▼ Chapter 6 - Exercise 7: Area plot, Boxplot

Thực hành vẽ Area plot, Box plot trên 2 tập dữ liệu khác nhau.

▼ Part 1: Area Plot

	Month	Hours_2017	Hours_2016
0	1	183.4	272.8
1	2	211.8	254.0
2	3	286.4	296.0
3	4	287.5	298.0
4	5	238.8	240.1
5	6	200.3	197.8
6	7	187.4	240.3
7	8	233.8	219.5
8	9	225.5	212.7
9	10	149.1	134.7
10	11	180.2	215.3
11	12	198.3	109.1

```
# Trên cùng một biểu đồ, hãy vẽ:
# Area plot cho 12 tháng nắng trong năm 2016
# Line plot cho 12 tháng nắng trong năm 2017
```

```
plt.figure(figsize=(8,5))
plt.fill_between(df.Month, df.Hours_2016, color='blue', label = '2016', alpha=0.5)
plt.plot(df.Month, df.Hours_2017,color='red', label='2017')

plt.title("Số giờ nắng các tháng trong năm tại trạm quan trắc Vũng Tàu", fontsize=18, colo
plt.xlabel("Month")
plt.ylabel("Hours")
plt.legend()
plt.grid(True)
plt.show()
```


▼ Part 2: Boxplot

Bạn nhận xét gì về biểu đồ vừa vẽ

Cho dữ liệu baseball.csv. Đọc dữ liệu từ baseball.csv và lưu vào biến data, hiển thị 10 data = pd.read_csv(r'data\baseball.csv', index_col=0) data.head(10)

	height	weight
0	1.8796	81.646560

Cho biết thông tin thống kê chung của data data.describe()

	height	weight
count	1015.000000	1015.000000
mean	1.871717	91.330191
std	0.058774	9.445198
min	1.701800	68.038800
25%	1.828800	84.368112
50%	1.879600	90.718400
75%	1.905000	97.522280
max	2.108200	131.541680

```
# Vẽ boxplot cho dữ liệu height và weight
red_square = dict(markerfacecolor = 'r', marker = 's')
height = plt.boxplot(data.height, flierprops=red_square)
plt.title("Height")
plt.show()
weight = plt.boxplot(data.weight, flierprops=red_square)
plt.title('Weight')
plt.show()
```


Kiểm tra xem dữ liệu có outliers hay không? Nếu có thì loại bỏ các outliers. Vẽ lại boxplot

```
1.70 -
# Tìm, đếm các outliers
                             weignt
# height
Q1_H = data.height.quantile(0.25)
Q3_H = data.height.quantile(0.75)
IQR_H = Q3_H - Q1_H
IQR_H
     0.076200000000000005
H_lower_bound = Q1_H - (1.5 * IQR_H)
H_lower_bound
     1.7145
count_H_lower_ouliters = data.height[data.height < H_lower_bound].count()</pre>
count_H_lower_ouliters
     2
H_{upper_bound} = Q3_H + (1.5 * IQR_H)
H_upper_bound
     2.01930000000000003
count_H_upper_ouliters = data.height[data.height > H_upper_bound].count()
count_H_upper_ouliters
     10
# weight
Q1_W = data.weight.quantile(0.25)
Q3 W = data.weight.quantile(0.75)
IQR_W = Q3_W - Q1_W
print(IQR_W)
```

13.154168000000013

```
W_lower_bound = Q1_W - (1.5 * IQR_W)
W_lower_bound
     64.63685999999998
count_W_lower_ouliters = data.weight[data.weight < W_lower_bound].count()</pre>
count_W_lower_ouliters
     0
W_{upper_bound} = Q3_W + (1.5 * IQR_W)
W_upper_bound
     117.25353200000004
count_W_upper_ouliters = data.weight[data.weight > W_upper_bound].count()
count_W_upper_ouliters
     7
# Loại bỏ các outliers
result = data
result.head(10)
         height
                     weight
      0
         1.8796
                  81.646560
        1.8796
                  97.522280
        1.8288
                  95.254320
      3
         1.8288
                  95.254320
         1.8542
                  85.275296
      5
         1.7526
                  79.832192
      6
         1.7526
                  94.800728
      7
        1.8034
                  90.718400
      8
         1.9304
                 104.779752
         1.8034
                  81.646560
result = result.drop(result[result.height < H_lower_bound].index)</pre>
result = result.drop(result[result.height > H_upper_bound].index)
result = result.drop(result[result.weight < W_lower_bound].index)</pre>
result = result.drop(result[result.weight > W_upper_bound].index)
data.shape
```

(1015, 2)

```
result.shape
```

(998, 2)

```
# Ve lai box plot
height = plt.boxplot(result.height, flierprops=red_square)
plt.title("Height")
plt.show()

weight = plt.boxplot(result.weight, flierprops=red_square)
plt.title('Weight')
plt.show()
```


• ×