### Causal Inference and Invariance

Qingyuan Zhao and Charles Zheng

Stanford University

February 24, 2016

(Part 2/2)

# From Last Week: Causal Graph

Causal relationships in a system represented by a graph. The graph tells you:

- I. which variables are affected by an intervention.
- II. what conditional independence relationships exist in the joint distribution (*d-separation*.)
- III. which sets of predictors and responses will have "invariant" optimal predictive rules.

This talk is restricted to directed acyclic graph (DAG), i.e. no feedback!

## From Last Week: Three Causal Questions

- Given a number of variables, which pairs are causally related?
  - Infer the graph.
- Given a number of variables and a fixed Y, which variables causally affect Y?
  - Infer the invariance set.
- Given a fixed X and a fixed Y, what is the causal effect of X on Y?
  - Infer the causal effect.

Why different languages? Convenience!

### Section 1

## Overview of Previous methods

### Known Causal Structure



For example, suppose we want to estimate the causal effect of X on Y with known confounders Z.

Graphical approach: the backdoor formula

$$P(y|do(x)) = \sum_{z} P(y|x,z)P(z).$$

- Functional approach: outcome regression  $Y \sim X + Z$ .
- Potential outcome approach: estimate the propensity score.

4□ > 4□ > 4 = > 4 = > □
9

### Unknown Causal Structure

#### Conventional approach:

- Estimate the Markov equivalence class of causal graphs via conditional independence relationships.
- 2 Infer or bound the identifiable causal effects.

More recent approach: impose additional functional/distributional assumptions to the structural equation model: for any variable Y,

$$Y = f(parents(Y); \epsilon_Y).$$

## How should we think about the assumptions?

One thing for sure: They are no monsters!



## How should we think about the assumptions?

- In statistics we make assumptions all the time: parametric, independence, function form, etc.
  - George Box: "All models are wrong but some are useful".
- To infer causation, we need to make different kinds of assumptions.
  - Problem statement: Can what we learned from this environment be generalized to another environment?

  - Causal assumptions: causal graph, structural equation model, or invariant prediction.

What if we are willing to make both kinds of assumptions?

### Section 2

## Invariance

9 / 16

### Assumed invariance

Focus: Given a number of variables and a fixed Y, which variables causally affect Y?

Data: i.i.d. samples of  $(X^e, Y^e)$  from different environments  $e \in \mathcal{E}$ .

### Assumption (Invariant prediction)

There exists a vector of coefficients  $\gamma^*$  with support  $S^*$  such that for all  $e \in \mathcal{E}$ ,  $X^e$  has an arbitrary distribution and

$$Y^e = \mu + X^e \gamma^* + \epsilon^e, \ \epsilon^e \sim F_{\epsilon}, \ \epsilon^e \perp X^e_{S^*}.$$

#### Important:

- $F_{\epsilon}$  does not depend on e.
- $\epsilon$  is always independent of X.

This is essentially a single structural equation with parents(Y) = S\*.

**イロト (個) (意) (意) (意) (9)(で** 

# **Building block**

Testing the null hypothesis that  $(\gamma, S)$  satisfies the assumption.

 $H_{0,\gamma,S}(\mathcal{E}): \ \gamma_k = 0 \ \mathrm{if} \ k \in S, \ and \ \exists F_{\epsilon} \ \mathrm{such \ that \ for \ all} \ e \in \mathcal{E}, \ Y^e = X^e \gamma + \epsilon^e, \ \epsilon^e \sim F_{\epsilon}, \ \epsilon^e \perp X^e_S.$ 

 $H_{0,S}(\mathcal{E})$ :  $\exists \gamma$  such that  $H_{0,\gamma,S}(\mathcal{E})$  is true.

## Difficulty



Statistically, we may end up accepting both  $Y^e = X^e + \epsilon^e$  and  $Y^e = X^e + 0.01W^e + 0.01Z^e + \epsilon^e$ , for both causal structures.

# Generic procedure

- For each  $S \subseteq \{1, \ldots, p\}$ , test  $H_{0,S}(\mathcal{E})$  at level  $\alpha$ .
- $\textbf{ § For the confidence sets, set } \hat{\Gamma}(\mathcal{E}) = \bigcup_{S \subseteq \{1,\ldots,p\}} \hat{\Gamma}_S(\mathcal{E}), \text{ where }$

$$\hat{\Gamma}_{S}(\mathcal{E}) = \begin{cases} \emptyset & H_{0,S}(\mathcal{E}) \text{ is rejected at level } \alpha, \\ \hat{S} & \text{otherwise.} \end{cases}$$

 $\hat{\mathcal{C}}(\mathcal{S})$  is a (1-lpha)-confidence set for  $\gamma$  obtained by pooling the data.

### Theorem (Peters et al.)

$$P(\hat{S}(\mathcal{E}) \subseteq S^*) \ge 1 - \alpha, \ P(\gamma^* \in \hat{\Gamma}(\mathcal{E})) \ge 1 - 2\alpha.$$

# The Statistical Challenge

Depending on the modeling assumption, this hypothesis can be:

$$H_{0,S,\mathrm{lin}}(\mathcal{E}): \exists \gamma \text{ s.t. } \gamma_k = 0 \text{ if } k \in S, \text{ and}$$

$$\exists F_{\epsilon} \text{ s.t. } Y^e = X^e \gamma + \epsilon^e, \ \epsilon^e \sim F_{\epsilon}, \ \epsilon^e \perp X_S^e, \ \forall e \in \mathcal{E}.$$

$$H_{0,S,\mathrm{lin-gauss}}(\mathcal{E}): \ H_{0,S,\mathrm{lin}}(\mathcal{E}) \text{ and } F_{\epsilon} = \mathrm{N}(0,\sigma^2).$$

$$H_{0,S,\mathrm{nonlin}}(\mathcal{E}): \ \exists g(X_S,\epsilon), \ F_{\epsilon} \text{ s.t. } Y^e = g(X_S^e,\epsilon^e), \ \epsilon^e \dots.$$

$$H_{0,S,\mathrm{additive}}(\mathcal{E}): \ H_{0,S,\mathrm{nonlin}}(\mathcal{E}) \text{ and } g(X_S,\epsilon) \text{ is additive}.$$

 $H_{0,S,\mathrm{hidden}}(\mathcal{E}): \ \epsilon^e \sim F_\epsilon, \ \forall e \in \mathcal{E}, \ \mathrm{but} \ F_\epsilon \ \mathrm{can} \ \mathrm{have} \ \mathrm{nonzero} \ \mathrm{mean}.$ 

# How to test $H_{0,S}(\mathcal{E})$ ?

Peters et al. give concrete proposals for  $H_{0,S,\mathrm{lin-gauss}}$  and  $H_{0,S,\mathrm{lin-gauss-hidden}}$ . They are implemented in their InvariantCausalPrediction package.

# Robustness of the invariance approach

In Meinshausen's talk: we don't make false discoveries, even under a misspecified model!

Truth (at least what we believe in):

| Things can go wrong                   | ICP's behavior  |
|---------------------------------------|-----------------|
| Intervene on $Y$ (or a missing cause) | Ω               |
| ,                                     | Ø               |
| Non-linear, non-additive              | $\cap$          |
|                                       | Ø               |
| Not enough interventions              | False positives |
| Small sample size                     | Ø               |
| Left out a confounder                 | Ø               |
| Left out an unconfounding predictor   | okay            |

# Splitting purely observational data

A big bonus: we can "create" an environment by conditioning on a variable U that we know precedes Y. This is valid because

$$Y|X_{S^*} \stackrel{d}{=} Y|X_{S^*}, U=u.$$

Note: this statement is true only in the region that both conditional distributions are well defined.

## Creating environment by instrumental variable



If there is a hidden confounder Z, we can condition on the instrumental variable W.

## Back to the three causal questions

Can ICP help to answer the other two questions?

### Infer the graph

We can run ICP for every node with caution. Returns a partially identified graph.

#### Infer the causal effect of X on Y

#### Two options:

- Treat X as the target variable: propensity score.
- Treat *Y* as the target variable: *outcome regression*.

Okay if  $\hat{S}$  itself is invariant. Otherwise ICP may miss important causes, resulting in biased causal effect estimate.

Idea: maybe we can just use (many) "minimal" S.