Vorlesungsmitschrift

Algorithmen und Berechenbarkeit

Vorlesung 16

Letztes Update: 2018/02/06 - 00:39 Uhr

Das Allgemeine Halteproblem: Die Sprache \mathcal{H}_{all}

Die Sprache \mathcal{H}_{all} ist definiert als

$$\mathcal{H}_{all} = \{ \langle M \rangle \mid M \text{ hält auf allen Eingaben} \}$$

Das Allgemeine Halteproblem besteht aus den beiden Teilsätzen, dass sowohl \mathcal{H}_{all} als auch $\overline{\mathcal{H}_{all}}$ nicht semi-entscheidbar sind.

Satz: $\overline{\mathcal{H}_{all}}$ ist nicht semi-entscheidbar.

Beweis: Für den Beweis wird eine Sprache \mathcal{X} gesucht, die nicht semi-entscheidbar ist. Anschließend wird $\mathcal{X} \leq \overline{\mathcal{H}_{all}}$.

Für \mathcal{X} eignen sich einige Sprachen: Es wurde bereits gezeigt, dass \mathcal{H}_{ϵ} semi-entscheidbar aber nicht entscheidbar ist (\mathcal{H}_{ϵ} ist unentscheidbar und semi-entscheidbar). Deshalb ist auch bekannt, dass $\overline{\mathcal{H}_{\epsilon}}$ nicht semi-entscheidbar ist.

Einschub: Entscheidbarkeit/Unentscheidbarkeit - Semi-entscheidbar

Un- aber semi-entscheidbare Sprachen

Entscheidbare Sprachen

Unentscheidbare-Sprachen

Daraus ergeben sich beispielhaft die folgenden Zusammenhänge

- \rightarrow Wenn entscheidbar \Rightarrow auch semi-entscheidbar
- \rightarrow Wenn semi-entscheidbar $\not\Rightarrow$ entscheidbar
- ightarrow Wenn unentscheidbar ightarrow semi-entscheidbar
- \rightarrow Wenn nicht semi-entscheidbar \Rightarrow unentscheidbar

Beweis-Fortführung: Wählt man nun $\mathcal{X} = \overline{\mathcal{H}_{\epsilon}}$ (man zeigt also $\overline{\mathcal{H}_{\epsilon}} \leq \overline{\mathcal{X}_{all}}$) wird eine Funktion f' benötigt, sodass gilt

$$x \in \overline{\mathcal{H}_{\epsilon}} \quad \Leftrightarrow \quad f(x) \in \overline{\mathcal{H}_{all}}$$

oder äquivalent

$$x \in \mathcal{H}_{\epsilon} \quad \Leftrightarrow \quad f(x) \in \mathcal{H}_{all}$$

und damit

$$\mathcal{H}_{\epsilon} \leq \mathcal{H}_{all}$$

Die Funktion f wird wie folgt definiert bzw. berechnet: Sei w die Eingabe für \mathcal{H}_{ϵ} .

- Falls w keine gültige TM-Kodierung, dann setzt man f(w) = w.
- Falls w eine gültige TM-Kodierung <M>, dann setzt man f(w) = <M $_{\epsilon}^*>$ mit der folgenden Eigenschaft: <M $_{\epsilon}^*>$ ignoriert und simuliert \mathcal{M} mit der Eingabe ϵ .

Korrektheit der Konstruktion:

Falls w keine TM-Kodierung $\Rightarrow w \notin \mathcal{H}_{\epsilon}$ und $f(w) \notin \mathcal{H}_{all}$. Andernfalls gilt w = <M> und $f(w) = <M_{\epsilon}^*>$.

- $w \in \mathcal{H}_{\epsilon}$
 - $\Rightarrow \mathcal{M}$ hält auf der Eingabe ϵ
 - \Rightarrow <M_{\epsilon}* > hält auf allen Eingaben
 - $\Rightarrow f(w) \in \mathcal{H}_{all}$
- $w \notin \mathcal{H}_{\epsilon}$
 - \Rightarrow ${\mathcal M}$ hält nicht auf der Eingabe ϵ
 - \Rightarrow <M_{\epsilon}^*> hält nie
 - $\Rightarrow f(w) \notin \mathcal{H}_{all}$

Somit gilt:

$$w \in \mathcal{H}_{\epsilon} \quad \Leftrightarrow \quad f(w) \in \mathcal{H}_{all}, \text{ also ist}$$

$$\mathcal{H}_{\epsilon} \leq \mathcal{H}_{all} \quad \Rightarrow \quad \overline{\mathcal{H}_{\epsilon}} \leq \overline{\mathcal{H}_{all}}$$

$$\Rightarrow \quad \overline{\mathcal{H}_{all}} \text{ nicht entscheidbar}$$

Satz: \mathcal{H}_{all} ist nicht semi-entscheidbar.

Beweis: Es wird wieder mit $\overline{\mathcal{H}_{\epsilon}} \leq \mathcal{H}_{all}$ argumentiert. Man konstruiert eine Funktion f, die JA-Instanzen von $\overline{\mathcal{H}_{\epsilon}}$ auf JA-Instanzen von \mathcal{H}_{all} und NEIN-Instanzen von $\overline{\mathcal{H}_{\epsilon}}$ auf NEIN-Instanzen von \mathcal{H}_{all} abbildet.

Sei w die Eingabe für $\overline{\mathcal{H}_{\epsilon}}$

- Falls w keine gültige TM-Kodierung, dann gilt $w \in \overline{\mathcal{H}_{\epsilon}}$. Außerdem wird $f(w) = \text{Kodierung einer TM in } \mathcal{H}_{all}$.
- Falls w eine gültige TM-Kodierung <M>, dann berechnet man eine Kodierung <M $'_{\mathcal{M}}>$ einer TM $\mathcal{M}'_{\mathcal{M}}$, die auf der Eingabe x Folgendes tut: Falls |x|=i, simuliert sie die ersten i-Schritte von \mathcal{M} auf der Eingabe ϵ . Wenn \mathcal{M} dabei hält, geht sie in eine Endlosschleife, ansonsten hält sie an: f(w) = <M $'_{\mathcal{M}}>$

Korrektheit der Konstruktion:

- $w \in \overline{\mathcal{H}_{\epsilon}}$
 - \Rightarrow ${\mathcal M}$ hält nicht auf der Eingabe ϵ
 - $\Rightarrow \ \neg \exists i: \mathcal{M}$ hält innerhalb der ersten i-Schritte auf ϵ
 - $\Rightarrow \, \forall i : <\! \operatorname{M}_{\mathcal{M}}'\! >$ hält auf der Eingabe der Länge i
 - $\Rightarrow f(w) = \langle M'_{\mathcal{M}} \rangle \in \mathcal{H}_{all}$
- $w \notin \overline{\mathcal{H}_{\epsilon}}$
 - $\Rightarrow \mathcal{M}$ hält auf der Eingabe ϵ
 - $\Rightarrow \ \exists i: \mathcal{M}$ hält innerhalb der ersten i-Schritte auf ϵ
 - $\Rightarrow \ \exists i : <\! \operatorname{M}_{\mathcal{M}}'\! > \operatorname{loopt}$ auf Eingaben der Längei
 - $\Rightarrow f(w) = \langle M'_{\mathcal{M}} \rangle \notin \mathcal{H}_{all}$

Somit gilt:

$$w \in \overline{\mathcal{H}_{\epsilon}} \quad \Leftrightarrow \quad f(w) \in \mathcal{H}_{all}$$

Es wurde also gezeigt, dass sowohl \mathcal{H}_{all} als auch $\overline{\mathcal{H}_{all}}$ nicht semi-entscheidbar bzw. rekursiv aufzählbar sind.

Weitere unentscheidbare Probleme

Hilberts zehntes Problem

Gegeben sei ein multivariates Polynom p (also ein Polynom mit mehreren Variablen z.B. $x, y, z, a \dots$). Es kann die Frage gestellt werden, ob p eine ganzzahlige Nullstelle besitzt.

In der Tat gilt: Die Sprache

 $N = \{ p \mid p \text{ ist Polynom mit ganzzahligen Koeffizienten und ganzzahliger Nullstelle } \}$

ist unentscheidbar.

Postsche Korrespondenzproblem

Gegeben seien z.B. die Kärtchen

$$K = \left\{ \underbrace{\left[\frac{b}{ca}\right]}_{1}, \underbrace{\left[\frac{a}{ab}\right]}_{2}, \underbrace{\left[\frac{ca}{a}\right]}_{3}, \underbrace{\left[\frac{abc}{c}\right]}_{4} \right\}$$

Man kann nun beliebig viele Kärtchen beliebig oft aneinanderreihen. Reiht man die Kärtchen 1+2+1 aneinander, so erhält man zwei Zeichenketten: Einmal die Zeichenkette oben und einmal die Zeichenkette unten. Im Beispiel also oben: bab und unten: caabca.

Nun kann die Frage gestellt werden, ob man bei einem gegebenen Kartenset K die Karten so anordnen kann, dass die obere Zeichenkette genau der unteren Zeichenkette entspricht. Für das obige Beispiel ist das möglich, dort liefert die Kombination 2+1+3+2+4 sowohl oben als auch unten dieselbe Zeichenkette.

Im Allgemeinen gilt aber: Die Sprache

$$PKP = \{ \text{ Kärtchenset } K \text{ mit Lösung } \}$$

ist unentscheidbar (aber semi-entscheidbar).

Im Skript weiter informieren, eine Klausuraufgabe hierzu ist sehr qut möglich.