Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX

Disciplina: Matrizes e Sistemas Lineares. Semestre: 2020/1 Prof. Me. Luiz C. M. de Aquino

Lista de Exercícios II

1. Resolva o sistema de equações lineares:

$$\begin{cases} x + 8z = 4 \\ x + 2y + 3z = 0 \\ 2x + 5y + 3z = -2 \end{cases}$$

2. Uma empresa de transporte possui três tipos de caixa: A, B e C. Cada caixa pode transportar simultaneamente três tipos de produtos (X, Y e Z) na quantidade descrita pela tabela abaixo. Com base nessas informações, quantas caixas de cada tipo são necessárias para transportar 590 unidades de X, 255 de Y e 480 de Z?

	X	Y	Z
A	10	5	4
B	6	3	8
C	20	8	16

- 3. Um fabricante de móveis produz cadeiras, mesinhas de centro e mesas de jantar. Cada cadeira leva 10 minutos para ser lixada, 6 minutos para ser tingida e 12 minutos para ser envernizada. Cada mesinha de centro leva 12 minutos para ser lixada, 8 minutos para ser tingida e 12 minutos para ser envernizada. Cada mesa de jantar leva 15 minutos para ser lixada, 12 minutos para ser tingida e 18 minutos para ser envernizada. A bancada para lixar fica disponível 1.340 minutos por semana, a bancada para tingir 940 minutos por semana e a bancada para envernizar 1.560 minutos por semana. Quantos móveis devem ser fabricados (por semana) de cada tipo para que as bancadas sejam plenamente utilizadas?
- 4. Considere as matrizes $A = \begin{bmatrix} 1 & -1 & 2 \\ 4 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ e $b = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$. Determine:
 - (a) as matrizes $L = \begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix}$ e $U = \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$ tais que A = LU;
 - (b) a matriz $y_{3\times 1}$ tal que Ly = b;
 - (c) a matrix $x_{3\times 1}$ tal que Ux = y.

Por fim, verifique que a matriz $x_{3\times 1}$ encontrada no item (c) é solução da equação Ax = b.

5. Sejam as matrizes $A_{n\times n}$, $x_{n\times 1}$ e $\bar{0}_{n\times 1}$. Prove que se as matrizes x_1 e x_2 (ambas $n\times 1$) são soluções da equação $Ax=\bar{0}$, então a matriz $\alpha x_1+\beta x_2$, com α , $\beta\in\mathbb{R}$, também é uma solução dessa equação.