MATH 311

Chapter 7

SECTION 7.2: KERNEL AND IMAGE OF A LINEAR TRANSFORMATION

CONTENTS

Definitions	2
One-to-One and Onto Transformations Dimension Theorem	5
	7

Created by: Pierre-Olivier Parisé Spring 2024

DEFINITIONS

For this section, $T:V\to W$ is assumed to be a linear transformation.

DEFINITION 1.

① The **kernel** of T is the set

$$\ker T := \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0} \}.$$

 \bigcirc The **image** of T is the set

$$\operatorname{im} T := \{ T(\mathbf{v}) : \mathbf{v} \in V \}.$$

EXAMPLE 1. Let A be an $m \times n$ matrix and consider $T_A(\mathbf{x}) = A\mathbf{x}$, where $\mathbf{x} \in \mathbb{R}^n$.

- a) We have $\ker T_A = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \} = \operatorname{null} A$.
- b) We have im $T_A = \{A\mathbf{x} : \mathbf{x} \in \mathbb{R}^n\} = \text{im } A$.

THEOREM 1. We have that ker T is a subspace of V and im T is a subspace of W.

Notes:

- ① We set nullity $T := \dim(\ker T)$.
- 2 We set rank $T := \dim(\operatorname{im} T)$.

EXAMPLE 2. Define $T: \mathbf{M_{nn}} \to \mathbf{M_{nn}}$ by $T(A) := A - A^{\top}$. Find (a) ker T (b) im T.

SOLUTION.

ONE-TO-ONE AND ONTO TRANSFORMATIONS

DEFINITION 2. Assume that $T: V \to W$ is a linear transformation.

- ① T is said to be **onto** if im T = W.
- ② T is said to be **one-to-one** if ker $T = \{0\}$.

EXAMPLE 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ defined by T(x, y, z) = (x, x, y, y).

- a) Is T onto?
- b) Is T one-to-one? If not, find nullity T.

DIMENSION THEOREM

THEOREM 2. Let $T:V\to W$ be any linear transformation with $n=\dim V<\infty$. Then

$$\dim V = \text{nullity } T + \text{rank } T.$$

Idea of the Proof. We let

- $r = \operatorname{rank} T = \dim(\operatorname{im} T);$
- $k = \text{nullity } T = \dim(\ker T).$

Let $\{\mathbf{w_1}, \mathbf{w_2}, \dots, \mathbf{w_r}\}$ be a basis for im T. Then there are vectors $\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_r}$ such that $T(\mathbf{e_i}) = \mathbf{w_i}$.

Let $\{\mathbf{f_1}, \mathbf{f_2}, \dots, \mathbf{f_k}\}$ be a basis for ker T.

Then the idea is to show that $\{e_1, e_2, \dots, e_r, f_1, \dots, f_k\}$ is a basis for V, so that we get

$$n = k + r$$

showing the claim.