C		NI -	
Enro	111.	NO.	

MARWADI UNIVERSITY

Faculty of Technology

[Information & Communication Technology] [B.Tech]

MAY: 2023

SEM: V MU FINAL REMEDIAL

Subject: - (Digital Signal and Image Processing) (01CT0513)

Date:-16/05/2023

Total Marks:-100 Time: -10:30PM to 1:30PM

Instructions:

- 1. All Questions are Compulsory.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Do not write/sign/indication/tick mark anything other than Enroll No. at a specific place on the question paper.

Question: 1.

ion: 1		
(a)	Answer the following questions: [10]	
	Which of the following system obeys the principle of superposition?	
	a. Non-linear	
	b. Linear	
	c. Both	
	d. None	
2.	An LTI system satisfies the property of	
	a. Linearity	
	b. Time Invariance	
	c. Both	
	d. None	
3.	The DTFT is same as the Z-transform when	
	a. r<1	
	b. r>1	
	c. r=1	
	d. none	
4.	What is the ROC of z-transform of an two sided infinite sequence?	
	a. $ z >r1$	
	b. z <r1< td=""><td></td></r1<>	
	c. r2< z <r1< td=""><td></td></r1<>	
_	d. None	
3.	Frequency and time period are	
	a. Proportional to each otherb. Inverse of each other	
	c. Same	
	d. None	
6	Analog processors takes as input and produces output.	
0.	a. digital, analog	
	b. analog, digital	
	c. digital, digital	
	d. analog, analog	
7	Which of the following tool is used in tasks such as zooming, shrinking, rotating, etc.?	
, •	a. Filters	
	b. Sampling	
	c. Interpolation	
	d. None	

MARWADI UNIVERSITY 1

Enroll. No.

- 8. _____ is the process of moving a filter mask over the image and computing the sum of products at each location.
 - a. Nonlinear spatial filtering
 - b. Linear spatial filtering
 - c. Convolution
 - d. Correlation
- 9. _____ filter is known as averaging filters.
 - a. Low Pass
 - b. High Pass
 - c. Band Pass
 - d. None
- 10. Determine the number of complex multiplications for the 8-point Radix-2 FFT.
 - a. 32
 - b. 12
 - c. 80
 - d. 4
- (b) Answer the following questions:

[10]

- 1. Differentiate between linear convolution and circular convolution.
- 2. What do you mean by causal and anti-causal systems?
- 3. What is DTFT?
- 4. Mention the general difference equation for IIR systems.
- 5. Define the periodicity property of discrete fourier transform.
- 6. What do you mean by DIF and DIT?
- 7. What is pipelining in DSP processors?
- 8. Classify the filters based on their frequency response.
- 9. Differentiate between recursive and non-recursive systems.
- 10. State various morphological operations in digital image processing.

Question: 2.

(a)Show the graphical, functional, tabular and sequence representations of discrete time signals with suitable examples of each representation. [08]

(b) Calculate the convolution sum of below mentioned problem statements:

[08]

$$x(n) = \{4, 2, 1, 3\}, \quad h(n) = \begin{cases} 1, 2, 2, 1 \\ \uparrow \end{cases}$$

1.

$$x(n) = 3\delta(n+1) - 2\delta(n) + \delta(n-1) + 4\delta(n-2)$$

$$h(n) = 2\delta(n-1) + 5\delta(n-2) + 3\delta(n-3)$$

OR

(b) Determine the circular convolution of two finite duration sequences:

$$x1(n) = \{1,2,-1,-2,3,1\}$$
 and $x2(n) = \{3,2,1,0,0,0\}$

[08]

Question: 3.

(a) Perform the following:

[08]

- 1. Find the cross correlation of two finite length sequences: $X(n) = \{2,3,1,4\}$ and $y(n) = \{1,3,2,1\}$
- 2. Find the circular convolution of $x1(n) = \{1, 2, 1, 2\}$ and $x2(n) = \{4, 3, 2, 1\}$ by the tabular method
- (b) Discriminate between analog and digital filters.

[04]

(c) Compare impulse invariance method and bilinear transformation method for designing IIR filters. [04]

OR

Enroll.	No.	

- (b) Discuss basic gray level transformations used in digital image processing along with suitable mathematical expressions. [04]
- (c) Compare the characteristics of IIR & FIR filters. [04]

Question: 4.

- (a) Define Z-transform. Mention its advantages. Derive Linearity, time shifting and time reversal properties of z-transform with suitable expressions. [08]
- (b) Draw the block diagram of digital signal processing system and explain all the major building blocks of digital processing system in detail. [08]

OR

- (a) Explain dilation, erosion, opening and closing morphological image processing operations with suitable examples and expression. [08]
- (b) Discuss the advantages of representing the digital filter in block diagram form. Show the direct form-I realization of IIR system along with suitable mathematical expressions. [08]

Question: 5.

- (a) Justify how data level and instruction level parallelism is being obtained by doing architectural modifications among the processor architectures. [06]
- (b) Discuss various windowing techniques of designing FIR filters. Discuss their advantages and disadvantages as well. [06]
- (c) Compare the characteristics of Harvard and Von-neumann architectures [04]
- (a) Discuss boundary extraction and region filling applications with suitable examples, figures and expressions. [06]
- (b) Discuss image smoothing and sharpening using frequency domain filters. [06]
- (c) What is MAC in DSP? Discuss desirable features of MAC. Also discuss Data Address Generators in DSP. [04]

Question: 6.

- (a) Derive DIT FFT flow graph for N=4 and determine DFT of $x(n) = \{1,2,3,4\}$ [08]
- (b) Compare the characteristics of analog processing system with digital processing system.

[04]

(c) Draw and explain modified Harvard architecture. [04]

MARWADI UNIVERSITY 3 |

OR

- (a) Obtain Direct Form I and II realization of a system described by y(n) 1/6 y(n-1) + 1/3 y(n-2) = x(n) + 2x(n-2). [08]
- (b) Compare the characteristics of various types spatial and frequency domain filtering. [04]
- (c) Discuss the real world applications of digital signal processors. [04]

---Best of Luck---

MARWADI UNIVERSITY 4

- Bloom'S Taxonomy Report -

Sub: Digital Signal and image processing

Sem. 5

Branch: Information and Communication Technology

Que. Paper weightage as per Bloom's Taxonomy

LEVEL	% of weightage	Question No.	Marks of Que.
Remember/Knowledge	20	1(A), 1(B)	20
Understand	30	2(A),4(A),4(B),5(A)	30
Apply	22	2(B), 3(A),5(B)	22
Analyze	20	3(B),3(C),6(B),6(C),5(C)	20
Evaluate	8	6(A)	8
Higher order Thinking/ Creative			

Chart/Graph of Bloom's Taxonomy

MARWADI UNIVERSITY 5