ANOVA

In this section, I denotes the treatments/groups, and J the measurements in each group. For two-factor, I, J denote the treatments/groups, and J the measurements within each I, J combination. Use ANOVA for comparing more than 2 groups.

$$\begin{split} \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \bar{Y})^2 &= \sum_{i=1}^{I} \sum_{j=1}^{J} (Y_{ij} - \bar{Y})^2 + \\ &J \sum_{i=1}^{I} (\bar{Y}_i - \bar{\bar{Y}})^2 \\ &SS_{TOT} = SS_W + SS_B \\ &SS_B / (I - 1) \sim \chi_{I-1}^2 \\ &SS_W / [I(J-1)] \sim \chi_{I(J-1)}^2 \\ &\mathbb{E}[SS_W] = I(J-1)\sigma^2 \\ &\mathbb{E}[SS_B] = J \sum_{i=1}^{I} \alpha_i^2 + (I-1)\sigma^2 \end{split}$$

One-factor ANOVA, same-sized groups

The test statistic is

$$F = \frac{SS_B/(I-1)}{SS_W/[I(J-1)]} \sim F_{I-1,I(J-1)}$$

Reject H_0 if $F > F_{I-1,I(J-1)}(\alpha)$.

One-factor ANOVA, differently-sized groups

The test statistic follows a slightly different degree of freedoms $I-1:=df_1$ and $\sum_{i=1}^n J_i-I=:df_2$.

$$F \sim F_{df_1,df_2}$$

Two-factor ANOVA

There will be an additional sum of squares term for the interaction between groups. Its associated degree of freedom in as a chi-square distributed random variable, and within the final F distributed test statistic is (I-1)(J-1). The sum of squared errors (within groups) has degree of freedom as chi-squared IJ(K-1).

Post-ANOVA Tests

Turkey's correction and Bonferroni's correction reduces the probability of type I error in multiple tests after the ANOVA. The Kruskal-Wallis test, a generalisation of the Mann-Whitney test, is a nonparametric test which is particularly useful for small data sets.

$\underline{ \textbf{Two-Sample Tests}}$

In this section, X_1, \dots, X_n and Y_1, \dots, Y_m are each i.i.d. samples of X and Y respectively, unless otherwise stated. Define $D_i := X_i - Y_i$. The variances for X and Y are unknown.

Estimating the Equality of Variances

If $S_X \leq 2S_Y$ or $S_Y \leq 2S_X$, it is reasonable to assume that $\sigma_X = \sigma_Y$.

Normal, Unpaired, with Equal Variance

Calculate the pooled variance, s_p^2 as such.

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{m+n-2}$$

The test statistic t is

$$t = \frac{(\bar{X} - \bar{Y}) - (\mu_X - \mu_Y)}{SE_{\bar{X} - \bar{Y}}}$$

which follows a t distribution with m + n - 2 degrees of freedom.

Normal, Unpaired, with Unequal Variance

The variance of the sampling distribution $\mathrm{Var}(\bar{X} - \bar{Y})$ is simply

$$Var(\bar{X} - \bar{Y}) = S_X^2/n + S_Y^2/m$$

The test statistic t is

$$t = \frac{\bar{X} - \bar{Y} - (\mu_X - \mu_Y)}{\sqrt{S_X^2/n + S_Y^2/m}}$$

which follows a t distribution with degrees of freedom df as

$$df = \frac{(S_X^2/n + S_Y^2/m)^2}{\frac{(S_X^2/n)^2}{n-1} + \frac{(S_Y^2/m)^2}{m-1}}$$

Normal, Paired

The variance of the sampling distribution $\mathrm{Var}(\bar{D})$ can be estimated simply by the unbiased sample variance of the series of D_i random variables. The test statistic t is

$$t = \frac{\bar{D} - \mu_D}{SE_{\bar{D}}}$$

Unpaired, Nonparametric

Rank the values of the samples X_i, Y_j from 1 to n+m. The null hypotheses is that X_i, Y_j are distributed identically, and therefore should rank 'evenly'. Then, the rank sum scores are defined as

$$R_X = \sum_{i=1}^n \operatorname{Rank}(X_i); \quad R_Y = \sum_{j=1}^m \operatorname{Rank}(Y_j)$$

Select the sample with the smaller size (w.r.t. n, m). Denote its rank sum score R, and define R' := n(n + m + 1) - R. The Mann-Whitney test statistic is

$$R^* = \min(R, R')$$

 H_0 is rejected for small R^* .

Paired, Parametric

Rank the absolute values of D_i from 1 to n=m. The null hypotheses is that D is distributed symmetrically about 0. Define

$$W_{+} = \sum \{ \operatorname{Rank}(D_{i}) | D_{i} > 0 \}$$

$$W_{-} = \sum \{ \operatorname{Rank}(D_i) | D_i < 0 \}$$

Denote $W := \min(W_-, W_+)$. H_0 is rejected for small W.

Hypothesis Testing

In a hypothesis testing question, you must include (i) assumptions made, (ii) the null and alternate hypotheses, (iii) the test statistic and its distribution, (iv) the *p*-value, and (v) the conclusion.

Terminology

- The significance level (or size) α of a test is the probability of committing a type I error, or rejecting the null hypothesis, H_0 when it is true.
- The power 1β of a test is the probability that H_0 is rejected when it is false.
- β denotes the probability of a type II error, or failing to reject H_0 when it is false.
- The α and power of a tests are mutual trade-offs.
- The set of values of a test statistic leading to rejection of H_0 is the rejection or critical region. Those leading to acceptance is the acceptance region.
- The p-value is the smallest significance level at which H₀ would be rejected.
- The null distribution is the probability distribution of the test statistic when H_0 is true.

Simple and Composite Hypotheses

A hypothesis that does not completely specify the probability distribution is called a composite hypothesis. Otherwise, it is a simple hypothesis. A hypothesis that is 'one-tailed' is called a 'one-sided' alternative.

Uniformly Most Powerful

If an alternative hypothesis H_1 is composite, a test that is most powerful for every simple alternative in H_1 is said to be uniformly most powerful. The test which is uniformly most powerful for a one-sided alternative is not for the two-sided.

Confidence Interval

Denote the acceptance region of the test as $A(\theta_0)$. Then, the set

$$C(X) = \{\theta | X \in A(\theta)\}$$

is a $100\%(1-\alpha)$ confidence region for θ . The CI contains all the values of θ for which the null hypothesis $H_0:\theta=\theta_0$ is not rejected.

Neyman-Pearson Lemma

Suppose that H_0 and H_1 are simple hypotheses. Set the significance level of the test at α . Any other test for which the significance level is less than or equal to α has power less than or equal to that of the likelihood ratio test.

Generalised Likelihood Ratio Test (GLRT)

The generalised likelihood ratio test a non-optimal test used for situations of composite hypothesis where no optimal test exists. Denote the null and alternative hypotheses as $H_0:\theta\in\omega_0$ and $H_1:\theta\in\omega_1$ respectively, where ω_0,ω_1 are disjoint and subsets of Ω , the sample space. The generalised likelihood ratio test statistic is

$$\Lambda^* = \frac{\max_{\theta \in \omega_0} L(\theta)}{\max_{\theta \in \omega_1} L(\theta)}$$

For simplicity, we define Λ such that $\Lambda = \min(\Lambda^*, 1)$.

$$\Lambda = \frac{\max_{\theta \in \omega_0} L(\theta)}{\max_{\theta \in \Omega} L(\theta)}$$

Then, the generalised likelihood test rejects for $\Lambda \leq \lambda_0$, where $P(\Lambda \leq \lambda_0 | H_0) = \alpha$.

Distribution of $-2 \log \Lambda$

For the GLRT, As the sample size $n\to\infty$, Under smoothness conditions on the pmfs or pdfs involved, the null distribution of $-2\log\Lambda$ tends to a chi-square

distribution with degrees of freedom df as

$$df = \dim \Omega - \dim \omega_0$$

dim Ω , dim ω_0 are the number of free parameters under Ω and ω_0 respectively. Rejecting for small Λ is then also rejecting for large $-2\log\Lambda$. Special case: the one-tailed rejection region $-2\log\Lambda = n(\bar{X} - \mu_0)^2/\sigma^2 > \chi_1^2(\alpha)$ can be made two tailed $|\bar{X} - \mu_0| > (\sigma/\sqrt{n})z(\alpha/2)$ by definition of χ_1^2 .

Likelihood Ratio Test (LRT)

In the case of the simple alternative hypothesis, simply define Λ directly.

$$\Lambda = \frac{L(\theta|H_0)}{L(\theta|H_1)}$$

Pearson Chi-square Test

The Pearson chi-square test is asymptotically equal to the GLRT. The test statistic for a multinomial distributed r.v. is

$$X^{2} = \sum_{i=1}^{m} \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum_{i=1}^{m} \frac{(x_{i} - np_{i}(\hat{\theta}))^{2}}{np_{i}(\hat{\theta})}$$

Where $X^2 \sim \chi^2_{m-k-1}, \, k$ is the number of values of the multinomial distribution.

Efficiency & Sufficiency

Mean Square Error (MSE)

The MSE is a common measure of accuracy of an estimator.

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta_0)^2]$$
$$= Var(\hat{\theta}) + (E[\hat{\theta}] - \theta_0)^2$$
$$= SE^2 + bias^2$$

Efficiency

The efficiency of two estimators, $\hat{\theta}_0$, $\hat{\theta}_1$ is given as

$$\operatorname{eff}(\hat{\theta}_0, \hat{\theta}_1) := \operatorname{Var}(\hat{\theta}_1) / \operatorname{Var}(\hat{\theta}_0)$$

When any of the $\text{Var}(\hat{\theta})$ is estimated via the asymptotic variance, the efficiency is called the asymptotic relative efficiency.

Cramér-Rao Inequality

Under smoothness assumptions of a $f(x|\theta)$ for a statistic $T := t(X_1, \dots, X_n)$

$$Var(T) \ge \frac{1}{nI(\theta)}$$

This gives the lower bound for the variance of any estimator of θ . An unbiased estimator whose variance achieves this lower bound is said to be efficient. The MLE is asymptotically efficient.

Sufficiency

A statistic $T(X_1, \dots, X_n)$ is said to be sufficient for θ if the conditional distribution of X_1, \dots, X_n given T = t does not depend on θ for any value of t. If T is sufficient for θ , the MLE for θ is a function only of T.

Factorization Theorem

The statistic $T(X_1, \dots, X_n)$ is sufficient for a parameter θ iff the joint pdf factorises in the form

$$f(\vec{x}|\theta) = g(T(\vec{x}), \theta)h(\vec{X})$$

Exponential Family of Probability Distributions 1-parameter members of the exponential family have pdfs or pmfs in the form

$$f(x|\theta) = \begin{cases} \exp\{c(\theta)T(x) + d(\theta) + S(x)\}, & \text{if } x \in A, \\ 0, & \text{otherwise.} \end{cases}$$

where the set A does not depend on θ .

Rao-Blackwell Theorem

Let $\hat{\theta}_0$ be an estimator for θ with finite second moment, T a sufficient statistic for θ , and $\hat{\theta}_1 = E[\hat{\theta}_0|T]$.

$$E[(\hat{\theta}_1 - \theta)^2] \le E[(\hat{\theta}_0 - \theta)^2]$$

 $\hat{\theta}_1$ is an estimator of θ which is better than any estimator $\hat{\theta}_0$ since $\hat{\theta}_1 = \mathbb{E}[\hat{\theta}_0|T]$ which is a function of the sufficient statistic T.

Other Stuff

$$\frac{d}{dx} f(g(x)) = f'(g(x))g'(x)$$

$$\frac{d}{dx} f(x)g(x) = f(x)g'(x) + f'(x)g(x)$$

$$\frac{d}{dx} \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

$$\frac{d}{dx} f(x)^{g(x)} = f(x)^{g(x)} \left(g'(x) \ln f(x) + g(x) \frac{f'(x)}{f(x)}\right)$$

$$\int_a^b u \, dv = uv \Big|_a^b - \int_a^b v \, du$$

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(1) = 1$$

$$\Gamma(n) = 1 \cdot 2 \cdot \dots \cdot (n-1) = (n-1)!$$

$$E[X] = \sum_i x_i p(x_i)$$

$$E[X] = \int_{-\infty}^\infty x f(x) \, dx$$

$$E[Y] = E[E[Y|X]]$$

$$Var(X) = E[X^2] - E[X]^2$$

$$Var(x) = E[X^2] - E[X]^2$$

$$Var(x) = E[X^2] - E[X]^2$$

$$Var(x) = Var(E[Y|X]) + E[Var(Y|X)]$$

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$Cov(X, Y) = E[XY] - E[X] E[Y] \quad \text{if } X \perp Y$$

$$\sum_{i=1}^n (X_i - \mu_0)^2 = \left[\sum_{i=1}^n (X_i - \bar{X})^2\right] + n(\bar{X} - \mu_0)^2$$

$$\rho = \frac{Cov(X, Y)}{\sqrt{Var(X) Var(Y)}}$$

$$S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2$$

$$\operatorname{Cov}(aX + bY, cW + dV)$$

$$= \operatorname{ac} \operatorname{Cov}(X, W) + \operatorname{ad} \operatorname{Cov}(X, V) +$$

$$\operatorname{bc} \operatorname{Cov}(Y, W) + \operatorname{bd} \operatorname{Cov}(Y, V)$$

$$P(B_j | A) = \frac{P(A | B_j) P(B_j)}{\sum_{j=1}^n P(A | B_j) P(B_j)}$$

Information on Various Distributions

$$p(k) = {n \choose k} p^k (1-p)^{n-k}, \quad k = 0, 1, \dots, n$$

$$E[X] = np$$

$$Var(X) = np(1-p)$$

Geometric:

$$p(k) = p(1-p)^{k-1}, \quad k = 1, \cdots$$

$$E[X] = 1/p$$

$$Var(X) = (1-p)/p^2$$

Negative binomial:

$$p(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \quad k = r, r+1, \cdots$$

$$E[X] = r/p$$

$$Var(X) = [r(1-p)]/p^2$$

$$p(k) = (\lambda^k e^{-\lambda})/k!, \quad k = 0, 1, \cdots$$

 $\mathbf{E}[X] = \mathbf{Var}(X) = \lambda$

Normal:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\}, \quad -\infty < x < \infty$$

$$E[X] = \mu$$

$$Var(X) = \sigma^2$$

Gamma:

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \ge 0$$
$$E[X] = \alpha/\lambda$$
$$Var(X) = \alpha/\lambda^2$$

Chi-square:

$$Z \sim N(0,1)$$

$$Z^2 \sim \chi_1^2 \sim \Gamma(1/2,1/2)$$

$$Y_i \sim \chi_1^2; \ Y_1 + \dots + Y_n \sim \chi_n^2, \quad \bot\!\!\!\bot Y_i$$

 $\frac{Z}{\sqrt{U/n}} \sim t_n, \quad Z \sim N(0,1); \ U \sim \chi_n^2$ $f(t) = \frac{\Gamma[(n+1)/2]}{\sqrt{n\pi}\Gamma(n/2)} \left(1 + \frac{t^2}{n}\right)^{-(n+1)/2}$

$$\frac{U/n}{V/m} \sim F_{n,m}, \quad U \sim \chi_n^2; V \sim \chi_m^2$$

$$f(x) = \frac{\Gamma[(n+m)/2]}{\Gamma(-n)\Gamma(-n)} \left(\frac{n}{2}\right)^{\frac{n}{2}} x^{\frac{n}{2}-1} \left(1 + \frac{n}{-x}\right)^{-\frac{n+m}{2}}$$

f(x) is over x > 0. If $T \sim t_n$ then $T^2 \sim F_{1,n}$.

Central Limit Theorem For $S_n = \sum_{i=1}^n X_i$,

$$\lim_{x \to \infty} P\left(\frac{S_n}{\sigma\sqrt{n}} \le x\right) = \Phi(x)$$

$$\bar{X} \sim N(\mu, \sigma^2/n)$$

Linear Functions of a Random Variable

Let Y = g(X). To find $f_Y(y)$,

$$F_Y(y) = P(Y \le y)$$

$$= P(g(X) \le y)$$

$$= P(X \le g^{-1}(y))$$

$$= F_X(g^{-1}(y))$$

$$f_Y(y) = \frac{d}{dy} F_X(g^{-1}(y))$$

$$= \frac{dg^{-1}}{dy} f_X(g^{-1}(y))$$

Non-linear Functions of Random Variables

Let $Y = g(\vec{X})$, where $\vec{X} := (X_1, X_2, \cdots)$ with mean vector $\vec{\mu}$. Then, in order to find the mean and variance of Y, first take the Taylor expansion of $g(\vec{X})$,

$$Y = g(\vec{X})$$

$$\approx g(\mu) + (X_1 - \mu_1) \frac{\partial g(\mu)}{\partial x_1} + (X_2 - \mu_2) \frac{\partial g(\mu)}{\partial x_2} + \cdots$$

Then, $E[Y] \approx q(\mu)$, and

$$Var(Y) \approx Var(g(\mu) + (X_1 - \mu_1) \cdots$$

Consider for example, $\vec{X} := (X_1, X_2)$. Then

$$\begin{split} Var(X) &\approx \sigma_{X_1}^2 \left(\frac{\partial g(\mu)}{\partial x_1}\right)^2 + \\ &\sigma_{X_2}^2 \left(\frac{\partial g(\mu)}{\partial x_2}\right)^2 + \\ &2\sigma_{XY} \left(\frac{\partial g(\mu)}{\partial x_1}\right) \left(\frac{\partial g(\mu)}{\partial x_2}\right) \end{split}$$

Simple Random Sampling

Simple random sampling without replacement means that each sample is not independent of another. While the mean of the simple random sample is still unbiased, that is $E[\bar{X}] = \mu$,

$$Cov(X_i, X_j) = -\sigma^2/(N-1)$$

for two different simple random samples, i.e. $i \neq j$. The variance of the sample mean then becomes

$$Var(\bar{X}) = \frac{\sigma^2}{n} \left(\frac{N-n}{N-1} \right)$$

The variance of the sample total is

$$Var(T) = N^{2} \left(\frac{\sigma^{2}}{n}\right) \frac{N-n}{N-1}$$

 σ is unknown and must be estimated.

$$s_{\bar{X}}^2 = \frac{s^2}{n} \left(1 - \frac{n}{N} \right)$$
$$s_T^2 = N^2 s_{\bar{X}}^2$$

where $s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$ is the unbiased sample variance.

Consistency

Let $\hat{\theta}_n$ be an estimate of a parameter θ_0 based on a sample of size n. $\hat{\theta}_n$ is said to be consistent in probability if $\hat{\theta}_n$ converges in probability to θ_0 as n approaches infinity. That is, for $\epsilon > 0$,

$$P(|\hat{\theta}_n - \theta_0| > \epsilon) \to 0 \text{ as } n \to \infty$$

Fisher Information

$$I(\theta) = E \left[\frac{\partial}{\partial \theta} \log f(X|\theta) \right]^{2}$$
$$= -E \left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X|\theta) \right]$$

Large Sample Theory for MLE

Let $\hat{\theta}$ denote the MLE of θ_0 . The probability distribution of

$$\sqrt{nI(\theta_0)}(\hat{\theta}-\theta_0)$$

tends to a standard normal distribution. Therefore, the asymptotic variance of the MLE is

$$\frac{1}{nI(\theta)} = -\frac{1}{\mathrm{E}[l''(\theta_0)]}$$

Approximate Confidence Intervals

Confidence intervals can be approximated through the large sample theory for MLE by taking $\sqrt{nI(\theta_0)}(\hat{\theta} - \theta_0)$ θ_0) $\to N(0,1)$, as $n \to \infty$.

$$P\left(-z(\alpha/2) \le \sqrt{nI(\hat{\theta})}(\hat{\theta} - \theta_0) \le z(\alpha/2)\right) \approx 1 - \alpha$$