FD104- second report

In the preliminary report I showed you:

Spores with multiple filose pseudopodia

this spore, (for which I did not know what the projection was), which I now know to be flagellate, as you will see in a moment

FD104 infection of algal cell

Early cleavage of parasite protoplasm, arrows indicate multiple nuclei

Spore cleavage in algal cell

More proof of cleavage and....what's that and that (arrows)?

Cleavage and...what's that?

Cleavage and...what's that?

FD104 is has a posterior flagellum

Cross section through flagellar transition zone (B) in base of zoospore

Cross section through a flagellum (E)

Flagellated cells (zoospores) inside algal cells

Additional flagellated spores, both from inside algal cells

All that remains after zoospore release is a vacuole

To do

- I want to see the flagellated spore at about Day 1/Day 2;
- I would like to see mitosis about Day 4/Day 5;
- We will have to decide if FD104 is Aphelidium or a new genus in the family, having a spore that is both filose pseudopodiate AND posteriorly uniflagellate, unlike Aphelidium and Pseudaphelidium.
- However, the story is about told at the TEM perspective.