Rubidium

From Wikipedia, the free encyclopedia

Rubidium is a chemical element with symbol **Rb** and atomic number 37. Rubidium is a soft, silvery-white metallic element of the alkali metal group, with an atomic mass of 85.4678. Elemental rubidium is highly reactive, with properties similar to those of other alkali metals, including rapid oxidation in air. On Earth, natural rubidium comprises two isotopes: 72% is the stable isotope, ⁸⁵Rb; 28% is the slightly radioactive ⁸⁷Rb, with a half-life of 49 billion years—more than three times longer than the estimated age of the universe.

German chemists Robert Bunsen and Gustav Kirchhoff discovered rubidium in 1861 by the newly developed technique, flame spectroscopy.

Rubidium's compounds have various chemical and electronic applications. Rubidium metal is easily vaporized and has a convenient spectral absorption range, making it a frequent target for laser manipulation of atoms.

Rubidium is not a known nutrient for any living organisms. However, rubidium ions have the same charge as potassium ions, and are actively taken up and treated by animal cells in similar ways.

Characteristics

Rubidium is a very soft, ductile, silvery-white metal.^[5] It is the second most electropositive of the non-radioactive alkali metals and melts at a temperature of 39.3 °C (102.7 °F). Similar to other alkali metals, rubidium metal reacts violently with water. As with potassium (which is slightly less reactive) and caesium (which is slightly more reactive), this reaction is usually vigorous enough to ignite the hydrogen gas it produces. Rubidium has also been reported to ignite spontaneously in air.^[5] It forms amalgams with mercury and alloys with gold, iron, caesium, sodium, and potassium, but not lithium (even though rubidium and lithium are in the same group).^[6]

Rubidium, 37Rb

General properties

Name, symbol rubidium, Rb
Appearance grey white

Rubidium in the periodic table

Atomic number (Z) 37

Group, block group 1 (alkali metals),

s-block

Period period 5

Element category \square alkali metal

Standard atomic weight (\pm) (A_r)

85.4678(3)^[1]

Electron configuration

[Kr] 5s¹

per shell 2, 8, 18, 8, 1

Physical properties

Phase solid

Melting point 312.45 K (39.30 °C,

102.74 °F)

Rubidium has a very low ionization energy of only 406 kl/mol.^[7] Rubidium and potassium show a very similar purple color in the flame test, and distinguishing the two elements requires something more sophisticated, such as spectroscopy.

Compounds

Rubidium chloride (RbCl) is probably the most used rubidium compound: among several other chlorides, it is used to induce living cells to take up DNA; it is also used as a biomarker, because in nature, it is found only in small quantities in living organisms and when present, replaces potassium. Other common rubidium compounds are the corrosive rubidium hydroxide (RbOH), the starting material for most rubidium-based chemical processes; rubidium carbonate (Rb₂CO₃), used in some optical glasses, and rubidium copper sulfate, $Rb_2SO_4 \cdot CuSO_4 \cdot 6H_2O$. Rubidium silver iodide ($RbAg_4I_5$) has the highest room temperature conductivity of any known ionic

crystal, a property exploited in thin film batteries and other applications. [8][9]

Rubidium forms a number of oxides when exposed to air, including rubidium monoxide (Rb₂O), Rb₆O, and Rb₉O₂; rubidium in excess oxygen gives the superoxide RbO₂. Rubidium forms salts with halides, producing rubidium fluoride, rubidium chloride, rubidium bromide, and rubidium iodide.

Isotopes

Although rubidium is monoisotopic, rubidium in the Earth's crust is composed of two isotopes: the stable ⁸⁵Rb (72.2%) and the radioactive ⁸⁷Rb (27.8%).^[10] Natural rubidium is radioactive, with specific activity of about 670 Bg/g, enough to significantly expose a photographic film in 110 days. [11][12]

Twenty four additional rubidium isotopes have been synthesized with half-lives of less than 3 months; most are highly radioactive and have few uses.

Boiling point 961 K (688 °C,

1270 °F)

Density near r.t. 1.532 g/cm^3

when liquid, at m.p. 1.46 g/cm^3

Triple point 312.41 K. ? kPa^[2]

Critical point 2093 K, 16 MPa

(extrapolated)[2]

2.19 kl/mol **Heat of fusion**

69 kl/mol **Heat of**

vaporization

Molar heat 31.060 J/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	434	486	552	641	769	958

Atomic properties

+1, -1 (a strongly Oxidation states

basic oxide)

Pauling scale: 0.82 **Electronegativity**

1st: 403 kl/mol Ionization energies 2nd: 2632.1 kJ/mol

3rd: 3859.4 kl/mol

empirical: 248 pm **Atomic radius**

220±9 pm **Covalent radius**

Van der Waals 303 pm

radius

Miscellanea

Crystal structure body-centered cubic

(bcc)

Rubidium-87 has a half-life of 48.8×10^9 years, which is more than three times the age of the universe of $(13.799 \pm 0.021) \times 10^9$ years, [13] making it a primordial nuclide. It readily substitutes for potassium in minerals, and is therefore fairly widespread. Rb has been used extensively in dating rocks; ⁸⁷Rb beta decays to stable ⁸⁷Sr. During fractional crystallization, Sr tends to concentrate in plagioclase, leaving Rb in the liquid phase. Hence, the Rb/Sr ratio in residual magma may increase over time, and the progressing differentiation results in rocks with elevated Rb/Sr ratios. The highest ratios (10 or more) occur in pegmatites. If the initial amount of Sr is known or can be extrapolated, then the age can be determined by measurement of the Rb and Sr concentrations and of the ⁸⁷Sr/⁸⁶Sr ratio. The dates indicate the true age of the minerals only if the rocks have not been subsequently altered (see rubidium-strontium dating). [14][15]

Rubidium-82, one of the element's non-natural isotopes, is produced by electron-capture decay of strontium-82 with a half-life of 25.36 days. With a half-life of 76 seconds, rubidium-82 decays by positron emission to stable krypton-82.^[10]

Occurrence

Rubidium is the twenty-third most abundant element in the Earth's crust, roughly as abundant as zinc and rather more common than copper. $^{[16]}$ It occurs naturally in the minerals leucite, pollucite, carnallite, and zinnwaldite, which contain as much as 1% rubidium oxide. Lepidolite contains between 0.3% and 3.5% rubidium, and is the commercial source of the element. $^{[17]}$ Some potassium minerals and potassium chlorides also contain the element in commercially significant quantities. $^{[18]}$

Seawater contains an average of 125 μ g/L of rubidium compared to the much higher value for potassium of 408 mg/L and the much lower value of 0.3 μ g/L for caesium. [19]

Because of its large ionic radius, rubidium is one of the "incompatible elements." During magma crystallization, rubidium is concentrated together with its heavier analogue caesium in the liquid phase and crystallizes last. Therefore, the largest deposits of rubidium and caesium are zone pegmatite ore bodies formed by this

Speed of sound thin rod	1300 m/s (at 20 °C)						
Thermal expansion	90 μ m/(m·K) ^[3] (at r.t.)						
Thermal conductivity	58.2 W/(m·K)						
Electrical resistivity	128 nΩ·m (at 20 °C)						
Magnetic ordering	paramagnetic ^[4]						
Young's modulus	2.4 GPa						
Bulk modulus	2.5 GPa						
Mohs hardness	0.3						
Brinell hardness	0.216 MPa						
CAS Number	7440-17-7						
History							
Discovery	Robert Bunsen and Gustav Kirchhoff						

(1861)

Most stable isotopes of rubidium

First isolation

George de Hevesy

enrichment process. Because rubidium substitutes for potassium in the crystallization of magma, the enrichment is far less effective than that of caesium. Zone pegmatite ore bodies containing mineable quantities of caesium as pollucite or the lithium minerals lepidolite are also a source for rubidium as a by-product.^[16]

Two notable sources of rubidium are the rich deposits of pollucite at Bernic Lake, Manitoba, Canada, and the rubicline ((Rb,K)AlSi $_3$ O $_8$) found as impurities in pollucite on the Italian island of Elba, with a rubidium content of 17.5%. Both of those deposits are also sources of caesium.

Source

Wikipedia: Rubidium (https://en.wikipedia.org/wiki/Rubidium)

Retrieved from "https://en.wikipedia.org/w/index.php? title=Rubidium&oldid=753495727"

iso	NA	half-life	DM	DE (MeV)	DP
	syn		ε	-	⁸³ Kr
⁸³ Rb		86.2 d	Υ	0.52, 0.53, 0.55	-
	syn		ε	-	⁸⁴ Kr
⁸⁴ Rb		32.9 d	β+	1.66, 0.78	⁸⁴ Kr
			γ	0.881	-
			β-	0.892	⁸⁴ Sr
⁸⁵ Rb	72.17%	is stable w	8 neutro	ns	
8651	CVD	18.65 d	β-	1.775	⁸⁶ Sr
⁸⁶ Rb	syn	16.03 u	γ	1.0767	_
⁸⁷ Rb	27.83%	$4.9 \times 10^{10} \text{ y}$	β-	0.283	⁸⁷ Sr