SinoMCU 8 位单片机

MC30P6280

用户手册

V1.0

目录

1	产品棚	[要	4
	1.1	产品特性	4
	1.2	订购信息	5
	1.3	引脚排列	5
	1.4	端口说明	6
2	电气特	性	7
	2.1	极限参数	7
	2.2	直流电气特性	7
	2.3	交流电气特性	8
3	CPU 及	· 女存储器	9
	3.1	指令集	<u>9</u>
	3.2	程序存储器	. 11
	3.3	数据存储器	. 11
	3.4	堆栈	
	3.5	控制寄存器	.12
	3.6	用户配置字	.14
4	系统时	·钟	.16
	4.1	内部高频 RC 振荡器	.16
	4.2	内部低频 RC 振荡器	.16
	4.3	系统工作模式	.17
	4.4	低功耗模式	.17
5	复位		.18
	5.1	复位条件	.18
	5.2	上电复位	.19
	5.3	低电 <mark>压</mark> 复位	.19
	5.4	看门狗复位	.19
6	I/O 端	口	.20
	6.1	通用 I/O 功能	.20
	6.2	内部上/下拉电阻	.20
	6.3	端口模式控制	.21
7	定时器	TIMER	.22
	7.1	看门狗定时器 WDT	.22
	7.2	定时器 T0	.23
	7.3	定时器 T1	.25
8	低电压	检测 LVD	.28
9	中断		.29
		外部中断	
		定时器中断	
		键盘中断	
	9.4	中断相关寄存器	
10	特性曲	线	.32

	10.1	I/O 特性	32
		功耗特性	
	10.3	模拟电路特性	39
11	封装户	尺寸	41
	11.1	SOP8	41
	11.2	DIP8	41
	11.3	SOT23-6	42
12	修订记	记录	43

1 产品概要

1.1 产品特性

- 8 位 CPU 内核
 - ◆ 精简指令集,5级深度硬件堆栈
 - ◆ CPU 为单时钟,仅在系统主时钟下运行
 - ◆ 系统主时钟下 FCPU 固定为 2 分频
- 程序存储器
 - ♦ 1K×14 位 OTP 型程序存储器(烧录 1 次)
 - ◆ 0.5K×14 位 OTP 型程序存储器(烧录 2 次)
- 数据存储器
 - ◆ 48 字节 SRAM 型通用数据存储器,支持直接寻址、间接寻址等多种寻址方式
- 1组共6个I/O
 - ♦ P1 (P10~P15)
 - ◆ P13 为输入/开漏输出口,编程时为高压 VPP 输入
 - ◆ 所有端口均内置上拉和下拉电阻,均可单独使能
 - ◆ 除 P13 外其余端口均可选开漏或推挽输出
 - ◆ 所有端口均支持键盘中断唤醒功能,并可单独使能
- 系统时钟源
 - ◆ 内置高频 RC 振荡器(16MHz),其 1/2/4/8/16/32 分頻时钟,可用作系统主时钟源
 - ◆ 内置低频 RC 振荡器 (40KHz), 可用作系统主时钟源、或系统低频时钟源
- 系统工作模式
 - ◆ 运行模式: CPU 在系统主时钟下运行
 - ◆ 休眠模式: CPU 停止运行, 系统主时钟源停止工作
- 内部自振式看门狗计数器(WDT)
 - ◆ 与定时器 T0 共用预分频器
 - ◆ 溢出时间可配置: 3.6ms/14ms/58ms/230ms (无预分频)
 - ◆ 工作模式可配置: 开启 WDT、关闭 WDT,也可软件控制开启或关闭
- 2个定时器
 - ◆ 8 位定时器 T0,支持系统低频时钟,可实现外部计数功能,与 WDT 共用预分频器
 - ◆ 8 位定时器 T1,可实现外部计数和 PWM 功能
- 中断
 - ◆ 外部中断 (INT), 键盘中断 (P10~P15), 定时器中断 (T0~T1)
- 低电压复位 LVR: 关闭/1.8V/2.0V/2.7V/3.6V
- 低电压检测 LVD
 - \$\ldot\\\ 1.8V/2.0V/2.1V/2.2V/2.4V/2.5V/2.6V/2.7V/2.8V/2.9V/3.0V/3.2V/3.3V/3.6V/4.0V/4.2V
- 工作电压
 - \Rightarrow VLVR27 ~ 5.5V @ Fcpu = 0~8MHz
 - \Rightarrow VLVR20 ~ 5.5V @ Fcpu = 0~4MHz
 - \Rightarrow VLVR18 ~ 5.5V @ Fcpu = 0~1MHz
- 封装形式: SOP8/DIP8/SOT23-6

晨矽微电子 4/43

1.2 订购信息

产品名称	封装形式	备注
MC30P6280A0H	SOP8	
MC30P6280A0A	DIP8	
MC30P6280A0T	SOT23-6	
MC30P6280A1T	SOT23-6	

1.3 引脚排列

MC30P6280A0H/A0A

MC30P6280A0T

MC30P6280A1T

晨矽微电子 5/43

1.4 端口说明

端口名称	类型	功能说明
VDD	Р	电源
GND	Р	地
P10~P12, P14~P15	D	GPIO (可选推挽/开漏输出),内部上/下拉
P13	D	GPIO (开漏输出),内部上/下拉
INT	DI	外部中断输入
TC0~TC1	DI	定时器 T0~T1 的外部计数输入
PWM1	DO	定时器 T1 的 PWM 输出
SCK, SDI, SDO	D	编程时钟/数据输入/数据输出接口
VPP	Р	编程高压输入

注:P-电源;D-数字输入输出,DI-数字输入,DO-数字输出;A-模拟输入输出,AI-模拟输入,AO-模拟输出。

2 电气特性

2.1 极限参数

参数	符号	值	单位
电源电压	VDD	-0.3~6.0	V
输入电压	Vin	-0.3~VDD+0.3	V
工作温度	Та	-40~85	°C
储存温度	Tstg	-65~150	°C
流入 VDD 最大电流	IVDDmax	50	mA
流出 GND 最大电流	IGNDmax	50	mA

注:若芯片工作条件超过极限值,则将造成永久性损坏;若芯片长时间工作在极限条件下,则会影响其可靠性。

2.2 直流电气特性

VDD=5V, T=25°C

特性	符号	端口	条件	最小	典型	最大	单位
			Fcpu=8MHz@HIRC(16M)/2	VLVR27		5.5	
			Fcpu=4MHz@HIRC(8M)/2	VLVR20		5.5	
			Fcpu=2MHz@HIRC(4M)/2	VLVR20		5.5	
工作电压	VDD	VDD	Fcpu=1MHz@HIRC(2M)/2	VLVR18		5.5	V
	_ 1		Fcpu=500KHz@HIRC(1M)/2	VLVR18		5.5	
1.4			Fcpu=250KHz@HIRC(500K)/2	VLVR18		5.5	
			Fcpu=20KHz@LIRC(40K)/2	VLVR18		5.5	
输入漏电流	Ileak	所有输入脚	VDD=5V	-1		1	uA
	9 "		SMT 开启, SMTVS 配置	0.8VDD			V
输入高电平	Vih	所有输入脚	SMT 开启, SMTVS 配置	2.0			V
			SMT 关闭	2.0			V
			SMT 开启, SMTVS 配置			0.2VDD	V
输入低电平	Vil	所有输入脚	SMT 开启, SMTVS 配置			0.8	V
			SMT 关闭			1.0	V
输出拉电流	Ioh	推挽输出脚	Voh=VDD-0.6V, IOHS 配置		14		mA
制山江巴河	1011	1世光制山脚	Voh=VDD-0.6V, IOHS 配置		4		mA
输出灌电流	Iol	所有输出脚	Vol=0.6V		20		mA
上拉电阻	Rpu	P1	VDD=5V, Vin=0		20		ΚΩ
下拉电阻	Rpd	P1	Vin=VDD=5V		20		ΚΩ
运行模式功耗	Irun	VDD	Fcpu=8MHz@HIRC(16M)/2		2.9		mA
(A) 1 (关1) 引	iruii	VDD	Fcpu=4MHz@HIRC(8M)/2		1.6		mA

晨矽微电子 7/43

			Fcpu=2MHz@HIRC(4M)/2		900		uA
			Fcpu=1MHz@HIRC(2M)/2		580		uA
			Fcpu=500KHz@HIRC(1M)/2		420		uA
			Fcpu=250KHz@HIRC(500K)/2		330		uA
			Fcpu=20KHz@LIRC(40K)/2		8		uA
/t RP 描一	leton	VDD	LIRC关		0.1	1	uA
休眠模式功耗	Istop	ال V	LIRC 开		0.9	3	uA
低压检测电压	VLVD	VDD		-10%		+10%	V
LVD 响应时间	TLVD			1	50	200	us
低压复位电压	VLVR	VDD	LVRVS 配置	-10%		+10%	V
上电复位电压	Vpor	VDD	LVR 关闭	-30%	1.5	+30%	V
LVD/LVR		VDD			6%	12%	
回滞电压		VUU			0 /0	12/0	

注:条件项中,未注明模块默认关闭,无关端口状态为输出无负载、输入或开漏输出高则端口电压为 VDD/GND。

2.3 交流电气特性

特性	符号	条件	最小	典型	最大	单位
		VDD=2. <mark>0V~5.5V, T=25°C,</mark>	-3%		+3%	
HIRC 振荡频率	FHIRC	VDD 外接 0.1uF 对地电容	-3 /0	16	+3/0	MHz
ロスと 派汤火卒		VDD=2.0V~5.5V, T=-40°C~85°C,	-5%	10	+5%	
		VDD 外接 0.1uF 对地电容	-370			
LIRC 振荡频率	FLIRC	VDD=5V, T=25°C	-50%	40	+50%	KHz

晨矽微电子 8/43

3 CPU 及存储器

3.1 指令集

芯片的指令集为精简指令集。除程序跳转类指令,其余指令均为单周期指令,即执行时间为1个指令周期;所有指令均为单字指令,即指令码只占用1个程序存储器地址空间。

指令汇总表

助记符	说明	操作	周期	长度	标志
ADDAR R	R和ACC相加,结果存入ACC	R+ACC→ACC	1	1	C,DC,Z
ADDRA R	R和ACC相加,结果存入R	R+ACC→R	1	1	C,DC,Z
ADCAR R	R和ACC相加(带C标志),结果存入ACC	R+ACC+C→ACC	1	1	C,DC,Z
ADCRA R	R和ACC相加 (带 C标志), 结果存入 R	R+ACC+C→R	1	1	C,DC,Z
RSUBAR R	R和 ACC 相减,结果存入 ACC	R-ACC→ACC	1	1	C,DC,Z
RSUBRA R	R和 ACC 相减,结果存入 R	R-ACC→R	1	1	C,DC,Z
RSBCAR R	R和ACC相减(带C标志),结果存入ACC	R-ACC-/C→ACC	1	1	C,DC,Z
RSBCRA R	R和 ACC 相减 (带 C标志), 结果存入 R	R-ACC-/C→R	1	1	C,DC,Z
ANDAR R	R和ACC与操作,结果存入ACC	R and ACC→ACC	1	1	Z
ANDRA R	R和ACC与操作,结果存入R	R and ACC→R	1	1	Z
ORAR R	R和 ACC 或操作,结果存入 ACC	R or ACC→ACC	1	1	Z
ORRA R	R和ACC或操作,结果存入R	R or ACC→R	1	1	Z
XORAR R	R和ACC异或操作,结果存入ACC	R xor ACC→ACC	1	1	Z
XORRA R	R和ACC异或操作,结果存入R	R xor ACC→R	1	1	Z
COMAR R	对R取反,结果存入ACC	R 取反→ACC	1	1	Z
COMR R	对R取反,结果存入R	R取反→R	1	1	Z
		R[7]→C			
RLAR R	R 循环左移(带 C 标志),结果存入 ACC	R[6:0]→ACC[7:1]	1	1	С
1		C→ACC[0]			
		R[7]→C			
RLR R	R 循环左移 (带 C 标志), 结果存入 R	R[6:0]→R[7:1]	1	1	С
		C→R[0]			
		R[0]→C			
RRAR R	R 循环右移 (带 C 标志), 结果存入 ACC	R[7:1]→ACC[6:0]	1	1	С
		C→ACC[7]			
		R[0]→C			
RRR R	R 循环右移 (带 C 标志),结果存入 R	R[7:1]→R[6:0]	1	1	С
		C→R[7]			
SWAPAR R	 交換 R 的高低半字节,结果存入 ACC	R[7:4]→ACC[3:0]	1	1	
OHALAN N	大人 、 は、 は、 は、 は、 ない は、 は、 ない は、 は、 ない は、	R[3:0]→ACC[7:4]	<u> </u>	<u> </u>	_
SWAPR R	交换 R 的高低半字节,结果存入 R	R[7:4]→R[3:0]	1	1	
ONVEN V	大け木は、「「十十川同に」、大大大八	R[3:0]→R[7:4]	'	'	-

晨矽微电子 9/43

MOVRA R	R	将 ACC 存入 R	ACC→R	1	1	-
MOVAR R	2	将 R 存入 ACC	R→ACC	1	1	Z
MOVR F	R	将R存入R	R→R	1	1	Z
CLRA		清零 ACC	0→ACC	1	1	Z
CLRR F	R	清零 R	0→R	1	1	Z
INCR F	₹	R 自加 1	R+1→R	1	1	Z
INCAR F	R	R加1,结果存入ACC	R+1→ACC	1	1	Z
DECR F	R	R 自减 1	R-1→R	1	1	Z
DECAR F	2	R 减 1,结果存入 ACC	R-1→ACC	1	1	Z
JZR F	R	R 自加 1;结果为 0 则跳过下一条指令	R+1→R; 结果为 0 则 PC+2→PC	1/2	1	-
JZAR F	₹	R加1,结果存入ACC;结果为0则跳过下一条指令	R+1→ACC; 结果为 0 则 PC+2→PC	1/2	1	-
DJZR F	R	R 自减 1;结果为 0 则跳过下一条指令	R-1→R; 结果为 0 则 PC+2→PC	1/2	1	-
DJZAR F	₹	R减 1,结果存入 ACC;结果为 0则跳过下一条指令	R-1→ACC; 结果为 0 则 PC+2→PC	1/2	1	-
BCLR F	R, b	将 R 的第 b 位清 0	0→R[b]	1	1	-
BSET F	R, b	将 R 的第 b 位置 1	1→R[b]	1	1	_
JBCLR R	R, b	若 R 的第 b 位为 0,则跳过下一条指令	若 R[b]=0,则 PC+2→PC	1/2	1	-
JBSET R	R, b	若 R 的第 b 位为 1,则跳过下一条指令	若 R[b]=1,则 PC+2→PC	1/2	1	-
ADDA I K	Κ	K和ACC相加,结果存入ACC	K+ACC→ACC	1	1	C,DC,Z
ISUBAI K	K	K和ACC相减,结果存入ACC	K-ACC→ACC	1	1	C,DC,Z
ANDA I K	Κ	K和ACC与操作,结果存入ACC	K and ACC→ACC	1	1	Z
ORA I K	Κ	K和ACC或操作,结果存入ACC	K or ACC→ACC	1	1	Z
XORAI K	K	K和ACC异或操作,结果存入ACC	K xor ACC→ACC	1	1	Z
MOVAI K	Κ	将 K 存入 ACC	K→ACC	1	1	-
CALL K	Κ	子程序调用	PC+1→TOS	2	1	
CALL N	`	<u> </u>	K→PC[10:0]		'	-
GOTO K	K	无条件跳转	K→PC[10:0]	2	1	-
RETURN		从子程序返回	TOS→PC	2	1	-
DETAIL	,	以了积度运用。 并发火友) ACC	TOS→PC	2	1	
RETAI K	`	从子程序返回,并将 K 存入 ACC	K→ACC		1	-
RETIE		从中断返回	TOS→PC	2	1	
KLIIL		从中断 这回	1→GIE		-	_
NOP		空操作	空操作	1	1	_
DAA		BCD 码加法后,将 ACC 的值调整为 BCD 码	ACC(HEX 码)→ACC(BCD 码)	1	1	С
DSA		BCD 码减法后,将 ACC 的值调整为 BCD 码	ACC(HEX 码)→ACC(BCD 码)	1	1	_
CLRWDT		清零看门狗定时器	0→WDT	1	1	TO,PD
ST0P		进入低功耗模式	0→WDT; CPU 暂停	1	1	TO,PD

注:

- 1、 ACC-算术逻辑单元累加器,R-数据存储器,K-立即数;
- 2、 对于条件跳转类指令,若跳转条件成立,则指令需 2 个周期,否则只需 1 个周期;

晨矽微电子 10/43

3.2 程序存储器

芯片的程序存储器为 OTP 型存储器,可通过配置字 PAGE 选择存储器的地址空间范围。

1K×14 位的地址空间范围为 0000H~03FFH, 仅能烧录 1 次, 地址分配如下图所示:

复位起始地址(0000H)
通用程序区 (0001H - 0007H)
中断入口地址(0008H)
通用程序区 (0009H - 03FFH)

0.5K×14 位的地址空间范围为 0000H~01FFH, 可以烧录 2 次, 地址分配如下图所示:

复位起始地址(0000H)
通用程序区 (0001H - 0007H)
中断入口地址(0008H)
通用程序区 (0009H - 01FFH)

3.3 数据存储器

数据存储器包括通用数据存储器 GPR 和特殊功能寄存器 SFR,具体地址分配参照下表。GPR/SFR 可直接寻址或通过 INDF 间接寻址。

数据存储器区地址映射表

地址	类型	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F
00H-07H	SFR	INDF	T0CNT	PCL	STATUS	FSR		P1	
08H-0FH	SFIX	MCR	P1KBCR	PCLATH	PDCON	ODCON	PUCON	INTE	INTF
10H-3FH	GPR				通用数据	存储器区			
40H-47H	SFR		T0CR					DDR1	
48H-4FH	SEK				TMRCR	T1CR	T1CNT	T1LOAD	T1DATA
50H-7FH	保留								

注:上表中灰色部分地址为系统保留区,读出数据不确定,写入操作可能会影响芯片正常工作。

晨矽微电子 11/43

数据存储器寻址模式地址组成

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	寻址模式
/	/	/	/	/	/	/	/	/		来自指令的 7 位地址				直接寻址模式		
/	/	/	/	/	/	/	/	/		FSR			间接寻址模式			

直接寻址模式,是以指令的低 7 位为数据存储器地址,通过指令访问,寻址范围为 00H~7FH。例:通过直接寻址模式将数据 55H 写入数据存储器 10H 地址

MOVAI 55H

MOVRA 10H

;将数据55H写入数据存储器10H地址

间接寻址模式,是以 FSR 为数据存储器地址指针,通过 INDF 访问,寻址范围为 00H~7FH。例:通过间接寻址模式将数据 55H 写入数据存储器 10H 地址

MOVAI 10H MOVRA FSR MOVAI 55H

MOVRA INDF

;将数据55H写入FSR指向的数据存储器中

3.4 堆栈

5 级堆栈深度,当程序响应中断或<mark>执行子程序调用指令时</mark> CPU 会将 PC 自动压栈保存;当执行中断返回指令或子程序返回指令时,栈顶数据自动出栈载入 PC。

3.5 控制寄存器

数据指针寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FSR	-	FSR6	FSR5	FSR4	FSR3	FSR2	FSR1	FSR0
R/W	R	R/W						
初始值	1	0	0	0	0	0	0	0

BIT[6:0] **FSR[6:0]** – 数据指针寄存器

FSR: 间接寻址模式的指针。

间接寻址寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INDF	INDF7	INDF6	INDF5	INDF4	INDF3	INDF2	INDF1	INDF0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	Х	Х	Х	Х	Х	Х	Х	Х

晨矽微电子 12/43

BIT[7:0] INDF[7:0] - 间接寻址寄存器

INDF: INDF 不是物理寄存器,对 INDF 寻址实际是对 FSR 指向的数据存储器地址进行访问,从而实现间接寻址功能。

程序指针计数器低字节

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCL	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] PC[7:0] - 程序指针计数器低 8 位

程序指针计数器高位缓存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PCLATH	-	-	-	-	-	0	PCH1	PCH0
R/W	-	-	-	-	-	-	R/W	R/W
初始值	-	-	-	-	-/4	-	0	0

BIT[1:0] PCH[1:0] - 程序指针计数器高 2 位缓存器

程序指针计数器 (PC) 有以下几种操作模式:

- ♦ 顺序运行指令: PC = PC + 1;
- ◆ 分支指令 GOTO/CALL: PC = 指令码低 10 位;
- ◆ 返回指令 RETIE/RETURN/RETAI: PC = 堆栈栈顶 (TOS);

对 PCL 操作指令 (汇编模式):

- → 对 PCL 操作的加法指令: PC = (PC[9:0]+ALU[7:0]);
- → 对 PCL 操作的其它指令: PC = {PC[9:8]:ALU[7:0](ALU 运算结果)};

对 PCL 操作指令 (C编译模式):

→ 对 PCL 操作指令: PC = {PCLATH[1:0]:ALU[7:0](ALU 运算结果)};

CPU 状态寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STATUS	WKUP	-	-	TO	PD	Z	DC	С
R/W	R/W	-	-	R	R	R/W	R/W	R/W
初始值	0	_	-	1	1	Х	Х	Х

BIT[7] WKUP - 唤醒源标志位

0: 芯片通过其他唤醒源唤醒;

1: 芯片通过外部中断或键盘中断唤醒;

BIT[4] TO - 看门狗溢出标志位

0: 发生 WDT 溢出;

1: 上电复位,或执行 CLRWDT/STOP 指令;

晨矽微电子 13/43

BIT[3] PD - 进入低功耗模式标志位

0: 执行 STOP 指令;

1: 上电复位,或执行 CLRWDT 指令;

BIT[2] **Z** - 零标志位

0: 算术或逻辑运算的结果不为零;

1: 算术或逻辑运算的结果为零;

BIT[1] DC - 半字节进/借位标志位

0: 加法运算时半字节无进位;减法运算时半字节有借位;

1: 加法运算时半字节有进位;减法运算时半字节无借位;

BIT[0] **C** - 进/借位标志位

0: 加法运算时无进位;减法运算时有借位;移位后移出逻辑0;

1: 加法运算时有进位;减法运算时无借位;移位后移出逻辑 1:

3.6 用户配置字

芯片为保证系统正常工作,会将关键模块的配置信息预先存储于单独的存储器区域中,在上电或其他复位发生后将配置信息载入寄存器中,通过寄存器控制关键模块的工作状态。该部分存储器中用户可选的内容即为用户配置字,可在烧录用户程序代码时进行配置与烧录。

芯片的用户配置字, 定义如下:

符号	功能说明						
-A'	ROM 烧录模式设置:						
PAGE	0.5 K 容量 MTP 模式,第 1 次烧录;						
PAGE	0.5K 容量 MTP 模式,第 2 次烧录;						
	1K 容量 OTP 模式;						
29	系统主时钟源选择:						
OSCM	Fosc=内部高频 RC 振荡器时钟 FHIRC 的后分频时钟;						
	Fosc=内部低频 RC 振荡器时钟 Flirc;						
HIRCDS	HIRC 后分频输出选择:						
ніксьз	Fosc=Fhirc/1; Fhirc/2; Fhirc/4; Fhirc/8; Fhirc/16; Fhirc/32;						
LVRVS	LVR 复位电压选择: (LVR 电压应满足由 FCPU 决定的工作电压特性)						
LVKVS	LVR 关闭(V _{POR} =1.5V);1.8V;2.0V;2.7V;3.6V;						
WDTM	WDT 模式设置:						
WDTW	WDT 始终关闭; WDT 始终开启;						
WDTT	WDT 溢出时间选择 (无预分频):						
WDII	3.6ms; 14ms; 58ms; 230ms;						
SMTEN	端口输入施密特设置:						
SIVI I EIN	输入 SMT 功能关闭; 输入 SMT 功能开启;						

晨砂微电子 14/43

SMTVS	端口施密特阈值选择:		
SIVIT V S	2.0V/0.8V;	0.8VDD/0.2VDD;	
IOHS	端口驱动拉电流选择:		
ЮПЗ	限流驱动;	正常驱动;	
MCUSEL	芯片模式选择:		
IVICUSEL	汇编模式;	C 编译模式;	
ENCR	程序代码加密设置:		
ENCK	程序代码加密;	程序代码不加密;	

晨矽微电子 15/43

4 系统时钟

芯片为双时钟系统,内部电路均在系统主时钟 Fosc 或系统低频时钟 FLosc 下工作,部分模块的时钟还可在 Fosc 和 FLosc 之间切换。

系统主时钟 Fosc 可通过配置字 OSCM 选择内部高频 RC 振荡器 HIRC(16MHz)时钟 FHIRC 的 1/2/4/8/16/32 分频时钟、或内部低频 RC 振荡器 LIRC(40KHz)时钟 FLIRC; 系统低频时钟 FLOSC 固定为内部低频 RC 振荡器 LIRC(40KHz)时钟 FLIRC。

CPU 为单时钟,时钟源固定为系统主时钟 Fosc, CPU 的时钟频率 FCPU 固定为 Fosc 的 2 分频。

WDT (看门狗) 电路的时钟源固定为内部低频 RC 振荡器。

系统时钟示意图

4.1 内部高频 RC 振荡器

芯片内置 1 个振荡频率为 16MHz 的高精度 HIRC 振荡器,其后分频输出时钟(16MHz/8MHz/4MHz/2MHz/1MHz/500KHz)可用作系统主时钟源。

4.2 内部低频 RC 振荡器

芯片内置 1 个振荡频率典型值为 40KHz 的 LIRC 振荡器,可用作系统主时钟源或系统低频时钟源,也用于系统上电延时控制、WDT 定时器等电路。

注:若系统主时钟源配置为 HIRC,则只有在 WDT 开启、或在 TO 使能且其时钟选为 FLIRC 时,LIRC 才工作。

晨矽微电子 16/43

4.3 系统工作模式

芯片支持运行模式和休眠模式2种系统工作模式。

工作模式	切入条件	系统状态
运行模式	系统复位	CPU 运行,主时钟源工作
四111关1	休眠模式下,CPU 唤醒	CFU 座11,土的环源工作
休眠模式	运行模式下,执行 STOP 指令	CPU 暂停,主时钟源停止

注:若系统主时钟为 LIRC,则 WDT 开启、或在 T0 使能且其时钟选为 FLIRC后,系统进入休眠模式时 LIRC 也将一直工作。

4.4 低功耗模式

芯片的低功耗模式即为休眠模式。

执行 STOP 指令可使系统进入低功耗模式,同时对系统会产生以下影响:

- ◆ CPU 停止运行;
- ◆ 根据不同模式停止相应时钟源的振荡;
- ◆ RAM 内容保持不变;
- ♦ 所有的输入输出端口保持原态不变;
- ◇ 定时器若其时钟源未停止,则可以保持继续工作;

以下情况可使系统退出低功耗模式:

- ◆ 上电复位;
- ◆ 外部复位(若有外部复位功能);
- ◆ 有 WDT 溢出 (若低功耗模式下 WDT 保持继续工作);
- ◆ 有外部中断请求发生(若有外部中断功能):
- ◆ 定时器溢出中断发生(若低功耗模式下定时器保持继续工作);
- ◆ 有键盘中断请求发生(若有键盘中断功能);

注:

- 1、低功耗模式下触发中断请求时,若对应的中断使能位关闭,则不会退出低功耗模式;若对应的中断使能位开启 而中断总使能位关闭,则仅唤醒 CPU 执行下一条指令;若对应的中断使能位和中断总使能位均开启,则唤醒 CPU 后执行中断服务程序;
- 2、 未使用或未封出的引脚,应将其对应的 I/O 端口设置为输出、输入上拉或输入下拉等稳定态,以免因引脚浮空 而产生漏电流或非预期的中断唤醒;

晨矽微电子 17/43

5 复位

5.1 复位条件

芯片共有如下几种复位方式:

- ◆ 上电复位 POR;
- ◆ 低电压复位 LVR;
- ♦ WDT 看门狗复位;

任何一种复位发生后,系统进入复位状态,执行初始化操作并重置 SFR 为复位初始值;复位条件解除后,系统退出复位状态,CPU 开始重新从程序存储器 0000H 地址处执行指令。

上电复位 POR 和低电压复位 LVR 会关闭系统主时钟振荡器,复位解除后才重新打开振荡器,因为振荡器起振和稳定需要一定的时间,所以系统会保持一定时间的上电延时(典型值约为 13ms)和振荡等待后才开始工作;而 WDT 复位不会关闭主时钟振荡器,复位解除时系统会在较短的复位延时和振荡等待后即开始工作。

下图是复位产生和系统工作状态之间时序关系的示意图:

注:若应用系统在上电或掉电回升时芯片的 VDD 电压上升较慢,则应在复位后进行软件延时,以确保芯片开始工作时 VDD 已稳定在 FCPU 对应的工作电压范围内。

晨矽微电子 18/43

5.2 上电复位

芯片的上电复位电路可以适应快速、慢速上电的情况,且当芯片上电过程中出现电源电压抖动时均能保证系统可靠的复位。

上电复位过程可以概括为以下几个步骤:

- (1) 检测系统工作电压,等待电压高于上电复位电压 VPOR 并保持稳定;
- (2) 若有 LVR 功能,则需等待电压高于 VLVR 并保持稳定;
- (3) 若有外部复位功能,则需等待复位引脚电压高于 Vih;
- (4) 初始化所有寄存器;
- (5) 开启主时钟振荡器,并等待一段时间以待振荡器稳定;
- (6) 上电结束,系统开始执行指令。

5.3 低电压复位

芯片的低电压复位电压可通过配置字 LVRVS 选择。电压检测电路有一定的回滞特性,回滞电压为6%左右(典型值),当电源电压下降至 LVR 电压时 LVR 复位有效,反之则电源电压需上升至 LVR 电压+6%后 LVR 复位才解除。

若系统主时钟源为 HIRC,则 LVR 在系统进入休眠模式后将自动关闭,进入运行模式后自动开启;若系统主时钟源为 LIRC,则 LVR 将一直关闭。

5.4 看门狗复位

看门狗(WDT)复位是一种对程序正常运行的保护机制。正常情况下,用户程序需定时对 WDT 定时器进行清零操作,以保证 WDT 不溢出。若出现异常情况,程序未按时对 WDT 定时器清零,则芯片会因 WDT 溢出而产生看门狗复位,系统重新初始化,返回受控状态。

注:低功耗模式下 CPU 暂停工作,若此时有 WDT 溢出,则仅唤醒 CPU 而不产生复位。

晨矽微电子 19/43

6 I/O 端口

6.1 通用 I/O 功能

芯片的输入/输出端口为一组 6 位端口 P1。所有 I/O 端口均支持施密特输入,均支持推挽输出。除用作通用数字 I/O 端口外,部分端口还具有外部中断输入、或 PWM 输出等复用功能。

端口数据寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1	-	-	P15D	P14D	P13D	P12D	P11D	P10D
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	Х	Х	Х	Х	Χ	X

BIT[5:0] **P1nD** – P1n 端口数据位(n=5-0)

端口方向寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DDR1	-	-	DDR15	DDR14	DDR13	DDR12	DDR11	DDR10
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	1	1	1	1	1	1

BIT[5:0]

DDR1n – P1n 端口方向控制位(n=5-0)

- 0: 端口作为输出口,读端口操作将读取端口的数据寄存器值;
- 1: 端口作为输入口, 读端口操作将读取端口的输入电平状态;

6.2 内部上/下拉电阻

所有端口均有内部上拉和下拉电阻,且均有单独的寄存器位控制其上/下拉电阻在端口处于输入状态时是否有效。端口处于输出状态时,上/下拉电阻及其控制位无效。

上拉电阻控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PUCON	-	-	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	1	1	1	1	1	1

BIT[5:0] **P1nPU** – P1n 端口上拉电阻控制位(n=5-0)

0: 端口内部上拉电阻有效;

1: 端口内部上拉电阻无效;

晨矽微电子 20/43

下拉电阻控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PDCON	-	-	P15PD	P14PD	P13PD	P12PD	P11PD	P10PD
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	1	1	1	1	1	1

BIT[5:0] **P1nPD** – P1n 端口下拉电阻控制位(n=5-0)

0: 端口内部下拉电阻有效;

1: 端口内部下拉电阻无效;

6.3 端口模式控制

用作数字输出口时,除 P13 固定为开漏输出外,其余端口可选择推挽输出或开<mark>漏输</mark>出。若<mark>端口</mark>为推 挽输出、或开漏输出低时,输入通路保持连接;而端口在开漏输出高时,则输入通路将自动关断。

端口输出模式寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ODCON	-	-	P15OD	P14OD	保留	P12OD	P110D	P10OD
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	0	0	0	0	0	0

BIT[5:4,2:0] **P1nOD** – P1n 端口输出模式选择位(n=5-4,2-0)

0: 输出时端口为推挽输出;

1: 输出时端口为开漏输出;

BIT[3] 保留位,需固定写"1"

晟矽微电子 21/43

7 定时器TIMER

7.1 看门狗定时器 WDT

看门狗定时器 WDT 的时钟源为内部低频 RC 振荡器,可通过预分频器选择不同的计数时钟频率。 WDT 计数器溢出将复位芯片或唤醒 CPU。

可通过配置字 WDTM 和寄存器位 WDTEN 共同决定是否开启 WDT。当 WDTM 选择始终关闭或 WDTEN 为 0 时 WDT 定时器被关闭;当 WDTM 选择始终开启且 WDTEN 为 1 时 WDT 定时器才开启。若 WDT 定时器开启,则在休眠模式下 WDT 依然工作,溢出时将唤醒 CPU;而在 CPU 运行时 WDT 溢出,则将复位芯片。

WDT 和定时器 T0 共用一个预分频器,并通过寄存器位决定预分频器的分配。当预分频器分配给 T0 时,WDT 时钟不分频;而预分频器分配给 WDT 时,T0 时钟不分频。

执行 CLRWDT 指令或 STOP 指令将清零 WDT 计数器,若预分频器分配给 WDT,则还将清零预分频计数器(预分频比不变)。

WDT 的基本溢出时间(即无预分频的时间)可配置为 3.6ms/14ms/58ms/230ms。

注:WDT 溢出时间为典型值,实际值偏差大,必须保证清 WDT 时间小于典型值的 1/4。

杂项控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MCR	WDTEN	EIS	LVDF	LVDVS3	LVDVS2	LVDVS1	LVDVS0	LVDEN
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
初始值	1	0	0	0	0	0	0	0

BIT[7] WDTEN - 看门狗使能位

0: 关闭 WDT;

1: 开启 WDT;

BIT[6] EIS-INT 中断外部输入使能位

0: INT 中断外部输入无效,端口用作其他功能;

1: INT 中断外部输入有效,端口需设为输入;

BIT[5] LVDF - LVD 检测状态标志位

BIT[4:1] **LVDVS[3:0**] – LVD 电压检测量值选择位

BIT[0] LVDEN - 低电压检测 LVD 使能位

晨矽微电子 22/43

7.2 定时器 T0

定时器 T0 为 8 位定时/计数器,包含 1 个 8 位递增计数器、可编程预分频器、控制寄存器。

- ◇ 可通过预分频比设置计数频率;
- ◆ 时钟源可选: FLIRC、FCPU、外部时钟(TC0输入);
- ◆ 支持溢出中断和溢出唤醒功能:

TOCNT 为 8 位可读写的递增计数器,计数溢出到 0 时产生溢出信号并触发中断,中断标志 TOIF 将被置 1。

预分频器为 T0 与 WDT 共用,通过寄存器位 T0PTA 控制预分频器的分配。

TOPTA=0 时,预分频器分配给 TO 使用,TO 计数周期 = 预分频比 / TO 计数时钟频率,写 TOCNT 将清零预分频计数器,而执行 CLRWDT 或 STOP 指令则不影响预分频器的计数。

T0PTA=1 时,预分频器分配给 WDT 使用,执行 CLRWDT 或 STOP 指令将清零预分频计数器,而写 T0CNT 则同样不影响预分频器的计数。

通过 TOPTA 改变预分频器的分配时也将清零预分频计数器。

清零预分频计数器的动作不会改变预分频比,而改变预分频比也不会清零预分频计数器。

当通过 TOTBS 选择 FLIRC 作为 TO 时钟时,在低功耗模式下 TO 将继续工作,溢出可唤醒。

定时器 T0 控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0CR	-	INTM	TOPTS	T0CSE	T0PTA	T0PRS2	T0PRS1	T0PRS0
R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	0	1	1	1	1	1	1

BIT[6] INTM - 外部中断 INT 触发方式选择位

0: 下降沿触发;

1: 上升沿触发;

晟矽微电子 23/43

BIT[5] TOPTS - TO 时钟源选择位

0: T0 时钟源为 FCPU;

1: T0 时钟源为 TC0 输入的外部时钟(端口需设为输入状态);

BIT[4] TOCSE - TO 外部时钟计数沿选择位

0: 外部时钟上升沿计数;

1: 外部时钟下降沿计数;

BIT[3] TOPTA - 预分频器分配控制位

0: 预分频器分配给 T0;

1: 预分频器分配给 WDT;

BIT[2:0] TOPRS[2:0] - 预分频比选择位

T0PRS[2:0]	T0 时钟预分频比 (T0PTA=0)	WDT 时钟预分频比 (T0PTA=1)
000	1: 2	1: 1
001	1: 4	1: 2
010	1: 8	1: 4
011	1: 16	1: 8
100	1: 32	1: 16
101	1: 64	1: 32
110	1: 128	1: 64
111	1: 256	1: 128

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TMRCR		TOTBS	<u> </u>	-	-	-	T1IE	T1IF
R/W		R/W	-	-	-	-	R/W	R/W
初始值		0	-	-	-	-	0	0

BIT[6] **T0TBS** - T0 时钟源选择位

0: T0 时钟源由 T0PTS 决定;

1: T0 时钟源为系统低频时钟 FLIRC;

BIT[1] **T1IE** - 定时器 T1 中断使能位

0: 屏蔽定时器 T1 中断;

1: 使能定时器 T1 中断;

BIT[0] **TIIF** - 定时器 T1 中断标志位

0: 未发生定时器 T1 中断;

1: 发生定时器 T1 中断, 需软件清 0;

定时器 T0 计数器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T0CNT	T0CNT7	T0CNT6	T0CNT5	T0CNT4	T0CNT3	T0CNT2	T0CNT1	T0CNT0

晨矽微电子 24/43

| R/W |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 初始值 | Х | Х | Χ | Χ | Χ | Х | Х | Χ |

BIT[7:0] T0CNI[7:0] - T0 计数器,为可读写的递增计数器

7.3 定时器 T1

定时器 T1 为 8 位定时/计数器,包含 1 个 8 位递减计数器、可编程预分频器、控制寄存器、8 位重载寄存器及比较寄存器。

- ◆ 可通过预分频比设置计数频率,可通过重载寄存器控制计数周期;
- ◆ 支持 8 位 PWM 输出,可通过比较寄存器设置 PWM 占空比;
- ◆ 支持溢出中断和溢出唤醒功能;

定时器 T1,可通过寄存器位 T1CKS 选择时钟源,通过 T1PRS 选择预分频比,所选时钟源通过预分 频器后产生 T1 计数器 T1CNT 的计数时钟(上升沿计数)。预分频比可选择 1~128 分频,对 T1CNT 的 写操作将清零预分频计数器,而预分频比保持不变。

当 T1EN=0 时, T1CNT 保持不变, 写重载寄存器 T1LOAD 将立即载入 T1CNT 中; 当 T1EN=1 时, T1CNT 递减计数, 计数到 0 的时钟结束后产生溢出信号并触发中断, 中断标志 T1IF 将被置 1, 同时 T1 自动将当前 T1LOAD 值载入 T1CNT 中重新开始计数。

如图所示,定时器 T1 可实现 PWM 功能(PWM1),可通过寄存器位使能/关闭 PWM 功能,或控制端口是<mark>否输出 PWM</mark> 波形。PWM1 关闭时 T1PWM 信号为低电平。PWM1 使能后,T1CNT 从重载值开始递减计数直到计数溢出为一个 PWM 周期: 当计数到与比较寄存器 T1DATA 相等时,T1PWM 变为高电平;当计数溢出时,T1PWM 变为低电平。

T1DATA 配有 1 个 8 位的比较缓冲器(T1DT_buf)用于与 T1CNT 比较,PWM1 关闭时写 T1DATA 将立即载入比较缓冲器中,而 PWM1 使能后写 T1DATA 则将在 T1 溢出时才载入比较缓冲器中。若要首个 PWM 周期和占空比准确,需先写重载寄存器和比较寄存器,再使能 PWM,最后开启定时器。

T1PWM 信号的占空比计算如下:

- ◆ 高电平时间 = (T1DATA) × T1CNT 计数时钟周期
- ◆ 周期(T1的溢出周期)=(T1LOAD+1)×T1CNT计数时钟周期
- ◆ 占空比 = 高电平时间 / 周期 = (T1DATA) / (T1LOAD+1)

晨矽微电子 25/43

定时器 T1 控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1CR	T1EN	PWM1EC	-	T1CKS1	T1CKS0	T1PRS2	T1PRS1	T1PRS0
R/W	R/W	R/W	-	R/W	R/W	R/W	R/W	R/W
初始值	0	0	-	0	0	0	0	0

BIT[7] **T1EN** - 定时器 T1 使能位

0: 关闭定时器 T1;

1: 开启定时器 T1;

BIT[6] PWM1EC - PWM1 使能位及端口输出控制位

0: 关闭 PWM1 功能,并禁止端口输出 PWM 波形;

1: 使能 PWM1 功能,并允许端口输出 PWM 波形;

BIT[4:3] T1CKS[1:0] - T1 时钟源选择位

T1CKS[1:0]	T1 时钟源
00	FCPU
01	Fosc
10	TC1 上升沿
11	TC1 下降沿

注:当系统主时钟源为 HIRC 时,T1 时<mark>钟源选择 Fo</mark>sc,则将直接使用 16MHz 的 Fhirc 而非 HIRC 后分频时钟。

BIT[2:0] T1PRS[2:0] - T1 预分频比选择位

T1PRS[2:0]	T1 时钟预分频比
000	1: 1
001	1: 2
010	1: 4
011	1: 8
100	1: 16
101	1: 32
110	1: 64
111	1: 128

定时器 T1 计数器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1CNT	T1CNT7	T1CNT6	T1CNT5	T1CNT4	T1CNT3	T1CNT2	T1CNT1	T1CNT0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	1	1	1	1	1	1	1	1

BIT[7:0] **T1CNT[7:0]** – T1 计数器,为可读写的递减计数器

晟矽微电子 26/43

定时器 T1 重载寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1LOAD	T1LOAD7	T1LOAD6	T1LOAD5	T1LOAD4	T1LOAD3	T1LOAD2	T1LOAD1	T1LOAD0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	1	1	1	1	1	1	1	1

BIT[7:0] **T1LOAD[7:0**] – T1 重载寄存器,用于设置 T1 的计数周期

注:定时器重载寄存器的值禁止为 0,否则定时器将无法正常工作。

定时器 T1 比较寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1DATA	T1DATA7	T1DATA6	T1DATA5	T1DATA4	T1DATA3	T1DATA2	T1DATA1	T1DATA0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
初始值	0	0	0	0	0	0	0	0

BIT[7:0] **T1DATA[7:0]** – T1 比较寄存器,用于设置 PWM1 的占空比

8 低电压检测 LVD

芯片內置低电压检测模块 LVD,可通过寄存器位 LVDEN 开启,通过 LVDVS 选择电压检测量值。 当 VDD 电压低于电压检测量值时检测状态标志位 LVDF 将被置 1;因 LVD 电路有回滞特性(回滞电压 典型值为 6%),VDD 电压需上升至电压检测量值+6%后 LVDF 才被清 0。

注: 开启 LVD、或切换电压检测量值等操作,需待电路稳定(时间>200us)后 LVD 输出才有效。

杂项控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
MCR	WDTEN	EIS	LVDF	LVDVS3	LVDVS2	LVDVS1	LVDVS0	LVDEN
R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	R/W
初始值	1	0	0	0	0	0	0	0

BIT[7] WDTEN - 看门狗使能位

BIT[6] EIS – INT 中断外部输入使能位

BIT[5] LVDF - LVD 检测状态标志位

0: VDD 电压高于电压检测量值,或 LVD 关闭;

1: VDD 电压低于电压检测量值;

BIT[4:1] **LVDVS[3:0**] – LVD 电压检测量值选择位

LVDVS[3:0]	LVD 电压检测量值
0000	1.8V
0001	2.0V
0010	2.1V
0011	2.2V
0100	2.4V
0101	2.5V
0110	2.6V
0111	2.7V
1000	2.8V
1001	2.9V
1010	3.0V
1011	3.2V
1100	3.3V
1101	3.6V
1110	4.0V
1111	4.2V

BIT[0] LVDEN - 低电压检测 LVD 使能位

0: 关闭 LVD;

1: 开启 LVD;

晟矽微电子 28/43

9 中断

芯片的中断源包括外部中断(INT)、定时器中断(T0~T1)和键盘中断等。可通过中断总使能位GIE 屏蔽所有中断。

CPU 响应中断的过程如下:

- ◆ CPU 响应中断源触发的中断请求时,自动将当前指令的下一条要执行指令的地址压栈保存,自动清 0 中断总使能位 GIE 以暂停响应后续中断。与复位不同,硬件中断不停止当前指令的执行,而是暂时挂起中断直到当前指令执行完成。
- ◆ CPU 响应中断后,程序跳到中断入口地址(0008H)开始执行中断服务程序,中断服务程序应先保存累加器 A 和状态寄存器 STATUS,然后处理被触发的中断。
- ◆ 中断服务程序处理完中断后,应先恢复累加器 A 和状态寄存器 STATUS,然后执行 RETIE 返回主程序。此时芯片将自动恢复 GIE 为 1,然后从堆栈取出 PC 值,从中断产生时当前指令的下一条指令继续执行。

注:要使用外部中断功能或键盘中断功能,需将相应端口设为输入状态。

9.1 外部中断

芯片有1路外部中断源INT,通过INTM可选择上升沿或下降沿等触发方式。外部中断触发时,中断标志INTIF将被置1,若中断总使能位GIE为1且外部中断使能位INTIE为1,则产生外部中断。

注:当 P10 端口通过寄存器位 EIS 置 1 复用为 INT 时,端口的键盘中断唤醒功能无效。

9.2 定时器中断

定时器 Tn (n=0-1) 在计数溢出时触发定时器中断,中断标志 TnIF (n=0-1) 将被置 1,若中断总使能位 GIE 为 1 且定时器中断使能位 TnIE (n=0-1) 为 1,则产生定时器中断。

9.3 键盘中断

芯片有 6 路键盘中断源,均可通过寄存器位单独使能或屏蔽,任意一路使能的中断源的输入电平发生变化时,均会触发键盘中断,中断标志 KBIF 将被置 1,若中断总使能位 GIE 为 1 且键盘中断使能位 KBIE 为 1,则产生键盘中断。

晨矽微电子 29/43

键盘中断控制寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
P1KBCR	-	-	P15KE	P14KE	P13KE	P12KE	P11KE	P10KE
R/W	-	-	R/W	R/W	R/W	R/W	R/W	R/W
初始值	-	-	0	0	0	0	0	0

BIT[5:0] **P1Nke** – P1n 端口键盘中断使能位(n=5-0)

0: 屏蔽端口键盘中断功能;

1: 使能端口键盘中断功能;

9.4 中断相关寄存器

中断使能寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTE	GIE	-	-	-	-	INTIE	KBIE	TOIE
R/W	R/W	-	-	-		R/W	R/W	R/W
初始值	0	-	-	-	-	0	0	0

BIT[7] GIE - 中断总使能位

0: 屏蔽所有中断;

1: 由相应的中断使能位决定 CPU 是否响应中断源所触发的中断;

BIT[2] INTIE - INT 中断使能位

0: 屏蔽 INT 中断;

1: 使能 INT 中断;

BIT[1] KBIE - 键盘中断使能位

0: 屏蔽键盘中断;

1: 使能键盘中断;

BIT[0] **T0IE** - 定时器 T0 中断使能位

0: 屏蔽定时器 T0 中断;

1: 使能定时器 T0 中断;

中断标志寄存器

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
INTF	-	-	-	-	-	INTIF	KBIF	TOIF
R/W	-	-	-	-	-	R/W	R/W	R/W
初始值	-	-	-	-	-	0	0	0

BIT[2] INTIF - INT 中断标志位

0: 未触发 INT 中断;

1: 已触发 INT 中断, 需软件清 0;

晨矽微电子 30/43

BIT[1] KBIF - 键盘中断标志位

0: 未触发键盘中断;

1: 己触发键盘中断,需软件清 0;

BIT[0] **TOIF** - 定时器 TO 中断标志位

0: 未触发定时器 T0 中断;

1: 已触发定时器 T0 中断, 需软件清 0;

晟矽微电子 31/43

10 特性曲线

注:

- 1、特性曲线图中数据均来自抽样实测,仅作为应用参考,部分数据因生产工艺偏差,可能与实际芯片不符;为保证芯片能正常工作,请确保其工作条件符合电气特性参数说明;
- 2、 若图文中无特别说明,则电压特性曲线的温度条件为 T=25℃,温度特性曲线的电压条件为 VDD=5V;

10.1 I/O 特性

输入 SMT 阈值电压 VS 电源电压

晟矽微电子 32/43

晟矽微电子 33/43

I/O 输出 驱动电流 VS 端口电压 (VDD=5V)

晟矽微电子 34/43

上/下拉电阻值 VS 电源电压

晟矽微电子 35/43

10.2 功耗特性

运行模式 功耗 VS 电源电压

晟矽微电子 36/43

晨矽微电子 37/43

休眠模式 功耗 VS 电源电压

晟矽微电子 38/43

10.3 模拟电路特性

HIRC 频率 VS 电源电压/温度

LIRC 频率 VS 电源电压/温度

晟矽微电子 39/43

11 封装尺寸

11.1 SOP8

CVIADOL		MILLIMETER	t
SYMBOL	MIN	TYP	MAX
A	78	-	1.77
A1	0.08	0.18	0.28
A2	1.20	1.40	1.60
A3	0.55	0.65	0.75
b	0.39	28	0.48
b1	0.38	0.41	0.43
c	0.21	-2	0.26
c1	0.19	0.20	0.21
D	4.70	4.90	5.10
E	5.80	6.00	6.20
E1	3.70	3.90	4.10
e		1.27BSC	×
Lo	0.50	0.65	0.80
L1		1.05BSC	
θ	0	-20	8°

11.2 DIP8

CVLABOL		MILLIMETER	t .	
SYMBOL	MIN	TYP	MAX	
А	3.60	3.80	4.00	
A1	0.51	12	32	
A2	3.10	3.30	3.50	
A3	1.50	1.60	1.70	
b	0.44	, : -	0.53	
b1	0.43	0.46	0.48	
B1	1.52BSC			
C	0.25	102	0.31	
c1	0.24	0.25	0.26	
D	9.05	9.25	9.45	
E1	6.15	6.35	6.55	
е		2.54BSC		
eA		7.62BSC		
eВ	7.62		9.50	
eС	0	35	0.94	
i La	3.00	, s e	90	

晨矽微电子 41/43

11.3 SOT23-6

CVNAROL		MILLIMETER	t
SYMBOL	MIN	TYP	MAX
А	8 3 3	(2)	1.35
A1	0.04	2 - 20	0.15
A2	1.00	1.10	1.20
A3	0.55	0.65	0.75
b	0.30	V=0	0.50
b1	0.30	0.40	0.45
С	0.08	2=00	0.22
c1	0.08	0.13	0.20
D	2.72	2.92	3.12
E	2.60	2.80	3.00
E1	1.40	1.60	1.80
е		0.95BSC	
L	0.30	320	0.60
θ	0	270	8°

12 修订记录

版本	修订日期	修订内容
V1.0	2020-10-15	初版发布;

最矽微电子 43/43