Applications of Malliavin Calculus to Monte-Carlo Methods in Finance

E. Fournié, J-M Lasry, J. Lebuchoux, P-L Lions

June 12, 2016

Outline

- 1 Introduction
- 2 Malliavin Calculus in Finance
- 3 Greeks Calculation with Malliavin
- 4 Numerical Results
- **5** Summary
- 6 Reference

Motivation

In finance, the demand of hedging financial instruments, especially (exotic) options is based on the calculation of Greeks

- explicit formula (very simple examples, e.g. European Call);
- Monte Carlo Simulation the finite difference approximation of the differentials
 - perform very poorly when pay-off function is not smooth enough
 - hard to handle complex pay-off function case with accuracy
 - inadequacy for the treatment of American-type options (part II)

Some Mathematical Notations...

The underlying assets are assumed to be given by $\{X(t); 0 \le t \le T\}$, whose dynamic are described by stochastic differential equation

$$dX(t) = b(X(t))dt + \sigma(X(t))dW(t)$$

where $\{W(t), 0 \le t \le T\}$ is a Brownian motion with values in \mathbb{R}^n .

Given $0 \le t_1 \le \ldots \le t_m = T$, we consider the function

$$u(x) = \mathbb{E}[\phi(X(t_1), \dots, X(t_m)) | X(0) = x]$$

where u(x) describes the prices of a contingent claim defined by the pay-off function ϕ involving the times (t_1, \ldots, t_m) .

Main findings and contributions of this paper

In this paper, using Malliavin calculus we will show that all the differentials of interest can be expressed as

$$\mathbb{E}[\pi\phi(X(t_1),\ldots,X(t_m))|X(0)=x]$$

where the weight π does not depend on the pay-off function ϕ .

Some simplified theoretical aspects

The asset prices can be written

$$price = \mathbb{E}_{Q_0}[\text{pay-offs}]$$

where \mathbb{E}_{Q_0} is the expected value under the risk neutral probability Q_0 . The marginal changes of Q will lead to new prices according to

$$variation \ of \ prices = new \ prices - old \ prices$$

$$= \mathbb{E}_{Q}[\text{pay-offs}] - \mathbb{E}_{Q_0}[\text{pay-offs}]$$

$$= \mathbb{E}_{Q_0}[\text{pay-offs} \times \pi]$$

where

$$\pi = \frac{dQ - dQ_0}{dQ_0}$$

Some simplified theoretical aspects, con't

Suppose that the probability Q lies within a parametrized family (Q_{λ}) . $\lambda = (\lambda_1, \ldots, \lambda_n)$. Then the marginal moves of the market can be assessed through the derivatives

$$\frac{\partial}{\partial \lambda_i}(price) = \mathbb{E}_{Q_0}[\text{pay-offs} \times \pi_i]$$

where $G = \frac{dQ}{dQ_0}$ and $\pi_i = \frac{\partial G}{\partial \lambda_i}$, i.e. π_i is the logarithmic derivative of Q at Q_0 in the λ_i direction.

Notations

Let $\{W(t), 0 \leq t \leq T\}$ be a n-dimensional Brownian motion defined on a complete probability space (ω, \mathcal{F}, P) . Let \mathcal{L} be the set of r.v. F of the form

$$F = f\left(\int_0^\infty h_1(t)dW(t), \dots, \int_0^\infty h_n(t)dW(t)\right), \quad f \in \mathcal{P}(\mathbb{R}^n)$$

where $\mathcal{P}(\mathbb{R}^n)$ denotes the set of infinitely differentiable and rapidly decreasing function on \mathbb{R}^n and $h_1, \ldots, h_n \in L^2(\omega \times \mathbb{R}_+)$. The Malliavin derivative DF of F is defined as the process $\{D_t F, t \geq 0\}$ of $L^2(\omega \times \mathbb{R}_+)$ with values in $L^2(\mathbb{R}_+)$ which we denote by H

$$D_t F = \sum_{i=1}^n \frac{\partial}{\partial x_i} \left(\int_0^\infty h_1(t) dW(t), \dots, \int_0^\infty h_n(t) dW(t) \right) h_t(t), \quad t \ge 0 \ a.s.$$

Properties of Malliavin Calculus

Property 1. Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function with partial derivatives and $F = (F_1, \dots, F_n)$ a random vector whose components belong to $\mathbb{D}^{1,2}$. Then $\phi(F) \in \mathbb{D}^{1,2}$ and

$$D_t \phi(F) = \sum_{i=1}^n \frac{\partial \phi}{\partial x_i}(F) D_t F_i, \qquad t \ge 0 \ a.s.$$

Properties of Malliavin Calculus, con't

Property 1. Let $\phi : \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function with partial derivatives and $F = (F_1, \dots, F_n)$ a random vector whose components belong to $\mathbb{D}^{1,2}$. Then $\phi(F) \in \mathbb{D}^{1,2}$ and

$$D_t \phi(F) = \sum_{i=1}^n \frac{\partial \phi}{\partial x_i}(F) D_t F_i, \qquad t \ge 0 \ a.s.$$

Properties of Malliavin Calculus, con't

Property 3. Let u be a stochastic process. Then $u \in Dom(\delta)$ if for any $\phi \in \mathbb{D}^{1,2}$, we have

$$\mathbb{E}(\langle D\phi, u \rangle_H) = \mathbb{E}\left(\int_0^\infty D_t \phi u(t) dt\right) \leq C(u) ||\phi||_{1,2}$$

if $u \in Dom(\delta)$, we define $\delta(u)$ by

$$\mathbb{E}(\phi\delta(u)) = \mathbb{E}(\langle D\phi, u \rangle_H) \quad \text{for any } \phi \in \mathbb{D}^{1,2}$$

Properties of Malliavin Calculus, con't

Property 4. Let u be an adapted stochastic process in $L^2(\omega \times \mathbb{R}_+)$. Then we have

$$\delta(u) = \int_0^\infty [u(t)]^* dW(t)$$

Property 5. Let F be an \mathcal{F}_T -adapted random variable which belongs to $\mathbb{D}^{1,2}$ then for any u in $dom(\delta)$ we have

$$\delta(Fu) = F\delta(u) - \int_0^T D_t Fu(t) dt$$

Property 6. Let F be an a random variable which belongs to $\mathbb{D}^{1,2}$. Then we have

$$F = \mathbb{F} + \int_0^T \mathbb{E}(D_t F | \mathcal{F}_t) dW(t)$$

Greeks calculation: assumption

We denote by $\{Y(t), 0 \le t \le T\}$ the first variation process associated to $\{X(t), 0 \le t \le T\}$ defined by the stochastic differential equation

$$Y(0) = I_n$$

$$dY(t) = b'(X(t))Y(t)dt + \sum_{i=1}^n \sigma'_i(X(t))Y(t)dW_i(t)$$

Assumption 3.1 The diffusion matrix satisfies the uniform ellipticity condition

$$\exists \epsilon > 0, \xi^* \sigma^*(x) \sigma^{(x)} \xi \ge \epsilon |\xi|^2 \quad \text{for any } \xi, x \in \mathbb{R}^n$$

Variations in the drift coefficient and initial condition

Property 3.1. The function $\epsilon \mapsto u^{\epsilon}(x)$ is differentiable in $\epsilon = 0$, for any $x \in \mathbb{R}^n$, and we have

$$\left. \frac{\partial}{\partial \epsilon} u^{\epsilon}(x) \right|_{\epsilon=0} = \mathbb{E} \left[\phi(X(.)) \int_0^T \langle \sigma^{-1} \gamma(X(t)), dW(t) \rangle \middle| X(0) = x \right]$$

Property 3.2. Under Assumption 3.1, for any $x \in \mathbb{R}^n$ and for any $a \in \Gamma_m$, we have

$$\nabla u(x) = \mathbb{E}^x \left[\phi(X(t_1), \dots, X(t_m)) \int_0^T a(t) [\sigma^{-1}(X(t))(Y(t))]^* dW(t) \right]$$

Fig. 1. Delta for a digital option with pay-off $1_{[100,110]}$ with x = 100, r = 0.1, $\sigma = 0.2$, T = 1 year. We use low discrepency Monte Carlo generation.

Fig. 2. Gamma for a digital option with pay-off $1_{[100,110]}$ with x = 100, r = 0.1, $\sigma = 0.2$, T = 1 year. We use low discrepency Monte Carlo generation.

Fig. 3. Vega for a digital option with pay-off $1_{[100,110]}$ with x = 100, r = 0.1, $\sigma = 0.2$, T = 1 year. We use low discrepency Monte Carlo generation.

Fig. 4. Delta for a asian option with pay-off $(\int_0^T S_s ds - K)_+$ with x = 100, r = 0.1, $\sigma = 0.2$, T = 1 year, K = 100. We use standard Monte Carlo generation.

Fig. 5. Delta for a complex option with pay-off $1_{\{\int_0^1 w_s ds \ge B\}} (W_1 - K)_+$. We use standard Monte Carlo generation.

Fig. 6. Gamma of a call option computed by global and localized Malliavin like formula. The parameters are S0 = 100, r = 0.1, $\sigma = 0.2$, T = 1, K = 100 and $\delta = 10$ (localization parameter). We use low discrepency sequences.

Fig. 7. Gamma of a call option computed by finite difference and localized Malliavin like formula. The parameters are S0 = 100, r = 0.1, $\sigma = 0.2$, T = 1, K = 100 and $\delta = 10$ (localization parameter). We use low discrepency sequences.

Fig. 8. Delta of an average call option computed by finite difference, global and localized Malliavin like formula. The parameters are $S0 = 100, r = 0.1, \sigma = 0.2, T = 1, K = 100$ and $\delta = 10$ for the localization parameter. We use pseudo random sequences.

Reference

- Broadie, M., Glasserman, P.: Estimating security price derivatives using simulation, Manag. Sci. 42, 269–285 (1996)
- Friedman, A.: Stochastic Differential Equations and Applications, Vol. 1. New York: Academic Press 1975
- Glasserman, P., Yao D.D.: Some guidelines and guarantees for common random numbers, Manag. Sci. 38, 884–908 (1992)
- Glynn, P.W.: Optimization of stochastic systems via simulation. In: Proceedings of the 1989 Winter simulation Conference. San Diego: Society for Computer Simulation 1989, pp. 90–105
- Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, Berlin Heidelberg New York: Springer 1988
- Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Berlin Heidelberg New York: Springer 1992
- L'Ecuyer, P., Perron, G.: On the convergence rates of IPA and FDC derivative estimators, Oper. Res. 42, 643–656 (1994)
- Malliavin, P.: Stochastic Analysis. (Grundlehren der Mathematischen Wissenschaften, Bd. 313)
 Berlin Heidelberg New York: Springer 1997
- Nualart, D.: Malliavin Calculus and Related Topics. (Probability and its Applications) Berlin Heidelberg New York: Springer 1995
- Protter, P.: Stochastic Integration and Differential Equations. Berlin Heidelberg New York: Springer 1990
- Üstünel, A.S.: An introduction to Analysis on Wiener Space. Berlin Heidelberg New York: Springer 1992
- Watanabe, S.: Stochastic Differential Equations and Malliavin Calculus. Tata Institute of Fundamental Research, Bombay. Berlin Heidelberg New York: Springer 1984