Calculo Eléctrico Líneas Aéreas

MakerGarage

Abril 2021

Índice

1.	Den	nsidad de corriente	3
	I.	Selección del conductor	3
	II.	Interpolación	3
		a). Cojo un valor por encima y uno por debajo de mi sección del conductor	3
		b). Multiplico el valor de la densidad de corriente (δ) por el de k	4
	III.	Calcular intensidad máxima	4
		a). Intensidad máxima por conductor	4
	IV.	Comprobar Intensidad	4
2.	Pot	encia máxima a transportar por densidad de corriente	4
3.	Aisl	ladores	5
	I.	Número de aisladores	5
	II.	Perditancia por aisladores	5
4.	Obt	sención de los parámetros de línea	5
	I.	Calcular la resistencia	5
	II.	Calcular DMG RMG RMG' (necesarios para calcular la impedancia de la línea)	6
	III.	Calcular la impedancia y la capacidad de la línea	7
		a). Impedancia	7
5.	Efec	cto Corona	9
6.	Con	stante de propagación, atenuación y fase	10
7.	Imp	pedancia y potencia característica	10
8.	Circ	cuitos equivalentes	11
		Caída de tensión y potencia porcentual	12

1. Densidad de corriente

I. Selección del conductor

Los parámetros que tenemos que conocer son:

- S = Sección [mm]
- lacktriangle Hilos de acero $\rightarrow K$

Composición	Valor de K
30+7	0'916
6+1	0'937
26+7	0'937
54+7	0'95
45+7	0'97

II. Interpolación

En caso de que mi sección no aparezca en la TABLA 11 ITC-LAT07 (mirar aleación de aluminio) debo interpolar para obtener el valor de la densidad

a). Cojo un valor por encima y uno por debajo de mi sección del conductor

$$\begin{array}{ccc} 300 & \rightarrow & 2'15 \\ 400 & \rightarrow & 1'95 \end{array}$$

Selecciono el modo estadística

Presiono el 2 y = a + bx

Introduzco los valores conocidos de la tabla por arriba y por abajo de mi sección

Presiono options, bajo y selecciono el 1

1:Cal estadística

Presiono options, bajo y selecciono el 4

1:Sumatorios 2:Parámetros

3:Mínimo/Máximo

4:Regresión

Planteo la ecuacion a + Seccion b

Este es el valor de la densidad de corriente interpolada

a+350b

2.05

Multiplico el valor de la densidad de corriente (δ) por el de k

 $\delta_{\rm sección\ conductor} = {\rm Valor\ de\ densidad\ interpolado} \cdot k$

- Calcular intensidad máxima III.
- Intensidad máxima por conductor

$$I_{\text{max conductor}} = \delta_{\text{sección conductor}} \cdot S[A]$$

IV. Comprobar Intensidad

$$I_n = \frac{S_n}{\sqrt{3} \cdot V_n} [A]$$

ó

$$I_n = \frac{P_n}{\sqrt{3} \cdot V_n \cdot \cos \varphi} [A]$$

Donde:

- S_n = Potencia aparente en KVA
- $V_n = \text{Tensi\'on en KV}$

Por último verificamos que se cumple que:

 $I_n < I_{\text{max conductor}}$

Potencia máxima a transportar por densidad de corriente 2.

$$P_{max} = \sqrt{3} \cdot V \cdot I_{\text{max conductor}} \cdot \cos \varphi \cdot 10^{-3} [MW]$$

Donde:

- P_{max} = Potencia en MW
- ullet V = Tensi'on en KV
- $I_{\text{max conductor}} = \text{Corriente en A}$

3. Aisladores

I. Número de aisladores

$$n^{\rm o} \text{ aisladores } = \frac{\text{Nivel aislamiento (mm/kV)} \cdot \text{ Tensión más elevada (kV)}}{\text{Linea de fuga del aislador (mm)}}$$

Donde:

- Nivel de aislamiento = ITC-07 Tabla 14
- Tensión mas elevada = ITC-07 Tabla 1

II. Perditancia por aisladores

$$P = \frac{1000 \cdot w \cdot n}{a_m} \cdot 10^{-3} \left[\frac{kW}{km} \right]$$

Donde:

- \blacksquare P =Potencia que se pierde en aisladores en kW/km
- $\mathbf{w} = \mathbf{P}$ érdida en cada aislador en W
- = n = Número de aisladores (calculado justo arriba)
- \bullet $a_m =$ Longitud media de los vanos en m

$$G_k = \frac{P(kW/\text{ fase })}{\left(\frac{U_L}{\sqrt{3}}\right)^2} \cdot 10^{-3} \left[\frac{\text{siemens}}{km}\right]$$

Donde:

- G = Perditancia en siemens/km
- \blacksquare P = Potencia que se pierde en aisladores en W/km (calculado justo arriba)
- $U_L = \text{Tensi\'on de línea en kV}$

4. Obtención de los parámetros de línea

I. Calcular la resistencia

Calculo la resistencia adecuada a la temperatura de funcionamiento del cable

$$R_1 = R_{20} \cdot [1 + \alpha \cdot (\theta - 20)]$$

Donde:

- R_1 = Resistencia a la temperatura de funcionamiento en Ω
- $R_{20} = \text{Resistencia}$ que da el fabricante en Ω
- $\alpha = \text{Constante} = 0.004032 \text{ en }^{\circ}\text{C}^{-1}$
- \bullet θ = Temperatura de servicio en °C

En caso de tener varios cables (duplex triplex cuadruplex) tengo que dividir la resistencia entre el número de conductores

$$R_k = \frac{R_1}{n}$$

Donde

• n es el número de conductores por fase

Por último calculo la resistencia total de la línea multiplicando la resistencia kilométrica por la longitud de la línea

$$R = R_k \cdot L$$

Donde

• L es la longitud del conductor en km

II. Calcular DMG RMG RMG' (necesarios para calcular la impedancia de la línea)

Calculo la distancia media entre fases

$$DMG = \sqrt[3]{D_1 \cdot D_2 \cdot D_3}$$

 $\blacksquare \ D_1 \, D_2 \, y \, D_3$ es la distancia entre fases en m

Calculo el radio del conductor

$$r = \frac{d}{2}$$

Donde

 $\blacksquare \ d = \mbox{Diámetro completo del conductor en mm}$

Calculo r'

$$r' = r \cdot e^{-1/4}$$

Calculo el radio medio geométrico

$$Triplex = \sqrt[3]{r \cdot D^2} = RMG$$

•
$$Cuadruplex = \sqrt[4]{\sqrt{2} \cdot r \cdot D^3} = RMG$$

Calculo el radio medio geométrico prima

$$Duplex = \sqrt{r \cdot D} = RMG'$$

•
$$Triplex = \sqrt[3]{r \cdot D^2} = RMG'$$

•
$$Cuadruplex = \sqrt[4]{\sqrt{2} \cdot r \cdot D^3} = RMG'$$

Donde

- r = Radio del conductor en mm
- \bullet D= Distancia entre conductores por fase en mm

III. Calcular la impedancia y la capacidad de la línea

a). Impedancia

Inductancia

Si es línea simple

$$L_k = 2 \cdot 10^{-4} \cdot \ln \frac{DMG}{r'}$$

Si es línea duplex, triplex o cuadruplex

$$L_k = 2 \cdot 10^{-4} \cdot \ln \frac{DMG}{RMG'}$$

Si la línea es de doble circuito

$$L_k = 2 \cdot 10^{-4} \cdot \ln \frac{DMG_{ff}}{DMG'_f}$$

$$D'_{12} = \sqrt[4]{D_{12} \cdot D_{12'} \cdot D_{1'2} \cdot D_{1'2'}}$$

$$D'_{23} = \sqrt[4]{D_{23} \cdot D_{23'} \cdot D_{2'3} \cdot D_{2'3'}}$$

$$D'_{31} = \sqrt[4]{D_{31} \cdot D_{31'} \cdot D_{3'1} \cdot D_{3'1'}}$$

$$DMG_{ff} = \sqrt[3]{D'_{12} \cdot D'_{23} \cdot D'_{31}}$$

En circuito simplex

$$DMG'_f = (r')^{1/2} \cdot (D_{11'} \cdot D_{22'} \cdot D_{33'})^{1/6}$$

En circuito duplex o triplex o cuadruplex

$$DMG'_f = (RMG')^{1/2} \cdot (D_{11'} \cdot D_{22'} \cdot D_{33'})^{1/6}$$

 $L_k = \text{Inductancia en } \frac{H}{km}$

$$X_k = 2 \cdot \pi \cdot f \cdot L_k$$

 ${\bf Donde}$

$$\bullet$$
 $X_k = \frac{\Omega}{km}$

$$X = X_k \cdot L$$

lacksquare L= Longitud de la línea en km

Capacidad

Si es línea simple

$$C_k = \frac{0,0556}{\ln \frac{DMG}{r}} \cdot 10^{-6}$$

Si es línea duplex, triplex o cuadruplex

$$C_k = \frac{0,0556}{\ln \frac{DMG}{RMG}} \cdot 10^{-6}$$

Si la línea es de doble circuito

$$C_k = \frac{0,0556}{\ln \frac{DMG_{ff}}{DMG_f}} \cdot 10^{-6}$$

$$C_k = \frac{F}{km}$$

Susceptancia

$$B_k = C_k \cdot 2 \cdot \pi \cdot f$$
$$B = B_k \cdot L$$

$$B_k = \frac{siemens}{km}$$

 $B_k = \frac{siemens}{km}$ L = Longitudde la línea en km

Perditancia o Conductancia

$$G_k = \frac{P(kW/\text{ fase })}{\left(\frac{U_L}{\sqrt{3}}\right)^2} \cdot 10^{-3}$$
$$G = G_k \cdot L$$

$$G_k = \frac{siemens}{l}$$

 $\begin{aligned} G_k &= \frac{siemens}{km} \\ L &= \text{Longitud de la línea en km} \end{aligned}$

Impedancia

$$Z = R + jX [\Omega]$$

Admitancia

$$Y = G + jB$$
 [siemens]

5. Efecto Corona

$$U_C = \sqrt{3} \cdot 21, 2 \cdot m_c \cdot \delta \cdot m_t \cdot r \cdot n \cdot \ln \left(\frac{DMG}{RMG} \right)$$

 U_C : Tensión crítica disruptiva expresada en kV

 m_c : Coeficiente de rugosidad del conductor ($m_c=1\,$ para conductores de superficie lisa)

 $(m_c = \text{de } 0.93 \text{ a } 0.98 \text{ para conductores oxidados y rugosos}) (m_c = \text{de } 0.83 \text{ a } 0.87 \text{ para cables})$

 m_t : Coeficiente ambiental (0.8 para tiempo húmedo y 1 para tiempo seco)

r: Radio individual del conductor [cm]

n: número de conductores por fase.

DMG: Distancia media geométrica entre fases [cm]

RMG: Radio medio geométrico [cm]

 δ : Factor de corrección de la densidad del aire

$$\delta = \frac{273 + 25}{273 + \theta} \cdot e^{\frac{-h}{8150}}$$

 θ : Temperatura [°C]

h: Altitud media por donde discurre la línea [m]

Hay efecto corona en el caso de que

$$U_c < U_s$$

Siendo U_s la tensión mas elevada

En caso de existir efecto Corona, procedemos a calcular las pérdidas

$$P_C = \left(\frac{241}{\delta}\right) \cdot (f + 25) \cdot \sqrt{\frac{RMG}{DMG}} \cdot \left(\frac{U_s - U_C}{\sqrt{3}}\right)^2 \cdot 10^{-5}$$

 P_C es la pérdida de potencia en kW/km por fase.

 δ es el factor de densidad del aire.

f es la frecuencia de la línea en Hz

RMG es el radio medio geométrico.

DMG es la distancia media geométrica entre fases

 U_s es el valor de la tensión más elevada en kV.

 U_c es el valor de tensión crítica disruptiva en kV.

$$G = \frac{P_C}{\left(\frac{U}{\sqrt{3}}\right)^2} \cdot 10^{-3}$$

 P_C es la pérdida de potencia en kW/km.fase. U es el valor de tensión nominal de línea en kV.

Constante de propagación, atenuación y fase 6.

$$\begin{array}{l} \theta = \gamma = \sqrt{\vec{ZY}} = \alpha + j\beta \\ \alpha = \text{ cte atenuación} \\ \beta = \text{ cte fase} \end{array}$$

Recordar que la
$$\sqrt{\vec{ZY}} = \sqrt{\left|\vec{ZY}\right|} < \frac{angulo}{2}$$

Impedancia y potencia característica 7.

$$ec{Z_c} = \sqrt{rac{ec{Z}}{ec{Y}}}$$

Recordar que la
$$\sqrt{\frac{\vec{Z}}{\vec{Y}}} = \sqrt{\left|\sqrt{\frac{\vec{Z}}{\vec{Y}}}\right|} < \frac{angulo}{2}$$

$$P_c = \frac{V_{2L}^2}{Z_c}$$

 V_{2L}^2 es la tensión de linea [kV] P_c en MW

8. Circuitos equivalentes

 V_{2L} se saca del enunciado V_{2F} la ponemos como referencia

$$I_{F2} = \frac{\frac{P}{3}}{\frac{V_{L2}}{\sqrt{3}} \cdot \cos \varphi} [A]$$

$$I_{F2} = \frac{\frac{S \cdot \cos\varphi}{3}}{\frac{V_{L2}}{\sqrt{3}} \cdot \cos\varphi} [A]$$

Para la intensidad pasamos todo a V W (unidades básicas)

Si la carga es capacitiva el ángulo de la intensidad es positivo, si la carga es inductiva, el ángulo de la intensidad es negativo.

Circuito equivalente línea corta

CIRCUITO EQUIVALENTE EN T

CIRCUITO EQUIVALENTE EN π

$$\begin{aligned} \mathbf{V}_{1f} &= A \cdot \mathbf{V}_{2f} + B \cdot \mathbf{I}_2 \\ \mathbf{I}_1 &= C \cdot \mathbf{V}_{2f} + D \cdot \mathbf{I}_2 \end{aligned} \qquad \begin{pmatrix} \mathbf{V}_{1f} \\ \mathbf{I}_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \cdot \begin{pmatrix} \mathbf{V}_{2f} \\ \mathbf{I}_2 \end{pmatrix}$$

LINEA	CORTA	MEDIA		LARGA
PARAMETRO		Т	PI	
Α	1	1+ ZY 2	$1+\frac{ZY}{2}$	$1+\frac{ZY}{2}$
В	Z	$Z\left(1+\frac{ZY}{4}\right)$	Z	$Z\left(1+\frac{ZY}{6}\right)$
С	0	Y	$Y\left(1+\frac{ZY}{4}\right)$	$Y\left(1+\frac{ZY}{6}\right)$
D	1	$1+\frac{ZY}{2}$	$1+\frac{ZY}{2}$	$1+\frac{ZY}{2}$

IMPORTANTE QUE LA TENSIÓN ESTE EN V LA Y se pone como $\frac{1}{Y}$ para resolver por circuito a mano

I. Caída de tensión y potencia porcentual

$$\Delta V \% = \frac{|V_1| - |V_2|}{|V_2|} \cdot 100$$

$$\Delta P \% = \frac{|P_1| - |P_2|}{|P_2|} \cdot 100$$

$$\begin{split} P_1 &= 3 \cdot V_{1F} \cdot 10^3 \cdot I_1 \cdot \cos \varphi_1 \\ P_2 &= \text{Potencia a transportar (enunciado)} \end{split}$$

Recordad que $\cos \varphi$ es la diferencia entre el ángulo de la tensión de fase y la intensidad de fase.