3	The objects and features of the present invention, which are believed to be
4	novel, are set forth with particularity in the appended claims. The present invention, both as
5	to its organization and manner of operation, together with further objects and advantages,
6	may best be understood by reference to the following description, taken in connection with
7	the accompanying drawings, of which:
8	Figure 1 is a drawing of a conventional triangulation-based EL System;
9	Figure 2 is an example of what a present day mapping display looks like when
10	using the setup of the system of Figure 1;
11	Figure 3 is a drawing of a preferred embodiment of the present invention and how
12	it is used;
13	Figure 4 is an example of how the probability field mapping display of the present
14	invention can be presented to an EL System operator; and
15	Figure 5 depicts the method for using the mobile DF set and probability fields to
16	determine progressive estimated positions (EPs)."
17	
18	
ı	Please amend the specification at page 11, line 4:
2	"This invention employs a specialized recursive method in the computer to
3	process the LOB data that is continually being stored. This specialized method is the
4	topic of another patent application entitled: "Technique and Algorithm for Reducing
5	Measurement Uncertainties in Emitter Location Systems," Provisional Application Ser.
6	No. 60/449,442, now "Real-time Emitter Locating System and Method," U.S. Patent
7	Application number 10/785,353, incorporated herein by reference. The whole process

- 8 begins after a "cross-over" point is first found. A cross-over point is the intersection
- 9 between the last best LOB data entries from a pair of DF sets. This cross-over point,
- when fixed on a map, is the original triangulated position (hereafter referred to as the
- "cross-over position point") of the transmitter. In order to ascertain the changing position
- of a moving transmitter, the approach depicted in Figure 5 is employed. Once the cross-
- over position point is found, successive estimated position points (of the transmitter) are
- 14 determined by moving the mobile DF set in direction 26, generating a connecting vector
- between the real-time LOB from the mobile DF set to the transmitter, and thereby
- assigning the EP as being along the connecting vector. These position points (EPs) are
- 17 then continually fed into a separate system/process that draws the "probability fields"."