Notas para final de PLP

Manuel Panichelli

February 4, 2022

Chapter 1

Paradigma funcional

1.1 Haskell

Def. 1.1 (Paradigma). Un paradigma es una forma de pensamiento.

Def. 1.2 (Lenguaje de programación). Un **lenguaje de programación** es el lenguaje que usamos para comunicar lo que queremos que haga una computadora.

Usamos un lenguaje para describir los computos que lleva a cabo la computadora.

Es **computacionalmente completo** si puede expresar todas las funciones computables. Hay DSLs ($domain\ specific\ languages$) que no pueden expresar todo lo computable.

Def. 1.3 (Paradigma de lenguaje de programación). Lo entendemos como un *estilo* de programación, que tiene que ver con los estilos de las soluciones. Está vinculado con lo que es para uno un modelo de cómputo.

Lo que vemos antes de la materia es el imperativo: a partir de un estado inicial llegar a un estado final. Programamos con secuencias de instrucciones para cambiar el estado.

1.2 Programación funcional

Definiciones:

- Programa y modelo de cómputo: Programar es definir funciones, y ejecutar es evaluar expresiones.
- Programa: Es un conjunto de ecuaciones. Por ej. doble x = x + x
- Expresiones: El significado de una expresión es su valor (si es que está definido). El valor de una expresión depende solo del valor de sus sub-expresiones. Evaluar o reducir una expresion es obtener su valor (por ej.

doble 2 \leadsto 4) No toda expresion denota un valor, por ejemplo doble true.

• **Tipos**: El universo de valores está particionado en colecciones denominadas *tipos*, que tienen operaciones asociadas.

Haskell es **fuertemente tipado**. Toda expresion bien formada tiene un tipo, que depende del tipo de sus subexpresiones. Si no puede asignarse un tipo a una expresión, no se la considera bien formada.

```
1 :: Int
'a' :: Char

1.2 :: Float

True :: Bool
[1, 2, 3] :: [Int]
(1, True) :: (Int, Bool)

succ :: Int -> Int
```

Definiciones de funciones:

```
-- Definición
doble :: Int -> Int
doble x = x + x

-- Guardas
signo :: Int -> Bool
signo n | n >= 0 = True
| otherwise = False

-- Definiciones locales
f (x, y) = g x + y
where g z = z + 2

-- Expresiones lambda
\x -> x + 1
```

Tipos polimórficos

```
id x = x
id :: a -> a
-- x es de tipo a, que eventualmente se va a instanciar a algún tipo
```

Clases de tipos: Son como interfaces, que definen un conjunto de operaciones.

```
maximo :: Ord a => a -> a -> a
maximo x y | x > y = x
maximo _ y = y
-- Ord: (<), (<=), (>=), (>), max, min, compare
```

Tipos algebráicos

```
data Figura = Circulo Float | Rectangulo Float Float
deriving Eq -- deriva la igualdad nativa
-- (Circulo 1) == (Circulo 1)
```

Estas cosas nos permiten hacer funciones genéricas.

Funciones de alto orden: las funciones son first class citizens, se pueden pasar como parámetro.

1.2.1 Currificación

Es un mecanismo que permite reemplazar argumentos estructurados por una secuencia de argumentos "simples". Ventajas:

- Evaluación parcial: succ = suma 1
- Evita escribir paréntesis (asumiendo que la aplicación asocia a izquierda). suma 1 2 = ((suma 1) 2)

curry y uncurry

En criollo: una equivalencia entre una func con muchos parametros (una tupla) y una funcion equivalente que va tomando de a uno y devuelve funciones.

```
curry :: ((a, b) -> c) -> (a -> (b -> c))
curry f a b = f (a, b)

suma x y = x + y
suma' :: (Int, Int) -> Int
suma' (x, y) = x + y

curry suma' 1 2 = suma' (1, 2)
curry suma' :: (Int -> (Int -> Int))

uncurry :: (a -> b -> c) -> ((a -> b) -> c)
uncurry f (a, b) = f a b
```

1.2.2 Pattern matching

Una forma copada de definir funciones. Es un mecanismo para comparar un valor con un patrón. Si la comparación tiene éxito se puede deconstruir un valor en sus partes.

```
data Figura = Circulo Float | Rectangulo Float Float
area :: Figura -> Float
area (Circulo radio) = pi * radio ^ 2
area (Rectangulo 11 12) = 11 * 12
```

El patrón está formado por el constructor y las variables. Los casos se evalúan en el orden en el que están escritos.

```
esCuadrado :: Figura -> Bool
-- No vale esto?
-- esCuadrado (Rectangulo x y) = (x == y)
esCuadrado (Rectangulo x y) | (x==y) = True
esCuadrado _ = False
```

También se pueden definir funciones parciales (que no estén definidas para todo el dominio).

1.2.3 Tipos recursivos

La definición de un tipo puede tener uno o más parámetros del tipo

1.2.4 Listas

Tipo algebráico paramétrico recursivo con dos constructores:

```
[] :: [a] -- lista vacia
(:) :: a -> [a] -> [a] -- constructor infijo

-- Ejemplo
-- 1 : [2, 3] = [1, 2, 3]

Pattern matching

vacia :: [a] -> Bool

vacia [] = True

vacia _ = False

long :: [a] -> Int

long [] = 0

long x:xs = 1 + long xs
```

1.2.5 No terminación y orden de evaluación

```
-- No terminación
inf1 :: [Int]
inf1 = 1 : inf1

-- Evaluación no estricta
const :: a -> b -> a
const x y = x

-- const 42 inf1 -> 42 (pero depende del mecanismo de reducción del
-- lenguaje)
```

1.3 Evaluación lazy

el modelo de cómputo de haskell es la **reducción**. Se reemplaza un *redex* por otro usando las ecuaciones orientadas. Un redex (reducible expression) es una sub-expresión que no está en forma normal (irreducible).

Un redex debe ser una **instancia** del lado izquierdo de alguna ecuación y será reemplazado por el lado derecho con las variables correspondientes ligadas. El resto de la expresión no cambia.

Haskell hace esto hasta llegar a una forma normal, un valor irreducible.

```
const x y = x. const x y es un redex, y lo reduzco a x.
```

Y cómo selecciono una redex? **Orden normal** (lazy). Se selecciona el redex más externo para el que se pueda conocer que ecuación del programa utilizar. En general, primero las funciones más externas y luego los argumentos, solo de ser necesarios.

Modo aplicativo: reduce primero todos los argumentos. Se hace en otros lenguajes como c.

1.4 Esquemas de recursion

Formas de recursion comunes que uno puede aprovechar usando funciones de alto orden.

1.4.1 Map

```
-- tal que dobleL xs es la lista que contiene el doble de cada elemento en xs
dobleL :: [Float] -> [Float]
dobleL [] = []
dobleL (x:xs) = 2*x : dobleL xs

-- tal que la lista esParL xs indica si el correspondiente elemento en xs es par
-- o no
esParL :: [Int] -> [Bool]
```

```
esParL [] = []
esParL (x:xs) = (even x) : esParL xs
-- tal que longL xs es la lista que contiene las longitudes de las listas en xs
longL :: [[a]] -> [Int]
longL [] = []
longL (x:xs) = (length x) : longL xs
-- esquema recursivo de map:
map :: (a -> b) -> [a] -> [b]
map [] = []
map g (x:xs) = g x : map g xs
-- Con eso, se pueden reescribir como
dobleL = map ((*) 2)
esParL = map even
longL = map length
1.4.2
      Filter
-- tal que negativos xs contiene los elementos negativos de xs
negativos :: [Float] -> [Float]
negativos [] = []
negativos (x:xs)
    | x < 0 = x : (negativos xs)
    | otherwise = negativos xs
-- tal que la lista noVacias xs contiene las listas no vacias de xs
noVacias :: [[a]] -> [[a]]
noVacias [] = []
noVacias (1:1s)
    | (length 1 > 0) = 1 : (noVacias ls)
    | otherwise = noVacias ls
-- esquema recursivo:
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs) = if (p x) then x : (filter p xs)
                  else (filter p xs)
-- luego quedan
negativos = filter (\x -> x < 0)
noVacias = filter (\lambda -> length 1 != 0)
noVacias = filter ((> 0) . length) -- f \circ g = f(g(x))
```

1.5 Transparencia referencial

El valor de una expresion en funcional depende solo de sus subexpresiones. Esto a diferencia de imperativo que depende del estado.

Si dos expresiones son iguales, denotan el mismo valor bajo el mismo contexto.

1.6 Folds

1.6.1 foldr

```
-- Funciones sobre listas
-- sumaL: suma de todos los valores de una lista de enteros
sumaL :: [Int] -> Int
sumaL [] = 0
sumal (x:xs) = x + (sumal xs)
-- concat: la concatenación de todos los elementos de una lista de listas
concat :: [[a]] -> [a]
concat [] = []
concat (1:1s) = 1 ++ (concat 1s)
-- reverso: el reverso de una lista
reverso :: [a] -> [a]
reverso [] = []
reverso (x:xs) = (reverso xs) ++ [x]
-- Esquema de recursión
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
-- Luego, con esto
sumaL = foldr (+) 0
concat = foldr (++) []
reverso = foldr (\x rec -> rec ++ [x]) []
reverso = foldr ( (flip (++)) . (:[])) []
-- Hasta podemos definir map y filter. El fold es más general que el map y
-- filter
map f = foldr (\x rec -> f x : rec) []
map f = foldr ((:) . f) []
-- (:) . f :: a -> [b] -> [b]
```

```
-- ((:) . f) x = (f x) :
filter p = foldr (\x rec -> if p x then x : rec else rec) []
-- Longitud y suma con una sola pasada sobre la lista
sumaLong :: [Int] -> (Int, Int)
sumaLong = foldr (\x (rl, rn) -> (rl + 1, rn + x)) (0, 0)
1.6.2 recr
-- dropWhile
dropWhile :: (a -> Bool) -> [a] -> [a]
dropWhile _ [] = []
dropWhile p (x:xs) = if p x then dropWhile p xs else x:xs
-- ejemplo
dropWhile even [2, 4, 1, 6] = [1, 6]
-- drop while cuando se termina de cumplir devuelvo todo lo que viene "a la
-- derecha", pero cuando hago fold, lo que está a la derecha ya pasó por la
-- recursión.
dw p = first $ (foldr (\x (r1, r2))
    -> (if p x then r1 else x: r2, x: r2)), ([], []))
-- Otro esquema más poderoso
g :: [a] -> b
g = z
g(x:xs) = f x xs (g xs)
recr :: b -> (a -> [a] -> b -> b) -> [a] -> b
recr z _ [] = z
recr z f (x:xs) = f x xs (rec z f xs)
dropWhile p = recr [] (\x xs rec -> if p x then rec else x:xs)
-- foldr en terminos de recr?
foldr f z = recr z (\x xs rec -> f x rec)
-- recr en términos de foldr?
recr z f = first $
    foldr
        (\x (rs1, rs2) -> (f x rs2 rs1, x:rs2))
        (z, [])
```

1.6.3 foldl

```
foldl :: (b -> a -> b) -> b -> [a] -> b
foldl _ z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

foldr = fold a la derecha, y foldl = fold a la izquierda

reverse = foldl (\c x -> x:c) []
reverse = foldl (flip (:)) []
```

Y uno en términos del otro? Me falta repasar esto porque estaba matado, min 2:35:10 del video

1.6.4 Fold sobre estructuras algebrácias

```
-- Arbol binario
data Arbol a = Hoja a | Nodo a (Arbol a) (Arbol a)
-- Por ej.
Nodo 1 (Hoja 2) (Hoja 3)
-- Es
-- 1
-- / \
-- 2 3
-- Y sobre ella podemos querer operaciones, como map
mapA :: (a -> b) -> Arbol a -> Arbol b
mapA f (Hoja x) = Hoja f x
mapA f (Nodo x izq der) = Nodo (f x) (mapA f izq) (mapA f der)
-- Y también podemos hacer un fold
foldA :: (a \rightarrow b) \rightarrow (a \rightarrow b \rightarrow b \rightarrow b) \rightarrow Arbol a \rightarrow b
foldA f g (Hoja x) = f x
foldA f g (Nodo x izq der) = g x (foldA f g izq) (foldA f g der)
sumaA = foldA id (\x rizq rder -> x + rizq + rder)
contarHojas = foldA 1 (\x rizq rder -> rizq + rder)
-- Arboles generales
data AG = NodoAG a [AG a]
```

Aplicar un fold con un constructor es la identidad.