

Machine Learning Fundamentals- DTSC102

Lecture 2 Unsupervised Learning: Clustering

Course Instructors: Dr.-Ing. Maggie Mashaly maggie.ezzat@guc.edu.eg C3.220

Contents

- ➤ Unsupervised learning
- ➤ Clustering
- ➤ K-means Algorithm
- **≻**Examples
- ➤ Advantages & Disadvantages
- >Implementation Details

Supervised vs. Unsupervised Learning

Supervised Learning

Training set:

$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$$

Unsupervised Learning

Training set:

$$\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$$

Supervised Learning: Classification

Training set of labeled docs

Supervised Learning: Multi-class Classification

But what if labels were not provided...?

Unsupervised Learning: Clustering

➢ Goal:

Finding structure within the data, usually by dividing it into Clusters

> But mind the difference:

Clustering	Classification	
 Data is not labeled Group points that are "close" to each other Identify structure or patterns in data Unsupervised learning 	 Labeled data points Want a "rule" that assigns labels to new points Supervised learning 	
	3000	

Clustering: Use cases

Market segmentation

Organize computing clusters

Integration of 1955 A) Discontinue of the ordinal state of the second of

Astronomical data analysis

Clustering: Use cases

- > Data summarization, compression, and reduction
 - Examples: Image processing or vector quantization
- > Collaborative filtering, recommendation systems, or customer segmentation
 - Finding like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns
- Multimedia data analysis, biological data analysis, and social network analysis
 - Example: Clustering images or video/audio clips, gene/protein sequences, etc.
- > A key intermediate step for other data mining tasks
 - Generating a compact summary of data for classification, pattern discovery, and hypothesis generation and testing
- > Outlier detection: Outliers those "far away" from any cluster

Clustering: an easy task?

Clustering: Challenging Clusters to discover!

Clustering: Challenging Clusters to discover!

Clustering: Definition & Formulation

- Clustering is the task of partitioning the data points into natural groups called clusters, such that points within a group are very similar, whereas points between different groups are as dissimilar as possible.
- $\triangleright \ \ \mathcal{C} = \{C_1, C_2, \dots, C_k\}$
- $\succ C_i = \{x_i | x_i \in C_i\}$
- $\succ C_i \cap C_j = \emptyset \implies \text{disjoint cluster no overlapping}$
- ➤ Clustering is an unsupervised learning approach since it does not require a separate training dataset to learn the model parameters.

Clustering: Different Data Types

- Numerical data
- Categorical data (including binary data)
 - Discrete data, no natural order (e.g., gender, zip-code, and market-basket)
- > Text data: Popular in social media, Web, and social networks
 - Features: High-dimensional, sparse, value corresponding to word frequencies
- Multimedia data: Image, audio, video (e.g., on Flickr, YouTube)
 - Multi-modal (often combined with text data)
- ➤ Time-series data: Sensor data, stock markets, temporal tracking, forecasting, etc.
- > Sequence data: Weblogs, biological sequences, system command sequences
- > Stream data

Clustering: Portioning Problem

- Problem definition: Given K, find a partition of K clusters that optimizes the chosen partitioning criterion
- ➤ A brute-force or exhaustive algorithm for finding a good clustering is simply to
 - generate all possible partitions of n points into k clusters
 - evaluate clusters
 - Choose the best clusters
- However, this is clearly infeasible, since there are $O(k_n/k!)$ clusterings of n points into k groups.
- > Global optimal: Needs to exhaustively enumerate all partitions
- ➤ Heuristic methods (i.e., greedy algorithms): K-Means, K-Medians, K-Medoids, etc.

Clustering Paradigms

- Representative-based
 - K-means Clustering
 - Expectation-Maximization (EM) Algorithms
- > Hierarchical
- Density-based
- > Graph-based
- Spectral clustering

K-means Clustering

- One of the simplest and most popular unsupervised machine learning algorithms
- ➤ K-means is a greedy algorithm that minimizes the squared distance of points from their respective cluster means
- ➤ It performs hard clustering, that is, each point is assigned to only one cluster.
- > We also show how kernel K-means can be used for nonlinear clusters

K-means Clustering

- > How does it work:
- 1. K is chosen as the number of clusters we wish to cluster our data into
- 2. Randomly choose centroid for each cluster
- 3. Iterate over the following two steps:
 - i. Cluster Assignment:Assign data to the cluster whose centroid is closest
 - ii. Centroid Adjustment:Move each centroid to the mean of data assigned to its cluster

K-means Clustering: Example (K=2)

K-means Clustering: Example (K=2)

Step 1: Randomly assign cluster centroids

K-means Clustering: Example (K=2)

Step 2.1: Cluster assignment

K-means Clustering: Example (K=2)

Step 2.2: Centroid Adjustment

K-means Clustering: Example (K=2)

Step 2.2: Centroid Adjustment

K-means Clustering: Example (K=2)

Repeat: Cluster Assignment & Centroid Adjustment

K-means Clustering: Example (K=2)

Repeat: Cluster Assignment & Centroid Adjustment

K-means Clustering: Example (K=2)

Repeat: Cluster Assignment & Centroid Adjustment

Stop when there is no change in the cluster centroid

Input:

- K (number of clusters)
- Training set $\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}\$

Algorithm:

- Randomly initialize K cluster centroids $\mu_1, \mu_2, ..., \mu_K$
- Repeat until convergence $\{ \text{ for i=1 to m} \\ c^{(i)} = \text{index (from 1 to K) of cluster centroid closest to } x^{(i)} \\ \text{Calculated as:} \min_{k} \|x^{(i)} \mu_{K}\|^{2} \\ \text{for k=1 to K} \\ \mu_{K} = \text{average of points assigned to cluster k}$

Optimization Objective

 $c^{(i)}$ = index of cluster (1,2,...,K) to which $x^{(i)}$ is currently assigned μ_K = cluster centroid k $\mu_{c^{(i)}}$ = cluster centroid of cluster to which the example $x^{(i)}$ has been assigned

$$\min_{\substack{c^{(1)}, \dots, c^{(m)} \\ \mu_1, \dots, \mu_K}} J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K)$$

where

$$J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} \|x^{(i)} - \mu_{c^{(i)}}\|^2$$

and this objective function is also known as Distortion Function

- Consider the following one-dimensional data. Assume that we want to cluster the data into k = 2 groups. $\{2, 3, 4, 10, 11, 12, 20, 25, 30\}$.
- 1) Initial centroids $\mu 1 = 2$ and $\mu 2 = 4$.
- 2) Loop until convergence
 - A. First iteration
 - a) Cluster assignment, assigning each point to the closest mean: $C1 = \{2, 3\}$ $C2 = \{4, 10, 11, 12, 20, 25, 30\}$
 - b) Centroid update, update the means

$$\mu 1 = \frac{2+3}{2} = \frac{5}{2} = 2.5$$
 $\mu 2 = \frac{4+10+11+12+20+25+30}{7} = \frac{112}{7} = 16$

- B. Second iteration
- a) assigning each point to the closest mean:

$$C1 = \{2, 3, 4\} C2 = \{10, 11, 12, 20, 25, 30\}$$

b) update the means

$$\mu 1 = \frac{2+3+4}{3} = \frac{9}{3} = 3$$
 $\mu 2 = \frac{10+11+12+20+25+30}{7} = \frac{108}{6} = 18$

C1 = {2, 3,4, 10, 11, 12} C2 = {20,25,30} with centroids μ 1 = 7 and μ 2 = 25.

➤ Suppose we have several objects (4 types of medicines) and each object have two attributes or features as shown in table below. Our goal is to group these objects into K=2 group of medicine based on the two features (pH and weight index).

Object	Attribute 1 (x1): weight index	Attribute 2 (x2): pH
Α	1	1
В	2	1
С	4	3
D	5	4

Each medicine represents one point with two features (X, Y) that we can represent it as coordinate in a feature space as shown in the figure.

Object	Attribute 1 (x1): weight index	Attribute 2 (x2): pH
А	1	1
В	2	1
С	4	3
D	5	4

- \triangleright Initial value of centroids: μ **1** = (1,1) and μ **2** = (2,1)
- \rightarrow $\mu 1 = (1,1)$ with Medicine C

$$= \sqrt{(4-1)^2+(3-1)^2}$$

$$= \sqrt{(3)^2 + (2)^2}$$

$$> = \sqrt{9 + 4}$$

$$> \sqrt{13} = 3.61$$

Object	Attribute 1 (x1): weight index	Attribute 2 (x2): pH
А	1	1
В	2	1
С	4	3
D	5	4

> Cluster assignment

	μ1	μ2	Cluster	
Α	0	1	1	
В	1	0	2	
C	3.605551	2.828427	2	
D	5	4.242641	2	

Update Centroid

$$\geq \mu 1 = (1,1)$$

$$ightharpoonup \mu2 = \frac{2+4+5}{3}, \frac{1+3+4}{3} = \frac{11}{3}, \frac{8}{3}$$

Object	weight index	рН
A	1	1
В	2	1
С	4	3
D	5	4

- Use the k-means algorithm and Euclidean distance to cluster the following 8 examples into 3 clusters:
- A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). The distance matrix based on the Euclidean distance is given below

	A1	A2	A3	A4	A5	A6	A7	A8
A1	0	$\sqrt{25}$	$\sqrt{36}$	$\sqrt{13}$	$\sqrt{50}$	$\sqrt{52}$	$\sqrt{65}$	$\sqrt{5}$
A2		0	$\sqrt{37}$	$\sqrt{18}$	$\sqrt{25}$	$\sqrt{17}$	$\sqrt{10}$	$\sqrt{20}$
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	$\sqrt{53}$	$\sqrt{41}$
A4				0	$\sqrt{13}$	$\sqrt{17}$	$\sqrt{52}$	$\sqrt{2}$
A5					0	$\sqrt{2}$	$\sqrt{45}$	$\sqrt{25}$
A6						0	$\sqrt{29}$	$\sqrt{29}$
A7							0	√58
A8								0

Application case: K-Means for Segmentation

Goal of Segmentation is to partition an image into regions each of which has reasonably homogenous visual appearance.

Original

K=2

K=3

K=10

K-means Algorithm: Random Initialization

How to randomly initialize cluster centroids?

- 1. Choose K<m
- 2. Randomly pick K training examples
- 3. Set $\mu_1, ..., \mu_K$ equal to these K examples

Seems correct, but will it always work?

K-means Algorithm: Random Initialization

Solution:

Instead of initializing K-means once and hoping that it works;

Initialize and run K-means many times, and use the solution that gives best local or global optima as possible.

So we do the following:

```
for i=1 to 100

{ Randomly initialize K-means Run K-means to get c^{(1)}, ... c^{(m)}, \mu_1, ..., \mu_K Compute cost function (distortion) J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K)}

} Pick clustering that gave lowest cost J(c^{(1)}, ..., c^{(m)}, \mu_1, ..., \mu_K)
```

K-means Algorithm: Choosing number of clusters

K-means Algorithm: Choosing number of clusters

One possible way is using Elbow Method

> Plotting cost function J verses number of clusters

But, you may not always find an "elbow"...

K-means Algorithm: Choosing number of clusters

- Using the elbow method we run k-means clustering for a range of values of k. (e.g. 1 to 150).
- For each value of k we then compute the sum of squared errors (SSE) and add both into a line plot.
- Illustration 1 shows an exemplary curve of a range of values of k and the corresponding SSE.

K-means Algorithm: Evaluation

- >Guaranteed to converge in a finite number of iterations
- >Running time per iteration:
 - 1. Assign data points to closest cluster center: O(KN) time
 - 2. Change the cluster center to the average of its assigned points O(N)

K-means Algorithm: Assessing Clustering Quality

➤ Which clustering is better?

K-means Algorithm: Assessing Clustering Quality

Original Points

K-means (3 Clusters)

K-means Algorithm: Clustering with Outliers

- > Centroids can be dragged by outliers, or outliers might get their own cluster instead of being ignored.
- Consider removing or clipping outliers before clustering.

K-means Algorithm: Curse of Dimensionality

- These plots show how the ratio of the standard deviation to the mean of distance between examples decreases as the number of dimensions increases.
- This convergence means k-means becomes less effective at distinguishing between examples.
- This negative consequence of high-dimensional data is called the curse of dimensionality.

K-means Algorithm: Non-linear Separators

> Data that is linearly separable works out great for linear decision rules:

> But what are we going to do if the dataset is just too hard?

➤ How about... mapping data to a higher-dimensional space:

K-means Algorithm: Non-linear Separators

General idea: the original feature space can always be mapped to some higher-dimensional feature space where the training set is separable

K-means clustering with Kernels

- The above data set cannot generate quality clusters by K-Means since it contains noncovex clusters
- □ Gaussian RBF Kernel transformation maps data to a kernel matrix K for any two points $\mathbf{x_i}$, $\mathbf{x_j}$: $K_{x_ix_j} = \phi(x_i) \bullet \phi(x_j)$ and Gaussian kernel: $K(\mathbf{X_i}, \mathbf{X_j}) = e^{-||X_i X_j||^2/2\sigma^2}$
- □ K-Means clustering is conducted on the mapped data, generating quality clusters