Esame di Ricerca Operativa del 12/06/18

(Cognome)	(Nome)	(Numero di Matricola)

Esercizio 1. Effettuare due iterazioni dell'algoritmo del simplesso duale per il problema:

$$\begin{cases} \min & 6 \ y_1 + 2 \ y_2 + 12 \ y_3 + 4 \ y_4 + 2 \ y_5 + 14 \ y_6 \\ -y_1 - 2 \ y_2 + 3 \ y_3 + y_4 - 2 \ y_5 + y_6 = 9 \\ 3 \ y_1 + y_2 + y_3 - y_4 - 3 \ y_5 - 2 \ y_6 = -5 \\ y \ge 0 \end{cases}$$

	Base	x	Degenere?	y	Indice	Rapporti	Indice
					uscente		entrante
1° passo	{1,6}						
2° passo							

Esercizio 2. Un'azienda produce 4 tipi di smartphone (S1, S2, S3 e S4) ed è divisa in 2 stabilimenti (A e B). L'azienda dispone di 40 tecnici in A e 50 in B ognuno dei quali lavora 6 ore al giorno per 6 giorni alla settimana. Le ore necessarie per produrre gli smartphone e le richieste minime da soddisfare sono indicate nella seguente tabella:

Smartphone	S1	S2	S3	S4
Stabilimento A	1.2	1.5	1.7	2
Stabilimento B	1.5	1.6	1.8	2.1
Richiesta	200	140	120	80

Sapendo che i 4 tipi di smartphone vengono venduti rispettivamente a 400, 600, 1000, e 1500 euro, l'azienda vuole determinare quanti smartphone di ogni tipo produrre nei due stabilimenti in modo da massimizzare il profitto.

variabili decisionali:							
modello:							
COMANDI DI MATLAR							

c=	intcon=
A=	b=
Aeq=	beq=
1b=	ub=

Esercizio 3. Effettuare due iterazioni dell'algoritmo del simplesso su reti sulla seguente rete (su ogni arco sono indicati, nell'ordine, il costo e la capacità).

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (3,5) (4,3) (4,6) (5,7)	
Archi di U	(2,4)	
x		
degenere?		
π		
degenere?		
Arco entrante		
ϑ^+,ϑ^-		
Arco uscente		

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 x_1 + 7 x_2 \\ 14 x_1 + 12 x_2 \le 67 \\ 6 x_1 + 17 x_2 \le 54 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento = $v_S(P) =$

b) Calcolare una valutazione inferiore.

sol. ammissibile = $v_I(P)$ =

c) Calcolare un taglio di Gomory.

r = taglio:

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	ite	r 1	ite	r 2	ite	r 3	ite	r 4	ite	r 5	ite	r 6	ite	r 7
	π	p												
nodo visitato														
nodo 2														
nodo 3														
nodo 4														
nodo 5														
nodo 6														
nodo 7														
$\begin{array}{c} \text{insieme} \\ Q \end{array}$														

b) Applicare l'algoritmo FFEK per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	24	28	47
2		18	94	61
3			53	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando 1-alberi di costo minimo.

1-	-albero:	$v_I(P) =$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo: $v_S(P) =$

c) Applicare il metodo del *Branch and Bound*, utilizzando 1-alberi di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili x_{14} , x_{24} , x_{45} . Dire se l'algoritmo é terminato.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1$ sull'insieme

$${x \in \mathbb{R}^2 : x_2^2 + 6x_2 + 8 \le 0, \quad x_1^2 + 6x_1 + 8 \le 0}.$$

Soluzioni del sis	Mass	Massimo		Minimo			
x	λ	μ	globale	locale	globale	locale	
(-2, -2)							
(-4, -2)							
(-2, -4)							
(-4, -4)							

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min -4 \ x_1 \ x_2 - 4 \ x_2^2 + 5 \ x_1 + x_2 \\ x \in P \end{cases}$$

e i vertici di P sono (-5,3), (4,4), (-4,-4) e (3,0). Fare un passo del metodo del gradiente proiettato.

Punto	Matrice M	Matrice H	Direzione	Max spostamento possibile	Passo	Nuovo punto
$\left(-\frac{13}{3}, -\frac{5}{3}\right)$						

SOLUZIONI

Esercizio 1.

	Base	x	y	Indice	Rapporti	Indice
				entrante		uscente
1° iterazione	{1, 6}	(54, 20) (NO)	(13, 0, 0, 0, 0, 22)	3	$\frac{13}{7}, \frac{11}{5}$	1
2° iterazione	{3, 6}	$\left(\frac{38}{7}, -\frac{30}{7}\right) (SI)$	$\left(0,\ 0,\ \frac{13}{7},\ 0,\ 0,\ \frac{24}{7}\right)$	4	13, 6	6

Esercizio 2.

variabili decisionali: x_{ij} = numero di smartphone di tipo i prodotti nello stabilimento j, con i = 1, 2, 3, 4 e j = A, B.

modello:

$$\begin{cases} \max 400 \left(x_{1A} + x_{1B}\right) + 600 \left(x_{2A} + x_{2B}\right) + 1000 \left(x_{3A} + x_{3B}\right) + 1500 \left(x_{4A} + x_{4B}\right) \\ 1.2 \, x_{1A} + 1.5 \, x_{2A} + 1.7 \, x_{3A} + 2 \, x_{4A} \le 1440 \\ 1.5 \, x_{1B} + 1.6 \, x_{2B} + 1.8 \, x_{3B} + 2.1 \, x_{4B} \le 1800 \\ x_{1A} + x_{1B} \ge 200 \\ x_{2A} + x_{2B} \ge 140 \\ x_{3A} + x_{3B} \ge 120 \\ x_{4A} + x_{4B} \ge 80 \\ x_{ij} \ge 0 \\ x_{ij} \in \mathbb{Z} \end{cases}$$

Esercizio 3.

	1° iterazione	2° iterazione
Archi di T	(1,2) (1,4) (3,5) (4,3) (4,6) (5,7)	(1,2) (1,3) (1,4) (3,5) (4,6) (5,7)
Archi di U	(2,4)	(2,4)
x	(0, 0, 3, 6, 8, 1, 4, 0, 3, 0, 0) (SI)	(0, 1, 2, 6, 8, 0, 4, 0, 3, 0, 0) (SI)
π	(0, 9, 11, 4, 21, 14, 25) (NO)	(0, 9, 9, 4, 19, 14, 23) (NO)
Arco entrante	(1,3)	(2,4)
ϑ^+,ϑ^-	11 , 1	9,0
Arco uscente	(4,3)	(1,2)

Esercizio 4. Si consideri il seguente problema di programmazione lineare intera:

$$\begin{cases} \max 12 x_1 + 7 x_2 \\ 14 x_1 + 12 x_2 \le 67 \\ 6 x_1 + 17 x_2 \le 54 \\ x_1 \ge 0 \\ x_2 \ge 0 \\ x_1, x_2 \in \mathbb{Z} \end{cases}$$

a) Calcolare una valutazione superiore del valore ottimo.

sol. ottima del rilassamento =
$$\left(\frac{67}{14}, 0\right)$$
 $v_S(P) = 57$

b) Calcolare una valutazione inferiore.

sol. ammissibile =
$$(4,0)$$

c) Calcolare un taglio di Gomory.

$$r = 1$$
 $x_1 \le 4$ $x_1 = 4$ $x_1 \le 19$

Esercizio 5. a) Applicare l'algoritmo di Dijkstra per trovare l'albero dei cammini minimi di radice 1 sulla seguente rete.

	iter	1	iter	· 2	iter	. 3	iter	4	ite	r 5	ite	r 6	ite	r 7
	π	p	π	p	π	p	π	p	π	p	π	p	π	p
nodo visitato	1		3		2		5		4	Į	7	7	6	j
nodo 2	8	1	8	1	8	1	8	1	8	1	8	1	8	1
nodo 3	7	1	7	1	7	1	7	1	7	1	7	1	7	1
nodo 4	$+\infty$	-1	$+\infty$	-1	26	2	16	5	16	5	16	5	16	5
nodo 5	$+\infty$	-1	12	3	11	2	11	2	11	2	11	2	11	2
nodo 6	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	33	4	31	7	31	7
nodo 7	$+\infty$	-1	$+\infty$	-1	$+\infty$	-1	22	5	22	5	22	5	22	5
$\stackrel{\text{insieme}}{Q}$	2,	3	2,	5	4,	5	4,	7	6,	7	(3	Q)

b) Applicare l'algoritmo di Ford-Fulkerson (con la procedura di Edmonds-Karp per la ricerca del cammino aumentante) per trovare il flusso massimo tra il nodo 1 ed il nodo 7 sulla seguente rete.

cammino aumentante	δ	x	v
1 - 2 - 5 - 7	6	(6, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0)	6
1 - 3 - 5 - 7	5	(6, 5, 0, 6, 0, 5, 0, 0, 11, 0, 0)	11
1 - 3 - 2 - 4 - 6 - 5 - 7	1	(6, 6, 1, 6, 1, 5, 1, 0, 12, 1, 0)	12

Taglio di capacità minima: $N_s = \{1\}$ $N_t = \{2, 3, 4, 5, 6, 7\}$

Esercizio 6. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella:

città	2	3	4	5
1	29	24	28	47
2		18	94	61
3			53	26
4				20

a) Trovare una valutazione inferiore del valore ottimo calcolando 1-alberi di costo minimo.

1-albero:
$$(1,3)(1,4)(2,3)(3,5)(4,5)$$
 $v_I(P)=116$

b) Trovare una valutazione superiore applicando l'algoritmo del nodo più vicino a partire dal nodo 5.

ciclo:
$$5 - 4 - 1 - 3 - 2$$
 $v_S(P) = 151$

c) Applicare il metodo del $Branch\ and\ Bound$, utilizzando 1-alberi di costo minimo come rilassamento di ogni sottoproblema ed istanziando, nell'ordine, le variabili $x_{14},\,x_{24},\,x_{45}$.

Esercizio 7. Trovare massimi e minimi della funzione $f(x_1, x_2) = x_1^2 + x_2^2 + 4x_1$ sull'insieme

$$\{x \in \mathbb{R}^2 : x_2^2 + 6x_2 + 8 \le 0, \quad x_1^2 + 6x_1 + 8 \le 0\}.$$

Soluzioni del sis	Massimo		Mini	Sella			
x	λ	μ	globale	locale	globale	locale	
(-2, -2)	(2,0)		NO	NO	SI	SI	NO
(-4, -2)	(2, -2)		NO	NO	NO	NO	SI
(-2, -4)	(-4,0)		NO	NO	NO	NO	SI
(-4, -4)	(-4, -2)		SI	SI	NO	NO	NO

Esercizio 8. Si consideri il seguente problema:

$$\begin{cases} \min \ -4 \ x_1 \ x_2 - 4 \ x_2^2 + 5 \ x_1 + x_2 \\ x \in P \end{cases}$$

dove P è il poliedro di vertici (-5,3), (4,4), (-4,-4) e (3,0). Fare una iterazione del metodo del gradiente proiettato.

ſ	Punto	Matrice M	Matrice H	Direzione	Max spostamento	Passo	Nuovo punto
					possibile		
	$\left(-\frac{13}{3}, -\frac{5}{3}\right)$	(-7, -1)	$\begin{pmatrix} 1/50 & -7/50 \\ -7/50 & 49/50 \end{pmatrix}$	$\left(\frac{21}{5}, -\frac{147}{5}\right)$ (1,-7)	$\frac{5}{63} (\frac{1}{3})$	$\frac{5}{63} \left(\frac{1}{3}\right)$	(-4, -4)