R00182510 Machine Vision Assignment 1

Both Task 1 and Task 2 were implemented in a single file R00182510_MV_A1_Code.py

To execute Task_1, in the main() function please assign the value 'Task_1' to the execute variable. To execute Task_2, in the main() function please assign the value 'Task_2' to the execute variable.

Task 1

Implementation of scale and rotation invariant point feature extraction algorithm inspired by SIFT to identify a set of interest points in an image together with their respective scales and rotations.

All the output images from Task-1 will be saved to a folder as given in the 'picPath'.

```
# The output path to save all the figures/output images generated in Task 1
picFolderName = 'R00182510_Task1_Output_Images'
picPath = os.path.join(os.getcwd(),picFolderName)
if not os.path.exists(picPath):
    os.makedirs(picPath)
```

Subtask B - Output Images

Gaussian Kernel 1

Gaussian Kernel 4

Gaussian Kernel 7

Gaussian Kernel 10

Gaussian Image 1

Gaussian Image 4

Gaussian Image 7

Gaussian Image 10

Subtask C – Output Images

DOG Image 1

DOG image 2

DOG Image 3

DOG Image 4

DOG Image 5

DOG Image 6

DOG Image 7

DOG Image 8

DOG Image 9

DOG Image 10

DOG Image 11

Subtask D

No. of Key-points generated: 4449

Subtask E Output Images

Derivative-X Image 1

Derivative-Y Image 1

Derivative-Y Image 2

Derivative-X Image 3

Derivative-X Image 4

Derivative-Y Image 4

Derivative-Y Image 5

Derivative-X Image 6

Derivative-X Image 7

Derivative-Y Image 7

Derivative-Y Image 8

Derivative-X Image 9

Derivative-Y Image 10

Derivative-X Image 11

Derivative-Y Image 11

Derivative-Y Image 12

Subtask GFinal image with key-points

Task 2

Implementation of a correlation-based area matching algorithm to find a patch extracted from one image in a second image

Subtask B Output Images

Image-1 with a rectangle drawn around the area of interest

Cropped patch from Image-1

Subtask C Output Images

Cross correlation between all patches of Image-2 and the cropped patch from Image-1

Matched area in Image-2 indicated by a rectangle

