Sampling by random walk

A: Random walks on Markov chains

The sampling methods we'll cover

- 1 Gibbs sampler
- 2 Metropolis-Hastings sampler
- 3 Langevin sampler

High-level approach: random walk.

Sampling by random walk

Want to sample from a distribution P over some space \mathcal{X} . This might be

- **discrete**, e.g., $\mathcal{X} = \{0,1\}^N$ (say, binary images on N pixels), or
- **continuous**, e.g. $\mathcal{X} = \mathbb{R}^d$ (say, rainfall levels in d cities)

Difficulties:

- ullet $\mathcal X$ might be huge or infinite: we cannot enumerate all outcomes.
- We might not be able to evaluate P(x) explicitly for $x \in \mathcal{X}$ due to unknown normalization factor. But can often get ratios P(x)/P(x').

Solution strategy: random walk on \mathcal{X}

- Start at any $x \in \mathcal{X}$
- Repeatedly move to a "nearby" state, with some transition probabilities
- After a while: the distribution over the current location is (close to) P

Random walks and Markov chains: the finite case

Random walk on a finite space ${\mathcal X}$

- Let Q_t be the position ("state") at time tNext state Q_{t+1} depends only on Q_t , not prior history: Markov chain
- Random walk is defined by $|\mathcal{X}| \times |\mathcal{X}|$ transition matrix

$$M(x,x') = M_{x,x'} = \Pr(Q_{t+1} = x' | Q_t = x)$$

• Let π_t be the distribution of Q_t , so $\pi_t \in \Delta_{\mathcal{X}}$

$$\pi_{t+1}(x) = \Pr(Q_{t+1} = x) = \sum_{x' \in \mathcal{X}} \Pr(Q_t = x') M_{x',x} = \sum_{x'} \pi_t(x') M_{x',x}$$

In vector form:

$$\pi_{t+1}^T = \pi_t^T M = \pi_{t-1}^T M^2 = \dots = \pi_o^T M^{t+1}$$

Stationary distribution

We say π is a **stationary distribution** if $\pi^T = \pi^T M$. Such a distribution always exists.

Determine the stationary distribution of this Markov chain:

Stationary distribution: issues

(1) There may be several stationary distributions

Stationary distribution: issues

(2) The random walk may not converge to the stationary distribution, even if it is unique

Irreducible, aperiodic Markov chains

Things become easier if the Markov chain is:

- **Irreducible:** the transition graph (nodes are states, directed edges are transitions with non-zero probability) is strongly connected.
- Aperiodic: there exists k > 0 such that $M^k(x, x') > 0$ for all x, x'.

Theorem. Any irreducible, aperiodic Markov chain has a unique stationary distribution π^* . For all $x, x' \in \mathcal{X}$,

$$\lim_{t\to\infty} M^t(x,x') = \pi^*(x').$$

Figuring out the stationary distribution

Lemma. If π satisfies the **detailed balance** condition:

$$\pi(x)M(x,x') = \pi(x')M(x',x) \quad \forall x,x' \in \mathcal{X}$$

then π is a stationary distribution of M.

B: The Gibbs sampler

Gibbs sampler

Finite state space $\mathcal{X}=\mathcal{X}_o^N$. Want to sample from a distribution P>0 on \mathcal{X} .

- Start with any $x \in \mathcal{X}$
- Repeat:
 - Pick a coordinate $i \in \{1, 2, ..., N\}$ at random Resample x_i from $P(X_i = x_i | x_{\setminus i})$

Check:

- 1 This is a Markov chain
- 2 It is irreducible and aperiodic
- **3** The stationary distribution is *P*

Example: Ising model

System of N particles arranged in a lattice.

- Each particle has a **spin** $X_i \in \{-1, +1\}$
- Overall configuration $X = (X_1, \dots, X_N) \in \{-1, +1\}^N$

Probability $P(x) \propto e^{-U(x)}$

Energy of configuration x:

$$U(x) = -\sum_{i,j \text{ neighbors}} J_{ij}x_ix_j - \sum_i \beta_ix_i$$

- Ferromagnetic regime: $J_{ij} > 0$
- Statistical mechanics: Local interactions \implies macroscopic properties

Gibbs sampler for Ising model

Pick a particle $k \in [N]$ and resample its spin $X_k \in \{-1, +1\}$ while keeping everything else fixed.

Mixing time of a Markov chain

How many steps before the random walk gets close to the stationary distribution?

For Markov chain with transition matrix M, we can define **mixing time** $T_{\text{mix}}(\epsilon)$ as the smallest t for which

$$\max_{x \in \mathcal{X}} \|M^t(x, \cdot) - \pi^*(\cdot)\|_{TV} \le \epsilon.$$

- The chain is **rapidly mixing** if T_{mix} is polynomial in dimension of \mathcal{X}
- The chain is **torpidly mixing** if T_{mix} is super-polynomial (e.g. exponential)

C: Metropolis-Hastings sampler

Metropolis-Hastings walk

Want to sample from distribution P on state space \mathcal{X} .

- We already have an irreducible, aperiodic Markov chain on it, with transition probabilities M(x, x').
- But it doesn't have the right stationary distribution. How to modify it?
 - Start with any $x \in \mathcal{X}$
 - Repeat:
 - Pick a new state $x' \sim M(x, \cdot)$
 - Accept it with probability

$$\min\left(\frac{P(x')M(x',x)}{P(x)M(x,x')},1\right)$$

else stay at x

Analyzing the stationary distribution

Theorem. The modified chain has stationary distribution P.

C: Langevin sampler

Brownian motion

- Random movement of particles in liquid/gas.
- Robert Brown, botanist: "pollen grains suspended in water perform a continual swarming motion" (1827).

Mathematical model: a Gaussian process.

- $B_0 = 0$
- For t > s,
 - $B_t B_s$ is independent of B_s
 - $B_t B_s \sim N(0, \omega^2(t-s))$
- $t \rightarrow B_t$ is almost surely continuous

Limit of a simple random walk with step size δ and time increment τ going to zero such that $\delta/\sqrt{\tau}\to\omega$.

Langevin diffusion

Suppose the target density on $\mathcal{X} = \mathbb{R}^d$ is

$$\pi(x) \propto e^{-U(x)}$$
.

Langevin diffusion (X_t) is defined by stochastic differential equation

$$dX_t = -\nabla U(X_t)dt + \sqrt{2}dB_t$$

where (B_t) is d-dimensional Brownian motion.

Long-term distribution of (X_t) :

- Suppose U is twice continuously differentiable and ∇U is Lipschitz.
- Then π is the unique stationary distribution of this process.

How can this process be simulated?

Discretizing the Langevin diffusion

Euler-Maruyama scheme for sampling diffusion paths:

$$X_{t+1} = X_t - \gamma_{t+1} \nabla U(X_t) + \sqrt{2\gamma_{t+1}} Z_{t+1}$$

where Z_1, Z_2, \ldots are i.i.d. $N(0, I_d)$ and γ_t are step sizes.

- Related to stochastic gradient descent
- If step size is held constant $(\gamma_t = \gamma)$:
 - ullet Converges to a unique stationary distribution π_γ
 - But this isn't (necessarily) the same as π
- When step size is decreased: harder to analyze.

Metropolis-adjusted Langevin algorithm (MALA): Use Metropolis-Hastings to fix the bias, i.e., use the discretized diffusion as a proposal distribution.

Historical notes

Metropolis-Hastings sampler:

- Metropolis, Rosenbluth, Rosenbluth, Teller, Teller. Equations of state calculations by fast computing machines. Journal of Chemical Physics, 1953. Goal was to sample from $p(x) \propto e^{-E(x)/kT}$. Only considered symmetric proposal distributions.
- Hastings. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 1970.
 Generalized sampler.

Historical notes (cont'd)

Gibbs sampler:

- Formalization of Glauber dynamics in statistical physics.
- Geman, Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984.
- Gelfand, Smith. Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 1990.

Historical notes (cont'd)

Langevin sampler:

- Paul Langevin (1872-1946) developed Langevin equation that described evolution of a system under a combination of determinstic and random forces.
- Grenander, Miller. Representations of knowledge in complex systems. Journal of the Royal Statistical Society, 1994.
- Besag. Comments on "Representations of knowledge in complex systems". Same journal.