Univerza v Ljubljani Fakulteta za matematiko in fiziko Finančna matematika - 1. stopnja

Matej Škerlep

Problem največje množice neodvisnih vozlišč (kratko poročilo)

Finančni praktikum

Mentorja: prof. dr. Riste Škrekovski in asist. dr. Janoš Vidali

1 Navodila za delo

- Definirajte problem največje množice nesosednjih vozlišč kot CLP in ga rešite za nekaj primerov.
- Eksperimentalno rimerjajte rezultate CLP in njegove relaksacije na LP in ugotovite, za koliko se lahko razlikujejo med sabo po velikosti.
- Napišite algoritem za lokalno iskanje po grafu in njegov rezultate primerjajte s prejšnjimi.
- Ugotovite za kako velike grafe je posamezen izmed primerov rešljiv.

2 Definicija pojma

Definicija 1. Naj bo G=(V,E) graf in $I\subseteq V$. Množica vozlišč I je neodvisna, če ne vsebuje sosednjih vozlišč.

Formalno, če za $\forall v, u \in V, uv \in E$ velja: $v \in I \Leftrightarrow u \notin I$

3 Plan dela

3.1 Celoštevilski linearen program

Celoštevilski linearen program za dani problem se glasi:

$$\max \sum_{v \in V} x_v$$

p.p. $x_u + x_v \le 1$, za vsak par $uv \in E$
 $x_v \in \{0, 1\}$, $\forall v \in V$

3.2 Ideja za lokalno iskanje

začnemo z množico nesosednjih vozlišč (naj bo to recimo I) in nato naključno zamenjamo eno iz vozlišč iz množice I z vozliščem, ki ga v nožici ni. Pri tem upamo, da bo po zadosti menjavah eno izmed vozlišč postalo prosto. Torej ga lahko dodamo v množico I in s tem njeno moč povečamo za 1.