### Projet BIG DATA:

## Analyse des utilisateurs YELP



# **SOMMAIRE**

| 1. Introduction                                                                   | 3  |
|-----------------------------------------------------------------------------------|----|
| 2. Présentation de la base de données                                             | 3  |
| 3. Construction de l'entrepôt de données et flux ETL                              | 4  |
| 3.1 Préparation des données sources                                               |    |
| 3.2 Création des tables MySQL (schéma relationnel)                                | 5  |
| 3.3 Intégration des données avec Pentaho                                          | 6  |
| 3.4 Organisation des flux ETL                                                     | 6  |
| 4. Requêtage                                                                      | 8  |
| 4.1 Analyse des utilisateurs les plus influents                                   | 8  |
| 4.2 Répartition des utilisateurs par catégorie de fans et par année (Roll up)     | 9  |
| 4.3 Analyse de l'évolution des avis à travers une moyenne mobile                  | 9  |
| 4.3 Analyse des avis reçus par l'établissement Los Agaves                         | 11 |
| 4.4 Analyse de la première et de la dernière note reçue par les établissements    | 12 |
| 4.5 Top 5 des établissements les plus populaires parmi les 10 catégories les plus |    |
| fréquentes                                                                        |    |
| 5. Rapport d'analyse                                                              |    |
| 5.1 Dashboard "Categories"                                                        |    |
| 5.2. Dashboard "Shops"                                                            | 15 |
| 5.3 Dashboard "Popular User"                                                      | 17 |
| 6.Difficulté                                                                      | 19 |
| 7. Conclusion                                                                     | 19 |

### 1. Introduction

Ce projet a été réalisé en binôme par Maxence GENET et Vicky WANG. Nous avons choisi ensemble la base de données Yelp. Le choix s'est fait de manière naturelle, car nous cherchions une base riche, variée et réaliste pour permettre des analyses intéressantes autour de la satisfaction client, de la réputation en ligne et du comportement des utilisateurs. Cette base de données nous intéresse car nous voulions ouvrir une boutique plus tard. Cela nous servirait de template pour faire des études de marché poussées.

Une fois la base sélectionnée, nous avons réfléchi ensemble à la manière de nous répartir les tâches tout en gardant une dynamique de travail collaboratif. Nous avons d'abord travaillé à deux sur des scripts en amont pour filtrer et réduire la base initiale, qui était très (voire trop) volumineuse. Cela nous a permis d'extraire les données les plus pertinentes et de faciliter les étapes suivantes.

Maxence s'est ensuite occupé de la partie transformation des données avec Pentaho. Il a mis en place les différents flux d'intégration, créé les tables de l'entrepôt de données et réalisé les requêtes SQL nécessaires à l'analyse. De son côté, Vicky a pris en charge une grande partie du travail sur Power BI. Elle a conçu les visualisations interactives et structuré les tableaux de bord pour mettre en valeur les résultats obtenus.

Tout au long du projet, nous avons travaillé en collaboration, en nous aidant mutuellement sur les différentes étapes.

### 2. Présentation de la base de données

Le jeu de données utilisé dans ce projet provient du site officiel de Yelp, dans le cadre du Yelp Open Dataset Challenge, accessible à l'adresse <a href="https://www.yelp.com/dataset">https://www.yelp.com/dataset</a>. Yelp propose deux bases en open data : nous avons choisi la première, plus légère, qui ne contient pas les données relatives aux photos. Ce choix s'est fait à la fois pour des raisons de faisabilité technique et pour nous permettre de nous concentrer sur l'essentiel : les établissements, les utilisateurs et leurs interactions via les avis.

Le dataset Yelp est composé de plusieurs fichiers au format JSON, chacun représentant un type d'objet : business.json (établissements), review.json (avis) et user.json (utilisateurs). Ces fichiers sont bien structurés et reliés entre eux par des identifiants (business\_id, user\_id), ce qui facilite leur exploitation relationnelle.

Nous avons été motivés par ce choix de dataset car il permet non seulement de travailler sur un volume conséquent et réaliste, mais aussi d'explorer une problématique proche de nos intérêts personnels. En effet, à plus long terme, certains membres du groupe envisagent d'ouvrir leur propre établissement. Yelp est une plateforme incontournable en matière de visibilité locale, et la capacité à analyser ses données constitue un atout stratégique. Ce projet nous sert ainsi de modèle réutilisable pour faire des études de marché, analyser les zones géographiques, comprendre les attentes des clients ou identifier les tendances à partir des retours des utilisateurs.

Étant donné le volume important des fichiers, nous avons dû concevoir des scripts Python pour filtrer les données et en réduire la taille, tout en gardant une cohérence entre les

entités. Nous avons commencé par le fichier business.json, en filtrant uniquement les établissements situés dans l'État de Californie (state = CA). Cette extraction nous a permis de constituer la table business CA.

À partir de cette table, nous avons extrait tous les identifiants business\_id pour sélectionner les avis correspondants dans review.json, formant ainsi la table review\_CA. Enfin, nous avons collecté les user\_id apparaissant dans les avis afin de filtrer les utilisateurs pertinents dans user.json, ce qui a permis de générer la table user\_CA.

Ces trois tables principales (business\_CA, review\_CA, user\_CA) constituent la base de notre entrepôt de données. Leur structuration progressive nous a permis de réduire les volumes tout en maintenant une logique relationnelle robuste, essentielle pour la modélisation décisionnelle et l'analyse multidimensionnelle qui suit.

## 3. Construction de l'entrepôt de données et flux ETL

### 3.1 Préparation des données sources

Le dataset Yelp est initialement fourni au format JSON, réparti en plusieurs fichiers volumineux (business, review, user, etc.). Dans le but de faciliter son exploitation et de se concentrer sur un périmètre géographique cohérent, nous avons filtré les établissements situés exclusivement dans l'État de la Californie (state = CA) à partir du fichier business.json.

À partir des business\_id extraits, nous avons récupéré dans review.json les avis associés, constituant ainsi la table review\_CA. Enfin, les user\_id figurant dans ces avis nous ont permis d'isoler les utilisateurs pertinents dans user.json, donnant naissance à la table user CA.

Une fois ces trois jeux de données extraits, nous avons converti les fichiers JSON en CSV structurés en supprimant les colonnes non nécessaires à notre analyse et en standardisant les formats (types numériques, format de date). Ces fichiers CSV ont ensuite servi de base pour l'intégration dans l'entrepôt.

## 3.2 Création des tables MySQL (schéma relationnel)

Avant toute insertion de données, nous avons conçu un script SQL pour créer les tables vides de notre entrepôt dans une base MySQL nommée yelp. Ce script définit la structure relationnelle de notre entrepôt avec les clés primaires et étrangères nécessaires.

La table principale review\_CA joue le rôle de table de faits. Elle regroupe les avis laissés par les utilisateurs sur les établissements, avec les variables suivantes :

- review id (clé primaire)
- user id (clé étrangère vers user CA)
- business\_id (clé étrangère vers business\_CA)
- stars, useful, funny, cool
- date (date de publication de l'avis)

Les dimensions associées sont les suivantes :

- user\_CA, qui contient les informations complètes des utilisateurs : leur nom, ancienneté (yelping\_since), nombre de fans, moyenne des étoiles attribuées, et l'ensemble des compliments reçus sur la plateforme. La clé primaire est user\_id.
- business\_CA, qui décrit les établissements Yelp : nom, adresse, ville, coordonnées géographiques, catégories, horaires, nombre d'avis et moyenne des notes. La clé primaire est business\_id
- review\_date\_details, table temporelle dérivée de review\_CA, qui reprend le champ date et le décompose en année, mois, jour, heure, minute, seconde. Elle est liée à review CA par la clé review id

Deux tables de correspondance viennent enrichir l'entrepôt avec des éléments catégoriels supplémentaires :

- mapping\_business\_note : permet de catégoriser les établissements selon leur volume d'avis (review\_count) et de leur attribuer une étiquette analytique (categorie\_note). Elle est reliée à business\_CA via business\_id.
- mapping\_fans\_categorie : classe les utilisateurs selon leur popularité en fonction du nombre de fans (categorie\_fans). Elle est reliée à user\_CA via user\_id.

#### Schéma relationnel de l'entrepôt de données :



### 3.3 Intégration des données avec Pentaho

Une fois les tables créées dans MySQL, nous avons utilisé Pentaho Data Integration pour construire les flux ETL qui assurent l'insertion automatisée des données dans l'entrepôt. Les fichiers CSV sont d'abord lus avec le composant CSV file input. Des transformations sont ensuite appliquées, incluant :

- Le filtrage de valeurs nulles ou invalides
- La conversion des types (notamment pour les dates)
- Le renommage ou l'harmonisation des colonnes
- L'extraction de champs spécifiques pour alimenter les tables auxiliaires

Les données sont ensuite chargées dans MySQL avec les composants Table Output (ou Insert/Update pour les cas nécessitant des mises à jour sans duplication).

### 3.4 Organisation des flux ETL

Nous avons structuré nos transformations .ktr par table source, avec un fichier principal par entité (user\_CA.ktr, business\_CA.ktr, review\_CA.ktr...) et des transformations complémentaires pour les extractions spécifiques (review\_date\_details.ktr, mapping fans categorie.ktr...).

Cette organisation modulaire facilite la maintenance et permet de rejouer rapidement un flux en cas de mise à jour des données sans devoir retraiter l'ensemble.



Dans cette transformation, nous avons alimenté à la fois des tables dans notre entrepôt de données et des fichiers CSV. Ces fichiers CSV (qui sont les tables de correspondances des dimensions) ont été nécessaires pour pouvoir exploiter les données avec Looker car nous ne pouvions pas utiliser Power BI sur nos machines ni connecter directement Looker à notre entrepôt. Nous avons donc lié Looker à notre Google Drive pour lire les CSV, avant d'alimenter notre base de données avec ces mêmes fichiers. C'est pourquoi nous avons des transformations en doublons. De plus, la table de correspondance review\_date\_detail n'a pas pu être lue dans Looker car le logiciel n'arrivait pas à lire le fichier.

- Table business\_CA: Pour la table business\_CA, nous avons extrait les données depuis un fichier CSV contenant les informations des établissements, puis nous les avons insérées dans l'entrepôt de données.
- Table review\_CA: Pour la table review\_CA, nous avons également extrait un fichier CSV contenant les avis des utilisateurs, que nous avons insérés dans l'entrepôt. À partir de ces données, nous avons calculé le nombre d'avis par établissement grâce à une expression Java, et créé des correspondances entre les avis et les établissements. Ces correspondances ont été utilisées pour enrichir la table MAPPING\_BUSINESS\_NOTE.
- Table user\_CA: La table user\_CA a été alimentée à partir d'un fichier CSV contenant les profils des utilisateurs. Nous avons inséré ces données dans l'entrepôt afin de conserver des informations détaillées comme le nombre de reviews, la date d'inscription, les compliments reçus ou encore le score moyen attribué aux établissements.
- Table MAPPING\_FANS\_CATEGORIE : nous avons extrait les données utilisateurs avec leur nombre de fans, puis utilisé une expression Java pour les classer dans des catégories (fan == 0 : « aucun fan » ; fan < 10 : « très peu de fans » ; fans entre 10 et 50 : « nombre modéré de fans » ; fans entre 50 et 100 : « beaucoup de fans » ; fans > 100 : « très nombreux fans »). Ces données ont été insérées dans la table de correspondance et également exportées au format CSV.
- Table MAPPING\_BUSINESS\_NOTE: À partir de la table review\_CA, nous avons calculé le nombre d'avis par établissement grâce à une expression Java, et créé des correspondances entre les avis et les établissements. Ces correspondances ont été utilisées pour enrichir la table MAPPING\_BUSINESS\_NOTE (inférieur à 50 = très peu de notes, entre 50 et 100 = peu de notes, et plus de 100 = noté convenablement).
- Table REVIEW\_DATE\_DETAIL : nous avons extrait les timestamps des avis et les avons décomposés en plusieurs champs (année, mois, jour, heure, minute, seconde). Ces informations temporelles ont été insérées dans une table dédiée et également exportées en fichier CSV.

## 4. Requêtage

Après cette phase de transformation et d'alimentation de notre entrepôt de données ainsi que des fichiers CSV, nous allons désormais passer à l'étape des requêtes. Ces requêtes, parfois complexes, vont nous permettre d'explorer et de comprendre les grandes tendances présentes dans notre base de données.

### 4.1 Analyse des utilisateurs les plus influents

|   | critere    | user_id                | name  | review_count | fans |
|---|------------|------------------------|-------|--------------|------|
| ⊳ | Top Review | Hi10sGSZNxQH3NLyWSZ1oA | Fox   | 17473        | 3493 |
|   | Top Fans   | hizGc5W1tBHPghM5YKCAtg | Katie | 1825         | 3642 |

Cette requête permet d'identifier deux utilisateurs clés dans la base de données selon deux critères différents. L'utilisateur nommé Fox est celui qui a rédigé le plus grand nombre d'avis, avec un total de 17 473 reviews. Cela en fait l'utilisateur le plus actif en termes de contribution sur la plateforme. De son côté, l'utilisatrice Katie possède le plus grand nombre de fans, avec 3 642 personnes qui la suivent. Bien qu'elle ait rédigé moins d'avis (1 825), elle bénéficie d'une forte popularité. Cette distinction met en évidence deux formes d'influence différentes sur Yelp: l'activité et la notoriété.

# 4.2 Répartition des utilisateurs par catégorie de fans et par année (Roll up)

|   | annee | categorie_fans        | nb_users | total_fans |
|---|-------|-----------------------|----------|------------|
| Þ | 2004  | Aucun fan             | 6        | 0          |
|   | 2004  | Beaucoup de fans      | 1        | 54         |
|   | 2004  | Nombre modéré de fans | 2        | 28         |
|   | 2004  | Très nombreux fans    | 3        | 3698       |
|   | 2004  | Très peu de fans      | 8        | 25         |
|   | 2005  | Aucun fan             | 31       | 0          |
|   | 2005  | Beaucoup de fans      | 24       | 1693       |
|   | 2005  | Nombre modéré de fans | 56       | 1301       |
|   | 2005  | Très nombreux fans    | 20       | 7027       |
|   | 2005  | Très peu de fans      | 77       | 321        |
|   | 2006  | Aucun fan             | 203      | 0          |
|   | 2006  | Beaucoup de fans      | 70       | 4789       |
|   | 2006  | Nombre modéré de fans | 285      | 6502       |
|   | 2006  | Très nombreux fans    | 68       | 18716      |
|   | 2006  | Très peu de fans      | 500      | 1764       |
|   | 2007  | Aucun fan             | 721      | 0          |
|   | 2007  | Beaucoup de fans      | 166      | 11226      |
|   | 2007  | Nombre modéré de fans | 649      | 15047      |
|   | 2007  | Très nombreux fans    | 138      | 36677      |
|   | 2007  | Très peu de fans      | 1520     | 5032       |

Cette requête présente une analyse de la répartition des utilisateurs selon leur catégorie de fans, pour chaque année d'inscription sur Yelp. On observe différentes catégories comme "Aucun fan", "Très peu de fans", "Nombre modéré de fans", "Beaucoup de fans" et "Très nombreux fans", construites à partir du nombre de fans de chaque utilisateur.

Pour chaque combinaison année-catégorie, la requête fournit deux indicateurs : le nombre d'utilisateurs (nb\_users) et le nombre total de fans (total\_fans) associés à ces utilisateurs. Par exemple, en 2007, 1520 utilisateurs avaient "Très peu de fans", totalisant 5032 fans, tandis que 68 utilisateurs appartenaient à la catégorie "Très nombreux fans" avec un total de 18 716 fans.

Cette analyse permet de repérer l'évolution du profil des utilisateurs au fil du temps. On remarque que certaines années, comme 2007 et 2008, enregistrent un nombre plus élevé

d'utilisateurs dans toutes les catégories, ce qui reflète une montée en popularité de la plateforme. Les utilisateurs les plus influents (ayant beaucoup ou très nombreux fans) restent peu nombreux, mais concentrent une part importante du total de fans, ce qui confirme leur rôle central dans la dynamique communautaire de Yelp.

### 4.3 Analyse de l'évolution des avis à travers une moyenne mobile

| business_id            | business_name                   | review_year | avg_stars | moving_avg  |
|------------------------|---------------------------------|-------------|-----------|-------------|
| O3ip9NpXTKD4oBS1pY2A   | Alameda Park                    | 2016        | 4.16667   | 4.727778000 |
| O3ip9NpXTKD4oBS1pY2A   | Alameda Park                    | 2017        | 4.60000   | 4.716161818 |
| O3ip9NpXTKD4oBS1pY2A   | Alameda Park                    | 2018        | 4.55556   | 4.702778333 |
| O3ip9NpXTKD4oBS1pY2A   | Alameda Park                    | 2019        | 4.85714   | 4.714652307 |
| O3ip9NpXTKD4oBS1pY2A   | Alameda Park                    | 2020        | 5.00000   | 4.735034285 |
| -06ngMH_Ejkm_6HQBYxB7g | Stewart's De Rooting & Plumbing | 2016        | 5.00000   | 3.041667500 |
| -06ngMH_Ejkm_6HQBYxB7g | Stewart's De Rooting & Plumbing | 2017        | 3.66667   | 3.166668000 |
| -06ngMH_Ejkm_6HQBYxB7g | Stewart's De Rooting & Plumbing | 2018        | 3.66667   | 3.250001666 |
| -06ngMH_Ejkm_6HQBYxB7g | Stewart's De Rooting & Plumbing | 2019        | 3.50000   | 3.285715714 |
| -06ngMH_Ejkm_6HQBYxB7g | Stewart's De Rooting & Plumbing | 2020        | 4.00000   | 3.375001250 |
| -0hxpklpBh2T0tvdM1mSlw | Brookstone                      | 2016        | 3.00000   | 1.666666666 |
| -0hxpklpBh2T0tvdM1mSlw | Brookstone                      | 2017        | 2.25000   | 1.812500000 |
| -0hxpklpBh2T0tvdM1mSlw | Brookstone                      | 2018        | 3.00000   | 2.050000000 |
| -1g8Qb6t_mSX_ak1thMmrQ | FreeWalkingTourSB               | 2017        | 5.00000   | 5.000000000 |
| -1g8Qb6t_mSX_ak1thMmrQ | FreeWalkingTourSB               | 2018        | 5.00000   | 5.000000000 |
| -1g8Qb6t_mSX_ak1thMmrQ | FreeWalkingTourSB               | 2019        | 4.94444   | 4.981480000 |
| -1g8Qb6t_mSX_ak1thMmrQ | FreeWalkingTourSB               | 2020        | 5.00000   | 4.986110000 |
| -1ze-oWDnrGAzvAg56QXUA | GraphicInk                      | 2016        | 5.00000   | 5.000000000 |
| -1ze-oWDnrGAzvAg56QXUA | GraphicInk                      | 2017        | 5.00000   | 5.000000000 |
| -1ze-oWDnrGAzvAg56QXUA | GraphicInk                      | 2018        | 5.00000   | 5.000000000 |
| -1ze-oWDnrGAzvAg56QXUA | GraphicInk                      | 2019        | 5.00000   | 5.000000000 |
| -3Aooxlkg38UyUdlz5oXdw | Chase Restaurant                | 2016        | 3.43243   | 3.303183333 |
| -3Aooxlkg38UyUdlz5oXdw | Chase Restaurant                | 2017        | 4.14286   | 3.387151000 |
| -3Aooxlkg38UyUdlz5oXdw | Chase Restaurant                | 2018        | 3.64103   | 3.410230909 |
| -3Aooxlkg38UyUdlz5oXdw | Chase Restaurant                | 2019        | 3.36585   | 3.406532500 |
| -3Aooxlkg38UyUdlz5oXdw | Chase Restaurant                | 2020        | 3.12329   | 3.384744615 |
| -3kTgLg2lUr2PBaokvcnmQ | Santa Barbara Balayage by Kar   | 2016        | 5.00000   | 5.000000000 |
| -3kTgLg2lUr2PBaokvcnmQ | Santa Barbara Balayage by Kar   | 2019        | 5.00000   | 5.000000000 |
| -6jvfSJGprbfBD2QrS9zQw | Mesa Produce                    | 2017        | 5.00000   | 5.000000000 |
| -6jvfSJGprbfBD2QrS9zQw | Mesa Produce                    | 2018        | 5.00000   | 5.000000000 |
| -6jvfSJGprbfBD2QrS9zQw | Mesa Produce                    | 2019        | 5.00000   | 5.000000000 |

Cette requête permet d'étudier l'évolution des notes moyennes attribuées à différents établissements au fil des années en calculant une moyenne mobile. Pour chaque ligne, on retrouve l'identifiant de l'établissement, son nom, l'année de l'avis, la note moyenne obtenue cette année-là et la moyenne mobile, qui lisse les variations annuelles.

Cette méthode est utile pour observer des tendances sur la satisfaction des clients dans le temps. Par exemple, pour Alameda Park, la moyenne mobile reste stable entre 2016 et 2020, ce qui indique une constance dans la perception des avis. En revanche, pour Stewart's De Rooting and Plumbing, la moyenne mobile varie davantage, ce qui peut traduire des changements dans la qualité perçue par les clients.

L'utilisation de la moyenne mobile permet ainsi de repérer des évolutions progressives, que ce soit des améliorations continues ou des dégradations dans la note moyenne attribuée à un établissement. Elle apporte une vision plus régulière et lisible de la satisfaction des utilisateurs dans le temps.

### 4.3 Analyse des avis reçus par l'établissement Los Agaves

|   | review_id              | review_date | review_stars | business_stars |
|---|------------------------|-------------|--------------|----------------|
| Þ | pOeeHDXyycVdjLjzH6kM_Q | 2008-09-13  | 5.0          | 4.0            |
|   | rKhaxkXmkLb_l2a0vrqhyw | 2008-12-09  | 5.0          | 4.0            |
|   | vRLEaNFSzUbGyzVzpjboQA | 2009-02-17  | 4.0          | 4.0            |
|   | q_aaC1CRT4r3xg3kkmwA   | 2009-03-03  | 4.0          | 4.0            |
|   | iUp8rg1uDwS0_NH4y6yl6Q | 2009-03-03  | 3.0          | 4.0            |
|   | OcAwYgy7qM9LjH-hDGig9A | 2009-03-03  | 5.0          | 4.0            |
|   | BO8t754Mz4lhry_DYpuWPQ | 2009-03-22  | 4.0          | 4.0            |
|   | oLcnEk9-1xUvadcWu1O_oA | 2009-03-26  | 4.0          | 4.0            |
|   | boOqEwGIL7VelgUilYrz8g | 2009-04-01  | 5.0          | 4.0            |
|   | XowB6i3TTCe0frOd06TAOw | 2009-04-06  | 5.0          | 4.0            |
|   | WnQNFZCxRmM_bRbSupJ    | 2009-04-09  | 4.0          | 4.0            |
|   | J9NR006NBh5kFzbQz-gASQ | 2009-05-12  | 5.0          | 4.0            |
|   | n2IR_SwlPjdK5DPoAlKr1Q | 2009-06-01  | 5.0          | 4.0            |
|   | S1CoNb71TTLRwvMomscl4Q | 2009-06-10  | 4.0          | 4.0            |
|   | I_jVdWRjNOQ9igAE1CcUdw | 2009-06-15  | 5.0          | 4.0            |
|   | bCXraFz2qhN7-2LXVbTefw | 2009-06-24  | 1.0          | 4.0            |
|   | GSgJ69Q-icTGc_bkRPodgw | 2009-07-11  | 3.0          | 4.0            |
|   | iiT9quS6_oyEO5vrNCt-6g | 2009-07-29  | 5.0          | 4.0            |
|   | cQZ1YImSNfCkJE7fpXxw5A | 2009-09-20  | 3.0          | 4.0            |
|   | wEguML63fqHWoTHg09wkqA | 2009-10-13  | 4.0          | 4.0            |
|   | alidOR98f9CuQE8nQLLP1g | 2009-10-17  | 3.0          | 4.0            |
|   | NsnZ1_Qny8i5xEIRKKI8Ww | 2009-11-24  | 5.0          | 4.0            |
|   | 9NXpUy7xCx4TkHEWW0N    | 2010-01-08  | 5.0          | 4.0            |
|   | lr5bq9lj5jIP7RAlgYWbTA | 2010-01-18  | 5.0          | 4.0            |
|   | Q2JAWpZZ8EoGZYFVHdq    | 2010-01-18  | 4.0          | 4.0            |
|   | _dNln-3iWl_9LuYFep5MsA | 2010-01-22  | 5.0          | 4.0            |
|   | I-rkn8cvKPuhda9MRkMRLQ | 2010-02-12  | 5.0          | 4.0            |
|   | FyjQOamM54ddRoQ5_G     | 2010-03-07  | 4.0          | 4.0            |
|   | 4Pg5CzUbQE-baFe772F-9w | 2010-03-15  | 5.0          | 4.0            |
|   | 3nsB3cJAM9S7e64cJPLoUQ | 2010-03-18  | 4.0          | 4.0            |
|   | lt5oRh3fyBNKoSOELeyvAw | 2010-03-20  | 5.0          | 4.0            |
|   | sIVuu2E1-FbooEyrLqYMuQ | 2010-03-25  | 5.0          | 4.0            |

Cette requête affiche l'ensemble des avis attribués à l'établissement Los Agaves, qui fait partie des établissements ayant reçu le plus grand nombre de notes dans la base de données. Pour chaque avis, on retrouve la date, la note donnée par l'utilisateur, ainsi que la note moyenne de l'établissement au moment de la publication de cet avis.

On remarque que de nombreux utilisateurs ont attribué la note maximale de 5 étoiles, alors que la note moyenne de l'établissement est souvent légèrement inférieure, autour de 4 étoiles. Cela montre que l'établissement bénéficie d'une perception globalement positive, avec une forte proportion d'avis très favorables.

L'analyse des écarts entre les notes individuelles et la moyenne générale permet d'évaluer la stabilité de la qualité perçue, ainsi que l'évolution de la satisfaction client au fil du temps. Le fait que cet établissement continue de recevoir des notes élevées renforce son image de valeur sûre auprès des utilisateurs.

# 4.4 Analyse de la première et de la dernière note reçue par les établissements

| business_id            | name                             | first_review_st | first_review_date   | last_review_sta | last_review_date    |
|------------------------|----------------------------------|-----------------|---------------------|-----------------|---------------------|
| Pns2l4eNsfO8kk83dixA6A | Abby Rappoport, LAC, CMQ         | 5.0             | 2012-05-02 18:07:38 | 5.0             | 2015-03-16 03:43:08 |
| noByYNtDLQAra9ccqxdfDw | H&M                              | 4.0             | 2011-06-24 03:17:08 | 2.0             | 2020-07-26 18:51:31 |
| IDtLPgUrqorrpqSLdfMhZQ | Helena Avenue Bakery             | 4.0             | 2016-07-11 14:42:07 | 4.0             | 2022-01-16 22:28:56 |
| nUqrF-h9S7myCcvNDecOvw | Iron Horse Auto Body             | 5.0             | 2014-08-04 01:20:45 | 5.0             | 2021-12-03 21:02:27 |
| bYjnX_J1bHZob10DoSFkqQ | Tinkle Belle Diaper Service      | 5.0             | 2017-02-27 18:11:18 | 5.0             | 2021-08-07 20:15:58 |
| SZU9c8V2GuREDN5KgyHFJw | Santa Barbara Shellfish Company  | 5.0             | 2005-07-07 21:56:53 | 5.0             | 2022-01-19 05:21:58 |
| QZU7TcrztBb3tXaPbVCkXg | 805 lnk                          | 5.0             | 2010-06-15 01:20:39 | 5.0             | 2022-01-01 23:47:37 |
| 25Uww0C0wvF9CZ_3B6vWtA | Enjoy The Mountain               | 5.0             | 2015-05-05 05:07:23 | 3.0             | 2021-10-23 16:16:26 |
| xF9r1XbMvEOsJeHlmFhlvw | Weddings in Santa Barbara        | 5.0             | 2009-08-31 06:09:18 | 5.0             | 2019-04-18 19:34:00 |
| 4xhGQGdGqU60BlznBjqnuA | California Tacos and Taproom     | 5.0             | 2018-12-06 04:12:23 | 5.0             | 2021-11-28 02:37:25 |
| Rad7bl6MFOEemh41CdREMQ | Isla Vista Community Bike Center | 5.0             | 2018-01-10 08:30:20 | 5.0             | 2018-10-22 23:33:07 |
| ifjluUv4VASwmFqEp8cWlQ | Marty's Pizza                    | 5.0             | 2007-08-19 08:08:32 | 5.0             | 2022-01-07 05:35:59 |
| VeFfrEZ4iWaecrQg6Eq4cg | Cal Taco                         | 4.0             | 2007-01-13 22:49:12 | 1.0             | 2021-11-21 03:05:15 |
| 4pS7qnjJ7_DCoJB-Enl7KA | Prop and Decor Outlet: The Tent  | 5.0             | 2017-12-29 23:46:28 | 5.0             | 2020-12-05 17:52:50 |
| X7FQ5k29A_RRYep7TOfjtw | Dawna Ara, DACM, LAc             | 5.0             | 2009-09-30 00:46:57 | 5.0             | 2021-06-14 03:22:29 |
| bdfZdB2MTXIT6-RBjSlpQg | Pho Bistro                       | 2.0             | 2007-07-19 10:13:03 | 4.0             | 2021-11-03 00:59:16 |
| VEbHYioBfoPilOWntE_DBA | Tienda Ho                        | 4.0             | 2008-06-08 02:01:54 | 5.0             | 2021-09-13 10:13:32 |
| xwSWtJcQkzTF6HNm_IMgcg | Rusty's Pizza Parlor             | 3.0             | 2006-12-29 05:03:23 | 1.0             | 2021-11-08 02:31:21 |
| 82suwumWp1MEq04QhiS9DQ | Surreal Virtual Reality Studio   | 5.0             | 2019-10-10 15:08:15 | 5.0             | 2020-09-14 02:42:45 |
| uHprVoxTV7CwKJdaEEf3aA | Challenge Asphalt Paving         | 1.0             | 2012-12-20 16:30:02 | 5.0             | 2021-07-22 03:31:53 |
| -kY_HDP7IMvGI-kBIZVU4A | Dune Coffee Roasters - Anacapa   | 5.0             | 2012-10-10 19:27:50 | 3.0             | 2021-12-08 05:03:29 |
| 18eWJFJbXyR9j_5xfcRLYA | Siam Elephant                    | 4.0             | 2009-03-13 01:00:16 | 5.0             | 2022-01-17 05:30:32 |
| 6jomGWEl4ryImrWPguUQQQ | Santa Barbara Athletic Club      | 1.0             | 2010-03-24 17:31:45 | 1.0             | 2021-12-06 17:34:40 |
| Ed7RUOj9MTUf9U-Y73bYlw | Run Montecito-Summerland         | 4.0             | 2011-07-17 05:01:41 | 5.0             | 2021-12-19 21:30:13 |
| VelrgRMOK_0ZToziUd2kUA | Franceschi Park                  | 5.0             | 2009-04-13 19:00:02 | 4.0             | 2021-11-02 06:28:18 |
| BkmVHg6HjHWMc0OFxcd6VQ | Hair By Audrey Johnson           | 5.0             | 2013-05-11 16:13:22 | 5.0             | 2016-10-08 00:43:37 |
| Jb1MIURq6ltKZ244tyoirA | Jessie Sessions - Berkshire Hat  | 5.0             | 2019-07-11 02:51:49 | 5.0             | 2021-11-02 18:29:14 |
| B5XSoSG3SfvQGtKEGQ1tSQ | Los Padres National Forest       | 5.0             | 2008-04-27 14:11:55 | 5.0             | 2020-10-20 18:30:12 |
| vLT1KtrA9bWvjFOg-0xVlg | Pieology Pizzeria                | 4.0             | 2016-08-27 00:04:50 | 1.0             | 2020-02-28 04:05:01 |
| -ujBP1Dw0j1-Ffaz97-LXQ | Lama Dog Tap Room                | 5.0             | 2016-05-14 17:24:52 | 4.0             | 2021-12-01 19:04:15 |
| wYROX7rw9fkQrWUS2YyY9g | Will Nelson Fitness              | 5.0             | 2017-08-17 22:51:01 | 5.0             | 2018-06-16 19:00:09 |
| BMTtMWDR3zcR5T30GFDoXQ | CA Pro Home Inspection           | 5.0             | 2015-10-03 19:53:56 | 5.0             | 2016-08-16 16:49:18 |
| kHOXo-IZSnivnctmHsGlvA | The Reach Grill at Padaro        | 4.0             | 2007-06-05 05:31:32 | 3.0             | 2011-06-19 00:05:29 |

Cette requête permet d'observer l'évolution des évaluations données aux établissements en comparant leur première et leur dernière note reçue, ainsi que les dates correspondantes. Pour chaque établissement, on retrouve son identifiant, son nom, la note de la première review, sa date, puis la note de la dernière review, et sa date.

Cette analyse met en lumière les trajectoires de réputation. Certains établissements, comme "H&M" ou "Iron Horse Auto Body", commencent avec une note de 4.0 et conservent cette même note au fil des années, ce qui suggère une stabilité dans la qualité perçue. D'autres, comme "Helena Avenue Bakery", débutent avec une note élevée, mais voient leur dernière note baisser, ce qui peut traduire une dégradation dans l'expérience client. À l'inverse, des établissements comme "Marty's Pizza" ou "Rusty's Pizza Parlor" reçoivent encore récemment des avis très positifs, ce qui peut indiquer une amélioration continue ou un maintien d'un haut niveau de satisfaction.

L'écart entre la première et la dernière note permet ainsi d'identifier les établissements dont la qualité perçue s'est améliorée, s'est détériorée, ou est restée stable au fil du temps. Ce type de requête est particulièrement utile pour détecter les évolutions de réputation sur le long terme.

# 4.5 Top 5 des établissements les plus populaires parmi les 10 catégories les plus fréquentes

| business_id            | name                            | city          | stars | review_count | review_year | category    |
|------------------------|---------------------------------|---------------|-------|--------------|-------------|-------------|
| 3MieDW5uihkPvXqnxAlGmg | SB Buggie                       | Santa Barbara | 5.0   | 231          | 2016        | Active Life |
| xuhCaQ1gnWyHY0tFSsrh2g | Santa Barbara Art Glass         | Santa Barbara | 5.0   | 204          | 2016        | Active Life |
| YbnJYHNp_fHbI-hcFg48vQ | Santa Barbara Adventure Company | Santa Barbara | 5.0   | 195          | 2016        | Active Life |
| DboqYyH-S8pV6WxaF9Plow | Cal Coast Adventures            | Santa Barbara | 5.0   | 184          | 2016        | Active Life |
| -mHLlBqekJe_VC61oul9yA | Segway of Santa Barbara         | Santa Barbara | 5.0   | 165          | 2016        | Active Life |
| 3MieDW5uihkPvXqnxAlGmg | SB Buggie                       | Santa Barbara | 5.0   | 231          | 2017        | Active Life |
| xuhCaQ1gnWyHY0tFSsrh2g | Santa Barbara Art Glass         | Santa Barbara | 5.0   | 204          | 2017        | Active Life |
| YbnJYHNp_fHbl-hcFg48vQ | Santa Barbara Adventure Company | Santa Barbara | 5.0   | 195          | 2017        | Active Life |
| DboqYyH-S8pV6WxaF9Plow | Cal Coast Adventures            | Santa Barbara | 5.0   | 184          | 2017        | Active Life |
| -mHLlBqekJe_VC61oul9yA | Segway of Santa Barbara         | Santa Barbara | 5.0   | 165          | 2017        | Active Life |
| 3MieDW5uihkPvXqnxAIGmg | SB Buggie                       | Santa Barbara | 5.0   | 231          | 2018        | Active Life |
| xuhCaQ1gnWyHY0tFSsrh2g | Santa Barbara Art Glass         | Santa Barbara | 5.0   | 204          | 2018        | Active Life |
| YbnJYHNp_fHbl-hcFg48vQ | Santa Barbara Adventure Company | Santa Barbara | 5.0   | 195          | 2018        | Active Life |
| DboqYyH-S8pV6WxaF9Plow | Cal Coast Adventures            | Santa Barbara | 5.0   | 184          | 2018        | Active Life |
| -mHLlBqekJe_VC61oul9yA | Segway of Santa Barbara         | Santa Barbara | 5.0   | 165          | 2018        | Active Life |
| 3MieDW5uihkPvXqnxAIGmg | SB Buggie                       | Santa Barbara | 5.0   | 231          | 2019        | Active Life |
| xuhCaQ1gnWyHY0tFSsrh2g | Santa Barbara Art Glass         | Santa Barbara | 5.0   | 204          | 2019        | Active Life |
| YbnJYHNp_fHbl-hcFg48vQ | Santa Barbara Adventure Company | Santa Barbara | 5.0   | 195          | 2019        | Active Life |
| DboqYyH-S8pV6WxaF9Plow | Cal Coast Adventures            | Santa Barbara | 5.0   | 184          | 2019        | Active Life |
| -mHLIBqekJe_VC61oul9yA | Segway of Santa Barbara         | Santa Barbara | 5.0   | 165          | 2019        | Active Life |
| 3MieDW5uihkPvXqnxAlGmg | SB Buggie                       | Santa Barbara | 5.0   | 231          | 2020        | Active Life |
| xuhCaQ1gnWyHY0tFSsrh2g | Santa Barbara Art Glass         | Santa Barbara | 5.0   | 204          | 2020        | Active Life |
| YbnJYHNp_fHbl-hcFg48vQ | Santa Barbara Adventure Company | Santa Barbara | 5.0   | 195          | 2020        | Active Life |
| DboqYyH-S8pV6WxaF9Plow | Cal Coast Adventures            | Santa Barbara | 5.0   | 184          | 2020        | Active Life |
| -mHLlBqekJe_VC61oul9yA | Segway of Santa Barbara         | Santa Barbara | 5.0   | 165          | 2020        | Active Life |
| jMzcn59A2OYZ3zv2BoDdOw | Fernando's Smog Check           | Goleta        | 5.0   | 193          | 2016        | Automotive  |
| I2CuGoQb4ZFFQNnivegqqA | Super Value Smog                | Santa Barbara | 5.0   | 123          | 2016        | Automotive  |
|                        |                                 |               |       |              |             |             |

Cette requête identifie, pour chaque année, les cinq établissements ayant reçu le plus grand nombre de reviews, parmi les dix catégories les plus représentées dans la base de données. Elle permet de croiser popularité, mesurée par le nombre d'avis, et appartenance à une catégorie très présente dans la base.

On constate que la catégorie Active Life domine largement cette sélection, avec des établissements situés principalement à Santa Barbara. Des noms comme SB Buggie, Santa Barbara Adventure Company, Cal Coast Adventures, Segway of Santa Barbara ou Santa Barbara Art Glass apparaissent de manière répétée chaque année. Ces établissements ont tous obtenu une note de 5.0, ce qui montre un niveau élevé de satisfaction client combiné à une grande visibilité.

Cette constance dans le classement reflète une forte réputation et une activité soutenue. En 2016, deux établissements de la catégorie Automotive figurent également parmi les plus populaires, ce qui montre que d'autres catégories peuvent ponctuellement se démarquer.

Les 10 catégories les plus populaires sont :

Cette analyse permet de repérer les établissements les plus influents dans les catégories majeures et de suivre leur évolution d'année en année.

## 5. Rapport d'analyse

### 5.1 Dashboard "Categories"

Ce premier rapport d'analyse vise à étudier la **répartition des commerces par catégorie** au sein de la base de données Yelp, filtrée sur l'État de la Californie. Il permet d'avoir une vue synthétique de l'offre commerciale en fonction des catégories d'activités renseignées par Yelp.

L'objectif est de comprendre :

- La quantité d'établissements présents dans chaque catégorie
- La performance globale de ces catégories en termes de volume d'avis et de notes
- Leur répartition géographique dans les principales villes

Le dashboard est interactif et permet de filtrer par catégorie, avec les indicateurs suivants mis en avant :

| Indicateur   | Description                                                  |
|--------------|--------------------------------------------------------------|
| Shops count  | Nombre total d'établissements dans la catégorie sélectionnée |
| Open shops   | Nombre d'établissements actuellement ouverts (is_open = 1)   |
| Review count | Nombre total d'avis associés à ces établissements            |
| AVG Stars    | Note moyenne globale sur 5 attribuée aux établissements      |

Deux visualisations principales complètent cette vue :

- Un nuage de points (scatter plot) qui permet de visualiser la densité des reviews par business dans chaque catégorie
- Un camembert représentant la répartition des établissements par ville (ex : Santa Barbara, Goleta...)



L'exemple affiché ici concerne la sélection de toutes les catégories contenant le mot "Coffee", comme Coffee & Tea, Vegan, Restaurants, ou encore American (New).

On observe un total de 185 établissements, dont 115 sont ouverts, soit environ 62 % d'activité en cours.

Ces établissements ont généré 24 550 reviews, avec une note moyenne de 3,77/5.

La majorité des établissements de cette catégorie sont situés à Santa Barbara (64,9 %), suivis par Goleta (17,8 %) et Carpinteria (7,6 %).

Le scatter plot révèle que quelques établissements très populaires peuvent recevoir jusqu'à 2 000 reviews, tandis que la majorité restent en dessous de 500.

## 5.2. Dashboard "Shops"

Ce second rapport d'analyse se concentre sur les commerces pris individuellement, en permettant de filtrer dynamiquement sur un nom de commerce précis (ex. : Starbucks) ainsi que sur la ville. Il permet de zoomer sur un établissement particulier, d'étudier son impact sur Yelp et de comparer ses performances selon les villes.

#### L'objectif est de comprendre :

• Le nombre de points de vente correspondant à un commerce donné

- Le niveau d'activité communautaire autour de ce commerce (volume d'avis, utilité perçue, etc.)
- La répartition géographique des établissements de la marque La satisfaction client moyenne par ville

Le tableau de bord est interactif : il permet de filtrer les résultats par nom d'établissement (name) et par ville (city). Il met en avant trois indicateurs clés :

| Indicateur    | Description                                                       |
|---------------|-------------------------------------------------------------------|
| Shops count   | Nombre total d'établissements correspondant au nom sélectionné    |
| Reviews count | Nombre total d'avis laissés pour ce commerce                      |
| AVG Stars     | Note moyenne globale sur 5 attribuée aux établissements concernés |

Trois visualisations principales viennent enrichir cette analyse. Un camembert affiche la répartition géographique des établissements sélectionnés, ce qui permet d'identifier les villes les plus représentées. Un graphique à barres compare la note moyenne obtenue dans chaque ville, mettant en lumière d'éventuelles disparités de satisfaction client selon les zones. Enfin, un tableau de synthèse liste les principales interactions autour du commerce : nombre de votes "useful", "funny" et "cool", reflétant l'engagement des utilisateurs autour de ses établissements.



L'exemple affiché ici concerne l'établissement Starbucks, filtré à partir du nom du commerce via le sélecteur interactif.

On observe un total de 12 établissements Starbucks enregistrés dans la région étudiée, ayant généré 574 avis au total.

La note moyenne attribuée aux Starbucks est faible, avec un score de 2,83 / 5, ce qui peut montrer une insatisfaction modérée des clients.

Le camembert de répartition géographique montre que la majorité des établissements Starbucks (70,6 %) sont situés à Santa Barbara, suivis de Goleta (17,6 %) et d'autres villes comme Carpinteria ou Isla Vista.

Le tableau récapitulatif des top reviews indique que Starbucks a cumulé 659 avis jugés utiles, 395 jugés drôles, et 412 cool, ce qui montre une forte interaction communautaire, même si la note moyenne reste en dessous de la moyenne observée sur d'autres commerces.

Enfin, le graphe de répartition des notes moyennes par ville montre peu de variation dans la satisfaction client, avec une moyenne générale légèrement en dessous de 3 à Santa Barbara.

### 5.3 Dashboard "Popular User"

Ce troisième rapport d'analyse se concentre sur les utilisateurs populaires de Yelp, en filtrant dynamiquement les données selon un commerce spécifique (par exemple Starbucks), la note attribuée, ainsi que la ville. Il permet ainsi de croiser les performances d'un établissement donné avec le comportement des utilisateurs les plus suivis ou les plus influents de la plateforme.

Un filtrage a été établi en amont pour ne retenir que les utilisateurs ayant plus de 100 fans et ayant rédigé plus de 100 avis. Ce critère permet de se concentrer uniquement sur les profils les plus actifs et les plus reconnus par la communauté Yelp.

L'objectif principal est de comprendre :

- le volume d'interactions entre un commerce donné et les utilisateurs populaires
- le niveau moyen de satisfaction exprimé par ces utilisateurs
- les écarts entre les notes des utilisateurs influents et la note moyenne de l'établissement
- le type de commentaires adressés à ces utilisateurs

Le tableau de bord est interactif. Il propose trois filtres permettant de sélectionner le nom d'un établissement, une note spécifique et une ville. Trois indicateurs clés sont mis en avant .

| Indicateurs                     | Descritption                                                                                                                                     |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Total popular user              | nombre d'utilisateurs populaires ayant laissé un avis sur le commerce sélectionné                                                                |
| Avg review star by popular user | note moyenne donnée par ces utilisateurs                                                                                                         |
| Table of ratings                | tableau détaillant les avis des utilisateurs<br>populaires avec comparaison entre la note<br>qu'ils ont laissé et la note moyenne du<br>commerce |

Deux visualisations principales complètent l'analyse. Un graphique en barres montre la répartition des types de compliments reçus par les utilisateurs populaires ayant interagi avec le commerce sélectionné. Cela donne un aperçu qualitatif de leur profil, comme leur humour, leur pertinence ou leur style. Un tableau de détail liste chaque avis, avec le nom du commerce, le nom de l'utilisateur, la ville, la note moyenne de l'établissement et la note attribuée par l'utilisateur populaire.



Dans l'exemple affiché, l'établissement sélectionné est Starbucks. On observe que 29 utilisateurs populaires ont laissé un avis, avec une note moyenne de 3,0 sur 5. Cette note est relativement modérée, ce qui peut indiquer une certaine exigence de la part de ces

profils ou une expérience client perfectible. Le tableau indique que plusieurs avis sont plus généreux que la note globale, mais d'autres sont en décalage. Les données de compliments révèlent que certains utilisateurs reçoivent une grande quantité d'interactions positives, ce qui peut renforcer leur crédibilité au sein de la plateforme.

### 6.Difficulté

Tout au long du projet, nous avons été confrontés à plusieurs difficultés techniques liées principalement aux limites de nos machines et aux outils disponibles. Nos ordinateurs n'étaient pas très puissants, ce qui a rendu le traitement des données initiales ainsi que l'exécution des scripts relativement longs et parfois instables.

L'un des premiers obstacles a été lié à Power BI. Étant tous les deux sur Mac, nous n'avons pas pu installer la version classique du logiciel. La version en ligne, bien plus limitée, ne permettait d'importer que de petits fichiers CSV. Nous avons même tenté d'installer une machine virtuelle Windows pour contourner ce problème, mais nos ordinateurs étaient trop lents pour faire fonctionner Power BI dans de bonnes conditions. L'environnement devenait inutilisable, ce qui nous a poussés à chercher une alternative.

Nous nous sommes donc tournés vers Looker Studio (anciennement Google Data Studio), qui propose un accès en ligne et gratuit. Cependant, cet outil présente également plusieurs contraintes. Il ne permet pas de se connecter directement à un serveur SQL local, ce qui nous a obligés à extraire manuellement nos données sous forme de fichiers CSV, puis à les déposer dans Google Drive. Ce processus est non seulement plus long, mais limite aussi fortement les volumes de données exploitables.

Looker est par ailleurs un outil assez lent, surtout lorsqu'il est utilisé de manière prolongée ou avec des jeux de données trop importants. Nous avons dû faire des extractions partielles, ce qui a empêché une exploitation complète de notre base, notamment la table datetime que nous n'avons pas pu intégrer. Contrairement à Power BI, Looker ne permet pas l'utilisation de requêtes complexes (comme en SQL ou en DAX) de manière native, ce qui réduit fortement les possibilités d'analyse avancée.

En parallèle, l'utilisation de Pentaho a également montré ses limites. Certaines opérations, comme le découpage ou l'explosion de champs (par exemple pour la colonne catégorie), ne peuvent pas être réalisées facilement. Les scripts disponibles dans Pentaho sont eux-mêmes limités, ce qui oblige parfois à faire les manipulations à la main. Compte tenu du volume important de données, cela n'était tout simplement pas envisageable.

#### 7. Conclusion

Ce projet nous a permis de mettre en œuvre l'ensemble des étapes d'un processus décisionnel autour d'un jeu de données réel, en partant de l'extraction brute jusqu'à la visualisation interactive. À travers la base Yelp, nous avons exploré des problématiques

concrètes liées à la satisfaction client, à l'influence des utilisateurs, et à la notoriété des commerces locaux.

Malgré les contraintes matérielles et techniques rencontrées, nous avons su adapter nos outils et notre méthodologie pour mener à bien le projet. La limitation de Power BI sur Mac, les restrictions de Looker Studio, les lourdeurs de traitement dans Pentaho, ainsi que les contraintes de volume nous ont obligés à faire preuve de flexibilité et à ajuster nos choix techniques. Ces difficultés ont été formatrices, car elles nous ont poussés à mieux comprendre les limites de chaque outil et à trouver des solutions alternatives viables, en particulier via l'extraction ciblée de données et le travail collaboratif.

Nous avons ainsi pu construire un entrepôt de données structuré, concevoir des requêtes pertinentes pour explorer les dynamiques présentes dans la base, et produire des tableaux de bord interactifs exploitables.