Simplicial complexes associated with point clouds II

Seminar on Topological Data Analysis

Tim van Beeck

May 17, 2022

University of Göttingen

Simplicial complexes

Figure 1: Stanford bunny, smooth and approximated by a mesh [8].

Point clouds

Figure 2: Point cloud representation of the bunny [2].

Contents

Voronoi diagrams

Delaunay triangulations

Alpha complexes and Filtrations

Collapses

Critical and regular events

Voronoi diagrams

Example of a Voronoi diagram

Figure 3: Voronoi diagram [1].

Voronoi cell as intersection of halfplanes

Figure 4: A Voronoi cell as intersection of halfplanes.

Weighted bisectors - Example

Figure 5: Weighted bisectors [1].

Lifting - Planes

Figure 6: Lifting of Voronoi cells [inspired by [1]].

Lifting - Sphere

Figure 7: Lifting of Voronoi cells [inspired by [1]].

Delaunay triangulations

Example of a Delaunay triangulation

Figure 8: Delaunay triangulation [1].

Filtrations

Alpha complexes and

Weighted alpha complexes - Motivation

Figure 9: Sketch of a caffeine molecule [3].

Weighted alpha complexes

Figure 10: A weighted alpha complex [1].

Location of trees - Voronoi diagram

Figure 11: Voronoi diagram of the location of trees [4].

Location of trees - Delaunay triangulation

Figure 12: Delaunay triangulation of the location of trees [4].

Location of trees - Alpha complex

Figure 13: Alpha complex of the location of trees [4].

Example Filtration

Figure 14: Filtration [5].

Collapses

Contractible, but not collapsible!

Figure 15: The dunce hat [6].

Contractible, but not collapsible!

Figure 16: Bing's house with two rooms [7].

Critical and regular events

Regular events - Example

Figure 17: Two edges appear before a regular event adds the triangle [inspired by [1]].

Critical events - Example

Figure 18: Three edges appear before a critical event adds the triangle [inspired by [1]].

References

- [1] H. Edelsbrunner and J.L. Harer. Computational Topology: An Introduction.
- Miscellaneous Bks. American Mathematical Society, 2022.
- [2] Patrick O'Neil and Thomas Wanner. Analyzing the Squared Distance-to-Measure Gradient Flow System with k-Order Voronoi Diagrams. Jan 2019
- [3] https://upload.wikimedia.org/wikipedia/commons/d/df/Caffeine_ballandstick.png
- [4] H. Edelsbrunner. Shape Reconstruction with Delaunay Complex (Invited Paper). Springer-Verlag Berlin Heidelberg. 1998.
- [5] Jie Liang. Computation of protein geometry and its applications: Packing and function prediction. 2008.
- [6] Ronald Brown. Topology and Groupoids. 2006.
- [7] Allen Hatcher. Algebraic Topology. 2001.
- [8] Lederer PL, Lehrenfeld C, Schöberl J. *Divergence-free tangential finite element methods for incompressible flows on surfaces.* Int J Numer Methods Eng. 2020.