Aufgabe 1

Im Folgenden bezeichnet $a^i = a \dots a$ und ε steht für das leere Wort (d. h. insbesondere $a^i = \varepsilon$).

Die Menge $\mathbb{N}_0 = \{0,1,2,\ldots\}$ ist die Menge aller nicht-negativer Ganzzahlen.

Die Sprachen L_1, \ldots, L_{12} seien definiert als:

(a) Ordnen Sie jedem der folgenden nichtdeterministischen endlichen Automaten N_j , $j=1,\ldots,6$, (die alle über dem Alphabet $\Sigma=\{a\}$ arbeiten) **jeweils eine** der Sprachen $L_i\in\{L_1,\ldots,L_{12}\}$ zu, sodass L_i , genau die von N_i , **akzeptierte Sprache** ist.

```
- N_1 = L_6 (mindestens ein a)

- N_2 = L_8 (ungerade Anzahl an a's: 1,5,7,...)

- N_3 = L_2 (gerade Anzahl an a's: 2,4,6,...)

- N_4 = L_{12} (leeres Wort)

- N_5 = L_8 (ungerade Anzahl an a's: 1,5,7,...)

- N_6 = L_11 (die Sprache akzeptiert nicht)
```

(b) Zeigen Sie für eine der Sprachen L_1, \ldots, L_{12} dass diese **nicht regulär** ist.

```
L_10 = \{ a^n \mid n \in \mathbb{N}_0, n \text{ ist Primzahl } \}
```

ist nicht regulär, da sich sonst jede Primzahl p einer bestimmten Mindestgröße j als Summe von natürlichen Zahlen u+v+w darstellen ließe, so dass $v\geq 1$ und für alle $i\geq 0$ auch u+iv+w=p+(i1)v prim ist. Dies ist jedoch für i=p+1 wegen p+(p+11)v=p(1+v) nicht der Fall. a

 $^a https://www.informatik.hu-berlin.de/de/forschung/gebiete/algorithmenII/Lehre/ws13/einftheo/einftheo-skript.pdf$

(c) Konstruieren Sie für den folgenden nichtdeterministischen endlichen Automaten (der Worte über dem Alphabet $\Sigma = \{a,b\}$ verarbeitet) einen äquivalenten deterministischen endlichen Automaten mithilfe der Potenzmengenkonstruktion. Zeichnen Sie dabei nur die vom Startzustand erreichbaren Zustände. Erläutern Sie Ihr Vorgehen.

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Af7iooyca

Zustandsmenge	Eingabe a	Eingabe <i>b</i>
$Z_0 \{z_0\}$	$Z_1 \{z_1\}$	$Z_2 \{z_0, z_3\}$
$Z_1 \{z_1\}$	$Z_3\{z_2\}$	Z_T
$Z_2\{z_0,z_3\}$	$Z_4 \{z_1, z_4\}$	$Z_2\{z_0,z_3\}$
$Z_3 \{z_2\}$	$Z_5 \{z_2, z_4\}$	Z_T
$Z_4 \{z_1, z_4\}$	$Z_3 \{z_2\}$	Z_T
Z_5 $\{z_2, z_4\}$	Z_5 $\{z_2, z_4\}$	Z_T

Der Automat auf flaci.com (FLACI: Formale Sprachen, abstrakte Automaten, Compiler und Interpreter) Ein Projekt der Hochschule Zittau/Görlitz und der Pädagogischen Hochschule Schwyz: flaci.com/Apkyuo4ja