

AFOSR - TR - 76 - 1165

Algorithms for Rational Approximations for A Confluent Hypergeometric Function II*

by

Yudell L. Luke
Department of Mathematics
University of Missouri
Kansas City, Missouri

SECIS .C.

nest to not settl feetur

PORCE OFFICE AV SULL FAIR REMARKS CONTRACTOR

COPY AVAILABLE TO DDG DOES NOT PERMIT FULLY LEGIBLE PRODUCTION

*This research work was sponsored by the Air Force Office of Scientific Research under Grant 73-2520.

Approved for public release; distribution unlimited.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When L at a Entered)	
19) REPORT DOCUMENTATION PAGE	READINSTRUCTIONS
	BEFORE COMPLETING FORM 3. RECIPIENT'S CATALOG NUMBER
AFOSR - TR - 76 - 1165	
4. TITLE (and Subtifie)	S. TYPE OF REPORT & PERIOD COVERED
ALGORITHMS FOR RATIONAL APPROXIMATIONS FOR A CONFLUENT HYPERGEOMETRIC FUNCTION II	Interim repty
7. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
Yudell L./Luke	-AFÓSR =-2529-73
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Department of Mathematics	611025(2)
University of Missouri Kansas City, Missouri 64110	3/43/23
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Office of Scientific Research/NM	
Bolling AFB, Washington, D.C. 20332	13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
(1) 1 See 76 (12) 360	UNCLASSIFIED
Market 18 1000	154. DECLASSIFICATION/DOWNGRADING SCHEDULE
	SCHEDULE
Approved for public release; distribution	unlimited.
'7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro	m Report)
and the second s	
18. SUPPLEMENTARY NOTES	
	and the second s
19. KEY WORDS (Continue on reverse side if necessary and identify by block number,	
Confluent Hypergeometric Function	
Rational Approximation	
Padé Approximation Algorithm	
FORTRAN Programs	
20. ASSTRACT (Continue on reverse side if necessary and identify by block number) This is a sequel to a previous paper	
mations for the confluent hypergeometric f	function zaU(a;c;z)
were treated. Here we take up rational ap	

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

The confluent functions are very important in the '

#20. (continued)

applications since they include as special cases the incomplete gamma function (special cases of which are exponential, sine and cosine integrals, Fresnel integrals and the error function), Bessel functions, parabolic cylinder functions and Coulomb wave functions. The subject of rational approximations for a wide class of functions including those named above were examined in some detail in my volumes on the special functions. In the special case where a is unity, the confluent function becomes an incomplete gamma function. In this event, complete a priori error analyses for the main diagonal Padé approximations and much more were presented. For general parameters, the rational approximations treated were not of the Padé class. It was shown that the rational approximations converge, but a complete a priori analysis was not available. One of the purposes of this report is to correct this deficiency. Further, FORTRAN programs are provided to evaluate the Padé and non-Padé rational approximations by using the appropriate recursion formulas to generate the numerator and denominator polynomials as a number, and to also evaluate the coefficients which define these polynomials. The programming of the routines was done for use by the IBM 370/168 operating under OS/VS Release 1.7 on the FORTRAN IV H-Extended Compiler, Release 2.1. All computer programs are written for quadruple precision and real arithmetic. By making a few simple changes, one can have double or single precision. Further, it is easy to get complex arithmetic along with any of the precisions noted above.

Summary

This is a sequel to a previous paper where rational approximations for the confluent hypergeometric function $z^{a}U(a;c;z)$ were treated. Here we take up rational approximations for $_1F_1(a;c;-z)$. The confluent functions are very important in the applications since they include as special cases the incomplete gamma function (special cases of which are exponential, sine and cosine integrals, Fresnel integrals and the error function), Bessel functions, parabolic cylinder functions and Coulomb wave functions. The subject of rational approximations for a wide class of functions including those named above were examined in some detail in my volumes on the special functions. In the special case where a is unity, the confluent function becomes an incomplete gamma function. In this event, complete a priori error analyses for the main diagonal Padé approximations and much more were presented. For general parameters, the rational approximations treated were not of the Padé class. It was shown that the rational approximations converge, but a complete a priori analysis was not available. One of the purposes of this report is to correct this deficiency. Further, FORTRAN programs are provided to evaluate the Padé and non-Padé rational approximations by using the appropriate recursion formulas to generate the numerator and denominator polynomials as a number, and to also evaluate the coefficients which define these polynomials. The programming of the routines was done for use by the IBM 370/168

operating under OS/VS Release 1.7 on the FORTRAN IV H-Extended Compiler, Release 2.1. All computer programs are written for quadruple precision and real arithmetic. By making a few simple changes, one can have double or single precision. Further, it is easy to get complex arithmetic along with any of the precisions noted above.

1. Introduction

In a previous paper, Luke (1), we considered rational approximations for the confluent hypergeometric function $z^2U(a;c;z)$. This is a sequel to the paper just noted in which we treat rational approximations for the confluent function

$$E(z) = {}_{1}F_{1}(a;c;-z),$$
 (1)

$$E(z) = \sum_{k=0}^{\infty} \frac{(a)_k (-)^k z^k}{(c)_k k!}.$$
 (2)

The connection between the confluent functions is given by

$$U(a;c;z) = \frac{\Gamma(1-c)}{\Gamma(b)} {}_{1}F_{1}(a;c;z) + \frac{\Gamma(c-1)}{\Gamma(a)} {}_{1}F_{1}(b;2-c;z), b = 1+a-c.$$
(3)

The confluent functions are very important in the applications since they include as special cases the incomplete gamma functions (special cases of these are exponential, sine and cosine integrals, Fresnel integrals and error functions), Bessel functions, parabolic cylinder functions and Coulomb wave functions. For more details on all these transcendents, see Luke (2,3).

Consider a function E(z),

$$E(z) = E_n(z) + R_n(z),$$
 (4)

$$E_n(z) = A_n(z)/B_n(z)$$
 (5)

where $A_n(z)$ and $B_n(z)$ are polynomials in z of degree n,

and $R_n(z)$ is the remainder. For each E(z), with parameters specified, two FORTRAN programs along with illustrative examples are given. In the first, a positive integer N and z are also specified. The machine is given forms to evaluate sufficient initial values of $A_n(z)$ and $B_n(z)$, and computes subsequent values of $A_n(z)$ and $B_n(z)$ by means of a recursion formula and evaluates $E_n(z)$ for n = 0,1,...,N. The machine prints $A_n(z)$, $B_n(z)$, $E_n(z)$, $E_{n+1}(z)$ - $E_n(z)$ (that is, first differences) and $E_{N}(z) - E_{n}(z)$, all for n = 0,1,...,N. The last two quantities can be viewed as a measure of the error with the latter preferred. This program is especially valuable both to get the desired approximants $E_n(z)$, and in the absence of applying the asymptotic forms of the remainder, to also get an appraisal of the value of n needed to achieve a given level of accuracy. Once n is known, it might be more convenient and economical to have the coefficients which define the polynomials in $A_n(z)$ and $B_n(z)$. This is furnished by the second program. Thus once z is specified, $A_n(z)$, $B_n(z)$ and $E_n(z)$ are readily found. The polynomials are especially valuable when one desires to use the approximation to simplify analytical formulas and to make further approximations such as the evaluation of integrals and transforms involving E(z).

The technique for evaluating the coefficients in the numerator and denominator polynomials follows. It is convenient to treat more general forms than is required in the present analysis. Let

$$B_{n}(z) = L_{n}z^{n}_{q+f+3}F_{p+g+1}\begin{pmatrix} -n, n+\lambda, \rho_{q}-a, c_{f}, 1\\ \beta+1, \alpha_{p}+1-a, d_{g} \end{pmatrix} -1/z , \qquad (6)$$

$$A_{n}(z) = L_{n}z^{n} \left[\frac{n(n+\lambda)(\rho_{q}-1)c_{f}z}{(\beta+1)\alpha_{p}d_{g}} \right]^{a}$$

$$\times \sum_{k=0}^{n-a} \frac{(a-n)_{k}(n+\lambda+a)_{k}(\alpha_{p})_{k}(c_{f}+a)_{k}}{(\beta+1+a)_{k}(\alpha_{p}+1)_{k}(d_{g}+a)_{k}k!}$$

$$\times q+f+3^{F}p+g+1 \left(\frac{-n+a+k,n+\lambda+a+k,\rho_{q}+k,c_{f}+a+k,1}{\beta+1+a+k,\alpha_{p}+1+k,d_{g}+a+k} \right) -1/z \right), (7)$$

OT

$$A_{n}(z) = \left[\frac{n(n+\lambda)(\rho_{q}^{-1})c_{f}}{(\beta+1)\alpha_{p}d_{g}}\right]^{a} L_{n}z^{n-a}$$

$$\times \sum_{k=0}^{n-a} \frac{(a-n)_{k}(n+\lambda+a)_{k}(\rho_{q})_{k}(c_{f}^{+a})_{k}(-)^{k}z^{-k}}{(\beta+1+a)_{k}(\alpha_{p}^{+1})_{k}(d_{g}^{+a})_{k}}$$

$$\times p+q+f+2^{F}p+q+g+1 \begin{pmatrix} -n+a+k,n+\lambda+a+k,\rho_{q}^{+k},c_{f}^{+a+k},\alpha_{p}^{-k}\\ \beta+1+a+k,\alpha_{p}^{+1+k},d_{g}^{+a+k},\rho_{q}^{-k} \end{pmatrix} 1, (8)$$

where

$$L_{n} = \frac{(\beta+1)_{n}(\alpha_{p}+1-a)_{n}(d_{g})_{n}}{(n+\lambda)_{n}n!(\rho_{q}-a)_{n}(c_{f})_{n}}, a = 0 \text{ or } a = 1, \lambda = \alpha+\beta+1.$$
 (9)

It is easily proved that

$$B_{n}(z) = p+g+1 F_{q+f+1}^{n} \begin{pmatrix} -n-\beta, & -n-\alpha_{p}+a, & 1-n-d_{g} \\ 1-\lambda-2n, & 1-n-\alpha_{q}+a, & 1-n-d_{g} \end{pmatrix} (-)^{r}z ,$$

$$= \sum_{k=0}^{n} u_{k}z^{k}, u_{0} = 1, r = p+q+f+g.$$
 (10)

Then the uk's are readily evaluated by use of the recurrence formula

$$u_{k+1} = \frac{(-)^{r}(-n-\beta+k)(-n-\alpha_{p}+a+k)(1-n-d_{g}+k)u_{k}}{(1-\lambda-2n+k)(1-n-\rho_{q}+a+k)(1-n-c_{f}+k)(k+1)}.$$
 (11)

Further, we can write

$$A_{n}(z) = \sum_{k=0}^{n-a} v_{k} z^{k}, v_{k} = \sum_{m=0}^{k} t_{m} u_{k-m},$$

$$t_{m} = \frac{(-)^{m} (\alpha_{p})_{m}}{(\rho_{q})_{m}^{m!}},$$
(12)

where the u_k 's are defined by (10) and are easily evaluated by (11). Since

$$t_{m+1} = -\frac{(\alpha_p + m)}{(\rho_q + m)(m+1)} t_m, t_0 = 1,$$
 (13)

we see that computation of v_k is direct.

In Luke (2,3), a is either 0 or 1, but in our present work a=0. This a has nothing to do with the a in $_1F_1(a;c;-z)$. We now show how to get the forms in Sections 2 and 3. Put $\lambda=\beta+1$, p=q=1. To get the Section 2 polynomials, let $\beta=f=g=0$, $\alpha_1=a$ and $\rho_1=c$. To get the Section 3 polynomials, let $\beta=c-1$, take f=g=1 and put $\alpha_1=1$, $\rho_1=c$, $\alpha_1=2$ and $\alpha_1=1$.

As in our previous paper, the programs are written for certain IBM equipment in quadruple precision for real arithmetic. However, with a few minor changes, we can have single or double precision, and for any precision we can also have complex arithmetic. All of this is well detailed in Luke (1, Section 4) and will not be repeated here.

2. Rational Approximations for 1F1(a;c;-z)

Let

$$E(z) = {}_{1}F_{1}(a;c;-z) = e^{-z} {}_{1}F_{1}(c-a;c;z).$$
 (1)

We suppose that neither a nor c-a is a negative integer or zero, for otherwise from (1), E(z) is a polynomial except for the possible presence of e^{-z} . We also suppose that $c \neq a$. This is for convenience only, because when c = a, $E(z) = {}_{0}F_{0}(-z) = e^{-z}$, and in this event one should use the rational approximations of Section 3 with c = 1 as they are simpler and more accurate. The Section 3 approximations with c = 1 can be found from those of this section by putting c = a+1 and letting $a \rightarrow \infty$. For general parameters, the rational approximations which follow are not of the Padé class. We write

$$E(z) = \{A_n(z)/B_n(z)\} + R_n(z)$$
, (2)

$$B_n(z) = L_n z^n {}_{3}F_1(-n,n+1,c;a+1;-1/z)$$
 (3)

$$A_{n}(z) = L_{n}z^{n} \sum_{k=0}^{n} \frac{(-n)_{k}(n+1)_{k}(a)_{k}}{(a+1)_{k}(k!)^{2}} {}_{4}F_{2} \left(\frac{-n+k,n+1+k,c+k,1}{1+k,a+1+k} \right| -1/z \right),$$

$$L_n = \frac{(a+1)_n}{(n+1)_n(c)_n}$$
 (5)

Here $R_n(z)$ is the remainder which we discuss later.

For the polynomials $B_n(z)$ and $A_n(z)$, we have

$$B_0(z) = 1$$
, $B_1(z) = 1 + \frac{(a+1)z}{2c}$, $B_2(z) = 1 + \frac{(a+2)z}{2(c+1)} + \frac{(a+1)z^2}{12(c)z}$,

$$B_3(z) = 1 + \frac{(a+3)z}{2(c-2)} + \frac{(a+2)z^2}{10(c+1)z} + \frac{(a+1)z^3}{120(c)z}$$

$$A_{0}(z) = 1, A_{1}(z) = B_{1}(z) - \frac{az}{c}, A_{2}(z) = B_{2}(z) - \frac{az}{c} \left[1 + \frac{(a+2)z}{2(c+1)} \right]$$

$$+ \frac{(a)_{2}z^{2}}{2(c)_{2}}, A_{3}(z) = B_{3}(z) - \frac{az}{c} \left[1 + \frac{(a+3)z}{2(c+2)} + \frac{(a+2)_{2}z^{2}}{10(c+1)_{2}} \right]$$

$$+ \frac{(a)_{2}z^{2}}{2(c)_{2}} \left[1 + \frac{(a+3)z}{2(c+2)} \right] - \frac{(a)_{3}z^{3}}{6(c)_{3}}.$$
(6)

Both $A_n(z)$ and $B_n(z)$ satisfy the same recurrence formula

$$B_n(z) = (1 + F_1 z)B_{n-1}(z) + (E + F_2 z)zB_{n-2}(z) + F_3 z^3B_{n-3}(z),$$

$$n \ge 3$$
, $F_1 = \frac{(n-a-2)}{2(2n-3)(n+c-1)}$, $F_2 = \frac{(n+a)(n+a-1)}{4(2n-1)(2n-3)(n+c-2)_2}$,

$$F_3 = -\frac{(n+a-2)_2(n-a-2)}{8(2n-3)^2(2n-5)(n+c-3)_3}, E = -\frac{(n+a-1)(n-c-1)}{2(2n-3)(n+c-2)_2}.$$
 (7)

The recurrence formula is stable in the forward direction. We write the error in the form

$$R_n(z) = S_n(z)/B_n^*(z), B_n^*(z) = z^{-n}L_n^{-1}B_n(z),$$
 (8)

and first consider the structure of and asymptotic forms for $S_n(z)$. A closed form representation for $S_n(z)$ can be derived after the manner of discussion given by Fields (4-6). We have

$$S_n(z) = F(z)M_n(z) + H(z)G_n(z),$$
 (9)

where

$$F(z) = -\frac{az\Gamma(c)}{\Gamma(2-c)} e^{-z} {}_{1}F_{1}(1-a;2-c;z), H(z) = \frac{\Gamma(1-c)}{\Gamma(-a)} E(z), (10)$$

$$M_{n}(z) = \frac{\Gamma(n+1-c)}{\Gamma(n+1+c)} {}_{2}F_{2}\begin{pmatrix} c, c-a \\ c-n, n+1+c \end{pmatrix} z$$
, (11)

$$G_{n}(z) = \frac{(-)^{n+1} n! \Gamma(n+1-a) z^{n+1}}{\Gamma(n+2-c) (2n+1)!} {}_{2}F_{2} \begin{pmatrix} n+1, & n+1-a \\ 2n+2, & n+2-c \end{pmatrix} z$$
 (12)

Asymptotic forms for $M_n(z)$ and $G_n(z)$ for n large with a, c and z fixed follow from the work of Luke (2,3). Thus

$$M_{n}(z) = \frac{\Gamma(n+1-c)}{\Gamma(n+1+c)} \left[2^{F_{2}^{r}} \begin{pmatrix} c, c-a \\ c-n, n+c+1 \end{pmatrix} - z + O(n^{-2r-2}) \right] , \quad (13)$$

$$\frac{\Gamma(n+1-c)}{\Gamma(n+1+c)} = (n + \frac{1}{2})^{-2c} [1 + O(n^{-2})].$$
 (14)

$$G_{n}(z) = \frac{(-)^{n+1}n!\Gamma(n+1-z)z^{n+1}}{\Gamma(n+2-c)(2n+1)!} \left[\exp \left\{ \frac{(n+1-a)z}{2(n+2-c)} \right\} \right] \left[1 + vz^{2} + O(n^{-2}) \right]$$

$$v = \frac{(n+1-a)}{8(2n+3)(n+3-c)(n+2-c)^2} [n^2 + n(a-3c+6) + (a-5c+ac+7)],$$

$$\frac{n!\Gamma(n+1-a)}{\Gamma(n+2-c)(2n+1)!} = \frac{n!n^{c-a-1}}{(2n+1)!} [1 + O(n^{-1})].$$
 (15)

If c is not a positive integer, then

$$S_{n}(z) = \frac{F(z)\Gamma(n+1-c)}{\Gamma(n+1+c)} \left[{}_{2}F_{2}^{r} \left(\begin{matrix} c, c-a \\ c-n,n+1+c \end{matrix} \middle| z \right) + O(n^{-2r-2}) \right]. (16)$$

If a is not a positive integer, but c is a positive integer, then

$$S_{n}(z) = \frac{(\cdot)^{n} \Gamma(a+1) \Gamma(n+1-c)}{\Gamma(a+1-c) \Gamma(n+1+c)} E(z) \left[2^{r} \left(\begin{array}{c} c, c-a \\ c-n, n+1+c \end{array} \middle| z \right) + O(n^{-2r-2}) \right],$$
(17)

where E(z) is given by (1). If both c and a are positive integers, c > a, then

$$S_{n}(z) = -\frac{az^{1-c}\Gamma(c-1)e^{-z}}{\Gamma(c-a)} {}_{1}F_{1}^{a-1} (1-a;2-c;z)G_{n}(z).$$
 (18)

With a, c and z fixed, it can be shown from the work of Luke (2,3) that

$$B_{n}^{*}(z) = \frac{(c)_{n}(2n)!}{(a+1)_{n}z^{n}_{n}!} \left[\exp \left\{ \frac{(n+a)z}{2(n+c-1)} \right\} \right] \left[1 - uz^{2} + 0(n^{-2}) \right],$$

$$u = \frac{(n+a)}{8(2n-1)(n+c-1)(n+c-2)^{2}} \left[n^{2} + n\{(3-2c)(2-a-c) + 2(c-a-1)\} + ac + 2 - 2c \right].$$
(19)

If the numbers c and a are arbitrary except as previously noted with the further provision that if these numbers are positive integers, they are not so simutaneously, then the forms for the error readily follow from (8), (9) and (16) or (17) as appropriate. In these situations, we have

$$R_{n}(z) = \frac{W\Gamma(n+1-c)\Gamma(n+a+1)n!z^{n}}{\Gamma(n+1+c)\Gamma(n+c)(2n)!} [1 + O(n^{-1})]$$
 (20)

where W is free of n except that it might contain the factor $(-)^n$. Clearly

$$\lim_{n\to\infty} R_n(z) = 0 \tag{21}$$

and

$$\left|R_{n+1}(z)/R_n(z)\right| = \left|\frac{(n+1-c)(n+a+1)z}{2(n+c)(n+c+1)(2n+1)}\right| [1 + O(n^{-1})].$$
 (22)

If both c and a are positive integers with c > a, then from (8), (9), (15) and (18) we have

$$R_{n}(z) = \frac{(-)^{n}z^{2n+2-c}e^{-z}\Gamma(c)\Gamma(c-1)(n!)^{2}\Gamma(n+1-a)\Gamma(n+1+a)}{\Gamma(a)\Gamma(c-a)\Gamma(n+c)\Gamma(n+2-c)(2n)!(2n+1)!} {}_{1}F_{1}^{a-1} \begin{pmatrix} 1-a \\ 2-c \end{pmatrix} z$$

$$\times \exp \left\{ \frac{z(c-a-1)(2n+1)}{2(n+c-1)(n+2-c)} \right\} [1 + (u+v)z^{2} + O(n^{-2})]. \tag{23}$$

Again

$$\lim_{n\to\infty} R_n(z) = 0 , \qquad (24)$$

and

$$R_{n+1}(z)/R_{n}(z) = -\frac{z^{2}(n+1-a)(n+1+a)}{4(2n+1)(2n+3)(n+c)(n+2-c)} [1 + 0(n^{-1})].$$
(25)

It is of interest to compare the error $R_n(z)$ where a=1 with the corresponding error, call it $R_{n,p}(z)$, for the Pade approximations in the next chapter. If c is not a positive integer,

$$\frac{R_{n,p}(z)}{R_n(z)} = \frac{(-)^{n+1}z^n e^{z/2} (\pi/n)^{3/2}}{\Gamma(c)\Gamma(c-1) (\sin \pi c) n! 2^{2n+2c-1}} [1 + O(n^{-1})], \quad (26)$$

whence the Padé approximation is superior. Now consider (23).

If z is small,

$$R_n(z) = O(z^{2n+2-c}).$$
 (27)

This would be the situation for a Padé approximation if the numerator and denominator polynomials were of degree n+1-c and n respectively. Thus our rational approximations under the conditions leading to (23), though not of the Padé class, are very much akin to this class. Indeed, when a=1 and c is a positive integer, c>1, we find that

$$\frac{R_{n,p}(z)}{R_n(z)} = -(z/4n)^{c-1}[1 + O(n^{-1})], \qquad (28)$$

and again the Padé approximation is superior.

Numerical Examples

Let a = 2/3, c = 4/3, z = 3/4 and n = 5. Then from (8), (9) and (16) without order terms,

$$B_n(z) = 1.47509$$
, $B_n(z) = 1.04541(5)$, $R_n(z) = -0.23921(-7)$.

The true values of $B_{\mathbf{p}}(z)$ and $R_{\mathbf{n}}(z)$ are 1.47779 and -0.23914(-7), respectively.

Suppose a = 1, c = 2 and z = 5/4. If n = 5, then from (23) without order terms, $R_n(z) = -0.2762(-9)$ which agrees with the true value.

3. Rational Approximations for $_1F_1(1;c;-z)$

Let

$$E(z) = {}_{1}F_{1}(1;c;-z)$$
 (1)

which is a form of the incomplete gamma function. See Luke (2,3). The rational approximations in this section lie on the main diagonal of the Padé table. If c = 1, we get approximations for the exponential function, see later comments.

We write

$$E(z) = \{A_n(z)/B_n(z)\} + R_n(z)$$
, (2)

$$B_{n}(z) = L_{n}z^{n} 2^{F_{0}(-n,n+c;-\frac{1}{z})}$$
(3)

$$A_{n}(z) = L_{n}z^{n} \sum_{k=0}^{n} \frac{(-n)_{k}(n+c)_{k}}{(c)_{k}k!} \, _{3}F_{1} \begin{pmatrix} -n+k, n+c+k, 1 \\ 1+k \end{pmatrix} - \frac{1}{z}$$
 (4)

$$L_{n} = \frac{\Gamma(n+c)}{\Gamma(2n+c)}$$
 (5)

where $R_n(z)$ is the remainder which is discussed later.

For the polynomials $A_n(z)$ and $B_n(z)$, we have

$$B_0(z) = 1$$
, $B_1(z) = 1 + \frac{z}{c+1}$, $B_2(z) = 1 + \frac{2z}{c+3} + \frac{z^2}{(c+2)_2}$,

$$B_3(z) = 1 + \frac{3z}{c+5} + \frac{3z^2}{(c+4)_2} + \frac{z^3}{(c+3)_3}$$
,

$$A_0(z) = 1$$
, $A_1(z) = B_1(z) - \frac{z}{c}$, $A_2(z) = B_2(z) - \frac{z}{c} \left(1 + \frac{2z}{c+3}\right) + \frac{z^2}{(c)_2}$,

$$A_3(z) = B_3(z) - \frac{z}{c} \left(1 + \frac{3z}{c+5} + \frac{3z^2}{(c+4)_2} \right) + \frac{z^2}{(c)_2} \left(1 + \frac{3z}{c+5} \right) - \frac{z^3}{(c)_3}.$$
 (6)

Both $A_n(z)$ and $B_n(z)$ satisfy the same recursion formula

$$B_n(z) = (1 + F_1 z)B_{n-1}(z) + F_2 z^2 B_{n-2}(z), n \ge 2$$

$$F_1 = \frac{(c-1)}{(2n+c-1)(2n+c-3)}, F_2 = \frac{(n-1)(n+c-2)}{(2n+c-2)(2n+c-3)^2(2n+c-4)}.$$
 (7)

The recursion formula is stable in the forward direction.

For the remainder, we have

$$R_{n}(z) = \frac{(-)^{n+1}\pi\Gamma(c)n!\Gamma(n+c)z^{2n+1}\{\exp[+z+z(z+4c-4)/4(2n+c)]\}[1+0(n^{-3})]}{2^{4n+2c-2}(2n+c)[\Gamma(n+c/2)\Gamma(n+(c+1)/2)]^{2}},$$
(8)

OT

$$R_{n}(z) = \frac{(-)^{n+1} \pi \Gamma(c) n^{1-c} z^{2n+1} \{ \exp[-z+z(z+4c-4)/4(2n+c)] \} [1+0(n^{-1})]}{2^{4n+2c-1} (n!)^{2}}.$$
(9)

It follows that for z and c fixed,

$$\lim_{n\to\infty} R_n(z) = 0. \tag{10}$$

To facilitate computation of a priori error estimates, we have

$$\frac{R_{n+1}(z)}{R_n(z)} = -\frac{(n+1)(n+c)z^2}{(2n+c+1)^2(2n+c+2)} \exp\left[\frac{-z(z+4c-4)}{2(2n+c)(2n+c+2)}\right] [1+0(n^{-3})]$$

$$= -\frac{z^2}{4(2n+c+1)^2} [1+0(n^{-2})], \qquad (11)$$

which is a measure of the rate of convergence. With $R_n(z,c)$ in

place of $R_n(z)$,

$$\frac{R_{n}(z,c+h)}{R_{n}(c)} = \frac{\Gamma(c+h)}{\Gamma(c)} \left(\frac{n+c}{(2n+c)(2n+c+1)} \right)^{h} \exp \left[\frac{-zh(8n+4-z)}{4(2n+c)(2n+c+h)} \right] [1+0(n^{-1})].$$
(12)

The latter shows that for a given z, c and n, the error changes but slightly for small values of h, that is, for small changes in c.

Next we consider some results for the exponential function - the case c = 1. We have

$$e^{-z} = \{G_n(-z)/G_n(z)\} + S_n(z)$$
, (13)

where

$$G_{n}(z) = \frac{(2n)!}{n!} B_{n}(z)$$
, (14)

$$G_n(z) = z^n {}_{2}F_0(-n,n+1;-1/z) = \frac{(2n)!}{n!} {}_{1}F_1^n(-n;-2n;z)$$
, (15)

and $S_n(z) = R_n(z)$ with c = 1. It is convenient to write

$$G_n(z) = M_n(z^2) + zN_n(z^2).$$
 (16)

Then by computing $M_n(z^2)$ and $N_n(z^2)$, evaluation of the main diagonal Padé approximation of order n only necessitates the evaluation of essentially (n+1) terms. The polynomials $G_n(z)$, $M_n(z^2)$ and $N_n(z^2)$ satisfy the same recurrence formula,

$$G_{n+1}(z) = 2(2n+1)G_n(z) + z^2G_{n-1}(z)$$
, (17)

$$G_0(z) = 1$$
, $G_1(z) = z+2$, $G_2(z) = z^2 + 6z + 12$,

$$G_3(z) = z^3 + 12 z^2 + 60 z + 120$$
,

$$G_4(z) = z^4 + 20 z^3 + 180 z^2 + 840 z + 1680.$$
 (18)

We also have the explicit representations,

$$M_n(z^2) = \frac{(2n)!}{n!} {}_{2}F_3^{[n/2]} \begin{pmatrix} -\frac{1}{2}n, \frac{1}{2} - \frac{1}{2}n \\ -n, \frac{1}{2} - n, \frac{1}{2} \end{pmatrix} z^2/4$$
, (19)

$$N_n(z^2) = \frac{2(2n)!}{n!} {}_{2}F_3^{[\frac{1}{2}n-\frac{1}{2}]} \begin{pmatrix} \frac{1}{2} - \frac{1}{2}n, 1 - \frac{1}{2}n \\ 1 - n, \frac{1}{2} - n, 3/2 \end{pmatrix} z^2/4$$
, (20)

where [y] stands for the largest integer in y.

As previously noted, forms for the error $S_n(z)$ follow from (8) - (11) with c = 1. In closed form,

$$S_{n}(z) = \frac{(-)^{n+1} \pi e^{-z} I_{n+\frac{1}{2}}(z/2)}{K_{n+\frac{1}{2}}(z/2)}, \qquad (21)$$

and we have the asymptotic representation

$$S_n(z) = (-)^{n+1} e^{-z} \left[\exp(2\nu\zeta + 2U/\nu) \right] \left[1 + O(\nu^{-3}) \right]$$
 (22)

uniformly in z, $z \neq 0$, $|arg z| < \pi/2$, where

$$v = n + \frac{1}{2}$$
, $z = 2vx$, $\zeta = u^{-1} + \ln\left(\frac{ux}{1+u}\right)$, $u = (1 + x^2)^{-\frac{1}{2}}$,

$$U = (3u - 5u^3)/24. (23)$$

In particular, for z large, we have

$$S_n(z) = (-)^{n+1} \exp\left[-\frac{v}{x}\left(1 - \frac{1}{12 x^2} + 0(x^{-3})\right)\right] \exp\left[\frac{2U}{v}\right] [1+0(v^{-3})].$$
(24)

In illustration, let n = 4, z = 9 whence v = 9/2. Neglecting order terms, from (22) we get $S_4(z) = -0.01474$ whereas the true value is -0.01503. Uniform asymptotic representations for the first and second subdiagonal Padé approximations for e^{-2} are also given in (7). For further comments on Padé approximations for (1) and other remarks on the exponential function, see (2,3,7,8,9). In connection with reference (7) Dr. M.G. de Bruin, Universiteit van Amsterdam, Instituut voor Propedeutische Wiskunde, Roetersstraat 15, Amsterdam, Netherlands has kindly informed me that in quoting the results of H. van Rossum, I overlooked the restriction $\mu \leq \nu+1$. Consequently the general results of reference (7) are not valid for the lower part of the Padé table unless c = 0. The case c = 0 is for the exponential function. Also the concept of 'normal' employed by H. van Rossum is different from that usually employed for the Padé table.

Numerical Examples

Let c = 2. Then

$$_{1}F_{1}(1;2;-z) = (1 - e^{-z})/z.$$

We take $z = \frac{1}{2}$. If $V_1(n)$ is the right hand side of (8) with

 $O(n^{-3})$ neglected, then

$$V_1(n) = \frac{(-)^{n+1} \exp[-(16n+7)/32(n+1)]}{2^{6n+2}[(3/2)_n]^2}$$
.

Values of $V_1(n)$ and the true values of V(n) for n = 0(1)3 are recorded in the following table.

<u>n</u>	$\frac{(-)^{n+1}V_1(n)}{}$	(-) ⁿ⁺¹ v ₁ (n)
0	0.201	0.213
1	0.121(-2)	0.122(-2)
2	0.289(-5)	0.290(-5)
3	0.360(-8)	0.361(-8)

Thus the values of $V_1(n)$ are remarkably accurate even for small values of n. If $V_2(n)$ is the right hand side of (9) with $O(n^{-1})$ neglected, then

$$V_2(n) = \frac{(-)^{n+1} \exp[-(16n+7)/32(n+1)]}{2^{6n+4}n(n!)^2}$$
.

Values of $V_2(n)$ and the true values of V(n) for n = 3,4,5 are recorded in the following table.

<u>n</u>	$(-)^{n+1}V_2(n)$	$(-)^{n+1}V(n)$
3	0.451(-8)	0.361(-8)
4	0.326(-11)	0.274(-11)
5	0.161(-14)	0.140(-14)

The above is the sample problem treated in the programs which follow.

References

- 1. Y.L. Luke, "Algorithms for Rational Approximations for a Confluent Hypergeometric Function," to be published in Utilitas Mathematica.
- 2. Y.L. Luke, "The Special Functions and Their Approximations," Vols. 1,2, Academic Press, New York, 1969.
- 3. Y.L. Luke, "Mathematical Functions and Their Approximations," Academic Press, New York, 1975.
- 4. J.L. Fields, "A Linear Scheme for Rational Approximations," J. Approx. Theory 6 (1972), 161-175.
- 5. J.L. Fields, "Uniform Asymptotic Expansions of Certain Classes of Meijer G-Functions for a Large Parameter," SIAM J. Math. Anal. 4 (1973), 482-507.
- 6. J.L. Fields, written communication, 1976.
- 7. Y.L. Luke, "On the Error in the Pade Approximants for a Form of the Incomplete Gamma Function Including the Exponential Function," SIAM J. Math. Anal. 6 (1975), 829-839.
- Y.L. Luke, "Evaluation of the Gamma Function by Means of Pade Approximations," SIAM J. Math. Anal. 1 (1970), 266-281.
- 9. Y.L. Luke, "Chebyshev Expansions and Rational Approximations for Some Special Functions and Analytic Continuation Formulas for These Special Functions," to be published in the Journal of Computation and Applied Mathematics.

```
CCCCC
               THIS MAINLINE PROGRAM ILLUSTRATES THE SYNTAX OF THE SUB-
         ROUTINE 'R1F1' FOR GENERATING VALUES OF THE NUMERATOR AND
         DENOMINATOR POLYNOMIALS IN THE RATIONAL APPROXIMATION OF
         1F1( AP ; CP ; -Z ) .
       IMPLICIT REAL*16 (A-H, 0-Z)
       DIMENSION A(26), B(26), R(26), D(26), E(26)
       DATA ZERO/O.QO/
       READ(5,1,END-999) N,M
READ(5,2) AP,CP
10
       N1-N+1
       D(N1)-ZERO
E(N1)-ZERO
       DO 100 I=1,M
          READ(5.2) Z
          CALL RIF1 (AP, CP, Z, A, B, N)
0000000
       IN THE ABOVE :
   AP
                  IS THE NUMERATOR PARAMETER OF THE 1F1
                  IS THE DENOMINATOR PARAMETER OF THE 1F1
   CP
                  IS THE VALUE OF THE ARGUMENT
   A AND B
                  WILL CONTAIN THE VALUES OF THE NUMERATOR AND DENOMINATOR
                     POLYNOMIALS, RESPECTIVELY, FOR ALL DEGREES FROM O TO
CCC
                     N INCLUSIVE
   N
                  IS THE MAXIMUM DEGREE FOR WHICH VALUES OF THE POLYNOMIALS
                     ARE TO BE CALCULATED
C
C
       NOTE: VALUES OF THE K-TH DEGREE POLYNOMIALS WILL BE PLACED IN
  A(K+1) AND B(K+1) RESPECTIVELY.
          R(N1)=A(N1)/B(N1)
          DO 50 J=1.N
              J1=N1-J
              R(J1)=A(J1)/B(J1)
              D(J1)=R(J1+1)-R(J1)

E(J1)=R(N1)-R(J1)
 50
          WRITE(6,3) N,AP,CP,Z
          DO 60 J=1,N1
              J1=J-1
 60
              WRITE(6,4) J1,A(J),B(J)
          WRITE(6,5)
          DO 70 J=1,N1
              J1=J-1
 70
              WRITE(6,6) J1,R(J),D(J),E(J)
 100
          CONTINUE
       GOTO 10
 999
       STOP
       FORMAT (212)
       FORMAT(Q39.32)
FORMAT('1','VA
 2
      FORMAT('1', 'VALUES OF THE POLYNOMIALS IN THE RATIONAL APPROXIMATIO
:N OF 1F1(AP;CP;-Z)'/' ','N = ',12,T20,'AP = ',Q39.32//' ',T20,'CP
: = ',Q39.32//' ',' Z = ',Q39.32//' ',' I',T24,'A(I)',T65,
```

:'B(I)'/)
4 FORMAT(' ',12,2X,Q39.32,2X,Q39.32)
5 FORMAT('0','VALUES OF THE APPROXIMATION, 1ST DIFFERENCES AND APPRO
:XIMATE ERRORS'//' ',' I',T12,'I-TH APPROXIMATION -- F(I)',T47,
:'1ST DIFF''S.',T60,'F(N)-F(I)'/)
6 FORMAT(' ',12,2X,Q39.32,2X,Q10.3,2X,Q10.3)
END

```
SUBROUTINE RIF1 (AP, CP, Z, A, B, N)
     *******
                                ************************************
CCCCC
            THIS SUBROUTINE RETURNS VALUES A(I) AND B(I), I=1,...,N+1 *
       OF THE NUMERATOR AND DENOMINATOR POLYNOMIALS IN THE RATIONAL
       APPROXIMATION OF 1F1 (AP; CP; -Z).
            NO OTHER SUBROUTINES ARE CALLED BY THIS ONE
     IMPLICIT REAL*16(A-H, 0-Z)
     DIMENSION A(1), B(1)
     DATA ZERO/0.Q0/,ONE/1.Q0/,TWO/2.Q0/,THREE/3.Q0/
C
   INITIALIZATION :
     CT1=AP*Z/CP
     XN3=ZERO
     XN1=TWO
     Z2=Z/TWO
     CT2=Z2/(ONE+CP)
     XN2=ONE
     A(1)=ONE
     B(1) = ONE
     B(2)=ONE+(ONE+AP)*Z2/CP
     A(2)=B(2)-CT1
     B(3)=ONE+(TWO+B(2))*(TWO+AP)/THREE*CT2
     A(3)=B(3)-(ONE+CT2)*CT1
     CT1=THREE
     XNO=THREE
  FOR I=3,...,N, THE VALUES A(I+1) AND B(I+1) ARE CALCULATED
C
  USING THE RECURRENCE RELATIONS BELOW.
C
     DO 100 I=3,N
C
C
   CALCULATION OF THE MULTIPLIERS FOR THE RECURSION
        CT2=Z2/CT1/(CP+XN1)
        G1=ONE+CT2*(XN2-AP)
        CT2=CT2*(AP+XN1)/(CP+XN2)
        G2=CT2*((CP-XN1)+(AP+XN0)/(CT1+TWO)*Z2)
        G3=CT2*Z2*Z2/CT1/(CT1-TWO)*(AP+XN2)/(CP+XN3)*(AP-XN2)
  THE RECURRENCE RELATIONS FOR A(I+1) AND B(I+1) ARE AS FOLLOWS
C
C-
C
        B(I+1)=G1*B(I)+G2*B(I-1)+G3*B(I-2)
        A(I+1)=G1*A(I)+G2*A(I-1)+G3*A(I-2)
C
        XN3=XN2
        XN2=XN1
        XN1=XNO
        XN0=XN0+ONE
 100
        CT1=CT1+TWO
     RETURN
     END
```

(2-
Cb
L(AP
N OF 1F1(AP; CP; -Z)
OF
PPROXIMATION
PATIONAL
THE
H
VALUES OF THE POLYNOPIALS IN THE PATIONAL A
F THE
VALUES O

0.6666666666666666666666666666666670+00	0.133333333333333333333333333333333
11	H
AP =	CP =

N = 12

I-TH APPROXIMATION -- F(I)

1ST DIFF'S. F(N)-F(I)

-0.2920+00		99		-0.1140-10				o
-0.2550+00	-0.7550-03	-0.8930-06	-0.5400-09	-0.1120-10	-0.3550-14	-0.5550-16	-0.8020-18	0.0
0.1000000000000000000000000000000000000	0.708955223880597014925373134328350+00	0.708169571012096391787281884514890+00						0
01	75	14 r	9	~ «	0	10	11	17

```
THIS MAINLINE PROGRAM ILLUSTRATES THE SYNTAX OF THE SUB-
          ROUTINE 'C1F1' WHEN USED TO GENERATE COEFFICIENTS IN THE POLY-
          NOMIALS FOR THE RATIONAL APPROXIMATION OF 1F1 (AP; CP; -Z).
       IMPLICIT REAL*16(A-H,O-Z)
       DIMENSION CA(26), CB(26), NO(25)
READ(5,2,END=999) AP, CP
WRITE(6,3) AP, CP
 10
       READ(5,1) M, (NO(J), J=1, M)
DO 100 I=1, M
           N=NO(I)
           CALL C1F1(AP, CP, CA, CB, N)
C
         IN THE ABOVE:
000000
    AP
                   IS THE NUMERATOR PARAMETER OF THE 1F1
    CP
                   IS THE DENOMINATOR PARAMETER OF THE 1F1
    N
                   IS THE DEGREE OF THE POLYNOMIALS IN THE RATIONAL
                       APPROXIMATION
                   WILL CONTAIN THE COEFFICIENTS IN THE NUMERATOR AND
    CA AND CB
CCC
                       DENOMINATOR POLYNOMIALS RESPECTIVELY
        NOTE : THE COEFFICIENTS OF THE K-TH POWER OF Z WILL BE PLACED
C IN CA(K+1) OR CB(K+1) AS APPROPRIATE
           N1=N+1
 100
           WRITE(6,4) N, (CA(J),CB(J),J=1,N1)
        GOTO 10
 999
       STOP
        FORMAT (2612)
 2
        FORMAT (Q39.32)
      FORMAT('1', 'COEFFICIENTS FOR THE RATIONAL APPROXIMATION OF 1F1( AP: CP; -Z)'//'', T20, 'AP = ',Q39.32/'', T20, 'CP = ',Q39.32/)

FORMAT('', 'N = ',12,T18, 'CA(I)',T58, 'CB(I)'//
:26(1X,Q39.32,2X,Q39.32/)/)
 3
       END
```

```
SUBROUTINE C1F1 (AP, CP, A, B, N)
     CCCCCC
           THIS SUBROUTINE RETURNS COEFFICIENTS A(I) AND B(I)
       I = 1,2,...,N+1, OF THE NUMERATOR AND DENOMINATOR POLYNOMIALS
       RESPECTIVELY, IN THE RATIONAL APPROXIMATION OF ORDER N FOR
       1F1( AP ; CP ; -Z ).
           NO OTHER SUBROUTINES ARE CALLED BY THIS ONE.
    IMPLICIT REAL*16(A-H,O-Z)
     DIMENSION A(1), B(1)
     DATA ONE/1.QO/, ZERO/0.QO/
CC
  INITIALIZATION:
     XN=N
     XN1I=XN
     CP1=CP-ONE
     B(1) = ONE
     A(1)=ONE
     XI=ONE
     XIJ=ZERO
     DO 100 I=1,N
        I1=I+1
  FOR I = 1, 2, ..., N, B(I+1) IS COMPUTED AS FOLLOWS
C-
C
       B(II)=(AP+XN1I)/(CP1+XN1I)*XN1I/(XN+XN1I)*B(I)/XI
C
        A(I1) =ONE
       DO 50 J=1.I
  TO CALCULATE A(I+1), WE EMPLOY B(J), J = 1, 2, ..., I+1 AS FOLLOWS
C
          A(I1)=B(J+1)-(AP+XIJ)/(CP+XIJ)*A(I1)/(ONE+XIJ)
 50
          XIJ=XIJ-ONE
        XIJ=XI
        XN1I=XN-XI
100
       XI=XI+ONE
     RETURN
     END
```

COEFFICIENTS FOR THE RATIONAL APPROXIMATION OF 1F1(AP ; CP ; -Z)

0	-
P	9
5	8
9	ä
9	3
9	33
99	33
99	33
99	33
00+029999999999999999999999999999999999	33
999	33
99	33
36	33
366	33
999	33
99	33
90	33
36	33
ĕ	0.1333333333333333333333333333333
0	0
Ħ	A
AP	CP #

3333333333333401	CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000
CP = 0.13333333333333333333333333333333401	N = 3 $CA(I)$	0.100000000000000000000000000000000000	N = 4 $CA(I)$	0.100000000000000000000000000000000000	$N = 5 \qquad CA(1)$	0.100000000000000000000000000000000000	N = 6 CA(I)	0.100000000000000000000000000000000000

```
C
               THIS MAINLINE PROGRAM ILLUSTRATES THE SYNTAX OF THE SUB-
C
         ROUTINE 'R1F1P' FOR GENERATING VALUES OF THE NUMERATOR AND
C
         DENOMINATOR POLYNOMIALS IN THE PADE APPROXIMATION OF
C
         1F1(1; CP; -Z).
       IMPLICIT REAL*16(A-H, 0-Z)
       DIMENSION A(26), B(26), R(26), D(26), E(26)
       DATA ZERO/O.QO/
       READ(5,1,END=999) N,M
READ(5,2) CP
 10
       N1=N+1
       D(N1)=ZERO
       E(N1)=ZERO
       DO 100 I=1.M
          READ(5,2) Z
          CALL RIFIP(CP,Z,A,B,N)
C
       IN THE ABOVE :
C
C
   CP
                  IS THE DENOMINATOR PARAMETER OF THE 1F1
CCCCC
   Z
                  IS THE VALUE OF THE ARGUMENT
   A AND B
                  WILL CONTAIN THE VALUES OF THE NUMERATOR AND DENOMINATOR
                      POLYNOMIALS, RESPECTIVELY, FOR ALL DEGREES FROM O TO
                     N INCLUSIVE
                  IS THE MAXIMUM DEGREE FOR WHICH VALUES OF THE POLYNOMIALS
   N
C
                     ARE TO BE CALCULATED
C
C
       NOTE: VALUES OF THE K-TH DEGREE POLYNOMIALS WILL BE PLACED IN
C A(K+1) AND B(K+1) RESPECTIVELY.
           R(N1)=A(N1)/B(N1)
           DO 50 J=1,N
              J1=N1-J
              R(J1)=A(J1)/B(J1)
              D(J1)=R(J1+1)-R(J1)
          E(J1)=R(N1)-R(J1)
WRITE(6,3) N,CP,Z
 50
           DO 60 J=1,N1
              J1=J-1
 60
              WRITE(6,4) J1,A(J),B(J)
          WRITE(6,5)
           DO 70 J=1,N1
              J1=J-1
 70
              WRITE(6,6) J1,R(J),D(J),E(J)
 100
           CONTINUE
       GOTO 10
 999
       STOP
       FORMAT (212)
      FORMAT (Q39.32)

FORMAT ('1', 'VALUES OF THE POLYNOMIALS IN THE PADE APPROXIMATION OF: 1F1(1;CP;-Z)'//' ','N = ',12,T20,'CP = ',Q39.32//' ',' Z = ',:Q39.32//' ',' I',T24,'A(I)',T65,'B(I)'/)

FORMAT ('',12,2X,Q39.32,2X,Q39.32)
```

FORMAT('0', 'VALUES OF THE APPROXIMATION, 1ST DIFFERENCES AND APPROXIMATE ERRORS'//' ',' I', T12, 'I-TH APPROXIMATION -- F(I)', :T47, '1ST DIFF''S.', T60, 'F(N)-F(I)'/)
FORMAT(' ',12,2X,Q39.32,2X,Q10.3,2X,Q10.3) 5

END

6

```
SUBROUTINE RIFIP(CP,Z,A,B,N)
     ************************
                               CCCCC
             THIS SUBROUTINE RETURNS VALUES A(I) AND B(I), I=1,...,N+1 *
       OF THE NUMERATOR AND DENOMINATOR POLYNOMIALS IN THE PADE
       APPROXIMATION OF 1F1(1; CP; -Z).
            NO OTHER SUBROUTINES ARE CALLED BY THIS ONE
     <del>*****************************</del>
      IMPLICIT REAL*16(A-H,0-Z)
     DIMENSION A(1),B(1)
DATA ONE/1.QO/,TNO/2.QO/
CC
   INITIALIZATION :
     XII-ONE
     B(1)=ONE
     A(1)=ONE
      CT1=CP+ONE
      CP1-CP-ONE
      ZZ=Z*Z
     B(2) = ONE + Z/CT1
     A(2)=B(2)-Z/CP
  FOR I=2,...,N, THE VALUES A(I+1) AND B(I+1) ARE CALCULATED
  USING THE RECURRENCE RELATIONS BELOW.
     DO 100 I=2.N
C
C
  CALCULATION OF THE MULTIPLIERS FOR THE RECURSION
         CT2=CT1*CT1
        G1=ONE+CP1/(CT2+CT1+CT1)*Z
        G2=XI1/(CT2-ONE)*(XI1+CP1)/CT2*ZZ
  THE RECURRENCE RELATIONS FOR A(I+1) AND B(I+1) ARE AS FOLLOWS
C
C-
C
        A(I+1)=G1*A(I)+G2*A(I-1)
        B(I+1)=C1*B(I)+G2*B(I-1)
C
        CT1=CT1+TWO
100
        XII=XII+ONE
     PLTURN
     END
```

_	
:-2)	
1,0	101
F1(000
OF 1	0000
VALUES OF THE POLYNOMIALS IN THE PADE APPROXIMATION OF 1F1(1; CF; -Z)	CP = 0.20000000000000000000000000000000000
TAT	0000
OXI	000
APPF	0000
NDE	0000
E P	0000
1	000
Z	200
ALS	0
OMI	
LYN	U
PO	
THE	
OF	
UES	12
VAL	N = 12

0
0
1
4
0.500000000000000000000000000000000000
\approx
0
0
0
0
0
ŏ
3
\approx
\simeq
$\overline{\circ}$
0
0
0
5
\approx
\simeq
0
0
0
0
ō
Ξ
\simeq
$\mathbf{\Xi}$
0
0
0
0
×
\simeq
9
0
0
0
10
-:
-
0
1
N

01	.916666666	00).1000000000000000000000000000000000000
90	0.95416666666666666666666666666666660+00	00	00000000000000000000000000000000000000
4	.9790054563	O	870370370370370370370370401
2	.9846984540	0	4700577200577200577200570+01
91	.9886471402		2834191271691271691271690+61
- ω	.9937651291	, 0	9762817477661227661227660+01
	. 9955179000	0	2602017268182048238807780+01
10	9969374669		364772797415581948528899Q+01 5825859842789522314721980+01
	.9990962893	.0	5360818025258459779717450+01
VALUES	JES OF THE APPROXIMATION, 1ST DIFFERENCES	AND APPROXIMATE EPROPS	ATE EPROPS
н	I-TH APPROXIMATION F(I)	1ST DIFF'S.	F(N)-F(I)
0	.1000000000	-0.2140+00	
-	.7857142857	0.1230-0	
7	0.786941580756013745704467353951890+00	-0.2900-05	-0.2900-05
n	.7869386769	0.3610-0	
4	.7869386805	-0.2740-1	
5	.7869386805	0.1400-1	
9	.7869386805	-0.5150-1	
-	. 7869386805	0.1420-2	
0	.7869386805	-0.3070-2	
6	.7869386805	0.5300-2	
2:	. 7869386805	0.1930-3	
11	. 7869386805	0.7700-3	
12	7869386805		0.0

```
THIS MAINLINE PROGRAM ILLUSTRATES THE SYNTAX OF THE SUB-
C
          ROUTINE 'CIFIP' WHEN USED TO GENERATE COEFFICIENTS IN THE
C
CC
         POLYNOMIALS FOR THE PADE APPROXIMATION OF 1F1(1; CP; -Z).
       IMPLICIT REAL*16(A-H, 0-Z)
       DIMENSION CA(26), CB(26), NO(25)
READ(5,2,END=999) CP
 10
       WRITE(6,3) CP
       READ(5,1) M, (NO(J), J=1, M)
DO 100 I=1, M
           N=NO(I)
           CALL CIFIP(CP, CA, CB, N)
        IN THE ABOVE:
C
C
   CP
                   IS THE DENOMINATOR PARAMETER OF THE 1F1 IN THE PADE
C
                       APPROXIMATION
C
   N
                   IS THE DEGREE OF THE POLYNOMIALS IN THE PADE
CC
                       APPROXIMATION
   CA AND CB
                   WILL CONTAIN THE COEFFICIENTS IN THE NUMERATOR AND
                       DENOMINATOR POLYNOMIALS , RESPECTIVELY
        NOTE: THE COEFFICIENTS OF THE K-TH POWER OF Z WILL BE PLACED
C IN CA(K+1) OR CB(K+1) AS APPROPRIATE
           N1=N+1
 100
           WRITE(6,4) N, (CA(J), CB(J), J=1, N1)
       GOTO 10
 999
       STOP
       FORMAT (2612)
      FORMAT (2012)

FORMAT (039.32)

FORMAT ('1', 'COEFFICIENTS FOR THE PADE APPROXIMATION OF 1F1(1; CP:, -Z)'//', T20, 'CP:, 039.32/)

FORMAT ('', 'N: ', 12, T18, 'CA(1)', T58, 'CB(1)'//
:26(1X, 039.32, 2X, 039.32/)/)
 2
 3
       END
```

```
SUBROUTINE C1F1P(CP,A,B,N)
00000000
    THIS SUBROUTINE RETURNS COEFFICIENTS A(I) AND B(I)
       I = 1,2,...,N+1, OF THE NUMERATOR AND DENOMINATOR POLYNOMIALS
       RESPECTIVELY, IN THE PADE APPROXIMATION OF ORDER N FOR
       1F1(1; CP; -Z).
            NO OTHER SUBROUTINES ARE CALLED BY THIS ONE.
    ******<del>************************</del>
     IMPLICIT REAL*16(A-H, 0-Z)
     DIMENSION A(1),B(1)
     DATA ONE/1.Q0/, ZERO/0.Q0/
  INITIALIZATION :
     XN=N
     XN1I=XN
     B(1)=ONE
     A(1)=ONE
     XI-ONE
     CP2NI=CP+XN+XN-ONE
     XIJ=ZERO
     DO 100 I=1,N
        I1=I+1
  FOR I = 1, 2, ..., N, B(I+1) IS COMPUTED AS FOLLOWS
C
        B(I1)=XN1I/CP2NI*B(I)/XI
C
        A(I1)=ONE
        DO 50 J=1.I
  TO CALCULATE A(I+1), WE EMPLOY B(J), J = 1, 2, ..., I+1 AS FOLLOWS
C
           A(I1)=B(J+1)-A(I1)/(CP+XIJ)
 50
           XIJ=XIJ-ONE
        XIJ=XI
        XN1I=XN-XI
        CP2NI=CP2NI-ONE
 100
        XI=XI+ONE
     RETURN
     END
```

COEFFICIENTS FOR THE PADE APPROXIMATION OF 1F1(1; CP; -Z)

CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000	CB(I)	0.100000000000000000000000000000000000
N = 3 CA(I)	0.100000000000000000000000000000000000	$N = 4 \qquad CA(I)$	0.100000000000000000000000000000000000	N = 5 CA(I)	0.100000000000000000000000000000000000	$N = .6 \qquad CA(I)$	0.100000000000000000000000000000000000