

#### 线性代数 (Linear Algebra)

## 第五章 Eigenvalues and Eigenvectors

# § 5.4 Eigenvectors and Linear Transformations 特征向量和线性变换

衡 益

2021 年 12 月 16 日, 中山大学南校区

#### 学习目标

在本节,我们将矩阵分解

 $A = PDP^{-1}$ 

理解为线性变换。我们还将看到变换 $x \mapsto Ax$  实质上是简单的映射  $u \mapsto Du$  . 即使D不是对角矩阵,对矩阵A 和D 仍有相似的解释。

之前的内容中曾讲到,任意一个从 $\mathbb{R}^n$  到 $\mathbb{R}^n$  的线性变换 T 可通过左乘矩阵A来实现,矩阵A 称为 T 的 标准矩阵 现在,我们对两个有限维向量空间之间的线性变换也作同样的描述。

要点一:线性变换的矩阵表示

要点二:从线性变换的角度来看 $A = PDP^{-1}$ ,意义?



# 线性变换矩阵

3

# Review



#### 定理(唯一表示定理)

令B={ $\mathbf{b}_1$ , …,  $\mathbf{b}_n$ }是向量空间 V 的一个基,则对 V 中每个向量 $\mathbf{x}$ ,存在唯一的一组数 $\mathbf{c}_1$ ,…, $\mathbf{c}_n$ ,使得:  $\mathbf{x} = \mathbf{c}_1 \mathbf{b}_1 + \cdots + \mathbf{c}_n \mathbf{b}_n$ 



 $\mathbb{R}^{n}$ 

### Review

定义

假设集合 $\mathbf{B} = \{ \mathbf{b_1}, \cdots, \mathbf{b_n} \}$ 是 $\mathbf{l}$ 的一个基, $\mathbf{x}$ 在 $\mathbf{l}$ 中, $\mathbf{x}$ 相对于基 $\mathbf{B}$ 的坐标(或 $\mathbf{x}$ 的 $\mathbf{B}$ -坐标)是使得 $\mathbf{x} = c_1 \mathbf{b_1} + \cdots + c_n \mathbf{b_n}$ 的权 $c_1, \cdots, c_n$ .若 $c_1, \cdots, c_n$ 是 $\mathbf{x}$ 的 $\mathbf{B}$ -坐标,则 $\mathbf{R}$ <sup>n</sup>中的向量

映射 $x \rightarrow [x]_B$  称为(由B确定的) 坐标映射.

5

# Review



# Rn中的坐标



## Review

• Example : Let  $b_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, b_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, x = \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \mathcal{B} = \{b_1, b_2\}$ 

Find the coordinate vector  $[\mathbf{x}]_{\beta}$  of  $\mathbf{x}$  relative to  $\boldsymbol{\beta}$ 

• Solution: The  $\beta$ -coordinate  $c_1$ ,  $c_2$  of x satisfy

$$c_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$b_1 \qquad b_2 \qquad x$$

 $\begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$   $\begin{array}{ccc} \boldsymbol{b}_1 & \boldsymbol{b}_2 & x \end{array}$ 

So 
$$c_1 = 3, c_2 = 2$$

$$\boldsymbol{x} = 3\boldsymbol{b}_1 + 2\boldsymbol{b}_2$$





# Review



For a basis  $\beta = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ , let

$$P_{\beta} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$
 and  $[\mathbf{x}]_{\beta} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$ 

Then

$$\mathbf{x} = P_{\beta}[\mathbf{x}]_{\beta}.$$

We call  $P_{\beta}$  the **change-of-coordinates matrix** from  $\beta$  to the standard basis in  $\mathbf{R}^n$ . Then

回到标 准坐标

$$[\mathbf{X}]_{eta} = P_{eta}^{-1} \mathbf{X}$$

and therefore  $P_{\beta}^{-1}$  is a **change-of-coordinates matrix** from the standard basis in  $\mathbf{R}^n$  to the basis  $\beta$ .

### 线性变换矩阵





**FIGURE 1** A linear transformation from V to W.

**V**: *n* 维向量空间 **W**: *m* 维向量空间

T: 从V到W的线性变换

ć

#### 线性变换矩阵





**FIGURE 1** A linear transformation from V to W.

B: V空间的一组基

C:W空间的一组基

 $[\mathbf{x}]_{\mathrm{B}}: \mathbf{x} \in V$ 在 $\mathbb{R}^n$ 中的坐标向量

 $[T(\mathbf{x})]_{c}$ :  $\mathbf{x}$ 的像  $T(\mathbf{x})$ 在 $\mathbb{R}^{m}$ 中的坐标向量









# $[x]_{B} \stackrel{\textstyle \star \ }{\underset{}{\underset{}{\stackrel{}{\stackrel{}}{\stackrel{}}}{\underset{}{\stackrel{}}}}{\underset{}{\stackrel{}}{\underset{}}}} [T(x)]_{C}?$



其中

FIGURE 2

$$\mathbf{M} = \begin{bmatrix} \begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathbf{c}} & \begin{bmatrix} T(\mathbf{b}_2) \end{bmatrix}_{\mathbf{c}} & \cdots & \begin{bmatrix} T(\mathbf{b}_n) \end{bmatrix}_{\mathbf{c}} \end{bmatrix}$$

矩阵 $\mathbf{M}$ 是T 的矩阵表示,称为T 相对于基 $\mathbf{B}$  和 $\mathbf{C}$  的矩阵,见图2. 等式 $\left[T(\mathbf{x})\right]_{\mathbf{C}} = \mathbf{M}\left[\mathbf{x}\right]_{\mathbf{B}}$  表明,就坐标向量而言,T 对 $\mathbf{x}$  的作用相当于用矩阵 $\mathbf{M}$  左乘 $\mathbf{x}$ .

13

### 线性变换矩阵



例1

设B =  $\{b_1, b_2\}$  是V的一组基,C =  $\{c_1, c_2, c_3\}$  是W 的一组基。设 $T: V \rightarrow W$ 是线性变换,满足:

$$T(\mathbf{b}_{_1}) = 3\mathbf{c}_{_1} - 2\mathbf{c}_{_2} + 5\mathbf{c}_{_3} \qquad T(\mathbf{b}_{_2}) = 4\mathbf{c}_{_1} + 7\mathbf{c}_{_2} - \mathbf{c}_{_3}$$
 写出 $T$  相对于B和C的矩阵 $M$  .

解

 $b_1$ 和 $b_2$ 像的C坐标向量为:

$$\begin{bmatrix} T(\mathbf{b_1}) \end{bmatrix}_{\mathbf{c}} = \begin{bmatrix} 3 \\ -2 \\ 5 \end{bmatrix}, \qquad \begin{bmatrix} T(\mathbf{b_2}) \end{bmatrix}_{\mathbf{c}} = \begin{bmatrix} 4 \\ 7 \\ -1 \end{bmatrix}$$

因此

$$\mathbf{M} = \begin{bmatrix} 3 & 4 \\ -2 & 7 \\ 5 & -1 \end{bmatrix}$$



# V→V的线性变换

15

# V→V的线性变换





若取W = V,C = B时,那么矩阵M 称作:线性变换T 相对于B的矩阵,记作 $[T]_B$ ,或简称为T 的 $B - 矩阵。<math>V \mapsto V$  的线性变换T 的B - 矩阵对于所有<math>V 中的X,有

$$\left[T(\mathbf{x})\right]_{\mathbf{B}} = \left[T\right]_{\mathbf{B}} \left[\mathbf{x}\right]_{\mathbf{B}}.$$

# ST CONTENTS

#### 举例

#### 例2

映射T:  $P_2 \rightarrow P_2$ 定义为:

$$T(a_0 + a_1 t + a_2 t^2) = a_1 + 2a_2 t$$

映射7是线性变换。

(1)写出 T在**B**下的矩阵, **B** =  $\{1, t, t^2\}$ .

(2)验证,对于每个
$$\mathbf{p} \in \mathbf{P_2}$$
 ,  $\left[ T(\mathbf{p}) \right]_{\mathbf{B}} = \left[ T \right]_{\mathbf{B}} \left[ \mathbf{p} \right]_{\mathbf{B}}$  .

#### 解

(1) 计算基向量的像:

$$T(1) = 0$$

零多项式

$$T(t) = 1$$

始终为1的多项式

$$T(t^2) = 2t$$

17

#### 举例



#### 例2

映射 $T: P_2 \rightarrow P_2$ 定义为:

$$T(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t$$

映射7是线性变换。

(1)写出 T在**B**下的矩阵, **B** =  $\{1, t, t^2\}$ .

(2)验证,对于每个
$$\mathbf{p} \in \mathbf{P_2}$$
 ,  $\left[ T(\mathbf{p}) \right]_{\mathbf{B}} = \left[ T \right]_{\mathbf{B}} \left[ \mathbf{p} \right]_{\mathbf{B}}$  .

#### 解

写出T(1),T(t)和 $T(t^2)$ 的**B**坐标向量,并将他们放在一起作为T的**B**矩阵:

$$\begin{bmatrix} T(1) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} T(t) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad \begin{bmatrix} T(t^2) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} T \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

#### 举例



例2

映射 $T: P_2 \rightarrow P_2$ 定义为:

$$T(a_0 + a_1 t + a_2 t^2) = a_1 + 2a_2 t$$

映射 7是线性变换。

(1)写出 7在**B**下的矩阵,**B** =  $\{1, t, t^2\}$ .

(2)验证,对于每个
$$\mathbf{p} \in \mathbf{P_2}$$
 ,  $\left[ T(\mathbf{p}) \right]_{\mathbf{B}} = \left[ T \right]_{\mathbf{B}} \left[ \mathbf{p} \right]_{\mathbf{B}}$  .

解

(2) 对于一般的 $\mathbf{p}(t) = a_0 + a_1 t + a_2 t^2$ 

$$\begin{bmatrix} T(\mathbf{p}) \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} a_1 + 2a_2t \end{bmatrix}_{\mathbf{B}} = \begin{bmatrix} a_1 \\ 2a_2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix}_{\mathbf{B}} \begin{bmatrix} \mathbf{p} \end{bmatrix}_{\mathbf{B}}$$

19

### 注解



例2

映射 $T: P_2 \rightarrow P_2$ 定义为:

$$T(a_0 + a_1 t + a_2 t^2) = a_1 + 2a_2 t$$

映射 7是线性变换。

(1)写出T在**B**下的矩阵,**B** =  $\{1, t, t^2\}$ .

(2)验证,对于每个 $\mathbf{p} \in \mathbf{P_2}$  ,  $\left[ T(\mathbf{p}) \right]_{\mathbf{B}} = \left[ T \right]_{\mathbf{B}} \left[ \mathbf{p} \right]_{\mathbf{B}}$  .





# $R^n$ 上的线性变换

21

### Rn上的线性变换



在涉及ℝ"的应用问题中,线性变换首先表现为一个 矩阵变换

#### $x \mapsto Ax$

假设A是可对角化的,那么存在由A 的特征向量组成的 $\mathbb{R}^{T}$ 的基。此时,下面的定理表明T的B - 矩阵是对角矩阵。这样,把A对角化相当于找到变换 $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ 的对角矩阵。

### Rn上的线性变换



#### 定理 对角矩阵的表示

设**A** = PDP<sup>-1</sup>, 其中D是n 阶对角矩阵。若**B** 是 $\mathbb{R}^n$  的 一组基,且B是由P 中的列向量组成的,那么D 是线性变 换 $x \rightarrow Ax$ 的B-矩阵。

#### 证明

设矩阵P 的列向量为 $b_1, \dots, b_n$ ,那么B =  $\{b_1, \dots, b_n\}$ , 且 $P = [b_1, \dots, b_n]$ . 那么P是坐标变换矩阵 $P_B$  ,其中  $P \left[ x \right]_{R} = x$   $A = P^{-1}x$ 

23

### Rn上的线性变换



### 定理 对角矩阵的表示

设 $A = PDP^{-1}$ , 其中D是n 阶对角矩阵。若B 是 $\mathbb{R}^n$  的 一组基,且B是由P 中的列向量组成的,那么D 是线性变 换 $x \to Ax$ 的B-矩阵。

### Rn上的线性变换



**例3** 设  $T: \mathbb{R}^2 \to \mathbb{R}^2$ ,  $T(\mathbf{x}) = A\mathbf{x}$ , 其中 $\mathbf{A} = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$ . 找出 $\mathbb{R}^2$  的一组基 $\mathbf{B}$ , 使得T 的 $\mathbf{B}$ 一矩阵是对角阵。

解 A = PDP<sup>-1</sup>, 其中

$$\mathbf{P} = \begin{bmatrix} 1 & 1 \\ -1 & -2 \end{bmatrix}, \qquad \mathbf{D} = \begin{bmatrix} 5 & 0 \\ 0 & 3 \end{bmatrix}$$

P的列向量 $\mathbf{b_1}$ , $\mathbf{b_2}$ 是A 的特征向量。由定理 可知D 是  $\mathit{T}$ 在B =  $\left\{\mathbf{b_1}$ , $\mathbf{b_2}\right\}$ 下的矩阵。

映射 $x \mapsto Ax$  和 $u \mapsto Du$  描述了不同基下相同的线性变换。

25



# 矩阵表示的相似性

# STATE OF THE PARTY OF THE PARTY

### 矩阵表示的相似性



若A相似于C,即

$$A = PCP^{-1}$$

那么当B 是由P 的列向量构成时,C 是线性变换  $x \mapsto Ax$ 的B-矩阵。

27



#### 矩阵表示的相似性



相反, 若 $T: \mathbb{R}^n \mapsto \mathbb{R}^n$  由

$$T(\mathbf{x}) = \mathbf{A}\mathbf{x}$$

定义,并且若B是ℝ"的任意一组基,那么T的B - 矩阵与A相似。 其实,在(\*)的计算中已经证明,若P是以B的向量作为列构成的矩阵,那么 $[T]_B = P^{-1}AP$ .因此,所有相似于A的矩阵的集合与变换 $x \mapsto Ax$ 的所有矩阵表示的集合是同一集合。

∠8





例4

设 $\mathbf{A} = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix}$ ,  $\mathbf{b_1} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ ,  $\mathbf{b_2} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ . A的特征多项式是 $(\lambda + 2)^2$ , 但特征值-2所对应的特征空间的维数为1,因此 $\mathbf{A}$  不可对角化。

举例

令 $\mathbf{B} = \{\mathbf{b_1}, \mathbf{b_2}\}$  为一组基,线性变换 $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$  的 $\mathbf{B}$  - 矩阵是三角矩阵,称作若尔当矩阵,写出此 $\mathbf{B}$  - 矩阵。

解

若 $P = \begin{bmatrix} b_1 & b_2 \end{bmatrix}$ ,那么线性变换的B -矩阵是 $P^{-1}AP$ ,计算可得

$$\mathbf{AP} = \begin{bmatrix} 4 & -9 \\ 4 & -8 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix}$$
$$\mathbf{P}^{-1}\mathbf{AP} = \begin{bmatrix} -1 & 2 \\ 2 & -3 \end{bmatrix} \begin{bmatrix} -6 & -1 \\ -4 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ 0 & -2 \end{bmatrix}$$

注意到A的特征值为对角线上的元素。

29

## Remark



### 数值计算注解

计算B - 矩阵 $P^{-1}AP$  的一个有效的方法是,先计算AP ,然后利用行变换将增广矩阵 $[P\ AP]$  化为 $[I\ P^{-1}AP]$  . 这样就不需要单独计算 $P^{-1}$  了!



