2021 - PHY 981 - Homework set 13 (due Apr 18)

- 1. link to lecture notes link to nushellx.zip link to toi.zip link to mingw-w64.zip
- 2. Read Chapters 34.
- 3. What are the allowed J values for 19 O in the $d_{5/2}$ model space? What are the spectroscopic factors from the 20 O ground state to each of these states in 19 O?
- 4. A $^{21}\text{O}(d,p)^{22}\text{O}$ reaction is carried out. What are the possible final states and the spectroscopic factors to each of these in the $0d_{5/2}$ model space? How does the sum over all final states relate to the number of $0d_{5/2}$ neutrons in the ground state of ^{21}O ?
- 5. Confirm your results from the last two problems using NuShellX.
- 6. Calculate the spectroscopic factors for the ²²Ne ground state going to final states in ²¹Ne in the *sd* model space with the USDB Hamiltonian. Compare the results to experiment for states in ²¹Ne up to 5 MeV in excitation energy.
- 7. In the previous problem, how does the sum over the lowest $10 \, 5/2^+$ states compare to the average number of $0d_{5/2}$ neutrons calculated to be in the ground state of $^{22}\mathrm{Ne}$.
- 8. How do the spectroscopic factors for ^{21}O to ^{22}O change if the model space is increased to the full sd shell using the USDB Hamiltonian.
- 9. An experiment is carried out at FRIB to knock out a proton from the $7/2^-$ ground state of 55 Co going to 0^+ , 2^+ , 4^+ and 6^+ states in 54 Fe. In the $0f_{7/2}$ model space what are the spectroscopic factors for these. Hint: use the sum rule for adding a proton to the 54 Fe states to make 55 Co.
- 10. For the previous problem the answer for going to the 6^+ state in 54 Fe is $C^2S = (13/4)$. What is the spectroscopic factor C^2S for going from the $7/2^-$

ground state of 55 Co the 6^+ T=1 state of 54 Co that is the isobaric analogue of the 6^+ state in 54 Fe.

11. Use the USDB Hamiltonian to calculate the spectroscopic factors for the the second 1⁺ state in ²⁰Na to the 1/2⁺ ground state and 5/2⁺ first excited states of ¹⁹F. This state is associated with the state observed experimentally at 3.001 MeV in ²⁰Na. Calculate the proton decay width of this state using the experimental value for the proton decay Q value. Compare the obtained width to experiment.