Федеральное государственное автономное образовательное учреждение высшег	O'
образования «Национальный исследовательский университет ИТМО»	

Факультет программной инженерии и компьютерной техники

Расчетно-графическая работа № 3 по дисциплине «Математическая статистика»

Вариант 1

Выполнили: Вавилина Екатерина, Медведева Даниэла

Группа: Р3230

Преподаватель: Лукина Марина Владимировна

Цель

Построить вариационный ряд на основе заданной выборки, определить границы интервалов и шаг разбиения, рассчитать частоты и середины интервалов, вычислить оценки математического ожидания, дисперсии и среднеквадратичного отклонения. Построить оценочную функцию распределения и функцию распределения нормального закона, гистограмму и плотность вероятности. Определить доверительный интервал для математического ожидания и провести проверку гипотезы о нормальности распределения с использованием критерия Пирсона.

Блок 1

Построим вариационный ряд:

0.68 0.72 0.9 1.06 1.08 1.19 1.26 1.26 1.31 1.54 1.85 1.9 1.93 1.96 2.00 2.03 2.03 2.05 2.08 2.13 2.14 2.15 2.2 2.25 2.27 2.28 2.3 2.33 2.34 2.36 2.37 2.38 2.39 2.4 2.42 2.42 2.46 2.47 2.49 2.49 2.49 2.5 2.55 2.55 2.56 2.6 2.61 2.65 2.73 2.78 2.78 2.78 2.79 2.81 2.82 2.82 2.83 2.84 2.84 2.85 2.89 2.9 2.9 2.93 2.94 2.98 3.01 3.03 3.1 3.11 3.12 3.14 3.15 3.16 3.17 3.17 3.19 3.22 3.22 3.25 3.29 3.33 3.38 3.38 3.39 3.41 3.43 3.44 3.48 3.5 3.52 3.54 3.55 3.64 3.66 3.82 3.86 3.96 3.98 4.05

Выберем левую границу интервала a = 0.6Выберем правую границу интервала b = 4.1

Вычислим шаг
$$h = \frac{b-a}{10} = 0.35$$

Блок 2

Разобьем интервал изменения случайной величины на 10 интервалов длиной h и сосчитаем количество элементов выборки, попавших в каждый интервал. Вычислим частоту попадания случайной величины в каждый интервал и середину каждого интервала.

a_i	b_i	y_i	p_i
0.6	0.95	0.775	0.03
0.95	1.30	1.125	0.05
1.30	1.65	1.475	0.02
1.65	2.00	1.825	0.04
2.00	2.35	2.175	0.15
2.35	2.70	2.525	0.19
2.70	3.05	2.875	0.20
3.05	3.40	3.225	0.17
3.40	3.75	3.575	0.10

3.75 4.10 3.925 0.05	3.75	4.10	1 19/7	1 0.05
----------------------	------	------	--------	--------

Вычислим оценку математического ожидания, оценку дисперсии и оценку среднеквадратичного отклонения.

$$m = 2.6650$$

$$\sigma^2 = 0.5464$$

 $\sigma = 0.7392$

Построим оценочную функцию распределения и функцию распределения нормального закона с параметрами m и σ .

Построим гистограмму (оценка плотности вероятностей) и плотность вероятности нормального закона с параметрами m и σ .

Построим доверительный интервал для математического ожидания при доверительной вероятности 0.95. Тогда $au_{0.95}=1.96$.

$$(\underline{m} - \tau_{0.95} \cdot \frac{\underline{\sigma}}{10}, \underline{m} + \tau_{0.95} \cdot \frac{\underline{\sigma}}{10}) = (2.5201, 2.8099)$$

Блок 3 Выпишем границы интервалов разбиения и вычислим значения $z_i=\frac{x_l-\underline{m}}{\underline{\sigma}}, z_1=-\infty, z_2=\ +\infty$

xI_i	$x2_i$	zI_i	$z2_i$
0.6	0.95	$-\infty$	-2.3202
0.95	1.30	-2.3202	-1.8467
1.30	1.65	-1.8467	-1.3731
1.65	2.00	-1.3731	-0.8996
2.00	2.35	-0.8996	-0.4261
2.35	2.70	-0.4261	0.0473
2.70	3.05	0.0473	0.5208
3.05	3.40	0.5208	0.9943
3.40	3.75	0.9943	1.4678
3.75	4.10	1.4678	+8

Найдем значения функции Лапласа $\Phi(z_i)$. Вычислим теоретическую вероятность попадания случайной величины в интервал $p_i = \Phi(z_i) - \Phi(z_{i-1})$. Вычислим теоретическое число попаданий случайной величины в интервал $n \cdot p_i$, где n = 100.

zl_i	$z2_i$	$\Phi(zl_i)$	$\Phi(z_{i}^{2})$	p_i
$-\infty$	-2.3202	0.0000	0.0101	0.0101
-2.3202	-1.8467	0.0101	0.0323	0.0222
-1.8467	-1.3731	0.0323	0.0848	0.0524
-1.3731	-0.8996	0.0848	0.1841	0.0992
-0.8996	-0.4261	0.1841	0.3349	0.1508
-0.4261	0.0473	0.3349	0.5188	0.1838
0.0473	0.5208	0.5188	0.6987	0.1798
0.5208	0.9943	0.6987	0.8399	0.1412
0.9943	1.4678	0.8399	0.9289	0.0889
1.4678	+∞	0.9289	1	0.0710

Вычислим значение статистического критерия $\chi^2 = \sum_{l}^{10} \frac{(n_l - np_l)^2}{np_l} = 14.4829$

Сделаем вывод. Для этого по таблице распределения Пирсона найдем критическую точку $\chi^2_{\kappa p}=14,1$, используя уровень значимости $\alpha=0,05$ и число степеней свободы r=k-3=10-3=7.

Т.к. $\chi^2 > \chi_{KD}^2$ гипотеза отвергается.

Вывод

В рамках работы мы построили вариационный ряд, определили параметры распределения, рассчитали оценку математического ожидания и среднеквадратичного отклонения, а также построили гистограмму и графики функций распределения. Мы рассчитали доверительный интервал для математического ожидания и провели проверку гипотезы о нормальности распределения с помощью критерия Пирсона. По результатам проверки, так как расчётное значение критерия оказалось больше критического (14,48 > 14,1), гипотеза о нормальном распределении отвергнута