RRM 2020-1

PRÁCTICA 12

REGULADORES DE TENSIÓN II

Circuito Regulador de Tensión Variable

Integrantes:	
Murrieta Villegas Alfonso	
Valdespino Mendieta Joaquín	
Fechas de realización: 20-11-2019	Profesor: M.I. Raúl Ruvalcaba Morales
Fecha de entrega: 20-11-2019	No. Mesa de trabajo: 2

Facultad de Ingeniería – UNAM

RRM 2020-1

Objetivos de aprendizaje

Analizar y diseñar circuitos reguladores de tensión discretos, con diodos Zener y transistores, así como con circuitos integrados.

Material y equipo

- Cables (banana-caimán, caimán-caimán, caimán-BNC)
- Tableta de prototipos (Protoboard)
- Herramienta manual (pinzas, desarmadores, etc.)
- Los valores de los dispositivos indicados en el circuito A
- Multímetro

Trabajo previo

1. Analice y describa brevemente el funcionamiento del circuito A.

Es una fuente regulada de voltaje basada en el circuito regulador de voltaje LM 317T,

- 2. Calcule el valor de la resistencia R de la fuente de tensión mostrada en el circuito A, considerando las siguientes especificaciones:
 - Corriente en la resistencia de carga I_L = 2 A
 - Corriente máxima del regulador I_{REG} = 225 mA
 - Ganancia del transistor β = 30
 - Voltaje base-emisor de saturación (V_{be})_{SAT} = 1.8 V

$$R = \frac{Vbe}{(I_{REG})\left(1 + \frac{1}{B}\right) - \frac{I_L}{B}} = \frac{1.8}{(.225)\left(1 + \frac{1}{30}\right) - \frac{2}{30}} = 10.8542 \Omega$$

3. Obtenga las siguientes características eléctricas del Transistor TIP32C

Polaridad	PNP	Potencia de disipación	40 W	
Voltaje Colector-Emisor de ruptura (Vceo)	1.2 V	1.2 V Ancho de Banda (ft) 3 MHz		
Corriente máxima (lc)	0.3 mA Tipo de encapsulado		TO - 220	
Ganancia de Corriente en DC (hfe)	50	Pantigrama	TIP32C pinout 1. Base 2. Collector 3. Emitter	

4. Obtenga las siguientes características eléctricas del Regulador LM 317T

Voltaje de entrada Máxima	40 V	Corriente de salida	1.5 A
Voltaje de salida mínimo	1.25 V	Tipo encapsulado	TO2-20

Facultad de Ingeniería – UNAM

RRM_2020-1

Voltaje de salida máximo	12.215 V	Pantigrama	Front View ← Voyr
			ADJ VIN

5. Según las especificaciones eléctricas del LM 317T ¿Cuál es la *fórmula* para calcular su voltaje de salida?

$$V_0 = 1.25V \left(1 + \frac{R_2}{R_1}\right) + (R_2)(I_{ADJ})$$

Tal que R2 es la resistencia de ajuste.

RRM 2020-1

Desarrollo

- 6. Una vez armado y revisado el circuito A con los dispositivos propuestos en el diseño:
 - a) Obtenga los voltajes de la siguiente tabla de sin conectar la resistencia de carga:

Voltaje de Salida	[V]
(V _{OUT}) _{mín}	
(Vout) _{máx}	

b) Obtenga los datos de la siguiente tabla ajustando el voltaje de salida a 9 V sin carga:

R _L	I _{REG}	IQ	IL	V _{OUT}	V _{OUT}	% R.V.
				Sili Carga	con carga	
4.7Ω @ 25 W				9 V		
100Ω @ 2 W				9 V		
1KΩ @ 0.25 W				9 V		

Conclusiones

Referencias

 William H. Hayt, Jr. Jack E. Kemmerly. Análisis de circuitos en Ingeniería. Mc Graw Hill. CDMX, México.

Simulaciones (Anexo)

