B. Tech Degree V Semester Examination, November 2008

CS 504 COMPUTER GRAPHICS

(2006 Scheme)

Time:	3 Hours	(2006 Scheme) Maximu PART A	m Marks : 100	
		(Answer <u>ALL</u> questions) (All questions carry <u>EQUAL</u> marks)		
			$(8 \times 5 = 40)$	
I.	(a) (b) (c) (d) (e) (f) (g) (h)	Write a short note on logical classification of input devices. Explain the attributes of output primitives. Write a note on Normalised Device Co-ordinates. Describe the concept of midpoint subdivision. Write a short note on Octrees. Write the concept of vanishing point. Define Lamberts Law. Write a note on 'RGB Color Model'.		
	PART B (4 x 15 = 60)			
II.	(a)	Write notes on: (i) Raster Scan System (ii) Random Scan System	$(4 \times 15 = 60)$ (8)	
	(b)	Describe DDA Line Algorithm. OR	(7)	
III.	(a) (b)	Briefly explain the techniques for anti aliasing Lines. Explain the Bresenham's Line Algorithm.	(8) (7)	
IV.	(a) (b)	Explain basic 2D Transformations. Explain Polygon Clipping Algorithm. OR	(8) (7)	
V.	(a) (b)	Explain any four composite transformations. Explain Point Clipping Algorithm.	(8)	
VI.	(a)	Explain the methods for projecting three dimensional objects onto a two dimensional surface.	ional (8)	
	(b)	Describe the sequences of transformations to align a viewing system with world co-ordinate axes.	(7)	
VII.	(a)	OR Explain Bezier curves and surfaces.	(8)	
	(b)	Explain Fractal Geometry methods.	(7)	
VIII.	(a) (b)	Explain z-buffer method. Write a note on Specular Reflection. OR	(8) (7)	
IX.	*. •	Write notes on : (i) Gouraud Shading		
		(ii) Phong Shading (iii) Ray Tracing Algorithm.	$(3 \times 5 = 15)$	