Bayesian Linear Regression

Ryan Wang

May 2019

We consider Bayesian methods for multiple linear regression problem

$$Y = X\beta + \epsilon \tag{1}$$

Where $Y \in \mathbf{R}^n$, $X \in \mathbf{R}^{n*d}$, $\beta \in \mathbf{R}^d$, and $\epsilon \sim \mathcal{N}_n(0, \sigma^2 I_n)$.

1 Bayesian Statistics

Before we actually start to perform the Bayesian approach to the problem, let's do a review on the idea of Bayesian statistics. Bayesian statistics is built upon the Bayes' theorem of probability:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{2}$$

Suppose we have the following statistical model:

$$x_1, \dots, x_n i.i.d., x_i \sim p(x|\theta) \tag{3}$$

Instead using a point estimation (e.g. M.L.E.), we firstly assume that θ follows a probability distribution $p(\theta|\alpha)$, which is called the prior distribution. The idea is to consider how the observations help us to update our prior belief on θ , which can be considered as $p(\theta|x,\alpha)$. We are going to use the Bayes' theorem to do that:

$$p(\theta|x,\alpha) = \frac{p(x|\theta,\alpha)p(\theta,\alpha)}{p(x,\alpha)} = \frac{p(x|\theta,\alpha)p(\theta|\alpha)p(\alpha)}{p(x|\alpha)p(\alpha)} = \frac{p(x|\theta,\alpha)p(\theta|\alpha)}{p(x|\alpha)}$$
(4)

Here, $p(x|\theta,\alpha)$ is the likelihood function of data. Notice that $p(x|\alpha)$ is a constant term with respect to the distribution of θ . Thus, we can conclude that:

$$posterior \propto likelihood * prior$$
 (5)

likelihood * prior will be the kernel of the posterior distribution, thus it's sufficient for us to determine the p.d.f. of the posterior distribution.

Updating β : Conjugate Multivariate Normal $\mathbf{2}$

Let's look back to the multiple linear regression problem $Y = X\beta + \epsilon$. We know that the observation $Y \in \mathbf{R}^n$ follows a multivariate normal $\mathcal{N}(X\beta, \sigma^2 I_n)$. The fact is that multivariate normal is a conjugate prior of itself, which we will see in the following derivation.

Because of the conjugate property of multivariate normal, we let the prior be $\mathcal{N}(\mu_0, \Lambda_0)$:

$$p(\theta) \propto \exp(-\frac{1}{2}(\theta - \mu_0)^T \Lambda_0^{-1}(\theta - \mu_0))$$
 (6)

Since $Y \sim \mathcal{N}(X\beta, \sigma^2 I_n)$, we write the likelihood function of Y as:

$$p(Y|\theta,\alpha) \propto \exp(-\frac{1}{2\sigma^2}(Y - X\theta)^T(Y - X\theta))$$
 (7)

Therefore

$$p(\theta|Y) \propto (6) * (7)$$

$$\propto \exp(-\frac{1}{2}(-\frac{2}{\sigma^2}Y^TX\theta + \frac{1}{\sigma^2}\theta^TX^TX\theta) + \theta\Lambda_0^{-1}\theta - 2\mu_0^T\Lambda_0^{-1}\theta)$$
(8)

Which tells us that

$$\theta|Y \sim \mathcal{N}(\mu, \Lambda)$$
 (9)

Where $\Lambda = (\frac{X^TX}{\sigma^2} + {\Lambda_0}^{-1})^{-1}$, and $\mu = \Lambda(\frac{X^TY}{\sigma^2} + {\Lambda_0}^{-1}\mu_0)$. (It has been shown above that multivariate normal is a conjugate prior to itself.)