A field guide to automated cloning

Jim Xu, Almer van der Sloot, Raik Grünberg

The Team

Tyers lab, IRIC, University of Montreal

Fast Prototyping of Synthetic Protein Systems

automated DNA assembly

DNA Assembly Workflow

concentration/

What robots cannot (easily) do...

...money can solve.

Shuttling samples to various incubators & storage

Automated Storage Systems

transformation

colony picking

QPix 400

gel electrophoresis

Fragment Analyzer

...lots of money...

Shuttling samples to various incubators & storage

Automated Storage Systems

transformation

colony picking

QPix 400

gel electrophoresis

Fragment Analyzer

Robotic Setup

on-deck Colony picking

Thermoshakers

regulated vaccuum

-20 to 110 C heating/cooling Dockable worktables for ForteBio and plate reader

Colony picking

Thermoshakers

regulated dual vaccuum

-20 to 110 C heating/cooling

colony picking

Transformation

Robotic Workflow

- Fragment PCR-setup
- - PCR cherry picking

- 2 PCR cleanup
- 3 DNA normalization
- 4 Gibson assembly

Agar filling

- 5 Transformation
- 6 Colony picking setup
- 7 Colony picking

- 8 Colony PCR setup
- 9 Cherry-pick / inoculation

10 Glycerol stock

11 DNA Miniprep

Kit regeneration

New Bottlenecks

1 construct design

2 assembly design

3 primer & gene synthesis

4 DNA assembly

5 Quality Control

6 Sample & Construct Management

1 construct design

2 assembly design

3 primer & gene synthesis

4 DNA assembly

5 Quality Control

6 Sample & Construct Management

Rotten Microbes http://rotmic.org

Overview

Data Sheet	s (Constructs)		
	DNA constructs	♣ Add	
	Modified Cells	⊕ Add	
	Oligonucleotides	⊕ Add	
	Proteins	⊕ Add	
	Chemicals & Reagents	♣ Add	

Actual Sam	DNA Samples	♣ Add
	Cell stock Samples	⊕ Add
	Oligonucleotide Samples	♣ Add
	Protein Samples	♣ Add
	Chemical & Reagent Samples	♣ Add
	All Samples	

Storage Lo	cations & Containers	
	Locations (freezers or rows)	♣ Add
	Racks (or shelves)	♣ Add
	Containers (boxes)	♣ Add

Miscellaneous	
Projects	. Add
Sequencing Results	. Add
My personal settings	

History

Edit

by Raik Gruenberg (raik), Projects: hiFRET;

FRB-mCherry reference construct with long linker.

Note: Expression in BL21 typically produces an additional, truncated protein product. This is due to a cryptic RBS within the mCherry N-terminal. This lighter protein can make up more than 50% of total and needs to be removed by gel filtration.

Sequence links and composition Insert Vector Backbone Vector Markers rg2041ec sbv0001 mrk0002 (KanR) FR-20-Che pJEx411a [Fragment / CDS] [bacterial expression] Attachments

No attachments found.

Status: available

0 comments

Classification

Plasmid / generic plasmid

DNA properties

- Length: 5070 bp
- GC content: 50.0

Record

registered:

June 19, 2014, 6:48 p.m. by Raik Gruenberg (raik)

last modified:

June 1, 2015, 8:36 a.m. by Raik Gruenberg (raik)

Export

Download GenBank file

History

Edit

Content

DNA construct sb0330 (CD63wt pJ603c)

control construct expressing wt CD63

Sample Description

Sequenced OK

	S	Add Sequencing			
date	ordered By	traces	comments	result	
DJX01-12_20140813_7 2014-08 -1	12 jim	1	(Created through trace fil	confirmed	Delete
Help: Click first column to view / edit segu	encing entries				

Help: Click first column to view / edit sequencing entries.

Source and derrived samples

DL-JX: 57 DNA sb0330 (CD63wt_pJ603c)	This Sample
--	-------------

Related Samples: 2

The following samples have the same content as DJX01:12:

location	ID/ Pos.	prepared	by	Туре	Content	Description	Status
F1 / SynBio2C / DJX01	13	July 3, 2014	jim	DNA	sb0330 (CD63wt_pJ603c)		ok
F1 / SynBio2C / DL-JX	57	May 30, 2014	jim	DNA	sb0330 (CD63wt_pJ603c)	Sequenced ok.	ok

Help: Move mouse over content link to see content description. Move mouse over sample description to see full length description.

fresh! Raik Gruenberg - June 1, 2015, 8:52 a.m.

good colony count in robotic transformation.

--delete this comment--

Feedback

Status: ok

fresh! score: 100%

1 comment:

fresh: 1 | rotten: 0 | no rating: 0

Specifications

Concentration: 103.0 ng/μl

- Amount: 50.0 μl

Medium/Buffer: EB

Experiment #:

Record

prepared:

2014-07-03 by Jim Xu (jim)

registered:

July 8, 2014, 10:42 a.m. by Jim Xu (jim)

last modified:

July 8, 2014, 10:42 a.m. by Jim Xu (jim)

Key Lessons

Useful platform for \$250k (or less)

Be modular & improve iteratively

Embrace Excel

Have two + x independent users

Vision / Outlook

Optimized Workflows

LIMS Integration

Standardized Synthetic Biology Workstation(s)

Conclusion

- 1 Automated cloning is getting within reach of "normal" labs.
- This creates new needs for the tracking of large numbers of samples, constructs, quality control data, protocol versioning, logs ...
- A key challenge is the transfer of workflows / protocols between different robotic setups.

