

Properties of Real Numbers

Inger Jeng, Sivmeng HUN

Student of MAC: Cohort II

08 August 2022

Content

- Introduction
- 2 R is an Ordered Field
- $oldsymbol{3}$ Uncountabiliy of $\mathbb R$
- **4** Completeness of \mathbb{R}
- **6** Density of \mathbb{Q} in \mathbb{R}
- 6 Why Real Numbers?
- Referrences

Introduction

From previous group presentation we have constructed the set \mathbb{R} from \mathbb{Q} . Now, we turn our attention to study and explore some properties of \mathbb{R} .

 \mathbb{R} is an Ordered Field

Algebraic Properties

We won't talk much the detail here because it was already presented. Basically $\mathbb R$ has two operations, namely that of addition (+) and multiplication (\times) . This makes $(\mathbb R,+,\times)$ a *field*. In other words, $(\mathbb R,+)$ and $(\mathbb R^*,\times)$ are Abelian groups.

Ordering Properties

The ordering of \mathbb{R} is the same as those in \mathbb{Q} . Moreover, (\mathbb{R}, \leq) is an ordered field and also an extension from (\mathbb{Q}, \leq) .

(working on it)

Uncountabiliy of $\mathbb R$

Countable and Uncountable

Let's recall the definition of countable sets.

Countable and Uncountable

Let's recall the definition of countable sets.

Definition

A set $S \subseteq \mathbb{R}$ is said to be countable if there exist a bijection f from

 \mathbb{N} to S. A set is called uncountable if it's not countable.

Countable and Uncountable

Let's recall the definition of countable sets.

Definition

A set $S \subseteq \mathbb{R}$ is said to be countable if there exist a bijection f from \mathbb{N} to S. A set is called uncountable if it's not countable.

As shown in Group 3, the set \mathbb{Q} is countable. How about the set \mathbb{R} ?

Lemma

The interval (0,1) is uncountable.

Lemma

The interval (0,1) is uncountable.

Proof.

We'll prove this by contradiction.

Lemma

The interval (0,1) is uncountable.

Proof.

We'll prove this by contradiction. Assume on the contrary that (0,1) is countable, hence there's a bijection map $f: \mathbb{N} \to (0,1)$.

MAC 10/35

Lemma

The interval (0,1) is uncountable.

Proof.

We'll prove this by contradiction. Assume on the contrary that (0,1) is countable, hence there's a bijection map $f: \mathbb{N} \to (0,1)$. Thus every number in (0,1) can be enumerated (listed) in a table below.

MAC 10/35

Lemma

The interval (0,1) is uncountable.

Proof.

We'll prove this by contradiction. Assume on the contrary that (0,1) is countable, hence there's a bijection map $f\colon \mathbb{N} \to (0,1)$. Thus every number in (0,1) can be enumerated (listed) in a table below.

The idea is to produce a number in (0,1) that is not already placed on the table shown below.

n	f(n)
1	0.112212411
2	0.093240987
3	0.587103941
4	0.314414391
5	0.098132081

n	f(n)
1	0.112212411
2	0.093240987
3	0.587103941
4	0.314414391
5	0.098132081

Let $N = 0.a_1a_2a_3a_4...$ where the *n*-th digit of N, namely a_n , is found by adding 1 to the *n*-th digit of f(n) in modulo 10.

n	f(n)
1	0.112212411
2	0.093240987
3	0.587103941
4	0.314414391
5	0.098132081
	3

Let $N=0.a_1a_2a_3a_4...$ where the *n*-th digit of N, namely a_n , is found by adding 1 to the *n*-th digit of f(n) in modulo 10. Thus, according to the table above we found

$$N = 0.20854...$$

n	f(n)
1	0.112212411
2	0.093240987
3	0.587103941
4	0.314414391
5	0.098132081

Let $N=0.a_1a_2a_3a_4...$ where the *n*-th digit of N, namely a_n , is found by adding 1 to the *n*-th digit of f(n) in modulo 10. Thus, according to the table above we found

$$N = 0.20854...$$

And from this construction, we see that $N \neq f(n)$ for all $n \in \mathbb{N}$.

Thus this $N \in (0,1)$ is no where to be found in the table, a contradiction.

This shows that the interval (0,1) is uncountable.

Thus this $N \in (0,1)$ is no where to be found in the table, a contradiction.

This shows that the interval (0,1) is uncountable.

Now because $(0,1)\subset\mathbb{R}$, we conclude that \mathbb{R} is also uncountable. We have established the following theorem:

Thus this $N \in (0,1)$ is no where to be found in the table, a contradiction.

This shows that the interval (0,1) is uncountable.

Now because $(0,1)\subset\mathbb{R}$, we conclude that \mathbb{R} is also uncountable. We have established the following theorem:

We have established the following theorem:

Theorem

The set \mathbb{R} is uncountable.

Completeness of $\mathbb R$

What does *completeness of* $\mathbb R$ mean?

Theorem (Completeness of \mathbb{R})

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Let's first ask ourselves:

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Let's first ask ourselves:

• What is a sequence?

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Let's first ask ourselves:

- What is a sequence?
- What does it mean to converge?

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Let's first ask ourselves:

- What is a sequence?
- What does it mean to converge?
- What is a Cauchy sequence?

Theorem (Completeness of \mathbb{R})

Every Cauchy sequence converges.

Let's first ask ourselves:

- What is a sequence?
- What does it mean to converge?
- What is a Cauchy sequence?

So, first let's talk about sequence and convergence.

Sequence

A sequence is a real valued-function whose domain is \mathbb{N} . The most crucial part of the study of sequence is that of convergence.

Sequence

A sequence is a real valued-function whose domain is \mathbb{N} . The most crucial part of the study of sequence is that of convergence.

What should the definition of convergence be?

Sequence

A sequence is a real valued-function whose domain is \mathbb{N} . The most crucial part of the study of sequence is that of convergence.

What should the definition of convergence be?

Intuitively, convergence means a_n gets arbitrarily close to a value L for large enough n.

Sequence

A sequence is a real valued-function whose domain is \mathbb{N} . The most crucial part of the study of sequence is that of convergence.

What should the definition of convergence be?

Intuitively, convergence means a_n gets arbitrarily close to a value L for large enough n.

Completeness of \mathbb{R} MAC 15/35

Absolute Value

We define the absolute value by

$$|x| = \begin{cases} x & \text{if } x \ge 0; \\ -x & \text{if } x < 0 \end{cases}$$

The distance from x to y is given by |x-y|. These are some properties of absolute value.

Properties

- $|x| \geq 0$
- $\bullet |x+y| \le |x|+|y|$
- $\bullet ||x-y| \ge ||x|-|y||$

Convergence

Okay, we have the language of distance. The phrase " a_n is close to L" can then be expressed by $|a_n - L| < \epsilon$ for any small ϵ .

Note that we only require it's true for larger and larger n. With all the ingredients at hand, we now present the

Definition (Convergence)

A sequence (a_n) is said to converge to $L \in \mathbb{R}$ if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that $|a_n - L| < \epsilon$ for all $n \ge N$.

Completeness of R MAC 17/35

Cauchy Sequence

Now for the part we've been waiting for. We introduce

Cauchy Sequence

Now for the part we've been waiting for. We introduce

Definition (Cauchy Sequence)

The sequence (a_n) is called a *Cauchy sequence* if $\forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that if $n, m \geq N$, then $|a_n - a_m| < \epsilon$.

Cauchy Sequence

Now for the part we've been waiting for. We introduce

Definition (Cauchy Sequence)

The sequence (a_n) is called a *Cauchy sequence* if $\forall \epsilon > 0, \exists N \in \mathbb{N}$ such that if $n, m \ge N$, then $|a_n - a_m| < \epsilon$.

Our goal is to show that any Cauchy sequence converges. We'll break it into two little chunks.

Completeness of R MAC 18/35 Now for the part we've been waiting for. We introduce

Definition (Cauchy Sequence)

The sequence (a_n) is called a *Cauchy sequence* if $\forall \epsilon > 0, \ \exists N \in \mathbb{N}$ such that if $n, m \geq N$, then $|a_n - a_m| < \epsilon$.

Our goal is to show that any Cauchy sequence converges. We'll break it into two little chunks. For the remaining of this section, we denote (a_n) be a Cauchy sequence.

Lemma

Cauchy sequence is bounded.

Lemma

Cauchy sequence is bounded.

Proof.

We choose $\epsilon=1$ in the definition of Cauchy sequence to obtain that there's an $N\in\mathbb{N}$ such that (choose m=N)

$$|a_n - a_N| < 1, \quad (\forall n \ge N)$$

 $\implies |a_n| < 1 + |a_N|$

Lemma

Cauchy sequence is bounded.

Proof.

We choose $\epsilon=1$ in the definition of Cauchy sequence to obtain that there's an $N\in\mathbb{N}$ such that (choose m=N)

$$|a_n - a_N| < 1, \quad (\forall n \ge N)$$

 $\implies |a_n| < 1 + |a_N|$

Then we denote $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1 + |a_N|\}$,

Lemma

Cauchy sequence is bounded.

Proof.

We choose $\epsilon=1$ in the definition of Cauchy sequence to obtain that there's an $N\in\mathbb{N}$ such that (choose m=N)

$$|a_n - a_N| < 1, \quad (\forall n \ge N)$$

 $\implies |a_n| < 1 + |a_N|$

Then we denote $M = \max\{|a_1|, |a_2|, \dots, |a_{N-1}|, 1+|a_N|\}$, therefore, $|a_n| \leq M$ for all $n \in \mathbb{N}$.

Completeness of \mathbb{R} MAC 19/35

Now we know that (a_n) is bounded. What can we say about bounded sequence? We borrow a theorem called *Bolzano Weierstrass* theorem.

Definition (Subsequence)

Let $n_1 < n_2 < n_3 < \cdots$ be increasing sequence of integers. We call (a_{n_k}) a subsequence of (a_n) .

Theorem (Bolzano-Weierstrass)

Any bounded sequence has a convergent subsequence.

Completeness of \mathbb{R}

Theorem (Completeness of \mathbb{R})

Any Cauchy sequence converges.

Completeness of \mathbb{R}

Theorem (Completeness of \mathbb{R})

Any Cauchy sequence converges.

Proof.

From the above lemma (a_n) is bounded, then it has a convergent subsequence (from Bolzano-Weierstrass). Suppose that (a_{n_k}) be that convergent subsequence whose limit is $\lim a_{n_k} = a$.

Theorem (Completeness of \mathbb{R})

Any Cauchy sequence converges.

Proof.

From the above lemma (a_n) is bounded, then it has a convergent subsequence (from Bolzano-Weierstrass). Suppose that (a_{n_k}) be that convergent subsequence whose limit is $\lim a_{n_k} = a$.

Let an $\epsilon > 0$, then there is $N \in \mathbb{N}$ such that $|a_n - a_m| < \frac{\epsilon}{2}$ whenever $n, m \geq N$.

Theorem (Completeness of \mathbb{R})

Any Cauchy sequence converges.

Proof.

From the above lemma (a_n) is bounded, then it has a convergent subsequence (from Bolzano-Weierstrass). Suppose that (a_{n_k}) be that convergent subsequence whose limit is $\lim a_{n_k} = a$.

Let an $\epsilon>0$, then there is $N\in\mathbb{N}$ such that $|a_n-a_m|<\frac{\epsilon}{2}$ whenever $n,m\geq N$. Because $(a_{n_k})\to a$ and (n_k) is increasing, then there's $n_{k_0}>N$ such that $|a_{n_k}-a|<\frac{\epsilon}{2}$ whenever $k>k_0$.

We obtain that for any $n \geq N$,

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

We obtain that for any $n \geq N$,

$$|a_n - a| \le |a_n - a_{n_k}| + |a_{n_k} - a|$$

 $< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$

Thus $\lim a_n = a$. This completes the proof.

What Does Completeness Mean?

Completeness of \mathbb{R} is quite nice for it tells us that any Cauchy sequence has to have a limit in \mathbb{R} . For instance, take the sequence

$$a_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots + \frac{1}{n^2}$$

Completeness of \mathbb{R} MAC 23/35

Density of $\mathbb Q$ in $\mathbb R$

Density in language of sequence

Recall the Archimedean property that for any given $x \in \mathbb{R}$, then there's an integer n such that $n \ge x$.

Density in language of sequence

Recall the Archimedean property that for any given $x \in \mathbb{R}$, then there's an integer n such that $n \ge x$. In class, we've already exposed to the idea that \mathbb{Q} is dense in \mathbb{R} . Today we're going to present the same thing but with different language.

Density in language of sequence

Recall the Archimedean property that for any given $x \in \mathbb{R}$, then there's an integer n such that $n \ge x$. In class, we've already exposed to the idea that \mathbb{Q} is dense in \mathbb{R} . Today we're going to present the same thing but with different language.

Theorem

Given any $x \in \mathbb{R}$, then there's a sequence $(q_n) \subset \mathbb{Q}$ of rationals such that $\lim q_n = x$.

Density of $\mathbb Q$ in $\mathbb R$ MAC. 25/35

The idea is to construct (q_n) .

The idea is to construct (q_n) . Now for each $n \in \mathbb{N}$, notice the number (xn-1) and (xn+1) are 2 units apart,

The idea is to construct (q_n) . Now for each $n \in \mathbb{N}$, notice the number (xn-1) and (xn+1) are 2 units apart, thus there must be an integer $k \in \mathbb{Z}$ satisfying xn-1 < k < xn+1, or equivalently

$$x - \frac{1}{n} < \frac{k}{n} < x + \frac{1}{n}.$$

The idea is to construct (q_n) . Now for each $n \in \mathbb{N}$, notice the number (xn-1) and (xn+1) are 2 units apart, thus there must be an integer $k \in \mathbb{Z}$ satisfying xn-1 < k < xn+1, or equivalently

$$x - \frac{1}{n} < \frac{k}{n} < x + \frac{1}{n}.$$

Without any doubt, we immediately denote $q_n := \frac{k}{n}$, thus we have constructed (q_n) such that $|q_n - x| < \frac{1}{n}$.

Density of $\mathbb Q$ in $\mathbb R$ MAC 26/35

The idea is to construct (q_n) . Now for each $n \in \mathbb{N}$, notice the number (xn-1) and (xn+1) are 2 units apart, thus there must be an integer $k \in \mathbb{Z}$ satisfying xn-1 < k < xn+1, or equivalently

$$x - \frac{1}{n} < \frac{k}{n} < x + \frac{1}{n}.$$

Without any doubt, we immediately denote $q_n := \frac{k}{n}$, thus we have constructed (q_n) such that $|q_n - x| < \frac{1}{n}$. With this sequence (q_n) so constructed, we claim that its limit is exactly x.

Density of \mathbb{Q} in \mathbb{R} MAC 26/35

Let an $\epsilon > 0$.

Let an $\epsilon>0.$ From Archimedean property, we're pretty sure that there's an $N\in\mathbb{N}$ satisfying $N\geq \frac{1}{\epsilon}.$

Let an $\epsilon>0.$ From Archimedean property, we're pretty sure that there's an $N\in\mathbb{N}$ satisfying $N\geq\frac{1}{\epsilon}.$ Thus for any $n\geq N$, we obtain that

$$|q_n-x|<\frac{1}{n}\leq \frac{1}{N}\leq \epsilon.$$

This shows that $\lim q_n = x$ as advertised.

Right now, we have ways to state the density of $\mathbb Q$ in $\mathbb R.$ They are

Right now, we have ways to state the density of $\mathbb Q$ in $\mathbb R.$ They are

Theorem (Density 1)

Given any $x, y \in \mathbb{R}$ with x < y, then there exists a $q \in \mathbb{Q}$ such that x < q < y.

Density of \mathbb{Q} in \mathbb{R} MAC 28/35

Right now, we have ways to state the density of $\mathbb Q$ in $\mathbb R.$ They are

Theorem (Density 1)

Given any $x, y \in \mathbb{R}$ with x < y, then there exists a $q \in \mathbb{Q}$ such that x < q < y.

Theorem (Density 2)

Given any $x \in \mathbb{R}$, then there is a $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = x$.

Right now, we have ways to state the density of $\mathbb Q$ in $\mathbb R.$ They are

Theorem (Density 1)

Given any $x, y \in \mathbb{R}$ with x < y, then there exists a $q \in \mathbb{Q}$ such that x < q < y.

Theorem (Density 2)

Given any $x \in \mathbb{R}$, then there is a $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = x$.

We have proved these two theorems independently by invoking the Archimedean property.

Density of \mathbb{Q} in \mathbb{R} MAC 28/35

Right now, we have ways to state the density of $\mathbb Q$ in $\mathbb R$. They are

Theorem (Density 1)

Given any $x, y \in \mathbb{R}$ with x < y, then there exists a $q \in \mathbb{Q}$ such that x < q < y.

Theorem (Density 2)

Given any $x \in \mathbb{R}$, then there is a $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = x$.

We have proved these two theorems independently by invoking the Archimedean property. We now will prove that these two are in fact equivalent. Namely,

Density $1 \iff Density 2$

The idea is the same, try to construct (q_n) . For each $n \in \mathbb{N}$, we could find $q_n \in \mathbb{Q}$ such that $x < q_n < x + \frac{1}{n}$ (by Density 1).

Proof. (Density 1 \Longrightarrow Density 2).

The idea is the same, try to construct (q_n) . For each $n \in \mathbb{N}$, we could find $q_n \in \mathbb{Q}$ such that $x < q_n < x + \frac{1}{n}$ (by Density 1).

Thus we have constructed (q_n) such that $|q_n - x| < \frac{1}{n}$ for each $n \in \mathbb{N}$.

Density of \mathbb{Q} in \mathbb{R} MAC 29/35

The idea is the same, try to construct (q_n) . For each $n \in \mathbb{N}$, we could find $q_n \in \mathbb{Q}$ such that $x < q_n < x + \frac{1}{n}$ (by Density 1).

Thus we have constructed (q_n) such that $|q_n - x| < \frac{1}{n}$ for each $n \in \mathbb{N}$. Using the same argument as the above proof, we could safely conclude that $\lim q_n = x$ as expected.

Density of \mathbb{Q} in \mathbb{R} MAC 29/35

Let $x, y \in \mathbb{R}$ with x < y. Then by Density 2, we're sure that there's $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = \frac{x+y}{2}$.

Let $x, y \in \mathbb{R}$ with x < y. Then by Density 2, we're sure that there's $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = \frac{x+y}{2}$. Let $r := \frac{y-x}{2} > 0$.

$$\frac{x}{q_N} = \frac{x+y}{2}$$

Let $x, y \in \mathbb{R}$ with x < y. Then by Density 2, we're sure that there's $(q_n) \subset \mathbb{Q}$ such that $\lim q_n = \frac{x+y}{2}$. Let $r := \frac{y-x}{2} > 0$.

Then there exists $N \in \mathbb{N}$ such that

$$\left| q_N - \frac{x+y}{2} \right| < r$$

$$\implies -r + \frac{x+y}{2} < q_N < r + \frac{x+y}{2}$$

$$\implies x < q_N < y.$$

Why Real Numbers?

Why study on \mathbb{R}

Why do we bother to extend from \mathbb{Q} to \mathbb{R} anyway? Well in real analysis, we would like to have a rigorous way to the study of calculus. Namely, we need a *good* definition of integral, differentiability, convergence, etc

Why study on \mathbb{R}

Why do we bother to extend from \mathbb{Q} to \mathbb{R} anyway? Well in real analysis, we would like to have a rigorous way to the study of calculus. Namely, we need a *good* definition of integral, differentiability, convergence, etc It turns out these objects were tied tightly to the concept of limit.

\mathbb{R} is complete

How to study limit? The most convenient way is to study the limit of convergent sequences.

\mathbb{R} is complete

How to study limit? The most convenient way is to study the limit of convergent sequences. In \mathbb{R} , if a convergent sequence $(r_n) \subset \mathbb{R}$ then its limit is closed, i.e. $\lim r_n \in \mathbb{R}$.

How to study limit? The most convenient way is to study the limit of convergent sequences. In \mathbb{R} , if a convergent sequence $(r_n) \subset \mathbb{R}$ then its limit is closed, i.e. $\lim r_n \in \mathbb{R}$. However, this is not always true in \mathbb{Q} . Take for instance a rational sequence

$$1, 1.4, 1.41, 1.414, 1.4142, 1.41421, \dots$$

yet their limit is $\sqrt{2} \not\in \mathbb{R}$.

How to study limit? The most convenient way is to study the limit of convergent sequences. In \mathbb{R} , if a convergent sequence $(r_n) \subset \mathbb{R}$ then its limit is closed, i.e. $\lim r_n \in \mathbb{R}$. However, this is not always true in \mathbb{Q} . Take for instance a rational sequence

yet their limit is $\sqrt{2} \not\in \mathbb{R}$.

This is to say that \mathbb{R} is complete, or to put it in another way, every *Cauchy* sequence converges.

Referrences

Referrences

(working on it).