For a Cautious Use of Big Data and Computation

J. Raimbault^{1,2} juste.raimbault@parisgeo.cnrs.fr

¹UMR CNRS 8504 Géographie-cités ²UMR-T IFSTTAR 9403 LVMT

RGS 2016

Session Geocomputation : The Next 20 years
September 2016

Computational power : an exponential use

But to what purpose?

Theories and Computation

Case study : Context and Rationale

Dataset construction

Locally stationary spatial correlations

 $Y_i[\vec{x},t]$ spatio-temporal stochastic process, assumptions :

- Local spatial autocorrelation is present and bounded by l_{ρ} (in other words the processes are continuous in space) : at any \vec{x} and t, $\left|\rho_{\parallel\Delta\vec{x}\parallel< l_{\rho}}\left[Y_{i}(\vec{x}+\Delta\vec{x},t),Y_{i}(\vec{x},t)\right]\right|>0$.
- **2** Processes are locally parametrized : $Y_i = Y_i[\alpha_i]$, where $\alpha_i(\vec{x})$ varies with I_{α} , with $I_{\alpha} \gg I_{\rho}$.
- **3** Spatial correlations between processes have a sense at an intermediate scale l such that $l_{\alpha} \gg l \gg l \rho$.
- Processes covariance stationarity times scale as \sqrt{I} .
- Local ergodicity is present at scale I and dynamics are locally chaotic.

Conclusion

Reserve

Reserve Slides

References I