Gramáticas irrestrictas

Con la definición de máquina de Turing se permite

Formalizar la matemática, la lógica y estudiar sus alcances e interrelaciones

- Establecer la computación como una disciplina científica y sus límites
- Caracterizar la clase de lenguajes reconocibles/generales con algoritmos

Gramáticas sin restricciones

Definimos una gramática irrestricta (o sin restricciones) como una tupla $G = (V, \Sigma, S, P)$ donde **todas** las producciones tienen la forma $\alpha \to \beta$ con $\alpha, \beta \in (V \cup \Sigma)^*$

Ejemplo

Sea G:	
$S \rightarrow aSBC \mid \lambda$	$CB \rightarrow BC$
$aB \rightarrow ab$	$bB \to bb$
$bC \rightarrow bc$	$cC \rightarrow cc$

$$S \Rightarrow^{3x1} aaaSBCBCBC \Rightarrow^{1} aaaBCBCBC \Rightarrow^{4} aaaBBCCBC \Rightarrow^{4} aaaBBCCCC \Rightarrow^{5} aaabbBCCC \Rightarrow^{6} aaabbbCCC \Rightarrow^{6} aaabbbccC \Rightarrow^{6} aaabbbccC \Rightarrow^{6} aaabbbccC$$

Otro ejemplo, L = $\{a^{2n}, n \ge 0\}$

$$L \rightarrow LD \mid \lambda$$

$$DR \rightarrow R$$

$$R \rightarrow \lambda$$

Notar que D es el no terminal "duplicador"

No Turing Reconocible

Máquinas de Turing

- La cinta NO tiene limite (longitud infinita)
- El cabezal se mueve de izquierda a derecha

En cada transición (paso de tiempo), el cabezal:

- 1. Lee un símbolo
- 2. Escribe un símbolo
- 3. Se Mueve a Izquierda o Derecha

- 2 Escribe k
- 3 Se mueve a la izquierda

- 1 Lee b
- 2 Escribe f
- 3 Se mueve a la derecha

Detalles

El cabezal siempre comienza en el extremo izquierdo del string de input (no es el comienzo de la cinta)

Denotamos las transiciones como

Ejemplos

Se permite la ausencia de una transición para algún símbolo que esté en sigma

Determinismo

Las máquinas de Turing son deterministas

Las transiciones lambda no están permitidas

Detención

Una máquina de turing va a "parar" en un estado si no existe una transición para seguir consumiendo el input

PARAR!!!

Aceptación

En una TM, los estados finales no tienen transiciones salientes, la máquina para y acepta

Notar que para aceptar un string de input, no es necesario procesar todos los símbolos en el string

Ejemplo de TM

Sea $\Sigma = \{a, b\}$ y la TM, mostramos la aceptación de la cadena aaa

El instante 0 el TM se encuentra así

Ejemplo de TM

Ejemplo de rechazo

Otro ejemplito

Una Máquina de Turing para el lenguaje a * +b(a+b)*

Esta otra TM también acepta a * +b(a+b)*

Pero... esta TM produce un ciclo infinito no?

Debido al ciclo infinito, nunca se puede alcanzar el estado final y la máquina nunca para. Por lo que vamos a **rechazar** la cadena de entrada

Otro ejemplo

Una TM para el lenguaje L = $\{a^n b^n\}$ con n >= 1

La idea es matchear las a's con b's, entonces:

iterativamente

reemplazamos la primer a con x,
hallar la b más a la izquierda y
reemplazarla con y hasta que no
halla más a's o b's

Si hay una a o una b, rechazamos.

Nota: Si modificamos la máquina para el lenguaje { an bn }, podemos construir { an bn cn }

Definición formal - función de transición

$$\begin{array}{ccc}
q_1 & a \to b, R & q_2
\end{array}$$

$$\begin{array}{cccc}
q_1 & c \to d, L \\
\hline
\end{array}$$

$$\delta(q_1,a) = (q_2,b,R)$$

$$\delta(q_1,c) = (q_2,d,L)$$

Definición formal - Máquina de Turing

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \diamond, F)$$

Q el conjunto finito de estados del control finito

> el alfabeto de símbolos de entrada

$$\Gamma$$
 el alfabeto de la cinta, $\Sigma \subset \Gamma$

$$\mathcal{S} \text{ la función (parcial) de transición} \\ \delta: Q \times \Sigma \to Q \times \Gamma \times \{L, R\}$$

$$q_0$$
 el estado inicial $q_0 \in Q$

$$\Diamond$$
 el símbolo blanco $\Diamond \in \Gamma, \Diamond \notin \Sigma$

F el conjunto de estados finales $F \subseteq Q$

Definición formal - Configuración

Decimos que la configuración caq, ba denota la configuración instantánea del siguiente input

Denotamos el movimiento entre 4 y 5 como $q_2xayb > xq_0ayb$

Definición formal - Computación

Y denotamos una computación como una secuencia de movimientos

$$q_2xayb \succ xq_0ayb \succ xxq_1yb \succ xxyq_1b$$

 $q_2xayb \succ xxyq_1b$

Definición formal - Configuración inicial

Denotamos q_0 w a la configuración inicial para cualquier TM, donde q_0 es el estado inicial y w el input de entrada

Definición formal - Lenguaje aceptado

Para una TM M, denotamos el lenguaje aceptado por M como

Si un lenguaje L es aceptado por una TM M, entonces decimos que L es Turing reconocible

Nota: Turing reconocible es equivalente a decir Turing aceptable o recursivamente enumerable

Teorema

Un lenguaje L es aceptado por una Máquina de Turing M si y sólo si es generado por una **gramática irrestricta** (sin restricciones), es decir, de tipo 0

La prueba pueden encontrarla en la página 354 de *Theory of Finite Automata with an Introduction to Formal Languages. John Carroll and Darrell Long*