Міністерство освіти і науки, молоді та спорту України Львівський національний університет імені Івана Франка Факультет прикладної математики та інформатики Кафедра обчислювальної матаматики

Звіт на тему:

"Розв'язування задачі Діріхле-Неймана для рівняння Лапласа"

Виконали: студенти 4-го курсу групи ПМп-41 напрямку підготовки (спеціальності) 113 — "Прикладна математика" Бугрій Б.О.

Середович В.В.

Перевірив: ст. в. Гарасим Я.С.

Зміст

В	ступ	3		
1	Постановка задачі			
2	Коректність задачі	5		
	2.1 Единість розв'язку задачі	5		
3	Зведення до інтегрального рівняння	6		
	3.1 Теорія потенціалів. Потенціал простого шару	6		
	3.2 Загальний вигляд розв'язку	7		
4	Параметризація	8		
5	Чисельне розв'язування	11		
	5.1 Метод колокації	11		
	5.2 Похибка			
6	Чисельні експеременти	14		
	6.1 Приклад 1	14		
	6.2 Приклад 1	15		

Вступ

літературний огляд хто розглядав розв'язування цієї задачі які процеси описує мета - розв'язати якимось методом огляд наступних розділів

1 Постановка задачі

Припускаємо, що деяке двовимірне тіло задається двозв'язною областю $D \subset \mathbb{R}$ з досить гладкою границею що складається з внутрішньої кривої Γ_1 та зовнішньої Γ_2 .

Нехай $D_1 \subset \mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_1 \subset C^2$ та $D_2 \subset \mathbb{R}^2$ — обмеженна область з гладкою границею $\Gamma_2 \subset C^2$. Тоді двозв'язна область $D = D_2 \setminus \overline{D}_1$ матиме вигляд:

Рис. 1:

Мішана задача Діріхле-Неймана для рівняння Лапласа полягає в знаходженні такої функції $u(x_1,x_2)\in C^2(D)\bigcap C^1(\overline{D})$ що задовольняє

1. Рівняння Лапласа:

$$\Delta u = 0 \quad \text{B} \quad D \tag{1.1}$$

2. Граничні умови:

$$u = f_1$$
 на Γ_1 , (1.2)

$$\frac{\partial u}{\partial \nu} = f_2$$
 на Γ_2 , (1.3)

де $\nu=\nu(x)$ - одиничний вектор зовнішньої нормалі, (1.2) є умовою Діріхле, а (1.3) є умовою Неймана.

2 Коректність задачі

...

2.1 Единість розв'язку задачі

Теорема 2.1 Нехай D - область з межею $\partial D \in C^1$ і $\overrightarrow{\nu}$ — одиничний вектор зовнішньої нормалі до межі ∂D . Тоді для $u \in C^1(\overline{D})$ і $v \in C^2(\overline{D})$ має місце перша формула Гріна

$$\int\limits_{D} (u\Delta v + gradu \cdot gradv)dx = \int\limits_{\partial D} u \frac{\partial v}{\partial \nu} ds$$

Доведення. Посилання на Креса.

Теорема 2.2 Нехай Γ_1, Γ_2 – гладкі границі, що належать класу C^1 , обмежують двозв'язну область D. Тоді задача (1.1) – (1.3) має на D не більше одного розв'язку.

Доведення. Від супротивного. Нехай $\exists u_1, u_2 \in C^2(\overline{D}) : u_1 \neq u_2$ – два різні розв'язки задачі (1.1) – (1.3). Запишемо цю задачу для функції $u^* = u_1 - u_2$:

$$\Delta u^* = \Delta u_1 - \Delta u_2 = 0$$
 $u^* = u_1 - u_2 = f_1 - f_1 = 0$ на Γ_1 $rac{\partial u^*}{\partial
u} = rac{\partial u_1}{\partial
u} - rac{\partial u_2}{\partial
u} = f_2 - f_2 = 0$ на Γ_2

Застосуємо першу формулу Гріна з теореми 2.1 при $u=v=u^*$:

$$\int_{D} (\operatorname{grad} u^*)^2 dx = \int_{\partial D} u^* \frac{\partial u^*}{\partial \nu} dS - \int_{D} u^* \Delta u^* dx$$

Тут $\partial D=\Gamma_1\cup\Gamma_2$. Так як $\Delta u^*=0$ в D, $u^*=0$ на Γ_1 і $\frac{\partial u^*}{\partial \nu}=0$ на Γ_2 , то отримуємо рівність

$$\int_{D} (\operatorname{grad} u^*)^2 dx = 0,$$

з якої випливає, що $\frac{\partial u^*}{\partial x_1}=0$ і $\frac{\partial u^*}{\partial x_2}=0$ на всій області D, тобто $u^*=\mathrm{const}$. Функція u^* неперервна в \overline{D} і $u^*=0$ на $\Gamma_1\subset\overline{D}$, отже $u^*\equiv0\Rightarrow u_1\equiv u_2$, що суперечить початковому припущенню. \blacksquare

3 Зведення до інтегрального рівняння

...

3.1 Теорія потенціалів. Потенціал простого шару

Означення 3.1 Нехай $D \subset \mathbb{R}^2$ – замкнена обмежена облясть. Функція $u \in C^2(D)$, що набуває дійсних значень, називається гармонічною, якщо вона задовольняє рівняння Лапласа $\delta u = 0$ в D.

Функція

Означення 3.2 Функція

$$\Phi(x,y) := \frac{1}{2\pi} \ln \frac{1}{|x-y|}$$
 (3.1)

визначена на $x \neq y, \ x \in \mathbb{R}^2$ називається фундаментальним розв'язком рівняння Лапласа. Для фіксованого $y \in \mathbb{R}^2$ вона є гармонічною в $\mathbb{R}^2 \setminus \{y\}$.

Означення 3.3 $Hexaŭ \ \phi ynkuis \ \varphi \in C(\partial D), \ mo\partial i$

$$u(x) := \int_{\partial D} \varphi(y)\Phi(x,y)ds(y), \quad x \in \mathbb{R}^2 \backslash \partial D$$
 (3.2)

називають потенціалом простого шару з густиною φ .

Теорема 3.4 Нехай ∂D належить класу C^2 і $\varphi \in C(\partial D)$. Тоді потенціал простого шару и з густиною φ неперервний на \mathbb{R}^2 . На границі області справджується рівність

$$u(x) = \int_{\partial D} \varphi(y)\Phi(x,y)ds(y), \quad x \in \partial D$$
 (3.3)

де інтеграл існує і розуміється як невласний.

Доведення. Кресс Щось про стрибок ...?

Теорема 3.5 Нехай ∂D належить класу C^2 . Тоді для потенціалу простого шару и з неперервною густиною φ маємо, що

$$\frac{\partial u_{\pm}}{\partial \nu}(x) = \int_{\partial D} \varphi(y) \frac{\partial \Phi(x, y)}{\partial \nu(x)} ds(y) \mp \frac{1}{2} \varphi(x), \quad x \in \partial D$$

де

$$\frac{\partial u_{\pm}}{\partial v}(x) := \lim_{h \to +0} v(x) \cdot \operatorname{grad} u(x \pm hv(x))$$

слід розуміти у значенні рівномірної збіжності на ∂D і інтеграл існує як невласний.

3.2 Загальний вигляд розв'язку

Задача (1.1) – (1.3) зводиться до системи інтегральних рівнянь з двома невідомими функціями. Потенціал простого шару є гармонічною функцією, а отже їх сума також гармонічна. Тому розв'язок задачі (1.1) – (1.3) будемо шукати у вигляді суми потенціалів простого шару

$$u(x) = \int_{\Gamma_1} \varphi_1(y)\Phi(x,y)ds(y) + \int_{\Gamma_2} \varphi_2(y)\Phi(x,y)ds(y), \quad x \in D$$
 (3.4)

з невідомими густинами $\varphi_1 \in C(\Gamma_1), \ \varphi_2 \in C(\Gamma_2)$.

Враховуючи інтегральне подання розв'язку, крайові умови та властивості потенціалу простого шару, для знаходження невідомих функцій отримаємо таку систему інтегральних рівнянь:

$$\begin{cases}
\int_{\Gamma_{1}} \varphi_{1}(y)\Phi(x,y)ds(y) + \int_{\Gamma_{2}} \varphi_{2}(y)\Phi(x,y)ds(y) = f_{1}(x), & x \in \Gamma_{1} \\
\frac{1}{2}\varphi_{2}(x) + \int_{\Gamma_{1}} \varphi_{1}(y)\frac{\partial\Phi(x,y)}{\partial\nu(x)}ds(y) + \\
+ \int_{\Gamma_{2}} \varphi_{2}(y)\frac{\partial\Phi(x,y)}{\partial\nu(x)}ds(y) = f_{2}(x), & x \in \Gamma_{2}
\end{cases}$$
(3.5)

Потенціал простого шару не має стрибка, але він може виникнути при диференціюванні. В другій частині другого рівняння точка інтегрування та точка спостереження лежать на одній кривій, що і породжує стрибок. Варто звернути увагу на те, що стрибок розглядається на зовнішній границі (границі Неймана), отже він буде додатнім.

4 Параметризація

Припустимо, що криві Γ_1 та Γ_2 задані в параметричному вигляді:

$$\Gamma_i := \{x_i(t) = (x_{i1}(t), x_{i2}(t)), t \in [0, 2\pi]\}, \quad i = 1, 2$$
 (4.1)

де $x_i: \mathbb{R} \to \mathbb{R}^2$, 2π періодична $\forall t |x'(t)| > 0$

Позначимо ν - одиничний вектор зовнішньої нормалі до кривої Γ_i , заданий як:

$$\nu(x_i(t)) = \left(\frac{x'_{i2}(t)}{|x'_i(t)|}, -\frac{x'_{i1}(t)}{|x'_i(t)|}\right)$$
(4.2)

Обчислимо похідну по нормалі від фундаментального роз'вязку

$$\frac{\partial \Phi(x,y)}{\partial \nu(x)} = -\frac{1}{2\pi} \frac{\partial \ln(r)}{\partial r} \frac{\partial r}{\partial \nu(x)}$$

де r = |x - y|, отримаємо

$$\frac{\partial \Phi(x,y)}{\partial \nu(x)} = \frac{1}{2\pi} \frac{(y-x) \cdot \nu(x)}{r^2} \tag{4.3}$$

Перейдемо до параметризованої системи. Таким чином використовуючи параметризацію (4.1) та вище наведенні перетворення подамо систему (3.5) у параметризованому вигляді.

$$\begin{cases}
\frac{1}{2\pi} \int_{0}^{2\pi} \psi_{1}(\tau) K_{11}(t,\tau) d\tau + \frac{1}{2\pi} \int_{0}^{2\pi} \psi_{2}(\tau) K_{12}(t,\tau) d\tau = g_{1}(t) \\
\frac{\psi_{2}(t)}{|x_{2}'(t)||} + \frac{1}{\pi} \int_{0}^{2\pi} \psi_{1}(\tau) K_{21}(t,\tau) d\tau + \frac{1}{\pi} \int_{0}^{2\pi} \psi_{2}(\tau) K_{22}(t,\tau) d\tau = 2g_{2}(t)
\end{cases} (4.4)$$

де
$$\psi_i(t) = \varphi(x_i(t))|x_i'(t)|, \ g_i = f_i(x_i(t)), \ i = 1, 2; \ t \in [0, 2\pi]$$

Ядра матимуть вигляд:

$$K_{11}(t,\tau) = \ln \frac{1}{|x-y|} \Big|_{\substack{x = x_1(t) \\ y = x_1(\tau)}}, \quad t \neq \tau$$

$$K_{12}(t,\tau) = \ln \frac{1}{|x-y|} \Big|_{\substack{x = x_1(t) \\ y = x_2(\tau)}};$$

$$K_{21}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \Big|_{\substack{x = x_2(t) \\ y = x_1(\tau)}};$$

$$K_{22}(t,\tau) = \frac{(y-x) \cdot \nu(x)}{r^2} \Big|_{\substack{x = x_2(t) \\ y = x_2(\tau)}}; \quad t \neq \tau$$

В ядрах K_{12} , K_{21} внаслідок параметризації точки x та y знаходяться на різних кривих, з чого випливає що ці ядра неперервні і при інтегруванні в них не виникають особливості.

У випадку K_{11} , K_{22} обидві точки знаходяться на одній кривій і тому вони мають, відповідно, логарифмічну і сингулярну особливості при t= au.

Для виділення логарифмічної особливості виконаємо наступні перетворення з K_{11}

$$K_{11}(t,\tau) = \frac{1}{2} \ln \frac{1}{|x_1(t) - x_1(\tau)|^2} \pm \frac{1}{2} \ln \left(\frac{4}{e} \sin^2 \frac{t - \tau}{2} \right) =$$

$$= -\frac{1}{2} \ln \left(\frac{4}{e} \sin^2 \frac{t - \tau}{2} \right) + \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t - \tau}{2}}{|x_1(t) - x_1(\tau)|^2}$$

Отже, ядро K_{11} можна записати у вигляді:

$$K_{11}(t,\tau) = K_{11}^{(1)} \ln\left(\frac{4}{e}\sin^2\frac{t-\tau}{2}\right) + K_{11}^{(2)}(t,\tau)$$

де ядра $K_{11}^{(1)}$ і $K_{11}^{(2)}$ матимуть вигляд:

$$K_{11}^{(1)}(t,\tau) = -\frac{1}{2};$$
 ra $K_{11}^{(2)}(t,\tau) = \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2},$ $t \neq \tau;$

Для того щоб доозначити $K_{11}^{(2)}$, знайдему границю за правилом Лопіталя

$$\lim_{\tau \to t} K_{11}^{(2)}(t,\tau) = \lim_{\tau \to t} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2} = \ln \frac{\frac{4}{e} \frac{(t-\tau)^2}{4}}{|x_1'(t)|^2 (t-\tau)^2} = \ln \frac{1}{e |x_1'(t)|^2}$$

В результаті отримаємо:

$$K_{11}^{(2)}(t,\tau) = \begin{cases} \frac{1}{2} \ln \frac{\frac{4}{e} \sin^2 \frac{t-\tau}{2}}{|x_1(t) - x_1(\tau)|^2}, & t \neq \tau \\ \frac{1}{2} \ln \frac{1}{e |x_1'(t)|^2}, & t = \tau \end{cases}$$

Доозначуємо ядро K_{22} . Знайдемо границю при au o t

$$\lim_{\tau \to t} \frac{\partial \Phi(x_2(t), x_2(\tau))}{\partial \nu(t)} = \frac{x_2''(\tau) \cdot \nu(x_2(t))}{2|x_2'(t)|^2}$$

Отримаємо наступне параметризованне подання ядра:

$$K_{22}(t,\tau) = \begin{cases} \frac{(x_2(\tau) - x_2(t)) \cdot \nu(x_2(t))}{|x_2(t) - x_2(\tau)|^2}, & t = \tau \\ \frac{x_2''(t) \cdot \nu(x_2(t))}{2|x_2'(t)|^2}, & t \neq \tau \end{cases}$$

Отже, система буде мати вигляд

$$\begin{cases}
\int_{0}^{2\pi} \psi_{1}(\tau) \left\{ K_{11}^{(1)}(t,\tau) \ln \left(\frac{4}{e} \sin^{2} \frac{t-\tau}{2} \right) + K_{11}^{(2)}(t,\tau) \right\} d\tau + \\
+ \int_{0}^{2\pi} \psi_{2}(\tau) K_{12}(t,\tau) d\tau = 2\pi g_{1}(t) \\
\pi \frac{\psi_{2}(t)}{|x'_{2}(t)||} + \int_{0}^{2\pi} \psi_{1}(\tau) K_{21}(t,\tau) d\tau + \int_{0}^{2\pi} \psi_{2}(\tau) K_{22}(t,\tau) d\tau = 2\pi g_{2}(t)
\end{cases} (4.5)$$

Використовуючи параметризацію (4.1) можемо записати розв'язок мішаної задачі (3.4) в параметризованому вигляді:

$$u(x) = \frac{1}{2\pi} \int_0^{2\pi} \psi_1(\tau) K_1(x,\tau) d\tau + \frac{1}{2\pi} \int_0^{2\pi} \psi_2(\tau) K_2(x,\tau) d\tau, \quad x \in D$$

де відповідні ядра K_1 і K_2 мають вигляд:

$$K_1(x,\tau) = \ln \frac{1}{|x - x_1(\tau)|}$$
 ta $K_2(x,\tau) = \ln \frac{1}{|x - x_2(\tau)|}$

5 Чисельне розв'язування

5.1 Метод колокації

- $x_j = a + jh, j = 0, \dots, n, h = (b a)/n$
- X_n простір функцій, неперервних на [a,b]

•
$$\ell_j(x) = \begin{cases} \frac{x - x_{j-1}}{h}, & x \in [x_{j-1}, x_j], j \ge 1\\ \frac{x_{j+1} - x}{h}, & x \in [x_j, x_{j+1}], j \le n - 1\\ 0, & \text{в інших випадках} \end{cases}$$

Шукані функції подамо у вигляді суми ... (сказати щось про n):

$$\tilde{\psi}_k(x) = \sum_{j=1}^n c_j^{(k)} \ell_j(x), \quad k = 1, 2$$

Підставивши їх у систему оримаємо:

$$\begin{cases}
\sum_{j=1}^{n} c_{j}^{(1)} \int_{0}^{2\pi} \ell_{j}(\tau) K_{11}(t,\tau) d\tau + \sum_{j=1}^{n} c_{j}^{(2)} \int_{0}^{2\pi} \ell_{j}(\tau) K_{12}(t,\tau) d\tau = 2\pi g_{1}(t) \\
\sum_{j=1}^{n} c_{j}^{(1)} \int_{0}^{2\pi} \ell_{j}(\tau) K_{21}(t,\tau) d\tau \\
+ \sum_{j=1}^{n} c_{j}^{(2)} \left\{ \pi \frac{\ell_{j}(t)}{|x_{2}'(t)|} + \int_{0}^{2\pi} \ell_{j}(\tau) K_{22}(t,\tau) d\tau \right\} = 2\pi g_{2}(t)
\end{cases}$$

Цю систему необхідно протабулювати п разів по змінній t, щоб знайти відповідні значення векторів $c^{(1)}$ і $c^{(2)}$. Отриману систему запишемо в зручному матричному вигляді

$$Ac = g$$

де

$$A = \begin{pmatrix} G_{11}^{(1)} & \dots & G_{1n}^{(1)} & G_{11}^{(2)} & \dots & G_{1n}^{(2)} \\ \vdots & \ddots & & \vdots & \ddots & \vdots \\ G_{n1}^{(1)} & & G_{nn}^{(1)} & G_{n1}^{(2)} & & G_{nn}^{(2)} \\ G_{11}^{(3)} & \dots & G_{1n}^{(3)} & G_{11}^{(4)} & \dots & G_{1n}^{(4)} \\ \vdots & \ddots & & \vdots & \ddots & \vdots \\ G_{n1}^{(3)} & & G_{nn}^{(3)} & G_{n1}^{(4)} & & G_{nn}^{(4)} \end{pmatrix} c = \begin{pmatrix} c_{1}^{(1)} \\ \vdots \\ c_{n}^{(1)} \\ \vdots \\ c_{n}^{(2)} \\ c_{1}^{(2)} \\ \vdots \\ c_{n}^{(2)} \end{pmatrix} g = \begin{pmatrix} 2\pi g_{1}(x_{1}) \\ \vdots \\ 2\pi g_{1}(x_{n}) \\ 2\pi g_{2}(x_{1}) \\ \vdots \\ 2\pi g_{2}(x_{n}) \end{pmatrix}$$

де

$$G_{ji}^{(1)} = \int_{0}^{2\pi} \ell_j(\tau) K_{11}(t_i, \tau) d\tau \qquad G_{ji}^{(2)} = \int_{0}^{2\pi} \ell_j(\tau) K_{12}(t_i, \tau) d\tau$$

$$G_{ji}^{(3)} = \int_{0}^{2\pi} \ell_j(\tau) K_{21}(t_i, \tau) d\tau \qquad G_{ji}^{(4)} = \pi \frac{\ell_j(t_i)}{|x_2'(t_i)|} + \int_{0}^{2\pi} \ell_j(\tau) K_{22}(t_i, \tau) d\tau$$

Для обчислення ядра K_{11} будемо використовувати відповідну квадратурну формулу. Для цього задаємо рівномірне розбиття:

$$t_i := i\pi/M, \quad i = 0, \dots, 2M - 1, M \in \mathbb{N}$$

Квадратурна формула буде мати вигляд:

$$\frac{1}{2\pi} \int_0^{2\pi} f(\tau) \ln\left(\frac{4}{e} \sin^2 \frac{t - \tau}{2}\right) d\tau \approx \sum_{j=0}^{2M-1} R_j(t) f(t_j)$$
 (5.1)

з ваговою функцією

$$R_j(t) := -\frac{1}{2M} \left\{ 1 + 2 \sum_{m=1}^{M-1} \frac{1}{m} \cos m \left(t - t_j \right) + \frac{\cos \left(t - t_j \right)}{M} \right\}$$
 (5.2)

5.2 Похибка

Теорема 5.1 Нехай $A: X \to X$ - обмежений лінійний оператор у бана-ховому просторі X та $(I-A): X \to X$ - ізоморфізм. Припустимо, що $\|P_nA-A\| \to 0, n \to \infty$. Тоді для достатньо великого $n \geq N$ оператори $(I-P_nA)^{-1}: X \to X$ існують і є рівномірно обмежені. Для точного і наближеного розв'язку $\varphi-\varphi_n=(I-P_nA)^{-1}\,(\varphi-P_n\varphi)$ має місце двостороння оцінка

$$\frac{1}{\|I - P_n A\|} \|\varphi - P_n \varphi\| \le \|\varphi - \varphi_n\| \le \|(I - P_n A)^{-1}\| \|\varphi - P_n \varphi\|$$
 (5.3)

Проекційний оператор визначається як

$$(P_n\varphi)(x) = \sum_{j=0}^n \varphi(x_i) l_j(x).$$

Для $P_n\varphi$ маємо такі оцінки

$$\varphi \in C^2[a, b], \qquad \|P_n \varphi - \varphi\|_{\infty} \le \frac{1}{8} h^2 \|\varphi''\|_{\infty}$$

 $\varphi \in C[a, b], \qquad \|P_n \varphi - \varphi\|_{\infty} \le w(\varphi, h) \to 0$

Звідси

$$P_n\varphi \to \varphi \quad \varphi \in C[a,b]$$

Тепер для відповідного інтегрального оператора $A:C[a,b]\to C[a,b]$ маємо за лемою $4.2\left\|P_nA-\dot{A}\right\|\to 0, n\to\infty$ Отже, результати теореми 4.1 можна використати в цьому конкретному випадку.

Таким чином для достатнью великого $n \geq N$ апроксимаційне р-ня цього варіанту методу колокації має єдиний

$$(I - P_n A) \varphi_n = P_n f \tag{5.4}$$

 $_1$ р-к для $f\in C[a,b]i\,\|\varphi_n-\varphi\|_\infty\leq \dot{M}\,\|P_n\varphi-\varphi\|_\infty$. Для $\varphi\in C^2[a,b]\,\|\varphi_n-\varphi\|_\infty\leq M^{\frac{1}{2}}h^2\,\|\varphi''\|_\infty$

| нтеграли (3) слід обчислювати наближено з використанням квадратур, які не понижують отриманої вище оцінки. Зокрема можна скористатись способом, розглянутим у в-ку м-ду вир. ядер. Для кускової інтерполяції можна вибирати поліноми вищого степеня r. При цьому заг. ідея залишається незмінною і порядок збіжності буде $O\left(h^{r+1}\right)$ для $\varphi \in C^{r+1}[a,b]$.

$$p1 = [0.7, 1.2] p2 = [-0.8, 0.9] p3 = [-1, -1]$$

6 Чисельні експеременти

6.1 Приклад 1

$$\Gamma_1 = \{x_1(t) = (0.9\cos t, 0.9\sin t), \quad t \in [0, 2\pi]\}$$

$$\Gamma_2 = \{x_2(t) = (2\cos t, 2\sin t), \quad t \in [0, 2\pi]\}$$

$$f_1(x) = x \text{ Ha } \Gamma_1 \quad \text{i} \quad f_2(x) = 1 \text{ Ha } \Gamma_2$$

$$(6.1)$$

Рис. 2: Граничні умови Γ_1 , Γ_2 для ??

n	x = (0.7, 1.2)	x = (-0.8, 0.9)	x = (-1, -1)
4	3.32×10^{-1}	7.88×10^{-2}	3.11×10^{-1}
8	1.07×10^{-1}	2.64×10^{-2}	4.91×10^{-3}
16	5.30×10^{-2}	5.76×10^{-3}	8.18×10^{-5}
32	1.44×10^{-2}	2.48×10^{-3}	1.61×10^{-5}

6.2 Приклад 1

Бібліографія 16

Бібліографія

[1] Johansson B.T. Chapko R. An alternating boundary integral based method for inverse potential flow around immersed bodies. J. Numer. Appl. Math. No. 97, 2009, – pp. 10-25. 2009.

- [2] O. Sobeyko R. Chapko. On the numerical solution of a cauchy problem for an elastostatic equation. Ser. Appl. Math. Inform 2009. Is. 15. pp. 135-148. 2009.
- [3] R. Kress. Linear Integral Equations. Applied Mathematical Sciences. 2012.