Customer Churn Prediction for Banks usinf Logistic Regression

```
import numpy as np
In [1]:
         import pandas as pd
         #for data visualization
         import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib inline
In [2]: df = pd.read csv('Churn Modelling.csv')
In [3]:
         df.shape
         (10000, 14)
Out[3]:
In [4]:
         df.head()
            RowNumber
                                                                                               NumOfProducts
                                                                                                              HasCrCard
Out[4]:
                       Customerld Surname
                                           CreditScore Geography
                                                                  Gender
                                                                          Age
                                                                              Tenure
                                                                                        Balance
                                                                                                                         IsActiveMember
                                                                                           0.00
                                                   619
                                                                           42
                                                                                   2
                                                                                                            1
                                                                                                                       1
                     1
                         15634602
                                  Hargrave
                                                           France
                                                                  Female
                          15647311
                                        Hill
                                                   608
                                                                  Female
                                                                           41
                                                                                       83807.86
                                                                                                                       0
                                                            Spain
         2
                     3
                         15619304
                                                   502
                                                                                     159660.80
                                                                                                            3
                                                                                                                       1
                                      Onio
                                                                  Female
                                                                           42
                                                                                   8
                                                           France
                                                                                                            2
         3
                                                                                                                      0
                         15701354
                                      Boni
                                                   699
                                                           France
                                                                  Female
                                                                           39
                                                                                           0.00
         4
                     5
                          15737888
                                    Mitchell
                                                   850
                                                            Spain Female
                                                                           43
                                                                                   2 125510.82
                                                                                                            1
                                                                                                                       1
         # Checking duplicate and missing values
         df.nunique()
         RowNumber
                              10000
         CustomerId
                               2932
         Surname
         CreditScore
                                460
                                  3
         Geography
                                  2
         Gender
                                 70
         Age
         Tenure
                                 11
         Balance
                               6382
         NumOfProducts
                                  4
         {\sf HasCrCard}
                                  2
         {\tt IsActive Member}
                                  2
         EstimatedSalary
                               9999
         Exited
         dtype: int64
In [6]: df.isnull().sum()
         RowNumber
Out[6]:
         CustomerId
                              0
         Surname
                              0
         CreditScore
                              0
                              0
         Geography
         Gender
                              0
         Age
                              0
         Tenure
                              0
                              0
         Balance
         NumOfProducts
                              0
         {\tt HasCrCard}
         IsActiveMember
                              0
         EstimatedSalary
                              0
         Exited
         dtype: int64
In [7]: df.dtypes
         RowNumber
                                int64
Out[7]:
         CustomerId
                                int64
         Surname
                               object
         CreditScore
                                int64
         Geography
                               object
         Gender
                               object
         Age
                                int64
         Tenure
                                int64
         Balance
                              float64
         {\tt NumOfProducts}
                                int64
         HasCrCard
                                int64
         IsActiveMember
                                int64
         EstimatedSalary
                              float64
         Exited
                                int64
         dtype: object
```

```
In [8]: #Let's get the summary statistics for the numeric variables
    #We will omit Row Number and Customer Id as they are identification numbers and
    #will omit Exited, HasCrCard and IsActiveMember as they are just categories

#These are more relevant and can give us an idea on our data in terms of mean and std
    numeric_cols = ['CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'EstimatedSalary']

# The summary statistics for the selected columns are;
    df[numeric_cols].describe()
Out[8]: CreditScore Age Tenure Balance NumOfProducts EstimatedSalary
```

8]:		CreditScore	Age	Tenure	Balance	NumOfProducts	EstimatedSalary
	count	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000
	mean	650.528800	38.921800	5.012800	76485.889288	1.530200	100090.239881
	std	96.653299	10.487806	2.892174	62397.405202	0.581654	57510.492818
	min	350.000000	18.000000	0.000000	0.000000	1.000000	11.580000
	25%	584.000000	32.000000	3.000000	0.000000	1.000000	51002.110000
	50%	652.000000	37.000000	5.000000	97198.540000	1.000000	100193.915000
	75%	718.000000	44.000000	7.000000	127644.240000	2.000000	149388.247500
	max	850.000000	92.000000	10.000000	250898.090000	4.000000	199992.480000

[9]:	df	.head()											
t[9]:		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMembe
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	

EDA

Firstly, to be effective as possible, we only want to work with relevant data and weed out what is not going to be useful to us. The following columns will be definetly dropped; 'Row Number' as it is just a number, 'Customerld' as it is just a serial number that will not really help us in knowing if a customer is going to churn or not and lastly 'Surname' because I do not see how your name will influence the decision you going to take in this context. It just leads to unnecessary profiling if we include it in our data

```
In [10]: # Dropping the columns
          df = df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1)
          #Let's recheck our data
In [11]:
          df.head()
            CreditScore Geography Gender Age Tenure
                                                      Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
          0
                                                                                                          101348.88
                   619
                           France Female
                                                         0.00
          1
                   608
                                                      83807.86
                                                                                    0
                                                                                                          112542.58
                                                                                                                        0
                                          41
                                                  1
                            Spain Female
          2
                   502
                           France
                                  Female
                                          42
                                                  8 159660 80
                                                                          3
                                                                                    1
                                                                                                  0
                                                                                                          113931.57
                                                                                                                        1
          3
                   699
                                                                          2
                                                                                                  0
                                                                                                           93826.63
                                                                                                                        0
                           France Female
                                                         0.00
                   850
                            Spain Female
                                          43
                                                  2 125510.82
                                                                                                   1
                                                                                                           79084.10
                                                                                                                        0
          #What is the retention rate of our bank?
In [12]:
          # The best way to see the ratio between churned and not churned is a pie chart
          #Let's count the number of unique values in the Exited column
          df['Exited'].value_counts()
               7963
Out[12]:
               2037
          Name: Exited, dtype: int64
In [13]:
          #We can already visualize what the percentages are going to be.
          #Let's create our diagram
          ratios = df['Exited'].value_counts()
          plt.pie(ratios, labels=['Not Exited', 'Exited'], autopct = '%0.2f%',
                  startangle=90)
          plt.title('Proportion of Customers who Exited')
          Text(0.5, 1.0, 'Proportion of Customers who Exited')
```

Proportion of Customers who Exited


```
In [14]: #Histplot allows us to see the distribution of our data
    # Our KDE curves shows the distribution and alpha is our transparency parameter
    sns.histplot(x = 'Age', data = df, hue='Exited',bins=30,kde=True,alpha=0.3)
    plt.show()
```



```
In [15]: sns.countplot(x='Geography', hue='Exited', data=df)
```



```
fig, axarr = plt.subplots(2, 2, figsize=(20, 18))
sns.countplot(x='Gender', hue = 'Exited',data = df, ax=axarr[0][0])
sns.countplot(x='HasCrCard', hue = 'Exited',data = df, ax=axarr[0][1])
sns.countplot(x='IsActiveMember', hue = 'Exited',data = df, ax=axarr[1][0])
sns.countplot(x='Geography', hue = 'Exited',data = df, ax=axarr[1][1])
```

Out[16]: <Axes: xlabel='Geography', ylabel='count'>

Out[17]: <Axes: xlabel='Exited', ylabel='EstimatedSalary'>

Out[19]: <Axes: >

Logistic Regression

```
from sklearn.metrics import classification report, confusion matrix, accuracy score
In [21]:
         #Let's convert categorical variables to numerical values
         from sklearn.preprocessing import LabelEncoder
          #Application of the LabelEncoder
         le = LabelEncoder()
          # encode Country column
         df['Geography'] = le.fit_transform(df['Geography'])
         # encode Gender column
         df['Gender'] = le.fit_transform(df['Gender'])
In [22]: df.head()
            CreditScore
                       Geography Gender Age
                                            Tenure
                                                     Balance NumOfProducts HasCrCard IsActiveMember EstimatedSalary Exited
         0
                  619
                               0
                                      0
                                         42
                                                 2
                                                        0.00
                                                                         1
                                                                                   1
                                                                                                 1
                                                                                                        101348.88
                                                                                                                     1
         1
                  608
                               2
                                      0
                                          41
                                                     83807.86
                                                                                   0
                                                                                                        112542.58
                                                                                                                     0
         2
                   502
                               0
                                      0
                                          42
                                                 8 159660.80
                                                                         3
                                                                                   1
                                                                                                 0
                                                                                                        113931.57
                                                                                                                     1
         3
                   699
                               0
                                      0
                                         39
                                                        0.00
                                                                                   0
                                                                                                 0
                                                                                                         93826.63
                                                                                                                     0
         4
                               2
                                                 2 125510.82
                                                                                                         79084.10
                                                                                                                     0
                  850
                                      0
                                         43
                                                                         1
                                                                                   1
                                                                                                 1
         # Let's define our X and y
          # We will drop 'Exited' from our X because it is our target variable
         X= df.drop(['Exited'],axis=1)
         y= df['Exited']
In [24]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [25]:
         logmodel = LogisticRegression(random_state=42)
          logmodel.fit(X_train, y_train)
Out[25]: v
                    LogisticRegression
         LogisticRegression(random state=42)
In [26]: y_pred = logmodel.predict(X test)
In [27]: accuracy = accuracy_score(y_test, y_pred)
         print(f"Accuracy: {accuracy}")
         Accuracy: 0.8005
In [28]:
         print(classification_report(y_test, y_pred))
         print(confusion_matrix(y_test,y_pred))
                        precision
                                      recall f1-score
                                                          support
                             0.81
                                        0.98
                                                  0.89
                     0
                                                             1607
                     1
                             0.45
                                        0.07
                                                  0.12
                                                              393
                                                   0.80
                                                             2000
              accuracy
             macro avg
                             0.63
                                        0.53
                                                  0.51
                                                             2000
         weighted avg
                             0.74
                                        0.80
                                                  0.74
                                                             2000
         [[1573
                   34]
```

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

28]]

[365