The Inner Most Loop Iteration counter

Projeto 3 Pedro Tadahiro Furtado Kaneko - RA: 103797

Article

Artigo: [MICRO48] The Inner Most Loop Iteration counter: a new dimension in branch history - Andre Seznec (INRIA/IRISA), Joshua San Miguel (University of Toronto), Jorge Albericio (University of Toronto)

Estado da Arte - Branch Predictor

Derived from 2 families:

- Neural-inspired predictors
- TAGE-based predictors

Both works using a neural component, a large global history component and a small local history component

Branch Correlation

"(...) in many cases, the outcome of a branch is correlated with the outcome of a single past branch or the outcomes of a few past branches."

"(...) in some cases, the outcome of a branch encapsulated in the inner most loop of a multidimensional loop is correlated with the outcomes of the same branch in neighbor iterations of the inner loop but within the previous outer loop iteration."

Inner Most Loop Iteration (IMLI)

For a dynamic branch: IMLI counter = iteration # of the loop encapsulating the branch

Two IMLI-based components:

- IMLI-SIC (Same Iteration Correlation)
 - IMLI-SIC prediction table indexed with the IMLI counter and the PC
- IMLI-OH (Outer History)
 - Same correlation as WH predictor
 - Prediction table
 - IMLI-OH table indexed with the PC and IMLI counter

IMLI Components

IMLI Counter:

IMLI count it's the number of times that the last encountered backward conditional branch has been consecutively taken

```
if (backward) {
if (taken) IMLIcount++;
else IMLIcount = 0;
```

IMLI Components

IMLI-SIC:

Add a single table (IMLI-SIC table) to the statistical corrector of TAGE-GSC. IMLI-SIC is indexed with a hash of the IMLI counter and the PC.

IMLI Components

IMLI-OH:

It consists of the IMLI-OH predictor table, which is incorporated in the SC part of the TAGE-GSC predictor. It also consists of two structures to store and retrieve the history of the previous outer loop iteration: the IMLI history table and the PIPE vector, described below.

The outcome of branches are stored in the IMLI history table. The outcome of a branch at address B is stored at address (B*64) + IMLIcount. This allows us to recover Out[N-1][M] when predicting Out[N][M]. However, when predicting the next iteration (i.e., Out[N][M+1]), Out[N-1][M] would have already been overwritten with Out[N][M]. Therefore, the PIPE (Previous Inner iteration in Previous External iteration) vector is used to intermediately store Out[N-1][M].

Results - expected

Figure 8: IMLI-induced MPKI reduction on the 80 benchmarks; TAGE-GSC predictor

Figure 9: IMLI-induced MPKI reduction on the 15 most benefitting benchmarks; TAGE-GSC predictor

For TAGE-GSC, the misprediction rate is improved by 6.8 % from 2.473 MPKI to 2.313 MPKI on CBP4 traces

Results - 40 traces

Results - 15 best

Results - traces

ResultDirs ==>	ect03/TAGE-GS
LONG-SPEC2K6-00	1.409
LONG-SPEC2K6-01	6.715
LONG-SPEC2K6-02	0.434
LONG-SPEC2K6-03	0.624
LONG-SPEC2K6-04	8.198
LONG-SPEC2K6-05	4.796
LONG-SPEC2K6-06	0.575
LONG-SPEC2K6-07	7.479
LONG-SPEC2K6-08	0.649
LONG-SPEC2K6-09	3.363
LONG-SPEC2K6-10	0.646
LONG-SPEC2K6-11	0.450
LONG-SPEC2K6-12	11.176
LONG-SPEC2K6-13	4.934
LONG-SPEC2K6-14	0.001
LONG-SPEC2K6-15	0.319
LONG-SPEC2K6-16	2.894
LONG-SPEC2K6-17	2.439
LONG-SPEC2K6-18	0.018
LONG-SPEC2K6-19	1.002
SHORT-FP-1	1.161
SHORT-FP-2	0.463
SHORT-FP-3	0.015
SHORT-FP-4	0.015
SHORT-FP-5	0.027
SHORT-INT-1	0.153
SHORT-INT-2	4.089
SHORT-INT-3	6.868
SHORT-INT-4	0.542
SHORT-INT-5	0.215
SHORT-MM-1	6.855
SHORT-MM-2	8.567
SHORT-MM-3	0.060
SHORT-MM-4	1.036
SHORT-MM-5	3.284
SHORT-SERV-1	0.781
SHORT-SERV-2	0.758
SHORT-SERV-3	2.589
SHORT-SERV-4	1.796
SHORT-SERV-5	1.533
AMEAN	2.473

ResultDirs ==>	ect03/IMLISIC/
LONG-SPEC2K6-00	1.407
LONG-SPEC2K6-01	6.697
LONG-SPEC2K6-02	0.433
LONG-SPEC2K6-03	0.621
LONG-SPEC2K6-04	5.811
LONG-SPEC2K6-05	4.769
LONG-SPEC2K6-06	0.584
LONG-SPEC2K6-07	7.510
LONG-SPEC2K6-08	0.648
LONG-SPEC2K6-09	3.378
LONG-SPEC2K6-10	0.646
LONG-SPEC2K6-11	0.454
LONG-SPEC2K6-12	10.011
LONG-SPEC2K6-13	4.792
LONG-SPEC2K6-14	0.001
LONG-SPEC2K6-15	0.320
LONG-SPEC2K6-16	2.897
LONG-SPEC2K6-17	2.449
LONG-SPEC2K6-17	0.015
LONG-SPEC2K6-19	0.999
SHORT-FP-1	1.175
SHORT-FP-2	0.459
SHORT-FP-3	0.435
SHORT-FP-4	0.015
SHORT-FP-5	0.013
SHORT-INT-1	0.152
SHORT-INT-2	4.098
SHORT-INT-3	6.839
SHORT-INT-4	0.533
SHORT-INT-5	0.105
SHORT-MM-1	6.844
SHORT-MM-2	8.556
SHORT-MM-3	0.063
SHORT-MM-4	0.825
SHORT-MM-5	3.297
SHORT-SERV-1	0.786
SHORT-SERV-2	0.753
SHORT-SERV-3	2.622
SHORT-SERV-4	1.793
SHORT-SERV-5	1.540
AMEAN	2.373

ResultDirs ==>	project03/IML1
LONG-SPEC2K6-00	1,402
LONG-SPEC2K6-01	6.704
LONG-SPEC2K6-02	0.432
LONG-SPEC2K6-03	0.627
LONG-SPEC2K6-04	5.817
LONG-SPEC2K6-05	4.769
LONG-SPEC2K6-05	0.577
LONG-SPEC2K6-07	7.501
LONG-SPEC2K6-07	
LONG-SPEC2K6-09	0.653 3.367
LONG-SPEC2K6-09	
	0.636
LONG-SPEC2K6-11	0.453
LONG-SPEC2K6-12	8.064
LONG-SPEC2K6-13	4.761
LONG-SPEC2K6-14	0.001
LONG-SPEC2K6-15	0.314
LONG-SPEC2K6-16	2.898
LONG-SPEC2K6-17	2.440
LONG-SPEC2K6-18	0.015
LONG-SPEC2K6-19	0.999
SHORT-FP-1	1.157
SHORT-FP-2	0.456
SHORT-FP-3	0.015
SHORT-FP-4	0.015
SHORT-FP-5	0.027
SHORT-INT-1	0.150
SHORT-INT-2	4.083
SHORT-INT-3	6.820
SHORT-INT-4	0.523
SHORT-INT-5	0.102
SHORT-MM-1	6.841
SHORT-MM-2	8.569
SHORT-MM-3	0.060
SHORT-MM-4	0.513
SHORT-MM-5	3.294
SHORT-SERV-1	0.780
SHORT-SERV-2	0.754
SHORT-SERV-3	2.613
SHORT-SERV-4	1.790
SHORT-SERV-5	1.539
AMEAN	2.313

Bibliography

[MICRO48] The Inner Most Loop Iteration counter: a new dimension in branch history - Andre Seznec (INRIA/IRISA), Joshua San Miguel (University of Toronto), Jorge Albericio (University of Toronto) - http://dx.doi.org/10.1145/2830772.2830831