Gegeben ist folgende Funktion:

Begleitbuch Seite 88 bis 94

$$f_{(x)} = 3x^2 + 6x - 2$$
.

- Ermitteln Sie die erste Ableitung f'(x)
- Berechnen Sie daraus den Extrempunkt
- Ist dieser ein absolutes Maximum oder absolutes Minimum?
- Stellen Sie die Funktionen $f_{(x)}$, $f'_{(x)}$ und den Extrempunkt mit Hilfe von matplotlib dar.
- Bezeichnen sie die Ursprungsfunktion $f_{(x)}$ und die erste Ableitung $f'_{(x)}$ in der Grafik.

Sollte in etwa so aussehen:

Gegeben sind folgende Vektoren:

Begleitbuch Seite 64 bis 69

 $V_1 = (0,0) (4,2)$

 $V_2 = (0,0) (1,5)$

 $V_3 = (0,0)(-2,-3)$

- 1. Zeichnen Sie diese 3 Vektoren in ein kartesisches Koordinatensystem (Seite 65, Abbildung 2.4)
- 2. Stellen Sie in je einem neuem Koordinatensystem, folgende Berechnungen grafisch dar:
 - a. $V_1 + V_2 + V_3$, Resultierender Vektor V_{1+2+3} (Seite 67, Abbildung 2.5, aber mit 3 Vektoren!)
 - b. $V_1 V_2 V_3$, Resultierender Vektor V_{1-2-3} (Seite 67, Abbildung 2.5, aber mit 3 Vektoren!)
 - c. 3 * V₃, Vektoren aneinander hängen
 - d. ¼ * V₁, resultierender Vektor über Vektor V₁ legen

Verwenden Sie für jeden Vektor eine andere Farbe, um diese besser zu identifizieren.

Beschriften Sie alle Vektoren, auch die Ergebnisvektoren V₁₊₂₊₃ und V₁₋₂₋₃.

Vergleichen Sie Ihre Berechnungen mit den grafischen Ergebnissen.