TD 7 – Coordinate descent

Mathematics of data

20/11/24

Exercise 1. Let $f: \mathbb{R}^p \to \mathbb{R}$. Coordinate descent is an optimization method which tries to minimize f alternatively with respect to individual coordinates. We denote w^t the iterates. At iteration t, we choose an index $i \in \{1, \dots, p\}$ and we try to minimize f with respect to its i-th coordinate without changing the other coordinates w_j^t , $j \neq i$. More formally, we define $\phi_i(x, w) = f(w_1, \dots, w_{i-1}, x, w_{i+1}, \dots, w_p)$ and set at each iteration:

$$w_i^{t+1} = \operatorname{argmin}_x \phi_i(x, w^t)$$
 and $w_j^{t+1} = w_j^t$ for $j \neq i$.

The index i is typically chosen as cyclic: $i = 1 + (t \mod p)$.

The aim of this exercise is to prove a convergence rate for coordinate descent on a quadratic function

$$f(w) = \frac{1}{2} \langle w, Aw \rangle - \langle b, w \rangle,$$

where $A \in \mathbb{R}^{p \times p}$ is a positive definite symmetric matrix.

- 1. Assume that we optimize the coordinate i at step t+1. Compute the update rule of w_i^t .
- 2. Show that

$$f(w^{t+1}) - f(w^t) = -\frac{(Aw^t - b)_i^2}{2A_{ii}} \le -\frac{(Aw^t - b)_i^2}{2A_{\max}},$$

where $A_{\max} = \max_i A_{ii}$.

3. Assume that we do a greedy coordinate descent, which means that at iteration t+1, we update the coordinate i such that $(Aw^t - b)_i^2$ is maximal. Show that

$$f(w^{t+1}) - f(w^t) \le -\frac{\|Aw^t - b\|^2}{2nA_{\max}}.$$

4. Let $w^* = A^{-1}b$. Demonstrate that

$$||Aw - b||^2 \ge 2\sigma_{\min}(A)(f(w) - f(w^*)).$$

Provide a convergence rate for the coordinate descent method. What is the difference with gradient descent? When is it faster? Slower?

Exercise 2.

1. Given a convex, differentiable map $f: \mathbb{R}^p \to \mathbb{R}$, if we are at a point $x = (x_1, \dots, x_p)$ such that f(x) is minimized along each coordinate axis, i.e.

1

$$f(x) = \min_{z \in \mathbb{R}} f(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_p),$$

for i = 1, ..., p, have we found a global minimizer?

2. Same question, but for f convex (not necessarily differentiable)?