Section 7.4- Rationalizing Substitution

Name/ Uid:______ Date:____

In this section, we examine two techniques that can be used to simplify integrals involving radicals.

Integrands Involving $\sqrt[n]{ax+b}$

The technique here is simply to make a substitution $u=\sqrt[n]{ax+b}=(ax+b)^{1/n}$. The essential observation is that this implies that $u^n=ax+b\Rightarrow x=\frac{u^n-b}{a}$ and $dx=\frac{n}{a}u^{n-1}$ du.

Example 1. Find
$$\int x \sqrt[3]{x+1} dx$$

Solution.

Integrands Involving
$$\sqrt{a^2-x^2}$$
, $\sqrt{a^2+x^2}$, and $\sqrt{x^2-a^2}$

For these integrals, we perform what might be called a **reverse substitution**: we write x as a function of a new variable (usually t in this section). The chart below gives the terms appearing in our integrand that indicate such a substitution:

term	substitution
$\sqrt{a^2-x^2}$	$x = a\sin t$
$\sqrt{a^2 + x^2}$	$x = a \tan t$
$\sqrt{x^2-a^2}$	$x = a \sec t$

For example, if we have a $\sqrt{4-x^2}$ in our integrand, the chart says to make the substitution $x=2\sin t$, in which case $dx=2\cos t\ dt$. The reason for this is now the term with the radical simplifies:

$$\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2 t} = \sqrt{4\cos^2 t} = 2\cos t$$

The integral then becomes a trigonometric integral which we do by the techniques of the last section. In order to get our answer in terms of x, we usually need to draw a triangle.

Example 2. Find
$$\int \frac{1}{x^2 \sqrt{x^2 - 4}} dx$$
.

Solution.

Example 3. Evaluate
$$\int_0^{\frac{4}{3}} \sqrt{16 - 9x^2} \ dx$$

Solution.

Example 4. Find
$$\int \frac{x^3}{\sqrt{x^2 + 100}} dx$$

Solution.