Regresja

Igor Wojnicki

March 3, 2022

Plan prezentacji

Regresja liniowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja wielomianowa

Regresja logistyczna

Regresja liniowa, Dane

Regresja – trochę nieszczęśliwa nazwa: regresja do średniej (obserwacja biologiczna).

```
import numpy as np
  X = 2 * np.random.rand(100, 1) # wektor pionowy
2
  y = 4 + 3 * X + np.random.randn(100, 1)
                            # ^- liczba losowa, szum Gaussa
       14 -
       12
```


Regresja liniowa, Linear Regression, równania

$$\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \ldots + \Theta_n x_n$$

$$\hat{y} = h_{\mathbf{\Theta}}(\mathbf{x}) = \mathbf{\Theta} \cdot \mathbf{x}$$

Rozwiązanie polega na znalezieniu Θ , który minimalizuje funkcję celu (kosztu) RMSE:

$$RMSE(\boldsymbol{X}, h_{\boldsymbol{\Theta}}) = \sqrt{\frac{1}{m_i} \sum_{i=1}^{m} (\boldsymbol{\Theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2}$$

albo MSE (prościej):

$$MSE(\boldsymbol{X}, h_{\boldsymbol{\Theta}}) = \frac{1}{m_i} \sum_{i=1}^{m} (\boldsymbol{\Theta}^T \boldsymbol{x}^{(i)} - y^{(i)})^2$$

Ktoś rozumie?

Regresja liniowa, równanie normalne

- Równanie: y = 4 + 3x
- Model regresji liniowej:

$$\hat{y} = \Theta_0 + \Theta_1 x_1 + \Theta_2 x_2 + \ldots + \Theta_n x_n$$

$$\hat{y} = h_{\mathbf{\Theta}}(\mathbf{x}) = \mathbf{\Theta} \cdot \mathbf{x}$$

Równanie normalne:

$$\hat{\boldsymbol{\Theta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

```
Regresja liniowa, predykcja: y = 4 + 3x
   X_{new} = np.array([[0], [2]])
   X_{new_b} = np.c_{np.ones((2, 1)), X_{new}} # staty komponent
   print(y_predict := X_new_b.dot(theta_best))
    [[3.9872083]
    [9.72137701]]
       14
                 Predictions
       12
       10 -
        8
        6
        2
```

0.25

0.00

0.50

0.75

1.00

v.

1.25

1.50

1.75

2.00

Regresja, prościej

```
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
lin_reg.fit(X, y)
print(lin_reg.intercept_, lin_reg.coef_, "\n",
lin_reg.predict(X_new))

[3.9872083] [[2.86708435]]
[[3.9872083]
[9.72137701]]
```

Uwaga: złożoność obliczeniowa

- Macierz wartości cech musi się zmieścić w pamięci.
- Główny problem: odwracanie macierzy X^TX or rozmiarze: $(n+1)\times(n+1)$, złożoność: od $O(n^{2.4})$ do $O(n^3)$
- Scikit Learn używa algorytmu odwracania macierzy Singual Value Decomposition (SVD) o złożoności $O(n^2)$, złożoność dla ilości instancji (próbek) jest liniowa O(m)

Plan prezentacji

Regresja liniowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja wielomianowa

Regresja logistyczna

K-Najbliższych Sąsiadów

- ► KNN: k-Nearest Neighbors
- ► Regresja: znajdź k najbliższych sąsiadów
 - predykcja: średnia wartość dla w/w sąsiadów.
 - klasyfikacja: większościowa etykieta wśród w/w sąsiadów.
- ► Najbliższych:
 - odległość euklidesowa,
 - podobieństwo kosinusowe,
 - odległość Czebyszewa, Hamminga...

K-Najbliższych Sąsiadów, przykład

 Uwaga: KNN jest metodą nieparametryczną tj. opartą o instancje, a nie model – do wykonania predykcji potrzebuje trzymać w pamięci cały zbiór uczący.

Plan prezentacji

Regresja liniowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja wielomianowa

Regresia logistyczna

Metoda Gradientu Prostego, Gradient Descent

Minimalizacja funkcji celu (kosztu) MSE. Czyli co zrobić jeżeli nie ma równania normalnego.

Gradient descent, za mały krok

Gradient descent, za duży krok

Gradient descent, lokalne minimum

Na szczęście MSE dla regresji liniowej jest wypukła :)

Gradient Descent, problem

- W każdej iteracji trzeba obliczyć gradient funkcji celu (kosztu) na podstawie całego zbioru uczącego :(
- Dla regresji liniowej nie ma sensu, ten sam wynik co dla równania normalnego.
 - W ogólnym przypadku gdy nie ma równania liniowego metody gradientowe mają sens.
- Stochastic Gradient Descent

Stochastic Gradient Descent

- Zamiast używać całego zbioru uczącego, wybierz losowo instancję ze zbioru uczącego i policz dla niej gradient.
- Nie trzeba trzymać całego zbioru uczącego w pamięci: możliwość implementacji out-of-core.
- Nieregularny, "skacze" po znalezionych wartościach − z drugiej strony pozwala to na wyjście z minimum lokalnego.

Stochastic Gradient Descent

- ▶ 1000 epok (epoch) tj. iteracji lub jeżeli różnica mniejsza niż 0.001 w stosunku do poprzedniej epoki
- ► learning rate = 0.1 (rozmiar kroku).

Plan prezentacji

Regresja liniowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja wielomianowa

Regresja logistyczna

Regresja wielomianowa, Dane

m = 100

```
X = 6 * np.random.rand(m, 1) - 3
y = 0.5 * X**2 + X + 2 + np.random.randn(m, 1)
     10
     8
     2
                             X_1
```

Regresja wielomianowa, Polynomial Regression

• równanie: $y = 0.5 * x^2 + x + 2$

```
from sklearn.preprocessing import PolynomialFeatures
   poly_features = PolynomialFeatures(degree=2, include_bias=Features)
   X_poly = poly_features.fit_transform(X)
   print(X[0], X_poly[0])
   lin_reg = LinearRegression()
5
   lin_reg.fit(X_poly, y)
6
   print(lin_reg.intercept_, lin_reg.coef_)
   print(lin_reg.predict(
       poly_features.fit_transform([[0],[2]])))
   print(lin_reg.coef_[0][1] * 2**2 + lin_reg.coef_[0][0] * 2
10
         + lin_reg.intercept_[0])
11
   [-0.31479346] [-0.31479346 0.09909492]
   [2.10826468] [[1.06225693 0.45372695]]
   [[2.10826468]
    [6.04768632]]
   6.047686318001189
```

Regresja wielomianowa

Plan prezentacji

Regresja liniowa

K-Najbliższych Sąsiadów

Metody Gradientowe

Regresja wielomianowa

Regresja logistyczna

Regresja logistyczna, Logistic Regression

Obliczenie prawdopodobieństwa czy instancja należy do określonej klasy.

 Binarny klasyfikator: jeżeli prawdopodobieństwo > 50% to należy do klasy.

Regresja logistyczna, dane

- **Data Set Characteristics:**
 - :Number of Instances: 150 (50 in each of three classes)
 :Number of Attributes: 4 numeric, predictive attributes
 :Attribute Information:
 - sepal length in cm
 - sepal width in cm
 - petal length in cm

Regresja logistyczna, uczenie

Regresja logistyczna, predykcja

```
petal_width = [[1.7], [1.5]]
print(log_reg.predict(petal_width),"\n",
log_reg.predict_proba(petal_width))

[1 0]
    [[0.45722097 0.54277903]
    [0.66709636 0.33290364]]
```

- kwiatek o szerokości płatka 1.7 cm jest Iris virginica, 54%
- kwiatek o szerokości płatka 1.5 cm nie jest Iris virginica, 66%

Wiele klas, Softmax, uczenie

```
X = iris["data"][:, (2, 3)] # dlugość, szerokość platka
 y = iris["target"]
3
 softmax_reg = LogisticRegression(multi_class="multinomial",
                     solver="lbfgs",
5
                     C=10, random state=42)
6
 softmax_reg.fit(X, y)
 print(y) # 3 klasy, Iris: virginica, versicolor, setosa
  2 21
```

Softmax, predykcja

```
petal = [[5, 1.8]]
print(softmax_reg.predict(petal), "\n",
softmax_reg.predict_proba(petal))

[2]
[[2.08323402e-06 1.84645895e-01 8.15352022e-01]]
```

kwiatek o długości płatka 5 cm i szerokości 1.8 cm jest to Iris setosa, 8%