Einführung ins Programmieren WS 24/25 Übungsblatt 3

3.1: for-Loop: Legendre-Polynome

Die Legendre-Polynome $P_n(x)$ spielen eine bedeutende Rolle bei der Darstellung des Drehimpulses in der Quantenmechanik (und nicht nur dort). Ihre Werte gehorchen der Rekursionsformel

$$P_{n+1}(x) = \frac{2n+1}{n+1}xP_n(x) - \frac{n}{n+1}P_{n-1}$$
(1)

mit den Anfangsbedingungen $P_0(x) = 0$ und $P_1(x) = x$.

Schreiben Sie ein Programm, dass die Werte aller P_n bis $n \leq N$ am Punkt x ausgibt. Verwenden Sie dafür einen for-Loop.

3.2: do...while

Berechnen Sie die Werte der Legendre-Polynome wie oben, aber mittels eines do...while-Loops.

3.3: for-Loop: Faktorielle bis zu einem Höchstwert

Schreiben Sie den folgenden Code aus der Vorlesung in einen for-Loop um, indem Sie für die Bedingung im for-Loop einen Test auf das Resultat nFac verwenden. Achten Sie darauf, dass Sie dass wieder, wie unten, 4! = 24 ausgegeben wird.

```
int main()
{
    int k = 1, nFac = 1;
    do
    {
        nFac *= k;
        k++;
    } while (nFac < 24);
    std::cout << nFac << "\n";
}</pre>
```