

- ◆ 100% routing completion + area minimization, under a set of constraints:
 - Placement constraint: usually based on fixed placement
 - Number of routing layers
 - Geometrical constraints: must satisfy design rules
 - Timing constraints (performance-driven routing): must satisfy delay constraints
 - Physical/Electrical/Manufacturing constraints:
 - Crosstalk
 - Process variations, yield, or lithography issues?

2024/5/16

Andy Yu-Guang Chen

The Routing-Tree Problem

- ◆ **Problem:** Given a set of pins of a net, interconnect the pins by a "routing tree."
- ◆ Minimum Spanning Tree (MST): a minimum-length tree of edges connecting all the pins
- ◆ Minimum Rectilinear Steiner Tree (MRST) Problem: Given n points in the plane, find a minimum-length tree of rectilinear edges which connects the points. (Very useful in routing of VLSI circuits, but NP-hard)
- $igoplus MRST(P) = MST(P \cup S)$, where P and S are the sets of original points and Steiner points, respectively.

Routing Problem is Very Hard

- ◆ Minimum Spanning Tree Problem:
 - Use Prim's or Kruskal Algorithm
 - This is a P problem. Easy!
- Minimum Steiner Tree Problem:
 - Given a net, find the Steiner tree with the minimum length
 - ➤ This problem is NP-Complete!
- ◆ May need to route tens of thousands of nets simultaneously without overlapping
- Obstacles may exist in the routing region

2024/5/16

Andy Yu-Guang Chen

Approaches for Routing

- ◆Sequential Approach:
 - > Route the nets one at a time
 - Order depends on factors like criticality, estimated wire length, and number of terminals
 - ➤ When further routing of nets is not possible because some nets are blocked by nets routed earlier, apply 'Rip-up and Reroute' technique (or 'Shove-aside' technique)
- ◆Concurrent Approach:
 - Consider all nets simultaneously, i.e., no ordering
 - Can be formulated as integer programming

2024/5/16

Andy Yu-Guang Chen

11

Extraction and Timing Analysis

- After global routing and detailed routing, information of the nets can be extracted and delays can be analyzed
- ◆If some nets fail to meet their timing budget, detailed routing and/or global routing needs to be repeated

2024/5/16

Andy Yu-Guang Chen

Graph Modeling of Routing Regions

- ◆Grid Graph Modeling
- ◆Checker Board Graph Modeling
- ◆ Channel Intersection Graph Modeling

2024/5/16

Andy Yu-Guang Chen

22

Grid Graph

- ◆ Each cell is represented by a vertex.
- ◆ Two vertices are joined by an edge if the corresponding cells are adjacent to each other.
- ◆ The occupied cells are represented as filled circles, whereas the others are as clear circles.
- Given a 2-terminal net, the routing problem is to find a path between the corresponding vertices in the grid graph.

A terminal

A node with terminals

Andy Yu-Guang Chen

Checker Board Graph

- ◆ More general than the grid graph model.
- ◆ Approximates the layout as a coarse grid.
- ◆ Checker board graph is generated in a manner similar to the grid graph.
- ◆ The edge capacities are computed based on the actual area available for routing on the cell boundary.
 - > The partially blocked edges have a capacity of 1.
 - > The unblocked edges have a capacity of 2.
- ◆ Given the cell numbers of all terminals of a net, the global routing problem is to find a path in the coarse grid graph.

2024/5/16

Andy Yu-Guang Chen

Channel Intersection Graph

- Most general and accurate model for global routing.
- Channels are represented as edges.
- Channel intersections are represented as vertices.
- ◆ Edge weight represents channel capacity.
- Extended channel intersection graph: terminals are also represented as vertices.

A terminal

A node with terminals

2024/5/16

Routings along the channels

Andy Yu-Guang Chen

27

Channel Intersection Graph

- ◆The global routing problem is simply to find a path in the channel intersection graph.
 - The capacities of the edges must not be violated.
 - For 2-terminal nets, we can consider the nets sequentially.
 - For multi-terminal nets, we can have an approximation to minimum Steiner tree.

2024/5/16

Andy Yu-Guang Chen

Global Routing Approaches

- Sequential Approach (Rip-up and Re-route)
 - ➤ Maze Routing
 - ➤ Line probing
 - ➤ Shortest Path Based Algorithms
 - ➤ Steiner Tree Based Algorithms
- **◆**Concurrent Approach
 - ➤ Integer Programming

2024/5/16

Andy Yu-Guang Chen

21

Global Routing Approaches

- Sequential Approach (Rip-up and Re-route)
 - ➤ Maze Routing
 - ➤ Line probing
 - ➤ Shortest Path Based Algorithms
 - ➤ Steiner Tree Based Algorithms
- ◆Concurrent Approach
 - ➤ Integer Programming

2024/5/16

Andy Yu-Guang Chen

Maze Router: Lee Algorithm

- ◆Lee, "An algorithm for path connection and its application," *IRE Trans. Electronic Computer*, EC-10, 1961.
- ◆ Discussion mainly on single-layer routing
- **♦**Strengths
 - Guarantee to find connection between 2 terminals if it exists.
 - Guarantee minimum path.
- **♦** Weaknesses
 - Requires large memory for dense layout.
 - > Slow.
- Applications: global routing, detailed routing

2024/5/16

Andy Yu-Guang Chen

33

Maze Routing Problem

- ◆Given:
 - >A planar rectangular grid graph
 - Two points S and T on the graph
 - Obstacles modeled as blocked vertices
- **♦**Objective:
 - Find the shortest path connecting S and T
- ◆This technique can be used in global or detailed routing (switchbox) problems

2024/5/16

Andy Yu-Guang Chen

Time and Space Complexity

- igoplus For a grid structure of size $w \times h$:
 - ightharpoonupTime per net = O(wh)
 - > Space = $O(wh \log wh)$ ($O(\log wh)$ bits are needed to store each label.)
- ◆For a 4000 × 4000 grid structure:
 - ≥24 bits per label
 - ➤ Total 48 Mbytes of memory!

2024/5/16

Andy Yu-Guang Chen

43

Improvement to Lee's Algorithm

- ◆Improvement on memory:
 - ➤ Aker's Coding Scheme
- ◆Improvement on run time:
 - > Starting point selection
 - ➤ Double fan-out
 - > Framing
 - ➤ Hadlock's Algorithm
 - Soukup's Algorithm

2024/5/16

Andy Yu-Guang Chen

Improvement to Lee's Algorithm

- ◆Improvement on memory:
 - > Aker's Coding Scheme
- ◆Improvement on run time:
 - > Starting point selection
 - > Double fan-out
 - > Framing
 - > Hadlock's Algorithm
 - > Soukup's Algorithm

2024/5/16

Andy Yu-Guang Chen

45

Aker's Coding Scheme

- ◆ For the Lee's algorithm, labels are needed during the retrace phase
- ◆But there are only two possible labels for neighbors of each vertex labeled i, which are, i-1 and i+1
- ◆So, is there any method to reduce the memory usage?

2024/5/16

Andy Yu-Guang Chen

Schemes to Reduce Run Time

- ◆ Starting point selection: Choose the point farthest from the center of the grid as the starting point.
- ◆ Double fan-out: Propagate waves from both the source and the target cells.
- ◆ Framing: Search inside a rectangle area 10--20% larger than the bounding box containing the source and target.
 - ➤ Need to enlarge the rectangle and redo if the search fails.

2024/5/16

Andy Yu-Guang Chen

Multi-Terminal Nets

- ◆ For a k-terminal net, connect the k terminals using a rectilinear Steiner tree with the shortest wire length on the maze
- ◆This problem is NP-Complete
- ◆ Just want to find some good heuristics

2024/5/16

Andy Yu-Guang Chen

51

Multi-Terminal Nets

- ◆This problem can be solved by extending the Lee's algorithm:
 - >Connect one terminal at a time, or
 - ➤ Search for several targets simultaneously, or
 - ➤ Propagate wave fronts from several different sources simultaneously

2024/5/16

Andy Yu-Guang Chen

Hadlock's Algorithm

- Hadlock, "A shortest path algorithm for grid graphs," Networks, 1977.
- Uses detour number (instead of labeling wavefront in Lee's router)
 - ➤ Detour number, d(P): # of grid cells directed away from its target on path P.
 - ➤ MD(S, T): the Manhattan distance between S and T.
 - \triangleright Path length of P, I(P): I(P) = MD(S, T) + 2 d(P).
 - ightharpoonup MD(S, T) fixed! \Rightarrow Minimize d(P) to find the shortest path.
 - For any cell labeled *i*, label its adjacent unblocked cells **away from** *T i*+1; label *i* otherwise.
- ◆ Time and space complexities: O(MN), but substantially reduces the # of searched cells.

Finds the shortest path between S and T.

2024/5/16

Andy Yu-Guang Chen

59

Detour Number

◆ For a path P from S to T, let detour number d(P) = # of grids directed away from T, then

$$\triangleright$$
 L(P) = MD(S,T) + 2d(P)

length /

shortest Manhattan distance

D: Detour

$$d(P) = 3$$

 $MD(S,T) = 6$
 $L(P) = 6+2x3 = 12$

So minimizing L(P) and d(P) are the same

2024/5/16

Andy Yu-Guang Chen

Hadlock's Algorithm

- ◆ Label vertices with detour numbers
- Vertices with smaller detour number are expanded first
- ◆Therefore, favor paths without detour

3	2	2	2	2	2	3
2	1	1		2	2	
1	Ş	0		2		
1	0	0				
1	0	0		2	Ţ	
2	1	1		2	2	
3	2	2	2	2	2	

2024/5/16

Andy Yu-Guang Chen

C1

Improvement to Lee's Algorithm

- ◆Improvement on memory:
 - > Aker's Coding Scheme
- ◆Improvement on run time:
 - Starting point selection
 - > Double fan-out
 - > Framing
 - ➤ Hadlock's Algorithm
 - Soukup's Algorithm

2024/5/16

Andy Yu-Guang Chen

Soukup's Algorithm

- ◆ Soukup, "Fast maze router," DAC-78.
- ◆ Combined breadth-first and depth-first search.
 - ➤ Depth-first (**line**) search is first directed toward target *T* until an obstacle or *T* is reached.
 - ➤ Breadth-first (Lee-type) search is used to "bubble" around an obstacle if an obstacle is reached.
- ◆ Time and space complexities: O(MN), but 10--50 times faster than Lee's algorithm.
- ◆ Find a path between S and T, but may not be the shortest!

2024/5/16

63

Soukup's Algorithm

- ◆ Soukup's Algorithm: DFS+BFS
 - Explore in the direction towards the target without changing direction. (DFS)
 - > If obstacle is hit, search around the obstacle. (BFS)
- ◆ May get Sub-Optimal solution

2024/5/16

Andy Yu-Guang Chen

Global Routing Approaches

- Sequential Approach (Rip-up and Re-route)
 - ➤ Maze Routing
 - ➤ Line probing
 - ➤ Shortest Path Based Algorithms
 - ➤ Steiner Tree Based Algorithms
- ◆Concurrent Approach
 - **▶**Integer Programming

2024/5/16

Andy Yu-Guang Chen

Comparison of Algorithms

	Maze routing			Line search	
	Lee	Soukup	Hadlock	Mikami	Hightower
Time	O(MN)	O(MN)	O(MN)	O(L)	O(L)
Space	O(MN)	O(MN)	O(MN)	O(L)	O(L)
Finds path if one exists?	yes	yes	yes	yes	no
Is the path shortest?	yes	no	yes	no	no
Works on grids or lines?	grid	grid	grid	line	line

Soukup, Mikami, and Hightower all adopt some sort of line-search operations ⇒ cannot guarantee shortest paths.

2024/5/16

Andy Yu-Guang Chen

BFS based Maze Routing (A*)

- ◆ Need to search whole space?
 - ➤ Guide the search to the goal explicitly
- ◆ A* search is faster if you need "good path", not "perfect path"
 - Use priority queue
 - \triangleright C(n) = F(n)+H(n)
 - F(n) is a computed cost from source to current location
 - H(n) is a predicted cost from current location to target
 - If H(n)=0, it becomes maze routing!
 - Optimal (shortest path) when H(n) <= H'(n) (no overestimation)</p>
 - H'(n) is the exact cost
 - H(n)=0 never overestimates!

2024/5/16

Andy Yu-Guang Chen

Shortest Path Based Algorithms

- ◆For 2-terminal nets only
- ◆Use Dijkstra's algorithm to find the shortest path between the source *s* and the sink *t* of a net
- ◆ Different from Maze Routing:
 - > The graph need not be a rectangular grid
 - The edges need not be of unit length

2024/5/16

Andy Yu-Guang Chen

77

Dijkstra's Shortest Path Algorithm

- ◆ Label of vertices = Shortest distance from S
- ◆ Let P be the set of permanently labeled vertices
- ◆Initially,
 - \triangleright P = Empty Set.
 - Label of S = 0, Label of all other vertices = infinity
- ◆While (T is not in P) do
 - Pick the vertex v with the min. label among all vertices not in P
 - > Add v to P
 - ➤ Update the label for all neighbors of v

2024/5/16

Andy Yu-Guang Chen

Criteria for Net Ordering

- ◆Criticality of net critical nets first
- ◆ Estimated wire length short nets first since they are less flexible
- ◆Consider bounding rectangles (BR)

Which one should be routed first and why? (Note that this rule of thumb is not always applicable.)

2024/5/16

Andy Yu-Guang Chen

Concurrent Approach

- Consider all the nets simultaneously
- Formulate as an integer programming
- Given:

Nets	Set of possible routing trees
net 1	$T_{11}, T_{12}, \dots, T_{1k_1}$
:	
net n	$T_{n1}, T_{n2}, \ldots, T_{nk_n}$

 L_{ij} = Total wire length of T_{ij} C_e = Capacity of edge eDetermine variable x_{ij} s.t. x_{ij} = 1 if T_{ij} is used x_{ij} = 0 otherwise

2024/5/16

Andy Yu-Guang Chen

Integer Program Formulation

$$\mathbf{Min.} \sum_{i=1}^{n} \sum_{j=1}^{k_i} L_{ij} \times X_{ij}$$

s.t.
$$\sum_{j=1}^{k_i} x_{ij} = 1 \quad \text{for all } i = 1, ..., n$$
$$\sum_{i, j \text{ s.t. } e \in T_{ij}} x_{ij} \le C_e \quad \text{for all edge } e$$

$$x_{ij} = 0 \text{ or } 1 \quad \forall i, j$$

Andy Yu-Guang Chen

Integer Programming Approach

- ◆Standard techniques to solve IP
- ◆No net ordering → Give global optimum
- ◆ Can be extremely slow, especially for large problems
- ◆To make it faster, a fewer choices of routing trees for each net can be used. May make the problem infeasible or give a bad solution
- ◆ Determining a good set of choices of routing trees is a hard problem by itself

2024/5/16

Andy Yu-Guang Chen

Integer Programming Approach

- ◆Hierarchical Approach to Speed Up Integer Programming Formulation For Global Routing
- ◆M. Burstein and R. Pelavin, "Hierarchical Wire Routing", IEEE TCAD, vol. CAD-2, pages 223-234, Oct. 1983.

2024/5/16

Andy Yu-Guang Chen

91

Hierarchical Approach

- ◆ Large Integer Programs are difficult to solve
- ◆Hierarchical Approach reduces global routing to routing problems on a 2 × 2 grid
- ◆ Decompose recursively in a top-down fashion
- ◆Those 2 × 2 routing problems can be solved optimally by integer programming formulation

2024/5/16

Andy Yu-Guang Chen

Objective Function of 2×2 Routing

◆Possible Routing Trees:

$$T_{11}$$
, T_{12} , T_{21} , T_{22} ,...., $T_{11.1}$,..., $T_{11.4}$

- \spadesuit # of nets of each type: n_1 , ..., n_{11}
- **◆** Determine
 - $> x_{ij}$: # of type-i nets using T_{ij} for routing.
 - > y_i: # of type-i nets that fails to route

$$y_i + \sum_j x_{ij} = n_i \quad i = 1, ..., 11$$
 Minimize
$$\sum_{i=1}^{11} y_i$$

2024/5/16

Andy Yu-Guang Chen

95

Constraints of 2×2 Routing

Constraints on Edge Capacity:

$$\sum_{i,j \text{ s.t.} a \in T_{ij}} x_{ij} \le C_a$$

$$\sum_{i,j \text{ s.t.} b \in T_{ij}} x_{ij} \le C_b$$

$$\sum_{i,j \text{ s.t.} c \in T_{ij}} x_{ij} \le C_c$$

$$\sum_{i,j \text{ s.t.} d \in T_{ii}} x_{ij} \le C_d$$

Constraints on # of Bends in a Region:

$$\sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } ab} x_{ij} \leq B_{ab}$$

$$\sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } bc} x_{ij} \leq B_{bc}$$

$$\sum_{i,j \text{ s.t.} T_{ii} \text{ has a bend in region } cd} x_{ij} \leq B_{cd}$$

$$\sum_{i,j \text{ s.t.} T_{ii} \text{ has a bend in region } da} x_{ij} \leq B_{da}$$

2024/5/16

Andy Yu-Guang Chen

ILP Formulation of 2×2 Routing

Min.
$$\sum_{i=1}^{11} y_i$$
s.t.
$$y_i + \sum_j x_{ij} = n_i \quad i = 1, \dots, 11$$

$$x_{ij} \ge 0, \ y_i \ge 0 \quad \forall i, j$$

$$\sum_{i,j \text{ s.t.} a \in T_{ij}} x_{ij} \le C_a \qquad \sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } ab} x_{ij} \le B_{ab}$$

$$\sum_{i,j \text{ s.t.} b \in T_{ij}} x_{ij} \le C_b \qquad \sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } bc} x_{ij} \le B_{bc}$$

$$\sum_{i,j \text{ s.t.} c \in T_{ij}} x_{ij} \le C_c \qquad \sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } cd} x_{ij} \le B_{cd}$$

$$\sum_{i,j \text{ s.t.} d \in T_{ij}} x_{ij} \le C_d \qquad \sum_{i,j \text{ s.t.} T_{ij} \text{ has a bend in region } da} x_{ij} \le B_{da}$$

- Only 39 variables (28 x_{ij} and 11 y_i) and 19 constraints (plus 38 non-negative constrains)
- Problems of this size are usually not too difficult to solve

2024/5/16

Andy Yu-Guang Chen

Routing Outline

- ◆ Routing an overview
- **♦**Global routing
 - Sequential Approach (Rip-up and Re-route)
 - Maze Routing
 - · Line probing
 - · Shortest Path Based Algorithms
 - Steiner Tree Based Algorithms
 - Concurrent Approach
 - Integer Programming
- Detailed routing
 - Channel routing

2024/5/16

Andy Yu-Guang Chen

g

After Global Routing: Detailed Routing 61

◆The routing regions are divided into channels and switchboxes

◆So only need to consider the channel routing problem and the switchbox routing problem

2024/5/16

Andy Yu-Guang Chen

Channel Routing for Different Styles

- ◆ For gate-array design, channel widths are fixed. The goal is to finish routing of all the nets
- ◆ For standard-cell and full-custom design, channels are expandable. The goal is to route all nets using the minimum channel width
- We will consider the case when the channels are expandable

2024/5/16

Andy Yu-Guang Chen

Channel Routing Problem

- ♦Input:
 - Two vectors of the same length to represent the pins on two sides of the channel
 - Number of layers and layer model used
- **♦**Output:
 - ➤ Connect pins of the same net together
 - > Minimize the channel width
 - Minimize the number of vias

2024/5/16

Andy Yu-Guang Chen

107

Routing Considerations

- ◆ Number of terminals (two-terminal vs. multiterminal nets)
- ◆ Net widths (power and ground vs. signal nets)
- ◆ Via restrictions (stacked vs. conventional vias)
- ◆Boundary types (regular vs. irregular)
- ◆Number of layers (two vs. three, more layers?)
- ◆ Net types (critical vs. non-critical nets)

2024/5/16

Andy Yu-Guang Chen

Lower Bound on Channel Width

Channel density = Maximum local density

Channel density = 4

- ◆ Local density at column *i*, *d*(*i*): total # of nets that crosses column *i*.

Lower bound on channel width = Channel density

2024/5/16

Andy Yu-Guang Chen

111

Channel Routing Problem

- **◆** Assignments of horizontal segments of nets to tracks
- ◆ Assignments of vertical segments to connect the following:
 - horizontal segments of the same net in different tracks, and
 - the terminals of the net to horizontal segments of the net.
- ◆ Horizontal and vertical constraints must not be violated.
 - ➤ Horizontal constraints between two nets: the horizontal span of two nets overlaps each other
 - ➤ Vertical constraints between two nets: there exists a column such that the terminal on top of the column belongs to one net and the terminal on bottom of the column belongs to another net
- ◆ Objective: Channel height is minimized (i.e., channel area is minimized).

 Andy Yu-Guang Chen

 112

Horizontal Constraint Graph (HCG)

- \rightarrow HCG G = (V, E) is **undirected** graph where
 - $V = \{ v_i \mid v_i \text{ represents a net } n_i \}$
 - \triangleright E = { (v_i, v_i) | a horizontal constraint exists between n_i and n_i }.
- ◆ For graph G: vertices \Leftrightarrow nets; edge $(i, j) \Leftrightarrow$ net i overlaps net j.

A routing problem and its HCG.

2024/5/16

Andy Yu-Guang Chen

113

Vertical Constraint Graph (VCG)

- \blacktriangleright VCG G = (V, E) is **directed** graph where
 - \triangleright $V = \{ v_i \mid v_i \text{ represents a net } n_i \}$
 - $ightharpoonup E = \{(v_i, v_i) | \text{ a vertical constraint exists between } n_i \text{ and } n_i\}.$
- ♦ For graph G: vertices \Leftrightarrow nets; edge $i \rightarrow j \Leftrightarrow$ net i must be above net j.

A routing problem and its VCG.

2024/5/16

Andy Yu-Guang Chen

24 Channel Routing: Basic Left-Edge Algorithm

- ◆ Hashimoto & Stevens, "Wire routing by optimizing channel assignment within large apertures," DAC-71.
- No vertical constraint.
- ◆ HV-layer model is used.
- Doglegs are not allowed.
- ◆ Treat each net as an interval.
- ◆ Intervals are sorted according to their left-end x-coordinates.
- Intervals (nets) are routed one-by-one according to the order.
- ◆ For a net, tracks are scanned from top to bottom, and the first track that can accommodate the net is assigned to the net.
- Optimality: produces a routing solution with the minimum # of tracks (if no vertical constraint).

2024/5/16

Andy Yu-Guang Chen

115

Basic Left-Edge Algorithm


```
Algorithm: Basic_Left-Edge(U, track[j])
```

U: set of unassigned intervals (nets) $I_1, ..., I_n$; $I_j = [s_j, e_j]$: interval j with left-end x-coordinate s_j and right-end e_j ; track[j]: track to which net j is assigned.

1 begin

```
2 U \leftarrow \{I_1, I_2, ..., I_n\};
```

 $3t \leftarrow 0$;

4 while $(U \neq \emptyset)$ do

5 $t \leftarrow t + 1$;

6 watermark \leftarrow 0;

7 **while** (there is an $I_i \in U$ s.t. $s_i > watermark$) **do**

Pick the interval $I_j \in U$ with $s_j > watermark$, nearest watermark;

 $track[i] \leftarrow t$

10 watermark \leftarrow e;

11 $U \leftarrow U - \{I_i\}$;

12 end

8

9

2024/5/16

Andy Yu-Guang Chen

Basic Left-Edge Algorithm

- ◆If there is no vertical constraint, the basic left-edge algorithm is optimal.
- ◆If there is any vertical constraint, the algorithm no longer guarantees optimal solution.

2024/5/16

Dogleg Channel Router

- ◆ Deutch, "A dogleg channel router," 13rd DAC, 1976.
- Drawback of Left-Edge: cannot handle the cases with constraint cycles.
 - Doglegs are used to resolve constraint cycle.

- Drawback of Left-Edge: the entire net is on a single track.
 - > Doglegs are used to place parts of a net on different tracks to minimize channel height.
 - Might incur penalty for additional vias.

2024/5/16

Andy Yu-Guang Chen

121

Dogleg Channel Router

- ◆ Each multi-terminal net is broken into a set of 2-terminal nets.
- ◆ Two parameters are used to control routing:
 - Range: Determine the # of consecutive 2-terminal subnets of the same net that can be placed on the same track.
 - > Routing sequence: Specifies the starting position and the direction of routing along the channel.
- Modified Left-Edge Algorithm is applied to each subnet.

2024/5/16

Andy Yu-Guang Chen

Restricted vs. Unrestricted Doglegging

- ◆ Unrestricted doglegging: Allow a dogleg even at a position where there is no pin.
- ◆ Restricted doglegging: Allow a dogleg only at a position where there is a pin belonging to that net.
- ◆ The dogleg channel router does not allow unrestricted doglegging.

dogleg channel router will fail!

Solution exists!

restricted doglegging

dogleg splits a net into subnets.

2024/5/16

Andy Yu-Guang Chen

Thank You All for The Great Semester

Andy, Yu-Guang Chen Assistant Professor, Department of EE, NCU Email: andyygchen@ee.ncu.edu.tw

FB: Yu-Guang Chen IG: ncu.eda.andy

Google hangout: andyron751986