Binary Logistic Regression Checking Model Performance

Contents

- 1. Receiver Operating Characteristic (ROC) Curve
- 2. **Lift Curve**
- 3. Kolmogorov Smirnov statistics
- 4. Pearson residuals
- 5. Residual plot
- 6. Multicollinearity

Receiver Operating Characteristic Curve

• The Receiver Operating Characteristic (ROC) curve is

A graphical representation of the trade off between the false positive and true positive rates for various cut off values

Y- axis: Sensitivity (true positive rate)

X-axis: 1-Specificity (false positive rate)

The performance of the classification model can be assessed by area under the ROC curve (C).

ROC Curve and Area Under ROC Curve

High TPR with low FPR is indicative of a good model. This will result in curve that is closer to the Y-axis and top left corner of the plot. It implies higher Area Under the ROC Curve.

ROC Curve and Area Under ROC Curve

Interpreting different versions of an ROC curve

Critical Points	Interpretations
TPR = 0 and $FPR = 0$	Model predicts every instance to be Non-event
TPR = 1 and $FPR = 1$	Model predicts every instance to be Event
TPR = 1 and $FPR = 0$	The Perfect Model

- If the model is perfect, AUC = 1
- If the model is guessing randomly, AUC = 0.5
- Thumb rule: Area Under ROC Curve > 0.65 is considered acceptable

ROC in Python

Importing bank loan data & Fitting Binary Logistic Regression model

```
import pandas as pd
bankloan=pd.read_csv('BANK LOAN.csv')

bankloan['AGE']=bankloan['AGE'].astype('category')

import statsmodels.formula.api as smf
riskmodel = smf.logit(formula = 'DEFAULTER ~ EMPLOY + ADDRESS +
DEBTINC + CREDDEBT', data = bankloan).fit()

from sklearn.metrics import roc_curve, auc
bankloan=bankloan.assign(pred=riskmodel.predict())
fpr, tpr, thresholds = roc_curve(bankloan['DEFAULTER'],
bankloan['pred'])
```

- Import roc_curve, auc from sklearn.metrics
- predict() function prepares data required for ROC curve.
- roc_curve() computes Receiver operating characteristic (ROC), it returns "tpr" (True positive rate), "fpr" (False positive rate) and threshold.

ROC in Python

AUC & ROC plot

```
auc() gives area under
ruc auc = auc(fpr,tpr) ←
                                             curve
import matplotlib.pyplot as plt
plt.figure()
1w = 2
plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area =
%0.2f)' % ruc auc)
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0]);plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate');plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic');plt.legend(loc="lower
right")
plt.show()
```

plot() function plots the objects created using roc_curve.
 Entire code of plot should be run in single chunk.

ROC in Python

Output:

AUC value

```
print("Area under the ROC curve : %f" % ruc_auc)
```

Output:

Area under the ROC curve : 0.855619

Interpretation:

Area under the curve is 0.8556 which means model is performing

WA

Lift Curve

- The idea is to quantify and compare two scenarios-One is using the model to identify certain cases and second using random selection of cases for specific purpose like marketing campaign.
- Lift is the ratio of results obtained with and without a model.
- Although primarily used in marketing analytics, the concept finds applicability in other domains as well, such as risk modeling, supply chain analytics, etc.

Lift Curve

Lift Curve: After contacting X% of customers, Y% of respondents will be identified if statistical model is used.

Ratio Y/X is plotted

Baseline: After contacting X% of customers, X% of respondents will be identified if random method is used.

Ratio X/X is plotted

Lift Curve in Python

Install "scikit-plot" library in Anaconda Prompt and load in Python

```
from sklearn.linear_model import LogisticRegression
import matplotlib.pyplot as plt
import scikitplot as skplt
X = bankloan[['EMPLOY', 'ADDRESS', 'DEBTINC', 'CREDDEBT']]
y = bankloan[['DEFAULTER']]
log model = LogisticRegression()
log model.fit(X,y)
pred log = log model.predict_proba(X)
skplt.metrics.plot_lift_curve(y, pred_log)
plt.show()
```

- LogisticRegression()
 - fits a Logistic Regression model
 - predict_proba() Return probability estimates for the test vector X.
- scikitplot() depends on scikit-learn and

nlate for eklasen

Lift Curve in Python

Output:

Interpretation:

Model is performing better. As more defaulters identified in earlier buckets.

Kolmogorov-Smirnov Statistic

Kolmogorov-Smirnov (KS) Statistics is one of the most commonly used measures to assess predictive power for marketing or credit risk models

KS is maximum difference between % cumulative Goods and Bads distribution across probability bands

The gains table typically has % cumulative Goods (or Non-Event) and % Cumulative Bads (Or Event) across 10 or 20 probability bands

- KS is a point estimate, meaning it is only one value and indicate the probability band where separation between Goods (or Non-Event) and Bads (or Event) is maximum
- Theoretically K-S can range from 0-100. KS less than 25, may not indicate good model. Too high value should also be evaluated carefully

Kolmogorov-Smirnov Statistic

BAND	Count	Percent	Count(bad)	%(bad)	Count(good)	%(good)	cum% bad	cum% good	KS
0.95-1	10	1.4%	9	4.9%	1	0.2%	4.9%	0.2%	4.7%
0.90-0.95	7	1.0%	7	3.8%	0	0.0%	8.7%	0.2%	8.5%
0.85-0.90	7	1.0%	6	3.3%	1	0.2%	12.0%	0.4%	11.6%
0.80-0.85	7	1.0%	5	2.7%	2	0.4%	14.8%	0.8%	14.0%
0.75-0.80	11	1.6%	9	4.9%	2	0.4%	19.7%	1.2%	18.5%
0.70-0.75	17	2.4%	14	7.7%	3	0.6%	27.3%	1.7%	25.6%
0.65-0.70	17	2.4%	12	6.6%	5	1.0%	33.9%	2.7%	31.2%
0.60-0.65	10	1.4%	7	3.8%	3	0.6%	37.7%	3.3%	34.4%
0.55-0.6	24	3.4%	14	7.7%	10	1.9%	45.4%	5.2%	40.1%
0.5-0.55	21	3.0%	9	4.9%	12	2.3%	50.3%	7.5%	42.7%
0.45-0.5	22	3.1%	9	4.9%	13	2.5%	55.2%	10.1%	45.1%
0.40-0.45	31	4.4%	13	7.1%	18	3.5%	62.3%	13.5%	48.8%
0.35-0.4	29	4.1%	11	6.0%	18	3.5%	68.3%	17.0%	51.3%
0.3-0.35	27	3.9%	13	7.1%	14	2.7%	75.4%	19.7%	55.7%
0.25-0.3	40	5.7%	7	3.8%	33	6.4%	79.2%	26.1%	53.1%
0.2-0.25	45	6.4%	12	6.6%	33	6.4%	85.8%	32.5%	53.3%
0.15-0.2	52	7.4%	10	5.5%	42	8.1%	91.3%	40.6%	50.6%
0.10-0.15	66	9.4%	4	2.2%	62	12.0%	93.4%	52.6%	40.8%
0.05-0.1	80	11.4%	8	4.4%	72	13.9%	97.8%	66.5%	31.3%
0-0.05	177	25.3%	4	2.2%	173	33.5%	100.0%	100.0%	0.0%
Total	700	100%	183	100%	517	100%			

Kolmogorov-Smirnov Statistic in Python

Combine observed and expected frequencies

```
from scipy.stats import ks_2samp
ks_2samp(bankloan.loc[bankloan.DEFAULTER==0,'pred'],
bankloan.loc[bankloan.DEFAULTER==1,'pred'])
```

- ks_2samp computes the kolmogorov-smirnov statistic on 2 samples.
- It returns KS statistic and two-tailed p-value
- # Output:

Ks_2sampResult(statistic=0.561552039403452, pvalue=1.909421801103993e-37)

Interpretation:

Maximum difference (K-S statistic) is 0.561552.

Pearson Residuals

• Pearson residual is defined as the standardized difference between the observed and predicted frequency.it measures the relative deviations between the observed and fitted values.:

$$r_{j} = \frac{\left(Y_{j} - M_{j} p_{j}\right)}{\sqrt{M p_{j}(1 - p_{j})}}$$

where

Mj: number of observations with jth covariate pattern

Y_j: Observed value (1 or 0) for jth covariate pattern p_j: Predicted probability for jth covariate pattern

Binary Logistic Regression does not require 'Normality' of residuals

Pearson Residuals in Python

Obtain residuals

bankloan=bankloan.assign(resid=riskmodel.resid_pearson)

bankloan.head()

resid_pearson() calculates Pearson residuals.

Output:

	CNI	A CIT	EMBL OM	A DDDEGG	DEDTRIC	CDEDDEDT	OTHERT		1	. 1
	SN	AGE	EMPLOY	ADDRESS	DEBIINC	CREDDEBT	OTHDERI	DEFAULTER	pred	resid
0	1	3	17	12	9.3	11.36	5.01	1	0.808346726	0.486921868
1	2	1	10	6	17.3	1.36	4	0	0.198114704	-0.497052463
2	3	2	15	14	5.5	0.86	2.17	0	0.010062815	-0.100822141
3	4	3	15	14	2.9	2.66	0.82	0	0.022159721	-0.150538706
4	5	1	2	0	17.3	1.79	3.06	1	0.781808095	0.528286162

Residuals

Pearson Residuals Plot in Python

Residuals Plot

```
import seaborn as sns
sns.scatterplot('SN','resid',data=bankloan); plt.xlabel('SN');
plt.ylabel('residual')
```

Output:

Clearly one case has very high residual value.

Multicolinearity

- Multicollinearity exists if there is a strong linear relationship among the continuous independent variables.
- Do not ignore multicollinearity in Binary Logistic Regression.
- Use variance inflation factors to detect multicolliearity.

Quick Recap

In this session, we learnt about checking model performance:

 Graphical representation of the trade off between ROC the false positive (FPR) and true positive (TPR) rates for various cut off values. • Lift Curve Compares model results with baseline Lift curve without model • KS is the maximum difference between % cumulative Goods (event/Y=1) and cumulative K-S statistic Bads (non events/Y=0) distribution across probability groups. Pearson's residual is used for binary logistic Residual regression Multicollinearity exists if there is a strong linear Multicollinearity relationship among the continuous independent variables