.962	0.969	0.973	0.977	0.980	0.984	0.987	0.989
	6	0.908	0.929	0.944	0.955	0.969	0.977	0.982	0.986	0.989	0.991	0.993	0.995	0.996
	7	0.922	0.942	0.956	0.966	0.978	0.985	0.989	0.992	0.994	0.995	0.997	0.998	0.999
	8	0.931	0.950	0.964	0.973	0.984	0.989	0.993	0.995	0.996	0.997	0.999	0.999	0.999
	10	0.942	0.961	0.973	0.980	0.990	0.994	0.996	0.998	0.998	0.999	1.000	1.000	1.000
	12	0.949	0.967	0.978	0.985	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	14	0.954	0.971	0.981	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	16	0.957	0.973	0.983	0.989	0.995	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	18	0.959	0.975	0.985	0.990	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	20	0.961	0.977	0.986	0.991	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	25	0.964	0.979	0.988	0.993	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	30	0.966	0.981	0.989	0.993	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	35	0.968	0.982	0.990	0.994	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
V ₂	40	0.969	0.982	0.990	0.994	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	45	0.969	0.983	0.991	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	50	0.970	0.984	0.991	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	55	0.970	0.984	0.991	0.995	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	60	0.971	0.984	0.991	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	6 5	0.971	0.984	0.992	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	70	0.972	0.985	0.992	0.995	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	75	0.972	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	80	0.972	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	85	0.972	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	90	0.972	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	95	0.972	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	100	0.973	0.985	0.992	0.996	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

						ν							α -	.10
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	= .30
0.990	0.991	0.992	0.992	0.993	0.993	0.994	0.994	0.994	0.994	0.994	0.995	0.995	5	
0.997	0.997	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	6	
0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	7	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	8	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	10	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	12	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α =	. 25			70.			···	ν ₁						
σ_2/σ_1	95	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.285	0.286	0.287	0.288	0.289	0.290	0.290	0.291	0.291	0.291	0.292	0.292	0.293
	6	0.288	0.289	0.290	0.291	0.293	0.294	0.294	0.295	0.295	0.296	0.297	0.297	0.297
	7	0.290	0.291	0.293	0.294	0.296	0.297	0.298	0.299	0.299	0.300	0.301	0.301	0.302
	8	0.291	0.293	0.295	0.296	0.298	0.300	0.301	0.302	0.302	0.303	0.304	0.305	0.306
	10	0.294	0.296	0.298	0.300	0.302	0.304	0.306	0.307	0.308	0.309	0.311	0.312	0.313
	12	0.296	0.298	0.301	0.303	0.306	0.308	0.310	0.311	0.313	0.314	0.316	0.317	0.319
	14	0.297	0.300	0.303	0.305	0.308	0.311	0.313	0.315	0.316	0.318	0.320	0.322	0.324
	16	0.298	0.302	0.304	0.307	0.310	0.313	0.316	0.318	0.320	0.321	0.324	0.326	0.328
	18	0.299	0.303	0.306	0.308	0.312	0.315	0.318	0.320	0.322	0.324	0.328	0.330	0.332
	20	0.300	0.304	0.307	0.309	0.314	0.317	0.320	0.323	0.325	0.327	0.331	0.333	0.336
	25	0.302	0.305	0.309	0.312	0.317	0.321	0.324	0.327	0.330	0.332	0.337	0.340	0.343
	30	0.303	0.307	0.310	0.313	0.319	0.323	0.327	0.331	0.334	0.336	0.342	0.346	0.349
	35	0.303	0.308	0.311	0.315	0.321	0.325	0.330	0.333	0.337	0.339	0.345	0.350	0.354
V ₂	40	0.304	0.308	0.312	0.316	0.322	0.327	0.331	0.335	0.339	0.342	0.349	0.354	0.358
	45	0.304	0.309	0.313	0.317	0.323	0.328	0.333	0.337	0.341	0.344	0.351	0.357	0.362
	50	0.305	0.309	0.313	0.317	0.324	0.329	0.334	0.339	0.343	0.346	0.354	0.360	0.365
	55	0.305	0.310	0.314	0.318	0.324	0.330	0.335	0.340	0.344	0.348	0.356	0.362	0.368
	60	0.305	0.310	0.314	0.318	0.325	0.331	0.336	0.341	0.345	0.349	0.357	0.364	0.370
	65	0.305	0.310	0.315	0.319	0.326	0.332	0.337	0.342	0.346	0.350	0.359	0.366	0.372
	70	0.306	0.311	0.315	0.319	0.326	0.332	0.338	0.343	0.347	0.351	0.360	0.368	0.374
	75	0.306	0.311	0.315	0.319	0.326	0.333	0.338	0.343	0.348	0.352	0.361	0.369	0.376
	80	0.306	0.311	0.315	0.320	0.327	0.333	0.339	0.344	0.349	0.353	0.362	0.370	0.377
	85	0.306	0.311	0.316	0.320	0.327	0.334	0.339	0.345	0.349	0.354	0.363	0.372	0.379
	90	0.306	0.311	0.316	0.320	0.327	0.334	0.340	0.345	0.350	0.354	0.364	0.373	0.380
	95	0.306	0.311	0.316	0.320	0.328	0.334	0.340	0.346	0.351	0.355	0.365	0.374	0.381
	100	0.306	0.311	0.316	0.320	0.328	0.335	0.341	0.346	0.351	0.356	0.366	0.375	0.382

						ν			***				α -	.25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	9 5
0.293	0.293	0.293	0.293	0.293	0.293	0.293	0.294	0.294	0.294	0.294	0.294	0.294	5	
0.298	0.298	0.298	0.298	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	0.299	6	
0.302	0.303	0.303	0.303	0.303	0.303	0.303	0.304	0.304	0.304	0.304	0.304	0.304	7	
0.306	0.307	0.307	0.307	0.307	0.308	0.308	0.308	0.308	0.308	0.308	0.308	0.308	8	
0.313	0.314	0.314	0.315	0.315	0.315	0.316	0.316	0.316	0.316	0.316	0.316	0.317	10	
0.319	0.320	0.321	0.321	0.322	0.322	0.322	0.323	0.323	0.323	0.323	0.324	0.324	12	
0.325	0.326	0.326	0.327	0.328	0.328	0.329	0.329	0.329	0.330	0.330	0.330	0.330	14	
0.329	0.331	0.332	0.332	0.333	0.334	0.334	0.335	0.335	0.335	0.336	0.336	0.336	16	
0.334	0.335	0.336	0.337	0.338	0.339	0.339	0.340	0.340	0.341	0.341	0.341	0.342	18	
0.337	0.339	0.340	0.341	0.342	0.343	0.344	0.344	0.345	0.345	0.346	0.346	0.347	20	
0.346	0.348	0.349	0.351	0.352	0.353	0.354	0.355	0.356	0.356	0.357	0.357	0.358	25	
0.352	0.355	0.357	0.358	0.360	0.361	0.362	0.364	0.365	0.365	0.366	0.367	0.368	30	
0.358	0.360	0.363	0.365	0.367	0.368	0.370	0.371	0.372	0.373	0.374	0.375	0.376	35	
0.362	0.365	0.368	0.370	0.373	0.374	0.376	0.378	0.379	0.380	0.381	0.383	0.384	40	
0.366	0.370	0.373	0.375	0.378	0.380	0.382	0.384	0.385	0.387	0.388	0.389	0.390	45	ν ₂
0.370	0.373	0.377	0.380	0.382	0.385	0.387	0.389	0.391	0.392	0.394	0.395	0.396	50	
0.373	0.377	0.380	0.384	0.386	0.389	0.391	0.393	0.395	0.397	0.399	0.400	0.402	55	
0.375	0.380	0.383	0.387	0.390	0.393	0.395	0.398	0.400	0.402	0.403	0.405	0.407	60	
0.378	0.382	0.386	0.390	0.393	0.396	0.399	0.402	0.404	0.406	0.408	0.410	0.411	65	
0.380	0.385	0.389	0.393	0.396	0.399	0.402	0.405	0.407	0.410	0.412	0.414	0.415	70	
0.382	0.387	0.391	0.395	0.399	0.402	0.405	0.408	0.411	0.413	0.415	0.417	0.419	75	
0.383	0.389	0.393	0.398	0.402	0.405	0.408	0.411	0.414	0.416	0.419	0.421	0.423	80	
0.385	0.390	0.395	0.400	0.404	0.407	0.411	0.414	0.417	0.419	0.422	0.424	0.426	85	
0.386	0.392	0.397	0.402	0.406	0.410	0.413	0.416	0.419	0.422	0.425	0.427	0.430	90	
0.388	0.394	0.399	0.404	0.408	0.412	0.415	0.419	0.422	0.425	0.428	0.430	0.432	95	
0.389	0.395	0.400	0.405	0.410	0.414	0.418	0.421	0.424	0.427	0.430	0.433	0.435	100	

α =	.25						·	ν,						
σ_2/σ_1	90	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.325	0.328	0.330	0.331	0.334	0.335	0.337	0.338	0.339	0.339	0.341	0.342	0.342
	6	0.330	0.334	0.336	0.338	0.341	0.344	0.346	0.347	0.348	0.349	0.351	0.352	0.353
	7	0.335	0.338	0.341	0.344	0.348	0.351	0.353	0.355	0.356	0.358	0.360	0.362	0.363
:	8	0.338	0.342	0.346	0.349	0.354	0.357	0.360	0.362	0.364	0.365	0.368	0.370	0.371
	10	0.343	0.349	0.353	0.357	0.363	0.367	0.371	0.373	0.376	0.378	0.382	0.385	0.387
	12	0.347	0.353	0.358	0.363	0.369	0.375	0.379	0.383	0.386	0.388	0.393	0.397	0.400
	14	0.350	0.357	0.362	0.367	0.375	0.381	0.386	0.390	0.394	0.397	0.403	0.408	0.411
	16	0.353	0.360	0.366	0.371	0.380	0.387	0.392	0.397	0.401	0.405	0.412	0.417	0.421
	18	0.355	0.362	0.369	0.374	0.383	0.391	0.397	0.403	0.407	0.411	0.419	0.425	0.430
	20	0.356	0.364	0.371	0.377	0.387	0.395	0.402	0.407	0.412	0.417	0.425	0.432	0.437
	25	0.359	0.368	0.375	0.382	0.393	0.402	0.410	0.417	0.423	0.428	0.439	0.447	0.454
	30	0.361	0.370	0.378	0.385	0.398	0.408	0.417	0.424	0.431	0.437	0.449	0.459	0.467
	35	0.363	0.372	0.381	0.388	0.401	0.412	0.421	0.430	0.437	0.444	0.458	0.469	0.478
V ₂	40	0.364	0.374	0.382	0.390	0.404	0.415	0.425	0.434	0.442	0.449	0.464	0.476	0.486
	45	0.365	0.375	0.384	0.392	0.406	0.418	0.429	0.438	0.446	0.454	0.470	0.483	0.494
	50	0.366	0.376	0.385	0.393	0.408	0.420	0.431	0.441	0.450	0.458	0.475	0.489	0.500
	55	0.366	0.377	0.386	0.394	0.409	0.422	0.433	0.444	0.453	0.461	0.479	0.494	0.506
	60	0.367	0.377	0.387	0.395	0.410	0.424	0.435	0.446	0.455	0.464	0.482	0.498	0.511
	65	0.367	0.378	0.387	0.396	0.412	0.425	0.437	0.448	0.457	0.466	0.486	0.502	0.515
	70	0.368	0.378	0.388	0.397	0.413	0.426	0.438	0.449	0.459	0.468	0.488	0.505	0.519
	7 5	0.368	0.379	0.388	0.397	0.413	0.427	0.440	0.451	0.461	0.470	0.491	0.508	0.523
	80	0.368	0.379	0.389	0.398	0.414	0.428	0.441	0.452	0.463	0.472	0.493	0.511	0.526
	85	0.368	0.379	0.389	0.398	0.415	0.429	0.442	0.453	0.464	0.474	0.495	0.513	0.528
	90	0.369	0.380	0.390	0.399	0.415	0.430	0.443	0.454	0.465	0.475	0.497	0.515	0.531
	95	0.369	0.380	0.390	0.399	0.416	0.430	0.444	0.455	0.466	0.476	0.498	0.517	0.533
	100	0.369	0.380	0.390	0.400	0.416	0.431	0.444	0.456	0.467	0.477	0.500	0.519	0.535

					• •	ν ₁			-				α =	. 25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	90
0.343	0.343	0.343	0.344	0.344	0.344	0.344	0.344	0.345	0.345	0.345	0.345	0.345	5	
0.354	0.354	0.355	0.355	0.355	0.356	0.356	0.356	0.356	0.356	0.357	0.357	0.357	6	
0.364	0.364	0.365	0.365	0.366	0.366	0.367	0.367	0.367	0.367	0.367	0.368	0.368	7]
0.373	0.374	0.374	0.375	0.375	0.376	0.376	0.377	0.377	0.377	0.377	0.378	0.378	8	
0.388	0.390	0.391	0.392	0.393	0.393	0.394	0.394	0.395	0.395	0.396	0.396	0.396	10	
0.402	0.404	0.405	0.406	0.407	0.408	0.409	0.410	0.410	0.411	0.411	0.412	0.412	12	
0.414	0.416	0.418	0.419	0.421	0.422	0.423	0.424	0.424	0.425	0.426	0.426	0.427	14	
0.424	0.427	0.429	0.431	0.432	0.434	0.435	0.436	0.437	0.438	0.439	0.439	0.440	16	
0.433	0.436	0.439	0.441	0.443	0.445	0.446	0.448	0.449	0.450	0.451	0.452	0.452	18	
0.442	0.445	0.448	0.451	0.453	0.455	0.457	0.458	0.459	0.461	0.462	0.463	0.464	20	
0.459	0.464	0.468	0.471	0.474	0.477	0.479	0.481	0.483	0.484	0.486	0.487	0.488	25	
0.473	0.479	0.484	0.488	0.491	0.495	0.497	0.500	0.502	0.504	0.506	0.508	0.509	30	
0.485	0.491	0.497	0.502	0.506	0.510	0.513	0.516	0.519	0.521	0.523	0.526	0.527	35	
0.495	0.502	0.508	0.514	0.519	0.523	0.527	0.530	0.533	0.536	0.539	0.541	0.543	40	V ₂
0.503	0.511	0.518	0.524	0.529	0.534	0.539	0.542	0.546	0.549	0.552	0.555	0.557	45	
0.510	0.519	0.526	0.533	0.539	0.544	0.549	0.553	0.557	0.561	0.564	0.567	0.570	50	
0.517	0.526	0.534	0.541	0.547	0.553	0.558	0.563	0.567	0.571	0.575	0.578	0.581	55	
0.522	0.532	0.540	0.548	0.555	0.561	0.566	0.571	0.576	0.580	0.584	0.588	0.591	60	
0.527	0.537	0.546	0.554	0.562	0.568	0.574	0.579	0.584	0.589	0.593	0.597	0.600	65	
0.531	0.542	0.551	0.560	0.568	0.574	0.581	0.586	0.592	0.596	0.601	0.605	0.609	70	
0.535	0.546	0.556	0.565	0.573	0.580	0.587	0.593	0.598	0.603	0.608	0.612	0.616	75	
0.539	0.550	0.561	0.570	0.578	0.585	0.592	0.599	0.604	0.610	0.615	0.619	0.623	80	
0.542	0.554	0.564	0.574	0.583	0.590	0.597	0.604	0.610	0.616	0.621	0.625	0.630	85	
0.545	0.557	0.568	0.578	0.587	0.595	0.602	0.609	0.615	0.621	0.626	0.631	0.636	90	
0.548	0.560	0.571	0.581	0.591	0.599	0.607	0.614	0.620	0.626	0.631	0.637	0.641	.95	
0.550	0.563	0.574	0.585	0.594	0.603	0.611	0.618	0.624	0.631	0.636	0.642	0.647	100	

α =	.25							ν ₁						
σ_2/σ_1	85	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.369	0.374	0.377	0.380	0.385	0.388	0.390	0.392	0.393	0.394	0.397	0.398	0.399
	6	0.378	0.383	0.388	0.391	0.397	0.401	0.404	0.407	0.409	0.410	0.413	0.415	0.417
	7	0.384	0.391	0.396	0.401	0.407	0.412	0.416	0.419	0.422	0.424	0.428	0.431	0.433
	8	0.390	0.397	0.403	0.408	0.416	0.422	0.427	0.430	0.433	0.436	0.441	0.444	0.447
	10	0.398	0.407	0.414	0.420	0.430	0.438	0.444	0.449	0.453	0.456	0.463	0.468	0.472
	12	0.404	0.414	0.422	0.430	0.441	0.450	0.457	0.463	0.469	0.473	0.481	0.487	0.492
	14	0.409	0.420	0.429	0.437	0.450	0.460	0.469	0.476	0.481	0.487	0.497	0.504	0.510
	16	0.412	0.424	0.434	0.443	0.457	0.468	0.478	0.486	0.492	0.498	0.510	0.519	0.525
·	18	0.415	0.428	0.438	0.447	0.463	0.475	0.485	0.494	0.502	0.508	0.521	0.531	0.539
	20	0.418	0.430	0.442	0.451	0.468	0.481	0.492	0.501	0.510	0.517	0.531	0.542	0.551
	25	0.422	0.436	0.448	0.459	0.477	0.492	0.505	0.516	0.526	0.534	0.551	0.565	0.575
	30	0.425	0.440	0.453	0.464	0.484	0.500	0.515	0.527	0.537	0.547	0.567	0.582	0.595
v	35	0.428	0.443	0.456	0.468	0.489	0.507	0.522	0.535	0.547	0.557	0.579	0.596	0.610
ν ₂	40	0.429	0.445	0.459	0.471	0.493	0.512	0.528	0.542	0.554	0.565	0.589	0.607	0.623
	45	0.431	0.447	0.461	0.474	0.496	0.516	0.532	0.547	0.560	0.572	0.597	0.617	0.633
	50	0.432	0.448	0.463	0.476	0.499	0.519	0.536	0.551	0.565	0.577	0.604	0.625	0.642
	55	0.433	0.449	0.464	0.478	0.501	0.522	0.539	0.555	0.569	0.582	0.609	0.631	0.650
_	60	0.433	0.450	0.465	0.479	0.503	0.524	0.542	0.558	0.573	0.586	0.614	0.637	0.656
	65	0.434	0.451	0.466	0.480	0.505	0.526	0.545	0.561	0.576	0.590	0.619	0.642	0.662
	70	0.435	0.452	0.467	0.481	0.506	0.528	0.547	0.564	0.579	0.593	0.623	0.647	0.667
	75	0.435	0.452	0.468	0.482	0.507	0.529	0.548	0.566	0.581	0.595	0.626	0.651	0.672
	80	0.436	0.453	0.469	0.483	0.508	0.530	0.550	0.568	0.583	0.598	0.629	0.655	0.676
	85	0.436	0.454	0.469	0.484	0.509	0.532	0.551	0.569	0.585	0.600	0.632	0.658	0.680
	90	0.436	0.454	0.470	0.484	0.510	0.533	0.553	0.571	0.587	0.602	0.634	0.661	0.683
	95	0.437	0.454	0.470	0.485	0.511	0.534	0.554	0.572	0.589	0.604	0.636	0.663	0.686
	100	0.437	0.455	0.471	0.485	0.512	0.535	0.555	0.573	0.590	0.605	0.638	0.666	0.689

						ν ₁							α =	.25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	85
0.400	0.401	0.402	0.402	0.402	0.403	0.403	0.403	0.403	0.404	0.404	0.404	0.404	5	
0.418	0.419	0.420	0.421	0.421	0.422	0.422	0.423	0.423	0.423	0.423	0.424	0.424	6	
0.434	0.436	0.437	0.438	0.438	0.439	0.440	0.440	0.441	0.441	0.441	0.442	0.442	7	•
0.449	0.451	0.452	0.453	0.454	0.455	0.456	0.456	0.457	0.457	0.458	0.458	0.458	8	
0.474	0.477	0.479	0.480	0.482	0.483	0.484	0.485	0.486	0.486	0.487	0.487	0.488	10	
0.496	0.499	0.502	0.504	0.505	0.507	0.508	0.510	0.511	0.512	0.512	0.513	0.514	12	
0.515	0.518	0.521	0.524	0.526	0.528	0.530	0.531	0.533	0.534	0.535	0.536	0.537	14	
0.531	0.535	0.539	0.542	0.545	0.547	0.549	0.551	0.553	0.554	0.555	0.557	0.558	16	
0.545	0.550	0.554	0.558	0.561	0.564	0.566	0.569	0.570	0.572	0.574	0.575	0.576	18	
0.558	0.564	0.568	0.573	0.576	0.579	0.582	0.584	0.587	0.589	0.590	0.592	0.593	20	
0.584	0.591	0.598	0.603	0.608	0.612	0.615	0.618	0.621	0.624	0.626	0.628	0.630	25	
0.605	0.614	0.621	0.627	0.633	0.638	0.642	0.646	0.649	0.652	0.655	0.658	0.660	30	
0.622	0.631	0.640	0.647	0.653	0.659	0.664	0.669	0.673	0.676	0.680	0.683	0.685	35	
0.635	0.646	0.656	0.664	0.671	0.677	0.683	0.688	0.692	0.696	0.700	0.704	0.707	40	V ₂
0.647	0.659	0.669	0.678	0.685	0.692	0.698	0.704	0.709	0.714	0.718	0.721	0.725	45	
0.657	0.669	0.680	0.690	0.698	0.705	0.712	0.718	0.723	0.728	0.733	0.737	0.741	50	
0.665	0.679	0.690	0.700	0.709	0.717	0.724	0.730	0.736	0.741	0.746	0.750	0.755	55	
0.673	0.687	0.699	0.709	0.719	0.727	0.734	0.741	0.747	0.753	0.758	0.762	0.767	60	
0.679	0.694	0.706	0.717	0.727	0.736	0.743	0.751	0.757	0.763	0.768	0.773	0.777	65	
0.685	0.700	0.713	0.724	0.734	0.744	0.752	0.759	0.766	0.772	0.777	0.782	0.787	70	
0.690	0.705	0.719	0.731	0.741	0.751	0.759	0.767	0.773	0.780	0.785	0.791	0.796	75	
0.694	0.710	0.724	0.736	0.747	0.757	0.766	0.773	0.780	0.787	0.793	0.798	0.803	80	
0.699	0.715	0.729	0.742	0.753	0.763	0.771	0.780	0.787	0.793	0.800	0.805	0.810	85	
0.702	0.719	0.733	0.746	0.758	0.768	0.777	0.785	0.793	0.799	0.806	0.811	0.817	90	
0.706	0.723	0.737	0.750	0.762	0.772	0.782	0.790	0.798	0.805	0.811	0.817	0.823	95	
0.709	0.726	0.741	0.754	0.766	0.777	0.786	0.795	0.803	0.810	0.816	0.822	0.828	100	

α -	. 25							v ₁						
σ_2/σ_1	80	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.419	0.426	0.431	0.435	0.442	0.446	0.450	0.453	0.455	0.457	0.460	0.463	0.464
	6	0.430	0.439	0.445	0.451	0.459	0.465	0.470	0.473	0.476	0.479	0.484	0.487	0.490
	7	0.439	0.449	0.457	0.463	0.473	0.481	0.486	0.491	0.495	0.498	0.504	0.508	0.512
	8	0.447	0.458	0.466	0.474	0.485	0.494	0.501	0.506	0.511	0.515	0.522	0.527	0.531
	10	0.458	0.471	0.481	0.490	0.504	0.515	0.524	0.531	0.537	0.543	0.552	0.560	0.565
	12	0.466	0.480	0.492	0.502	0.519	0.532	0.543	0.551	0.558	0.565	0.577	0.586	0.593
	14	0.472	0.487	0.501	0.512	0.530	0.545	0.557	0.567	0.576	0.583	0.597	0.608	0.616
	16	0.477	0.493	0.507	0.519	0.540	0.556	0.569	0.580	0.590	0.598	0.614	0.626	0.636
	18	0.481	0.498	0.513	0.526	0.547	0.565	0.579	0.591	0.602	0.611	0.629	0.642	0.653
	20	0.484	0.502	0.517	0.531	0.554	0.572	0.588	0.601	0.612	0.622	0.641	0.656	0.668
	25	0.489	0.509	0.526	0.541	0.566	0.587	0.604	0.619	0.632	0.643	0.666	0.683	0.697
	30	0.493	0.514	0.532	0.547	0.575	0.597	0.616	0.632	0.646	0.659	0.684	0.704	0.720
	35	0.496	0.517	0.536	0.553	0.581	0.605	0.625	0.642	0.658	0.671	0.699	0.720	0.737
V ₂	40	0.499	0.520	0.539	0.556	0.586	0.611	0.632	0.650	0.666	0.681	0.710	0.733	0.751
	45	0.500	0.523	0.542	0.560	0.590	0.616	0.638	0.657	0.673	0.688	0.719	0.743	0.763
	50	0.502	0.524	0.544	0.562	0.593	0.620	0.642	0.662	0.679	0.695	0.727	0.752	0.772
	55	0.503	0.526	0.546	0.564	0.596	0.623	0.646	0.666	0.684	0.700	0.733	0.759	0.780
	60	0.504	0.527	0.548	0.566	0.598	0.626	0.649	0.670	0.688	0.705	0.739	0.765	0.787
	65	0.505	0.528	0.549	0.568	0.600	0.628	0.652	0.673	0.692	0.709	0.743	0.771	0.793
	70	0.506	0.529	0.550	0.569	0.602	0.630	0.655	0.676	0.695	0.712	0.748	0.776	0.798
	75	0.506	0.530	0.551	0.570	0.604	0.632	0.657	0.679	0.698	0.715	0.751	0.780	0.803
	80	0.507	0.531	0.552	0.571	0.605	0.634	0.659	0.681	0.700	0.718	0.754	0.783	0.807
	85	0.507	0.531	0.553	0.572	0.606	0.635	0.660	0.683	0.703	0.720	0.757	0.787	0.810
	90	0.508	0.532	0.553	0.573	0.607	0.636	0.662	0.684	0.705	0.722	0.760	0.790	0.814
	95	0.508	0.532	0.554	0.573	0.608	0.638	0.663	0.686	0.706	0.724	0.762	0.792	0.816
	100	0.508	0.533	0.554	0.574	0.609	0.639	0.665	0.687	0.708	0.726	0.764	0.795	0.819

						ν					- Angertine		α =	. 25
40	45	50	55	60	6 5	70	75	80	85	90	95	100	σ_2/σ_1	80
0.466	0.467	0.468	0.468	0.469	0.470	0.470	0.470	0.471	0.471	0.471	0.472	0.472	5	
0.491	0.493	0.494	0.495	0.496	0.497	0.497	0.498	0.498	0.499	0.499	0.500	0.500	6	
0.514	0.516	0.518	0.519	0.520	0.521	0.522	0.523	0.523	0.524	0.524	0.525	0.525	7	
0.534	0.537	0.539	0.540	0.542	0.543	0.544	0.545	0.546	0.547	0.547	0.548	0.548	8	
0.569	0.573	0.575	0.578	0.580	0.581	0.583	0.584	0.585	0.586	0.587	0.588	0.589	10	
0.598	0.602	0.606	0.609	0.612	0.614	0.616	0.618	0.619	0.620	0.622	0.623	0.624	12	
0.622	0.628	0.632	0.636	0.639	0.642	0.644	0.646	0.648	0.650	0.651	0.652	0.654	14	
0.643	0.649	0.654	0.659	0.662	0.666	0.668	0.671	0.673	0.675	0.677	0.678	0.680	16	
0.661	0.668	0.674	0.679	0.683	0.687	0.690	0.693	0.695	0.698	0.700	0.701	0.703	18	
0.677	0.685	0.691	0.696	0.701	0.705	0.709	0.712	0.715	0.717	0.720	0.722	0.724	20	
0.709	0.718	0.726	0.732	0.738	0.743	0.747	0.751	0.755	0.758	0.761	0.763	0.766	25	
0.733	0.743	0.752	0.760	0.766	0.772	0.777	0.782	0.786	0.789	0.793	0.795	0.798	30	
0.751	0.763	0.773	0.781	0.788	0.795	0.800	0.805	0.810	0.814	0.817	0.821	0.824	35	
0.766	0.779	0.789	0.798	0.806	0.813	0.819	0.825	0.829	0.834	0.838	0.841	0.844	40	V ₂
0.779	0.792	0.803	0.813	0.821	0.828	0.835	0.840	0.845	0.850	0.854	0.858	0.861	45	
0.789	0.803	0.814	0.824	0.833	0.841	0.847	0.853	0.858	0.863	0.867	0.871	0.875	50	
0.797	0.812	0.824	0.834	0.843	0.851	0.858	0.864	0.869	0.874	0.879	0.883	0.886	55	
0.805	0.820	0.832	0.843	0.852	0.860	0.867	0.873	0.879	0.884	0.888	0.892	0.896	60	
0.811	0.826	0.839	0.850	0.859	0.868	0.875	0.881	0.887	0.892	0.897	0.901	0.904	65	
0.817	0.832	0.845	0.856	0.866	0.874	0.882	0.888	0.894	0.899	0.904	0.908	0.912	70	
0.822	0.837	0.851	0.862	0.872	0.880	0.888	0.894	0.900	0.905	0.910	0.914	0.918	75	
0.826	0.842	0.855	0.867	0.877	0.885	0.893	0.899	0.905	0.911	0.915	0.919	0.923	80	
0.830	0.846	0.860	0.871	0.881	0.890	0.898	0.904	0.910	0.915	0.920	0.924	0.928	85	
0.833	0.850	0.863	0.875	0.885	0.894	0.902	0.908	0.914	0.919	0.924	0.928	0.932	90	
0.836	0.853	0.867	0.879	0.889	0.898	0.905	0.912	0.918	0.923	0.928	0.932	0.936	95	
0.839	0.856	0.870	0.882	0.892	0.901	0.909	0.915	0.921	0.927	0.931	0.935	0.939	100	

α -	.25						·	v ₁						
σ_2/σ_1	 75	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.473	0.482	0.490	0.496	0.505	0.511	0.516	0.520	0.523	0.526	0.531	0.534	0.537
	6	0.488	0.499	0.508	0.515	0.527	0.535	0.542	0.547	0.551	0.555	0.561	0.566	0.569
	7	0.499	0.512	0.522	0.531	0.545	0.555	0.563	0.569	0.574	0.579	0.587	0.593	0.597
3	8	0.508	0.522	0.534	0.544	0.560	0.572	0.581	0.588	0.594	0.600	0.609	0.616	0.622
	10	0.522	0.539	0.552	0.564	0.583	0.598	0.609	0.619	0.627	0.633	0.646	0.655	0.662
	12	0.531	0.550	0.566	0.579	0.601	0.618	0.631	0.642	0.652	0.660	0.675	0.686	0.695
	14	0.539	0.559	0.576	0.590	0.614	0.633	0.648	0.661	0.671	0.680	0.698	0.711	0.721
	16	0.544	0.566	0.584	0.599	0.625	0.645	0.662	0.676	0.688	0.698	0.717	0.732	0.743
	18	0.549	0.571	0.590	0.607	0.634	0.656	0.673	0.688	0.701	0.712	0.733	0.749	0.761
	20	0.553	0.576	0.595	0.613	0.641	0.664	0.683	0.699	0.712	0.724	0.747	0.764	0.777
	25	0.559	0.584	0.605	0.624	0.655	0.680	0.701	0.719	0.734	0.747	0.773	0.792	0.807
	30	0.564	0.590	0.612	0.632	0.665	0.692	0.714	0.733	0.749	0.763	0.791	0.812	0.828
	35	0.568	0.594	0.617	0.637	0.672	0.700	0.724	0.743	0.761	0.775	0.805	.0.827	0.844
V ₂	40	0.570	0.597	0.621	0.642	0.677	0.707	0.731	0.752	0.770	0.785	0.816	0.839	0.857
	45	0.572	0.600	0.624	0.645	0.682	0.712	0.737	0.758	0.777	0.793	0.824	0.848	0.867
	50	0.574	0.602	0.626	0.648	0.685	0.716	0.742	0.764	0.782	0.799	0.831	0.856	0.875
	55	0.575	0.604	0.628	0.651	0.688	0.720	0.746	0.768	0.787	0.804	0.837	0.862	0.881
	60	0.576	0.605	0.630	0.653	0.691	0.722	0.749	0.772	0.791	0.808	0.842	0.867	0.887
	65	0.577	0.606	0.632	0.654	0.693	0.725	0.752	0.775	0.795	0.812	0.846	0.872	0.891
	70	0.578	0.607	0.633	0.656	0.695	0.727	0.754	0.778	0.798	0.815	0.850	0.876	0.895
	75	0.579	0.608	0.634	0.657	0.696	0.729	0.757	0.780	0.800	0.818	0.853	0.879	0.899
	80	0.580	0.609	0.635	0.658	0.698	0.731	0.759	0.782	0.803	0.821	0.856	0.882	0.902
	85	0.580	0.610	0.636	0.659	0.699	0.732	0.760	0.784	0.805	0.823	0.858	0.885	0.905
	90	0.581	0.610	0.637	0.660	0.700	0.734	0.762	0.786	0.807	0.825	0.861	0.887	0.907
	95	0.581	0.611	0.637	0.661	0.701	0.735	0.763	0.787	0.808	0.826	0.863	0.889	0.909
	100	0.581	0.611	0.638	0.661	0.702	0.736	0.764	0.789	0.810	0.828	0.864	0.891	0.911

						v ₁			·		 		α -	.25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	- .75
0.539	0.540	0.542	0.543	0.543	0.544	0.545	0.545	0.546	0.546	0.547	0.547	0.547	5	
0.572	0.574	0.576	0.577	0.578	0.579	0.580	0.581	0.582	0.582	0.583	0.583	0.584	6	
0.601	0.603	0.606	0.607	0.609	0.610	0.611	0.612	0.613	0.614	0.615	0.615	0.616	. 7	
0.626	0.629	0.632	0.634	0.636	0.638	0.639	0.640	0.641	0.642	0.643	0.644	0.645	8	
0.668	0.672	0.676	0.679	0.682	0.684	0.686	0.688	0.689	0.690	0.692	0.693	0.694	10	
0.702	0.707	0.712	0.715	0.719	0.721	0.724	0.726	0.728	0.729	0.731	0.732	0.734	12	
0.729	0.735	0.741	0.745	0.749	0.752	0.755	0.758	0.760	0.762	0.764	0.765	0.767	14	
0.752	0.759	0.765	0.770	0.774	0.778	0.781	0.784	0.787	0.789	0.791	0.793	0.794	16	
0.771	0.779	0.785	0.791	0.796	0.800	0.803	0.806	0.809	0.812	0.814	0.816	0.818	18	
0.787	0.796	0.803	0.809	0.814	0.818	0.822	0.825	0.828	0.831	0.833	0.835	0.837	20	
0.819	0.828	0.836	0.843	0.849	0.854	0.858	0.862	0.865	0.868	0.871	0.873	0.875	25	
0.841	0.851	0.860	0.867	0.874	0.879	0.884	0.888	0.891	0.894	0.897	0.900	0.902	30	
0.858	0.869	0.878	0.885	0.892	0.897	0.902	0.906	0.910	0.913	0.916	0.919	0.921	35	
0.871	0.882	0.891	0.899	0.906	0.911	0.916	0.921	0.924	0.928	0.931	0.933	0.936	40	V ₂
0.881	0.893	0.902	0.910	0.917	0.922	0.927	0.932	0.935	0.938	0.941	0.944	0.946	45	
0.889	0.901	0.911	0.919	0.925	0.931	0.936	0.940	0.944	0.947	0.950	0.952	0.955	50	
0.896	0.908	0.918	0.926	0.932	0.938	0.943	0.947	0.951	0.954	0.956	0.959	0.961	55	
0.902	0.914	0.923	0.931	0.938	0.944	0.948	0.953	0.956	0.959	0.962	0.964	0.966	60	
0.907	0.919	0.928	0.936	0.943	0.948	0.953	0.957	0.961	0.964	0.966	0.968	0.970	65	
0.911	0.923	0.932	0.940	0.947	0.952	0.957	0.961	0.964	0.967	0.970	0.972	0.974	70	
0.914	0.926	0.936	0.944	0.950	0.956	0.960	0.964	0.967	0.970	0.973	0.975	0.977	75	
0.917	0.929	0.939	0.947	0.953	0.959	0.963	0.967	0.970	0.973	0.975	0.977	0.979	80	
0.920	0.932	0.942	0.950	0.956	0.961	0.966	0.969	0.972	0.975	0.977	0.979	0.981	85	
0.923	0.935	0.944	0.952	0.958	0.963	0.968	0.971	0.974	0.977	0.979	0.981	0.983	90	
0.925	0.937	0.946	0.954	0.960	0.965	0.970	0.973	0.976	0.979	0.981	0.983	0.984	95	
0.927	0.939	0.948	0.956	0.962	0.967	0.971	0.975	0.978	0.980	0.982	0.984	0.986	100	ì

α -	.25			· ·				v ₁						
σ_2/σ_1	= .70	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.532	0.544	0.553	0.561	0.573	0.582	0.588	0.593	0.598	0.601	0.608	0.612	0.615
	6	0.549	0.563	0.575	0.584	0.599	0.610	0.618	0.625	0.630	0.635	0.643	0.649	0.654
	7	0.562	0.578	0.592	0.603	0.620	0.633	0.643	0.651	0.658	0.663	0.673	0.681	0.686
	8	0.573	0.591	0.605	0.618	0.637	0.652	0.663	0.673	0.680	0.687	0.699	0.707	0.714
	10	0.588	0.609	0.626	0.641	0.664	0.681	0.695	0.706	0.716	0.724	0.739	0.750	0.758
	12	0.599	0.622	0.641	0.657	0.683	0.703	0.719	0.732	0.742	0.751	0.769	0.782	0.791
	14	0.607	0.632	0.652	0.669	0.697	0.719	0.737	0.751	0.763	0.773	0.792	0.806	0.817
	16	0.614	0.639	0.661	0.679	0.709	0.732	0.751	0.766	0.779	0.790	0.811	0.826	0.837
	18	0.619	0.645	0.668	0.687	0.718	0.743	0.762	0.779	0.792	0.804	0.826	0.842	0.854
	20	0.623	0.650	0.673	0.693	0.726	0.751	0.772	0.789	0.803	0.815	0.838	0.855	0.868
	25	0.630	0.659	0.684	0.705	0.740	0.767	0.790	0.808	0.823	0.836	0.861	0.879	0.892
	30	0.635	0.665	0.691	0.713	0.750	0.779	0.802	0.821	0.837	0.851	0.877	0.896	0.909
	35	0.639	0.670	0.696	0.719	0.757	0.787	0.811	0.831	0.847	0.861	0.888	0.907	0.921
V ₂	40	0.642	0.673	0.700	0.723	0.762	0.793	0.818	0.838	0.855	0.870	0.897	0.916	0.930
	45	0.644	0.676	0.703	0.727	0.767	0.798	0.823	0.844	0.861	0.876	0.904	0.923	0.937
	50	0.646	0.678	0.706	0.730	0.770	0.802	0.828	0.849	0.866	0.881	0.909	0.928	0.942
}	55	0.647	0.680	0.708	0.732	0.773	0.805	0.831	0.852	0.870	0.885	0.913	0.933	0.946
	60	0.648	0.681	0.710	0.734	0.775	0.808	0.834	0.856	0.874	0.889	0.917	0.936	0.950
	65	0.649	0.682	0.711	0.736	0.777	0.810	0.837	0.858	0.876	0.892	0.920	0.939	0.953
	70	0.650	0.684	0.712	0.737	0.779	0.812	0.839	0.861	0.879	0.894	0.923	0.942	0.955
	75	0.651	0.684	0.713	0.739	0.781	0.814	0.841	0.863	0.881	0.896	0.925	0.944	0.957
	80	0.652	0.685	0.714	0.740	0.782	0.815	0.842	0.865	0.883	0.898	0.927	0.946	0.959
	85	0.652	0.686	0.715	0.741	0.783	0.817	0.844	0.866	0.885	0.900	0.928	0.948	0.961
	90	0.653	0.687	0.716	0.742	0.784	0.818	0.845	0.868	0.886	0.901	0.930	0.949	0.962
	95	0.653	0.687	0.717	0.742	0.785	0.819	0.846	0.869	0.887	0.903	0.931	0.950	0.963
	100	0.654	0.688	0.717	0.743	0.786	0.820	0.848	0.870	0.889	0.904	0.933	0.951	0.964

						v ₁							α -	. 25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 70
0.618	0.620	0.622	0.623	0.624	0.625	0.626	0.627	0.627	0.628	0.628	0.629	0.629	5	
0.657	0.660	0.662	0.664	0.666	0.667	0.668	0.669	0.670	0.671	0.671	0.672	0.673	6	
0.690	0.694	0.697	0.699	0.701	0.702	0.704	0.705	0.706	0.707	0.708	0.709	0.710	7	
0.719	0.723	0.726	0.729	0.731	0.733	0.735	0.736	0.738	0.739	0.740	0.741	0.742	8	
0.764	0.769	0.773	0.777	0.780	0.782	0.784	0.786	0.788	0.790	0.791	0.792	0.793	10	
0.798	0.804	0.809	0.813	0.817	0.820	0.822	0.825	0.827	0.828	0.830	0.831	0.833	12	
0.825	0.832	0.837	0.842	0.846	0.849	0.852	0.854	0.856	0.858	0.860	0.862	0.863	14	
0.846	0.853	0.859	0.864	0.868	0.872	0.875	0.878	0.880	0.882	0.884	0.886	0.887	16	
0.863	0.871	0.877	0.882	0.886	0.890	0.893	0.896	0.899	0.901	0.903	0.904	0.906	18	
0.877	0.885	0.891	0.897	0.901	0.905	0.908	0.911	0.914	0.916	0.918	0.920	0.921	20	
0.903	0.911	0.918	0.923	0.927	0.931	0.935	0.937	0.940	0.942	0.944	0.946	0.947	25	
0.920	0.928	0.935	0.940	0.944	0.948	0.951	0.954	0.957	0.959	0.960	0.962	0.964	30	
0.932	0.940	0.946	0.952	0.956	0.960	0.963	0.965	0.967	0.969	0.971	0.972	0.974	35	
0.940	0.949	0.955	0.960	0.964	0.967	0.970	0.973	0.975	0.977	0.978	0.979	0.981	40	V ₂
0.947	0.955	0.961	0.966	0.970	0.973	0.976	0.978	0.980	0.982	0.983	0.984	0.985	45	
0.952	0.960	0.966	0.971	0.974	0.977	0.980	0.982	0.984	0.985	0.987	0.988	0.989	50	
0.956	0.964	0.970	0.974	0.978	0.981	0.983	0.985	0.987	0.988	0.989	0.990	0.991	55	
0.960	0.967	0.973	0.977	0.980	0.983	0.985	0.987	0.989	0.990	0.991	0.992	0.993	60	
0.963	0.970	0.975	0.979	0.983	0.985	0.987	0.989	0.990	0.992	0.992	0.993	0.994	65	
0.965	0.972	0.977	0.981	0.984	0.987	0.989	0.990	0.992	0.993	0.994	0.994	0.995	70	
0.967	0.974	0.979	0.983	0.986	0.988	0.990	0.992	0.993	0.994	0.995	0.995	0.996	75	
0.968	0.975	0.980	0.984	0.987	0.989	0.991	0.992	0.994	0.995	0.995	0.996	0.996	80	
0.970	0.977	0.982	0.985	0.988	0.990	0.992	0.993	0.994	0.995	0.996	0.996	0.997	85	
0.971	0.978	0.983	0.986	0.989	0.991	0.993	0.994	0.995	0.996	0.996	0.997	0.997	90	
0.972	0.979	0.984	0.987	0.990	0.992	0.993	0.994	0.995	0.996	0.997	0.997	0.998	95	
0.973	0.980	0.984	0.988	0.990	0.992	0.994	0.995	0.996	0.997	0.997	0.998	0.998	100	

α =	.25							ν ₁						
σ ₂ /σ ₁	60	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.658	0.675	0.689	0.701	0.718	0.730	0.740	0.747	0.753	0.758	0.768	0.774	0.779
	6	0.678	0.698	0.714	0.728	0.748	0.763	0.774	0.783	0.790	0.796	0.807	0.815	0.820
	7	0.693	0.715	0.733	0.748	0.771	0.787	0.800	0.810	0.818	0.824	0.837	0.845	0.852
	8	0.705	0.729	0.748	0.764	0.788	0.806	0.820	0.831	0.839	0.847	0.860	0.869	0.876
	10	0.722	0.748	0.769	0.787	0.814	0.834	0.849	0.861	0.871	0.879	0.893	0.903	0.911
	12	0.733	0.761	0.784	0.803	0.832	0.853	0.869	0.882	0.892	0.900	0.915	0.926	0.933
	14	0.741	0.771	0.795	0.814	0.844	0.866	0.883	0.896	0.907	0.915	0.931	0.941	0.948
	16	0.748	0.778	0.803	0.823	0.854	0.877	0.894	0.907	0.918	0.926	0.942	0.952	0.959
	18	0.753	0.784	0.809	0.830	0.861	0.885	0.902	0.915	0.926	0.935	0.950	0.960	0.966
	20	0.757	0.788	0.814	0.835	0.868	0.891	0.909	0.922	0.933	0.941	0.956	0.966	0.972
	25	0.764	0.797	0.823	0.845	0.878	0.902	0.920	0.934	0.944	0.952	0.967	0.975	0.981
	30	0.769	0.802	0.829	0.852	0.886	0.910	0.928	0.941	0.951	0.959	0.973	0.981	0.986
	35	0.772	0.806	0.834	0.856	0.891	0.915	0.933	0.946	0.956	0.964	0.977	0.985	0.989
v ₂	40	0.775	0.809	0.837	0.860	0.895	0.919	0.937	0.950	0.960	0.968	0.980	0.987	0.991
	45	0.777	0.812	0.840	0.863	0.898	0.922	0.940	0.953	0.963	0.970	0.982	0.989	0.993
	50	0.779	0.814	0.842	0.865	0.900	0.925	0.942	0.955	0.965	0.972	0.984	0.990	0.994
	55	0.780	0.815	0.844	0.867	0.902	0.927	0.944	0.957	0.967	0.974	0.985	0.991	0.994
	60	0.781	0.816	0.845	0.868	0.904	0.928	0.946	0.959	0.968	0.975	0.986	0.992	0.995
	65	0.782	0.818	0.846	0.870	0 .9 05	0.930	0.947	0.960	0.969	0.976	0.987	0.993	0.996
	70	0.783	0.819	0.847	0.871	0.906	0.931	0.948	0.961	0.970	0.977	0.988	0.993	0.996
	75	0.784	0.819	0.848	0.872	0.907	0.932	0.949	0.962	0.971	0.978	0.988	0.994	0.996
	80	0.784	0.820	0.849	0.872	0.908	0.933	0.950	0.963	0.972	0.979	0.989	0.994	0.997
	85	0.785	0.821	0.850	0.873	0.909	0.933	0.951	0.963	0.972	0.979	0.989	0.994	0.997
	90	0.785	0.821	0.850	0.874	0.909	0.934	0.952	0.964	0.973	0.980	0.990	0.994	0.997
	95	0.786	0.822	0.851	0.874	0.910	0.935	0.952	0.965	0.974	0.980	0.990	0.995	0.997
	100	0.786	0.822	0.851	0.875	0.911	0.935	0.953	0.965	0.974	0.980	0.990	0.995	0.997

						v ₁							α =	.25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	60
0.782	0.785	0.787	0.789	0.791	0.792	0.793	0.794	0.795	0.796	0.797	0.798	0.798	5	
0.825	0.828	0.831	0.833	0.835	0.837	0.838	0.839	0.840	0.841	0.842	0.843	0.844	6	
0.857	0.861	0.864	0.866	0.868	0.870	0.872	0.873	0.874	0.876	0.877	0.877	0.878	7	
0.882	0.886	0.889	0.892	0.894	0.896	0.898	0.899	0.901	0.902	0.903	0.904	0.904	8	
0.916	0.921	0.924	0.927	0.930	0.932	0.933	0.935	0.936	0.937	0.938	0.939	0.940	10	
0.939	0.943	0.947	0.949	0.952	0.954	0.955	0.957	0.958	0.959	0.960	0.961	0.962	12	
0.954	0.958	0.961	0.964	0.966	0.968	0.969	0.970	0.972	0.973	0.973	0.974	0.975	14	
0.964	0.968	0.971	0.973	0.975	0.977	0.978	0.979	0.980	0.981	0.982	0.983	0.983	16	
0.971	0.975	0.978	0.980	0.982	0.983	0.984	0.985	0.986	0.987	0.988	0.988	0.989	18	
0.977	0.980	0.982	0.984	0.986	0.987	0.988	0.989	0.990	0.991	0.991	0.992	0.992	20	
0.985	0.988	0.990	0.991	0.992	0.993	0.994	0.995	0.995	0.996	0.996	0.996	0.997	25	
0.989	0.992	0.993	0.995	0.995	0.996	0.997	0.997	0.997	0.998	0.998	0.998	0.998	30	
0.992	0.994	0.995	0.996	0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	35	
0.994	0.996	0.997	0.997	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	1.000	40	ν ₂
0.995	0.996	0.997	0.998	0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	45	
0.996	0.997	0.998	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	50	
0.996	0.998	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
0.998	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	-

α =	. 25							v ₁					·	
σ_2/σ_1	= . 50	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.784	0.805	0.821	0.834	0.854	0.867	0.877	0.885	0.891	0.896	0.905	0.911	0.915
	6	0.803	0.826	0.843	0.857	0.878	0.892	0.903	0.911	0.917	0.923	0.932	0.938	0.943
	7	0.817	0.841	0.859	0.874	0.895	0.910	0.921	0.929	0.935	0.940	0.950	0.956	0.960
	8	0.827	0.852	0.871	0.886	0.908	0.923	0.934	0.942	0.948	0.953	0.962	0.967	0.971
	10	0.841	0.867	0.887	0.902	0.924	0.939	0.950	0.958	0.964	0.968	0.976	0.981	0.984
	12	0.850	0.877	0.897	0.913	0.935	0.950	0.960	0.967	0.973	0.977	0.984	0.988	0.990
	14	0.856	0.884	0.904	0.920	0.942	0.957	0.967	0.974	0.979	0.982	0.988	0.992	0.994
	16	0.861	0.889	0.910	0.925	0.948	0.962	0.971	0.978	0.982	0.986	0.991	0.994	0.996
	18	0.865	0.893	0.914	0.930	0.951	0.965	0.975	0.981	0.985	0.988	0.993	0.996	0.997
	20	0.868	0.896	0.917	0.933	0.955	0.968	0.977	0.983	0.987	0.990	0.994	0.997	0.998
	25	0.873	0.902	0.923	0.938	0.960	0.973	0.981	0.987	0.990	0.993	0.996	0.998	0.999
	30	0.877	0.905	0.926	0.942	0.963	0.976	0.984	0.989	0.992	0.994	0.997	0.999	0.999
	35	0.880	0.908	0.929	0.945	0.966	0.978	0.986	0.990	0.993	0.995	0.998	0.999	1.000
v ₂	40	0.881	0.910	0.931	0.947	0.967	0.979	0.987	0.991	0.994	0.996	0.998	0.999	1.000
	45	0.883	0.912	0.932	0.948	0.969	0.980	0.988	0.992	0.995	0.996	0.999	0.999	1.000
	50	0.884	0.913	0.934	0.949	0.970	0.981	0.988	0.993	0.995	0.997	0.999	1.000	1.000
	55	0.885	0.914	0.935	0.950	0.970	0.982	0.989	0.993	0.996	0.997	0.999	1.000	1.000
	60	0.886	0.915	0.935	0.951	0.971	0.983	0.989	0.993	0.996	0.997	0.999	1.000	1.000
	65	0.886	0.915	0.936	0.952	0.972	0.983	0.990	0.994	0.996	0.997	0.999	1.000	1.000
	70	0.887	0.916	0.937	0.952	0.972	0.983	0.990	0.994	0.996	0.998	0.999	1.000	1.000
	75	0.887	0.916	0.937	0.953	0.973	0.984	0.990	0.994	0.996	0.998	0.999	1.000	1.000
	80	0.888	0.917	0.938	0.953	0.973	0.984	0.990	0.994	0.996	0.998	0.999	1.000	1.000
	85	0.888	0.917	0.938	0.953	0.973	0.984	0.991	0.994	0.997	0.998	0.999	1.000	1.000
	90	0.889	0.917	0.938	0.954	0.973	0.985	0.991	0.995	0.997	0.998	0.999	1.000	1.000
	95	0.889	0.918	0.939	0.954	0.974	0.985	0.991	0.995	0.997	0.998	0.999	1.000	1.000
	100	0.889	0.918	0.939	0.954	0.974	0.985	0.991	0.995	0.997	0.998	0.999	1.000	1.000

						ν ₁			wi _t ers	.*	, .		α =	.25
40	45	50	55	60	6 5	70	75	80	85	90	95	100	σ_2/σ_1	= .50
0.919	0.921	0.923	0.925	0.926	0.928	0.929	0.930	0.930	0.931	0.932	0.932	0.933	5	
0.946	0.948	0.950	0.952	0.953	0.955	0.956	0.957	0.957	0.958	0.959	0.959	0.960	6	
0.963	0.965	0.967	0.969	0.970	0.971	0.972	0.973	0.973	0.974	0.974	0.975	0.975	7	
0.974	0.976	0.978	0.979	0.980	0.981	0.982	0.983	0.983	0.984	0.984	0.984	0.985	8	
0.986	0.988	0.989	0.990	0.991	0.992	0.992	0.993	0.993	0.993	0.993	0.994	0.994	10	
0.992	0.993	0.994	0.995	0.995	0.996	0.996	0.997	0.997	0.997	0.997	0.997	0.997	12	
0.995	0.996	0.997	0.997	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	0.999	14	
0.997	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	16	
0.998	0.998	0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	18	
0.999	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	=
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1,000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	. 25							v ₁						
σ_2/σ_1	40	5	6	7	8	10	12	14	16	18	20	25	30	35
	5	0.892	0.911	0.925	0.935	0.949	0.959	0.965	0.970	0.973	0.976	0.981	0.983	0.985
	6	0.905	0.924	0.938	0.948	0.962	0.970	0.976	0.980	0.983	0.985	0.989	0.991	0.993
	7	0.914	0.933	0.946	0.956	0.969	0.977	0.983	0.986	0.989	0.991	0.993	0.995	0.996
	8	0.920	0.939	0.952	0.962	0.975	0.982	0.987	0.990	0.992	0.993	0.996	0.997	0.998
	10	0.928	0.947	0.960	0.969	0.981	0.987	0.991	0.994	0.995	0.996	0.998	0.999	0.999
	12	0.934	0.952	0.965	0.974	0.985	0.990	0.994	0.996	0.997	0.998	0.999	0.999	1.000
	14	0.938	0.956	0.968	0.977	0.987	0.992	0.995	0.997	0.998	0.999	0.999	1.000	1.000
	16	0.940	0.959	0.971	0.979	0.988	0.993	0.996	0.998	0.998	0.999	1.000	1.000	1.000
	18	0.942	0.960	0.972	0.980	0.990	0.994	0.997	0.998	0.999	0.999	1.000	1.000	1,.000
	20	0.944	0.962	0.974	0.982	0.991	0.995	0.997	0.998	0.999	0.999	1.000	1.000	1.000
	25	0.947	0.965	0.976	0.984	0.992	0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	30	0.949	0.966	0.978	0.985	0.993	0.996	0.998	0.999	0.999	1.000	1.000	1.000	1.000
	35	0.950	0.967	0.979	0.986	0.993	0.997	0.998	0.999	1.000	1.000	1.000	1.000	1.000
V ₂	40	0.951	0.968	0.979	0.986	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	45	0.952	0.969	0.980	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	50	0.952	0.970	0.980	0.987	0.994	0.997	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	55	0.953	0.970	0.981	0.987	0.995	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	60	0.953	0.970	0.981	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	65	0.954	0.971	0.981	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	70	0.954	0.971	0.981	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	75	0.954	0.971	0.982	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	80	0.954	0.971	0.982	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	85	0.955	0.971	0.982	0.988	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	90	0.955	0.972	0.982	0.989	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	95	0.955	0.972	0.982	0.989	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	100	0.955	0.972	0.982	0.989	0.995	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000

	VI.,				·	ν							α =	.25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	40
0.987	0.988	0.989	0.989	0.990	0.990	0.991	0.991	0.991	0.992	0.992	0.992	0.992	5	
0.994	0.994	0.995	0.995	0.996	0.996	0.996	0.996	0.997	0.997	0.997	0.997	0.997	6	
0.997	0.997	0.998	0.998	0.998	0.998	0.998	0.999	0.999	0.999	0.999	0.999	0.999	7	
0.998	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	0.999	1.000	1.000	1.000	8	
0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	10	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	12	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	,
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

α -	. 25			<u>'</u>				v ₁						
σ_2/σ_1	30	5	6	7	8	10	12	14	16	18	20	25	30	35
i.	5	0.963	0.974	0.981	0.986	0.991	0.994	0.996	0.997	0.998	0.998	0.999	0.999	1.000
	6	0.968	0.979	0.985	0.989	0.994	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000
	7	0.972	0.982	0.988	0.992	0.996	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000
	8	0.975	0.984	0.990	0.993	0.997	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000
	10	0.978	0.987	0.992	0.995	0.998	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000
	12	0.980	0.988	0.993	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	14	0.981	0.989	0.994	0.996	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	16	0.982	0.990	0.994	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	18	0.983	0.991	0.995	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	20	0.984	0.991	0.995	0.997	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	25	0.985	0.992	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	30	0.985	0.992	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	35	0.986	0.993	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
v ₂	40	0.986	0.993	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	45	0.986	0.993	0.996	0.998	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	50	0.986	0.993	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	55	0.987	0.993	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	60	0.987	0.993	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	65	0.987	0.993	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	70	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	75	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	80	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	85	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	90	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	95	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
	100	0.987	0.994	0.997	0.998	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000

						v ₁							α =	. 25
40	45	50	55	60	65	70	75	80	85	90	95	100	σ_2/σ_1	 30
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	5	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	6	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	7	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	8	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	10	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	12	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	14	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	16	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	18	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	20	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	25	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	30	
1.000	1.000	1.000	1.000	.1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	35	i
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	40	V ₂
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	45	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	50	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	55	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	60	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	65	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	70	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	75	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	80	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	85	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	90	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	95	
1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	100	

INTENTIONALLY LEFT BLANK.

NO. OF COPIES ORGANIZATION

- 2 DEFENSE TECHNICAL INFO CTR ATTN DTIC DDA 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TA
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TL
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 US ARMY RESEARCH LAB
 ATTN AMSRL OP SD TP
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL ATTN AMSRL OP AP L (305)

NO. OF NO. OF COPIES ORGANIZATION **COPIES ORGANIZATION** ABERDEEN PROVING GROUND, MD 2 PM TMAS ATTN SFAE ASM TMA B HELD 2 DIR USAMSAA R ROESER ATTN AMXSY RA C HEATWOLE PICATINNY ARSENAL NJ 07806-5000 AMXSY EA B SEIGEL 3 CDR USAARDEC 1 **DIR USACSTA** ATTN AMSTA AR CCH ATTN STECS CC PC P DURKIN E FENNEL A GOWARTY 1 CDR USATECOM ATTN AMSTE TA S L SAUBIER S MUSALLI PICATINNY ARSENAL NJ 07806-5000 18 DIR USARL 1 CDR USAARDEC ATTN AMSRL WT PA ATTN AMSTA AR QAC T MINOR C PATEL AMSRL WT PB PICATINNY ARSENAL NJ 07806-5000 V OSKAY H EDGE 1 CDR USAARDEC D LYON ATTN SFAI FAS AF J GARNER L YUNG M BUNDY PICATINNY ARSENAL NJ 07806-5000 A ZIELINSKI G COOPER CDR USAARDEC 1 K SOENCKSEN ATTN SFAE FAS CR K FANSLER J DELABAR A MIKHAIL PICATINNY ARSENAL NJ 07806-5000 P PLOSTINS E SCHMIDT DIR USAARDEC P WEINACHT **BENET WEAPONS LAB** AMSRL WT PC ATTN AMSTA AR CCB R FIFER R HASSENBEIN J HEIMERL **WATERVLIET NY 12189-4050** AMSRL WT PD **B BURNS** 1 CDR USATACOM S WILKERSON ATTN AMCPM ABMS DR PATTISON

WARREN MI 48397-5000

CDR USA ARMOR CTR

FT KNOX KY 40121

ATTN ATSB WP ORSA A POMEY

1

USER EVALUATION SHEET/CHANGE OF ADDRESS

	ertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers below will aid us in our efforts.
1. ARL Report Nu	aber <u>ARL-TR-886</u> Date of Report <u>October 1995</u>
2. Date Report Rec	rived
3. Does this report	satisfy a need? (Comment on purpose, related project, or other area of interest for which the repor
	is the report being used? (Information source, design data, procedure, source of ideas, etc.)
avoided, or efficience	on in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs es achieved, etc? If so, please elaborate. Ints. What do you think should be changed to improve future reports? (Indicate changes to
	al content, format, etc.)
	Organization
CURRENT	Name
ADDRESS	Street or P.O. Box No.
	City, State, Zip Code
7. If indicating a Ch Old or Incorrect add	inge of Address or Address Correction, please provide the Current or Correct address above and the ess below.
	Organization
OLD ADDRESS	Name Street or P.O. Box No.
	City, State, Zip Code
	(Remove this sheet, fold as indicated, tape closed, and mail.)

(DO NOT STAPLE)