数字逻辑与数字系统

```
数字逻辑与数字系统
第一章 开关理论基础
  数制与码制
     BCD码
       有权BCD码
          8421码
          2421码
       无权码 (余3码)
     可靠性编码
       格雷码
       奇偶校验码
  逻辑函数及其描述工具
第二章 组合逻辑
第三章 时序逻辑
  双稳态触发器 (Flip-Flop)
     RS触发器
     电平 (同步) D 触发器(锁存器)
     边沿D触发器 (寄存器)
     负边沿JK触发器
     上升沿T触发器
  时序电路的分析
     时序电路的特点
     同步时序电路的分析方法
   锁存器和寄存器
     锁存器
     寄存器
     移位寄存器
       移存型计数器
          环型计数器 (Ring Counter)
          扭环形计数器 (Johnson Counter)
          中规模 8位双向移位移存器 - - 74LS299
   中规模计数器 (Counter)
     集成同步二进制计数器
       四位二进制加计数器 (74LS161/163)
          容量扩展
       同步二进制可逆计数器 (74191)
       集成同步十进制计数器
       用中规模计数器构成任意进制计数器
          清零法
     计数器应用
       顺序脉冲 (节拍) 发生器
       序列信号发生器
   同步时序电路的设计
附
```

第一章 开关理论基础

数制与码制

• 对N项信息编码,要求二进制代码位数n满足

$$2^n \geq N$$

• 常用编码:

BCD码

有权BCD码

8421码

• 定义: 用0000~1001代表0~9, 1010~1111冗余。

Decimal	Binary	BCD(8421)
0	0000	0000
1	0001	0001
2	0010	0010
3	0011	0011
4	0100	0100
5	0101	0101
6	0110	0110
7	0111	0111
8	1000	1000
9	1001	1001

- 8421为4位编码的权重,例:3的8421码为0011,那么有 $0 \times 8 + 0 \times 4 + 2 \times 1 + 1 \times 1 = 3$
- 对于多位数,直接按位转换,eg: $(28)_{10} = (00101000)_{8421}$
- 运算如果出现进位或算出冗余码,需要加6(0110)

eg:

$$8+9=17$$
 $1000+1001=10001$ 计算中出现进位,需要加6 $10001+0111=10111=000101111$ $(17)_{10}=(00010111)_{8421}$

2421码

- 权值从高到低为2, 4, 2, 1
- 不允许出现0101~1010的6个编码
- 取9的自补码,因此执行十进制数相加能正确产生进位信号

Decimal	2421码
0	0000
1	0001
2	0010
3	0011
4	0100
5	1011
6	1100
7	1101
8	1110
9	1111

无权码 (余3码)

• 将8421每个码加0011即可的余3码

• 冗余码为: 0000、0001、0010、1101、1110、1111

• 也是9的自补码

Decimal	余3码
0	0011
1	0100
2	0101
3	0110
4	0111
5	1000
6	1001
7	1010
8	1011
9	1100

可靠性编码

为减少错误的产生,或者能检测出错误 的发生,所设定的码制。

格雷码

- 性质: 相邻两个编码只有一位不同, 避免编码按顺序增加时多位变化产生的传输错误
- 公式:

$$\begin{cases} G_{n-1} = B_{m-1} \\ G_i = B_i \oplus B_{i+1} \end{cases}$$

eg: 将1101转化为格雷码

最高位1不变,第三位: $1\oplus 1=0$,第二位 $1\oplus 0=1$,第一位 $0\oplus 1=1$,则B: 1101,G: 1011

Decimal	Binary	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

奇偶校验码

- 由两部分组成:信息位和检验位
- 编码方式: 奇校验(信息位中1的个数为奇数,校验位为0)、奇校验(信息位中1的个数为偶数,校验位为0)
- 特点
 - 1. 编码简单
 - 2. 只有检错能力, 没有纠错能力
 - 3. 只能发现单错,不能发现双错

逻辑函数及其描述工具

1. 与运算 (逻辑乘)

函数式: $F = A \cdot B \cdot C$

逻辑图

VHDL: $F \le A$ and B and C

2. 或运算

函数: F = A + B + C

逻辑图

VHDL: F <= A or B or C

3. 非运算

函数: $F=\overline{A}$

逻辑图

VHDL: F<= not A

4. 复合逻辑运算

1. 与非

$$F = \overline{AB}$$

F <= A nand B

逻辑图

2. 或非

$$F = \overline{A + B}$$

F <= A nor B

3. 与或非运算

$$F = \overline{AB + CD}$$

4. 异或

$$F=A\oplus B=A\overline{B}+\overline{A}B$$

F<=A xor B

逻辑图

输入变量有奇数个1,则输出1,否则输出0,可以做奇偶校验

同时对于异或,其中一个输入C作为控制端,输出 $F=C\oplus A$

1. 当
$$C=0$$
时, $F=A$

2. 当
$$C=1$$
 时, $F=\overline{A}$

可控制输出是否取反

下图为二进制码转格雷码

第二章 组合逻辑

没整

第三章 时序逻辑

双稳态触发器 (Flip-Flop)

RS触发器

- 低有效RS触发器: R、S同时为0称为不定状态(实际不定只会出现在RS=00转化到保持,即RS=11的时候才会出现)
- 次态方程 (特征方程)

$$Q^{n+1} = \overline{S} + RQ^n$$

$$S + R = 1 \quad \text{约束条件}$$

Q^n	Q^{n+1}	R	S
0	0	X	1
0	1	1	0
1	0	0	1
1	1	1	Х

- 交叉耦合的与非门,S和Q在同一个门对应
- 高有效RS触发器: 类比低有效
- 次态方程:

$$Q^{n+1} = S + \overline{R}Q^n$$
 $S \cdot R = 0$ 约束条件

- 交叉耦合的或非门,S和 \overline{Q} 在同一个门对应
- 问题:有不定状态(RS有有约束)、不能定时控制

电平 (同步) D 触发器(锁存器)

- En = 0时,维持原状态。 En = 1时,**次态方程**: $Q^{n+1}=D$
- 在RS触发器前加入两个与非门,防止RS同时有效出现不定状态
- 空翻:控制信号有效期间内,输出反转多于一次(出现空翻一般认为出现了干扰)
- 问题:有空翻现象、逻辑功能简单

边沿D触发器 (寄存器)

- 相对于锁存器,改电平使能为边沿触发
- 采用上升沿触发。 触发器的次态取决于cp边沿前一瞬间的输入
- ullet 双D边沿触发器,多出 R_d S_d 功能如下

R_d	S_d	功能
1	1	工作
1	0	置位
0	1	清零
0	0	不定

ullet 可以看出 R_d S_d 优先级高,称为异步,不需要时钟配合

• 使用:二进制计数(或二分频)

$$Q^{n+1} = \overline{Q^n}$$

负边沿JK触发器

• 状态方程

$$Q^{n+1} = J\overline{Q^n} + \overline{K}Q^n$$

• 功能: J=K=0具有维持功能, J=K=1具有状态翻转功能(来一个时钟(CP)下降沿,翻转一次), JK不等,不管现态如何次态与相同状态表:

J	K	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

• 和<u>边沿触发器</u> 类似,有清零和置位

构成

上升沿 T 触发器

• 逻辑: $Q^{n+1} = T\overline{Q^n} + \overline{T}Q^n = T \oplus Q^n$

• 对比JK,把JK的J和K并在一起接T (但触发不同,一个上升沿触发,一个下降沿)

类似的jk还可变为D触发器

• T=0 保持, T=1触发器在CP作用下翻转

T	Q^n	Q^{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

时序电路的分析

时序电路的特点

• 逻辑功能:任一时刻的输出状态,不仅取决于当时的输入信号,而且与前一时刻电路的状态有关。

• 电路结构:组合电路+触发器。

- 触发方式分类:
 - 。 同步时序电路: 所有触发器共用一个时钟信号。
 - 。 异步时序电路: 触发器无统一的时钟信号。
- 输出方式分类:
 - 。 莫尔型 (Moore) : 输出 Y 仅与电路的现态有关 (式中无x)
 - 米勒型 (Mealy) : 输出 Y 是电路现态和外部输入量的函数。
- 时序电路可以用三个方程描述:

$$Y=F_1(X,Q^n)$$
 输出方程 $W=F_3(X,Q^n)$ 激励方程 $Q^{n+1}=F_2(W,Q^n)$ 状态方程

同步时序电路的分析方法

- 目的:得到电路状态、外部输出的变化规律,逻辑功能。
- 步骤
 - 1. 确定输入、输出信号
 - 2. 输出方程、驱动方程、状态方程
 - 3. 计算真值表
 - 4. 状态图
 - 5. 确定电路逻辑功能
- 状态图:

主循环:状态图中状态多的循环有效状态:主循环中的状态。

。 无效状态: 不在主循环中的状态。

自启动:无效状态在CP脉冲作用下能进入主循环。箭头旁1/0意义(具体见状态图):输入1,输出0

• 如果上电后只能在无效循环里称电路为挂起

• 时序图 (波形图): 在CP和外部输入的作用下, 电路状态、输出随时间变化的波形图。

X	Q_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	0
0	1	1	0	0	0
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	0	0
1_	1	1	1	0	0

状态图

• 功能描述: 序列信号检测器, 该电路可重叠检测序列101(X输入依次为1、0、1后会被检测)

• 可重叠: 如果输入1010101, 会输出3个1, 其中输入的第二、第三个1被重复使用检测

锁存器和寄存器

锁存器

• 用来暂时存放二进制代码或数据的电路。

• 典型芯片:集成三态输出8位锁存器74LS373

	74LS	373	
3	DO	00	2
4	DI	Q0	5
7	D2	02	6
8	D3	Q1 - Q2 - Q3 - Q4 - Q5 - Q6 - Q7 -	9
13	D4	04 -	12
14	D5	Q5 -	15
1/	D6	Q6 -	16
18	D7	Q7 -	19
1 0	OE LE		

OE	LE D(输入)	Q(输出)
0	1 D7~D0	D7~D0
0	0 X	输出保持
1	X X	高阻态

• 引脚功能

D:数据输入G:输入使能Q(LE):数据输出OE:输出使能

• 锁存器使用:输入有效数据的稳定滞后于锁存信号(门先打开,在打开的时间段内,输入信号达到稳定即可)

寄存器

• 用来暂时存放数据或代码

• 典型芯片:集成三态输出8位寄存器74LS374

OC	CP D(输入)	Q(输出)
0	↑ D7~D0	D7~D0
0	≯ X	输出保持
1	X X	高阻态

• 寄存器使用:输入的有效数据的稳定先于打入脉冲

移位寄存器

• 在CP作用下,将所存的代码移至紧邻的左一位或右一位

$$Q_0^{n+1} = D \quad Q_1^{n+1} = Q_0^n \quad Q_2^{n+1} = Q_1^n \quad Q_3^{n+1} = Q_2^n$$

- 可用于串并转换
- 双四位移位寄存器CC4015

	CC401:	5(1/2)	
15	D	00	13
	ם ד	Q0 Q1	12
1	CLK	02	11
14	RST	Q2 - Q3 -	2
	Kol	Q5	

D: 串行输入

CLK: 时钟

RST: 异步清零

Q0~Q3: 输出(Q0-->Q3)

双四位移位寄存器

• 工作示意:可用JK触发器或D触发器构成移位寄存器,实现串行转并行

移存型计数器

环型计数器 (Ring Counter)

• 将移存器的最后一级输出反馈到第一级的输入

• 取状态只有一个 1或0 的为主循环, 4进制计数器。不需要译码

- 特点
 - ∘ n 位移存器,可构成模 M = N 的环形计数器。
 - 。 缺点: 无自启动能力,电路利用率不高。在计数开始之前,预置 $Q_0Q_1Q_2Q_3=1000$,进入主循环。
 - 。 优点: 不需要译码器, 输出顺序脉冲。

扭环形计数器 (Johnson Counter)

• 将移存器的最后一级输出反相后接到第一级的输入。

※电路结构:

• 取格雷码计数状态为主循环,模 M = 8 的计数。

- 电路特点
 - 。 优点:
 - 扭环形计数器的模 M = 2N , 提高了电路利用率;
 - 电路状态译码时不会产生竞争 冒险现象。
 - 。 缺点:
 - 无自启动能力。在异步清零0000,进入主循环

中规模 8位双向移位移存器 - - 74LS299

• 芯片示意

74LS299的逻辑符号

- 说明:
 - R_D 异步清零
 - \circ G_2 G_1 控制数据端口是输入还是输出:
 - $G_2 = G_1 = 0$ 输出引脚
 - 。 CP: 上升沿触发
 - S_1 S_0 控制四种工作方式: 保持(00), 并行置数(11), 右移(01), 左移(10)

- 。 工作时:右移为例,数据端口统一右移,最右侧H通过右移串行输出 Q_H 移出;同时,A通过左边右移串行输入 S_R 移入
- 并行置数 时钟上升沿把数据端口八个数存储

		输入信	号			- 响应操作			
Rd	G_2	G1	S_1	S_0	CP				
0	0	0	×	×	×	清零,Q _A ~Q _H → I/O _A ~ I/O _H 输出低电平			
1	×	×	1	1	†	并行置数,I/O _n → Q _n			
1	0	0	0	1	†	右移, $S_R \rightarrow Q_A$, $Q_A \rightarrow Q_B$, Q_H 右移出, $Q_A \sim Q_H \rightarrow I/O_A \sim I/O_H$			
1	0	0	1	0	†	左移, S _L →Q _H , Q _H →Q _G , Q _A 左移出,Q _A ~Q _H →I/O _A ~I/O _H			
1	0	0	0	0	×	保持,Q _A ~ Q _H 输出保持不变,Q _A ~ Q _H →I/O _A ~ I/O _H			

• 应用: 7位并行转串行 (图中 $D_0\sim D_6$ 七位按顺序 $D_6D_5D_4D_3D_2D_1D_0$)

• 应用: 8位串行转并行

移位同样可以看作幂运算,左移n位乘 2^n 右移除 2^n

中规模计数器 (Counter)

集成同步二进制计数器

四位二进制加计数器 (74LS161/163)

- 不同
 - 。 74LS161采用异步清零方式。
 - o 74LS163采用同步清零方式。(需要时钟触发)

• 说明:

o CR: 异步清零

- LD(Load): 低有效,并行置数端(同步置数),把输入直接置到输出
- 。 EP、ET: 使能, 高有效, 同时有效开始计数, 从0000到1111
- 。 CO: 进位输出, 计数到1111后, 进位产生高电平1 (到1111就变成1)
- 。 使能端有一个为0, 进入保持状态, 不计数
- 。 记录时钟上升沿个数
- 。 对于特殊情况,处于保持状态且输出为1111,对于进位输出,如果 ET=1,那么进位输出为1,否则为0,此时相当于 $CO=ET\cdot Q_3Q_2Q_1Q_0$
- 。 计数器型号: 奇数结尾都为16进制, 偶数10进制

容量扩展

- 用四位二进制计数器构成 $4 \cdot n$ 位 二进制计数器
- 同步级联 (只适用于有使能端计数器)
- CP 同时接在各片计数器的时钟输入端
- 级联步骤:
 - 1. 排列计数器高低位的顺序;
 - 2. 找到低位向高位的进位信号;

同步二进制可逆计数器 (74191)

• 逻辑功能: 计数器可逆,异步置数,计数器状态可控,进位(借位)负脉冲输出,最大(最小)标志输出。

- 说明:
 - o En使能,低有效
 - o Max/Min 是最大或最小状态标志
 - RCo: 进位或借位, En、RCo: 用于同步级联。:
 - 加法计数时, 计数到1111, 最大最小标志为1时, 该位为0
 - 。 \overline{U}/D : 控制加计数或减计数,低电平为U(Up)有效 加法计数,反之D(Down) 有效,减法计数
 - 。 LD: 并行置数, 异步
 - 。 特殊情况, 如计数到1111后使能无效, 不再计数或进位
 - En = 0, $\max / \min = 1$, $R_{Co} = 0$
 - En=1, $\max / \min = 1$, $R_{Co}=1$ 停止计数,无效电平

CP	En	LD	U/D	工作状态
X	1	1	X	保持
X	X	0	X	预置数
	0	1	0	加法计数
	0	1	1	减法计数

注意: RCo有效的只有半个时钟周期 (实际是通过Max/Min和时钟与得到)

• 级联:构成 4×n 位 计数器

不要使用Max/Min做级联

集成同步十进制计数器

• 有三种:

74160: 异步清零方式。74162: 同步清零方式。

○ 74190: 单时钟十进制同步可逆计数器, 其引脚排列图和逻辑功能示意图与74191相同。

• 端口功能可以类比161

		输		,-	入					输	*	出	i	CT7/I C1/A
\overline{CR}	LD	P	T	CP	D_3	D_2	D_1	D_0	Q_3	Q_2	Q_1	Q_0	CO	CT74LS160
0	X	X	X	X	X	X	X	X	0	0	0	0	0	异步置 0
1	0	×	X	1	d_3	d_2	d_1	d_0	d_3	d_2	d_1	d_0		$CO = T Q_3 \overline{Q}_2 \overline{Q}_1 Q_0$
1	1	1	1	1				X		计	娄			$CO = Q_3 \overline{Q}_2 \overline{Q}_1 Q_0$
1	1	0	X	X	X	X	X	×	1	保	挟	宇		$CO = T Q_3 \overline{Q}_2 \overline{Q}_1 Q_0$
1	1	×	0	X	X	X	X	×	1	保	丰	宇	0	

• 级联可组成8421码100进制

用中规模计数器构成任意进制计数器

方法:

清零法

- 自然态序M进制计数器 (0~M-1), 利用复位端和置数端(load 0000)实现归零。
 - 1. 用同步复位端 (置数端) 归零 (在M-1状态复位)
 - 2. 用异步复位 (置数端) 归零 (在M状态复位): 亚稳态。

计数器应用

顺序脉冲 (节拍) 发生器

• 组成: 计数器+译码电路

• 计数器的M个状态,产生M路脉冲

- 1. 环形计数器构成的节拍发生器
- 特点:
 - 。 结构简单, 不必附加译码电路。
 - 但使用的触发器数目多,M路顺序脉冲用了M个触发器。

直接输出, 不需译码

2. 扭环形计数器构成的节拍发生器

匹配的译码器应另行设计。

- 可以看出是格雷码计数,不会有竞争冒险,消除毛刺
- 特点:
 - 。 计数器采用扭环型计数器可从根本上消除竞冒险现象,
 - 。 译码电路简单。
 - 。 但电路利用率较低

3. 自然态序计数器构成的节拍发生器

注: 138 38译码器; 191异步置数计数器

• 不是格雷码,会有毛刺

- 解决:
 - 控制使能端
 - 不用自然态序计数,用格雷码

利用计数器等,和数据选择器组合,输出循环的序列信号,例如:

同步时序电路的设计

- 关键:
 - 。 确定应有的状态转换规律;
 - 根据状态转换规律,求得触发器的激励信号表达式。
- 步骤:
 - 1. 设计要求
 - 2. 原始状态图
 - 3. 化简为最简状态图
 - 4. 状态编码
 - 5. 选触发器, 求输出、驱动方程
 - 6. 画电路图

7. 检查电路能否自启动

详细步骤说明

- 1. 逻辑抽象, 得状态图 (表):
 - 。 输入输出
 - 。 系统状态数
 - 。 每一状态在规定条件下的转移方向
- 2. 状态化简:
 - 等价状态 —— 如果有两个或两个以上状态,在相同的外部输入下,各自的外部输出相同,次态相同,则这几个状态为等价状态。应把等价状态归并为一个。
- 3. 状态编码,得真值表:
 - 。 将化简后的各状态用二进制代码来表示。
 - 1. 确定触发器个数
 - 2. 状态分配
 - 3. 写出编码形式的状态转换真值表
- 4. 由状态图 (表) 得驱动方程和输出方程
 - 1. 填卡诺图
 - 2. 化简卡诺图得激励方程、输出方程
- 例:用D触发器设计一个五进制的加法计数器。
 - 1. 原始状态图:无输入信号,有进位输出C,有5个状态分别表示0-4。
 - 2. 状态化简:无需化简。
 - 3. 状态编码:触发器个数 n=3 ; 状态分配:按自然态序编码;写出编码形式的状态图、真值 表

现		态		次	态	输出
Q_2^n	Q_1^n	Q_0^n	Q_2^{n+}	Q_1^{n+1}	$^{1}Q_{0}^{n+1}$	С
0	0	0	0	0	1	0
0	0	1	0	1	0	0
0	1	0	0	1	1	0
0	1	1	1	0	0	0
1	0	0	0	0	0	1
1	0	1	X	X	X	X
1	1	0	X	X	X	X
1	1	1	X	X	X	X

- 4. 写出输出方程和驱动方程:
- \circ 输出方程: $C=Q_2^n$

。 驱动方程: 对于 D 触发器, 要求状态方程最简

6. 检查自启动:将无效状态101、110、111代入状态方程计算:电路能够自启动

附

• 一个端口接两根线表示两个信号与运算

• 端口悬空认为输入逻辑"1"