Master RSD (2011-2012)

Corrigé du contrôle N°1 du module Complexité

Exercice 1:

$$\sum_{i=1}^{n} \frac{i}{2^{i}} = 2 - \frac{n}{2^{n}} - \frac{2}{2^{n}}$$

On prouve l'expression par récurrence.

Pour n=1 on a

$$\sum_{i=1}^{1} \frac{i}{2^i} = 2 - \frac{1}{2^1} - \frac{2}{2^1} \quad ?$$

$$\sum_{i=1}^{1} \frac{i}{2^i} = \frac{1}{2^1}$$

$$2 - \frac{1}{2^1} - \frac{2}{2^1} = 2 - \frac{1}{2} - 1 = 1 - \frac{1}{2} = \frac{2}{2} - \frac{1}{2} = \frac{1}{2}$$

Donc l'expression est vraie pour n=1, on suppose qu'elle est vraie pour n et on montre qu'elle est vraie pour n+1.

$$\sum_{i=1}^{n+1} \frac{i}{2^i} = 2 - \frac{n+1}{2^{n+1}} - \frac{2}{2^{n+1}}$$

$$\sum_{i=1}^{n+1} \frac{i}{2^i} = \sum_{i=1}^{n} \frac{i}{2^i} + \frac{n+1}{2^{n+1}} = 2 - \frac{n}{2^n} - \frac{2}{2^n} + \frac{n+1}{2^{n+1}}$$

$$= 2 - \frac{2^n}{2^{n+1}} - \frac{4}{2^{n+1}} + \frac{n+1}{2^{n+1}}$$

$$= 2 + \frac{-2n-4+n+1}{2^{n+1}}$$

$$= 2 + \frac{-n-3}{2^{n+1}}$$

$$= 2 + \frac{-n-2-1}{2^{n+1}}$$

$$= 2 + \frac{-(n+1)-2}{2^{n+1}}$$

= $2 - \frac{n+1}{2^{n+1}} - \frac{2}{2^{n+1}}$ Ce qu'il fallait démontrer

Donc l'expression est Vraie.

Exercice 2:

```
a- fonction Palindromelter(A :tableau[1..n] de caractères ; n :entier) :entier ;

var i, j :entier ;

debut

i ← 1; j ← n;

tantque (i < j) et (A[i] = A[j]) faire

i ← i + 1; j ← j - 1;

fait;

si (i > = j) alors retourner 1

sinon retourner 0 ;

fsi ;

fin ;
```

b- Invariant de boucle:

« A la fin de la $k^{ième}$ itération de la boucle tantque tous les caractères A[1..i] sont égaux à A[n..j] puis on incrémente i et on décrémente j. La fonction s'arrête si $i_{k+1} > = j_{k+1}$ et retourne 1 ou bien elle s'arrête si $A[i_{k+1}] \neq A[j_{k+1}]$ et retourne 0 »

c- On montre la validité de l'invariant par récurrence sur i.

L'invariant est facilement vérifié pour la $\mathbf{1}^{\text{ère}}$ itération on a i=1 et j=n si A[1]=A[n] alors on incrémente $i_2=i_1+1$ et on décrémente $j_2=j_1-1$, si i>=j alors la fonction se termine et le mot est un palindrome sinon si A[1] \neq A[n] la fonction se termine et le mot n'est pas un palindrome.

On suppose que l'invariant est vrai à la fin de l'itération \mathbf{i} et on montre qu'il est vrai, s'il y en a, pour l'itération $\mathbf{i+1}$, c'est que $\forall \ k \in \{1...i\}$ et $\ l \in \{n...j\}$ $\ A[k] = A[l]$. Si $\ k_{i+1} < \ l_{i+1}$ et $\ A[k_{l+1}] = A[l_{l+1}]$ on incrémente $\ l$ et on décrémente $\ l$ sinon si $\ k_{i+1} > = l_{i+1}$ alors la fonction se termine et le mot est un palindrome sinon si $\ A[k_{l+1}] \neq A[l_{l+1}]$ alors la fonction se termine et le mot n'est pas un palindrome. L'invariant à la fin de l'itération $\mathbf{i+1}$ est donc vérifié.

Au pire des cas le mot est un palindrome et aura fait n/2 comparaisons, donc la complexité au pire des cas est de O(n/2) et dans le meilleur des cas la fonction s'arrête quand A[1] \neq A[n] donc la complexité est en O(1).

Invariant:

« A la fin de la k^{ieme} itération si i>=j la fonction se termine et le mot est un palindrome ou bien $A[i] \neq A[j]$ et la fonction se termine et le mot n'est pas un palindrome sinon on fait un appel récursif en incrémentant i et en décrémentant j »