00 Linear Regression via Least Squares

June 2, 2021

Information: Basic concepts and simple examples of linear regression via least squares

Written by: Zihao Xu

Last update date: 06.02.2021

1 Basic concepts

1.1 Regression

- **Regression** refers to a set of methods for modeling the relationship between one or more independent variables and a dependent variable.
 - In the natural sciences and social sciences, the purpose of regression is most often to characterize the relationship between the inputs and outputs
 - In machine learning, it is most often concerned with **prediction**
- Regression problems pop up whenever a prediction for a **numerical value** is wanted.
 - Predicting prices
 - Predicting length of stay
 - Demand forecasting

_

- Mathematical Representation
 - Given n observations consisting of

$$\mathbf{X}_{1:n} = \{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_n\}$$

which is usually known as inputs, features, etc. and

$$\mathbf{y}_{1:n} = \{y_1, y_2, \cdots, y_n\}$$

which is **continuous** and is usually known as *outputs*, *targets*, etc.

- The Regression Problem is to use the data to learn the **map** between **x** and y

1.2 Linear Regression

- May be both the **simplest** and most **popular** among the standard tools to regression
- A kind of traditional supervised machine learning
- Assumptions:
 - The relationship between the independent variables \mathbf{x} and the dependent variable y is
 - * That is to say, y can be expressed as a **weighted sum** of the elements in x

- * Or in other words, Linear regression models the output as a line $(\dim(\mathbf{x}) = 1)$ or hyperplane $(\dim(\mathbf{x} > 1))$
- There exist some noise on the observations and any noise is well-behaved (following a Gaussian distribution)

• Linear Regression Model:

- The linear regression model is defined by the coefficients (or **parameters**) for each feature
- For $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{x} = [x_1, x_2, \cdots, x_d]^T$, denote the parameters to the θ :

$$\hat{y} = f(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_d x_d$$

Let $\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \cdots, \theta_d]^T$ and augmented $\tilde{\mathbf{x}} = [1, x_1, x_2, \cdots, x_d]^T$ The the model can be written as

$$\hat{y} = f(x) = \boldsymbol{\theta}^T \tilde{\mathbf{x}}$$

- This is known as **parametric model**

• Goal of Linear Regression:

- Notice that in **assumption**, we assume that there exist some noises in the observations following a Gaussian distribution. Therefore, we are **not** going to directly solve the equation and expect to get a result θ that

$$y_i = \theta \tilde{\mathbf{x}}_i \text{ for } 1 < i < n$$

- Even when we are confident that the underlying relationship is linear, the noise term should be taken into consideration
- The goal of linear regression is to find the parameters $\boldsymbol{\theta}$ that **minimize the prediction** error

1.3 Loss function

The most popular loss function in regression problems is the **squared error**. - When the prediction for an example i is \hat{y}_i and the corresponding true label is y_i , the squared error is given by

$$l_i(\boldsymbol{\theta}) = (\hat{y}_i - y_i)^2 = (\boldsymbol{\theta}^T \tilde{\mathbf{x}}_i - y_i)^2$$

- Note: In some notations, there is a $\frac{1}{2}$ term for the convenience of notating derivatives, but it makes no difference as optimization - To measure the quality of a model on the entire dataset of n examples, we simply sum (or **equivalently**, average) the losses on dataset

$$L(\boldsymbol{\theta}) = \sum_{i=1}^{n} l_i(\boldsymbol{\theta}) = \sum_{i=1}^{n} (\boldsymbol{\theta}^T \tilde{\mathbf{x}}_i - y_i)^2$$

In matrix notation:

$$L(\boldsymbol{\theta}) = \|\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta}\|_2^2$$

Where $\mathbf{y} = [y_1, y_2, \cdots, y_n]^T \in \mathbb{R}^n$, $\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \cdots, \theta_d]^T \in \mathbb{R}^{d+1}$, $\tilde{\mathbf{X}} = [\tilde{\mathbf{x}}_1, \cdots, \tilde{\mathbf{x}}_n]^T \in \mathbb{R}^{n \times (d+1)}$, $\tilde{\mathbf{x}} = [1, x_1, x_2, \cdots, x_d]^T$ - When averaging the losses on dataset, it's called **Mean Squared Error** - Known as **Ordinary Least Squares (OLS)**

1.4 Closed-form solution for OLS

Calculate the gradient of OLS

$$\nabla_{\boldsymbol{\theta}} \|\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta}\|_{2}^{2} = \nabla_{\boldsymbol{\theta}} \left[\left(\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta} \right)^{T} \left(\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta} \right) \right]$$

$$= \left[2 \left(\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta} \right)^{T} \cdot \nabla_{\boldsymbol{\theta}} \left[\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta} \right] \right]^{T}$$

$$= 2 \left(\mathbf{y} - \tilde{\mathbf{X}}\boldsymbol{\theta} \right) \cdot \left(-\tilde{\mathbf{X}} \right)^{T}$$

$$= 2 \left(-\tilde{\mathbf{X}}^{T} \mathbf{y} + \tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\boldsymbol{\theta} \right)$$

Set the gradient to zero (first-order optimization) and solve:

$$\begin{split} 2\left(-\tilde{\mathbf{X}}^T\mathbf{y} + \tilde{\mathbf{X}}^T\tilde{\mathbf{X}}\boldsymbol{\theta}^*\right) &= 0\\ \tilde{\mathbf{X}}^T\tilde{\mathbf{X}}\boldsymbol{\theta}^* &= \tilde{\mathbf{X}}^T\mathbf{y}\\ \boldsymbol{\theta}^* &= \left(\tilde{\mathbf{X}}^T\tilde{\mathbf{X}}\right)^{-1}\tilde{\mathbf{X}}^T\mathbf{y} \end{split}$$

- This is known as **normal equation**, finds the regression coefficients **analytically**. - It's an one-step learning algorithm (as opposed to Gradient Descent)

1.5 Normal Equation vs Gradient Descent

1.5.1 Gradient Descent

- Needs to choose GD-based algorithms and set appropriate parameters
- Needs to do a lot of iterations
- Works well with large d (dimension of input data)

1.5.2 Normal Equation

- Gets rid of setting parameters
- Does not need to iterate compute in one step
- Slow if d is large $(n \le 10^4)$
- Needs to compute inverse of $\tilde{\mathbf{X}}^T\tilde{\mathbf{X}}$, which is very slow
 - Sometimes use math tricks like QR factorization to speed up computation
- Leads to problems if $\tilde{\mathbf{X}}^T\tilde{\mathbf{X}}$ is not invertible

[]: