本页对应的英文页面已更新,但尚未翻译。若要查看最新内容,请点击此处访问英文页面。

plot

二维线图

语法

```
plot(X,Y)
plot(X,Y,LineSpec)
plot(X1,Y1,...,Xn,Yn)
plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)

plot(Y)
plot(Y,LineSpec)

plot(___,Name,Value)
plot(ax,___)

h = plot(___)
```

说明

plot(X,Y) 创建 Y 中数据对 X 中对应值的二维线图。

示例

- 如果 X 和 Y 都是向量,则它们的长度必须相同。plot 函数绘制 Y 对 X 的图。
- 如果 X 和 Y 均为矩阵,则它们的大小必须相同。plot 函数绘制 Y 的列对 X 的列的图。
- 如果 X 或 Y 中的一个是向量而另一个是矩阵,则矩阵的各维中必须有一维与向量的长度相等。 如果矩阵的行数等于向量长度,则 plot 函数绘制矩阵中的每一列对向量的图。如果矩阵的列 数等于向量长度,则该函数绘制矩阵中的每一行对向量的图。如果矩阵为方阵,则该函数绘制 每一列对向量的图。
- 如果 X 或 Y 之一为标量,而另一个为标量或向量,则 plot 函数会绘制离散点。但是,要查看这些点,您必须指定标记符号,例如 plot(X,Y,'o')。

plot(X,Y,LineSpec)设置线型、标记符号和颜色。

plot(X1,Y1,...,Xn,Yn)绘制多个X、Y对组的图,所有线条都使用相同的坐标区。

示例

plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn) 设置每个线条的线型、标记符号和颜色。您可以混用 X、Y、LineSpec 三元组和 X、Y 对组:例如,plot(X1,Y1,X2,Y2,LineSpec2,X3,Y3)。

示例

plot(Y) 创建 Y 中数据对每个值索引的二维线图。

示例

- 如果 Y 是向量, *x* 轴的刻度范围是从 1 至 length(Y)。
- 如果 Y 是矩阵,则 plot 函数绘制 Y 中各列对其行号的图。x 轴的刻度范围是从 1 到 Y 的行数。
- 如果Y是复数,则 plot 函数绘制Y的虚部对Y的实部的图,使得 plot(Y)等效于 plot(real(Y),imag(Y))。

plot(Y, LineSpec)设置线型、标记符号和颜色。

plot(___,Name,Value)使用一个或多个 Name,Value 对组参数指定线条属性。有关属性列表,请参阅 Line 属性。可以将此选项与前面语法中的任何输入参数组合一起使用。名称-值对组设置将应用于绘制的所有线条。

示例

plot(ax, ___) 将在由 ax 指定的坐标区中,而不是在当前坐标区 (gca) 中创建线条。选项 ax 可以位于前面的语法中的任何输入参数组合之前。

示例

h = plot(____) 返回由图形线条对象组成的列向量。在创建特定的图形线条后,可以使用 h 修改其属性。有关属性列表,请参阅 Line 属性。

示例

示例

全部折叠

创建线图

将 x 创建为由 0 和 2π 之间的线性间隔值组成的向量。在各值之间使用递增量 $\pi/100$ 。将 y 创建为 x 的正弦值。创建数据的线图。

View MATLAB Command

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```


绘制多个线条

将 x 定义为 100 个介于 -2π 和 2π 之间的线性间隔值。将 y1 和 y2 定义为 x 的正弦和余弦值。创建上述两个数据集的线图。

```
x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);
```


根据矩阵创建线图

将Y定义为 magic 函数返回的 4×4 矩阵。

View MATLAB Command

$$Y = magic(4)$$

 $Y = 4 \times 4$

创建 Y 的二维线图。MATLAB® 将矩阵的每一列绘制为单独的线条。

figure
plot(Y)

指定线型

绘制三条正弦曲线,每条曲线之间存在较小的相移。第一条曲线 使用默认的线型。为第二条曲线指定虚线样式,第三条曲线指定 点式线样式。

```
x = 0:pi/100:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

figure
plot(x,y1,x,y2,'--',x,y3,':')
```


MATLAB® 按默认的色序循环使用线条颜色。

〉 指定线型、颜色和标记

绘制三条正弦曲线,每条曲线之间存在较小的相移。第一条正弦 曲线使用绿色线条,不带标记。第二条正弦曲线使用蓝色虚线, 带圆形标记。第三条正弦曲线只使用青蓝色星号标记。

```
x = 0:pi/10:2*pi;
y1 = sin(x);
y2 = sin(x-0.25);
y3 = sin(x-0.5);

figure
plot(x,y1,'g',x,y2,'b--o',x,y3,'c*')
```


在特定的数据点显示标记

通过指定标记符号并将 MarkerIndices 属性设置为名称-值对组,创建一个线图并每隔四个数据点显示一个标记。

```
x = linspace(0,10);
y = sin(x);
plot(x,y,'-o','MarkerIndices',1:5:length(y))
```


创建线图并使用 LineSpec 选项指定带正方形标记的绿色虚线。 使用 Name, Value 对组来指定线宽、标记大小和标记颜色。将标记边颜色设置为蓝色,并使用 RGB 颜色值设置标记面颜色。

```
x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));

figure
plot(x,y,'--gs',...
    'LineWidth',2,...
    'MarkerSize',10,...
    'MarkerEdgeColor','b',...
    'MarkerFaceColor',[0.5,0.5,0.5])
```


添加标题和轴标签

使用 linspace 函数将 x 定义为 0 到 10 之间 150 个值组成的 向量。将 y 定义为 x 的余弦值。

View MATLAB Command

```
x = linspace(0,10,150);
y = cos(5*x);
```

创建余弦曲线的二维线图。使用 RGB 颜色值将线条颜色更改为蓝绿色。使用 title、xlabel 和 ylabel 函数为图形添加标题和轴标签。

```
figure
plot(x,y,'Color',[0,0.7,0.9])

title('2-D Line Plot')
xlabel('x')
ylabel('cos(5x)')
```


全制持续时间并指定刻度格式

将 t 定义为 7 个介于 0 到 3 分钟之间的 duration 线性间隔值。绘制随机数据并使用 'DurationTickFormat' 名称-值对组参数指定 duration 刻度线的格式。

```
t = 0:seconds(30):minutes(3);
y = rand(1,7);
plot(t,y,'DurationTickFormat','mm:ss')
```


指定线图的坐标区

从 R2019b 开始,您可以使用 tiledlayout 和 nexttile 函数显示分块绘图。调用 tiledlayout 函数以创建一个 2×1 分块图布局。调用 nexttile 函数创建一个坐标区对象,并将该对象返

View MATLAB Command

回为 ax1。通过将 ax1 传递给 plot 函数来创建顶部绘图。通过将坐标区传递给 title 和 ylabel 函数,为图添加标题和 y轴标签。重复该过程以创建底部绘图。

```
% Create data and 2-by-1 tiled chart layout
x = linspace(0,3);
y1 = sin(5*x);
y2 = sin(15*x);
tiledlayout(2,1)

% Top plot
ax1 = nexttile;
plot(ax1,x,y1)
title(ax1,'Top Plot')
ylabel(ax1,'sin(5x)')

% Bottom plot
ax2 = nexttile;
plot(ax2,x,y2)
title(ax2,'Bottom Plot')
ylabel(ax2,'sin(15x)')
```


′ 创建并修改线条

将 x 定义为 100 个介于 -2π 和 2π 之间的线性间隔值。将 y1 和 y2 定义为 x 的正弦和余弦值。为上述两个数据集分别创建线图,并在 p 中返回两个图形线条。

```
x = linspace(-2*pi,2*pi);
y1 = sin(x);
y2 = cos(x);
p = plot(x,y1,x,y2);
```


将第一个线条的线宽更改为 2。向第二行添加星形标记。从 R2014b 开始,您可以使用圆点表示法设置属性。如果您使用的是早期版本,请改用 set 函数。

```
p(1).LineWidth = 2;
p(2).Marker = '*';
```


〉 绘制圆形

绘制以点 (4,3) 为中心以 2 为半径的圆。使用 axis equal 可沿每个坐标方向使用相等的数据单位。

View MATLAB Command

```
r = 2;
xc = 4;
yc = 3;

theta = linspace(0,2*pi);
x = r*cos(theta) + xc;
y = r*sin(theta) + yc;
plot(x,y)
axis equal
```


输入参数 全部折叠

Y-y值
标量|向量|矩阵

y值,指定为标量、向量或矩阵。要根据特定的 x值绘图,还必须指定 X。

数据类型: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

、 X - X **值** 标量 | 向量 | 矩阵 x值,指定为标量、向量或矩阵。

数据类型: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | categorical | datetime | duration

、 LineSpec - 线型、标记和颜色 字符向量 | 字符串

线型、标记和颜色,指定为包含符号的字符向量或字符串。符号可以按任意顺序显示。您不需要同时指定 所有三个特征(线型、标记和颜色)。例如,如果忽略线型,只指定标记,则绘图只显示标记,不显示线 条。

示例: '--or' 是带有圆形标记的红色虚线

线型	说明
-	实线 (默认)
	虚线
:	点线
	点划线
标记	说明
0	<u></u>
+	加号
*	星号
	点
х	叉号
S	方形
d	菱形
۸	上三角
V	下三角
>	右三角
<	左三角
р	五角形
h	六角形
颜色	说明
у	黄色
m	品红色
С	青蓝色
r	红色
g	绿色
b	蓝色

颜色	说明
W	白色
k	黑色

🏑 ax - 目标坐标区

Axes 对象 | PolarAxes 对象 | GeographicAxes 对象

目标坐标区,指定为 Axes 对象、PolarAxes 对象或 GeographicAxes 对象。如果不指定坐标区或当前坐标区是笛卡尔坐标区,plot 函数将使用当前坐标区。要在极坐标区上绘图,请指定 PolarAxes 对象作为第一个输入参数,或者使用 polarplot 函数。要在地理坐标区上绘图,请指定 GeographicAxes 对象作为第一个输入参数,或者使用 geoplot 函数。

名称-值对组参数

指定可选的、以逗号分隔的 Name, Value 对组参数。Name 为参数名称,Value 为对应的值。Name 必须放在引号中。您可采用任意顺序指定多个名称-值对组参数,如 Name1, Value1,..., NameN, ValueN 所示。

示例: 'Marker','o','MarkerFaceColor','red'

此处列出的图形线条属性只是一个子集。有关完整列表,请参阅 Line 属性。

、 'Color' - 线条颜色

[0 0.4470 0.7410] (默认) | RGB 三元组 | 十六进制颜色代码 | 'r' | 'g' | 'b' | ...

线条颜色, 指定为 RGB 三元组、十六进制颜色代码、颜色名称或短名称。

对于自定义颜色,请指定 RGB 三元组或十六进制颜色代码。

- RGB 三元组是包含三个元素的行向量,其元素分别指定颜色中红、绿、蓝分量的强度。强度值必须位于 [0,1] 范围内,例如 [0.4 0.6 0.7]。
- 十六进制颜色代码是字符向量或字符串标量,以井号 (#) 开头,后跟三个或六个十六进制数字,范围可以是 0 到 F。这些值不区分大小写。因此,颜色代码 '#FF8800' 与 '#ff8800'、'#F80' 与 '#f80' 是 等效的。

此外,还可以按名称指定一些常见的颜色。下表列出了命名颜色选项、等效 RGB 三元组和十六进制颜色代码。

颜色名称	短名称	RGB 三元组	十六进制颜色代码	外观
'red'	'r'	[1 0 0]	'#FF0000'	
'green'	'g'	[0 1 0]	'#00FF00'	
'blue'	'b'	[0 0 1]	'#0000FF'	
'cyan'	'c'	[0 1 1]	'#00FFFF'	
'magenta'	'm'	[1 0 1]	'#FF00FF'	
'yellow'	'y'	[1 1 0]	'#FFFF00'	

颜色名称	短名称	RGB 三元组	十六进制颜色代码	外观
'black'	'k'	[0 0 0]	'#000000'	
'white'	'w'	[1 1 1]	'#FFFFFF'	
'none'	不适用	不适用	不适用	无颜色

以下是 MATLAB® 在许多类型的绘图中使用的默认颜色的 RGB 三元组和十六进制颜色代码。

RGB 三元组	十六进制颜色代码	外观
[0 0.4470 0.7410]	'#0072BD'	
[0.8500 0.3250 0.0980]	'#D95319'	
[0.9290 0.6940 0.1250]	'#EDB120'	
[0.4940 0.1840 0.5560]	'#7E2F8E'	
[0.4660 0.6740 0.1880]	'#77AC30'	
[0.3010 0.7450 0.9330]	'#4DBEEE'	
[0.6350 0.0780 0.1840]	'#A2142F'	

示例: 'blue'

示例: [0 0 1]

示例: '#0000FF'

。 'LineStyle' - 线型

'-' (默认) |'--'|':'|'-.'|'none'

线型,指定为下表中列出的选项之一。

线型	说明	表示的线条
1_1	实线	
''	虚线	
1:1	点线	
11	点划线	
'none'	无线条	无线条

y 'LineWidth' - <mark>线条宽度</mark>

0.5 (默认) |正值

线宽,指定为以磅为单位的正值,其中 1 磅 = 1/72 英寸。如果该线条具有标记,则线条宽度也会影响标记边。

'Marker' - 标记符号
'none' (默认) | 'o' | '+' | '*' | '.' | 'x' | ...

标记符号,指定为下表中的标记之一。默认情况下,图形线条没有标记。通过指定标记符号沿该线条上的每个数据点添加标记。

说明
圆圈
加号
星号
点
叉号
方形
菱形
上三角
下三角
右三角
左三角
五角星 (五角形)
六角星 (六角形)
无标记

示例: 'Marker','+'

示例: 'Marker', 'diamond'

'MarkerIndices' - 要显示标记的数据点的索引1:length(YData) (默认) | 正整数向量 | 正整数标量

要显示标记的数据点的索引,指定为正整数向量。如果不指定索引,MATLAB 将在每个数据点显示一个标记。

i 注意

要查看标记,还必须指定标记符号。

示例: plot(x,y,'-o','MarkerIndices',[1 5 10]) 在第一、第五和第十个数据点处显示圆形标记。

示例: plot(x,y,'-x','MarkerIndices',1:3:length(y)) 每隔三个数据点显示一个交叉标记。

示例: plot(x,y,'Marker','square','MarkerIndices',5) 在第五个数据点显示一个正方形标记。

'MarkerEdgeColor' - 标记轮廓颜色

'auto' (默认) | RGB 三元组 | 十六进制颜色代码 | 'r' | 'g' | 'b' | ...

标记轮廓颜色,指定为 'auto'、RGB 三元组、十六进制颜色代码、颜色名称或短名称。默认值 'auto' 使用与 Color 属性相同的颜色。

对于自定义颜色,请指定 RGB 三元组或十六进制颜色代码。

- RGB 三元组是包含三个元素的行向量,其元素分别指定颜色中红、绿、蓝分量的强度。强度值必须位于 [0,1] 范围内,例如 [0.4 0.6 0.7]。
- 十六进制颜色代码是字符向量或字符串标量,以井号(#)开头,后跟三个或六个十六进制数字,范围可以是0到F。这些值不区分大小写。因此,颜色代码'#FF8800'与'#ff8800'、'#F80'与'#f80'是等效的。

此外,还可以按名称指定一些常见的颜色。下表列出了命名颜色选项、等效 RGB 三元组和十六进制颜色代码。

颜色名称	短名称	RGB 三元组	十六进制颜色代码	外观
'red'	'r'	[1 0 0]	'#FF0000'	
'green'	'g'	[0 1 0]	'#00FF00'	
'blue'	'b'	[0 0 1]	'#0000FF'	
'cyan'	'c'	[0 1 1]	'#00FFFF'	
'magenta'	'm'	[1 0 1]	'#FF00FF'	
'yellow'	'y'	[1 1 0]	'#FFFF00'	
'black'	'k'	[0 0 0]	'#000000'	
'white'	'w'	[1 1 1]	'#FFFFFF'	
'none'	不适用	不适用	不适用	无颜色

以下是 MATLAB 在许多类型的绘图中使用的默认颜色的 RGB 三元组和十六进制颜色代码。

RGB 三元组	十六进制颜色代码	外观
[0 0.4470 0.7410]	'#0072BD'	
[0.8500 0.3250 0.0980]	'#D95319'	
[0.9290 0.6940 0.1250]	'#EDB120'	
[0.4940 0.1840 0.5560]	'#7E2F8E'	
[0.4660 0.6740 0.1880]	'#77AC30'	
[0.3010 0.7450 0.9330]	'#4DBEEE'	
[0.6350 0.0780 0.1840]	'#A2142F'	

'MarkerFaceColor' - 标记填充颜色

'none' (默认) | 'auto' | RGB 三元组 | 十六进制颜色代码 | 'r' | 'g' | 'b' | ...

标记填充颜色,指定为 'auto'、RGB 三元组、十六进制颜色代码、颜色名称或短名称。'auto' 选项使用与父坐标区的 Color 属性相同的颜色。如果您指定 'auto',并且坐标区图框不可见,则标记填充颜色为图窗的颜色。

对于自定义颜色,请指定 RGB 三元组或十六进制颜色代码。

- RGB 三元组是包含三个元素的行向量,其元素分别指定颜色中红、绿、蓝分量的强度。强度值必须位于 [0,1] 范围内,例如 [0.4 0.6 0.7]。
- 十六进制颜色代码是字符向量或字符串标量,以井号 (#) 开头,后跟三个或六个十六进制数字,范围可以是 0 到 F。这些值不区分大小写。因此,颜色代码 '#FF8800' 与 '#ff8800'、'#F80' 与 '#f80' 是 等效的。

此外,还可以按名称指定一些常见的颜色。下表列出了命名颜色选项、等效 RGB 三元组和十六进制颜色代码。

颜色名称	短名称	RGB 三元组	十六进制颜色代码	外观
'red'	'r'	[1 0 0]	'#FF0000'	
'green'	'g'	[0 1 0]	'#00FF00'	
'blue'	'b'	[0 0 1]	'#0000FF'	
'cyan'	'c'	[0 1 1]	'#00FFFF'	
'magenta'	'm'	[1 0 1]	'#FF00FF'	
'yellow'	'y'	[1 1 0]	'#FFFF00'	
'black'	'k'	[0 0 0]	'#000000'	
'white'	'w'	[1 1 1]	'#FFFFFF'	
'none'	不适用	不适用	不适用	无颜色

以下是 MATLAB 在许多类型的绘图中使用的默认颜色的 RGB 三元组和十六进制颜色代码。

RGB 三元组	十六进制颜色代码	外观
[0 0.4470 0.7410]	'#0072BD'	
[0.8500 0.3250 0.0980]	'#D95319'	
[0.9290 0.6940 0.1250]	'#EDB120'	
[0.4940 0.1840 0.5560]	'#7E2F8E'	
[0.4660 0.6740 0.1880]	'#77AC30'	
[0.3010 0.7450 0.9330]	'#4DBEEE'	
[0.6350 0.0780 0.1840]	'#A2142F'	

, 'MarkerSize' - **标记大小** 6 (默认)|正值 标记大小,指定为以磅为单位的正值,其中1磅=1/72英寸。

'DatetimeTickFormat' - datetime 刻度标签的格式 字符向量 | 字符串

datetime 刻度标签的格式,指定为以逗号分隔的对组,该对组由 'DatetimeTickFormat' 和一个包含日期格式的字符向量或字符串组成。可使用字母 A-Z 和 a-z 构造一个自定义格式。这些字母对应于日期的 Unicode[®] 区域设置数据标记语言 (LDML) 标准。可以使用连字符、空格或冒号等非 ASCII 字母字符来分隔字段。

如果未为 'DatetimeTickFormat' 指定值,则 plot 将基于坐标轴范围自动优化和更新刻度标签。

示例: 'DatetimeTickFormat','eeee, MMMM d, yyyy HH:mm:ss' 显示日期和时间, 例如 Saturday, April 19, 2014 21:41:06。

下表列举了多种常见的显示格式和纽约市 2014 年 4 月 19 日 (星期六) 下午 9:41:06 的格式化输出示例。

DatetimeTickFormat 的值	示例
'yyyy-MM-dd'	2014-04-19
'dd/MM/yyyy'	19/04/2014
'dd.MM.yyyy'	19.04.2014
'yyyy年 MM月 dd日'	2014年 04月 19日
'MMMM d, yyyy'	April 19, 2014
'eeee, MMMM d, yyyy HH:mm:ss'	Saturday, April 19, 2014 21:41:06
'MMMM d, yyyy HH:mm:ss Z'	April 19, 2014 21:41:06 -0400

有关有效字母标识符的完整列表,请参阅日期时间数组的 Format 属性。

DatetimeTickFormat 不是图形线条属性。创建绘图时,必须使用名称-值对组参数设置刻度格式。或者,使用 xtickformat 和 ytickformat 函数设置格式。

日期时间标尺的 TickLabelFormat 属性存储格式。

'DurationTickFormat' - duration 刻度标签的格式 字符向量 | 字符串

duration 刻度标签的格式,指定为以逗号分隔的对组,该对组由 'DurationTickFormat' 和一个包含持续时间格式的字符向量或字符串组成。

如果未为 'DurationTickFormat' 指定值,则 plot 将基于坐标轴范围自动优化和更新刻度标签。

要将持续时间显示为包含小数部分的单个数字,例如 1.234 小时,请指定下表中的值之一。

DurationTickFormat 的值	说明
'y'	精确定长年的数目。固定长度的一年等于 365.2425 天。
'd'	精确定长天的数目。固定长度的一天等于 24 小时。
'h'	小时数

DurationTickFormat 的值	说明
'm'	分钟数
's'	秒数

示例: 'DurationTickFormat', 'h' 以固定长度的天数显示持续时间值。

要以数字计时器的形式显示持续时间,请指定下列值之一。

- 'dd:hh:mm:ss'
- 'hh:mm:ss'
- 'mm:ss'
- 'hh:mm'

此外,可以通过附加多达 9 个 S 字符显示多达 9 位小数的秒位。

示例: 'DurationTickFormat', 'hh:mm:ss.SSS' 以三位数显示持续时间的毫秒数。

DurationTickFormat 不是图形线条属性。创建绘图时,必须使用名称-值对组参数设置刻度格式。或者,使用 xtickformat 和 ytickformat 函数设置格式。

持续时间标尺的 TickLabelFormat 属性存储格式。

输出参数 全部折叠

h - 一个或多个图形线条对象

标量 | 向量

一个或多个图形线条对象,以标量或向量的形式返回。这些是唯一标识符,可以用来查询和修改特定图形线条的属性。有关属性列表,请参阅 Line 属性。

提示

 使用 NaN 和 Inf 值将行断开。例如,以下代码绘制前两个元素,跳过第三个元素,并使用最后两个元素绘制 另一线条:

plot([1,2,NaN,4,5])

• plot 基于坐标区的 ColorOrder 和 LineStyleOrder 属性选用颜色和线型。plot 先对第一种线型依序使用 每种颜色,直至用尽。然后,再对下一个线型依序使用每种颜色,以此类推。

从 R2019b 开始,通过设置坐标区的 ColorOrder 或 LineStyleOrder 属性,可以在绘图后更改颜色和线型。您也可以调用 colororder 函数来更改图窗中所有坐标区的色序。

扩展功能

> tall 数组

对行数太多而无法放入内存的数组进行计算。

> GPU 数组

通过使用 Parallel Computing Toolbox™ 在图形处理单元 (GPU) 上运行来加快代码执行。

〉分布式数组

使用 Parallel Computing Toolbox™ 在群集的组合内存中对大型数组进行分区。

另请参阅

函数

gca | hold | legend | loglog | plot3 | title | xlabel | xlim | ylabel | ylim | yyaxis

属性

Line 属性

主题

绘制日期和持续时间图

对分类数据绘图

外部网站

MATLAB 图库

在 R2006a 之前推出