Теория вероятностей. Лекции и Семинары

Булинский Андрей Вадимович 25 марта 2018 г.

Содержание

1 Лекция 1		кция 1	3
	1.1	Предмет изучения	3
	1.2	Частотная интерпретация вероятностей	3
	1.3	Вероятностное пространство	3

1 Лекция 1

1.1 Предмет изучения

Теория вероятностей изучает закономерности, присущие случайным явлениям. Неслучайные явления будем называть детерминированными. В курсе будем изучать модели случайных экспериментов.

Модель случайных экспериментов подразумевает:

- 1. Воспроизводимость (контроль основных факторов).
- 2. Непредсказуемость исходов.

1.2 Частотная интерпретация вероятностей

Основные понятия:

Имеется серия из N повторений эксперимента.

A – явление (событие), которое может произойти.

N(A) – число экспериментов, когда произошло.

 $u_N\left(A\right) = \frac{N(A)}{N}$ — частота события в серии из повторений.

Свойство стабилизации: Пусть $N_1\gg 1$ и $N_2\gg 1$, то $\nu_{N_1}(A)\approx \nu_{N_2}(A)$. P(A) – вероятность.

1.3 Вероятностное пространство

Математической моделью случайного эксперимента является вероятностное пространство. Для упрощения задачи используем математический аппарат теории множеств (и теории мер).

Вероятностное пространство состоит из трех множеств (Ω, F, P) .

1. Непустое множество Ω (оме́та большое) — всевозможные элементарные исходы эксперимента. Пояснение: Элементарные исходы — простейшие, взаимоисключающие исходы.

Пример 1.1. однократное подбрасывание монеты. Комментарий: пример с монеткой крайне популярен как в русскоязычных, так и в англоязычных пособиях, поэтому будем использовать числовые значения для обозначения исходов эксперимента: $\Omega = \{\Gamma, P\}$,

 $\Omega=\{H,T\},\,\Omega=\{0,1\}.$

Здесь введем понятия мощности множества — числа элементов конечного множества. Обозначение: $|\Omega|=\#\Omega=2$