Aprendizado Estatístico

Introdução

- Atividade humana é baseada em previsões
- · Tomadas de decisão sob incerteza
- · Raciocínio com incerteza:
 - Quantificação da incerteza
 - Método de combinação dos valores da incerteza
- Sistemas que agem racionalmente 2 abordagens:
 - Raciocínio Lógico
 - Conhecimento prévio
 - Raciocínio Probabilístico
 - Incerteza

Motivação

• Estatística pode ser pensada como a ciência de aprendizagem a partir de dados.

 A Estatística é a ciência que nos guia na tomada de decisões em situação de incerteza

Lidar com problemas que tratam com incertezas.

Motivação

Calyampudi R. Rao, um estatístico indiano famoso apresenta a seguinte equação: CONHECIMENTO INCERTO

CONHECIMENTO DA QUANTIDADE DE INCERTEZA

CONHECIMENTO ÚTIL

Teoria da Probabilidade

- Oferece uma maneira quantitativa de codificar incertezas
- Probabilidades podem ser obtidas através dos dados
- Permite incorporar novas evidências facilmente

Teoria da Probabilidade

Teoria da Probabilidade

- Probabilidade a priori P(a)
 - Probabilidade da proposição P na ausência de quaisquer outras informações.
 - Grau de crença para as diferentes hipóteses antes dos dados serem observados.
- Probabilidade a posteriori (condicional) P(a|b)
 - Probabilidade da proposição P, dado tudo que sabemos é Q.
 - Distribuição de incertezas sobre as hipóteses à luz dos dados observados.
 - · Quando 'b', qual probabilidade de 'a'

Teorema de Bayes

• Equação do Teorema de Bayes P(A|B) = P(B|A)P(A) / P(B)

 Inferir a probabilidade a <u>posteriori</u> de um evento baseado na evidência e em um conhecimento a <u>priori</u> de outros eventos.

Teorema de Bayes

P(A|B) = P(B|A)P(A) / P(B)

A: Representa a hipótese inferida antes da ocorrência da evidência B.

P(A): Probabilidade a priori de ocorrer A.

P(B|A): Probabilidade de ocorrer a evidência **B** dado que a hipótese **A** é verdadeira.

P(B): Probabilidade marginal de ocorrer B. É também interpretada como a probabilidade de ocorrência de B sob todas as hipóteses mutuamente exclusivas: $P(B) = \sum P(B|A_i)P(A_i)$.

P(A|B): Probabilidade a *posteriori* de A dado que ocorreu B.

Teorema de Bayes

 O teorema de Bayes mede o quanto a nova evidência B altera a crença na hipótese a priori A.

 O termo P(B|A) / P(B) representa o impacto da evidência B na hipótese A.

Exemplo - prontuário médico

Dia	Turno	Motivo	Hospital	Atendimento
Seg	Manhã	Trauma	HR	OK
Ter	Tarde	Doença	HR	Atraso
Sex	Tarde	Trauma	HR	OK
Seg	Manhã	Doença	OC	Falta
Qua	Tarde	Trauma	OC	Atraso
	•	•	•	