TIME SERIES ANALYSIS STOCK MARKET

INTRODUCTION

Time series analysis is a powerful statistical tool used to analyze time-ordered data points. In this project, we leverage historical stock price data of Tata Steel to build an ARIMA (AutoRegressive Integrated Moving Average) model. ARIMA is a popular method used in time series forecasting due to its ability to model and predict based on past data points while accounting for different components such as trends and seasonality.

WHAT IS TIME SERIES ?

ARIMA MODEL

FORECASTING MODEL Auto Requessive Component 6 How past volves affect future Values $I \rightarrow$ integrated (accounts for trends Seasonality) MA > Moving Average Component (Remove non-deterministie or Random movement from time sesuies) Exponential Smoothing? forecast time series data that doesn't have a clean trend or seasonality.

LEARING IN THIS PROJECT

CHOOSE YOUR STOCK DATA

DATA VISUALIZATION

DATA CLEANING

TIME SERIES PLOT

ACF AND PACF PLOT

STATIONARITY TEST (ADF

DECOMPOSITION

ARIMA MODELING

FORECASTING WITH ARIMA

SARIMA MODELING

FORECAST VS ACTUAL

START WITH THE CODE

IMPORT LIBRARIES

- **Pandas** is used for data manipulation and analysis.
- **Seaborn** is a visualization library based on matplotlib.
- Matplotlib is a plotting library.
- Plot the **Autocorrelation Function** (ACF) and **Partial Autocorrelation Function** (PACF) of a time series.
- **ADFuller** is the Augmented Dickey-Fuller test, used to test the stationarity of a time series.
- Performance metrics used to evaluate the accuracy of the forecast models.
- Satistical models.
- Decompose a time series.
- yFinance is a library that allows for easy downloading of stock market data.
- Use to ignore warnings.

DOWNLOADING THE DATA AND SAVING IT AS A CSV FILE IN THE GOOGLE COLAB NOTEBOOK

```
[27] # Download historical stock data for Tata Steel from Yahoo Finance
    data = yf.download('TATASTEEL.NS', start='2020-01-01', end='2021-01-01')

# Save the data to a CSV file
    data.to_csv('tatasteel_stock.csv')
```

LOADING THE DATA

```
#Read the csv file
    df = pd.read csv('/content/tatasteel stock.csv')
    # Display the first few rows of the DataFrame
    print(df.head())
High
                                                     Close
                                                            Adj Close \
            Date
                       Open
                                            Low
    0 2020-01-01 47.299999 47.650002 46.480000 46.775002
                                                            40.974754
    1 2020-01-02 47.200001 48.779999 47.200001 48.485001 42.472713
    2 2020-01-03 48.299999 48.619999 47.945000 48.369999 42.371967
    3 2020-01-06 48.000000 48.000000 47.055000 47.325001
                                                            41.456554
    4 2020-01-07 47.549999 48.459999 47.355000 47.610001 41.706207
         Volume
    0 121005300
    1 216749610
    2 129568630
       96016080
       131957880
```

```
[30] #fill the missing values with forward fill
  if df.isnull().sum().sum() > 0:
    df = df.fillna(method='ffill')
```

OUTLIER HANDING

- Detect the outlier.
- Visualize the outlier using BOX PLOT.
- Handle outlier using IQR.

OUTLIERS IDENTIFICATION


```
#Calculating the quartiles
Q1 = df['Close'].quantile(0.25)
Q3 = df['Close'].quantile(0.75)

IQR = Q3 - Q1 #Calculating Interquartile Range
#Calculating upper and lower bound
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
#Filtering out the outliers
df = df[(df['Close'] >= lower_bound) & (df['Close'] <= upper_bound)]</pre>
```


PLOTING THE TIME SERIES GRAPH

```
[40] # DATE is containing date and converting it to datetime
    df['Date'] = pd.to datetime(df['Date'])
    df.set index('Date', inplace=True)
    # Plot the 'Close' price against the date
    plt.figure(figsize=(10, 6))
    plt.plot(df.index, df['Close'], label='Close Price')
    plt.title('Tata Steel Stock Price')
    plt.xlabel('Date')
    plt.ylabel('Close Price')
    plt.legend()
    plt.show()
```


- Stationarity means that the statistical properties of the time series, such as mean, variance, and autocorrelation, are constant over time.
- Stationary data simplifies the modeling process. Non-stationary data can exhibit trends, seasonality, and other patterns that complicate the model.
- In non-stationary data, the probability distributions can change over time, making statistical inference less reliable.

```
[41] #check the stationarity
     def adf test(series):
         result = adfuller(series)
         print('ADF Statistic: %f' % result[0])
         print('p-value: %f' % result[1])
         for key, value in result[4].items():
             print('\t%s: %.3f' % (key, value))
     adf test(df['Close'])
→ ADF Statistic: -1.313067
     p-value: 0.623173
             18: -3.459
             5%: -2.874
             10%: -2.573
Double-click (or enter) to edit
Since the p-value is greater than 0.05 the time series is non-stationary.
```

```
[42] # If the data is not stationary, take the first difference data_diff = df['Close'].diff().dropna() adf_test(data_diff)

→ ADF Statistic: -3.065495 p-value: 0.029214

1%: -3.459

5%: -2.874

10%: -2.573
```

Autocorrelation Function (ACF)

- Quantifies the relationship between the values of the series at different points in time.
- The ACF helps to identify the extent of correlation between the current value and past values of the time series.

Partial Autocorrelation Function (PACF)

- It essentially isolates the direct relationship between the current value and a lagged value, excluding the influence of other lags.
- The PACF helps to determine the appropriate number of lag terms (autoregressive terms) to include in an ARIMA model.

```
# Plot ACF and PACF
plt.figure(figsize=(12, 6))
plt.subplot(121)
plot_acf(data_diff, ax=plt.gca())
plt.title('Autocorrelation Function')
plt.subplot(122)
plot_pacf(data_diff, ax=plt.gca())
plt.title('Partial Autocorrelation Function')
plt.show()
```



```
[73] # Decompose the time series into trend, seasonal, and residual components
    decomposition = seasonal decompose(df['Close'], model='multiplicative', period=30)
    trend = decomposition.trend
    seasonal = decomposition.seasonal
    residual = decomposition.resid
    # Plot the decomposition components
    plt.figure(figsize=(12, 8))
    plt.subplot(411)
    plt.plot(df['Close'], label='Original')
    plt.legend(loc='upper left')
    plt.subplot(412)
    plt.plot(trend, label='Trend')
    plt.legend(loc='upper left')
    plt.subplot(413)
    plt.plot(seasonal, label='Seasonality')
    plt.legend(loc='upper left')
    plt.subplot(414)
    plt.plot(residual, label='Residuals')
    plt.legend(loc='upper left')
    plt.tight layout()
    plt.show()
```



```
[58] # Split the data into train and test sets
    train data = data diff[:-60]
    test data = data diff[-60:]
    # Plotting
    plt.figure(figsize=(18, 8))
    plt.grid(True)
     plt.xlabel('Dates', fontsize=20)
    plt.ylabel('Closing Prices', fontsize=20)
    plt.xticks(fontsize=15)
    plt.plot(train data, 'g', label='Train data', linewidth=2)
    plt.plot(test data, 'b', label='Test data', linewidth=2)
     plt.legend(fontsize=20, shadow=True, facecolor='lightpink', edgecolor='k')
    plt.show()
```


GETTING THE BEST ARIMA ORDER

```
import itertools
    import statsmodels.api as sm
    # Define the p, d, and q parameters to take any value between 0 and 2
    p = d = q = range(0, 3)
    # Generate all different combinations of p, d, and q triplets
    pdg = list(itertools.product(p, d, q))
    # Grid search for the optimal ARIMA parameters
    best_aic = float("inf")
    best order = None
    for order in pdq:
        try:
            model = sm.tsa.ARIMA(train['Close'], order=order)
            results = model.fit()
            aic = results.aic
            if aic < best aic:
               best aic = aic
                best order = order
        except:
            continue
    print("Best ARIMA order:", best_order)
    print("Best AIC:", best_aic)
→ Best ARIMA order: (0, 1, 0)
    Best AIC: 587.0052552346217
```

```
history = [x for x in train_data]
# Creating and fitting the ARIMA model
model = ARIMA(history, order=(0, 1, 0))
model_fit = model.fit()
# Displaying the model summary
print(model_fit.summary())
```

```
[61] def train arima model(X, y, arima order):
     # prepare training dataset
        history = [x for x in X]
        predictions = list()
         for t in range(len(y)):
             model = ARIMA(history, order=arima order)
             model fit = model.fit()
             vhat = model fit.forecast()[0] # Get the forecast value
             predictions.append(yhat)
             history.append(y[t])
        # calculate out-of-sample error
        rmse = np.sqrt(mean squared error(y, predictions))
        return rmse
```

```
#model evaluation
def evaluate models(dataset, test, p values, d values, q values):
    dataset = dataset.astype('float32')
    best score, best cfg = float("inf"), None
    for p in p values:
        for d in d values:
            for q in q values:
                order = (p, d, q)
                try:
                    rmse = train arima model(dataset, test, order)
                    if rmse < best score:
                        best score, best cfg = rmse, order
                    print('ARIMA%s RMSE=%.3f' % (order, rmse))
                except Exception as e:
                    print(f"Error with order {order}: {e}")
                    continue
    print('Best ARIMA%s RMSE=%.3f' % (best cfg, best score))
```

```
# Prepare the training data
 history = [x for x in train data]
 predictions = list()
 conf list = list()
 for i in range(len(test data)):
     model = ARIMA(history, order=(0,1,0))
     model fit = model.fit()
     fc = model fit.forecast(alpha=0.05) # Get the forecast
     predictions.append(fc[0])
     history.append(test data[i])
 # Convert predictions to a Pandas Series
 fc series = pd.Series(predictions, index=test data.index)
 # Calculate and print RMSE
 rmse = np.sqrt(mean squared error(test data, fc series))
 print(f"RMSE is {rmse}")
```

```
[65] # Iterate through the test data
     for t in range(len(test data)):
         model = SARIMAX(history, order=(0, 1, 0), seasonal order=(0, 0, 0, 0))
         model fit = model.fit(disp=False)
         fc = model fit.forecast()
         predictions.append(fc[0])
         history.append(test data[t])
     # Convert predictions to a Pandas Series
     fc series = pd.Series(predictions, index=test data.index)
     # Calculate and print RMSE
     rmse = np.sqrt(mean squared error(test data, fc series))
     print('RMSE of SARIMA Model:', rmse)
```

T RMSE of SARIMA Model: 1.6484481633429833

ACTUAL VS PREDICTED GRAPH

```
plt.figure(figsize=(18, 8))
plt.title('Forecast vs Actual', fontsize=25)
plt.plot(range(60), predictions, label='Predictions', linewidth=4)
plt.plot(range(60), test_data, label='Close', linewidth=4)
plt.legend(fontsize=25, shadow=True, facecolor='lightpink', edgecolor='k')
plt.show()
```


THANK YOU!!