Lei de Ohm e curva característica do diodo

Eduardo Parducci - 170272 Lucas Koiti Geminiani Tamanaha - 182579 Rodrigo Seiji Piubeli Hirao - 186837 Tanus Vaz Szabo - 187308

4 de Abril de 2017

Conteúdo

1	Material Utilizado	3
2	Procedimento	3
	2.1 Determinar resistência R_x utilizando a ponte de Wheatstone	3
	2.2 Determinar os coeficientes de fabricação do termistor	3
3	Anexo	4
	3.1 Circuitos Utilizados	5

1 Material Utilizado

- 2 Resistores de 100Ω
- 1 Resistor de 68Ω
- 1 Resistor variável
- 1 Multímetros
- 1 Protoboard
- 1 Béquer
- 1 Termômetro
- 1 Termistor
- 1 Fonte de tensão contínua
- Cabos de plug "banana"

2 Procedimento

2.1 Determinar resistência R_x utilizando a ponte de Wheatstone

Com o uso do multímetro na escala Ω , checar o valor dos resistores nominais de 68Ω e 100Ω anotando os valores e respectivos erros comparando-os com o nominal.

Determinar o valor da tensão para a montagem do circuito 1 de forma que R_v varie entre 10Ω e 60Ω fazendo com que potência dissipada em $R_p=100\Omega$ não ultrapasse 1,5W.

Montar o circuito 1 (Ponte de Wheatstone) e realizar 20 medições da tensão (multímetro na escala $V \simeq$) variando R_v entre 10Ω e 60Ω . Colocar os valores e seus respectivos erros em uma tabela $R_v \pm \Delta R_v$ e $V \pm \Delta V$.

Obs:Diminuir a variação $\Delta R_v = 0, 1\Omega$ quando os valores da tensão estiverem próximos de zero a fim de obter um gráfico mais consistente.

2.2 Determinar os coeficientes de fabricação do termistor

Anotar o número do termistor utilizado e montar o circuito 2 mantendo $R_p=100\Omega.$

Colocar água e o aquecedor no Béquer de forma que a resistência do Aquecedor fique totalmente submersa na água.

Ligar o Aquecedor e medir a temperatura da água, até atingir $T_{max}=333K$, desligar o aquecedor e realizar 30 medidas da tensão até atingir $T_{min}=303K$ obtendo uma leitura a cada $\Delta T=1K$ colocando os valores numa tabela $T\pm\Delta T$ e $V\pm\Delta V$.

3 Anexo

Lista	de	Figuras
11000	α	- 15 at a

3.1 Circuitos Utilizados

Figura 1: Circuito com Ponte de Wheatstone