Module: Processus stochastiques 2

Correction Examen S2

Exercice 1 1/L'évènement $A = \bigcap_{n \geq 1} \{a < S_n < b\}$ signifie que pour tout $n \geq 1$, $a < S_n < b$, ainsi il n'existera pas un $n \geq 1$ tel que $S_n \notin [a,b]$, donc T sera nécessairement infini, et donc $A = \{T = +\infty\}$.

2/ D'après la question 1/, $\{T < +\infty\} = A^c$. T est un temps d'arrêt, en effet, car T est le temps d'entrée dans l'ensemble $]-\infty, a[\cup]b, +\infty[$ donc T est un temps d'arrêt (voir exemple en cours sur le temps d'entrée dans un ensemble). Pour montrer que $T < +\infty$ p.s., c'est à dire $P(T < +\infty) = 1$, montrons que P(A) = 0 (car $P\{T < +\infty\} = P(A^c) = 1 - P(A)$). On $A = \bigcap_{n \ge 1} \{a < S_n < b\}$ donc $\forall n \in \mathbb{N} : 0 \le P(A) \le P(a < S_n < b)$, et on A = A

$$P(a < S_n < b) = P\left(\frac{a - nm}{\sqrt{n}\sigma} < \frac{S_n - nm}{\sqrt{n}\sigma} < \frac{b - nm}{\sqrt{n}\sigma}\right),$$

avec $m = E(X_1)$ et $\sigma = \sqrt{Var(X_1)}$. Comme $0 \le p, q, r \le 1$, X_1 est non-constante et donc $\sigma \ne 0$. D'après le théorème central limite

$$\frac{S_n - nm}{\sqrt{n}\sigma} \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}(0, 1).$$

Notons $\alpha_n = \frac{a-nm}{\sqrt{n}\sigma}$ et $\beta_n = \frac{b-nm}{\sqrt{n}\sigma}$. On a:

$$\lim_{n \to +\infty} \alpha_n = \lim_{n \to +\infty} \beta_n = \begin{cases} 0 & si & m = 0 \\ -\infty & si & m > 0 \\ +\infty & si & m < 0. \end{cases}$$

Alors $P\left(\alpha_n < \frac{S_n - nm}{\sqrt{n}\sigma} < \beta_n\right) \to 0$ quand $n \to +\infty$. Par suite P(A) = 0 et donc $P(A^c) = P\{T < +\infty\} = 1$.

3/ On $a \varphi(\lambda) = E(\exp(\lambda X_1)) = pe^{\lambda} + qe^{-\lambda} + r$, $donc \varphi(\lambda) > 0$ et ains Y_n est une v.a. positive. Ainsi $E[|Y_n|] = E[Y_n] = (\varphi(\lambda))^{-n} E[\exp(\lambda S_n)]$, et on $a E[\exp(\lambda S_n)] = [E[\exp(\lambda X_1)]]^n = \varphi(\lambda)^n$ (d'après l'indépendance des X_i). Donc $E[Y_n] = 1$ d'où $E[Y_n] < +\infty$. $\forall n \geq 1$, Y_n est fonction de $X_1, ..., X_n$ donc Y_n est \mathcal{F}_n mesurable, d'où adaptée à la filtration \mathcal{F}_n . Aussi,

$$E\left[Y_{n+1}/\mathcal{F}_{n}\right] = E\left[\exp(\lambda S_{n} + \lambda X_{n+1})\left(\varphi(\lambda)\right)^{-(n+1)}/\mathcal{F}_{n}\right]$$

$$= \exp(\lambda S_{n})\left(\varphi(\lambda)\right)^{-(n+1)}E\left[\exp(\lambda X_{n+1})/\mathcal{F}_{n}\right] \left(\operatorname{car} S_{n} \operatorname{est} \mathcal{F}_{n} \operatorname{mesurable}\right)$$

$$= \exp(\lambda S_{n})\left(\varphi(\lambda)\right)^{-(n+1)}E\left[\exp(\lambda X_{n+1})\right] \left(\operatorname{car} X_{n+1} \operatorname{est} \operatorname{indépendante} \operatorname{de} \mathcal{F}_{n}\right)$$

$$= \exp(\lambda S_{n})\left(\varphi(\lambda)\right)^{-(n+1)}E\left[\exp(\lambda X_{1})\right] \left(X_{n+1} \operatorname{a} \operatorname{la} \operatorname{même} \operatorname{loi} \operatorname{que} X_{1}\right)$$

$$= \exp(\lambda S_{n})\left(\varphi(\lambda)\right)^{-(n+1)}\varphi(\lambda) = \exp(\lambda S_{n})\left(\varphi(\lambda)\right)^{-n}$$

$$= Y_{n}.$$

Donc $(Y_n, n \in \mathbb{N})$ est bien une martingale relativement à \mathcal{F}_n .

4/ S_T ne peut prendre que les deux valeurs a-1 ou b+1 (pour sortir de [a,b]). Si $\varphi(\lambda) > 1$ on a: $Y_T = (\varphi(\lambda))^{-T} \exp(\lambda S_T) \le \max(e^{\lambda(a-1)}, e^{\lambda(b+1)})$ et donc $E(Y_T) < +\infty$ (Y_T est

intégrable). D'autre part, $E\left(Y_n1_{\{T>n\}}\right) = \int_{\{T>n\}} Y_n dP \le \int_{\{T>n\}} \exp(\lambda S_n) dP$ or $\{T>n\} \subset \{a < S_n < b\}$ d'où

$$\int_{\{T>n\}} \exp(\lambda S_n) dP \le \max\left(e^{\lambda(a-1)}, e^{\lambda(b+1)}\right) P\left\{T>n\right\},\,$$

mais $\lim_{n\to\infty} P\{T>n\} = P\{T=+\infty\} = 0$. Donc les condition du théorème d'arrêt sont vérifiée, ainsi $E(Y_T) = E(Y_1) = 1$, finalement

$$E(Y_T) = E\left[\exp(\lambda S_T) \left(\varphi(\lambda)\right)^{-T}\right] = 1.$$

5/ pour p = q = 1/2 on a que $E(X_1) = 0$. S_n est une martingale, et S_T ne peut prendre que les deux valeurs a - 1 ou b + 1, ainsi

$$E(|S_n| 1_{\{T>n\}}) = \int_{\{T>n\}} |S_n| dP \le \max\{|a-1|, |a+1|\} P\{T>n\} \underset{n\to\infty}{\to} 0.$$

Par suite $E(S_T) = E(S_1) = E(X_1) = 0$. On a: $P(S_T = a) = 0$ et $P(S_T = b) = 0$.

Exercice 2 (8 pts) Soit S_t le prix d'une action en bourse au temps t. On suppose que le prix d'une action est modélisé par un mouvement Brownien géométrique $S_t = S_0 \exp(\mu t + \sigma W_t)$, où W_t est un processus de Wiener. On suppose que $S_0 = 1$.

1/ Supposons que les valeurs des paramètres sont $\mu = 0.05$ et $\sigma = 0.09$. Sachant que $S_3 = 60$, trouver la probabilité que le prix S_{12} est supérieur à 120.

On suppose désormais que $\mu \in \mathbb{R}$ et $\sigma > 0$ quelconques.

- 2/ Trouver la médiane et l'espérance de S_t.
- 3/ Donner une expression de l'espérance conditionnelle $E[S_t/\mathcal{F}_s]$, avec s < t et \mathcal{F}_t la filtration associé à S.
- 4/ Donner les conditions sur μ et σ pour que $\{S_t, t \geq 0\}$ soit une martingale.
- 5/ Quelle est la limite de la médiane quand t tend vers ∞ . Conclure si l'action serait ou non, à long terme, un bon investissement dans ce cas.

Exercice 3 (5 pts) Soit W(t) un mouvement Brownien et $0 = t_0^n < t_1^n < ... < t_n^n = T$, avec $t_i^n = \frac{jT}{n}$ une partition de l'intervalle [0,T]. Sachant que

$$\lim_{n \to \infty} \sum_{j=0}^{n-1} \left(W(t_{j+1}^n) - W(t_j^n) \right)^2 = T \ dans \ L^2.$$

1/ Trouver la limite suivante dans L^2 : $\lim_{n\to\infty}\sum_{j=0}^{n-1}W(t_j^n)\left(W(t_{j+1}^n)-W(t_j^n)\right)$.

2/ Trouver
$$\int_{0}^{T} W(t)dW(t)$$
.