	Utech
Name:	
Roll No.:	
Invigilator's Signature :	

CS/B.Tech (NEW)/SEM-1/M-101/2011-12 2011 MATHEMATICS - I

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A (Multiple choice Type Questions)

1. Choose the correct alternatives for any ten of the following:

 $10 \times 1 = 10$

- i) The least upper bound of the sequence $\{\frac{n}{n+1}\}$ is
 - a) 0

b) $\frac{1}{2}$

c) 1

- d) 2.
- ii) The value of 2000 2001 2002 is 2006 2007 2008
 - a) 2000

b) 0

c) 45

d) none of these.

1165 [Turn over

CS/B.Tech (NEW)/SEM-1/M-101/2011-12

- iii) If $\lambda^3 6\lambda^2 + 9\lambda 4$ is the characteristic equation of a square matrix A, then A^{-1} is equal to
 - a) $A^2 6A + 9I$
- b) $\frac{1}{4}A^2 \frac{3}{2}A + \frac{9}{4}I$
- e) $A^2 6A + 9$
- d) $\frac{1}{4}A^2 \frac{3}{2}A + \frac{9}{4}$
- iv) If $x = r \cos \theta$, $y=r \sin \theta$, then $\frac{\partial(r,\theta)}{\partial(x,y)}$ is
 - a) r

b) 1

c) $\frac{1}{r}$

- d) none of these.
- v) $f(x,y) = \frac{\sqrt{y} + \sqrt{x}}{y+x}$ is a homogeneous function of degree
 - a) $\frac{1}{2}$

b) $-\frac{1}{2}$

c) 1

- d) 2.
- vi) If $\vec{\alpha} \cdot (\vec{\beta} \times \vec{\gamma}) = 0$, then the vectors $\vec{\alpha}$, $\vec{\beta}$, $\vec{\gamma}$ are
 - a) coplanar
- b) independent
- c) collinear
- d) none of these.
- vii) The nth derivative of $(ax+b)^{10}$ is (where n>10)
 - a) a^{10}

b) $10 a^{10}$

c) 0

- d) 10 .
- viii) If for any two vectors \vec{a} and \vec{b} , $|\vec{a}+\vec{b}| = |\vec{a}-\vec{b}|$, then \vec{a} and \vec{b} are
 - a) parallel
- b) collinear
- c) perpendicular
- d) none of these.

ix) If
$$A^{-1} = \frac{1}{7} \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$$
, then A=

- a) $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$
- $\mathbf{b)} \quad \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix}$
- e) $\frac{1}{7}\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$
- d) $\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$.
- The reduction formula of $I_n = \int_{-\infty}^{\frac{\pi}{2}} \cos^n x dx$ is X)
 - a) $I_n = \left(\frac{n-1}{n}\right)I_{n-1}$ b) $I_n = \left(\frac{n}{n-1}\right)I_n$
 - c) $I_n = \left(\frac{n-1}{n}\right)I_{n-2}$
- d) none of these.
- xi) The series $\sum_{n=1}^{\infty} \frac{n^2}{2n^2+1}$ is
 - convergent a)
- divergent b)
- c) oscillatory
- d) none of these.
- Lagrange's Mean Value Theorem is obtained from Cauchy's Mean Theorem for two functions f(x) and g(x) by putting g(x)=
 - 1 a)

c)

d) $\frac{1}{x}$.

GROUP - B

(Short Answer Type Questions)

Answer any *three* of the following. $3 \times 5 = 15$

- 2. Prove that every square matrix can be expressed as the sum of a symmetric matrix and a skew symmetric matrix:
- 3. By Laplace's method, prove that

$$\begin{bmatrix} a & b & c & d \\ -b & a & d & -c \\ -c & -d & a & b \\ -d & c & -b & a \end{bmatrix} = (a^2 + b^2 + c^2 + d^2)^2$$

(consider minors of order 2).

- 4. If $2x = y^{\frac{1}{m}} + y^{\frac{-1}{m}}$, then prove that $(x^2 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 m^2)y_n = 0$
- 5. If $u = xf\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right)$, then show that $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 xy}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial u^2} = 0$
- 6. Show that the bounded by a simple closed curve C is given by $\frac{1}{2} \oint_C (xdy ydx)$

1165

Answer any *three* of the following. $3 \times 15 = 45$

- 7. i) If $f(x,y) = x^2 \tan^{-1}\left(\frac{y}{x}\right) y^2 \tan^{-1}\left(\frac{x}{y}\right)$, verify $f_{xy} = f_{yx}$.
 - ii) State the Rolle's theorem and examine if you can apply the same for f(x)=tan x in $[0,\pi]$
 - iii) Find the value of λ and μ for which

$$x + y + z = 3$$

$$2x - y + 3z = 4$$

$$5x - y + \lambda z = \mu$$
 have

- (a) unique solution
- (b) many solution
- (c) no solution.

CS/B.Tech (NEW)/SEM-1/M-101/2011-12

Find also the saddle points.

- State Leibnitz's test for alternating series and apply it to ii) examine the convergence of $1-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+...\alpha$.
- Applying Lagrange's Mean Value Theorem prove that $\frac{x}{1+x} \le \log(1+x) < x$, for all x>0.
- i) If $y = e^{m \sin^{-1} x}$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2+m^2)y_n = 0$ Hence find y_n when x = 0.
 - Prove that $[a+b \ b+c \ c+a] = 2[a \ b \ c]$, where a,b,c are ii) three vectors.
 - Find the directional derivative of f = xyz at (1,1,1) in the direction 2i - j - 2k.

9.

10. i) Prove that
$$\begin{vmatrix} b^2 + c^2 & a^2 & a^2 \\ b^2 & c^2 + a^2 & b^2 \\ c^2 & c^2 & a^2 + b^2 \end{vmatrix} = 4a^2b^2c^2$$

- ii) State Divergence Theorem of Gauss. Verify divergence theorem for $\overrightarrow{F} = y \ \overrightarrow{i} + x \ \overrightarrow{j} + z \ \overrightarrow{k}$ over the cylindrical region bounded by $x^2 + y^2 = 9$, z = 0, z = 2.
- iii) Test the series for convergence

$$\frac{1^p}{2^q} + \frac{2^p}{3^q} + \frac{3^p}{4^q} + \dots$$

11. i) Obtain a reduction formula for $\int_{0}^{\frac{1}{2}} \sin^{n} x dx$. Hence obtain

$$\int_{0}^{\frac{\pi}{2}} \sin^9 x dx$$

- ii) Given two vectors $\stackrel{\rightarrow}{\alpha}=3\stackrel{\rightarrow}{i}-\stackrel{\rightarrow}{j}$, $\stackrel{\rightarrow}{\beta}=2\stackrel{\rightarrow}{i}+\stackrel{\rightarrow}{j}-3\stackrel{\rightarrow}{k}$. Express $\stackrel{\rightarrow}{\beta}$ in the form $\stackrel{\rightarrow}{\beta}_1+\stackrel{\rightarrow}{\beta}_2$, where $\stackrel{\rightarrow}{\beta}_1$ is parallel to $\stackrel{\rightarrow}{\alpha}$ and $\stackrel{\rightarrow}{\beta}_2$ is perpendicular to $\stackrel{\rightarrow}{\alpha}$.
- iii) Show that $\overrightarrow{A} = (6xy + z^3) \stackrel{\land}{i} + (3x^2 z) \stackrel{\land}{j} + (3xz^2 y) \stackrel{\land}{k}$ is irrotational. Find the scalar function ϕ , such that $\overrightarrow{A} = \nabla \phi$