f / translate / he / Wilsons-theorem

Định lý Wilson

Định lý Wilson

Nguồn: hackerearth 🗵

Định lý

Số tự nhiên n>1 là số nguyên tố khi và chỉ khi $(n-1)!\equiv n-1\ (mod\ n)$.

Ví dụ

- $ightharpoonup ext{V\'oi } n=4: \ (n-1)! = 6 \ (n-1)! \ mod \ n = 2$
- ightharpoonup Với n=5: $(n-1)!\ =24\ (n-1)!\ mod\ n\ =4=n-1$, do n là số nguyên tố.
- ullet Với n=6: $(n-1)! = 120 \ (n-1)! \ mod \ n = 0$
- r Với n=11: $(n-1)! = 3628800 \ (n-1)! \ mod \ n = 10 = n-1$, do n là số nguyên tố.
- Với n=12: $(n-1)! = 39916800 \, (n-1)! \; mod \; n \; = 0$

Chứng minh

Mệnh đề đúng với n=2 và n=3. Ta giả sử n>3.

ullet Chiều thuận: nếu n là số nguyên tố thì $(n-1)!\equiv n-1\ (mod\ n)$

Khi n là số nguyên tố thì $\gcd(a,n)=1$ với mọi a < n. Theo định lý Euler ta có:

$$a*a^{n-2}=a^{n-1}\equiv 1\ mod\ n$$

Đặt $b=a^{n-2} mod n$. Với mỗi a thì b là duy nhất và b < n để $a*b \pmod n = 1$, mặt khác a=b khi và chỉ khi a=1 hoặc a=n-1 nên ta có thể tạo ra $\frac{(n-2)}{2}$ cặp số a,b phân biệt như vậy. Nhân tất cả các cặp với nhau ta được

$$2.3.4.\dots(n-2)\ mod\ n=1$$

$$\Rightarrow 1.2.3..(n-1) \ mod \ n=n-1$$

$$\Rightarrow (n-1)! \equiv n-1 \ (mod \ n)$$

- Chiều ngược: nếu $(n-1)! \equiv n-1 \ (mod \ n)$ thì n là số nguyên tố

Nếu n là hợp số

 \Rightarrow tồn tại ước của n trong khoảng (2;n)

$$\Rightarrow \ gcd((n-1)!,n) > 1 \ {
m do} \ (n-1)! = 1.2.3 \ldots (n-1)$$

$$\Rightarrow \ gcd((n-1)! \ \mathrm{mod} \ n,n) > 1$$

$$\Rightarrow \ gcd(n-1,n) > 1$$
 (vô lý).

Vậy n phải là số nguyên tố.

Áp dụng

Định lý Wilson cho ta cách tính nhanh $(n-1)! \ mod \ n$ khi n là số nguyên tố.

Luyện tập

► Factorial Again - HackerEarth 🖸

Được cung cấp bởi Wiki.js