ĐẠI HỌC KHOA HỌC TỰ NHIÊN, ĐẠI HỌC QUỐC GIA TP.HCM KHOA CÔNG NGHỆ THÔNG TIN BỘ MÔN KHOA HỌC MÁY TÍNH

AUTOMATA VÀ NGÔN NGỮ HÌNH THỰC BÀI TẬP CHƯƠNG 3 - PHẦN 2

Sinh viên thực hiện: Nguyễn Thế Hoàng (MSSV: 20120090)

Giáo viên phụ trách: Nguyễn Thanh Phương - Lê Ngọc Thành

BÀI TẬP MÔN HỌC - AUTOMATA VÀ NGÔN NGỮ HÌNH THỰC HỌC KỲ II - NĂM HỌC 2022 - 2023

Bài 5 a. $(0+1)^*0$

 $\varepsilon\text{-NFA}$ và DFA tương ứng là:

b. $(00 + 11)^*$

 $\varepsilon\textsc{-NFA}$ và DFA tương ứng là:

Bài 6 a. Hệ phương trình là:

$$\int x_0 = bx_0 + ax_1 \tag{1}$$

$$\begin{cases} x_0 = bx_0 + ax_1 \\ x_1 = (a+b)x_2 \\ x_2 = \varepsilon + (a+b)x_1 \end{cases}$$
 (1)

$$(3)$$

Áp dụng định lý, và thế giá trị x_1 vào (3), ta có:

$$x_2=\varepsilon+(a+b)(a+b)x_2=((a+b)(a+b))^*$$

Thế giá trị x_2 vào (2):

$$x_1=(a+b)((a+b)(a+b))^*$$

Thế giá trị x_1, x_2 vào (1):

$$x_0 = bx_0 + a(a+b)((a+b)(a+b))^* = b^*a(a+b)((a+b)(a+b))^*$$

 x_0 chính là biểu thức chính quy cần tìm vì q_0 là trạng thái bắt đầu.

b. Hệ phương trình là:

$$\begin{cases} x_0 = ax_0 + ax_1 & (4) \\ x_1 = bx_0 + bx_1 + ax_2 & (5) \\ x_2 = \varepsilon + ax_1 & (6) \end{cases}$$

$$(5)$$

$$(x_2 = \varepsilon + ax_1 \tag{6})$$

Áp dụng định lý, ta có:

$$x_0 = a^*(ax_1)$$

Thế giá trị x_0, x_2 vào (5):

$$egin{aligned} x_1 &= ba^*(ax_1) + bx_1 + a(arepsilon + ax_1) = ba^+x_1 + bx_1 + aarepsilon + aax_1 \ &= aarepsilon + (ba^+ + b + aa)x_1 = (ba^+ + b + aa)^*a \end{aligned}$$

Thay x_1 vào x_0 :

$$x_0 = a^+(ba^+ + b + aa)^*a$$

 x_0 chính là biểu thức chính quy cần tìm vì q_0 là trạng thái bắt đầu.

c. Hệ phương trình là:

$$(x_0 = \varepsilon + ax_1 + bx_3 \tag{7}$$

$$\begin{cases} x_0 = \varepsilon + ax_1 + bx_3 & (7) \\ x_1 = bx_0 + ax_2 & (8) \\ x_2 = (a+b)x_2 & (9) \\ x_3 = ax_0 + bx_2 & (10) \end{cases}$$

$$x_2 = (a+b)x_2 \tag{9}$$

$$x_3 = ax_0 + bx_2 \tag{10}$$

Theo định lý, ta có:

$$x_2 = \emptyset$$

Thay x_2 vào x_1 :

$$x_1 = bx_0$$

Thay x_2 vào x_3 :

$$x_3 = ax_0$$

Thay x_1, x_3 vào x_0 :

$$x_0 = \varepsilon + abx_0 + bax_0 = \varepsilon + (ab + ba)x_0 = (ab + ba)^*$$

 x_0 chính là biểu thức chính quy cần tìm do q_0 là trạng thái bắt đầu.

d.

$$\begin{cases} x_0 = 0x_0 + 1x_1 & (11) \\ x_1 = 1x_1 + 0x_2 & (12) \\ x_2 = 0x_0 + 1x_3 & (13) \\ x_3 = \varepsilon + 0x_0 + 1x_1 & (14) \end{cases}$$

$$x_1 = 1x_1 + 0x_2 \tag{12}$$

$$x_2 = 0x_0 + 1x_3 \tag{13}$$

$$x_3 = \varepsilon + 0x_0 + 1x_1 \tag{14}$$

Áp dụng định lý:

$$x_0 = 0^*(1x_1)$$

Thay x_0 vào (14):

$$x_3 = \varepsilon + 0^+ 1x_1 + 1x_1$$

Thay x_3 vào (13):

$$x_2 = 0^+ 1x_1 + 1 + 10^+ 1x_1 + 11x_1$$

Thay x_2 vào (12):

$$egin{aligned} x_1 &= 1x_1 + 00^+1x_1 + 01 + 010^+1x_1 + 011x_1 \ &= (1 + 00^+1 + 010^+1 + 011)x_1 + 01 = (1 + 00^+1 + 010^+1 + 011)^*01 \end{aligned}$$

Thay x_1 vào x_0 :

$$x_0 = 0^*1(1 + 00^+1 + 010^+1 + 011)^*01$$