Tuning and Temperament

Class 5: Meantone Temperament

Today's Class

- Where just intonation falls short
- Temperament
 - What is temperament?
- 1/4 comma meantone temperament
 - Building a 12-note scale
 - Output Description

 Output Description
- **Listening**: Mozart's Fantasie KV397 in Three Different Temperaments
- Listening: Yale's Divinity School Meantone Organ

Where does just intonation fall short?

Let's look at a passage of music and assume that our tuning system is just intonation (5-limit). Let's also try to keep it *totally* in tune such that every interval between every note is just (i.e. no commas or wolf intervals).

Temperaments

What is a temperament anyway? What is a tuning?

Tuning:

1. A system whose intervals all can be expressed by rational numbers.

Temperament:

- 1. A system whose intervals cannot all be expressed by rational numbers.
- 2. A system which "tempers" just intervals.
- 3. Partch: "... a system which deliberately robs its intervals of their purity in order to implement the idea of every-tone-in-several senses."

1/4 Comma Meantone Temperament

- Pure thirds $(\frac{5}{4}, \frac{6}{5})$
- Flat fifths, by 1/4 of a syntonic comma ($\frac{81}{80}$)
- Wolf fifth between G# and Eb (if tuned on C)

Building a 12-note 1/4 comma meantone scale

We want pure major thirds, $\frac{5}{4}$, so we want to slightly flatten the fifth, $\frac{3}{2}$. If starting on C, the major third is E. We can get to E either by 1) stacking four $\frac{3}{2}$'s or two octaves and a $\frac{5}{4}$.

In a Pythagorean sytle of tuning using fifths, the E would be $\frac{81}{64}$ whereas a pure third is $\frac{5}{4}$ (the difference is $\frac{81}{80}$). So, we need to lower each $\frac{3}{2}$ by one quarter of the difference, $\frac{81}{80}$, such that getting to an E by four $\frac{3}{2}$'s or two octaves and a $\frac{5}{4}$ are the same.

We can rewrite $\frac{5}{4}$ as $\frac{5}{1}$ by moving it up two octaves. Therefore, letting r be the ratio of our meantone fifth:

$$r^4=rac{5}{1}=5$$

$$r=\sqrt[4]{5}$$

So in "musical" terms:

$$rpprox 1.49535pprox rac{643}{430}pprox 696.587 ext{ cents}$$

What does this mean for the rest of the scale?

We construct it exactly as a Pythagorean scale, substituting $\sqrt[4]{5}$ for $\frac{3}{2}$. For example, a whole step is:

$$\sqrt[4]{5} imes \sqrt[4]{5} imes rac{1}{2} = rac{\sqrt[4]{5} imes \sqrt[4]{5}}{2} = rac{5^{1/4} imes 5^{1/4}}{2} = rac{5^{1/2}}{2} = rac{\sqrt{5}}{2}$$

Confirm by taking two whole steps to make a major third:

$$rac{\sqrt{5}}{2} imesrac{\sqrt{5}}{2}=rac{5}{4}$$

Formula for pitches of a major scale where r is the fifth:

Note	Formula	Cents	Note	Formula	Cents
С	$r^0 imes 2^0=1$	0	G	$r^1 imes 2^0=r$	696.6
D	$r^2 imes 2^{-1}=rac{\sqrt{5}}{2}$	193.2	А	$r^3 imes 2^{-1}=rac{r\sqrt{5}}{2}$	889.7
Е	$r^4 imes 2^{-2}=rac{5}{4}$	386.3	В	$r^5 imes 2^{-2}=rac{5r}{4}$	1082.9
F	$r^{-1} imes 2^2=rac{2r\sqrt{5}}{5}$	503.4	С	$r^0 imes 2^1 = 2$	1200

Listening

Mozart's Fantasie KV397 in Three Different Temperaments

Listen to about 2 min in Equal Temperament (0:00), 1/4 comma meantone (11:40), and just for kicks, Prelleur temperament (5:40).

Yale's Divinity School Meantone Organ

Split sharps?

Other flavors of meantone:

- 1/5 comma meantone (Pythagorean comma)
- 1/6 comma meantone
- Extended meantone (building extra notes so all/most keys can have pure thirds)
 - Ascanio Mayone Examples for the Cimbalo Cromatico
 - Nicola Vicentino: "Musica prisca caput"

