湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 1

题型一 构造函数,利用最值证明不等式

1.(1)解 由题意, f(x)的定义域为(0, $+\infty$), 且 $f(x) = \frac{1}{x} - a$.

当 $a \le 0$ 时,f(x) > 0 恒成立,f(x) 在f(x) 在f(x) 在f(x) 在f(x) 。

当 a>0 时,令 f(x)>0,解得 $0< x<\frac{1}{a}$; 令 f(x)<0,解得 $x>\frac{1}{a}$,

 $\therefore f(x)$ 在 $\left(0, \frac{1}{a}\right)$ 上单调递增,在 $\left(\frac{1}{a}, +\infty\right)$ 上单调递减.

(2)证明 设 $g(x) = \frac{2e^x}{xe^2} - a(x+1) - f(x) = \frac{2}{e^2} \cdot \frac{e^x}{x} - \ln x$,则 $g'(x) = \frac{2}{e^2} \cdot \frac{xe^x - e^x}{x^2} - \frac{1}{x} = \frac{2(x-1)e^x - e^2x}{e^2x^2}$.

 $\Rightarrow r(x) = 2(x-1)e^x - e^2x$, $y = r'(x) = 2xe^x - e^2$.

易得 r'(x)在(0, $+\infty$)上单调递增,且 $r'(1)=2e-e^2<0$, $r'(2)=3e^2>0$,

∴存在唯一的实数 $x_0 \in (1, 2)$, 使得 $r'(x_0) = 0$,

 $\therefore r(x)$ 在区间 $(0, x_0)$ 上单调递减; 在 $(x_0, +\infty)$ 上单调递增.

 $\nabla r(0) = -2 < 0, r(2) = 0,$

当 0 < x < 2 时,r(x) < 0,g'(x) < 0;当 x > 2 时,r(x) > 0,g'(x) > 0,

 $\therefore g(x)$ 在(0, 2)上单调递减,在 $(2, +\infty)$ 上单调递增.

因此当 x=2 时,g(x)取到最小值 $g(x)_{min}=g(2)=1-\ln 2>0$.

综上, $\frac{2}{e^2} \frac{e^x}{x} - \ln x > 0$, 即 $\frac{2e^x}{xe^2} - a(x+1) > f(x)$.

2.(1)解 由题意得 $y=xf(x)=x\ln(a-x)$,则 $y'=\ln(a-x)+x[\ln(a-x)]'$.因为 x=0 是函数 y=xf(x)的极值点,所以 $y'|_{x=0}=\ln a=0$,所以 a=1(经验证,a=1 符合题意).

(2)证明 由(1)可知, $f(x) = \ln(1-x)$,其定义域为 $\{x \mid x < 1\}$.设 $g(x) = x + f(x) - x f(x) = x + \ln(1-x) - x \ln(1-x)$,令 1-x=t,则 t > 0,要证 $g(x) \ge 0$,只需证明 $1-t+t \ln t \ge 0$.

 $\Leftrightarrow h(t) = 1 - t + t \ln t$, $\bigcup h'(t) = -1 + \ln t + 1 = \ln t$,

当 $t \in (0, 1)$ 时,h'(t) < 0;当 $t \in (1, +\infty)$ 时,h'(t) > 0,

所以 h(t)在(0, 1)上单调递减,在 $(1, +\infty)$ 上单调递增.所以 h(t)在 $(0, +\infty)$ 的最小值为 h(1)=0,

因此 $h(t) \ge 0$,从而 $g(x) \ge 0$,所以当 x < a 时, $x + f(x) \ge x f(x)$ 成立.

3.(1)解 由已知, 有 $f(x) = e^x(\cos x - \sin x)$.

因此,当 $x \in \left(2k\pi + \frac{\pi}{4}, 2k\pi + \frac{5\pi}{4}\right)$ $(k \in \mathbb{Z})$ 时,有 $\sin x > \cos x$,得 f(x) < 0,则 f(x) 单调递减;

当 $x \in \left(2k\pi - \frac{3\pi}{4}, 2k\pi + \frac{\pi}{4}\right)$ $(k \in \mathbb{Z})$ 时,有 $\sin x < \cos x$,得 f(x) > 0,则 f(x) 单调递增,

所以 f(x)的单调递增区间为 $\left(2k\pi - \frac{3\pi}{4}, 2k\pi + \frac{\pi}{4}\right)(k \in \mathbb{Z})$,

f(x)的单调递减区间为 $\left(2k\pi + \frac{\pi}{4}, 2k\pi + \frac{5\pi}{4}\right)(k \in \mathbb{Z}).$

(2)证明 记 $h(x) = f(x) + g(x) \left(\frac{\pi}{2} - x\right)$.

依题意及(1), 有 $g(x)=e^x(\cos x-\sin x)$, 从而 $g'(x)=-2e^x\sin x$.

当
$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
时, $g'(x) < 0$,故 $h'(x) = f'(x) + g'(x) \left(\frac{\pi}{2} - x\right) + g(x)(-1) = g'(x) \left(\frac{\pi}{2} - x\right) < 0$.

因此,h(x)在区间 $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ 上单调递减,进而 $h(x) \ge h\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) = 0$.

所以当
$$x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$$
时, $f(x) + g(x)\left(\frac{\pi}{2} - x\right)$

题型二 放缩后构造函数证明不等式

4(1)解 f(x)的定义域为(0, $+\infty$), $f(x)=ae^x-\frac{1}{x}$.由题设知, f(2)=0, 所以 $a=\frac{1}{2e^2}$,

从而
$$f(x) = \frac{1}{2e^2}e^x - \ln x - 1$$
, $f'(x) = \frac{1}{2e^2}e^x - \frac{1}{x}$.

当 0 < x < 2 时,f(x) < 0; 当 x > 2 时,f(x) > 0,

所以 f(x)的单调递减区间为(0, 2), 单调递增区间为 $(2, +\infty)$.

(2)证明 当
$$a \ge \frac{1}{e}$$
时, $f(x) \ge \frac{e^x}{e} - \ln x - 1(x > 0)$. 设 $g(x) = \frac{e^x}{e} - \ln x - 1(x > 0)$,则 $g'(x) = \frac{e^x}{e} - \frac{1}{x}(x > 0)$.

当 0 < x < 1 时,g'(x) < 0;当 x > 1 时,g'(x) > 0,

所以 x=1 是 g(x)的极小值点, 也是最小值点.

故当 x>0 时, $g(x) \ge g(1) = 0$.

因此,当 $a \ge \frac{1}{e}$ 时, $f(x) \ge 0$.

5. (1) **A**
$$= 1 \text{ b}, f(x) = \ln x - \frac{\ln x}{x^2}, x \in (0, +\infty),$$

$$\therefore f(x) = \frac{1}{x} - \frac{1 - 2\ln x}{x^3} = \frac{x^2 - 1 + 2\ln x}{x^3} = \frac{(x - 1)(x + 1) + 2\ln x}{x^3}$$

当 $x \in (0, 1)$ 时,f(x) < 0,当 $x \in (1, +\infty)$ 时,f(x) > 0,

 $\therefore f(x)$ 的单调递减区间为(0, 1),单调递增区间为 $(1, +\infty)$.

(2)证明 当
$$a=0$$
, $x \in (0, 1)$ 时, $x^2 - \frac{1}{x} < \frac{f(x)}{e^x}$ 等价于 $\frac{-\ln x}{e^x} + x^2 - \frac{1}{x} < 0$.

∴
$$\pm x \in (0, 1)$$
 $\forall x \in (1, e), -\ln x > 0, ∴ $\frac{-\ln x}{e^x} < -\ln x,$$

∴只需要证
$$-\ln x + x^2 - \frac{1}{x} < 0$$
 在(0, 1)上恒成立.

$$\Leftrightarrow g(x) = -\ln x + x^2 - \frac{1}{x}, \quad x \in (0, 1), \quad \therefore g'(x) = -\frac{1}{x} + 2x + \frac{1}{x^2} = \frac{2x^3 - x + 1}{x^2} > 0$$

则函数 g(x)在(0, 1)上单调递增,于是 $g(x) < g(1) = -\ln 1 + 1 - 1 = 0$,

∴ 当
$$x \in (0, 1)$$
 时, $x^2 - \frac{1}{x} < \frac{f(x)}{e^x}$.

6.(1)解 由已知,有 $f(x)=e^x(\cos x-\sin x)$.

因此,当
$$x \in \left(2k\pi + \frac{\pi}{4}, 2k\pi + \frac{5\pi}{4}\right) (k \in \mathbb{Z})$$
时,

有 $\sin x > \cos x$, 得 f(x) < 0, 则 f(x)单调递减;

当
$$x \in \left(2k\pi - \frac{3\pi}{4}, 2k\pi + \frac{\pi}{4}\right)$$
 ($k \in \mathbb{Z}$)时,有 $\sin x < \cos x$,

得 f(x)>0,则 f(x)单调递增,

所以 f(x)的单调递增区间为 $\left(2k\pi - \frac{3\pi}{4}, 2k\pi + \frac{\pi}{4}\right)(k \in \mathbb{Z})$,

f(x)的单调递减区间为 $\left(2k\pi + \frac{\pi}{4}, 2k\pi + \frac{5\pi}{4}\right)(k \in \mathbb{Z}).$

(2)证明 记 $h(x) = f(x) + g(x) \left(\frac{\pi}{2} - x\right)$.依题意及(1),有 $g(x) = e^x(\cos x - \sin x)$,从而 $g'(x) = -2e^x \sin x$.

$$\stackrel{\text{"}}{=} x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$
 时, $g'(x) < 0$,故 $h'(x) = f'(x) + g'(x) \left(\frac{\pi}{2} - x\right) + g(x)(-1) = g'(x) \left(\frac{\pi}{2} - x\right) < 0$.

因此,h(x)在区间 $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ 上单调递减,进而 $h(x) \geqslant h\left(\frac{\pi}{2}\right) = f\left(\frac{\pi}{2}\right) = 0$.

所以当 $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ 时, $f(x) + g(x)\left(\frac{\pi}{2} - x\right)$

7. (1) a=1, b=1;

(2)
$$\boxplus$$
 (1) $\exists \exists f(x) = (x+1)(e^x-1), f(0) = 0, f(-1) = 0,$

由 $m \le 0$,可得 $x \ge mx^2 + x$,

$$\Rightarrow g(x) = (x+1)(e^x-1)-x$$
, $\bigcup g'(x) = (x+2)e^x-2$,

当
$$x \le -2$$
 时, $g'(x) = (x+2)e^x - 2 < -2 < 0$,

当
$$x>-2$$
时,设 $h(x)=g'(x)=(x+2)e^x-2$,则 $h'(x)=(x+3)e^x>0$,

故函数 g'(x) 在 $(-2,+\infty)$ 上单调递增,

又
$$g'(0) = 0$$
, 所以当 $x \in (-\infty,0)$ 时, $g'(x) < 0$, 当 $x \in (0,+\infty)$ 时, $g'(x) > 0$,

所以函数 g(x) 在区间 $(-\infty,0)$ 上单调递减,在区间 $(0,+\infty)$ 上单调递增,

故
$$g(x) \ge g(0) = 0$$
, $\mathbb{P}(x+1)(e^x-1) \ge x \ge mx^2 + x$.

故 $f(x) \ge mx^2 + x$.

8. 【解析】(1) $f'(x) = \frac{2(1-x-x\ln x)}{xe^x}$, 令 $g(x) = 1-x-x\ln x$, 则 g(1) = 0,

当 0 < x < 1 时, 1 - x > 0, $-x \ln x > 0$, 所以 g(x) > 0, f'(x) > 0,

当 x>1时, $1-x<0,-x\ln x<0$, 所以 g(x)<0,f'(x)<0,

所以函数 f(x) 在(0,1) 上单调递增,在(1,+ ∞) 上单调递减;

(2) 要证明
$$f'(x)\ln(x+1) < \frac{2}{e^x} + \frac{2}{e^{x+2}}$$
, 即证 $(1-x-x\ln x)\ln(x+1) < \left(1+\frac{1}{e^2}\right)x$,

 $\Rightarrow g(x) = 1 - x - x \ln x$, $\emptyset g'(x) = -1 - (\ln x + 1) = -2 - \ln x$,

所以函数 g(x) 在 $\left(0, \frac{1}{e^2}\right)$ 上单调递增,在 $\left(\frac{1}{e^2}, +\infty\right)$ 上单调递减, $g(x) \le 1 - \frac{1}{e^2} + \frac{2}{e^2} = 1 + \frac{1}{e^2}$,

所以 $1-x-x\ln x \le 1+\frac{1}{e^2}$.

要证 $(1-x-x\ln x)\ln(x+1)<\left(1+\frac{1}{e^2}\right)x$,只需再证 $\ln(x+1)< x$ 即可.

易证 $\ln x \le x - 1$, 当且仅当 x = 1 时取等号(证明略), 所以 $0 < \ln(x + 1) < x$,

综上所述,当 x > 0 时,都有 $f'(x)\ln(x+1) < \frac{2}{e^x} + \frac{2}{e^{x+2}}$.

9. 【解析】(1) $f(x)=e^x-x^2$, $f'(x)=e^x-2x$, 由题设得 f'(1)=e-2, f(1)=e-1,

所以曲线 f(x) 在 x=1 处的切线方程为 y=(e-2)(x-1)+e-1, 即 y=(e-2)x+1;

(2) $\Rightarrow g(x) = f'(x)$, $\bigcup g'(x) = e^x - 2$,

当 $x < \ln 2$ 时, g'(x) < 0 ,当 $x > \ln 2$ 时, g'(x) > 0 ,所以函数 g(x) = f'(x) 在 $(-\infty, \ln 2)$ 上单调递减,在 $(\ln 2, +\infty)$ 上单调递增, $g(x)_{\min} = g(\ln 2) = f'(\ln 2) = 2 - 2\ln 2 > 0$,所以函数 $f(x) = e^x - x^2$ 在 $(0, +\infty)$ 上单调递增,

由于曲线 f(x) 在 x=1 处的切线方程为 y=(e-2)x+1, f(1)=e-1,可猜测函数 f(x) 的图象恒在切线 y=(e-2)x+1的上方.

先证明当 x > 0 时, $f(x) \ge (e-2)x+1$.

设
$$h(x) = f(x) - (e-2)x - 1(x > 0)$$
,则 $h'(x) = e^x - 2x - (e-2), h''(x) = e^x - 2$,

当 $x < \ln 2$ 时, h''(x) < 0, 当 $x > \ln 2$ 时, h''(x) > 0,

所以h'(x)在 $(0,\ln 2)$ 上单调递减,在 $(\ln 2,+\infty)$ 上单调递增,

曲 $h'(0)=3-e>0,h'(1)=0,0<\ln 2<1$, 所以 $h'(\ln 2)<0$,

所以存在 $x_0 \in (0, \ln 2)$, 使得 $h'(x_0) = 0$,

所以当 $x \in (0,x_0) \cup (1,+\infty)$ 时,h'(x) > 0,当 $x \in (x_0,1)$ 时,h'(x) < 0,

所以h(x)在 $(0,x_0)$ 上单调递增,在 $(x_0,1)$ 上单调递减,在 $(1,+\infty)$ 上单调递增.

因为h(0)=h(1)=0, 所以 $h(x)\geq 0$, 即 $f(x)\geq (e-2)x+1$, 当且仅当x=1时取等号,

所以当 x > 0 时, $e^x - x^2 \ge (e-2)x + 1$,

变形可得 $\frac{e^x + (2-e)x - 1}{x} \ge x$,

又由于 $x \ge \ln x + 1$, 当且仅当 x = 1时取等号(证明略),

所以 $\frac{e^x + (2-e)x - 1}{x} \ge \ln x + 1$, 当且仅当 x = 1 时取等号.

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 2

10. (1) $[-1,+\infty)$;

(2) 设数列
$$\{a_n\},\{b_n\}$$
 的前 n 项的和分别为 $S_n = \frac{n}{2n+4}, T_n = \frac{n}{n+1}$,则

由于
$$a_n = \begin{cases} S_1(n=1), \\ S_n - S_{n-1}(n \ge 2), \end{cases}$$
,解得 $a_n = \frac{1}{(n+1)(n+2)}$;

同理,
$$b_n = \frac{1}{n(n+1)}$$
,

所以只需证明
$$a_n = \frac{1}{(n+1)(n+2)} < \ln^2 \frac{n+1}{n} < b_n = \frac{1}{n(n+1)}$$
.

由(1)知
$$a=-1$$
时,有 $x \ln x \ge x-1$,即 $\ln x \ge \frac{x-1}{x}$.令 $x = \frac{n+1}{n} > 1$,则 $\ln \frac{n+1}{n} > \frac{1}{n+1}$,

所以
$$\ln^2 \frac{n+1}{n} > \frac{1}{(n+1)^2} > \frac{1}{(n+1)(n+2)} = \frac{1}{n+1} - \frac{1}{n+2}$$
,所以 $\ln^2 2 + \ln^2 \frac{3}{2} + \dots + \ln^2 \frac{n+1}{n} > \frac{1}{2} - \frac{1}{n+2} = \frac{n}{2n+4}$;

再证明
$$\ln^2 \frac{n+1}{n} < \frac{1}{n(n+1)}$$
,亦即 $\ln \frac{n+1}{n} < \frac{1}{\sqrt{n}\sqrt{n+1}}$,

因为
$$\ln \frac{n+1}{n} = 2 \ln \sqrt{\frac{n+1}{n}}$$
 , $\frac{1}{\sqrt{n}\sqrt{n+1}} = \frac{n+1-n}{\sqrt{n}\sqrt{n+1}} = \frac{\sqrt{n+1}}{\sqrt{n}} - \frac{\sqrt{n}}{\sqrt{n+1}}$,所以只需证 $2 \ln \sqrt{\frac{n+1}{n}} < \frac{\sqrt{n+1}}{\sqrt{n}} - \frac{\sqrt{n}}{\sqrt{n+1}}$,

现证明
$$2\ln x < x - \frac{1}{x}(x > 1)$$
. $\Rightarrow h(x) = 2\ln x - x + \frac{1}{x}(x > 1)$, 则 $h'(x) = \frac{2}{x} - 1 - \frac{1}{x^2} = -\frac{(x - 1)^2}{x^2} < 0$,

所以函数h(x)在 $(1,+\infty)$ 上单调递减,h(x) < h(1) = 0,

所以当
$$x > 1$$
时, $2\ln x < x - \frac{1}{x}$ 恒成立, $\Leftrightarrow x = \sqrt{\frac{n+1}{n}} > 1$,则 $2\ln \sqrt{\frac{n+1}{n}} < \frac{\sqrt{n+1}}{\sqrt{n}} - \frac{\sqrt{n}}{\sqrt{n+1}}$,

党上,
$$\frac{1}{(n+1)(n+2)} < \ln^2 \frac{n+1}{n} < \frac{1}{n(n+1)}$$
,

所以对数列
$$\{a_n\}$$
, $\{\ln^2 \frac{n+1}{n}\}$, $\{b_n\}$ 分别求前 n 项的和,得

$$\frac{n}{2n+4} < \ln^2 2 + \ln^2 \frac{3}{2} + \dots + \ln^2 \frac{n+1}{n} < \frac{n}{n+1}.$$

11.(1)设二次函数
$$f(x) = ax^2 + bx$$
, $f'(x) = 2ax + b$, $\therefore 2a = 6, b = -2$, 则 $f(x) = 3x^2 - 2x$,

$$\therefore (n, S_n) \not\equiv y = 3x^2 - 2x \perp, \quad \therefore S_n = 3n^2 - 2n$$

当
$$n \ge 2$$
 时 $a_n = S_n - S_{n-1} = 3n^2 - 2n - 3(n-1)^2 + 2(n-1) = 6n - 5$,又 $n = 1$ 时 $a_1 = 3 - 2 = 1 = 6 \times 1 - 5$ 符合,

$$\therefore a_n = 6n - 5,$$

则
$$c_n = \frac{1}{3}(a_n + 2) = \frac{6n - 3}{3} = 2n - 1$$
,由 $b_1 + 2b_2 + 2^2b_3 + \cdots + 2^{n-2}b_{n-1} + 2^{n-1}b_n = c_n$ 得,

$$b_1 + 2b_2 + 2^2b_3 + \cdots + 2^{n-2}b_{n-1} + 2^{n-1}b_n = 2n-1$$
 (1),

令
$$n=n-1$$
 $(n \ge 2)$ 代入上式得, $b_1+2b_2+2^2b_3+\cdots 2^{n-3}b_{n-2}+2^{n-2}b_{n-1}=2n-3$ ②,

① - ②得,
$$2^{n-1}b_n = 2$$
, 即 $b_n = 2^{2-n} (n \ge 2)$, 又 $b_1 = 1$ 不满足上式,

$$\therefore b_n = \begin{cases} 1, n = 1 \\ 2^{2-n}, n \ge 2 \end{cases};$$

(2)由(1)得,
$$c_n \cdot b_n = \begin{cases} 1, n=1 \\ (2n-1)2^{2-n}, n \geq 2 \end{cases}$$
,

$$\therefore T_n = 1 + 3 + 5 \times 2^{-1} + 7 \times 2^{-2} + \dots + (2n-1) \times 2^{2-n} \, \text{@},$$

$$\frac{1}{2}T_n = \frac{1}{2} + 3 \times 2^{-1} + 5 \times 2^{-2} + 7 \times 2^{-3} + \dots + (2n-1) \times 2^{1-n}$$
 (4),

③一④得,
$$\frac{1}{2}T_n = \frac{7}{2} + 2\left(2^{-1} + 2^{-2} + \dots + 2^{2-n}\right) - \left(2n-1\right) \times 2^{1-n} = \frac{7}{2} + 2 \times \frac{\frac{1}{2}\left(1 - \frac{1}{2^{n-2}}\right)}{1 - \frac{1}{2}} - \left(2n-1\right) \times 2^{1-n} = \frac{11}{2} - \left(2n+3\right) \times 2^{1-n}$$

则
$$T_n = 11 - (2n+3) \times 2^{2-n}$$
,

(3)①设
$$g(x) = x - \ln(x+1)(x>0)$$
,则 $g'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1} > 0$, $\therefore g(x)$ 在 $(0,+\infty)$ 上是增函数,

②:
$$\ln(x+1) < x(x>0)$$
,

当 $n \in \mathbb{N}^*$, $n \ge 2$ 时, 令n = n - 1代入上式得:

$$\ln n < n-1$$
, $\mathbb{H} \frac{\ln n}{n} < \frac{n-1}{n} = 1 - \frac{1}{n}$,

$$\operatorname{III} \sum_{i=2}^{n} \frac{\ln i}{i^2} = \frac{\ln 2}{2^2} + \frac{\ln 3}{3^2} + \dots + \frac{\ln n^2}{n^2} < \frac{1}{2} \left(1 - \frac{1}{2^2} + 1 - \frac{1}{3^2} + \dots + 1 - \frac{1}{n^2} \right)$$

$$= \frac{1}{2} \left[(n-1) - \left(\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \right) \right] < \frac{1}{2} \left[(n-1) - \left(\frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{n(n+1)} \right) \right]$$

$$=\frac{1}{2}\left[\left(n-1\right)-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n}-\frac{1}{n+1}\right)\right]=\frac{1}{2}\left[\left(n-1\right)-\left(\frac{1}{2}-\frac{1}{n+1}\right)\right]=\frac{1}{2}\left[\left(n-1\right)-\frac{n-1}{2(n+1)}\right]=\frac{2n^2-n-1}{4(n+1)},$$

故结论成立.

题型三 分拆转化函数证明不等式

12.(1)解
$$f(x)$$
的定义域为(0, $+\infty$),且 $f(x) = \frac{e}{x} - a$,

①若
$$a \le 0$$
,则 $f(x) > 0$, $f(x)$ 在 $(0, +\infty)$ 上单调递增;

②若
$$a>0$$
,则当 $0时, $f(x)>0$;$

当 $x>\frac{\mathbf{e}}{a}$ 时,f(x)<0,故 f(x)在 $\left(0,\frac{\mathbf{e}}{a}\right)$ 上单调递增,在 $\left(\frac{\mathbf{e}}{a},+\infty\right)$ 上单调递减.

(2)证明 当 x > 0 时, $x f(x) - e^x + 2ex \le 0$ 等价于 $f(x) \le \frac{e^x}{x} - 2e$.

当 a=e 时,根据(1)知,f(x)在(0,1)上单调递增,在(1, $+\infty$)上单调递减,所以 $f(x)_{max}=f(1)=-e$.

所以当 0 < x < 1 时,g'(x) < 0,g(x)单调递减;

当 x>1 时, g'(x)>0, g(x)单调递增,

所以 $g(x)_{min} = g(1) = -e$.

综上,当 x>0 时, $f(x) \leq g(x)$,即 $f(x) \leq \frac{e^x}{x} - 2e$.

即 $xf(x)-e^x+2ex \leq 0$ 得证.

13.(1) **M**
$$\pm f(x) = ax^2 - (x+1) \ln x$$
, $\# f(x) = 2ax - \ln x - \frac{1}{x} - 1$.

∵曲线 y=f(x)在点(1, f(1))处的切线的斜率为 0, ∴f(1)=2a-2=0, 则 a=1.

(2)证明 由(1)得 $f(x) = x^2 - (x+1) \ln x$,

要证当 $0 < x \le 2$ 时, $f(x) > \frac{1}{2}x$,只需证当 $0 < x \le 2$ 时, $x - \frac{\ln x}{x} - \ln x > \frac{1}{2}$,即 $x - \ln x > \frac{\ln x}{x} + \frac{1}{2}$

$$\Leftrightarrow g(x) = x - \ln x, \ h(x) = \frac{\ln x}{x} + \frac{1}{2}, \ \Leftrightarrow g'(x) = 1 - \frac{1}{x} = 0, \ \# x = 1,$$

易知 g(x)在(0, 1)上单调递减,在(1, 2]上单调递增,故当 $0 < x \le 2$ 时, $g(x)_{min} = g(1) = 1$.

$$∴ h'(x) = \frac{1 - \ln x}{x^2}, \quad \stackrel{\text{def}}{=} 0 < x \le 2 \text{ iff}, \quad h'(x) > 0,$$

∴ h(x)在(0, 2]上单调递增,

故当
$$0 < x \le 2$$
 时, $h(x)_{\text{max}} = h(2) = \frac{1 + \ln 2}{2} < 1$,故 $h(x)_{\text{max}} < g(x)_{\text{min}}$,

故当 $0 < x \le 2$ 时,h(x) < g(x),

即当 $0 < x \le 2$ 时, $f(x) > \frac{1}{2}x$.

14.(1) **m**
$$f(x) = 2bx + \frac{a}{x}$$
, $\emptyset f(1) = 2b + a = a + 2$,

解得
$$b=1$$
, $f(x)=2x+\frac{a}{x}=\frac{2x^2+a}{x}(x>0)$.

当 $a \ge 0$ 时,f(x) > 0,f(x)在(0, +∞)上单调递增.

当
$$a < 0$$
 时,令 $f(x) > 0$,得 $x > \sqrt{-\frac{a}{2}}$;

所以
$$f(x)$$
在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增,

(2)证明 要证
$$f(x) < x^2 + \frac{2}{x}e^{x-2}$$
,只要证 $\frac{a \ln x}{x} < \frac{2e^{x-2}}{x^2}$.

$$\diamondsuit g(x) = \frac{a \ln x}{x} \left(0 < a \le \frac{e}{2} \right), \quad \emptyset g'(x) = \frac{a \left(1 - \ln x \right)}{x^2},$$

当 g'(x) > 0 时,得 0 < x < e; 当 g'(x) < 0 时,得 x > e,

所以
$$g(x)_{\text{max}} = g(e) = \frac{a}{e}$$
.

$$\Leftrightarrow h(x) = \frac{2e^{x-2}}{x^2}(x > 0), \quad \text{M} \ h'(x) = \frac{2e^{x-2}(x-2)}{x^3}.$$

当 h'(x) < 0 时,得 0 < x < 2,当 h'(x) > 0 时,得 x > 2,

所以
$$h(x)_{min} = h(2) = \frac{1}{2}$$
.

因为
$$0 < a \le \frac{e}{2}$$
,所以 $g(x)_{\text{max}} = \frac{a}{e} \le \frac{1}{2}$.

又 e
$$\neq$$
 2,所以 $\frac{a \ln x}{x} < \frac{2e^{x-2}}{x^2}$,

故
$$f(x) < x^2 + \frac{2}{x} e^{x-2}$$
 得证.

15.(1)

解:
$$f(x) = \ln x$$
, $g(x) = \frac{3}{2} - \frac{a}{x}$,

∴ 方程
$$e^{2f(x)} = g(x)$$
 可化为 $x^2 = \frac{3}{2} - \frac{a}{x}$.即 $a = -x^3 + \frac{3}{2}x$.

$$\Rightarrow h(x) = -x^3 + \frac{3}{2}x$$
. $\text{III}\ h'(x) = -3x^2 + \frac{3}{2}$.

由
$$h'(x) = -3x^2 + \frac{3}{2} = 0$$
得, $x = \frac{\sqrt{2}}{2}$,或 $x = -\frac{\sqrt{2}}{2}$ (舍去).

当
$$x \in \left[0, \frac{\sqrt{2}}{2}\right]$$
时, $h'(x) = -3x^2 + \frac{3}{2} > 0$. $h(x)$ 单调递增.

$$h\left(\frac{1}{2}\right) = \frac{5}{8}, h(1) = \frac{1}{2}, h\left(\frac{\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{2}.$$

$$\therefore x \in \left[\frac{1}{2}, 1\right] \bowtie , h(x) \in \left[\frac{1}{2}, \frac{\sqrt{2}}{2}\right].$$

∴方程
$$e^{2f(x)} = g(x)$$
在区间[$\frac{1}{2}$, 1]上有解等价于 $a \in \left[\frac{1}{2}, \frac{\sqrt{2}}{2}\right]$.

(2)

解:
$$a=1$$
时,要证不等式 $g(x) < f(x)$,

只需证
$$\frac{3}{2} - \frac{1}{r} < \ln x$$
,即 $\ln x + \frac{1}{r} > \frac{3}{2}$.

$$\Rightarrow r(x) = \ln x + \frac{1}{r} \cdot \text{Im} r'(x) = \frac{1}{r} - \frac{1}{r^2} = \frac{x-1}{r^2}, x \ge 4, r'(x) > 0$$

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 3

所以 $x \in [4, +\infty)$ 时, r(x)单调递增.

$$\therefore r(x)_{min} = r \quad (4) = \ln 4 + \frac{1}{4} > \frac{3}{2}.$$

∴当 $x \in [4, +\infty)$ 时, g(x) < f(x)恒成立.

要证 f(x) < x-2, 只需证 $\ln x < x-2$, 即 $\ln x - x < -2$.

$$\Leftrightarrow k(x) = \ln x - x \cdot k'(x) = \frac{1}{x} - 1, x \ge 4, k'(x) < 0$$

所以 $x \in [4, +\infty)$ 时,k(x)单调递减... $k(x)_{max} = k$ (4) = $\ln 4 - 4 < -2$.

∴ 当 $x \in [4, +\infty)$ 时, f(x) < x - 2 恒成立.

∴当a=1时,证明不等式g(x)< f(x)< x-2在[4, +∞)上恒成立.

(3)

解:
$$:: f(x) = \ln x$$
,

$$\therefore 2f(2k+1) - f(k+1) - f(k) = 2\ln(2k+1) - \ln(k+1) - \ln k$$

$$= \ln \frac{(2k+1)^2}{k(k+1)} = f\left(\frac{1}{k(k+1)} + 4\right),$$

曲 (2) 可知,
$$\frac{3}{2} - \frac{1}{x} < f(x) < x - 2$$
, $\therefore \frac{3}{2} - \frac{1}{\frac{1}{k(k+1)} + 4} < f\left(\frac{1}{k(k+1)} + 4\right) < \frac{1}{k(k+1)} + 4 - 2$,

$$\operatorname{EP}\frac{3}{2} - \frac{k(k+1)}{4k(k+1)+1} < f\left(\frac{1}{k(k+1)} + 4\right) < \frac{1}{k} - \frac{1}{k+1} + 2,$$

$$\therefore \frac{5}{4} + \frac{1}{16k(k+1)+4} < f\left(\frac{1}{k(k+1)}+4\right) < \frac{1}{k} - \frac{1}{k+1} + 2,$$

$$\therefore \frac{5n}{4} + \frac{1}{16 \times 2 + 4} + \frac{1}{16 \times 2 \times 3 + 4} + \dots + \frac{1}{16n(n+1) + 4}$$

$$\leq \sum_{k=1}^{n} [2f(2k+1) - f(k+1) - f(k)] < 1 - \frac{1}{n+1} + 2n$$
,

$$\therefore n \in \mathbb{N}, \ \, \frac{5n}{4} + \frac{1}{60} < \sum_{k=1}^{n} [2f(2k+1) - f(k+1) - f(k)] < 2n+1.$$

一、证明不等式1:不含参:

1. 【解析】: (1) 因为
$$f(x) = e^x - x - mx^2$$
,所以 $f'(x) = e^x - 1 - 2mx, x \in (0, +\infty)$,

因为f(x)是增函数,所以 $f'(x) \ge 0$ 在 $x \in (0,+\infty)$ 时恒成立,

又
$$f''(x) = e^x - 2m$$
, 可知 $y = f''(x)$ 在 $(0, +\infty)$ 上单调递增, 令 $f''(x) = 0$, $x = \ln 2m$,

当 $\ln 2m \le 0$ 时,即 $m \le \frac{1}{2}$ 时, $f''(x) \ge 0$ 在 $(0,+\infty)$ 上恒成立,

所以 y = f'(x) 在 $(0,+\infty)$ 上单调递增,所以 f'(x) > f'(0) = 0,符合题意;

当 $\ln 2m > 0$ 时,即 $m > \frac{1}{2}$ 时,当 $x \in (0, \ln 2m)$ 时, f''(x) < 0 ,当 $x \in (\ln 2m, +\infty)$ 时, f''(x) > 0 ,

所以 y = f'(x) 在 $(0, \ln 2m)$ 上单调递减,在 $\ln 2m, +\infty$ 上单调递增,

所以 $g'(t) = -\ln t$, 所以 $t \in (1, +\infty)$ 时, g'(t) < 0,

所以 $g(t)_{\max} < g(1) = 0$,所以 $f'(x)_{\min} = f'(\ln 2m) = 2m - 2m \ln 2m - 1 < 0$,这与 $f'(x) \ge 0$ 在 $x \in (0, +\infty)$ 时恒成立矛盾,

综上可知: $m \leq \frac{1}{2}$;

(2) 当
$$m=1$$
时, $f(x)=e^x-x-x^2$, $f'(x)=e^x-1-2x$, $f''(x)=e^x-2$,且 $y=f''(x)$ 为增函数,

令
$$f''(x) = e^x - 2 = 0$$
 ,所以 $x = \ln 2$,所以 $y = f'(x)$ 在 $(0, \ln 2)$ 上单调递减,在 $(\ln 2, +\infty)$ 山单调递增,

所以
$$f'(x)_{\min} = f'(\ln 2) = 1 - 2\ln 2 < 0$$
,

又因为
$$f'(0) = 0$$
, $f'(\frac{3}{2}) = e^{\frac{3}{2}} - 4 = \sqrt{e^3} - 4 > \sqrt{16} - 4 = 0$, $f'(1) = e - 3 < 0$,

所以存在唯一 $x_0 \in \left(1, \frac{3}{2}\right)$ 使得 $f'(x_0) = 0$,

所以当 $x \in (0, x_0)$ 时,f'(x) < 0,当 $x \in (x_0, +\infty)$ 时,f'(x) > 0,

所以 f(x) 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,且 $f'(x_0) = e^{x_0} - 1 - 2x_0 = 0$,

所以
$$f(x)_{\min} = f(x_0) = e^{x_0} - x_0 - x_0^2 = -x_0^2 + x_0 + 1 = -\left(x_0 - \frac{1}{2}\right)^2 + \frac{5}{4}$$

又因为
$$x_0 \in \left(1, \frac{3}{2}\right)$$
,所以 $-\left(x_0 - \frac{1}{2}\right)^2 + \frac{5}{4} > -\left(\frac{3}{2} - \frac{1}{2}\right)^2 + \frac{5}{4} = \frac{1}{4}$,

所以 $f(x)_{\min} > \frac{1}{4}$, 所以 $f(x) > \frac{1}{4}$ 成立.

2. 【解析】: (1) 由函数 $f(x) = \ln x + ax + \frac{1}{x}$ 的定义域是 $(0, +\infty)$,则 $f'(x) = \frac{1}{x} + a - \frac{1}{x^2} = \frac{ax^2 + x - 1}{x^2}$.

当a=0时, $f'(x)=\frac{x-1}{x^2}$,此时在区间(0,1)上,f'(x)<0;在区间 $(1,+\infty)$ 上,f'(x)>0,

故函数 f(x) 的单调递减区间为(0,1), 单调递增区间为 $(1,+\infty)$.

当a < 0且 $\Delta = 1 + 4a \le 0$ 时,即 $a \le -\frac{1}{4}$ 时, $ax^2 + x - 1 \le 0$ 对任意 $x \in (0, +\infty)$ 恒成立,

即 $f'(x) \le 0$ 对任意 $x \in (0, +\infty)$ 恒成立,且不恒为 0.

故函数 f(x) 的单调递减区间为 $(0,+\infty)$;

当 a < 0 且 $\Delta = 1 + 4a > 0$ 时,即 $-\frac{1}{4} < a < 0$ 时,方程 $ax^2 + x - 1 = 0$ 的两根依次为 $x_1 = \frac{-1 + \sqrt{1 + 4a}}{2a}$,

$$x_2 = \frac{-1 - \sqrt{1 + 4a}}{2a} \left(0 < x_1 < x_2 \right),$$

此时在区间 $(0,x_1)$, $(x_2,+\infty)$ 上, f'(x)<0; 在区间 (x_1,x_2) 上, f'(x)>0,

故函数 f(x) 的单调递减区间为 $\left(0, \frac{-1+\sqrt{1+4a}}{2a}\right)$, $\left(\frac{-1-\sqrt{1+4a}}{2a}, +\infty\right)$, 单调递增区间为

$$\left(\frac{-1+\sqrt{1+4a}}{2a}, \frac{-1-\sqrt{1+4a}}{2a}\right);$$

当a > 0时,方程 $ax^2 + x - 1 = 0$ 的两根依次为 $x_1 = \frac{-1 + \sqrt{1 + 4a}}{2a}$, $x_2 = \frac{-1 - \sqrt{1 + 4a}}{2a}(x_2 < 0 < x_1)$,

此时在区间 $(0,x_1)$ 上, f'(x)<0; 在区间 $(x_1,+\infty)$ 上, f'(x)>0,

故函数 f(x) 的单调递减区间为 $\left(0, \frac{-1+\sqrt{1+4a}}{2a}\right)$,单调递增区间为 $\left(\frac{-1+\sqrt{1+4a}}{2a}, +\infty\right)$

则
$$g'(x) = (x-1)e^x - 1 + \frac{1}{x} = (x-1)\left(e^x - \frac{1}{x}\right)$$
.

则 $h'(x) = e^x + \frac{1}{x^2} > 0$, 所以 h(x) 在 $\left[\frac{1}{4}, 1\right]$ 上单调递增.

因为
$$h\left(\frac{1}{2}\right) = h(x) = e^{\frac{1}{2}} - 2 < 0$$
, $h(1) = e - 1 > 0$,

所以存在
$$x_0 \in \left(\frac{1}{2},1\right)$$
 使得 $h(x_0) = 0$,即 $e^{x_0} = \frac{1}{x_0}$,即 $\ln x_0 = -x_0$.

故当
$$x \in \left(\frac{1}{4}, x_0\right)$$
时, $h(x) < 0$,此时 $g'(x) > 0$;

当
$$x \in (x_0,1)$$
时, $h(x) > 0$,此时 $g'(x) < 0$.

即 g(x) 在 $\left(\frac{1}{4}, x_0\right)$ 上单调递增,在 $\left(x_0, 1\right)$ 上单调递减,

$$\operatorname{GH} m = g(x)_{\max} = g(x_0) = (x_0 - 2)e^{x_0} - x_0 + \ln x_0 = (x_0 - 2)\frac{1}{x_0} - x_0 - x_0 = 1 - \frac{2}{x_0} - 2x_0.$$

$$\diamondsuit G(x) = 1 - \frac{2}{x} - 2x, \quad x \in \left(\frac{1}{2}, 1\right), \quad \emptyset G'(x) = \frac{2}{x^2} - 2 = \frac{2(1 - x^2)}{x^2} > 0,$$

所以
$$G(x)$$
在 $x \in \left(\frac{1}{2},1\right)$ 上单调递增,则 $G(x) > G\left(\frac{1}{2}\right) = -4$, $G(x) < G(1) = -3$,

所以-4 < m < -3.

故
$$(m+4)(m+3)<0$$
.

3. (I)由 y = f(x)过(0,0)点,得 b=-1.

由
$$y = f(x)$$
 在 (0,0) 点的切线斜率为 $\frac{3}{2}$, 又 $y'|_{x=0} = (\frac{1}{x+1} + \frac{1}{2\sqrt{x+1}} + a)|_{x=0} = \frac{3}{2} + a$

得 a=0

(II) (证法一)

由均值不等式,当 x>0 时,
$$2\sqrt{(x+1) \cdot 1} < x+1+1 = x+2$$
 故 $\sqrt{x+1} < \frac{x}{2}+1$

记
$$h(x) = f(x) - \frac{9x}{x+6}$$

$$\text{If } h'(x) = \frac{1}{x+1} + \frac{1}{2\sqrt{x+1}} - \frac{5x}{(x+6)^2} = \frac{2+\sqrt{x+1}}{2(x+1)} - \frac{5x}{(x+6)^2} < \frac{x+6}{4(x+1)} - \frac{5x}{(x+6)^2}$$

$$\Rightarrow g(x) = (x+6)^3 - 216(x+1)$$
,则当 $0 \le x \le 2$ 时, $g'(x) = 3(x+6)^2 - 216 < 0$

因此 g(x) 在 (0,2) 内是递减函数,又由 g(0)=0,得 g(x)<0,所以 h(x)<0

因此h(x)在(0,2)内是递减函数,又由h(0)=0,得h(x)<0

当
$$0 < x < 2$$
 时 $f(x) < \frac{9x}{x+6}$

(证法二)

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 4

由(
$$_{\bullet}$$
I)知 $f(x) = \ln(x+1) + \sqrt{x+1} - 1$ 由均值不等式,当 $_{x>0}$ 时, $_{2}\sqrt{(x+1) \bullet 1} < x+1+1 = x+2$ 故 $_{x+1} < \frac{x}{2} + 1$

(1)

$$\Rightarrow k(x) = \ln(x+1) - x$$
, $\emptyset k(0) = 0$, $k'(x) = \frac{1}{x+1} - 1 = \frac{-x}{x+1} < 0$, $abla k(x) < 0$

 $\mathbb{P} \ln(x+1) < x$ ②

由①②得,当
$$x>0$$
 时, $f(x) < \frac{3}{2}x$

记
$$h(x) = (x+6) f(x) - 9x$$
, 则当 $0 < x < 2$ 时,

$$h'(x) = f(x) + (x+6)f'(x) - 9 < \frac{3}{2}x + (x+6)(\frac{1}{x+1} + \frac{1}{2\sqrt{x+1}}) - 9$$

$$= \frac{1}{2(x+1)} [3x(x+1) + (x+6)(2+\sqrt{x+1}) - 18(x+1)]$$

$$<\frac{1}{2(x+1)}[3x(x+1)+(x+6)(3+\frac{x}{2})-18(x+1)] = \frac{x}{4(x+1)}(7x-18) < 0$$

因此h(x)在(0,2)内单调递减,又h(0)=0,所以h(x)<0即 $f(x)<\frac{9x}{x+6}$

4. 解 (1)由
$$f(x) = \frac{\ln x + k}{e^x}$$
,得 $f'(x) = \frac{1 - kx - x \ln x}{xe^x}$, $x \in (0, +\infty)$,

由于曲线 y=f(x)在点(1, f(1))处的切线与 x 轴平行.

所以 f'(1)=0,因此 k=1.

(2)由(1)得 f'(x)=
$$\frac{1}{xe^x}$$
(1-x-xln x), x \in (0, + ∞),

 $\Leftrightarrow h(x)=1-x-x\ln x, x\in(0, +\infty),$

当 x ∈ (0,1)时, h(x)>0; 当 x ∈ (1, +∞)时, h(x)<0.

又 $e^x > 0$,所以 $x \in (0,1)$ 时,f'(x) > 0;

x∈(1, +∞)时, f'(x)<0.

因此 f(x)的单调递增区间为(0,1), 单调递减区间为(1, +∞)

(3)因为 g(x)=xf'(x),所以 g(x)=
$$\frac{1}{e^x}$$
(1-x-xln x),x \in (0,+ ∞),

由(2)得, h(x)=1-x-xln x,

求导得 $h'(x) = -\ln x - 2 = -(\ln x - \ln e^{-2})$.

所以当 $x \in (0, e^{-2})$ 时,h'(x) > 0,函数 h(x)单调递增;

当 $x \in (e^{-2}, +\infty)$ 时,h'(x) < 0,函数 h(x)单调递减.

所以当 $x \in (0, +\infty)$ 时, $h(x) \le h(e^{-2}) = 1 + e^{-2}$.

又当 x
$$\in$$
 (0, + ∞)时, 0 $<$ $\frac{1}{a^x}$ $<$ 1,

所以当
$$x \in (0, +\infty)$$
时, $\frac{1}{e^x} h(x) < 1 + e^{-2}$,即 $g(x) < 1 + e^{-2}$.

5. (1) 当a = -1时,原问题为证明 $-x - \ln x \ge 1 - xe^x$.

令 $g(x) = xe^x - 1$ ($x \ge 0$),则 $g'(x) = (x+1)e^x > 0$ (x > 0),所以 g(x) 在 $(0, +\infty)$ 上单调递增,

$$\mathbb{Z} g(0) = -1 < 0$$
, $g(1) = e - 1 > 0$,

所以
$$\exists x_0 \in (0,1)$$
 , 使得 $g(x_0) = 0$, 所以 $e^{x_0} = \frac{1}{x_0}$, 所以 $x_0 = -\ln x_0$. • • • • • . 3 分

当
$$x \in (0, x_0)$$
时, $g(x) < 0$,则 $h'(x) < 0$;当 $x \in (x_0, +\infty)$ 时, $g(x) > 0$,则 $h'(x) > 0$

所以 h(x) 在 $(0,x_0)$ 上单调递减,在 $(x_0,+\infty)$ 上单调递增,所以 h(x) 在 $x=x_0$ 处取得极小值也是最小值,

$$\mathbb{E}[h(x)]_{\min} = h(x_0) = x_0 e^{x_0} - \ln x_0 - x_0 - 1 = x_0 \times \frac{1}{x_0} + x_0 - x_0 - 1 = 0,$$

所以 $\forall x \in (0,+\infty)$, $h(x) \geqslant 0$,即 $-x - \ln x \geqslant 1 - x e^x$. • • • • • • • • • • • 5 分

(2) 记函数 $\varphi(x) = e^{x-2} - \ln x$,则原不等式可化简为 $\varphi(x) > 0$,

$$\varphi'(x) = \frac{1}{e^2} \times e^x - \frac{1}{x} = e^{x-2} - \frac{1}{x}$$
,可知 $\varphi'(x)$ 在 $(0, +\infty)$ 上单调递增, • • • • • 6 分

由 $\varphi'(1) < 0$, $\varphi'(2) > 0$ 知, $\varphi'(x)$ 在 $(0,+\infty)$ 上有唯一零点 x_1 , 且 $1 < x_1 < 2$,

所以
$$\varphi'(x_1) = e^{x_1} - 2 - \frac{1}{x_1} = 0$$
,即 $e^{x_1 - 2} = \frac{1}{x_1}$. • • • • • • • • • • • 8 分

当 $x \in (0, x_1)$ 时 $\varphi'(x) < 0$, $\varphi(x)$ 在 $(0, x_1)$ 上单调递减;当 $x \in (x_1, +\infty)$ 时 $\varphi'(x) > 0$, $\varphi(x)$ 在 $(x_1, +\infty)$ 上单调递增.

所以对 $\forall x \in (0,+\infty)$, $\varphi(x) \geqslant \varphi(x_1) = e^{x_1-2} - \ln x_1$.

所以
$$\varphi(x) \geqslant \varphi(x_1) = \frac{1}{x_1} + x_1 - 2 = \frac{x_1^2 - 2x_1 + 1}{x_1} = \frac{(x_1 - 1)^2}{x_1} > 0.$$
 11分

则
$$\forall x \in (0, +\infty)$$
 , $\varphi(x) = e^{x-2} - \ln x > 0$, 即 $\forall x \in (0, +\infty)$, $\frac{\ln x}{e^x} < \frac{1}{e^2}$ 恒成立. 12 分

二、证明不等式 2: 含参, 讨论单调性

6. (1)
$$f'(x) = e^x - \frac{1}{x+m}$$
.

由 x=0 是 f(x)的极值点得 f'(0)=0, 所以 m=1.

于是
$$f(x)=e^x-\ln(x+1)$$
,定义域为 $(-1,+\infty)$, $f'(x)=e^x-\frac{1}{x+1}$.

函数 $f'(x) = e^x - \frac{1}{x+1}$ 在 $(-1, +\infty)$ 上单调递增,且 f'(0)=0,因此当 $x \in (-1, 0)$ 时, f'(x)<0;当 $x \in (0, +\infty)$ 时, f'(x)>0.

所以 f(x)在(-1, 0)上单调递减,在 $(0, +\infty)$ 上单调递增.

(2)当 m≤2, x∈(-m, +∞)时, ln(x+m)≤ln(x+2), 故只需证明当 m=2 时, f(x)>0.

当 m=2 时,函数
$$f'(x) = e^x - \frac{1}{x+2}$$
 在(-2, +∞)上单调递增.

又 f'(-1)<0, f'(0)>0,故 f'(x)=0 在(-2,+ ∞)上有唯一实根 x_3 ,且 x_4 \in {-1,0}.

当 $x \in \{-1, x_0\}$ 时, f'(x)<0;当 $x \in \{x_0, +\infty\}$ 时, f'(x)>0,从而当 $x = x_0$ 时, f(x)取得最小值.

由 f'(x₀)=0 得
$$e^{x_0} = \frac{1}{x_0 + 2}$$
, $\ln(x_0 + 2) = -x_0$,

故
$$f(x) \ge f(x_0) = \frac{1}{x_0 + 2} + x_0 = \frac{(x_0 + 1)^2}{x_0 + 2} > 0$$
.

综上, 当 m≤2 时, f(x)>0.

7. (1)
$$\stackrel{\text{def}}{=} a = 0$$
 if , $f(x) = \ln x - x + 1$, $\lim_{x \to x} f'(x) = \frac{1}{x} - 1$

因为 $x \in [1, +\infty)$, 所以 $f'(x) \le 0$. 所以f(x)在区间 $[1, +\infty)$ 上单调递减

所以 f(x) 区间 $[1,+\infty)$ 上最大值为 f(1)=0.

(2) 由题可知
$$f'(x) = \frac{1}{x} + 2ax - (2a+1) = \frac{2ax^2 - (2a+1)x + 1}{x} = \frac{(2ax-1)(x-1)}{x}$$
.

①当a=0时,由(1)知,函数f(x)在区间(1,+ ∞)上单调递减,

所以函数 f(x) 无最小值,此时不符合题意;

②当 $a \ge \frac{1}{2}$ 时,因为 $x \in (1, +\infty)$,所以2ax - 1 > 0.此时函数f(x)在区间 $(1, +\infty)$ 上单调递增

所以函数 f(x) 无最小值,此时亦不符合题意;

③
$$\pm 0 < a < \frac{1}{2}$$
时,此时 $1 < \frac{1}{2a}$.

函数 f(x) 在区间 $(1,\frac{1}{2a})$ 上单调递减,在区间 $(\frac{1}{2a},+\infty)$ 上单调递增

所以
$$f(x)_{\min} = f(\frac{1}{2a}) = \ln \frac{1}{2a} - \frac{1}{4a}$$
,即 $g(a) = \ln \frac{1}{2a} - \frac{1}{4a}$.

要证
$$g(a) < \frac{1}{4a} - 1$$
,只需证当 $0 < a < \frac{1}{2}$ 时, $g(a) - \frac{1}{4a} + 1 < 0$ 成立. 即证 $\ln \frac{1}{2a} - \frac{1}{2a} + 1 < 0$, $\left(0 < a < \frac{1}{2}\right)$

由 (1) 知
$$h(t) < h(1) = 0$$
, 即 $g(a) - \frac{1}{4a} + 1 < 0$ 成立. 所以 $g(a) < \frac{1}{4a} - 1$.

8. (1) 由己知 $f'(x) = e^x - ax - 1$

设
$$g(x) = f'(x)$$
, $g'(x) = e^x - a$

①当
$$a \le 0$$
时. $g'(x) = e^x - a > 0$ 在 R 上恒成立, $\therefore g(x) = f'(x)$ 在 $(-\infty, +\infty)$ 上递增

②当
$$a > 0$$
时. 令 $g'(x) > 0$ 得 $x > \ln a$, $g'(x) < 0$ 得 $x < \ln a$

$$\therefore g'(x)=f'(x)$$
在 $(-\infty, \ln a)$ 上娣减. 在 $(\ln a, +\infty)$ 上娣增

综上所述: 当 $a \le 0$ 时. y = f'(x)是 $(-\infty, +\infty)$ 上的增函数

当a > 0时. y = f'(x)在 $(-\infty, \ln a)$ 是减函数. 在 $(\ln a, +\infty)$ 上是增函数

(2) 由 (1) 知.①当 $a \le 0$ 时. $f'(x) = e^x - ax - 1$ 在 $(-1, +\infty)$ 上递增

又
$$f'(0) = 0$$
, :-1< $x < 0$ 时. $f'(x) < 0$; $x > 0$ 时, $f'(x) > 0$,

则 f(x) 在 (-1,0) 上递减. 在 $(0,+\infty)$ 上递增, $\therefore f(x)_{\min} = f(0) = 1$

②
$$\pm 0 < a \le \frac{1}{e}$$
 时, $\ln a \le -1$

由 (1) 知 f'(x) 在 $(-1,+\infty)$ 上递增. 又 f'(0) = 0 ,则 f(x) 在 (-1,0) 上递减. 在 $(0,+\infty)$ 上递增

$$\therefore f(x)_{\min} = f(0) = 1$$

③当 $\frac{1}{e} < a \le 1 - \frac{1}{e}$ 时.由(1)知f'(x)在 $(-1, \ln a)$ 上递减.在 $(\ln a, +\infty)$ 上递增

且
$$f'(0) = 0$$
, $f'(-1) = \frac{1}{e} + a - 1 \le 0$

∴ $-1 \le x < 0$ 时. f'(x) < 0; x > 0 时. f'(x) > 0,

 $\therefore f(x)$ 在(-1,0)上递减. 在(0,+∞)在递增,则 $f(x)_{\min} = f(0) = 1$

综上所述:函数 f(x) 在 $[-1,+\infty)$ 上的最小值为1.

 $∴ f(x) \ge 1$, 则要证明原不等式只须证明 $x - \ln(x+1) \ge 0$

设
$$h(x) = x - \ln(x+1)(x > -1)$$
, $\therefore h'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1}$

则当-1 < x < 0时,h'(x) < 0; x > 0时,h'(x) > 0

即: h(x) 在 (-1,0) 上递减. 在 $(0,+\infty)$ 上递增,则 $h(x)_{\min} = h(0) = 0$,即 $x - \ln(x+1) \ge 0$

又 $f(x) \ge 1$, 故 $f(x) + x - \ln(x+1) \ge 1$.

9. (1) 因为
$$f'(x) = -\frac{(x-1)(mx+1-m)}{e^x}$$
,

①当m=0时, $f'(x)=-\frac{x-1}{e^x}$,当x>1时,f'(x)<0,当x<1时,f'(x)>0,所以f(x)在 $(-\infty,1)$ 上单调递

增, 在 $(1,+\infty)$ 上单调递减;

②
$$\stackrel{\text{def}}{=} m > 0$$
 时, $f'(x) = -\frac{m(x-1)\left(x-1+\frac{1}{m}\right)}{e^x}, 1-\frac{1}{m} < 1$,

当
$$x \in \left(1 - \frac{1}{m}, 1\right)$$
 时, $f'(x) > 0$,当 $x \in \left(-\infty, 1 - \frac{1}{m}\right)$ 〔1、 +) 如 时, $f'(x) < 0$,所以 $f(x)$ 在 $\left(1 - \frac{1}{m}, 1\right)$ 单调递增,

$$ext{e}\left(-\infty,1-\frac{1}{m}\right),(1,+\infty)$$
单调递减;

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 5

③当
$$m < 0$$
时, $1 - \frac{1}{m} > 1$,当 $x \in \left(1, 1 - \frac{1}{m}\right)$ 时, $f'(x) < 0$,当 $x \in (-\infty, 1) \cup \left(1 - \frac{1}{m}, +\infty\right)$ 时, $f'(x) > 0$,所以

$$f(x)$$
 在 $\left(1,1-\frac{1}{m}\right)$ 单调递减,在 $\left(-\infty,1\right)$, $\left(1-\frac{1}{m},+\infty\right)$ 单调递增.

(2) 要证明 $ef(x) + \ln x \le x$, 只需证明 $ef(x) \le x - \ln x$,

而 $x - \ln x \ge 1$,因此只需证明 $f(x) \le \frac{1}{e}$,

当m = 0时, $f(x) = \frac{x}{e^x}$,由(1)知f(x)在($-\infty$,1)上单调递增,在(1,+ ∞)上单调递减,所以 $f(x)_{max} = f(1) = \frac{1}{e}$;

当
$$m < 0$$
时, $f(x) = \frac{m(x^2+1)+x}{e^x} < \frac{x}{e^x} \le \frac{1}{e}$,

故 $ef(x) + \ln x \le x$.

三 证明不等式 3: 放缩法

10. (1)
$$f(x)$$
的定义域为 $(0,+\infty)$; $f'(x) = a - \frac{a}{x} - \frac{2}{x^2} + \frac{2}{x^3} = \frac{(ax^2 - 2)(x - 1)}{x^3}$

当 $a \le 0$, $x \in (0,1)$ 时, f'(x) > 0, f(x)单调递增; $x \in (1,+\infty)$ 时, f'(x) < 0, f(x)单调递减.

当
$$a > 0$$
时, $f'(x) = \frac{a(x-1)}{x^3} \left(x + \sqrt{\frac{2}{a}}\right) \left(x - \sqrt{\frac{2}{a}}\right)$.

(1)
$$0 < a < 2$$
, $\sqrt{\frac{2}{a}} > 1$,

当
$$x \in (0,1)$$
或 $x \in \left(\sqrt{\frac{2}{a}}, +\infty\right)$ 时, $f'(x) > 0$, $f(x)$ 单调递增;

当
$$x \in \left(1, \sqrt{\frac{2}{a}}\right)$$
时, $f'(x) < 0$, $f(x)$ 单调递减;

(2)
$$a = 2$$
时, $\sqrt{\frac{2}{a}} = 1$, 在 $x \in (0, +\infty)$ 内, $f'(x) \ge 0$, $f(x)$ 单调递增;

$$(3)$$
 $a > 2$ $\forall i$, $0 < \sqrt{\frac{2}{a}} < 1$,

当
$$x \in \left(0, \sqrt{\frac{2}{a}}\right)$$
或 $x \in (1, +\infty)$ 时, $f'(x) > 0$, $f(x)$ 单调递增;
当 $x \in \left(\sqrt{\frac{2}{a}}, 1\right)$ 时, $f'(x) < 0$, $f(x)$ 单调递减.

综上所述,

当 $a \le 0$ 时,函数 f(x) 在(0,1) 内单调递增,在(1,+ ∞) 内单调递减;

当0 < a < 2时,f(x)在(0,1)内单调递增,在 $(1,\sqrt{\frac{2}{a}})$ 内单调递减,在 $(\sqrt{\frac{2}{a}},+\infty)$ 内单调递增;

当 a=2 时, f(x) 在(0,+ ∞) 内单调递增;

当 a > 2, f(x)在 $(0, \sqrt{\frac{2}{a}})$ 内单调递增,在 $(\sqrt{\frac{2}{a}}, 1)$ 内单调递减,在 $(1, +\infty)$ 内单调递增.

(2) 由 (1) 知, a=1时,

$$f(x) - f'(x) = x - \ln x + \frac{2x - 1}{x^2} - \left(1 - \frac{1}{x} - \frac{2}{x^2} + \frac{2}{x^3}\right) = x - \ln x + \frac{3}{x} + \frac{1}{x^2} - \frac{2}{x^3} - 1, \quad x \in [1, 2],$$

$$\Rightarrow g(x) = x - \ln x, h(x) = \frac{3}{x} + \frac{1}{x^2} - \frac{2}{x^3} - 1, x \in [1,2].$$

则
$$f(x)-f'(x)=g(x)+h(x)$$
,

由 $g'(x) = \frac{x-1}{x} \ge 0$ 可得 $g(x) \ge g(1) = 1$, 当且仅当 x = 1 时取得等号.

$$\boxtimes h'(x) = \frac{-3x^2 - 2x + 6}{x^4},$$

设 $\varphi(x) = -3x^2 - 2x + 6$, 则 $\varphi(x)$ 在 $x \in [1,2]$ 单调递减,

因为 $\varphi(1) = 1, \varphi(2) = -10$,

所以在 [1,2] 上存在 x_0 使得 $x \in (1,x_0)$ 时, $\varphi(x) > 0, x \in (x_0,2)$ 时, $\varphi(x) < 0$,

所以函数h(x)在 $(1,x_0)$ 上单调递增,在 $(x_0,2)$ 上单调递减,

由于 h(1) = 1, $h(2) = \frac{1}{2}$, 因此 $h(x) \ge h(2) = \frac{1}{2}$, 当且仅当 x = 2 取得等号,

所以
$$f(x)-f'(x)>g(1)+h(2)=\frac{3}{2}$$
,即 $f(x)>f'(x)+\frac{3}{2}$ 对于任意的 $x\in[1,2]$ 恒成立。

11. (1)
$$f(x)$$
 的定义域为(0, $+\infty$),则 $f'(x) = \ln x + 1 - 1 - \frac{a}{x^2} = \ln x - \frac{a}{x^2}$,

$$\Leftrightarrow g(x) = \ln x - \frac{a}{x^2}, \ x > 0, \ \iint g'(x) = \frac{1}{x} + \frac{2a}{x^3} = \frac{x^2 + 2a}{x^3}, \dots 1$$

①当a=0时, $f'(x)=\ln x$, $\diamondsuit f'(x)=0$, 则x=1,

当 0 < x < 1 时, f'(x) < 0 , f(x) 单调递减; 当 x > 1 时, f'(x) > 0 , f(x) 单调递增

所以 *f*(*x*)在(0, +∞)上有且仅有一个极值点. ·······2 分

②当a > 0时,g'(x) > 0,所以g(x)在(0, $+\infty$)上单调递增,

$$\mathbb{Z} g(1) = -a < 0$$
, $g(e^a) = a - \frac{a}{e^{2a}} = a(1 - \frac{1}{e^{2a}}) > 0$

所以 g(x)在(1, e^a)上存在唯一零点,记为 x_0 ,列表:

х	$(0, x_0)$	<i>x</i> ₀	$(x_0, +\infty)$
f'(x)	_	0	+
f(x)	`	极小值	1

③当
$$a < 0$$
时,令 $g'(x) = 0$,得 $x = \sqrt{-2a}$,

当 $0 < x < \sqrt{-2a}$ 时, g'(x) < 0 , g(x) 单调递减; 当 $x > \sqrt{-2a}$ 时, g'(x) > 0 , g(x) 单调递增,

所以
$$g(x)_{\min} = g(\sqrt{-2a}) = \ln \sqrt{-2a} + \frac{1}{2}$$
,

当
$$a \le -\frac{1}{2e}$$
时, $g(x)_{min} \ge 0$,故 $f'(x) \ge 0$, $f(x)$ 在 $(0, +\infty)$ 上单调递增,

$$\stackrel{\text{dis}}{=} -\frac{1}{2e} < a < 0$$
 时, $g(x)_{\min} = g(\sqrt{-2a}) = \ln \sqrt{-2a} + \frac{1}{2} < 0$, $∑ g(1) = -a > 0$,

$$\Rightarrow \varphi(a) = \ln(-2a) - \frac{1}{4a} \left(-\frac{1}{2e} < a < 0 \right), \quad \varphi'(a) = \frac{-2}{-2a} + \frac{1}{4a^2} = \frac{4a+1}{4a^2} > \frac{1-\frac{2}{e}}{4a^2} > 0$$

所以 $\varphi(a)$ 在 $\left(-\frac{1}{2e}, 0\right)$ 上单调递增,

所以
$$g(-2a) = \varphi(a) > \varphi(-\frac{1}{2e}) = \ln \frac{1}{e} + \frac{e}{2} = \frac{e}{2} - 1 > 0$$
,

所以 g(x)在 $(0, +\infty)$ 上有且仅有两个零点,记为 $\alpha, \beta(\alpha < \beta)$,列表:

Х	(0, α)	α	(α, β)	в	(6, +∞)
f'(x)	+	0		0	+
f(x)	1	极大值	`	极小值	1

综上所述,当
$$a \le -\frac{1}{2e}$$
时, $f(x)$ 无极值点;当 $-\frac{1}{2e} < a < 0$ 时, $f(x)$ 有两个极值点;

(2) 由 (1) 知, 当
$$a=0$$
 时, $f(x) \ge f(1) = -1$, 所以 $x \ln x \ge x - 1$, ……10 分

即
$$\ln x \ge 1 - \frac{1}{x}$$
,所以 $\ln^2 x \ge (1 - \frac{1}{x})^2$, $\diamondsuit x = \frac{n+1}{n}$ 得

故
$$\ln^2 \frac{n+1}{n} \ge (\frac{1}{n+1})^2 > \frac{1}{n+1} \cdot \frac{1}{n+2} = \frac{1}{n+1} - \frac{1}{n+2}$$

$$\ln^2 2 + \ln^2 \frac{3}{2} + \ln^2 \frac{4}{3} + \dots + \ln^2 \frac{n+1}{n} > \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{n+1} - \frac{1}{n+2} = \frac{1}{2} - \frac{1}{n+2} = \frac{n}{2n+4} + \dots + \frac{1}{2n+2} = \frac{n}{2n+4} + \dots + \frac{n}{2n+2} = \frac{n}{2n+4} + \dots + \frac{n}{2n+4$$

12. (1)
$$f(x)$$
的定义域为 $(0,+\infty)$, 当 $a=1$ 时, $f'(x)=2x-1-\frac{1}{x}=\frac{(2x+1)(x-1)}{x}$

若f'(x)>0,则x>1;若f'(x)<0,则0< x<1,

 $\therefore f(x)$ 在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增.

 $\therefore f(x)_{\text{M-hf}} = f(1) = 0$, 没有极大值.

(2)
$$f'(x) = 2x - \frac{a}{x} + (a-2) = \frac{(2x+a)(x-1)}{x}(x>0)$$
,

 1° 当 $a \ge 0$ 时,若f'(x) > 0,则x > 1,若f'(x) < 0,则0 < x < 1,

 $\therefore f(x)$ 在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增,

$$2^{\circ} \stackrel{\text{def}}{=} 0 < -\frac{a}{2} < 1$$
, $\mathbb{P} - 2 < a < 0 \, \mathbb{P}$,

若
$$f'(x) > 0$$
 ,则 $0 < x < -\frac{a}{2}$ 或 $x > 1$; 若 $f'(x) < 0$,则 $-\frac{a}{2} < x < 1$

$$\therefore f(x)$$
在 $\left(-\frac{a}{2},1\right)$ 上单调递减,在 $\left(0,-\frac{a}{2}\right)$, $\left(1,+\infty\right)$ 上单调递增

$$3^{\circ} \stackrel{a}{=} -\frac{a}{2} = 1$$
,即 $a = -2$ 时, $f'(x) \ge 0$ 恒成立, ∴ $f(x)$ 在 $(0, +\infty)$ 上单调递增.

$$4^{\circ}$$
 当 $-\frac{a}{2} > 1$,即 $a < -2$ 时,若 $f'(x) > 0$,则 $0 < x < 1$ 或 $x > -\frac{a}{2}$,若 $f'(x) < 0$,则 $1 < x < \frac{a}{2}$,

$$\therefore f(x)$$
在 $(1,-\frac{a}{2})$ 上单调递减,在 $(0,1)(-\frac{a}{2},+\infty)$ 上单调递增

综上所述: 1° 当 a < -2 时, f(x) 在 $(1, -\frac{a}{2})$ 上单调递减,在 $(0,1)(-\frac{a}{2}, +\infty)$ 上单调递增;

 2° 当 a = -2 时, f(x) 在 $(0,+\infty)$ 上单调递增;

$$3^{\circ}$$
 当 $-2 < a < 0$ 时, $f(x)$ 在 $\left(-\frac{a}{2},1\right)$ 上单调递减,在 $(0,1)\left(-\frac{a}{2},+\infty\right)$ 上单调递增

 4° 当 $a \ge 0$ 时, f(x) 在(0,1) 上单调递减,在(1,+∞) 上单调递增;

(3) 由 (1) 知
$$f(x) = x^2 - x - \ln x$$
 在 $(0,1)$ 上为减函数,

∴
$$x \in (0,1)$$
 H;, $x^2 - x - lnx > f(1) = 0$, ∴ $x^2 - x > lnx$

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 6

:
$$ln2 > \frac{1}{2^2}$$
, $ln\frac{3}{2} > \frac{2}{3^2}$, $ln\frac{4}{3} > \frac{3}{4^2}$, ..., $ln\frac{n+1}{n} > \frac{n}{(n+1)^2}$,

将以上各式左右两边相加得:
$$\ln 2 + \ln \frac{3}{2} + \ln \frac{4}{3} + \dots + \ln \frac{n+1}{n} > \frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2}$$
,

$$\therefore ln(n+1) > \frac{1}{2^2} + \frac{2}{3^2} + \frac{3}{4^2} + \dots + \frac{n}{(n+1)^2}.$$

13. 【解析】: (1)
$$f'(x) = \frac{1}{x} - a$$
,因为 $x \in \left[\frac{1}{2}, 2\right]$,所以 $\frac{1}{x} \in \left[\frac{1}{2}, 2\right]$, 1分

当
$$a \le \frac{1}{2}$$
时, $f'(x) \ge 0$ 恒成立,此时 $f(x)_{max} = f(2) = \ln 2 - 2a + 1$; ・・・・ 2分

当
$$a \ge 2$$
 时, $f'(x) \le 0$ 恒成立, 此时 $f(x)_{\text{max}} = f\left(\frac{1}{2}\right) = \ln \frac{1}{2} - \frac{1}{2}a + 1$; •••• 3 分

当
$$\frac{1}{2}$$
< a <2时,由 $f'(x)$ >0得 $\frac{1}{2}$ < x < $\frac{1}{a}$,由 $f'(x)$ <0得 $\frac{1}{a}$ < x < x 2,

所以此时
$$f(x)_{\text{max}} = f\left(\frac{1}{a}\right) = \ln\frac{1}{a}$$
. • • • • • • • • • • • • • • • • • 4 分

(2) 证明: 当
$$a = 1$$
时, $f'(x) = \frac{1}{x} - 1 = \frac{1-x}{x}$, 由 $f'(x) > 0$ 得 $0 < x < 1$, 由 $f'(x) < 0$ 得 $x > 1$, 所以 $f(x)$ 在 $(0,1)$

上单调递增,在(1,+∞)上单调递减,

所以
$$f(x) \le f(1) = 0$$
,即 $\ln x \le x - 1$,当且仅当 $x = 1$ 时等号成立, • • • • • 6 分

即
$$\ln(1+x) < x$$
 对 $\forall x \in (0,+\infty)$ 都成立. • • • • • • • • • • • • • 7 分

所以
$$\ln\left(1+\frac{1}{n^2}\right) + \ln\left(1+\frac{2}{n^2}\right) + \dots + \ln\left(1+\frac{n}{n^2}\right) < \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$$
, • • • • • 8 分

即
$$\ln \left[\left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \cdots \left(1 + \frac{n}{n^2} \right) \right] < \frac{1 + 2 + \cdots + n}{n^2} = \frac{n+1}{2n}$$
. • • • • • • 9 分

由于
$$n \in \mathbb{N}^*$$
,则 $\frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n} \leqslant \frac{1}{2} + \frac{1}{2 \times 1} = 1$. • • • • • • • • • • • 10分

所以
$$\ln \left[\left(1 + \frac{1}{n^2} \right) \left(1 + \frac{2}{n^2} \right) \cdots \left(1 + \frac{n}{n^2} \right) \right] < 1.$$
 11分

所以
$$\left(1+\frac{1}{n^2}\right)\left(1+\frac{2}{n^2}\right)\cdots\left(1+\frac{n}{n^2}\right)$$
 < e. 12分

14. (1) 函数
$$f(x)$$
 的定义域为: $(0,+\infty)$, $f'(x) = \frac{a}{x} + 2x = \frac{a+2x^2}{x}$,

①当
$$a \ge 0$$
时, $f'(x) > 0$,所以 $f(x)$ 在 $(0,+\infty)$ 上单调递增,

②当
$$a < 0$$
时,令 $f'(x) = 0$,解得 $x = \sqrt{-\frac{a}{2}}$.

当
$$0 < x < \sqrt{-\frac{a}{2}}$$
时, $a + 2x^2 < 0$,所以 $f'(x) < 0$,所以 $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减;

当
$$x > \sqrt{-\frac{a}{2}}$$
时, $a + 2x^2 > 0$,所以 $f'(x) > 0$,所以 $f(x)$ 在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

综上, 当 $a \ge 0$ 时, 函数f(x)在 $(0,+\infty)$ 上单调递增;

当
$$a < 0$$
时,函数 $f(x)$ 在 $\left(0, \sqrt{-\frac{a}{2}}\right)$ 上单调递减,在 $\left(\sqrt{-\frac{a}{2}}, +\infty\right)$ 上单调递增.

(2) 当
$$a=1$$
时, $f(x)=\ln x+x^2$,要证明 $f(x) \le x^2+x-1$,

即证 $\ln x \le x-1$, 即证: $\ln x-x+1 \le 0$.

设
$$g(x) = \ln x - x + 1$$
, 则 $g'(x) = \frac{1-x}{x}$, 令 $g'(x) = 0$ 得, $x = 1$.

当
$$x \in (0,1)$$
时, $g'(x) > 0$,当 $x \in (1,+\infty)$ 时, $g'(x) < 0$,

所以x=1为极大值点,且g(x)在x=1处取得最大值.

所以
$$g(x) \le g(1) = 0$$
, 即 $\ln x - x + 1 \le 0$. 故 $f(x) \le x^2 + x - 1$.

(3) 证明:
$$\ln x \le x - 1$$
 (当且仅当 $x = 1$ 时等号成立),即 $\frac{\ln x}{x} \le 1 - \frac{1}{x}$,

则有
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \dots + \frac{\ln n^2}{n^2} < 1 - \frac{1}{2^2} + 1 - \frac{1}{3^2} + \dots + 1 - \frac{1}{n^2} = n - 1 - \left(\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}\right)$$

$$< n-1-\left(\frac{1}{2\times 3}+\frac{1}{3\times 4}+\cdots+\frac{1}{n(n+1)}\right)=n-1-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{n}-\frac{1}{n+1}\right)$$

$$= n - 1 - \left(\frac{1}{2} - \frac{1}{n+1}\right) = \frac{(n-1)(2n+1)}{2(n+1)},$$

故:
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \dots + \frac{\ln n^2}{n^2} = \frac{(n-1)(2n+1)}{2(n+1)}$$
.

15. (I)
$$\pm f'(x) = \frac{1}{x} - m = \frac{1 - mx}{x}$$

若 $m \le 0$,则当 $x \in (0,+\infty)$ 时,f'(x) > 0,函数f(x)单调递增;

若
$$m>0$$
, 则当 $x \in \left(0, \frac{1}{m}\right)$ 时, $f'(x)>0$, 函数 $f(x)$ 单调递增,

当
$$x \in \left(\frac{1}{m}, +\infty\right)$$
时, $f'(x) < 0$,函数 $f(x)$ 单调递减,

所以当 $m \le 0$ 时,函数f(x)的单调递增区间为 $(0,+\infty)$;

当
$$m>0$$
时,函数 $f(x)$ 的单调递增区间为 $\left(0,\frac{1}{m}\right)$,单调递减区间为 $\left(\frac{1}{m},+\infty\right)$.

(II)由(I)知,当m=1时,f(x)在x=1处取得最大值,最大值为f(1)=0,所以当 $x \neq 1$ 时, $\ln x < x-1$,

故当
$$x \in (1,+\infty)$$
, $\ln x < x-1$, $\therefore 1 < \frac{x-1}{\ln x}$.

$$\mathbb{Z} \ln \frac{1}{x} < \frac{1}{x} - 1$$
, $\mathbb{P} \frac{x-1}{\ln x} < x$, $\text{th } 1 < \frac{x-1}{\ln x} < x$.

(III)
$$\underline{\exists} m = 1 \exists f$$
, $f(x) = \ln x - x + 1 \le 0$, $\exists \ln x \le x - 1$,

则有 $\ln(x+1) \le x$, 当且仅当x=0时等号成立,

$$: \ln\left(1+\frac{1}{2^k}\right) < \frac{1}{2^k}, k \in \mathbf{N}^*.$$

一方面:
$$=\ln\left(1+\frac{1}{2}\right)+\ln\left(1+\frac{1}{2^2}\right)+\cdots+\ln\left(1+\frac{1}{2^n}\right)<\frac{1}{2}+\frac{1}{2^2}+\cdots+\frac{1}{2^n}=1-\frac{1}{2^n}<1$$

$$\mathbb{E}\left(1+\frac{1}{2}\right)\left(1+\frac{1}{2^2}\right)\cdots\left(1+\frac{1}{2^n}\right) < e.$$

另一方面: 当
$$n \ge 3$$
时 $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\cdots\left(1 + \frac{1}{2^n}\right) > \left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\left(1 + \frac{1}{2^3}\right) = \frac{135}{64} > 2$,

当
$$n \ge 3$$
 时, $\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{2^2}\right)\cdots\left(1 + \frac{1}{2^n}\right) \in (2, e)$.

$$: t \in \mathbf{N}^*, \left(1 + \frac{1}{2}\right) \left(1 + \frac{1}{2^2}\right) \cdots \left(1 + \frac{1}{2^n}\right) < t$$

:. t 的最小正整数值为 3.

四、证明不等式 4: 指数 ¥ 对数

16.: (1) 函数
$$f(x)$$
 的定义域为 $(0,+\infty)$, $f'(x) = ae^x \ln x + \frac{a}{x}e^x - \frac{b}{x^2}e^{x-1} + \frac{b}{x}e^{x-1}$.

由题意可得 f(1) = 2, f'(1) = e. 故 a = 1, b = 2.

(2) 证明: 由 (1) 知,
$$f(x) = e^x \ln x + \frac{2}{x} e^{x-1}$$
, 从而 $f(x) > 1$ 等价于 $x \ln x > x e^{-x} - \frac{2}{e}$.

设函数 $g(x) = x \ln x$, 则 $g'(x) = 1 + \ln x$.

所以当
$$x \in \left(0, \frac{1}{e}\right)$$
, $g'(x) < 0$; 当 $x \in \left(\frac{1}{e}, +\infty\right)$ 时, $g'(x) > 0$.

故
$$g(x)$$
 在 $\left(0,\frac{1}{e}\right)$ 上单调递减, $\left(\frac{1}{e},+\infty\right)$ 上单调递增,从而 $g(x)$ 在 $\left(0,+\infty\right)$ 上的最小值为 $g(\frac{1}{e})=-\frac{1}{e}$

设函数
$$h(x) = xe^{-x} - \frac{2}{e}$$
, 则 $h'(x) = e^{-x}(1-x)$.

所以当 $x \in (0,1)$ 时,h'(x) > 0,当 $x \in (1,+\infty)$ 时,h'(x) < 0.故h(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减,

从而 h(x) 在 $(0,+\infty)$ 上的最大值为 $h(1) = -\frac{1}{e}$.

综上, 当x > 0时, g(x) > h(x), 即f(x) > 1.

17: (1) 依题意, f(x) 的定义域为(0,+∞), 1分

18. (1) 由题意,函数 $h(x) = f(x) - e^x \left(1 + \frac{2}{e}\right) = e^x (x \ln x - 1)$,其定义域为 $(0, +\infty)$,

可得 $h'(x) = e^x(x+1)\ln x$,

所以h(x)在(0,1)上单调递减,在 $(1,+\infty)$ 上单调递增.

(2) 要证
$$f(x)-x>0$$
, 即要证 $e^x\left(x\ln x+\frac{2}{e}\right)>x$, 即证明 $x\ln x+\frac{2}{e}>\frac{x}{e^x}$.

$$\diamondsuit F(x) = x \ln x + \frac{2}{e}(x > 0), \quad \emptyset F'(x) = \ln x + 1.$$

湛江一中卓越班 2023-17

高三数学压轴解答题——函数导数——不等式证明答案 7

由 F'(x) < 0, 解得 $0 < x < \frac{1}{e}$; 由 F'(x) > 0, 解得 $x > \frac{1}{e}$.

所以 F(x) 在 $\left(0,\frac{1}{e}\right)$ 上单调递减,在 $\left(\frac{1}{e},+\infty\right)$ 上单调递增, $F(x)_{\min}=F\left(\frac{1}{e}\right)=-\frac{1}{e}+\frac{2}{e}=\frac{1}{e}$.

$$\diamondsuit G(x) = \frac{x}{e^x}(x > 0), \quad \emptyset G'(x) = \frac{1-x}{e^x},$$

由G'(x) < 0,解得x > 1;由G'(x) > 0,解得0 < x < 1.

所以G(x)在(0,1)上单调递增,在 $(1,+\infty)$ 上单调递减, $G(x)_{\max} = G(1) = \frac{1}{e}$,

所以 $F(x) \ge \frac{1}{e} \ge G(x)$,且等号不同时取得,即 $x \ln x + \frac{2}{e} > \frac{x}{e^x}$ 成立,

所以f(x)-x>0.

19.

20. (1) 解: 由题意可知
$$f'(x) = \frac{1-x-a}{e^x}$$
,

因为函数f(x)的图像在点(0, f(0))处的切线方程为y=x,

所以
$$f'(0)=1-a=1$$
, 即 $a=0$, (2 分)

所以
$$f(x) = \frac{x}{e^x}$$
, $f'(x) = \frac{1-x}{e^x}$,

当x∈(-∞,1)时, f'(x)>0, 函数f(x)单调递增;

当
$$x \in (1,+\infty)$$
时, $f'(x) < 0$,函数 $f(x)$ 单调递减. (4分)

当
$$x \in \left(0, \frac{1}{e}\right)$$
时, $g'(x) < 0$,函数 $g(x)$ 单调递减;

当
$$x \in \left(\frac{1}{e}, +\infty\right)$$
时, $g'(x) > 0$,函数 $g(x)$ 单调递增.

所以
$$g(x) \ge g\left(\frac{1}{e}\right) = -\frac{1}{e}$$
.

由 (1) 可得在区间 $(0,+\infty)$ 内, $f(x)_{max} = f(1) = \frac{1}{a}$

$$||||\frac{x}{e^x} - \frac{2}{e} \le \frac{1}{e} - \frac{2}{e} = -\frac{1}{e},$$

所以
$$x \ln x > \frac{x}{e^x} - \frac{2}{e}$$
.① (8分)

$$i \exists h(x) = x - \ln(x+1)(x>0),$$

则
$$h'(x) = 1 - \frac{1}{x+1} = \frac{x}{x+1}$$
,

当 $x \in (0,+\infty)$ 时, h'(x) > 0, h(x)单调递增,

所以当 $x \in (0,+\infty)$ 时, h(x) > h(0) = 0,

即 $x > \ln(x+1)$,

所以
$$\frac{x}{e^x} - \frac{2}{e} > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$$
.②

由①②得
$$x \ln x > \frac{\ln(x+1)}{e^x} - \frac{2}{e}$$
.

(12分)

20【解析】: (1) :
$$f(x) = \ln x - e^{1-x}(x > 0)$$
, : $f'(x) = \frac{1}{x} + \frac{e}{x^x} > 0$,

故f(x)在 $(0,+\infty)$ 单调递减,

$$\mathbb{Z} f(1) = -1 < 0$$
, $f(e) = 1 - e^{1-e} = 1 - \frac{e}{e^e} > 0$,

:.函数 y = f(x) 在(1,e) 内存在零点,所以 y = f(x) 的零点的个数为1.

(2) 由题意得
$$h(x) = a(x^2 - 1) - \frac{1}{x} - \ln x + e^{1-x} + \frac{1}{x} - \frac{e}{e^x} = ax^2 - a - \ln x (x > 0)$$

$$\therefore h'(x) = 2ax - \frac{1}{x} = \frac{2ax^2 - 1}{x}.$$

当 $a \le 0$ 时,h'(x) < 0,h(x)在 $(0,+\infty)$ 上单调递减;

当
$$a > 0$$
时,由 $h'(x) = 0$,解得 $x = \pm \frac{1}{\sqrt{2a}}$ (舍去负值),

所以
$$x \in \left(0, \frac{1}{\sqrt{2a}}\right)$$
时, $h'(x) < 0$, $h(x)$ 单调递减;当 $x \in \left(\frac{1}{\sqrt{2a}}, +\infty\right)$ 时, $h'(x) > 0$, $h(x)$ 单调递增.

综上: 当 $a \le 0$ 时, h(x)在 $(0,+\infty)$ 单调递减;

当
$$a > 0$$
时, $h(x)$ 在 $\left(0, \frac{1}{\sqrt{2a}}\right)$ 单调递减,在 $\left(\frac{1}{\sqrt{2a}}, +\infty\right)$ 单调递增.

(3) 由题意得
$$\ln x - \frac{e}{e^x} < a(x^2 - 1) - \frac{1}{x}$$
 在 $(1, +\infty)$ 恒成立, $\therefore a(x^2 - 1) - \ln x > \frac{1}{x} - \frac{e}{e^x}$ 在 $(1, +\infty)$ 恒成立,

设
$$k(x) = \frac{1}{x} - \frac{e}{e^x} = \frac{e^x - ex}{xe^x}$$
, $\Leftrightarrow k_1(x) = e^x - ex$,则 $k_1'(x) = e^x - e$,

当x > 1时, $k_1'(x) > 0$, $k_1(x)$ 在 $(1,+\infty)$ 单调递增,

$$k_1(x) > k_1(1) = 0$$
 , $\mathbb{R}[k(x) > 0$,

若
$$a \le 0$$
,由于 $x > 1$,故 $a(x^2 - 1) - \ln x < 0$,所以 $f(x) < g(x)$ 不成立,

故当
$$f(x) < g(x)$$
在 $(1,+\infty)$ 恒成立时,必有 $a > 0$.

当
$$a > 0$$
时,设 $h(x) = a(x^2 - 1) - \ln x$,

①
$$\stackrel{\square}{=} \frac{1}{\sqrt{2a}} > 1$$
, 即 $0 < a < \frac{1}{2}$ 时,

由 (2) 知
$$x \in \left(1, \frac{1}{\sqrt{2a}}\right)$$
, $h(x)$ 单调递减, $x \in \left(\frac{1}{\sqrt{2a}}, +\infty\right)$, $h(x)$ 单调递增,

因此
$$h\left(\frac{1}{\sqrt{2a}}\right) < h(1) = 0$$
,而 $k\left(\frac{1}{\sqrt{2a}}\right) > 0$,即存在 $x = \frac{1}{\sqrt{2a}} > 1$,使 $f(x) < g(x)$,

故当
$$0 < a < \frac{1}{2}$$
时, $f(x) < g(x)$ 不恒成立.

②
$$\stackrel{\square}{=} \frac{1}{\sqrt{2a}} \le 1$$
, $\mathbb{H} a \ge \frac{1}{2} \mathbb{H}$,

设
$$s(x) = a(x^2 - 1) - \ln x - \frac{1}{x} + \frac{e}{e^x}$$
, 则 $s'(x) = 2ax - \frac{1}{x} + \frac{1}{x^2} - \frac{e}{e^x}$

由于
$$2ax \ge x$$
 且 $k_1(x) = e^x - ex > 0$,即 $\frac{e}{e^x} < \frac{1}{x}$,故 $-\frac{e}{e^x} > -\frac{1}{x}$,

因此
$$s'(x) > x - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x} = \frac{x^2 - 2x + 1}{x^2} > \frac{x^2 - 2x + 1}{x^2} = \frac{(x - 1)^2}{x^2} > 0$$
,故 $s(x)$ 在 $(1, +\infty)$ 单调递增.

所以
$$s(x) > s(1) = 0$$
 时,即 $a \ge \frac{1}{2}$ 时, $f(x) < g(x)$ 在 $(1, +\infty)$ 恒成立.

综上: 当
$$a \in \left[\frac{1}{2}, +\infty\right)$$
, $f(x) < g(x)$ 在 $(1, +\infty)$ 恒成立.

∴当
$$x \in (0,2)$$
时, $f'(x) > 0$;当 $x \in (2,+\infty)$ 时, $f'(x) < 0$.

$$\therefore f(x)$$
在 $(0,2)$ 上单调递增,在 $(2,+\infty)$ 上单调递减.

$$\therefore f(x)$$
在 $x=2$ 处取得极大值 $f(2)=\ln 2-3, f(x)$ 无极小值

(2)
$$\stackrel{\text{def}}{=} a = 1 \text{ Hi}, \quad f(x) - \frac{1}{e^x} + x = \ln x + \frac{1}{x} - \frac{1}{e^x},$$

下面证
$$\ln x + \frac{1}{x} > \frac{1}{e^x}$$
,即证 $x \ln x + 1 > \frac{x}{e^x}$.

设
$$g(x) = x \ln x + 1$$
, 则 $g'(x) = 1 + \ln x$,

在 $\left(0,\frac{1}{e}\right)$ 上,g'(x) < 0, g(x)是减函数;在 $\left(\frac{1}{e}, +\infty\right)$ 上,g'(x) > 0, g(x)是增函数.

所以
$$g(x) \ge g\left(\frac{1}{e}\right) = 1 - \frac{1}{e}$$
.

设
$$h(x) = \frac{x}{e^x}$$
,则 $h'(x) = \frac{1-x}{e^x}$,

在(0,1)上, h'(x) > 0, h(x)是增函数; 在 $(1,+\infty)$ 上, h'(x) < 0, h(x)是减函数,

所以
$$h(x) \le h(1) = \frac{1}{e} < 1 - \frac{1}{e}$$
.

所以
$$h(x) < g(x)$$
, 即 $\frac{x}{e^x} < x \ln x + 1$, 所以 $x \ln x + 1 - \frac{x}{e^x} > 0$, 即 $\ln x + \frac{1}{x} - \frac{1}{e^x} > 0$,

即
$$f(x) - \frac{1}{e^x} + x > 0$$
 在 $(0, +\infty)$ 上恒成立.