HONG KONG BAPTIST UNIVERSITY COURSE OUTLINE

1. COURSE TITLE

Machine Learning

2. COURSE CODE

COMP7250

3. NO. OF UNITS

3 Units

4. OFFERING DEPARTMENT

Master of Science in Data Analytics and Artificial Intelligence

5. PREREQUISITES

Basic knowledge of probability theory and optimization techniques.

6. MEDIUM OF INSTRUCTION

English

7. AIMS & OBJECTIVES

To introduce the basic concepts, theories and techniques of machine learning. To give students practical insights into the current development of the field.

8. COURSE CONTENT

- I. Introduction to Machine Learning
 - The Problem of Learning
 - Applications
 - Current Challenges in Machine Learning

II. Simulation and Evaluation

- Estimation and Simulation
- Probabilities and Sampling
- Monte Carlo Simulations
- Confidence Intervals

III. Artificial Neural Networks and Deep Learning

- Perceptron and Deep Feed-forward Networks
- Regularization for Deep Learning
- Optimization for Training Deep ModelsD
- Advanced Models: ResNet, LSTM, GANs and Transformer

IV. Classification Techniques

- The Bayes Classifier
- Likelihood Methods
- Prototype Methods
- Logistic Regression
- Support Vector Machine

V. Risk Estimation and Model Selection

- Risk Estimation
- Cross-Validation
- Out-of-Bag Risk Estimation
- Model Selection Criteria

VI. Clustering

- Density-based Clustering
- Hierarchical Clustering

VII. High-Dimensional Data Analysis

- Principles of Low-Dimensional Models
- Dimension Reduction Techniques

9. COURSE INTENDED LEARNING OUTCOMES (CILOs)

CILO	By the end of the course, students should be able to:			
CILO 1	Explain the capabilities, strengths and limitations of various machine learning techniques			
CILO 2	Explain various machine learning algorithms and their applications			
CILO 3	Describe learning models and algorithms			
CILO 4	Apply selected machine learning algorithms to solve real-world problems			
CILO 5	Understand complex ideas and relate them to specific situations, the ability to evaluate available learning methods			

10. TEACHING & LEARNING ACTIVITIES (TLAS)

CILO alignment	Type of TLA
	Students will learn the basic concepts and fundamental principles of machine learning, as well as the application examples, in lectures.
3-5	Students will work on assignments to enhance the understanding of

learning principles, and acquire hands-on experience on a mini project.

11. ASSESSMENT METHODS (AMs)

Type of Assessment Methods	Weighting	CILOs to be addressed	Description of Assessment Tasks
Continuous Assessment	40 %	1-5	Assignments and a mini-project will be used to evaluate students' understanding of basic concepts and to assess their ability to apply learning theory to solve real-world problems
Examination	60 %	1-5	Examination will be used to assess students' overall understanding of various machine learning algorithms, their applications, as well as their capabilities, strengths and limitations.

Last Update: 2022-07-06 Published Date: 2022-07-11

*** END ***