NFGen: Automatic Non-linear Function Evaluation Code Generator for Generalpurpose MPC Platforms

这次介绍的论文是清华团队Xiaoyu Fan等人发表在CCS'22 NFGen。

本文针对MPC下的非线性函数计算,提出了NFGen工具包。NFGen利用离散分段多项式,自动化综合考虑后端MPC协议的开销、近似精度等指标,生成最优的近似多项式,并利用后端的MPC协议库进行计算(例如PrivPy,MP-SPDZ等)。相比于之前手动在MPC源码下直接编写近似多项式,NFGen在精度、性能等方面都有长足提升。

1. 问题与挑战

目前MPC在理论上虽然能够支持任意函数的计算,但是在计算复杂非线性函数,比如 e^x , $tanh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$ 等,还存在很多问题:

- 1. **正确性与精度**:为了效率考虑,目前大多数MPC协议还是需要将浮点数 (FLP) 转化为定点数 (FXP) 进行计算。该转化不仅会引起精度的损失,在一些极端的情况下会带来溢出等错误;
- 2. **性能**: 更重要的,MPC协议的计算性能比对应的明文计算低好几个数量级,尤其是针对复杂的非 线性函数;
- 3. **泛化性**:即便我们可以用MPC协议内置支持的一些基本操作实现很多非线性函数,但是有些复杂的函数比如 $\gamma(x,z)$ 等还是很难去实现;
- 4. **可移植性**: MPC协议底层技术多样,针对不同的场景硬件环境等各种权衡复杂。如何设计面向多样化场景的最优方案是个难题。

针对上述难题,本文提出了NFGen。NFGen利用最基本的算子+,×,>来实现多项式近似。由于这些基本算子被广泛支持,因此可以很容易对接不同的MPC协议库。

挑战:针对一个非线性函数,获得一个FXP下面向MPC协议库的良好(k,m)-分段近似多项式是本文面临的最大技术挑战,其中m表示分段,k表示分段多项式最大的阶数(degree):

- 1. **FXP下近似多项式的挑战**: 1) 首先多项式需要满足FXP的值域和放缩限制,保证计算中间结果不溢出(上溢出、下溢出); 2) 其次,FXP实际上是整数,寻找一个最优的多项式是一个NP-完全的整数规划问题。因此,本文需要寻找一个合理的近似。
- 2. m**和k的权衡**: m越大,则分段越多,因此需要的比较>也越多; k越大,则需要的乘法 \times 也越多。

Figure 1: End-to-end Workflow of NFGen

如上图所示, NFGen工作流程如下:

- 1. 给定函数和系统配置文件NFD, NFGen首先在明文下计算函数得到候选定点数函数簇 \mathcal{P} ;
- 2. 进一步,根据MPC性能文件**PPD**从 $\hat{\mathcal{P}}$ 选取性能最优的函数;
- 3. 最后,利用生成代码模板OPPE,并生成后端MPC协议对应的代码。

2. 方案设计

符号和假设: 令F(x)表示目标浮点数连续函数,[a,b]表示近似区间;候选近似定点数多项式簇 $\hat{\mathcal{P}}=\{\hat{p}_k^m\}$,其中 \hat{p}_k^m 表示该多项式在[a,b]上分为m段 $[w_0,w_1,\ldots,w_m](w_0=a,w_m=b)$,每一段 $[w_{j-1},w_j]$ 有近似多项式 $\hat{p}_k^j(\hat{x})=\sum_{i=0}^k\hat{c}_i\hat{x}^i$ 。当j不太重要时,本文忽略j的描述。 \hat{z} 表示 $\langle n,f\rangle$ -FXP定点数,其中n为全部比特位长,f为小数部分比特位长。

2.1 非线性近似

非线性近似模块分为FitPiecewise和FitOnePiece两个主要模块。

2.1.1 FitPiecewise

如算法1所示,该模块采用递归的方法对每一段调用FitOnePiece进行近似。如果当前分段无法达到近似精度,则进对当前分段进一步分为小段进行近似。最后的结果,为了减少分段数量,则尝试将相邻的分段合并。

2.1.2 FitOnePiece

该部分是NFGen近似算法的核心,目标是针对一段进行多项式近似。给定F(x),近似定点数多项式 $\hat{p}_k(x)=\sum_{i=0}^k\hat{c}_i\hat{x}^i$ 的目标是

 $\text{Minimize max}_{\hat{x} \in [a,b]} |F(\hat{x}) - \hat{p}_k(x)|$

Algorithm 2: FitOnePiece Algorithm

```
Input: Target function F(x), domain [a, b] and order k.
   Return: Feasible discrete polynoimial \hat{p}_k or Null.
 1 \bar{k} \leftarrow \text{ConstrainK}([a,b], \langle n,f \rangle) /* 1) Constrain k
                                                                                         */
    /* 2) Fit best polynomial in FLP space
                                                                                         */
 2 Maximum representable points N \leftarrow \frac{b-a}{2-f};
 3 if N > \bar{k} + 1 then
     p_{\bar{k}} \leftarrow Cheby-Interpolation(F, [a, b], \bar{k})
 5 else
    \bar{k}=N-1;
    p_{\bar{k}} \leftarrow Lagrange-Interpolation(F, N feasible points and \bar{k})
 8 end
    /* 3) & 4) Convert to FXP space
                                                                                         */
 9 \hat{p}_{\bar{k}} \leftarrow \text{ScalePoly}(p_{\bar{k}}, [a, b]) \text{ (Algo 5)};
10 \hat{p}_{\bar{k}} \leftarrow \text{ResidualBoosting}(\hat{p}_{\bar{k}}, F, [a, b]) \text{ (Algo 6)};
11 \hat{p}_k: Expand coefficients and scaling factors of \hat{p}_{\bar{k}} to k, filling 0;
    /* 5) Check accuracy, return valid \hat{p}_k or Null
                                                                                         */
12 Sampled number N_s \leftarrow \min(MS, N);
13 \hat{X} \leftarrow FLPsimFXP(Linspace([a, b], N_s));
14 if \max_{\hat{x} \in \hat{X}} |\hat{p}_k(\hat{x}) - F(\hat{x})|_d < \epsilon then
         Return: \hat{p}_k;
16 Return: Null;
```

在算法2的近似计算中,首先需要解决确定合适的k,以尽可能避免溢出问题:在 $|\hat{x}|$ 过大时, \hat{x}^k 可能会上溢出,在 $|\hat{x}|\to 0$ 过小时, \hat{x}^k 可能会下溢出,尤其是k过大时。为了解决该问题,本文提出了ContrainK算法。该方法的核心思想如下:

- 1. 为了防止上溢出,需要在 $|\hat{x}|_{max} > 1$ 时保证 $(|\hat{x}|_{max})^{kO} \leq 2^{n-f-1} \Rightarrow k_O \leq \frac{n-f-1}{\log_2 |\hat{x}|_{max}};$
- 2. 下溢出的情况则复杂一些:如果 $0 \in [a,b]$,那么存在 $|\hat{x}| \to 0$ 。此时,令 $k_U = 3$;否则当 $|\hat{x}|_{min} < 1$ 时,需要满足 $|\hat{x}|_{min}^{k_U} \ge 2^{-f} \Rightarrow k_U \le \frac{f}{-\log_2 |\hat{x}|_{min}}$ 。最后 $\bar{k} == \min(k,k_O,k_U)$ 具体算法如下:

Algorithm 3: ConstrainK

1 **Function** ConstrainK(domain [a, b], FXP format $\langle n, f \rangle$):

```
|\hat{x}|_{max} \leftarrow \max(|a|, |b|) \text{ and } |\hat{x}|_{min} \leftarrow \min(|a|, |b|);
k_O \leftarrow k \text{ if } (|\hat{x}|_{max} < 1) \text{ else } \frac{n - f - 1}{\log_2(|\hat{x}|_{max})};
\mathbf{If } a \cdot b < 0 \text{ then } k_U \leftarrow 3;
\mathbf{Else } k_U \leftarrow k \text{ if } (|\hat{x}|_{min} > 1) \text{ else } \frac{f}{-\log_2(|\hat{x}|_{min})};
\mathbf{Return : } \text{Maximum feasible } \bar{k} \leftarrow \min(k, k_O, k_U)
```

确定 \bar{k} 之后,则在[a,b]内进行采点,进行插值计算得到浮点数近似多项式,进而将浮点数近似多项式转化为定点数。转化时则会面临如下两个挑战:

系数 \hat{c}_i **下溢出**: 当系数 $|\hat{c}_i|$ 过小时,需要在f比特的高位部分保留过多的0,损失了高位的比特,而且 当 $|\hat{c}_i| < 2^{-f}$ 会引起下溢出。更严重的当 $i \to k$ 时, $|c_i|$ 可能越小;

近似精度损失:另一方面,将浮点转化为定点数,舍弃f+1位及其之后的小数部分,会损失大量精度。

为了尽可能解决上述问题, NFGen提出了如下策略:

利用放缩因子增大表示范围:为了缓解系数下溢出问题,本文提出将浮点数系数 c_i 转化为两个定点数 (\hat{c}_i,\hat{s}_i) 使得 $c_i \approx \hat{c}_i\hat{s}_i$,其中 $\hat{s}_i \leq 1$ 是一个放缩因子。从而使得 \hat{c}_i 保留尽可能多的高比特位。不过,本文也需要保证:

- 1. \hat{c}_i 不能太大,以免 $\hat{c}_i\hat{x}^k$ 上溢出,即 $\hat{c}_i\hat{x}^k < 2^{n-f-1}$;
- 2. \hat{s}_i 是一个合法的FXP且 $0<\hat{s}_i\leq 1$ 。

具体算法如下:

Algorithm 5: ScalePoly : $p_k \rightarrow \hat{p}_k$

```
Input : p_k = \sum_{i=0}^{i=k} (c_i \cdot x^i) in continuous space, domain [a, b].
    Return: \hat{p}_k = \sum_{i=0}^{i=k} (\hat{c}_i \cdot x^i \cdot \hat{s}_i) in discrete space.
 1 Character \hat{x} \leftarrow \max(|a|, |b|), most likely to overflow;
 2 for i \leftarrow 0 to k do
       \hat{c}_i, \hat{s}_i \leftarrow \text{ScaleC}(c_i, \langle n, f \rangle, i, \hat{x});
 4 end
 5 Return \hat{p}_k.
    Function ScaleC(c, \langle n, f \rangle, order k and \hat{x}):
            \hat{s}_{CUF} \leftarrow 2^{-f};
 7
            \hat{s}_{COF} \leftarrow \mathsf{FLPsimFXP}(\frac{c\hat{x}^k}{2^{n-f-1}}, n, f);
 8
            \hat{s} \leftarrow \min \left\{ \max \left( \hat{s}_{CUF}, \hat{s}_{COF} \right), 1 \right\} ;
            \hat{c} \leftarrow \mathsf{FLPsimFXP}(\frac{c}{\hat{s}}, n, f);
10
            Return \hat{c}, \hat{s};
11
```

其中FLPsiimFXP如下:

```
Algorithm 4: FLPsimFXP : x \rightarrow \hat{x}
```

```
Input : x \in \mathbb{R} and FXP format \langle n, f \rangle.

Return: \hat{x}

1 If (|x| > 2^{n-f-1}): Return: 2^{n-f-1};

2 If (|x| < 2^{-f}): Return: 0;

3 Return: round<sub>2</sub>(x, f)
```

利用残差提升精度:对于目标函数和近似函数 $\hat{p}_k(x)$,定义残差函数 $R(x) = F(x) - \hat{p}_k(x)$ 。进一步,本文再利用多项式 $\hat{r}_{k'}(x)$ 近似估计R(x),并进一步更新 $\hat{p}_k(x)$ 为 $\hat{p}_k(x) + \hat{r}_{k'}(x)$,其中k' < k。具体算法构造如下:

Algorithm 6: ResidualBoosting

```
Input : \hat{p}_k in discrete space, target F(x) and domain [a, b].
    Return: \hat{p}_{k}^{*} in discrete space.
 1 \hat{p}_k^* \leftarrow \hat{p}_k, R \leftarrow F - \hat{p}_k^*;
 2 Sample number N_s \leftarrow \min \left( \text{Max samples } MS, \text{All points } \frac{b-a}{2^{-f}} \right);
 \hat{X} \leftarrow FLPsimFXP(Linspace([a, b], N_s));
 4 for k' \leftarrow k - 1 to 0 do
           r_{k'} \leftarrow Cheby-Interpolation(R, [a, b], k');
         \hat{p}_k^{tmp} \leftarrow \text{Boost}(\hat{p}_k^*, r_{k'}, [a, b]);
          /* Boost when benefit exist.
                                                                                                         */
    10 end
    Return:p_k^*
11 Function Boost(p_k, r_{k'}, k \ge k' with domain [a, b]):
           p_{k'}(x) = \sum_{i=0}^{k'} (\hat{c}_i^{(\hat{p}_k)} \cdot \hat{s}_i^{(\hat{p}_k)} + c_i^{(r_{k'})}) \cdot x^i ;
12
           \hat{p}_{k'} \leftarrow \text{ScalePoly}(p_{k'}, [a, b]);
           \hat{p}_{k}(x) = \sum_{i=0}^{k'} (\hat{c}_{i}^{(\hat{p}_{k'})} \cdot x^{i} \cdot \hat{s}_{i}^{(\hat{p}_{k'})}) + \sum_{i=k'+1}^{k} (\hat{c}_{i}^{(\hat{p}_{k})} \cdot x^{i} \cdot \hat{s}_{i}^{(\hat{p}_{k})});
```

最后,算法2在定义域内采样一些随机点,测试近似多项式是否满足精度要求。

2.2 OPPE设计

Return: \hat{p}_k

Algorithm 7: OPPE Algorithm (OPPE)

```
Config: Three parts plaintext parameters of \hat{p}_k^m: \hat{W} (without
                 endpoint \hat{w}_{m}), C = \{\hat{c}_{j,i}\}\ and S = \{\hat{s}_{j,i}\}.
    Input : Secret input [\hat{x}].
    Return: The secret evaluation result of [\hat{p}_k^m(\hat{x})].
   [comp] \leftarrow GT([\hat{x}], \hat{W}) # compare x with each break point.;
[mask] \leftarrow ADD([comp], -leftshift([comp], 1));
3 for i \leftarrow 0 to k-1 do
          [\mathsf{coeff}]_i \leftarrow \hat{\Sigma}_{j=0}^{j=m-1} \mathsf{MUL}([\mathsf{mask}]_j, \hat{c}_{j,i}) ;
          [scaler]<sub>i</sub> \leftarrow \hat{\sum}_{j=0}^{j=m-1} \text{MUL}([\text{mask}]_j, \hat{s}_{j,i});
   end
   [xterm] \leftarrow CalculateKx([\hat{x}], k);
8 Return \hat{\sum}_{i=0}^{i=k-1} (\text{MUL}(\text{MUL}([\text{coeff}]_i, [\text{xterm}]_i), [\text{scaler}]_i);
9 Function CalculateKx([\hat{x}], k):
          /* Calculate [1, [\hat{x}], [\hat{x}]^2, ..., [\hat{x}]^k]
                                                                                                     */
          shift \leftarrow 1, [res] \leftarrow [1, tail([\hat{x}], k)] /* repeat [\hat{x}] k times
10
                                                                                                      */
          while shift < k  do
11
                 [res]<sub>shift:</sub> = MUL([res]<sub>shift:</sub>, [res]<sub>:-shift</sub>);
12
                 shift \times = 2;
13
          end
14
          Return [res];
15
```

如算法7所示,多项式的安全计算遵循底层协议的计算,并且本文也利用了SIMD等MPC库广泛支持的优化算法提升性效率。

3. 实验评估

本文做了大量的实验,本博客只选择其中两部分说明:

Table 2: Examples in Performance Evaluations

F(x)	S	/	(k, m)	T _{Fit}	Communication (MB)			Computation time (ms)		
					Base	NFGen	Save	Base	NFGen	SpeedUp
$sigmoid(x) = \frac{1}{1+e^{-X}}$ $x \in [-50, +50], F(x) \in [0.0, 1.0]$ Non-linear buildling-blocks: 2	A B C	×	(10, 8) (7, 10) (5, 14)	4.3 3.5 3.5	618 1 4	263 1 4	60% -5% -5%	147 137 1155	23 124 802	6.3× 1.1× 1.4×
	D E F	\\	(5, 14) (5, 14) (5, 14)	3.5 3.5 3.5	18 212 207	19 308 234	-8% -45% -13%	1863 75949 9732	1525 106857 11224	1.2× 0.7× 0.9×
$tanh(x) = \frac{e^{X} - e^{-X}}{e^{X} + e^{-X}}$ $x \in [-50, +50], F(x) \in [-1.0, 1.0]$ Non-linear buildling-blocks: 3	A B C D E F	× × × ×	(9, 8) (5, 9) (5, 9) (5, 9) (5, 9)	3.2 3.2 3.2 3.2 3.2 3.2	1876 13 19 64 996 966	216 1 3 14 197 150	90% 92% 83% 78% 80% 84%	335 800 5901 8882 337530 45486	21 80 597 1115 68550 7309	15.7× 10.0× 9.9× 8.0× 4.9× 6.2×
$soft_sign(x) = \frac{x}{1+ x }$ $x \in [-50, 50], F(x) \in [-1.0, 1.0]$ Non-linear buildling-blocks: 2	A B C D E F	×	(8, 8) NA NA NA NA NA	1.9 1.3 1.3 1.3 1.3 1.3	518 1 2 8 52 49	231 1 2 8 52 49	60% 0% 0% 0% 0% 0%	131 79 451 741 15507 2315	21 78 437 753 15520 2373	6.1× 1.0× 1.0× 1.0× 1.0× 1.0×
Normal_dis(x) = $\frac{e^{-\frac{x^2}{2}}}{\sqrt{2\pi}}$ $x \in [-10, +10], F(x) \in [0.0, 0.4]$ Non-linear buildling-blocks: 1	A B C D E F	× × × ×	(8, 12) (8, 12) (8, 12) (8, 12) (5, 22) (8, 12)	5.2 3.6 3.6 3.6 3.6 3.6	3 7 24 257 249	295 2 5 23 481 301	30% 45% 27% 5% -87% -21%	67 4906 5029 6588 89740 14908	24 156 970 1846 166328 14861	2.8× 31.5× 5.2× 3.6× 0.5× 1.0×
$Bs_dis(x) \ [5] = \left(\frac{\sqrt{x} + \sqrt{\frac{1}{x}}}{2\gamma x}\right) \phi\left(\frac{\sqrt{x} - \sqrt{\frac{1}{x}}}{\gamma}\right)$ $\gamma = 0.5, x \in [10^{-6}, 30], F(x) \in [0.0, 0.2]$ Non-linear buildling-blocks: 3	A B C D E F	× × × ×	(10, 8) (7, 11) (5, 16) (5, 16) (5, 16) (5, 16)	4.0 3.2 3.2 3.2 3.2 3.2 3.2	2815 13 23 65 741 718	263 1 5 22 352 268	90% 89% 79% 66% 53% 63%	630 11463 14631 19167 239549 42157	22 133 915 1763 122325 13136	29.1× 86.1× 16.0× 10.9× 2.0× 3.2×

^{*} $T_{ ext{Fit}}$ is the time for $\hat{p}_k^{m{m}}$ fitting in seconds. \checkmark indicates whether baseline achieves the accuracy requirements.

表2中A-F表示不同的开源协议库。对于一些表中的非线性函数计算,,NFGen大多数获得了在精度、通信和时间方面的提升。但是有些协议库都某些函数进行了高度优化,NFGen跟这些方案比还略优逊色。

另一个实验,则是针对LR回归。

Table 6: Logistic Regression Speedups

Dataset	Method	Train(sec)	Test(sec)
Adult [23] $(48, 842 \times 65)$	PrivPy	413.1	1.8
	NFGen	43.6 / 9.5×	0.8 / 2.3×
Bank [34]	PrivPy	72.8	1.6
(41, 188 × 63)	NFGen	20.4 / 3.6×	0.8 / 2.0×
Branch [36]	PrivPy	703.8	12.2
(400, 000 × 480)	NFGen	199.9 / 3.5×	6.9 / 1.8×

和PrivPy相比,性能方面获得了很好的提升。 其他实验和细节内容见原文。