Assignment 2

Deadline: Friday, 29th May (23:59)

15th May, 2020

Question 1 - Neural Codes for Image Retrieval (10pt):

Use the representations learned by a convolutional neural network (ConvNet) for image retrieval, as proposed in

A. Babenko, A. Slesarev, A. Chigorin, V. Lempitsky, *Neural Codes for Image Retrieval*, ECCV, 2014 (https://arxiv.org/abs/1404.1777).

You can use the Jupyter notebook 2IMM10_Assignment_2_1.ipynb, which already downloads, loads and pre-processes the data, and provides some helper functions. Write your code between all two consecutive occurrences of "# ...". See the text cells in the notebook for additional information.

Tiny Imagenet Use the training set of Tiny Imagenet, consisting of 200 classes, with 500 images per class (total 100,000 images), each image being of dimensions 64×64 RGB. The Jupyter notebook already gets the data for you, and also performs the following steps.

- Split the 200 classes into two sets, one containing 190 classes and the other containing the remaining 10 classes.
- Shuffle the set with 190 classes and divide it into training, validation, and test sets, according to the proportions 80/10/10.
- The set with the remaining 10 classes serves as *out-of-domain* (ood) data, used for image retrieval.
- Normalize pixel values to [0, 1].

Train ConvNet Reproduce the ConvNet architecture from Babenko et al., with two exceptions: For Layer 1, use kernel size 4×4 (instead of 11×11) and stride 1 (instead of 4). For the hidden fully connected layers, Layer 6 and Layer 7, use 2048 units (instead of 4096).

- Implement the model in Keras.
- Train it by optimizing *cross-entropy* with the *Adam* optimizer, using a learning rate of 0.0001 and a *batch size* of 100. Set the flag *amsgrad* to *True*.
- Evaluate and report the train, validation and test performance, in terms of cross-entropy, classification accuracy and top-5 classification accuracy.
- Name two techniques which would likely improve the test accuracy.

¹https://tiny-imagenet.herokuapp.com/

Image Retrieval Use the trained ConvNet to perform image retrieval on the ood data. When using a certain image as query image, the remaining 4,999 should serve as a retrieval date base.

- Obtain neural codes for each image in the ood data. Use the same 3 layers for neural codes which were used in the paper by Babenko et al.²
- Normalize the codes to have unit length.
- For the first 10 images in the ood set, find the respectively 5 closest³ images in the data base. Plot the query image next to the 5 retrieved images (sorted from most to least similar) and mark the images which have the same class as the query image (see Fig. 2 and 3 in the paper).
- What are the qualitative differences between the different layers for neural codes?
- Compute and report the *mean average precision* (mAP) over the whole ood set, for each of the 3 layers.
- Do the observed mAP values (roughly) confirm the observations by Babenko et al.?

Question 2 - Peer review (0pt):

Finally, each group member must write a single paragraph outlining their opinion on the work distribution within the group. Did every group member contribute equally? Did you split up tasks in a fair manner, or jointly worked through the exercises? Do you think that some members of your group deserve a different grade from others?

²The Jupyter notebook already provides functions to get these codes.

³Hint: You might want to exploit the relation between inner products and Euclidean distances.