Universidad de Costa Rica

Facultad de Ingeniería Escuela de Ingeniería Eléctrica IE0308 – Laboratorio de Microcontroladores I ciclo 2023

Informe Proyecto Final

Arduino IoT: Alimentador de mascotas automático con ESP32-CAM

Autores:

Jose Carlos Gonzalez Cordero B83403 Jose Mario Gonzalez Abarca B83362

Profesor: MSc. Marco Villalta Fallas

Índice

1.	Introducción	1
2.	Nota Teórica	2
	2.1. Perifericos	3
	2.1.1. Registros	
	2.2. Diseño de circuito	
	2.3. Lista de componentes y precios	6
	2.4. Conceptos/Temas del Laboratorio	
3.	Desarrollo y Analisis de Resultados	8
4.	Conclusiones y Recomendaciones	10
	4.1. Conclusiones	10
	4.2. Recomendaciones	10
5.	Anexos	12
	5.1. Imagenes	12
	5.2. ESP32-CAM datasheet	
	5.3. Convertor Usb-TTL datasheet	83
	5.4. Sensor Ultrasónico HC-SR04 datasheet	
	5.5. ESP32-CAM datasheet	
	5.6. Micro Servo SG90 datasheet	

Índice de figuras

1.	Diagrama de bloques del MCU del Esp32 [1]	3
2.	Diagrama de pines de la placa Esp32 [1]	3
3.	Diagrama de pines de la placa Esp32-CAM [2]	4
4.	Circuito para el Servo motor[3]	5
5.	Diagrama de la etapa de integración del sensor ultrasónico[3]	5
6.	Diagrama de la etapa de transición al ESP32-CAM [4]	6
7.	Servo motor	.2
8	Alimentador 1	5

1. Introducción

El presente informe tiene como objetivo presentar el proyecto del alimentador automático de mascotas, una solución innovadora diseñada para brindar comodidad y cuidado a nuestros amigos peludos. En este informe, se resumen las principales características del proyecto, las decisiones de diseño clave, los resultados obtenidos y las conclusiones importantes.

El proyecto del alimentador automático de mascotas surge de la necesidad de garantizar una alimentación adecuada para las mascotas, incluso en ausencia de sus dueños. Con este objetivo en mente, se ha desarrollado un sistema que permite la dispensación controlada de comida en momentos programados, asegurando así una dieta balanceada y oportuna para nuestras mascotas.

En cuanto a las decisiones de diseño, se ha optado por utilizar un servo motor como mecanismo de activación para la dispensación de comida. Este componente ofrece precisión y control, asegurando que las porciones de comida sean adecuadas. Además, se ha integrado un sensor ultrasónico para medir el nivel de comida en el recipiente, lo que permite a los dueños monitorear y mantener un suministro adecuado en todo momento.

Durante el desarrollo del proyecto, se han llevado a cabo pruebas exhaustivas para evaluar la precisión y confiabilidad del alimentador automático. Los resultados obtenidos han demostrado un alto grado de precisión en la dispensación de comida, asegurando porciones consistentes y adecuadas para las mascotas. Asimismo, se ha comprobado la durabilidad y estabilidad del sistema en condiciones de uso cotidiano.

A través de este proyecto, hemos logrado proporcionar a los dueños de mascotas una solución confiable y conveniente para el cuidado alimenticio de sus compañeros de cuatro patas. La implementación de este alimentador automático ofrece beneficios significativos, como la tranquilidad de saber que nuestras mascotas reciben la cantidad adecuada de comida incluso en nuestra ausencia.

En general, el proyecto del alimentador automático de mascotas ha demostrado ser una solución efectiva y práctica para asegurar la alimentación adecuada de nuestras mascotas. La combinación de un diseño cuidadoso, tecnología precisa y pruebas rigurosas ha permitido obtener resultados satisfactorios y prometedores. Este proyecto sienta las bases para futuras mejoras y desarrollos en el campo del cuidado automatizado de mascotas, brindando una mayor comodidad y bienestar a nuestras queridas compañeras de vida.

A lo largo de este informe, se detallarán los aspectos relevantes del proyecto, los procesos de diseño y desarrollo, así como los resultados obtenidos. Además, se presentarán las conclusiones clave y se propondrán recomendaciones para futuras mejoras. Este proyecto representa un paso adelante en el cuidado de nuestras mascotas y abre las puertas a nuevas posibilidades en el campo de la automatización de tareas cotidianas.

2. Nota Teórica

El ESP32 es un microcontrolador de bajo costo y alto rendimiento que pertenece a la familia de microcontroladores ESP8266 desarrollados por Espressif Systems. Este MCU es ampliamente utilizado en proyectos de Internet de las cosas (IoT) debido a su capacidad de conectividad Wi-Fi y Bluetooth, así como a su potencia de procesamiento. [5]

El ESP32-CAM es una variante del ESP32 que se centra específicamente en aplicaciones de cámara. Está diseñado para capturar imágenes y transmitirlas a través de una red, lo que lo convierte en una opción ideal para proyectos de videovigilancia, monitoreo remoto y otras aplicaciones relacionadas con la imagen. [5] A continuación, se muestra la información general sobre el ESP32 y el ESP32-CAM:

■ ESP32:[1]

- Es un microcontrolador de 32 bits basado en la arquitectura Xtensa LX6 de dos núcleos.
- Ofrece una velocidad de reloj de hasta 240 MHz y capacidades de procesamiento y almacenamiento significativas.
- Integra Wi-Fi y Bluetooth, lo que lo hace ideal para aplicaciones de Internet de las cosas (IoT) y comunicación inalámbrica.
- Cuenta con una amplia gama de periféricos, como GPIO, UART, SPI, I2C, ADC, DAC, PWM, entre otros, que permiten la conexión y control de varios dispositivos externos.
- Dispone de múltiples interfaces de memoria, incluyendo SRAM, Flash y PSRAM, que ofrecen capacidades de almacenamiento flexibles.
- Es compatible con diferentes entornos de desarrollo, como el Arduino IDE, MicroPython, y el Espressif IoT Development Framework (ESP-IDF), lo que facilita la programación y el desarrollo de proyectos.
- Es ampliamente utilizado en aplicaciones como automatización del hogar, monitoreo y control remoto, sistemas de seguridad, dispositivos portátiles, entre otros. [2]

■ ESP32-CAM:[2]

- Es una variante del ESP32 que se enfoca específicamente en aplicaciones de cámara y video.
- Además de las características del ESP32, el ESP32-CAM incluye una cámara OV2640 de 2 megapíxeles.
- Permite capturar imágenes fijas y grabar video en formato JPEG o MJPEG.
- Proporciona interfaces para la conexión de pantallas LCD, tarjetas SD y otros dispositivos externos.
- Es compatible con la biblioteca ESP32 Camera, que simplifica la captura y el procesamiento de imágenes y video.
- Se utiliza en proyectos relacionados con videovigilancia, reconocimiento facial, captura de imágenes en tiempo real, entre otros.

Es importante tener en cuenta que tanto el ESP32 como el ESP32-CAM tienen una amplia documentación en línea, incluyendo hojas de datos, guías de inicio rápido y ejemplos de proyectos, que te pueden ayudar a comprender mejor sus características y utilizarlos de manera efectiva en tus proyectos.

Mas detalladamente para el MCU se puede observar el diagrama de bloques del Microcontrolador para observar los diferentes componentes y herramientas incorporadas en el MC a detalle, en la siguiente figura se muestra el diagrama bloques para un microcontrolador general de la arquitectura del nRF52840 de Nordic Semiconductor, que contiene la placa Arduino Nano BLE 33 Sense Lite :

Figura 1: Diagrama de bloques del MCU del Esp32 [1]

2.1. Perifericos

Tanto el ESP32 como el ESP32-CAM vienen equipados con una variedad de periféricos que les permiten interactuar con el entorno y realizar diversas funciones. Algunos de los periféricos comunes incluyen GPIO (puertos de entrada/salida de propósito general), UART (puertos de comunicación serial), I2C (interfaz de comunicación de dos hilos), SPI (interfaz de comunicación en serie), ADC (convertidores analógico-digitales) y DAC (convertidores digital-analógicos).[1] A continuación, se proporciona en la siguientes figuras los pines y perifericos de la Placa Esp32 y el Esp32-CAM:

Figura 2: Diagrama de pines de la placa Esp32 [1]

Figura 3: Diagrama de pines de la placa Esp32-CAM [2]

Estos periféricos proporcionan flexibilidad y capacidades de comunicación para el desarrollo de proyectos. Los perifericos externos a la utilizados en el proyecto fueron:

- Servo motor: El periférico del servo motor se utiliza para controlar el movimiento del mismo. Se realiza la vinculación del servo motor al pin correspondiente (servoPin) utilizando la biblioteca . ESP32Servo". A través de la función myservo.write(), se controla la posición del servo motor para dispensar la comida de manera controlada.
- Sensor ultrasónico: El periférico del sensor ultrasónico se utiliza para medir la distancia y, en este caso, calcular el nivel de comida en el recipiente. Se utiliza el pin triggerPin(13) para emitir el sonido ultrasónico y el pin pinEco(15) para recibir el eco. La función readUltrasonicDistance() se encarga de realizar la medición y devolver el valor de distancia en centímetros.

Es importante tener en cuenta que el uso de periféricos y registros puede variar según la biblioteca y las funciones específicas que se utilicen en el proyect0

2.1.1. Registros

En el código realizado no se hacen referencias directas a registros específicos. Sin embargo, es importante mencionar que en los microcontroladores, incluido el ESP32, los periféricos suelen ser controlados a través de registros específicos para configurar su funcionamiento, establecer valores, habilitar interrupciones, entre otros. En el código, es posible que se acceda y se manipule directamente registros internos del ESP32 relacionados con los periféricos utilizados, como el registro de control del servo motor y los registros de control del sensor ultrasónico. Sin embargo, estos detalles específicos de registro no están expuestos directamente en el código proporcionado.

2.2. Diseño de circuito

El diseño del circuito para el proyecto se basa en la utilización de los MCU ESP32 y ESP32-CAM, un sensor ultrasónico y un servo motor. A continuación, se describen las etapas del diseño y la integración de los componentes:

• Etapa inicial: En esta etapa, se probó el control del servo motor utilizando un bot de Telegram con el micro conectado a Internet. Se estableció una comunicación entre el bot y el ESP32 primeramente para enviar comandos de control al servo motor.

Figura 4: Circuito para el Servo motor[3]

• Etapa de integración del sensor ultrasónico: Se procedió a integrar el sensor ultrasónico en una protoboard para probar su funcionamiento. Se conectó el pin 13 del ESP32-CAM al pin de disparo (trigger) del sensor ultrasónico y el pin 15 del ESP32-CAM al pin de eco (echo) del sensor ultrasónico. A cpntinuación se muestra un diagrama de la etapa de integración del sensor ultrasónico.

Figura 5: Diagrama de la etapa de integración del sensor ultrasónico[3]

• Etapa de transición al ESP32-CAM:

En esta etapa, se realizó la transición al uso del ESP32-CAM en lugar del ESP32. Para las conexiones, en el pin 13 del ESP32-CAM para el trigger del sensor ultrasónico y el pin 15 del ESP32-CAM para el echo del sensor ultrasónico. Además, se conectó el pin 12 del ESP32-CAM al servo motor. Para esto además se requirío de un componente extra para la

comunicación serial y flashear el programa, en la memoria se utilizó un convertidor USB to TTL por comunicación UART, A continuación, se muestra un diagrama de conexión adecuada del dispositivo, es importante mencionar que se realiza un puente entre el pin 0 y la GND para utilizar el botón como un hard reset y cargar de nuevo el código, mientras que quitando esto se hacía un simple reset para el MCU.

Figura 6: Diagrama de la etapa de transición al ESP32-CAM [4]

Este diseño permite controlar el servo motor a través del ESP32-CAM y recibir mediciones de distancia del sensor ultrasónico. Los diagramas ilustrativos de cada etapa proporcionarán una visualización clara de la conexión de los componentes y su integración en el circuito del proyecto

2.3. Lista de componentes y precios

A continuación se muestra una lista de los componentes utilizados en el laboratorio y un precio estimado por unidad,

- ESP32 CAM \$15.95
- MicroSD \$9.95
- FT232RL USB TO TTL 5V 3.3V Convertor \$9.95
- TowerPro SG-92R Micro Servo \$4.95
- HC-SR05 Ultrasonic Distance Sensor \$4.49
- Jumpers \$3.99

Lista de precios estimada con el proveedor CrCibernetica, empresa especializada en la venta de componentes electrónicos en línea y uno de los distribuidores más grandes y reconocidos a nivel nacional.

2.4. Conceptos/Temas del Laboratorio

En el proyecto se abordaron algunos temas que se salen del temario del curso sin embargo se encuentran dentro de la temática del mismo, a continuación se detallan algunas definiciones sobre los temas, componentes y conceptos más importes del proyecto:

Bot de Telegram: Un bot de Telegram es una aplicación programada para interactuar con los usuarios a través de la plataforma de mensajería Telegram. En este proyecto, se utiliza un bot de Telegram como interfaz de usuario para controlar y configurar el alimentador de mascotas.

Sensor Ultrasónico:

El sensor ultrasónico se utiliza para medir la distancia entre el alimentador de mascotas y el plato de comida. Emite pulsos ultrasónicos y mide el tiempo que tarda en recibir el eco reflejado por el plato. Esta información permite determinar si el plato está vacío o si aún hay comida, lo que ayuda a controlar el suministro de alimento de manera automatizada.

■ Cámara:

La cámara, en este caso, integrada en el ESP32-CAM, permite capturar imágenes de la mascota durante la alimentación. Esto brinda la posibilidad de monitorear y registrar el comportamiento de la mascota y asegurarse de que está recibiendo la cantidad adecuada de alimento.

• Funcionamiento general del sistema:

El sistema se controla mediante comandos enviados a través del bot de Telegram. Cuando se solicita alimentar a la mascota, el ESP32 activa el motor del alimentador, lo que permite dispensar la cantidad programada de alimento en el plato. Luego, el sensor ultrasónico verifica la presencia de comida en el plato, y si está vacío, envía una notificación al bot de Telegram. Además, la cámara captura imágenes en momentos clave, como la llegada de la mascota al plato o el final de la alimentación.

■ Integración de componentes:

El ESP32-CAM actúa como el cerebro del sistema, controlando tanto el motor del alimentador como la captura de video y la comunicación con el bot de Telegram. El sensor ultrasónico se conecta al ESP32-CAM para detectar la cantidad de comida en el contenedor, mientras que la cámara se utiliza para capturar video en una aplicación web.

3. Desarrollo y Analisis de Resultados

El análisis de los resultados obtenidos en este proyecto se ha centrado fundamentalmente en el análisis detallado y la verificación rigurosa de las funcionalidades de cada componente individual, así como en la evaluación exhaustiva del funcionamiento global del sistema una vez integrado. Tal como se destacó anteriormente, la metodología empleada para el desarrollo del proyecto consistió en implementar sistemáticamente cada una de las partes menores del sistema, o, alternativamente, en ir integrando los elementos necesarios para satisfacer los requerimientos previamente establecidos en la propuesta.

Inicialmente, se comenzó por el diseño de la estructura del bot de Telegram. Se logró establecer una comunicación satisfactoria con el microcontrolador y garantizar el uso efectivo de todos los botones disponibles. Tras este logro inicial, se enfocaron los esfuerzos en la implementación de la compuerta de salida del alimento, que funciona mediante el servomotor. El objetivo era que al recibir el comando /comida" del usuario, el servomotor se activara, moviendo en el rango de 90 a 100 grados para abrir la compuerta. De esta manera, el peso del alimento permitiría su dispensación. En el primer movimiento, la compuerta permanece abierta por el tiempo especificado en el código, que en este caso es de tres segundos. Luego, el servomotor realiza el movimiento de retorno con una magnitud aproximada de 100 grados. Una vez implementada esta etapa, se llevaron a cabo múltiples pruebas y ajustes hasta confirmar que el sistema funcionaba correctamente.

A continuación, se procedió a la implementación de un sistema de medición de la cantidad de alimento disponible en el contenedor, expresado como un porcentaje del volumen total del recipiente. Para este propósito, se utilizó un sensor ultrasónico. Se midió el volumen total del contenedor y se fijó ese valor en el software. Posteriormente, se realizaron los cálculos correspondientes utilizando la información obtenida por el sensor ultrasónico, la cual describe la distancia entre la superficie del alimento y el sensor. Una vez implementado, se instaló el sensor en la parte superior del recipiente y se realizaron pruebas exhaustivas, que, tras algunos ajustes, produjeron resultados satisfactorios. Este sistema se activa con el comando "/cantidad". En última instancia, otro aspecto fundamental del proyecto fue la incorporación de una cámara para monitorear a la mascota en tiempo real. Inicialmente, se comenzó el proyecto utilizando un microcontrolador ESP32, elegido principalmente por su facilidad para flashear firmware ya que el dispositivo inicial contaba con una cámara integrada pero no tenía entrada USB serial. Sin embargo, ante la necesidad de un sistema confiable que permitiera un monitoreo más cercano de la mascota, se decidió adoptar el diseño de hardware utilizando un conector USB a TTL.

Tras esta decisión, se desarrolló el software para la configuración y control de la cámara, optando por la funcionalidad de un servidor web. De esta manera, cuando el usuario envía el comando /camara.ªl bot, se inicia la configuración y ejecución de la comunicación entre el microcontrolador y la cámara, y en cuestión de segundos, se envía al usuario la dirección IP para comenzar a transmitir en vivo. Al principio, se encontraron algunos inconvenientes debido a la interferencia generada por el uso de otro servidor web específicamente para la cámara, lo que ocasionalmente perturbaba la transmisión. Sin embargo, mediante un proceso iterativo de depuración y optimización, se pudieron superar estos problemas técnicos para lograr una transmisión de vídeo estable y de alta calidad.

En resumen, cada componente del sistema fue implementado y probado de manera individual, siguiendo una metodología iterativa y modular. Los resultados obtenidos en cada fase de implementación se analizaron y verificaron exhaustivamente, lo que permitió realizar ajustes y optimizaciones necesarios para garantizar su correcto funcionamiento. El análisis detallado

de los resultados y las funcionalidades del sistema en su conjunto proporcionaron una valiosa información para mejorar la efectividad del proyecto y su capacidad para cumplir con los requisitos establecidos en la propuesta.

Esta metodología permitió el desarrollo de un sistema robusto y eficiente, que incluye varias características únicas como la dispensación controlada de alimentos, la medición de la cantidad de alimento disponible, y la capacidad de monitorizar en tiempo real a la mascota. Estas funcionalidades se combinan para proporcionar una solución integral para el cuidado de las mascotas, ofreciendo a los usuarios una herramienta fácil de usar y confiable, capaz de adaptarse a sus necesidades específicas y proporcionar una atención de alta calidad a sus mascotas. Sin embargo, es importante destacar que el camino para alcanzar estos resultados no estuvo exento de desafíos. Cada obstáculo fue una oportunidad de aprendizaje, permitiendo afinar habilidades de resolución de problemas y mejorar la comprensión de los sistemas integrados.

Los resultados de código obtenidos en el proyecto así como su desarrollo completo se encuentran en la carpeta del repositorio con del progreso del curso, creada en el sitio Github, en el folder /ProyectoFinal. Mientras específicamente el código implementado de arduino se encuentra en el archivo "Avance03.ino". A continuación se muestra un link con la dirección del repositorio:

https://github.com/JoseGussi/Laboratorio-de-Microcontroladores/tree/main/ProyectoFina Además como parte de todo el proceso de testing y validación del sistema, se tomó un video de muestra donde se da la ejecución de este y se muestra de forma mas detallada todas las funcionalidades. El mismo se encuentra en el siguiente link:

https://drive.google.com/drive/folders/1bkUStLCVFQyVQcyHTztHG4_IFHKQyUOW?usp=sharing

4. Conclusiones y Recomendaciones

4.1. Conclusiones

- El alimentador automático de mascotas con ESP32-CAM proporciona una solución efectiva y conveniente para garantizar la alimentación adecuada de las mascotas en ausencia de sus dueños, permitiendo el monitoreo remoto del nivel de comida a través de Telegram.
- La integración del servo motor y el sensor ultrasonico en el diseño del alimentador automático ha demostrado ser una elección acertada, permitiendo una dispensación precisa de comida y una medición precisa del nivel de comida en el recipiente.
- El streaming en tiempo real de la cámara del ESP32-CAM brinda a los dueños la tranquilidad de poder observar a sus mascotas en cualquier momento, fortaleciendo la conexión y asegurando su bienestar incluso en ausencia.
- Este proyecto ha permitido adquirir habilidades técnicas y de gestión de proyectos, y ha destacado la importancia del cuidado adecuado de las mascotas. Además, ha resaltado el valor de la colaboración en equipo y la innovación tecnológica para mejorar la calidad de vida de las mascotas y sus dueños.

4.2. Recomendaciones

- Mejora la precisión de la dispensación de comida, se deben de realizar ajustes en el sistema para garantizar una dispensación aún más precisa de la comida. Esto puede incluir la calibración del servo motor y la optimización de los algoritmos de control.
- Amplía la capacidad de almacenamiento de alimentos, considerando la posibilidad de aumentar la capacidad del recipiente de comida para asegurar un suministro adecuado durante períodos más largos. Esto mejorará la autonomía del alimentador automático.
- Implementa un sistema de alertas: Introduce un mecanismo de notificación o alerta, como mensajes de Telegram, para informar a los dueños cuando el nivel de comida esté bajo. Esto les permitirá tomar medidas para rellenar el recipiente a tiempo.
- Considerar la adición de funciones adicionales, explorando la posibilidad de agregar características adicionales, como la programación de horarios de alimentación o la personalización de las porciones de comida. Estas mejoras brindarán una mayor flexibilidad y adaptabilidad a las necesidades de las mascotas y sus dueños.

Referencias

- [1] Espressif Systems. Esp32 Series Datasheet, 2023.
- [2] Espressif Systems. Esp32-CAM Develoment Board, 2023.
- [3] Circuito.io. https://www.circuito.io/app?components=513,10190,360217. Accedido el 5 de julio de 2023.
- [4] lastminuteengineers. esp32: Getting started with esp32-cam. https://lastminuteengineers.com/getting-started-with-esp32-cam/. Accedido el 5 de julio de 2023.
- [5] Espressif Systems. ESP32 Espressif Systems. https://www.espressif.com/en/products/socs/esp32. Accedido el 5 de julio de 2023.

5. Anexos

5.1. Imagenes

Figura 7: Servo motor

Figura 8: Alimentador

5.2. ESP32-CAM datasheet

ESP32 Series

Datasheet

2.4 GHz Wi-Fi + Bluetooth® + Bluetooth LE SoC

Including:

ESP32-D0WD-V3

ESP32-D0WDR2-V3

ESP32-U4WDH

ESP32-S0WD - Not Recommended for New Designs (NRND)

ESP32-D0WD – Not Recommended for New Designs (NRND)

ESP32-D0WDQ6 – Not Recommended for New Designs (NRND)

ESP32-D0WDQ6-V3 - Not Recommended for New Designs (NRND)

Product Overview

ESP32 is a single 2.4 GHz Wi-Fi-and-Bluetooth combo chip designed with the TSMC low-power 40 nm technology. It is designed to achieve the best power and RF performance, showing robustness, versatility and reliability in a wide variety of applications and power scenarios.

The ESP32 series of chips includes ESP32-D0WD-V3, ESP32-D0WDR2-V3, ESP32-U4WDH, ESP32-S0WD (NRND), ESP32-D0WDQ6-V3 (NRND), ESP32-D0WDQ6 (NRND), among which,

- ESP32-S0WD (NRND), ESP32-D0WD (NRND), and ESP32-D0WDQ6 (NRND) are based on chip revision v1 or chip revision v1.1.
- ESP32-D0WD-V3, ESP32-D0WDR2-V3, ESP32-U4WDH, and ESP32-D0WDQ6-V3 (NRND) are based on chip revision v3.0 or chip revision v3.1.

For details on part numbers and ordering information, please refer to Section 1 ESP32 Series Comparison. For details on chip revisions, please refer to <u>ESP32 Chip Revision v3.0 User Guide</u> and <u>ESP32 Series SoC Errata</u>.

The functional block diagram of the SoC is shown below.

ESP32 Functional Block Diagram

Features

Wi-Fi

- 802.11b/g/n
- 802.11n (2.4 GHz), up to 150 Mbps
- WMM
- TX/RX A-MPDU, RX A-MSDU
- Immediate Block ACK
- Defragmentation
- Automatic Beacon monitoring (hardware TSF)
- 4 × virtual Wi-Fi interfaces
- Simultaneous support for Infrastructure Station, SoftAP, and Promiscuous modes
 Note that when ESP32 is in Station mode, performing a scan, the SoftAP channel will be changed.
- Antenna diversity

Bluetooth®

- Compliant with Bluetooth v4.2 BR/EDR and Bluetooth LE specifications
- Class-1, class-2 and class-3 transmitter without external power amplifier
- Enhanced Power Control
- +9 dBm transmitting power
- NZIF receiver with -94 dBm Bluetooth LE sensitivity
- Adaptive Frequency Hopping (AFH)
- Standard HCI based on SDIO/SPI/UART
- High-speed UART HCI, up to 4 Mbps
- Bluetooth 4.2 BR/EDR and Bluetooth LE dual mode controller
- Synchronous Connection-Oriented/Extended (SCO/eSCO)
- CVSD and SBC for audio codec
- Bluetooth Piconet and Scatternet
- Multi-connections in Classic Bluetooth and Bluetooth LE
- Simultaneous advertising and scanning

CPU and Memory

- Xtensa® single-/dual-core 32-bit LX6 microprocessor(s)
- CoreMark[®] score:
 - 1 core at 240 MHz: 504.85 CoreMark; 2.10 CoreMark/MHz

- 2 cores at 240 MHz: 994.26 CoreMark; 4.14 CoreMark/MHz
- 448 KB ROM
- 520 KB SRAM
- 16 KB SRAM in RTC
- QSPI supports multiple flash/SRAM chips

Clocks and Timers

- Internal 8 MHz oscillator with calibration
- Internal RC oscillator with calibration
- External 2 MHz ~ 60 MHz crystal oscillator (40 MHz only for Wi-Fi/Bluetooth functionality)
- External 32 kHz crystal oscillator for RTC with calibration
- Two timer groups, including 2 × 64-bit timers and 1 × main watchdog in each group
- One RTC timer
- RTC watchdog

Advanced Peripheral Interfaces

- 34 × programmable GPIOs
 - 5 strapping GPIOs
 - 6 input-only GPIOs
 - 6 GPIOs needed for in-package flash/PSRAM (ESP32-D0WDR2-V3, ESP32-U4WDH)
- 12-bit SAR ADC up to 18 channels
- 2 × 8-bit DAC
- 10 × touch sensors
- 4 × SPI
- 2 × I2S
- 2 × I2C
- 3 × UART
- 1 host (SD/eMMC/SDIO)
- 1 slave (SDIO/SPI)
- Ethernet MAC interface with dedicated DMA and IEEE 1588 support
- TWAI®, compatible with ISO 11898-1 (CAN Specification 2.0)
- RMT (TX/RX)
- Motor PWM
- LED PWM up to 16 channels

Power Management

- Fine-resolution power control through a selection of clock frequency, duty cycle, Wi-Fi operating modes, and individual power control of internal components
- Five power modes designed for typical scenarios: Active, Modem-sleep, Light-sleep, Deep-sleep, Hibernation
- ullet Power consumption in Deep-sleep mode is 10 μA
- Ultra-Low-Power (ULP) coprocessors
- RTC memory remains powered on in Deep-sleep mode

Security

- Secure boot
- Flash encryption
- 1024-bit OTP, up to 768-bit for customers
- Cryptographic hardware acceleration:
 - AES
 - Hash (SHA-2)
 - RSA
 - ECC
 - Random Number Generator (RNG)

Applications

With low power consumption, ESP32 is an ideal choice for IoT devices in the following areas:

- Smart Home
- Industrial Automation
- Health Care
- Consumer Electronics
- Smart Agriculture
- POS machines
- Service robot
- Audio Devices

- Generic Low-power IoT Sensor Hubs
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Speech Recognition
- Image Recognition
- SDIO Wi-Fi + Bluetooth Networking Card
- Touch and Proximity Sensing

Note:

Check the link or the QR code to make sure that you use the latest version of this document: https://www.espressif.com/documentation/esp32_datasheet_en.pdf

Contents

	oduct Overview	2
Feat		3
Appl	lications	5
1	ESP32 Series Comparison	11
1.1	Nomenclature	11
1.2	Comparison	11
2	Pins	12
2.1	Pin Layout	12
2.2	Pin Overview	14
	2.2.1 Restrictions for GPIOs and RTC_GPIOs	17
2.3	Power Supply	18
	2.3.1 Power Scheme	18
	2.3.2 Chip Power-up and Reset	18
2.4	Strapping Pins	20
2.5	Pin Mapping Between Chip and Flash/PSRAM	22
3	Functional Description	24
3.1	CPU and Memory	24
	3.1.1 CPU	24
	3.1.2 Internal Memory	24
	3.1.3 External Flash and RAM	25
	3.1.4 Address Mapping Structure	25
	3.1.5 Cache	27
3.2	System Clocks	27
	3.2.1 CPU Clock	27
	3.2.2 RTC Clock	27
	3.2.3 Audio PLL Clock	28
3.3	RTC and Low-power Management	29
	3.3.1 Power Management Unit (PMU)	29
	3.3.2 Ultra-Low-Power Coprocessor	30
3.4	Timers and Watchdogs	30
	3.4.1 General Purpose Timers	30
	3.4.2 Watchdog Timers	30
3.5	Cryptographic Hardware Accelerators	31

3.6	Radio	and Wi-Fi	31
	3.6.1	2.4 GHz Receiver	31
	3.6.2	2.4 GHz Transmitter	31
	3.6.3	Clock Generator	32
	3.6.4	Wi-Fi Radio and Baseband	32
	3.6.5	Wi-Fi MAC	32
3.7	Blueto	oth	33
	3.7.1	Bluetooth Radio and Baseband	33
	3.7.2	Bluetooth Interface	33
	3.7.3	Bluetooth Stack	33
	3.7.4	Bluetooth Link Controller	34
3.8	Digital	Peripherals	35
	3.8.1	General Purpose Input / Output Interface (GPIO)	35
	3.8.2	Serial Peripheral Interface (SPI)	35
	3.8.3	Universal Asynchronous Receiver Transmitter (UART)	35
	3.8.4	I2C Interface	35
	3.8.5	I2S Interface	36
	3.8.6	Remote Control Peripheral	36
	3.8.7	Pulse Counter	36
	3.8.8	LED PWM Controller	36
	3.8.9	Motor Control PWM	36
	3.8.10	SD/SDIO/MMC Host Controller	37
	3.8.11	SDIO/SPI Slave Controller	37
	3.8.12	TWAI® Controller	37
	3.8.13	Ethernet MAC Interface	38
3.9	Analog	g Peripherals	38
	3.9.1	Analog-to-Digital Converter (ADC)	38
	3.9.2	Digital-to-Analog Converter (DAC)	39
	3.9.3	Touch Sensor	39
3.10	Periph	eral Pin Configurations	41
4	Elec	ctrical Characteristics	46
4.1	Absolu	ute Maximum Ratings	46
4.2	Recom	nmended Power Supply Characteristics	46
4.3	DC Ch	naracteristics (3.3 V, 25 °C)	47
4.4	RF Cui	rrent Consumption in Active Mode	47
4.5	Reliabi	ility	48
4.6	Wi-Fi F	Radio	48
4.7	Blueto	oth Radio	49
	4.7.1	Receiver -Basic Data Rate	49
	4.7.2	Transmitter –Basic Data Rate	49
	4.7.3	Receiver – Enhanced Data Rate	50
	4.7.4	Transmitter –Enhanced Data Rate	50
4.8	Blueto	oth LE Radio	51
	4.8.1	Receiver	51
	482	Transmitter	52

5 Packaging	53
6 Related Documentation	and Resources 54
Appendix A –ESP32 Pin List	S 55
A.1. Notes on ESP32 Pin Lists	55
A.2. GPIO_Matrix	57
A.3. Ethernet_MAC	62
A.4. IO_MUX	62
Revision History	64

List of Tables

1-1	ESP32 Series Comparison	11
2-1	Pin Overview	14
2-2	Description of Timing Parameters for Power-up and Reset	19
2-3	Strapping Pins	20
2-4	Description of Timing Parameters for the Strapping Pins	21
2-5	Pin-to-Pin Mapping Between Chip and In-Package Flash/PSRAM	22
2-6	Pin-to-Pin Mapping Between Chip and Off-Package Flash/PSRAM	22
3-1	Memory and Peripheral Mapping	26
3-2	Power Consumption by Power Modes	29
3-3	ADC Characteristics	39
3-4	ADC Calibration Results	39
3-5	Capacitive-Sensing GPIOs Available on ESP32	40
3-6	Peripheral Pin Configurations	41
4-1	Absolute Maximum Ratings	46
4-2	Recommended Power Supply Characteristics	46
4-3	DC Characteristics (3.3 V, 25 °C)	47
4-4	Current Consumption Depending on RF Modes	47
4-5	Reliability Qualifications	48
4-6	Wi-Fi Radio Characteristics	48
4-7	Receiver Characteristics -Basic Data Rate	49
4-8	Transmitter Characteristics –Basic Data Rate	49
4-9	Receiver Characteristics – Enhanced Data Rate	50
4-10	Transmitter Characteristics –Enhanced Data Rate	50
4-11	Receiver Characteristics -Bluetooth LE	51
4-12	2 Transmitter Characteristics -Bluetooth LE	52
6-1	Notes on ESP32 Pin Lists	55
6-2	GPIO_Matrix	57
6-3	Ethernet MAC	62

List of Figures

1-1	ESP32 Series Nomenclature	11
2-1	ESP32 Pin Layout (QFN 6*6, Top View)	12
2-2	ESP32 Pin Layout (QFN 5*5, Top View)	13
2-3	ESP32 Power Scheme	18
2-4	Visualization of Timing Parameters for Power-up and Reset	19
2-5	Visualization of Timing Parameters for the Strapping Pins	21
3-1	Address Mapping Structure	25
5-1	QFN48 (6x6 mm) Package	53
5-2	QFN48 (5x5 mm) Package	53

1 ESP32 Series Comparison

1.1 Nomenclature

Figure 1-1. ESP32 Series Nomenclature

1.2 Comparison

Table 1-1. ESP32 Series Comparison

			In-Package		VDD_SDIO
Ordering code ¹	Core	Chip Revision ²	Flash/PSRAM	Package	Voltage
ESP32-D0WD-V3	Dual core	v3.0/v3.1 ⁴	_	QFN 5*5	1.8 V/3.3 V
ESP32-D0WDR2-V3	Dual core	v3.0/v3.1 ⁴	2 MB PSRAM	QFN 5*5	3.3 V
ESP32-U4WDH	Dual core ³	v3.0/v3.1 ⁴	4 MB flash (80 MHz)	QFN 5*5	3.3 V
ESP32-D0WDQ6-V3 (NRND)	Dual core	v3.0/v3.1 ⁴	_	QFN 6*6	1.8 V/3.3 V
ESP32-D0WD (NRND)	Dual core	v1.0/v1.1 ⁵	_	QFN 5*5	1.8 V/3.3 V
ESP32-D0WDQ6 (NRND)	Dual core	v1.0/v1.1 ⁵	_	QFN 6*6	1.8 V/3.3 V
ESP32-SOWD (NRND)	Single core	v1.0/v1.1 ⁵	_	QFN 5*5	1.8 V/3.3 V

¹ All above chips support Wi-Fi b/g/n + Bluetooth/Bluetooth LE Dual Mode connection. For details on chip marking and packing, see Section 5 Packaging.

² The differences between ESP32 chip revisions and the way to distinguish the revisions used in each chip are described in *ESP32 Series SoC Errata*.

³ ESP32-U4WDH will be produced as dual-core instead of single core. See PCN-2021-021 for more details.

⁴ The chips will be produced with chip revision v3.1 inside. See PCN20220901 for more details.

⁵ The chips will be produced with chip revision v1.1 inside. See PCN20220901 for more details.

2 Pins

2.1 Pin Layout

Figure 2-1. ESP32 Pin Layout (QFN 6*6, Top View)

Figure 2-2. ESP32 Pin Layout (QFN 5*5, Top View)

2.2 Pin Overview

Table 2-1. Pin Overview

2 Pins

Name	No.	Туре	Function								
						Analog					
VDDA	1	Р	Analog po	ower supply (2.3	3 V ∼ 3.6 V)						
LNA_IN	2	I/O	RF input a	and output							
VDD3P3	3	Р	Analog po	ower supply (2.3	3 V ∼ 3.6 V)						
VDD3P3	4	Р	Analog po	ower supply (2.3	3 V ∼ 3.6 V)						
					VDI	D3P3_RTC					
SENSOR_VP	5	I	GPIO36,	ADC1_CH0,	RTC_GPIO0						
SENSOR_CAPP	6	I	GPIO37,	ADC1_CH1,	RTC_GPIO1						
SENSOR_CAPN	7	I	GPIO38,	ADC1_CH2,	RTC_GPIO2						
SENSOR_VN	8	I	GPIO39,	ADC1_CH3,	RTC_GPIO3						
			High: On:	ligh: On; enables the chip							
CHIP_PU	9	I	Low: Off;	w: Off; the chip shuts down							
			Note: Do	e: Do not leave the CHIP_PU pin floating.							
VDET_1	10	- 1	GPIO34,	ADC1_CH6,	RTC_GPIO4						
VDET_2	11	I	GPIO35,	ADC1_CH7,	RTC_GPIO5						
32K_XP	12	I/O	GPIO32,	ADC1_CH4,	RTC_GPIO9,	TOUCH9,	32K_XP (32.768	kHz crystal	oscillator input)	
32K_XN	13	I/O	GPIO33,	ADC1_CH5,	RTC_GPIO8,	TOUCH8,	32K_XN (32.768	3 kHz crystal	oscillator outpu	ut)	
GPIO25	14	I/O	GPIO25,	ADC2_CH8,	RTC_GPIO6,	DAC_1,	EMAC_RXD0				
GPIO26	15	I/O	GPIO26,	ADC2_CH9,	RTC_GPIO7,	DAC_2,	EMAC_RXD1				
GPIO27	16	I/O	GPI027,	ADC2_CH7,	RTC_GPIO17,	TOUCH7,	EMAC_RX_DV				
MTMS	17	I/O	GPIO14,	ADC2_CH6,	RTC_GPIO16,	TOUCH6,	EMAC_TXD2,	HSPICLK,	HS2_CLK,	SD_CLK,	MTMS
MTDI	18	I/O	GPIO12,	ADC2_CH5,	RTC_GPIO15,	TOUCH5,	EMAC_TXD3,	HSPIQ,	HS2_DATA2,	SD_DATA2,	MTDI
VDD3P3_RTC	19	Р	Input pov	ver supply for R	TC IO (2.3 V \sim 3	.6 V)					
MTCK	20	I/O	GPIO13,	ADC2_CH4,	RTC_GPIO14,	TOUCH4,	EMAC_RX_ER,	HSPID,	HS2_DATA3,	SD_DATA3,	MTCK
MTDO	21	I/O	GPIO15,	ADC2_CH3,	RTC_GPIO13,	TOUCH3,	EMAC_RXD3,	HSPICS0,	HS2_CMD,	SD_CMD,	MTDO

Espressif Systems

Name	No.	Туре	Function							
GPIO2	22	I/O	GPIO2,	ADC2_CH2,	RTC_GPIO12,	TOUCH2,		HSPIWP,	HS2_DATA0,	SD_DATA0
GPIO0	23	1/0	GPIO0,	ADC2_CH1,	RTC_GPIO11,	TOUCH1,	EMAC_TX_CLK,	CLK_OUT1	,	
GPIO4	24	1/0	GPIO4,	ADC2_CH0,	RTC_GPIO10,	TOUCH0,	EMAC_TX_ER,	HSPIHD,	HS2_DATA1,	SD_DATA1
					VE	DD_SDIO				
GPIO16	25	I/O	GPIO16,	HS1_DATA4,	U2RXD,	EMAC_CLK_	OUT			
VDD_SDIO	26	Р		'''	3 V or the same					
GPIO17	27	I/O	GPIO17,	HS1_DATA5,	U2TXD,	EMAC_CLK_	OUT_180			
SD_DATA_2	28	I/O	GPIO9,	HS1_DATA2,	U1RXD,	SD_DATA2,	SPIHD			
SD_DATA_3	29	I/O	GPIO10,	HS1_DATA3,	U1TXD,	SD_DATA3,	SPIWP			
SD_CMD	30	/0	GPIO11,	HS1_CMD,	U1RTS,	SD_CMD,	SPICS0			
SD_CLK	31	1/0	GPIO6,	HS1_CLK,	U1CTS,	SD_CLK,	SPICLK			
SD_DATA_0	32	/0	GPIO7,	HS1_DATA0,	U2RTS,	SD_DATA0,	SPIQ			
SD_DATA_1	33	1/0	GPIO8,	HS1_DATA1,	U2CTS,	SD_DATA1,	SPID			
					VDD	3P3_CPU				
GPIO5	34	1/0	GPIO5,	HS1_DATA6,	VSPICS0,	EMAC_RX_C	LK			
GPIO18	35	1/0	GPIO18,	HS1_DATA7,	VSPICLK					
GPIO23	36	1/0	GPIO23,	HS1_STROBE	, VSPID					
VDD3P3_CPU	37	Р		117	PU IO (1.8 V \sim 3	.6 V)				
GPIO19	38	1/0	GPIO19,	U0CTS,	VSPIQ,	EMAC_TXD0	1			
GPIO22	39	1/0	GPIO22,	U0RTS,	VSPIWP,	EMAC_TXD1				
U0RXD	40	1/0	GPIO3,	U0RXD,	CLK_OUT2					
U0TXD	41	1/0	GPIO1,	U0TXD,	CLK_OUT3,	EMAC_RXD2)			
GPIO21	42	1/0	GPIO21,		VSPIHD,	EMAC_TX_E	N			
						Analog				
VDDA	43	Ρ	Analog po	ower supply (2.3	3 V ∼ 3.6 V)					
XTAL_N	44	0	External of	crystal output						
XTAL_P	45	I	External of	crystal input						
VDDA	46	Р	Analog po	ower supply (2.3	3 V ∼ 3.6 V)					
CAP2	47	I	Connects	to a 3.3 nF (10	%) capacitor and	l 20 kΩ resisto	r in parallel to CAF	71		

Espressif Systems

Name	No.	Type	Function
CAP1	48	1	Connects to a 10 nF series capacitor to ground
GND	49	Р	Ground

Regarding highlighted cells, see Section 2.2.1 Restrictions for GPIOs and RTC_GPIOs.

 $For a quick \ reference \ guide \ to \ using \ the \ IO_MUX, \ Ethernet \ MAC, \ and \ GPIO \ Matrix \ pins \ of \ ESP32, \ please \ refer \ to \ Appendix \ ESP32 \ Pin \ Lists.$

Restrictions for GPIOs and RTC_GPIOs 2.2.1

All IO pins of the ESP32 have GPIO and some have RTC_GPIO pin functions. However, these IO pins are multifunctional and can be configured for different purposes based on the requirements. Some IOs have restrictions for usage. It is essential to consider their multiplexed nature and the limitations when using these IO pins.

In Table 2-1 Pin Overview some pin functions are highlighted, specically:

- GPIO Input only pins, output is not supported due to lack of pull-up/pull-down resistors.
- GPIO allocated for communication with in-package flash/PSRAM and NOT recommended for other uses. For details, see Section 2.5 Pin Mapping Between Chip and Flash/PSRAM.
- GPIO have one of the following important functions:
 - Strapping pins need to be at certain logic levels at startup. See Section 2.4 Strapping Pins.
 - JTAG interface often used for debugging.
 - UART interface often used for debugging.

See also Appendix A.1 – Notes on ESP32 Pin Lists.

2.3 **Power Supply**

ESP32's digital pins are divided into three different power domains:

- VDD3P3_RTC
- VDD3P3_CPU
- VDD_SDIO

VDD3P3_RTC is also the input power supply for RTC and CPU.

VDD3P3_CPU is also the input power supply for CPU.

VDD_SDIO connects to the output of an internal LDO whose input is VDD3P3_RTC. When VDD_SDIO is connected to the same PCB net together with VDD3P3_RTC, the internal LDO is disabled automatically.

2.3.1 **Power Scheme**

The power scheme is shown in Figure 2-3 ESP32 Power Scheme.

Figure 2-3. ESP32 Power Scheme

The internal LDO can be configured as having 1.8 V, or the same voltage as VDD3P3_RTC. It can be powered off via software to minimize the current of flash/SRAM during the Deep-sleep mode.

2.3.2 Chip Power-up and Reset

Once the power is supplied to the chip, its power rails need a short time to stabilize. After that, CHIP_PU - the pin used for power-up and reset - is pulled high to activate the chip. For information on CHIP_PU as well as

power-up and reset timing, see Figure 2-4 and Table 2-2.

Figure 2-4. Visualization of Timing Parameters for Power-up and Reset

Table 2-2. Description of Timing Parameters for Power-up and Reset

Parameter	Description	Min (μs)		
+	Time reserved for the 3.3 V rails to stabilize before the CHIP_PU pin	50		
$ \ ^{\mathfrak{l}}STBL $	is pulled high to activate the chip			
+	Time reserved for CHIP_PU to stay below $V_{\mathit{IL_nRST}}$ to reset the	50		
I_{RST}	chip (see Table 4-3)	50		

- In scenarios where ESP32 is powered up and down repeatedly by switching the power rails, while there is a large capacitor on the VDD33 rail and CHIP_PU and VDD33 are connected, simply switching off the CHIP_PU power rail and immediately switching it back on may cause an incomplete power discharge cycle and failure to reset the chip adequately.
 - An additional discharge circuit may be required to accelerate the discharge of the large capacitor on rail VDD33, which will ensure proper power-on-reset when the ESP32 is powered up again.
- When a battery is used as the power supply for the ESP32 series of chips and modules, a supply voltage supervisor is recommended, so that a boot failure due to low voltage is avoided. Users are recommended to pull CHIP_PU low if the power supply for ESP32 is below 2.3 V.

Notes on power supply:

- The operating voltage of ESP32 ranges from 2.3 V to 3.6 V. When using a single-power supply, the recommended voltage of the power supply is 3.3 V, and its recommended output current is 500 mA or more.
- PSRAM and flash both are powered by VDD_SDIO. If the chip has an in-package flash, the voltage of VDD_SDIO is determined by the operating voltage of the in-package flash. If the chip also connects to an external PSRAM, the operating voltage of external PSRAM must match that of the in-package flash. This also applies if the chip has an in-package PSRAM but also connects to an external flash.
- When VDD_SDIO 1.8 V is used as the power supply for external flash/PSRAM, a 2 kΩ grounding resistor should be added to VDD_SDIO. For the circuit design, please refer to ESP32-WROVER Datasheet > Figure Schematics of ESP32-WROVER.
- When the three digital power supplies are used to drive peripherals, e.g., 3.3 V flash, they should comply with the peripherals' specifications.

2.4 **Strapping Pins**

There are five strapping pins:

- MTDI
- GPIO0
- GPIO2
- MTDO
- GPI05

Software can read the values of these five bits from register "GPIO_STRAPPING".

During the chip's system reset release (power-on-reset, RTC watchdog reset and brownout reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device's boot mode, the operating voltage of VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on the chip.

After reset release, the strapping pins work as normal-function pins.

Refer to Table 2-3 for a detailed boot-mode configuration by strapping pins.

Table 2-3. Strapping Pins

Voltage of Internal LDO (VDD_SDIO)							
Pin	Default	3.3	3 V	1.8 V			
MTDI	Pull-down	()	1			
Booting Mode							
Pin	Default	SPI Boot		Download Boot			
GPI00	Pull-up	-	1	0			
GPIO2	Pull-down	Don't-care		0			
Enabling/Disabling Debugging Log Print over U0TXD During Booting							
Pin	Default	U0TXD Active		U0TXD Silent			
MTDO	Pull-up	1		0			
Timing of SDIO Slave							
		FE Sampling	FE Sampling	RE Sampling	RE Sampling		
Pin	Default	FE Output	RE Output	FE Output	RE Output		
MTDO	Pull-up	0	0	1	1		
GPIO5	Pull-up	0	1	0	1		

Note:

- FE: falling-edge, RE: rising-edge.
- Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave", after booting.
- For ESP32 chips that contain an in-package flash or PSRAM, users need to note the logic level of MTDI. For example, ESP32-U4WDH contains an in-package flash that operates at 3.3 V, therefore, the MTDI should be low.

Regarding the timing requirements for the strapping pins, there are such parameters as setup time and hold time. For more information, see Table 2-4 and Figure 2-5.

Table 2-4. Description of Timing Parameters for the Strapping Pins

Parameter	Description	Min (ms)
+	Setup time is the time reserved for the power rails to stabilize before	
t_{SU}	the CHIP_PU pin is pulled high to activate the chip.	
	Hold time is the time reserved for the chip to read the strapping pin	
t_H	values after CHIP_PU is already high and before these pins start	
	operating as regular IO pins.	

Figure 2-5. Visualization of Timing Parameters for the Strapping Pins

Pin Mapping Between Chip and Flash/PSRAM 2.5

Table 2-5 lists the pin-to-pin mapping between the chip and the in-package flash/PSRAM. The chip pins listed here are not recommended for other usage.

For the data port connection between ESP32 and off-package flash/PSRAM please refer to Table 2-6.

Table 2-5. Pin-to-Pin Mapping Between Chip and In-Package Flash/PSRAM

ESP32-U4WDH	In-Package Flash (4 MB)
SD_DATA_1	IO0/DI
GPIO17	IO1/DO
SD_DATA_0	IO2/WP#
SD_CMD	IO3/HOLD#
SD_CLK	CLK
GPIO16	CS#
GND	VSS
VDD_SDIO ¹	VDD
ESP32-D0WDR2-V3	In-Package PSRAM (2 MB)
ESP32-D0WDR2-V3 SD_DATA_1	In-Package PSRAM (2 MB) SIO0/SI
SD_DATA_1	SIO0/SI
SD_DATA_1 SD_DATA_0	SIO0/SI SIO1/SO
SD_DATA_1 SD_DATA_0 SD_DATA_3	SIO0/SI SIO1/SO SIO2
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2	SIO0/SI SIO1/SO SIO2 SIO3
SD_DATA_1 SD_DATA_0 SD_DATA_3 SD_DATA_2 SD_CLK	SIO0/SI SIO1/SO SIO2 SIO3 SCLK

Table 2-6. Pin-to-Pin Mapping Between Chip and Off-Package Flash/PSRAM

Chip Pin	Off-Package Flash
SD_DATA_1/SPID	IO0/DI
SD_DATA_0/SPIQ	IO1/DO
SD_DATA_3/SPIWP	IO2/WP#
SD_DATA_2/SPIHD	IO3/HOLD#
SD_CLK	CLK
SD_CMD	CS#
GND	VSS
VDD_SDIO	VDD
Chip Pin	Off-Package PSRAM
SD_DATA_1	SIO0/SI
SD_DATA_0	SIO1/SO
SD_DATA_3	SIO2
SD_DATA_2	SIO3
SD_CLK/GPIO17 ³	SCLK

Cont'd on next page

Table 2-6 - cont'd from previous page

Chip Pin	Off-Package PSRAM
GPIO16 ²	CE#
GND	VSS
VDD_SDIO	VDD

Note:

- 1. As the in-package flash/PSRAM in ESP32-U4WDH/ESP32-D0WDR2-V3 operates at 3.3 V, VDD_SDIO must be powered by VDD3P3_RTC via a 6 Ω resistor. See Figure 2-3 ESP32 Power Scheme.
- 2. If GPIO16 is used to connect to PSRAM's CE# signal, please add a pull-up resistor at the GPIO16 pin. See <u>ESP32-WROVER-E Datasheet</u> > Figure Schematics of ESP32-WROVER-E.
- 3. SD_CLK and GPIO17 pins are available to connect to the SCLK signal of external PSRAM.
 - If SD_CLK pin is selected, one GPIO (i.e., GPIO17) will be saved. The saved GPIO can be used for other purposes. This connection has passed internal tests, but relevant certification has not been completed.
 - Or GPIO17 pin is used to connect to the SCLK signal. This connection has passed relevant certification, see certificates for ESP32-WROVER-E.

Please select the proper pin for your specific applications.

3 Functional Description

3.1 CPU and Memory

3.1.1 CPU

ESP32 contains one or two low-power Xtensa® 32-bit LX6 microprocessor(s) with the following features:

- 7-stage pipeline to support the clock frequency of up to 240 MHz (160 MHz for ESP32-S0WD (NRND))
- 16/24-bit Instruction Set provides high code-density
- Support for Floating Point Unit
- Support for DSP instructions, such as a 32-bit multiplier, a 32-bit divider, and a 40-bit MAC
- Support for 32 interrupt vectors from about 70 interrupt sources

The single-/dual-CPU interfaces include:

- Xtensa RAM/ROM Interface for instructions and data
- Xtensa Local Memory Interface for fast peripheral register access
- External and internal interrupt sources
- JTAG for debugging

For information about the Xtensa® Instruction Set Architecture, please refer to Xtensa® Instruction Set Architecture (ISA) Summary.

3.1.2 Internal Memory

ESP32's internal memory includes:

- 448 KB of ROM for booting and core functions
- 520 KB of on-chip SRAM for data and instructions
- 8 KB of SRAM in RTC, which is called RTC FAST Memory and can be used for data storage; it is accessed by the main CPU during RTC Boot from the Deep-sleep mode.
- 8 KB of SRAM in RTC, which is called RTC SLOW Memory and can be accessed by the ULP coprocessor during the Deep-sleep mode.
- 1 Kbit of eFuse: 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including flash-encryption and chip-ID.
- In-package flash or PSRAM

Note:

Products in the ESP32 series differ from each other, in terms of their support for in-package flash or PSRAM and the size of them. For details, please refer to Section 1 ESP32 Series Comparison.

3.1.3 External Flash and RAM

ESP32 supports multiple external QSPI flash and external RAM (SRAM) chips. More details can be found in <u>ESP32 Technical Reference Manual</u> > Chapter SPI Controller. ESP32 also supports hardware encryption/decryption based on AES to protect developers' programs and data in flash.

ESP32 can access the external QSPI flash and SRAM through high-speed caches.

- Up to 16 MB of external flash can be mapped into CPU instruction memory space and read-only memory space simultaneously.
 - When external flash is mapped into CPU instruction memory space, up to 11 MB + 248 KB can be mapped at a time. Note that if more than 3 MB + 248 KB are mapped, cache performance will be reduced due to speculative reads by the CPU.
 - When external flash is mapped into read-only data memory space, up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads are supported.
- External RAM can be mapped into CPU data memory space. SRAM up to 8 MB is supported and up to 4 MB can be mapped at a time. 8-bit, 16-bit and 32-bit reads and writes are supported.

Note:

After ESP32 is initialized, firmware can customize the mapping of external RAM or flash into the CPU address space.

3.1.4 Address Mapping Structure

The structure of address mapping is shown in Figure 3-1. The memory and peripheral mapping is shown in Table 3-1.

Figure 3-1. Address Mapping Structure

Table 3-1. Memory and Peripheral Mapping

Category	Target	Start Address	End Address	Size
	Internal ROM 0	0x4000_0000	0x4005_FFFF	384 KB
	Internal ROM 1	0x3FF9_0000	0x3FF9_FFFF	64 KB
	Internal SRAM 0	0x4007_0000	0x4009_FFFF	192 KB
Carlo a al al a al	latawa al ODAM 4	0x3FFE_0000	0x3FFF_FFFF	100 KD
Embedded	Internal SRAM 1	0x400A_0000	0x400B_FFFF	– 128 KB
Memory	Internal SRAM 2	0x3FFA_E000	0x3FFD_FFFF	200 KB
	DTC FACT Mamon	0x3FF8_0000	0x3FF8_1FFF	0 KD
	RTC FAST Memory	0x400C_0000	0x400C_1FFF	– 8 KB
	RTC SLOW Memory	0x5000_0000	0x5000_1FFF	8 KB
Cytornol	External Flash	0x3F40_0000	0x3F7F_FFFF	4 MB
External	External Flash	0x400C_2000	0x40BF_FFFF	11 MB+248 KB
Memory	External RAM	0x3F80_0000	0x3FBF_FFFF	4 MB
	DPort Register	0x3FF0_0000	0x3FF0_0FFF	4 KB
	AES Accelerator	0x3FF0_1000	0x3FF0_1FFF	4 KB
	RSA Accelerator	0x3FF0_2000	0x3FF0_2FFF	4 KB
	SHA Accelerator	0x3FF0_3000	0x3FF0_3FFF	4 KB
	Secure Boot	0x3FF0_4000	0x3FF0_4FFF	4 KB
	Cache MMU Table	0x3FF1_0000	0x3FF1_3FFF	16 KB
	PID Controller	0x3FF1_F000	0x3FF1_FFFF	4 KB
	UART0	0x3FF4_0000	0x3FF4_0FFF	4 KB
	SPI1	0x3FF4_2000	0x3FF4_2FFF	4 KB
	SPI0	0x3FF4_3000	0x3FF4_3FFF	4 KB
	GPIO	0x3FF4_4000	0x3FF4_4FFF	4 KB
	RTC	0x3FF4_8000	0x3FF4_8FFF	4 KB
	IO MUX	0x3FF4_9000	0x3FF4_9FFF	4 KB
	SDIO Slave	0x3FF4_B000	0x3FF4_BFFF	4 KB
	UDMA1	0x3FF4_C000	0x3FF4_CFFF	4 KB
Peripheral	1280	0x3FF4_F000	0x3FF4_FFFF	4 KB
	UART1	0x3FF5_0000	0x3FF5_0FFF	4 KB
	I2C0	0x3FF5_3000	0x3FF5_3FFF	4 KB
	UDMA0	0x3FF5_4000	0x3FF5_4FFF	4 KB
	SDIO Slave	0x3FF5_5000	0x3FF5_5FFF	4 KB
	RMT	0x3FF5_6000	0x3FF5_6FFF	4 KB
	PCNT	0x3FF5_7000	0x3FF5_7FFF	4 KB
	SDIO Slave	0x3FF5_8000	0x3FF5_8FFF	4 KB
	LED PWM	0x3FF5_9000	0x3FF5_9FFF	4 KB
	eFuse Controller	0x3FF5_A000	0x3FF5_AFFF	4 KB
	Flash Encryption	0x3FF5_B000	0x3FF5_BFFF	4 KB
	PWM0	0x3FF5_E000	0x3FF5_EFFF	4 KB
	TIMG0	0x3FF5_F000	0x3FF5_FFFF	4 KB
	TIMG1	0x3FF6_0000	0x3FF6_0FFF	4 KB
	SPI2	0x3FF6_4000	0x3FF6_4FFF	4 KB
	SPI3	0x3FF6_5000	0x3FF6_5FFF	4 KB

Category	Target	Start Address	End Address	Size
	SYSCON	0x3FF6_6000	0x3FF6_6FFF	4 KB
	I2C1	0x3FF6_7000	0x3FF6_7FFF	4 KB
	SDMMC	0x3FF6_8000	0x3FF6_8FFF	4 KB
	EMAC	0x3FF6_9000	0x3FF6_AFFF	8 KB
 Peripheral	TWAI	0x3FF6_B000	0x3FF6_BFFF	4 KB
i enprierai	PWM1	0x3FF6_C000	0x3FF6_CFFF	4 KB
	I2S1	0x3FF6_D000	0x3FF6_DFFF	4 KB
	UART2	0x3FF6_E000	0x3FF6_EFFF	4 KB
	PWM2	0x3FF6_F000	0x3FF6_FFFF	4 KB
	PWM3	0x3FF7_0000	0x3FF7_0FFF	4 KB
	RNG	0x3FF7_5000	0x3FF7_5FFF	4 KB

3.1.5 Cache

ESP32 uses a two-way set-associative cache. Each of the two CPUs has 32 KB of cache featuring a block size of 32 bytes for accessing external storage.

For details, see ESP32 Technical Reference Manual > Chapter System and Memory > Section Cache.

3.2 System Clocks

3.2.1 CPU Clock

Upon reset, an external crystal clock source is selected as the default CPU clock. The external crystal clock source also connects to a PLL to generate a high-frequency clock (typically 160 MHz).

In addition, ESP32 has an internal 8 MHz oscillator. The application can select the clock source from the external crystal clock source, the PLL clock or the internal 8 MHz oscillator. The selected clock source drives the CPU clock directly, or after division, depending on the application.

3.2.2 RTC Clock

The RTC clock has five possible sources:

- external low-speed (32 kHz) crystal clock
- external crystal clock divided by 4
- internal RC oscillator (typically about 150 kHz, and adjustable)
- internal 8 MHz oscillator
- internal 31.25 kHz clock (derived from the internal 8 MHz oscillator divided by 256)

When the chip is in the normal power mode and needs faster CPU accessing, the application can choose the external high-speed crystal clock divided by 4 or the internal 8 MHz oscillator. When the chip operates in the low-power mode, the application chooses the external low-speed (32 kHz) crystal clock, the internal RC clock or the internal 31.25 kHz clock.

3.2.3 Audio PLL Clock

The audio clock is generated by the ultra-low-noise fractional-N PLL.

For details, see *ESP32 Technical Reference Manual* > Chapter Reset and Clock.

3.3 RTC and Low-power Management

Power Management Unit (PMU) 3.3.1

With the use of advanced power-management technologies, ESP32 can switch between different power modes.

- Power modes
 - Active mode: The chip radio is powered up. The chip can receive, transmit, or listen.
 - Modem-sleep mode: The CPU is operational and the clock is configurable. The Wi-Fi/Bluetooth baseband and radio are disabled.
 - Light-sleep mode: The CPU is paused. The RTC memory and RTC peripherals, as well as the ULP coprocessor are running. Any wake-up events (MAC, SDIO host, RTC timer, or external interrupts) will wake up the chip.
 - Deep-sleep mode: Only the RTC memory and RTC peripherals are powered up. Wi-Fi and Bluetooth connection data are stored in the RTC memory. The ULP coprocessor is functional.
 - Hibernation mode: The internal 8 MHz oscillator and ULP coprocessor are disabled. The RTC recovery memory is powered down. Only one RTC timer on the slow clock and certain RTC GPIOs are active. The RTC timer or the RTC GPIOs can wake up the chip from the Hibernation mode.

Power mode		Power Consumption			
	Wi-Fi Tx packet			- Please refer to	
Active (RF working)		Wi-Fi/BT Tx packet		Table 4-4 for details.	
		Wi-Fi/BT Rx and listen	ing	Table 4-4 for details.	
		* 240 MHz	Dual-core chip(s)	30 mA ~ 68 mA	
		240 IVIM2	Single-core chip(s)	N/A	
Madam alaan	The CPU is	*	Dual-core chip(s)	27 mA ~ 44 mA	
Modem-sleep	powered up.	160 MHz	Single-core chip(s)	27 mA ~ 34 mA	
		Normal appeds 90 MHz	Dual-core chip(s)	20 mA ~ 31 mA	
		Normal speed: 80 MHz	Single-core chip(s)	20 mA ~ 25 mA	
Light-sleep		-			
	Th	ne ULP coprocessor is pov	vered up.	150 μΑ	
Deep-sleep		ULP sensor-monitored p	attern	100 μA @1% duty	
	RTC timer + RTC memory			10 <i>μ</i> A	
Hibernation	RTC timer only			5 μΑ	
Power off	CHIP_PU i	s set to low level, the chip	is powered down.	1 μΑ	

Table 3-2. Power Consumption by Power Modes

- * Among the ESP32 series of SoCs, ESP32-D0WD-V3, ESP32-D0WDR2-V3, ESP32-U4WDH, ESP32-D0WD (NRND), ESP32-D0WDQ6 (NRND), and ESP32-D0WDQ6-V3 (NRND) have a maximum CPU frequency of 240 MHz, ESP32-SOWD (NRND) has a maximum CPU frequency of 160 MHz.
- When Wi-Fi is enabled, the chip switches between Active and Modem-sleep modes. Therefore, power consumption changes accordingly.
- In Modem-sleep mode, the CPU frequency changes automatically. The frequency depends on the CPU load and the peripherals used.

- During Deep-sleep, when the ULP coprocessor is powered on, peripherals such as GPIO and RTC I2C are able to operate.
- When the system works in the ULP sensor-monitored pattern, the ULP coprocessor works with the ULP sensor periodically and the ADC works with a duty cycle of 1%, so the power consumption is 100 μ A.

3.3.2 Ultra-Low-Power Coprocessor

The ULP coprocessor and RTC memory remain powered on during the Deep-sleep mode. Hence, the developer can store a program for the ULP coprocessor in the RTC slow memory to access the peripheral devices, internal timers and internal sensors during the Deep-sleep mode. This is useful for designing applications where the CPU needs to be woken up by an external event, or a timer, or a combination of the two, while maintaining minimal power consumption.

For details, see ESP32 Technical Reference Manual > Chapter ULP Coprocessor.

3.4 Timers and Watchdogs

3.4.1 General Purpose Timers

There are four general-purpose timers embedded in the chip. They are all 64-bit generic timers which are based on 16-bit prescalers and 64-bit auto-reload-capable up/down-timers.

The timers feature:

- A 16-bit clock prescaler, from 2 to 65536
- A 64-bit timer
- Configurable up/down timer: incrementing or decrementing
- Halt and resume of time-base counter
- Auto-reload at alarming
- Software-controlled instant reload
- Level and edge interrupt generation

For details, see ESP32 Technical Reference Manual > Chapter Timer Group.

3.4.2 Watchdog Timers

The chip has three watchdog timers: one in each of the two timer modules (called the Main Watchdog Timer, or MWDT) and one in the RTC module (called the RTC Watchdog Timer, or RWDT). These watchdog timers are intended to recover from an unforeseen fault causing the application program to abandon its normal sequence. A watchdog timer has four stages. Each stage may trigger one of three or four possible actions upon the expiry of its programmed time period, unless the watchdog is fed or disabled. The actions are: interrupt, CPU reset, core reset, and system reset. Only the RWDT can trigger the system reset, and is able to reset the entire chip, including the RTC itself. A timeout value can be set for each stage individually.

During flash boot the RWDT and the first MWDT start automatically in order to detect, and recover from, booting problems.

The watchdogs have the following features:

- Four stages, each of which can be configured or disabled separately
- A programmable time period for each stage
- One of three or four possible actions (interrupt, CPU reset, core reset, and system reset) upon the expiry of each stage
- 32-bit expiry counter
- Write protection that prevents the RWDT and MWDT configuration from being inadvertently altered
- SPI flash boot protection If the boot process from an SPI flash does not complete within a predetermined time period, the watchdog will reboot the entire system.

For details, see ESP32 Technical Reference Manual > Chapter Watchdog Timers.

3.5 Cryptographic Hardware Accelerators

ESP32 is equipped with hardware accelerators of general algorithms, such as AES (FIPS PUB 197), SHA (FIPS PUB 180-4), RSA, and ECC, which support independent arithmetic, such as Big Integer Multiplication and Big Integer Modular Multiplication. The maximum operation length for RSA, ECC, Big Integer Multiply and Big Integer Modular Multiplication is 4096 bits.

The hardware accelerators greatly improve operation speed and reduce software complexity. They also support code encryption and dynamic decryption, which ensures that code in the flash will not be hacked.

3.6 Radio and Wi-Fi

The radio module consists of the following blocks:

- 2.4 GHz receiver
- 2.4 GHz transmitter
- bias and regulators
- balun and transmit-receive switch
- clock generator

3.6.1 2.4 GHz Receiver

The 2.4 GHz receiver demodulates the 2.4 GHz RF signal to quadrature baseband signals and converts them to the digital domain with two high-resolution, high-speed ADCs. To adapt to varying signal channel conditions, RF filters, Automatic Gain Control (AGC), DC offset cancelation circuits and baseband filters are integrated in the chip.

2.4 GHz Transmitter 3.6.2

The 2.4 GHz transmitter modulates the quadrature baseband signals to the 2.4 GHz RF signal, and drives the antenna with a high-powered Complementary Metal Oxide Semiconductor (CMOS) power amplifier. The use of digital calibration further improves the linearity of the power amplifier, enabling state-of-the-art performance in delivering up to +20.5 dBm of power for an 802.11b transmission and +18 dBm for an 802.11n transmission. Additional calibrations are integrated to cancel any radio imperfections, such as:

Carrier leakage

- I/Q phase matching
- Baseband nonlinearities
- RF nonlinearities
- Antenna matching

These built-in calibration routines reduce the amount of time required for product testing, and render the testing equipment unnecessary.

3.6.3 Clock Generator

The clock generator produces quadrature clock signals of 2.4 GHz for both the receiver and the transmitter. All components of the clock generator are integrated into the chip, including all inductors, varactors, filters, regulators and dividers.

The clock generator has built-in calibration and self-test circuits. Quadrature clock phases and phase noise are optimized on-chip with patented calibration algorithms which ensure the best performance of the receiver and the transmitter.

3.6.4 Wi-Fi Radio and Baseband

ESP32 implements a TCP/IP and full 802.11 b/g/n Wi-Fi MAC protocol. It supports the Basic Service Set (BSS) STA and SoftAP operations under the Distributed Control Function (DCF). Power management is handled with minimal host interaction to minimize the active-duty period.

The ESP32 Wi-Fi Radio and Baseband support the following features:

- 802.11b/g/n
- 802.11n MCS0-7 in both 20 MHz and 40 MHz bandwidth
- 802.11n MCS32 (RX)
- 802.11n 0.4 μs guard-interval
- up to 150 Mbps of data rate
- Receiving STBC 2×1
- Up to 20.5 dBm of transmitting power
- Adjustable transmitting power
- Antenna diversity
 ESP32 supports antenna diversity with an external RF switch. One or more GPIOs control the RF switch and selects the best antenna to minimize the effects of channel fading.

3.6.5 Wi-Fi MAC

The ESP32 Wi-Fi MAC applies low-level protocol functions automatically. They are as follows:

- 4 × virtual Wi-Fi interfaces
- Simultaneous Infrastructure BSS Station mode/SoftAP mode/Promiscuous mode

- RTS protection, CTS protection, Immediate Block ACK
- Defragmentation
- TX/RX A-MPDU, RX A-MSDU
- TXOP
- WMM
- CCMP (CBC-MAC, counter mode), TKIP (MIC, RC4), WAPI (SMS4), WEP (RC4) and CRC
- Automatic beacon monitoring (hardware TSF)

3.7 Bluetooth

The chip integrates a Bluetooth link controller and Bluetooth baseband, which carry out the baseband protocols and other low-level link routines, such as modulation/demodulation, packet processing, bit stream processing, frequency hopping, etc.

3.7.1 Bluetooth Radio and Baseband

The Bluetooth Radio and Baseband support the following features:

- Class-1, class-2 and class-3 transmit output powers, and a dynamic control range of up to 21 dB
- $\pi/4$ DQPSK and 8 DPSK modulation
- High performance in NZIF receiver sensitivity with a minimum sensitivity of -94 dBm
- Class-1 operation without external PA
- Internal SRAM allows full-speed data-transfer, mixed voice and data, and full piconet operation
- Logic for forward error correction, header error control, access code correlation, CRC, demodulation, encryption bit stream generation, whitening and transmit pulse shaping
- ACL, SCO, eSCO, and AFH
- $\bullet\,$ A-law, $\mu\text{-law},$ and CVSD digital audio CODEC in PCM interface
- SBC audio CODEC
- Power management for low-power applications
- SMP with 128-bit AES

3.7.2 Bluetooth Interface

- Provides UART HCl interface, up to 4 Mbps
- Provides SDIO/SPI HCI interface
- Provides PCM/I2S audio interface

3.7.3 Bluetooth Stack

The Bluetooth stack of the chip is compliant with the Bluetooth v4.2 BR/EDR and Bluetooth LE specifications.

Bluetooth Link Controller 3.7.4

The link controller operates in three major states: standby, connection and sniff. It enables multiple connections, and other operations, such as inquiry, page, and secure simple-pairing, and therefore enables Piconet and Scatternet. Below are the features:

- Classic Bluetooth
 - Device Discovery (inquiry, and inquiry scan)
 - Connection establishment (page, and page scan)
 - Multi-connections
 - Asynchronous data reception and transmission
 - Synchronous links (SCO/eSCO)
 - Master/Slave Switch
 - Adaptive Frequency Hopping and Channel assessment
 - Broadcast encryption
 - Authentication and encryption
 - Secure Simple-Pairing
 - Multi-point and scatternet management
 - Sniff mode
 - Connectionless Slave Broadcast (transmitter and receiver)
 - Enhanced power control
 - Ping
- Bluetooth Low Energy
 - Advertising
 - Scanning
 - Simultaneous advertising and scanning
 - Multiple connections
 - Asynchronous data reception and transmission
 - Adaptive Frequency Hopping and Channel assessment
 - Connection parameter update
 - Data Length Extension
 - Link Layer Encryption
 - LE Ping

3.8 Digital Peripherals

3.8.1 General Purpose Input / Output Interface (GPIO)

ESP32 has 34 GPIO pins which can be assigned various functions by programming the appropriate registers. There are several kinds of GPIOs: digital-only, analog-enabled, capacitive-touch-enabled, etc. Analog-enabled GPIOs and Capacitive-touch-enabled GPIOs can be configured as digital GPIOs.

Most of the digital GPIOs can be configured as internal pull-up or pull-down, or set to high impedance. When configured as an input, the input value can be read through the register. The input can also be set to edge-trigger or level-trigger to generate CPU interrupts. Most of the digital IO pins are bi-directional, non-inverting and tristate, including input and output buffers with tristate control. These pins can be multiplexed with other functions, such as the SDIO, UART, SPI, etc. (More details can be found in the Appendix, Table IO_MUX.) For low-power operations, the GPIOs can be set to hold their states.

For details, see ESP32 Technical Reference Manual > Chapter IO_MUX and GPIO Matrix.

3.8.2 Serial Peripheral Interface (SPI)

ESP32 features three SPIs (SPI, HSPI and VSPI) in slave and master modes in 1-line full-duplex and 1/2/4-line half-duplex communication modes. These SPIs also support the following general-purpose SPI features:

- Four modes of SPI transfer format, which depend on the polarity (CPOL) and the phase (CPHA) of the SPI clock
- Up to 80 MHz (The actual speed it can reach depends on the selected pads, PCB tracing, peripheral characteristics, etc.)
- up to 64-byte FIFO

All SPIs can also be connected to the external flash/SRAM and LCD. Each SPI can be served by DMA controllers.

For details, see ESP32 Technical Reference Manual > Chapter SPI Controller.

3.8.3 Universal Asynchronous Receiver Transmitter (UART)

ESP32 has three UART interfaces, i.e., UART0, UART1, and UART2, which provide asynchronous communication (RS232 and RS485) and IrDA support, communicating at a speed of up to 5 Mbps. UART provides hardware management of the CTS and RTS signals and software flow control (XON and XOFF). All of the interfaces can be accessed by the DMA controller or directly by the CPU.

For details, see <u>ESP32 Technical Reference Manual</u> > Chapter UART Controller.

3.8.4 I2C Interface

ESP32 has two I2C bus interfaces which can serve as I2C master or slave, depending on the user's configuration. The I2C interfaces support:

- Standard mode (100 Kbit/s)
- Fast mode (400 Kbit/s)
- Up to 5 MHz, yet constrained by SDA pull-up strength

- 7-bit/10-bit addressing mode
- Dual addressing mode

Users can program command registers to control I2C interfaces, so that they have more flexibility.

For details, see ESP32 Technical Reference Manual > Chapter I2C Controller.

3.8.5 I2S Interface

Two standard I2S interfaces are available in ESP32. They can be operated in master or slave mode, in full duplex and half-duplex communication modes, and can be configured to operate with an 8-/16-/32-/48-/64-bit resolution as input or output channels. BCK clock frequency, from 10 kHz up to 40 MHz, is supported. When one or both of the I2S interfaces are configured in the master mode, the master clock can be output to the external DAC/CODEC.

Both of the I2S interfaces have dedicated DMA controllers. PDM and BT PCM interfaces are supported.

For details, see ESP32 Technical Reference Manual > Chapter I2S Controller.

3.8.6 Remote Control Peripheral

The infrared remote controller supports eight channels of infrared remote transmission and receiving. By programming the pulse waveform, it supports various infrared protocols. Eight channels share a 512 x 32-bit block of memory to store the transmitting or receiving waveform.

For details, see ESP32 Technical Reference Manual > Chapter Remote Control Peripheral.

3.8.7 Pulse Counter

The pulse counter captures pulse and counts pulse edges through seven modes. It has eight channels, each of which captures four signals at a time. The four input signals include two pulse signals and two control signals. When the counter reaches a defined threshold, an interrupt is generated.

For details, see ESP32 Technical Reference Manual > Chapter Pulse Count Controller.

3.8.8 LED PWM Controller

The LED PWM controller can generate 16 independent channels of digital waveforms with configurable periods and duties.

The 16 channels of digital waveforms operate with an APB clock of 80 MHz. Eight of these channels have the option of using the 8 MHz oscillator clock. Each channel can select a 20-bit timer with configurable counting range, while its accuracy of duty can be up to 16 bits within a 1 ms period.

The software can change the duty immediately. Moreover, each channel automatically supports step-by-step duty increase or decrease, which is useful for the LED RGB color-gradient generator.

For details, see ESP32 Technical Reference Manual > Chapter LED PWM Controller.

3.8.9 Motor Control PWM

The Pulse Width Modulation (PWM) controller can be used for driving digital motors and smart lights. The controller consists of PWM timers, the PWM operator and a dedicated capture sub-module. Each timer provides

timing in synchronous or independent form, and each PWM operator generates a waveform for one PWM channel. The dedicated capture sub-module can accurately capture events with external timing.

For details, see ESP32 Technical Reference Manual > Chapter Motor Control PWM.

3.8.10 SD/SDIO/MMC Host Controller

An SD/SDIO/MMC host controller is available on ESP32, which supports the following features:

- Secure Digital memory (SD mem Version 3.0 and Version 3.01)
- Secure Digital I/O (SDIO Version 3.0)
- Consumer Electronics Advanced Transport Architecture (CE-ATA Version 1.1)
- Multimedia Cards (MMC Version 4.41, eMMC Version 4.5 and Version 4.51)

The controller allows up to 80 MHz clock output in three different data-bus modes: 1-bit, 4-bit, and 8-bit modes. It supports two SD/SDIO/MMC4.41 cards in a 4-bit data-bus mode. It also supports one SD card operating at 1.8 V.

For details, see ESP32 Technical Reference Manual > Chapter SD/MMC Host Controller.

3.8.11 SDIO/SPI Slave Controller

ESP32 integrates an SD device interface that conforms to the industry-standard SDIO Card Specification Version 2.0, and allows a host controller to access the SoC, using the SDIO bus interface and protocol. ESP32 acts as the slave on the SDIO bus. The host can access the SDIO-interface registers directly and can access shared memory via a DMA engine, thus maximizing performance without engaging the processor cores.

The SDIO/SPI slave controller supports the following features:

- SPI, 1-bit SDIO, and 4-bit SDIO transfer modes over the full clock range from 0 to 50 MHz
- Configurable sampling and driving clock edge
- Special registers for direct access by host
- · Interrupts to host for initiating data transfer
- Automatic loading of SDIO bus data and automatic discarding of padding data
- Block size of up to 512 bytes
- Interrupt vectors between the host and the slave, allowing both to interrupt each other
- Supports DMA for data transfer

For details, see ESP32 Technical Reference Manual > Chapter SDIO Slave Controller.

3.8.12 TWAI® Controller

ESP32 family has a TWAI® controller with the following features:

- compatible with ISO 11898-1 protocol (CAN Specification 2.0)
- standard frame format (11-bit ID) and extended frame format (29-bit ID)
- bit rates:

- from 25 Kbit/s to 1 Mbit/s in chip revision v0.0/v1.0/v1.1
- from 12.5 Kbit/s to 1 Mbit/s in chip revision v3.0/v3.1
- multiple modes of operation: Normal, Listen Only, and Self-Test
- 64-byte receive FIFO
- special transmissions: single-shot transmissions and self reception
- acceptance filter (single and dual filter modes)
- error detection and handling: error counters, configurable error interrupt threshold, error code capture, arbitration lost capture

For details, see <u>ESP32 Technical Reference Manual</u> > Chapter Two-wire Automotive Interface (TWAI).

3.8.13 Ethernet MAC Interface

An IEEE-802.3-2008-compliant Media Access Controller (MAC) is provided for Ethernet LAN communications. ESP32 requires an external physical interface device (PHY) to connect to the physical LAN bus (twisted-pair, fiber, etc.). The PHY is connected to ESP32 through 17 signals of MII or nine signals of RMII. The following features are supported on the Ethernet MAC (EMAC) interface:

- 10 Mbps and 100 Mbps rates
- Dedicated DMA controller allowing high-speed transfer between the dedicated SRAM and Ethernet MAC
- Tagged MAC frame (VLAN support)
- Half-duplex (CSMA/CD) and full-duplex operation
- MAC control sublayer (control frames)
- 32-bit CRC generation and removal
- Several address-filtering modes for physical and multicast address (multicast and group addresses)
- 32-bit status code for each transmitted or received frame
- Internal FIFOs to buffer transmit and receive frames. The transmit FIFO and the receive FIFO are both 512 words (32-bit)
- Hardware PTP (Precision Time Protocol) in accordance with IEEE 1588 2008 (PTP V2)
- 25 MHz/50 MHz clock output

For details, see ESP32 Technical Reference Manual > Chapter Ethernet Media Access Controller (MAC).

3.9 Analog Peripherals

3.9.1 Analog-to-Digital Converter (ADC)

ESP32 integrates two 12-bit SAR ADCs and supports measurements on 18 channels (analog-enabled pins). The ULP coprocessor in ESP32 is also designed to measure voltage, while operating in the sleep mode, which enables low-power consumption. The CPU can be woken up by a threshold setting and/or via other triggers.

With appropriate settings, the ADCs can be configured to measure voltage on 18 pins maximum.

Table 3-3 describes the ADC characteristics.

Table 3-3. ADC Characteristics

Parameter	Description		Max	Unit
DNL (Differential nonlinearity)	RTC controller; ADC connected to an		7	LSB
Dive (Differential Horilineanty)	external 100 nF capacitor; DC signal input;	_7	'	LOD
INL (Integral nonlinearity)	ambient temperature at 25 °C;		12	LSB
inc (integral norminearity)	Wi-Fi&Bluetooth off	-12	12	LOD
Sampling rate	RTC controller	_	200	ksps
Sampling rate	DIG controller	_	2	Msps

Notes:

- When atten = 3 and the measurement result is above 3000 (voltage at approx. 2450 mV), the ADC accuracy will be worse than described in the table above.
- To get better DNL results, users can take multiple sampling tests with a filter, or calculate the average value.
- The input voltage range of GPIO pins within VDD3P3_RTC domain should strictly follow the DC characteristics provided in Table 4-3. Otherwise, measurement errors may be introduced, and chip performance may be affected.

By default, there are ±6% differences in measured results between chips. ESP-IDF provides couple of <u>calibration</u> <u>methods</u> for ADC1. Results after calibration using eFuse Vref value are shown in Table 3-4. For higher accuracy, users may apply other calibration methods provided in ESP-IDF, or implement their own.

Table 3-4. ADC Calibration Results

Parameter	Description	Min	Max	Unit
	Atten = 0, effective measurement range of 100 \sim 950 mV	-23	23	mV
Total error	Atten = 1, effective measurement range of $100 \sim 1250 \text{ mV}$		30	mV
Total error	Atten = 2, effective measurement range of 150 \sim 1750 mV	-40	40	mV
	Atten = 3, effective measurement range of 150 \sim 2450 mV	-60	60	mV

For details, see ESP32 Technical Reference Manual > Chapter On-Chip Sensors and Analog Signal Processing.

3.9.2 Digital-to-Analog Converter (DAC)

Two 8-bit DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The design structure is composed of integrated resistor strings and a buffer. This dual DAC supports power supply as input voltage reference. The two DAC channels can also support independent conversions.

For details, see ESP32 Technical Reference Manual > Chapter On-Chip Sensors and Analog Signal Processing.

3.9.3 Touch Sensor

ESP32 has 10 capacitive-sensing GPIOs, which detect variations induced by touching or approaching the GPIOs with a finger or other objects. The low-noise nature of the design and the high sensitivity of the circuit allow

relatively small pads to be used. Arrays of pads can also be used, so that a larger area or more points can be detected. The 10 capacitive-sensing GPIOs are listed in Table 3-5.

Table 3-5. Capacitive-Sensing GPIOs Available on ESP32

Capacitive-Sensing Signal Name	Pin Name
ТО	GPIO4
T1	GPI00
T2	GPIO2
T3	MTDO
T4	MTCK
T5	MTDI
T6	MTMS
T7	GPIO27
T8	32K_XN
Т9	32K_XP

For details, see <u>ESP32 Technical Reference Manual</u> > Chapter On-Chip Sensors and Analog Signal Processing.

Note:

ESP32 Touch Sensor has not passed the Conducted Susceptibility (CS) test for now, and thus has limited application scenarios.

Peripheral Pin Configurations 3.10

Table 3-6. Peripheral Pin Configurations

Interface	Signal	Pin	Function
	ADC1_CH0	SENSOR_VP	
	ADC1_CH1	SENSOR_CAPP	
	ADC1_CH2	SENSOR_CAPN	
	ADC1_CH3	SENSOR_VN	
	ADC1_CH4	32K_XP	
	ADC1_CH5	32K_XN	
	ADC1_CH6	VDET_1	
	ADC1_CH7	VDET_2	
ADC	ADC2_CH0	GPIO4	Tivo 10 bit SAD ADCo
ADC	ADC2_CH1	GPIO0	Two 12-bit SAR ADCs
	ADC2_CH2	GPIO2	
	ADC2_CH3	MTDO	
	ADC2_CH4	MTCK	
	ADC2_CH5	MTDI	
	ADC2_CH6	MTMS	
	ADC2_CH7	GPIO27	
	ADC2_CH8	GPIO25	
	ADC2_CH9	GPIO26	
DAC	DAC_1	GPIO25	Two 8-bit DACs
DAC	DAC_2	GPIO26	1 IWO 6-DIL DACS
	TOUCH0	GPIO4	
	TOUCH1	GPIO0	
	TOUCH2	GPIO2	
	TOUCH3	MTDO	
Touch Sensor	TOUCH4	MTCK	Canacitive touch concern
Touch Sensor	TOUCH5	MTDI	Capacitive touch sensors
	TOUCH6	MTMS	
	TOUCH7	GPIO27	
	TOUCH8	32K_XN	
	TOUCH9	32K_XP	
	MTDI	MTDI	
ITAC	MTCK	MTCK	ITAC for poftware debugging
JTAG	MTMS	MTMS	JTAG for software debugging
	MTDO	MTDO	

Interface	Signal	Pin	Function
	HS2_CLK	MTMS	
	HS2_CMD	MTDO	Curry outs CD received and VO O1 stondard
SD/SDIO/MMC Host	HS2_DATA0	GPIO2	Supports SD memory card V3.01 standard
Controller	HS2_DATA1	GPIO4	
	HS2_DATA2	MTDI	
	HS2_DATA3	MTCK	
	PWM0_OUT0~2		
	PWM1_OUT_IN0~2		Thurs showed of 10 left finance
	PWM0_FLT_IN0~2		Three channels of 16-bit timers generate
N 4 - + D) N /N 4	PWM1_FLT_IN0~2	A ODIO Di	PWM waveforms. Each channel has a pair
Motor PWM	PWM0_CAP_IN0~2	- Any GPIO Pins	of output signals, three fault detection
	PWM1_CAP_IN0~2		signals, three event-capture signals, and
	PWM0_SYNC_IN0~2		three sync signals.
	PWM1_SYNC_IN0~2		
	SD_CLK	MTMS	
	SD_CMD	MTDO	
SDIO/SPI Slave	SD_DATA0	GPIO2	SDIO interface that conforms to the
Controller	SD_DATA1	GPIO4	industry standard SDIO 2.0 card
	SD_DATA2	MTDI	specification
	SD_DATA3	MTCK	
	U0RXD_in		
	U0CTS_in		
	U0DSR_in		
	U0TXD_out		
	U0RTS_out		
	U0DTR_out		
LIADT	U1RXD_in	Any ODIO Dina	Three UART devices with hardware
UART	U1CTS_in	- Any GPIO Pins	flow-control and DMA
	U1TXD_out		
	U1RTS_out		
	U2RXD_in		
	U2CTS_in		
	U2TXD_out		
	U2RTS_out		
	I2CEXT0_SCL_in		
	I2CEXT0_SDA_in		
	I2CEXT1_SCL_in		
120	I2CEXT1_SDA_in	Any CDIO Dina	Two ISC devices in alone or master made
I2C	I2CEXT0_SCL_out	- Any GPIO Pins	Two I2C devices in slave or master mode
	I2CEXT0_SDA_out]	
	I2CEXT1_SCL_out	1	
	I2CEXT1_SDA_out		

Interface	Signal	Pin	Function
LED PWM	ledc_hs_sig_out0~7	Any GPIO Pins	16 independent channels @80 MHz clock/RTC CLK. Duty accuracy: 16 bits.
	ledc_ls_sig_out0~7		,,
	I2S0I_DATA_in0~15		
	I2S0O_BCK_in		
	I2S0O_WS_in		
	I2S0I_BCK_in		
	I2S0I_WS_in		
	I2S0I_H_SYNC		
	I2S0I_V_SYNC		
	I2S0I_H_ENABLE		
	I2S0O_BCK_out		
	I2S0O_WS_out		Stereo input and output from/to the audio
	I2S0I_BCK_out		codec; parallel LCD data output; parallel
	I2S0I_WS_out		camera data input.
I2S	I2S0O_DATA_out0~23	Any GPIO Pins	Samora data inputi
120	I2S1I_DATA_in0~15	, , , , , , , , , , , , , , , , , , , ,	
	I2S1O_BCK_in		Note: I2S0_CLK and I2S1_CLK can only
	I2S1O_WS_in		be mapped to GPIO0, U0RXD (GPIO3), or
	I2S1I_BCK_in		U0TXD (GPIO1) via IO MUX by selecting
	I2S1I_WS_in		GPIO functions CLK_OUT1, CLK_OUT2,
	I2S1I_H_SYNC		and CLK_OUT3. For more information, see
	I2S1I_V_SYNC		ESP32 Technical Reference Manual >
	I2S1I_H_ENABLE		Chapter IO_MUX and GPIO Matrix > Table
	I2S1O_BCK_out		IO MUX Pad Summary.
	I2S1O_WS_out		
	I2S1I_BCK_out		
	I2S1I_WS_out		
	I2S1O_DATA_out0~23		
	12S0_CLK	GPIO0, U0RXD,	
	I2S1_CLK	or U0TXD	
RMT	RMT_SIG_IN0~7	Any GPIO Pins	Eight channels for an IR transmitter and
1 11VI I	RMT_SIG_OUT0~7	ANY GETO FINS	receiver of various waveforms
	HSPIQ_in/_out		Standard SDI consists of clock
	HSPID_in/_out		Standard SPI consists of clock,
	HSPICLK_in/_out		chip-select, MOSI and MISO. These SPIs
	HSPI_CS0_in/_out		can be connected to LCD and other
	HSPI_CS1_out		external devices. They support the
General Purpose	HSPI_CS2_out	Any ODIO Din -	following features:
SPI	VSPIQ_in/_out	Any GPIO Pins Both master and slave modes;	,
	VSPID_in/_out		Four sub-modes of the SPI transfer format:
	VSPI_CS0_in/_out		format;
			Configurable SPI frequency; Line to 64 bytes of FIFO and DMA
	VSPI_CS1_out		Up to 64 bytes of FIFO and DMA.
			I .

Interface	Signal	Pin	Function
	VSPI_CS2_out		
	SPIHD	SD_DATA_2	
	SPIWP	SD_DATA_3	
	SPICS0	SD_CMD	
	SPICLK	SD_CLK	
	SPIQ	SD_DATA_0	
	SPID	SD_DATA_1	
	HSPICLK	MTMS	
	HSPICS0	MTDO	Curananta Ctanaland CDI Dual CDI and
D	HSPIQ	MTDI	Supports Standard SPI, Dual SPI, and
Parallel QSPI	HSPID	MTCK	Quad SPI that can be connected to the
	HSPIHD	GPIO4	external flash and SRAM
	HSPIWP	GPIO2	
	VSPICLK	GPIO18	
	VSPICS0	GPIO5	
	VSPIQ	GPIO19	
	VSPID	GPIO23	
	VSPIHD	GPIO21	
	VSPIWP	GPIO22	
	EMAC_TX_CLK	GPIO0	
	EMAC_RX_CLK	GPIO5	
	EMAC_TX_EN	GPIO21	
	EMAC_TXD0	GPIO19	
	EMAC_TXD1	GPIO22	
	EMAC_TXD2	MTMS	
	EMAC_TXD3	MTDI	
	EMAC_RX_ER	MTCK	
	EMAC_RX_DV	GPIO27	
	EMAC_RXD0	GPIO25	
EMAC	EMAC_RXD1	GPIO26	Ethernet MAC with MII/RMII interface
	EMAC_RXD2	U0TXD	
	EMAC_RXD3	MTDO	
	EMAC_CLK_OUT	GPIO16	
	EMAC_CLK_OUT_180	GPIO17	
	EMAC_TX_ER	GPIO4	
	EMAC_MDC_out	Any GPIO Pins	
	EMAC_MDI_in	Any GPIO Pins	
	EMAC_MDO_out	Any GPIO Pins	
	EMAC_CRS_out	Any GPIO Pins	
	EMAC_COL_out	Any GPIO Pins	

Interface	Signal	Pin	Function
Pulse Counter	pent_sig_ch0_in0 pent_sig_ch1_in0 pent_etrl_ch0_in0 pent_etrl_ch1_in0 pent_sig_ch0_in1 pent_sig_ch1_in1 pent_etrl_ch0_in1 pent_etrl_ch0_in2 pent_sig_ch0_in2 pent_sig_ch1_in2 pent_etrl_ch0_in2 pent_etrl_ch0_in3 pent_sig_ch0_in3 pent_sig_ch1_in3 pent_sig_ch1_in3 pent_ctrl_ch0_in3 pent_ctrl_ch0_in3 pent_ctrl_ch0_in4 pent_sig_ch0_in4 pent_sig_ch1_in4 pent_ctrl_ch0_in5 pent_sig_ch0_in5 pent_sig_ch1_in5 pent_sig_ch0_in6 pent_sig_ch0_in6 pent_sig_ch0_in6 pent_sig_ch0_in7 pent_sig_ch1_in7 pent_sig_ch1_in7 pent_sig_ch1_in7 pent_sig_ch1_in7	Pin Any GPIO Pins	Operating in seven different modes, the pulse counter captures pulse and counts pulse edges.
TWAI	pent_etrl_eh1_in7 twai_rx twai_tx twai_bus_off_on twai_clkout	- Any GPIO Pins	Compatible with ISO 11898-1 protocol (CAN Specification 2.0)

4 Electrical Characteristics

4.1 Absolute Maximum Ratings

Stresses above those listed in Table 4-1 *Absolute Maximum Ratings* may cause permanent damage to the device. These are stress ratings only and normal operation of the device at these or any other conditions beyond those indicated in Section 4.2 Recommended Power Supply Characteristics is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Parameter Description Min Max Unit VDDA, VDD3P3, VDD3P3_RTC, V Allowed input voltage -0.33.6 VDD3P3 CPU, VDD SDIO Cumulative IO output current 1200 mΑ I_{output}^{-1} °C -40 150 T_{STORE} Storage temperature

Table 4-1. Absolute Maximum Ratings

4.2 Recommended Power Supply Characteristics

Parameter Max Unit Description Min Тур VDDA, VDD3P3_RTC note 1, VDD3P3, Voltage applied to power supply pins 2.3/3.0 note 3 3.3 3.6 V VDD_SDIO (3.3 V mode) note 2 per power domain VDD3P3 CPU Voltage applied to power supply pin 1.8 3.3 3.6 V Current delivered by external power 0.5 Α $|V_{DD}|$ supply T note 4 Operating temperature -40 125 $^{\circ}C$

Table 4-2. Recommended Power Supply Characteristics

- 1. When writing eFuse, VDD3P3_RTC should be at least 3.3 V.
- 2. VDD_SDIO works as the power supply for the related IO, and also for an external device. Please refer to the Appendix IO_MUX of this datasheet for more details.
 - VDD_SDIO can be sourced internally by the ESP32 from the VDD3P3_RTC power domain:
 - When VDD_SDIO operates at 3.3 V, it is driven directly by VDD3P3_RTC through a 6 Ω resistor, therefore, there will be some voltage drop from VDD3P3_RTC.
 - When VDD_SDIO operates at 1.8 V, it can be generated from ESP32's internal LDO. The maximum current this LDO can offer is 40 mA, and the output voltage range is 1.65 V ~ 2.0 V.
 - VDD_SDIO can also be driven by an external power supply.
 - Please refer to Section 2.3.1 Power Scheme, for more information.
- 3. Chips with a 3.3 V flash or PSRAM in-package: this minimum voltage is 3.0 V;
 - Chips with no flash or PSRAM in-package: this minimum voltage is 2.3 V;
 - For more information, see Section 1 ESP32 Series Comparison.
- 4. The operating temperature of ESP32-U4WDH ranges from -40 °C to 105 °C, due to the in-package flash.
 - The operating temperature of ESP32-D0WDR2-V3 ranges from -40 °C to 85 °C, due to the in-package PSRAM.
 - \bullet For other chips that have no in-package flash or PSRAM, their operating temperature is -40 °C \sim 125 °C.

¹ The product proved to be fully functional after all its IO pins were pulled high while being connected to ground for 24 consecutive hours at ambient temperature of 25 °C.

4.3 DC Characteristics (3.3 V, 25 °C)

Table 4-3. DC Characteristics (3.3 V, 25 °C)

Parameter	Description	on	Min	Тур	Max	Unit
C_{IN}	Pin capacitance		_	2	_	рF
V_{IH}	High-level input voltage			_	VDD1+0.3	V
V_{IL}	Low-level input voltage		-0.3	_	0.25×VDD ¹	V
$ I_{IH} $	High-level input current		_		50	nA
$ I_{IL} $	Low-level input current		_	_	50	nA
V_{OH}	High-level output voltage	igh-level output voltage			_	V
V_{OL}	Low-level output voltage		_	_	0.1×VDD ¹	V
	High-level source current (VDD¹ = 3.3 V,	VDD3P3_CPU power domain ^{1, 2}	_	40	_	mA
I_{OH}	$V_{OH} >= 2.64 \text{ V},$ output drive strength set	VDD3P3_RTC power domain ^{1, 2}	_	40	_	mA
	to the maximum)	VDD_SDIO power domain ^{1, 3}	_	20	_	mA
I_{OL}	Low-level sink current (VDD ¹ = 3.3 V, V_{OL} = 0.495 output drive strength set to		_	28	_	mA
R_{PU}	Resistance of internal pull-u	Resistance of internal pull-up resistor		45		kΩ
R_{PD}	Resistance of internal pull-d	own resistor	_	45	_	kΩ
V_{IL_nRST}	Low-level input voltage of C to shut down the chip	HIP_PU	_	_	0.6	V

- 1. Please see Table IO_MUX for IO's power domain. VDD is the I/O voltage for a particular power domain of pins.
- 2. For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced from around 40 mA to around 29 mA, $V_{OH}>=2.64$ V, as the number of current-source pins increases.
- 3. For VDD_SDIO power domain, per-pin current sourced in the same domain is gradually reduced from around 30 mA to around 10 mA, $V_{OH}>=2.64$ V, as the number of current-source pins increases.

4.4 RF Current Consumption in Active Mode

The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitters' measurements are based on a 50% duty cycle.

Table 4-4. Current Consumption Depending on RF Modes

Work Mode	Min	Тур	Max	Unit
Transmit 802.11b, DSSS 1 Mbps, POUT = +19.5 dBm	_	240	_	mA
Transmit 802.11g, OFDM 54 Mbps, POUT = +16 dBm	_	190	_	mA
Transmit 802.11n, OFDM MCS7, POUT = +14 dBm	_	180	_	mA
Receive 802.11b/g/n	_	95 ~ 100	_	mA
Transmit BT/BLE, POUT = 0 dBm	_	130	_	mA
Receive BT/BLE	_	95 ~ 100	_	mA

4.5 Reliability

Table 4-5. Reliability Qualifications

Test Item	Test Conditions	Test Standard	
HTOL (High Temperature	105 °C 1000 bours	JESD22-A108	
Operating Life)	125 °C, 1000 hours	JESD22-A100	
ESD (Electro-Static	HBM (Human Body Mode) ¹ ± 2000 V	JS-001	
Discharge Sensitivity)	CDM (Charge Device Mode) ² ± 500 V	JS-002	
Latabura	Current trigger ± 200 mA	IECD70	
Latch up	Voltage trigger 1.5 × VDD $_{max}$	JESD78	
	Bake 24 hours @125 °C	J-STD-020,	
Preconditioning	Moisture soak (level 3: 192 hours @30 °C, 60% RH)	JESD47,	
	IR reflow solder: 260 + 0 °C, 20 seconds, three times	JESD22-A113	
TCT (Temperature Cycling	-65 °C / 150 °C, 500 cycles	JESD22-A104	
Test)	-03 07 130 0, 300 cycles	JL3D22-A104	
Autoclave Test	121 °C, 100% RH, 96 hours	JESD22-A102	
uHAST (Highly Acceler-	120 °C 959/ DU 06 hours	JESD22-A118	
ated Stress Test, unbiased)	130 °C, 85% RH, 96 hours	JLSDZZ-ATIO	
HTSL (High Temperature	150 °C 1000 bours	JESD22-A103	
Storage Life)	150 °C, 1000 hours 	JESD22-A103	

^{1.} JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process.

4.6 Wi-Fi Radio

Table 4-6. Wi-Fi Radio Characteristics

Parameter	Description	Min	Тур	Max	Unit
Operating frequency range note1	_	2412		2484	MHz
Output impedance note2	-	-	note 2	_	Ω
TX power note3	11n, MCS7	12	13	14	dBm
1X power	11b mode	18.5	19.5	20.5	dBm
	11b, 1 Mbps	_	-98	_	dBm
Sensitivity	11b, 11 Mbps	_	-88		dBm
	11g, 6 Mbps	_	-93	_	dBm
	11g, 54 Mbps	_	-75		dBm
Sensitivity	11n, HT20, MCS0	_	-93	_	dBm
	11n, HT20, MCS7	_	-73		dBm
	11n, HT40, MCS0	_	-90		dBm
	11n, HT40, MCS7	_	-70	_	dBm
	11g, 6 Mbps	_	27		dB
Adjacent channel rejection	11g, 54 Mbps	_	13		dB
Aujacent channel rejection	11n, HT20, MCS0	_	27		dB

^{2.} JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process.

Parameter	Description	Min	Тур	Max	Unit
	11n, HT20, MCS7	_	12	_	dB

- 1. Device should operate in the frequency range allocated by regional regulatory authorities. Target operating frequency range is configurable by software.
- 2. The typical value of the Wi-Fi radio output impedance is different between chips in different QFN packages. For chips in a QFN 6×6 package, the value is 30+j10 Ω . For chips in a QFN 5×5 package, the value is 35+j10 Ω .
- 3. Target TX power is configurable based on device or certification requirements.

4.7 **Bluetooth Radio**

4.7.1 Receiver -Basic Data Rate

Table 4-7. Receiver Characteristics -Basic Data Rate

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @0.1% BER	_	-90	-89	-88	dBm
Maximum received signal @0.1% BER	_	0		_	dBm
Co-channel C/I	_	_	+7	_	dB
	F = F0 + 1 MHz	_		-6	dB
	F = F0 -1 MHz	_	_	-6	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_		-25	dB
	F = F0 –2 MHz	_	_	-33	dB
	F = F0 + 3 MHz	_		-25	dB
	F = F0 –3 MHz	_	_	-45	dB
	30 MHz ~ 2000 MHz	-10	_	_	dBm
Out of hand blocking performance	2000 MHz ~ 2400 MHz	-27	_	_	dBm
Out-of-band blocking performance	2500 MHz ~ 3000 MHz	-27		_	dBm
	3000 MHz ~ 12.5 GHz	-10	_	_	dBm
Intermodulation	_	-36			dBm

4.7.2 Transmitter -Basic Data Rate

Table 4-8. Transmitter Characteristics -Basic Data Rate

Parameter	Description	Min	Тур	Max	Unit
RF transmit power note1	_	_	0	_	dBm
Gain control step	_	_	3	_	dB
RF power control range	_	-12	_	+9	dBm
+20 dB bandwidth	_	_	0.9	_	MHz
	$F = F0 \pm 2 MHz$		-47	_	dBm
Adjacent channel transmit power	$F = F0 \pm 3 MHz$		-55	_	dBm
	$F = F0 \pm > 3 MHz$	_	-60	_	dBm
$\Delta \ f1_{ ext{avg}}$		_	_	155	kHz
$\Delta~f2_{\sf max}$	_	133.7	_	_	kHz

Parameter	Description	Min	Тур	Max	Unit
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	_	0.92	_	_
ICFT	_		-7	_	kHz
Drift rate	_	_	0.7	_	kHz/50 μs
Drift (DH1)	_	_	6	_	kHz
Drift (DH5)	_	_	6	_	kHz

^{1.} There are in total eight power levels from level 0 to level 7, with transmit power ranging from -12 dBm to 9 dBm. When the power level rises by 1, the transmit power increases by 3 dB. Power level 4 is used by default and the corresponding transmit power is 0 dBm.

4.7.3 Receiver - Enhanced Data Rate

Table 4-9. Receiver Characteristics - Enhanced Data Rate

Parameter	Description	Min	Тур	Max	Unit
$\pi/4$	DQPSK				
Sensitivity @0.01% BER	_	-90	-89	-88	dBm
Maximum received signal @0.01% BER	_	_	0	_	dBm
Co-channel C/I	_	_	11	_	dB
Adjacent channel selectivity C/I	F = F0 + 1 MHz	_	-7	_	dB
	F = F0 - 1 MHz	_	-7	_	dB
	F = F0 + 2 MHz	_	-25	_	dB
	F = F0 -2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 –3 MHz	_	-45	_	dB
8	OPSK				
Sensitivity @0.01% BER	_	-84	-83	-82	dBm
Maximum received signal @0.01% BER	_	_	-5	_	dBm
C/I c-channel	_	_	18	_	dB
	F = F0 + 1 MHz	_	2	_	dB
	F = F0 - 1 MHz	_	2	_	dB
Adjacent channel colectivity C/I	F = F0 + 2 MHz	_	-25	_	dB
Adjacent channel selectivity C/I	F = F0 -2 MHz	_	-25	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 –3 MHz	_	-38	_	dB

4.7.4 Transmitter - Enhanced Data Rate

Table 4-10. Transmitter Characteristics - Enhanced Data Rate

Parameter	Description	Min	Тур	Max	Unit
RF transmit power (see note under Table 4-10)	_	_	0	_	dBm
Gain control step	_	_	3	_	dB
RF power control range	_	-12	_	+9	dBm

Parameter	Description	Min	Тур	Max	Unit
$\pi/4$ DQPSK max w0	PSK max w0 —		-0.72	_	kHz
$\pi/4$ DQPSK max wi	_	_	-6	_	kHz
$\pi/4$ DQPSK max lwi + w0l	_			_	kHz
8DPSK max w0	_	_	0.7	_	kHz
8DPSK max wi	_	_	-9.6	_	kHz
8DPSK max lwi + w0l	_	_	-10	_	kHz
	RMS DEVM	_	4.28	_	%
$\pi/4$ DQPSK modulation accuracy	99% DEVM	_	100	_	%
	Peak DEVM		13.3	_	%
	RMS DEVM	_	5.8	_	%
8 DPSK modulation accuracy	99% DEVM		100	_	%
	Peak DEVM		14	_	%
	$F = F0 \pm 1 \text{ MHz}$		-46	_	dBm
In-band spurious emissions	$F = F0 \pm 2 MHz$	_	-40	_	dBm
	$F = F0 \pm 3 \text{ MHz}$		-46		dBm
	F = F0 + /-> 3 MHz	_	_	-53	dBm
EDR differential phase coding —		_	100	_	%

4.8 **Bluetooth LE Radio**

4.8.1 Receiver

Table 4-11. Receiver Characteristics -Bluetooth LE

Parameter	Description	Min	Тур	Max	Unit
Sensitivity @30.8% PER	_	-94	-93	-92	dBm
Maximum received signal @30.8% PER	_	0		_	dBm
Co-channel C/I	_	_	+10	_	dB
	F = F0 + 1 MHz	_	-5	_	dB
	F = F0 -1 MHz	_	-5	_	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	_	-25	_	dB
Adjacent channel selectivity C/1	F = F0 –2 MHz	_	-35	_	dB
	F = F0 + 3 MHz	_	-25	_	dB
	F = F0 –3 MHz	_	-45	_	dB
	30 MHz ~ 2000 MHz	-10	_	_	dBm
Out-of-band blocking performance	2000 MHz ~ 2400 MHz	-27		_	dBm
	2500 MHz ~ 3000 MHz	-27	_	_	dBm
	3000 MHz ~ 12.5 GHz	-10	_	_	dBm
ntermodulation —					dBm

4.8.2 Transmitter

Table 4-12. Transmitter Characteristics - Bluetooth LE

Parameter	Description	Min	Тур	Max	Unit
RF transmit power (see note under Table 4-8)	_	_	0	_	dBm
Gain control step	_	_	3	_	dB
RF power control range	_	-12	_	+9	dBm
	$F = F0 \pm 2 MHz$	_	-52	_	dBm
Adjacent channel transmit power	$F = F0 \pm 3 \text{ MHz}$	_	-58	_	dBm
	$F = F0 \pm > 3 \text{ MHz}$	_	-60	_	dBm
$\Delta~f1_{ ext{avg}}$	_	_	_	265	kHz
$\Delta~f2_{\sf max}$	_	247	_	_	kHz
$\Delta~f2_{ m avg}/\Delta~f1_{ m avg}$	_	_	0.92	_	_
ICFT	_	_	-10	_	kHz
Drift rate	_	_	0.7	_	kHz/50 μs
Drift	_	_	2	_	kHz

5 Packaging

- For information about tape, reel, and chip marking, please refer to Espressif Chip Packaging Information.
- The pins of the chip are numbered in anti-clockwise order starting from Pin 1 in the top view. For pin numbers and pin names, see also pin layout figures in Section 2.1 Pin Layout.

Figure 5-1. QFN48 (6x6 mm) Package

Figure 5-2. QFN48 (5x5 mm) Package

6 Related Documentation and Resources

Related Documentation

- ESP32 Technical Reference Manual Detailed information on how to use the ESP32 memory and peripherals.
- ESP32 Hardware Design Guidelines Guidelines on how to integrate the ESP32 into your hardware product.
- ESP32 ECO and Workarounds for Bugs Correction of ESP32 design errors.
- Certificates

https://espressif.com/en/support/documents/certificates

• ESP32 Product/Process Change Notifications (PCN)

https://espressif.com/en/support/documents/pcns

• ESP32 Advisories - Information on security, bugs, compatibility, component reliability.

https://espressif.com/en/support/documents/advisories

Documentation Updates and Update Notification Subscription

https://espressif.com/en/support/download/documents

Developer Zone

- ESP-IDF Programming Guide for ESP32 Extensive documentation for the ESP-IDF development framework.
- ESP-IDF and other development frameworks on GitHub.

https://github.com/espressif

• ESP32 BBS Forum – Engineer-to-Engineer (E2E) Community for Espressif products where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

https://esp32.com/

• The ESP Journal - Best Practices, Articles, and Notes from Espressif folks.

https://blog.espressif.com/

• See the tabs SDKs and Demos, Apps, Tools, AT Firmware.

https://espressif.com/en/support/download/sdks-demos

Products

• ESP32 Series SoCs - Browse through all ESP32 SoCs.

https://espressif.com/en/products/socs?id=ESP32

ESP32 Series Modules – Browse through all ESP32-based modules.

https://espressif.com/en/products/modules?id=ESP32

• ESP32 Series DevKits - Browse through all ESP32-based devkits.

https://espressif.com/en/products/devkits?id=ESP32

• ESP Product Selector – Find an Espressif hardware product suitable for your needs by comparing or applying filters. https://products.espressif.com/#/product-selector?language=en

Contact Us

• See the tabs Sales Questions, Technical Enquiries, Circuit Schematic & PCB Design Review, Get Samples (Online stores), Become Our Supplier, Comments & Suggestions.

https://espressif.com/en/contact-us/sales-questions

Appendix A –ESP32 Pin Lists

A.1. Notes on ESP32 Pin Lists

Table 6-1. Notes on ESP32 Pin Lists

Description
In Table IO_MUX, the boxes highlighted in yellow indicate the GPIO pins that are input-only.
Please see the following note for further details.
GPIO pins 34-39 are input-only. These pins do not feature an output driver or internal pull-
up/pull-down circuitry. The pin names are: SENSOR_VP (GPIO36), SENSOR_CAPP (GPIO37),
SENSOR_CAPN (GPIO38), SENSOR_VN (GPIO39), VDET_1 (GPIO34), VDET_2 (GPIO35).
The pins are grouped into four power domains: VDDA (analog power supply), VDD3P3_RTC
(RTC power supply), VDD3P3_CPU (power supply of digital IOs and CPU cores), VDD_SDIO
(power supply of SDIO IOs). VDD_SDIO is the output of the internal SDIO-LDO. The voltage
of SDIO-LDO can be configured at 1.8 V or be the same as that of VDD3P3_RTC. The strap-
ping pin and eFuse bits determine the default voltage of the SDIO-LDO. Software can change
the voltage of the SDIO-LDO by configuring register bits. For details, please see the column
"Power Domain" in Table IO_MUX.
The functional pins in the VDD3P3_RTC domain are those with analog functions, including the
32 kHz crystal oscillator, ADC, DAC, and the capacitive touch sensor. Please see columns
"Analog Function 0 ~ 2" in Table IO_MUX.
These VDD3P3_RTC pins support the RTC function, and can work during Deep-sleep. For
example, an RTC-GPIO can be used for waking up the chip from Deep-sleep.
The GPIO pins support up to six digital functions, as shown in columns "Function 0 \sim 5" In
Table IO_MUX. The function selection registers will be set as " N ", where N is the function
number. Below are some definitions:
• SD_* is for signals of the SDIO slave.
HS1_* is for Port 1 signals of the SDIO host.
HS2_* is for Port 2 signals of the SDIO host.
MT* is for signals of the JTAG.
• U0* is for signals of the UART0 module.
U1* is for signals of the UART1 module.
• U2* is for signals of the UART2 module.
• SPI* is for signals of the SPI01 module.
HSPI* is for signals of the SPI2 module.
 VSPI* is for signals of the SPI3 module.

No.	Description					
7	Each column about digital "Function" is accompanied by a column about "Type". Please see the following explanations for the meanings of "type" with respect to each "function" they are associated with. For each "Function-N", "type" signifies: • I: input only. If a function other than "Function-N" is assigned, the input signal of "Function-N" is still from this pin. • I1: input only. If a function other than "Function-N" is assigned, the input signal of					
	 "Function-N" is always "1". I0: input only. If a function other than "Function-N" is assigned, the input signal of "Function-N" is always "0". O: output only. T: high-impedance. I/O/T: combinations of input, output, and high-impedance according to the function sig- 					
	 nal. I1/O/T: combinations of input, output, and high-impedance, according to the function signal. If a function is not selected, the input signal of the function is "1". For example, pin 30 can function as HS1_CMD or SD_CMD, where HS1_CMD is of an "I1/O/T" type. If pin 30 is selected as HS1_CMD, this pin's input and output are controlled by the SDIO host. If pin 30 is not selected as HS1_CMD, the input signal of the SDIO host is always "1". 					
8	Each digital output pin is associated with its configurable drive strength. Column "Drive Strength" in Table IO_MUX lists the default values. The drive strength of the digital output pins can be configured into one of the following four options: • 0: ~5 mA • 1: ~10 mA • 2: ~20 mA • 3: ~40 mA The default value is 2. The drive strength of the internal pull-up (wpu) and pull-down (wpd) is ~75 μA.					
9	Column "At Reset" in Table IO_MUX lists the status of each pin during reset, including inputenable (ie=1), internal pull-up (wpu) and internal pull-down (wpd). During reset, all pins are output-disabled.					
10	Column "After Reset" in Table IO_MUX lists the status of each pin immediately after reset, including input-enable (ie=1), internal pull-up (wpu) and internal pull-down (wpd). After reset, each pin is set to "Function 0". The output-enable is controlled by digital Function 0.					
11	Table Ethernet_MAC is about the signal mapping inside Ethernet MAC. The Ethernet MAC supports MII and RMII interfaces, and supports both the internal PLL clock and the external clock source. For the MII interface, the Ethernet MAC is with/without the TX_ERR signal. MDC, MDIO, CRS and COL are slow signals, and can be mapped onto any GPIO pin through the GPIO-Matrix.					
12	Table GPIO Matrix is for the GPIO-Matrix. The signals of the on-chip functional modules can be mapped onto any GPIO pin. Some signals can be mapped onto a pin by both IO-MUX and GPIO-Matrix, as shown in the column tagged as "Same input signal from IO_MUX core" in Table GPIO Matrix.					

No.	Description
	*In Table GPIO_Matrix, the column "Default Value if unassigned" records the default value
13	of the an input signal if no GPIO is assigned to it. The actual value is determined by register
	GPIO_FUNCm_IN_INV_SEL and GPIO_FUNCm_IN_SEL. (The value of m ranges from 1 to
	255.)

A.2. GPIO_Matrix

Table 6-2. GPIO_Matrix

		Default	Same Input		
Signal		Value If	Signal from		Output Enable of
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Signals
0	SPICLK_in	0	yes	SPICLK_out	SPICLK_oe
1	SPIQ_in	0	yes	SPIQ_out	SPIQ_oe
2	SPID_in	0	yes	SPID_out	SPID_oe
3	SPIHD_in	0	yes	SPIHD_out	SPIHD_oe
4	SPIWP_in	0	yes	SPIWP_out	SPIWP_oe
5	SPICS0_in	0	yes	SPICS0_out	SPICS0_oe
6	SPICS1_in	0	no	SPICS1_out	SPICS1_oe
7	SPICS2_in	0	no	SPICS2_out	SPICS2_oe
8	HSPICLK_in	0	yes	HSPICLK_out	HSPICLK_oe
9	HSPIQ_in	0	yes	HSPIQ_out	HSPIQ_oe
10	HSPID_in	0	yes	HSPID_out	HSPID_oe
11	HSPICS0_in	0	yes	HSPICS0_out	HSPICS0_oe
12	HSPIHD_in	0	yes	HSPIHD_out	HSPIHD_oe
13	HSPIWP_in	0	yes	HSPIWP_out	HSPIWP_oe
14	U0RXD_in	0	yes	U0TXD_out	1'd1
15	U0CTS_in	0	yes	U0RTS_out	1'd1
16	U0DSR_in	0	no	U0DTR_out	1'd1
17	U1RXD_in	0	yes	U1TXD_out	1'd1
18	U1CTS_in	0	yes	U1RTS_out	1'd1
23	I2S0O_BCK_in	0	no	I2S0O_BCK_out	1'd1
24	I2S1O_BCK_in	0	no	I2S1O_BCK_out	1'd1
25	12S0O_WS_in	0	no	I2S0O_WS_out	1'd1
26	I2S10_WS_in	0	no	I2S1O_WS_out	1'd1
27	I2S0I_BCK_in	0	no	I2S0I_BCK_out	1'd1
28	I2S0I_WS_in	0	no	I2S0I_WS_out	1'd1
29	I2CEXTO_SCL_in	1	no	I2CEXT0_SCL_out	1'd1
30	I2CEXTO_SDA_in	1	no	I2CEXT0_SDA_out	1'd1
31	pwm0_sync0_in	0	no	sdio_tohost_int_out	1'd1
32	pwm0_sync1_in	0	no	pwm0_out0a	1'd1
33	pwm0_sync2_in	0	no	pwm0_out0b	1'd1
34	pwm0_f0_in	0	no	pwm0_out1a	1'd1

		Default	Same Input		
Signal		Value If Signal from			
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Signals
35	pwm0_f1_in	0	no	pwm0_out1b	1'd1
36	pwm0_f2_in	0	no	pwm0_out2a	1'd1
37	<u> </u>	0	no	pwm0_out2b	1'd1
39	pcnt_sig_ch0_in0	0	no	_	1'd1
40	pcnt_sig_ch1_in0	0	no	_	1'd1
41	pcnt_ctrl_ch0_in0	0	no	_	1'd1
42	pcnt_ctrl_ch1_in0	0	no	_	1'd1
43	pcnt_sig_ch0_in1	0	no	_	1'd1
44	pcnt_sig_ch1_in1	0	no	_	1'd1
45	pcnt_ctrl_ch0_in1	0	no	_	1'd1
46	pcnt_ctrl_ch1_in1	0	no	_	1'd1
47	pcnt_sig_ch0_in2	0	no	_	1'd1
48	pcnt_sig_ch1_in2	0	no	_	1'd1
49	pcnt_ctrl_ch0_in2	0	no	_	1'd1
50	pcnt_ctrl_ch1_in2	0	no	_	1'd1
51	pcnt_sig_ch0_in3	0	no	_	1'd1
52	pcnt_sig_ch1_in3	0	no	_	1'd1
53	pcnt_ctrl_ch0_in3	0	no	_	1'd1
54	pcnt_ctrl_ch1_in3	0	no	_	1'd1
55	pcnt_sig_ch0_in4	0	no	_	1'd1
56	pcnt_sig_ch1_in4	0	no	_	1'd1
57	pcnt_ctrl_ch0_in4	0	no	_	1'd1
58	pcnt_ctrl_ch1_in4	0	no	_	1'd1
61	HSPICS1_in	0	no	HSPICS1_out	HSPICS1_oe
62	HSPICS2_in	0	no	HSPICS2_out	HSPICS2_oe
63	VSPICLK_in	0	yes	VSPICLK_out_mux	VSPICLK_oe
64	VSPIQ_in	0	yes	VSPIQ_out	VSPIQ_oe
65	VSPID_in	0	yes	VSPID_out	VSPID_oe
66	VSPIHD_in	0	yes	VSPIHD_out	VSPIHD_oe
67	VSPIWP_in	0	yes	VSPIWP_out	VSPIWP_oe
68	VSPICS0_in	0	yes	VSPICS0_out	VSPICS0_oe
69	VSPICS1_in	0	no	VSPICS1_out	VSPICS1_oe
70	VSPICS2_in	0	no	VSPICS2_out	VSPICS2_oe
71	pcnt_sig_ch0_in5	0	no	ledc_hs_sig_out0	1'd1
72	pcnt_sig_ch1_in5	0	no	ledc_hs_sig_out1	1'd1
73	pcnt_ctrl_ch0_in5	0	no	ledc_hs_sig_out2	1'd1
74	pcnt_ctrl_ch1_in5	0	no	ledc_hs_sig_out3	1'd1
75	pcnt_sig_ch0_in6	0	no	ledc_hs_sig_out4	1'd1
76	pcnt_sig_ch1_in6	0	no	ledc_hs_sig_out5	1'd1
77	pcnt_ctrl_ch0_in6	0	no	ledc_hs_sig_out6	1'd1
78	pcnt_ctrl_ch1_in6	0	no	ledc_hs_sig_out7	1'd1

		Default	Same Input		
Signal		Value If	Signal from		Output Enable of
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Signals
79	pcnt_sig_ch0_in7	ledc_ls_sig_out0	1'd1		
80	pcnt_sig_ch1_in7	0	no	ledc_ls_sig_out1	1'd1
81	pcnt_ctrl_ch0_in7	0	no	ledc_ls_sig_out2	1'd1
82	pcnt_ctrl_ch1_in7	0	no	ledc_ls_sig_out3	1'd1
83	rmt_sig_in0	0	no	ledc_ls_sig_out4	1'd1
84	rmt_sig_in1	0	no	ledc_ls_sig_out5	1'd1
85	rmt_sig_in2	0	no	ledc_ls_sig_out6	1'd1
86	rmt_sig_in3	0	no	ledc_ls_sig_out7	1'd1
87	rmt_sig_in4	0	no	rmt_sig_out0	1'd1
88	rmt_sig_in5	0	no	rmt_sig_out1	1'd1
89	rmt_sig_in6	0	no	rmt_sig_out2	1'd1
90	rmt_sig_in7	0	no	rmt_sig_out3	1'd1
91	_	_	_	rmt_sig_out4	1'd1
92	_	_	_	rmt_sig_out6	1'd1
94	twai_rx	1	no	rmt_sig_out7	1'd1
95	I2CEXT1_SCL_in	1	no	I2CEXT1_SCL_out	1'd1
96	I2CEXT1_SDA_in	1	no	I2CEXT1_SDA_out	1'd1
97	host_card_detect_n_1	0	no	host_ccmd_od_pullup_en_n	1'd1
98	host_card_detect_n_2	0	no	host_rst_n_1	1'd1
99	host_card_write_prt_1	0	no	host_rst_n_2	1'd1
100	host_card_write_prt_2	0	no	gpio_sd0_out	1'd1
101	host_card_int_n_1	0	no	gpio_sd1_out	1'd1
102	host_card_int_n_2	0	no	gpio_sd2_out	1'd1
103	pwm1_sync0_in	0	no	gpio_sd3_out	1'd1
104	pwm1_sync1_in	0	no	gpio_sd4_out	1'd1
105	pwm1_sync2_in	0	no	gpio_sd5_out	1'd1
106	pwm1_f0_in	0	no	gpio_sd6_out	1'd1
107	pwm1_f1_in	0	no	gpio_sd7_out	1'd1
108	pwm1_f2_in	0	no	pwm1_out0a	1'd1
109	pwm0_cap0_in	0	no	pwm1_out0b	1'd1
110	pwm0_cap1_in	0	no	pwm1_out1a	1'd1
111	pwm0_cap2_in	0	no	pwm1_out1b	1'd1
112	pwm1_cap0_in	0	no	pwm1_out2a	1'd1
113	pwm1_cap1_in	0	no	pwm1_out2b	1'd1
114	pwm1_cap2_in	0	no	pwm2_out1h	1'd1
115	pwm2_flta	1	no	pwm2_out1l	1'd1
116	pwm2_fltb	1	no	pwm2_out2h	1'd1
117	pwm2_cap1_in	0	no	pwm2_out2l	1'd1
118	pwm2_cap2_in	0	no	pwm2_out3h	1'd1
119	pwm2_cap3_in	0	no	pwm2_out3l	1'd1
120	pwm3_flta	1	no	pwm2_out4h	1'd1

		Default	Same Input				
Signal		Value If Signal from					
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Enable of Output Signals		
121	pwm3_fltb	1	no	pwm2_out4l	1'd1		
122	pwm3_cap1_in	0	no	1'd1			
123	pwm3_cap2_in	0	no	twai_tx	1'd1		
124	pwm3_cap3_in	0	no	twai_bus_off_on	1'd1		
125	_	_	_	twai_clkout	1'd1		
140	I2S0I_DATA_in0	0	no	I2S0O_DATA_out0	1'd1		
141	I2S0I_DATA_in1	0	no	I2S0O_DATA_out1	1'd1		
142	I2S0I_DATA_in2	0	no	I2S0O_DATA_out2	1'd1		
143	I2S0I_DATA_in3	0	no	I2S0O_DATA_out3	1'd1		
144	I2S0I_DATA_in4	0	no	I2S0O_DATA_out4	1'd1		
145	I2S0I_DATA_in5	0	no	I2S0O_DATA_out5	1'd1		
146	I2S0I_DATA_in6	0	no	I2S0O_DATA_out6	1'd1		
147	I2S0I_DATA_in7	0	no	I2S0O_DATA_out7	1'd1		
148	I2S0I_DATA_in8	0	no	I2S0O_DATA_out8	1'd1		
149	I2S0I_DATA_in9	0	no	I2S0O_DATA_out9	1'd1		
150	I2S0I_DATA_in10	0	no	I2S0O_DATA_out10	1'd1		
151	I2S0I_DATA_in11	0	no	I2S0O_DATA_out11	1'd1		
152	I2S0I_DATA_in12	0	no	I2S0O_DATA_out12	1'd1		
153	I2S0I_DATA_in13	0	no	I2S0O_DATA_out13	1'd1		
154	I2S0I_DATA_in14	0	no	I2S0O_DATA_out14	1'd1		
155	I2S0I_DATA_in15	0	no	I2S0O_DATA_out15	1'd1		
156	_	_	_	I2S0O_DATA_out16	1'd1		
157	_	_	_	I2S00_DATA_out17	1'd1		
158	_	_	_	I2S00_DATA_out18	1'd1		
159	_		_	I2S0O_DATA_out19	1'd1		
160	_	_	_	I2S00_DATA_out20	1'd1		
161	_	_	_	I2S0O_DATA_out21	1'd1		
162	_	_	<u> </u>	I2S0O_DATA_out22	1'd1		
163	_	_	_	I2S0O_DATA_out23	1'd1		
164	I2S1I_BCK_in	0	no	I2S1I_BCK_out	1'd1		
165	I2S1I_WS_in	0	no	I2S1I_WS_out	1'd1		
166	I2S1I_DATA_in0	0	no	I2S1O_DATA_out0	1'd1		
167	I2S1I_DATA_in1	0	no	I2S1O_DATA_out1	1'd1		
168	I2S1I_DATA_in2	0	no	I2S1O_DATA_out2	1'd1		
169	I2S1I_DATA_in3	0	no	I2S1O_DATA_out3	1'd1		
170	I2S1I_DATA_in4	0	no	I2S1O_DATA_out4	1'd1		
171	I2S1I_DATA_in5	0	no	I2S1O_DATA_out5	1'd1		
172	I2S1I_DATA_in6	0	no	I2S1O_DATA_out6	1'd1		
173	I2S1I_DATA_in7	0	no	I2S1O_DATA_out7	1'd1		
174	I2S1I_DATA_in8	0	no	I2S1O_DATA_out8	1'd1		
175	I2S1I_DATA_in9	0	no	I2S1O_DATA_out9	1'd1		

		Default	Same Input				
Signal		Value If	Signal from		Output Enable of		
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Signals		
176	I2S1I_DATA_in10	0	no	I2S1O_DATA_out10 1'd1			
177	I2S1I_DATA_in11	0	no	I2S1O_DATA_out11	1'd1		
178	I2S1I_DATA_in12	0	no	I2S1O_DATA_out12	1'd1		
179	I2S1I_DATA_in13	0	no	I2S1O_DATA_out13	1'd1		
180	I2S1I_DATA_in14	0	no	I2S1O_DATA_out14	1'd1		
181	I2S1I_DATA_in15	0	no	I2S1O_DATA_out15	1'd1		
182	_	_	_	I2S1O_DATA_out16	1'd1		
183	_	_	_	I2S1O_DATA_out17	1'd1		
184	_	_	_	I2S1O_DATA_out18	1'd1		
185	_	_	_	I2S1O_DATA_out19	1'd1		
186	_	_	_	I2S1O_DATA_out20	1'd1		
187	_	_	_	I2S1O_DATA_out21	1'd1		
188	_	_	_	I2S1O_DATA_out22	1'd1		
189	_	_	_	I2S1O_DATA_out23	1'd1		
190	I2S0I_H_SYNC	0	no	pwm3_out1h	1'd1		
191	I2S0I_V_SYNC	0	no	pwm3_out1l	1'd1		
192	I2S0I_H_ENABLE	0	no	pwm3_out2h	1'd1		
193	I2S1I_H_SYNC	0	no	pwm3_out2l	1'd1		
194	I2S1I_V_SYNC	0	no	pwm3_out3h	1'd1		
195	I2S1I_H_ENABLE	0	no	pwm3_out3l	1'd1		
196	_	_	_	pwm3_out4h	1'd1		
197	_	_	_	pwm3_out4l	1'd1		
198	U2RXD_in	0	yes	U2TXD_out	1'd1		
199	U2CTS_in	0	yes	U2RTS_out	1'd1		
200	emac_mdc_i	0	no	emac_mdc_o	emac_mdc_oe		
201	emac_mdi_i	0	no	emac_mdo_o	emac_mdo_o_e		
202	emac_crs_i	0	no	emac_crs_o	emac_crs_oe		
203	emac_col_i	0	no	emac_col_o	emac_col_oe		
204	pcmfsync_in	0	no	bt_audio0_irq	1'd1		
205	pcmclk_in	0	no	bt_audio1_irq	1'd1		
206	pcmdin	0	no	bt_audio2_irq	1'd1		
207	_	_	_	ble_audio0_irq	1'd1		
208	_	_	_	ble_audio1_irq	1'd1		
209	_	_	_	ble_audio2_irq	1'd1		
210	_			pcmfsync_out	pcmfsync_en		
211	_			pcmclk_out	pcmclk_en		
212	_			pcmdout	pcmdout_en		
213	_	_	_	ble_audio_sync0_p	1'd1		
214	_			ble_audio_sync1_p	1'd1		
215	_			ble_audio_sync2_p	1'd1		
224	_			sig_in_func224	1'd1		

		Default	Same Input		
Signal		Value If	Signal from		Output Enable of
No.	Input Signals	Unassigned*	IO_MUX Core	Output Signals	Output Signals
225	_	_	_	sig_in_func225	1'd1
226	_	_	_	sig_in_func226	1'd1
227	_	_	_	sig_in_func227	1'd1
228	_		_	sig_in_func228	1'd1

A.3. Ethernet_MAC

Table 6-3. Ethernet_MAC

Pin Name	Function6	MII (int_osc)	MII (ext_osc)	RMII (int_osc)	RMII (ext_osc)
GPIO0	EMAC_TX_CLK	TX_CLK (I)	TX_CLK (I)	CLK_OUT(O)	EXT_OSC_CLK(I)
GPIO5	EMAC_RX_CLK	RX_CLK (I)	RX_CLK (I)	_	_
GPIO21	EMAC_TX_EN	TX_EN(O)	TX_EN(O)	TX_EN(O)	TX_EN(O)
GPIO19	EMAC_TXD0	TXD[0](O)	TXD[0](O)	TXD[0](O)	TXD[0](O)
GPIO22	EMAC_TXD1	TXD[1](O)	TXD[1](O)	TXD[1](O)	TXD[1](O)
MTMS	EMAC_TXD2	TXD[2](O)	TXD[2](O)	_	_
MTDI	EMAC_TXD3	TXD[3](O)	TXD[3](O)	_	_
MTCK	EMAC_RX_ER	RX_ER(I)	RX_ER(I)	_	_
GPIO27	EMAC_RX_DV	RX_DV(I)	RX_DV(I)	CRS_DV(I)	CRS_DV(I)
GPIO25	EMAC_RXD0	RXD[0](I)	RXD[0](I)	RXD[0](I)	RXD[0](I)
GPIO26	EMAC_RXD1	RXD[1](I)	RXD[1](I)	RXD[1](I)	RXD[1](I)
U0TXD	EMAC_RXD2	RXD[2](I)	RXD[2](I)	_	_
MTDO	EMAC_RXD3	RXD[3](I)	RXD[3](I)	_	_
GPIO16	EMAC_CLK_OUT	CLK_OUT(O)	_	CLK_OUT(O)	_
GPIO17	EMAC_CLK_OUT_180	CLK_OUT_180(O)	_	CLK_OUT_180(O)	_
GPIO4	EMAC_TX_ER	TX_ERR(O)*	TX_ERR(O)*	_	_
In GPIO Matrix*	_	MDC(O)	MDC(O)	MDC(O)	MDC(O)
In GPIO Matrix*	_	MDIO(IO)	MDIO(IO)	MDIO(IO)	MDIO(IO)
In GPIO Matrix*	_	CRS(I)	CRS(I)	_	_
In GPIO Matrix*	_	COL(I)	COL(I)	_	_
*Notes: 1. The GF	PIO Matrix can be any GF	PIO. 2. The TX_ERR	(O) is optional.		

A.4. IO_MUX

For the list of IO_MUX pins, please see the next page.

Appendix A

	Supply Pin	Analog Pin	Digital Pin	Power Domain	Function0	Function1	Function2	Function0	Function1	Function0	Type	Function1	Type	Function2	type	Function3	Type	Function4	Type	Function5	Type	(2'd2: 20 mA)	At Reset	After Reset
	VDDA			VDDA supply in																				
		LNA_IN		VDD3P3																				
	VDD3P3			VDD3P3 supply in																				
	VDD3P3			VDD3P3 supply in																				
		SENSOR VP		VDD3P3_RTC		ADC1 CH0		RTC GPIO0		GP1036	1			GPIO36	1								oe=0, ie=0	oe=0, ie=0
		SENSOR CAPP		VDD3P3 RTC		ADC1 CH1		RTC GPIO1		GPIO37	i i			GPIO37	i								oe=0, ie=0	oe=0, ie=0
		SENSOR_CAPN		VDD3P3 RTC	_	ADC1 CH2		RTC GPIO2		GPIO38				GPIO38	i								oe=0, ie=0	oe=0, ie=0
		SENSOR_VN		VDD3P3_RTC		ADC1_CH2		RTC_GPIO3		GPI039				GPIO39									oe=0, ie=0	oe=0, ie=0
		CHIP PU		VDD3P3_RTC	_	ADC1_Ch3		HIC_GFIOS		GFIO39				GFIO39									0e=0, ie=0	00=0, 10=0
,		VDET 1		VDD3P3_RTC		ADC1 CH6		RTC GPIO4		GPIO34				GPIO34									oe=0. ie=0	oe=0, ie=0
,		VDET 2		VDD3P3_RTC		ADC1_CH6 ADC1_CH7		RTC GPIO5		GPI035				GPIO35									oe=0, ie=0	oe=0, ie=0
2		32K_XP		VDD3P3_RTC	MATERIA CONT. D.		TOLIOUS	RTC_GPIO9		GPIO35	I/O/T			GPIO35 GPIO32	I/O/T							2'd2		
2		32K_AP		VDD3P3_RTC	XTAL_32K_P	ADC1_CH4	TOUCHS	HIC_GPIO9		GPIU32	I/O/I			GPIU32	1/0/1							2 02	oe=0, ie=0	oe=0, ie=0
		32K_XN		VDD3P3 RTC	XTAL 32K N	ADC1 CH5	TOLICUR	RTC GPIO8		GPIO33	I/O/T			GPIO33	I/O/T							2'd2	oe=0. ie=0	oe-0, ie-0
,		ULI CAIV	GPI025	VDD3P3_RTC	DAC 1	ADC1_CHS	rocono	RTC GPIO6		GPI025	I/O/T			GPIO35	I/O/T					EMAC RXD0	1	2'd2	oe=0, ie=0	oe=0, ie=0
,			GPIO26	VDD3P3_RTC VDD3P3_RTC	DAC 2	ADC2_CH8 ADC2_CH9		RTC_GPI06		GPI026	I/O/T			GPIO25 GPIO26	I/O/T						i	2'd2	oe=0, ie=0	oe=0, ie=0
					DMG_2		TOUGUE														1			
			GPIO27	VDD3P3_RTC	-	ADC2_CH7		RTC_GPIO17		GPIO27	I/O/T	HODIOLI:		GPIO27	I/O/T	1100 011		00.014	10	EMAC_RX_DV		2'd2	oe=0, ie=0	oe=0, ie=0
			MTMS	VDD3P3_RTC		ADC2_CH6		RTC_GPIO16		MTMS	10	HSPICLK		GPIO14		HS2_CLK	0		10	EMAC_TXD2	0	2'd2	oe=0, ie=0	oe=0, ie=1,
3			MTDI	VDD3P3_RTC		ADC2_CH5	TOUCH5	RTC_GPIO15		MTDI	l1	HSPIQ	I/O/T	GPIO12	I/O/T	HS2_DATA2	11/O/T	SD_DATA2	11/O/T	EMAC_TXD3	0	2'd2	oe=0, ie=1, wpd	oe=0, ie=1, 1
•	VDD3P3_RTC			VDD3P3_RTC supply in																				
1			MTCK	VDD3P3_RTC		ADC2_CH4		RTC_GPIO14		MTCK	l1	HSPID		GPIO13		HS2_DATA3			11/O/T		1	2'd2	oe=0, ie=0	oe=0, ie=1,
			MTDO	VDD3P3_RTC		ADC2_CH3	TOUCH3		I2C_SDA	MTDO	O/T	HSPICS0	I/O/T	GPIO15	I/O/T		11/O/T		11/O/T	EMAC_RXD3	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1,
			GPIO2	VDD3P3_RTC		ADC2_CH2	TOUCH2		I2C_SCL	GPIO2	I/O/T	HSPIWP	I/O/T	GPIO2	I/O/T	HS2_DATA0	11/O/T	SD_DATA0	11/O/T			2'd2	oe=0, ie=1, wpd	oe=0, ie=1,
			GPI00	VDD3P3_RTC		ADC2_CH1	TOUCH1	RTC_GPI011	I2C_SDA	GP100	I/O/T	CLK_OUT1	0	GPI00	I/O/T					EMAC_TX_CLK	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1,
			GPIO4	VDD3P3_RTC		ADC2_CH0	TOUCH0	RTC_GPIO10	I2C_SCL	GPIO4	I/O/T	HSPIHD	I/O/T	GPIO4	I/O/T	HS2_DATA1	11/O/T	SD_DATA1	11/O/T	EMAC_TX_ER	0	2'd2	oe=0, ie=1, wpd	oe=0, ie=1, 1
5			GPIO16	VDD_SDIO						GPIO16	I/O/T			GPIO16	I/O/T	HS1_DATA4	I1/O/T	U2RXD	l1	EMAC_CLK_OUT	0	2'd2	oe=0, ie=0	oe=0, ie=1
6	VDD_SDIO			VDD_SDIO supply out/in																				
7			GPIO17	VDD_SDIO						GPIO17	I/O/T			GPIO17	I/O/T				0	EMAC_CLK_OUT_180	0	2'd2	oe=0, ie=0	oe=0, ie=1
3			SD_DATA_2							SD_DATA2	11/O/T		I/O/T	GPIO9		HS1_DATA2			l1			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
9			SD_DATA_3	VDD_SDIO						SD_DATA3	10/O/T	SPIWP	I/O/T	GPIO10	I/O/T	HS1_DATA3	11/O/T	U1TXD	0			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
)			SD_CMD	VDD_SDIO						SD_CMD	11/O/T	SPICS0		GPIO11		HS1_CMD		U1RTS	0			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
1			SD_CLK	VDD_SDIO						SD_CLK	10	SPICLK	I/O/T	GPI06	I/O/T	HS1_CLK	0	U1CTS	11			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
2			SD_DATA_0	VDD_SDIO						SD_DATA0	11/O/T	SPIQ	I/O/T	GPIO7	I/O/T	HS1_DATA0	I1/O/T	U2RTS	0			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
3			SD_DATA_1	VDD_SDIO						SD_DATA1	11/O/T	SPID	I/O/T	GPI08	I/O/T	HS1_DATA1	11/O/T	U2CTS	11			2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
			GPIO5	VDD3P3_CPU						GPI05	I/O/T	VSPICS0	I/O/T	GPIO5	I/O/T	HS1_DATA6	11/O/T			EMAC_RX_CLK	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1, 1
5			GPIO18	VDD3P3_CPU						GPIO18	I/O/T	VSPICLK	I/O/T	GPIO18	I/O/T	HS1_DATA7	11/O/T					2'd2	oe=0, ie=0	oe=0, ie=1
3			GPIO23	VDD3P3_CPU						GPI023	I/O/T	VSPID	I/O/T	GPIO23	I/O/T	HS1_STROBE	10					2'd2	oe=0, ie=0	oe=0, ie=1
	VDD3P3_CPU			VDD3P3_CPU supply in																				
3			GPIO19	VDD3P3_CPU						GPIO19	I/O/T	VSPIQ	I/O/T			U0CTS	l1			EMAC_TXD0	0	2'd2	oe=0, ie=0	oe=0, ie=1
•			GPIO22	VDD3P3_CPU						GP1022	I/O/T	VSPIWP	I/O/T			UORTS	0			EMAC_TXD1	0	2'd2	oe=0, ie=0	oe=0, ie=1
)			UORXD	VDD3P3_CPU						UORXD	l1	CLK_OUT2		GPIO3	I/O/T							2'd2	oe=0, ie=1, wpu	oe=0, ie=1, v
1			U0TXD	VDD3P3_CPU						U0TXD	0	CLK_OUT3	0	GPIO1	I/O/T					EMAC_RXD2	1	2'd2	oe=0, ie=1, wpu	oe=0, ie=1, 1
2			GPI021	VDD3P3_CPU						GPI021	I/O/T	VSPIHD	I/O/T	GPIO21	I/O/T					EMAC_TX_EN	0	2'd2	oe=0, ie=0	oe=0, ie=1
3	VDDA			VDDA supply in																				
		XTAL_N		VDDA																				
5		XTAL_P		VDDA																				
3	VDDA			VDDA supply in																				
7		CAP2		VDDA																				
8		CAP1		VDDA																				
otal		14	26																					
lumber																								

Revision History

Date	Version	Release notes
2023.07	v4.3	 Updated formatting throughout the document Updated wording in some sections Added a new section 2.2.1 Restrictions for GPIOs and RTC_GPIOs Added a new section 3.1.5 Cache
2023.01	v4.2	 Removed contents about hall sensor according to PCN20221202 Section 3.9.3 Touch Sensor: Added a note about limited applications of touch sensor
2022.12	v4.1	 Section 3.1.1 CPU: Added link to Xtensa® Instruction Set Architecture (ISA) Summary Table 1-1 Comparison: Updated the description about chip revision upgrade
2022.10	v4.0	 Section Product Overview: Updated the description Table 2-6 Pin Mapping Between Chip and Flash/PSRAM: Added two notes below the table Section 2.3.1 Power Scheme: Added a new item to "Notes on power supply" Updated Figure 1-1 ESP32 Series Nomenclature Table 1-1 Comparison: Added a new column "VDD_SDIO Voltage" Section 3.8.12 TWAI® Controller: Updated the bit rates Added Not Recommended for New Designs (NRND) label to ESP32-S0WD
2022.03	v3.9	 Added a new chip variant ESP32-D0WDR2-V3 Added Table 2-5 Pin Mapping Between Chip and Flash/PSRAM and Table 2-6 Pin Mapping Between Chip and Flash/PSRAM Updated Figure 5-2 QFN48 (5x5 mm) Package Updated Appendix IO_MUX Updated Table 3-6 Peripheral Pin Configurations Section 3 Functional Description: Added links to ESP32 Technical Reference Manual

Date	Version	Release notes
2021.10	v3.8	 Upgraded ESP32-U4WDH variant from single-core to dual-core, see PCN-2021-021. The single-core version coexists with the new dual-core version around December 2, 2021. The physical product is subject to batch tracking. Section CPU and Memory: Added CoreMark® score Section 3.8.12 TWAI® Controller: Updated the description Added Not Recommended for New Designs (NRND) label to the ESP32-D0WDQ6-V3 variant Section 5 Packaging: Provided a link to Espressif Chip Package Information Updated Section Bluetooth
2021.07	v3.7	 Removed ESP32-D2WD variant Section 3.7.1 Bluetooth Radio and Baseband: Updated wording Updated pin function numbers starting from Function0 Added Not Recommended for New Designs (NRND) label to ESP32-D0WD and ESP32-D0WDQ6 variants
2021.03	V3.6	 Updated Figure Block Diagram Updated Table 4-5 Reliability Updated Figure 2-3 ESP32 Power Scheme Updated Table 4-2 Recommended Power Supply Characteristics Updated the notes below Table 2-2 Description of Timing Parameters for Power-up and Reset Table 3-1, 3-6, Section 3.8.12: Added more information about TWAI®
2021.01	V3.5	 Table 2-1 Pin Overview: Updated the description for CAP2 from 3 nF to 3.3 nF Section Advanced Peripheral Interfaces: Added TWAI[®] Updated Figure Block Diagram Appendix IO_MUX: Updated the reset values for MTCK, MTMS, GPIO27
2020.04	V3.4	 Added one chip variant: ESP32-U4WDH Updated some figures in Table 3-2, 4-6, 4-7, 4-9, 4-11, 4-12 Table 4-7 Receiver –Basic Data Rate: Added a note under the table
2020.01	V3.3	 Added two chip variants: ESP32-D0WD-V3 and ESP32-D0WDQ6-V3. Added a note under Table 3-3 Analog-to-Digital Converter (ADC)

Date	Version	Release notes
2019.10	V3.2	Updated Figure 2-4 Visualization of Timing Parameters for Power-up and Reset
2019.07	V3.1	 Table 2-1 Pin Overview: Added pin-pin mapping between ESP32-D2WD and the in-package flash under the table Updated Figure 1-1 ESP32 Series Nomenclature
2019.04	V3.0	 Section 2.4 Strapping Pins: Added information about the setup and hold times for the strapping pins
2019.02	V2.9	 Table 2-1 Pin Overview: Applied new formatting Table 3-6 Peripheral Pin Configurations: Fixed typos with respect to the ADC1 channel mappings
2019.01	V2.8	 Changed the RF power control range in Table 4-7, 4-10, and 4-12 from -12 ~ +12 to -12 ~ +9 dBm; Small text changes
2018.11	V2.7	 Updated Section Applications Table IO_MUX: Updated pin statuses at reset and after reset
2018.10	V2.6	Section 5 Packaging: Updated QFN package drawings
2018.08	V2.5	 Table 4-1 Absolute Maximum Ratings: Added "Cumulative IO output current" Table 4-3 DC Characteristics (3.3 V, 25 °C): Added more parameters Appendix IO_MUX: Changed the power domain names to be consistent with the pin names
2018.07	V2.4	 Deleted information on Packet Traffic Arbitration (PTA); Added Figure 2-4 Visualization of Timing Parameters for Power-up and Reset Table 3-2 Power Management Unit (PMU): Added the current consumption figures for dual-core SoCs Updated Section 3.9.1 Analog-to-Digital Converter (ADC)

Date	Version	Release notes
2018.06	V2.3	Table 3-2 Power Management Unit (PMU): Added the current consumption figures at CPU frequency of 160 MHz
2018.05	V2.2	 Table 2-1 Pin Overview: Changed the voltage range of VDD3P3_RTC from 1.8-3.6 V to 2.3-3.6 V Updated Section 2.3.1 Power Scheme Updated Section 3.1.3 External Flash and RAM Updated Table 3-2 Power Management Unit (PMU) Removed content about temperature sensor; Changes to electrical characteristics: Updated Table 4-1 Absolute Maximum Ratings Added Table 4-2 Recommended Power Supply Characteristics Added Table 4-3 DC Characteristics (3.3 V, 25 °C) Added Table 4-5 Reliability Table 4-7 Receiver –Basic Data Rate: Updated the values of "Gain control step" and "Adjacent channel transmit power" Table 4-10 Transmitter –Enhanced Data Rate: Updated the values of "Gain control step", "π/4 DQPSK modulation accuracy", "8 DPSK modulation accuracy", and "In-band spurious emissions" Table 4-12 Transmitter: Updated the values of "Gain control step" and "Adjacent channel transmit power"
2018.01	V2.1	 Deleted software-specific features; Deleted information on LNA pre-amplifier; Specified the CPU speed and flash speed of ESP32-D2WD; Section 2.3.1 Power Scheme: Added notes
2017.12	V2.0	Section 5 Packaging: Added a note on the sequence of pin number
2017.10	V1.9	 Table 2-1 Pin Overview: Updated the description of pin CHIP_PU Section 2.3.1 Power Scheme: Added a note Section 2.4 Strapping Pins: Updated the description of the chip's system reset Section 3.6.4 Wi-Fi Radio and Baseband: Added a description of antenna diversity and selection Table 3-2 Power Management Unit (PMU): Deleted "Association sleep pattern", added notes to Active sleep and Modem-sleep

Date	Version	Release notes
2017.08	V1.8	 Added Table 3-6 Peripheral Pin Configurations Figure Block Diagram: Corrected a typo
2017.08	V1.7	 Section Bluetooth: Changed the transmitting power to +12 dBm; the sensitivity of NZIF receiver to -97 dBm Table 2-1 Pin Overview: Added a note section 3.1.1 CPU: Added 160 MHz clock frequency Section 3.6.4 Wi-Fi Radio and Baseband: Changed the transmitting power from 21 dBm to 20.5 dBm Section 3.7.1 Bluetooth Radio and Baseband: Changed the dynamic control range of class-1, class-2 and class-3 transmit output powers to "up to 24 dBm"; changed the dynamic range of NZIF receiver sensitivity to "over 97 dB" Table 3-2 Power Management Unit (PMU): Added two notes Updated Section 3.8.1 General Purpose Input / Output Interface (GPIO) Updated Section 3.8.11 SDIO/SPI Slave Controller Updated Table 4-1 Absolute Maximum Ratings Table 4.4 RF Current Consumption in Active Mode: Changed the duty cycle on which the transmitters' measurements are based to 50%. Table 4-6 Wi-Fi Radio: Added a note on "Output impedance" Table 4-7, 4-9, 4-11: Updated parameter "Sensitivity" Table 4-7, 4-9, 4-11: Updated parameters "RF transmit power" and "RF power control range"; added parameter "Gain control step" Deleted Chapters: "Touch Sensor" and "Code Examples"; Added a link to certification download.
2017.06	V1.6	 Section Complete Integration Solution: Changed the number of external components to 20 Section 3.8.1 General Purpose Input / Output Interface (GPIO): Changed the number of GPIO pins to 34
2017.06	V1.5	 Section CPU and Memory: Changed the power supply range Section 2.3.1 Power Scheme: Updated the note Updated Table 4-1 Absolute Maximum Ratings Table Notes on ESP32 Pin Lists: Changed the drive strength values of the digital output pins in Note 8 Added the option to subscribe for notifications of documentation changes

Date	Version	Release notes
2017.05	V1.4	 Section Clocks and Timers: Added a note to the frequency of the external crystal oscillator Section 2.4 Strapping Pins: Added a note Updated Section 3.3 RTC and Low-power Management Table 4-1 Absolute Maximum Ratings: Changed the maximum driving capability from 12 mA to 80 mA Table 4-6 Wi-Fi Radio: Changed the input impedance value of 50Ω to output impedance value of 30+j10 Ω Table Notes on ESP32 Pin Lists: Added a note to No.8 Table IO_MUX: Deleted GPIO20
2017.04	V1.3	 Added Appendix Notes on ESP32 Pin Lists Updated Table 4-6 Wi-Fi Radio Updated Figure 2-2 ESP32 Pin Layout (QFN 5*5, Top View)
2017.03	V1.2	 Table 2-1 Pin Overview: Added a note Section 3.1.2 Internal Memory: Updated the note
2017.02	V1.1	 Added Section 1 ESP32 Series Comparison Updated Section MCU and Advanced Features Updated Section Block Diagram Updated Section 2 Pins Updated Section CPU and Memory Updated Section 3.2.3 Audio PLL Clock Updated Section 4.1 Absolute Maximum Ratings Updated Section 5 Packaging Updated Section Related Documentation and Resources
2016.08	V1.0	First release.

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2023 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

5.3. Convertor Usb-TTL datasheet

FT232RL USB TO TTL 5V 3.3V Convertor

The USB to TTL serial adapter is based on the high quality and very popular FTDI FT232RL chipset and is an excellent way to connect TTL serial devices to a PC through a USB port.

This USB to TTL serial adapter is ideal for many uses, including:

- Programming microprocessors such as ARM, AVR, etc
- Working with computing hardware such as routers and switches
- Serial communication with many devices such as GPS devices
- Serial terminals on devices like the Raspberry Pi

Unlike most USB to TTL serial adapters, this adapter supports both 5V AND 3.3V operation! Simply set the jumper as required to choose between 5V and 3.3V as labelled on the board.

The adapter comes with a right-angle connector fitted allowing you to use it straight away. If you need to access any of the other inputs or outputs of the FT232RL, all the useful signals are provided as through-hole solder pads - ideal for use with straight headers into a breadboard, for example.

The main connector has 6 pins:

- **DTR:** Data Terminal Ready an output used for flow control
- **RX:** Serial data Receive pin
- TX: Serial data Transmit pin
- VCC: Positive voltage output this is controlled by the jumper. If the jumper is set to 5V, this will provide a 5V output. If the jumper is set to 3.3V, this will provide a 3.3V output.
- CTS: Clear To Send an input used for flow control
- **GND:** Ground or 0V

For most uses, you can simply connect the following pins:

- **RX** on this board to the **TX** pin on your device
- TX on this board to the RX pin on your device
- **GND** on this board to **GND** on your device

The **VCC** pin is ideal for powering small devices such as homemade circuits. This pin should not be connected when a device has a separate power supply as this may damage both devices.

Please note that in 5V mode the maximum current draw on this pin is approximately 500mA. In 3.3V mode the maximum current draw on **VCC** is approximately 50mA.

There are also several pins available as solder pads. These pins are labelled on the board. Connecting to these pins is not usually required and you should check the FTDI datasheet before doing so.

This adapter supports the following operating systems:

- Windows 2000 (32 bit)
- Windows XP (32 and 64 bit)
- Windows Vista (32 and 64 bit)
- Windows 7 (32 and 64 bit)
- Windows 8 (32 and 64 bit)
- Windows 8.1 (32 and 64 bit)
- Linux 2.6+
- Mac OS X 10.4, 10.5, 10.6, 10.7, 10.8 and 10.9

The FT232RL is a USB to serial UART interface IC with the following advanced features:

- Single chip USB to asynchronous serial data transfer interface.
- Entire USB protocol handled on the chip. No USB specific firmware programming required.
- Fully integrated 1024 bit EEPROM storing device descriptors and CBUS I/O configuration.
- Fully integrated USB termination resistors.
- Fully integrated clock generation with no external crystal required plus optional clock output selection enabling a glue-less interface to external MCU or FPGA.
- Data transfer rates from 300 baud to 3 Mbaud (RS422, RS485, RS232) at TTL levels.
- 128 byte receive buffer and 256 byte transmit buffer utilising buffer smoothing technology to allow for high data throughput.

Features of FT232RL USB TO TTL 5V 3.3V Convertor

- Material: PCB + Electronic Component
- Support 3.3V, 5VMain Colour: Red
- Chipset: FT232RL
- USB power has over current protection, using 500MA self-restore fuse
- RXD/TXD transceiver communication indicator
- Pin definition: DTR,RXD,TX,VCC,CTS,GND
- Pitch:2.54mm
- Module Size: About 36mm(length)*17.5mm(width)
- Interface : Mini USB

5.4.	Sensor	Ultrasónico	HC-SR04	datasheet

Ultrasonic Ranging Module HC - SR04

Product features:

Ultrasonic ranging module HC - SR04 provides 2cm - 400cm non-contact measurement function, the ranging accuracy can reach to 3mm. The modules includes ultrasonic transmitters, receiver and control circuit. The basic principle of work:

- (1) Using IO trigger for at least 10us high level signal,
- (2) The Module automatically sends eight 40 kHz and detect whether there is a pulse signal back.
- (3) IF the signal back, through high level, time of high output IO duration is the time from sending ultrasonic to returning.

Test distance = (high level time \times velocity of sound (340M/S) / 2,

Wire connecting direct as following:

- 5V Supply
- Trigger Pulse Input
- Echo Pulse Output
- 0V Ground

Electric Parameter

Working Voltage	DC 5 V				
Working Current	15mA				
Working Frequency	40Hz				
Max Range	4m				
Min Range	2cm				
MeasuringAngle	15 degree				
Trigger Input Signal	10uS TTL pulse				
Echo Output Signal	Input TTL lever signal and the range in proportion				
Dimension	45*20*15mm				

Timing diagram

The Timing diagram is shown below. You only need to supply a short 10uS pulse to the trigger input to start the ranging, and then the module will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo. The Echo is a distance object that is pulse width and the range in proportion .You can calculate the range through the time interval between sending trigger signal and receiving echo signal. Formula: uS / 58 = centimeters or uS / 148 = inch; or: the range = high level time * velocity (340M/S) / 2; we suggest to use over 60ms measurement cycle, in order to prevent trigger signal to the echo signal.

Attention:

- The module is not suggested to connect directly to electric, if connected electric, the GND terminal should be connected the module first, otherwise, it will affect the normal work of the module.
- When tested objects, the range of area is not less than 0.5 square meters and the plane requests as smooth as possible, otherwise, it will affect the results of measuring.

www.Elecfreaks.com

5.5. ESP32-CAM datasheet

ESP32-CAM Development Board

SKU:DFR0602

INTRODUCTION

ESP32-CAM is a low-cost ESP32-based development board with onboard camera, small in size. It is an ideal solution for IoT application, prototypes constructions and DIY projects.

The board integrates WiFi, traditional Bluetooth and low power BLE, with 2 high-performance 32-bit LX6 CPUs. It adopts 7-stage pipeline architecture, on-chip sensor, Hall sensor, temperature sensor and so on, and its main frequency adjustment ranges from 80MHz to 240MHz.

Fully compliant with WiFi 802.11b/g/n/e/i and Bluetooth 4.2 standards, it can be used as a master mode to build an independent network controller, or as a slave to other host MCUs to add networking capabilities to existing devices

ESP32-CAM can be widely used in various IoT applications. It is suitable for home smart devices, industrial wireless control, wireless monitoring, QR wireless identification, wireless positioning system signals and other IoT applications. It is an ideal solution for IoT applications.

Schematic Diagram

Dimension Diagram

Notes:

1.Please be sure that the power supply for the module should be at least 5V 2A, otherwise maybe there would be water ripple appearing on the image.

- 2.ESP32 GPIO32 pin is used to control the power of the camera, so when the camera is in working, pull GPIO32 pin low.
- 3. Since IO pin is connected to camera XCLK, it should be left floating in using, and do not connect it to high/low level.
- 4. The product has been equipped with default firmware before leaving the factory, and we do not provide additional ones for you to download. So, please be cautious when you choose to burn other firmwares.

FEATURES

- Up to 160MHz clock speed, Summary computing power up to 600 DMIPS
- Built-in 520 KB SRAM, external 4MPSRAM
- Supports UART/SPI/I2C/PWM/ADC/DAC
- Support OV2640 and OV7670 cameras, Built-in Flash lamp.
- Support image WiFI upload
- Support TF card
- Supports multiple sleep modes.
- Embedded Lwip and FreeRTOS
- Supports STA/AP/STA+AP operation mode
- Support Smart Config/AirKiss technology
- Support for serial port local and remote firmware upgrades (FOTA)

SPECIFICATION

• SPI Flash: default 32Mbit

• RAM: built-in 520 KB+external 4MPSRAM

Dimension: 27*40.5*4.5 (±0.2) mm/1.06*1.59*0.18"

Bluetooth: Bluetooth 4.2 BR/EDR and BLE standards

• Wi-Fi: 802.11b/g/n/e/i

• Support Interface: UART, SPI, I2C, PWM

• Support TF card: maximum support 4G

• IO port: 9

• Serial Port Baud-rate: Default 115200 bps

- Image Output Format: JPEG(OV2640 support only), BMP, GRAYSCALE
- Spectrum Range: 2412 ~2484MHz
- Antenna: onboard PCB antenna, gain 2dBi
- Transmit Power: 802.11b: 17±2 dBm (@11Mbps);

802.11g: 14±2 dBm (@54Mbps); 802.11n: 13±2 dBm (@MCS7)

• Receiving Sensitivity: CCK, 1 Mbps: -90dBm;

CCK, 11 Mbps: -85dBm; 6 Mbps (1/2 BPSK): -88dBm; 54 Mbps (3/4 64-QAM): -70dBm; MCS7 (65 Mbps, 72.2 Mbps): -67dBm

Power consumption: Turn off the flash: 180mA@5V

Turn on the flash and adjust the brightness to the maximum:

310mA@5V

Deep-sleep: the lowest power consumption can reach 6mA@5V

Moderm-sleep: up to 20mA@5V Light-sleep: up to 6.7mA@5V

Security: WPA/WPA2/WPA2-Enterprise/WPS

Power supply range: 5V

• Operating temperature: -20 °C ~ 85 °C

• Sorage environment: -40 °C ~ 90 °C, < 90%RH

• Weight: 10g

SHIPPING LIST

ESP32-CAM Development Board x1

5	6.	Micro	Servo	SG90	datasheet
v.	v.	TATICIO	Dervo	$\mathbf{D}\mathbf{G}\mathbf{D}\mathbf{U}$	uavasiieev

SG90 9 g Micro Servo

Tiny and lightweight with high output power. Servo can rotate approximately 180 degrees (90 in each direction), and works just like the standard kinds but *smaller*. You can use any servo code, hardware or library to control these servos. Good for beginners who want to make stuff move without building a motor controller with feedback & gear box, especially since it will fit in small places. It comes with a 3 horns (arms) and hardware.

Specifications

• Weight: 9 g

• Dimension: 22.2 x 11.8 x 31 mm approx.

• Stall torque: 1.8 kgf·cm

Operating speed: 0.1 s/60 degree
Operating voltage: 4.8 V (~5V)

• Dead band width: 10 μs

• Temperature range: $0 \, ^{\circ}\text{C} - 55 \, ^{\circ}\text{C}$

Position "0" (1.5 ms pulse) is middle, "90" (\sim 2 ms pulse) is all the way to the right, "-90" (\sim 1 ms pulse) is all the way to the left.