Vectorization of a matrix as a linear transformation

IVB, January 31, 2014

Let **X** be a $M \times N$ matrix we want to vectorize, and let \mathbf{e}_i be the *i*-th canonical basis vector for the *N*-dimensional space, that is $\mathbf{e}_i = [0, ..., 0, 1, 0, ..., 0]^T$ with a 1 in the *i*-th position and all other elements zero. Let \mathbf{B}_i be a $(MN) \times M$ block matrix defined as follows

$$\mathbf{B}_i = \begin{bmatrix} \mathbf{0} \\ \vdots \\ \mathbf{0} \\ \mathbf{I}_M \\ \mathbf{0} \\ \vdots \\ \mathbf{0} \end{bmatrix}$$

That is, \mathbf{B}_i consists of N block matrixes of size $M \times M$, stacked column-wise, and all these matrices are all-zero except the i-th one, which is a $M \times M$ identity matrix \mathbf{I}_M .

Then the vectorized version of \mathbf{X} , denoted \mathbf{x} , can be expressed as follows

$$\mathbf{x} = vec(\mathbf{X}) = \sum_{i=1}^{N} \mathbf{B}_i \mathbf{X} \mathbf{e}_i$$

Multiplication of X by e_i extracts the i-th column, while multiplication by B_i puts it into the desired position in the final vector.