

Empowering Robotic Control with Artificial Intelligence: Optimizing Performance through Reinforcement Learning

(Talented Program in Intelligent Control and Automation)

Minh Hiep Phung, Khanh Tien Nguyen

Supervised by Assoc. Prof. Phuong Nam Dao

REINFORCEMENT LEARNING BASED OPTIMAL CONTROL

Optimal control

Optimal control theory is a branch of control theory that deals with finding a controller for a dynamical system over a period of time that an objective function is optimized

$$J(\bar{x}_0, \Delta u_k) = \sum_{k=0}^{\infty} \left(\bar{x}_k^T \bar{Q} \bar{x}_k + \Delta u_k^T R \Delta u_k \right)$$

$$J(X(t_0), u_{RL}) := \int_{t_0}^{\infty} r(X(\rho), u_{RL}(\rho)) d\rho$$

$$P - \bar{A}^T P \bar{A} + \bar{A}^T P \bar{B} \left(R + \bar{B}^T P \bar{B} \right)^{-1} \bar{B}^T P \bar{A} - \bar{Q} = 0$$

$$0 = Q + \nabla_X V^{*T} F - \frac{1}{4} \nabla_X V^{*T} G R^{-1} G^T \nabla_X V^{*T} C R^{-1} C R^{-$$

Reinforcement learning

Reinforcement learning is the process where an agent learns to act by interacting with an environment to maximize long-term reward:

$$\pi^* = rg \max_{\pi} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t
ight]$$

BACKGROUND OF OUR RESEARCH

ROBUST OPTIMAL PROBLEM FORMULATION

Preview control

$$\begin{cases} x_{k+1} = Ax_k + Bu_k + Dd_k \\ y_k = Cx_k \end{cases}$$

$$\bar{x}_k = \begin{bmatrix} e_k^T & \Delta x_k^T \end{bmatrix}^T$$

$$x_k^r = \begin{bmatrix} \Delta r_k^T, \Delta r_{k+1}^T, \dots, \Delta r_{k+M_r}^T \end{bmatrix}^T$$

$$x_k^d = \begin{bmatrix} \Delta d_k^T, \Delta d_{k+1}^T, \dots, \Delta d_{k+M_d}^T \end{bmatrix}^T$$

$$\bar{x}_k = \begin{bmatrix} \tilde{x}_k^T, (x_k^r)^T, (x_k^d)^T \end{bmatrix}^T$$

$$\bar{x}_{k+1} = \begin{bmatrix} \tilde{A}_d & \tilde{G}^r & \tilde{G}^d \\ 0 & A^r & 0 \\ 0 & 0 & A^d \end{bmatrix} \bar{x}_k + \begin{bmatrix} \tilde{B}_d \\ 0 \\ 0 \end{bmatrix} \Delta u_k$$

$$\bar{A}$$

$$\bar{B}$$

Optimal Problem

The objective is to find the optimal policy to minimize the following infinite horizon cost:

$$J(\bar{x}_0, \Delta u_k) = \sum_{k=0}^{\infty} \left(\bar{x}_k^T \bar{Q} \bar{x}_k + \Delta u_k^T R \Delta u_k \right)$$

In order to find the optimal control solution, we need to the following equation for the value function:

$$P - \bar{A}^T P \bar{A} + \bar{A}^T P \bar{B} (R + \bar{B}^T P \bar{B})^{-1} \bar{B}^T P \bar{A} - \bar{Q} = 0$$

After finding the optimal value function, it is used to deduce the optimal control function as follows:

$$K_d = -(R + \bar{B}^T P \bar{B})^{-1} \bar{B}^T P \bar{A} = \begin{bmatrix} K^e & K^x & K^r & K^d \end{bmatrix}$$

$$\Delta u_k = -K^e e_k - K^x \Delta x_k - \sum_{i=0}^{M_r} k_i^r \Delta r_{k+i} - \sum_{i=0}^{M_d} k_i^d \Delta d_{k+i}$$

NON-AUTONOMOUS SYSTEMS

Discrete-time linear periodic systems

$$\mathbf{x}_{k+1} = \mathbf{A}_k \mathbf{x}_k + \mathbf{B}_k \mathbf{u}_k + \mathbf{D}_k \mathbf{d}_k$$

$$\mathbf{J}^* = \lim_{p \to \infty} \left(\min_{k=1}^{\infty} \mathbf{x}_p^T \mathbf{Q}_p \mathbf{x}_p + \frac{1}{2} \sum_{k=0}^{p-1} \mathbf{x}_k^T \mathbf{Q}_k \mathbf{x}_k + \mathbf{u}_k^T \mathbf{R}_k \mathbf{x}_k \right)$$

$$\mathbf{P}_k = \mathbf{Q}_k + \mathbf{A}_k^T \mathbf{P}_{k+1} \mathbf{A}_k - \mathbf{A}_k^T \mathbf{P}_{k+1} \mathbf{B}_k (\mathbf{R}_k + \mathbf{B}_k^T \mathbf{P}_{k+1} \mathbf{B}_k)^{-1} \mathbf{B}_k^T \mathbf{P}_{k+1} \mathbf{A}_k$$

Preview control for DTLP systems

$$\begin{split} \mathbf{X}_{k+1} &= \mathbf{\Psi}_k \mathbf{X}_k + \tilde{\mathbf{B}}_k \Delta \mathbf{u}_k \\ \begin{cases} \mathbf{X}_{Nk+1} &= \mathbf{\Psi}_0 \mathbf{X}_{Nk} + \mathbf{\Lambda}_0 \mathbf{U}_{Nk}, \\ \mathbf{X}_{Nk+2} &= \mathbf{\Psi}_1 \mathbf{X}_{Nk+1} + \mathbf{\Lambda}_1 \mathbf{U}_{Nk+1}, \\ \dots \\ \mathbf{X}_{Nk+N} &= \mathbf{\Psi}_{N-1} \mathbf{X}_{Nk+N-1} + \mathbf{\Lambda}_{N-1} \mathbf{U}_{Nk+N-1}, \end{cases} \\ \mathbf{J} &= \sum_{K=0}^{\infty} \left[\bar{\mathbf{X}}_K^T \bar{\mathbf{Q}}^n \bar{\mathbf{X}}_K + \bar{\mathbf{U}}_K^T \bar{\mathbf{R}}^n \bar{\mathbf{U}}_K \right] \\ \Delta \mathbf{u}_k &= -\tilde{\mathbf{K}} \mathbf{X}_k = -\mathbf{K}_k^x \Delta \mathbf{x}_k - \sum_{i=0}^{a+N} \mathbf{K}_k^{d,i} \Delta \mathbf{d}_{k+i} \end{split}$$

System Lifting

$$\begin{split} \bar{\mathbf{X}}_{K} := & \begin{bmatrix} \mathbf{X}_{Nk+1} \\ \mathbf{X}_{Nk+2} \\ \vdots \\ \mathbf{X}_{Nk+N} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \dots & \mathbf{0} & \mathbf{\Psi}_{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{\Psi}_{1} \mathbf{\Psi}_{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{\Psi}_{1} \mathbf{\Psi}_{0} \end{bmatrix} \begin{bmatrix} \mathbf{X}_{N(k-1)+1} \\ \mathbf{X}_{N(k-1)+2} \\ \vdots \\ \mathbf{X}_{N(k-1)+N} \end{bmatrix} \\ + & \begin{bmatrix} \mathbf{\Lambda}_{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{\Psi}_{1} \mathbf{\Lambda}_{0} & \mathbf{\Lambda}_{1} & \dots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{\Psi}_{N-1} \dots \mathbf{\Psi}_{1} \mathbf{\Lambda}_{0} & \mathbf{\Psi}_{N-1} \dots \mathbf{\Psi}_{2} \mathbf{\Lambda}_{1} & \dots & \mathbf{\Lambda}_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{Nk} \\ \mathbf{U}_{Nk+1} \\ \vdots \\ \mathbf{U}_{Nk+N-1} \end{bmatrix} \\ \vdots = & \begin{bmatrix} \mathbf{0} & \bar{\mathbf{\Psi}}_{1} \\ \mathbf{0} & \bar{\mathbf{\Psi}}_{2} \end{bmatrix} \bar{\mathbf{X}}_{K} + \begin{bmatrix} \bar{\mathbf{\Lambda}}_{1} \\ \bar{\mathbf{\Lambda}}_{2} \end{bmatrix} \bar{\mathbf{U}}_{K} = \bar{\mathbf{\Psi}} \bar{\mathbf{X}}_{K} + \bar{\mathbf{\Lambda}} \bar{\mathbf{U}}_{K} \end{split}$$

Modified Riccati Equation

$$\begin{split} \bar{\pmb{\Psi}}_{2}^T \bar{\pmb{\mathsf{P}}}_{22}^n \bar{\pmb{\Psi}}_{2} - \bar{\pmb{\mathsf{P}}}_{22}^n - (\bar{\pmb{\Psi}}_{2}^T \bar{\pmb{\mathsf{P}}}_{22}^n \bar{\pmb{\Lambda}}_{2} + \bar{\pmb{\Psi}}_{1}^T \bar{\pmb{\mathsf{Q}}}_{1}^n \bar{\pmb{\Lambda}}_{1}) (\bar{\pmb{\Lambda}}_{2}^T \bar{\pmb{\mathsf{P}}}_{22}^n \bar{\pmb{\Lambda}}_{2} + \bar{\pmb{\mathsf{R}}}^n + \bar{\pmb{\Lambda}}_{1}^T \bar{\pmb{\mathsf{Q}}}_{1}^n \bar{\pmb{\Lambda}}_{1})^{-1} \\ (\bar{\pmb{\Lambda}}_{2}^T \bar{\pmb{\mathsf{P}}}_{22}^n \bar{\pmb{\Psi}}_{2} + \bar{\pmb{\Lambda}}_{1}^T \bar{\pmb{\mathsf{Q}}}_{1}^n \bar{\pmb{\Psi}}_{1}) + \bar{\pmb{\mathsf{Q}}}_{2}^n + \bar{\pmb{\mathsf{\Psi}}}_{1}^T \bar{\pmb{\mathsf{Q}}}_{1}^n \bar{\pmb{\Psi}}_{1} = \pmb{0} \end{split}$$

Theorem of Equivalent Model

$$\begin{cases} \mathbf{X}_{k+1} = \mathbf{\Psi}_k \mathbf{X}_k + \mathbf{\Lambda}_k \mathbf{U}_k \\ \mathbf{y}_k = \mathbf{C} \mathbf{X}_k \end{cases}$$

$$\begin{cases} \begin{bmatrix} \mathbf{\Delta} \mathbf{x}_{k+1} \\ \mathbf{X}_{k+1}^d \end{bmatrix} = \begin{bmatrix} \mathbf{A}_k & \mathbf{G}_k \\ \mathbf{0} & \mathbf{A}^d \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \mathbf{x}_k \\ \mathbf{X}_k^d \end{bmatrix} + \begin{bmatrix} \mathbf{B}_k & \mathbf{0} \\ \mathbf{0} & \epsilon \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \mathbf{u}_k \\ \mathbf{u}_k^i \end{bmatrix},$$

$$\mathbf{y}_k = \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{\Delta} \mathbf{x}_k \\ \mathbf{X}_k^d \end{bmatrix}$$

Proof:

Output-Based Approximation Model

$$\begin{split} &\mathbf{y}_k = \mathbf{\Delta} \mathbf{x}_k^{new} = \mathbf{A}_{k-1} \mathbf{\Delta} \mathbf{x}_{k-1} + \mathbf{G}_{k-1} \mathbf{X}_{k-1}^d + \mathbf{B}_{k-1} \mathbf{\Delta} \mathbf{u}_{k-1} \\ &= \mathbf{A}_{k-1} \left(\mathbf{A}_{k-2} \mathbf{\Delta} \mathbf{x}_{k-2} + \mathbf{G}_{k-2} \mathbf{X}_{k-2}^d + \mathbf{B}_{k-1} \mathbf{\Delta} \mathbf{u}_{k-1} \right) + \mathbf{G}_{k-1} \left(\mathbf{X}_{k-2}^d + \varepsilon \mathbf{u}_{k-2}^{im} \right) + \mathbf{B}_{k-1} \mathbf{\Delta} \mathbf{u}_{k-1} \\ &= \mathbf{\Delta} \mathbf{x}_k^{old} + \left(\mathbf{G}_{k-1} \varepsilon \sum_{i=1}^{k-2} \mathbf{u}_i^{im} \right) + \prod_{i-1}^{k-2} \left(\left(\sum_{z=i}^{k-1} \mathbf{A}_{k-1+i-z} \right) \mathbf{G}_i \varepsilon \prod_{j=1}^i \mathbf{u}_j^{im} \right) = \mathbf{\Delta} \mathbf{x}_k^{old} + \kappa(\varepsilon) \end{split}$$

Riccati Equation for the Approximation Model

$$\begin{split} & \mathbf{Q}_{k}^{n} + \mathbf{\Psi}_{k}^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Psi}_{k} - \mathbf{\Psi}_{k}^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Lambda}_{k} \left(\mathbf{R}_{k}^{n} + \mathbf{\Lambda}_{k}^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Lambda}_{k} \right)^{-1} \mathbf{\Lambda}_{k}^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Psi}_{k} - \mathbf{P}_{k}^{n} \\ & \approx \mathbf{Q}_{k}^{n} + \mathbf{\Psi}_{k}^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Psi}_{k} - \mathbf{\Psi}_{k}^{T} \mathbf{P}_{k+1}^{n} \left[\begin{array}{c} \mathbf{B}_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \left(\mathbf{R}_{k}^{n} + \left[\begin{array}{c} \mathbf{B}_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right]^{T} \mathbf{P}_{k+1}^{n} \left[\begin{array}{c} \mathbf{B}_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right] \right)^{-1} \\ & \times \left[\begin{array}{c} \mathbf{B}_{k} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right]^{T} \mathbf{P}_{k+1}^{n} \mathbf{\Psi}_{k} - \mathbf{P}_{k}^{n} \end{split}$$

$$\begin{cases} \bar{\mathbf{U}}_K^{j'}(\bar{\mathbf{X}}_K) \\ \bar{\mathbf{X}}_K = \bar{\mathbf{\Psi}}\bar{\mathbf{X}}_K + \bar{\boldsymbol{\Lambda}}(\bar{\mathbf{U}}_K + \boldsymbol{\epsilon}_K^U) \end{cases}$$

$$\begin{cases} \Delta \bar{\mathbf{u}}_K^{j'}(\bar{\mathbf{X}}_K) \\ \bar{\mathbf{X}}_K = \bar{\boldsymbol{\Psi}}\bar{\mathbf{X}}_K + \bar{\tilde{\mathbf{B}}}(\Delta \bar{\mathbf{u}}_K^j + \epsilon_K^{\Delta u}) + \left[\begin{array}{c} \mathbf{0} \\ \bar{\epsilon} \end{array} \right] (\bar{\mathbf{u}}_K^i + \epsilon_K^{ui}) \end{cases}$$

$$\begin{cases} \Delta \bar{\mathbf{u}}_K^{J'}(\bar{\mathbf{X}}_K) \\ \bar{\mathbf{X}}_K = \bar{\mathbf{\Psi}}\bar{\mathbf{X}}_K + \bar{\bar{\mathbf{B}}}(\Delta\bar{\mathbf{u}}_K + \epsilon_K^{\Delta u}) + \begin{bmatrix} \mathbf{0} \\ \epsilon_{X^d} \end{bmatrix} \end{cases}$$

$$\begin{cases} \Delta \bar{\mathbf{u}}_K^{I'}(\bar{\mathbf{X}}_K) \\ \bar{\mathbf{X}}_K = \bar{\mathbf{\Psi}} \bar{\mathbf{X}}_K + \bar{\bar{\mathbf{B}}} (\Delta \bar{\mathbf{u}}_K + \epsilon_K^{\Delta u}) + \epsilon_K^{X} \end{cases}$$

REINFORCEMENT LEARNING FOR LINEAR SYSTEMS

Q-function:

$$Q(\bar{x}_k, \Delta u_k) = r(\bar{x}_k, \Delta u_k) + V(\bar{x}_{k+1}) = \bar{x}_k^T \bar{Q} \bar{x}_k + \phi_k^T H \phi_k$$

where
$$\phi_k = \begin{bmatrix} \bar{x}_k^T & \Delta u_k^T \end{bmatrix}^T$$

Algorithm 1 On-policy Q learning

- 1: **Initialization:** Start with a stabilizing policy $\Delta u_k = -K^{(0)}\bar{x}_k$ and apply it to the augmented state \bar{x}_k . Add an exploration noise $\epsilon_k^{\Delta u}$ to the control input and a noise $\epsilon_k^{\Delta u}$ to the state variable.
- 2: **Policy Evaluation:** Use the collected data to construct the linear equation:

$$Z \cdot \text{vecs}(H) = Y$$

3: **Policy Update:** Update the policy as:

$$K^{(j+1)} = (H_{22})^{-1}H_{21}$$

4: **Checking:** If $||K^{(j+1)} - K^{(j)}|| \le \sigma$, then stop the iteration; otherwise, set $j \leftarrow j + 1$ and repeat the process.

Algorithm 2 Off-policy Q learning

- 1: **Data collection:** Collect $s \ge (p+n+p(M_r+1)+q(M_d+1)+m) \times (p+n+p(M_r+1)+q(M_d+1)+m+1)/2$ data sets of system data \bar{x} and store them in the sample sets Z^j and Y^j by using a stabilizing behavior control policy $\Delta u = -K\bar{x}_k + \epsilon_k^{\Delta u}$ in the system $\bar{x}_{k+1} = \bar{A}\bar{x}_k + \bar{B}\Delta u_k + \epsilon_k^{\Delta u}$ Set j = 0.
- 2: **Implementing Q-learning:** Solve the equation (26) by least-squares method using the data in Step 1 and update the target policy gain in term of $\tilde{K}_{12}^{j+1} = (H_{22}^{j+1})^{-1}(H_{12}^{j+1})^T$.

$$Z^{j} \begin{bmatrix} vecs(H_{11}^{j+1}) \\ vec(H_{12}^{j+1}) \\ vecs(H_{22}^{j+1}) \end{bmatrix} = Y^{j}$$
(26)

3: **Checking:** If $||K^{(j+1)} - K^{(j)}|| \le \sigma$, then stop the iteration; otherwise, set $j \leftarrow j + 1$ and repeat the process.

$$\begin{split} &\Gamma_{(11)k}^{j} = vecv(\bar{x}_{k}^{2})^{T} - vecv(\bar{x}_{k+1}^{2})^{T} \\ &\Gamma_{(12)K}^{j} = 2\Delta u_{k}^{T} \otimes (\bar{x}_{k+1}^{2})^{T} + 2(\bar{K}_{12}^{j}\bar{x}_{k+1}^{2})^{T} \otimes \bar{x}_{k+1}^{2} \\ &\Gamma_{(22)K}^{j} = vecv(\Delta u_{k})^{T} - vecv(\bar{K}_{12}^{j}\bar{x}_{k+1}^{2})^{T} \\ &\Gamma_{k}^{j} = \left[\begin{array}{cc} (\Gamma_{(11)K}^{j} & \Gamma_{(12)K}^{j} & \Gamma_{(22)K}^{j} \end{array} \right] \\ &\rho_{k}^{j} = (\bar{x}_{k}^{2})^{T}\bar{Q}\bar{x}_{k}^{2} + \Delta u_{k}^{T}R\Delta u_{k} + (\bar{x}_{k+1}^{1})^{T}\bar{Q}_{1}^{+}\bar{x}_{k+1}^{1}, \\ &Z^{j} = \left[\begin{array}{cc} (\Gamma_{k}^{j})^{T} & (\Gamma_{K+1}^{j})^{T} & \dots & (\Gamma_{K+s-1}^{j})^{T} \end{array} \right]^{T} \\ &Y^{j} = \left[\begin{array}{cc} \rho_{k}^{j} & \rho_{K+1}^{j} & \dots & \rho_{K+s-1}^{j} \end{array} \right], \end{split}$$

ĐẠI HỌC BÁCH KHOA HÀ NỘI

BACKGROUND OF OUR RESEARCH

ROBUST OPTIMAL PROBLEM FORMULATION

Robust Integral Sign Error

$$\dot{x} = f(x) + g(x)u + d(t)$$

$$e_1 := x - x_d$$

$$e_2 := \dot{e}_1 + \alpha_1 e_1$$

$$X := [e_1^T, e_2^T, x_d^T]^T$$
Known model for learning unknown factors
$$\dot{x} = F(X) + G(X)u_{RL} + \tilde{\Delta}(X, u_{RISE}, d(t))$$

$$u_{RISE} := \lambda e_2 + \int_{t_0}^t \left(\lambda \alpha_2 e_2(\tau) + \beta_1 \mathrm{sgn}(e_2(\tau))\right) d\tau$$

Optimal Problem

The objective is to find the optimal policy to minimize the following infinite horizon cost:

$$J(X(t_0), u_{RL}) := \int_{t_0}^{\infty} r(X(\rho), u_{RL}(\rho)) d\rho$$

subject to: $\dot{x} = F(X) + G(X)u_{RL}$,

In order to find the optimal control solution, we need to the following equation for the value function:

$$0 = Q + \nabla_X V^{*T} F - \frac{1}{4} \nabla_X V^{*T} G R^{-1} G^T \nabla_X V^*$$

After finding the optimal value function, it is used to deduce the optimal control function as follows:

$$u_{RL}^* := -\frac{1}{2}R^{-1}G^T(X)\nabla_X V^*(X)$$

REINFORCEMENT LEARNING FOR NONLINEAR SYSTEMS

The optimal value function and optimal control policy are approximated as follows:

$$\widehat{V}(X, W_c) = W_c^T \phi(X),$$

$$\widehat{u}_{RL}(X, W_a) = -\frac{1}{2} R^{-1} G^T(X) \nabla_X \phi^T(X) W_a,$$

$$\delta_{HJB}(X, W_a, W_c) = W_c^T \sigma(X, W_a) + r(X, \widehat{u}_{RL}(X, W_a))$$
$$\sigma(X, W_a) := \nabla_X \phi(X) (F(X) + G(X) \widehat{u}_{RL}(X, W_a))$$

The learning law of Critic weights to minimize $E_c := \int_{t_0}^t \delta_{HJB}^2 d\tau$ leveraging least-square method:

$$\dot{W}_c := -\eta_c \Gamma \frac{\sigma}{1 + \nu \sigma^T \Gamma \sigma} \delta_{HJB}, \quad \dot{\Gamma} := -\eta_c \left(-\beta_2 \Gamma + \Gamma \frac{\sigma \sigma^T}{1 + \nu \sigma^T \Gamma \sigma} \right),$$

A gradient update law is developed for Actor to minimize the square Bellman error $E_a := \delta_{HJB}^2$ as :

$$\dot{W}_a := -\eta_{a1} \frac{1}{\sqrt{1 + \sigma^T \sigma}} \nabla_X \phi G R^{-1} G^T \nabla_X \phi^T (W_a - W_c)$$

$$\times \delta_{HJB} - \eta_2 (W_a - W_c),$$

SIMPLE SYSTEM

SPACECRAFT (NON-AUTONOMOUS SYSTEM)

Iterations

(a) On-policy

Iterations

(b) Off-policy

Convergence of K

ĐẠI HỌC BÁCH KHOA HÀ NỘI

THREE-WHEELED MOBILE ROBOT WITH MECANUM WHEELS

BÁCH KHOA HÀ NỘI

(b)

THANK YOU