

Linear Regression

Learning Goals

In this section, we will cover:

- Linear Regression
- Modeling Best Practice
- Measuring Errors

Introduction to Linear Regression

Introduction to Linear Regression

Introduction to Linear Regression

Calculating the Residuals

Minimizing the Error Function

$$\min_{\beta_0,\beta_1} \frac{1}{m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

Minimizing the Error Function

$$J(\beta_0, \beta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(\left(\beta_0 + \beta_1 x_{obs}^{(i)} \right) - y_{obs}^{(i)} \right)^2$$

Modeling Best Practice

Use cost function to fit model

Develop multiple models

Compare results and choose best one

Other Measures of Error

Sum of Squared Error (SSE):
$$\sum_{i=1}^{m} \left(y_{\beta}(x^{(i)}) - y_{obs}^{(i)} \right)^{2}$$

Total Sum of Squares (TSS):

$$\sum_{i=1}^{m} \left(\overline{y_{obs}} - y_{obs}^{(i)} \right)^2$$

Coefficient of Determination (R2):

Linear Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

Create an instance of the class

```
LR = LinearRegression()
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```


