Solution to Practice 1e

D1(b) To prove that the zero vector is unique, we assume that two vectors (say $\bf a$ and $\bf b$) both satisfy the defining property of the zero vector. That is, let $\bf a$ and $\bf b$ be such that, for all $\bf x$

$$x + a = x = a + x$$
 and $x + b = x = b + x$

Since $\mathbf{x} + \mathbf{b} = \mathbf{x}$ for all \mathbf{x} , we can substitute in \mathbf{a} and see that $\mathbf{a} + \mathbf{b} = \mathbf{a}$. And since $\mathbf{x} = \mathbf{a} + \mathbf{x}$ for all \mathbf{x} , we can substitute in \mathbf{b} and see that $\mathbf{b} = \mathbf{a} + \mathbf{b}$. This means that $\mathbf{b} = \mathbf{a} + \mathbf{b} = \mathbf{a}$, so we have $\mathbf{a} = \mathbf{b}$, as desired.

D1(c) Since we know that the zero vector is unique, we can show that a vector **a** is the zero vector by showing that it satisfies the defining property of the zero vector: $\mathbf{x} + \mathbf{a} = \mathbf{x} = \mathbf{a} + \mathbf{x}$. And so, to show that $t\mathbf{0} = \mathbf{0}$, we will show that $\mathbf{x} + t\mathbf{0} = \mathbf{x} = t\mathbf{0} + \mathbf{x}$ for all \mathbf{x} .

First, if t = 0, then by Theorem 4.2.1(1) we already know that $0\mathbf{0} = \mathbf{0}$. So, let us now assume that $t \neq 0$, and let $\mathbf{x} \in \mathbb{V}$. Then

$$\mathbf{x} + t\mathbf{0} = 1\mathbf{x} + t\mathbf{0} \qquad \text{by V10}$$

$$= ((t)(1/t))\mathbf{x} + t\mathbf{0} \qquad \text{operation of numbers in } \mathbb{R}$$

$$= t((1/t)\mathbf{x}) + t\mathbf{0} \qquad \text{by V7}$$

$$= t((1/t)\mathbf{x} + \mathbf{0}) \qquad \text{by V9}$$

$$= t((1/t)\mathbf{x}) \qquad \text{by V3}$$

$$= ((t)(1/t))\mathbf{x} \qquad \text{by V7}$$

$$= 1\mathbf{x} \qquad \text{operation of numbers in } \mathbb{R}$$

$$= \mathbf{x} \qquad \text{by V10}$$

We have shown that $\mathbf{x} + t\mathbf{0} = \mathbf{x}$. And by V5, we know that $\mathbf{x} + t\mathbf{0} = t\mathbf{0} + \mathbf{x}$, so we have that

$$\mathbf{x} + t\mathbf{0} = \mathbf{x} = t\mathbf{0} + \mathbf{x}$$

and this means that $t\mathbf{0}$ is the zero vector. That is, $t\mathbf{0} = \mathbf{0}$.

D3 V1: Since the product of two positive numbers is a positive number, we know that xy > 0, so $x \oplus y \in \mathbb{V}$.

V2:
$$(x \oplus y) \oplus z = (xy)z = x(yz) = x \oplus (y \oplus z)$$
.

V3: We need an element $\mathbf{0}$ such that $x \oplus \mathbf{0} = x\mathbf{0} = x$. This last equality lets us know that $\mathbf{0} = 1$, and thankfully we have $1 \in \mathbb{V}$. And sure enough, since (x)(1) = x = (1)(x), we have that $x \oplus 1 = x = 1 \oplus x$.

V4: Now, for every $x \in \mathbb{V}$, we need to find a $y \in \mathbb{V}$ such that $x \oplus y = 1$. That is, we want xy = 1. This means that y = (1/x), and since x > 0, we know that (1/x) > 0. So, for each $x \in \mathbb{V}$, there is $(1/x) \in \mathbb{V}$ such that $x \oplus (1/x) = 1$.

V5:
$$x \oplus y = xy = yx = y \oplus x$$

V6:
$$s \odot x = x^s > 0$$
, since $x > 0$, so $s \otimes x \in \mathbb{V}$.

V7:
$$s \odot (t \odot x) = s \odot x^{t} = (x^{t})^{s} = x^{(ts)} = x^{(st)} = (st) \odot x$$

V8:
$$(s+t) \odot x = x^{(s+t)} = x^s x^t = x^s \oplus x^t = (s \odot x) \oplus (t \odot x)$$

V9:
$$s \odot (x \oplus y) = s \odot (xy) = (xy)^s = x^s y^s = x^s \oplus y^s = (s \odot x) \oplus (s \odot y)$$

V10:
$$1 \odot x = x^1 = x$$