

Short-Time Fourier Transform

Itthi Chatnuntawech

Discrete Fourier Transform (DFT)

Time domain

scipy.fft.fft

scipy.fft.fft(x, n=None, axis=-1, norm=None, overwrite_x=False, [source] workers=None, *, plan=None)

Compute the 1-D discrete Fourier Transform.

This function computes the 1-D *n*-point discrete Fourier Transform (DFT) with the efficient Fast Fourier Transform (FFT) algorithm [1].

Fast Fourier Transform (FFT) - An efficient algorithm that computes the DFT of a signal

Short-Time Fourier Transform (STFT)

The short-time Fourier transform (the time-dependent Fourier transform) of x[n] is denoted as

The discrete-time Fourier transform (DTFT) of the cropped signal

$$x[n+m]w[m]$$

Spectrograms

The Inverse Relationship Between Time and Frequency

Spectrograms

