The BirdSet pipeline tutorial which is given by the link provides a comprehensive guide on how to use the BirdSet dataset for bird sound classification & it covers the following steps:

https://github.com/DBD-research-group/BirdSet/blob/main/notebooks/tutorials/birdset-pipeline_tutorial.ipynb

- 1. **Dataset Preparation**: Downloading and preprocessing the BirdSet dataset.
- 2. **Feature Extraction**: Using audio processing libraries to extract features like Mel-spectrograms.
- 3. **Model Training**: Implementing machine learning models using libraries such as TensorFlow or PyTorch.
- 4. **Evaluation**: Assessing the model's performance using appropriate metrics.
- 5. Inference: Using the trained model to classify new bird sound recordings.

Suggested workflow:

Step	Description
 Dataset Preparation 	Download and preprocess the BirdSet dataset.
	Resample, normalize, and split data into
	training, validation, and test sets.
2. Feature Extraction	Extract features such as Mel-spectrograms,
	MFCCs, or chromograms using audio
	processing libraries like Librosa. Save features
	for quick access.
3. Model Development	Choose a generative model (VAE, GAN, DDPM).
	Implement necessary networks
	(encoder/decoder for VAE,
	generator/discriminator for GAN, diffusion
	processes for DDPM). Train the models using
	appropriate loss functions and optimizers.
4. Evaluation Metrics	Use statistical measures (MMD, RMSE) and
	visualization techniques (t-SNE, U-Map).
	Conduct applicative tests (benchmarks) to
	evaluate performance.
5. Model Training	Train the generative models, monitoring
	training with validation loss and early stopping
	criteria.
6. Inference and post-processing	Generate new samples using trained models
	and apply post-processing techniques to
	enhance the generated data.
7. Classification and Evaluation	Train classifiers (e.g., CNN, RNN) on generated
	and real data. Evaluate using cmAP, AUROC,
	and T1-Acc metrics.