Inducción simple y fuerte

Clase 19

IIC 1253

Prof. Cristian Riveros

Inducción

Outline

Inducción simple

Inducción fuerte

Outline

Inducción simple

Inducción fuerte

Principio de inducción sobre los naturales

Principio de inducción simple

Para una afirmación P(x) sobre los naturales, si P(x) cumple que:

- 1. P(0) es verdadero,
- 2. si P(n) es verdadero, entonces P(n+1) es verdadero, entonces para todo n en los naturales se tiene que P(n) es verdadero.

Notación

- P(0) se llama el caso base.
- En el paso 2.
 - P(n) se llama la hipótesis de inducción.
 - P(n+1) se llama la **tesis de inducción** o paso inductivo.

Ejemplo de demostración por inducción

Ejemplo

Supongamos la afirmación:

$$P(n) := \sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

1.
$$P(0): 2^0 = 2^{0+1} - 1 = 1$$

2. si
$$P(n)$$
: $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$ es verdadero, entonces:

$$\mathbf{P(n+1)}: \sum_{i=0}^{n+1} 2^{i} = \underbrace{2^{0} + 2^{1} + \dots + 2^{n}}_{\mathbf{P(n)}} + 2^{n+1}$$

$$= 2^{n+1} - 1 + 2^{n+1}$$

$$= 2 \cdot 2^{n+1} - 1$$

$$= 2^{n+2} - 1$$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

Principio de inducción sobre los naturales

Principio de inducción simple (versión teoría de conjunto)

Para un subconjuto $A \subseteq \mathbb{N}$, si se cumple que:

- 1. $0 \in A$,
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$

entonces $A = \mathbb{N}$.

(con $A = \{n \in \mathbb{N} \mid P(n) \text{ es verdadero}\}$ es el mismo principio anterior)

¿por qué se cumple este principio? ¿es un axioma de №?

Axiomas de los número naturales N

Axiomas de Peano (extracto)

- 1. El número $0 \in \mathbb{N}$.
- 2. Si $n \in \mathbb{N}$, entonces $(n+1) \in \mathbb{N}$ donde n+1 es el sucesor de n.
- 3. Todo $n \in \mathbb{N}$ tal que $n \neq 0$ tiene un sucesor en \mathbb{N} .
- 4. Todo subconjunto $A \subseteq \mathbb{N}$ tiene un elemento mínimo.

(principio del buen orden)

¿cómo podemos derivar de estos axiomas el principio de inducción?

Buen orden implica inducción

Teorema

El principio del buen orden implica el principio de inducción.

Buen orden implica inducción

Demostración

Suponemos que el principio del buen orden se cumple en \mathbb{N} .

Por **contradicción** suponga que existe un conjunto $A \subseteq \mathbb{N}$ tal que:

- 1. $0 \in A$.
- 2. $\forall n \in \mathbb{N}$. $(n \in A \rightarrow (n+1) \in A)$

pero
$$A \neq \mathbb{N}$$
.

- entonces el conjunto $B = \mathbb{N} A$ es no vacío.
- existe un menor elemento $n^* \in B$. (; por qué?)
- $n^* \neq 0$ y $n^* 1 \in A$. (¿por qué?)
- como $n^* 1 \in A$, entonces $n^* \in A$. $\rightarrow \leftarrow$ (¿por qué?)

Por lo tanto, se tiene que $A = \mathbb{N}$.

Caso base extendido

Principio de inducción simple (caso base extendido)

Para una afirmación P sobre los naturales y un $k \in \mathbb{N}$, si P cumple que:

- 1. P(k) es verdadero,
- 2. para todo $n \ge k$, si P(n) es verdadero, entonces P(n+1) es verdadero entonces P(n) es verdadero para todo $n \ge k$.

Demuestre este principio a partir del principio del buen orden. (ejercicio)

Caso base extendido

Ejemplo

$$P(n) := n! > 2^n \quad \text{para } n \ge 4$$

1. $P(4): 4! = 24 > 16 = 2^4$

2. si
$$P(n)$$
: $n! > 2^n$ es verdadero con $n \ge 4$, entonces:

$$P(n+1): (n+1)! = n! \cdot (n+1) > 2^{n} \cdot (n+1) \text{ (por HI)} > 2^{n} \cdot 4 \text{ (como } n \ge 4) > 2^{n+1}$$

Por lo tanto, P(n) es verdadero para todo $n \ge 4$.

Outline

Inducción simple

Inducción fuerte

Principio de inducción fuerte

Para una afirmación P sobre \mathbb{N} , si P cumple que para todo $n \in \mathbb{N}$:

P(k) es verdadero **para todo k** < **n**, entonces P(n) es verdadero entonces para todo $n \in \mathbb{N}$ se tiene que P(n) es verdadero.

Principio de inducción fuerte (versión conjuntos)

Para un subconjuto $A \subseteq \mathbb{N}$, si se cumple que:

$$\forall\,n\in\mathbb{N}.\ \left(\,\left\{0,\ldots,n-1\right\}\subseteq A\ \to\ n\in A\,\right)$$

entonces $A = \mathbb{N}$.

¿dónde esta el caso base en el principio anterior?

Ejemplo (función de Fibonacci)

$$F(0) = 0$$

 $F(1) = 1$
 $F(n) = F(n-1) + F(n-2)$ para $n \ge 2$

¿cómo calculamos el valor de F(n) para un n cualquiera?

$$F(0) = 0$$

$$F(1) = 1$$

$$F(2) = F(1) + F(0) = 1 + 0 = 1$$

$$F(3) = F(2) + F(1) = 1 + 1 = 2$$

$$F(4) = F(3) + F(2) = 2 + 1 = 3$$

$$F(5) = F(4) + F(3) = 3 + 2 = 5$$

$$F(6) = \dots$$

Ejemplo (función de Fibonacci)

$$P(n) := F(n) \le 2^n$$
 para todo n

- 1. P(0): $F(0) = 0 \le 2^0$
- 2. $P(1): F(1) = 1 \le 2^1$
- 3. si P(k): $F(k) \le 2^k$ es verdadero para todo k < n, entonces:

$$P(n): F(n) = F(n-1) + F(n-2)$$

$$\leq 2^{n-1} + 2^{n-2}$$
 (por HI)
$$\leq 2^{n-1} + 2^{n-1}$$

$$< 2^{n}$$

Por lo tanto, P(n) es verdadero para todo $n \in \mathbb{N}$.

Ejemplos

$$P(n) := n$$
 tiene una descomposición en números primos $(n \ge 2)$

- 1. P(2): 2 es primo
- 2. si P(k): $k = p_1 \cdot ... \cdot p_{i_k}$ con p_i primo con $i \le i_k$, para todo k < n:
 - si n es primo ✓
 - si n es compuesto $(n = k_1 \cdot k_2)$:

$$\begin{array}{lcl} \mathbf{P}(\mathbf{n}): & n & = k_1 \cdot k_2 \\ & = \left(p_1 \cdot \ldots \cdot p_{i_{k_1}}\right) \cdot \left(p_1' \cdot \ldots \cdot p_{i_{k_2}}'\right) & (\text{por HI}) \end{array}$$

Por lo tanto, P(n) es verdadero para todo $n \ge 2$.

Teorema

Las siguientes condiciones son equivalentes:

- 1. Principio del buen orden.
- 2. Principio de inducción simple.
- 3. Principio de inducción fuerte.

Ya demostramos que $1. \Rightarrow 2.$

Demostración: $2. \Rightarrow 3.$

Suponemos que se cumple el principio de inducción simple sobre N.

PD: Principio de inducción fuerte sobre \mathbb{N} .

Sea $A \subseteq \mathbb{N}$ tal que:

$$\forall\,n\in\mathbb{N}.\ \left(\,\left\{0,\ldots,n-1\right\}\subseteq A\ \to\ n\in A\,\right) \tag{*}$$

PD: $A = \mathbb{N}$.

¿se cumplen las condiciones del principio de inducción simple?

1.
$$0 \in A$$
?

2.
$$\forall n. n \in A \rightarrow n+1 \in A$$
?

?

Demostración: $2. \Rightarrow 3.$

Suponemos que se cumple el principio de inducción simple sobre \mathbb{N} .

PD: Principio de inducción fuerte sobre N.

Sea $A \subseteq \mathbb{N}$ tal que:

$$\forall\,n\in\mathbb{N}.\ \left(\,\left\{0,\ldots,n-1\right\}\subseteq A\ \to\ n\in A\,\right) \tag{*}$$

PD: $A = \mathbb{N}$.

1. $0 \in B$?

Defina el conjunto $B = \{ n \in \mathbb{N} \mid \{0, ..., n\} \subseteq A \}.$

- Define el conjunto $D = \{ n \in \mathbb{N} \mid \{0, \dots, n\} \subseteq A \}.$
- 2. $\forall n. n \in B \rightarrow n+1 \in B$?
 - Entonces, $B = \mathbb{N}$. (¿por qué?)
 - Por lo tanto, $A = \mathbb{N}$ (¿por qué?)

Demostración: $3. \Rightarrow 1.$

Suponemos que se cumple el principio de inducción fuerte sobre N.

PD: Principio del buen orden sobre N.

Por contradicción, suponga que existe $A \subseteq \mathbb{N}$ tal que:

- $A \neq \emptyset$.
- A NO tiene un mínimo.

Sea $B = \mathbb{N} - A$.

- 0 ∈ B ?
- si $\{0,\ldots,n-1\}\subseteq B$, entonces $n\in B$?

Por lo tanto, $B = \mathbb{N}$ por el principio de inducción fuerte. (contradicción!)