Avec Exercices d'applications et de réflexions avec solutions

LES SUITES NUMERIQUES

Exercice1:soit $(u_n)_n$ la suite définie par :

 $u_n = 2n + 3 \quad \forall n \in \mathbb{N}$

1)Calculer : les quatres 1 ere termes de la suite $(u_n)_n$

2) Calculer: $\forall n \in \mathbb{N} \quad u_{n+1} - u_n$

Solution :1) $u_0 = 2 \times 0 + 3 = 3$ $u_1 = 2 \times 1 + 3 = 5$

 $u_1 = 2 \times 1 + 3 = 5$ $u_3 = 2 \times 3 + 3 = 9$

2) $u_{n+1} - u_n = (2(n+1)+3)-(2n+3)$

 $u_{n+1} - u_n = 2n + 2 + 3 - 2n - 3 = 2$

Exercice2: soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

 $\mathsf{par}: \begin{cases} u_0 = 2 \\ u_{n+1} = 5u_n - 7 \end{cases} \quad \forall n \in \mathbb{N}$

Calculer: $u_1; u_2; u_3$

Solution : on a $u_{n+1} = 5u_n - 7$

Pour n=0 on a: $u_{0+1} = 5u_0 - 7$ donc $u_1 = 5 \times 2 - 7$

Donc : $u_1 = 3$

Pour n=1 on a: $u_{1+1} = 5u_1 - 7$ donc $u_2 = 5 \times 3 - 7$

Donc: $u_2 = 8$

Pour n=2 on a: $u_{2+1} = 5u_2 - 7$ donc $u_3 = 5 \times 8 - 7$

Donc : $u_3 = 33$

Exercice3: Suites numériques du second ordre.

soit $(v_n)_{n\in\mathbb{N}}$ la suite récurrente définie par :

 $\begin{cases} v_0 = 1; v_1 = -1 \\ v_{n+2} = 2v_{n+1} - 3v_n \end{cases} \forall n \in \mathbb{N}$

Calculer: $v_2; v_3; v_4$

Solution :on a $v_{n+2} = 2v_{n+1} - 3v_n$

Pour n=0 on a: $v_{0+2} = 2v_{0+1} - 3v_0$ donc $v_2 = 2v_1 - 3v_0$

Donc: $v_2 = 2 \times (-1) - 3 \times 1 = -5$

Pour n=1 on a: $v_{1+2} = 2v_{1+1} - 3v_1$ donc $v_3 = 2v_2 - 3v_1$

Donc: $v_3 = 2(-5) - 3(-1) = -7$

Pour n=2 on a: $v_{2+2} = 2v_{2+1} - 3v_2$ donc $v_4 = 2v_3 - 3v_2$

Donc: $v_4 = 2(-7) - 3(-5) = -14 + 15 = 1$

Exercice4: soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

 $u_n = \frac{n+1}{2n+1} \quad \forall n \in \mathbb{N}$

Montrer que : $\forall n \in \mathbb{N} : \frac{1}{2} < u_n \le 1$

Solution :1)Montrons que : $u_n \le 1$??

 $1 - u_n = 1 - \frac{n+1}{2n+1} = \frac{(2n+1) - (n+1)}{2n+1} = \frac{n}{2n+1} \ge 0$

Donc $u_n \le 1 \quad \forall n \in \mathbb{N}$

2)Montrons que : $\frac{1}{2} < u_n$??

 $u_n - \frac{1}{2} = \frac{n+1}{2n+1} - \frac{1}{2} = \frac{2(n+1)-(2n+1)}{2n+1} = \frac{1}{2n+1} > 0$

Donc $\frac{1}{2} < u_n \quad \forall n \in \mathbb{N}$

Par suite :: $\forall n \in \mathbb{N}$: $\frac{1}{2} < u_n \le 1$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 1 car

 $u_n \le 1 \quad \forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est minorée par $\frac{1}{2}$ car

 $\frac{1}{2} < u_n \quad \forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée car : $\forall n\in\mathbb{N}$:

 $\frac{1}{2} < u_n \le 1$

Exercice5:soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

 $\operatorname{par}:\begin{cases} u_0=0\\ u_{n+1}=\sqrt{u_n+2} & \forall n\in\mathbb{N} \end{cases}$

1- Calculer les 3 premiers termes.

2- Montrer par récurrence que : $\forall n \in \mathbb{N} : 0 \le u_n$

3- Montrer par récurrence que : $\forall n \in \mathbb{N} : u_n \leq 2$

Solution :1)on a $u_{n+1} = \sqrt{u_n + 2}$

Pour n=0 on a: $u_1 = \sqrt{u_0 + 2}$ donc $u_1 = \sqrt{2}$

Pour n=1 on a: $u_2 = \sqrt{u_1 + 2}$ donc $u_2 = \sqrt{\sqrt{2} + 2}$

Pour n=2 on a: $u_3 = \sqrt{u_2 + 2}$ donc $u_3 = \sqrt{\sqrt{\sqrt{2} + 2} + 2}$

2) Montrons par récurrence que : $\forall n \in \mathbb{N} : 0 \le u_n$

1étapes : l'initialisation :Pour n=0 nous avons $\,u_0=0\,$

donc $0 \le u_0$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence :

Supposons que: $0 \le u_n$

3étapes : Montrons alors que : $0 \le u_{n+1}$??

Or on a : $u_{n+1} = \sqrt{u_n + 2} \ge 0$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

3) Montrons par récurrence que : $\forall n \in \mathbb{N} : u_n \leq 2$

1étapes : l'initialisation :Pour n=0 nous avons $\,u_0=0\,$

donc $u_0 \le 2$.

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence :

Supposons que: $u_n \le 2$

3étapes : Montrons alors que : $u_{n+1} \le 2$??

on a: $u_n \le 2$ donc $u_n + 2 \le 4 \Rightarrow \sqrt{u_n + 2} \le \sqrt{4}$

 $\Rightarrow u_{n+1} \le 2$

donc: $\forall n \in \mathbb{N} : 0 \le u_n$

Par suite :: $\forall n \in \mathbb{N} : 0 \le u_n \le 2$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 0 car

 $u_n \leq 2 \quad \forall n \in \mathbb{N}$

On dit que la suite $\left(u_n\right)_{n\in\mathbb{N}}$ est minorée par 0car $0\leq u_n$

 $\forall n \in \mathbb{N}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est bornée car : $\forall n\in\mathbb{N}$:

 $0 \le u_n \le 2$

Exercice6: soit $(v_n)_{n\geq 1}$ la suite définie par :

 $v_n = \sqrt{n+1} - \sqrt{n} \quad \forall n \in \mathbb{N}^*$

1)Montrer que $(v_n)_{n\geq 1}$ est minorée par 0

2)Montrer que $(v_n)_{n\geq 1}$ est majorée par $\frac{1}{2}$

3)Que peut-on déduire?

Solution :1)Montrons que : $\forall n \in \mathbb{N}^*$ $0 \le v_n$??

$$v_n = \sqrt{n+1} - \sqrt{n} = \frac{\left(\sqrt{n+1} - \sqrt{n}\right)\left(\sqrt{n+1} + \sqrt{n}\right)}{\sqrt{n+1} + \sqrt{n}} \text{ (Le conjugué)}$$

$$v_n = \frac{\left(\sqrt{n+1}\right)^2 - \left(\sqrt{n}\right)^2}{\sqrt{n+1} + \sqrt{n}} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \ge 0$$

 $\mathsf{Donc}: 0 \le v_n \quad \forall n \in \mathbb{N}^*$

Donc : $(v_n)_{n\geq 1}$ est minorée par 0

2)Montrons que : $v_n \le \frac{1}{2}$?? $\forall n \in \mathbb{N}^*$

$$v_n - \frac{1}{2} = \frac{1}{\sqrt{n+1} + \sqrt{n}} - \frac{1}{2} = \frac{2 - (\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$

On a: $n \ge 1$ et $n+1 \ge 2$ donc $\sqrt{n} \ge 1$ et $\sqrt{n+1} \ge \sqrt{2}$

Donc: $\sqrt{n+1} + \sqrt{n} \ge 1 + \sqrt{2}$ donc

 $-\left(\sqrt{n+1}+\sqrt{n}\right) \le -1-\sqrt{2}$

donc $2 - (\sqrt{n+1} + \sqrt{n}) \le 1 - \sqrt{2}$ et puisque : $1 - \sqrt{2} < 0$

Donc $v_n - \frac{1}{2} \prec 0 \quad \forall n \in \mathbb{N}^*$

Donc $v_n \prec \frac{1}{2} \quad \forall n \in \mathbb{N}^*$

Donc la suite $(v_n)_{n\geq 1}$ est majorée par $\frac{1}{2}$

3)Donc la suite $(v_n)_{n>1}$ est bornée car :

 $\forall n \in \mathbb{N}^* : 0 < v_n < \frac{1}{2}$

Exercice7: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_{n+1} = u_n^2 + 2u_n + 2 \\ u_0 = -1 \end{cases} \forall n \in \mathbb{N}$$

Calculer \mathcal{U}_1 et montrer que $(\mathcal{U}_n)_{n\in\mathbb{N}}$ est minorée par 1

Solutions:

$$u_{0+1} = u_0^2 + 2u_0 + 2 = (-1)^2 + 2 \times (-1) + 2 = 1 + -2 + 2 = 1$$

 $u_n - 1 = u_n^2 + 2u_n + 2 - 1 = u_n^2 + 2u_n + 1 = (u_n + 1)^2 \ge 0$

Donc: $1 \le u_n \ \forall n \in \mathbb{N}$

Donc : $(u_n)_{n\in\mathbb{N}}$ est minorée par 1

Exercice8: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = \frac{7u_n}{2u_n + 1} & \forall n \in \mathbb{N} \end{cases}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée par 1 et majorée par 3.

Solutions: Montrons par récurrence que : $\forall n \in \mathbb{N}$:

 $0 < u_n < 3$

1étapes : n=0 on a : $0 < u_0 < 3 \text{ car } 0 < 1 < 3$

Donc la proposition est vraie pour n=0

2étapes : d'hérédité ou Hypothèse de récurrence :

Supposons que: $0 < u_n < 3$

3étapes : Montrons alors que : $0 < u_{n+1} < 3$??

On a: $0 < u_n$ donc $0 < 2u_n + 1$ et $0 < 7u_n$

Donc $0 < u_{n+1}$ (1)

Et on a: $u_{n+1} - 3 = \frac{7u_n}{2u_n + 1} - 3 = \frac{7u_n - 3(2u_n + 1)}{2u_n + 1}$

 $u_{n+1} - 3 = \frac{u_n - 3}{2u_n + 1}$ et puisque on a : $0 < u_n < 3$

on a donc: $u_n - 3 < 0$ et $0 < 2u_n + 1$

Donc $u_{n+1} - 3 < 0$ Donc $u_{n+1} < 3(2)$

De (1) et (2) en déduit que : $0 < u_{n+1} < 3$

D'où $\forall n \in \mathbb{N} : 0 < u_n < 3$

Exercice9: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_n = 3n^2 + 6n - 4 \qquad \forall n \in \mathbb{N}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée

Solutions: Soit $n \in \mathbb{N}$ on a :

$$u_n = 3n^2 + 6n - 4 = 3(n^2 + 2n) - 4 = 3((n+1)^2 - 1) - 4$$

$$u_n = 3(n+1)^2 - 7$$

on a: $\forall n \in \mathbb{N} (n+1)^2 \ge 0$

donc: $3(n+1)^2 \ge 0$ donc $(n+1)^2 - 7 \ge -7$

 $\mathrm{donc}: u_n \geq -7 \quad \text{ par suite } \left(u_n\right)_{n \in \mathbb{N}} \mathrm{est \ minor\acute{e}e \ par \ -7}$

Exercice10: Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

$$par: u_n = \frac{2 + \cos n}{3 - \sin \sqrt{n}} \quad \forall n \in \mathbb{N}$$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée

Solutions :Soit $n \in \mathbb{N}$ on a :

 $-1 \le \cos n \le 1 \quad \forall n \in \mathbb{N} \quad \text{et } -1 \le \sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $-1 \le -\sin \sqrt{n} \le 1$

donc: $1 \le 2 + \cos n \le 3$ et $2 \le 3 - \sin \sqrt{n} \le 4$

donc: $1 \le 2 + \cos n \le 3$ et $\frac{1}{4} \le \frac{1}{3 - \sin \sqrt{n}} \le \frac{1}{2}$

donc: $\frac{1}{4} \le \frac{2 + \cos n}{3 - \sin \sqrt{n}} \le \frac{3}{2}$

cad : $\frac{1}{4} \le u_n \le \frac{3}{2}$ donc : $(u_n)_{n \in \mathbb{N}}$ est bornée

Exercice11:Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

 $par: u_n = (-1)^n \sin \sqrt{n} \quad \forall n \in \mathbb{N}$

Montrer que $(u_n)_{n\in\mathbb{N}}$ est bornée

Solutions: Soit $n \in \mathbb{N}$ on a :

$$|u_n| = |(-1)^n \sin \sqrt{n}| = |(-1)^n| |\sin \sqrt{n}| = |\sin \sqrt{n}| \le 1$$

donc $|u_n| \le 1 \ \forall n \in \mathbb{N}$

donc : $(u_n)_{n\in\mathbb{N}}$ est bornée

Exercice12:Soit la suite récurrente $(u_n)_{n\in\mathbb{N}}$ définie

$$par : u_n = \frac{-n}{n+2} \quad \forall n \in \mathbb{N}$$

Montrer que : $u_{n+1} - u_n \le 0 \quad \forall n \in \mathbb{N}$

Solutions :Soit $n \in \mathbb{N}$ on a :

$$u_{n+1} - u_n = \left(\frac{-(n+1)}{n+1+2}\right) - \left(\frac{-n}{n+2}\right) = \frac{-n-1}{n+3} + \frac{n}{n+2}$$

$$u_{n+1} - u_n = \frac{(-n-1)(n+2) + n(n+3)}{(n+3)(n+2)} = \frac{-2}{(n+3)(n+2)} < 0$$

 $\mathsf{Donc}: \, u_{\scriptscriptstyle n+1} - u_{\scriptscriptstyle n} \leq 0 \quad \mathsf{donc} \, \, u_{\scriptscriptstyle n+1} \leq u_{\scriptscriptstyle n} \, \, \forall n \in \mathbb{N}$

On dira que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante

Exercice13:soit $\left(u_{n}\right)_{n\in\mathbb{N}}$ la suite récurrente définie

par :
$$\begin{cases} u_0 = 1 \\ u_{n+1} = \sqrt{u_n + 2} \end{cases} \quad \forall n \in \mathbb{N}$$

Montrer par récurrence que $u_n \le u_{n+1} \quad \forall n \in \mathbb{N}$

Solutions:1étapes:on a $u_1 = \sqrt{u_0 + 2} = \sqrt{2}$

Pour n=0 nous avons $u_0 = 1$ donc $u_0 \le u_1$.

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $u_n \le u_{n+1}$

3étapes : Montrons alors que : $u_{n+1} \le u_{n+2}$??

on a : $u_n \le u_{n+1}$ donc $u_n + 2 \le u_{n+1} + 2$

donc: $\sqrt{u_n + 2} \le \sqrt{u_{n+1} + 2}$ donc $u_{n+1} \le u_{n+2}$

Par suite :: $\forall n \in \mathbb{N}$: $u_n \leq u_{n+1}$

On dit que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante

Exercice14::soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$\mathsf{par} :: \begin{cases} u_0 = 1; u_1 = 1 \\ u_{n+2} = 2u_{n+1} - u_n - 2 \end{cases} \quad \forall n \in \mathbb{N}$$

Montrer que suite : $\left(u_{n}\right)_{n\in I}$ est croissante.

Solutions :montrons par récurrence que $u_{n+1} \le u_n$

1étapes :on a $u_1 \le u_0$

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $u_{n+1} \le u_n$

3étapes : Montrons alors que : $u_{n+2} \le u_{n+1}$??

on a :
$$u_{n+2} - u_{n+1} = 2u_{n+1} - u_n - 2 - u_{n+1}$$

donc
$$u_{n+2} - u_{n+1} = u_{n+1} - u_n - 2$$
 et on a : $u_{n+1} - u_n \le 0$

donc:
$$u_{{\scriptscriptstyle n+1}} - u_{{\scriptscriptstyle n}} - 2 \le 0$$
 donc $u_{{\scriptscriptstyle n+2}} - u_{{\scriptscriptstyle n+1}} \le 0$

Par suite :: $\forall n \in \mathbb{N}$: $u_{n+1} \leq u_n$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante

Exercice15: soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$u_n = \sum_{k=1}^n \frac{2^k}{k} \qquad \forall n \in \mathbb{N}^*$$

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

Solutions:

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{2^k}{k} - \sum_{k=1}^n \frac{2^k}{k} = \sum_{k=1}^n \frac{2^k}{k} + \frac{2^{n+1}}{n+1} - \sum_{k=1}^n \frac{2^k}{k}$$

$$u_{n+1} - u_n = \frac{2^{n+1}}{n+1} > 0$$
 Donc: $u_n \le u_{n+1}$ $\forall n \in \mathbb{N}^*$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

Exercice16: soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$u_n = \sum_{k=1}^n \frac{1}{n+k} \quad \forall n \in \mathbb{N}^*$$

Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

Solutions:
$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{n+1+k} - \sum_{k=1}^{n} \frac{1}{n+k}$$

Et on a :
$$\sum_{k=1}^{n+1} \frac{1}{n+1+k} = \sum_{k'=2}^{n+2} \frac{1}{n+k'}$$
 on pose $k' = k+1$

Et puisque k' est un variable on peut l'appeler k'

$$\sum_{k=1}^{n+1} \frac{1}{n+1+k} = \sum_{k'=2}^{n+2} \frac{1}{n+k'} = \sum_{k=2}^{n+2} \frac{1}{n+k}$$

Donc:

$$u_{n+1} - u_n = \sum_{k=2}^{n+2} \frac{1}{n+k} - \sum_{k=1}^{n} \frac{1}{n+k} = \frac{1}{2n+1} + \frac{1}{2n+2} - \frac{1}{n+1}$$

$$u_{n+1} - u_n = \frac{1}{2(n+1)(2n+1)} \succ 0 \quad \forall n \in \mathbb{N}^*$$

$$u_{n+1} - u_n = \frac{2^{n+1}}{n+1} \succ 0 \quad \forall n \in \mathbb{N}^*$$

donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante

Exercice117:soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$\operatorname{par}: \begin{cases} u_{n+1} = \frac{8(u_n - 1)}{u_n + 2} & \forall n \in \mathbb{N} \\ u_0 = 3 & \end{cases}$$

- 1) Montrer que $(u_n)_{n\in\mathbb{N}}$ est minorée par 2
- 2) Montrer que $(u_n)_{n\in\mathbb{N}}$ est majorée par 4
- 3) Etudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$

Solutions :1) Montrons que $2 \le u_n \quad \forall n \in \mathbb{N}$????

1étapes : n=0 on a : $2 \le u_0$ car 2 < 3

Donc la proposition est vraie pour n=0

2étapes : Hypothèse de récurrence :

Supposons que: $2 \le u_n$

3étapes : Montrons alors que : $2 \le u_{n+1}$??

$$u_{n+1} - 2 = \frac{8(u_n - 1)}{u_n + 2} - 2 = \frac{8(u_n - 1) - 2(u_n + 2)}{u_n + 2} = \frac{6u_n - 12}{u_n + 2}$$

$$u_{n+1} - 2 = \frac{6(u_n - 2)}{u_n + 2}$$
 et puisque on a : $2 \le u_n$

Donc: $u_n - 2 \ge 0$ et $u_n + 2 > 0$

 $\mathsf{Donc}:\, u_{\scriptscriptstyle n+1}-2\geq 0$

donc $2 \le u_n \quad \forall n \in \mathbb{N}$

2) Montrons que $u_n \le 4 \quad \forall n \in \mathbb{N}$????

1étapes : n=0 on a : $u_0 \le 4$ car 3 < 4

Donc la proposition est vraie pour n=0

2étapes : Hypothèse de récurrence : Supposons que: $u_n \le 4$

3étapes : Montrons alors que : $u_{n+1} \le 4$??

$$4 - u_{n+1} = 4 - \frac{8(u_n - 1)}{u_n + 2} = \frac{4(u_n + 2) - 8(u_n - 1)}{u_n + 2} = \frac{-4u_n + 16}{u_n + 2}$$

$$4-u_{n+1} = \frac{4(4-u_n)}{u_n+2} = \frac{4(4-u_n)}{u_n+2}$$
 et puisque on a :

$$u_n \leq 4$$

Donc: $4 - u_n \ge 0$ et $u_n + 2 > 0$

Donc $u_{n+1} \le 4$ par suite $u_n \le 4 \ \forall n \in \mathbb{N}$

3)
$$u_{n+1} - u_n = \frac{8(u_n - 1)}{u_n + 2} - u_n = \frac{8(u_n - 1) - u_n(u_n + 2)}{u_n + 2} = \frac{-u_n^2 + 6u_n - 8}{u_n + 2}$$

On va factoriser $-u_n^2 + 6u_n - 8 : \Delta = 36 - 32 = 4 > 0$

$$x_1 = \frac{-6+2}{-2} = 2$$
 et $x_2 = \frac{-6-2}{-2} = 4$ donc:

$$-u_n^2 + 6u_n - 8 = -(u_n - 2)(u_n - 4)$$

Donc:
$$u_{n+1} - u_n = \frac{-(u_n - 2)(u_n - 4)}{u_n + 2}$$

Or on a : $u_n \ge 2$ et $u_n \le 4$

Donc:
$$u_{n+1} - u_n = \frac{-(u_n - 2)(u_n - 4)}{u_n + 2} \ge 0$$
 donc la suite $(u_n)_{n \in \mathbb{N}}$

est strictement croissante

Exercice18: soit $(u_n)_n$ la suite définie par :

$$u_n = 3n + 8 \quad \forall n \in \mathbb{N}$$

Calculer $u_{n+1} - u_n$

Solution:
$$u_{n+1} - u_n = (3(n+1)+8)-(3n+8)$$

$$u_{n+1} - u_n = 3n + 3 + 8 - 3n - 8 = 3 = cons \tan te$$

On dit que la suite $(u_n)_{n\in I}$ est une suite arithmétique

Exercice19: soient Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$

définies par : $u_{n+1} = u_n - 3$ et $u_0 = 2$ $\forall n \in \mathbb{N}$

$$v_n = n^2 + 2 \qquad \forall n \in \mathbb{N}$$

1)La suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique de raison r=-3et de premier terme $u_0 = 2$

2)
$$v_0 = 2$$
; $v_1 = 3$; $v_2 = 6$

Ainsi :
$$v_1 - v_0 = 1$$
 et $v_2 - v_1 = 3$

La suite $(v_n)_{n\in\mathbb{N}}$ n'est donc pas arithmétique

Exercice20: Déterminer le réel x pour que les nombres (3x - 1); (1 - 4x) et (x - 5) soient les termes consécutifs d'une suite Arithmétique pour laquelle il faut déterminer la raison.

Solution : (3x - 1); (1 - 4x) et (x - 5) soient les Termes consécutifs d'une suite Arithmétique

Ssi
$$2(1-4x)=(3x-1)+(x-5)$$

$$-8x + 2 = 4x - 6 \Leftrightarrow -12x = -8 \Leftrightarrow x = \frac{2}{3}$$

Donc les termes de la suite sont :

$$3 \times \frac{2}{3} - 1 = 1$$
 et $1 - 4 \times \frac{2}{3} = -\frac{5}{3}$ et $\frac{2}{3} - 5 = -\frac{13}{3}$

Donc:
$$-\frac{5}{3}-1=-\frac{8}{3}=r$$

Exercice21:Soit $(u_n)_n$ une suite arithmétique tel que $u_1 = 3 \text{ et } u_5 = 9$

- 1) Déterminer sa raison r
- 2) Déterminer son premier terme u_0 .
- 3) écrire u_n en fonction de n

Solutions: 1) la raison r??

on a:
$$\forall (n; p) \in \mathbb{N}^2$$
 $u_n = u_p + (n-p)r$

Pour n= 5 et p=1 on a : $u_5 = u_1 + (5-1)r$

Donc:
$$9 = 3 + 4r \Leftrightarrow 4r = 6 \Leftrightarrow r = \frac{3}{2}$$

2) le terme u_0 ??

$$u_1 = u_0 + (1 - 0)r \Leftrightarrow 3 = u_0 + \frac{3}{2} \Leftrightarrow u_0 = 3 - \frac{3}{2} = \frac{3}{2}$$

3) u_n en fonction de n?

$$u_n = u_1 + \frac{3}{2}(n-1) \Leftrightarrow u_n = 3 + \frac{3}{2}(n-1)$$

$$u_n = \frac{3}{2} + \frac{3}{2}n \quad \forall n \in \mathbb{N}$$

Exercice22:soit $(u_n)_{n\in\mathbb{N}}$ la suite récurrente définie

$$\mathrm{par}:\begin{cases} u_{\scriptscriptstyle n+1} = \frac{2u_{\scriptscriptstyle n} - 1}{u_{\scriptscriptstyle n}} & \forall n \in \mathbb{N} \ \text{ et on considère la suite} \\ u_{\scriptscriptstyle 0} = 2 & \end{cases}$$

 $(v_n)_{n\in\mathbb{N}}$ définie par :

$$v_n = \frac{1}{u_n - 1} \quad \forall n \in \mathbb{N}$$

- 1) Montrer que $\left(u_{n}\right)_{n\in\mathbb{N}}$ est une suite arithmétique
- 2) écrire u_n en fonction de n

1)
$$v_{n+1} - v_n = \frac{1}{u_{n+1} - 1} - \frac{1}{u_n - 1} = \frac{1}{\frac{2u_n - 1}{u} - 1} - \frac{1}{u_n - 1}$$

$$v_{n+1} - v_n = \frac{u_n}{u_n - 1} - \frac{1}{u_n - 1} = 1$$

Donc $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison

$$r = 1$$
 et de premier terme $v_0 = \frac{1}{u_0 - 1} = \frac{1}{2 - 1} = 1$

2) écrire u_n en fonction de n

On a $(v_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison

r=1 et de premier terme $v_0=1$

Donc: $v_n = v_0 + nr = 1 + n \times 1 = 1 + n$

Puisque :
$$v_n = \frac{1}{u_n - 1}$$
 donc $u_n - 1 = \frac{1}{v_n}$ donc $u_n = \frac{1}{v_n} + 1$

donc
$$u_n = \frac{v_n + 1}{v_n} = \frac{1 + (n+1)}{n+1} = \frac{n+2}{n+1}$$

Exercice23: calculer en fonction de n les sommes suivantes :

1)
$$s_n = \sum_{k=1}^{k=n} k = 1 + 2 + 3 + ... + n$$

2)
$$s'_n = \sum_{k=0}^{k=n} (2k+1) = 1+3+5+...+(2n+1)$$

Solutions :1)on pose : $u_n = n$

On a : $(u_n)_n$ une suite arithmétique de raison r=1

Car: $u_{n+1} - u_n = 1$

Donc:
$$s_n = \sum_{k=1}^{k=n} k = u_1 + u_2 + u_3 + ... + u_n = \frac{n}{2} (u_1 + u_n)$$

$$Donc: s_n = \frac{n}{2} (1+n)$$

1)on pose : $v_n = 2n + 1$

On a : $(v_n)_n$ une suite arithmétique de raison r=2

Car: $v_{n+1} - v_n = 2$

Donc:

$$s_n' = \sum_{k=0}^{k=n} (2k+1) = v_0 + v_1 + v_2 + \dots + v_n = \frac{n+1}{2} (v_0 + v_n)$$

Donc:

$$s_n' = \frac{n+1}{2} (1+2n+1) = \frac{n+1}{2} (2n+2) = (n+1)^2$$

Exercice24: Une entreprise de transport possède 40 camions en décembre 1991.

L'évolution de l'entreprise est telle que celle-ci doit acheter 8 camions supplémentaires chaque année.

- 1) Calculer le nombre de camions que possède l'entreprise en 1992, en 1993 et en 1994.
- 2) Ces nombres forment une suite.
- a) Donner la nature de cette suite.
- b) Préciser le premier terme u_1 et la raison de cette suite.

- c) Donner l'expression du nombre Un de camions que possède l'entreprise l'année n.
- 3) Quel est le nombre de camions que possède l'entreprise en 2002 ?

Exercice25:Soit $(u_n)_n$ une suite géométrique tel que

$$u_1 = \frac{3}{2}$$
 et $u_4 = \frac{3}{16}$

1) Déterminer sa raison q

2) écrire u_n en fonction de n

Solutions: 1) la raison q??

on a :
$$\forall (n; p) \in \mathbb{N}^2$$
 $u_n = q^{n-p} u_p$

Pour n= 4 et p=1 on a : $u_4 = q^{4-1}u_1$

Donc:
$$\frac{3}{16} = q^3 \frac{3}{126} \Leftrightarrow q^3 = \frac{1}{8} \Leftrightarrow q = \frac{1}{2}$$

2) u_n en fonction de n?

$$u_n = \left(\frac{1}{2}\right)^{n-1} \times u_1 \iff u_n = \frac{3}{2}\left(\frac{1}{2}\right)^{n-1} \forall n \in \mathbb{N}$$

Exercice26:soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$(v_n)_{n\in\mathbb{N}}$$
 définie par : $v_n = 1 - \frac{2}{u_n}$ $\forall n \in \mathbb{N}$

- 1) Montrer que $\left(\mathcal{V}_{n} \right)_{n \in \mathbb{N}}$ est une suite géométrique
- 2) écrire U_n en fonction de n

Solution :1)
$$v_{n+1} = 1 - \frac{2}{u_{n+1}} = 1 - \frac{2}{\frac{u_n}{3 - u_n}} = 1 - \frac{6 - 2u_n}{u_n}$$

$$v_{n+1} = 3\left(1 - \frac{2}{u_n}\right) \text{ donc } v_{n+1} = 3v_n$$

Donc $\left(v_n\right)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=3 et de premier terme $v_0=-3$

2) écrire u_n en fonction de n

On a $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison q=3 et de premier terme $v_0=-3$

Donc:
$$v_n = u_0 \times q^n \Leftrightarrow v_n = -3 \times 3^n = -3^{n+1} \forall n \in \mathbb{N}$$

Puisque:
$$v_n = 1 - \frac{2}{u_n}$$
 donc $u_n = \frac{2}{1 - v_n}$ donc $u_n = \frac{2}{1 + 3^{n+1}}$

Exercice27 : Un jeune homme se préparait à l'examen du baccalauréat ; son père, pour l'encourager, lui demanda ce qu'il désirait en récompense

Mon examen devant avoir lieu le 20 juin, répond-t-il, donne-moi seulement 1 centime le 1^{er} juin, 2 centimes le lendemain, 4 centimes le surlendemain, en doublant chaque jour jusqu'au 20 inclusivement. Et donne mois la somme. J'emploierai cet argent pour faire un voyage pendant les vacances.

Le père pensa qu'avec cette somme son fils n'irait pas loin ; mais au bout de quelques jours, il commença à s'apercevoir de son erreur.

Avec quelle somme le fils va-t-il pouvoir partir en vacances ?

Solution:Les nombres de centimes à payer chaque jour sont les termes d'une suite géométrique de 20 termes dont le premier est : $u_1 = 1$ et et la raison q = 2

 $u_2 = 2$ (La somme à donner le 2 iem jour)

 $u_{20} = \dots$ (La somme à donner le 20^e jour)

Donc:
$$u_n = u_1 \times q^{n-1} = 1 \times 2^{n-1} = 2^{n-1}$$

$$u_{20} = 2^{20-1} = 2^{19} = 524288$$
 Centimes

La somme totale à payer serait :

$$s_{20} = u_1 + u_2 + u_3 + \dots + u_{20} = u_1 \frac{1 - 2^{20 - 1 + 1}}{1 - 2}$$

$$s_{20} = 2^{20} - 1 = 10485.75$$

centimes $s_{20} \simeq 1 million 500 dh$ Joli voyage!

Exercice28: calculer en fonction de n la somme suivante :

$$s_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 + \frac{1}{2} + \left(\frac{1}{2}\right)^2 + \dots + \left(\frac{1}{2}\right)^{n-1}$$

Solutions :1)on pose : $u_n = \left(\frac{1}{2}\right)^n$

On a : $(u_n)_n$ une suite géométrique de raison $q = \frac{1}{2}$

Car:
$$\frac{u_{n+1}}{u_n} = \frac{1}{2} \text{ Donc}$$
: $s_n = \sum_{k=0}^{k=n-1} \left(\frac{1}{2}\right)^k = 1 \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = 2 \left(1 - \left(\frac{1}{2}\right)^n\right)$

Exercice29: Déterminer le réel x pour que les nombres : $(1 + x^2)$; (3 + x) et 10 soient les termes

consécutifs d'une suite géométrique dans cet ordre et déterminer sa raison.

Solution : $(1 + x^2)$; (3 + x) et 10 sont trois termes consécutifs d'une suite géométrique

si et seulement si
$$(3+x)^2 = 10 \times (1+x^2)$$

$$\Leftrightarrow x^2 + 6x + 9 = 10x^2 + 10 \Leftrightarrow 9x^2 - 6x + 1 = 0$$

$$\Leftrightarrow (3x-1)^2 = 0 \Leftrightarrow 3x-1 = 0 \Leftrightarrow x = \frac{1}{3}$$

Donc les termes sont :
$$\frac{10}{9}$$
 et $\frac{10}{3}$ et 10 donc : $q = \frac{10/3}{10/9} = 3$

Exercice30:soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+2} = \frac{1}{27} (12u_{n+1} - u_n) \\ u_0 = 2; u_1 = \frac{4}{9} \end{cases} \forall n \in \mathbb{N}$$

et on considère la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

$$v_n = u_n - \frac{1}{3^n} \quad \forall n \in \mathbb{N}$$

- 1) Montrer que $u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} \ \forall n \in \mathbb{N}$
- 2) a)Montrer que $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique dont en déterminera la raison et le premier terme
- b) écrire V_n et U_n en fonction de n
- c) calculer la somme : $S_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + ... + u_n$

Solution :1)montrons par récurrence que

$$u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} \quad \forall n \in \mathbb{N}$$

1étapes : n=0
$$u_1 = \frac{1}{9}u_0 + \frac{2}{3^{0+2}} = \frac{2}{9} + \frac{2}{9} = \frac{4}{9}$$

Donc la proposition est vraie pour n=0

2étapes : Supposons que:
$$u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$$

3étapes : Montrons alors que : $u_{n+2} = \frac{1}{9}u_{n+1} + \frac{2}{3^{n+3}}$??

on a:
$$u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$$
 donc $u_n = 9\left(u_{n+1} - \frac{2}{3^{n+2}}\right)$

et on a :
$$u_{n+2} = \frac{1}{27} (12u_{n+1} - u_n)$$

$$u_{n+2} = \frac{1}{27} \left(12u_{n+1} - 9\left(u_{n+1} - \frac{2}{3^{n+2}}\right) \right)$$

$$u_{n+2} = \frac{1}{27} \left(3u_{n+1} + \frac{2}{3^n} \right) \text{ donc } u_{n+2} = \frac{1}{9} u_{n+1} + \frac{2}{3^{n+2}}$$

Par suite :: $\forall n \in \mathbb{N}$: $u_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}}$

2)a) on a:
$$v_{n+1} = u_{n+1} - \frac{1}{3^{n+1}}$$

Donc:
$$v_{n+1} = \frac{1}{9}u_n + \frac{2}{3^{n+2}} - \frac{1}{3^{n+1}} = \frac{1}{9}u_n - \frac{1}{3^{n+2}}$$

$$v_{n+1} = \frac{1}{9} \left(u_n - \frac{1}{3^n} \right) \text{ donc } v_{n+1} = \frac{1}{9} v_n$$

Donc $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{1}{0}$ et de premier terme $v_0=1$

2) b)écrire v_n et u_n en fonction de n

On a $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{1}{0} \text{ et de premier terme } v_0=1$

Donc:
$$v_n = v_0 \times q^n \Leftrightarrow v_n = \left(\frac{1}{9}\right)^n \forall n \in \mathbb{N}$$

Puisque :
$$u_n = v_n + \frac{1}{3^n}$$
 donc $u_n = \left(\frac{1}{9}\right)^n + \left(\frac{1}{3}\right)^n$

2) c)
$$s_n = \sum_{k=0}^{k=n} u_k = u_0 + u_1 + ... + u_n$$
 ??

$$u_n = v_n + w_n$$
 avec $w_n = \left(\frac{1}{3}\right)^n$

on a $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont deux suites

géométriques de raison $q = \frac{1}{9}$ et $q' = \frac{1}{3}$ donc

donc
$$s_n = \sum_{k=0}^{k=n} u_k = \sum_{k=0}^{k=n} v_k + \sum_{k=0}^{k=n} w_k$$

$$s_n = \sum_{k=0}^{k=n} u_k = v_0 \frac{1 - \left(\frac{1}{9}\right)^{n+1}}{1 - \frac{1}{9}} + w_0 \frac{1 - \left(\frac{1}{3}\right)^{n+1}}{1 - \frac{1}{3}} = \frac{9}{8} \left(1 - \left(\frac{1}{9}\right)^{n+1}\right) + \frac{3}{2} \left(1 - \left(\frac{1}{3}\right)^{n+1}\right)$$

$$\sum_{k=0}^{k=n} u_k = \frac{21}{8} - \frac{1}{8} \left(\frac{1}{9}\right)^n - \frac{1}{2} \left(\frac{1}{2}\right)^n$$

Exercice31: soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_{n+1} = \frac{u_n}{\sqrt{u_n + 2}} & \forall n \in \mathbb{N} \\ u_0 \in]-1; 0[\end{cases}$$

- 1) Montrer que $-1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$
- 2) Montrer que $\left(u_n\right)_{n\in\mathbb{N}}$ est une suite strictement croissante
- 3) Montrer que $u_{n+1} \ge \frac{u_n}{\sqrt{u_n + 2}} \quad \forall n \in \mathbb{N}$

Et en déduire que : $u_n \ge \frac{u_0}{\left(\sqrt{u_0 + 2}\right)^n} \quad \forall n \in \mathbb{N}$

Solution : 1) montrons par récurrence que $-1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$

1étapes : n=0 on a : $-1 \prec u_0 \prec 0$

Donc la proposition est vraie pour n=0

2étapes : Supposons que: $-1 \prec u_n \prec 0$

3étapes : Montrons alors que : $-1 \prec u_{n+1} \prec 0$??

On a : $-1 \prec u_n \prec 0$ donc : $1 \prec u_n + 2 \prec 2$

donc:
$$1 \prec \sqrt{u_n + 2} \prec \sqrt{2}$$
 donc: $\frac{1}{\sqrt{2}} \prec \frac{1}{\sqrt{u_n + 2}} \prec 1$

et puisque : $0 \prec -u_n \prec 1$ alors : $0 \prec \frac{-u_n}{\sqrt{u_n + 2}} \prec 1$

donc:
$$-1 \prec \frac{u_n}{\sqrt{u_n + 2}} \prec 0$$
 donc $-1 \prec u_{n+1} \prec 0$

 $\mathsf{d'où}: -1 \prec u_n \prec 0 \quad \forall n \in \mathbb{N}$

 ${\bf 2}$) Montrons que $\left(u_n\right)_{n\in\mathbb{N}}$ est une suite strictement croissante

$$u_{n+1} - u_n = \frac{u_n}{\sqrt{u_n + 2}} - u_n = \frac{u_n}{\sqrt{u_n + 2}} \left(1 - \sqrt{u_n + 2}\right)$$

et puisque :
$$1 - \sqrt{u_n + 2} < 0$$
 et $\frac{u_n}{\sqrt{u_n + 2}} < 0$

alors : $u_{n+1} - u_n \succ 0$ donc $(u_n)_{n \in \mathbb{N}}$ est une suite strictement croissante

3) Montrons que $u_{n+1} \ge \frac{u_n}{\sqrt{u_n + 2}} \quad \forall n \in \mathbb{N}$

Soit $n \in \mathbb{N}$ on a : $u_n \ge u_0$ car $(u_n)_{n \in \mathbb{N}}$ croissante

Donc:
$$\sqrt{2+u_n} \ge \sqrt{2+u_0} \text{ cad } \frac{1}{\sqrt{2+u_n}} \le \frac{1}{\sqrt{2+u_0}}$$

et puisque : $u_n \prec 0$ alors : $\frac{u_n}{\sqrt{2+u_n}} \ge \frac{u_n}{\sqrt{2+u_0}}$

Donc:
$$u_{n+1} \ge \frac{u_n}{\sqrt{2+u_0}} \quad \forall n \in \mathbb{N}$$

3)Soit
$$n \in \mathbb{N}$$
 on a: $0 \succ u_{n+1} \ge \frac{u_n}{\sqrt{2 + u_0}}$

Donc:
$$0 \le -u_{n+1} \le \frac{-u_n}{\sqrt{2+u_0}}$$

En donnant à n des valeurs on trouve :

$$0 \le -u_1 \le \frac{-u_0}{\sqrt{2+u_0}}$$

$$0 \leq -u_2 \leq \frac{-u_1}{\sqrt{2+u_1}}$$

.

$$0 \le -u_{n-1} \le \frac{-u_{n-2}}{\sqrt{2+u_0}}$$

$$0 \le -u_n \le \frac{-u_{n-1}}{\sqrt{2+u_0}}$$

Le produit des inégalités donne : $0 \prec -u_n \leq \frac{-u_0}{\left(\sqrt{u_0+2}\right)^n}$

Donc:
$$u_n \ge \frac{u_0}{\left(\sqrt{u_0 + 2}\right)^n} \quad \forall n \in \mathbb{N}$$

Exercice32:1) La population d'un village de montagne diminue tous les ans de 20 %. Sachant qu'en 1996 elle était de 1 875 habitants, compléter le tableau suivant :

Année	1996	1997	1998	1999	2000
Nombre					
d'habitants					

- 2) Montrer que les nombres d'habitants sont des termes d'une suite dont on déterminera la nature et la raison.
- 3) À l'aide de la calculatrice ou d'un tableur :
- a) Déterminer la population de ce village en 2010
- b) Donner l'année d'extinction de ce village si on suppose la diminution de la population constante

C'est en forgeant que l'on devient forgeron » Dit un proverbe.

C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien

