TraFiC: Introduction  $I_2M - APy$ 

# Transient Field Computation in multilayered structures



[PhD Pierric Mora dec. 2015]
[Mora et al. (2016) Ultrasonics]

[Kausel et al. (1992) J. Eng. Mech.]

[PhD Aditya Krishna sept. 2020]

Asumptions: infinite structures invariant in two directions

#### Convenient for:

- A localized source emitting a short signal
- Immersed and Embedded plates and pipes
- 2D and 3D cases

#### Can be compared to:

- $k_n(\omega, \nu)$ -modal methods
- ullet  $\omega_n(\mathbf{k})$ -modal methods [Kausel (1994) IJNME] [Ducasse *et al.* (2014) Wave Motion]

Complementary approaches

[Mora (2021) Wave Motion]

TraFiC: Outline  $I_2M - APy$ 

### Outline

- I. The Fourier-Fourier-Laplace method
- II. Computation steps and results
- III. Additional tools
  - ▷ Graphical user interface (under development)
  - ▶ Mode computation
- IV. Towards hybrid methods

## TraFiC - I. The FOURIER-FOURIER-LAPLACE method



Time  $t \to \text{complex Laplace variable } s$ 

Space:

- $\triangleright$  material properties invariant with respect to  $\mathbf{x} = (x, y)$
- ${\,\vartriangleright\,}$  Horizontal position  ${\bf x} \to {\sf Horizontal}$  wavevector  ${\bf k}$
- $\triangleright$  Computation in the  $(\mathbf{k}, z, s)$ -domain
- $\triangleright$  ODEs with respect to the vertical position z



Space:

- ightharpoonup material properties invariant with respect to  $\theta$  and z
- Axial position  $z \to ax$ . wavenumber kAzimuthal position  $\theta \to az$ . wavenumber n
- $\triangleright$  Computation in the (r, n, k, s)-domain
- ightharpoonup ODEs with respect to the radial position r

### TraFiC – I. The Fourier-Fourier-Laplace method

 $\triangleright$  The displacement vector  $\tilde{\mathbf{U}}(z)$  satisfies in each plane layer (**n** unit vertical vector,  $\mathbb{I}$  identity matrix):

$$(\mathbf{n} \diamond \mathbf{n}) \,\tilde{\mathbf{U}}''(z) - i \left[ (\mathbf{n} \diamond \mathbf{k}) + (\mathbf{k} \diamond \mathbf{n}) \right] \,\tilde{\mathbf{U}}'(z) - \left[ (\mathbf{k} \diamond \mathbf{k}) + \rho \, s^2 \, \mathbb{I} \right] \,\tilde{\mathbf{U}}(z) = -\tilde{\mathbf{F}}(z) \tag{1}$$

Stress vector in the z-direction: 
$$\tilde{\Sigma}_z(z) = (\mathbf{n} \diamond \mathbf{n}) \, \tilde{\mathbf{U}}'(z) - i \, (\mathbf{n} \diamond \mathbf{k}) \, \tilde{\mathbf{U}}(z)$$
 (2)

 $\triangleright$  The displacement vector  $\tilde{\mathbf{U}}(r)$  satisfies in each tubular layer:

 $[(\mathbf{a} \diamond \mathbf{b})_{im} = a_i \, c_{ij\ell m} \, b_m]$ 

$$\begin{bmatrix}
\mathbb{T} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0
\end{pmatrix}
\end{bmatrix} \qquad (\mathbf{n}_{r} \diamond \mathbf{n}_{r}) \tilde{\mathbf{U}}''(r) + \\
\frac{1}{r} \left[ (\mathbf{n}_{r} \diamond \mathbf{n}_{r}) - i ((\mathbf{n}_{r} \diamond \mathbf{n}_{\theta}) (n \mathbb{I} + i \mathbb{T}) + (n \mathbb{I} + i \mathbb{T}) (\mathbf{n}_{\theta} \diamond \mathbf{n}_{r}) \right] \right] \tilde{\mathbf{U}}'(r) - \\
\left\{ \left[ \rho s^{2} \mathbb{I} + k^{2} (\mathbf{n}_{z} \diamond \mathbf{n}_{z}) \right] + \\
\frac{k}{r} \left[ i (\mathbf{n}_{r} \diamond \mathbf{n}_{z}) + (n \mathbb{I} + i \mathbb{T}) (\mathbf{n}_{\theta} \diamond \mathbf{n}_{z}) + (\mathbf{n}_{z} \diamond \mathbf{n}_{\theta}) (n \mathbb{I} + i \mathbb{T}) \right] + \\
\frac{1}{r^{2}} (n \mathbb{I} + i \mathbb{T}) (\mathbf{n}_{\theta} \diamond \mathbf{n}_{\theta}) (n \mathbb{I} + i \mathbb{T}) \right\} \tilde{\mathbf{U}}(r) = -\tilde{\mathbf{F}}(r)$$

Radial stress: 
$$\tilde{\mathbf{\Sigma}}_r(r) = (\mathbf{n}_r \diamond \mathbf{n}_r) \, \tilde{\mathbf{U}}'(r) - i \left[ \frac{1}{r} \left( \mathbf{n}_r \diamond \mathbf{n}_{\theta} \right) \, \left( n \, \mathbb{I} + i \, \mathbb{T} \right) + k \, (\mathbf{n}_r \diamond \mathbf{n}_z) \right] \, \tilde{\mathbf{U}}(r)$$
 (4)

### TraFiC – I. The Fourier-Fourier-Laplace method

Exact solutions of Eq. (1) without volumic source in each plane layer:  $\forall z$ ,  $z_{\beta-1} < z < z_{\beta}$ , six partial waves:

$$\tilde{\mathbf{U}}(z) = \underbrace{\sum_{i=1}^{3} a_{\beta,i} \exp[-i\kappa_{\beta,i} (z - z_{\beta})] \mathbf{p}_{\beta,i}}_{\text{upgoing waves}} + \underbrace{\sum_{i=4}^{6} a_{\beta,i} \exp[-i\kappa_{\beta,i} (z - z_{\beta-1})] \mathbf{p}_{\beta,i}}_{\text{downgoing waves}}.$$
(5)

(General anisotropy)

Sources at interfaces:

$$\Delta \tilde{\mathbf{U}}(z_{\beta}) = \mathbf{\phi}_{\beta} \quad \text{or/and} \quad \Delta \tilde{\mathbf{\Sigma}}_{z}(z_{\beta}) = \mathbf{\psi}_{\beta} \quad (6)$$

• Fluid layers, with two partial waves only, are also included in TraFiC

Exact solutions of Eq. (3) without volumic source in each tubular layer:  $\forall r$ ,  $r_{\beta-1} < r < r_{\beta}$ , six partial waves:

$$\tilde{\mathbf{U}}(r) = \underbrace{\sum_{i=1}^{3} a_{\beta,i} \, \mathbf{I}_{n,\beta,i}(\eta_{\beta,i} \, r)}_{\text{ingoing waves}} + \underbrace{\sum_{i=4}^{6} a_{\beta,i} \, \mathbf{K}_{n,\beta,i}(\eta_{\beta,i} \, r)}_{\text{outgoing waves}}.$$
(7)

(functions including modified Bessel functions and normalization by exponentials)

(Limitation: transversely isotropy with axial symmetry)

Sources at interfaces:

$$\Delta \tilde{\mathbf{U}}(r_{\beta}) = \mathbf{\phi}_{\beta} \quad \text{or/and} \quad \Delta \tilde{\mathbf{\Sigma}}_{r}(r_{\beta}) = \mathbf{\psi}_{\beta}$$
 (8)

## TraFiC - I. The FOURIER-FOURIER-LAPLACE method

# About the use of the Laplace transform

Laplace transform:  $H(s) = \int_0^\infty h(t) e^{-st} dt$ .

Bromwich-Mellin Formula:

$$\forall \gamma > 0 , \ h(t) = e^{\gamma t} \int_{-\infty}^{+\infty} H(\gamma + 2 i \pi f) e^{2 i \pi f t} df . \tag{9}$$

 $f \mapsto H(\gamma + 2 i \pi f)$  is the Fourier Transform of the signal  $t \mapsto h(t) e^{-\gamma t}$ .

10 time grid:  $t_m = m \, \delta t$ ,  $0 \leq m < 2 \, N_t$ , duration  $d = 2 \, N_t \, \delta t$ 



The FFT can be used while both the Nyquist-Shannon criterion and its dual are satisfied:

[Cooley & Tukey (1965)] [Phinney (1965)]

- Band-limited spectrum:  $\forall f > f_{\text{max}} = \frac{1}{2 \, \delta t}, \ H(\gamma + 2 \, i \, \pi \, f) \approx 0$
- Finite duration:  $\forall t, t \notin [0, d[, h(t) e^{-\gamma t} \approx 0]$  (exponential window method [Kausel et al. (1992) J. Eng. Mech.])

## TraFiC – II. Computation steps and results

# 1) Dimensioning the problem: time and space grids

Duration of interest d and highest frequency  $f_{\text{max}} \implies \text{Time grid with } \gamma \text{ and } \delta f$ 

Highest speed and source location  $\implies$  space of interest

Beware of space periodization!

Space of interest and highest wavenumbers  $\implies$  space grid (1D or 2D)

#### 2D space grid:

$$\begin{cases} x_i = i \, \delta x, & -N_x < i \leqslant N_x, & \text{Period: } 2 \, N_x \, \delta x \; ; \\ y_j = j \, \delta y, & -N_y < j \leqslant N_y, & \text{Period: } 2 \, N_y \, \delta y \; . \end{cases} \iff \begin{cases} k_{x \, i} = i \, \delta k_x, & -N_x < i \leqslant N_x, & k_{x \, \text{max}} = \pi/\delta x \; ; \\ k_{y \, j} = j \, \delta k_y, & -N_y < j \leqslant N_y, & k_{y \, \text{max}} = \pi/\delta y \; . \end{cases}$$
 or

$$\begin{cases} \theta_i = i/(\pi N_\theta), & -N_\theta < i \leqslant N_\theta, & \text{Period: } 2\pi; \\ z_j = j \, \delta z, & -N_z < j \leqslant N_z, & \text{Period: } 2 \, N_z \, \delta z \; . \end{cases} \iff \begin{cases} n, & -N_\theta < n \leqslant N_\theta \; ; \\ k_{zj} = j \, \delta k_z, & -N_z < j \leqslant N_z, \; k_{z \, \text{max}} = \pi/\delta z \; . \end{cases}$$

**Object-oriented programming in** *Python*: Grid classes include numerical LAPLACE and FOURIER transforms (direct and inverse), zero-padding...

## TraFiC – II. Computation steps and results

# 2) Green functions: computation and storage

In the FFL domain, each computation for a given  $(\mathbf{k}, s)$  is independent of the others



- Normal wavenumbers and polarizations computed and stored once and for all
- ullet One given direction of excitation at one interface  $\Longrightarrow$  Green function, characterized by the coefficients of the partial waves.

# 3) Field computation

Compromise between CPU and memory

Components of the excitation

 $\Longrightarrow$  FFL

Linear combination of the Green functions

↓ Coefficients of the total wave

One file for each pair (field, normal position)  $\stackrel{\longleftarrow}{\longleftarrow} \quad$ \$\text{Selected fields for selected normal position}

4) Post-processing Signals, snapshots, ... by using zero-padding

# TraFiC – II. Computation steps and results

Semi-immersed nylon plate of 2.26 mm thickness



#### TraFiC – III. Additional tools

# GUI (under development)



#### TraFiC – III. Additional tools

# GUI (under development)



## TraFiC – III. Additional tools

## Mode computation of immersed multilayer plates

[Ducasse & Deschamps, Mode computation of immersed multilayer plates by solving an eigenvalue problem, to be published in Wave Motion]



#### TraFiC – III. Additional tools

## Mode computation of immersed multilayer plates

[Ducasse & Deschamps, Mode computation of immersed multilayer plates by solving an eigenvalue problem, to be published in Wave Motion]



## TraFiC – IV. Towards hybrid computation



A PhD work that should start soon, subject to funding (CEA + DGA-AID): Development of hybrid numerical methods for the diffraction of ultrasonic waves by obstacles on the surface of laminated structures, and application to non-destructive testing

Coll. POEMS/CEA-List/I<sub>2</sub>M-Apy

Domain Decomposition & Asymptotic Methods



Asymptotic Method, coll. Marc Bonnet (POEMS)