ΔΙΑΓΩΝΙΣΜΑ 20 ΚΕΦΑΛΑΙΟ

2.8-2.9-2.10

Όνομα:.....

Βαθμός:.....

ΘEMAA (/20M)

Α1. Να κυκλώσετε Σ (Σωστό) ή Λ (Λάθος) στα παρακάτω

i. Αν η ευθεία
$$x\!=\!x_o$$
 είναι κατακόρυφη ασύμπτωτη της C_f τότε $\lim_{n\to 0}f(x)\!=\!+\infty$ ή $-\infty$

 $\Sigma - \Lambda$

ii. Αν η ευθεία
$$y=\mu$$
 είναι ασύμπτωτη της C_f στο $-\infty$, τότε $\lim_{x\to\mu}f(x)=-\infty$

 $\Sigma - \Lambda$

 $\Sigma - \Lambda$

iv. Η
$$C_f$$
 δεν τέμνει τις οριζόντιες και τις πλάγιες ασύμπτωτες σε κανένα σημείο

 $\Sigma - \Lambda$

 $\Sigma - \Lambda$

v. Av
$$\lim_{x \to +\infty} [f(x)-5]=10$$
 , τότε η C_f έχει στο $+\infty$ οριζόντια ασύμπτωτη την $y=15$

(10 Μονάδες)

Α2. Να κυκλώσετε το γράμμα της σωστής απάντησης στα παρακάτω:

i. Η C_f της $f(x) = \frac{2 \cdot x^2 + x + 1}{x^2 + 1}$ έχει οριζόντια ασύμπτωτη την ευθεία:

A.
$$x = 2$$

B.
$$y = 1$$

$$\Gamma$$
. $y = 2$ Δ . $y = x$

$$\Delta$$
. $v = x$

E.
$$X = -$$

ii. Αν η ευθεία $y = \alpha x + \beta$ είναι πλάγια ασύμπτωτη της C_f στο $+\infty$, τότε:

A.
$$\alpha = \lim_{x \to +\infty} \frac{f(x)}{x}$$

B.
$$\beta = \lim [f(x) + \alpha x]$$

A.
$$\alpha = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 B. $\beta = \lim_{x \to +\infty} [f(x) + \alpha x]$ Γ . $\alpha = \lim_{x \to +\infty} [f(x) - \beta x]$ Δ . $\beta = \lim_{x \to +\infty} \frac{f(x)}{x}$

$$\Delta$$
. $\beta = \lim_{x \to +\infty} \frac{f(x)}{x}$

E.
$$\alpha = \lim_{x \to -\infty} \frac{f(x)}{x}$$

iii. Αν η ευθεία x = 2 είναι κατακόρυφη ασύμπτωτη της C_f με $f(x) = \frac{x+5}{x+\alpha}$, τότε:

A.
$$\alpha = 1$$

B.
$$\alpha = -1$$

$$\Gamma$$
. $\alpha = 5$

$$\Delta$$
. $\alpha = -5$

$$\Gamma$$
. $\alpha = 5$ Δ . $\alpha = -5$ E . $\alpha = -2$

iv. To $\lim (x^2 \cdot lnx)$ είναι:

A. 1

Г. -2

Δ. 5

Ε. Δεν υπάρχει

v. To $\lim_{x\to 0} \frac{x \cdot \sigma v x - \eta \mu x}{x^3}$ είναι:

A. 2

B. -3 Γ . $-\frac{1}{3}$ Δ . 7

Ε. Δεν υπάρχει

(10 Μονάδες)

ΘEMAB (/25M)

Aν $f(x)=4\cdot x^3-21\cdot x^2+24\cdot x-2+6\cdot x^2\cdot lnx$, να βρεθούν τα διαστήματα που η f είναι κυρτή ή κοίλη, καθώς και τα σημεία καμπής της C_f , αν υπάρχουν.

(25 Μονάδες)

ΘΕΜΑΓ (/30M)

An
$$f(x) = \frac{(\alpha-1)\cdot x^2 + \beta\cdot x + 5}{3\,x + \gamma}$$
, me α , β , $\gamma \in \mathbb{R}$ na brefount a α , β , γ where β is a constant at β and β is a constant at β is a constant at β in β in β in β is a constant at β in β is a constant at β in β in β is a constant at β in β in

(30 Μονάδες)

Θ EMA Δ (/25M)

Aν $f(x) = \frac{x \cdot e^x}{x-2}$, να βρεθούν οι ασύμπτωτες της C_f

(25 Μονάδες)