

Mechanics of Materials I: Fundamentals of Stress & Strain and Axial Loading

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 23 Learning Outcome

 Represent the transformation of plane stress using Mohr's Circle

Plane Stress

Mohr's Circle

Graphical tool for the depiction of the transformation equations for plane stress

$$\left(\sigma_n - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \left(\tau_{nt} - 0\right)^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

Radius =
$$\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Center:
$$\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\sigma_{AVG}, 0\right)$$

The angle on Mohr's circle is 2 times the stress block angle

Mohr's circle is a circle where each point represents the stress σ and τ on a particular plane through a single point

Mohr's Circle

$$\left(\sigma_n - \frac{\sigma_x + \sigma_y}{2}\right)^2 + \left(\tau_{nt} - 0\right)^2 = \left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2$$

Radius =
$$\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$
 Center: $\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\sigma_{AVG}, 0\right)$

Sign Convention

Mohr's Circle
$$\left(\sigma_{n} - \frac{\sigma_{x} + \sigma_{y}}{2}\right)^{2} + (\tau_{nt} - 0)^{2} = \left(\frac{\sigma_{x} - \sigma_{y}}{2}\right)^{2} + \tau_{xy}^{2}$$

Radius = $\sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$ Center: $\left(\frac{\sigma_x + \sigma_y}{2}, 0\right) = \left(\sigma_{AVG}, 0\right)$

Horizontal face

Vertical face

$$(\tau, -\tau)$$

 $H = (+\sigma_{v}, +\tau_{vx})$ $V = (+\sigma_{v}, -\tau_{vy})$