

Low Voltage, 400 MHz, Quad 2:1 Mux with 3 ns Switching Time

ADG774A

FEATURES

Bandwidth: >400 MHz

Low insertion loss and on resistance: 2.2 Ω typical

On resistance flatness: 0.3Ω typical Single 3 V/5 V supply operation Very low distortion: <0.3%

Low quiescent supply current: 1 nA typical

Fast switching times

 $t_{ON} = 6 \text{ ns}$ $t_{OFF} = 3 \text{ ns}$

TTL-/CMOS-compatible

Pb-free packages 16-lead QSSOP

16-lead 3 mm × 3 mm body LFCSP

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The ADG774A is a monolithic CMOS device comprising four 2:1 multiplexer/demultiplexers with high impedance outputs. The CMOS process provides low power dissipation yet offers high switching speed and low on resistance. The on resistance variation is typically less than 0.5 Ω over the input signal range.

The bandwidth of the ADG774A is typically 400 MHz and this, coupled with low distortion (typically 0.3%), makes the part suitable for switching of high speed data signals.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion. CMOS construction ensures ultralow power dissipation.

The ADG774A operates from a single 3.3 V/5 V supply and is TTL logic-compatible. The control logic for each switch is shown in the truth table (see Table 5).

These switches conduct equally well in both directions when on. In the off condition, signal levels up to the supplies are blocked. The ADG774A switches exhibit break-before-make switching action.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth data rates of >400 MHz.
- 2. Ultralow power dissipation.
- 3. Low leakage over temperature.
- 4. Break-before-make switching prevents channel shorting when the switches are configured as a multiplexer.
- 5. Crosstalk is typically -70 dB @ 10 MHz.
- 6. Off isolation is typically -65 dB @ 10 MHz.
- 7. Available in compact 3 mm \times 3 mm LFCSP.

TABLE OF CONTENTS

Features1	ESD Caution5
Functional Block Diagram	Pin Configurations and Function Descriptions6
General Description	Typical Performance Characteristics7
Product Highlights	Test Circuits9
Revision History	Terminology11
Specifications	Application Circuits
Single Supply 3	Outline Dimensions
Absolute Maximum Ratings 5	Ordering Guide
REVISION HISTORY	
8/06—Rev. A to Rev. B	4/03—Rev. 0 to Rev. A
Updated FormatUniversal	Changes to TPCs 9-11
Added LFCSP ModelUniversal	Updated Outline Dimensions
Added Lead-Free Models	
Changes to Table 35	7/01—Revision 0: Initial Version
Updated Outline Dimensions	
Changes to Ordering Guide	

SPECIFICATIONS

SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, GND = 0 V, all specifications T_{MIN} to T_{MAX} , unless otherwise noted. 1

Table 1.

25°C	T to T	11		
25°C T _{MIN} to T _{MAX}		Unit	Test Conditions/Comments	
	0 to 2.5	٧		
2.2		Ωtyp	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
3.5	4	Ωmax		
0.15		Ωtyp	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
	0.5	Ωmax		
0.3		Ωtyp	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
	0.6	Ω max		
±0.001		nA typ	$V_D = 3 \text{ V/1 V}, V_S = 1 \text{ V/3 V}, \text{ see Figure 17}$	
±0.1	±0.25	nA max	_	
±0.001		nA typ	$V_D = 3 \text{ V/1 V, V}_S = 1 \text{ V/3 V, see Figure 17}$	
±0.1	±0.25	nA max	_	
±0.001		nA typ	$V_D = V_S = 3 \text{ V/1 V}$, see Figure 18	
±0.1	±0.25	nA max	_	
	2.4	V min		
	0.8	V max		
0.001		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$	
	±0.1			
	3	-		
+		. ,.		
	6	ns tvp	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 22}$	
			,	
			$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 2 \text{ V, see Figure 22}$	
			2 33 pr/ ne 30 11/ 13 2 1/ 300 rigare 22	
			$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_{S1} = V_{S2} = 2 \text{ V, see Figure 23}$	
			$C_1 = 33 \text{pr}, N_1 = 30 \Omega_2, V_{S1} = V_{S2} = 2 \text{v, see Figure 23}$	
			$f = 10 \text{ MHz}$, $R_L = 50 \Omega$, see Figure 20	
			$f = 10 \text{ MHz}$, $R_L = 50 \Omega$, see Figure 21	
			$R_L = 50 \Omega$, see Figure 19	
			$R_L = 300 \Omega$	
			$C_L = 1 \text{ nF, see Figure 24, V}_S = 0 \text{ V}$	
			CL - 1111, 3ee 11guie 27, VS - 0 V	
		-		
		-		
_	14	אי יאף	V _{DD} = 5.5 V	
			$V_{DD} = 3.5 \text{ V}$ Digital inputs = 0 V or V_{DD}	
1		1	Digital Hiputs — U v OI vDD	
	1	μA max		
	3.5 0.15 0.3 ±0.001 ±0.1 ±0.001 ±0.001 ±0.1	2.2 3.5 0.15 0.5 0.3 0.6 ±0.001 ±0.1 ±0.1 ±0.25 ±0.001 ±0.1 ±0.1 ±0.25 2.4 0.8 0.001 ±0.1	2.2 Ω typ 3.5 4 Ω max 0.15 Ω typ Ω max 0.3 Ω typ Ω typ 0.6 Ω max ±0.001 nA typ ±0.1 ±0.25 nA max ±0.001 nA typ ±0.1 ±0.25 nA max 0.001 μA typ ±0.1 μA max 0.001 μA typ ±0.1 μA max η typ η max 10.00 η typ 6 ns typ 12 ns max 3 ns typ 6 ns max 3 ns typ 6 ns max 3 ns typ 6 ns min -65 dB typ 400 MHz typ 0.3 % typ 6 pC typ 5 pF typ	

 $^{^1}$ Temperature range for B version is -40°C to +85°C. 2 Guaranteed by design, not subject to production test.

 V_{DD} = 3 V \pm 10%, GND = 0 V, all specifications T_{MIN} to $T_{MAX}\!,$ unless otherwise noted. 1

Table 2.

	B Version				
Parameter	25°C	T_{MIN} to T_{MAX}	Unit	Test Conditions/Comments	
ANALOG SWITCH					
Analog Signal Range		0 to 1.5	V		
On Resistance, Ron	4		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V; } I_S = -10 \text{ mA}$	
	6	7	Ω max		
On Resistance Match Between Channels, ΔR_{ON}	0.15		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
		0.5	Ω max		
On Resistance Flatness, R _{FLAT(ON)}	1.5		Ω typ	$V_D = 0 \text{ V to } 1 \text{ V, } I_S = -10 \text{ mA}$	
		3	Ω max		
LEAKAGE CURRENTS					
Source Off Leakage, Is (OFF)	±0.001		nA typ	$V_D = 2 V/1 V$, $V_S = 1 V/2 V$, see Figure 17	
	±0.1	±0.25	nA max		
Drain Off Leakage, I _D (OFF)	±0.001		nA typ	$V_D = 2 V/1 V$, $V_S = 1 V/2 V$, see Figure 17	
	±0.1	±0.25	nA max		
Channel On Leakage, ID, IS(ON)	±0.001		nA typ	$V_D = V_S = 2 \text{ V/1 V, see Figure 18}$	
	±0.1	±0.25	nA max		
DIGITAL INPUTS					
Input High Voltage, V _{INH}		2.0	V min		
Input Low Voltage, V _{INL}		0.4	V max		
Input Current					
I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{INL}$ or V_{INH}	
		±0.1	μA max		
Digital Input Capacitance, C _{IN}		3	pF typ		
DYNAMIC CHARACTERISTICS ²					
t_{ON} , t_{ON} (\overline{EN})		7	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 1.5 \text{ V, see Figure 22}$	
		14	ns max		
toff, toff (EN)		4	ns typ	$C_L = 35 \text{ pF, } R_L = 50 \Omega, V_S = 1.5 \text{ V, see Figure 22}$	
10.17 to.11 (=1.17)		8	ns max	ου ου μι, τω ου ου, το τι, ουστι σ ιπο ου	
Break-Before-Make Time Delay, t _D		3	ns typ	$C_L = 35 \text{ pF}, R_L = 50 \Omega, V_{S1} = V_{S2} = 1.5 \text{ V}, \text{ see Figure 23}$	
break before make time belay, to		1	ns min	C 33 pr/ 112 30 12/ V31 V32 113 V/ 300 rigure 23	
Off Isolation		-65	dB typ	$f = 10 \text{ MHz}, R_L = 50 \Omega$	
Channel-to-Channel Crosstalk		-70	dB typ	$f = 10 \text{ MHz}, R_L = 50 \Omega$, see Figure 21	
Bandwidth –3 dB		400	MHz typ	$R_L = 50 \Omega$, see Figure 19	
Distortion		1.5	% typ	$R_L = 100 \Omega$	
Charge Injection		4	pC typ	$C_L = 1 \text{ nF, see Figure 24, V}_S = 0 \text{ V}$	
C _s (OFF)		5	pF typ	,,	
C _D (OFF)		7.5	pF typ		
C _D , C _S (ON)		12	pF typ		
POWER REQUIREMENTS			P. 3P	V _{DD} = 3.3 V	
1 OVER NEGOTIENTENTS				Digital inputs = 0 V or V _{DD}	
I_{DD}		1	μA max		
טטי	0.001	•	μΑ typ		

 $^{^1}$ Temperature range for B version is -40°C to $+85^\circ\text{C}.$ 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 5.					
Parameters	Rating				
V _{DD} to GND	−0.3 V to +6 V				
Analog, Digital Inputs ¹	-0.3 V to $V_{DD} + 0.3$ V or 30 mA, whichever occurs first				
Continuous Current, S or D	100 mA				
Peak Current, S or D	300 mA (pulsed at 1 ms, 10% duty cycle max)				
Operating Temperature Range					
Industrial (B Version)	−40°C to +85°C				
Storage Temperature Range	−65°C to +150°C				
Junction Temperature	150°C				
Thermal Impedance, θ_{JA}					
16-Lead QSSOP	105.44°C/W ²				
16-Lead LFCSP(3 mm \times 3 mm)	48.7°C/W ²				
Lead Temperature Soldering					
Vapor Phase (60 sec)	215°C				
Infrared (15 sec)	220°C				
Reflow Soldering (Pb-free)					
Peak Temperature	260°C (+0°C/-5°C)				
Time at Peak Temperature	10 sec to 40 sec				

 $^{^{\}rm I}$ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Measured with the device soldered on a four-layer board.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. QSOP Pin Configuration

Figure 3. LFCSP Pin Configuration

Table 4. Pin Function Descriptions

Р	in No.		
QSOP	LFCSP	Mnemonic	Function
1	15	IN	Logic Control Input.
2	16	S1A	Source Terminal 1A. May be an input or output.
3	1	S1B	Source Terminal 1B May be an input or output.
4	2	D1	Drain Terminal D1. May be an input or output.
5	3	S2A	Source Terminal 2A. May be an input or output.
6	4	S2B	Source Terminal 2B. May be an input or output.
7	5	D2	Drain Terminal D2. May be an input or output.
8	6	GND	Ground (0 V) Reference.
9	7	D3	Drain Terminal D3. May be an input or output.
10	8	S3B	Source Terminal 3B. May be an input or output.
11	9	S3A	Source Terminal 3A. May be an input or output.
12	10	D4	Drain Terminal D4. May be an input or output.
13	11	S4B	Source Terminal 4B. May be an input or output.
14	12	S4A	Source Terminal 4A. May be an input or output.
15	13	EN	Logic Control Input. When high, all switches are disabled.
16	14	V _{DD}	Most Positive Power Supply Potential.

Table 5. Truth Table

EN	IN	D1	D2	D3	D4	Function
1	Х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	DISABLE
0	0	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD}=5~V\pm10\%$

Figure 5. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD} = 3 \text{ V} \pm 10\%$

Figure 6. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for Different Temperatures with 5 V Single Supplies

Figure 7. On Resistance as a Function of Drain (V_D) or Source (V_S) Voltage for Different Temperatures with 3 V Single Supplies

Figure 8. Leakage Current as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD} = 5 V$

Figure 9. Leakage Current as a Function of Drain (V_D) or Source (V_S) Voltage for $V_{DD} = 3 \text{ V}$

Figure 10. Leakage Current as a Function of Temperature, $V_{DD} = 5 \text{ V}$

Figure 11. Leakage Current as a Function of Temperature, $V_{DD} = 3 V$

Figure 12. Off Isolation vs. Frequency

Figure 13. Crosstalk vs. Frequency

Figure 14. Bandwidth

Figure 15. Charge Injection vs. Source Voltage

TEST CIRCUITS

Figure 16. On Resistance

Figure 17. Off Leakage

Figure 18. On Leakage

Figure 19. Bandwidth

Figure 20. Off Isolation

Figure 21. Channel-to-Channel Crosstalk

Figure 22. Switching Times

Figure 23. Break-Before-Make Time Delay

Figure 24. Charge Injection

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

GND

Ground (0 V) reference.

S

Source terminal. May be an input or output.

D

Drain terminal. May be an input or output.

IN

Logic control input.

 \overline{EN}

Logic control input.

 $\mathbf{R}_{\mathbf{ON}}$

Ohmic resistance between D and S.

 $\Delta \mathbf{R}_{ON}$

On resistance match between any two channels, that is, $R_{\rm ON}$ max – $R_{\rm ON}$ min.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

Is (OFF)

Source leakage current with the switch off.

I_D (OFF)

Drain leakage current with the switch off.

 I_D , I_S (ON)

Channel leakage current with the switch on.

 $V_D(V_S)$

Analog voltage on the D and S terminals.

Cs (OFF)

Off switch source capacitance.

C_D (OFF)

Off switch drain capacitance.

 C_D , C_S (ON)

On switch capacitance.

ton

Delay between applying the digital control input and the output switching on. See Figure 22.

 t_{OFF}

Delay between applying the digital control input and the output switching off.

tъ

Off time or on time measured between the 80% points of both switches when switching from one address state to another. See Figure 23.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another because of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

Frequency response of the switch in the on state measured at 3 dB down.

Distortion

 $R_{\rm FLAT(ON)}/R_{\rm L}$

APPLICATION CIRCUITS

Figure 25. Full Duplex Transceiver

Figure 26. Loop Back

Figure 27. Line Termination

Figure 28. Line Clamp

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-137-AB

Figure 29. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches

*COMPLIANT TO JEDEC STANDARDS MO-220-VEED-2 EXCEPT FOR EXPOSED PAD DIMENSION.

Figure 30. 16-Lead Lead Frame Chip Scale Package [LFCSP_VQ] (CP-16-3) Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG774ABRQ	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQ-REEL	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQ-REEL7	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ-REEL ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABRQZ-REEL7 ¹	−40°C to +85°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG774ABCPZ-REEL	−40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-16-3

 $^{^{1}}$ Z = Pb-free part.

NOTES

NOTES

NOTES