Assignment 5: Traffic Light

2. State Table

Name	Lights	Time (ms)	"000"	"001"	"010"	"011"	"100"	"101"	"110"	"111"
goS	10 001 100	2000	goS	waitS	goS	waitS	waitS	waitS	waitS	waitS
waitS	10 010 100	300	goW	goW	goW	goW	walk	walk	walk	goW
goW	10 100 001	2000	goW	goW	waitW	waitW	waitW	waitW	waitW	waitW
waitW	10 100 010	300	goS	goS	goS	goS	walk	walk	walk	walk
walk	01 100 100	300	walk	walkclose	walkclose	walkclose	walk	walkclose	walkclose	walkclose
walkclose	00 100 100	300	walkopen							
walkopen	01 100 100	300	walkclose2							
walkclose2	00 100 100	300	goS	goW	goS	goS	goS	goW	goS	goS

Note: ไฟและปุ่มเรียงเป็น PEOPLE, SOUTH, WEST

3. Code explanation

```
กำหนดปุ่มกดไฟทางทิศใต้เป็นช่อง 2 ไฟแดงช่อง 4 ไฟเหลืองช่อง 5 ไฟเขียวช่อง 6
#define LED_S_R 4
#define LED_S_Y 5
#define LED_S_G 6
#define SOUTH BUTTON PIN 2
กำหนดปุ่มกดไฟทางทิศตะวันตกเป็นช่อง 3 ไฟแดงช่อง 8 ไฟเหลืองช่อง 9 ไฟเขียวช่อง 10
#define LED_W_R 8
#define LED_W_Y 9
#define LED_W_G 10
#define WEST_BUTTON_PIN 3
กำหนดปุ่มกดไฟคนเดินเป็นช่อง 7 ไฟแดงช่อง 11 ไฟเขียวช่อง 12
#define LED_WA_R 11
#define LED_WA_G 12
#define WALK_BUTTON_PIN 7
กำหนด State เป็นเลขฐาน 10 โดยกำหนดให้ state ของปุ่มคนเดินเป็น state แรก ปุ่มทางใต้เป็น state ที่สองและปุ่ม
ทางตะวันตกเป็นปมสดท้าย โดยใช้การคำนวณ (state ของปมคนเดิน * 4) + (state ของปมทางใต้ * 2) + state ปมทาง
ตะวันตก
#define goW 0
#define waitW 1
#define goS 2
#define waitS 3
#define walk 4
#define walkclose 5
#define walkopen 6
#define walkclose2 7
สร้าง State โดยเก็บค่า 3 ค่า ST_OUT คือ state ของไฟทั้งหมดโดย B 000 000 00 หมายถึง ไฟทางใต้สีเขียวเหลืองแดง
ไฟทางตะวันตกสีเขียวเหลืองแดง ไฟคนเดินสีเขียวสีแดง ค่า Time คือ delay ของแต่ละ state ค่า Next คือค่า state
กัดไปทั้งหมด
struct State {
  unsigned long ST_Out;
  unsigned long Time;
  unsigned long Next[8];};
  typedef const struct State SType;
SType FSM[8]={
  {B10000101,2000,{goW, goW, waitW, waitW, waitW, waitW, waitW}},
  {B01000101,300,{goS, goS, goS, walk, walk, walk, walk}}, 
{B00110001,2000,{goS, waitS, goS, waitS, waitS, waitS, waitS, waitS}},
  {B00101001,300,{goW, goW, goW, walk, walk, walk, goW}},
  {B00100110,300,{walk, walkclose, walkclose, walkclose, walkclose, walkclose,
walkclose}},
  {B00100100,300,{walkopen, walkopen, walkopen, walkopen, walkopen, walkopen,
walkopen}},
  {B00100110,300,{walkclose2, walkclose2, walkclose2, walkclose2, walkclose2,
walkclose2, walkclose2}},
  {B00100100,300,{goS, goW, goS, goS, goS, goW, goS, goS}}
  };
```

```
กำหนดให้ state เริ่มต้นอยู่ที่ 0
  unsigned long S=0;
  void setup() {
กำหนด PIN
  pinMode(LED_W_R, OUTPUT);
  pinMode(LED_W_Y, OUTPUT);
  pinMode(LED_W_G, OUTPUT);
  pinMode(WEST_BUTTON_PIN, INPUT);
  pinMode(LED_S_R, OUTPUT);
  pinMode(LED_S_Y, OUTPUT);
  pinMode(LED_S_G, OUTPUT);
  pinMode(SOUTH_BUTTON_PIN, INPUT);
  pinMode(LED_WA_R, OUTPUT);
  pinMode(LED_WA_G, OUTPUT);
  pinMode(WALK_BUTTON_PIN, INPUT);
int input,input1, input2, input3;
void loop() {
กำหนด LED จากหลังมาหน้า โดยกำหนดเป็นไฟคนเดินสีแดง สีเขียว ทางตะวันตกสีแดงสีเหลืองสีเขียว และทางใต้สีแดงสี
เหลืองสีเขียวตามลำดับ ถ้าค่าเป็น 1 แสดงว่าหลอดไฟนั้นจะติด
  digitalWrite(LED_WA_G, FSM[S].ST_Out & B00000010);
  digitalWrite(LED_WA_R, FSM[S].ST_Out & B00000001);
  digitalWrite(LED_S_R, FSM[S].ST_Out & B00100000);
  digitalWrite(LED_S_Y, FSM[S].ST_Out & B01000000);
  digitalWrite(LED_S_G, FSM[S].ST_Out & B10000000);
  digitalWrite(LED_W_R, FSM[S].ST_Out & B00000100);
  digitalWrite(LED_W_Y, FSM[S].ST_Out & B00001000);
  digitalWrite(LED_W_G, FSM[S].ST_Out & B00010000);
  delay(FSM[S].Time);
  input1 = digitalRead(WEST_BUTTON_PIN);
  input2 = digitalRead(SOUTH_BUTTON_PIN);
  input3 = digitalRead(WALK_BUTTON_PIN);
  input = input3*4 + input2*2 + input1;
  S = FSM[S].Next[input];
```