SCC0284 – Sistemas de Recomendação

Aula 02: Filtragem Colaborativa Parte 1

(mmanzato@icmc.usp.br)

Filtragem Colaborativa (FC)

- Abordagem mais conhecida para se gerar recomendações
 - Usada pela maioria dos sistemas comerciais
 - Bem entendida, vários algoritmos e versões
 - Aplicável em praticamente qualquer domínio (livros, filmes, jogos, ...)
- Usar a "sabedoria da multidão" para recomendar itens

Filtragem Colaborativa (FC)

Suposições:

- Usuários fornecem avaliações para itens visitados
- Indivíduos que tinham gostos similares no passado continuarão tendo gostos similares no futuro
- Preferências permanecem estáveis e consistentes ao longo do tempo

FC tradicional

Sobre avaliações

- Avaliações explícitas
 - Escalas bem definidas (1 a 5, -10 a +10, etc.)
 - Reflete precisamente as preferências do usuário
 - Porém requer ação do usuário
 - Número de avaliações pode ser escasso → matrizes esparsas → recomendações imprecisas

Sobre avaliações

- Avaliações implícitas
 - Coletadas pelo sistema durante a navegação do usuário
 - Cliques, visualizações, compras, etc.
 - Não requer esforço adicional do usuário, por isso são abundantes
 - Problema: como interpretar corretamente o comportamento do usuário no sistema?

FC tradicional

- A FC pode ser dividida em:
 - Baseada em memória
 - Baseada em modelo

- FC baseada em memória pode ser subdividida em:
 - Vizinhança entre usuários
 - Vizinhança entre itens

FC baseada em vizinhança de usuários

Recomendação

FC baseada em vizinhança de usuários

- Dado um usuário u e um item i ainda não visto por u:
 - Encontre um conjunto de usuários que tenham preferências parecidas com u e que tenham avaliado i
 - Use (por exemplo) a média de suas avaliações para predizer o nível de satisfação de u por i
 - Faça isso para todos os itens que u ainda não conhece, e recomende os melhores avaliados

Exemplo

Dada uma base de avaliações (escala de 1 a 5):

	ltem1	ltem2	Item3	Item4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Determinar se Alice irá gostar ou não de Item5

Exemplo

- Algumas questões iniciais:
 - Como saber quais usuários tem gostos parecidos com Alice?
 - Como calcular a similaridade?
 - Quantos vizinhos devemos considerar?
 - Como calcular uma predição com base nas avaliações dos vizinhos?

	ltem1	ltem2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Similaridade entre usuários

 Uma métrica de similaridade bastante popular é a Correlação de Pearson

• Dados:

– u, v : usuários

- r_{III} : avaliação do usuário u para um item i

- I_{IIV} : conjunto de itens avaliados por ambos u e v

$$sim(u,v) = \frac{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})(r_{vi} - \overline{r_v})}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \overline{r_v})^2}}$$

Possíveis valores entre -1 e +1

Similaridade entre usuários

• Dados:

– u, v : usuários

- r_{ui} : avaliação do usuário u para um item i

- I_{IIV} : conjunto de itens avaliados por ambos u e v

	ltem1	Item2	Item3	Item4	Item5	$sim(u,v) = \frac{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})(r_{vi} - \overline{r_v})}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})(r_{vi} - \overline{r_v})}}$
Alice	5	3	4	4	?	$\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r}_{u})^{2}} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \overline{r}_{v})^{2}}$
User1	3	1	2	3	3	sim = 0,85
User2	4	3	4	3	5	sim = 0,00
User3	3	3	1	5	4	sim = 0,70
User4	1	5	5	2	1	sim = -0,79

Similaridade entre usuários

 A Correlação de Pearson leva em consideração o comportamento de avaliações de cada usuário

Predição de avaliações

Uma função bastante conhecida:

$$pred(u,i) = \overline{r}_u + \frac{\sum_{v \in U_u} sim(u,v)(r_{vi} - \overline{r}_v)}{\sum_{v \in U_u} sim(u,v)}$$

onde U_u são os k usuários mais próximos de u

• Função acima considera o viés de cada usuário

Exemplo

	ltem1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	?	
User1	3	1	2	3	3	sim = 0,85
User2	4	3	4	3	5	sim = 0,00
User3	3	3	1	5	4	sim = 0,70
User4	1	5	5	2	1	sim = -0,79

 Assim, a predição de Alice para Item5 será (assumindo k = 2):

pred(Alice, Item5)
=
$$4 + 1 / (0.85 + 0.70) * (0.85 * (3 - 2.4) + 0.70 * (5 - 3.8))$$

= 4.87

Alguns cuidados...

- Nem todas avaliações de vizinhos podem ser igualmente importantes
 - Concordância em itens comumente apreciados não é tão informativo quanto a concordância em itens controversos
- Número de itens co-avaliados
 - Em especial para bases muito esparsas, esse número pode ser insuficiente

Alguns cuidados...

- Escolha do número de vizinhos mais próximos (k)
 - Valores muito baixos ou muito altos podem reduzir a acurácia do sistema
- Escalabilidade
 - Normalmente sistemas têm milhares de usuários e milhares de produtos

Usuário assistiu:

Recomendação

- Dado um usuário u e um item i ainda não visto por u:
 - Encontre um conjunto de itens que tenham avaliações parecidas com i e que tenham sido avaliados por u
 - Use (por exemplo) a média de avaliações de u desses itens para predizer o nível de satisfação de u por i
 - Faça isso para todos os itens que u ainda não conhece, e recomende os melhores avaliados

- Abordagens que exploram a similaridade entre itens para calcular predições
- Similaridade é calculada no espaço de itens:

$$sim(i,j) = \frac{\sum_{u \in U_{ij}} (r_{ui} - \overline{r}_{u})(r_{uj} - \overline{r}_{u})}{\sqrt{\sum_{u \in U_{ij}} (r_{ui} - \overline{r}_{u})^{2}} \sqrt{\sum_{u \in U_{ij}} (r_{uj} - \overline{r}_{u})^{2}}}$$

 onde U_{ij} é o conjunto de usuários que avaliaram ambos itens i e j

• Função de predição:

$$pred(u,i) = \frac{\sum_{j \in I_u} sim(i,j) r_{uj}}{\sum_{j \in I_u} sim(i,j)}$$

- onde I_u é o conjunto dos k itens mais similares a i que foram avaliados por u
- Valor de k geralmente é uma constante (cerca de 20 a 50 normalmente)
- Pode-se considerar o viés de cada item na fórmula acima (como?)

Exemplo

sim(Item5,Item4) sim(Item5,Item3) sim(Item5,Item2) sim(Item5,Item1)

k = 2 itens mais
similares a Item5

pred(Alice, Item5)

$$pred(u,i) = \frac{\sum_{j \in I_u} sim(i,j) r_u}{\sum_{j \in I_u} sim(i,j)}$$

	ltem1	Item2	Item3	Item4	Item5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

Pré-processamento para FC

- FC baseada em vizinhança de itens não resolve por si só o problema da escalabilidade
- Por outro lado:
 - Possibilidade de calcular antecipadamente (offline) a similaridade entre todos os pares de itens
 - Similaridade de itens tende a ser mais estável do que a similaridade de usuários
 - Em tempo de execução, vizinhança usada é pequena, já que contém apenas itens que o usuário avaliou

Requisitos de memória

- Na teoria, até N² similaridades precisam ser armazenadas
 - N = número de itens
- Na prática, esse valor é menor (itens sem nenhuma co-avaliação)
- Outras otimizações em memória:
 - Limiar mínimo para co-avaliações
 - Limitar o valor de k (pode afetar a acurácia da recomendação)

Problemas relacionados com esparsidade

Partida-fria

– Como recomendar novos itens? O que recomendar para novos usuários?

Abordagens triviais

- Pedir/forçar que o usuário avalie um conjunto inicial de itens
- Usar outro método de recomendação (baseado em conteúdo, demográfico, não-personalizado, etc.)
- Usar uma avaliação padrão (e.g. média) para aqueles itens que somente um dos dois usuários a serem comparados avaliou

Variações da FC para lidar com esparsidade

- Recursive CF (Zhang & Pu 2007)
 - Selecionar vizinho v mais próximo de u, mesmo que não tenha avaliado o item-alvo i
 - Aplicar a FC recursivamente e predizer uma avaliação de v para i
 - Usar essa avaliação predita ao invés da avaliação de um vizinho mais longe

	Item1	Item2	Item3	Item4	Item5	
Alice	5	3	4	4	? -	. 0.05
User1	3	1	2	3	?	sim = 0.85
User2	4	3	4	3	5	Predict
User3	3	3	1	5	4	rating for
User4	1	5	5	2	1	User1

Variações da FC para lidar com esparsidade

- Spreading activation (Huang et al., 2004)
 - Explora a suposta "transitividade" de gostos de usuários para enriquecer a matriz com informação adicional
 - Assuma que estamos calculando uma recomendação para User1
 - Ao usar a FC tradicional, User2 será selecionado como mais próximo de User1 (ambos consumiram Item2 e Item4)
 - Portanto, Item3 será recomendado para User1, pois User2 também consumiu esse item

Variações da FC para lidar com esparsidade

- Spreading activation (Huang et al., 2004)
 - FC tradicional usa caminhos de comprimento 3, i.e., Item3 é relevante para User1 porque existe o caminho (User1->Item2->User2->Item3)
 - Em bases esparsas, tais caminhos são poucos, então a idéia é considerar caminhos mais longos para computar as recomendações
 - Por exemplo, caminho de comprimento 5
 - Neste caso, Item1 também pode ser recomendado a User1

Regras de Associação

- Comumente usado para análise de comportamento de compra
 - Procura detectar regras como: "se um cliente comprar cerveja então 70% de chance dele também comprar amendoim"
- Algoritmos:
 - Podem detectar regras da forma X → Y (e.g. cerveja → amendoim) de um conjunto de transações de compras D={t₁, t₂, ..., tₙ}
 - Métricas de qualidade: suporte e confiança

Regras de Associação

- Suporte e confiança
 - Métricas usadas como limiar para filtrar regras irrelevantes
 - Seja:

$$\sup orte = \frac{\sigma(X \cup Y)}{|D|}$$

$$confiança = \frac{\sigma(X \cup Y)}{\sigma(X)}$$

$$no. \ transações \ contendo \ X \ e \ Y$$

$$no. \ transações \ contendo \ X \ e \ Y$$

$$no. \ transações \ contendo \ X \ e \ Y$$

onde:

$$\sigma(X) = |\{X \mid X \subseteq t_i, t_i \in D\}|$$

 $D=\{t_1, t_2, ..., t_n\}$ (transações de compras \rightarrow e.g. qtde. de usuários)

Regras de Associação

- Exemplo: Recomendações para Alice
 - Determinar regras "relevantes" com base nas transações de Alice
 - I.e., regras que são disparadas a partir das transações de Alice
 - regra Item1 → Item5 é relevante pois Alice consumiu Item1
 - Determinar itens que n\u00e3o foram consumidos ainda por Alice
 - Ordenar os itens com base nos valores de confiança das regras

Matriz binarizada (1 = acima da média do usuário)

	Item1	Item2	Item3	Item4	Item5
Alice	1	0	?	0	?
User1	1	0	0	0	1
User2	1	0	1	0	1
User3	0	0	0	1	1
User4	0	1	1	0	0

Excluindo Alice, temos:

Regra: Item1 → Item5

suporte = 2/4

confiança = 2/2

Regra: Item1 \rightarrow Item3

suporte = 1/4

confiança = 1/2

Métodos Probabilísticos

- Idéia básica
 - Dada a matriz de interações usuário/item
 - Determinar a probabilidade em que o usuário u irá gostar de um item i
 - Realizar a recomendação com base nessas probabilidades
- Cálculo das probabilidades é feito com base no Teorema de Bayes

Métodos Probabilísticos

- Teorema de Bayes
 - Qual a probabilidade do Item5 ser acessado por Alice?
 - Probabilidade condicional: P(Item5 | X), onde
 - X = histórico de acessos / avaliações de Alice
 - Estimativa:

$$P(Y | X) = \frac{P(X | Y)P(Y)}{P(X)} \qquad P(Y | X) = \frac{\prod_{i=1}^{d} P(X_i | Y)P(Y)}{P(X)}$$

Suposição: acessos / avaliações são independentes
 (?)

Métodos Probabilísticos

P(X | Y):

	ltem1	Item2	Item3	Item4	Item5
Alice	1	3	3	2	Ş
User1	2	4	2	2	4
User2	1	3	3	5	1
User3	4	5	2	3	3
User4	1	1	5	2	1

X = (Item1=1, Item2=3, Item3=3, Item4=2)

$P(X) \rightarrow constante (omitir)$

P(Y):

P(Item5=1) = 2/4 = 0.5

P(Item5=2) = 0/4 = 0

P(item5=3) = 1/4 = 0.25

P(Item5=4) = 1/4 = 0.25

P(item5=5) = 0/4 = 0

x P(Item3=3 | Item5=2) x P(Item4=2 | Item5=2)

= 0/0 x ... x ... x ... = 0

Outros métodos

- Slope One (Lemiere & Maclachlan 2005)
 - Baseado na diferença das avaliações de cada usuário

pred(Alice, Item5) = 2 + (2 - 1) = 3

- Esquema básico: usar a média dessas diferenças das coavaliações para calcular uma predição
- De modo geral, encontrar uma função da forma f(x) = x + b

Outros métodos

- RF-Rec (Gedikli et al. 2011)
 - Predição baseada nas frequências de avaliações de usuários e itens
 - Esquema básico:

$$\hat{r}_{ui} = \arg\max_{r \in R} f_{user}(u,i) \times f_{item}(i,r)$$

- onde
 - R: conjunto de todas as avaliações, i.e. R = {1,2,3,4,5}
 - f_{user}(u,r) e f_{item}(i,r) representam a (frequência + 1) de uma avaliação r ter sido usada pelo usuário u ou atribuída ao item i

Outros métodos

RF-Rec (Gedikli et al. 2011)

	ltem1	Item2	Item3	Item4	Item5
Alice	1	1	?	5	4
User1	2		5	5	5
User2				1	
User3		5	2		2
User4	3			1	
User5	1	2	3		4

Rating 1:
$$(2 + 1) \times (2 + 1) = 9$$

Rating 2:
$$(0 + 1) \times (1 + 1) = 2$$

Rating 3:
$$(0 + 1) \times (1 + 1) = 2$$

Rating 4:
$$(1 + 1) \times (0 + 1) = 2$$

Rating 5:
$$(1 + 1) \times (1 + 1) = 4$$

pred(Alice, Item3) = 1

Referências

- [Adomavicius and Tuzhilin 2005] Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions, IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 6, 734–749
- [Zhang and Pu 2007] A recursive prediction algorithm for collaborative filtering recommender systems, Proceedings of the 2007 ACM Conference on Recommender Systems (RecSys '07) (Minneapolis, MN), ACM, 2007, pp. 57–64
- [Huang et al. 2004] Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering, ACM Transactions on Information Systems 22 (2004), no. 1, 116–142
- [Lemire and Maclachlan 2005] Slope one predictors for online rating-based collaborative filtering, Proceedings of the 5th SIAM International Conference on Data Mining (SDM '05) (Newport Beach, CA), 2005, pp. 471–480
- [Gedikli et al. 2011] RF-Rec: Fast and accurate computation of recommendations based on rating frequencies, Proceedings of the 13th IEEE Conference on Commerce and Enterprise Computing - CEC 2011, Luxembourg, 2011, forthcoming