

TECHNICAL UNIVERSITY OF MOMBASA FACULTY OF APPLIED AND HEALTH SCIENCES DEPARTMENT OF MATHEMATICS AND PHYSICS ASSIGNMENT

COURSE CODE/TITLE: AMA 4105: CALCULUS II

INSTRUCTIONS:

- Form groups of 10 members.
- Ensure that you participate in doing all the questions below.
- Each group leader to rate participation of each member in a scale of 10 and write their score against their names and signatures on the cover page.

SEMESTER: II SUBMISSION DATE: 30TH MARCH 2022

1. Evaluate the following integrals using substitution method

i.)
$$\int e^x \sqrt{1 + e^x} dx$$
 (4 marks)

ii.)
$$\int \sin(ax+b) dx$$
 (4 marks)

iii.)
$$\int t^{-1} \log_2 t \, dt$$
 (4 marks)

iv.)
$$\int_{\frac{1}{t}}^{\frac{1}{2}} \frac{\cos(\pi t)}{\sin^2(\pi t)} dt$$
 (4 marks)

v.)
$$\int_3^4 \frac{1}{(3x-7)^2} dx$$
 (4 marks)

2. Use integration by partial fractions method to evaluate the following integrals instruction

i)
$$\int \frac{x^3}{(x-2)(x+3)} dx$$
 (6 marks)

ii)
$$\int_0^2 \frac{2t}{t^2 - t - 2} dt$$
 (4 marks)

3. Use integration by parts to evaluate the following

i.)
$$\int t \sin t \, dx$$
 (4 marks)

ii.)
$$\int \sqrt{t} \ln t \, dt$$
 (4 marks)

4. Obtain the reduction formula for

$$I_n = \int x^n e^x dx$$
 and use it to evaluate $\int x^3 e^x dx$ (8 marks)

- 5. Find the length of an arc AB of the curve $y = \frac{2}{3}x^{\frac{3}{2}}$, where then coordinate of A and B are 3 and 8 respectively. (5 marks)
- 6. Find the equation of motion for an object that moves along a straight line with constant acceleration a from an initial position x_0 with initial velocity v_0 . (4 marks)

- 7. The acceleration of an object is given by $a(t) = \cos(\pi t)$, and its velocity at time t = 0 is $\frac{1}{(2\pi)}$. Find both the net and the total distance traveled in the first 1.5 seconds. (5 marks)
- 8. Starting at time t = 0, an object moves along a straight line with the velocity

$$v(t) = 6 - 2t$$

- Calculate the displacement and the distance travelled by the object at time t = 5s. (5 marks)
- 9. Approximate $\int_2^3 \frac{dx}{x+1}$ using Simpson's Rule with n=4. (5 marks)