Countingsort and Radixsort

COMS10017 - (Object-Oriented Programming and) Algorithms

Dr Christian Konrad

Countingsort

Countingsort

Input: Integer array $A \in \{0, 1, 2, \dots, k\}^n$, for some integer k

Idea

Countingsort

Input: Integer array $A \in \{0, 1, 2, \dots, k\}^n$, for some integer k

Idea

• For each element $x \in \{0, 1, ..., k\}$, count # elements $\leq x$

Countingsort

Input: Integer array $A \in \{0, 1, 2, \dots, k\}^n$, for some integer k

Idea

- For each element $x \in \{0, 1, ..., k\}$, count # elements $\leq x$
- Put elements A[i] directly into correct position

Countingsort

Input: Integer array $A \in \{0, 1, 2, \dots, k\}^n$, for some integer k

Idea

- For each element $x \in \{0, 1, ..., k\}$, count # elements $\leq x$
- Put elements A[i] directly into correct position
- **Difficulty:** Multiple elements have the same value

```
Require: Array A of n integers from \{0,1,2,\ldots,k\}, for some integer k Let C[0\ldots k] be a new array with all entries equal to 0 Store output in array B[0\ldots n-1]  \begin{aligned} & \text{for } i=0,\ldots,n-1 & \text{do } \{\text{Count how often each element appears} \} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ & \text{for } i=1,\ldots,k & \text{do } \{\text{Count how many smaller (or equal) elements appear} \} \\ & C[i] \leftarrow C[i] + C[i-1] \\ & \text{for } i=n-1,\ldots,0 & \text{do} \\ & B[C[A[i]]-1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}
```

```
Require: Array A of n integers from \{0,1,2,\ldots,k\}, for some integer k Let C[0\ldots k] be a new array with all entries equal to 0 Store output in array B[0\ldots n-1]  \begin{aligned} &\text{for } i=0,\ldots,n-1 &\text{do } \{\text{Count how often each element appears}\} \\ &C[A[i]] \leftarrow C[A[i]]+1 \end{aligned} \end{aligned}   \begin{aligned} &\text{for } i=1,\ldots,k &\text{do } \{\text{Count how many smaller (or equal) elements appear}\} \\ &C[i] \leftarrow C[i]+C[i-1] \end{aligned}   \begin{aligned} &\text{for } i=n-1,\ldots,0 &\text{do} \\ &B[C[A[i]]-1]\leftarrow A[i] \\ &C[A[i]]-1 \end{aligned}
```

• Last loop processes A from right to left

```
Require: Array A of n integers from \{0,1,2,\ldots,k\}, for some integer k Let C[0\ldots k] be a new array with all entries equal to 0 Store output in array B[0\ldots n-1]  \begin{aligned} &\text{for } i=0,\ldots,n-1 &\text{do } \{\text{Count how often each element appears}\} \\ &C[A[i]] \leftarrow C[A[i]]+1 \end{aligned} \end{aligned}   \begin{aligned} &\text{for } i=1,\ldots,k &\text{do } \{\text{Count how many smaller (or equal) elements appear}\} \\ &C[i] \leftarrow C[i]+C[i-1] \end{aligned}   \begin{aligned} &\text{for } i=n-1,\ldots,0 &\text{do} \\ &B[C[A[i]]-1]\leftarrow A[i] \\ &C[A[i]]\leftarrow C[A[i]]-1 \end{aligned}
```

- Last loop processes A from right to left
- C[A[i]]: Number of elements smaller or equal to A[i]

```
Require: Array A of n integers from \{0,1,2,\ldots,k\}, for some integer k Let C[0\ldots k] be a new array with all entries equal to 0 Store output in array B[0\ldots n-1]  \begin{aligned} &\text{for } i=0,\ldots,n-1 &\text{do } \{\text{Count how often each element appears}\} \\ &C[A[i]] \leftarrow C[A[i]]+1 \end{aligned} \end{aligned}   \begin{aligned} &\text{for } i=1,\ldots,k &\text{do } \{\text{Count how many smaller (or equal) elements appear}\} \\ &C[i] \leftarrow C[i]+C[i-1] \end{aligned}   \begin{aligned} &\text{for } i=n-1,\ldots,0 &\text{do} \\ &B[C[A[i]]-1]\leftarrow A[i] \\ &C[A[i]]\leftarrow C[A[i]]-1 \end{aligned}
```

- Last loop processes A from right to left
- C[A[i]]: Number of elements smaller or equal to A[i]
- Decrementing C[A[i]]: Next element of value A[i] should be left of the current one

Example:
$$n = 8, k = 5$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
$$B[C[A[i]] - 1] \leftarrow A[i]$$

$$C[A[i]] \leftarrow C[A[i]] - 1$$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, ..., 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Example:
$$n = 8, k = 5$$

for
$$i = n - 1, \dots, 0$$
 do
 $B[C[A[i]] - 1] \leftarrow A[i]$
 $C[A[i]] \leftarrow C[A[i]] - 1$

Runtime:

$$\begin{aligned} & \text{for } i=0,\ldots,n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]]+1 \\ & \text{for } i=1,\ldots,k \text{ do} \\ & C[i] \leftarrow C[i]+C[i-1] \\ & \text{for } i=n-1,\ldots,0 \text{ do} \\ & B[C[A[i]]-1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]]-1 \end{aligned}$$

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

$$\begin{aligned} & \text{for } i = 0, \dots, n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ & \text{for } i = 1, \dots, k \text{ do} \\ & C[i] \leftarrow C[i] + C[i-1] \\ & \text{for } i = n-1, \dots, 0 \text{ do} \\ & B[C[A[i]] - 1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

• Countingsort has runtime O(n) if k = O(n)

$$\begin{array}{l} \text{for } i = 0, \dots, n-1 \text{ do} \\ C[A[i]] \leftarrow C[A[i]] + 1 \\ \text{for } i = 1, \dots, k \text{ do} \\ C[i] \leftarrow C[i] + C[i-1] \\ \text{for } i = n-1, \dots, 0 \text{ do} \\ B[C[A[i]] - 1] \leftarrow A[i] \\ C[A[i]] \leftarrow C[A[i]] - 1 \end{array}$$

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Countingsort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{aligned} &\text{for } i = 0, \dots, n-1 \text{ do} \\ & & C[A[i]] \leftarrow C[A[i]] + 1 \\ &\text{for } i = 1, \dots, k \text{ do} \\ & & C[i] \leftarrow C[i] + C[i-1] \\ &\text{for } i = n-1, \dots, 0 \text{ do} \\ & & B[C[A[i]] - 1] \leftarrow A[i] \\ & & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Countingsort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{aligned} &\text{for } i = 0, \dots, n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ &\text{for } i = 1, \dots, k \text{ do} \\ & C[i] \leftarrow C[i] + C[i-1] \\ &\text{for } i = n-1, \dots, 0 \text{ do} \\ & B[C[A[i]] - 1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Stable? In-place?

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Countingsort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{aligned} & \text{for } i = 0, \dots, n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ & \text{for } i = 1, \dots, k \text{ do} \\ & C[i] \leftarrow C[i] + C[i-1] \\ & \text{for } i = n-1, \dots, 0 \text{ do} \\ & B[C[A[i]] - 1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Stable? In-place? Yes, it is stable (important!)

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Countingsort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{aligned} & \text{for } i = 0, \dots, n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ & \text{for } i = 1, \dots, k \text{ do} \\ & C[i] \leftarrow C[i] + C[i-1] \\ & \text{for } i = n-1, \dots, 0 \text{ do} \\ & B[C[A[i]] - 1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Stable? In-place? Yes, it is stable (important!) No, not in-place

Runtime:

$$O(n) + O(k) + O(n) = O(n+k)$$

- Countingsort has runtime O(n) if k = O(n)
- This beats the lower bound for comparison-based sorting

$$\begin{aligned} & \text{for } i = 0, \dots, n-1 \text{ do} \\ & C[A[i]] \leftarrow C[A[i]] + 1 \\ & \text{for } i = 1, \dots, k \text{ do} \\ & C[i] \leftarrow C[i] + C[i-1] \\ & \text{for } i = n-1, \dots, 0 \text{ do} \\ & B[C[A[i]] - 1] \leftarrow A[i] \\ & C[A[i]] \leftarrow C[A[i]] - 1 \end{aligned}$$

Stable? In-place? Yes, it is stable (important!) No, not in-place

Correctness Loop Invariant

Radixsort

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

• b = 2, d = 5. E.g. 01101 (binary numbers)

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

- b = 2, d = 5. E.g. 01101 (binary numbers)
- b = 10, d = 4. E.g. 9714

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

- b = 2, d = 5. E.g. 01101 (binary numbers)
- b = 10, d = 4. E.g. 9714

Idea

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

- b = 2, d = 5. E.g. 01101 (binary numbers)
- b = 10, d = 4. E.g. 9714

Idea

Iterate through the d digits

Radixsort

Input is an array A of d digits integers, each digit is from the set $\{0,1,\ldots,b-1\}$

Examples

- b = 2, d = 5. E.g. 01101 (binary numbers)
- b = 10, d = 4. E.g. 9714

Idea

- Iterate through the d digits
- Sort according to the current digit

Radixsort Algorithm

Radixsort Algorithm

(least significant digit is digit 1)

Radixsort Algorithm

 $\begin{aligned} & \textbf{for } i = 1, \dots, d \ \textbf{do} \\ & \text{Use a stable sort algorithm to} \\ & \text{sort array } A \ \text{on digit } i \end{aligned}$

(least significant digit is digit 1)

Radixsort Algorithm

```
 \begin{aligned} & \textbf{for } i = 1, \dots, d \ \textbf{do} \\ & \text{Use a stable sort algorithm to} \\ & \text{sort array } A \ \text{on digit } i \end{aligned}
```

(least significant digit is digit 1)

Example

329 457

457

657 839

436

720

355

Radixsort Algorithm

```
 \begin{aligned} & \textbf{for } i = 1, \dots, d \ \textbf{do} \\ & \textbf{Use a stable sort algorithm to} \\ & \textbf{sort array } A \ \textbf{on digit} \ i \end{aligned}
```

(least significant digit is digit 1)

329		720
457		355
657		436
839	\rightarrow	457
436		657
720		329
355		839

Radixsort Algorithm

 $\begin{aligned} & \textbf{for } i = 1, \dots, d \ \textbf{do} \\ & \text{Use a stable sort algorithm to} \\ & \text{sort array } A \ \text{on digit } i \end{aligned}$

(least significant digit is digit 1)

329		720		720
457		355		329
657		436		436
839	\rightarrow	457	\rightarrow	839
436		657		355
720		329		457
355		839		657

Radixsort Algorithm

(least significant digit is digit 1)

329		720		720		329
457		355		329		355
657		436		436		436
839	\rightarrow	457	\rightarrow	839	\rightarrow	457
436		657		355		657
720		329		457		720
355		839		657		839

Analysis

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radixsort correctly sorts these numbers in O(d(n+b)) time if the stable sort (e.g. Countingsort) it uses takes O(n+b) time.

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radixsort correctly sorts these numbers in O(d(n+b)) time if the stable sort (e.g. Countingsort) it uses takes O(n+b) time.

Proof

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radixsort correctly sorts these numbers in O(d(n+b)) time if the stable sort (e.g. Countingsort) it uses takes O(n+b) time.

Proof Runtime is obvious. Correctness follows by induction on the columns being sorted.

Analysis

Lemma

Given n d-digit number in which each digit can take on up to b possible values. Radixsort correctly sorts these numbers in O(d(n+b)) time if the stable sort (e.g. Countingsort) it uses takes O(n+b) time.

Proof Runtime is obvious. Correctness follows by induction on the columns being sorted.

Observe: If d = O(1) and b = O(n) then the runtime is O(n)!