Infection Rate of COVID-19 (daily) in Worcester, Massachusetts (February 1, 2020 to October 15, 2021) Mask mandate in place Infection Rate Rolling Average (7 day) 14 12 Infection Rate (active cases per 10,000 uninfected) $$^\circ$$ Jul Oct Jan 2021 Oct Apr Apr Jul Date

Investigating prevailing beliefs around weather

and illness

Why quantify the role of weather on spread of infectious illness?

Hypothesis: Weather alone cannot explain more than 33% of the variability in spread of covid-19

STATION NAME & ID *	START¹ ♦	END¹ ≑	COVERAGE ² ≑	
ASHBURNHAM NORTH, MA US GHCND:USC00190192	2003-10- 01	2021-12- 03	93%	ADD
ASHBURNHAM, MA US GHCND:USC00190190	1906-06- 01	2021-12- 04	69%	ADD
ATHOL, MA US GHCND:USC00190257	1930-10- 01	1960-09- 30	98%	ADD
AUBURN 1.9 ESE, MA US GHCND:US1MAWR0032	2015-10- 26	2017-10- 11	88%	ADD
AUBURN 2.6 SW, MA US GHCND:US1MAWR0041	2016-03- 29	2021-12- 05	98%	ADD
BARRE 1.4 NNE, MA US GHCND:US1MAWR0054	2016-11- 19	2021-12- 05	96%	ADD
BARRE FALLS DAM, MA US GHCND:USC00190408	1959-02- 01	2021-11- 30	96%	ADD
BERLIN 1.3 WSW, MA US GHCND:US1MAWR0028	2014-04- 11	2021-12- 03	97%	ADD
BERLIN 2.0 S, MA US GHCND:US1MAWR0077	2020-01- 06	2021-08- 06	41%	ADD
BIRCH HILL DAM, MA US GHCND:USC00190666	1948-06- 01	2021-11- 30	95%	ADD

Map credit to https://www.worldofmaps.net/en/north-america/maps-of-massachusetts-usa/map-of-massachusetts-population-density.htm
GHCND documentation: https://www1.ncdc.noaa.gov/pub/data/cdo/documentation/GHCND documentation.pdf

Measurements

- Average daily wind speed, max wind speeds and directions
- Temperature (average, min, and max)
- Precipitation
- Snowfall
- Fog, smoke, haze
- Thunder
- "Rime", i.e. when ice coats surfaces such as tree branches

Derived Features

- Season
- Average relative humidity
- Average temperature (rolling 7 day)
- Change in average temp week to week
- Average precipitation (rolling 7 day)
- Average snowfall (rolling 7 day)
- Total precip (rolling 7 day)
- Total snowfall (rolling 7 day)
- Change in temperature daily

Multivariate Linear Regression using daily weather predictors: average wind speed (mph), precipitation (in), snowfall (in), average temperature (°F)

 $R^2 = 0.2668$ Intercept = 399.67 cases

Coefficients =
+0.26 per additional mph
of average wind speed
+1.22 per additional inch
precipitation
+9.26 per additional inch
snowfall
-4.81 per average degree F

Only temperature statistically significant

of average temperature

Multivariate Linear Regression using one hot encoding of seasons as predictors: isFall, isWinter, isSpring

R² = 0.407 Intercept = 39.96 cases (corresponds to summer)

Coefficients =
+121.24 cases in Fall =
161.2 cases
+302.83 in Winter =
342.79 cases
+85.39 in Spring =
125.35 cases

All variables statistically significant with p = 0

Multivariate Linear Regression using derived weather metrics as predictors: Glaze or rime, Avg relative humidity, AvgTempWeek, ChangeInAverageTempWeek, AvgPrecipWeek, AvgSnowWeek, ChangeInTempDay, TotalPrecipWeek, TotalSnowfallWeek

 $R^2 = 0.329$ Intercept = 390.87 cases

Coefficients* =

- -86.09 cases when 'Glaze or Rime' +0.92 cases per additional 1% humidity
- -5.00 case per additional degree average weekly temp
- +49.46 per additional inch average weekly snow
- -2.79 per additional degree of change in temp daily
- * Only showing statistically significant variables p < 0.05

Multivariate Linear Regression using derived weather metrics and one hot encoding of seasons as predictors.

R² = 0.452 Intercept = 10.16 cases (corresponds to summer)

Coefficients* =
-104.9523 cases when 'Glaze
or Rime'
+28.67 cases per inch of
average snowfall in the
week
+118.86 cases in Fall
+318.08 cases in Winter

* Only showing statistically significant variables p < 0.05

+103.36 in Spring

