Special Topics on Basic EECS I VLSI Devices Lecture 5

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Effective DOS

 N_c (cm⁻³) N_{ν} (cm⁻³) 2.8x10¹⁹ Silicon 1.04×10^{19} $4.7x10^{17}$ $7.0x10^{18}$ Gallium arsenide $6.0x10^{18}$ Germanium 1.04×10^{19}

Now we know that

$$n=2g\left(rac{2\pi k_BT}{h^2}
ight)^{1.5} (m_l m_t^2)^{0.5} \exp\left(-rac{E_c-E_f}{k_BT}
ight)$$
 (Hu's boo

 N_c and N_v (Hu's book)

- With the effective DOS,

Dimension?
$$N_c = 2g \left(\frac{2\pi k_B T}{h^2}\right)^{1.5} (m_l m_t^2)^{0.5}$$

Taur, Eq. (2.10)

-The electron density can be simply written as

$$n = N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right)$$

Taur, Eq. (2.9)

– Following a similar derivation, $p = N_v \exp\left(\frac{E_v - E_f}{k_B T}\right)$

Taur, Eq. (2.11)

Intrinsic carrier concentration

• In this case, n = p. Then, what is E_f ?

$$N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right) = N_v \exp\left(\frac{E_v - E_f}{k_B T}\right)$$

- From the above equation,

$$E_f = \frac{E_c + E_v}{2} - \frac{k_B T}{2} \ln \frac{N_c}{N_v}$$

Taur, Eq. (2.12)

- This energy level is called the intrinsic Fermi level, E_i .
- -In this case,

$$n=p=n_i=\sqrt{N_cN_v}\exp\left(-rac{E_c-E_v}{k_BT}
ight)$$
 Taur, Eq. (2.13)

Its temperature dependence

• Recall that $N_c=2g\left(\frac{2\pi k_BT}{h^2}\right)^{1.5}(m_lm_t^2)^{0.5}$. (N_v has a similar

form.)

 $T^{1.5}$, but it is not dominant.

Intrinsic carrier density (Neamen's book)

Using the intrinsic carrier density,

Carrier densities are expressed as

$$n = n_i \exp\left(-\frac{E_i - E_f}{k_B T}\right)$$

Taur, Eq. (2.14)

$$p = n_i \exp\left(\frac{E_i - E_f}{k_B T}\right)$$

Taur, Eq. (2.15)

- A useful, general relationship is that the product

$$np = n_i^2$$

Taur, Eq. (2.16)

in equilibrium is a constant, independent of the Fermi level position.

Recall that

- We have 7 X 10²³ electrons/cm³ in Si.
 - -At 300 K, only $^{\sim}$ 1.4 X 10^{10} electrons/cm 3 can be found in the conduction band. Only a single elelctron among 5 X 10^{13} electrons occupies the conduction band.
 - -There are 4 moonwalkers among 8.1 X 10⁹ people.

Copper (A good conductor)

- How many conduction electrons in 1 cm³?
 - -Cu: ~ 8.5 X 10^{22} cm⁻³
 - Best for interconnect

Intel

PowerVia

Various ways to supply the power to transistors (Intel, VLSI 2023)

Dopants

- 5 X 10²⁰ impurities / cm³ is 1 % of Si.
 - Find As, P, and B.
 - Find Fe, Cu, Li, Zn, Mn, and Ni. (Undesirable)

Impurity levels in Si (Sze's book)

Fermi level in extrinsic silicon

- Charge neutrality
 - For an n-type bulk material at equilibrium,

$$p - n + N_d - N_d f_D(E_d) = 0$$

- It is known that

$$f(E_d) = \frac{1}{1 + \frac{1}{2} \exp\left(\frac{E_d - E_f}{k_B T}\right)}$$

Due to the spin degeneracy

Taur, Eq. (2.17)

Taur, Eq. (2.18)

Discussion

- Let me try to explain the reason.
 - We must start from the Fermi-Dirac distribution...

Equation for the Fermi level

• Assume N_d and E_d are given. Then,

Assume
$$N_d$$
 and E_d are given. Then,
$$N_v \exp\left(\frac{E_v - E_f}{k_B T}\right) - N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right) + \frac{N_d}{1 + 2 \exp\left(-\frac{E_d - E_f}{k_B T}\right)}$$

= 0

Taur, Eq. (2.19)

- For shallow donor impurities,

$$-N_c \exp\left(-\frac{E_c - E_f}{k_B T}\right) + N_d = 0$$

$$E_c - E_f = k_B T \ln \frac{N_c}{N_d}$$

Taur, Eq. (2.20)

– Hole density,
$$p = \frac{n_i^2}{N_d}$$

Consider a deep donor state.

	N_c (cm ⁻³)	N_v (cm ⁻³)
Silicon	2.8x10 ¹⁹	1.04x10 ¹⁹

- Assume N_d is 10^{17} cm⁻³ and T is 300 K.
 - Now, draw E_f and $(1 f_D(E_d))$ as a function of E_d .

Ionization ratio

Incomplete dopant ionization

• @ high dopant densities

doping concentration (cm⁻³)
Ionization ratio for P, B, and As
(Schenk et al., SISPAD 2006) GIST Lecture

Dopant freeze-out

• @ low temperatures

Comparison of the incomplete ionization models at various temperatures (Jin et al., SISPAD 2021)

Thank you!