Printpromorbata-j	IERMIN	2013-11-124
\neg	reilt uneigentlich in	kprierbor
- A R-inthor a	ouf jedem Inlovable [d. 10 02x2Deb ist und	BJ mit
	e (o,b) die uneigentl Inhposle sef, sef	
Virsela Sof = S	It of [Wos von ob nicht o	e Vohlvon c bhirgh]
Skill:	· 6	

A = R2 heint konver, folls mit je 2 Phlen ouch die Verbindungspersele in Aliegt.

M(b) Si St (0,6) oBJA lob Tox	P 43
# 7 €>0 +x=U{(E): f(S) ≥ f(X)	
$ \frac{\int d^{1}Hb}{x^{2}} = \int (x) = \lim_{x \to 3} \frac{\int dx - \int (x)}{x^{2}} = \int (x) = \lim_{x \to 3} \frac{\int dx - \int (x)}{x^{2}} = \int (x) = \lim_{x \to 3} \frac{\int dx}{x^{2}} = \int (x) = \int dx}{x^{2}} = \int (x) = \int dx$	(*)
30 \le 0	
$\Rightarrow f(z) = 0$	_
$ \sim$ \sim \sim \sim \sim \sim \sim \sim \sim \sim	

Folls f: I -> IR diff ho- und I nicht offen ist,

so mas & ob inner Plet vorous pescht weden.

Am Road mus die Aussope nombich wicht shimme

73: fex = x out [0,1] hot in 5=1 en Pox ober

1/1)=1

Im Besa's peht dos Argument in (x) schief, de fir s ein Rondight nur aire saite de ly übehoupt existient?

(c) Sain P. 4: [0.6] -> 12 stehip, 420. Down pilot es

air Se [orb] sodous

Se f(4) 4(4) dd = f(5) 5 4(4) dd.

Bouri & sluby, [0.6] lep =) of boscharlt out [0,6]

=> Jm, n: m = f(x) = M fx & lo, b]

Also for
$$x>0$$
: $(fx)' = \frac{1}{2Ix}$

$$\frac{5=0}{h} : f(5+h) - f(5) = \frac{h}{h} = \frac{1}{h} \rightarrow \infty (h \rightarrow 0)$$
Also fx with differ $fx = x=0$.

Also Ix nicht diffhor for x=0.

•
$$f \text{ Lip}: (=) f(: |f(x)-f(y)| = C|x-y| |f(x,y)|$$

ong $f(x) \text{ Lip} = |f(x)-f(y)| = C|x-y| |f(x,y)|$

Sche $f(x) = |f(x)-f(y)| = C|x-y| |f(x,y)| |f(x,y)|$

Sche $f(x) = |f(x)-f(y)| = C|x-y| |f(x,y)| |f(x,y)|$

Sche $f(x) = |f(x)-f(y)| = C|x-y| |f(x,y)| |f(x,y)| |f(x,y)|$

Sche $f(x) = |f(x)-f(y)| = C|x-y| |f(x,y)| |f(x,y$

(3) (a) Die Aussige bedeutet, dois der Interement (Funchme) von fbis definiet ob 4(h)=f(sth1-f(s) bis out line - Fehler rich) proportional tu b ist.

Anders ow pedriched ist dos Interement his out der Fehle darch die lineare Flak gepeben.

Geometrisch bedecht die Aussope, doss die Torgente on fin Pled 5 , p(x) = f(z) + f(z)(x-z) note & olic Flet of put opproximiet. 4(h) 5 - - - - Shifis " Lant " bedentet, doss " nicht nor rch) -> 0 (ho) - denn des ist for j'cile Gerose durch (f, f(g)) de Foll, sondem dass sopor r(h)/h →0 (h→0). [3](b) Sa. 4 = [[0.6] mil Zuley] = {0=60<... 1 = 63 und 4(1)=cj + +j-, < + < +; (1=j=n) donn ist Sy definiel of $\int_{\omega}^{3} \varphi(t) dt = \overline{Z_{j}} c_{j} (t_{j} - t_{j-1})$

Junicholist J[0,6] an VR [genoue en Tutroum vo- 7[0,6]:={f:[0,6]-11], was fige [0,6], LERR => ftp, LECTO, b] Die Aussige bedenkt, doss S: T[0,6]-) IR line linere & monolone Abbilolug ist, d.h panour - 1,9€ T[0,6], JE R => $\int_{0}^{5} (f + p) = \int_{0}^{4} f + \int_{0}^{5} f \int_{0}^{6} (4f) = \int_{0}^{5} f$ · f=p => 5 f= 55

14/101 Bours: Indir on fricht monoton wochsend => fx1=x2 & [0.6] mil f(x1) > f(x0) $\frac{\pi s}{s} = \frac{1}{2} \left\{ \left(x_1 x_1 \right) \right\} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_2 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right) \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3 \right)} = \frac{1}{\left(\left(x_1 \right) - \frac{1}{2} \left(x_3 \right) - \frac{1}{2} \left(x_3$ (b) 1 = log(1) = lim log(1+1/n) - log(1) log(1) = lim nim nlog(0) = log(0) log(1) = 0 = lim (n log(1+1/n)) = lim (log(1+1/n)) $\log \sinh_{y} = \log \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{\frac{1}{n}} (x) \sqrt{\exp^{-\frac{1}{n}}}$ =) e = e (#) e ly la (1+1/2) - lin (1+1/2) -(C) f(x)= orchon(x) $f(x) = \operatorname{orchon}(x)$ $f'(x) = \frac{1}{1 - \frac{1}{1$ $f'(x) = \frac{-2x}{(1+x^2)^2}$

