Contents

Preface po				page xiii
Li	st of c	odes		xvii
1	ldio	matic P	1	
•	1.1		Python?	2
	1.2	•	Quality	3
	1.3		nary of Python Features	4
			Basics	4
		1.3.2	Control Flow	5
		1.3.3	Data Structures	6
		1.3.4	User-Defined Functions	8
	1.4	Core-l	Python Idioms	10
		1.4.1	List Comprehensions	10
		1.4.2	Iterating Idiomatically	11
	1.5	Basic	Plotting with matplotlib	13
	1.6	NumP	by Idioms	15
	1.7	Projec	t: Visualizing Electric Fields	21
		1.7.1	Electric Field of a Distribution of Point Charges	21
		1.7.2	Plotting Field Lines	22
	1.8	Proble	ems	25
2	Num	bers		28
	2.1	Motivation		28
	2.2	Errors		29
		2.2.1	Absolute and Relative Error	30
		2.2.2	Error Propagation	32
	2.3	Repre	senting Real Numbers	38
		2.3.1	Basics	38
		2.3.2	Overflow	39
		2.3.3	Machine Precision	40
		2.3.4	Revisiting Subtraction	41
		2.3.5	Comparing Floats	44
	2.4	Round	ling Errors in the Wild	45
		2.4.1	Are Roundoff Errors Random?	45
		2.4.2	Compensated Summation	47
		2.4.3	Naive vs Manipulated Expressions	49

viii Contents

		2.4.4	Computing the Exponential Function	50
		2.4.5		55
		2.4.6	When Rounding Errors Cancel	58
	2.5	Projec	ct: the Multipole Expansion in Electromagnetism	60
		2.5.1	Potential of a Distribution of Point Charges	60
		2.5.2	Expansion for One Point Charge	65
		2.5.3	Expansion for Many Point Charges	71
	2.6	Proble	ems	76
3	Deriv	vatives	S	85
	3.1	Motiv	ration	85
		3.1.1	Examples from Physics	85
		3.1.2	The Problem to Be Solved	86
	3.2	Analy	rtical Differentiation	86
	3.3	Finite	Differences	87
		3.3.1	Noncentral-Difference Approximations	87
		3.3.2	Central-Difference Approximation	91
		3.3.3	1	93
		3.3.4	More Accurate Finite Differences	95
		3.3.5	Second Derivative	96
		3.3.6	Points on a Grid	97
		3.3.7	Richardson Extrapolation	101
	3.4	Auton	natic Differentiation	105
			Dual Numbers	105
		3.4.2	An Example	106
		3.4.3	1	107
	3.5	Projec	et: Local Kinetic Energy in Quantum Mechanics	109
		3.5.1	Single-Particle Wave Functions in One Dimension	109
		3.5.2		114
	3.6	Proble	ems	117
4	Matr	ices		121
	4.1	Motiv		121
		4.1.1	Examples from Physics	121
			The Problems to Be Solved	123
	4.2		Analysis	125
		4.2.1	From a posteriori to a priori Estimates	126
		4.2.2	E	127
		4.2.3		129
		4.2.4	•	131
		4.2.5	1 6	135
		4.2.6	Sensitivity of Eigenvectors	141
	4.3		ng Systems of Linear Equations	146
		4.3.1	Triangular Matrices	147

Contents ix

		4.3.2	Gaussian Elimination	152
		4.3.3	LU Method	159
		4.3.4	Pivoting	165
		4.3.5	Jacobi Iterative Method	171
	4.4	Eigen	problems	175
		4.4.1	Power Method	177
		4.4.2	Inverse-Power Method with Shifting	181
		4.4.3	QR Method	187
		4.4.4	All Eigenvalues and Eigenvectors	204
	4.5	Projec	ct: the Schrödinger Eigenvalue Problem	206
		4.5.1	One Particle	206
		4.5.2	Two Particles	211
		4.5.3	Three Particles	223
		4.5.4	Implementation	226
	4.6	Proble	ems	233
5	Root	s		243
	5.1	Motiv	vation	243
		5.1.1	Examples from Physics	243
		5.1.2	The Problem(s) to Be Solved	244
	5.2	Nonli	near Equation in One Variable	244 246
		5.2.1	Conditioning	247
		5.2.2	Order of Convergence and Termination Criteria	248
		5.2.3	Fixed-Point Iteration	250
		5.2.4	Bisection Method	256
		5.2.5	Newton's Method	260
		5.2.6	Secant Method	265
		5.2.7	Ridders' Method	269
		5.2.8	Summary of One-Dimensional Methods	272
	5.3	Zeros	of Polynomials	272
		5.3.1	Challenges	273
		5.3.2	One Root at a Time: Newton's Method	274
		5.3.3	All the Roots at Once: Eigenvalue Approach	277
	5.4	Syster	ms of Nonlinear Equations	279
		5.4.1	Newton's Method	280
		5.4.2	Discretized Newton Method	282
		5.4.3	Broyden's Method	283
	5.5	Minin	mization	287
		5.5.1	One-Dimensional Minimization	287
		5.5.2		289
		5.5.3		292
		5.5.4		295
	5.6		ct: Extremizing the Action in Classical Mechanics	297
		5.6.1	Defining and Extremizing the Action	297

x Contents

		5.6.2	Discretizing the Action	298
		5.6.3	Newton's Method for the Discrete Action	299
		5.6.4	Implementation	301
	5.7	Proble	ems	304
6	Аррі	roxima	ition	311
	6.1	Motiv	ration	311
		6.1.1	Examples from Physics	311
		6.1.2	The Problems to Be Solved	313
	6.2	•	omial Interpolation	317
			Monomial Basis	319
		6.2.2	Lagrange Interpolation	322
		6.2.3	Error Formula	329
		6.2.4	Hermite Interpolation	331
	6.3	Cubic	-Spline Interpolation	333
		6.3.1	Three Nodes	333
		6.3.2	General Case	335
		6.3.3	1	338
	6.4	Trigor	nometric Interpolation	341
		6.4.1	Fourier Series	342
		6.4.2	Finite Series: Trigonometric Interpolation	343
		6.4.3	Discrete Fourier Transform	348
	6.5		-Squares Fitting	361
		6.5.1	Chi Squared	362
		6.5.2	E	364
		6.5.3	General Linear Fit: Normal Equations	368
	6.6	Projec	et: Testing the Stefan–Boltzmann Law	376
		6.6.1	Beyond Linear Fitting	377
		6.6.2		378
		6.6.3	Fitting to the Lummer and Pringsheim Data	380
	6.7	Proble	ems	387
7	Integ	-		393
	7.1	Motiv		393
		7.1.1	Examples from Physics	393
		7.1.2	The Problem to Be Solved	394
	7.2		on–Cotes Methods	396
		7.2.1	Rectangle Rule	397
		7.2.2	Midpoint Rule	400
		7.2.3	Integration from Interpolation	401
		7.2.4	Trapezoid Rule	402
		7.2.5	Simpson's Rule	407
		7.2.6	Summary of Results	411
		7.2.7	Implementation	412

Contents xi

	7.3	Adaptive Integration		414
		7.3.1	Doubling the Number of Panels	415
		7.3.2	Thoughts before Implementing	416
		7.3.3	Implementation	417
	7.4	Romb	perg Integration	419
		7.4.1	Richardson Extrapolation	419
		7.4.2	Romberg Recipe	421
		7.4.3	Implementation	425
	7.5	Gauss	sian Quadrature	427
		7.5.1	Gauss–Legendre: $n = 2$ Case	428
		7.5.2	Gauss-Legendre: General Case	429
		7.5.3	Other Gaussian Quadratures	439
	7.6	Comp	olicating the Narrative	441
		7.6.1	Periodic Functions	441
		7.6.2	Singularities	442
		7.6.3	Infinite Intervals	444
		7.6.4	Multidimensional Integrals	446
		7.6.5	Evaluating Different Integration Methods	448
	7.7	Monte	e Carlo	448
		7.7.1	Random Numbers	449
		7.7.2	Monte Carlo Quadrature	453
		7.7.3	Monte Carlo beyond the Uniform Distribution	458
		7.7.4	Implementation	463
		7.7.5	Monte Carlo in Many Dimensions	465
	7.8	Projec	ct: Variational Quantum Monte Carlo	473
		7.8.1	Hamiltonian and Wave Function	474
		7.8.2	Variational Method	479
	7.9	Proble	ems	486
8	Diffe	rential	I Equations	494
	8.1	Motiv	-	494
		8.1.1	Examples from Physics	494
		8.1.2	-	496
	8.2	Initial	l-Value Problems	498
		8.2.1	Euler's Method	499
		8.2.2	Second-Order Runge-Kutta Methods	506
		8.2.3	Fourth-Order Runge–Kutta Method	511
		8.2.4	Simultaneous Differential Equations	522
	8.3		dary-Value Problems	529
		8.3.1	Shooting Method	530
		8.3.2	Matrix Approach	532
	8.4		value Problems	536
		8.4.1	Shooting Method	537
		8.4.2	Matrix Approach	541
			1.1	

xii Contents

8.5	8.5 Project: Poisson's Equation in Two Dimensions		545
	8.5.1	Examples of PDEs	545
	8.5.2	Poisson's Equation via FFT	546
8.6	Proble	ems	552
Appendix A Installation and Setup		559	
Appendix B		Number Representations	560
B.1	Intege	ers	560
B.2	Real N	Numbers	561
	B.2.1	Single-Precision Floating-Point Numbers	562
	B.2.2	Double-Precision Floating-Point Numbers	564
B.3	Proble	565	
Appendix C		Math Background	566
C.1	Taylor	r Series	566
C.2	Matrix	x Terminology	567
C.3	Probal	ity	570
	C.3.1	Discrete Random Variables	570
	C.3.2	Continuous Random Variables	572
Bibliog	raphy		573
Index	577		