Anhang A

Mächtigkeit und das Lemma von Zorn

A.1 Mächtigkeit von Mengen

Die Mächtigkeit einer Menge ist ein in der Mathematik häufig gebrauchter Begriff. Bekannterweise hat eine nichtleer Menge M eine endliche Mächtigkeit $k \in \mathbb{N}$, wenn es eine Bijektion von $\{n \in \mathbb{N} : n \le k\}$ auf M gibt; siehe Definition 2.3.15. In einem ähnlichen Sinne wollen wir festlegen, was es heißt, dass zwei beliebige Mengen gleich mächtig sind.

A.1.1 Definition. Zwei Mengen A und B heißen gleichmächtig, falls sie beide leer sind, oder falls es eine bijektive Funktion von A auf B gibt.

Betrachten wir die Identität, so erkennen wir sofort, dass eine Menge immer gleichmächtig wie sie selbst ist. Da mit einer Funktion auch ihre Umkehrfunktion bijektiv ist, sehen wir, dass *A* und *B* genau dann gleichmächtig sind, wenn *B* und *A* gleichmächtig sind. Hintereinanderausführungen von Bijektionen sind wieder Bijektionen. Also folgt aus der Gleichmächtigkeit von *A* und *B* und der von *B* und *C* auch die von *A* und *C*.

- **A.1.2 Definition.** Eine Menge *A* heißt *abzählbar*, falls *A* gleichmächtig wie \mathbb{N} oder endlich im Sinne von Definition 2.3.15 ist.
- **A.1.3 Beispiel.** Da $f : \mathbb{N} \to \mathbb{Z}$ definiert durch f(1) = 0, f(2n) = n und f(2n+1) = -n für $n \in \mathbb{N}$ die geraden Zahlen bijektiv auf \mathbb{N} und die ungeraden Zahlen größer oder gleich drei auf $-\mathbb{N}$ abbildet, ist f bijektiv. Also sind \mathbb{N} und \mathbb{Z} gleichmächtig. Insbesondere ist \mathbb{Z} abzählbar.
- **A.1.4 Beispiel.** Eine oft verwendete Tatsache ist die, dass \mathbb{N} und $\mathbb{N} \times \mathbb{N}$ gleichmächtig sind, und infolge $\mathbb{N} \times \mathbb{N}$ abzählbar ist. Dazu betrachten wir die Menge

$$M := \{(i, k) \in \mathbb{N} \times \mathbb{N} : i \le k\}$$

und die Funktionen $g: \mathbb{N} \times \mathbb{N} \to M$ und $h: M \to \mathbb{N} \times \mathbb{N}$ definiert durch

$$g(m,n) = (m, m+n-1)$$
 und $h(i,k) := (i, k+1-i)$.

Wegen $h \circ g = \mathrm{id}_{\mathbb{N} \times \mathbb{N}}$ und $g \circ h = \mathrm{id}_M$ sind g und h bijektiv. Weiters sei $f : M \to \mathbb{N}$ definiert durch

$$f(i,k) = \frac{1}{2}k(k-1) + i$$
.

Für natürliche $k_1 < k_2$ und $i_1 \le k_1$ sowie $i_2 \le k_2$ gilt

$$f(i_1,k_1) = \frac{1}{2}k_1(k_1-1) + i_1 \le \frac{1}{2}(k_1+1)k_1 \le \frac{1}{2}k_2(k_2-1) < \frac{1}{2}k_2(k_2-1) + i_2 = f(i_2,k_2).$$

Im Falle $k_1 = k_2$ und $i_1 < i_2$ gilt offenbar auch $f(i_1, k_1) < f(i_2, k_2)$. Also ist f injektiv. Um auch die Surjektivität nachzuweisen, sei bei gegebenem $r \in \mathbb{N}$ die natürliche Zahl $k \in \mathbb{N}$ maximal derart, dass $\frac{1}{2}k(k-1) < r$. Es folgt $r \le \frac{1}{2}(k+1)k$ und somit

$$1 \le \underbrace{r - \frac{1}{2}k(k-1)}_{-i} \le \frac{1}{2}(k+1)k - \frac{1}{2}k(k-1) = k.$$

Also gilt $(i, k) \in M$ und f(i, k) = r. Insgesamt ist $f \circ g : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ mit

$$f\circ g\,(m,n)=\frac{1}{2}(m+n-1)(m+n-2)+m$$

bijektiv.

A.1.5 Beispiel. Sei M die disjunkte Vereinigung $\dot{\bigcup}_{k \in \mathbb{N}} \mathbb{N}^k$, und betrachte die Abbildung $h : M \to \mathbb{N}$ definiert durch

$$h(x) := p_1^{n_1} \cdot \cdots \cdot p_k^{n_k},$$

wobei $x = (n_1, ..., n_k) \in \mathbb{N}^k$ und $p_1 < p_2 < ...$ alle Primzahlen in aufsteigender Reihenfolge bezeichnet. Da jede natürliche Zahl größer eins eine eindeutige Primfaktorzerlegung hat, bildet h die Menge M bijektiv auf $\{2, 3, 4, ...\}$ ab. Somit ist auch $f: M \to \mathbb{N}$ mit f(x) = h(x) - 1 eine Bijektion. Also sind M und \mathbb{N} gleichmächtig.

A.1.6 Beispiel. Die Potenzmenge $\mathcal{P}(M)$ einer Menge M ist gleichmächtig wie die Menge $\{0,1\}^M$ aller Funktionen ϕ von M in die zweielementige Menge $\{0,1\}$. Um das einzusehen, betrachte $f:\{0,1\}^M \to \mathcal{P}(M)$ definiert durch

$$f(\phi) := \{x \in M : \phi(x) = 1\}.$$

Für $\phi_1 \neq \phi_2$ folgt $\phi_1(x) \neq \phi_2(x)$ für mindestens ein $x \in M$. Dieses x liegt daher in $f(\phi_1) \cap (M \setminus f(\phi_2))$ oder in $(M \setminus f(\phi_1)) \cap f(\phi_2)$. In jedem Fall gilt $f(\phi_1) \neq f(\phi_2)$. Also ist f injektiv. Zu einem $A \subseteq M$ erfüllt die Funktion $\phi : M \to \{0, 1\}$ definiert durch

$$\begin{cases} \phi(x) = 0, & \text{falls } x \notin A, \\ \phi(x) = 1, & \text{falls } x \in A, \end{cases}$$

 $f(\phi) = A$. Somit ist f auch surjektiv.

A.1.7 Fakta.

- 1. Sind A und B gleichmächtig, so sind es auch ihre Potenzmengen $\mathcal{P}(A)$ und $\mathcal{P}(B)$, denn mit $f:A\to B$ ist auch die Funktion $g:\mathcal{P}(A)\to\mathcal{P}(B)$, die einem $C\subseteq A$ die Bildmenge f(C) zuordnet, eine Bijektion.
- 2. Ist I eine Indexmenge und sind für alle $i \in I$ gleichmächtige Mengen A_i und B_i gegeben, so sind auch $\prod_{i \in I} A_i$ und $\prod_{i \in I} B_i$ gleichmächtig. In der Tat überprüft man leicht, dass $f: \prod_{i \in I} A_i \to \prod_{i \in I} B_i$ mit $f((x_i)_{i \in I}) = (f_i(x_i))_{i \in I}$ eine Bijektion ist, wenn $f_i: A_i \to B_i$ für alle $i \in I$ bijektiv ist.

- 3. Ist I eine Indexmenge und sind für alle $i \in I$ gleichmächtige Mengen A_i und B_i derart gegeben, dass sowohl die Mengen A_i , $i \in I$, als auch die Mengen B_i , $i \in I$, paarweise disjunkt sind, so sind auch $\bigcup_{i \in I} A_i$ und $\bigcup_{i \in I} B_i$ gleichmächtig. Sind nämlich wieder $f_i : A_i \to B_i$ für alle $i \in I$ bijektiv, dann ist es auch $f : \bigcup_{i \in I} A_i \to \bigcup_{i \in I} B_i$, wobei $f(x) = f_i(x)$ für $x \in A_i$.
- 4. Sind M und N gleichmächtig und $L \neq \emptyset$ eine weitere Menge, so sind auch L^M und L^N gleichmächtig, wobei L^M bzw. L^N die Menge aller Funktionen von M bzw. N nach L bezeichnet. Ist nämlich $f: M \to N$ bijektiv, so hat auch die Abbildung $h \mapsto h \circ f$ von L^N auf L^M diese Eigenschaft.

A.1.8 Beispiel. Mit Hilfe von Fakta A.1.7, 2, und Beispiel A.1.4 zeigt man leicht durch vollständige Induktion, dass \mathbb{N} und \mathbb{N}^k für alle $k \in \mathbb{N}$ gleichmächtig sind.

A.1.9 Satz. Keine Menge ist gleichmächtig wie ihre Potenzmenge.

Beweis. Für die leere Menge $M = \emptyset$ gilt $\mathcal{P}(M) = \{\emptyset\}$. Also enthält $\mathcal{P}(M)$ genau ein Element und ist daher nicht gleichmächtig wie M.

Für nichtleeres M betrachten wir eine beliebige Abbildung $f: M \to \mathcal{P}(M)$ und setzen

$$A := \{x \in M : x \notin f(x)\} \subseteq M$$
.

Angenommen es gilt A = f(y) für ein $y \in M$. Für $y \in f(y) = A$ folgt aus der Definition von A der Widerspruch $y \notin A$. Im Falle $y \notin f(y) = A$ folgt dagegen der Widerspruch $y \in A$. Also ist A niemals im Bild von f enthalten, wodurch $f: M \to \mathcal{P}(M)$ niemals bijektiv sein kann.

A.1.10 Beispiel. Wegen Satz A.1.9 sind \mathbb{N} und $\mathcal{P}(\mathbb{N})$ nicht gleichmächtig. Die Menge $\mathcal{E}(\mathbb{N})$ aller endlichen Teilmengen von \mathbb{N} ist aber sehr wohl gleichmächtig wie \mathbb{N} . In der Tat ist $g:\mathcal{E}(\mathbb{N})\to\mathbb{N}$ definiert durch

$$g(A) := \sum_{k \in A} 2^{k-1}$$

bijektiv. Um sich das klar zu machen, betrachte die bijektive Funktion $f:\{0,1\}^{\mathbb{N}} \to \mathcal{P}(\mathbb{N})$ aus Beispiel A.1.6 für $M=\mathbb{N}$. Für $A\in\mathcal{E}(\mathbb{N})$ ist $\phi:=f^{-1}(A)$ eine Folge von Nullen und Einsen, die ab einem Index k nur aus Nullen besteht. $\phi(1)\,\phi(2)\,\ldots\,\phi(k)$ ist nun genau die Dualzahldarstellung der Zahl g(A). Umgekehrt lässt sich die Dualzahldarstellung einer jeden natürlichen Zahl n für ein eindeutiges $A\in\mathcal{E}(\mathbb{N})$ so darstellen, wodurch n=g(A).

A.1.11 Satz (Satz von Schröder–Bernstein). Sind A und B zwei Mengen derart, dass es injektive Abbildungen $f: A \to B$ und $g: B \to A$ gibt, so sind A und B gleichmächtig.

Beweis. Wir setzen $A_0 := A$, $B_0 := g(B)$, und für $k \in \mathbb{N}$ definieren wir induktiv $A_k := g \circ f(A_{k-1})$ und $B_k := g \circ f(B_{k-1})$. Durch vollständige Induktion zeigt man leicht, dass

$$A_0 \supseteq B_0 \supseteq A_1 \supseteq B_1 \supseteq A_2 \supseteq B_2 \supseteq \dots$$

Mit
$$D := \bigcap_{k \in \mathbb{N} \cup \{0\}} A_k = \bigcap_{k \in \mathbb{N} \cup \{0\}} B_k$$
 ist daher

$$A = \bigcup_{k \in \mathbb{N} \cup \{0\}} (A_k \setminus B_k) \cup \bigcup_{k \in \mathbb{N} \cup \{0\}} (B_k \setminus A_{k+1}) \cup D,$$

eine Vereinigung paarweise disjunkter Mengen. Also ist durch

$$h(x) := \begin{cases} g \circ f(x), & \text{falls } x \in \bigcup_{k \in \mathbb{N} \cup \{0\}} A_k \setminus B_k, \\ x, & \text{falls } x \in \bigcup_{k \in \mathbb{N} \cup \{0\}} B_k \setminus A_{k+1}, \\ x, & \text{falls } x \in D, \end{cases}$$

eine Abbildung $h: A_0 \to A_0$ wohldefiniert. Da die Abbildungen $h|_{B_k \setminus A_{k+1}} = \mathrm{id}_{B_k \setminus A_{k+1}}$, $h|_D = \mathrm{id}_D$ sowie $h|_{A_k \setminus B_k} = g \circ f|_{A_k \setminus B_k} : A_k \setminus B_k \to A_{k+1} \setminus B_{k+1}$ alle bijektiv sind, ist es gemäß Fakta A.1.7 auch h als Abbildung von A_0 auf

$$\bigcup_{k \in \mathbb{N} \cup \{0\}} \underbrace{(g \circ f)(A_k \setminus B_k)}_{=A_{k+1} \setminus B_{k+1}} \cup \bigcup_{k \in \mathbb{N} \cup \{0\}} (B_k \setminus A_{k+1}) \cup D = B_0.$$

Also sind $A = A_0$ und B_0 gleichmächtig. Weil auch $g : B \to B_0$ eine Bijektion darstellt, sind es auch A und B.

A.1.12 Beispiel. Wir betrachten die Mengen $\mathbb N$ und $\mathbb Q$. Die Einbettung $f:\mathbb N\to\mathbb Q$, f(n)=n ist injektiv; vgl. Proposition 2.7.8. Andererseits hat jedes rationale q eine eindeutige Darstellung in der Form $\frac{p}{n}$ mit teilerfremden $p\in\mathbb Z$ und $n\in\mathbb N$. Die Abbildung $g_1:q=\frac{p}{n}\mapsto(p,n)$ ist somit eine injektive Abbildung von $\mathbb Q$ nach $\mathbb Z\times\mathbb N$. Gemäß Beispiel A.1.3, Beispiel A.1.4 und Fakta A.1.7 gibt es auch eine Bijektion $g_2:\mathbb Z\times\mathbb N\to\mathbb N$. Wenden wir Satz A.1.11 auf f und $g:=g_2\circ g_1$ an, so sehen wir, dass $\mathbb N$ und $\mathbb Q$ gleichmächtig sind. Insbesondere ist $\mathbb Q$ abzählbar.

A.1.13 Korollar. Sind A und B zwei Mengen derart, dass es eine injektive Abbildung $f: A \to B$ und eine surjektive Abbildung $h: A \to B$ gibt, so sind A und B gleichmächtig.

Beweis. Für ein surjektives $h: A \to B$ ist das Urbild $h^{-1}\{b\} \subseteq A$ jeder einpunktigen Menge $\{b\} \subseteq B$ nichtleer. Nach dem Auswahlaxiom gibt es eine Funktion $g: B \to A$ mit $g(b) \in h^{-1}\{b\}$ für alle $b \in B$. Weil das Urbild disjunkter Mengen disjunkt ist, muss $g(b_1) \neq g(b_2)$ für $b_1 \neq b_2$ gelten. Infolge ist g injektiv, wodurch wir Satz A.1.11 anwenden können.

A.1.14 Beispiel. Die Mengen $\{0,1\}^{\mathbb{N}}$ und \mathbb{R} sind gleichmächtig. In der Tat stellt $f: \phi \mapsto \sum_{j=1}^{\infty} \phi(j) \cdot 3^{-j}$ eine injektive Funktion von $\{0,1\}^{\mathbb{N}}$ nach \mathbb{R} dar.

Andererseits ist $g_1: \{0,1\}^{\mathbb{N}} \to [0,1]$ definiert durch $g_1(\phi):=\sum_{j=1}^{\infty}\phi(j)\cdot 2^{-j}$ surjektiv; vgl. Übungsaufgabe 3.27. Weiters seien $g_2:[0,1]\to (0,1)$ und $g_3:(0,1)\to \mathbb{R}$ surjektiv; siehe etwa Lemma 3.8.1. Die Abbildung $g_3\circ g_2\circ g_1:\{0,1\}^{\mathbb{N}}\to \mathbb{R}$ ist dann ebenfalls surjektiv. Wegen Korollar A.1.13 sind also $\{0,1\}^{\mathbb{N}}$ und \mathbb{R} gleichmächtig.

Nach Beispiel A.1.6 sind damit auch die Mengen $\mathcal{P}(\mathbb{N})$ und \mathbb{R} gleichmächtig. Aus Beispiel A.1.6 und Satz A.1.9 erkennen wir schließlich, dass \mathbb{R} und \mathbb{N} nicht gleichmächtig sind.

A.1.15 Beispiel. Nach Fakta A.1.7 und Beispiel A.1.4 sind $\{0,1\}^{\mathbb{N}}$ und $\{0,1\}^{\mathbb{N}}$ gleichmächtig. Letztere Menge ist vermöge der Abbildung $\psi \mapsto (\psi_1, \psi_2)$ mit $\psi_1 = \psi|_{\mathbb{N}}$ und $\psi_2(k) = \psi(1-k), \ k \in \mathbb{N}$, gleichmächtig wie $\{0,1\}^{\mathbb{N}} \times \{0,1\}^{\mathbb{N}}$. Nach Beispiel A.1.14 und Fakta A.1.7 sind somit \mathbb{R} und \mathbb{R}^2 gleichmächtig. Durch vollständige Induktion schließt man, dass auch für beliebiges $n \in \mathbb{N}$ die Mengen \mathbb{R} und \mathbb{R}^n gleichmächtig sind.

A.2 Halbordnungen und Lemma von Zorn

A.2.1 Definition. Sei M eine Menge. Eine Relation \leq auf M, also $\leq \subseteq M \times M$, heißt Halbordnung auf M, falls folgende drei Eigenschaften für alle $x, y, z \in M$ gelten.

Reflexivität: $x \le x$.

Antisymmetrie: Aus $x \le y$ und $y \le x$ folgt x = y.

Transitivität: Aus $x \le y$ und $y \le z$ folgt $x \le z$.

Eine Halbordnung \leq auf M heißt Totalordnung, falls je zwei Elemente vergleichbar sind, also gilt für $x, y \in M$ immer $x \leq y$ oder $y \leq x$.

A.2.2 Definition. Sei \leq eine Halbordnung auf der Menge M. Für $R \subseteq M$ heißt $y \in M$ obere (untere) Schranke von R, falls $x \leq y$ ($y \leq x$) für alle $x \in R$, und $m \in R$ heißt maximales (minimales) Element von R, falls aus $x \in R$ und $m \leq x$ ($x \in R$ und $x \leq m$) die Gleichheit x = m folgt. $x \in R$ heißt größtes (kleinstes) Element von $x \in R$, wenn $x \leq m$ ($x \in R$) für alle $x \in R$.

Für $R \subseteq M$ heißt $y \in M$ Supremum oder kleinste obere Schranke (Infimum oder größte unter Schranke) von R, falls y eine obere (untere) Schranke von R ist, und gleichzeitig $y \le x$ ($x \le y$) für alle oberen (unteren) Schranken x von R gilt.

Das nun folgende Lemma von Zorn ist ein fundamentales Hilfsmittel aus der Mengenlehre. Es ist äquivalent zum Auswahlaxiom und zum Wohlordnungssatz und war vor allem in der ersten Hälfte des 20. Jahrhunderts umstritten. Mittlerweile hat der Großteil der Mathematiker das Auswahlaxiom akzeptiert, auch wenn ein möglicher Verzicht darauf immer noch in manchen Situationen explizit hervorgehoben wird.

Das Auswahlaxiom besagt ja, dass es bei gegebener Indexmenge I und gegebenen nichtleeren Mengen A_i , $i \in I$, immer eine Auswahlfunktion $f: I \to \bigcup_{i \in I} A_i$ mit $f(i) \in A_i$ für alle $i \in I$ gibt. Das Auswahlaxiom besagt also nichts anderes, als dass $\prod_{i \in I} A_i \neq \emptyset$.

A.2.3 Definition. Sei (M, \leq) eine halbgeordnete Menge. Wenn für jede total geordnete Teilmenge von M eine obere Schranke existiert, dann heißt (M, \leq) *induktiv geordnet*. Wenn sogar jeweils eine kleinste obere Schranke existiert, dann heißt (M, \leq) *strikt induktiv geordnet*.

Folgendes Lemma ist das zentrale Hilfsmittel für den Beweis des Lemma von Zorn.

A.2.4 Lemma. Es sei (M, \leq) eine nichtleere halbgeordnete und strikt induktive Menge mit einem kleinsten Element o. Ist $F: M \to M$ eine Abbildung mit der Eigenschaft

$$m \le F(m)$$
 für alle $m \in M$,

 $dann\ gibt\ es\ ein\ m\in M\ mit\ F(m)=m.$

Beweis. Wir nennen eine Teilmenge S von M zulässig, wenn die folgenden drei Bedingungen gelten: $o \in S$, $F(S) \subseteq S$, und für jede total geordnete Teilmenge $T \subseteq S$ liegt auch die kleinste obere Schranke sup T in S. Die ganze Menge M ist zulässig. Wir setzen

$$D:=\bigcap_{S\subseteq M \text{ zul\"{assig}}} S\ ,$$

und erkennen $o \in D$. Zudem erhalten wir

$$F(D) \subseteq \bigcap_{S \subseteq M \text{ zulässig}} F(S) \subseteq \bigcap_{S \subseteq M \text{ zulässig}} S = D.$$

Da für ein total geordnetes $T \subseteq D$ und ein zulässiges S immer sup $T \in S$ gilt, folgt auch sup $T \in D$, wodurch sich D als kleinste zulässige Teilmengen von M herausstellt.

Wenn wir zeigen können, dass D total geordnet ist, dann folgt daraus für die kleinste obere Schranke sup D, dass sup D das größte Element von D ist. Wegen der Zulässigkeit gilt dann $F(\sup D) \in D$ und infolge $F(\sup D) \leq \sup D$. Zusammen mit der vorausgesetzten Eigenschaft von F erhalten wir $F(\sup D) = \sup D$. Noch zu zeigen ist also die Tatsache, dass D total geordnet ist.

Für den Beweis davon nennen wir $e \in D$ ein extremales Element, wenn $s \in D$ mit $s \le e$ und $s \ne e$ die Ungleichung $F(s) \le e$ nach sich zieht. Für ein extremales e setzen wir

$$S_e := \{ s \in D : s \le e \text{ oder } F(e) \le s \},$$

und zeigen, dass S_e zulässig ist:

- \rightsquigarrow Wegen $o \le e$ liegt in S_e .
- Für jedes Element $s \in S_e$ folgt aus $s \le e$, $s \ne e$ die Ungleichung $F(s) \le e$, aus s = e folgt F(s) = F(e), und $s \not \le e$ bedingt $F(e) \le s \le F(s)$, wodurch $F(S_e) \subseteq S_e$.
- \leadsto Sei T eine total geordnete Teilmenge von S_e . Gilt für alle $t \in T$ die Ungleichung $t \le e$, so auch sup $T \le e$. Wenn aber $t \nleq e$ für mindestens ein $t \in T$, dann folgt $F(e) \le t \le \sup T$. In jedem Fall gilt sup $T \in S_e$.

Da D die kleinste zulässige Teilmenge von M ist, erhalten wir $S_e = D$. Können wir zeigen, dass jedes $e \in D$ extremal ist, so folgt für $s \in D = S_e$ die Ungleichung $s \le e$ oder die Ungleichung $e \le F(e) \le s$, womit sich D als total geordnet herausstellt. Um zu beweisen, dass jedes $e \in D$ extremal ist, betrachten wir

$$E := \{e \in D : e \text{ ist extremal }\},$$

und weisen nach, dass E zulässig ist und infolge D gleicht:

- \rightsquigarrow Als kleinstes Element ist o extremal.
- Wir müssen zeigen, dass mit e auch F(e) in E liegt. Also gilt es, aus $s \in D$ mit $s \le F(e)$ und $s \ne F(e)$ die Ungleichung $F(s) \le F(e)$ abzuleiten. Wegen $s \in D = S_e$ gilt $s \le e$ oder $F(e) \le s$, wobei wir letzteres wegen $s \le F(e)$ und $s \ne F(e)$ ausschließen können. Aus s = e folgt trivialerweise $F(s) \le F(e)$ und aus $s \le e$, $s \ne e$, wegen $e \in E$ die Ungleichung $F(s) \le e \le F(e)$.
- Schließlich sei $T \subseteq E$ total geordnet. Um sup $T \in E$ zu zeigen, sei $s \in D$ mit $s \le \sup T$ und $s \ne \sup T$. Wenn für jedes $t \in T$ die Ungleichung $F(t) \le s$ gelten würde, so erhielten wir wegen $t \le F(t)$ den Widerspruch sup $T \le s$. Also muss $F(e) \nleq s$ für ein $e \in T$ ($\subseteq E$), womit wegen $D = S_e$ auch $s \le e$. Aus $s \ne e$ folgt wegen $e \in E$ die Ungleichung $F(s) \le e \le \sup T$, und aus s = e folgt wegen $\sup T \in D = S_e$ und $s \le \sup T$, $s \ne \sup T$ die Ungleichung $F(s) = F(e) \le \sup T$. In jedem Fall gilt $F(s) \le \sup T$, womit sup T extremal ist.

Wir kommen zur Herleitung des Lemma von Zorn aus dem Auswahlaxiom.

A.2.5 Satz (Lemma von Zorn). *Eine nichtleere und induktiv geordnete Menge* (M, \leq) *besitzt ein maximales Element.*

Beweis. Wir behandeln zuerst den Fall einer strikt induktiv geordneten Menge.

Da für ein festes $x \in M$ jedes maximale Element von $\{y \in M : x \leq y\}$ auch maximales Element von M ist, dürfen wir uns auf den Fall beschränken, dass M ein kleinstes Element enthält. Hätte ein solches M kein maximales Element, so finden wir für jedes $m \in M$ ein größeres Element M und definieren damit eine Funktion M derart, dass M derart, dass M derart, dass M derart, dass M ein größeres Element M ba M strikt induktiv geordnet ist, folgt aus Lemma A.2.4 der Widerspruch M für ein M für ein M ein M für ein M ein M für ein M en für ein M ein M ein größeres Element von M ein größeres Element von M ein größeres Element enthält. Hätte ein solches M ein größeres Element M ein größeres Element M ein größeres Element M enthält ein M enthält ein M enthält enthält

Für ein induktiv und nicht notwendigerweise strikt induktiv geordnetes M sei \mathcal{H} die Menge aller total geordneten Teilmengen von M. Bezüglich der Inklusion bildet \mathcal{H} eine Halbordnung. Da für ein bezüglich \subseteq total geordnetes $\mathcal{T} \subseteq \mathcal{H}$ die Teilmenge $\bigcup_{N \in \mathcal{T}} N$ von M bezüglich \subseteq total geordnet und daher die kleinste obere Schranke von \mathcal{T} darstellt, ist \mathcal{H} sogar strikt induktiv geordnet.

Nach dem ersten Beweisteil besitzt \mathcal{H} somit ein maximales Element T. Jede obere Schranke n von T muss dann zu T gehören, da anderenfalls $T \cup \{n\}$ eine total geordnete Menge wäre, die T echt umfasste. Dieses Element n ist ein maximales Element von M, denn für jedes $m \in M$ folgt aus $n \le m$, dass m eine obere Schranke von T ist und infolge ebenfalls zu T gehören muss. Also folgt $m \le n$ und somit m = n.

A.3 Mehr über die Mächtigkeit von Mengen

A.3.1 Definition. Sind A und B zwei Mengen, so schreiben wir $|A| \le |B|$, wenn $A = \emptyset$ oder wenn es eine injektive Abbildung $f: A \to B$ gibt.

A.3.2 Beispiel. Für Mengen A und B mit $A \subseteq B$ gilt offenbar $|A| \le |B|$.

Wegen Satz A.1.11 ist $|A| \le |B|$ und $|B| \le |A|$ äquivalent dazu, dass A und B gleichmächtig sind. Wir schreiben für diesen Sachverhalt auch |A| = |B|.

Aus dem folgenden Resultat erkennen wir, dass für zwei Mengen A und B immer entweder $|A| \le |B|$ oder $|B| \le |A|$.

A.3.3 Satz. Sind A und B nichtleere Mengen, so gibt eine injektive Funktion $f: A \to B$ oder eine injektive Funktion $g: B \to A$.

Beweis. Wir betrachten alle möglichen Bijektionen $h: D_h \to R_h$ mit $D_h \subseteq A$ und $R_h \subseteq B$. Da solche Funktionen h Teilmengen von $D_h \times R_h \subseteq A \times B$ sind, bildet die Menge \mathcal{B} aller solchen Bijektionen eine Teilmenge der Potenzmenge $\mathcal{P}(A \times B)$ von $A \times B$. Insbesondere ist \subseteq eine Halbordnung auf \mathcal{B} . Wir wollen zeigen, dass \mathcal{B} durch \subseteq induktiv geordnet ist. Dazu sei $\mathcal{T} \subseteq \mathcal{B}$ totalgeordnet und

$$\phi := \bigcup_{h \in \mathcal{T}} h$$
.

Für (a, b_1) , $(a, b_2) \in \phi$ erhalten wir $(a, b_1) \in h_1$ und $(a, b_2) \in h_2$ für $h_1, h_2 \in \mathcal{T}$. Da \mathcal{T} totalgeordnet ist, gilt $h_1 \subseteq h_2$ oder $h_2 \subseteq h_1$. Im ersten Fall erhalten wir (a, b_1) , $(a, b_2) \in h_2$, wobei $b_1 = b_2$, da h_2

¹Man beachte, dass man für die Existenz einer solchen Funktion F das Auswahlaxiom verwendet. In der Tat ist F eine Auswahlfunktion der Familie $(A_m)_{m \in M}$, wobei $A_m = \{x \in M : m \le x, m \ne x\}$.

eine Funktion ist. Im zweiten Fall folgt analog $b_1 = b_2$. Damit bildet ϕ eine Funktion $\phi : D_{\phi} \to B$ mit $D_{\phi} \subseteq A$.

Die Abbildung ϕ ist auch injektiv. In der Tat folgt aus $(a_1, b), (a_2, b) \in \phi$ wie oben die Existenz eines $h \in \mathcal{T}$ mit $(a_1, b), (a_2, b) \in h$. Die Injektivität von h impliziert $a_1 = a_2$. Also gilt $\phi \in \mathcal{B}$.

Nach dem Lemma von Zorn existiert ein maximales $f \in \mathcal{B}$. Bezeichnet D_f den Definitionsbereich und R_f die Bildmenge von f, so ist $f:D_f \to R_f$ bijektiv. Im Falle $D_f = A$ ist f, betrachtet als Funktion von A nach B, injektiv. Im Falle $R_f = B$ ist $g:=f^{-1}:R_f \to D_f$, betrachtet als Funktion von B nach A, injektiv. Gilt schließlich $D_f \subsetneq A$ und $R_f \subsetneq B$, so können wir $a \in A \setminus D_f$ und $b \in B \setminus R_f$ wählen, und erhalten mit $\psi := f \cup \{(a,b)\}$ eine Bijektion $\psi : A \cup \{a\} \to B \cup \{b\}$, was aber der Maximalität von f widerspricht.

A.3.4 Korollar. Für nichtleere Mengen A und B gilt $|A| \le |B|$ genau dann, wenn es eine surjektive Abbildung $g: B \to A$ gibt.

Beweis. $|A| \le |B|$ bedingt definitionsgemäß die Existenz einer injektiven Abbildung $f: A \to B$. Setzen wir nun $g(b) := f^{-1}(b)$ für $b \in f(A)$ und $g(b) := a_0$ für $b \in B \setminus f(A)$ mit einem festen $a_0 \in A$, so ist $g: B \to A$ offenbar surjektiv.

Existiert ein surjektives $g: B \to A$ und würde $|A| \le |B|$ nicht gelten, so folgt $|B| \le |A|$ wegen Satz A.3.3 und daher die Existenz einer injektiven Abbildung $h: B \to A$. Nach Korollar A.1.13 erhielten wir |A| = |B| und infolge den Widerspruch $|A| \le |B|$.

Eine nichtleer Menge M ist endlich mit Mächtigkeit $k \in \mathbb{N}$, wenn es eine Bijektion von $\{n \in \mathbb{N} : n \le k\}$ auf M gibt; siehe Definition 2.3.15. Nicht endliche Mengen nennen wir *unendliche Mengen*.

A.3.5 Lemma. Für jede unendliche Mengen A gilt $|\mathbb{N}| \leq |A|$.

Beweis. Da A nichtleer ist, gibt es ein $a \in A$. Durch $f_1: \{1\} \to A$ mit $f_1(1) = a$ ist eine injektive Funktion definiert. Ist für ein $n \in \mathbb{N}$ die Abbildung $f_n: \{1, \dots, n\} \to A$ injektiv, so gilt $f_n(\{1, \dots, n\}) \subseteq A$, da wir A als nicht endlich vorausgesetzt haben. Somit können wir f_n zu einer Funktion $f_{n+1}: \{1, \dots, n, n+1\} \to A$ mit $f_{n+1}(n+1) \notin f_n(\{1, \dots, n\})$ fortsetzen und erhalten wieder eine injektive Abbildung. Die nach Rekursionssatz, Satz 2.3.3, existierende Funktion $f: \mathbb{N} \to A$ ist dann injektiv.

A.3.6 Lemma. Für jede unendliche Menge A gilt $|A| = |\mathbb{N} \times A|$.

Beweis. Wir nennen eine Menge $\mathcal{T} \subseteq \mathcal{P}(\mathbb{N} \times A)$ zulässig, wenn alle $f \in \mathcal{T}$ injektive Abbildungen $f: \mathbb{N} \to A$ sind, und wenn $f(\mathbb{N}) \cap g(\mathbb{N}) = \emptyset$ für alle $f, g \in \mathcal{T}$ mit $f \neq g$. Die Menge \mathfrak{T} aller zulässigen \mathcal{T} ist durch \subseteq halbgeordnet. Man überprüft leicht, dass für ein totalgeordnetes $\mathfrak{S} \subseteq \mathfrak{T}$ die Vereinigung $\bigcup_{S \in \mathfrak{S}} S$ wieder zulässig ist. Nach dem Zornschen Lemma existiert ein maximales $\mathcal{T} \in \mathfrak{T}$. Wäre

$$B := A \setminus \bigcup_{f \in \mathcal{T}} f(\mathbb{N})$$

unendlich, so gäbe es nach Lemma A.3.5 ein injektives $g : \mathbb{N} \to B$. Offenbar ist dann $\mathcal{T} \cup \{g\}$ auch zulässig, was der Maximalität widerspricht. Also ist B endlich und infolge \mathcal{T} nichtleer.

Wir greifen ein $\psi : \mathbb{N} \to A$ aus \mathcal{T} heraus. Im Falle $B = \emptyset$ setzen wir $h := \psi$. Anderenfalls gibt es ein $m \ge 0$ und ein bijektives $\phi : \{-m, \dots, 0\} \to B$; vgl. Definition 2.3.15. Wegen $B \cap \psi(\mathbb{N}) = \emptyset$ ist $\phi \cup \psi$ eine injektive Funktion von $\{-m, \dots, 0\} \cup \mathbb{N}$ nach A. Durch

$$h: \mathbb{N} \to A$$
, $h(n) := (\phi \cup \psi)(n-1-m)$,

wird dann auch eine injektive Funktion definiert mit $h(\mathbb{N}) = B \cup \psi(\mathbb{N})$. Setzen wir $\mathcal{R} := (\mathcal{T} \setminus \{\psi\}) \cup \{h\}$, so ist auch \mathcal{R} zulässig, wobei

$$\bigcup_{f \in \mathcal{R}} f(\mathbb{N}) = A.$$

Man überzeugt sich leicht, dass $\theta : \mathbb{N} \times \mathcal{R} \to A$ definiert durch $\theta(n, f) = f(n)$ bijektiv ist, womit $|A| = |\mathbb{N} \times \mathcal{R}|$. Die Aussage des Lemma folgt mit Beispiel A.1.4 und Fakta A.1.7 aus

$$|\mathbb{N} \times A| = |\mathbb{N} \times \mathbb{N} \times \mathcal{R}| = |\mathbb{N} \times \mathcal{R}| = |A|.$$

A.3.7 Korollar. Sind B_i , $i \in I$, Mengen mit abzählbarem $I \neq \emptyset$ derart, dass $|B_i| \leq |B_k|$ mit einem unendlichen B_k für ein festes $k \in I$, so gilt

$$|\bigcup_{i\in I}B_i|=|B_k|.$$

Beweis. Offenbar gilt $|B_k| \le |\bigcup_{i \in I} B_i|$; siehe Beispiel A.3.2. Für die umgekehrte Ungleichung seien $g_i: B_k \to B_i, i \in I$, surjektive Abbildungen; siehe Korollar A.3.4. Infolge ist auch die durch $f(n,b) = g_{\phi(n)}(b)$ definierte Abbildung $f: \mathbb{N} \times B_k \to \bigcup_{i \in I} B_i$ surjektiv, wobei auch $\phi: \mathbb{N} \to I$ surjektiv ist. Aus Lemma A.3.6 folgt schließlich $|\bigcup_{i \in I} B_i| \le |B_k|$.

A.3.8 Satz. Für jede unendliche Menge A und jedes $n \in \mathbb{N}$ gilt $|A| = |\underbrace{A \times \cdots \times A}_{n \text{ mal}}|$.

Beweis. Es reicht offenbar, $|A| = |A \times A|$ zu zeigen. Dazu sei \mathcal{B} die Menge aller möglichen Bijektionen $f: B_f \times B_f \to B_f$, wobei $B_f \subseteq A$. Gemäß Beispiel A.1.4 und Lemma A.3.5 gilt $\mathcal{B} \neq \emptyset$. Ist $\mathcal{T} \subseteq \mathcal{B}$ totalgeordnet, so prüft man elementar nach, dass

$$\bigcup_{f \in \mathcal{T}} f$$

eine Bijektion von $\bigcup_{f \in \mathcal{T}} (B_f \times B_f) = (\bigcup_{f \in \mathcal{T}} B_f) \times (\bigcup_{f \in \mathcal{T}} B_f)$ auf $\bigcup_{f \in \mathcal{T}} B_f$ abgibt. Nach dem Zornschen Lemma existiert ein maximales $h \in \mathcal{B}$. Konstruktionsbedingt gilt $|B_h| = |B_h \times B_h|$. Für $|B_h| = |A|$ folgt $|A| = |A \times A|$ aus Fakta A.1.7.

Wir bringen schließlich die Annahme, dass B_h und A nicht gleichmächtig sind, zu einem Widerspruch. Aus $|B_h| \le |A|$, $|B_h| \ne |A|$ folgt zunächst aus Korollar A.3.7, dass $|A \setminus B_h| = |A|$. Wir erhalten $|B_h| \le |A \setminus B_h|$, $|B_h| \ne |A \setminus B_h|$ und somit die Existenz einer injektiven Funktion $\phi: B_h \to A \setminus B_h$; siehe Satz A.3.3. Für $B:=B_h\dot{\cup}\phi(B_h)$ gilt

$$B \times B = (B_h \times B_h) \dot{\cup} (\phi(B_h) \times B_h) \dot{\cup} (B_h \times \phi(B_h)) \dot{\cup} (\phi(B_h) \times \phi(B_h)),$$

wobei $\phi(B_h) \times B_h$, $B_h \times \phi(B_h)$ und $\phi(B_h) \times \phi(B_h)$ alle gleichmächtig wie $B_h \times B_h$ und somit gleichmächtig wie B_h sind. Mit Korollar A.3.7 folgt

$$|(\phi(B_h) \times B_h) \dot{\cup} (B_h \times \phi(B_h)) \dot{\cup} (\phi(B_h) \times \phi(B_h))| = |B_h \times B_h| = |B_h| = |\phi(B_h)|.$$

Also gibt es eine Bijektion $g: (\phi(B_h) \times B_h) \dot{\cup} (B_h \times \phi(B_h)) \dot{\cup} (\phi(B_h) \times \phi(B_h)) \to \phi(B_h)$, womit auch $h \cup g$ eine Bijektion von $B \times B$ nach B ist, was aber der Maximalität von h widerspricht.

A.3.9 Korollar. Für eine unendliche Menge A gilt $|\mathcal{E}(A)| = |A|$, wobei $\mathcal{E}(A)$ die Menge aller endlichen Teilmengen von A bezeichnet.

Beweis. Bezeichne $\mathcal{E}_n(A)$ für $n \in \mathbb{N} \cup \{0\}$ die Menge aller endlichen Teilmengen von A mit Mächtigkeit n. Da für $n \geq 2$ die Abbildung $(a_1, \ldots, a_n) \to \{a_1, \ldots, a_n\}$ die Menge $\underbrace{A \times \cdots \times A}_{n \text{ mal}}$ surjektiv auf $\mathcal{E}_n(A)$ abbildet, folgt $|\mathcal{E}_n(A)| \leq |A|$; vgl. Satz A.3.8. Für n = 1 ist $a \mapsto \{a\}$ von A nach $\mathcal{E}_1(A)$ sogar bijektiv. Somit folgt aus Korollar A.3.7

$$|A| = |\mathcal{E}_1(A)| = |\underbrace{\mathcal{E}_0(A)}_{=\{\emptyset\}} \dot{\cup} \mathcal{E}_1(A) \dot{\cup} \bigcup_{n \ge 2} \mathcal{E}_n(A)|.$$

Literaturverzeichnis

- [B] V.I. Bogachev: *Measure Theory I*, Springer Berlin Heidelberg New York, 2007.
- [C] L. Conlon: Differentiable manifolds, Birkhäuser Boston, 2001.
- [DK1] J.J. Duistermaat, J.A.C. Kolk: *Multidimensional Real Analysis I*, Cambridge University Press, 2004.
- [DK2] J.J. Duistermaat, J.A.C. Kolk: *Multidimensional Real Analysis II*, Cambridge University Press, 2004.
- [E] J. Elstrodt: Maβ und Integrationstheorie, Springer-Verlag Berlin Heidelberg, 2005.
- [Ha] P. Halmos: Measure Theory, Springer-Verlag New York Heidelberg Berlin, 1974.
- [HR] E. Hewitt, K.A. Ross: Abstract Harmonic Analysis I, Springer-Verlag New York, 1979.
- [H1] H. HEUSER: Lehrbuch der Analysis 1, B.G. Teubner Stuttgart, 1990.
- [H2] H. Heuser: Lehrbuch der Analysis 2, B.G. Teubner Stuttgart, 1990.
- [J] K. Jänich: Vektor Analysis, Springer Verlag 2001.
- [K] M. Kaltenbäck: Fundament Analysis, Berliner Studienreihe Math., Heldermann, 2014.
- [K] D. Kofler: Die Invarianzsätze von Brouwer, Seminararbeit, TU-Wien, 2014.
- [Ri] W. Rinow: *Lehrbuch der Topologie*, Hochschulbücher für Mathematik, Bd.79, VEB Deutscher Verlag der Wissenschaften, 1975.
- [Ru] W. Rudin: Real and Complex Analysis, McGraw-Hill New York, 1987.
- [Z] L. Zajíček: An elementary proof of the one-dimensional Rademacher theorem, Mathematica Bohemica, Vol. 117 (1992), No. 2, 133–136.

$(\mathcal{A} \otimes \mathcal{B})_{\mu,\nu}$, 177	$M_{reg}(\Omega, \mathcal{A}, \mathbb{C}), 351$
$AC([c,d],\mathbb{C}),371$	$M_{reg}(\Omega,\mathcal{A},\mathbb{R}),$ 351
$AC([c,d],\mathbb{R}),371$	S^d , 229
$AC(\mathbb{R},\mathbb{C}), 370$	T_x , 97
$AC(\mathbb{R},\mathbb{R})$, 370	X', 337
$AC_{\mu}([c,d],\mathbb{C}),371$	$c\ell(B)$, 7
$AC_{\mu}([c,d],\mathbb{R}),371$	$\Gamma(t)$, 167
$AC_{\mu}(\mathbb{R},\mathbb{C}),370$	$\pi(X)$, 16
$AC_{\mu}(\mathbb{R},\mathbb{R}),370$	\mathbb{R}^X , 27
$A\dot{\cup}B$, 104	$\bigotimes_{i\in I}\mathcal{A}_i$, 174
B° , 10	δ_{ω} , 136
$C(X,\mathbb{R})$, 26	Ů, 104
C^1 -Diffeomorphismus, 83	$\ell^p(\Omega,\mathbb{C})$, 283
$C_{00}^{\infty}(D,\mathbb{R})$, 61	$\ell^p(\Omega,\mathbb{R})$, 283
C^{k} -Diffeomorphismus, 83	$\int f d\mu$, 134
$C^{m}(M,N)$, 112	$\int_{\Upsilon} f \mathrm{d}\mu$, 142
$C_0(X,\mathbb{C})$, 54	λ , 164
$C_0(X,\mathbb{R})$, 54	λ_1 , 164
$C_0(\Omega,\mathbb{C})'$, 353	λ_d , 159
$C_0(\Omega,\mathbb{R})'$, 353	$\mathbb{D},212$
$C_b(X,\mathbb{C}), 27$	T, 102
$C_b(X,\mathbb{R})$, 27	$\mathcal{A} \otimes \mathcal{B}$, 175
$C_b(X,\mathbb{R})$, 38	$\mathcal{A}(\mathcal{K})$, 131
$C_{00}(X,\mathbb{C}), 54$	$\mathcal{A}(\mathcal{T}^1)$, 153
$C_{00}(X,\mathbb{R}), 54$	$\mathcal{A}(\mathcal{T}^d)$, 159
$D^{\alpha}f$, 297	$\mathcal{A}(\phi_{\uparrow\downarrow}^M)$, 145
$GL(d,\mathbb{C})$, 192	$\mathcal{A}(\psi)$, 145
$GL(d,\mathbb{R})$, 163	$\mathcal{D}(\mathcal{K})$, 151
$L(\Omega, \mathcal{A}, \mu, \mathbb{C}), 285$	\mathcal{D}_d , 161
$L(\Omega, \mathcal{A}, \mu, \mathbb{R})$, 285	E, 131
$L^p(\Omega, \mathcal{A}, \mu, \mathbb{C}), 282$	$\mathcal{F}(\mathcal{A})^1_{\mathbb{C}},$ 289 $\mathcal{F}(\mathcal{A})^1_{\mathbb{R}},$ 289
$L^p(\Omega, \mathcal{A}, \mu, \mathbb{C})', 339$	$\mathcal{F}(\mathcal{A})^{\tilde{1}}_{\mathbb{R}},$ 289
$L^p(\Omega, \mathcal{A}, \mu, \mathbb{R}), 280$	$\mathcal{F}((\mathcal{A}\otimes\mathcal{B})_{\mu,\nu}), 177$
$L^p(\Omega, \mathcal{A}, \mu, \mathbb{R})'$, 339	\mathcal{F}_{+} , 122
$L_{loc}^{1}(G), 297$	$\mathcal{L}(\Omega,\mathcal{A},\mu,\mathbb{C})$, 285
$L^1_{loc}(G, \mathcal{A}(\mathcal{T}^d)_G, \lambda_d, \mathbb{C}), 297$	$\mathcal{L}(\Omega,\mathcal{A},\mu,\mathbb{R})$, 285
$M(\Omega, \mathcal{A}, \mathbb{C}), 346$	$\mathcal{L}^1(\Omega, \mathcal{A}, \mu, [-\infty, +\infty]), 137$
$M(\Omega, \mathcal{A}, \mathbb{R}), 346$	$\mathcal{L}^1(\Omega,\mathcal{A},\mu,\mathbb{C}),$ 185

$\mathcal{L}^1(\Omega,\mathcal{A},\mu,\mathbb{R}), 137$	$\mathcal{B}(X,\mathbb{C}),$ 27
$\mathcal{L}^1(\Omega,\mathcal{A},\mu,\mathbb{R}^d)$, 184	$\mathcal{B}(X,\mathbb{R}),$ 27
\mathcal{L}^d , 162	$\mathcal{F}_{\uparrow}^{M}$, 122
$\mathcal{L}^p(\Omega, \mathcal{A}, \mu, [-\infty, +\infty]), 280$	(A1)- $(A3)$, 7
$\mathcal{L}^p(\Omega,\mathcal{A},\mu,\mathbb{C})$, 282	(ABI), 3
$\mathcal{L}^p(\Omega,\mathcal{A},\mu,\mathbb{R})$, 280	(ABII), 16
\mathcal{R}_{ω} , 168	(B1), (B2), 18
$\mathcal{T}^p,2$	(F1)-(F3), 3
$\mathcal{T}^{<},2$	(O1)-(O3), 1
$\mathcal{T}^{>}$, 13	(T1), 31
\mathcal{T}_X , 23	(T2), 5
μ-Nullmenge, 134	(T3), 33
μ -fast überall, 138	(T4), 33
$\mu \perp \nu$, 333	äquivalent, 109
$\mu \circ T^{-1}$, 143	äußeres Maß, 205
$\mu \otimes \nu$, 178	,
$v \ll \mu, 333, 347$	Abbildung
ω_F , 159	offene, 83
$\frac{\omega_F}{\mathcal{B}}$, 149	stetige, 11
∂G , 104	Ableitung
$\partial^{o}G$, 104	schwache, 297
$\partial^s G$, 104	Abschluss einer Menge, 7
	absolut stetig, 333, 347
$\phi_{\downarrow\downarrow}^{\uparrow\downarrow}$, 144	Abstand
ϕ_{\uparrow}^{M} , 126	von Element und Teilmenge, 45
$\prod_{i\in I} \mathcal{T}_i$, 25	von zwei Teilmengen, 45
σ -Algebra, 130	abzählbare Menge, 375
finale, 208	Abzählbarkeitsaxiom
von Mengensystem erzeugte, 131	erstes, 3
σ -additiv, 128	zweites, 16
σ -kompakt, 241	äquivalente Metriken, 2
σ -Algebra	Alexandroff-Kompaktifizierung, 53
initiale, 173	Algebra
Produkt-, 174	nirgends verschwindend, 57
Spur-, 142	punktetrennende, 57
σ -endlich, 134	Algebra von Funktionen, 56
\sim_{μ} , 138, 282	•
$\operatorname{supp} \mu$, 172	Atlas, 109
supp(f), 54	Auswahlaxiom, 379
d(A), 45	Auswahlfunktion, 379
d(A, B), 45	Banachalgebra, 295
d(x, A), 45	kommutative, 295
$f \sim_{\mu} g$, 138, 282	Banachscher Fixpunktsatz, 73
f_t , 292	Basis
$g \cdot \mu$, 140, 343	eines Filters, 3
k_{δ} , 249	
$x_i \stackrel{i \in I}{\longleftrightarrow} x, 4$	Basis einer Topologie, 16
$x_i \longrightarrow x$, 4	Betafunktion, 181

Bild	Fixpunktsatz
wesentliches, 211	Banachscher, 73
Bildmaß, 143	Fläche, 87
Borel-Teilmenge, 131, 153	folgenkompakt, 52
Borelmaß, 155, 167	Fortsetzungssatz, 149
	Fortsetzungssatz von Tietze, 37
Cauchy-Schwarzsche Ungleichung, 316	Fourierkoeffizienten
D (II) (E' 1 D' 222	einer $L^2[-\pi,\pi]$ -Funktion, 321
Darstellungssatz von Fischer-Riesz, 333	eines komplexen Maßes, 354
Darstellungssatz von Riesz, 156	Fourierreihe, 319, 321
dicht, 7	Fouriertransformation, 303
in einer Menge, 7	Fouriertransformierte, 303
Dichte, 335, 347	Funktion
Diffeomorphismus, 83, 112	\mathbb{R}^d -wertige, integrierbar, 184
C^1 -, 83	\mathbb{R}^d -wertige, messbare, 184
C^k -, 83	A-B-messbare, 131
Dirichlet-Kern, 323	ganze, 305
Divergenz, 259	gerade, 322
Dualraum	harmonische, 262
topologischer, 337	im Unendlichen verschwindende, 54
Durchmesser einer Teilmenge, 45	integrierbare, 136
dyadische Rechtecke, 161	komplexwertige, integrierbar, 184
Dynkin-System, 151	komplexwertige, messbare, 184
Einbettung, 91	lokal integrierbare, 297
zu Karte gehörige, 91	messbare bezüglich \mathcal{A} , 131
Einheit	mit kompaktem Träger, 54
approximative, 296	stetige, 11
Einheitssphäre, 229	Träger einer, 54
Einpunkt-Kompaktifizierung, 53	ungerade, 322
endlich, 134	von beschränkter Variation, 366
endliche Durchschnittseigenschaft, 39	Funktional
Erste Greensche Identität, 260	<i>M</i> -fortsetzbares, 126
erstes Abzählbarkeitsaxiom, 3	positives, lineares, 153
Euklidische Topologie, 2	Funktionenmenge
Eukitaisene Topotogie, 2	gleichgradig stetige, 50
Faktorisierungsabbildung, 28	
Faltung	Gammafunktion, 167
L^{1} - L^{1} , 294	Grenzwertdarstellung, 190
L^1 - L^{∞} , 247	Gaußscher Integralsatz, 259
L^{p} - L^{q} , 295	gerade Funktionen, 322
Träger, 248	gesättigte Teilmenge, 29
von zwei Funktionen, 247	getrennte Mengen, 30
Filter, 3	durch offene Mengen, 30
Filterbasis, 3	durch stetige Funktion, 36
finale Topologie, 28	gleichgradig stetige Funktionenmenge, 50
Fixpunkt, 232	gleichmächtige Mengen, 375

Gradient, 259	Komplement
Greenscher Integralsatz, 260	orthogonales, 317
Gruppe	komplexe Maße
affine, 226, 271	absolute Stetigkeit, 347
lokalkompakte, 191	komplexes Maß, 342
topologisch, 191	konvergentes Netz bezüglich Topologie, 4
unimodulare, 201	Konvergenz
	fast gleichmäßige, 286
Häufungspunkt einer Menge, 9	im Maß, 283
Häufungspunkt eines Netzes, 10	Kreuzprodukt, 246
Höldersche Ungleichung, 277	Kugelkoordinaten, 89, 221
Haarsches Maß	Kurve, 87
Linkes, 201	
Rechtes, 201	Lagrangesche Multiplikatorenregel, 101
Hahnsche Zerlegung, 344	Lagrangeschen Multiplikator, 102
Hahnscher Zerlegungssatz, 343	Laplace, 259
halbstetig	Laplacetransformierte, 314
von oben, 13	Lebesgue-Integral, 134, 136
von unten, 13, 154	Lebesgue-Teilmenge, 162
harmonisch, 262	Lebesgues-Maß, 159
Hausdorff, 5	Lemma
Hausdorffsch, 5	von Fatou, 135
Hilbertraum, 316	von Urysohn, 36
homöomorphe topologische Räume, 15	von Zorn, 381
Homöomorphismus, 15	Lie Gruppe, 90
Tromoomorpinsmas, 15	linkes Haarsches Maß, 201
im Unendlichen verschwindende Funktion, 54	Lipschitz stetig, 227
implizites Differenzieren, 75	Lokalisationsprinzip, 327
induktiv geordnet, 379	lokalkompakte Gruppe, 191
initiale σ -Algebra, 173	lokalkompakter topologischer Raum, 53
initiale Topologie, 21	
Innere einer Menge, 10	Möbiusband, 99, 119
Integral	Maß, 128
Lebesguesches, 134, 136	σ -endliches, 134
nach komplexem Maß, 348	äußeres, 205
Riemannsches, 164	absolut stetiges, 333
integrierbare Treppenfunktionen, 289	Bild-, 143
isolierter Punkt, 9	Borel-, 155, 167
10011-011111111111111111111111111111111	endliches, 134
Jensensche Ungleichung, 279	komplexes, 342
	linksinvariantes, 193
Karte, 109	lokal endliches, 167, 170
mit Atlas verträgliche, 109	metrisches äußeres, 205
Karte einer Teilmenge von \mathbb{R}^p , 87	rechtsinvariantes, 198
kompakt, 39	reelles, 342
abzählbar, 52	reguläres, 167
folgen-, 52	reguläres, komplexes, 351

reguläres, reelles, 351	Metriken
Riesz-reguläres, 155	äquivalente, 2
signiertes, 342	metrisches äußeres Maß, 205
vollständiges, 145	metrisierbar, 49
von innen reguläres, 167	metrisierbarer topologischer Raum, 49
Wahrscheinlichkeits-, 279	Minkowskische Ungleichung, 278
Maße	Mittelwerteigenschaft harmonischer Funktionen
zueinander singuläre, 333	268
Maßraum, 134, 183	Modularfunktion, 201
Vervollständigung von, 149	Mollifier, 249
Majorante	Multiindex, 297
integrierbare, 186, 187	
Mannigfaltigkeit, 109	Nabla, 259
implizit definierte, 87	Netz
Produkt-, 111	konvergentes bezüglich Topologie, 4
Mannigfaltigkeit im \mathbb{R}^p , 87	Neumannsche Reihe, 230
Menge	nirgends verschwindende Algebra, 57
σ -endliche bezüglich Maß, 134	Normale
abgeschlossene, 6	äußere, 106
Abschluss einer, 7	normaler topologischer Raum, 33
abzählbare, 375	Normalvektor, 99
dichte, 7	Nullmenge, 134
endliche bezüglich Maß, 134	
gesättigte, 29	Oberflächenmaß, 236, 238
induktiv geordnete, 379	oberhalbstetig, 13
Inneres einer, 10	offene Abbildung, 25
kompakte, 39	orthogonale Komplement, 317
kritischen Punkte, 228	orthogonale Projektion, 318
	Orthogonalsystem, 317
offene, 1	Orthonormalbasis, 319
reguläre, 167	Orthonormalsystem, 317
relativ kompakte, 39	
strikt induktiv geordnete, 379	Parameterintegral
total beschränkte, 47	Differenzierbarkeit von, 187
unendliche, 382	Holomorphie von, 188
von außen reguläre, 167	Stetigkeit von, 186
von innen reguläre, 167	Poisson-Darstellung, 267
zusammenhängende, 31	Poissonkern, 265
Mengen	Polarkoordinaten, 219
durch offene Mengen getrennte, 30	Polnischer Raum, 170
getrennte, 30	Polynom
gleichmächtige, 375	trigonometrisches, 60
Mengendifferenz	positives, lineares Funktional, 153
symmetrische, 288, 290	Produkt von Funktion und Maß, 140
Mengenfunktion	Produkt- σ -Algebra, 174
σ -additive, 128	Produktmaß, 180
Messraum, 130	Produkttopologie, 25

Projektion	Greenscher Integralsatz, 260
orthogonale, 318	Hahnscher Zerlegungssatz, 343
Punkt	Rangsatz, 100
isolierter, 9	Satz über implizite Funktionen, 86
punktetrennende Funktionenmenge, 50, 57	Umkehrsatz, 82
Punktmaß bei einem Punkt, 136	Vergleichssatz, 151
Tumental our emem Tumen, 150	von Ascoli, 50
Quotiententopologie, 28	von Carathéodory, 146
	von der beschränkten Konvergenz, 139
Rand, 63	von der Invarianz der Dimension, 235
durch Mannigfaltigkeit darstellbar, 104	von der Invarianz der Bintension, 235 von der Invarianz offener Mengen, 235
glatter, 104	von der monotonen Konvergenz, 135
orientierbarer, 106	von Fubini, 178
topologischer, 104	von Jegorow, 289
Raum	von Peano, 52, 69
(T2)-, 5	von Picrad-Lindelöf, 74
Hausdorff, 5	von Radon-Nikodym, 335
topologischer, 1	von Riesz-Markov, 353
Rechenregeln	von Sard, 228
für $[-\infty, +\infty]$, 121	
für $[0, +\infty]$, 121	von Schröder–Bernstein, 377 von Stone-Weierstraß, 58
Rechtecke	
dyadische, 161	von Tychonoff, 44
rechtes Haarsches Maß, 201	Zerlegungssatz von Lebesgue, 336
reelle Maße	schwache Ableitung, 297
absolute Stetigkeit, 347	Schwartz Klasse, 310
reelles Maß, 342	Seminorm, 280, 337
regulär	separabel, 7
von außen, 167	separable Menge, 7
von innen, 167	signiertes Maß, 342
regulärer topologischer Raum, 33	singuläre Maß, 333
Riemann-Integral, 164	Skalarprodukt, 316
Riemann-Stieltjes-Integral, 158	Skalarproduktraum, 316
Ring	Spur- σ -Algebra, 142
von Teilmengen, 124	Spurtopologie, 23
_	stetig, 11
Satz	gleichgradig, 50
über die Inverse Funktion, 86	in einem Punkt, 11
über implizite Funktionen, 77	stetig differenzierbare Abbildung, 112
von Lindelöf, 237	stetige
Darstellungssatz von Fischer-Riesz, 333	Abbildung, 11
Darstellungssatz von Riesz, 156	Funktion, 11
Fixpunktsatz von Banach, 73	Stieltjessche Umkehrformel, 210
Fixpunktsatz von Brouwer, 232	strikt induktiv geordnet, 379
Fortsetzungssatz, 149	Subbasis einer Topologie, 16
Fortsetzungssatz von Tietze, 37	Supremum
Gaußscher Integralsatz, 259	wesentliches 278

symmetrische Mengendifferenz, 288, 290	Treppenfunktion, 124 \mathbb{R}^d -wertige, 185
Tangentialraum, 97	integrierbare, 289
Teilmannigfaltigkeit, 110	trigonometrisches Polynom, 60
Teilmenge	trigonometrisenes i orynom, oo
Borel-Teilmenge, 131, 153	Umgebung, 3
Lebesgue-Teilmenge, 162	Umgebungsbasis, 3
Teilraum	Umgebungsfilter, 3
topologischer, 23	Umkehrformel
Testfunktion, 297	Stieltjessche, 210
•	unendlich, 382
Topologie, 1	ungerade Funktionen, 322
Basis von, 16	Ungleichung
cofinite, 66	Cauchy-Schwarz, 316
diskrete, 2	Höldersche, 277
Euklidische, 2	Jensensche, 279
feinere, 16	Minkowski, 278
finale, 28	unimodular, 201
gröbere, 16	unterhalbstetig, 13
initiale, 21	Untermannigfaltigkeit, 87, 110
Klumpentopologie, 2	Untermannigfaltigkeit von \mathbb{R}^p , 87
normale, 33	Untermannigrantigken von R., 87
Produkt-, 25	Variation
Quotienten-, 28	einer Funktion, 366
reguläre, 33	eines Maßes, 344, 345
Spur-, 23	totale, 346
Subbasis von, 16	Vektor
von einer Metrik induzierte, 2	ins Äußere zeigend, 106
topologische Gruppe, 191	ins Innere zeigend, 106
topologische Räume	Vergleichssatz, 151
homöomorphe, 15	Verteilungsfunktion
topologischer Raum	eines Borelmaßes, 357
lokalkompakter, 53	eines komplexen Maßes, 366
metrisierbarer, 49	Vervollständigung, 149
topologischer Teilraum, 23	vervonstandigung, 149
Torus, 94	Wahrscheinlichkeitsmaß, 279
total beschränkte Menge, 47	Wahrscheinlichkeitsraum, 279
totale Variation, 346	wesentliche Supremum, 278
Träger, 296	r
eines Maßes, 172	Zählmaß, 136
Träger einer Funktion, 54	Zerlegung der Eins
Transformationsformel, 216	glatte, 252
	Zerlegungssatz von Lebesgue, 336
Trennungsaxiom (T1) 21	zusammenhängend, 31
(T1), 31 (T2), 5	Zusammenhangskomponente, 32
(T2), 5	Zweite Greensche Identität, 260
(T3), 33	zweites Abzählbarkeitsaxiom, 16
(T4), 33	,