GROUPBY MECHANICS

In [1]:

```
import numpy as np
import pandas as pd
```

In [6]:

```
#Groupby Mechanics
# The term split-apply-combine is used for describing group operations.
   # In the first stage of the process, data contained in a pandas object, whether a Seri
es, Data-Frame,
    # or otherwise, is split into groups based on one or more keys that you provide.
    # The splitting is performed on a particular axis of an object.
   # For example, a DataFrame can be grouped on its rows (axis=0) or its columns (axis=
1).
    # Once this is done, a function is applied to each group, producing a new value.
    # Finally, the results of all those function applications are combined into a result o
bject.
    # The form of the resulting object will usually depend on what's being done to the dat
a.
df = pd.DataFrame({'key1' : ['a', 'a', 'b', 'b', 'a'],
                   'key2' : ['one', 'two', 'one', 'two', 'one'],
                   'data1' : np.random.randn(5),
                   'data2' : np.random.randn(5)})
df
```

Out[6]:

	key1	key2	data1	data2
0	а	one	-0.699511	-0.388558
1	а	two	-0.345863	0.535094
2	b	one	-0.749546	-1.071714
3	b	two	-2.196750	0.524351
4	а	one	0.264189	2.621417

```
In [7]:
```

```
# Suppose you wanted to compute the mean of the data1 column using the labels from key1.
    #There are a number of ways to do this.
    # One is to access data1 and call groupby with the column (a Series) at key1:
grouped = df['data1'].groupby(df['key1'])
grouped
```

Out[7]:

<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000039EB6D3A48>

In [16]:

```
# This grouped variable is now a GroupBy object. It has not actually computed anything
    # yet except for some intermediate data about the group key df['key1'].
    # The idea is that this object has all of the information needed to then apply some op
eration to
    # each of the groups.
    # For example, to compute group size we can call the GroupBy's size method:
grouped.size()
```

Out[16]:

key1

a 3 b 2

Name: data1, dtype: int64

In [17]:

```
# To compute group summary statistics we can call the GroupBy's describe method:
grouped.describe()
```

Out[17]:

	count	mean	std	min	25%	50%	75%	max
key1								
а	3.0	-0.260395	0.487502	-0.699511	-0.522687	-0.345863	-0.040837	0.264189
b	20	-1 473148	1 023328	-2 196750	-1 834949	-1 473148	-1 111347	-0 749546

```
In [19]:
```

Out[20]:

```
key1 key2
a one -0.217661
    two -0.345863
b one -0.749546
    two -2.196750
Name: data1, dtype: float64
```

In [21]:

df.stack()

Out[21]:

```
0 key1
                   а
   key2
                 one
   data1
          -0.699511
   data2
           -0.388558
1 key1
                   а
   key2
                 two
   data1
          -0.345863
   data2
           0.535094
2 key1
                   b
   key2
                 one
   data1
           -0.749546
   data2
           -1.07171
3 key1
                   b
   key2
                 two
   data1
            -2.19675
   data2
            0.524351
4 key1
                   а
   key2
                 one
   data1
            0.264189
   data2
             2.62142
dtype: object
```

In [22]:

df.T

Out[22]:

	0	1	2	3	4
key1	а	а	b	b	а
key2	one	two	one	two	one
data1	-0.699511	-0.345863	-0.749546	-2.19675	0.264189
data2	-0.388558	0.535094	-1.07171	0.524351	2.62142

In [24]:

Out[24]:

key2	one	two
key1		
а	-0.217661	-0.345863
b	-0.749546	-2.196750

In [25]:

```
# In this example, the group keys are all Series, though they could be any arrays of the r
ight length:

states = np.array(['Ohio', 'California', 'California', 'Ohio', 'Ohio'])
years = np.array([2005, 2005, 2006, 2005, 2006])
df['data1'].groupby([states, years]).mean()
```

Out[25]:

```
California 2005 -0.345863
2006 -0.749546
Ohio 2005 -1.448130
2006 0.264189
Name: data1, dtype: float64
```

In [26]:

```
# Frequently the grouping information is found in the same DataFrame as the data you want
to work on.
    # In that case, you can pass column names (whether those are strings, numbers, or othe
r Python objects)
    # as the group keys:

df.groupby('key1').mean()
```

Out[26]:

data1 data2 key1 a -0.260395 0.922651

b -1.473148 -0.273681

In [27]:

```
df.groupby(['key1', 'key2']).mean()
```

Out[27]:

		data1	data2
key1	key2		
а	one	-0.217661	1.116430
	two	-0.345863	0.535094
b	one	-0.749546	-1.071714
	two	-2.196750	0.524351

In [28]:

```
df.groupby(['key1', 'key2']).mean()
```

Out[28]:

		data1	data2
key1	key2		
а	one	-0.217661	1.116430
	two	-0.345863	0.535094
b	one	-0.749546	-1.071714
	two	-2.196750	0.524351

```
In [29]:
```

2

3

b one -0.749546 -1.071714 b two -2.196750 0.524351

```
# You may have noticed in the first case df.groupby('key1').mean() that there is no key2 c
olumn in the result.
    # Because df['key2'] is not numeric data, it is said to be a nuisance column,
    # which is therefore excluded from the result.
    # By default, all of the numeric columns are aggregated,
    # though it is possible to filter down to a subset, as you'll see soon.
# Regardless of the objective in using groupby, a generally useful GroupBy method is size,
    # which returns a Series containing group sizes:
df.groupby(['key1', 'key2']).size()
Out[29]:
key1 key2
              2
      one
              1
      two
      one
              1
      two
              1
dtype: int64
In [ ]:
# Take note that any missing values in a group key will be excluded from the result.
In [30]:
# Iterating over the groups
# The GroupBy object supports iteration, generating a sequence of 2-tuples containing
    # the group name along with the chunk of data.
for name, group in df.groupby('key1'):
    print(name)
    print(group)
а
  key1 key2
                data1
                          data2
0
     a one -0.699511 -0.388558
     a two -0.345863 0.535094
1
     a one 0.264189 2.621417
4
b
  key1 key2
                data1
                          data2
```

```
In [31]:
```

```
# for multiple keys
# In the case of multiple keys, the first element in the tuple will be a tuple of key valu
es:
for (k1, k2), group in df.groupby(['key1', 'key2']):
    print((k1, k2))
    print(group)
('a', 'one')
 key1 key2
               data1
                         data2
  a one -0.699511 -0.388558
   a one 0.264189 2.621417
('a', 'two')
  key1 key2
             data1
                         data2
1 a two -0.345863 0.535094
('b', 'one')
 key1 key2
               data1
                         data2
2 b one -0.749546 -1.071714
('b', 'two')
 key1 key2
              data1
                        data2
  b two -2.19675 0.524351
In [32]:
# computing a dict of the data pieces as a one-liner
# Of course, you can choose to do whatever you want with the pieces of data.
    # A recipe you may find useful is computing a dict of the data pieces as a one-liner:
pieces = dict(list(df.groupby('key1')))
pieces
Out[32]:
{'a': key1 key2
                  data1
     a one -0.699511 -0.388558
     a two -0.345863 0.535094
     a one 0.264189 2.621417,
 'b': key1 key2
                               data2
                  data1
 2
     b one -0.749546 -1.071714
 3
     b two -2.196750 0.524351}
```

In [33]:

```
pieces['a']
```

Out[33]:

	key1	key2	data1	data2
0	а	one	-0.699511	-0.388558
1	а	two	-0.345863	0.535094
4	а	one	0.264189	2.621417

In [34]:

```
pieces['b']
```

Out[34]:

	key1	key2	data1	data2
2	b	one	-0.749546	-1.071714
3	b	two	-2.196750	0.524351

In [35]:

By default groupby groups on axis=0, but you can group on any of the other axes. # For example, we could group the columns of our example df here by dtype like so:

df.dtypes

Out[35]:

key1 object
key2 object
data1 float64
data2 float64
dtype: object

In [38]:

```
grouped1 = df.groupby(df.dtypes, axis=1)
grouped1
```

Out[38]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000039F1B05448>

```
In [39]:
grouped1.size()
Out[39]:
float64
           2
object
           2
dtype: int64
In [40]:
# We can print out the groups like so:
for dtype, group in grouped:
    print(dtype)
    print(group)
а
0
  -0.699511
1
   -0.345863
4
    0.264189
Name: data1, dtype: float64
2
   -0.749546
   -2.196750
3
Name: data1, dtype: float64
In [41]:
for dtype, group in grouped1:
    print(dtype)
    print(group)
float64
      data1
                data2
0 -0.699511 -0.388558
1 -0.345863 0.535094
2 -0.749546 -1.071714
3 -2.196750 0.524351
4 0.264189 2.621417
object
  key1 key2
    a one
1
    a two
2
    b one
3
    b two
    a one
```

In [42]:

Out[42]:

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000039F1862808>

In [43]:

```
# Dataframes

# Especially for large datasets, it may be desirable to aggregate only a few columns.
    # For example, in the preceding dataset, to compute means for just the data2 column
    # and get the result as a DataFrame, we could write:

df.groupby(['key1', 'key2'])[['data2']].mean()
```

Out[43]:

data2

	key2	key1
1.116430	one	а
0.535094	two	
-1.071714	one	b
0.524351	two	

In [45]:

```
# Series
# The object returned by this indexing operation is a grouped DataFrame if a list or
    # array is passed or a grouped Series if only a single column name is passed as a scal
ar:
s_grouped = df.groupby(['key1', 'key2'])['data2']
print(s_grouped)
s_grouped.mean()
<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000039F1B0DB48>
Out[45]:
```

```
key1 key2
      one
             1.116430
              0.535094
      two
b
      one
            -1.071714
             0.524351
      two
Name: data2, dtype: float64
```

In [48]:

```
# Grouping with Dictionaries and Series
# Grouping information may exist in a form other than an array.
    # Let's consider another example DataFrame:
people = pd.DataFrame(np.random.randn(5, 5),
                      columns=['a', 'b', 'c', 'd', 'e'],
                      index=['Joe', 'Steve', 'Wes', 'Jim', 'Travis'])
people
```

Out[48]:

	а	b	С	d	е
Joe	0.061253	-0.219182	0.258375	-1.033663	-0.642642
Steve	0.818724	-0.025076	1.151003	0.089388	0.024214
Wes	1.197966	-0.412310	-1.040145	-1.106289	-0.742792
Jim	-0.044602	0.463223	1.254485	0.765563	0.906828
Travis	-0.681018	-0.420505	0.081755	0.707100	0.900215

In [49]:

```
people.iloc[2:3, [1, 2]] = np.nan # Add a few NA values
people
```

Out[49]:

	а	b	С	d	е
Joe	0.061253	-0.219182	0.258375	-1.033663	-0.642642
Steve	0.818724	-0.025076	1.151003	0.089388	0.024214
Wes	1.197966	NaN	NaN	-1.106289	-0.742792
Jim	-0.044602	0.463223	1.254485	0.765563	0.906828
Travis	-0.681018	-0.420505	0.081755	0.707100	0.900215

In [52]:

```
# Now, suppose I have a group correspondence for the columns and want to sum
    # together the columns by group:

mapping = {'a': 'red', 'b': 'red', 'c': 'blue', 'd': 'blue', 'e': 'red', 'f': 'orange'}

# Now, you could construct an array from this dict to pass to groupby,
    # but instead we can just pass the dict (I included the key 'f' to highlight
    # that unused grouping keys are OK):

by_column = people.groupby(mapping, axis=1)

print(people)
print()
print(by_column)
```

```
a b c d e
Joe 0.061253 -0.219182 0.258375 -1.033663 -0.642642
Steve 0.818724 -0.025076 1.151003 0.089388 0.024214
Wes 1.197966 NaN NaN -1.106289 -0.742792
Jim -0.044602 0.463223 1.254485 0.765563 0.906828
Travis -0.681018 -0.420505 0.081755 0.707100 0.900215
```

<pandas.core.groupby.generic.DataFrameGroupBy object at 0x00000039F1B6C348>

```
In [56]:
```

```
print(by_column.sum())
print()
print(by_column.mean())
```

```
blue
                      red
Joe
       -0.775288 -0.800571
Steve
      1.240391 0.817862
Wes
       -1.106289 0.455174
Jim
       2.020048 1.325449
Travis 0.788855 -0.201309
           blue
Joe
       -0.387644 -0.266857
Steve
       0.620196 0.272621
Wes
       -1.106289 0.227587
Jim
       1.010024 0.441816
Travis 0.394428 -0.067103
```

In [58]:

```
# The same functionality holds for Series, which can be viewed as a fixed-size mapping:
map_series = pd.Series(mapping)
map_series
```

Out[58]:

```
a red
b red
c blue
d blue
e red
f orange
dtype: object
```

In [59]:

```
people.groupby(map_series, axis=1).count()
```

Out[59]:

	blue	red
Joe	2	3
Steve	2	3
Wes	1	2
Jim	2	3
Travis	2	3

In [60]:

```
# Grouping with Functions

# Using Python functions is a more generic way of defining a group mapping compared with a
dict or Series.

# Any function passed as a group key will be called once per index value,
# with the return values being used as the group names.
# More concretely, consider the example DataFrame from the previous section,
# which has people's first names as index values.
# Suppose you wanted to group by the length of the names;
# while you could compute an array of string lengths,
# it's simpler to just pass the len function:

people.groupby(len).sum() # grouping by the length of the names
```

Out[60]:

	а	b	С	d	е
3	1.214617	0.244041	1.512859	-1.374389	-0.478606
5	0.818724	-0.025076	1.151003	0.089388	0.024214
6	-0.681018	-0.420505	0.081755	0.707100	0.900215

In [61]:

Out[61]:

		а	b	С	d	е
3	one	0.061253	-0.219182	0.258375	-1.106289	-0.742792
	two	-0.044602	0.463223	1.254485	0.765563	0.906828
5	one	0.818724	-0.025076	1.151003	0.089388	0.024214
6	two	-0.681018	-0.420505	0.081755	0.707100	0.900215

In [67]:

2 2

2

3

3

```
# Grouping by Index Levels
# A final convenience for hierarchically indexed datasets is the ability to aggregate
   # using one of the levels of an axis index.
# Let's look at an example:
columns = pd.MultiIndex.from_arrays([['US', 'US', 'US', 'JP', 'JP'],
    [1, 3, 5, 1, 3]],
   names=['cty', 'tenor'])
print(columns)
print()
print()
hier df = pd.DataFrame(np.random.randn(4, 5), columns=columns)
print(hier df)
MultiIndex([('US', 1),
           ('US', 3),
           ('US', 5),
           ('JP', 1),
           ('JP', 3)],
          names=['cty', 'tenor'])
cty
            US
                                         JΡ
tenor
             1
                       3
0
      1.173735 -0.159624 0.656455 -0.989766 -0.529011
      1
2
      0.232222 -1.022996  0.478855 -1.479527  0.163846
3
     -0.574041 0.017466 -1.255832 -0.247150 0.242282
In [68]:
# To group by level, pass the level number or name using the level keyword:
hier_df.groupby(level='cty', axis=1).count()
Out[68]:
cty JP US
  0
     2
         3
     2
  1
         3
```

```
In [71]:
```

```
hier_df.groupby(level='tenor', axis=1).count()
```

Out[71]:

tenor	1	3	5
0	2	2	1
1	2	2	1
2	2	2	1
3	2	2	1

In [82]:

```
hier_df.groupby(level='cty', axis=1).mean()
```

Out[82]:

cty	JP	US
0	-0.759389	0.556855
1	-0.276530	0.835690
2	-0.657841	-0.103973
3	-0.002434	-0.604136

In [83]:

```
hier_df.groupby(level='tenor', axis=1).mean()
```

Out[83]:

tenor	1	3	5
0	0.091984	-0.344317	0.656455
1	0.318854	-0.115722	1.547744
2	-0.623652	-0.429575	0.478855
3	-0.410595	0.129874	-1.255832

In [86]:

```
hier_df.groupby(level='cty', axis=1).describe()
```

Out[86]:

			count	mean	std	min	25%	50%	75%	max
cty	cty	tenor								
JP	JP	1	4.0	-0.750468	0.593964	-1.479527	-1.112206	-0.637598	-0.275860	-0.247150
		3	4.0	-0.097629	0.364646	-0.529011	-0.332976	-0.051892	0.183455	0.242282
US	US	1	4.0	0.438763	0.783844	-0.574041	0.030656	0.577680	0.985787	1.173735
		3	4.0	-0.282242	0.501655	-1.022996	-0.375467	-0.071079	0.022146	0.036186
		5	4.0	0.356805	1.172408	-1.255832	0.045183	0.567655	0.879277	1.547744

In [87]:

hier_df.groupby(level='tenor', axis=1).describe()

Out[87]:

			count	mean	std	min	25%	50%	75%	m
tenor	cty	tenor								
1	US	1	4.0	0.438763	0.783844	-0.574041	0.030656	0.577680	0.985787	1.1737
	JP	1	4.0	-0.750468	0.593964	-1.479527	-1.112206	-0.637598	-0.275860	-0.2471
3	US	3	4.0	-0.282242	0.501655	-1.022996	-0.375467	-0.071079	0.022146	0.0361
	JP	3	4.0	-0.097629	0.364646	-0.529011	-0.332976	-0.051892	0.183455	0.2422
5	US	5	4.0	0.356805	1.172408	-1.255832	0.045183	0.567655	0.879277	1.5477
<										>

In []:

Data Aggregation

- # Aggregations refer to any data transformation that produces scalar values from arrays.

 # The preceding examples have used several of them, including mean, count, min, and su
- # The preceding examples have used several of them, including mean, count, min, and sum.
 - # You may wonder what is going on when you invoke mean() on a GroupBy object.
- # Many common aggregations, such as those found in Table 10-1, have optimized implementations.
 - # However, you are not limited to only this set of methods.

Optimized groupby methods:

	#	Function name	Description
	#	count	Number of non-NA values in the group
	#	sum	Sum of non-NA values
	#	mean	Mean of non-NA values
	#	median	Arithmetic median of non-NA values
	#	std, var	Unbiased (n - 1 denominator) standard deviation and va
riance	2		
	#	min, max	Minimum and maximum of non-NA values prod Product of n
on-NA	values		
	#	first, last	First and last non-NA values

- # You can use aggregations of your own devising and additionally call any method that # is also defined on the grouped object. For example, you might recall that quantile # computes sample quantiles of a Series or a DataFrame's columns.
 - # While quantile is not explicitly implemented for GroupBy, it is a Series method and
 - # thus available for use. Internally, GroupBy efficiently slices up the Series,
 - # calls piece.quantile(0.9) for each piece,
 - # and then assembles those results together into the result object.

In [88]:

df

Out[88]:

	key1	key2	data1	data2
0	а	one	-0.699511	-0.388558
1	а	two	-0.345863	0.535094
2	b	one	-0.749546	-1.071714
3	b	two	-2.196750	0.524351
4	а	one	0.264189	2.621417

In [98]:

```
# Quantile and Bucket Analysis

# Pandas has some tools, in particular cut and qcut,
    # for slicing data up into buckets with bins of your choosing or by sample quantiles.
    # Combining these functions with groupby makes it convenient to perform bucket
    # or quantile analysis on a dataset.

# Consider a simple random dataset and an equal-length bucket categorization using cut:

frame = pd.DataFrame({'data1': np.random.randn(1000),
    'data2': np.random.randn(1000)})

frame
```

Out[98]:

	data1	data2
0	-0.715645	0.823377
1	0.715335	-1.178312
2	-1.191247	0.205116
3	0.059871	1.524632
4	0.473645	0.742339
995	0.003551	0.153862
996	-0.001380	0.987662
997	-0.193659	-0.668325
998	-1.016595	-0.978162
999	-2.840384	-0.171102

1000 rows × 2 columns

```
In [99]:
```

```
print(frame)
        data1
                  data2
0
   -0.715645 0.823377
1
     0.715335 -1.178312
2
   -1.191247 0.205116
3
     0.059871 1.524632
4
     0.473645 0.742339
995 0.003551 0.153862
996 -0.001380 0.987662
997 -0.193659 -0.668325
998 -1.016595 -0.978162
999 -2.840384 -0.171102
[1000 rows x 2 columns]
In [100]:
frame.unstack()
Out[100]:
data1 0
             -0.715645
       1
              0.715335
             -1.191247
       2
       3
              0.059871
       4
              0.473645
                 . . .
data2 995
              0.153862
       996
              0.987662
       997
             -0.668325
       998
             -0.978162
       999
             -0.171102
Length: 2000, dtype: float64
In [102]:
frame.T
Out[102]:
             0
                               2
                                                                            7
data1 -0.715645 0.715335 -1.191247 0.059871 0.473645 -0.776308 -0.048923 -0.714903 -2.33
data2 0.823377 -1.178312 0.205116 1.524632 0.742339
                                                   1.582948 -0.755365 -0.086841
                                                                               0.49
2 rows × 1000 columns
```

```
In [104]:
```

```
quartiles = pd.cut(frame.data1, 4)
quartiles
Out[104]:
0
        (-1.294, 0.253]
           (0.253, 1.8]
1
2
        (-1.294, 0.253]
3
        (-1.294, 0.253]
4
           (0.253, 1.8]
995
        (-1.294, 0.253]
996
        (-1.294, 0.253]
997
        (-1.294, 0.253]
998
        (-1.294, 0.253]
999
       (-2.847, -1.294]
Name: data1, Length: 1000, dtype: category
Categories (4, interval[float64]): [(-2.847, -1.294] < (-1.294, 0.253] < (0.2
53, 1.8] < (1.8, 3.347]]
```

In [106]:

```
quartiles.head(10)
```

Out[106]:

```
0
      (-1.294, 0.253]
1
         (0.253, 1.8]
2
      (-1.294, 0.253]
3
      (-1.294, 0.253]
         (0.253, 1.8]
4
5
      (-1.294, 0.253]
6
      (-1.294, 0.253]
7
      (-1.294, 0.253]
8
     (-2.847, -1.294]
         (0.253, 1.8]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-2.847, -1.294] < (-1.294, 0.253] < (0.2
53, 1.8] < (1.8, 3.347]]
```

```
In [108]:
```

```
quartiles[:10]
```

Out[108]:

```
(-1.294, 0.253]
0
1
         (0.253, 1.8]
      (-1.294, 0.253]
2
3
      (-1.294, 0.253]
4
         (0.253, 1.8]
5
      (-1.294, 0.253]
6
      (-1.294, 0.253]
7
      (-1.294, 0.253]
     (-2.847, -1.294]
8
9
         (0.253, 1.8]
Name: data1, dtype: category
Categories (4, interval[float64]): [(-2.847, -1.294] < (-1.294, 0.253] < (0.2
53, 1.8] < (1.8, 3.347]]
```

In [110]:

```
# The Categorical object returned by cut can be passed directly to groupby.
    # So we could compute a set of statistics for the data2 column like so:
grouped = frame.data2.groupby(quartiles)
grouped
```

Out[110]:

<pandas.core.groupby.generic.SeriesGroupBy object at 0x00000039F21CCAC8>

```
In [112]:
# These were equal-length buckets; to compute equal-size buckets based on sample quantile
s, use gcut.
    # I'll pass labels=False to just get quantile numbers:
# Return quantile numbers
grouping = pd.qcut(frame.data1, 10, labels=False)
grouping
Out[112]:
0
       2
1
       7
2
       1
3
       5
4
       6
995
       5
996
       5
997
       4
998
       1
999
Name: data1, Length: 1000, dtype: int64
```

In [118]:

Out[118]:

```
0 -0.562639
1 -1.130607
2 -0.069880
3 1.280894
4 0.224934
5 -0.700833
dtype: float64
```

```
In [119]:
```

```
s[::2] = np.nan # filling s with Nan values at intervals of 2
s
```

Out[119]:

```
0 NaN
1 -1.130607
2 NaN
3 1.280894
4 NaN
5 -0.700833
dtype: float64
```

In [120]:

```
s.fillna(s.mean())
```

Out[120]:

0 -0.183515 1 -1.130607 2 -0.183515 3 1.280894 4 -0.183515 5 -0.700833 dtype: float64

```
In [127]:
# Making the fill value to vary by group
# Suppose you need the fill value to vary by group. One way to do this is to group the
    # data and use apply with a function that calls fillna on each data chunk.
# Here is some sample data on US states divided into eastern and western regions:
states = ['Ohio', 'New York', 'Vermont', 'Florida', 'Oregon', 'Nevada', 'California', 'Idah
0']
group_key = ['East'] * 4 + ['West'] * 4
data = pd.Series(np.random.randn(8), index=states)
print(data)
print(group key)
Ohio
              0.105849
New York
             -1.428066
Vermont
             -0.453576
Florida
             -0.124419
Oregon
              0.493002
Nevada
             0.361317
California
            -1.791414
Idaho
              2.516672
dtype: float64
['East', 'East', 'East', 'West', 'West', 'West', 'West']
```

In [123]:

```
# Let's set some values in the data to be missing:
data[['Vermont', 'Nevada', 'Idaho']] = np.nan
data
```

Out[123]:

Ohio 0.304550 New York 0.872126 Vermont NaN Florida -0.528893 **Oregon** 0.760108 Nevada NaN California 0.069828 Idaho NaN

dtype: float64

```
In [124]:
```

```
data.groupby(group_key).mean()
```

Out[124]:

East 0.215928 West 0.414968 dtype: float64

In [129]:

```
# We can fill the NA values using the group means like so:
fill_mean = lambda g: g.fillna(g.mean())
data.groupby(group_key).apply(fill_mean)
```

Out[129]:

Ohio 0.105849 New York -1.428066 Vermont -0.453576 Florida -0.124419 Oregon 0.493002 Nevada 0.361317 California -1.791414 Idaho 2.516672

dtype: float64

In [130]:

```
# Using predefined fill values that vary by group

# In another case, you might have predefined fill values in your code that vary by group.
    # Since the groups have a name attribute set internally, we can use that:

fill_values = {'East': 0.5, 'West': -1}
fill_func = lambda g: g.fillna(fill_values[g.name])
data.groupby(group_key).apply(fill_func)
```

Out[130]:

Ohio 0.105849 New York -1.428066 Vermont -0.453576 Florida -0.124419 0.493002 Oregon Nevada 0.361317 California -1.791414 Idaho 2.516672

dtype: float64

In [132]:

```
# Random Sampling and Permutation
# Drawing a random sample (with or without replacement) from alarge dataset,
    # eq:constructing a deck of English-style playing cards
# Suppose you wanted to draw a random sample (with or without replacement) from a large da
taset
    # for Monte Carlo simulation purposes or some other application.
    # There are a number of ways to perform the "draws"; here we use the sample method for
Series.
# Hearts, Spades, Clubs, Diamonds
suits = ['H', 'S', 'C', 'D']
card_val = (list(range(1, 11)) + [10] * 3) * 4
base_names = ['A'] + list(range(2, 11)) + ['J', 'K', 'Q']
cards = []
for suit in ['H', 'S', 'C', 'D']:
    cards.extend(str(num) + suit for num in base_names)
deck = pd.Series(card val, index=cards)
deck
```

Out[132]:

1

2

ΑН

2H

ЗН 3 4H 4 5 5H 6 6Н 7 7H 8 8H 9 9Н 10H 10 JН 10 ΚH 10 QH 10 ĀS 1 25 2 3S 3 45 4 5 5S 65 6 7S 7 85 8 9S 9 105 10 JS 10 KS 10 QS 10 АC 1 2C 2 3 3C 4 4C 5 5C 6C 7C 7 80 8 9C 9 10C 10 JC 10 KC 10 QC 10 ΑD 1 2D 2 3 3D 4D 4 5D 5 6 6D 7 7D 8D 8 9 9D 10D 10 JD 10 KD 10 QD 10 dtype: int64

```
In [133]:
```

JD

8Н

10

8 dtype: int64

```
# So now we have a Series of Length 52 whose index contains card names and values are the
 ones used
    # in Blackjack and other games (to keep things simple, I just let the ace 'A' be 1):
deck[:13]
Out[133]:
ΑН
        1
2H
        2
        3
3H
4H
        4
5H
        5
6Н
        6
7H
        7
        8
8Н
9Н
        9
10H
       10
JH
       10
KΗ
       10
       10
QH
dtype: int64
In [134]:
# Drawing a hand of five cards from the deck could be written as:
def draw(deck, n=5):
    return deck.sample(n)
draw(deck)
Out[134]:
3C
       3
JS
      10
JC
      10
```

In [136]:

Out[136]:

```
C 7C
           7
   5C
           5
D 10D
          10
   9D
           9
           7
H 7H
   5H
           5
S AS
           1
   KS
          10
dtype: int64
```

In [137]:

```
# alternatively,we could write:
deck.groupby(get_suit, group_keys=False).apply(draw, n=2)
```

Out[137]:

```
8C
        8
7C
        7
JD
       10
2D
        2
JΗ
       10
10H
       10
        8
88
65
        6
dtype: int64
```

In [144]:

Out[144]:

	category	data	weights
0	а	0.108480	0.278910
1	а	-0.924634	0.059491
2	а	-0.639827	0.341055
3	а	-0.271886	0.732100
4	b	0.906096	0.881823
5	b	-0.313899	0.018645
6	b	1.566793	0.745821
7	b	0.003243	0.425661

In [145]:

```
# The group weighted average by category would then be:
grouped = df.groupby('category')
get_wavg = lambda g: np.average(g['data'], weights=g['weights'])
grouped.apply(get_wavg)
```

Out[145]:

```
category
a -0.313141
b 0.947461
dtype: float64
```

In [156]:

data

Out[156]:

Ohio 0.105849 New York -1.428066 Vermont -0.453576 Florida -0.124419 Oregon 0.493002 Nevada 0.361317 California -1.791414 Idaho 2.516672 dtype: float64

In [164]:

Out[164]:

	Sample	Nationality	Handedness
0	1	USA	Right-handed
1	2	Japan	Left-handed
2	3	USA	Right-handed
3	4	Japan	Right-handed
4	5	Japan	Left-handed
5	6	Japan	Right-handed
6	7	USA	Right-handed
7	8	USA	Left-handed
8	9	Japan	Right-handed
9	10	USA	Right-handed

In [165]:

As part of some survey analysis, we might want to summarize this data by nationality and handedness.

You could use pivot_table to do this, but the pandas.crosstab function can be more c
onvenient:

pd.crosstab(data2.Nationality, data2.Handedness, margins=True) #cross_tab

Out[165]:

Handedness	Left-handed	Right-handed	All
Nationality			
Japan	2	3	5
USA	1	4	5
All	3	7	10

The End