1 證明 $L_{SSM}(\theta) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \mathbb{E}_{\mathbf{v} \sim p(\mathbf{v})} [\|v^T S(x; \theta)\|^2 + 2v^T \nabla_x (v^T S(x; \theta))]$

由定義 $L_{SSM}(\theta) = \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \|S(\mathbf{x}; \theta)\|^2 + \mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \mathbb{E}_{\mathbf{v} \sim p(\mathbf{v})} \left[2\mathbf{v}^\top \nabla_{\mathbf{x}} (\mathbf{v}^\top S(\mathbf{x}; \theta)) \right].$,我們只需要證明 $\mathbb{E}_{\mathbf{x} \sim p(\mathbf{x})} \mathbb{E}_{\mathbf{v} \sim p(\mathbf{v})} [\|\mathbf{v}^\top S\|^2] = \mathbb{E}_{\mathbf{x}} [\|S\|^2] \circ$

2 什麼是隨機微分方程 (SDE)?

SDE 是一種數學方程式,用來描述一個隨時間演變的隨機過程 x_t 。它的一般形式 (Ito 過程)如下:

$$dx_t = \underbrace{f(x_t, t)dt}_{\text{drift}} + \underbrace{G(x_t, t)dW_t}_{\text{diffusion}}$$

這個方程式由兩個關鍵部分組成:

漂移項 (Drift Term): $f(x_t, t)dt$

這代表系統的確定性趨勢或平均走向。 $f(x_t,t)$ 是一個函數,描述在時間 t、狀態為 x_t 時,系統的預期變化率。dt 代表一個極小的時間變化。如果 SDE 只有這一項 $(dx_t = f(x_t,t)dt)$,它就退化為一個普通的確定性微分方程。

擴散項 (Diffusion Term): $G(x_t,t)dW_t$

這代表系統的隨機波動或噪聲。 $G(x_t,t)$ 是一個函數 (可能是矩陣),描述隨機性的規模或強度。 dW_t 是最關鍵的部分,它代表 Wiener 過程或布朗運動 (Brownian motion) W_t 的微小變化。

2.1 隨機性的來源: Wiener 過程 (W_t)

驅動 SDE 隨機性的 W_t 是一個具有以下數學特性的隨機過程:

- 初始條件: $W_0 = 0$ 。
- 獨立增量: 在任何不重疊的時間區間內, W_t 的變化(增量)是相互獨立的。

- 平穩高斯增量: 任意一段時間 Δt 內的增量 $\Delta W_t = W(t+\Delta t) W(t)$,服 從平均值為 0、協方差為 ΔtI 的高斯分佈(常態分佈)。即 $W_{t+\Delta t} W_t \sim N(0,\Delta tI)$ 。
- 連續路徑: W_t 的路徑 $t \mapsto W(t)$ 是連續的,但它幾乎在任何地方都是不可微分的。

2.2 SDE 的積分形式

SDE $dx_t = f(x_t, t)dt + G(x_t, t)dW_t$ 也可以寫成等價的伊藤積分方程:

$$x_t = x_0 + \int_0^t f(x_s, s) ds + \int_0^t G(x_s, s) dW_s$$

 x_0 是初始狀態。 $\int_0^t f(x_s,s)ds$ 是一般的積分,代表漂移項隨時間的累積。 $\int_0^t G(x_s,s)dW_s$ 是伊藤隨機積分,代表擴散項隨時間的累積。

2.3 如何(近似)求解 SDE?

SDE 很少有精確的解析解。在實務上,我們使用數值方法來近似模擬其路徑,最常用的是 Euler-Maruyama 法。這個方法將時間 t 分割成 N 個寬度為 Δt 的小區間,然後使用以下迭代公式來計算 X_t 的近似值 X_n (其中 $t_n=n\Delta t$):

$$X_{n+1} = X_n + f(X_n, t_n)\Delta t + G(X_n, t_n)\Delta W(t_n)$$

在電腦模擬中,我們利用 $\Delta W(t_n) \sim N(0, \Delta t I)$ 的特性,將其改寫為:

$$X_{n+1} = X_n + f(X_n, t_n)\Delta t + G(X_n, t_n)\sqrt{\Delta t}Z(t_n)$$

其中 $Z(t_n)$ 是一系列獨立同分佈 (iid) 且服從標準常態分佈 N(0,1) 的隨機變數。

3 Unanswered Questions

如何衡量 Euler-Maruyama 這個數值方法的好壞?