

NLP Programming Tutorial 10 - Neural Networks

Graham Neubig
Nara Institute of Science and Technology (NAIST)

Prediction Problems

Given x, predict y

Example we will use:

- Given an introductory sentence from Wikipedia
- Predict whether the article is about a person

This is binary classification (of course!)

Linear Classifiers

$$y = sign(w \cdot \phi(x))$$

= $sign(\sum_{i=1}^{I} w_i \cdot \phi_i(x))$

- x: the input
- $\phi(x)$: vector of feature functions $\{\phi_1(x), \phi_2(x), ..., \phi_1(x)\}$
- w: the weight vector $\{w_1, w_2, ..., w_l\}$
- y: the prediction, +1 if "yes", -1 if "no"
 - (sign(v) is +1 if v >= 0, -1 otherwise)

Example Feature Functions: Unigram Features

• Equal to "number of times a particular word appears"

• For convenience, we use feature names $(\phi_{\mbox{\tiny unigram "A"}})$ instead of feature indexes $(\phi_{\mbox{\tiny 1}})$

Calculating the Weighted Sum

x = A site, located in Maizuru, Kyoto

• •

The Perceptron

Think of it as a "machine" to calculate a weighted sum

Problem: Linear Constraint

 Perceptron cannot achieve high accuracy on nonlinear functions

Neural Networks

Neural networks connect multiple perceptrons together

Motivation: Can express non-linear functions

Representing a Neural Network

- Assume network is fully connected and in layers
- Each perceptron:
 - A layer ID
 - A weight vector

Review: Pseudo-code for Perceptron Predicton

```
PREDICT_ONE(W, phi)
  score = 0
  for each name, value in phi  # score = w*φ(x)
     if name exists in w
        score += value * w[name]
  if score >= 0
     return 1
  else
     return -1
```


Pseudo-Code for NN Prediction

```
PREDICT_NN(network, phi)

y = [ phi, {}, {} ... ] # activations for each layer

for each node i:
    layer, weight = network[i]
    # predict the answer with the previous perceptron
    answer = PREDICT_ONE (weight, y[layer-1])
    # save this answer as a feature for the next layer
    y[layer][i] = answer

return the answer for the last perceptron
```


Neural Network Activation Functions

Previously described NN uses step function

$$y = \operatorname{sign}(\mathbf{w} \cdot \mathbf{\phi}(x)) \qquad -4 \quad -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4$$

$$\operatorname{sign}(\varphi^*x)$$

Step function is not differentiable → use tanh

$$y = \tanh(\mathbf{w} \cdot \mathbf{\phi}(\mathbf{x}))$$

Python: from math import tanh tanh(x)

Learning a Perceptron w/ tanh

• First, calculate the error:

Update each weight with:

$$\mathbf{w} \leftarrow \mathbf{w} + \lambda \cdot \delta \cdot \mathbf{\phi} (\mathbf{x})$$

- Where λ is the learning rate
- (For step function perceptron $\delta = -2$ or +2, $\lambda = 1/2$)

Problem: Don't Know Correct Answer!

For NNs, only know correct tag for last layer

Answer: Back-Propogation

Pass error backwards along the network

Also consider gradient of tanh

Combine:

$$\delta_j = (1 - y_j^2) \sum_i \delta_i w_{j,i}$$

Back Propagation Code

```
UPDATE_NN(network, phi, y')
    create array δ
    calculate y using PREDICT_NN
    for each node j in reverse order:
        if j is the last node
            \delta_i = y' - y_i
        else
            \delta_{i} = (1 - y_{j}^{2}) \sum_{i} \delta_{i} w_{j,i}
    for each node j:
        layer, w = network[i]
        for each name, val in y[layer-1]:
            w[name] += \lambda * \delta_i * val
```


Training process

```
create network
randomize network weights
for I iterations
  for each labeled pair x, y in the data
    phi = create_features(x)
    update_nn(w, phi, y)
```

- For previous perceptron, we initialized weights to zero
- In NN: randomly initialize weights (so not all perceptrons are identical)

Exercise

Exercise (1)

- Write two programs
 - train-nn: Creates a neural network model
 - test-nn: Reads a neural network model
- Test train-nn
 - Input: test/03-train-input.txt
 - Use one iteration, one hidden layer, two hidden nodes
 - Calculate updates by hand and make sure they are correct

Exercise (2)

- Train a model on data/titles-en-train.labeled
- Predict the labels of data/titles-en-test.word
- Grade your answers
 - script/grade-prediction.py data-en/titles-en-test.labeled your_answer
- Compare:
 - With a single perceptron/SVM classifiers
 - With different neural network structures

Thank You!