

Policy-based Theoretical Guarantees

Mohammad Hossein Rohban, Ph.D.

Spring 2025

Courtesy: Most of slides are adopted from the RL course at Berkeley.

Recap: Policy Gradients

REINFORCE algorithm:

1. sample $\{\tau^i\}$ from $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ (run the policy)

2.
$$\nabla_{\theta} J(\theta) \approx \sum_{i} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{t}^{i} | \mathbf{s}_{t}^{i}) \left(\sum_{t'=t}^{T} r(\mathbf{s}_{t'}^{i}, \mathbf{a}_{t'}^{i}) \right) \right)$$

3.
$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{Q}_{i,t}^{\pi}$$

"reward to go"

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

main steps of policy gradient algorithm:

- 1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get *improved* policy π'

Familiar to policy iteration algorithm:

- 1. evaluate $A^{\pi}(\mathbf{s}, \mathbf{a}) \longrightarrow \mathcal{Q}(s, \mathbf{a}) \mathbf{V}(s)$ 2. set $\pi \leftarrow \pi'$

$$J(\theta) = E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} \gamma^{t} r(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$
 claim:
$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right]$$

could be interpreted as policy improvement!

$$\begin{aligned} \text{claim: } J(\theta') - J(\theta) &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_t \gamma^t A^{\pi_\theta}(\mathbf{s}_t, \mathbf{a}_t) \right] \\ \text{proof: } J(\theta') - J(\theta) &= J(\theta') - E_{\mathbf{s}_0 \sim p(\mathbf{s}_0)} \left[V^{\pi_\theta}(\mathbf{s}_0) \right] \\ &= J(\theta') - E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t V^{\pi_\theta}(\mathbf{s}_t) - \sum_{t=1}^{\infty} \gamma^t V^{\pi_\theta}(\mathbf{s}_t) \right] \\ &= J(\theta') + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_\theta}(\mathbf{s}_{t+1}) - V^{\pi_\theta}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t r(\mathbf{s}_t, \mathbf{a}_t) \right] + E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (\gamma V^{\pi_\theta}(\mathbf{s}_{t+1}) - V^{\pi_\theta}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t (r(\mathbf{s}_t, \mathbf{a}_t) + \gamma V^{\pi_\theta}(\mathbf{s}_{t+1}) - V^{\pi_\theta}(\mathbf{s}_t)) \right] \\ &= E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t=0}^{\infty} \gamma^t A^{\pi_\theta}(\mathbf{s}_t, \mathbf{a}_t) \right] \end{aligned}$$

$$P(s_t) \qquad \pi(a_t|s_t)$$

$$= \int P(s_t, a_t, \dots, s_{t-1}, a_{t-1}, s_t)$$

$$ds_1 da_1, \dots da_{t-1}$$

$$t+1) - V^{\pi_{\theta}}(s_t)$$

$$J(\theta') - J(\theta) = E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^t A^{\pi_{\theta}}(\mathbf{s}_t, \mathbf{a}_t) \right]$$
 expectation under $\pi_{\theta'}$ advantage under π_{θ}

importance sampling

$$E_{x \sim p(x)}[f(x)] = \int p(x)f(x)dx$$

$$= \int \frac{q(x)}{q(x)}p(x)f(x)dx$$

$$= \int q(x)\frac{p(x)}{q(x)}f(x)dx$$

$$= E_{x \sim q(x)}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$E_{\tau \sim p_{\theta'}(\tau)} \left[\sum_{t} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] = \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

$$= \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

is it OK to use $p_{\theta}(\mathbf{s}_t)$ instead?

Can we ignore distribution mismatch?

$$\sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \approx \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right]$$

why do we want this to be true?
$$P(s_t) P(s_t, a_t) = P(s_t, a_t)$$

$$\bar{A}(t)$$

$$J(\theta') - J(\theta) \approx \bar{A}(\theta') \implies \theta' \leftarrow \arg \max_{\theta'} \bar{A}(\theta)$$

2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get improved policy π'

is it true? and when?

 $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Bounding the distribution change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

Simple case: assume π_{θ} is a deterministic policy $\mathbf{a}_t = \pi_{\theta}(\mathbf{s}_t)$

$$\begin{array}{ll}
\pi_{\theta'} \text{ is } close \text{ to } \pi_{\theta} \text{ if } \pi_{\theta'}(\mathbf{a}_t \neq \pi_{\theta}(\mathbf{s}_t)|\mathbf{s}_t) \not\geq \epsilon \\
P_{\theta} (s_t) = (1-\epsilon) P_{\theta} (s_t) + (1-(1-\epsilon)^t) P_{\theta} (s_t) \\
p_{\theta'}(\mathbf{s}_t) = (1-\epsilon)^t p_{\theta}(\mathbf{s}_t) + (1-(1-\epsilon)^t) p_{\text{mistake}}(\mathbf{s}_t)
\end{array}$$

probability we made no mistakes

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$
useful identity: $(1 - \epsilon)^t \ge 1 - \epsilon t$ for $\epsilon \in [0, 1]$ $\le 2\epsilon t$

seem familiar?

not a great bound, but a bound!

Bounding the distribution change

Claim: $p_{\theta}(\mathbf{s}_t)$ is close to $p_{\theta'}(\mathbf{s}_t)$ when π_{θ} is close to $\pi_{\theta'}$

General case: assume π_{θ} is an arbitrary distribution

$$\pi_{\theta'}$$
 is close to π_{θ} if $|\pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t) - \pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)| \leq \epsilon$ for all \mathbf{s}_t

Useful lemma: if
$$|p_X(x)-p_Y(x)| = \epsilon$$
, exists $p(x,y)$ such that $p(x) = p_X(x)$ and $p(y) = p_Y(y)$ and $p(x=y) = 1 - \epsilon$
 $\Rightarrow p_X(x)$ "agrees" with $p_Y(y)$ with probability ϵ
 $\Rightarrow \pi_{\theta'}(\mathbf{a}_t|\mathbf{s}_t)$ takes a different action than $\pi_{\theta}(\mathbf{a}_t|\mathbf{s}_t)$ with probability at most ϵ

$$|p_{\theta'}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| = (1 - (1 - \epsilon)^t)|p_{\text{mistake}}(\mathbf{s}_t) - p_{\theta}(\mathbf{s}_t)| \le 2(1 - (1 - \epsilon)^t)$$

$$\le 2\epsilon t$$

Bounding the objective value

$$\begin{aligned} \pi_{\theta'} & \text{ is } close \text{ to } \pi_{\theta} \text{ if } |\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t}) - \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})| \leq \epsilon \text{ for all } \mathbf{s}_{t} \\ |p_{\theta'}(\mathbf{s}_{t}) - p_{\theta}(\mathbf{s}_{t})| \leq 2\epsilon t & \textbf{Pe'} & \textbf{Pe'} & \textbf{Pe'} \\ E_{p_{\theta'}(\mathbf{s}_{t})}[f(\mathbf{s}_{t})] &= \sum_{\mathbf{s}_{t}} p_{\theta'}(\mathbf{s}_{t}) f(\mathbf{s}_{t}) \geq \sum_{\mathbf{s}_{t}} p_{\theta}(\mathbf{s}_{t}) f(\mathbf{s}_{t}) - |p_{\theta}(\mathbf{s}_{t}) - p_{\theta'}(\mathbf{s}_{t})| \max_{\mathbf{s}_{t}} f(\mathbf{s}_{t}) \\ &\geq E_{p_{\theta}(\mathbf{s}_{t})}[f(\mathbf{s}_{t})] - 2\epsilon t \max_{\mathbf{s}_{t}} f(\mathbf{s}_{t}) \\ \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta'}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] \geq \\ \sum_{t} E_{\mathbf{s}_{t} \sim p_{\theta}(\mathbf{s}_{t})} \left[E_{\mathbf{a}_{t} \sim \pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \left[\frac{\pi_{\theta'}(\mathbf{a}_{t}|\mathbf{s}_{t})}{\pi_{\theta}(\mathbf{a}_{t}|\mathbf{s}_{t})} \gamma^{t} A^{\pi_{\theta}}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right] \right] - \sum_{t} 2\epsilon t C \end{aligned}$$
maximizing this maximizes a bound on the thing we want!

maximizing this maximizes a bound on the thing we want!

Soft actor-critic

1. Q-function update

Update Q-function to evaluate current policy:

$$Q(\mathbf{s}, \mathbf{a}) \leftarrow r(\mathbf{s}, \mathbf{a}) + \mathbb{E}_{\mathbf{s}' \sim p_{\mathbf{s}}, \ \mathbf{a}' \sim \pi} \left[Q(\mathbf{s}', \mathbf{a}') - \log \pi(\mathbf{a}' | \mathbf{s}') \right]$$

This converges to Q^π

2. Update policy

Update the policy with gradient of information projection:

$$\pi_{\mathrm{new}} = \arg\min_{\pi'} \mathrm{D_{KL}} \left(\pi'_{\mathbf{c}}(\cdot | \mathbf{s}) \mid\mid \frac{1}{Z} \exp Q^{\pi_{\mathrm{old}}}(\mathbf{s}, \cdot) \right)$$

In practice, only take one gradient step on this objective

3. Interact with the world, collect more data

Haarnoja, et al. **Soft Actor-Critic Algorithms** and **Applications**. '18

Soft actor-critic

Algorithm 1 Soft Actor-Critic

Inputs: The learning rates, λ_{π} , λ_{Q} , and λ_{V} for functions π_{θ} , Q_{w} , and V_{ψ} respectively; the weighting factor τ for exponential moving average.

- 1: Initialize parameters θ , w, ψ , and $\bar{\psi}$.
- 2: for each iteration do
- 3: (In practice, a combination of a single environment step and multiple gradient steps is found to work best.)
- 4: **for** each environment setup **do**
- 5: $a_t \sim \pi_{\theta}(a_t|s_t)$
- 6: $s_{t+1} \sim \rho_{\pi}(s_{t+1}|s_t, a_t)$
- 7: $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_t, a_t, r(s_t, a_t), s_{t+1})\}$
- 8: **for** each gradient update step **do**
- 9: $\psi \leftarrow \psi \lambda_V \nabla_{\psi} J_V(\psi)$.
- 10: $w \leftarrow w \lambda_Q \nabla_w J_Q(w)$.
- 11: $\theta \leftarrow \theta \lambda_{\pi} \nabla_{\theta} J_{\pi}(\theta).$
- 12: $\bar{\psi} \leftarrow \tau \psi + (1 \tau)\bar{\psi}$).

Loss functions

$$J_{V}(\psi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[\frac{1}{2} \left(V_{\psi}(\mathbf{s}_{t}) - \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\phi}} \left[Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi_{\phi}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right] \right]^{2}$$

$$(5)$$

$$J_{Q}(\theta) = \mathbb{E}_{(\mathbf{s}_{t}, \mathbf{a}_{t}) \sim \mathcal{D}} \left[\frac{1}{2} \left(Q_{\theta}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \hat{Q}(\mathbf{s}_{t}, \mathbf{a}_{t}) \right)^{2} \right],$$

$$(7)$$

$$\mathbf{with}$$

$$\hat{Q}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V_{\bar{\psi}}(\mathbf{s}_{t+1}) \right],$$

$$(8)$$

$$J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_{t} \sim \mathcal{D}} \left[D_{KL} \left(\pi_{\phi}(\cdot | \mathbf{s}_{t}) \mid \frac{\exp(Q_{\theta}(\mathbf{s}_{t}, \cdot))}{J_{\theta}(\mathbf{s}_{t}, \cdot)} \right) \right].$$

$$(10)$$

Soft Actor Critic

$$S_{t+1}, \alpha_{t+1} \mid S_{t+1} \rangle \cdot P(S_{t+1} \mid S_t, \alpha_t) \prod (\alpha_{t+1} \mid S_{t+1})$$

$$S_{t+1}, \alpha_{t+1} \quad J(\pi) = \sum_{t=0}^{T} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} [r(\mathbf{s}_t, \mathbf{a}_t) + \alpha \mathcal{H}(\pi(\cdot | \mathbf{s}_t))] \cdot (1)$$

$$\prod Q_{\pi}(S_t, \alpha_t) \quad T(S_t, \alpha_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} [V(\mathbf{s}_{t+1})], \quad (2)$$

$$\text{where} \quad \mathbb{E}_{\mathbf{s}_t} \prod [Q_t(S_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t \mid S_t)] \quad (3) \quad \mathbb{E}_{\mathbf{s}_t} \prod (\alpha_{t+1} \mid S_{t+1})$$

$$V(\mathbf{s}_t) = \mathbb{E}_{\mathbf{a}_t \sim \pi} [Q(\mathbf{s}_t, \mathbf{a}_t) - \log \pi(\mathbf{a}_t \mid \mathbf{s}_t)] \quad (3) \quad \mathbb{E}_{\mathbf{s}_t} \prod (S_t, \alpha_t) - Const(S_{t+1})$$

$$\mathbb{E}_{\mathbf{s}_{t+1}} \prod [Q_t(S_t, \alpha_t) - Const(S_{t+1}) - Const(S_{t+1}) - Const(S_{t+1})$$

Soft Policy Evaluation

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator \mathcal{T}^{π} in Equation 2 and a mapping $Q^0: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ with $|\mathcal{A}| < \infty$, and define $Q^{k+1} = \mathcal{T}^{\pi}Q^k$. Then the sequence Q^k will converge to the soft Q-value of π as $k \to \infty$.

Soft Policy Evaluation

Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator \mathcal{T}^{π} in Equation 2 and a mapping $Q^0: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ with $|\mathcal{A}| < \infty$, and define $Q^{k+1} = \mathcal{T}^{\pi}Q^k$. Then the sequence Q^k will converge to the soft Q-value of π as $k \to \infty$.

Proof. Define the entropy augmented reward as $r_{\pi}(\mathbf{s}_t, \mathbf{a}_t) \triangleq r(\mathbf{s}_t, \mathbf{a}_t) + \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[\mathcal{H} \left(\pi(\cdot | \mathbf{s}_{t+1}) \right) \right]$ and rewrite the update rule as

$$Q(\mathbf{s}_t, \mathbf{a}_t) \leftarrow r_{\pi}(\mathbf{s}_t, \mathbf{a}_t) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p, \mathbf{a}_{t+1} \sim \pi} \left[Q(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) \right]$$
(15)

and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998). The assumption $|\mathcal{A}| < \infty$ is required to guarantee that the entropy augmented reward is bounded.

Soft Policy Improvement

$$\pi_{\text{new}} = \arg\min_{\pi' \in \Pi} D_{\text{KL}} \left(\pi'(\cdot | \mathbf{s}_t) \, \middle\| \, \frac{\exp\left(Q^{\pi_{\text{old}}}(\mathbf{s}_t, \cdot)\right)}{Z^{\pi_{\text{old}}}(\mathbf{s}_t)} \right). \tag{4}$$

Lemma 2 (Soft Policy Improvement). Let $\pi_{\text{old}} \in \Pi$ and let π_{new} be the optimizer of the minimization problem defined in Equation 4. Then $Q^{\pi_{\text{new}}}(\mathbf{s}_t, \mathbf{a}_t) \geq Q^{\pi_{\text{old}}}(\mathbf{s}_t, \mathbf{a}_t)$ for all $(\mathbf{s}_t, \mathbf{a}_t) \in \mathcal{S} \times \mathcal{A}$ with $|\mathcal{A}| < \infty$.

Soft Policy Improvement

$$P_{kl}(P|P) = \sum_{x} P(x) \log_{x} P(x) = \sum_{x} P(x) \log_{x} P(x)$$
Lemma 2 (Soft Policy Improvement). Let $\pi_{old} \in \Pi$ and let π_{new} be the optimizer of the minimization problem defined in

Equation 4. Then $Q^{\pi_{\text{new}}}(\mathbf{s}_t, \mathbf{a}_t) \geq Q^{\pi_{\text{old}}}(\mathbf{s}_t, \mathbf{a}_t)$ for all $(\mathbf{s}_t, \mathbf{a}_t) \in \mathcal{S} \times \mathcal{A}$ with $|\mathcal{A}| < \infty$.

Proof. Let $\pi_{\text{old}} \in \Pi$ and let $Q^{\pi_{\text{old}}}$ and $V^{\pi_{\text{old}}}$ be the corresponding soft state-action value and soft state value, and let π_{new} be defined as

It must be the case that $J_{\pi_{\text{old}}}(\pi_{\text{new}}(\cdot|\mathbf{s}_t)) \leq J_{\pi_{\text{old}}}(\pi_{\text{old}}(\cdot|\mathbf{s}_t))$, since we can always choose $\pi_{\text{new}} = \pi_{\text{old}} \in \Pi$. Hence

$$\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\text{new}}} \left[\log \pi_{\text{new}}(\mathbf{a}_{t} | \mathbf{s}_{t}) - Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \log Z^{\pi_{\text{old}}}(\mathbf{s}_{t}) \right] \leq \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\text{old}}} \left[\log \pi_{\text{old}}(\mathbf{a}_{t} | \mathbf{s}_{t}) - Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \log Z^{\pi_{\text{old}}}(\mathbf{s}_{t}) \right] \leq \mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\text{old}}} \left[\log \pi_{\text{old}}(\mathbf{a}_{t} | \mathbf{s}_{t}) - Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) + \log Z^{\pi_{\text{old}}}(\mathbf{s}_{t}) \right], \tag{17}$$

Soft Policy Improvement

$$\mathbb{E}_{\mathbf{a}_{t+1}} \sim \mathbb{I}_{\text{new}} \left[Q^{\pi_{\text{old}}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) \right] \times \mathbb{E}(\mathbf{x}) \times \mathbb{E}(\mathbf{x})$$
and since partition function $Z^{\pi_{\text{old}}}$ depends only on the state, the inequality reduces to
$$\mathbb{E}_{\mathbf{a}_{t} \sim \pi_{\text{new}}} \left[Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) - \log \pi_{\text{new}}(\mathbf{a}_{t} | \mathbf{s}_{t}) \right] \geq V^{\pi_{\text{old}}}(\mathbf{s}_{t}). \qquad (18)$$
Next, consider the soft Bellman equation:

Next, consider the soft Bellman equation:

$$Q^{\pi_{\text{old}}}(\mathbf{s}_{t}, \mathbf{a}_{t}) = r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[V^{\pi_{\text{old}}}(\mathbf{s}_{t+1}) \right] \qquad \qquad \longrightarrow$$

$$\leq r(\mathbf{s}_{t}, \mathbf{a}_{t}) + \gamma \mathbb{E}_{\mathbf{s}_{t+1} \sim p} \left[\mathbb{E}_{\mathbf{a}_{t+1} \sim \pi_{\text{new}}} \left[Q^{\pi_{\text{old}}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \log \pi_{\text{new}}(\mathbf{a}_{t+1} | \mathbf{s}_{t+1}) \right] \right]$$

$$\vdots$$

$$\leq Q^{\pi_{\text{new}}}(\mathbf{s}_{t}, \mathbf{a}_{t}), \qquad (19)$$

where we have repeatedly expanded $Q^{\pi_{\text{old}}}$ on the RHS by applying the soft Bellman equation and the bound in Equation 18. Convergence to $Q^{\pi_{\text{new}}}$ follows from Lemma 1.

Soft Policy Iteration

Theorem 1 (Soft Policy Iteration). Repeated application of soft policy evaluation and soft policy improvement to any $\pi \in \Pi$ converges to a policy π^* such that $Q^{\pi^*}(\mathbf{s}_t, \mathbf{a}_t) \geq Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for all $\pi \in \Pi$ and $(\mathbf{s}_t, \mathbf{a}_t) \in \mathcal{S} \times \mathcal{A}$, assuming $|\mathcal{A}| < \infty$.

Proof. Let π_i be the policy at iteration i. By Lemma 2, the sequence Q^{π_i} is monotonically increasing. Since Q^{π} is bounded above for $\pi \in \Pi$ (both the reward and entropy are bounded), the sequence converges to some π^* . We will still need to show that π^* is indeed optimal. At convergence, it must be case that $J_{\pi^*}(\pi^*(\cdot|\mathbf{s}_t)) < J_{\pi^*}(\pi(\cdot|\mathbf{s}_t))$ for all $\pi \in \Pi$, $\pi \neq \pi^*$. Using the same iterative argument as in the proof of Lemma 2, we get $Q^{\pi^*}(\mathbf{s}_t, \mathbf{a}_t) > Q^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for all $(\mathbf{s}_t, \mathbf{a}_t) \in \mathcal{S} \times \mathcal{A}$, that is, the soft value of any other policy in Π is lower than that of the converged policy. Hence π^* is optimal in Π .

Convergence
$$\rightarrow \pi^* = \underset{\pi_{\bullet}}{\operatorname{arg min}} J_{\pi^*}(\pi') \rightarrow J_{\pi^*}(\pi^*) \leqslant J_{\pi^*}(\pi)$$

$$E_{\pi^*} \left[Q(S_{t_1}a_t) - \underset{\pi}{\operatorname{lig}} \pi_{\bullet}(a_{1}|S_{t}) \right] \geq IE_{\pi} \left[Q^{\pi^*}(S_{t_1}a_{t}) - \underset{\pi}{\operatorname{lig}} \pi \right]$$

$$V^{\pi_*}(S_{t_1})$$