Convex Optimization

Adrien Taylor

Class notes by Antoine Groudiev

Contents

1	Introduction			2
2	Convex sets			
	2.1	Defini	tions	2
	2.2	Exam	ples	2
		2.2.1	Hyperplanes and halfspaces	2
		2.2.2	Euclidian balls and ellipsoids	3
		2.2.3	Cones	4
	2.3	Conve	exity-preserving operations	5
3	Convex functions			5
4	Convex problems			5

Abstract

This document is Antoine Groudiev's class notes while following the class *Deep Learning* at the Computer Science Department of ENS Ulm. It is freely inspired by the lectures of Adrien Taylor.

1 Introduction

2 Convex sets

2.1 Definitions

Definition (Convex set). A set C is a *convex set* if every segment that connects two points in C is in C. Formally:

$$\forall x, y \in C, \forall \theta \in [0, 1], \quad \theta x + (1 - \theta)y \in C$$

Example. Here are some examples of convex and non-convex sets:

In many cases, we will use proper (i.e. non-empty) convex sets, and closed convex sets.

Definition (Convex hull). The *convex hull* of S, denoted Conv(S), is the smallest convex set that contains S.

Definition (Convex combinations). The *convex combinations* of x_1, \ldots, x_k are all the point x of the form:

$$x = \theta_1 x_1 + \dots + \theta_k x_k$$

with $\theta_1, \ldots, \theta_k \geqslant 0$ and $\sum_{i=1}^k \theta_i = 1$.

Property 2.1. The convex hull of a set S is the set of all convex combinations of points in S:

$$Conv(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid (x_i) \in S^k, (\theta_i) \in \mathbb{R}_+^k, \sum_{i=1}^k \theta_i = 1 \right\}$$

2.2 Examples

2.2.1 Hyperplanes and halfspaces

Definition (Hyperplane). A hyperplane is the set of the form:

$$H = \left\{ x \mid a^{\top} x = b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the *normal vector* of H. Hyperspaces are affine and convex.

2

Figure 2.1: Hyperplane

Definition (Halfspace). A halfspace is the set of the form:

$$H = \left\{ x \mid a^{\top} x \leqslant b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the normal vector of H. Halfspaces are convex.

Figure 2.2: Halfspace

2.2.2 Euclidian balls and ellipsoids

Definition (Euclidian ball). The Euclidian ball of center x_c and radius r is the set:

$$B(x_c, r) = \{ x \mid ||x - x_c||_2 \leqslant r \} = \{ x_c + ru \mid ||u||_2 \leqslant 1 \}$$

Euclidian balls are convex.

Definition (Ellipsoid). An *ellipsoid* is the set of the form:

$$E = \{ x \mid (x - x_c)^{\top} P^{-1} (x - x_c) \le 1 \}$$

with $P \in \mathbb{S}_{++}^{n-1}$ and $x_c \in \mathbb{R}^n$. Ellipsoids are convex.

 $^{{}^{1}\}mathbb{S}^{n}_{++}$ denotes the set of symmetric positive definite matrices of size n

Figure 2.3: Ellipsoid

An alternative representation of an ellipsoid is:

$$E = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

for some nonsingular matrix $A \in GL_n(\mathbb{R})$. We can choose A symmatric and positive definite without loss of generality, for instance by choosing $A = P^{1/2}$.

2.2.3 Cones

Definition (Cones). A set K is a cone, or a nonnegative homogeneous set, if:

$$\forall x \in K, \forall \theta \in \mathbb{R}_+^*, \quad \theta x \in K$$

Definition (Convex cone). A set K is a convex cone if:

$$\forall x_1, x_2 \in K, \forall \theta_1, \theta_2 \in \mathbb{R}_+^*, \quad \theta_1 x_1 + \theta_2 x_2 \in K$$

Special cases of cones include:

Positive orthant $K = \mathbb{R}^n_+ = \{ \, x \in \mathbb{R}^n \mid x_i \geqslant 0, \forall i \, \}$

Norm cones $K = \{ (x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \leq t \}$. A particular case is the second-order cone (SOC), based on the ℓ_2 norm.

Positive polynomials $K_n = \{ x \in \mathbb{R}^{n+1} \mid \forall t \in \mathbb{R}, \sum_{i=0}^n x_i t^i \geqslant 0 \}$

Positive semidefinite cone $\mathbb{S}^n_+ = \left\{ X \in \mathbb{S}^n \ \middle| \ \forall z \in \mathbb{R}^n, z^\top X z \geqslant 0 \right\}$ Co-positive cone $\mathbb{S}^n_+ = \left\{ X \in \mathbb{S}^n \ \middle| \ \forall z \in \mathbb{R}^n_+, z^\top X z \geqslant 0 \right\}$ Exponential cone $\left\{ (x,y,z) \in \mathbb{R} \times \mathbb{R}^*_+ \times \mathbb{R} \ \middle| \ z \geqslant y e^{x/y} \right\}$

- 2.3 Convexity-preserving operations
- 3 Convex functions
- 4 Convex problems