Thème : Développement de Taylor

Série 15

Exercice 1. Déterminer une solution approchée de l'équation $\cos(x) = x$ en utilisant une approximation d'ordre 2 de la fonction $f(x) = \cos(x) - x$

a) autour de
$$x_0 = 0$$
,

b) autour de
$$x_0 = \frac{\pi}{4}$$
.

Exercice 2.

Établir le développement de Taylor d'ordre n de la fonction f(x) au point $x_0 = 0$

a)
$$f(x) = e^x$$

c)
$$f(x) = \sin(x)$$

b)
$$f(x) = e^{-2x}$$

d)
$$f(x) = (1+x)^a, a \neq 0$$

Exercice 3.

Établir le développement de Taylor d'ordre 3 du polynôme $p(x) = x^3 - 3x^2 - 5x + 7$ en $x_0 = 1$.

Exercice 4.

Établir le développement de Taylor d'ordre 3 de la fonction f(x) au point $x_0 = 0$, à partir des développements donnés dans la tabelle.

a)
$$f(x) = e^{-x^2}$$

c)
$$f(x) = e^x \sin(x)$$

b)
$$f(x) = e^x + \sin(x)$$

$$d) f(x) = e^{\sin(x)}$$

Exercice 5.

Lever les indéterminations suivantes en utilisant les développements de Taylor

a)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x^2}$$

c)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x^4}$$

e)
$$\lim_{x \to 0} \frac{(\cos(2x) - \cos(x))\sin(x)}{\tan(x) - \sin(x)}$$

b)
$$\lim_{x \to 0} \frac{x - \sin(x)}{x^3}$$

d)
$$\lim_{x\to 0} \frac{\ln(\cos(x)) + \frac{x^2}{2}}{e^{x^2} - (1+x^2)}$$

f)
$$\lim_{x \to +\infty} \sqrt[3]{x^3 + x} - \sqrt[3]{x^3 - x}$$