Лабораторная работа №4. Интреполяционные многочлены Ньютона и Лагранжа.

Интерполя́ция, интерполи́рование (от лат. inter—polis — «разглаженный, подновлённый, обновлённый; преобразованный») — в вычислительной математике нахождение неизвестных промежуточных значений некоторой функции, по имеющемуся дискретному набору её известных значений, определенным способом. Термин «интерполяция» впервые употребил Джон Валлис в своём трактате «Арифметика бесконечных» (1656).

Рассмотрим систему несовпадающих точек x_i , i = 1..N из некоторой области D. Пусть значения функции f известны только в этих точках: $f(x_i) = y_i$

Задача интерполяции состоит в поиске такой функции F из заданного класса функций, что $F(x_i) = y_i$

Точки x_i , i = 1..N называют узлами интерполяции, а их совокупность — интерполяционной сеткой.

Пары (x_i, y_i) называют точками данных или базовыми точками.

Разность между «соседними» значениями $\Delta x_i = x_i - x_{i-1}$ — шагом интерполяционной сетки. Он может быть как переменным, так и постоянным.

Функцию F(x) — интерполирующей функцией или интерполянтом.

Пусть функция f задана таблицей 1.

Таблица 1 - Значения функции f(x)

x	x_o	x_{\setminus}	 Xn
f(x)	y_0	y_I	 $\mathbf{y}_{\mathbf{n}}$

Построим интерполяционный многочлен $L_n(x)$, степень которого не больше n и для которого выполнены условия

$$F(x_0) = y_0, F(x_1) = y_1, \dots F(x_n) = y_n$$
, (1)

Будем искать $L_n(x)$ в виде

$$L_n(x) = l_0(x) + l_1(x) + l_2(x) + \dots + l_n(x)$$
, (2)

где $l_i(x)$ — многочлен степени n, причем

$$l_i(x_k) = \begin{cases} y_i, & ecnu \ i = k \\ 0, & ecnu \ i \neq k \end{cases}$$
 (3)

Очевидно, что требование (3) с учетом (2) вполне обеспечивает выполнение условий (1).

Многочлены $l_i(x)$ составим следующим способом:

$$l_i(x) = c_i(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{i-1})(x - x_{i+1}) \cdot \dots \cdot (x - x_n), \tag{4}$$

где c_i - постоянный коэффициент, значение которого найдем из первой части условия (3):

$$c_i = \frac{y_i}{(x_i - x_0) * \dots * (x_i - x_{i-1})(x_i - x_{i+1}) * \dots * (x_i - x_n)}$$

(заметим, что ни один множитель в знаменателе не равен нулю).

Подставим c_i в (4) и далее с учетом (2) окончательно имеем:

$$L_n(x) = \sum_{i=0}^{n} y_i * \frac{(x - x_0) * \dots * (x - x_{i-1})(x - x_{i+1}) * \dots * (x - x_n)}{(x_i - x_0) * \dots * (x_i - x_{i-1})(x_i - x_{i+1}) * \dots * (x_i - x_n)}$$
(5)

В общем виде он записывается следующим образом:

$$L_n(x) = \sum_{i=0}^{n} y_i^* \prod_{j=0}^{n} \frac{(x - x_j)}{(x_i - x_j)} \quad npu \quad i \neq j ,$$
 (6)

Это и есть интерполяционный многочлен Лагранжа для неравностоящих узлов.

2.1.1 Пример вычисления значения функции, заданной таблицей в точке с помощью интерполяционного многочлена Лагранжа для неравностоящих узлов

Построить интерполяционный многочлен Лагранжа для функции, заданной таблицей 2

Таблица 2 - Исходные данные

	\mathbf{x}_0	\mathbf{x}_1	X 2
X	1	3	4
f(x)	12	4	6

Из таблицы 2 следует, что n=2 (т. е. степень многочлена будет не выше, чем вторая); здесь $x_o=1$, $x_1=3$, $x_2=4$. Используя формулу (5), получаем:

$$L_2(x) = 12\frac{(x-3)(x-4)}{(1-3)(1-4)} + 4\frac{(x-1)(x-4)}{(3-1)(3-4)} + 6\frac{(x-1)(x-3)}{(4-1)(4-3)} =$$

$$= 2(x^2 - 7x + 12) - 2(x^2 - 5x + 4) + 2(x^2 - 4x + 3) = 2x^2 - 12x + 22$$

Таким образом, приближающая функция для функции f заданной таблицей 2 имеет следующий вид $F(x)=2x^2-12x+22$.

4.2 Интерполяционный полином Ньютона для равноотстоящих узлов

4.2.1 Первая интерполяционная формула Ньютона (интерполяция вперед)

Пусть для функции, заданной таблицей с постоянным шагом, составлена таблица конечных разностей таблица 3.

X	y	Δy_1	$\Delta^2 y_i$	$\Delta^3 y_i$	
\mathbf{x}_{0}	y_0	Δy_0	$\Delta^2 y_0$	$\Delta^3 y_0$	
\mathbf{x}_1	\mathbf{y}_1	Δy_1	$\Delta^2 y_1$	$\Delta^3 y_1$	
X2	y ₂	Δy_2	$\Delta^2 y_2$		
X3	y ₃	Δy_3			
X4	y ₄				

Таблица 3 - Таблица конечных разностей

Будем искать интерполяционный многочлен в виде:

$$P_n(x) = a_0 + a_1(x-x_0) + a_2(x-x_0)(x-x_1) + \dots + a_n(x-x_0) \dots (x-x_{n-1}).$$
 (12)

Это многочлен n-й степени. Значения коэффициентов a_0 , a_1 , ..., a_n найдем из условия совпадения значений исходной функции и многочлена в узлах. Полагая $x=x_0$, из (12) находим $y_o=Pn(x_0)=a_o$, откуда $a_o=y_0$. Далее, придавая x значения x_1 и x_2 , последовательно получаем:

$$y_1 = P_n(x_1) = a_0 + a_1(x_1 - x_0),$$
 откуда
$$a_1 = \frac{y_1 - a_0}{x_1 - x_0} = \frac{y_1 - y_0}{x_1 - x_0} = \frac{\Delta y_0}{h};$$

$$y_2 = P_n(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1),$$

$$a_2 = \frac{y_2 - a_0 - a_1(x_2 - x_0)}{(x_2 - x_0)(x_2 - x_1)} = \frac{y_2 - y_0 - \frac{\Delta y_0 * 2 * h}{h}}{1 * 2 * h^2} = \frac{(y_2 - y_0) - 2y_1 + 2y_0}{2! h^2} =$$

$$= \frac{y_2 - 2y_1 + y_0}{2! h^2} = \frac{\Delta^2 y_0}{2! h^2}$$

Далее, проведя аналогичные выкладки, можно получить:

$$a_3 = \frac{\Delta^3 y_0}{3! h^3},$$

в общем случае выражение для ак будет иметь вид:

$$a_k = \frac{\Delta^k y_0}{k' h^k}. ag{13}$$

Подставим теперь (13) в выражение для многочлена (12):

$$P_n(x) = y_0 + \frac{\Delta y_0}{h}(x - x_0) + \frac{\Delta^2 y_0}{2!h^2}(x - x_0)(x - x_1) + \dots + \frac{\Delta^n y_0}{n!h^n}(x - x_0) \times KK$$

$$\dots \times (x - x_{n-1}). \tag{14}$$

Практически эта формула применяется в несколько ином виде.

Положим,
$$\frac{x-x_0}{h} = t$$
 т. е. $x=x_0+ht$.

Тогда:

$$\frac{x - x_1}{h} = \frac{x - x_0 - h}{h} = t - 1,$$

$$\frac{x - x_2}{h} = \frac{x - x_0 - 2h}{h} = t - 2$$

и т. д.

Окончательно имеем:

$$P_{n}(x) = P_{n}(x_{0} + th) = y_{0} + t\Delta y_{0} + \frac{t(t-1)}{2!}\Delta^{2}y_{0} + \dots + \frac{t(t-1)^{*} \dots * (t-n+1)}{n!}\Delta^{n}y_{0}$$
(14)

Формула (14) называется *первой интерполяционной формулой Ньютона*. Эта формула применяется для интерполирования в начале отрезка интерполяции, когда t мало по абсолютной величине. Первую интерполяционную формулу Ньютона называют по этой причине формулой для интерполирования вперед.

4.2.2. Вторая интерполяционная формула Ньютона (интерполяция назад)

Когда значение аргумента находится ближе к концу отрезка интерполяции, применять первую интерполяционную формулу становится невыгодно. В этом случае применяется формула для интерполирования назад—вторая интерполяционная формула Ньютона, которая отыскивается в виде:

$$P_n(x) = a_0 - a_1(x - x_n) + a_2(x - x_n)(x - x_{n-1}) + \dots + a_n(x - x_n) \times \dots \times (x - x_1), (15)$$

Как и для первой формулы Ньютона, коэффициенты a_0 , a_1 ,... a_n находятся из условия совпадения значений функции и интерполяционного многочлена в узлах интерполяции:

$$a_k = \frac{\Delta^k y_k}{k! \, h^k} \,, \tag{16}$$

Подставляя (16) в (15) и переходя к переменной $\frac{x-x_n}{h} = t$ получим окончательный вид второй интерполяционной формулы Ньютона:

$$P_{n}(x) = P_{n}(x_{n} + th) = y_{n} + t\Delta y_{n-1} + \frac{t(t+1)}{2!} \Delta^{2} y_{n-2} + \Lambda + \frac{t(t+1) \times ... \times (t+n-1)}{n!} \Delta^{n} y_{0}$$
(17)

4.2.3 Пример вычисления значения функции с помощью интеполяционной формулы Ньютона

Пусть функция задана следующей таблицей 4:

Таблица 4 – Исходные данные

X	y
1.215	0.106044
1.220	0.113276
1.225	0.119671
1.230	0.125324
1.235	0.130328
1.240	0.134776
1.245	038759
1.250	0.142367
1.255	0.145688
1.260	0148809

Определить значение функции y(x) при следующих значениях аргумента:

1)
$$x_1 = 1.2273$$
; 3) $x_2 = 1.253$; 2) $x_3 = 1.210$; 4) $x_4 = 1.2638$;

3)
$$x_2 = 1.253$$
:

2)
$$x_3 = 1.210$$
;

4)
$$x_4 = 1.2638$$

Составим таблицу конечных разностей (таблица 5).

Таблица 5 - Таблица конечных разностей

Xi	y _i	Δy_i	$\Delta^2 y_i$	$\Delta^3 y_i$
1.215	0.106044	0.007232	-0.000837	0.000095
1.220	0.113276	0.006395	-0.000742	0.000093
1.225	0.119671	0.005653	-0.000649	0.000093
1.230	0.125324	0.005004	-0.000556	0.000091
1.235	0.130328	0.004448	-0.000465	0.000090
1.240	0.134776	0.0003983	-0.000375	0.000088
1.245	0.138759	0.003608	-0.000287	0.000087
1.250	0.142367	0.003321	-0.000200	-
1.255	0.145688	0.003121	-	-
1.260	0.148809	-	-	-

При составлении таблицы разностей ограничиваемся разностями третьего порядка, так как они практически постоянны.

Вычислим значения функции в заданных точках.

Для вычисления значений функции при х = 1,2273 и х = 1,210 воспользуемся формулой Ньютона для интерполирования вперед:

$$y(x) \approx y_0 + t\Delta y_0 + \frac{t(t-1)}{2!} \Delta^2 y_0 + \frac{t(t-1)(t-2)}{3!} \Delta^3 y_0 + \dots$$

где $t=(x-x_0)/h$

1)Если x=1.2273, то примем $x_0=1.225$, тогда

$$t = \frac{1.2273 - 1.225}{0.005} = 0.46$$
,

$$y(1.2273) \approx 0.119671 + 0.46 \cdot 0.005653 + \frac{0.46(-0.54)}{2}(-0.000649) + \frac{0.46(-0.54)(-1.54)}{6}0.000093 == 0.119671 + 0.0026004 + 0.0000806 + 0.0000059 = 0.1223579 \approx 0.122358.$$

2)Если x=1.210, то примем $x_0=1.215$; тогда

$$t = \frac{1.210 - 1.215}{0.005} = -1$$

$$y(1.210) \approx 0.106044 + (-1) \cdot 0.007232 + \frac{(-1)(-2)}{2}(-0.000837) + \frac{(-1)(-2)(-3)}{6}0.000095 = 0.097880.$$

Для вычисления значений функции при x=1.253 и x=1.2638 воспользуемся формулой Ньютона для интерполирования назад:

$$y(x) \approx y_n + t\Delta y_{n-1} + \frac{t(t+1)}{2!} \Delta^2 y_{n-2} + \frac{t(t+1)(t+2)}{3!} \Delta^3 y_{n-3} + \dots,$$

где $t=(x-x_n)/h$.

3)Если x=1.253, то примем x_n=1.255; тогда

$$t = \frac{1.252 - 1.255}{0.005} = -0.4$$

$$y(1.253) \approx 0.145688 + (-0.4) \cdot 0.003321 + \frac{(-0.4)0.6}{2} (-0.000287) + \frac{(-0.4)0.6 \cdot 1.6}{6} 0.000088 = 0.145688 - 0.0013284 + 0.0000344 - 0.0000056 = 0.1443884 \approx 0.144388.$$

4)Если x=1.2638, то примем $x_n=1.260$, тогда

$$t = \frac{1.2638 - 0.260}{0.005} = 0.76,$$

$$y(1.2638) \approx 0.148809 + 0.76 \cdot 0.003121 + \frac{0.76 \cdot 1.76}{2}(-0.000200) + \frac{0.76 \cdot 1.76 \cdot 2.76}{6}(-0.000200) + \frac{0.76 \cdot 1.76 \cdot 2.76}{6}(-0.000087 = 0.148809 + 0.0023720 - 0.0001328 + 0.0000535 = 0.1511007 \approx 0.151101.$$

Задание к лабораторной работе 4.

- 1.Используя интерполяционную формулу Лагранжа для неравноотстоящих узлов а) построить многочлен Лагранжа (вывести формулу) б) вывести график в)вычислить значения функции при данных значениях аргумента
- 2. Используя первую или вторую интерполяционную формулу Ньютона вычислить указанные значения функции при данных значениях аргумента

Рекомендации

В первом задании одно из заданий – построить многочлен Лагранжа. Наиболее легко это сделать с помощью библиотеки SymPy

https://pythonru.com/biblioteki/sympy-v-python

Все необходимые знания:

```
В [1]: # подключим библиотеку Симпай
        import sympy as sm
 В [2]: #заменим х на символ
       x = sm.Symbol('x')
 В [3]: # строим нужный многочлен (здесь нужно применить процесс построения многочлена Лагранжа)
        F = (x - 1)*(x - 2)*(x - 3)*(x - 4)
        #полюбуемся на построенный многочлен
Out[3]: (x-4)(x-3)+(x-2)(x-1)
 В [4]: #Можем раскрыть скобки и привести подобные
        F = sm.expand(F)
Out[4]: 2x^2 - 10x + 14
 В [6]: #можем построить график (но здесь можно и матплотлибом строить)
        sm.plot(F)
                                 300
                                 250
                                 200
                                 150
                                 100
                                  50
          -10.0
                                                       7.5
                                                             10.0
Out[6]: <sympy.plotting.plot.Plot at 0x5f09658>
 В [7]: #можем подставить нужное значение, я подставлю х = -5
        F.subs(x, -5)
Out[7]: 114
```

Вариант1.

Таблица 1

		_
X	Y	
0.43	1.63597	Γ
0.48	1.73234	
0.55	1.87686	
0.62	2.03345	
0.70	2.22846	
0.75	2.35973	١.

X 0.702 0.512 0.645 0.736 0.608

3973 | Значение функции в точках:

Таблица 1

X	y
1.415	0.888551
1.420	0.889599
1.425	0.890637
1.430	0.891667
1.435	0.892687
1.440	0.893698
1.445	0.894700
1.450	0.895693
1.455	0.896677
1.460	0.897653
1.465	0.898619

	1 41 61	1.4605	1 4125	1 470
Значение функции в точках	1.4161	1.4625	1.4135	1.4/0
That the wyllkight b to tkan				

Вариант2.

Таблица 2

X	Y
0.02	1.02316
0.08	1.09590
0.12	1.14725
0.17	1.21483
0.23	1.30120
0.30	1.40976

X
0.102
0.114
0.125
0.203
0.154

Таблица 2

X	y
0.101	1.26183
0.106	1.27644
0.111	1.29122
0.116	1.306617
0.121	1.32130
0.126	1.33660
0.131	1.35207
0.136	1.36773
0.141	1.38357
0.146	1.39959
0.151	1.41579

0.1026 0.1440 0.000 0.161					
Значение функции в точках $0.1020 + 0.1440 + 0.099 + 0.101$	Значение функции в точках	0.1026	0.1440	0.099	0.161

Вариант3.

Таблица 3

X	Y
0.35	2.73951
0.41	2.30080
0.47	1.96864
0.51	1.78776
0.56	1.59502
0.64	1.34310

X
0.526
0.453
0.482
0.552
0.436

Таблица 3

X	у
0.15	0.860708
0.20	0.818731
0.25	0.778801
0.30	0.740818
0.35	0.704688
0.40	0.670320
0.45	0.637628
0.50	0.606531
0.55	0.576950
0.60	0.548812
0.65	0.522046
0.70	0.496585
0.75	0.4722367

		-	
0.1511	0.7250	0.1430	0.80

Вариант4.

Таблица 4

X	Y
0.41	2.57418
0.46	2.32513
0.52	2.09336
0.60	1.86203
0.65	1,74926
0.72	1,62098

X
0,616
0,478
0,665
0,537
0,673

Таблица 4

X	у
0.180	5.61543
0.185	5.46693
0.190	5.32634
0.195	5.19304
0.200	5.06649
0.205	4.94619
0.210	4.83170
0.215	4.72261
0.220	4.61855
0.225	4.51919
0.230	4.42422
0.235	4.33337

	\mathbf{x}_1	X2	X3	X4	
Значения функции в точках	0.1817	0.2275	0.175	0.2375	

Вариант 5.

Таблица 5

X	Y	
0.68	0.80866	
0.73	0.89492	
0.80	1.02964	
0.88	1.20966	
0.93	1.34087	
0.99	1.52368	L

Значение функции в точках

X		
0.896		
0.812		
0.774		
0.955		
0.715		

Таблица 5

X	у
3.50	33.1154
3.55	34.8133
3.60	36.5982
3.65	38.4747
3.70	40.4473
3.75	42.5211
3.80	44.7012
3.85	46.9931
3.90	49.4024
3.95	51.5982
4.00	57.3975
4.10	60.3403
4.15	63.4340
4.20	66.6863

№ вари-	Значение аргумента			
анта	\mathbf{x}_1	\mathbf{x}_2	X3	x_4
5	3.522	4.176	3.475	4.25

Вариант6.

Таблица 6

X	Y
0.11	9.05421
0.15	6.61659
0.21	4.69170
0.29	3.35106
0.35	2.73951
0.40	2.36522

X			
0.314			
0.235			
0.332			
0.275			
0.186			

Таблица 6

y
8.65729
8.29329
7.95829
7.64893
7.36235
7.09613
6.84815
6.61659
6.39986
6.19658
6.00551
5.82558
5.65583
5.49543

№ вари-	Значение аргумента			
анта	X ₁ X ₂ X ₃ X ₄			
6	0.1217	0.1736	0.1141	0.185

Вариант7.

X	Y
0.43	1.63597
0.48	1.73234
0.55	1.87686
0.62	2.03345
0.70	2.22846
0.75	2.35973

X
0.702
0.512
0.645
0.736
0.608

Таблица 7

X	y
1.340	4.25562
1.345	4.35325
1.350	4.45522
1.355	4.56184
1.360	4.67344
1.365	4.79038
1.370	4.91306
1.375	5.04192
1.380	5.17744
1.385	5.32016
1.390	5.47069
1.395	5.62968

№ вари-	Значение аргумента					
анта	X ₁ X ₂ X ₃ X ₄					
7	1.3617	1.3921	1.3359	1.400		

Вариант8.

X	Y
0.35	2.73951
0.41	2.30080
0.47	1.96864
0.51	1.78776
0.56	1.59502
0.64	1.34310

X
0.526
0.453
0.482
0.552
0.436

Таблица 8

X	y
0.01	0.991824
0.06	0.951935
0.11	0.913650
0.16	0.876905
0.21	0.841638
0.26	0.807789
0.31	0.775301
0.36	0.744120
0.41	0.714193
0.46	0.685470
0.51	0.657902
0.56	0.631442

№ вари-	Значение аргумента					
анта	X ₁ X ₂ X ₃ X ₄					
8	0.027	0.525	0.008	0.61		

Вариант 9.

X	Y		
0.41	2.57418		
0.46	2.32513		
0.52	2.09336		
0.60	1.86203		
0.65	1,74926		
0.72	1,62098		

X
0,616
0,478
0,665
0,537
0,673

Таблица 9

X	y
0.15	4.4817
0.16	4.9530
0.17	5.4739
0.18	6.0496
0.19	6.6859
0.20	7.3891
0.21	8.1662
0.22	9.0250
0.23	9.9742
0.24	11.0232
0.25	12.1825
0.26	13.4637

№ вари-	Значение аргумента			
анта	\mathbf{x}_1	X2	X3	x_4
9	0.1539	0.2569	0.14	0.2665

Вариант 10.

X	Y
0.68	0.80866
0.73	0.89492
0.80	1.02964
0.88	1.20966
0.93	1.34087
0.99	1.52368

X		
0.896		
0.812		
0.774		
0.955		
0.715		

Таблица 10

X	y
0.45	20.1946
0.46	19.6133
0.47	18.9425
0.48	18.1746
0.49	17.3010
0.50	16.3123
0.51	15.1984
0.52	13.9484
0.53	12.5508
0.54	10.9937
0.55	9.2647
0.56	7.3510

№ B	ари-	Значение аргумента			
анта	a	\mathbf{x}_1	x ₂	X3	X4
	10	0.455	0.5575	0.44	0.5674