

Optimizing Intrusion Detection Systems (IDS) through Significant Feature Selection By Machine Learning Techniques Group Leader: M. Usman Akram **Team**: M. Ahtsham Akram, Ahsan Tariq Supervised By: Dr. Reehan Ali Shah

Introduction:

In this study, we address these challenges by employing a range of ML techniques: ANOVA-B-LG, ANOVA-B-GN, ANOVA-B-GB, ANOVA-M-LG, ANOVA-M-GN, and ANOVA-M-GB, ANOVA-M-LG L-1, ANOVA-B-LG L-1, ANOVA-B-LG L-2, ANOVA-M-LG L-2, ANOVA-B-GN L-1, ANOVA-M-LG L-2, ANOVA-M-GB-GSCV, ANOVA-M-GB-XGB. ANOVA-B-GB-XGB. ANOVA-M-GB-RF. These methods are tailored for binary and multi-class classification on the UNSW-NB-15 benchmark dataset.

Key Findings

real-time data.

for multi-classification.

sion Tree and Naïve Bayes models

Stacking machine learning models with fea-

ture selection techniques achieves accuracy of 96.24%, outperforming recent competing mod-

volumes of network data.

Aim:

The primary aim of This project is to develop a Network intrusion detection system (NIDS) using Machine Learning Techniques.

Objectives:

- Optimize IDS performance
- Reduction of imbalance redundant features and selection of the significant features.
- Analyze IDS on various ML techniques.

Methadology:

Given Figure described The methadology:

The Given Figures Described The Work Flow Of Our Project:

Fig: Methadology

	Pre Pre processing	\rightarrow	Feature Selection		(GN, LR, GB) Class Trat	\	Normal Traffic		
-		Categorical Features							
	Attack	Numbers	States	Numbers	Services	Numbers	Protocols		
	Normal	37000	FIN	39339	None	47153	TCP		
	Generic	18871	INT	34163	DNS	21367	UDP		
	Exploits	11132	CON	6982	нттр	8287	UNAS		
	Fuzzers	6062	REQ	1842	SMTP	1851	ARP		

Problem Statement

Literature Review

Data analytics in

Machine learn-

ing algorithms in

IoT for network

Intrusion detec-

tion system with

integrated classi-

duction with

intrusion detec-

Network Intru-

sion Detection

Systems (NIDS)

Development of

network intru

sion detection

in IoT security

Comparative

classification

algorithms

fication model

security

Feature

XGBoost

cyber security

Dataset Used

UNSW-NB15 dataset

UNSW-NB15 dataset

UNSW-NB15 dataset

UNSW-NB15 dataset

UNSW-NB15 dataset

The main challenge of IDS lies in optimizing feature representation to enhance accuracy and increase processing performance. Extensive features set demand a strategic approach to address redundancy and ensure relevance in cyber threat detection. Strike a balance between accuracy and processing performance.

Machine Learning Models:

Naive Bayes Model

$$P(y|x_1, x_2, ..., x_n) = \frac{P(y) \prod_{i=1}^n P(x_i|y)}{P(x_1, x_2, ..., x_n)}$$

Gradient Boosting Model

$$F_m(x) = F_{m-1}(x) + \lambda h_m(x)$$

Logistic Regression Model

$$P(y = 1|x) = \frac{1}{1 + e^{-\beta^T x}}$$

Results And Discussions:

The Given Figures Described The Accuracy Score Achieved By ML Models

TIME COMPLEXITY:

Algorithm	Training Time	Prediction Time	
Logistic Regression	$O(nm^2)$	O(n)	
Gradient Boosting Gaussian Naive Bayes	$O(nm \log m)$ O(nm)	$O(n \log m)$ O(n)	

In the future, we are set to elevate our intrusion detection systems by deploying our machine learning models on live networks, transitioning from static web-based application's to dynamic, real-time defenses.

CONCLUSION:

In case of binary classification, the results highlighted that Gradient Boosting, coupled with Grid-Search Cross Validation (ANOVA-B-GB-GSCV), exhibited the highest accuracy, achieving an impressive score of **0.9867**.

On the other hand, in the domain of multiclassification, Gaussian Naive Bayes in conjunction with L1-Regularization (ANOVA-M-GN L-1) emerged as the most proficient technique, attaining a commendable accuracy of 0.7813.

This evolution includes a strategic shift towards federated learning models, enabling enhanced security through collaborative data sharing multiple decentralized sources. By leveraging the power of federated learning, we aim to create a robust, adaptive intrusion detection system that continuously learns and improves, providing unprecedented protection agains emerging threats.

Web Deployment

Backend: Django Framework(Python)

Frontend: HTML, CSS, JAVASCRIPT, JQUERY

DATABASE: SQL ORM

WEB PAGE LAYOUTS

