1.	Which of the following is TRUE about coarse coding? (Select all that apply)	0.75 / 1 point
	In coarse coding, generalization occurs between states that have features with overlapping receptive fields	i .
	✓ Correct Correct.	
	In coarse coding, generalization between states depend on the size and shape of the receptive fields.	
	✓ Correct Correct.	
	When using features with large receptive fields, the function approximator cannot make discriminations the of the receptive fields.	at are finer than the width
	When training at one state, the learned value function will be updated over all states within the intersection	n of the receptive fields.
	This should not be selected Incorrect. The learned value function will be updated over all states within the union of the receptive form.	ields.
2.		1 / 1 point

Consider a continuous two-dimensional state space. Assuming linear function approximation with the coarse-codings in either A, B or C, which of the following is TRUE? (Select all that apply)

- Generalization is broader in case A as compared to case B.
- In case B, when updating the state marked by an 'x', the value function will be affected for a larger number of states as compared to case A.
 - Correct

Correct. In case B, the receptive fields of the features are larger and include a larger number of states.

In case C, each update results in more generalization along the vertical dimension, as compared to horizontal dimension.

Correct

3.

Correct. Updates to the state marked by the 'x' change the values for more states further away in the vertical dimension, as indicated by the greyed areas.	
☐ In case C, each update results in more generalization along the horizontal dimension, as compared to vertical dimension.	
Which of the following is TRUE about tile coding? (Select all that apply)	/1 point
✓ Tile coding is a form of coarse coding with tiles as its receptive fields.	
✓ Correct Correct.	
✓ Tile coding with one tiling is an instance of state aggregation.	
✓ Correct Correct.	
The size of the feature vector equals the number of tilings: each feature corresponds to one tiling.	
With only one tiling, generalization occurs only between states within the same tile.	
✓ Correct Correct.	

4.	When tile coding is used for feature construction, the number of active or non-zero features	1/1 point
	is the number of tiles.	
	is the number of tilings.	
	is the number of tilings multiplied by the number of tiles.	
	O depends on the state.	
	✓ Correct Correct.	
5.	Which of the following is TRUE about neural networks (NNs) ? (Select all that apply)	1/1 point
	A NN is feedforward if there are no paths within the network by which a unit's output can influence its input.	
	✓ Correct Correct.	
	Hidden layers are layers that are neither input nor output layers.	
	✓ Correct Correct.	
	The output of the units in NNs are typically a linear function of their input signals.	

/

NNs are parameterized functions that enable the agent to learn a nonlinear value function of state.

✓ Correct

Correct.

- The nonlinear functions applied to the weighted sum of the input signals are called the activation function.
 - ✓ Correct

Correct.

6. Which of the following is the rectified linear activation function?

1 / 1 point

- $igcap f(x) = rac{1}{1+e^{-x}}$
- $\bigcap f(x)=1$ if x>0 and 0 otherwise
- $igcap f(x) = rac{e^x e^{-x}}{e^x + e^{-x}}$
 - ✓ Correct

Correct.

7. Which of the following are TRUE statements? (Select all that apply)

0/1 point

An advantage of NNs is that learning can adapt the features, as compared to methods like tile coding.

Correct

Correct. The last hidden layer in a NN can be seen as the features, with the output weights weighting those features to produce a prediction. The NN adjusts all the parameters in the network, including those that produce the features.

An advantage of linear methods is that they can be more data efficient than NNs, but they rely on an expert to design the features appropriately.

✓ Correct

Correct.

NNs are powerful function approximators and can learn accurate value functions, but typically require many samples to train.

Correct

Correct.

A disadvantage of linear function approximation methods like tile coding is that they are linear in the input state.

X This should not be selected

Incorrect. Linear function approximation methods are linear in the given features or fixed basis. But, those features are a nonlinear function of state, making the linear weighting of those features a nonlinear function of state. For example, consider learning a value function over a 2D state with tile coding. The feature vector is a non-linear function of the input state, but the approximate values are a linear mapping from the binary features.

- 8. Which of the following is TRUE about backpropagation? (Select all that apply)
 - Backpropagation corresponds to updating the parameters of a neural network using gradient descent.

Correct

Correct. Neural networks are commonly trained using gradient descent. Backpropagation is an efficient way to compute and apply the gradient update.

Backpropagation involves computing the partial derivatives of an objective function with respect to the weights of the network.

Correct

Correct.

- The forward pass in backpropagation updates the weights of the network using the partial derivatives computed by the backward passes.
- Backpropagation computes partial derivatives starting from the last layer in the network, to save computation.

Correct

Correct. Because of the nested structure in the neural network, the partial derivatives for earlier layers have some shared components with layers near the output. Starting from the output layer means we can cache some of these shared computations, and avoid needlessly recomputing them.

9. Training neural networks (NNs) with backpropagation can be challenging because (Select all that apply)

1 / 1 point

10.

~	the	e loss surface might have flat regions, or poor local minima, meaning gradient descent gets stuck at poor solutions.
	✓	Correct.
✓	the	e initialization can have a big impact on how much progress the gradient updates can make and on the quality of the final solution.
	✓	Correct.
	nei	ural networks cannot accurately represent most functions, so the loss stays large.
~		rning can be slow due to the vanishing gradient problem, where if the partial derivatives for later nodes in the network are zero near zero then this causes earlier nodes in the network to have small or near zero gradient updates.
	✓	Correct.

https://www.coursera.org/learn/prediction-control-function-approximation/quiz/G6Ldz/constructing-features-for-prediction/view-attempt

0 / 1 point

Consider the following network:

where for a given input s, value of s is computed by:

$$\psi = sW^{[0]} + b^{[0]}$$

$$x = \mathit{max}(0, \psi)$$

$$v = xW^{[1]} + b^{[1]}$$

What is the partial derivative of v(s) with respect to $W_{ij}^{\left[0
ight]}$?

 \bigcirc s_i

- igcirc $W_j^{[1]} s_i$ if $x_j > 0$ and 0 otherwise
- $\bigcirc x$
- $igotimes W_j^{[1]} x_j$ if $x_j>0$ and 0 otherwise
 - Incorrect
- 11. Which of the following is TRUE? (Select all that apply)

1/1 point

- When using stochastic gradient descent, we often completely eliminate the error for each example.
- The difference between stochastic gradient descent methods and batch gradient descent methods is that in the former the weights get updated using one random example whereas in the latter they get updated based on batches of data.
 - ✓ Correct

Correct.

- Adagrad, Adam, and AMSGrad are stochastic gradient descent algorithms with adaptive step-sizes.
 - ✓ Correct

Correct.

network.

It is best to initialize the weights of a NN to small numbers so that the input signal does not grow rapidly as it passes through the network.

If possible, it would be best to initialize the weights of an NN near the global optimum.

Correct

Correct. Then the solution is just a few gradient descent steps away!

A reasonable way to initialize the NN is with random weights, with each weight sampled from a normal distribution with the variance scaled by the number of inputs to the layer for that weight.

Correct

Correct. This is the initialization strategy we discussed. It is by no means optimal, and how to improve the initialization is the subject of ongoing research.

1/1 point