Problem Set 3

Problems marked (T) are for discussions in Tutorial sessions.

- 1. Draw and illustrate in \mathbb{R}^2 .
 - (a) $\mathbf{e}_1 + \{ n\mathbf{e}_2 | n \in \mathbb{N} \}.$
 - (b) $\mathbf{e}_1 + \{\alpha \mathbf{e}_2 | \alpha \in \mathbb{R}\}.$
- 2. In \mathbb{R}^2 , Is $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \mathbf{e}_2 | \alpha \in \mathbb{R}\} = \mathbb{R}^2$? What about $\{\alpha \mathbf{e}_1 | \alpha \in \mathbb{R}\} + \{\alpha \begin{bmatrix} 1 \\ 1 \end{bmatrix} | \alpha \in \mathbb{R}\} = \mathbb{R}^2$?
- 3. In \mathbb{R}^3 prove that $\left\{\alpha \begin{bmatrix} 2\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 1\\1\\0 \end{bmatrix} | \alpha \in \mathbb{R} \right\} + \left\{\alpha \begin{bmatrix} 0\\1\\1 \end{bmatrix} | \alpha \in \mathbb{R} \right\} = \mathbb{R}^3$. Do you use Gauss-Jordan Elimination (GJE) method somewhere?

Solution: Put
$$A = \{\alpha \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} | \alpha \in \mathbb{R} \}, B = \{\alpha \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} | \alpha \in \mathbb{R} \}, C = \{\alpha \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} | \alpha \in \mathbb{R} \}.$$
 Then $A + B + C = \{a + b + c | a \in A, b \in B, c \in C \} \subset \mathbb{R}^3.$

Let
$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \in \mathbb{R}^3$$
. We want to find α, β, γ s.t. $\alpha \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. That is, need

to solve
$$\begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$
 We may use GJE to find the values of $\alpha = \frac{x_1 - x_2 + x_3}{2}, \beta = \frac{x_1 - x_2 + x_3}{2}$

 $x_2 - x_3, \gamma = \frac{-x_1 + x_2 + x_3}{2}$. But without doing so, we may find the determinant and conclude that the system has a unique solution. But, we will need GJE for higher order vectors.

- 4. Let L_1 and L_2 be two nonparallel lines passing through origin in \mathbb{R}^3 . What is $L_1 + L_2$?
- 5. (T) Let L_1 and L_2 be two skewed (non parallel, nonintersecting) lines in \mathbb{R}^3 ? What is $L_1 + L_2$?

Solution:

A plane. Take $\mathbf{a} \in L_1$, $\mathbf{b} \in L_2$. Then $L_{1h} = L_1 - \mathbf{a}$ and $L_{2h} = L_2 - \mathbf{b}$ both pass through $\mathbf{0}$. Thus $L_1 + L_2 = \mathbf{a} + \mathbf{b} + L_{1h} + L_{2h}$. As $L_{1h} + L_{2h}$ is a plane, we are done.

Alternately: Put $L'_1 = L_1 + (\mathbf{b} - \mathbf{a})$. This is the line parallel to L_1 passing through \mathbf{b} . Then $L'_1 + L_2$ is a plane parallel to both L'_1 and L_2 passing through $2\mathbf{b}$ (be clear, not \mathbf{b} , for example $L_1 := (1, y, 0)$ and $L_2 = (1, 0, z)$). So adding $\mathbf{a} - \mathbf{b}$ to it (that is, making the plane trace back $(\mathbf{b} - \mathbf{a})$) will give us the plane through $\mathbf{a} + \mathbf{b}$. So our answer is $L'_1 + L_2 + \mathbf{a} - \mathbf{b}$ which is a plane.

6. (T) Fix a non-negative integer n and let $\mathbb{R}[x;n]$ be the set of polynomials with real coefficients and degree less than or equal to n. That is, $\mathbb{R}[x;n] = \{\sum_{i=0}^{n} c_i x^i : c_0, c_1, \cdots, c_n \in \mathbb{R}\}$. Show that $\mathbb{R}[x;n]$ is a vector space over \mathbb{R} with respect to the usual addition and scalar multiplication.

Solution: For $p(x) = \sum_{i=0}^{n} a_i x^i$, $q(x) = \sum_{i=0}^{n} b_i x^i$, $r(x) = \sum_{i=0}^{n} c_i x^i$, we define the following:

[Vector Addition:]

$$(p+q)(x) = \sum_{i=0}^{n} (a_i + b_i)x^i \in \mathbb{R}[x; n].$$
 (1)

[Scalar Multiplication:] for $\alpha \in \mathbb{R}$,

$$(\alpha p)(x) = \sum_{i=0}^{n} (\alpha a_i) x^i \in \mathbb{R}[x; n].$$
 (2)

Verify all vector space requirements:

i. Clearly, p + q = q + p as

$$(p+q)(x) = \sum_{i=0}^{n} (a_i + b_i)x^i = \sum_{i=0}^{n} (b_i + a_i)x^i = (q+p)(x).$$

ii. (p+q) + r = p + (q+r) as

$$(p+q)(x) + r(x) = \sum_{i=0}^{n} (a_i + b_i)x^i + \sum_{i=0}^{n} c_i x^i = \sum_{i=0}^{n} ((a_i + b_i) + c_i)x^i = \sum_{i=0}^{n} (a_i + (b_i + c_i))x^i = \sum_{i=0}^{n} a_i x^i + \sum_{i=0}^{n} (b_i + c_i)x^i = p(x) + (q+r)(x).$$

iii. The zero polynomial, z(x) = 0, satisfies p + z = p as

$$(p+z)(x) = \sum_{i=0}^{n} (a_i + 0)x^i = \sum_{i=0}^{n} a_i x^i.$$

iv. For all $p(x) \in \mathbb{R}[x; n]$, there is $(-p)(x) := \sum_{i=0}^{n} (-a_i)x^i$ such that

$$(p + (-p))(x) = \sum_{i=0}^{n} (a_i + (-a_i))x^i = \sum_{i=0}^{n} 0x^i = 0 = z(x)$$

v. For all $\alpha, \beta \in \mathbb{R}$ and $p(x) \in \mathbb{R}[x; n]$, $\alpha(\beta p) = (\alpha \beta)p$ as

$$(\alpha(\beta p))(x) = \sum_{i=0}^{n} \alpha(\beta a_i) x^i = \sum_{i=0}^{n} (\alpha \beta) a_i x^i = ((\alpha \beta) p)(x).$$

vi. For all $\alpha \in \mathbb{R}$, $\alpha(p+q) = \alpha p + \alpha q$ as

$$(\alpha(p+q))(x) = \sum_{i=0}^{n} \alpha(a_i + b_i)x^i = \sum_{i=0}^{n} (\alpha a_i + \alpha b_i)x^i = \sum_{i=0}^{n} \alpha a_i x^i + \sum_{i=0}^{n} \alpha b_i x^i$$

= $(\alpha p)(x) + (\alpha q)(x) = ((\alpha p) + (\alpha q))(x)$

vii. For all $\alpha, \beta \in \mathbb{R}$ and $p(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x; n], (\alpha + \beta)p = \alpha p + \beta p$ as

$$((\alpha + \beta)p)(x) = \sum_{i=0}^{n} (\alpha + \beta)a_i x^i = \sum_{i=0}^{n} (\alpha a_i + \beta a_i) x^i = (\alpha p)(x) + (\beta p)(x) = ((\alpha p) + (\beta p))(x).$$

viii. For all $p(x) \in \mathbb{R}[x; n]$, 1(p) = p as

$$(1p)(x) = \sum_{i=0}^{n} (1a_i)x^i = \sum_{i=0}^{n} a_i x^i = p(x).$$

7. Show that the space of all real $m \times n$ matrices is a vector space over \mathbb{R} with respect to the usual addition and scalar multiplication.

Solution: Similar to Problem 4; a straightforward verification of all vector space requirements.

- 8. Let $\mathbb{M}_n(\mathbb{R})$ be the set of all $n \times n$ real matrices. Then, from above we see that $\mathbb{M}_n(\mathbb{R})$ is a real vector space. Now, prove the following:
 - (a) $\mathbb{S} = \{ A \in \mathbb{M}_n(\mathbb{R}) : A^t = A \text{ is a subspace of } \mathbb{M}_n(\mathbb{R}).$
 - (b) Fix $A \in \mathbb{M}_n(\mathbb{R})$. Define $\mathbb{U} = \{B \in \mathbb{M}_n(\mathbb{R}) : AB = BA\}$. Then, \mathbb{U} is a subspace of $\mathbb{M}_n(\mathbb{R})$.
 - (c) Let $\mathbb{W} = \{a_0I + a_1A + \cdots + a_mA^m : m \text{ is a non-negative integer}, a_i \in \mathbb{R}\}$. Then, \mathbb{W} is a subspace of \mathbb{U} .
- 9. In \mathbb{R} , consider the addition $x \oplus y = x + y 1$ and a.x = a(x 1) + 1. Show that \mathbb{R} is a real vector space with respect to these operations with additive identity 1 (note that 0 is NOT the additive identity).

Solution: Again, an easy verification of all vector space requirements.

10. (T) Which of the following are subspaces of \mathbb{R}^3 :

(a)
$$\{(x, y, z) \mid x \ge 0\}$$
, (b) $\{(x, y, z) \mid x + y = z\}$, (c) $\{(x, y, z) \mid x = y^2\}$.

Solution:

- (a) Not a subspace : -1(1,0,0) does not belong to the set.
- (b) Is a subspace.
- (c) Not a subspace : (1,1,0) + (4,2,0) is not in the set. Since the relation is non-linear, closure is a problem.
- 11. Find the condition on real numbers a, b, c, d so that the set $\{(x, y, z) \mid ax + by + cz = d\}$ is a subspace of \mathbb{R}^3 .

Solution: If d = 0, then this is a subspace. For it to be a subspace, (0,0,0) had to be in the space and hence d = 0.

12. (T) Let W_1 and W_2 be subspaces of a vector space V such that $W_1 \cup W_2$ is also a subspace. Prove that one of the spaces W_i , i = 1, 2 is contained in the other.

Solution: Suppose W_1 is not a subset of W_2 . Then to prove the result, we have to show that W_2 is a subset of W_1 .

Let $\mathbf{w}_2 \in W_2$. To show that W_2 is contained in W_1 , we need to show that $\mathbf{w}_2 \in W_1$. Since $W_1 \not\subset W_2$, we can choose $\mathbf{w}_1 \in W_1$ such that $\mathbf{w}_1 \not\in W_2$. Then $\mathbf{w}_2 - \mathbf{w}_1 \in W_1 \cup W_2$ as it is a subspace but $\mathbf{w}_2 - \mathbf{w}_1 \not\in W_2$ because then $\mathbf{w}_1 = \mathbf{w}_2 - (\mathbf{w}_2 - \mathbf{w}_1) \in W_2$. So, $\mathbf{w}_2 - \mathbf{w}_1 \in W_1 \Rightarrow \mathbf{w}_2 = (\mathbf{w}_2 - \mathbf{w}_1) + \mathbf{w}_1 \in W_1$.

13. Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$ be n vectors from a vector space V over \mathbb{R} . Define **linear span** of this set of vectors as

$$LS(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}) = \{c_1\mathbf{v_1} + c_2\mathbf{v_2} + \dots + c_n\mathbf{v_n} : c_1, c_2, \dots, c_n \in \mathbb{R}\},\$$

that is, the set of all linear combinations of vectors $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}$. Show that $LS(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$ is a subspace of V.

Solution: If $\mathbf{u} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_n \mathbf{v_n}$ and $\mathbf{w} = d_1 \mathbf{v_1} + d_2 \mathbf{v_2} + \cdots + d_n \mathbf{v_n}$, then

$$\mathbf{u} + \mathbf{w} = (c_1 + d_1)\mathbf{v_1} + (c_2 + d_2)\mathbf{v_2} + \cdots + (c_n + d_n)\mathbf{v_n} \in \text{span}(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$$

and

$$\alpha \mathbf{u} = (\alpha c_1)\mathbf{v_1} + (\alpha c_2)\mathbf{v_2} + \cdots + (\alpha c_n)\mathbf{v_n} \in \operatorname{span}(\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\})$$

for $\alpha \in \mathbb{R}$. Rest is straightforward.

14. **(T)** Show that $\{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\} = LS(\{(1, 0, 0, -1), (0, 1, 0, 1), (0, 0, 1, 1)\}$ and hence is a subspace of \mathbb{R}^4 .

Solution:

$$(x_1, x_2, x_3, x_4) \in \{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\}$$

$$\Leftrightarrow (x_1, x_2, x_3, x_4) = (x_1, x_2, x_3, -x_1 + x_2 + x_3) \text{ as } x_4 = -x_1 + x_2 + x_3$$

$$= x_1(1, 0, 0, -1) + x_2(0, 1, 0, 1) + x_3(0, 0, 1, 1)$$

Moreover, $\{(x_1, x_2, x_3, x_4) : x_4 - x_3 = x_2 - x_1\}$ is a subspace of \mathbb{R}^4 because it is a linear span of vectors in \mathbb{R}^4 .

15. Suppose S and T are two subspaces of a vector space V. Define the sum

$$S + T = \{\mathbf{s} + \mathbf{t} : \mathbf{s} \in S, \mathbf{t} \in T\}.$$

Show that S+T satisfies the requirements for a vector space. Moreover, $LS(S \cup T) = S+T$.

Solution: Straightforward to check all vector space requirements.

16. **(T)** Find all the subspaces of \mathbb{R}^2 .

Solution: Let W be a subspace of \mathbb{R}^2 . Assume that $W \neq \{0\}$, then there exists $0 \neq (w_1, w_2) \in W$. If the span, $L(\{(w_1, w_2)\}) = W$, then W is a line through origin. If $L(\{(w_1, w_2)\})$ is a proper subset of W then we show that $W = \mathbb{R}^2$. Let $(u_1, u_2) \in W \setminus L(\{(w_1, w_2)\})$. So, $(u_1, u_2) \neq \alpha(w_1, w_2)$ for all $\alpha \in \mathbb{R}$. So, $A = \begin{bmatrix} w_1 & u_1 \\ w_2 & u_2 \end{bmatrix}$ is invertible. Therefore, we see that for any $(x, y) \in \mathbb{R}^2$, we need to find $\alpha, \beta \in \mathbb{R}$ such that the system $(x, y) = \alpha(w_1, w_2) + \beta(u_1, u_2)$ has a solution. Note that the above system reduces to $A \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$. Such α, β exist as A is invertible.

- 17. **(T)** Let $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$, with $a_{ij} \in \mathbb{C}$. Then, we define the following 4 fundamental subspaces:
 - (a) The column space of A is defined as

$$\operatorname{col}(A) = \{A\mathbf{x} : \mathbf{x} \in \mathbb{C}^n\} = \operatorname{LS}(A(:,1), \dots, A(:,n)) = \operatorname{LS}\left(\left\{\begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}, \dots, \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix}\right\}\right)$$

(b) The column space of A^* is defined as

$$col(A^*) = LS(A^*(1,:), \dots, A^*(m,:)) = \{A^*\mathbf{x} : \mathbf{x} \in \mathbb{C}^m\}.$$

(c) The null space of A is defined as

Null Space(
$$A$$
) = $\mathcal{N}(A) = \{\mathbf{x} \in \mathbb{C}^n : A\mathbf{x} = \mathbf{0}\}.$

(d) The null space of A^* is defined as

Null Space
$$(A^*) = \mathcal{N}(A^*) = \{ \mathbf{x} \in \mathbb{C}^m : A^* \mathbf{x} = \mathbf{0} \}.$$

Important: In case the matrix A has real entries, the spaces $\operatorname{col}(A^*)$ and Null $\operatorname{Space}(A^*)$ are called the row-space of A and the left-null space of A, respectively

Now, determine the above 4 mentioned fundamental spaces for the following matrices.

(i)
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 (ii) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix}$ (iii) $B = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 1 & 2 \\ 2 & 0 & 0 & 1 \end{bmatrix}$

(iv) Suppose B and C are two $m \times n$ matrices and $S = \operatorname{col}(B)$ and $T = \operatorname{col}(C)$, then S + T is a column space of what matrix M?

Solution: (ii)
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 2 & 6 & 8 \\ 2 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 4 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow$$

$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \leftarrow \text{Reduced Row Echelon Form of A.}$$

So, the solutions are
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -z \\ -z \\ z \end{bmatrix} = -z \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$
. Thus, $\mathcal{N}(A) = \mathrm{LS}\left(\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}\right)$.

- (iv) Let $M = \begin{bmatrix} B & C \end{bmatrix}$. In other words, M is an $m \times (2n)$ matrix whose first n columns are same as columns of B and next n columns are same as columns of C. It is easy to see that if $\mathbf{u} \in \operatorname{col}(M)$ then $\mathbf{u} \in S + T$. Similarly, if $\mathbf{u} \in S + T$ then $\mathbf{u} = \mathbf{s} + \mathbf{t}$ where \mathbf{s} is a linear combination of columns of B and \mathbf{t} is a linear combination of columns of C which implies that $\mathbf{u} \in \operatorname{col}(M)$.
- 18. Construct a matrix whose column space contains $[1 \ 1 \ 1]^T$ and whose null space is the line of multiples of $[1 \ 1 \ 1]^T$.

Solution: Clearly, the matrix we are looking for is a 3×4 matrix with rank 3. Two such matrices are

$$\begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 1 & -3 \\ 1 & 2 & 3 & -6 \\ 1 & 4 & 9 & -14 \end{bmatrix}.$$

- 19. (T) Suppose A is an m by n matrix of rank r.
 - (a) If $A\mathbf{x} = \mathbf{b}$ has a solution for every right side **b**, what is the column space of A?

Solution: There must be a pivot in every row, so r = m and the column space of A is all of \mathbb{R}^m .

(b) In part (a), what are all equations or inequalities that must hold between the numbers m, n and r?

Solution: We always have $r \leq n$. From (a), we know that r = m. From these, we deduce that $m \leq n$.

(c) Give a specific example of a 3 by 2 matrix A of rank 1 with first row $[2\ 5]$. Describe the column space, col(A), and the null space N(A) completely.

Solution: Just use multiples of [2 5] for the other rows. For example, $\begin{bmatrix} 2 & 5 \\ 4 & 10 \\ 0 & 0 \end{bmatrix}$. Column

space will be the line in \mathbb{R}^3 consisting of all multiples of your first column. The null space will be the line in \mathbb{R}^2 consisting of all multiples of the null space solution $\begin{bmatrix} -5/2 \\ 1 \end{bmatrix}$.

(d) Suppose the right side **b** is same as the first column in your example (part c). Find the complete solution to $A\mathbf{x} = \mathbf{b}$.

Solution: Adding the particular solution $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to the null space solution from (c), we get the complete solution $\mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} -5/2 \\ 1 \end{bmatrix}$.

20. Suppose the matrix A has row reduced echelon form R:

$$A = \begin{bmatrix} 1 & 2 & 1 & b \\ 2 & a & 1 & 8 \\ & (row & 3) \end{bmatrix}, \quad R = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

(a) What can you say immediately about row 3 of A?

Solution: Because row 3 of R is all zeros, row 3 of A must be a linear combination of row 1 and row 2 of A.

(b) What are the numbers a and b?

Solution: After one step of elimination, we have

$$\begin{bmatrix} 1 & 2 & 1 & b \\ 0 & a-4 & -1 & 8-2b \\ (row & 3) \end{bmatrix}.$$

From R, we see that the second column of A is not a pivot column, so a=4. Continuing with elimination, we get to

$$\left[\begin{array}{cccc} 1 & 2 & 0 & 8-b \\ 0 & 0 & 1 & 2b-8 \\ 0 & 0 & 0 & 0 \end{array}\right].$$

Comparing this to R, we see that b = 5.

(c) Describe all solutions of $R\mathbf{x} = \mathbf{0}$. Which among row spaces, column spaces and null spaces are the same for A and for R.

Solution: Setting the free variables x_2 and x_4 to 1 and 0, and vice versa, and solving $R\mathbf{x} = \mathbf{0}$, we get the null space solution

$$\mathbf{x} = c \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + d \begin{bmatrix} -3\\0\\-2\\1 \end{bmatrix}.$$

The row space and the null space are always the same for A and R whereas column space is different (row operations preserve row space but change column space).

21. (T) Suppose that A is a 3×3 matrix. What relation is there between the null space of A and the null space of A^2 ? How about the null space of A^3 ?

Solution: The null space of A is contained in the null space of A^2 . The reason is that if $A\mathbf{x} = \mathbf{0}$, *i.e.*, if \mathbf{x} is in the null space of A, then $A^2\mathbf{x} = A(A\mathbf{x}) = \mathbf{0}$. Thus, \mathbf{x} is also in the null space of A^2 . Similarly, we have

$$N(A) \subseteq N(A^2) \subseteq N(A^3) \subseteq \dots$$

Note that one can prove that if A is an $n \times n$ matrix, then one has $N(A^n) = N(A^{n+1}) = \dots$

22. Suppose R (an $m \times n$ matrix) is in row reduced echelon form $\begin{pmatrix} I_r & F \\ 0 & 0 \end{pmatrix}$, with r non-zero rows and first r pivot columns. Describe the column space and null space of R.

Solution: The column space is the space of all vectors whose last m-r coordinates are zero. This is clear since rank of the matrix R is r and the first r columns of R are independent.

Denote by f_{ij} the entry in the the (i,j) position in F. The null space of R is the space of all linear combinations of the n-r vectors

$$\begin{bmatrix} -f_{11} \\ -f_{21} \\ \vdots \\ -f_{21} \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} -f_{12} \\ -f_{22} \\ \vdots \\ -f_{r2} \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} -f_{1(n-r)} \\ -f_{2(n-r)} \\ \vdots \\ -f_{r(n-r)} \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}.$$

Clearly, these vectors are linearly independent and therefore the dimension of the null space is n-r

23. **(T)** Let $W_1 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 1 & 0 \end{bmatrix}^T \right\}$ and $W_2 = \operatorname{span} \left\{ \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 4 \end{bmatrix}^T \right\}$. Show that $W_1 + W_2 = \mathbb{R}^3$. Give an example of a vector $v \in \mathbb{R}^3$ such that v can be written in two different ways in the form $v = v_1 + v_2$, where $v_1 \in W_1, v_2 \in W_2$.

Solution:
$$\left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \right\} \subseteq W_1 + W_2 \text{ and is linearly independent which means } W_1 + W_2 = \mathbb{R}^3. \text{ Since } \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \frac{1}{6} \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} \in W_2, \text{ we have } \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \in W_1 + W_2. \text{ Note that } \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} \in W_1 \text{ and } \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \frac{5}{6} \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} - \frac{1}{6} \begin{bmatrix} -1 \\ 0 \\ 4 \end{bmatrix} \in W_2, \text{ so } \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \in W_1 + W_2.$$