CONFIDENTIAL B

Fuel Gauge Application Notes

ACS/ACS1

Revision History

Revision	Date (mm/dd/yyyy)	Author	Comments
V1.0	07/05/2013	Lijian/Ricky/Pengchen	First version for customer.
V1.2	16/06/2016	Zhangshuai Zhang	Modify CAR_TUNE_VALUE calibration current
			\C.°
		() 1	SY .

Agenda

- Preface
- + HW Fuel gauge Application Notes (MT6589/6732/52/95)
 - Design without Fuel Gauge Function
 - Design with Default ZCV table
 - Design with Measure ZCV table
 - Fuel Gauge Test Way Introduction
- SW Fuel Gauge Application Notes(MT6572/82/92)
 - Design with Default ZCV table
 - Design with Measure ZCV table method
 - Fuel Gauge Test Way Introduction

Preface

File name	File address	File description
Fuel Gauge introduce	MediaTek DCC > External Document > HW > Common Design Notes > PMU > Fuel Gauge > Fuel Gauge introduce	The principle and algorithm of Fuel Gauge
Fuel Gauge Application Notes	MediaTek DCC > External Document > HW > Common Design Notes > PMU > Fuel Gauge > Fuel Gauge Application Notes	Importing the parameter & Testing method
Fuel Gauge Battery ZCV Table Test SOP_V1.0	MediaTek DCC > External Document > HW > Common Design Notes > PMU > Fuel Gauge > Fuel Gauge Battery ZCV Table Test SOP_V1.0_20120716.pptx	Testing method of ZCV table

HW Fuel gauge Application Notes

Agenda

- Design without Fuel Gauge Function
- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Agenda

- Design without Fuel Gauge Function
- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Design without Fuel Gauge Function

Case of Customer Support		Customers	Pros	Cons	Effort
No Use Fu	el (-alige / 1)0 not case the		Remove Rfg (< 0.03US)	Battery percentage error rate = 30%~50%	None
	default hattery percentage error rate < 20%		2. Cost is cheaper than the Fuel Gauge IC	Need Use default ZCV Table	Need Rfg (< 0.01US)
Use MTK Fuel Gauge	MTK SA measure ZCV Table for each customer	1.Need precise battery percentage 2. Can get the battery ZCV table	 Battery percentage error rate <10% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need 3 weeks for creating the ZCV table	1. Need Rfg (< 0.01US) 2. Need provide the battery packet and SPEC to MTK SA for creating the ZCV table. (same as the flow of Gas Gauge IC vender)

Design without Fuel Gauge Function

- If don't use the Fuel gauge function, you could choose the traditional battery indicator method, Reference design as follows:
 - 1. Rfg remove, The GND of battery connector should be directly connected to the system GND;
 - CS_P/CS_N No Connection 。

Agenda

- Design without Fuel Gauge Function
- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Design with Default ZCV table

	Customer pport	Customers	Pros	Cons	Effort
No Use Fuel Gauge		 For Cost down (remove Rfg) Do not case the battery percentage 	Remove Rfg (< 0.03US)	Battery percentage error rate = 30%~50%	None
	Use default ZCV Table	battery percentage 2. Can not get the the Fuel Gauge IC		Need Use default ZCV Table	Need Rfg (< 0.01US)
Use MTK Fuel Gauge	MTK SA measure ZCV Table for each customer	1.Need precise battery percentage 2. Can get the battery ZCV table	 Battery percentage error rate <10% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need 3 weeks for creating the ZCV table	1. Need Rfg (< 0.01US) 2. Need provide the battery packet and SPEC to MTK SA for creating the ZCV table. (same as the flow of Gas Gauge IC vender)

HW condition to enable Fuel gauge(must)

- Battery temperature detection circuit is a must
 - Note: Fuel gauge will monitor battery temperature and do algorithm compensation via temperature parameter, so battery temperature detection function is a must. NTC resistor value may choose 10Kohm@25 °C or 47Kohm@25 °C, if another NTC resistor value is used, customer need to built the NTC temperature table.
- Must use 20~50mohm current detection resistor
 - Note: Recommend choose 20mohm, so withstand current up to 3.5A and decrease voltage drop. According to P=I₂*R, the lower resistor value will lower the power demand. As for the package of Rfg, it depends PCB dimension, but must meet the Power demand.
- Fuel gauge Schematics design and PCB layout must meet the design requirement.
 - Please refer to next two pages

Fuel gauge Reference Design

- 1: Rfg placement must be close to battery connector
- 2: FGP_IC/FGN_IC must layout in differential pair, and be ground shielding well.

Fuel gauge Layout FGN_IC/FGP_IC

Customization file preparation

- The cust_fuel_gauge.h file needs to be modified for customization.
- Note: The default battery capacity is 1100mAh@MT6575, if you choose the battery capacity large different with 1100mAh, you need to adjust the relative battery capacity parameter.
- Because customization is based on our default ZCV table, the deviation of battery gauge's initial capacity will become a little big, but that will not influence Fuel gauge statistics deviation when using. And initial capacity deviation will auto calibration after a full charged or full discharged.

Customization of Max Battery Capacity

- Note: In addition to items need to be modified below, please don't modify other parameter, or it may result in abnormity.
- 1: According to battery datasheet, confirm the max battery capacity(or nominal capacity), then define the value as BATTERY_CAPACITY_MAXIMUM and BATT_CAPACITY.
- For example: if battery capacity is 1500mAh(below we all take 1500mAh as example)

Q_MAX Replacement

- 2: Fill in the Q_MAX for 50°C、25°C、0°C、-10°C.
 - Note:all data below take the integer portion.

Rfg Replacement

• 3: If the value of Rfg is not 20mohm, need to change R_FG_VALUE to the value you choose. Just modify the resistor value to your choose value. If is 20mohm, no need to change.

```
100
101 #define R FG VALUE 20 // mOhm, base is 20
102 #define CURRENT_DETECT_R FG 100 //10mA
103
104 #define OSR_SELECT_7 0
```

• 4: Because we use Default ZCV Database, relevant Database array no need to modify, use directly.

CAR_TUNE_VALUE Adjustment

- CAR_TUNE_VALUE is used to correct the Fuel gauge statistics deviation, to make sure the Fuel gauge statistical accuracy. This CAR_TUNE_VALUE is mainly influenced by Rfg PCB layout and SMT consistency, so every project need to modify CAR_TUNE_VALUE.
 - Application Suggestion: For CAR_TUNE_VALUE will apply to all Mobiles in the same project, suggest that select 10 mobiles randomly, calculate each mobile's CAR_TUNE_VALUE, then sum and average for 10 mobile's CAR_TUNE_VALUE, then use the average value as final CAR_TUNE_VALUE and write to SW code.
 - The way to modify CAR_TUNE_VALUE, please refer: page 34-37.

Fuel gauge Test

 After complete customization modification aforementioned, you can verify the Fuel gauge according to your own testing method.
 Because haven't testing ZCV table as reference, the Fuel gauge testing method is decided by customer.

Testing note:

- 1: Fuel gauge only read battery temperature, battery voltage and Rfg current when booting, to calculate OCV(Open Circuit Voltage), then table look-up to get battery gauge percentage.
- 2: After mobile boot up, Fuel gauge use Coulomb Counter to integrate over Rfg current, and get the battery capacity.
- 3: For better user experience, our software have many tracking methods, tracking methods please refer The Fuel gauge Part in Design Notice. Avoid puzzling everybody.

Agenda

- Design without Fuel Gauge Function
- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Design with Measure ZCV table

Case of Customer Support		Customers	Pros	Cons	Effort
No Use Fuel Gauge		 For Cost down (remove Rfg) Do not case the battery percentage 	Remove Rfg (< 0.03US)	error rate 30%~50	uel gauge attery ZCV able testing
Use MTK Fuel Gauge	Use default ZCV Table	 Need precise battery percentage Can not get the battery ZCV table 	 Battery percentage error rate < 20% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 		emand, please ontact CPM
	MTK SA measure ZCV Table for each customer	1.Need precise battery percentage 2. Can get the battery ZCV table	 Battery percentage error rate <10% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need 3 weeks for creating the ZCV table	1. Need Rfg (< 0.01US) 2. Need provide the battery packet and SPEC to MTK SA for creating the ZCV table. (same as the flow of Gas Gauge IC vender)

HW condition to enable Fuel gauge(must)

- Battery temperature detection circuit is a must
 - Note: Fuel gauge will monitor battery temperature and do algorithm compensation via temperature parameter, so battery temperature detection function is a must. NTC resistor value may choose 10Kohm@25degree or 47Kohm@25degree, if another NTC resistor value is used, customer need to built the NTC temperature table.
- Must use 20~50mohm current detection resistor
 - Note: Recommend choose 20mohm, so withstand current up to 2.5A and decrease voltage drop. According to P=I²*R, the lower resistor value will lower the power demand. As for the package of Rfg, it depends PCB dimension, but must meet the Power demand.
- Fuel gauge Schematics design and PCB layout must meet the design requirement.
 - Please refer to next two page

Fuel Gauge Reference Design

- 1: Rfg placement must be close to battery connector
- 2: FGP_IC/FGN_IC layout in differential pair, ground shielding, up and down, left and right.

Fuel gauge Layout FGN_IC/FGP_IC

Fill in material preparation

- Customer provide 3pcs bran-new original battery and battery datasheet for MTK testing, after testing, MTK will feedback ZCV table of XXXX @2012xxxx.xlsx file.
- The custom_fuel_gauge.h file need to fill ZCV data.

How to fill ZCV Data

- Note: In addition to items need to be modified below, please don't modify other parameter, or it may result in abnormity.
- 1: Use the Cmax testing in 50°C to replace original BATTERY
 CAPACITY MAXIMUM, define it as battery max available capacity.

		50度	OCV	VC	mAh
			4188		0
			4167	4109	30
48	#define BATTERY_VOLTAGE_MAXIMUM 4200				
49					
50	#define BATTERY CAPACITY MAXIMUM 1497				
51		Cmax		1497	
52	#define TEMPERATURE_TO 110	Cmax_400	mA	1485	

Cmax Replacement

 2: Use the Cmax testing in 25°C to replace original BATTERY CAPACITY MAXIMUM, define it as battery available capacity in normal temperature, or nominal capacity.

			4182		0
			4160	4089	30
			4142	4070	60
58	//#define BATT CAPACITY 1280	Cmax		1478	
59	#define BATT_CAPACITY 1478	Cmax 400m/	Δ.	1466	
60					
61	#define ENABLE SW COULOMB COUNTER O / 1 is enable, 0 is disa	b le			

CONFIDENTIAL B

25度

OCV

VC

mAh

Q_MAX Replacement

- 3: Use the Cmax\Cmax_400mA testing in 50°C、25°C、0°C、-10°C to replace original corresponding temperature Q_MAX value respectively.
 - Note: _H_CURRENT represent the battery discharging capacity in 400mA condition.

Rfg Replacement

4: If the value of Rfg is not 20mohm, need to change R_FG_VALUE to the value you choose. Just modify the resistor value to your choose value. If is 20mohm, no need to change.

```
100
101 #define R FG VALUE 20 // mOhm, base is 20
102 #define CURRENT_DETECT_R_FG 100 //10mA
103
104 #define OSR_SELECT_7 0
```


ZCV Database replace < DOD,OCV>

• 5-1: ZCV Database replacement, use the data in different temperature, 50°C, 25°C, 0°C, -10°C, respectively, to replace

	original data.	<dod,ocv></dod,ocv>		7					
// ZD/	OD, Battery Voltage> Ta	hle	負10度	OCV	VC		R(battery)	DOD	R(x1000)
		pie		4174		0	0.34	/ 0	340
123	// TO -10C			4158	4022	30	0.34	2	340
124	BATTERY_PROFILE_STRUC	battery_profile_tution=		4112	3976	60	0.3/4	5	340
125 - 126				4074	3938	90	0.34	7	340
127	(0 4174 4)			4059	3918	119	0.3375	9	338
128	(5 , 4112),		7/	4038	3899	149	0.3475	12	348
129	(7 , 4074),	162 {84 , 3728}, 163 {86 , 3721},		4023	3875	17/9	0.37	14	370
130	(9 , 4053),	164 {88 , 3714}, OC	V : Open Cir	3998 cuit	383	DOD :De	nth of	16	413
131	{12 , 4038},		Itage	3958	277	Discharge		19	578
132	{14 , 4023},	166 {93 , 3700},	itage	3941	367			21	678
133	{16 , 3998},	167 {95 , 3674},		3933	3648	298	0.7125	23	713
134	(19 , 3958),	168 {98 , 3600},		3922	3634	328	0.72	26	720
135	(21 , 3941),	169 {99, 3550},		3910	3621	358	0.7225	28	723
136 137	{23 , 3933}, {26 , 3922},	170 {99 , 3522},		3897	3607	388	0.725	30	725
137	{28 , 3910},	171 {100, 3506},	<i>y</i>	3881	3596	418	0.7125	33	713
139	(30 , 3897),	172 {100, 3496},		3867	3583	448	0.71	35	710
140	(33 , 3881),	173 {100, 3489}, 174 {100, 3485},		3854	3573	478	0.7025	37	703
141	(35 , 3867),	174 {100, 3485}, 175 {100, 3482},		3842	3563	507	0.6975	40	698
142	{37 , 3854},	176 (100, 3479)		3833	3554	537	0.6975	42	698
143	{40 , 3842},	177 { 100, 3477},		3824	3545	567	0.6975	44	698
144	{42 , 3833},	178 {100, 3476},		3818	3537	597	0.7025	47	703
145	(44 , 3824),	179 {100, 3474},		-B12	3530	627	0.705	49	705
146	(47 , 3818),		Note: the last	pair 806	3523	657	0.7075	51	708
147 148	{49 , 3812}, {51 , 3806},		data in the an	ray 301	3516	686	0.7125	54	713
148	{54 , 3801},		haven't "," syr	nbol, 798	3509	716	0.7225	56	723
150	(56 , 3798),	183 (100, 3400)/,	comma symb	ol. 793	3502	746	0.7275	58	728
151	(58 , 3793),	184 {100, 3400}		3791	3498	776	0.7325	61	733
	Y	185);		3788	3496	806	0.7323	63	730
		100		3,00	3430	000	0.73	0.5	/30

ZCV Database replace < DOD, OCV>

5-2: If data length in ZCV table isn't equal to array length in code. Just adjust the array length in SW code, let it equal the data length in ZCV table. Exp:184-125=60-1=59, so adjust all array length to 59, including {0,0} array.

123	// TO -10C		1	負10度	OCV	VC	mAh	R(battery)	DOD	R(x1000)
124		_STRUC battery_profile_t0[] =	, 2		4174		0	0.34	0	340
125			3 /		4158	4022	30	0.34	2	340
126	(0 , 4174),		4		4112	3976	60	0.34	5	340
127 128	{2 , 4158}, {5 , 4112},		5		4074	3938	90	0.34	7	340
129	{7 , 4074},		6	,	4053	3918	119	0.3375	9	338
130	{9 , 4053},		7		4038	3899	149	0.3475	12	348
131	{12 , 4038},	.1	8		4023	3875	179	0.37	14	370
132	{14 , 4023},		9		3998	3833	209		16	413
133	{16 , 3998},		10		3958	3727	239		19	
134	{19 , 3958},					·				
135	{21 , 3941},		52		3479	3198	1281	0.7025	100	703
			53		3477	3197	1281	0.7	100	700
			54		3476	3199	1281	0.6925	100	693
178	{100, 3476},		55		3474	3195	1282	0.6975	100	698
179	{100, 3474},		56		3473	3196	1282	0.6925	100	693
180	(100, 3473),		57		3400	3193	1282	0.5175	100	518
181	{100, 3400},		58		3400	3193	1282	0.5175	100	518
182	{100, 3400},		59		3400	3193	1282	0.5175	100	518
183	(100, 3400).		60		3400	3193	1282		100	518
184 185	{100, 3400}		61							
186	"	7 0	62							
187	// T1 OC									

ZCV Database replace < Rbat, OCV>

• 6:ZCV Database replacement, use the data in different temperature, 50°C, 25°C, 0°C, -10°C, respectively, to replace original data. <Rbat, OCV>, the method is the same as <DOD,OCV>, attention equal length of the array.

	///////////////////////////////////////			//////	負10度	OCV	VC	mAh	R(battery)	DOD	R(x1000)
77	<rbat, battery<="" td=""><td>_Voltage></td><td></td><td></td><td></td><td>/4174</td><td></td><td>0</td><td>0.34</td><td>0</td><td>340</td></rbat,>	_Voltage>				/4174		0	0.34	0	340
777	<u> </u>	77777777	///////////////////////////////////////	777777		4158	4022	30	0.34	2	340
528	// TO -10C		******		2	4112	3976	60	0.34	5	340
529	R_PROFILE_ST	C r_prof:	ile_t0[]	=		4074	3938	90	0.34	7	340
530 🗏						4053	3918	119	0.3375	9	338
531	(340, 4174)			1		4038	3899	149	0.3475	12	348
532 533	(340, 4158) (340, 4112)		/ 770	3506		4023	3875	179	0.37	14	370
534	{340, 4074}			3496		3998	3833	209		16	413
535	(338, 4053)			3489)		3958	3727	239		19	578
536	(348, 4038)			3485)	V	3941	3670	269		21	678
537	(370, 4023)	580		3482),		3933	3648	298		23	713
538	{413, 3998}	581	{703,	3479),		3922	3634	328		26	720
539	(578, 3958)	582		3477),		3910	3621	358		28	723
540	{678, 3941}	583		3476),		3897	3607	388		30	725
541	{713, 3933}			3474),		3881	3596	418		33	723
542	(720, 3922)			3473),	Note: the last p	air 3867				35	
543	(723, 3910)			3400),	data in the arra	av –	3583	448			710
544	(725, 3897)			3400},	haven't "," sym	bol, 3854	3573	478		37	703
545 546	{713, 3881}, {710, 3867},			3400}	comma symbo	3842	3563	507		40	698
545	{703, 3854}		1510,	34007	,	3833	3554	537	0.6975	42	698
347	(100, 5004)	330	"	7		3824	3545	567		44	698
A	IEDIATEK CON	FIDENTIAL B			Copyright	3818	3537	597	0.7025	47	703
	Con				Оорупупт	3812	3530	627	0.705	49	705

CAR_TUNE_VALUE Adjustment

- 7: CAR_TUNE_VALUE is used to correct the Fuel gauge statistics deviation, to make sure the Fuel gauge statistical accuracy. This CAR_TUNE_VALUE is mainly influenced by Rfg PCB layout and SMT consistency, so every project need to modify CAR_TUNE_VALUE.
 - Application Suggestion: For CAR_TUNE_VALUE will apply to all Mobiles in the same project, suggest that select 10 mobiles randomly, calculate each mobile's CAR_TUNE_VALUE, then sum and average for 10 mobile's CAR_TUNE_VALUE, then use the average value as final CAR_TUNE_VALUE and write to SW code.
 - The way to modify CAR_TUNE_VALUE, please refer: page 35-38

Fuel gauge Test

 After complete the modification aforementioned, you can test battery gauge for verification according to <u>Fuel Gauge</u> <u>Test Way Introduction</u>. You can also do the verification using your own testing method.

Testing note:

- 1: Fuel gauge only read battery temperature, battery voltage and Rfg current when booting, to calculate OCV(Open Circuit Voltage), then table look-up to get battery gauge percentage.
- 2: After mobile boot up, Fuel gauge use Coulomb Counter to integrate over Rfg current, and get the battery capacity.
- 3: For better user experience, our software have many tracking methods, tracking methods please refer The Fuel gauge Part in Design Notice.
 Avoid puzzling everybody.

How to Modify CAR_TUNE_VALUE

 1st step: Change #define CAR_TUNE_VALUE to 100, then build a version of the software, then for subsequent steps. (This step must carry out, or subsequent modification value will incorrect)

How to Modify CAR_TUNE_VALUE

- 2nd step: Apply 3.8V between VBAT and System GND, power for mobile.
 - Note: the channel supply current for Rfg, please don't solder wires between Rfg, because solder wire will influence Rfg resistor value. So connect the wire to random system GND(such as shielding case), and battery connector negative electrode.

How to Modify CAR_TUNE_VALUE

- 3rd step: Connect System GND to power supply another channel's positive electrode, then apply a amperemeter between this channel's negative electrode and battery connector GND. Attention current direction and polarity when connect.
 - Note: when connect, please confirm the channel voltage is OV, avoid damaging the
 amperemeter. If your power supply can display current value accurately, can
 without amperemeter, directly use the display current value. Please don't solder
 wires between Rfg, so connect the wire to random system GND(such as
 shielding case), and battery connector negative electrode.
- 4th step: Set power supply to CC mode, limit the output current to 1000mA, use the amperemeter to confirm actual current. If power supply can't support CC mode, your can adjust the output voltage of power supply, let the amperemeter value to 1000mA .(recommend CC mode)
 - Note: when confirm the current, don't move the testing circuit, avoid current changing and read error.

How to Modify CAR_TUNE_VALUE

- 5th step: Press power key letting the phone on, enter operation GUI, select dial UI, input engineering mode code *#*#3646633#*#* enter engineering mode. Then select Power->Charge Battery ,read 5th row, FG_Battery_CurrentConsumption to get current value Ifg。
- 6th step: Then divide 1000mA by Ifg, correct CAR_TUNE_VALUE=1000/Ifg. Exp: Ifg=1064mA,that is 94, the third of the decimal rounding operation.(this value is reasonable no matter Greater than or less than 100)

Agenda

- Design without Fuel Gauge Function
- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Agenda

- Test equipment requirements
- D0 precision test

CONFIDENTIAL B

Fuel gauge ADC Current precision test

Test equipment requirements

- High precision Voltmeter
 - Accurately measuring the battery voltage, Accuracy is more than $\pm 0.1 \text{mV}_{\,\circ}$
 - Example: Keithley 2700
 - Note: The accuracy of the voltage measurement affects the accuracy of the test.

D0 precision test 1/4

Attention to the temperature 25°C

- Step 1: Put the battery in the phone and have it full charged, then take it out.
 - Note: Gauge show100%, then take out the battery. (Please take out the battery in 10 mins after full charged)
 - Show battery percent: Settings->About phone->Status->Battery level
- Step 2: Take out the battery and make it stay in inactive state for 30 mins, measure the battery voltage and record V_{battery} .
 - For example: $V_{Battery} = 4.17644V$

D0 precision test 2/4

Attention to the temperature 25°C

- Step 3: Accordding to V_{battery}, Look up the ZCV curve and find the percentage D_ZCV(Look-up table method), get the actual battery percentage (A%) and record it.
 - V_{Battery}=4.17644V, using the look-up table method to get the actual percentage.
 - 4.17644V is between 4.188V and 4.175V, We can calculate the real percentage in MTK provided ZCV table is 99.10125% (A%) .Attention to the normal temperature, please refer to 25°C ZCV table.

25度	OCV	VC	mAh	R(battery)	DOD						
	4188		0		Ó	7					
	4175	4113	20	0.155	1	7					
	4162	4100	40	0.155	3	常温陰證	x1(max)	x2(min)	v1(DOD)	v2(DOD)	v(result)
	4147	4086	60	0,1525	4	TI JAMES	4188	4175		\rightarrow 1	0.889231
	4134	4074	80	0.15	5						99.21077
	4122	4062	100	0.15	7					指示百分	
	4111	4050	120	0.1525	8						
	4099	4038	140	0.1525	9						
follov	w the abov	e instr	uctions	s to lool	k-up ta	ble			30分钟之	4.17644	
I in the	correspo	nding	humbe	r. it wi	Il autoi	matical	lv				
ate the	battery p	ercenta	ige (A	%)。	ii aato	natioai	注意: 常溫]	「測試,查	表請參考2	:5度時量測	的ZCV表

Plea and calc This is the real pcrcentage

D0 precision test 3/4

Attention to the temperature 25°C

- Step 4: Put the battery inside the phone and power it on to show the battery percentage (B%), then record the B%.
 - For example: the battery percentage is 8% (B%) shows below.
 - Show the Battery percentage: Setting->About phone->Status->Battery level

D0 precision test 4/4

Attention to the temperature 25°C

- Step 5: D0 error=|A%-B%|<10%
 - D0 error=|A%-B%|=|99.10%-100%|=0.9% <10%
 - Note: The error is associated with the battery voltage measurement accuracy, so make sure the battery voltage is measured accurately.
- Step 6: Discharge the battery to (95%,90%,85%,80%,75%,70%,65%,60%,25%,20%,15%, 10%), repeat step 2 to step 6 until VBAT<3.5V . Please record every D0 error value and confirm the correct.

45

Fuel Gauge ADC Current precision test

- Precondition: Have finished CAR_TUNE_VALUE correction and updated to load, then continue to the test。
- Step 1: Using the CAR_TUNE_VALUE adjustment environment (reference to page33), current setting 1000mA.
- Step 2: Press the power key to boot up the phone, Select the dial-up interface in the user interface, input password *#*#3646633#*#* to enter engineering mode then select Power->Charge Battery, select the fifth row, FG_Battery_CurrentConsumption Ifg
- Step 3: Judge the current accuracy = (Iset-Ifg)/Iset less than± 3% or not。
 - Note: Iset, Ifg Fuel gauge engineering mode show.
- Step 4: Set current I from 200mA to1.5A (100mA step), Repeat step 2 to 3。

SW Fuel gauge Application Notes

Agenda

- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

CONFIDENTIAL B

2016/9/20

Agenda

- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Design with Default ZCV table

	Customer oport	Customers	Pros	Cons	Effort
	Use default ZCV Table	 Need precise battery percentage Can not get the battery ZCV table 	 Battery percentage error rate < 20% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need Use default ZCV Table	NA
Use MTK Fuel Gauge	MTK SA measure ZCV Table for each customer	1.Need precise battery percentage 2. Can get the battery ZCV table	 Battery percentage error rate <10% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need 3 weeks for creating the ZCV table	Need provide the battery packet and SPEC to MTK SA for creating the ZCV table. (same as the flow of Gas Gauge IC vender)

HW condition to enable Fuel gauge(must)

- Battery temperature detection circuit is a must
- Note: Fuel gauge will monitor battery temperature and do algorithm compensation via temperature parameter, so battery temperature detection function is a must. NTC resistor value may choose 10Kohm@25°C or 47Kohm@25°C, if another NTC resistor value is used, customer needs to built the NTC temperature table.

Customization file preparation

The cust_fuel_gauge.h file needs to be modified for customization.

- Note: The default battery capacity is 1500mAh @MT6572, if you choose the battery capacity large different with 1500 mAh, you need to adjust the relative battery capacity parameter.
- Because customization is based on our default ZCV table, the deviation of battery gauge's initial capacity will become a little big, but that will not influence Fuel gauge statistics deviation when using. And initial capacity deviation will auto calibration after a full charged or full discharged.

Customization of Battery Capacity

 Note: In addition to items need to be modified below, please don't modify other parameter, or it may result in abnormity.

Q_MAX Replacement

- 1: Fill in the Q_MAX for 50°C、25°C、0°C、-10°C.
 - Noet:all data below take the integer portion.

```
Here change to: nominal capacity \times (1316/1307)
                                          Here change to battery nominal capacity(ex.1500mAh)
#define Q MAX POS 50
#define Q MAX POS 25
                      1500
                                          Here change to: nominal capacity \times (1220/1307)
#define Q MAX POS O
                      1400
#define Q MAX NEG 10
                      1334
                                          Here change to: nominal capacity \times (1162/1307)
#define Q MAX POS 50 H CURRENT
                                1486
#define Q MAX POS 25 H CURRENT
                                1458
                                                  Here change to: nominal capacity \times (1295/1307)
#define Q MAX POS O H CURRENT
                                1265
#define Q MAX NEG 10 H CURRENT
                                687
                                                  Here change to: nominal capacity \times (1270/1307)
                                                  Here change to: nominal capacity × (1102/1307)
                                                  Here change to: nominal capacity × (599/1307)
```


Default ZCV Database

• 2: Because of using the Default ZCV Database, so you can use the related Database array without modification.

CONFIDENTIAL B

55

Fuel gauge Test

 After complete the modification aforementioned, you can test battery gauge for verification according to your own testing method. Since there is no test of ZCV table reference, battery test method is up to customers.

Testing note:

- 1: Fuel gauge only read battery temperature, battery voltage and Rfg current when booting, to calculate OCV(Open Circuit Voltage), then table look-up to get battery gauge percentage.
- 2: After mobile boot up, Fuel gauge use Coulomb Counter to integrate over Rfg current, and get the battery capacity.
- 3: For better user experience, our software have many tracking methods, tracking methods please refer The Fuel gauge Part in Design Notice. Avoid puzzling everybody.

Agenda

- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Design with Measure ZCV table

Case of Customer Support		Customers	Pros	Cons	table testing demand, please			
	Use default ZCV Table	 Need precise battery percentage Can not get the battery ZCV table 	 Battery percentage error rate < 20% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need Use default ZCV Table	contact CPM			
Use MTK Fuel Gauge	MTK SA measure ZCV Table for each customer	1.Need precise battery percentage 2. Can get the battery ZCV table	 Battery percentage error rate <10% Cost is cheaper than the Fuel Gauge IC (0.6~0.9US) 	Need 3 weeks for creating the ZCV table	1. Need provide the battery packet and SPEC to MTK SA for creating the ZCV table. (same as the flow of Gas Gauge IC vender)			

2016/9/20

Fuel gauge

HW condition to enable Fuel gauge(must)

- Battery temperature detection circuit is a must
- Note: Fuel gauge will monitor battery temperature and do algorithm compensation via temperature parameter, so battery temperature detection function is a must. NTC resistor value may choose 10Kohm@25 °C or 47Kohm@25 °C, if another NTC resistor value is used, customer needs to built the NTC temperature table.

Fill in the material preparation

- Customer provide 3pcs bran-new original battery and battery datasheet for MTK testing, after testing, MTK will feedback ZCV table of XXXX @2012xxxx.xlsx file.
- The cust_battery_meter_table.h and cust_battery_meter.h file need to fill ZCV data.

cust_battery_meter.h H 檔案 2 KB

cust_battery_meter_table.h 日檔案

How to fill ZCV Data

 Note: In addition to items need to be modified below, please don't modify other parameter, or it may result in abnormity.

Q_MAX Replacement

• 1: Use the Cmax\Cmax_400mA testing in 50°C、25°C、0°C、-10°C to replace original corresponding temperature Q_MAX value respectively.

-Note: _H_CURRENT represent the battery discharging capacity in400mA condition.

OAM_D5 Replacement

2: Please change cust_battery_meter.h

#define OAM_D5

to

#define OAM_D5

ZCV Database replace < DOD, OCV>

• 5-1: ZCV Database replacement, use the data in different temperature,50 °C,25 °C,0 °C,-10 °C, respectively, to replace

original data. <dod,ocv></dod,ocv>		7					
original data. Dob, ocv	負10度	ocv	VC	mAh	R(battery)	DOD	R(x1000)
		/ 4174		0	0.34	0	340
// <dod, battery_voltage=""> Table</dod,>		4158	4022	30	0.34	2	340
123 // TO -10C		4112	3976	60	0.3/4	5	340
124 BATTERY PROFILE STRUC battery profile t0[]	=	4074	3938	90	0.34	7	340
125 \(\{ \(\) \(4059	3918	119	0.3375	9	338
127 /2 41581	The state of the s	4038	3899	149,	0.3475	12	348
162 (64 , 3 / 26) ,		4023	3875	17/9	0.37	14	370
120 (7 4074) 163 (86 , 3721)	OCV: Open C	3998	383		nth of	16	413
120 (9 4053) 164 (88 , 3714),	OCV: Open C	3958	277	DOD :De		19	578
131 {12 , 4038}, 166 {93 , 3700},	Voltage	3941	367	Discharg	E	21	678
132 {14 , 4023}, 167 (95 , 3674)		3933	3648	298	0.7125	23	713
133 {16 , 3998},		3922	3634	328	0.72	26	720
134 (19 , 3958), 169 (99 3550)		3910	3621	358	0.7225	28	723
135 {21 , 3941}, 170 (99 , 3522), 136 {23 , 3933}, 170 (99 , 3522),		3897	3607	388	0.725	30	725
127 (26 3022) 171 (100, 3506),		3881	3596	418	0.7125	33	713
120 (28 3010) 172 (100, 3496),		3867	3583	448	0.71	35	710
129 (30 3907) 173 (100, 3409),	7	3854	3573	478	0.7025	37	703
139 (30 , 3097), 174 (100, 3485), 140 (33 , 3881), 175 (100, 3482),		3842	3563	507	0.6975	40	698
141 {35 , 3867}, 176 {100, 3479},		3833	3554	537	0.6975	42	698
142 {37, 3854}, 177 {100, 3477}		3824	3545	567	0.6975	44	698
143 {40 , 3842},		3818	3537	597	0.7025	47	703
144 {42 , 3833}, 179 {100, 3474}, 145 {44 , 3824},		-812	3530	627	0.705	49	705
146 (47 3919) 180 (100, 3473), /	Note: the las	t pair	3523	657	0.7075	51	708
147 (40 3912)	data in the a	rray 801	3516	686	0.7125	54	713
140 (51 3006)	haven't "," sy	mbol, ₇₉₈	3509	716	0.7225	56	723
140 (54 3001)	comma symi	ol. 3793	3502	746	0.7275	58	728
150 (56 , 3798), 184 (100, 3400)	ıt © l	3791	3498	776	0.7325	61	733
151 {58 , 3793},		3788	3496	806	0.7323	63	730
100		3700	5,50	500	0.75	33	,50

ZCV Database replace < DOD, OCV>

• 5-2: if data length in ZCV table isn't equal to array length in code. Just adjust the array length in SW code, let it equal the data length in ZCV table. Exp:184-125=60-1=59, so adjust all array length to 59, including {0,0} array.

123	// TO -10C		1	負10度	OCV	VC	mAh	R(battery)	DOD	R(x1000)
124		_STRUC battery_profile_t0[] =	2.		4174		0	0.34	0	340
125			, 3		4158	4022	30	0.34	2	340
126	{0 , 4174},		4 /		4112	3976	60	0.34	5	340
127 128	{2 , 4158}, {5 , 4112},		5		4074	3938	90	0.34	7	340
129	{7 , 4074},		6		4053	3918	119	0.3375	9	338
130	{9 , 4053},		7	,	4038	3899	149		12	348
131	{12 , 4038},		8		4023	3875	179	0.37	14	370
132	{14 , 4023},	.1	9		3998	3833	209		16	
133	{16 , 3998},		10		3958	3727	239	0.5775	19	
134	{19 , 3958},									
135	{21 , 3941},									
			52		3479	3198	1281	0.7025	100	703
			53		3477	3197	1281	0.7	100	700
			54		3476	3199	1281	0.6925	100	693
178	{100, 3476},		55		3474	3195	1282	0.6975	100	698
179	{100, 3474},		56		3473	3196	1282	0.6925	100	693
180	{100, 3473},		57		3400	3193	1282	0.5175	100	518
181	{100, 3400},		58		3400	3193	1282	0.5175	100	518
182	{100, 3400},		59		3400	3193	1282	0.5175	100	
183	{100, 3400}.		60		3400	3193	1282		100	
184	(100, 3400)		61							
185	"	7 0	62							
187	// T1 OC			A.I			0040/0/00			0.5

ZCV Database replace < Rbat, OCV>

• 6:ZCV Database replacement, use the data in different temperature, 50°C, 25°C, 0°C, -10°C, respectively, to replace original data. <Rbat, OCV>, the method is the same as <DOD,OCV>, attention equal length of the array.

1//////////////////////////////////////	,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,	[10度]	OCV	VC	mAh	R(battery)	DOD	R(x1000)
	ttery Voltage>	Table		4174		0	0.34	0	340
- inninini	<i>,,,,,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77777777777	49	4158	4022	30	0.34	2	340
528 // TO -	-10C	*****		4112	3976	60	0.34	5	340
529 R PROF:	ILE_SARUC r_pro:	file_t0[] =		4074	3938	90	0.34	7	340
530 🖃 {		_		4053	3918	119	0.3375	9	338
531 {340,	4174),			4038	3899	149	0.3475	12	348
	, 4158),			4023	3875	179	0.37	14	370
	4112),	(770, 350	16)	3998	3833	209	0.4125	16	413
	40.4477	(745, 349		3958	3727	239		19	578
	, 4053), 578 , 4038), 578	(728, 348		3941	3670	269		21	678
	, 4030), , 4023), 579	{718, 348	35),	3933	3648	298		23	713
	3998}, 580	{710, 348	32),	3922	3634	328		26	720
	, 3958), 581	{703, 347		3910	3621	358		28	723
	, 3941), ⁵⁸²	{700, 347		3897	3607	388		30	725
541 {713,	, 3933), 583	(693, 347	/ -	3881	3596	418		33	713
542 {720,	, 3922), 584	{ 698, 347		2967	3583	448		35	710
	, 3910), 585 3807) 586	{693, 347 {518, 340		oair 3854	3573	478		37	703
	, 3097),	(518, 340		3842	3563	507	0.6975	40	698
	, 3001),	(518, 340	navent evm	bol, 3833				42	
	, 30073,				3554	537	0.6975		698
547 {703,	, 3854), 589 590			3824	3545	567	0.6975	44	698
				3818	3537	597		47	703
MEDIATEK	CONFIDENTIAL B	60	Copyright Structure 1 City	3812	3530	627	0.705	49	705

Fuel gauge Test

 After complete the modification aforementioned, you can test battery gauge for verification according to <u>Fuel Gauge Test Way</u> <u>Introduction</u>. You can also do the verification using your own testing method.

Testing note:

- 1: Fuel gauge only read battery temperature, battery voltage and Rfg current when booting, to calculate OCV(Open Circuit Voltage), then table look-up to get battery gauge percentage.
- 2: After mobile boot up, Fuel gauge use Coulomb Counter to integrate over Rfg current, and get the battery capacity.
- 3: For better user experience, our software have many tracking methods, tracking methods please refer The Fuel gauge Part in Design Notice. Avoid puzzling everybody.

Agenda

- Design with Default ZCV table
- Design with Measure ZCV table
- Fuel Gauge Test Way Introduction

Agenda

- Test equipment requirements
- D0 precision test

CONFIDENTIAL B

Charge/Discharge Fuel gauge percentage precision test

Test equipment requirements

- High precision Voltmeter
 - Accurately measuring the battery voltage, Accuracy is more than $\pm 0.1 \text{mV}_{\,\circ}$
 - Example: Keithley 2700
 - Note: The accuracy of the voltage measurement affects the accuracy of the test.

D0 precision test 1/4

Attention to the temperature 25°C

- Step 1: Put the battery in the phone and have it full charged, then take it out.
 - Note: Gauge show100%, then take out the battery. (Please take out the battery in 10 mins after full charged)
 - Show battery percent: Settings->About phone->Status->Battery level
- Step 2: Take out the battery and make it stay in inactive state for 30 mins, measure the battery voltage and record V_{battery} .
 - For example: $V_{Battery} = 4.17644V$

D0 precision test 2/4

Attention to the temperature 25°C

- Step 3: Accordding to V_{battery}, Look up the ZCV curve and find the percentage D_ZCV(Look-up table method), get the actual battery percentage (A%) and record it.
 - $V_{Battery}$ =4.17644V, using the look-up table method to get the actual percentage.
 - 4.17644V is between 4.188V and 4.175V. We can calculate the real percentage in MTK provided ZCV table is 99.10125% (A%) .Attention to the normal temperature, please refer to 25°C ZCV table.

25度	OCV	VC	mAh	R(battery)	DOD						
	4188		0		0	7					
	4175	4113	20	0.155	1						
	4162	4100	40	0.155	3	常温驗證	x1(max)	x2(min)	V1(DOD)	v2(DOD)	v(result)
	4147	4086	60	0,1525	4		4188	4175	> 0	\rightarrow 1	0.889231
	4134	4074	80	0.15	5			1212			99.21077
	4122	4062	100	0.15	7					指示百分	
	4111	4050	120	0.1525	8						
	4099	4038	140	0.1525	9						
					/						
follov	w the abov	ve instr	uction	s to lool	k-up ta	ble			30分钟之	4.17644	
l in the	correcto	anding	numbe	ar it wil	ll auto	matical	W				
iii liik	e correspo	oroonte		71	ii auto	matical	注意: 常溫丁	測試,查	表請參考2	5度時量測	的zcv表
are me	e battery p	rercenta	ige (P	1 /0 / o							

Plea and calc This is the real ocrcentage

D0 precision test 3/4

Attention to the temperature 25°C

- Step 4: Put the battery inside the phone and power it on to show the battery percentage (B%), then record the B%.
 - For example: the battery percentage is 8% (B%) shows below.
 - Show the Battery percentage: Setting->About phone->Status->Battery level

D0 precision test 4/4

Attention to the temperature 25°C

- Step 5: D0 error=|A%-B%|<10%</p>
 - D0 error=|A%-B%|=|99.10%-100%|=0.9% <10%
 - Note: The error is associated with the battery voltage measurement accuracy, so make sure the battery voltage is measured accurately.
- Step 6: Discharge the battery to (95%,90%,85%,80%,75%,70%,65%,60%,25%,20%,15%, 10%), repeat step 2 to step 6 until VBAT<3.5V . Please record every D0 error value and confirm the correct.

Discharge Fuel gauge percentage precision test

- Step 1: Connect UART to receive FG Log
- Step 2: Put the battery in the phone and have it full charged
- Step 3: Run stress load app (Keep the screen will not shut down), until the phone automatically shut down.
 - The test condition can be changed, but the test (100%~0%Overloading or Mediumloading or Lowloading) loading should be consistent.
- Step 4: Get the FG log and arrange information,
 - [11779.032482] (1) [47:bat_thread_kthr][Power/BatMeter]
 [oam_result_inf] 1, 1, 1, 1, 99
 - 11779.032482 time information, 1, 1, 1, 1, 1(72 FG original percentage), 99 (72 UI SOC percentage)

Discharge Fuel gauge percentage precision test

Step 4: Use the Log information to describe curve in Excel

• Idear curve is a line between 100% and 0%, the bias between Ideal curve and test curve is FG error, also the error needs to be less than 10% (If the error is more than 10%, please make sure the customization parameters

Qmax)

Charge Fuel gauge percentage precision test

- Step 1: Connect UART to receive FG Log
- Step 2: Use the mobile phone until automatic shutdown
- Step 3: Connect Charger (AC or USB) and wait for the successful start up
- Step 4: Press the PWRKEY to shutdown the screen and charge the battery to 100%
 - The test condition (100%~0% AC charger or USB charger) charge current should be consistent
- Step 5: : Get the FG log and arrange information
 - [11779.032482] (1) [47:bat_thread_kthr][Power/BatMeter]
 [oam_result_inf] 1, 1, 1, 1, 1, 99
 - 11779.032482 time information, 100, 100, 100, 100, 100(72 FG original percentage), 1 (72 UI SOC percentage)

Charge Fuel gauge percentage precision test

Step 6: Use the Log information to describe curve in Excel

• Idear curve is a line between 90% and 0%, the bias between Ideal curve and test curve is FG error, also the error needs to be less than 10% (If the error is more than 10%, please make sure the customization parameters

Qmax)

MEDIATEK

everyday genius

Copyright © MediaTek Inc. All rights reserved.