Introduction to B&P: A Full-Fledged Example for the VRPTW

OeGOR Summer-School 2024, Krems

Timo Gschwind Lehrstuhl für BWL, insb. Logistik

R TU Rheinland-Pfälzische Technische Universität Kaiserslautern Landau

July 22 - 26, 2024

Agenda

- Vehicle Routing Problem With Time Windows
- 2 From Arc-Flow to Path-Based Formulation
- Column Generation (Solving the Root Node)
- Solving the Integer Problem
- Some Takeaways

VRP with Time Windows (VRPTW)

Task Find a cost-minimal set of vehicle routes, such that

- each customer is visited exactly once,
- each route starts and ends at the depot,
- the vehicle capacity is respected on all routes, and
- all customers are serviced within their time window.

VRP with Time Windows (VRPTW)

Notation:

```
N set of customers
        \rightarrow q_i demand of customer i
        \rightarrow [a<sub>i</sub>, b<sub>i</sub>] time window of customer i
o, d origin and destination depots
        \rightarrow no demand q_o = q_d = 0
        \rightarrow planning horizon [a_0, b_0] = [a_d, b_d]
  V set of vertices, V = N \cup \{o, d\}
   A set of arcs
        \rightarrow c_{ii} cost of arc (i, j)
        \rightarrow t_{ii} travel time of arc (i,j)
  K set of homogeneous vehicles
        \rightarrow Q capacity
```

Additionally:

$$\delta^+(i)/\delta^-(i)$$
 set of all outgoing/ingoing arcs of vertex $i \in N \cup \{o, d\}$

Arc-Flow Formulation (2-Index MTZ)

Decision variables:

- xii binary arc-flow variables
 - $\rightarrow x_{ij} = 1$ if a vehicle uses arc $(i,j) \in A$
 - $\rightarrow x_{ii} = 0$ otherwise
- u_i load variables (continuous)
 - \rightarrow the load of a vehicle after visiting vertex $i \in V$
- T_i time variables (continuous)
 - \rightarrow the start of service of a vehicle at vertex $i \in V$

Arc-Flow Formulation (2-Index MTZ)

$$z_{2I-MTZ}^{VRPTW} = \min \sum_{(i,j) \in A} c_{ij} x_{ij}$$
 (1a) s.t.
$$\sum_{(i,j) \in \delta^{+}(i)} x_{ij} = 1 \quad \forall \ i \in \mathbb{N}$$
 (1b)
$$\sum_{(i,j) \in \delta^{-}(j)} x_{ij} = 1 \quad \forall \ j \in \mathbb{N}$$
 (1c)
$$\sum_{(o,j) \in \delta^{+}(o)} x_{oj} = \sum_{(i,d) \in \delta^{-}(d)} x_{id} \leq |K|$$
 (1d)
$$u_{i} - u_{j} + Qx_{ij} \leq Q - q_{j} \quad \forall \ (i,j) \in A$$
 (1e)
$$q_{i} \leq u_{i} \leq Q \quad \forall \ i \in \mathbb{V}$$
 (1f)
$$T_{i} - T_{j} + Mx_{ij} \leq M - t_{ij} \quad \forall \ (i,j) \in A$$
 (1g)
$$a_{i} \leq T_{i} \leq b_{i} \quad \forall \ i \in \mathbb{V}$$
 (1h)
$$x_{ij} \in \{0,1\} \quad \forall \ (i,j) \in A$$
 (1i)

Arc-Flow Formulation (2-Index MTZ)

- (1a) Minimize total routing costs
- (1b)+(1c) Exactly one predecessor and successor for each customer
 - (1d) At most |K| routes (= vehicles)
 - (1e) Consistency of load variables and elimination of subtours
 - (1f) Capacity constraints
 - (1g) Consistency of time variables and elimination of subtours
 - (1h) Time-window constraints
 - (1i) Binary requirements

Arc-Flow Formulation (3-Index MTZ)

Decision variables:

- x_{ij}^{k} binary arc-flow variables
 - $\rightarrow x_{ij}^k = 1$ if vehicle k uses arc $(i, j) \in A$
 - $\rightarrow x_{ii}^{k} = 0$ otherwise
- uk load variables (continuous)
 - \rightarrow the load of vehicle k after visiting vertex $i \in V$
- T_i^k time variables (continuous)
 - \rightarrow the start of service of vehicle k at vertex $i \in V$

Arc-Flow Formulation (3-Index MTZ)

$$z_{3I-MTZ}^{VRPTW} = \min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ij}^{k}$$
 (2a)
$$s.t. \qquad \sum_{k \in K} \sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} = 1 \quad \forall \ i \in N$$
 (2b)
$$\sum_{(o,j) \in \delta^{+}(o)} x_{oj}^{k} = \sum_{(i,d) \in \delta^{-}(d)} x_{id}^{k} \le 1 \quad \forall \ k \in K$$
 (2c)
$$\sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} - \sum_{(j,i) \in \delta^{-}(i)} x_{ji}^{k} = 0 \quad \forall \ i \in N, k \in K$$
 (2d)
$$u_{i}^{k} - u_{j}^{k} + Qx_{ij}^{k} \le Q - q_{j} \quad \forall \ (i,j) \in A, k \in K$$
 (2e)
$$q_{i} \le u_{i}^{k} \le Q \quad \forall \ i \in N, k \in K$$
 (2f)
$$T_{i}^{k} - T_{j}^{k} + M_{ij}x_{ij}^{k} \le M_{ij} - t_{ij} \quad \forall \ (i,j) \in A, k \in K$$
 (2g)
$$a_{i} \le T_{i}^{k} \le b_{i} \quad \forall \ i \in N, k \in K$$
 (2h)
$$x_{ij}^{k} \in \{0,1\} \quad \forall \ (i,j) \in A, k \in K$$
 (2i)

Arc-Flow Formulation (3-Index MTZ)

- (2a) Minimize total routing costs
- (2b) Each customer is serviced exactly once
- (2c) At most one route for each vehicle
- (2d) Flow conservation
- (2e) Consistency of load variables and elimination of subtours
- (2f) Capacity constraints
- (2g) Consistency of time variables and elimination of subtours
- (2h) Time-window constraints
- (2i) Binary requirements

Path-Based Formulation

Additional notation:

- Ω set of feasible routes
- c_r cost of route $r \in \Omega$
- a_{ir} binary parameter equal to 1 if route r services customer i; 0 otherwise

Decision variables:

- λ_r binary route variables
 - $\rightarrow \lambda_r = 1$ if route $r \in \Omega$ is selected
 - $\rightarrow \lambda_r = 0$ otherwise

Path-Based Formulation

$$z_{Path}^{VRPTW} = \min \sum_{r \in \Omega} c_r \lambda_r \tag{3a}$$

s.t.
$$\sum a_{ir}\lambda_r = 1 \quad \forall \ i \in N$$
 (3b)

$$\sum_{r \in \mathcal{O}} \lambda_r \le |\mathcal{K}| \tag{3c}$$

$$\lambda_r \in \{0,1\} \quad \forall \ r \in \Omega$$
 (3d)

- (3a) Minimize total routing costs
- (3b) Each customer is serviced exactly once
- (3c) At most |K| routes
- (3d) Binary requirements

VRPTW Formulations – Properties

Arc-flow formulations:

- Number of variables:
 - $\begin{array}{lll} \rightarrow & \mathcal{O}\left(|V|^2\right) \text{ binary} & \text{(2I)} \\ \rightarrow & \mathcal{O}\left(|V|\right) \text{ continuous} & \text{(2I)} \\ \rightarrow & \mathcal{O}\left(|V|^2 \cdot |K|\right) \text{ binary} & \text{(3I)} \\ \rightarrow & \mathcal{O}\left(|V| \cdot |K|\right) \text{ continuous} & \text{(3I)} \end{array}$
- Number of constraints:

- Compact model
 - \rightarrow solvable with standard software
- Very weak linear relaxations

Path-based formulation:

- Number of variables:
 - → exponential (binary)

Number of constraints:

$$\rightarrow |N| + 1$$

- Cannot be fully formulated
 - → not solvable with standard software
- Very strong linear relaxation

Agenda

- Vehicle Routing Problem With Time Windows
- 2 From Arc-Flow to Path-Based Formulation
- 3 Column Generation (Solving the Root Node)
- 4 Solving the Integer Problem
- Some Takeaways

Recall: 3-Index Formulation

$$z_{3l-MTZ}^{VRPTW} = \min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ij}^{k}$$
 (2a) s.t.
$$\sum_{k \in K} \sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} = 1 \quad \forall \ i \in N$$
 (2b)
$$\sum_{(o,j) \in \delta^{+}(o)} x_{oj}^{k} = \sum_{(i,d) \in \delta^{-}(d)} x_{id}^{k} \le 1 \quad \forall \ k \in K$$
 (2c)
$$\sum_{(i,j) \in \delta^{+}(i)} x_{ij}^{k} - \sum_{(j,i) \in \delta^{-}(i)} x_{ji}^{k} = 0 \quad \forall \ i \in N, k \in K$$
 (2d)
$$u_{i}^{k} - u_{j}^{k} + Q x_{ij}^{k} \le Q - q_{j} \quad \forall \ (i,j) \in A, k \in K$$
 (2e)
$$q_{i} \le u_{i}^{k} \le Q \quad \forall \ i \in N, k \in K$$
 (2f)
$$T_{i}^{k} - T_{j}^{k} + M_{ij} x_{ij}^{k} \le M_{ij} - t_{ij} \quad \forall \ (i,j) \in A, k \in K$$
 (2g)
$$a_{i} \le T_{i}^{k} \le b_{i} \quad \forall \ i \in N, k \in K$$
 (2h)
$$x_{ij}^{k} \in \{0,1\} \quad \forall \ (i,j) \in A, k \in K$$
 (2i)

Dantzig-Wolfe Reformulation

Main idea:

- Constraints (2c)–(2i) can be considered separately for each vehicle
- Individual (identical) problem for each vehicle: build a feasible route
- What remains: find a combination of routes of all vehicles such that each customer is serviced exactly once and the routing costs are minimum

Dantzig-Wolfe Reformulation

Problem formulation with routing variables:

$$\begin{split} \min \sum_{k \in \mathcal{K}} \sum_{r \in \Omega^k} c_r \lambda_r^k \\ \sum_{k \in \mathcal{K}} \sum_{r \in \Omega^k} a_{ir} \lambda_r^k &= 1 \quad \forall \ i \in \mathcal{N} \\ \sum_{r \in \Omega^k} \lambda_r &\leq 1 \quad \forall \ k \in \mathcal{K} \\ \lambda_r^k &\in \{0,1\} \quad \forall \ k \in \mathcal{K}, r \in \Omega^k \end{split}$$

With:

- c_r cost of route r
- $a_{ir} = 1$, if route r visits customer i, = 0 otherwise
- $\lambda_r^k = 1$, if route r is selected, = 0 otherwise

Definition of the routing variables:

$$\Omega^k = \left\{ r = \left(x_{ij}^k \right) \right\}, \text{ with}$$

$$\sum_{(o,j) \in \delta^+(o)} x_{oj}^k = \sum_{(i,d) \in \delta^-(d)} x_{id}^k \le 1$$

$$\sum_{(i,j) \in \delta^+(i)} x_{ij}^k - \sum_{(j,i) \in \delta^-(i)} x_{ji}^k = 0 \quad \forall \ i \in \mathbb{N}$$

$$u_i^k - u_j^k + Q x_{ij}^k \le Q - q_j \quad \forall \ (i,j) \in \mathbb{A}$$

$$q_i \le u_i^k \le Q \quad \forall \ i \in \mathbb{N}$$

$$T_i^k - T_j^k + M_{ij} x_{ij}^k \le M_{ij} - t_{ij} \quad \forall \ (i,j) \in \mathbb{A}$$

$$a_i \le T_i^k \le b_i \quad \forall \ i \in \mathbb{N}$$

$$x_{ij}^k \in \{0,1\} \quad \forall \ (i,j) \in \mathbb{A}$$

Dantzig-Wolfe Reformulation

All vehicles are identical: aggregation! \rightarrow less variables, less symmetry

Aggregated problem formulation with routing variables:

$$\begin{split} \min \sum_{r \in \Omega} c_r \lambda_r \\ \sum_{r \in \Omega} a_{ir} \lambda_r &= 1 \quad \forall \ i \in \textit{N} \\ \sum_{r \in \Omega} \lambda_r &\leq |\mathcal{K}| \\ \lambda_r &\in \{0,1\} \quad \forall \ r \in \Omega \end{split}$$

⇒ path-based formulation

Definition of the aggregated routing variables:

$$\Omega = \left\{r = \left(x_{ij}\right)\right\}, \text{ with}$$

$$\sum_{(o,j) \in \delta^+(o)} x_{oj} = \sum_{(i,d) \in \delta^-(d)} x_{id} \le 1$$

$$\sum_{(i,j) \in \delta^+(i)} x_{ij} - \sum_{(j,i) \in \delta^-(i)} x_{ji} = 0 \quad \forall \ i \in \mathbb{N}$$

$$u_i - u_j + Qx_{ij} \le Q - q_j \quad \forall \ (i,j) \in A$$

$$q_i \le u_i \le Q \quad \forall \ i \in \mathbb{N}$$

$$T_i - T_j + M_{ij}x_{ij} \le M_{ij} - t_{ij} \quad \forall \ (i,j) \in A$$

$$a_i \le T_i \le b_i \quad \forall \ i \in \mathbb{N}$$

$$x_{ij} \in \{0,1\} \quad \forall \ (i,j) \in A$$

Agenda

- Vehicle Routing Problem With Time Windows
- 2 From Arc-Flow to Path-Based Formulation
- 3 Column Generation (Solving the Root Node)
- 4 Solving the Integer Problem
- 5 Some Takeaways

Revisiting: Branch-&-Bound for MIPs – Scheme

Branch-&-Price - Scheme

Restricted Master Problem (RMP)

The Restricted Master Problem (RMP):

- LP-relaxation of the path-based formulation
- The set Ω of feasible routes is replaced by a (small) subset $\bar{Ω}$

$$\begin{array}{lll} z_{RMP} & = & \min \sum_{r \in \bar{\Omega}} c_r \lambda_r \\ & \text{s.t.} & \sum_{r \in \bar{\Omega}} a_{ir} \lambda_r = 1 & \forall \ i \in N \\ & \sum_{r \in \bar{\Omega}} \lambda_r \leq |K| \\ & \lambda_r \geq 0 & \forall \ r \in \bar{\Omega} \end{array}$$

Initialization of $\bar{\Omega}$, e.g., with:

- Heuristic solution
- Dummy variables

Restricted Master Problem (RMP) – Example

Heuristic solution:

Given

Customers with demands ■ and time windows []

Wehicles with capacity Q = 6

Restricted Master Problem (RMP) – Example

Initial RMP with routes of heuristic solution:

$$\begin{array}{cccc} \min & 6\lambda_1 & +9\lambda_2 \\ & \lambda_1 & & = 1 \\ & \lambda_1 & & = 1 \\ & & \lambda_2 & = 1 \\ & & \lambda_2 & = 1 \\ & & \lambda_1 & +\lambda_2 & \leq 2 \\ & \lambda_1 & \geq 0 \\ & & \lambda_2 & \geq 0 \end{array}$$

Branch-&-Price - Scheme

RMP Solution and Dual Prices - Example

RMP with heuristic solution in standard form:

1. Simplex tableau:

	Cj	6	9	Μ	Μ	Μ	Μ		
C B	ΧB	λ_1	λ_2	s ₁	s ₂	s 3	S 4	S 5	Ь'
M	s ₁	1	0	1					1
Μ	s 2	1	0		1				1
Μ	5 3	0	1			1			1
Μ	<i>S</i> ₄	0	1				1		1
0	s 5	1	1					1	2
	~ Čj	6 - 2M	9 - 2M						4M

RMP Solution and Dual Prices – Example

2. Simplex tableau:

	c_j	6	9	М	Μ	Μ	Μ		
c _B	ΧB	λ_1	λ_2	S 1	s 2	5 3	S 4	S 5	b'
6	λ_1	1	0	1					1
Μ	s ₂		0	-1	1				0
Μ	5 3		1	0		1			1
Μ	S 4		1	0			1		1
0	s 5		1	-1				1	1
	\tilde{c}_{j}		9 – 2 <i>M</i>	2 <i>M</i> – 6					2M + 6

3. Simplex tableau (final tableau):

	c_j	6	9	М	Μ	М	Μ		
СВ	XB	λ_1	λ_2	<i>s</i> ₁	s 2	S 3	S 4	S 5	b'
6	λ_1	1		1					1
Μ	s ₂			-1	1				0
9	λ_2		1	0		1			1
Μ	S 4			0		-1	1		0
0	s 5			-1		-1		1	0
	\tilde{c}_{j}			2 <i>M</i> – 6		2 <i>M</i> – 9			15

RMP Solution and Dual Prices

Dual variables and dual prices:

- Each constraint is associated with a dual variable
- In the optimum: the value of the dual variable (also: shadow price, dual price) of a constraint indicates (within certain limits) how the objective function value changes when the right hand side is increased by one unit
- Alternative interpretation (in CG/VRP-context): Attractiveness to service the customer in a missing route, w.r.t. the current RMP solution
- Dual prices $c_B^\top B^{-1}$

$$egin{array}{lcl} z_{\it RMP} &=& \min \sum_{r \in ar{\Omega}} c_r x_r & ({
m dual \; prices}) \\ {
m s.t.} && \sum_{r \in ar{\Omega}} a_{ir} x_r = 1 & orall \; i \in {\it N} & (\pi_i) \\ && \sum_{r \in ar{\Omega}} x_r \leq |{\it K}| & (\mu) \\ && x_r \geq 0 & orall \; r \in ar{\Omega} \end{array}$$

RMP Solution and Dual Prices

3. Simplex tableau (final tableau):

	c_j	6	9	М	М	М	Μ		
c_B	ХB	λ_1	λ_2	<i>s</i> ₁	s ₂	s ₃	<i>S</i> ₄	<i>S</i> 5	b'
6	λ_1	1		1					1
Μ	s ₂			-1	1				0
9	λ_2		1	0		1			1
Μ	<i>S</i> ₄			0		-1	1		0
	<i>S</i> ₅			-1		-1		1	0
	\tilde{c}_j			2 <i>M</i> – 6		2 <i>M</i> – 9			15

Dual price of a constraint: difference of cost and reduced cost of the associated slack/auxiliary variable

$$\pi_1 := c_{s_1} - \tilde{c}_{s_1} = -M + 6$$

$$\pi_2:=c_{s_2}-\tilde{c}_{s_2}=M$$

$$\pi_3 := c_{s_3} - \tilde{c}_{s_3} = -M + 9$$

$$\pi_4:=c_{s_4}-\tilde{c}_{s_4}=M$$

$$\mu:=c_{s_5}-\tilde{c}_{s_5}=0$$

Branch-&-Price - Scheme

Subproblem (= Pricing Problem)

Subproblem task: identify missing routes or prove that none exists

- \blacksquare Missing routes r are those that improve the objective function value
 - \rightarrow route $r \in \Omega$ is attractive, if its reduced cost \tilde{c}_r is negative
 - $\,\rightarrow\,$ inclusion in the basis may(!) improve the objective function value
- Reduced cost of a route is defined as:

$$\tilde{c}_r := c_r - c_B^{\mathsf{T}} B^{-1} a^r = c_r - \sum_{i \in N} \pi_i a_{ir} - \mu$$

- \rightarrow problem: route r is unknown
- \rightarrow cost c_r and visited customers a_{ir} are unknown
- Routes r need to be feasible, i.e., $r \in \Omega$
- \Rightarrow **Optimization problem:** Find a feasible route r (i.e., determine c_r and a_{ir}) with minimum reduced cost given π_i and μ

$$\min_{r \in \Omega} \tilde{c}_r$$

Subproblem (= Pricing Problem)

$$z_{Sub} = \min \sum_{(i,j) \in A} c_{ij} x_{ij} - \sum_{i \in N} \pi_i \left(\sum_{(i,j) \in \delta^+(i)} x_{ij} \right) - \mu$$

$$\sum_{(o,j) \in \delta^+(o)} x_{oj} = \sum_{(i,d) \in \delta^-(d)} x_{id} \le 1$$

$$\sum_{(i,j) \in \delta^+(i)} x_{ij} - \sum_{(j,i) \in \delta^-(i)} x_{ji} = 0 \quad \forall i \in N$$

$$u_i - u_j + Q x_{ij} \le Q - q_j \quad \forall (i,j) \in A$$

$$q_i \le u_i \le Q \quad \forall i \in N$$

$$T_i - T_j + M_{ij} x_{ij} \le M_{ij} - t_{ij} \quad \forall (i,j) \in A$$

$$a_i \le T_i \le b_i \quad \forall i \in N$$

$$(4a)$$

$$(4b)$$

$$(4c)$$

$$(4c)$$

$$(4c)$$

$$(4d)$$

$$(4e)$$

$$(4e)$$

$$(4f)$$

$$(4g)$$

 Constraints (4b)–(4h) correspond with Constraints (2c)–(2i) of the 3-index formulation (removing index k)

 $x_{ii} \in \{0,1\} \quad \forall (i,j) \in A$

- Elementary shortest path problem with resource constraint (ESPPRC)
- NP-hard

(4h)

Subproblem (= Pricing Problem)

Our example:

- Recall: $\pi_1 = -M + 6$, $\pi_2 = M$, $\pi_3 = -M + 9$, $\pi_4 = M$, $\mu = 0$
- Optimal solution (e.g., via MIP solver):
 - \rightarrow **z**_{Sub} = 5 − 2*M* < 0 \rightarrow $x_{o2}^* = x_{24}^* = x_{4d}^* = 1$ $u_2^* = 2$; $u_4^* = 3$ $T_2^* = 4$; $T_4^* = 5$ \rightarrow all other variables: value of zero

Remarks:

- Route with negative reduced cost found → add to RMP (→ following slides)
- No route with $\tilde{c}_r < 0$ exists \rightarrow RMP is solved to optimality
- It is not necessary to identify a route with minimum \tilde{c}_r
- Instead of adding only one new route to the RMP, multiple (or all) routes with negative reduced costs can be added
- ESPPRC subproblem can be solved more effectively with a labeling algorithm

Branch-&-Price - Scheme

Route Construction and RMP

The following properties of a route $r \in \Omega$ are relevant for the RMP:

- cr cost of the route
- a_{ir} the number of services to customers i in the route

Can be easily extracted from the solution of the subproblem (let (x^*, u^*, T^*) be the optimal solution):

We have

$$c_r = \sum_{(i,j)\in A} c_{ij} x_{ij}^*$$

and

$$a_{ir} = \sum_{(i,j) \in \delta^+(i)} x_{ij} \;\; orall \;\; i \in \mathcal{N} \quad ext{ and } \quad a_{|\mathcal{N}|+1,r} = 1$$

■ The new column $a^{r'}$ in the current Simplex tableau is given by:

$$a^{r'} := (B^{-1} \cdot (a_{1r}, \dots, a_{|N|,r}, a_{|N|+1,r})^{\top})$$

Route Construction and RMP

Our example:

Recall: optimal subproblem solution:

→
$$z_{Sub} = 5 - 2M < 0$$

→ $x_{o2}^* = x_{24}^* = x_{4d}^* = 1$ $u_2^* = 2$; $u_4^* = 3$ $T_2^* = 4$; $T_4^* = 5$
→ all other variables: value of zero

■ The corresponding route variable λ_3 is given by:

$$ightarrow c_3 = 2x_{o2}^* + 1x_{24}^* + 2x_{4d}^* = 5$$

 $ightarrow a_{23} = a_{43} = 1$ $a_{13} = a_{33} = 0$ $a_{53} = 1$

■ The column in the current Simplex tableau:

$$a^{3'} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ -1 & 0 & -1 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$$

Route Construction and RMP

Our example: Simplex tableau extended by new column

1. Simplex tableau of 2. RMP iteration:

	Cj	6	9	5	М	Μ	М	Μ		
c _B	ΧB	λ_1	λ_2	λ_3	<i>s</i> ₁	s ₂	S 3	<i>S</i> ₄	s 5	b'
6	λ_1	1		0	1		0			1
Μ	s 2			1	-1	1	0			0
9	λ_2		1	0	0		1			1
Μ	<i>S</i> ₄			1	0		-1	1		0
0	s 5			1	-1		-1		1	0
	~			5 – 2 <i>M</i>	2M - 6		2 <i>M</i> – 9			15

2. Simplex tableau of 2. RMP iteration:

	C _j	6	9	5	Μ	М	М	Μ		
c _B	ΧB	λ_1	λ_2	λ_3	<i>s</i> ₁	s ₂	S 3	S 4	s 5	b'
6	λ_1	1			1	0	0			1
5	λ_3			1	-1	1	0			0
9	λ_2		1		0	0	1			1
Μ	<i>S</i> ₄				1	-1	-1	1		0
0	s ₅				0	-1	-1		1	0
	\tilde{c}_{j}				-1	2 <i>M</i> – 5	2 <i>M</i> – 9			15

Route Construction and RMP

3. Simplex tableau of 2. RMP iteration:

	c_j	6	9	5	Μ	М	М	Μ		
СВ	ΧB	λ_1	λ_2	λ_3	s ₁	s 2	5 3	S 4	S 5	b'
6	λ_1	1				1	1	-1		1
5	λ_3			1		0	-1	1		0
9	λ_2		1			0	1	0		1
Μ	s ₁				1	-1	-1	1		0
0	s 5					-1	-1	0	1	0
	\tilde{c}_j					2 <i>M</i> – 6	2 <i>M</i> – 10	1		15

Dual prices:

$$\pi_1 := c_{s_1} - \tilde{c}_{s_1} = M$$
 $\pi_2 := c_{s_2} - \tilde{c}_{s_2} = -M + 6$
 $\pi_3 := c_{s_3} - \tilde{c}_{s_3} = -M + 10$
 $\pi_4 := c_{s_4} - \tilde{c}_{s_4} = M - 1$
 $\mu := c_{s_5} - \tilde{c}_{s_5} = 0$

(An) optimal solution of the subproblem:

$$z_{Sub} = 7 - 2M < 0$$
 $x_{o4}^* = x_{41}^* = x_{1d}^* = 1$ $u_1^* = 5$; $u_4^* = 1$ $T_1^* = 4$; $T_4^* = 2$ all other variables: value of zero corresponding route λ_4 : $c_4 = 6$ $a_{14} = a_{44} = a_{54} = 1$ $a_{24} = a_{34} = 0$

Example - Continued

Dual prices									ne	w coli	umn		
Iter.	π_1	π_2	π_3	π_4	μ		#	Cr	a _{1r}	a _{2r}	a 3r	a _{4r}	<i>a</i> ₅ <i>r</i>
3	<i>M</i> -3	9- <i>M</i>	М	9- <i>M</i>	0		5	4	0	0	1	0	1
4	6	5	9	5	-5		6	10	0	1	1	1	1
5	4	3	5	3	-1				2	$z_{Sub} \geq$	0		

Final Simplex tableau of 5. RMP iteration:

	Cj	6	9	5	6	4	10	М	М	М	М		
CB	ΧB	λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	<i>s</i> ₁	s ₂	s ₃	S 4	S 5	Ь'
6	λ_1	1	$-\frac{1}{2}$	0	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$
6	λ_4	0	$\frac{1}{2}$	0	1	0	0	$\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	$\frac{1}{2}$
4	λ_5	0	$\frac{1}{2}$	0	0	1	0	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$-\frac{1}{2}$	1	1/2
10	λ_6	0	$\frac{1}{2}$	0	0	0	1	$\frac{1}{2}$	$\frac{1}{2}$	1	$\frac{1}{2}$	-1	$\frac{1}{2}$
5	λ_3	0	0	1	0	0	0	-1	0	-1	0	1	0
	\tilde{c}_{j}		2					M – 4	<i>M</i> – 3	<i>M</i> – 5	<i>M</i> – 3	1	13

Optimal RMP solution:

$$\lambda_1^* = \lambda_4^* = \lambda_5^* = \lambda_6^* = \frac{1}{2}$$

all other variables: value of zero

Agenda

- Vehicle Routing Problem With Time Windows
- 2 From Arc-Flow to Path-Based Formulation
- 3 Column Generation (Solving the Root Node)
- 4 Solving the Integer Problem
- 5 Some Takeaways

Branch-&-Price - Scheme

Branching

If the optimal RMP solution λ_r^* is fractional, then branch-&-bound is required to obtain an integer solution:

- Branching directly on the λ_r variables is not advisable
 - I decision $\lambda_r = 1$ is very strong, $\lambda_r = 0$ is very weak \rightarrow unbalanced branch-&-bound tree
 - I difficult to outcome in the outcome blace
 - 2 difficult to enforce in the subproblem
- Branch on the (aggregated) arc variables $x_{ij} = \sum_{k \in K} x_{ij}^k$ of the original 3-index formulation:
 - \rightarrow support graph of solution λ_r^* : route variables λ_r are translated back into the aggregated arc variables x_{ii}
 - \rightarrow branch on a variable x_{ii} with fractional solution value
 - > e.g., value closest to 0.5
 - > two child nodes: $x_{ij} = 0$ and $x_{ij} = 1$

Branching - Support Graph

Our example:

- Recall: optimal solution of LP relaxation is $\lambda_1^* = \lambda_4^* = \lambda_5^* = \lambda_6^* = \frac{1}{2}$
- Corresponding routes:

$$\lambda_1 = (o-1-2-d)$$
 $\lambda_4 = (o-1-4-d)$ $\lambda_5 = (o-3-d)$ $\lambda_6 = (o-4-2-3-d)$

■ Support graph:

 \Rightarrow branching, e.g., on x_{12}

Branch-&-Price - Scheme

RMP Construction and Subproblem after Branching

Active branching decisions must be respected by RMP and subproblem:

- Here: Branching decisions enforce or forbid arcs
 - ightarrow can be realized using a reduced arc set $A'\subset A$ when solving the node
 - $x_{ij}=0$ remove arc (i,j) from A' $x_{ij}=1$ remove arcs $(i,k), k \neq j$ and $(h,j), h \neq i$ from A'
 - → the second implication follows because each customer is serviced exactly once
 - \rightarrow (be careful if i = o or j = d)
- Implementation of branching decision:
 - → Remove all routes from the RMP that use excluded arcs
 - \rightarrow Solve the subproblem over the reduced arc set A'

RMP Construction and Subproblem after Branching

Our example: (node N_1)

- Routes in the RMP: $\lambda_1 = (o-1-2-d)$ $\lambda_2 = (o-3-4-d)$ $\lambda_3 = (o-2-4-d)$ $\lambda_4 = (o-1-4-d)$ $\lambda_5 = (o-3-d)$ $\lambda_6 = (o-4-2-3-d)$
- Branching decision $x_{12} = 0 \Rightarrow$ remove route λ_1
- 1. Simplex tableau:

	c_j	9	5	6	4	10	Μ	Μ	Μ	Μ		
СВ	ΧB	λ_2	λ_3	λ_4	λ_5	λ_6	s_1	s ₂	s 3	<i>S</i> ₄	<i>S</i> ₅	b'
М	<i>s</i> ₁	0	0	1	0	0	1					1
Μ	s ₂	0	1	0	0	1		1				1
Μ	s 3	1	0	0	1	1			1			1
Μ	<i>S</i> ₄	1	1	1	0	1				1		1
0	<i>S</i> ₅	1	1	1	1	1					1	2
	\tilde{c}_j	9 – 2 <i>M</i>	5 – 2 <i>M</i>	6 – 2 <i>M</i>	4 – M	10 – 3 <i>M</i>						4 <i>M</i>

- Newly generated route: $\lambda_7 = (o-1-d)$ with $c_7 = 4$
- Optimal solution of LP relaxation: $\lambda_6^* = \lambda_7^* = 1$ (integer!) with objective function value 14

RMP Construction and Subproblem after Branching

Our example: (node N_2)

- Routes in the RMP: $\lambda_1 = (o-1-2-d)$ $\lambda_2 = (o-3-4-d)$ $\lambda_3 = (o-2-4-d)$ $\lambda_4 = (o-1-4-d)$ $\lambda_5 = (o-3-d)$ $\lambda_6 = (o-4-2-3-d)$
- Branching decision $x_{12} = 1 \Rightarrow$ remove routes λ_3, λ_4 , and λ_6
- 1. Simplex tableau:

	c_j	6	9	4	Μ	Μ	Μ	Μ		
c_B	ΧB	λ_1	λ_2	λ_5	s_1	<i>s</i> ₂	s ₃	<i>S</i> ₄	<i>S</i> ₅	b'
M	<i>s</i> ₁	1	0	0	1					1
Μ	s ₂	1	0	0		1				1
Μ	s ₃	0	1	1			1			1
Μ	<i>S</i> ₄	0	1	0				1		1
0	<i>S</i> ₅	1	1	1					1	2
	\tilde{c}_j	6 – 2 <i>M</i>	9 – 2 <i>M</i>	4 – <i>M</i>						4 <i>M</i>

- Newly generated route: $\lambda_8 = (o-4-d)$ with $c_8 = 4$
- Optimal solution of LP relaxation: $\lambda_1^* = \lambda_2^* = 1$ (integer!) with objective function value 15

Branch-&-Bound Tree - Example

- The branch-&-price algorithm terminates after processing the two child nodes N_1 and N_2
- Optimal solution: solution of node N_1 with total routing costs of 14.

Agenda

- Vehicle Routing Problem With Time Windows
- 2 From Arc-Flow to Path-Based Formulation
- 3 Column Generation (Solving the Root Node)
- 4 Solving the Integer Problem
- 5 Some Takeaways

Some Takeaways

- Path-based formulation was natural for the VRPTW
 - ightarrow extended set-partitioning formulation that selects the best routes to service all customers
- Structured way to obtain path-based formulation (= extensive or CG formulation) from 3-index formulation (= original formulation)
 - \rightarrow (knowledge of) original formulation also exploited in the B&P algorithm
- Branching is somewhat tricky
 - → major impact on implementation effort
 - ightarrow cannot rely on branch-&-bound tree of standard solver (as opposed to branch-&-cut with user cuts)