

Thermal Management for 3D-Stacked Systems via Unified Core-Memory Power Regulation.

Y. Shen, L. Schreuders, A. Pathania, A.D. Pimentel

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

Research background→3D-stacked systems

☐ 3D-stacked Processor-Memory Architecture

- Allow Heterogenous Integration
- Stacked (Logic/DARM) Dies
 - TSV(Through Silicon Via) interconnection
 - More compact material
- Higher Bandwidth via TSV
- Lower Latency

Research background→3D-stacked systems

☐ 3D-stacked Processor-Memory Architecture

- Higher cost
 - Simulation needed
 - CoMeT
 - Higher power density

Research background → 3D-stacked systems

3D-stacked Processor-Memory Architecture

Simulation needed

Higher power density

Research background → 3D-stacked systems

Thermal behavior in 3D-stacked systems(running blacksholes)

Arch. type: 3D, Core: 2x2x1, Memory: 4x4x8

Time step = 437 ms

3D architecture temperature map

Research background→3D-stacked systems

■ Thermal behavior in 3D-stacked systems(running blacksholes)

Arch. type: 3D, Core: 2x2x1, Memory: 4x4x8

Time step = 424 ms

3D architecture temperature map

Research background→3D-stacked systems

☐ 3D-stacked chips in industry

Micron HBM

Intel Lakefield

AMD Zen 3 Ryzen

Xilinx Virtex Ultrascale

Apple M2

Samsung HBM2E Flashbolt

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

A motivational example

- Experimental platform: simulated 3D-stacked system
 - 4 core per layer-1 layer
 - 16 memory banks per layer-8 layers
- ☐ Thermal threshold 78(°C)
- Experimental configuration

	Benchmark	Thread	DTM method	Execute at
Scenario 1	streamcluster	1 master, 3 slaves	DVFS	Core 0,1,2,3
Scenario 2	streamcluster	1 master, 3 slaves	LPM	Core 0,1,2,3

A motivational example

3D-stacked processor-memory systems with DVFS and LPM

A motivational example

Layer-wised peak temperature for different layers

(a) 1st Scenario: 2.7 GHz core(s) frequency with 0 memory banks in LPM and 128 memory banks in NPM.

- LPM+4GHz is 18.33% faster than No LPM+2.7GHz
- Computer-intensive benchmarks benefit more from higher core frequency than from LPM penalties

(b) 2nd Scenario: 4 GHz core(s) frequency with 14 memory banks in LPM and 114 memory banks in NPM.

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

Low power mode(LPM) implementation

Power-performance modeling associated with LPM

Low power mode(LPM) implementation

- Key features of LPM
 - Data preserved in situ in LPM, avoiding migration
 - Data inaccessible in LPM mode
 - Re-accessing data requires toggling to NPM

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

DRAM Access Analysis for Low Power Mode

- Performance and peak Temperature Variations in 3D-stacked Systems with Varied LPM
 - Turn off 1 memory bank per test

DRAM Access Analysis for Low Power Mode

- Performance and peak Temperature Variations in 3D-stacked Systems with Varied LPM
 - Memory banks near the PCB layer with fewer access counts offer better performance and thermal benefits in LPM
 - Lower layer banks with high access counts face higher performance penalties and reduced thermal benefits in LPM

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

Action space

- \circ DVFS for core(16⁴)
- LPM for memory bank

- \square Action space($16^4 * 2^{128} = 2^{144}$)
 - \circ DVFS for core(16⁴)
 - \circ LPM for memory bank(2^{128})

☐ State space

O Discrete state: s^{IPC} , s^f , s^U , s^{MAC}

 \circ Continuous state: s^{hotL} , $s^{T_{peak}}$, $s^{P_{tot}}$

State	Description	Discrete values
s ^{IPC}	Billion Instructions per Cycle per Core	0,1
sf	Frequency per Core	$1.0, 1.2, \cdots, 4.0$
s^{U}	Utilization per Core	0,1,2,3,4,5,6
$s^{T_{peak}}$	Peak temperature of 3D-stacked Systems	-
$s^{T_{hotL}}$	Average Temperature of the Hottest Memory Layer	-
$s^{P_{tot}}$	Total Power Consumption	-
s ^{MAC}	Memory Access Count per Memory Bank	0,1,2,3,4

- \square DRAM access profiling(s^{MAC})
 - Memory banks near the PCB layer with fewer access counts offer better performance and thermal benefits in LPM
 - Lower layer banks with high access counts face higher performance penalties and reduced thermal benefits in LPM

- Action Embedding
 - Parameterize each subaction(each core and each DRAM action)
 - Embedding the parameterized subaction

- Reward function
 - r₀ represents system performance
 - r₁ represents temperature
 - r₂ represents the impact of LPM memory banks

$$r_{t+1}(s_t, s_{t+1}) = \zeta r_{0_{t+1}} + \phi r_{1_{t+1}} + \phi r_{2_{t+1}} + \frac{\Phi}{|s_{t+1}^{P_{tot}}|}$$

Average system throughput (core frequency, IPC, utilization)

The gap between T_{peak} , and T_{op} , T_{cr} (an exponential law)

Switching frequently accessed memory banks to LPM increases penalties.

- ☐ The design of the Q-network
 - Parameterize each subaction(each core and each DRAM action)
 - Embedding the parameterized subaction

☐ The training of 3QUTM

- The inference of 3QUTM in simulated 3D-stacked systems
 - ☐ C++ Conversion:
 - Well-trained Q-network transition from Python to C++
 - Preparation the package for CoMeT simulator integration
 - **☐** Binary Code Compilation:
 - Q-network compiled into binary post C++ conversion
 - Enhanced execution speed and memory efficiency
 - Suitable for real-world hardware deployment
 - **■** Execution on CoMeT:
 - Binary file loaded onto 3D-stacked processor-memory system

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

- Configuration
 - Training using PARSEC benchmarks
 - In the inference phrase, using PARSEC + Splash-2

Core Parameters			
4/16, 1 layer			
x86, 4.0 GHz, 22 nm, out-of-order			
32/32 KB, 4/4-way,64 B-block			
private,512 KB, 8-way, 64 B-block			
512 KB, 16-way, 64 B-block			
Memory Parameters			
8 GB, 8 layers, 16 channels, 128 banks			
25.6 GB/s			

- Performance improvements on a 4-core 3D-stacked systems
 - Training using PARSEC benchmarks
 - In the inference phrase(thermal management), using PARSEC+Splash-2

(a) Performance

Energy improvements on a 4-core 3D-stacked systems

(b) Core Energy Consumption

Performance and energy improvements on a 16-core 3D-stacked systems

Performance and Energy Consumption for DNN Workloads in Inference

- Performance and Energy Consumption for DNN Workloads in Inference
 - Open systems: The arrival time follows Possion Distribution

■ Peak Temperature Analysis

(a) Temperature Comparison on a 4-core 3D-stacked System (b) Temperature Comparison on a 16-core 3D-stacked System

Outline

- Research background
- A motivational example
- LPM implementation
- DRAM access profiling
- 3QUTM: a unified thermal scheduler via Deep Q-learning
- Experimental results
- Conclusion

Conclusion

- We developed a Low Power Mode (LPM) optimized for 3D-stacked systems.
- We introduce 3QUTM, a DQN-based unified thermal scheduler for intelligent thermal management.
- We conducted comparative experiments, yielding notable performance and energy savings across various benchmarks and DNN workloads.
- We confirmed 3QUTM's efficacy in temperature regulation within 3D-stacked systems, suggesting promising avenues for future research..

Thanks for your attention Questions?