Machine Learning Homework 1

0853412 資管碩 吳宛儒

1.

2.

Functions defined:

Function Name	meanings
loadData()	讀取資料
splitData(x,t)	將資料切為 train & val
M1Phi(x)	M=1 一階的Φ
M2Phi(x)	M=2 二階的Φ
Weight(phi,t)	由①和t計算出來的權重
RMSE(pred_ans, x, t)	計算 RMS error
dropFeatures(x, t)	單獨去除 feature 之 RMSerror
getImportant(x)	去除最不重要的一個特徵
GaussianPhi(x)	計算高斯①
SigmoidalPhi(x)	計算 sigmoidal Φ
KFold(dataset, i, k)	N-fold cross validation
avgRMSE(x, t, k, M)	平均 RMS error
WeightwithLambda(phi, t, _lambda)	計算帶有 lambda 的權重(Maximum a
	posteriori approach)
$avgRMSE_1d(x, t, k, M)$	計算帶有 lambda 以後的 RMS error
	(Maximum a posteriori approach)

1. Feature selection

(a)

M=1:17+1=18

M=2:C17取2(i,j和j,i不重複)+17+1=171

RMS error	Train	Validation
M=1	7. 87257	13. 8423
M=2	4. 93709	17. 5567

可以看出即使 M=2 在 training 時會有較低的 RMS error,但在 validation 的時候其 error 較高。較為好奇的是 M=1 的時候 validation 也產出了類似 overfitting 的結果,這部分還有待進一步討論。

(b)

M=1:17+1=18

嘗試:每次拿掉一個 feature,看 RMS error 的變化

Training:

Validation:

拿掉第幾個 feature	RMS error
1	7. 87533334
2	7. 8876567
3	8. 37316749
4	7. 93322161
5	7. 87397795
6	7. 87700168
7	7. 87533952
8	7. 89043439
9	17. 33946208
10	7. 94730491
11	7. 90202827
12	7. 89394384
13	7. 87563013
14	7. 96861402
15	7. 93250488
16	7. 88779893
17	7. 91586493

拿掉第幾個 feature	RMS error
1	3. 93724
2	3. 76602
3	3. 75272
4	3.86107
5	3. 90678
6	3. 86823
7	3. 86676
8	3. 82958
9	9. 44199
10	3. 9131
11	4. 18637
12	3. 76605
13	3. 77888
14	3. 74632
15	3. 75603
16	3. 78792
17	3. 80096

而最小的 RMSerror 發生在:

train_idx: [4] val_idx: [13]

以 train 來看,拿掉第五個特徵具有最小的 RMS error,以 validation 來看, 拿掉第十四個特徵具有最小的 RMS error。

2. Maximum likelihood approach

(a)

選擇將上一題得出的結果,刪除拿掉以後 RMS error 最小的,也就是相對最不重要的那個 feature,做為接下來的 trainind 和 validation 資料。

a. 1 Gaussian

RMS error(Gaussian)	Train	Validation
M=1	6.40391e+08	4. 79709e+08
M=2	8. 64751629	1941209. 41860651

這部分可以看出,Gaussian 所得到的 RMS error 相當不穩定且大,原本考量應該是 function 定義上出了問題,但是幾番確認過後並未找出解決方法與原因。

a. 2 Sigmoidal

RMS error(Sigmoidal)	Train	Validation
M=1	2169488. 46172904	1666416. 15890132
M=2	8. 52528087	8. 26172646

Sigmoidal 的部分則在 M=1 的時候很不穩定,原本考量應該是 function 定義上出了問題,但是幾番確認過後並未找出解決方法與原因。在 M=2 的時候 error的數值稍微正常些,training 和 validation 的 error 值則是沒有明顯差距。

(b)

N-fold, N=5

Change hyper-parameter: M=1, M=2 (order)

Average RMS error	Train	Validation
M=1	4. 00879	0. 432871
M=2	0. 282576	180271

經過 N-fold cross validation, M=1 時, validation 意外地得到很低的 RMS error,推測原因應該為切 training 和 validation data 的時候, validation 只佔了 15%,也就是較少筆資料,故可能恰巧變異性較小,較不會有離群值影響結果。而 M=2 時, training 時因為參數量過大而有非常小的 RMS error,但在 validation 時則出現了 error 特大的狀況,發生了 overfitting。

3. Maximum a posteriori approach

Repeat 2(a), 2(b)

Lambda = 0.001, 1, 2

在這個部份除了重複第二小題所做的 Gaussian 與 Sigmoidal 以外,lambda 的值我也取了 0.001,1,2 三個值來做討論。

a. 1 Gaussian

RMS error(Gaussian)	Train	Validation
M=1(Lambda = 0.001)	1. 22287e+08	9. 29358e+07
M=2(Lambda = 0.001)	8. 90603358	38364964. 7541471
M=1(Lambda = 1)	19936259. 31439722	19230854. 59143642
M=2(Lambda = 1)	20. 8039414	70079446. 6039978
M=1(Lambda = 2)	8137960. 44683446	7984582. 73422896
M=2(Lambda = 2)	23. 55557115	27100378. 8194697

這部分可以看到,Gaussian 出來的 error 仍是有許多異常的值,我們先假定異常值是因為函數定義問題而有待解決的問題,除去異常值來看,在 training 且 M=2 的時候所有的 lambda 值得出了較好且正常的結果,而且 lambda 值越小, RMS error 的數值也越小。

a. 2 Sigmoidal

RMS error(Sigmoidal)	Train	Validation
M=1(Lambda = 0.001)	2. 16668e+06	1.66417e+06
M=2(Lambda = 0.001)	8. 52528223	8. 26058636
M=1(Lambda = 1)	1948119. 82579022	1489663. 60458358
M=2(Lambda = 1)	8. 63328611	7. 99579985
M=1(Lambda = 2)	1874376. 51722522	1437665. 05643117
M=2(Lambda = 2)	8. 77173398	7. 92097963

Sigmoidal 的部分則是在 M=2 的時候有較為正常的 RMS error 數值,除去異常值來看,不論 lambda 值為何, training 和 validation 的 error 差異並不大, 且在各種 lambda 值之間也並沒有明顯的差異,這是比較出乎意料的部分,目前 正在嘗試調整 function 來找出發生這個現象的原因。

Repeat 2(a), 2(b)

Lambda = 0.001, 1, 2

N-fold, N=5

Change hyper-parameter: M=1, M=2 (order)

Average RMS error	Train	Validation
M=1(Lambda = 0.001)	4. 00252	0. 43832

M=2(Lambda = 0.001)	0. 0912425	207068
M=1(Lambda = 1)	4. 48192599	0. 49879827
M=2(Lambda = 1)	0. 09124249	207067. 556
M=1(Lambda = 2)	4. 63397866	0. 50530394
M=2(Lambda = 2)	0. 09124249	207067. 55580392

這部份則比上述 Gaussian 與 Sigmoidal 來得較為符合預期。如同前面所做過的不具有 lambda 的實驗,以 training 來看,M=1 時,較小的 lambda 值會帶來稍微較低的 error,M=2 時則並無明顯差異;validation 的部分,在 M=1 時,error 異常地小,推測原因如同上面一題所述,可能是切分資料時造成的天生原因,而在 M=2 時,所有不同 lambda 值都帶來了 overfitting,且 lambda 越大時有 error 越大的趨勢。

綜合上述對於 Maximum a posteriori approach,我們推估較小的 lambda 值 (=0.001)可能會有比較好的 RMS error 結果。

(b)

針對 Maximum likelihood approach 與 Maximum a posteriori approach 的實驗,首先發現且致力解決的問題在於 Gaussian 以及 Sigmoidal 出現較為大量的異常值可能的原因,並試著透過與同學討論找出解決辦法。另外在各種實驗中看出了階數(M=1,2)、不同 approach(with or without lambda)和不同 lambda值的效果,皆於上述幾題中討論。