Национальный исследовательский Университет ИТМО Мегафакультет информационных и трансляционных технологий Факультет инфокоммуникационных технологий

Инфокоммуникационные системы и технологии

Практическая работа №1

Работу выполнил:

Д. В. Шишминцев Группа: Группа

K3121

Преподаватель:

Ромакина О. М.

 ${
m Cankt-} \Pi$ етербург2022

Содержание

1.	МАТЕМАТИЧЕСКИЙ ТЕКСТ				
	1.1. Пример оформления математического текста				
		1.1.1.	3. Интегрирование по частям в определенном интеграле и формула		
			Тейлора	4	
		1.1.2.	4. Замена переменной в интеграле	6	
Ст	тисог	к испо	пьзованных источников	8	

Введение

Целью данное практической работы является изучение системы компьютерной верстки \LaTeX техтического текста согласно стандарту ГОСТ 7.32.

1. МАТЕМАТИЧЕСКИЙ ТЕКСТ

1.1. Пример оформления математического текста

Поскольку обе части этой формулы одновременно меняют знак при перестановке а и b, то формула справедлива при любом соотношении величин а и b, т. е. как при а $\leq b$, так и при a > b.

На упражнениях по анализу формула Ньютона — Лейбница большей ча- стью используется только для вычисления стоящего слева интеграла, и это может породить несколько искаженное представление об ее использовании. На самом деле положение вещей таково, что конкретные интегралы редко находят через первообразную, а чаще прибегают к прямому счету на ЭВМ с помощью хорошо разработанных численных методов. Формула Ньютона— Лейбница занимает ключевую, связывающую интегрирование и дифферен- цирование, позицию в самой теории математического анализа, в которой она, в частности, получает далеко идущее развитие в виде так называемой общей формулы Стокса

Примером того, как формула Ньютона— Лейбница используется в самом анализе, может служить уже материал следующего пункта настоящего пара- графа.

1.1.1. 3. Интегрирование по частям в определенном интеграле и формула Тейлора

Утверждение 1. Если функции u(x) и v(x) непрерывно дифференцируемы на отрезке с концами а и b, то справедливо соотношение

$$\int_{a}^{b} (u \cdot v)(x)dx = (u \cdot v)(x)|_{a}^{b} - \int_{a}^{b} (v \cdot u)(x)dx$$

Эту формулу принято записывать в сокращенном виде

$$\int_{a}^{b} u dv = u \cdot v|_{a}^{b} - \int_{a}^{b} v du$$

и называть формулой интегрирования по частям в определенном интеграле.

◀ По правилу дифференцирования произведения функций имеем

$$(u \cdot v)(x) = (u \cdot v)(x) + (u \cdot v)(x)$$

По условию все функции в этом равенстве непрерывны, а значит, и инте-грируемы на отрезке с концами а и b. Используя линейность интеграла и формулу Ньютона—Лейбница, получаем

$$(u \cdot v)(x)|_b^a = \int_a^b (u \cdot v)(x)dx + \int_a^b (u \cdot v)(x)(dx) \blacktriangleright$$

В качестве следствия получим теперь формулу Тейлора с интегральным остаточным членом

Пусть на отрезке с концами а и х функция $t \Rightarrow f(t)$ имеет п непрерыв- ных про- изводных. Используя формулу Ньютона — Лейбница, проделаем следующую цепочку преобразований, в которых все дифференци- рования и подстановки производятся по переменной t:

$$f(x) - f(a) = \int_{a}^{x} dt = -\int_{a}^{x} f(t)(x - t)dt =$$

$$= -f(t)(x - t)|_{a}^{x} + \int_{a}^{x} f(t)(x - t)dt =$$

$$= f(a)(x - a) - \frac{1}{2} \int_{a}^{x} f(t)((x - t)^{2})dt =$$

$$= f(a)(x - a) - \frac{1}{2}f(t)(x - t)^{2}|_{a}^{x} + \frac{1}{2} \int_{a}^{x} f(t)(x - t)^{2}dt =$$

$$= f(a)(x - a) + \frac{1}{2}f(a)(x - a)^{2} - \frac{1}{2 \cdot 3} \int_{a}^{x} f(t)(x - t)^{3}dt = \dots$$

$$\dots = f(a)(x - a) + \frac{1}{2}f(a)(x - a)^{2} + \dots$$

$$\dots + \frac{1}{2 \cdot 3 \cdot \dots \cdot (n - 1)} f(n - 1)(a)(x - a)^{n - 1} + r_{n} - 1(a; x)$$

где

$$r_{n-1}(a;x) = \frac{1}{(n-1)!} \int_{a}^{x} f^{(n)}(t)(x-t)^{n-1} dt$$

Рисунок 1.1. График функции

Таблица 1.1

Пересечения функции с координатными осями

X	0	$\sqrt{3}$	$-\sqrt{3}$
у	1.5	0	0

Итак, доказано следующее

Утверждение 2. Если функция $t \Rightarrow f(t)$ имеет на отрезке с концами а и х непрерывные производные до порядка п включительно, то справедлива формула Тейлора

$$f(x) = f(a) + \frac{1}{1!}f(a)(x-a) + \dots + \frac{1}{(n-1)!}f^{(n-1)}(a)(x-a)^{n-1} + r_{n-1}(a;x)$$

с остатком $r_{n-1}(a;x)$, представленным в интегральной форме. Отметим, что функция $(x-t)^{n-1}$ не меняет знак на отрезке с концами а и х, и поскольку функция $t \Rightarrow f^{(n)}(t)$ непрерывна на этом отрезке, то по первой теореме о среднем на нем найдется такая точка \mathfrak{Z} , что

$$r_{n-1}(a;x) = \frac{1}{(n-1)!} f^{(n)}(t)(x-t)^{n-1} dt = \frac{1}{(n-1)!} f^{(n)}(\mathfrak{Z}) \int_{a}^{x} (x-t)^{n-1} dt = \frac{1}{(n-1)!} f^{(n)}(\mathfrak{Z}) (-\frac{1}{n} (x-t)^{n})|_{a}^{x} = \frac{1}{n!} f^{(n)}(\mathfrak{Z}) (x-a)^{n} 1$$

Мы вновь получили знакомую форму Лагранжа остаточного члена форму- лы Тейлора. (На основании задачи 2 b) из предыдущего параграфа, можно считать, что $\mathfrak Z$ лежит в интервале с концами a,x.)

Это рассуждение можно было бы повторить, вынося из-под знака интеграла $f(n)(\mathfrak{Z})(x-\mathfrak{Z})^{n-k}$, где $k\in[1,n]$. Значениям k=1 и k=n отвечают получаемые при этом соответственно формулы Коши и Лагранжа остаточно- го члена.

1.1.2. 4. Замена переменной в интеграле.

Одной из основных формул ин- тегрального исчисления является формула замены переменной в опреде- ленном интеграле. Эта формула в теории интеграла столь же важна, как в дифференциальном исчислении формула дифференцирования композиции функций, с которой она может быть при определенных условиях связана посредством формулы Ньютона— Лейбница

[1]

Заключение

Практическая работа выполнена. Были изучены основы системы компьютерной верстки \LaTeX текст согласно Γ 7.32.

Список использованных источников

1. Зорич А. В. Математический анализ - Часть I - Москва 2019.