Matemática 3 - Curso 2016

Práctica 6: Estimación puntual

1) Suponga que se tiene una muestra aleatoria de tamaño n tomada de una población X, que $E(X)=\mu$ y $V(X)=\sigma^2$. Sean

$$\overline{X}_1 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i$$
 y $\overline{X}_2 = \frac{1}{n} \sum_{i=1}^{n} X_i$

Dos estimadores de μ . ¿Cuál es el mejor estimador de μ ?. Explique su elección.

2) Sea X_1, X_2, \dots, X_7 una muestra aleatoria de una población que tiene media μ y varianza σ^2 . Considere los siguientes estimadores de μ :

$$\hat{\Theta}_1 = \frac{X_1 + X_2 + \dots + X_7}{7} \qquad \hat{\Theta}_2 = \frac{2X_1 - X_6 + X_4}{2} \qquad \hat{\Theta}_3 = \frac{2X_1 - X_7 + X_3}{3}$$

- a) ¿Alguno de estos estimadores es insesgado?
- b) Hallar el error cuadrático medio de los estimadores.
- c) ¿Cuál estimador es el "mejor"?. ¿En qué sentido es mejor?
- 3) Sea X_1, X_2, \dots, X_n una muestra aleatoria de tamaño n.
 - a) Demuestre que \overline{X}^2 es un estimador sesgado de μ^2 .
 - b) Determine la magnitud del sesgo de este estimador.
 - c) ¿Qué sucede con el sesgo a medida que aumenta el tamaño n de la muestra?.
- **4)** El número diario de desconexiones accidentales de un servidor sigue una distribución de Poisson. En cinco días se observan: 2, 5, 3, 3, 7 desconexiones accidentales.
 - a) Obtenga el estimador de máxima verosimilitud de λ . ¿El estimador es insesgado?, ¿es consistente?
 - b) Obtenga la estimación de λ a partir de la muestra dada.
 - c) Encuentre el estimador de máxima verosimilitud de la probabilidad de que ocurrirán 3 o más desconexiones accidentales y encuentre la estimación de dicha probabilidad a partir de los datos.
- 4) a) Sea X_1, X_2, \dots, X_n una muestra aleatoria de una v.a. B(1, p). Hallar un estimador de máxima verosimilitud (E.M.V.) de p.
 - b) Se selecciona una muestra aleatoria de n chips fabricados por cierta compañía.
 Sea X = el número entre los n que tienen defectos y p = P(el chip tiene defecto). Supongamos que solo se observa X (el número de chips con defectos).
 - b_1) Si n = 100 y x = 5, ¿cuál es la estimación de p?
 - b₂) Si n = 100 y x = 5, ¿cuál es el E.M.V. de la probabilidad $(1-p)^6$, de que ninguno de los siguientes 6 chips que se examinen tenga defectos?
- 5) Denotemos por *X* la proporción de tiempo asignado que un estudiante seleccionado al azar emplea trabajando en cierta prueba de actitud, y supongamos que la f.d.p. de *X* es:

1

$$f(x) = \begin{cases} (2\theta + 1)x^{2\theta}, & 0 \le x \le 1\\ 0, & c.c \end{cases} \quad \text{donde } \theta > -\frac{1}{2}$$

- Una muestra aleatoria de diez estudiantes produce la siguiente información: 0.92, 0.79, 0.90, 0.65, 0.86, 0.47, 0.73, 0.97, 0.94, 0.77.
- a) Utilice el método de los momentos para obtener un estimador de θ y luego calcule la estimación para esta información.
- b) Obtenga el E.M.V. de θ y luego calcule la estimación para la información dada.
- 6) Sea X_1, X_2, \dots, X_n una muestra aleatoria de una v.a. $N(\mu, \sigma^2)$.
 - a) Hallar los estimadores de μ y σ por el método de momentos. ¿Los estimadores son insesgados?
 - b) Hallar los estimadores de μ y σ por el método de máxima verosimilitud. ¿Los estimadores son insesgados?
 - c) Se determina la resistencia al corte de cada una de diez soldaduras eléctricas por puntos de prueba, dando los siguientes datos (lb/plg²):
 - 392, 376, 401, 367, 389, 362, 409, 415, 358, 375.
 - Si se supone que la resistencia al corte esta normalmente distribuida, estime la verdadera media de resistencia al corte y desviación estándar de resistencia al corte usando el método de máxima verosimilitud y el método de momentos.
 - d) Estime la probabilidad de que la resistencia al corte de una soldadura al azar sea menor que 420.
- 7) En una prueba 294 de 300 aisladores cerámicos soportaron cierto choque térmico.
 - a) Obtenga el estimador y la estimación de máxima verosimilitud de la probabilidad de que un aislante cerámico sobrevivirá a un choque térmico.
 - b) Suponga que un dispositivo contiene tres aislantes cerámicos y todos deben sobrevivir al choque, con la finalidad de que el dispositivo funcione. Encuentre el estimador y la estimación de máxima verosimilitud de la probabilidad de que los tres sobrevivirán a un choque térmico.