Yifei Chen, Nov 2024

Part 1

I wrote a main function to use the function to get the result. I also write a function called plotresult. Here is a screen shot for my main function.

```
__name__ == '__main__':
H1 = .089 # 1519
          H2 = .095 #08535
          W1 = .109 # 11235
          W2 = .082
          B1 = np.array([0,1,0,W1+W2,0,L1+L2])
          B2 = np.array([0,0,1,H2,-L1-L2, 0])
          B3 = np.array([0,0,1,H2,-L2,0])
          B4 = np.array([0,0,1,H2,0,0])
          B5 = np.array([0,-1,0,-W2,0,0])
B6 = np.array([0,0,1,0,0,0])
          Blist = np.array([B1,B2,B3,B4,B5,B6])
          Blist = Blist.T
           thetalist0_short = np.array([-2, -1.5, -1.2, 2.4, 1.4, 1.2]) # np.array([-2.5536, -2.0013, -1.6068, 2.2761, 1.4830, 0.9889])
           thetalist0_long = np.array([-2.5601, -1.0485, -1.8119, -0.4478, 2.9107, -2.0351]) #np.array([1.707,-1.578,0,-1.514,-0.032,1.514])
          M = np.array([[-1, 0, 0, L1+L2],
                          [0, 0, 1, W1+W2],
[0, 1, 0, H1-H2],
                          [0,0,0,1]])
          T = np.array([[1, 0, 0, 0.3],
                          [0, 1, 0, 0.3],
                          [0, 0, 1, 0.4],
                          [0, 0, 0, 1]])
           eomg = 0.001
           ev = 0.0001
           iter\_thetas\_s, \ err\_s, \ positions\_s, \ linear\_errors\_s, \ angular\_errors\_s = IKinBodyIterates(Blist,M,T,thetalist0\_short,eomg,ev)
           # iter_thetas_l, err_short_l, positions_l, linear_errors_l, angular_errors_l = IKinBodyIterates(Blist,M,T,thetalist0_long,eomg,ev)
182
```

Screen log

This log show how your code is called and the text output. The way it call is using the **Ass2code.py**. Inside, there is the \textbf{main} function It runs the short and long iterates of **IKinBodylterates** with my initial guess. (The output is long, so it takes maney images)

For the short interation, it takes 4 interates.

```
(446) (base) ericchen@EricdeMacBook-Pro ME449 % python -u "/Users/ericchen/ME449/yifei_chen_ass2/Ass2code.py
Iteration 0:
           Joint Vector: -2.0000, -1.5000, -1.2000, 2.4000, 1.4000, 1.2000
           SE(3) End-Effector Configuration:
           0.4638 -0.8536 -0.2372 0.2029
0.1554 0.3420 -0.9268 0.1480
0.8722 0.3930 0.2912 0.6136
           0.0000 0.0000 0.0000 1.0000
           Error Twist Vb:
           -1.0057, 0.8454, -0.7688, 0.0287, -0.0090, -0.3011
           Angular Error Magnitude || omega_b ||: 1.52228
Linear Error Magnitude || v_b ||: 0.30261
 Iteration 1:
                     Joint Vector:
                     -2.0618, -2.1763, -1.1229, 1.8266, 1.9720, 0.6484
                     SE(3) End-Effector Configuration:
                     0.9160 -0.1054 -0.3870 0.3164
0.1572 0.9820 0.1045 0.4285
                     0.3690 -0.1566 0.9161 0.4427
                     0.0000 0.0000 0.0000 1.0000
                     Error Twist Vb:
                     0.1347, 0.3901, -0.1355, -0.0337, -0.1240, -0.0470
                     Angular Error Magnitude || omega_b ||: 0.43443
Linear Error Magnitude || v_b ||: 0.13685
 Iteration 2:
                     Joint Vector:
                     -2.1234, -1.8976, -1.7316, 2.0433, 1.5736, 0.5252
                     SE(3) End-Effector Configuration:
                     0.9996 0.0274 0.0055 0.2968
-0.0275 0.9995 0.0143 0.2740
-0.0051 -0.0144 0.9999 0.3913
                     0.0000 0.0000 0.0000 1.0000
                     Error Twist Vb:
                     0.0144, -0.0053, 0.0274, 0.0028, 0.0260, 0.0089
                     Angular Error Magnitude || omega_b ||: 0.03141
Linear Error Magnitude || v_b ||: 0.02762
```

```
Iteration 3:
                      Joint Vector:
-2.0956, -1.9334, -1.6530, 2.0156, 1.5706, 0.5248
                      SE(3) End-Effector Configuration:
                      1.0000 -0.0000 0.0002 0.2996
0.0000 1.0000 -0.0001 0.2999
-0.0002 0.0001 1.0000 0.3997
                      0.0000 0.0000 0.0000 1.0000
                      Error Twist Vb:
                      -0.0001, -0.0002, -0.0000, 0.0004, 0.0001, 0.0003
                      Angular Error Magnitude || omega_b ||: 0.00022
Linear Error Magnitude || v_b ||: 0.00054
Iteration 4:
                      Joint Vector:
                      -2.0964, -1.9340, -1.6513, 2.0145, 1.5708, 0.5256
                      SE(3) End-Effector Configuration:
                      1.0000 0.0000 0.0000 0.3000
                      -0.0000 1.0000 0.0000 0.3000
-0.0000 -0.0000 1.0000 0.4000
0.0000 0.0000 0.0000 1.0000
                      Error Twist Vb: 0.0000, -0.0000, 0.0000, 0.0000, 0.0000
                      Angular Error Magnitude || omega_b ||: 0.00000
Linear Error Magnitude || v_b ||: 0.00000
```

For the long interation, it takes 14 interates.

```
(446) (base) ericchen@EricdeMacBook-Pro ME449 % python -u "/Users/ericchen/ME449/yifei_chen_ass2/Ass2code.py"
Iteration 0:
           Joint Vector:
           -2.5601, -1.0485, -1.8119, -0.4478, 2.9107, -2.0351
           SE(3) End-Effector Configuration:
           -0.2916 0.8917 -0.3461 0.1822
           -0.0690 0.3413 0.9374 0.0848
0.9540 0.2973 -0.0380 0.6567
0.0000 0.0000 0.0000 1.0000
           Error Twist Vb:
           0.7686, 1.5610, 1.1535, -0.2439, 0.3156, -0.1516
           Angular Error Magnitude || omega_b ||: 2.08765
Linear Error Magnitude || v_b ||: 0.42670
 Iteration 1:
                      Joint Vector:
                     2.2637, -2.9858, -1.7424, -1.2976, -0.5470, 2.5341
                      SE(3) End-Effector Configuration:
                      -0.8546 -0.3961 -0.3358 0.1683
                     0.3608 0.0123 -0.9326 -0.4830
0.3735 -0.9181 0.1324 -0.3180
0.0000 0.0000 0.0000 1.0000
                     Error Twist Vb:
                      -0.0361, 1.7752, -1.8942, 1.4266, 0.1767, 0.1251
                     Angular Error Magnitude || omega_b ||: 2.59625
Linear Error Magnitude || v_b ||: 1.44291
 Iteration 2:
                      Joint Vector:
                      0.6525, -2.2915, 1.4789, 2.2877, -0.6270, -0.1868
                      SE(3) End-Effector Configuration:
                      0.1427 0.8319 -0.5362 -0.1940
                     -0.6164 0.4986 0.6094 0.0725 0.7744 0.2436 0.5840 0.7318 0.0000 0.0000 0.0000 1.0000
                      Error Twist Vb:
                      0.2684, 0.9615, 1.0625, 0.1229, 0.4925, -0.4779
                     Angular Error Magnitude || omega_b ||: 1.45788
Linear Error Magnitude || v_b ||: 0.69716
 Iteration 3:
                      Joint Vector:
                      -1.1908, -1.6686, -2.4593, -1.6168, -1.0976, 0.2363
                      SE(3) End-Effector Configuration:
                      -0.9002 0.4124 0.1398 -0.0010
                     -0.0792 -0.4709 0.8786 0.3971 0.4282 0.7799 0.4565 0.1409 0.0000 0.0000 0.0000 1.0000
                      Error Twist Vb:
                      0.4863, 1.4198, 2.4207, 0.3949, 0.3687, -0.0331
                     Angular Error Magnitude || omega_b ||: 2.84818
Linear Error Magnitude || v_b ||: 0.54129
Iteration 4:
                      Joint Vector:
                      -0.6332, 0.1713, -2.6949, 3.0509, -2.1131, 2.4075
                      SE(3) End-Effector Configuration:
                      0.3810 -0.2025 -0.9021 0.0320
                     0.5092 0.8604 0.0219 0.0592
0.7717 -0.4677 0.4310 0.1969
0.0000 0.0000 0.0000 1.0000
```

```
Iteration 5:
                   Joint Vector:
                   -1.7455, 1.1596, -1.7173, 0.6473, 2.9519, -0.5107
                   SE(3) End-Effector Configuration:
                   0.0213 -0.0059 -0.9998 -0.0605
                   -0.8259 -0.5637 -0.0142 -0.5066
-0.5635 0.8260 -0.0169 -0.1891
                   0.0000 0.0000 0.0000 1.0000
                   Error Twist Vb:
                   -1.6536, 0.8587, 1.6137, -0.4029, 1.2115, -0.4086
                   Angular Error Magnitude || omega_b ||: 2.46490
Linear Error Magnitude || v_b ||: 1.34058
Iteration 6:
                   Joint Vector:
                   -0.8900, 0.1351, 2.4906, -1.2799, 2.2467, 2.4638
                   SE(3) End-Effector Configuration:
                   -0.1559 -0.9132 -0.3766 0.0460
                   -0.7730 0.3501 -0.5290 0.0349
                   0.6149 0.2086 -0.7605 -0.2452
0.0000 0.0000 0.0000 1.0000
                   Error Twist Vb:
                   -1.4652, 1.9695, -0.2784, 0.7857, 0.5460, -0.1656
                   Angular Error Magnitude || omega_b ||: 2.47048
Linear Error Magnitude || v_b ||: 0.97107
Iteration 7:
                   Joint Vector:
                   0.2649, 0.7074, -0.5055, -0.0206, 0.8020, 0.3929
                   SE(3) End-Effector Configuration:
                   -0.7170 0.4855 0.5003 0.6784
                   0.4935 -0.1534 0.8561 0.3560
0.4924 0.8607 -0.1296 -0.3699
                   0.0000 0.0000 0.0000 1.0000
                   Error Twist Vb:
                   -1.1795, -2.0400, -2.0685, -0.7218, 1.0582, -0.1332
                   Angular Error Magnitude || omega_b ||: 3.13554
Linear Error Magnitude || v_b ||: 1.28781
Iteration 8:
                   Joint Vector:
                   -0.7864, -1.0746, 1.2757, -0.2659, 2.1041, -1.6408
                   SE(3) End-Effector Configuration:
                   -0.0221 0.9687 0.2472 0.5160
                   -0.0631 0.2454 -0.9674 -0.4218
-0.9978 -0.0369 0.0557 0.2942
                   0.0000 0.0000 0.0000 1.0000
                   Error Twist Vb:
                   -0.9673, -1.2943, 1.0728, -0.5465, 0.4857, -0.4770
                   Angular Error Magnitude || omega_b ||: 1.93955
Linear Error Magnitude || v_b ||: 0.87303
Iteration 9:
                   Joint Vector:
                   0.2567, -1.8439, 1.4379, -1.1195, 2.0896, -1.3687
                   SE(3) End-Effector Configuration:
                   0.9067 -0.3887 0.1640 0.3150
                   0.4182 0.7776 -0.4696 0.1534
0.0550 0.4943 0.8675 0.7199
                   0.0000 0.0000 0.0000 1.0000
```

```
Iteration 10:
                 Joint Vector:
                 0.8246, -2.0170, 2.5087, -2.5281, 1.6162, -2.5513
                 SE(3) End-Effector Configuration:
                 0.9585 0.0879 -0.2711 0.0654
                 -0.1857 0.9142 -0.3601 0.2259
                 0.2162 0.3955 0.8926 0.4032
                 0.0000 0.0000 0.0000 1.0000
                 Error Twist Vb:
                 -0.3933, 0.2537, 0.1424, 0.2266, 0.0872, -0.0483
                 Angular Error Magnitude || omega_b ||: 0.48923
Linear Error Magnitude || v_b ||: 0.24757
Iteration 11:
                 Joint Vector:
                 0.2657, -1.8378, 2.2371, -1.9445, 1.8589, -1.8876
                 SE(3) End-Effector Configuration:
                 0.9928 0.0680 0.0983 0.3114
-0.0394 0.9627 -0.2678 0.1735
                 -0.1128 0.2620 0.9585 0.4227
                 0.0000 0.0000 0.0000 1.0000
                 Error Twist Vb:
                 -0.2687, -0.1071, 0.0545, -0.0132, 0.1223, -0.0402
                 Angular Error Magnitude || omega_b ||: 0.29435
                 Linear Error Magnitude || v_b ||: 0.12941
Iteration 12:
                 Joint Vector:
                 0.5683, -1.6483, 2.1675, -2.1729, 1.5780, -2.1540
                 SE(3) End-Effector Configuration:
                 0.9977 0.0129 -0.0659 0.2748
-0.0163 0.9986 -0.0506 0.3041
                 0.0652 0.0516 0.9965 0.4078
                 0.0000 0.0000 0.0000 1.0000
                 Error Twist Vb:
                 -0.0511, 0.0656, 0.0146, 0.0249, -0.0042, -0.0085
                 Angular Error Magnitude || omega_b ||: 0.08447
                 Linear Error Magnitude || v_b ||: 0.02667
Iteration 13:
                 Joint Vector:
                 0.5243, -1.6315, 2.1516, -2.0906, 1.5751, -2.0950
                 SE(3) End-Effector Configuration:
                 1.0000 -0.0001 0.0025 0.3000
                 0.0001 1.0000 -0.0035 0.2990
                 -0.0025 0.0035 1.0000 0.4004
                 0.0000 0.0000 0.0000 1.0000
                 Error Twist Vb:
                 -0.0035, -0.0025, -0.0001, -0.0000, 0.0010, -0.0004
                 Angular Error Magnitude || omega_b ||: 0.00428
                 Linear Error Magnitude || v_b ||: 0.00104
Iteration 14:
                 Joint Vector:
                 0.5256, -1.6294, 2.1508, -2.0923, 1.5708, -2.0964
                 SE(3) End-Effector Configuration:
                 1.0000 0.0000 -0.0000 0.3000
                 -0.0000 1.0000 -0.0000 0.3000
                 0.0000 0.0000 1.0000 0.4000
0.0000 0.0000 0.0000 1.0000
                 Error Twist Vb:
```

CoppliaSim Screenshot

A CoppeliaSim screenshot showing the UR5 at the solution configuration calculated after 2–4 iterations for my "good" initial guess. This screenshot clearly show the UR5's end-effector configuration as well as the SE(3) configuration reported by the scene's interface, confirming that my code calculated a good solution.

Here is the SE(3) shown in the UI

Here is the configuration of the desired position of UR5

Progression of end-effector positions

A figure showing the progression of end-effector (x, y, z) positions during the solution process. (Plots of both initial guesses in the same figure.)

linear errors

A figure showing the magnitudes of the linear error as a function of iterations (both initial guesses).

Angular errors

A figure showing the magnitudes of the angular error as a function of iterations (both initial guesses).

why convergence is difficult from the long iterates initial guess?

When the initial guess is far from the target solution, numerical inverse kinematics struggles to converge due to:

- 1. **Initial Guess Deviation**: Newton-Raphson relies on linear approximations, which become inaccurate when starting far from the solution, making it difficult to find the correct descent direction.
- Nonlinearity and Singularity: High nonlinearity and potential singularity of the Jacobian can lead to large, unstable updates, causing divergence.
- Error Propagation and Large Steps: Large initial errors can result in overly large step sizes, causing oscillations and instability.
- 4. **Local Minima**: A poor initial guess may cause the iteration to get stuck in local minima, preventing convergence to the global solution.

Part 2

Part 2 (a)

Suppose the robot moves from the initial configuration θ_0 to the target configuration θ^* , and each joint moves with a constant velocity. Let the total movement time be t_f . The velocity vector for each joint can be represented as:

1. Joint Angle Difference:

$$\Delta \theta = \theta^* - \theta_0$$

Constant Joint Velocity Vector:

$$\dot{ heta} = rac{\Delta heta}{t_f}$$

For each joint *i*, this can be extended to the following form:

$$\dot{ heta}_i = rac{ heta_i^* - heta_{0,i}}{t_f}, \quad i = 1, 2, \dots, n$$

This expression represents that each joint linearly changes its value from the initial to the target position at a constant speed.

Part 2(b)

Constant Twist Movement of the End-Effector Suppose the end-effector moves from the initial configuration T_0 to the target configuration T_{sd} with a constant twist. 1. **Twist Representation**: - The twist V can be computed as:

$$V = rac{\log(T_{sd}T_0^{-1})}{t_f}$$

where \log represents the logarithm map that converts the transformation matrix into a twist vector.

Joint Velocity Calculation:

• At time t=0, the joint velocity vector can be computed using the body Jacobian $J_b(\theta_0)$:

$$\dot{\theta}(0) = J_b(\theta_0)^{-1}V$$

• At time $t=t_f/2$, assuming the end-effector's position at $t_f/2$ is obtained by interpolation, the joint velocity can be similarly calculated as:

$$\dot{ heta}\left(rac{t_f}{2}
ight) = J_b(heta(t_f/2))^{-1}V$$

Part 2(c)

1. Constant Joint Velocity

Advantages:

- Easy to implement, with linearly changing joint velocities that are straightforward to compute.
- Low computational cost, suitable for real-time control and simple tasks.

Disadvantages:

- The end-effector trajectory may not be linear, which could lead to a deviation from the intended path.
- Independent joint movements make the end-effector's speed and direction difficult to predict.

2. Constant Twist Movement:

Advantages:

- Better control of the end-effector trajectory, making the path smoother and closer to linear.
- More suitable for tasks requiring precise control of the end-effector's path.

Disadvantages:

- Requires calculation of the Jacobian matrix and its inverse, which increases computational complexity.
- Near singularities, the Jacobian matrix may become non-invertible, leading to control failure.

Constant Joint Velocity is suitable for tasks where the trajectory is not critical, such as simple pick-and-place operations.

Constant Twist Movement is more appropriate for tasks requiring precise control of the endeffector's trajectory, but it comes with higher computational costs and potential singularity issues.