BRAC University

Department of Computer Science and Engineering

Semester: Fall 2023
Course Code: CSE428
Course Title: Image Processing

Final Exam
Full Marks: 15 x 3 = 45
Time: 1 hour 30 minutes
Date: 19th December, 2023

Set A

Student ID:	Name:	Section:
-------------	-------	----------

[Answer all questions of the following]

[Each question carries equal marks.]

[After the exam, the question paper should be turned in along with the answer script.]

Q.1 Suppose a **Faster R-CNN** based object detector predicts 7 bounding boxes on a sample of 3 images with 5 ground truth annotations. The prediction confidence for each of the bounding boxes along with the **TP** / **FP** labels are given in the following table:

Images	Confidence (%)	TP / FP Label
Image 1	86	TP
Image 1	65	TP
Image 2	90	FP
Image 2	70	TP
Image 2	56	FP
Image 3	73	FP
Image 3	92	TP

(a)	Calculate the Precision values for each of the predictions.	6
(b)	Calculate the Recall values for each of the predictions.	6
(c)	Draw the Precision vs Recall curve for the object detector.	3

Q.2 Suppose a shallow dense neural network with a single hidden layer of only 2 neurons has been trained for a binary dark (label: 0) vs light (label: 1) image classification task. After sufficient training period, you want to test the performance of the network with a 2 x 2 input image. The pixel intensity values of the input image and the weight-bias parameters for the layers are given below:

0.7	0.8
0.6	0.9

Input to Hidden layer weight and bias parameters:

$$W_{input-hidden} = \begin{bmatrix} 0.1 & 0.5 & 0.3 & 0.1 \\ 0.2 & 0.4 & 0.09 & 0.3 \end{bmatrix}$$

$$b_{hidden} = \begin{bmatrix} -0.32 \\ -0.28 \end{bmatrix}$$

Hidden to Output layer weight and bias parameters:

$$W_{hidden-output} = [0.5 \quad 0.9]$$

 $b_{output} = [0.5]$

The activation functions used in the **Hidden** and **Output** layers are given in the following table:

Layer	Activation function
Hidden	tanh
Output	sigmoid

((a)	Explain why linear activation functions are not ideal for neural networks.	2
((b)	Draw the architecture of the neural network to be used for the above classifier.	5
((c)	Determine the outputs of individual layers using the given parameters and predict the classification label of the test image determined by the neural network. [Hint: Output at any layer can be determined using the following equation:] $output = activation(W \times input + b)$	8

Q.3 Alice is a BRACU student and she is taking CSE428 this semester. For her final project, she is trying to implement a CNN architecture for a classification task that comprises of the following layers:

Layer	Input dimension	Filter size	Pad width	Number of filters	Output dimension	Memory	FLOPs
Conv-1	$56 \times 56 \times 3$	7 × 7	3	10			
Pool-1		2 × 2	0	-			
Conv-2		5 × 5	2	20			
Pool-2		4×4	0	-			
Flatten		-	-	-			
FC (output)		-	-	5			

and	ne table above, <i>Conv-X</i> denotes a Convolutional layer, <i>Pool-X</i> denotes a Poolin <i>FC</i> denotes a Fully Connected layer. Assume that for the floating point operation 64 bit floating point numbers.		
(a)	Determine the number of classes Alice is trying to classify for her project. (Explain your answer briefly)	2	
(b)	Calculate the input and output dimensions for each of the layers. (Complete the 2nd and 6th columns of the table)	5	
(c)	Calculate the memory requirements for each of the layers. (Complete the 7th column of the table)	4	
(d)	Calculate the FLOPs for each of the layers. (Complete the 8th column of the table)	4	