Adaptive Behavior and Objectives

EES 4760/5760

Agent-Based and Individual-Based Computational Modeling

Jonathan Gilligan

Class #12: Monday, September 30 2024

Getting Started

Getting Started

- Download the modified Business Investor model from the class web site, under "Objectives and Adaptations" on the Download page.
 - Modified Business Investor Model

https://ees4760.jgilligan.org/models/class_12/business-investor.nlogo

Announcements

Announcements

- Homework assigned for Wednesday, October 2 is optional.
 - From here on, focus on working on your team project and individual project.

Sensing

Sensing

- Options for sensing:
 - Omnisicence: max-one-of [expected-utility] patches
 - Neighbors: max-one-of [expected-utility] neighbors
 - Limited radius: max-one-of [expected-utility] patches in-radius 5
 - Social network: max-one-of [expected-utility] my-social-network
- Context:
 - NetLogo has four types of entities:
 - 1. Patches
 - 2. Turtles
 - 3. Links
 - 4. The Observer

Social Networks and Links

- Links
 - Connect turtles
 - Directed (create-link-from, create-link-to) or undirected (create-link-with)
 - Can have properties (color, thickness, etc.)
- Using links:
 - my-links, my-in-links, my-out-links report agent-sets of links connected to a turtle
 - link-neighbors, out-link-neighbors, in-link-neighbors report agentsets of **turtles** connected to a turtle.
 - Lots more you can do with links (read NetLogo dictionary)

Adaptation

Adaptation and Objectives

- Making decisions:
 - Perfect rationality:
 - Pick a goal (objective function)
 - List possible actions
 - Calculate how well each will satisfy goal
 - Choose action that will best accomplish goal
 - Imperfect rationality:
 - Goal may be unclear or inconsistent
 - May not list all possible actions
 - May not calculate results of actions
 - May not act on best option
- Real-life agents may not act rationally

Bounded Rationality

- Perfect rationality and chess ...
 - Evaluating all possible moves may not be possible
 - Limited time, memory, computing power
 - Cost of rationality
 - Getting, processing information
 - It may be more rational to be slightly irrational

Satisficing

- Define goal (objective function)
- Define criteria for good enough result
- Evaluate possible actions until the first one that is good enough.
 - Do that action.

More on Objective Functions

- Decisions under uncertainty
 - If you are gambling, what would you try to do?
 - Take a chance to get a very big win?
 - Try to avoid losing money?
 - Balance wins and losses finish with the most money on average?
- Behavioral economics
 - Most economists say rational people will try to get the greatest expected wealth
 - Actual people may be...
 - risk seeking (take greater chances for big wins)
 - risk averse (avoid taking chances)
 - loss averse (focus on changes instead of absolute wealth)
 - regret averse (try to avoid the feeling that you wish you'd made a different choice)
- Different goals may lead to very different behavior
 - Policy-makers may want to test their policies under different assumptions about people's goals and behavior

Experimenting

Experimenting

- Modified Business Investor Model:
 - You can vary the profits and risks
 - You can vary the sensing:
 - Neighboring patches
 - Patches in a radius
 - Neighbors or patches in-radius of link neighbors
 - You can vary the objective and adaptation
 - Maximize expected utility
 - Satisficing