

REAL POSITIVE SEMIDEFINITE MATRICES

Definition

Let $A \in \mathbf{S}^n$ (i.e., $A \in \mathbf{R}^{n \times n}$ and symmetric). A is positive definite if

$$x^{\top}Ax > 0$$
 for all nonzero $x \in \mathbf{R}^d$

A is positive semidefinite (or nonnegative definite) if

$$x^{\top}Ax > 0$$
 for all $x \in \mathbf{R}^d$

Notation

We denote the set of positive definite d by d matrices by \mathbf{S}_{++}^d . We denote the set of positive semidefinite d by d matrices by \mathbf{S}_{+}^d .

