Minimizing the earliness-tardiness for the customer order scheduling problem in a dedicated machine environment

Matheus Peixoto Ribeiro Vieira - 22.1.4104 Pedro Henrique R. L. de Oliveira - 22.1.4022

Minimizando o problema de antecipação e atraso de pedidos de cliente em um ambiente com máquina dedicada

Matheus Peixoto Ribeiro Vieira - 22.1.4104 Pedro Henrique R. L. de Oliveira - 22.1.4022

Introdução

- Problemas clássicos de agendamento tratam as tarefas como independentes entre si.
- No caso do envio de pedidos, geralmente se assume que cada pedido é enviado individualmente.
- No entanto, no mundo real, um cliente pode solicitar vários itens em um único pedido, e o envio separado pode aumentar os custos logísticos.

Introdução

- Além disso, entregar produtos antes do necessário pode gerar custos extras com armazenamento.
- Esse problema é especialmente relevante para sistemas de produção just-in-time, onde o objetivo é minimizar estoques e atrasos.

Definição do problema

- Temos **n** pedidos de clientes ($i \in I$) e **m** máquinas dedicadas ($j \in J$). Cada pedido contém exatamente uma tarefa por máquina, ou seja, cada tarefa (i, j) é processada em uma máquina **j** com um tempo de processamento **p**_{ii} e um tempo de conclusão C_{ii}.
- Um tempo ocioso it pode ser inserido antes do trabalho (i, j)

Definição do problema - Conclusão de um pedido

$$C_{i} = \max_{1 \le j \le m} \{C_{ij}\}$$

C_.: Tempo de conclusão do pedido i

C_{ii}: Tempo de finalização da tarefa **j** no pedido **i**

O tempo de finalização de um pedido é o maior tempo que uma de suas tarefas levou para ser concluída.

Definição do problema - Atraso

$$T_i = \max(0, C_i - d_i)$$

T_i: Atraso do pedido i

C_i: Tempo de conclusão do pedido i

d_i: Tempo definido para finalização (due time) do pedido i

Definição do problema - Antecipação

$$E_{ij} = \max(d_i, C_i) - C_{ij}$$

E_{ii}: Antecipação da tarefa **j** do pedido **i**

d_i: Tempo definido para finalização (due time) do pedido i

C_i: Tempo de finalização do pedido i

C_{ii}: Tempo de finalização da tarefa **j** no pedido **i**

Schedule de exemplo

Variáveis de decisão

- C_{ii}: Tempo de finalização da tarefa j do pedido i
- C_i: Tempo de finalização do pedido i
- T_i: Atraso do pedido i
- **E**_{ii}: Antecipação da tarefa **j** do pedido **i**

Variáveis de decisão

- X_{iih} = Atribuição da tarefa j do pedido i na posição h
 - o 1 se a tarefa j do pedido i está na posição h, 0 caso contrário
- \mathbf{Z}_{iih} = Tempo de finalização da tarefa **j** do pedido **i** quando atribuída à posição **h**
 - \circ **C**_{ii} se **x**_{iih} for 1, e 0 caso contrário.

Função objetivo

minimize:
$$\sum_{i=1}^{n} \left(\sum_{j=1}^{m} (E_{ij}) + m \cdot T_{i} \right)$$

E_{ii}: Antecipação da tarefa **j** do pedido **i**

T_i: Atraso do pedido i

m: Número de máquinas

n: Número de pedidos

Restrições 2 e 3

$$\sum_{h=1}^{n} x_{ijh} = 1 \,\forall i \in I; \ j \in J$$

$$\sum_{ijh} x_{ijh} = 1 \,\forall h \in I; \ j \in J$$

h: Posição na sequência de processamento de uma máquina

 $\mathbf{x}_{\mathsf{iih}}$: Atribuição da tarefa \mathbf{j} do pedido \mathbf{i} na posição \mathbf{h}

I: Conjunto de pedidos

J: Conjunto de tarefas

Evitam sobreposições e definem que cada pedido possui uma única posição em cada máquina e vice-versa

Restrições 4 e 5

$$\sum_{i=1}^{n} z_{ij(h-1)} \leq \sum_{i=1}^{n} \left(z_{ijh} - x_{ijh} \cdot p_{ij} \right)$$

$$\forall h \in I : h \neq 1; j \in J$$

$$0 \le \sum_{i=1}^{n} \left(z_{ij1} - x_{ij1} \cdot p_{ij} \right) \, \forall \, j \in J$$

h: Posição na sequência de processamento de uma máquina

z_{ijh}: Tempo de finalização da tarefa j do pedido i
 quando atribuída à posição h

 $\mathbf{x}_{\mathbf{i}\mathbf{i}\mathbf{h}}$: Atribuição da tarefa \mathbf{j} do pedido \mathbf{i} na posição \mathbf{h}

 $\mathbf{p}_{\mathbf{i}\mathbf{j}}$: Tempo de processamento da tarefa \mathbf{j} do pedido \mathbf{i}

I: Conjunto de pedidos

J: Conjunto de tarefas

Em cada máquina, a tarefa no tempo h só pode ser processada quando a tarefa no tempo h-1 for terminada, ou quando h=1

Restrições 6 e 7

$$C_{ij} - M \cdot (1 - x_{ijh}) \le z_{ijh} \, \forall i \in I;$$

 $h \in I; j \in J$

$$\sum_{h=1}^{n} z_{ijh} \le C_{ij} \,\forall \, i \in I; \, j \in J$$

h: Posição na sequência de processamento de uma máquina

 C_{ij} : Tempo de finalização da tarefa j no pedido i

M: Número suficientemente grande

 \mathbf{x}_{ijh} : Atribuição da tarefa **j** do pedido **i** para a posição **h**

z_{ijh}: Tempo de finalização da tarefa **j** do pedido **i** quando atribuída à posição **h**

Determina a relação entre C_{ij} e z_{ijh} , ou seja, z_{ijh} = C_{ij} se x_{ijh} = 1, e z_{ijh} = 0 caso contrário.

Restrições 8 a 11

$$C_{ij} \leq C_i \,\forall i \in I; \ j \in J$$

$$C_i - d_i \leq T_i \,\forall i \in I$$

$$d_i - C_{ij} \leq E_{ij} \,\forall i \in I; \ j \in J$$

$$C_i - C_{ij} \leq E_{ij} \,\forall i \in I; \ j \in J$$

C: Tempo de finalização do pedido i

 C_{ii} : Tempo de finalização da tarefa j do pedido i

d_i: Tempo definido para finalização (due time) do pedido **i**

T_i: Atraso do pedido **i**

E_{ii}: Antecipação da tarefa **j** do pedido **i**

I: Conjunto de pedidos

J: Conjunto de tarefas

Definem C_i , T_i e E_{ii}

Restrições 12 a 15

$$0 \le E_{ij} \, \forall \, i \in I; \, j \in J$$

$$0 \leq T_i \, \forall \, i \in I$$

$$0 \le z_{ijh} \, \forall \, i \in I; \, h \in I; \, j \in J$$

$$x_{ijh} \in \{0; 1\} \, \forall \, i \in I; \, h \in I; \, j \in J$$

E_{ii}: Antecipação da tarefa **j** do pedido **i**

T_i: Atraso do pedido i

h: Posição na sequência de processamento de uma máquina

z_{ijh}: Tempo de finalização da tarefa **j** do pedido **i** quando atribuída à posição **h**

 \mathbf{x}_{ijh} : Atribuição da tarefa \mathbf{j} do pedido \mathbf{i} para a posição \mathbf{h}

I: Conjunto de pedidos

J: Conjunto de tarefas

Não negatividade das variáveis e domínio de valores da variável x.

Restrições 16 e 17

$$z_{ijh} = \begin{cases} C_{ij} & \text{if job } j \text{ of order } i \text{ is at position } h \\ 0 & \text{otherwise.} \end{cases}$$

$$x_{ijh} = \begin{cases} 1 \text{ if job } j \text{ of order } i \text{ is at position } h \\ 0 \text{ otherwise.} \end{cases}$$

h: Posição na sequência de processamento de uma máquina

 \mathbf{z}_{ijh} : Tempo de finalização da tarefa \mathbf{j} do pedido \mathbf{i} quando atribuída à posição \mathbf{h}

 \mathbf{x}_{iih} : Atribuição da tarefa **j** no pedido **i** na posição **h**

 $\mathbf{p_{ii}}$: Tempo de processamento da tarefa \mathbf{j} do pedido \mathbf{i}

I: Conjunto de pedidos

J: Conjunto de tarefas

Em cada máquina, a tarefa no tempo h só pode ser processada quando a tarefa no tempo h-1 for terminada, ou quando h=1

Minimizando o problema de antecipação e atraso de pedidos de cliente em um ambiente com máquina dedicada

Matheus Peixoto Ribeiro Vieira - 22.1.4104 Pedro Henrique R. L. de Oliveira - 22.1.4022