Dénombrement

1 Ensembles finis et cardinaux

1.1 Cardinal d'un ensemble fini

Définition 1.1

On dit qu'un ensemble non vide E est fini s'il existe $n \in \mathbb{N}^*$ et une bijection de [1, n] sur E. Dans ce cas, l'entier n est unique et est appelé **cardinal** de E : on le note card E, |E| ou encore #E. Par convention, \emptyset est fini et card $\emptyset = 0$.

REMARQUE. Plus prosaïquement, le cardinal est le nombre d'éléments d'un ensemble.

Proposition 1.1

Deux ensembles finis ont même cardinal si et seulement si il existe une bijection de l'un sur l'autre.

Méthode Déterminer le cardinal d'un ensemble

Pour déterminer le cardinal d'un ensemble, il suffit de le mettre en bijection avec un ensemble de cardinal connu.

Proposition 1.2

Soit E un ensemble fini et A une partie de E. Alors A est fini et card $A \le card E$. Il y a égalité si et seulement si A = E.

1.2 Opération sur les ensembles finis

Proposition 1.3

Soient E et F deux ensembles finis. Alors $E \cup F$ et $E \cap F$ sont finis et

$$card(E \cup F) = card E + card F - card(E \cap F)$$

Exercice 1.1

Principe d'inclusion-exclusion

Soient $A_1, ..., A_n$ n ensembles finis. Montrer que

$$\operatorname{card}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \operatorname{card}\left(\bigcap_{l=1}^{k} A_{i_{l}}\right)$$

Définition 1.2 Partition

Soit E un ensemble (pas nécessairement fini) et $(A_i)_{i \in I}$ une famille de parties de E. On dit que $(A_i)_{i \in I}$ est une partition de E si

- les A_i sont non vides;
- les A_i sont disjoints deux à deux ;

•
$$E = \bigcup_{i \in I} A_i$$
.

On note alors $E = \bigsqcup_{i \in I} A_i$.

REMARQUE. Il arrive de parler de partition même si les parties en question ne sont pas toutes vides.

Proposition 1.4

Soit E un ensemble fini et $(A_i)_{1 \le i \le n}$ une partition de E. Alors card $E = \sum_{i=1}^{n} \operatorname{card} A_i$.

Remarque. La relation est vraie même si les parties ne sont pas toutes vides.

Méthode Déterminer le cardinal d'un ensemble

Pour déterminer le cardinal d'un ensemble, il suffit de le partitionner en parties de cardinaux connus.

Proposition 1.5

Soient E et F deux ensembles finis. Alors $E \times F$ et F^E est fini. De plus, $card(E \times F) = card E \times card F$.

On en déduit le résultat suivant par récurrence.

Corollaire 1.1

Soient $E_1, ..., E_p$ des ensenmbles finis. Alors

$$\operatorname{card}\left(\prod_{i=1}^{p} \mathbf{E}_{i}\right) = \prod_{i=1}^{p} \operatorname{card}(\mathbf{E}_{i})$$

Proposition 1.6

Soient E et F deux ensembles finis. Alors F^E est fini. De plus, $card(F^E) = (card F)^{card E}$.

L'application de $\mathcal{P}(E)$ dans $\{0,1\}^E$ qui à une partie de E associe sa fonction indicatrice est clairement bijective. On en déduit la proposition suivante.

Proposition 1.7

Soit E un ensemble fini. Alors l'ensemble des parties de E noté $\mathcal{P}(E)$ est également fini et card $\mathcal{P}(E) = 2^{\operatorname{card} E}$.

1.3 Applications entre ensembles finis

Proposition 1.8

Soit $f: E \to F$.

- (i) Si f est injective et F fini, alors E est fini et card $E \le \operatorname{card} F$.
- (ii) Si f est surjective et E fini, alors F est fini et card $E \ge \operatorname{card} F$.

Corollaire 1.2

Soit $f : E \to F$. Si E est fini, alors Im f est fini et card(Im f) \leq card E.

Principe des tiroirs de Dirichlet -

Supposons que l'on veuille ranger n paires de chaussettes dans p tiroirs. Si n > p, il est évident qu'un des tiroirs comportera plus d'une paire de chaussettes. On peut formaliser cette remarque de la manière suivante. Si on note E l'ensemble des paires de chaussettes, F l'ensemble des tiroirs et f l'application qui à une paire de chaussettes associe le tiroir dans laquelle elle se trouve, alors la remarque précédente signifie que f n'est pas injective.

Exercice 1.2

Soit $n \in \mathbb{N}^*$. On se donne n+1 réels de l'intervalle [0,1[. Montrer que deux d'entre eux sont à une distance strictement inférieure à $\frac{1}{n}$ l'un de l'autre.

Proposition 1.9

Soit $f: E \to F$ où E et F sont des ensembles finis de **même** cardinal. Les propositions suivantes sont équivalentes :

- (i) f est bijective;
- (ii) f est surjective;
- (iii) f est injective.

Proposition 1.10 Lemme des bergers

Soit $f: E \to F$ où E et F sont des ensembles finis. On suppose qu'il existe $r \in \mathbb{N}$ tel que card $(f^{-1}(y)) = r$ pour tout $y \in F$. Alors card E = r card F.

2 Listes, arrangements et combinaisons

2.1 Listes

Définition 2.1 Liste

Soient E un ensemble fini et $p \in \mathbb{N}$. On appelle *p*-liste d'éléments de E tout *p*-uplet d'éléments de E.

Remarque. Une *p*-liste est également une application de [1, p] dans E.

Remarque. On remarquera que l'**ordre** des éléments compte dans une liste. (a, b, c) et (c, b, a) ne désignent pas la même liste.

Exemple 2.1

- Le résultat d'un lancer de 3 dés à 6 faces forme une 3-liste de [1, 6].
- Le tirage successif et **avec remise** de 4 cartes dans un paquets de 52 cartes forme une 4-liste de l'ensemble des 52 cartes.

Proposition 2.1 Nombre de listes

Soient p et n des entiers naturels. Le nombre de p-listes d'un ensemble de cardinal n est n^p .

Exemple 2.2

Le nombre de digicodes formés de 4 chiffres suivis de deux lettres est $10^4 \times 26^2 = 6760000$.

2.2 Arrangements

Définition 2.2 Arrangement

Soient E un ensemble fini et $p \in \mathbb{N}$. On appelle *p*-arrangement d'éléments de E tout *p*-uplet d'éléments de E **deux à deux distincts**.

Remarque. Un *p*-arrangement est également une injection de [1, p] dans E.

Remarque. On remarquera que l'**ordre** des éléments compte dans un arrangement. (a, b, c) et (c, b, a) ne désignent pas le même arrangement.

Exemple 2.3

- Un tiercé d'une course de 15 chevaux forme un 3-arrangement de l'ensemble des 15 chevaux.
- Un tirage sans remise de 4 cartes dans un jeu de 32 cartes pour lequel l'ordre compte forme un 4-arrangement de 1'ensemble des 32 cartes.

Proposition 2.2 Nombre d'injections

Soient E et F des ensembles finis de cardinaux respectifs p et n. Le nombre d'injections de E dans F est $\frac{n!}{(n-p)!}$ si $p \le n$ et 0 sinon.

Corollaire 2.1 Nombre d'arrangements

Soient p et n des entiers naturels. Le nombre de p-arrangements d'un ensemble de cardinal n est $\frac{n!}{(n-p)!}$ si $p \le n$ et 0 sinon.

Exemple 2.4

Le nombre de tiercés possibles dans une course de 15 chevaux est $\frac{15!}{(15-3)!} = 15 \times 14 \times 13 = 2730$.

Rappel Permutation

On appelle **permutation** d'un ensemble E toute bijection de E sur lui-même.

Corollaire 2.2 Nombre de permutations

Le nombre de permutations d'un ensemble de cardinal *n* est *n*!.

2.3 **Combinaisons**

Définition 2.3 Combinaison

Soient E un ensemble fini et $p \in \mathbb{N}$. On appelle *p*-combinaison d'éléments de E toute partie de E de cardinal *p*.

Remarque. On remarquera que l'ordre des éléments ne compte pas dans une combinaison. $\{a,b,c\}$ et $\{c,b,a\}$ désignent la même combinaison.

Exemple 2.5

- Une main de 5 cartes d'un jeu de 52 cartes forme une 5-combinaison de l'ensemble des 52 cartes.
- Un trinôme d'une classe forme une 3-combinaison de l'ensemble des élèves de la classe.

Notation 2.1 Coefficient binomial

Soit $(p, n) \in \mathbb{Z} \times \mathbb{N}$. On note $\binom{n}{p}$ le nombre de *p*-combinaisons (ou de parties à *p* éléments) d'un ensemble de cardinal *n*.

Si on note $A_{p,n}$ l'ensemble des p-arrangements et $C_{p,n}$ l'ensemble des p-combinaisons d'un même ensemble de cardinal n, le lemme des bergers appliqué à l'application $\begin{cases} A_{p,n} & \longrightarrow & C_{p,n} \\ (x_1,\dots,x_p) & \longmapsto & \{x_1,\dots,x_p\} \end{cases}$ fournit le résultat suivant.

Proposition 2.3 Nombre de combinaisons

Soit $(p, n) \in \mathbb{Z} \times \mathbb{N}$. Alors

$$\binom{n}{p} = \begin{cases} \frac{n!}{p!(n-p)!} & \text{si } 0 \le p \le n\\ 0 & \text{sinon} \end{cases}$$

Exemple 2.6

Le nombre de mains de 5 cartes prises dans un jeu de 52 cartes est $\binom{52}{5} = \frac{52 \times 51 \times 50 \times 49 \times 48}{5 \times 4 \times 3 \times 2 \times 1} = 2598960$.

2.4 Preuves combinatoires de relations entre coefficients binomiaux

Si E est un ensemble de cardinal n et $k \in \mathbb{N}$, on note $\mathcal{P}_k(E)$ l'ensemble des parties de E de cardinal n.

Symétrie des coefficients binomiaux

Soient E un ensemble de cardinal n et $k \in \mathbb{N}$ tel que $0 \le k \le n$. L'application $\begin{cases} \mathcal{P}(E) & \longrightarrow & \mathcal{P}(E) \\ X & \longmapsto & \overline{X} \end{cases}$ est une involution induisant une bijection de $\mathcal{P}_k(E)$ sur $\mathcal{P}_{n-k}(E)$. On en déduit que $\binom{n}{k} = \binom{n}{n-k}$.

Relation du triangle de Pascal

Soient E un ensemble de cardinal n+1, x un élément fixé de E et $k \in \mathbb{N}$ tel que $0 \le k \le n$. On note

$$\mathcal{A} = \{ \mathbf{F} \in \mathcal{P}_{k+1}(\mathbf{E}), \ x \in \mathbf{F} \} \qquad \text{et} \qquad \mathcal{B} = \{ \mathbf{F} \in \mathcal{P}_{k+1}(\mathbf{E}), \ x \not\in \mathbf{F} \}$$

 \mathcal{A} et \mathcal{B} forment clairement une partition de $\mathcal{P}_{k+1}(E)$ de sorte que

$$\binom{n+1}{k+1} = \operatorname{card} \mathcal{A} + \operatorname{card} \mathcal{B}$$

Raisonnement élémentaire

Choisir un élément de \mathcal{A} consiste à choisir une partie de $\mathbb{E}\setminus\{x\}$ de cardinal k et à lui ajouter x. Comme card $(\mathbb{E}\setminus\{x\}) = n$, il y a $\binom{n}{k}$ façons de le faire. Ainsi card $\mathcal{A} = \binom{n}{k}$.

Choisir un élément de \mathcal{B} consiste à choisir une partie de $\mathbb{E}\setminus\{x\}$ de cardinal k+1. Comme card $(\mathbb{E}\setminus\{x\})=n$, il y a $\binom{n}{k+1}$ façons de le faire. Ainsi card $\mathcal{B}=\binom{n}{k+1}$.

On en déduit que
$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$
.

Raisonnement rigoureux

L'application $\begin{cases} \mathcal{R}_k(E \setminus \{x\}) & \longrightarrow & \mathcal{A} \\ F & \longmapsto & F \sqcup \{x\} \end{cases}$ est bijective de sorte que

$$\operatorname{card} \mathcal{P}_k(E \setminus \{x\}) = \operatorname{card} \mathcal{A}$$

ou encore card $\mathcal{A} = \binom{n}{k}$. L'application $\left\{ \begin{array}{ccc} \mathcal{R}_{k+1}(\mathbb{E} \setminus \{x\}) & \longrightarrow & \mathcal{B} \\ \mathbb{F} & \longmapsto & \mathbb{F} \end{array} \right.$ est bijective de sorte que

$$\operatorname{card} \mathcal{P}_{k+1}(E \setminus \{x\}) = \operatorname{card} B$$

ou encore card
$$\mathcal{B} = \binom{n}{k+1}$$
.
Finalement, $\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$.

Cardinal de l'ensemble des parties d'un ensemble fini –

Soit E un ensemble de cardinal n. Les $\mathcal{P}_k(E)$ pour $k \in [0, n]$ forment une partition de $\mathcal{P}(E)$. On en déduit que

$$\operatorname{card} \mathcal{P}(\mathbf{E}) = \sum_{k=0}^{n} \operatorname{card} \mathcal{P}_k(\mathbf{E})$$

Autrement dit

$$2^n = \sum_{k=0}^n \binom{n}{k}$$

C'est la formule du binôme de Newton appliqué à $(1+1)^n$.

- Preuve de l'identité $k\binom{k}{n} = n\binom{n-1}{k-1}$

Soient E un ensemble de cardinal $n \ge 1$ et $k \in \mathbb{N}$ tel que $1 \le k \le n$. On considère l'ensemble

$$\mathcal{A} = \{(x, F), x \in F, F \in \mathcal{P}_k(E)\}\$$

L'idée consiste à déterminer le cardinal de \mathcal{A} de deux manières différentes.

Raisonnement élémentaire

Choisir un élément (x, F) de \mathcal{A} peut se faire de la manière suivante :

- on choisit un élément x de E (n choix possibles);
- puis on choisit partie F' de cardinal k-1 de E\{x\}($\binom{n-1}{k-1}$) choix possibles) et on pose F = F' \(\preceq \xi\)\}.

Ainsi card $\mathcal{A} = n\binom{n-1}{k-1}$.

Mais choisir un élément (x, F) de \mathcal{A} peut également se faire de la manière suivante :

- on choisit une partie F de cardinal k de $E(\binom{n}{k})$ choix possibles);
- puis on choisit un élément x de F (k choix possibles).

Ainsi card $\mathcal{A} = k \binom{n}{k}$.

Raisonnement rigoureux

Pour $x \in E$, notons $\mathcal{B}_x = \{(x, F), x \in F, F \in \mathcal{P}_k(E)\}$. Les \mathcal{B}_x pour $x \in E$ forment une partition de \mathcal{A} . Ainsi

$$\operatorname{card} \mathcal{A} = \sum_{x \in \mathcal{E}} \operatorname{card} \mathcal{B}_x$$

Or pour tout $x \in E$, l'application $\begin{cases} \mathcal{P}_{k-1}(E \setminus \{x\}) & \longrightarrow & \mathcal{B}_x \\ F & \longmapsto & (x, F \sqcup \{x\}) \end{cases}$ est bijective de sorte que

$$\operatorname{card} \mathcal{P}_{k-1}(E \setminus \{x\}) = \operatorname{card} \mathcal{B}_x$$

ou encore card $\mathcal{B}_x = \binom{n-1}{k-1}$. On en déduit que card $\mathcal{A} = n\binom{n-1}{k-1}$. Pour $F \in \mathcal{P}_k(E)$, posons $\mathcal{C}_F = \{(x, F), \ x \in F\}$. Les \mathcal{C}_F pour $F \in \mathcal{P}_k(E)$ forment une partition de \mathcal{A} . Ainsi

$$\operatorname{card} \mathcal{A} = \sum_{F \in \mathcal{T}_k(E)} \operatorname{card} \mathcal{C}_F$$

Or pour tout $F \in \mathcal{P}_k(E)$, l'application $\begin{cases} F & \longrightarrow & \mathcal{C}_F \\ x & \longmapsto & (x, F) \end{cases}$ est bijective de sorte que

$$\operatorname{card} F = \operatorname{card} \mathcal{C}_{F}$$

ou encore card $\mathcal{C}_{\mathrm{F}} = k$. On en déduit que card $\mathcal{A} = k \binom{n}{k}$.

Exercice 2.1

Donner une preuve combinatoire de l'identité $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}$.