HW5

Carl Mueller CSCI 5254 - Convex Optimization

April 7, 2018

6.1

Proposition 1.

$$\log(x+1) \le x \tag{1}$$

$$-log(x+1) \ge x \tag{2}$$

$$x > -1 \tag{3}$$

Proposition 2.

$$-log(1-x)$$
 is convex (4)

Proposition 3.

$$\phi(||u||_{\infty}) = -a^2 \log(1 - \frac{||u||_{\infty}}{a^2})$$
(5)

Left inequality working backwards:

$$||u||_{2}^{2} \leq -a^{2} \sum_{i=1}^{m} \log(1 - \frac{u_{i}^{2}}{a^{2}})$$
$$\sum_{i=1}^{m} \frac{|u_{i}|^{2}}{a^{2}} \leq -\sum_{i=1}^{m} \log(1 - \frac{u_{i}^{2}}{a^{2}})$$

Given proposition 1:

$$\sum_{i=1}^{m} \frac{|u_i|^2}{a^2} \le -\sum_{i=1}^{m} \log(1 - \frac{u_i^2}{a^2})$$

true when:

$$-\frac{u_i^2}{a^2} \ge -1$$

Right inequality:

$$\begin{aligned} & \text{Given: } u_i^2 \leq ||u_i||_{\infty}^2 \\ & \sum_{i=1}^m -log(1 - \frac{u_i^2}{a^2}) \leq \sum_{i=1}^m -log(1 - \frac{||u_i||_{\infty}^2}{a^2}) \text{ given proposition } 1 \\ & \sum_{i=1}^m -log(1 - \frac{u_i^2}{a^2}) \leq \frac{u_i^2}{||u||_{\infty}^\infty} \sum_{i=1}^m -log(1 - \frac{||u_i||_{\infty}^2}{a^2}) \text{ given } \frac{u_i^2}{||u||_{\infty}^\infty} \geq 1 \\ & - a^2 \sum_{i=1}^m log(1 - \frac{u_i^2}{a^2}) \leq - a^2 \frac{u_i^2}{||u||_{\infty}^\infty} \sum_{i=1}^m log(1 - \frac{||u_i||_{\infty}^2}{a^2}) \\ & - a^2 \sum_{i=1}^m log(1 - \frac{u_i^2}{a^2}) \leq \frac{u_i^2}{||u||_{\infty}^\infty} \phi(||u||_{\infty}) \end{aligned}$$

6.9

To show convexity, the following level set must be convex:

$$S_{\alpha} = \left\{ t_i \mid \max_{i=1,\dots,k} \left| \frac{p(t_i)}{q(t_i)} - y_i \right| \le \alpha \right\}$$

Due to absolute value, following inequalities must hold:

$$-\alpha q(t_i) \le y_i q(t_i) - p(t_i) \le \alpha q(t_i)$$

This is represent two inequalities that define a polyhedron and is therefore convex. Since the level set is convex, the original minimization problem is at least quasiconvex.

7.3

Proposition 1.

$$P(x|y=1) = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{\frac{-z^{2}}{2}} dz$$
 (6)

$$P(x|y=0) = 1 - \frac{1}{\sqrt{2\pi}} \int_{r}^{\infty} e^{\frac{-z^2}{2}} dz$$
 (7)

Ordering probability terms in order of y = 1 and y = 0, our total probability is:

$$p(a,b) = \prod_{i=1}^{q} P_i(a^T u_i + b|y = 1) \prod_{i=q+1}^{m} (1 - P_i(a^T u_i + b|y = 0))$$

The negative log likelihood:

$$l(a,b) = \sum_{i=1}^{q} -log(P_i(a^T u_i + b|y = 1)) + \sum_{i=q+1}^{m} -log(1 - P_i(a^T u_i + b|y = 0))$$

The negative log likelihood is a convex function, so minimizing this function is a convex optimization problem.

7.4

a)

Proposition 1.

Sample mean:
$$u = \frac{1}{N} \sum_{k=1}^{N} y_k$$
 (8)

Covariance:
$$Y = \frac{1}{N} \sum_{k=1}^{N} (y_k - u)(y_k - u)^T$$
 (9)

$$\begin{split} -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}R^{-1}\sum_{k=1}^{N}(y_k - a)(y_k - a)^T \\ &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}R^{-1}\sum_{k=1}^{N}(y_k y_k^T - a y_k^T - y_k a^T + a a^T) \\ &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}R^{-1}(\sum_{k=1}^{N}y_k y_k^T - \sum_{k=1}^{N}a y_k^T - \sum_{k=1}^{N}y_k a^T + \sum_{k=1}^{N}a a^T)) \\ &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}R^{-1}(\sum_{k=1}^{N}y_k y_k^T - \sum_{k=1}^{N}a y_k^T - \sum_{k=1}^{N}y_k a^T + Naa^T) \end{split}$$

Substitute sample mean:

$$\begin{split} &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}R^{-1}\sum_{k=1}^{N}y_{k}y_{k}^{T} - Nay^{T} - Nua^{T} + Naa^{T} \\ &= R^{-1}\sum_{k=1}^{N}(y_{k} - a)(y_{k} - a)^{T} - R^{-1}N(a - u)(a - u)^{T} \\ &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}(NR^{-1}Y + R^{-1}N(a - u)(a - u)^{T}) \\ &= -\frac{N}{2}nlog(2\pi) - \frac{N}{2}log(det(R)) - \frac{1}{2}(Ntr(R^{-1}Y) + N(a - u)R^{-1}(a - u)^{T}) \end{split}$$

Set the gradient to zero to see a and R optimal values.

$$\nabla_{a}l(R, a) = -2R^{-1}(a - u) = 0$$

$$\therefore a = u$$

$$\nabla_{R}l(R, a) = -R^{-1} + R^{-1}(Y - (a - u)(a - u)^{T})R^{-1} = 0$$

$$R = Y + (a - u)(a - u)^{T}$$

$$R = Y + (0)(0)^{T}$$

$$\therefore R = Y$$

7.8

Express sign function as a probability where we order values with y > 1 followed by y < 0:

$$\prod_{i=1}^{k} prob(a_i^T x + b_i + v_i > 0) \prod_{i=k+1}^{m} prob(a_i^T x + b_i + v_i < 0)$$

Since a_i and b_i are known values, the only RV is the noise term. We can express v_i as an expression of $a_i^T x + b_i$. P represents the cumulative density function of v_i . We can represent the probability as follows:

$$\prod_{i=1}^{k} P(-a_i^T x - b_i) \prod_{i=k+1}^{m} 1 - P(-a_i^T x - b_i)$$

Log likelihood below is concave so if we maximize, we obtain a convex problem:

$$l(x) = \sum_{i=1}^{k} log(P(-a_i^T x - b_i)) + \sum_{i=k+1}^{m} log(1 - P(-a_i^T x - b_i))$$

7.9

Given

$$y_i = f(a_i^T x + b_i + v_i), i = 1, ..., m$$

We know that a_i and b_i are knowns, so lets expression the random variable v_i as an expression of all other terms. We assume that f is an invertible function.

$$v_i = f^{-1}(y_i) - a_i^T x - b_i$$

The probability of observing y_i, \ldots, y_m is:

$$\prod_{i=1}^{m} prob(f^{-1}(y_i) - a_i^T x - b_i)$$

$$\prod_{i=1}^{m} prob(f^{-1}(y_i) - a_i^T x - b_i)$$
$$l(x, f) = \sum_{i=1}^{m} log(prob(f^{-1}(y_i) - a_i^T x - b_i))$$

This log probability is concave w.r.t x and f. Thus maximizing generates a convex optimization problem.

Additional Exercises:

3.9

a)

Given:

$$z = [\Re x, \Im x]$$

Setup a system of equations using the vector breakdown of x for its \Re and \Im components:

$$\begin{aligned} ||x||_2^2 &= ||z||_2^2 \\ \begin{bmatrix} \Re A & -\Im A \\ \Im A & \Re A \end{bmatrix} \begin{bmatrix} \Re x \\ \Im x \end{bmatrix} &= \begin{bmatrix} \Re b \\ \Im b \end{bmatrix} \end{aligned}$$

This becomes the optimization problem:

minimize
$$||z||_2$$
 subject to $\begin{bmatrix} \Re A & -\Im A \\ \Im A & \Re A \end{bmatrix} \begin{bmatrix} \Re x \\ \Im x \end{bmatrix} = \begin{bmatrix} \Re b \\ \Im b \end{bmatrix}$

b)

Define the second order cone:

$$K_i = \{ (z, t) \mid ||z||_2 \le t \}$$

t

The SOCP:

minimize subject to $|z||_2$ $\left[\begin{matrix} \Re A & -\Im A \\ \Im A & \Re A \end{matrix} \right] \left[\begin{matrix} \Re x \\ \Im x \end{matrix} \right] = \left[\begin{matrix} \Re b \\ \Im b \end{matrix} \right]$

c)

Code:

```
randn('state',0);
m = 30; n = 100;
Are = randn(m,n); Aim = randn(m,n);
bre = randn(m,1); bim = randn(m,1);
A = Are + i*Aim;
b = bre + i*bim;

Atot = [Are -Aim; Aim Are];
btot = [bre; bim];
z_2 = Atot'*inv(Atot*Atot')*btot;
x_2 = z_2(1:100) + i*z_2(101:200);
```

```
cvx_begin
    variable x(n) complex
    minimize(norm(x))
    subject to
    A*x == b;
cvx_end
cvx_begin
    variable xinf(n) complex
    minimize ( norm (xinf, Inf) )
    subject to
    A*xinf == b;
cvx\_end
figure (1)
scatter(real(x), imag(x)), hold on,
scatter(real(xinf), imag(xinf),[], 'filled'), hold off,
axis([-0.2 \ 0.2 \ -0.2 \ 0.2]), axis square,
xlabel('Re x'); ylabel('Im x');
```

Results: The red dots represent the infinity norm.

4.1

a)

Code:

$$M = \begin{bmatrix} 1 & -1/2; & -1/2 & 2 \end{bmatrix};$$

$$m = \begin{bmatrix} -1 & 0 \end{bmatrix};$$

$$A = \begin{bmatrix} 1 & 2; & 1 & -4; & 5 & 76 \end{bmatrix};$$

```
b = [-2 \ -3 \ 1];
delta = .1
cvx_begin
    variable x(2)
    dual variable y
    minimize (quad_form (x, M)+m'*x)
    subject to
         y: A*x \le b;
cvx_end
p_star = cvx_optval
У
Х
Results:
p_{star} = 8.2222
v =
1.8994
3.4684
0.0931
x =
-2.3333
```

KKT Conditions

Primal:

0.1667

$$x_1^* + 2x_2^* \le u_1$$
$$x_1^* + -4x_2^* \le u_2$$
$$5x_1^* + 76x_2^* \le 1$$

Dual:

$$\lambda_1^*, \lambda_2^*, \lambda_3^* \ge 0$$

Complementary Slackness:

$$\lambda_1^*(x_1^* + 2x_2^* - u_1) = 0$$
$$\lambda_2^*(x_1^* + -4x_2^* - u_2) = 0$$
$$\lambda_3^*(5x_1^* + 76x_2^* - 1) = 0$$

First Order Conditions:

$$4x_2^* - x_1^* + 2\lambda_1^* - 4\lambda_2^* + 76\lambda_3^* = 0$$
$$2x_1^* - x_2^* - 1 + \lambda_1^* + \lambda_2^* + 5\lambda_2^* = 0$$

b)

Code:

```
M = \begin{bmatrix} 1 & -1/2; & -1/2 & 2 \end{bmatrix};
m = [-1 \ 0];
A = \begin{bmatrix} 1 & 2; & 1 & -4; & 5 & 76 \end{bmatrix};
b = [-2 \ -3 \ 1];
cvx_begin
     variable x(2)
     dual variable y
     minimize (quad_form (x, M)+m'*x)
     subject to
          y: A*x \le b;
cvx_end
p_star = cvx_optval
array = [0 -1 1];
table = [];
delta = 0.1;
for i = array
     for j = array
          p_{pred} = p_{star} - [y(1) \ y(2)] * [i; j] * delta;
          cvx_begin
               variable x(2)
               minimize(quad_form(x,M)+m'*x)
               subject to
                   A*x \le b+[i;j;0]*delta
          cvx_end
          p_{exact} = cvx_{opt}val;
          table = [table; i*delta j*delta p_pred p_exact]
     end
end
```

Results:

d_1	d_2	p_{pred}^*	p_{exact}^*
0	0	8.2222	8.2222
0	-0.1000	8.5691	8.7064
0	0.1000	7.8754	7.9800
-0.1000	0	8.4122	8.5650
-0.1000	-0.1000	8.7590	8.8156
-0.1000	0.1000	8.0653	8.3189
0.1000	0	8.0323	8.2222
0.1000	-0.1000	8.3791	8.7064
0.1000	0.1000	7.6854	7.7515

We can see that $p^*_{pred} \leq p^*_{exact}$ for all pertubations.