

10-708 Probabilistic Graphical Models

Machine Learning Department School of Computer Science Carnegie Mellon University

Computational Complexity of Inference

+

Monte Carlo Methods

Matt Gormley Lecture 12 Mar. 10, 2021

Reminders

- Homework 2: Exact inference and supervised learning (CRF+RNN)
 - Out: Wed, Feb. 24
 - Due: Wed, Mar. 10 at 11:59pm
- Project Team Formation Office Hours
 - Fri, Mar 12 at 3:10pm in Gather. Town
- Quiz 1: Mon, Mar. 15
- Homework 3: Structured SVM
 - Out: Wed, Mar. 10
 - Due: Wed, Mar. 24 at 11:59pm

COMPUTATIONAL COMPLEXITY OF INFERENCE

Proving Computational Complexity

Question:

In order to prove that a decision problem is NP-Hard, we must...

- A. ... reduce our decision problem to a known NP-Hard problem.
- B. ... reduce a known NP-Hard problem to our decision problem.

Answer:

Complexity Classes

- An algorithm runs in polynomial time if its runtime is a polynomial function of the input size (e.g. O(n^k) for some fixed constant k)
- The class P consists of all problems that can be solved in polynomial time
- A problem for which the answer is binary (e.g. yes/no) is called a decision problem
- The class NP contains all decision problems where 'yes' answers can be verified (proved) in polynomial time
- A problem is NP-Hard if given an O(1) oracle to solve it, every problem in NP can be solved in polynomial time (e.g. by reduction)
- A problem is NP-Complete if it belongs to both the classes NP and NP-Hard

Complexity Classes

- A problem for which the answer is a nonnegative integer is called a counting problem
- The class #P contains the counting problems that align to decision problems in NP
 - really this is the class of problems that count the number of accepting paths in a Turing machine that is nondeterministic and runs in polynomial time
- A problem is #P-Hard if given an O(1)
 oracle to solve it, every problem in #P can
 be solved in polynomial time (e.g. by
 reduction)
- A problem is #P-Complete if it belongs to both the classes #P and #P-Hard
- There are no known polytime algorithms for solving #P-Complete problems. If we found one it would imply that P = NP.

Examples of #P-Hard problems

- #SAT, i.e. how many satisfying solutions for a given SAT problem?
- How many solutions for a given DNF formula?
- How many solutions for a 2-SAT problem?
- How many perfect matchings for a bipartite graph?
- How many graph colorings (with k colors) for a given graph G?

5. Inference

Three Tasks:

1. Marginal Inference (#P-Hard)

Compute marginals of variables and cliques

$$p(x_i) = \sum_{\boldsymbol{x}': x_i' = x_i} p(\boldsymbol{x}' \mid \boldsymbol{\theta}) \qquad \qquad p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function (#P-Hard)

Compute the normalization constant

$$Z(\boldsymbol{\theta}) = \sum_{\boldsymbol{x}} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference (NP-Hard)

Compute variable assignment with highest probability

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

3-SAT

Background:

- Formulas
 - <u>Def:</u> a **literal** is a binary variable or its negation, e.g. x_1 is a positive literal and $\neg x_1$ is a negative literal, where $x_1 \in \{0, 1\}$
 - <u>Def</u>: a clause is a disjunction of literals, e.g. $(\neg x_1 \lor x_2 \lor \neg x_3)$
 - <u>Def</u>: a formula is in **conjunctive normal form (CNF)** if it is a conjunction of clauses, e.g. $(\neg x_1 \lor x_2 \lor \neg x_3) \land (x_2 \lor x_4 \lor \neg x_6) \land (x_1 \lor \neg x_3 \lor \neg x_5)$
- The 3-SAT Problem
 - Given: a CNF formula where each clause has at most 3 literals
 - Goal: report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true

Computational Complexity of MAP Inference

- Claim: MAP inference is NP-Hard
- Proof Sketch:

<u>Overview</u>: we reduce 3-SAT (known to be NP-Hard) to the MAP Inference problem

- 1. Construct a factor graph as follows:
 - a. add a variable x_i to the factor graph for each variable in 3-SAT
 - b. add a variable c₁ to the factor graph for each clause in 3-SAT
 - c. add a factor $\Psi(c_l, x_i, x_j, x_k)$ for each clause $c_l(x_i, x_j, x_k)$
 - d. let the factor $\Psi(c_l, x_i, x_j, x_k) = 1$ if $c_l(x_i, x_j, x_k) = t$ rue and $\Psi(x_i, x_j, x_k) = 0$ otherwise
- Run MAP inference to obtain the most probable assignment
- Return true if all the clause variables are true; and false otherwise

#-SAT

Background:

- The 3-SAT Problem
 - Given: a CNF formula where each clause has at most 3 literals
 - Goal: report the satisfiability of the formula, i.e. whether there is a satisfying assignment to the variables that makes the entire formula true
- The #-SAT Problem
 - Given: a CNF formula where each clause has at most 3 literals
 - Goal: report the number of satisfying assignments of the formula

Computational Complexity of Marginal Inference

- Claim: Marginal inference is #P-Hard
- Proof Sketch:

Overview: we reduce #-SAT (known to be #P-Hard) to the marginal inference problem

- 1. Construct a factor graph as follows:
 - a. ... left as an exercise...
- 2. Run marginal inference
- 3. Return the number of satisfying assigments by...
 - a. ... left as an exercise...

Outline

- Monte Carlo Methods
- MCMC (Basic Methods)
 - Metropolis algorithm
 - Metropolis-Hastings (M-H) algorithm
 - Gibbs Sampling

Markov Chains

- Transition probabilities
- Invariant distribution
- Equilibrium distribution
- Markov chain as a WFSM
- Constructing Markov chains
- Why does M-H work?
- MCMC (Auxiliary Variable Methods)
 - Slice Sampling
 - Hamiltonian Monte Carlo

APPROXIMATE MARGINAL INFERENCE

1. Data

$$\mathcal{D} = \{x^{(n)}\}_{n=1}^{N}$$

$$\text{Sample 1: } \begin{bmatrix} n & v & p & d & n \\ \text{fine } & \text{files} & \text{filke } & \text{an } & \text{rrov} \end{bmatrix}$$

$$\text{Sample } \begin{bmatrix} n & v & d & n \\ \text{fine } & \text{files} & \text{filke } & \text{an } & \text{rrov} \end{bmatrix}$$

$$\text{Sample } \begin{bmatrix} n & v & p & n & n \\ 3! & \text{files} & \text{fily } & \text{with } & \text{heir } & \text{fings} \end{bmatrix}$$

$$\text{Sample } \begin{bmatrix} n & v & p & n & n \\ 3! & \text{files} & \text{files} & \text{with } & \text{heir } & \text{fings} \end{bmatrix}$$

$$\text{Sample } \begin{bmatrix} n & v & p & n & n \\ 3! & \text{files} & \text{files} & \text{files} & \text{with } & \text{heir } & \text{fings} \end{bmatrix}$$

$$\text{Sample } \begin{bmatrix} n & v & p & n & n \\ 4! & \text{with } & \text{time } & \text{you } & \text{will } & \text{see} \end{bmatrix}$$

2. Model

$$p(\boldsymbol{x} \mid \boldsymbol{\theta}) = \frac{1}{Z(\boldsymbol{\theta})} \prod_{C \in \mathcal{C}} \psi_C(\boldsymbol{x}_C)$$

3. Objective

$$\ell(\theta; \mathcal{D}) = \sum_{n=1}^{N} \log p(\boldsymbol{x}^{(n)} \mid \boldsymbol{\theta})$$

5. Inference

1. Marginal Inference

$$p(\boldsymbol{x}_C) = \sum_{\boldsymbol{x}': \boldsymbol{x}_C' = \boldsymbol{x}_C} p(\boldsymbol{x}' \mid \boldsymbol{\theta})$$

2. Partition Function

$$Z(\boldsymbol{\theta}) = \sum \prod \psi_C(\boldsymbol{x}_C)$$

3. MAP Inference

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{argmax}} p(\boldsymbol{x} \mid \boldsymbol{\theta})$$

4. Learning

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}; \mathcal{D})$$

A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

- How do we compute the probability of a specific assignment to the variables?
 P(T=t, H=h, A=a, C=c)
- 2. How do we draw a sample from the joint distribution? $t,h,a,c \sim P(T, H, A, C)$
- 3. How do we compute marginal probabilities? P(A) = ...

- 4. How do we draw samples from a conditional distribution? $t,h,a \sim P(T, H, A \mid C = c)$
- 5. How do we compute conditional marginal probabilities? $P(H \mid C = c) = ...$

Marginals by Sampling on Factor Graph

Suppose we took many samples from the distribution over taggings: $p(x) = \frac{1}{Z} \prod \psi_{\alpha}(x_{\alpha})$

Marginals by Sampling on Factor Graph

The marginal $p(X_i = x_i)$ gives the probability that variable X_i takes value x_i in a random sample

Marginals by Sampling on Factor Graph

MONTE CARLO METHODS

Monte Carlo Methods

Whiteboard

- Problem 1: Generating samples from a distribution
- Problem 2: Estimating expectations
- Why is sampling from p(x) hard?
- Example: estimating plankton concentration in a lake
- Algorithm: Uniform Sampling
- Example: estimating partition function of high dimensional function

Properties of Monte Carlo

Estimator:
$$\int f(x)P(x) dx \approx \hat{f} \equiv \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}), \quad x^{(s)} \sim P(x)$$

Estimator is unbiased:

$$\mathbb{E}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S} \sum_{s=1}^{S} \mathbb{E}_{P(x)} [f(x)] = \mathbb{E}_{P(x)} [f(x)]$$

Variance shrinks $\propto 1/S$:

$$\operatorname{var}_{P(\{x^{(s)}\})} \left[\hat{f} \right] = \frac{1}{S^2} \sum_{s=1}^{S} \operatorname{var}_{P(x)} [f(x)] = \operatorname{var}_{P(x)} [f(x)] / S$$

"Error bars" shrink like \sqrt{S}

A dumb approximation of π

$$P(x,y) = \begin{cases} 1 & 0 < x < 1 \text{ and } 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$\pi = 4 \iiint \mathbb{I}\left((x^2 + y^2) < 1\right) P(x, y) dx dy$$

```
octave:1> S=12; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.3333
octave:2> S=1e7; a=rand(S,2); 4*mean(sum(a.*a,2)<1)
ans = 3.1418
```

Aside: don't always sample!

"Monte Carlo is an extremely bad method; it should be used only when all alternative methods are worse."

— Alan Sokal, 1996

Example: numerical solutions to (nice) 1D integrals are fast

octave:1> 4 * quadl(@(x) sqrt(1-x.^2), 0, 1, tolerance)

Gives π to 6 dp's in 108 evaluations, machine precision in 2598.

(NB Matlab's quad1 fails at zero tolerance)

Sampling from distributions

Draw points uniformly under the curve:

Probability mass to left of point \sim Uniform[0,1]

Sampling from distributions

How to convert samples from a Uniform[0,1] generator:

$$h(y) = \int_{-\infty}^{y} p(y') \, \mathrm{d}y'$$

Draw mass to left of point: $u \sim \text{Uniform}[0,1]$

Sample, $y(u) = h^{-1}(u)$

Rejection sampling

Sampling underneath a $\tilde{P}(x) \propto P(x)$ curve is also valid

Importance sampling

Computing $\tilde{P}(x)$ and $\tilde{Q}(x)$, then throwing x away seems wasteful Instead rewrite the integral as an expectation under Q:

$$\int f(x)P(x) \, dx = \int f(x)\frac{P(x)}{Q(x)}Q(x) \, dx, \qquad (Q(x) > 0 \text{ if } P(x) > 0)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{P(x^{(s)})}{Q(x^{(s)})}, \quad x^{(s)} \sim Q(x)$$

This is just simple Monte Carlo again, so it is unbiased.

Importance sampling applies when the integral is not an expectation. Divide and multiply any integrand by a convenient distribution.

Importance sampling (2)

Previous slide assumed we could evaluate $P(x) = \tilde{P}(x)/\mathcal{Z}_P$

$$\int f(x)P(x) dx \approx \frac{Z_Q}{Z_P} \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \underbrace{\frac{\tilde{P}(x^{(s)})}{\tilde{Q}(x^{(s)})}}_{\tilde{r}(s)}, \quad x^{(s)} \sim Q(x)$$

$$\approx \frac{1}{S} \sum_{s=1}^{S} f(x^{(s)}) \frac{\tilde{r}^{(s)}}{\frac{1}{S} \sum_{s'} \tilde{r}^{(s')}} \equiv \sum_{s=1}^{S} f(x^{(s)}) w^{(s)}$$

This estimator is consistent but biased

Exercise: Prove that $\mathcal{Z}_P/\mathcal{Z}_Q \approx \frac{1}{S} \sum_s \tilde{r}^{(s)}$

Summary so far

- Sums and integrals, often expectations, occur frequently in statistics
- Monte Carlo approximates expectations with a sample average
- Rejection sampling draws samples from complex distributions
- Importance sampling applies Monte Carlo to 'any' sum/integral

Pitfalls of Monte Carlo

Rejection & importance sampling scale badly with dimensionality

Example:

$$P(x) = \mathcal{N}(0, \mathbb{I}), \quad Q(x) = \mathcal{N}(0, \sigma^2 \mathbb{I})$$

Rejection sampling:

Requires $\sigma \geq 1$. Fraction of proposals accepted $= \sigma^{-D}$

Importance sampling:

Variance of importance weights $= \left(\frac{\sigma^2}{2-1/\sigma^2}\right)^{D/2} - 1$

Infinite / undefined variance if $\sigma \leq 1/\sqrt{2}$

Metropolis, Metropolis-Hastings, Gibbs Sampling

MCMC (BASIC METHODS)

Sampling from a Joint Distribution

A Few Problems for a Factor Graph

Suppose we already have the parameters of a Factor Graph...

- How do we compute the probability of a specific assignment to the variables?
 P(T=t, H=h, A=a, C=c)
- 2. How do we draw a sample from the joint distribution? $t,h,a,c \sim P(T, H, A, C)$
- 3. How do we compute marginal probabilities? P(A) = ...

- 4. How do we draw samples from a conditional distribution? $t,h,a \sim P(T, H, A \mid C = c)$
- 5. How do we compute conditional marginal probabilities? $P(H \mid C = c) = ...$

Can we use samples ?

MCMC

- Goal: Draw approximate, correlated samples from a target distribution p(x)
- MCMC: Performs a biased random walk to explore the distribution

