

Testing for a Difference in Population Means (for Independent Groups)

Mark Rulkowski
Lecturer, Department of Statistics

Considering Mexican-American adults (ages 18 - 29) living in the United States, do males have a significantly higher mean Body Mass Index than females?

Considering Mexican-American adults (ages 18 - 29) living in the United States, do males have a significantly higher mean Body Mass Index than females?

Population: Mexican-American adults (ages 18 - 29) in the U.S.

Considering Mexican-American adults (ages 18 - 29) living in the United States, do males have a significantly higher mean Body Mass Index than females?

Population: Mexican-American adults (ages 18 - 29) in the U.S.

Parameter of Interest ($\mu_1 - \mu_2$): Body Mass Index or BMI (kg/m^2)

Considering Mexican-American adults (ages 18 - 29) living in the United States, do males have a significantly higher mean Body Mass Index than females?

Task: Perform an independent samples t-test regarding the value for the difference in mean BMI between males and females.

Steps to Perform a Hypothesis Test

- 1. Define null and alternative hypotheses
- 2. Examine data, check assumptions, and calculate test statistic
- 3. Determine corresponding p-value
- 4. Make a decision about null hypothesis

Null: There is no difference in mean BMI

Alternative: There is a significant difference in mean BMI

(Both statements are for the specified populations)

Null: There is no difference in mean BMI

Alternative: There is a significant difference in mean BMI

(Both statements are for the specified populations)

 H_0 : $\mu_1 = \mu_2$ H_a : $\mu_1 \neq \mu_2$

Null: There is no difference in mean BMI

Alternative: There is a significant difference in mean BMI

(Both statements are for the specified populations)

$$H_0$$
: $\mu_1 = \mu_2$ (or $\mu_1 - \mu_2 = 0$)

$$H_a: \mu_1 \neq \mu_2 \text{ (or } \mu_1 - \mu_2 \neq 0)$$

Null: There is no difference in mean BMI

Alternative: There is a significant difference in mean BMI

(Both statements are for the specified populations)

$$H_0$$
: $\mu_1 = \mu_2$ (or $\mu_1 - \mu_2 = 0$)

$$H_a: \mu_1 \neq \mu_2 \text{ (or } \mu_1 - \mu_2 \neq 0)$$

Significance Level = 5%

Step 2: Examine Data

Gender	BMI	Race	Age 18-29
Ī	19.9	j	Ī
2	17.0		Ţ
2	26.7		
I	25.6		
• • •	• • •	• • •	• • •

The data was filtered to include only Mexican-American adults that were between the ages of 18 and 29.

Step 2: Examine Data

	Male	Female
Mean	23.57	22.83
St. Dev.	6.24	6.43
Min	12.5	12.4
Max	44.9	48.8
n	258	239

Step 2: Examine Data

	Male	Female
Mean	23.57	22.83
St. Dev.	6.24	6.43
Min	12.5	12.4
Max	44.9	48.8
n	258	239

Step 2: Check Assumptions

Samples are considered simple random samples

Samples are independent from one another

Both populations of responses are approximately normal (or sample sizes are both 'large' enough)

Step 2: Check Assumptions

Step 2: Check Assumptions

•
$$H_0$$
: $\mu_1 - \mu_2 = 0$ vs. H_a : $\mu_1 - \mu_2 \neq 0$

Best Estimate:
$$\bar{x}_1 - \bar{x}_2 = 23.57 - 22.83 = 0.74$$

Is our sample mean difference of 0.74 kg/m² significantly different than 0?

•
$$H_0: \mu_1 - \mu_2 = 0$$
 vs. $H_a: \mu_1 - \mu_2 \neq 0$

Best Estimate:
$$\bar{x}_1 - \bar{x}_2 = 23.57 - 22.83 = 0.74$$

Is our sample mean difference of 0.74 kg/m² significantly different than 0?

We'll use a test statistic to find out!

Test Statistic

A measure of how far our sample statistic is from our hypothesized population parameter, in terms of <u>estimated</u> standard errors

The further away our sample statistic is, the less confident we'll be in our null hypothesized value

$$t = \frac{best \ estimate - null \ value}{estimated \ standard \ error}$$

Pooled Approach

The variance of the two populations are assumed to be equal $(\sigma_1^2 = \sigma_2^2)$

Unpooled Approach

The assumption of equal variances is dropped

Pooled Approach:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Pooled Approach:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Unpooled Approach:

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Pooled or Unpooled?

	Male	Female
Mean	23.57	22.83
St. Dev.	6.24	6.43
Min	12.5	12.4
Max	44.9	48.8
n	258	239

Pooled or Unpooled?

•
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(23.57 - 22.83)}{\sqrt{\frac{(257)6.24^2 + (238)6.43^2}{495}} \sqrt{\frac{1}{258} + \frac{1}{239}}}$$

•
$$t = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{(23.57 - 22.83)}{\sqrt{\frac{(257)6.24^2 + (238)6.43^2}{495}} \sqrt{\frac{1}{258} + \frac{1}{239}}}$$

$$t = \frac{0.74}{0.0898 * 6.332} = \mathbf{1.30}$$

$$t = \frac{1}{\sqrt{\frac{(n_1)^2}{n_2}}}$$

$$(\bar{x}_1 - \bar{x}_2) - 0$$

$$(23.57 - 22.83)$$

Our difference in sample means is only 1.30 (estimated) standard errors above the null difference of 0 kg/m²

$$\frac{1}{258} + \frac{1}{239}$$

$$t = \frac{0.71}{0.0898 * 6.332} = 1.30$$

$$t = 1.30$$

If the null hypothesis $(\mu_1 - \mu_2 = 0)$ were true, would a test statistic value of 1.30 be unusual enough to reject the null?

$$t = 1.30$$

If the null hypothesis $(\mu_1 - \mu_2 = 0)$ were true, would a test statistic value of 1.30 be unusual enough to reject the null?

p-value: assuming the null hypothesis is true, it is the probability of observing a test statistic of 1.30 or more extreme

Using a t(df) distribution where $df = n_1 + n_2 - 2$

Using a t(df) distribution where $df = n_1 + n_2 - 2$

Our alternative hypothesis is two-sided $(\mu_1 - \mu_2 \neq 0)$ so we will check both the upper and lower tail

p-value = 0.19

If the difference in population mean BMI between males and females was really 0 kg/m²,

then observing a difference in sample means of 0.74 kg/m² (i.e. a t-statistic of 1.30) or more extreme is **fairly likely**.

Step 4: Make a Decision

Our p-value is larger than the 0.05 significance level, which means there is weak evidence against the null.

Thus, we fail to reject the null!

Step 4: Make a Decision

Based on our estimated difference in sample means, we cannot support that there is a significant difference between the population mean BMI for males and the population mean BMI for females for the population of all Mexican-Americans adults (ages 18 - 29) living in the U.S.

95% Confidence Interval Results

In a previous lecture, we calculated the 95% CI for the difference in mean BMI between males and females

$$\left(-0.385 \ \frac{kg}{m^2}\right)_{m^2}$$
 , 1.865 $\frac{kg}{m^2}$

Our test value of 0 kg/m² falls within our interval. This is a reasonable value for the difference in mean BMI.

Hypothesis Tests are used to put theories about a parameter
 of interest to the test ~ parameter = difference in population means

- Hypothesis Tests are used to put theories about a parameter
 of interest to the test ~ parameter = difference in population means
- Basic Steps:
 - Define hypotheses (and select significance level)
 - Examine data, check assumptions, and calculate test statistic
 - Determine corresponding p-value
 - Make a decision about null hypothesis

- Hypothesis Tests are used to put theories about a parameter
 of interest to the test ~ parameter = difference in population means
- Basic Steps:
 - Define hypotheses (and select significance level)
 - Examine data, check assumptions, and calculate test statistic
 - Determine corresponding p-value
 - Make a decision about null hypothesis
- Assumptions for Two-Sample (t) Test for Population Means
 - ~ data are two simple random sample, independent
 - ~ both populations of responses are normal (else n large helps)

- Hypothesis Tests are used to put theories about a parameter
 of interest to the test ~ parameter = difference in population means
- Basic Steps:
 - Define hypotheses (and select significance level)
 - Examine data, check assumptions, and calculate test statistic
 - Determine corresponding p-value
 - Make a decision about null hypothesis
- Assumptions for Two-Sample (t) Test for Population Means
 - ~ data are two simple random sample, independent
 - ~ both populations of responses are normal (else n large helps)
- Know how to interpret the p-value, decision, and conclusion