Model Building with:

C PyTorch

פונקציות אקטיבציה
עקרונות מנחים לבנית מודל

ReLU (Rectified Linear Unit):

• מתי להשתמש:

- בעיות רגרסיה או סיווג עם **נתונים לא לינאריים**, כאשר הערכים השליליים לא קריטיים.
 - רשתות עמוקות מונע בעיית התעממות שיפוע Gradient vanishing
- **חיסרון:** נוירונים עלולים "למות" (להישאר עם ערך אפס) אם המשקל מתעדכן לערך שלילי קבוע.

•מתאים לפונקציית עלות:

בבעיות סיווג או ,Cross Entropy • בבעיות רגרסיה.

Rectified Linear Unit (Relu)

$$f(x) = max(0, x)$$

Leaky ReLU:

עקרון פעולה:

בניגוד לReLU שמחזיר ס עבור כל ערך שללי, פה יוחזרו 10% מהערך השלילי כך שתהיו בו התחשבות , אבל קטנה.

• מתי להשתמש:

- -ReLU.בשיש חשש מנוירונים "מתים" ב-
- •מתאים למקרים בהם חשוב לשמור קצת מידע בערכים שליליים.
- **חיסרון** :יכול לגרום לשינויים קטנים ועדינים יותר בעדכון משקלים.
 - מתאים לפונקציית עלות:
 - ReLUאו MSE בדומה לCross Entropy •

Leaky Rectified Linear Unit

Leaky ReLU

$$f(x) = max(0.1x, x)$$

Tanh (Hyperbolic Tangent):

• מתי להשתמש:

- בעיות עם נתונים סימטריים.
- יכאשר ערכים שליליים חשובים ללמידה.
- ∙מתאים יותר לבעיות רגרסיה גליות\מחזוריות.

י חיסרון:

- יגורם להתעממות גרדיאנט בערכים קיצוניים.
- •דורש למידת משקלים מדויקת כדי לא לגרום להתכנסות

איטית.

• מתאים לפונקציית עלות:

1– באשר הערכים נעים בין Cross Entropy, או MSE •

ל-1.

Hyperbolic Tangent

$$f(x) = rac{1 - e^{-2x}}{1 + e^{-2x}}$$

Sigmoid:

• מתי להשתמש:

- סיווג בינארי, כאשר את רוצה הסתברות בין 0 ל-1.
 - בעיות בהן נדרשת נורמליזציה לפלט סופי.

• חיסרון:

- עלול לגרום להתעממות גרדיאנט. •
- לא מתאים לרשתות עמוקות עם שכבות נסתרות רבות.
 - מתאים לפונקציית עלות:
 - לסיווג בינארי. Binary Cross Entropy (BCE) •
- באשר רוצים למנוע בעיות מספריות. **BCEWithLogitsLoss**

Sigmoid Function

$$S(x)=rac{1}{1+e^{-x}}$$

טווח פלט	מתאים לסוג הבעיה	חסרונות	יתרונות	פונקציית אקטיבציה
(0,∞)	בעיות כלליות לא לינאריות	"נוירונים "מתים	מהיר, מונע Gradient Vanishing	ReLU
$(-\infty,\infty)$	במו + ReLUשמירת מידע שלילי	עדכון איטי בערכים שליליים	מונע נוירונים מתים	Leaky ReLU
[—1,1]	נתונים סימטריים	Gradient Vanishing אפשרי	שומר ערכים חיוביים ושליליים	Tanh
[0,1]	סיווג בינארי	Gradient איטיVanishing,	הסתברות בין 0 ל-1	Sigmoid
? איך אדע במה לבחור איך אדע במה לבחור				

עקרון הפשטות -להתחיל ממודל קטן .

- . לדוגמה עם שכבה נסתרת אחת או שתיים בלבד.
- . לשים מספר קטן של נוירונים, לדוגמה: 16, 32 או 64.
- אם המודל לא מצליח ללמוד, אפשר להוסיף שכבות או נוירונים בהדרגה .
 - . מספר הנוירונים יכול לקטון בהדרגה (22 16 8
 - . לרוב 2-4 שכבות מספיקות

• מספר פיצ'רים כמדריך

- כמות הנוירונים בשכבה הראשונה יכולה להיות קרובה למספר הפיצ'רים בנתונים.
- לדוגמה, אם יש 10 פיצ'רים, אז שכבה ראשונה עם 16 או 32 נוירונים תוכל להתאים.

• הערכת הלימוד

- **Underfitting:** המודל לא לומד טוב (טעות גבוהה גם באימון וגם בבדיקה). כדאי לנסות להוסיף מורכבות (עוד שכבות נסתרות או עוד נוירונים.)
- מודל לומד טוב מדי על הנתונים באימון, אבל טועה הרבה בבדיקה. כדאי להקטין את המורכבות

התאמת שכבת האקטיבציה לסוג הבעיה

- בעיות רגרסיה לא לינאריות דורשות יותר שכבות כדי לקלוט את הדפוס הלא לינארי.
- . לדוגמה, עבור נתוני **גל סינוסי** ,שכבה אחת עם פונקציית Tanhיכולה לעבוד מצוין •

