一般化線型混合モデル (GLMM)

2010/11/5 潮雅之·幸田良介

今日の内容

- ▶ 今までの線型モデルと一般化線型モデル、一般化線型混合モデルの関係
- ▶ 一般化線型混合モデルの注意点
- トモデル選択、AICについて
- ▶一般化線型モデル
- ▶一般化線型混合モデル
- トRによる実演(幸田君)

Zuur et al. (2009) p.32

線型モデルの発展

- 変数間の関係は<mark>線型</mark> (非線型はGAM, GAMMで扱う、後日)
- ▶ 一般線型モデル(General Linear Model; GLM)
 - →正規分布、混合効果無
- ▶ 一般化線型モデル(Generalized Linear Model; GLM)
 - →いろんな分布、混合効果無
- ▶ 一般化線型混合モデル(Generalized Linear Mixed Model; GLMM)
 - →いろんな分布、混合効果有

線形モデルの発展

推定計算方法 階層ベイズモデル MCMC もっと自由な 統計モデリン 般化線形混合モデル グを! 最尤推定法 個体差・場所差 といった変量効果 般化線形モデル をあつかいたい 最小二乗法 正規分布以外の 確率分布をあつ 線形モデル かいたい

久保さん(北大)

注意点

... GLMM and GAMM are on the frontier of statistical research. This means that available documentation is rather technical, and there are only a few, if any, textbooks aimed at ecologists. There are multiple approaches for obtaining estimated parameters, and there are at least four packages in R that can be used for GLMM. Sometimes these give the same results, but sometimes they give different results. Some of these methods produce a deviance and AIC; others do not.

モデルの説明の前に...

- トモデル選択について
- AICについて

モデル選択

- ▶ GLM, GLMMを使っていろんなモデルが作られる。
- ▶ 例
 - 1. 根萌芽 ~ 親木 + シカ密度 + 親木*シカ密度
 - 2. 根萌芽~親木+シカ密度
 - 3. 根萌芽~親木
 - 4. 根萌芽~シカ密度
- ▶ 1-4、どれが良いモデル?

AICを使えば良い

▶ 赤池博士が作ったAkaike Information Criteria

AICとは?

- ▶ 赤池情報量基準 (Akaike Information Criteria)
- トモデルの良さを評価する基準
- ▶ AIC = -2 × (最大対数尤度) + 2 (変数の数)
- '2'の意味は深いらしい...
- AICが低ければ低いほど良いモデル
- ▶ 他にもBIC, TIC, GIC, MDL...

以下に詳しく載っています。分かった方はぜひ解説して下さい。 『赤池情報量基準―モデリング・予測・知識発見―』 赤池弘次ほか(2007)

直感的に説明すると、

モデルBの方が、良いモデル!

図 1.8

『赤池情報量基準一モデリング・予測・知識発見一』 赤池弘次ほか(2007) p.14

AICでモデル選択

- 1. いろんなモデルを作って、
- 2. AICを比較。
- 3. 低いものがより良いモデルとして結果に書く。

幸田君の実演にも出てくる...はず。

一般化線型モデル

▶ (残差が)正規分布以外の分布を扱えるようになる

なデータを解析するのに適している

一般化線型モデル:イメージ

手順

- 1. 想定される被説明変数の分布型を考える 例: ポワソン分布(カウントデータ)
- 2. 1の分布の平均値(μ)を予測するモデル式を決める例: $\mu \sim \beta_1 \times X_1 + \beta_2 \times X_2 + \varepsilon$

*もう一つ

ポワソン分布の平均値は必ず0以上! →2のモデル式から負の予測値が生成されるようでは困る!

どうしましょうか?

▶ どうやっても正の値しか出ないように2の式を変換。

$$\log (\mu) \sim \beta_1 \times X_1 + \beta_2 \times X_2 + \varepsilon$$

$$\mu \sim e^{(\beta_1 \times X_1 + \beta_2 \times X_2 + \varepsilon)} > 0$$

このlog()のことをリンク関数と呼ぶ。

手順

- 1. 想定される被説明変数の分布型を考える
- 2. 1の分布の平均値(μ)を予測するモデル式を決める
- 3. リンク関数を決める。log(), logit()

一般化線型混合モデル

- ▶ 混合効果を扱えるようになる。
- ▶個体内で反復測定をしたデータ、時系列データ、空間 的に相関のあるデータなどを扱えるようになる。
- 異名がたくさん。混合効果 = ランダム効果 = 変量効果
- トちなみに今まで扱って来た効果は全部、固定効果と呼ばれるもの。

固定効果と混合効果(言葉で言うと)

区別は慣れないと難しい。いろいろ言い方がある。

固定効果	混合効果
予測値の平均に影響を与える	予測値の分散に影響を与える
測定できる説明変数による効果	測定できないもの全てを含んだ 効果
どのような効果があるか事前に 予測がたてられる	よくわからないけど結果に影響し そう
効果の大きさに興味がある	効果の大きさには興味無し

厳密ではないが、ここを一読するとちょっとつかめるかも。 http://hosho.ees.hokudai.ac.jp/~kubo/ce/ RandomEffectsCrawley.html

固定効果と混合効果(式を使うと)

$$Y \sim \beta_1 \times X + \beta_2 \times Z + \alpha + \varepsilon$$

ただし、 $Z \sim N(0, d_1)$ $\varepsilon \sim N(0, d_2)$

Nは正規分布を表す

Y:被説明変数

X:固定効果

Z:混合効果

 α :切片、 β_i :係数

ランダム切片、ランダム傾き

利点

- 固定効果として扱うと水準の数だけパラメータを推定 しないといけない
 - → 自由度がその分減る
- ▶ 混合効果だと、分散を一つ推定するだけでOK
 - → 自由度減らない
- 自由度が減らない→サンプル数をいっぱい採ってるようなもの。サンプルを無駄にしない。差が検出しやすい。

参考文献

- Analyzing Ecological Data. Zuur et al. (2007)
- Mixed Effects Models and Extensions in Ecology with R. Zuur et al. (2009)
- ▶『AIC -モデリング・予測・知識発見-』 赤池弘次ほか (2007)

あとは、

幸田君、よろしく!