

Semester S1 – Module 3

Module Fundamentals of coherent photonics

TUTORIAL LASERS_2

LASER CAVITY AND GAUSSIAN BEAM

Exercise 1

Let us consider a resonator with two concave spherical mirrors of radii of curvature R_1 and R_2 . They are separated by the distance L (see Figure 1). It is assumed that the laser operates with the fundamental Gaussian mode.

1. Resonator with identical mirrors: R=R₁=R₂

- **a.** From geometric considerations, show that the waist of the Gaussian beam is located in the middle of the cavity.
- **b.** Determine the expression of the Rayleigh length of the Gaussian beam of the cavity as a function of L and R. From this, deduce the stability condition of this type of resonator.

2. Confocal resonator: R=L

- **a.** Determine the location and the diameter of the waist according to λ and L, as well as the diameter of the beam on the mirrors. Discuss.
- **b.** Make the numerical applications for $\lambda=1\mu m$ and L=1m.

Fundamentals of photonics

A. Desfarges-Berthelemot

-1-

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

- 3. Resonator with a plane mirror and a concave one: $R_2 = \infty$ et $R_1 = R$
- a. Determine le location and the diameter of the beam waist according to λ , R et L. Discuss.
- **b.** Make the numerical application for $\lambda=1\mu m$, R=2m and L=1m.

Exercise 2

The Gaussian beam from a Nd:YAG laser (wavelength of $1\mu m$) is focused using a thin lens with a focal length f=15 mm to obtain a power density of $1.7MW/cm^2$ at the focusing point using a power of 5W.

- **1.** Compute the value of the beam diameter, ϕ_1 , before the lens, onto the mirror M_1 .
- 2. Considering that M_1 is located at 5 cm from the lens, deduce the type of the M_1 mirror (plane, convex, concave) and the one of mirror M_2 .
- 3. Compute the mode diameter onto M₂ knowing the cavity length of 50 cm.

Reminder:
$$\omega^2(z) = \omega_0^2(z) \left[1 + \frac{z^2}{\alpha^2} \right], R(z) = z \left[1 + \frac{\alpha^2}{z^2} \right], \alpha = \frac{\pi \omega_0^2}{\lambda}.$$