

YOU + MICROCHIP

ENGINEERING THE FUTURE TOGETHER

1258C FOC

无传感器PMSM 马达FOC控制算法详解

课程目标

通过本课程学习,您将:

- 了解一些目前最新的电机控制设计解 决方案
- 了解一种新的永磁同步电机(PMSM) 无传感器磁场定向控制 (FOC) 算法
- 了解如何查找更多关于该算法的信息

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑(Q&A)

课程安排

• PMSM概述

- PMSM应用
- PMSM与BLDC的比较
- PMSM结构
- PMSM特性
- PMSM操作

PMSM应用

- 高效率和高可靠性
- 设计用于高性能伺服应用
- 可实现有/无位置编码器的运行方式
- 比ACIM体积更小、效率更高、重量更轻
- 采用FOC控制可实现最优的转矩输出
- 平滑的低速和高速运行性能
- 较低的噪声和EMI

PMSM 应用

- 空调机和冰箱(AC)压缩机
- 直接驱动洗衣机
- 高精度机床工具
- 汽车电动转向
- 牵引控制
- 数据储存

PMSM与BLDC的比较

- 从其发展历史来看,两种电机发源 于不同的领域
- 转矩产生的机理相同
- BLDC是PM BDC的一个派生词
- PMSM表示一个励磁磁场由PM提供的AC同步电机
- · 控制方法不同(六步控制与FOC)

PMSM结构

PMSM结构

PMSM结构

- PMSM具有与BLDC类似的结构, 但是,PMSM反电势信号为正弦 的,而BLDC PMSM梯形波
- 数学模型不同
- PMSM采用正弦电流驱动
- 与三相ACIM类似,但气隙磁通由转 子上安装的磁钢产生

BLDC

PMSM

反电势

- 波形形状主要受到定子设计的影响
- 每相每极槽数是一个关键参数
- 分数槽、绕组和磁极电机可实现波形设计
- 制造容差决定波形的质量

PMSM的反电势波形

- 具有正弦反电势波形的无刷电机
- 同步AC电机
- BLAC
- PMSM

- 理想的反电势不含有谐波
- 使得音频噪声减少
- 更高的效率——减少了寄生能量, 这种能量可激发机械部件、导致其 处于不可控的状态

PMSM电气模型

$$i_s e_s = T \omega$$
$$T \propto i_s$$

● 瞬时功率

- 转矩 x 转速 = 反电势 x 相电流

转矩产生

考虑到F的方向,T=Fr sin θ

- 定子磁场可分解为与转子磁场平行 和正交两个分量
- 只有正交(交轴)磁场分量产生转矩
- 平行(直轴)磁场分量产生作用于 轴承的压力
- 相电流产生定子磁场且可被测量

未采用FOC

采用FOC

PMSM使用FOC控制

- 保持电流超前 于转子位置90°
- 需要一直获取连 续的转子位置信 息
- 更好的转矩性能
- 无转矩脉动

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

内容安排

- PMSM的FOC控制
 - FOC概述
 - 信号处理
 - PMSM的FOC控制

FOC概述

- 采用正弦激励,并使所施加电流空间矢量与转子位置保持一定关系
- 定子电流和转子(磁钢)磁通相互作用产生转矩,从而使转子转动
- 需要采用电子控制实现电流矢量超前于转子位置90度,以实现最优转矩输出
- T ∞ 电流空间矢量

FOC概述

- 提升动态响应
- 减少转矩脉动
- ●可扩展转速范围
- 低噪声和EMI

矢量坐标系

3-轴定子坐标系

2-轴定子坐标系

2-轴旋转坐标系

- 通过三相电压控制电流空间矢量
- 坐标变换简化了数学方程,使得三相电机控制可采用与直流电机相同的传统方法
- 三相时间变量变换到2轴时间常量

实部α和虚部β分量为 = isα + jisβ。变换至正交静止坐标系。

从静止坐标系变换到旋转坐标系。直轴和交轴定子电流分量的表征

从静止坐标系变换到旋转坐标系(该坐标系以转子速度旋转)

电机绕组中通入对称的电流将产生一个合成的旋转电流空间矢量,该矢量与转子位置正交。为实现最优控制,

lq应取最大值而ld应取最小值

转矩∝iq

磁通 ∝ id

它们都是不随时间变化的量,可看作DC参数,这使得它们可被独立地进行控制

PMSM的FOC控制

这将使能最优的转矩控制

- PI控制器运行于转子定向的d-q坐标系, 它们为直流量,不同于电机电压和电流 (为正弦变化量),因此在电机低速和 高速运行时都能运行良好。
- lq跟踪给定转矩,ld参考值为零;这将 产生最优的转矩输出
- PI控制器输出将被变换为三相电压信号以输出到三相逆变桥(反Park变换,反Clarke变换包含在SVM中)

相电流响应

PI速度控制

PI 速度 + FOC控制

速度响应

PI速度控制

PI 速度+ FOC控制

• 弱磁运行

- 当反电势接近供电电压时会发生什么?
- 为获得更高的速度必须削弱转子磁场
- 定子d轴电流设置为负值
- 弱磁运行时转矩减小、速度升高

- FOC可实现低速的平滑控制和高速的高效控制
- 梯形波(BLDC)换相可实现高速运行时的高效率,但在低速时产生转矩脉动和音频噪声
- 正弦驱动方式可实现低速的平滑控制,但在高速运行时效率不高
- FOC是克服上述两种缺陷的最好方案

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

无传感器控制技术

课程内容

- 无传感器控制技术
 - 用于BLDC的六步控制
 - PMSM的FOC控制

- 每个电周期内进行六步换相
- 可使用霍尔传感器来确定何时进行 换相
- 反电势可用来提供相同的信息

BLDC电机的反电势

- A相和C相通电
- 未通电的B相将感应反电势
- 通常对未通电的相 进行反电势监测

反电势过零法的详细介绍

- 在每个电周期中,都存在每一相未通电的区域
- 在这些区域中,以未通电相绕组的一端作为星形点的参考点,并对另一端进行监测
- 被监测电压在30电角度处穿越1/2 VDD点
- 在知道上一个过零时刻之后,即可知60电角度(T60)
- 将T60除以2 = T30的值装载入TMR2
- TMR2的ISR将在后面的T30时刻对下一对绕组进行换相

BLDC六步控制——汇总

- 相对来说,六步控制将产生更多的转矩脉动
- 相电流为方波
- 对控制器的处理能力要求不高
- 不需要检测换相点之间的转子位置
- 起动斜坡参数必须反映出反电势信号
- BLDC比PMSM出力更大

● 位置估计

- 转子位置通过反电势信息进行计算

PMSM电气模型

$$v_s = Ri_s + L\frac{d}{dt}i_s + e_s$$

$$\frac{d}{dt}i_{s} = -\frac{R}{L}i_{s} + \frac{1}{L}(v_{s} - e_{s})$$

- 位置估计
 - PMSM电机与有刷DC (BDC)、BLDC和AC感应电机具有相同的基本电气模型

位置估计

$$\frac{i_s(n+1)-i_s(n)}{T_s} = -\frac{R}{L} \cdot i_s(n) + \frac{1}{L} \cdot \left(v_s(n) - e_s(n)\right)$$

$$i_s(n+1) = \left(1 - T_s \cdot \frac{R}{L}\right) \cdot i_s(n) + \frac{T_s}{L} \cdot \left(v_s(n) - e_s(n)\right)$$

电流观测器

*被估计变量

电流曲线图

反电势估计

*被估计变量

反电势曲线图

位置和速度估计

*被估计变量

• 相位补偿

- 对内在位置滤波进行补偿
- 速度范围分为若干部分并对其中每一个部分进行补偿
- 提供了Excel电子表格计算器

实际结果

● 编码器转子位 置

• 估计的转子位置

未增加额外成本

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

YOU + MICROCHIP

ENGINEERING THE FUTURE TOGETHER

DMCI简介

DMCI简介

- 数据监视和控制界面
- 智能观察窗口
- 9个滑动条
- 35个输入控制
- 4幅图表

滑动条

- 分配控制变量
- 适合用于PID控制 环整定
- 动态数据控制
- 9个布尔变量可用 于标志表征

输入控制

- 文本框类型
- 可配置增量
- 动态数据输入
- 十六进制(Hex)、 小数、分数和枚举 列表(Enum List) 数据类型

图表

- 多达4幅曲线图表
- 特性包括
 - 视图缩小/放大
 - 标示数据点
 - 打印
 - 导出为数据
- 动态数据视图

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

演示1整定 PI参数

演示1的主要内容

- ●整定电流和速度PI参数
- 使用DMCI工具中的滑动条

- 演示1的步骤说明:
 - 在 MPLAB® IDE中, 打开DMCI, 选择"Tools
 -> Data Monitor And Control Interface"

- 演示1的步骤说明:
 - 在DMCI中,点按Open图标,并选择: "Demo 1\Demo1.dmci"文件

Demo 1.dmci

演示1 (续)

- 演示1的步骤说明(续):
 - 打开Lab3项目
 - 编程dsPIC® DSC
 - 设置POT1为"←"位置
 - 点按S2使电机运行
 - 通过按下S3使参考速度加倍
 - 通过曲线图表分析瞬态响应
 - 整定速度PI参数减少超调
 - 整定lq Pl参数使得速度振荡最小

演示1结果

- PI整定
- DMCI工具中滑动条的使用

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

YOU + MICROCHIP ENGINEERING THE FUTURE TOGETHER

演示2整定无传感器控制参数

- 演示2的步骤说明:
 - 在DMCI中,点击Open图标,并选择: "Demo2\Demo2.dmci" 文件

Demo2.dmci

演示2 (续)

- 演示2的步骤指令(续):
 - 打开 Lab4项目
 - 编程dsPIC® DSC
 - 点按S2运行电机
 - 电机将不会转变到闭环方式
 - 暂停并分析曲线图表
 - 将K滑动条设置为.9. 运行并分析
 - 将K滑动条设置为.1.运行并分析
 - 通过滑动条来改变最终速度
 - 被估计电流会发生什么情况?
 - Theta会发生什么情况?

K滑动条 = 0.9 / 500 RPM

Measured Current (I alpha) Source Symbol: SnapBuf2 0.04 0.03 0.02 o 0.01 0.00 -0.01 -0.02-0.03 106 159 212 265 318 371 424 477 530 583 636 689 742 795 848

K滑动条 = 0.1 / 500 RPM

Graph 4

K滑动条 = 0.9 / 2000 RPM K滑动条 = 0.1 / 2000 RPM

演示2结果

- K滑动条整定。滑动条模式控制器 增益应足够高以跟踪被测电流。
- 增益应足够低以保持Theta尽量准确。
- 电流估计值和测量值应在同一数量级。
- 最终速度应足够高以获得准确的 Theta。

课程安排

- PMSM概述
- PMSM的FOC控制
- 无传感器技术
- DMCI介绍——一种有用的工具
- 演示1: 整定PI参数
- 演示2: 整定无传感器控制参数
- 回顾, 答疑 (Q&A)

课程内容

- 回顾, Q&A
 - 汇总
 - 课程中使用的开发工具
 - 资源

总结

PMSM

- 高效率和平滑的转矩输出是很有利的

FOC

- 可提供最优的转矩控制性能
- 可在有或无位置传感器条件下使用
- 可应用于ACIM

本课程中使用的开发工具

- dsPICDEM™ MCLV电机控制开发 板(DM300021)
- 三相BLDC低压电机24V (AC300020)
- MPLAB® ICD 2在线调试器/编程器 (DV164005)

资源

● 关于电机控制应用设计方面的资源和信息,请访问Microchip电机控制设计中心网址: www.microchip.com/motor

● Microchip提供的关于电机控制应用方面的应用笔记:

	PIC18CXXX/PIC16CXXX Servomotor		AN696
	Brushless DC Motor Control Made Easy	AN857	
	Brushless DC (BLDC) Motor Fundamentals		AN885
	Brushless DC Motor Control Using PIC18FXX31		AN899
	Using the dsPIC30F for Sensorless BLDC Control		AN901
	Using the dsPIC30F for Vector Control of an ACIM	AN908	
	Sensored BLDC Motor Control Using dsPIC30F2010	AN957	
	Using the PIC18F2431 for Sensorless BLDC Motor Control		AN970
	An Introduction to ACIM Control Using the dsPIC30F	AN984	
	Sensorless BLDC Motor Control Using dsPIC30F2010	AN992	
	Sinusoidal Control of PMSM Motors with dsPIC30F	AN1017	
	Sensorless Control of PMSM Motors		AN1078
	Sensorless BLDC Control with Back EMF Filtering		AN1083
	Sensorless Filtered BEMF with Majority Detect		AN1160
	Sensorless Field Oriented Control of ACIM	AN1162	
	Sensorless BLDC Motor Control with PIC16	AN1175	
	Getting started with the BLDC Motors and dsPIC30F	GS001	
	Measuring speed and position with the QEI Module	GS002	
	Driving ACIM with the dsPIC® DSC MCPWM Module	GS004	
	Using the dsPIC30F Sensorless Motor Tuning Interface		GS005
١.			

资源

• 参见最新的电机控制设计解决方案 小册子

谢谢

商标

- Microchip 的名称和徽标组合、Microchip 徽标、Accuron、dsPIC、KeeLoq、KeeLoq徽标、MPLAB、PIC、PICmicro、PICSTART、rfPIC和SmartShunt均为Microchip Technology Inc.在美国和其他国家或地区的注册商标。
- FilterLab、Linear Active Thermistor、MXDEV、MXLAB、SEEVAL、 SmartSensor和The Embedded Control Solutions Company 均为 Microchip Technology Inc.在美国的注册商标。
- Analog-for-the-Digital Age、Application Maestro、CodeGuard、dsPICDEM、dsPICDEM.net、dsPICworks、dsSPEAK、ECAN、ECONOMONITOR、FanSense、In-Circuit Serial Programming、ICSP、ICEPIC、Mindi、MiWi、MPASM、MPLAB Certified徽标、MPLIB、MPLINK、mTouch、PICkit、PICDEM、PICDEM.net、PICtail、PIC32徽标、PowerCal、PowerInfo、PowerMate、PowerTool、REAL ICE、rfLAB、Select Mode、Total Endurance、UNI/O、WiperLock和ZENA均为Microchip Technology Inc.在美国和其他国家或地区的商标。
- SQTP是Microchip Technology Inc.在美国的服务标记。
- 在此提及的所有其他商标均为各持有公司所有。
- © 2008, Microchip Technology Inc.版权所有。