МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ "ЛЭТИ" ИМ. В. И. УЛЬЯНОВА (ЛЕНИНА) (СПБГЭТУ «ЛЭТИ»)

Кафедра теоретических основ электротехники

Отчет

по лабораторной работе №3

по дисциплине "МОЭ"

Тема: "ИССЛЕДОВАНИЕ СВОБОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ"

Студент гр.8382		Мирончик П.Д
Преподаватель		Зубарев А.В.
	Санкт-Петербург	

2020

ПРОТОКОЛ ИЗМЕРЕНИЙ ЛАБОРАТОРНАЯ РАБОТА №3

"ИССЛЕДОВАНИЕ СВОБОДНЫХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ"

1. Исследование свободных процессов в цепи первого порядка

Полный полупериод сигнала равен $\frac{T_c}{2} = 250$ мс

2. Исследование свободных процессов в цепи второго порядка

1. Колебательный режим (R1=0.5кОм)

2. Апериодический режим (R1=3кОм)

3. Критический режим

 $R1=R\kappa p=2.17\kappa O_M$

4. Осциллограмма напряжения на конденсаторе (R1=0)

3. Исследование свободных процессов в цепи третьего порядка

Цель работы

Изучение связи между видом свободного процесса в электрической цепи и расположением свободных частот (корней характеристического уравнения) на комплексной плоскости; приближенная оценка собственных частот и добротности контура по осциллограммам.

Экспериментальные исследования

1. Исследование свободных процессов в цепи первого порядка.

Рис. 1, схема цепи для 1 опыта

Соберем схему, показанную на рис. 1 (C = 0,02 мкФ, R = 5 кОм, источником тока $i_0(t)$ является генератор импульсов). Снимем осциллограмму напряжения на конденсаторе, зафиксировав на ней один полный полупериод сигнала $\frac{T_c}{2} = 250$ мс.

Рис.2, осциллограмма для 1 опыта

Теоретический расчет собственной частоты:

$$p_1 = -\alpha = -\frac{1}{\tau} = -\frac{1}{RC} = -\frac{1}{5*0.02*10^{-3}} = -10000 \text{ c}^{-1}$$

Практический расчет частоты:

$$p_1 = -\alpha = -\frac{1}{\tau} = -\frac{\ln\left(\frac{U_1}{U_2}\right)}{\Delta t} = -\frac{\ln\left(\frac{24.533}{0.125}\right)}{497 * 10^{-6}} = -10 624 c^{-1}$$

Вопрос 1: каким аналитическим выражением описывается осциллографируемый процесс описывается аналитической формулой:

$$U(t) = Ae^{p_1 t} = Ae^{at} = Ae^{-\frac{t}{\tau}}$$

где u - напряжение на каком-либо элементе цепи; t - время; α - постоянная затухания; t —постоянная времени; A -постоянная интегрирования, p1 — вещественная и отрицательная.

Вопрос 2: соответствует ли найденная собственная частота теоретическому расчету? да, найденная СЧ соответствует теоретическому расчету с некоторой погрешностью.

2. Исследование свободных процессов в цепи второго порядка.

Рис.3, Схема цепи для второго эесперимента

Соберем схему, показанную на рис. 3 (C = 0,02 мк Φ , L = 25 мГн). Снимем осциллограмму напряжения на резисторе при R1 = 0,5 кОм (колебательный режим).

 $Puc.\ 4.\ Ocциплограмма\ npu\ R1=0,5\ кOм,\ noлученная\ во\ втором\ onыте.$

Теоретический расчет собственных частот:

$$\alpha = \frac{R_1}{2L} = \frac{0.5 * 10^3}{2 * 25 * 10^{-3}} = 10000c^{-1}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{25 * 10^{-3} * 0.02 * 10^{-6}}} = 44720 \text{ рад/с}$$

$$p_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = (-10000 \pm 43578j)c^{-1}$$

Практический расчет собственных частот:

$$\alpha = \frac{1}{T} = \frac{\ln\left(\frac{U_1}{U_2}\right)}{T} = \frac{\ln\left(\frac{24.8}{5.7}\right)}{151.6 * 10^{-6}} = 9699 c^{-1}$$

$$p_{1,2} = -\alpha \pm j * \frac{2\pi}{T} = 9699 \pm 41446j c^{-1}$$

Теоретический расчет добротности:

$$Q = \frac{L}{R} * \omega_0 = \frac{\omega_0}{2\alpha} = \frac{4.47 * 10^4}{2 * 10^4} = 2.23$$

Практический расчет добротности:

$$Q = \frac{\pi}{\ln\left(\frac{U_1}{U_2}\right)} = \frac{\pi}{\ln\left(\frac{24.8}{5.7}\right)} = 2.14$$

Снимем осциллограмму напряжения на резисторе при $R_1 = 3$ кОм (апериодический режим).

Рис. 5. Осциллограмма при R1 = 3 кОм, полученная во втором опыте.

Теоретический расчет собственных частот:

$$\alpha = \frac{R_1}{2L} = \frac{3*10^3}{2*25*10^{-3}} = 60000c^{-1}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{25*10^{-3}*0.02*10^{-6}}} = 44720 \text{ рад/с}$$

$$p_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = (-60000 \pm 43578j)c^{-1}$$

$$p_1 = -103578 \ c^{-1}, p_2 = -16422 \ c^{-1}$$

Практический расчет собственных частот:

$$\alpha = \frac{\ln\left(\frac{U_1}{U_2}\right)}{T} = \frac{\ln\left(\frac{25}{2.7}\right)}{117.7 * 10^{-6}} = 18909 \text{ c}^{-1}$$
$$p_1 = -\alpha = -18909 \text{ c}^{-1}$$

Затем найдем такое значение R1, при котором в цепи будет наблюдаться критический режим, т. е. режим, граничный между колебательным и апериодическим. Снимем осциллограмму процесса и

запишем полученное значение сопротивления $R_1 = R_{1 \text{ кр}}$.

 $Puc.\ 6.\ Ocyunnorpamma\ npu\ R1 = R1\kappa p,\ nonyченная\ во\ втором\ onыте.$

$$R_1 = R_{KD} = 2.17 \text{ OM}$$

Теоретический расчет собственных частот:

$$\alpha = \frac{R_1}{2L} = \frac{2.17 * 10^3}{2 * 25 * 10^{-3}} = 43400c^{-1}$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{25 * 10^{-3} * 0.02 * 10^{-6}}} = 44720 \text{ рад/с}$$

$$p_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \approx 43400 \text{ c}^{-1}$$

Практический расчет СЧ:

$$p_1 = p_2 = -\alpha = -\frac{1}{t_m} = -\frac{1}{0.02 * 10^{-3}} = -50000 \; c^{-1}$$

B заключение установим R1=0 и снимем осциллограмму напряжения на конденсаторе.

Рис. 7. Осциплограмма при R1 = 0 кОм, полученная во втором опыте.

Теоретический расчет добротности:

$$Q = \frac{L}{R} * \omega_0 = \frac{\omega_0}{2\alpha} = \infty$$

Практический расчет добротности:

$$Q = \frac{\pi}{\ln\left(\frac{U_1}{U_2}\right)} = \frac{\pi}{\ln\left(\frac{16.3}{14.4}\right)} = 25.35$$

Вопрос 3: какими аналитическими выражениями (в общем виде) описываются процессы во всех четырех случаях? Осциллографируемые процессы описывается аналитической формулой:

$$U(t) = A_1 * e^{p_1 * t} + A_2 * e^{p_2 * t}$$

где p1, p2 могут быть вещественными (простыми или кратными) или комплексно-сопряженными.

Вопрос 4: соответствуют ли найденные собственные частоты теоретическому расчету? Частоты практически совпадают для $R_1=0.5$ кОм и $R_1=R_{\rm KD}$.

Вопрос 5: Каковы теоретические значения собственных частот при R1 = 3 кОм и соответствует ли этим значениям снятая осциллограмма?

теоретические значения собственных частот при R1=3 кОм p_1 = $-103578~c^{-1}$ и p_2 = $-16422~c^{-1}$. Практические значения при этом получились $p_{1,2}$ = $-18909~c^{-1}$, что примерно соответствует теоретическим.

Вопрос 6: как соотносятся найденные значения добротности с результатами теоретического расчета? При R1=0,5 кОм теоретические и практические расчёты совпадают. При R1=0 кОм теоретическая добротность $Q_{\rm Teop}=\infty$, а практическая $Q_{\rm np}=25.3$. Это связано с тем, что в теории сопротивление отсутствует.

3. Исследование свободных процессов в цепи третьего порядка.

Рис. 8. Схема цепи для третьего эксперимента.

Соберем схему, показанную на рис. 8 (С = 0,02мк Φ , R = 5 к0м, R1 = 1 к0м, L = 25 м Γ н). Снимем осциллограмму напряжения на входе цепи.

Рис. 9. Осциллограмма, полученная в третьем опыте.

Вопрос 7: каким аналитическим выражением описывается осциллограмма? $U(t) = A_1 * e^{p_1*t} + A_2 * e^{p_2*t} + A_3 * e^{p_3*t}$, где p1, p2, p3 могут быть 1) одна вещественная и две комплексно-сопряженные; 2) все три вещественные.

Вопрос 8: каковы значения собственных частот, соответствует ли этим значениям снятая осциллограмма?

Теоретический расчет СЧ:

$$p_1 = -\frac{1}{\tau} = -\frac{1}{RC} = -\frac{1}{5*0.02*10^{-3}} = -10000c^{-1}$$

$$\alpha_2 = \frac{1}{2\left(\frac{R_1}{L} + \frac{1}{RC}\right)} = 25000c^{-1}$$

$$p_{1,2} = -\alpha_2 \pm \sqrt{\alpha_2^2 - \frac{2 + \frac{R_1}{R}}{LC}} = -25000 \pm 61441j \ c^{-1}$$

Практический расчет СЧ:

$$\alpha = \frac{1}{\tau} = \frac{\ln\left(\frac{U_1}{U_2}\right)}{\Delta t} = \frac{\ln\left(\frac{24.8}{0.683}\right)}{148 * 10^{-6}} = 24271 c^{-1}$$
$$p_{1,2} = -\alpha \pm \frac{j(2\pi)}{T} = -25271 \pm j69777c^{-1}$$

Снятая осциллограмма соответствует теоретическим значениям собственных частот.

Вывод

В результате выполнения лабораторной работы и последующей обработке результатов были изучены связи между видом свободного процесса в электрической цепи и расположением ее собственных частот (корней характеристического уравнения) на комплексной плоскости, отработаны навыки работы с осциллографом. Кроме того, по теоретическим и экспериментальным данным были определены собственные частоты и добротности RLC-контура. По расчетам, выполненным в работе, можно сделать вывод о совпадении теоретических и экспериментальных значений.