To simplify reading answers, all source code is at the end of the file with commented letter associations

(a)-----

The best four variables where Income, Limit, Cards, and Student with coefficients This is justified by looking at the columns with asterisks (\*) and numbered by 4 variables.

| 1    |   |     |     | Income | Limit   | Rating | Cards | Age   | Education | GenderMale | StudentYes | MarriedYes | EthnicityAsian | EthnicityCaucasian |
|------|---|-----|-----|--------|---------|--------|-------|-------|-----------|------------|------------|------------|----------------|--------------------|
| 1    | L | (1  | . ) |        |         | " * "  |       |       |           |            |            |            |                |                    |
| - 2  | 2 | (1  | . ) | " * "  |         | " ½ "  |       |       |           |            |            |            |                |                    |
| - 13 | 3 | (1  | )   | **     |         | "*"    |       |       |           |            | "*"        |            |                |                    |
| 4    | 1 | (1  | . ) | 0.80   | 11 % 11 |        | "*"   |       |           |            | "×"        |            |                |                    |
|      | 5 | (1  | . ) | ***    | " st "  | " * "  | "*"   |       |           |            | "*"        |            | " "            |                    |
| - 6  | 5 | (1  | . ) | 0.80   | " · ·   | " * "  | " * " | " · · |           |            | "*"        |            |                | n n                |
| - 17 | 7 | ( 1 | . ) | ***    | "*"     | ***    | ***   | ***   |           | ***        | "*"        |            |                |                    |
| - 1  | В | (1  | . ) | ***    | " * "   | ***    | ***   | ***   |           | " · · ·    | "*"        |            | " * "          |                    |

## (b)-----

# **C**<sub>p</sub>: Income Limit Rating Cards Age Student

| (Intercept)  | Income     | Limit     | Rating    | Cards      | StudentYes  |
|--------------|------------|-----------|-----------|------------|-------------|
| -526.1555233 | -7.8749239 | 0.1944093 | 1.0879014 | 17.8517307 | 426.8501456 |

### **BIC**: Income Limit Cards Student

| (Intercept)  | Income     | Limit     | Cards      | StudentYes  |
|--------------|------------|-----------|------------|-------------|
| -499.7272117 | -7.8392288 | 0.2666445 | 23.1753794 | 429.6064203 |

# Adjusted R<sup>2</sup>: Income Limit Rating Cards Age Gender Student

| (Intercept)  | Income     | Limit     | Rating    |
|--------------|------------|-----------|-----------|
| -499.0690216 | -7.8036338 | 0.1936237 | 1.0940490 |



(c)-----

Best 4 variables (via forward stepping) are Income, Limit, Rating, and Student

|   |   |   |   |        |       | orward    |    |      |    |   |           |    |                          |            |    |           |    |              |    |                  |
|---|---|---|---|--------|-------|-----------|----|------|----|---|-----------|----|--------------------------|------------|----|-----------|----|--------------|----|------------------|
|   |   |   |   | Income | Limit | Rating    | Ca | ards | Ag | e | Education | Ge | enderMale <mark>.</mark> | StudentYes | Ma | arriedYes | Εī | hnicityAsian | Εt | hnicityCaucasian |
| 1 | ( | 1 | ) |        |       | " * "     | "  | "    | "  | " |           | "  |                          |            | "  |           |    | "            | "  |                  |
| 2 | Ċ | 1 | ) | "*"    |       | " * "     | "  | "    | "  | " |           | "  |                          |            | "  |           | "  | "            | "  |                  |
| 3 | Ċ | 1 |   | "*"    |       | " * "     | "  | "    | "  | " |           | "  |                          | "*"        | "  |           |    | "            | "  |                  |
| 4 | Č | 1 | ) | 0 × 0  | "*"   | " · · · · | "  | "    | "  | " |           | "  | "                        | "*"        | "  | "         | "  | "            | "  | "                |
| > |   |   |   |        |       |           |    |      |    |   |           |    |                          |            |    |           |    |              |    |                  |

### (d)-----

It is different because "Rating" was forced to stay included due to the stepping process. Whereas with all the possible combinations of size 4, rating had less importance and was not used in the model. The other 3 parameters ended up being the same.

### (e)-----

# **C**<sub>p</sub>: Income Limit Rating Cards Age Student

| (Intercept)  | Income     | Limit     | Rating    | Cards      | Age        |
|--------------|------------|-----------|-----------|------------|------------|
| -493.7341870 | -7.7950824 | 0.1936914 | 1.0911874 | 18.2118976 | -0.6240560 |

StudentYes 425.6099369

# **BIC:** Income Limit Rating Cards Student

| (Intercept)  | Income     | Limit     | Rating    | Cards      | StudentYes  |
|--------------|------------|-----------|-----------|------------|-------------|
| -526.1555233 | -7.8749239 | 0.1944093 | 1.0879014 | 17.8517307 | 426.8501456 |

# Adjusted R2: Income Limit Rating Cards Age Gender Student

| (Intercept)  | Income     | Limit     | Rating    | Cards      | Age        |
|--------------|------------|-----------|-----------|------------|------------|
| -499.0690216 | -7.8036338 | 0.1936237 | 1.0940490 | 18.1091708 | -0.6206538 |

GenderMale StudentYes 10.4531521 426.5812620



Thus LOOCV had the smallest test MSE for my seed (1). In either case both LOOCV and 10-Fold CV performed better than a 50-50 train test split.

| (i)  |          |  |
|------|----------|--|
| Size | MSE      |  |
| 1    | 54504.00 |  |
| 2    | 24333.69 |  |
| 3    | 12885.25 |  |
| 4    | 11838.71 |  |
| 5    | 12595.75 |  |
| 6    | 12699.41 |  |
| 7    | 12774.41 |  |
| 8    | 12654.38 |  |
| 9    | 12458.07 |  |
| 10   | 12400.06 |  |
| 11   | 12380.05 |  |
|      |          |  |

Model size with smallest MSE: 4

(j)-----

| Sıze | MSE       |
|------|-----------|
| 1    | 54965.475 |
| 2    | 27460.099 |
| 3    | 10489.300 |
| 4    | 9611.533  |

```
5 9718.811
6 9466.766
7 9631.280
8 9684.054
9 9740.664
10 9726.611
11 9673.000
```

Model size with smallest MSE: 6

(k)-----

The results in (b) were that the models with only 4 to 7 parameters performed the best on the different error measures. This is similar to the results in (i) and (j) where the best sizes were 4 and 6.

# **CODE**

linearRegressionModel = regsubsets(Balance~., data=creditData, nvmax=MAX\_PARAMS)
summary(linearRegressionModel) # Row 4 asterisks: Income, Limit, Cards, Student
coef(linearRegressionModel, 4) # Get model equation's coefficients

```
# (b) ------
plot(linearRegressionModel, scale="Cp")
plot(linearRegressionModel, scale = "bic")
```

```
plot(linearRegressionModel, scale="adjr2")
coef(linearRegressionModel, 5) # Cp [5 predictors]
coef(linearRegressionModel, 4) # BIC [4 predictors]
coef(linearRegressionModel, 7) # adj rsquare [7 predictors]
# (c) -----
forwardSelectionLR = regsubsets(Balance~., data=creditData, nvmax=MAX_PARAMS,
method="forward")
summary(forwardSelectionLR)
# (e) -----
plot(forwardSelectionLR, scale="Cp")
plot(forwardSelectionLR, scale ="bic")
plot(forwardSelectionLR, scale="adjr2")
coef(forwardSelectionLR, 6) # Cp [6 predictors]
coef(forwardSelectionLR, 5) # BIC [5 predictors]
coef(forwardSelectionLR, 7) # adj rsquare [7 predictors]
# (f) -----
set.seed(1)
x_{train} = sample(400, 200)
x_{test} = -x_{train}
split_lm = lm(Balance~Income+Limit+Cards+Student, data=creditData, subset=x_train)
summary(split_lm)
# (a) -----
y_predictions = predict(split_lm, newdata=creditData)
all_residuals = (Balance - y_predictions)
test_residuals = all_residuals[x_test]
split_lm_mse = mean(test_residuals^2)
split_lm_mse
loocv_model = glm(Balance~Income+Limit+Cards+Student, data=creditData)
loocvMSE ← cv.glm(creditData, loocv_model)$delta[2]
loocvMSE
kfold_model = glm(Balance~Income+Limit+Cards+Student, data=creditData)
kfoldMSE = cv.glm(creditData, kfold_model, K=10)$delta[2]
kfoldMSE
```

```
# (i) -----
x_train = sample(c(TRUE, FALSE), nrow(creditData), rep=TRUE)
x_{test} = !x_{train}
bestSubsets = regsubsets(Balance~., data=creditData[x_train,], nvmax=MAX_PARAMS)
testMatrix = model.matrix(Balance~., data=creditData[x_test,])
test_mses = rep(NA, MAX_PARAMS)
for (modelSize in 1:MAX_PARAMS){
 coefficients = coef(bestSubsets, modelSize)
 y_predictions = testMatrix[, names(coefficients)]%*%coefficients
 y_test = Balance[x_test]
 test_mses[modelSize]= mean((y_test - y_predictions)^2)
}
test_mses
                          # Best MSEs for each size
                          # Best MSE's Model Size
which.min(test_mses)
# (j) -----
k=10
predict.regsubsets = function(object, newdata, id, ...) {
 form = as.formula(object$call[[2]])
 mat = model.matrix(form, newdata)
 coefi = coef(object, id=id)
 xvars = names(coefi)
 mat[,xvars]%*%coefi
}
folds = sample(1:k, nrow(creditData), replace=TRUE)
test_mses = matrix(NA, k, MAX_PARAMS, dimnames = list(NULL, paste(1:MAX_PARAMS)))
for (currentFold in 1:k) {
 bestSubsets = regsubsets(Balance~., data=creditData[folds ≠ currentFold, ],
nvmax=MAX_PARAMS)
 for (modelSize in 1:MAX_PARAMS) {
   y_predictions = predict(bestSubsets, creditData[folds = currentFold, ],
id=modelSize)
   y_test = Balance[folds = currentFold]
   test_mse = mean((y_test-y_predictions)^2)
   test_mses[currentFold, modelSize] = test_mse
 }
mean_errors = apply(test_mses, 2, mean)
mean_errors
```

which.min(mean\_errors)