Package 'geostats'

December 26, 2020

Title An Introduction to Statistics for Geoscientists
Version 1.0
Date 2020-11-14
Description Provides example datasets and code for the introductory statistics module for geoscientists at University College London (UCL). Includes functionality for compositional data, fractals and chaos
Author Pieter Vermeesch [aut, cre]
Maintainer Pieter Vermeesch <p.vermeesch@ucl.ac.uk></p.vermeesch@ucl.ac.uk>
Depends R (>= 3.5.0)
Imports MASS
License GPL-3
LazyData true
RoxygenNote 7.1.1
Encoding UTF-8
R topics documented:
ACNK AFM alr boxcount Britain cantor circle.plot circle.points clasts clr colourplot Corsica

Index

	37
york	35
xyz2xy	34
worldpop	34
training	33
	33
ternary	32 32
striations	31
stereonet	30
skew	
sizefrequency	2929
-	
•	28
semivariogram	27
rwyxz	26
rbsr	25
Rbar2kappa	25
•	24
randy	23
porosity	23
pH	22
pendulum	22
PCA2D	21
palaeomag	21
Mode	20
meuse	20
meanangle	19
major	19
logit	18
ksdist	18
kriging	17
koch	16
gutenberg	15
geostats	15
fractures	15
fractaldim	14
forams	14
	13
fault	13
ellipse	12 12
•	
earthquakes	11

ACNK 3

ACNK

A-CN-K compositions

Description

```
Synthetic A (Al2O3), CN (CaO+Na2O), K (K2O) data table
```

Examples

AFM

A-F-M data

Description

(Na2O + K2O) - FeO - MgO compositions of 630 calc-alkali basalts from the Cascade Mountains and 474 tholeiitic basalts from Iceland.

Examples

```
data(AFM,package='geostats')
ternary(AFM[,-1])
```

alr

additive logratio transformation

Description

maps compositional data from an n-dimensional simplex to an (n-1)-dimensional Euclidean space with Aitchison's additive logratio transformation

Usage

```
alr(dat, inverse = FALSE)
```

Arguments

dat an n x m matrix

inverse if TRUE, applies the inverse alr tranformation

4 Britain

Value

if inverse=FALSE, returns an (n-1) x m matrix of logratios; otherwise returns an (n+1) x m matrix of compositional data whose columns add up to 1.

Examples

boxcount

box counting

Description

count the number of boxes needed to cover all the 1s in a matrix of 0s and 1s.

Usage

```
boxcount(mat, size)
```

Arguments

mat a square matrix of 0s and 1s. Must be a power of 2. size the size (pixels per side) of the boxes. Should be a power of 2.

Examples

```
g <- sierpinski(n=5)
boxcount(mat=g,size=16)</pre>
```

Britain

British coast

Description

a 512 x 512 pixel image of the British coast line

```
data(Britain,package='geostats')
p <- par(mfrow=c(1,2))
image(Britain)
fractaldim(Britain)</pre>
```

cantor 5

cantor Cantor set

Description

Calculates or plots a Cantor set of fractal lines.

Usage

```
cantor(n = 5, plot = FALSE, add = FALSE, Y = 0, lty = 1, col = "black", ...)
```

Arguments

n	an integer value controling the number of recursive levels.
plot	logical. If TRUE, the Cantor set is plotted, otherwise a list of breaks and counts is returned.
add	logical (only used if plot=TRUE). If add=FALSE, then a brand new figure is created; otherwise the Cantor set is added to an existing plot.
Υ	y-value for the plot (only used if plot=TRUE).
lty	line type (see pars() for details)
col	colour of the Cantor lines.
	optional arguments to be passed on to matplot or matlines.

Details

The Cantor set is generated using a recursive algorithm that is built on a line segment whose middle third is removed. Each level of recursion replaces each black line by the same pattern.

Value

a square matrix with 0s and 1s.

```
g <- sierpinski(n=5)
image(g,col=c('white','black'),axes=FALSE,asp=1)</pre>
```

6 circle.points

circle.plot

plot circular data

Description

Plots directional data as ticks on a circle

Usage

```
circle.plot(a, degrees = FALSE, tl = 0.1, ...)
```

Arguments

a angle(s), scalar or vector

degrees TRUE for degrees, FALSE for radians t1 tick length (value between 0 and 1)

... optional arguments to be passed on to the generic matlines function

Details

Produces a circle with angles plotting in a clockwise direction from the top

Examples

```
data(striations,package='geostats')
circle.plot(striations,degrees=TRUE)
```

circle.points

add points to a circular plot

Description

adds directional data as points on an existing circle plot

Usage

```
circle.points(a, degrees = FALSE, ...)
```

Arguments

a angle(s), scalar or vector

degrees TRUE for degrees, FALSE for radians

... optional arguments to be passed on to the generic points function

clasts 7

Details

adds points to a circle with angles plotting in a clockwise direction from the top

Examples

```
data(striations,package='geostats')
circle.plot(striations,degrees=TRUE)
md <- meanangle(striations,degrees=TRUE)
circle.points(md,pch=22,bg='black',degrees=TRUE)</pre>
```

clasts

clast size data

Description

20 clast size measurements, in cm

Examples

```
data(clasts,package='geostats')
d <- density(log(clasts))
plot(d)</pre>
```

clr

centred logratio transformation

Description

maps compositional data from an n-dimensional simplex to an n-dimensional Euclidean space with Aitchison's centred logratio transformation

Usage

```
clr(dat, inverse = FALSE)
```

Arguments

dat an n x m matrix

inverse if TRUE, applies the inverse clr tranformation

Value

an n x m matrix

8 colourplot

Examples

colourplot

colour plot

Description

combines a filled contour plot and filled scatter plot for 3-dimensional measurements

Usage

```
colourplot(
  х,
 у,
 Ζ,
 Χ,
  Υ,
  Ζ,
 nlevels = 20,
  colspec = rainbow,
  pch = 21,
  cex = 1,
  plot.title,
  plot.axes,
  key.title,
  key.axes,
  asp = NA,
  xaxs = "i",
 yaxs = "i",
  las = 1,
  axes = TRUE,
  frame.plot = axes,
  extra,
)
```

Arguments

x numerical vector of n equally spaced values y numerical vector of m equally spaced values colourplot 9

Z	an $n \times m$ matrix of numerical values
X	numerical vector of N values
Υ	numerical vector of N values
Z	numerical vector of N values
nlevels	if levels is not specified, the range of z , values is divided into approximately this many levels.
colspec	colour specification (e.g., rainbow, hsv, hcl, rgb)
pch	plot character (21 - 25)
cex	plot character magnification
plot.title	statements that add titles to the main plot.
plot.axes	statements that draw axes on the main plot. This overrides the default axes.
key.title	statements that add titles for the plot key.
key.axes	statements that draw axes on the plot key. This overrides the default axis.
asp	the y/x aspect ratio, see plot.window.
xaxs	the x axis style. The default is to use internal labeling.
yaxs	the y axis style. The default is to use internal labeling.
las	the style of labeling to be used. The default is to use horizontal labeling.
axes	logicals indicating if axes should be drawn
frame.plot	logicals indicating if a box should be drawn, as in plot.default.
extra	(optional) extra intructions to be carried out in the main plot window, such as text annotations.
	additional graphical parameters
levels	a set of levels which are used to partition the range of z. Must be *strictly* increasing (and finite). Areas with z values between consecutive levels are painted with the same colour.

Details

adds a colour bar to a scatter plot and/or filled contour plot. This function, which is based on base R's filled.contour function, is useful for visualising kriging results.

```
data('meuse',package='geostats')
colourplot(X=meuse$x,Y=meuse$y,Z=log(meuse$zinc))
```

10 countQuakes

Corsica

rivers on Corsica

Description

a 512 x 512 pixel image of the river network on Corsica

Examples

```
data(Corsica,package='geostats')
p <- par(mfrow=c(1,2))
image(Corsica)
fractaldim(Corsica)</pre>
```

countQuakes

count the number of earthquakes per year

Description

counts the number of earthquakes per year that fall between two magnitude limits

Usage

```
countQuakes(qdat, minmag, from, to)
```

Arguments

qdat a data frame containing columns named mag and year.

minmag minimum magnitude

from first year to last year

```
data(declustered,package='geostats')
quakesperyear <- countQuakes(declustered,minmag=5.0,from=1917,to=2016)
table(quakesperyear)</pre>
```

declustered 11

declustered

declustered earthquake data

Description

dataset of 28267 earthquakes between 1769 and 2016, with aftershocks and precursor events removed

References

Mueller, C.S., 2019. Earthquake catalogs for the USGS national seismic hazard maps. Seismological Research Letters, 90(1), pp.251-261.

Examples

```
data(declustered,package='geostats')
quakesperyear <- countQuakes(declustered,minmag=5.0,from=1917,to=2016)
table(quakesperyear)</pre>
```

DΖ

detrital zircon U-Pb data

Description

detrital zircon U-Pb data of 5 sand samples from China

Examples

```
data(DZ,package='geostats')
qqplot(DZ[['Y']],DZ[['5']])
```

earthquakes

earthquake data

Description

dataset of 20000 earthquakes between 2017 and 2000, downloaded from the USGS earthquake database (https://earthquake.usgs.gov/earthquakes/search/).

```
data(earthquakes,package='geostats')
gutenberg(earthquakes$mag)
```

12 exp

ellipse ellipse

Description

compute the x-y coordinates of an error ellipse

Usage

```
ellipse(mean, cov, alpha = 0.05, n = 50)
```

Arguments

mean two-element vector with the centre of the ellipse

cov the 2 x 2 covariance matrix of x and y

alpha confidence level of the confidence ellipse

n the number of points at which the ellipse is evaluated

Examples

```
X <- rnorm(100,mean=100,sd=1)
Y <- rnorm(100,mean=100,sd=1)
Z <- rnorm(100,mean=100,sd=5)
dat <- cbind(X/Z,Y/Z)
plot(dat)
ell <- ellipse(mean=colMeans(dat),cov=cov(dat))
polygon(ell)</pre>
```

exp

exponential transformation

Description

Map the input from $[-\infty, +\infty]$ to $[0, \infty]$ by taking exponents

Usage

```
## S3 method for class 'density' exp(x)
```

Arguments

x an object of class density

fault 13

Value

```
an object of class density
```

Examples

```
data(clasts,package='geostats')
lc <- log(clasts)
ld <- density(lc)
d <- exp(ld)
plot(d)</pre>
```

fault

fault orientation data

Description

Ten paired strike and dip measurements (in degrees), drawn from a von Mises - Fisher distribution with mean vector $\mu = \{-1, -1, 1\}/\sqrt{3}$ and concentration parameter $\kappa = 100$.

Examples

```
data(fault,package='geostats')
stereonet(trd=fault$strike,plg=fault=dip,option=2,degrees=TRUE,show.grid=FALSE)
```

Finland

Finnish lake data

Description

Table of 2327 Finnish lakes, extracted from a hydroLAKES database.

References

Lehner, B., and Doll, P. (2004), Development and validation of a global database of lakes, reservoirs and wetlands, Journal of Hydrology, 296(1), 1-22, doi: 10.1016/j.jhydrol.2004.03.028.

```
data(Finland,package='geostats')
sf <- sizefrequency(Finland$area)
size <- sf[,'size']
freq <- sf[,'frequency']
plot(size,freq,log='xy')
fit <- lm(log(freq) ~ log(size))
lines(exp(predict(fit)))</pre>
```

14 fractaldim

forams

foram count data

Description

Planktic foraminifera counts in surface sediments in the Atlantic ocean.

Examples

fractaldim

calculate the fractal dimension

Description

performs box counting on a matrix of 0s and 1s.

Usage

```
fractaldim(mat, plot = TRUE, ...)
```

Arguments

```
mat a square matrix of 0s and 1s. Size must be a power of 2.

plot logical. If TRUE, plots the results on a log-log scale.

optional arguments to the generic points function.
```

```
g <- sierpinski(n=5)
fractaldim(g)</pre>
```

fractures 15

fractures

fractures

Description

a 512 x 512 pixel image of a fracture network

Examples

```
data(fractures,package='geostats')
p <- par(mfrow=c(1,2))
image(fractures)
fractaldim(fractures)</pre>
```

geostats

library(geostats)

Description

A list of documented functions may be viewed by typing help(package='geostats'). Detailed instructions are provided at https://github.com/pvermees/geostats/.

Author(s)

Maintainer: Pieter Vermeesch <p.vermeesch@ucl.ac.uk>

gutenberg

create a Gutenberg-Richter plot

Description

calculate a semi-log plot with earthquake magnitude on the horizontal axis, and the cumulative number of earthquakes exceeding any given magnitude on the vertical axis.

Usage

```
gutenberg(m, n = 10, ...)
```

Arguments

m a vector of earthquake magnitudes

n the number of magnitudes to evaluate

... optional arguments to the generic points function.

16 koch

Value

the output of 1m with earthquake magnitude as the independent variable (mag) and the logarithm (base 10) of the frequency as the dependent variable (1freq).

Examples

```
data(declustered,package='geostats')
gutenberg(declustered$mag)
```

koch

Koch snowflake

Description

Calculates or plots a Koch set of fractal lines.

Usage

```
koch(n = 4, plot = TRUE, res = 512)
```

Arguments

n an integer value controling the number of recursive levels.

plot logical. If TRUE, the Koch flake is plotted.

res the number of pixels in each side of the output matrix

Details

The Koch set is generated using a recursive algorithm that is built on a triangular hat shaped line segment. Each level of recursion replaces each linear segment by the same pattern.

Value

```
a res x res matrix with 0s and 1s
```

```
k <- koch(n=5)
d <- fractaldim(k,plot=FALSE)
print(d)</pre>
```

kriging 17

Description

ordinary kriging interpolation of spatial data

Usage

```
kriging(x, y, z, xi, yi, svm, grid = FALSE, err = FALSE)
```

Arguments

x	numerical vector of training data
У	numerical vector of the same length as x
Z	numerical vector of the same length as x
xi	scalar or vector with the x-coordinates of the points at which the z-values are to be evaluated.
yi	scalar or vector with the x-coordinates of the points at which the z-values are to be evaluated.
grid	logical. If TRUE, evaluates the kriging interpolator along a regular grid of values defined by xi and yi.
err	logical. If TRUE, returns the variance of the kriging estimate.
snr	output of the semivariogram function, a 3-element vector with the sill, nugget and range of the semivariogram fit.
model	type of semivariogram fit. Currently only spherical functions are supported

Details

implements a simple version of ordinary kriging that uses all the data in a training set to predict the z-value of some test data, given a spherical variogram.

Value

either a vector (if grid=FALSE) or a matrix (if grid=TRUE) of kriging interpolations. In the latter case, values that are more than 10% out of the data range are given NA values.

```
data(meuse,package='geostats')
x <- meuse$x
y <- meuse$y
z <- log(meuse$cadmium)
snr <- semivariogram(x=x,y=y,z=z)
xi <- seq(from=min(x),to=max(x),length.out=50)
yi <- seq(from=min(y),to=max(y),length.out=50)</pre>
```

18 logit

```
zi <- geostats::kriging(x=x,y=y,z=z,snr=snr,xi=xi,yi=yi,grid=TRUE)
contour(xi,yi,zi)</pre>
```

ksdist

Kolmogorov-Smirnov distance matrix

Description

fills a square matrix with Kolmogorov-Smirnov statistics

Usage

```
ksdist(dat)
```

Arguments

dat

a list of numerical data vectors

Examples

```
data(DZ,package='geostats')
d <- ksdist(DZ)
plot(cmdscale(d))</pre>
```

logit

logistic transformation

Description

```
maps numbers from [0,1] to [-\infty, +\infty] and back
```

Usage

```
logit(x, ...)
## Default S3 method:
logit(x, inverse = FALSE, ...)
## S3 method for class 'density'
logit(x, inverse = TRUE, ...)
```

Arguments

major 19

Value

a vector with the same length of x

Examples

```
data(porosity,package='geostats')
lp <- logit(porosity,inverse=FALSE)
ld <- density(lp)
d <- logit(ld,inverse=TRUE)
plot(d)</pre>
```

major

composition of Namib dune sand

Description

major element compositions of 16 Namib sand samples

Examples

```
data(major,package='geostats')
comp <- clr(major)
pc <- prcomp(comp)
biplot(pc)</pre>
```

meanangle

mean angle

Description

computes the vector mean of a collection of circular measurements

Usage

```
meanangle(trd, plg = 0, option = 0, degrees = FALSE)
```

Arguments

trd	trend angle, in degrees, between 0 and 360 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
plg	(optional) plunge angle, in degrees, between 0 and 90 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
option	scalar. If codeoption=0, then plg is ignored and the measurements are considered to be circular; if option=1, then trd is the azimuth and plg is the dip; if option=2, then trd is the strike and plg is the dip; if option=3, then trd is the longitude and plg is the latitude; if option=4, then trd is the longitude and plg is the latitude.

degrees

TRUE for degrees, FALSE for radians

20 Mode

Details

averages angles by taking their vector sum

Value

a scalar of 2-element vector with the mean orientation, either in radians (if degrees=FALSE), or in degrees.

Examples

```
data(striations,package='geostats')
meanangle(striations,degrees=TRUE)
```

meuse

Meuse river data set

Description

This data set gives locations and topsoil heavy metal concentrations, collected in a flood plain of the river Meuse, near the village of Stein (NL). Heavy metal concentrations are from composite samples of an area of approximately 15 m x 15 m. This version of the meuse dataset is a trimmed down version of the eponymous dataset from the sp dataset.

Examples

```
data(meuse,package='geostats')
semivariogram(x=meuse$x,y=meuse$y,z=log(meuse$cadmium))
```

Mode

get the mode of a dataset

Description

compute the most frequently occuring value in a sampling distribution.

Usage

```
Mode(x, categorical = FALSE)
```

Arguments

x a vector

categorical

logical. If TRUE, returns the most frequently occuring value for categorical variables. If FALSE, returns the value corresponding to the maximimum kernel density for continuous variables

palaeomag 21

Value

a scalar

Examples

```
data(clasts,package='geostats')
m1 <- Mode(clasts,categorical=TRUE)

m2 <- 1:50
for (i in m2){
    m2[i] <- Mode(rnorm(100),categorical=FALSE)
}
hist(m2)</pre>
```

palaeomag

palaeomagnetic data

Description

Ten paired magnetic declination (azimuth) and inclination (dip) measurements, drawn from a von Mises - Fisher distribution with mean vector $\mu = \{2, 2, 1\}/3$ and concentration parameter $\kappa = 200$.

Examples

```
data(palaeomag,package='geostats')
stereonet(trd=palaeomag$decl,plg=palaeomag$incl,degrees=TRUE,show.grid=FALSE)
```

PCA2D

Principal Component Analysis of 2D data

Description

produces a 4-panel summary plot for two dimensional PCA for didactical purposes

Usage

PCA2D(X)

Arguments

Χ

a matrix with two columns

```
X <- rbind(c(-1,7),c(3,2),c(4,3))
colnames(X) <- c('a','b')
PCA2D(X)</pre>
```

22 pH

pendulum

3-magnet pendulum experiment

Description

simulate the 3-magnet pendulum experiment

Usage

```
pendulum(
   startpos = c(-2, 2),
   startvel = c(0, 0),
   src = rbind(c(0, 0), c(0.5, sqrt(0.75)), c(1, 0)),
   plot = TRUE
)
```

Arguments

startpos2-element vector with the initial positionstartvel2-element vector with the initial velocitysrcn x 2 matrix with the positions of the magnets

plot logical. If TRUE, generates a plot with the trajectory of the pendulum.

Details

start a pendulumn at a specified position and with a start velocity.

Value

the end position of the pendulum

Examples

```
par(mfrow=c(1,2))
pendulum(startpos=c(2,2))
pendulum(startpos=c(1.9,2))
```

рΗ

pH data

Description

pH measurements in 20 samples of rain water

```
data(pH,package='geostats')
hist(pH)
```

porosity 23

porosity

porosity data

Description

20 porosity measurements, as fractions

Examples

```
data(porosity,package='geostats')
plot(density(logit(porosity)))
```

randy

generate bivariate random data

Description

returns bivariate datasets from four synthetic distributions that have the shape of a circle, arrow, square and ellipse.

Usage

```
randy(pop = 1, n = 250)
```

Arguments

```
pop an integer from 1 to 4 marking the population of choice: 1 = circle, 2 = arrow, 3 = solid square, 4 = ellipse.

n the number of random draws to be drawn from population pop
```

Value

a [2xn] matrix of random numbers

```
p <- par(mfrow=c(1,4))
for (i in 1:4){
    plot(randy(pop=i))
}
par(p)</pre>
```

24 Rbar

Rbar	calculate $ar{R}$	
Nuai	cuicuiue Ii	

Description

returns \bar{R} , a measure of directional concentration

Usage

```
Rbar(trd, plg = 0, option = 0, degrees = FALSE)
```

Arguments

trd	trend angle, in degrees, between 0 and 360 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
plg	(optional) plunge angle, in degrees, between 0 and 90 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
option	scalar. If codeoption=0, then plg is ignored and the measurements are considered to be circular; if option=1, then trd is the azimuth and plg is the dip; if option=2, then trd is the strike and plg is the dip; if option=3, then trd is the longitude and plg is the latitude; if option=4, then trd is the longitude and plg is the latitude.
degrees	TRUE for degrees, FALSE for radians

Details

Given n circular or spherical measurements, their length of the normalised vector sum takes serves as a measure of concentration.

Value

```
a value between 0 and 1
```

```
data(striations,package='geostats')
Rbar(striations,degrees=TRUE)
```

Rbar2kappa 25

Rbar2kappa

 \bar{R} to κ conversion

Description

converts concentration parameter \bar{R} to κ

Usage

```
Rbar2kappa(R, p = 1)
```

Arguments

R a scalar or vector of values between 0 and 1

p the number of parameters

Details

 $ar{R}$ and κ are two types of concentration parameter that are commonly used in directional data analysis. κ is one of the parameters of the parametric von Mises distribution, which is difficult to estimate from the data. $ar{R}$ is easier to calculate from data. Rbar2kappa converts $ar{R}$ to $ar{\kappa}$ using the following approximate empirical formula:

$$\kappa = \frac{\bar{R}(p+1-\bar{R}^2)}{1-\bar{R}^2}$$

where p marks the number of parameters in the data space (1 for circle, 2 for a sphere).

Value

```
value(s) between 0 and +\infty
```

Examples

```
data(striations,package='geostats')
Rbar2kappa(Rbar(striations,degrees=TRUE))
```

rbsr

Rb-Sr data

Description

synthetic dataset of 8 Rb-Sr analysis that form a 1Ga isochron

```
data(rbsr,package='geostats')
plot(rbsr[,'RbSr'],rbsr[,'SrSr'])
fit <- lm(SrSr ~ RbSr,data=rbsr)
abline(fit)</pre>
```

26 rwyxz

rwyxz

Spurious correlation

Description

Calculate the 'null correlation' of ratios

Usage

```
rwyxz(
 mw,
 mx,
 my,
 mz,
 SW,
  sx,
  sy,
  SZ,
  rwx = 0,
 rwy = 0,
  rwz = 0,
 rxy = 0,
 rxz = 0,
  ryz = 0
)
ryxy(mx, my, sx, sy, rxy = 0)
rxzyz(mx, my, mz, sx, sy, sz, rxy = 0, rxz = 0, ryz = 0)
```

Arguments

mw	the mean of variable w
mx	the mean of variable x
my	the mean of variable y
mz	the mean of variable z
SW	the standard deviation of variable w
sx	the standard deviation of variable x
sy	the standard deviation of variable y
sz	the standard deviation of variable z
rwx	the correlation coefficient between w and x
rwy	the correlation coefficient between w and y
rwz	the correlation coefficient between w and z
rxy	the correlation coefficient between x and y

semivariogram 27

rxz	the correlation coefficient between x and z
ryz	the correlation coefficient between y and z

Details

Implements the spurious correlation formula of Pearson (1897)

Value

the null correlation coefficient

Examples

```
rxzyz(mx=100, my=100, mz=100, sx=1, sy=1, sz=10)
```

semivariogram

semivariogram

Description

computes, plots, and fits the semivariogram of spatial data

Usage

```
semivariogram(
    x,
    y,
    z,
    bw = NULL,
    nb = 13,
    plot = TRUE,
    fit = TRUE,
    model = c("spherical", "linear", "exponential", "gaussian"),
    ...
)
```

Arguments

```
numerical vector
Χ
                  numerical vector of the same length as x
У
                  numerical vector of the same length as x
bw
                   (optional) the bin width of the semivariance search algorithm
                   (optional) the maximum number of bins to evaluate
nb
                  logical. If FALSE, suppresses the graphical output
plot
                  logical. If TRUE, returns the sill, nugget and range.
fit
                  the parametric model to fit to the empirical semivariogram (only used if fit=TRUE).
model
                   optional arguments to be passed on to the generic plot function
```

28 sierpinski

Details

Plots the semivariance of spatial data against inter-sample distance, and fits a spherical equation to it

Value

if fit=TRUE, returns a vector with the sill, nugget and range. If fit=FALSE, returns the estimated semivariances at different distances for the data.

Examples

```
data(meuse,package='geostats')
semivariogram(x=meuse$x,y=meuse$y,z=log(meuse$cadmium))
```

sierpinski

Sierpinski carpet

Description

returns a matrix of 0s and 1s that form a Sierpinski fractal.

Usage

```
sierpinski(n = 5)
```

Arguments

n

an integer value controling the number of recursive levels.

Details

The Sierpinski carpet is two dimensional fractal, which is generated using a recursive algorithm that is built on a grid of eight black squares surrounding a white square. Each level of recursion replaces each black square by the same pattern.

Value

a square matrix with 0s and 1s.

```
g <- sierpinski(n=5)
image(g,col=c('white','black'),axes=FALSE,asp=1)</pre>
```

sizefrequency 29

	_			
C 1	7A+	rea	HAL	1 cv

calculate the size-frequency distribution of things

Description

calculate the number of items exceeding a certain size

Usage

```
sizefrequency(dat, n = 10, log = TRUE)
```

Arguments

dat a numerical vector

n the number of sizes to evaluate

logical. If TRUE, uses a log spacing for the sizes at which the frequencies are

evaluated

Value

a data frame with two columns size and frequency

Examples

```
data(Finland,package='geostats')
sf <- sizefrequency(Finland$area)
plot(frequency~size,data=sf,log='xy')
fit <- lm(log(frequency) ~ log(size),data=sf)
lines(x=sf$size,y=exp(predict(fit)))</pre>
```

skew

calculate the skewness of a dataset

Description

compute the third moment of a sampling distribution.

Usage

skew(x)

Arguments

x a vector

30 stereonet

Value

a scalar

Examples

```
data(porosity,package='geostats')
skew(porosity)
```

stereonet

stereonet

Description

Plots directional data on a Schmidt equal area or Wulff equal angle stereonet.

Usage

```
stereonet(
  trd,
  plg,
  coneAngle = 0,
  option = 1,
  wulff = TRUE,
  add = FALSE,
  degrees = FALSE,
  show.grid = TRUE,
  grid.col = "grey50",
  tl = 0.05,
  type = "p",
  labels = 1:length(trd),
   ...
)
```

Arguments

trd	trend angle, in degrees, between 0 and 360 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
plg	plunge angle, in degrees, between 0 and 90 (if degrees=TRUE) or between 0 and 2π (if degrees=FALSE).
coneAngle	if $\protect\ poles$ if option=4, controls the radius of a small circle around the pole with azimuth trd and dip $\protect\ plg$.
option	scalar. If option=1, then trd is the azimuth and plg is the dip; if option=2, then trd is the strike and plg is the dip; if option=3, then trd is the longitude and plg is the latitude; if option=4, then trd is the longitude and plg is the latitude
wulff	logical. If FALSE, produces a Schmidt net.

striations 31

add	logical. If TRUE, adds to an existing stereonet.
degrees	logical. If FALSE, assumes that azimuth and dip are in radians.
show.grid	logical. If TRUE, decorates the plot with a grid of great and small circles.
grid.col	colour of the grid.
tl	tick length for the N, E, S, W markers (value between 0 and 1). Set to 0 to omit the markers.
type	if option=1 or 3, coordinates can be visualsed as points (type='p'), lines (type='l') or decorated with text labels (type='t').
labels	if option=1 or 3 and type='t', specifies the text labels to be used to mark the measurements on the stereonet.
• • •	optional arguments to be passed on to the generic points function

Details

The Wulff equal angle polar Lambert projection preserves the shape of objects and is often used to visualise structural data. The Schmidt equal area polar Lambert projection preserves the size of objects and is more popular in mineralogy.

Author(s)

based on the Matlab script by Gerry Middleton

Examples

```
stereonet(azimuth=c(120,80),dip=c(10,30),degrees=TRUE)
```

striations	directions of glacial striations	
------------	----------------------------------	--

Description

directions (in degrees) of 30 glacial striation measurements from Madagascar.

```
data(striations,package='geostats')
circle.plot(striations,degrees=TRUE)
```

32 test

nary ternary diagrams

Description

plot points, lines or text on a ternary diagram

Usage

```
ternary(xyz = NULL, f = rep(1, 3), labels, add = FALSE, type = "p", ...)
```

Arguments

```
an n x 3 matrix or data frame

f a three-element vector of multipliers for xyz

labels the text labels for the corners of the ternary diagram

add if TRUE, adds information to an existing ternary diagram

type one of 'n' (empty plot), 'p' (points), 'l' (lines) or 't' (text).

... optional arguments to the points, lines or text functions.
```

Examples

test

composition of oceanic basalts

Description

major element compositions of 64 island arc basalts (IAB), 23 mid oceanic ridge basalts (MORB) and 60 ocean island basalts (OIB). This dataset can be used to test supervised learning algorithms.

```
library(MASS)
data(training,package='geostats')
data(test,package='geostats')
qd <- qda(affinity ~ ., data=training)
pr <- predict(qd,newdata=test[,-1])
table(test$affinity,pr$class)</pre>
```

training 33

training

composition of oceanic basalts

Description

major element compositions of 227 island arc basalts (IAB), 221 mid oceanic ridge basalts (MORB) and 198 ocean island basalts (OIB). This dataset can be used to train supervised learning algorithms.

Examples

```
library(MASS)
data(training,package='geostats')
qd <- qda(affinity ~ ., data=training)
pr <- predict(qd)
table(training$affinity,pr$class)</pre>
```

vonMises

von Mises distribution

Description

returns the probability density of a von Mises distribution

Usage

```
vonMises(a, mu = 0, kappa = 1, degrees = FALSE)
```

Arguments

a angle(s), scalar or vector

mu scalar containing the mean direction

kappa scalar containing the concentration parameter

degrees TRUE for degrees, FALSE for radians

Details

the von Mises distribution describes probability distributions on a circle using the following density function:

```
\frac{\exp(\kappa\cos(x-\mu))}{2\pi I_0(\kappa)}
```

where $I_0(\kappa)$ is a zero order Bessel function

Value

a scalar or vector of the same length as angles

34 xyz2xy

Examples

worldpop

world population

Description

The world population from 1750 until 2014

Examples

```
data(worldpop,package='geostats')
plot(worldpop)
```

xyz2xy

get x,y plot coordinates of ternary data

Description

helper function to generate bivariate plot coordinates for ternary data

Usage

```
xyz2xy(xyz)
```

Arguments

xyz

an n x 3 matrix or data frame

Value

```
an n x 2 numerical matrix
```

```
xyz \leftarrow rbind(c(1,0,0),c(0,1,0),c(0,0,1),c(1,0,0))

xy \leftarrow xyz2xy(xyz)

plot(xy,type='l',bty='n')
```

york 35

york Linear regression of X,Y-variables with correlated errors	
--	--

Description

Implements the unified regression algorithm of York et al. (2004) which, although based on least squares, yields results that are consistent with maximum likelihood estimates of Titterington and Halliday (1979).

Usage

```
york(dat, alpha = 0.05, plot = TRUE, fill = NA, ...)
```

Arguments

dat	a 4 or 5-column matrix with the X-values, the analytical uncertainties of the X-values, the Y-values, the analytical uncertainties of the Y-values, and (optionally) the correlation coefficients of the X- and Y-values.
alpha	cutoff value for confidence intervals.
plot	logical. If true, creates a scatter plot of the data with the best fit line shown on it.
fill	the fill colour of the error ellipses. For additional plot options, use the IsoplotR package.
	optional arguments for the scatter plot.

Details

Given n pairs of (approximately) collinear measurements X_i and Y_i (for $1 \le i \le n$), their uncertainties $s[X_i]$ and $s[Y_i]$, and their covariances $cov[X_i, Y_i]$, the york function finds the best fitting straight line using the least-squares algorithm of York et al. (2004). This algorithm is modified from an earlier method developed by York (1968) to be consistent with the maximum likelihood approach of Titterington and Halliday (1979).

Value

A two-element list of vectors containing:

coef the intercept and slope of the straight line fitcov the covariance matrix of the coefficients

References

Titterington, D.M. and Halliday, A.N., 1979. On the fitting of parallel isochrons and the method of maximum likelihood. Chemical Geology, 26(3), pp.183-195.

York, Derek, et al., 2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72.3, pp.367-375.

36 york

Index

Taria data	dealwatened 11
*Topic data	declustered, 11
ACNK, 3 AFM, 3	DZ, 11
Britain, 4	earthquakes, 11
clasts, 7	ellipse, 12
Corsica, 10	exp, 12
	CAP, 12
declustered, 11	fault, 13
DZ, 11	Finland, 13
earthquakes, 11	forams, 14
fault, 13	fractaldim, 14
Finland, 13	fractures, 15
forams, 14	, , , , , , , , , , , , , , , , , , , ,
fractures, 15	geostats, 15
major, 19	geostats-package (geostats), 15
meuse, 20	gutenberg, 15
palaeomag, 21	
pH, 22	koch, 16
porosity, 23	kriging, 17
rbsr, 25	ksdist, 18
striations, 31	
test, 32	logit, 18
training, 33	. 10
worldpop, 34	major, 19
_PACKAGE (geostats), 15	meanangle, 19
ACNIZ 2	meuse, 20
ACNK, 3	Mode, 20
AFM, 3	
alr, 3	palaeomag, 21
boxcount, 4	PCA2D, 21
	pendulum, 22
Britain, 4	pH, 22
cantor, 5	plot.default, 9
circle.plot, 6	plot.window, 9
circle.piot, 6	porosity, 23
clasts, 7	randy, 23
clr, 7	Rbar, 24
colourplot, 8	Rbar2kappa, 25
Corsica, 10	rbsr, 25
countQuakes, 10	rwyxz, 26

38 INDEX

```
rxzyz (rwyxz), 26
ryxy (rwyxz), 26
semivariogram, 17, 27
sierpinski, 28
sizefrequency, 29
skew, 29
stereonet, 30
striations, 31
ternary, 32
test, 32
training, 33
vonMises, 33
worldpop, 34
xyz2xy, 34
york, 35
```