

CONJUNTOS DE MEDIDA NULA

Alan Reyes-Figueroa Teoría de la Medida e Integración

(AULA 20) 12.ABRIL.2023

Definición

Sea (X, A, μ) espacio de medida. Un conjunto mesurable $A \in A$ tal que $\mu(A) = 0$ se llama un **conjunto de medida nula** (nullset, ó μ -nullset).

Denotamos por $\mathcal{N}_{\mu} = \{A \in \mathcal{A} : \ \mu(A) = 0\}$ al conjunto de conjuntos de medida nula.

Definición

Si una propiedad $\pi(\mathbf{x})$ vale para todo $\mathbf{x} \in X$, excepto para aquellos \mathbf{x} contenidos en algún conjunto de medida nula $A \in \mathcal{A}$, entonces decimos que $\pi(\mathbf{x})$ vale **casi en todo punto** o **casi en todas partes**.

Notación: c.t.p. ó μ -c.t.p. (en inglés, **almost everywhere**, a.e. ó μ -a.e.)

Cuidado! El concepto de *casi en todas partes* μ -c.t.p. puede ser engañoso. Por ejemplo

• Si
$$\pi(\mathbf{x})$$
 vale μ -c.t.p. $\Longrightarrow \underbrace{\left\{\mathbf{x} \in \mathsf{X} : \ \pi(\mathbf{x}) \text{ es falso}\right\}}_{\text{puede no ser mesurable}} \subseteq \mathsf{A} \in \mathcal{A}$, con $\mu(\mathsf{A}) = \mathsf{o}$.

Otro ejemplo: Sean $u, v : \mathbb{R} \to \overline{\mathbb{R}}$ funciones. No es lo mismo decir

- a) u es continua c.t.p.
- b) u = v c.t.p., con v función continua.

Ejemplo: Consideremos la medida de Lebesgue λ^1 en $(\mathbb{R},\mathcal{B}(\mathbb{R}))$. La función de Dirichlet

$$f:\mathbb{R} o\mathbb{R}$$
 $f(\mathbf{x})=egin{cases} \mathtt{1}, & \mathbf{x}\in\mathbb{Q}; \ \mathtt{0}, & \mathbf{x}
otin \end{aligned}$

es una función que no es continua en ningún punto de $\mathbb R$. sin embargo, f= O λ^1 -c.t.p. y O es una función continua.

Teorema (Desigualdad de Markov)

Sea (X, A, μ) espacio de medida, y $f \in \mathcal{M}^+(A)$. Para todo conjunto mesurable $A \in A$ y todo c > 0, vale

$$\mu(\{|f|\geq c\}\cap A)\leq \frac{1}{c}\int_A|f|\,d\mu.$$

Prueba:

$$\mu(\{|f| \geq c\} \cap A) = \int_{\{|f| \geq c\} \cap A} d\mu = \int_{X} \mathbf{1}_{\{|f| \geq c\} \cap A} d\mu = \int_{X} \mathbf{1}_{\{|f| \geq c\}} \cdot \mathbf{1}_{A} d\mu$$

$$= \int_{X} \frac{c}{c} \mathbf{1}_{\{|f| \geq c\}} \cdot \mathbf{1}_{A} d\mu = \int_{A} \frac{c}{c} \mathbf{1}_{\{|f| \geq c\}} d\mu$$

$$\leq \int_{A} \frac{|f|}{c} \mathbf{1}_{\{|f| \geq c\}} d\mu = \frac{1}{c} \int_{A} |f| \cdot \mathbf{1}_{\{|f| \geq c\}} d\mu$$

$$\leq \frac{1}{c} \int_{A} |f| d\mu. \square$$

Obs! Cuando $(X, \mathcal{A}, \mu) = (\Omega, \mathcal{F}, \mathbb{P})$ es un espacio de probabilidad, y si $f = X : \Omega \to \mathbb{R}$ es una variable aleatoria, la Desigualdad de Markov se vuelve

$$\mathbb{P}\big(\{|X|\geq c\}\cap A\big)\leq \frac{1}{c}\int_A |X|\,d\mathbb{P}.$$

Tomando ahora $A = \Omega$ y $X \ge o$, obtenemos

$$\mathbb{P}(X \geq c) \leq \frac{1}{c} \int_{\Omega} X \, d\mathbb{P}.$$

Que es la desigualdad de Markov que se estudia en probabilidad.

Notación: Cuando estamos en un espacio de probabilidad $(\Omega.\mathcal{F}, \mathbb{P})$ una propiedad \mathbb{P} -c.t.p. se llama **casi seguramente** ó c.s.

Proposición

Sea (X, A, μ) espacio de medida, y sea $f \in \mathcal{M}^+(A)$. Entonces

i)
$$\int_X f d\mu = 0 \Leftrightarrow |f| = 0 \text{ c.t.p.} \Leftrightarrow \mu\{f \neq 0\} = 0.$$

ii)
$$\mathbf{1}_{\!A}\cdot f\in L^1(\mu)$$
, para todo $A\in\mathcal{N}_\mu$, y vale $\int_A f\,d\mu=\mathsf{o}.$

Prueba: (ii) Definamos la secuencia de funciones $f_n: X \to \overline{\mathbb{R}}$, dadas por $f_n = f \land n = \min\{|f|, n\}$. Las $f_n \in \mathcal{M}^+(\mathcal{A})$ son mesurables (son mínimo de funciones en $\mathcal{M}^+(\mathcal{A})$, y $f_n \nearrow |f|$.

Por el Teorema de Beppo Levi, $|f| \in \mathcal{M}^+(\mathcal{A})$ y $\int |f| d\mu = \sup_n \int f_n d\mu$. Para cualquier conjunto de medida nula $A \in \mathcal{N}_\mu$, vale $\mathbf{1}_A \cdot f_n \nearrow \mathbf{1}_A \cdot |f|$. De nuevo, el

Teorema de Beppo Levi garantiza que, $\mathbf{1}_{\mathsf{A}}\cdot|f|\in\mathcal{M}^+(\mathcal{A})$ y $\int\mathbf{1}_{\mathsf{A}}\cdot|f|\,d\mu=\sup_{n}\int\mathbf{1}_{\mathsf{A}}\cdot f_n\,d\mu$.

Así

$$\int_{A} |f| \, d\mu = \int_{X} \mathbf{1}_{A} \cdot \sup_{n} f_{n} \, d\mu = \sup_{n} \int_{X} \mathbf{1}_{A} \cdot f_{n} \, d\mu = \sup_{n} \int_{X} \mathbf{1}_{A} \cdot \min\{|f|, n\} \, d\mu$$

$$\leq \sup_{n} \int_{X} \mathbf{1}_{A} \cdot n \, d\mu = \sup_{n} n \int_{X} \mathbf{1}_{A} \, d\mu = \sup_{n} n \int_{A} d\mu = \sup_{n} n \, \mu(A)$$

$$\leq \sup_{n} n \cdot o = o.$$

Esto muestra que $0 \le \int_A |f| d\mu \le 0$, y portanto, $\int_A |f| d\mu$.

Por Cauchy-Schwarz, $|\int \mathbf{1}_A \cdot f \, d\mu| \le \int |\mathbf{1}_A \cdot f| \, d\mu = \int_A |f| \, d\mu = 0 < +\infty$. De ahí que $\mathbf{1}_A \cdot f \in L^1(\mu)$, para todo A de medida nula.

(i) Mostramos ahora que $\int_X f \, d\mu = 0 \Leftrightarrow |f| = 0$ c.t.p $\Leftrightarrow \mu \{f \neq 0\} = 0$. La segunda equivalencia es inmediata a partir de la definición de μ -c.t.p., pues

$$|f|= \mathsf{o} \; \mu\text{-c.t.p.} \iff \mu\{f \neq \mathsf{o}\} = \mu\{|f| \neq \mathsf{o}\} = \mathsf{o}.$$

Para la primera equivalencia, (\Leftarrow) Como |f|= o μ -c.t.p., entonces $A=\{f\neq 0\}\in \mathcal{A}$ y $\mu(A)=$ o.

Así,

$$\int |f| \, d\mu = \int_X |f| \, d\mu = \int_{A \cup A^c} |f| \, d\mu = \int_A |f| \, d\mu + \int_{A^c} |f| \, d\mu = \underbrace{\int_A |f| \, d\mu}_{=0} + \int_{\{|f| = 0\}} |f| \, d\mu$$

$$= \int_{\{|f| = 0\}} 0 \, d\mu = 0.$$

(\Rightarrow) Suponga ahora que $\int |f| \, d\mu =$ O. Usamos la desigualdad de Markov con A=X. Así, para cualquier c> O, vale

$$\mu(\{|f|\geq c\})=\mu(\{|f|\geq c\}\cap X)\leq \frac{1}{c}\int_{\mathbb{R}}|f|\,d\mu.$$

Como

$$\mu(\{|f| > 0\}) = \mu\left(\bigcup_{n \ge 1} \{|f| \ge \frac{1}{n}\}\right) \le \sum_{n \ge 1} \mu\left(\{|f| \ge \frac{1}{n}\}\right)$$

$$\le \sum_{n \ge 1} n \underbrace{\int_{X} |f| d\mu}_{=0} = \sum_{n \ge 1} n \cdot 0$$

$$\le 0.$$

Esto muestra que $\mu\{f={\tt O}\}={\tt O}$, y portanto $f={\tt O}$ $\mu ext{-c.t.p.}$ $_{\square}$

Corolario (Corolario 1)

Sea (X, A, μ) espacio de medida, y seean $f, g \in \mathcal{M}(A)$ funciones mesurables, tales que $f = g \ \mu$ -c.t.p. Entonces

- i) $f,g \ge 0 \implies \int f d\mu = \int g d\mu$.
- ii) Si $f \in L^q(\mu)$, entonces $g \in L^1(\mu)$ y $\int f d\mu = \int g d\mu$.

Prueba: (i) Como f,g son mesurables, el conjunto $N=\{\mathbf{x}\in X: f(\mathbf{x})\neq g(\mathbf{x})\}$ es mesurable (pues $N=(f-g)^{-1}(\mathbb{R}-\{0\})=(f-g)^{-1}(0)^c$, y f-g es mesurable). Además, $\mu(N)=0$.

$$\mu(N) = 0.$$

$$\int f d\mu = \int_{X} f d\mu = \int_{N \cup N^{c}} f d\mu = \int_{N} f d\mu + \int_{N^{c}} f d\mu = \underbrace{\int_{N} f d\mu}_{=0} + \int_{\{f=g\}} f d\mu$$

$$= \int_{N^{c}} g d\mu = \int_{N} g d\mu + \int_{N^{c}} g d\mu = \int_{X} g d\mu = \int_{X} g d\mu.$$

(ii) Como f=g μ -c.t.p., entonces $f^+=g^+$ y $f^-=g^ \mu$ -c.t.p. (Esto es porque $\{f^+\neq g^+\}, \{f^-\neq g^-\}\subseteq \{f\neq g\}\subseteq A$, con $\mu(A)=0$.)

Supongamos que $f\in L^1(\mu)$. Entonces $\int f^+\,d\mu<+\infty$ y $\int f^-\,d\mu<+\infty$. De la parte (i), tenemos

$$f^+ = g^+ \ \mu ext{-c.t.p.} \quad \Rightarrow \quad \int g^+ \ d\mu = \int f^+ \ d\mu < +\infty \ f^- = g^- \ \mu ext{-c.t.p.} \quad \Rightarrow \quad \int g^- \ d\mu = \int f^- \ d\mu < +\infty \ ext{} \Rightarrow \quad g \in L^1(\mu).$$

Además,
$$\int g\,d\mu=\int g^+\,d\mu-\int g^-\,d\mu=\int f^+\,d\mu-\int f^-\,d\mu=\int f\,d\mu$$
. \Box

Corolario (Corolario 2)

Sea (X, A, μ) espacio de medida, y sea $f, g \in \mathcal{M}(A)$ funciones mesurables, tales que $g \in L^1(\mu)$ y $|f| \leq g \mu$ -c.t.p. Entonces $f \in L^1(\mu)$.

Prueba: Sabemos que $f^+, f^- \leq |f| \leq g$ μ -c.t.p. Por monotonicidad de la integral de Lebesgue, tenemos

$$\int \! f^+ \, \mathrm{d} \mu \leq \int g \, \mathrm{d} \mu < +\infty, \qquad \mathrm{y} \qquad \int \! f^- \, \mathrm{d} \mu \leq \int g \, \mathrm{d} \mu < +\infty.$$

Luego, $f^+, f^- \in L^1(\mu)$, y por las condiciones de equivalencia de pertenencia a L^1 , esto muestra que $f \in L^1(\mu)$. \square

Corolario (Corolario 3)

Sea (X, \mathcal{A}, μ) espacio de medida. Si $f \in L^1(\mu)$, entonces f es \mathbb{R} -valuada μ -c.t.p. (Esto significa que $\{\mathbf{x} \in X : f(\mathbf{x}) = +\infty \text{ ó } f(\mathbf{x}) = -\infty\} \subseteq A$, con $\mu(A) = 0$).

Además, existe una función $\widetilde{f}:\mathsf{X}\to\mathbb{R}$ tal que $\widetilde{f}=f$ μ -c.t.p. con $\int\widetilde{f}\,\mathsf{d}\mu=\int f\,\mathsf{d}\mu$.

Prueba: Definimos $N = \{|f| = +\infty\} = \{f = +\infty\} \cup \{f = -\infty\}$. Observe que $N \in \mathcal{A}$ es mesurable (¿por qué?).

Vamos a mostrar que $\mu(N)=$ 0. Para ello, observe que $N=\{|f|=+\infty\}=\bigcap_{k\geq 0}\{|f|\geq k\}.$

Por la Desigualdad de Markov, para cada $k \ge 1$

$$\mu(N) \le \mu(\{|f| \ge k\}) \le \frac{1}{k} \int |f| \, d\mu < +\infty.$$

Haciendo $k \to \infty$, tenemos $\mu({\it N}) \le \lim_{k \to \infty} \frac{1}{k} \int |f| \, d\mu = {\it O}$. Esto muestra que $\mu({\it N}) = {\it O}$.

Ahora, definamos $\widetilde{f}: X \to \mathbb{R}$ por $\widetilde{f} = f \cdot \mathbf{1}_{N^c}$. Esto es

$$\widetilde{f}(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{1}_{\mathsf{N}^c}(\mathbf{x}) = f(\mathbf{x}) \cdot \mathbf{1}_{\{|f| \in \mathbb{R}\}}(\mathbf{x}) = egin{cases} f(\mathbf{x}), & f(\mathbf{x}) \in \mathbb{R}; \ \mathtt{0}, & f(\mathbf{x}) \in \{\pm \infty\}. \end{cases}$$

Como
$$\mu({\sf N})={\sf O}$$
, entonces $\widetilde f=f$ μ -c.t.p. y $\int \widetilde f \, {\sf d} \mu=\int f \, {\sf d} \mu.$