Projet AOA sujet 10

 $\begin{array}{c} {\rm ALEXANDRE~Julien} \\ {\rm julien.alexandre@isty.uvsq.fr} \end{array}$

 $\begin{aligned} & VIRLOGEUX~Marin\\ \texttt{marin.virlogeux@isty.uvsq.fr} \end{aligned}$

LEDOYEN Paul paul.ledoyen@isty.uvsq.fr

DRISSI Mohamed Reda reda-mohamed@isty.uvsq.fr

21 mars 2018

Table des matières

I	Introd	uction		
	I.1	Specs de la machine utilisée		
	I.2	Système		
	I.3	Topologie du système		
	I.4	Code de la boucle		
II	Determination des paramètres			
	II.1	Taille des données		
	II.2	Déterminer le warmup		
		II.2.1 L1 : taille 90		
		II.2.2 L2: taille 256		
		II.2.3 L3: taille 1448		
		II.2.4 RAM : taille 65536		

I Introduction

I.1 Specs de la machine utilisée

- CPU: intel core i7 6700K 4.0GHZ 4 physical cores, 8 logical(HyperThreading©) turbo boost off
- RAM : Corsair CMK16GX4M2B3000C15 Vengeance LPX 16GB DDR4 3000MHz C15 XMP 2.0
- Stockage : Samsung 850 PRO SSD 512GB

I.2 Système

— OS: Debian 9.4 Stretch (stable) x86 64

— Kernel: 4.9.0-6-amd64

— gcc : $6.3.0\ 20170516$ (Debian 6.3.0-18+deb9u1)

— icc: 18.0.1 20171018

I.3 Topologie du système

FIGURE 1 – Topologie générée par lstopo

I.4 Code de la boucle

II Determination des paramètres

II.1 Taille des données

Notre boucle utilise un tableau de double de taille $n \times n$ chaque case prend 8 octets.

Donc le coût total (en mémoire) de notre boucle sera de $4n^2$.

Si nous voulons utiliser L1, L2, L3 ou la ram il faut trouver l'intervalle de chacun Soit T la taille maximale (qui serait en puissance de 2 alors $T=2^t$):

$$4n^2 \le 2^t \tag{1}$$

$$n \le 2^{\frac{t-2}{2}} \tag{2}$$

Les données des différents caches et ram sont

- L1 : 32Ko = 2^{15} octets - L2 : 256Ko = 2^{18} octets - L3 : 8192Ko = 2^{23} octets - RAM : 16Gb = 2^{34} octets

Mémoire	2^t	Taille	coût
L1	15	90	$31.64 \mathrm{Ko}$
L2	18	256	256Ko
L3	23	1448	8190Ko
RAM	34	65536	$16\mathrm{Gb}$

II.2 Déterminer le warmup

II.2.1 L1: taille 90

II.2.2 L2: taille 256

II.2.3 L3: taille 1448

II.2.4 RAM: taille 65536