MATH 2330: Multivariable Calculus

Chapter 6 - Part 3

6.3 - The Fundamental Theorem of Calculus for Line Integrals (FTCFLI), Part 2:

FTCFLI:

If f is differentiable and $\vec{\nabla} f$ is continuous on a curve C parametrized as $\vec{r}(t)$ for $a \leq t \leq b$, then

$$\int_{C} \vec{\nabla} f \cdot d\vec{r} = f(\vec{r}(b)) - f(\vec{r}(a)).$$

This means that if $\vec{F} = \vec{\nabla} f$ for some potential function f then the line integral $\int_C \vec{F} \cdot d\vec{r}$ is path independent.

Properties of Conservative Vector Fields:

 $\vec{F} = \langle P(x,y), Q(x,y) \rangle$ is conservative on a region R in the plane (with no holes) if:

A: $\oint_C \vec{F} \cdot d\vec{r} = 0$ for any closed path C

B: $\int_C \vec{F} \cdot d\vec{r}$ depends only on the endpoints, not on the path itself

C: $\vec{F} = \vec{\nabla} f$ for some potential function f

D: The components satisfy the **component test**: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$

Problems for Group Work:

Problem 1: The following vector fields are conservative. For each one, find the potential function, f such that $\vec{F} = \vec{\nabla} f$:

a)
$$\vec{F} = \langle 3xy^2, 3x^2y \rangle$$

b)
$$\vec{F} = y \sin(xy) \hat{\mathbf{i}} + x \sin(xy) \hat{\mathbf{j}}$$

c)
$$\vec{F} = (2x + y) \hat{\mathbf{i}} + (x + 3y^2) \hat{\mathbf{j}}$$

d)
$$\vec{F} = \langle yze^{xyz}, xze^{xyz}, xye^{xyz} \rangle$$

Problem 2: Which, if any, of the following vector fields are conservative?

a)
$$\vec{F} = xy \hat{\mathbf{i}} - 2xy \hat{\mathbf{j}}$$

b)
$$\vec{F} = (2xy + \cos(2y)) \hat{\mathbf{i}} + (x^2 - 2x\sin(2y)) \hat{\mathbf{j}}$$

c)
$$\vec{F} = (3x - 5y) \hat{\mathbf{i}} + (7y - 5x) \hat{\mathbf{j}}$$

Problem 3: Evaluate $\oint_C \vec{F} \cdot d\vec{r}$ for each of the vector fields from Problem 2, for the curve C: $x^2 + y^2 = 1$, oriented counter-clockwise.

6.4 - Green's Theorem:

Green's Theorem:

For any vector field $\vec{F} = \langle P,Q \rangle$ that has continuous first partials:

$$\oint_C \vec{F} \cdot d\vec{r} = \oint_C P \ dx + Q \ dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \ dA,$$

where C is a **simple closed curve** that is **piecewise smooth** and **positively oriented** that encloses the region D.

- simple closed curve: only intersects itself at the start/end points
- piecewise smooth: can be broken up into pieces without corners
- ullet positively oriented: draw the arrows on C sot that the enclosed region D is always on the left as you go around C.

Area Formulas:

Green's Theorem can be used to calculate the area of the region D by choosing P and Q so that $\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = 1$. The most popular options are shown below:

$$\operatorname{Area}(D) = \oint_C x \ dy = -\oint_C y \ dx = \frac{1}{2} \oint x \ dy - y \ dx.$$

Use whichever formula makes the problem the easiest!

Examples:

Example 1: Making the tedious...less tedious!

Evaluate $\oint_C x^2 y \ dx + (x^3 + 2xy^2) \ dy$, where C encloses the region between the unit circle and the circle with radius 2 in quadrants IV and I.

Example 2: Making the Impossible Possible!

Evaluate the line integral

$$\oint_C \left(2y + \sqrt{1+x^5}\right) dx + \left(5x - e^{y^2}\right) dy,$$

where C is the "unit square" connecting the points $(-\frac12,-\frac12)$, $(-\frac12,\frac12)$, $(\frac12,\frac12)$, and $(\frac12,-\frac12)$

Example 3: Area of the Astroid!

Use Green's Theorem to find the area enclosed by the astroid: $\vec{r}(t) = \langle \cos^3 t, \sin^3 t \rangle$, $0 \le t \le 2\pi$.