

WEPAB089

Conceptual design of Booster synchrotron for Siam Photon Source II

Siriwan Krainara†, Thapakron Pulampong, Porntip Sudmuang, Prapong Klysubun, Supat Klinkhieo,

Synchrotron Light Research Institute (Public organization)
Nakhon Ratchasima, Thailand

IPAC21

Synchrotron Light Source in Thailand

Storage ring for SPS-I

Circumference: 81.3 m
Beam energy: 1.2 GeV
Beam current: 150 mA

Storage ring for SPS-II

• Circumference: 327.502 m

Beam energy: 3.0 GeV

Beam current: 300 mA

Brilliance of the exiting (grey) and SPS-II sources

3.0 GeV SPS-II

- Circumference 327.26 m
- DTBA (Double triple bend achromat)
- Emittance < 1 nm-rad

Credit Dr. Thapakorn

SPS-II Booster parameters

Parameters	SPS-II: Booster Synchrotron	
Circumference (m)	304.8288	
Energy (GeV)	3	
Relativistic factor γ	5870.85	
Emittance (nm-rad)	5.87	
Nat. energy spread (%)	0.091	
Nat. chromaticity ξx/ξy	-23.63/ -10.31	
Tune (Qx/Qy)	14.71/5.61	
Momentum compaction	1.674e-3	
Straight/circumference	38.1036	
Energy loss per turn U ₀ (MeV)	0.750	
RF frequency (MHz)	119.0008537	
Harmonic number	121	
Dispersion at straight section, m	0.377	
Beam current, mA	2	
Repetition rate, Hz	2	

SPS-II Booster Synchrotron

8-fold symmetric, FODO with combined function magnets

Circumference: 304.8288 m

Distance between BS and STR: 3.61 m

Dynamic aperture & imperfections

The dynamic aperture for the ideal machine is about ±30 mm in the horizontal and ±12 mm in the vertical plane, which is larger than that of the physical aperture.

➤ This shows the effects in the dynamic aperture due to multipole errors, misalignment, excitation errors and higher-order multipole field errors in the dipole and quadrupole magnets.

Aperture requirement for SPS-II booster synchrotron

Beam stay clear (BSC) or Half-aperture

$$A_{x} = 3\sqrt{\beta_{x}\varepsilon_{x}(170 \text{ nm. rad}) + (\eta_{x}\sigma_{x}(0.5\%))^{2}} + x_{COD}(1.8 \text{mm}) + \eta_{x}\delta_{osc}(2\%) + x_{osc}(3 \text{mm})$$

$$A_y = 3\sqrt{\beta_x \varepsilon_x (170 \text{ nm. rad})} + y_{COD}(0.2 \text{mm}) + y_{osc}(1.5 \text{mm})$$

	Dipole	Quad.	Sext.	BPMs
Misalignments, um	160	160	160	300
Rotation error, mrad	0.8	0.8	0.8	-
Excitation errors, %	0.15	0.3	0.3	
Dipole field error, %	2.4			

xCOD = 1.8 mm yCOD = 0.2 mm

Beam stay clear (Half-aperture)	Horizontal (mm)	Vertical (mm)
at Quadrupoles	18.783	4.265
at Dipoles	7.680	6.808

Proposed vacuum chamber for booster synchrotron:

- ➤ A round stainless steel with a thickness of 0.7 1 mm will be obtained
 - at Quadrupole QF, Round chamber with 38 mm inner diameter.
 - o <u>at Dipoles</u>, Round chamber with **16 mm** inner diameter.

Thank you

Siriwan Krainara

Email: siriwan@slri.or.th

