Escuela de Ingeniería Electrónica EL5808 Procesamiento Digital de Señales II Semestre 2024

Grupo wilberth

Tarea 3 - Implementación de Filtros Digitales

Andrés José Bonilla Blanco #2019064612, Oscar Mario Gonzalez Cambronero #2021075110, Nagel Eduardo Mejía Segura #2021099120

Resumen

El presente documento demuestra la respuesta en frecuencia de los filtros, así como la representación de polos y ceros en el plano Z. Además se hace una recompilación de los resultados de la optimización del código apartir de las mejoras implementadas.

1. Figuras de Filtros

1.1. Filtros Elípticos

1.1.1. Pasa-bajas

Figura 1: Respuesta en frecuencia (Magnitud y Fase) del Filtro Elíptico Pasa bajas

Figura 2: Diagrama de polos y ceros del Filtro Elíptico Pasa bajas

1.1.2. Pasa-altas

Figura 3: Respuesta en frecuencia (Magnitud y Fase) del Filtro Elíptico Pasa altas

Figura 4: Diagrama de polos y ceros del Filtro Elíptico Pasa altas

1.1.3. Pasa-banda

Figura 5: Respuesta en frecuencia (Magnitud y Fase) del Filtro Elíptico Pasa bandas

Figura 6: Diagrama de polos y ceros del Filtro Elíptico Pasa bandas

1.1.4. Rechaza-Banda

Figura 7: Respuesta en frecuencia (Magnitud y Fase) del Filtro Elíptico Rechaza bandas

Figura 8: Diagrama de polos y ceros del Filtro Elíptico Rechaza bandas

1.2. Filtros Butterworth

1.2.1. Pasa-bajas

Figura 9: Respuesta en frecuencia (Magnitud y Fase) del Filtro Butterworth Pasa bajas

Figura 10: Diagrama de polos y ceros del Filtro Butterworth Pasa bajas

1.2.2. Pasa-altas

Figura 11: Respuesta en frecuencia (Magnitud y Fase) del Filtro Butterworth Pasa altas

Figura 12: Diagrama de polos y ceros del Filtro Butterworth Pasa altas

1.2.3. Pasa-banda

Figura 13: Respuesta en frecuencia (Magnitud y Fase) del Filtro Butterworth Pasa banda

Figura 14: Diagrama de polos y ceros del Filtro Butterworth Pasa banda

1.2.4. Rechaza-Banda

Figura 15: Respuesta en frecuencia (Magnitud y Fase) del Filtro Butterworth Rechaza banda

Figura 16: Diagrama de polos y ceros del Filtro Butterworth Rechaza Banda

1.3. Filtros Chebyshev Tipo 1

1.3.1. Pasa-bajas

Figura 17: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 1 Pasa bajas

Figura 18: Diagrama de polos y ceros del Filtro Chebyshev Tipo 1 Pasa bajas

1.3.2. Pasa-altas

Figura 19: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 1 Pasa altas

Figura 20: Diagrama de polos y ceros del Filtro Chebyshev Tipo 1 Pasa altas

1.3.3. Pasa-banda

Figura 21: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 1 Pasa banda

Figura 22: Diagrama de polos y ceros del Filtro Chebyshev Tipo 1 Pasa banda

1.3.4. Rechaza-Banda

Figura 23: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 1 Rechaza banda

Figura 24: Diagrama de polos y ceros del Filtro Chebyshev Tipo 1 Rechaza Banda

1.4. Filtros Chebyshev Tipo 2

1.4.1. Pasa-bajas

Figura 25: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 2 Pasa bajas

Figura 26: Diagrama de polos y ceros del Filtro Chebyshev Tipo 2 Pasa bajas

1.4.2. Pasa-altas

Figura 27: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 2 Pasa altas

Figura 28: Diagrama de polos y ceros del Filtro Chebyshev Tipo 2 Pasa altas

1.4.3. Pasa-banda

Figura 29: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 2 Pasa banda

Figura 30: Diagrama de polos y ceros del Filtro Chebyshev Tipo 2 Pasa banda

1.4.4. Rechaza-Banda

Figura 31: Respuesta en frecuencia (Magnitud y Fase) del Filtro Chebyshev Tipo 2 Rechaza banda

Figura 32: Diagrama de polos y ceros del Filtro Chebyshev Tipo 2 Rechaza Banda

2. Resultados de Optimización

En la Fig. 33 se denota la primera implementación simple de la cascada de filtros, donde se recorrieron los buffers completos.

130			
131 Benchmark	Time	CPU	Iterations UserCounters
132			
133 BM_Biquad_Process/256	11129 ns	11129 ns	50263 items_per_second=457.671/s
<pre>134 BM_Biquad_Process/512</pre>	23524 ns	23524 ns	29724 items_per_second=732.248/s
135 BM_Biquad_Process/1024	37707 ns	37706 ns	18555 items_per_second=1.46361k/s
136 BM Biquad Process/2048	46224 ns	46223 ns	15150 items per second=2.92457k/s
137 BM Biquad Process/4096	63696 ns	63695 ns	10785 items per second=5.96257k/s
138 BM_Biquad_Process/8192	98818 ns	98815 ns	7035 items_per_second=11.7843k/s
139 BM_Cascade_Process/256	21820 ns	21819 ns	31977 items_per_second=366.915/s
140 BM Cascade Process/512	38452 ns	38452 ns	18203 items per second=731.494/s
141 BM Cascade Process/1024	61661 ns	61658 ns	11088 items per second=1.49781k/s
142 BM Cascade Process/2048	93071 ns	93069 ns	7448 items per second=2.9545k/s
143 BM Cascade Process/4096	156206 ns	156203 ns	4468 items per second=5.86892k/s
144 BM_Cascade_Process/8192	285026 ns	285019 ns	2455 items_per_second=11.7075k/s

Figura 33: Rendimiento de la cascada simple utilizando forma transpuesta II

2.1. Implementación de Forma Paralela con SIMD

Para mejorar el tiempo de ejecución de la función process de la clase cascade, se puede reemplazar la forma en cascada por una forma en paralelo, utilizando la forma directa II bicuadrática, con las fracciones parciales de la función de transferencia del filtro completo. la función que realiza el cálculo de todo el filtro se denomina *parallel_simd_df2*. La implementación se realizó utilizando un vector de 128 bits al cual se le asignaron los coeficientes de cada filtro, de manera que visto verticalmente, cada filtro se calcula a la misma vez en el mismo ciclo.