# Natural variation in teosinte at the domestication locus $teosinte\ branched1\ (tb1)^1$

Laura Vann², Thomas Kono²,³, Tanja Pyhäjärvi²,⁴, Matthew B. Hufford²,⁵,², and Jeffrey Ross-Ibarra²,⁶,²

<sup>2</sup>Department of Plant Sciences, University of California Davis
<sup>3</sup>Department of Agronomy and Plant Genetics, University of Minnesota Twin Cities
<sup>4</sup>Department of Biology, University of Oulu
<sup>5</sup>Department of Ecology, Evolution, and Organismal Biology, Iowa State University
<sup>6</sup>Center for Population Biology and Genome Center, University of California Davis
<sup>7</sup>Author for Correspondence

| Grants as far as I know were Matt's UC Mex       | cus money, whatever money paid for the $55K$ data since we used the |  |  |  |  |  |
|--------------------------------------------------|---------------------------------------------------------------------|--|--|--|--|--|
| and I am not sure what paid for greenhouse space |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
| 1                                                | -                                                                   |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
| Manuscript received                              | ; revision accepted                                                 |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
|                                                  |                                                                     |  |  |  |  |  |
| Acknowledgements                                 |                                                                     |  |  |  |  |  |
| Place brief acknowledgments, if desired, as      | s a separate paragraph, using the following style: The author       |  |  |  |  |  |
| thank(s). For brevity, do not use first nam      |                                                                     |  |  |  |  |  |

#### 1 Abstract

- 2 Premise of the study: The teosinte branched1 (tb1) gene is a major QTL controlling
- 3 branching differences between maize and its wild progenitor, teosinte. Previous work has
- 4 shown that the insertion of a transposable element (Hopscotch) upstream of tb1 enhances
- 5 the gene's expression, causing much of the reduction in tillering observed in maize.
- 6 Observations of the maize tb1 allele in teosinte and estimates of an age of insertion of the
- 7 Hopscotch element that predates domestication led us to investigate its prevalence and
- 8 potential role in teosinte.
- 9 Methods: Prevalence of the Hopscotch element was assessed across an Americas-wide
- 10 sample of 1110 maize and teosinte individuals using a co-dominant PCR assay.
- 11 Population genetic summaries were calculated for a subset of individuals from four
- 12 teosinte populations in central Mexico. Phenotypic data were also collected from a single
- 13 teosinte population where *Hopscotch* was found segregating.
- 14 Key results: Genotyping results suggest the Hopscotch element is at higher than expected
- 15 frequency in teosinte. Analysis of linkage disequilibrium near tb1 does not support recent
- 16 introgression of the *Hopscotch* allele from maize into teosinte. Population genetic
- 17 signatures are consistent with selection on this locus revealing a potential ecological role
- 18 for Hopscotch in teosinte. Finally, two greenhouse experiments with teosinte do not
- 19 suggest tb1 controls tillering in natural populations. do you think that we could change this at all to
- 20 say something to make it sound less like hopscotch has absolutely no effect? I think it's likely that it was something
- 21 with our experiments, or that it is the effect of other loci
- 22 Conclusions: Our findings suggest the role of Hopscotch differs between maize and
- 23 teosinte. Future work should assess tb1 expression levels in teosinte with and without the
- 24 Hopscotch and more comprehensively phenotype teosinte to assess the ecological
- 25 significance of the *Hopscotch* insertion and, more broadly, the tb1 locus in teosinte.
- 26 Key words: domestication; maize; teosinte; teosinte branched1; transposable element

 ${\bf 1} \quad {\it does\ Hops} cotch\ {\it need\ to\ be\ italicized?\ Don't\ believe\ we\ had\ ever\ italicized\ it\ before.}$ 

# INTRODUCTION

| 2          | Domesticated crops and their wild progenitors provide an excellent system in which            |
|------------|-----------------------------------------------------------------------------------------------|
| 3          | to study adaptation and genomic changes associated with human-mediated selection              |
| 4          | (Ross-Ibarra et al., 2007). Perhaps the central focus of the study of domestication has       |
| 5          | been the identification of genetic variation underlying agronomically important traits        |
| 6          | such as fruit size and plant architecture (Olsen and Gross, 2010). Additionally, many         |
| 7          | domesticates show reduced genetic diversity when compared to their wild progenitors,          |
| 8          | and an understanding of the distribution of diversity in the wild and its phenotypic          |
| 9          | effects has become increasingly useful to crop improvement (Kovach and McCouch, 2008).        |
| 10         | But while some effort has been invested into understanding how wild alleles behave in         |
| 11         | their domesticated relatives (e.g. Bai and Lindhout, 2007), very little is known about the    |
| 12         | role that alleles found most commonly in domesticates play in natural populations of          |
| 13         | their wild progenitors (Whitton J, 1997).                                                     |
| 14         | Maize ( $Zea\ mays\ ssp.\ mays$ ) was domesticated from the teosinte $Zea\ mays\ ssp.$        |
| 15         | parviglum is (hereafter, $parviglum is)$ roughly 9,000 B.P. in southwest Mexico (Piperno      |
| 16         | et al., 2009; Matsuoka et al., 2002). Domesticated maize and the teosintes are an             |
| 17         | attractive system in which to study domestication due to the abundance of genetic tools       |
| 18         | ${\it developed for maize and well-characterized domestication loci (Hufford et al., 2012a;}$ |
| 19         | Doebley, 2004; Hufford et al., 2012b). Additionally, large naturally occurring populations    |
| 20         | of both $Zea\ mays$ ssp. $parviglumis$ (the wild progenitor of maize) and $Zea\ mays$ ssp.    |
| <b>2</b> 1 | mexicana (highland teosinte; hereafter $mexicana$ ) can be found throughout Mexico            |
| 22         | (Wilkes, 1977; Hufford et al., 2013), and genetic diversity of these taxa is estimated to be  |
| 23         | high (Ross-Ibarra et al., 2009).                                                              |
| 24         | Many morphological changes are associated with maize domestication, and                       |
| <b>25</b>  | understanding the genetic basis of these changes has been a focus of maize research for a     |
| 26         | number of years (Doebley, 2004). One of the most dramatic changes is found in plant           |
| 27         | architecture: domesticated maize is characterized by a central stalk with few tillers and     |

- 1 lateral branches terminating in a female inflorescence, while teosinte is highly tillered and
- 2 bears tassels (male inflorescences) at the end of its lateral branches. The teosinte
- 3 branched1 (tb1) gene, a repressor of organ growth, was identified as a major QTL
- 4 involved in branching (Doebley et al., 1995) and tillering (Doebley and Stec, 1991)
- 5 differences between maize and teosinte. A 4.9 kb retrotransposon (Hopscotch) insertion
- 6 into the upstream control region of tb1 in maize acts to enhance expression of tb1, thus
- 7 repressing lateral organ growth (Doebley et al., 1997; Studer et al., 2011). Dating of the
- 8 Hopscotch retrotransposon suggests that its insertion predates the domestication of
- 9 maize, leading to the hypothesis that it was segregating as standing variation in ancient
- 10 populations of teosinte and increased to high frequency in maize due to selection during
- 11 domestication (Studer et al., 2011). The effects of the Hopscotch insertion have been
- 12 studied in maize (Studer et al., 2011), and analysis of teosinte alleles at tb1 has identified
- 13 functionally distinct allelic classes (Studer and Doebley, 2012), but little is known about
- 14 the role of tb1 or the *Hopscotch* insertion in natural populations of teosinte.
- 15 In teosinte and other plants that grow at high population density, individuals detect
- 16 competition from neighbors via the ratio of red to far-red light. An increase in far-red
- 17 relative to red light accompanies shading and triggers the shade avoidance syndrome: a
- 18 suite of physiological and morphological changes such as reduced tillering, increased plant
- 19 height and early flowering we saw a bunch of early flowering in phenotyping 2 (Kebrom and
- 20 Brutnell, 2007). The tb1 locus appears to play an important role in the shade avoidance
- 21 pathway in Zea mays and other grasses and may therefore be crucial to the ecology of
- 22 teosinte (Kebrom and Brutnell, 2007; Lukens and Doebley, 1999). In this study we aim
- 23 to characterize the distribution of the Hopscotch insertion in parviglumis, mexicana, and
- 24 landrace maize, and to examine the phenotypic effects of the insertion in parviglumis. We
- 25 use a combination of PCR genotyping for the *Hopscotch* element in our full panel and
- 26 sequencing of two small regions upstream of tb1 in a subset of teosinte populations to
- 27 explore patterns of genetic variation at this locus. Finally, we test for an association

1 between the *Hopscotch* element and tillering phenotypes in a population of parviglumis.

#### MATERIALS AND METHODS

- 3 Sampling and genotyping—We sampled 1,110 individuals from 350 accessions
- 4 (247 maize landraces, 17 mexicana populations, and 86 parviglumis populations) and
- 5 assessed the presence or absence of the *Hopscotch* insertion (Table S1 and Table S2).
- 6 DNA was extracted from leaf tissue using a modified CTAB approach (Doyle and Doyle,
- 7 1990; Maloof et al., 1984). We designed primers using PRIMER3 (Rozen and Skaletsky,
- 8 2000) implemented in Geneious (Kearse et al., 2012) to amplify the entire Hopscotch
- 9 element, as well as an internal primer allowing us to simultaneously check for possible
- 10 PCR bias between presence and absence of the *Hopscotch* insertion. Two PCRs were
- 11 performed for each individual, one with primers flanking the *Hopscotch* (HopF/HopR)
- 12 and one with a flanking primer and an internal primer (HopF/HopIntR). Primer
- 13 sequences are HopF, 5'-TCGTTGATGCTTTGATGGATGG-3'; HopR,
- 14 5'-AACAGTATGATTTCATGGGACCG-3'; and HopIntR,

2

- 15 5'-CCTCCACCTCTCATGAGATCC-3' (Fig. S1, Fig. S2) Primers in Fig. S1 should be labeled .
- 16 Homozygotes show a single band for absence of the element ( $\sim 300$ bp) and two bands for
- 17 presence of the element ( $\sim$ 5kb and /sim1.1kb), whereas heterozygotes are three-banded
- 18 (Fig. S2). When only one PCR resolved well, we scored one allele for the individual. We
- 19 used Phusion High Fidelity Enzyme (Thermo Fisher Scientific Inc., Waltham,
- 20 Massachusetts, USA) and the following conditions for amplifications: 98°C for 3 min, 30
- 21 cycles of 98°C for 15 s, 65°C for 30 s, and 72°C for 3 min 30 s, with a final extension of
- 22 72°C for 10 min. PCR products were visualized on a 1% agarose gel and scored for
- 23 presence/absence of the *Hopscotch* based on band size.
- **Sequencing**—In addition to genotyping, we chose a subset of *parviglumis*
- 25 individuals for sequencing. We chose twelve individuals from each of four populations
- 26 from Jalisco state, Mexico (San Lorenzo, La Mesa, Ejutla A, and Ejutla B). For

- 1 amplification and sequencing, we selected two regions approximately 600bp in size from
- 2 within the 5' UTR of tb1 (Region 1) and from 1,235bp upstream of the start of the
- 3 Hopscotch (66,169bp upstream from the start of the tb1 ORF; Region 2). We designed
- 4 the following primers using PRIMER3 (Rozen and Skaletsky, 2000): for the 5' UTR,
- 5 5-'GGATAATGTGCACCAGGTGT-3' and 5'-GCGTGCTAGAGACACYTGTTGCT-3'; for the
- 6 66kb upstream region, 5'-TGTCCTCGCCGCAACTC-3' and
- 7 5'-TGTACGCCCGCCCCTCATCA-3' (Fig. S1). We used Taq polymerase (New England
- 8 Biolabs Inc., Ipswich, Massachusetts, USA) and the following thermal cycler conditions to
- 9 amplify fragments: 94°C for 3 min, 30 cycles of 92°C for 40 s, annealing for 1 min, 72°C
- 10 for 40 s, and a final 10 min extension at 72°C. Annealing temperatures for Region 1 and
- 11 Region 2 were 59.7°C and 58.8°C, respectively. To clean excess primer and dNTPs we
- 12 added two units of Exonuclease 1 and 2.5 units of Antarctic Phosphatase to 8.0  $\mu$ L of
- 13 amplification product. This mix was placed on a thermal cycler with the following
- 14 program: 37°C for 30 min, 80°C for 15 min, and a final cool-down step to 4°C.
- 15 We cloned cleaned fragments into a TOPO-TA vector (Life Technologies, Grand
- 16 Island, New York, USA) using OneShot TOP10 chemically competent E. coli cells, with
- 17 an extended ligation time of 30 min for a complex target fragment. We plated cells on LB
- 18 agar plates containing kanamycin, and screened colonies using vector primers M13
- 19 Forward and M13 Reverse under the following conditions: 96°C for 5 min; then 35 cycles
- 20 at 96°C for 30 s, 53°C for 30 s, 72°C for 2 min; and a final extension at 72°C for 4 min.
- 21 We visualized amplification products for incorporation of our insert on a 1% agarose TAE
- **22** gel.
- 23 Amplification products with successful incorporation of our insert were cleaned using
- 24 Exonuclease 1 and Antarctic Phosphatase following the procedures detailed above, and
- 25 sequenced with vector primers M13 Forward and M13 Reverse using Sanger sequencing at
- 26 the College of Agriculture and Environmental Sciences (CAES) sequencing center at UC
- 27 Davis. We aligned and trimmed primer sequences from resulting sequences using the

- 1 software Geneious (Kearse et al., 2012). Following alignment, we verified singleton SNPs
- 2 by sequencing an additional one to four colonies from each clone. If the singleton was not
- 3 present in these additional sequences it was considered an amplification or cloning error,
- 4 and we replaced the base with the base of the additional sequences. If the singleton
- 5 appeared in at least one of the additional sequences we considered it a real variant and
- 6 kept it for further analyses.
- 7 Genotyping analysis—We examined discrepancies between observed and expected
- 8 genotype frequencies by calculating Hardy-Weinberg Equilibrium (HWE). To calculate
- 9 differentiation between populations (F<sub>ST</sub>) and subspecies (F<sub>CT</sub>) we used HierFstat
- 10 (Goudet, 2005). These analyses only included populations in which 8 or more individuals
- 11 were sampled. To test the hypothesis that the *Hopscotch* insertion may be adaptive
- 12 under certain environmental conditions, we looked for significant associations between the
- 13 Hopscotch frequency and environmental variables using BayEnv (Coop et al., 2010).
- 14 BayEnv creates a covariance matrix of relatedness between populations and then tests a
- 15 null model that allele frequencies in populations are determined by the covariance matrix
- 16 of relatedness alone against the alternative model that allele frequencies are determined
- 17 by a combination of the covariance matrix and an environmental variable, producing a
- 18 posterior probability (i.e., Bayes Factor; Coop et al. 2010). We used genotyping and
- 19 covariance data from Pyhäjärvi et al. (2013) for BayEnv, with the Hopscotch insertion
- 20 coded as an additional SNP (Table S3). Environmental data were obtained from
- 21 www.worldclim.org, the Harmonized World Soil Database
- 22 (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012) and www.harvestchoice.org and summarized
- 23 by principle component analysis following Pyhäjärvi et al. (2013).
- 24 Sequence analysis—For population genetic analyses of sequenced Region 1 and
- 25 sequenced Region 2 we used the Libsequence package (Thornton, 2003) to calculate
- 26 pairwise F<sub>ST</sub> between populations and to calculate standard diversity statistics (number
- 27 of haplotypes, haplotype diversity, Watterson's estimator  $\hat{\theta}_W$ , pairwise nucleotide

- 1 diversity  $\hat{\theta}_{\pi}$ , and Tajima's D). To produce a visual representation of differentiation
- 2 between sequences and examine patterns in sequence clustering by *Hopscotch* genotype
- 3 we used Phylip (http://evolution.genetics.washington.edu/phylip.html), creating
- 4 neighbor-joining trees with bootstrap-supported nodes (100 repetitions). For creation of
- 5 trees we also included homologous sequence data from Maize HapMapV2 (Chia et al.,
- 6 2012) for teosinte inbred lines (TILs), some of which are known to be homozygous for the
- 7 Hopscotch insertion (TIL03, TIL17, TIL09), as well as 59 lines of domesticated maize.
- 8 Introgression analysis—In order to assess patterns of linkage disequilibrium (LD)
- 9 around the Hopscotch element in the context of chromosomal patterns of LD we used
- 10 Tassel (Bradbury et al., 2007) and calculated LD between SNPs across chromosome 1
- 11 using previously published data from twelve plants each of the Ejutla A (EjuA), Ejutla B
- 12 (EjuB), San Lorenzo (SLO), and La Mesa (MSA) populations (Pyhäjärvi et al., 2013).
- 13 We chose these populations because we had both genotyping data for the *Hopscotch* as
- 14 well as chromosome-wide SNP data for chromosome 1. For each population we filtered
- 15 the initial set of 5,897 SNPs on chromosome 1 to accept only SNPs with a minor allele
- 16 frequency of at least 0.1, resulting in 1,671, 3,023, 3,122, and 2,167 SNPs for SLO, EjuB,
- 17 EjuA, and MSA, respectively. We then used Tassel (Bradbury et al., 2007) to calculate
- 18 linkage disequilibrium  $(r^2)$  across chromosome 1 for each population.
- 19 We examined evidence of introgression on chromosome 1 in these same four
- 20 populations (EjuA, EjuB, MSA, SLO) using STRUCTURE (Falush et al., 2003) and
- 21 phased data from Pyhäjärvi et al. (2013), combined with the corresponding SNP data
- 22 from a diverse panel of 282 maize lines (Cook et al., 2012). SNPs were anchored in a
- 23 modified version of the IBM genetic map (Gerke et al., 2013). We created haplotype
- 24 blocks using a custom Perl script is this where I should cite Matt's paper, or his code? Matt is was your
- 25 'chunkfy.pl script' we should make this script available; my vote would be to get this submitted and during review
- 26 get all scripts, etc... in GitHub or some other public repository that grouped SNPs separated by less
- 27 than 5kb into haplotypes. We ran STRUCTURE at K=2 under the linkage model,

- 1 performing 3 replicates with an MCMC burn-in of 10,000 steps and 50,000 steps post
- **2** burn-in.
- 3 Phenotyping of parviglumis—To investigate the phenotypic effects of the
- 4 Hopscotch insertion in teosinte, we conducted an initial phenotyping trial (Phenotyping
- 5 1). We germinated 250 seeds of parviglumis collected in Jalisco state, Mexico (population
- 6 San Lorenzo) (Hufford, 2010) where the *Hopscotch* is segregating at highest frequency
- 7 (0.44) in our initial genotyping sample set. In order to maximize the likelihood of finding
- 8 the Hopscotch in our association population we selected seeds from sites where genotyped
- 9 individuals were homozygous or heterozygous for the insertion. We chose between 10-13
- 10 seeds from each of 23 sampling sites. We treated seeds with Captan fungicide (Southern
- 11 Agricultural Insecticides Inc., Palmetto, Florida, USA) and germinated them in petri
- 12 dishes with filter paper. Following germination, 206 successful germinations were planted
- 13 into one-gallon pots with potting soil and randomly spaced one foot apart on greenhouse
- 14 benches. Plants were watered three times a day by hand and with an automatic drip
- 15 containing 10-20-10 fertilizer.
- Starting on day 15, we measured tillering index as the ratio of the sum of tiller
- 17 lengths to the height of the plant (Briggs et al., 2007). Following initial measurements,
- 18 we phenotyped plants for tillering index every 5 days through day 40, and then on day 50
- 19 and day 60. On day 65 we measured culm diameter between the third and fourth nodes
- 20 of each plant. Culm diameter is not believed to be correlated with tillering index or
- 21 variation at tb1. Following phenotyping we extracted DNA from all plants using a
- 22 modified SDS extraction protocol (http://www.ars.usda.gov). what is this url? We
- 23 genotyped individuals for the *Hopscotch* insertion following the protocols listed above.
- 24 Based on these initial data, we conducted a post hoc power analysis using data from day
- 25 40 of Phenotyping 1, indicating that a minimum of 71 individuals in each genotypic class
- 26 would be needed to detect the observed effect of the *Hopscotch* on tillering index.
- We performed a second phenotyping experiment (Phenotyping 2) in which we

- 1 germinated 372 seeds of parviglumis, choosing equally between sites previously
- 2 determined to have or not have the Hopscotch insertion. Seeds were germinated and
- 3 planted on day 7 post fruit-case removal into two gallon pots. Plants were watered twice
- 4 daily, alternating between fertilized and non-fertilized water. We began phenotyping
- 5 successful germinations (302 plants) for tillering index on day 15 post fruit-case removal,
- 6 and phenotyped every five days until day 50. At day 50 we measured culm diameter
- 7 between the third and fourth nodes. We extracted DNA and genotyped plants following
- 8 the same guidelines as in Phenotyping 1.
- 9 Tillering index data for each genotypic class did not meet the criteria for a repeated
- 10 measures ANOVA, so we transformed the data using a Box-Cox transformation ( $\alpha = 0$
- 11 what is the alpha value here?; alpha is a parameter used in Box-Cox transformations the box-cox transformation
- 12 function in the car package uses a lambda vector, but I do not see mention of alpha Car Package for R, Fox
- 13 and Weisberg 2011) to improve the normality and homogeneity of variance among
- 14 genotype classes. We analyzed relationships between genotype and tillering index and
- 15 tiller number using a repeated measures ANOVA through a general linear model function
- 16 implemented in SAS v.9.3 (SAS Institute Inc., Cary, NC, USA). Additionally, in order to
- 17 compare any association between *Hopscotch* genotype and tillering and associations at
- 18 other presumably unrelated traits, we performed an ANOVA between culm diameter and
- 19 genotype using the same general linear model in SAS.

20 RESULTS

- 21 Genotyping—Genotype of the *Hopscotch* insertion was confirmed with two PCRs
- 22 for 837 individuals. Among the 247 maize landrace accessions genotyped, all but eight
- 23 were homozygous for the presence of the insertion (Table S1 and Table S2). Within our
- 24 parviglumis and mexicana samples we found the Hopscotch insertion segregating in 37
- 25 and 4 populations, respectively, and at highest frequency in the states of Jalisco, Colima,
- 26 and Michoacán in central-western Mexico (Fig. 1). so are you wanting to remove the above blip

Figure 1: Map showing the frequency of the *Hopscotch* allele in populations of *parviglumis* where we sampled more than 6 individuals. Size of circles reflects number of alleles sampled.



- 1 about hew stuff? I say ditch it, we never come back to it
- 2 Using our *Hopscotch* genotyping, we calculated differentiation between populations
- 3 (F<sub>ST</sub>) and subspecies (F<sub>CT</sub>) for populations in which we sampled 8 or more alleles. We
- 4 found that  $F_{CT} = 0$ , and levels of  $F_{ST}$  among populations within each subspecies (0.22)
- 5 and among all populations (0.23) are these an average of pairwise or is this calculated among all pops?
- 6 should be calculated among all pops... I believe that is what HierFstat does are similar to those reported
- 7 genome-wide in previous studies (Pyhäjärvi et al. 2013; Table 1). Although we found
- 8 large variation in *Hopscotch* allele frequency among our populations, BayEnv analysis did
- 9 not indicate a correlation between the *Hopscotch* insertion and environmental variables
- 10 (all Bayes Factors < 1; Table S3).
- 11 Sequencing—To investigate patterns of sequence diversity and linkage
- 12 disequilibrium (LD) in the tb1 region, we sequenced two small (<1kb) regions upstream
- 13 of the tb1 ORF in four populations. After alignment and singleton checking we recovered
- 14 48 and 40 segregating sites for the 5' UTR region (Region 1) and the 66kb upstream
- 15 region (Region 2), respectively. For Region 1, Ejutla A has the highest values of

Table 1: Pairwise F<sub>ST</sub> values from sequence and *Hopscotch* genotyping data

| Comparison  | Region 1 | Region 2 | Hopscotch |
|-------------|----------|----------|-----------|
| EjuA & EjuB | 0        | 0        | 0         |
| EjuA & MSA  | 0.326    | 0.328    | 0.186     |
| EjuA & SLO  | 0.416    | 0.258    | 0.280     |
| EjuB & MSA  | 0.397    | 0.365    | 0.188     |
| EjuB & SLO  | 0.512    | 0.290    | 0.280     |
| MSA & SLO   | 0.007    | 0        | 0.016     |

1 haplotype diversity, and  $\theta_{\pi}$ , while Ejutla B and La Mesa have comparable values of these

2 summary statistics, and San Lorenzo has much lower values. Additionally, Tajima's D is

3 strongly negative in the two Ejutla populations and La Mesa, but is less negative in San

4 Lorenzo (Table 2). need to reference Hopscotch frequencies in supplemental table somewhere the frequencies

5 for the Hopscotch in these populations are in the supplement. For Region 2, haplotype diversity and

 $\theta_{\pi}$ , are similar for Ejutla A and Ejutla B, while La Mesa and San Lorenzo have slightly

7 lower values for these statistics (Table 2). Tajima's D is positive in all populations except

8 San Lorenzo, is the table wrong? MSA is the only negative value in the table indicating an excess of

9 low frequency variants in this population (Table 2). Pairwise values of  $F_{\rm ST}$  within

10 population pairs Ejutla A/Ejutla B and San Lorenzo/La Mesa are 0 for both sequenced

11 regions as well as for the Hopscotch table 1 shows 0.016 for hopscotch, not 0. which is right? , while

12 they are high for other population pairs (Table 1). Neighbor joining trees of our sequence

13 data and data from the teosinte inbred lines (TILs; data from Maize HapMapV2, Chia

14 et al. 2012) do not reveal any clear clustering pattern with respect to population or

15 Hopscotch genotype (Figure S3); individuals within our sample that have the Hopscotch

16 insertion do not group with the teosinte inbred lines or domesticated maize that have the

Table 2: Population genetic statistics from resequenced regions near the tb1 locus

| Population       | # Haplotypes | Hap. Diversity    | $\hat{	heta}_{\pi}$ | Tajima's D |  |  |  |
|------------------|--------------|-------------------|---------------------|------------|--|--|--|
| Region 1(5' UTR) |              |                   |                     |            |  |  |  |
| EJUA             | 8            | 0.859             | 0.005               | -1.650     |  |  |  |
| EJUB             | 5            | 0.709             | 0.004               | -1.831     |  |  |  |
| MSA              | 6            | 0.682             | 0.004               | -1.755     |  |  |  |
| SLO              | 3            | 0.318             | 0.001               | -0.729     |  |  |  |
|                  | Region ,     | 2 (66kb upstream) |                     |            |  |  |  |
| EJUA             | 8            | 0.894             | 0.018               | 0.623      |  |  |  |
| EJUB             | 8            | 0.894             | 0.016               | 0.295      |  |  |  |
| MSA              | 3            | 0.682             | 0.011               | -0.222     |  |  |  |
| SLO              | 4            | 0.742             | 0.014               | 0.932      |  |  |  |

- 1 Hopscotch insertion.
- **Evidence of introgression**—The highest frequency of the *Hopscotch* insertion in
- 3 teosinte was found in parviglumis sympatric with cultivated maize. Our initial hypothesis
- 4 was that the high frequency of the *Hopscotch* element in these populations could be
- 5 attributed to introgression from maize into teosinte. To investigate this possibility we
- 6 examined overall patterns of linkage disequilibrium across chromosome one and
- 7 specifically in the tb1 region. If the Hopscotch is found in these populations due to recent
- 8 introgression we would expect to find large blocks of linked markers near this element.
- 9 We find no evidence of elevated linkage disequilibrium between the *Hopscotch* and SNPs
- 10 surrounding the tb1 region in our resequenced populations (Fig. 2), and  $r^2$  in the tb1
- 11 region does not differ significantly between populations with (average  $r^2$  of 0.085) and
- 12 without (average  $r^2 = 0.082$ ) the *Hopscotch* genotype. In fact, average  $r^2$  is lower in the
- 13 tb1 region  $(r^2 = 0.056)$  than across the rest of chromosome 1  $(r^2 = 0.083)$  (3). LV, please go

- 1 through and make sure the data entered into all the tables is correct. In Table3, both sequenced regions were labeled
- 2 as "Region 1". I changed the second to Region 2 but don't know if the data in this column are really from Region 2

Table 3:  $r^2$  values between SNPs on chromosome 1, in the broad tb1 region, within the 5' UTR of tb1 (Region 1), and 66kb upstream of tb1 (Region 2).

| Population  | Chr. 1 | tb1 region | Region 1 | Region 2 |
|-------------|--------|------------|----------|----------|
| Ejutla A    | 0.095  | 0.050      | 0.747    | 0.215    |
| Ejutla B    | 0.069  | 0.051      | 0.660    | 0.186    |
| La Mesa     | 0.070  | 0.053      | 0.914    | 0.766    |
| San Lorenzo | 0.101  | 0.067      | 0.912    | 0.636    |

- 3 The lack of clustering of *Hopscotch* genotypes in our NJ tree as well as the lack of LD
- 4 around tb1 does not support the hypothesis that the Hopscotch insertion in these
- 5 populations of parviglumis is the result of recent introgression. However, to further
- 6 explore this hypothesis we performed a STRUCTURE analysis using Illumina
- 7 MaizeSNP50 data from four of our parviglumis populations (EjuA, EjuB, MSA, and
- 8 SLO) and the maize 282 diversity panel (Cook et al., 2012; Pyhäjärvi et al., 2013). The
- 9 linkage model implemented in STRUCTURE can be used to identify ancestry of blocks of
- 10 linked variants, which would arise as a result of recent admixture between populations. If
- 11 the Hopscotch insertion is present in populations of parviglumis as a result of recent
- 12 admixture with domesticated maize, we would expect the insertion and linked variants in
- 13 surrounding sites to be assigned to the "maize" cluster in our STRUCTURE runs, not
- 14 the "teosinte" cluster. In all runs, assignment to maize in the tb1 region across all four
- 15 parviglumis populations is low (average 0.017) and much below the chromosome-wide
- **16** average (0.20; Table 4; Fig. 3).
- 17 **Phenotyping**—To assess the contribution of tb1 to phenotypic variation in tillering
- 18 in a natural population, we grew plants from seed sampled from the San Lorenzo



Figure 2: Linkage disequilibrium for SNPs in Mb 261-268 on chromosome 1. The yellow rectangle indicates the location of the *Hopscotch* insertion and the green represents the *tb1* ORF. A) Ejutla A; B) Ejutla B; C) La Mesa; D). San Lorenzo

this needs description of what upper and lower triangle are

- 1 population of parviglumis, which had a high mean frequency (0.44) of the Hopscotch
- 2 insertion based on our initial genotyping. We measured tillering index (TI), the ratio of
- 3 the sum of tiller lengths to plant height, for 216 plants (Phenotyping 1) from within the
- 4 San Lorenzo population, and genotyped plants for the *Hopscotch* insertion. We found the
- 5 Hopscotch segregating at a frequency of 0.65 with no significant deviations from expected
- 6 frequencies under Hardy-Weinberg equilibrium. After performing a repeated measures

Table 4: Assignments to maize and teosinte in the tb1 and chromosome 1 regions from STRUCTURE

|             | tb1   | region   | Chr 1 |          |  |
|-------------|-------|----------|-------|----------|--|
| Population  | Maize | Teosinte | Maize | Teosinte |  |
| Ejutla A    | 0.022 | 0.978    | 0.203 | 0.797    |  |
| Ejutla B    | 0.019 | 0.981    | 0.187 | 0.813    |  |
| La Mesa     | 0.012 | 0.988    | 0.193 | 0.807    |  |
| San Lorenzo | 0.016 | 0.984    | 0.205 | 0.795    |  |



Figure 3: STRUCTURE assignment to maize across a section of chromosome 1. The dotted lines mark the beginning of the sequenced region 50kb upstream (Sequenced region 2) and the end of the tb1 ORF.

- 1 ANOVA between our transformed tillering index data and Hopscotch genotype we find a
- 2 weak positive correlation between presence of the Hopscotch and tillering index on day 40
- 3 (p=0.0848), a result indicating the *Hopscotch* may actually increase tillering in

- 1 parviglumis in contrast to its phenotypic effect in maize. We find no correlation between
- 2 tillering index and genotype on any other day (4). Additionally we find no significant
- 3 correlation between tiller number and Hopscotch genotype, or culm diameter and
- 4 Hopscotch genotype in Phenotyping 1.
- 5 We performed a second grow-out of parviglumis from San Lorenzo (Phenotyping 2)
- 6 to assess whether lighting conditions or sample size may have affected our ability to
- 7 detect an effect of tb1. For the second grow-out we measured tillering index every five
- 8 days through day 50 for 302 plants. We found the Hopscotch allele segregating at a
- 9 frequency of 0.69, is it in HWE in this pop? with a 0.6 frequency of Hopscotch homozygotes,
- 10 and a 0.2 frequency of both heterozygotes and homozygotes for the teosinte allele. We
- 11 found similar patterns, with a weak positive correlation between tillering index and
- 12 Hopscotch genotype at day 40 (p<0.0611), with no significant correlation on any day.
- 13 Similarly, relationships between Hopscotch genotype and tiller number and Hopscotch
- 14 genotype and culm diameter were not significant.

**15** 

## DISCUSSION

- Adaptation occurs due to selection on standing variation or *de novo* mutations.
- 17 Adaptation from standing variation has been well-described in a number of systems; for
- 18 example, selection for lactose tolerance in humans (Plantinga et al., 2012; Tishkoff et al.,
- 19 2007), variation at the Eda locus in three-spined stickleback (Kitano et al., 2008;
- 20 Colosimo et al., 2005), and pupal diapause in the Apple Maggot fly (Feder et al., 2003).
- 21 Although the adaptive role of standing variation has been described in many systems, its
- 22 importance in domestication is not as well studied.
- In maize, alleles at domestication loci (RAMOSA1, Sigmon and Vollbrecht 2010;
- 24 barren stalk1, Gallavotti et al. 2004; and grassy tillers1, Whipple et al. 2011) are thought
- 25 to have been selected from standing variation, suggesting that diversity already present in
- 26 teosinte may have played an important role in maize domestication. The teosinte





Figure 4: Box-plots showing tillering index in greenhouse grow-outs for Phenotyping 1 (A) and Phenotyping 2 (B). White indicates individuals homozygous for the *Hopscotch*, light grey represents heterozygotes, and dark grey represents homozygotes for the teosinte (No *Hopscotch*) allele. Within boxes, dark black lines represent the median, and the edges of the boxes are the first and third quartiles. *please explain whiskers and dots on figure too*.

- 1 branched1 gene is one of the best characterized domestication loci, and, while previous
- 2 studies have suggested that differences in plant architecture between maize and teosinte
- 3 are a result of selection on standing variation at this locus, little is known about natural
- 4 variation at this locus and its ecological role in teosinte (Clark et al., 2006; Studer et al.,
- 5 2011). Studer et al. (2011) genotyped 90 accessions of teosinte (inbred and outbred),
- 6 providing the first evidence that the *Hopscotch* insertion is segregating in teosinte (Studer
- 7 et al., 2011).
- 8 Given that the *Hopscotch* insertion has been estimated to predate the domestication
- 9 of maize, it is not surprising that it can be found segregating in populations of teosinte.
- 10 However, by widely sampling across teosinte populations our study provides greater
- 11 insight into the distribution and prevalence of the *Hopscotch* in teosinte. While our
- 12 findings are consistent with Studer et al. (2011) in that we identify the Hopscotch allele
- 13 segregating in teosinte, we find it at higher frequency than previously suggested (Studer
- et al., 2011). Many of our populations with high frequency of the *Hopscotch* allele fall in
- 15 the Jalisco cluster identified by Fukunaga (2005), suggesting a different history of the tb1
- 16 locus in this region than in the Balsas River Basin where maize was domesticated
- 17 (Matsuoka et al., 2002). Potential explanations for the high frequency of the Hopscotch
- 18 element in parviglumis from the Jalisco cluster include gene flow from maize, genetic
- 19 drift, and natural selection.
- While gene flow from crops into their wild relatives is well-known, (Ellstrand et al.,
- 21 1999; Zhang et al., 2009; Thurber et al., 2010; Baack et al., 2008; Hubner et al., 2012;
- 22 Wilkes, 1977; van Heerwaarden et al., 2011; Barrett, 1983), our results are more
- 23 consistent with Hufford et al. (2013) who found resistance to introgression from maize
- 24 into teosinte. Furthermore, Hufford et al. (2013) showed that domestication loci, such as
- 25 tb1, are particularly resistant to introgression in both directions of gene flow (i.e., maize
- 26 to teosinte and teosinte to maize). We find no evidence of recent introgression in our
- 27 analyses. Clustering patterns in our NJ trees do not reflect a pattern expected if maize

- 1 alleles at the tb1 locus had introgressed into populations of teosinte. Moreover, there is
- 2 no signature of elevated LD in the tb1 region relative to the rest of chromosome 1, and
- 3 Bayesian assignment to a maize cluster in this region is lower than the chromosome-wide
- 4 average (Fig. 3, Table 4). Together, these data point to an explanation other than recent
- 5 introgression for the high observed frequency of *Hopscotch* in a subset of our *parviglumis*
- 6 populations.
- 7 Although recent introgression seems unlikely, we cannot rule out ancient introgression
- 8 as an explanation for the presence of the *Hopscotch* in these populations. If the
- 9 Hopscotch allele was introgressed in the distant past, recombination may have broken up
- 10 LD, a process that would be consistent with our data. We find this scenario less
- 11 plausible, however, as there is no reason why gene flow should have been high in the past
- 12 but absent in present-day sympatric populations. In fact, early generation maize-teosinte
- 13 hybrids are common in these populations today (MB Hufford, pers. observation), and
- 14 genetic data support ongoing gene flow between domesticated maize and both mexicana
- 15 and parviglumis in a number of sympatric populations (Hufford et al., 2013; Ellstrand
- 16 et al., 2007; van Heerwaarden et al., 2011).
- 17 Remaining explanations for differential frequencies of the *Hopscotch* among teosinte
- 18 populations include both genetic drift and natural selection. Drift may have played a role
- 19 in the San Lorenzo parviglumis population. Previous studies using both SSRs and
- 20 genome-wide SNP data have found evidence for a population bottleneck in the San
- 21 Lorenzo population (Hufford, 2010; Pyhäjärvi et al., 2013), and the lower levels of
- 22 sequence diversity in this population in the 5' UTR (Region 1) coupled with more
- 23 positive values of Tajima's D are consistent with these earlier findings suggesting a
- 24 bottleneck. deviations from HWE may be consistent too if we see excess of homozygotes. do we? Such
- 25 population bottlenecks can exaggerate the effects of genetic drift through which the
- 26 Hopscotch allele may have risen to high frequency entirely by chance. This bottleneck,
- 27 however, does not explain the high frequency of the Hopscotch in multiple populations in

- 1 the Jalisco cluster. Moreover, available information on diversity and population structure
- 2 among Jaliscan populations (Hufford, 2010; Pyhäjärvi et al., 2013) is not suggestive of
- 3 recent colonization or other demographic events that would predict a high frequency of
- 4 the allele across populations. Finally, values of the Tajima's D statistic in the 5' UTR of
- 5 tb1 are suggestive of natural selection acting upon the gene in natural population of
- 6 parviglumis. Whereas the genome-wide average of Tajima's D in genic regions of
- 7 parviglumis is 0.45 (Hufford et al., 2012b), the statistic is quite negative in the 5' UTR of
- 8 tb1 (Table 2). This result is consistent with repeated selective sweeps near tb1 and a
- 9 putative ecological role for the gene in parviglumis.
- 10 do we know the Hop genotype for sequenced lines? can we separate the sequences into hop/no hop and look
- 11 for differences? it wasn't until we did this that gt1 stuff really popped out. we should know for some of them, i
- 12 will check I've added a few sentences on selection. Do we still want to compare sequences with and without
- 13 Hopscotch? I agree its a good idea and could end up being really interesting. Perhaps something we could look at
- 14 after submission and incorporate during revisions?
- Significant effects of the *Hopscotch* insertion on lateral branch length, number of
- 16 cupules, and tillering index in domesticated maize have been well documented (Studer
- 17 et al., 2011). Weber et al. (2007) have described significant phenotypic associations
- 18 between markers in and around tb1 and lateral branch length and female ear length in a
- 19 sample from 74 natural populations of parviglumis (Weber et al., 2007); however, these
- 20 data did not include markers from the Hopscotch region 66kb upstream of tb1. Our study
- 21 is the first to explicitly examine the phenotypic effects of the Hopscotch insertion across a
- 22 wide collection of individuals sampled from natural populations of teosinte. We have
- 23 found no significant effect of the *Hopscotch* insertion on tillering index or tiller number, a
- 24 result that is discordant with its clear phenotypic effects in maize. One interpretation of
- 25 this result would be that the *Hopscotch* controls tillering in maize (Studer et al., 2011),
- 26 but tillering in teosinte is affected by variation at other loci. Consistent with this
- 27 interpretation, tb1 is thought to be part of a complex pathway controlling branching,

- 1 tillering and other phenotypic traits (Kebrom and Brutnell, 2007; Clark et al., 2006). A
- 2 recent study by Studer and Doebley (2012) examined variation across traits in a
- 3 three-taxa allelic series at the tb1 locus. Studer and Doebley (2012) introgressed nine
- 4 unique teosinte tb1 segments (one from Zea diploperennis, and four each from mexicana
- 5 and parviglumis) into an inbred maize background and investigated phenotypic effects.
- 6 Phenotypes were shown to cluster by taxon, indicating tb1 may underlie morphological
- 7 diversification of Zea. Additional analysis in Studer and Doebley (2012) suggested
- 8 tillering index was controlled both by tb1 and loci elsewhere in the genome. Clues to the
- 9 identity of these loci may be found in QTL studies that have identified loci controlling
- 10 branching architecture (e.q., Doebley and Stec 1991, 1993). Many of these loci (qrassy
- 11 tillers, gt1; tassel-replaces-upper-ears1, tru1; terminal ear1, ter1) have been shown to
- 12 interact with tb1 (Whipple et al., 2011; Li, 2012), and both tru1 and ter1 affect the same
- 13 phenotypic traits as tb1 (Doebley et al., 1995). tassel-replaces-upper-ears1 (tru1), for
- 14 example, has been shown to act either epistatically or downstream of tb1, affecting both
- 15 branching architecture (decreased apical dominance) and tassel phenotypes (shortened
- 16 tassel and shank length and reduced tassel number; Li 2012). Variation in these
- 17 additional loci may have affected tillering in our collections and contributed to the lack of
- 18 correlation we see between *Hopscotch* genotype and tillering.
- 19 In conclusion, our findings demonstrate that the *Hopscotch* allele is more widespread
- 20 in populations of parviglumis and mexicana than previously thought. Analysis of linkage
- 21 using SNPs from across chromosome 1 does not suggest that the Hopscotch allele is
- 22 present in these populations due to recent introgression; however, it seems unlikely that
- 23 the insertion would have drifted to high frequency in multiple populations. We do,
- 24 however, find preliminary evidence of selection on the tb1 locus in parviglumis; this
- 25 coupled with our observation of high frequency of the Hopscotch insertion in a number of
- 26 populations suggests that the locus plays an ecological role in teosinte. In contrast to
- 27 domesticated maize, the *Hopscotch* insertion in parviglumis does not appear to reduce

- 1 tillering. Other loci involved in branching architecture may regulate tillering in teosinte.
- 2 Future studies should examine expression levels of tb1 in teosinte with and without the
- 3 Hopscotch insertion and further characterize the effects of additional loci involved in
- 4 branching architecture (e.g. gt1, tru1, and ter1). These data, in conjunction with more
- 5 exhaustive phenotyping, should help reveal the ecological significance of the domesticated
- 6 tb1 allele in natural populations of teosinte. why not Phyb and phya? Are they necessary to
- 7 include? I'd had them in before in a paragraph but had been voted out I'd ditch gt1 tru1 ter1 and maybe just cite
- 8 some people including phyb etc.
- 9 I had phya and phyb in before and you two voted it out in favor of other loci, please let me know which you
- 10 would like in
- 11 please check format of supp figs and tables; some are running off the page. you can use "longtable" to fix that
- 12 (ask Paul for example). check fig/table references, bibliography, etc. what does "rotation" mean in supp. table 3?
- 13 it isn't mentioned in methods. please check that all the tables and figs (including supplement) are referenced in the
- 14 *text*.

## LITERATURE CITED

- 2 Baack, E., Y. Sapir, M. Chapman, J. Burke, and L. Rieseberg. 2008. Selection
- 3 on domestication traits and quantitative trait loci in crop-wild sunflower hybrids. *Mol*
- 4 Ecol 17: 666–677.

1

- 5 BAI, Y. AND P. LINDHOUT. 2007. Domestication and breeding of tomatoes: What have
- 6 we gained and what can we gain in the future? Annals of Botany 100: 1085–1094.
- 7 Barrett, S. 1983. Crop mimicry in weeds. Econ Bot 37: 255–282.
- 8 Bradbury, P., Z. Zhang, D. Kroon, T. Casstevens, Y. Ramdoss, and
- 9 E. Buckler. 2007. Tassel: software for association mapping of complex traits in
- diverse samples. *Bioinformatics* 23: 2633–2635.
- 11 Briggs, W., M. McMullen, B. Gaut, and J. Doebley. 2007. Linkage mapping of
- domestication loci in a large maize-teosinte backcross resource. Genetics 177:
- **13** 1915–1928.
- 14 Chia, J., C. Song, P. Bradbury, D. Costich, N. De, Leon, J. Doebley,
- 15 R. Elshire, B. Gaut, L. Geller, J. Glaubitz, M. Gore, K. Guill,
- J. HOLLAND, M. HUFFORD, J. LAI, M. LI, X. LIU, Y. LU, R. McCOMBIE,
- 17 R. Nelson, J. Poland, B. Prasanna, T. Pyhäjärvi, T. Rong, R. Sekhon,
- 18 Q. Sun, M. Tenaillon, F. Tian, J. Wang, X. Xu, Z. Zhang, S. Kaeppler,
- 19 J. Ross-Ibarra, M. McMullen, E. Buckler, G. Zhang, Y. Xu, and D. Ware.
- 20 2012. Maize hapmap2 identifies extant variation from a genome in flux. Nat Genet 44:
- **21** 803–U238.
- 22 Clark, R., T. Wagler, P. Quijada, and J. Doebley. 2006. A distant upstream
- enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and
- inflorescent architecture. Nat Genet 38: 594–597.

- 1 COLOSIMO, P., K. HOSEMANN, S. BALABHADRA, G. VILLARREAL, M. DICKSON,
- 2 J. Grimwood, J. Schmutz, R. Myers, D. Schluter, and D. Kingsley. 2005.
- 3 Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin
- 4 alleles. Science 307: 1928–1933.
- 5 COOK, J., M. McMullen, J. Holland, F. Tian, P. Bradbury, J. Ross-Ibarra,
- 6 E. Buckler, and S. Flint-Garcia. 2012. Genetic architecture of maize kernel
- 7 composition in the nested association mapping and inbred association panels. *Plant*
- 8 Physiol 158: 824–834.
- 9 Coop, G., D. Witonsky, A. Di, Rienzo, and J. Pritchard. 2010. Using
- 10 environmental correlations to identify loci underlying local adaptation. Genetics 185:
- **11** 1411–1423.
- 12 Doebley, J. 2004. The genetics of maize evolution. Annu Rev Genet 38: 37–59.
- 13 Doebley, J. and A. Stec. 1991. Genetic-analysis of the morphological differences
- between maize and teosinte. Genetics 129: 285–295.
- 15 Doebley, J. and A. Stec. 1993. Inheritance of the morphological differences between
- maize and teosinte: Comparison of results for two f<sub>2</sub> populations. Genetics 134:
- **17** 559–570.
- 18 Doebley, J., A. Stec, and C. Gustus. 1995. teosinte branched1 and the origin of
- maize: Evidence for epistasis and the evolution of dominance. Genetics 141: 333–346.
- 20 Doebley, J., A. Stec, and L. Hubbard. 1997. The evolution of apical dominance in
- 21 maize. Nature 386: 485–488.
- 22 Doyle, J. and J. Doyle. 1990. A rapid total dna preparation procedure for small
- quantities of fresh tissue. Phytochemical Bulletin 19: 11–15.

- 1 Ellstrand, N., L. Garner, S. Hedge, R. Guadagnuolo, and L. Blancas. 2007.
- 2 Spontaneous hybridization between maize and teosinte. Journal of Heredity 98:
- **3** 183–187.
- 4 ELLSTRAND, N., H. PRENTICE, AND J. HANCOCK. 1999. Gene flow and introgression
- 5 from domesticated plants into their wild relatives. Annu Rev Ecol Syst 30: 539–563.
- 6 Falush, D., M. Stephens, and J. Pritchard. 2003. Inference of population structure
- 7 using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics
- **8** 164: 1567–1587.
- 9 FAO/IIASA/ISRIC/ISSCAS/JRC. 2012. Harmonized World Soil Database, version
- 10 1.2. FAO, Rome, Italy and IIASA, Laxenburg, Austria.
- 11 Feder, J., S. Berlocher, J. Roethele, H. Dambroski, J. Smith, W. Perry,
- 12 V. GAVRILOVIC, K. FILCHAK, J. RULL, AND M. ALUJA. 2003. Allopatric genetic
- origins for sympatric host-plant shifts and race formation in rhagoletis. P Natl Acad
- 14 Sci Usa 100: 10314–10319.
- 15 Fox, J. and S. Weisberg. 2011. An R Companion to Applied Regression, vol. Second
- 16 Edition. Sage, Thousand Oaks, CA.
- 17 FUKUNAGA, N.-W. T. L. B. Z. Q. V. Y. F. M. B. K. L. L. D. J., K. 2005. Genetic
- diversity and population structure of teosinte. Genetics 169: 2241–2254.
- 19 Gallavotti, A., Q. Zhao, J. Kyozuka, R. Meeley, M. Ritter, J. Doebley,
- 20 M. PE, AND R. SCHMIDT. 2004. The role of barren stalk1 in the architecture of maize.
- **21** Nature 432: 630–635.
- 22 Gerke, J., J. Edwards, G. KE, J. Ross-Ibarra, and M. McMullen. 2013. The
- 23 genomic impacts of drift and selection for hybrid performance in maize. arXiv
- **24** 1307.7313.

- 1 Goudet, J. 2005. Hierfstat, a package for r to compute and test hierarchical f-statistics.
- 2 Mol Ecol Notes 5: 184–186.
- 3 Hubner, S., T. Gunther, A. Flavell, E. Fridman, A. Graner, A. Korol, and
- 4 K. Schmid. 2012. Islands and streams: clusters and gene flow in wild barley
- 5 populations from the levant. Mol Ecol 21: 1115–1129.
- 6 HUFFORD, M. 2010. Genetic and ecological approaches to guide conservation of teosinte
- 7 (zea mays ssp. parviglumis), the wild progenitor of maize. PhD Dissertation: 130pp.
- 8 Hufford, M., P. Bilinski, T. Pyhäjärvi, and J. Ross-Ibarra. 2012a. Teosinte as a
- 9 model system for population and ecological genomics. Trends in Genetics 12: 606–615.
- 10 Hufford, M., P. Lubinsky, T. Pyhäjärvi, M. Devengenzo, N. Ellstrand, and
- 11 J. Ross-Ibarra. 2013. The genomic signature of crop-wild introgression in maize.
- 12 PLoS Genetics 9: e1003477.
- 13 Hufford, M., X. Xu, J. van, Heerwaarden, T. Pyhäjärvi, J. Chia,
- 14 R. Cartwright, R. Elshire, J. Glaubitz, K. Guill, S. Kaeppler, J. Lai,
- 15 P. Morrell, L. Shannon, C. Song, N. Springer, R. Swanson-Wagner,
- 16 P. Tiffin, J. Wang, G. Zhang, J. Doebley, M. McMullen, D. Ware,
- 17 E. Buckler, S. Yang, and J. Ross-Ibarra. 2012b. Comparative population
- 18 genomics of maize domestication and improvement. Nat Genet 44: 808–U118.
- 19 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung, S. Sturrock,
- 20 S. Buxton, A. Cooper, S. Markowitz, C. Duran, T. Thierer, B. Ashton,
- 21 P. MEINTJES, AND A. DRUMMOND. 2012. Geneious basic: An integrated and
- 22 extendable desktop software platform for the organization and analysis of sequence
- **23** data. *Bioinformatics* 28: 1647–1649.
- 24 Kebrom, T. and T. Brutnell. 2007. The molecular analysis of the shade avoidance
- 25 syndrome in the grasses has begun. Journal of Experimental Botany 58: 3079–3089.

- 1 KITANO, J., D. BOLNICK, D. BEAUCHAMP, M. MAZUR, S. MORI, T. NAKANO, AND
- 2 C. Peichel. 2008. Reverse evolution of armor plates in the threespine stickleback.
- **3** Curr Biol 18: 769–774.
- 4 KOVACH, M. AND S. McCouch. 2008. Leveraging natural diversity: back through the
- 5 bottleneck. Genome studies and Molecular Genetics 11: 193–200.
- 6 Li, W. 2012. Tassels replace upper ears1 encodes a putative transcription factor that
- 7 regulates maize shoot architecture by multiple pathways. *PhD Dissertation*: 122.
- 8 Lukens, L. and J. Doebley. 1999. Epistatic and environmental interactions for
- 9 quantitative trait loci involved in maize evolution. Genet Res 74: 291–302.
- 10 Maloof, M., K. Soliman, R. Jorgensen, and R. Allard. 1984. Ribosomal dna
- spacer length polymorphisms in barley mendelian inheritance, chromosomal location,
- and population dynamics. P Natl Acad Sci Usa 81: 8014–8018.
- 13 Matsuoka, Y., Y. Vigouroux, M. Goodman, G. Sanchez, E. Buckler, and
- 14 J. Doebley. 2002. A single domestication for maize shown by multilocus
- microsatellite genotyping. P Natl Acad Sci Usa 99: 6080–6084.
- 16 OLSEN, K. AND B. GROSS. 2010. Genetic perspectives on crop domestication. Trends in
- 17 Plant Science 15: 529–537.
- 18 PIPERNO, D., A. RANERE, I. HOLST, J. IRIARTE, AND R. DICKAU. 2009. Starch grain
- 19 and phytolith evidence for early ninth millennium by maize from the central balsas
- 20 river valley, mexico. P Natl Acad Sci Usa 106: 5019–5024.
- 21 Plantinga, T., S. Alonso, N. Izagirre, M. Hervella, R. Fregel, J. van der
- 22 Meer, M. Netea, and C. de la Rua. 2012. Low prevalence of lactase persistence in
- neolithic south-west europe. Eur J Hum Genet 20: 778–782.

- 1 Pyhäjärvi, T., M. Hufford, and J. Ross-Ibarra. 2013. Complex patterns of local
- adaptation in the wild relatives of maize. Genome Biology and Evolution 5: 1594–1609.
- 3 Ross-Ibarra, J., P. Morrell, and B. Gaut. 2007. Plant domestication, a unique
- 4 opportunity to identify the genetic basis of adaptation. P Natl Acad Sci Usa 104:
- **5** 8641–8648.
- 6 Ross-Ibarra, J., M. Tenaillon, and B. Gaut. 2009. Historical divergence and gene
- flow in the genus zea. Genetics 181: 1399–1413.
- 8 ROZEN, S. AND H. SKALETSKY. 2000. Primer3 on the www for general users and for
- 9 biologist programmers. Methods in Molecular Biology: 365–386.
- 10 Sigmon, B. and E. Vollbrecht. 2010. Evidence of selection at the ramosal locus
- during maize domestication. Mol Ecol 19: 1296–1311.
- 12 Studer, A. and J. Doebley. 2012. Evidence for a natural allelic series at the maize
- domestication locus teosinte branched 1. Genetics 19: 951–958.
- 14 Studer, A., Q. Zhao, J. Ross-Ibarra, and J. Doebley. 2011. Identification of a
- functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:
- **16** 1160–U164.
- 17 Thornton, K. 2003. libsequence: a c++ class library for evolutionary genetic analysis.
- 18 Bioinformatics 19: 2325–2327.
- 19 Thurber, C., M. Reagon, B. Gross, K. Olsen, Y. Jia, and A. Caicedo. 2010.
- 20 Molecular evolution of shattering loci in us weedy rice. *Mol Ecol* 19: 3271–3284.
- 21 TISHKOFF, S., F. REED, A. RANCIARO, B. VOIGHT, C. BABBITT, J. SILVERMAN,
- 22 K. Powell, H. Mortensen, J. Hirbo, M. Osman, M. Ibrahim, S. Omar,
- 23 G. Lema, T. Nyambo, J. Ghori, S. Bumpstead, J. Pritchard, G. Wray, and

- 1 P. Deloukas. 2007. Convergent adaptation of human lactase persistence in africa and
- **2** europe. *Nat Genet* 39: 31–40.
- 3 VAN HEERWAARDEN, J., J. DOEBLEY, W. BRIGGS, J. GLAUBITZ, M. GOODMAN,
- 4 J. GONZALEZ, AND J. ROSS-IBARRA. 2011. Genetic signals of origin, spread, and
- 5 introgression in a large sample of maize landraces. P Natl Acad Sci Usa 108:
- **6** 1088–1092.
- 7 Weber, A., R. Clark, L. Vaughn, J. Sanchez-Gonzalez, J. Yu, B. Yandell,
- 8 P. Bradbury, and J. Doebley. 2007. Major regulatory genes in maize contribute to
- 9 standing variation in teosinte (zea mays ssp parviglumis). Genetics 177: 2349–2359.
- 10 Whipple, C., T. Kebrom, A. Weber, F. Yang, D. Hall, R. Meeley,
- 11 R. Schmidt, J. Doebley, T. Brutnell, and D. Jackson. 2011. grassy tillers1
- 12 promotes apical dominance in maize and responds to shade signals in the grasses. P
- 13 Natl Acad Sci Usa 108: E506–E512.
- 14 WHITTON J, A. D. S. A. R. L., WOLF DE. 1997. The persistence of cultivar alleles in
- wild populations of sunflowers fiver generations after hybridization. Theoretical and
- **16** Applied Genetics 95: 33–40.
- 17 WILKES, H. 1977. Hybridization of maize and teosinte, in mexico and guatemala and the
- improvement of maize. Economic Botany 31: 254–293.
- 19 Zhang, L., Q. Zhu, Z. Wu, J. Ross-Ibarra, B. Gaut, S. Ge, and T. Sang. 2009.
- 20 Selection on grain shattering genes and rates of rice domestication. New Phytol 184:
- **21** 708–720.
- 22 Supplementary Materials







|           | TYOP 1            |                            |                        |           |
|-----------|-------------------|----------------------------|------------------------|-----------|
| Accession | USDA Accession ID | Locality                   | Number alleles sampled | Hopscotch |
| RIHY0009  | N/A               | N/A                        | 2                      |           |
| RIMME0006 | 566673            | Durango, Mexico            | 2                      |           |
| RIMME0007 | 566680            | Guanajuato, Mexico         | 2                      |           |
| RIMME0008 | 566681            | Michoacan, Mexico          | 2                      |           |
| RIMME0009 | 566682            | Distrito Federal, Mexico   | 2                      |           |
| RIMME0011 | 566685            | Mexico, Mexico             | 2                      |           |
| RIMME0014 | 714151            | Breeders line; Puga: 11066 | 6                      |           |
| RIMME0017 | 699874            | Ayotlan, Mexico            | 8                      |           |
| RIMME0021 | N/A               | El Porvenir, Mexico        | 69                     | 0         |
| RIMME0026 | N/A               | Opopeo, Mexico             | 42                     | 0         |
| RIMME0028 | N/A               | Puruandiro, Mexico         | 28                     | 0         |
| RIMME0029 | N/A               | Ixtlan, Mexico             | 35                     |           |
| RIMME0030 | N/A               | San Pedro, Mexico          | 27                     |           |
| RIMME0031 | N/A               | Tenango del Aire, Mexico   | 25                     |           |
| RIMME0032 | N/A               | Nabogame, Mexico           | 24                     |           |
| RIMME0033 | N/A               | Puerta Encantada, Mexico   | 25                     |           |
| RIMME0034 | N/A               | Santa Clara, Mexico        | 23                     |           |
| RIMME0035 | N/A               | Xochimilco, Mexico         | 25                     |           |
| RIMPA0001 | 87168             | El Salado, Mexico          | 4                      |           |
| RIMPA0003 | 87171             | Mazatlan, Mexico           | 8                      |           |
| RIMPA0017 | 87200             | N/A                        | 4                      |           |
| RIMPA0019 | 87213             | El Salado, Mexico          | 2                      |           |
| RIMPA0029 | 87244             | N/A                        | 2                      |           |
| RIMPA0031 | 87249             | N/A                        | 2                      |           |
| RIMPA0035 | 87288             | Jalisco, Mexico            | 4                      |           |
| RIMPA0040 | 288185            | Mexico, Mexico             | 4                      |           |
| RIMPA0042 | 288187            | Guerrero, Mexico           | 4                      |           |
| RIMPA0043 | 288188            | 36 Guerrero, Mexico        | 4                      |           |
| RIMPA0045 | 288193            | Guerrero, Mexico           | 4                      |           |
| RIMPA0055 | 714152            | Breeders line              | 2                      |           |
| RIMPA0056 | 714153            | Breeders line              | 2                      |           |
| RIMPA0057 | 714154            | Breeders line              | 2                      |           |
| RIMPA0058 | N/A               | N/A                        | 4                      |           |
|           |                   |                            |                        |           |

| Accession | Number of alleles sampled | Hopscotch Frequency |
|-----------|---------------------------|---------------------|
| RIMMA0066 | 2                         | 1                   |
| RIMMA0075 | 2                         | 1                   |
| RIMMA0077 | 2                         | 1                   |
| RIMMA0079 | 2                         | 1                   |
| RIMMA0081 | 2                         | 1                   |
| RIMMA0084 | 2                         | 1                   |
| RIMMA0086 | 2                         | 1                   |
| RIMMA0088 | 2                         | 1                   |
| RIMMA0089 | 2                         | 1                   |
| RIMMA0090 | 2                         | 1                   |
| RIMMA0092 | 4                         | 1                   |
| RIMMA0094 | 4                         | 1                   |
| RIMMA0097 | 2                         | 1                   |
| RIMMA0099 | 2                         | 1                   |
| RIMMA0100 | 2                         | 1                   |
| RIMMA0101 | 2                         | 1                   |
| RIMMA0104 | 2                         | 1                   |
| RIMMA0108 | 2                         | 1                   |
| RIMMA0111 | 6                         | 1                   |
| RIMMA0115 | 2                         | 1                   |
| RIMMA0117 | 2                         | 1                   |
| RIMMA0130 | 2                         | 1                   |
| RIMMA0133 | 2                         | 1                   |
| RIMMA0134 | 2                         | 1                   |
| RIMMA0135 | 2                         | 1                   |
| RIMMA0142 | 2                         | 0.5                 |
| RIMMA0143 | 4                         | 1                   |
| RIMMA0146 | 4  37                     | 1                   |
| RIMMA0149 | 2                         | 1                   |
| RIMMA0152 | 2                         | 1                   |
| RIMMA0153 | 2                         | 1                   |
| RIMMA0154 | 2                         | 1                   |
| RIMMA0155 | 2                         | 1                   |

| PC                        |       | PC5        |       | PC4        |       | PC3        |       | PC2                    |       | PC1                     |
|---------------------------|-------|------------|-------|------------|-------|------------|-------|------------------------|-------|-------------------------|
| $\mathbf{V}_{\mathbf{z}}$ | Rot   | Var        | Rot   | Var        | Rot   | Var        | Rot   | Var                    | Rot   | Var                     |
| B bio                     | 0.38  | bio2       | 0.41  | $ts\_clay$ | 0.287 | prec7      | 0.244 | bio4                   | 0.146 | bio1                    |
| 3 x_mc                    | 0.328 | sq4        | 0.359 | v_mod      | 0.276 | prec8      | 0.241 | bio3                   | 0.146 | tmean11                 |
| ) so                      | 0.289 | $ts\_loam$ | 0.329 | $ts\_sand$ | 0.262 | prec11     | 0.241 | bio7                   | 0.145 | tmean12                 |
| bio                       | 0.266 | $ts\_sand$ | 0.272 | bio15      | 0.247 | bio13      | 0.237 | prec6                  | 0.145 | bio11                   |
| v_mc                      | 0.231 | sq7        | 0.259 | prec4      | 0.246 | prec1      | 0.218 | sq7                    | 0.145 | tmax12                  |
| prec1                     | 0.213 | bio18      | 0.244 | $x\_mod$   | 0.242 | bio16      | 0.217 | prec9                  | 0.145 | tmin5                   |
| bio1                      | 0.207 | bio13      | 0.226 | prec3      | 0.24  | prec12     | 0.207 | sq3                    | 0.145 | tmean1                  |
| so so                     | 0.183 | prec11     | 0.21  | sq3        | 0.238 | bio19      | 0.207 | prec12                 | 0.145 | tmean2                  |
| ' so                      | 0.17  | bio7       | 0.21  | prec5      | 0.231 | bio12      | 0.204 | bio12                  | 0.145 | tmin4                   |
| ts_san                    | 0.163 | bio16      | 0.19  | prec7      | 0.222 | prec2      | 0.196 | bio19                  | 0.145 | tmax1                   |
| ' bio                     | 0.157 | bio4       | 0.186 | sq4        | 0.221 | bio18      | 0.188 | prec2                  | 0.145 | tmean4                  |
| j pred                    | 0.156 | bio12      | 0.185 | bio3       | 0.2   | sq4        | 0.185 | prec1                  | 0.144 | tmin11                  |
| tmax                      | 0.155 | bio3       | 0.178 | bio18      | 0.18  | prec9      | 0.184 | prec10                 | 0.144 | tmax11                  |
| tmax                      | 0.154 | prec6      | 0.132 | sq7        | 0.171 | prec10     | 0.183 | bio16                  | 0.144 | tmin12                  |
| e bio                     | 0.152 | $x\_mod$   | 0.116 | bio14      | 0.161 | prec5      | 0.17  | prec8                  | 0.144 | an 2                    |
| tmax                      | 0.144 | prec9      | 0.099 | bio13      | 0.154 | prec4      | 0.165 | prec5                  | 0.144 | tmean5                  |
| B bio                     | 0.143 | prec8      | 0.095 | bio16      | 0.147 | sq3        | 0.158 | bio14                  | 0.144 | tmean10                 |
| ts_loa:                   | 0.142 | v_mod      | 0.09  | prec8      | 0.143 | bio2       | 0.151 | bio13                  | 0.144 | bio6                    |
| ts_cla                    | 0.136 | bio15      | 0.077 | bio7       | 0.129 | bio17      | 0.149 | bio17                  | 0.144 | tmax2                   |
| tmir                      | 0.112 | prec7      | 0.075 | bio4       | 0.127 | $ts\_loam$ | 0.144 | prec3                  | 0.144 | tmean3                  |
| tmir                      | 0.108 | prec4      | 0.074 | bio2       | 0.123 | $v\_mod$   | 0.141 | $ts\_clay$             | 0.143 | $\operatorname{tmin} 1$ |
| j pred                    | 0.096 | bio14      | 0.074 | prec2      | 0.113 | prec3      | 0.129 | bio2                   | 0.143 | tmin10                  |
| tmin1                     | 0.093 | tmax7      | 0.068 | bio19      | 0.111 | $x\_mod$   | 0.108 | prec7                  | 0.143 | Altitude                |
| tmin1                     | 0.092 | tmax8      | 0.056 | prec12     | 0.099 | bio14      | 0.107 | tmax6                  | 0.143 | bio9                    |
| tmir                      | 0.091 | prec1      | 0.053 | $ts\_loam$ | 0.07  | bio4       | 0.106 | $x\_mod$               | 0.143 | tmin3                   |
| i tmear                   | 0.086 | prec2      | 0.047 | tmax12     | 0.067 | tmax3      | 0.098 | bio15                  | 0.142 | bio10                   |
| i tmax                    | 0.086 | tmin11     | 0.047 | bio17      | 0.065 | ts_clay    | 0.088 | $ts\_loam$             | 0.142 | tmax10                  |
| tmax                      | 0.082 | prec5      | 0.043 | bio9       | 0.056 | bio15      | 0.085 | tmean6                 | 0.142 | tmax3                   |
| tmear                     | 0.082 | bio17      | 0.042 | tmax8      | 0.055 | tmax2      | 0.082 | tmin7                  | 0.142 | tmax4                   |
| B bio                     | 0.08  | tmin12     | 0.041 | tmax1      | 0.052 | tmean3     | 0.082 | bio5                   | 0.142 | tmin6                   |
| s tmin1                   | 0.078 | prec3      | 0.039 | tmax5      | 0.05  | $ts\_sand$ | 0.081 | tmean7                 | 0.141 | tmean9                  |
| g pred                    | 0.078 | tmax9      | 0.039 | tmax7      | 0.048 | prec6      | 0.08  | $\operatorname{prec4}$ | 0.141 | tmin9                   |

| Ejutla A    | 4 | 0.15217 | 0.11902 | 0.76191 |
|-------------|---|---------|---------|---------|
| Ejutla B    | 5 | 0.15258 | 0.14877 | 0.07412 |
| La Mesa     | 3 | 0.12802 | 0.08926 | 1.09209 |
| San Lorenzo | 3 | 0.09098 | 0.08926 | 0.04845 |