Дальтониды и бертоллиды

Совершенно ясно что в равновесных системах дискретность и непрерывность взаимно сочетаются и существуют друг рядом с другом. Н.С. Курнаков, «Соединение и химический индивид», 1914 г.

В 1914 Николай Семенович Курнаков показал, что некоторые твердые растворы могут обладать всеми свойствами индивидуального соединения, но не отвечают постоянному составу. Соединения, состав которых постоянен, он назвал дальтонидами, а соединения, НЕ отвечающие постоянному составу – бертоллидами.

В 1823 году Вёлер прокаливал вольфрамат натрия с триоксидом вольфрама в токе водорода, в зависимости от соотношения реагентов получая вещества состава Na_xWO_3 с разными значениями x.

1. Определите x для одного из таких веществ, если в нём $\omega(\text{Na}) = 2.89\%$. Составьте уравнение реакции его получения Вёлером (*p-ция 1*).

Бинарное соединение A^* в учебных пособиях часто ошибочно считается дальтонидом, при этом ему приписывается формула A. A^* может быть получено разложением соли B в инертной атмосфере (p-quя 2), при этом окончательный состав A^* может зависеть как от температуры, так и от остаточного давления газа X. При растворении образца A^* в разбавленной кислоте Y получен раствор двух солей Y и Y в мольном соотношении Y получен раствор водного раствора в виде кристаллогидрата Y педленное нагревание которого в интервале Y и красному твердому продукту Y получен Y в других условиях реакция Y приводит к образованию раствора соли Y приводит к образование соли Y приводит к обр

Информация о массовой доле катиона металла в солях:

	Б	В	Γ
ω(катион)	41.2%	28.0%	36.8%

2. Определите зашифрованные в условии вещества A - E, X, Y, решение обоснуйте. Для A^* используйте молекулярную формулу, содержащую один атом неметалла, а нестехиометрическое содержание металла в формуле выразите индексом в виде десятичной дроби. Запишите уравнения реакций 2-5.

Рассмотрим A^* как твердый раствор двух дальтонидов – A и \mathcal{K} .

3. Определите массовые доли этих дальтонидов в бертоллиде **A***.

Решение задачи 9-4 (автор: Серяков С.А.)

1. Выразим молярную массу Na_xWO₃ и массовую долю натрия в нём:

$$M(Na_xWO_3) = 23 \cdot x + 184 + 3 \cdot 16 = 23x + 232 ;$$
 $\omega(Na)/100\% = 23x/(23x + 232) = 0.0289,$ откуда $x = 0.3$.

Реакция, осуществленная Вёлером:

1)
$$0.15\text{Na}_2\text{WO}_4 + 0.85\text{WO}_3 + 0.15\text{H}_2 = \text{Na}_{0.3}\text{WO}_3 + 0.15\text{H}_2\text{O}$$

Допустима запись уравнения с коэффициентами кратными приведенным.

2. По условию растворение A^* в кислоте сопровождается только образованием двух солей, можно предположить, что в составе бинарного A^* содержится металл в двух различных степенях окисления, тогда при растворении в кислоте образуются соли B и Γ состоящие из аниона кислоты Y и металла в соответствующих степенях окисления.

Пусть $\mathbf{B} = \mathbf{MZ}_m$, $\Gamma = \mathbf{MZ}_n$, причем m > n судя по тому что массовая доля \mathbf{M} в Γ больше. Выразим массовые доли \mathbf{M} в составе солей:

$$\omega(\mathbf{B})/100\% = M(\mathbf{M})/(M(\mathbf{M}) + m \cdot M(\mathbf{Z})), \text{ откуда}$$
 $m \cdot M(\mathbf{Z}) = M(\mathbf{M}) \cdot (100\%/\omega(\mathbf{B}) - 1) = 2.571 \cdot M(\mathbf{M}),$

аналогично для Г:

$$n \cdot M(\mathbf{Z}) = M(\mathbf{M}) \cdot (100\% / \omega(\mathbf{\Gamma}) - 1) = 1.717 \cdot M(\mathbf{M}).$$

Откуда m/n = 1.5. Либо **M** проявляет степени окисления +3 в **B** и +2 в **Г**, либо +6 в **B** и +4 в **Г**. Предпочтительнее выглядит первый вариант, поскольку соединения металлов в высоких степенях окисления не склонны растворяться в кислотах. Достаточно взглянуть в таблицу растворимости, чтобы очертить круг металлов, проявляющих устойчивые степени окисления +2 и +3 в растворимых солях – это железо и хром. Упоминание **A** в школьных пособиях ограничивает рассмотрение V, Mn, Ni, Co, для которых степени окисления +2 и +3 также характерны, но либо соединения не изучают в школе (V), либо имеются сомнения в устойчивости водного раствора, содержащего \mathbf{M}^{3+} (Mn, Ni, Co).

Для хрома $M(\mathbf{Z}) = 0.857 \cdot M(\mathrm{Cr}) = 44.56$ г/моль для одновалентного аниона,

89 г/моль для двухвалентного и 133.7 г/моль для трехвалентного.

Для железа $M(\mathbf{Z}) = 0.857 \cdot M(\text{Fe}) = 48 \text{ г/моль для одновалентного аниона,}$ **96 г/моль** для двухвалентного и 144 г/моль для трехвалентного.

Среди анионов распространенных кислот подходит сульфат-анион, $\mathbf{Y} = \mathrm{H_2SO_4}$. Следовательно соли \mathbf{B} и $\mathbf{\Gamma}$ это $\mathrm{Fe_2(SO_4)_3}$ и $\mathrm{FeSO_4}$, соответственно. Выйти на эти формулы можно, вспомнив что один из оксидов железа красного цвета, а старинный способ получения серной кислоты — прокаливание купоросов. В этом случае достаточно будет подтвердить свой выбор по массовой доле металла в соли.

При растворении A^* в кислоте Y других веществ кроме солей B и Γ не указано, следовательно A^* оксид железа, содержащий одновременно Fe^{+2} и Fe^{+3} . По условию формульная единица A^* содержит лишь один атом кислорода, в таком случае $A^* = Fe_yO$. Составим уравнение его растворения в кислоте:

$$Fe_yO + H_2SO_4 = (1 - y) Fe_2(SO_4)_3 + (3y - 2) FeSO_4 + H_2O$$
, по условию $(3y - 2)/(1 - y) = 7$, откуда $y = 0.9$.

Формула нестехиометрического оксида $A^* = \text{Fe}_{0.9}\text{O}$, значит A = FeO. Соль \mathbf{F} в таком случае содержит двухвалентное железо, а ее кислородсодержащий анион разлагается при нагревании с выделением летучего газа (либо других веществ, не загрязняющих твердый целевой продукт).

$$\omega(\text{Fe})/100\% = 56k/(56k + 2 \cdot M(\mathbf{Z})) = 0.412,$$

для соли $Fe_k \mathbb{Z}_2$. Для k-валентного аниона \mathbb{Z} получим $M(\mathbb{Z}) = 40k$, откуда при k = 2 подходит сульфит-ион, таким образом $\mathbb{G} = FeSO_3$. Разложение соли \mathbb{G} при 475° С сопровождается выделением не только SO_2 , но и кислорода, поскольку происходит повышение степени окисления железа при образовании \mathbb{A}^* . По этой причине имеет место зависимость состава \mathbb{A}^* от давления $\mathbb{X} = O_2$. Кристаллогидрат железного купороса имеет состав $\mathbb{Z} = FeSO_4 \cdot 7H_2O$ и

доступен из отходов металлообработки, а при его разложении получают красящий пигмент $Fe_2O_3 = \mathbf{E}$. Fe_2O_3 также выступает в роли катализатора окисления SO_2 до SO_3 и способствует появлению серной кислоты среди продуктов разложения $FeSO_4\cdot 7H_2O$ на воздухе.

A	A*	Б	В	Γ	Д	E	X	Y
FeO	Fe _{0.9} O	FeSO ₃	$Fe_2(SO_4)_3$	FeSO ₄	FeSO ₄ ·7H ₂ O	Fe ₂ O ₃	O_2/SO_2	H ₂ SO ₄

Уравнения реакций:

2)
$$FeSO_3 = (1-2x) Fe_{0.9}O + x O_2 \uparrow + SO_2 \uparrow + (0.1+1.8x) Fe$$

Уравнение записанное в таком виде трудно ожидать от школьников, поэтому в качестве правильного ответа можно засчитывать:

FeSO₃ = Fe_{0.9}O + SO₂
$$\uparrow$$
 + 0.1 Fe
и 1.8 FeSO₃ = 2Fe_{0.9}O + 1.7 SO₂ \uparrow + 0.1 S

в этом случае в качестве газа X за верный ответ можно считать $X = SO_2$

3)
$$Fe_{0.9}O + H_2SO_4 = 0.1 Fe_2(SO_4)_3 + 0.7 FeSO_4 + H_2O_4$$

4)
$$4\text{FeSO}_4 \cdot 7\text{H}_2\text{O} + \text{O}_2 = 2\text{Fe}_2\text{O}_3 + 4\text{H}_2\text{SO}_4\uparrow + 24\text{H}_2\text{O}\uparrow$$
 или $2\text{FeSO}_4 \cdot 7\text{H}_2\text{O} = \text{Fe}_2\text{O}_3 + \text{H}_2\text{SO}_4\uparrow + \text{SO}_2\uparrow + 13\text{H}_2\text{O}\uparrow$

5)
$$Fe_{0.9}O + 1.7 H_2SO_{4(KOHII)} = 0.45 Fe_2(SO_4)_3 + 0.35 SO_2 \uparrow + 1.7H_2O$$

Верными считать уравнения с участием $Fe_{0.9}O$, в которых коэффициенты будут кратны приведенным.

3. Не указанный в условии оксид железа стехиометрического состава это $Fe_3O_4 = Fe_{0.75}O$, пусть на 1 моль FeO в твердом растворе $Fe_{0.9}O$ приходится \boldsymbol{b} моль $Fe_{0.75}O$. Индекс железа в смеси составит $(1 + 0.75\boldsymbol{b})/(1 + \boldsymbol{b}) = 0.9$, откуда $\boldsymbol{b} = 2/3$ моль $Fe_{0.75}O$. Выразим его массовую долю FeO в \boldsymbol{A}^* :

$$\omega(\text{FeO}) = \text{M(FeO)} \cdot 1 \cdot 100\%/(\text{M(FeO)} \cdot 1 + \text{M(Fe}_{0.75}\text{O}) \cdot \boldsymbol{b}) = \underline{\textbf{65.06}\%},$$
 значит $\omega(\text{Fe}_3\text{O}_4) = 100\% - \omega(\text{FeO}) = \underline{\textbf{34.94}\%}.$

Система оценивания:

1	Значение $x = 0.3 - 1$ балл	2 балла		
	уравнение реакции получения – 1 балл			
2	Вещества А, Б, В, Г, Д, Е, Х, У по 1 баллу	12 баллов		
	Уравнения реакций 2 – 5 по 1 баллу			
3	Массовая доля FeO $\approx 65\%$ либо Fe $_{0.75}$ O / Fe $_3$ O $_4 \approx 35\%$ в A*	1 балл		
	ИТОГО: 15 баллов			