Board Games Recommender

Phua Jia Qing, GA DSI 30

TABLE OF CONTENTS

01 Problem
Statement

02 Dataset & EDA

RecommenderSystem

04 Model Evaluation

05 Conclusion & Future Works

01

PROBLEM STATEMENT

Background on Board Games

HISTORY OF BOARD GAMES

BOARD GAME RELEASES

EGYPT

Board game originated from

5,000 YEARS

Existed for

30 BILLIONS

Forecast market value in 2028

Problem Statement:

Build a good recommender system for board games

DATASET & EDA

Cleaning the data

BOARDGAMEGEEK

BOARD GAME COMMUNITY

Online community with more than 2 million users

BOARD GAME INFORMATION

Updated on a real-time basis

CLEANING DATASETS

 Drop duplicates and some empty values.

 Feature engineering and scale down dataset

Merge 'Games' & 'Games_info'

TOP CATEGORY

AVERAGE & BAYES AVERAGE

Distributions of Ratings

03

RECOMMENDER SYSTEM

Collaborative Filtering Recommender System

BENEFITS OF RECOMMENDER SYSTEM

Personalisation

User's preference

Customer Satisfaction

Efficient time spent

Revenue

Higher conversion rate

Discovery

"Frequently Bought Together"

Types of Recommender System

Popularity-Based

Collaborative Filtering

Content-Based Filtering

POPULARITY RECOMMENDER

The list of recommendations for the user: 10

	user	name	score	new rank
13	10	Citadels	313	1.0
0	10	7 Wonders	311	2.0
34	10	Pandemic	310	3.0
31	10	Love Letter	309	4.0
47	10	The Castles of Burgundy	307	5.0

The list of recommendations for the user: 100

	user		name	score	new_rank
13	100	(Citadels	313	1.0
0	100	7	Wonders	311	2.0
34	100	I	Pandemic	310	3.0
31	100	Love	e Letter	309	4.0
47	100	The Castles of E	Burgundy	307	5.0

The list of recommendations for the user: 150

	user	name	score	new rank
13	150	Citadels	313	1.0
0	150	7 Wonders	311	2.0
34	150	Pandemic	310	3.0
31	150	Love Letter	309	4.0
47	150	The Castles of Burgundy	307	5.0

01: Citadels

03: Pandemic

02: 7 Wonders

COLLABORATIVE FILTERING

USER-BASED

Similar Users

ITEM-BASED

Similar Board Games

USER-BASED CF

Target User: User 3

CONS OF USER-BASED CF

NEW USER

Difficult to find similar user

LIMITED CHOICES

Small pool of games left unplayed

ITEM-BASED CF

Predict similar games to monopoly

Target Item: Monopoly

SUMMARY

A recommender system would be helpful in attending to every user's personal needs and attracting new users O4
MODEL
EVALUATION &
CONCLUSION

Best performing model

MODELS

KNN

Make predictions using the average rating of top-k nearest neighbours

Matrix Factorization

Decomposing user-item interaction matrix into the product of 2 lower dimensionality rectangular matrices

MODEL FLOW

Models

9 base models

GridSearchCV

ALS vs SGD

Best Model

With best parameters and best scores

BASE MODELS

	train_rmse	test_rmse
base_knn_baseline	0.1200	0.1500
base_knn_zscore	0.1171	0.1505
base_baseline_only	0.1475	0.1517
base_svdpp	0.1425	0.1518
base_slop	0.1484	0.1542
base_knn_basic	0.1262	0.1562
base_nmf	0.1563	0.1620
base_svd	0.137	0.1622
base_cluster	0.6338	0.6425

BEST MODEL

	train_rmse	test_rmse _
base_knn_baseline	0.1200	0.1500
knn_als_1	0.1195	0.1497
knn_sgd_1	0.1149	0.1554

05

FUTURE WORKS & CONCLUSION

Hybrid Recommender System

FUTURE WORKS

Evaluation Metric

Try using other metric like precision@K, recall@K

Hybrid

Combine collaborative filtering and content-based filtering

THANKS!

Do you have any questions?

This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

