HMMT February 2019

February 16, 2019

Algebra and Number Theory

- 1. What is the smallest positive integer that cannot be written as the sum of two nonnegative palindromic integers? (An integer is *palindromic* if the sequence of decimal digits are the same when read backwards.)
- 2. Let $N=2^{\binom{2^2}{2}}$ and x be a real number such that $N^{\binom{N^N}{2}}=2^{\binom{2^x}{2}}$. Find x.
- 3. Let x and y be positive real numbers. Define $a = 1 + \frac{x}{y}$ and $b = 1 + \frac{y}{x}$. If $a^2 + b^2 = 15$, compute $a^3 + b^3$.
- 4. Let \mathbb{N} be the set of positive integers, and let $f: \mathbb{N} \to \mathbb{N}$ be a function satisfying
 - f(1) = 1;
 - for $n \in \mathbb{N}$, f(2n) = 2f(n) and f(2n+1) = 2f(n) 1.

Determine the sum of all positive integer solutions to f(x) = 19 that do not exceed 2019.

- 5. Let a_1, a_2, \ldots be an arithmetic sequence and b_1, b_2, \ldots be a geometric sequence. Suppose that $a_1b_1 = 20$, $a_2b_2 = 19$, and $a_3b_3 = 14$. Find the greatest possible value of a_4b_4 .
- 6. For positive reals p and q, define the remainder when p is divided by q as the smallest nonnegative real r such that $\frac{p-r}{q}$ is an integer. For an ordered pair (a,b) of positive integers, let r_1 and r_2 be the remainder when $a\sqrt{2} + b\sqrt{3}$ is divided by $\sqrt{2}$ and $\sqrt{3}$ respectively. Find the number of pairs (a,b) such that $a,b \leq 20$ and $r_1 + r_2 = \sqrt{2}$.
- 7. Find the value of

$$\sum_{a=1}^{\infty} \sum_{b=1}^{\infty} \sum_{c=1}^{\infty} \frac{ab(3a+c)}{4^{a+b+c}(a+b)(b+c)(c+a)}.$$

8. There is a unique function $f: \mathbb{N} \to \mathbb{R}$ such that f(1) > 0 and such that

$$\sum_{d|n} f(d)f\left(\frac{n}{d}\right) = 1$$

for all n > 1. What is $f(2018^{2019})$?

- 9. Tessa the hyper-ant has a 2019-dimensional hypercube. For a real number k, she calls a placement of nonzero real numbers on the 2^{2019} vertices of the hypercube k-harmonic if for any vertex, the sum of all 2019 numbers that are edge-adjacent to this vertex is equal to k times the number on this vertex. Let S be the set of all possible values of k such that there exists a k-harmonic placement. Find $\sum_{k \in S} |k|$.
- 10. The sequence of integers $\{a_i\}_{i=0}^{\infty}$ satisfies $a_0 = 3, a_1 = 4$, and

$$a_{n+2} = a_{n+1}a_n + \left[\sqrt{a_{n+1}^2 - 1}\sqrt{a_n^2 - 1}\right]$$

for $n \geq 0$. Evaluate the sum

$$\sum_{n=0}^{\infty} \left(\frac{a_{n+3}}{a_{n+2}} - \frac{a_{n+2}}{a_n} + \frac{a_{n+1}}{a_{n+3}} - \frac{a_n}{a_{n+1}} \right).$$