### Illiquidity and Overindebtedness

Optimal Capital Structure under Realistic Default Triggers in a Double Barrier Option Framework

Tim Kutzker & Maximilian Schreiter

Institute of econometrics and statistics

March 03, 2017



### **Table of Contents**

- 1 The General Mathematical Double Barrier Model
- 2 The Capital Structure Model reflecting Illiquidity and Overindebtedness (IO-Model)
- 3 Analysis of the Optimal Capital Structure in the IO-Model Empirical Findings
- 4 Conclusion

# Brownian Motion (BM) determines the nature of uncertainty

There is a filtered probability space  $(\Omega, \mathcal{F}, \mathbb{P}, (\mathcal{F}_t)_{t\geq 0})$ . We denote the available information at time t with  $t \in [0, \infty)$  by the filtration  $\mathcal{F}_t \subset \mathcal{F}_s$  with  $0 \leq t < s$  where  $\mathcal{F}_t$  describes the augmented  $\sigma$ -algebra generated by the Brownian Motion  $W_t$ ,  $t \geq 0$ .

#### Stochastic process

We consider a stochastic process  $(R_t)_{t\in[0,\infty)}$ , e.g. a revenue process characterized by the following stochastic differential equation (SDE)

$$dR_t = \mu R_t dt + \sigma R_t dW_t \tag{1}$$

where  $\mu \in \mathbb{R}$  is the (constant) growth rate,  $\sigma \in \mathbb{R}_0^+$  is the corresponding (constant) volatility. The initial value  $R_0$  needs to be positive, i.e.  $R_0 \in \mathbb{R}^+$ .

### The access to our general barrier model is intuitive

Figure: Introduction to the General Model



This figure depicts a stochastic process that starts in the liquidity state (LS). The process runs into illiquidity state (IS) at the moment  $\theta_{u_0}$  when the lower-upper barrier  $B_u$  is hit. Continuing in IS, the process reenters LS in  $\theta^{U_0}$  by hitting the upper-upper boundary  $B^U$ . In  $\theta_{u_1}$  the process touches the lower-upper boundary  $B_u$  again and falls back into IS. Finally, the process is killed in  $\theta_l$ , i.e. the process runs into bankruptcy state (BS) and hits thus the lower barrier  $B_l$ .

### The hitting times are formally known as stopping times

#### Definition (1 - Hitting Times)

Given three boundary constraints  $B_l$ ,  $B_u$ ,  $B^U$  with  $B_l \le B_u < B^U$ , the corresponding **hitting** times are defined as follows for  $i \in \mathbb{N}_0$ :

$$\begin{split} \theta_{l} &:= \inf\{t \geq 0 \,|\, R_{t} = B_{l}\} \\ \theta_{u_{0}} &:= \inf\{t \geq 0 \,|\, R_{t} = B_{u}\} \\ \theta^{U_{0}} &:= \inf\{t \geq \theta_{u_{0}} \,|\, R_{t} = B^{U} \,\wedge\, R_{s} > B_{l} \text{ for all } s \in [\theta_{u_{0}}, t]\} \\ \theta_{u_{1}} &:= \inf\{t \geq \theta^{U_{0}} \,|\, R_{t} = B_{u} \,\wedge\, R_{s} > B_{l} \text{ for all } s \in [\theta^{U_{0}}, t]\} \\ & \dots \\ \theta_{u_{i}} &:= \inf\{t \geq \theta^{U_{i-1}} \,|\, R_{t} = B_{u} \,\wedge\, R_{s} > B_{l} \text{ for all } s \in [\theta^{U_{i-1}}, t]\} \\ \theta^{U_{i}} &:= \inf\{t \geq \theta_{u_{i}} \,|\, R_{t} = B^{U} \,\wedge\, R_{s} > B_{l} \text{ for all } s \in [\theta_{u_{i}}, t]\}. \end{split}$$

## For all states of the model we can derive hitting times and state prices

Figure: State Prices  $p_0$ ,  $p_1$ ,  $p_2$ , and  $p_3$  in the General Model



### The formal definition of the state prices is now possible

#### Definition (2 - **State Prices** $p_0, ..., p_3$ )

 $p_0$  is the price of a knock out barrier option that pays 1 \$ in  $\theta_{u_0}$  starting in t=0 (with the corresponding ordinate value  $R_0$ ) when the stochastic process  $(R_t)_{t\in[0,\infty)}$  hits the lower-upper barrier  $B_u$ , i.e.  $p_0$  represents the discounted probability of hitting  $B_u$  in  $\theta_{u_0}$ .

Analogously,  $p_1$  is the price of 1 \$ in  $\theta^{U_i}$  starting in  $\theta_{u_i}$  for all  $i \in \mathbb{N}_0$  (with the corresponding ordinate value  $B_u$ ) when the stochastic process  $(R_t)_{t \in [0,\infty)}$  hits the upper-upper barrier  $B^U$  without hitting the lower barrier  $B_i$ .

 $p_2$  is the price of 1 \$ in  $\theta_l$  starting in  $\theta_{u_l}$  for all  $i \in \mathbb{N}_0$  (with the corresponding ordinate value  $B_u$ ) when the stochastic process  $(R_t)_{t \in [0,\infty)}$  hits the lower barrier  $B_l$  without hitting the upper-upper barrier  $B^U$ .

Finally,  $p_3$  is the price of a knock out barrier option that pays 1 \$ in  $\theta_{u_{i+1}}$  starting in  $\theta^{U_i}$  for all  $i \in \mathbb{N}_0$  (with the corresponding ordinate value  $B^U$ ) when the stochastic process  $(R_t)_{t \in [0,\infty)}$  hits the lower-upper barrier  $B_u$ .

## The model allows for payoffs in any state or at any hitting time

Figure: General Payoff Structure of a Stochastic Process



The figure depicts a general payoff structure that can be generated in a double barrier framework with liquidity state (LS), illiquidity state (IS) and bankruptcy state (BS). If the underlying process is in LS the payoff equals  $A_1$ . In case of IS the generated payoff is  $A_2$ . Hitting the lower boundary  $B_1$  the payoff accords with  $A_3$ . The same holds for the lower-upper barrier  $B_u$  and the payoff  $A_4$  and the upper-upper barrier  $B^U$  with the payoff  $A_5$ , respectively.

# Next we derive the expected values of the payoffs we introduced, and we start with $A_1$

$$\begin{split} \mathbb{E}[A_1] &= A_1[(1-\rho_0) + \\ & \rho_0 p_1 (1-p_3) + \\ & \rho_0 p_1 p_3 p_1 (1-p_3) + \\ & \dots] \\ &= A_1[(1-\rho_0) + \rho_0 p_1 (1-p_3) \sum_{i=0}^{\infty} \rho_1^i \rho_3^i] \\ &= A_1[(1-\rho_0) + \frac{\rho_0 p_1 (1-p_3)}{1-p_1 p_3}] \\ &= pr_{A_1}^0 A_1, \end{split}$$

- , value until the first liquidity crisis  $\theta_{u_0}$
- , value after leaving first IS  $\theta^{U_0}$  and until  $\theta_{u_1}$
- , value after  $\theta^{U_1}$  and until  $\theta_{u_2}$

where  $pr_{A_1}^0:=(1-p_0)+\frac{p_0p_1(1-p_3)}{1-p_3p_1}$  denotes the state price of the payoff  $A_1$  starting in t=0.

### **Table of Contents**

- 1 The General Mathematical Double Barrier Model
- 2 The Capital Structure Model reflecting Illiquidity and Overindebtedness (IO-Model)
- 3 Analysis of the Optimal Capital Structure in the IO-Model Empirical Findings
- 4 Conclusion

# Our IO-model starts from the revenue process as we expect better empirical evidence

• We consider in an arbitrage-free market a firm whose instantaneous revenues  $(R_t)_{t \in [0,\infty)}$  follow a gBm under the risk-neutral probability measure  $\mathbb{Q}$ :

$$dR_t = \mu R_t dt + \sigma R_t dW_t^{\mathbb{Q}}, \tag{2}$$

where  $\mu$  is the revenue's growth rate,  $\sigma$  is the corresponding volatility,  $W_t$  is a standard Bm under  $\mathbb{Q}$ , and the initial value of revenue is  $R_0 > 0$ 

 Firm faces variable costs captured by a deterministic ratio of revenues γ and deterministic fixed costs F independent of revenues, thus:

$$EBIT_t := R_t(1 - \gamma) - F \quad \forall t \in [0, \infty). \tag{3}$$

• Constant risk free rate is captured by r and the corporate tax rate  $\tau$  is assumed to be flat (no personal taxes considered so far)

## Our main technical contribution: Combining illiquidity and overindebtedness

#### Assumption (3)

The revenue process  $(R_t)_{t \in [0,\infty)}$  starts in liquidity state (LS) at  $R_0$  s.t.  $R_0 > B_u$ . When  $R_t$  hits  $B_u$  for some  $t \in [0,\infty)$  the firm switches into illiquidity state (IS), and  $R_s$  continues facing the two boundaries  $B^U$  and  $B_l$  for some t < s. The firm reenters LS iff  $R_s$  hits  $B^U$  before it hits  $B_l$  for t < s. The number of switching events between LS and IS is not restricted. Given the firm stays in IS, the bankruptcy state BS is triggered iff  $R_s$  hits  $B_l$  before it hits  $B^U$  for t < s. The firm runs into bankruptcy iff  $R_s = B_l$  for t < s and the stochastic process stops.

#### Lemma (4)

The firm will enter illiquidity state (IS) if EBIT(1 –  $\tau$ )  $\leq \delta C$ , which corresponds to  $R_t \leq B_u$  where  $B_u = (\delta C + F(1 - \tau)) / ((1 - \gamma)(1 - \tau))$ .

### Default expenses occur once the IS is reached

#### Assumption (5)

When the firm enters IS, certain default expenses occur, e.g. due to customers that stop buying the firms' products, which we assume to be a proportion  $\epsilon$  of  $\mathbb{E}[V_{\theta_{u_i}}|\mathcal{F}_{\theta_{u_i}}]$ . Moreover, as long as the firm remains in IS ( $B_i < R_t < B^U$  with  $t \ge \theta_{u_i}$ ) the debtholders demand penalty interest payments  $C_{il}$  with  $C_{il} > C$ . Consequently,  $B_u < B^U$ . If the firm reenters LS, the penalty interest payments will stop and the regular coupon payment C will be enforced.

#### Lemma (6)

The firm will reenter liquidity state LS if EBIT(1 –  $\tau$ ) =  $\delta C_{il}$  with  $t \ge \theta_{u_i}$ , which corresponds to  $R_t = B^U$  where  $B^U = (\delta C_{il} + F(1 - \tau)) / ((1 - \gamma)(1 - \tau))$  with  $t \ge \theta_{u_i}$ .

#### Lemma (7)

The firm will file for bankruptcy if  $\mathbb{E}[V_t] = V_B$  with  $t \ge \theta_{u_i}$ , which corresponds to  $R_t = B_l$  where  $B_l = \left(\left(V_B + \frac{F(1-\tau)}{r}\right)(r-\mu)\right)/\left((1-\gamma)(1-\tau)\right)$  with  $t \ge \theta_{u_i}$ .

# The single-barrier state prices in the IO-model are straightforward

- Recap: p<sub>0</sub> and p<sub>3</sub> can be seen as assets, or more specifically as perpetual, down-and-in, cash-at-hit-or-nothing, single-barrier options which pay \$1 when the stochastic process R<sub>t</sub> hits the barrier B<sub>u</sub> which is below the initial value of the stochastic process
- Both options only differ with respect to its initial values which are  $R_0$  and  $R_{\theta^U} = B^U$ , respectively
- Pricing formulae for such options is well known (Rubinstein and Reiner, 1991):

$$p_0 = \left(\frac{B_u}{R_0}\right)^y \tag{4}$$

and analogously to

$$p_3 = \left(\frac{B_u}{B^U}\right)^y,\tag{5}$$

where

$$a := \mu - \frac{1}{2}\sigma^2,$$
  $b := \sqrt{a^2 + 2\sigma^2 \cdot r},$   $y := \frac{a+b}{\sigma^2}.$  (6)

### The double-barrier state prices are less trivial

 Pelsser (2000) provides a pricing formula for both structures in finite time which can be easily extended to a perpetual setting and applied to our specific problem:

$$p_1 = \exp\left\{\frac{a(l-x)}{\sigma^2}\right\} \frac{\sinh(\frac{b}{\sigma^2}x)}{\sinh(\frac{b}{\sigma^2}l)}$$
(7)

and analogously

$$p_2 = \exp\left\{\frac{-ax}{\sigma^2}\right\} \frac{\sinh(\frac{b}{\sigma^2}(l-x))}{\sinh(\frac{b}{\sigma^2}l)},\tag{8}$$

where

$$x := \log\left(\frac{B_U}{B_I}\right) := \log\left(\frac{\delta C + F(1-\tau)}{V_B + \frac{F(1-\tau)}{r}(r-\mu)}\right),\tag{9}$$

$$I := \log\left(\frac{B^U}{B_I}\right) := \log\left(\frac{\delta C_{il} + F(1-\tau)}{V_B + \frac{F(1-\tau)}{r}(r-\mu)}\right),\tag{10}$$

and a as well as b are as defined in (6). Please note that x and I are functions of  $V_B$ .

# Now we have all prerequisites to derive the firm's contingent claims (1/3)

### **1. Debt Value** $D(V, C, C_{ii}) = D(V)$

- In our setting: Debt promises a perpetual coupon payment C whose level remains constant unless the firm enters IS
- In LS: Debt value equals  $\frac{C}{r}$  (c.f.  $A_1$ ) as long as  $B_u$  is not hit
- In IS: Debt value equals  $\frac{C_{ij}}{r}$  (c.f.  $A_2$ ) as long as neither  $B^U$  nor  $B_i$  is hit
- If bankruptcy occurs (B<sub>i</sub> is hit), a fraction 0 ≤ α ≤ 1 of value will be lost to bankruptcy costs, thus, debt value equals (1 − α)V<sub>B</sub> (c.f. A<sub>3</sub>)

$$\vec{D}^{\mathsf{T}} = \left(\frac{C}{r} - \frac{C_{ll}}{r} (1 - \alpha)V_B \quad 0 \quad 0\right). \tag{11}$$

• To obtain the expected debt value  $\mathbb{E}[DV(V)]$  we need to multiply the payoff vector  $\vec{D}$  with the state price vector  $\vec{pr}_0$ :

$$D(V) := \mathbb{E}[DV(V)] = \vec{D}^{\mathsf{T}} \vec{pr_0}. \tag{12}$$

# Now we have all prerequisites to derive the firm's contingent claims (2/3)

#### **2. Tax Benefits** TB(V)

$$\vec{TB}^{\mathsf{T}} = \begin{pmatrix} \frac{\tau C}{r} & \frac{\tau C_{il}}{r} & 0 & 0 & 0 \end{pmatrix}. \tag{13}$$

Thus, we have:

$$TB(V) = \overrightarrow{TB}^{\mathsf{T}} \overrightarrow{pr_0}. \tag{14}$$

#### 3. Bankruptcy Costs BC(V)

- Unlevered firm value at  $\theta_l$  is represented by  $V_B = \frac{B_l(1-\gamma)(1-\tau)}{r-\mu} \frac{F(1-\tau)}{r}$  and  $\alpha V_B$  reflects the bankruptcy costs if bankruptcy is triggered ( $A_3$ )
- . In no other states bankruptcy costs occur leaving us with

$$\vec{BC}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & \alpha V_{\mathsf{B}} & 0 & 0 \end{pmatrix}. \tag{15}$$

In vectorial writing

$$BC(V) = \vec{BC}^{\mathsf{T}} \vec{pr_0} \tag{16}$$

# Now we have all prerequisites to derive the firm's contingent claims (3/3)

#### 4. Illiquidity Expenses IE(V)

- Illiquidity expenses IE may occur whenever the firm enters IS (A<sub>4</sub>)
- Two key reasons: Direct costs of lawyers, banking fees and so on and on the other hand indirect costs, such as loss of investors' or customers' confidence
- This will be priced with a fee in portion  $\epsilon$  to the then prevailing unlevered firm value  $\mathbb{E}[V_{\theta_{u_i}}]$
- Thus, we have the following payoff structure for *IE*:

$$\vec{\mathsf{IE}}^{\mathsf{T}} = \begin{pmatrix} 0 & 0 & 0 & \varepsilon \cdot \mathbb{E}[V_{\theta_{u_i}}] & 0 \end{pmatrix}.$$
 (17)

 Again, multiplication with the state price vector yields the value of the illiquidity expenses IE(V)

$$IE(V) = I\vec{E}^{\mathsf{T}} p \vec{r}_0. \tag{18}$$

# The net benefit NB(V) and the levered firm value $V^L(V)$ are a direct result of the previous components

• Total firm value  $V^{L}(V)$  is the sum of the previous terms: the firms' asset value (V), less the bankruptcy costs (BC(V)) and illiquidity expenses (IE(V)), plus value of tax benefits (TB(V))

$$\vec{NB} := \vec{TB} - \vec{IE} - \vec{BC} = \begin{pmatrix} \frac{\tau C}{\tau \dot{E}_{il}} \\ 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ \varepsilon \cdot \mathbb{E}[V_{\theta_{U_i}}] \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ \alpha V_B \\ 0 \\ 0 \end{pmatrix}$$
(19)

$$= \left(\frac{\tau C}{r} \quad \frac{\tau C_{il}}{r} \quad -\alpha V_B \quad -\varepsilon \mathbb{E}[V_{\theta_{u_i}}] \quad 0\right)^{\mathsf{T}}. \tag{20}$$

 Taking the conditional expected value V into consideration we have the following total firm value:

$$V^{L}(V) = V + N\vec{B}^{\mathsf{T}} \vec{\mathsf{pr_0}}. \tag{21}$$

For the value of equity we have

$$EV(V) = V + N\vec{B}^{\mathsf{T}} \rho \vec{r}_0 - \vec{D}^{\mathsf{T}} \rho \vec{r}_0. \tag{22}$$

### **Table of Contents**

- 1 The General Mathematical Double Barrier Model
- 2 The Capital Structure Model reflecting Illiquidity and Overindebtedness (IO-Model)
- 3 Analysis of the Optimal Capital Structure in the IO-Model Empirical Findings
- 4 Conclusion

# The optimal capital structure depends on the endogenous coupon payments C and the optimal bankruptcy level $V_B$

- In general, we are concerned with maximizing the levered firm value with respect to C subject to certain constraints
- The classic constraint introduced by Leland (1994) is that equityholders choose V<sub>B</sub>, the asset value where the firm files for bankruptcy, in order to maximize the equity value
- We denote this optimal level of bankruptcy asset value with  $V_{R}^{*}$
- An additional constraint in our setting is that  $C_{ii}$  needs to reflect a certain risk spread  $\varphi \ge r$ . Thus, our optimization problem can be formally stated as follows:

$$V^{L}(V,C,C_{il})
ightarrow \max$$
 s.t.  $\dfrac{\partial EV(V,C,C_{il})}{\partial V_{B}}=0$   $C_{il}-arphi DV(V,C,C_{il})=0.$ 

(23)

## We compare our model to the classic Leland and Couch model

Figure: Optimal Capital Structure under the IO-Model, pure Illiquidity Model and pure Overindebtedness Model



This figure analyzes the firm value ( $V^L(V)$ )-maximizing choice of coupon payments C for the IO-model in comparison to the classic models of illiquidity and overindebtedness. The blue, dashed line represents  $V^L(V)$  for different C with overindebtedness as a bankruptcy trigger. The violet, solid line represents the IO-model and the black, dashed-dotted line depicts the case of illiquidity. The chosen model parameters are as follows: r=0.05,  $\tau=0.35$ ,  $R_0=25$ , u=0.02,  $\tau=0.20$ , v=0.70, r=0.80, r

# The IO-model outperforms the other two models significantly

Table: Optimal Capital Structure Estimates versus Observed Leverage for NAICS Sectors

|                                                  | Observed |             | Illiquidity |           | 10-1      | Model     | Overindebtedness |           |
|--------------------------------------------------|----------|-------------|-------------|-----------|-----------|-----------|------------------|-----------|
| NAICS Sector                                     | L        | 1 Std. Err. | L*          | Abs. Dev. | L*        | Abs. Dev. | \\L.             | Abs. Dev. |
| Accommodation and Food Services                  | 0.4594   | 0.0752      | 0.1861      | 0.2734    | 0.3096**  | 0.1498    | 0.7942           | 0.3348    |
| Administrative, Support, Waste, Remediation      | 0.1994   | 0.0380      | 0.1599      | 0.0394    | 0.2985*   | 0.0991    | 0.8064           | 0.6071    |
| Construction                                     | 0.4405   | 0.0376      | 0.1442      | 0.2962    | 0.3658**  | 0.0747    | 0.6620           | 0.2215    |
| Health Care and Social Assistance                | 0.5497   | 0.0440      | 0.0662      | 0.4835    | 0.4627**  | 0.0871    | 0.6554           | 0.1057    |
| Information                                      | 0.2927   | 0.0160      | 0.0316      | 0.2611    | 0.2236    | 0.0691    | 0.8629           | 0.5703    |
| Manufacturing                                    | 0.3071   | 0.0096      | 0.0472      | 0.2599    | 0.3252**  | 0.0181    | 0.6746           | 0.3675    |
| Mining, Quarrying, and Oil and Gas Extraction    | 0.2535   | 0.0142      | 0.0125      | 0.2410    | 0.2450*** | 0.0085    | 0.6359           | 0.3824    |
| Professional, Scientific, and Technical Services | 0.2225   | 0.0127      | 0.0974      | 0.1251    | 0.2227*** | 0.0003    | 0.6897           | 0.4672    |
| Real Estate and Rental and Leasing               | 0.5412   | 0.0268      | 0.0149      | 0.5263    | 0.1584    | 0.3828    | 0.7198           | 0.1786    |
| Retail Trade                                     | 0.2714   | 0.0170      | 0.0412      | 0.2302    | 0.3017**  | 0.0303    | 0.6859           | 0.4145    |
| Transportation and Warehousing                   | 0.4286   | 0.0252      | 0.0452      | 0.3834    | 0.2446    | 0.1840    | 0.7138           | 0.2852    |
| Utilities                                        | 0.4531   | 0.0259      | 0.0104      | 0.4427    | 0.4583*** | 0.0051    | 0.6323           | 0.1791    |
| Wholesale Trade                                  | 0.2923   | 0.0337      | 0.0459      | 0.2464    | 0.1329    | 0.1594    | 0.6626           | 0.3703    |
| Others                                           | 0.2683   | 0.0242      | 0.0936      | 0.1747    | 0.1689    | 0.0994    | 0.6880           | 0.4197    |

This table summarizes the optimal leverage ratios  $L^* = D(V)/V^{L,*}(V)$  generated by the IO-model, and for a pure illiquidity or overindebtedness trigger. The results are compared to the observed average leverage L for all NAICS sectors. The absolute deviation towards the observed leverage is depicted for each of the three models (Abs. Dev.). \*\*\* = Within 1 standard error; \*\* = Within 2 standard errors; \* = Within 3 standard errors

### **Table of Contents**

- 1 The General Mathematical Double Barrier Model
- 2 The Capital Structure Model reflecting Illiquidity and Overindebtedness (IO-Model)
- 3 Analysis of the Optimal Capital Structure in the IO-Model Empirical Findings
- 4 Conclusion

### To sum up the presented paper...

- First dynamic corporate valuation model incorporating an illiquidity and a bankruptcy trigger in a double barrier framework
- The introduction of the general model is carefully developed towards definitions of state prices and payoff structures
- Application of the general model to corporate valuation and the problem of optimal capital structure
- Comparison of our solution to the two classic cases of only considering one of the two boundaries
- Our results lie in-between and explain observed capital structure choices much better than the existing models as we demonstrate by an empirical study of the US market
- General model applicable in other research areas (e.g. macroeconomics, biology)
  - Thank you very much for your attention! If you have feedback or further questions, please let us know.

### References I

- Couch, R., Dothan, M., Wu, W., 2012. Interest tax shields: A barrier options approach. Review of Quantitative Finance and Accounting 39, 123–146.
- Danis, A., Rettl, D. A., Whited, T. M., 2014. Refinancing, profitability, and capital structure. Journal of Financial Economics 114, 424–443.
- Ertan, A., Karolyi, S. A., June 2016. Debt covenants and the expected cost of technical default, available at SSRN: http://ssrn.com/abstract=2795226.
- Glover, B., 2016. The expected cost of default. Journal of Financial Economics 119 (2), 284-299.
- Goldstein, R., Ju, N., Leland, H. E., 2001. An EBIT-based model of dynamic capital structure. Journal of Business 74 (4), 483–512.
- Hennessy, C. A., Whited, T. M., 2005. Debt dynamics. The Journal of Finance 60 (3), 1129–1165. URL http://dx.doi.org/10.1111/j.1540-6261.2005.00758.x
- Huang, J.-Z., Huang, M., 2012. How much of the corporate-treasury yield spread is due to credit risk? The Review of Asset Pricing Studies 2 (2), 153–202.
- Kim, J., Ramaswamy, K., Sundaresan, S., 1993. Does default risk in coupons affect the valuation of corporate bonds?: A contingent claims model. Financial Management, 117–131.
- Leland, H. E., 1994. Corporate debt value, bond covenants, and optimal capital structure. Journal of Finance 49 (4), 1213–1252.
- Leland, H. E., 2004. Predictions of default probabilities in structural models of debt. Journal of Investment Management 2 (2).

### References II

- Leland, H. E., Toft, K. B., July 1996. Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads. Journal of Finance 51 (3), 987–1019.
- Pelsser, A., 2000. Pricing double barrier options using laplace transforms. Finance and Stochastics 4, 95–104.
- Rubinstein, M., Reiner, E., 1991. Unscrambling the binary code. Risk Magazine 4 (9), 75-83.
- Rubinstein, M., Reiner, E., 1992. Exotic options (research program in finance working paper series).
- Strebulaev, I. A., aug 2007. Do tests of capital structure theory mean what they say? Journal of Finance 62 (4), 1747–1787.
- Titman, S., Tsyplakov, S., 2007. A dynamic model of optimal capital structure. Review of Finance 11 (3), 401–451.

### DISCUSSION

# Research in dynamic corporate finance attempts to explain the optimal choice of leverage

#### The choice of capital structure is an important driver of firm values

- Starting with Brennan and Schwartz (1984) and brought to wider attention by Leland (1994) a whole strand of literature emerged dealing with optimal capital structure models in a stochastic framework
- Before Leland (1994): Exogenous default trigger and static debt
- Leland (1994) and thereafter: Endogenous default trigger and static debt
- Goldstein, Ju, and Leland (2001): Endogenous default trigger and dynamic adjustments of debt (but for the special case of constant leverage)
- Many strong contributions followed adding to capital structure theory, e.g.: Hennessy and Whited (2005) (Debt dynamics); Strebulaev (2007) (Tests of capital structure models); Titman and Tsyplakov (2007) (Optimal capital structure with dynamic debt and investment choices); Danis, Rettl, and Whited (2014) (Refinancing and capital structure)
- However, empirical evidence with respect to explaining observed capital structures remained weak<sup>2</sup>

### DISCUSSION

### Some open issues are already known to us

#### Open issues to be addressed:

- Validate basic setup of process, debt policy, barriers and payoffs in the IO-model:
  - Stochastic/deterministic jump at illiquidity?
  - Incorporation of dynamic debt policies?
  - Is there real evidence for illiquidity expenses etc.?
- Extend empirical analysis:
  - Switch to SIC codes
  - Understand and implement refinancing logic
  - Compare results also to Titman, Tsyplakov (2007) and Strebulaev (2007)
- Rework paper, build appendices/proofs

# *H*<sub>0</sub>: Including both default constraints explains observed capital structures significantly better

#### **Trigger discussion**

- Trigger 1 Indebtedness:
  - Certain market value of assets where equityholders choose to file for bankruptcy
  - Barrier level is determined endogenously by maximizing equity value
  - Literature: Leland (1994), Goldstein et al. (2001)
  - Implicit assumptions: equityholders with "deep pockets"; no default mechanism for debtholders
- Trigger 2 Illiquidity/ breach of covenant:
  - Firm defaults if cash flow is not sufficient to cover cash obligation or to fulfil covenant
  - Barrier level is determined exogenously either by covenant or cash obligation
  - Literature: Kim et al. (1993), Couch et al. (2012)
  - Implicit assumptions: no "deep pockets"; no debt restructuring or covenant tolerance

## State prices $pr_{A_2}^0, ..., pr_{A_5}^0$

State price of the payoff  $A_2$  in t = 0:  $pr_{A_2}^0 := \frac{p_0(1-p_1-p_2)}{1-p_1p_3}$ 

State price of the payoff  $A_3$  in t=0:  $pr_{A_3}^0:=\frac{p_0p_2}{1-p_1p_3}$ 

State price of the payoff  $A_4$  in t=0:  $pr_{A_4}^0:=\frac{p_0}{1-p_1p_3}$ 

State price of the payoff  $A_5$  in t=0:  $pr^0_{A_5}:=rac{p_0p_1}{1-p_1p_3}$ 

### The vectorial calculus

Next to a better readability this brings the advantage that we can compress our notation to a minimum. Therefore, let  $\vec{PO}$  denote the general payoff structure and  $\vec{pr_0}$  the according state prices starting in t=0. The first row represents the payoff  $A_1$  and the state price  $pr_{A_1}^0$ , respectively. In conclusion, we have

$$\vec{PO} := \begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \\ A_5 \end{pmatrix} \qquad \vec{pr_0} := \begin{pmatrix} pr_{A_1}^0 \\ pr_{A_2}^0 \\ pr_{A_3}^0 \\ pr_{A_5}^0 \end{pmatrix} = \begin{pmatrix} (1 - p_0) + \frac{p_0 p_1 (1 - p_3)}{1 - p_1 p_3} \\ \frac{p_0 (1 - p_1 - p_2)}{1 - p_1 p_3} \\ \frac{p_0}{p_0} \\ \frac{p_0}{1 - p_1 p_3} \\ \frac{p_0}{p_0} \\ \frac{p_0}{1 - p_1 p_3} \end{pmatrix} . \tag{24}$$

## We base the covenant/illiquidity boundary on the interest coverage ratio

#### Lemma (1)

The firm will enter illiquidity state (IS) if EBIT(1 –  $\tau$ )  $\leq \delta C$ , which corresponds to  $R_t \leq B_u$  where  $B_u = (\delta C + F(1 - \tau)) / ((1 - \gamma)(1 - \tau))$ .

#### Proof.

We substitute Equation (3) into the covenant definition from above and rearrange for  $R_t$ :

$$EBIT(1- au) = \delta C \ (R_t(1-\gamma)-F)(1- au) = \delta C \ R_t = rac{\delta C + F(1- au)}{(1-\gamma)(1- au)}.$$

Since the covenant definition  $(1 - \tau)EBIT_t = \delta C$  corresponds to  $R_t = B_u$ , we have:

$$B_u := \frac{\delta C + F(1-\tau)}{(1-\gamma)(1-\tau)}$$

## Assumption 2.2 allows us to derive $B^U$ explicitly

#### Lemma (2)

The firm will reenter liquidity state LS if EBIT(1 –  $\tau$ ) =  $\delta C_{il}$  with  $t \ge \theta_{u_i}$ , which corresponds to  $R_t = B^U$  where  $B^U = (\delta C_{il} + F(1 - \tau)) / ((1 - \gamma)(1 - \tau))$  with  $t \ge \theta_{u_i}$ .

#### Proof.

We substitute Equation (3) into the adjusted covenant definition from above and rearrange for  $R_t$ :

$$EBIT(1- au) = \delta C_{il}$$
  $(R_t(1-\gamma)-F)(1- au) = \delta C_{il}$   $R_t = rac{\delta C_{il} + F(1- au)}{(1-\gamma)(1- au)}.$ 

Since the covenant definition EBIT(1 –  $\tau$ ) =  $\delta C_{ii}$  corresponds to  $R_t = B^U$ , we have:

$$B^U := rac{\delta C_{ii} + F(1- au)}{(1-\gamma)(1- au)}.$$

# The bankruptcy trigger of our model is standard but needs adjustment for the revenue process

#### Lemma (3)

The firm will file for bankruptcy if  $\mathbb{E}[V_t] = V_B$  with  $t \ge \theta_{u_i}$ , which corresponds to  $R_t = B_l$  where  $B_l = \left(\left(V_B + \frac{F(1-\tau)}{r}\right)(r-\mu)\right)/\left((1-\tau)(1-\tau)\right)$  with  $t \ge \theta_{u_i}$ .

#### Proof.

We substitute equation ( $\ref{eq:condition}$ ) into the bankruptcy trigger definition from above and rearrange for  $R_t$ :

$$\mathbb{E}[V_t | \mathcal{F}_t] = V_B$$

$$\frac{R_t(1-\gamma)(1-\tau)}{r-\mu} - \frac{F(1-\tau)}{r} = V_B.$$

Since the bankruptcy definition  $\mathbb{E}[V_t] = V_B$  corresponds to  $R_t = B_I$ , we have:

$$B_l := \frac{\left(V_B + \frac{F(1-\tau)}{r}\right)(r-\mu)}{(1-\gamma)(1-\tau)}$$

# All other parameters are exogenous and need to be estimated (1/2)

Table: Exogenous Parameters of the IO-Model

| Para-<br>meter | Description                                  | Rationale                                                                                                                                                                               | Exemplary reasonable values |
|----------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| r              | risk free rate                               | Average of 10-year Treasury rate (1/1989-7/2016)<br>Approach similar to Leland (2004), Huang and Huang (2012)                                                                           | 0.05                        |
| τ              | corporate tax rate                           | Federal corporate income tax rate in the US for bigger companies<br>Approach similar to similar to Leland and Toft (1996), Strebulaev (2007)                                            | 0.35                        |
| $R_0$          | initial value of the revenue process         | Firm individual observable parameter                                                                                                                                                    | \$25 bn                     |
| μ              | risk-neutral drift of<br>the revenue process | Firm individual empirical estimation of the real drift $\mu_P$ and risk-neutral adjustment by $\mu=\mu_P-(r_A-r)$<br>Adjustment similar to Goldstein et al. (2001), Couch et al. (2012) | 0.02                        |
| σ              | volatility of the revenue process            | Firm individual empirical estimation of the revenue's volatility                                                                                                                        | 0.25                        |
| γ              | variable cost ratio                          | Firm individual empirical estimation of the costs of goods sold ratio                                                                                                                   | 0.70                        |

This table contains all exogenously set parameters of the IO-model. It also provides suggestions how to observe or estimate the parameters and gives indications with respect to reasonable values.

# All other parameters are exogenous and need to be estimated (2/2)

Table: Exogenous Parameters of the IO-Model cont'd

| Para-<br>meter | Description                            | Rationale                                                                                                                                                                          | Exemplary reasonable values          |
|----------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| F              | fixed costs                            | Firm individual empirical estimation of selling, general and administrative expenses                                                                                               | 0.00                                 |
| δ              | interest coverage ratio                | Firm or debt tranche individual covenant defined in the debt contract. Natural lower boundary: 1 – $\tau$ as this reflects illiquidity.                                            | 1 – τ                                |
| φ              | spread factor for illiquid firms vs. r | Estimation based on average spread between the promised yield of Caa-rated firms (highly vulnerable to nonpayment) and the risk free rate with 10 years maturity (source: Moody's) | 2.50                                 |
| α              | bankruptcy cost ratio                  | Firm or industry-specific estimation based on empirical models<br>We use findings of Glover (2016)                                                                                 | e.g. 0.39 (Food)<br>0.49 (machinery) |
| ε              | illiquidity cost ratio                 | Firm or industry-specific estimation based on emprical models with respect to technical defaults We use findings of Ertan and Karolyi (2016)                                       | 0.04                                 |

This table contains all exogenously set parameters of the IO-model. It also provides suggestions how to observe or estimate the parameters and gives indications with respect to reasonable values.

# Finally, we apply our model to the US market sectors defined by NAICS - First step process testing

Table: Normal-Distribution Test of the log-changes of R<sub>t</sub>

|                                                  |                  |                 | Jarque-l        | Bera Test       |                 |         |        |  |  |  |
|--------------------------------------------------|------------------|-----------------|-----------------|-----------------|-----------------|---------|--------|--|--|--|
|                                                  |                  | N, Nori         | mDist.          | in %, NormDist. |                 | 0       |        |  |  |  |
| NAICS Sector                                     | No. Of Firms (N) | $\alpha = 0.05$ | $\alpha = 0.10$ | $\alpha = 0.05$ | $\alpha = 0.10$ | A p     | σ      |  |  |  |
| Accommodation and Food Services                  | 96               | 44              | 36              | 0.4583          | 0.3750          | 0.0264  | 0.1030 |  |  |  |
| Administrative, Support, Waste, Remediation      | 105              | 42              | 31              | 0.4000          | 0.2952          | 0.0253  | 0.2175 |  |  |  |
| Construction                                     | 77               | 33              | 29              | 0.4286          | 0.3766          | 0.0110  | 0.2190 |  |  |  |
| Health Care and Social Assistance                | 103              | 31              | 27              | 0.3010          | 0.2621          | 0.0074  | 0.1824 |  |  |  |
| Information                                      | 529              | 256             | 216             | 0.4839          | 0.4083          | 0.0199  | 0.1776 |  |  |  |
| Manufacturing                                    | 1988             | 948             | 785             | 0.4769          | 0.3949          | -0.0026 | 0.1526 |  |  |  |
| Mining, Quarrying, and Oil and Gas Extraction    | 264              | 157             | 126             | 0.5947          | 0.4773          | 0.0117  | 0.2622 |  |  |  |
| Professional, Scientific, and Technical Services | 408              | 221             | 181             | 0.5417          | 0.4436          | 0.0014  | 0.1454 |  |  |  |
| Real Estate and Rental and Leasing               | 204              | 77              | 66              | 0.3775          | 0.3235          | 0.0392  | 0.1912 |  |  |  |
| Retail Trade                                     | 242              | 122             | 107             | 0.5041          | 0.4421          | 0.0438  | 0.1270 |  |  |  |
| Transportation and Warehousing                   | 143              | 56              | 46              | 0.3916          | 0.3217          | 0.0188  | 0.1607 |  |  |  |
| Utilities                                        | 103              | 41              | 33              | 0.3981          | 0.3204          | -0.0054 | 0.1780 |  |  |  |
| Wholesale Trade                                  | 147              | 69              | 55              | 0.4694          | 0.3741          | 0.0269  | 0.2304 |  |  |  |
| Others                                           | 110              | 48              | 41              | 0.4364          | 0.3727          | 0.0274  | 0.2014 |  |  |  |

The table depicts the results of the Jarque-Bera test for normal distribution which we apply to examine the log-changes of the stochastic process  $R_1$ . The null hypothesis of the test is that the underlying process is normally distributed. Thus, choosing a higher significance level  $\alpha$  leads to a higher number of firms for which normal distribution is ruled out. The last two columns provide our estimations of the risk-neutral drift of the revenue process  $\mu$  and its standard deviation  $\sigma$ .

# For each sector we estimate the exogenous parameters and retrieve the corresponding leverages

Table: Input Parameters of the IO-Model and Observed Leverage

| NAICS Sector                                     | α      | $\epsilon$ | δ    | γ      | F     | R <sub>0</sub> | $L = D(V)/V^L(V)$ |
|--------------------------------------------------|--------|------------|------|--------|-------|----------------|-------------------|
| Accommodation and Food Services                  | 0.3890 | 0.04       | 1.00 | 0.6195 | 14.00 | 100            | 0.4594            |
| Administrative, Support, Waste, Remediation      | 0.4740 | 0.04       | 1.00 | 0.5110 | 23.04 | 100            | 0.1994            |
| Construction                                     | 0.3740 | 0.04       | 1.00 | 0.7220 | 18.83 | 100            | 0.4405            |
| Health Care and Social Assistance                | 0.4740 | 0.04       | 1.00 | 0.2483 | 51.35 | 100            | 0.5497            |
| Information                                      | 0.4740 | 0.04       | 1.00 | 0.3941 | 25.37 | 100            | 0.2927            |
| Manufacturing                                    | 0.3970 | 0.04       | 1.00 | 0.6915 | 15.85 | 100            | 0.3071            |
| Mining, Quarrying, and Oil and Gas Extraction    | 0.4630 | 0.04       | 1.00 | 0.5165 | 11.42 | 100            | 0.2535            |
| Professional, Scientific, and Technical Services | 0.4740 | 0.04       | 1.00 | 0.5131 | 33.90 | 100            | 0.2225            |
| Real Estate and Rental and Leasing               | 0.4740 | 0.04       | 1.00 | 0.4066 | 14.27 | 100            | 0.5412            |
| Retail Trade                                     | 0.4420 | 0.04       | 1.00 | 0.7026 | 19.19 | 100            | 0.2714            |
| Transportation and Warehousing                   | 0.4130 | 0.04       | 1.00 | 0.4513 | 27.16 | 100            | 0.4286            |
| Utilities                                        | 0.4740 | 0.04       | 1.00 | 0.3518 | 33.02 | 100            | 0.4531            |
| Wholesale Trade                                  | 0.4420 | 0.04       | 1.00 | 0.7382 | 23.74 | 100            | 0.2923            |
| Others                                           | 0.4598 | 0.04       | 1.00 | 0.5824 | 23.69 | 100            | 0.2683            |

The table provides an overview of the chosen input parameters for each NAICS sector. For the bankruptcy costs  $\alpha$  we follow the estimates of Glover (2016). Regarding the illiquidity expenses  $\epsilon$  and the average covenant ratio  $\delta$  industry-specific estimates are not yet available. Thus, we apply the general estimates of Ertan and Karolyi (2016) to all industries. The starting point of the stochastic revenue process  $R_0$  is indexed to 100. The estimates for the variable cost ratio  $\gamma$  and the fixed costs F are based on all normally distributed firms in our sample from NASDAQ, NYSE, NYSE ARCA, and NYSE MKT. F has been related to the index of  $R_0$ . The leverage ratio  $L = D(V)/V^L(V)$  is based on our sample, too.

## A possible extension is to endogenize the chosen covenant $\delta$

Figure: Levered Firm Value  $V^L(V)$  in dependence of Covenant Ratio  $\delta$  and Coupon Payment C



The graph depicts how changing  $\delta$  and C impacts  $V^L(V)$ . For lower delta values the maximum levered firm value  $V^{L,*}(V)$  is achieved with higher choices of  $C^*$  and vice versa. The global optimum is at the minimum  $\delta$  of  $1-\tau$ . The chosen model parameters are as follows:  $r=0.05, \tau=0.35, R_0=25, \mu=0.02, \sigma=0.20, \gamma=0.70, F=0, \epsilon=0.00,$  and  $\varphi=2.5$ .