

Jhonny Mitchel Silveira Alves Silva 12011FMT037 Ricardo Tadeu Oliveira Catta Preta 11911FMT028 Rogério Buso de Andrade 12011FMT009

Laboratório de física básica 1 Relatório 1 - MRU

Uberlândia - MG

8 de fevereiro de 2022

Sumário

Sumário		1
1	PROCEDIMENTOS EXPERIMENTAIS	2
2	RESULTADOS E DISCUSSÕES	3

1 Procedimentos experimentais

Para realizar o experimento foram utilizadas uma fita milimetrada (erro instrumental de 0,5mm), uma bola de gude, um cronômetro (erro instrumental de 0,01s) e uma rampa improvisada, basicamente uma capa dura de caderno inclinada, como segue na figura abaixo.

Figura 1.0.1 – Foto do aparato experimental, constituído por uma rampa (feita de caderno), uma fita milimetrada e marcações espaçadas de 40 cm.

Colocamos a rampa no início de uma mesa de vidro, e soltamos a bola de gude de duas alturas para comparar os resultados. A cada 40cm que a bola de gude percorria, era marcado o tempo gasto, sendo assim, tivemos 3 marcações (até 120cm). Os materiais escolhidos foram com o intuito de minimizar o coeficiente de atrito, assim aproximando a experiência de um MRU (movimento retilíneo uniforme). O experimento foi realizado 3 vezes com cada altura; coletamos os dados e realizamos um pós processamento com um código em Python, que calcula todas as quantidades estatísticas apresentadas na disciplina. O código desenvolvido para a disciplina está disponível em: https://github.com/ricardocatta/lab physics1.

2 Resultados e Discussões

 ${\bf A}$ partir dos dados coletados com o experimento, montamos uma tabela da posição em função do tempo.

$r \pm 0.5 (mm)$	$t_1 \pm 0.01(s)$	$t_2 \pm 0.01(s)$	$t_3 \pm 0.01(s)$	$t_4 \pm 0.01(s)$	$t_5 \pm 0.01(s)$	$t_6 \pm 0.01(s)$
0.4	0.87	0.80	0.86	0.54	0.67	0.67
0.8	2.17	2.01	2.02	1.39	1.35	1.42
1.2	3.63	3.53	3.47	2.24	2.15	2.35

A equação para a análise dos dados da posição em função do tempo, foi assumida da seguinte forma:

$$d = kt^n (2.1)$$

Precisamos linearizar a equação 2.1. Aplicando o logaritmo natural em ambos os lados da equação, obtemos:

$$ln d = ln k + n ln t$$
(2.2)

Para plotar o gráfico da equação 2.2, realizamos a média do tempo para duas alturas distintas h_1 e h_2 . Primeiro, plotamos os resultados da posição em função da média do tempo (t_{m1}) para o experimento com a altura h_1 .

Figura 2.0.1 – Gráfico da posição em função do tempo para a altura h_1 .

Uma tabela com os parâmetros $y=\ln(d)$ e $x=\ln(t)$ será construída. Como os parâmetros d e t tem incertezas, essas incertezas foram propagadas.

$\Delta \ln t_1$	$\Delta \ln t_2$	$\Delta \ln d$
0.01	0.02	0.001
0.005	0.007	0.0006
0.003	0.004	0.0004

Após aplicar o método dos mínimos quadrados (MMQ), utilizamos o código em python e encontramos as seguintes quantidades estatísticas para o primeiro experimento com altura h_1 :

Erro quadrático(m)	Erro quadrático médio(m)	Erro da regressão(m)
0.011	0.8	0.014

Os erros estatísticos para o primeiro experimento são:

Erro estatístic	co $\mathbf{t}_{m1}(s)$ Erro ϵ	statístico de $y_1(m)$	Erro associado do $\mathbf{t}_{m1}(s)$	Erro associado de $y_1(m)$
0.77		0.26	0.774	0.26

Com isso, calculamos $\ln k=0.07$, que representa o coeficiente linear da regressão, e o valor de n=0.33, o coeficiente angular da reta.

Por fim, os valores encontrados para a posição h_1 , já com os cálculos da propagação de incerteza, serão:

Posição h_1 (m)
0.400 ± 0.004
0.800 ± 0.002
1.200 ± 0.002

Posteriormente, encontramos o gráfico para o experimento da bolinha lançada à altura h_2 em função do segundo tempo médio (t_{m_2}) .

Figura 2.0.2 – Gráfico da posição em função do tempo para a altura h_2 .

Novamente, após aplicar o método dos mínimos quadrados (MMQ), e utilizando o código desenvolvido em python, encontramos os coeficientes angular n=0.51 e linear = 0.06, além das seguintes quantidades estatísticas para o primeiro experimento com altura h_2 :

Erro quadrático(m)	Erro quadrático médio(m)	Erro da regressão(m)
0.005	0.8	0.006

Os erros estatísticos para o primeiro experimento são:

Erro estatístico $\mathbf{t}_{m2}(s)$	Erro estatístico de $y_2(m)$	Erro associado do $\mathbf{t}_{m2}(s)$	Erro associado de $y_2(m)$
0.48	0.26	0.48	0.26

Por fim, os valores encontrados para a posição h_2 , já com os cálculos da propagação de incerteza, serão:

Posição h_2 (m)
0.400 ± 0.007
0.800 ± 0.005
1.200 ± 0.004

Podemos analisar num mesmo gráfico, o comportamento das curvas para as duas alturas h_1 e h_2 , como segue na figura abaixo:

Figura 2.0.3 – Gráfico da posição em função do tempo para as alturas h_1 e h_2 .

Observando os dois experimentos, foi possível perceber uma velocidade maior da bola de gude quando lançada da maior altura, e comparando com os dois gráficos, percebemos que está diretamente ligada com a inclinação das retas encontradas, ou seja, o coeficiente angular das retas é quem determina a velocidade da bola. Já quando analisamos o coeficiente linear dos gráficos, percebemos que seu valor está ligado com a posição inicial da bola de gude.

Por fim, como observamos um comportamento aproximadamente linear da posição em função do tempo, podemos inferir que a velocidade da bolinha é aproximadamente constante ao longo do tempo observado.