Linear Regerssion Model

Step 1:Importing functions

```
In [1]: import numpy as np
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
```

Step 2: Import the csv file into jupyter notebook

```
In [2]: df=pd.read_csv(r"C:\Users\Sushma sree\Downloads\Advertising.csv")
    df
```

Out[2]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

```
In [3]: df.head()
```

Out[3]:

	IV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

In [4]: sns.pairplot(df,x_vars=['TV','Radio','Newspaper'],y_vars='Sales',height=7,aspe

Out[4]: <seaborn.axisgrid.PairGrid at 0x21c276f1bd0>

Step3

In [5]: plt.scatter(df['TV'],df['Sales'])

Out[5]: <matplotlib.collections.PathCollection at 0x21c29dd7e80>


```
In [6]: x=df[['TV']]
y=df['Sales']
x.head()
```

Out[6]:

```
TV0 230.11 44.52 17.23 151.5
```

4 180.8

In [7]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3) x_train

Out[7]:

	TV
129	59.6
156	93.9
56	7.3
96	197.6
46	89.7
148	38.0
83	68.4
135	48.3
183	287.6
95	163.3

140 rows × 1 columns

In [8]: x_test

Out[8]:

	TV
187	191.1
169	284.3
47	239.9
143	104.6
134	36.9
127	80.2
180	156.6
26	142.9
89	109.8
124	229.5
12	23.8
152	197.6
53	182.6
104	238.2
92	217.7
82	75.3
70	199.1
22	13.2
5	8.7
35	290.7
99	135.2
57	136.2
188	286.0
39	228.0
173	168.4
113	209.6
151	121.0
168	215.4
144	96.2
196	94.2
190	39.5
2	17.2
75	16.9
118	125.7
86	76.3

```
TV
           105 137.9
            63 102.7
           109 255.4
            21 237.4
           177 170.2
           140
                73.4
           160 172.5
            17 281.4
           111 241.7
           108
                13.1
           145 140.3
            87 110.7
           125
                 87.2
            69 216.8
                 27.5
            76
           137 273.7
           126
                  7.8
            64
               131.1
           128 220.3
             9 199.8
           119
                 19.4
           191
                 75.5
            78
                  5.4
            97
               184.9
           106
                 25.0
 In [9]: from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
In [10]: lr.fit(x_train,y_train)
Out[10]:
           ▼ LinearRegression
```

LinearRegression()

```
In [11]: |lr.predict(x_test)
Out[11]: array([17.50605788, 22.70453365, 20.22800657, 12.68129227, 8.90514624,
                11.32031793, 15.5817294 , 14.81757577, 12.97133598, 19.64791914,
                 8.1744592 , 17.86861252 , 17.03194796 , 20.13318458 , 18.98974302 ,
                11.0470075 , 17.95227897, 7.58321624, 7.33221688, 23.06151053,
                14.38808796, 14.4438656, 22.79935563, 19.56425268, 16.23990552,
                18.53794416, 13.59604552, 18.86145446, 12.21276012, 12.10120484,
                 9.0501681 , 7.80632679, 7.7895935 , 13.85820041, 11.10278514,
                14.53868758, 12.57531476, 21.09255994, 20.08856247, 16.34030526,
                10.94102999, 16.46859383, 22.5427785 , 20.32840631, 7.57763848,
                14.67255391, 13.02153586, 11.71076139, 18.93954315, 8.38083645,
                22.1132907 , 7.282017 , 14.15939965, 19.13476488, 17.99132332,
                 7.92903759, 11.05816303, 7.14815067, 17.16023653, 8.24139236])
In [12]:
         print('Regression:',lr.score(x_test,y_test))
         y pred=lr.predict(x test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
```

Regression: 0.8284746469697153

In [13]: df100=df[:][:100]

```
In [14]: df100.isna().any()
Out[14]: TV
                        False
          Radio
                        False
          Newspaper
                        False
          Sales
                        False
          dtype: bool
In [15]: x=df100[['TV']]
          y=df100['Sales']
          x.head()
Out[15]:
               \mathsf{TV}
           0 230.1
              44.5
             17.2
           3 151.5
           4 180.8
In [16]: x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
          x_train
Out[16]:
                TV
           94 107.4
            2 17.2
           95 163.3
           15 195.4
           42 293.6
           •••
           65
               69.0
           24 62.3
           84 213.5
           74 213.4
           40 202.5
          70 rows × 1 columns
In [17]: | from sklearn.linear_model import LinearRegression
          lr=LinearRegression()
```

```
In [18]: |lr.fit(x_train,y_train)
Out[18]:
          ▼ LinearRegression
          LinearRegression()
In [19]:
         print('Regression:',lr.score(x_test,y_test))
         y_pred=lr.predict(x_test)
         plt.scatter(x_test,y_test,color='b')
         plt.plot(x_test,y_pred,color='k')
         plt.show()
         Regression: 0.7231975176500547
           25.0
           22.5
           20.0
           17.5
           15.0
           12.5
           10.0
```

Ridge Regression Model

50

7.5

5.0

```
In [20]: from sklearn.linear_model import Ridge,RidgeCV
from sklearn.linear_model import Lasso
from sklearn.preprocessing import StandardScaler
```

150

200

250

300

100

```
In [21]: ridgeReg=Ridge(alpha=10)
    ridgeReg.fit(x_train,y_train)
    train_score_ridge=ridgeReg.score(x_train,y_train)
    test_score_ridge=ridgeReg.score(x_test,y_test)
    print('\nRidgeModel:')
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))

    RidgeModel:
    The train score for ridge model is 0.8401159033915412
    The test score for ridge model is 0.7232029497084462
In [22]: features=['TV']
```

```
In [22]: features=['TV']
target=['Sales']
```

```
In [23]: plt.figure(figsize=(10,10))
   plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markers
   plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker="o",markersize=7,
   plt.xticks(rotation=90)
   plt.legend()
   plt.show()
```


Lasso Regression Model

```
In [24]: lassoReg=Ridge(alpha=10)
    lassoReg.fit(x_train,y_train)
        train_score_lasso=lassoReg.score(x_train,y_train)
        test_score_lasso=lassoReg.score(x_test,y_test)
        print('\nLassoModel:')
        print("The train score for Lasso model is {}".format(train_score_lasso))
        print("The test score for Lasso model is {}".format(test_score_lasso))
```

LassoModel:

The train score for Lasso model is 0.8401159033915412 The test score for Lasso model is 0.7232029497084462

```
In [25]: .figure(figsize=(10,10))
    .plot(features,lassoReg.coef_,alpha=0.7,linestyle='none',marker='*',markersize=
    .plot(features,lr.coef_,alpha=0.4,linestyle='none',marker="o",markersize=7,cold
    .xticks(rotation=90)
    .legend()
    .show()
```



```
In [26]: from sklearn.linear_model import LassoCV
    lasso_cv=LassoCV(alphas=[0.0001,0.001,0.01,1,10],random_state=0).fit(x_traprint(lasso_cv.score(x_train,y_train))
    print(lasso_cv.score(x_test,y_test))
```

0.840115903701502
0.723197584455123

In []:		