Работа 1.2.1 Измерение магнитного поля Земли

Валеев Рауф Раушанович группа 825

6 октября 2019 г.

Цель работы

Определить характеристики шарообразных неодимовых магнитов и, используя законы взаимодействия магнитных моментов с полем, измерить горизонтальную и вертикальную составляющие индукции магнитного поля Земли и магнитное наклонение.

В работе используются

12 одинаковых неодимовых магнитных шариков, тонкая нить для изготовления крутильного маятника, медная проволока диаметром (0,5-0,6) мм, электронные весы, секундомер, измеритель магнитной индукции ATE-8702, штангенциркуль, брусок из немагнитного материала $(25\times30\times60~{\rm km}^3)$, деревянная линейка, штатив из немагнитного материала; дополнительные неодимовые магнитные шарики ($\sim20~{\rm m}$ т.) набор гирь и разновесов.

Теоретическая справка

Точечный магнитный диполь

Простейший магнитный диполь может быть образован витком с током или постоянным магнитом. По определению, магнитный момент $\vec{P_m}$ тонкого витка площадью S с током I равен:

$$\vec{P_m} = \frac{I}{c}\vec{S} = \frac{I}{c}S\vec{n}$$

где c – скорость света в вакууме, $\vec{S} = S\vec{n}$ — вектор площади контура, образующий с направлением тока правовинтовую систему, \vec{n} — единичный вектор нормали к площадке S (это же направление $\vec{P_m}$ принимается за направление $S \to N$ от южного (S) к северному (N) полюсу). Если размеры контура с током или магнитной стрелки малы по сравнению расстоянием до диполя, то соответствующий магнитный диполь $\vec{P_m}$ называют элементарным или точечным.

Поле точечного диполя определяется по следующей формуле:

$$\vec{B} = \frac{3\left(\vec{P_m}, \vec{r}\right)\vec{r}}{r^5} - \frac{\vec{P_m}}{r^3}$$

В магнитном поле с индукцией \vec{B} на точечный магнитный диполь \vec{P}_m действует механический момент сил:

 $\vec{M} = \left[\vec{P_m}, \vec{B} \right]$

Под действием вращающего момента \vec{M} виток с током или постоянный магнит поворачивается так, чтобы его магнитный момент выстроился вдоль вектора индукции магнитного поля. Это — положение устойчивого равновесия: при отклонении от этого положения возникает механический момент внешних сил, возвращающий диполь к положению равновесия. В положении, когда $\vec{P_m}$ и \vec{B} параллельны, но направлены противоположно друг другу, также имеет место равновесие (M=0), но такое равновесие неустойчиво: малейшее отклонение от этого положения приведёт к появлению момента сил, стремящихся отклонить диполь ещё дальше от начального положения.

Магнитный диполь в магнитном поле обладает энергией:

$$W = -\left(\vec{P_m}, \vec{B}\right)$$

Неодимовые магниты

В настоящей работе используются неодимовые магниты шарообразной формы. Для нас важно то, что:

- 1. шары намагничены однородно;
- 2. вещество, из которого изготовлены магниты, является магнитожёстким материалом. Внутри такого шара магнитное поле равно

$$B_0 = \frac{2P_m}{R^3} \tag{1}$$

Полный магнитный момент $\vec{P_m}$ постоянного магнита определяется намагниченностью $\vec{p_m}$ вещества, из которого он изготовлен. По определению, намагниченность — это магнитный момент единицы объёма. Для однородно намагниченного шара намагниченность, очевидно, равна:

$$\vec{p_m} = \frac{\vec{P_m}}{V} \tag{2}$$

Намагниченность — важная характеристика вещества постоянных магнитов, определяющая, в частности, величину остаточной магнитной индукции $B_r = 4\pi p_m$ (остаточная индукция B_r — одна из величин, которая, как правило, указывается в справочниках по магнитожёстким материалам).

$$\vec{B_P} = \frac{8\pi}{3} \vec{p_m} = \frac{2}{3} \vec{B_r} \tag{3}$$

Экспериментальное определение величины магнитного момента магнитных шариков

 P_{m} можно определить из параметров шарика и из расстояния r_{max} , на котором они удерживаются в поле тяжести.

$$P_m = \sqrt{\frac{mgr_{max}^4}{6}} \tag{4}$$

$$\vec{B_p} = \frac{2\vec{P_m}}{R^3} \tag{5}$$

Определение величины магнитного момента по силе сцепления магнитных шариков

Если сила сцепления двух одинаковых шаров равна

$$F_0 = \frac{6P_m^2}{d^4} \Rightarrow P_m = \sqrt{\frac{F_0 d^4}{6}} \tag{6}$$

то минимальный вес цепочки, при которой она оторвется от верхнего шарика равен:

$$F \approx 1,08F_0 \tag{7}$$

Измерение горизонтальной составляющей индукции магнитного поля Земли

При отклонении "стрелки"на угол θ от равновесного положения в горизонтальной плоскости возникают крутильные колебания вокруг вертикальной оси, проходящей через середину стрелки. Если пренебречь упругостью нити, то уравнение крутильных колебаний такого маятника определяется возвращающим моментом сил $M=-P_0B_h\sin\theta$, действующим на "стрелку"со стороны магнитного поля Земли, и моментом инерции I_n "стрелки" относительно оси вращения.

При малых амплитудах:

$$T = 2\pi \sqrt{\frac{I_n}{nP_mB_h}}$$

Пусть

$$T(n) = kn \Rightarrow$$

$$k = \pi \sqrt{\frac{md^2}{3P_m B_h}} \Rightarrow B_h = \frac{\pi^2 m d^2}{3k^2 P_m}$$
(8)

Измерение вертикальной составляющей индукции магнитного поля Земли. Магнитное наклонение.

Рис. 1: Крутиль-

С помощью небольшого дополнительного грузика "стрел- ный маятник ку"можно "выровнять расположив её горизонтально: в этом случае момент силы тяжести груза относительно точки подвеса будет равен моменту сил, действующих на "стрелку"со стороны магнитного поля Земли. Если масса уравновешивающего груза равна m, плечо силы тяжести r, а полный магнитный момент "стрелки" $P_0 = nP_m$, то в равновесии:

$$mgr = P_0 B_v = n P_m B_v$$

$$B_v = \frac{A}{P_m} \tag{9}$$

Пусть $M(n) = An \Rightarrow$

Ход работы

Определение магнитного момента, намагниченности и остаточной магнитной индукции вещества магнитных шариков

Метод А

Определим все данные наших шариков и запишем их в таблицу.

Параметр	Значение	σ
m, г	0,85	0,01
d, mm	6	0,1

Таблица 1. Параметры шариков.

Определим r_{max} . Затем по формуле (3) определим P_m , по формуле (2) определим p_m , по формуле (5) определим B_p и по формуле (3) определим B_r . Все полученные данные занесем в таблицу 2

Величина	Значение	σ
r_{max} , cm	2,38	0,01
$P_m, \Gamma c \cdot c m^3$	67	2
$p_m, \Gamma c$	590	30
B_p , к Γ с	4,9	0,2
B_r , к Γ с	7,4	0,3

Таблица 2. Величины, определяемые в методе А.

Меряем B_p с помощью магнитометра и получаем $B_p = (340 \pm 1)$ мТл.

Метод В

Составим цепочку и определим F - вес грузиков, которые надо подвесить к этой цепочке, чтобы грузики оторвались.

По формуле (7) определим силу сцепления двух шаров. По формуле (6) найдем P_m и запишем все данные в таблицу.

Величина	Значение	σ
M, г	383,4	0,1
F, кдин	375,7	0,1
F_0 , кдин	347,9	0,1
$P_m, \Gamma c \cdot c m^3$	86	3

Таблица 3. Величины, определяемые в методе В.

В итоге получаем, что $P_m=(86\pm3)~\Gamma c\cdot cm^3$. $B_p=(650\pm30)~\rm mT\pi$, а $B_r=(960\pm40)~\rm mT\pi$, что очень близко к табличным значениям $(1,03-1,13~\rm T\pi)$, но довольно далеко от измеренного нами поля магнитометром.

Определение горизонтальной составляющей магнитного поля Земли

Для определения горизонтальной составляющей магнитного поля Земли нам нужно собрать установку для возбуждения крутильных колебаний и исследовать зависимость количество шариков от периода.

Перед этим удостоверимся, что при расчете периода упругость нити можно не учитывать, свернув стрелку в кольцо и измерив период крутильных колебаний (очевидно, что магнитный момент такой стрелки равен 0). Получаем $T=50~{\rm c.}$ Это означает, что мы можем пренебречь упругостью нитей.

n	t, c	N	T, c
12	34	10	3,4
11	31	10	3,1
10	28	10	2,8
9	27,5	10	2,75
8	22,5	10	2,25
7	19,5	10	1,95
6	16,5	10	1,65
5	14,5	10	1,45
4	11,5	10	1,15

Таблица 4. Зависимость крутильных колебаний от количества шариков T(n) Построим график зависимости T(n) и по формуле (8) найдем B_h .

График 1. Зависимость $T(n) = k \cdot n$

По значению углового коэффициента k рассчитаем величину горизонтальной составляющей магнитного поля Земли по формуле (8).

$$B_h = (0, 144 \pm 0, 001) \; \Gamma c$$

Определение вертикальной составляю-щей магнитного поля Земли

Определяем механический момент сил, действующий со стороны магнитного поля Земли на горизонтально расположенную магнитную "стрелку". Для этого, с помощью одного

или нескольких кусочков проволоки, уравновесьте "стрелку" в горизонтальном положении. Сделаем измерения для разных количеств шариков и занесем все в таблицу.

n	m, г	r, cm	M , дин \cdot см
12	0,16	3	470,4
10	0,2	2,4	470,4
8	0,23	1,8	405,72
6	0,29	1,2	341,04
4	0,41	0,6	241,08

Таблица 5. Зависимость момента сил от n.

Построим график.

График 1. Зависимость $M(n) = A \cdot n$

По формуле (9) определяем $B_v = (0, 43 \pm 0, 01)$ Гс.

В итоге получаем, что $B=(0,46\pm1)$ Гс и $\beta=72^\circ,$ что очень близко к современным данным в нашем регионе.

Используемая литература.

- 1. **Лабораторный практикум по общей физике:** Учебное пособие. В трех томах. Т. 2. Электричество и магнетизм /Гладун А.Д., Александров Д.А., Берулёва Н.С. и др.; Под ред. А.Д. Гладуна М.: МФТИ, 2007. 280 с.
- 2. Дополнительное описание лабораторной работы **1.2.1**: Определение магнитного поля Земли; Под ред. МФТИ, 2015. 9 с.