Parte II. Tablas de verdad y conceptos semánticos

[8 puntos]

Considera las siguientes reglas extra para el conector ∝ que se añaden a la LC:

Reglas de formación extra

rf5. Si ϕ y ψ son fbf's, entonces $(\phi \# \psi)$ es una fbf.

Reglas de interpretación extra

ri7.
$$U(\phi \# \psi) = V \sin U(\phi) = F y U(\psi) = V$$

A continuación, desarrolla los siguientes ítems:

A) Crea la tabla de verdad compartida por ϕ y ψ . Debes consignar, como mínimo, todos los valores de los conectores lógicos. (2 puntos)

ф	¥	(\psi # \psi)
V	V	F
V	F	F
F	V	٧
F	F	F

			φ	ψ
P	Q	R	((P) 7(R=Q)) #(RVP) 17Q))	(((P#7P) 1 (70 #D)) 17R)
٧	٧	V	YVF VVV F VVV F F	VFFFFVVFF
٧	V	F		VFFFFVVFV
V	F	V	VVV VFFF VVVVV	VFFFVFFFF
٧	F	F		VFFFVFFFV
F	V	V	FV F VV F VV F F	FVVV FVV F F
F	V	F		F V V V F Y Y V
F				FVVFVFFFF
F				FVVFVFFFV

A) Responde las siguientes preguntas (2 puntos c/u):

 $\dot{\varepsilon}(\phi \supset \neg(\neg \psi \land \phi))$ es tautológica? De no serlo, señala un contraejemplo.

Respuesta: no es tautológica, ya que (\$ > 7 (74 \ \phi))
en la cuarta fila se puede ver el volor F.

Tabla para el contraejemnlo (de no ser tautológica)

Tabla para

el c	el contraejemplo (de no ser tautologica)						~	~	I I F	100
				1	V	F	F	V	V	1/
P	Q	R	$(\phi \supset \neg(\neg \psi \land \phi))$	0	F	V	V	V	F	F
11	_	F	VFFVVY	1 50 X	F	V	V	F	F	F
V	1		V		F	V	~	V	F	F
					F	V	V	V	F	V

¿ $\{\neg \psi, \neg (\phi \supset \neg \psi)\}$ es consistente? De serlo, señala un ejemplo.

Respuesta: no es consistente, porque no 174 hay al menas una fila donde ambos tengañ V.

Tabla para el ejemplo (de ser consistente)

P	Q	R	$\neg \psi$	$\neg(\phi \supset \neg\psi)$
4	1	E	1 14 14	OF GOLDSTA

 $\dot{\varepsilon}(\neg\phi\land\neg\psi), (\phi\equiv\psi)\div\neg(\neg\phi\supset\psi)$ es válido? De no serlo, señala un

contraejemplo. Respuesta: SI, es volido, ya que no hay hingún caso donde la condición sea V'y la consecuencia F', para que se invalude.

Tabla para el contraejemplo (de ser inválido)

P	Q	R	$(\neg \phi \land \neg \psi)$	$(\phi \equiv \psi)$	$\neg(\neg\phi\supset\psi)$
				17.5	

(70	0 /		(中)=(中)	17	(アウマリ)
	V	V	FVF	Y	VFF
~	V		FYF	V	VFF
V		~	FVF	V	VFF
F	F	~	VFF.	F	FVF
Y		V	t / E	V	V F F
V	FV	F	FFV	F	Y V V
V		V	FVF	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VFF
	1	V	FVF	Y	VFF