Lösungen zu den Aufgaben

1. Aufgabe

Laden Sie den Datensatz affairs:

```
affairs_path <- "https://vincentarelbundock.github.io/Rdatasets/csv/AER/Affairs.csv"
affairs <- read_csv(affairs_path)</pre>
```

Lesen Sie das Data Dictionnary hier.

Wir definieren als "Halodrie" eine Person mit mindestens einer Affäre (laut Datensatz).

Bearbeiten Sie folgende Aufgaben:

- 1. Filtern Sie mal nach Halodries!
- 2. Sortieren Sie (absteigend) nach Anzahl der Affären!
- 3. Wählen Sie die Spalten zu Anzahl der Affären, ob es Kinder in der Ehe gibt und die Zufriedenheit mit der Ehe. Dann sortieren Sie dann nach Anzahl der Kinder und *danach* nach der Anzahl der Affären.
- 4. Berechnen Sie die mittlere Anzahl der Affären!
- 5. Berechnen Sie die mittlere Anzahl der Affären pro Geschlecht und aufgeteilt auf Partnerschaften mit bzw. ohne Kinder.
- 6. Geben Sie für jede Person die höhere der zwei Zahlen von Religiösität und Ehezufriedenheit aus!
- 7. Berechnen Sie jeweils das Heiratsalter!

Lösung

Ad 1.

```
affairs %>%
  filter(affairs > 0) %>%
  head(10)
```

1	affairs gender	age	yearsmarried children	religiousness	education	occupation	rating
6	3 male	27	1.500 no	3	18	4	4
12	3 female	27	4.000 yes	3	17	1	5
43	7 male	37	15.000 yes	5	18	6	2
53	12 female	32	10.000 yes	3	17	5	2
67	1 male	22	0.125 no	4	16	5	5
79	1 female	22	1.500 yes	2	14	1	5
122	12 male	37	15.000 yes	4	14	5	2
126	7 female	22	1.500 no	2	14	3	4
133	2 male	37	15.000 yes	2	18	6	4
138	3 female	32	15.000 yes	4	12	3	2

Hinweis: head (10) begrenzt die Ausgabe auf 10 Zeilen, einfach um den Bildschirm nicht vollzumüllen.

Ad 2.

```
affairs %>%
  arrange(-affairs) %>%
  head(10)
```

1	affairs gender	age	yearsmarried children	religiousness	education	occupation	rating
53	12 female	32	10.0 yes	3	17	5	2
122	12 male	37	15.0 yes	4	14	5	2
174	12 female	42	15.0 yes	5	9	4	1
176	12 male	37	10.0 yes	2	20	6	2
181	12 female	32	15.0 yes	3	14	1	2
252	12 male	27	1.5 yes	3	17	5	4
253	12 female	27	7.0 yes	4	14	6	2
392	12 female	32	10.0 yes	2	16	5	5
513	12 female	22	4.0 no	3	12	3	4
516	12 male	27	7.0 yes	1	18	6	2

Ad 3.

```
affairs %>%
  select(affairs, rating, children) %>%
  arrange(children, affairs) %>%
  head(10)
```

affairs rating children

- 0 4 no
- 0 4 no
- 0 3 no
- 0 5 no
- 0 3 no
- 0 5 no
- 0 4 no
- 0 4 no

4 no

0 5 no

Ad 4.

```
affairs %>%
  summarise(affairs_mean = mean(affairs)) %>%
  head(10)
```

affairs_mean

0

1.455907

Ad 5.

```
affairs %>%
 group by(gender, children) %>%
 summarise(affairs_mean = mean(affairs)) %>%
 head(10)
## # A tibble: 4 × 3
## # Groups: gender [2]
## gender children affairs mean
## <chr> <chr> <dbl>
## 1 female no
                        0.838
## 2 female yes
                        1.69
## 3 male no
                        1.01
## 4 male yes
                        1.66
```

```
affairs %>%
 group_by(...1) %>%
  summarise(max(c(religiousness, rating))) %>%
 head (10)
...1 max(c(religiousness, rating))
  4
                                4
  5
                                4
  6
                                4
 11
                                4
 12
                                5
 16
                                5
                                3
 23
                                5
 29
 43
                                5
                                3
 44
Ad 7.
affairs %>%
 mutate(heiratsalter = age - yearsmarried) %>%
 head(10)
 " affairs gender age yearsmarried children religiousness education occupation rating heiratsalter
 4
        0 male
                   37
                               10.00 no
                                                           3
                                                                     18
 5
        0 female
                   27
                                4.00 no
                                                           4
                                                                     14
```

15.00 yes

15.00 yes

0.75 no

1.50 no

0.75 no

15.00 yes

15.00 yes

1.50 no

2. Aufgabe

Importieren Sie den folgenden Datensatz in R:

```
mtcars <- read csv("https://vincentarelbundock.github.io/Rdatasets/csv/datasets/mtcars.csv")</pre>
```

27.00

23.00

17.00

42.00

21.25

30.50

21.25

42.00

17.00

20.50

Übersetzen Sie dann die folgende R-Sequenz ins Deutsche:

```
mtcars %>%
  drop na() %>%
  select(mpg, hp, cyl) %>%
  filter(hp > 100, cyl >= 6) %
  group by(cyl) %>%
  summarise(mpg mean = mean(mpg))
```

0 female

0 male

0 male

0 female

0 female

0 female

0 male

0 male

cyl mpg_mean

- 19.74286
- 15.10000

Lösung

Hey R:

- 1. Nimm den Datensatz mtcars UND DANN
- 2. hau alle Zeilen raus, in denen es fehlende Werte gibt UND DANN
- 3. wähle (selektiere) die folgenden Spalten: Spritverbrauch, PS, Zylinder UND DANN
- 4. filter Autos mit mehr als 100 PS und mit mindestens 6 Zylindern UND DANN
- 5. gruppiere nach der Zahl der Zylinder UND DANN
- 6. fasse den Verbrauch zum Mittelwert zusammen.

3. Aufgabe

Welcher Kennwert ist robust (gegenüber Extremwerten)?

- a. Standardabweichung
- b. Mittelwert
- c. Korrelation
- d. Median
- e. Maximalwert

Lösung

Der Median ist robust. Mittelwertsbasierte Kennzahlen hingegen nicht.

- a. Falsch
- b. Falsch
- c. Falsch
- d. Wahr
- e. Falsch

4. Aufgabe

Welcher Kennwert ist robust (gegenüber Extremwerten)?

- a. Schiefe
- b. Regressionsgewicht
- c. Summe
- d. Korrelation
- e. Interquartilsabstand

Lösung

Der Interquartilsabstand ist robust. Mittelwertsbasierte Kennzahlen hingegen nicht.

- a. Falsch
- b. Falsch
- c. Falsch
- d. Falsch
- e. Wahr

5. Aufgabe

Berechnen Sie den Median der folgenden Datenreihe!

Hinweis: Runden Sie auf zwei Dezimalstellen. Beachten Sie, dass das Dezimalzeichen (Punkt oder Komma) je nach Ihrem System unterschiedlich sein kann.

```
## [1] 2.77 0.01 5.11 0.14 0.65
```

Lösung

Die Antwort lautet 0.65.

6. Aufgabe

Berechnen Sie den Mittelwert der folgenden Datenreihe!

Hinweis: Runden Sie auf zwei Dezimalstellen. Beachten Sie, dass das Dezimalzeichen (Punkt oder Komma) je nach Ihrem System unterschiedlich sein kann.

```
## [1] 7.10 2.46 3.90 0.91 9.62
```

Lösung

Die Antwort lautet 4.8.

In R kann man den Mittelwert z.B. so berechnen:

```
mean(x)
## [1] 4.798
```

7. Aufgabe

Berechnen Sie den Mittelwert folgender Zahlenreihe; ignorieren sie etwaige fehlende Werte. Runden Sie auf zwei Dezimalstellen.

```
## [1] -1.02 -0.08 -0.23 -0.82 0.77 NA
```

Lösung

Der Mittelwert liegt bei -0.28.

Die Antwort lautet -0.28.

In R kann man den Mittelwert z.B. so berechnen:

```
mean(x, na.rm = TRUE)
```

Das Argument na.rm = TRUE sorgt dafür, dass R auch bei Vorhandensein fehlender Werte ein Ergebnis ausgibt. Ohne dieses Argument würde R ein sprödes NA zurückgeben, falls fehlende Werte vorliegen. Dieses Verhalten von R ist recht defensiv, getreu dem Motto: Wenn es ein Problem gibt, sollte man so früh wie möglich darüber deutlich informiert werden (und nicht erst, wenn die Marsrakete gestartet ist...).

8. Aufgabe

Betrachten Sie die Histogramme.

Wählen Sie das Histogramm, welches am deutlichsten die Eigenschaft "symmetrisch" aufweist!

- a. A
- b. B
- c. C
- d. D
- e. E

Lösung

Das Histogramm A zeigt die Eigenschaft symmetrisch am deutlichsten.

- a. Wahr
- b. Falsch
- c. Falsch
- d. Falsch
- e. Falsch

9. Aufgabe

Betrachten Sie die Histogramme.

Wählen Sie das Histogramm, welches am deutlichsten folgende Eigenschaft aufweist:

MW < Md

Hinweis: MW steht für Mittelwert und Md steht für Median.

a. A b. B

- c. C
- d. D

Lösung

Das Histogramm D zeigt die Eigenschaft MW < Md am deutlichsten.

- a. Falsch
- b. Falsch
- c. Falsch
- d. Wahr

10. Aufgabe

Welche Form der Verteilung liegt wohl (am ehesten) für die Variable Geburten je Tag im Monat vor?

- a. linksschief
- b. normalverteilt
- c. rechtsschief
- d. gleichverteilt

Lösung

Die Variable Geburten je Tag im Monat lässt sich am ehesten beschreiben mit der Verteilungsform gleichverteilt.

- a. Falsch
- b. Falsch
- c. Falsch
- d. Richtig

11. Aufgabe

Sei
$$X \sim \mathcal{N}(42, 7)$$
 und $x_1 = 28$.

Berechnen Sie den z-Wert für x_1 !

Hinweis:

• Runden Sie ggf. auf die nächste ganze Zahl.

Lösung

$$x1_z = (x1 - x_mw) / x_sd$$

-2

12. Aufgabe

Welches der folgenden Diagramm hat die größte Streuung, gemessen in Standardabweichung?

- a. A
- b. B
- c. C
- d. alle gleich
- e. keine Antwort möglich

Lösung

Die SD ist am größten in Diagramm C

- a. Falsch. Dieses Diagramm hat die kleinste Streuung
- b. Falsch
- c. Wahr
- d. Falsch. Die Streuungen sind unterschiedlich.
- e. Falsch

13. Aufgabe

Wählen Sie das Diagramm, in dem der vertikale gestrichelte Linie am genauesten die Position des Medians (Md) widerspiegelt.

a. A b. B

c. C d. D

Lösung

Das Diagramm B zeigt den Median am genauesten.

- a. Falsch
- b. Wahr
- c. Falsch
- d. Falsch

14. Aufgabe

Für welche Abbildung gilt, dass der Median kleiner ist als der (zugehörige) arithmetischer Mittelwert? Anders gesagt, gesucht ist $md < \overline{x}$

- a. A
- b. B
- c. C
- d. keine Antwort möglich

Lösung

Der Mittelwert ist i. d. R. in Richtung "des langen Endes" einer Verteilung verschoben, daher C.

Faustregel:

Mittelwert < Median Mittelwert \approx Median

Mittelwert > Median

Bei (sehr) schiefen Daten beschreibt der Median (blau, gestrichelt) den Schwerpunkt der Beobachtungen besser als der arithmetische Mittelwert (rot).

- a. Falsch
- b. Falsch
- c. Wahr
- d. Falsch