- 1. Alternate Exterior Angles
- 2. Alternate Exterior Angles
- 3. Alternate Interior Angles
- 4. Alternate Interior Angles
- 5. Alternate Interior Angles
- 6. Alternate Interior Angles
- 7. Corresponding Angles
- 8. Corresponding Angles
- 9. Corresponding Angles
- 10. Corresponding Angles
- 11. Corresponding Interior Angles
- 12. Corresponding Interior Angles
- 13. Alternate Exterior Angles
- 14. Alternate Exterior Angles

- 15. Corresponding Interior Angles
- 16. Corresponding Interior Angles
- 17. Alternate Interior Angles
- 18. Alternate Interior Angles
- 19. Corresponding Exterior Angles
- 20. Corresponding Exterior Angles

21.
$$\angle 1 = 80^{\circ}$$

22.
$$\angle 2 = 100^{\circ}$$

23.
$$\angle 3 = 80^{\circ}$$

24.
$$\angle 4 = 100^{\circ}$$

25.
$$\angle 5 = 80^{\circ}$$

26.
$$\angle 6 = 100^{\circ}$$

27.
$$\angle 7 = 80^{\circ}$$

28.
$$\angle 8 = 100^{\circ}$$

29. Answer: x = 38

Detailed Solution;

Vertical angles are congruent and alternate interior angles are congruent, therefore:

4x + 8 and 20° are supplementary angles, therefore:

$$4x + 8 + 20 = 180$$

$$4x + 28 = 180$$

$$4x = 152$$

$$x = 38$$

30.
$$x = 30$$

31. Answer: x = 15

Detailed Solution:

Vertical angles are congruent, therefore:

3x + 6 and 51° are corresponding angles, therefore:

- 3x + 6 = 51
- 3x = 45
- x = 15

32.
$$x = 19$$

Page 4

33. Answer: x = 19

Detailed Solution:

Vertical angles are congruent and alternate interior angles are congruent, therefore:

3x + 5 and 6x + 4 are supplementary angles, therefore:

$$3x + 5 + 6x + 4 = 180$$

$$9x + 9 = 180$$

$$9x = 171$$

$$x = 19$$

34.
$$x = 19$$

35. Answer: $x = 35^{\circ}$, $y = 45^{\circ}$

Detailed Solution:

Find x and y:

 $x = 35^{\circ}$ by alternate interior angles

$$35^{\circ} + 100^{\circ} + y = 180^{\circ}$$

 $135^{\circ} + y = 180^{\circ}$
 $y = 45^{\circ}$

36.
$$x = 90^{\circ}, y = 40^{\circ}$$

37. Answer: $y = 40^{\circ}$, $x = 60^{\circ}$ Detailed Solution: Find x and y:

 $y = 40^{\circ}$ by alternate interior angles

$$x + y + 80^{\circ} = 180^{\circ}$$

 $x + 40^{\circ} + 80^{\circ} = 180^{\circ}$
 $x + 120^{\circ} = 180^{\circ}$
 $x = 60^{\circ}$

38.
$$x = 60^{\circ}, y = 45^{\circ}$$

39. Prove Theorem 1.6.1:

If two parallel lines are cut by a transversal, then the alternate interior angles are congruent.

Given: $\ell \parallel m$ Prove: $\angle 3 \cong \angle 6$

Statement:	Reason:
1. $\ell \parallel m$	1. Given.
2. ∠3 ≅ ∠7	2. Postulate 1.6.1: If two parallel lines are
	cut by a transversal, then the
	corresponding angles are congruent.
3. ∠7 and ∠6 are vertical angles	3. Definition of vertical angles.
4. ∠7 ≅ ∠6	4. Theorem 1.2.1: If two angles are
	vertical angles, then they are congruent.
5. ∠3 ≅ ∠6	5. Transitive.

40. Prove Theorem 1.6.5: Two lines are perpendicular if and only if they form four right angles.

To show the if and only if is true, show two proofs:

If two intersecting lines form four right angles, then the lines are perpendicular. AND

If two lines are perpendicular then they form four right angles.

Part 1: Show: If two intersecting lines form four right angles, then the lines are perpendicular.

Given: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are right angles.

Prove: $\ell \perp m$

Statement	Reason
1. \angle 1, \angle 2, \angle 3, and \angle 4 are right angles.	1. Given
2. \angle 1, \angle 2, \angle 3, and \angle 4 are all 90°	2. Definition of right angle.
3. $\ell \perp m$	3. Postulate 1.6.4: Two lines that
	intersect and form a 90° angle are
	perpendicular.

Part 2: Show: If two lines are perpendicular then they form four right angles.

Given: $\ell \perp m$

Prove: $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are right angles.

Statement	Reason
1. $\ell \perp m$	1. Given
2. ∠1 is a right angle.	2. Postulate 1.6.4: Two lines that
	intersect are perpendicular if and only if
	they form a right angle.
3. ∠1 and ∠3 are vertical angles.	3. Definition of vertical angles.
4. ∠1 ≅ ∠3	4. Theorem1.2.1: If two angles are
	vertical angles, then they are congruent.
5. ∠3 is a right angle.	5. Definition of congruence.
6. $\angle 1 = 90^{\circ}, \angle 3 = 90^{\circ}$	6. Definition of right angle (lines 2, 5)
7. ∠1 and ∠2 form a linear pair.	7. Definition of linear pair.
∠3 and ∠4 form a linear pair.	
8. ∠1 and ∠2 are supplementary angles.	8. Postulate 1.2.1: If two angles form a
∠3 and ∠4 are supplementary angles.	linear pair, then they are supplementary
	angles.
9. $\angle 1 + \angle 2 = 180^{\circ}$	9. Definition of supplementary angles.
∠3 + ∠4 = 180°	
10. $90^{\circ} + \angle 2 = 180^{\circ}$	10. Substitution from lines 6 and 9.
$90^{\circ} + \angle 4 = 180^{\circ}$	
11. $\angle 2 = 90^{\circ}$	11. Subtraction of 90°.
∠4 = 90°	
12. ∠2 and ∠4 are right angles.	12. Definition of right angles.
13. \angle 1, \angle 2, \angle 3, and \angle 4 are right angles	13. Lines: 2, 5, 12

41. Prove Theorem 1.6.2: If two lines are cut by a transversal and one pair of alternate interior angles are congruent, then the other pair of alternate interior angles also are congruent.

Given: $\angle 3 \cong \angle 6$ Prove: $\angle 4 \cong \angle 5$

Statement:	Reason:
1. ∠3 & ∠4 form a linear pair	Definition of linear pair.
∠5 & ∠6 form a linear pair	
2. ∠3 & ∠4 are supplementary angles	2. Postulate 1.2.1: If two angles form a
∠5 & ∠6 are supplementary angles	linear pair, then they are supplementary angles.
3. ∠3 ≅ ∠6	3. Given.
4. ∠6 ≅ ∠4 are supplementary angles	4. Substitution from line 2 and 3.
\angle 5 \cong \angle 6 are supplementary angles	
5. ∠4 ≅ ∠5	5. Theorem 1.2.2: If two angles are supplementary to the same angle, then they are congruent.

42. Prove Theorem 1.6.3: If two lines are cut by a transversal and one pair of corresponding angles are congruent, then all pairs of corresponding angles are congruent.

Given: $\angle 1 \cong \angle 5$

Prove: $\angle 3 \cong \angle 7$

∠2 ≅ **∠6**

∠4 ≅ ∠8

Statement	Reason
1. ∠1 and ∠4 are vertical angles	Definition of vertical angles.
∠5 and ∠8 are vertical angles	
2. ∠1 ≅ ∠4	2. Theorem 1.2.1: If two angles are
∠5 ≅ ∠8	vertical angles, then they are
	congruent.
3. ∠1 ≅ ∠5	3. Given.
4. ∠1 ≅ ∠4	4. Substitution from line 3.
∠1 ≅ ∠8	
5. ∠4 ≅ ∠8	5. Substitution from line 4.
6. ∠3 and ∠4 form a linear pair	6. Definition of linear pair.
∠7 and ∠8 form a linear pair	
7. ∠3 and ∠4 are supplementary angles	7. Postulate 1.2.1: If two angles form
∠7 and ∠8 are supplementary angles	a linear pair, then they are
0 (4 (0	supplementary angles.
8. ∠4 ≅ ∠8	8. Line 5.
9. ∠3 and ∠8 are supplementary angles.	9. Substitution from line 8.
∠7 and ∠8 are supplementary angles.	
10. ∠3 ≅ ∠7	10. Theorem 1.2.2: If two angles are
	supplementary to the same angle, then they are congruent.
11. ∠1 and ∠2 form a linear pair.	11. Definition of linear pair.
∠5 and ∠6 form a linear pair.	The Deminion of Image pain
12. ∠1 and ∠2 are supplementary angles	12. Postulate 1.2.1: If two angles form
∠5 and ∠6 are supplementary angles	a linear pair, then they are
20 and 20 are supplementary angles	supplementary angles.
13. ∠1 ≅ ∠5	13. Given.
14. ∠5 and ∠2 are supplementary angles	14. Substitution from line 13.
∠5 and ∠6 are supplementary angles	
15. ∠2 ≅ ∠6	15. Theorem 1.2.2: If two angles are
	supplementary to the same angle, then
10 (0 (7 (0 (10 (10 (10 (10 (10 (10 (10 (10 (10	they are congruent.
16. $\angle 3 \cong \angle 7$, $\angle 2 \cong \angle 6$, $\angle 4 \cong \angle 8$	16. Lines 10, 15 and 5.

43. Prove Theorem 1.6.4: If two lines are cut by a transversal and a pair of alternate interior angles are congruent, then the two lines are parallel.

Given: $\angle 3 \cong \angle 6$

Prove: $\ell \parallel m$

Statement:	Reason:
1. ∠1 & ∠3 form a linear pair	Definition of linear pair.
∠5 & ∠6 form a linear pair	
2. ∠1 & ∠3 are supplementary angles	2. Postulate 1.2.1: If two angles form a
∠5 & ∠6 are supplementary angles	linear pair, then they are supplementary angles.
	3. Given.
3. ∠3 ≅ ∠6	
	4. Substitution from line 2 and 3.
4. ∠1 ≅ ∠6 are supplementary angles	
\angle 5 \cong \angle 6 are supplementary angles	
	5. Theorem 1.2.2: If two angles are
5. ∠1 ≅ ∠5	supplementary to the same angle, then
	they are congruent.
	6. Postulate 1.6.3: If two lines are cut by
6. <i>l</i> <i>m</i>	a transversal and a pair of corresponding
	angles are congruent, then the two lines
	are parallel.

44.

Given: $\angle 3 \cong \angle 4$

∠1 ≅ ∠C

Prove: $\overline{DE} \parallel \overline{AC}$

Redraw the above figure by extending lines \overrightarrow{DE} and \overrightarrow{AC} and the transversal line \overrightarrow{CB} .

Notice: $\angle 2 \cong \angle C$ are corresponding angles.

State	ment	Reason
1. <i>Z</i> ′	1 and ∠3 form a linear pair.	1. Definition of linear pair.
\\ \alpha_1	2 and ∠4 form a linear pair.	
2. ∠	1 and ∠3 are supplementary angles.	2. Postulate 1.2.1: If two angles form a
∠:	2 and ∠4 are supplementary angles.	linear pair, then they are supplementary angles.
3. ∠3	3 ≅ ∠4	3. Given.
4. <i>∠′</i>	1 and ∠3 are supplementary angles.	4. Substitution from line 3.
\\ \alpha_{2}^{2}	2 and $\angle 3$ are supplementary angles.	
5. ∠ <i>′</i>	1 ≅ ∠2	5. Theorem 1.2.2: If two angles are
		supplementary to the same angle, then
6 /	1 ≅ ∠C	they are congruent. 6. Given.
1. Z	2 ≅ ∠C	7. Substitution from line 5.
8. DI	E AC	8. Postulate 1.6.3: If two lines are cut
		by a transversal and a pair of
		corresponding angles are congruent,
		then the two lines are parallel.

45.

Given: ∠F and ∠1 are complementary

∠E and ∠2 are complementary

Prove: AF || DE

Redraw the above figure by extending lines \overrightarrow{AF} , \overrightarrow{DE} and the transversal line \overrightarrow{AD} .

Note: $\angle A$ and $\angle D$ are alternate interior angles.

Statement:	Reason:
1. ∠F and ∠1 are complementary	1. Given.
∠E and ∠2 are complementary	
2. $\angle F + \angle 1 = 90^{\circ}$	2. Definition of complementary.
$\angle E + \angle 2 = 90^{\circ}$	
3. $\angle A + \angle F + \angle 1 = 180^{\circ}$	3. Definition of angle sum in a triangle.
$\angle D + \angle E + \angle 2 = 180^{\circ}$	
$4. \angle A + 90^{\circ} = 180^{\circ}$	4. Substitution from lines 2 & 3.
$\angle D + 90^{\circ} = 180^{\circ}$	
5. $\angle A = 90^{\circ}$	5. Subtraction of 90°.
∠D = 90°	
	6. Definition of congruence.
6. ∠A ≅ ∠D	
	7. Theorem 1.6.4: If two lines are cut by
7. AF DE	a transversal and a pair of alternate
	interior angles are congruent, then the two lines are parallel.