Mathematik II für Studierende der Informatik (Analysis und Lineare Algebra)

Thomas Andreae, Stefan Geschke, Mathias Schacht, Fabian Schulenburg

Sommersemester 2014 Blatt 3

Hinweis: Die Sinus- und die Cosinusfunktion werden als bekannt vorausgesetzt; grundlegende Eigenschaften dieser Funktionen findet man unter anderem in Abschnitt 2.5.1 des Skripts. Für das gesamte Übungsblatt wird insbesondere als bekannt vorausgesetzt, dass die Funktionen sin und cos auf ganz \mathbb{R} stetig sind. Außerdem wird als bekannt angenommen, dass die Wurzelfunktion $x \mapsto \sqrt{x}$ auf der Menge der nichtnegativen reellen Zahlen stetig ist.

A: Präsenzaufgaben am 17. April 2014

1. Die Funktion $f:[0,1]\to\mathbb{R}$ sei definiert durch

$$f(x) = \begin{cases} 1 & \text{, falls } x = \frac{1}{n} \text{ für ein } n \in \mathbb{N} \\ x & \text{, sonst.} \end{cases}$$

a) Geben Sie die folgenden Grenzwerte an (Ergebnis genügt!) bzw. begründen Sie deren Nicht-Existenz.

(i)
$$\lim_{x \to 0} f(x)$$

(i)
$$\lim_{x \to 0} f(x)$$
 (ii) $\lim_{x \to \frac{1}{2}} f(x)$ (iii) $\lim_{x \to 1} f(x)$

(iii)
$$\lim_{x \to 1} f(x)$$

b) An welchen Stellen ist f unstetig?

2. Skizzieren Sie die Funktionen $f: \mathbb{R} \to \mathbb{R}$ und $g: \mathbb{R} \to \mathbb{R}$, die durch

$$f(x) = |x|$$
 und $g(x) = \lfloor x \rfloor$

definiert sind. Ist f bzw. g auf ganz $\mathbb R$ stetig? Geben Sie – falls vorhanden – die Unstetigkeitsstellen

3. Berechnen Sie die folgenden Grenzwerte, indem Sie ausnutzen, dass sowohl die Sinus- als auch die Wurzelfunktion stetig sind.

(i)
$$\lim_{n \to \infty} \left(\sin \left(\frac{5n^2 + 2n + 1}{4n^2 + n + 3} \right) \right)$$
 (ii) $\lim_{n \to \infty} \sqrt{\frac{5n^2 + 2n + 1}{4n^2 + n + 3}}$

(ii)
$$\lim_{n \to \infty} \sqrt{\frac{5n^2 + 2n + 1}{4n^2 + n + 3}}$$

4. Wahr oder falsch? Sind f und g an der Stelle x_0 unstetig, so ist auch stets f+g an der Stelle x_0 unstetig.

B: Hausaufgaben zum 24. April 2014

1. a) Die Funktion $f:[0,10]\to\mathbb{R}$ sei gegeben durch

$$f(x) = \begin{cases} \frac{3}{2}x + 2 & \text{, falls } 0 \le x < 2\\ -x + 5 & \text{, falls } 2 \le x < 4\\ \frac{1}{2}x - 1 & \text{, falls } 4 \le x < 6\\ x - 3 & \text{, falls } 6 \le x < 8\\ 2x - 11 & \text{, falls } 8 \le x \le 10. \end{cases}$$

Zeichnen Sie den Graphen von f und geben Sie die Unstetigkeitsstellen von f an.

b) Skizzieren Sie die Funktion $g: \mathbb{R} \to \mathbb{R}$, die durch g(x) = x - |x| gegeben ist. Weisen Sie nach, dass für alle $x \in \mathbb{R}$ gilt: g ist genau dann stetig in x, wenn $x \notin \mathbb{Z}$ gilt.

2. a) Es sei

$$a_n = \frac{\sqrt{3n^2 - 2n + 5} - \sqrt{n}}{\sqrt{n^2 - n + 1} + 4n}$$
 $(n = 1, 2, ...).$

Man berechne $\lim_{n\to\infty} a_n$. An welcher Stelle der Rechnung wird benutzt, dass die Wurzelfunktion $x\mapsto \sqrt{x}$ stetig ist?

b) Berechnen Sie

$$\lim_{n \to \infty} \left(\cos \left(\frac{\sqrt{10n^2 - n} - n}{2n + 3} \right) \right).$$

An welcher Stelle der Rechnung wird benutzt, dass die Cosinusfunktion stetig ist? Wo wird die Stetigkeit der Wurzelfunktion benutzt?

- **3.** Gegeben seien zwei reelle Funktionen f und g. Es gelte: f ist an der Stelle x_0 stetig und g ist an der Stelle $y_0 = f(x_0)$ stetig. Zeigen Sie, dass dann auch die Funktion $g \circ f$ an der Stelle x_0 stetig ist. ("Die Nacheinanderausführung zweier stetiger Funktionen ist wiederum stetig.")
- 4. Die Funktionen $f:\mathbb{R}\to\mathbb{R}$ und $g:\mathbb{R}\to\mathbb{R}$ seien gegeben durch

$$f(x) = \begin{cases} \cos\left(\frac{1}{x}\right) & \text{, für } x \neq 0 \\ 0 & \text{, für } x = 0 \end{cases} \quad \text{und} \quad g(x) = \begin{cases} x \cdot \cos\left(\frac{1}{x}\right) & \text{, für } x \neq 0 \\ 0 & \text{, für } x = 0. \end{cases}$$

Untersuchen Sie, für welche $x \in \mathbb{R}$ diese Funktionen stetig sind. (Insbesondere ist also zu untersuchen, ob diese Funktionen im Punkt $x_0 = 0$ stetig sind.)