Functions

We'll use some notation that isn't in our book. This notation is standard and it allows us to express facts with fewer words. For additional standard notation, see https://en.wikipedia.org/wiki/ISO_31-11.

Notation	Meaning
dom(F)	The <i>domain</i> of a function F ; thus $dom(F)$ is the set of all <i>inputs</i> to
	the function F .
range(F)	The <i>range</i> of a function F is the set range(F); thus range(F) is
	the set of all $outputs$ to the function F .
$F: A \rightarrow B$	This means that <i>F</i> is a function whose domain is the set <i>A</i> and whose range is a
	<i>subset</i> of the set <i>B</i> .
$x \in A \mapsto F(x)$	Defines a function whose domain is the set A and whose formula is $F(x)$.
C_A	The set of functions that are continuous on the set <i>A</i> .
C_A^n	The set of functions <i>F</i> such that that are continuous whose first through
	n^{th} derivatives are continuous on the set A .

Examples

- (a) Every real number is a valid input to the natural exponential function exp; thus $dom(exp) = \mathbf{R}$.
- (b) The set of outputs to the natural exponential function $\ln is (0, \infty)$; thus range(exp) = $(0, \infty)$.
- (c) The domain of the sine function is **R** and every output of sine is in **R**; thus sin: $\mathbf{R} \to \mathbf{R}$.
- (d) The domain of the natural logarithm ln is the interval $(0, \infty)$ and every output of ln is a real number; thus $\ln: (0, \infty) \to \mathbf{R}$.
- (e) The domain of the sine function is **R** and every output of sine is in [-1,1]; thus sin : $\mathbf{R} \to [-1,1]$. It's somewhat confusing that both sin : $\mathbf{R} \to \mathbf{R}$ and sin : $\mathbf{R} \to [-1,1]$, but remember that the notation $F:A \to B$ means that $B \subset \operatorname{range}(F)$. Specifically, the notation $F:A \to B$ tells us the domain of F, but it doesn't tell us the range of F or its formula.
- (f) $x \in [-1,1] \mapsto x^2$ defines a function whose domain is the set [-1,1] and whose output is the square of the input. This notation allows us to define a function without giving it a name. It also gives a way to combine defining the domain of the function with its formula.
- (g) Since the sine function is continuous on **R**, we have $\sin \in C_{\mathbf{R}}$.
- (h) Since the sine function is continuous on $[0, 2\pi]$, we have $\sin \in C_{[0, 2\pi]}$.
- (i) $F \in C^2_{[-1,1]}$ is equivalent to $F \in C_{[-1,1]}$ and $F' \in C_{[-1,1]}$.
- (j) The square root function $\sqrt{\ }$ is continuous on $[0,\infty)$, but its derivative is not; thus we have $\sqrt{\ }\in C_{[0,\infty)}$ and $\sqrt{\ }\notin C_{[0,\infty)}^1$.

Theorems

(a) $F, G \in C_{[a,b]} \Longrightarrow F + G \in C_{[a,b]}$.

In words, this says that the sum of functions that are continuous on an interval [a, b] is continuous on the interval [a, b].

(b) $F, G \in C_{[a,b]} \Longrightarrow FG \in C_{[a,b]}$.

In words, this says that the product of functions that are continuous on an interval [a, b] is continuous on the interval [a, b].