

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190708001v01

FCC REPORT (BLE)

Applicant: Tymtix Technologies Private Limited.

Address of Applicant: 191, 3rd Floor, KNB Mansion, Indiranagar 2nd Stage, Double

Road, Bengaluru, Karnataka 560038, India

Equipment Under Test (EUT)

Product Name: SensAiry

Model No.: SENEX

Trade mark: SensAiry

FCC ID: 2AL4P-SENEX

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 17Jul., 2019

Date of Test: 18 Jul., to 23Jul., 2019

Date of report issued: 5 Aug., 2019

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	24 Jul., 2019	Original
01	5 Aug., 2019	Update Page 6, 10, 11, 19, 20, 21, 22, 27, 28

Test Engineer Tested by: Date: 5 Aug., 2019

Winner thang Date: Reviewed by: 5 Aug., 2019

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VER	SION	2
3	CON	ITENTS	3
4	TES	T SUMMARY	4
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT:	8
	6.2	CONDUCTED OUTPUT POWER	
	6.3	OCCUPY BANDWIDTH	12
	6.4	Power Spectral Density	14
	6.5	BAND EDGE	
	6.5.1	Conducted Emission Method	16
	6.5.2		
	6.6	Spurious Emission	23
	6.6.1		
	6.6.2	Radiated Emission Method	25
7	TES	T SETUP PHOTO	30
Ω	FUT	CONSTRUCTIONAL DETAILS	21

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (b)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

All measurement data were performed in accordance with ANSI C63.10: 2013 and KDB 558074 D01 15.247 Meas Guidance v05r02 of test method.

Remark

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Tymtix Technologies Private Limited.
Address:	191, 3rd Floor, KNB Mansion, Indiranagar 2 nd Stage, Double Road, Bengaluru, Karnataka 560038, India
Manufacturer/ Factory:	Tymtix Technologies Private Limited.
Address:	191, 3rd Floor, KNB Mansion, Indiranagar 2 nd Stage, Double Road, Bengaluru, Karnataka 560038, India

5.2 General Description of E.U.T.

Product Name:	SensAiry
Model No.:	SENEX
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Chip Antenna
Antenna gain:	-2dBi
Power supply:	DC3.0V (RC1632 Battery)
Test Sample Condition:	The test samples were provided in good working order with no visible defects.

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Transmitting mode	Keep the EUT in continuous transmitting with modulation(new battery is used during all test)

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.38 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±3.36 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

● ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-18-2019	03-17-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-18-2019	03-17-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-18-2019	03-17-2020
Pre-amplifier	CD	PAP-1G18	11804	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-18-2019	03-17-2020
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-18-2019	03-17-2020
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-18-2019	03-17-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-18-2019	03-17-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-18-2019	03-17-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	Version: 2.0.0.0		

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is -2dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207		
Test Frequency Range:	150 kHz to 30 MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9kHz, VBW=30kHz		
Limit:			(dBuV)
	Frequency range (MHz)	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Test procedure	* Decreases with the logar 1. The E.U.T and simula	rithm of the frequency. ators are connected to the	
	 line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 		suring equipment. the main power through impedance with 50ohm of the test setup and um conducted ission, the relative cables must be
Test setup:	LISN 40cm		AC power
Test Instruments:	Refer to section 5.8 for de	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for de	tails	
Test results:	Passed (The EUT is supply by the DC 3.0V (CR1632 battery), so not need to be tested.)		

6.3 Conducted Output Power

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.89		
Middle	1.69	30.00	Pass
Highest	-1.56		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)	
Test Method:	ANSI C63.10:2013 and KDB 558074	
Limit:	>500kHz	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.8 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	0.732				
Middle	0.744	>500	Pass		
Highest	0.768				
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result		
Lowest	1.068				
Middle	1.068	N/A	N/A		
Highest	1.074				

Test plot as follows:

6.5 Power Spectral Density

Measurement Data:

inoacai cinicini Datai			
Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	0.72		
Middle	1.11	8.00	Pass
Highest	-2.16		

Test plots as follow:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

6.6.2 Radiated Emission Method

0.0.2	Radialed Ellission i	rictilou								
Tes	st Requirement:	FCC Part 15 C Section 15.205 and 15.209								
Tes	st Frequency Range:	2.3GHz to 2.50	GHz							
Tes	st Distance:	3m								
Re	ceiver setup:	Frequency Detector RBW VBW Remark								
	·	Above 1GHz	Peak	Peak Value						
			RMS	1MHz	3MHz	Average Value				
Lim	nit:	Frequen	icy L	imit (dBuV/m @3		Remark				
		Above 1GHz 54.00 Average Value 74.00 Peak Value								
Tes	st Procedure:	the groun to determ 2. The EUT antenna, tower. 3. The anter the groun Both horiz make the 4. For each case and meters ar to find the 5. The test-r Specified 6. If the emit the limit sof the EU have 10 ce	d at a 3 meterine the position was set 3 meterine which was more than the individual of the individual	r camber. The taper of the highest ters away from the bounted on the top varied from one rethe maximum varical polarization t. hission, the EUT nna was tuned to ble was turned from was set to Peak the EUT in peak testing could be ported. Otherwis	ble was rotaradiation. The interference of a variable meter to four value of the fis of the anteres of the anteres of the degree of the community of the commun	meters above ield strength. nna are set to de to its worst m 1 meter to 4 s to 360 degrees nction and degrees degrees ons that did not sing peak, quasi-				
Tes	st setup:	AE (T)	urntable) Grou Test Receiver	Horn Antenna Amplifier Cont	Antenna Tower					
Tes	st Instruments:	Refer to section	n 5.8 for deta	ils						
Tes	st mode:	Refer to section								
Tes	st results:	Passed								

roduct Nan	ne:	SensAiry			Pr	oduct Mod	el:	SENEX		
est By:		Yaro		Te	Test mode:		BLE Tx mode			
est Channe	ıl:	Lowest c	hannel		Po	olarization:	,	Vertical		
est Voltage	:	DC 3V			Er	nvironment	:	Temp: 24℃	Huni: 57%	
Lovel (d	Dul//m\									
110 Level (d	Buv/III)									
100										
80								FCC	PART 15 (PK)	
60								FCC	PART 15 (AV)	
man	now	m	~~~	~~~	m	mm	~~~	mon	many	
40				- 1				2		
20										
02310										
7340	2320			2350 Free	quency (MH	(z)			240	
2310										
2310										
2510		ReadA	nt enna	Cable	Preamp		Limit	Over		
2310	Freq		ntenna Factor		Preamp Factor	Level			Remark	
	Freq MHz				Factor		Line		Remark	
		Level	Factor ——dB/m	Loss	Factor dB	Level dBuV/m 47.34	Line dBuV/m 74.00	Limit dB -26.66		

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Prod	uct Name:	SensAir	у		Product	Model:	SEN	NEX	
Test	Ву:	Yaro			Test mo	de:	BLE	Tx mode	
est	Channel:	Lowest	channel		Polariza	tion:	Hor	izontal	
est	Voltage:	DC 3V			Environ	ment:	Ten	np: 24 ℃	Huni: 57%
	Level (dBuV/m)								
	Lever (abaviii)								
00									
80								FCC	PART 15 (PK)
60								FCC	PART 15 (AV)
	~~~~~~~		~~~~			-V	~~~~		Juneary.
40								1	
20									
0	2310 2320			2350	)				240
				Fre	equency (M	Hz)			
		Reads	Intenna	Cable	Preamp		Limit	Over	
								Limit	T 1
	Freq	Level	Factor	Loss	Factor	Level	Line	LIMIT	Kemark
	Freq MHz	Level dBuV		Loss dB		dBuV/m			Nemark
	MHz	Level	— <u>d</u> B/m		<u>ab</u>	dBuV/m	dBuV/m		

#### Remark

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	SensAiry	Product Model:	SENEX
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	DC 3V	Environment:	Temp: 24°C Huni: 57%
	<u> </u>	<u> </u>	<u> </u>



	Freq		Antenna Factor						Remark
	MHz	dBu∜		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	2483.500 2483.500								

#### Romark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:	SensAiry	Product Model:	SENEX
Test By:	Yaro	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	DC 3V	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor						
-	MHz	dBu∜	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	dB	
1 2	2483.500 2483.500								

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



### 6.7 Spurious Emission

### 6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					



### Test plot as follows:





### 6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	5 and 15.209						
Test Frequency Range:	9kHz to 25GHz								
Test Distance:	3m								
Receiver setup:	Frequency	Detector	RBW	VB	sW	Remark			
·	30MHz-1GHz	Quasi-peak	120KHz	3001	KHz	Quasi-peak Value			
	Above 1GHz Peak 1MHz 3MHz Peak Value								
	Above 10112	RMS   1MHz   3MHz   Average Value							
Limit:	Frequency	/ Li	mit (dBuV/m @	3m)		Remark			
	30MHz-88M	Hz	40.0			Quasi-peak Value			
	88MHz-216N		43.5			Quasi-peak Value			
	216MHz-960I		46.0			Quasi-peak Value			
	960MHz-1G	Hz	54.0		C	Quasi-peak Value			
	Above 1GF	lz —	54.0			Average Value			
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8m(below 1GHz)/1.5m(above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.  2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.  3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.  4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.  5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.  6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data								
Test setup:	Below 1GHz  Turn Table  Ground Plane  Above 1GHz	4m 4m 0.8m Im			Antenna Search Antenn Test zeiver	1			







### Measurement Data (worst case):

### **Below 1GHz:**

Product Name:	SensAiry	Product Model:	SENEX
Test By:	Yaro	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	DC 3V	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Cable Factor Loss			Limit Level Line		Over Limit	Remark
<u>N</u>	MHz	dBu₹	— <u>d</u> B/m		<u>ab</u>	$\overline{dB} \overline{uV}/\overline{m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	51.843 140.835	45.69 45.55	11.92 9.46	1.27 2.41	29.81	29.07 28.15		-10.93 -15.35	
2 3 4			9.05 10.38		29.19	27.77	43.50	-15.73 -15.56	QP
4 5 6	341.979 863.056	41.16	14.44 22.57	3.07 4.07		30.13	46.00	-15.87 -18.30	QP

### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Product Name:		SensAiry				oduct Mod	el:	SENEX BLE Tx mode Horizontal		
Гest By:	y: Yaro				Te	est mode:				
Test Frequency	y:	30 MHz	30 MHz ~ 1 GHz							
Test Voltage:		DC 3V			Er	nvironment	:	Temp: 24℃ Huni:		
Level (dBuV	//m)									
70										
60								ECC	DART	15.247
50								FCC	PARI	15.247
40										
										_
30 1		3	4							6
30 1	2	3	1					1, 481	Markemela	
20	2	3	1	5 ال بيار		,	and water grant	Market Market Barrens	nd and describe	
	2 Marie Marie	Manager	Land Market	Mortania Maria	ndo-engapologish	and participated in the state of the state o	eaph. Warrant garant	and the world state	denterne	
10	2 LAMANA	1 de maria de la companya de la comp	a probable	Mr. Complete			en hily to be supposed to		denterribu	physical services
20	2 Mun th w 50	3 Marine	100		200		apully and a separate	500	dinamentu	
10	2 2 2 2 2 2 3 4 4 5 5	of the same of the	a probable				apully make a graph		of her there were	physican
030		Read	100 Ant enna	Fred Cable	200 quency (MH Preamp	iz)	Limit	500 Over		100
030		Read	100	Fred Cable	200 quency (MH Preamp	iz)	Limit	500 Over		100
20 10 0 30		Read	100 Antenna Factor	Fred Cable	200 quency (MH Preamp Factor	iz)	Limit Line	500 Over Limit		100
20 10 0 30 F	req MHz	Read! Level	100 Antenna Factor	Cable Loss	200 quency (MH Preamp Factor dB	Level	Limit Line dBuV/m	500 Over Limit	Rema	100
20 10 0 30 F  1 36. 2 43.	req MHz 766 812	Read! Level dBuV 47.28 38.86	100 Antenna Factor  dB/m 11.61 12.32	Cable Loss dB	200 quency (MH Preamp Factor dB 29.93 29.87	Level  dBuV/m  30.07 22.57	Limit Line dBuV/m 40.00 40.00	Over Limit ———————————————————————————————————	Rema	100
20 10 0 30 F 1 1 36. 2 43. 3 73.	req MHz 766 812 617	Read! Level dBuV 47.28 38.86 45.81	100 Antenna Factor ————————————————————————————————————	Cable Loss dB 1.11 1.26 1.61	200 quency (MH Preamp Factor ————————————————————————————————————	Level dBuV/m 30.07 22.57 25.71	Limit Line dBuV/m 40.00 40.00 40.00	Over Limit ———————————————————————————————————	Rema QP QP QP	100
20 10 0 30 F 1 36. 2 43. 3 73.	req MHz 766 812 617 702	Read! Level dBuV 47.28 38.86	100 Antenna Factor  dB/m 11.61 12.32	Cable Loss dB	200 quency (MH Preamp Factor dB 29.93 29.87 29.69 29.60	Level  dBuV/m  30.07 22.57	Limit Line dBuV/m 40.00 40.00 40.00	Over Limit ———————————————————————————————————	Rema QP QP QP QP	100

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.



#### **Above 1GHz**

Test channel: Lowest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	47.57	35.99	6.80	41.81	48.55	74.00	-25.45	Vertical			
4804.00	45.59	35.99	6.80	41.81	46.57	74.00	-27.43	Horizontal			
			Dete	ector: Averaç	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	38.02	35.99	6.80	41.81	39.00	54.00	-15.00	Vertical			
4804.00	36.69	35.99	6.80	41.81	37.67	54.00	-16.33	Horizontal			
100 1.00											
100 1.00			Test ch	nannel: Mido	lle channel						
100 1.00				nannel: Mido							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)				Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
Frequency	Read Level	Factor	De Cable Loss	tector: Peak Preamp Factor	Value Level		Limit	Polarization  Vertical			
Frequency (MHz)	Read Level (dBuV)	Factor (dB/m)	Cable Loss (dB)	rtector: Peak Preamp Factor (dB)	Level (dBuV/m)	(dBuV/m)	Limit (dB)				
Frequency (MHz) 4884.00	Read Level (dBuV) 47.41	Factor (dB/m) 36.38	Cable Loss (dB) 6.86	Preamp Factor (dB) 41.84	Level (dBuV/m) 48.81 46.88	(dBuV/m) 74.00	Limit (dB) -25.19	Vertical			
Frequency (MHz) 4884.00	Read Level (dBuV) 47.41	Factor (dB/m) 36.38	Cable Loss (dB) 6.86	Preamp Factor (dB) 41.84	Level (dBuV/m) 48.81 46.88	(dBuV/m) 74.00	Limit (dB) -25.19	Vertical			
Frequency (MHz) 4884.00 4884.00 Frequency	Read Level (dBuV) 47.41 45.48 Read Level	Factor (dB/m) 36.38 36.38 Antenna Factor	Cable Loss (dB) 6.86 6.86 Dete	Preamp Factor (dB) 41.84 41.84 ector: Average Preamp Factor	Level (dBuV/m) 48.81 46.88 ge Value Level	(dBuV/m) 74.00 74.00 Limit Line	Limit (dB) -25.19 -27.12  Over Limit	Vertical Horizontal			

Test channel: Highest channel											
Detector: Peak Value											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	46.69	36.71	6.91	41.87	48.44	74.00	-25.56	Vertical			
4960.00	46.12	36.71	6.91	41.87	47.87	74.00	-26.13	Horizontal			
			Dete	ector: Avera	ge Value						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4960.00	37.02	36.71	6.91	41.87	38.77	54.00	-15.23	Vertical			
4960.00	36.91	36.71	6.91	41.87	38.66	54.00	-15.34	Horizontal			

#### Remark.

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.