7 シュワルツの補題

岩井雅崇 2023/05/23

以下断りがなければ、 Ω は \mathbb{C} の領域 (連結開集合) とし、 $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ とする.

[用語] $f:M\to M$ が正則な全単射のとき<u>正則自己同型</u>という. $f:M\to N$ が正則な全単射であるとき、双正則写像という.

- 問 7.1 \bullet $f(0)=0, f(\frac{1}{2})=\frac{i}{2}$ となる正則な全単射 (正則自己同型) $f:\mathbb{D}\to\mathbb{D}$ を全て求めよ.
- 問 7.2 $|\alpha| < 1$ となる $\alpha \in \mathbb{C}$ について $\Phi_{\alpha}(z) := \frac{\alpha z}{1 \bar{\alpha}z}$ とおく. 次の問いにこたえよ.
 - (a) $\Phi_{\alpha} \circ \Phi_{\alpha}(z) = z$.
 - (b) |z| = 1 ならば $|\Phi_{\alpha}(z)| = 1$
 - (c) |z| < 1 ならば $|\Phi_{\alpha}(z)| < 1$
- 問 7.3 $\Psi(z)=\frac{z-i}{z+i}$, $\mathbb{H}:=\{z\in\mathbb{C}|\mathrm{Im}(z)>0\}$ とおく. 次の問いに答えよ.
 - (a) $z \in \mathbb{H}$ について $|\Psi(z)| < 1$ であることを示せ.
 - (b) $\Psi(z)$ は $\Psi:\mathbb{H}\to\mathbb{D}$ となる正則な全単射であることを示せ. (ヒント: 逆写像 $\Phi:\mathbb{D}\to\mathbb{H}$ は $\Phi(z)=\frac{iz+i}{-z+1}$ である (なぜか?))
- 問 7.4 ullet $f: \mathbb{D} \to \mathbb{D}$ を正則関数とするとき, 次を示せ. (ヒント: 問 7.2 とシュワルツの補題.)
 - (a) 任意の $z \in \mathbb{D}$ について $\left| \frac{f(z) f(0)}{1 \overline{f(0)}f(z)} \right| \le |z|$
 - (b) $|f'(0)| \le 1 |f(0)|^2$
- 問 7.5 f(z) を \mathbb{D} 上で正則な関数で $\operatorname{Re} f(z) > 0$ かつ f(0) = 1 となるものとするとき、次を示せ、
 - (a) 任意の $z \in \mathbb{D}$ について $\left| \frac{f(z)-1}{f(z)+1} \right| \leq |z|$
 - (b) $|f'(0)| \le 2$
- 問 7.6* 穴あき円板 $\mathbb{D}^* = \{z \in \mathbb{C} | 0 < |z| < 1\}$ の正則自己同型を全て求めよ. (ヒント: そのようなものは原点周りで有界である.)
- 問 7.7 f(z) は $\mathbb D$ 上で正則かつ $\bar{\mathbb D}$ 上で連続な関数とする. f(0)=0 であり, $0<|z|\leq 1$ について $f(z)\neq 0,\,|z|=1$ について |f(z)|=1 を満たすとする. このときある |a|=1 となる $a\in\mathbb C$ と自然数 m があって $f(z)=az^m$ とかけることを示せ.
- 問 $7.8 \ f(\alpha) = \alpha$ となる α を f の不動点という. 次の問いに答えよ.
 - (a) 正則関数 $f: \mathbb{D} \to \mathbb{D}$ が 2 つの不動点を持つとき, f(z) = z となることを示せ.
 - (b) 任意の正則関数 $f: \mathbb{D} \to \mathbb{D}$ は不動点を持つか?(ヒント: \mathbb{H} を考えよ.)
- 問 $7.9 \ f$ を $\mathbb D$ 上の正則関数とする. ある 0 < a < 1 があって $\mathbb D$ 上で |f(z)| < a となるならば, 不動点が存在することを示せ.

- 問 7.10~D を原点を含む有界領域とし, $f:D\to D$ を f(0)=0 となる正則写像とする. 次の問いにこたえよ.
 - $(\mathbf{a}) \ f_k := \underbrace{f \circ \cdots \circ f}_{k \; \square} \; \mathtt{とするとき} \; f_k'(0) = (f'(0))^k \; \mathtt{であることを示せ}.$
 - (b) $|f'(0)| \le 1$ であることを示せ. (ヒント: $|f_k|$ は有界である.)

問 7.11 * 次の問いに答えよ.

- (a) $z, w \in \mathbb{D}$ と整数 $n \ge 2$ について $|z^{n-1} + z^{n-2}w + \dots + w^{n-1}| \le n$ を示せ.
- (b) $f(z) = \sum_{n=0}^{\infty} a_n z^n$ を \mathbb{D} 上の正則関数とする. $a_1 \neq 0$ かつ $\sum_{n=2}^{\infty} n |a_n| \leq |a_1|$ であるならば f は \mathbb{D} 上で単射であることを示せ.

問 $7.12 * z, w \in \mathbb{D}$ について

$$\rho(z,w) = \left| \frac{z - w}{1 - \bar{w}z} \right|$$

とおく. 1次の問いに答えよ.

- (a) 任意の正則関数 $f: \mathbb{D} \to \mathbb{D}$ について $\rho(f(z), f(w)) \leq \rho(z, w)$ を示せ.
- (b) 任意の正則自己同型写像 $f: \mathbb{D} \to \mathbb{D}$ について $\rho(f(z), f(w)) = \rho(z, w)$ を示せ.
- (c) 任意の正則関数 $f: \mathbb{D} \to \mathbb{D}$ について,

$$\frac{|f'(z)|}{1 - |f(z)|^2} \le \frac{1}{1 - |z|^2}$$

であることを示せ (シュワルツ-ピックの補題と呼ばれる).

以下の問題は第6回演習問題の内容である.2

問 $7.13*u:\mathbb{D}\to\mathbb{R}$ を C^∞ 級関数とする. u が<u>劣調和関数</u>であるとは任意の $a\in\mathbb{D}$ と |a|+r<1 と なる任意の r>0 について.

$$u(a) \le \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{i\theta}) d\theta$$

が成り立つこととする. 次の問いに答えよ.

- (a) f を \mathbb{D} 上の正則関数とするとき, |f(z)| は劣調和関数であることを示せ.
- (b) 劣調和関数 u が $\mathbb D$ の内部で最大値を持つならば、定数関数であることを示せ、(つまり最大値原理は正則よりも弱い条件で成り立つ。)

演習の問題は授業ページ (https://masataka123.github.io/2023_summer_complex/) にもあります. 右下の QR コードからを読み込んでも構いません.

¹擬-双曲的距離と呼ばれる

 $^{^2}$ 第6回の問題に入り切らなかったが、どうしても出したかったので出しておく.