Notes

9 février, 2015

hypergraph H is a set V called the vertex set together with nonempty subsets of V called edges.

example

- 1. every graph is a hypergraph. in a graph all edges are size 2.
- 2. $H:V=\{1,2,3,4\}, E=\{\{1,2,4\},\{2,3,4\},\{3,4,5\}\}$

if each edge has the same size then they are called k-uniform. degree still makes sense,as does multi vs simple

we can associate a bipartite graph to any hypergraph

the bipartite graph of H has partites V and E, it has edges from v_i to e_j if $v_i \in e_j$

question

can we construct a hypergraph out of a bipartite graph? no in general. restriction: cannot have an isolated vertex on the edge side of hypergraph. $\{\text{hypergraphs}\} \leftrightarrow \{\text{hypergraphs}\ \text{w/ no isolated right side vertices}\}$

adjacency matrices

they still exist

a hypergraph H = (V, E) is an $|V| \times |E|$ matrix A(H) such that $a_{ij} = 1$ if $v_i \in e_j$ or else $a_{ij} = 0$

example:

the transpose of A(h) has another hypergraph associated to it called the dual of H. Denoted H^* . note $H^{**} = H$.

question:

how do hypergraph adjacency matrices compare to "regular" adjacency matrices? hypergraph: no symmetry, $A^T(H) \neq A(H)$ and $H^* \neq H$ graph: $A^T(G) = A(G)$, $G^* = G$ it turns out that the matrices are very different.