ANALYSIS I EXTENSION LECTURE 1. INTRODUCTION TO AXIOMATIC SET THEORY

ASILATA BAPAT

Calculus is typically done on \mathbb{R} , \mathbb{R}^n , \mathbb{C}^n , why not on \mathbb{N} or \mathbb{Q}

- \mathbb{N} is unsuitable because it is "discrete". Metric on \mathbb{N} does not have arbitrarily small numbers. That is, if d(m,n) < 1, then m = n.
- \mathbb{Q} is unsuitable because it has "holes" in it. There are unequal, arbitrarily close rational numbers. However, it is not a <u>complete</u> metric space. More about this later, but for example, $\{x \in \mathbb{Q} \mid x^2 < 2\}$ does not have a least upper bound in \mathbb{Q} so there are bounded increasing sequences in \mathbb{Q} that does not converge in \mathbb{Q} .

To do this properly, we should start at the very beginning: \mathbb{R} is constructed from \mathbb{Q} , which is constructed from \mathbb{N} . Which is constructed from ...?

One approach (standard) is axiomatic set theory.

Definition. A set is an object S s. t. for each x, we either have $x \in S$ or $x \notin S$. That is, x is an element of S, or x is not an element of S, but not both.

A set can be specified by listing its elements, like $\{1, 2, 3\}$, or by specification, like $\{x \in \mathbb{N} \mid x \text{ is prime.}\}$. This definition works fine — until it doesn't!

Example (Russell's Paradox). Let S be defined as follows:

$$S = \{ T \mid T \notin T \}$$

Question: Is $S \in S$? If yes, then by its definition, S is a set s.t. $S \notin S \implies S \notin S$, contradiction; If no, then $S \notin S$, matching the requirement for elements of $S \implies S \in S$, contradiction.

Zermelo-Fraenkel Set Theory (ZFC)

(Typically written in the language of first order logic, however we'll use a mix of logic and English.)

Axiom 1 (Axiom of Extension). Two sets are equal iff they have the same elements:

$$X = Y \text{ iff } \forall z (z \in X \iff z \in Y)$$

Axiom 2 (Axiom of Existence). The "empty set" is a set. That is, \varnothing exists and has the property that $\forall z(z \notin \varnothing)$.

Axiom 3 (Axiom of Pairing). If X and Y are sets, then there is a set $\{X,Y\}$.

Example. $\{1,2\}$ and $\{2,3\}$ pair to $\{\{1,2\},\{2,3\}\}$.

Axiom 4 (Axiom of Union). If S is any set, then the "union over all elements of S" is a set. That is, there is a set whose elements are all x such that x belongs to some elements of S.

Example.

$$\{ \{ 1,2 \}, \{ 2,3 \} \} \rightarrow \{ 1,2,3 \}$$

Axiom 5 (Axiom of Intersection). If S is a set, the "intersection over all elements of S" exists

Axiom 6 (Axiom of Foundation). Every $X \neq \emptyset$ contains a member Y such that $X \cap Y = \emptyset$. (Roughly speaking, a sequence $z_1 \ni z_2 \ni \ldots$ must always terminate.)

Consequence of failure of the axiom:

$$\forall Y_1 \in X, X \cap Y_1 \neq \emptyset$$
. So $\exists Y_2 \in X \cap Y_1 \implies X \cap Y_2 \neq \emptyset$ and so on!

Axiom 7 (Axiom Schema of Specification). We can build sets using "set builder" notation as subsets of a known set that satisfies certain predicate. A predicate can be seen as a kind of function outputting "TRUE" or "FALSE".

Example. $\{x \in \mathbb{N} \mid x > 2\}$ is the set $\{3, 4, 5, ...\}$ or $\{x \in \{\emptyset, \{\emptyset\}\} \mid x \neq \emptyset\}$ is the set $\{\{\emptyset\}\}$.

Axiom 8 (Axiom of Power Set). If S is a set, then $\mathbb{P}(S)$ is the collection of all subsets of S, which is a set

Based on previous axioms, we can construct the Cartesian Product, as follows:

Definition (Cartesian Product). We define a ordered pair (a, b)

$$(a,b) := \{ \{ a \}, \{ a,b \} \}$$

Then we define

$$A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$$

Based on Cartesian Product, we can define the notation of Function

Definition (Function). Let A, B be sets. A function $f: A \mapsto B$ is an element of $\mathbb{P}(A \times B)$ such that

- (1) for every $a \in A$, there is some $b \in B$ such that $(a, b) \in f$.
- (2) For every $a \in A$, if b_1 and b_2 such that $(a_1, b_1) \in f$ and $a_1, b_2 \in f$, then $b_1 = b_2$.

Axiom 9 (Axiom of Infinity). Let X be a set. Define $succ(X) = X^+ = X \cup \{X\}$. There is a set with the properties:

- $(1) \varnothing \in S$
- (2) If $X \in S$, then $succ(X) \in S$

Example.

$$succ(\varnothing) = \{ \varnothing \}$$

$$\{ \varnothing \}^+ = \{ \varnothing \} \cup \{ \{ \varnothing \} \} = \{ \varnothing, \{ \varnothing \} \}$$

In particular, S cannot have finitely many elements!

Definition (Choice Function). A <u>Choice Function</u> f defined on a collection X of none empty sets is a function with the property that if $a \in X$ then $f(a) \in a$

Example. $f(x) = \min(x)$ gives $f(\{1, 2, 3\}) = 1 \to f$ is defined on $\mathbb{P}(\mathbb{N})$.

Axiom 10 (Axiom of Choice). Choice functions always exist for any X

The axiom states that if x is any set of nonempty sets, then there is a choice function on x. This is equivalent to the well-ordering principle:

Theorem (Well-ordering Pricinple). For any set x, there is a binary relation $R(\leqslant)$ which well-orders x: every non-empty subset of x has a smallest element.