

1

Simpson's Paradox

• Bob's GPAs in both Spring semester and Fall semester are better than Alice's GPAs in the same semesters. However, Alice's overall GPA is higher than Bob's.

	'22 Spring		'22 Fall		'22	
	GPA	Credits	GPA	Credits	GPA	Credit
Alice	3.5	5	4.0	20		25
Bob	3.7	20	4.1	5		25

• Do not believe anything blindly. Doubt everything.

Descartes Said "Cogito, ergo sum"
Originally, "Dubito, ergo cogito, ergo sum"

Korea Institute of Energy Technology

2

Better Doctor

- An advertisement says that "The winning probability of our law firm is 90%"
- "Our hospital have successfully performed medical operations with 99%"
- "Every graduate of this department gets a job"

	Doctor A		Doctor B		
	Cases	Success	Cases	Success	
Sucher	90	90	10	10	
Cancer Operation	10	2	90	80	
Total	100	92	100	90	

Korea Institute of Energy Technology 2022-05-10

3

Computing & Probability

- Computer Science broadly uses the knowledge of probability & statistics in developing algorithms
 - Machine learning
 - Big data analyses
 - Networks, systems, ..
- Randomized algorithms
 - Use randomness in performing their procedures
 - Example: Select pivot elements randomly (Quick sort)
- Probabilistic analysis of algorithms
 - The performance of many algorithms depends on input
 - Average (or worst case) performance considering input probability
 - Example: BST (Binary Search Tree)

Korea Institute of Energy Technology

Probability

Cardano (1501~1576) was an Italian polymath, gambler He invented idea of probability (odds), independence, and binomial coefficients (that Pascal refined later)

- Cardano, a gambler & mathematician, first introduced the notion of probability
 - Roll two dice. How many times should you try until (6, 6) occurs?
- Probability
 - Trial: Roll two dice
 - Sample space: {(1,1), ... (6, 6)}
 - Event: E1={6, 6}
 - Probability of E1 = 1/36

Korea Institute of Energy Technology

5

Axioms of Probability

Kolmororov(1903~1987) was a Russian Mathematician One of most important researchers in probability At age 5, he discovered that sum of non-negative odd numbers is equal to square of a number $(1+3+5+7 = 4^2)$

Axioms of Probability

A1: $0 \le Pr(E) \le 1$ A2: $Pr(\Omega)=1$

A3: If E_1 and E_2 are mutually exclusive $(E_1 \cap E_2 = \emptyset)$,

then $Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2)$

→ For any sequence of pairwise mutually disjoint events E1, E2, ..., En $Pr(\bigcup_{i=1}^{n} E_i) = \sum_{i=1}^{n} Pr(E_i)$

Korea Institute of Energy Technology

Lemmas

- From the axioms, we can easily derive following Lemmas
- Lemma 1.0
 - If E \subseteq F then Pr(E) ≤ Pr(F)
 - $\Pr(\bar{E}) = 1 \Pr(E)$
- o Lemma1.1
 - For any events $E_1 \& E_2$ $Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2) - Pr(E_1 \cap E_2)$
- Lemma 1.2:
 - For any sequence of events Ei

Union Bound

 $-\frac{\Pr(\bigcup_{i\geq 1}E_i)\leq \sum_{i\geq 1}\Pr(E_i)}{}$

- Lemma 1.3: Inclusion-exclusion principle
 - $\begin{array}{l} \ Pr(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} Pr(E_{i}) \sum_{i < j} Pr(E_{i} \cap E_{i}) + \cdots \\ (-1)^{l+1} \sum_{i_{1} < i_{2} < \cdots < i_{l}} Pr(\bigcap_{r=1}^{l} E_{i^{r}}) + \ \cdots \end{array}$

Korea Institute of Energy Technology

7

Birthday Problem

- What is the probability that none of *n* people share the same birthday?
- sample |Ω| = ? 365 × 365 × · · · × 365 = (365)
- event |E| = ? 365 × (365-1) x (365-2) x ... × (365-n+1)
 - Pr(no matching birthdays)
 - $= (365)(364)...(365 n + 1)/(365)^{n}$
 - Cases
 - n=23: Pr(no matching birthdays) < $\frac{1}{2}$ (least such n)
 - n= 75: Pr(no matching birthdays) < 1/3,000
 - n = 100: Pr(no matching birthdays) < 1/3,000,000

Korea Institute of Energy Technology

Verifying Polynomial Identities

- Problem
 - Verify if $F(x) \equiv G(x)$
 - Where F(x) is given in a product of monomials form and
 G(x) is given in a canonical form
- Example
 - F(x) = (x+1)(x-2)(x+3)(x-4)(x+5)(x-6)
 - $-G(x) = x^6 7x^3 + 25$
- Deterministic method
 - Convert F(x) to a canonical form and check if all coefficients are the same
- Complexity of the deterministic method
 - If $F(x) = \prod_{i=1}^d (x-a_i)$ then it takes $O(d^2)$ where d is the degree of the polynomial

Korea Institute of Energy Technology

9

,

Randomized Algorithm - Background

- \bullet If F(x) = G(x)
 - \rightarrow For all integers r, F(r) = G(r)
- Suppose $F(x) \neq G(x)$
 - Compute F(r) and G(r) for a randomly selected integer r
 - Case 1: $F(r) \neq G(r) \Rightarrow F(x) \neq G(x)$
 - Case 2: $F(r) = G(r) \implies F(x) = G(x)$

Wrong Decision!!

- What is the probability of making a wrong decision?
- \bullet Consider F(x) G(x)
 - There are at most d roots that yield F(x) G(x) = 0

Korea Institute of Energy Technology

10

Randomized Algorithm

11

- Simple randomized algorithm
 - Select a number r, uniformly at random from $\Omega = \{1, 2, ..., 100d\}$
 - If F(r) = G(r), then conclude that F(x) = G(x)
- Analysis of the simple randomized algorithm
 - Probability of making wrong decision (given $F(x) \neq G(x)$)
 - Pr(Wrong Decision) = Pr(r is one of roots) $\leq \frac{d}{100d} = \frac{1}{100}$
- How do you improve the simple algorithm?
 - Increase the sample space to {1, 2, ..., 1000d}
 - Any other methods?

Korea Institute of Energy Technology