Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Высшая школа прикладной математики и вычислительной физики

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

по дисциплине
«Математическая статистика»

Выполнил студент группы 5030102/90101

Лаэтин Андрей Алексеевич

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2022

СОДЕРЖАНИЕ

\mathbf{C}	ПИС	ок и	1 ЛЛЮСТРАЦИЙ	. 3
1	Пос	танов	вка задачи	. 4
2	Teo	рия .		. 4
	2.1	Эмпи	прическая функция распределения	. 4
		2.1.1	Статистический ряд	. 4
		2.1.2	Эмпирическая функция распределения	. 4
		2.1.3	Нахождение э. ф. р	. 4
	2.2	Оцени	ки плотности вероятности	. 5
		2.2.1	Определение	. 5
		2.2.2	Ядерные оценки	. 5
3	Про	ограми	мная реализация	. 5
4	Рез	ультат	ты	. 6
	4.1	Эмпи	прическая функция распределения	. 6
	4.2	Ядери	ные оценки плотности распределения	. 8
5	Обс	уждеі	эние	. 15
6	Пъ	иложе	оние Стана	16

СПИСОК ИЛЛЮСТРАЦИЙ

1	Нормальное распределение	6
2	распределение Лапласа	6
3	распределение Коши	7
4	Равномерное распределение	7
5	распределение Пуассона	8
6	распределение Коши, n=20	8
7	распределение Коши, n=60	Ć
8	распределение Коши, n=100	Ć
9	Нормальное распределение, $n=20$	10
10	Нормальное распределение, n=60	10
11	Нормальное распределение, n=100	11
12	распределение Лапласа, n=20	11
13	распределение Лапласа, n=60	12
14	распределение Лапласа, n=100	12
15	распределение Пуассона, n=20	13
16	распределение Пуассона, n=60	13
17	распределение Пуассона, n=100	14
18	Равномерное распределение, n=20	14
19	Равномерное распределение, n=60	15
20	Равномерное распределение, n=100	15

1 Постановка задачи

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4; 4] для непрерывных распределений и на отрезке [6; 14] для распределения Пуассона.

2 Теория

2.1 Эмпирическая функция распределения

2.1.1 Статистический ряд

Статистическим рядом назовем совокупность, состоящую из последовательности $\{z_i\}_{i=1}^k$ попарно различных элементов выборки, расположенных по возрастанию, и последовательности $\{n_i\}_{i=1}^k$ частот, с которыми эти элементы содержатся в выборке.

2.1.2 Эмпирическая функция распределения

Эмпирическая функция распределения (э. ф. р.) - относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x). (1)$$

2.1.3 Нахождение э. ф. р.

$$F^*(x) = \frac{1}{n} \sum_{z_i < x} n_i.$$
 (2)

 $F^*(x)$ — функция распределения дискретной случайной величины X^* , заданной таблицей распределения

X^*	z_1	z_2	 z_k
P	n_1/n	n_2/n	 n_k/n

Таблица 1: Таблица распределения

Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения

$$F_n^*(x) \approx F_X(x). \tag{3}$$

2.2 Оценки плотности вероятности

2.2.1 Определение

Оценкой плотности вероятности f(x) называется функция $\widehat{f}(x)$, построенная на основе выборки, приближённо равная f(x)

$$\widehat{f}(x) \approx f(x).$$
 (4)

2.2.2 Ядерные оценки

Представим оценку в виде суммы с числом слагаемых, равным объёму выборки:

$$\widehat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K\left(\frac{x - x_i}{h_n}\right). \tag{5}$$

K(u) - ядро, т. е. непрерывная функция, являющаяся плотностью вероятности, $x_1,...,x_n$ — элементы выборки, а $\{h_n\}_{n\in\mathbb{N}}$ - последовательность элементов из \mathbb{R}_+ такая, что

$$h_n \xrightarrow[n \to \infty]{} 0; \quad nh_n \xrightarrow[n \to \infty]{} \infty.$$
 (6)

Такие оценки называются непрерывными ядерными.

Гауссово ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}}. (7)$$

Правило Сильвермана:

$$h_n = \left(\frac{4\hat{\sigma}^5}{3n}\right)^{1/5} \approx 1.06\hat{\sigma}n^{-1/5},$$
 (8)

где $\hat{\sigma}$ - выборочное стандартное отклонение.

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.9 в среде разработки PyCharm. Использовались дополнительные библиотеки:

- 1. scipy
- 2. statsmodels
- 3. matplotlib
- 4. seaborn

- 5. numpy
- 6. math

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Эмпирическая функция распределения

Рис. 1: Нормальное распределение

Рис. 2: распределение Лапласа

Рис. 3: распределение Коши

Рис. 4: Равномерное распределение

Рис. 5: распределение Пуассона

4.2 Ядерные оценки плотности распределения

Рис. 6: распределение Коши, n=20

Рис. 7: распределение Коши, n=60

Рис. 8: распределение Коши, n=100

Рис. 9: Нормальное распределение, n=20

Рис. 10: Нормальное распределение, n=60

Рис. 11: Нормальное распределение, n=100

Рис. 12: распределение Лапласа, n=20

Рис. 13: распределение Лапласа, n=60

Рис. 14: распределение Лапласа, n=100

Рис. 15: распределение Пуассона, n=20

Рис. 16: распределение Пуассона, n=60

Рис. 17: распределение Пуассона, n=100

Рис. 18: Равномерное распределение, n=20

Рис. 19: Равномерное распределение, n=60

Рис. 20: Равномерное распределение, n=100

5 Обсуждение

Можем наблюдать на иллюстрациях с эмпирическими функциями, что ступенчатая эмпирическая функция распределения тем лучше приближает функцию распределения реальной выборки, чем мощнее эта выборка. Заметим так же, что для распределения Пуассона и равномерного распределения отклонение функций друг от друга наибольшее.

Рисунки, посвященные ядерным оценкам, иллюстрируют сближение ядерной оценки и функции плотности вероятности для всех h с ростом размера выборки. Для распределения Пуассона

наиболее ярко видно, как сглаживает отклонения увеличение параметра сглаживания h.

В зависимости от особенностей распределений для их описания лучше подходят разные параметры h в ядерной оценке: для нормального, равномерного и распределения Пуассона оптимальным значением параметра является $h=h_n$, а для распределений Коши и Лапласса $h=h_n/2$.

Также можно увидеть, что чем больше коэффициент при параметре сглаживания $\hat{h_n}$, тем меньше изменений знака производной у аппроксимирующей функции, вплоть до того, что при $h=2h_n$ функция становится унимодальной на рассматриваемом промежутке. Также видно, что при $h=h_n/2$ по полученным приближениям становится сложно сказать плотность вероятности какого распределения они должны повторять, так как они очень похожи между собой.

6 Приложение

Код программы GitHub URL: https://github.com/A21l63/math-prob-stat