Cálculo Estocástico Tarea 3

Iván Irving Rosas Domínguez

16 de septiembre de 2023

1. Lema: Sea M^2 el espacio de las martingalas cuadrado-integrables. Dada una martingala $X \in M^2$, definimos la métrica $\|.\|$ como sigue:

$$||X|| := \sum_{n=1}^{\infty} \frac{||X||_n \wedge 1}{2^n},$$

donde $\forall t \geq 0, \|X\|_t := (\mathbb{E}[X_t^2])^{\frac{1}{2}}.$

Entonces el espacio $((M^2, ||.||))$ es un espacio normado completo y el subespacio M_c^2 (el espacio de las martingalas cuadrado integrables continuas) es un subespacio cerrado de M^2 .

- 2. Muestra que si X(t) es no aleatorio (no depende de B(t)) y es función de t y s con $\int_0^t X^2(t,s)ds < \infty$, entonces $\int_0^t X(t,s)dB(s)$ es una variable aleatoria Gaussiana Y(t). La colección Y(t), $0 \le t \le T$, es un proceso Gaussiano con media cero y función de covarianza para $u \ge 0$ dada por $\mathrm{Cov}\,(Y(t),Y(t+u)) = \int_0^\infty X(t,s)X(t+u,s)ds$.
- 3. Muestra que una martingala Gaussiana en un intervalo de tiempo finito [0,T] es una martingala cuadrado-integrable con incrementos independientes. Deducir que si X es no aleatorio y $\int_0^t X^2(s)ds < \infty$, entonces $Y(t) = \int_0^\infty X(s)dB(s)$ es una martingala Gaussiana cuadrado-integrable con incrementos independientes.
- 4. Un proceso X(t) en (0,1) tiene un diferencial estocástico con coeficiente $\sigma^2(x) = x(1-x)$. Suponiendo que 0 < X(t) < 1, muestra que el proceso definido por $Y(t) = \ln(X(t))/(1-X(t))$ tiene un coeficiente de difusión constante.
- 5. Obtener el diferencial de una fórmula de cociente $d\left(\frac{X(t)}{Y(t)}\right)$ tomando f(x,y)=x/y. Suponga que el proceso Y se mantiene lejos de 0.