Gradient-based numerical optimization methods

Comparison and implementation to real data-science and economic problems

Classify optimization problems

Aims of the research

Find pros and cons of the chosen algorithm

Realize 4 methods of the chosen class

Apply methods to linear regression problem and analyze the speed of algorithms

Optimization

Continuous programming Discrete programming **Multi-dimensional** One-dimensional Local Global Optimization with limitations **Unconstrained** Constrained optimization of the 1st & 2nd kind

optimization

Gradient descent allocation

Set a function

$$f(x,y) = (x-5)^2 + (y-17)^2$$

- Choose staring point (x_0, y_0) ; number of iterations (N); step length λ
- Find gradient vector $\nabla f(x,y)$
 - Update the starting point $(x_1, y_1) = (x_0, y_0) \lambda \nabla f(x_0, y_0)$

Repeat until $\|\nabla(x_0, y_0)\| < \varepsilon$

Problem 1

Correct choice of the step length

Correct choice of the number of iterations

Correct choice of the starting point

Problem 2

- Assume there is a function
- Starting point is A
- The nearest optimum to A is C
- Global optimum is B

Gradient descent fails while searching for global optimum

Two-point step size method

Repeat until
$$||(x_0, y_0)|| < \varepsilon$$

Stochastic gradient descent

Repeat until $||(x_0, y_0)|| < \varepsilon$

Heavy-ball method

Nesterov accelerated gradient

Linear regression

Repeat until $MSE \leq \varepsilon$:

Which algorithm is the fastest?

Conclusion

• Gradient descent is a simple, fast, strong algorithm

GD cannot be used for global optimization

There are various methods based on GD

The fastest gradient-based algorithm is two-point step size method

Thank you for your attention!