## Object Detection

**CMPUT 328** 

Nilanjan Ray

## What is object detection?



#### One uniqueness about object detection

- For a test image the architecture does not know how many bounding boxes it must output.
- So, the length of output is a variable number.
- Over time there are several workarounds and methods came out to tackle this issue.
  - Older generation of object detectors: sliding window, region proposal using selective search
  - Not so older generation of detectors: region proposals using neural net, ROI pooling, anchor boxes, apply a threshold on "objectness", merge nearby bounding boxes.
  - Latest generation of detectors: variable length sequential outputs using transformer architecture.

## Region proposals: Selective search



#### R-CNN



1. Input images



Picture source: https://arxiv.org/abs/1311.2524

Slow because we need to send ~2k cropped images through the CNN

#### Fast R-CNN



Pass image only once through the CNN; Pool ROI features from the feature map for bounding box regression and classification; Fast because ~2k small feature (because of ROI pooling) maps now passes through a fully connected net.

## ROI pooling



Picture source: http://cs231n.stanford.edu

## Bounding box regressor

 $d_i(\mathbf{p})$  represents a fully connected neural net having parameters **w** called bbox regressor

Ground truth bounding box (4 numbers): 
$$\mathbf{g}=(g_x,g_y,g_w,g_h)$$
 is transformed into: 
$$\begin{cases} t_x=(g_x-p_x)/p_w\\ t_y=(g_y-p_y)/p_h\\ t_w=\log(g_w/p_w)\\ t_h=\log(g_h/p_h) \end{cases}$$



Bbox Regression Loss function:

$$\mathcal{L}_{ ext{reg}} = \sum_{i \in \{x,y,w,h\}} (t_i - d_i(\mathbf{p}))^2 + \lambda \|\mathbf{w}\|^2$$

https://arxiv.org/pdf/1311.2524.pdf

#### Faster R-CNN

- Generate region proposals by a CNN (now we need anchors)
- Do ROI pooling as before
- Train in two stages

When we used selective search for region proposals we did not need anchors. Why?



## Region proposal network



Picture source: http://cs231n.stanford.edu

### Region proposal network...



Picture source: http://cs231n.stanford.edu

Imagine an anchor box

## Region proposal network...



Picture source: http://cs231n.stanford.edu

### Two-stage training in faster R-CNN



Picture source: http://cs231n.stanford.edu

## Test time speed up (seconds per image)



# YOLO: Single stage object detector

> 10x speed up over faster R-CNN

Apply threshold on confidence to select bounding boxes



**Figure 2: The Model.** Our system models detection as a regression problem. It divides the image into an  $S \times S$  grid and for each grid cell predicts B bounding boxes, confidence for those boxes, and C class probabilities. These predictions are encoded as an  $S \times S \times (B * 5 + C)$  tensor.

#### YOLO architecture



#### Non-maximum suppression

The very last step in object detection



Selecting one bounding box out of so many nearby ones Is it done during training too?

## RetinaNet: Another single stage object detector

• An excellent blog: <a href="https://blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified/">https://blog.zenggyu.com/en/post/2018-12-05/retinanet-explained-and-demystified/</a>

### Anchorless object detection

- Two sub-categories
  - Predict heatmap and treat object as points (<a href="https://github.com/xingyizhou/CenterNet">https://github.com/xingyizhou/CenterNet</a>)
  - Predict a set, one element at a time sequentially as in transformer (https://arxiv.org/pdf/2005.12872.pdf)

#### CenterNet

Objects as points







Picture source: https://github.com/xingyizhou/CenterNet?tab=readme-ov-file

## CenterNet training

- From each ground-truth object center → generate a Gaussian heatmap, and match it with the heatmap predicted by the network (using focal loss)
- At each ground-truth center location, feed the feature map to the network heads to predict:
  - Bounding box size (w, h)
  - Sub-pixel offset (Δx, Δy)
- Regress these predictions to the groundtruth bounding box (using L1 loss)

#### **CenterNet Training Pipeline**



# CenterNet deployment (aka testing)

- Input image → CNN backbone → detection heads
- → Network predicts **heatmap**, **size**, and **offset** maps.
- Find local maxima in the predicted heatmap
- $\rightarrow$  Each peak corresponds to a detected object center.
- For each detected center:
- Read predicted width, height, and offset values.
- Reconstruct the bounding box in image space.
- Apply confidence threshold (and optional NMS).
- → Output a *variable number* of final bounding boxes.



## End-to-End Object Detection with Transformers (DETR)



Fig. 1: DETR directly predicts (in parallel) the final set of detections by combining a common CNN with a transformer architecture. During training, bipartite matching uniquely assigns predictions with ground truth boxes. Prediction with no match should yield a "no object"  $(\emptyset)$  class prediction.

https://arxiv.org/pdf/2005.12872.pdf

## Hungarian Matching (HM) in DETR

#### •HM step is non-differentiable

→ It contains discrete argmin/argmax operations, which are not differentiable.

#### Training still works

- → HM is performed **outside the computation graph** (e.g., in a torch.no\_grad() block).
- → It provides matching indices between predicted and ground-truth boxes.

#### Loss computation

- $\rightarrow$  The **loss function** uses these indices to compute classification and regression losses.
- → These losses are **fully differentiable** with respect to network outputs.

#### Gradient flow

- → No gradient flows through the HM step itself.
- → Effectively, the gradient is passed **as if via a straight-through estimator (STE)** i.e., the assignment is treated as fixed during backpropagation.

## HM non-differentiability: What did we miss?

- Gradients do not flow through the assignment step →
- model cannot learn how small changes in predictions would change matching.
- •This causes:
- Noisy early supervision (random matches).
- Discontinuous loss surface when assignments flip.
- •Slow convergence (hundreds of epochs on COCO).

## How later works addressed HM nondifferentiability

#### Soft or Differentiable Matching

 Soft-DETR, Gumbel-Sinkhorn, Optimal Transport relaxations → replace hard Hungarian with soft assignment matrices so gradients flow through matching.

#### Better Initialization & Query Guidance

• Conditional-DETR, Anchor-DETR → condition queries on spatial priors to reduce matching ambiguity.

#### Stabilized Early Training

 DN-DETR (Denoising DETR) → add noised ground-truth queries for easier alignment and faster convergence.

#### Improved Feature Sampling

• *Deformable DETR* → multi-scale deformable attention; improves gradient flow and convergence speed even with non-diff matching.

## Performance comparisons on COCO



#### **Tutorials**

• <a href="https://pseudo-lab.github.io/Tutorial-Book-en/chapters/en/object-detection/intro.html">https://pseudo-lab.github.io/Tutorial-Book-en/chapters/en/object-detection/intro.html</a>

https://detectron2.readthedocs.io/en/latest/tutorials/index.html

## Evaluating object detection

mAP



https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b

#### Intersection over union

• IOU



## TP, FP, FN, TN

|                  |                             | Predicted condition                                            |                                                                 |  |  |  |  |
|------------------|-----------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
|                  | Total population<br>= P + N | Positive (PP)                                                  | Negative (PN)                                                   |  |  |  |  |
| Actual condition | Positive (P)                | True positive (TP),<br>hit                                     | False negative (FN),<br>type II error, miss,<br>underestimation |  |  |  |  |
|                  | Negative (N)                | False positive (FP), type I error, false alarm, overestimation | True negative (TN),<br>correct rejection                        |  |  |  |  |

## TP, FP, FN in object detection



 $\alpha$  is the IOU threshold

### Object detection - examples



https://towardsdatascience.com/what-is-average-precision-in-object-detection-localization-algorithms-and-how-to-calculate-it-3f330efe697b

#### Precision and recall in object detection

#### Precision and Recall in Machine Learning

For each class

$$Precision = \frac{Correct\ Predictions}{Total\ Predictions} = \frac{TP}{TP + FP}$$

$$Recall = \frac{Correct\ Predictions}{Total\ GroundTruth} = \frac{TP}{TP + FN}$$

| Class | # GroundTruth | # predictions | TP | FP | FN | Precision  | Recall     |
|-------|---------------|---------------|----|----|----|------------|------------|
| Cat   | 10            | 5             | 4  | 1  | 6  | 4/5 (80%)  | 4/10 (40%) |
| Dog   | 10            | 10            | 8  | 2  | 2  | 8/10 (80%) | 8/10 (80%) |

The classifier is <u>precise</u> in what it predicts. When it says it is a cat (dog), it is correct 80% of the time. However, if there is a cat (dog) in an image the classifier can only detect it 50% (80%) of the time. Hence the model has a hard time <u>recalling</u> cats.

#### AP and mAP

For a single class, area under precision-recall curve:

$$ext{AP} = \sum_n (R_n - R_{n-1}) P_n$$

where  $P_n$  and  $R_n$  are precision and recall for the  $n^{th}$  threshold.

mAP is the mean of AP's over all classes

Maximum and ideal mAP for an algorithm is 1

What does mAP measure?

https://blog.zenggyu.com/en/post/2018-12-16/an-introduction-to-evaluation-metrics-for-object-detection/



