Векторные представления предложения и контекстнозависимые модели слова

Белянова Марина Александровна, ИУ5-41А

Что такое векторное представление предложения?

- Вектор небольшой размерности (~300 компонент)
- Размерность вектора не зависит от количества слов в предложении
- Каждому предложению соответствует один вектор
- Чем ближе предложение по смыслу, тем ближе вектора предложений

Зачем нужны векторные представления предложения?

- Измерять близость между предложениями
 - Похожие заголовки новостей
 - Похожие реплики в диалоговой системе
- Хорошее признаковое пространство для классификации предложений

Усреднение векторных представлений слов

Усреднение векторных представлений слов

- Преимущества:
 - Быстрый метод
 - Можно использовать предобученные вектора слов
- Проблемы:
 - Равный вклад каждого слова в вес предложения (решается tf-idf весами)
 - Сохраняются все проблемы векторов слов
 - Многозначность
 - Близость синонимов и антонимов

Модель doc2vec

- Модель на основе word2vec:
 - Предсказать по id предложения (параграфа) и контексту следующее слово
- Проблема
 - Как получить вектор предложения, которого не было в обучающем множестве?

Матрица параграфов

Paragraph_id

Распределённый мешок слов (Distributed bag of words – DBoW)

https://arxiv.org/pdf/1405.4053.pdf

Модель doc2vec

- Модель на основе word2vec:
 - Предсказать по id предложения (параграфа) и контексту следующее слово
- Проблема
 - Как получить вектор предложения, которого не было в обучающем множестве?

текст Усреднение и конкатенация W W Я Paragraph_id читаю

Распределённая память (Distributed memory – DM)

https://arxiv.org/pdf/1405.4053.pdf

Модель skip-thought

• Модель на основе архитектуры кодировщик-декодировщик

• По предложению s_i предсказываем предыдущее предложение s_{i-1} и следующее s_{i+1}

Модель универсального кодировщика

- Модель на основе архитектуры кодировщик-декодировщик
- Кодировщик состоит из блоковтрансформеров
- Несколько декодировщиков для
 - Частичного обучения: предсказания следующего предложения (частичное обучение)
 - Обучения с учителем: предсказание логической связи между предложениями (natural language inference, NLI)

Модель универсального кодировщика

- Перенос обучения
 - Допустим, что кодировщик уже обучен
 - Добавим новый декодировщик 3 для определения тональности предложения
 - Декодировщики 1 и 2 играли вспомогательную роль в обучении кодировщика
- Декодировщик 3 используется для решения практической задачи
- Как правило, даёт прирост качества по сравнению с обучением с нуля

Модель универсального кодировщика

- Кодировщик независимо выдаёт вектора предложений
- Близость между предложениями определяется как

близость
$$(s_1, s_2) = 1 - \arccos(\frac{\overrightarrow{x_1}, \overrightarrow{x_2}}{\|\overrightarrow{x_1}\|, \|\overrightarrow{x_2}\|} / \pi$$

Векторное представление предложения

- Архитектура кодировщик-декодировщик
- Используются как целевые функции с учителем, так и без учителя
- Показывают хорошие результаты при переносе обучения

Вопрос

Применение модели doc2vec на практике затруднено...

- а) медленным обучением модели
- б) необходимостью использовать слишком большие данные для обучения
- в) недостатком обучающих данных
- г) тем, что модель не умеет работать с предложениями, которых не видела в процессе обучения

Перенос обучения

1) Частичное обучение

Модель ELMo

Данные: неразмеченные тексты

Задача: языковое

моделирование

2) Обучение с учителем

Данные: размеченные тексты

- Вход модели слова
- Выход модели контекстно-зависимые векторные представления слов
- Векторное представление предложения: усреднение векторных представлений слов

Модель ELMo. Обучение модели

- Два LSTM-слоя
- Языковая модель $p(word_i|word_{1:i-1})$

Модель ELMo. Как получить контекстнозависимое представление слова?

• Конкатенируем скрытые слои

• Взвесим каждый слой

• Сложим с весами

Веса специфичны для задачи и обучаются вместе с моделью

• Проекция векторов ELMo слова «замок» на двумерную плоскость: мы видим, как разделяются смыслы

Демо модель ELMo

demo.allennlp.org

Вопрос

Основной тип слоев, использованных в модели ELMo — это:

- а) сверточные
- б) рекуррентные
- 3) полносвязные
- 4) трансформеры

- Появилась в конце 2018 года и произвела настоящий прорыв, установив новые рекорды в большей части задач
- Новая парадигма в обработке текстов: дообучаем большую предобученную модель для частных задач
- Предобученная модель уже много знает о языке
- Использование предобученных моделей открывает новые перспективы: меньше данных, показатели качества выше, время дообучения меньше
- Однако предобучение может длиться до нескольких недель

Архитектура Трансформер

https://arxiv.org/pdf/1706.03762.pdf

- Модель основана на кодировщике
- Две конфигурации: базовая и расширенная

• Механизм внимания

- Два вида токенов: подслова и управляющие токены
- Токен [CLS] всегда находится на первой позиции
- Вектор токена [CLS] векторное представление предложения
- Остальные токены векторные представления подслов

Обучение BERT

1) Маскированная языковая модель Предсказать токен на месте маски [MASK]

1

https://arxiv.org/pdf/1810.04805.pdf

Обучение BERT

1) Маскированная языковая модель

Обучение BERT

1) Предсказание следующего предложения

Предсказать, следует ли следующее предложение за другим, предложения соединены токеном [SEP] и разделены на сегменты A и B

[CLS]

Вход

Мужчин ##а пош ##ёл в [MASK] [SEP]
Он куп ##ил [MASK] молок ##а [SEP]

Метка

ISNext

[CLS]

Мужчин ##а пош ##ёл в [MASK] [SEP]
Пингвин ##ы не умеют [MASK] [SEP]

Вход

NotNext

Обучение BERT: две задачи одновременно

• Вход модели Размерность входа 512 токенов

Управляющие токены

Подслова

- Попарное битовое кодирование (Byte pair encoding, BPE)
- Считаем частоты пар символов
- Склеиваем самую частую пару символов и превращаем её в новый символ
- Продолжаем повторять операцию фиксированное число раз

Общая схема

- Обучить языковую модель ->
- Дообучить языковую модель ->
- Обучить классификатор

Как получить вектор предложения из модели BERT?

- [CLS] вектор токена CLS на последнем слое
- [MEAN] усреднение векторов слов на последнем слое
- [MAX] покомпонентный максимум векторов на последнем слое

Сравнение моделей ELMo и BERT

Модель ELMo

- Языковая модель на основе BiLSTM
- Направление чтения текста не взаимодействуют в модели
- Показывает отличные результаты в задачах, требующих понимания синтаксиса и семантики

Модель BERT

- Кодировщик модели Трансформер
- Учитывает оба направления чтения текста
- Маскированная языковая модель
- Обучалась на большом объёме данных
- Применима в большем количестве задач

Демо маскированной языковой модели

demo.allennlp.org

Демо exBERT

exbert.net

Вопрос

Модель BERT построена по аналогии с архитектурой Трансформер, используемой для машинного перевода. BERT это:

- а) кодировщик
- б) декодировщик

Модель BERT позволяет получить вектора:

- а) только предложений
- б) только слов
- в)и слов, и предложений

Модель GPT-2

• Модель основана на декодировщике модели Трансформер

https://d4mucfpksywv.cloudfront.net/better-languagemodels/language_models_are_unsupervised_multitask_learners.pdf

Модель GPT-2

- Четыре конфигурации: разное количество слоёв и разные размерности слоёв.
- Используется маскированный механизм внимания

BERT	GPT-2
Механизм внимания смотрит на все	Механизм внимания смотрит только на
токены слева и справа от текущего	токены слева от текущего

Демо GPT-2

demo.allennlp.org

• Так работает GPT-2

• Так работает GPT-2

Недостатки авторегрессионных моделей

- Не учитывается правый контекст
- Медленно работает

Так работает модель BERT

Недостатки маскированных моделей

- BERT не умеет обрабатывать очень длинные последовательности
- Управляющий токен [MASK] используется только во время обучения, но не используется во время дообучения или тестирования
 - Обучающее множество искажено по сравнению с тестовым
- BERT генерирует независимые предсказания

BERT генерирует некорректное предложение

BERT генерирует некорректное предложение

XLNet преодолевает проблемы BERT

• Языковая модель с перестановками

XLNet преодолевает проблемы BERT

- XLNet языковая модель с перестановками
- В модели XLNet есть память

- Механизм внимания в модели BERT: Self-attention($q=h_i$, $k=h_i$, $v=h_i$)
- Механизм внимания в модели XLNet, использующий память: Self-attention(q=h, k=[h, m], v=[h, m])

сегменты

• Кэширование памяти: *m=h*

Я пошла в магазин. Я купила коту корм.

- 1. Я пошла в магазин.
- 2. Я купила коту корм.

https://arxiv.org/pdf/1906.08237.pdf

- Механизм внимания в модели BERT: Self-attention($q=h_i$, $k=h_i$, $v=h_i$)
- Механизм внимания в модели XLNet, использующий память: Self-attention(q=h, k=[h, m], v=[h, m])

сегменты

• Кэширование памяти: *m=h*

Я пошла в магазин. Я купила коту корм.

- 1. Я пошла в магазин.
- 2. Я купила коту корм.

https://arxiv.org/pdf/1906.08237.pdf

Порядок факторизации 3->2->4->1

Порядок факторизации 2->4->3->1

Порядок факторизации 1->4->2->3

Относительные позиционные кодировки

	я	иду	В	магазин
Я	0	1	2	3
иду				
В				
магазин				

Относительные позиционные кодировки

	я	иду	В	магазин
Я	0	1	2	3
иду	-1	0	1	2
В				
магазин				

Относительные позиционные кодировки

	я	иду	В	магазин
Я	0	1	2	3
иду	-1	0	1	2
В	-2	-1	0	1
магазин	-3	-2	-1	0

Двухпотоковый механизм самовнимания

- Two-Stream Self-Attention

 - Поток контекста $Attention(q=c_{z_t'}, k=c_{z_{<=t'}}, v=c_{z_{<=t}})$ Поток запроса $Attention(q=pos_{z_t'}, k=c_{z_{<=t'}}, v=c_{z_{<t}})$
 - z_{t} перестановка

Двухпотоковый механизм самовнимания

• Two-Stream Self-Attention

Сравнение модели XLNet и BERT

	BERT	XLNet
Размер (млн. параметров)	Base: 100 Large: 340	Base: 110 Large: 340
Качество	Лучшее на 2019 год	+2-15% относительно BERT
Данные	16 Гб	Base: 16 Гб (корпус BERT) Large: +97 Гб
Обучение	Base: 8*V100 – 12 дней Large: 64 TPU – 4 дня	Large: 512 TPU – 3 дня
Целевая задача	Маскированная языковая модель + предсказание следующего предложения	Языковая модель с перестановками

Вопрос

Какой тип языковой модели используется в модели XLNet?

- а) авторегрессионная
- б) маскированная
- в) безусловная
- г) языковая модель с перестановками

BERT-like models

Рекуррентные нейронные сети **ELMO**

GPT Авторегрессионная языковая модель

Требуем совпадения весов на всех слоях

RoBERTa

- Динамическое маскирование
- Отказ от задачи предсказания следующего предложения
- В 10 раз больше данных для обучения
- Необходимо много вычислителей

ERNIE

- Случайным образом убираем именованные сущности и какое-то количество случайных слов или словосочетаний
- Необходимо перед обучением извлечь именованные сущности
- Работает лучше BERTa на задачах извлечения информации

ALBERT

- Уменьшение количества параметров
- На каждом слое одинаковые веса
- Засчёт того, что веса одинаковые, можно сделать больше слоёв и углубить модель
- В самой большой конфигурации 233 млн параметров

ELECTRA

- Слова заменяются не на токен [MASK], а на другие случайные слова
- Для этого нужен отдельный генератор предложений с заменами
- Используем не очень хорошо обученный BERT для генерации
- Модель учится определять, было ли слово заменено
- Очень быстрое обучение
- Сильно обыгрывает BERT, если обучать на том же количестве параметров и слоёв

BIG BIRD

- Добавляем к токенам BERT-а дополнительный управляющий токен, имеющий доступ ко всей последовательности слов
- Механизм внимания имеет доступ к избранным словам
- Избранные слова выбираются на основе весов из механизма внимания
- Можно подать большой текст на вход и не потратить много памяти на внимание

Вопросы

- Для обучения моделей требуется много ресурсов
- Это не круто для экологии
- Transformer-as-a-service
- Методология оценивания языковых моделей

Сжатие моделей

- Квантизация
- Удаление весов (прунинг)
- Дистилляция

Квантизация

- Смена формата весов с float32 на int8
- Сокращает затраты памяти в 4 раза
- Качество падает в пределах 1% (Q8bert)
- Если применять на специальных аппаратных средствах, ускорение в 3.7 раза

Удаление весов (прунинг)

- Удалять можно слои, а также модули внимания
- Удаляем слои и облегчаем и ускоряем модель, потеряв около 2% качества
- Почти никакие из модулей внимания не работают хорошо
- Удаляем те, которые плохо работают и получаем ускорение модели на 17%
- Надо знать, какие из них плохие

Дистилляция

- Обучаем маленькую модель воспроизводить результаты большой предобученной модели
- distilBERT параметров в 2 раза меньше, качество на 5% ниже
- Можно использовать для разработки инфраструктуры и отладки, потому что входные и выходные форматы такие же, как у BERT

Сравнение методов сжатия моделей

- Все уменьшают размер модели
- Все ускоряют работу модели
- Только с использованием дистилляции можно сохранить свойство переноса обучения

Оценка качества моделей

- GLUE: https://gluebenchmark.com/leaderboard
 10 задач, связанных с общим пониманием структуры языка
 Есть значение результатов от обычных людей
 Слишком простой для моделей
- SuperGLUE: https://super.gluebenchmark.com/leaderboard
 8 усложнённых задач для понимания структуры языка
 Есть значение результатов от обычных людей

Вопросы к бенчмаркам

- Задачи в бенчмарках не применимы на практике
- Чтобы модель хорошо выступила, необходимо потратить колоссальное число ресурсов

Вопросы?

Телеграм @flerchy

Вк <u>vk.com/flerchy/</u>