# 《程序设计课程设计》实验报告

实验名称 《冯诺依曼计算机 CPU 模拟》(多核版)概要设计<版本号>

班 级

姓名

#### 1 高层数据结构设计

(包括:重要的数据常量定义、数据变量定义,即各模块要共享的数据类型和参数设计,相当于头文件内容,加文字描述)

#### 3.1 全局常量/变量定义

#define LCMP 555

```
extern int Memory[32767],lag1,lag2,sum;//Memory 用来保存内存数据
判断是否继续执行指令 sum 代表指令行数
typedef struct inst
   int code; // 指令
  short p1, p2, p3; / 参数 1, 2,3 p1, p2 为执行指令需用到的数 p3 用
来保存指令保存数据对应的寄存器标号
} inst t;
typedef struct vm_state
   int ip; // 指令ptr
   int flag; // 记录最后判断的标志
   inst t *code;
   short ax[9];
} vm state t;
extern inst_t sample_code[100];//存指令
#define N 100
#define IADD 1 // 加法
#define LADD 111
#define ISUB 2 // 减法
#define LSUB 222
#define IMUL 3 // 乘法
#define LMUL 333
#define IDIV 4 // 除法
#define LDIV 444
#define ICMP 5 // 判断
```

```
#define IJMP 6 // 4 种跳转
#define LJMP
               66
               666
#define NJMP
#define MJMP
               6666
#define IMOV
              7 // 赋值
#define IGIV
             8 // 赋值
#define ISED
              9 // 赋值
#define IDOR
              10 //休眠
#define IPUT
              11 // 输入
              12 // 输出
#define IOUT
#define ILOG
              13//逻辑指令与
#define LLOG
              1313
#define ILOV
              14//逻辑指令或
#define LLOV
              1414
#define ILON
              15 //逻辑指令非
#define LLON
              1515
#define ILOC
              16 //加锁
#define IUNL
              17 //解锁
#define ISTOP
              255 //停机
#define FNA
              ○ //比较后相等为 ○
#define FEQ
              1 //寄存器 1 中的大 置为 1
#define FNE -1 //立即数大
                             置为-1
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;//
锁 1
pthread_mutex_t mutex1 = PTHREAD_MUTEX_INITIALIZER;//
锁 2
```

extern char

Code1[100][9],Code2[100][5],Code3[100][5],Code4[100][17],CODESET[100][17],codeSegment[100][33],CODE[100][32];/

/Code1 保存指令前 8 位, Code2 保存 9-12 位, Code3 保存 13-16

位,Code4 保存后 16 位,CODESET 保存前 16 位,codeSegment 和CODE 保存完整指令

## 2 系统模块划分

#### 2.1 系统模块结构图

模块划分思路说明。



图 2-1 模块结构图示例

| 模块文件   | 模块说明                   | 模块包含的函数名                         |
|--------|------------------------|----------------------------------|
| main.c | 主函数模块,完成线程的建立,汇合,调用获取指 | int main(int argn, char *argv[]) |

|                                              | 令,分析指令,执行指令,<br>打印地址等函数 | static void *doit(void *threadID)                                  |  |  |
|----------------------------------------------|-------------------------|--------------------------------------------------------------------|--|--|
| fetchInstruction.c<br>fetchInstruction.h     | 获取指令模块,完成指令<br>的获取      | int fetchInstruction(int tid)                                      |  |  |
| analyzeInstruction.c<br>analyzeInstruction.h | 分析指令模块,完成指令<br>的分析      | void analyzeInstruction(int sum)                                   |  |  |
|                                              |                         | int Instruct(char *Code1,char *Code2,char *Code3)                  |  |  |
|                                              |                         | int returnNumber1(char *Code1,char *Code2,char *Code3,char *Code4) |  |  |
|                                              |                         | int returnNumber2(char *Code1,char *Code2,char *Code3,char *Code4) |  |  |
|                                              |                         | int serialNumber(char *Code1,char *Code2,char *Code3)              |  |  |
| executeInstruction.c executeInstruction.h    | 执行指令模块,完成指令<br>的执行      | void executeInstruction(vm_state_t *state,int tid)                 |  |  |
| printSegment.c<br>printSegment.h             | 打印地址模块,完成代码<br>段和数据段的打印 | void printSegment(int sum)                                         |  |  |
| translationRef.c<br>translationRef.h         | 进制转换模块,完成十进制对二进制的转换     | int translationRef(char *Code)                                     |  |  |

# 2.2 各模块函数说明

| 序号 | 函数原型                              | 功能                                                                                               | 参数                              | 返回值           |
|----|-----------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|---------------|
| 1  | int main(int argn, char *argv[])  | 在 main.c 中被调用<br>完成线程的创建和汇合,以及调<br>用打印函数                                                         | 无                               | 0             |
| 2  | static void *doit(void *threadID) | 在 main.c 模块中被调用<br>完成 2 个线程的运行                                                                   | void *threadID<br>传入参数为线程<br>ID | 无             |
| 3  | int fetchInstruction(int tid)     | 在 fetchInstruction.c 模块中被调用<br>从文件中获取指令,将指令读入<br>CODE 和 codeSegment 数组中,<br>并将指令前 8 位,第 9-12 位,第 | int tid<br>传入线程 ID              | 返回指令行数<br>sum |

|   |                                                                          | 13-16 位,后 16 位,前 16 位分<br>别读入 Code1,Code2,Code3,<br>Code4,CODESET 数组中                               |                                                                                                                  |                           |
|---|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------|
| 4 | void analyzeInstruction(int sum)                                         | 在 analyzeInstruction.c 模块中被调用<br>分析指令,并将分析的结果保存<br>在结构体 sample_code[100]中                           | int sum<br>参数为指令行数                                                                                               | 无                         |
| 5 | int Instruct(char *Code1,char *Code2,char *Code3)                        | 在 analyzeInstruction.c 模块中被调用<br>根据指令返回对应的操作,比如加减乘除,跳转等,对应结构体<br>inst_t 中的 code                     | char *Code1,char<br>*Code2,char<br>*Code3<br>参数分别为指令<br>前 8 位,第 9-12<br>位,第 13-16 位                              | 返回值为对应<br>操作的数值           |
| 6 | int returnNumber1(char<br>*Code1,char *Code2,char<br>*Code3,char *Code4) | 在 analyzeInstruction.c 模块中被调用<br>根据指令返回执行指令中的第一个参数,对应结构体 inst_t 中的 p1 参数                            | Char<br>*Code1,char<br>*Code2,char<br>*Code3,char<br>*Code4<br>参数分别为指令<br>前 8 位,第 9-12<br>位,第 13-16 位,<br>后 16 位 | 返回值为执行<br>指令要操作的<br>第一个参数 |
| 7 | int returnNumber2(char<br>*Code1,char *Code2,char<br>*Code3,char *Code4) | 在 analyzeInstruction.c 模块中被调用<br>根据指令返回执行指令中的第二个参数,对应结构体 inst_t 中的 p2 参数                            | Char<br>*Code1,char<br>*Code2,char<br>*Code3,char<br>*Code4<br>参数分别为指令<br>前 8 位,第 9-12<br>位,第 13-16 位,<br>后 16 位 | 返回值为执行<br>指令要操作的<br>第二个参数 |
| 8 | int serialNumber(char<br>*Code1,char *Code2,char<br>*Code3)              | 在 analyzeInstruction.c 模块中被调用<br>根据指令返回执行指令中的第<br>三个参数,对应结构体 inst_t 中的 p3 参数,这个参数用来保存指令保存数据对应的寄存器标号 | char *Code1,char<br>*Code2,char<br>*Code3<br>参数分别为指令<br>前 8 位,第 9-12<br>位,第 13-16 位                              |                           |
| 9 | <pre>void executeInstruction(vm_state_t *state,int tid)</pre>            | 在 executeInstruction.c 模块中被调用<br>完成指令的执行,以及寄存器状态的输出                                                 | vm_state_t *state,int tid 参数为结构体 vm_state_t,以及 线程ID                                                              | 无                         |
|   |                                                                          |                                                                                                     |                                                                                                                  |                           |

| 10 | void printSegment(int sum)     | 在 printSegment.c 中被调用<br>完成代码段和数据段的打印  | 参数为指令条数                     | 无                  |
|----|--------------------------------|----------------------------------------|-----------------------------|--------------------|
| 11 | int translationRef(char *Code) | 在 translationRef.c 中被调用<br>完成十进制转化成二进制 | char *Code<br>参数为一段数字<br>字符 | 返回值为对应的<br>二进制数字大小 |

## 2.3 函数调用图示及说明



图 2-2 函数调用关系图示例