Name - Chandrawanshi Mangesh Shivaji ROII NO - 180CB16 Course - comp. Arch. Lab CS322 Date - 21/08/2020. Assignment - Labous322 filename - 1801CS16. Pdf.

(n) Prepa	re a sumn	nary s	sheet on r	Micropm	ocessors	in the	market Address	No of	Process
Company	Micro	Jeda	Architecture No. of Transitor	Clock Rate	Capacity &	width	Bus width	Cores	(Lithgraph)
Intel	Processor 4004		morphalic pro	of Antito	4KB/	4 bit	12 bit	1	Mu at
Ther	8086 (1644)		-(essor 2250 ×86 Cos Cade lake	476HZ	Gaobyte 256GB/	i6 bit	20 bit	1	-
			29000	5to 10 MHZ	786 GB/			28	14 nm
	Xonon Platinum 8180		Skylake-SP as billion		385MB	3	64 bit		14nm
	19-15900X	2020	1 .	4.7(5HZ	19.25 MB				
ARM	ARMI	1985	VLSI Techology	8 MHZ	64 MB/ LLOKIB/Ore		26 bit		3'4M.
	ARMCortex	2020	ARM V.8.2 & billion	8.3GHz	NA/ .8 MB L3	128 bits	40bit	1 10 4	5 nm.
SPARC	A-78 SPARC	1986	SPARC/ 0.11 million	~83MHZ		_	-	1	-
Oliver	M886900		SPARC V8		IAM.	128 617	128617	NA	-
	LEON5	2019	~ billions	4.0(4)10	8 MB	300			
DEC.	Alpha 21064	1992	AlphaAXP.	200 M Hz	16GB/ 8KB	64 61+	NA	1	

	Alpha 21464	2004	Alpha AXP 250 million	2060 MHZ	169B/ 3MB	64blt	cabit	1	~
Motorola	MC6800	1974	MOS /	1 MHz	128 bytes/ NA	8 bit	16 bit	1	~
	MCF5407	2005	V4 Cold Fine	220MH2	4KB'3RFN 16 KB L	1/ 32bit	szbit	1	ν.
Apple.	A4	2010	ARM Cortex As 3million	1GHZ	256 MB/. 512 KB	64-bit	64-bit	1	λ
	A13	2019	ARM V.8.4 ISA 8.5 billions	2.66 GHZ	8 GB/ 8 MB	69-bit	64 bit	6	~ ,
Huawei	K8V2	2012	ARM V7 0.6 billion	1.4-GHZ		64011	64 bit	4 4	~
	Kirin 9905G	2019	costex-A76 10.3 billion	2-86 GHZ	16 G1B/4-MB	64 bit	64 bit	4	~ .
AMD.	29000 AMD	F	29000	, , , , _	1 MB/ 8 KB.	16 bit	20 bjt	1	~
	Ryzen 9 3 9 50 X	2019	Zen2/ 3.8 billion	3.5- 4,7 GHZ	128 GB/ 364 MB	64 bit	64 bit	16	~
Samsung	Exynos 990	2020	ARM V8.2/ 8-5 billion			64bit	64 bit	8	7 nm.
MIPS	R2000		RISC/110Kn	4.5 MH2	NA/64KB		32bit	-	
11,	M 6250 2		RISC /billion (NAXAKB	64 bit /	64bit	~	

(b) list of microcontrollers available in the market Altera Name Microcontroller Nios II 32-bit config. soft micropr Nios 16-bit config. soft microprocessor Blackfin, SHARC, ARMF and 8052 cores. Analog Devices MARCH, AVR82, AT918AM. Atmel. CY8C5XXXX, ARM CostexM3 Cypress Semiconductor EM78PXXXN. ELAN Microelectronics Corp. SIC83 (32-bit), SICI7 (16-bit) EPSON Semiconductor ESP32, ESP8266 (32-bit) Espressif Systems. MPC 577 (32-bit) Freescal SenisConductor FCRA, FM4. Fujitsu/Spansion HT32XX 32-bit ARM core series Holtek 32-bit Hyperstone RISC microprocessor Hyperstone Embedded Power 3-Phase Bridge driver IC (TLE9872) Infineon Intel. 15-10600K, 1310100, 17-10+00K, 1910900K, etc (These are few latest processors for PCs)

lattice Semi Conductor Maxim Integrated Microchip Tech. National Serviconductor NEC NXP - Semi Conductors Nuvoton Tech. Parallax Rabbit Semiconductor Renesas Electronics Redpine Signals Rockwell Silicon Laboratories Silicon Motion Sony

Xeon Processors are other high end Intel processors available in the market Mio82 82-bit soft microprocessor MIPS + KSD, ARM 928T. PIC32MZ, PIC32MX CRIE, COP8 V60-V80, V850 (82-bit) ARM Costex MZ (RT1050, RT1050species AM series, AM32 series Propeller (8-core 32bit) Rabbit 6000 H8SX, M32R. RS13160. R8670. ARM CONTEX-M4 (EFM 82) SM870, SM350 SRIIO, SPC970, SPC 900, SPC 700

STMicroelectronics Texas Instruments

Toshiba

Ubicom

X emics

Xillinx

XMOS

29/09.

8TM82 F7, H7. TMSSFO, RM4 ARM Gotex R4. TX19A (82-bit RISG)

TLCC-900 (16 & 32bit CISC) TP3022, IP2022 XE8006 (8-bit) Picoblaze, Microblaze. X Core XSI -32bit Z16, eZ80, eZ8.

(c) List of processor simulators Available

D General Simulators

@ PSIM (Processor Simulator): (2010)

3 It graphically displays the architechture white showing the detailed operation on a per clock cycle basis. The instruction set consists of 25-instructions which can be combined to execute other complex capabilities dlong with conditional treanching

3) The ability to display and write to a file the con tents of the program memory at any point in the.

Simulation. The "Bus Viewer" is a very powerful tool for understanding the internal operation of the pool cessor architecture. It is a multicycle architecture, meaning that every instruction takes multiple clock cycles to execute.

1 The web elemental processor simulator:

It enables us to see how values are modified for each clock cycle (at microprogramming level), and for each assembly instruction (at assembly level) also we can compare different hazdware, firmware, instruction sets, etc and asses the advantages / disadvantages. Multiplatform: web browser, standalone app, Android, Ios, Bash. Verbalised output for easy readibility.

[For ARM, MIPS8275, MIPS3286, Nios2: CP4lator Computer System Simulator:

epulator is a Nios II, ARMV7, and MIPS simulator of a computer system (processor and I/o devices). Runs in a modern web browser (no install required). Designed as a tool for learning assembly-language programming and computer organization. Support for some I/o devices. Input: Accepts both assembly source code and BIF executables. Debugger: Single step, Break points, watch points, trace, call-stack, examine

memory and registers. Debug assertions: Optional suntime assertions eath many potential errors Modify registers and memory in debugger.
Maxusable memory = 2042 MB, Max simulation speed 13 Minst/sec

TO FOR ARMITDME MIPS: 1. MARS (MIPS Assembler and Runtime Simulator)

- Integrated editor, featuring multiple file editing tabs, context sensitive IP and color-coded assembly syntax. All assembly files. In a single (folder) may be assembled into a single executable.

- Floating Point registers, coprocessor (o) and (1)

- Variable speed execution.

- Any maginable psuedo-diffe can be interfaced to MIPS
assembly code, or extended to phycial devices.
- Easily editable register and memory values, (like

a sprædsheet).

- Developed by Missouri State Univ.
 - 2. SPIM: A MIPS 82 Simulator
 - spim does not execute binary program
 - Provides a minimal set of os services.
 - spim implements almost the entire MIPS32 assembles entended instruction set

- spim comes with complete source code and documentation

- spim implements both a terminal & windows interface

MARS8X86 Simulators features:

- O Multicore simulation environment for the x86-41
 TSA with detailed pipline model, including the
 breakdown of instructions into upps.
- Based on PILSim with extensive enhancements for improved simulation accuracy and performance try simulation complet rate of 200K+ inst/sec.
- 3) Ability to include pre-compiled libraries with the simulator.
- 1 full debugging support wing standard debuggers
- Full system simulation, including the simulation of unmodified OS.