[Francis Sanguyo's copy]

Objectives:

This experiment aims to analyze the composition, quality, and relative compositions of canola oil (CO), palm oil (PO), and a 2:1 CO-PO mixture in relation to the molecular structures of the fatty acids present in both oils via ¹H-NMR and FTIR.

Reagents:

Reagent Name and Structure	Physical and Chemical Properties	Safety Precautions	
Deionized Water (H ₂ O)	- colorless, odorless liquid - MW = 18.02 g/mol	Non-irritant, generally safe to handle Disposal: sink	
Canola Oil (CO)	- light yellow liquid with a slight oil odor - less dense than water (specific gravity ~ 0.9) - comprised of oleic, linolenic, and linoleic acids (91%)	- somewhat flammable - wash with water and soap upon direct contact - keep away from drains Disposal: <u>I104</u>	
Palm Oil (PO)	- light yellow solid with a characteristic, slight odor - has melting point range from 25 to 40 °C - less dense than water (specific gravity ~ 0.9) - comprised of palmitic acid (44%) and oleic and linolenic acids (50%)	- somewhat flammable - wash with water and soap upon direct contact - keep away from drains Disposal: <u>I104</u>	
Chloroform-d (CDCl ₃) D C C C C C C C C C C C C	- clear, odorless liquid - somewhat soluble in water - denser than water (density = 1.500 g/cm³) - does not give ¹H-NMR signals when used as a solvent	- can cause serious eye and skin irritation - toxic if inhaled - can cause damage to organs (liver and kidney) if ingested - can cause cancer / carcinogenic - Disposal: G703	

Tetramethylsilane (TMS) CH ₃ Si(CH ₃ CH ₃ CH ₃	- colorless, odorless liquid - low boiling point from 26 to 28 $^{\circ}\text{C}$ - less dense than water (density = 0.648 g/cm³) - yields reference signal at δ = 0 ppm when mixed with sample for $^{1}\text{H-NMR}$	 extremely flammable in both liquid and vapor forms Disposal Code: <u>G704</u>
Potassium Bromide (KBr) [K] ⁺ [:Br:] ⁻	 appears as a white, odorless, crystalline solid very soluble in water; KBr crystals are destroyed in the presence of moisture transparent to IR radiation; used as the material for sample holder in IR spectroscopy 	- causes skin and eye irritation upon direct contact - should be handled with gloves on - can cause respiratory irritation if KBr dust is inhaled - harms aquatic life - Disposal Code: <u>D499</u>
Acetone O H 3 C C C C H 3	 colorless liquid with a mildly sweet, fruity odor soluble in water but will not dissolve KBr crystals may be used to clean IR-related equipment (ask technicians for cleaning steps) 	 highly flammable in liquid and vapor form causes serious eye irritation causes respiratory irritation if inhaled Disposal Code: <u>G704</u>

Required Equipment:

- IRAffinity Machine
- Bruker NMR Machine
- Glassware for Producing 2:1 CO-PO Mixture (e.g. graduated cylinder)
- Glassware for Loading Oil Samples, TMS, and CDCl₃ for NMR Spectroscopy
- Sandwich and Pellet Setups for Liquid and Solid Samples for IR Spectroscopy

Literature Data

Table 1. FTIR Absorptions Present in Edible Fats and Oils from v = 4000 to 600 cm^{-1} (Ye & Meng, 2022)

#	Bond(s) Involved	Wavenumber v (cm ⁻¹) Type of Vibration	
1	С-Н	720 C-H stretching (rocki	
2	C-O	1166	C-O stretching
3	С-Н	1454 C-H bending	
4	C=O	1749 C=O stretching	
5	С-Н	2856	C-H symmetric stretching
6	Alkene C-H	2937	Alkene C-H stretching

Table 2. ¹H-NMR Chemical Shifts of Signals Elicited by Edible Oils in CDCl₃ (Siudem et al., 2022)

#	Compounds	Group Involved	Chemical Shift δ (ppm)
1	All fatty acids except linolenic acid	-СН ₂ - <mark>СН₃</mark>	0.89
2	Linolenic acid	-CH=CH-CH₂- <mark>CH₃</mark>	0.97
3	Fatty acids with acyl chains	-(<mark>CH₂</mark>) _n -	1.31
4	Fatty acids with acyl chains	- <mark>CH₂</mark> -CH₂-COOH	1.61
5	Mono- and polyunsaturated fatty acids	- <mark>CH</mark> ₂-CH=CH-	2.04
6	Unsaturated fatty acids with acyl chains	- <mark>CH₂</mark> -COOH	2.31
7	Linoleic and linolenic acids	-CH=CH- <mark>CH₂</mark> -CH=CH-	2.77
8	Triacylglycerols	- <mark>CH</mark> 2-OCO-	4.27
9	Triacylglycerols	- <mark>CH</mark> -OCO-	5.28
10	Mono- and polyunsaturated fatty acids	- <mark>CH=</mark> CH-	5.35

Table 3. Relative Compositions of Canola and Palm Oils (Fatty Acid Composition, 2018)

Fatty Acid	Lipid Number	wt% in Palm Oil	wt% in Canola Oil (Rapeseed Oil)
Lauric	12:0	0.3	-
Myristic	14:0	1.0	-
Palmitic	16:0	44	4
Stearic	18:0	4	1.5
Oleic	18:1	<mark>40</mark>	60
Linoleic	18:2	10	20
Linolenic	18:3	0.2	11
Arachidic	20:0	-	0.5
Gadoleic Eikosadienic	20:1+2	-	1.5
Behenic	22:0	-	0.4
Erucic	22:1	-	0.4

General Observations:

References:

- Fatty Acid Composition of Selected Oils and Fats. (2018, June 22). Fediol. https://www.fediol.eu/data/fatty%20acids.pdf.
- Siudem, P., Zielinska, A., Paradowska, K. (2022). Application of 1H NMR in the study of fatty acids composition of vegetable oils. *Journal of Pharmaceutical and Biomedical Analysis*, *212*, 114568. https://doi.org/10.1016/j.jpba.2022.114658
- Ye, Q., Meng, X. (2022). Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics. *Food Chemistry*, *385*, 132661. https://doi.org/10.1016/j.foodchem.2022.132661

chemistryconnection.com/sds/data/pdf/Canola Oil SDS CC.pdf

chemos.de/import/data/msds/GB en/8002-75-3-A0050032-GB-en.pdf

sigmaaldrich.com/PH/en/sds/aldrich/494275?userType=undefined

sigmaaldrich.com/PH/en/sds/aldrich/87921?userType=undefined

<u>fishersci.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/phosphoresti.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/phosphoresti.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/phosphoresti.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/phosphoresti.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals/phosphoresti.com/content/dam/fishersci/en_US/documents/programs/education/regulatory-documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.com/content/dam/fishersci/en_US/documents/sds/chemicals-phosphoresti.c</u>