

# Multi-Purpose ASIC Control & Interface Electronics (MACIE)

# HARDWARE MANUAL

Revision 5.0 March 02, 2020

Markury Scientific Document Number

MS-144-01

# **Table of Contents**

| 1 | Sco | ope. |                                                 | 3    |
|---|-----|------|-------------------------------------------------|------|
| 2 | Int | rod  | uction                                          | 3    |
| 3 | Int | erfa | ce Descriptions                                 | 3    |
|   | 3.1 | Me   | chanical Dimensions and Mounting Interfaces     | 3    |
|   | 3.2 | Ele  | ctrical Interfaces                              | 5    |
|   | 3.2 | 2.1  | Interfaces to Instrument or Laboratory Computer | 6    |
|   | 3.2 | 2.2  | ASIC Interface                                  | 6    |
|   | 3.2 | 2.3  | Input Power                                     | . 11 |
|   | 3.2 | 2.4  | SYNC Connector                                  | . 11 |
|   | 3.2 | 2.5  | MACIE-to-MACIE Connector                        | . 12 |
|   | 3.2 | 2.6  | FPGA Reset                                      | . 12 |
|   | 3.2 | 2.7  | Status LEDs                                     | . 12 |
| 4 | Ha  | rdw  | are Setup                                       | .12  |
|   | 4.1 | Set  | up for GigE Operation                           | . 12 |
|   | 4.1 | 1.1  | Troubleshooting GigE Connection Issues          | . 14 |
|   | 4.2 | Set  | up for CamLink Operation                        | . 14 |
|   | 4.3 | Set  | up for USB Operation                            | . 15 |
|   | 4.4 | Sta  | tus LEDs                                        | . 16 |
| 5 | Fir | mwa  | are Configuration                               | .18  |
|   | 5.1 | Inst | talling the MACIE Configuration Tool Software   | . 18 |
|   | 5.2 | Lau  | nching the MACIE Configuration Tool             | . 19 |
|   | 5.3 | Pro  | gramming new Firmware into the MCIE             | . 21 |
| 6 | Λci | ronv | ums & Ahhroviations                             | 21   |

# 1 Scope

This Hardware Manual describes the mechanical and electrical interfaces to the Multi-Purpose ASIC Control & Interface Electronics (MACIE). The document furthermore provides all relevant information to set up the MACIE hardware and to configure the MACIE firmware.

Please refer to the respective MACIE Software Manuals for the use of the MACIE graphical user interface (GUI) and the MACIE Application Program Interface (API).

### 2 Introduction

The MACIE is a controller card for operating mixed-mode data acquisition application specific integrated circuits (ASICs). It supports the Teledyne SIDECAR ASIC as well as the WFIRST ACADIA ASIC running Teledyne H1RG, H2RG, and H4RG Sensor Chip Assemblies (SCAs) and other scientific imaging sensors.

The MACIE is designed as the mechanical, electrical, and software interface between the data acquisition ASIC and the instrument or laboratory computer. It is intended for ground-based and laboratory use at ambient temperature and pressure conditions.

Each MACIE card supplies configurable power for up to two ASICs and is capable to interface with two ASICs in parallel. It is fully compatible with existing Teledyne SIDECAR ASIC boards, i.e. cryo-board, development board, etc. via a custom adaptor which is provided as part of the MACIE kit. Multiple MACIE cards can be stacked on top of each other to control more than two ASICs through the same data interface.

All MACIE software is designed to run under Linux and under Windows operating systems. The MACIE card also facilitates the communication and synchronization with an external trigger, such as an external shutter or modulator. The MACIE offers extensive diagnostic capabilities, including LED indicators. When desired, all on-board LEDs can be turned off. The MACIE holds up to 2 different firmware configurations in the on-board EEPROM at the same time with user-commandable switching between them. Additional base firmware is present permanently (protected from user access) to guarantee MACIE operation even if both user-loadable firmware files are corrupted.

# 3 Interface Descriptions

### 3.1 Mechanical Dimensions and Mounting Interfaces

The MACIE consists of a 4 inch by 5 inch printed circuit board assembly (PCBA) with jack posts located in each of the four corners as shown in figure 1. The jack posts accommodate 2-56 fasteners, which can be used as the mechanical interface to the MACIE or to stack multiple MACIE PCBAs. A 3D Standard for the Exchange of Product Data (STEP) file of the MACIE PCBA can be provided upon request.

Two optional adaptors are currently available in order to operate the MACIE with the Teledyne SIDECAR ASIC: MACIE-to-SAM adaptor and MACIE-to-JADE2 adaptor. The MACIE-to-SAM adaptor provides the interface to the flex-cable of the Teledyne SIDECAR ASIC cryo-kit with SAM card; the MACIE-to-JADE2 adaptor provides the interface to the flexcable that is part of the Teledyne SIDECAR ASIC cryo-kit with JADE-2 card or the Teledyne SIDECAR ASIC development board. The mechanical dimensions and mounting interfaces for the MACIE-to-SAM and MACIE-to-JADE2 adaptors are shown in figure 2. Both adaptors mount with M3 screws to the MACIE PCB. 3D STEP files can be provided upon request.





### 3.2 Electrical Interfaces

The MACIE block diagram and an overview of the MACIE electrical interfaces are shown in figures 3 and 4, respectively.





Figure 4: MACIE Electrical Interfaces Overview

### 3.2.1 Interfaces to Instrument or Laboratory Computer

The MACIE features three interfaces for connection to the instrument computer (indicated with blue boxes in figure 4):

- Gigabit Ethernet (GigE) with a maximum data rate of 100 MByte/sec (when run on dedicated network)
- USB 3.0 with a maximum data rate of 340 MByte/sec; backward compatible with USB 2.0
- Camera Link (CamLink) with a maximum data rate of 640 MByte/sec (when run in full CamLink mode).

Refer to sections 4 and 5 for the details about how to configure and setup these interfaces.

### 3.2.2 ASIC Interface

The MACIE uses a 160-pin Molex general-purpose input/output (GPIO) connector (part number: Molex 0051241040, Markury Scientific has stock for mating connectors if needed) for the ASIC interface. The signal assignments for the 160-pin Molex connector are shown in figure 5.



Figure 5: ASIC GPIB (160-pin Molex) Connector Pin-Assignment

The signal assignments, name mapping for the ACADIA and SIDECAR ASICs, and the adapter pinout for the SAM connector (200-pin Molex) and the JADE-2 connector (140-pin Hirose) are shown in figures 6 and 7, respectively.

Table 1: Connector pinout and signal names for ACADIA and SIDECAR ASICs

| MACIE Signal name | MACIE pins,<br><i>J2 Molex</i><br>0051241040 | ACADIA ASIC signal name     | SIDECAR ASIC signal name | SAM Adapter<br>pins, <i>Molex</i><br>71718-2000 | JADE2 Adapter<br>pins, Hirose<br>FX11LA-140S-SV |
|-------------------|----------------------------------------------|-----------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------|
| VDDAHigh1         | 1                                            | VDDA                        | VDDA1                    | 198                                             | 4                                               |
| VDDAHigh2         | 2                                            |                             | VDDA2                    | 3                                               | 74                                              |
| VDDALow1          | 3                                            | VDDA1p8                     |                          |                                                 |                                                 |
| VDDALow2          | 4                                            |                             |                          |                                                 |                                                 |
| Vref1             | 81                                           | VREF                        | VREF1                    | 199                                             | 2                                               |
| Vref2             | 160                                          |                             | VREF2                    | 2                                               | 72                                              |
| VDDHigh1          | 5                                            | VDD3p3, VDDIO,<br>VDD_CLKIO | VDD3p3                   | 7, 94, 107, 194                                 | 10, 11, 81                                      |
| VDDHigh2          | 6                                            |                             |                          |                                                 |                                                 |
| VDDLow1           | 7                                            | VDDD                        | VDD                      | 8, 93, 108, 193                                 | 12, 13, 83                                      |

|                   | MACIE pins,            |                            | 1                        |                                                 |                                                        |
|-------------------|------------------------|----------------------------|--------------------------|-------------------------------------------------|--------------------------------------------------------|
| MACIE Signal name | J2 Molex<br>0051241040 | ACADIA ASIC<br>signal name | SIDECAR ASIC signal name | SAM Adapter<br>pins, <i>Molex</i><br>71718-2000 | JADE2 Adapter<br>pins, <i>Hirose</i><br>FX11LA-140S-SV |
| VDDLow2           | 8                      |                            |                          |                                                 |                                                        |
| VDDIO1            | 9                      | VDD_LVDS                   | VDDIO                    | 10, 91, 110, 191                                | 15, 16, 85, 86                                         |
| VDDIO2            | 10                     |                            |                          |                                                 |                                                        |
| VSSIO1            | 72                     | VSS_LVDS                   | VSSIO                    | 11, 90, 111, 190                                | 17, 18, 87, 88                                         |
| VSSIO2            | 71                     |                            |                          |                                                 |                                                        |
| VDDAUX1           | 88                     | VDDAUX (opt.)              | VDDAUX1                  | 6, 95                                           | 9                                                      |
| VDDAUX2           | 153                    |                            |                          |                                                 |                                                        |
| GNDA_ASIC1        | 80                     | GNDA                       | GNDA_ASIC                | 1, 100, 101, 200                                | 1, 71, 78                                              |
| GNDA_ASIC1        | 79                     | GNDA                       | GNDA_ASIC                | 1, 100, 101, 200                                | 1, 71, 78                                              |
| GNDA_ASIC2        | 78                     |                            |                          |                                                 |                                                        |
| GNDA_ASIC2        | 77                     |                            |                          |                                                 |                                                        |
| GND_ASIC1         | 76                     | GNDD, VSS_CLKIO            | GND_ASIC                 | 9, 92, 109, 192                                 | 14, 79, 84                                             |
| GND_ASIC1         | 75                     | GNDD, VSS_CLKIO            | GND_ASIC                 | 9, 92, 109, 192                                 | 14, 79, 84                                             |
| GND_ASIC2         | 74                     |                            |                          |                                                 |                                                        |
| GND_ASIC2         | 73                     |                            |                          |                                                 |                                                        |
| AGND_DIRTY        | 89                     | AGND_DIRTY (opt.)          | AGND_DIRTY               | 5, 96, 195, 196                                 | 8                                                      |
| AGND DIRTY        | 90                     | AGND_DIRTY (opt.)          | AGND DIRTY               | 5, 96, 195, 196                                 | 8                                                      |
| SENSE_VDDAHigh1   | 82                     | VDDA SENSE                 | SENSE VDDA1              | 197                                             | 6                                                      |
| SENSE_VDDAHigh2   | 159                    | _                          | SENSE VDDA2              | 4                                               | 76                                                     |
| SENSE_VDDALow1    | 83                     | VDDA1p8_SENSE              | _                        |                                                 |                                                        |
| SENSE_VDDALow2    | 158                    | . =                        |                          |                                                 |                                                        |
| SENSE_VDDHigh1    | 85                     | VDD3p3_SENSE (opt.)        | VDD3p3                   | 7, 94, 107, 194                                 | 80                                                     |
| SENSE_VDDHigh2    | 156                    | . =                        |                          |                                                 |                                                        |
| SENSE_VDDLow1     | 86                     | VDDD_SENSE (opt.)          | VDD                      | 8, 93, 108, 193                                 | 82                                                     |
| SENSE_VDDLow2     | 155                    |                            |                          |                                                 |                                                        |
| SENSE_GNDA1       | 84                     | GNDA_SENSE                 | GNDA_ASIC                | 1, 100, 101, 200                                | 1, 71, 78                                              |
| SENSE_GNDA2       | 157                    |                            |                          |                                                 |                                                        |
| SENSE_GND1        | 87                     | GNDD_SENSE                 | GND_ASIC                 | 9, 92, 109, 192                                 | 14, 79, 84                                             |
| SENSE_GND2        | 154                    |                            |                          |                                                 |                                                        |
| LVDS.CTRL_P       | 152                    |                            | SysClk_En                | 135                                             | 134                                                    |
| LVDS.CTRL_N       | 151                    |                            | DataRateDivide           | 150                                             | 65                                                     |
| LVDS.IO0_P        | 11                     | DataOutP[0]                | DataOutP[0]              | 12                                              | 19                                                     |
| LVDS.IO0_N        | 12                     | DataOutN[0]                | DataOutN[0]              | 13                                              | 89                                                     |
| LVDS.IO1_P        | 70                     | DataOutP[1]                | DataOutP[1]              | 89                                              | 20                                                     |
| LVDS.IO1_N        | 69                     | DataOutN[1]                | DataOutN[1]              | 88                                              | 90                                                     |
| LVDS.IO2_P        | 91                     | DataOutP[2]                | DataOutP[2]              | 112                                             | 21                                                     |
| LVDS.IO2_N        | 92                     | DataOutN[2]                | DataOutN[2]              | 113                                             | 91                                                     |
| LVDS.IO3_P        | 150                    | DataOutP[3]                | DataOutP[3]              | 189                                             | 22                                                     |
| LVDS.IO3_N        | 149                    | DataOutN[3]                | DataOutN[3]              | 188                                             | 92                                                     |
| LVDS.IO4_P        | 13                     | DataOutP[4]                | DataOutP[4]              | 14                                              | 23                                                     |
| LVDS.IO4_N        | 14                     | DataOutN[4]                | DataOutN[4]              | 15                                              | 93                                                     |
| LVDS.IO5_P        | 68                     | DataOutP[5]                | DataOutP[5]              | 87                                              | 24                                                     |
| LVDS.IO5_N        | 67                     | DataOutN[5]                | DataOutN[5]              | 86                                              | 94                                                     |
| LVDS.IO6_P        | 93                     | DataOutP[6]                | DataOutP[6]              | 114                                             | 25                                                     |
| LVDS.IO6 N        | 94                     | DataOutN[6]                | DataOutN[6]              | 115                                             | 95                                                     |

| MACIE Signal name | MACIE pins,<br>J2 Molex<br>0051241040 | ACADIA ASIC signal name | SIDECAR ASIC signal name | SAM Adapter<br>pins, <i>Molex</i><br>71718-2000 | JADE2 Adapter<br>pins, <i>Hirose</i><br>FX11LA-140S-SV |
|-------------------|---------------------------------------|-------------------------|--------------------------|-------------------------------------------------|--------------------------------------------------------|
| LVDS.IO7 P        | 148                                   | DataOutP[7]             | DataOutP[7]              | 187                                             | 26                                                     |
| LVDS.IO7 N        | 147                                   | DataOutN[7]             | DataOutN[7]              | 186                                             | 96                                                     |
| LVDS.IO8 P        | 15                                    | DataOutP[8]             | DataOutP[8]              | 16                                              | 27                                                     |
| LVDS.IO8 N        | 16                                    | DataOutN[8]             | DataOutN[8]              | 17                                              | 97                                                     |
| LVDS.IO9 P        | 66                                    | DataOutP[9]             | DataOutP[9]              | 85                                              | 28                                                     |
| LVDS.IO9 N        | 65                                    | DataOutN[9]             | DataOutN[9]              | 84                                              | 98                                                     |
| LVDS.IO10 P       | 95                                    | DataOutP[10]            | DataOutP[10]             | 116                                             | 29                                                     |
| LVDS.IO10 N       | 96                                    | DataOutN[10]            | DataOutN[10]             | 117                                             | 99                                                     |
| LVDS.IO11 P       | 146                                   | DataOutP[11]            | DataOutP[11]             | 185                                             | 30                                                     |
| LVDS.IO11 N       | 145                                   | DataOutN[11]            | DataOutN[11]             | 184                                             | 100                                                    |
| LVDS.IO12 P       | 17                                    | DataOutP[12]            | DataOutP[12]             | 18                                              | 31                                                     |
| LVDS.IO12 N       | 18                                    | DataOutN[12]            | DataOutN[12]             | 19                                              | 101                                                    |
| LVDS.IO13 P       | 64                                    | DataOutP[13]            | DataOutP[13]             | 83                                              | 32                                                     |
| LVDS.IO13 N       | 63                                    | DataOutN[13]            | DataOutN[13]             | 82                                              | 102                                                    |
| LVDS.IO14 P       | 97                                    | DataOutP[14]            | DataOutP[14]             | 118                                             | 33                                                     |
| LVDS.IO14 N       | 98                                    | DataOutN[14]            | DataOutN[14]             | 119                                             | 103                                                    |
| LVDS.IO15 P       | 144                                   | DataOutP[15]            | DataOutP[15]             | 183                                             | 34                                                     |
| LVDS.IO15 N       | 143                                   | DataOutN[15]            | DataOutN[15]             | 182                                             | 104                                                    |
| LVDS.IO16 P       | 19                                    | DataClkOutP             | SysClkP                  | 181                                             | 70                                                     |
| LVDS.IO16 N       | 20                                    | DataClkOutN             | SysClkN                  | 180                                             | 140                                                    |
| LVDS.IO17 P       | 62                                    | SDoutP                  | AckbP                    | 20                                              | 35                                                     |
| LVDS.IO17 N       | 61                                    | SDoutN                  | AckbN                    | 21                                              | 105                                                    |
| LVDS.IO18 P       | 99                                    | FSyncP                  | FSyncP                   | 81                                              | 37                                                     |
| LVDS.IO18 N       | 100                                   | FSyncN                  | FSyncN                   | 80                                              | 107                                                    |
| LVDS.IO19 P       | 142                                   | LSyncP                  | LSyncP                   | 120                                             | 38                                                     |
| LVDS.IO19 N       | 141                                   | LSyncN                  | LSyncN                   | 121                                             | 108                                                    |
| LVDS.IO20 P       | 21                                    | MasterClkP              | DataClkP                 | 133                                             | 69                                                     |
| LVDS.IO20 N       | 22                                    | MasterClkN              | DataClkN                 | 134                                             | 139                                                    |
| LVDS.IO21 P       | 60                                    | SDinP                   | DataInP                  | 168                                             | 68                                                     |
| LVDS.IO21 N       | 59                                    | SDinN                   | DataInN                  | 167                                             | 138                                                    |
| LVDS.IO22_P       | 101                                   | PSyncP                  | SyncP                    | 34                                              | 67                                                     |
| LVDS.IO22 N       | 102                                   | PSyncN                  | SyncN                    | 35                                              | 137                                                    |
| LVDS.IO23 P       | 140                                   | SEnbP                   | IO1                      | 33                                              | 66                                                     |
| LVDS.IO23_N       | 139                                   | SEnbN                   | 102                      | 68                                              | 136                                                    |
| LVDS.IO24_P       | 23                                    | RstbP                   | Rstb                     | 66                                              | 133                                                    |
| LVDS.IO24_N       | 24                                    | RstbN                   | SCLK                     | 46                                              | 59                                                     |
| LVDS.IO25 P       | 58                                    | ASIC_ID[0]              | PD_Vreg                  | 151                                             | 64                                                     |
| LVDS.IO25_N       | 57                                    | ASIC_ID[1]              | SCSB                     | 55                                              | 129                                                    |
| LVDS.IO26_P       | 103                                   | ASIC_ID[2]              | LVDS_En                  | 166                                             | 135                                                    |
| LVDS.IO26 N       | 104                                   | ASIC_ID[3]              | SDATAIN                  | 146                                             | 60                                                     |
| LVDS.IO27 P       | 138                                   | LVDS_mPSI_En            | ASIC_Status              | 67                                              | 63                                                     |
| LVDS.IO27_I       | 137                                   | LVDS Rstb En            | SDATAOUT                 | 156                                             | 130                                                    |
| LVDS.IO28_P       | 25                                    | PD LDO Ana              | 3271171301               | 130                                             | 150                                                    |
| LVDS.IO28_F       | 26                                    | PD_LDO_Alla             |                          |                                                 |                                                        |
| LVDS.IO28_N       | 56                                    | Status                  |                          | <del> </del>                                    |                                                        |
|                   |                                       | 5.4.43                  | 1                        | 1                                               | l                                                      |

| MACIE Signal name | MACIE pins, <i>J2 Molex</i> 0051241040 | ACADIA ASIC signal name | SIDECAR ASIC signal name | SAM Adapter<br>pins, <i>Molex</i><br>71718-2000 | JADE2 Adapter<br>pins, Hirose<br>FX11LA-140S-SV |
|-------------------|----------------------------------------|-------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------|
| LVDS.IO29 N       | 55                                     | WatchDogEn              |                          |                                                 |                                                 |
| LVDS.IO30 P       | 105                                    | SCL Debug               |                          |                                                 |                                                 |
| LVDS.IO30 N       | 106                                    | SDA_Debug               |                          |                                                 |                                                 |
| LVDS.IO31 P       | 136                                    | SyncP[0]                |                          |                                                 |                                                 |
| LVDS.IO31 N       | 135                                    | SyncN[0]                |                          |                                                 |                                                 |
| LVDS.IO32 P       | 27                                     | SyncP[1]                | EMMP[0]                  | 22                                              | 39                                              |
| LVDS.IO32 N       | 28                                     | SyncN[1]                | EMMN[0]                  | 23                                              | 109                                             |
| LVDS.IO33 P       | 54                                     | SyncP[2]                | EMMP[1]                  | 79                                              | 40                                              |
| LVDS.IO33 N       | 53                                     | SyncN[2]                | EMMN[1]                  | 78                                              | 110                                             |
| LVDS.IO34 P       | 107                                    | SyncP[3]                | EMMP[2]                  | 122                                             | 41                                              |
| LVDS.IO34 N       | 108                                    | SyncN[3]                | EMMN[2]                  | 123                                             | 111                                             |
| LVDS.IO35 P       | 134                                    | SyncP[4]                | EMMP[3]                  | 179                                             | 42                                              |
| LVDS.IO35 N       | 133                                    | SyncN[4]                | EMMN[3]                  | 178                                             | 112                                             |
| LVDS.IO36 P       | 29                                     | TestMuxSlct[0]          | EMMP[4]                  | 24                                              | 43                                              |
| LVDS.IO36 N       | 30                                     | TestMuxSlct[1]          | EMMN[4]                  | 25                                              | 113                                             |
| LVDS.IO37 P       | 52                                     | TestMuxSlct[2]          | EMMP[5]                  | 77                                              | 44                                              |
| LVDS.IO37 N       | 51                                     | TestMuxSlct[3]          | EMMN[5]                  | 76                                              | 114                                             |
| LVDS.IO38 P       | 109                                    |                         | EMMP[6]                  | 124                                             | 45                                              |
| LVDS.IO38 N       | 110                                    |                         | EMMN[6]                  | 125                                             | 115                                             |
| LVDS.IO39 P       | 132                                    |                         | EMMP[7]                  | 177                                             | 46                                              |
| LVDS.IO39 N       | 131                                    |                         | EMMN[7]                  | 176                                             | 116                                             |
| LVDS.IO40 P       | 31                                     | ConfigOut[0]            | EMMP[8]                  | 26                                              | 47                                              |
| LVDS.IO40 N       | 32                                     | ConfigOut[1]            | EMMN[8]                  | 27                                              | 117                                             |
| LVDS.IO41 P       | 50                                     | ConfigOut[2]            | EMMP[9]                  | 75                                              | 48                                              |
| LVDS.IO41 N       | 49                                     | ConfigOut[3]            | EMMN[9]                  | 74                                              | 118                                             |
| LVDS.IO42 P       | 111                                    | ConfigOut[4]            | EMMP[10]                 | 126                                             | 49                                              |
| LVDS.IO42_N       | 112                                    | ConfigOut[5]            | EMMN[10]                 | 127                                             | 119                                             |
| LVDS.IO43_P       | 130                                    | ConfigOut[6]            | EMMP[11]                 | 175                                             | 36                                              |
| LVDS.IO43_N       | 129                                    | ConfigOut[7]            | EMMN[11]                 | 174                                             | 106                                             |
| LVDS.IO44_P       | 33                                     | ConfigOut[8]            | SW_EN1                   | 169                                             | 123                                             |
| LVDS.IO44_N       | 34                                     | ConfigOut[9]            | SW_EN2                   | 73                                              | 124                                             |
| LVDS.IO45_P       | 48                                     | ConfigOut[10]           | SW_EN4                   | 129                                             | 52                                              |
| LVDS.IO45_N       | 47                                     | ConfigOut[11]           | SW_EN5                   | 173                                             | 51                                              |
| LVDS.IO46_P       | 113                                    | ConfigOut[12]           |                          |                                                 |                                                 |
| LVDS.IO46_N       | 114                                    | ConfigOut[13]           | IForce_Temp              | 72                                              | 120                                             |
| LVDS.IO47_P       | 128                                    | ConfigOut[14]           | ·                        |                                                 |                                                 |
| LVDS.IO47_N       | 127                                    | ConfigOut[15]           |                          |                                                 |                                                 |
| LVDS.IO48_P       | 35                                     |                         | SW_EN3                   | 128                                             | 121                                             |
| LVDS.IO48_N       | 36                                     |                         | Probebus[0]              | 30                                              | 55                                              |
| LVDS.IO49_P       | 46                                     |                         | SW_EN6                   | 172                                             | 50                                              |
| LVDS.IO49_N       | 45                                     |                         | Probebus[1]              | 71                                              | 125                                             |
| LVDS.IO50_P       | 115                                    |                         |                          |                                                 |                                                 |
| LVDS.IO50_N       | 116                                    |                         | Probebus[2]              | 130                                             | 56                                              |
| LVDS.IO51_P       | 126                                    |                         |                          |                                                 |                                                 |
| LVDS.IO51_N       | 125                                    |                         | Probebus[3]              | 171                                             | 126                                             |

| MACIE Signal name | MACIE pins,  J2 Molex 0051241040 | ACADIA ASIC signal name | SIDECAR ASIC signal name | SAM Adapter<br>pins, <i>Molex</i><br>71718-2000 | JADE2 Adapter<br>pins, Hirose<br>FX11LA-140S-SV |
|-------------------|----------------------------------|-------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------|
| LVDS.IO52_P       | 37                               |                         | Probebus[4]              | 31                                              | 57                                              |
| LVDS.IO52_N       | 38                               |                         | OE_Enable_n_1            | 32                                              | 122                                             |
| LVDS.IO53_P       | 44                               |                         | Probebus[5]              | 70                                              | 127                                             |
| LVDS.IO53_N       | 43                               |                         | OE_Enable_n_2            | 69                                              | 53                                              |
| LVDS.IO54_P       | 117                              |                         | Probebus[6]              | 131                                             | 58                                              |
| LVDS.IO54_N       | 118                              |                         | OE_Enable_n_3            | 132                                             | 54                                              |
| LVDS.IO55_P       | 124                              |                         | Probebus[7]              | 170                                             | 128                                             |
| LVDS.IO55_N       | 123                              |                         |                          |                                                 |                                                 |
| LVDS.IO56_P       | 39                               |                         | ASICID[0]                | 47                                              | 61                                              |
| LVDS.IO56_N       | 40                               |                         | ASICID[1]                | 54                                              | 131                                             |
| LVDS.IO57_P       | 42                               |                         | ASICID[2]                | 147                                             | 62                                              |
| LVDS.IO57_N       | 41                               |                         | ASICID[3]                | 154                                             | 132                                             |
| LVDS.IO58_P       | 119                              |                         |                          |                                                 |                                                 |
| LVDS.IO58_N       | 120                              |                         |                          |                                                 |                                                 |
| LVDS.IO59_P       | 122                              |                         |                          |                                                 |                                                 |
| LVDS.IO59_N       | 121                              |                         |                          |                                                 |                                                 |

### 3.2.3 Input Power

The MACIE uses a Switchcraft RAPC712BK power jack (indicated with a red box in figure 4) for external power for use with a MSci/ABS supplied power cable to connect to an external, customer supplied, linear power supply. The matching plug is a Switchcraft 760BK. Refer to section 4 on how to power up the MACIE.

### 3.2.4 SYNC Connector

A 9-pin micro-D socket connector (indicated with a purple box in figure 4, part number: Molex 0836119006) is used to supply external sync signals to the MACIE card, or to send out sync signals from the MACIE card to external systems. The pin assignment is shown in table 2.

**Table 2:** Sync connector pin assignment

| Pin | Signal       |
|-----|--------------|
| 1   | SYNC_IO_P[0] |
| 2   | SYNC_IO_N[0] |
| 3   | SYNC_IO_P[2] |
| 4   | SYNC_IO_N[2] |
| 5   | DGND         |
| 6   | VDD+5V       |
| 7   | DVDD+3.3V    |
| 8   | SYNC_IO_N[1] |
| 9   | SYNC_IO_P[1] |

### 3.2.5 MACIE-to-MACIE Connector

The MACIE-to-MACIE connector (indicated with a black box in figure 4) provides connectivity between multiple MACIE cards, which can be stacked on top of each other. The mating connector is located on the bottom of the MACIE PCBA.

### 3.2.6 FPGA Reset

The MACIE reset button (indicated with a grey box in figure 4) re-loads the FPGA base firmware, thereby resetting the MACIE card.

### 3.2.7 Status LEDs

The MACIE PCBA has status LEDs for ASIC1, ASIC2, general status, and CamLink, GigE, and USB interfaces to indicate specific states or activities related to the corresponding component or interface. Refer to the section 4 for details.

# 4 Hardware Setup

This section outlines the hardware setup and connection options of the MAICE card.

### 4.1 Setup for GigE Operation

The provided Gigabit (GigE) link is best suited for data acquisition modes where the required bandwidth is in the range of several 10 MByte/s or less (maximum is about 100MByte/s). For higher bandwidth acquisitions (like H2RG fast mode) use the CamLink interface as described in section 4.2. To establish operation of the MACIE card through the GigE port, follow these steps:

- Set power supply to between 5 to 5.5 V with compliance of about 1 A
- Turn off power supply
- Connect power cable to MACIE card and to power supply (do not turn on yet)
- Connect ASIC board to MACIE card, either using MACIE-to-SAM or MACIE-to-JADE2 adapter board (SIDECAR ASIC) or custom cable connection (e.g. ACADIA ASIC)
- Turn on power supply
- The blue FPGA LED should light up after about 1 second.
- Connect MACIE card to Ethernet port on acquisition computer or to network router or switch using a Cat5e or Cat6 Ethernet patch cable with RJ45 connectors (= standard Ethernet patch cable)
- Once the GigE connection has been established, the corresponding GigE LED on the MACIE card will light up. This may take up to 10 seconds after power cycling due to the boot-up period of the MACIE GigE interface module. Also, one of the two LEDs on the Ethernet jack will start to flash. The orange LED indicates a 100Mbit connection; the green LED a 1Gbit connection.

- Open a web browser (Windows Explorer, Firefox, Chrome, Safari, etc.) and type 192.168.1.100 into the URL field. This is the default MACIE IP address. If the computer is able to communicate with the MACIE card, the screen shown in figure 6 will appear.
- If the screen shown in figure 8 appears in the browser, communication with the MACIE card has been established. Follow the instructions provided in the MACIE Software Manuals to start and use the acquisition GUI or API.
- If the screen shown in figure 8 does not appear, or if the acquisition software cannot detect the MACIE card even though the web server can be accessed, a communication problem exists and further debugging is required (section 4.1.1).



### 4.1.1 Troubleshooting GigE Connection Issues

If the GigE connection to the MACIE card cannot be established as described in section 4.1, follow the guidelines below to troubleshoot the problem:

- 1. The default IP address of the MACIE card is set to 192.168.1.100, with a subnet mask of 255.255.240.0. In order to communicate to the MACIE card, the computer has to have an IP address that is allowed within this subnet mask (e.g. 192.168.1.50 or 192.168.2.70), and has to also have a subnet mask that lets traffic through from the MACIE card (e.g. 255.255.255.0 if the computer IP address is on subnet 192.168.1). If the given network structure does not allow the MACIE IP address to be recognized, it may be necessary to temporarily connect the MACIE card directly to a computer, and set the computer IP address accordingly. Then bring up the MACIE web server by entering the 192.168.1.100 MACIE IP address into the URL field, and change the MACIE IP address and subnet as needed on the "Network" tab of the web server. If desired, the MACIE card can also be configured for DHCP mode or AutoIP for automatic IP address assignment (note that the DHCP mode requires a DHCP server to be present on the network).
- 2. If even a direct link between the computer and the MACIE card is not successful (with the computer IP address set to an address on subnet 192.168.1.x, e.g. 192.168.1.20), it is possible that the computer firewall is blocking communication on the HTTP port 80.
- 3. Try pinging the MACIE card by typing "ping 192.168.1.100" in the command window or terminal shell. If a reponse from the MACIE card is received, but the web server cannot be loaded, there may be an issue with port 80 as described under point 2.
- 4. If the web server can be accessed but the MACIE software cannot detect the MACIE card (either the Acquisition GUI or the MACIE Configuration Tool), please check that:
  - a. The computer/network firewall does not block the TCP ports 42306 or 42307. These ports are being used for MACIE commanding and science data collection.
  - b. The computer/network firewall does not block the UDP port 1900 on multicast address 239.255.255.250. UPnP M\_SEARCH messages on this port are used to detect the MACIE card on the network, and to find its IP address for use in the acquisition and control software.

### 4.2 Setup for CamLink Operation

For single-ASIC operation via Camera Link (CamLink), follow these steps to setup the system. Note that if the provided acquisition GUI is to be used, a Matrox Solios frame grabber has to be present in the acquisition computer, and the Maxtrox MIL-lite drivers have to be installed:

- Set power supply to between 5 to 5.5 V with compliance of about 1 A
- Turn off power supply

- Connect power cable to MACIE card and to power supply (do not turn on yet)
- Connect Camera Link cable to MACIE connector 0, and to frame grabber connector 0
- Connect ASIC board to MACIE card, either using MACIE-to-SAM or MACIE-to-JADE2 adapter board (SIDECAR ASIC) or custom cable connection (e.g. ACADIA ASIC)
- Turn on power supply
- The blue FPGA LED should light up after about 1 second.
- If the COM port of the frame grabber is active on the PC side, the CLink LED will be green.
- Follow the instructions provided in the MACIE Software Manuals to start and use the acquisition GUI or API.

### 4.3 Setup for USB Operation

For single-ASIC operation via USB 3.0, follow these steps to setup the system:

- Option 1: Power through USB
  - This option is acceptable as long as power demand of the ASIC for the given application is less than the USB supply limit (typically 500mA for USB2.0 and 900mA for USB3.x)
  - o GigE interface is disabled by default when powering through USB to save power. Can be reenabled by command through USB once USB connection is established.
  - Make sure, power cable is not plugged into MACIE card. USB power will be disabled on the MACIE card as soon as the power connector is plugged in (independent of whether power is supplied or not through this connector)
- Option 2: Power through separate power supply
  - o Set power supply to between 5 to 5.5 V with compliance of about 1 A
  - Turn off power supply
  - Connect power cable to MACIE card and to power supply (do not turn on yet)
- Connect ASIC board to MACIE card, either using MACIE-to-SAM or MACIE-to-JADE2 adapter board (SIDECAR ASIC) or custom cable connection (e.g. ACADIA ASIC)
- Connect USB cable to MACIE.
- Turn on power supply (if powered through separate supply)

- Windows: If this is the first time the MACIE card is connected, the computer will install the
  necessary drivers automatically (make sure that a internet connection is available). Please
  ensure that the correct driver version is used (see device manager on Windows and find the
  FTDI FT601 USB 3.0 Bridge Device), which should either be v1.2.0.6 or v1.3.0.4. It must not
  be v1.3.0.2 since this version has a bug.
- Linux: Follow the instructions in the MACIE Software Manual for setup of USB
- The blue FPGA LED should light up after about 1 second, and the USB LED should light up green.
- Follow the instructions provided in the MACIE Software Manuals to start and use the acquisition GUI or API.

### 4.4 Status LEDs

Figure 9 shows a magnified section of the MACIE card containing the 7 status LEDs. The LEDs are labeled ASIC1, ASIC2, STATUS, CLINK, GIGE, FGPA, and USB to indicate specific states or activities related to the corresponding component or interface.



### Meaning of LED indicators:

- USB LED
  - o Green Solid: USB interface is correctly enumerated and ready
  - Red Solid: USB power is provided, but interface communication is not available (e.g. computer might be asleep or powered down)
  - Red fast flashing: Indicates USB communication from host computer to MACIE card
  - o Blue fast flashing: Indicates USB communication from MACIE card to host computer
  - Green slow flashing (~1Hz): USB FIFO has data
  - Red slow flashing (~1Hz): USB communication error or FIFO overflow error detected
- GigE LED

- Green Solid: GIGE interface is correctly configured and connected. May take up to 10 seconds after power up to light up due to boot-up time of GigE embedded controller.
- Red fast flashing: Indicates GigE communication from host computer to MACIE card
- Blue fast flashing: Indicates GigE communication from MACIE card to host computer
- Green slow flashing (~1Hz): GigE FIFO has data
- Red slow flashing (~1Hz): GigE communication error or FIFO overflow error detected

### Camera Link LED

- o Green Solid: Camera Link UART interface is connected and active.
- o Red fast flashing: Indicates UART communication from host computer to MACIE card
- Blue fast flashing: Indicates UART communication from MACIE card to host computer
- Red slow flashing (~1Hz): UART communication error detected

### FPGA LED

- Blue Solid: Baseline firmware has been loaded (should only be used for initialization)
- o Green Solid: Slot 1 or Slot 2 firmware has been loaded
- o Red Solid: FPGA is not configured. No firmware has been loaded.

### STATUS LED

- Green Solid: Power to the analog MACIE board section has been enabled
- Green slow flashing (~1Hz): Main FIFO has data
- Red slow flashing (~1Hz): internal FIFO overflow error has been detected

### ASIC1 LED (= status for ASIC1)

- o Green Solid: ASIC power supplies have been enabled
- Red fast flashing: Indicates communication from MACIE card to ASIC
- Blue fast flashing: Indicates communication from ASIC to MACIE card
- Red slow flashing (~1Hz): Communication error detected
- Red Solid: Over-current or Over-voltage condition detected

- ASIC2 LED (= status for ASIC2)
  - o Green Solid: ASIC power supplies have been enabled
  - Red fast flashing: Indicates communication from MACIE card to ASIC
  - Blue fast flashing: Indicates communication from ASIC to MACIE card
  - o Red slow flashing (~1Hz): Communication error detected
  - Red Solid: Over-current or Over-voltage condition detected

# **5** Firmware Configuration

The MACIE Configuration Tool is a GUI that runs on Microsoft Windows to provide status information about the MACIE card and to program new firmware into the MACIE EEPROM. The following description explains how to install and start the application, and how to update the MACIE firmware configuration.

<u>Note:</u> Each MACIE card has been pre-configured with the latest versions of the MACIE Base Firmware and the Applications or Customer Firmware required for MACIE operation. For most standard applications, no modifications or updates are required.

### 5.1 Installing the MACIE Configuration Tool Software

The MACIE Configuration Tool is provided as a binary file that can be directly executed (MACIE\_ConfigTool.exe). The application is automatically installed when running the MACIE Installer that is provided as part of the software package. To launch the application, find it in the Windows Start Menu in the MACIE folder, or navigate to C:\Program Files\MACIE V2.0\MACIE Tools. Make sure that at least one interface to the MACIE card is connected (GigE, USB, or Camera Link) to establish communication.

<u>Important:</u> The MAICE Configuration Tool requires the Microsoft .net framework 4.0 (or higher), and also the Microsoft Visual Studio C++ Redistributable x86 2010 (or possibly 2012 / 2013 which may or may not work; 2015 and higher will not work). The .net framework is typically already installed on newer Windows versions, the 32-bit (i.e. x86) Redistributable may or may not be. Both can be found on the Microsoft website for download, by searching for ".net 4.0", or "C++ Redistributable".

**Gigabit Ethernet:** If using the GigE connection, the MACIE card must either be connected directly to the computer with an Ethernet cable, or must be connect to the same network through a router or switch. Refer to section 4 for further information, specifically regarding troubleshooting GigE connection problems.

**USB:** If using the USB connection, ensure that the FDTI D3XX driver is installed (i.e. FTDI FT601 USB 3.0 Bridge Device is listed in the Device Manager under Universal Serial Bus controllers whenever the MACIE card is connected). This driver is typically downloaded automatically by Windows when the MACIE card is first plugged into the USB port (requires the computer to be online). However, if Windows fails to find the

driver, it can be manually installed by either directing the Windows installer to the "USB Driver/FTD3XXDriver\_WHQLCertified\_v1.3.0.4" directory (select correct operation system folder), or by launching the "FTD3XXDriver\_WHQLCertified\_v1.3.0.4\_Installer.exe" application in the "USB Driver" directory.

<u>Note:</u> If the USB interface on the MACIE card has never been used before, or has been corrupted, the MACIE Configuration Tool may pop up a message stating that the USB port may have to be reconfigured (either the whole port or just the serial number). If this occurs, it is usually best to agree to the proposed action of updating the USB configuration. However, sometimes, this message can be displayed even though the USB interface is correctly configured, due to a temporary communication issue. In that case (i.e. you already know that USB has been working before), simply ignore the message (i.e. cancel), and push the "Check Interfaces" button to refresh the interface status.

**Camera Link:** If using Camera Link, a frame grabber must be installed with the serial COM port visible within Windows. No image capture support is needed for this application. Refer to section 4 for further information.

**Note:** CamLink will take up to 15 minutes to load new firmware, while GigE and USB will finish in about 2 minutes.

### 5.2 Launching the MACIE Configuration Tool

In the MACIE ConfigTool folder, double-click the file MACIE\_ConfigTool.exe to launch the application. The GUI shown in figure 10 should appear.

In case of a missing file (like .net environment), please follow the on-screen instructions to install any missing software packages or updates from Microsoft.

Once the application has launched, it will search for any connected MACIE cards and report the status. If a MACIE card can be found, the corresponding interface radio buttons in the "MACIE Programming Interface" section will be activated. All 3 interfaces (GigE, USB, CamLink serial port) can be connected, allowing the user to select which interface to use. If multiple MACIE cards are connected at the same time, the application will prompt the user to select which card to use.



There are 4 read-only text fields that include the information for the serial number and the three available firmware slots. Once the firmware is programmed into the EEPROM, the corresponding firmware file names will be visible in these fields.

<u>Note:</u> If the firmware programming is interrupted or fails for any reason, the phrase \*\*\* Slot not yet programmed \*\*\* may be shown in the corresponding text field. In that case, repeating the programming cycle should resolve the issue.

The slots "Slot 1 Firmware" and "Slot 2 Firmware" are available for programming custom firmware; a third slot called "Base Firmware" cannot be altered by the user. The Base Firmware constitutes the boot firmware of the MACIE card and is always available in case both other firmware slots have been corrupted.

By pushing the "Load" buttons next to the firmware fields, the MACIE card can be forced to boot from the corresponding firmware slot. When this button is pushed, the FPGA LED on the MACIE card will first turn red (i.e. FPGA not configured), and after about 1 second will turn either blue or green. Blue indicates that the base firmware has been loaded and green indicates that the firmware from either slot 1 or slot 2 has been loaded.

The following is a brief description of the individual GUI control buttons:

**Check Interfaces**: Refreshes interface status, in case there has been a change to the GigE, USB, or Camera Link interfaces.

**Clear Errors:** Clears communication error counters inside the MACIE card (indicated by any of the LEDs flashing red).

**Browse:** Select firmware file to be programmed into MACIE EEPROM.

**Program EEPROM**: Start programming process using the selected firmware file.

**Load:** Trigger MACIE to boot from the corresponding firmware slot.

**Read Status**: Update MACIE firmware and serial number text fields with current values from MACIE card.

Test Data Throughput: Runs performance test to measure data throughput (GigE and USB only).

### 5.3 Programming new Firmware into the MCIE

The main purpose of the MACIE Configuration Tool GUI is to allow updating the firmware stored inside the MACIE EEPROM. Before performing an update, please ensure that the MACIE card is powered with a 5V supply, and that the blue FPGA LED is on (green is ok as well as long as a valid firmware is present in slot 1 or slot 2, but if unsure load the base firmware before programming). If the blue LED is not on, power-cycle the 5V to reboot the MACIE card or push the reboot button on the MACIE card. Also, ensure that at least one interface (GigE, USB, CamLink) is available, indicated by a green LED on the corresponding port.

Next, click the Browse button to select the desired firmware file. The latest firmware available for the various ASICs and operational modes can be found in the firmware folder of the Configuration Tool path.

After that, select the firmware slot to be programmed: Slot1 or Slot2. If only one firmware is going to be used, it is recommended to use Slot 1.

Finally, push the Program EEPROM button. If everything works as expected, the progress bar should start to move, and the GUI should first erase the EEPROM slot, and then program the new firmware. Depending on the selected interface, the programming cycle will take a different amount of time. CamLink will take up to 15 minutes, while GigE and USB will finish in about 2 minutes.

After the programming cycle has completed, the new firmware can be loaded into the MACIE FPGA by clicking the "Load" button next to the corresponding slot name.

# 6 Acronyms & Abbreviations

| Definition | Meaning                                 |
|------------|-----------------------------------------|
| ABS        | AstroBlank Scientific LLC               |
| API        | Application Program Interface           |
| ASIC       | Application Specific Integrated Circuit |

| GPIO  | General Purpose Input/Output                       |  |  |  |
|-------|----------------------------------------------------|--|--|--|
| GUI   | Graphical User Interface                           |  |  |  |
| ICD   | Interface Control Document                         |  |  |  |
| LED   | Light Emitting Diode                               |  |  |  |
| MAC   | MACIE Acquisition Control                          |  |  |  |
| MACIE | Multi-purpose ASIC Control & Interface Electronics |  |  |  |
| MSci  | Markury Scientific Inc.                            |  |  |  |
| PCB   | Printed Circuit Board                              |  |  |  |
| PCBA  | Printed Circuit Board Assembly                     |  |  |  |
| SCA   | Sensor Chip Assembly                               |  |  |  |
| STEP  | Standard for the Exchange of Product data          |  |  |  |