ANALYSEZ DES DONNÉES DE SYSTÈMES ÉDUCATIFS

▶ Projet d'expansion à l'international de l'entreprise EdTech

SOMMAIRE

- 1- Objectifs de l'étude
- 2- Description des jeux de données
- 3- Exploitation et nettoyage des données
- **4-** Analyses
- 5- Evolution du potentiel des pays
- **6-** Conclusion

1- OBJECTIFS DE L'ÉTUDE

L'objectif de ce travail est d'obtenir les données, de les nettoyer et de faire une recommandation pour le <u>projet d'expansion à l'international</u> de la start-up « Academy » qui propose des contenus de <u>formation en ligne</u> pour un public de niveau <u>lycée</u> et <u>université</u>.

Besoins Métier:

- Quels sont les pays avec un fort potentiel de clients pour nos services ?
- > Pour chacun de ces pays, quelle sera l'évolution de ce potentiel de clients ?
- Dans quels pays l'entreprise doit-elle opérer en priorité ?

2-DESCRIPTION DES JEUX DE DONNÉES

Les données sont issues de la Banque mondiale, celles-ci disposent de 5 fichiers .csv :

EdStatsData

Évolution des indicateurs par pays ou regroupe les États sur plusieurs années.

EdStatsCountry

Liste des pays avec leur région d'appartenance

EdStatsFootNote

Informations concernant la source d'information

EdStatsSeries

Description détaillée de chaque indicateur avec son thème d'appartenance

EdStatsCountry-Series

Description de l'indicateur par pays

3- EXPLOITATION ET NETTOYAGE DES DONNÉES

3-1 Exploitation des jeux de données

a-Importer les librairies et télécharger les données :

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import missingno as msno
```

Chargement des dataset

Les données de la Banque mondiale sont disponibles à l'adresse suivant

https://datacatalog.worldbank.org/dataset/education-statistics

qui contient 5 jeux de données

```
dataC = pd.read_csv('EdStatsCountry.csv')
dataS = pd.read_csv('EdStatsSeries.csv')
dataCS = pd.read_csv('EdStatsCountry-Series.csv')
dataFN = pd.read_csv('EdStatsFootNote.csv')
data = pd.read_csv('EdStatsData.csv')
```

b-On peut afficher les premières lignes du jeu de données avec <u>head()</u>:

d	ata.head	()															
	Country Name	Country Code	Indicator Name	Indicator Code	1970	1971	1972	1973	1974	1975	2060	2065	2070	2075	2080	2085	209
	Arab World		Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2	NaN	Na											
	Arab World		Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.F	NaN	Na											

c-On peut afficher les dernières lignes du jeu de données avec tail():

:	data.ta	il()																		
:		Country Name	Country Code	Indicator Name	Indicator Code	1970	1971	1972	1973	1974	1975	 2060	2065	2070	2075	2080	2085	2090	2095	2100
	886925	Zimbabwe	ZWE	Youth illiterate population, 15-24 years, male	UIS.LP.AG15T24.M	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN							
	886926	Zimbabwe	ZWE	Youth literacy rate, population 15-24	SE.ADT.1524.LT.ZS	NaN	NaN	NaN	NaN	NaN	NaN	 NaN	NaN							

d- <u>Dimension</u>: On peut connaître le nombre de lignes et de colonnes avec la fonction <u>shape</u>

```
data.shape
(886930, 70)
```

e- info() renvoie une synthèse du dataframe

```
data.info()
```

Concernant la « EdStatsData »:

Nombre de colonnes = 70 dont 66 (Float64), 4 (object) Nombre de lignes = 886930

f- **Enumération** des lignes et colonnes qui contiennent les valeurs 'NaN'.

data.isnull().sum	m()
Country Name	0
Country Code	0
Indicator Name	0
Indicator Code	0
1970	814642
2085	835494
2090	835494
2095	835494
2100	835494
Unnamed: 69	886930
Length: 70, dtyp	e: int64

3-2 Nettoyer les données

a- Nous allons créer une dataframe qui contient les informations à moins de 90 % de valeurs manquantes.

	ata.copy ata.drop		lumns[data	.isnull().mean()*10	0>90], ax	is=1)							
	Country Name	Country Code	Indicator Name	Indicator Code	1980	1985	1990	1995	1999	2000	2001	2002	2003
0	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.F	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	Arab World	ARB	Adjusted net enrolment rate, lower secondary, 	UIS.NERA.2.GPI	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

a-Suppression des régions

On obtient:

Nombre de colonnes = 25 au lieu de 70

Nombre de lignes = 795305 au lieu de 886930

4- ANALYSES

a-indicateurs

1-les différents groupes d'indicateur à étudier sont :

IT: Infrastructure

SE: Social Education **SP**: Social Population

NY: National Accounts, produits intérieurs et nationaux

2- les mots-clés à rechercher:

15: pour la cible de la population des 15-19 ans

20: pour la cible de la population des 20-24 ans

SEC: pour les regroupements par lycéens

TER: pour les regroupements par étudiants de l'enseignement supérieur

IT: pour l'accès aux infrastructures techniques

TOT: pour population totale

dataS	[dataS['Series Co	de'].str.	startswith	n('SP.') &	dataS['Ser	ies Code	'].str.co	ntains(TER SEC	15 20 TOT')]		
	Series Code	Topic	Indicator Name	Short definition	Long definition	Unit of measure	Periodicity	Base Period	Other notes	Aggregation method		Notes from original source	General comments
2450	SP.POP.1015.FE.UN	Population	Population, ages 10- 15, female	Population, ages 10- 15, female is the total nu	Population, ages 10-15, female is the total nu	NaN	NaN	NaN	NaN	NaN		NaN	NaN
2451	SP.POP.1015.MA.UN	Population	Population, ages 10- 15, male	Population, ages 10- 15, male is the total numb	Population, ages 10-15, male is the total numb	NaN	NaN	NaN	NaN	NaN		NaN	NaN
2452	SP.POP.1015.TO.UN	Population	Population, ages 10- 15, total	Population, ages 10- 15, total is the total	Population, ages 10-15, total is the total pop	NaN	NaN	NaN	NaN	NaN		NaN	NaN •

startswith() est utilisée pour tester si le début de chaque élément de chaîne correspond par exemple à 'SP' et je l'ai combiné avec **str.contains()** utilisée pour tester si par exemple '15' est contenu dans une chaîne d'une série ou d'un index.

Bilan: indicateurs retenus

numérique

IT.NET.USER.P2

économique

NY.GNP.PCAP.PP.CD

démographique

SP.POP.1524.TO.UN

SP.POP.TOTL

éducatif

SE.SEC.ENRR

SE.TER.ENRR

Création d'un nouveau Dataframe qui ne contient que les indicateurs choisis :

	nd = new_d nd.head()	ataD.lo	c[new_data[O["Indicator Code	"].isin(['SP.POP.	TOTL','NY.GD	P.PCAP.PP.CD',	'IT.NE	T.USER.P2	2', 'SP.POP.	1524.TO.
4												•
	Country Name	Country Code	Indicator Name	Indicator Code	1980	1985	1990	1995	1999	2000	2001	2
92872	Afghanistan	AFG	GDP per capita, PPP (current international \$)	NY.GDP.PCAP.PP.CD	NaN	NaN	NaN	NaN	NaN	NaN	NaN	8.755176e
92960	Afghanistan	AFG	Gross enrolment ratio, secondary, both sexes (%)	SE.SEC.ENRR	16.942141	13.46313	1.122283e+01	2.256602e+01	NaN	NaN	1.304874e+01	١
92964	Afghanistan	AFG	Gross enrolment ratio, tertiary, both sexes (%)	SE.TER.ENRR	NaN	NaN	2.273170e+00	NaN	NaN	NaN	NaN	,
93000	Afghanistan	AFG	Internet users (per 100 people)	IT.NET.USER.P2	NaN	NaN	0.000000e+00	NaN	NaN	NaN	4.722568e-03	4.561395e

Le nombre de lignes et de colonnes avec la fonction **shape**

dataDInd.shape (1302, 25)

Visualisation des valeurs manquantes :

Création d'une nouvelle colonne avec valeur : la dernière année où la valeur est non nulle (NaN)

```
dataDInd['Nouveau']=dataDInd.loc[:, '2010': '2015'].fillna(method='ffill',axis=1)['2015']
dataDInd.head(5)
C:\Users\User_01\AppData\Local\Temp\ipykernel_10736\2881690812.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-view-ve
 rsus-a-copy
  dataDInd['Nouveau']=dataDInd.loc[:, '2010': '2015'].fillna(method='ffill',axis=1)['2015']
          2006
                      2007
                                  2008
                                                          2010
                                                                      2011
                                                                                   2012
                                                                                               2013
                                                                                                           2014
                                                                                                                       2015
                                                                                                                                Nouveau
)3 1.065620e+03 1.210479e+03 1.247066e+03 1.482099e+03 1.581601e+03 1.660740e+03 1.873154e+03 1.877412e+03 1.875447e+03 1.864974e+03 1.864974e+03
)1 2.993046e+01 3.008316e+01 4.022338e+01 4.673276e+01 5.324683e+01 5.461618e+01 5.667734e+01 5.668866e+01 5.565616e+01 5.564441e+01 5.564441e+01
```

Création d'un tableau pivot : ce tableau permet d'avoir les indicateurs en colonnes et de faciliter la comparaison.

Ce tableau contient 207 lignes et 6 colonnes.

dataDIndP=dataDInd.pivot_table(index= 'Country Name', columns='Indicator Code', values='Nouveau') dataDIndP												
Indicator Code	IT.NET.USER.P2	NY.GDP.PCAP.PP.CD	SE.SEC.ENRR	SE.TER.ENRR	SP.POP.1524.TO.UN	\$P.POP.TOTL						
Country Name												
Afghanistan	8.260000	1864.973641	55.644409	8.662800	7252785.0	3.373649e+07						
Albania	63.252933	11449.094589	95.765488	58.109951	556269.0	2.880703e+06						
Algeria	38.200000	14643.343064	99.860191	36.922279	6467818.0	3.987153e+07						
American Samoa	NaN	NaN	NaN	NaN	NaN	5.553700e+04						
Andorra	96.910000	NaN	NaN	NaN	NaN	7.801400e+04						
Angola	12.400000	6648.124016	28.898720	9.308020	4259352.0	2.785930e+07						
Antigua and Barbuda	70.000000	21503.952551	102.705460	23.486240	NaN	9.992300e+04						
Argentina	68.043064	20379.779854	106.777901	82.917389	6886530.0	4.341776e+07						
Δrmenia	59 102378	8744 501489	88 502357	44 309502	446958.0	2 916950e+06						

b- Score

Le calcule du score nous permettra de comparer les indicateurs par rapport aux pays

1- Calcul du score:

J'utilise l'équation essentielle du score z pour un exemple : $z = (x - \mu)/\sigma$ μ est la moyenne , σ est l'écart-type des pays

```
# Score: z = (x - \mu)/\sigma = \mu = la moyenne, \sigma = l'écart-type des pays
  def scoreN(x):
               return (dataDIndPF[x]-dataDIndPF[x].mean())/dataDIndPF[x].std()
  dataDIndPF['Score IT.NET.USER.P2']=scoreN('IT.NET.USER.P2')
  dataDIndPF['Score NY.GDP.PCAP.PP.CD']=scoreN('NY.GDP.PCAP.PP.CD')
  dataDIndPF['Score SE.SEC.ENRR']=scoreN('SE.SEC.ENRR')
  dataDIndPF['Score SE.TER.ENRR']=scoreN('SE.TER.ENRR')
 dataDIndPF['Score SP.POP.1524.TO.UN']=scoreN('SP.POP.1524.TO.UN')
  dataDIndPF['Score SP.POP.TOTL']=scoreN('SP.POP.TOTL')
  dataDIndPF['Score TOT'] = dataDIndPF.sum(axis=1)
  dataDIndPF
Score 
                                                                                                                                                                                                                                                                                                                                                                      Score TOT
 662800
                                           7252785.0 3.373649e+07
                                                                                                                       -1.395456
                                                                                                                                                                          -0.827170
                                                                                                                                                                                                              -0.941558
                                                                                                                                                                                                                                                  -1.074883
                                                                                                                                                                                                                                                                                                  -0.024998
                                                                                                                                                                                                                                                                                                                                      -0.089553 4.099121e+07
 109951
                                              556269.0 2.880703e+06
                                                                                                                        0.512176
                                                                                                                                                                          -0.401961
                                                                                                                                                                                                               0.394427
                                                                                                                                                                                                                                                   0.633086
                                                                                                                                                                                                                                                                                                  -0.273285
                                                                                                                                                                                                                                                                                                                                      -0.279057 3.448639e+06
 922279
                                           6467818.0 3.987153e+07
                                                                                                                       -0.356877
                                                                                                                                                                         -0.260246
                                                                                                                                                                                                               0.530776
                                                                                                                                                                                                                                                  -0.098764
                                                                                                                                                                                                                                                                                                  -0.054102
                                                                                                                                                                                                                                                                                                                                      -0.051874 4.635416e+07
 308020
                                            4259352.0 2.785930e+07
                                                                                                                       -1.251845
                                                                                                                                                                          -0.614961
                                                                                                                                                                                                              -1.832159
                                                                                                                                                                                                                                                  -1.052597
                                                                                                                                                                                                                                                                                                  -0.135986
                                                                                                                                                                                                                                                                                                                                      -0.125648 3.212535e+07
```

```
plt.figure(figsize=(16,5))
sns.barplot(x=dataDIndPF_liste2.index, y=dataDIndPF_liste2['Score TOT'])
plt.rcParams['font.size'] = '5'
plt.xticks(rotation=80)
plt.xlabel('Pays',fontsize=20 )
plt.ylabel('Score Total', fontsize=20);
```


La start-up de la EdTech propose des contenus de formation en ligne pour un public de niveau lycée et université, je supprime les pays qui ont comme score négatif les indicateurs:

'IT.NET.USER.P2'

et

2- Les 10 pays attractifs par score d'indicateur :

L'analyse des 6 indicateurs (Économique, numérique, Éducation secondaire, Éducation universitaire, population 14-25 ans et la population totale) nous permet de considérer que les pays avec un fort potentiel de clients pour ces services sont :

United States, Russia, Japan, Turkey et Germany.

5- ÉVOLUTION DU POTENTIEL DES PAYS

indicateur Population15-24

6- CONCLUSION

L'analyse des 6 indicateurs (Économique, numérique, Éducation secondaire, Éducation universitaire, population 14-25 ans et la population totale) nous permet de considérer que les pays avec un fort potentiel de clients pour ces services sont :

United States. Germany, Japan, Turkey

BOÎTE À OUTILS

Visualisation

matpletlib

seabern

Missingno