

Source of Power Consumption

Sangyoung Park
Chair for Real-Time Computer Systems
Technical University of Munich
sangyoung.park@tum.de

Contents

- CMOS Inverter
- Power and Energy
- Source of Power Consumption
- Dynamic Power
- Static Power
- (VDD-VT) Design Space
- Total Power Management

 The CMOS inverter and (b) its representation as a pair of switches operated in a complementary fashion

Pull- up and down networks

- Static operation
 - Matching for symmetrical transfer characteristic

$$\left(\frac{W}{L}\right)_{p} = \frac{\mu_{n}}{\mu_{p}} \left(\frac{W}{L}\right)_{n}$$

- μ_n is 2 to 4 times larger than μ_p
- Generally devices have the same channel length for a given technology
- Device size: (n+p)L² where n=1.5 and p=4.5 for example

- Transistor sizing
 - Determination of the W/ L ratio
 - Provide the same current-driving capability in both directions equal to that of the basic inverter

- Static operation
 - The voltage transfer characteristic (VTC) of the CMOS inverter when Q_N and Q_P are matched

$$V_{th} = \frac{V_{DD} - |V_{tp}| + \sqrt{\frac{K_n}{K_p}} V_{tn}}{1 + \sqrt{\frac{k_n}{k_p}}}$$

$$k_n = k_n' \left(\frac{W}{L}\right)_n$$

$$k_p = k_p' \left(\frac{W}{L}\right)_p$$

 Definitions of propagation delays and switching times of the logic inverter

- Dynamic operation
 - Parasitic capacitance

- Dynamic operation
 - Low to high transition

High to low transition

Power and Energy

- Power consumption of digital circuits is defined by the supply voltage times the current flow from V_{DD} to GND
 - Generally, V_{DD} is constant and I_{DD} is variable
- Instantaneous power: $P(t) = I_{DD}(t)V_{DD}$

- Energy:
$$E(T) = \int_0^T P(t)dt$$

- Average power: $\overline{P(T)} = \frac{E(T)}{T}$

Source of Power Consumption

- Dynamic power
 - Current flow from V_{DD} to GND when logic transition occurs
 - Switching power
 - Short-circuit power
 - Glitch power
- Static power
 - Current flow from V_{DD} to GND regardless of logic transition
 - DC current
 - Leakage power

Source of Power Consumption

- Traditional CMOS circuits
 - Slow operation
 - Negligible dynamic power consumption
 - Electric watches, calculators, etc.
 - High V_{DD} and high V_T
 - Negligible leakage power consumption
 - Small short-circuit current
- Modern high-speed CMOS
 - Fast operation
 - High dynamic power
 - Low V_{DD} and low V_T
 - Less dynamic power but more leakage power per unit transistor
 - Power is the most important design constraints
 - Large-scale integration and thus power per unit area increase dramatically

Switching power

$$P(t) = \frac{dE}{dt} = V_{DD} \times I_{DD}(t)$$

 A step voltage is applied at t=0

$$i_{DD}(t) = C_L \frac{dV_0}{dt}$$

 Energy transferred from the power supply

$$E_{01} = \int_0^{t_d} P(t)dt = V_{DD}C_L \int_0^V dV_0 = C_L V_{DD}V$$

- Switching power
 - When $V = V_{DD}, E_{0 \to 1} = C_L V_{DD}^2$
 - $C_L V_{DD}^2/2$ is dissipated by heat
 - $C_L V_{DD}^2/2$ is stored in the capacitor
 - The remaining $C_L V_{DD}^2/2$ is dissipated by heat again when high-to-low transition occurs
 - High-to-low transition does not draw additional current from the power supply

- Switching power:

$$P_{sw} = f_{sw}V_{DD}^2C_L$$

$$E_{tot} = V_{DD}Q = V_{DD}C_L\Delta V = \frac{C_LC_{int}}{C_L + C_{int}}V_{DD}^2 = (C_L||C_{int})V_{DD}^2$$

Gate capacitance

$$C_g = C_{sg} + C_{dg} + C_{bg}$$

- C_{gb} : sum of the gate-to-bulk capacitances
- Overlap capacitance

$$C_{ov} = C_{dg1} + C_{dg2} + C_{dg3} + C_{dg4} + C_{sg3} + C_{sg4}$$

- Due to Miller effect: $C_{dg1} = C_{dg2} = 2C_{ox}x + dW$
- $C_{dg3} = C_{dg4} = C_{sg3} = C_{sg4} = C_{ox}x + dW$
- Diffusion capacitance
- Interconnect capacitance

- Reduced swing switching power
 - Rail-to-rail swing: V_{DD} to GND
 - When $V_{OH} < V_{DD}$, swing is V_{OH} to GND
 - Reduced bit-line in memory

- Short-circuit power
 - Transient current from VDD to GND when logic transition occurs

Short-circuit power

when assuming
$$V_{thn} = V_{thp} = V_{th}$$

device parameter $\beta_n = \beta_p = \mu C_{ox} \frac{W}{L}$

 μ : carrier mobility

 C_{ox} : Oxide capacitance

τ: rise and fall time

$$P_{sc} = \frac{\mu C_{ox} W}{12 L} (V_{DD} - 2V_{th})^3 \tau f$$

- Impact of load capacitance
 - As output loading increases:

Current envelope	width	peak	integration
i _{short}	no change	decrease	decrease
i _c	increase	increase	increase
i _{short} +i _c	increase	increase	increase

- Impact of input slope
 - As input signal slope deteriorates:

Current envelope	width	peak	integration
İ _{short}	increase	increase	increase
i _c	increase	decrease	no change
i _{short} +i _c	increase	decrease	increase

- DC current
 - Pseudo NMOS logic

- DC current
 - Steady current flow from VDD to GND
 - Either logic value is 0 or 1 depending on the logic structure
 - Mostly when the output is 0

- Leakage current
 - A transistor switch is a resistive-capacitive network between the power supply and GND
 - Non-ideal off-state characteristics (a finite resistance)
 makes current draw even when the transistor is in the
 cut-off state

Leakage current overview

- If channel is locking:
 - Subthreshold current (I_{subth}) <≤180nm
 - Gate tunneling to S/D (Igate) < ≤90nm
 - PN-junction leakage (Ijunction)
 - Gate induced drain leakage (IgidL)
 - Depletion punch-through (Ipunch)

- If channel is conducting:
 - Gate tunneling (Igate)
 - PN-junction leakage (Ijunction)
 - If channel is switching:
 - Hot carrier injection (IHCI)

- ITRS 2006 prognosis

Subthreshold current

$$I_{sub} = I_s e^{\frac{q(V_{GS} - V_T - V_{offset})}{nkT}} (1 - e^{\frac{-qV_{DS}}{kT}})$$

- Weak inversion current
- A MOSFET operates in the weak inversion (subthreshold) region when V_{GS} < V_T
- Source to drain current conduction is primarily due to diffusion of the carriers
- Subthreshold current is exponentially dependent on threshold voltage and the threshold voltage again depends on several parameters

Simplified equation of V_T from BSIM4 manual

$$V_{th} = \underbrace{V_{FB}}_{\text{Flatband}} + \underbrace{\Phi_S(T)}_{\text{Surface}} + \underbrace{\gamma\left(\sqrt{\Phi_S + V_{bs}} - \sqrt{\Phi_S}\right)}_{\text{Body Effect}} - \underbrace{\frac{\left(V_{bi}(T) - \Phi_S\right) + V_{ds}/2}{\cosh(L/l_c) - 1}}_{\text{Drain Induced Barrier Lowering}} \\ + \underbrace{\alpha\left(V_{bs}\right)}_{\text{Narrow Width Effect}} - \underbrace{\frac{\Phi_S T_{ox}}{W + \Delta W}}_{\text{Non Uniform}} - \underbrace{\frac{k_{retro}V_{bs}}{V_{th} \text{Roll-up}} + \underbrace{k_{halo}(L)\sqrt{\Phi_S}}_{V_{th} \text{Roll-up}} + \underbrace{\Delta_{DITS}\left(V_{ds}, T\right)}_{\text{Drain Induced Threshold Shift}}$$

- First two: zero bias threshold
- Body effect
 - If bulk source voltage is 0, body effect is 0
 - A positive source voltage result in a positive term thus threshold is higher and leakage lower
- DIBL factor: the negative DIBL factor basically depends linearly on V_{DS} and exponentially on the channel length

- Drain induced barrier lowering (DIBL)
 - The depth of the junction depletion layer increases as the reverse bias voltage across the drain-to-body PN junction increases
 - Increased drain-to-body reverse bias voltage enhances the short-channel effects and lowers V_T
 - Drain current is influenced by drain voltage not just gate voltage
 - A significant portion of the subthreshold leakage current of a DSM MOSFET can be due to DIBL at high reverse bias voltage across the drain-to-body PN junction

- Gate leakage
 - Tunneling: an electron on the left can pass a barrier higher than its energy with a certain probability (classically impossible)
 - Tunneling current exponentially depends on barrier height V and width T and on carrier's mass m_{eff}
 - Leakage current can be carried by tunneling electrons or holes
 - Direct tunneling: from gate to channel
 - Fowler-Nordheim tunneling: from gate to oxide
 - In the overlap region, the tunneling can carry current from the gate to source and drain directly. The current tunneling to the cannel will go to source, drain or bulk

- Maximum subthreshod leakage
 - Cut-off transistor
- Maximum gate oxide leakage
 - A transistor operates in the active region with the maximum voltage difference across the gate-to-source and the gate-to-drain terminals

Maximum subthreshold leakage

Maximum gate oxide leakage

- Junction leakage
 - Schematic view of a PN-junction in reverse bias
 - As known from diodes: small currents are carried by
 - Drifting carriers
 - Electron-hole generation in junction
 - As soon as build in potential plus applied reverse bias are higher than the band gap, electrons can directly tunnel from the P-side's valence band to the N-side's conduction band → Band-To-Band-Tunneling (BTBT)

- Junction leakage
 - Smaller barrier means exponentially higher BTBT:
 - Technology scaling: steeper doping profiles
 - Gate Induced Drain Leakage (GIDL)
 - The potential difference between drain and gate makes the PN junction steeper
 - The tunneling distance smaller, and thus the current exponentially higher
 - Body biasing also influences the BTBT current

- Depletion punch-through
 - In a sufficiently small device
 - When the drain and source depletion regions approach each other and electrically touch deep in the channel
 - Source and drain are actually merged together
 - A space-charge condition that allows the channel current to exist deep in the sub-gate region

Causing the gate to lose control of the sub-gate channel

region

Depletion-region boundaries

- Hot carrier injection (HCI)
 - Short-channel transistors are more susceptible to the injection of hot carriers (holes and electrons) into the oxide
 - Theses charges are a reliability risk and are measurable as gate and substrate currents
 - Can occur in the off-state, but more typically occurs during the transistor bias states in transition

- Leakage power reduction
 - Lowering V_{DD} (voltage islands, dynamic voltage scaling)
 - Cooling and/or refrigeration
 - SOI technology
 - Dual V_T design
 - Body bias control (static and/or adaptive)
 - Input vector control during sleep mode
 - MTCMOS (sleep transistor)

- Two key transistor scaling schemes
 - CE (Constant electric field) scaling
 - All the horizontal and vertical dimensions are scaled with the power supply to maintain constant electric fields throughout the device
 - Standard scaling methodology in industry in a 30% reduction (1/S=0.7) of all dimensions per generation
 - Supply and threshold voltages are scaled down by the factor of 1/S
 - Current, gate capacitances, and delay also scaled by 1/S
 - Results in S improvement in frequency
 - Improvement gradually degrades due to interconnect dominant delay
 - CV (Constant voltage) scaling
 - Maintains a constant power supply
 - Gradually scales the gate oxide thickness to slow down the growth of fields in the oxide

- CE scaling
 - Switching energy scaled down by 1/S³
 - Dynamic power scaled down by 1/S²
 - Operating frequency scaled up by S
 - Dynamic power for a constant die size is the same
 - Number of switching elements scaled up by S²
 - Leakage power increases exponentially
- Example
 - Leakage power is 0.1% in 25um technology
 - Leakage power is 25% in 0.1um technology

Parameter	Relation	Full Scaling	General Scaling	Fixed-V Scaling
W, L, t _{ox}		1/S	1/S	1/S
V_{DD}, V_{T}		1/S	1/U	1
N_{SUB}	V/W _{depl} ²	S	S ² /U	S^2
Area/Device	WL	$1/S^2$	$1/S^2$	$1/S^2$
C _{ox}	$1/t_{ox}$	S	S	S
C _{gate}	$C_{ox}WL$	1/S	1/S	1/S
k _n , k _p	C _{ox} W/L	S	S	S
I _{sat}	$C_{ox}WV$	1/S	1/U	1
Current density	I _{sat} /Area	S	S ² /U	S^2
R _{on}	V/I _{sat}	1	1	1
Intrinsic Delay	$R_{on}C_{gate}$	1/S	1/S	1/S
P	I _{sat} V	1/S ²	1/U ²	1
Power density	P/Area	1	S^2/U^2	S^2

http://www.csee.umbc.edu/~cpatel2/links/640/lectures/lect11_scaling.pdf

Alpha-Power Model

Simple hand calculation model that empirically fits the real data

Measured data
$$I_{DS} = K_S \frac{W}{L} (V_{GS} - V_T)^{lpha}$$
 Measured data

$$I_{ON} = I_0(S\alpha)^{-\alpha}(V_{GS} - V_T)^{\alpha}$$

 α is close to 1 than 2, which is approximately 1.25, and continue to approach to 1 as technology scales

$$I_{sub} = I_0 e^{-\alpha} e^{\frac{V_{GS} - V_T}{S}}$$

Delay
$$\propto \frac{V_{DD}}{(V_{DD} - V_T)^{\alpha}}$$

- (V_{DD}-V_T) design space
 - Delay of a gate

$$t_{pd} \propto \frac{C_L V_{DD}}{(V_{DD} - V_T)^{\alpha}}$$
 Short-channel effect

Subthreshold leakage current increases exponentially as V_T decreases

$$I_{sub} = I_S^{\frac{-|V_T| \ln 10}{S}}$$

- For a given process and V_{DD}/V_T ratio, the energy efficient V_T point is significantly below the typical threshold levels of today's technology
 - Excessive headroom for (V_{DD}-V_T) scaling
 - But lowering V_T results in bad noise margin, shortchannel effect, and V_T variation

Total Power Management

- Power minimization in both active and standby modes
 - Dynamic power in active mode
 - Subthreshold leakage power in standby mode

Note

 Slides are modified from lecture notes of "Advanced Computer System Design" from Seoul National University (Lecturer: Prof. Naehyuck Chang)