# Applications de la théorie des graphes à l'analyse de réseaux urbains

Pierre-Gabriel Berlureau

Lundi 9 septembre 2024

## L'équipe du projet

- Matthieu Latapy LIP6 Sorbonne Université
- Claire Lagesse ThéMA Univ. Franche-Comté
- Julien Randon-Furling Centre Borelli ENS P-S

Introduction 2 / 17

```
See Apparent and American Control of the Control of
```

#### Implémentation d'un modèle



Données OpenStreetMap

Résultat voulu

Introduction 3 / 17



Introduction 4 / 17

## Contexte & utilité



Différents découpages



## Pré-traitement



Face artifacts







Partie 1 Pré-traitement 8 / 17





Partie 1 Pré-traitement 8 /





## Un autre point de vue

• Idée Se ramener à un problème d'optimisation

## Un autre point de vue

- Idée Se ramener à un problème d'optimisation
- Exemple Chercher un graphe qui minimise le nombre de face artifacts tout en conservant la structure du réseau

## Criticité auto-organisée



## Abelian sandpile model

#### État initial



## Abelian sandpile model

#### État initial

## Processus lent $x_i \rightarrow x_i + 1$





## Abelian sandpile model

État initial

Processus lent

$$x_i \rightarrow x_i + 1$$

Avalanche  $x_i \rightarrow x_i - d_i$   $x_j \rightarrow x_j + 1$  pour j voisin de i







## Algorithme

#### Energy function:

$$E = -\sum_{i=1}^{k} |c_i|^2 + \sum_{i=1}^{k} 2|c_i||e_i|$$

## Algorithme

#### Algorithm SOC search

Entrée: 
$$G = (S, A)$$
 et  $k, n \in \mathbb{N}$ 

$$c \leftarrow$$
 colorage aléatoire

Itérer le abelian sandpile model jusqu'à atteindre l'état critique

**pour** 
$$i$$
 from 0 to  $n-1$  **faire**

Itérer le processus lent jusqu'à déclencher une avalanche

 $\mathcal{A} \leftarrow$  noeuds pris dans l'avalanche

 $c' \leftarrow c$  avec  $\mathcal{A}$  recoloré aléatoirement

si 
$$E(c') < E(c)$$
 alors

$$c \leftarrow c'$$

fin si

fin pour

renvoyer c

## Deux autres modèles simples

A := ensemble de noeuds choisis

#### Model 1

 $A \leftarrow$  unique noeud aléatoire

#### Model 2

 $A \leftarrow$  unique noeud aléatoire

$$\mathcal{A} \leftarrow \mathcal{A} \cup \{u \in \mathcal{V}(\mathcal{A}), \ c(u) = c(\mathcal{A})\}$$

#### Résultats



#### Conclusion

- Hypergraphe des voies
- Pré-traitement de face artifacts
- Optimisation basée sur la Criticité auto-organisée

Conclusion 17 / 17

#### Conclusion

- Hypergraphe des voies
- Pré-traitement de face artifacts
- Optimisation basée sur la Criticité auto-organisée

- Plusieurs passes de pré-traitement?
- Squelette linéaire sur les buffers?
- Optimisation pour le pré-traitement de réseaux urbains?

Conclusion 17 / 17