Plankton Barbecue

Juan D. Chacon

Simon Fraser University Spring 2019

Introduction

Natural Thermal Convection

Those plumes comming out from our BBQ grill are caused by differences on density consequence of temperature variations.

Governing Equations

• (\approx) Momentum:

$$\frac{\partial \omega}{\partial t} + \frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y} = \frac{1}{Re} \nabla^2 \omega + \beta g \frac{\partial T}{\partial x}$$

• Stream fnc - Vorticity - Velocity:

$$\nabla^2 \psi = -\omega, \quad u = \frac{\partial \psi}{\partial y}, \quad v = -\frac{\partial \psi}{\partial x}$$

• Energy:

$$\frac{\partial T}{\partial t} + (\overrightarrow{u} \cdot \nabla T) = \frac{1}{RePr} \nabla^2 T$$

• (Bonus!!!) Mass Transfer:

$$\frac{\partial c}{\partial t} + (\overrightarrow{u} \cdot \nabla c) = \frac{1}{Pe} \nabla^2 c$$

Where the last Eq. models a substance moving with the fluid.

Method

To solve numerically the equations ...

- Set up the initial conditions for ψ , u and v.
- 2 Solve the vorticity equation. (Exp FTCS).
- Solve the Poisson equation for ψ . (Std. discr. ∇^2).
- Compute the new velocity from ψ .
- Solve the energy equation for T. (Exp FTCS).
- 6 Solve the mass transfer equation. (Exp FTCS).
- Go to step 2.

BBQ Grill: Air Thermal Convection

As benchmark parameters we chose:

$$Re = 4365.30, Pr = 0.72, Pe = 0.07$$

For a rectangular cavity width dimensions: 0.65m height, 2.6m wide, and normalized temperatures $Tc = 292.5^{\circ}K$, $Th = 293.5^{\circ}K$.

The Figure 2 shows the normalized velocities, temperature and concentration evolution for several times, some remarkable facts are:

- Buoyancy force makes rise the warmer water from the bottom.
- There are cell formations even for early times.
- Iso-thermal and Iso-concetration regions.

Cells and Spatial Resolution

The Figure 1 shows that the simulation results depend on the discretization size. In the coarser discretization only 4 cells Rayleigh-Benard cells form, compared to 6 in the finer one. This indicates that some discretizations cannot completely resolve the structure of the flow.

Figure 1: Cells on grids: (top) $\Delta x = 156 \times 10^{-3}$, $\Delta y = 62.5 \times 10^{-3}$ (bottom) $\Delta x = 39 \times 10^{-3}$, $\Delta y = 15.4 \times 10^{-3}$.

Figure 2: Air thermal convection and mass transfer normalized velocity, temperature and mass concentration for different times.

Numerical Convergence

Due to the high Reynolds number the experimental study for the convergence rates presents some challenges:

• The in the grid size cause variation in the direction of rotation in the cells.

• To get a reliable reference it is necessary a both very fine grid and pretty small time step.

And the plankton?

- Pythoplackton is the base of the oceanic food chain, it sinks in the oceans upto 160m per year (passive swimmers).
- The temperature in the ocean varies upto $10^{\circ}K$ in a year.
- The buoyancy forces keep them it specific regions in the ocean.

We wanted to study the effects of a variation of $2^{\circ}K$ in a big rectangular area in the sea (160m deep, 1.6km wide) with planktonic organisms in the bottom, getting as parameters:

$$Re = 184269, Pr = 7.56, Pe = 6965.39$$

Although the Reynolds number in enormus, some general structure of this phenomena may be preserved as the number of cells or the average concetration in specific areas.

Figure 3:Thermal convection with planktonic mass transfer in the sea.

Final Thoughts!

Conclusions

- The behavior of the thermal cells depends on the size of the spatial discretization.
- Even with high Reynolds numbers the implemented method seems to show properly the general structure of the fluid.

Pendings

- A solver using the projection method was considered, however, the stagered grid was an issue for the energy equation.
- An implentation using the second order FTBS scheme will help to deal with higher Reynolds numbers.