Week 4: STRIPS and Heuristic

COMP90054 – Al Planning for Autonomy

Thao Le

-1

Key concepts

- STRIPS problem
- Heuristic functions

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible coordinates (walls) W

a state = <current coordinate, a set of remaining coordinates>

Initial state
$$s_0 = <(0,0), G' \setminus \{(0,0)\}>$$

Goal state
$$S_G = \{ \langle (x, y), \{ \} \rangle \mid x, y \in \{0, ..., m-1 \} \}$$

State
$$S = \{ \langle (x, y), V' \rangle | x, y \in \{0, ..., m-1\} \land V' \subseteq G' \}$$

Action A(
$$<(x,y), V'>$$
) = $\{(dx,dy) \mid dx,dy \in \{-1,0,1\}$
 $\land |dx| + |dy| = 1$
 $\land x + dx, y + dy \in \{0,..., m-1\}$
 $\land (x + dx, y + dy) \notin W\}$

Transition
$$f(<(x,y), V'>, (dx,dy)) = <(x+dx,y+dy), V'\setminus\{(x+dx,y+dy)\}>$$

$$\mathsf{Cost}\;\mathsf{c}(a)=\mathbf{1}$$

State-space model

$$P = \langle S, S_0, S_G, A, T, c \rangle$$

 $S = State space$
 $S_0 = initial state$

$$S_0 = \text{minimization}$$

$$c = costs$$

$$P = \langle S, S_0, S_G, A, T, c \rangle$$

 $S = State space$
 $S_0 = initial state$
 $S_G = goal states$
 $A = actions$
 $T = transition functions$
 $C = costs$

Consider a m x m manhattan grid, and a set of coordinates G' to visit in any order, and a set of inaccessible

coordinates (walls) W

$$I = \{at(0,0), visited(0,0)\}$$

$$\begin{array}{c|c} 2 & & \\ \hline & &$$

$$G = \{visited(x,y)|x,y \in G'\} \leftarrow$$

$$F = \{at(x,y), visited(x,y)|x, y \in \{0, ..., m-1\}\} \rightarrow pred$$

- A **problem** in **STRIPS** is a tuple $P = \langle F, O, I, G \rangle$:
 - F stands for set of all atoms (boolean vars)
- O stands for set of all operators (actions)
 - $I \subseteq F$ stands for initial situation \longleftarrow
 - $G \subseteq F$ stands for goal situation
- Operators $o \in O$ represented by

 - the Delete list $Del(o) \subseteq F$ False
 - the Precondition list $Pre(o) \subseteq F$

- Prec: at(x,y) Add: at(x', y'), visited(x',y')
- Del: at(x, y) | for each adjacent (x,y), (x',y'), and $(x',y') \notin W \mathcal{V}$

move ((0,1), (1,1)): +pre: at (0,1)

tadd: at (1, 1), visited (1,1)

+ del. at (0,1)

Tip: If h1 dominates h2 then A* with h1 will expand less or equal node to h2

1. Zero heuristic h = 0

Admissible: Yes Consistent: Yes

Time to calculate h: None

parent child $h(s) - h(s') \leq c(s, s')$ $0 - 0 \leq 1$

? admissible

- ? consistent

2. Goal-counting heuristic

Admissible: Yes Consistent: Yes

Time to calculate h: Easy

$$k(s_1) = 2$$

 $k(s_2) = 1$

$$f_{s}(s_{s}) = 1$$

3. Manhattan Distance to Closest Goal heuristic

Admissible: Yes Consistent: Yes

Time to calculate h: Easy

$$h(s_1) = min (d(s_1, 41), d(s_1, 42))$$

$$= min (3, 5) = 3$$

$$c(s, s') = 1$$

Thanla

4. Manhattan Distance to Furthest Goal heuristic

Admissible: Yes Consistent: Yes

Time to calculate h: Easy

$$h(s_1) = \max(d(s_1,G_1), d(s_1,G_2))$$
 $= \max(3)$

5. Sum of Manhattan distances of all goals

Admissible: No Consistent: No

Time to calculate h: Easy

$$h(s_1) = d(s_1, G_1) + d(s_1, G_2) = 7 + 3 = 10$$

 $h^*(s_1) = d(s_1, G_2) + d(G_1, G_2) = 3 + 6 = 9$
 $h(s_1) > h^*(s_1) = not admissible$

5. Sum of Manhattan distances of all goals

Admissible: No Consistent: No

Time to calculate h: Easy

$$h(s_3) = d(s_3, G1) + d(s_3, G2) = 1 + 5 = 6$$

 $h(s_2) - h(s_3) = 8 - 6 = 2$

=) not consistent. That

Dominate relation

- 1. Zero heuristic: Admissible, Consistent
- 2. Goal-counting heuristic: Admissible, Consistent
- 3. Manhattan Distance to Closest Goal heuristic: Admissible, Consistent
- 4. Manhattan Distance to Furthest Goal heuristic: Admissible, Consistent
- 5. Sum of manhattan distances of all goals: Not admissible, Not consistent

6. Minimum spanning tree

Admissible: Yes Consistent: No

Time to calculate h: Medium

Minimum spanning tree: Only select a subset of edges to connect all vertices and the total cost is minimum

Cost = 7

6. Minimum spanning tree

Admissible: Yes Consistent: No

Time to calculate h: Medium

Minimum spanning tree: Only select a subset of edges to connect all vertices and the total cost is minimum

$$h(s_2) = \frac{2}{3}$$

$$h(s_2) = 2+6=8$$

