Set 25: Multidimensional Polynomial Interpolation

Kyle A. Gallivan

Department of Mathematics

Florida State University

Foundations of Computational Math 2 Spring 2013

Multidimensional Interpolation

Let $f(v): \Omega \subset \mathbb{R}^n \to \mathbb{R}$ be a given function and domain.

We are given k+1 points $v_i \in \mathbb{R}^n$, and values $f(v_i) \in \mathbb{R}$ for $0 \le i \le k$.

We seek a function p(v) in some class of functions such that $p(v_i) = f(v_i)$ for $0 \le i \le k$ and possibly satisfying additional constraints, e.g., smoothness or piecewise polynomials etc.

We consider here the problem of $p(v) \in \mathbb{P}_d^n$, polynomials in n variables of degree at most d.

The Space

 \mathbb{P}_d^n , the space of polynomials in n variables of degree d, is easily described in terms of the associated monomials of n variables.

Definition 25.1. Let $v \in \mathbb{R}^n$ have $e_i^T v = \nu_i$. A multivariate monomial in \mathbb{P}_d^n has the form

$$v^D = \nu_1^{d_1} \nu_2^{d_1} \cdots \nu_{n-1}^{d_{n-1}} \nu_n^{d_n}$$

where $D = (d_1, \ldots, d_n)$.

The degree of the monomial v^D is $deg(v^D) = \sum_{i=1}^n d_i$.

Any $p(v) \in \mathbb{P}_d^n$ can be expressed uniquely with $\alpha_j \neq 0 \in \mathbb{R}$ as

$$p(v) = \sum_{j=1}^{J} \alpha_j v^{D_j}$$

and $deg(p) = \max_{j} (deg(D_j)) \le d$.

Dimension of the Space

Lemma. \mathbb{P}_d^n is a linear space with dimension

$$\dim(d,n) = \dim(\mathbb{P}_d^n) = \binom{n+d}{n}$$

dim(d, n) has the following values:

n	d=1	d=5	d = 10	d = 15
1	2	6	11	16
5	6	252	3003	15,504
10	11	3003	184,756	3,268,760
15	16	15,504	3,268,760	155,117,520

Dimension Examples

$$(d, n) = (d, 1) \to \dim(d, 1) = \binom{d+1}{d} = d+1$$

$$p(\nu) = \alpha_0 + \alpha_1 \nu + \dots + \alpha_d \nu^d$$

$$(d, n) = (2, 1) \to \dim(2, 2) = \binom{4}{2} = 6$$

$$p(\nu_1, \nu_2) = \alpha_0 \nu_1^2 + \alpha_1 \nu_2^2 + \alpha_2 \nu_1 \nu_2 + \alpha_3 \nu_1 + \alpha_4 \nu_2 + \alpha_5$$

Interpolation

Theorem 25.1. Given v_1, \ldots, v_k , there exists and interpolating $p^* \in \mathbb{P}_d^n$ through the points $(v_1, f(v_1)), \ldots, (v_k, f(v_k))$ for any values of $f(v_1), \ldots, f(v_k)$ if and only if the k linear functionals $\mu_i : \mathbb{P}_d^n \to \mathbb{R}$

$$\mu_i(p) = p(v_i)$$

are linearly independent. The interpolating p^* is unique if and only if $k = \dim(d, n)$.

Note. Since $k \ll \dim(d, n)$ in practice, one might choose a subspace of dimension k and a basis for an approximation. Alternatively, domain $\Omega \subset \mathbb{R}^n$ could be restricted.

Example

(from Ueberhuber)

Suppose n=2 and d=1. We seek $p^*(v) \in \mathbb{P}^2_1$ so we have

$$p(v) = \alpha_0 + \alpha_1 \nu_1 + \alpha_2 \nu_2, \quad v = \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

Given the points

$$v_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}, \quad v_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

there is not an interpolating $p^*(v)$ for any set $f(v_1), f(v_2), f(v_3)$.

Example

To see this note:

$$\mu_{1}(p) = \alpha_{0}$$

$$\mu_{2}(p) = \alpha_{0} + \frac{1}{2}\alpha_{1} + \frac{1}{2}\alpha_{2}$$

$$\mu_{3}(p) = \alpha_{0} + \alpha_{1} + \alpha_{2}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \alpha_{2} \end{pmatrix} = \begin{pmatrix} f(v_{1}) \\ f(v_{2}) \\ f(v_{3}) \end{pmatrix}$$

Since the matrix is singular, i.e., the μ_i are dependent, p^* does not exist for all $f(v_i)$ data.

Altered Domain

Suppose $\Omega \subset \mathbb{R}^2$ is taken to be a rectangle

$$\Omega = \mathcal{R} = \{(x, y) \mid a \le x \le b \text{ and } c \le y \le d\}$$

Further, constrain the interpolation points to be a 2-dimensional mesh within \mathcal{R} .

- discretize $a \le x \le b \to x_i, 0 \le i \le n$
- discretize $c \le y \le d \to y_i, 0 \le i \le m$
- $h_x = \max_i (x_{i+1} x_i), h_y = \max_i (y_{i+1} y_i), h = \max(h_x, h_y)$

Lagrange in Two Dimensions

We want

$$p(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} f_{ij}\phi_{ij}(x,y)$$
$$\phi_{ij}(x_j, y_k) = \delta_{ij,jk}$$

Easily solved in the subclass of multivariate polymomials $\mathbb{P}_{n,m}$ that are a polynomial of degree n in x and of degree m in y, i.e.,

$$p(x,y) = \sum_{i=0}^{m} \sum_{j=0}^{m} \alpha_{ij} x^{i} y^{j}$$

Note. This is not the same class as \mathbb{P}_d^n . Here the maximum degree in each is specified, not the sum of degrees.

Lagrange in Two Dimensions

We easily see that

$$\phi_{ij}(x,y) = \ell_i(x)\ell_j(y)$$

$$\phi_{ij}(x_j, y_k) = \delta_{ij,jk} \quad 0 \le i \le n, \quad 0 \le j \le m$$

$$\ell_i(x) = \frac{\prod_{k \ne i} (x - x_k)}{\prod_{k \ne i} (x_i - x_k)}$$

$$\ell_j(y) = \frac{\prod_{k \ne j} (y - y_k)}{\prod_{k \ne j} (y_j - y_k)}$$

Note. The $\phi_{ij}(x,y)$ are known as 2-d shape functions.

Lagrange in Two Dimensions

Theorem 25.2. Given a mesh x_i , $0 \le i \le n$, y_i , $0 \le i \le m$ and function values $f(x_i, y_j) = f_{ij}$ at each point in that mesh, the unique interpolating polynomial of degree n in x and degree m in y is

$$p(x,y) = \sum_{i=0}^{n} \sum_{j=0}^{m} f_{ij} \ell_i(x) \ell_j(y)$$

where $\ell_i(x)$ and $\ell_j(y)$ are the Lagrange characteristic polynomials associated with the x_i and y_j respectively.

Basic Results

Lemma. $\mathbb{P}_{n,m}$ on a rectangular mesh is a linear space of dimension d = (m+1)(n+1) and the shape functions $\phi_{ij}(x,y)$ are a basis.

Theorem 25.3. Let $f(x,y) \in C^{n+1,m+1}$ on the rectangle R on which the mesh is defined. The interpolating polynomial of degree n in x and degree m in y satisfies

$$||f - p||_{\infty} \le \beta_{mn} \max(h_x^{n+1}, h_y^{m+1})$$

 β_{mn} is a constant with respect to (x,y) that is a function of $||D_y^{m+1}f||_{\infty}$ and $||D_x^{n+1}f||_{\infty}$, and $D_y^{m+1}f$ and $D_x^{n+1}f$ are the m+1-st and n+1-t partial derivatives of f in y and x respectively.

Piecewise Lagrange in Two Dimensions

- global 2-d Lagrange interpolating polynomials have similar properties to those of one dimension.
- Runge's phenomenon gets even worse.
- Solution is to define piecewise polynomials on each small rectangle defined by the mesh.
- Each local polynomial is in $\mathbb{P}_{n,m}$.
- Often m = n resulting in
 - m = n = 1 \rightarrow bilinear polynomials
 - m = n = 2 \rightarrow biquadratic polynomials
 - m = n = 3 \rightarrow bicubic polynomials or bicubic splines

Let $x_i \le x \le x_{i+1}$ and $y_{j-1} \le y \le y_j$ define the local rectangle R_{ij} .

The local bilinear interpolating polynomial defined on R_{ij} is

$$p_{i,j}(x,y) = f_{i,j}\ell_{i,j}^{(ij)}(x,y) + f_{i+1,j}\ell_{i+1,j}^{(ij)}(x,y) + f_{i+1,j}\ell_{i+1,j}^{(ij)}(x,y) + f_{i+1,j-1}\ell_{i,j-1}^{(ij)}(x,y) + f_{i+1,j-1}\ell_{i,j-1}^{(ij)}(x,y) = \frac{(x-x_{i+1})}{(x_i-x_{i+1})} \frac{(y-y_{j-1})}{(y_j-y_{j-1})} + \ell_{i,j-1}^{(ij)}(x,y) = \frac{(x-x_{i+1})}{(x_i-x_{i+1})} \frac{(y-y_j)}{(y_{j-1}-y_j)} + \ell_{i+1,j}^{(ij)}(x,y) = \frac{(x-x_i)}{(x_{i+1}-x_i)} \frac{(y-y_{j-1})}{(y_j-y_{j-1})} + \ell_{i+1,j-1}^{(ij)}(x,y) = \frac{(x-x_i)}{(x_{i+1}-x_i)} \frac{(y-y_j)}{(y_{j-1}-y_j)}$$

- This can be expressed in terms of basis functions $\phi_{ij}(x,y)$ that have local support.
- an interior point (x_i, y_j) is the meeting point of 4 rectangles
 - upper left $R_{i-1,j+1}$
 - lower left $R_{i-1,j}$
 - upper right $R_{i,j+1}$
 - lower right $R_{i,j}$
- 9 points are involved
 - upper row $(x_{i-1}, y_{j+1}), (x_i, y_{j+1}), (x_{i+1}, y_{j+1})$
 - middle row (x_{i-1}, y_j) , (x_i, y_j) , (x_{i+1}, y_j)
 - lower row $(x_{i-1}, y_{j-1}), (x_i, y_{j-1}), (x_{i+1}, y_{j-1})$

As before take the coefficient of f_{ij} from the local polynomial of each to define basis function

$$\phi_{ij}(x,y) = \frac{(x-x_{i+1})}{(x_i-x_{i+1})} \frac{(y-y_{j-1})}{(y_j-y_{j-1})} \text{ on } R_{i,j}$$

$$\phi_{ij}(x,y) = \frac{(x-x_{i+1})}{(x_i-x_{i+1})} \frac{(y-y_{j+1})}{(y_j-y_{j+1})} \text{ on } R_{i,j+1}$$

$$\phi_{ij}(x,y) = \frac{(x-x_{i-1})}{(x_i-x_{i-1})} \frac{(y-y_{j+1})}{(y_j-y_{j+1})} \text{ on } R_{i-1,j+1}$$

$$\phi_{ij}(x,y) = \frac{(x-x_{i-1})}{(x_i-x_{i-1})} \frac{(y-y_{j-1})}{(y_j-y_{j-1})} \text{ on } R_{i-1,j}$$

Bilinear Basis

Bilinear Basis

Bilinear Basis

• The error follows trivially from the earlier Lagrange 2-d error

$$||f - p||_{\infty} \le \beta_{11} h^2$$

- Bicubic splines on each R_{ij} possible
- Biquadratic on each set of 4 local rectangles possible.

Triangulation

- \bullet more complicated domains Ω are discretized differently
- mesh points define the vertices of disjoint triangles
- the union of the triangles approximates Ω
- triangles vary in area
- easy to adapt and add triangles
- main concern is keeping angles large enough
- a very large literature exists on such mesh generation

Proper Triangulation

A set of triangles must satisfy:

- The set of all vertices is the partition π , i.e., no extra or missing points
- Each pair of triangles (T_i, T_j) either
 - intersect at exactly one vertex
 - intersect at exactly one complete side
 - do not intersect
- the union of the T_i and their interiors is Ω

Method of Plates

- Each triangle, T_i , has three vertices: $p_0^{(i)}, p_1^{(i)}, p_2^{(i)}$
- Three points and associate function values define a plane surface above $\Omega \subset \mathbb{R}^2$
- The equation has the form

$$g_i(x,y) = \rho_i x + \mu_i y + \gamma_i$$

where the coefficients depend on $f(p_0^{(i)}), f(p_1^{(i)}), f(p_2^{(i)})$

• It can also be written as a combination of $f(p_0^{(i)}), f(p_1^{(i)}), f(p_2^{(i)})$ as before.

Method of Plates

A basis function can be determined for $f(p_j)$ by considering the plane on T with $g(p_0) = 1, g(p_1) = g(p_2) = 0$.

$$\tilde{g}(x,y) = 1 - \frac{(y - y_2)}{(y_1 - y_2)} - \frac{(x - x_1)}{(x_2 - x_1)} \text{ and } g(x,y) = \frac{\tilde{g}(x,y)}{\tilde{g}(x_0, y_0)}$$

$$\tilde{g}(x_1, y_1) = 1 - \frac{(y_1 - y_2)}{(y_1 - y_2)} - \frac{(x_1 - x_1)}{(x_2 - x_1)} = 0$$

$$\tilde{g}(x_2, y_2) = 1 - \frac{(y_2 - y_2)}{(y_1 - y_2)} - \frac{(x_2 - x_1)}{(x_2 - x_1)} = 0$$

$$\tilde{g}(x_0, y_0) = 1 - \frac{(y_0 - y_2)}{(y_1 - y_2)} - \frac{(x_0 - x_1)}{(x_2 - x_1)} \neq 0$$

It follows that $\phi_j(x, y)$ is defined by $g_i(x, y)$ on each T_i for which $p_i = p_0^{(i)}$.

Method of Plates

• The interpolating piecewise function $s_1(x, y)$ is

$$s_1(x,y) = \sum_{i=1}^{n} f(p_i)\phi_i(x,y)$$

- $s_1(x,y)$ is continuous on Ω
- $\frac{\partial s_1}{\partial x}(x,y)$ and $\frac{\partial s_1}{\partial y}(x,y)$ in general are not continuous.
- If h is the length of the longest edge of all T_i and $f \in \mathcal{C}^1[\Omega]$ then

$$||f - s_1||_{\infty} \le \beta_1 h$$

Other Methods

- piecewise quadratic over each triangle
- often there is a reference triangle and coordinate system
- ullet triangles in Ω are worked with by transforming between coordinate systems
- identifying basis is often important to analyze methods
- local coordinate system might be "spectral" or in terms of a more complicated approximation similar to our discussions later in this class
- finite elements, finite volume, spectral methods, etc.