Echantillonnage _____

- construire un contrôleur continu et l'échantillonner;
- échantillonner le système à contrôler et construire un contrôleur échantillonné (théorie de la commande échantillonnée).

On a étudié l'erreur d'échantillonnage (liée au schémas d'intégration à pas constant)

On veut étudier la possibilté de reconstruire le signal continu original à partir du signal échantillonné.

Echantillonnage

Une séquence $(x_n)_{n\in\mathbb{Z}}$ provient d'un échantillonnage d'un signal continu x(t):

$$x_n = x(nT_e)$$

 T_e est la période d'échantillonnage, $F_e = \frac{1}{T_e}$ est la fréquence d'échantillonnage.

Le signal échantillonné est :

$$x_d(t) = \sum_{n \in \mathbb{Z}} x(nT_e)\delta(t - nT_e)$$

Signal à bande limitée _____

Signal à bande limitée

Un signal continu x(t) est à bande limitée sur [-B, B] si le support de sa transformée Fourier est inclu dans [-B, B], c-a-d :

$$\forall f \in |f| > B \Rightarrow \mathcal{F}x(f) = X(f) = 0$$

Fréquence Nyquist d'un signal continu x:

Soit F_{max} est la plus petite fréquence (lorsqu'elle existe) telle que x soit à bande limitée sur $[-F_{max}, F_{max}]$. Alors, la fréquence Nyquist de x est $2F_{max}$.

Théorème de Shannon-Nyquist _____

Soit x(t) un signal continu à bande limitée, sa fréquence Nyquist est $2F_{max}$.

Alors un échantillonnage de x à la fréquence F_e permet la reconstruction complète du signal $\{x(t)\}_{t\in}$ à condition que $F_e/2 \geq F_{max}$.

Preuve : On utilise le signal $x_d(t)$

- D'abord, on examine la relation entre la transformée de Fourier $X_d(f)$ de $x_d(t)$ et celle X(f) de x(t)
- Puis, on montre qu'il est possible de reconstruire X(f) à partir de $X_d(f)$.

Relation entre $X_d(f)$ et X(f) (suite) _

Le spectre $X_d(f)$ du signal échantillonné $x_d(t)$ est F_e -periodique et correspond à la périodisation du spectre X(f) du signal continu x(t).

Reconstruction de X(f) à partir de $X_d(f)$

$$X_d(f) = F_e \sum_{n \in \mathbb{Z}} X(f - nF_e).$$

Supposons que $F_e/2 \ge F_{max}$. Donc, $\forall f, |f| \ge F_e/2 \Rightarrow X(f) = 0$.

Dans ce cas, la restriction de $X_d(f)$ à $[-F_e/2, F_e/2]$ est exactement X(f) au facteur F_e près.

La reconstruction de X(f) peut être résumée par :

$$X(f) = T_e Rect_{[-F_e/2, F_e/2]}(f) X_d(f)$$

Filtre passe bas idéal

Le filtre n'est pas causal et n'a pas un support fini.

Pour interpoler parfaitement une valeur x(t), il faut garder en mémoire une infinité de valeurs $(x_n) \Rightarrow$ pas réalisable en pratique.

Repliement spectral ___

Quand la fréquence d'échantillonnage est trop faible $(F_e/2 < F_{max})$, les conditions du théorème de Shannon-Nyquist ne sont plus respectées.

On a trouvé :
$$X_d(f) = F_e \sum_{n \in \mathbb{Z}} X(f - nF_e)$$
.

Phénomène de repliement spectral : Pour $f \leq F_e/2$ la relation $X(f) = T_e X_d(f)$ n'est plus valide, car la somme ci-dessus peut englober plusieurs termes non-nuls au lieu d'un seul \Rightarrow repliement des composantes hautes fréquences de X(f) et le signal $x_r = h * s_d$ n'est pas conforme au signal original x.

Quand un signal a une fréquence de Nyquist trop grande $F_{max} > F_e/2$, on filtre x(t) pour éliminer des composantes fréquentielles au dela de $F_e/2$. Ce filtre est appelé filtre anti-repliement

Filtres de restitution _

Si h est la réponse impulsionnelle du filtre de reconstruction, on a :

$$x_r(t) = \sum_n x_n h(t - nT_e)$$

Si les conditions de Shannon sont respectées, $X(f) = T_e \frac{Rect_{[-F_e/2,F_e/2]}(f)}{H(f)} X_r(f)$

Lorsque H(f) est une bonne approximation de $T_eRect_{[-F_e/2,F_e/2]}(f)$, x_r est "proche" de x.

H doit couper toute les fréquences supérieures à $F_e/2$.

Filtres de restitution

- Bloqueur d'ordre zero : $h_{boz}(t) = Rect_{[0,T_e]}(t)$

$$H_{boz}(f) = T_e exp(-i\pi f T_e) sinc(\pi f T_e).$$

Les composantes de fréquence supérieure à $F_e/2$ sont atténuées mais ne sont pas totalement annulées.

- Interpolation linéaire (blocage d'ordre 1) : $h_{lin}(t) = Tri(t/T_e)$ avec

$$Tri(t) = (1 - |t|)Rect_{[-1,1]}(t).$$

$$H_{lin}(f) = T_e sinc^2(\pi f T_e).$$

Forte atténuation des fréquences indésirables et une bande passante plus étroite \Rightarrow meilleure qualité que le bloqueur d'ordre 0.

Filtres de restitution

Spectres d'énergie des filtres de reconstruction BOZ (gras) et linéaire (pointillés).

Application to LEGO robots _____

The distance controller of type P needs not be discretized. We need to discretize only the Compute the continuous-time transfer function of the open loop $F_{BO}(s)$ for the orientation θ

Estimate the crossover frequency ω_c of $F_{BO}(s)$ using the function "margin" in matlab.

Choose sampling period T according to the rule : $\omega_c T$ is between 0.05 and 0.14

Discretize the controllers using one of the approximation methods and the chosen sampling period.

Note that instead of replacing the whole continuous-time controller with its discretized version, we can replace only its components containing continuous-time blocs, such as the integrators $\frac{1}{c}$

Commande de l'orientation du robot

Pour un correcteur de type PI nous avons : $C_{\theta}(s) = k_{p\theta} + \frac{k_{p\theta}}{s}$

La fonction de transfert en boucle fermée

$$H(s) = \frac{C_{\theta}(s)H_{\theta}(s)}{1 + C_{\theta}(s)H_{\theta}(s)} = \frac{\frac{k_{p\theta}}{l}s + \frac{k_{i\theta}}{l}}{s^2 + \frac{k_{p\theta}}{l}s + \frac{k_{i\theta}}{l}}$$

Robot Controller Discretization - Determining a sampling period _____

The

```
%la fonction de transfert C(s) = ki_teta/s + kp_teta
%la fonction de transfert H teta(s) = 1/(ls)
%la fonction de transfert en boucle ouvert
%H_BO(s) = (kp_teta*s + ki_teta)/(ls^2 + ls)
sysbo = tf([0 \text{ kp teta ki teta}], [1 1 0])
[q p f wc] = margin(sysbo)
%wc est la "crossover frequency"
%T = periode d'echantillonnage
T=0.05/wc
```