

Final Round 2021

The final round exam was given in the form of an online exam. Each participant was given a subset of 20 questions in random order. This paper version is only available for training purposes.

IYMC.FR.2021

Question 1: What are the roots of this function?:

$$f(x) = \frac{(1-x)(1+x)}{(2-x)(2+x)}$$

- $(A) \{0,2\}$
- (B) $\{-1,1\}$
- (C) $\{0, -1\}$
- (D) $\{-2, 2\}$

Question 2: What is the value of the function g(x) for x = 0:

$$q(x) = x^{1+x} + e^x - x^2 - \pi^x$$

(A) 0

(B) 1

(C) 2

(D) π

Question 3 : Let x = 2, y = 4 and z = 8. What is the numerical value of this fraction?:

$$\frac{x^y + y^x}{x \cdot y \cdot z}$$

- (A) 0.5
- (B) 1

- (C) 1.5
- (D) 2

Question 4: How does this sequence of numbers continue?: 4, 10, 28, 82,...

- (A) 121
- (B) 228
- (C) 235
- (D) 244

Question 5: What is the value of this limit?:

$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

- (A) -1
- (B) 0

(C) 1

(D) e

Question 6: The integer a is called a quadratic residue modulo n if an integer b exists such that ...

- (A) $b^2 \equiv a \mod n^2$
- (B) $b \equiv a \mod n^2$ (C) $b \equiv a^2 \mod n$ (D) $b^2 \equiv a \mod n$

Question 7: The n-th Fermat number has the form ...

- (A) $2^n + 1$
- (B) $2^{2^n} + 1$
- (C) $2^n 1$
- (D) $2^{2^n} 1$

Question 8: Find the smallest integer n > 1 that is a square and a cube:

- (A) 36
- (B) 49
- (C) 64
- (D) 81

Question 9: Which formula calculates the sum of the first n odd numbers?:

$$1+3+5+...+(2n-1)$$

- (A) n^2
- (B) $2n^2 1$
- (C) $n^2 + n 1$ (D) $2n^2 + n 2$

Question 10: Which x solves this equation?:

$$x^2 - 4x + 4 = -4 + 4x - x^2$$

(A) 0

(B) 1

- (C) $\sqrt{2}$
- (D) 2

Question 11: How can you express $\tan \alpha$ with $\cos \alpha$?

- (A) $\tan \alpha = \pm \sqrt{1 \cos^2 \alpha} / \cos \alpha$ (B) $\tan \alpha = \pm \sqrt{1 \cos^2 \alpha} / \cos^2 \alpha$
- (C) $\tan \alpha = \pm \sqrt{1 + \cos^2 \alpha} / \cos \alpha$
- (D) $\tan \alpha = \pm \sqrt{1 + \cos^2 \alpha} / \cos^2 \alpha$

Question 12: Find the smallest value of the function $f(x) = 2^x + |x+1|$ for $x \in \mathbb{R}$:

- (A) 0.25
- (B) 0.5
- (C) 0.75
- (D) 1

Question 13: Solve this inequality for $x \in \mathbb{R}$:

$$\frac{3x - 3}{3} > \frac{2x + 14}{4}$$

- (A) x > 3
- (B) x > 5
- (C) x > 7
- (D) x > 9

Question 14: Find the x that solves this equation:

$$\sin^2 x - \cos^2 x = \frac{1}{2}$$

- (A) $x = \pi/2$
- (B) $x = \pi/3$
- (C) $x = \pi/6$
- (D) $x = \pi/12$

Question 15: Simplify the following fraction:

$$\frac{155551}{1551}$$

- (C) $\frac{14141}{141}$

Question 16: You throw three dice at the same time. What is the probability of getting the numbers 1, 2, and 3?

- (A) 1/6
- (B) 1/36
- (C) 1/64
- (D) 1/72

Question 17: What is the value of this expression?:

$$\frac{\sin(\pi) + \cos(\pi) + \tan(\pi)}{\sin(-\pi) + \cos(-\pi) + \tan(-\pi)}$$

- (A) -1
- (B) 0
- (C) 1/2
- (D) 1

Question 18: The volume of a pyramid with base area B and height h is equal to ...

- (A) Bh/3
- (B) Bh/2
- (C) 2Bh/3
- (D) Bh

Question 19: What is the numerical value of this sum?:

$$\sum_{n=1}^{5} \frac{n+n^2}{n}$$

- (A) 15
- (B) 20
- (C) 25
- (D) 30

Question 20: Find the derivative f'(x) of this function:

$$f(x) = x \cdot \ln\left(\frac{1}{x}\right)$$

- (A) $\ln\left(\frac{1}{x}\right) x$ (B) $\ln\left(x\right) x$ (C) $\ln\left(\frac{1}{x}\right) 1$
- (D) $\ln(x) 1$

Question 21: Select the number that has exactly eight digits:

- $(A) (10)^5$
- (B) $(20)^5$
- $(C) (30)^5$
- (D) $(40)^5$

Question 22: Which one of the following numbers is a perfect square?

- (A) 12021
- (B) 12121
- (C) 12221
- (D) 12321

Question 23: Which number does not fit into this sequence: 14, 21, 28, 31, 35, 42,...

- (A) 21
- (B) 28
- (C) 31
- (D) 35

Question 24: Find the function f(x) with this graph:

- (A) $f(x) = x^3/10 + \sin(10x)$
- (B) $f(x) = x^3/10 + \cos(10x)$
- (C) $f(x) = x^3/10 \sin(10x)$
- (D) $f(x) = x^3/10 \cos(10x)$

Question 25: The trapezium below has the sides a, b, c, d, and height h. What is the surface area of this trapezium?

- (A) $\frac{1}{2} \cdot (a+b) \cdot h$ (B) $\frac{1}{2} \cdot (a+c) \cdot h$ (C) $\frac{1}{2} \cdot (b+c) \cdot h$ (D) $\frac{1}{2} \cdot (b+d) \cdot h$

Question 26: What is the value of this sum?:

$$0.1 + (0.1)^2 + (0.1)^3 + (0.1)^4 + (0.1)^5$$

- (A) 0.110111
- (B) 0.111011
- (C) 0.111101
- (D) 0.111110