Tutorial 3 Solutions

- 1. Let a chip be taken at random from a bowl that contains 6 white chips, 3 red chips, and 1 blue chip. Let the random variable X = 1 if the outcome is a white chip; let X = 5 if the outcome is a red chip; and let X = 10 if the outcome is a blue chip.
 - (a) Find the pmf of X. (Namely, find the possible values of X and then the probability for each such possible value.)

_	x	1	5	10	
•	f(x)	$\frac{6}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	

- (b) Find the expectation of X.
 - $E(X) = \sum_{x \in S_X} x f(x) = 1 \times \frac{6}{10} + 5 \times \frac{3}{10} + 10 \times \frac{1}{10} = 3.1.$
- 2. Let $f(x) = \frac{x}{c}$, x = 1, 2, 3, 4. Find the value of c so that f(x) satisfies the conditions of being a pmf for a random variable X.
 - First f(x) > 0 is known for any $x \in S_X = \{1, 2, 3, 4\}$. In order that f(x) is a pmf, it has to satisfy that f(1) + f(2) + f(3) + f(4) = 1, i.e. $\frac{1+2+3+4}{c} = 1$. Therefore, c = 10.
- 3. Let $f(x) = (1/4)^{|x|}(1/2)^{1-|x|}$ for x = -1, 0, 1 and f(x) = 0 for other x values. Is f(x) a pmf? If yes, re-express the pmf by a table.
 - It follows from the formula that f(-1) = 1/4, f(0) = 1/2, f(1) = 1/4 and f(x) = 0 for all other x values. The sample space $S_X = \{-1, 0, 1\}$; f(x) > 0 for any $x \in S_X$ and the total probability f(-1) + f(0) + f(1) = 1. Therefore, f(x) is a pmf and can be expressed by the following table:

x	-1	0	1
f(x)	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

- 4. Let f(x) = (1-x)/4 for x = -1, 0, 2 and f(x) = 0 for other values of x. Is f(x) a pmf? If yes, re-express the pmf by a table.
 - According to the formula, $f(2) = -\frac{1}{4}$, a negative value. So f(x) cannot be a pmf.
- 5. (Q2.1-7) Let a random experiment be the cast of a pair of unbiased 6-sided dice and let X equal the smaller of the outcomes if they are different and the common value if they are equal.
 - (a) With reasonable assumptions, find the pmf of X.

 - Alternatively, the pmf of X is $f(x) = \frac{13-2x}{36}$, x = 1, 2, 3, 4, 5, 6.

1

(b) Let Y equal the range of the two outcomes (i.e., the absolute value of the difference of the largest and smallest outcomes). Determine the pmf of Y.

•	The pmf of Y is						
	y	0	1	2	3	4	5
	g(y)	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

- Alternatively, the pmf of Y is $g(y) = \left(\frac{6}{36}\right)^{1-\min(1,y)} \left(\frac{12-2y}{36}\right)^{\min(1,y)}, y = 0, 1, 2, 3, 4, 5.$
- 6. (Q2.1-11). In a lot of 100 light bulbs, there are 5 bad bulbs. An inspector inspects 10 bulbs selected at random. Let X be the number of bad bulbs in the sample.
 - (a) What probability distribution does X have?
 - X has a hypergeometric distribution $Hyper(N_1, N_2, n)$ with $N_1 = 5$, $N_2 = 95$ and n = 10.
 - (b) Calculate the probability that at least one defective bulb will be found in the sample.

•

$$P(X \ge 1) = 1 - P(X = 0) = 1 - \frac{\binom{5}{0}\binom{95}{10}}{\binom{100}{10}} = 1 - \frac{95 \times 94 \times \dots \times 86}{100 \times 99 \times \dots \times 91} = 0.416.$$

- (c) Find the mean of X, i.e. E(X).
 - $E(X) = n\left(\frac{N_1}{N_1 + N_2}\right) = 10\left(\frac{5}{100}\right) = 0.5$
- (d) Find the variance of X, i.e. $\operatorname{Var}(X)$.
 - $\operatorname{Var}(X) = n\left(\frac{N_1}{N}\right)\left(\frac{N_2}{N}\right)\left(\frac{N-n}{N-1}\right) = 10\left(\frac{5}{100}\right)\left(\frac{95}{100}\right)\left(\frac{90}{99}\right) = 0.432$
- (e) Find the second moment of X, i.e. $E(X^2)$.
 - Since $Var(X) = E(X^2) [E(X)]^2$, it follows that $E(X^2) = Var(X) + [E(X)]^2 = 0.432 + 0.5^2 = 0.682$.
- 7. Given E(X + 4) = 10 and $E[(X + 4)^{2}] = 116$, determine
 - (a) Var(X+4).
 - $Var(X+4) = E[(X+4)^2] [E(X+4)]^2 = 116 10^2 = 16.$
 - (b) $\mu = E(X)$.
 - $\mu = E(X) = E(X+4) 4 = 10 4 = 6$.
 - (c) $\sigma^2 = \operatorname{Var}(X)$.
 - $116 = E[(X+4)^2] = E(X^2 + 8X + 16) = E(X^2) + 8E(X) + 16 = Var(X) + [E(X)]^2 + 8\mu + 16 = \sigma^2 + \mu^2 + 8\mu + 16 = \sigma^2 + 6^2 + 48 + 16 = \sigma^2 + 100$. So $\sigma^2 = 16$.

- 8. A box contains 4 coloured balls: 2 black and 2 white. Balls are randomly drawn successively without replacement. If X is the number of draws until the last black ball is obtained, what are the possible values of X? Find the pmf f(x) for X. (Hint: Define events $B_i = \{\text{the i-th draw is a black ball}\}$ and $W_j = \{\text{the j-th draw is a white ball}\}$. Then find how each outcome of X is related to B_i and W_j .)
 - The possible values of X are 2, 3, and 4.
 - $P(X=2) = P(B_1 \cap B_2) = \frac{2}{4} \times \frac{1}{3} = \frac{1}{6}$.
 - $P(X = 3) = P((B_1 \cap W_2 \cap B_3) \cup (W_1 \cap B_2 \cap B_3))$ = $P(B_1 \cap W_2 \cap B_3) + P(W_1 \cap B_2 \cap B_3) = \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} = \frac{2}{6}.$
 - $P(X = 4) = P((B_1 \cap W_2 \cap W_3 \cap B_4) \cup (W_1 \cap B_2 \cap W_3 \cap B_4) \cup (W_1 \cap W_2 \cap B_3 \cap B_4))$ = $P(B_1 \cap W_2 \cap W_3 \cap B_4) + P(W_1 \cap B_2 \cap W_3 \cap B_4) + P(W_1 \cap W_2 \cap B_3 \cap B_4)$ = $\frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{1} + \frac{2}{4} \times \frac{2}{3} \times \frac{1}{2} \times \frac{1}{1} + \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2} \times \frac{1}{1} = \frac{3}{6}.$
 - So the pmf of X is $f(x) = \frac{x-1}{6}$, x = 2, 3, 4.

The following questions are optional for MAST20006 students but prescribed for MAST90057 ones.

9. Let X be the number of accidents in a factory per week having pmf

$$f(x) = \frac{1}{(x+1)(x+2)}, \quad x = 0, 1, 2, \dots$$

- (a) Find the conditional probability of $X \ge 4$, given that $X \ge 1$. (*Hint*: Write $f(x) = \frac{1}{x+1} \frac{1}{x+2}$.)
 - First

$$P(X \ge 4|X \ge 1) = \frac{P((X \ge 4) \cap (X \ge 1))}{P(X \ge 1)} = \frac{P(X \ge 4)}{1 - P(X = 0)}$$
$$= \frac{1 - \{P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3)\}}{1 - P(X = 0)}.$$

- $P(X=0) = \frac{1}{(0+1)(0+2)} = \frac{1}{2}$.
- $P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = \left[\frac{1}{0+1} \frac{1}{0+2}\right] + \left[\frac{1}{1+1} \frac{1}{1+2}\right] + \left[\frac{1}{2+1} \frac{1}{2+2}\right] + \left[\frac{1}{3+1} \frac{1}{3+2}\right] = 1 \frac{1}{5} = \frac{4}{5}.$
- So $P(X \ge 4|X \ge 1) = \frac{1-\frac{4}{5}}{1-\frac{1}{2}} = \frac{2}{5}$.
- (b) (Optional) Does E(X) exist? If yes, find it; if not, why?
 - $E(X) = \sum_{x=0}^{\infty} x \cdot \frac{1}{(x+1)(x+2)} = \sum_{x=0}^{\infty} \frac{x+1-1}{(x+1)(x+2)}$ = $\sum_{x=0}^{\infty} \frac{1}{x+2} - \sum_{x=0}^{\infty} \frac{1}{(x+1)(x+2)} = +\infty$.
 - So E(X) does not exist.
- 10. (Q2.2-14) Suppose that a school has 20 classes: 16 with 25 students in each, three with 100 students in each, and one with 300 students for a total of 1000 students.

- (a) What is the average class size?
 - average size = $\frac{16 \times 25 + 3 \times 100 + 1 \times 300}{20} = 50$.
- (b) Select a student randomly out of the 1000 students. Let the random variable X equal the size of the class to which this student belongs. Find the pmf of X.

•	x	25	100	300	
	f(x) = P(X = x)	$\frac{16 \times 25}{1000} = 0.4$	$\frac{3\times100}{1000} = 0.3$	$\frac{1\times300}{1000} = 0.3$	

- (c) Find E(X), the expected value of X. Does this answer surprise you?
 - $E(X) = 25 \times 0.4 + 100 \times 0.3 + 300 \times 0.3 = 130.$
- 11. (Q2.3-19) A warranty is written on a product worth \$10,000 so that the buyer is given \$8000 if it fails in the first year, \$6000 if it fails in the second, \$4000 if it fails in the third, \$2000 if it fails in the fourth, and zero after that. Its probability of failing in a year is 0.1; failures are independent of those of other years. What is the expected value of the warranty?
 - Let X be such that the product fails at the X-th year. Let Y = u(X) be the amount of money (value of the warranty) the buyer is given.
 - \bullet Then

$$Y = u(X) = \begin{cases} 8000, & x = 1 \\ 6000, & x = 2 \\ 4000, & x = 3 \\ 2000, & x = 4 \\ 0, & x \ge 5. \end{cases}$$

• It can be seen that the pmf of Y is

	y	8000	6000	4000	2000	0
ſ	P(Y=y)	0.1	$0.9 \cdot 0.1$	$0.9^2 \cdot 0.1$	$0.9^{3} \cdot 0.1$	$1 - \{0.1 + 0.9 \cdot 0.1 + 0.9^2 \cdot 0.1 + 0.9^3 \cdot 0.1\}$

• So $E(u(X)) = E(Y) = 8000(0.1) + 6000(0.9 \cdot 0.1) + 4000(0.9^2 \cdot 0.1) + 2000(0.9^3 \cdot 0.1) + 0 \cdot P(Y = 0) = 1809.8.$

4