Introduction to Real Analysis

Dana C. Ernst < Karl-Dieter Crisman < W. Ted Mahavier < W. S. Mahavier

Northern Arizona University Version Spring 2020 This book is intended to be a problem sequence for a one-semester undergraduate real analysis course that utilizes an inquiry-based learning (IBL) approach. There is always a debt to be paid in creating a text, and this one is no different. The primary source for these notes is Karl-Dieter Crisman's *One-Semester Real Analysis* notes¹, which were based on W. Ted Mahavier's *Analysis* notes², which in turn were based on notes his father (W. S. Mahavier) created.

Below is a partial list of people (alphabetical by last name) that I need to thank for supplying additional content, advice, and feedback.

- Joshua Bowman (Pepperdine University). The Preface is a modified version of Joshua's *An IBL preface*.
- Anders Hendrickson (St. Norbert College). Anders is the original author of the content in Appendix A: Elements of Style for Proofs. The current version in Appendix A is a result of modifications made by myself with some suggestions from Dave Richeson.
- Dave Richeson (Dickinson College). Dave is responsible for much of the content in Appendix B: Fancy Mathematical Terms and Appendix C: Definitions in Mathematics.

¹Journal of Inquiry-Based Learning in Mathematics, No. 46 (2013)

²Journal of Inquiry-Based Learning in Mathematics, No. 12 (2009)

Contents

	Preface	3
1	Introduction	4
	1.1 What is This Course All About?	4
	1.2 An Inquiry-Based Approach	5
	1.3 Rights of the Learner	6
	1.4 Your Toolbox, Questions, and Observations	7
	1.5 Rules of the Game	7
	1.6 Structure of the Notes	8
	1.7 Some Minimal Guidance	8
2	Preliminaries and Review	10
	2.1 Basics	10
	2.2 Logic Review	10
	2.3 Sets and Functions	12
	2.4 Order Properties of the Real Numbers	13
3	Point Sets and Sequences	15
4	Standard Topology of the Real Line	21
5	Continuity	23
6	Differentiation	27
7	Integration	34
A	Elements of Style for Proofs	41
В	Fancy Mathematical Terms	46
C	Definitions in Mathematics	48

Preface

You are the creators. This book is a guide.

This book will not show you how to solve all the problems that are presented, but it should *enable* you to find solutions, on your own and working together. The material you are about to study did not come together fully formed at a single moment in history. It was composed gradually over the course of centuries, with various mathematicians building on the work of others, improving the subject while increasing its breadth and depth.

Mathematics is essentially a human endeavor. Whatever you may believe about the true nature of mathematics—does it exist eternally in a transcendent Platonic realm, or is it contingent upon our shared human consciousness?—our *experience* of mathematics is temporal, personal, and communal. Like music, mathematics that is encountered only as symbols on a page remains inert. Like music, mathematics must be created in the moment, and it takes time and practice to master each piece. The creation of mathematics takes place in writing, in conversations, in explanations, and most profoundly in the mental construction of its edifices on the basis of reason and observation.

To continue the musical analogy, you might think of these notes like a performer's score. Much is included to direct you towards particular ideas, but much is missing that can only be supplied by you: participation in the creative process that will make those ideas come alive. Moreover, your success will depend on the pursuit of both *individual* excellence and *collective* achievement. Like a musician in an orchestra, you should bring your best work and be prepared to blend it with others' contributions.

In any act of creation, there must be room for experimentation, and thus allowance for mistakes, even failure. A key goal of our community is that we support each other—sharpening each other's thinking but also bolstering each other's confidence—so that we can make failure a *productive* experience. Mistakes are inevitable, and they should not be an obstacle to further progress. It's normal to struggle and be confused as you work through new material. Accepting that means you can keep working even while feeling stuck, until you overcome and reach even greater accomplishments.

This book is a guide. You are the creators.

Chapter 1

Introduction

1.1 What is This Course All About?

This course introduces basic concepts and methods of analysis. The course focuses on the theory of the real number system and calculus of functions of a real variable. The content will include:

- 1. The Real Number System: axioms; supremum and infimum.
- 2. Topology of the real number system including completeness, compactness.
- 3. Sequences and Convergence, including the algebra of limits.
- 4. Limits of Functions, including the algebra of limits.
- 5. Continuity, including the algebra of continuous functions, continuity of compositions, and uniform continuity.
- 6. Differentiation, including the algebra of derivatives, chain rule, Mean Value Theorem, Inverse Function Theorem, applications to behavior of functions, Taylor's Theorem and L'Hospital's Rule.
- 7. Riemann integration, including linearity and order properties, integrability of continuous functions, Riemann sums, and the Fundamental Theorem of Calculus.

We will take an axiomatic approach (definition, theorem, and proof) to the subject, but along the way, you will develop intuition about the objects of real analysis and pick up more proof-writing skills. The emphasis of this course is on your ability to read, understand, and communicate mathematics in the context of real analysis.

The mathematician does not study pure mathematics because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful.

1.2 An Inquiry-Based Approach

This is not a lecture-oriented class or one in which mimicking prefabricated examples will lead you to success. You will be expected to work actively to construct your own understanding of the topics at hand with the readily available help of me and your classmates. Many of the concepts you learn and problems you work on will be new to you and ask you to stretch your thinking. You will experience *frustration* and *failure* before you experience *understanding*. This is part of the normal learning process. If you are doing things well, you should be confused at different points in the semester. The material is too rich for a human being to completely understand it immediately. Your viability as a professional in the modern workforce depends on your ability to embrace this learning process and make it work for you.

Don't fear failure. Not failure, but low aim, is the crime. In great attempts it is glorious even to fail.

Bruce Lee

In order to promote a more active participation in your learning, we will incorporate ideas from an educational philosophy called inquiry-based learning (IBL). Loosely speaking, IBL is a student-centered method of teaching mathematics that engages students in sense-making activities. Students are given tasks requiring them to solve problems, conjecture, experiment, explore, create, and communicate. Rather than showing facts or a clear, smooth path to a solution, the instructor guides and mentors students via well-crafted problems through an adventure in mathematical discovery. According to Laursen and Rasmussen (2019), the Four Pillars of IBL are:

- Students engage deeply with coherent and meaningful mathematical tasks.
- Students collaboratively process mathematical ideas.
- Instructors inquire into student thinking.
- Instructors foster equity in their design and facilitation choices.

Much of the course will be devoted to students presenting their proposed solutions or proofs on the board and a significant portion of your grade will be determined by how much mathematics you produce. I use the word *produce* because I believe that the best way to learn mathematics is by doing mathematics. Someone cannot master a musical instrument or a martial art by simply watching, and in a similar fashion, you cannot master mathematics by simply watching; you must do mathematics!

In any act of creation, there must be room for experimentation, and thus allowance for mistakes, even failure. A key goal of our community is that we support each other—sharpening each other's thinking but also bolstering each other's confidence—so that we can make failure a productive experience. Mistakes are inevitable, and they should not

be an obstacle to further progress. It's normal to struggle and be confused as you work through new material. Accepting that means you can keep working even while feeling stuck, until you overcome and reach even greater accomplishments.

You will become clever through your mistakes.

German Proverb

Furthermore, it is important to understand that solving genuine problems is difficult and takes time. You shouldn't expect to complete each problem in 10 minutes or less. Sometimes, you might have to stare at the problem for an hour before even understanding how to get started.

In this course, everyone will be required to

- read and interact with course notes and textbook on your own;
- write up quality solutions/proofs to assigned problems;
- present solutions/proofs on the board to the rest of the class;
- participate in discussions centered around a student's presented solution/proof;
- call upon your own prodigious mental faculties to respond in flexible, thoughtful, and creative ways to problems that may seem unfamiliar on first glance.

As the semester progresses, it should become clear to you what the expectations are.

Tell me and I forget, teach me and I may remember, involve me and I learn.

Benjamin Franklin

1.3 Rights of the Learner

As a student in this class, you have the right:

- 1. to be confused,
- 2. to make a mistake and to revise your thinking,
- 3. to speak, listen, and be heard, and
- 4. to enjoy doing mathematics.

You may encounter many defeats, but you must not be defeated.

Maya Angelou

1.4 Your Toolbox, Questions, and Observations

Throughout the semester, we will develop a list of *tools* that will help you understand and do mathematics. Your job is to keep a list of these tools, and it is suggested that you keep a running list someplace.

Next, it is of utmost importance that you work to understand every proof. (Every!) Questions are often your best tool for determining whether you understand a proof. Therefore, here are some sample questions that apply to any proof that you should be prepared to ask of yourself or the presenter:

- What method(s) of proof are you using?
- What form will the conclusion take?
- How did you know to set up that [equation, set, whatever]?
- How did you figure out what the problem was asking?
- Was this the first thing you tried?
- Can you explain how you went from this line to the next one?
- What were you thinking when you introduced this?
- Could we have ...instead?
- Would it be possible to ...?
- What if ...?

Another way to help you process and understand proofs is to try and make observations and connections between different ideas, proof statements and methods, and to compare approaches used by different people. Observations might sound like some of the following:

- When I tried this proof, I thought I needed to ... But I didn't need that, because ...
- I think that ...is important to this proof, because ...
- When I read the statement of this theorem, it seemed similar to this earlier theorem. Now I see that it [is/isn't] because ...

1.5 Rules of the Game

You should *not* look to resources outside the context of this course for help. That is, you should not be consulting the Internet, other texts, other faculty, or students outside of our course. On the other hand, you may use each other, the course notes, me, and your own intuition. In this class, earnest failure outweighs counterfeit success; you need not feel pressure to hunt for solutions outside your own creative and intellectual reserves. For more details, check out the Syllabus.

1.6 Structure of the Notes

As you read the notes, you will be required to digest the material in a meaningful way. It is your responsibility to read and understand new definitions and their related concepts. However, you will be supported in this sometimes difficult endeavor. In addition, you will be asked to complete exercises aimed at solidifying your understanding of the material. Most importantly, you will be asked to make conjectures, produce counterexamples, and prove theorems.

Most items in the notes are labelled with a number. A **Definition** is just that. However, in this type of course, it is extremely important to use definitions very accurately, and we try to use as few as possible to avoid confusion and over-saturation. A **Problem** is something to be proved. Some will be very easy, a few extremely hard. Most will be somewhere in between, to enhance your senses of confidence and accomplishment. Most class time will be hearing and responding to your solutions to these items; they are the core of the course. An **Exercise** is not at the same level of importance as a problem, but it should usually be very helpful in understanding the content (and hopefully proofs) of the problems. It may be a worked-out example provided in class, or it may be some instructions for trying your own examples. It is important to point out that there are very few examples in the notes. This is intentional. One of the goals of the items labelled as **Exercise** is for you to produce the examples. Lastly, there are many situations where you will want to refer to an earlier definition or problem. In this case, you should reference the statement by number. For example, you might write something like, "By Problem 2.20, we see that...."

1.7 Some Minimal Guidance

Especially in the opening sections, it won't be clear what facts from your prior experience in mathematics we are "allowed" to use. Unfortunately, addressing this issue is difficult and is something we will sort out along the way. However, in general, here are some minimal and vague guidelines to keep in mind.

First, there are times when we will need to do some basic algebraic manipulations. You should feel free to do this whenever the need arises. But you should show sufficient work along the way. You do not need to write down justifications for basic algebraic manipulations (e.g., adding 1 to both sides of an equation, adding and subtracting the same amount on the same side of an equation, adding like terms, factoring, basic simplification, etc.).

On the other hand, you do need to make explicit justification of the logical steps in a proof. When necessary, you should cite a previous definition, theorem, etc. by number.

Unlike the experience many of you had writing proofs in geometry, our proofs will be written in complete sentences. You should break sections of a proof into paragraphs and use proper grammar. There are some pedantic conventions for doing this that I will point out along the way. Initially, this will be an issue that most students will struggle with, but after a few weeks everyone will get the hang of it.

Ideally, you should rewrite the statements of theorems before you start the proof.

Moreover, for your sake and mine, you should label the statement with the appropriate number. I will expect you to indicate where the proof begins by writing "Proof." at the beginning. Also, we will conclude our proofs with the standard "proof box" (i.e., \square or \blacksquare), which is typically right-justified.

Lastly, every time you write a proof, you need to make sure that you are making your assumptions crystal clear. Sometimes there will be some implicit assumptions that we can omit, but at least in the beginning, you should get in the habit of stating your assumptions up front. Typically, these statements will start off "Assume..." or "Let...".

This should get you started. We will discuss more as the semester progresses. Now, go have fun and kick some butt!

If you want to sharpen a sword, you have to remove a little metal.

Unknown

Chapter 2

Preliminaries and Review

In this course, we do assume certain background knowledge. This section is intended to review some of this, as well as to focus on specific items which may prove of use later.

2.1 Basics

Here are a few items we will take for granted

- We will take most normal mathematical and logical terminology from an introduction to proof course for granted.
- We assume that sets exist. We will take the natural numbers (\mathbb{N}) , integers (\mathbb{Z}) , rational numbers (\mathbb{Q}) , and real numbers (\mathbb{R}) as known. In this course \mathbb{N} starts with 1, not 0. We will denote the irrational numbers by \mathbb{Q}^C , a notation for the *complement* of the rationals with respect to the set \mathbb{R} .
- In these sets we will assume the most basic properties of addition, subtraction, and multiplication, such as commutativity and distributivity. Likewise, we will later assume without proof basic facts about ordering numbers. At this time we explicitly assume that 0 < 1 and that there are no integers between them. You will be able to use these facts to *prove* that is true for other consecutive pairs of integers.

The rest of this preliminary chapter is intended to remind us of things for which I do think review could be useful.

2.2 Logic Review

In basic proof logic, we will usually be proving a statement of the nature

If *P* is true, then *Q* is also true.

Exercise 2.1. Prove that if x is an even integer, then x^2 is also an even integer.

However, there are more interesting examples of how to prove things. Recall the *converse* of the generic statement

If *Q* is true, then *P* is also true

and the contrapositive thereof

If *Q* is not true, then *P* is also not true.

Exercise 2.2. State the converse of the previous example, and then *its* contrapositive. Prove that final statement.

In (normal) mathematical logic, we say that the contrapositive and the original statement are *logically equivalent*. So you should use whichever one you find useful in proving theorems!

However, that isn't the case with the converse and the original statement.

Exercise 2.3. Take the statement "If *n* is a prime number, then *n* is a positive integer" and give a reason why it is true, but its converse is false.

In the first two examples, we have the highly unusual situation where both $P \Longrightarrow Q$ and $Q \Longrightarrow P$ are both true. We say that this is a *biconditional* statement and write $P \Longleftrightarrow Q$, saying

P is true if and only if *Q* is true,

or "P is necessary and sufficient for Q", or some variation thereon.

There are a few other tricky logic issues that we should definitely practice. The logical connector *or* is a word that means many things. In most of math (and here), "A or B" means "A or B or *both*". This is important in statements like

If x or y is even, then xy is also even

since even if *x* and *y* were both even, *xy* would still be even.

Exercise 2.4. Come up with a theorem which is *not* true with this meaning of 'or' but *is* true with the so-called *exclusive or*.

The other remaining tricky issue is that of quantifiers—things like "for all" and "there exists". This is best tackled by trying it.

Exercise 2.5. Restate these as accurately as possible in terms of logic, and then do all of the following with as few double negatives as possible, using natural negations if possible:

- (a) Negate the statement, "All professors at my college who live in my town are old and grey."
- (b) Negate the statement, "There exists a student at my college who does not live in my town," in the most natural way possible (i.e., without double negatives).
- (c) Give the contrapositive of the statement, "If there exists a professor at my college who is neither old nor grey, then all students at my college are young and bald."

Problem 2.6. Formally negate the statement, "For every positive number p, there is a positive integer N such that if an integer I is greater than N, then the reciprocal of I is less than p," with as few negatives and as naturally as possible. (But don't try to prove it!)

2.3 Sets and Functions

Recall that A is a *subset* of B (written $A \subseteq B$) if every element $x \in A$ is also an element of B. When a set is defined as a subset of another set with a given property, we often use "set builder" notation, such as

$$\{n \in \mathbb{Z} \mid 2 \text{ divides } n\}$$

for defining the even numbers. If a set has no elements, such as

{*P* is a president of the USA before 2000 | *P* is female},

we call it the empty set (\emptyset) . The familiar intersection (\cap) and union (\cup) operators are very useful. We distinguish between \subseteq and \subseteq , where in the latter the sets are not equal. Finally, we define $A \setminus B$ to be the set of all elements in A which are *not* in B.

Exercise 2.7. Prove that $\mathbb{Z} \subseteq \mathbb{Q}$.

Exercise 2.8. Decide whether $\mathbb{N} \cup \{-n \mid n \in \mathbb{N}\} = \mathbb{Z}$.

Exercise 2.9. Find three nonempty sets A, B, C such that $A \cap B = \emptyset$, $B \in C$, and $A \notin C$.

Exercise 2.10. Give an example where $A \neq B$ but $A \setminus B = \emptyset$.

More interestingly, we can define infinite combinations of these things, if we have a collection of sets X_{α} , one for each element $\alpha \in A$ an infinite set.

Problem 2.11. Find (nonempty) sets $S_i \subseteq \mathbb{N}$ indexed by $i \in \mathbb{N}$ such that $S_{i+1} \subsetneq S_i$ and

$$\bigcap_{i=1}^{\infty} S_i = \emptyset.$$

Problem 2.12. Find (nonempty) sets $S_i \subseteq \mathbb{N}$ indexed by $i \in \mathbb{N}$ such that $S_i \subseteq S_{i+1}$ but

$$\bigcup_{i=1}^{\infty} S_i \neq \mathbb{N}.$$

We should also recall that, for us, a function is a set.

Definition 2.13. A *function* from a set A to a set B is a subset of the Cartesian product $A \times B$ such that there is precisely one $(a,b) \in f$ for each $a \in A$. We call A the *domain*, and say that f(a) = b if $(a,b) \in f$. There is no standard name for B, but if you insist on having one, use *codomain*.

Exercise 2.14. Write some function from \mathbb{Z} to itself this way.

Recall a few properties functions might have.

Definition 2.15. Let $f : A \rightarrow B$ be a function.

• The function f is *onto* if, for each $b \in B$, there is an $a \in A$ such that f(a) = b.

- The function f is one-to-one if when $a \neq a' \in A$, then $f(a) \neq f(a') \in B$.
- The function *f* is a *bijection* if it is one-to-one and onto.

Exercise 2.16. Suppose $f: A \to B$ is defined via $f(x) = x^2$, where $A = B = \mathbb{Z}$. Change A or B so that it is one-to-one. Find a way to change it to be onto.

Exercise 2.17. Find a bijection from \mathbb{Z} to itself that is *not* the identity. If you remember what an inverse function is, find that, too.

There are two more important sets relevant to a given function.

Definition 2.18. Let $f: A \rightarrow B$ be a function.

• If $S \subseteq A$, we call the *image* of S under f, denoted f(S), the set

$$\{f(x) \mid x \in S\}.$$

• If $T \subseteq B$, we call the *preimage* of T under f, denoted $f^{-1}(T)$, the set

$${x \in A \mid f(x) \in T}.$$

Notice that the preimage exists whether or not the inverse function exists (and the notation f^{-1} refers only to the preimage in this course). We call the image of the entire domain the *image of the function*, f(A).

Exercise 2.19. If $f(x) = x^2$ from \mathbb{Z} to itself, find $f(\{-2, -1, 0, 1, 2\})$ and $f^{-1}(\{0, 1, 4\})$.

Problem 2.20. Find functions f and g and sets S and T such that $f(f^{-1}(T)) \neq T$ and $g^{-1}(g(S)) \neq S$.

Problem 2.21. With all sets appropriately defined, only one of two following statements is necessarily true. Prove one and disprove the other.

$$f(X \cap Y) = f(X) \cap f(Y)$$
$$f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y)$$

2.4 Order Properties of the Real Numbers

We are almost ready to start some actual analysis, where the functions and sets will be defined on the real numbers. As mentioned earlier, we will tacitly assume that numbers in this course are real numbers, unless we state otherwise. In order to do this, we need some facts about real numbers, including the following **Order Axioms**. Given $a, b, c \in \mathbb{R}$:

Order Axiom 1. If a < b and b < c, then a < c.

Order Axiom 2. If $a \neq b$, then either a < b or b < a (but not both!).

Order Axiom 3. If a < b, then a + c < b + c.

Order Axiom 4. If a < b and c > 0, then ac < bc; if c < 0, then ac > bc.

Order Axiom 5. Given $a \in \mathbb{R}$, then there is an integer n such that $n \le a < n + 1$.

Definition 2.22. Given these axioms, we say that the real numbers \mathbb{R} are *linearly ordered* because "less than" and "greater than" have meaning.

The last axiom is sometimes called *Archimedean Property*. We call numbers greater than zero *positive*, and those greater than zero or equal to zero *nonnegative*; there is a similar definition for *negative* and *nonpositive*.

Including the order axioms with the most basic facts about addition, subtraction, and multiplication can allow us to prove slightly more advanced facts. Under these axioms, the various familiar relationships between positive, negative, addition, and multiplication are true—such as 'a positive times a negative is negative' and 'a positive plus a positive is positive'. We will take these facts for granted.

Here is another useful fact related to the axioms.

Problem 2.23. Prove that for any positive $a \in \mathbb{R}$, there is an integer N such that $0 < \frac{1}{N} < a$.

Finally, there is a special function that should be introduced now.

Definition 2.24. Given $a \in \mathbb{R}$, we define the *absolute value of a*, denoted |a|, to be a if $a \ge 0$ and -a otherwise.

Exercise 2.25. Show that |-4| is what you expect, using this definition.

Exercise 2.26. Show that $|a| \ge 0$, with equality only if a = 0.

Exercise 2.27. Show that $|a|^2 = a^2$.

The next two statements are pretty useful, and best proved (for now) by cases, though they have more clever proofs too.

Problem 2.28. Show that |ab| = |a||b|.

Problem 2.29. Show that $|a + b| \le |a| + |b|$.

The latter is usually called the *triangle inequality*. A related statement is sometimes called the *reverse triangle inequality*.

Problem 2.30. Show that $|a - b| \ge ||a| - |b||$.

Problem 2.31. Assume that there is a positive element of the preimage of $\{2\}$ under the function $f(x) = x^2$ from the reals to the reals; that is, assume $\sqrt{2}$ exists. Show $1 < \sqrt{2} < 2$.

Recall that $\sqrt{2}$ is an irrational number. The previous problem is an example of an irrational number occurring between a pair of distinct rational numbers. The following problems are a good challenge to generalize this.

Problem 2.32. Prove that between any two distinct real numbers there is a rational number

Problem 2.33. Prove that between any two distinct real numbers there is an irrational number.

We now turn to the main matters under consideration in this course.

Chapter 3

Point Sets and Sequences

Definition 3.1. A *point* is simply an element of the real numbers \mathbb{R} .

Definition 3.2. A *point set* is a nonempty subset of the real numbers.

You might well wonder why we need extra terms for these concepts. The reasons are mainly historical. Not only do these ideas undergird much more abstract ideas of sets, but in addition, there is a tradition worth preserving of "Moore method" courses using this terminology since we are focusing more on the *geometric* properties of the real line in this chapter.

One of the interesting things about choosing to look at the whole real number line is that we have two additional useful axioms. They seem nearly trivial, but are *very* important.

Point Set Axiom 1. If p is a point, then there is a point less than p and a point greater than p.

Point Set Axiom 2. If $p \neq q$ are two points, there is a point between them.

Note that these are closely related to the last few problems – but we are starting from scratch here, and you should treat these are the primary axioms we need for now.

Example 3.3. If instead of \mathbb{R} we chose as our 'background set' some subset C of \mathbb{R} , these axioms might not hold. We can see this with $C = [0,1] \cup [2,3]$, with p = 0 in the first case and p = 1, q = 2 in the second.

Definition 3.4. We say that a point set O is a (finite) open interval if there are points $a \neq b$ such that O is the point set consisting of all points between a and b. That is,

$$O = \{x \mid a < x < b\} = (a, b).$$

Definition 3.5. We say that a point set I is a (finite) *closed interval* if there are points $a \neq b$ such that I is the point set consisting of a, b, and all points between a and b. That is,

$$I = \{x \mid a \le x \le b\} = [a, b].$$

In either case, *a* and *b* are called the *endpoints* of the interval.

Exercise 3.6. Give some examples of point sets that are *not* intervals.

Definition 3.7. If M is a point set, we say that p is an accumulation point of M if **every** open interval containing p also contains a point of M different from p.

To word this in set notation, p is an accumulation point of M if, for every open interval O with $p \in O$, there is $x \in O$ such that $x \in M \setminus \{p\}$.

Problem 3.8. Show that if M is an open interval and $p \in M$, then p is an accumulation point of M.

Problem 3.9. Show that if M is a closed interval and $p \notin M$, then p is not an accumulation point of M.

Problem 3.10. Determine whether the endpoints of an open interval M are accumulation points of M.

It is worth exploring exactly how many points it is possible or impossible for M to have. The next two problems are just a start in investigating that.

Problem 3.11. Show that if M is a point set having an accumulation point, then M contains (at least) two points. Determine whether M must contain at least 3 points.

Problem 3.12. Consider \mathbb{Z} as a point set; show that it has no accumulation points.

Problem 3.13. Given that *H* and *K* are point sets, determine whether each of the following is true or false. If the statement is true, prove it. Otherwise, provide a counterexample.

- (a) If p is an accumulation point of $H \cap K$, then p is an accumulation point of both H and K.
- (b) If p is an accumulation point of $H \cup K$, then p is an accumulation point of H or p is an accumulation point of K.

Problem 3.14. If M is the set of all reciprocals of elements of \mathbb{N} , then zero is an accumulation point of M.

We will now start to turn to connecting the concepts of point sets to more familiar ones from calculus, beginning with sequences.

Definition 3.15. A *sequence a* is a function from \mathbb{N} to \mathbb{R} .

Sometimes these are called *point sequences* to distinguish them from other potential sequences.

Even though technically the sequence is a function a, for any given $i \in \mathbb{N}$ we will write $a_i = a(i)$. Then we may write a sequence $a(1), a(2), a(3), \cdots$ as a_1, a_2, a_3, \cdots —or, more formally, $\{a_i\}_{i=1}^{\infty}$. In order to keep the index visible (this is especially useful when we combine sequences), we will occasionally abuse notation slightly and write $\{a_i\}_{i=1}^{\infty}$ when referring to the function or the image set $\{a(i) \mid i \in \mathbb{N}\}$.

Exercise 3.16. Write down several sequences a you are familiar with. If possible, give an algebraic formula for each a_i in terms of i.

Exercise 3.17. Give an example where the image set of a sequence $\{a_i\}_{i=1}^{\infty}$ is finite.

There is a deep connection between sequences and accumulation points, which the next few problems will elucidate. First, a definition—one you may have seen in calculus in a different form.

Definition 3.18. We say that the (point) sequence $p = \{p_i\}_{i=1}^{\infty}$ converges to the point x if, given an open interval S containing x, there exists an $N \in \mathbb{N}$ such that if $n \ge N$ is also a positive integer then $p_n \in S$.

We simply say that p converges if there exists a point x to which the sequence converges. One could even write $p \to x$, informally. If a sequence does not converge to any point x, then we say it *diverges*.

The first problem about this should be used as a place to test ideas for how to prove convergence. Make sure you remember *all* the axioms you've learned and facts you've proved about real numbers—you may need them!

Problem 3.19. Consider the sequence given by $p_n = \frac{1}{n}$ (remember, $n \in \mathbb{N}$ is part of the definition of a sequence). Show that $p = \{p_i\}_{i=1}^{\infty}$ converges to 0.

As you tackle the next few problems, try actually writing down the first 10 or 12 elements of each sequence.

Problem 3.20. Consider the sequence given by $p_n = 1 - \frac{1}{n}$. Show that p converges to 1.

Problem 3.21. Consider the sequence with even terms $p_{2n} = \frac{1}{2n-1}$ and odd terms $p_{2n-1} = \frac{1}{2n}$. Show that p converges to 0.

Problem 3.22. Consider the sequence with odd terms $p_{2n-1} = \frac{1}{2n-1}$ and even terms $p_{2n} = 1 + \frac{1}{2n}$. Determine whether p converges to 0.

The following problem connects our two concepts. The most profound property of the real numbers is part of this connection, as we'll soon see.

Problem 3.23. Show that if p converges to the point x and for each $i \in \mathbb{N}$, $p_i \neq p_{i+1}$, then x is an accumulation point of the image set of $\{p_i\}_{i=1}^{\infty}$.

Exercise 3.24. Why do we need the restriction that $p_i \neq p_{i+1}$? Is this an absolutely necessary restriction for x to be an accumulation point of the image set?

Problem 3.25. Show that the sequence $\{\frac{1}{i}\}_{i=1}^{\infty}$ does not converge to a point other than zero.

Problem 3.26. Show that if p converges to the point x and y is a point different from x, then p does *not* converge to y.

Basic familiar facts about sequence convergence are recalled next. In these proofs, you may have to think a little more explicitly about what the intervals around x look like in order to combine sequences. Try doing some examples with explicit numbers first, to get a sense of how to approach them.

Problem 3.27. Show that if c is a number and $p = \{p_i\}_{i=1}^{\infty}$ converges to x, then cp (which means what you think it does) converges to cx.

Problem 3.28. Show that if $q = \{q_i\}_{i=1}^{\infty}$ converges to y and $p = \{p_i\}_{i=1}^{\infty}$ converges to x, then $\{q_i + p_i\}_{i=1}^{\infty}$ (which means what you think it does) converges to y + x.

Products and quotients of sequences behave like you think they will as well, and you can use these facts in the rest of the notes. We will include one special case soon.

Now we introduce a few more definitions that will lead us to the key axiom for the real numbers—*completeness*. We'll continue to see interplay between sequences and sets.

Definition 3.29. We say that a point set M is bounded if M is a subset of some closed interval.

Definition 3.30. We say that a point set M is *bounded above* if there is a point z such that if $x \in M$ then $x \le z$; such a point is an *upper bound*.

Exercise 3.31. The property of a point set *M* being *bounded below* and the notion of a *lower bound* are defined similarly; try defining them.

Exercise 3.32. Show that a point set (in \mathbb{R}) being bounded is the same as it being bounded above and below.

Exercise 3.33. Find all upper bounds for (0,1), [0,1], and $(0,1) \cap \mathbb{Q}^C$ (irrationals between 0 and 1).

In the next problem, remember that we 'abuse notation' by using $\{p_i\}_{i=1}^{\infty}$ to mean more than one mathematical object.

Problem 3.34. If the sequence p converges to the point x, then the image set $\{p_i\}_{i=1}^{\infty}$ is bounded.

You can use this concept to prove some of the more difficult sequence convergence properties.

Problem 3.35. Show that if q converges to 0 and p converges to x, then $\{q_i \cdot p_i\}_{i=1}^{\infty}$ (which means what you think it does) converges to 0.

Now we start to approach the heart of why calculus works.

Definition 3.36. We say p is a *least upper bound* (or *supremum*) of a point set M if p is an upper bound of M and $p \le q$ for any other upper bound q of M.

Exercise 3.37. Define the *greatest lower bound/infimum* by analogy.

Problem 3.38. Find the suprema of (0,1), and $(0,1) \cap \mathbb{Q}^C$. If we could apply the definition of supremum to \emptyset , what would its supremum be?

Problem 3.39. Prove that the supremum of a point set is unique, if it exists.

Problem 3.40. If M and N are point sets with suprema, characterize the supremum of $M \cup N$.

If M and N are point sets, define $cM := \{cx \mid x \in M\}$ and $M + N := \{x + y \mid x \in M, y \in N\}$.

Problem 3.41. Assuming M and N have suprema, prove *either* that $\sup(cM)$ is $c\sup(M)$ (given c > 0) *or* that $\sup(M + N) = \sup(M) + \sup(N)$.

Exercise 3.42. Show that $c\inf(M) = \sup(cM)$ if c < 0. What other properties are there relating inf, sup, and c?

The reason the supremum is so important is the following fundamental axiom.

Axiom of Completeness of the Real Numbers. If M is a point set and is bounded above, then M has a supremum.

Exercise 3.43. Come up with a sequence p such that the image set is unbounded $\{p_i\}_{i=1}^{\infty}$ and hence does not have a supremum.

Exercise 3.44. Show that the axiom is *not* true if one requires that the supremum be a rational number.

It will be quite useful in the future to show that there is an equivalent way to formulate completeness in terms of sequences.

Definition 3.45. We say that a sequence p is *nondecreasing* if $p_i \le p_{i+1}$ for all $i \in \mathbb{N}$. (The concept of nonincreasing is defined similarly.)

Exercise 3.46. Replace the \leq above with < to define the notion of (strictly) *increasing*. Find examples of nondecreasing sequences which are not increasing (and similarly for nonincreasing/decreasing).

Problem 3.47. Prove that if p is a nondecreasing sequence such that the image set $\{p_i\}_{i=1}^{\infty}$ is bounded above, then p converges to some point x.

Problem 3.48. Assuming the previous problem is true, prove the completeness axiom for point sets.

Why is all this so important? One reason is that we can use the completeness of the reals to *prove* one of the axioms (Order Axiom 5) we snuck in earlier. It may be thought of as the 'real' reason why the following is true, since open intervals can be as small as we need them to be.

Problem 3.49. Using Problem 3.47, show that for any point x, there is an $n \in \mathbb{Z}$ such that n > x.

¹*Hint:* Use a proof by contradiction.

Problem 3.50. Let the point set $M \neq \emptyset$ be bounded above, with supremum x. Prove that there exists a nondecreasing sequence $\{p_i\}$ that converges to x, where the image set $\{p_i\} \subseteq M$.

Definition 3.51. A sequence $\{b_k\}_{k=1}^{\infty}$ is a *subsequence* of $\{a_n\}_{n=1}^{\infty}$ if there is a sequence of natural numbers $\{n_i\}$ with $n_i < n_{i+1}$ such that $b_k = a_{n_k}$.

Exercise 3.52. Give some examples of subsequences of the sequence $\{\frac{1}{n}\}$.

Problem 3.53. Prove that if a sequence converges to x, so does any subsequence of that sequence.

Exercise 3.54. Suppose $\{a_{n_k}\}_{k=1}^{\infty}$ is a subsequence of $\{a_n\}_{n=1}^{\infty}$. If a_{n_k} converges to x, does this imply that a_n converges to x? Justify your answer.

Problem 3.55. Give a sequence $\{p_i\}$ with image set $\{p_i\} \subseteq \mathbb{N}$ such that *every* sequence of natural numbers is a subsequence of $\{p_i\}$.

Problem 3.56. Prove that every sequence of real numbers has a nonincreasing or nondecreasing subsequence.

Problem 3.57 (Bolzano–Weierstrass Theorem). Every sequence with bounded image set has a convergent subsequence.

Chapter 4

Standard Topology of the Real Line

In this chapter, we will take a brief tour of the fascinating world of open and closed subsets of the real line.

Definition 4.1. A point set M is defined to be an *open* set if for every point $x \in M$ there is an open interval that contains x and is a subset of M.

It is immediate from the definition that open intervals are in fact open sets.

Exercise 4.2. Provide several examples of open sets that are not simply open intervals.

Problem 4.3. Show that the intersection of two (and hence, by induction, finitely many) open sets is open, but that the intersection of infinitely many open sets may not be open.

Definition 4.4. A point set *M* is defined to be a *closed* set if every accumulation point of *M* is contained in *M*.

If M is a point set, the set of accumulation points of M is sometimes denoted by M'. Using this notation, we can say that a set M is closed if and only if $M' \subseteq M$. Note that if a set M has no accumulation points, then it is vacuously closed.

Exercise 4.5. Is every closed interval a closed set? Justify your answer.

Exercise 4.6. Provide several examples of closed sets that are not closed intervals.

Exercise 4.7. Provide an example of a point set that is both open and closed.

One annoying feature of the terminology is that if a set is not open, it may or may not be closed. Similarly, if a set is not closed, it may or may not be open. That is, open and closed are not opposites of each other.

Exercise 4.8. Provide an example of a point set that is neither open nor closed.

Despite the fact that open and closed are not opposites of each other, there is a nice connection involving complements.

Problem 4.9. Prove that if M is a closed point set such that $M \neq \mathbb{R}$, then M^c is an open point set.

Problem 4.10. Prove that if M is an open point set, then M^c is a closed point set.

Definition 4.11. A point set *K* is called *compact* if *K* is both closed and bounded.

It is important to point out that there is a more general definition of compact in an arbitrary topological space. However, using our notions of open and closed, it is a theorem that a subset of the real line is compact if and only if it is closed and bounded.

Exercise 4.12. Provide several examples of point sets that are compact and some that are not compact. Are finite point sets compact?

Problem 4.13. Prove that if *K* is a compact point set, then $\sup(K)$, $\inf(K) \in K$.

The next problem is related to the Bolzano–Weierstrass Theorem.

Problem 4.14. Show that if K is compact, then any sequence with image set in K has a subsequence that converges to a point in K.

Problem 4.15. Come up with examples showing that if M is not closed or not bounded, then there exists a sequence with image set in M that does not have a subsequence converging to a point in M (or possibly not at all).

On the real line, compactness and satisfying the Bolzano–Weierstrass Theorem are equivalent. However, one can concoct examples of other mathematical spaces where they are not the same.

Chapter 5

Continuity

Definition 5.1. We say that a function f is *continuous at a point* x in its domain (or at the point (x, f(x))) if, for any open interval S containing f(x), there is an open interval T containing x such that if $t \in T$ is in the domain of f, then $f(t) \in S$.

Definition 5.2. A function *f* is *continuous* if it is continuous at every point in its domain.

Let's show that this definition of continuity behaves the way we expect from calculus.

Exercise 5.3. Show that each of the following functions is continuous.

- (a) $f : \mathbb{R} \to \mathbb{R}$ defined via f(x) = x.
- (b) $g: \mathbb{R} \to \mathbb{R}$ defined via g(x) = 2x.
- (c) $h: \mathbb{R} \to \mathbb{R}$ defined via h(x) = x + 3.

Problem 5.4. Show that any linear function given by f(x) = mx + b is continuous for all $x \in \mathbb{R}$.

The next problem tells us that we can reframe continuity in terms of distance.

Problem 5.5. Let f be a function. Prove that f is continuous at x if and only if for every $\epsilon > 0$, then there exists $\delta > 0$ so that if t is in the domain of f and $|t - x| < \delta$, then $|f(t) - f(x)| < \epsilon$.

The previous characterization is typically referred to as the " $\epsilon - \delta$ definition of continuity", although for us it is a theorem instead of a definition. This characterization is used as the definition of continuity in metric spaces.

Problem 5.6. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} 1, & \text{if } x \in [0, 1] \\ 0, & \text{otherwise.} \end{cases}$$

Find all points *x* where *f* is continuous and justify your answer.

Problem 5.7. Define $g : \{0\} \to \mathbb{R}$ via g(0) = 0. Show that g is continuous at x = 0.

Problem 5.8. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{otherwise.} \end{cases}$$

Find all points x where f is continuous and justify your answer.

Problem 5.9. Define $f : \mathbb{R} \to \mathbb{R}$ via $f(x) = x^2$. Prove that f is continuous.

Exercise 5.10. Find a continuous function f and an open interval U such that the preimage $f^{-1}(U)$ is not an open interval.

Problem 5.11. Let f be a function. Prove that f is continuous if and only if the preimage $f^{-1}(U)$ of every open set U is an open set intersected with the domain of f.

The previous characterization of continuity is often referred to as the "open set definition of continuity" and is the definition used in topology.

It turns out that there is a deep connection between continuity and sequences!

Definition 5.12. We say that a function f is *sequentially continuous at a point* x if, for every sequence $(x_i)_{i=1}^{\infty}$ (in the domain of f) converging to x, it is also true that $(f(x_i))_{i=1}^{\infty}$ converges to f(x).

Problem 5.13. Let f be a function. Prove that f is continuous at x if and only if f is sequentially continuous at x.

The upshot of the previous problem is that the notions of being *continuous at a point* and *sequentially continuous at a point* are equivalent on the real numbers. However, there are contexts in mathematics where the two are not equivalent. This is topic in a branch of mathematics called *topology*. If you want to know more, check out the following YouTube video:

https://www.youtube.com/watch?v=sZ5fBHGYurg

The sequential way of thinking of continuity often makes proving some basic facts concerning continuity easier.

At this point, we have four different ways of thinking about continuity.

- Definition 5.1 using open intervals.
- Problem 5.5 using ϵ and δ .
- Problem 5.11 using inverse images of open sets.
- Problem 5.13 using sequential continuity.

You should take the time to review each one. Moreover, it is worth pointing out that three of the four characterizations involve continuity at a point. Which one does not? For the remainder of the book, feel free to use which ever characterization you'd like.

Problem 5.14. Suppose f and g are functions that are continuous at x and let $c \in \mathbb{R}$. Prove that each of the following functions are also continuous at x.

- (a) *cf*
- (b) f + g
- (c) f g
- (d) fg

Exercise 5.15. Prove that every polynomial is continuous on all of \mathbb{R} .

Problem 5.16. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and consider the closed interval [a,b]. Is the image f([a,b]) always a closed interval? If so, prove it. Otherwise, provide a counterexample.

Problem 5.17. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and K is a compact point set, then the image f(K) is compact.

The next result tells us that continuous functions always attain a maximum value on closed intervals. Of course, we have an analogous result involving minimums.

Problem 5.18 (Extreme Value Theorem). Let I be a closed interval. Prove that if f is continuous on I, then there exists $x_M \in I$ such that $f(x_M) \ge f(x)$ for all $x \in I$.

Problem 5.19. Is the hypothesis that *I* is closed needed in the Extreme Value Theorem? Justify your answer.

Problem 5.20. Is the converse of the Extreme Value Theorem true? That is, if a function attains a maximum value over a closed interval, does that imply that the function is continuous. If so, prove it. Otherwise, provide a counterexample.

Problem 5.21. Let $f:[0,1] \to \mathbb{R}$ and assume that the image f([0,1]) has a supremum. Show there is a sequence of points $(x_i)_{i=1}^{\infty}$ in [0,1] such that $(f(x_i))_{i=1}^{\infty}$ converges to that supremum. Does this show that f is continuous on [0,1]?

Definition 5.22. We say that a point set M is *disconnected* if there exists two disjoint open sets U_1 and U_2 such that $M \cap U_1$ and $M \cap U_2$ are nonempty but $M \subseteq U_1 \cup U_2$ (equivalently, $M = (M \cap U_1) \cup (M \cap U_2)$). If a point set is non disconnected, then we say that it is *connected*.

Exercise 5.23. Provide examples of sets that are disconnected. Also, provide some examples of sets that are connected. In each case, try to find examples with various other properties such as open, closed, neither open nor closed, bounded, unbounded, and compact. You do not need to worry about justifying your examples in this exercise.

Problem 5.24. Determine whether each of the following point sets is connected or disconnected. Prove your answers.

(a) Q

- (b) $[0,1] \cup [2,3]$
- (c) $\{\frac{1}{n} \mid n \in \mathbb{N}\}$
- $(d) \{17\}$
- (e) Ø

The next problem is harder than it looks.

Problem 5.25. Prove that every closed interval [a, b] is connected.

The next problem is analogous to Problem 5.17. It also likely captures your intuition about continuity from high school and calculus.

Problem 5.26. Prove that if $f : \mathbb{R} \to \mathbb{R}$ is a continuous function and M is a connected point set, then the image f(M) is connected.

Problem 5.27 (Intermediate Value Theorem). Let I = [a, b] be a closed interval. Prove that if f is continuous on I such that f(a) < 0 < f(b) or f(a) > 0 > f(b), then there exists $r \in I$ such that f(r) = 0.

We can generalize the previous result, which is also often referred to as the Intermediate Value Theorem.

Problem 5.28. Let I = [a, b] be a closed interval. Prove that if f is continuous on I such that f(a) < c < f(b) or f(a) > c > f(b), then there exists $r \in I$ such that f(r) = c.

Problem 5.29. Is the hypothesis that *I* is closed needed in the Intermediate Value Theorem? Justify your answer.

Problem 5.30. Is the converse of the Intermediate Value Theorem true? If so, prove it. Otherwise, provide a counterexample.

Problem 5.31. Let $f : [0,1] \to \mathbb{R}$ be a function such that f(0) = -1, f(1) = 1, and $f([0,1]) = \{-1,1\}$. Prove that there exists $x \in [0,1]$ such that f is not continuous at x.

Chapter 6

Differentiation

It's time for calculus!

Definition 6.1. Let $f: A \to \mathbb{R}$ be a function and let $a \in A$. For real number D, we say that f has *derivative* D at the point a if the following two conditions hold:

- 1. The point a is an accumulation point of the domain of f.
- 2. If *S* is an open interval containing *D*, then there is an open interval *T* containing *a* such that if $t \in T$, $t \ne a$, and *t* is in the domain of *f*, then

$$\frac{f(t) - f(a)}{t - a} \in S.$$

In this case, we say that f is differentiable at a. If f does indeed have a derivative at some points in its domain, then the derivative of f is the function denoted by f', such that for each number x at which f is differentiable, f'(x) is the derivative of f at x.

Note that the definition of derivative automatically excludes the kind of behavior we saw with continuous functions, where a function defined only at a single point was continuous.

Exercise 6.2. Explain why any function defined only on \mathbb{Z} cannot have a derivative.

Exercise 6.3. Find and prove a formula for the derivative of f(x) = 3.

Problem 6.4. Find and prove a formula for the derivative of g(x) = 2x - 5.

The following problem provides an alternative definition for the derivative.

Problem 6.5. Let $f : A \to \mathbb{R}$ be a function and let $a \in A$. Prove that f has derivative D at the point a if and only if the following two conditions hold:

- 1. The point a is an accumulation point of the domain of f.
- 2. If $\epsilon > 0$, then there exists $\delta > 0$ such that if t is in the domain of f and $|t a| < \delta$, then

$$\left| \frac{f(t) - f(a)}{t - a} - D \right| < \epsilon.$$

Problem 6.6. Find the derivative of $h(x) = x^2 - x + 1$ at x = 2.

Problem 6.7. Find the derivative of $h(x) = x^2 + ax + b$ for any $a, b \in \mathbb{R}$.

Problem 6.8. If f is differentiable at x and $c \in \mathbb{R}$, show that the function cf also has a derivative at x and (cf)'(x) = cf'(x).

Problem 6.9. If f and g are differentiable at x, show that the function f + g also has a derivative at x and (f + g)'(x) = f'(x) + g'(x).

We now pause our regularly scheduled program for a short discussion of limits. Many of you have had a burning desire to utilize the limits that you are familiar with from calculus and have felt like you were working with one hand tied behind your back. Partly to satisfy your desires and partly to speed things up in light of our transition to remote instruction, lets dig into limits for a bit.

Definition 6.10. Let $f : A \to \mathbb{R}$ be a function. Then the *limit* of f as x approaches a is L if the following two conditions hold:

- 1. The point *a* is an accumulation point of *A*, and
- 2. For every $\epsilon > 0$ there exists a $\delta > 0$ such that if $x \in A$ and $0 < |x a| < \delta$, then $|f(x) L| < \epsilon$.

Notationally, we write this as

$$\lim_{x \to a} f(x) = L.$$

Exercise 6.11. Why do we require 0 < |x - a| in Definition 6.10?

Example 6.12. It should come as no surprise to you that $\lim_{x\to 5} (3x+2) = 17$. Let's prove this using Definition 6.10. First, notice that the default domain of f(x) = 3x + 2 is the set of real numbers. So, any x-value we choose will be in the domain of the function. Now, let $\epsilon > 0$. Choose $\delta = \epsilon/3$. You'll see in a moment why this is a good choose for δ . Suppose $x \in \mathbb{R}$ such that $0 < |x - 5| < \delta$. We see that

$$|(3x+2)-17| = |3x-15| = 3 \cdot |x-5| < 3 \cdot \delta = 3 \cdot \epsilon/3 = \epsilon.$$

This proves the desired result.

Example 6.13. Let's try something a little more difficult. Let's prove that $\lim_{x\to 3} x^2 = 9$. As in the previous example, the default domain of our function is the set of real numbers. Our goal is to prove that for all $\epsilon > 0$, there exists $\delta > 0$ such that if $x \in \mathbb{R}$ such that $0 < |x-3| < \delta$, then $|x^2-9| < \epsilon$. Let $\epsilon > 0$. We need to figure out what δ needs to be. Notice that

$$|x^2 - 9| = |x + 3| \cdot |x - 3|.$$

The quantity |x-3| is something we can control with δ , but the quantity |x+3| seems to be problematic.

To get a handle on what's going on, let's temporarily assume that $\delta = 1$ and suppose that 0 < |x-3| < 1. This means that x is within 1 unit of 3. In other words, 2 < x < 4. But this implies that 5 < x + 3 < 7, which in turn implies that |x+3| is bounded above by 7. That is, |x+3| < 7 when 0 < |x-3| < 1. It's easy to see that we still have |x+3| < 7 even if we choose δ smaller than 1. That is, we have |x+3| < 7 when $0 < |x-3| < \delta \le 1$. Putting this altogether, if we suppose that $0 < |x-3| < \delta \le 1$, then we can conclude that

$$|x^2 - 9| = |x + 3| \cdot |x - 3| < 7 \cdot |x - 3|.$$

This work informs our choice of δ , but remember our scratch work above hinged on knowing that $\delta \leq 1$. If $\epsilon/7 \leq 1$, we should choose $\delta = \epsilon/7$. However, if $\epsilon/7 > 1$, the easiest thing to do is to just let $\delta = 1$. Let's button it all up.

Let $\epsilon > 0$. Choose $\delta = \min\{1, \epsilon/7\}$ and suppose $0 < |x - 3| < \delta$. We see that

$$|x^2 - 9| = |x + 3| \cdot |x - 3| < 7 \cdot |x - 3| < 7 \cdot \delta \le \epsilon$$

since

$$7 \cdot \delta = \begin{cases} 7, & \text{if } \epsilon > 7 \\ 7 \cdot \epsilon / 7, & \text{if } \epsilon \leq 7. \end{cases}$$

Therefore, $\lim_{x\to 3} x^2 = 9$, as expected.

Problem 6.14. Prove that $\lim_{x\to 1} (17x - 42) = -25$ using Definition 6.10.

Problem 6.15. Prove that $\lim_{x\to 2} x^3 = 8$ using Definition 6.10.

Problem 6.16. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} x, & \text{if } x \neq 0 \\ 17, & \text{if } x = 0. \end{cases}$$

Using Definition 6.10, prove that $\lim_{x\to 0} f(x) = 0$.

Problem 6.17. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} 1, & \text{if } x \le 0 \\ -1, & \text{if } x > 0. \end{cases}$$

Using Definition 6.10, prove that $\lim_{x\to 0} f(x)$ does not exist.

Problem 6.18. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{otherwise.} \end{cases}$$

Using Definition 6.10, prove that $\lim_{x\to a} f(x)$ does not exist for all $a \in \mathbb{R}$.

The definition of a function f being continuous at x = a looks awfully similar to the definition of the limit of f as x approaches a. Let's explore this a bit.

Problem 6.19. Explain the similarities and differences between the definitions of continuity at x = a versus the limit as x approaches a. State a theorem about continuity involving limits.

In order for limits to be a useful tool, we need to prove a few important facts.

Problem 6.20 (Limit Laws). Let $f : A \to \mathbb{R}$ and $g : B \to \mathbb{R}$ be functions. Prove each of the following using Definition 6.10.

- (a) If $\lim_{x\to a} f(x)$ exists, then the limit is unique.
- (b) If $c \in \mathbb{R}$, then $\lim_{x \to a} c = c$.
- (c) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist, then

$$\lim_{x \to a} (f(x) \pm g(x)) = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x).$$

(d) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist, then

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x).$$

(e) If $c \in \mathbb{R}$ and $\lim_{x \to a} f(x)$ exists, then

$$\lim_{x \to a} (c \cdot f(x)) = c \cdot \lim_{x \to a} f(x).$$

(f) If $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ both exist and $\lim_{x\to a} g(x) \neq 0$, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}.$$

(g) If *f* is continuous at *b* and $\lim_{x\to a} g(x) = b$, then

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x)) = f(b).$$

The next problem is extremely useful. It allows us to simplify our calculations when computing limits.

Problem 6.21. Let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ be functions and let a be an accumulation point of A. If there exists an open interval S such that f(x) = g(x) for all $x \in (S \cap A) \setminus \{a\}$, then

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$$

provided one of the limits exists.

Let's return to derivatives.

Problem 6.22. Using Problem 6.5 and Definition 6.10, state a theorem for derivatives that involves limits.

We now return to our regularly scheduled program.

The next problem tells us that differentiability implies continuity.

Problem 6.23. Using Problem 6.22, show that if f has a derivative at x = a, then f is also continuous at x = a.

The next problems are the well-known Product and Quotient Rules for Derivatives. You will need to use Problem 6.23 in their proofs.

Problem 6.24. Suppose f and g are differentiable at x. Using Problem 6.22, prove each of the following:

(a) The function fg is differentiable at x. Moreover, its derivative function is given by

$$(fg)'(x) = f'(x)g(x) + f(x)g'(x).$$

(b) The function f/g is differentiable at x provided $g'(x) \neq 0$. Moreover, its derivative function is given by

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}.$$

Definition 6.25. Let $f: A \to \mathbb{R}$ be a function and let $a \in A$. The non-vertical line L is *tangent* to the function f at the point P = (a, b) means that:

- 1. a is an accumulation point of the domain of f,
- 2. *P* is a point of *L*, and
- 3. if *A* and *B* are non-vertical lines containing *P* with the line *L* between them (except at *P*), then there are two vertical lines *H* and *K* with *P* between them such that if *Q* is a point of *f* between *H* and *K* which is not *P*, then *Q* is between *A* and *B*.

If *L* is tangent to *f* at *P*, we say that *L* is a *tangent line* to *f* at x = a.

In the previous definition we write that we have three distinct lines, A, B, and L with L between A and B (except at P). By this we mean that for any point l on L (except P) there is a point α on A and a point β on B so that either α is below l which is below β or that β is below l which is below α .

Exercise 6.26. Try to draw a picture that captures the definition of tangent line. Your picture should include f, a, f(a), P, L, A, B, H, K, Q, α , and β .

Problem 6.27. Let $f: A \to \mathbb{R}$ be a function and let $a \in A$ such that f has a tangent line at x = a. Prove that f does not have two tangent lines at the point (a, f(a)).

Problem 6.28. Define $f : \mathbb{R} \to \mathbb{R}$ via f(x) = |x|.

- (a) Prove that *f* is continuous on all at all points in its domain.
- (b) Prove that f has a (non-vertical) tangent line at all points in its domain except x = 0.

Problem 6.29. Use the definition of tangent to show that if f is a function whose domain includes (-1,1), and for each number $x \in (-1,1)$, $-x^2 \le f(x) \le x^2$, then the x-axis is tangent to f at the point (0,0).

Problem 6.30. Let $f: A \to \mathbb{R}$ be a function and let $a \in A$. Prove that f has a derivative at x = a if and only if f has a non-vertical tangent line at the point (a, f(a)).

The upshot of Problems 6.27 and 6.30 is that derivatives are unique when they exist.

Problem 6.31. Let $f: A \to \mathbb{R}$ be a function and let $a \in A$ and suppose f has a derivative at x = a. Explain why f'(a) is the slope of the line tangent to f at the point (a, f(a)).

In light of Problem 6.30, if a function f does not have a tangent line or has a vertical tangent line at x = a, then f is not differentiable at x = a. Note that Problem 6.28 shows us that a function f that is is continuous at x = a may or may not be differentiable at x = a. This problem also illustrates that a function f and its derivative f' might not have the same domain.

We probably should have done the next two problems sooner, but now is as good a time as any.

Problem 6.32. Define $f : \mathbb{R} \to \mathbb{R}$ via f(x) = c for some constant $c \in \mathbb{R}$. Prove that f is differentiable on \mathbb{R} and f'(x) = 0 for all $x \in \mathbb{R}$.

Problem 6.33. Define $f : \mathbb{R} \to \mathbb{R}$ via f(x) = mx + b for some constants $m, b \in \mathbb{R}$. Prove that f is differentiable and f'(x) = m for all $x \in \mathbb{R}$.

In the previous two problems, note that if we restrict the domain of the functions to a closed interval [a, b], then we can conclude that we get the expected derivatives for all $x \in (a, b)$.

Problem 6.34. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} x, & \text{if } x \in \mathbb{Q} \\ 0, & \text{otherwise.} \end{cases}$$

Show that f is continuous at x = 0, but not differentiable at x = 0.

The next problem is sure to make your head hurt.

Problem 6.35. Define $g : \mathbb{R} \to \mathbb{R}$ via

$$g(x) = \begin{cases} 0, & \text{if } x \in \mathbb{Q} \\ 1, & \text{otherwise.} \end{cases}$$

Now, define $f : \mathbb{R} \to \mathbb{R}$ via $f(x) = x^2 g(x)$. Determine where f is differentiable.

The next result tells us that if a differentiable function attains a maximum value at some point in an open interval contained in the domain of the function, then the derivative is zero at that point. In a calculus class, we would said that differentiable functions attain local maximums at critical numbers.

Problem 6.36. Let $f: A \to \mathbb{R}$ be a function such that $[a,b] \subseteq A$, f'(c) exists for some $c \in (a,b)$, and $f(c) \ge f(x)$ for all $x \in (a,b)$. Prove that f'(c) = 0.

Problem 6.37. Let $f: A \to \mathbb{R}$ be a function such that f'(c) = 0 for some $c \in A$. Does this imply that there exists an open interval (a, b) such that either $f(x) \ge f(c)$ or $f(x) \le f(c)$ for all $x \in (a, b)$? If so, prove it. Otherwise, provide a counterexample.

The next problem asks you to prove a result called Rolle's Theorem.

Problem 6.38 (Rolle's Theorem). Let $f : A \to \mathbb{R}$ be a function such that $[a, b] \subseteq A$. If f is continuous on [a, b], differentiable on (a, b), and f(a) = f(b), then prove that there exists a point $c \in (a, b)$ such that f'(c) = 0.

We can use Rolle's Theorem to prove the next result, which is the well-known Mean Value Theorem.

Problem 6.39 (Mean Value Theorem). Let $f : A \to \mathbb{R}$ be a function such that $[a, b] \subseteq A$. If f is continuous on [a, b] and differentiable on (a, b), then prove that there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.^2$$

Problem 6.40. Let $f: A \to \mathbb{R}$ be a function such that $[a,b] \subseteq A$. If f is continuous on [a,b] and differentiable on (a,b) such that f'(x) = 0 for all $x \in (a,b)$, then prove that f is constant over [a,b].³

Problem 6.41. Let $f: A \to \mathbb{R}$ and $g: A \to \mathbb{R}$ such that $[a, b] \subseteq A$. Prove that if f'(x) = g'(x) for all $x \in (a, b)$, then there exists $C \in \mathbb{R}$ such that f(x) = g(x) + C.

Problem 6.42. Is the converse of the previous problem true? If so, prove it. Otherwise, provide a counterexample.

³*Hint*: Try applying the Mean Value Theorem to [a, t] for every $t \in (a, b]$.

¹ *Hint:* First, apply the Extreme Value Theorem to f and -f to conclude that f attains both a maximum and minimum on [a,b]. If both the maximum and minimum are attained at the end points of [a,b], then the maximum and minimum are the same and thus the function is constant. What does Problem 6.32 tell us in this case? But what if f is not constant over [a,b]? Try using Problem 6.36.

²*Hint*: Cleverly define the function $g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$. Is g continuous on [a, b]? Is g differentiable on (a, b)? Can we apply Rolle's Theorem to g using the interval [a, b]? What can you conclude? Magic!

Chapter 7

Integration

Unlike with differentiation, we will need a number of auxiliary definitions for beginning integration.

Definition 7.1. A set of points $P = \{t_0, t_1, \dots, t_n\}$ is a *partition* of the closed interval [a, b] if $a = t_0 < t_1 < \dots t_{n-1} < t_n = b$. If $t_i - t_{i-1} = \frac{b-a}{n}$ for all i, we say that the partition is a *regular partition* of [a, b]. In this case, we may use the notation $\Delta t := t_i - t_{i-1}$.

Exercise 7.2. Give some partitions, regular and not regular, of [0,1], [2,4], and [-1,0].

Definition 7.3. We say that a function is *bounded* if it has bounded image set.

Important! For the next four definitions, we assume that f is a bounded function with domain the closed interval [a, b].

Definition 7.4. Let f be a bounded function with domain [a,b] and let $\{t_0,t_1,\ldots,t_n\}$ be a partition of [a,b]. We say that any sum S of the form

$$S = \sum_{i=1}^{n} f(x_i)(t_i - t_{i-1}),$$

where $x_i \in [t_{i-1}, t_i]$ is a *Riemann sum* for f on [a, b].

Definition 7.5. Let f be a bounded function with domain [a,b] and let $P = \{t_0,t_1,\ldots,t_n\}$ be a partition of [a,b]. For each $i \in \{1,2,\ldots,n\}$, define $M_i := \sup\{f(x) \mid x \in [t_{i-1},t_i]\}$. We say that the sum

$$U_P(f) := \sum_{i=1}^n M_i(t_i - t_{i-1}),$$

is the *upper Riemann sum* for f with partition P.

Definition 7.6. Let f be a bounded function with domain [a,b] and let $P = \{t_0,t_1,\ldots,t_n\}$ be a partition of [a,b]. For each $i \in \{1,2,\ldots,n\}$, define $m_i := \inf\{f(x) \mid x \in [t_{i-1},t_i]\}$. We say that the sum

$$L_P(f) := \sum_{i=1}^n m_i(t_i - t_{i-1}),$$

is the *lower Riemann sum* for f with partition P.

Exercise 7.7. Draw pictures that capture the concepts of upper and lower Riemann sums.

Contrary to the name, upper and lower Riemann sums are not always Riemann sums.

Problem 7.8. Give an example of an interval [a,b], partition P, and bounded function f such that $U_p(f)$ is not a Riemann sum.

Problem 7.9. Define $f:[0,1] \to \mathbb{R}$ via

$$f(x) = \begin{cases} 0, & x \in (0,1] \\ 1, & x = 0. \end{cases}$$

- (a) Show that $U_P(f) > 0$ for all partitions of [0,1].
- (b) Show that for any positive number ϵ there is a partition P_{ϵ} such that $U_{P_{\epsilon}}(f) < \epsilon$.
- (c) Fully describe all lower sums of f on [0,1].

Problem 7.10. Define $f:[0,1] \to \mathbb{R}$ via f(x) = x. For each $n \in \mathbb{N}$, let P_n be the regular partition of [0,1] given by $\{0,\frac{1}{n},\frac{2}{n},\ldots,\frac{n-1}{n},1\}$.

- (a) Compute $U_{P_5}(f)$.
- (b) Give a formula for $U_{P_n}(f)$.¹
- (c) Compute $L_{P_5}(f)$.
- (d) Give a formula for $L_{P_n}(f)$.

Problem 7.11. Suppose that f is a bounded function on [a,b] with lower bound m and upper bound M. Show that for any partition P of [a,b], $U_P(f) \le M(b-a)$ and $L_P(f) \ge m(b-a)$.

Problem 7.12. Suppose that f is a bounded function on [a,b] and P is a partition of [a,b]. Show that $L_P(f) \le U_P(f)$.

One consequence of Problem 7.11 is that the set of all upper, respectively lower, sums of f over [a,b] is a bounded point set. This implies that if f is a bounded function on [a,b], then the following supremum and infinum exist:

$$\inf\{U_P(f) \mid P \text{ is a partition of } [a,b]\}$$

$$\sup\{L_P(f) \mid P \text{ is a partition of } [a,b]\}$$

This leads to the following definition.

 $[\]overline{{}^{1}}$ Recall that the sum $\sum_{i=1}^{k} i = \frac{k(k+1)}{2}$.

Definition 7.13. Let f be a bounded function with domain [a,b]. The *upper integral* of f from a to b is defined via

$$\overline{\int_a^b f} := \inf\{U_P(f) \mid P \text{ is a partition of } [a,b]\}.$$

Similarly, the *lower integral* of *f* from *a* to *b* is defined via

$$\int_{a}^{b} f := \sup\{L_{P}(f) \mid P \text{ is a partition of } [a, b]\}.$$

Problem 7.14. Compute the upper and lower integrals for the function in Problem 7.9.

Problem 7.15. Define $f : \mathbb{R} \to \mathbb{R}$ via

$$f(x) = \begin{cases} 1, & \text{if } x \in \mathbb{Q} \\ 0, & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Show that $\underline{\int_0^1 f} < \overline{\int_0^1 f}$.

Definition 7.16. If P and Q are partitions of [a,b] such that $P \subseteq Q$, then we we say that Q is a *refinement* of P, or that Q *refines* P.

Problem 7.17. Let f be a bounded function with domain [a, b]. Prove that if P and Q are partitions of [a, b] such that Q is a refinement of P, then $L_P(f) \le L_O(f)$ and $U_P(f) \ge U_O(f)$.

Problem 7.18. Suppose f is a bounded function on [a,b]. Use the previous problem to prove that

$$\int_{a}^{b} f \le \overline{\int_{a}^{b} f}.$$

Problem 7.19. Suppose f is continuous on $[\underline{a}, \underline{b}]$ such that $f(x) \ge 0$ for all $\underline{x} \in [a, b]$ and that for some $z \in [a, b]$, f(z) > 0. Explain why $\int_a^b f$ exists and then show that $\int_a^b f > 0$.

Definition 7.20. Let f be a bounded function with domain [a,b]. We say that f is (*Riemann*) integrable on [a,b] if

$$\overline{\int_a^b f} = \underline{\int_a^b f}.$$

If f is integrable on [a,b], then the common value of the upper and lower integrals is called the (*Riemann*) integral of f on [a,b], which we denote via

$$\int_{a}^{b} f \quad \text{or} \quad \int_{a}^{b} f(x) \, dx.$$

Technically, we have defined the *Darboux integral*, with Riemann integrals coming from so-called Riemann sums. The two notions can be proved to be equivalent.

Problem 7.21. Give an example of a function f and an interval [a,b] for which we know $\begin{bmatrix} b \\ f \end{bmatrix}$ does not exist.

Problem 7.22. Is the function in Problem 7.9 integrable over [0,1]? If so, determine the value of the corresponding integral. If not, explain why.

There are so many facts about integrals, and unfortunately, we do not have time to prove them all! Nonetheless, we will hit some of the key results.

Problem 7.23. Prove that every constant function is integrable over every interval [*a*, *b*].

The following theorem is a useful characterization of when a function is integrable over a closed interval.

Problem 7.24. Suppose f is a bounded function on [a, b]. Then f is (Riemann) integrable if and only if for every $\epsilon > 0$, there exists a partition P of [a, b] such that $U_P(f) - L_P(f) < \epsilon$.

It is important to recognize the the previous problem provides us with a technique for determining whether a function is integrable over a closed interval, but does not necessarily help us with determining the value of a particular integral.

Problem 7.25. Define $f : \mathbb{R} \to \mathbb{R}$ defined via f(x) = x. Prove that f is integrable on [0,1] and compute the value of the integral.²

The next sets of theorems will vastly expand our repertoire of functions known to be integrable. First, we need a few definitions, which resemble the corresponding concepts we defined for sequences in Chapter 3.

Definition 7.26. A function f is (*strictly*) *increasing* if for each pair of points x and y in the domain of f satisfying x < y, we have f(x) < f(y). The function is *nondecreasing* if under the same assumptions we have $f(x) \le f(y)$. The notions of (*strictly*) *decreasing* and *nonincreasing* are defined analogously. We say that f is a *monotonic* function if f is either nondecreasing or nonincreasing.

Problem 7.27. Prove that if f is a bounded monotonic function on [a, b], then f is integrable on [a, b].

Problem 7.28. Prove that each of the following exist. Do you know the value of any of these integrals knowing what we know now and perhaps some well-known area formulas?

$$(a) \int_1^2 x^2 dx$$

(b)
$$\int_{1}^{17} e^{-x} dx$$

²You need to use the tools we currently have at our disposal.

(c)
$$\int_0^1 \sqrt{1-x^2} \, dx$$

$$(d) \int_0^1 \sqrt{1+x^4} \, dx$$

The next problem tells us that the integral respects scalar multiplication and sums and differences of integrable functions.

Problem 7.29. Suppose f and g be integrable on [a,b] and let $c \in \mathbb{R}$. Prove each of the following:

- (a) The function cf is integrable on [a,b] and $\int_a^b cf = c \int_a^b f$.
- (b) The function f + g is integrable on [a, b] and $\int_a^b (f + g) = \int_a^b f + \int_a^b g.^3$
- (c) The function f g is integrable on [a, b] and $\int_a^b (f g) = \int_a^b f \int_a^b g.^4$

Unfortunately, products of integrable functions are not well behaved.

Problem 7.30. Find two functions f and g which are integrable on [0,1] such that fg is also integrable on [0,1] but

$$\left(\int_0^1 f\right) \left(\int_0^1 g\right) \neq \int_0^1 f g.$$

Problem 7.31. Assume that [a,b] is a closed interval and suppose f is integrable on [a,c] and [c,b] for $c \in (a,b)$. Show that f is integrable on [a,b] and that

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Problem 7.32. Suppose f is integrable on [a,b]. Prove that for every $c \in \mathbb{R}$, the function g defined via g(x) = f(x-c) is integrable on [a+c,b+c] and

$$\int_{a}^{b} f(x) \ dx = \int_{a+c}^{b+c} f(x-c) \ dx.$$

Let's turn our attention to continuous functions.

Problem 7.33. Suppose f is continuous on [a,b]. Prove that for every $\epsilon > 0$, there exists a partition $P = \{t_0 = a, t_1, \dots, t_{n-1}, t_n = b\}$ of [a,b] such that for each $1 \le i \le n$, if $u,v \in [t_{i-1},t_i]$, then $|f(u)-f(v)| \le \epsilon$.

³Proving this one is much harder than it looks!

⁴Use parts (a) and (b) to prove this one.

Problem 7.34. Prove that if f is continuous on [a, b], then f is integrable on [a, b].

Problem 7.35. Is the converse of the previous problem true? If so, prove it. Otherwise, provide a counterexample.

Definition 7.36. If f is integrable on [a, b], then we define

$$\int_{b}^{a} f = -\int_{a}^{b} f \quad \text{and} \quad \int_{a}^{a} f = 0.$$

The next result is often referred to as the *Mean Value Theorem for Integrals*. Do you see why?

Problem 7.37 (Mean Value Theorem for Integrals). Suppose f is continuous on [a,b]. Prove that there exists $c \in [a,b]$ such that

$$\int_{a}^{b} f = f(c)(b-a).$$

Can you draw a picture to capture the essence of this theorem?

The next two problems are the crowning achievement of calculus and of this course. Collectively, these two problems are known as the *Fundamental Theorem of Calculus*.

Problem 7.38 (Fundamental Theorem of Calculus, Part 1). Suppose f is continuous on [a,b] and define $F:[a,b] \to \mathbb{R}$ via

$$F(x) = \int_{a}^{x} f.$$

Prove that for each $c \in [a, b]$, F is differentiable at c and F'(c) = f(c).

Problem 7.39 (Fundamental Theorem of Calculus, Part 2). Suppose f is a function on [a,b] such that f is differentiable at each point of [a,b], and the function f' is continuous at each point in [a,b]. Then show that

$$\int_{a}^{b} f' = f(b) - f(a).$$

It is important to point out that the function we are integrating in Problem 7.39 needs to be continuous. Moreover, this function must be some other function's derivative. Given f' in Problem 7.39, there is an entire family of functions that have the same derivative as f, each differing by a constant, according to Problem 6.41. Each of the functions in this family is referred to as *antiderivative* of f' and any one of them can be used to compute $\int_a^b f'$ using the Fundamental Theorem of Calculus.

The crux of using the Fundamental Theorem of Calculus boils down to finding an antiderivative of the function you are integrating. Some functions do not have nice antiderivatives! For example, in part (d) of Problem 7.28, we argued that the function give

by $f(x) = \sqrt{1 + x^4}$ is integrable on [0,1]. However, this function does not have an antiderivative that you would recognize. Try asking WolframAlpha for the antiderivative of $f(x) = \sqrt{1 + x^4}$ and see what you get.

Most functions you are familiar with are called *elementary functions*. Loosely speaking, a function is an *elementary function* if it is equal to a sum, product, and/or composition of finitely many polynomials, rational functions, trigonometric functions, exponential functions, and their inverse functions. These are the functions you typically encounter in high school, precalculus, and calculus. However, many functions are not elementary. For example, the function given in Problem 7.15 is not elementary. To complicate matters, many elementary functions do not have elementary antiderivatives. In fact, some rather innocent looking elementary functions do not have elementary antiderivatives. The function from part (d) of Problem 7.28 is such an example. Here are a few more elementary functions that do not have elementary antiderivatives:

- $\bullet \quad \sqrt{1-x^4}$
- $\frac{1}{\ln(x)}$
- $\sin(x^2)$ and $\cos(x^2)$
- $\bullet \ \frac{\sin(x)}{x}$
- \bullet $\frac{e^x}{x}$
- e^{e^x}

Determining which elementary functions have elementary antiderivatives is not an easy task. The upshot is that utilizing the Fundamental Theorem of Calculus to compute an integral may be difficult for seemingly innocent looking functions.

Problem 7.40. Using Problem 7.39 and your knowledge of antiderivatives from first semester calculus, compute the integrals in parts (a) and (b) of Problem 7.28.

Problem 7.41. According to WolframAlpha,

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx = 2.$$

Explain why the techniques of this chapter cannot be used to verify this. How one might go about computing this integral? What definitions are needed?

Appendix A

Elements of Style for Proofs

Years of elementary school math taught us incorrectly that the answer to a math problem is just a single number, "the right answer." It is time to unlearn those lessons; those days are over. From here on out, mathematics is about discovering proofs and writing them clearly and compellingly.

The following rules apply whenever you write a proof. I may refer to them, by number, in my comments on your homework and exams. Keep these rules handy so that you may refer to them as you write your proofs.

- 1. The burden of communication lies on you, not on your reader. It is your job to explain your thoughts; it is not your reader's job to guess them from a few hints. You are trying to convince a skeptical reader who doesn't believe you, so you need to argue with airtight logic in crystal clear language; otherwise the reader will continue to doubt. If you didn't write something on the paper, then (a) you didn't communicate it, (b) the reader didn't learn it, and (c) the grader has to assume you didn't know it in the first place.
- 2. **Tell the reader what you're proving.** The reader doesn't necessarily know or remember what "Theorem 2.13" is. Even a professor grading a stack of papers might lose track from time to time. Therefore, the statement you are proving should be on the same page as the beginning of your proof. For an exam this won't be a problem, of course, but on your homework, recopy the claim you are proving. This has the additional advantage that when you study for exams by reviewing your homework, you won't have to flip back in the notes/textbook to know what you were proving.
- 3. **Use English words.** Although there will usually be equations or mathematical statements in your proofs, use English sentences to connect them and display their logical relationships. If you look in your notes/textbook, you'll see that each proof consists mostly of English words.
- 4. **Use complete sentences.** If you wrote a history essay in sentence fragments, the reader would not understand what you meant; likewise in mathematics you must use complete sentences, with verbs, to convey your logical train of thought.

Some complete sentences can be written purely in mathematical symbols, such as equations (e.g., $a^3 = b^{-1}$), inequalities (e.g., x < 5), and other relations (like $5 \mid 10$ or $7 \in \mathbb{Z}$). These statements usually express a relationship between two mathematical *objects*, like numbers or sets. However, it is considered bad style to begin a sentence with symbols. A common phrase to use to avoid starting a sentence with mathematical symbols is "We see that…"

- 5. **Show the logical connections among your sentences.** Use phrases like "Therefore" or "because" or "if..., then..." or "if and only if" to connect your sentences.
- 6. **Know the difference between statements and objects.** A mathematical object is a *thing*, a noun, such as a group, an element, a vector space, a number, an ordered pair, etc. Objects either exist or don't exist. Statements, on the other hand, are mathematical *sentences*: they can be true or false.

When you see or write a cluster of math symbols, be sure you know whether it's an object (e.g., " $x^2 + 3$ ") or a statement (e.g., " $x^2 + 3 < 7$ "). One way to tell is that every mathematical statement includes a verb, such as =, \leq , "divides", etc.

- 7. "=" means equals. Don't write A = B unless you mean that A actually equals B. This rule seems obvious, but there is a great temptation to be sloppy. In calculus, for example, some people might write $f(x) = x^2 = 2x$ (which is false), when they really mean that "if $f(x) = x^2$, then f'(x) = 2x."
- 8. **Don't interchange** = **and** \implies . The equals sign connects two *objects*, as in " $x^2 = b$ "; the symbol " \implies " is an abbreviation for "implies" and connects two *statements*, as in " $a + b = a \implies b = 0$." You should avoid using \implies in your formal write-ups.
- 9. **Say exactly what you mean.** Just as the = is sometimes abused, so too people sometimes write $A \in B$ when they mean $A \subseteq B$, or write $a_{ij} \in A$ when they mean that a_{ij} is an entry in matrix A. Mathematics is a very precise language, and there is a way to say exactly what you mean; find it and use it.
- 10. **Don't write anything unproven.** Every statement on your paper should be something you *know* to be true. The reader expects your proof to be a series of statements, each proven by the statements that came before it. If you ever need to write something you don't yet know is true, you *must* preface it with words like "assume," "suppose," or "if" (if you are temporarily assuming it), or with words like "we need to show that" or "we claim that" (if it is your goal). Otherwise the reader will think they have missed part of your proof.
- 11. **Write strings of equalities (or inequalities) in the proper order.** When your reader sees something like

$$A = B < C = D$$
.

he/she expects to understand easily why A = B, why $B \le C$, and why C = D, and he/she expects the *point* of the entire line to be the more complicated fact that $A \le C$

D. For example, if you were computing the distance d of the point (12,5) from the origin, you could write

$$d = \sqrt{12^2 + 5^2} = 13.$$

In this string of equalities, the first equals sign is true by the Pythagorean theorem, the second is just arithmetic, and the *point* is that the first item equals the last item: d = 13.

A common error is to write strings of equations in the wrong order. For example, if you were to write " $\sqrt{12^2 + 5^2} = 13 = d$ ", your reader would understand the first equals sign, would be baffled as to how we know d = 13, and would be utterly perplexed as to why you wanted or needed to go through 13 to prove that $\sqrt{12^2 + 5^2} = d$.

- 12. Avoid circularity. Be sure that no step in your proof makes use of the conclusion!
- 13. **Don't write the proof backwards.** Beginning students often attempt to write "proofs" like the following, which attempts to prove that $\tan^2(x) = \sec^2(x) 1$:

$$\tan^{2}(x) = \sec^{2}(x) - 1$$

$$\left(\frac{\sin(x)}{\cos(x)}\right)^{2} = \frac{1}{\cos^{2}(x)} - 1$$

$$\frac{\sin^{2}(x)}{\cos^{2}(x)} = \frac{1 - \cos^{2}(x)}{\cos^{2}(x)}$$

$$\sin^{2}(x) = 1 - \cos^{2}(x)$$

$$\sin^{2}(x) + \cos^{2}(x) = 1$$

$$1 = 1$$

Notice what has happened here: the student *started* with the conclusion, and deduced the true statement "1 = 1." In other words, he/she has proved "If $\tan^2(x) = \sec^2(x) - 1$, then 1 = 1," which is true but highly uninteresting.

Now this isn't a bad way of *finding* a proof. Working backwards from your goal often is a good strategy *on your scratch paper*, but when it's time to *write* your proof, you have to start with the hypotheses and work to the conclusion.

- 14. **Be concise.** Most students err by writing their proofs too short, so that the reader can't understand their logic. It is nevertheless quite possible to be too wordy, and if you find yourself writing a full-page essay, it's probably because you don't really have a proof, but just an intuition. When you find a way to turn that intuition into a formal proof, it will be much shorter.
- 15. **Introduce every symbol you use.** If you use the letter "k," the reader should know exactly what k is. Good phrases for introducing symbols include "Let $n \in \mathbb{N}$," "Let k be the least integer such that...," "For every real number a...," and "Suppose that X is a counterexample."

16. Use appropriate quantifiers (once). When you introduce a variable $x \in S$, it must be clear to your reader whether you mean "for all $x \in S$ " or just "for some $x \in S$." If you just say something like " $y = x^2$ where $x \in S$," the word "where" doesn't indicate whether you mean "for all" or "some".

Phrases indicating the quantifier "for all" include "Let $x \in S$ "; "for all $x \in S$ "; "for every $x \in S$ "; "for each $x \in S$ "; etc. Phrases indicating the quantifier "some" (or "there exists") include "for some $x \in S$ "; "there exists an $x \in S$ "; "for a suitable choice of $x \in S$ "; etc.

On the other hand, don't introduce a variable more than once! Once you have said "Let $x \in S$," the letter x has its meaning defined. You don't *need* to say "for all $x \in S$ " again, and you definitely should *not* say "let $x \in S$ " again.

- 17. **Use a symbol to mean only one thing.** Once you use the letter *x* once, its meaning is fixed for the duration of your proof. You cannot use *x* to mean anything else.
- 18. **Don't "prove by example."** Most problems ask you to prove that something is true "for all"—You *cannot* prove this by giving a single example, or even a hundred. Your answer will need to be a logical argument that holds for *every example there possibly could be*.
- 19. **Write "Let** x = ...," **not "Let** ... = x." When you have an existing expression, say a^2 , and you want to give it a new, simpler name like b, you should write "Let $b = a^2$," which means, "Let the new symbol b mean a^2 ." This convention makes it clear to the reader that b is the brand-new symbol and a^2 is the old expression he/she already understands.

If you were to write it backwards, saying "Let $a^2 = b$," then your startled reader would ask, "What if $a^2 \neq b$?"

- 20. **Make your counterexamples concrete and specific.** Proofs need to be entirely general, but counterexamples should be absolutely concrete. When you provide an example or counterexample, make it as specific as possible. For a set, for example, you must name its elements, and for a function you must give its rule. Do not say things like " θ could be one-to-one but not onto"; instead, provide an actual function θ that *is* one-to-one but not onto.
- 21. **Don't include examples in proofs.** Including an example very rarely adds anything to your proof. If your logic is sound, then it doesn't need an example to back it up. If your logic is bad, a dozen examples won't help it (see rule 18). There are only two valid reasons to include an example in a proof: if it is a *counterexample* disproving something, or if you are performing complicated manipulations in a general setting and the example is just to help the reader understand what you are saying.
- 22. **Use scratch paper.** Finding your proof will be a long, potentially messy process, full of false starts and dead ends. Do all that on scratch paper until you find a real proof, and only then break out your clean paper to write your final proof carefully. *Do not hand in your scratch work!*

Only sentences that actually contribute to your proof should be part of the proof. Do not just perform a "brain dump," throwing everything you know onto the paper before showing the logical steps that prove the conclusion. *That is what scratch paper is for.*

Appendix B

Fancy Mathematical Terms

Here are some important mathematical terms that you will encounter in this course and throughout your mathematical career.

- 1. **Definition**—a precise and unambiguous description of the meaning of a mathematical term. It characterizes the meaning of a word by giving all the properties and only those properties that must be true.
- 2. **Theorem**—a mathematical statement that is proved using rigorous mathematical reasoning. In a mathematical paper, the term theorem is often reserved for the most important results.
- 3. **Lemma**—a minor result whose sole purpose is to help in proving a theorem. It is a stepping stone on the path to proving a theorem. Very occasionally lemmas can take on a life of their own (Zorn's lemma, Urysohn's lemma, Burnside's lemma, Sperner's lemma).
- 4. **Corollary**—a result in which the (usually short) proof relies heavily on a given theorem (we often say that "this is a corollary of Theorem A").
- 5. **Proposition**—a proved and often interesting result, but generally less important than a theorem.
- 6. **Conjecture**—a statement that is unproved, but is believed to be true (Collatz conjecture, Goldbach conjecture, twin prime conjecture).
- 7. **Claim**—an assertion that is then proved. It is often used like an informal lemma.
- 8. **Axiom/Postulate**—a statement that is assumed to be true without proof. These are the basic building blocks from which all theorems are proved (Euclid's five postulates, Zermelo-Frankel axioms, Peano axioms).
- 9. **Identity**—a mathematical expression giving the equality of two (often variable) quantities (trigonometric identities, Euler's identity).

10. **Paradox**—a statement that can be shown, using a given set of axioms and definitions, to be both true and false. Paradoxes are often used to show the inconsistencies in a flawed theory (Russell's paradox). The term paradox is often used informally to describe a surprising or counterintuitive result that follows from a given set of rules (Banach-Tarski paradox, Alabama paradox, Gabriel's horn).

Appendix C

Definitions in Mathematics

It is difficult to overstate the importance of definitions in mathematics. Definitions play a different role in mathematics than they do in everyday life.

Suppose you give your friend a piece of paper containing the definition of the rarely-used word **rodomontade**. According to the Oxford English Dictionary¹ (OED) it is:

A vainglorious brag or boast; an extravagantly boastful, arrogant, or bombastic speech or piece of writing; an arrogant act.

Give your friend some time to study the definition. Then take away the paper. Ten minutes later ask her to define rodomontade. Most likely she will be able to give a reasonably accurate definition. Maybe she'd say something like, "It is a speech or act or piece of writing created by a pompous or egotistical person who wants to show off how great they are." It is unlikely that she will have quoted the OED word-for-word. In everyday English that is fine—you would probably agree that your friend knows the meaning of the rodomontade. This is because most definitions are *descriptive*. They describe the common usage of a word.

Let us take a mathematical example. The OED² gives this definition of *continuous*.

Characterized by continuity; extending in space without interruption of substance; having no interstices or breaks; having its parts in immediate connection; connected, unbroken.

Likewise, we often hear calculus students speak of a continuous function as one whose graph can be drawn "without picking up the pencil." This definition is descriptive. (As we learned in calculus the picking-up-the-pencil description is not a perfect description of continuous functions.) This is not a mathematical definition.

Mathematical definitions are *prescriptive*. The definition must prescribe the exact and correct meaning of a word. Contrast the OED's descriptive definition of continuous with the definition of continuous found in a real analysis textbook.

A function $f: A \to \mathbb{R}$ is **continuous at a point** $c \in A$ if, for all $\varepsilon > 0$, there exists $\delta > 0$ such that whenever $|x-c| < \delta$ (and $x \in A$) it follows that $|f(x)-f(c)| < \varepsilon$. If f

¹http://www.oed.com/view/Entry/166837

²http://www.oed.com/view/Entry/40280

is continuous at every point in the domain A, then we say that f is **continuous** on A.

In mathematics there is very little freedom in definitions. Mathematics is a deductive theory; it is impossible to state and prove theorems without clear definitions of the mathematical terms. The definition of a term must completely, accurately, and unambiguously describe the term. Each word is chosen very carefully and the order of the words is critical. In the definition of continuity changing "there exists" to "for all," changing the orders of quantifiers, changing < to \le or >, or changing $\mathbb R$ to $\mathbb Z$ would completely change the meaning of the definition.

What does this mean for you, the student? Our recommendation is that at this stage you memorize the definitions word-for-word. It is the safest way to guarantee that you have it correct. As you gain confidence and familiarity with the subject you may be ready to modify the wording. You may want to change "for all" to "given any" or you may want to change $|x-c| < \delta$ to $-\delta < x-c < \delta$ or to "the distance between x and c is less than δ ."

Of course, memorization is not enough; you must have a conceptual understanding of the term, you must see how the formal definition matches up with your conceptual understanding, and you must know how to work with the definition. It is perhaps with the first of these that descriptive definitions are useful. They are useful for building intuition and for painting the "big picture." Only after days (weeks, months, years?) of experience does one get an intuitive feel for the ε , δ -definition of continuity; most mathematicians have the "picking-up-the-pencil" definitions in their head. This is fine as long as we know that it is imperfect, and that when we prove theorems about continuous functions in mathematics we use the mathematical definition.

We end this discussion with an amusing real-life example in which a descriptive definition was not sufficient. In 2003 the German version of the game show *Who wants to be a millionaire?* contained the following question: "Every rectangle is: (a) a rhombus, (b) a trapezoid, (c) a square, (d) a parallelogram."

The confused contestant decided to skip the question and left with \leq 4000. Afterward the show received letters from irate viewers. Why were the contestant and the viewers upset with this problem? Clearly a rectangle is a parallelogram, so (d) is the answer. But what about (b)? Is a rectangle a trapezoid? We would describe a trapezoid as a quadrilateral with a pair of parallel sides. But this leaves open the question: can a trapezoid have *two* pairs of parallel sides or must there only be *one* pair? The viewers said two pairs is allowed, the producers of the television show said it is not. This is a case in which a clear, precise, mathematical definition is required.

³This definition is taken from page 109 of Stephen Abbott's *Understanding Analysis*, but the definition would be essentially the same in any modern real analysis textbook.