

LIBRO

$$\Gamma_{\mathcal{L}}(\vec{B}) = \sum_{j=1}^{n} \vec{B}_{j} \cdot \Delta \vec{l_{j}}$$

DEL

I linea chiesa orientata

una corrente si dice concatenata con il cammino chiuso $\mathcal L$ se attraversa una superficie che ha $\mathcal L$ come contorno.

Nella FIGURA 14 la corrente che scorre lungo il filo è concatenata con il cammino \mathcal{L}_1 , ma non con i cammini \mathcal{L}_2 e \mathcal{L}_3 .

Per la circuitazione del campo magnetico si dimostra che vale il teorema di Ampère, secondo cui

circuitazione del campo magnetico $(T \cdot m)$ corrente totale concatenata (A) $\Gamma_{\mathcal{L}}(\vec{B}) = \mu_0 \sum_k i_k$ [21] $\text{permeabilità magnetica del vuoto } (N/A^2)$

cioè

la circuitazione del campo magnetico lungo qualunque cammino chiuso $\mathcal L$ è direttamente proporzionale alla *corrente totale concatenata* con $\mathcal L$.

Per sommere le correnti concatente 1, -> seems + g 12 -> seens -IN PRATICA $\Gamma_{20}(\vec{B}) = \mu_0 \sum_{i} i = \mu_0 (i_3 + i_6 - i_4 - i_5)$ La circulatione del comps magnetics put essere 40 il camps magnetics statics NON à conservativo, ciae non è possibile définire un enegio ptenside assaista $\begin{bmatrix} & & & \\ & & \\ & & \end{bmatrix} = \mu_0 \begin{bmatrix} 2A - 2A \end{bmatrix} = 0$ $\begin{bmatrix} 7 \\ 9 \end{bmatrix} = \mu_0 \begin{bmatrix} 2A - 3A \end{bmatrix} = \\ = (4\pi \times 10^{-7} \frac{N}{A^2}) (-1A) = -4\pi \times 10^{-7} \text{ T.m.}$ (B)=0