

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平8-263639

(43)公開日 平成8年(1996)10月11日

(51) Int. Cl. °	識別記号	庁内整理番号	FI				技術表示箇所
G06T 1/00			GO6F 15/62 HO4N 1/387		420	A	
13/00					101		
HO4N 1/387	101	•	G06F 15/62	2	340	D	
			審査請求	未請求:	請求項の数(6 OL	(全17頁)
(21)出願番号	特願平8-505	4 0	(71)出願人	5 9 1 2	6 4 5 4 4		
				イースト	マン・コダ	ツク・ス	カンパニー
(22)出願日	平成8年(199	6) 3月7日		アメリカ	合衆国、二	ユー・	ヨーク・146
		•		50. 🗆	チエスター	、スティ	イト・ストリー
(31)優先権主張番号	401396			ト・34	3		
(32)優先日	1995年3月9	B	, (72)発明者	アンドリ	ュー・ジェ	イパ	ッティ
(33)優先権主張国	米国 (US)			アメリカ	合衆国 二	ューヨー	ーク州 ロチェ
				スター	クリッテン	デン !	ウェイ 298
			(72)発明者	エム イ	ブラヒム	セザン	
	•			アメリカ	合衆国 二	ューヨ	ーク州 ロチェ
	1			スター	アーピング	-	ド 71
			(74)代理人	弁理士	吉田 研二	(外	2名)

(54) 【発明の名称】一連の低解像度画像から高解像度画像を生成する方法及び装置

(57)【要約】

【課題】 画像の再生において、エイリアシング、ぼけ、ノイズなどの影響を完全に解決するのが困難である。

【解決手段】 一連の低解像度モーション画像から高解像度画像を生成する装置において、各低解像度画像のマッピング変換が生成される(12)。このマッピング変換により、各低解像度画像の画素が高解像度画像の位置にマップされる。このマッピング変換を用いて、各低解像度画像の各画素に対し、合成された点拡がり関数(PSF)が算出される(14)。算出された合成PSFを用いて、凸集合(POCS)への射影により、低解像度画像から高解像度画像が生成される(16)。

【特許請求の範囲】

【請求項1】 一連の低解像度モーション画像から高解 像度画像を生成する方法であり、以下のステップを含

- a. 各低解像度画像のマッピング変換を生成し、各低解 像度画像の画素を高解像度画像の位置にマップするステ ップと、
- b. 前記マッピング変換を用いて、各低解像度画像の各 画素に対する、合成された点拡がり関数(PSF)を算 出するステップと、
- c. 前記合成ぼけPSEを用いて、凸集合への射影(P OCS) により、低解像度画像から高解像度画像を生成 するステップと、
- d. 前記高解像度画像を表示するステップ。

【請求項2】 請求項1に記載の方法において、マッピ ング変換を生成するステップは、以下のステップを含

- a. 低解像度画像の1つを基準画像として選択するステ ップと、
- b. 各画素における、前記基準低解像度画像とそれ以外 20 の各低解像度画像との間の相対運動を説明するマッピン グ変換を推定するステップと、
- c. 基準画像以外の各低解像度画像の画素に対して、推 定されたマッピング変換の妥当性をテストし、有効なマ ッピング変換を示すステップと、
- d. 低解像度画像から高解像度画像への有効なマッピン グ変換のそれぞれを定めるステップ。

【請求項3】 請求項1に記載の方法において、前記合 成PSFを算出するステップは、以下のステップを含

- a. 前記マッピング変換を用いて、各低解像度画像の各 画素に対し、高解像度画像に関する有効サンプリングア パーチャを計算するステップと、
- b. 前記有効サンプリングアパーチャのPSFを計算す るステップと、
- c. 光学PSFを決定するステップと、
- d. 各画素の計算されたPSFを光学的PSFと合成
- し、各画素についての合成されたPSFを生成するステ ップ。

Cによって高解像度画像を生成する前記ステップはさら に以下のステップを含む。

- a. 低解像度画像の1つを、高解像度画像の多数の画素 に内挿して、高解像度画像の推定値を生成するステップ ٤.
- b. 有効なマッピング変換を有する低解像度画像のそれ ぞれにおける各画素に対し、前記高解像度画像の推定値 を以下の方法により改良するステップ、(1)低解像度 画像の1つにおける1画素を選択し、(2)前記選択さ れた画素の合成PSFを、高解像度画像の現在の推定値 50

に供給することにより、高解像度画像から計算された画 素値を生成し、(3)前記選択された画素値と計算され た画素値との差を求め、その差の大きさが所定の閾値よ り大きい場合にはその誤差を高解像度画像の現在の推定 値に逆射影 (back project) する、

- c. 高解像度画像の前記改良された推定値を、許容可能 な範囲にクリップするステップと、
- d. 上記第2のステップと第3のステップを、停止基準 が満たされるまで繰り返すステップ。
- 【請求項5】 一連の低解像度ビデオイメージから高解 10 像度ピデオシーケンスを生成する方法であり、請求項1 に記載の方法を前記一連の低解像度ビデオイメージに複 数回適用して、高解像度画像のビデオシーケンスを生成 する方法。

一連の低解像度モーション画像から高解 【請求項6】 像度画像を生成する装置であり、以下を含む。

- a. 一連の低解像度モーション画像を生成する原画生成 手段 (source) 、
- b. 前記一連の低解像度画像を受信し、高解像度画像を 生成する画像生成装置であり、(1)各低解像度画像に 対するマッピング変換を生成し、各低解像度画像の画素 を高解像度画像の位置にマップする手段、(2)前記マ ッピング変換を用いて、各低解像度画像の各画素に対し て合成された点拡がり関数(PSF)を算出する手段、
 - (3) 前記ぼけPSFを用いて、凸集合への射影(PO CS) により、低解像度画像から高解像度画像を生成す る手段と、を含む画像生成装置、及び
 - c. 前記高解像度画像を表示する表示装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ディジタル画像処 理に関する。より詳細には、ぼけ(blur)やノイズの問 題を有し、任意の格子 (arbitrary lattice) 上にアン ダーサンプリングされた (under-sampled) 一連のモー ション画像 (motion image) から高解像度スチル画像 (still image) を得る技術に関する。

[0002]

【従来の技術】本発明は、任意の時空的格子上にアンダ ーサンプリングされ、ぼけやノイズによる質の劣化が見 【請求項4】 請求項1に記載の方法において、POS 40 られる複数のモーション画像(すなわち相対変位を含む 複数の画像)から高解像度のスチル画像を再生する方法 及び装置に関するものである。前記複数の低解像度劣化 モーション画像は、時間的に連続して動作する電子スチ ルカメラによって得られた特定シーンに関する一連のス チル画像でもよいし、ビデオ信号からディジタル化され たフレームでもよい。

> 【0003】上記のような低解像度画像は、通常、散在 する空間格子(すなわち、サンプリング格子)上にアン ダーサンプリングされている。これは、散在するポイン トの集合上でカラーチャネルをサンプリングするカラー

フィルタアレイが存在すること、及びインターレース、あるいはこれらのいずれかに起因する。さらには、このような画像にはぼけ及びノイズの問題がある。ぼけの原因としては、以下に述べる事項のすべてあるいはそのいずれかが考えられる。すなわち、センサ積分(sensor integration)、シーンとカメラの相対運動、ノンゼロアパーチャ時間、及び焦点のぼけたレンズである。一方、撮像センサ、及びディジタル化処理と量子化処理がノイズを発生させる。ここでは、これらの欠陥を1つでも有する画像を低分解能画像と称することにする。

【発明が解決しようとする課題】複数の低解像度画像が 供給される場合、例えば良質のハードコピープリントを 生成するなどの多様な目的のために、より高品質のスチ ル照像の生まがしばしば望まれる。生まされたスチル照

[0004]

ル画像の生成がしばしば望まれる。生成されたスチル画像は、好ましくは入力された画像の格子より密である標準矩形格子上に、多数のサンプルを有することにより、エイリアシングの影響を低減し、さらにぼけやノイズの問題を排除したものでなければならない。

【0005】米国特許第5,341,174号(クー他)には、次のような画像生成方法が開示されている。すなわち、相対運動情報に基づいて、隣接画像からのサンプルを選択された画像にマッピング(写像)することにより画像が形成され、その画像のサンプル数及びサンプル密度が高められる。ところが、この特許に開示されているアプローチは、インターレース(飛び越し走査)されたビデオにその適用が限定され、ぼけやノイズによる劣化を考慮していない。したがって、ぼけやノイズによって劣化したデータは、その状態で用いられてしま

【0006】センサにおける積分によって生じるぼけに ついては、以下の方法でスチル画像を生成することで考 慮がなされている。すなわち、「画像強調のためのモー ション分析:解像、閉鎖 (occlusion), 及び透明度」 (M. Irani S. Peleg. J. of Visual Comm. and Image Re presentation, vol.4, pp.324-335, 1993年12 月);「仮想ベローズ:ビデオからの髙品質スチル画像の 編成」 (IEEE Int. Conf. Image Proc., (Austin, TX), 1994年11月);「画像登録による解像度の向 上」(M.Iranì S.Peleg, Grafical Models and Image P 40 rocessing, vol. 53,pp. 231-239,1991年5月)に 記載の方法である。しかしながら、上記の方法は、アバ ーチャ時間を考慮に入れておらず、運動ぼけ (motion b lur)を適切に扱っていない。さらに、上記の方法は、 ノイズによる劣化をモデルせず、これを考慮していな い。この結果、これらの方法を用いて生成されたスチル 画像には、依然として運動ぼけ及びノイズによる劣化の 問題が残されている。さらに、これらの方法では、入力 される低解像度画像は標準の矩形格子上にサンプルされ ていると仮定されている。従って、例えば入力画像がイ

ンターレースされたビデオから得たものである場合には、これらの画像は、上記の方法を適用するに先立ち、まずデインターレース(すなわち、標準矩形格子上にサンプリングされたプログレッシブ画像に変換)しなければならない。このような工程を行わない限り、上記方法は、インターレースされてない、プログレッシブな入カ画像に限定されることになる。

【0007】A. M. テカルプ他による「低解像度画像シーケンスからの高解像度画像再生、及び空間変化(sp ace-varying)画像復元」(IEEE Int. Conf. Acouus t., Speech, and Signal Proc., (San Francisco, CA), vol. III PP.169-172、1992年3月)において説明される高解像度度画像の再生方法では、凸集合への射影(POCS)に基づく方法が用いられている。この方法は、センサ積分によるぼけ、及びノイズに対して考慮している。しかしながら、この方法は運動ぼけに対する考慮がなく、さらに、インターレースされていないプログレッシブな入カ画像にその適用が限定されている。

20 【課題を解決するための手段】本発明の目的の1つは、 高品質のスチル画像を生成する際に問題となる前記の課題のすべてに対処する方法を提供することである。すな わち、エイリアシング(任意の格子上の空間アンダーサ ンプリングによる)、センサのぼけ(センサにおける空間積分、及びシーンとセンサの相対運動がある場合のア パーチャ時間における時間積分による)、光学系ぼけ (焦点のぼけたレンズによる)、及びノイズ(センサ及 び量子化のノイズ)の問題である。 【0009】本発明の別の目的は、同時モデリングの問題、及びエイリアシング、センサ積分によるぼけ、光学系ぼけ、運動ぼけ、ノイズによる汚染の影響を完全に解決することにある。このように、本発明によれば、高解像度のスチル画像またはシーケンス(連続画面)を生成することができる。

【0010】本発明の更なる目的は、任意のサンプリング格子上にサンプリングされた低解像度画像から高解像度画像を再生することにある。これは、サンプリング密度を高めることでエイリアシングの影響を低減し、さらに、センサ積分によるぼけの影響、及びノイズ汚染の影響を低減することにより違成される。

【0011】本発明の更なる目的は、サンプリング密度を高めることでエイリアシングの影響を低減し、さらに、センサ積分によるぼけの影響を低減することによって、任意のサンプリング格子上にサンプリングされた低解像度画像から高解像度画像を再生することにある。

【0012】本発明の別の目的は、高解像度モードを備えたディジタルスチルイメージカメラにおいて用いることのできる方法を提供することにある。前記高解像度モードは、「バースト」方式を呼び出すことにより動作する。すなわち、相対運動する連続画像が急速に取り込ま

30

40

5

れ、これらの画像が、インカメラハードウェアあるいは オフラインソフトウェア/ハードウェア処理能力のいず れかを用いた方法によって処理される。こうして、高解 像度のスチル画像が生成される。あるいは、相対運動を 含む連続画像を、通常の電子スチルカメラを用いて取り 込むこともできる。本発明の別の目的は、ビデオカメラ によって捕獲された画像を処理するために用いることの できる方法を提供することにある。本発明により、イン カメラハードウェアあるいはオフラインソフトウェア/ ハードウェア処理能力のいずれかを用いて、画像を処理 し、高分解のスチル画像を生成することができる。生成 された高解像度画像は、カラーフィルタアレイ(CF A)に固有の密度より高密度で空間的にサンプリングさ れ、さらにインターレースされていない。このようなカ メラは、例えば、原稿、図面、及び写真の極めて解像度 が高いスチル画像の送信が望まれるようなデスクトップ ビデオ会議システムにおいて有用である。

【0013】上記目的は、本発明により、一連の低解像度モーション画像から高解像度の画像を生成するシステムを供給することによって達成される。前記システムは、低解像度画像のそれぞれに対するマッピング変換を生成し、各低解像度画像の画素を高解像度画像の位置にマップする。このマッピング変換を用いて、合成(combined)点拡がり関数(PSF)が、各低解像度画像の各画素に対して算出される。さらに、合成PSFを用いて、凸集合への射影(POCS)(projection onto convex sets)により、低解像度画像から高解像度画像が生成される。

【0014】本発明は、以下のような効果を有する。入力画像が標準矩形格子上にサンプリングされていない場合には、前処理として、入力を標準矩形格子上で内挿処理しなければならないが、本発明ではこのような前処理を行わなくとも、任意の格子上にサンプリングされている画像を処理することができる。本発明は、凸集合への射影(POCS)に基づく方法を用いて、ほけ、ノイズ、任意の格子上にサンプリングされた画像の問題を同時に扱う、画像再生方法を展開させている。さらに、本発明は、運動推定(molion estimates)を柔軟に扱うことができる。以下に述べるように、本発明は、運動推定の正確性に適応することができる高解像度画像再生を可能にするものである。

[0015]

【発明の実施の形態】本発明の主要なステップが、図1のフローチャートに示されている。図において、複数の低解像度モーション画像10が、本発明による画像処理方法の入力として示されている。これらの入力低解像度画像の組から、1つの入力画像がユーザによって選択される。選択された画像は基準画像と呼ばれ、この画像を高解像度化したものが再生される。基準画像は、その時係数 t, によって特定されている。

【0016】本発明は、3つの主要な処理ステップを有 する。図1に基づき説明する。第1の処理ステップ12 では、各低解像度入力画像の画素を、高解像度画像の位 置にマップするマッピング変換が供給される。マッピン グ変換を生成するために、低解像度基準画像に対し、そ の他の低解像度画像のそれぞれの各画素の運動ベクトル 場が推定される。ここで、分数画素精度 (fractional p ixel accuracy)を有する周知の階層型プロックマッチン グ方法などの、運動推定方法を用いることができる。あ るいは、米国特許第5, 241, 608号(1993年 8月31日発行、発明者:フォーゲル)に開示されてい る運動推定方法を用いて、運動ベクトル場を推定するこ ともできる。前記ブロックマッチング方法は、局所移動 運動モデル (locally translational motion model) に 基づいている。または、以下に説明するように、アフィ ン運動モデルを用いてもよい。アフィン運動モデルは、 ある領域内において、移動に加え、ズーム、回転及びせ ん断 (shear) をモデルするものである。

【0017】第2の処理ステップ14では、前のステップ12において生成されたマッピング変換情報と、アパーチャ時間、センサ幾何(geometry)、光学系ぼけ点拡がり関数(PSF)、及び高解像度サンプリング幾何(HR)を用いて、合成ぼけPSFが算出される。これは、運動ぼけと光学系ぼけ、及びセンサにおける積分によるぼけに対処するものである。合成ぼけPSFの計算は、像形成モデル(image formation model)に基づいて行われるが、これについては後に説明する。

【0018】第3のステップ16において、高解像度画像が生成される。このステップでは、合成ぼけPSF係でッピング変換からの運動情報、及び供給された低解像度画像10が、POCSに基づく方法で用いられる。この方法については、「凸射影理論の概観及び画像では、「凸射影理論の概観及び画像では、「凸射影理論の概観及び画像では、「1992年発行第40号、55-67ページ)の論文に詳細に説明されている。このステップで再生されたであり、入力された低解像度画像のサンプリング格子パクランに関わらず、より緻密で、標準矩形のサンプルを有し、ぼけやノイズによる、フに関わらず、より緻密で、標準矩形のサンプルを有し、ぼけやノイズによる、フに関わらず、より緻密で、標準矩形のサンプルを有し、ぼけやノイズによる、ステッとである。ついて、と成された高解像度画像は、CRTまたはプリンタなどのディスプレイ装置に表示される。

【0019】低解像度画像は、異なる時点で異なるサンプリングパターンによってサンプリングされることもある。このような場合には、サンプリング格子は、サンプリングパターンにおいて周期的な変化を示す。低解像度の一般的なサンプリング格子パターン、及び高解像度画像が図2に示される。パターン(a)はダイアモンド型の格子を、パターン(c)はインターレースされた格子を示している。パターン(b)及び(d)は、高解像度

画像が再生されたより高密度の格子を示している。図に おいて、白抜きの円は高解像度再生プロセスによって生 成された新たなサンプルを示し、黒塗りの円は低解像度 画像のサンプリングパターンを示している。 図2は有効 サンプリング密度の2倍の増加を示しているが。本発明 は、必要に応じて、より高い増加率を提供ことができ る。また、低解像度画像の1つではなく、すべてを連続 的に処理することにより、連続した高解像度画像を生成 することができる。この際、その都度、画像の1つが基 準画像とされる。このような処理は、例えば高解像度ピ 10 デオの生成に有用である。

【0020】図3には、本発明の実施に役立つ装置が示 されている。ディジタイザ22に接続されたビデオカム コーダノVCR20、ディジタルスチルカメラ24、デ ィジタルビデオカムコーダ26、ディジタルスキャナ2 8、またはディスクストレージ30、などの入力装置 が、連続するディジタルモーション画像の供給源とな る。連続ディジタルモーション画像は、画像処理コンピ ュータ装置32に供給される。画像処理コンピュータ装 置32は、パワーPCなどのコンピュータ34、一般的 20 にSVGAまたはそれ以上の解像度を有するCRTディ スプレイ36、及びキーボード38またはマウスなどの オペレータ入力を含む。コンピュータ34は、高解像度 画像のハードコピーディスプレイを生成するプリンタ4 0などの出力装置、画像の継続中の最終表示を記憶する 光ディスクなどの記録媒体42、または遠隔ディスプレ イに高解像度画像を分配する通信ネットワーク44に接 続するリンクなどに接続される。

【0021】複数の低解像度画像がコンピュータ装置3 2に供給されてCRT36に表示されると、ユーザは、 対話方式で、基準画像の対象領域を特定し、解像度の改 良処理をその領域に限定することができる。図4は、一 連の低解像度画像46、48、50を示している。ここ では、画像48の対象領域52が、高解像度処理に指定 されている。この場合、選択された領域を高解像度化し たものは、高解像度サンプリング幾何上に再生され、そ の結果が低解像度画像の格子上にダウンサンプリングさ れ、前記対象領域において、元の画素値と置き換えられ る。図4の絵では、人の顔が対象領域52を形成してい る。この場合、結果として得られた画像では、高解像度 40 で顔の詳細を見ることができる。また、ユーザは選択さ れた対象領域52に対応する領域を視覚的に認定するこ ともできる。この場合、低解像度画像全体ではなく、こ れらの認定領域だけが処理されるので、コンピュータ操

作における節約となる。

【0022】A. <u>マッピング変換</u>

低解像度画像のそれぞれから基準画像に対する運動が推 定され、この結果、M個の低解像度画像に対して、(M -1) 個の運動ベクトル場が得られ、これによりマッピ ング変換が生成される。マッピング変換は、低解像度画 像の画素を、高解像度画像のサンプリング位置にマップ するためのものである。これについては、図5において 示されている。最も簡単なケースとしては、低解像度画 像46から基準画像48までの運動を、空間的均一移動 としてモデルすることができる。しかしながら、実際に は、このモデルは最適ではないことが判明した。そこ で、不均一な移動運動を推定するための、階層的プロッ クマッチング方法、及びアフィンモデル及び推定量に基 づく方法が、運動ベクトル場の推定に、より効果的に用 いられている。

【0023】低解像度画像46、48、50、53は、 すでに矩形格子上に得られない限りは、運動推定のため に、まず、矩形の低解像度の格子上に双線形に内挿され る。例として、ダイアモンド形の低解像度入力格子5 4、及びこれに対応する低解像度の矩形格子56が図6 に示されている。基準画像の内挿された値は運動推定の ためにのみ用いられ、その後は破棄され、POCSに基 づく高解像度再生処理においてはその推定値に置き換え られる。運動ベクトルは、低解像度画像のそれぞれの実 際の画素に対して推定され、その結果、(M-1)個の 運動ベクトル場推定値が得られる。

【0024】プロックマッチング方法の場合、その運動 は、局所的移動(locally translational)であると仮 定される。他の変換効果が小さい場合には、このような 近似 (approximateion) が大変効果的となる。M. ピア リングによる「階層的プロックマッチングによる変位推 定」(Proc. SPIE Visual Communications and ImagePro cessing '88, pp.942-951, 1988) に記載の階層的プロ ックマッチング方法(HBM)を用いて、不均一の運動 場が推定される。ここで用いられているマッチング基準 は、測定ブロック間の平均絶対差(MAD)である。階 層の各レベルにおいて、対数型のサーチが用いられる。 【0025】5レベルのHBMを実施するのに用いるこ とのできる好適なパラメータ値が表1に示されている。 ここで、一番左の列に示されているのが階層レベル数で あり、レベル1が最も低い解像度レベルを示している。

[0026]

【表1】

30

 H_{i}

335

:

The state of the s

レベル	最大変位		ウィンドウ サイズ		フィルタ サイズ		ステップ サイズ	SSF	精度
	機	縦	橨	縦	橨	凝			
1	31	31	128	128	10	10	32	8	1
2	15	15	64	64	10	10	16	8	1
3	7	7	64	64	5_	5	8	4	1
4	3	3	28	28	5	5	4	4	1
5	1_	1	12	12	3	3	3	2	0.25

水平方向/垂直方向最大変位は、対数型サーチの第1ス 10 テップにおいて用いられる変位である。水平方向/垂直方向測定ウィンドウサイズは、MADが計算されるウィンドウのサイズである。フィルタの水平方向/垂直方向のサイズは、ガウスフィルタのサポートを特定するもので、分散(variance)はサポートサイズの2分の1に設定されている。ステップサイズは、運動推定が算出される基準画像の隣接する画素間の水平方向及び垂直方向の距離である。サプサンプリング係数(SSF)は、測定ウィンドウ上のMADを算出する場合に用いられる水平方向及び垂直方向のサブサンプリングである。推定の精度は、低解像度の矩形格子のサンプリング期間に関するものである。なお、これらパラメータのすべての単位

は、低解像度の矩形格子の空間サンプリング期間に関連するものである。(すなわち、低解像度矩形格子に対する、画素精度 0.25の改善は、HBMの最終レベルにおいて行われている。)

(回転、せん断(シアー)、及びズームによって起こる)有効な非移動マッピング変換は、上述のブロックマッチング技術を用いて正確にモデルすることができない。この場合は、下式のパラメータ c, ー c, によって決定されるグローバルアフィン変換を用いることにより、このようなマッピング変換を生じさせる画像間運動(inter-image motion)をモデルするのが好ましい。【0027】

【数1】

$$g(x_1 + c_1 + c_2x_1 + c_3x_2, x_2 + c_4 + c_5x_1 + c_6x_2, t) = g(x_1, x_2, t_r)$$
(1)

これらのパラメータc,、c,、c,を推定するために用いることのできる技術については、J.パーゲン、P.パート、R.ヒンゴラーニ、S.ペレグによる、「2成分画像運動を推定するための3フレーム対数」(IEEE Trans. Pattern Anal. Intel., vol. 14, pp. 8 86-896, 1992年9月発行)に説明がある。この推定 30 方法では、空間的及び時間的な導関数(derivatives)を推定する必要がある。空間導関数は、各画素を中心にした5x5のウィンドウに適合する(fit)2-D2次多項式最小二乗法を用いて推定される。時間導関数は、各画素における2点有限前進差分(2-point finite forward difference)を用いて算出される。これらの導関数を推定するに先立ち、11x11の画素均一ぼけ(pixeluniform blur)を用いて画像をぼけさせ、ノイズの影響を低減する。

【0028】カラーイメージの場合には、輝度ドメイン 40 において運動が推定される。さらに、その運動情報を用いて、供給された低解像度画像の原色チャネル(例えば、赤、緑、青)がそれぞれ処理される。したがって、マッピング変換を形成するための運動推定に先立ち、R G B から輝度及び2つの色票(例えば、Y U V)への変換が、低解像度画像に提供される。

【0029】 <u>B. 合成 PSFのモデリング及び計算</u> 合成 PSFの計算は、像形成ぼけモデルに基づく。以下においては、まず、このモデルについて説明する。このモデルを用いて合成 PSF が算出される。

【0030】まず、入力された低解像度画像を、特定の基準時間 t. において、連続線形シフト変数(LSV)ぼけ関係によって、実際の高解像度画像に関連づけるモデルについて説明する。この目的のため、まず、像形成モデルについて説明する。この形成モデルに前述のマッピング変換を組み入れることにより、所望のLSV関係が合成ぼけPSFによって表わされる。次に、離散化(discretization)についての説明が示される。これにより、離散化された高解像度画像が、対応する離散的LSV関係によって、観測された低解像度画像に関連づけられる。そして、これが離散的合成ぼけPSFで表される。最後に、次の高解像度画像再生ステップに用いられる合成PSFを算出する実際的な方法が供給される。【0031】像形成モデル

本発明において用いられる像形成モデルが図7に示されている。図において、入力信号 f (x, x, t) は、連続ドメインにおける実際の高解像度イメージを示している。この高解像度イメージが離散的推定を求めるべき画像である。低解像度センサの物理的サイズの影響、すなわちセンサ領域上の積分によるぼけ、及び光学系装置のぼけが、図7の第1段60においてモデルされる。高解像度画像 f (x, x, t) は、センサの形状を表す核 h. (x, x, t) と光学的ぼけ核 h. (x, x, t) の双方と合成される。これらはともに時間の関数であるが、ここでは、これらをアパーチャ50時間において一定であると限定する。こうして、光学的

ぼけとアパーチャサイズを、画像ごとに変化させること ができる。

【0032】アパーチャ時間の影響は、時間-ドメイン 積分器(time-domain integrator)によって、図7の第 2段62においてモデリングされている。その出力は、 以下の式によって表される。

[0033]

【数2】

$$g_2(x_1, x_2, t) = \frac{1}{T_a} \int_{t-T_a}^{t} g_1(x_1, x_2, \tau) d\tau, \qquad (2)$$

ここで、T。は、センサアパーチャ時間を示している。 なお、ここで、最初の2つの段60と62は、交換が可

$$g_2(m_1, m_2, k) = g_2(x_1, x_2, t) \Big|_{[x_1, x_2, t]^{\frac{1}{2}} = V_s[m_1, m_2, k]^{\frac{1}{2}}}$$
(3)

ここで、V、はサンプリング格子を特定する行列を示 し、' は転置作用を示している。最終的なモデリングス テップ66において、低解像度センサによる付加的なノ イズがサンプルされたビデオ信号に付加される。

【0036】運動を含むモデル

次に、前記像形成モデルに運動モデルを組み込んで、固 20 定された任意の時間段階 t, における、低解像度画像と 所望の高解像度画像との望ましいLSV関係を確立す る。このt、を適当に設定することによって、単一の高 解像度スチル画像、または、連続する高解像度画像から なる高解像度ビデオ画像を再生することができる。

【0037】運動モデルが像形成モデルに供給される と、図7の最初の2つの段60及び62を組み合わせ て、単一のLSV関係を形成することができる。ここ で、まず、運動を次の式において考えることとする。 [0038]

【数4】

$$f(x,t) = f(M(x,t,t_r),t_r) = f(x_{t_r},t_r),$$

上式において、xは(x,,x,)を示している。M

$$g_1(x,t) = \left[h_1(x - M^{-1}(x_{t_r}, t, t_r))f(x_{t_r}, t_r)J(M)\right]^{-1}dx_{t_r}$$
 (6)

(4)

ここで、M⁻¹は逆変換を表し、J(M)はMのヤコピア ンを表し、 | . |は行列式作用素 (operator) を表して いる。式(6)から、モデルの第1段はLSVオペレー ションに変換されており、時間 t, における高解像度画 像に影響していることが明らかである。この事実を反映 40 画像70に供給されるマッピング変換の逆数である。式 するために、次式 (7) が、センサ幾何の影響、光学ぼ け、及び相対運動をモデルする、合成LSVぽけ点拡が り関数 (PSF) を示すようにした。

[0041]

【数8】

$$h_1(x; x_{i_r}; t, t_r) = h_1(x - M^{-1}(x_{i_r}, t, t_r)) |J(M)|^{-1}$$
 (7)

この式による影響が図8に示されている。図において、 左の絵は、時間tにおける画像処理を示したものであ

能である。これは、第1の段60が空間的な線形シフト 不変(LSI)であり、第2の段62が時間的なLSI であるためである。

【0034】図7の第3の段64では、任意の空間-時 間格子Λ、を用いて低解像度サンプリングをモデルす る。この段の出力は、g, (m, , m, , k) によって 示されている。従来から、関数引き数(function argum ent)として現れる整数値m₁, m₂, kは次の式にお いて解釈される。

[0035]

【数3】

(x, t, t,) は、位置x及び時間 t における強度の 位置を、時間t, におけるその位置に関連づけるマッピ ング変換である。この式は、運動軌道 (motion traject ories) に沿った強度維持を周知の推定方法で表したも orbas. $h_{i}(x, h) = h_{i}(x, t) * * h$. (x, t) とすることによって、モデリングの第1段 の出力は、下式のように表すことができる。

[0039]

[数5]
$$g_{\mathbf{l}}(x,t) = \int h_{\mathbf{l}}(x-\chi)f(\chi,t)d\chi \tag{5}$$

変数

【数 6】

$$x_{t_r} = M(\chi, t, t_r)$$

を変化させ、式(4)を用いることにより、式(5)は 30 以下のようになる。

[0040]

【数 7 】

る。ここでは、センサ素子のアパーチャ68は画像に組 み付けられて (imposed) いる。右側の絵は、時間 t, における同じ画像処理を示している。時間 t から t, ま でに、アパーチャ68に供給されるマッピング変換は、 (6)を、LSV形式で書き直すと、

 $g_1(x,t) = \left[h_1(x; x_{t_r}; t, t_r) f(x_{t_r}, t_r) dx_{t_r} \right]$ (8)

のように表される。

【0042】ここで、第2モデリング段は、以下の式で 表すことができる。

[0043]

【数10】

 $g_2(x,t) = \int_{t-T_d}^t \int h_1(x;x_{t_r};\tau,t_r) f(x_{t_r},t_r) dx_{t_r} d\tau$

積分の順序を変えることにより、上式は以下のようにな

[0044] 【数11】

 $g_2(x,t) = \int h_2(x; x_{t_r}; t, t_r) f(x_{t_r}, t_r) dx_{t_r}$

(10)

 $h_2(x; x_{l_r}; t, t_r) = \int_{t-T_0}^{t} h_1(x, x_{l_r}; \tau, t_r) d\tau.$

【0045】このように、モデリングの最初の2つの段 が単一のLSVシステムに合成され、時間t、における 連続する高解像度画像に作用する。これにより、観測さ れた低解像度イメージを、時間 t, における連続する高

解像度画像の式で、以下のように書き表すことができ

[0046]

【数12】

$$g(m_1, m_2, k) = \int h_2(m_1, m_2; x_{t_r}; k, t_r) f(x_{t_r}, t_r) dx_{t_r} + \nu(m_1, m_2, k), \tag{12}$$

上式において、h、(゜)は有効LSVぽけPSFであ り、整数引き数 (integer auguments) m, , m, , k は式(3)においてと同一の解釈を有する。

【0047】離散化_(discretization)

式(12)におけるLSVぼけ関係を離散化し、観測さ れた低解像度画像を、実際の高解像度画像f(x,,x

,, t,) を離散化したものに関連づけることが望まし い。そこで、この型の離散的重ね合わせ推定(discrete 20 superpositionsummation) を、以下の式のように表す ことにする。

[0048]

【数13】

 $g(m_1, m_2, k) = \sum f(n_1, n_2, t_r) h_{t_r}(n_1, n_2; m_1, m_2, k) + \nu(m_1, m_2, k), \quad (13)$

ここで、連続イメージ f (x,, x,, t,) は、2-D格子

【数14】

上に、高解像度センサによってサンプルされ、f (n₁, n₂, t₁) を形成する ((n₁, n₂) は 【数15】

の単位格子 (ユニットセル)

【数18】

 U_{l_r}

として用いることのできる物理的大きさを有していると 30 仮定される。このように、焦点面の全体的な空間が、高 解像度センサによって完全に覆われている。

[0050]

【数19】

,). は

【数20】

 $\dot{U}_{i_r}(n_1, n_2)$

における点を特定する整数)、と仮定する。 t. 及び 【数16】

 $\Lambda_{I_{\mathbb{Z}}}$

を適当に選択することによって、 f (n, , n, , t,) のサンプリングを空間-時間格子上に形成するこ とができる。

【0049】(単一の高解像度画素を発生させる(givi ng rise to) 個々の高解像度センサ素子は、格子 【数17】

 Λ_{l_F}

 $g(m_1, m_2, k) =$

 $U_{\ell_r}(n_1, n_2)$

上でほぼ一定であるという仮定に基づき、式(12)は 以下のように表すことができる。

の項は、n, n, によって特定された位置にシフトし

たユニットセル (3) を示すものとして用いられてい

る。このような定義により、さらにf(x,,x,,t

[0051]

【数21】

 $\sum_{(n_1,n_2)} f(n_1,n_2,t_r) \int_{U_{t_r}} \int_{(n_1,n_2)} h_2(m_1,m_2;x_{t_r};k,t_r) dx_{t_r} + u(m_1,m_2,k). \quad (14)$

式 (13) と (14) を比較することにより、次のこと 50 が明らかである。

特開平8-263639

15

[0052]

 $h_{t_r}(n_1,n_2;m_1m_2,k) = \int \int h_2(m_1,m_2;x_{t_r};k,t_r)dx_{t_r},$

ここで、整数引き数m₁ , m₂ , k, n, 、n, は式 (3) においてと同様に解釈される。

【0053】図9には、離散LSV PSFの定式の1 例が、矩形の高解像度格子

【数23】

上に示されている。図において、モーション(運動)が 完全に移動であること、点(m,, m,) 73を中心と した正方形の低解像度センサアパーチャ68が用いられ ていること、及び、光学的なぼけはないこと、が仮定と されている。 (x_1, x_2) 空間は、時間 t , における センサ焦点面である。図において、焦点面は、シフトさ れた高解像度サンプリングユニットセル

【数24】

$$U_{l_r}$$
 (n₁, n₂)

69によって覆われている。アパーチャ時間T.の間 に、低解像度センサアパーチャ68によって「一掃」さ れた焦点面の領域が、鎖線71によって示されている。 式(15)において特定された離散LSV PSFは、 領域

【数25】

$$U_{t_r}(n_1,n_2)$$

69上に「存在した」(dwelled) 低解像度センサ68 の所定面積をある時間の間計算し、同時にアパーチャ開 放時間におけるその位置から、アパーチャ閉鎖時間にお ける位置73まで移動させることによって形成される。 なお、式(15)に示されている結果は、センサアパー

$$x_{t_r} = M(x, t, t_r) = x + x_{b_k} + v_k (t - (t_k - T_a)),$$
 (16)

このとき、速度 v_1 , 及び v_2 , ($v_1 = [v_1]$, 、v.,、] ')は、アパーチャ時間T。にわたり一定 であること、(t, -T.) はアパーチャの k 番目の開 放の時間であること、

【数29】

 x_{b_k}

はアパーチャのk番目の開放における相対的初期位置を 示していること、が仮定されている。

[0057]

【数30】

 x_{b_k}

の鼠は、時間 t、 及び t, の関数である。光学的ぼけが

$$h_2(x;t,t_r) = \frac{1}{T_a} \int_0^{T_a} h_a(x + x_{b_k} + v_k \tau) d\tau$$
 (17)

ここで、アパーチャ反応を、次式

【数 2 2】

チャ68によって一掃された部分71と、高解像度サン プリング領域

【数26】

 $U_{l_{-}}(n_1,n_2)$

69の間の単純重複領域を特定してない。

10 【0054】<u>合成PSFの算出</u>

式(15)によって求められるぼけ関数

【数27】

h, (.)

を算出するための実際的な方法を説明する。このため に、2つのケースを示す。第1のケースでは、移動式運 動が仮定されている。第2のケースでは、一般的な画像 運動が考慮されている。第2のケースを説明するため に、まず一般的近似が与えられ、これにより、ぼけ計算 方法が得られる。この計算方法は、第1の移動式運動の 20 ケースと同様に確立される。この近似に関し、アフィン 変換及び射影変換の運動モデルの特定の方法が示され

【0055】1)移動式運動

移動式運動の場合において、アパーチャのk番目の開放 において有効な(すなわち、時間t、におけるk番目の 低解像度画像を獲得するための) 区分的一定速度運動パ ス (piece wise constant velocity motion paths)を、 次式のように定義する。

[0056]

【数28]

ある時間無視され、PSF

【数31】

 $h_2(x,x_t;t,t_r)$

がLSIであり、

【数32】

 $h'_{2}(x-x_{t_{r}};t,t_{r})=h_{2}(x;x_{t_{r}};t,t_{r})$

が定義され、式(7)と式(11)が適用されると、次 式が得られる。

[0058]

【数33】

【数34】

$$h_{\alpha}(x_{1}, x_{2}) = \begin{cases} \frac{1}{\Delta M_{1} \Delta M_{2}}; -\frac{\Delta M_{1}}{2} < x_{1} < \frac{\Delta M_{1}}{2} \text{ and } -\frac{\Delta M_{2}}{2} < x_{2} < \frac{\Delta M_{2}}{2} \\ 0; \text{ else,} \end{cases}$$
 (18)

によって与えられた2-D「矩形 (reci)」関数である と仮定すると、h', は図10に示すような線図を用い て算出することができる。座標

【数35】

【数36】

$$x + x_{b_k}$$

は、時間 $\tau = 0$ における、図10のライン78のスター ト点 7 6 を設定する。積分はライン 7 8 を追従して τ = 10 T、における終点80に到達する。この結果は、アパー チャ68に交差する線分78の長さを表している。 【0059】ぼけh',をさらに説明するために、

$v_{1,k}T_a > \Delta M_1 \otimes U \quad v_{2,k}T_a > \Delta M_2$

である場合を考えるとする。この場合、点拡がり関数 【数37】

$$h^*_2(x-x_{b_k})$$

(便宜上シフトが用いられている) を、図11に示すよ うに、 (x, , x,) 面内で複数の領域に区分すること ができる。図に示されるこれら7つの領域のそれぞれに おいて、

【数38】

$$h'_2(x-x_{b_k})$$

の値はx」およびx,における一次方程式によって示さ れている。例えば、番号1をつけられた平行四辺形の領 域では、h',の値は一定である。2番の台形領域にお いては、h', は次式を用いて求められる。

[0060]

【数39】

$$H_2(x_1-x_{1,b_k},x_2-x_{2,b_k})=$$

$$K\left(\left(\nu_{2,k}\left(x_{1} + \frac{\Delta M_{1}}{2} + \nu_{1,k}T_{a}\right)\right) - \nu_{1,k}\left(x_{2} - \left(\frac{\Delta M_{2}}{2} - \nu_{2,k}T_{a}\right)\right)\right) (19)$$

30

(領域2内のすべての(x, x,) に対して)

このとき、Kは、離散PSF

【数40】

を正規化することにより説明することのできるスケーリ ング定数である。

【0061】式(15)の離散PSF

【数41】

は、図11に示される領域

【数42】

$$U_{l_r}(n_1,n_2)$$

69の体積を積分することにより算出される。この領域 69の中心82は、

【数43】

$$x = x_s(m_1, m_2, k) + x_{b_k} - x_{t_r}(n_1, n_2)$$

に位置する。ここで、

【数44】

$$h_{l_{\tau}}(n_1, n_2; m_1, m_2, k) **_{m_1, n_2} h_{o_{\tau}}^{d}(n_1, n_2)$$

[0063]

$$n_1, n_2$$
 (20)

ここで、

【数49】

$$h_{o_k}^d(n_1,n_2)$$

はk番目の低解像度画像の焦点ぼけを離散的に示したも

D離散合成を示している。このようにして光学的ぼけを 考慮に入れることにより、ぽけPSF

【数50】

は、ほぼx, (m,, m,, k) の領域内では、ほぼL のであり、''n, n,は変数 (n, n,) 上の2-50 S1であるとの仮定を立てる。画像が極度の非移動式運

 $x_{i_{\tau}}(n_1,n_2)$

【数45】

$$\mathbf{x}_{s}(m_1,m_2,k)$$

と同様に定義されている。このように、

【数46】

$$h_r(x_1-x_{1,b_k},x_2-x_{2,b_k})$$

は、領域69において、その位置が(m,, m,)及び (n, , n,) によって決定されている

【数47】

$$h_2(x_1-x_{1,b_k},x_2-x_{2,b_k})$$

の体積を求めることによって算出される。

【0062】続いて、離散近似を用いて、次式の合成を 実行することにより、光学的ぼけh。 (x, t) を考慮 40 することができる。

動を行っていない限り、これは妥当な仮定であるといえる。光学的ぼけを、式 (20) のように扱うのは好適である。これは、光学的ぼけが考慮されていないときには 【数51】

19

ht

を簡単に計算することができ、さらに式(20)における合成を簡単に実施することができるからである。好適な実施においては、光学的ぼけPSFは、高解像度サンプリング格子によって表された、統一変数(unity variance)および5 x 5 画素サポートを有するガウスと等しく設定される。

【0064】2)一般的運動

radini fili yukubbada badabuluayinin iliyo waxabaa badabagayiya intoynti inoyn

$$h_2(x; x_{t_r}; t, t_r) = \int_{t_r}^{t} h_1(x - M^{-1}(x_{t_r}, \tau, t_r)) |J(M(x_{t_r}, \tau, t_r))|^{-1} d\tau \quad (21)$$

同図は、積分時間の間に、t-T、84からt86まで 面

【数53】 ·

×t,

を通過して移動する際の、変換されたぼけ核 h, (.) を示している。そして、h, (.) の値は、ヤコピアン及び h, (.) の振幅によって重みづけられた、

【数54】

xtr

上の「ドエル」時間となる。式(21)の計算は難しいが、これは式(21)の移動核 h, が積分期間の間連続的に変換しているためである。しかしながら、すでに指摘したように、アパーチャ時間におけるこの変換の非移動成分は小さいと想定されている。この影響については、図12において、

【数55】

$$h_1(M^{-1}(x_{t_r},t,t_r))$$

ぼけを計算するための上記方法は、例えばアフィン変換または射影変換によって説明されるようなより複雑な運動の場合にも発展させることができる。このような展開は、以下の概念に基づいている。すなわち、時間 t 、と t 、との間の運動による変換は重要であるかもしれないが、ぼけ形状に影響する変換の非移動成分はアパーチャ時間の間は小さいものである。このような概念が図12に例示されている。図12は、式(11)に示された計算を図で表したものであり、式(11)は次式のように書き直される。

[0065]

【数52】

8 6上に重畳された(superimposed)関数 【数 5 6】

$$h_1(M^{-1}(x_{t_r},t-T_a,t_r))$$

84の鎖線によるアウトラインによって示されている。 式(21)により、この近似は以下の3つを仮定する。 (1)ヤコピアン重み付けは一定である、(2)変換 【数57】

$$M(x_{t_r}, \tau - T_{\alpha}, t_r)$$

はアパーチャ時間を通じて維持される(すなわち、この関数は、 τ が変化するときにのみ移動する)、(3) 2 つの連続するフレーム期間の移動パス、すなわちアパーチャ時間内の移動パスは線形である。この近似により、

30 式(21) は次式のように書き換えられる。

[0066]

【数58】

$$\left| J \Big(M \Big(M(x, t - T_{\alpha}, t_r), \tau, t_r \Big) \right)^{-1} \int_{t - T_{\alpha}}^{t} h_1 \Big(\ell(x, \tau) - M^{-1} \Big(x_{t_r}, t - T_{\alpha}, t_r \Big) \Big) d\tau$$
 (22)

このとき

$$\ell(x,\tau) = \frac{T - \tau}{T} x + \frac{\tau}{T} M^{-1} \left(M(x, t - T_a + t, t_r), t - T_a, t_r \right)$$
 (23)

であり、Tは2つの連続フレーム間の時間である。 【0067】この近似を用いて、空間的に均一で、時間的に区分的な一定速度移動運動の場合におけるぼけ算出にも同じ手順が用いられる。ただし、この場合には、各点xにおいて、ぼけは、図10に示されている矩形関数68に与えられた適当な変換によって算出される。要約すると、変換が、均一で一定の移動によって決定される場合には、近似は正確なぼけ算出となる。変換がアフィン変換である場合には、ヤコピアンは

【数59】

x,,

40 とともに変化しない。しかし、アパーチャが開放した状態で、ヤコピアンを一定時間にわたって一定になるように近づけた。さらに、この移動は、一定速度であると仮定されているが、これは必ずしもそうでなくともよい。射影運動の場合には、近似は、アフィン変換の場合を同じ効果を有し、ヤコピアンは h 1 (.) の空間ぼけサポートにわたって一定である、とのさらなる近似を有する。

【0068】<u>C. 高解像度画像の再生</u> 合成ぼけPSF

50 【数60】

21

、低解像度画像から基準画像までの運動ベクトル場推 定、及び高解像度サンプリング格子が供給され、POC Sの方法に基づく下記の技術を用いて高解像度画像が再 生される。POCSでは、望ましい画像分布は、高解像 度画像に対し、数学的ベクトル空間、例えばP次元のベ クトル空間N1画素xN2行(P=N1xN2)の要素 であると仮定されている。POCS方法は、このベクト ル空間内の、実際の高解像度画像を含む閉凸制約数集合 (closed convex constraint sets) の定義を要する。 これらの集合の数学的交わり(intersection)が実際の 高解像度画像を含んでいる。これは、実際の高解像度画 像がこれらの集合のそれぞれに含まれているからであ る。実際の高解像度画像の推定が、これらの制約数集合 の交わりにおける1点として定義され、すでに周知のよ うに、任意初期推定をこの制約数集合に連続的に射影す

ることによって決定される。

【0069】核制約数集合に関連して、射影作用素があ り、これが前記空間内にあるが集合の外部である任意点 を、集合内の最も近接する点にマップする。さらに、緩 和された射影作用素 $T = (1 - \lambda) I + \lambda P ; 0 < \lambda <$ 2 (I は恒等作用素を示す) が定義されて、交差集合 (intersection set) において推定を求めるのに用いる ことができる。

【0070】高解像度画像の再生における問題を直ちに 10 解決する方法を開発するために、POCSの原理をいか に利用するかについて説明する。ここで、低解像度画像 列g (m, , m, , k) の各画素に対し、以下に示す閉 じた凸制約数集合を定義する。

[0071]

【数 6 1】

$$C_{t_r}(m_1, m_2, k) = \left\{ y(n_1, n_2, t_r) : \left| r^{(y)}(m_1, m_2, k) \right| \le \delta_0 \right\}, \quad (24)$$

ここで、次式

$$r^{(y)}(m_1, m_2, k) = g(m_1, m_2, k) - \sum_{n_1, n_2} y(n_1, n_2, t_r) h_{t_r}(n_1, n_2; m_1, m_2, k), \qquad (25)$$

30

は、制約数集合の、任意の要素yに関連する残差であ る。ここでは、これらの集合を、データー定制約数集合 (data consistency constraint sets) と呼ぶ。量る. は、実際の画像を集合

【数63】

$C_{l_r}(m_1,m_2,k)$

の要素とする統計的信頼度を反映する先験境界(priori bound) $r^{(1)}$ m_1 , m_2 , k = v

(m₁, m₂, k) (fは実際の高解像度画像を示す) であるので、 r ('') (m, , m, , k) の統計は、 v (m, , m, , k) の統計と同一である。このように、 境界δ。はノイズ処理の統計から決定され、実際の画像 (すなわち、理想解) は、特定の統計的信頼度の範囲内 にある集合の要素となる。例えば、ノイズが、標準偏差 σ を有するガウス分布を有する場合、 δ 。はc σ と等し く設定される。このとき、cσは適当な統計的信頼境界 によって決定されている(例えば、99%の信頼度に対 してc=3である)。

【0072】また、実際には、δ. の値を直接調節する こともできる。 δ 。 が増加するにつれ、再生された画像 はシャープになるがノイズが多くなる。 δ , が減少する と、結果としての再生画像は、ノイズが小さくなるがよ り平滑になる。詳細な複数の実験により、δ。ε0.0 1と等しく設定した結果、POCS方法を、かなり急速 に、十分に良質の画像に収束できた。

.【数62】

【0073】なお、集合

【数64】

$C_{l_n}(m_1,m_2,k)$

は、低解像度画像のサンプルが有効である空間的位置に 対してのみ定義できる。これにより、いかなる任意の低 解像度サンプリング格子にも本発明を適用することがで きる。さらに、集合

【数65】

 $C_{i,}(m_1,m_2,k)$

は、閉塞 (occlusions) や覆われない領域のない低解像 度画像のサンプルに対してのみ定義できる。後者の事実 により、本発明は、所定のモーション画像内のシーンの 変更に用いることができる。すなわち、制約数集合は、 低解像度画像の適当なサンプルに対してのみ定義されて

[0074] 任意数x (n, , n, , t,) の 【数66】

 $C_{i,}$ (m_1, m_2, k)

への射影 z (n:, n:, t,)

【数67]

 P_{t_r} (m₁, m₂, k) [x(n₁, n₂, t_r)]

は、次式のように定義することができる。

[0075]

【数68】

$$P_{t_r}(m_1, m_2, k)[x(n_1, n_2, t_r)] = (26)$$

$$\begin{cases} x(n_1, n_2, t_r) + \frac{(r^{(x)}(m_1, m_2, k) - \delta_o)h_{t_r}(n_1, n_2; m_1, m_2, k)}{\sum_{o_1} \sum_{o_2} h_{t_r}^2(o_1, o_2; m_1, m_2, k)}, r^{(x)}(m_1, m_2, k) > \delta_o \\ x(n_1, n_2, t_2), & -\delta_o \leq r^{(x)}(m_1, m_2, k) \leq \delta_o \\ x(n_1, n_2, t_r) + \frac{(r^{(x)}(m_1, m_2, k) + \delta_o)h_{t_r}(n_1, n_2; m_1, m_2, k)}{\sum_{o_1} \sum_{o_1} h_{t_r}^2(o_1, o_2; m_1, m_2, k)}, r^{(x)}(m_1, m_2, k) < -\delta_o \end{cases}$$

有界エネルギー (bounded energy) 、確実性 (positivi

ty)、及び限定サポートなどの更なる制約数を用いて、 [0076]

結果を改善させることができる。次式のような振幅制約 10

【数69】 $C_A = \{ y(n_1, n_2, t_r) : \alpha \le f(n_1, n_2, t_r) \le \beta \},$

ここで、振幅境界は、a=0、b=255である。振幅 制約数集合C、への射影P、は次のように定義される。

 $P_{A}[x(n_1,n_2,t_r)] = \langle x(n_1,n_2,t_r),$

[0077] 【数70】

数集合が用いられる。

 $x(n_1,n_2,t_r)<0$ $0 \leq x(n_1,n_2,t_r) \leq 255$ (28) $x(n_1,n_2,t_r) > 255$

上記の射影が与えられると、高解像度画像

【数71】

の推定

【数72】

は、すべての低解像度画像g(m,,m,,k)から反 復式に求められる。このとき、制約数集合は、次式のよ うに定義することができる。

(27)

[0078]

【数73】

 $\hat{f}(n_1, n_2, t_r)$ $\hat{f}_{\ell+1}(n_1, n_2, t_r) = T_A \bar{T} [\hat{f}_{\ell}(n_1, n_2, t_r)] \ell = 0.1, 2, \dots$

ここで、

【数74】

は、緩和された射影作用子のカスケード(縦続)を示 し、集合

【数75】

$$C_{t_r}(m_1,m_2,k)$$

の族に射影するものである。高解像度サンプリング格子 上に双線形に内挿されたいかなる低解像度画像も、初期 推定

【数76】

$$\hat{f}_0(n_1, n_2, t_r)$$

として用いることができる。視覚的な最良の画質を有す る低解像度画像を初期化に選択することにより、反復数

【数77】

に達する速度を早めることができる。この反復数 【数78】

において、視覚的に満足できる高解像度画像が再生され る。理論上では、推定がすべての制約数集合の交わり内 に存在するまで、この反復は継続する。しかしながら、 実際には、反復は、通常、画像品質の視覚的観察などの 特定停止基準に従って、または、ある差分測定基準(di fference metric) (すなわち、ノルムL2を用いた

【数79】

)によって測定された、連続する推定値間の変化が所定 30 の閾値以下に下がったときに、停止する。

【0079】図13は上記の方法を図によって説明した ものである。合成LSVぼけは、現在の高解像度画像8 8の推定値の領域71、例えば

【数80】

$\hat{f}_{i}(.)$

を、低解像度画像46、48、53の1つにおける特定 画素強度g(m,, m,, k)90に関連付ける。続い て、残差項 (residual term)

【数81】

$$r^{(\hat{f}^{\xi})}(m_1, m_2, k)$$

が形成される。残差項

【数82】

$$r^{(\tilde{f}\ell)}(m_1,m_2,k)$$

は、(δοによって決定されるある誤差境界内の)現行 の高解像度画像推定値から観測値が形成できたか否か、 したがって、その高解像度画像推定値がデーター定集合 【数83】

(14)

特開平8-263639 26

25

$C_{t_r}(m_1, m_2, k)$

に属するか否かを示すものである。高解像度画像推定値 が前記集合内に存在しない場合(すなわち、残差が大き すぎる場合には)、射影作用子

【数84】

$$P_{l_r}(m_1,m_2,k)$$

はその残差を現行の高解像度画像88推定値(式 【数85】

$$C_{t_r}(m_1,m_2,k)$$

の加法的項 (additive term) 上に逆射影 (back proje ct) し、集合

【数86】

$$C_{i_r}(m_1,m_2,k)$$

に属する高解像度画像の新たな推定値を形成するため、 境界δο内の、観測値g(m, m, k)を発生させ ることができた。一定の制約数集合が定義されている低 20 解像度画素 90 のそれぞれにこれらの射影を行うことに より、式 (29) に示された合成射影

【数87】

$$\tilde{T}\big[\hat{f}_{\ell}(n_1,n_2,t_r)\big]$$

を完成させることができる。続いて、振幅制約数集合へ 射影することによって、POCS方法の一反復を完成さ せ、次の推定値

【数88】

$$\hat{f}_{\ell+1}(.)$$

を生成することができる。

【0080】以下に、POCSに基づいた再生方法の実施の1例を示す。

【0081】1. 基準画像、及び基準時間 t. を選択する。

【0082】2. 高解像度格子を特定し、この高解像度格子と、運動推定の目的のために、双線形内挿によって画像値が生成されている低解像度矩形格子との密度の比を決定する。ここでは、この比を r とする。(例えば、図2及び図6に示されている例では、 r = 2 である)3. 運動推定を行う:各低解像度画像 g (m, , m, , k) を低解像度矩形格子に、空間的双線形的に内挿する;内挿された低解像度画像のそれぞれから、時間 t, における内挿された低解像度画像のまでの運動を推定する:推定運動ベクトルを r によって見積もる。

【0083】4. 運動パスが有効な各画素位置(m,,m,,k)に対し、式(24)に従って集合 【数89】

$$C_{l-}(m_1,m_2,k)$$

を定義する。

【0084】5. 集合

【数90】

$$C_{i_r}(m_1,m_2,k)$$

が定義された各位置 (m, , m, , k) に対して、合成 ぼけPSF

【数91】

$$h_{r_r}(n_1,n_2;m_1,m_2,k)$$

10 を算出する。

【0085】6. 高解像度画像のサンプリング格子上に低解像度画像を双線形的に内挿した後、視覚的に最良品質を有する低解像度画像に等しい

【数92】

$$\hat{f}_0(n_1, n_2, t_r)$$

を設定する。

【0086】7. 集合

【数93】

$$C_{i_r}(m_1,m_2,k)$$

が定義されているすべての位置 (m, , m, , k) に対し、式 (25) に従って残差

【数94】

$$r^{\left(\hat{f}_{\ell}\right)}_{\left(m_{1},m_{2},k\right)}$$

を算出する;式(26)の射影

【数 9 5 】

$$P_{t_*}(m_1,m_2,k)$$

を用いて残差

【数96】

$$r^{\left(\hat{f}_{\ell}\right)}_{\left(m_{1},m_{2},k\right)}$$

を逆射影 (back-project) する。

【0087】8. 式(28) を用いて増幅射影P。を行う。

【0088】9. 停止基準が満たされれば、停止する。 満たされなければ、ステップ7に戻る。

0 【0089】停止基準が満たされれば、画像を表示する ことも、将来の表示に備えて記憶することも、あるいは 遠隔表示のために送信することもできる。

【0090】好適な1実施形態に関し、本発明を説明してきたが、当業者であれば、本発明の範囲を逸脱することなく、本発明を変更及び修正することが可能である。

【発明の効果】本発明によれば、入力画像が標準矩形格子上にサンプリングされていない場合でも、入力を標準矩形格子上で内挿処理するという前処理を行わなくと 50 も、このような画像を処理することができる。本発明

27

は、凸集合への射影(POCS)に基づく方法を用いて、ぼけ、ノイズ、任意の格子上にサンプリングされた画像の問題を同時に扱う、画像再生方法を展開させている。さらに、本発明は、運動推定(motion estimates)を柔軟に扱うことができる。また、本発明は、運動推定の正確性に適応することができる高解像度画像再生を可能にするものである。

【図面の簡単な説明】

【図1】 本発明の主要なステップを示すプロック図である。

【図2】 低解像度サンプリング格子、及び本発明による高解像度画像のサンプリング格子を示す図である。

【図3】 本発明を実施する適当な装置を示した概略図である。

【図4】 連続する低解像度画像、及びこれらの低解像 度画像の1つにおける選択された対象領域を示す図である。

【図5】 本発明によるマッピング変換を生成する方法 を説明するために有用な図である。

【図 6 】 本発明によるマッピング変換を生成する方法 を説明するために有用な図である。

【図7】 本発明による組み合わされたPSFを計算するために用いられる画像フォーメーションモデルを示すプロック図である。

【図8】 連続画面における低解像度画像の相対運動に よるぼけPSFの有効な変換を示す図である。

【図9】 移動運動の場合のPSFを示すための図である。

【図10】 LSIぼけ関数

【数97】

$H_2(x_1,x_2,t,t_r)$

[図1]

を算出するための手順を示す図である。

【図11】 【数98】

$K_2(x_1-x_{1,b_k},x_2-x_{2,b_k})$

の領域区分を示すための図である。

【図12】 合成された有効ぼけPSFを算出する際に、アフィン変換に関連する遠近運動モデル(perspective motion model)に用いられる近似を示すための図である。

【図13】 POCSに基づく画像再生方法を説明する 10 ための図である。

【符号の説明】

10 低解像度画像、12 マッピング変換供給ステッ プ、14 合成PSF算出ステップ、16 高解像度画 像生成ステップ、18 高解像度画像表示ステップ、2 ビデオカムコーダ/VCR、22 ディジタイザ、 24 ディジタルスチルカメラ、26 ディジタルビデ オカムコーダ、28 ディジタルスキャナ、30 ディ スク記憶装置、32 画像処理コンピュータ装置、34 コンピュータ、3.6 CRT、3.8 キーボード、4. 0 プリンタ、42 記憶媒体、44 通信ネットワー ク、46,48,50 低解像度画像、52 対象領 域、53 低解像度画像、54 ダイアモンド型サンプ リング格子、56 矩形サンプリング格子、60 光学 系装置ぼけモデル、62 アパーチャ時間モデル、64 低解像度サンプリングモデル、66 付加ノイズモデ ル、68 センサアパーチャ、69 高解像度サンプリ ング領域、70 画像、71 センサアパーチャによっ て一掃された領域、73 センサアパーチャの中心、7 6 始点、78ライン(線)、80 終点、82 領域 30 の中心、84 変換されたぼけ核、86 変換されたぼ け核、88 高解像度画像、90 低解像度画像画素。

【図2】

<u>:</u> : :

. .

.

<u>;</u>,:.

(4) 11:

[図12] 【図13】 $X_{x,t_{\tau}}$ *h_y (−M^{−1} (x_{x+}+=4,+_y)),* 通く示された点まで シフトされている 低解像皮面像 低解像度函像 低解像度画像 $h_{t}(-M^{-1}(x_{t_{\tau}}, \tau = t - T_{\alpha}, t_{\tau})),$ 級く示された点まで シフトされている 90~ 80 90 誤差を逆射影として -定制扩敷を完成させる $H(z,\tau=t,t_{\tau})$ X,,,, 高解像度画像 88