Robot Technology

เทคโนโลยีทุ่นยนต์:

พศ.คร.สถาพร ลักษณะเจริญ หัวหน้ากลุ่มวิจัยชีววิทยาการทุ่นยนต์ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ http://biobot.kmitnb.ac.th

้ตอนทุ่นยนต์งู (ภาคแรก)

งัดว่าเป็นสัตว์เลื้อยคลานประเภทหนึ่ง ที่น่าสนใจ เพราะการเคลื่อนที่ของงูนั้น ใช้แต่เพียงการขยับลำตัวเลื้อยไปมา ก็สามารถ ที่จะเคลื่อนที่จากที่หนึ่งไปยังอีกที่หนึ่งได้

ในบทนี้จะบรรยายถึงหุ่นยนต์ที่สร้างขึ้นด้วยหลักการ เคลื่อนที่ของงูรวมถึงหลักการที่งูโอบรัดสิ่งของได้นำมาเป็น แนวทางในการสร้างหุ่นยนต์งู และแขนกล หรือ มือกลแบบ ต่าง ๆ อีกด้วย

กลใกที่มีแนวคิดจากรูปร่างและการเคลื่อนที่ของงูนั้น เรียกว่า Active Cord Mechanism (ACM) หรือ กลไกแอค-ทีฟคอร์ด ที่ประกอบไปด้วย ซิ้นส่วนพื้นฐานที่เชื่อมต่อกัน แบบอนุกรม (series) โดยแต่ละข้อต่อของชิ้นส่วนสามารถที่ จะดัดโค้งงอได้คล้ายกับในเส้นเชือก โดยในเบื้องต้นจะอธิบาย ถึง การศึกษาทางชีวกลศาสตร์ (bio-mechanisms) ของงู และกลไกที่งูใช้ในการเคลื่อนที่ต่อจากนั้นจะอธิบายถึงหุ่นยนต์ และกลไกที่สร้างขึ้นมาจากหลักการเหล่านั้น

การเคลื่อนที่ของสัตว์เลื้อยคลานประเภท งู เป็นสิ่งน่า มหัศจรรย์ เพราะงูเป็นสัตว์ไม่มีขาแต่สามารถเคลื่อนที่ไปได้

Robot Technology

ทุกที่ ซึ่งเป็นปัญหาที่น่าสนใจ ว่างูนั้นสามารถเคลื่อนที่ได้ อย่างไร ซึ่งปัญหานี้ต้องใช้การวิเคราะห์ทางวิศวกรรมมาช่วย วิเคราะห์ สิ่งที่น่าสนใจอีกอันหนึ่ง คือ ถ้าสามารถที่จะสร้าง หุ่นยนต์ที่มีการเคลื่อนที่คล้ายงู (snake-like-robot) หุ่นยนต์ นั้นจะมีประโยชน์มากเพราะสามารถเคลื่อนที่ได้โดยไม่ต้อง ใช้ขาเคลื่อนที่แต่สามารถไปได้ทุกที่

นอกจากการเคลื่อนที่ของงูเป็นจุดที่น่าสนใจแล้วรูปร่าง ของงูมีลักษณะเรียบง่ายคล้ายเส้นเชือกทำให้งูสามารถเคลื่อนที่ ไต่ไปบนกิ่งไม้ได้โดยการแกว่งลำตัวไปเกี่ยวกับกิ่งก้านของ ต้นไม้ ดังแสดงในรูป แสดงการเคลื่อนที่ของงูที่ไต่ไปบนกิ่ง ไม้โดยใช้รูปร่างที่คล้ายเส้นเชือก

รูปที่ 1 แสดงการเคลื่อนที่ของงูโดยการโยงลำตัว จากกิ่งไม้หนึ่งไปอีกก้านหนึ่ง

จากรูปจะพบว่า งูสามารถโยนลำตัวไปยังอีกจุดหนึ่งได้ หรือ อีกนัยหนึ่งอาจกล่าวได้ว่า ลำตัวของงูทำหน้าที่คล้าย กับขา เมื่อเคลื่อนที่จากจุดหนึ่งไปยังอีกจุดหนึ่ง และลำตัวของ งูทำหน้าที่คล้ายแขนหรือนิ้วมือจับสิ่งของเพื่อจับไปตามกิ่ง ก้านของต้นไม้เพื่อพยุงลำตัวไว้

รูปที่ 2 แสดงการเลื้อยของงูในพื้นที่แคบ

เป็นที่น่าสังเกตว่ารูปร่าง คล้ายเส้นเชือกของงูนั้นเป็น ประโยชน์มากในการเคลื่อนที่ในช่องแคบ เพราะสามารถที่จะ บิดงอลำตัวให้สามารถเคลื่อนที่ผ่านไปได้

รูปที่ 3 แสดงการเลื้อยของงูบนพื้นเรียบ

จากรูปแสดงการเลื้อยของงูบนพื้นเรียบเป็นที่น่า สังเกตว่างูนั้นจะมีการขยับส่วนต้นคอและลำตัวให้สูงจากพื้น เล็กน้อยเพื่อช่วยในการเคลื่อนที่และป้องกันการลื่นไถลของ ส่วนลำตัว อนึ่งการเคลื่อนที่ของงูบนพื้นที่มีการชูคอและลำ ตัวขึ้นนั้นสามารถวิเคราะห์เป็นกราฟการเคลื่อนที่ดัง แสดง ในรูป Sinus lifting locomotion

รูปที่ 4 แสดง การเคลื่อนที่แบบ Sinus-lifting locomotion

ส่วนการศึกษาถึงพลศาสตร์ (dynamics) ของการ เคลื่อนที่แบบคืบคลาน (creeping propulsion) ของงูบนพื้น

Robot Technology

ระดับ ได้มีการคิดคันถึง สมการการเคลื่อนที่ของงู และทำการ ทดลองโดยการวัดแรง ดังแสดงในรูป การทดลองการวัด EMG (electromyographic) ที่เกิดขึ้นในกล้ามเนื้อของงู ซึ่งเป็น กระแสไฟฟ้า ที่เกิดขึ้นในกล้ามเนื้อของงู ขณะมีการเลื้อยไป มาซึ่งจากการทดลองนี้พบว่ากระแส คลื่นไฟฟ้า ที่เกิดขึ้นใน กล้ามเนื้อมีลักษณะคล้ายคลื่น Sine ตามแนวเส้นโค้งของลำตัว ซึ่งได้ตั้งชื่อนี้ว่า Serpenoid curve

รูปที่ 5 แสดงการวัดคลื่น EMG ในกล้ามเนื้อของงู

วิธีการเคลื่อนที่ของงูนั้นมีหลายแบบที่จะปรับให้เข้ากับ สภาพแวดล้อม แต่ในที่นี้สามารถแบ่งออกเป็น 4 ประเภท ใหญ่ ๆ ได้แก่

- 1. Serpentine movement เป็นลักษณะการเคลื่อนที่ ของงูที่มักพบเห็นโดยทั่วไปหรือเป็นแบบที่มนุษย์ได้ค้นพบ ตั้งแต่โบราณ จากการสังเกตงูเคลื่อนที่คล้ายกับกระแสน้ำ ข้ามไปยังโขดหินการเคลื่อนที่แบบนี้ลำตัวของงูมีลักษณะ การเคลื่อนที่ที่คล้ายกันในแต่ละส่วน ซึ่งวิธีนี้จัดว่าเป็นวิธีที่มี ประสิทธิภาพดีที่สุดของการเลื้อยคลาน
- 2. Rectilinear movement การเคลื่อนที่แบบ Rectilinear เป็นแบบที่งูใช้ในการเคลื่อนที่เป็นแนวเส้นตรง กลไกการ เคลื่อนที่แบบนี้เป็นแบบอย่างง่ายโดยการไถลลำตัวไปเป็น เส้นตรง พบได้ในการเคลื่อนที่ไปบนพื้นลื่น
- 3. Concertina movement มีหลักการคือ การขดลำตัว ขึ้นจากนั้นคลายออกเพื่อผลักลำตัวเคลื่อนที่ไปข้างหน้า
- 4. Sidewinding movement มักพบในประเภท งูกะปะ (rattlesnake) หรือ งูที่อาศัยอยู่ในทะเลทราย หลักการคือ

การยกส่วนของลำตัวให้เป็นรูปคล้ายตัว อักษร S แล้วผลัก ลำตัวไปข้างหน้าคล้ายกับขดลวดกลิ้งไปมา ในการเคลื่อนที่ แบบนี้จะไม่มีการลื่นไถล ระหว่างลำตัวกับพื้น โดยลำตัวจะ สัมผัสกับพื้นจากด้านบน ซึ่งเนื่องมาจากลักษณะการเคลื่อนที่ แบบนี้ แรงเสียดทานการลื่นไถลมีค่าน้อย และมีประโยชน์ ในการเคลื่อนที่ไปบนพื้นที่นุ่ม เช่น พื้นทราย ประสิทธิภาพ ในการเคลื่อนที่ของวิธีนี้มีค่าสูง เพราะสามารถปรับเข้ากับ สภาพทะเลทรายได้ดี

ครั้งหน้า จะเล่าถึงว่า การเคลื่อนที่แบบใดที่นำมาสร้าง หุ่นยนต์งู และจะอธิบายถึงหุ่นยนต์งูตัวแรกของโลก สวัสดีครับ

เอกสารอ้างอิง

Shigeo Hirose; Biologically Inspired Robots (Snake-like Locomotor and Manipulator), Oxford University Press, (1993)

