Processos Estocásticos

Processos estocásticos

Prof. Roberto Wanderley da Nóbrega

roberto.nobrega@ifsc.edu.br

PRE029006

ENGENHARIA DE TELECOMUNICAÇÕES

INSTITUTO **FEDERAL** Santa Catarina

Câmpus São José

Introdução

Intuição

Definição

Seja S o espaço amostral de um experimento probabilístico.

Relembrando...

Uma **variável aleatória (VA)** real é um mapeamento X do espaço amostral para um número real.

Definição

Seja S o espaço amostral de um experimento probabilístico.

Definição

Um **processo estocástico (PE)** real é um mapeamento X do espaço amostral para uma função real.

Notação

A notação X(s,t) pode representar:

- um número, para s e t específicos
- uma função, para s específico e t arbitrário
- uma variável aleatória, para t específico e s arbitrário
- um processo estocástico, para t e s arbitrários

Notação

A notação X(s,t) pode representar:

- um número, para s e t específicos
- uma função, para s específico e t arbitrário
- uma variável aleatória, para t específico e s arbitrário
- um processo estocástico, para t e s arbitrários

Convenção. Omitir a dependência em s e escrever apenas X(t) no lugar de X(s,t).

Notação

A notação X(s,t) pode representar:

- um número, para s e t específicos
- uma função, para s específico e t arbitrário
- uma variável aleatória, para t específico e s arbitrário
- um processo estocástico, para t e s arbitrários

Convenção. Omitir a dependência em s e escrever apenas X(t) no lugar de X(s,t).

Nomenclatura. Os possíveis valores assumidos por um PE são chamados de *função-amostra*. Também: *sinal-amostra* ou *sequência-amostra* (dependendo do caso).

Revisão: Classificação de funções

PDFs de um processo estocástico

PDF de primeira ordem

Definição

A **PDF de primeira ordem** de um processo estocástico X(t) é dada por

$$f_{X(t)}(\boldsymbol{x})$$

A PDF de primeira ordem pode ser interpretada como uma **família de PDFs** indexada pelo tempo t.

Exemplo

Sejam A, B $\stackrel{\text{iid}}{\sim}$ Uniform([0,1]) e considere o PE

$$X(t) = (B - A)t + A,$$

definido para $t \in [0, 1]$.

- a Esboce algumas funções-amostra de X(t).
- f b Determine a PDF de primeira ordem de X(t).

f a Esboce algumas funções-amostra de X(t).

a Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

a Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

a Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

f a Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

a Esboce algumas funções-amostra de X(t).

$$X(t) = (B - A)t + A,$$
 $A, B \stackrel{\text{iid}}{\sim} \text{Uniform}([0, 1])$

Parênteses: Soma de variáveis aleatórias independentes.

Teorema [Yates, Cap. 6]

Sejam X e Y duas VAs independentes. Então, a PDF de W = X + Y é dada por

$$f_W = f_X \star f_Y$$

em que ∗ denota convolução.

b Determine a PDF de primeira ordem de X(t).

Tem-se

$$X(t) = (B-A)t + A = \underbrace{tB} + \underbrace{(1-t)A}$$

b Determine a PDF de primeira ordem de X(t).

Tem-se

$$X(t) = (B-A)t + A = \underbrace{tB} + \underbrace{(1-t)A}$$

Ou seja, X(t) é a soma de duas VAs independentes.

b Determine a PDF de primeira ordem de X(t).

Tem-se

$$X(t) = (B-A)t + A = \underbrace{tB}_{\mathrm{Uniform}([0,t])} + \underbrace{(1-t)A}_{\mathrm{Uniform}([0,1-t])}$$

Ou seja, X(t) é a soma de duas VAs independentes.

b Determine a PDF de primeira ordem de X(t).

Tem-se

$$X(t) \ = \ (B-A)t + A \ = \ \underbrace{tB}_{\mathrm{Uniform}([0,t])} + \underbrace{(1-t)A}_{\mathrm{Uniform}([0,1-t])}$$

Ou seja, X(t) é a soma de duas VAs independentes.

Portanto, a PDF de X(t) é dada por

$$f_{X(t)}(x) = \frac{1}{t} [0 \le x \le t] * \frac{1}{1-t} [0 \le x \le 1-t]$$
$$= \frac{1}{t(1-t)} \left([0 \le x \le t] * [0 \le x \le 1-t] \right)$$

b Determine a PDF de primeira ordem de X(t).

b Determine a PDF de primeira ordem de X(t).

$$[0\leqslant x\leqslant 1/4]$$

b Determine a PDF de primeira ordem de X(t).

b Determine a PDF de primeira ordem de X(t).

b Determine a PDF de primeira ordem de X(t).

$$f_{X(1/4)}(x) = \frac{1}{\frac{1}{4} \cdot \frac{3}{4}} \begin{cases} x, & 0 \le x \le \frac{1}{4} \\ \frac{1}{4}, & \frac{1}{4} \le x \le \frac{3}{4} \\ 1 - x, & \frac{3}{4} \le x \le 1 \end{cases}$$

b Determine a PDF de primeira ordem de X(t).

Generalizando: GeoGebra 🗹

$$f_{X(t)}(x) = \frac{1}{t_{m}(1-t_{m})} \begin{cases} x, & 0 \le x \le t_{m} \\ t_{m}, & t_{m} \le x \le 1-t_{m} \\ 1-x, & 1-t_{m} \le x \le 1 \end{cases}$$

onde $t_m = \min(t, 1-t)$.

b Determine a PDF de primeira ordem de X(t).

Generalizando: GeoGebra 🗹

$$f_{X(t)}(x) \ = \ \frac{1}{t_{\rm m}(1\!-\!t_{\rm m})} \begin{cases} x, & 0 \le x \le t_{\rm m} \\ t_{\rm m}, & t_{\rm m} \le x \le 1\!-\!t_{\rm m} \\ 1\!-\!x, & 1\!-\!t_{\rm m} \le x \le 1 \end{cases}$$

onde $t_m = \min(t, 1-t)$.

PDF de segunda ordem

Definição

A **PDF de segunda ordem** de um processo estocástico X(t) é dada por

$$f_{X(t_1),X(t_2)}(x_1,x_2)$$

A PDF de segunda ordem pode ser interpretada como uma família de PDFs indexada pelos tempos t_1 e t_2 .

Exemplo

Sejam A, B $\stackrel{\text{iid}}{\sim}$ Uniform($\{-1,1\}$) e considere o PE dado por

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

- a Esboce todas as funções-amostra de X(t).
- **b** Determine a PMF de primeira ordem de X(t).
- f c Determine a PMF de segunda ordem de X(t).

f a Esboce todas as funções-amostra de X(t).

a Esboce todas as funções-amostra de X(t).

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso
$$t < 0$$
: $X(t) = 0$

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso
$$t < 0$$
: $X(t) = 0$
Caso $0 < t < 5$: $X(t) = A$

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso t < 0:
$$X(t) = 0$$

Caso 0 < t < 5: $X(t) = A$
Caso 5 < t < 10: $X(t) = A + B$

b Determine a PMF de primeira ordem de X(t).

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso t < 0: X(t) = 0Caso 0 < t < 5: X(t) = ACaso 5 < t < 10: X(t) = A + BCaso 10 < t < 15: X(t) = B

b Determine a PMF de primeira ordem de X(t).

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso t < 0: X(t) = 0Caso 0 < t < 5: X(t) = ACaso 5 < t < 10: X(t) = A + BCaso 10 < t < 15: X(t) = BCaso t > 15: X(t) = 0

b Determine a PMF de primeira ordem de X(t).

$$X(t) = A \operatorname{rect}\left(\frac{t-5}{10}\right) + B \operatorname{rect}\left(\frac{t-10}{10}\right)$$

Caso t < 0:
$$X(t) = 0$$

Caso 0 < t < 5: $X(t) = A$
Caso 5 < t < 10: $X(t) = A + B$
Caso 10 < t < 15: $X(t) = B$
Caso t > 15: $X(t) = 0$

Portanto: GeoGebra 🗹

$$p_{X(t)}(x) = \begin{cases} \delta[x], & t < 0 \text{ ou } t > 15 \\ \frac{1}{2}\delta[x+1] + \frac{1}{2}\delta[x-1], & 0 < t < 5 \text{ ou } 10 < t < 15 \\ \frac{1}{4}\delta[x+2] + \frac{1}{2}\delta[x] + \frac{1}{4}\delta[x-2], & 5 < t < 10 \end{cases}$$

lacksquare Determine a PMF de segunda ordem de X(t).

Determine a PMF de segunda ordem de X(t).

Deseja-se $p_{X(t_1),X(t_2)}(x_1,x_2)$.

Determine a PMF de segunda ordem de X(t).

Deseja-se $p_{X(t_1),X(t_2)}(x_1,x_2)$. Há 25 casos possíveis para t_1 e t_2 .

Determine a PMF de segunda ordem de X(t).

Deseja-se $p_{X(t_1),X(t_2)}(x_1,x_2)$. Há 25 casos possíveis para t_1 e t_2 . Como exemplo, consideraremos apenas os casos em que $0 < t_1 < 5$.

 $lue{c}$ Determine a PMF de segunda ordem de X(t).

Caso $0 < t_1 < 5$ e $0 < t_2 < 5$:

$$X(t_1) = A$$
 e $X(t_2) = A$

$p_{X(t_1),X(t_2)}(x_1,x_2)$								
	$x_2 = -2$	$x_2 = -1$	$x_2 = 0$	$x_2 = +1$	$x_2 = +2$			
$x_1 = -2$	0	0	0	0	0			
$x_1 = -1$	0	1/2	0	0	0			
$x_1 = 0$	0	0	0	0	0			
$x_1 = +1$	0	0	0	1/2	0			
$x_1 = +2$	0	0	0	0	0			

 $lue{c}$ Determine a PMF de segunda ordem de X(t).

Caso $0 < t_1 < 5$ e $5 < t_2 < 10$:

$$X(t_1) = A$$
 e $X(t_2) = A + B$

$p_{X(t_1),X(t_2)}(x_1,x_2)$								
	$x_2 = -2$	$x_2 = -1$	$x_2 = 0$	$x_2 = +1$	$x_2 = +2$			
$x_1 = -2$	0	0	0	0	0			
$x_1 = -1$	1/4	0	1/4	0	0			
$x_1 = 0$	0	0	0	0	0			
$x_1 = +1$	0	0	1/4	0	1/4			
$x_1 = +2$	0	0	0	0	0			

Exemplo

 $lue{c}$ Determine a PMF de segunda ordem de X(t).

Caso $0 < t_1 < 5$ e $10 < t_2 < 15$:

$$X(t_1) = A$$
 e $X(t_2) = B$

$p_{X(t_1),X(t_2)}(x_1,x_2)$								
	$x_2 = -2$	$x_2 = -1$	$x_2 = 0$	$x_2 = +1$	$x_2 = +2$			
$x_1 = -2$	0	0	0	0	0			
$x_1 = -1$	0	1/4	0	1/4	0			
$x_1 = 0$	0	0	0	0	0			
$x_1 = +1$	0	1/4	0	1/4	0			
$x_1 = +2$	0	0	0	0	0			

Exemplo

 $lue{c}$ Determine a PMF de segunda ordem de X(t).

Caso $0 < t_1 < 5$ e ($t_2 < 0$ ou $t_2 > 15$):

$$X(t_1) = A$$
 e $X(t_2) = 0$

$p_{X(t_1),X(t_2)}(x_1,x_2)$								
	$x_2 = -2$	$x_2 = -1$	$x_2 = 0$	$x_2 = +1$	$x_2 = +2$			
$x_1 = -2$	0	0	0	0	0			
$x_1 = -1$	0	0	1/2	0	0			
$x_1 = 0$	0	0	0	0	0			
$x_1 = +1$	0	0	1/2	0	0			
$x_1 = +2$	0	0	0	0	0			

PDF de ordem k

Definição

A **PDF de ordem** k de um processo estocástico X(t) é a família de PDFs

$$f_{X(t_1),\dots,X(t_k)}(x_1,\dots x_k),\quad \forall t_1,\dots,t_k\in\mathbb{R}$$

Note que PDF de ordem k depende dos tempos t_1, t_2, \dots, t_k .

Um processo estocástico é dito estar completamente especificado se sua distribuição de ordem k for conhecida para todo k (na forma de PDF, PMF ou CDF).

Função média e função autocovariância

Definição

Seja X(t) um processo estocástico.

Definição

A função média de X(t) é definida por

$$\mu_X(t) = E[X(t)]$$

e a **função autocovariância** de X(t) é definida por

$$C_X(t_1, t_2) = cov[X(t_1), X(t_2)]$$

Definição

Seja X(t) um processo estocástico.

Definição

A função média de X(t) é definida por

$$\mu_X(t) = E[X(t)]$$

e a **função autocovariância** de $\boldsymbol{X}(t)$ é definida por

$$C_X(t_1, t_2) = cov[X(t_1), X(t_2)]$$

Obs: Define-se também a função variância:

$$\sigma_X^2(t) = \text{var}[X(t)] = C_X(t,t)$$

Exemplo

Considere um PE X(t) dado por

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5)$$

onde $B_1, B_2 \stackrel{\text{iid}}{\sim} \text{Uniform}(\{0, 1\}).$

- a Determine a função média de X(t).
- f b Determine a função autocovariância de X(t).

a Determine a função média de X(t).

Serão apresentadas duas soluções.

Solução 1. A partir dos sinais-amostra.

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

Solução 1. A partir dos sinais-amostra.

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

Solução 1. A partir dos sinais-amostra.

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

$$\begin{array}{ll} \mu_X(t) \ = \ \mathrm{E}\big[X(t)\big] \\ &= \ \frac{1}{4}(0) + \frac{1}{4}\big[0 \le t < 1\big] + \frac{1}{4}\big[1 \le t < 2\big] + \frac{1}{4}\big[0 \le t < 2\big] \\ &= \ \frac{1}{2}\big[0 \le t < 2\big] \end{array}$$

Solução 2. A partir da fórmula do PE.

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

Solução 2. A partir da fórmula do PE.

$$\begin{split} X(t) &= B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5), \quad B_1, B_2 \overset{iid}{\sim} \operatorname{Uniform}(\{0,1\}) \\ \mu_X(t) &= \operatorname{E}[X(t)] \end{split}$$

Solução 2. A partir da fórmula do PE.

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

$$\mu_X(t) = \operatorname{E}[X(t)]$$

= $E[B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5)]$

Solução 2. A partir da fórmula do PE.

$$\begin{split} X(t) &= B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5), \quad B_1, B_2 \overset{\text{iid}}{\sim} \operatorname{Uniform}(\{0,1\}) \\ \mu_X(t) &= \operatorname{E}[X(t)] \\ &= \operatorname{E}[B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5)] \\ &= \operatorname{E}[B_1] \operatorname{rect}(t-0.5) + \operatorname{E}[B_2] \operatorname{rect}(t-1.5) \end{split}$$

Solução 2. A partir da fórmula do PE.

$$\mu_X(t) = E[X(t)]$$

$$= E[B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5)]$$

$$= E[B_1] \operatorname{rect}(t - 0.5) + E[B_2] \operatorname{rect}(t - 1.5)$$

$$= \frac{1}{2} \operatorname{rect}(t - 0.5) + \frac{1}{2} \operatorname{rect}(t - 1.5)$$

 $X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$

Solução 2. A partir da fórmula do PE.

$$\begin{split} X(t) &= B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5), \quad B_1, B_2 \overset{\text{iid}}{\sim} \operatorname{Uniform}(\{0,1\}) \\ \mu_X(t) &= \operatorname{E}[X(t)] \\ &= \operatorname{E}[B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5)] \\ &= \operatorname{E}[B_1] \operatorname{rect}(t-0.5) + \operatorname{E}[B_2] \operatorname{rect}(t-1.5) \\ &= \frac{1}{2} \operatorname{rect}(t-0.5) + \frac{1}{2} \operatorname{rect}(t-1.5) \\ &= \frac{1}{2} [0 \le t < 2] \end{split}$$

a Determine a função média de X(t).

Portanto,

$$\mu_X\big(t\big) \;=\; \textstyle\frac{1}{2}\big[0 \le t < 2\big] \;=\; \textstyle\frac{1}{2}\,\mathrm{rect}\left(\frac{t-1}{2}\right)$$

f b Determine a função autocovariância de X(t).

$$X(t) \ = \ B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5), \quad B_1, B_2 \overset{iid}{\sim} \operatorname{Uniform}(\{0,1\})$$

b Determine a função autocovariância de X(t).

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

Caso t₁ e t₂ estiverem no mesmo intervalo de bit:

$$C_X(t_1, t_2) = \text{cov}[X(t_1), X(t_2)] = \text{cov}[B_i, B_i] = \text{var}[B_i] = \frac{1}{4}$$

b Determine a função autocovariância de X(t).

$$X(t) \ = \ B_1 \operatorname{rect}(t-0.5) + B_2 \operatorname{rect}(t-1.5), \quad B_1, B_2 \stackrel{iid}{\sim} \operatorname{Uniform}(\{0,1\})$$

Caso t₁ e t₂ estiverem no mesmo intervalo de bit:

$$C_X(t_1, t_2) = cov[X(t_1), X(t_2)] = cov[B_i, B_i] = var[B_i] = \frac{1}{4}$$

Caso t_1 e t_2 estiverem em intervalos de bits diferentes:

$$C_X(t_1, t_2) = cov[X(t_1), X(t_2)] = cov[B_i, B_j] = 0$$

f b Determine a função autocovariância de X(t).

$$X(t) = B_1 \operatorname{rect}(t - 0.5) + B_2 \operatorname{rect}(t - 1.5), \quad B_1, B_2 \stackrel{\text{iid}}{\sim} \operatorname{Uniform}(\{0, 1\})$$

Portanto,

$$C_X(t_1,t_2) = \frac{1}{4} \left[\lfloor t_1 \rfloor = \lfloor t_2 \rfloor \right]$$

Exemplo

Considere o PE dado por

$$X(t) = \alpha \cos(2\pi f_0 t - \Theta) + b,$$

em que a, b e f_0 são constantes e $\Theta \sim \mathrm{Uniform}(-\pi,\pi)$.

- a Determine a função média de X(t).
- ${f b}$ Determine a função autocovariância de ${f X}(t).$

GeoGebra 🗹

$$\mu_X(t) = E[X(t)]$$

$$\mu_X(t) = E[X(t)]$$

$$= E[a\cos(2\pi f_0 t - \Theta) + b]$$

$$\mu_X(t) = E[X(t)]$$

$$= E[a\cos(2\pi f_0 t - \Theta) + b]$$

$$= aE[\cos(2\pi f_0 t - \Theta)] + b$$

$$\mu_X(t) = E[X(t)]$$

$$= E[a\cos(2\pi f_0 t - \Theta) + b]$$

$$= aE[\cos(2\pi f_0 t - \Theta)] + b$$

$$= aE[\cos(2\pi f_0 t)\cos(\Theta) + \sin(2\pi f_0 t)\sin(\Theta)] + b$$

$$\begin{split} \mu_X(t) &= \mathrm{E}[X(t)] \\ &= \mathrm{E}[a\cos(2\pi f_0 t - \Theta) + b] \\ &= a\mathrm{E}[\cos(2\pi f_0 t - \Theta)] + b \\ &= a\mathrm{E}[\cos(2\pi f_0 t)\cos(\Theta) + \sin(2\pi f_0 t)\sin(\Theta)] + b \\ &= a\cos(2\pi f_0 t)\mathrm{E}[\cos(\Theta)] + a\sin(2\pi f_0 t)\mathrm{E}[\sin(\Theta)] + b \end{split}$$

$$\begin{split} \mu_X(t) &= \mathrm{E}[X(t)] \\ &= \mathrm{E}[\alpha\cos(2\pi f_0 t - \Theta) + b] \\ &= \alpha \, \mathrm{E}[\cos(2\pi f_0 t - \Theta)] + b \\ &= \alpha \, \mathrm{E}[\cos(2\pi f_0 t)\cos(\Theta) + \sin(2\pi f_0 t)\sin(\Theta)] + b \\ &= \alpha \cos(2\pi f_0 t) \, \mathrm{E}[\cos(\Theta)] + \alpha \sin(2\pi f_0 t) \, \mathrm{E}[\sin(\Theta)] + b \end{split}$$

$$\begin{split} & \mathrm{E}[\cos(\Theta)] \; = \; \int_{-\infty}^{\infty} \cos(\theta) f_{\Theta}(\theta) \, \mathrm{d}\theta \; = \; \int_{-\pi}^{\pi} \cos(\theta) \frac{1}{2\pi} \, \mathrm{d}\theta \; = \; 0. \\ & \mathrm{E}[\sin(\Theta)] \; = \; \int_{-\infty}^{\infty} \sin(\theta) f_{\Theta}(\theta) \, \mathrm{d}\theta \; = \; \int_{-\pi}^{\pi} \sin(\theta) \frac{1}{2\pi} \, \mathrm{d}\theta \; = \; 0. \end{split}$$

$$\begin{split} \mu_X(t) &= \mathrm{E}[X(t)] \\ &= \mathrm{E}[\alpha\cos(2\pi f_0 t - \Theta) + b] \\ &= \alpha \, \mathrm{E}[\cos(2\pi f_0 t - \Theta)] + b \\ &= \alpha \, \mathrm{E}[\cos(2\pi f_0 t) \cos(\Theta) + \sin(2\pi f_0 t) \sin(\Theta)] + b \\ &= \alpha \cos(2\pi f_0 t) \, \mathrm{E}[\cos(\Theta)] + \alpha \sin(2\pi f_0 t) \, \mathrm{E}[\sin(\Theta)] + b \\ &= b. \end{split}$$

$$E[\cos(\Theta)] = \int_{-\infty}^{\infty} \cos(\theta) f_{\Theta}(\theta) d\theta = \int_{-\pi}^{\pi} \cos(\theta) \frac{1}{2\pi} d\theta = 0.$$

$$E[\sin(\Theta)] = \int_{-\infty}^{\infty} \sin(\theta) f_{\Theta}(\theta) d\theta = \int_{-\pi}^{\pi} \sin(\theta) \frac{1}{2\pi} d\theta = 0.$$

Determine a função autocovariância de X(t).

b Determine a função autocovariância de X(t).

$$C_X(t_1, t_2) = \text{cov}[X(t_1), X(t_2)]$$

b Determine a função autocovariância de X(t).

$$\begin{split} C_X(t_1, t_2) &= & \operatorname{cov}[X(t_1), X(t_2)] \\ &= & \operatorname{E}\left[\left(X(t_1) - \mu_X(t_1)\right) \left(X(t_2) - \mu_X(t_2)\right)\right] \end{split}$$

f b Determine a função autocovariância de X(t).

$$\begin{split} C_X(t_1,t_2) &= & \cos[X(t_1),X(t_2)] \\ &= & \mathrm{E}\left[\left(X(t_1) - \mu_X(t_1)\right)\left(X(t_2) - \mu_X(t_2)\right)\right] \\ &= & \mathrm{E}\left[\alpha\cos(2\pi f_0 t_1 - \Theta) \; \alpha\cos(2\pi f_0 t_2 - \Theta)\right] \end{split}$$

f b Determine a função autocovariância de X(t).

$$\begin{split} C_X(t_1,t_2) &= & \cos[X(t_1),X(t_2)] \\ &= & \mathrm{E} \left[\left(X(t_1) - \mu_X(t_1) \right) \left(X(t_2) - \mu_X(t_2) \right) \right] \\ &= & \mathrm{E} \left[\alpha \cos(2\pi f_0 t_1 - \Theta) \ \alpha \cos(2\pi f_0 t_2 - \Theta) \right] \\ &= & \alpha^2 \, \mathrm{E} \left[\cos(2\pi f_0 t_1 - \Theta) \cos(2\pi f_0 t_2 - \Theta) \right] \end{split}$$

b Determine a função autocovariância de X(t).

$$\begin{split} C_X(t_1,t_2) &= & \operatorname{cov}[X(t_1),X(t_2)] \\ &= & \operatorname{E}\left[\left(X(t_1) - \mu_X(t_1)\right)\left(X(t_2) - \mu_X(t_2)\right)\right] \\ &= & \operatorname{E}\left[\alpha \cos(2\pi f_0 t_1 - \Theta) \ \alpha \cos(2\pi f_0 t_2 - \Theta)\right] \\ &= & \alpha^2 \operatorname{E}\left[\cos(2\pi f_0 t_1 - \Theta) \cos(2\pi f_0 t_2 - \Theta)\right] \\ &= & \frac{\alpha^2}{2} \operatorname{E}\left[\cos(2\pi f_0 (t_2 - t_1)) + \cos(2\pi f_0 (t_1 + t_2) - 2\Theta)\right] \end{split}$$

b Determine a função autocovariância de X(t).

$$\begin{split} C_X(t_1,t_2) &= & \cos[X(t_1),X(t_2)] \\ &= & \mathrm{E} \Big[\Big(X(t_1) - \mu_X(t_1) \Big) \Big(X(t_2) - \mu_X(t_2) \Big) \Big] \\ &= & \mathrm{E} \Big[\alpha \cos(2\pi f_0 t_1 - \Theta) \ \alpha \cos(2\pi f_0 t_2 - \Theta) \Big] \\ &= & \alpha^2 \, \mathrm{E} \Big[\cos(2\pi f_0 t_1 - \Theta) \cos(2\pi f_0 t_2 - \Theta) \Big] \\ &= & \frac{\alpha^2}{2} \, \mathrm{E} \Big[\cos(2\pi f_0(t_2 - t_1)) + \cos(2\pi f_0(t_1 + t_2) - 2\Theta) \Big] \\ &= & \frac{\alpha^2}{2} \cos(2\pi f_0(t_2 - t_1)) \end{split}$$

b Determine a função autocovariância de X(t).

f b Determine a função autocovariância de X(t).

Exemplo

Seja $B[n] \stackrel{\text{iid}}{\sim} \operatorname{Bernoulli}(1/2)$ uma sequência de bits aleatórios. Seja

$$X[n] = \begin{cases} 0, & \text{se } B[n] = 0, \\ \pm 1, & \text{alternadamente, se } B[n] = 1. \end{cases}$$

- a Determine a função média de X[n].
- **b** Determine a função autocovariância de X[n].

Alternate Mark Inversion

Exemplos de sinais amostra:

$$\mu_X[\mathfrak{n}] = \mathrm{E}[X[\mathfrak{n}]]$$

$$\mu_X[n] = E[X[n]]$$

$$= (-1)\frac{1}{4} + (0)\frac{1}{2} + (1)\frac{1}{4}$$

$$\begin{split} \mu_X[n] &= \mathrm{E}[X[n]] \\ &= (-1)\frac{1}{4} + (0)\frac{1}{2} + (1)\frac{1}{4} \\ &= 0 \end{split}$$

$$\mu_X[n] = E[X[n]]$$

$$= (-1)\frac{1}{4} + (0)\frac{1}{2} + (1)\frac{1}{4}$$

$$= 0$$

b Determine a função autocovariância de X[n].

$$C_X[\mathfrak{n}_1,\mathfrak{n}_2] \ = \ \mathrm{cov}[X[\mathfrak{n}_1],X[\mathfrak{n}_2]] \ = \ \mathrm{E}[X[\mathfrak{n}_1]X[\mathfrak{n}_2]]$$

b Determine a função autocovariância de X[n].

Caso $n_2 = n_1$:

$$C_X[n,n] = E[X^2[n]]$$

= $(-1)^2 \frac{1}{4} + (0)^2 \frac{1}{2} + (1)^2 \frac{1}{4}$
= $\frac{1}{2}$

b Determine a função autocovariância de X[n].

Caso
$$n_2 = n_1$$
:

$$C_X[n, n] = +\frac{1}{2}$$

$$C_X[n, n] = E[X^2[n]]$$

$$= (-1)^2 \frac{1}{4} + (0)^2 \frac{1}{2} + (1)^2 \frac{1}{4}$$

$$= \frac{1}{2}$$

b Determine a função autocovariância de X[n].

Caso $n_2 = n_1 \pm 1$:

Bits	X[n]	X[n+1]	Pr	X[n]X[n+1]Pr
00	0	0	1/4	0
01	0	+1	1/8	0
	0	-1	1/8	0
10	+1	0	1/8	0
10	-1	0	1/8	0
11	+1	-1	1/8	-1/8
	-1	+1	1/8	-1/8

b Determine a função autocovariância de X[n].

Caso
$$n_2 = n_1 \pm 1$$
: $C_X[n, n \pm 1] = -\frac{1}{4}$

Bits	X[n]	X[n+1]	Pr	X[n]X[n+1]Pr
00	0	0	1/4	0
01	0	+1	1/8	0
01	0	-1	1/8	0
10	+1	0	1/8	0
10	-1	0	1/8	0
11	+1	-1	1/8	-1/8
	-1	+1	1/8	-1/8

b Determine a função autocovariância de X[n].

Caso $n_2 = n_1 \pm 2$:

Bits	X[n]	X[n+1]	X[n+2]	Pr	X[n]X[n+2]Pr
101	+1 -1	0	−1 +1	1/16 1/16	−1/16 −1/16
111	+1 -1	-1 +1	+1 -1	1/16 1/16	+1/16 +1/16
(outros)	*	*	*	*	0

f b Determine a função autocovariância de $X[\mathfrak{n}]$.

Caso
$$n_2 = n_1 \pm 2$$
: $C_X[n, n \pm 2] = 0$

Bits	X[n]	X[n+1]	X[n+2]	Pr	X[n]X[n+2]Pr
101	+1 -1	0	-1 +1	1/16 1/16	-1/16 -1/16
111	+1 -1	-1 +1	+1 -1	1/16 1/16	+1/16 +1/16
(outros)	*	*	*	*	0

b Determine a função autocovariância de X[n].

Para
$$n_2 = n_1 \pm k$$
, com $k \ge 2$: $C_X[n, n \pm k] = 0$ (Por que?)

Assim,
$$C_X[n_1, n_2] = \begin{cases} +\frac{1}{2}, & \text{se } n_2 = n_1, \\ -\frac{1}{4}, & \text{se } n_2 = n_1 \pm 1, \\ 0, & \text{c.c.} \end{cases}$$

b Determine a função autocovariância de X[n].

Para
$$n_2 = n_1 \pm k$$
, com $k \ge 2$: $C_X[n, n \pm k] = 0$ (Por que?)

Assim,

$$C_X[n_1,n_2] = \begin{cases} +\frac{1}{2}, & \text{se } n_2 = n_1, \\ -\frac{1}{4}, & \text{se } n_2 = n_1 \pm 1, \\ 0, & \text{c.c.} \end{cases}$$

Referências

Referências

JOSÉ PAULO DE ALMEIDA ALBUQUERQUE, JOSÉ MAURO PEDRO FORTES, AND WEILER ALVES FINAMORE.

PROBABILIDADE, VARIÁVEIS ALEATÓRIAS E PROCESSOS ESTOCÁSTICOS. Editora Interciência, 2008.

ROY D. YATES AND DAVID J. GOODMAN.

PROBABILITY AND STOCHASTIC PROCESSES.

Wiley, 3rd edition, 2014.