TH316 Eine offene Paralleldrahtleitung ist aus Draht mit einem Durchmesser

d = 2 mm gefertigt. Der Abstand der parallelen Leiter beträgt a = 20 cm.

Wie groß ist der Wellenwiderstand $Z\mathbf{o}$ der Leitung?

Lösung: ca. 635 Ω .

Wellenwiderstand
$$Z = \frac{120}{\sqrt{\varepsilon_r}} \cdot [\ln] \frac{2 \cdot a}{d}$$

D = Innendurchmesser des Außenleiters
d = Außendurchmesser des Innenleiters
er = Dielektrizitätszahl (PE = 2,29)
Z = Wellenwiderstand in Ohm

Mittenabstand der Leiter (2 • a) geteilt durch Drahtdurchmesser d	400 / 2	= 400 = 200
Log. normal aus	200 [Ln]	= 5,2983173
120 geteilt durch Wurzel aus 1 (Luft)	120 / 1	= 120
Z=	5,2938173 • 120	= 635,258 Ohm

Für den Fall der luftisolierten Leitung vereinfacht sich die Formel zu: 120 • [Ln] aus (2 • a / d).