## CS3810 Homework 5

#### 3.6

Assume 185 and 122 are unsigned 8-bit decimal integers. Calculate 185-122. Is there overflow, underflow, or neither?

```
185 1011 1001
- 122 - 0111 1010
------ 063 0011 1111
```

Answer: 063(ten) 0011 1111(binary). With underflow.

## 3.17

As Discussed in the text, one possible performance enhancement is to do a shift and add instead of an actual multiplication. Since 9 X 6, for example, can be written  $(2 \times 2 \times 2 + 1) \times 6$ , we can calculate 9 x 6 by shifting 6 to the left 3 times and then adding 6 to that result. Show the best way tocalculate 0 x 33 x 0 x 55 using shifts and adds/subtracts. Assume both inputs are 8-bit unsigned integers

```
0x33 = 51(ten) 0x55 = 85(ten)
```

51x85 can be written (2x2x2x2x2x2+21)x51

5164 = 1100 1100 0000 (by shifting 51 to the left 6 times) 5121 = 0100 0010 1111

**Answer:** 1 0000 1110 1111(binary), 4335(ten)

### 3.23

Write down the binary representation of the decimal number 63.25 assuming the IEEE 754 single precision format.

 $63.25 = 253 \times 2 - 2 = 1.11111101 \times 25$ 

0 10000100 111110100000000000000000

### 3.24

Write down the binary representation of the decimal number 63.25 assuming the IEEE 754 double precision format

## **B.1**

In addition to the basic laws we discussed in this section, there are two important theorems, called DeMorgan's theorems:

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
 and  $\overline{A \cdot B} = \overline{A} + \overline{B}$ 

Prove DeMorgan's theorems with a truth table of the form

| A | В | $\overline{A}$ | $\overline{B}$ | $\overline{A+B}$ | $\overline{A}\cdot \overline{B}$ | $\overline{A \cdot B}$ | $\overline{A} + \overline{B}$ |
|---|---|----------------|----------------|------------------|----------------------------------|------------------------|-------------------------------|
| 0 | 0 | 1              | 1              | 1                | 1                                | 1                      | 1                             |
| 0 | 1 | 1              | 0              | 0                | 0                                | 1                      | 1                             |
| 1 | 0 | 0              | 1              | 0                | 0                                | 1                      | 1                             |
| 1 | 1 | 0              | 0              | 0                | 0                                | 0                      | 0                             |

**Answer:** The columns  $\overline{A+B}$  and  $\overline{A}\cdot \overline{B}$ . So are the columns  $\overline{A\cdot B}$  and  $\overline{A}+\overline{B}$ 

| A | В | $\overline{A+B}$ | $\overline{A}\cdot \overline{B}$ | $\overline{A \cdot B}$ | $\overline{A} + \overline{B}$ |
|---|---|------------------|----------------------------------|------------------------|-------------------------------|
| 0 | 0 | 1                | 1                                | 1                      | 1                             |
| 0 | 1 | 1                | 0                                | 0                      | 0                             |
| 1 | 0 | 0                | 1                                | 0                      | 0                             |
| 1 | 1 | 0                | 0                                | 0                      | 0                             |

# **B.5**

Prove that the NOR gate is universal by showing how to build the AND, OR, and NOT functions using a two-input NOT gate

#### Answer:

## AND



## OR



## NOT



# **B.15**

Derive the product-of-sums representation for E shown on page B-11 starting with the sum-of-products representation. You will need to use DeMorgan's theorems.

#### Answer:

Derive 
$$E = ((A' + B' + C) * (A' + C' + B) * (B' + C' + A))'$$

Sum of Products

$$\mathsf{E} = (\mathsf{ABC'}) + (\mathsf{ACB'}) + (\mathsf{BCA'})$$

$$E' = ((ABC') + (ACB') + (BCA'))'$$

$$E' = ((ABC')'(ACB')'(BCA')'$$

$$E' = (A'+B'+C)(A'+C'+B)(B'+C'+A)$$

Product of Sums = E = ((A'+B'+C)(A'+C'+B)(B'+C'+A))'

## **B.17**

Show a truth table for a multiplexer (inputs A, B, and S; output C), using don't cares to simplify the table where possible

#### Answer:

| A | В | S | С |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |