

Bài 03: Số chấm động

Phạm Tuấn Sơn ptson@fit.hcmus.edu.vn

Vấn đề với biểu diễn số nguyên

Số nguyên N bit biểu diễn được 2^N giá trị

- Biểu diễn không dấu (Unsigned Integer)

0 à
$$2^{N}-1$$

(N=32, $2^{N}-1 = 4,294,967,295$)

Biểu diễn bù 2

$$-2^{(N-1)}$$
 à $2^{(N-1)} - 1$ (N=32, $2^{(N-1)} = 2,147,483,648$)

- Biểu diễn số rất lớn ? Số giây / 1 nghìn năm
 - $-31,556,926,000 (3.1556926 \times 10^{10})$
- Biểu diển số rất nhỏ? Số giây / 1 nano giây
 - $-0.00000001_{10} (1.0_{10} \times 10^{-9})$
- Biểu diễn số thập phân 1.5 ?

Biểu diễn phần thập phân

- Biểu diễn số 5.375 thế nào ?
 Cần bao nhiêu bit ?
 - Giả sử dùng 8 bit để lưu trữ phần nguyên

$$5 = 4 + 1 = 00000101$$

 Tương tự có thể dùng 8 bit lưu trữ phần thập phân

$$0.375 = 0.25 + 0.125 = 01100000$$

Vậy có thể biểu diễn

$$5.375 = 00000101.01100000$$

Tổng quát ta có:

$$x_{n-1} \mathbf{K} x_1 x_0 \cdot x_{-1} x_{-2} \mathbf{K} x_{-m} = \sum_{i=-m}^{n} x_i 2^i$$

=> Biểu diển số chấm tĩnh (fixed point)

i	2 ⁻ⁱ
0	1.0 1
1	0.5 1/2
2	0.25 1/4
3	0.125 1/8
4	0.0625 1/16
5	0.03125 1/32
6	0.015625
7	0.0078125
8	0.00390625
9	0.001953125
10	0.0009765625
11	0.00048828125
12	0.000244140625
13	0.0001220703125
14	0.00006103515625
15	0.000030517578125

Giới hạn biểu diễn số chấm tĩnh

Với 8 bit

- Phần nguyên lớn nhất có thể biểu diễn là
 28 1= 255
- Phần thập phân nhỏ nhất có thể biểu diễn là $2^{-8} = 1/256 = 0.00390625 \sim 10^{-3}$
- Nếu muốn tính toán với số nhỏ hơn như
 0.0001₁₀ hay 0.00001₁₀ ?
 - à Tăng số bit

Với 16 bit phần thập phân

 $min = 1/65536 = 0.0000152587890625 \sim 10^{-5}$

Có cách nào tốt hơn ?

Số chấm động – Ý tưởng

Hệ thập phân

 $-1230000000000 \sim 1.23 \times 10^{11} \text{ và } 0.0000000000123 \sim 1.23 \times 10^{-11}$

Tương tự với hệ nhị phân, ta có

 $x = 00000101.01100000 = 2^2 + 2^0 + 2^{-2} + 2^{-3}$

Ta có thể viết lại

 $x = 1.01011 \times 2^2$

Thay vì dùng 16 bit để lưu trữ, chỉ cần dùng 7 bit (5 bit phần trị + 2 bit phần mũ)

x = 1.01011 10

- Như vậy,
 - Muốn tiết kiệm số bit lưu trữ, ta đã <u>di chuyển vị trí của dấu chấm</u> sang phải 14 vị trí
 - Cần lưu: phần trị, phần mũ và ...phần dấu
 - => Đây là ý tưởng cơ bản của số chấm động (floating point)

Biểu diễn số chấm động

Biểu diễn số chấm động

S Exponent

Significand

l bit m bits n bits

- Sign (S): phần dấu
- Exponent (E): phần số mũ
- Significand (S): phần định trị
- Giá trị

±Sx2^E

Biểu diễn khoa học

- Giá trị 1 / 1,000,000,000 có thể biểu diễn như sau:
 - 1.0₁₀ x 10⁻⁹ à Dạng chuẩn (Normalized form)
 - 0.1₁₀ × 10⁻⁸, 10.0₁₀ × 10⁻¹⁰ à Dạng không chuẩn
 (Denormalized form)
- Dạng chuẩn: phần nguyên gồm 1 chữ số khác 0

Chuẩn số chấm động IEEE 754

Biểu diễn số chấm động Single Precision (32 bit)

31 30 23 22

0

S Exponent

Significand

1 bit 8 bits

23 bits

- S: dấu (Sign) 0: dương, 1: âm
- Exponent: phần số mũ (lưu dưới dạng số biased)
- Significand: phần định trị
 - Ngầm định bắt đầu là 1 + phần trị ~ (1 + 23) bits
- Dạng chuẩn: +/-1.xxx...x₂×2^{yyy...y}2
- Ví dụ:

Biểu diễn: 0 10000001 01011000000000000000000

Có giá trị: $+1.0101100...00 \times 2^{10000001} \sim +(1+2^{-2}+2^{-4}+2^{-5}) \times 2^{2} =$

5.375

Chuyển từ biểu diễn nhị phân sang thập phân

0 0110 1000 101 0101 0100 0011 0100 0010

- Dấu: 0 à dượng
- Mũ:
 - 0110 1000 có giá trị (dạng biased) là
 - $-104 127 \neq -23$
- Tri:

```
  \begin{array}{l}
    1 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 1x2^{-5} + ... \\
    = 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22} \\
    = 1.0 + 0.666115
```

Két quả: 1.666115×2⁻²³ ~ 1.986×10⁻⁷
 (~ 2/10,000,000)

Chuyển từ biểu diễn thập phân sang nhị phân

```
-2.340625 x 10<sup>1</sup>
```

- 1. Không chuẩn hóa: -23.40625
- 2. Chuyển phần nguyên:

```
23 = 16 + 4 + 2 + 1 = 10111
```

3. Chuyển phần thập phân:

```
.40625 = .25 + .125 + .03125 = .01101
```

4. Kết hợp và chuẩn hóa:

 $10111.01101 = 1.011101101 \times 2^4$

5. Chuyển phần mũ: 127 + 4 = 10000011

1 1000 0011 011 1011 0100 0000 0000 0000

Chuyển từ biểu diễn thập phân sang nhị phân (tt)

```
1/3
 = 0.33333...
= 0.25 + 0.0625 + 0.015625 + 0.00390625 + \dots
 = 1/4 + 1/16 + 1/64 + 1/256 + \dots
= 2^{-2} + 2^{-4} + 2^{-6} + 2^{-8} + \dots
= 0.0101010101... * 2^{0}
= 1.0101010101... * 2<sup>-2</sup>

    Dấu: 0

-M\tilde{u} = -2 + 127 = 125 = 01111101
- Tri = 0101010101...
```

0 0111 1101 0101 0101 0101 0101 0101 010

Các số đặc biệt

- Phần mũ = 0, phần trị = 0
 - Số zero
- Phần mũ = 0, phần trị ≠ 0
 - Số dạng không chuẩn (denormalized)
- Phần mũ toàn bit 1, phần trị = 0
 - Số vô cùng (infinity)
- Phần mũ toàn bit 1, phần trị ≠ 0
 - Số báo lỗi (NaN Not a Number)
 - Signaling NaN
 - Quiet NaN

Những trường hợp tạo số đặc biệt

1.
$$X + (+\infty)$$

$$11.(+\infty) + (-\infty)$$
 21.....

2.
$$X - (+\infty)$$

$$12.(-\infty) + (+\infty)$$

3.
$$X + (-\infty)$$

3.
$$X + (-\infty)$$
 13. $(+\infty) - (+\infty)$

4.
$$X - (-\infty)$$

4.
$$X - (-\infty)$$
 14. $(-\infty) - (-\infty)$

5.
$$X \times (+\infty)$$
 15. $\infty \times 0$

7.
$$(+\infty) + (+\infty) 17.X/0$$

8.
$$(-\infty) + (-\infty)$$
 18.0 / 0

9.
$$(-\infty) - (+\infty)$$
 19. ∞ / ∞

$$10.(+\infty) - (-\infty)$$

$$10.(+\infty) - (-\infty)$$
 20.sqrt(X), X<0

Phân bố, phạm vi biểu diễn

Phạm vi biểu diễn. Chứng minh ?

Phân bố

 Đặt f (1,2) = số lượng số chấm động trong khoảng 1 và 2

Đặt f(2,3) = số lượng số chấm động trong khoảng 2 và 3

Hôi

1.
$$f(1,2) < f(2,3)$$

2.
$$f(1,2) = f(2,3)$$

3.
$$f(1,2) > f(2,3)$$

Số dạng không chuẩn

Số dương nhỏ nhất có thể biểu diễn

$$a = 1.0..._{2} \times 2^{-126} = 2^{-126}$$
Gaps!
$$- \infty \leftarrow \cdots \leftarrow + \infty$$

Lý do: ngầm định 1 + phần trị

- Giải pháp:
 - Qui ước nếu số mũ = 0 (phần trị ≠ 0), không ngầm định bắt đầu là 1 à Số dạng không chuẩn (denormalized)
 - Số dương nhỏ nhất có thể biểu diễn

•
$$a = 0.00...1_2 \times 2^{-126} = 2^{-23} \times 2^{-126} = 2^{-149}$$

• $a = 0.00...1_2 \times 2^{-126} = 2^{-23} \times 2^{-126} = 2^{-149}$

• $a = 0.00...1_2 \times 2^{-126} = 2^{-23} \times 2^{-126} = 2^{-149}$

Một số loại chấm động

- Single Precision (32 bit)
 - 1/8/23 (kiểu *float* trong C), 10⁻³⁸ à 10³⁸
- Double Precision (64 bit)
 - 1/11/52 (kiểu double trong C), 10⁻³⁰⁸ à 10³⁰⁸
- Half Precision (16 bit)
 - 1/5/10
- Quad Precision (8 bit)
 - 1/4/3
- IEEE 754-2008 "binary128" (128 bit)
 - -1/15/112

en.wikipedia.org/wiki/Floating_point

Biểu diễn số chấm động 8 bit

•	s	ехр	frac	E	Value
	0	0000	000	-6	0
	0	0000	001	-6	1/8*1/64 = 1/512 [←] closest to zero
Denormalized numbers	0	0000	010	-6	2/8*1/64 = 2/512
numbers	0	0000	110	-6	6/8*1/64 = 6/512
	0	0000	111	-6	7/8*1/64 = 7/512 ← largest denorm
	0	0001	000	-6	
	0	0001	001	-6	9/8*1/64 = 9/512
	0	0110	110	-1	14/8*1/2 = 14/16
Name of the second	0	0110	111	-1	15/8*1/2 = 15/16 ← closest to 1 below
Normalized	0	0111	000	0	8/8*1 = 1
numbers	0	0111	001	0	9/8*1 = 9/8 ← closest to 1 above
	0	0111	010	0	10/8*1 = 10/8
	0	1110	110	7	14/8*128 = 224
	0	1110	111	7	15/8*128 = 240 ← largest norm
	0	1111	000	n/a	inf

Bảng tóm tắt số chấm động

Er		Single Precision	on (32	bit)	Double Precision (64 bit)			
	D ã u	Mũ	Tr ị	Giá tr ị	D ã u	Mũ	Tr ị	Giá trị
+0	0	0	0	0	0	0	0	0
- 0	1	0	0	-0	1	0	0	-0
+∞	0	255 (toàn bit 1)	0	8	0	2047 (toàn bit 1)	0	∞
- ∞	1	255 (toàn bit 1)	0	-∞	1	2047 (toàn bit 1)	0	-∞
Quiet NaN	0/ 1	255 (toàn bit 1)	≠ 0	NaN	0/ 1	2047 (toàn bit 1)	≠ 0	NaN
Signaling NaN	0/ 1	255 (toàn bit 1)	≠ 0	NaN	0/ 1	2047 (toàn bit 1)	≠ 0	NaN
Số dương (dạng chuẩn)	0	0 <e<255< td=""><td>f</td><td>2^{e-127} (1.f)</td><td>0</td><td>0<e<2047< td=""><td>f</td><td>2^{e-1023} (1.f)</td></e<2047<></td></e<255<>	f	2 ^{e-127} (1.f)	0	0 <e<2047< td=""><td>f</td><td>2^{e-1023} (1.f)</td></e<2047<>	f	2 ^{e-1023} (1.f)
Số âm (dạng chuẩn)	1	0 <e<255< td=""><td>f</td><td>-2^{e-127} (1.f)</td><td>1</td><td>0<e<2047< td=""><td>f</td><td>-2^{e-1023} (1.f)</td></e<2047<></td></e<255<>	f	-2 ^{e-127} (1.f)	1	0 <e<2047< td=""><td>f</td><td>-2^{e-1023} (1.f)</td></e<2047<>	f	-2 ^{e-1023} (1.f)
Số dương (dạng không chuẩn)	0	0	f ≠ 0	2 ^{e-126} (0.f)	0	0	f ≠ 0	2 ^{e-1022} (0.f)
Số âm (dạng không chuẩn)	1	0	f ≠ 0	-2 ^{e-126} (0.f)	1	0	f ≠ 0	-2 ^{e-1022} (0.f)

Khái niệm Precision và Accuracy

- Precision: số bit được sử dụng trong máy tính để biểu diễn 1 giá trị.
- Accuracy: độ chính xác mà một kiểu biểu diễn trong máy tính có thể biểu diễn được một giá trị.
- Thường thì precision cao sẽ dẫn tới accuracy cao.
- Ví dụ: float pi = 3.14;
 - pi được biểu diễn bởi 24 bit phần trị (precise cao),
 nhưng chỉ có thể biểu diễn được gần đúng pi (không accuracy).

Làm tròn (Rounding)

- Khi thực hiện các phép toán trên số chấm động, kết quả nhận được có thể vượt ra ngoài khả năng biểu diễn của phần định trị.
- Phần cứng phục vụ các phép toán trên số chấm động thường có thêm 2 bit nhớ hỗ trợ cho phần định trị giúp thực hiện việc <u>làm tròn</u> để có được kết quả chính xác nhất có thể.
- Ví dụ: thực hiện (1.00...00×2¹) (1.11...11×2⁰)

Chuẩn IEEE làm tròn số chấm đông

Làm tròn lên (Round up / Round towards +∞)

$$1.01 \ \underline{10} \rightarrow 1.10 \ , \qquad \qquad -1.01 \ \underline{10} \rightarrow -1.01 \$$

$$-1.01\ 10 \rightarrow -1.01$$

Làm tròn xuống (Round down / Round towards -∞)

$$1.01 \ \underline{10} \rightarrow 1.01,$$

$$1.01 \ \underline{10} \rightarrow 1.01, \qquad -1.01 \ \underline{10} \rightarrow -1.10$$

- Làm tròn về 0 (Truncate / Round towards 0)
 - Bỏ giá trị 2 bit nhớ
- Làm tròn về giá trị gần nhất (Round to nearest):

$$-1.01 \ \underline{01} \rightarrow 1.01 \ , \qquad \qquad -1.01 \ \underline{11} \rightarrow -1.10$$

$$-1.01 \ \underline{11} \rightarrow -1.10$$

- Trường hợp 2 bit nhớ là 10 (halfway)?
 - Làm tròn về số chẵn gần nhất (mặc định), nghĩa là LSB của phần định trị luôn bằng 0

$$1.01 \ \underline{10} \rightarrow 1.10$$
,

Các trường hợp làm tròn khác

Làm tròn cũng được thực hiện khi thực hiện chuyển đổi:

- Chuyển đổi từ kiểu double precision thành single precision
- Chuyển đổi từ số chấm động thành số nguyên và ngược lại
- Ép kiểu từ số chấm động thành số nguyên và ngược lại
- Hãy khảo sát các trường hợp sau:
 - 1.Chuyển đổi float -> int -> float. Kết quả như ban đầu?
 - 2.Chuyển đổi int -> float -> int. Kết quả như ban đầu?
 - 3. Phép cộng số chấm động có tính kết hợp?

```
(x+y)+z = x+(y+z)
4.i = (int) (3.14159 * f);
5.f = f + (float) i;
6.if (i == (int)((float) i)) { printf("true"); }
7.if (i == (int)((double) i)) { printf("true"); }
8.if (f == (float)((int) f)) { printf("true"); }
9.if (f == (double)((int) f)) { printf("true"); }
```


Phép cộng, trừ số chấm động

Phép nhân số chấm động

Phép chia số chấm động

Tham khảo

Chương 3, P&H Chương 9, William Stallings