Exercício: regressão múltipla sob a abordagem bayesiana

Disciplina: Modelagem Estatística Instrutor: Luiz Max Carvalho Monitor: Isaque Pim

Abril/2023

Notação: Como convenção adotamos $\mathbb{R}=(-\infty,\infty),\ \mathbb{R}_+=(0,\infty)$ e $\mathbb{N}=\{1,2,\ldots\}.$

Motivação: Como vimos até aqui, o modelo linear (gaussiano) é extremamente útil para modelar a relação entre possíveis variáveis explanatórias (i.e. covariáveis) e uma variável dependente/resposta contínua. Até agora vimos como fazer inferência para esse modelo sob a ótica clássica/frequentista. Vamos então nos debruçar sobre o tratamento bayesiano do problema.

Tome X uma matriz real $n \times P$ e $Y = \{Y_1, \dots, Y_n\}^T \in \mathbb{R}^n$ um vetor contendo os valores da variável dependente.

Nosso modelo é

$$E[Y_i] =: \mu_i(\boldsymbol{\beta}) = \tilde{\boldsymbol{X}}_i^T \boldsymbol{\beta},$$

onde $\beta \in \mathbb{R}^{P+1}$ é o vetor de coeficientes e parâmetro de interesse e \tilde{X} é uma matriz obtida adicionando uma coluna de uns, $X_0 = \{1, \dots, 1\}^T$, a \tilde{X} . Como antes, vamos assumir que os erros em torno do preditor linear são normalmente distribuídos com variância comum:

$$Y_i \overset{\text{i.i.d.}}{\sim} \text{Normal}(\mu_i(\boldsymbol{\beta}), \sigma^2),$$

com $\sigma^2 \in \mathbb{R}_+$ desconhecida. Do ponto de vista bayesiano, precisamos especificar uma distribuição de probabilidade conjunta para todas as quantidades desconhecidas θ do modelo. Neste caso, $\theta = (\beta, \sigma^2) \in \mathbb{R}^{P+1} \times \mathbb{R}_+$.

Questões

1. Mostre que a verossimilhança $f_{\tilde{\boldsymbol{X}}}(\boldsymbol{y}\mid\boldsymbol{\theta})$ pode ser escrita na forma

$$f_{\tilde{\mathbf{X}}}(\mathbf{y} \mid \theta) = g_{\tilde{\mathbf{X}}}(\mathbf{y}|\boldsymbol{\beta}, \sigma^2) h_{\tilde{\mathbf{X}}}(\mathbf{y}|\sigma^2).$$

2. Utilize o resultado anterior para deduzir que a priori conjugada para este caso é da forma

$$\pi_{B,S}\left(\boldsymbol{\beta},\sigma^{2}\right)=\pi_{B\mid S}\left(\boldsymbol{\beta}\mid\sigma^{2}\right)\pi_{S}(\sigma^{2}).$$

Em particular, mostre que

$$\pi_{B,S}\left(\boldsymbol{\beta},\sigma^2\right) \propto \left(\frac{1}{\sigma^2}\right)^{a+(P+1)/2+1} \times \exp\left(-\frac{1}{\sigma^2}\left\{b+\frac{1}{2}(\boldsymbol{\beta}-\boldsymbol{\mu}_{\boldsymbol{\beta}})^T\boldsymbol{V}_{\boldsymbol{\beta}}^{-1}(\boldsymbol{\beta}-\boldsymbol{\mu}_{\boldsymbol{\beta}})\right\}\right),$$

onde $\boldsymbol{\mu}_{\beta}$) $\in \mathbb{R}^{P+1}$, \boldsymbol{V}_{β} é uma matriz positiva definida e $a,b\in\mathbb{R}_{+}$.

Dica: Que escolhas para $\pi_{B|S}$ e π_S eu preciso fazer?

- 3. A priori anterior chama-se **normal inversa gama** (NIG) e tem quatro parâmetros: m, V, a e b. Mostre que a posteriori de θ também é NIG e exiba seus hiperparâmetros.
- 4. Distribuições marginais

Dica: Antes de começar os cálculos para essa seção, vale considerar a seguinte representação do nosso modelo:

$$egin{aligned} oldsymbol{y} &= oldsymbol{ ilde{X}}^T oldsymbol{eta} + oldsymbol{\epsilon}_1, \ \cos oldsymbol{\epsilon}_1 \sim ext{MVN}_n \left(oldsymbol{0}_n, oldsymbol{\Sigma}_1
ight), \ oldsymbol{eta} &= oldsymbol{\mu}_{eta} + oldsymbol{\epsilon}_2, \ \cos oldsymbol{\epsilon}_2 \sim ext{MVN}_{P+1} \left(oldsymbol{0}_{P+1}, oldsymbol{\Sigma}_2
ight), \end{aligned}$$

onde ϵ_1 e ϵ_2 são erros independentes.

- (a) Determine Σ_1 e Σ_2 ;
- (b) Compute a verossimilhança marginal com respeito a σ^2 :

$$\widetilde{f}_{\widetilde{\boldsymbol{X}}}(\boldsymbol{y}\mid\sigma^2):=\int_{\mathbb{R}^{P+1}}f_{\widetilde{\boldsymbol{X}}}(\boldsymbol{y}\mid\boldsymbol{b},\sigma^2)\pi_{B\mid S}(\boldsymbol{b}\mid\sigma^2)\,d\boldsymbol{b}.$$

(c) Usando o item anterior, compute a verossimilhança marginal ou $\it pre-ditiva~a~priori$:

$$m_{\tilde{oldsymbol{X}}}(oldsymbol{y}) := \int_0^\infty \widetilde{f}_{\tilde{oldsymbol{X}}}(oldsymbol{y} \mid s) \pi_S(s) \, ds.$$

- (d) Mostre $\bar{f}_{\tilde{X}}(\beta \mid y)$ e comente sobre como calcular, por exemplo, $\Pr(\beta_1 > a \mid y)$, para $a \in \mathbb{R}$.
- 5. Suponha que eu coletei uma nova matriz de desenho $m \times P$, X' e quero prever o valor de y' a partir do que eu aprendi usando X e y. Compute

$$\bar{p}_{\tilde{\boldsymbol{X}},\boldsymbol{X'}}(\boldsymbol{y'}\mid\boldsymbol{y}) := \int_{\mathbb{R}^{P+1}\times\mathbb{R}_+} p_{\tilde{\boldsymbol{X}}}(\boldsymbol{b},s\mid\boldsymbol{y}) f_{\boldsymbol{X'}}(\boldsymbol{y'}\mid\boldsymbol{b},s) \, d\boldsymbol{b} ds,$$

e esboce o seu gráfico para uma observação (linha de X') de um conjunto de dados da sua escolha.

Dica: use um conjunto de dados que você conheça bem. Bons exemplos são os bancos de 'peso ao nascer' e 'kid score', que já analisamos em sala.

Resultados úteis

Aqui estão enunciados alguns resultados úteis para o desenvolvimento das questões acima. Estes são dados sem demonstração, que você está convidada a fazer.

• Completando o "quadrado" em múltiplas dimensões: tome A matriz simétrica positiva definida $d \times d$ e $\alpha, u \in \mathbb{R}^d$. Vale que:

$$\boldsymbol{u}^{T} \boldsymbol{A} \boldsymbol{u} = (\boldsymbol{u} - \boldsymbol{A}^{-1} \boldsymbol{\alpha})^{T} \boldsymbol{A} (\boldsymbol{u} - \boldsymbol{A}^{-1} \boldsymbol{\alpha}) - \boldsymbol{\alpha}^{T} \boldsymbol{A} \boldsymbol{\alpha}. \tag{1}$$

Dica: Expanda o produto e procure por cancelamentos de termos da forma $a^T M^{-1} a$.

• Sherman-Woodbury-Morrisson: tome \boldsymbol{A} matriz quadrada $d \times d$ inversível, \boldsymbol{B} matriz $k \times d$, \boldsymbol{C} matriz $d \times k$ e \boldsymbol{D} matriz quadrada $k \times k$ inversível. Então

$$(A + BDC)^{-1} = A^{-1} - (D^{-1} + CA^{-1}B)^{-1}CA^{-1}.$$

• Determinantes: tome A, B, C e D como antes. Então,

$$\det(\mathbf{A} + \mathbf{B}\mathbf{D}\mathbf{C}) = \det(\mathbf{A})\det(\mathbf{D})\det(\mathbf{D}^{-1} + \mathbf{C}\mathbf{A}^{-1}\mathbf{B}).$$