Cours 4

DESCRIPTION ET RÉGULATION DE TRAFIC. CONTRÔLE DE DÉBIT

144

Description et régulation de trafic

- Outils pour le contrôle en boucle ouverte
- Nécessaire si on veut offrir des garanties
- Dimensionnement offline ou online
- Connaître la forme du trafic (ses paramètres) permet de préparer les ressources réseaux et conditions exacts qui sont nécessaires afin de satisfaire ses besoins en qualité
- Comment obtenir la forme du trafic ?
 - Observer et estimer, ou
 - Remettre en forme, limiter (Diapo 153)

- Description de trafic
 - Variabilité, sporadicité, comportement moyen/extrême, distribution
 - Débit moyen
 - Débit crête
 - Période d'activité / d'inactivité
 - Délai inter-paquet (espacement)
- Prédiction de QoS
 - Evaluation des besoins, et/ou ressources

146

Modèles de trafic

- Différentes échelles d'observation
 - Long terme : "Provisioning"
 - Sessions / connexions
 - Rafales (périodes d'activité)
 - Paquets
- Quels sont les modèles les plus adaptés ?
 - Description fidèle
 - Maîtrise du contrôle

- Deux types de modèles :
- (1) Modèle fluide :
 - Ne voit pas les paquets
 - Suppose que la transmission et l'écoulement du trafic se fait bit par bit
 - Intérêt :
 - Modèle plus simple
 - Permet de focaliser sur les autres paramètres du trafic, e.g. La taille des rafales, débit moyen

148

Modèles de trafic

- (2) Modèle discret :
 - Prend en compte les paquets
 - Intérêt :
 - Modèle plus fidèle à la réalité
 - Obtenu généralement par simple extension du modèle fluide
- Exemple : Trafic CBR
 - Modèle fluide : Débit
 - Modèle discret : Débit + Taille des paquets

- Deux types de modèles :
- Modèle déterministe
 - Décrit la quantité de donnée envoyée par la source de trafic
- Modèle stochastique :
 - Décrit la <u>probabilité</u> de la quantité de donnée envoyée par la source de trafic

150

Modèles de trafic

Exemple de modèle déterministe :

- Plusieurs types de modèles stochastiques :
- Modèles Markoviens
 - Suppose que les instants d'envoi des paquets par la source de trafic sont indépendants
 - Poisson
 - ON/OFF exponentielle
 - ...
- Modèles à mémoire longue
 - Suppose que les instants d'envoi des paquets par la source de trafic sont fortement corrélés
 - Généralement basé sur la distribution Pareto

152

Trafic régulé

- Une autre approche :
 - Utilisation de régulateur (ou polisseur)
- Concept :
 - Trafic régulé à l'entrée du réseau

Trafic régulé

154

Régulation de trafic

- Le trafic le plus simple à décrire et le plus maîtrisable est le trafic CBR:
 - Débit constant (= débit moyen = débit instantané)

- Idée : Forcer le trafic à suivre cette forme
- Ou limiter le trafic a cette forme

- $A(t) \leq \rho.t$
- Peut être trop contraignant et/ou ne correspond pas au besoin de l'application
 - Notamment pour certaines applications rigides
- Solution : Rajouter une tolérance autorisant ponctuellement le dépassement de ρ.t
- \rightarrow A(t) $\leq \sigma + \rho t$
- o est le paramètre de sporadicité « burstiness »
- o est une borne supérieure du débit moyen

156

Régulation de trafic

- Mécanisme : "Leaky Bucket" (Panier percé) appelé aussi "Token Bucket" (seau à jetons)
 - ρ taux d'arrivée de jetons, et σ capacité du panier

158

160

162

164

 Une courbe d'arrivée α est une fonction qui contraint la source, i.e. la quantité de trafic A(t₁,t₂) délivrée par la source dans l'intervalle (t₁,t₂):

$$A(t_1, t_2) \le \sigma + \rho(t_2 - t_1)$$

$$\le \alpha(t_2 - t_1)$$

166

- Un mécanisme puissant déployé dans les routeurs d'accès/de bord
- Permet aussi de protéger le réseau des flots envoyant avec un débit excessif
 - Seul les flots excessifs/agressifs sont pénalisés
 - Les autres flots ne sont pas impactés
- Contrôle le débit moyen ou le débit crête (maximal)
 - Selon la taille du seau $\sigma > 0$ ou $\sigma = 0$

- Forme du trafic maximal est connu
 - → Prédiction du trafic (quantités reçues)
- Algorithme simple
 - → implantation simple
 - → bon compromis efficacité vs. simplicité
- Facile à configurer
 - (deux paramètres)

168

Leaky Bucket

Exemple d'algorithme pour l'implantation :

L : Longueur du paquet

X : Valeur du compteur du seau

LAT = now

 X': Variable auxiliaire (niveau du seau à l'arrivée du paquet)

 LAT : Temps de la dernière autorisation

Transmit 169

Autre exemple d'algorithme pour l'implantation :

- L : Longueur du paquet
- T : Période de génération de jetons
- Y : Nombre de jetons consommables dans une période T
- Remarques :
 - Algorithme plus simple, mais
 - Moins précis : Problème de granularité lié au choix de la période T de mise à jour
 - T impose un débit maximum (voir diapo 175)

170

Régulation de trafic

- Leaky Bucket
 - Plusieurs représentations :

- Token Bucket (appelé aussi : Dual token bucket)
- Ajout d'un régulateur au débit crête (p) :
 - limiter le débit
 - tenir compte de la capacité maximale du lien

Régulation de trafic

- Token Bucket
 - 3 exemples en vert de A(t)

Token Bucket

Autre exemple d'algorithme pour l'implantation :

> En réalité l'algorithme présenté diapo 170 impose aussi un débit crête car : T = MBD

$$p = \rho + (\sigma / T)$$

 Même problème de granularité

Régulation de trafic

- Token Bucket Modèle discret
 - La taille des paquets est variable :
 - Un jeton = un octet (ou un bit)
 - Un paquet de taille S requiert S jetons

