Calcolo differenziale ed integrale 2 – Prova scritta 14 GENNAIO 2021

Esercizio 1. Per ciascuna delle seguenti serie

(1)
$$\sum_{n=1}^{+\infty} \frac{\cos(n^4)}{n^2+1}$$

$$(2) \sum_{n=1}^{+\infty} (-1)^n \frac{3^n}{4^n + n^2}$$

dire se:

- sono a valori positivi,
- convergono semplicemente,
- convergono assolutamente.

Stabilire inoltre se la ridotta s_9 della serie (2) approssima il valore della serie a meno di 0, 1.

(3) Determinare il raggio e l'intervallo di convergenza della serie di potenze $\sum_{n=1}^{+\infty} \frac{1}{\sqrt{n}} x^n$.

Esercizio 2. Determinare il polinomio di Taylor centrato in 0 e di ordine 4 di $f(x) = \log(\cos x)$.

Esercizio 3. Data la funzione $f: \mathbb{R} \to \mathbb{R}$ periodica di periodo 4 definita da

$$f(x) = \begin{cases} 0 & -2 \le x < 1 \\ -1 & 1 \le x < 2 \end{cases}$$

determinare i suoi coefficienti di Fourier \hat{f}_{2n+1} per $n \in \mathbb{Z}$. Determinare poi il valore della serie di Fourier di f in x = 0 e x = 1.

Esercizio 4. Data la funzione $f:D\subset\mathbb{R}^2\to\mathbb{R}$

$$f(x,y) = \frac{1}{3 - xy}$$

- a) Trovare il dominio di f e specificarne le caratteristiche: dire se è aperto, limitato, connesso
- b) Stabilire se f è differenziabile su D e in tal caso calcolare il piano tangente al grafico di f nel punto (0,0,f(0,0)).
- c) Determinare i punti critici di f.
- d) Stabilire se f ammette massimo e minimo assoluti sull'insieme $C = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 2\}$ e in caso affermativo determinarli.