Lossless Decomposition

Designing Schemas

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Kevin C.C. Chang, Professor Computer Science @ Illinois

Learning Objectives

By the end of this video, you will be able to:

- Define lossless decomposition, and explain why it is desired.
- Explain why BCNF decomposition is lossless.

A Decomposition Can Be Lossy

• Favorites(drinker, bar, beer)

drinker	bar	beer
Alex	John Bar	Sam Adams
Carissa	Green Bar	Bud Light
Alex	Purple Bar	Coors

Example Favorites relation

• Decomposition: $R_1 =$

drinker	bar
Alex	John Bar
Carissa	Green Bar
Alex	Purple Bar

 R_2

drinker	beer
Alex	Sam Adams
Carissa	Bud Light
Alex	Coors

• Favorites = $R_1 \bowtie R_2$?

• No! We got extra tuples:

- (Alex, John Bar, Coors)
- (Alex, Purple Bar, Sam Adams)

Example decomposition of the Favorites relation

BCNF: Lossless Decomposition

- That is, we reconstruct the original relation.
- If we decompose R(A, B, C) into $R_1(A, B)$ and $R_2(A, C)$, due to $A \rightarrow B$, then $R = R_1 \bowtie R_2$.

BCNF Decomposition Is Lossless

- Reconsider the lossy example: (drinker, bar, beer).
- Will BCNF decompose to (drinker, bar), (drinker, beer)?
 - Yes, but only when drinker → bar or drinker → beer.
- Suppose drinker → bar?

• Suppose drinker → beer?

• Favorites(drinker, bar, beer)

drinker	bar	beer
Alex	John Bar	Sam Adams
Carissa	Green Bar	Bud Light
Alex	Purple Bar	Coors

• Decomposition: $R_1 =$

drinker	bar
Alex	John Bar
Carissa	Green Bar
Alex	Purple Bar

 $R_2 =$

Example decomposition of the Favorites relation

drinker	beer
Alex	Sam Adams
Carissa	Bud Light
Alex	Coors

- Favorites = $R_1 \bowtie R_2$?
- No! We got extra tuples:
 - (Alex, John Bar, Coors)
 - (Alex, Purple Bar, Sam Adams)