ROBOTIC Fundamentals (UFMF4X-15-M)

Homogenous Transformation

Previously on

ROBOTIC FUNDAMENTALS

- DOFs, Mobility, serial/parallel manipulators
- Types of joints, Kinematic chains
- Workspace, examples of serial manipulators
- Refreshment of maths representation of matrices
- Refreshment of your MATLAB skills

Questions?

Blackboard

Today's Lecture

Frames for Forward Kinematics
Rotation & Translation of Frames
Homogenous transformation Matrix

REFERENCE FRAMES AND FORWARD KINEMATICS

Forward Kinematics

Where is the end effector w.r.t. the "base" frame?

Planar RRR – Forward kinematics via Trigonometry

Vectors

Components of the vector are distances along x, y and z axis

Convention: right hand frames

Coordinate Frames

Example – Planar RRR

MOVING BETWEEN FRAMES

Representing Displacement:

Translation Vector

The reference frame of the hand {H} and the object {O} are <u>spatially</u> <u>displaced</u>.

We want to represent this difference in a consistent way.

Mapping: from frame to frame

 If {A} has same orientation as {B}, then {B} differs from {A} in a translation: ^AP_{BORG}

$$^{A}P = ^{B}P + ^{A}P_{BORG}$$

Mapping: change of description from one frame to another.
 The vector ^AP_{BORG} defines the mapping.

Representing Orientation: Rotation Matrices

The reference frame of the hand {H} and the object {O} have different orientations

We want to represent different orientations in a consistent way, just like we did for positions...

Description of an Orientation

We need a description of the angles to move from axes in {A} to axes in {B} Or in other words: a description of {B} with respect to {A}

Rotation between two frames

Rotation between two frames

$$^{b}p_{y} = -^{a}p_{x}\sin(\theta) + ^{a}p_{y}\cos(\theta)$$

$$^{b}p_{x} = ^{a}p_{x}\cos(\theta) + ^{a}p_{y}\sin(\theta)$$

Rotation Matrix

$$bp_{x} = ap_{x}\cos(\theta) + ap_{y}\sin(\theta)$$
$$bp_{y} = -ap_{x}\sin(\theta) + ap_{y}\cos(\theta)$$

This way, we had a point (or vector) which was in frame {A} and we have expressed it in {B}

To express a point (or vector) from {B} to {A}, the equations are:

$$ap_{x} = bp_{x}\cos(\theta) - bp_{y}\sin(\theta)$$

$$ap_{y} = bp_{x}\sin(\theta) + bp_{y}\cos(\theta)$$

Rotation Matrix

To express a point (or vector) from {B} to {A}, the equations are:

$$^{a}p_{x} = {}^{b}p_{x}\cos(\theta) - {}^{b}p_{y}\sin(\theta)$$

$$^{a}p_{y} = {}^{b}p_{x}\sin(\theta) + {}^{b}p_{y}\cos(\theta)$$

$$\begin{bmatrix} a p_x \\ a p_y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} b p_x \\ b p_y \end{bmatrix}$$

$$^{A}P = {^{A}R_{B}}^{B}P$$

(Using a different convention: $P_A = R_{AB}P_B$ or $^AP = R_{AB}^BP$)

Rotation Matrix

$$\begin{bmatrix} a p_x \\ a p_y \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} b p_x \\ b p_y \end{bmatrix}$$

$${}^{A}R_{B} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

The rotation matrix ${}^{A}R_{B}$ is described as the *rotation matrix* for transforming from the frame {B} to the frame {A}.

Rotation Matrix: from 2D to 3D

$$ap_{x} = {}^{b}p_{x}\cos(\theta) - {}^{b}p_{y}\sin(\theta)$$

$$ap_{y} = {}^{b}p_{x}\sin(\theta) + {}^{b}p_{y}\cos(\theta)$$

$$ap_{z} = {}^{b}p_{z}$$

The 3D rotation matrix ${}^{A}R_{B}$ is given as:

$${}^AR_B = egin{bmatrix} \cos(heta) & -\sin(heta) & 0 \ \sin(heta) & \cos(heta) & 0 \ 0 & 0 & 1 \end{bmatrix}$$
 or R_{AB} or ${}^A_{BR}$

Rotation matrices (rotation around x/y/z)

$$ROT(z,\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_{\theta} & -s_{\theta} & 0 \\ s_{\theta} & c_{\theta} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$ROT(y,\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} = \begin{bmatrix} c_{\theta} & 0 & s_{\theta} \\ 0 & 1 & 0 \\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix}$$

$$ROT(x,\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{\theta} & -s_{\theta} \\ 0 & s_{\theta} & c_{\theta} \end{bmatrix}$$

where:
$$\begin{cases} s_{\theta} = \sin \theta \\ c_{\theta} = \cos \theta \end{cases}$$

Example with Rotation Matrices

What is ${}^{B}C$?

$${}^{B}C = \begin{bmatrix} \cos 30 & -\sin 30 & 0 \\ \sin 30 & \cos 30 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0.866 & -0.5 & 0 \\ 0.5 & 0.866 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 2.46 \\ 3.73 \\ 2 \end{bmatrix}$$

Properties of Rotation Matrices to keep in mind

$${}^{A}R_{B} = {}^{B}R_{A}^{T}$$

$${}^{A}R_{B}^{-1} = {}^{A}R_{B}^{T} = {}^{B}R_{A}$$

$$R^{-1} = R^{T}$$

$$R^{T}R = RR^{T} = I$$

$$\det(R) = +1$$

$$[Rot(i,\theta)]^{-1} = Rot(i,-\theta)$$

$$Rot(i,\theta_1)Rot(i,\theta_2) = Rot(i,\theta_1 + \theta_2)$$

Homework

• Let
$$A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
. Can A be a rotation matrix?

Find the values of the missing elements:

$$R = \begin{bmatrix} r_{11} & 0 & -1 & -1 \\ r_{21} & 0 & 0 & 5 \\ r_{31} & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Putting it all together

HOMOGENEOUS TRANSFORMATIONS

In summary

Position of a point is represented by a vector

Orientation of a body is represented by a matrix

Kinematic Relationship

Between two frames we have a kinematic relationship
 translation and rotation.

This relationship is mathematically represented by a 4
 × 4 Homogeneous Transformation Matrix.

Mapping of the frames (Translation + Rotation)

$$^{A}P = {^{A}R_{B}}^{B}P + {^{A}P_{BORG}}$$

Homogenous transformation matrix

$$T = egin{bmatrix} Rotation & Translation \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Homogeneous Coordinates

- Homogeneous coordinates: embed 3D vectors into 4D by adding a "1"
- More generally, the transformation matrix T has the form:

$$T = \begin{bmatrix} \text{Rot. Matrix} & \text{Trans. Vector} \\ \text{Perspect. Trans.} & \text{Scaling Factor} \end{bmatrix}$$

Getting many of them together

COMPOUND TRANSFORMATIONS

Compound Transformations

Compound Transformations

The vector WC may be known, but EC needs to be calculated. If the transformations representing the position and orientation of {W} w.r.t. {B} and {B} w.r.t. to {E} are known, the following calculations can be performed:

$${}^{B}C = {}^{B}T_{W} {}^{W}C$$

 ${}^{E}C = {}^{E}T_{B} {}^{B}C$

or these equations can be combined to give:

$$EC = ET_B BT_W WC$$

Combining the transformations we can define:

$$ET_W = ET_B BT_W$$

Inverse transformations

In the previous slide we may know BT_E (description of the frame E relative to frame B) rather than ET_B . Or it may be necessary to calculate the position of an object relative to the hand of a robot from its position in relation to the world co-ordinate system.

To do this we find an inverse transformation. In general:

$${}^{B}T_{A} = \begin{bmatrix} {}^{A}R_{B}^{T} & {}^{-A}R_{B}^{T} {}^{A}P_{BORG} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example: Inverting a Transformation matrix

If the transformation matrix T is given by

$$T = \begin{bmatrix} 0.87 & -0.50 & 0 & 1 \\ 0.50 & 0.87 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

If
$$T = \begin{bmatrix} R & P \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
then $T^{-1} = \begin{bmatrix} R^T & -R^T P \\ 0 & 0 & 0 & 1 \end{bmatrix}$

$$T^{-1} = \begin{bmatrix} 0.87 & 0.50 & 0 & -(0.87 * 1 + 0.5 * 2 + 0 * 4) \\ -0.50 & 0.87 & 0 & -(-0.5 * 1 + 0.87 * 2 + 0 * 4) \\ 0 & 0 & 1 & -(0 * 1 + 0 * 2 + 1 * 4) \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0.87 & 0.50 & 0 & -1.87 \\ -0.50 & 0.87 & 0 & -1.24 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Prove: $T * T^{-1} = I$ where I is the identity matrix

Using transformations to describe frames

- Transformations can be used to move between frames
- Transformation required to move from frame {A} to frame {B} can be used as a description of the position and orientation of {B} relative to {A}
- The same transformation, AT_B or T_{AB} can be used to map a vector defined in frame {B} to frame {A}

$$^{A}T_{B} = Trans(3,5,2)Rot(x,-90)Rot(z,90)$$

Figure 1 shows the positions and orientations of Frames A and B. Determine ${}^{A}T_{\!\scriptscriptstyle B}$

$$^{A}T_{B} = Trans(3,5,2)Rot(x,-90)Rot(z,90)$$

$${}^AT_B = egin{bmatrix} 0 & -1 & 0 & 3 \ 0 & 0 & 1 & 5 \ -1 & 0 & 0 & 2 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Alternative Rotation Representation

- Unit Vectors
- Euler Angles
- Quaternions
- SVD (not going to see this)

Rotation Matrices using Unit Vectors

$$R_{ab} = \begin{bmatrix} x_{ab} & y_{ab} & y_{ab} \end{bmatrix} = \begin{bmatrix} x_a x_b & x_a y_b & x_a z_b \\ y_a x_b & y_a y_b & y_a z_b \\ z_a x_b & z_a y_b & z_a z_b \end{bmatrix}$$

Especially for when we only have rotations of 90 degrees around axes!

Let $v = \{x_a, y_a, z_a\}$ and $w = \{x_b, y_b, z_b\}$:

If
$$v \mid w \rightarrow v \cdot w = 1$$
 if $v \perp w \rightarrow v \cdot w = 0$ if $v \mid -w \rightarrow v \cdot w = -1$

In the previous example...

Euler Angles

- Orientation represented as a vector of 3 angles
- Orientation frequently specified by a sequence of rotations about the X, Y, and Z axes.
- A sequence of rotations around principle axes is called an *Euler Angle Sequence*
- Minimal representation of orientation

Euler Angles

This gives us 12 redundant ways to store an orientation using Euler angles

 Different industries use different conventions for handling Euler angles (or no conventions)

XYZ	XZY	XYX	XZX
YXZ	YZX	YXY	YZY
ZXY	ZYX	ZXZ	ZYZ

Euler Angles ZXZ, Animated

Euler Angles ZYZ – Rotation Matrix

$${}_{B}^{A}R_{Z'Y'Z'}(\alpha,\beta,\gamma) = R(Z,\alpha) \quad R(Y,\beta) \quad R(Z,\gamma) =$$

$$\begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} c\gamma & -s\gamma & 0 \\ s\gamma & c\gamma & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c\alpha c\beta c\gamma - s\alpha s\gamma & -c\alpha c\beta s\gamma - s\alpha c\gamma & c\alpha s\beta \\ s\alpha c\beta c\gamma + c\alpha s\gamma & -s\alpha c\beta s\gamma + c\alpha c\gamma & s\alpha s\beta \\ -s\beta c\gamma & s\beta s\gamma & c\beta \end{bmatrix}$$

ZYZ from Homogenous matrix

$$\frac{c\alpha\alpha\beta\gamma\gamma - s\alpha\beta\gamma - c\alpha\alpha\beta\gamma\gamma - s\alpha\gamma\gamma \cos\beta}{s\alpha\alpha\beta\gamma + c\alpha\alpha\gamma + s\alpha\beta\gamma - s\alpha\beta\gamma + c\alpha\alpha\gamma + s\alpha\beta\beta} = A \tan 2 \left(\frac{r_{23}}{s\beta}, \frac{r_{13}}{s\beta} \right)$$

$$\alpha = A \tan 2 \left(\frac{r_{23}}{s\beta}, \frac{r_{13}}{s\beta} \right)$$

$$\gamma = A \tan 2 \left(\frac{r_{32}}{s\beta}, -\frac{r_{31}}{s\beta} \right)$$

Singularity for the last two angles when $\beta=0$ or 180

ZYX - Roll-Pitch-Yaw (RPY)

RPY – Vehicle Orientation

RPY – Rotation Matrix

$$_{B}^{A}R_{XYZ}(\gamma,\beta,\alpha) = R(Z,\alpha) R(Y,\beta) R(X,\gamma) =$$

$$\begin{bmatrix} c\alpha & -s\alpha & \overline{0} \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} =$$

$$\begin{bmatrix} c\alpha & -s\alpha & \overline{0} \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix} = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\overline{\gamma} \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta c\gamma \end{bmatrix}$$

RPY from Homogenous matrix

$$\beta = A \tan 2(-r_{31}, \sqrt{r_{11}^2 + r_{21}^2})$$

$$\alpha = A \tan 2(\frac{r_{21}}{c\beta}, \frac{r_{11}}{c\beta})$$

$$\gamma = A \tan 2(\frac{r_{32}}{c\beta}, \frac{r_{33}}{c\beta})$$

Singularity for the last two angles when β=90° or 270°

Quaternions – Basic Concept

Quaternions – Rotation as axis/angle

Any rotation is:

$$(q, \hat{n})$$

So it is safe to describe it as:

where x, y, z are coordinates of axis of rotation.

Quaternions – The Complex Number 3D space

Quaternions – Advantages of Quaternions

Combination of Rotations (Simpler Computations)

Rounding error robustness

No Gimbal Lock Issue

Forward kinematics – Composition of Homogeneous Transformations

 ${}^{0}T_{6} = {}^{0}T_{1} {}^{1}T_{2} {}^{2}T_{3} {}^{3}T_{4} {}^{4}T_{5} {}^{5}T_{6}$

Base to eff transform

Transform associated w/ link 3

Transform associated w/ link 2

Transform associated w/ link 1

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$$

$${}^{0}T_{1} = \begin{pmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{1}T_{2} = \begin{pmatrix} c_{2} & -s_{2} & 0 & l_{2}c_{2} \\ s_{2} & c_{2} & 0 & l_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{0}T_{3} = {}^{0}T_{1}{}^{1}T_{2}{}^{2}T_{3}$$

$${}^{2}T_{3} = \begin{pmatrix} c_{3} & -s_{3} & 0 & l_{3}c_{3} \\ s_{3} & c_{3} & 0 & l_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{0}T_{3} = {}^{0}T_{1}^{1}T_{2}^{2}T_{3}$$

$${}^{0}T_{3} = \begin{pmatrix} c_{1} & -s_{1} & 0 & l_{1}c_{1} \\ s_{1} & c_{1} & 0 & l_{1}s_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{2} & -s_{2} & 0 & l_{2}c_{2} \\ s_{2} & c_{2} & 0 & l_{2}s_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{3} & -s_{3} & 0 & l_{3}c_{3} \\ s_{3} & c_{3} & 0 & l_{3}s_{3} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$${}^{0}T_{3} = \begin{pmatrix} c_{123} & -s_{123} & 0 & l_{1}c_{1} + l_{2}c_{12} + l_{3}c_{123} \\ s_{123} & c_{123} & 0 & l_{1}s_{1} + l_{2}s_{12} + l_{3}s_{123} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

where:
$$\begin{cases} s_{ij} = \sin(\theta_i + \theta_j) \\ c_{ij} = \cos(\theta_i + \theta_j) \end{cases}$$

...Remember those trigonometric identities...

$$\sin^2 \theta + \cos^2 \theta = 1$$
$$\sin(\theta \pm \phi) = \sin(\theta)\cos(\phi) \pm \cos(\theta)\sin(\phi)$$
$$\cos(\theta \pm \phi) = \cos(\theta)\cos(\phi)\mu\sin(\theta)\sin(\phi)$$

...and some more commonly used formulas...

$$\sin\left(\pi - \frac{\pi}{3}\right) = \sin\left(\frac{\pi}{3}\right)$$

$$\cos\left(-\frac{\pi}{3}\right) = \cos\left(\frac{\pi}{3}\right)$$

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos(\theta)$$

$$S \quad A \quad \tan\left(-\frac{2\pi}{3}\right) = -\tan\left(\frac{2\pi}{3}\right)$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$

$$\tan\left(-\frac{2\pi}{3}\right) = -\tan\left(\frac{2\pi}{3}\right) = \tan\left(\frac{\pi}{3}\right)$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin(\theta)$$

Summary

Kinematics and Reference frames – Basis of the Analysis

Connecting Frames – Translation Vectors and Rotation Matrices

Unified Representation – Homogeneous Transformations – Compound Transformations

ROTATION REPRESENTATION