Corrigé

1 Exemples

1. (a) Puisque le monôme $X_1^{d_1}X_2^{d_2}\dots X_n^{d_n}$ apparaît dans P (c'est-à-dire est affecté d'un coefficient non nul), il en est de même, par symétrie de P, de $X_1^{d_{\sigma(1)}}X_2^{d_{\sigma(2)}}\dots X_n^{d_{\sigma(n)}}$ pour tout $\sigma \in \mathcal{S}_n$. On a donc, puisque $\deg(P) = (d_1, d_2, \dots, d_n)$,

$$\forall \sigma \in \mathcal{S}_n, (d_{\sigma(1)}, d_{\sigma(2)}, \dots, d_{\sigma(n)}) \leq (d_1, d_2, \dots, d_n)$$

Supposons que l'on n'ait pas $d_1 \geq d_2 \geq \ldots \geq d_n$, et considérons $r \in [1, n]$ tel que $d_1 \geq d_2 \geq \ldots \geq d_r$ et $d_r < d_{r+1}$. Pour la transposition $\tau = (r, r+1)$, on a $(d_1, d_2, \ldots, d_n) < (d_{\tau(1)}, d_{\tau(2)}, \ldots, d_{\tau(n)})$, ce qui contredit l'inégalité précédente. On a prouvé par l'absurde $d_1 \geq d_2 \geq \ldots \geq d_n$.

- (b) Lorsque l'on développe le produit $\Sigma_1^{d_1-d_2}\Sigma_2^{d_2-d_3}\dots\Sigma_n^{d_n}$, l'exposant de X_1 dans chaque monôme vaut au plus $(d_1-d_2)+(d_2-d_3)+\dots+(d_{n-1}-d_n)+d_n=d_1$. Les monômes dont l'exposant de X_1 vaut d_1 sont obtenus en "choisissant" dans chaque facteur $\Sigma_k^{d_k-d_{k+1}}$ un terme contenant $X_1^{d_k-d_{k+1}}$ (donc, en particulier, en choisissant $X_1^{d_1-d_2}$ dans $\Sigma_1^{d_1-d_2}$). Parmi ceux-là, l'exposant de X_2 est donc au plus $(d_2-d_3)+(d_3-d_4)+\dots+(d_{n-1}-d_n)+d_n=d_2$ et ceux pour lesquels il vaut deux sont obtenus en choisissant, dans les facteurs $\Sigma_k^{d_k-d_{k+1}}$, $2\leq k\leq n$, un terme contenant $(X_1X_2)^{d_k-d_{k+1}}$ (en particulier donc, en choisissant X_1X_2 dans Σ_2). Poursuivant ainsi, on voit que le terme de plus haut degré apparaissant dans $\Sigma_1^{d_1-d_2}\Sigma_2^{d_2-d_3}\dots\Sigma_n^{d_n}$ est obtenu en "choisissant" $X_1^{d_1-d_2}$ dans $X_1^{d_1-d_2}$, $(X_1X_2)^{d_2-d_3}$ dans $X_2^{d_2-d_3}$, ..., $(X_1X_2\dots X_{n-1})^{d_{n-1}-d_n}$ dans $X_1^{d_{n-1}-d_n}$ et, bien sûr, $(X_1X_2\dots X_n)^{d_n}$ dans $X_n^{d_n}$. Il vaut $X_1^{d_1}X_2^{d_2}\dots X_n^{d_n}$.
- (c) L'ensemble $\{(e_1,e_2,\ldots,e_n)\in\mathbb{N}^n;\; (e_1,e_2,\ldots,e_n)\leq\deg(P)\}$ n'est pas fini en général : si $d_1>1$, il contient tous les $(d_1-1,e_2,\ldots,e_n)\; (e_i\in\mathbb{N})$. Par contre, l'ensemble $\{(e_1,e_2,\ldots,e_n)\in\mathbb{N}^n;\; (e_1,e_2,\ldots,e_n)\leq\deg(P)\;$ et $\exists Q\in K[X_1,X_2,\ldots,X_n],\; Q\;$ symétrique, $\deg(Q)=(e_1,e_2,\ldots,e_n)\}\;$ est fini car si (e_1,e_2,\ldots,e_n) lui appartient, alors $d_1\geq e_1\geq e_2\geq \ldots \geq e_n$.
- (d) Supposons par l'absurde l'existence d'un P un polynôme symétrique ne pouvant s'exprimer comme polynôme en les Σ_k . Soit $(d_1, d_2, \ldots, d_n) = \deg(P)$ et a le coefficient de $X_1^{d_1} X_2^{d_2} \ldots X_n^{d_n}$ dans P. Alors $P_1 = P a \Sigma_1^{d_1 d_2} \Sigma_2^{d_2 d_3} \ldots \Sigma_n^{d_n}$ est symétrique et de degré strictement inférieur à $\deg(P)$. Le polynôme P_1 ne peut pas s'exprimer comme polynôme en les Σ_k (sinon P le pourrait aussi). En réitérant cette construction, la suite des degrés successifs constitue suite strictement décroissante de n-uplets dont l'existence contredit la finitude de l'ensemble invoqué dans la question 1c.
- (e) Avec la notation suggérée dans l'énoncé, on a $P = \sum X_1^3 X_2$. La démonstration

précédente invite à évaluer :

$$\begin{split} \Sigma_1^2 \Sigma_2 &= (\sum X_1)^2 (\sum X_1 X_2) \\ &= (\sum X_1^2 + 2 \sum X_1 X_2) (\sum X_1 X_2) \\ &= \sum X_1^3 X_2 + \sum X_1^2 X_2 X_3 + 2 \Sigma_2^2 \\ &= \sum X_1^3 X_2 + \Sigma_1 \Sigma_3 + 2 \Sigma_2^2 \end{split}$$

D'où
$$P = \Sigma_1^2 \Sigma_2 - \Sigma_1 \Sigma_3 - 2\Sigma_2^2$$
.

2. Notons τ la transposition (b,c). La permutation circulaire $\sigma=(a,b,c)$ laisse invariante l'expression $(a+j^2b+jc)^3$. Comme $\mathcal{S}\{a,b,c\}=\{\mathrm{id},\sigma,\sigma^2,\tau,\tau\sigma,\tau\sigma^2\}$, on obtient en permutant les lettres a,b,c de toutes les manières possibles seulement deux expressions : $u=(a+j^2b+jc)^3$ et $u'=(a+jb+j^2c)^3$.

Comme τ échange les expressions qui fournissent u et u', celles qui donnent u+u' et uu' sont, elles, invariantes par toutes permutations. D'après la première question, elles peuvent s'écrire comme des polynômes à coefficients dans $\mathbb{Q}(j)$ en $p=\Sigma_2(a,b,c)$ et $q=\Sigma_3(a,b,c)$. Ce sont donc des éléments de $\mathbb{Q}(j)(p,q)\subset K(j)$. Ainsi, u et u' sont racines d'une équation du second degré à coefficients dans K(j) qu'on sait résoudre par radicaux (on ne sait pas quelle racine est u ou u' mais cela n'a pas d'importance : les échanger revient à échanger deux des racines a,b,c). En extrayant des racines cubiques de u et u', on obtient, à une multiplication par j ou j^2 près, $v=a+jb+j^2c$ et $v'=a+j^2b+jc$. Comme a+b+c=0, il ne reste plus qu'à résoudre un système linéaire 3×3 (inversible car de Van der Mond).

Pour lever l'ambiguïté (due aux multiplications par j ou j^2), on peut noter que $vv' = (a^2 + b^2 + c^2) + j(ac + ba + cb) + j^2(ab + bc + ca) = -3q$. Un choix pour v implique donc un choix pour v'. Il reste trois possibilités pour le choix de u qui sont toutes les trois valides puisqu'elles correspondent simplement à une "renumérotation cyclique" des racines (l'échange v, v' correspondant à une "renumérotation par transposition").

3. L'expression est invariante par les huit permutations appartenant à l'ensemble $St = \{id, (1,2), (3,4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3), (1,3,2,4) \text{ et } (1,4,2,3)\}.$

Les transpositions $\tau = (x_1, x_3)$ et $\tau' = (1, 4)$, elles, la transforment en $v = x_1x_3 + x_2x_4$ et $w = x_1x_4 + x_2x_3$.

Comme $S_4 = St \cup \tau St \cup \tau' St$, les seules expressions obtenues sont effectivement u, v, w. Ces expressions sont permutées lorsqu'on permute les x_i . Donc u+v+w, uv+vw+wu et uvw sont des expressions symétriques des x_i et peuvent s'écrire comme polynômes en $p = \Sigma_2(x_1, x_2, x_3, x_4), \ q = \Sigma_3(x_1, x_2, x_3, x_4)$ et $r = \Sigma_4(x_1, x_2, x_3, x_4)$. Ce sont donc des éléments de K(p, q, r) et u, v et w sont racines d'une équation de degré 3 à coefficients dans K(p, q, r), que l'on sait résoudre par radicaux. On en déduit tous les $x_i x_j \ (i \neq j)$ puisque, par exemple, $x_1 x_2$ et $x_3 x_4$ sont racines du polynôme $Z^2 - uZ + r$. On en déduit finalement $x_1^2 = \frac{x_1 x_2 x_1 x_3}{x_2 x_3}$ puis x_1 .

4. On a $u+v=\sum_{k=1}^6 \xi^k=-1$ et $uv=(\xi^4+\xi^6+1)+(\xi^5+1+\xi)+(1+\xi^2+\xi^3)=2$. Donc u et v sont racines du polynôme U^2+U+2 . Par ailleurs en combinant les deux relations $u=\xi+\xi^2+\xi^4$ et $v=\xi^3+\xi^5+\xi^6$, on voit que ξ vérifie : $\xi^3+v\xi^2-u\xi+v=0$. C'est une équation de degré 3 que l'on peut résoudre par radicaux en n'utilisant que des radicaux de degré 2 et 3. Donc il existe une expression radicale de ξ n'utilisant que des radicaux de degré 2 et 3.

2 Premières propriétés

- 1. On munit L de la loi additive du corps L et de la loi externe . : $K \times L \to L$, restriction à $K \times L$ de la loi produit du corps L. Les axiomes de la structure d'espace vectoriel sont immédiats à vérifier.
- 2. Soient $(e_i)_{1 \le i \le n}$ une base du K-espace vectoriel L et $(f_j)_{1 \le j \le m}$ une base du L-espace vectoriel M. On vérifie sans mal que $(e_i f_j)_{i,j}$ est une base du K-espace vectoriel M.
- 3. On a bien entendu $K[a] \subset K(a)$. Pour vérifier l'égalité, il suffit d'établir que K[a] est un corps. Or si $P \in K[X]$ est tel que $P(a) \neq 0$, alors $P \wedge \pi_{a,K} = 1$ (car $\pi_{a,K}$ est irréductible) et il existe, par Bezout, $U, V \in K[X]$ tels que $UP + V\pi_{a,K} = 1$. Il vient U(a)P(a) = 1 d'où $P(a)^{-1} \in K[a]$.

Notons qu'il est aussi possible d'utiliser le lemme prouvé dans la question suivante. On voit par ailleurs aisément que $1, a, a^2, \ldots, a^{d-1}$ (où $d = \deg(\pi_{a,K})$ est une base de K[a]. Donc [K(a):K] = d.

- 4. (a) Les deux applications proposées sont linéaires et de noyau restreint à $\{0\}$ (car a n'est pas un diviseur de zéro). L'algèbre A étant de dimension finie, ce sont des isomorphismes (d'espaces vectoriels). En particulier elles sont surjectives et il existe $b,c\in A$ tels que $ab=ca=1_A$. Il vient b=(ca)b=c(ab)=c: a est inversible.
 - (b) Il est évident que LM contient l'ensemble N des éléments de la forme indiquée. Pour prouver l'égalité, il suffit de prouver que N est un corps. Or N est de manière évidente une K-algèbre unitaire intègre de dimension finie (car si $(e_i)_{1 \le i \le s}$ et $(f_j)_{1 \le j \le t}$ sont des K-bases de de L et M, alors $(e_i f_j)_{i,j}$ est une famille génératrice de N) donc, d'après la question précédente, un corps.

3 K-morphismes de L dans \mathbb{C}

- 1. Comme $\deg(P') = \deg(P) 1$ et parce que P est irréductible, on a $P \wedge P' = 1$. Donc les racines de P dans \mathbb{C} sont simples.
- 2. On a, pour tout $P \in K[X]$ et $x \in L$, $\sigma(P(x)) = P^{\sigma}(\sigma(x)) = P(\sigma(x))$. En substituant à P le polynôme $\pi_{x,K}$ (lorsque x est algébrique), il vient $\pi_{x,K}(\sigma(x)) = 0$.

- 3. (a) On a $\sigma(P(a)) = 0$ donc, puisque σ fixe chaque élément de K, $P(\sigma(a)) = 0$, d'où $\sigma(a) \in \{a_1, a_2, \dots, a_p\}$.
 - (b) Si Q et $R \in K[X]$ sont tels que Q(a) = R(a), alors $\pi_{a,K}$ divise Q R et, par conséquent, $Q(a_k) = R(a_k)$. On peut donc, de manière cohérente, définir une application $\sigma: K(a) \to \mathbb{C}$ en posant $\sigma(Q(a)) = Q(a_k)$. C'est un K-morphisme de corps puisque $\sigma(x) = x$ pour tout $x \in K$ et, pour tous Q et $R \in K[X]$, $\sigma(Q(a)R(a)) = \sigma((QR)(a))) = (QR)(a_k) = Q(a_k)R(a_k) = \sigma(Q(a))\sigma(R(a))$ et, de même, $\sigma(Q(a) + R(a)) = \sigma(Q(a)) + \sigma(R(a))$.

On peut aussi, de manière plus savante, considérer les morphismes d'anneaux

$$\phi: \begin{array}{cccc} K[X] & \to & K(a) \\ P & \mapsto & P(a) \end{array} \quad \text{et} \quad \begin{array}{cccc} K[X] & \to & \mathbb{C} \\ P & \mapsto & P(a_k) \end{array}$$

Ils passent au quotient modulo l'idéal $(\pi_{a,K})$ et ϕ induit un isomorphisme $\tilde{\phi}$ de $\frac{K[X]}{(\pi_{a,K})}$ dans K(a), ψ_k un morphisme $\tilde{\psi}_k$ de $\frac{K[X]}{(\pi_{a,K})}$ dans \mathbb{C} : l'application $\tilde{\psi}_k \circ \tilde{\phi}^{-1}$ convient.

- (c) Le polynôme P^{η} est un polynôme à coefficients dans $\eta(K)$, irréductible sur ce corps. Il admet donc p racines distinctes b_1, b_2, \ldots, b_n . Un prolongement σ de η vérifie $\sigma(P(a)) = 0$ donc $P^{\eta}(\sigma(a)) = 0$, d'où $\sigma(a) \in \{b_1, b_2, \ldots, b_n\}$. Si $\sigma(a) = b_k$, il vient, pour tout $Q \in K[X]$, $\sigma(Q(a)) = Q^{\eta}(b_k)$. On vérifie comme ci-dessus que cette relation définit effectivement un morphisme σ (si Q(a) = R(a) alors $\pi_{a,K}$ divise Q R donc $\pi_{a,K}^{\eta} = \pi_{b_k,\eta(K)}$ divise $Q^{\eta} R^{\eta}$, d'où $Q^{\eta}(b_k) = R^{\eta}(b_k)$).
- 4. Il existe $b_1, b_2, \ldots, b_p \in L$ tels que $L = K(b_1, b_2, \ldots, b_p) = K(b_1)(b_2) \ldots (b_p)$. Soit d_k le degré de b_k sur $K(b_1, \ldots, b_{k-1})$. Alors il y a, d'après ce qui précède, d_1 K-morphismes de $K(b_1)$ dans $\mathbb C$. Chacun peut se prolonger de d_2 manières en un K-morphisme de $K(b_1)(b_2)$ dans $\mathbb C$ et, par une récurrence évidente, on voit qu'il existe $d_1d_2\ldots d_p = [L:K]$ K-morphismes de L dans $\mathbb C$.
- 5. C'est immédiat en adaptant très légèrement la construction qui vient d'être faite.
- 6. On a $|\operatorname{Mor}_K(M,\mathbb{C})| = [M:K] = [M:L][L:K] = |\operatorname{Mor}_L(M,\mathbb{C})| |\operatorname{Mor}_K(L,\mathbb{C})|$.
- 7. Supposons le contraire, et considérons p minimal tel qu'existent $\sigma_1, \sigma_2, \ldots, \sigma_p \in \text{Mor}_K(L, \mathbb{C})$, deux à deux distincts, et $\lambda_1, \ldots, \lambda_p \in K$ non tous nuls (donc tous non nuls par minimalité de p) tels que

$$\lambda_1 \ \sigma_1 + \lambda_2 \ \sigma_2 + \ldots + \lambda_p \ \sigma_p = 0$$

Alors on a aussi, pour tout $y \in L$,

$$\lambda_1 \sigma_1(y) \ \sigma_1 + \lambda_2 \sigma_2(y) \ \sigma_2 + \ldots + \lambda_p \sigma_p(y) \ \sigma_p = 0$$

Pour le voir, il suffit d'appliquer la première relation à xy, où $x \in L$ et d'utiliser le fait que les σ_i sont des morphismes.

On en déduit, par une combinaison linéaire :

$$\lambda_1(\sigma_1(y) - \sigma_n(y)) \ \sigma_1 + \lambda_2(\sigma_2(y) - \sigma_n(y)) \ \sigma_2 + \ldots + \lambda_{n-1}(\sigma_{n-1}(y) - \sigma_n(y)) \ \sigma_{n-1} = 0$$

Comme $\sigma_{p-1} \neq \sigma_p$, on peut choisir y tel que $\sigma_{p-1}(y) - \sigma_p(y) \neq 0$. La relation obtenue contredit la minimalité de p.

4 Théorème de l'élément primitif

- Montrons par récurrence sur p ∈ N* que E ne peut pas s'écrire comme réunion de p sous-espaces vectoriels stricts. C'est évident pour p = 1. Supposons p > 1 et l'énoncé vrai pour une valeur strictement inférieure. Soient F₁,..., F_p des sous-espaces vectoriels stricts. Alors il existe a ∈ E \ F₁ et b ∈ E \ (F₂ ∪ ... ∪ F_p). La droite affine D passant par a et b n'est contenue ni dans aucun des F_i. Donc Card(D ∩ F_i) ≤ 1 et Card (D ∩ (∪_{i=1}^p F_i)) ≤ p. Or D étant infinie (car K est infini), on ne peut avoir ∪_{i=1}^p F_i = E.
- 2. On a les d'équivalences :

$$\xi$$
 primitif $\iff K(\xi) = L \iff [L : K(\xi)] = 1 \iff |\operatorname{Mor}_{K(\xi)}(L, \mathbb{C})| = 1$

Comme $\operatorname{Mor}_{K(\xi)}(L,\mathbb{C}) = \{ \sigma \in \operatorname{Mor}_{K}(L,\mathbb{C}); \ \sigma(\xi) = \xi \},$ la conclusion suit.

3. L'ensemble des éléments non primitifs est, d'après la question 2. (et en notant abusivement id l'injection canonique de L dans \mathbb{C}),

$$\bigcup_{\sigma \in \mathrm{Mor}_K(L,\mathbb{C}) \backslash \{\mathrm{id}\}} \{x \in L; \ \sigma(x) = x\}$$

Il s'agit d'une réunion finie de sous-K-espaces vectoriels stricts de L. Comme K est infini, la question $\mathbf{1}$, montre qu'elle est strictement incluse dans L. Il existe donc des éléments primitifs.

5 Groupe de Galois d'un polynôme

- 1. $(i) \implies (ii)$: il suffit d'appliquer (i) à F G.
 - $(ii) \implies (iii)$ Il suffit d'appliquer (ii) en prenant pour G la fraction rationnelle constante égale à $F(a,b,\dots,z).$
 - $(iii) \implies (i)$ Immédiat.

Il est immédiat aussi que id satisfait (i). Convenons de noter, dans cette question uniquement, pour $\sigma \in \mathcal{S}\{a,b,\ldots,z\}$ et $F \in K(A,B,\ldots,Z)$, $F^{\sigma} = F(\tilde{\sigma}(A),\tilde{\sigma}(B),\ldots,\tilde{\sigma}(Z))$, où $\tilde{\sigma}$ est la permutation de A,B,\ldots,Z correspondante à σ . Supposons que σ et σ' satisfont (i). Alors $F(\sigma \circ \sigma'(a),\sigma \circ \sigma'(b),\ldots,\sigma \circ \sigma'(z)) = F^{\sigma}(\sigma'(a),\sigma'(b),\ldots,\sigma'(z))$. Comme σ' vérifie (i) et $F^{\sigma} \in K[A,B,\ldots,Z]$, on a $F(\sigma \circ \sigma'(a),\sigma \circ \sigma'(b),\ldots,\sigma \circ \sigma'(z)) = F^{\sigma}(a,b,\ldots,z) = F(\sigma(a),\sigma(b),\ldots,\sigma(z)) = F(a,b,\ldots,z)$, d'où l'on déduit que $\sigma \circ \sigma'$ vérifie (i)

De même,
$$F(\sigma^{-1}(a), \sigma^{-1}(b), \dots, \sigma^{-1}(z)) = F^{\sigma^{-1}}(a, b, \dots, z)$$

= $F^{\sigma^{-1}}(\sigma(a), \sigma(b), \dots, \sigma(z)) = F(a, b, \dots, z)$, donc σ^{-1} vérifie (i).

On a ainsi montré que $Gal_K(P)$ est un sous-groupe de $S\{a;b;\ldots,z\}$.

2. Soient σ une permutation galoisienne des racines. Tout élément $z \in L$ peut s'écrire sous la forme z = F(a, b, ..., z), où $F \in K(A, B, ..., Z)$. Bien sûr, F n'est pas unique, mais l'énoncé (ii) montre que la quantité $F(\sigma(a), \sigma(b), ..., \sigma(z))$ est indépendante du choix de F. On peut donc définir un prolongement $\sigma: L \to L$ de σ (que de manière abusive on note encore σ) en posant $\sigma(F(a, b, ..., z)) = F(\sigma(a), \sigma(b), ..., \sigma(z))$. Cette nouvelle application est un morphisme de corps puisque $\sigma(1) = 1$,

$$\sigma(F(a,b,\ldots,z)G(a,b,\ldots,z)) = \sigma((FG)(a,b,\ldots,z))$$

$$= (FG)(\sigma(a),\sigma(b),\ldots,\sigma(z))$$

$$= F(\sigma(a),\sigma(b),\ldots,\sigma(z))G(\sigma(a),\sigma(b),\ldots,\sigma(z))$$

et de la même façon,

 $\sigma(F(a,b,\ldots,z)G(a,b,\ldots,z)) = F(\sigma(a),\sigma(b),\ldots,\sigma(z)) + G(\sigma(a),\sigma(b),\ldots,\sigma(z))$. L'énoncé (iii) montre ensuite que σ est un K-morphisme. Enfin, comme L est de dimension finie sur K (et que σ est injective comme tout morphisme de corps), σ est bien un automorphisme de L.

Réciproquement, si $\sigma: L \to L$ est un K-morphisme (donc un K-automorphisme), on a pour toute racine x de P, $P(\sigma(x)) = \sigma(P(x)) = 0$. Donc $\sigma(x)$ est une racine de P. Comme σ est une application injective, σ induit une permutation des racines a, b, \ldots, z de P. Enfin, si $F(a, b, \ldots, z) = 0$ alors $F(\sigma(a), \sigma(b), \ldots, \sigma(z)) = \sigma(F(a, b, \ldots, z)) = 0$: la permutation induite est bien galoisienne.

- 3. Tout $x \in L$ peut s'écrire x = Q(a, b, ..., z), où $Q \in K[A, B, ..., Z]$. Pour $\sigma \in \operatorname{Mor}_K(L, \mathbb{C})$, on a $\sigma(x) = \sigma(Q(a, b, ..., z) = Q(\sigma(a), \sigma(b), ..., \sigma(z))$. Or, comme cidessus, σ induit une permutation des racines de P. Donc $\sigma(x) \in L$. Ainsi σ est à valeurs dans \mathbb{C} et, d'après 3.4., $|\operatorname{Gal}_K(P)| = n$.
- 4. On sait qu'il existe $R \in K[X]$ tel que x = R(x). Soit $Q \in K_{n-1}[X]$ le reste dans la division euclidienne de R par $\pi_{\xi,K}$ (qui est de degré n). On a bien $\deg(Q) \leq n-1$ et $x = Q(\xi)$. Pour tout $\sigma \in \operatorname{Gal}_K(P)$ (qu'on a identifié à $\operatorname{Gal}_K(L)$), on a $x = \sigma(x) = \sigma(Q(\xi)) = Q(\sigma(\xi))$. Comme $\sigma(\xi)$ parcourt l'ensemble des conjugués de ξ quand σ parcourt $\operatorname{Gal}_k(P)$, on a $x = Q(\xi')$ pour tout conjugué ξ' de ξ . Le polynôme $Q x \in L_{n-1}[X]$, qui admet ainsi (au moins) n racines distinctes dans $\mathbb C$ est donc nul et l'on a, puisque les coefficients de Q sont dans $K, x \in K$.

On en déduit immédiatement l'équivalence

$$\operatorname{Gal}_K(P) = \{ \operatorname{id} \} \iff L = K \iff P \text{ scind\'e}$$

5. Si a est une racine de P, l'ensemble des racines de P est $\{a\xi^k, k \in [0, n-1]\}$, où ξ est une racine primitive n-ième de l'unité. Pour tout $\sigma \in \operatorname{Gal}_K(P)$, il existe donc $j \in [0, n-1]$ tel que $\sigma(a) = a\xi^j$, et σ est entièrement déterminé par la donnée de j puisque, dans la mesure où $\xi \in K$, on a $\sigma(\xi) = \xi$ donc $\sigma(a\xi^k) = \sigma(a)\sigma(\xi)^k = a\xi^{k+j}$.

L'application

 $(1, a, \ldots, a^{n-1})$ est K-libre.

$$\phi : \operatorname{Gal}_K(P) \to \frac{\mathbb{Z}}{n\mathbb{Z}}$$

$$\sigma \mapsto [j]_n$$

est un morphisme de groupe (car si $\sigma(a) = a\xi^j$ et $\sigma'(a) = a\xi^{j'}$ alors $\sigma' \circ \sigma(a) = a\xi^{j+j'}$) injectif (car si $j \equiv 0$ [n] alors $\sigma(a) = a\xi^j = a$). Donc $\operatorname{Gal}_K(P)$ est isomorphe à un sous-groupe de $\frac{\mathbb{Z}}{n\mathbb{Z}}$ et, par conséquent, est un groupe cyclique.

- 6. (a) Si tel n'était pas le cas, on aurait la relation $\sum_{k=0}^{n-1} \xi^{-k} \sigma^k = 0$, contredisant la liberté sur K de la famille (id, σ , σ^2 , ..., σ^{n-1}) (lemme de Dedekind).
 - (b) On a $\sigma(a) = \sum_{k=0}^{n-1} \xi^{-k} \sigma^{k+1}(\theta) = \xi \sum_{k=0}^{n-1} \xi^{-(k+1)} \sigma^{k+1}(\theta) = \xi a$. On en déduit $\sigma(a^k) = \xi^k a^k$ pour tout $k \in [0, n-1]$. On peut interpréter cette relation en disant que a^k est un vecteur propre pour la valeur propre ξ^k de l'application σ vue comme endomorphisme du K-espace vectoriel L. Donc

Par ailleurs, $\sigma(a^n) = a^n$. Comme σ est un générateur de $\operatorname{Gal}_K(L)$, a^n est un point fixe de tous les éléments de $\operatorname{Gal}_K(L)$ et, par $\mathbf{4}$, $a^n \in K$ (rappelons que toute extension galoisienne est le corps de décomposition d'un polynôme; ce qui a été fait en $\mathbf{4}$ s'applique donc).

- (c) Posons $\alpha = a^n$. Comme $\alpha \in K$ et parce que $(1, a, ..., a^{n-1})$ est K-libre, $\pi_{a,K} = X^n a$. On a donc $[K(a):K] = n = |\operatorname{Gal}_K(L)| = [L:K]$ (car l'extension $K \subset L$ est galoisienne) d'où, puisque $K(a) \subset L$, $L = K(a) = K(a, a\xi, ..., a\xi^{n-1})$ (car $\mathbb{U}_n \subset K$): L est bien le corps de décomposition de $X^n \alpha$.
- 7. Le corps $K(\xi)$ est le corps de décomposition sur K de X^n-1 . C'est donc une extension galoisienne de K et tout $\sigma \in \operatorname{Gal}_K(K(\xi))$ est déterminé par l'image de ξ , qui est un conjugué de ξ donc de la forme $\sigma(\xi) = \xi^j$. Si σ et σ' sont deux éléments de $\operatorname{Gal}_K(K(\xi))$ et qu'on pose $\sigma(\xi) = \xi^j$, $\sigma'(\xi) = \xi^{j'}$, alors $\sigma \circ \sigma'(\xi) = \sigma(\xi^{j'}) = \xi^{jj'} = \sigma' \circ \sigma(\xi)$ d'où $\sigma \circ \sigma' = \sigma' \circ \sigma$.
- 8. (a) Tout L-morphisme de M dans $\mathbb C$ est aussi un K-morphisme, donc est à valeurs dans M (car $K \subset M$ est galoisienne). Donc $L \subset M$ est galoisienne. De plus, $\operatorname{Gal}_L(M) \subset \operatorname{Gal}_K(M)$ de manière évidente.
 - (b) Il est clair que si $\phi \in \operatorname{Gal}_L(M)$, alors $\sigma \phi \sigma^{-1} \in \operatorname{Gal}_{\sigma(L)}(M)$. Donc $\sigma \operatorname{Gal}_L(M) \sigma^{-1} \subset \operatorname{Gal}_{\sigma(L)}(M)$. De même, puisque $L = \sigma^{-1}(\sigma(L))$, $\sigma^{-1} \operatorname{Gal}_{\sigma(L)}(M) \sigma \subset \operatorname{Gal}_L(M)$ et l'égalité suit.
 - (c) L'extension $K \subset L$ est galoisienne si et seulement si L est stable par tout élément de $\mathrm{Mor}_K(L,\mathbb{C})$. Or tout K-morphisme de L dans \mathbb{C} peut s'étendre en un K-morphisme de M dans \mathbb{C} d'après **3.5.** donc, en fait, en un élément de $\mathrm{Gal}_K(M)$ puisque $K \subset M$ est galoisienne. Donc $(i) \iff (ii)$.

Supposons maintenant (ii). Alors $\sigma(L) = L$ (ces deux K-espaces vectoriels ont même dimension) et $\sigma \operatorname{Gal}_L(M)\sigma^{-1} = \operatorname{Gal}_{\sigma(L)}(M) = \operatorname{Gal}_L(M)$, d'où (iii).

Supposons maintenant (iii). Alors $\operatorname{Gal}_{\sigma(L)}(M) = \sigma \operatorname{Gal}_{L}(M)\sigma^{-1} \supset \operatorname{Gal}_{L}(M)$. Donc les éléments de $\sigma(L)$ sont fixés par tous les L-morphismes de M ce qui, par 4., montre $\sigma(L) \subset L$.

On a ainsi prouvé l'équivalence des trois énoncés. Considérons, dans l'hypothèse où ils sont vrais, l'application $\operatorname{Gal}_K(M) \to \operatorname{Gal}_K(L)$ qui à un morphisme associe l'application induite sur L (correctement définie grâce à (ii)). C'est un morphisme, surjectif par **3.5.** et parce que $K \subset M$ est galoisienne. Son noyau est $\{\sigma \in \operatorname{Gal}_K(M); \ \forall x \in L, \sigma(x) = x\} = \operatorname{Gal}_L(M)$. Donc elle induit un isomorphisme de $\frac{\operatorname{Gal}_K(M)}{\operatorname{Gal}_L(M)}$ sur $\operatorname{Gal}_K(L)$.

6 Augmentation du corps de base

1. Soit $\sigma \in \operatorname{Mor}_L(LM, \mathbb{C})$. Tout élément z de LM peut s'écrire $z = \sum_{i=1}^p x_i y_i$, où $x_i \in L$, $y_i \in M$ et l'on a $\sigma(z) = \sum_{i=1}^p \sigma(x_i) y_i$. Or $\sigma(x_i) \in L$ puisque σ fixe K et que $K \subset L$ est galoisienne. Donc $\sigma(z) \in LM$: on a prouvé que $M \subset LM$ est galoisienne.

De manière alternative, on peut dire que, $K \subset L$ étant galoisienne, L est le corps de décomposition d'un polynôme $P \in K[X]$ et que LM est le corps de décomposition de P vu comme polynôme de M[X], donc que $M \subset LM$ est galoisienne.

2. Soit $\sigma \in \operatorname{Gal}_M(LM)$. Comme σ fixe K et que $K \subset L$ est galoisienne, on a $\sigma(L) \subset L$ et σ induit un K-morphisme ϕ de L, c'est-à-dire un élément de $\operatorname{Gal}_K(L)$. L'application qui a σ associe ϕ est évidemment un morphisme de groupe. Si $\phi = \operatorname{id}_L$, alors σ fixe chaque élément de L. Comme σ fixe chaque élément de M, σ fixe chaque élément de $L \cup M$ donc de LM. L'application $\sigma \mapsto \phi$ est donc un morphisme injectif. Son image est clairement contenue dans $\operatorname{Gal}_{L \cap M}(L)$.

Soit maintenant $\phi \in \operatorname{Gal}_{L \cap M}(L)$. Soit a un élément primitif de l'extension $L \cap M \subset M$: $M = (L \cap M)(a)$ (il en existe puisque cette extension est évidemment de degré fini). On sait par **3.5** que ϕ peut se prolonger en un $L \cap M$ -morphisme de $\sigma : L(a) \to \mathbb{C}$ vérifiant $\sigma(a) = a$ (et donc $\forall x \in M, \ \sigma(x) = x$). Or $L \cup M \subset L(a) \subset LM$, d'où L(a) = LM. On a ainsi $\sigma \in \operatorname{Mor}_M(LM, \mathbb{C})$ et, puisque $M \subset LM$ est galoisienne, $\sigma \in \operatorname{Gal}_M(LM)$.

On a prouvé que l'application $\sigma \mapsto \phi$ est un isomorphisme de $\operatorname{Gal}_M(LM)$ dans $\operatorname{Gal}_{L\cap M}(L)$.

- 3. (a) Comme $K \subset L$ et $K \subset M$ sont galoisiennes, tous les K-conjugués d'un élément de $L \cap M$ sont dans L dans M, donc dans $L \cap M$. L'extension $K \subset L \cap M$ est donc galoisienne. Par **5.8c.**, appliqué à la suite d'extension $K \subset L \cap M \subset L$, on a $\operatorname{Gal}_K(L \cap M) \simeq \frac{\operatorname{Gal}_K(L)}{\operatorname{Gal}_{L \cap M}(L)}$.
 - (b) Les rôles de L et M sont ici symétriques. On a donc, modulo les identifications faites dans l'énoncé,

$$\frac{\operatorname{Gal}_K(L)}{\operatorname{Gal}_M(LM)} \simeq \operatorname{Gal}_K(L \cap M) \simeq \frac{\operatorname{Gal}_K(M)}{\operatorname{Gal}_L(LM)}$$

7 Le groupe d'une équation résoluble est résoluble

1. Soit L = K(a, b, ..., z) le corps de décomposition de P et $M = K(\xi)$. Ces deux extensions sont galoisiennes (la seconde parce que ξ est primitive) et l'on a $LM = L(\xi)$. De plus, $Gal_K(L) = Gal_K(P)$, $Gal_{K(\xi)}(L(\xi)) = Gal_{K(\xi)}(P)$ (l'égalité est un peu abusive mais l'inclusion de $Gal_{K(\xi)}(P)$ dans $Gal_K(P)$ correspond bien à l'injection de $Gal_{K(\xi)}(L(\xi))$ dans $Gal_K(L)$).

Par la question précédente, on a donc $\operatorname{Gal}_{K(\xi)}(P) \lhd \operatorname{Gal}_{K}(P)$, $\operatorname{Gal}_{L}(L(\xi)) \lhd \operatorname{Gal}_{K}(K(\xi))$, et $\frac{\operatorname{Gal}_{K}(P)}{\operatorname{Gal}_{K(\xi)}(P)} = \frac{\operatorname{Gal}_{K}(L)}{\operatorname{Gal}_{K(\xi)}(L(\xi))} \simeq \frac{\operatorname{Gal}_{K}(K(\xi))}{\operatorname{Gal}_{L}(L(\xi))}$. Comme $\operatorname{Gal}_{K}(K(\xi))$ est abélien par **5.7.**, le groupe $\frac{\operatorname{Gal}_{K}(P)}{\operatorname{Gal}_{K(\xi)}(P)}$ est abélien.

2. L'extension $K \subset K(r)$ est galoisienne puisque, \mathbb{U}_q étant contenu dans K, K(r) est le corps de décomposition sur K de $X^q - r^q \in K[X]$. Comme ci-dessus, on a l'isomorphisme : $\frac{\operatorname{Gal}_K(P)}{\operatorname{Gal}_{K(r)}(P)} = \frac{\operatorname{Gal}_K(L)}{\operatorname{Gal}_{K(r)}(L(r))} \simeq \frac{\operatorname{Gal}_K(K(r))}{\operatorname{Gal}_L(L(r))}$

Comme $\operatorname{Gal}_K(K(r))$ est cyclique par **5.5.**, il en est de même de $\frac{\operatorname{Gal}_K(P)}{\operatorname{Gal}_{K(\xi)}(P)}$.

3. On suppose P résoluble par radicaux, c'est-à-dire qu'il existe une suite de complexes r_1, r_2, \ldots, r_q tels que $r_1^{n_1} \in K$ pour un certain $n_1 \in \mathbb{N}^*$, $r_2^{n_2} \in K(r_1)$ pour un certain $n_2 \in \mathbb{N}^*$, \ldots , $r_q^{n_q} \in K(r_1, r_2, \ldots, r_{q-1})$ pour un certain $n_q \in \mathbb{N}^*$ et tels que les racines de P appartiennent à $K(r_1, r_2, \ldots, r_q)$. Comme $K(r_1, r_2, \ldots, r_{q-1})$ ne contient pas nécessairement \mathbb{U}_{n_q} , on ne peut appliquer directement la question précédente.

Notons ξ_k une racine primitive n_k -ième de l'unité et considérons les extensions de corps $K \subset K(\xi_1) \subset K(\xi_1, r_1) \subset K(\xi_1, \xi_2, r_1) \subset K(\xi_1, \xi_2, r_1, r_2) \subset \ldots$ $\subset K(\xi_1, \xi_2, \ldots, \xi_q, r_1, r_2, \ldots, r_q)$

Les groupes de galois successifs de P forment une suite décroissante et le dernier est réduit au neutre puisue P est scindé sur $K(\xi_1, \ldots, \xi_q, r_1, \ldots, r_q)$:

$$\operatorname{Gal}_{K}(P) \supset \operatorname{Gal}_{K(\xi_{1})}(P) \supset \operatorname{Gal}_{K(\xi_{1},r_{1})}(P) \supset \ldots \supset \operatorname{Gal}_{K(\xi_{1},\ldots,\xi_{n},r_{1},\ldots,r_{n})}(P) = \{\operatorname{id}\}$$

Par 1. et 2., chaque groupe est distingué dans le précédent et les quotients successifs sont abéliens. On a montré que $Gal_K(P)$ est un groupe résoluble.

8 Une équation dont le groupe est résoluble est résoluble par radicaux

1. Soient $\pi:G\to \frac{G}{H}$ la surjection canonique et J un sous-groupe strict maximal de $\frac{G}{H}$. Posons $H'=\pi^{-1}(J)$. C'est un sous-groupe distingué de G car, $\frac{G}{H}$ étant abélien, J est un sous-groupe distingué de $\frac{G}{H}$. De plus, l'application canonique $G\to \frac{G/H}{J}$ (qui a $x\in G$ associe la classe modulo J de la classe modulo H de X) est surjective de noyau H'. Elle induit donc un isomorphisme de $\frac{G}{H'}$ sur $\frac{G/H}{J}$. Or, par maximalité de J, $\frac{G/H}{J}$ ne contient aucun sous-groupe non trivial. C'est donc un groupe cyclique (d'ordre égal à 1 ou premier).

2. Soit G un groupe résoluble et H un sous-groupe de G. Il existe par hypothèse une suite

$$\{e\} = G_0 \subset G_1 \subset \ldots \subset G_{m-1} \subset G_m = G$$

de sous-groupes de G vérifiant, pour tout $i \in [1, m]$: $G_{i-1} \triangleleft G_i$ et $\frac{G_i}{G_{i-1}}$ abélien.

Considérons la suite

$$\{e\} = G_0 \cap H \subset G_1 \cap H \subset \ldots \subset G_{m-1} \cap H \subset G_m \cap H = H$$

de sous-groupes de H.

On a, pour tout $g \in G_i \cap H$, $g(G_{i-1} \cap H)g^{-1} \subset G_i$ car $G_{i-1} \triangleleft G_i$, et $g(G_{i-1} \cap H)g^{-1} \subset H$ de manière évidente. Donc $G_{i-1} \cap H \triangleleft G_i \cap H$.

De plus, l'application $G_i \cap H \to \frac{G_i}{G_{i-1}}$ (qui a x associe sa classe modulo G_{i-1} a pour noyau $G_{i-1} \cap H$. Elle induit donc une injection de $\frac{G_i \cap H}{G_{i-1} \cap H}$ dans $\frac{G_i}{G_{i-1}}$, ce qui montre que $\frac{G_i \cap H}{G_{i-1} \cap H}$ est abélien.

On a prouvé que H est résoluble.

- 3. (a) C'est évident, puisque P est dans ce cas un polynôme scindé sur K.
 - (b) Si $\operatorname{Gal}_{K(\xi)}(P)$) \subsetneq $\operatorname{Gal}_{K}(P)$ alors, puisque $\operatorname{Gal}_{K(\xi)}(P)$) est résoluble par **2.** et par l'hypothèse de récurrence, P est résoluble par radicaux sur $K(\xi)$. Comme ξ est radical d'un élément de K, P est résoluble par radicaux sur K.

Supposons maintenant $\mathbb{U}_q \subset K$. On a admis $\operatorname{Gal}_{L^H}(L) = H$. Donc $\operatorname{Gal}_{L^H}(L)$ est un sous-groupe distingué de $\operatorname{Gal}_K(L)$ et l'extension $K \subset L^H$ est galoisienne de groupe de Galois isomorphe à $\frac{\operatorname{Gal}_K(L)}{H}$ qui est cyclique par hypothèse, disons d'ordre q. D'après **5.6.**, il existe $r \in L^H$ tel que $r^q \in K$ et $L^H = K(r)$. Il vient $\operatorname{Gal}_{K(r)}(P) = \operatorname{Gal}_{L^H}(L) = H$ qui est résoluble en tant que sous-groupe d'un groupe résoluble. Donc P est résoluble sur K(r) par l'hypothèse de récurrence, donc résoluble sur K.

Au final, P est résoluble sur K car en commençant par adjoindre ξ à K, soit le groupe de galois est effectivement réduit et l'on est dans le premier cas, soit il ne l'est pas et on peut, en substituant $K(\xi)$ à K, utiliser le second.

9 Un exemple d'équation non résoluble par radicaux

10 Points constructibles à la règle et au compas

11 La correspondance de Galois