Corrigé du DS 7 version B

Exercice. Un endomorphisme de $\mathbb{R}_n[X]$.

- 1. Tout d'abord, remarquons que si P est dans $\mathbb{R}_n[X]$, il en va de même pour P(2X) puis pour P(2X) P. Ceci montre que $f(P) \in \mathbb{R}_n[X]$.
 - Pour établir la linéarité de f, considérons P et Q deux polynômes de $\mathbb{R}_n[X]$ et λ, μ deux réels. On a

$$\begin{split} f(\lambda P + \mu Q) &= (\lambda P + \mu Q)(2X) - (\lambda P + \mu Q) \\ &= \lambda \left(P(2X) - P \right) + \mu (Q(2X) - Q) \\ &= \lambda f(P) + \mu f(Q). \end{split}$$

2. Les images par f de la base canonique de $\mathbb{R}_n[X]$ nous donnent une famille génératrice de l'image :

$$\operatorname{Im}(f) = \operatorname{Vect}(f(1), f(X), \dots, f(X^n)).$$

Pour $k \in \llbracket 0, n \rrbracket$ $f(X^k) = (2^k - 1)X^k$. Notamment, f(1) = 0. On a donc

$$\operatorname{Im}(f) = \operatorname{Vect}(f(X), \dots, f(X^n)) = \operatorname{Vect}(X, X^2, \dots, X^n).$$

La famille $(X, X^2, ..., X^n)$ engendre donc Im(f) et elle est libre car ces polynômes non nuls ont des degrés deux à deux distincts. C'est donc une base de Im(f).

3. Appliquons le théorème du rang à f, linéaire et définie sur l'espace vectoriel de dimension finie $\mathbb{R}_n[X]$:

$$\dim \mathbb{R}_n[X] = \dim \operatorname{Ker}(f) + \dim \operatorname{Im}(f).$$

Or, dim $\mathbb{R}_n[X] = n + 1$ et d'après la question précédente, dim $\mathrm{Im}(f) = n$.

On obtient donc que $\dim \operatorname{Ker}(f) = 1$: $\operatorname{Ker}(f)$ est une droite vectorielle.

On a remarqué plus haut que $1 \in \text{Ker}(f)$.

Ce vecteur non nul de la droite en est une base : Ker(f) = Vect(1).

4. Oui : d'après un résultat de notre cours :

$$\mathbb{R}_n[X] = \operatorname{Vect}(1, X, \dots, X^n) = \operatorname{Vect}(1) \oplus \operatorname{Vect}(X, \dots, X^n) = \operatorname{Ker}(f) \oplus \operatorname{Im}(f).$$

On pouvait aussi utiliser ici la caractérisation des supplémentaires en dimension finie.

Problème. Équations du second degré dans $\mathscr{L}(E)$.

Partie 1. Le cas où P est scindé à racines simples : lemme des noyaux.

- 0. Par définition du noyau, on a $f(x) \lambda x = 0$, soit $f(x) = \lambda x$
- 1. On est dans un anneau, on peut développer (plus facile que factoriser?)

$$(f - \lambda id) \circ (f - \mu id) = f^2 - (\lambda + \mu)f + \lambda \mu id = f^2 + \alpha f + \beta id = 0.$$

les relations entre coefficients et racines donnant $\lambda + \mu = -\alpha$ et $\lambda \mu = \beta$. Tout est pareil évidemment en échangeant λ et μ .

2. Soit $y \in \text{Im}(f - \lambda id)$. Il existe $x \in E$ tel que $y = (f - \lambda id)(x)$. On a

$$(f - \mu \mathrm{id})(y) = (f - \mu \mathrm{id}) \circ (f - \lambda \mathrm{id})(x) = 0,$$

ce qui montre bien $\operatorname{Im}(f - \lambda \operatorname{id}) \subset \operatorname{Ker}(f - \mu \operatorname{id})$. On peut bien entendu échanger les rôles de λ et μ .

- 3. Lemme des noyaux (1) : une preuve en dimension finie.
 - (a) En passant à la dimension dans l'inégalité de la question 2, on obtient

$$\dim \operatorname{Im}(f - \lambda \operatorname{id}) \leq \dim \operatorname{Ker}(f - \mu \operatorname{id}).$$

En appliquant le théorème du rang à $f - \lambda id$, (endomorphisme défini sur E, espace de dimension finie) on obtient

$$\dim E = \dim \operatorname{Ker}(f - \lambda \operatorname{id}) + \dim \operatorname{Im}(f - \lambda \operatorname{id})$$

soit
$$\dim \operatorname{Im}(f - \lambda \operatorname{id}) = n - \dim \operatorname{Ker}(f - \lambda \operatorname{id}).$$

En injectant dans l'inégalité plus haut, on obtient

$$n \le \dim \operatorname{Ker}(f - \lambda \operatorname{id}) + \dim \operatorname{Ker}(f - \mu \operatorname{id})$$
 soit $n \le \dim E_{\lambda} + \dim E_{\mu}$

(b) Considérons un vecteur dans l'intersection $E_{\lambda} \cap E_{\mu}$. On a alors $f(x) = \lambda x$ et $f(x) = \mu x$. Ceci amène $(\lambda - \mu)x = 0$, et puisque $\lambda \neq \mu$, on a x = 0. L'intersection est triviale, donc les deux sous-espaces sont en somme directe. Puisque $E_{\lambda} \oplus E_{\mu} \subset E$, on obtient en passant aux dimensions sur cette somme directe

$$\left| \dim E_{\lambda} + \dim E_{\mu} \le n \right|$$

(c) D'une part, E_{λ} et E_{μ} sont en somme directe. D'autre part, en combinant (a) et (b), on obtient que dim E_{λ} + dim E_{μ} = dim E. La caractérisation des supplémentaires en dimension finie donne alors que

$$E = E_{\lambda} \oplus E_{\mu}$$

(d) Le temps du dessin

On considère $E = \mathbb{R}^3$, $\lambda = 2$, $\mu = 1$, dim $E_{\lambda} = 2$, dim $E_{\mu} = 1$.

Faire un dessin représentant E_{λ} et E_{μ} .

Représenter aussi un un vecteur x n'appartenant ni à E_{λ} ni à E_{μ} .

Enfin, représenter f(x).

Un peu de couleur sera appréciée.

4. Lemme des noyaux (2): une preuve en dimension quelconque.

Soit $x \in E$.

Analyse. Supposons qu'il existe $\ell \in E_{\lambda}$ et $m \in E_{\mu}$ tels que $x = \ell + m$.

En appliquant f linéaire, on obtient $f(x) = \lambda \ell + \mu m$. Puisque $\lambda \neq \mu$, on peut résoudre le système en

$$\ell = \frac{1}{\lambda - \mu} (f(x) - \mu x)$$
 et $m = \frac{1}{\mu - \lambda} (f(x) - \lambda x)$.

Synthèse. On définit les deux vecteurs $\ell = \frac{1}{\lambda - \mu} (f(x) - \mu x)$ et $m = \frac{1}{\mu - \lambda} (f(x) - \lambda x)$. On somme pour vérifier que $\ell + m = x$.

Puisque ℓ appartient à $\operatorname{Im}(f - \mu \operatorname{id})$, il appartient à $\operatorname{Ker}(f - \lambda \operatorname{id})$ d'après 2.

Puisque ℓ appartient à $\text{Im}(f - \lambda \text{id})$, il appartient à $\text{Ker}(f - \mu \text{id})$ d'après 2

Conclusion. Tout vecteur de E se décompose de manière unique sur la somme de E_{λ} et E_{μ} , ce qui redémontre leur supplémentarité en dimension quelconque.

Partie 2. Cas où $P = X^2 - \lambda X$.

- 5. On appelle un tel endomorphisme idempotent un projecteur
- 6. Supposons que f est un automorphisme de E. En composant par f^{-1} dans l'égalité $f^2 = \lambda f$, on obtient que $f = \lambda \text{id} : f$ est alors l'homothétie de rapport λ .
- 7. Puisque dans cette partie, λ et 0 sont les racines de P, avec $\lambda \neq 0$, le lemme des noyaux donne que E_0 et E_{λ} sont supplémentaires. On a bien :

$$E = \operatorname{Ker}(f) \oplus \operatorname{Ker}(f - \lambda \operatorname{id}).$$

8. Soit p le projecteur sur $\operatorname{Ker}(f-\lambda \operatorname{id})$ parallèlement à $\operatorname{Ker}(f)$ et h l'homothétie de rapport λ . Par définition de p, on a

$$x = \underbrace{x - p(x)}_{\in \operatorname{Ker}(f)} + \underbrace{p(x)}_{\in \operatorname{Ker}(f - \lambda \operatorname{id})}.$$

Appliquons f:

$$f(x) = 0_E + f(p(x)).$$

Puisque $p(x) \in E_{\lambda}$, on a $f(p(x)) = \lambda p(x)$. Finalement, $f(x) = \lambda p(x) = h \circ p(x)$. On a bien démontré que

$$f = h \circ p$$

Une preuve un peu plus abstraite : on définit h comme l'homothétie de rapport λ et on pose $p = h^{-1} \circ f$ (ceci a un sens puisque h est inversible : sa réciproque est l'homothétie de rapport $\frac{1}{\lambda}$). Il n'y a qu'à vérifier que p est un projecteur. Comme composée de h^{-1} et f, il s'agit d'un endomorphisme de E. Vérifions qu'il est idempotent :

$$p^2 = (h^{-1}f)^2 = h^{-2}f^2 = h^{-2}hf = h^{-1}f = p,$$

ceci en utilisant que $f^2=\lambda f=h\circ f,$ et que h^{-1} commute avec f (c'est une homothétie).

- 9. Un exemple.
 - (a) L'équation caractéristique est $x(x-\lambda)=0$, avec deux racines distinctes 0 et λ . Nous savons alors que l'équation a pour ensemble de solutions

$$S_0 = \{ x \mapsto A + Be^{\lambda x} \mid (A, B) \in \mathbb{K}^2 \}.$$

Notons $u: x \mapsto 1$ et $v: x \mapsto e^{\lambda x}$. On a $S_0 = \text{Vect}(u, v)$.

La famille (u, v) est libre, c'est facile à vérifier, donc c'est une base de S_0 .

$$S_0$$
 est un plan vectoriel (dimension 2) de base (u, v) .

(b) Notons E l'espace vectoriel S_0 ci-dessus, sous-espace de l'espace $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{K})$. Sur cet espace, nous considérons $D: y \mapsto y'$, la dérivation, notoirement linéaire. On calcule D(u) = 0 et $D(v) = \lambda v$. Puisque les vecteurs de la base (u, v) ont leur image dans E, tous les vecteurs de E ont leur image dans E par linéarité, ce qui justifie que $D \in \mathcal{L}(E)$. Par définition de E, on a

$$\forall y \in E \quad y'' - \lambda y' = 0 \quad \text{soit} \quad D^2(y) - \lambda D(y) = 0.$$

On a donc bien $D^2 = \lambda D$. Il est clair que D n'est pas une homothétie : si elle l'était, elle serait de rapport 0 puisqu'elle envoie u sur 0. Mais ce n'est pas le cas puisque $f(v) = \lambda v$ et que $\lambda \neq 0$.

Partie 3. Cas où $P = X^2 - \gamma$.

- 10. On appelle un tel endomorphisme idempotent une symétrie vectorielle
- 11. Posons $g = \frac{1}{2}f$. On a $g \circ f = f \circ g = \mathrm{id}$ donc

f est un automorphisme de réciproque $\frac{1}{\gamma}f$.

12. Supposons que γ possède une racine carrée ρ dans \mathbb{K} . Elle en a alors deux : ρ et $-\rho$, qui sont distinctes puisque $\gamma \neq 0$. Puisque P est scindé à racines simples, le lemme des noyaux donne que E_{ρ} et $E_{-\rho}$ sont supplémentaires. On a bien :

$$E = \operatorname{Ker}(f - \rho \operatorname{id}) \oplus \operatorname{Ker}(f + \rho \operatorname{id}).$$

Posons h l'homothétie de rapport ρ et $s=h^{-1}\circ f$. Puisque h^{-1} et f commutent (h est l'homothétie de rapport ρ^{-1}) on a

$$s^2 = h^{-1}fh^{-1}f = h^{-2}f^2 = (\rho^{-2}id) \circ (\gamma id) = (\rho^{-2}\gamma)id = id.$$

Puisque s est un endomorphisme involutif, c'est une bien une symétrie.

- 13. Un exemple. Dans cette question, $\mathbb{K} = \mathbb{R}$.
 - (a) L'équation caractéristique est $x^2 \gamma = 0$.

<u>Premier cas.</u> $\gamma > 0$. Alors l'équation a deux racines réelles distinctes $\sqrt{\gamma}$ et $-\sqrt{\gamma}$. L'ensemble des solutions, notons-le S_0 , est un plan vectoriel : on peut proposer les bases

$$\left(x\mapsto e^{\sqrt{\gamma}x}, x\mapsto e^{-\sqrt{\gamma}x}\right) \quad \text{ou} \quad \left(x\mapsto \operatorname{ch}(\sqrt{\gamma}x), x\mapsto \operatorname{sh}(\sqrt{\gamma}x)\right).$$

<u>Second cas.</u> $\gamma < 0$. Alors l'équation a deux racines distinctes $i\omega$ et $-i\omega$, en notant $\omega = \sqrt{-\gamma}$. L'ensemble des solutions, notons-le S_0 , est un plan vectoriel dont une base est

$$(x \mapsto \cos(\omega x), x \mapsto \sin(\omega x))$$
.

(b) Notons E l'espace vectoriel S_0 ci-dessus, sous-espace de l'espace $\mathcal{C}^{\infty}(\mathbb{R}, \mathbb{K})$. On vérifie comme en question 9 que la dérivation est bien un endomorphisme de E qui convient. En particulier, il faut vérifier que E est stable par dérivation, et cela se fait bien en dérivant les vecteurs d'une des bases proposées.

Partie 4. Cas où $P = X^2 + 1$ avec $\mathbb{K} = \mathbb{R}$ et en dimension finie.

14. Soient $(\lambda, \mu) \in \mathbb{R}^2$ tel que $\lambda u + \mu f(u) = 0$. En appliquant f (linéaire) on obtient $\lambda f(u) + \mu f^2(u) = 0$, soit $\lambda f(u) - \mu u = 0$. Le système $\begin{cases} \lambda u + \mu f(u) &= 0 \\ -\mu u + \lambda f(u) &= 0 \end{cases}$ est de Cramer. En faisant $\lambda L_1 + \mu L_2$, on obtient

$$(\lambda^2 + \mu^2)u = 0.$$

Puisque u est non nul, on a $\lambda^2 + \mu^2 = 0$ et donc $\lambda = \mu = 0$, puisque λ^2 et μ^2 sont deux réels positifs qui somment à 0.

$$(u, f(u))$$
 est bien une famille libre

15. • Clair : V_u est un sous-espace vectoriel. Est-il stable par f? Oui car f(u) ∈ V_u et f(f(u)) = f²(u) = -u ∈ V_u. Par linéarité, tout vecteur de V_u a son image dans V_u.
• Soit F un sous-espace vectoriel de E contenant u et stable par f.
En particulier, u ∈ F et f(u) ∈ F par stabilité. Ainsi, Vect(u, f(u)) ⊂ F puisque Vect(u, f(u)) est le plus petit sous-espace de E qui contient u et f(u). On a bien prouvé V_u ⊂ F.

 V_u est le plus petit sous-espace de E contenant u et stable par f.

- 16. Soit $a \in V_u$ un vecteur non nul.
 - $a \in V_u$ et V_u est stable par f donc $f(a) \in V_u$. Ainsi, $\operatorname{Vect}(a, f(a)) \subset V_u$ soit $V_a \subset V_u$.
 - Puisque (a, f(a)) et (u, f(u)) sont libres d'après 14, ce sont des bases respectives de V_a et de V_u qu'elles engendrent. Ainsi, V_a et V_u sont deux plans vectoriels. L'inclusion ci-dessus et l'égalité des dimensions permet de conclure que $V_a = V_u$.
- 17. Soit $x \in F \cap V_u$. Il existe $(\lambda, \mu) \in \mathbb{R}^2$ tel que $x = \lambda u + \mu f(u)$. En appliquant f, on obtient $f(x) = \lambda f(u) \mu u$.

Le système
$$\begin{cases} \lambda u + \mu f(u) &= x \\ -\mu u + \lambda f(u) &= f(x) \end{cases}$$
 En faisant $\lambda L_1 + \mu L_2$, on obtient
$$(\lambda^2 + \mu^2)u = \lambda x + \mu f(x).$$

Puisque F contient x et est stable par f, il contient aussi f(x) et donc $\lambda x + \mu f(x)$. Supposons que $\lambda^2 + \mu^2 \neq 0$; en multipliant par l'inverse, on obtient $u \in F$, ce qui n'est pas. Ainsi a-t-on $\lambda^2 + \mu^2 = 0$ et donc $\lambda = \mu = 0$ puisque λ^2 et μ^2 sont des réels positifs sommant à 0. Ceci amène enfin que x = 0: $F \cap V_u = \{0\}$. La stabilité de $F \oplus V_u$ par f est facile. Tout vecteur x de cet espace s'écrit $x = \varphi + v$ avec $\varphi \in F$ et $v \in V_u$. On calcule $f(x) = f(\varphi) + f(v)$. Puisque F et V_u sont stables par f, on a $f(\varphi) \in F$ et $f(v) \in V_u$. D'où $f(x) \in F \oplus V_u$: $F \oplus V_u$ est stable par f.

18. L'espace E n'est pas réduit à $\{0\}$ on peut considérer u_1 non nul dans E. Alors $(u_1, f(u_1))$ est libre d'après 14.

Si c'est une base de E, on a répondu à la question avec p=1.

Sinon, on pose $F=V_{u_1}$ et $u_2\in E\setminus F$. Le sous-espace F est stable par f d'après 15 et il ne contient pas u_2 . D'après 17, F et V_{u_2} sont en somme directe (et il est donc facile de prouver que $(u_1,f(u_1),u_2,f(u_2))$ est une base de $F\oplus V_{u_2}$ et donc une famille libre. Si $V_{u_1}\oplus=E$, on a répondu à la question avec p=2.

Sinon, on pose $F = V_{u_1} \oplus V_{u_2}$ et $u_3 \in E \setminus F$. Le sous-espace F est stable par f d'après 17 et ne contient pas u_3 : il est en somme directe avec V_{u_3} et on peut itérer. Après k étapes, on dispose d'une famille libre

$$(u_1, f(u_1), u_2, f(u_2), \cdots, u_k, f(u_k))$$

dont le cardinal 2k est majoré par la dimension de l'espace.

Ceci permet de définir p le nombre de vecteurs maximal pouvant être ajoutés par ce procédé. Si p est maximal, c'est qu'on ne peut plus considérer de vecteur u dans $E \setminus \text{Vect}(u_1, f(u_1), \cdots, u_p, f(u_p))$: c'est que la famille $(u_1, f(u_1), \cdots, u_p, f(u_p))$ engendre E. C'est une base de E.

En particulier, la dimension de E (qui est le cardinal de cette base) est paire

19. En lien avec f, on a créé dans la question précédente une base de E

$$(u_1, f(u_1), \cdots, u_p, f(u_p)).$$

L'énoncé nous donne $g \in \mathcal{L}(E)$ tel que $g^2 = -\mathrm{id}$. On peut donc créer en lien avec g une base de E

$$(v_1, g(v_1), \cdots, v_p, g(v_p)).$$

(elle a le même cardinal, bien sûr, puisque c'est la dimension de l'espace). Nous allons définir notre automorphisme θ sur la seconde base ci-dessus en posant

$$\forall k \in [1, p] \quad \theta(v_k) = u_k \quad \text{ et } \quad \theta(g(v_k)) = f(u_k).$$

Nous savons en effet par théorème qu'il existe une (unique) application linéaire envoyant une base donnée sur une famille fixée. Puisque θ envoie par construction

une base de E sur une autre base de E, il s'agit d'un automorphisme de E. On va prouver l'égalité Pour prouver que $g=\theta^{-1}\circ f\circ \theta$, c'est-à-dire que $\theta\circ g=f\circ \theta$, il suffit de vérifier que ces deux endomorphismes coïncident sur une base. Pour $k\in [\![1,p]\!]$, on calcule

$$f \circ \theta(v_k) = f(u_k) = \theta(g(v_k)) = \theta \circ g(v_k),$$

 $_{
m et}$

$$f \circ \theta(g(v_k)) = f(f(u_k)) = -u_k = -\theta(v_k) = -\theta(-g^2(v_k)) = \theta \circ g(g(v_k)).$$

20. Supposons que E est de dimension paire égale à 2p et considérons $(e_1, e'_1, e_2, e'_2, \cdots, e_p, e'_p)$ une base de E. On peut définir un endomorphisme f en prescrivant l'image de cette base. On décide que

$$\forall k \in [1, p] \quad f(e_k) = e'_k \quad \text{et} \quad f(e'_k) = -e_k.$$

Pour $k \in [1, p]$, on a $f^2(e_k) = f(e'_k) = -e_k$ et $f^2(e'_k) = f(-e_k) = -f(e_k) = -e'_k$. Puisque f^2 et -id coïncident sur une base, ils sont égaux.