Bernstein components for p-adic groups

Maarten Solleveld Radboud Universiteit Nijmegen

14 October 2020

G: reductive group over a non-archimedean local field F Rep(G): category of smooth complex G-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does $Rep(G)^{\mathfrak{s}}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak s} = \operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak s}$?
- Can one describe tempered/unitary/square-integrable representations in Rep(G)⁵?

G: reductive group over a non-archimedean local field F Rep(G): category of smooth complex G-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does $Rep(G)^{\mathfrak{s}}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak s} = \operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak s}$?
- Can one describe tempered/unitary/square-integrable representations in Rep(G)⁵?

G: reductive group over a non-archimedean local field F Rep(G): category of smooth complex G-representations

Bernstein decomposition

Direct product of categories $\operatorname{Rep}(G) = \prod_{\mathfrak{s}} \operatorname{Rep}(G)^{\mathfrak{s}}$ where \mathfrak{s} is determined by a supercuspidal representation σ of a Levi subgroup M of G

We suppose that M and σ are given

Questions

- What does $Rep(G)^{\mathfrak{s}}$ look like? Is it the module category of an explicit algebra?
- Can one classify $\operatorname{Irr}(G)^{\mathfrak s} = \operatorname{Irr}(G) \cap \operatorname{Rep}(G)^{\mathfrak s}$?
- Can one describe tempered/unitary/square-integrable representations in $Rep(G)^{5}$?

I. Bernstein components and a rough version of the new results

P = MU: parabolic subgroup of G with Levi factor M $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in Irr(G)$:

- π is supercuspidal if it does not occur in $I_P^G(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $Sc(\pi)$: a pair (M, σ) with $\sigma \in Irr(M)$, such that π is a constituent of $I_P^G(\sigma)$ and M is minimal for this property

```
X_{\mathrm{nr}}(M): group of unramified characters M \to \mathbb{C}^{\times} \mathcal{O} \subset \mathrm{Irr}(M): an X_{\mathrm{nr}}(M)-orbit of supercuspidal irreps \mathfrak{s} = [M,\mathcal{O}]: G-association class of (M,\mathcal{O})
```

Definition

```
\operatorname{Irr}(G)^{\mathfrak s} = \{\pi \in \operatorname{Irr}(G) : \operatorname{Sc}(\pi) \in [M, \mathcal O]\}
 \operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \text{all irreducible subquotients of } \pi \text{ lie in } \operatorname{Irr}(G)^{\mathfrak s}\}
```

P = MU: parabolic subgroup of G with Levi factor M $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in Irr(G)$:

- π is supercuspidal if it does not occur in $I_P^G(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $Sc(\pi)$: a pair (M, σ) with $\sigma \in Irr(M)$, such that π is a constituent of $I_P^G(\sigma)$ and M is minimal for this property

```
X_{\mathrm{nr}}(M): group of unramified characters M \to \mathbb{C}^{\times} \mathcal{O} \subset \mathrm{Irr}(M): an X_{\mathrm{nr}}(M)-orbit of supercuspidal irreps \mathfrak{s} = [M,\mathcal{O}]: G-association class of (M,\mathcal{O})
```

Definition

```
\operatorname{Irr}(G)^{\mathfrak s} = \{\pi \in \operatorname{Irr}(G) : \operatorname{Sc}(\pi) \in [M, \mathcal O]\}
 \operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \text{all irreducible subquotients of } \pi \text{ lie in } \operatorname{Irr}(G)^{\mathfrak s}\}
```

P = MU: parabolic subgroup of G with Levi factor M $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in Irr(G)$:

- π is supercuspidal if it does not occur in $I_P^G(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $Sc(\pi)$: a pair (M, σ) with $\sigma \in Irr(M)$, such that π is a constituent of $I_P^G(\sigma)$ and M is minimal for this property

```
X_{\mathrm{nr}}(M): group of unramified characters M \to \mathbb{C}^{\times} \mathcal{O} \subset \mathrm{Irr}(M): an X_{\mathrm{nr}}(M)-orbit of supercuspidal irreps \mathfrak{s} = [M,\mathcal{O}]: G-association class of (M,\mathcal{O})
```

Definition

```
\operatorname{Irr}(G)^{\mathfrak s} = \{\pi \in \operatorname{Irr}(G) : \operatorname{Sc}(\pi) \in [M, \mathcal O]\}
 \operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \text{all irreducible subquotients of } \pi \text{ lie in } \operatorname{Irr}(G)^{\mathfrak s}\}
```

P = MU: parabolic subgroup of G with Levi factor M $I_P^G : \operatorname{Rep}(M) \to \operatorname{Rep}(P) \to \operatorname{Rep}(G)$: normalized parabolic induction

Definition

For $\pi \in Irr(G)$:

- π is supercuspidal if it does not occur in $I_P^G(\sigma)$ for any proper parabolic subgroup P of G and any $\sigma \in \operatorname{Irr}(M)$
- Supercuspidal support $Sc(\pi)$: a pair (M, σ) with $\sigma \in Irr(M)$, such that π is a constituent of $I_P^G(\sigma)$ and M is minimal for this property

```
X_{\mathrm{nr}}(M): group of unramified characters M \to \mathbb{C}^{\times} \mathcal{O} \subset \mathrm{Irr}(M): an X_{\mathrm{nr}}(M)-orbit of supercuspidal irreps \mathfrak{s} = [M,\mathcal{O}]: G-association class of (M,\mathcal{O})
```

Definition

 $\operatorname{Irr}(G)^{\mathfrak s} = \{\pi \in \operatorname{Irr}(G) : \operatorname{Sc}(\pi) \in [M, \mathcal O]\}$ $\operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \text{ all irreducible subquotients of } \pi \text{ lie in } \operatorname{Irr}(G)^{\mathfrak s}\}$

1: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^I = \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$$

The foremost example of a Bernstein component, for $\mathfrak{s}=[M,X_{\mathrm{nr}}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G,I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^I$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G,I))$
- ullet $\mathcal{H}(G,I)$ is isomorphic with an affine Hecke algebra

1: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^I = \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$$

The foremost example of a Bernstein component, for $\mathfrak{s}=[M,X_{\mathrm{nr}}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G,I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^I$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G,I))$
- ullet $\mathcal{H}(G,I)$ is isomorphic with an affine Hecke algebra

1: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^I = \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$$

The foremost example of a Bernstein component, for $\mathfrak{s}=[M,X_{\mathrm{nr}}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G,I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^I$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G,I))$
- ullet $\mathcal{H}(G,I)$ is isomorphic with an affine Hecke algebra

1: an Iwahori subgroup of G

$$\operatorname{Rep}(G)^I = \{(\pi, V) \in \operatorname{Rep}(G) : V \text{ is generated by } V^I\}$$

The foremost example of a Bernstein component, for $\mathfrak{s}=[M,X_{\mathrm{nr}}(M)]$ where M is a minimal Levi subgroup of G

Theorem (Borel, Iwahori-Matsumoto, Morris)

 $\mathcal{H}(G,I) := C_c(I \setminus G/I)$ with the convolution product

- $\operatorname{Rep}(G)^I$ is equivalent with $\operatorname{Mod}(\mathcal{H}(G,I))$
- ullet $\mathcal{H}(G,I)$ is isomorphic with an affine Hecke algebra

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak s}$ is $\mathbb C[\mathcal O]^{W(M,\mathcal O)}$

$$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M,\mathcal{O})]$$
 with multiplication from $W(M,\mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak s}$ looks like $\operatorname{Mod}(\mathbb C[\mathcal O] \rtimes \mathbb C[W(M,\mathcal O)])$

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak s}$ is $\mathbb C[\mathcal O]^{W(M,\mathcal O)}$

$$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M,\mathcal{O})]$$
 with multiplication from $W(M,\mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak s}$ looks like $\operatorname{Mod}(\mathbb C[\mathcal O] \rtimes \mathbb C[W(M,\mathcal O)])$

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak s}$ is $\mathbb C[\mathcal O]^{W(M,\mathcal O)}$

$$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M,\mathcal{O})]$$
 with multiplication from $W(M,\mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak{s}}$ looks like $\operatorname{Mod}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})])$

$$N_G(M)$$
 acts on $\operatorname{Rep}(M)$ by $(g \cdot \sigma)(m) = \sigma(g^{-1}mg)$
 $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$

 $\mathbb{C}[\mathcal{O}]$: ring of regular functions on the complex torus \mathcal{O}

Theorem (Bernstein, 1984)

The centre of $\operatorname{Rep}(G)^{\mathfrak s}$ is $\mathbb C[\mathcal O]^{W(M,\mathcal O)}$

$$\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})] := \mathbb{C}[\mathcal{O}] \otimes_{\mathbb{C}} \mathbb{C}[W(M,\mathcal{O})]$$
 with multiplication from $W(M,\mathcal{O})$ -action on \mathcal{O} :

$$(f \otimes w)(f' \otimes w') = f w(f') \otimes ww'$$

Main result (first rough version)

 $\operatorname{Rep}(G)^{\mathfrak s}$ looks like $\operatorname{Mod}(\mathbb C[\mathcal O] \rtimes \mathbb C[W(M,\mathcal O)])$

Approach with progenerators

 Π : progenerator of $\operatorname{Rep}(G)^{\mathfrak s}$ so $\Pi \in \operatorname{Rep}(G)^{\mathfrak s}$ is finitely generated, projective and $\operatorname{Hom}_G(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak s} \setminus \{0\}$

Lemma (from category theory)

$$\begin{array}{cccc} \operatorname{Rep}(G)^{\mathfrak s} & \longrightarrow & \operatorname{End}_{G}(\Pi) - \operatorname{Mod} \\ \rho & \mapsto & \operatorname{Hom}_{G}(\Pi, \rho) \\ V \otimes_{\operatorname{End}_{G}(\Pi)} \Pi & \hookleftarrow & V \end{array}$$

is an equivalence of categories

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_G(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak s}$ Draw consequences for $\operatorname{Rep}(G)^{\mathfrak s}$

Approach with progenerators

 Π : progenerator of $\operatorname{Rep}(G)^{\mathfrak s}$ so $\Pi \in \operatorname{Rep}(G)^{\mathfrak s}$ is finitely generated, projective and $\operatorname{Hom}_G(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak s} \setminus \{0\}$

Lemma (from category theory)

$$\operatorname{Rep}(G)^{\mathfrak s} \longrightarrow \operatorname{End}_G(\Pi) - \operatorname{Mod}_{\rho}$$
 $\rho \mapsto \operatorname{Hom}_G(\Pi, \rho)$
 $V \otimes_{\operatorname{End}_G(\Pi)} \Pi \longleftrightarrow V$

is an equivalence of categories

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_G(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak s}$ Draw consequences for $\operatorname{Rep}(G)^{\mathfrak s}$

Approach with progenerators

 Π : progenerator of $\operatorname{Rep}(G)^{\mathfrak s}$ so $\Pi \in \operatorname{Rep}(G)^{\mathfrak s}$ is finitely generated, projective and $\operatorname{Hom}_G(\Pi, \rho) \neq 0$ for every $\rho \in \operatorname{Rep}(G)^{\mathfrak s} \setminus \{0\}$

Lemma (from category theory)

$$\operatorname{Rep}(G)^{\mathfrak s} \longrightarrow \operatorname{End}_{G}(\Pi) - \operatorname{Mod}_{\rho}$$
 $\rho \mapsto \operatorname{Hom}_{G}(\Pi, \rho)$
 $V \otimes_{\operatorname{End}_{G}(\Pi)} \Pi \leftarrow V$

is an equivalence of categories

Setup of talk

Investigate the structure and the representation theory of $\operatorname{End}_G(\Pi)$, for a suitable progenerator Π of $\operatorname{Rep}(G)^{\mathfrak s}$ Draw consequences for $\operatorname{Rep}(G)^{\mathfrak s}$

Comparison with types

 $J\subset G$ compact open subgroup, $\lambda\in\mathrm{Irr}(J)$ Suppose: (J,λ) is a $\mathfrak s$ -type, so

 $\operatorname{Rep}(\mathcal{G})^{\mathfrak s} = \{\pi \in \operatorname{Rep}(\mathcal{G}) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak s}$ is equivalent with $\mathcal H(G,J,\lambda)$ -Mod

Consequences

- $\mathcal{H}(G,J,\lambda)$ and $\operatorname{End}_G(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_G(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

Comparison with types

 $J \subset G$ compact open subgroup, $\lambda \in Irr(J)$ Suppose: (J, λ) is a \mathfrak{s} -type, so

 $\operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak s}$ is equivalent with $\mathcal H(G,J,\lambda)$ -Mod

Consequences

- $\mathcal{H}(G,J,\lambda)$ and $\operatorname{End}_G(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_{\mathcal{G}}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

Comparison with types

 $J\subset G$ compact open subgroup, $\lambda\in\mathrm{Irr}(J)$ Suppose: (J,λ) is a $\mathfrak s$ -type, so

 $\operatorname{Rep}(G)^{\mathfrak s} = \{\pi \in \operatorname{Rep}(G) : \pi \text{ is generated by its } \lambda \text{-isotypical component}\}$

Bushnell–Kutzko: $\operatorname{Rep}(G)^{\mathfrak s}$ is equivalent with $\mathcal H(G,J,\lambda)$ -Mod

Consequences

- $\mathcal{H}(G,J,\lambda)$ and $\operatorname{End}_G(\Pi)$ are Morita equivalent
- In many cases $\operatorname{End}_{\mathcal{G}}(\Pi)$ is Morita equivalent with an affine Hecke algebra

Problems:

- It is not known whether every Bernstein component admits a type
- Even if you have (J, λ) , it can be difficult to analyse $\mathcal{H}(G, J, \lambda)$

II. The structure of supercuspidal Bernstein components

based on work of Roche

Underlying tori

```
\begin{split} \sigma &\in \mathrm{Irr}(\mathcal{G}) \text{ supercuspidal} \\ \mathcal{O} &= \{\sigma \otimes \chi : \chi \in \mathcal{X}_{\mathrm{nr}}(\mathcal{G})\} \\ \mathsf{Covering} \ \mathcal{X}_{\mathrm{nr}}(\mathcal{G}) &\to \mathcal{O} : \chi \mapsto \sigma \otimes \chi \end{split}
```

Example: $GL_2(F)$

 χ_- : quadratic unramified character of $GL_2(F)$

It is possible that $\sigma \otimes \chi_{-} \cong \sigma$,

see the book of Bushnell-Henniart

Then $\mathbb{C}^{\times} \cong X_{\mathrm{nr}}(G) \to \mathcal{O}$ is a degree two covering

$$X_{\mathrm{nr}}(G,\sigma):=\{\chi\in X_{\mathrm{nr}}(G):\sigma\otimes\chi\cong\sigma\}$$
, a finite group $X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma)\to\mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

Underlying tori

$$\begin{split} \sigma &\in \mathrm{Irr}(\mathcal{G}) \text{ supercuspidal} \\ \mathcal{O} &= \{\sigma \otimes \chi : \chi \in \mathsf{X}_{\mathrm{nr}}(\mathcal{G})\} \\ \mathsf{Covering} \ \mathsf{X}_{\mathrm{nr}}(\mathcal{G}) &\to \mathcal{O} : \chi \mapsto \sigma \otimes \chi \end{split}$$

Example: $GL_2(F)$

 χ_- : quadratic unramified character of $GL_2(F)$ It is possible that $\sigma \otimes \chi_- \cong \sigma$, see the book of Bushnell–Henniart Then $\mathbb{C}^\times \cong X_{\rm nr}(G) \to \mathcal{O}$ is a degree two covering

 $X_{\mathrm{nr}}(G,\sigma) := \{\chi \in X_{\mathrm{nr}}(G) : \sigma \otimes \chi \cong \sigma\}$, a finite group $X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma) \to \mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

Underlying tori

$$\sigma \in \operatorname{Irr}(G)$$
 supercuspidal $\mathcal{O} = \{ \sigma \otimes \chi : \chi \in X_{\operatorname{nr}}(G) \}$ Covering $X_{\operatorname{nr}}(G) \to \mathcal{O} : \chi \mapsto \sigma \otimes \chi$

Example: $GL_2(F)$

 χ_- : quadratic unramified character of $GL_2(F)$ It is possible that $\sigma \otimes \chi_- \cong \sigma$, see the book of Bushnell–Henniart Then $\mathbb{C}^\times \cong X_{\rm nr}(G) \to \mathcal{O}$ is a degree two covering

 $X_{\mathrm{nr}}(G,\sigma):=\{\chi\in X_{\mathrm{nr}}(G):\sigma\otimes\chi\cong\sigma\}$, a finite group $X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma) o\mathcal{O}$ is bijective, this makes \mathcal{O} a complex algebraic torus (as variety)

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv},\mathbb{C})=\mathbb{C}[G/G^1]\cong\mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

- $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G, \sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a $\phi_{\chi} \in \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv},\mathbb{C})=\mathbb{C}[G/G^1]\cong\mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

- $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G,\sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a $\phi_{\chi} \in \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv},\mathbb{C})=\mathbb{C}[G/G^1]\cong\mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

- $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G, \sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a $\phi_{\chi} \in \mathrm{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

 G^1 : subgroup of G generated by all compact subgroups $\operatorname{ind}_{G^1}^G(\operatorname{triv},\mathbb{C})=\mathbb{C}[G/G^1]\cong\mathbb{C}[X_{\operatorname{nr}}(G)]$

Lemma (Bernstein)

For $(\sigma, E) \in \operatorname{Irr}(G)$ supercuspidal $\operatorname{ind}_{G^1}^G(\sigma) = E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]$ is a progenerator of $\operatorname{Rep}(G)^{\mathfrak{s}}$, with $\mathfrak{s} = [G, \mathcal{O}] = [G, X_{\operatorname{nr}}(G)\sigma]$

- $\mathbb{C}[X_{\mathrm{nr}}(G)] \subset \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$, by multiplication operators
- for $\chi \in X_{\mathrm{nr}}(G,\sigma)$: $\sigma \cong \chi \otimes \sigma$ in combination with translation by χ on $X_{\mathrm{nr}}(G)$ that gives a $\phi_{\chi} \in \mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Structure of endomorphism algebra

For $\chi, \chi' \in X_{\mathrm{nr}}(G, \sigma)$ there exists $\natural(\chi, \chi') \in \mathbb{C}^{\times}$ such that $\phi_{\chi} \circ \phi_{\chi'} = \natural(\chi, \chi') \phi_{\chi\chi'}$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$ inside $\mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

$$\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi,\chi')\phi_{\chi\chi'}$

Properties, from $Rep(G)^{\mathfrak{s}}$

- $\operatorname{Irr}(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$
- $Z(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of endomorphism algebra

For
$$\chi, \chi' \in X_{\mathrm{nr}}(G, \sigma)$$
 there exists $\natural(\chi, \chi') \in \mathbb{C}^{\times}$ such that
$$\phi_{\chi} \circ \phi_{\chi'} = \natural(\chi, \chi') \phi_{\chi\chi'}$$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$ inside $\mathrm{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

$$\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi,\chi')\phi_{\chi\chi'}$

Properties, from $Rep(G)^{\mathfrak{s}}$

- $\operatorname{Irr}(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$
- $Z(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of endomorphism algebra

For $\chi, \chi' \in X_{\mathrm{nr}}(G, \sigma)$ there exists $\natural(\chi, \chi') \in \mathbb{C}^{\times}$ such that $\phi_{\gamma} \circ \phi_{\gamma'} = \natural(\chi, \chi')\phi_{\gamma\gamma'}$

This gives a twisted group algebra $\mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$ inside $\mathrm{End}_G(E\otimes_{\mathbb{C}}\mathbb{C}[X_{\mathrm{nr}}(G)])$

Theorem (Roche)

$$\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

As vector space: $\mathbb{C}[X_{\mathrm{nr}}(G)] \otimes \mathbb{C}[X_{\mathrm{nr}}(G,\sigma), \natural]$, with multiplication $(f \otimes \phi_{\chi})(f' \otimes \phi_{\chi'}) = f(f' \circ m_{\chi}^{-1}) \otimes \natural(\chi,\chi')\phi_{\chi\chi'}$

Properties, from $Rep(G)^{\mathfrak{s}}$

- $\operatorname{Irr}(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \longleftrightarrow X_{\operatorname{nr}}(G)/X_{\operatorname{nr}}(G,\sigma) \longleftrightarrow \mathcal{O}$
- $Z(\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])) \cong \mathbb{C}[\mathcal{O}]$

Structure of $Rep(G)^{\mathfrak{s}}$

Theorem (Roche)

$$\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

$$\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(E \otimes_{\mathbb C} \mathbb C[X_{\operatorname{nr}}(G)])$$
-Mod

Lemma (Roche, Heiermann)

If $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is multiplicity-free or \natural is trivial, then $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}] \cong \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})/X_{\operatorname{nr}}(\mathcal{G},\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^{\mathcal{G}}(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_{\mathcal{G}}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(\mathcal{G})])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

Structure of $Rep(G)^{\mathfrak{s}}$

Theorem (Roche)

$$\operatorname{End}_{G}(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)]) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

$$\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(E \otimes_{\mathbb C} \mathbb C[X_{\operatorname{nr}}(G)])$$
-Mod

Lemma (Roche, Heiermann)

If $\mathrm{Res}_{G^1}^G(\sigma)$ is multiplicity-free or \natural is trivial, then $\mathrm{End}_G\big(E\otimes_{\mathbb{C}}\mathbb{C}[X_{\mathrm{nr}}(G)]\big)$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}]\cong\mathbb{C}[X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^G(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

Structure of $Rep(G)^{\mathfrak{s}}$

Theorem (Roche)

$$\operatorname{End}_G \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)] \big) \cong \mathbb{C}[X_{\operatorname{nr}}(G)] \rtimes \mathbb{C}[X_{\operatorname{nr}}(G,\sigma), \natural]$$

$$\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(E \otimes_{\mathbb C} \mathbb C[X_{\operatorname{nr}}(G)])$$
-Mod

Lemma (Roche, Heiermann)

If $\mathrm{Res}_{G^1}^G(\sigma)$ is multiplicity-free or \natural is trivial, then $\mathrm{End}_G\big(E\otimes_{\mathbb{C}}\mathbb{C}[X_{\mathrm{nr}}(G)]\big)$ is Morita equivalent with the commutative algebra $\mathbb{C}[\mathcal{O}]\cong\mathbb{C}[X_{\mathrm{nr}}(G)/X_{\mathrm{nr}}(G,\sigma)]$

Questions

Maybe $\operatorname{Res}_{G^1}^G(\sigma)$ is always multiplicity-free? Maybe $\operatorname{End}_G(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\operatorname{nr}}(G)])$ is always Morita equivalent with $\mathbb{C}[\mathcal{O}]$?

III. Structure of non-supercuspidal Bernstein components

Motivated by work of Heiermann for classical p-adic groups

$$P=MU$$
: parabolic subgroup of G , $(\sigma,E)\in {\rm Irr}(M)$ supercuspidal $\mathcal{O}=X_{\rm nr}(M)\sigma,\quad \mathfrak{s}=[M,\mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_P^G (E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)])$ is a progenerator of $\mathrm{Rep}(G)^{\mathfrak{s}}$ In particular $\mathrm{Rep}(G)^{\mathfrak{s}} \cong \mathrm{End}_G(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_G(\Pi)$ -module $\operatorname{Hom}_G(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ .

$$P=MU$$
: parabolic subgroup of G , $(\sigma,E)\in {\rm Irr}(M)$ supercuspidal $\mathcal{O}=X_{\rm nr}(M)\sigma,\quad \mathfrak{s}=[M,\mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_P^G \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \mathrm{Rep}(G)^{\mathfrak{s}}$ In particular $\mathrm{Rep}(G)^{\mathfrak{s}} \cong \mathrm{End}_G(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_G(\Pi)$ -module $\operatorname{Hom}_G(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ .

$$P=MU$$
: parabolic subgroup of G , $(\sigma,E)\in {\rm Irr}(M)$ supercuspidal $\mathcal{O}=X_{\rm nr}(M)\sigma,\quad \mathfrak{s}=[M,\mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_P^G \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \mathrm{Rep}(G)^{\mathfrak{s}}$ In particular $\mathrm{Rep}(G)^{\mathfrak{s}} \cong \mathrm{End}_G(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_{G}(\Pi)$ -module $\operatorname{Hom}_{G}(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ .

$$P=MU$$
: parabolic subgroup of G , $(\sigma,E)\in \mathrm{Irr}(M)$ supercuspidal $\mathcal{O}=X_{\mathrm{nr}}(M)\sigma,\quad \mathfrak{s}=[M,\mathcal{O}]$

Theorem (Bernstein)

 $\Pi := I_P^G \big(E \otimes_{\mathbb{C}} \mathbb{C}[X_{\mathrm{nr}}(M)] \big) \text{ is a progenerator of } \mathrm{Rep}(G)^{\mathfrak{s}}$ In particular $\mathrm{Rep}(G)^{\mathfrak{s}} \cong \mathrm{End}_G(\Pi)$ -Mod

This is deep, it relies on second adjointness

Via I_P^G , $\mathbb{C}[X_{\mathrm{nr}}(M)]$ embeds in $\mathrm{End}_G(\Pi)$

Lemma

 $\rho \in \operatorname{Irr}(G)^{\mathfrak{s}}$. Suppose that the $\operatorname{End}_G(\Pi)$ -module $\operatorname{Hom}_G(\Pi, \rho)$ has a $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weight χ .

$$M = T, \sigma = \mathsf{triv}, \ \mathcal{O} = X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times}$$

 $W(G, T) = \{1, s_{\alpha}\}$

Harish-Chandra's intertwining operator

$$I_{s_{\alpha}}(\chi):I_{P}^{G}(\chi)\to I_{P}^{G}(\chi^{-1}),\quad f\mapsto \left[g\mapsto \int_{U_{-\alpha}}f(us_{\alpha}g)\,\mathrm{d}u\right]$$
 rational as function of $\chi\in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_G(\Pi) \underset{\mathbb{C}[X_{\mathrm{nr}}(T)]}{\otimes} \mathbb{C}(X_{\mathrm{nr}}(T)) = \mathbb{C}(X_{\mathrm{nr}}(T)) \rtimes \mathbb{C}[1, J_{s_{\alpha}}]$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi\mapsto\chi^{-1}$ on $X_{\mathrm{nr}}(T)$, $J_{s_{\alpha}}^2=1$

Singularities of $J_{s_{\alpha}}$

at
$$\chi \in X_{\mathrm{nr}}(T)$$
 with $\chi(\alpha^{\vee}(\text{uniformizer of }F)) = q_F^{\pm 1}$
For these $\chi:I_P^G(\chi)$ is reducible

$$M = T, \sigma = \mathsf{triv}, \ \mathcal{O} = X_{\mathrm{nr}}(T) \cong \mathbb{C}^{\times}$$

 $W(G, T) = \{1, s_{\alpha}\}$

Harish-Chandra's intertwining operator

$$I_{s_{\alpha}}(\chi):I_{P}^{G}(\chi)\to I_{P}^{G}(\chi^{-1}),\quad f\mapsto \left[g\mapsto \int_{U_{-\alpha}}f(\mathit{us}_{\alpha}g)\,\mathrm{d}u
ight]$$
 rational as function of $\chi\in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_G(\Pi)\underset{\mathbb{C}[X_{\mathrm{nr}}(\mathcal{T})]}{\otimes}\mathbb{C}(X_{\mathrm{nr}}(\mathcal{T}))=\mathbb{C}(X_{\mathrm{nr}}(\mathcal{T}))\rtimes\mathbb{C}[1,J_{s_\alpha}]$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi \mapsto \chi^{-1}$ on $X_{\rm nr}(T)$, $J_{s_{\alpha}}^2 = 1$

Singularities of $J_{s_{\alpha}}$

at
$$\chi \in X_{\mathrm{nr}}(T)$$
 with $\chi(\alpha^{\vee}(\text{uniformizer of }F)) = q_F^{\pm 1}$
For these $\chi:I_P^G(\chi)$ is reducible

4 D > 4 A > 4 B > 4 B > B 9 Q Q

$$M=T, \sigma= ext{triv}, \ \mathcal{O}=X_{
m nr}(T)\cong \mathbb{C}^{ imes} \ \mathcal{W}(G,T)=\{1,s_lpha\}$$

Harish-Chandra's intertwining operator

$$I_{s_{\alpha}}(\chi):I_{P}^{G}(\chi)\to I_{P}^{G}(\chi^{-1}),\quad f\mapsto \left[g\mapsto \int_{U_{-\alpha}}f(\mathit{us}_{\alpha}g)\,\mathrm{d}u
ight]$$
 rational as function of $\chi\in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_G(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(T)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(T)) = \mathbb{C}(X_{\operatorname{nr}}(T)) \rtimes \mathbb{C}[1, J_{s_{\alpha}}]$$

where $J_{s_{\alpha}}$ comes from $I_{s_{\alpha}}$, acting as $\chi\mapsto\chi^{-1}$ on $X_{\mathrm{nr}}(T)$, $J_{s_{-}}^{2}=1$

Singularities of J_{s}

at
$$\chi \in X_{\mathrm{nr}}(T)$$
 with $\chi(\alpha^{\vee}(\text{uniformizer of }F)) = q_F^{\pm 1}$
For these $\chi:I_P^G(\chi)$ is reducible

$$M = T, \sigma = ext{triv}, \ \mathcal{O} = X_{
m nr}(T) \cong \mathbb{C}^{ imes} \ W(G,T) = \{1,s_{lpha}\}$$

Harish-Chandra's intertwining operator

$$I_{s_{\alpha}}(\chi):I_{P}^{G}(\chi)\to I_{P}^{G}(\chi^{-1}),\quad f\mapsto \left[g\mapsto \int_{U_{-\alpha}}f(\mathit{us}_{\alpha}g)\,\mathrm{d}u\right]$$
 rational as function of $\chi\in X_{\mathrm{nr}}(T)$

$$\operatorname{End}_{G}(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(\mathcal{T})]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(\mathcal{T})) = \mathbb{C}(X_{\operatorname{nr}}(\mathcal{T})) \rtimes \mathbb{C}[1, J_{s_{\alpha}}]$$

where $J_{s_{\alpha}}$ comes from $J_{s_{\alpha}}$, acting as $\chi\mapsto\chi^{-1}$ on $X_{\mathrm{nr}}(\mathcal{T})$, $J_{s_{\alpha}}^2=1$

Singularities of $J_{s_{\alpha}}$

at
$$\chi \in X_{\mathrm{nr}}(T)$$
 with $\chi(\alpha^{\vee}(\mathsf{uniformizer\ of\ }F)) = q_F^{\pm 1}$

For these χ : $I_P^G(\chi)$ is reducible

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{\mathcal{G}}(\Pi)$

- $X_{\rm nr}(M,\sigma)$, acting on $X_{\rm nr}(M)$
- $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group
$$W(M, \sigma, X_{\mathrm{nr}}(M)) \subset \operatorname{Aut}_{\mathrm{alg.var.}}(X_{\mathrm{nr}}(M))$$
 with $1 \to X_{\mathrm{nr}}(M, \sigma) \to W(M, \sigma, X_{\mathrm{nr}}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G=GL_6(F), M=GL_2(F)^3, \sigma= au^{\boxtimes 3}$$
, then $X_{\mathrm{nr}}(M)\cong (\mathbb{C}^{ imes})^3$ and either $W(M,\sigma,X_{\mathrm{nr}}(M))=W(M,\mathcal{O})\cong S_3$ or $W(M,\sigma,X_{\mathrm{nr}}(M))\cong (\mathbb{Z}/2\mathbb{Z})^3\rtimes S_3$

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{\mathcal{G}}(\Pi)$

- $X_{\rm nr}(M,\sigma)$, acting on $X_{\rm nr}(M)$
- $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group $W(M, \sigma, X_{\mathrm{nr}}(M)) \subset \operatorname{Aut}_{\mathrm{alg.var.}}(X_{\mathrm{nr}}(M))$ with $1 \to X_{\mathrm{nr}}(M, \sigma) \to W(M, \sigma, X_{\mathrm{nr}}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G=GL_6(F), M=GL_2(F)^3, \sigma= au^{\boxtimes 3}$$
, then $X_{\mathrm{nr}}(M)\cong (\mathbb{C}^{ imes})^3$ and either $W(M,\sigma,X_{\mathrm{nr}}(M))=W(M,\mathcal{O})\cong S_3$ or $W(M,\sigma,X_{\mathrm{nr}}(M))\cong (\mathbb{Z}/2\mathbb{Z})^3\rtimes S_3$

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 990

Finite groups related to (M, \mathcal{O}) and $\operatorname{End}_{G}(\Pi)$

- $X_{\rm nr}(M,\sigma)$, acting on $X_{\rm nr}(M)$
- $W(M, \mathcal{O}) = \{g \in N_G(M) : g \text{ stabilizes } \mathcal{O}\}/M$, acting on \mathcal{O}

Every $w \in W(M, \mathcal{O})$ lifts to a $\mathfrak{w} \in \operatorname{Aut}_{\operatorname{alg.var.}}(X_{\operatorname{nr}}(M))$

Lemma

There exists a group $W(M, \sigma, X_{\mathrm{nr}}(M)) \subset \operatorname{Aut}_{\mathrm{alg.var.}}(X_{\mathrm{nr}}(M))$ with $1 \to X_{\mathrm{nr}}(M, \sigma) \to W(M, \sigma, X_{\mathrm{nr}}(M)) \to W(M, \mathcal{O}) \to 1$

Example

$$G=GL_6(F), M=GL_2(F)^3, \sigma= au^{oxtimes 3}$$
, then $X_{
m nr}(M)\cong (\mathbb C^{ imes})^3$ and either $W(M,\sigma,X_{
m nr}(M))=W(M,\mathcal O)\cong S_3$ or $W(M,\sigma,X_{
m nr}(M))\cong (\mathbb Z/2\mathbb Z)^3
times S_3$

Structure of $\operatorname{End}_G(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{\rm nr}(M))$ and an algebra isomorphism

$$\operatorname{End}_G(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M,\sigma,X_{\operatorname{nr}}(M)),\natural]$$

In some examples \(\begin{aligned} \text{is nontrivial} \end{aligned} \)

This result only says something about $\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(\Pi)$ -Mod outside the tricky points of the cuspidal support variety $\mathcal O$

Structure of $\operatorname{End}_G(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{\rm nr}(M))$ and an algebra isomorphism

$$\operatorname{End}_G(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M,\sigma,X_{\operatorname{nr}}(M)),\natural]$$

In some examples \(\begin{aligned} \text{is nontrivial} \end{aligned} \)

This result only says something about $\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(\Pi)$ -Mod outside the tricky points of the cuspidal support variety $\mathcal O$

Structure of $\operatorname{End}_G(\Pi)$

 $\mathbb{C}(X_{\mathrm{nr}}(M))$: quotient field of $\mathbb{C}[X_{\mathrm{nr}}(M)]$, rational functions on $X_{\mathrm{nr}}(M)$

Main result (precise but weak version)

There exist a 2-cocycle \natural of $W(M, \sigma, X_{\mathrm{nr}}(M))$ and an algebra isomorphism

$$\operatorname{End}_G(\Pi) \underset{\mathbb{C}[X_{\operatorname{nr}}(M)]}{\otimes} \mathbb{C}(X_{\operatorname{nr}}(M)) \cong \mathbb{C}(X_{\operatorname{nr}}(M)) \rtimes \mathbb{C}[W(M,\sigma,X_{\operatorname{nr}}(M)),\natural]$$

In some examples \(\begin{aligned} \text{is nontrivial} \end{aligned} \)

This result only says something about $\operatorname{Rep}(G)^{\mathfrak s} \cong \operatorname{End}_G(\Pi)$ -Mod outside the tricky points of the cuspidal support variety $\mathcal O$

IV. Links with affine Hecke algebras

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})]$
- ullet $W(M,\mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in $\mathbb{C}[W(M,\mathcal{O})]$ by a 2-cocycle $\tilde{\mathfrak{f}}$ of $W(M,\mathcal{O})/W(\Sigma_{\mathcal{O}})$
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha}+1)(s_{\alpha}-1)=0$ in $\mathbb{C}[W(M,\mathcal{O})]$ by $(T_{s_{\alpha}}+1)(T_{s_{\alpha}}-q_F^{\lambda(\alpha)})=0$ for some $\lambda(\alpha)\in\mathbb{R}_{\geq 0}$
- ullet Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the \mathcal{T}_{s_lpha}
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}]\otimes\mathbb{C}[W(M,\mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- ullet $W(M,\mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in $\mathbb{C}[W(M,\mathcal{O})]$ by a 2-cocycle $\tilde{\sharp}$ of $W(M,\mathcal{O})/W(\Sigma_{\mathcal{O}})$
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha}+1)(s_{\alpha}-1)=0$ in $\mathbb{C}[W(M,\mathcal{O})]$ by $(T_{s_{\alpha}}+1)(T_{s_{\alpha}}-q_F^{\lambda(\alpha)})=0$ for some $\lambda(\alpha)\in\mathbb{R}_{\geq 0}$
- ullet Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the T_{s_lpha}
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}]\otimes\mathbb{C}[W(M,\mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Sketch of an extended affine Hecke algebra

- Start with $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O})]$
- ullet $W(M,\mathcal{O})$ contains a normal reflection subgroup $W(\Sigma_{\mathcal{O}})$
- Twist the multiplication in $\mathbb{C}[W(M,\mathcal{O})]$ by a 2-cocycle $\tilde{\sharp}$ of $W(M,\mathcal{O})/W(\Sigma_{\mathcal{O}})$
- For every simple reflection $s_{\alpha} \in W(\Sigma_{\mathcal{O}})$, replace the relation $(s_{\alpha}+1)(s_{\alpha}-1)=0$ in $\mathbb{C}[W(M,\mathcal{O})]$ by $(T_{s_{\alpha}}+1)(T_{s_{\alpha}}-q_F^{\lambda(\alpha)})=0$ for some $\lambda(\alpha)\in\mathbb{R}_{\geq 0}$
- ullet Adjust the multiplication relations between $\mathbb{C}[\mathcal{O}]$ and the T_{s_lpha}
- This gives an algebra $\tilde{\mathcal{H}}(\mathcal{O})$ with the same underlying vector space $\mathbb{C}[\mathcal{O}]\otimes\mathbb{C}[W(M,\mathcal{O})], \quad \mathbb{C}[\mathcal{O}]$ is still a subalgebra

Localization

We analyse the category of those $\operatorname{End}_{G}(\Pi)$ -modules, all whose $\mathbb{C}[X_{\mathrm{nr}}(M)]$ -weights lie in a specified subset $U \subset X_{\mathrm{nr}}(M)$ These are related to $\mathcal{H}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma \otimes \chi : \chi \in U\}$

$$X_{\mathrm{nr}}(M) = \mathrm{Hom}(M/M^{1}, \mathbb{C}^{\times}) = \mathrm{Hom}(M/M^{1}, S^{1}) \times \mathrm{Hom}(M/M^{1}, \mathbb{R}_{>0})$$
$$= X_{\mathrm{unr}}(M) \times X_{\mathrm{nr}}^{+}(M)$$

Fix any $u \in \text{Hom}(M/M^1, S^1)$ and define

$$U = W(M, \sigma, X_{nr}(M)) u X_{nr}^{+}(M)$$

 $\tilde{U} = \text{image of } U \text{ in } \mathcal{O} = W(M, \mathcal{O}) \{ \sigma \otimes u \chi : \chi \in X_{nr}^{+}(M) \}$

Localization

We analyse the category of those $\operatorname{End}_G(\Pi)$ -modules, all whose $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weights lie in a specified subset $U\subset X_{\operatorname{nr}}(M)$ These are related to $\tilde{\mathcal{H}}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma\otimes\chi:\chi\in U\}$

Polar decomposition

$$\begin{split} X_{\mathrm{nr}}(M) &= \mathrm{Hom}(M/M^1, \mathbb{C}^\times) = \mathrm{Hom}(M/M^1, S^1) \times \mathrm{Hom}(M/M^1, \mathbb{R}_{>0}) \\ &= X_{\mathrm{unr}}(M) \times X_{\mathrm{nr}}^+(M) \end{split}$$

Fix any $u \in \operatorname{Hom}(M/M^1, S^1)$ and define

$$U = W(M, \sigma, X_{\mathrm{nr}}(M)) u X_{\mathrm{nr}}^{+}(M)$$

$$\tilde{U} = \text{ image of } U \text{ in } \mathcal{O} = W(M, \mathcal{O}) \{ \sigma \otimes u \chi : \chi \in X_{\mathrm{nr}}^{+}(M) \}$$

Localization

We analyse the category of those $\operatorname{End}_G(\Pi)$ -modules, all whose $\mathbb{C}[X_{\operatorname{nr}}(M)]$ -weights lie in a specified subset $U\subset X_{\operatorname{nr}}(M)$ These are related to $\tilde{\mathcal{H}}(\mathcal{O})$ -modules with $\mathbb{C}[\mathcal{O}]$ -weights in $\{\sigma\otimes\chi:\chi\in U\}$

Polar decomposition

$$\begin{split} X_{\mathrm{nr}}(M) &= \mathrm{Hom}(M/M^1, \mathbb{C}^\times) = \mathrm{Hom}(M/M^1, S^1) \times \mathrm{Hom}(M/M^1, \mathbb{R}_{>0}) \\ &= X_{\mathrm{unr}}(M) \times X_{\mathrm{nr}}^+(M) \end{split}$$

Fix any $u \in \operatorname{Hom}(M/M^1,S^1)$ and define

$$U = W(M, \sigma, X_{\mathrm{nr}}(M)) u X_{\mathrm{nr}}^+(M)$$

 $\tilde{U} = \text{ image of } U \text{ in } \mathcal{O} = W(M, \mathcal{O}) \{ \sigma \otimes u \chi : \chi \in X_{\mathrm{nr}}^+(M) \}$

```
G: reductive p-adic group
```

$$\mathcal{O} = \{\sigma \otimes \chi : \chi \in X_{\mathrm{nr}}(M)\}, \mathfrak{s} = [M, \mathcal{O}]$$

Π: progenerator of Bernstein block $Rep(G)^{\mathfrak{s}}$

 $\widetilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})]$ (with certain specific parameters $q_F^{\lambda(\alpha)}$)

$$u \in \operatorname{Hom}(M/M^1, S^1), \ U = W(M, \sigma, X_{\operatorname{nr}}(M)) \ u \ X_{\operatorname{nr}}^+(M)$$

 \widetilde{U} : image of U in \mathcal{O}

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset (M, \tilde{U})\}$ (fl: finite length)
- $\{V \in \operatorname{End}_G(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \text{ in } U\}$
- $\{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[\mathcal{O}] \text{-weights of } \tilde{V} \text{ in } \tilde{U}\}$

G: reductive p-adic group

$$\mathcal{O} = \{\sigma \otimes \chi : \chi \in X_{\mathrm{nr}}(M)\}, \mathfrak{s} = [M, \mathcal{O}]$$

 Π : progenerator of Bernstein block $\operatorname{Rep}(G)^{\mathfrak s}$

 $\widetilde{\mathcal{H}}(\mathcal{O})$ constructed by modification of $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O})]$ (with certain specific parameters $q_F^{\lambda(\alpha)}$)

$$u \in \operatorname{Hom}(M/M^1, S^1), \ U = W(M, \sigma, X_{\operatorname{nr}}(M)) \ u \ X_{\operatorname{nr}}^+(M)$$

 \widetilde{U} : image of U in \mathcal{O}

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset (M, \tilde{U})\}$ (fl: finite length)
- $\{V \in \operatorname{End}_G(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)]\text{-weights of } V \text{ in } U\}$
- ullet $\{ ilde{V}\in ilde{\mathcal{H}}(\mathcal{O})-\mathrm{Mod}_{\mathrm{fl}}: \ \mathrm{all}\ \mathbb{C}[\mathcal{O}]\text{-weights of } ilde{V}\ \mathrm{in}\ ilde{U}\}$

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathsf{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$ (fl : finite length)
- $\bullet \ \{ V \in \operatorname{End}_{\mathcal{G}}(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \ \mathsf{all} \ \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \ \mathsf{in} \ U \}$
- $\bullet \ \{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O}) \mathrm{Mod}_{\mathrm{fl}} : \ \mathsf{all} \ \mathbb{C}[\mathcal{O}] \text{-weights of} \ \tilde{V} \ \mathsf{in} \ \tilde{U}\}$

Under a mild condition on the 2-cocycle $\tilde{\natural}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$\operatorname{Rep}_{\mathrm{fl}}(\mathit{G})^{\mathfrak{s}} \quad \text{and} \quad \tilde{\mathcal{H}}(\mathcal{O}) - \operatorname{Mod}_{\mathrm{fl}}$$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathsf{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$ (fl : finite length)
- $\{V \in \operatorname{End}_G(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \text{ all } \mathbb{C}[X_{\mathrm{nr}}(M)]\text{-weights of } V \text{ in } U\}$
- $\bullet \ \{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O}) \mathrm{Mod}_{\mathrm{fl}} : \ \mathsf{all} \ \mathbb{C}[\mathcal{O}] \text{-weights of} \ \tilde{V} \ \mathsf{in} \ \tilde{U}\}$

Under a mild condition on the 2-cocycle $\ddot{\natural}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$\operatorname{Rep}_{\mathrm{fl}}(\mathsf{G})^{\mathfrak s}$$
 and $ilde{\mathcal H}(\mathcal O)-\operatorname{Mod}_{\mathrm{fl}}$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

Theorem

There are equivalences between the following categories

- $\{\pi \in \operatorname{Rep}_{\mathrm{fl}}(\mathsf{G})^{\mathfrak{s}} : \operatorname{Sc}(\pi) \subset \tilde{U}\}$ (fl : finite length)
- $\bullet \ \{ V \in \operatorname{End}_{\mathcal{G}}(\Pi) \operatorname{Mod}_{\mathrm{fl}} : \ \mathsf{all} \ \mathbb{C}[X_{\mathrm{nr}}(M)] \text{-weights of } V \ \mathsf{in} \ U \}$
- $\bullet \ \{\tilde{V} \in \tilde{\mathcal{H}}(\mathcal{O}) \mathrm{Mod}_{\mathrm{fl}} : \ \mathsf{all} \ \mathbb{C}[\mathcal{O}] \text{-weights of} \ \tilde{V} \ \mathsf{in} \ \tilde{U}\}$

Under a mild condition on the 2-cocycle $\tilde{\natural}$ involved in $\tilde{\mathcal{H}}(\mathcal{O})$ (conjecturally always fulfilled):

Corollary

There is an equivalence of categories between

$$\operatorname{Rep}_{\mathrm{fl}}(\mathsf{G})^{\mathfrak s}$$
 and $ilde{\mathcal H}(\mathcal O)-\operatorname{Mod}_{\mathrm{fl}}$

Extras

The above equivalences of categories respect parabolic induction, temperedness and square-integrability of representations

V. Classification of irreducible representations in $Rep(G)^{\mathfrak{s}}$

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}}$, $\operatorname{Irr}(G)^{\mathfrak{s}}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_F by 1 in affine Hecke algebras

- $q_F = 1$ -version of $\tilde{\mathcal{H}}(\mathcal{O})$: $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\xi}]$
- Its representation theory is easy, with Clifford theory

Representations of affine Hecke algebras

- From the equivalence $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}} \cong \tilde{\mathcal{H}}(\mathcal{O}) \operatorname{Mod}_{\mathrm{fl}}$, $\operatorname{Irr}(G)^{\mathfrak{s}}$ can be determined in terms of affine Hecke algebras
- The irreps of an affine Hecke algebra are known in principle, but their classification is involved

Replacing q_F by 1 in affine Hecke algebras

- $q_F = 1$ -version of $\tilde{\mathcal{H}}(\mathcal{O})$: $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]$
- Its representation theory is easy, with Clifford theory

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\{\pi \in \operatorname{Irr}(G)^{\mathfrak s} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX^+_{\operatorname{nr}}(M))\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX^+_{\operatorname{nr}}(M)\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O}),\tilde{\mathfrak{h}}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight } \sigma \otimes u\}$
- $\operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma\otimes u},\tilde{\natural}])$

```
W(M,\mathcal{O})_{\sigma\otimes u} embeds in W(M,\sigma,X_{\mathrm{nr}}(M)) \tilde{\natural}|_{W(M,\mathcal{O})_{\sigma\otimes u}} comes from the 2-cocycle \natural of W(M,\sigma,X_{\mathrm{nr}}(M))
```

Assume that $\sigma \otimes u \in \operatorname{Irr}(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\{\pi \in \operatorname{Irr}(G)^{\mathfrak s} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^+(M))\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX^+_{\operatorname{nr}}(M)\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O}),\tilde{\natural}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight } \sigma \otimes u\}$
- $\operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma\otimes u},\tilde{\mathfrak{q}}])$

```
W(M,\mathcal{O})_{\sigma\otimes u} embeds in W(M,\sigma,X_{\mathrm{nr}}(M)) \tilde{\natural}|_{W(M,\mathcal{O})_{\sigma\otimes u}} comes from the 2-cocycle \natural of W(M,\sigma,X_{\mathrm{nr}}(M))
```

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\{\pi \in \operatorname{Irr}(G)^{\mathfrak s} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^+(M))\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX^+_{\operatorname{nr}}(M)\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight } \sigma \otimes u\}$
- $\operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma\otimes u},\tilde{\mathfrak{f}}])$

```
W(M,\mathcal{O})_{\sigma\otimes u} embeds in W(M,\sigma,X_{\mathrm{nr}}(M)) \tilde{\natural}|_{W(M,\mathcal{O})_{\sigma\otimes u}} comes from the 2-cocycle \natural of W(M,\sigma,X_{\mathrm{nr}}(M))
```

Assume that $\sigma \otimes u \in Irr(M)$ is supercuspidal and unitary/tempered

Theorem

There exist canonical bijections between the following sets

- $\{\pi \in \operatorname{Irr}(G)^{\mathfrak s} : \pi \text{ tempered}, \operatorname{Sc}(\pi) \in (M, \sigma \otimes uX_{\operatorname{nr}}^+(M))\}$
- $\{\tilde{V} \in \operatorname{Irr}(\tilde{\mathcal{H}}(\mathcal{O})) : \tilde{V} \text{ tempered}, \tilde{V} \text{ has a } \mathbb{C}[\mathcal{O}]\text{-weight in } \sigma \otimes uX^+_{\operatorname{nr}}(M)\}$
- $\{V \in \operatorname{Irr}(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]) : V \text{ tempered, with a } \mathbb{C}[\mathcal{O}]\text{-weight } \sigma \otimes u\}$
- $\operatorname{Irr}(\mathbb{C}[W(M,\mathcal{O})_{\sigma\otimes u},\tilde{\mathfrak{f}}])$

 $W(M,\mathcal{O})_{\sigma\otimes u}$ embeds in $W(M,\sigma,X_{\mathrm{nr}}(M))$ $\tilde{\natural}|_{W(M,\mathcal{O})_{\sigma\otimes u}}$ comes from the 2-cocycle \natural of $W(M,\sigma,X_{\mathrm{nr}}(M))$

Classification of irreducible representations

Theorem

There exist canonical bijections between the following sets

- Irr(G)⁵
- $\operatorname{Irr} \Big(\mathbb{C}[X_{\operatorname{nr}}(M)] \rtimes \mathbb{C}[W(M, \sigma, X_{\operatorname{nr}}(M)), \natural] \Big)$
- $\operatorname{Irr}\left(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]\right)$
- $\{(\sigma', \rho) : \sigma' \in \mathcal{O}, \rho \in \operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma'}, \tilde{\xi}])\}/W(M, \mathcal{O})$

The last item is also known as a twisted extended quotient

$$(\mathcal{O}/\!/W(M,\mathcal{O}))_{\natural}$$

The bijection between that and $Irr(G)^{\mathfrak{s}}$ was conjectured by ABPS

Classification of irreducible representations

Theorem

There exist canonical bijections between the following sets

- Irr(G)⁵
- $\bullet \ \operatorname{Irr} \Big(\mathbb{C}[X_{\operatorname{nr}}(M)] \rtimes \mathbb{C}[W(M,\sigma,X_{\operatorname{nr}}(M)),\natural] \Big)$
- $\operatorname{Irr}\left(\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M, \mathcal{O}), \tilde{\natural}]\right)$
- $\{(\sigma', \rho) : \sigma' \in \mathcal{O}, \rho \in \operatorname{Irr}(\mathbb{C}[W(M, \mathcal{O})_{\sigma'}, \tilde{\natural}])\}/W(M, \mathcal{O})$

The last item is also known as a twisted extended quotient

$$(\mathcal{O}/\!/W(M,\mathcal{O}))_{\natural}$$

The bijection between that and $Irr(G)^{\mathfrak{s}}$ was conjectured by ABPS

◆ロト ◆問 ト ◆ 意 ト ◆ 意 ・ 夕 Q (*)

Summary

For an arbitrary Bernstein block $Rep(G)^{\mathfrak{s}}$ of a reductive *p*-adic group G:

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_F = 1$ -form is $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O}),\tilde{\mathfrak{f}}]$
- Upon tensoring with $\mathbb{C}(X_{\mathrm{nr}}(M))$ over $\mathbb{C}[X_{\mathrm{nr}}(M)]$, or upon taking irreducible representations, $\mathrm{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M,\sigma,X_{\mathrm{nr}}(M)),\natural] \mathrm{Mod}$

Questions / open problems

- Can one use the above to study unitarity of *G*-representations?
- Can the parameters $q_F^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \natural of $W(M, \sigma, X_{nr}(M))$?

Summary

For an arbitrary Bernstein block $Rep(G)^{\mathfrak{s}}$ of a reductive *p*-adic group G:

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_F = 1$ -form is $\mathbb{C}[\mathcal{O}] \rtimes \mathbb{C}[W(M,\mathcal{O}),\tilde{\mathfrak{f}}]$
- Upon tensoring with $\mathbb{C}(X_{\mathrm{nr}}(M))$ over $\mathbb{C}[X_{\mathrm{nr}}(M)]$, or upon taking irreducible representations, $\mathrm{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M,\sigma,X_{\mathrm{nr}}(M)),\natural] \mathrm{Mod}$

Questions / open problems

- Can one use the above to study unitarity of *G*-representations?
- Can the parameters $q_F^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \sharp of $W(M, \sigma, X_{nr}(M))$?

Summary

For an arbitrary Bernstein block $Rep(G)^{\mathfrak{s}}$ of a reductive *p*-adic group G:

- $\operatorname{Rep}_{\mathrm{fl}}(G)^{\mathfrak{s}}$ is equivalent with the category of finite length modules of an extended affine Hecke algebra $\tilde{\mathcal{H}}(\mathcal{O})$, whose $q_F=1$ -form is $\mathbb{C}[\mathcal{O}]\rtimes\mathbb{C}[W(M,\mathcal{O}),\tilde{\mathfrak{f}}]$
- Upon tensoring with $\mathbb{C}(X_{\mathrm{nr}}(M))$ over $\mathbb{C}[X_{\mathrm{nr}}(M)]$, or upon taking irreducible representations, $\mathrm{Rep}(G)^{\mathfrak{s}}$ becomes equivalent with $\mathbb{C}[X_{\mathrm{nr}}(M)] \rtimes \mathbb{C}[W(M,\sigma,X_{\mathrm{nr}}(M)),\natural] \mathrm{Mod}$

Questions / open problems

- Can one use the above to study unitarity of *G*-representations?
- Can the parameters $q_F^{\lambda(\alpha)}$ of $\tilde{\mathcal{H}}(\mathcal{O})$ be described in terms of σ or \mathcal{O} ? Are the $\lambda(\alpha)$ integers?
- How to determine the 2-cocycles \sharp of $W(M, \sigma, X_{nr}(M))$?