Список теоретических вопросов экзаменационных билетов по курсу «ЭЛЕКТРОДИНАМИКА»

(список не содержит задач, которые будут включены в билеты в качестве отдельного задания, а также дополнительных заданий для студентов, не имеющих положительной оценки по итогам коллоквиума).

Направление «Радиофизика» (экзамен, 2021–2022 уч. г.)

- 1. Описание переменного электромагнитного поля в общем случае. Дифференциальные уравнения второго порядка для электрического и магнитного полей.
- 2. Описание переменного электромагнитного поля с помощью скалярного и векторного потенциалов. Градиентная инвариантность. Условие калибровки Лоренца.
- 3. Волновые уравнения для потенциалов. Вектор Герца. Магнитные потенциалы.
- 4. Гармонические процессы. Комплексная запись полей и уравнений Максвелла. Комплексная диэлектрическая проницаемость. Связь комплексных полей с потенциалами.
- 5. Комплексная теорема Пойнтинга.
- 6. Теорема единственности решения уравнений Максвелла для гармонических полей.
- 7. Квазистационарные процессы в проводящих средах. Распределение переменных полей и токов в проводящем полупространстве. Скин-эффект.
- 8. Граничное условие Леонтовича. Энергетические соотношения при скин-эффекте.
- 9. Квазистационарные процессы в квазилинейных цепях с сосредоточенными параметрами. Возможность пренебрежения запаздыванием передачи взаимодействия и выделение зоны квазистатики.
- 10. Законы Кирхгофа для цепей с переменными токами.
- 11.Однородные плоские волны в непоглощающей изотропной среде. Дисперсионное соотношение. Поляризация волны, длина волны, фазовая скорость, характеристический импеданс, плотность потока энергии.
- 12. Неоднородные плоские волны в непоглощающей изотропной среде (волны с комплексным волновым вектором). Дисперсионное соотношение. Поляризация волны, длина волны, фазовая скорость, поперечный характеристический импеданс, плотность потока энергии.
- 13.Плоские волны в поглощающей изотропной среде. Выражение для комплексного волнового числа при наличии поглощения.
- 14. Неоднородная плоская волна как суперпозиция двух однородных плоских волн. Поляризация поля, длина волны, фазовая скорость, поперечный характеристический импеданс, плотность потока энергии.
- 15. Конструирование поля в волноводе из однородных плоских волн (на примере волн типа ТЕ прямоугольного волновода).
- 16. Представление поля электромагнитного волнового пучка в виде суперпозиции однородных плоских волн. Квазиоптический пучок. Зона геометрической оптики. Зона Френеля и диффузионная зона.
- 17. Уравнение поперечной диффузии (параболическое уравнение) для амплитуды волнового пучка и его решение.
- 18. Изотропные среды с временной дисперсией. Связь между индукцией и напряженностью поля. Мощность джоулевых потерь в среде с временной дисперсией.
- 19. Квазимонохроматические процессы. Энергия поля в среде с временной дисперсией.
- 20. Распространение импульсного сигнала в среде с временной дисперсией. Групповая скорость.

- 21. Диффузионное уравнение для огибающей импульса в среде с временной дисперсией. Расплывание импульса при распространении.
- 22. Нормальное падение плоской волны на плоскую границу раздела двух сред. Выражения для коэффициентов отражения и прохождения.
- 23. Формула пересчета импеданса. Коэффициент отражения от плоскопараллельной пластины.
- 24. Законы отражения и преломления плоских волн на плоской границе раздела двух однородных сред (закон Снелля).
- 25. Наклонное падение плоских волн на плоскую границу раздела двух сред. Выражения коэффициентов отражения и прохождения через поперечные волновые импедансы (формулы Френеля).
- 26. Эффект Брюстера. Угол Брюстера.
- 27.Полное внутреннее отражение. Возникновение неоднородных плоских волн при полном отражении.
- 28. Уравнения, описывающие волны ТЕ-типа в плоскослоистой среде с плавно меняющимися параметрами. ВКБ приближение.
- 29. Функция Грина неоднородного волнового уравнения при произвольной зависимости от времени.
- 30. Функция Грина и общее решение неоднородного волнового уравнения при гармонической зависимости от времени. Представление векторного потенциала в виде интеграла по области источников. Условие излучения.
- 31. Общее решение неоднородного волнового уравнения при произвольной зависимости от времени. Представление потенциалов в виде интегралов по области источников.
- 32. Элементарный электрический вибратор (диполь Герца). Общее выражение для поля излучения. Структура поля в квазистатической и волновой зонах.
- 33. Диаграмма направленности излучения по мощности. Сопротивление излучения. Выражения для диаграммы направленности, полной мощности излучения и сопротивления излучения элементарного электрического вибратора.
- 34. Элементарный магнитный диполь. Структура поля в волновой зоне, диаграмма направленности и полная мощность излучения. Сопротивление излучения кругового витка малых электрических размеров.
- 35.Общее представление поля излучения произвольной системы заданных гармонических токов в дальней зоне. Вектор излучения.
- 36.Основные характеристики направленности излучающей системы (диаграмма направленности, коэффициент направленного действия). Общее выражение для диаграммы направленности излучения произвольной системы гармонических токов.

МИНИМАЛЬНЫЙ НАБОР ЗАДАЧ ПО КУРСУ «ЭЛЕКТРОДИНАМИКА»

В.Б. Гильденбург, М.А. Миллер «Сборник задач по электродинамике», М.: Физматлит, 2001:

```
6.8, 6.9 (a, б, в), 6.10, 6.11, 6.12, 6.13, 6.14;
```

7.1, 7.2, 7.3, 7.5, 7.7, 7.13, 7.14, 7.15;

8.1, 8.2, 8.3;

9.7, 9.8, 9.9