What is claimed is:

- 1. A method of producing a nanoporous silica dielectric film comprising
- (a) preparing a composition comprising a silicon containing pre-polymer, a porogen, and a metal-ion-free catalyst selected from the group consisting of
- onium compounds and nucleophiles;
- (b) coating a substrate with the composition to form a film,
- (c) crosslinking the composition to produce a gelled film, and
- (d) heating the gelled film at a temperature and for a duration effective to
- 10 remove substantially all of said porogen.
 - 2. The method of claim 1 wherein the nanoporous silica dielectric film has a pore void volume of from about 5% to about 80% based on the volume of the film.

15

5

- 3. The method of claim 1 wherein the resulting nanoporous silica dielectric film has a dielectric constant of about 3 or below.
- 4. The method of claim 1 wherein the nanoporous silica dielectric film has anaverage pore diameter in the range of from about 1 nm to about 30 nm.
 - 5. The method of claim 1 wherein the catalyst is selected from the group consisting of ammonium compounds, amines, phosphonium compounds and phosphine compounds.

25

6. The method of claim 1 wherein the catalyst is selected from the group consisting of tetraorganoammonium compounds and tetraorganophosphonium compounds.

7. The method of claim 1 wherein the catalyst is selected from the group consisting of tetramethylammonium acetate, tetramethylammonium hydroxide, tetrabutylammonium acetate, triphenylamine, trioctylamine, tridodecylamine, triethanolamine, tetramethylphosphonium acetate, tetramethylphosphonium hydroxide, triphenylphosphine, trimethylphosphine, trioctylphosphine, and combinations thereof.

5

10

20

- 8. The method of claim 1 wherein the composition further comprises a non-metallic, nucleophilic additive which accelerates the crosslinking of the composition.
- The method of claim 1 wherein the composition further comprises a
 nucleophilic additive which accelerates the crosslinking of the composition,
 which is selected from the group consisting of dimethyl sulfone, dimethyl
 formamide, hexamethylphosphorous triamide, amines and combinations
 thereof.
 - 10. The method of claim 1 wherein the composition further comprises water in a molar ratio of water to Si ranging from about 0.1:1 to about 50:1.
 - 11. The method of claim 1 wherein the composition comprises a silicon containing prepolymer of Formula I:

Rx - Si - Ly (Formula I)

wherein x is an integer ranging from 0 to about 2, and y is x-4, an integer ranging from about 2 to about 4;
R is independently selected from the group consisting of alkyl, aryl, hydrogen, alkylene, arylene, and combinations thereof;

L is an electronegative moiety, independently selected from the group consisting of alkoxy, carboxyl, acetoxy, amino, amido, halide, isocyanato and combinations thereof.

- 12. The method of claim 11 wherein the composition comprises a polymer formed by condensing a prepolymer according to Formula I, wherein the number average molecular weight of said polymer ranges from about 150 to about 300,000 amu.
- 10 13. The method of claim 1 wherein the composition comprises a silicon containing pre-polymer selected from the group consisting of an acetoxysilane, an ethoxysilane, a methoxysilane, and combinations thereof.
- 14. The method of claim 1 wherein the composition comprises a silicon
 15 containing pre-polymer selected from the group consisting of tetraacetoxysilane, a C₁ to about C₆ alkyl or aryl-triacetoxysilane, and combinations thereof.
- 15. The method of claim 14 wherein said triacetoxysilane ismethyltriacetoxysilane.

25

30

- 16. The method of claim 1 wherein the composition comprises a silicon containing pre-polymer selected from the group consisting of tetrakis(2,2,2-trifluoroethoxy)silane, tetrakis(trifluoroacetoxy)silane, tetraisocyanatosilane, tris(2,2,2-trifluoroethoxy)methylsilane, tris(trifluoroacetoxy)methylsilane, methyltriisocyanatosilane and combinations thereof.
- 17. The method of claim 1 wherein the porogen has a boiling point, sublimation point or decomposition temperature ranging from about 150°C to about 450°C.

18. The method of claim 1 wherein the step (c) crosslinking is conducted at a temperature which is less than the heating temperature of step (d).

- 5 19. The method of claim 1 wherein step (c) comprises heating the film at a temperature ranging from about 100 °C to about 250 °C, for a time period ranging from about 30 seconds to about 10 minutes.
- 20. The method of claim 1 wherein step (d) comprises heating the film at a temperature ranging from about 150 °C to about 450 °C, for a time period ranging from about 30 seconds to about 1 hour.
 - 21. The method of claim 1 wherein the porogen has a molecular weight ranging from about 100 to about 50,000 amu.

15

20

25

30

combinations thereof.

- 22. The method of claim 1 wherein the porogen is selected from the group consisting of a polyalkylene oxide, a monoether of a polyalkylene oxide, a diether of a polyalkylene oxide, bisether of a polyalkylene oxide, an aliphatic polyester, an acrylic polymer, an acetal polymer, a poly(caprolatactone), a poly(valeractone), a poly(methyl methacrylate), a poly (vinylbutyral) and
- 23. The method of claim 1 wherein the porogen comprises a polyalkylene oxide monoether which comprises a C₁ to about C₆ alkyl chain between oxygen atoms and a C₁ to about C₆ alkyl ether moiety, and wherein the alkyl chain is substituted or unsubstituted.
 - 24. The method of claim 23 wherein the polyalkylene oxide monoether is a polyethylene glycol monomethyl ether or polypropylene glycol monobutyl ether.

25. The method of claim 1 wherein the porogen is present in the composition in an amount of from about 1 to about 50 percent by weight of the composition.

5

- 26. The method of claim 1 wherein the composition further comprises a solvent.
- 27. The method of claim 1 wherein the composition further comprises solventin an amount ranging from about 10 to about 95 percent by weight of the composition.
 - 28. The method of claim 1 wherein the composition further comprises a solvent having a boiling point ranging from about 50 to about 250°C.

15

- 29. The method of claim 1 wherein the composition further comprises a solvent selected from the group consisting of hydrocarbons, esters, ethers, ketones, alcohols, amides and combinations thereof.
- 30. The method of claim 26 wherein the solvent is selected from the group consisting of di-n-butyl ether, anisole, acetone, 3-pentanone, 2-heptanone, ethyl acetate, n-propyl acetate, n-butyl acetate, ethyl lactate, ethanol, 2-propanol, dimethyl acetamide, propylene glycol methyl ether acetate, and combinations thereof.

25

- 31. A nanoporous dielectric film produced on a substrate by the method of claim 1.
- 32. A semiconductor device comprising a nanoporous dielectric film of claim30. 31.

- 33. The semiconductor device of claim 32 that is an integrated circuit.
- 34. A composition comprising silicon containing pre-polymer, a porogen, and
 a catalyst selected from the group consisting of onium compounds and nucleophiles.
 - 35. The composition of claim 34 wherein said catalyst is metal-ion-free.
- 10 36. The composition of claim 34 additionally comprising solvent.
 - 37. The composition of claim 35 wherein said metal-ion-free catalyst is tetramethylammonium acetate.
- 38. The composition of claim 34 wherein said silicon containing pre-polymer comprises a combination of acetoxy-based leaving groups.
 - 39. The composition of claim 38 wherein said combination of acetoxy-based leaving groups comprises tetraacetoxysilane and methyltriacetoxysilane.
 - 40. The composition of claim 34 wherein said porogen comprises polyethylene glycol monomethylether.
- 41. The composition of claim 34 wherein said porogen comprises polypropylene glycol dimethylether.
 - 42. The composition of claim 34 wherein said porogen comprises polyethylene glycol dimethylether.

20

PCT/USOZ/15256.27022004

ART 34 AMDT

- 43. The composition of claim 34 wherein said porogen comprises polypropylene glycol monobutyl ether.
- 44. A precursor for stable nanoporous film formation comprising said composition of claim 35.
- 45. A spin-on composition comprising said composition of claim 35.
- 46. A film comprising said spin-on composition of claim 45.
- 47. A method of lowering the temperature at which a porous silica film forms comprising the step of adding onium ions or nucleophiles to a silicon-containing prepolymer and porogen.