1.4 Esercizi

Esercizio 1.1 Si dica quali delle seguenti operazioni binarie sull'insieme indicato é associativa e commutativa. Si dica inoltre per quali di queste operazioni esiste un elemento neutro e quali $x \in \mathbb{R}$ sono invertibili. In particolare si identifichino i semigruppi, i monoidi e i gruppi.

- 1. $x \cdot y = x + y + k$, $x, y \in \mathbb{R}$ e $k \in \mathbb{R}$ una costante fissata;
- 2. $x \cdot y = \sqrt{x^2 + y^2}, x, y \in \mathbb{R};$
- 3. $x \cdot y = |x + y|, x, y \in \mathbb{R};$
- 4. $x \cdot y = x y, x, y \in \mathbb{R}$;
- 5. $x \cdot y = \max\{x, y\}, x, y \in \mathbb{R};$
- 6. $x \cdot y = \frac{xy}{2}, x, y \in \mathbb{R}^*$;
- 7. $x \cdot y = x + y + xy$, $x \in \mathbb{R} \setminus \{-1\}$;
- 8. $x \cdot y = \frac{x+y}{x+y+1}$, $x \in (-1,1) = \{x \in \mathbb{R} \mid -1 < x < 1\}$.

Esercizio 1.2 Sia G il prodotto cartesiano $\mathbb{Q} \times \mathbb{Z}^*$. Definiamo un'operazione su G nel modo seguente:

$$(q,m)\cdot(q',m')=(q+mq',mm').$$

Si provi che (G, \cdot) é un monoide e si calcolino gli elementi invertibili. Si dica se G é un gruppo e se G é abeliano.

Esercizio 1.3 Sia G il prodotto cartesiano $\mathbb{Q}^* \times \mathbb{Q}$. Definiamo un'operazione su G nel modo seguente:

$$(a,b) \cdot (a',b') = (aa',ab' + \frac{a}{b'}).$$

Si provi che *G* é un gruppo e si dica se *G* é abeliano.

Esercizio 1.4 Quali delle seguenti operazioni binarie definisce un gruppo sull'insieme indicato?

- 1. $(a,b)\cdot(c,d)=(ad+bc,bd)$ su $\{(x,y)\in\mathbb{R}\times\mathbb{R}\mid y\neq 0\};$
- 2. $(a,b) \cdot (c,d) = (ac,bc+d) \text{ su } \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid x \neq 0\};$

1.4. ESERCIZI 25

- 3. $(a,b) \cdot (c,d) = (ac,bc+d) \text{ su } \mathbb{R} \times \mathbb{R};$
- 4. $(a,b)\cdot(c,d)=(ac-bd,ad+bc)$ su $\mathbb{R}^*\times\mathbb{R}^*$;
- 5. $(a,b) \cdot (c,d) = (ac bd, ad + bc)$ su $\mathbb{R} \times \mathbb{R}$.

Esercizio 1.5 Sia $A = \{a, b\}$ un insieme con due elementi. Descrivere tutte le operazioni binarie su A. In particolare si dica quali di queste operazioni é commutativa e associativa. Si dica inoltre per quali di queste operazioni esiste un elemento neutro e quali elementi di A sono invertibili. Mostrare infine che ci sono 8 strutture di semigruppo di cui 6 non abeliane e 2 abeliane e che di queste solo 2 risultano un gruppo.

Esercizio 1.6 Sia $(M, \cdot, 1)$ un monoide e sia S un sottoinsieme di M tale che (S, \cdot) risulta un semigruppo e $1 \notin S$. Si puó affermare che (S, \cdot) non é un monoide?

Esercizio 1.7 Sia G un gruppo finito e sia S l'insieme degli elementi di G diversi dal proprio inverso $S = \{x \in G | | x \neq x^{-1}\}$. Dimostrare che:

- 1. *S* ha un numero pari di elementi;
- 2. $|G| \equiv |G \setminus S| \mod 2$;
- 3. se *G* ha un numero pari di elementi allora esiste $x \in G \setminus S$, $x \neq 1$.

Esercizio 1.8

1. Sia G il gruppo costituito dalle matrici a entrate in \mathbb{Z}_3 della forma

$$\begin{bmatrix} [1]_3 & [a]_3 & [b]_3 \\ 0 & [1]_3 & [c]_3 \\ 0 & 0 & [1]_3 \end{bmatrix}$$

Si dimostri che G è un gruppo non abeliano dove tutti gli elementi diversi dall'elemento neutro hanno ordine 3.

2. Sia *G* un gruppo che non ha elementi di ordine 3. Supponiamo che

$$(xy)^3 = x^3y^3, \forall x, y \in G.$$
 (1.29)

Dimostrare che *G* é abeliano.

(Suggerimento per la seconda parte: si osservi che

$$[x,y]^{3} = ((xyx^{-1})y^{-1})^{3} \stackrel{(1.29)}{=} xy^{3}x^{-1}y^{-3} = [x,y^{3}], \ \forall x,y \in G$$
 (1.30)

e che

$$xy^3x^{-1} = (xyx^{-1})^3 = ((xy)x^{-1})^3 \stackrel{(1.29)}{=} (xy)^3x^{-3} \stackrel{(1.29)}{=} x^3y^3x^{-3}, \ \forall x,y \in G$$

dalla quale segue

$$[x^2, y^3], \ \forall x, y \in G,$$
 (1.31)

la quale ci dice che i quadrati sono permutabili con tutti i cubi. Dalla (1.8) e dalla (1.30) si ottiene dunque

$$[x^2, y], \ \forall x, y \in G, \tag{1.32}$$

la quale ci dice che i quadrati sono permutabili con ogni elemento del gruppo. Dalla (1.30) e dalla (1.32) si ottiene

$$[x,y]^3 = [x,y^3] = xy^3x^{-1}y^{-3} = xyx^{-1}y^{-1} = [x,y], \ \forall x,y \in G$$

e quindi

$$1 = [x, y]^{2} = xyx^{-1}y^{-1}xyx^{-1}y^{-1} \stackrel{\text{(1.32)}}{=} xyxyxyx^{-3}y^{-3} = (xy)^{3}x^{-3}y^{-3} \stackrel{\text{(1.29)}}{=}$$
$$= x^{3}y^{3}x^{-3}y^{-3} \stackrel{\text{(1.32)}}{=} xyx^{-1}y^{-1} = [x, y].$$

Esercizio 1.9 Sia $n \in \mathbb{N}_+$ e p un primo. Si dimostri che

$$|GL_n(\mathbb{Z}_p)| = (p^n - 1)(p^n - p)(p^n - p^2)(p^n - p^{n-1}).$$

(Suggerimento: le righe di una matrice di $GL_n(\mathbb{Z}_p)$ sono linearmente indipendenti. Quindi la prima riga r_1 di una tale matrice puó essere qualsiasi cosa tranne il vettore nullo, quindi ci sono p^n-1 possibilitá per la prima riga. Per ognuna di queste possibilitá, la seconda riga r_2 puó essere qualsiasi cosa tranne un multiplo della prima riga, il che dá p^n-p possibilitá. Per qualsiasi scelta di r_1 e r_2 delle prime due righe, la terza riga puó essere qualsiasi cosa tranne una combinazione lineare di r_1 e r_2 . Il numero di combinazioni lineari $\lambda_1 r_1 + \lambda_2 r_2$ é p^2 cioé il numero di scelte per la coppie λ_1 e λ_2 . Ne consegue che per ogni r_1 e r_2 ci sono p^n-p^2 possibilitá per la terza riga. Procedendo allo stesso modo sulle rimanenti righe si ottiene il risultato).

Esercizio 1.10 Dieci uomini vengono condannati a morte e rinchiusi nella stessa cella la notte precedente all'esecuzione. Gli viene data peró una possibilitá per salvarsi la vita. La mattina dell'esecuzione i dieci condannati verranno messi in fila indiana e verrá messo sulla testa di ognuno di essi un cappello

1.4. ESERCIZI 27

di colore o bianco o nero. Nessuno dei condannati potrá vedere il colore del proprio cappello (quello che ha nella propria testa) ma solo, eventualmente, quello dei condannati che si trovano di fronte a lui. Per salvarsi, ognuno di loro, a turno potrá dire la parola "nero" oppure la parola "bianco". Se la parola detta da un condannato corrisponde al colore del proprio cappello allora il condannato sará graziato e quindi liberato. In caso contrario sará ucciso. Quale é la strategia che i dieci condannati dovranno escogitare la notte prima dell'esecuzione per essere sicuri che almeno 9 di loro siano graziati? Generalizzare a n condannati e k colori.