B-7-9

The system with proportional control only:

$$G(s) = \frac{K}{s^2(T_1s+1)} \qquad T_1 > 0$$

This gives the following Bode and Nyquist Plots:

Using the Nyquist stability criterion we have: P = 0, $N = 2 \implies Z = 2$

$$P=0, N=2 \Rightarrow Z=2$$

This implies that the closed loop is unstable for all K > 0 since it will have 2 unstable poles (Z=2).

Now add derivative control, i.e $K(sT_2+1)$ and place the zero at a lower frequency than the pole, i.e:

$$G(s) = \frac{K(sT_2+1)}{s^2(sT_1+1)}$$
 $T_2 > T_1 > 0$

This gives the following Phase plot for the Bode Diagram

which implies the following Nyquist plot:

Using the Nyquist stability criterion we have: P = 0, $N = 0 \implies Z = 0$ This implies that the closed loop is stable for all K > 0 since Z = 0.

B-7-16

- 1. In Fig. 7-158(a) we have P = 0, N = 0 = Z = 0, closed-loop system is stable.
- 2. In Fig. 7-158(b) we have P = 0, $N = 2 \implies Z = 2$, closed-loop system is not stable and has two unstable poles with positive real parts

B-7-23

The phase of $G(j\omega)$ is given by:

$$G(s) = \frac{as+1}{s^2} \Rightarrow \langle G(j\omega) = \tan^{-1}(a\omega) - 180^\circ$$

and for ω_0 , the Gain Cross-Over Frequency we have:

$$|G(j\omega_0)| = \frac{\sqrt{a^2\omega_0^2 + 1}}{\omega_0^2} = 1 \implies a^2\omega_0^2 + 1 = \omega_0^4$$

For ω_0 the phase of $G(j\omega_0)$ should be -135° to give a phase margin of 45°

$$< G(j\omega_0) = \tan^{-1}(a\omega_0) - 180^\circ = -135 \rightarrow \tan^{-1}(a\omega_0) = 45^\circ$$

and $a\omega_0 = 1$

From
$$a\omega_0 = 1$$
 and $a^2\omega_0^2 + 1 = \omega_0^4 \implies a = \left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}} = 0.841$

B-7-26

$$G(s) = \frac{K}{s(s^2 + s + 4)}$$

For ω_0 , the Gain Cross-Over Frequency, the phase of $G(j\omega_0)$ should be -130° to give a phase margin of 50°

$$< G(j\omega_0) = -< j\omega_0 -< (1 - 0.25\omega_0^2 + j0.25\omega_0) = -130^\circ$$

and

$$-90^{\circ} - tan^{-1} \left(\frac{0.25\omega_0}{1 - 0.25\omega_0^2} \right) = -130^{\circ}$$

and this gives: $\omega_0 = 1.491 \frac{rad}{sec}$.

This is supposed to be the Gain Cross-Over Frequency, and this implies that

 $|G(j\omega_0)/=1$, which then implies for K:

$$|G(j\omega_0)| = \frac{K}{j\omega_0(-\omega_0^2 + j\omega_0 + 4)} \Big|_{\omega_0 = 1.491} = 0.289K = 1$$

and $K = \frac{1}{0.289} = 3.46$

The Phase Cross-Over Frequency ω_1 is obtained form $\langle G(j\omega_1) = -180^{\circ}$ and is

$$\omega_1 = 2 \frac{rad}{sec}$$

The gain margin is given by $-20 \log |G(j\omega_1)| = -20 \log |G(j2)| = 1.26 dB$