

例 4 $\triangle ABC$ 中,AB+BC=3AC,内心为 I,内切圆分别切 AB, BC边于点 D, E. 设 D, E 关于 I 的对称点分别为 K, L. 证明: A, C, K, L共圆.

由已知条件, 得 BD = BE = $\frac{1}{2}(AB+BC-AC) = AC$. 如图 3.13,分 别延长 BI 到 B_1 , BE 到 C_1 , 使得 $BI = IB_1$, $BE = EC_1$, \emptyset $CC_1 = EC_1 - CE = AC - CC_1$ CE = AD, $B_1C_1 = 2IE = KD$, $X \angle C_1 =$ $\angle IEB = 90^{\circ} = \angle IDA$, the △CB, C, \subseteq $\triangle AKD$, $B_1C = AK$. $\angle AKB_1 \cong \triangle IDB$, $KB_1 = BD = AC, KC = KC$,故 $\triangle B_1 CK \subseteq$

 $\triangle AKC$, $\angle KB_1C = \angle KAC$. 从而 B_1 , A_2

图 3.13

K,C 四点共圆. 同理, B_1,A,L,C 四点共圆. 因此,A,L,K,C 共圆.

已知 $\triangle ABC$ 的内切圆 $\bigcirc I$ 与 AB, AC 分别切于点 P, Q, 射线 BI,CI 分别交 PQ 干点 K,L 证明: $\triangle ILK$ 的外接圆与 $\triangle ABC$ 的内切圆 相切的充分必要条件是 AB + AC = 3BC.

证明 如图 3.14 所示,设 BC = a,CA = b, AB = c, 设 BL 和 CK 延长后交于点 D. 由于 $\triangle PAQ$ 是等腰三角形,所以 $\angle BKL =$ $\angle APK - \angle ABK = \frac{1}{2} \angle ACB$. 所以 I, K, Q, C 四点共圆, B, L, K, C 四点共圆. 由 $/IKC = /IQC = 90^{\circ}, I, L, D, K$ 四点共圆, ID 是△ILK 的外接圆直径.

图 3.14

易知 $\angle BDC = 90^{\circ} - \frac{\angle BAC}{2}$,故 $ID = a\cot \angle BDC = a\tan \frac{\angle BAC}{2}$. 另 -方面, $r = AQ\tan \frac{\angle BAC}{2}$, $AQ = \frac{1}{2}(b+c-a)$,其中 r 为 $\triangle ABC$ 的 内切圆半径. 于是 $\triangle ILK$ 的外接圆与 $\triangle ABC$ 的内切圆相切,当且仅当 $\triangle ILK$ 外接圆的直径等于 $\triangle ABC$ 内切圆的半径, $r = ID \Leftrightarrow \frac{1}{2}(c+b-a) = a \Leftrightarrow b+c = 3a$.

例 6 已知 $\triangle ABC$, $\angle B=90^\circ$, 内切圆分别切 BC, CA, AB 于点 D, E, F. 又 AD 交内切圆于另一点 P, $PF \perp PC$, 求 $\triangle ABC$ 三边长 之比.

解如图 3. 15,连 FD, PE, ED, 易知 $\triangle FBD$ 是等腰直角三角形. 由弦切角 知, $\angle FPD = \angle FDB = 45^\circ$,于是 $\angle DPC = 45^\circ$,又 $\angle PDC = \angle PFD$,故 $\triangle PFD \hookrightarrow \triangle PDC$,所以 $\frac{PF}{FD} = \frac{PD}{CD}$. 又由

$$F$$
 D
 C

图 3.15

于 $\triangle APF$ \circlearrowleft $\triangle AFD$, $\triangle APE$ \circlearrowleft $\triangle AED$, 故 $\frac{PE}{DE} = \frac{AP}{AE} = \frac{AP}{AF} = \frac{PF}{FD}$, 于是 $\frac{PE}{DE} = \frac{PD}{CD}$. 又 $\angle EPD = \angle EDC$, 故 $\triangle EPD$ \circlearrowleft $\triangle EDC$, 于是 $\triangle EPD$ 也是等腰三角形,所以 $\angle PED = \angle EPD = \angle EDC$,所以 $\triangle EPD$ 也是等腰三角形。所以 $\triangle EPD = \angle EDC$,所以 $\triangle EPD$ $\triangle EPD = \angle EDC$ 。 $\triangle EPD = \angle EDC$,所以 $\triangle EDC = \angle EDC$ $\triangle EDCC = 2(1-\cos C) = 2(1-\frac{BC}{AC}) = 2\frac{AC-BC}{AC}$.

又
$$\frac{AE}{AC} = \frac{\frac{1}{2}(AB + AC - BC)}{AC}$$
,故 $AB + AC - BC = 4(AC - BC)$, $AB = 3(AC - BC)$. 两边平方,得 $AB^2 = 9(AC - BC)^2 = AC$

 $AC^2 - BC^2$,此即 9(AC - BC) = AC + BC,所以 $\frac{BC}{AC} = \frac{4}{5}$,所以 AB: BC : AC = 3 : 4 : 5

例 7 $\triangle ABC$ 的内切圆切 $BC \pm D$, AD 在圆内部分上任找一点 E, 设线段 BE, CE 分别与圆交干点 F, G, 求证, AD, BG, CF 共点,

证明 $\partial \Delta ABC =$ 对应边为a,

$$b,c,p = \frac{1}{2}(a+b+c), \text{ mB}$$

3.16, 连DG, DQ, QG, 其中 Q 为内切圆与 AC 的切点. 设 CE与DQ 交于点 P.

不妨设 $\frac{ED}{AE} = k$. 由门奈

图 3.16

劳斯定理,
$$\frac{AC}{CQ} \cdot \frac{QP}{PD} \cdot \frac{DE}{EA} =$$

$$1$$
,此即 $\frac{PD}{PQ} = \frac{bk}{p-c}$. 所以 $\frac{PD}{QD} = \frac{bk}{p-c+bk}$, $\frac{PQ}{QD} = \frac{p-c}{p-c+bk}$.

又由弦切角及面积比,知 $\frac{PG^2}{GC^2} = \frac{PD\sin \angle QDG}{CD\sin \angle CDG} \cdot \frac{PQ\sin \angle DQG}{CQ\sin \angle CQG} =$

$$\frac{PD \cdot PQ}{CD^2} = \frac{QD^2 \cdot bk(p-c)}{CD^2 \cdot (p-c+bk)^2}, \text{Mill} \frac{PG}{CG} = \frac{QD}{CD} \cdot \frac{\sqrt{bk(p-c)}}{p-c+bk}.$$

又由门奈劳斯定理,有 $\frac{AD}{DE}$ 。 $\frac{EP}{PC}$ 。 $\frac{CQ}{QA} = 1$,此即 $\frac{1+k}{k}$ 。 $\frac{EP}{PC}$.

$$\frac{p-c}{p-a}=1$$
,不妨设 $PG=1$,则由上述得 $CG=\frac{CD}{QD}\cdot\frac{p-c+bk}{\sqrt{bk(p-c)}}$. 而

$$EP = \frac{k(p-a)}{(1+k)(p-c)} \cdot PC = \frac{k(p-a)}{(1+k)(p-c)} (1+CG).$$
 于是

$$\frac{EG}{CG} = \frac{EP+1}{CG} = \frac{k(p-a) + (1+k)(p-c) + k(p-a) \cdot CG}{(1+k)(p-c) \cdot CG}
= \frac{bk + k(p-a) \cdot CG + p-c}{(1+k)(p-c) \cdot CG}
= \frac{\frac{QD}{CD} \sqrt{bk(p-c)} + k(p-a)}{(1+k)(p-c)}.$$

易知
$$\frac{QD}{CD} = 2\sin \frac{\angle ACB}{2}$$
,于是

$$\begin{split} \frac{QD}{CD}\sqrt{bk(p-c)} &= \sqrt{4\sin^2\frac{\angle ACB}{2} \cdot bk(p-c)} \\ &= \sqrt{2(1-\cos\angle ACB) \cdot bk(p-c)} \\ &= \sqrt{2\left(1-\frac{a^2+b^2-c^2}{2ab}\right)bk(p-c)} \\ &= 2\sqrt{\frac{(p-a)(p-b)(p-c)k}{a}}, \end{split}$$

因此
$$\frac{QD}{CD}\sqrt{bk(p-c)}+k(p-a)$$
是一个关于 b,c 对称的式子,设其为 d ,则 $\frac{EG}{CG}=\frac{d}{(1+k)(p-c)}$. 同理 $\frac{EF}{BF}=\frac{d}{(1+k)(p-b)}$,于是 $\frac{EF}{FB}$ 。 $\frac{BD}{DC}$ 。 $\frac{CG}{GE}=\frac{p-c}{p-b}$ 。 $\frac{BD}{CD}=1$,故由塞瓦逆定理,知 AD , BG , CF 共点.