Inteligencia Artificial - Deep Learning

Lecture 9: Attention and Transformers

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP

Director Semillero TRIAC

Ingenieria Electronica

Universidad Popular del Cesar

Last Time: Recurrent Neural Networks

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

Encoder: $h_t = f_W(x_t, h_{t-1})$

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

From final hidden state predict:

Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$

Context vector c (often $c=h_{\tau}$)

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c)$

estamos

Input: Sequence $x_1, \dots x_T$

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c)$

comiendo estamos

Encoder: $h_t = f_W(x_t, h_{t-1})$

From final hidden state predict: Initial decoder state s₀

Context vector c (often c=h_⊤)

Decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T [STOP] comiendo estamos pan From final hidden state predict: y_3 Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Context vector c (often c=h_⊤) X_4 y_2 X_3 y_3 [START] we are eating bread estamos comiendo pan

Input: Sequence x₁, ... x_T

Output: Sequence y₁, ..., y_T

Decoder: $s_t = g_{l,l}(y_{t-1}, s_{t-1}, c)$

[STOP] comiendo estamos pan From final hidden state predict: y_3 Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Context vector c (often $c=h_{\tau}$) X_4 y_2 X_3 y_3 **Problem: Input sequence** [START] eating bread comiendo we are estamos pan bottlenecked through

Sutskever et al, "Sequence to sequence learning with neural networks", Neural networks", Neural networks and Iransformers

Decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c)$ **Input**: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T [STOP] comiendo estamos pan From final hidden state predict: y_3 Initial decoder state s₀ **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Context vector c (often $c=h_{\tau}$) X_4 y_2 X_3 y_3 **Problem: Input sequence** [START] bread comiendo we are eating estamos pan bottlenecked through Idea: use new context vector

Sutskever et al, "Sequence to sequence learning with neural networks", Latteration and Transformersat each step of desorder!

fixed-sized vector. What if

Input: Sequence $x_1, \dots x_T$ **Output**: Sequence y₁, ..., y_T

From final hidden state: **Encoder:** $h_t = f_W(x_t, h_{t-1})$ Initial decoder state s₀

Compute (scalar) alignment scores (f_{att} is an MLP) $e_{t,i} = f_{att}(s_{t-1}, h_i)$

Compute (scalar) alignment scores (f_{att} is an MLP) $e_{t_i} = f_{att}(s_{t-1}, h_i)$

> Normalize alignment scores to get attention weights $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Compute (scalar) alignment scores (f_{att} is an MLP) $e_{t,i} = f_{att}(s_{t-1}, h_i)$

> Normalize alignment scores to get attention weights $0 < a_{t,i} < 1$ $\sum_{i} a_{t,i} = 1$

Compute context vector as linear combination of hidden states

$$c_t = \sum_i a_{t,i} h_i$$

Use context vector in decoder: $s_t = g_{11}(y_{t-1}, s_{t-1}, c_t)$

This is all differentiable! No supervision on attention weights - backprop through

everything

Use a different context vector in each timestep of decoder

Input sequence not bottlenecked through single vector

[STOP] comiendo estamos pan At each timestep of decoder, context vector "looks at" different parts of the input sequence C_4 X_3 X_4 we are eating bread [START] estamos comiendo pan

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights a_{t,i}

Bahdanau et al, "Neural machine translation by jointly learning to align and farstate, it is and Transfor

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Diagonal attention means words correspond in order

Diagonal attention means words correspond in order

accord sur la zone économique européenne été signé en août 1992 <end>

Visualize attention weights a,

Bahdanau et al, "Neural machine translation by jointly learning to align and translate, and Transfor

Example: English to French translation

Input: "The agreement on the European Economic Area was signed in August 1992."

Output: "L'accord sur la zone économique européenne a été signé en août 1992."

Visualize attention weights a, **Diagonal attention means** accord words correspond in order sur zone **Attention figures out** économique different word orders européenne été signé en août **Diagonal attention means** 1992 words correspond in order <end>

Bahdanau et al, "Neural machine translation by jointly learning to align and translate, including and Transform

The decoder doesn't use the fact that h, form an ordered sequence – it just treats them as an unordered set {h;}

[STOP] comiendo estamos pan Can use similar architecture given any set of input hidden vectors {h_i}! X_4 C_2 X_3 y_3 we are eating bread [START] estamos comiendo pan

Input: Image I

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Extract spatial features from a pretrained CNN

Features: H x W x D

> Unive Popular

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

 $f_w(.)$ is an MLP

pretrained CNN

Input: Image I

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$ where context vector c is often $c = h_0$

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c)$

where context vector c is often $c = h_0$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention; and 15 Transform (\$\frac{1}{2}\$ RT]

Input: Image I

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = g_V(y_{t-1}, h_{t-1}, c)$

where context vector c is often $c = h_0$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention, and 15 Transform SART]

Input: Image I

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Decoder: $y_t = g_V(y_{t-1}, h_{t-1}, c)$

where context vector c is often $c = h_0$

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention; and 15 Transform (\$\frac{1}{2}\$ ART]

Problem: Input is "bottlenecked" through c

Model needs to encode everything it wants to say within c

Attention idea: New context vector at every time step.

Each context vector will attend to different image regions

aif source

Attention Saccades in humans

HxWxD

features from a pretrained CNN

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention, and 15 Transformers

Compute alignments scores (scalars):

$$e_{t,i,j} = f_{att} (h_{t-1}, z_{i,j})$$

 $f_{att}(.)$ is an MLP

Extract spatial features from a pretrained CNN

Features: H x W x D

Compute alignments scores (scalars):

$$e_{t,i,j} = f_{att} (h_{t-1}, z_{i,j})$$

 $f_{att}(.)$ is an MLP

CNN

Features:

HxWxD

Normalize to get attention weights:

$$a_{t,:,:}$$
 = softmax ($e_{t,:,:}$)

$$0 < a_{t,i,j} < 1$$
,

attention values sum to 1

Compute context vector:

$$c_t = \sum_{i,j} a_{t,i,j} z_{t,i,j}$$

Extract spatial features from a pretrained CNN

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation with the Attendary, and 15 Transformers

 C_1

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention; and 15 Transform (\$\frac{1}{2}\$ ART]

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_V(y_{t-1}, h_{t-1}, C_t)$ New context vector at every time step

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention; and 15 Transform (\$5 ART]

Each timestep of decoder uses a different context vector that looks at different parts of the input image **Decoder**: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Xu et al, "Show, Attend and Tell: Neural Image Caption Generation Attention; and 15 Transform (\$\frac{1}{2} \) Transform (\$\frac{

person

Popular del Cesar

Each timestep of decoder uses a different context vector that looks at different parts of the input image

Decoder: $y_t = g_v(y_{t-1}, h_{t-1}, c_t)$ New context vector at every time step

Lecture 9 -

Popular del Cesar

Image Captioning with Attention

Image Captioning with Attention

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Figure copyright Kelvin Xu, Jimmy Lei Ba, Jamie Kiros, Kyunghyun Cho, Aaron Courville Rusian Salakhudinov, Richard S. Zemetand Yoshua Berchio, 2015. Reproduced with permission.

Attention and Transformers

Popular del Cesar

Inputs:

h

Features: **z** (shape: H x W x D)

Quante Attention: and Transformers

Lecture 9 - 4

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$

Inputs:

Features: **z** (shape: H x W x D)

Quante Attention: and Transformers

Lecture 9 - 4

Features: z (shape: H x W x D)

Quanta filtion: and Transformers

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_{i,j} = f_{att}(h, z_{i,j})$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_{i,i} a_{i,i} z_{i,i}$

Inputs:

Features: **z** (shape: H x W x D)

Quante filtion: and Transformers

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = f_{att}(h, x_i)$ Attention: a = softmax(e)Output: $c = \sum_i a_i x_i$

Attention operation is **permutation invariant.**

- Doesn't care about ordering of the features
- Stretch H x W = N into N vectors

Inputs:

Input vectors: **x** (shape: N x D)

Quanter and Transformers

Lecture 9 - 49

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $\mathbf{e}_i = \mathbf{h} \cdot \mathbf{x}_i$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i \mathbf{a}_i \mathbf{x}_i$

Change f_{att}(.) to a simple dot product

 only works well with key & value transformation trick (will mention in a few slides)

Inputs:

Input vectors: **x** (shape: N x D)

Quante fittion: and Transformers

Outputs:

context vector: **c** (shape: D)

Operations:

Alignment: $e_i = h \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{c} = \sum_i a_i x_i$ Change f_{att}(.) to a scaled simple dot product

- Larger dimensions means more terms in the dot product sum.
- So, the variance of the logits is higher.
 Large magnitude vectors will produce much higher logits.
- So, the post-softmax distribution has lower-entropy, assuming logits are IID.
- Ultimately, these large magnitude vectors will cause softmax to peak and assign very little weight to all others
- Divide by √D to reduce effect of large magnitude vectors

Inputs:

Input vectors: **x** (shape: N x D)

Quante filtion: and Transformers

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $y_i = \sum_i a_{i,i} x_i$ Multiple query vectors

Multiple query vectors

 each query creates a new output context vector

Inputs:

Input vectors: x (shape: N x D)

Qu**Arte Atter**and Pransformers

Lecture 9 - 52 Universida

Outputs:

context vectors: **y** (shape: D)

Operations:

Alignment: $e_{i,j} = q_j \cdot x_i / \sqrt{D}$ Attention: **a** = softmax(**e**)

Output: $y_i = \sum_i a_{i,i} x_i$

Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D)

Quartention and Pransformers

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D)

Quarite Attorname Transformers

Outputs:

context vectors: **y** (shape:

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} \mathbf{a}_{i,i} \mathbf{v}_{i}$ The input and output dimensions can now change depending on the key and value FC layers

Notice that the input vectors are used for both the alignment as well as the attention calculations.

 We can add more expressivity to the layer by adding a different FC layer before each of the two steps.

Inputs:

Input vectors: **x** (shape: N x D)

Quarte Attorname Transformers

Outputs:

context vectors: \mathbf{y} (shape: D_{v})

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_{j} \cdot \mathbf{k}_{i} / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_{i} = \sum_{i} a_{i,i} \mathbf{v}_{i}$ Recall that the query vector was a function of the input vectors

Encoder: $h_0 = f_w(z)$

where **z** is spatial CNN features

f_w(.) is an MLP

Inputs:

Input vectors: **x** (shape: N x D)

Quarite Attempe and Transformers

Self attention layer

Operations:

Key vectors: $\mathbf{k} = \mathbf{x}\mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x}\mathbf{W}_{\mathbf{v}}$

Query vectors: $\mathbf{q} = \mathbf{x}\mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,i} = \mathbf{q}_i \cdot \mathbf{k}_i / \sqrt{D}$

Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$

Output: $y_i = \sum_i a_{i,j} v_i$

We can calculate the query vectors from the input vectors, therefore, defining a "self-attention" layer.

Instead, query vectors are calculated using a FC layer.

No input query vectors anymore

.....

Inputs:

Input vectors: **x** (shape: N x D)

Quarine मिकिक्क Med Transformers

Lecture 9 - 57

Self attention layer

Outputs:

context vectors: **y** (shape: □_v)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,i} \mathbf{v}_i$

Inputs:

Input vectors: **x** (shape: N x D)

Self attention layer - attends over sets of inputs

Outputs:

context vectors: **y** (shape: D_{v})

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{v}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \text{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,i} \mathbf{v}_i$

Inputs:

Input vectors: **x** (shape: N x D)

Self attention layer - attends over sets of inputs

Permutation equivariant

Self-attention layer doesn't care about the orders of the inputs!

Problem: How can we encode ordered sequences like language or spatially ordered image features?

Concatenate/add special positional encoding p_i to each input vector \mathbf{x}_i

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

Desiderata of pos(.):

- I. It should output a **unique** encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function *pos*: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

Options for pos(.)

- 1. Learn a lookup table:
 - Learn parameters to use for pos(t) for t ξ(0, T)
 - Lookup table contains T x d parameters.

Desiderata of *pos*(.):

- 1. It should output a **unique** encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- 3. Our model should generalize to **longer** sentences without any efforts. Its values should be bounded.
- 4. It must be **deterministic**.

Concatenate special positional encoding p_i to each input vector x_i

We use a function pos: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

Options for pos(.)

- Learn a lookup table:
 - Learn parameters to use for pos(t) for t (0, T)
 - Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

$$\mathbf{p(t)} = egin{bmatrix} \sin(\omega_1.\,t) \ \cos(\omega_1.\,t) \ & \sin(\omega_2.\,t) \ & \cos(\omega_2.\,t) \ & dots \ & dots$$

where
$$\omega_k = \frac{1}{10000^{2k/d}}$$

Concatenate special positional encoding p_i to each input vector \mathbf{x}_i

We use a function pos: $N \rightarrow R^d$ to process the position j of the vector into a d-dimensional vector

Options for *pos*(.)

- 1. Learn a lookup table:
 - Learn parameters to use for pos(t) for t ξ(0, T)
 - Lookup table contains T x d parameters.
- 2. Design a fixed function with the desiderata

$\mathbf{p(t)} = egin{bmatrix} \sin(\omega_1.\,t) \ \cos(\omega_1.\,t) \ & \sin(\omega_2.\,t) \ & \cos(\omega_2.\,t) \ & \vdots \ & \sin(\omega_{d/2}.\,t) \ & \cos(\omega_{d/2}.\,t) \ \end{bmatrix}$

Intuition:

where
$$\omega_k=rac{1}{10000^{2k/d}}$$

Masked self-attention layer

Outputs:

context vectors: **y** (shape: □_v)

Operations:

Key vectors: $\mathbf{k} = \mathbf{x} \mathbf{W}_{\mathbf{k}}$ Value vectors: $\mathbf{v} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Query vectors: $\mathbf{q} = \mathbf{x} \mathbf{W}_{\mathbf{q}}$ Alignment: $\mathbf{e}_{i,j} = \mathbf{q}_j \cdot \mathbf{k}_i / \sqrt{D}$ Attention: $\mathbf{a} = \operatorname{softmax}(\mathbf{e})$ Output: $\mathbf{y}_i = \sum_i \mathbf{a}_{i,i} \mathbf{v}_i$

- Prevent vectors from looking at future vectors.
- Manually set alignment scores to -infinity

Inputs:

Input vectors: **x** (shape: N x D)

Multi-head self-attention layer

- Multiple self-attention heads in parallel

General attention versus self-attention

Example: CNN with Self-Attention

Self-Attention Module

Comparing RNNs to Transformer

RNNs

- (+) LSTMs work reasonably well for long sequences.
- (-) Expects an ordered sequences of inputs
- (-) Sequential computation: subsequent hidden states can only be computed after the previous ones are done.

Transformer:

- (+) Good at long sequences. Each attention calculation looks at all inputs.
- (+) Can operate over unordered sets or ordered sequences with positional encodings.
- (+) Parallel computation: All alignment and attention scores for all inputs can be done in parallel.
- (-) Requires a lot of memory: N x M alignment and attention scalers need to be calculated and stored for a single self-attention head. (but GPUs are getting bigger and better)

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Llion Jones*

Google Research

llion@google.com

m noam@google.com n:

Aidan N. Gomez* †

Noam Shazeer*
Google Brain
cam@google.com

University of Toronto

aidan@cs.toronto.edu

Niki Parmar* Google Research nikip@google.com

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser*

Google Brain lukaszkaiser@google.com

Illia Polosukhin* [‡] illia.polosukhin@gmail.com "ImageNet Moment for Natural Language Processing"

Pretraining:

Download a lot of text from the internet

Train a giant Transformer model for language modeling

<u>Finetuning:</u>

Fine-tune the Transformer on your own NLP task

On the Opportunities and Risks of Foundation Models

Rishi Bommasani* Drew A. Hudson Ehsan Adeli Russ Altman Simran Arora Sydney von Arx Michael S. Bernstein Jeannette Bohg Antoine Bosselut Emma Brunskill Erik Brynjolfsson Shyamal Buch Dallas Card Rodrigo Castellon Niladri Chatterji Annie Chen Kathleen Creel Jared Quincy Davis Dorottya Demszky Chris Donahue Moussa Doumbouya Esin Durmus Stefano Ermon John Etchemendy Kawin Ethayarajh Li Fei-Fei Chelsea Finn Trevor Gale Lauren Gillespie Karan Goel Noah Goodman Shelby Grossman Neel Guha Tatsunori Hashimoto Peter Henderson John Hewitt Daniel E. Ho Jenny Hong Kyle Hsu Jing Huang Thomas Icard Saahil Jain Dan Jurafsky Pratyusha Kalluri Siddharth Karamcheti Geoff Keeling Fereshte Khani Omar Khattab Pang Wei Koh Mark Krass Ranjay Krishna Rohith Kuditipudi Ananya Kumar Faisal Ladhak Mina Lee Tony Lee Jure Leskovec Isabelle Levent Xiang Lisa Li Xuechen Li Tengyu Ma Ali Malik Christopher D. Manning Suvir Mirchandani Eric Mitchell Zanele Munyikwa Suraj Nair Avanika Narayan Deepak Narayanan Ben Newman Allen Nie Juan Carlos Niebles Hamed Nilforoshan Julian Nyarko Giray Ogut Laurel Orr Isabel Papadimitriou Joon Sung Park Chris Piech Eva Portelance Christopher Potts Aditi Raghunathan Rob Reich Hongyu Ren Frieda Rong Yusuf Roohani Camilo Ruiz Jack Ryan Christopher Ré Dorsa Sadigh Shiori Sagawa Keshav Santhanam Andy Shih Krishnan Srinivasan Alex Tamkin Rohan Taori Armin W. Thomas Florian Tramèr Rose E. Wang William Wang Bohan Wu Jiajun Wu Yuhuai Wu Sang Michael Xie Michihiro Yasunaga Jiaxuan You Matei Zaharia Michael Zhang Tianyi Zhang Xikun Zhang Yuhui Zhang Lucia Zheng Kaitlyn Zhou Percy Liang*1

Center for Research on Foundation Models (CRFM)
Stanford Institute for Human-Centered Artificial Intelligence (HAI)
Stanford University

AUCHUUH AHU TIAHSIUHHCIS

Image Captioning using Transformers

Input: Image I

features from a pretrained CNN

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

HxWxD

Image Captioning using Transformers

Input: Image I

Output: Sequence $\mathbf{y} = \mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_T$

Encoder: $\mathbf{c} = T_{\mathbf{w}}(\mathbf{z})$ where \mathbf{z} is spatial CNN features $T_{\mathbf{w}}(.)$ is the transformer encoder

Image Captioning using Transformers

Input: Image I

pretrained CNN

Output: Sequence $y = y_1, y_2, ..., y_T$

Decoder: $y_t = T_D(y_{0:t-1}, c)$

where $T_D(.)$ is the transformer decoder

Features: $z_{0,0}$ $z_{0,1}$

Attention and Transformers

 $C_{0.2}$

Transformer encoder

 $Z_{0,2}$

Lecture 9 -

 $Z_{2,2}$

C_{2.2}

79

Universidad Popular del Cesar

Made up of N encoder blocks.

In vaswani et al. N = 6, $D_q = 512$

Let's dive into one encoder block

Attention and Transformers

Lecture 9 -

Universidad Popular del Cesar

Universidad Popular del Cesar

Residual connection

Attention attends over all the vectors

Add positional encoding

Attention and Transformers

Lecture 9 -

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Residual connection

MLP over each vector individually

LayerNorm over each vector individually

Residual connection

Attention attends over all the vectors

Add positional encoding

Attention and Transformers

Lecture 9 - 87

Transformer Encoder Block:

Inputs: Set of vectors x
Outputs: Set of vectors y

Self-attention is the only interaction between vectors.

Layer norm and MLP operate independently per vector.

Highly scalable, highly parallelizable, but high memory usage.

Made up of N decoder blocks.

In vaswani et al. N = 6, $D_q = 512$

[START] person wearing hat Attention and Transformers

Multi-head attention block attends over the transformer encoder outputs.

For image captioning, this is how we inject image features into the decoder.

The Transformer Decoder block Layer norm person wearing hat [END] y₀ У₁ y₂ y_3 MLP Layer norm Transformer decoder **C**_{0,0} Multi-head attention xN**C**_{0.1} C_{0,0} **C**_{0,2} Layer norm **C**_{0,1} C_{2,2} $C_{0.2}$ Masked Multi-head self-attention Positional encoding C_{2,2} y₁ y₃ y₀ y₂ X_0 X_1 Attention and **ISTART1** wearing person

Transformer Decoder Block:

Inputs: Set of vectors **x** and Set of context vectors **c**.

Outputs: Set of vectors **y**.

Masked Self-attention only interacts with past inputs.

Multi-head attention block is NOT self-attention. It attends over encoder outputs.

Highly scalable, highly parallelizable, but high memory usage.

Image Captioning using transformers

No recurrence at all

Image Captioning using transformers

- Perhaps we don't need convolutions at all?

Image Captioning using ONLY transformers

- Transformers from pixels to language

Colab link

Vision Transformers vs. ResNets

Figure 5: Performance versus cost for different architectures: Vision Transformers, ResNets, and hybrids. Vision Transformers generally outperform ResNets with the same computational budget. Hybrids improve upon pure Transformers for smaller model sizes, but the gap vanishes for larger models.

Vision Transformers

Carion et al, "End-to-End Object Detection with Transformers",

ConvNets strike back!

DeiT III: Revenge of the ViT

Hugo Touvron*,† Matthieu Cord† Hervé Jégou*

Lecture 9 -

Summary

- Adding attention to RNNs allows them to "attend" to different parts of the input at every time step
- The **general attention layer** is a new type of layer that can be used to design new neural network architectures
- **Transformers** are a type of layer that uses **self-attention** and layer norm.
 - It is highly scalable and highly parallelizable
 - Faster training, larger models, better performance across vision and language tasks
 - They are quickly replacing RNNs, LSTMs, and may(?) even replace convolutions.

Next time: Video Understanding