Лабораторная работа № 5(2). Широтно-импульсная модуляция

Широтно-импульсно модулированный сигнал — это импульсный сигнал постоянной частоты, но переменной **скважности** (соотношение длительности импульса и периода его следования).

Из-за того, что большинство физических процессов в природе имеют инерцию, то резкие перепады напряжения от 1 к 0 будут сглаживаться, принимая некоторое среднее значение. С помощью задания скважности можно менять среднее напряжение на выходе ШИМ.

Если скважность равняется 100%, то всё время на цифровом выходе будет напряжение, соответствующее логической "1" или 5 вольт. Если задать скважность 50%, то половину времени на выходе будет логическая "1", а половину – логический "0", и среднее напряжение будет равняться 2,5 вольтам. И так далее.

Рисунок 1.2 Работа ШИМ

Микроконтроллер ATMega328 имеет три таймера, каждый из которых поддерживает несколько режимов ШИМ. В данной работе будем рассматривать 16-битный таймер/счётчик 1.

Полная функциональная схема таймера/счётчика 1

Режим Fast PWM

Режим быстрой широтно-импульсной модуляции или быстрый режим ШИМ (WGM13: 0 = 5, 6, 7, 14 или 15) обеспечивает возможность генерации высокочастотного сигнала ШИМ. Быстрый ШИМ отличается от других вариантов ШИМ однонаправленным режимом работы. Счетчик ведет счет снизу вверх (инкрементируется), затем перезапускается со значения «0».

В неинверсном режиме вывода, напряжение на выводе (OC1x) сбрасывается при совпадении значений TCNT1 и OCR1x (значение на выводе становится равным логическому «0»). И устанавливается в логическую единицу при достижении максимального (для режимов 5,6,7) или заданного значения устанавливается в логическую «1».

В инверсном режиме вывода выход устанавливается в «1» при совпадении значений TCNT1 и OCR1х и очищается в «0» по окончании периода.

Разрешение ШИМ для быстрой ШИМ может быть 8-, 9- или 10-битным или определяться ICR1 или OCR1A. Минимально допустимое разрешение составляет 2 бита (для ICR1 или OCR1A установлено значение 0x0003), а максимальное разрешение составляет 16 бит (для ICR1 или OCR1A установлено значение MAX).

В режиме быстрой ШИМ счетчик увеличивается до тех пор, пока значение счетчика не будет соответствовать одному из фиксированных значений 0x00FF, 0x01FF или 0x03FF (WGM13: 0=5, 6 или 7), значению в ICR1 (WGM13: 0=14), или значению в OCR1A (WGM13: 0=15). Затем счетчик очищается в следующем тактовом цикле таймера.

На рисунке показан быстрый режим ШИМ, когда для определения значения ТОР используются OCR1A или ICR1. Значение TCNT1 показано на временной диаграмме в виде гистограммы. Схема включает неинвертированный и инвертированный выходы ШИМ. Горизонтальные отметки на наклонах TCNT1 представляют собой совпадения между OCR1x и TCNT1. Флаг прерывания OC1x будет установлен, когда произойдет совпадение.

Частоту ШИМ на выходе можно рассчитать по следующей формуле:

$$f_{\text{OCnxPWM}} = \frac{f_{\text{clk_I/O}}}{N \times (1 + \text{TOP})}$$

Переменная N – это коэффициент деления предделителя (1, 8, 64, 256 или 1024).

Настройки таймера 1

Режимы работы таймера:

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Update of OCR1x at	TOV1 Flag Set on	
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX	
1	0	0	0	1	PWM, phase correct, 8-bit	PWM, phase correct, 8-bit 0x00FF			
2	0	0	1	0	PWM, phase correct, 9-bit	0x01FF	TOP	воттом	
3	0	0	1	1	PWM, phase correct, 10-bit	0x03FF	TOP	воттом	
4	0	1	0	0	CTC	OCR1A	Immediate	MAX	
5	0	1	0	1	Fast PWM, 8-bit 0x00FF		воттом	TOP	
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	BOTTOM	TOP	
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	воттом	TOP	
8	1	0	0	0	correct ICR1		воттом	воттом	
9	1	0	0	1	PWM, phase and frequency correct OCR1A		воттом	воттом	
10	1	0	1	0	PWM, phase correct ICR1 TOP		TOP	воттом	
11	1	0	1	1	PWM, phase correct OCR1A TOP		TOP	воттом	
12	1	1	0	0	CTC ICR1 Immediat		Immediate	MAX	
13	1	1	0	1	(Reserved) – –		92	_	
14	1	1	1	0	Fast PWM ICR1 BOTTON		BOTTOM	TOP	
15	1	1	1	1	Fast PWM	OCR1A	воттом	TOP	

Настройки выводов таймера

Таймер/счётчик 1 имеет два выхода – OC1A и OC1B. Настраиваются данные выводы битами COM1A1, COM1A0 и COM1B1, COM1B0 регистра TCCR1A.

Bit	7	6	5	4	3	2	1	0	_
(0x80)	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	TCCR1A
Read/Write	R/W	R/W	R/W	R/W	R	R	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

В режиме Fast PWM выводы функционируют следующим образом:

COM1A1 /COM1B1	COM1A0 /COM1B0	Описание
0	0	Выводы ОС1А/ОС1В отключены.
0	1	Если WGM13:0 = 14 или 15: вывод ОС1А переключается на противоположное значение при совпадении с А. Вывод ОС1В отключен. Для всех остальных режимов выводы ОС1А/ОС1В отключены
1	0	Сброс вывода ОС1А в 0 при совпадении с A, установка вывода ОС1А(В) в «1» если регистр TCNT1 принимает значение 0х00 (неинверсный режим)

1	Установка вывода ОС1А в 1 при совпадении с А, установка вывода ОС1А(В) в «0» если регистр ТСNТ1 принимает значение
	0х00 (инверсный режим)

Задание на лабораторную работу:

Написать программу для управления яркостью светодиода при помощи ШИМ таймера 1. Режим fast PWM выбрать самостоятельно. Частоту и скважность также выбрать самостоятельно. Настроить таймер, применив знания и навыки из лабораторной работы 3. Расположение вывода ОС1А определить по схеме, приведённой в лабораторной работе 1.