Lecture # 8.2 CHE331A

- ▶ Mole balance → Rate Law → Stoichiometry
- Design and analysis of CSTRs and PFR
- ► Isothermal PBR Design accounting for pressure drop and application for the production of Ethylene Oxide

GOUTAM DEO

CHEMICAL ENGINEERING DEPARTMENT

IIT KANPUR

$$\frac{dX}{dW} = k \cdot \frac{C_{A0}}{\dot{v}_0} \left[\left(\frac{1 - X}{1 + \varepsilon X} \right) \frac{P}{P_0} \right]^2 = f(X, P)$$

$$\frac{dy}{dW} = -\frac{\alpha}{2y} (1 + \varepsilon X) = g(X, P)$$

These two coupled ODEs need to be solved simultaneously

The case when $P \neq P_0$ and $\varepsilon = 0$

- For $\varepsilon = 0$ then $\frac{dy}{dW} = -\frac{\alpha}{2y}$ and $y^2 = 1 \alpha . W$ (y = 1 @ W = 0)
- Thus, $y = (1 \alpha.W)^{1/2}$ \rightarrow $P = P_0(1 \alpha.W)^{1/2}$ This is valid for isothermal operations and ideal gas
- ▶ Substituting in the mole balance equation:

$$\frac{dX}{dW} = k \cdot \frac{C_{A0}}{\dot{v}_0} \left[\left(\frac{1-X}{1+\varepsilon X} \right) \frac{P}{P_0} \right]^2 = \frac{k \cdot C_{A0}}{\dot{v}_0} [1-X]^2 (1-\alpha W)$$

$$\rightarrow \frac{\dot{v}_0}{k \cdot C_{A0}} \frac{dX}{(1-X)^2} = (1-\alpha W)dW$$

which can be integrated from X = 0 @ W = 0 to X @ W

P versus distance

Weight of catalyst, when $P \neq P_0$, can be

determined for $\varepsilon = 0$

Integrating $\frac{\dot{v}_0}{k.C_{A0}} \frac{dX}{(1-X)^2} = (1-\alpha W)dW$ gives rise to

$$\frac{\dot{v}_0}{k. C_{A0}} \frac{X}{(1-X)} = \left(1 - \frac{\alpha W}{2}\right) W$$

$$X = \frac{\frac{k. C_{A0}W}{\dot{v}_0} \left(1 - \frac{\alpha W}{2}\right)}{1 + \frac{k. C_{A0}W}{\dot{v}_0} \left(1 - \frac{\alpha W}{2}\right)}$$

$$1 - \left\{1 - \left[\frac{2. \dot{v}_0. \alpha}{k. C_{A0}}\right] \left[\frac{X}{1-X}\right]\right\}^{0.5}$$

$$W = \frac{1 - \left\{1 - \left[\frac{2. \dot{v}_0. \alpha}{k. C_{A0}}\right] \left[\frac{X}{1-X}\right]\right\}^{0.5}}{\alpha}$$

Conversion versus weight

Concentration versus weight

Pressure drop in a PBR – ethylene oxide production (Example: 4-6, Fogler)

- ► Ethylene oxide produced by partial oxidation of C_2H_4 in a PBR C_2H_4 (A) + ½ O_2 (B) \rightarrow C_2H_4 O (C) catalyst used is silver
- Conversion desired = 0.60 Feed: $C_2H_4:O_2 = 2:1$
- ightharpoonup $F_{A0} = 3*10^{-4}$ lbmole/s to each packed tube (PBR); pressure = 10 atm
- ► Mole balance: $W = \int_{F_{A0}}^{F_A} \frac{dF_A}{r'_A} = \int_0^X \frac{F_{A0}dX}{-r'_A}$
- ► Rate law: $-r'_A = k \cdot P_A^{1/3} P_B^{2/3}$ which in terms of concentration $-r'_A = k \cdot P_A^{1/3} P_B^{2/3}$ which in terms of concentration

During EO production there is a change in number of moles and pressure drop

- $\delta \neq 0$ and $P \neq P_0$ needs to be used in concentration determination
- $ightharpoonup C_i = C_{A0} \left(\frac{\theta_i + \mu_i X}{1 + \varepsilon X} \right) \frac{P}{P_0} \frac{T_0}{T} \frac{Z_0}{Z}$; and for $T = T_0$ and $Z = Z_0$

$$C_A = C_{A0} \left(\frac{1 - X}{1 + \varepsilon X} \right) \frac{P}{P_0} \qquad C_B = \frac{C_{A0}}{2} \left(\frac{1 - X}{1 + \varepsilon X} \right) \frac{P}{P_0}$$

With $y = \frac{P}{P_0}$ $P_{A0} = C_{A0}RT_0$ (ideal gas) $k' = k.P_{A0}(0.5)^{2/3}$

$$-r_A' = k \cdot RT_0 \cdot C_A^{1/3} C_B^{2/3} = k \cdot P_{A0} (0.5)^{2/3} \frac{1 - X}{1 + \varepsilon X} \frac{P}{P_0}$$
$$-r_A' = k' \frac{1 - X}{1 + \varepsilon X} \cdot y$$

$$-r_A' = k' \frac{1 - X}{1 + \varepsilon X}.y$$

Using specific values for ethylene production

- ► Inlet flow: $F_{A0} = 1.08 \text{ lbmol/h}$ $F_{B0} = \frac{1}{2} F_{A0} = 0.54 \text{ lbmol/h}$
- Air is used. Thus, F_{N2} (inert) = 0.54* 0.79/21 = 2.03 lbmol/h
- F_{T0} = 3.65 lbmol/h; y_{A0} = 1.08/3.65 = 0.3; $\varepsilon = 0.3 \left(1 \frac{1}{2} 1\right) = -0.15$

$$P_{A0} = y_{A0}^* P_0 = 3 \text{ atm}$$
 $k' = k. P_{A0} (0.5)^{2/3} = 0.0266 \frac{lbmol}{lb-cat.h}$

► The two coupled ODE are:

$$\frac{dX}{dW} = \frac{k'}{F_{A0}} \frac{1 - X}{1 + \varepsilon X}.y \text{ and } \frac{dy}{dW} = -\alpha \frac{1 + \varepsilon X}{2.y}.y$$

Iterations may be required to determine the weight of the catalyst for 0.60 conversion

▶ Two ODEs are obtained from the mole balance and momentum

balance:
$$\frac{dX}{dW} = \frac{k'}{F_{A0}} \frac{1-X}{1+\varepsilon X}$$
. y and $\frac{dy}{dW} = -\alpha \frac{1+\varepsilon X}{2.y}$

► The coupled ODEs need to be solved simultaneously by an ODE solver (Polymath/MatLab) for known values of the variables:

$$\frac{dX}{dW} = \frac{0.0266}{1.08} \frac{1 - X}{1 - 0.15X}$$
. y and $\frac{dy}{dW} = -0.0166 \frac{1 - 0.15X}{2.y}$

- ▶ Boundary conditions: W=0, X=0 and y=1.0 for W=60 lbm
 - The value of W = 60 lbm is a guess hoping that 0.60 conversion is achieved within this weight since maximum pressure drop not given
 - o If not than a larger weight is assumed and the calculation is redone