8.RflySimVision 底层控制算法开发

包含了底层飞行控制相关的例程和源码

序号	实验名称	简介	文件地址	版本
1	视觉感知与避障决策 API 文件	视觉感知与避障决策开发所使用的 API 接口文档	<u>API.pdf</u>	免费版
2	视觉感知与避障决策课件		PPT.pdf	免费版
		知与避障决策开发的实验以及效果展示。		
3	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的	0.ApiExps\Readme.pdf	免费版
		实验,旨在帮助用户快速熟悉本讲各种接口以便		
		于后续实验开发。		
4	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能	1.BasicExps\Readme.pdf	免费版
		实验,用户可快速上手熟悉一些简单的功能性实		
		验。		
5	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验,	2.AdvExps\Readme.pdf	个人集合版
		基于 0.ApiExps、1.BasicExps 文件夹中的实验,用		
		户在已经熟悉基于 RflySim 平台开发本章中的实		
		验,该文件夹中的实验均为本讲的进阶例程。		
6	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实	3.CustExps\Readme.pdf	完整版
		验,相比其他文件夹中的实验,该文件夹中的实		
		验更加完整、复杂,满足更多的项目或者科研需		
		求。		

7	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的 实验,旨在帮助用户快速熟悉本讲各种接口以便 于后续实验开发。	0.ApiExps\readme.pdf	免费版
8	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功能 实验,用户可快速上手熟悉一些简单的功能性实 验。	1.BasicExps\readme.pdf	免费版
9	进阶性实验	本文件夹中的所有实验均为本讲中进阶的实验, 基于 0.ApiExps、1.BasicExps 文件夹中的实验,用 户在已经熟悉基于 RflySim 平台开发本章中的实验,该文件夹中的实验均为本讲的进阶例程。	2.AdvExps\readme.pdf	个人集合版
10	进阶接口类实验	本文件夹中的所有实验均为本讲中进阶接口类实验,基于 0.ApiExps、1.BasicExps 文件夹中的实验,本文件夹中均为针对本章的进阶性接口类实验。	2.AdvExps\e0_AdvApiExps\readme.pdf	个人版
11	定制性实验	本文件夹中的所有实验均为部分项目中的拆解实验,相比其他文件夹中的实验,该文件夹中的实验。	3.CustExps\readme.pdf	完整版
12	视觉感知与避障决策例程 检索文件	通过本文件,您可快速了解并掌握本讲全部的例 程简介和例程文件地址。	Readme.pdf	免费版

所有文件列表

序	实验名称	简介	文件地址	版
号				本
1	底层控制算法开发	包含了底层飞行控制相关的例程和源	Readme.pdf	免
		码		费
				版
2	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
3	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
4	进阶性实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\readme.pdf	个
		阶的实验,基于0.ApiExps、1.BasicExps		人
		文件夹中的实验,用户在已经熟悉基		集
		于 RflySim 平台开发本章中的实验,		合
		该文件夹中的实验均为本讲的进阶例		版
		程。		
5	进阶接口类实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\e0_AdvApiExps\readme.pdf	个
		阶接口类实验,基于 0.ApiExps、		人
		1.BasicExps 文件夹中的实验,本文件		版
		夹中均为针对本章的进阶性接口类实		

		验。		
6	定制性实验	本文件夹中的所有实验均为部分项目	3.CustExps\readme.pdf	完
		中的拆解实验,相比其他文件夹中的		整
		实验,该文件夹中的实验更加完整、		版
		复杂,满足更多的项目或者科研需求。		
7	视觉感知与避障决	通过本文件,您可快速了解并掌握本	Readme.pdf	免
	策例程检索文件	讲全部的例程简介和例程文件地址。		费
				版
8	视觉感知与避障决	视觉感知与避障决策开发所使用的	<u>API.pdf</u>	免
	策 API 文件	API 接口文档		费
				版
9	视觉感知与避障决	该文件全面的讲解了基于 RflySim 平	PPT.pdf	免
	策课件	台的视觉感知与避障决策开发的实验		费
		以及效果展示。		版
10	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
11	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
12	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		

				_
13	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\1.UAVCtrlNoPX4Demo\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
14	三个位置跟踪控制	在视觉控制时,我们常常需要在控制	0.ApiExps\1-UsageAPI\2.ThreeCtrlModes\Readme.pdf	免
	器接口的仿真实验	飞机飞往指定目标位置的同时,控制		费
		飞机的前飞速度,达到好的跟踪效果。		版
15	三个位置跟踪控制	在视觉控制时,我们常常需要在控制	0.ApiExps\1-UsageAPI\3.AirSimAPITest\Readme.pdf	免
	器接口的仿真实验	飞机飞往指定目标位置的同时,控制		费
		飞机的前飞速度,达到好的跟踪效果。		版
16	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\4.RflySim3DAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
17	硬件在环仿真实验	实现两路串口通信硬件在环仿真。	0.ApiExps\1-UsageAPI\5.serial_connect_HITL\Readme.pdf	免
				费
				版
18	时间戳获取实验	通过 python 接口获取时间戳数据。	0.ApiExps\1-UsageAPI\6.ReadTimeStmp\Readme.pdf	免
				费
				版
19	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
20	取图接口实验	通过 python 接口获取 RflySim3D 图	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\1.CameralmageGet\Readme.pdf	免
		, 像并分发。		费

				版
21	多目相机实验取图 实验	通过 python 接口获取 RGB、灰度、深度三个相机图像。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\2.MutCameraImageGet\Readme.pdf	免费版
22	无 CopterSim 取图 实验	不启动 CopterSim 并获取相机数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\3.NoCopterSimImageGet\Readme.pdf	免费版
23	深度图获取实验	通过 python 接口设置相机参数, 并获取深度图数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\4.IMUCarmDataGet\Readme.pdf	免 费 版
24	深度图获取实验	通过 python 接口设置相机参数, 并获取深度图数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\5.DepthCameraDemo\Readme.pdf	免 费 版
25	飞机、物体、相机信 息获取实验	通过 python 接口获取飞机、物体和相机的信息。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\6.GetCamObjDemo\Readme.pdf	免 费 版
26	取图接口实验	通过 python 接口获取 RflySim3D 图像并分发。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\1.CameraImageGet\Readme.pdf	免 费 版
27	多目相机实验取图 实验	通过 python 接口获取 RGB、灰度、深度三个相机图像。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\2.MutCameraImageGet\Readme.pdf	免费版
28	无 CopterSim 取图 实验	不启动 CopterSim 并获取相机数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\3.NoCopterSimImageGet\Readme.pdf	免 费 版

29	深度图获取实验	通过 python 接口设置相机参数, 并获取深度图数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\4.IMUCarmDataGet\Readme.pdf	免费版
30	深度图获取实验	通过 python 接口设置相机参数,并获取深度图数据。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\5.DepthCameraDemo\Readme.pdf	免 费 版
31	飞机、物体、相机信 息获取实验	通过 python 接口获取飞机、物体和相机的信息。	0.ApiExps\1-UsageAPI\0.VisionSenorAPI\6.GetCamObjDemo\Readme.pdf	免费版
32	基础接口类实验	本文件夹中的所有实验均为本讲中接口使用类的实验,旨在帮助用户快速熟悉本讲各种接口以便于后续实验开发。	0.ApiExps\1-UsageAPI\1.UAVCtrlNoPX4Demo\Readme.pdf	免费版
33	轻量级无人机模型 控制实验	在前面的例子中,运行 bat 脚本都会 开启飞机的软件在环或硬件在环仿 真,需要 CopterSim+飞控+QGC 参 与,占用资源较多,在多机视觉仿真 时可能收到性能限制。	0.ApiExps\1- UsageAPI\1.UAVCtrlNoPX4Demo\1.UAVCtrlNoPX4Demo\Readme.pdf	免费版
34	轻量级无人机模型 控制实验	在前面的例子中,运行 bat 脚本都会 开启飞机的软件在环或硬件在环仿 真,需要 CopterSim+飞控+QGC 参 与,占用资源较多,在多机视觉仿真 时可能收到性能限制。	0.ApiExps\1- UsageAPI\1.UAVCtrlNoPX4Demo\1.UAVCtrlNoPX4Demo\Readme.pdf	免费版
35	三个位置跟踪控制 器接口的仿真实验	在视觉控制时,我们常常需要在控制 飞机飞往指定目标位置的同时,控制 飞机的前飞速度, 达到好的跟踪效果。	0.ApiExps\1-UsageAPI\2.ThreeCtrlModes\Readme.pdf	免费版

36	三个位置跟踪控制	在视觉控制时,我们常常需要在控制	0.ApiExps\1-UsageAPI\3.AirSimAPITest\Readme.pdf	免
30	器接口的仿真实验	飞机飞往指定目标位置的同时,控制	U.Apiexp311-03ageAl 110.All 3ll IIAl Trestitedulle.pdl	费
	超级日时仍共大型			
		飞机的前飞速度, 达到好的跟踪效果。		版
37	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\1-UsageAPI\4.RflySim3DAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
38	获取 RflySim3D 内	通过平台提供的 python 接口获取	0.ApiExps\1-UsageAPI\4.RflySim3DAPI\1.RflySim3DPosGet\Readme.pdf	免
	所有动态创建物体	RflySim3D 内所有动态创建物体位		费
	位置、碰撞数据实验	置、碰撞数据。		版
39	获取 RflySim3D 内	通过平台提供的 python 接口获取	0.ApiExps\1-UsageAPI\4.RflySim3DAPI\1.RflySim3DPosGet\Readme.pdf	免
	所有动态创建物体	RflySim3D 内所有动态创建物体位		费
	位置、碰撞数据实验	置、碰撞数据。		版
40	硬件在环仿真实验	实现两路串口通信硬件在环仿真。	0.ApiExps\1-UsageAPI\5.serial_connect_HITL\Readme.pdf	免
				费
				版
41	时间戳获取实验	通过 python 接口获取时间戳数据。	0.ApiExps\1-UsageAPI\6.ReadTimeStmp\Readme.pdf	免
				费
				版
42	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\2-DistributedSimAPI\Readme.pdf	免
		 口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
43	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\2-DistributedSimAPI\1.VisionAPIsTest\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		MOTH TIXENX JAXXMI		/IIX

		发。		
44	共享内存实验	尝试使用共享内存的方式传图。	0.ApiExps\2-DistributedSimAPI\1.VisionAPIsTest\0-VisionCapAPI-	免
			SharedMemory\Readme.pdf	费
				版
45	共享内存实验	尝试使用共享内存的方式传图。	0.ApiExps\2-DistributedSimAPI\1.VisionAPIsTest\0-VisionCapAPI-	免
			SharedMemory\Readme.pdf	费
				版
46	基础接口类实验	本文件夹中的所有实验均为本讲中接	0.ApiExps\3-VisionAIAPI\Readme.pdf	免
		口使用类的实验,旨在帮助用户快速		费
		熟悉本讲各种接口以便于后续实验开		版
		发。		
47	双目摄像机系统的	通 过 运 行	0.ApiExps\3-VisionAIAPI\0.BinocularCameraCalib\Readme.pdf	免
	标定实验	BinocularCameraCalib4.py, 演示改变		费
		棋盘.的位置和姿态,用于双目摄像机		版
		系统的标定。你可以存储图像和校准		
		相机。		
48	自动生成 AI 训练	文件夹内有两个例程 python 脚本,	0.ApiExps\3-VisionAIAPI\1.GenObjectDataSet\Readme.pdf	免
	书数据集实验	分别生成图像数据集以及点云数据		费
		集,图像数据集是以 VOC 格式输出,		版
		因此 VOC 转到具体训练框架也很方		
		便,点云数据集以 kitti 数据集格式,		
		图像数据集生成例程		
		(ExampleImg.py)与点云数据生成例		
		程(ExamplePointCloud.py)都是以静		
		态目标位置,具体到目标怎么运动,		
		由用户规划其运动轨迹以及控制姿		

		态,平台早期有一个 单 目 标 生 成		
		数 据 集 的 例 程		
		PX4PSP\RflySimAPIs\PythonVisionAPI		
		\3-VisionAIDemos\4-		
		GenVisionDataSet,随机给的目标位		
		姿可以做参考,多目标的最好规划每		
		个目标的运动轨迹以及控制姿态等。		
49	理论上推导 UE4	在指定分辨率和视场角的情况下,可	0.ApiExps\3-VisionAlAPI\2.CameraCalcDemo\Readme.pdf	免
	相机的理想模型实	以快速计算焦距 和内参矩阵、以及根		费
	验	据相机位置解算外参矩阵。		版
50	理论上推导 UE4	在指定分辨率和视场角的情况下,可	0.ApiExps\3-VisionAlAPl\3.CameraCalcDemo2\Readme.pdf	免
	相机的理想模型实	以快速计算焦距 和内参矩阵、以及根		费
	验	据相机位置解算外参矩阵。		版
51	获取相机、物体、靶	通过调用平台接口获取相机、物体、	0.ApiExps\3-VisionAlAPI\4.GetRelativePosDemo\Readme.pdf	免
	标中心精确三维位	靶标中心精确三维位置。		费
	置方法实验			版
52	自动生成 YOLO	运行 get_dateset.py 文件即可自动	0.ApiExps\3-VisionAlAPI\5.GenVisionDataSet\Readme.pdf	免
	数据集实验	生成 YOLO 格式的数据集。再运行		费
		maketxt.py 对生成数据分成训练集		版
		和测试集。对已有数据集进行划分运		
		行 maketxt.py 文件即可对已有数据		
		集进行划分,但是需要将其中的一些		
		地址更改为所要划分的数据集地址。		
53	双目摄像机系统的	通 过 运 行	0.ApiExps\3-VisionAlAPI\0.BinocularCameraCalib\Readme.pdf	免
	标定实验	BinocularCameraCalib4.py, 演示改变		费
		棋盘.的位置和姿态,用于双目摄像机		版

		系统的标定。你可以存储图像和校准		
		相机。		
54	自动生成 AI 训练	文件夹内有两个例程 python 脚本,	0.ApiExps\3-VisionAIAPI\1.GenObjectDataSet\Readme.pdf	免
	书数据集实验	分别生成图像数据集以及点云数据		费
		集,图像数据集是以 VOC 格式输出,		版
		因此 VOC 转到具体训练框架也很方		
		便,点云数据集以 kitti 数据集格式,		
		图像数据集生成例程		
		(ExampleImg.py)与点云数据生成例		
		程(ExamplePointCloud.py)都是以静		
		态目标位置,具体到目标怎么运动,		
		由用户规划其运动轨迹以及控制姿		
		态,平台早期有一个 单 目 标 生 成		
		数 据 集 的 例 程		
		PX4PSP\RflySimAPIs\PythonVisionAPI		
		\3-VisionAIDemos\4-		
		GenVisionDataSet,随机给的目标位		
		姿可以做参考,多目标的最好规划每		
		个目标的运动轨迹以及控制姿态等。		
55	理论上推导 UE4	在指定分辨率和视场角的情况下,可	0.ApiExps\3-VisionAIAPI\2.CameraCalcDemo\Readme.pdf	免
	相机的理想模型实	以快速计算焦距 和内参矩阵、以及根		费
	验	据相机位置解算外参矩阵。		版
56	理论上推导 UE4	在指定分辨率和视场角的情况下,可	0.ApiExps\3-VisionAIAPI\3.CameraCalcDemo2\Readme.pdf	免
	相机的理想模型实	以快速计算焦距 和内参矩阵、以及根		费
	验	据相机位置解算外参矩阵。		版
57	获取相机、物体、靶	通过调用平台接口获取相机、物体、	0.ApiExps\3-VisionAIAPI\4.GetRelativePosDemo\Readme.pdf	免

	标中心精确三维位	靶标中心精确三维位置。		费
	置方法实验			版
58	自动生成 YOLO	运行 get_dateset.py 文件即可自动	0.ApiExps\3-VisionAlAPI\5.GenVisionDataSet\Readme.pdf	免
	数据集实验	生成 YOLO 格式的数据集。再运行		费
		maketxt.py 对生成数据分成训练集		版
		和测试集。对已有数据集进行划分运		
		行 maketxt.py 文件即可对已有数据		
		集进行划分,但是需要将其中的一些		
		地址更改为所要划分的数据集地址。		
59	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
60	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\1-VisionCtrlDemos\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
61	轻量级无人机模型	基于质点模型的穿环实验例程。	1.BasicExps\1-VisionCtrlDemos\e1_CrossRingNoPX4\Readme.pdf	免
	视觉穿环实验			费
				版
62	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\1-VisionCtrlDemos\e2_CameraKeyDemoOnWindows\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
63	无人机跟踪小球实	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e3_ShootBall\Readme.pdf	免
	验	通过运行"ShootBall3.py"程序。在前方		费
		生成一个红色球体,让飞机飞到靠左		版
		后方一段距离,并开启视觉跟踪,飞		
		到小球面前停止。		

64	无人机穿环实验	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e4_CrossRing\Readme.pdf	免
		通过运行"CrossRing3.py"程序,飞机		费
		起飞后并开启视觉跟踪,按照照顺序		版
		穿过三个环,最后自动降落。		
65	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\1-VisionCtrlDemos\e5_ScreenCapAPI\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
66	无人机跟随圆形案	该例程通过生成一块圆形案板并用按	1.BasicExps\1-VisionCtrlDemos\e6_Circle-follow\Readme.pdf	免
	板移动实验	键控制圆形案板移动方向。通过使用		费
		平台接口进行图像的获取,并通过视		版
		觉处理控制无人机跟随圆形案板移		
		动。		
67	双目视觉人脸识别	通过平台 Config.json 配置文件配置	1.BasicExps\1-VisionCtrlDemos\e7_ManDetect\Readme.pdf	免
	实验	好双目视觉灰度相机传感器,然后通		费
		过平台接口进行图像的获取,并在飞		版
		机起飞后开启人脸识别算法,双目框		
		选出人脸。		
68	轻量级无人机模型	基于质点模型的穿环实验例程。	1.BasicExps\1-VisionCtrlDemos\e1_CrossRingNoPX4\Readme.pdf	免
	视觉穿环实验			费
				版
69	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\1-VisionCtrlDemos\e2_CameraKeyDemoOnWindows\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
70	共享内存方式吊舱	通过平台接口上(↑)下(↓)键控制俯	1.BasicExps\1-	免
	视觉控制键盘仿真	仰角(pitch);左(←)右(→)键控制偏航	VisionCtrlDemos\e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	费
	实验	角(yaw);右 Ctrl 建 + 左(←)右(→) 控		版

		制横滚角(roll);焦距操作 alt+上, alt+ 下进行吊舱视觉的控制。		
71	共享内存方式吊舱	通过平台接口上(↑)下(↓)键控制俯	1.BasicExps\1-	免
	视觉控制键盘仿真	仰角(pitch);左(←)右(→)键控制偏航	VisionCtrlDemos\e2_CameraKeyDemoOnWindows\BaseVersion\Readme.pdf	费
	实验	角(yaw);右 Ctrl 建 + 左(←)右(→) 控		版
		制横滚角(roll);焦距操作 alt+上, alt+		
		下进行吊舱视觉的控制。		
72	无人机跟踪小球实	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e3_ShootBall\Readme.pdf	免
	验	通过运行"ShootBall3.py"程序。在前方		费
		生成一个红色球体,让飞机飞到靠左		版
		后方一段距离,并开启视觉跟踪,飞		
		到小球面前停止。		
73	无人机穿环实验	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e4_CrossRing\Readme.pdf	免
		通过运行"CrossRing3.py"程序,飞机		费
		起飞后并开启视觉跟踪,按照照顺序		版
		穿过三个环,最后自动降落。		
74	三无人机分布式控	通过三个 python 运行文件, 使得三架	1.BasicExps\1-VisionCtrlDemos\e4_CrossRing\ThreeUAVDemo\Readme.pdf	免
	制实验	飞机分布进行穿环。		费
				版
75	双无人机分布式控	通过两个 python 运行文件, 使得两架	$\underline{1.BasicExps\label{lemosle4} LossRing\label{lemosle4} LossRing\label{lemosle4} TwoUAVDemo\label{lemosle4} LossRing\label{lemosle4} TwoUAVDemo\label{lemosle4} LossRing\label{lemosle4} TwoUAVDemo\label{lemosle4} LossRing\label{lemosle4} LossRing$	免
	制实验	飞机分布进行穿环。		费
				版
76	基础功能性实验	本文件夹中的所有实验均为本讲中基	1.BasicExps\1-VisionCtrlDemos\e5_ScreenCapAPI\Readme.pdf	免
		础性的功能实验,用户可快速上手熟		费
		悉一些简单的功能性实验。		版
77	屏幕截图接口、撞击	双击 ShootBall3SITL.bat ,后会打开	1.BasicExps\1-VisionCtrlDemos\e5_ScreenCapAPI\1-ShootBall\Readme.pdf	免

	小球实验	一个 CopterSim 飞机的仿真闭环,同		费
		时打开两个 RflySim3D 窗口, 通过平		版
		台接口进行图像的获取,一个用于显		
		示前置摄像头,一个用于全局观察。		
		运行"ShootBall3.py",开始视觉处理,		
		然后控制无人机撞向小球。		
78	无人机穿环实验	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免
		通过运行"CrossRing3.py"程序,飞机		费
		起飞后并开启视觉跟踪,按照照顺序		版
		穿过三个环,最后自动降落。		
79	屏幕截图接口、撞击	双击 ShootBall3SITL.bat ,后会打开	$\underline{1.BasicExps\label{lemosle5}_ScreenCapAPI\label{lemosle5}_ScreenCapAPI\label{lemosle6}}$	免
	小球实验	一个 CopterSim 飞机的仿真闭环,同		费
		时打开两个 RflySim3D 窗口,通过平		版
		台接口进行图像的获取,一个用于显		
		示前置摄像头,一个用于全局观察。		
		运行"ShootBall3.py",开始视觉处理,		
		然后控制无人机撞向小球。		
80	无人机穿环实验	通过平台接口进行图像的获取,然后	1.BasicExps\1-VisionCtrlDemos\e5_ScreenCapAPI\2-CrossRing\Readme.pdf	免
		通过运行"CrossRing3.py"程序,飞机		费
		起飞后并开启视觉跟踪,按照照顺序		版
		穿过三个环,最后自动降落。		
81	无人机跟随圆形案	该例程通过生成一块圆形案板并用按	1.BasicExps\1-VisionCtrlDemos\e6_Circle-follow\Readme.pdf	免
	板移动实验	键控制圆形案板移动方向。通过使用		费
		平台接口进行图像的获取,并通过视		版
		觉处理控制无人机跟随圆形案板移		
		动。		

82	双目视觉人脸识别	通过平台 Config.json 配置文件配置	1.BasicExps\1-VisionCtrlDemos\e7_ManDetect\Readme.pdf	免
	实验	好双目视觉灰度相机传感器,然后通		费
		过平台接口进行图像的获取,并在飞		版
		机起飞后开启人脸识别算法,双目框		
		选出人脸。		
83	进阶性实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\Readme.pdf	个
		阶的实验,基于0.ApiExps、1.BasicExps		人
		文件夹中的实验,用户在已经熟悉基		集
		于 RflySim 平台开发本章中的实验,		合
		该文件夹中的实验均为本讲的进阶例		版
		程。		
84	进阶接口类实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\e0_AdvApiExps\.	个
		阶接口类实验,基于 0.ApiExps、		人
		1.BasicExps 文件夹中的实验,本文件		版
		夹中均为针对本章的进阶性接口类实		
		验。		
85	点云数据传输实验	通过平台接口在 client_ue4.py 客户端	2.AdvExps\e0_AdvApiExps\1.Point-CloudCommSHM\Readme.pdf	个
		共享内存接收点云数据,经过平台共		人
		享内存方式发出,server_ue4.py 接收		版
		点云数据。		
86	点云图像共享内存	通过平台取图 python 接口并获取点	2.AdvExps\e0_AdvApiExps\2.Point-CloudShowSHM\Readme.pdf	个
	方式显示实验	云数据进行实时显示。		人
				版
87	点云数据 UDP 直传	通过平台接口 python 发送取图请求	2.AdvExps\e0_AdvApiExps\3.Point-CloudUDPCommSHM\Readme.pdf	个
	模式实验	给 RflySim3D,后者直接通过 UDP 直传		人
		30hz 频率传出点云数据。		版

88	自定义 ROS 系统 tf	通过平台接口自定义更改 frame_id	2.AdvExps\e0_AdvApiExps\4.VisCaptureMergeROSAPI\Readme.pdf	个
	树实验	接口。		人
				版
89	自定义 ROS 系统 tf	通过平台接口自定义更改 frame_id	2.AdvExps\e0_AdvApiExps\5.ConfigROSTFAPIDemo\Readme.pdf	个
	树实验	接口。		人
				版
90	大疆 Livox 激光雷	通过平台取图 python 接口实现大疆	2.AdvExps\e0_AdvApiExps\6.LidarLivoxDemo\1.SharedMemory10Hz\Readme.p	个
	达点云图像共享内	Livox 激光雷达扫描功能并获取点云	<u>df</u>	人
	存方式显示实验	数据进行实时显示。		版
91	大疆 Livox 激光雷	通过平台接口 python 发送取图请求	2.AdvExps\e0_AdvApiExps\6.LidarLivoxDemo\2.UDPDirect10Hz\Readme.pdf	个
	达点云数据 UDP 直	给 RflySim3D,后者通过大疆 Livox 激		人
	传模式实验	光雷达扫描直接通过 UDP 直传 10hz		版
		频率传出点云数据。		
92	点云图像共享内存	通过平台取图 python 接口并获取点	2.AdvExps\e0_AdvApiExps\7.LidarAPIDemo\1.SharedMemory10Hz\Readme.pdf	个
	方式显示实验	云数据进行实时显示。		人
				版
93	点云数据传输实验	通过平台接口在 client_ue4.py 客户端	2.AdvExps\e0_AdvApiExps\7.LidarAPIDemo\2.SharedMemoryClientServer\Read	个
		共享内存接收点云数据,经过平台共	me.pdf	人
		享内存方式发出,server_ue4.py 接收		版
		点云数据。		
94	点云数据 UDP 直传	通过平台接口 python 发送取图请求	2.AdvExps\e0_AdvApiExps\7.LidarAPIDemo\3.UDPDirect30Hz\Readme.pdf	个
	模式实验	给 RflySim3D,后者直接通过 UDP 直传		人
		30hz 频率传出点云数据。		版
95	UDP 直传激光雷达	通过平台接口在 client_ue4.py 客户端	2.AdvExps\e0_AdvApiExps\7.LidarAPIDemo\4.UDPDirectClientServer\Readme.p	个
	坐标系点云数据传	通过 UDP 直传方式向 RflySim3D 进行	<u>df</u>	人
	输实验	取图请求, 经过平台 UDP 直传方式发		版

		出, server_ue4.py 服务端经过 UDP 取		
		图转化接收处理点云数据。		
96	UDP 直传世界坐标	通过平台接口在 client_ue4.py 客户端	2.AdvExps\e0_AdvApiExps\7.LidarAPIDemo\5.UDPDirectClientServerType5\Read	个
	系点云数据传输实	通过 UDP 直传方式向 RflySim3D 进行	me.pdf	人
	验	取图请求, 经过平台 UDP 直传方式发		版
		出, server_ue4.py 服务端经过 UDP 取		
		图转化接收处理点云数据。		
97	UDP 直传方式发布	通过平台在 windows 下客户端向	2.AdvExps\e0_AdvApiExps\8.CameraInfo\Readme.pdf	个
	相机以及云台数据	RflySim3D进行图像请求,并进行UDP		人
	仿真实验	直传方式传输图像数据,然后在虚拟		版
		机服务端进行对图像数据的处理,并		
		通过订阅截图发射器视角窗口消息、		
		控制云台消息分析处理,然后发布相		
		机以及云台数据话题。		
98	数据 UDP 直传 png	尝试使用 UDP 直传 png 压缩的传输	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\1-VisionCapAPI-UE4DirectUDP-	个
	压缩实验	的方式传图。	PNGConpressed\Readme.pdf	人
				版
99	数据 UDP 直传不压	尝试使用 UDP 直传不压缩的传输的	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\2-VisionCapAPI-UE4DirectUDP-	个
	缩实验	方式传图。	NoCompress\Readme.pdf	人
				版
10	图像 UDP 直传 jpg	尝试使用 UDP 直传 jpg 压缩的传输的	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\3-VisionCapAPI-UE4DirectUDP-	个
0	压缩实验	方式传图。	JPEGCompressed\Readme.pdf	人
				版
10	数据 UDP 直传 jpg	尝试使用 UDP 直传 jpg 压缩的传输的	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\4-VisionCapAPI-UE4DirectUDP-	个
1	压缩多仿真实验	方式传图,并设置多个仿真窗口和多	JPEGCompressed-2UE4\Readme.pdf	人
		个相机配置文件,观察飞机。		版

10	IMU 数据获取实验	获取 IMU 数据。	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\5-VisionCapAPI-	个
2			IMUDataGet\Readme.pdf	人
				版
10	测试取图和传输接	通过获取IMU数据时间戳与图像数据	2.AdvExps\e0_AdvApiExps\9.VisionAPIsTest\6-VisionCapAPI-UE4DirectUDP-	个
3	口的极限延迟实验	时间戳,计算延迟。	DelayTest\Readme.pdf	人
				版
10	进阶性实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\e10_Planner\Readme.pdf	\uparrow
4		阶的实验,基于0.ApiExps、1.BasicExps		人
		文件夹中的实验,用户在已经熟悉基		集
		于 RflySim 平台开发本章中的实验,		合
		该文件夹中的实验均为本讲的进阶例		版
		程。		
10	A*算法规划路径实	该例程使用 A*算法规划路径, 在路径	2.AdvExps\e10_Planner\AStar\Readme.pdf	\uparrow
5	验	搜索中,把传统四邻域搜索改为8邻		人
		域搜索		集
				合
				版
10	A* 算法规划路径	该例程代码来自于公司真机上实飞的	2.AdvExps\e10_Planner\astar-ros\Readme.pdf	\uparrow
6	(ROS) 实验	程序迁移过来做仿真平台适配的,保		人
		证迁移后使用同一套代码,主要更改		集
		有数据源(激光雷达)的输入,不需要		合
		启动原程序的激光雷达程序,同时平		版
		台输出的激光雷达数据本就是		
		PointCloud2 点云数据, 因此也不需要		
		从 scan 转换到点云。		
10	A*算法规划路径实	该例程使用 A*算法规划路径, 在路径	2.AdvExps\e10_Planner\AStar\Readme.pdf	个

7	验	搜索中,把传统四邻域搜索改为8邻		人
		域搜索		集
				合
				版
10	A* 算法规划路径	该例程代码来自于公司真机上实飞的	2.AdvExps\e10_Planner\astar-ros\Readme.pdf	个
8	(ROS) 实验	程序迁移过来做仿真平台适配的,保		人
		证迁移后使用同一套代码,主要更改		集
		有数据源(激光雷达)的输入,不需要		合
		启动原程序的激光雷达程序,同时平		版
		台输出的激光雷达数据本就是		
		PointCloud2 点云数据, 因此也不需要		
		从 scan 转换到点云。		
10	UDP 直传方式吊舱	通过在Windows平台向RflySim3D进	2.AdvExps\e1_CameraKeyDemoOnUbuntu\Readme.pdf	个
9	视觉控制键盘仿真	行取图请求,然后在虚拟机中通过		人
	虚拟机实验	UDP 直传方式接收图像数据,然后通		集
		过接口上(↑)下(↓)键控制俯仰角		合
		(pitch); 左(←)右(→)键控制偏航角		版
		(yaw);右 Ctrl 建 + 左(←)右(→) 控制		
		横滚角(roll);焦距操作 alt+上, alt+下		
		进行吊舱视觉的控制。		
11	进阶性实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\e2_CameraKeyDemoOnWindows\Readme.pdf	个
0		阶的实验,基于0.ApiExps、1.BasicExps		人
		文件夹中的实验,用户在已经熟悉基		集
		于 RflySim 平台开发本章中的实验,		合
		该文件夹中的实验均为本讲的进阶例		版
		程。		

11	UDP 直传方式吊舱	通过平台接口上(↑)下(↓)键控制俯	2.AdvExps\e2_CameraKeyDemoOnWindows\ClientAndServer\Readme.pdf	个
1	视觉控制键盘仿真	仰角(pitch);左(←)右(→)键控制偏航		人
	实验	角(yaw);右 Ctrl 建 + 左(←)右(→) 控		集
		制横滚角(roll);焦距操作 alt+上, alt+		合
		下进行吊舱视觉的控制。		版
11	UDP 直传方式吊舱	通过平台接口上(↑)下(↓)键控制俯	2.AdvExps\e2_CameraKeyDemoOnWindows\ClientAndServer\Readme.pdf	个
2	视觉控制键盘仿真	仰角(pitch);左(←)右(→)键控制偏航		人
	实验	角(yaw);右 Ctrl 建 + 左(←)右(→) 控		集
		制横滚角(roll);焦距操作 alt+上, alt+		合
		下进行吊舱视觉的控制。		版
11	Rviz 可视化吊舱视	通过在Windows平台向RflySim3D进	2.AdvExps\e3_CamerKeyROSDemo\Readme.pdf	个
3	觉控制键盘仿真虚	行取图请求, 然后在虚拟机中通过		人
	拟机实验	UDP 直传方式接收图像数据,然后通		集
		过接口上(↑)下(↓)键控制俯仰角		合
		(pitch);左(←)右(→)键控制偏航角		版
		(yaw);右 Ctrl 建 + 左(←)右(→) 控制		
		横滚角(roll);焦距操作 alt+上, alt+下		
		进行吊舱视觉的控制。		
11	视觉 SLAM 实验	在 windows 平台下首先运行	2.AdvExps\e4_RflySimPlatform_SLAM\Readme.pdf	个
4		VisionCapAPIDemo.py 文件加载		人
		Config.json 传感器。然后在虚拟机中		集
		运行server_ue4.py程序进行SLAM控		合
		制。		版
11	VINS 实验	在 Linux 环境中跑通 VINS-Fusion, 并	2.AdvExps\e5_VINS-Fusion-master\Readme.pdf	个
5		通过 Windows 平台发回的仿真平台		人
		数据进行建图。		集

				合
				版
11	激光雷达 SLAM 实	在进行仿真时,获取载具运动数据以	2.AdvExps\e6_LaserSLAMdemo\Readme.pdf	个
6	验	便后续处理。		人
				集
				合
				版
11	进阶性实验	本文件夹中的所有实验均为本讲中进	2.AdvExps\e7_ObjDetectYolo\Readme.pdf	个
7		阶的实验,基于0.ApiExps、1.BasicExps		人
		文件夹中的实验,用户在已经熟悉基		集
		于 RflySim 平台开发本章中的实验,		合
		该文件夹中的实验均为本讲的进阶例		版
		_ 程。		
11	yolo 检测气球, 控	通过平台接口进行对图像的获取,然	2.AdvExps\e7_ObjDetectYolo\ShootBallBaseOnYolo\Readme.pdf	个
8	制飞机撞击气球实	后通过 yolo 算法检测气球,并控制无		人
	验	人机撞击气球。		集
				合
				版
11	yolo 检测气球,控	通过平台接口进行对图像的获取,然	2.AdvExps\e7_ObjDetectYolo\ShootBallBaseOnYolo\Readme.pdf	个
9	制飞机撞击气球实	 后通过 yolo 算法检测气球,并控制无		人
	验	 人机撞击气球。		集
				合
				版
12	目标跟踪算法实验	通过平台接口进行对图像的获取,然	2.AdvExps\e8_SingleObjTracking\Readme.pdf	个
0		后通过目标跟踪算法控制无人机对目		人
		标物体的跟踪。		集
		12 Pall Packedio		714

				合
				版
12	平台直接输出目标	通过平台直接输出的目标结果进行输	2.AdvExps\e9_Object-Follow\Readme.pdf	个
1	视觉伺服控制无人	入,通过视觉伺服控制无人机飞行,		人
	机跟踪算法实验	进行高机动跟随。		集
				合
				版
12	定制性实验	本文件夹中的所有实验均为部分项目	3.CustExps\Readme.pdf	完
2		中的拆解实验,相比其他文件夹中的		整
		实验,该文件夹中的实验更加完整、		版
		复杂,满足更多的项目或者科研需求。		
12	定制性实验	本文件夹中的所有实验均为部分项目	3.CustExps\2-DistributedSimDemos\Readme.pdf	完
3		中的拆解实验,相比其他文件夹中的		整
		实验,该文件夹中的实验更加完整、		版
		复杂,满足更多的项目或者科研需求。		
12	定制性实验	本文件夹中的所有实验均为部分项目	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\Readme.pdf	完
4		中的拆解实验,相比其他文件夹中的		整
		实验,该文件夹中的实验更加完整、		版
		复杂,满足更多的项目或者科研需求。		
12	Windows 平台图像	根据 config.xlsx 使用 MATLAB 自动生	3.CustExps\2-DistributedSimDemos\e2_MultipleVehicles\Readme.pdf	完
5	发送与多个飞机	成代码, 通过在 Windows 平台下调用		整
	Linux 环境接收图片	接口进行图像数据的请求转发,然后		版
	实验	在多个 Linux 环境下进行图像数据的		
		接收完成图像的传输。		
12	Windows 平台图像	根据 config.xlsx 使用 MATLAB 自动生	3.CustExps\2-DistributedSimDemos\e3_AnyVehilces\Readme.pdf	完
6	发送与 NX 主机	成代码, 通过在 Windows 平台下调用		整

	(Linux 环境)接收	接口进行图像数据的请求转发,然后		版
	图片实验	在多个 NX(Linux 环境)下进行图像		
		数据的接收完成图像的传输。		
12	定制性实验	本文件夹中的所有实验均为部分项目	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\Readme.pdf	完
7		中的拆解实验,相比其他文件夹中的		整
		实验,该文件夹中的实验更加完整、		版
		复杂,满足更多的项目或者科研需求。		
12	Mavros 版	通过平台 mavros 版本的 API 接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\1-	完
8	PX4MavCtrlV4ROS.	行 RflySim3D 和 Pixhawk 的通信。	PX4CtrlTest\Readme.pdf	整
	py 接口与			版
	RflySim3D 和			
	Pixhawk 通信实验			
12	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\2-	完
9	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	ShootBall\Readme.pdf	整
	收图片撞击小球实	环境下进行图像数据的接收,并通过		版
	验	视觉算法进行对小球的撞击。		
13	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\3-	完
0	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	<u>CrossRing\Readme.pdf</u>	整
	收图片无人机穿环	环境下进行图像数据的接收,并通过		版
	实验	视觉算法进行无人机穿环实验。		
13	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\4-	完
1	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	ManDetect\Readme.pdf	整
	收图片双目视觉人	环境下进行图像数据的接收,并通过		版
	脸识别实验	视觉算法进行双目视觉人脸识别实		
		验。		
13	Mavros 版	通过平台 mavros 版本的 API 接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\1-	完

2	PX4MavCtrlV4ROS.	行 RflySim3D 和 Pixhawk 的通信。	PX4CtrlTest\Readme.pdf	整
	py 接口与			版
	RflySim3D 和			
	Pixhawk 通信实验			
13	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\2-	完
3	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	ShootBall\Readme.pdf	整
	收图片撞击小球实	环境下进行图像数据的接收,并通过		版
	验	视觉算法进行对小球的撞击。		
13	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\3-	完
4	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	<u>CrossRing\Readme.pdf</u>	整
	收图片无人机穿环	环境下进行图像数据的接收,并通过		版
	实验	视觉算法进行无人机穿环实验。		
13	Windows 平台图像	通过在 Windows 平台下调用接口进	3.CustExps\2-DistributedSimDemos\e1_OneVehilceCtrls\4-	完
5	发送与Linux环境接	行图像数据的请求转发, 然后在 Linux	ManDetect\Readme.pdf	整
	收图片双目视觉人	环境下进行图像数据的接收,并通过		版
	脸识别实验	视觉算法进行双目视觉人脸识别实		
		验。		
13	Windows 平台图像	根据 config.xlsx 使用 MATLAB 自动生	3.CustExps\2-DistributedSimDemos\e2_MultipleVehicles\Readme.pdf	完
6	发送与多个飞机	成代码, 通过在 Windows 平台下调用		整
	Linux 环境接收图片	接口进行图像数据的请求转发,然后		版
	实验	在多个 Linux 环境下进行图像数据的		
		接收完成图像的传输。		
13	Windows 平台图像	根据 config.xlsx 使用 MATLAB 自动生	3.CustExps\2-DistributedSimDemos\e3_AnyVehilces\Readme.pdf	完
7	发送与 NX 主机	成代码, 通过在 Windows 平台下调用		整
	(Linux 环境)接收	接口进行图像数据的请求转发,然后		版
	图片实验	在多个 NX(Linux 环境)下进行图像		

	粉块的拉斯宁式图像的体验	1
	数据的接收完成图像的传输。	1
		1

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。