Una introducción a los números p-ádicos, su aritmética y algunas simulaciones en Python

Trabajo de grado presentado para optar por el título de Matemático

Autor: Edgar Baquero

Supervisor: Leonardo Chacón. PhD.

30 de mayo de 2020

Pontificia Universidad Javeriana, Facultad de Ciencias

Departamento de Matemáticas

En la escuela nos enseñaron a separar los números por unidades, decenas y centenas. Por ejemplo el número 437 tiene 7 unidades, 3 decenas y 4 centenas. Es decir que podemos representar 437 como:

$$437 = 7 \cdot 10^0 + 3 \cdot 10^1 + 4 \cdot 10^2,$$

El número 543,89 como:

$$543,89 = 9 \cdot 10^{-2} + 8 \cdot 10^{-1} + 3 \cdot 10^{0} + 4 \cdot 10^{1} + 5 \cdot 10^{2}.$$

Que también se puede denotar como 543,89₁₀.

Así:

- Se puede expandir un número por cualquier base q.
- Ejemplos conocidos de sistemas de numeración son el octal, hexadecimal y binario, entre otros.

Ejemplo

Podemos representar el siguiente número:

$$2 \cdot 8^{-2} + 2 \cdot 8^{-1} + 3 \cdot 8^{0} + 4 \cdot 8^{1} + 7 \cdot 8^{2}$$

por 743,22 (q = 8), o también 743,22₈.

- Particularmente, estamos interesados en expansiones sobre bases primas.
- Por ejemplo con p = 2, el ¡Sistema binario!
- En general, una expansión de la forma.

$$x = \sum_{k=-\gamma}^{l} a_k p^k$$
, con $\gamma \in \mathbb{Z}$, $a_k \in \{0, \dots, p-1\}$,

será

$$a_1 \dots a_2 a_1 a_0, a_{-1} a_{-2} \dots a_{-\gamma_p}.$$
 (1.1)

• Siendo así, ahora sí empecemos.

Definición

Sea K un cuerpo. Una *norma* en K es una función $|\cdot|: K \to \mathbb{R}_{\geqslant 0}$ tal que para todo $x,y \in K$ satisface las siguientes propiedades:

$$\diamond |x| \geqslant 0, |x| = 0 \Longleftrightarrow x = 0,$$

$$\diamond |xy| = |x| |y|,$$

$$\diamond |x+y| \leqslant |x| + |y|.$$

Además, una norma $|\cdot|$ en K define una métrica natural dada por d(x,y)=|x-y|.

Definición

Dos normas $|\cdot|_1, |\cdot|_2$ sobre un cuerpo K se dicen *equivalentes* si inducen la misma topología sobre K, i.e., todo abierto con respecto a una topología también lo es con respecto a la otra. Por notación decimos que $|\cdot|_1 \sim |\cdot|_2$.

Proposición

Sea K un cuerpo con dos normas $|\cdot|_1, |\cdot|_2$. Entonces $|\cdot|_1 \sim |\cdot|_2$ si, y sólo si, existe $c \in \mathbb{R}_{>0}$ tal que $|\cdot|_1 = |\cdot|_2^c$.

Proposición (Equivalencia Lipschitz)

Sea K un cuerpo con dos normas $|\cdot|_1$, $|\cdot|_2$. Entonces $|\cdot|_1 \sim |\cdot|_2$ si, y sólo si existen constantes k_1 , k_2 positivas tales que:

$$|k_1|x|_1 < |x|_2 < k_2|x|_1$$

para todo $x \in K$.

Proposición

Sea K un cuerpo con dos normas $|\cdot|_1$, $|\cdot|_2$ tales que $|\cdot|_1 \sim |\cdot|_2$, entonces una sucesión (x_n) es de Cauchy respecto a $|\cdot|_1$ si, y sólo si es de Cauchy respecto a $|\cdot|_2$.

Definición

Una norma $\|\cdot\|$ sobre un cuerpo K se dice *no-arquimediana o ultramétrica*, si la condición (3) (en la definición 1) es reemplazada por

$$||x + y|| \le \max\{||x||, ||y||\}, \forall x, y \in K.$$
 (2.1)

Observación

Dado que

$$||x + y|| \le \max\{||x||, ||y||\} \le ||x|| + ||y||, \forall x, y \in \mathbb{Q},$$

la condición 2.1 es también llamada desigualdad triangular fuerte.

Definición

Fijemos un primo p, sea $x \in \mathbb{Q} \setminus \{0\}$ expresado de forma única como $x = p^v \frac{a}{b}$, donde v es un entero y a, b son primos relativos con p. Definimos la función $\|\cdot\|_p$ de la siguiente manera:

$$||x||_p = p^{-\nu},$$

donde el entero $v=v\left(x\right)$ se denomina el orden p-ádico de x y será denotado por $\operatorname{Ord}\left(x\right)$. Por definición $\|0\|_{p}=0$, y $\operatorname{Ord}(0)=+\infty$.

Ejemplo

Cálculo de la función $\|\cdot\|_p$ para distintos p's.

$$\left| -\frac{66}{500} \right|_{p} = \left| -\frac{33}{250} \right|_{p} = \left| -\frac{3 \cdot 11}{2 \cdot 5^{3}} \right|_{p} = \begin{cases} \frac{33}{250} & \text{si } p = \infty; \\ 2 & \text{si } p = 2; \\ \frac{1}{3} & \text{si } p = 3; \\ 5^{3} & \text{si } p = 5; \\ 1 & \text{si } p = 7; \\ \frac{1}{11} & \text{si } p = 11; \\ \vdots & \vdots & \vdots \\ 1 & \text{otro caso.} \end{cases}$$

Nuestros 3 mosqueteros:

Teorema (Fórmula Adélica del producto)

Sea $x \in \mathbb{Q}$ tal que $x \neq 0$, entonces:

$$\prod_{p}^{\infty} ||x||_{p} = 1, \text{ con } ||x||_{\infty} = |x| \text{ y } p \text{ primo.}$$

Teorema

 $\|\cdot\|_p$ es una norma no arquimediana.

Teorema (Ostrowski)

Cualquier norma no trivial sobre $\mathbb Q$ es equivalente al valor absoluto usual, o a una norma p-ádica $\|\cdot\|_p$, para algún primo p.

Observación

Las normas $\|\cdot\|_p$ y $\|\cdot\|_q$ no son quivalentes si p y q son primos distintos. Por ejemplo, sea p=5 y q=7, la sucesión $x_n=\left(\frac{5}{7}\right)^n$ se tiene que

$$\|x_n\|_5 = 5^{-n} \to 0 \text{ y } \|x_n\|_7 = 7^n \to \infty,$$

cuando $n \to \infty$.

El valor absoluto usual sobre \mathbb{Q} tampoco es equivalente a una norma p-ádica. Por ejemplo, considérese la sucesión $x_n = (\frac{1}{p})^n$, entonces

$$|x_n|=p^{-n}\to 0$$
 y $||x_n||_p=p^n\to \infty$,

cuando $n \to \infty$. Lo cual contradice la proposición 3.

Observación

Las normas $\|\cdot\|_p$ y $\|\cdot\|_q$ no son quivalentes si p y q son primos distintos. Por ejemplo, sea p=5 y q=7, la sucesión $x_n=\left(\frac{5}{7}\right)^n$ se tiene que

$$||x_n||_5 = 5^{-n} \to 0 \text{ y } ||x_n||_7 = 7^n \to \infty,$$

cuando $n \to \infty$.

El valor absoluto usual sobre \mathbb{Q} tampoco es equivalente a una norma p-ádica. Por ejemplo, considérese la sucesión $x_n = (\frac{1}{p})^n$, entonces

$$|x_n| = p^{-n} \to 0$$
 y $||x_n||_p = p^n \to \infty$,

cuando $n \to \infty$. Lo cual contradice la proposición 3.

Teorema (Caracterización de sucesiones de Cauchy)

Una sucesión $(x_n)_{n\in\mathbb{N}}$ en \mathbb{Q} es de Cauchy, si, y sólo si:

$$\lim_{n \to \infty} ||x_{n+1} - x_n||_p = 0.$$
 (2.2)

Definición

Sea $(\mathbb{K}, \|\cdot\|)$ un cuerpo métrico. Sea $\mathbb{K}^{\mathbb{N}}$ el anillo de todas las sucesiones en \mathbb{K} . Definimos \mathcal{C}, \mathcal{N} como el subanillo de todas las sucesiones de Cauchy y el subanillo de todas las sucesiones finalmente nulas, respectivamente.

Definición (Completación de un cuerpo métrico)

Sea $(\mathbb{K}, \|\cdot\|)$ un cuerpo métrico. Sean \mathcal{C}, \mathcal{N} los subanillos de todas las sucesiones de Cauchy y de todas las sucesiones finalmente nulas, respectivamente. Definimos el cociente de anillos $\hat{\mathbb{K}} := \mathcal{C}/\mathcal{N}$ como la completación de \mathbb{K} .

Observación

La norma $\|\cdot\|: \hat{\mathbb{K}} \to \mathbb{R}_+$, sobre la completación de \mathbb{K} está definida tal que para todo $(x_n) + \mathcal{N} \in \hat{\mathbb{K}}$:

$$\|(x_n)+\mathcal{N}\|=\lim_{n\to\infty}\|x_n\|.$$

El siguiente teorema es importante, pues caracteriza a $\mathbb Q$ como un cuerpo no completo.

Teorema

 $(\mathbb{Q}, d(x, y) = ||x - y||_p)$ y $(\mathbb{Q}, d(x, y) = |x - y|)$ no son espacios completos.

Ejemplo

Un procedimiento para construir una sucesión de Cauchy en $(\mathbb{Q}, d(x, y) = \|x - y\|_p)$ podría hacerse, tomando $a \in \mathbb{Q}$ tal que:

- \diamond a no es cuadrado en $\mathbb Q$
- ⋄ p ∤ a
- a es residuo cuadrático módulo p. i.e., $x^2 \equiv a \pmod{p^n}$ tiene solución.

Continuación.

Podemos hallar a tal que sea cuadrado en \mathbb{Z} y sumarle un múltplo de p; para así construir la sucesión como sigue:

- \diamond Tomamos x_0 solución de $x^2 \equiv a \pmod{p}$
- Construimos a x_1 tal que $x_1 \equiv x_0 \pmod{p}$ y además
 $x_1^2 \equiv a \pmod{p^2}$
- \circ Recursivamente, construimos x_n tal que:

$$x_n \equiv x_{n-1} \pmod{p^n}$$
 y $x_n^2 \equiv a \pmod{p^{n+1}}$

Es de cauchy: $\|x_{n+1} - x_n\|_p = \|kp^n\|_p \leqslant \|p^n\|_p = p^{-n} \to 0$. No converge: $\|x_n^2 - a\|_p = \|sp^{n+1}\|_p \leqslant \|p^{n+1}\|_p \leqslant p^{-(n+1)} \to 0$, luego $x_n \to \sqrt{a} \notin \mathbb{Q}$.