AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

PMPCSR, Program Counter Sample Register

The PMPCSR characteristics are:

Purpose

Holds a sampled instruction address value.

Configuration

This register is present only when FEAT_PMUv3_EXT is implemented and FEAT_PCSRv8p2 is implemented. Otherwise, direct accesses to PMPCSR are res0.

PMPCSR is in the Core power domain.

Note

Before Armv8.2, the PC Sample-based Profiling Extension can be implemented in the external debug register space, as indicated by the value of EDDEVID.PCSample.

Support for 64-bit atomic reads is implementation defined. If 64-bit atomic reads are implemented, a 64-bit read of PMPCSR has the same side-effect as a 32-bit read of PMCSR[31:0] followed by a 32-bit read of PMPCSR[63:32], returning the combined value. For example, if the PE is in Debug state then a 64-bit atomic read returns bits[31:0] == $0 \times \text{FFFFFFFF}$ and bits[63:32] unknown.

Attributes

PMPCSR is a 64-bit register.

This register is part of the **PMU** block.

Field descriptions

63 62 61	60	59	58 57 56	55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32		
NS EL	Τ	NSE	RES0	PCSample[55:32]		
PCSample[31:0]						

NS, bit [63] When FEAT_RME is implemented:

Together with the NSE field, indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

NSE	NS	Meaning
NSE	113	Meaning
0b0	0b0	When Secure state is
		implemented, Secure.
		Otherwise reserved.
0b0	0b1	Non-secure.
0b1	0b0	Root.
0b1	0b1	Realm.

Otherwise:

Non-secure state sample. Indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

If EL3 is not implemented, this bit indicates the Effective value of SCR.NS.

NS	Meaning
0b0	Sample is from Secure state.
0b1	Sample is from Non-secure state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

EL, bits [62:61]

Exception level status sample. Indicates the Exception level that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

EL	Meaning
0b00	Sample is from EL0.
0b01	Sample is from EL1.
0b10	Sample is from EL2.
0b11	Sample is from EL3.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

T, bit [60]

When FEAT TME is implemented:

Transactional state of the sample. Indicates the Transactional state that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

T	Meaning
0b0	Sample is from Non-transactional
	state.
0b1	Sample is from Transactional state.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

Otherwise:

Reserved, res0.

NSE, bit [59]

When FEAT_RME is implemented:

Together with the NS field, indicates the Security state that is associated with the most recent PMPCSR sample or, when it is read as a single atomic 64-bit read, the current PMPCSR sample.

For a description of the values derived by evaluating NS and NSE together, see PMPCSR.NS.

Otherwise:

Reserved, res0.

Bits [58:56]

Reserved, res0.

PCSample[55:32], bits [55:32]

Bits[55:32] of the sampled instruction address value. The translation regime that PMPCSR samples can be determined from PMPCSR. {NS,EL}.

The reset behavior of this field is:

• On a Cold reset, this field resets to an architecturally unknown value.

PCSample[31:0], bits [31:0]

Bits[31:0] of the sampled instruction address value.

PMPCSR[31:0] reads as 0xffffffff when any of the following are true:

- The PE is in Debug state.
- PC Sample-based profiling is prohibited.

If a branch instruction has retired since the PE left reset state, then the first read of PMPCSR[31:0] is permitted but not required to return <code>0xfffffffff</code>.

PMPCSR[31:0] reads as an unknown value when any of the following are true:

- The PE is in reset state.
- No branch instruction has retired since the PE left reset state, Debug state, or a state where PC Sample-based Profiling is prohibited.
- No branch instruction has retired since the last read of PMPCSR[31:0].

Otherwise, a read of PMPCSR[31:0] returns bits [31:0] of the sampled instruction address value and has the side-effect of indirectly writing to PMPCSR[63:32], PMU.PMCID1SR, PMU.PMCID2SR, and PMU.PMVIDSR. The translation regime that PMPCSR samples can be determined from PMPCSR.{NS,EL}.

For a read of PMPCSR[31:0] from the memory-mapped interface, if PMLSR.SLK == 1, meaning the optional Software Lock is locked, then the side-effect of the access does not occur and PMPCSR[63:32], PMU.PMCID1SR, PMU.PMCID2SR, and PMU.PMVIDSR are unchanged.

The reset behavior of this field is:

 On a Cold reset, this field resets to an architecturally unknown value.

Accessing PMPCSR

implementation defined extensions to external debug might make the value of this register unknown, see 'Permitted behavior that might make the PC Sample-based profiling registers UNKNOWN'.

Note

A 32-bit access to PMPCSR[63:32] does not update the PC sample registers. Only a 64-bit access to PMPCSR[63:0] or a 32-bit access to PMPCSR[31:0] updates the PC sample registers. This includes the value a subsequent 32-bit read of PMPCSR[63:32] will return.

Accesses to this register use the following encodings:

When FEAT_PMUv3_EXT64 is implemented

[63:0] Accessible at offset 0x200 from PMU

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are RO.

When FEAT_PMUv3_EXT32 is implemented [31:0] Accessible at offset 0x200 from PMII

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RO**.

When FEAT_PMUv3_EXT32 is implemented

[63:32] Accessible at offset 0x204 from PMU

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RO**.

When FEAT_PMUv3_EXT64 is implemented [63:0] Accessible at offset 0x220 from PMII

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RO**.

When FEAT_PMUv3_EXT32 is implemented [31:0] Accessible at offset 0x220 from PMIJ

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RO**.

When FEAT_PMUv3_EXT32 is implemented [63:32] Accessible at offset 0x224 from PMU

- When DoubleLockStatus(), or !IsCorePowered() or OSLockStatus(), accesses to this register generate an error response.
- Otherwise, accesses to this register are **RO**.

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.