

NP-C: Clique

Teoría de Algoritmos I (75.29 / 95.06)

Ing. Víctor Daniel Podberezski

Clique

Sea

G=(V,E) grafo no dirigido

Llamaremos

clique a un subconjunto V' ⊆ V de vértices

tal que

para todo v,u ∈ V', el eje (u,v) ∈ E

(Es decir que todos los vértices están conectados entre si)

La cantidad de nodos en V'

Determina el tamaño del clique

Clique de 4 nodos, (clique de tamaño 4)

Problema de decisión de cliques

Dado

G = (V,E) no dirigido

K valor numérico positivo

Existe

Un clique de tamaño k en G?

¿Cliques ∈ "NP"?

Dado

G=(V,E) grafo

K tamaño del clique

T certificado: subconjunto de nodos de V

Puedo verificar (en tiempo polinomial)

 \Rightarrow CLIQUES \in NP

La cantidad de nodos en T es igual a K

Cada nodo en T está conectado a los otros nodos de T

¿Cliques ∈ "P"?

Por fuerza bruta

Puedo probar todos las combinaciones de nodos con k nodos.

$$\binom{k}{|V|} = \frac{|V|!}{k! \cdot (|V| - k)!}$$

Y por cada posibilidad probar si están conectados entre si los k nodos en k² operaciones.

Si busco cliques pequeños con |V| grandes

La complejidad total "parece" polinomial

Si busco cliques grandes

la complejidad total es exponencial

¿Cliques ∈ "NP-Hard"?

Probaremos que

$3SAT \leq_{p} CLIQUES$

Dada una

instancia I de 3SAT con k clausulas y n variables

Crearemos

Un nodo por cada variable en una clausula

Por cada par de variables de diferentes cláusulas

Crearemos un eje entre ellas si no corresponden a la misma variable negada

Buscaremos un clique de tamaño k

Ejemplo

$$E = (X_1 \lor X_2 \lor X_4) \land (\overline{X}_1 \lor X_3 \lor X_4) \land (\overline{X}_2 \lor \overline{X}_3 \lor X_4) \land (\overline{X}_1 \lor X_2 \lor \overline{X}_4)$$

Con 4 variables y 4 clausulas

Armo los nodos

para cada variable de cada clausula

Agrego los ejes

según condición de construcción

Ejemplo (cont.)

$$E = (X_1 \lor X_2 \lor X_4) \land (\overline{X}_1 \lor X_3 \lor X_4) \land (\overline{X}_2 \lor \overline{X}_3 \lor X_4) \land (\overline{X}_1 \lor X_2 \lor \overline{X}_4)$$

Busco clique

De tamaño k=4

(para activar las 4 clausulas)

Ejemplo (cont.)

$$E = (X_1 \lor X_2 \lor X_4) \land (\overline{X}_1 \lor X_3 \lor X_4) \land (\overline{X}_2 \lor \overline{X}_3 \lor X_4) \land (\overline{X}_1 \lor X_2 \lor \overline{X}_4)$$

Busco clique

De tamaño k=4

(para activar las 4 clausulas)

Los nodos dentro del clique

Indican el valor de las variables

(las variables que no están en el clique se pueden poner en true o en false)

CLIQUE ∈ "NP-C"

Como

CLIQUE ∈ NP

Y 3SAT ≤_p CLIQUE

Entonces

CLIQUE ∈ NP-C

Presentación realizada en Junio de 2020