X = O, NH, NR_{1C} wherein R_{1C} is a linear or branched alkyl having from 1 to 10 C atoms;

R is chosen from the following groups:

Group I A), where t = 1,

where:

 R_{II5} is H, a linear C_1/C_3 alkyl, or a branched C_1-C_3 alkyl;

R_{II6} has the same structure as R_{II5},

 R_{II1} , R_{II2} and R_{II3} are each hydrogen, linear C_1 - C_6 alkyl, branched C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 , C_1 , or C_2

R_{II4} has the same structure as R_{II1} or is bromine;

Group II A) chosen from the following:

where, when t = 1, R is

$$R_{1a} - C - \begin{cases} R_{2a} \\ R_{3a} \end{cases}$$

where R_{2a} and R_{3a} are H, a linear C_1 - C_{12} alkyl, a branched C_1 - C_{12} alkyl, or allyl, with the proviso that when one of the two is allyl the other is H;

R_{1a} is chosen from the subgroup II Aa) consisting of

(VIII) (IX) (x)

(09/147,770)

wherein:

in the residue of formula (IV):

 R_{III1} is H or SR_{III3} where R_{III3} contains from 1 to 4 linear or branched C atoms; and R_{III2} is H or hydroxy;

in the residue of formula (XXI):

 R_{xxio} is H, a linear alkyl having 1-6 carbon atoms, a branched alkyl having from 1 to 6 carbon atoms, a C_1 - C_6 alkoxy-carbonyl bound to a C_1 - C_6 carboxyalkyl, or a C_1 - C_6 alkanoyl;

R_{xxi} is H, halogen, hydroxy, CN, a C₁-C₆ alkyl, a C₁-C₆ alkyl, a perfluoroalkyl having a 1-3 C atoms, a C₁-C₆ carboxyalkyl, NO₂, sulphamoyl, dialkyl sulphamoyl with the alkyl having from 1 to 6 C atoms, or difluoroalkylsulphonyl with the alkyl having from 1 to 3 C atoms;

 R_{xxil} is halogen, CN, a C_1 - C_6 alkoxy, acetyl, acetamido, or benzyloxy, SR_{III3} is as above defined, a perfluoroalkyl having from 1 to 3 C atoms, hydroxy, a caroboxyalkyl having from 1 to 6 C atoms, hydroxy, a caroboxyalkyl having from 1 to 6 C atoms, NO_2 , amino, mono- or dialkylamino having from 1 to 6 C atoms, sulphamoyl, a dialkyl sulphamoyl having from 1 to 6 C atoms, difluoroalkylsulphamoyl; or R_{xxi} together with R_{xxil} is an alkylene dioxy having from 1 to 6 C atoms;

In the residue of formula (XXXV):

Ar is phenyl, hydroxyphenyl optionally mono- or polysubstituted with halogen, an alkanoyl or alkoxy having from 1 to 6 C atoms, a trialalkyl having from 1-6 C atoms, cyclopentyl o-hexyl o-heptyl, thienyl, furyl, furyl containing OH, or pyridyl;

Subgroup II Ab) consisting of:

wherein:

when IIIa) contains -CH(C H_3)-COOH it is known as pranoprofen: α -methyl-5H-(1) benzopyran (2,3-b) pyridine-7-acetic acid;

when residue (XXX) contains -CH(CH₃) -COOH it is known as bermoprofen: dibenz (b,f) oxepin-2-acetic acid;

residue (XXXI) is known as CS-670: 2-(4-2(2-oxo-1-cyclohexylidenemethyl) phenyl) propionic acid, when the radical is -CH(CH₃) -COOH;

when residue (XXXIII) is saturated with -CH₂COOH it is known as pyrazolac: 4-(4-chlorophenyl)-1-(4-fluorophenyl) 3-pyrazolyl acid øerivatives;

when residue (XXXVII) is CH_2 -COOH it derives from the known mofezolac: 3,4-di p-methoxyphenyl) isoxazol-5-acetic acid; Group IIIA), where t = 1,

wherein:

at least one of R_{lvd} and R_{lvd1} is H and the other a linear or branched C_1 - C_6 alkyl, or difluoroalkyl with the alkyl having from 1-6 C atoms, or R_{lvd} and R_{lvd} jointly form a methylene group;

R_{IV} has the following structure:

where:

in the residue of formula (II):

R_{IV-II} is selected from the group consisting of an alkyl having from 1 to 6 C atoms, a cycloalkyl having from 3 to 7 C atoms, an alkoxymethyl having from 1 to 7 C atoms, a trifluoroalkyl having from 1 to 3 C atoms, vinyl, ethynyl, halogen, an alkoxy having from 1 to 6 C atoms, a diffuroalkoxy with the alkyl having from 1 to 7 C atoms, an alkoxymethyloxy having from 1 to 7 C atoms, an alkylmethylthio with the alkyl having from 1 to 7 C atoms, cyano, difluoromethylthio, a substituted phenyl-, and phenylalkyl with the alkyl having from 1 to 8 C atoms;

 $R_{\text{IV-III}}$ is a C_2 - C_5 alkyl, a C_2 or C_3 alkyloxy, allyloxy, phenoxy, phenylthio, a cycloalkyl having from 5 to 7 C atoms, optionally substituted at position 1 by a C_1 - C_2 alkyl;

Group IV A)

where A = RCOO, t = 1

Group V A) chosen from the following:

Subgroup V Aa) residues chosen from the following, where t = 1

subgroup V Ab), residue, where t = 1:

subgroup V Ac), residue, where t = 0 and R is as follows:

subgroup V Ad) residues, where t = 1 and R is as follows:

subgroup Ae) residues, where t = 1 and R is as follows:

wherein:

in residue (V Ac1) Rvac1 is phenyl or cycloexane;

in compounds (V Ac2) the residue is 3-formylamino-7-methylsulfonylamino-6-phenoxy-4H-1-bezopyran-4-one;

in residue, (V Ac3), X4 is sulfur or oxygen;

X₁ in formula A-X₁-NO₂ is a bivalent connecting bridge chosen from the following:

- YO

where Y is a linear or branched C₁-C₂₀/alkylene, or an optionally substituted cycloalkylene having from 5 to 7 carbon atoms;

where n₃ is an integer from 0 to 3;

where nf is an integer from 1 to 6;

Sint

where R₁₁ = H or CH₃ and nf is an integer from 1 to 6.

- 2. (Twice Amended) The method according to Claim 1, in which R is chosen from groups IV A) and V A).
- 5. (Amended) A method for the treatment of musculoskeletal disease of an inflammatory nature, gynaecological and obstetrical disease including early delivery, pre-eclampsia and dysmenorrhoea, cardiovascular disease including re-stenosis, gastrointestinal tumors by administering compounds from group V A) according to Claim

547

11. (New) The method of claim 1, wherein R_{II1}, R_{II2} and R_{II4} are H;

 R_{II3} is C1 and R_{II3} is in the other position to NH;

R_{II5} and R_{II6} are H;

X equals O; and

 X_2 is $(CH_2 - CH_2 - O)_2$.

P

- 12. (New) The method of Claim 11, wherein X equals O.
- 13. (New) The method of claim 1, wherein:

R_{2a} and R_{3a} are H; and

Alkyl has 1 to 4 C atoms.

14. (New) The method of claim 1, wherein:

R_{III1} and R_{III2} are H;

R_{3a} is H;

R_{2a} is methyl; and

X equals O.

15. (New) The method of claim 1, wherein:

R_{xxio}, R_{xxi} and R_{xxi1} are H;

the connecting bridge is at position 2;

R_{xxi1} is chlorine in the para position to nitrogen;

R_{2a} is methyl; and

X is O.

16. (New) The method of claim 1, wherein

Ar is phenyl;

R_{3a} is H;

R_{2a} is methyl; and

X,is O.

17. (New) The method of claim 1, wherein:

R_{IV-II}, is CH₃O, R_{Ivd}, is H, and

R{Ivd1} is CH₃

- 18. (New) The method of claim 17, wherein X is equal to O.
- 19. (New) The method of claim 1, wherein:

R_{IV-III} is

 R_{IVd} = H, R_{IVd1} is CH₃, X = NH, and X₁ is equal to (CH₂)₄ or (CH₂ CH₂O)₂.

- 20. (New) The method of claim 19, wherein X = O.
- 21. (New) The method/of claim 2, wherein in la):

X is equal to O or NH,

R₁ is acetoxy,

 X_1 is ethylene or $(CH_2CH_2Q)_2$, and

R₂ is hydrogen or halogen.

22. (New) The method of claim 21, wherein;

R₁ is at position 3 or 4.

23. (New) The method of claim 22, wherein;

R₁ is at the ortho position to CO.

24. (New) The method of claim 21, wherein the A-X, -NO₂ compound is selected from the group consisting of:

3-acetoxy-N-(2-nitroxy-ethyl) -benzamide, 4-acetoxy-N- (2-nitroxyethyl) -benzamide, 3-acetoxy-N-(5-nitroxypenthyl) -benzamide, 2-acetoxy-N- (5-nitroxypenthyl) -benzamide, N-2- (nitroxy-ethyl) -2-propionoxybenzamide, 2-acetoxy-2-nitroxy-ethylbenzoate, 2-acetoxy-N- (cis-2-nitroxycyclohexyl) -benzamide, 2-acetoxy-4-chloro-N- (2-nitroxyethyl) -benzamide N- (2-nitroxyethyl) -2-0 ((4-thiazolindinyl) carbonyloxy) -benzamide hydrochloride, 2-nicotinoyloxy-N- (2-nitroxyethyl) -benzamide, 2-acetoxy-5-nitroxypenthylbenzoate;

25/ (New) The method of claim 2, wherein;

in/Ib) $R_3 = CH_3$, nI = O, X is equal to O and X_1 is ethylene.

Bent