A Probabilistic Graph Coupling View of Dimension Reduction

Hugues Van Assel*, Thibault Espinasse[†], Julien Chiquet[‡] and Franck Picard* ★: ENS Lyon, †: Institut Camille Jordan Lyon 1, ‡: INRAE, UMR MIA Paris-Saclay

Keywords: Probabilistic Modeling, Dimension Reduction, Random Graphs, Graphical Models

Dimension Reduction

$$oldsymbol{X} \in \mathbb{R}^{n imes p}
ightarrow oldsymbol{Z} \in \mathbb{R}^{n imes q}$$

Spectral methods. Performs an eigendecomposition of a kernel matrix. These methods can be framed in the kernel PCA framework:

- Linear : PCA, MDS
- Non-linear: Laplacian Eigenmaps, Isomap, LLE, Diffusion maps etc...

SNE-like methods. Defines similarities in both input and latent spaces and matches them through a non-convex loss optimized by gradient descent.

• SNE, t-SNE, UMAP, largeVis

Is there a common probabilistic model?

Graph Coupling Model

General Idea

Applying Bayes rule:

$$\mathbb{P}(oldsymbol{G}_X|oldsymbol{X}) \propto \underbrace{\mathbb{P}(oldsymbol{X}|oldsymbol{G}_X)}_{ ext{Likelihood}} \underbrace{\mathbb{P}(oldsymbol{G}_X)}_{ ext{Prior}}$$

- The likelihood takes the same form across all the DR methods but can sometimes be degenerate.
- What characterize each method are the priors considered for the latent structuring graphs G_X and G_Z .

Pairwise Markov Random Field Likelihood

$$\mathbb{P}(oldsymbol{X}|oldsymbol{G}_X) \propto \prod_{\substack{i \in S_X \ i \sim j}} \Psi_{ij}(oldsymbol{X}_i, oldsymbol{X}_j)$$

• two nodes that are not connected are conditionally independent given all other nodes.

PCA as Graph Coupling

Let $\nu \geq n$, $\Theta_X \sim \mathcal{W}(\nu, \mathbf{I}_n)$ and $\Theta_Z \sim \mathcal{W}(\nu + p - q, \mathbf{I}_n)$. If Θ_X and Θ_Z structure the rows of respectively \boldsymbol{X} and \boldsymbol{Z} such that:

$$oldsymbol{X} | oldsymbol{\Theta}_X \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Theta}_X^{-1} \otimes oldsymbol{I}_p) \ oldsymbol{Z} | oldsymbol{\Theta}_Z \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Theta}_Z^{-1} \otimes oldsymbol{I}_q)$$

Then the solution of the precision coupling problem:

$$\min_{oldsymbol{Z} \in \mathbb{R}^{n imes q}} \mathrm{KL}(\mathbb{P}(oldsymbol{\Theta}_X | oldsymbol{X}) || \mathbb{P}(oldsymbol{\Theta}_Z | oldsymbol{Z}))$$

is a PCA embedding of \boldsymbol{X} with q components.

SNE-like Methods

Algorithm	Input Similarity	Latent Similarity	Loss Function
SNE	$P_{ij}^D = rac{k_x(oldsymbol{X}_i - oldsymbol{X}_j)}{\sum_\ell k_x(oldsymbol{X}_i - oldsymbol{X}_\ell)}$	$Q_{ij}^D = rac{k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}{\sum_\ell k_z(oldsymbol{Z}_i - oldsymbol{Z}_\ell)}$	$-\sum_{i\neq j} P_{ij}^D \log Q_{ij}^D$
Sym-SNE	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^E = rac{k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}{\sum_{\ell,t} k_z(oldsymbol{Z}_\ell - oldsymbol{Z}_t)}$	$-\sum_{i < j} \overline{P}_{ij}^D \log Q_{ij}^E$
LargeVis	$\overline{P}_{ij}^D = P_{ij}^D + P_{ji}^D$	$Q_{ij}^B = rac{k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}{1 + k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}$	$-\sum_{i < j} \overline{P}_{ij}^D \log Q_{ij}^B + \left(2 - \overline{P}_{ij}^D\right) \log(1 - Q_{ij}^B)$
UMAP	$\widetilde{P}_{ij}^B = P_{ij}^B + P_{ji}^B - P_{ij}^B P_{ji}^B$	$Q_{ij}^B = rac{k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}{1 + k_z(oldsymbol{Z}_i - oldsymbol{Z}_j)}$	$-\sum_{i < j} \widetilde{P}_{ij}^B \log Q_{ij}^B + \left(1 - \widetilde{P}_{ij}^B\right) \log(1 - Q_{ij}^B)$

SNE-like Methods as Graph Coupling

Likelihood with shift-invariant kernels:

$$\mathbb{P}(oldsymbol{X}|oldsymbol{W}) \propto \prod_{ij} k(oldsymbol{X}_i - oldsymbol{X}_j)^{W_{ij}}$$

Integrability If k is \mathbb{R}^p -integrable and bounded above, then $\mathbf{X} \mapsto \prod_{ij} k(\mathbf{X}_i - \mathbf{X}_j)^{W_{ij}}$ is integrable on $(\ker \mathbf{L})^{\perp} \otimes \mathbb{R}^p$ where \mathbf{L} is the graph Laplacian of \mathbf{W} .

Graph Priors: Let $\pi \in \mathbb{R}^{n \times n}$, $\alpha \in \mathbb{R}$, k be a bounded integrable kernel and $\mathcal{P} \in \{B, D, E\}$.

$$\mathbb{P}_{\mathcal{P},k}(\boldsymbol{W};\boldsymbol{\pi},\alpha) \propto \mathcal{C}_k(\boldsymbol{W})^{\alpha} \Omega_{\mathcal{P}}(\boldsymbol{W}) \prod_{(i,j)\in[n]^2} \pi_{ij}^{W_{ij}}$$

where $\Omega_B(\boldsymbol{W}) = \prod_{ij} \mathbb{1}_{W_{ij} \leq 1}$, $\Omega_D(\boldsymbol{W}) = \prod_i \mathbb{1}_{W_{i+}=1}$ and $\Omega_E(\boldsymbol{W}) = \mathbb{1}_{W_{++}=n} \prod_{ij} (W_{ij}!)^{-1}$ and $C_k(\boldsymbol{W}) = \int_{\mathcal{X}} \prod_{i \neq j} k(\boldsymbol{X}_i - \boldsymbol{X}_j)^{W_{ij}} d\boldsymbol{X}$.

If $\mathbf{W} \sim \mathbb{P}_{\mathcal{P},k}(\cdot;\mathbf{1},1)$ then

$$oldsymbol{W} | oldsymbol{X} \sim \mathbb{P}^{\star}_{\mathcal{D}}(\cdot\,; oldsymbol{K})$$
 .

which is defined as:

- if $\mathcal{P} = B$, $\forall (i,j) \in [n]^2$, $W_{ij} \stackrel{\perp}{\sim} \mathcal{B}(K_{ij}/(1+K_{ij}))$.
- if $\mathcal{P} = D$, $\forall i \in [n]$, $\mathbf{W}_i \stackrel{\perp}{\sim} \mathcal{M}(1, \mathbf{K}_i/K_{i+})$.
- if $\mathcal{P} = E$, $\mathbf{W} \sim \mathcal{M}(n, \mathbf{K}/K_{++})$.

For $(\mathcal{P}_X, \mathcal{P}_Z) \in \{B, D, E\}^2$, we retrieve the losses of SNE-like methods as $\mathrm{KL}(\mathbb{P}_{\mathcal{P}_X}^{\star}(\cdot; \boldsymbol{K}_X) || \mathbb{P}_{\mathcal{P}_Z}^{\star}(\cdot; \boldsymbol{K}_Z))$:

$\mathcal{P}_Z,~\mathcal{P}_X$	B	D	E
B	UMAP		
D	LARGEVIS	SNE	SYM-SNE

Large Scale Deficiency

