Segundo Recuperatorio – CINEMÁTICA DE LA PARTÍCULA-

La forma de entrega es en archivo de texto (pdf, docx, doc, ...) que debe comenzar con tú APELLIDO.

No olvides poner EN CADA HOJA nombre, apellido y curso.

Si solo tenés un recuperatorio el plazo de entrega es de 2 horas. Si tenés más de un recuperatorio el plazo de entrega es de 3 horas

Cuando sea necesario tomar $g=10 \frac{m}{s^2}$

- 1. La gráfica representa el movimiento de una partícula en una trayectoria recta $x = x_{(t)}$. Indicá para cada intervalo:
 - a) si la velocidad espositiva o negativa o cero
 - b) si la aceleración es positiva o negativa o cero.
 - c) Construí los gráficos de ; $v = v_{(t)}$ y $a = a_{(t)}$

- 2. Un globo asciende con rapidez de $12\frac{m}{s}$ y deja caer un bulto cuando se encuentra a la altura de $80\,m$. ¿Cuánto tarda el bulto en llegar al suelo? (No se toma en cuenta la resistencia del aire) .
- 3. Un automóvil parte del reposo, en una vía circular de $400 \, m$ de radio, y va moviéndose con movimiento uniformemente acelerado, hasta que a los $50 \, s$ de iniciada su marcha alcanza la velocidad de $72 \, \frac{km}{h}$, desde ese momento conserva tal velocidad. Hallar:
 - a. La aceleración en la primer etapa del movimiento.
 - b. La aceleración normal, la aceleración total y la longitud de vía recorrida en el momento de cumplirse los 50 s .
 - c. La velocidad angular media en la primer etapa, y la velocidad angular a los 50 s.
 - d. Tiempo que tardará el automóvil en dar cien vueltas al circuito.
- 4. Se lanza un cuerpo hacia lo alto de un tablón inclinado con una velocidad de $3\frac{m}{s}$. El tablón tiene un rozamiento no despreciable. El cuerpo se mueve en línea recta hasta detenerse a cierta altura y vuelve al punto de partida. El ascenso dura 2 segundos mientras que el descenso dura 4 segundos. Se pide:
 - a) La aceleración durante el ascenso.
 - b) La aceleración durante el descenso.
 - c) La distancia recorrida.
 - d) El desplazamiento.
 - e) Los gráficos de $x=x_{(t)}$; $v=v_{(t)}$ y $a=a_{(t)}$.

- 5. Un astronauta en un extraño planeta encuentra que puede saltar una distancia horizontal máxima de 15m si el módulo de su velocidad inicial es de $3\frac{m}{s}$
 - a. ¿Cuál es la aceleración gravitatoria del planeta?
 - b. Calcular el radio de la circunferencia osculadora en el punto de impacto.

CONDICIÓN DE APROBACIÓN: 3 EJERCICIOS BIEN