Program Verification

Bow-Yaw Wang

Institute of Information Science Academia Sinica, Taiwan

December 19, 2017

Motivation I

- Computers are commonly used in modern society.
 - aircrafts, high-speed trains, cars, nuclear plants, banks, hospitals, governments, etc.
- What if computer programs go wrong?
 - ► Therac-25, Ariane 5, Pentium FDIV, high-speed rail, etc.
- A prominent application of logic in computer science is to verify critical computer systems.
- With logic, we are able to state and prove properties about computer systems formally.

Motivation II

- Engineering techniques are also used to build critical systems.
 - testing, metrics, documentation, good programming practices, etc.
- Such techniques cannot guarantee correctness.
- Since mid-1990's, formal logic has been deployed in computer industry.
- Many organizations are asking manufacturers to apply formal methods in development cycles.

Classification of Verification Techniques I

- Proof- versus model-based. Is the technique syntactic or semantic?
- Degree of automation. Does the technique need human guidance?
 How much?
- Full- versus property-verification. Does the technique verify all or some requirements?
- Intended domain. What types of systems (hardware/software, interactive/reactive etc) the technique is designed for?
- Pre- versus post-development. Is the technique applied before or after system development?

Classification of Verification Techniques II

- In this chapter, we will discuss a proof-based, semi-automatic, property-oriented verification technique for sequential programs.
- ullet We are given a sequential program P and an intended property ϕ .
- ullet We will construct a proof for P satisfying ϕ based on a proof calculus.
- The proof calculus is similar to the ones for propositional or predicate logic.

Why not Model Checking?

- Generally speaking, model checking works better for finite-state concurrent systems.
 - ▶ That is, systems with complex control flows but simple data types.
- For sequential programs, integer variables are often used.
- Since integer variables can have arbitrary values, sequential programs can have infinitely many states in theory.
- Verifying infinite-state systems is often undecidable.
- It is impossible to have an automatic tool for such systems.

- 1 A framework for software verification
- Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

- A framework for software verification
 - A core programming language
 - Hoare triples
 - Partial and total correctness
 - Program variables and logical variables
- Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

A Framework for Software Verification I

- Consider the following framework:
 - ► Convert the informal description R of requirements into a formula ϕ_R in some symbolic logic;
 - Write a program P to realize ϕ_R ;
 - ▶ Show that *P* indeed satisfies ϕ_R .

A Framework for Software Verification II

- Our framework is overly simplified.
- Translating informal descriptions to formal logic is always difficult.
- Even if formal specifications are available, writing programs is not easy.
- These two steps are to be done manually.
- What we will do is to show that a program satisfies its specification formally.

- A framework for software verification
 - A core programming language
 - Hoare triples
 - Partial and total correctness
 - Program variables and logical variables
- Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

A Core Programming Language I

- We begin with the description of our programming language.
- Popular programming languages such as C, C++, Java are of our interests.
- However, we would like to focus on fundamentals of program verification.
- Thus we consider a (very) simple subset of these programming languages.
- The core programming language will help us to grasp key concepts more easily.

A Core Programming Language II

- Let us assume our core programming language has three syntactic classes: integer expressions, boolean expressions, and commands.
- Integer expressions have the following syntax:

$$E ::= n \mid x \mid (-E) \mid (E + E) \mid (E - E) \mid (E * E)$$

where $n \in \{\ldots, -2, -1, 0, 1, 2, \ldots\}$ and x is an integer variable.

- For instance, ((-x)*4) and ((x*x)-(y*y)) are integer expressions.
- To reduce parentheses, we assume the following binding convention:

strongest		weakest
nogation ()	multiplication $(*)$	addition $(+)$
negation (-)		$substraction\;(-)$

• With the convention, we write -x * 4 for ((-x) * 4) and x * x - y * y for ((x * x) - (y * y)).

A Core Programming Language III

Boolean expressions have the following syntax:

$$B ::= false \mid true \mid (!B) \mid (B\&\&B) \mid (B||B) \mid (E < E).$$

- ! stands for negation, && for conjunction, || for disjunction.
- We will use $E_1 == E_2$ for $!(E_1 < E_2) \& \& !(E_2 < E_1)$ and $E_1 != E_2$ for $!(E_1 == E_2)$.
- To reduce parentheses, we assume the following binding convention:

	strongest		weakest
•	less (<)	not (!)	and (&&) or ()

A Core Programming Language IV

Commands have the following syntax:

$$C := x = E \mid C; C \mid \text{if } B \mid C \} \text{ else } \{C\} \mid \text{while } B \mid C \}.$$

- x=E is an assignment; it evaluates E and then assigns the result to x.
- C_0 ; C_1 is a compound statement; it first executes C_0 and then C_1 .
- if $B \{ C_0 \}$ else $\{ C_1 \}$ is an if-statement. It evaluates B first and then executes C_0 if the result is true; otherwise, C_1 is executed.
- while $B \{ C \}$ is a while-statement.
 - It evaluates B;
 - If the result is false, it terminates;
 - If the result is true, it executes C and go to Step 1.

Example

• Recall the factorial n!:

$$\begin{array}{rcl}
0! & = & 1 \\
(n+1)! & = & (n+1) \times n!
\end{array}$$

Consider the following program Fac1:

```
\begin{array}{lll} y & = & 1; \\ z & = & 0; \\ \textbf{while} & (z & != & x) & \{ \\ z & = & z & + & 1; \\ y & = & y & * & z; \\ \} \end{array}
```

- When it terminates, Fac1 is intended to compute y = x!.
- How do we prove it?

- A framework for software verification
 - A core programming language
 - Hoare triples
 - Partial and total correctness
 - Program variables and logical variables
- Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

Hoare Triples I

- Let P be a program that computes a number y with $y^2 < x$ on an input number x.
- How do we specify *P*?

Hoare Triples II

- Let P be a program that computes a number y with $y^2 < x$ on an input number x.
- Here is a first attempt: On an input number x, we have $y^2 < x$ after executing P.
- This is fine. But what if $x \le 0$?

Hoare Triples III

- Let P be a program that computes a number y with $y^2 \le x$ on an input number x.
- To be more precise, we can say:
 - On an input number x > 0, we have $y^2 \le x$ after executing P.

Hoare Triples IV

Definition

Let P be a program, ϕ and ψ are logic formulae. A <u>Hoare triple</u> is of the form $(\phi)P(\psi)$ where ϕ is the <u>precondition</u> and ψ the <u>postcondition</u> of P. Moreover, we require that quantifiers in ϕ and ψ only bind variables not in P.

- Let P be a program that computes a number y with $y^2 < x$ on an input number x.
- We may write a Hoare triple to specify P:

$$(|x>0)P(|y^2< x|)$$

where x > 0 is the precondition and $y^2 < x$ the postcondition.

States

- In a Hoare triple $(\phi)P(\psi)$, we have two logic formulae ϕ and ψ with free variables.
- In order to interpret ϕ and ψ , consider the standard model \mathcal{M} for integers with function symbols (unary), +, -, * (binary), and predicate symbols < and = (binary).
- A <u>state</u> (or <u>store</u>) of programs is a function I from variables to integers.
- Let I be a state and ϕ a logic formula. We say I satisfies ϕ or I is a ϕ -state (written $I \models \phi$) if $\mathcal{M} \models_I \phi$.
- Consider a state l with l(x) = -2, l(y) = 5, and l(z) = -1.
 - ▶ $I \models \neg(x + y < z)$ holds.
 - ▶ $I \models y x * z < z$ does not hold.
 - ▶ $I \models \forall u(y < u \implies y * z < u * z)$ does not hold.

Example (Revisited)

Let us consider again the Hoare triple:

$$(|x>0))P(|y^2< x|)$$

• Consdier the following program P_0 :

$$v = 0$$

Does
$$(|x>0|)P_0(|y^2< x|)$$
 hold?

• Consider the following program P_1 :

$$y = 0;$$
while $(y * y < x)$ {
 $y = y + 1;$
}
 $y = y - 1;$

Does $(|x > 0)P_1(|y^2 < x|)$ hold?

• How do we prove it?

- A framework for software verification
 - A core programming language
 - Hoare triples
 - Partial and total correctness
 - Program variables and logical variables
- Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

Partial and Total Correctness I

• There are two interpretations for a Hoare triple $(|\phi|)P(|\psi|)$.

Definition

 $(|\phi|)P(|\psi|)$ holds under partial correctness (written $\models_{\mathsf{par}} (|\phi|)P(|\psi|)$) if for all states satisfying ϕ , the state resulting from executing P's execution satisfies ψ provided P terminates. We say \models_{par} the satisfaction relation for partial correctness.

- That is, $\models_{\mathsf{par}} (\![\phi]\!] P(\![\psi]\!]$ requires ψ holds after executing P from ϕ only when P terminates.
- Particularly, $\models_{par} (|\top|)$ while true $x = x (|\bot|)$ holds.

Partial and Total Correctness II

• Here is the other interpretation.

Definition

 $(|\phi|)P(|\psi|)$ holds under total correctness (written $\models_{tot} (|\phi|)P(|\psi|)$) if for all states satisfying ϕ , the state resulting from executing P's execution satisfies ψ and P terminates. We say \models_{tot} the satisfaction relation for total correctness.

- That is, $\models_{\mathsf{tot}} (\![\phi]\!] P(\![\psi]\!]$ requires ψ holds after executing P from ϕ and P must terminate.
- Particularly, $\models_{tot} (|\top|)$ while true $x = x (|\bot|)$ does not hold.

Partial and Total Correctness III

• Recall the program Fac1:

```
y = 1;
z = 0:
while (z != x) {
  z = z + 1:
  y = y * z;
```

- Clearly, we have $\models_{tot} (|x \ge 0|)$ Fac1(|y = x!|) but not $\models_{tot} (|\top|) \operatorname{Fac1}(|v=x|).$
- On the other hand, both $\models_{par} (|x \ge 0|)$ Fac1(|y = x!|) and $\models_{\mathsf{par}} (|\top|) \mathsf{Fac1}(|y=x!|) \mathsf{ hold}.$
- Naturally, total correctness is more difficult to establish.
- However, we may find insights to prove total correctness when we establish partial correctness.
- Hence we will focus on proving partial correctness.

Proof Systems for Hoare Triples

- Similar to formal logics, we will discuss a proof system for $(|\phi|)P(|\psi|)$ under partial correctness.
- We say $\vdash_{par} (\![\phi]\!]P(\![\psi]\!]$ is <u>valid</u> if there is a proof for $(\![\phi]\!]P(\![\psi]\!]$ in our proof system for partial correctness.
- Similarly, $\vdash_{\mathsf{tot}} (\![\phi]\!] P(\![\psi]\!]$ is <u>valid</u> if there is a proof $(\![\phi]\!] P(\![\psi]\!]$ in a proof system for total correctness.
- We say a proof calculus for partial correctness is sound if for every ϕ, ψ and P
 - $\models_{\mathsf{par}} (|\phi|) P(|\psi|)$ holds whenever $\vdash_{\mathsf{par}} (|\phi|) P(|\psi|)$ is valid.
- We say a proof calculus for partial correctness is $\underline{\text{complete}}$ if for every ϕ, ψ and P
 - $\vdash_{\mathsf{par}} (|\phi|) P(|\psi|)$ is valid whenever $\models_{\mathsf{par}} (|\phi|) P(|\psi|)$ holds.

- A framework for software verification
 - A core programming language
 - Hoare triples
 - Partial and total correctness
 - Program variables and logical variables
- 2 Proof calculus for partial correctness
- Proof calculus for total correctness
- 4 Introduction to Z3

Program Variables and Logical Variables I

- So far, free variables in the pre- and post-conditions of a Hoare triple $(|\phi|)P(|\psi|)$ are program variables.
- Consider the following program Fac2:

```
y = 1;
while (x != 0) {
  y = y * x;
  x = x - 1;
}
```

- Can you specify Fac2 in a Hoare triple?
 - $(|x \ge 0|)$ Fac2(|y = x!|) is incorrect. Why?

Program Variables and Logical Variables II

• Consider the program Sum:

```
 \begin{split} z &= 0; \\ \textbf{while} & (x > 0) \ \{ \\ z &= z + x; \\ x &= x - 1; \\ \} \end{aligned}
```

- Can you specify Sum?
 - $(x \ge 0)$ Sum $(z = \frac{x(x+1)}{2})$ is incorrect. Why?

Program Variables and Logical Variables III

- One way to specify Fac2 and Sum is to introduce logical variables.
 - A logical variable occurs only in logic formulae but not programs.
- Recall the program Fac2:

```
v = 1:
while (x != 0) {
 y = y * x;
 x = x - 1;
```

- We have $(|x = x_0 \land x \ge 0|)$ Fac2 $(|y = x_0!|)$.
- Recall the program Sum:

```
z = 0:
while (x > 0) {
 z = z + x:
 x = x - 1:
```

• We have $(|x = x_0 \land x \ge 0|) \text{Sum}(|z = \frac{x_0(x_0+1)}{2}|)$.

- A framework for software verification
- Proof calculus for partial correctness
 - Proof rules
 - Proof tableaux
 - A case study: minimal-sum section
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

Proof Calculus for Partial Correctness

- We will discuss a proof calculus for partial correctness of core programs.
- It was developed by R. Floyd and C. A. R. Hoare.
- Similar to proof calculus for propositional or predicate logics, we will give proof rules.
- We could write formal proofs in proof trees. But we will use a linear presentation called <u>proof tableaux</u>

- 1 A framework for software verification
- Proof calculus for partial correctness
 - Proof rules
 - Proof tableaux
 - A case study: minimal-sum section
- Proof calculus for total correctness
- 4 Introduction to Z3

Proof Rules - Composition

- For each statement P, we present a proof rule for $(|\phi|)P(|\psi|)$.
- The proof rule for $(\phi)C_0; C_1(\psi)$ is

$$\frac{(\![\phi]\!] C_0(\![\eta]\!] \quad (\![\eta]\!] C_1(\![\psi]\!]}{(\![\phi]\!] C_0; C_1(\![\psi]\!]} \quad \textit{Composition}$$

- That is, if we want to show $(\phi)C_0; C_1(\psi)$, it suffices to find η and show $(\phi)C_0(\eta)$ and $(\eta)C_1(\psi)$.
- ullet η is called a midcondition.

Proof Rules - Assignment I

• The proof rule for assignment statements is

$$\frac{1}{(|\psi[E/x]|)x = E(|\psi|)} Assignment$$

• That is, if we start from a state satisfying $\psi[E/x]$, we end with a state satisfying ψ after executing x=E.

Proof Rules - Assignment II

- The proof rule may look strange at first.
- Let us see how it works.
- Consider the assignment statement x = x + 1 with the postcondition $x \ge 1$.
- By the proof rule for assignments, we have

$$\frac{1}{(|x+1| \ge 1)|x| = |x+1|(|x| \ge 1)}$$
 Assignment

• That is, if we start from a state with $x \ge 0$, we will arrive at a state with $x \ge 1$ after executing x = x + 1.

Proof Rules - Assignment III

One might think the proof rule would be

$$\frac{1}{(\phi)x = E(\phi[E/x])} WrongAssignment$$

- From a state satisfying ϕ , we will get a state satisfying $\phi[E/x]$ after executing x=E.
- But this is wrong!
- Consider the assignment x = 5 with the precondition x = 0.
- We would have

$$(|x = 0|)x = 5(|x[5/x] = 0).$$
 WRONG

Proof Rules - Assignment IV

Let us rethink the proof rule for assignments:

$$\overline{(|\psi[E/x]|)x = E(|\psi|)}$$
 Assignment

- The right way to understand this proof rule is to think backward.
- Suppose we have a postcondition ψ after executing x = E.
- What can make the postcondition hold before x = E?
- We want all occurrences of x in ψ equal to E after executing x = E.
- Hence $\psi[E/x]$ should hold before executing x = E.

Proof Rules - Assignment V

- Let P be x = 2. We have
 - (2 = 2)P(|x = 2).
 - (2 = 4)P(|x = 4|).
 - **3** (2 = y)P(x = y).
 - (2 > 0) P(|x > 0).
- Let Q be x = x + 1. We have

 - (|x+1=y|)Q(|x=y|).
 - (x+1+5=y)Q(x+5=y).
 - $(|x+1>0 \land y>0)) Q(|x>0 \land y>0)).$

Proof Rules – If-Statement

• The proof rule for if-statements is:

$$\frac{(\phi \land B) C_0(|\psi|) \quad (\phi \land \neg B) C_1(|\psi|)}{(|\phi|) \text{if } B \ \{ \ C_0 \ \} \text{ else } \{ \ C_1 \ \}(|\psi|) } \ \textit{If } - \textit{statement}$$

- That is, if we want to show (ϕ) if $B \{ C_0 \}$ else $\{ C_1 \} (\psi)$, it suffices to show $(\phi \land B) C_0(\psi)$ and $(\phi \land \neg B) C_1(\psi)$.
- Note that $\phi \wedge B$ and $\phi \wedge \neg B$ mix a logic formula ϕ with a Boolean expression B or $\neg B$.
 - Strictly speaking, such mixed notations need be defined formally.

Proof Rules – Partial-While

• The proof rule for while-statements is:

$$\frac{(\!(\psi \land B)\!) C(\!(\psi)\!)}{(\!(\psi)\!) \text{while } B \ \{\ C\ \} (\!(\psi \land \neg B)\!)} \ \textit{Partial} - \textit{while}$$

- That is, if we want to show (ψ) while $B \{ C \} (\psi \land \neg B)$, it suffices to show $(\psi \land B) C(\psi)$.
 - ▶ Note that $\neg B$ must hold after executing the while-statement.
- $(|\psi \wedge B|)C(|\psi|)$ in fact asserts that ψ remains unchanged after executing the loop body C.
 - \blacktriangleright No matter how many times the body C is executed, ψ always holds after each execution.
- \bullet To prove properties about while-statements, the key is to find such an "invariant" $\psi.$

Proof Rules - Implied

 We have an additional proof rule to strengthen (weaken) the precondition (postcondition):

$$\frac{\vdash_{\mathit{AR}} \phi' \implies \phi \quad (|\phi|) \mathit{C}(|\psi|) \quad \vdash_{\mathit{AR}} \psi \implies \psi'}{(|\phi'|) \mathit{C}(|\psi'|)} \; \mathit{Implied}$$

where $\vdash_{AR} \eta$ is valid if there is a natural deduction proof for η in standard laws of arithmetic.

- This proof rule is not really about program statements.
- Rather, it links program logic (Hoare triples) with predicate logic (\vdash_{AR}) .
- Particularly, the implied proof rule helps us simplify pre- and post-conditions.

Proof Rules – Summary

$$\frac{(|\phi|)C_0(|\eta|) - (|\eta|)C_1(|\psi|)}{(|\phi|)C_0;C_1(|\psi|)} \quad Composition$$

$$\frac{(|\psi|E/x])x = E(|\psi|)}{(|\psi|E/x])x = E(|\psi|)} \quad Assignment$$

$$\frac{(|\phi \wedge B|)C_0(|\psi|) - (|\phi \wedge \neg B|)C_1(|\psi|)}{(|\phi|)if B \{ C_0 \} \text{ else } \{ C_1 \}(|\psi|)} \quad If \quad -\text{ statement}$$

$$\frac{(|\psi \wedge B|)C(|\psi|)}{(|\psi|)while B \{ C \}(|\psi \wedge \neg B|)} \quad Partial \quad -\text{ while}$$

$$\frac{|\phi|}{(|\psi|)while B \{ C \}(|\psi|)} \quad |\phi| = \frac{|\phi|}{(|\psi'|)C(|\psi'|)} \quad Implied$$

Outline

- 1 A framework for software verification
- Proof calculus for partial correctness
 - Proof rules
 - Proof tableaux
 - A case study: minimal-sum section
- Proof calculus for total correctness
- 4 Introduction to Z3

A Proof Tree

- Using proof rules, we can formally prove that $\vdash_{par} (|\top|) \text{Fac1}(|y=x!|)$ is valid.
- Here is the proof tree:

$$\frac{(1 = 1)y = 1(y = 1)}{(1 = 1)y = 1(y = 1)} \frac{(y = 1 \land 0 = 0)z = 0(y = 1 \land z = 0)}{(y = 1)z = 0(y = 1 \land z = 0)} \frac{(y \cdot (z + 1) = (z + 1)!)z = z + 1(y \cdot z = z!)}{(y = z! \land z \neq x)z = z + 1(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z!)}{(y \cdot z = z!)} \frac{(y \cdot z = z + 1; y \cdot z = z +$$

Proof Tableaux I

- Similar to proof systems for propositional and predicate logic, we will use a linear presentation of proof trees called proof tableaux.
- Let $P = C_1$; C_2 ; \cdots ; C_n be a program.
- Suppose we would like to show $\vdash_{par} (|\phi_0|)P(|\phi_n|)$ is valid.
- We will write its proof as follows.

$$(|\phi_0|)$$
 C_1

$$(|\phi_1|)$$
 justification
$$(|\phi_{n-1}|)$$
 justification
$$C_n$$

$$(|\phi_n|)$$

where $\phi_1, \phi_2, \dots, \phi_{n-1}$ are midconditions.

Proof Tableaux II

• Recall the proof rule for assignments:

$$\frac{1}{(|\psi[E/x]|)x = E(|\psi|)}$$
 Assignment

- Since it is easier to compute preconditions from postconditions for assignments, we often start with ϕ_n and work backward until ϕ_0 .
- Ideally, we should compute the weakest precondition ϕ_{i-1} from ϕ_i for each i.
 - ▶ A logical formula ψ is <u>weaker</u> than ϕ if $\models \phi \implies \psi$ holds; similarly, we say ϕ is <u>stronger</u> than ψ .
- That is, we would like to compute the weakest condition ϕ_{i-1} to guarantee ϕ_i after execution C_i .
- When we get to ϕ_0 , we can then apply the Implied proof rule to strengthen ϕ_0 if needed.

Proof Tableaux - Assignment

Let us begin with a proof tableau for assignments.

$$\begin{array}{ll} (|\psi[E/x]|) \\ x = E \\ (|\psi|) & \text{Assignment} \end{array}$$

- Proof tableaux are read from top.
- ullet We obtain the postcondition ψ by the Assignment proof rule.
- ullet Hence the justification for ψ is Assignment.

Proof Tableaux - Implied

 A proof tableau for the Implied proof rule links predicate logic with arithmetic with program logic.

$$\begin{array}{c} (|\phi'|) \\ (|\phi|) & \text{Implied} \\ C \\ (|\psi|) \\ (|\psi'|) & \text{Implied} \end{array}$$

- provided $\vdash_{AR} \phi' \implies \phi$ and $\vdash_{AR} \psi \implies \psi'$.
- We do not give a formal proof of $\vdash_{AR} \phi' \implies \phi$ nor of $\vdash_{AR} \psi \implies \psi'$ in proof tableaux.
 - Oftentimes such proofs are simple.
 - You should know how to give their formal proofs by now.

Examples I

Example

Show $\vdash_{\mathsf{par}} (y = 5)x = y + 1(x = 6)$ is valid.

$$(y = 5)$$

 $(y + 1 = 6)$ Implied
 $x = y + 1$
 $(x = 6)$ Assignment

Examples II

Example

Show $\vdash_{par} (y < 3)y = y + 1(y < 4)$.

$$(|y < 3|)$$

 $(|y + 1 < 4|)$ Implied
 $y = y + 1$
 $(|y < 4|)$ Assignment

Examples III

Example

Let
$$P$$
 be $z = x$; $z = z + y$; $u = z$. Show $\vdash_{par} (|\top|)P(|u = x + y|)$.

$$(|\top|)$$

 $(|x+y=x+y|)$ Implied
 $z = x;$
 $(|z+y=x+y|)$ Assignment
 $z = z + y;$
 $(|z=x+y|)$ Assignment
 $u = z$
 $(|u=x+y|)$ Assignment

Non-Examples

• What is wrong in the following "proof?"

$$(\mid \top \mid)$$

 $(\mid x+1=x+1 \mid)$ Implied
 $x=x+1$
 $(\mid x=x+1 \mid)$ Assignment

- ▶ The Assignment proof rule replaces all occurrences of x by x + 1.
- We have (|x+1=x+1+1|)x = x + 1(|x=x+1|).
- What is wrong in the following "proof?"

$$(|x + 2 = y + 1|)$$

y = y + 10001;
x = x + 2
 $(|x = y + 1|)$ Assignment

▶ The proof rule Assignment must apply to every assignment statement.

Proof Tableaux – If

• Given ψ , consider a Hoare triple for if-statement:

$$(\phi)$$
 if B $\{$ C_0 $\}$ else $\{$ C_1 $\}(\psi)$

How do we compute the weakest ϕ to guarantee ψ ?

- ullet ϕ is computed as follows.
 - Compute ϕ_0 such that $(\phi_0)C_0(\psi)$;
 - Compute ϕ_1 such that $(\phi_1)C_1(\psi)$;
 - ▶ Define ϕ as $(B \implies \phi_0) \land (\neg B \implies \phi_1)$.
- Observe that $\vdash_{AR} (\phi \land B) \implies \phi_0$ and $\vdash_{AR} (\phi \land \neg B) \implies \phi_1$. Hence

$$\frac{ \left(\left| \phi_0 \right| \right) C_0 \left(\left| \psi \right| \right) }{ \left(\left| \phi \wedge B \right| \right) C_0 \left(\left| \psi \right| \right) } \ Implied \quad \frac{ \left(\left| \phi_1 \right| \right) C_1 \left(\left| \psi \right| \right) }{ \left(\left| \phi \wedge \neg B \right| \right) C_1 \left(\left| \psi \right| \right) } \ Implied \quad If - statement$$

Example I

Example

```
Let Succ be  \begin{array}{l} a = x \, + \, 1; \\ \textbf{if} \ \left( a \, - \, 1 \, = \, 0 \right) \, \, \{ \\ y \, = \, 1 \\ \} \, \, \, \textbf{else} \, \, \{ \\ y \, = \, a \end{array}
```

Show $\vdash_{par} (|\top|) Succ(|y = x + 1|).$

Example II

```
(|\top|)
   ((x+1-1=0 \implies 1=x+1) \land (\neg(x+1-1=0) \implies x+1=x+1))
                                                                              Implied
a = x + 1;
   ((a-1=0 \implies 1=x+1) \land (\neg(a-1=0) \implies a=x+1))
                                                                              Assignment
if (a - 1 == 0) {
     (|1 = x + 1|)
                                                                              If-statement
 y = 1
      (|y = x + 1|)
                                                                              Assignment
} else {
      (|a = x + 1|)
                                                                              If-statement
 y = a
     (|y = x + 1|)
                                                                              Assignment
   (|y=x+1|)
                                                                              If-statement
```

Proof Tableaux – While I

Recall the following proof rule:

$$\frac{(\eta \wedge B)C(\eta)}{(\eta)\text{while } B \ \{ \ C \ \}(\eta \wedge \neg B)} \ \textit{Partial} - \textit{while}$$

- Suppose the while statement terminates from a state satisfying η and $(\eta \wedge B)C(\eta)$.
 - ▶ If B is false at the start of the while statement, the statement is never executed. We end up a state satisfying $\eta \land \neg B$.
 - ▶ If B is true at the start of the while statement, we execute C from a state satisfying $\eta \wedge B$. Since $(\eta \wedge B)C(\eta)$, η is true after executing C.
 - ★ If B is now false, we stop with $\eta \land \neg B$;
 - * If B is still true, we execute C from a state satisfying $\eta \wedge B$ again and have η after executing C.
 - ▶ The while statement terminates iff B becomes false after executing C finitely many times. Hence we have $\eta \land \neg B$ when the statement terminates.

Proof Tableaux – While II

More generally, suppose we are asked to show

$$(\phi)$$
 while $B \{ C \} (\psi)$.

- How do we proceed?
 - We apply the Partial-while and Implied proof rules.

$$\frac{(\eta \land B)C(\eta)}{(\eta)\text{while } B \ \{ \ C \ \}(\eta \land \neg B) } \vdash_{AR} \eta \land \neg B \implies \psi$$

$$(\phi)\text{while } B \ \{ \ C \ \}(\psi)$$

• The key is to find a proper invariant η !

Proof Tableaux - While III

Definition

An <u>invariant</u> of while $B \{ C \}$ is a formula η that $\models_{\mathsf{par}} (\eta \land B) C(\eta)$ holds.

- A while statement have many invariants.
 - ightharpoonup For instance, op and op are trivial invariants for any while statement.
- We are looking for an invariant η that establishes the precondition ϕ and postcondition ψ .
 - ▶ That is, we must have $\vdash_{AR} \phi \implies \eta$ and $\vdash_{AR} \eta \land \neg B \implies \psi$.
- But how do we find such an invariant?
 - we can examine program traces carefully.
 - is it possible to find invariants automatically?

Example I

Example

Recall the program Fac1:

```
\begin{array}{l} y = 1; \\ z = 0; \\ \text{while } (z != x) \{ \\ z = z + 1; \\ y = y * z; \} \end{array}
```

Show $\vdash_{par} (|\top|) \text{Fac1}(|y=x!|)$ is valid.

What is an invariant η such that

- $\bullet \vdash_{AR} y = 1 \land z = 0 \implies \eta;$
- **3** $(\eta \land \neg (z = x))z = z + 1; y = y * z(\eta)?$

Take η to be y = z!.

Example II

Proof.

```
(1 = 0!)
                                             Implied
y = 1;
   (|v = 0!|)
                                             Assignment
z = 0;
   (|y = z!|)
while (z! = x) {
      (|y=z! \land \neg(z=x)|)
      (|y \cdot (z+1) = (z+1)!)
                                             Implied
  z = z + 1:
      (|y \cdot z = z!|)
  v = v * z;
      (|y=z!|)
   (|y=z! \wedge z=x|)
                                             Partial-while
   (|y=x!|)
                                             Implied
```

Assignment

Assignment

Assignment

Outline

- 1 A framework for software verification
- Proof calculus for partial correctness
 - Proof rules
 - Proof tableaux
 - A case study: minimal-sum section
- Proof calculus for total correctness
- 4 Introduction to Z3

Minimal-Sum Sections of Arrays

• Let int a[n] declare an integer array with elements a[0], a[1], ..., a[n - 1].

Definition

Let a be an array with elements $a[0],\ldots,a[n-1]$. A <u>section</u> of a consists of elements $a[i],\ldots,a[j]$ for some $0\leq i\leq j< n$. We write $S_{i,j}$ for $a[i]+a[i+1]+\cdots+a[j]$ (the sum of the section). A <u>minimal-sum section</u> is a section $a[i],\ldots,a[j]$ of a such that $S_{i,j}$ is less than or equal to $S_{i',j'}$ for every section $a[i'],\ldots,a[j']$.

- Example: consider the array [-1, 3, 15, -6, 4, -5].
 - [3,15,-6] and [-6] are sections but [-1,15,-6] isn't.
 - ▶ A minimal-sum section of the array is [-6, 4, -5].
- Minimal-sum sections are in general not unique.
- We will write a program that computes a minimal-sum section for any array and verify the program with our proof calculus.

Solutions to Minimal-Sum Sections I

- A simple solution to minimal-sum sections is by enumeration.
- We enumerate all possible sections and evaluate their sums.
- There are $O(n^2)$ sections. It takes O(n) to evaluate the sum of a section.
- We need $O(n^3)$ to solve the problem.

Solutions to Minimal-Sum Sections II

Here is a better program MinSum:

```
\begin{array}{l} k \, = \, 1; \\ t \, = \, a \, [\, 0\,]; \\ s \, = \, a \, [\, 0\,]; \\ \textbf{while} \  \, (k \, != \, n) \, \, \, \{ \\ t \, = \, \min(t \, + \, a \, [\, k\,] \,, \, \, a \, [\, k\,] \,); \\ s \, = \, \min(s \, , \, \, t\,); \\ k \, = \, k \, + \, 1; \\ \} \end{array}
```

- The variable s stores the minimal-sum of all sections in the subarray $a[0 \cdots k]$.
- The variable t stores the minimal-sum of all sections in the subarray $a[0\cdots k]$ ending at a[k].
- We will prove its correctness and get some insights from our proof.

Specifications of MinSum

- In order to prove its correctness, let us specify properties about MinSum by Hoare triples.
- We want to show that the variable s will be the minimal sum after execution.
- We first specify s is less than or equal to the sum of any section.

$$\mathbf{S1}. \quad (\mid \top \mid) \texttt{MinSum}(\mid \forall i \forall j (0 \leq i \leq j < n \implies s \leq S_{i,j}) \mid)$$

- ▶ i and j are logical variables.
- Next, we specify s must be the sum of some section.

S2.
$$(\top)$$
MinSum $(\exists i \exists j (0 \le i \le j < n \land s = S_{i,j}))$

We will show S1 must hold after executing MinSum.

How to Find Invariants?

- We need to come up with an invariant for the while statement.
- This often requires creativity.
 - ► Some guidelines would not hurt.
- Here are some characteristics about invariants that may help us find invariants from the textbook:
 - Invariants express the fact that the computation performed so far by the while-statement is correct.
 - Invariants typically have the same form as the desired postcondition of the while-statement.
 - Invariants express relationships between the variables manipulated by the while-statement which are re-established each time the body of the while-statement is executed.

$dash_{\mathsf{par}}$ (dash)MinSum($\mathsf{S1}$) I

- Let us show $\vdash_{par} (|\top|) MinSum(|S1|)$.
- Consider the invariant:

$$Inv1(s,k) \stackrel{\triangle}{=} \forall i \forall j (0 \le i \le j < k \implies s \le S_{i,j}).$$

- If we tried to prove MinSum with the invariant, we would find the invariant is not strong enough.
 - ▶ We simply ignore the variable t.
 - Intuitively, this cannot be right.
- Consider another invariant:

$$Inv2(t,k) \stackrel{\triangle}{=} \forall i (0 \leq i < k \implies t \leq S_{i,k-1}).$$

• We use $Inv1(s, k) \wedge Inv2(t, k)$ as an invariant to prove MinSum.

Here is the proof:

```
(|\top|)
   (|Inv1(a[0], 1) \land Inv2(a[0], 1)|)
                                                                                                Implied
k = 1:
   (|Inv1(a[0], k) \land Inv2(a[0], k)|)
                                                                                                Assignment
t = a[0]:
   (|Inv1(a[0], k) \wedge Inv2(t, k)|)
                                                                                                Assignment
s = a[0]:
   (|Inv1(s,k) \wedge Inv2(t,k)|)
                                                                                                Assignment
while (k! = n) {
       (|Inv1(s,k) \wedge Inv2(t,k) \wedge k \neq n|)
       (Inv1(\min(s, \min(t + a[k], a[k])), k + 1) \land Inv2(\min(t + a[k], a[k]), k + 1))
                                                                                                Implied
 t = \min(t + a[k], a[k]);
       (|Inv1(\min(s,t),k+1) \land Inv2(t,k+1)|)
                                                                                                Assignment
 s = min(s, t):
       (|Inv1(s, k+1) \land Inv2(t, k+1)|)
                                                                                                Assignment
 k = k + 1
       (|Inv1(s,k) \wedge Inv2(t,k)|)
                                                                                                Assignment
   (Inv1(s,k) \wedge Inv2(t,k) \wedge k = n)
                                                                                                Partial-while
   (|Inv1(s,n)|)
                                                                                                Implied
```

$\vdash_{\mathsf{par}} (|\top|) \mathtt{MinSum}(|\mathbf{S1}|) \; \mathsf{III}$

Lemma

Let $s, t \in \mathbb{Z}$, a an array of size $n \ge 0$, and 0 < k < n. Then $Inv1(s, k) \wedge Inv2(t, k) \wedge k \ne n$ implies

- 1 Inv2(min(t + a[k], a[k]), k + 1); and
- 2 Inv1(min(s, min(t + a[k], a[k])), k + 1).

- ① Let $0 \le i < k+1$, we want to show $min(t + a[k], a[k]) \le S_{i,k}$.
 - If i < k, $S_{i,k} = S_{i,k-1} + a[k]$. We have $\min(t + a[k], a[k]) \le S_{i,k-1} + a[k]$ for $t \le S_{i,k-1}$ from Inv2(t,k).
 - ▶ If i = k, $S_{i,k} = a[k]$. Clearly, $\min(t + a[k], a[k]) \le S_{i,k} = a[k]$.
- 2 Let $0 \le i \le j < k+1$. We show $\min(s, \min(t+a[k], a[k])) \le S_{i,j}$.
 - If $i \le j < k$, we have $s \le S_{i,j}$ for Inv1(s,k). Clearly, $min(s, min(t + a[k], a[k])) \le S_{i,j}$.
 - If $i \le j = k$, we have $\min(t + a[k], a[k]) \le S_{i,k}$ from the previous case. Then $\min(s, \min(t + a[k], a[k])) \le S_{i,j}$.

Outline

- A framework for software verification
- 2 Proof calculus for partial correctness
- 3 Proof calculus for total correctness
- 4 Introduction to Z3

Partial and Total Correctness

- We have introduced a proof calculus for proving $\vdash_{par} (\![\phi]\!]P(\![\psi]\!]$.
- There is always an implicit disclaimer for such proofs: $(|\phi|)P(|\psi|)$ "when P terminates."
- If P does not terminate, $\vdash_{\mathsf{par}} (|\phi|) P(|\psi|)$ does not tell us anything. • $(|\top|) P(|\bot|)$ for every non-terminating P as well.
- How do we extend our calculus to prove $\vdash_{tot} (|\phi|)P(|\psi|)$?
- Observe that the while-statement is the only non-terminating statement.
- Hence the proof rules for total correctness are the same for partial correctness except the Partial-while rule.

Proof Rules - Total-while I

- Consider a while statement while $B \{ C \}$.
- To prove total correctness of the while statement, we simply show that the statement is partially correct and terminating.
- To show the statement is terminating, we find an integer expression E such that
 - E is non-negative; and
 - E decreases its value after executing C.
- Such an expression *E* is called a <u>variant</u>.

Proof Rules - Total-while II

• The proof rule for while statements is

$$\frac{(\!(\eta \wedge B \wedge 0 \leq E = E_0)\!)\,C(\!(\eta \wedge 0 \leq E < E_0)\!)}{(\!(\eta \wedge 0 \leq E)\!)\text{while }B \ \{\ C\ \}(\!(\eta \wedge \neg B)\!)} \ \ \textit{Total} - \textit{while}$$

- Note that the logical variable E_0 shows E decreases strictly.
- That is, we start from a state satisfying η and $0 \le E$. If η is an invariant and E decreases its value after executing C, we have shown the while statement is totally correct.

Proof Tableaux – While

- Proof tableaux for while statements are similar to Partial-while.
- The only difference is that we must show

$$(\eta \wedge B \wedge 0 \leq E = E_0) C(\eta \wedge 0 \leq E < E_0).$$

- We still work up proof tableaux from the end of programs.
- We just need to find a variant *E* for each while statement.

Example I

Example

Recall the program Fac1:

```
\begin{array}{l} y = 1; \\ z = 0; \\ \text{while } (z != x) \ \{ \\ z = z + 1; \\ y = y * z; \\ \} \end{array}
```

```
Show \vdash_{tot} (|x \ge 0|)Fac1(|y = x!|).
```

- We know y = z! is an invariant.
- What is an expression that decreases strictly?
- x z is our variant!

Example II

Proof.

$$\begin{array}{ll} (|x \geq 0|) \\ (|1 = 0! \wedge 0 \leq x - 0|) & \text{Implied} \\ y = 1; \\ (|y = 0! \wedge 0 \leq x - 0|) & \text{Assignment} \\ z = 0; \\ (|y = z! \wedge 0 \leq x - z|) & \text{Assignment} \\ \text{while } (x \mid z) \; \{ \\ (|y = z! \wedge \neg (x = z) \wedge 0 \leq x - z = E_0|) \\ (|y \cdot (z + 1) = (z + 1)! \wedge 0 \leq x - (z + 1) < E_0|) & \text{Assignment} \\ z = z + 1; \\ (|y \cdot z = z! \wedge 0 \leq x - z < E_0|) & \text{Assignment} \\ y = y * z; \\ (|y = z! \wedge 0 \leq x - z < E_0|) & \text{Assignment} \\ \} \\ (|y = z! \wedge x = z|) & \text{Total-while} \\ (|y = x!) & \text{Implied} \\ \end{array}$$

- Note that $x \ge 0$ is necessary for termination.
- Observe also that the Boolean guard $x \neq z$ is needed to show $\vdash_{AR} (y = z! \land \neg(x = z) \land 0 \le x z = E_0) \implies (y \cdot (z + 1) = (z + 1)! \land 0 \le x (z + 1) + (z + 1)! \land 0 \le x (z + 1)!$

Finding Variants

- Since the halting problem is undecidable, it is impossible to compute variants automatically.
 - ► Similar to invariants, techniques are available to find simple variants.
 - Microsoft Research develops a tool for proving termination on device drivers.

Collatz 3n + 1 Conjecture

 To illustrate difficulties in proving total correctness, consider the program Collatz:

```
 \begin{array}{l} c = n; \\ \text{while } (c != 1) \ \{ \\ \text{if } (c \% \ 2 == 0) \ \{ \ c = c \ / \ 2; \ \} \\ \text{else } \{ \ c = 3 \ * \ c \ + \ 1; \ \} \\ \\ \end{array}
```

• Consider the input n = 7, the values of c are

$$7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1$$

- We would like to show whether $\models_{tot} (0 < n) \text{Collatz}(\top)$.
 - ▶ Sine the postcondition \top always holds, we just need to show Collatz terminates on n > 0.
- However, noone knows any variant to show $\vdash_{\mathsf{tot}} (0 < n) \mathsf{Collatz}(\top)$.
- In fact, noone knows if $\models_{tot} (0 < n) \text{Collatz}(\top)$ holds or not.

December 19, 2017

Outline

- A framework for software verification
- Proof calculus for partial correctness
- Proof calculus for total correctness
- 4 Introduction to Z3

SMT Solvers I

- SAT solvers have been used in hardware verification.
 - Propositional logic suffices to model digital circuits.
- Can we use SAT solvers to verify programs?
 - Not really.
 - In general, we need predicate logic with mathematical vocabulary.
 - ► The problem is undecidable.
- However, there are tools that can help us solve simple cases.

SMT Solvers II

- Satisfiability Modulo Theories (SMT) solvers are SAT solvers extended with various theories.
 - ► For instance, theories of linear arithmetic, uninterpreted functions, etc.
- Such theories allow us to verify properties about programs.
- The basic idea is not complicated.
 - In addition to propositional atoms, we introduce predicate symbols as new propositional atoms.
 - Efficient SAT algorithms can still be used on top of these propositional atoms.
- In fact, many SMT solvers are based on SAT solvers.

SMT Solvers III

- Similar to SAT solvers, there is a competition for SMT solvers.
- Recent SMT solvers thus adopt the SMT-LIB input format.
- In the following, we will introduce the SMT solver Z3.
- Z3 is developed at Microsoft Research.
- Source codes are available.
- We will use its PYTHON interface in class.

Using Z3 in PYTHON

```
from z3 import * # import Z3 library
s = Solver () # create an SMT solver s
print s.check () # check satisfiability
print s.model () # obtain a model
```

- We first import Z3 PYTHON library.
 - ▶ Remember to add your Z3 PYTHON path to PYTHONPATH.
- The Z3 solver checks whether the conjunction of formulae is satisfiable.
- When there is no formula, the degenerated conjunction is true.
- The empty model suffices to satisfy the degenerated conjunction.

Equational Theory I

```
from z3 import *

s = Solver ()

m = Int ('M') """ create the integer constant 'M' """
n = Int ('N') """ create the integer constant 'N' """

s.add (m == n) """ add the formula 'M = N' """
print s.check ()
if s.check () == sat: print s.model ()
```

- The Python variable m contains a Z3 Boolean constant M.
- The Python variable n contains a Z3 Boolean constant N.
- m == n is the Z3 formula for M = N.
- Clearly, M = N is satisfiable.
- The model [N = 0, M = 0] is returned.

Boolean Theory I

```
from z3 import *
s = Solver ()
x = Bool ('X')  # create the Boolean constant 'X'
s.add (Not (x))  # add the formula ~X
print s.check ()
if s.check () == sat: print s.model ()
```

- Not(x) is the Z3 formula for $\neg X$.
- The formula ¬X is satisfiable.
- The model [X = False] is returned.

Boolean Theory II

```
from z3 import *
s = Solver ()
x = Bool ('X')
s.add (Not (x))
s.add (x)  # add the formula X
print s.check ()
if s.check () == sat: print s.model ()
```

- The formulae $\neg X$ and X is not satisfiable.
 - What if we ask Z3 to give a model?

Boolean Theory III

- Boolean sort: BoolSort()
- Boolean values: BoolVal(False), BoolVal(True)
 - ▶ False and True are PYTHON Boolean values
- Constant declaration: Bool(name) or Bools(names)
- Unary operator: Not (negation)
- Binary operators: Or (disjunction), And (conjunction), Xor (exclusive or), Implies (implication)

Boolean Theory IV

```
""" 3 Pigeons to live in 2 holes """
from z3 import *
s = Solver()
pigeons = [BoolVector ('P', 2),
            BoolVector ('Q', 2),
            BoolVector ('R', 2) ]
""" each pigeon must live in one hole """
s.add (Or (pigeons[0][0], pigeons[0][1]))
s.add (Or (pigeons[1][0], pigeons[1][1]))
s.add (Or (pigeons[2][0], pigeons[2][1]))
                                        ,, ,, ,,
    a hole receives at most one pigeon
s.add (And (Or (Not (pigeons[0][0]), Not (pigeons[1][0])),
            Or (Not (pigeons [0] [0]), Not (pigeons [2] [0])),
            Or (Not (pigeons[1][0]), Not (pigeons[2][0]))))
s.add (And (Or (Not (pigeons [0][1]), Not (pigeons [1][1])),
            Or (Not (pigeons [0][1]), Not (pigeons [2][1])),
            Or (Not (pigeons [1][1]), Not (pigeons [2][1]))))
print s.check ()
```

Arithmetic Theory I

```
from z3 import *
s = Solver ()

i = Int ('I')
x = Real ('X')

s.add (i < x)
s.add (x < i + 1)
print s.check ()
if s.check () == sat: print s.model ()</pre>
```

- Z3 supports integer and real numbers.
 - ▶ Int('I') declares a Z3 integer constant named I.
 - ▶ Real('X') declares a Z3 real constant named X.
- We can use PYTHON arithmetic expressions as Z3.
 - ▶ The Z3 PYTHON module overloads arithmetic functions.

Arithmetic Theory II

- Integer sort: IntSort(), RealSort()
- Integer values: IntVal(value), RealVal(value)
- Constant declaration: Int(name) or Real(name)
- Binary operators: +, -, *, /, and %.
- Binary relations: <, <=, >, and >=.

Bitvector Theory I

```
from z3 import *

s = Solver ()
# create a 32-bit bit-vector constant 'X'
x = BitVec ('x', 16)
s.add (x > 0)
s.add (x & (x - 1) == 0)

# a trick to find all solutions
while s.check () == sat:
    print s.model()[x]
    s.add(x != s.model()[x])
```

- Z3 supports bit-vectors.
 - ▶ BitVec((x', 16)) declares a 16-bit bit-vector constant named x.
- ullet Again, PYTHON bit-vector expressions are overloaded to construct Z3 bit-vector expressions.

Bitvector Theory II

- Sort declaration: BitVecSort(width)
- Constant declaration: BitVec(name, width)
- Binary operators: & (bitwise-and), | (bitwise-or), $\tilde{}$ (bitwise-invert), $\hat{}$ (exclusive-or), +, -, *, /, %, >> (right-shift), and << (left-shift).
- Binary relations: <, <=, >, and >=.
- Additional functions:
 - ► Concat(bitvecs) represents the concatenation of a list of bit-vectors.
 - Extract(high, low, bitvec) represents a sub bit-vector of bitvec.
 - ▶ RotateLeft(bitvec, r) represents the left rotation of bitvec.
 - ► RotateRight(bitvec, r) represents the right rotation of bitvec.

Theory of Uninterpreted Functions I

```
from z3 import *
# declare an unknown sort of universe
U = DeclareSort('U')
\# a and b are constants of sort U
a, b = Const('a', U), Const('b', U)
\# f is an unterpreted function from U*U to U
f = Function('f', U, U, U)
s = Solver()
s.add(f(a, b) == a)
print s.check()
s.add(f(f(a, b), b) != a)
print s.check()
```

- Z3 allows uninterpreted functions.
- An uninterpreted function need not be fully specified.
 - ▶ If $a \neq b$, f(a, a) can take any value in U.
- However, Z3 deduces f(f(a, b), b) = a from f(a, b) = a.

Theory of Uninterpreted Functions II

- Sort declaration: DeclareSort(name)
- Constant declaration: Const(name, sort)
- Uninterpreted function declaration:
 Function(name, domainsorts, rangesort)

Save and Restore Context

```
from z3 import *
s = Solver()
x = Bool ('X')
s.add (Not (x))
print s.check ()
if s.check () == sat: print s.model ()
s.push () # save the current context
s.add (x == BoolVal (True))
print s.check ()
if s.check () == sat: print s.model ()
s.pop ()
                  # restore the saved context
print s.check ()
if s.check () == sat: print s.model ()
```

• How do you simulate "push" and "pop" in MINISAT?

McCarthy91

```
int mccarthy91 (int n) {
 int c;
 int ret;
  ret = n:
 c = 1:
  while (c > 0) {
    if (ret > 100) {
      ret = ret - 10;
     c--:
   } else {
      ret = ret + 11;
      c++;
  return ret;
```

- For n \leq 100, mccarthy91(n) is 91. For n > 100, mccarthy91(n) is n 10.
- Let us try to find an invariant to prove it!

Invariant for McCarthy 91 I

- First, we will set up pre- and post-conditions.
- Immediately before entering the loop, we have $ret = n \wedge c = 1$.

```
from z3 import *
n = Int ('n')
ret = Int ('ret')
c = Int ('c')
solver = Solver ()
```

- This is represented by And(ret == n, c == 1).
- Immediately after leaving the loop, we want to show

$$(\mathsf{n} \leq 100 \implies \mathsf{ret} = 91) \quad \land \quad (\mathsf{n} > 100 \implies \mathsf{ret} = \mathsf{n} - 10).$$

 This is represented by And(Implies($n \le 100$, ret == 91), Implies(n > 100, ret == n - 10)).

Invariant for McCarthy 91 II

- Any invariant η must have
 - $ightharpoonup \vdash_{AR} \mathsf{ret} = \mathsf{n} \land \mathsf{c} = 1 \implies \eta;$
 - ► $\vdash_{AR} \eta \land \neg(c > 0) \implies [(n \le 100 \implies ret = 91) \land (n > 100 \implies ret = n 10)];$ and
 - finally,

(|
$$\eta \land c > 0$$
) if (ret $>$ 100) { ret = ret $-$ 10; c $-$ -; } else { ret = ret $+$ 11; c $+$ +; } (| η)

- ullet Suppose we come up with an η and express it in Z3 PYTHON.
- How do we use Z3 to check them?

Invariant for McCarthy 91 III

- The first two requirements are similar.
- They are of the form $\vdash_{AR} \phi \implies \psi$.
- It is equivalent to $\phi \land \neg \psi$ is not satisfiable.
- We use the following PYTHON code:

```
def check_implies (phi, psi):
    solver.push ()
    f = And (phi, Not (psi))
    solver.add (f)
    result = solver.check ()
    solver.pop ()
    return result != sat
```

Invariant for McCarthy 91 IV

For the last requirement, note that

```
ret > 100 \Longrightarrow \eta[c \mapsto c - 1][\text{ret} \mapsto \text{ret} - 10]

\neg(\text{ret} > 100) \Longrightarrow \eta[c \mapsto c + 1][\text{ret} \mapsto \text{ret} + 11]
if (ret > 100) {
        (|\eta[c \mapsto c - 1][ret \mapsto ret - 10])
   ret = ret - 10:
        (|\eta[c \mapsto c - 1])
  c - -:
        (|\eta|)
} else {
        (|\eta[c \mapsto c + 1][ret \mapsto ret + 11])
   ret = ret + 11:
        (|\eta[c \mapsto c + 1])
  c + +:
        (|\eta|)
   (|\eta|)
```

Invariant for McCarthy 91 V

Hence it suffices to check

$$\vdash_{\textit{AR}} \eta \land c > 0 \implies \left(\begin{array}{c} \mathsf{ret} > 100 \implies \eta[\mathsf{c} \mapsto \mathsf{c} - 1][\mathsf{ret} \mapsto \mathsf{ret} - 10] & \land \\ \neg(\mathsf{ret} > 100) \implies \eta[\mathsf{c} \mapsto \mathsf{c} + 1][\mathsf{ret} \mapsto \mathsf{ret} + 11] \end{array} \right)$$

- When we guess an η , we can check the last requirement after performing 4 substitutions.
- ullet Luckily, Z3 PYTHON can do substitutions for us.

```
\begin{array}{lll} \mbox{def requirement3 (eta):} \\ \mbox{b\_true} &= \mbox{Implies (ret} > 100, \\ & & \mbox{substitute (substitute (eta, (c, c-1)), } \\ & & (\mbox{ret, ret} - 10))) \\ \mbox{b\_false} &= \mbox{Implies (Not (ret > 100), } \\ & & \mbox{substitute (substitute (eta, (c, c+1)), } \\ & & (\mbox{ret, ret} + 11))) \\ \mbox{return check\_implies (And (Not (c > 0), eta), } \\ & & \mbox{And (b\_true, b\_false))} \end{array}
```

Invariant for McCarthy 91 VI

- We have almost everything except η .
- Here is what we will do:
 - Guess η and express it in Z3 PYTHON.
 - Use Z3 PYTHON to check the three requirements on η .
 - ▶ If all three requirements pass, we are done.
 - Otherwise, guess another η and repeat.

Invariant for McCarthy 91 VII

- It may be too hard to guess η for all input n.
- We hence consider two sub-problems:

```
• (|n > 100|) ret = mccarthy91(n)(|ret = n - 10|); and
```

- $\qquad \qquad (n \le 100) \text{ret} = \text{mccarthy91(n)(|ret = 91)}$
- Try to find an invariant for each sub-problem.
- Then combine two sub-invariants into one for the main problem.
- Have fun!