Московский Государственный Университет им. М.В. Ломоносова Факультет Вычислительной Математики и Кибернетики Кафедра Суперкомпьютеров и вантовой Информатики

Курс: практикум на ЭВМ.

Отчет №1.

Реализация однокубитного квантового преобразования с использованием **OpenMP**

Работу выполнила

Килина М. Л.

Постановка задачи и формат данных.

Задача. Реализовать параллельную программу на C++ с использованием OpenMP, которая выполняет однокубитное квантовое преобразование над вектором состояний длины 2^n , где n- количество кубитов, по указанному номеру кубита k.

Параметры, передаваемые командной строке:

- Количество выделяемых нитей программы
- Количество кубитов п
- Номер кубита k
- Имя файла, в который записывается время работы программы

Описание алгоритма.

Имеется комплексный входной вектор (массив) размерности 2^n : $\{a_i\}$ = $\{a_0, a_1, \dots, a_2^{n-1}\}$; n — параметр задачи (число кубитов). Над такими векторами нам необходимо производить так называемые однокубитные операции. Обе эти операции переводят вектор в новый вектор такой же размерности (длины массива). Однокубитная операция задается двумя параметрами: комплексной матрицей размера $2x^2$ и числом от 1 до n (данный параметр обозначает номер кубита, по которому проводится операция). Итак, дана комплексная матрица:

$$U = \left(\begin{array}{cc} u_{00} & u_{01} \\ u_{10} & u_{11} \end{array}\right)$$

и k - номер индекса от 1 до n (номер кубита). Такая операция преобразует вектор $\{a_{i_1,i_2,\dots i_n}\}$ в $\{b_{i_1,i_2,\dots i_n}\}$, где все 2 n элементов нового вектора вычисляются по следующей формуле:

$$b_{i_1 i_2 \dots i_k \dots i_n} = \sum_{j_k=0}^1 u_{i_k j_k} a_{i_1 i_2 \dots j_k \dots i_n} = u_{i_k 0} a_{i_1 i_2 \dots 0_k \dots i_n} + u_{i_k 1} a_{i_1 i_2 \dots 1_k \dots i_n}$$

В программе используется преобразование Адамара.

Результаты выполнения.

1) Резльтат для k = 1

Количество	Количество	Время работы	Ускорение
кубитов	процессов	(сек)	
20	1	0,475981	1
20	2	0,359147	1,325309692
20	4	0,30417	1,564851892
20	8	0,275047	1,730544234
24	1	7,95436	1
24	2	6,06994	1,312614
24	4	5,06994	1,570118
24	8	4,60002	1,729201
28	1	128,067	1
28	2	95,7812	1,337079
28	4	81,1047	1,579033
28	8	72,7552	1,760245
30	1	501,349	1
30	2	374,087	1,340194
30	4	317,79	1,577611
30	8	285,866	1,75379

n = 28

2) k = 7

Количество	Количество	Время работы	Ускорение
кубитов	процессов	(сек)	
20	1	0, 49747	1
20	2	0,366909	1,35584
20	4	0,300463	1,655678
20	8	0,329041	1,511878
24	1	7,99336	1
24	2	5,93673	1,346425
24	4	4,87726	1,639804
24	8	4,41824	1,809173
28	1	125,584	1
28	2	93,3483	1,345327
28	4	78,1869	1,606203
28	8	70,2742	1,787057
30	1	501,552	1
30	2	376,322	1,332774
30	4	312,286	1,606066
30	8	280,657	1,787064

n=24

n=28

3) k = n

Количество	Количество	Время работы	Ускорение
кубитов	процессов	(сек)	
20	1	0,417485	1
20	2	0,325147	1,283988
20	4	0,279092	1,495869
20	8	0,257516	1,6212
24	1	6,846	1
24	2	5,45611	1,25474
24	4	4,64035	1,47532
24	8	4,23184	1,617736
28	1	110,189	1
28	2	86,2942	1,276899
28	4	73,5132	1,498901
28	8	68,5235	1,608047
30	1	440,56	1
30	2	344,609	1,278434
30	4	296,505	1,485843
30	8	273,242	1,612344

n = 28

