Espacios de mensajes, llaves y textos cifrados

Suponiendo que se genera el número N:

- Espacios de mensajes y textos cifrados: $\{0,\ldots,N-1\}$
- Espacios de llaves: $d,e\in\mathbb{N}$
 - ullet Aunque en general se asume que $d,e\in\{0,\ldots,\phi(N)-1\}$

$$Dec(S_A, Enc(P_A, m)) = m$$

Para demostrar esto necesitamos un resultado fundamental

Pequeño teorema de Fermat: Si p es un número primo, entonces para cada $a\in\{1,...,p-1\}$, se tiene que $a^{p-1} mod p=1$

Un ejemplo del pequeño teorema de Fermat

```
Para p=7: 1^6 \mod 7 = 1 \mod 7 = 1 2^6 \mod 7 = 64 \mod 7 = 1 3^6 \mod 7 = 729 \mod 7 = 1 4^6 \mod 7 = 4096 \mod 7 = 1 5^6 \mod 7 = 15625 \mod 7 = 1 6^6 \mod 7 = 46656 \mod 7 = 1
```

La correctitud de RSA

Sean $P_A=(e,N)$ y $S_A=(d,N)$ generados según el protocolo de RSA

Teorema: para cada $m \in \{0,...,N-1\}$, se tiene que $Dec(S_A,Enc(P_A,m))=m$

Tenemos que:

- $N = P \cdot Q$, donde P y Q son números primos
- $e \cdot d = \alpha \cdot \phi(N) + 1$, dado que $e \cdot d \equiv 1 \mod \phi(N)$

Sea $m \in \{1,...,N-1\}$

Tenemos que:

$$egin{aligned} Dec(S_A, Enc(P_A, m)) &= (m^e mod N)^d mod N \ &= m^{e \cdot d} mod N \end{aligned}$$

Entonces tenemos que demostrar que $m^{e \cdot d} \mod N = m$. Dado que $m \in \{0, \dots, N-1\}$, esto es equivalente a:

$$m^{e \cdot d} \equiv m \mod N$$

Vamos a demostrar esto suponiendo primero que MCD(m,N)=1

Como $\mathit{MCD}(m,N)=1$, se tiene que $\mathit{MCD}(m,P)=1$

Por el pequeño teorema de Fermat:

$$m^{P-1} \equiv 1 \mod P$$

Por lo tanto:

$$(m^{P-1})^{Q-1} \equiv 1 \mod P$$
 $m^{\phi(N)} \equiv 1 \mod P$ $m^{lpha \cdot \phi(N)} \equiv 1 \mod P$ $m^{lpha \cdot \phi(N) + 1} \equiv m \mod P$

Por lo tanto:

$$m^{e \cdot d} \equiv m \mod P$$

De la misma forma se concluye que:

$$m^{e \cdot d} \equiv m \mod Q$$

Tenemos entonces que:

$$m^{e \cdot d} - m = \beta \cdot P$$

$$m^{e\cdot d}-m=\gamma\cdot Q$$

Como $\beta \cdot P = \gamma \cdot Q$, se tiene que P divide a $\gamma \cdot Q$

• Como P es primo, se tiene que P divide a γ o P divide a Q

Concluimos que P divide a γ dado que P y Q son números primos distintos

Por lo tanto: $\gamma = \delta \cdot P$

Dado que $\gamma=\delta\cdot P$ y $m^{e\cdot d}-m=\gamma\cdot Q$, concluimos que $m^{e\cdot d}-m=\delta\cdot P\cdot Q$

Tenemos que $m^{e \cdot d} - m = \delta \cdot N$, y finalmente concluimos que:

$$m^{e \cdot d} \equiv m \mod N$$

¿Qué hacemos con el caso MCD(m,N)>1?

Si m=0, entonces concluimos trivialmente que $m^{e\cdot d}\equiv m\mod N$

Consideramos entonces dos casos:

- P divide a m pero Q no divide a m
- Q divide a m pero P no divide a m

Si P divide a m y Q no divide a m, entonces:

- ullet Concluimos que $m^{e \cdot d} \equiv m \mod P$ ya que $m \equiv 0 \mod P$
- ullet Concluimos que $m^{e \cdot d} \equiv m \mod Q$ como en la demostración inicial, usando el hecho de MCD(m,Q) = 1

Concluimos que $m^{e \cdot d} \equiv m \mod N$ como en la demostración inicial

Si Q divide a m y P no divide a m, concluimos que $m^{e \cdot d} \equiv m \mod N$ como en el caso anterior

Esto concluye la demostración del teorema

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Generación aleatoria de números primos

Construcción de claves:

- 1 Genere números primos distintos P y Q. Defina $N:=P\cdot Q$
- 2. Defina $\phi(N) := (P 1) \cdot (Q 1)$
- 3. Genere un número d tal que $MCD(d,\phi(N))=1$
- 4. Construya un número e tal que

$$e \cdot d \equiv 1 \mod \phi(N)$$

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Operaciones básicas (multiplicación, suma, resto, ...)
Construcción de claves:

- 1. Genere números primos distintos P y Q. Defina
 - $N := P \cdot Q$
- ${f 2}$. Defina $\phi(N):=(P-1)\cdot(Q-1)$
- 3. Genere un número d tal que $\mathit{MCD}(d,\phi(N))=1$
- 4. Construya un número e tal que

$$e \cdot d \equiv 1 \mod \phi(N)$$

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Máximo común divisor

Construcción de claves:

- 1. Genere números primos distintos P y Q. Defina $N:=P\cdot Q$
- 2. Defina $\phi(N) := (P 1) \cdot (Q 1)$
- 3. Genere un número d tal que $MCD(d,\phi(N))=1$
- 4. Construya un número \emph{e} tal que

$$e \cdot d \equiv 1 \mod \phi(N)$$

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Generación de un primo relativo

Construcción de claves:

- 1. Genere números primos distintos P y Q. Defina $N:=P\cdot Q$
- 2. Defina $\phi(N) := (P-1) \cdot (Q-1)$
- 3. Genere un número d tal que $MCD(d,\phi(N))=1$
- 4. Construya un número e tal que

$$e \cdot d \equiv 1 \mod \phi(N)$$

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Algoritmo extendido de Euclides

Construcción de claves:

- 1. Genere números primos distintos P y Q. Defina $N:=P\cdot Q$
- 2. Defina $\phi(N):=(P-1)\cdot(Q-1)$
- 3. Genere un número d tal qué $MCD(d,\phi(N))=1$
- 4. Construya un número e tal que

$$e \cdot d \equiv 1 \mod \phi(N)$$

¿Qué algoritmos eficientes necesitamos para ejecutar RSA?

Funciones de cifrado y descifrado:

$$Enc(P_A,m)=m^e mod N$$
 $Dec(S_A,c)=c^d mod N$

Exponenciación rápida

Algoritmos eficientes para ejecutar RSA

Tenemos que resolver dos problemas: cómo generar un número primo al azar, y cómo generar un primo relativo al azar

¿Cuál es la densidad de los números primos?

Sea $\pi(n)$ la cantidad de números primos menores o iguales a n

• Por ejemplo, $\pi(10) = 4 \text{ y } \pi(19) = 8$

Teorema:
$$\lim_{n \to \infty} \frac{\pi(n)}{\frac{n}{\ln(n)}} = 1$$

Por lo tanto: $\pi(n) pprox \frac{n}{\ln(n)}$

$$\Pr_{x \sim \mathbb{U}(1,n)}(x ext{ sea primo}) = rac{ ext{casos favorables}}{ ext{casos totales}}$$

$$\Pr_{x \sim \mathbb{U}(1,n)}(x ext{ sea primo}) = rac{ ext{casos favorables}}{n}$$

$$\Pr_{x \sim \mathbb{U}(1,n)}(x ext{ sea primo}) \hspace{0.2cm} pprox \hspace{0.2cm} rac{rac{h}{\ln(n)}}{n}$$

$$\Pr_{x \sim \mathbb{U}(1,n)}(x ext{ sea primo}) \quad pprox \quad rac{1}{\ln(n)}$$

¿Es esta una probabilidad alta? ¿Podemos obtener un número primo de 400 dígitos en poco tiempo?

La probabilidad de obtener un número primo de 400 dígitos:

$$\Pr_{x \sim \mathbb{U}(10^{399}, 10^{400}-1)} pprox rac{rac{10^{400}-1}{\ln(10^{400}-1)} - rac{10^{399}-1}{\ln(10^{399}-1)}}{10^{400}-10^{399}}$$

Esta probabilidad es aproximadamente 0.001085

 Por lo tanto, necesitamos aproximadamente 922 intentos para obtener un número primo

Conclusión: para generar números primos al azar nos basta con encontrar un algoritmo eficiente para verificar si un número es primo

Antes de estudiar un algoritmo de primalidad

Vamos a ver cómo se puede generar un primo relativo al azar

Y vamos a responder una de las preguntas pendientes: ¿de qué depende la seguridad de RSA?

• ¿Qué problemas no pueden ser resueltos en tiempo polinomial para que este protocolo sea seguro?

Generando un primo relativo al azar

Queremos generar un primo relativo a de un número dado n

Sea $\phi(n)$ la cardinalidad del conjunto

$$\{a \in \{0,\ldots,n-1\} \mid \mathit{MCD}(a,n) = 1\}$$

Generando un primo relativo al azar

Por ejemplo, si $N=P\cdot Q$ con P y Q primos distintos, entonces $\phi(N)=(P-1)\cdot (Q-1)$

• Por eso usamos la notación $\phi(N)$ en RSA

 $\phi(n)$ es llamada la función ϕ de Euler

Generando un primo relativo al azar

¿Cuán grande es el valor de $\phi(n)$?

Teorema:
$$\phi(n)$$
 es $\Omega\left(\frac{n}{\log(\log(n))}\right)$

Podemos entonces generar un primo relativo a n usando el mismo argumento que para los primos

ullet Generamos números al azar $a \in \{0,\ldots,n-1\}$ y verificamos si $\mathit{MCD}(a,n)=1$

¿De qué depende la seguridad de RSA?

Obviamente la repuesta depende de la definición de seguridad

Pero un requerimiento básico es que no se pueda descubrir la clave privada a partir de la clave pública

Para esto es necesario que **no** exista un algoritmo eficiente para encontrar un divisor de un número

RSA: tratando de factorizar

$$N=P\cdot Q$$

 $N=P\cdot Q$ en RSA está diseñado para que sea difícil encontrar un divisor

N está diseñado para que el siguiente tipo de ataques a RSA no puede funcionar:

• Genere números $a\in\{2,\dots,N-1\}$ hasta que se cumpla la condición MCD(a,N)>1 y, por lo tanto, MCD(a,N) sea un divisor de N mayor a 1 y menor que N

RSA: tratando de factorizar

$$N = P \cdot Q$$

$$egin{array}{ll} \Pr_{x \sim \mathbb{U}(2,N-1)}(MCD(x,N)=1) &=& rac{N-\phi(N)}{N-2} \ &=& rac{P+Q-1}{N-2} \end{array}$$

RSA: tratando de factorizar

$$N = P \cdot Q$$

$$\Pr_{x \sim \mathbb{U}(2,N-1)}(MCD(x,N)=1) = rac{N-\phi(N)}{N-2}$$
 = $rac{P+Q-1}{N-2}$ = $rac{2\cdot 10^{400}}{10^{798}-2} pprox rac{1}{10^{398}}$

Si P y Q tienen 400 dígitos, entonces $P < 10^{400}$, $Q < 10^{400}$ y $N \geq 10^{798}$

La última pregunta a responder

¿Cómo se puede verificar de manera eficiente si un número es primo?