16096156

Section 1. Exploratory analysis

The histogram of the response variable shows a clear positive skew in the data. That,
combined with the fact that the data is bounded by 0, suggests it might be sensible to apply a
logarithmic transformation to the response variable to normalize its distribution (represented
below).

Histogram of units sold Histogram

Histogram of the logarithm of units

We would like to explore first the relationship between price and sales. However, the
basic units vs price plot is not particularly helpful, therefore we show below the total units
sold at each price level (rounded to integers). It seems that pizza that is priced more
moderately has sold significantly more units compared to what can be described as cheap(<3)
or expensive pizza(>7). Secondly, as it relates to manufacturers, Private Label(PL) and
Tombstone(TMB) are the best sellers, whereas Tonys(TNY) and King(KNG) are lagging behind
on units sold. This means that certain manufacturers may bring more sales, which can be
further explored through more advanced analysis. Lastly, when it comes to marketing efforts,
it appears as though putting the product on in-store promotional display (D) or featuring it
in the store leaflet (F) generates significantly more selling activity than just a price
reduction (TPR). Again, this relationship should be further explored through more advanced
analysis.

Total units sold per price level

Lastly, before we look towards the regression analysis, we should check if there is any
correlation between some of the variables in the model. Based on the corelation matrix of the
grocery data frame, several covariates appear to have a pairwise correlation higher than 0.5
(or lower than -0.5 in the case of negative correlation), as follows: BASE_PRICE with PRICE,
UPC, MANUFACTURER; PRICE with UPC; UPC with MANUFACTURER; FEATURE with DISPLAY. In regression

```
## analysis, this will generate colinearity, which can really affect the robustness of the
## regression coefficients. Although colinearity does not negate the validity of estimation in
## regression, it is something that we should account/ verify for and will do so through the
## introduction of pairwise interactions between variables in the chosen model.
```

Section 2.1. Regression models

```
## Firstly, we ran a regression within the Poisson family, with a log link function and all
## given variables included. It is clear from the diagnostic plots that this model does not fit
## the data, as both the assumption of normality of residuals and that of constant variance of
## residuals are violated. This could be due to the fact that the response variable is
## overdispersed, meaning that its variance is higher than its mean. To account for this, we also
## run a regression model with a quasi-poisson distribution, however there is no evident
## improvement in either the diagnostic plots of the model or in the deviance measure resulting
## from this model vs. the initial attempt. Thirdly, given the shape of the distribution of units
## sold, we also consider a negative binomial model. This is often considered an alternative to
## the Poisson distribution for overdispersed data. The diagnostic plots point again towards a
## model that is not fit to our data (heteroskedasticity, non-normally distributed residuals).
## Violations of the constant variance and normal distribution of residuals invalidate the use
## of AIC for comparisons. The deviance of this model is 10132, lower than that of previous models.
## Lastly, we will explore the log transformation of the response variables. The histogram
## of the data resembles a normal distribution, therefore the last model considered in this
## analysis will be a generalized linear model with a family of normal distributions and a log
## function corresponding to the identity. While this model is a better fit for the data than
## the previous ones, it is crucial to incorporate the effects of the interactions between
## variables, given our findings in Section 1. We thus run the following regression model,
## with the corresponding diagnostic plots below. The assumptions of homoskedasticity and
## normal distribution of residuals appear to be more robust. This model also results in
## lower AIC and deviance than the previous model. We thus conclude this model is the
## optimal choice.
## From this model, a number of covariates seem to be negatively related to an increase
```

```
## From this model, a number of covariates seem to be negatively related to an increase ## in sales, namely BASE_PRICE, PRICE, MANUFACTURERS (PL, TMB, TONYS). Equally, the model ## also suggests that the interactions between BASE_PRICE and the three previously ## mentioned manufacturers might have a significant impact on sales, however their ## coefficients are not statistically significant at a 5% significance level.
```

Regression formula:

```
## UNITS_LOG ~ BASE_PRICE + PRICE + WEEK_END_DATE + STORE_NUM +
## UPC + MANUFACTURER + DISPLAY + FEATURE + TPR_ONLY + BASE_PRICE *
## PRICE + BASE_PRICE * UPC + BASE_PRICE * MANUFACTURER + PRICE *
## UPC + UPC * MANUFACTURER + FEATURE * DISPLAY
```

Diagnostic plots:

Section 2.2. More sophisticated regression analysis

Despite the greater interpretability of splines/ additive models, it is generally believed
that methods like decision trees or gradient boosting are more suitable for prediction in
moderate to high dimensions (which is the case of our data here) and therefore, I have elected
to focus on CART trees, random forests and gradient boosting in this question.

Judging by both the mean absolute error and the mean squared error, gradient boosting
appears to be the optimal model as it generates the smallest differences between predicted
values and actual values (based on the test set), on average. A table summarizing the MAE
and MSE for each model is rendered below:

```
## names MAE MSE
## 1 CART 6.728891 118.38710
## 2 Random forest 5.047458 68.93190
## 3 Gradient boosting 4.557631 55.22597
```

A possible interpretation of the gradient boosting model is that 3 variables appear to
contribute the most to the prediction, namely DISPLAY, PRICE and BASE_PRICE. Intuitively, it
is reasonable to believe that the price of a product and the fact that it is part of a
promotional display determine sales of that product and even more so, that the actual price
charged (PRICE) plays a more significant role than the product's base price (BASE_PRICE).
Somewhat unexpectedly, the product's manufacturer does not influence sales significantly, and
neither does having the product's price reduced without marketing that action in any way.

Section 3. Final model selection

17.03 (regression model), 7.26 (gradient boosting).

```
## We performed a 10-fold cross validation computation to generate 10 different values for
## the RMSEs of each the regression model and the gradient boosting method. On the back of the
## t-tests performed on the two RMSE data sets, we can conclude that the mean RMSE resulting from
## the regression model is higher.
## The main advantages of the linear regression model are interpretability and ease of
## implementation in practice. Given that prediction is our focus in this scenario however, the
## disadvantages of linear regression weigh heavier on the decision of which model to choose.
## Its robustness is questioned by 1. existing colinearity between some of the explanatory
## variables and 2. the absence of a linear relationship between the response variable and some
## of the covariates (e.g. price vs units sold follows a clearly non-linear curve). The latter
## impacts the model's prediction power significantly, as can be seen by the higher RMSE compared
## to that of the gradient boosting model. On the other hand, the main advantage of gradient
## boosting is its increased predictive accuracy. This method is particularly effective in
## high dimensions and with large datasets, which is the case in our current scenario.
## However, gradient boosting can be slower to implement and more expensive when compared to
## regression models as it requires large datasets that can be difficult/ expensive to acquire.
## On the basis of its superior predictive accuracy, we conclude that gradient boosting with
## hyperparamter tuning is the final elected model to use. Below we analyze its output and aim
## to interpret its results.
```

The means of the RMSEs corresponding to the two models elected in Section 2 are:

Section 4. Prediction estimate

```
## A brief interpretation of the gradient boosting method suggests that DISPLAY, PRICE AND
## BASE_PRICE have the largest contribution to the reduction in RMSE, while it is interesting to
## see that certain variables, such as the UPC, TPR_ONLY, MANUFACTURER contribute very little in
## that regard. Additionally, variables such as PRICE, BASE_PRICE and DISPLAY also have a
## significant impact on the prediction of sales, all of which appear to be positively correlated
## to an increase in sales. This suggests, for instance, that displaying the product in store
## as part of a promotion could generate an increase in sales of just over 3%.
```

Similarly, our analysis suggests that the impact of a 10% reduction in price, keeping ## all else constant is: -0.29, corresponding to a reduction of -29% in units sold.