Interpolation

Walter Mudzimbabwe

Chapter

Interpolation

Walter Mudzimbabwe

Interpolation

Interpolation

Walter Mudzimbabw

Chapter 5

Motivation:

t_i , time	1	1.3	1.6	1.9	2.2
$V(t_i)$, Volume	0.7652	0.6201	0.4554	0.2818	0.1104

Question: What is V(1.7)?

Interpolation

Interpolation

Walter Mudzimbabwe

Chapter 5

Linear interpolation

Interpolation

Walter Mudzimbabw

Chapter 5

Given only 2 points $(x_0, f(x_0))$ and $(x_1, f(x_1))$ the interpolating function is a straight line passing through them.

Let
$$P_1(x) = a_0 + a_1 x = f(x)$$
.

The polynomial has to pass through these two points so

$$P_1(x_0) = a_0 + a_1x_0 = f(x_0)$$

 $P_1(x_1) = a_0 + a_1x_1 = f(x_1)$

Therefore

$$a_0 = \frac{f(x_0)x_1 - f(x_1)x_0}{x_1 - x_0}, \quad a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Therefore:

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

which is a linear interpolating formula.

Interpolation

Walter Mudzimbabwe

Chapter 5

Question: Estimate ln(2) using linear interpolation given $x_0 = 1$ and $x_1 = 6$.

Solution: Data: $(x_0, f(x_0)) = (1, \ln(1))$ and $(x_1, f(x_1)) = (6, \ln(6))$. So

$$P_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

$$\ln(2) = P_1(2) = \ln 1 + \frac{\ln 6 - \ln 1}{6 - 1} (2 - 1)$$

$$= 0.3583519.$$

From calculator ln(2) = 0.6931472.

Quadratic interpolation

Interpolation

Walter Mudzimbabw

Chapter 5

Given 3 points $(x_0, f(x_0))$, $(x_1, f(x_1))$ and $(x_2, f(x_2))$, a parabola

$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

can be used which passes through them.

How do we find a_0, a_1, a_2 ?

The polynomial has to pass through the 3 points.

Substituting $x = x_0$ in $P_2(x)$ results in $P_2(x_0) = a_0 = f(x_0)$.

Substituting $x = x_1$ in $P_2(x)$ results in

$$P_2(x_1) = a_0 + a_1(x_1 - x_0) = f(x_0) + a_1(x_1 - x_0) = f(x_1).$$

Therefore

$$a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}.$$

What is a_2 ?

Interpolation

Walter Mudzimbabw

Chapter 5

Substituting $x = x_2$ in $P_2(x)$ results in

$$P_2(x_2) = f(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

$$= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1)$$

:

:

:

Finally,

$$a_2 = \frac{\frac{f(x_2) - f(x_1)}{x_2 - x_1} - \frac{f(x_1) - f(x_0)}{x_1 - x_0}}{x_2 - x_0}.$$

Interpolation

Walter Mudzimbabwe

Chapter 5

Question: Estimate In(2) using quadratic interpolation given $x_0 = 1$, $x_1 = 4$ and $x_2 = 6$. **Solution**: Data: $(x_0, f(x_0)) = (1, \ln(1)),$ $(x_1, f(x_1)) = (4, \ln(4))$ and $(x_2, f(x_2)) = (6, \ln(6))$. So $P_2(x)$ $= a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$ $= f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$ $\frac{f(x_2)-f(x_1)}{f(x_1)} = \frac{f(x_1)-f(x_0)}{f(x_1)}$ $+\frac{x_2-x_1}{x_1-x_0}(x-x_0)(x-x_1)$ $= \ln 1 + \frac{\ln 4 - \ln 1}{4 + 1} (x - 1)$ $+\frac{\frac{\ln 6 - \ln 4}{6 - 4} - \frac{\ln 4 - \ln 1}{4 - 1}}{6} (x - 1)(x - 4)$

Example Cont'd

Interpolation

Walter Mudzimbabw

Chapter 5

Therefore
$$P_2(x)=0+0.4621(x-1)-0.0519(x-1)(x-4)$$
 So $\ln(2)$ is approximate by $P_2(2)=0+0.4621(2-1)-0.0519(2-1)(2-4)=0.5658$. linear interpolation gives 0.3583519 . Exact value is $\ln(2)=0.6931472$.

Lagrange Interpolating Polynomials

Interpolation

Walter Mudzimbabwe

Chapter 5

Suppose we want to determine a first degree polynomial that passes through two points (x_0, y_0) and (x_1, y_1) . Let such a polynomial have the form:

$$P(x) = \frac{(x-x_1)}{(x_0-x_1)}y_0 + \frac{(x-x_0)}{(x_1-x_0)}y_1$$

= $L_0(x)y_0 + L_1(x)y_1$.

Note that

- 1. $P(x_0) = y_0$ and $P(x_1) = y_1$.
- 2. When $x = x_0$, $L_0(x_0) = 1$ and $L_1(x_0) = 0$.
- 3. When $x = x_1$, $L_0(x_1) = 0$ and $L_1(x_1) = 1$.

Lagrange Interpolating Polynomials

Interpolation

Walter Mudzimbabwe

Chapter 5

In general, to construct a polynomial of degree at most $P_n(x)$ that passes through the n+1 points $(x_0, f(x_0)), (x_1, f(x_1)), \dots, (x_n, f(x_n))$, we need to construct for $k = 0, 1, \dots, n$.

- 1. $L_{n,k}(x_i) = 0$ when $i \neq k$.
- 2. $L_{n,k}(x_k) = 1$.

Therefore, for Condition 1. to hold,

$$L_{n,k}(x) = \frac{(x-x_0)\cdots(x-x_{k-1})(x-x_{k+1})\cdots(x-x_n)}{\cdots}$$

Finally for 2. to hold,

$$L_{n,k}(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_n)}$$

$$= \prod_{i=0}^{n} \frac{(x - x_i)}{(x_k - x_i)}.$$
(1)

Interpolation

Walter Mudzimbabwe

Chapter 5

The lagrange interpolating polynomial is thus

$$P(x) = L_{n,0}(x)f(x_0) + L_{n,1}(x)f(x_1) + \ldots + L_{n,n}(x)f(x_n)$$

We write L_k instead of $L_{n,k}$. Question: Use a Lagrange interpolating polynomial of the first and second order to evaluate f(2) on the basis of the data

Solution:

$$L_k(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$$

Interpolation

Walter Mudzimbabwe

Chapter 5

For
$$n = 1$$
:
 $P_1(x)$ we have $L_0(x) = \frac{(x-x_1)}{(x_0-x_1)}$ and $L_1(x) = \frac{(x-x_0)}{(x_1-x_0)}$

$$P_1(x) = L_0(x)f(x_0) + L_1(x)f(x_1).$$

$$P_1(2) = \frac{2-4}{1-4}(0) + \frac{2-1}{4-1}(1.386294) = 0.4620981.$$

For
$$n=2$$
:

$$P_2(x)$$
 we have $L_0(x) = \frac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}$, $L_1(x) = \frac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}$, $L_2(x) = \frac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)}, \qquad L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)}$$

$$P_2(x) = L_0(x)f(x_0) + L_1(x)f(x_1) + L_2(x)f(x_2).$$

So
$$P_2(2) = \frac{(2-4)(2-6)}{(1-4)(1-6)}(0) + \frac{(2-1)(2-6)}{(4-1)(4-6)}(1.386294) + \frac{(2-1)(2-4)}{(6-1)(6-4)}(1.791760) = 0.565844.$$

Interpolation

Walter Mudzimbabw

Chapter 5

Use the following data to approximate f(1.5) using the Lagrange interpolating polynomial for n=4.

x_i	1	1.3	1.6	1.9	2.2
$f(x_i)$	0.765198	0.620086	0.455402	0.281819	0.110362

Here $L_0(x) = \frac{(x-x_1)(x-x_2)(x-x_3)(x-x_4)}{(x_0-x_1)(x_0-x_2)(x_0-x_3)(x_0-x_4)}$ etc. Clearly we need code to do such tasks. Finally,

$$P_4(x) = (((0.0018251x + 0.0552928)x - 0.343047)$$
$$x + 0.0733913)x + 0.977735,$$

which gives,

$$P_4(1.5) = 0.508939.$$

Newton's Divided Differences

Interpolation

Walter Mudzimbabwe

Chapter 5

0. The zeroth divided difference of f w.r.t. x_i is $f[x_i] = f(x_i) = f_i$.

1. The first divided difference of f w.r.t. x_i and x_{i+1} is:

$$f[x_i, x_{i+1}] = \frac{f[x_{i+1}] - f[x_i]}{x_{i+1} - x_i} = \frac{f_{i+1} - f_i}{x_{i+1} - x_i}$$

2. The Second divided difference of f w.r.t. x_i , x_{i+1} and x_{i+2} is:

$$f[x_i, x_{i+1}, x_{i+2}] = \frac{f[x_{i+1}, x_{i+2}] - f[x_i, x_{i+1}]}{x_{i+2} - x_i}$$

3. The k^{th} divided difference of f w.r.t. $x_i, x_{i+1}, \dots, x_{i+k}$ is:

$$f[x_{i}, x_{i+1}, \cdots, x_{i+k-1}, x_{i+k}] = \frac{f[x_{i+1}, x_{i+2}, \cdots, x_{i+k}] - f[x_{i}, x_{i+1}, \cdots, x_{i+k-1}]}{x_{i+k} - x_{i}}$$

The polynomial

Interpolation

Walter Mudzimbabwe

Chapter 5

We fit a $P_n(x)$ to the n+1 data points $(x_i, f(x_i)), i = 0, 1, \dots, n$ in the form:

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \cdots + a_n(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Since the polynomial must pass through the points (x_i, f_i) we have:

- $x = x_0, P_n(x_0) = f(x_0)$ so, $a_0 = f(x_0) = f[x_0]$.
- $x = x_1, P_n(x_1) = f(x_1) \text{ so, } f[x_0] + a_1(x_1 x_0) = f[x_1] \Rightarrow a_1 = \frac{f[x_1] f[x_0]}{x_1 x_0} = f[x_0, x_1].$
- $x = x_2, P_n(x_2) = f(x_2).$ $a_2 = f[x_0, x_1, x_2].$

In general:

$$a_k = f[x_0, x_1, \cdots, x_k]$$

Chapter 5

Suppose:

$$P_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2).$$

We know that $a_0 = f[x_0]$, $a_1 = f[x_0, x_1]$, $a_2 = f[x_0, x_1, x_2]$ and $a_3 = f[x_0, x_1, x_2, x_3]$

Xi	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
x_0	$f[x_0]$			
		$f[x_0,x_1]$		
x_1	$f[x_1]$		$f[x_0,x_1,x_2]$	
		$f[x_1,x_2]$		$f[x_0, x_1, x_2, x_3]$
<i>X</i> ₂	$f[x_2]$		$f[x_1,x_2,x_3]$	
		$f[x_2,x_3]$		
<i>X</i> 3	$f[x_3]$			

Interpolation

Walter Mudzimbabw

Chapter 5

Find a polynomial satisfied by (-4, 1245), (-1, 33), (0, 5), (2, 9)

Xi	$f[x_i]$	$f[x_i, x_{i+1}]$	$f[x_i, x_{i+1}, x_{i+2}]$	$f[x_i, x_{i+1}, x_{i+2}, x_{i+3}]$
-4	1245			
		-404		
-1	33		94	
		-28		-14
0	5		10	
		2		
2	9			

$$P_3(x) = 1245 - 404(x+4) + 94(x+4)(x+1)$$
$$-14(x+4)(x+1)x$$
$$= -14x^3 + 24x^2 + 52x + 5.$$