ECE 0402 - Pattern Recognition

Lecture 7 on 2/7/2022

Supplementary reading for today's lecture: "Learning from Data" Chapter 2.1.1 and 2.1.2

So far, we talked about:

- Linear Discriminant Analysis
- Logistic Regression
- Perceptron Learning Algorithm
- Maximum margin hyperplanes

Pictured data set is not linearly separable but can be in a higher dimension with a transform:

Best way to Separate is with circle

Line to

This dataset is linearly separable after applying such transformation with $\mathbf{w} = [-1, 0, 0, 1, 1]^T$

Fundamental Tradeoff: By mapping the data to a higher-dimensional space, the set of linear classifiers becomes a "richer set".

Richer set of hypothesis
$$\implies \begin{cases} \hat{R}_n(h^*) & \downarrow \\ \hat{R}_n(h^*) - R(h^*) & \uparrow \end{cases}$$

1

Figure 1: Tradeoff

Measure for "richness":

When can we have confidence that $\hat{R}_n(h^*) \approx R(h^*)$ where h^* is chosen from an **infinite set** \mathcal{H} .

• For a single hypothesis,

$$\mathbb{P}[\mid \hat{R}_n(h) - R(h) \mid > \epsilon] \leq 2e^{-2epsilon^2 n}$$

• For $m = |\mathcal{H}|$ hypothesis, and $h^* \in |\mathcal{H}|$

$$\mathbb{P}[\mid \hat{R}_n(h^*) - R(h^*) \mid > \epsilon] \leq 2me^{-2epsilon^2 n}$$

Where did m come from? Union bound:

$$\mathbb{P}[\varepsilon_1 \cup \ldots \cup \varepsilon_m] \leq \mathbb{P}[\varepsilon_1] + \ldots + \mathbb{P}[\varepsilon_m]$$

Here the events we are bounding:

$$\varepsilon_j = |\hat{R}_n(h_j) - R(h_j)| > \epsilon$$

So pictorially, possibilities for these bad events:

One thing clear from this picture is we can improve on m is there is an overlap between "bad events". In other words get a better bound than union suggests. It turns out in reality, we are much closer to the situation on right figure, there is tremendous overlap between bad events.

Figure 2: Dichotomies

What can we substitute m with? These events are very overlapping, using the union bound is not the best idea.

- Small changes into hypothesis may lead into small changes in true risk
- Rather than considering all possible hypothesis we have in \mathcal{H} , we will consider a finite set of input points $x_1, ..., x_n$ and "combine" hypothesis that result in the same labeling.
 - we call a particular labeling of $x_1, ..., x_n$ a **dichotomy**

Hypotheses vs dichotomies:

How many ways can you label n deta points (binary classification)? -> 2^ (dichotomy)

Hypotheses

- $h: \mathcal{X} \to \{-1, +1\}$
- ullet Number of hypothesis is $\mid \mathcal{H} \mid$ potentially infinite
- $|\mathcal{H}|$ (or m) is a poor way to measure "richness" of \mathcal{H} .

Dichotomies

- $h: \{x_1, ..., x_n\} \to \{-1, +1\}$
- Number of dichotomies $| \mathcal{H}(x_1,...,x_n) |$ is at most 2^n .
- Good candidate for replacing $\mid \mathcal{H} \mid$ as a measure of "richness".

The growth function: A dichotomy is defined in terms of a particular $x_1, ..., x_n$. The growth function of \mathcal{H} is defined as: $m_{\mathcal{H}}(n) = \max_{x_1, ..., x_n \in \mathcal{X}} | \mathcal{H}(x_1, ..., x_n) |$ $m_{\mathcal{H}}(n)$ counts the most dichotomies that can possibly be generated on n points.

One can show that $m_{\mathcal{H}}(n) \leq 2^n$, but it can potentially be much smaller.

Example 1: Positive rays

Candidate functions: $h: \mathbb{R} \to \{-1, +1\}$ such that h(x) = sign(y) for some $a \in \mathbb{R}$.

Example 2: Positive intervals

Candidate functions: $h: \mathbb{R} \to \{-1, +1\}$ such that

$$h(x) = \begin{cases} +1 & \text{for } x \in [a, b] \\ -1 & \text{otherwise} \end{cases}$$

$$h(x) = -1$$

$$x_1 \quad x_2 \quad \dots$$

$$h(x) = +1$$

$$x_n \quad x_n$$

$$m_{\mathcal{H}}(n) = \binom{n+1}{2} + 1$$

= $\frac{1}{2}n^2 + \frac{1}{2}n + 1$

Example 3: Convex sets

Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that

$${x:h(x)=+1}$$
 is convex

Is there any labeling that you can't draw a convex shape around?

$$m_{\mathcal{H}}(n) = 2^n$$

If \mathcal{H} can generate all possible dichotomies on $x_1, ..., x_n$, then it is referred as that \mathcal{H} shatters $x_1, ..., x_n$.

Example 4: Linear classifiers Candidate functions: $h: \mathbb{R}^2 \to \{-1, +1\}$ such that

$$[h]\{x: h(x) = sign(\mathbf{w}^T x + b)\}\$$

for some $w \in \mathbb{R}^2$ and $b \in \mathbb{R}$.

- $m_{\mathcal{H}}(3) = 2^3$
- $m_{\mathcal{H}}(4) = 14$

Con achieve
all 8
labelings
for this
set

Con't classify with linear classifier

Impression of 24

But comit be labele

Recap:

• Positive rays: $m_{\mathcal{H}}(n) = n + 1$

• Positive intervals: $m_{\mathcal{H}}(n) = \frac{1}{2}n^2 + \frac{1}{2}n + 1$

• Convex sets: $m_{\mathcal{H}}(n) = 2^n$

• Linear classifiers in \mathbb{R}^2 :

$$m_{\mathcal{H}}(1) = 2$$

 $m_{\mathcal{H}}(2) = 4$
 $m_{\mathcal{H}}(3) = 8$
 $m_{\mathcal{H}}(4) = 14$
 $m_{\mathcal{H}}(n) = ?$ 30