MATLAB基本语法

变量

变量名

保留变量不适合做变量名 变量名不应当覆盖内置函数名

变量类型

数字型变量的显示格式

MATLAB命令行

使用MATLAB进行数字运算

使用MATLAB计算数学表达式 MATLAB内置的数学函数

使用MATLAB进行矩阵运算

定义矩阵

向终端输入矩阵

使用冒号运算符创建向量

定义特殊矩阵

矩阵的索引

矩阵的操作

操作矩阵的运算符

操作矩阵的函数

学习一门技术最好的方式就是阅读官方文档,可以查看MATLAB官方文档

MATLAB基本语法

变量

- MATLAB中的变量不需要声明.
- 使用=为变量赋值

变量名

- 与大多数编程语言相同,MATLAB中的变量名是大小写敏感的.
- 变量名只能由[0~9,a~z,A~z,_]组成,且变量名不能以数字开头.

保留变量不适合做变量名

MATLAB中有一些变量有其具体意义,不适合用作变量名.

变量	意义
ans	上一句的运算的结果
i和j	复数算子
Inf	无穷∞
eps	浮点相对精度,即1.0到下一个浮点数之间的距离(值为2.2204e-16)
NaN	非数字
pi	圆 周率π

除此以外,使用 iskeyword 命令可以查看MATLAB语言所有的关键字,这些关键字也不允许被用作变量名.

变量名不应当覆盖内置函数名

在MATLAB中,变量的调用优先级(calling priority)高于函数,因此变量名不应该覆盖内置函数.


```
1 cos='This string.';
2 cos(8) % 对字符串进行索引取值,得到'r'
```

若某函数被变量名所覆盖,则调用 clear <变量名> 可以取消绑定在该函数名上的变量名

Low

```
      1 clear cos
      % 清除绑定在cos上的变量

      2 cos(8)
      % 调用内置余弦函数运算得到-0.1455
```

clear 是一个比较危险的命令,因为该命令后若不加参数,则表示清除当前工作区内的所有变量.

变量类型

MATLAB中的变量类型有: logical, char, numeric, cell, struct 以及由他们组成的数组或矩阵.

数字型变量的显示格式

我们直接定义的数字型变量,默认是以 double 形式存储的.

我们可以通过 format <显示格式> 改变数字型变量的显示格式.

显示格式	说明	例子
short	短定点格式.显示小数点后4位	3.1416
long	长定点格式.对 double 类型变量显示小数点后15位, 对 float 类型变量显示小数点后7位.	3.141592653589793
shortE	短科学计数法,显示小数点后4位.并带有科学计数法标记.	3.1416e+00
longE	长科学计数法.对 double 类型变量显示小数点后15位,对 float 类型变量显示小数点后7位.并带有科学计数法标记.	3.141592653589793e+00
bank	银行格式.显示小数点后2位.	3.14
hex	十六进制格式.	400921fb54442d18
rat	比例格式	355/113

MATLAB命令行

- 1. 使用行尾; 抑制输出: 在一行命令后使用; 抑制输出,否则运算结果将被显示在终端上.
- 2. 其他实用的命令:

命令	作用
clc	清除终端的输出
clear	清除当前工作区内所有变量
who	以简略格式显示工作区内所有变量
whos	以复杂格式显示工作区内所有变量

使用MATLAB进行数字运算

使用MATLAB计算数学表达式

- MATLAB常见运算符有: +,-,*,/,^.
- 数学表达式被计算后,其值被存入变量 ans.
- 运算的优先级规则:
 - 。 同等优先级下从左向右运算.
 - 。 优先级顺序(从高到低)
 - 1. 括号()
 - 2. 乘方 ^
 - 3. 乘除法 * , /
 - 4. 加减法+,-

下面例子演示了数学表达式求值:

待求数学表达式	MATLAB命令		
$\cos\left(\sqrt{\frac{\left(1+2+3+4\right)^3}{5}}\right)$	cos(sqrt((1+2+3+4)^3/5))		
$\sin(\sqrt{\pi}) + \ln(\tan(1))$	<pre>sin(sqrt(pi))+log(tan(1))</pre>		
$2^{3.5 imes 1.7}$	2^(3.5*1.7)		
$e^{\sin(10)}$	exp(sin(10))		

MATLAB内置的数学函数

- MATLAB内置的算数运算函数
 - 。 基本运算:
 - 加: +, sum, cumsum, movsum
 - 减: -, diff
 - 乘: .*, *, prod, cumprod
 - 除: ./,.\,/,\
 - 乘方: .^,^
 - 取模运算: mod, rem, idivide, ceil, fix, floor, round
- MATLAB内置的三角运算函数
 - 正弦: sin, sind, sinpi, asin, asind, sinh, asinh

- o 余弦: cos, cosd, cospi, acos, acosd, cosh, acosh
- 正切: tan, tand, atan, atand, atan2, atan2d, tanh, atanh
- 余割: csc, cscd, acsc, acscd, csch, acsch
- o 正割: sec, secd, asec, asecd, sech, asech
- 余切: cot, cotd, acot, acotd, coth, acoth
- o 斜边: hypot
- 转换: deg2rad, rad2deg, cart2pol, cart2sph, pol2cart, sph2cart
- MATLAB内置的指数对数函数:

exp, expm1, log, log10, log1p, log2, nextpow2, nthroot, pow2, reallog, realpow, realsq rt, sqrt

• MATLAB内置的复函数:

abs, angle, complex, conj, cplxpair, i, imag, isreal, j, real, sign, unwrap

使用MATLAB进行矩阵运算

定义矩阵

向终端输入矩阵

在MATLAB中,使用[] 将待输入的矩阵内容括起来,使用空格 或逗号,分隔行内变量,使用;分隔每一行. 下面例子演示了矩阵的定义:

MATLAB命令	得到的矩阵	
[1 2 3 4]	[1 2 3 4]	
[1; 2; 3; 4]	$\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$	
[1 21 6; 5 17 9; 31 2 7]	$\begin{bmatrix} 1 & 21 & 6 \\ 5 & 17 & 9 \\ 31 & 2 & 7 \end{bmatrix}$	

使用冒号运算符创建向量

使用冒号运算符:可以创建一个长向量,其语法如下:

冒号表达式	得到的结果
(j:k)	$[j, j+1, j+2, \ldots, j+m]$
[j:i:k]	$[\ j, j+i, j+2i, \dots, j+m*i\]$

下面例子演示了冒号运算符的使用:

MATLAB语句	得到的结果		
[1:5]	[1 2 3 4 5]		
1:2:5	[1 3 5]		
[1:5; 2:3:15; -2:0.5:0]	$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 8 & 11 & 14 \\ -2 & -1.5 & -1 & -0.5 & 0 \end{bmatrix}$		
'a':2:'z'	'acegikmoqsuwy'		

定义特殊矩阵

下列命令可以定义特殊矩阵

命令	得到的结果
eye(n)	得到一个 $n \times n$ 的单位矩阵
zeros(n1, n2)	得到一个 $n_1 imes n_2$ 的全0矩阵
ones(n1, n2)	得到一个 $n_1 imes n_2$ 的全1矩阵
diag(vector)	得到一个以向量 vector 中内容为对角线的对角矩阵

矩阵的索引

- MATLAB中的矩阵是以列先序存储的.且索引下标从1开始.
- 矩阵有两种索引方式:按一维索引和按二维索引.对于一个一般的矩阵,其索引顺序如下:

$$\begin{bmatrix} 1 & (1,1) & 4 & (1,2) & 7 & (1,3) \\ 2 & (2,1) & 5 & (2,2) & 8 & (2,3) \\ 3 & (3,1) & 6 & (3,2) & 9 & (3,3) \end{bmatrix}$$

- 矩阵的索引可以使用冒号:,表示选取所有行或所有列.
- 矩阵的索引可以是一个或两个向量,表示选中向量内的所有行或所有列.

下面例子演示了矩阵索引的规则:

原矩阵	索引	得到的结果	解释
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	A(8)	6	取矩阵第8个元素
$A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}$	A([1 3 5])	[1 7 5]	分别取矩阵第 [1 3 5] 个元素放入新矩阵的对应位置
$A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}$	A([1 2; 3 4])	$\begin{bmatrix} 1 & 4 \\ 7 & 2 \end{bmatrix}$	分别取矩阵第 [1 2; 3 4] 个元素放入 新矩阵的对应位置
$A = egin{bmatrix} 1 & 2 & 3 \ 4 & 5 & 6 \ 7 & 8 & 9 \end{bmatrix}$	A(3,2)	8	取矩阵第3行第2列的元素

原矩阵 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	索引 A([1,2],	得到的结果 [1 2 3] [4 5 6]	解释 取矩阵第 [1 2] 行和所有列的交叉项
$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$	A([1 3], [1 2])	$\begin{bmatrix} 1 & 2 \\ 7 & 8 \end{bmatrix}$	取矩阵第 [1 3] 行和第 [1 2] 列的交 叉项

矩阵的操作

操作矩阵的运算符

运算 符	操作	形式	例子
+	矩阵与向量相加	A+b	[6 3] + 2 = [8 5]
-	矩阵与向量相减	A-b	[6 3] - 2 = [4 1]
+	矩阵与矩阵对应位置相加	A+B	[6 3] + [4 8] = [10 11]
-	矩阵与矩阵对应位置相减	A-B	[6 3] - [4 8] = [2 -5]
*	矩阵与矩阵相乘	A*B	[6 3] * [4 8]' = 48
*	矩阵与矩阵对应位置相乘	A.*B	[6 3] * [4 8] = [24 24]
	矩阵与矩阵右除(等价于 A*inv(B))	A/B	[6 3] / [4 8] = 0.6
	矩阵与矩阵左除(等价于 inv(A)*B)	A\B	[6 3] / [4 8] = [0.06667 1.3333; 0 0]
./	矩阵与矩阵对应位置右除	A./B	[6 3] ./ [4 8] = [1.5 0.375]
.\	矩阵与矩阵对应位置左除	A.\B	[6 3] .\ [4 8] = [0.6667 2.6667]
٨	矩阵与向量乘方	A^b	[1 2; 3 4]^3 = [37 54; 81 118]
	矩阵与矩阵对应位置乘方	Α.^Β	[1 2; 3 4].^[1 2; 3 4] = [1 4; 27 256]

操作矩阵的函数

下面对矩阵

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 5 & 6 \\ 7 & 0 & 9 \end{bmatrix}$$

进行操作以演示操作矩阵的常见函数

函数	作用	例子	结果
<pre>max(A, [], dim)</pre>	获取矩阵 A的 dim 维度上的最大值	max(A, [],	[7 5 9]
min(A, [], dim)	获取矩阵 A的 dim 维度上的最小值	min(A, [], 2)	[1 0 0]
sum(A, dim)	获取矩阵 A的 dim 维度上的和	sum(A, 1)	[8 7 18]
<pre>mean(A, dim)</pre>	获取矩阵 A 的 dim 维度上的平均值	mean(A, 1)	[2.6667 2.3333 6.0000]
<pre>sort(A, dim, direction)</pre>	获取矩阵 A 的 dim 维度上 按 direction 顺序排序结 果	<pre>sort(A, 1, 'descend')</pre>	$\begin{bmatrix} 7 & 5 & 9 \\ 1 & 2 & 6 \\ 0 & 0 & 3 \end{bmatrix}$
sortrows(A, column)	获取矩阵 A 按照每行第 column 个元素升序排序 结果.	sortrows(A,	$\begin{bmatrix} 7 & 0 & 9 \\ 1 & 2 & 3 \\ 0 & 5 & 6 \end{bmatrix}$
size(A, dim)	获取矩阵 A 的 dim 维度上的形状.若不指定 dim,则返回整个矩阵的形状.	size(A)	[3 3]
find(A, n)	获取矩阵 A 前 n 个非零元 素的索引	find(A,5)	[1 3 4 5 7]

对于上面这些函数,除第一个参数以外,其它参数都是可选的.