Math 110, Summer 2013 Instructor: James McIvor Homework 4 Due THURSDAY, July 25th

- (1) Which of the following maps are isomorphisms? Explain why or why not.
 - (a) $T \colon P_3(\mathbb{F}) \to \mathbb{F}^3$ given by $T(p(x)) = \begin{pmatrix} p(1) \\ p(2) \\ p(3) \end{pmatrix}$.
 - (b) $T: \mathbb{F}^3 \to \mathbb{F}^3$ given by $T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x+y \\ y+z \\ x-z \end{pmatrix}$.
 - (c) $T: P(\mathbb{F}) \to P(\mathbb{F})$ given by $T(a_0 + a_1x + \dots + a_{n-1}x^{n-1} + a_nx^n) = (a_n + a_{n-1}x + \dots + a_1x^{n-1} + a_0x^n)$.
 - (d) $T: \mathcal{L}(\mathbb{F}, V) \to V$ given by, for $S \in \mathcal{L}(\mathbb{F}, V)$, T(S) = S(1).
- (2) Prove that isomorphism (denoted \cong) is an equivalence relation on the set of vector spaces. That is, prove
 - (a) $V \cong V$ for every vector space V.
 - (b) If V, W are two vector spaces with $V \cong W$, then $W \cong V$.
 - (c) If U, V, W are three vector spaces such that $U \cong V$ and $V \cong W$, then $U \cong W$.
- (3) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be given by $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} y \\ -y \end{pmatrix}$. Find a subspace U of \mathbb{R}^2 such that $T|_U$ is the identity map on U. Find a subspace W of \mathbb{R}^2 such that $T|_W$ is the zero map on W.
- (4) (True or false? If true, prove it. If false, find a counterexample.) If $T \in \mathcal{L}(V)$ and U is a subspace of V that is T-invariant, then U contains a non-zero eigenvector for T.
- (5) Consider the operator $T: P_2(\mathbb{F}) \to P_2(\mathbb{F})$ given by Tp(x) = xp'(x). Find a basis for $P_2(\mathbb{F})$ with respect to which the matrix for T is diagonal (in other words, diagonalize T).
- (6) Consider the operator $T: \mathbb{F}^3 \to \mathbb{F}^3$ given by Tx = Ax, where $A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 2 & 1 \\ -2 & 0 & 3 \end{pmatrix}$. Find a basis for \mathbb{F}^3 with respect to which the matrix for T is diagonal (in other words, diagonalize T).
- (7) If $P \in \mathcal{L}(V)$ satisfies $P^2 = P$,
 - (a) prove that the only eigenvalues of P are 0 and 1, and
 - (b) prove that the set of eigenvectors with eigenvalue 1 is equal to the range of P.
- (8) Let $S, T \in \mathcal{L}(V)$ be such that ST = TS (we say they "commute")
 - (a) Prove that T^n and S commute, for any $n \geq 0$.
 - (b) Let p(x) be any polynomial, and let $p(T) \in \mathcal{L}(V)$ be the operator obtained by replacing x by T, as defined in class. Prove that Null p(T) is invariant under S.
- (9) Let $T \in \mathcal{L}(V)$. Prove that if v is a non-zero eigenvector of T which is not in Range T, then $v \in \text{Null } T$.