

Charge and Current 1

Essential GCSE Physics 22.1

Assume the electron has a charge of $-1.60 imes 10^{-19}\,\mathrm{C}.$

A $3.00\,\mathrm{A}$ appliance has $360\,\mathrm{C}$ of charge flow through it.

Part A Operating duration

How long was the appliance operating?

Part B Number of electrons

How many electrons passed through the appliance in this time?

<u>Home</u> <u>Gameboard</u> Physics Electricity Charge & Current Charge and Current 2

Charge and Current 2

GCSE A Level

Essential GCSE Physics 22.2

 $-1.00\,\mathrm{coulomb}$ is the charge of how many electrons? Give your answer to 3 SF.

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge and Current 3

Essential GCSE Physics 22.3

If two electrons are removed from an atom, what is the charge of the resulting cation (positively charged ion)?

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge Carriers 1

Essential Pre-Uni Physics C2.1

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19}\,\mathrm{C}$

How many electrons are needed to carry a charge of $-6.00 \, \mathrm{C}$?

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge Carriers 2

Essential Pre-Uni Physics C2.2

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19}\,\mathrm{C}$

How many electrons flow past a point each second in a $5.0\,\mathrm{mA}$ electron beam?

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge Carriers 3

Essential Pre-Uni Physics C2.3

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19} \, \mathrm{C}$

Alpha particles have twice the charge of an electron. What is the current caused by a radioactive source which emits 3000 alpha particles per second, to 3 significant figures?

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge Carriers 4

Essential Pre-Uni Physics C2.4

Data:

• Magnitude of the charge on the electron = $1.60 imes 10^{-19} \, \mathrm{C}$

An electron gun emits 3.0×10^{21} electrons in two minutes. What is the beam current? Give your answer to 2 significant figures.

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Charge Carriers II 5

Essential Pre-Uni Physics C3.5

Data: Magnitude of the charge on the electron = $1.60 \times 10^{-19}\,\mathrm{C}$

How long does it take for a current of $6.0\,\mathrm{A}$ to deliver $1.5\times10^{17}~\mathrm{Cu^{2+}}$ ions in a solution? Assume these ions are the only charged particles moving.

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Home Gameboard Physics Electricity Charge & Current Conveying Current

Conveying Current

A conveyor belt of width $w=10\,\mathrm{cm}$ has a surface containing a layer of electrons with an area number density of $10\,000~\mathrm{mm}^{-2}$. The conveyor belt is moving at a speed $v=5.0\,\mathrm{m\,s}^{-1}$. At a certain point there is a wire brush that collects all of the electrons on the belt and transports them away as electric current.

Part A Magnitude of current

What is the magnitude of the electric current through the wire brush?

Part B Protons "swept up"

There is a spillage in the conveyor belt factory which doesn't affect the conveyor belt in any way except that now there is an extra proton density of $3000\,\mathrm{mm}^{-2}$.

Assuming the protons and electrons don't interact as they are stuck on an <u>insulating</u> belt, but that the protons are "swept up" by the brush, what now is the magnitude of the current though the wire brush?

Adapted with permission from UCLES, A level Additional Physics, June 1989, Paper 1, Question 18

Gameboard:

STEM SMART Physics Week 1 - Charge Flow

Home Gameboard Physics Electricity Charge & Current Cool Coulometers

Cool Coulometers

A coulometer is a device for measuring the amount of charge which has passed through a circuit. These are based on measuring the mass of the metal which has been deposited on the cathode. In the circuit shown below, C is a silver coulometer, and A and B are copper coulometers.

Figure 1: A circuit consisting of three coulometers. A and B are different copper coulometers, whereas C is a silver coulometer.

After current has passed for a time, the mass of silver deposited is $1.08\,\mathrm{g}$, and the mass of copper deposited on B is $0.118\,\mathrm{g}$. What is the mass of copper deposited in A?

Silver has a relative atomic mass of $108\,\mathrm{g\,mol^{-1}}$ and 1+ ions.

Copper has a relative atomic mass of $63.6\,\mathrm{g\,mol^{-1}}$ and 2+ ions.

Created for isaacphysics.org by Richard Simon