Случайни величини

Дефиниция: *(случайна величина):* Нека имаме вероятностно пространство. Тогава $X:\Omega \to \mathbb{R}$ е слуайна величина, ако $\forall a < b \in \mathbb{R} \cup \{-\infty,\infty\}$ е в сила $X^{-1}((a,b)) \in \mathcal{A}$, където

$$X^{-1}(B)=\{\omega\in\Omega|X(\omega)\in B\}\in\mathcal{A}$$

или записано по друг начин:

$$X^{-1}((a,b)) = \{\omega \in \Omega | a < X(\omega) < b\} = \{a < X < b\} \in \mathcal{A}$$

• Забележка: Достатъчно за X да е случайна величина е $X^{-1}((-\infty,b))=\{X< b\}\in \mathcal{A},$ откъдето следва, че ако X е случайна величина, е вярно, че $X^{-1}(A)\in \mathcal{A}$ за всяко $A\in \mathcal{B}(\mathbb{R})s$ - бореловата аргебра

Теорема: (свойства на случайна величина): За X,Y - случайни величини във вероятностно пространство е в сила:

- aX+bY е случайна величина за $orall a,b\in\mathbb{R}$
- ullet XY е случайна величина
- ullet $rac{X}{V}$ е случайна величина, ако $\mathbb{P}(Y=0)=0$
- Доказателство:
 - $\circ\:$ Нека $X_1=aX$ и $Y_1=bY$
 - lacktriangledown При a=0 имаме, че $X_1=0$ и го проверяваме: За $b\leq 0$ имаме $\{X_1< b\}=\emptyset\in \mathcal{A}$ За b>0 имаме $\{X_1< b\}=\Omega\in \mathcal{A}$
 - lacktriangle При a>0 проверяваме: $\{X_1 < b\} = \{aX < b\} = \{X < rac{b}{a}\} \in \mathcal{A}$, понеже X е случайна величина. Тогава имаме, че X_1 и Y_1 са случайни величини
 - \circ Нека $Z=X_1+Y_1$ $\{Z< b\}=\{X_1+Y_1< b\}$ и искаме да проверим дали $\{X_1+Y_1< b\}=igcup_{q\in\mathbb{Q}}(\{X_1< q\}\cap \{Y_1< b-q\})=L$, понеже $L\in\mathcal{A}$ $\omega\in L\Longrightarrow\exists q_0: egin{cases} X_1(\omega)< q_0\ Y_1(\omega)< b-q_0 \end{cases}\Longrightarrow X_1(\omega)+Y_1(\omega)< b$ $\Longrightarrow L\subset\{X_1+Y_1< b\}$

$$ullet$$
 $\omega \in \{X_1+Y_1 < b\}$ и $X_1+Y_1 < b-2r$ за някое $r>0$ Също $\exists q: q-r < X_1(\omega) < q+r$ Тогава $Y_1(\omega) < b-2r-X_1(\omega) < b-2r-q+r=b-(q+r)$ Откъдето $\omega \in \{X_1 < q+r\} \cap \{Y_1 < b-(q+r)\} \in L$ Следователно $\{X_1+Y_1 < b\} \subseteq L$

lacktriangledown Окончателно $\{X_1 + Y_1 < b\} = L$, с което доказахме желаното.

Дефиниция: (индикаторна функция): Нека имаме вероятностно пространство и $H \in \Omega$. Тогава

$$\mathbb{1}_H = egin{cases} 1, \omega \in H \ 0, \omega
otin H \end{cases}$$

Свойства: (на индикаторна функция):

- $1_{H^C} = 1 1_H$
- $\mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B$

величина.

- $\mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B \mathbb{1}_A \mathbb{1}_B$
- $\mathbb{1}_{(A \cup B)^C} = \mathbb{1}_{A^C} \mathbb{1}_{B^C}$
- $\mathbb{1}_{\bigcup_k A_k} = 1 \mathbb{1}_{\bigcap_k A_k^C} = 1 \prod_k \mathbb{1}_{A_k^C} = 1 \prod_k (1 \mathbb{1}_{A_k})$

Лема: Нека имаме вероятностно пространство и $H \in \mathcal{A}$. Тогава $\mathbb{1}_H : \Omega \to \mathbb{R}$ е случайна величина.

• Доказателство: Ако
$$X(\omega)=\mathbb{1}_{H(\omega)}$$
, то $X^{-1}(\{0\})=H^C$ и $X^{-1}(\{1\})=H$ $\forall a < b$ е вярно, че $X^{-1}(a,b)=egin{cases} \emptyset &, & a \geq 1 \text{ или } b \leq 0 \\ \Omega &, & 0 \in (a,b) \text{ и } 1 \in (a,b) \\ H &, & 0 \notin (a,b) \text{ и } 1 \in (a,b) \\ H^C &, & 0 \in (a,b) \text{ и } 1 \notin (a,b) \end{cases}$ Или алтернативно, $X^{-1}(-\infty,b)=egin{cases} \emptyset &, & b \leq 0 \\ \Omega &, & b > 1 \\ H^C &, & b \in (0,1) \end{cases}$

Така според дефиницията, X е случайна величина.

Дефиниция: (дискретна случайна величина): Нека имаме вероятностно пространство и H е пълна група от събития в него. Нека \overline{x} е вектор или редица от числа, съотвестваща на елементарните събития в H. Тогава $X(\omega) = \sum_j x_j \mathbb{1}_{H_j(\omega)}$ се нарича дисктретна случайна

Дефиниция: (разпределение на дискретна случайна величина): Нека $X=\sum_j x_j \mathbb{1}_{H_j}$ е дисктретна случайна величина. Тогава таблицата, където $\mathbb{P}(X=x_i)=p_i=\mathbb{P}(H_i)$ и $\sum_j p_j=1$, се нарича таблица на разпределение.

X	x_1		x_k	•••
$\mathbb{P}(X=x_i)$	p_1	• • •	p_k	• • •

Твърдение: Казваме, че две дискретни случайни величини X,Y са еднакви по разпределение, ако техните таблици съвпадат, тоест $\mathbb{P}(X=x_i)=\mathbb{P}(Y=x_i)$ за всяко x_i и пишем $X\stackrel{d}{=}Y$.

Твърдение: Казваме, че X_1,\dots,X_n са еднакви по разпределение, ако $X_1\stackrel{d}{=} X_j$ за всяко $1\leq j\leq n.$

Дефиниция: (смяна на променливите): Нека X,Y са две дискретни случайни величини в едно вероятностно пространство и нека $g:\mathbb{R}^2 \to \mathbb{R}$. Тогава $Z(\omega)=g(X(\omega),Y(\omega))$ е смяна на променливите X,Y.

$$ullet$$
 Ако имаме $Y=g(X)$, то $Y=\sum_j g(x_j)\mathbb{1}_{H_j}$, ако $X=\sum_j x_j\mathbb{1}_{H_j}$

Дефиниция: (независимост на дисктретни случайни величини): Нека X,Y са две дискретни случайни величини в едно вероятностно пространство. Тогава

$$X\perp Y \Longleftrightarrow \mathbb{P}(X=x_j,Y=y_k)=\mathbb{P}(X=x_j\cap Y=y_k)=\mathbb{P}(X=x_j)\cdot \mathbb{P}(Y=y_k)\ orall j, k$$

Дефиниция: (независимост в съвкупност): Нека X_1, \dots, X_n са дискретни случайни величини в едно вероятностно пространство. Тогава те са независими в съвкупност, ако

$$\mathbb{P}(X_1=x_1,\ldots,X_n=x_n)=\prod_{i=1}^n\mathbb{P}(X_i=x_i)$$

Дефиниция: (функция на разпределение): Нека X е дискретна случайна величина в едно вероятностно пространство. Тогава $F_X(x) = \mathbb{P}(X < x) \ , \forall x \in (-\infty, \infty)$, се нарича функция на разпределение на X.

Нотация: Ако две дискретни случайни величини X,Y са независими и еднакво разпределени с величината Z, пишем $X,Y\stackrel{iid}{\sim} Z$