Công thức tọa độ đỉnh của parabol, tọa độ giao điểm của parabol với các trục tọa độ

I. Lí thuyết tổng hợp.

- Khái niệm đường parabol: Một đường parabol là một tập hợp các điểm trên mặt phẳng cách đều một điểm cho trước (tiêu điểm) và một đường thẳng cho trước (đường chuẩn).
- Phương trình Parabol có dạng: $y = ax^2 + bx + c$
- Gọi I là đỉnh của Parabol ta có $x_I = \frac{-b}{2a}$; $y_I = \frac{-\Delta}{4a}$ (trong đó $\Delta = b^2 4ac$)
- Phương trình hoành độ giao điểm của hai đồ thị hàm số y = f(x) và y = g(x) là: f(x) = g(x).
- Gốc tọa độ có tọa độ là O(0; 0)
- Trục tung có phương trình: x = 0.
- Trục hoành có phương trình: y = 0

II. Các công thức:

Cho parabol (P): $y = ax^2 + bx + c$, ta có:

- Tọa độ đỉnh I của Parabol là I $\left(\frac{-b}{2a};\frac{-\Delta}{4a}\right)$ (trong đó $\Delta=b^2-4ac$)
- Tọa độ giao điểm A của Parabol $y = ax^2 + bx + c$ với trục tung x = 0:

Thay x = 0 vào phương trình Parabol có: $y = c \implies A(0; c)$

- Tọa độ giao điểm B của Parabol $y = ax^2 + bx + c$ với trục hoành y = 0:

Hoành độ của B là nghiệm của phương trình $ax^2 + bx + c = 0$ (1)

Nếu phương trình (1) vô nghiệm ⇒ không tồn tại điểm B

Nếu phương trình (1) có nghiệm kép \Rightarrow Parabol tiếp xúc với trục hoành tại B $\left(\frac{-b}{2a};0\right)$

Nếu phương trình (1) có hai nghiệm phân biệt \Rightarrow Parabol cắt trục hoành tại hai điểm $B_1\!\left(\frac{-b+\sqrt{\Delta}}{2a};0\right)$ và $B_2\!\left(\frac{-b-\sqrt{\Delta}}{2a};0\right)$

III. Ví dụ minh họa.

Bài 1: Cho parabol có phương trình $y = x^2 - 3x + 2$. Xác định tọa độ đỉnh của Parabol.

Lời giải:

Gọi I là đỉnh của Parabol $y = x^2 - 3x + 2$. Ta có:

$$x_{I} = \frac{-b}{2a} = \frac{-(-3)}{2.1} = \frac{3}{2}$$

$$\Delta = (-3)^2 - 4.1.2 = 1$$

$$y_{I} = \frac{-\Delta}{4a} = \frac{-1}{41} = \frac{-1}{4}$$

$$\Rightarrow I\left(\frac{3}{2}; \frac{-1}{4}\right)$$

Vậy đỉnh của parabol là $I\left(\frac{3}{2}; \frac{-1}{4}\right)$.

Bài 2: Cho Parabol có phương trình $y = -2x^2 + 4x - 3$. Tìm giao điểm của Parabol với trục tung và trục hoành.

Lời giải:

Gọi M là giao điểm của Parabol với trục tung.

Vì M cũng thuộc trung tung nên ta có $M(0; y_M)$

Thay
$$x = 0$$
 vào $y = -2x^2 + 4x - 3$ ta có: $y = -2.0 + 4.0 - 3 = -3$

$$\Rightarrow$$
 M (0; -3)

Gọi N là giao điểm của Parabol với trục hoành.

Vì N cũng thuộc trực hoành nên ta có: $N(x_N;0)$

Ta có phương trình hoành độ giao điểm của Parabol với trục hoành:

$$-2x^2 + 4x - 3 = 0$$
 (1)

$$\Delta = 4^2 - 4.(-2).(-3) = -8 < 0$$

⇒ Phương trình (1) vô nghiệm. ⇒ Parabol và trục hoành không có giao điểm.

Bài 3: Tìm giao điểm của các Parabol sau với trục hoành.

a)
$$y = 2x^2 + 3x - 5$$

b)
$$y = x^2 - 2x + 1$$

Lời giải:

a)
$$y = 2x^2 + 3x - 5$$

Gọi M là giao điểm của Parabol với truc hoành.

Ta có phương trình hoành độ giao điểm của Parabol với trục hoành:

$$2x^2 + 3x - 5 = 0$$
 (1)

$$\Delta = (-3)^2 - 4.2.(-5) = 49 > 0$$

⇒ Phương trình (1) có hai nghiệm phân biệt.

$$x_1 = \frac{-3 + \sqrt{49}}{2.2} = 1; x_2 = \frac{-3 - \sqrt{49}}{2.2} = \frac{-5}{2}$$

$$\Rightarrow$$
 $M_1(1;0)$ và $M_2\left(\frac{-5}{2};0\right)$

Vậy Parabol giao với trục hoành tại hai điểm $M_1(1;0)$ và $M_2\left(\frac{-5}{2};0\right)$.

b)
$$y = x^2 - 2x + 1$$

Gọi B là giao điểm của Parabol với trục hoành.

Ta có phương trình hoành độ giao điểm của Parabol với trục hoành:

$$x^2 - 2x + 1 = 0$$
 (1)

$$\Delta = (-2)^2 - 4.1.1 = 0$$

$$\Rightarrow$$
 Phương trình (1) có nghiệm kép $x = \frac{-(-2)}{2.1} = 1$

$$\Rightarrow$$
 B(1; 0)

Vậy Parabol tiếp xúc với trục hoành tại điểm B(1; 0).

IV. Bài tập tự luyện.

Bài 1: Cho parabol có phương trình $y = 2x^2 - 5x + 6$. Xác định tọa độ đỉnh của Parabol.

Bài 2: Cho parabol có phương trình $y = x^2 - 3x + 4$. Xác định tọa độ giao điểm của Parabol với trục tung và trục hoành.