Correction de l'examen national du physique chimie

Section sciences expérimentales Option physique chimie session normale 6 juillet 2020 Exercice I : (7 points)

Partie I : Etude d'une solution aqueuse d'ammoniac : Prof : M NABBOU Mohamed

1) Dosage de la solution S_h :

1-1 : L'équation de la réaction de dosage est : $NH_{3(aq)} + H_3O_{(aq)}^+ \longrightarrow NH_{4(aq)}^+ + H_2O_{(l)}$

1-2: A l'équivalence : $n_b(NH_3) = n_a(H_3O^+)$

Donc: $C_b.V_b = C_a.V_{aE}$

1-3: On a: $C_b \cdot V_b = C_a \cdot V_{aE}$ donc: $C_b = \frac{C_a \cdot V_{aE}}{V_b}$

A.N : Graphiquement à l'équivalence $V_{aE} = 15 mL$

 $C_b = \frac{10^{-2}.15}{15}$ \Rightarrow $C_b = 10^{-2} mol.L^{-1}$

On a dilué la solution S_0 100 fois pour obtenir la solution S_b donc : $C_0 = 100.C_b$

 $A.N: C_0 = 1 mol.L^{-1}$

1-4 : Graphiquement le pH à l'équivalence est : $pH_E \simeq 6$

Donc : l'indicateur coloré adéquat pour ce dosage est le rouge de méthyle car le pH à l'équivalence appartient à sa zone de virage.

2) Etude de la solution S_b :

2-1 : L'équation de la réaction entre l'ammoniac et l'eau :

 $NH_{3(aq)} + H_2O_{(l)} \Longrightarrow NH_{4(aq)}^+ + HO_{(aq)}^-$

2-2 : On a : $\left[H_3O^+\right]_{\acute{e}q}$. $\left[HO^-\right]_{\acute{e}q}=K_e$ (le produit ionique de l'eau)

A.N: $[HO^{-}]_{\acute{e}q} = 3,98.10^{-4} mol.L^{-1}$

Equation de la réaction		$NH_{3(aq)}$ +	$H_2O_{(l)}$	$\longrightarrow NH_{4(aq)}^+$	$+$ $HO_{(aq)}^{-}$			
Etat du système	Avancement de la réaction	Quantité de matières en (mol)						
Etat initial	0	$C_b.V$	En excès	0	0			
Etat intermédiaire	х	$C_b.V-x$	En excès	x	х			
Etat final	$\mathcal{X}_{ ext{max}}$	$C_b.V - x_{\acute{e}q}$	En excès	$\mathcal{X}_{\acute{e}q}$	$X_{\acute{e}q}$			

2-3 : Le taux d'avancement final de cette réaction est :
$$\tau = \frac{x_{\acute{e}q}}{x_{\text{max}}}$$

Le tableau d'avancement est le suivant :

D'après le tableau d'avancement :
$$n_{\acute{e}q}(HO^-) = x_{\acute{e}q} = [HO^-]_{\acute{e}q}.V$$

On suppose que la réaction est totale et puisque l'eau est en excès alors le réactif limitant est l'ammoniac NH_3 c-à-d: $C_b \cdot V - x_{max} = 0 \implies x_{max} = C_b \cdot V$

Donc:
$$\tau = \frac{\left[HO^{-}\right]_{\ell q}}{C_{b}}$$

Donc:
$$\tau = \frac{[HO^-]_{\acute{e}q}}{C_b}$$
 A.N: $\tau = \frac{3.98.10^{-4}}{10^{-2}}$ $\Rightarrow \tau = 3.98.10^{-2} = 3.98\%$

2-4 : Le quotient de la réaction à l'équilibre est :

$$Q_{r,\acute{e}q} = \frac{\left[NH_{4}^{+}\right]_{\acute{e}q}.\left[HO^{-}\right]_{\acute{e}q}}{\left[NH_{3}\right]_{\acute{e}q}}$$

D'après le tableau d'avancement on a : $n_{\acute{e}q}(NH_4^+) = n_{\acute{e}q}(HO^-) = x_{\acute{e}q} \Rightarrow$

$$\left[NH_{4}^{+}\right]_{\acute{e}q} = \left[HO^{-}\right]_{\acute{e}q} = \frac{x_{\acute{e}q}}{V} \text{ et } \left[NH_{3}\right]_{\acute{e}q} = \frac{C_{b}.V - x_{\acute{e}q}}{V} = C_{b} - \frac{x_{\acute{e}q}}{V} = C_{b} - \left[HO^{-}\right]_{\acute{e}q}$$

Donc:
$$Q_{r,\acute{e}q} = \frac{\left[HO^{-}\right]_{\acute{e}q}^{2}}{C_{b} - \left[HO^{-}\right]_{\acute{e}q}^{2}} \qquad \text{A.N}: Q_{r,\acute{e}q} = \frac{(3,98.10^{-4})^{2}}{10^{-2} - 3,98.10^{-4}}$$

A.N:
$$Q_{r,éq} = \frac{(3,98.10^{-4})^2}{10^{-2} - 3,98.10^{-4}}$$

$$Q_{r,\acute{e}q} = 1,65.10^{-5}$$

2-5: La valeur du pK_A du couple NH_4^+/NH_3 :

Prof: M NABBOU Mohamed

On a :
$$Q_{r,\acute{e}q} = \frac{\left[NH_4^+\right]_{\acute{e}q} \cdot \left[HO^-\right]_{\acute{e}q}}{\left[NH_3\right]_{\acute{e}q}}$$
 on multiplie le numérateur et le dénominateur par $\left[H_3O^+\right]_{\acute{e}q}$

$$Q_{r,\acute{e}q} = \frac{\left[NH_{4}^{+}\right]_{\acute{e}q} \cdot \left[HO^{-}\right]_{\acute{e}q}}{\left[NH_{3}\right]_{\acute{e}q}} \times \frac{\left[H_{3}O^{+}\right]_{\acute{e}q}}{\left[H_{3}O^{+}\right]_{\acute{e}q}} \quad \text{donc}: Q_{r,\acute{e}q} = \frac{K_{e}}{K_{A}} \quad \Rightarrow \quad K_{A} = \frac{K_{e}}{Q_{r,\acute{e}q}}$$

Donc:
$$pK_A = -\log K_A = -\log \frac{K_e}{Q_{r,eq}}$$
 A.N: $pK_A = -\log \frac{10^{-14}}{1,65.10^{-5}}$

$$pK_A = 9,2$$

Partie 2 : Etude de la pile argent-chrome

- 1) L'anode c'est l'électrode à côté de la quelle il y a oxydation (perte d'électrons) donc la masse de cette électrode diminue, dans ce cas c'est l'électrode de chrome.
- 2) le schéma conventionnel de la pile :

$$(-)Cr|Cr^{3+}$$
 :: $Ag^+|Ag(+)$

3) A l'anode : oxydation anodique

$$Cr_{(s)} \Longrightarrow Cr_{(aq)}^{3+} + 3e^{-}$$

❖ A la cathode : réduction cathodique

$$\left(Ag_{(aq)}^+ + e^- \Longrightarrow Ag_{(s)}\right) \times 3$$

L'équation bilan du fonctionnement de la pile :

$$Cr_{(s)} + 3Ag_{(aq)}^+ \longrightarrow Cr_{(aq)}^{3+} + 3Ag_{(s)}$$

4) On a : la quantité de matière d'électrons échangée est $n(e^{-}) = \frac{Q}{E}$

Equation de la réaction		$Cr_{(s)}$ +	$3Ag_{(aq)}^+$	$\rightarrow Cr_{(aq)}^{3+}$	$+$ $3Ag_{(s)}$	
Etat du système	Avancem- ent de la réaction	Quantité de matières en (mol)				
Etat initial	0	$n_i(Cr)$	$n_i(Ag^+)$	$n_i(Cr^{3+})$	$n_i(Ag)$	0
Etat intermédia ire	х	$n_i(Cr)-x$	$n_i(Ag^+)-3x$	$n_i(Cr) + x$	$n_i(Ag) + 3x$	3 <i>x</i>
Etat final	$\mathcal{X}_{ ext{max}}$	$n_i(Cr) - x_{\max}$	$n_i(Ag^+)-3x_{\text{max}}$	$n_i(Cr^{3+}) + x_{\text{max}}$	$n_i(Ag) + 3x_{max}$	$3x_{\text{max}}$

Prof: M NABBOU Mohamed

D'après le tableau d'avancement : $n(Cr) = x = \frac{m(Cr)}{M(Cr)}$ quantité de matière du chrome qui réagit.

On sait que le nombre d'électrons échangé est 3, alors $n(e^-) = 3x \Rightarrow x = \frac{n(e^-)}{3} = \frac{m(Cr)}{M(Cr)}$

On a:
$$n(e^-) = \frac{Q}{F}$$
 donc: $\frac{m(Cr)}{M(Cr)} = \frac{Q}{3.F}$ \Rightarrow $m(Cr) = \frac{Q}{3.F}.M(Cr)$

La variation de la masse du chrome est :

$$\Delta m = m_f(Cr) - m_i(Cr) = (m_i(Cr) - m(Cr)) - m_i(Cr) = -m(Cr)$$

D'où:
$$\Delta m = -\frac{Q}{3.F}.M(Cr)$$

A. N:
$$\Delta m = -\frac{5,79}{3 \times 96500} \times 52$$
 $\Rightarrow \Delta m = -1,04.10^{-3} g = -1,04 mg$

Exercice II: (3 points)

- I- 1) B
- 2) *C*
- 3) *C*
- 4) *D*
- 5) *D*

II- 1) La longueur d'onde est la distance entre deux crêtes successives, donc $\lambda = \frac{1}{2} = 0.5cm$

2) La fréquence de l'onde : on a
$$v = \lambda . N$$
 $\Rightarrow N = \frac{v}{\lambda}$ A.N : $N = \frac{0.25}{0.5 \cdot 10^{-2}}$

N = 50Hz.

3) Le retard temporel τ du mouvement de M par rapport à la source est : $\tau = \frac{SM}{v} = \frac{d}{v}$

A.N:
$$\tau = \frac{5.10^{-2}}{0.25}$$
 \Rightarrow $\tau = 0.2s$.

Exercice III: (2,5 points)

Désintégration du polonium 210

1) L'équation de la désintégration du polonium 210 est :

Prof: M NABBOU Mohamed

$$^{210}_{84}Po \longrightarrow ^{A}_{Z}Pb + ^{4}_{2}He$$

D'après les lois de Soddy:

- Conservation de la masse : $210 = A + 4 \implies A = 206$

- Conservation de la charge : 84 = Z + 2 \Rightarrow Z = 82

D'où:
$${}^{210}_{84}Po \longrightarrow {}^{206}_{82}Pb + {}^{4}_{2}He$$

2) 2-1 : L'énergie libérée lors de la désintégration est :

$$E_{lib} = |\Delta E| = 1.955372.10^5 - 1.955318.10^5 \implies E_{lib} = 5,4 MeV$$

2-2: On a:
$$\Delta m = \frac{E_l}{c^2} = \frac{1,971820.10^5 - 1,955372.10^5}{c^2} = 1644,8 MeV.c^{-2}$$

Donc:
$$\Delta m = \frac{1644.8}{931.5} = 1,766u$$
 ou $\Delta m = 1,766 \times 1,66.10^{-27} = 2,93.10^{-27} kg$

3) La constante radioactive est donnée par la relation :
$$\lambda = \frac{\ln 2}{t_{1/2}}$$

A.N:
$$\lambda = \frac{\ln 2}{138 \times 24 \times 3600}$$
 $\Rightarrow \lambda \approx 5.8.10^{-8} \text{ s}^{-1}$

4) On sait que : $a_1 = a_0 e^{-\lambda t_1}$ (loi de décroissance radioactive)

Donc:
$$\frac{a_1}{a_0} = e^{-\lambda . t_1} \implies \ln\left(\frac{a_1}{a_0}\right) = -\lambda . t_1 \implies \ln\left(\frac{a_0}{a_1}\right) = \lambda . t_1$$

D'où:
$$t_1 = \frac{\ln(a_0/a_1)}{\lambda}$$

D'où:
$$t_1 = \frac{\ln(a_0 / a_1)}{2}$$
 A.N: $t_1 = \frac{\ln(a_0 / a_1)}{2}$

Exercice IV : (5 points)

I- Réponse d'un dipôle RL à un échelon de tension

1) D'après la loi d'additivité des tensions :

$$u_L + u_R = E \implies L\frac{di}{dt} + ri + Ri = E \implies L\frac{di}{dt} + (R+r)i = E$$

On divise par
$$L$$
 d'où : $\frac{di}{dt} + \frac{R+r}{L}i = \frac{E}{L}$

2) Lorsque le régime permanent est atteint on a :

$$i(t = \infty) = I_p = Cte \implies \frac{di}{dt} = 0$$

On a:
$$u_L = L \frac{di}{dt} + ri$$

En régime permanent : $u_L(\infty) = rI_P$

Donc:
$$r = \frac{u_L(\infty)}{I_p}$$

D'après la courbe (C_1) on a : $I_P = 100mA$

D'après la courbe (C_2) $u_L(\infty) = 1V$

$$A.N: r = \frac{1}{100.10^{-3}} \implies \boxed{r = 10\Omega}$$

On sait que :
$$\tau = \frac{L}{R+r}$$
 donc : $L = \tau \cdot (R+r)$

$$A.N: L = 0.01 \times (90 + 10) \implies \boxed{L = 1H}$$

II- Décharge d'un condensateur dans un dipôle RL

- Le régime mis en évidence par la courbe de la figure
 4 est pseudopériodique.
- 2) D'après la loi d'additivité des tensions :

$$u_L + u_R + u_C = 0 \implies L\frac{di}{dt} + ri + Ri + u_C = 0$$

On sait que :
$$\begin{cases} i = \frac{dq}{dt} \\ q = C.u_C \end{cases} \Rightarrow \begin{cases} i = C\frac{du_C}{dt} \\ \frac{di}{dt} = C\frac{d^2u_C}{dt^2} \end{cases}$$

D'où:
$$LC \frac{d^2 u_C}{dt^2} + (R+r)C \frac{du_C}{dt} + u_C = 0$$

Prof: M NABBOU Mohamed

Donc:

$$\frac{d^2u_C}{dt^2} + \frac{R+r}{L}\frac{du_C}{dt} + \frac{1}{LC}u_C = 0$$

Prof: M NABBOU Mohamed

3) On a:
$$T \simeq T_0 = 2\pi\sqrt{LC}$$
 \Rightarrow $T^2 = 4\pi^2.LC$

Donc:
$$C = \frac{T^2}{4\pi^2 \cdot L}$$
 graphiquement: $T = 10ms$

A.N:
$$C = \frac{(10.10^{-3})^2}{4 \times 10 \times 1}$$
 $\Rightarrow C = 2,5.10^{-6} F = 2,5 \mu F$

$$\Rightarrow C = 2.5.10^{-6} F = 2.5 \mu F$$

III-Entretien des oscillations dans un circuit RLC série.

1) D'après d'additivité des tensions :

$$u_G = u_L + u_R + u_C \implies ki = L\frac{di}{dt} + ri + Ri + u_C$$

$$\Rightarrow L\frac{di}{dt} + (R+r-k)i + u_C = 0$$

$$\Rightarrow LC \frac{d^2 u_C}{dt^2} + (R + r - k)C \frac{du_C}{dt} + u_C = 0$$

Donc:
$$\frac{d^2 u_C}{dt^2} + \frac{(R+r-k)}{L} \frac{du_C}{dt} + u_C = 0$$

Pour obtenir des oscillations sinusoïdales il faut que : R + r - k = 0 donc : $k = R + r = 100\Omega$

L'unité de k dans le système international est : Ω

2) On a:
$$i(t) = I_m \cos\left(\frac{2\pi}{T_0}t + \varphi\right)$$

Graphiquement:

$$I_m = 8mA$$

❖
$$T_0 = 10ms$$

$$A t = 0$$
, $i(0) = I_m \cos \varphi = 0 \implies \varphi = \pm \frac{\pi}{2}$

$$\frac{di}{dt} = -I_m \frac{2\pi}{T_0} \sin\left(\frac{2\pi}{T_0}t + \varphi\right) \qquad A \ t = 0 : \left(\frac{di}{dt}\right)_{t=0} = -I_m \frac{2\pi}{T_0} \sin\varphi\langle 0 \quad \text{donc} : \sin\varphi\rangle 0 \quad \text{d'où start}$$

$$\varphi = +\frac{\pi}{2} rad$$

3) L'énergie totale du circuit est constante :

$$E_{t} = E_{e} + E_{m} = \frac{1}{2}Cu_{C}^{2} + \frac{1}{2}Li^{2}$$

Si
$$u_C = 0$$
 alors $i = \pm I_m$ donc: $E_t = \frac{1}{2}L.I_m^2$

A.N:
$$E_t = \frac{1}{2} \times 1 \times (8.10^{-3})^2$$
 $\Rightarrow E_t = 3, 2.10^{-5} J$

4) On a: à
$$t_1 = 16ms$$
 $E_t = E_{e1} + E_{m1}$ \Rightarrow $E_{e1} = E_t - \frac{1}{2}Li_1^2$

Graphiquement: à $t_1 = 16ms$ on trouve $i_1 = 4.8mA$

A.N:
$$E_{e1} = 3,2.10^{-5} - \frac{1}{2} \times 1 \times (4,8.10^{-3})^2$$
 \Rightarrow $E_{e1} = 2,048.10^{-5} J$

Exercice V: (2,5 points)

- 1) Système étudié : {la bille}
 - Bilan des forces : \vec{P} : le poids
 - \vec{f} : force de frottement fluide.
 - ❖ Application de la deuxième loi de Newton dans un référentiel terrestre considéré Galiléen :

$$\vec{P} + \vec{f} = m.\vec{a}$$

• Projection sur l'axe $(O, \vec{j}): P_y + f_y = m.a_y \Rightarrow mg - k.v = m.\frac{dv}{dt}$

$$\boxed{\frac{dv}{dt} + \frac{k}{m}v = g}$$

$$v_l = \frac{mg}{k}$$

- 3) Graphiquement: $v_l = 1,5m.s^{-1}$
- 4) On a : $g = 10m.s^{-2}$ et $m = 2,5.10^{-2}kg$

$$\frac{k}{m} = \frac{g}{v_l} = \frac{10}{1.5} = 6,67s^{-2}$$

Donc:
$$\frac{dv}{dt} = 10 - 6,67.v$$

5) On sait que :
$$a_i = 10 - 6,67.v_i$$
 et $a_i = \frac{v_{i+1} - v_i}{\Delta t}$ donc : $v_{i+1} = a_i.\Delta t + v_i$

5-1:
$$a_1 = 10 - 6,67.v_1$$
 A.N: $a_1 = 8,9995m.s^{-2} \approx 9m.s^{-2}$

$$v_3 = a_2 \cdot \Delta t + v_2$$
 A.N: $v_3 = 0,4065 m.s^{-1}$