₹

The Earth - Magnetism - Poles

Try these questions - Just as a curiosity!

- Why the Earth shows Magnetic properties?
- Where is Magnetic North Pole of Earth?
- Where is the Magnetic axis?
- Is Geographical axis same as Magnetic axis?
- Are both axes matching?
- What is the exact location of Magnetic Poles of Earth?

Earth as a huge Magnet

The Earth is a huge Magnet with its

Magnetic North pole at its Geographical South pole

and vice versa

The origin of Magnetism

The number of unpaired electrons and their CW or CCW spins are mainly responsible for the Magnetism along with the crystal structure.

Properties of Magnetic Lines of Force -

- 1) Magnetic lines are invisible, imaginary lines which are somewhat elliptical in shape which never cross eachother.
- 2) Magnetic lines are closed loops that are supposed to travel from North pole of a bar magnet towards the South pole external to the magnet and from South pole towards the North pole internally.
- 3) Magnetic lines that are parallel and travelling in the same direction, REPEL eachother.
- 4) Magnetic lines act like stretched rubber band which always try to contract.
- 5) Magnetic lines prefer a path of minimum reluctance.

VISHWAXARMA

Concept of Orientation of Magnetic Flux in a material -

of Engineering,

and Humanities

Match the pairs

- 1) Left hand rule
- 2) Right hand thumb rule
- 3) Right hand rule
- 4) Right hand grip rule
- 5) Left hand screw rule
- 6) Fleming's Left hand rule
- 7) Fleming's Right hand rule

A) Generating action

B

- B) Motoring action
- C) Direction of magnetic field due of current
- D) Magnetic attraction
- E) Lenz's Law
- F) Faraday's 2nd Law
- G) Faraday's 1st Law

Cross conductor

Dot conductor

Will the two conductors attract or repel?

.... And what about this ...?

Attraction or Repulsion is a property of the direction of magnetic lines

Cross conductor

Dot conductor

Lines that are tea comogulators saville gete compart ted Leachother

Lines that are transported to the second that are transported to the second terms of t

Right Hand Thumb Rule

Which one of the above is correct ??

Thumb is for Current or Field ??

Important terms related to Magnetism -

Magnetic Permeability (μ): It is the property of a material to allow the magnetic line of force to pass through it.

Unit is Henry per meter (H/meter)

Relative Permeability: It is just a ratio for comparison

$$\mu \ r = \begin{array}{l} \mu \ \text{of the material} \\ \mu \ \text{of air or vacuum} \end{array} \ \text{(.:. No unit)}$$

A good ferromagnetic material is about 800 to 1200 times better than air. Value of µr for air = ??

Important terms related to Magnetism -

Magneto Motive Force MMF (F): (Similar to EMF)

$$F = No.$$
 of Turns x Current through them $F = N \times IUnit = Amp-Turns$ (OR Amp)

Magnetic Flux Density (B):

Magnetic Field Strength OR
Magnetic Field Intensity OR
Magnetising Force (H): MMF reqd. per meter length
Unit is Ampere-Turns per meter (Amp/meter)

Important terms related to Magnetism -

Flux (
$$\phi$$
) = ----- = Reluctance (s) Amp x Turns
Reluctance (s) $(1/\mu) \times (\ell/a)$

Flux
$$(\phi) = \frac{I N}{(1/\mu) x (\ell/a)}$$

From above we get,
$$\mu = \frac{\psi \times \pi}{I N a}$$

We know that, $H = B/\mu$

Substituting for B and
$$\mu$$
, $H = \frac{\phi}{--} \times \frac{I \, N \, a}{a} = \frac{I \, N}{\ell}$

Thus, H is a function of the Current I which produces the Flux ϕ H α I

Department of Engineering,

Comment on all the curves -

Home work –

- 1) Draw graph of IDEAL magnetic material
- 2) Is a good conductor, magnetic in nature?
- 3) Is a good magnetic material, a conductor?
- 4) What is Curie temperature?
- 5) Write on similarities and differences between Electrical and Magnetic circuits

₹

