

Equal information sets for player 1

We can do the same for player 2: for this we need identical earl and history.

bleause player does not know the courd of apponent

$$P_{r}\left(\left.\begin{array}{c}K\right|Q_{b}\right)=\frac{P_{r}.\text{ that }P_{1}\text{ would }b\text{ if}}{\text{he was dealt a }K}=\frac{\frac{1}{2}\cdot\frac{2}{3}}{\frac{1}{2}\cdot\frac{2}{3}}$$

$$P_{r}.\text{ that }P_{1}\text{ would }b$$

$$\text{overall}$$

$$\text{overall}$$

$$\text{overall}$$

$$\text{overall}$$

$$\text{overall}$$

of getting to this node

$$P_r(k|Q_p) = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{3} + \frac{1}{2} \cdot \frac{2}{3}} = \frac{1}{3}$$

$$P_{r}(k|J_{6}) = \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{3} \cdot \frac{2}{3} + \frac{1}{3} \cdot \frac{1}{3}} = \frac{\frac{2}{6}}{\frac{2}{3} + \frac{1}{16}} = \frac{4}{7}$$

$$p_r(K|J_P) = \frac{\frac{1}{2} \cdot \frac{1}{3}}{\frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{1}{2}} = \frac{\frac{1}{6}}{\frac{1}{6} + \frac{1}{1}} = \frac{2}{5}$$

$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}} + \frac{1}{2} \cdot \frac{1}{3}$$
Let if K
$$= \frac{\frac{1}{2} \cdot \frac{2}{3}}{\frac{1}{2} \cdot \frac{2}{3}} + \frac{1}{2} \cdot \frac{1}{3} \cdot \cdot$$

onex.	
$\frac{1}{2} \left[\frac{1}{2} 2 + \frac{1}{2} 4 \right] + \frac{1}{2} \left[0 \cdot 2 + \frac{1}{2} + 1 \right]$	
1 2 32 + 1 1 + 1 [1 3 . 2 + 31]	

_	strategy			
_	1	bet	pass	
	K	યઝ	1/3	
(३	1/2	1/2	
	7	1/3	2/3	
K	Pb	1	0	
Q	PB	1/2	1/2	
J	Pb	0	7	

		• •			
belie	rs	wtil	itus		
Н	L	let	barr		
112	1/2	514	3/2	4/3	
1/2	1/2	-1/2	-1/3	-2[13	
1/2	1/2	-5/4	-1	-13/12	
2/3	1/3	+ 2	-1	+2	
3/4	1/4	→ ³ / ₄ ·(-2)+ ¹ / ₄ ·2 -1	-1	 -1	
3/5	2/5	-2	-1	-1	İ

there will be
$$P_2$$
 bets with J cancilled out after pass (only for this game)
$$P(K|Qpb) = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot 1}{\frac{1}{2} \cdot \frac{1}{2} \cdot 1 + \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3}} = \frac{3}{4}$$

Pr(Q|Kpb) =

P2 bets with Q

3 5	

$$P(Q|KP) = \frac{\frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{2}{3}} = \frac{3}{7}$$

beliefs ntilities

H L let pass,

3/5
$$2/5$$
 +2 -1 |+2 |

3/7 $4/7$ |+/14 +1 |

 $4/7$ |

 $4/3$ | $4/3$ | $-2/3$ |-1 | $-\frac{5}{6}$ |

 $4/3$ | $2/3$ | 6 | $+1/3$ | $-1/9$ |

 $4/4$ | $3/7$ | -2 | -1 | -1 |

2/5

$$\frac{1}{2} \cdot \frac{2}{3} \cdot 1 + \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{2}{3}$$

$$-1 \left(-\frac{5}{6}\right)$$

$$+\frac{1}{3} \left(-\frac{1}{9}\right) = \frac{2}{3} \cdot (-2) + \frac{1}{3} \cdot (+2) = -\frac{2}{3}$$

$$\frac{3}{4} \left(\frac{1}{4} \cdot 2 + \frac{1}{2} \cdot 1\right) + \frac{1}{4} \left(3 \cdot 4\right) = \frac{17}{19}$$

$$-1 \left(-\frac{3}{3} \cdot (-1) + \frac{1}{3} \cdot (-1) - -1\right)$$

$$\frac{1}{3} \left(-2\right) + \frac{2}{3} \left(-\frac{1}{2}\right) = 0$$

$$-1 \left(-\frac{3}{1}\right) = \frac{1}{2} \left(-\frac{1}{2}\right) + \frac{3}{4} \left(-\frac{1}{2}\right) = -2$$

$$\frac{2}{5} \left(-2\right) + \frac{3}{5} \left(\frac{1}{2} \cdot 12\right) + \frac{1}{2} \cdot (4) = -\frac{11}{6}$$