МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Южно-Уральский государственный университет» (национальный исследовательский университет)

Высшая школа электроники и компьютерных наук
Кафедра «Информационно-измерительная техника»

Универсальный электроннолучевой осцилограф

ОТЧЕТ

по лабораторной работе №Э11 по дисциплине «Метрология, стандартизация и спецификация»

Выполнил:	
студент группь	ı КЭ-314
/ A	А.Бухаров /
(подпись)	
«»	2023 г.
Проверил: ст. п	реподаватель
кафедры инфор	мационно-
измерительной	техники
/ H.B.H	Николайзин /
(подпись)	
« <u> </u> »	2023 г

ВВЕДЕНИЕ

Электроннолучевыми осциллографами называются универсальные регистрирующие измерительные приборы, используемые для исследования различных периодических и кратковременных однократно протекающих процессов, изображаемых графически электронным лучом на экране электроннолучевой трубки. Осциллографы позволяют измерять различные величины: амплитудные и мгновенные значения напряжений, временные интервалы, частоты и др. Для обеспечения определенной точности измерений в осциллографах предусматриваются устройства, обеспечивающие стабильность характеристик, коррекцию амплитудных и фазовых погрешностей, периодическую калибровку чувствительности и масштаба времени и другие меры, улучшающие метрологические характеристики прибора. Цель работы: ознакомиться с современными универсальными электроннолучевыми осциллографами и методикой измерений различных параметров, проводимых с их помощью.

Упрощенная функциональная схема осциллографа изображена на рисунке

Рисунок 1 – Схема осцилограф

1.1 Ход работы

1.1.1 Калибровка прибора

В процессе калибровки были использованы осциллограф и калибратор сигналов, на котором были выставлены значения размаха амплитуды напряжения U = 2B и частоты напряжения f = 1к Γ ц.

Был выбран масштаб по осям X=0.1 mS/дел и Y=0.2 V/дел, после чего было измерено число делений на оси X=7 и на оси Y=6.

Измеренный размах амплитуды напряжения вычисляется по формуле:

$$U_X = Y \cdot n_y$$

где Ү – выбранный масштаб;

 n_y – измеренное число делений по оси Y.

Измеренная частота напряжения вычисляется по формуле:

$$f_{x} = \frac{1}{X \cdot n_{x}}$$

где X – выбранный масштаб по оси X;

 n_{χ} – измеренное число делений по оси X.

Измеренный размах амплитуды напряжения и частота напряжения составляют:

$$f_{x}=1428$$
 Гц, $U_{x}=1,4B$

что не совпадает со значениями калибратора сигналов.

Экран осциллографа во время калибровки изображен на рисунке 2.

Рисунок 2 — Экран осциллографа во время калибровки Чтобы размах амплитуды напряжения и частота совпадали с калибратором сигналов, количество делений по оси Y должно насчитывать 4 при масштабе $0.5\ \text{V/дел.}$, по оси $X-10\ \text{при}$ масштабе $0.1\ \text{mS/дел}$, что представлено на рисунке 3.

Рисунок 3 – Экран осциллографа во время калибровки

1.1.2Измерение напряжения и частоты сигнала

Измерение напряжения и частоты сигнала было вычислено с помощью калиброванных коэффициентов отклонения, значения которых определили у каждого положения переключателя входного многоступенчатого делителя напряжения по оси $X=0.5\,$ mS/дел и по оси $Y=2\,$ V/дел.

На вход «У» подали измеряемое напряжение и частоту f=333 Γ ц, затем измерили число делений по оси X=6,2 и Y=7,3 на экране осциллографа. Экран осциллографа во время измерения напряжения и частоты сигнала представлен на рисунке 4. Размах измеряемого напряжения и частоту сигнала вычислили как произведение размера изображения в делениях на коэффициент отклонения в положении переключателя при измерении.

Таким образом, получили размах амплитуды напряжений $U_x=3$,6 В, и частоту напряжения $f_x=322$,6 Гц. Погрешность от заданной частоты составила: $\Delta=10$,4 , $\delta=3$,12%

Рисунок 4 – Осциллограмма напряжения

1.1.3Исследование импульсов

При исследовании импульсов вычисляется их амплитуда Um, длительность t_u , длительность фронта t_{φ} и срез t_{C} , а также крутизна фронта $s=\frac{U_m}{t_{\varphi}}$

Рисунок 5 – отображение величин на графике импульса

Частота напряжения первого генератора $f_x=333~\Gamma$ ц , частота напряжения второго $f_x=2331~\Gamma$ ц

Экран осциллографа представлен на рисунке 6

Измеряемый временной интервал определили, как умножение длины изображения в делениях на коэффициент развертки в положении переключателя «ВРЕМЯ/ДЕЛ» при измерении.

Амплитуда $U_m = 3,1 \text{ B}$

длительность $t_u = 2,9$ мс

длительность фронта $t_{\varphi}=$ 2,2 мс

Таким образом, крутизна фронта $s = \frac{3,1}{2,2} = 1.41$

длительность среза $t_{\mathcal{C}}=1$ мс

Таким образом, крутизна среза $s = \frac{3,1}{1} = 3.1$

Рисунок 6 – Импульс сигнала

На рисунке 7 представлен прерывистый импульс сигнала. Число измеренных меток n=7

Рисунок 7 – Импульс сигнала с метками

$$f_1 = f_2 * n = 333 * 7 = 2331$$

Таким образом, измеренное число меток соответствует отношению частоты второго генератора к частоте первого. На основе полученных значений можно сказать, что значения длительностей сходятся.

1.1.4Исследование частот

А) Сравнением двух синусоидальных колебаний методом фигур Лиссажу. Схема соединения представлена на рисунке 8:

Рисунок 8 — схема измерения методом фигур Лиссажу К входу осциллографа «Х» подключили напряжение известной частоты $f_1=120\Gamma$ ц, а к входу «Y» напряжение измеряемой частоты $f_2=160\Gamma$ ц, выбрав масштаб по оси X=1B/Дел и по оси Y=5 В/Дел. Частоту образцового генератора изменяли до тех пор, пока на экране не возникли фигуры Лиссажу,

Эту фигуру мысленно пересекли линиями, параллельными осями X и Y, так, чтобы проведенные линии не проходили через узловые точки фигуры или касательные к ней и подсчитали число пересечений каждой линии с фигурой Лиссажу – nx = 4 и ny = 3. Схема измерения частоты представлена на рисунке 9.

Неизвестную частоту определили из соотношения $\frac{f_x}{f_y} = \frac{n_y}{n_x}$

которые мы совместили на рисунке 9.

$$f_y = \frac{f_x \cdot n_x}{n_y} = \frac{120 \cdot 4}{3} = 160 \ \Gamma$$
ц

Рисунок 9 – Фигура Лиссажу

Таким образом, мы определили неизвестную частоту $f_2=160\Gamma$ ц сравнением двух синусоидальных колебаний методом фигур Лиссажу. Это позволяет утверждать, что данный метод эффективен при поиске неизвестной частоты.

Б) Измерение частоты методом круговой развертки.

Для получения круговой развертки собрали фазосдвигающую цепь RC, представленная на рисунке 10, с которой на входы Y и X осциллографа подали синусоидальные напряжения UC и UR, сдвинутые по фазе на 90°, с известной частотой $f_1=333$ Гц. Выбрали масштаб по оси X =5 В/Дел и по оси Y = 5 В/Дел. Определили значение емкости C = 3.3 мкФ, рисунок 12.

Из условия UC = UR рассчитали величину сопротивления $R = \frac{1}{2\pi f_1 C} = 144,83$ Ом. Экран осциллографа во время круговой развертки представлен на рисунке 11.

Рисунок 10 - Схема измерения частоты методом круговой развертки

Рисунок 11 – Круговая развертка

Рисунок 12 – Магазин емкости

Измеренное число меток n = 33.

Значение измеряемой частоты $f = 333 \cdot 33 = 10989$ Гц. Таким образом, мы определили неизвестную частоту методом круговой развертки и убедились, что данный метод эффективен.

1.1.5Измерение фазовых сдвигов

На входы X и Y осциллографа были поданы два синусоидальных напряжения с частотами $f_1=333\Gamma$ ц , между которыми был измерен фазовый сдвиг.

Появившийся эллипс был расположен симметрично относительно осей шкалы при масштабе X = 5 В/дел. и Y = 5 В/дел. на соответствующих осях.

Измеренные значения: B = 7,1 и C = 4

Значение сдвига фаз $\sin \varphi = \frac{c}{B} = 0,56$, $\arcsin \varphi = \arcsin(0,56) = 34^{\circ}$

Рисунок 13 – Экран осциллографа во время измерения фазового сдвига

Дата <u>20.10.23</u> Бригада № <u>2</u>

Протокол

по лабораторной работе № 11

Универсальный электроннолучевой осциллограф

Выполнили студенты группы К-Э-ЗШ:
Буханов А.А., Дагаев А.Е.

(Фио)

Ход работы

1. Калибровка

Соображения для настройки масштабных коэффициентов изображения 1:1:

Кам видим значения не совмощают со значения им масшбратора, тиобы откашиброваниь, будем чругиях ручим ренушировым размерноским ураждана по горизонтами и вертиками наш нучию жибы 9 = 4 дел , x = 10 дел , сденанию это мочно будем чрм масштабе x = 0,1 дел/мс , 9 = 0,5 В/дел , вышлавим тамие значения на пушборе , все , прибу отка-мыбровани

2. Измерение напряжения и частоты сигнала Частота напряжения генератора f = 333 Γ ц.

Выбранный масштаб по оси X = 0.5 мс/дси. Выбранный масштаб по оси Y = 1 в /деи. Измеренное число делений по оси X = 6.2 дел. Измеренное число делений по оси Y = 7.3 дел. Измеренный размах амплитуды напряжения $U_x = 3.65$ В. Измеренная частота напряжения $f_x = 3.26$ Гц.

3. Исследование импульсов

Частота напряжения генератора f = 333 Гц. Выбранный масштаб по оси X = 0.5 мс/ $g\omega$. Амплитуда импульса $u_m = 3.4$ В Время импульса $t_H = 5.8$ $g\omega$ 0.5 мс/ $g\omega$ = 2.9м Фронт импульса: Измеренное число делений фронта по оси X = 3.5 дел. Время фронта импульса $t\omega = 1.75$ мс. Крутизна фронта импульса $S = \frac{u_m}{t_{\phi}} = \frac{3.4}{1.75}$ — 1.77

Срез импульса:

Измеренное число делений среза по оси $X = \frac{2}{3}$ дел. Время среза импульса $\frac{t_c}{t_c} = \frac{1}{1}\frac{1}{1}\frac{1}{5}$ мс. Крутизна среза импульса $S = \frac{u_m}{t_c} = \frac{3}{1}\frac{1}{1}$ = 2,169

Частота напряжения первого генератора $f_1 = 335 \Gamma_{\text{Ц}}$. Частота напряжения второго генератора $f_2 = 235 \Gamma_{\text{Ц}}$.

- 4. Измерение частоты
- а) Измерение частоты импульсов

Частота напряжения первого генератора $f_1 = \frac{333}{233}$ Гц (известная).

Частота напряжения второго генератора $f_2 = \frac{23\%}{\Gamma}$ Γ ц (измеряемая).

Выбранный масштаб по оси X = 5 $\frac{\beta}{g}$ /gev.

Измеренное число меток $n = \frac{1}{\frac{1}{2}}$. Частота следования импульсов $f = \frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} \frac$

б) Сравнением двух синусоидальных колебаний методом фигур Лиссажу. Частота напряжения первого генератора $f_1 = \frac{120}{1000}$ Гц (известная). Частота напряжения второго генератора $f_2 = \frac{160}{1000}$ Гц (измеряемая).

Выбранный масштаб по оси $X = \frac{1}{2} \frac{B/g\omega}{B}$. Выбранный масштаб по оси $Y = \frac{1}{2} \frac{B/g\omega}{B}$.

Измеренное число пересечений с осью $X n_x = \frac{4}{3}$. Измеренное число пересечений с осью $Y n_y = \frac{3}{3}$.

в) Измерение частоты методом круговой развертки. Частота напряжения первого генератора $f_1 = 333$ Γ ц (известная). Значение емкости C = 3 мк Φ .

Рассчитанное значение сопротивления $R = \frac{1}{2\pi f_1 C} = \frac{144 \sqrt{6} \, M_{\odot}}{2\pi f_1 C}$

5. Измерение фазовых сдвигов

Для выполнения работы требуется собрать электрическую цепь согласно рисунку 1.

Рисунок 1 – Цепь для измерения фазового сдвига

Частота напряжения первого генератора $f_1 = \Gamma$ ц. 333 бу

Выбранный масштаб по оси $X = \frac{5}{5}$. В/деи Выбранный масштаб по оси $Y = \frac{5}{5}$. В/деи Значение параметра B = дел. $\frac{7}{4}$. Значение параметра $C = \frac{4}{B}$ дел. Значение сдвига фаз $\sin \varphi = \frac{C}{B} = \frac{1}{4} \frac{7}{4} = 0.156$. агсsin $\varphi = \frac{34}{5}$.

В отчете должны быть приведены все осциллограммы.

Наименование	Тип	Пределы	Класс точности	Дополн.	Заводской
Ионедия сопрочивает РЗЗ	P33		0,2 Fact 7003-54	параметры	номер 00735
enencuop	SFG 71003	-	-	0,1 18 - 3 wily + 120 · 10 - 6	-
Deynwyraep	620	20 Ty -2 MTy 200 ca B 2 MTy - 20 MTy nou 5 MB/gen	-		
llarajuu èrunoanu	P5025	0,0001-1µF 1-100µF	0,1 0,5 TOCK 6746-75		0681

