Problemas de Teoría de Circuitos

CURSO 2022/23

Índice general

1	Fundamentos. Corriente continua	1
2	Corriente alterna monofásica	11
3	Sistemas trifásicos	19
4	Introducción al régimen transitorio	27

Capítulo 1

Fundamentos. Corriente continua

Ejercicios

1. Calcular las corrientes de malla mostradas en el circuito de la figura.

Datos:
$$R_1 = 2\Omega$$
; $R_2 = 5\Omega$; $R_3 = 10\Omega$, $R_4 = 4\Omega$; $R_5 = 2\Omega$; $E_1 = 25$ V; $E_2 = 50$ V Sol.: $I_1 = -1.31$ A; $I_2 = 3.17$ A; $I_3 = 10.45$ A

2. Calcular el valor de E que hace que $I_0 = 7.5$ mA en el circuito de la figura.

Datos:
$$R_1=8\,\Omega$$
; $R_2=7\,\Omega$; $R_3=4\,\Omega$, $R_4=6\,\Omega$; $R_5=6\,\Omega$; $R_6=12\,\Omega$; Sol.: $U_S=0.705\,V$

3. Calcular la intensidad *I* en el circuito de la figura.

Datos:
$$R_1 = 27 \Omega$$
; $R_2 = 47 \Omega$; $R_3 = 27 \Omega$; $E_1 = 460 \text{ V}$; $E_2 = 200 \text{ V}$ Sol.: $I = -8,77 \text{ A}$

4. En el circuito de la figura obtener las intensidades de corriente señaladas primero mediante un análisis por el método de las mallas y posteriormente mediante un análisis por el método de los nudos.

Datos:
$$R_1 = 2\Omega$$
; $R_2 = 1\Omega$; $R_3 = 4\Omega$; $R_4 = 5\Omega$; $R_5 = 3\Omega$; $E_1 = 10 \text{ V}$; $E_2 = 6 \text{ V}$ Sol.: $I_1 = -3.31 \text{ A}$; $I_2 = 3.37 \text{ A}$; $I_3 = -0.06 \text{ A}$; $I_4 = 0.73 \text{ A}$; $I_5 = -0.79 \text{ A}$

5. Analizar el circuito de la figura mediante el método de las mallas, obteniendo la corriente de cada una de las ramas. Con este resultado, calcular la diferencia de potencial entre A y B, y realizar un balance de potencias comparando la potencia de los elementos activos y la de los elementos pasivos. Datos: $R_1 = R_2 = 1\Omega$; $R_3 = 2\Omega$; $R_4 = 3\Omega$; $R_5 = 4\Omega$; $R_1 = 118V$; $R_2 = 236V$; $R_3 = 218V$.

Sol.
$$I_1 = 32A$$
; $I_2 = -86A$; $I_3 = 54A$; $I_4 = 14A$; $I_5 = 40A$; $U_{AB} = 150V$; $P_g = P_R$

- 6. En el circuito de la figura, determinar:
 - Todas las intensidades de rama señaladas
 - Carga, polaridad y energía almacenada en los condensadores
 - Balance de potencias

Datos:
$$R_i=i\,\Omega$$
; $C_i=i\,\mu\text{F}$; $E_1=8\,\text{V}$; $E_2=6\,\text{V}$; $E_3=4\,\text{V}$
Sol.: $I_1=I_2=I_3=-I_4=1\,\text{A}$; $I_5=I_6=I_7=0\,\text{A}$; $Q_{1\mu F}=-7\,\mu\text{C}$; $Q_{2\mu F}=-4\,\mu\text{C}$; $Q_{3\mu F}=3\,\mu\text{C}$; $E_{1\mu F}=24.5\,\mu\text{J}$; $E_{2\mu F}=4\,\mu\text{J}$; $E_{3\mu F}=1.5\,\mu\text{J}$

- 7. Aplicar el método de los nudos en el circuito de la figura para determinar:
 - Los potenciales de los nudos A, B, C y D.
 - Las intensidades de corriente señaladas.
 - Carga, polaridad y energía almacenada en los condensadores, supuestos sin carga inicial.

Datos: $R_i = i \Omega$; $C_i = i \mu F$; $E_1 = 6V$; $E_2 = 18V$; $E_3 = 6V$

Sol.:
$$U_A = 15V$$
; $U_B = 11V$; $U_C = U_D = 0V$; $I_1 = I_6 = 0A$; $I_2 = I_4 = -1A$; $I_3 = I_5 = 1A$; $q_1 = 9\mu C$; $q_2 = 30\mu C$; $q_3 = 33\mu C$; $E_{C1} = 40.5\mu J$; $E_{C2} = 225\mu J$; $E_{C2} = 181.5\mu J$

- 8. En el circuito de la figura, donde se sabe que la carga inicial de los condensadores era de $10\,\mu\text{C}$ para C_1 y de $20\,\mu\text{C}$ para C_2 con las polaridades indicadas, se pide determinar:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C, D, E y F

Datos: $\epsilon_1 = 90 \text{ V}$; $\epsilon_2 = 60 \text{ V}$; $\epsilon_3 = 30 \text{ V}$; $R_1 = R_2 = R_3 = 10 \Omega$; $R_4 = R_5 = 30 \Omega$; $C_1 = 10 \,\mu\text{F}$; $C_2 = 20 \,\mu\text{F}$; $L_1 = 1 \,\mu\text{H}$

Sol.
$$I_1 = 4A$$
; $I_2 = 5A$; $I_3 = -1A$; $I_4 = I_8 = 1A$; $I_5 = I_7 = 0A$; $U_A = 30V$; $U_B = 0V$; $U_C = 1V$; $U_D = 61V$; $U_E = 101V$; $U_F = 11V$

- 9. En el circuito de la figura, los condensadores se conectaron sin carga. Mediante el método de las mallas determina:
 - Intensidades de corriente señaladas
 - Potenciales en los puntos A, B, C y D
 - Polaridades, cargas, y energías de los condensadores
 - Balance de potencias

Datos:
$$\epsilon_1 = 118 \text{ V}; \epsilon_2 = 236 \text{ V}; \epsilon_3 = 118 \text{ V}; R_1 = 4 \Omega; R_2 = R_3 = 1 \Omega; R_4 = 3 \Omega; R_5 = 2 \Omega; C_1 = C_2 = C_3 = 2 \mu\text{F}; L_1 = L_2 = L_3 = 1 \text{ mH}$$

Sol.:
$$I_1 = 40A; I_2 = -86A; I_3 = 32A; I_4 = 14A; I_5 = 54A; U_A = U_B = 0V; U_C = 41V; U_D = 150V; U_{C1} = 0V; q_1 = 0\mu F; E_{C1} = 0J; U_{C2} = -42V; q_2 = 84\mu F; E_{C2} = 1,76mJ; U_{C3} = -42V; q_3 = 84\mu F; E_{C3} = 1,76mJ; P_g = P_R$$

- 10. En el circuito de la figura, determinar:
 - Las ecuaciones para el cálculo de las intensidades
 - Todas las intensidades indicadas
 - Potenciales en todos los nudos
 - Carga y energía almacenada en los condensadores

Datos: $R_1 = 2\Omega$; $R_2 = 4\Omega$; $R_3 = 2\Omega$; $R_4 = 1\Omega$; $R_5 = 2\Omega$; $R_6 = 1\Omega$; $E_1 = 8V$; $E_2 = 8V$; $C_i = i \mu F$ Sol.: $I_1 = I_6 = -6.5A$; $I_2 = -4A$; $I_3 = -2.5A$; $I_4 = 3A$; $I_5 = 0.5A$; $U_A = -8V$; $U_B = 2V$; $U_C = 0.5V$; $U_D = 0V$; $Q_{1\mu F} = 8\mu C$; $Q_{2\mu F} = Q_{3\mu F} = 0\mu C$; $Q_{4\mu F} = -2\mu C$; $E_{1\mu F} = 32\mu F$; $E_{2\mu F} = E_{3\mu F} = 0.5\mu C$

- 11. En el circuito de la figura se debe determinar:
 - Las corrientes señaladas.
 - El balance de potencias, diferenciando entre elementos activos y elementos pasivos.
 - Los potenciales en los puntos A, B y C.
 - La carga y polaridad en los condensadores, supuestos sin carga inicial.

Datos: $\epsilon_1 = 1V$; $\epsilon_2 = 7V$; $R_i = 1\Omega$; $C_i = i\mu F$

Sol.:
$$I_1=I_2=1A; I_3=I_4=0A; I_5=-2A; \sum P=0; U_A=-1V; U_B=-5V; U_C=-3V; q_1=0,5\mu C; q_2=1\mu F; q_3=1,5\mu F; q_4=12\mu C$$

- 12. El circuito de la figura está funcionando en régimen estacionario. Los condensadores estaban inicialmente descargados. Resuelve el circuito mediante el método que consideres conveniente para obtener los siguientes resultados:
 - Las intensidades señaladas.
 - Polaridad y energía almacenada en los condensadores.
 - Balance de potencias.

Datos:
$$\epsilon_1=40V$$
; $\epsilon_2=22V$; $\epsilon_3=20V$; $C_1=C_2=C_3=2\mu F$; $R_{g1}=R_{g2}=R_{g3}=4\Omega$; $R_1=R_2=R_3=R_4=2\Omega$; $R_5=R_6=R_7=1\Omega$

Sol.:
$$I_1 = I_5 = 2A$$
; $I_2 = I_3 = I_8 = I_{10} = -1A$; $I_4 = I_7 = I_{11} = I_{12} = I_{13} = 0A$; $I_6 = I_{14} = 1A$; $E_{C1} = 0.676mJ$; $E_{C2} = 0.576mJ$; $E_{C3} = 1\mu J$; $P_g = P_R$

13. En el circuito de la figura, obtener las intensidades de corriente señaladas mediante un análisis por el método de las mallas y mediante un análisis por el método de los nudos.

Datos:
$$R_1 = 9 \Omega$$
; $R_2 = 4 \Omega$; $R_3 = 18 \Omega$; $R_4 = R_5 = R_6 = 20 \Omega$; $E_1 = 16 \text{ V}$; $I_g = 2 \text{ A}$ Sol.: $I_1 = -0.74 \text{ A}$; $I_2 = -1.33 \text{ A}$; $I_3 = 0.07 \text{ A}$; $I_4 = -0.39 \text{ A}$; $I_5 = 0.46 \text{ A}$; $I_6 = -0.87 \text{ A}$; $I_7 = 1.26 \text{ A}$

14. Calcular la intensidad que circula por la resistencia de 30 Ω del circuito de la figura aplicando el principio de superposición.

Datos:
$$R_1 = 20\,\Omega$$
; $R_2 = 30\,\Omega$; $R_3 = 20\,\Omega$; $E_1 = 32\,\mathrm{V}$; $E_2 = 64\,\mathrm{V}$; $I_g = 4\,\mathrm{A}$ Sol.: $I = 2,2\,\mathrm{A}$

15. Obtener el generador equivalente de Thévenin del circuito de la figura respecto de A y B. A partir de este generador, calcula la resistencia a colocar en AB para obtener la máxima potencia, calculando esta potencia y la potencia entregada por el generador ϵ .

Datos:
$$\epsilon = 54 \,\mathrm{V}; \quad R_1 = R_4 = 8 \,\Omega; \quad R_2 = R_3 = 10 \,\Omega$$

Sol.:
$$R_{AB} = 80/9\Omega$$
; $P_R = 1,0125 \,\text{W}$; $P_{\epsilon} = 2,025 \,\text{W}$

16. Determinar el equivalente Thévenin del circuito de la figura entre los nudos A-B. ¿Qué resistencia habría que conectar en dichos terminales para transferir la máxima potencia? ¿Cuál sería dicha potencia?

Datos:
$$R_1 = R_2 = 4 \Omega$$
; $R_3 = 2 \Omega$; $E = 10 \text{ V}$; $I_g = 8 \text{ A}$
Sol.: $\epsilon_{th} = 5 - 16 = -11 \text{ V}$; $R_{th} = 4\Omega$; $R_L = 4\Omega$; $P_{max} = 7.56 \text{ W}$

17. Obtener el generador equivalente de Thévenin del circuito de la figura respecto de A y B. Datos: $I_g=10\,A$; $R_1=1\Omega$; $\alpha=5$

Sol.:
$$\epsilon_{th} = 60 V$$
; $R_{th} = 6\Omega$

- 18. En el circuito de la figura, calcular:
 - La corriente del generador equivalente de Norton respecto de A y B, *I*_N.
 - La resistencia del generador equivalente de Norton respecto de A y B, R_N.
 - La resistencia de carga que se debe conectar entre A y B para conseguir la máxima potencia disponible, y el valor de esta potencia.

Datos:
$$R = 1\Omega$$
; $\epsilon_g = 10V$; $\alpha = 1\Omega$; $\beta = 1$

Sol.: $I_N = \frac{10}{3} A$; $R_N = 2 \Omega$; $R_L = 2 \Omega$; $P_L = 5,56 W$

Capítulo 2

Corriente alterna monofásica

Ejercicios

- 1. En un circuito serie RL con $R=5\Omega$ y L=0.06H, la tensión en bornes de la bobina es $u_L(t)=15\sin(200\,t)$ V. Determinar:
 - La tensión total
 - Intensidad de corriente
 - Ángulo de desfase de la intensidad respecto de la tensión
 - Impedancia del circuito

Sol.:
$$\overline{Z_{eq}} = 5 + j12\Omega$$
; $\overline{I} = 0.88/-90^{\circ}A$; $\overline{U} = 11.48/-22.5304^{\circ}V$; $\phi = 67.4696^{\circ}$

- 2. Una resistencia de $5\,\Omega$ y un condensador se unen en serie. La tensión en la resistencia es : $u_R(t) = 25 \cdot \sin(2000t + \pi/6)$. Si la corriente está adelantada 60° respecto de la tensión aplicada, ¿cuál es el valor de la capacidad C del condensador?. $Sol.: C = 100\sqrt{3}/3\,\mu\text{F}$
- 3. Para determinar las constantes R y L de una bobina, se conecta en serie con una resistencia de $25\,\Omega$ y al conjunto se le aplica una fuente de tensión de $120\,V$ a $60\,Hz$, se miden las tensiones en bornes de la resistencia y de la bobina, dando los valores $U_R = 70.8\,V$ y $U_B = 86\,V$. ¿ Cuáles son las constantes de la bobina en cuestión?

Sol.:
$$R = 5 \Omega$$
; $L = 79.5 \text{ mH}$

- 4. Un circuito serie RLC con $R=5\Omega$, L=0.02H y $C=80\mu F$, tiene aplicada una tensión senoidal de frecuencia variable. Determinar los valores de la pulsación ω para los cuales la corriente:
 - Adelanta 45° a la tensión
 - Está en fase con ella
 - Retrasa 45°

Sol.:
$$\omega = 675,39 \, rad/s$$
; $\omega = 790,57 \, rad/s$; $\omega = 925,39 \, rad/s$

- 5. Determinar el triángulo de potencias de un circuito al que se le aplica una tensión $u(t) = 340 \cdot \cos(\omega t 60^\circ)$ V y circula una intensidad de corriente $i(t) = 13,3 \cdot \cos(\omega t 48,7^\circ)$. Sol. P = 2217,17 W; Q = -443,03 VA_r; S = 2261 VA
- 6. En el esquema de la figura los elementos tienen los siguientes valores:

$$R_1 = R_2 = R_3 = 10\Omega$$

$$X_1 = X_2 = 1\Omega$$

$$R_L = X_L = 1\Omega$$

Sabiendo que $U_{CD} = 200V$ se debe calcular:

- Intensidades de corriente I, I_1 , I_2 e I_3 en forma fasorial, tomando U_{CD} como referencia de fase
- Lectura de los vatímetros W₁ y W₂

Sol.:
$$\overline{I_1} = 19,90/-5,7106^{\circ}A$$
; $\overline{I_2} = 19,90/5,7106^{\circ}A$; $\overline{I_3} = 20/0^{\circ}A$; $\overline{I} = 59,60/0^{\circ}A$; $W_1 = 19024,32\,W$; $W_2 = 11920\,W$

- 7. En el circuito de la figura, los amperímetros A_1 y A_2 marcan 4,5A y 6A, respectivamente; el voltímetro, 150V y el vatímetro 900W. Sabiendo que la frecuencia del generador es de 250Hz y el f.d.p. de la impedancia Z es de 0.8 en retraso, se pide calcular:
 - Valores de R, C y Z en forma compleja
 - La tensión del generador

Sol.:
$$\overline{R} = 33,33\underline{/0^{\circ}}\Omega$$
; $\overline{X_c} - j25\Omega$; $\overline{Z} = 16 + j12\Omega$; $\overline{U_{AC}} = 212,13\underline{/45^{\circ}}V$

8. En el circuito de la figura, determinar las lecturas de los aparatos de medida y el balance de potencias activas y reactivas, así como el triángulo global de potencias.

Datos:
$$e(t) = 100\sqrt{2}\cos(\omega t)$$
; $R_1 = 2\Omega$; $R_2 = 4\Omega$; $\omega L_1 = 3\Omega$; $\omega L_2 = 4\Omega$.

Sol.:
$$V=100\,V$$
; $A=45,20\,A$; $W_1=2788,31\,W$; $W_2=1250,33\,W$; $P_{R1}=1539,02\,W$; $P_{R2}=1250,33\,W$; $Q_{L1}=2308,52\,V\,A\,r$; $Q_{L2}=1250,33\,V\,A\,r$; $P_{T}=2789,35\,W$; $Q_{T}=3558,82\,V\,A\,r$; $\overline{S_{T}}=2789,35+i3558,82\,V\,A\,r$

- 9. El circuito de la figura tiene carácter inductivo. La impedancia de la línea es $Z=10\sqrt{2}\Omega$ con f.d.p. $\sqrt{2}/2$ en retraso. Tomando como referencia de fases la intensidad total \bar{I} , se pide calcular:
 - Potencia activa y reactiva consumida por Z
 - \blacksquare Expresiones complejas de las intensidades medidas por los amperímetros A, A_1 , A_2 y A_3
 - Expresiones complejas de las tensiones $\overline{U_{AB}}$, $\overline{U_{AC}}$ y $\overline{U_{CB}}$
 - Valores de R_1 , X_1 , R_2 , R_3 y X_3

Datos:
$$A = 5\sqrt{5}A$$
; $A_1 = 5\sqrt{2}A$; $A_2 = 5A$; $A_3 = \sqrt{10}A$; $U_{AB} = 247V$; $W_1 = 2350W$; $R_1 = R_3$

$$Sol.: P_z = 1250 \ W; \ \underline{Q}_z = 1250 \ VAr; \ \overline{I} = 11,18 \underline{/0^\circ}A; \ \overline{I_1} = 7,07 \underline{/-34,6711^\circ}A; \ \overline{I_2} = 5\underline{/10,3289^\circ}A; \ \overline{I_3} = 3,16\underline{/81,8940^\circ}A; \ \overline{U_{AB}} = 247\underline{/31,6823^\circ}V; \ \overline{U_{AC}} = 158,11\underline{/45^\circ}V; \ \overline{U_{CB}} = 100\underline{/10,3289^\circ}V; \ R_1 = R_3 = 10\Omega; \ R_2 = 20\Omega; X_1 = 10\Omega; \ X_3 = -30\Omega$$

- 10. La potencia reactiva del circuito de la figura es $80\,\mathrm{VA_r}$ de tipo capacitivo. La tensión en la impedancia Z está en fase con la intensidad I_1 y las lecturas de los aparatos son $A=4\,\mathrm{A},\,V=50\,\mathrm{V},\,W=200\,\mathrm{W}.$ Sabiendo que $R_1=10\,\Omega$ y $X_2=50\,\Omega$, calcula:
 - a) Las corrientes I_1 , I_2 , I_3 en forma fasorial.
 - *b*) Las reactancias X_1 , X_3 , y la impedancia \overline{Z} .
 - *c*) La fuerza electromotriz $\overline{\epsilon}$.

Sol.
$$\overline{I} = 4\underline{/0^{\circ}} A$$
; $\overline{I}_1 = 2\sqrt{5}/-26.56^{\circ} A$; $\overline{I}_2 = 1\underline{/-90^{\circ}} A$; $X_1 = 5\Omega$; $X_3 = \frac{50}{3}\Omega$; $\overline{Z} = 10 - j5\Omega$;

- 11. Un motor monofásico de S=10kVA y fdp=0.8 está alimentado por una fuente de 230V a f=50Hz. Calcular:
 - El valor eficaz de la corriente absorbida por el motor
 - La potencia aparente del generador
 - La capacidad del condensador necesario para compensar el factor de potencia a la unidad
 - El valor eficaz de la corriente absorbida por el conjunto condensador-motor
 - La potencia aparente del generador necesario una vez conectado el condensador del tercer apartado
 - Compara de forma razonada los resultados de los apartados 4 y 5 con los valores calculados en los apartados 1 y 2

Sol.:
$$I = 43,5A; S_g = 10kVA; C = 361\mu F; I' = 34,78A; S_g' = 8000kVA$$

- 12. Un generador de corriente alterna monofásica ($f=50~{\rm Hz}$) alimenta a dos cargas a través de una línea de cobre. Esta línea, de resistividad $\rho=21~{\rm m}\Omega~{\rm mm}^2/{\rm m}$, tiene una longitud de 100 m y una sección de 16 mm². Las dos cargas, cuya tensión de alimentación es de 230 V, son dos motores, uno con potencia de 7 kW y f.d.p. de 0,65, y otro con una potencia de 5 kW y f.d.p. de 0,85. Con esta información, se pide calcular:
 - Triángulo de potencias de cada carga y del conjunto de ambas
 - Valor eficaz de las corrientes en cada carga y de la corriente total
 - Triángulo de potencias del generador
 - Valor eficaz de la tensión en bornes del generador
 - Capacidad del condensador a instalar en bornes de las cargas para mejorar el factor de potencia a 0,95
 - Valor eficaz de la corriente entregada por el generador una vez instalado el condensador
 - Triángulo de potencias del generador una vez instalado el condensador

```
Sol.: P_1=7000W; Q_1=8183,91VAr; S_1=10769,23VA; P_2=5000W; Q_2=3098,72VAr; S_2=5882,35VA; P_T=12000W; Q_T=11282,63VAr; S_T=16471,12VA; I_1=46,82 A; I_2=25,58 A; I_T=71,62 A; P_g=13346,23W; Q_g=11282,63VAr; S_g=17476,26VA; U_g=244,4V; C=441,66\mu F; I'=54,92A; P'_g=12791,75W; Q'_g=3944,21VAr; S'_g=13386,02VA
```

- 13. Un generador de corriente alterna monofásica (f = 50Hz) alimenta a dos cargas a través de una línea de cobre. Esta línea, de resistividad $\rho = 0.017\Omega mm^2/m$, tiene una longitud de 40m y una sección de 6mm². Las dos cargas, cuya tensión de alimentación es de 200V, son:
 - a) Un motor de 7kW con f.d.p. 0,7.
 - b) Un grupo de lámparas fluorescentes con potencia total 200W y f.d.p. 0,5.

Se pide:

- Esquema del circuito señalando adecuadamente los elementos, corrientes y tensiones
- Potencias activa, reactiva y aparente de cada carga
- Valor eficaz de las corrientes en cada carga, y de la corriente total
- Potencia activa y reactiva entregada por el generador
- Valor eficaz de la tensión en bornes del generador
- Capacidad necesaria a instalar en bornes de las cargas para mejorar el factor de potencia de las mismas a la unidad
- Valor eficaz de la tensión en bornes del generador, y potencia aparente entregada por el mismo una vez instalada la capacidad determinada en el apartado anterior

```
Sol.: P_M=7000W; Q_M=7141,43VAr; S_M=10000VA; P_F=200W; Q_F=346,41VAr; S_F=400VA; I_M=50A; I_F=2A; I_T=51,94A; P_g=7811,50W; Q_g=7487,8VAr; U_g=208,33V; C=595,86\mu F; U_g'=207,92V; S_g'=7485,12VA
```

14. Un generador de corriente alterna ($f=50\,\mathrm{Hz}$) alimenta una instalación eléctrica a través de una línea de cobre ($\rho=0.017\,\Omega\,\mathrm{mm^2/m}$) de 25 mm² de sección. La instalación eléctrica está compuesta por un motor de $S_m=10\,\mathrm{kVA}$ y fdp = 0,8, una instalación de alumbrado fluorescente de $P_f=800\,\mathrm{W}$ y fdp = 0,9, y diversas cargas electrónicas con una potencia conjunta $P_e=540\,\mathrm{W}$ y fdp = 0,5 en retraso.

Suponiendo que las cargas trabajan a su tensión nominal de 230 V y que están situadas a 100 m del generador, calcule:

- a) Triángulo de potencias total de las cargas (P_T, Q_T, S_T) y factor de potencia.
- b) Valor eficaz de la corriente que circula por la línea.
- c) Potencia disipada en la línea.
- d) Triángulo de potencias del generador (P_g, Q_g, S_g) y factor de potencia.
- *e*) Valor eficaz de la tensión de salida del generador.

f) Capacidad del banco de condensadores a instalar en bornes de la carga necesario para reducir la corriente que circula por la línea a un valor de 45 A.

Independientemente del resultado obtenido, suponga que la capacidad instalada es $C=172\,\mu\text{F}$. En estas condiciones, calcule:

- g) Potencia aparente de las cargas (incluyendo al banco de condensadores)
- h) Valor eficaz de la corriente que circula por la línea y potencia disipada en la misma.
- *i*) Triángulo de potencias del generador y factor de potencia.
- j) Tensión de trabajo del generador.

Sol.
$$S_T=11\,868,4\,\mathrm{VA}; I=51,6\,\mathrm{A}; P_L=362,1\,\mathrm{W}; S_g=12\,155,4\,\mathrm{VA}; U_g=235,6\,\mathrm{V}; C=172,3\,\mathrm{\mu F}; S_T'=10\,350,1\,\mathrm{VA}; I'=45\,\mathrm{A}; S_g'=10\,599,2\,\mathrm{VA}; U_g'=235,5\,\mathrm{V}$$

15. Calcular la corriente i(t) del circuito de la figura.

Datos: $i_g(t) = 10\sqrt{2}\sin(100t)$ A; $R_1 = R_2 = 1\Omega$; $L_1 = L_2 = 0.01$ H; $C_1 = 0.01$ F; $u_g(t) = 10\sqrt{2}\cos(100t)$ V

Sol.:
$$i(t) = \sqrt{2} 10 \cos(100 t) A$$

- 16. Del circuito de la figura obtener:
 - lacktriangle Expresiones analíticas de las intensidades $i_1(t)$ e $i_2(t)$
 - Potencia disipada por todas las resistencias

Datos: $e_g(t) = 50\sqrt{2}\sin(1000 t)$ V; $i_g(t) = 10$ A; $R_1 = R_2 = 2\Omega$; $R_3 = 7\Omega$; $L_1 = L_2 = 1$ mH; $L_3 = 2$ mH

Sol.:
$$i_1(t) = -5 + 5\sqrt{10}\sin(1000t - 0.46)A$$
; $i_2(t) = 5 + 5\sqrt{10}\sin(1000t - 0.46)A$; $i_3(t) = 10A$; $P_T = 1300 \text{ W}$

17. En el circuito de la figura determina:

- $\blacksquare u_R(t) y u_L(t)$
- Balance de potencias

Datos: $e_a(t) = 3\sqrt{2}\sin(10^3t)V$; $e_b(t) = 30\sqrt{2}\sin(10^4t)V$; $R = 30\Omega$; L = 3mH

Sol.:
$$u_R(t) = 30\sqrt{2}\sin(10^4t)V$$
; $u_L(t) = 3\sqrt{2}\sin(10^3t) - 30\sqrt{2}\sin(10^4t)V$; $P_R = 30W$; $P_{\epsilon} = 30W$

18. El circuito de la figura se encuentra en régimen permanente. Determinar analíticamente la expresión de i(t), así como las potencias entregadas por los generadores y disipadas por las resistencias R_1 y R_2 .

Datos: $e_1(t) = 50 \sin(1000t)V$; $e_2(t) = 30V$; $R_1 = 6\Omega$; $R_2 = 6\Omega$; L = 8mH; $C = 10\mu F$

Sol.:
$$i(t) = 5 + 5\sin(1000t - 0.9273)A$$
; $P_{R1} = 225W$; $P_{R2} = 0W$; $P_{\epsilon} = 225W$

19. Obtén el generador equivalente de Thévenin del circuito de la figura respecto de A y B.

Datos:

$$\overline{\epsilon_g} = 12 - 16j \text{ V}; \overline{Z}_1 = 1 - j \Omega; \overline{Z}_2 = 1 + j \Omega; \overline{Z}_3 = 5 + 3j \Omega \alpha = 2$$

Sol.
$$\overline{\epsilon}_{th} = 11,66/-59,04^{\circ}\text{V}; \overline{Z}_{th} = 0,64 + 0,52j\Omega$$

20. Obtén el generador equivalente de Thévenin del circuito de la figura respecto de A y B. A partir de este generador, calcula la impedancia a colocar en AB para obtener la máxima potencia, calculando esta potencia.

Sol.
$$\overline{\epsilon}_{th} = 10 - 10j$$
V; $\overline{Z}_{th} = 4 - 3j\Omega$

$$\overline{\epsilon_1} = 10/0 \text{ V}$$

$$\overline{\epsilon_2} = 10j \text{ V}$$

$$\overline{Z}_1 = 4 - 3j \Omega$$

$$\overline{Z}_2 = 3 + 4j \Omega$$

$$\alpha = 2$$

Capítulo 3

Sistemas trifásicos

Ejercicios

- 1. El receptor trifásico de la figura tiene secuencia de fases inversa y tensión de línea $200\sqrt{3}$ V. Su potencia activa es 12 kW y el vatímetro 2 (W_2) indica 6 kW. Hallar:
 - Valor de la impedancia \overline{Z} , en forma compleja.
 - Fasores correspondientes a las intensidades de línea.

Sol.:
$$\overline{Z} = 10/0^{\circ}\Omega$$
; $\overline{I}_a = 20/-90^{\circ} A$; $\overline{I}_b = 20/30^{\circ} A$; $\overline{I}_c = 20/150^{\circ} A$

- 2. En el sistema trifásico de la figura de secuencia de fases directa y f=60 Hz, el receptor equilibrado disipa una potencia total $P_T=51984$ W con un factor de potencia de 0,6 en retraso. Sabiendo que el amperímetro indica $76\sqrt{3}$ A, determinar:
 - Lecturas de los vatímetros 1 y 2
 - Valor de la impedancia \overline{Z} en forma compleja
 - Capacidad mínima para mejorar el factor de potencia a 0,95

Sol.:
$$W_1 = 46000,65 W$$
; $W_2 = 5983,35 W$; $\overline{Z} = 3 + j4 \Omega$; $C_D = 319,8 \mu F$

- 3. En el sistema trifásico de la figura, de secuencia de fases inversa y tensión de línea $200\sqrt{3}$ V, los dos receptores son equilibrados, con impedancias $\overline{Z_1} = 6 + j8 \Omega$ y $\overline{Z_2} = 8 + j6 \Omega$. Determinar:
 - Lecturas de los amperímetros.
 - Lecturas de los vatímetros y la potencia compleja total.

Sol.:
$$A = 79,40 A$$
; $A_1 = 20 A$; $A_2 = 60 A$; $W_A = 27007,43 W$; $W_B = 18013,85 W$; $W_C = 8993,58 W$; $\overline{S_T} = 36000 + j31200 VA$

- 4. El sistema trifásico de la figura es de 380 V a 50 Hz y secuencia de fases inversa. \overline{Z} es un elemento pasivo ideal, tal que el factor global de potencia es la unidad. El motor es de 1,8 CV, rendimiento 90 % y factor de potencia 0,8. Determinar:
 - Impedancia \overline{Z} en forma compleja.
 - Intensidad en el motor.
 - Fasores intensidad de línea.
 - Lectura de los aparatos de medida: V, A, W₁, W₂ y W₃.

Sol.:
$$\overline{Z}=-j$$
 129,76 Ω /fase; $I_{M}=2$,83 A ; $\overline{I_{a}}=2$,27/ $\underline{-90^{\circ}}$ A ; $\overline{I_{b}}=2$,27/ $\underline{30^{\circ}}$ A ; $\overline{I_{c}}=2$,27/ $\underline{150^{\circ}}$ A ; $W_{1}=0$; $W_{2}=-645$,24 W ; $W_{3}=645$,24 W

- 5. Una plantación agrícola emplea dos bombas sumergibles para extraer agua de un pozo y transportarla a través de un sistema de riego por goteo. Estas dos bombas están alimentadas a 400 V por una línea trifásica en secuencia de fases directa y frecuencia 50 Hz. Una de las bombas funciona con un motor trifásico de 30 kW y factor de potencia de 0.78. La otra bomba trabaja con un motor de 7,5 kW y factor de potencia de 0.67. La línea que alimenta estas dos bombas es resistiva, con resistividad $\rho=0.017\,\Omega\,\mathrm{mm}^2/\mathrm{m}$, longitud de 300 m y una sección de 35 mm².
 - *a*) Calcula el triángulo de potencias (potencia activa, reactiva, y aparente) de cada carga, y total de las cargas (a la salida de la línea).
 - b) Calcula el **valor eficaz** de la corriente de línea de cada carga, y total.
 - c) Determine la lectura de los siguientes aparatos de medida conectados a la entrada de las cargas:

- Un vatímetro en la fase A, midiendo tensión entre las fases A y C.
- Un vatímetro en la fase B, midiendo tensión entre las fases B y C.
- Un vatímetro en la fase C, midiendo tensión entre las fases B y A.
- d) Calcule el triángulo de potencias a la entrada de la línea.
- e) Calcule el valor eficaz de la tensión a la entrada de la línea.
- *f*) Calcule los condensadores que se deben conectar a la salida de la línea para mejorar el factor de potencia del sistema hasta la unidad. Indique el modo de conexión.

Una vez conectados los condensadores del último apartado:

- g) Calcule el valor eficaz de la corriente de línea total.
- h) Calcule el triángulo de potencias a la entrada de la línea.
- i) Calcule el valor eficaz de la tensión a la entrada de la línea.
- j) Determine la lectura de los vatímetros descritos anteriormente.

Sol.: $P_1=30kW$; $Q_1=24,07kVAr$; $S_1=38,46kVA$; $P_2=7,5kW$; $Q_2=8,31kVAr$; $S_2=11,19kVA$; $P_T=37,5kW$; $Q_T=32,38kVAr$; $S_T=49,55kVA$; $I_1=55,51A$; $I_2=16,15A$; $I_T=71,52A$; $W_{A,AC}=28,10kW$; $W_{B,BC}=9,40kW$; $W_{C,BA}=-18,69kW$; $P_g=39,74kW$; $Q_g=32,38kVAr$; $S_g=51,26kVA$; $U_g=413,81V$; $C=214,7\mu F/fase$; $I_T'=54,13A$; $P_g'=38,78kW$; $Q_g'=0VAr$; $S_g'=38,78kVA$; U'=413,66V; $W_{A,AC}'=18,75kW$; $W_{B,BC}'=18,75kW$; $W_{C,BA}'=0W$

- 6. El circuito de la figura es de secuencia de fases directa y 50 Hz. Determinar:
 - a) Potencias activas y reactivas totales.
 - b) Capacidad mínima de los condensadores a instalar para mejorar el factor de potencia total hasta la unidad.
 - c) Intensidades de línea, en forma fasorial, una vez mejorado el factor de potencia.

Datos:

$$\overline{Z}_1 = 100/60^{\circ}\Omega$$

$$W_1 = 300 \text{ W}$$

$$W_2 = 300 \text{ W}$$

$$V = \sqrt{3} \cdot 200 \text{V}$$

Sol.:
$$P_T=2400W;~Q_T=1800\sqrt{3}VAr;~C=27,57~\mu F;~\bar{I}_A=4/\underline{90^\circ}A;~\bar{I}_B=4/\underline{-30^\circ}A;~\bar{I}_C=4/\underline{-150^\circ}A$$

- 7. En la figura dos vatímetros miden una carga trifásica inductiva equilibrada alimentada a una tensión $U = 400 \,\text{V}$. El vatímetro W_B indica una lectura de 11 320 W, y el vatímetro W_C indica una lectura de 1815 W. A partir de esta información se pide:
 - a) Determinar la secuencia de fases del sistema.
 - b) Triángulo de potencias de la carga.
 - c) Impedancia equivalente de la carga en estrella y en triángulo.
 - *d*) Tensión de alimentación a la entrada de la línea U_1 sabiendo que la línea de alimentación es resistiva pura con valor $R = 0.1 \Omega$.

e) Capacidad de los condensadores que se deben conectar en bornes de la carga para conseguir mejorar su factor de potencia a la unidad. Determinar las nuevas lecturas de los vatímetros W_B y W_c .

Sol.: SFI;
$$P=20\,825\,\mathrm{W}$$
; $Q=3143.7\,\mathrm{VA}_r$; $\overline{S}=21060.9 \underline{/8.58^\circ}\mathrm{VA}$; $\overline{Z}_\triangle=22.8 \underline{/8.58^\circ}\Omega$; $U_1=405.21\,\mathrm{V}$; $C=20.85\,\mathrm{\mu}\mathrm{F}$;

- 8. Del circuito de la figura se sabe que tiene una secuencia de fases directa ABC. El amperímetro indica 5 A, el voltímetro 400 V, y los vatímetros A y C muestran una lectura idéntica. Se pide:
 - a) Valor de la impedancia Z en forma compleja.
 - b) Expresión fasorial de todas las intensidades del circuito.
 - c) Lecturas de los vatímetros A y C.

Dato:
$$\overline{Z}_L = 1 + j\Omega$$
.

Sol.:
$$Z = 80\sqrt{3}\,\Omega$$
; $I_a = 5/91,24^{\circ}$ A; $I_b = 5/-28,75^{\circ}$ A; $I_c = 5/-148,75^{\circ}$ A; $W_a = W_c = 1761,04\,\mathrm{W}$

9. En el circuito de la figura se debe determinar:

- a) Lectura del vatímetro W_c .
- *b*) Lectura del amperímetro.
- c) Factor de potencia total de las cargas (en retraso o adelanto).
- d) Lectura de los vatímetros W_a y W_b .
- e) Lectura del voltímetro.
- f) Valor de los condensadores conectados en $A_1B_1C_1$ para que el f.d.p. en ese punto sea la unidad.
- g) Lecturas de los cinco aparatos de medida tras el apartado anterior.

Datos:

- Secuencia de fases directa, $f = 50 \,\mathrm{Hz}$, $(A_1 B_1 C_1) \,U_1 = 420 \,\mathrm{V}$.
- Z_1 : motor de 10 CV, con $\eta = 0.83$, y f.d.p. de 0'9.
- Z_2 : conjunto de iluminación fluorescente, con $P = 2400 \,\mathrm{W}$, y f.d.p. de 0'85.
- $R_L = 1 \Omega$.

Sol.: $W_c = -3338,3 \text{ W}$; A = 17,41 A; fdp = 0,89; $W_A = 7757,6 \text{ W}$; $W_B = 4419,27 \text{ W}$; U' = 447,02 V; $C = 34,78 \,\mu\text{F}$

10. Una línea ideal trifásica de 4 hilos alimenta a dos cargas a una tensión de 400 V en secuencia de fases inversa (SFI) y frecuencia 50 Hz.

Las cargas tienen las siguientes características:

- Un motor trifásico de 70 kW y f.d.p. de 0.8.
- Un conjunto equilibrado de 90 lámparas fluorescentes. Las características de cada lámpara son: potencia de 12 W, f.d.p. de 0.7 en retraso, tensión 230 V.

Con esta información se pide:

- a) Conectar adecuadamente los siguientes aparatos de medida antes de las cargas.
 - Un voltímetro que mida la tensión de línea (etiquetado como V_L) y otro voltímetro que mida la tensión de fase (etiquetado como V_F).
 - Un vatímetro que permita calcular la potencia reactiva total del sistema (etiquetado como W_r).
 - Dos vatímetros que, de forma conjunta, permitan calcular la potencia activa total del sistema (etiquetados como W_X y W_Y).
- b) Calcular el valor eficaz de la corriente de línea total.
- c) Calcular la lectura de cada uno de los aparatos de medida del primer apartado.
- *d*) Calcular los condensadores necesarios para mejorar el factor de potencia hasta 0,9, indicando cómo se deben conectar.

e) Una vez conectados los condensadores del anterior apartado, determinar la corriente de línea y la lectura de todos los aparatos de medida del apartado 2.

Sol.:
$$I = 128,5 \text{ A}$$
; $V_L = 400 \text{ V}$; $V_F = 230,9 \text{ V}$; $W_r = 30.947 \text{ W}$; $W_X = 20.666,5 \text{ W}$; $W_Y = 51.013,5 \text{ W}$; $C = 127,2 \,\mu\text{F}$, $I' = 114 \,\text{A}$; $W_X' = 25.602,2 \,\text{W}$; $W_Y' = 45.477,8 \,\text{W}$; $W_R' = 19.875,6 \,\text{W}$

- 11. En el sistema de la figura de secuencia de fases directa y frecuencia $f=60\,\mathrm{Hz}$, se dispone de un receptor equilibrado con una potencia total $P_T=51\,984\,\mathrm{W}$ factor de potencia de 0,6 en retraso. Sabiendo que el amperímetro marca $76\sqrt{3}\,\mathrm{A}$, determinar:
 - a) Medida de los vatímetros 1 y 2.
 - b) Valor de la impedancia \overline{Z} en forma módulo-argumento.
 - c) Valor de la capacidad mínima para mejorar el factor de potencia a 0,95 en retraso.
 - d) Valor de la impedancia equivalente en estrella.

Sol.:
$$W_1 = 46\,001\,\text{W}$$
; $W_2 = 17\,328\,\text{W}$; $\overline{Z} = 5/53,13^{\circ}\Omega$.

- 12. Un sistema trifásico a cuatro hilos de $200\,\mathrm{V}$ a $50\,\mathrm{Hz}$ y secuencia de fases directa está constituido por un motor a cuatro hilos de $3200\,\mathrm{W}$ de potencia y factor de potencia de 0.9, y un triángulo de impedancia $20/30^\circ\Omega$. Con esta información se debe determinar:
 - a) Impedancia equivalente del motor.
 - b) Impedancia equivalente de todo el sistema.

Sol:
$$\overline{Z}_{mY} = 11,25/25,84^{\circ}\Omega; \overline{Z}_{Y} = 4,19/28,45^{\circ}\Omega$$

- 13. En el circuito de la figura la tensión es $275\sqrt{3}$ V. Los motores 1 y 2 tienen factores de potencia 0.96 y 0.8, respectivamente. El vatímetro W_a da una lectura de $2420\sqrt{3}$ W. Al medir las intensidades de los motores se comprueba que son iguales en ambos. Con esta información se debe determinar:
 - a) Secuencia de fases del sistema.
 - b) Lectura del vatímetro W_h .
 - c) Impedancias de cada uno de los motores e impedancia equivalente del conjunto.

Sol.: SFD; $W_b = 5164.2 \text{ W}; \overline{Z}_{1Y} = 27.5 / 16.26^{\circ} \Omega; \overline{Z}_{2Y} = 27.5 / 36.87^{\circ} \Omega; \overline{Z}_{Y} = 13.97 / 26.56^{\circ} \Omega$

Capítulo 4

Introducción al régimen transitorio

Ejercicios

1. El interruptor de la Figura 4.1 lleva cerrado un tiempo que se puede considerar infinito. En el instante t=0, se abre, permaneciendo en esta posición definitivamente. Calcular la expresión de la intensidad i(t) desde t=0 en adelante.

FIGURA 4.1: Ejercicio 1

Sol.:
$$i(t) = \frac{1}{9} e^{-\frac{t}{0.012}} A$$

2. El circuito de la Figura 4.2 se encuentra en régimen permanente. En el instante t=0 se abre el interruptor. Calcular u_1 y u_2 para t>0.

FIGURA 4.2: Ejercicio 2

Sol.:
$$u_1(t) = 15 - 10 e^{-2500 t} V$$
; $u_2(t) = 5 e^{-2500 t} V$

3. El interruptor del circuito de la Figura 4.3 lleva cerrado un timepo que se considera infinito. En el instante t = 0, se abre y permanece en dicha posición definitivamente. Hállese la expresión de u(t) e i(t) para t > 0.

FIGURA 4.3: Ejercicio 3

Sol.:
$$u(t) = 36 - 12 e^{-166,67 t} V$$
; $i(t) = 6 e^{-500 t} A$

4. El circuito de la Figura 4.4 lleva en esa posición un tiempo que se puede considerar infinito. En el instante t = 0, ambos interruptores cambian su posición. Calcular la expresión de u(t) para t > 0.

FIGURA 4.4: Ejercicio 4

Sol.:
$$u(t) = 10 e^{-1000 t} + 20\sqrt{2} \cos(1000 t - \frac{\pi}{4}) V$$

5. En el circuito de la Figura 4.5, se abre el interruptor después de un tiempo suficientemente grande para considerar que el circuito funcionaba en régimen permanente. Expresar las formas de onda de i_1 , i_2 y u_L para t>0, sabiendo que la fuente de tensión alterna es $e(t)=220\sqrt{2}\cos(100\pi\,t)$ V.

FIGURA 4.5: Ejercicio 5

Sol.:
$$i_1(t) = 1.7 e^{-1500 t} A$$
; $i_2(t) = -1.7 e^{-1500 t} A$; $u_L(t) = -510 e^{-1500 t} V$

6. En el circuito de la Figura 4.6, en t = 0 se cierra el interruptor. Obtener la expresión analítica de la intensidad i(t), para t > 0.

FIGURA 4.6: Ejercicio 6

Sol.:
$$i(t) = \frac{3}{7} e^{-35t} - \frac{3}{7}$$

7. En el circuito de la Figura 4.7, el interruptor permanece conectado en la posición mostrada el tiempo suficiente para que se encuentre en estado estacionario. En el instante t=0, cambia de posición. Obtener la expresión analítica de la tensión entre los bornes de la bobina.

FIGURA 4.7: Ejercicio 7

Sol.:
$$u(t) = -20 e^{-14t} V$$

8. En el circuito de la Figura 4.8, calcular la tensión $u_C(t)$ para t>0. Datos: $\epsilon_g=4V;\ R_1=2\Omega;\ R_2=2\Omega;\ L=1H;\ C=0,25F$

FIGURA 4.8: Ejercicio 8

Sol.:
$$u_C(t) = e^{-t} \left[2 \cos(\sqrt{3}t) + \frac{2}{\sqrt{3}} \sin(\sqrt{3}t) \right] = \frac{4\sqrt{3}}{3} e^{-t} \sin\left(\sqrt{3}t + \frac{\pi}{6}\right) V$$

9. En el circuito de la Figura 4.9 el interruptor ha estado cerrado durante un tiempo elevado y, en t = 0, se abre. Determinar la expresión de la corriente $i_L(t)$ para t > 0, especificando el tipo de transitorio.

Datos: $E_g = 500V$; $R_1 = 375\Omega$; $R_2 = 125\Omega$; $L_1 = 40mH$; $L_2 = 40mH$; $C = 1\mu F$

FIGURA 4.9: Ejercicio 9

Sol.:
$$i_L(t) = e^{-4687.5t} \left[\cos(1739.93t) + 2.69 \sin(1739.93t) \right] = 2.87 e^{-t} \sin(1739.93t + 1.215) A$$

10. En el circuito de la Figura 4.10, determinar la tensión u en el condensador a partir del instante en que se abre el interruptor, el cual lleva cerrado desde un tiempo infinito.

FIGURA 4.10: Ejercicio 10

Sol.:
$$u(t) = 12 - e^{-t} (2 + 2t) V$$