BALTHAZAR

OAPHUE

Lucie

BENES

Handwritten Recognition

LALOUE

Neural Networks and Deep Learning

Andreu Gascón Mathias Lommel Pere Mayol

SIMON

UAB
Universitat Autònoma
de Barcelona

Context

Context

The data

The Data

3 datasets: Training / Validation / Test

For each dataset: 2 types of file

- .zip file : containing the images

 \rightarrow **330961** training / **41370** test and validation

- .csv file : linking each image with its label

TRAIN FILENAME IDENTITY

- 0 TRAIN_00001.jpg BALTHAZAR 1 TRAIN_00002.jpg SIMON 2 TRAIN_00003.jpg BENES
- 3 TRAIN_00004.jpg LA LOVE
- 4 TRAIN_00005.jpg DAPHNE

The Data

For the labels:

- → Delete existing **NaN values**
- → Delete images labelled 'UNREADABLE'

For the images:

- → Cropping the image to a shape **256x64**
- → Change type to **float**

The Data

Finally...

- \rightarrow Code the labels into vectors
- → Using a certain alphabet: " ABCDEFGHIJKLMNOPQRSTUVWXYZ-'"
- → Padded into a length 24, with -1 values

WORD

[23, 16, 19, 5, -1, -1, -1, ..., -1]

Longest word found: 34 characters

Second longest : 24 characters

→ We deleted the 34 character image from the training set

 \rightarrow 1 model - 2 versions

 \rightarrow 1 model - 2 versions

For each **convolutional** operation:

BALTHAZAR

- Batch normalisation
- He normal initialisation

64 neurons - ReLU He normal initialisation

Why 64x30?

Probability distribution

alphabet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ-"

$$Pr(\pi|\mathbf{x}) = \prod_t^T y_{\pi_t}^t \qquad \text{Joint probability of a path} \begin{cases} \text{`WORD'} \\ \rightarrow \text{`WWWOORRRDDD'} \\ \rightarrow \text{`WOOOOORRDDD'} \\ \rightarrow \dots \end{cases}$$

$$Pr(\mathbf{l}|\mathbf{x}) = \sum_{\pi \in \mathcal{B}^{-1}(\mathbf{l})} Pr(\pi|\mathbf{x})$$
 Sum over all possible paths

(CTC Loss)

$$\mathcal{L}_{CTC} = -\sum_{(\mathbf{x}, \mathbf{l}) \in Z} \ln Pr(\mathbf{l}|\mathbf{x})$$

How to obtain the real label?

By taking each max prob, we obtain:

[23, 23, -, 16, 16, 16, -, 19, 19, 19, 19, -, 5, 5, -, -1, -1, ..., -1]

[23, 16, 19, 5, -1, -1, -1, ..., -1]

Training

Training setup

First training

Size of the training sample : **64 000 images**

Size of the validation sample : **6 400 images**

Batch size: 128

Adam optimizer

Learning rate of **0.001**

10 epochs

Full training

Size of the training sample : **300 800 images**

Size of the validation sample : **30 080 images**

Batch size: 128

Adam optimizer

Learning rate of **0.001**

10 epochs

Tests

Tests - first training

GRU model:

- Best word accuracy: **74.4%**
- Best letter accuracy: **89.9%**

6 689 822 parameters

No overfitting

Tests - first training

LSTM model:

- Best word accuracy: **78.1%**
- Best letter accuracy: **91.3%**

8 856 606 parameters

An **overfitting** begins (more parameters)

Tests - full training

GRU model:

- Best word accuracy: **81 % (+6.6%)**
- Best letter accuracy: **92% (+2.1%)**

6 689 822 parameters

An **overfitting** begins to occur

Tests - full training

LSTM model:

- Best word accuracy: **82.8%** (+4.7%)
- Best letter accuracy: **92.5% (+1.5%)**

8 856 606 parameters

Clear **overfitting**

Tests - Our best model

Top **mispredicted** letters:

'N' predicted as 'M'

'H' predicted as 'M'

'O' predicted as 'U'

→ Similar letter shapes : the model has learnt something

On **mispredicted** words:

→ on average, **64.5**% of the letters are well predicted

Test on homemade images:

ANDREU PIATHIAS PERE

ANDREU MATHIAS PERE

Tests - Comparison of the models

	GRU (first)	LSTM (first)	GRU (full)	LSTM (full)
Word accuracy	74.4	78.1	81	82.8
Letter accuracy	89.9	91.3	92	92.5
Time of training	6'37"	7'21"	31'12"	33'31"
Overfitting?	χ	•	•	++
Number of parameters	6 689 822	8 856 606	6 689 822	8 856 606

Tests - Our best model

Kaggle Baseline Model

Correct characters predicted: 82.16%

Correct words predicted: 69.10%

Problems

Double letters problem

Changing the decoding function.

Poor performance for personal images

Preprocess the images properly.

Nan values for weights

Changing the dimension for loq_softmax(x,dim=2)

Conclusion

Thanks for listening