#Assignment 3 BJT Small Signal Analysis

- 1. For the network of Fig.1
 - a. calculates I_B , I_C and r_e .
 - b. Determine Z_i and Z_O.
 - c. calculate voltage gain(A_V).
 - d. Determine the effect of $r_0 = 30 \text{ K}\Omega$ on A_V .

Figure 1

Figure 2

- 2. For the network of Fig.2
 - a. Determine re
 - b. calculates Z_i and Z_0 .
 - c. Find A_V
 - d. Repeat parts (b) and (c) with r_o = 25 K Ω .
- 3. For the network of Fig.3
 - a. Determine re
 - b. Find the dc voltages V_{B} , V_{CB} and V_{CE} .
 - c. Determine Z_i and Z_0 .
 - d. calculate Av.

Figure 3

figure 4

- 4. For the network of Fig 4, determine V_{CC} for a voltage gain of $A_V = -160$.
- 5. For the network of Fig.5
 - a. Determine re
 - b. calculates Z_i and Z_O .
 - c. Find Av
 - d. Repeat parts (b) and (c) with $r_0 = 20 \text{ K}\Omega$.

- 6. For the network of Fig.6, determine R_E and R_B if A_V = -10 and r_e = 3.8 Ω . Assume that Z_b = βR_E .
- 7. For the network of Fig. 7
 - a. Determine r_e.
 - b. Find Z_i and A_V.

- 8. For the network of Fig.8
 - a. Determine Z_i and Z_O .
 - b. Find Av.
 - c. calculate V_O if $V_i = 1$ mV.
- 9. For the network of Fig.9, Determine A_V.

- 10. For the collector feedback configuration of Fig.10
 - a. Determine re.
 - b. Find Z_i and Z_0 .
 - c. Calculate A_V.
- 11. Given r_e = 10 Ω , β = 200, A_V = -160, and A_i = 19 for the network of Fig.11, determine the R_C , R_F , and V_{cc} .

- 12. For the network of Fig.12
 - a. Determine Z_i and Z_O .
 - b. Find A_v.