

AMENDMENT

In the Claims

The following listing of claims replaces all previous listings or versions thereof:

- 1-28. (Canceled)
29. (Previously presented) A method of sequence specific recombination of DNA in a eukaryotic cell, comprising:
 - (a) providing said eukaryotic cell, said cell comprising a first DNA segment, said first DNA segment comprising an *attB* sequence according to SEQ ID NO:1 or a derivative thereof, an *attP* sequence according to SEQ ID NO:2 or a derivative thereof, an *attL* sequence according to SEQ ID NO:3 or a derivative thereof, or an *attR* sequence according to SEQ ID NO:4 or a derivative thereof;
 - (b) introducing a second DNA segment into said cell, wherein if said first DNA segment comprises an *attB* sequence according to SEQ ID NO:1 or a derivative thereof, said second DNA segment comprises an *attP* sequence according to SEQ ID NO:2 or a derivative thereof, wherein if said first DNA segment comprises an *attP* sequence according to SEQ ID NO:2 or a derivative thereof, said second DNA segment comprises an *attB* sequence according to SEQ ID NO:1 or a derivative thereof, wherein if said first DNA segment comprises an *attL* sequence according to SEQ ID NO:3 or a derivative thereof said second DNA segment comprises an *attR* sequence according to SEQ ID NO:4 or a derivative thereof, or wherein if said first DNA segment comprises an *attR* sequence according to SEQ ID NO:4 or a derivative thereof said second DNA segment comprises an *attL* sequence according to SEQ ID NO:3 or a derivative thereof; and
 - (c) further comprising providing to said cell a modified bacteriophage *lambda* integrase Int, wherein said modified Int is Int-h or Int-h/218, which induces

sequence specific recombination through said *attB* and *attP* or *attR* and *attL* sequences.

30. (Previously presented) The method of claim 29, wherein said first DNA segment was introduced into the genome of said cell by recombinant methods.
31. (Canceled)
32. (Previously presented) The method of claim 29, wherein said first DNA segment comprises an *attB* sequence according to SEQ ID NO:1 or a derivative thereof, and said second DNA comprises an *attP* sequence according to SEQ ID NO:2 or a derivative thereof.
33. (Previously presented) The method of claim 29, wherein said first DNA segment comprises an *attP* sequence according to SEQ ID NO:2 or a derivative thereof, and said second DNA comprises an *attB* sequence according to SEQ ID NO:1 or a derivative thereof.
34. (Previously presented) The method of claim 29, wherein said first DNA segment comprises an *attL* sequence according to SEQ ID NO:3 or a derivative thereof, and said second DNA sequence comprises an *attR* sequence according to SEQ ID NO:4 or a derivative thereof, further comprising, in step (d), providing to said cell a Xis factor.
35. (Previously presented) The method of claim 29, wherein said first DNA segment comprises an *attR* sequence according to SEQ ID NO:4 or a derivative thereof, and said second DNA sequence comprises an *attL* sequence according to SEQ ID NO:3 or a derivative thereof, further comprising, in step (d), providing to said cell a Xis factor.
36. (Previously presented) The method of claim 29, further comprising providing to said cell a third DNA segment comprising an Int gene.
37. (Previously presented) The method of claim 36, further comprising providing to said cell a fourth DNA segment comprising Xis factor gene, respectively.

38. (Previously presented) The method of claim 36, wherein said third DNA segment further comprises a regulatory sequence effecting a spatial and/or temporal expression of the Int gene.
39. (Previously presented) The method of claim 37, wherein said fourth DNA segment further comprises a regulatory sequence effecting a spatial and/or temporal expression of the Xis factor gene.
40. (Canceled)
41. (Canceled)
42. (Canceled)
43. (Previously presented) The method according to claim 29, wherein said first and/or second DNA segment further comprise a sequence effecting integration of said first and/or second DNA segment into the genome of said cell by homologous recombination.
44. (Previously presented) The method of claim 29, wherein said first and/or second DNA segment further comprises a sequence coding for a polypeptide of interest.
45. (Previously presented) The method of claim 44, wherein said polypeptide of interest is a structural protein, an endogenous or exogenous enzyme, a regulatory protein or a marker protein.
46. (Previously presented) The method of claim 29, wherein said first and second DNA segment are introduced into the eukaryotic cell on the same DNA molecule.
47. (Previously presented) The method of claim 29, wherein said eukaryotic cell is a mammalian cell.
48. (Previously presented) The method of claim 47, wherein said mammalian cell is a human, simian, mouse, rat, rabbit, hamster, goat, bovine, sheep or pig cell.
49. (Currently amended) The method of claim 29, further comprising:

(d) performing a second sequence specific recombination of DNA by ~~modified Int~~
Int-h or Int-h/218 and a Xis factor after the steps (a)-(c), wherein said first DNA
sequence comprises said *attB* sequence according to SEQ ID NO:1 or a derivative
thereof and said second DNA sequence comprises the *attP* sequence according to
SEQ ID NO:2 or a derivative thereof, or wherein said first DNA sequence
comprises said *attP* sequence according to SEQ ID NO:2 or a derivative thereof
and said second DNA sequence comprises the *attB* sequence according to SEQ ID
NO:1 or a derivative thereof.

50. (Previously presented) The method of claim 49, further introducing a further DNA sequence into said cells, the further DNA sequence comprising a Xis factor gene.
51. (Previously presented) The method of claim 50, wherein said further DNA sequence comprises further a regulatory DNA sequence effecting a spatial and/or temporal expression of said Xis factor gene.

52-57. (Canceled)

58. (Previously presented) An isolated eukaryotic cell obtainable according to the method of claim 29.

59-60. (Canceled)