#### Wiring diagrams and state machines

David I. Spivak

dspivak@math.mit.edu Mathematics Department Massachusetts Institute of Technology

Presented on 2014/02/19

## My goal: a visual, formal language for processes

I want to be able to draw pictures like this:



such that, if one fills in each box  $X_i$  with a machine, it results in a new machine for Y.

And I want it all to work as expected.



#### What does all this mean?

• But what is a picture like this?



- And what kind of machines have this fill-me-in property?
- And what expectations should we have about all this?

#### Plan of this talk

I will show that wiring diagrams (WDs)



form a symmetric monoidal category (or SMC), denoted **W**.

- I will show that there is an algebra  $\mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$  of machines.
- I will explain SMCs and their algebras as we go along.
- Time permitting, I'll talk about adding special symbols to the language.

#### First example: a running total

Consider the machine



which takes two integers and reports their sum.

Installing it into the following wiring diagram



constructs a new machine for the outer box.

- The constructed machine reports a running total of its inputs.
- It carries the previous sum on the internal wire as state.

## The picture of W





#### Wires and boxes

- Wires carry a defined set of values.
  - A wire  $w \in \mathbf{Set}_*$  is a pointed set  $w = (T, t_0)$ , where  $t_0 \in T$ .
  - A finite set of wires is a pair (I, τ), where I = {i₁, ..., iₙ} is a finite set, and τ: I → Set∗ is a function.
  - We write **TFS** ("typed finite sets") to denote the collection of  $(I, \tau)$ 's.
- Boxes have input wires and output wires.
  - A box X consists of a pair X := (inp(X), out(X))
    - $inp(X) \in TFS$  is called the set of input wires to X, and
    - $out(X) \in TFS$  is called the set of output wires to X.
  - Another term for box might be interface.
- Example: Box  $X = (\{a : \mathbb{Z}, b : \mathbb{N}\}, \{u : T_1, v : Bool, w : T_2\})$

| Z         | : a | Χ | <u>u</u> : | $\xrightarrow{T_1}$ |
|-----------|-----|---|------------|---------------------|
| <u> N</u> | : b |   | v :<br>w : | $\xrightarrow{Boo}$ |
|           |     |   |            | ,                   |

#### Tensor product of boxes

• Given boxes X = (inp(X), out(X)) and Y = (inp(Y), out(Y)),

$$\xrightarrow{x_1} \begin{array}{ccc} X & x_3 \\ \xrightarrow{} x_2 & x_4 \end{array} \xrightarrow{} \begin{array}{cccc} Y & y_2 \\ \xrightarrow{} y_1 & y_3 \end{array} \xrightarrow{}$$

$$y_1$$
  $y_2 - y_3 - y_3 - y_3 - y_4$ 

we can stack them on top of each other and call that a box

Define the tensor product of X and Y, denoted  $X \oplus Y$ , by

$$X \oplus Y := (\operatorname{inp}(X) + \operatorname{inp}(Y), \operatorname{out}(X) + \operatorname{out}(Y)).$$

• We define the *inert box* to be  $\Box := (\emptyset, \emptyset)$ . It is a  $\oplus$ -unit:

$$X \oplus \square \cong X \cong \square \oplus X$$
.

### Wiring diagrams, operad flavor: Many boxes inside

- Operads are many-inside, one-outside.
  - More precisely, morphisms in an operad have many domain objects.
  - For example  $\phi: (X_1, X_2, \dots, X_n) \longrightarrow Y$ .
- These make for nicer, more intuitive pictures.
- If desired, one can restrict to the sub-operad of *loop-free WDs*.
  - Loop-free being a smaller syntax, it is more easily modeled.
  - For example, spreadsheets (incremental computation?).



## Wiring diagrams, monoidal flavor: One box inside

- Monoidal categories are more like regular old categories.
  - Morphisms in a monoidal category have one domain object.
  - But there's a tensor operation that serves an operad-like purpose.
  - We can have  $\phi: X_1 \oplus X_2 \oplus \cdots \oplus X_n \to Y$ .
- Advantages to using monoidal categories:
  - The mathematics works out cleaner for wiring diagrams.
  - More people know about monoidal categories.
- Disadvantage: the pictures can be ugly and unintuitive.
  - Here's the monoidal version of the picture from the previous slide.



#### Today's compromise: monoidal math, operadic picture

- In our case (with loops allowed), these two notions are equivalent.
- So we'll go with the pretty option in both cases:
  - Pretty math: symmetric monoidal categories (SMCs)
  - Pretty pictures: operads.
- We'll write  $\phi: X_1 \oplus X_2 \to Y$  and allow ourselves to draw the diagram below.



#### Where are we now?

- We're on our way to defining a symmetric monoidal category W.
  - I'll tell you the definition of SMC's soon.
  - For now just bear with me.
- An object  $X \in Ob(\mathbf{W})$  is called a *box*.
  - Recall a box is a pair X = (inp(X), out(X)) of typed finite sets.
  - The coincidence of the term "object" with OOP is not bad.
  - We are trying to formalize encapsulation.
- Boxes can be tensored together by stacking them.

$$X \oplus Y = (inp(X) + inp(Y), out(X) + out(Y))$$

- Morphisms in W are wiring diagrams.
  - I showed pictures of the monoidal version and the operadic version.
  - Hopefully these pictures make intuitive sense.
  - But I haven't told you what WDs are mathematically.



#### Thinking about wiring diagrams

- Let X = (inp(X), out(X)) and Y = (inp(Y), out(Y)) be boxes.
- What is a wiring diagram?



- Think of  $\phi$  as an economy, in which every demand needs a supply.
  - The inputs of *X* are supplied either by inputs of *Y* or by internal wires.
  - Both the internal wires and the outputs of *Y* are sourced by *X*-outputs.
  - A wiring diagram expresses these relationships in terms of functions.

## Mathematical formulation of wiring diagrams

#### Definition

Let X = (inp(X), out(X)) and Y = (inp(Y), out(Y)) be boxes. A wiring diagram  $\phi \colon X \to Y$  consists of:

- a typed finite set  $int(\phi)$ , called the set of *internal wires*,
- ullet a typed function  $\phi^{in}\colon ext{inp}(X) \longrightarrow ext{int}(\phi) + ext{inp}(Y)$ , and
- a typed function  $\phi^{out}$ :  $int(\phi) + out(Y) \longrightarrow out(X)$ .



## Example of a wiring diagram $(int(\phi), \phi^{in}, \phi^{out})$

- Let X be the box with  $inp(X) = \{a, b\}$  and  $out(X) = \{c, d\}$ .
- Let Y be the box with  $inp(Y) = \{u\}$  and  $out(Y) = \{v, w\}$ .
- Here's a WD with internal wires  $int(\phi) = \{a'\}$ :



• Here's the function  $\phi^{in}$ :  $inp(X) \longrightarrow inp(Y) + int(\phi)$ :

$$b \mapsto u$$
 and  $a \mapsto a'$ .

• Here's the function  $\phi^{out}$ :  $int(\phi) + out(Y) \longrightarrow out(X)$ :

$$a' \mapsto c, \quad v \mapsto c, \quad \text{and} \quad w \mapsto d.$$

### Tensor product of wiring diagrams

- Suppose given two wiring diagrams,  $\phi_1: X_1 \to Y_1$  and  $\phi_2: X_2 \to Y_2$ .
  - Say  $\phi_1=(\operatorname{int}(\phi_1),\phi_1^{in},\phi_1^{out})$  and  $\phi_2=(\operatorname{int}(\phi_2),\phi_2^{in},\phi_2^{out})$
- To tensor morphisms, we stack them.





As with boxes, tensor is achieved by summation across the board:

$$egin{aligned} &\inf(\phi_1 \oplus \phi_2) = \inf(\phi_1) + \inf(\phi_2), \ &(\phi_1 \oplus \phi_2)^{in} = \phi_1^{in} + \phi_2^{in}, \ &(\phi_1 \oplus \phi_2)^{out} = \phi_1^{out} + \phi_2^{out}, \end{aligned}$$



### Composing wiring diagrams

We want to be able to plug wiring diagrams into wiring diagrams.



• Quiz: what are the internal wires of  $\psi \circ (\phi_1 \oplus \phi_2)$ ?

# Composing wiring diagrams, $X \xrightarrow{\phi} Y \xrightarrow{\psi} Z$

- Recall that each wiring diagram, say  $\phi$ , consists of
  - a typed finite set of internal wires int(φ),
  - a typed function  $\phi^{in}$ :  $inp(X) \rightarrow int(\phi) + inp(Y)$ , and
  - a typed function  $\phi^{out}$ :  $int(\phi) + out(Y) \rightarrow out(X)$ .
- ullet The internal wires of  $\psi \circ \phi$  are  $\operatorname{int}(\psi \circ \phi) := \operatorname{int}(\phi) + \operatorname{int}(\psi)$ .
- The function  $(\psi \circ \phi)^{in} \colon \operatorname{inp}(X) o \operatorname{int}(\psi \circ \phi) + \operatorname{inp}(Z)$  is given by

$$\operatorname{inp}(X) \xrightarrow{\phi^{in}} \operatorname{int}(\phi) + \operatorname{inp}(Y) \xrightarrow{\operatorname{int}(\phi) + \psi^{in}} \operatorname{int}(\phi) + \operatorname{int}(\psi) + \operatorname{inp}(Z).$$

• The function  $(\psi \circ \phi)^{out}$ :  $\operatorname{int}(\psi \circ \phi) + \operatorname{out}(Z) \to \operatorname{out}(X)$  is given by

$$\operatorname{int}(\phi) + \operatorname{int}(\psi) + \operatorname{out}(Z) \xrightarrow{\operatorname{int}(\phi) + \psi^{out}} \operatorname{int}(\phi) + \operatorname{out}(Y) \xrightarrow{\phi^{out}} \operatorname{out}(X).$$



#### W is a symmetric monoidal category

- Let's recap what we know about W.
- First of all, W is a category:
  - We defined an object of W to be a box (a pair of typed finite sets).
  - We defined a morphism  $\phi: X \to Y$  in **W** to be a wiring diagram,

$$(\operatorname{int}(\phi), \phi^{in}, \phi^{out}).$$

- On the last slide we showed the composition formula for  $\psi \circ \phi$ .
- The identity (having  $int(id_X) = \emptyset$ ) is straightforward.
- Proving the associativity law is straightforward too.
- So we indeed have a category.
- Add a tensor product to that, and we have an SMC.
- The tensor product needs to satisfy some laws:
  - For example, we need  $X \oplus Y \cong Y \oplus X$ .
  - Another example:  $\Box \oplus X \cong X \cong X \oplus \Box$ .
  - But these are all straightforward, because we're just working with finite sets and their sums.

#### What is a symmetric monoidal category

- A symmetric monoidal category consists of
  - a category M,
  - a functor  $\otimes$ :  $\mathcal{M} \times \mathcal{M} \to \mathcal{M}$ , called the *tensor*,
  - an object  $l \in Ob(\mathcal{M})$  called the *unit*,
  - as well as various coherence isomorphisms and commutative diagrams that ensure that everything works as expected, e.g.
    - $X \otimes I \cong X \cong IX$ ,
    - $(X \otimes Y) \otimes Z \cong X \otimes (Y \otimes Z)$ , etc.
- Your favorite: **Type** with Cartesian ×, and unit type 1.
- Another: Set with disjoint union +, and unit set ∅.
- Another:  $\mathbf{Vect}_{\mathbb{R}}$  with tensor product  $\otimes$ , and unit vector space  $\mathbb{R}$ .
- Another: **W** with stacking tensor ⊕, and inert box □.

#### Quick aside: how is $\otimes$ different than $\times$ ?

- Some people want to know how ⊗ is different than Cartesian product.
- Note that (Set, x, 1) is an SMC, so we must be saying SMCs are more general, i.e. that x is more constrained than arbitrary ⊗.
  - The additional constraint on × is that you can project,

• Note that (**Set**, +, 0) is an SMC, but there is no canonical map  $A + B \rightarrow B$ .

#### So... what to plug into these boxes?

- We have this syntax of boxes; what are we going to do with it?
  - We can fill these boxes with any kind of thing we want....
  - As long as we understand stacking and wiring.
- A W-algebra is a lax monoidal functor

$$F \colon \mathbf{W} \to \mathbf{Set}$$
.

To choose a W-algebra F is to choose semantics for the box syntax.

#### What is a lax monoidal functor $F: \mathbf{W} \to \mathbf{Set}$ ?

- Suppose we want to choose semantics F for this box syntax.
- We get to choose what we allow ourselves to put into the boxes.
  - For a box  $X \in Ob(\mathbf{W})$  we get to choose a set F(X).
  - Once we've done so, we'll call  $f \in F(X)$  an F-fill for box X.
- We get to say how to stack F-fills.
  - Given boxes X, Y and F-fills  $f \in F(X)$  and  $g \in F(Y)$ ,
  - we need to give an *F*-fill for their tensor,  $\sigma(f,g) \in F(X \oplus Y)$ .
- We get to say how a wiring diagram φ: X → Y sends fills for X to fills for Y.
- Once we do that, we will have specified:
  - a function Ob(F): Ob(W) → Ob(Set),
  - a function  $\sigma_{X,Y} \colon F(X) \times F(Y) \to F(X \oplus Y)$ , and
  - a function  $\operatorname{Hom}_F : \operatorname{Hom}_W(X, Y) \to \operatorname{Hom}_{\operatorname{Set}}(F(X), F(Y)).$
- For our choices to constitute a W-algebra, various laws must hold.

## Some stupid W-algebras

- Let  $\mathcal{M} = (M, \star, e)$  be any commutative monoid.
  - For example the natural numbers, with addition,  $(\mathbb{N}, +, 0)$ ,
  - or the integers, with multiplication,  $(\mathbb{Z}, *, 1)$ ,
  - or the subsets of some set, with union,  $(\mathbb{P}(\{0, 1, ..., 9\}), \cup, \emptyset)$ .
- Then there is an algebra  $F: \mathbf{W} \to \mathbf{Set}$  that assigns
  - F(X) := M,
  - $\sigma := \star : M \times M \rightarrow M$ , and
  - $\operatorname{\mathsf{Hom}}_F(\phi) := \operatorname{\mathsf{id}}_M$ .
- For example, with  $M = (\mathbb{N}, +, 0)$ , we have



## More interesting algebras $W \rightarrow Set$

- The previous algebras didn't take advantage of the wiring structure.
- We will focus on machines, taking input-streams to output-streams.
- Variations include:
  - asking the machines to be continuous or differentiable.
  - continuous-time machines, etc.
- In each case, just say what to put into boxes and how stacking and wiring are to work.



## A questionable algebra

- One idea might be to put into each box the set of functions of the specified type.
  - That is, suppose X is the box below.
  - Define  $\mathcal{F}(X) = \text{Hom}(\mathbb{Z} \times \mathbb{N}, T1 \times Bool \times T2)$ , the set of functions.



- But then how do wiring diagrams operate on functions?
- Recall the running total.
  - It is made out of a pure function, but the result is not functional.
  - The same input in two successive moments returns different outputs.



#### State machines

#### Definition

Let A and B be sets. An (A, B)-machine consists of

- 1. a set S, called the state-set,
- 2. a function  $f: S \times A \rightarrow S \times B$ , called the *state-update function*.

An (A, B)-machine is called *initialized* if we have chosen

3. an element  $s_0 \in S$ , called the *initial state*.

We call a machine (S, f) simple if its state-set has one element, |S| = 1.

#### Motivation for state machines



- My motivation: how does the brain work?
  - The architecture of the brain is of neurons with dendrites (inputs) and axons (outputs)
  - How does this architecture form a mind, i.e. something that can think?
  - What about learning, habituation, sensitization?
- The machine model may also have applications to functional reactive programming, etc, because it was designed with computation in mind.

#### Aside: Initialized machines act on lists

- Let  $(S, s_0, f)$  be an initialized (A, B)-machine, where  $s_0 \in S$ .
- For convenience, swap the outputs of the state-update function:

$$f: S \times A \longrightarrow B \times S$$
.

- For  $n \in \mathbb{N}$ , we define  $f_n : A^n \to B^n \times S$ , as follows:
  - define  $f_0 = s_0$ , the initial state, and
  - define  $f_{n+1}: A^{n+1} \longrightarrow B^{n+1} \times S$  to be the composite

$$A^n \times A \xrightarrow{f_n \times A} B^n \times S \times A \xrightarrow{B^n \times f} B^n \times B \times S$$

• Project each  $f_n: A^n \to B^n \times S$  and then sum the results to obtain

$$LP(S, s_0, f): List(A) \longrightarrow List(B),$$

called the *list machine associated to*  $(S, s_0, f)$ .

#### Fill box X with the set of $\overline{X}$ -machines

- Quick aside on dependent products: notation and contravariance.
  - Given a typed finite set  $(I, \tau)$  we denote the dependent product by

$$\overline{(I,\tau)}:=\prod_{i\in I}\tau(i).$$

• This is contravariant: given a typed function  $p:(I,\tau) \to (I',\tau')$  we get

$$\overline{p}\colon \overline{(I',\tau')}\to \overline{(I,\tau)}.$$

- Recall that a box X = (inp(X), out(X)) is a pair of typed finite sets.
  - For example, if  $inp(X) = \{a : \mathbb{Z}, b : Bool\}$ , then  $\overline{inp(X)} = \mathbb{Z} \times Bool$ .
  - Define  $\overline{X} := (\overline{\operatorname{inp}(X)}, \overline{\operatorname{out}(X)}).$
- So an  $\overline{X}$ -machine includes a state-set S and a state-update function

$$f: S \times \overline{\operatorname{inp}(X)} \longrightarrow S \times \overline{\operatorname{out}(X)}.$$



#### $\mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$ on objects

- On boxes  $X \in Ob(\mathbf{W})$ , define  $\mathcal{P}(X)$  to be the set of  $\overline{X}$ -machines,
- For example, let  $X = (\{a : \mathbb{N}, b : \mathbb{N}\}, \{u : \mathbb{N}, v : Bool, w : \mathbb{N}\}),$



- Choosing an initialized  $\overline{X}$ -machine means:
  - choosing a state set S, an initial state  $s_0 \in S$ , and a function,

$$f : S \times (\mathbb{N} \times \mathbb{N}) \to S \times (\mathbb{N} \times Bool \times \mathbb{N}).$$

• For example, let's choose  $S = \mathbb{N} \times \mathbb{N}$ , with  $s_0 = (0,0)$ , and

$$f((s_1, s_2), a, b) = ((s_1 + a, s_2 + b), (s_1, s_1 \stackrel{?}{=} s_2, s_2)).$$

• This returns running totals of a and b, as well as whether they're equal.

## Stacking machines

• Recall an  $\overline{X}$ -machine consists of a set S and a function

$$f: S \times \overline{\operatorname{inp}(X)} \to S \times \overline{\operatorname{out}(X)}.$$

• For any two boxes  $X, Y \in Ob(\mathbf{W})$ , we need a stacking function

$$\sigma_{X,Y} \colon \mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \oplus Y).$$

- Given an  $\overline{X}$ -machine (S, f) and a  $\overline{Y}$ -machine (T, g), we need a  $\overline{X} \oplus \overline{Y}$ -machine.
- We use  $\sigma_{X,Y}((S,f),(T,g)) := (S \times T, f \times g).$



## Wiring machines together

- We've decided how  $\mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$  works on boxes  $X \in \mathsf{Ob}(\mathbf{W})$ ;
- We've decided how P works with stacking.
- Now we need to decide how  $\mathcal{P}$  works with wiring diagrams.



Afterwards we need to check that the composition formula holds.



## $\mathcal{P}(\phi) \colon \mathcal{P}(X) \longrightarrow \mathcal{P}(Y)$

- We begin with boxes X and Y, and a wiring diagram  $\phi: X \to Y$ .
- Recall that each wiring diagram, say  $\phi$ , consists of
  - a typed finite set of internal wires  $int(\phi)$ ,
  - a typed function  $\phi^{in}$ :  $inp(X) \rightarrow int(\phi) + inp(Y)$ , and
  - a typed function  $\phi^{out}$ :  $int(\phi) + out(Y) \rightarrow out(X)$ .
- Recall the contravariance of dependent products, e.g.

$$\overline{\phi^{in}} \colon \overline{\operatorname{int}(\phi)} \times \overline{\operatorname{inp}(Y)} \longrightarrow \overline{\operatorname{inp}(X)}.$$

• Suppose given an  $\overline{X}$ -machine  $(S, f) \in \mathcal{P}(X)$ , where

$$f: S \times \overline{\operatorname{inp}(X)} \longrightarrow S \times \overline{\operatorname{out}(X)}.$$

- We need to define a  $\overline{Y}$ -machine  $(T,g) = \mathcal{P}(\phi)(S,f) \in \mathcal{P}(Y)$ .
  - For the new state-set, use the product,  $T := S \times \text{int}(\phi)$ .
  - For the new state-update function, use the composite,

$$S \times \overline{\operatorname{int}(\phi)} \times \overline{\operatorname{inp}(Y)} \xrightarrow{S \times \overline{\phi^{\operatorname{in}}}} S \times \overline{\operatorname{inp}(X)} \xrightarrow{f} S \times \overline{\operatorname{out}(X)} \xrightarrow{S \times \overline{\phi^{\operatorname{out}}}} S \times \overline{\operatorname{int}(\phi)} \times \overline{\operatorname{out}(Y)}.$$

### Example wiring diagram $\phi: X \to Y$

- Let all wires carry the pointed type (N, 0).
- Note that there is one internal wire, so  $int(\phi) = \mathbb{N}$ .



- Consider the  $\overline{X}$ -machine ( $\{*\}$ , +), where  $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$  is sum.
- Then  $\mathcal{P}(\phi)(\{*\},+)=(\mathbb{N},f)$  has state-update function given by

$$f(s,y)=(s+y,s+y)$$

 As a list machine, it reports the running total as advertised,  $(y_1, \dots, y_n) \mapsto \sum_{i=1}^n y_i.$ David I. Spivak (MIT)

# Checking $\mathcal{P}$ on the composition $X \xrightarrow{\phi} Y \xrightarrow{\psi} Z$

- We have defined  $\mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$  on objects, morphisms, and stacking.
- We must check that it works well with composition.
- The computation is very straightforward:



- I show you this not because it's hard, but because it's easy.
  - We worked hard to make this as simple as possible.
  - Our goal was to have something people would want to use!



## The subalgebra generated by NANDs?

Each transistor on a chip acts as a NAND gate, a simple machine.



- From here we can get NOT gates, then AND gates, and all logic gates.
- Then *n*-bit adders, multiplication circuits, etc.
- Consider the box  $T := (\{a, b : Bool\}, \{c : Bool\}) \in Ob(\mathbf{W})$ .
  - Begin with the *free algebra on T*, denoted Fr(T): **W**  $\rightarrow$  **Set**.
  - It is the algebra that sends X to  $\sum_{n\in\mathbb{N}} \mathsf{Hom}_{\mathbf{W}}(T^{\oplus n}, X)$ .
  - Now, there's a unique map  $Fr(T) \to \mathcal{P}$ , sending  $T \mapsto NAND$ .
  - Its image defines the algebra of machines generated by NAND.
- Question: How does it compare to the computable functions?

## Morphisms of machines

- Let A and B be sets.
- Suppose we have two (A, B)-machines, (S, f) and (T, g).
- A morphism of machines from (S, f) to (T, g) consists of:
  - a function  $\rho: S \to T$ ,
  - such that the following diagram commutes:

$$\begin{array}{c|c} S \times A & \xrightarrow{f} S \times B \\ \rho \times A & & \downarrow \rho \times B \\ T \times A & \xrightarrow{g} T \times B \end{array}$$

- If we're working with initialized machines, we require  $\rho(s_0) = t_0$ .
- We want brains/manufacturers to reduce the complexity of their problem.



#### Connected machines act the same on lists

- Let  $(S, s_0, f)$  be an initialized (A, B)-machine.
  - Recall: for each  $n \in \mathbb{N}$ , it induces a function  $A^n \to B^n$ , and
  - their sum is a function  $LP(S, s_0, f)$ :  $List(A) \rightarrow List(B)$ .
- Suppose given a morphism  $\rho: (S, s_0, f) \to (T, t_0, g)$  of machines.
- In this case it is easy to show that  $LP(S, s_0, f) = LP(T, t_0, g)$ .
- So if two machines are connected, they act the same on lists.
  - We write  $(S, s_0, f) \sim (T, t_0, g)$  if they are connected by a zigzag.
  - (Aside: zigzags are chains like this,  $P_0 \leftarrow P_1 \rightarrow P_2 \leftarrow \cdots \rightarrow P_n$ .)
  - The relation  $\sim$  is an equivalence relation on  $\overline{X}$ -machines.



# List(A) can always serve as state-set

- Let  $(S, s_0, f)$  be an initialized (A, B)-machine.
  - For each  $n \in \mathbb{N}$ , it induces a function  $f_n : A^n \to S \times B^n$ .
  - For convenience, we give names to its first and last projections,

$$\sigma_n \colon A^n \to S$$
 and  $\omega_{n+1} \colon A^{n+1} \to B$ .

- We'll find an equivalent machine with state-set List(A).
  - Let T = List(A) and let  $t_0 = []$  be the empty list.
  - We need a state-update function  $f: T \times A \longrightarrow T \times B$ .
  - It's sufficient to provide  $\widehat{f_n}$ :  $A^n \times A \longrightarrow A^{n+1} \times B$  for every  $n \in \mathbb{N}$ .
  - Use the top row in the diagram below.

$$A^{n} \times A = A^{n+1} \xrightarrow{(A^{n+1}, \omega_{n+1})} A^{n+1} \times B$$

$$\downarrow \sigma_{n} \times A$$

$$S \times A \longrightarrow S \times B$$

• The rest of the diagram shows the morphism  $(T,t_0,\widehat{f}) \to (S,s_0,f)$ .

#### State reduction

• For any (A, B)-machine  $(S, s_0, f)$  we found a morphism

$$\rho \colon (\mathsf{List}(A),[\ ],\widehat{f}) \longrightarrow (S,s_0,f).$$

- In fact  $\rho$  is unique.
- The image of  $\rho$  is some  $(S', s_0, f)$  having a subset of states  $S' \subseteq S$ .
- S' is the set of reachable states, those that obtain on some list of input.
- We can also quotient by an equivalence relation on states.
  - Declare two states equivalent if they act the same on any input list.
  - We have  $LP(S, -, f): S \longrightarrow List(B)^{List(A)}$ .
  - Let  $\widetilde{S}$  be its image, so we have  $q: S \twoheadrightarrow \widetilde{S} \subseteq \text{List}(B)^{\text{List}(A)}$ .
  - So  $\widetilde{S}$  is the quotient of S by the equivalence relation.
  - It is easy to show that  $\hat{S}$  is the state-set for an equivalent machine.





#### Algorithmic state reduction

- Given an (A, B)-machine, we want the smallest equivalent one.
  - If  $(S, s_0, f)$  is such that every state is reachable, use  $(\widetilde{S}, s_0, \widetilde{f})$ .
  - In this case, and if A and S are finite, Hopcroft's algorithm finds the smallest equivalent machine  $(\widetilde{S}, s_0, \widetilde{f})$  in O(|S||A|log|S|) time.
  - If some states are not reachable, use  $\left(\widetilde{List(A)}, [\,], \widetilde{\widehat{f}}\right)$ .
- Call this the minimal reduction of  $(S, s_0, f)$ .
- It is a normal form for machines.

## State reduction and wiring diagrams

- Back to the main theme, we had  $\mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$ .
- But in fact it can be extended to a monoidal functor P: W → Cat.
  - For each  $X \in Ob(\mathbf{W})$  we now have a category  $\mathcal{P}(X)$  of machines.
  - For stacking boxes, there's a functor  $\mathcal{P}(X) \times \mathcal{P}(Y) \to \mathcal{P}(X \oplus Y)$ .
  - For each WD  $\phi: X \to Y$  there's a functor  $\mathcal{P}(\phi): \mathcal{P}(X) \to \mathcal{P}(Y)$ .
  - And these all work together as required.
- This means that reducing commutes with wiring.
  - Given a morphism  $\phi: X \to Y$  and a machine  $P \in \mathcal{P}(X)$ ,
  - you can reduce  $P \rightarrow P'$  then apply  $\mathcal{P}(\phi)$ ,
  - and the result is a reduction,  $\mathcal{P}(\phi)(P) \twoheadrightarrow \mathcal{P}(\phi)(P')$ .



#### Invariants for state machines?

- We have a functor P: W → Cat.
- If X is an object, every morphism in  $\mathcal{P}(X)$  acts like an equivalence.
  - That is, its domain and codomain machines treat lists the same way.
- An invariant of machines should respect this kind of equivalence.
  - Let  $\pi_0$ : Cat  $\rightarrow$  Set be the "connected components" functor.
  - We want to understand the functor  $\pi_0 \mathcal{P} \colon \mathbf{W} \to \mathbf{Set}$ .
- Can you find: a functor I and a natural transformation q:



• (We want I to be non-trivial and q to be surjective.)



#### How's the time?

Shall we change gears a bit, or skip to the end?



## Wiring diagrams as a visual language

- One major feature of wiring diagrams is to engage the human visual system.
  - Operadic pictures are a visual language for building instructions.
  - The category W purely syntactic.
- We can build predefined functions into W.
  - For example, delay machines might be denoted by nodes ◆.



Or machines that bundle four wires into a bus might be denoted by



## Aside: timing in a wiring diagram

- The formulas are written above; here we interpret them in terms of timing.
  - Wires move data instantaneously.
  - Each machine takes one "clock-cycle" to process data.
- Consider a box X with one input wire and one output wire,
   inp(X) = {T} = out(X) of the same type, T.

$$T \rightarrow X \rightarrow T$$

• We define the *delay machine of type T* to be the simple machine with state-update function  $id_T: T \to T$ .



## Baking in special machines

- What does it mean to bake the delay node ◆, etc., into W?
- We want the following to count as a wiring diagram  $\phi: X \to Y$ .



- That is, we name special boxes for which we have chosen interpretations.
- What's the math?



## The math for baking in special symbols, part 1

- We need to choose special symbols in W and machines for them.
  - Fix a SMC, S, objects of which are called *special symbols*.
  - Fix a strong monoidal functor  $\iota \colon \mathcal{S} \to \mathbf{W}$ .
  - For each symbol  $s \in \text{Ob}(S)$  choose an element  $m_s \in \mathcal{P}(\iota(s))$ .



- Now define a new SMC, denoted **W**[S] as follows:
  - It has the same objects as **W**, but morphisms are defined as:

$$\mathsf{Hom}_{\mathbf{W}[\mathcal{S}]}(X,Y) = \sum_{s \in \mathsf{Ob}(\mathcal{S})} \mathsf{Hom}_{\mathbf{W}}(X \oplus \iota(s),Y).$$

- Given  $X \oplus \iota(s) \to Y$  and  $Y \oplus \iota(t) \to Z$ ,
- we can compose to  $X \oplus \iota(s \oplus t) \to Z$ , because  $\iota$  is strong.
- Stacking  $\oplus$  in  $\mathbf{W}[S]$  is also achieved by the strong-ness of  $\iota$ .



49 / 52

## The math for baking in special symbols, part 2

ullet We have constructed a SMC denoted  $old W[\mathcal{S}]$  out of our setup,



- Note we haven't used m yet, we've only used  $\iota$  up to now.
- We need an algebra  $\mathcal{P}[S]: \mathbf{W}[S] \to \mathbf{Set}$ .
  - Have it act the same on boxes as  $\mathcal{P}$  does:  $\mathcal{P}[S](X) := \mathcal{P}(X)$ .
  - A morphism  $\phi: X \to Y$  in  $\mathbf{W}[S]$  is a morphism  $\phi: X \oplus \iota(s) \to Y$  in  $\mathbf{W}$ .
  - We need to assign a function  $\mathcal{P}[S](\phi) \colon \mathcal{P}(X) \to \mathcal{P}(Y)$ .
  - Use the following composite:

$$\mathcal{P}(X) \cong \mathcal{P}(X) \times \{1\} \xrightarrow{\mathcal{P}(X) \times m} \mathcal{P}(X) \times \mathcal{P}(\iota(s)) \xrightarrow{\cong} \mathcal{P}(X \oplus \iota(s)) \xrightarrow{\mathcal{P}(\phi)} \mathcal{P}(Y).$$

## Summary

• We can draw pictures like this:



- Such a picture represents a morphism φ: X<sub>1</sub> ⊕ X<sub>2</sub> ⊕ X<sub>3</sub> → Y in a symmetric monoidal category called W.
- We can fill each interior box of  $\phi$  with a machine, and thus derive a machine for the exterior box.
- We can abstract away the details of any part by enclosing it.
- The requisite formulas are straightforward and written out here in full.

#### Thanks!

# Thanks for inviting me!

