THE CONTINUITY OF EXCEPTIONAL ESTIMATES FOR ORTHOGONAL PROJECTIONS

Ana Emilia de Orellana. aedo1@st-andrews.ac.uk

University of St Andrews Joint work with Jonathan Fraser

Fractal Geometry and Stochastics 7

Motivation

Theorem (Marstrand's projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathsf{H}} P_e(X) = \min\{\dim_{\mathsf{H}} X, 1\}.$

Motivation

Theorem (Marstrand's projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_{\mathsf{H}} P_e(X) = \min\{\dim_{\mathsf{H}} X, 1\}$.

Almost all means that

$$\mathcal{L}^{d-1}\big(\big\{e\in S^{d-1}: \dim_{\mathsf{H}} P_e(X) < \min\{\dim_{\mathsf{H}} X, 1\}\big\}\big) = 0.$$

Motivation

Theorem (Marstrand's projection theorem)

For any Borel set $X \subseteq \mathbb{R}^d$ and almost all directions $e \in S^{d-1}$, $\dim_H P_e(X) = \min\{\dim_H X, 1\}$.

Almost all means that

$$\mathcal{L}^{d-1}(\{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < \min\{\dim_{\mathsf{H}} X, 1\}\}) = 0.$$

We want to study for $u \in [0, \min\{\dim_H X, 1\}]$,

$$\dim_{\mathsf{H}} \{ e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < u \}.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kaufman '68:

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_H X$.

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kaufman '68:

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{H}} X/2 \} = 0.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kaufman '68:

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{H}} X/2 \} = 0.$$

Set $X \subseteq \mathbb{R}^2$, $\dim_H X \leqslant 1$ and let $u \in [0, \dim_H X]$.

The first bound by Kaufman '68:

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leqslant u,$$

which is sharp when $u = \dim_H X$.

Bourgain '10 and Oberlin '12 proved that

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{H}} X/2 \} = 0.$$

 $\min\{0, 2u - \dim_{\mathsf{H}} X\}$ Conjectured by Oberlin Proved by Ren-Wang '23

Given $X \subseteq \mathbb{R}^d$, recall

$$\dim_{\mathsf{H}} X = \sup \left\{ s : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} \, dz < \infty \right\};$$

Given $X \subseteq \mathbb{R}^d$, recall

$$\begin{split} \dim_{\mathsf{H}} X &= \sup \Big\{ s : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} \, dz < \infty \Big\}; \\ \dim_{\mathsf{F}} X &= \sup \big\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \sup_z \left| \widehat{\mu}(z) \right|^2 |z|^s < \infty \big\}. \end{split}$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$,

Given $X \subseteq \mathbb{R}^d$, recall

$$\begin{split} \dim_{\mathsf{H}} X &= \sup \Big\{ s : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} \, dz < \infty \Big\}; \\ \dim_{\mathsf{F}} X &= \sup \big\{ s \in [0,\,d] : \exists \mu \text{ finite on } X \text{ with } \sup_z \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}. \end{split}$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and if X supports μ with $|\widehat{\mu}(z)| \lesssim |z|^{-\frac{s}{2}}$, then for all t < s,

$$\int_{\mathbb{R}} \left| \widehat{P_{e\#\mu}}(z) \right|^2 |z|^{t-d} \, dz < \infty.$$

Given $X \subseteq \mathbb{R}^d$, recall

$$\begin{split} \dim_{\mathsf{H}} X &= \sup \Big\{ s : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} \, dz < \infty \Big\}; \\ \dim_{\mathsf{F}} X &= \sup \big\{ s \in [0, \, d] : \exists \mu \text{ finite on } X \text{ with } \sup_z \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}. \end{split}$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and if X supports μ with $|\widehat{\mu}(z)| \lesssim |z|^{-\frac{s}{2}}$, then for all t < s,

$$\int_{\mathbb{R}} |\widehat{P_{e\#\mu}}(z)|^2 |z|^{t-d} dz < \infty.$$

So $\dim_{\mathsf{H}} P_e(X) \geqslant \min\{1, \dim_{\mathsf{F}} X\}.$

Given $X \subseteq \mathbb{R}^d$, recall

$$\begin{split} \dim_{\mathrm{H}} X &= \sup \Big\{ s : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} |\widehat{\mu}(z)|^2 |z|^{s-d} \, dz < \infty \Big\}; \\ \dim_{\mathrm{F}} X &= \sup \big\{ s \in [0,\,d] : \exists \mu \text{ finite on } X \text{ with } \sup_z \big| \widehat{\mu}(z) \big|^2 |z|^s < \infty \big\}. \end{split}$$

We always have $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{H}} X$, and if X supports μ with $|\widehat{\mu}(z)| \lesssim |z|^{-\frac{s}{2}}$, then for all t < s,

$$\int_{\mathbb{R}} |\widehat{P_{e\#\mu}}(z)|^2 |z|^{t-d} dz < \infty.$$

So $\dim_{\mathsf{H}} P_e(X) \geqslant \min\{1, \dim_{\mathsf{F}} X\}.$

Thus, if $u \leqslant \dim_{\mathbf{F}} X$,

$${e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u} = \varnothing.$$

Question

Are there examples where this discontinuity occurs?

Recall Ren-Wang's bound,

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leq \max\{0, 2u - \dim_{\mathsf{H}} X \}.$$

Recall Ren-Wang's bound,

$$\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(X) < u \} \leq \max\{0, 2u - \dim_{\mathsf{H}} X \}.$$

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\mathsf{H}} A = s$ such that $\dim_{\mathsf{H}} \{e \in S^1 : \dim_{\mathsf{H}} P_e(X) \leqslant t\} = 2t - s$.

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\mathsf{H}} A = s$ such that $\dim_{\mathsf{H}} \{e \in S^1 : \dim_{\mathsf{H}} P_e(X) \leqslant t\} = 2t - s$.

Example ($\dim_{\mathbf{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the previous example and B with $\dim_F B = \dim_H B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \geqslant t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \leqslant u \} \geqslant 2t s$.

Example (A 'pointwise sharp' example of RW)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. There exists $A \subseteq \mathbb{R}^2$ with $\dim_{\mathsf{H}} A = s$ such that $\dim_{\mathsf{H}} \{e \in S^1 : \dim_{\mathsf{H}} P_e(X) \leqslant t\} = 2t - s$.

Example ($\dim_{\mathbf{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the previous example and B with $\dim_{\mathbf{F}} B = \dim_{\mathbf{H}} B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \geqslant t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \leqslant u \} \geqslant 2t s$.

Example ($\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the previous example and B with $\dim_{\mathbf{F}} B = \dim_{\mathbf{H}} B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \geqslant t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \leqslant u \} \geqslant 2t s$.

Question

What conditions on Fourier decay give continuity for the bound of the dimension of the exceptional set at $u = \dim_F X$?

Given
$$X \subseteq \mathbb{R}^d$$
 and $\theta \in (0,1]$

$$\dim_{\mathrm{F}}^{\theta} X = \sup \bigg\{ s \in [0,d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta}-d} \, dz < \infty \bigg\}.$$

Given
$$X \subseteq \mathbb{R}^d$$
 and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

Some facts about the Fourier spectrum:

• $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

- $\dim_{\mathcal{F}}^0 X = \dim_{\mathcal{F}} X$ and $\dim_{\mathcal{F}}^1 X = \dim_{\mathcal{H}} X$.
- For each $\theta \in [0,1]$, $\dim_{\mathrm{F}} X \leqslant \dim_{\mathrm{F}}^{\theta} X \leqslant \dim_{\mathrm{H}} X$.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$\dim_{\mathcal{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

- $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^{\theta} X \leqslant \dim_H X$.
- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.

Given $X \subseteq \mathbb{R}^d$ and $\theta \in (0,1]$

$$\dim_{\mathrm{F}}^{\theta} X = \sup \left\{ s \in [0, d] : \exists \mu \text{ finite on } X \text{ with } \int_{\mathbb{R}^d} \left| \widehat{\mu}(z) \right|^{\frac{2}{\theta}} |z|^{\frac{s}{\theta} - d} \, dz < \infty \right\}.$$

$$\theta = 0 \quad \longrightarrow \quad \sup_{z} \left| \widehat{\mu}(z) \right|^{2} |z|^{s} < \infty$$

- $\dim_F^0 X = \dim_F X$ and $\dim_F^1 X = \dim_H X$.
- For each $\theta \in [0,1]$, $\dim_F X \leqslant \dim_F^{\theta} X \leqslant \dim_H X$.
- $\theta \mapsto \dim_{\mathrm{F}}^{\theta} X$ is continuous and non-decreasing.
- $\partial_+ \dim_{\mathbf{F}}^{\theta} X|_{\theta=0} \leqslant d$,

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set. Then for all $u \in [0,1]$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < u \} \\ \leqslant \max \bigg\{ 0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathsf{F}}^{\theta} X}{\theta} \bigg\}. \end{split}$$

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set. Then for all $u \in [0,1]$,

$$\begin{split} \dim_{\mathbb{H}} \{e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \} \\ \leqslant \max \bigg\{ 0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathcal{F}}^{\theta} X}{\theta} \bigg\}. \end{split}$$

We ask for continuity of the bound at $u=\dim_{\mathrm{F}}X$, let $\varepsilon\in(0,1)$,

$$\dim_{\mathsf{H}} \{ e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{F}} X + \varepsilon^2 \}$$

$$\leq d - 1 + \inf_{\theta \in (0,1]} \frac{\dim_{\mathsf{F}} X + \varepsilon^2 - \dim_{\mathsf{F}}^{\theta} X}{\theta}$$

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set. Then for all $u \in [0,1]$,

$$\begin{split} \dim_{\mathbb{H}} \big\{ e \in S^{d-1} : \dim_{\mathbb{H}} P_e(X) < u \big\} \\ \leqslant \max \bigg\{ 0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathcal{F}}^\theta X}{\theta} \bigg\}. \end{split}$$

We ask for continuity of the bound at $u=\dim_{\mathrm{F}}X$, let $\varepsilon\in(0,1)$,

$$\begin{split} \dim_{\mathsf{H}} \{ e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{F}} X + \varepsilon^2 \} \\ &\leqslant d - 1 + \inf_{\theta \in (0,1]} \frac{\dim_{\mathsf{F}} X + \varepsilon^2 - \dim_{\mathsf{F}}^\theta X}{\theta} \\ &\leqslant d - 1 + \varepsilon - \frac{\dim_{\mathsf{F}}^\varepsilon X - \dim_{\mathsf{F}} X}{\varepsilon}. \end{split}$$

Theorem (Fraser-dO, 2024+)

Let $X \subseteq \mathbb{R}^d$ be a Borel set. Then for all $u \in [0,1]$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < u \} \\ \leqslant \max \bigg\{ 0, d-1 + \inf_{\theta \in (0,1]} \frac{u - \dim_{\mathsf{F}}^\theta X}{\theta} \bigg\}. \end{split}$$

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$\begin{split} \dim_{\mathsf{H}} \{e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{F}} X + \varepsilon^2 \} \\ \leqslant d - 1 + \varepsilon - \frac{\dim_{\mathsf{F}}^\varepsilon X - \dim_{\mathsf{F}} X}{\varepsilon}. \end{split}$$

 $\liminf_{\varepsilon \to 0} \frac{\dim_F^\varepsilon X - \dim_F X}{\varepsilon}$ is the lower right semi-derivative of $\dim_F^\theta X$ at $\theta = 0$.

We ask for continuity of the bound at $u = \dim_{\mathrm{F}} X$, let $\varepsilon \in (0,1)$,

$$\begin{split} \dim_{\mathsf{H}} \{ e \in S^{d-1} : \dim_{\mathsf{H}} P_e(X) < \dim_{\mathsf{F}} X + \varepsilon^2 \} \\ \leqslant d - 1 + \varepsilon - \frac{\dim_{\mathsf{F}}^\varepsilon X - \dim_{\mathsf{F}} X}{\varepsilon}. \end{split}$$

 $\liminf_{\varepsilon \to 0} \frac{\dim_{\mathrm{F}}^{\varepsilon} X - \dim_{\mathrm{F}} X}{\varepsilon}$ is the lower right semi-derivative of $\dim_{\mathrm{F}}^{\theta} X$ at $\theta = 0$.

Theorem (Fraser-dO, 2024+)

Let X be a Borel set in \mathbb{R}^d . If $\underline{\partial_+} \dim_{\mathrm{F}}^\theta X|_{\theta=0} \geqslant d-1$, then the function $u \mapsto \dim_{\mathrm{H}} \{e \in S^{d-1} : \dim_{\mathrm{H}} P_e(X) < u\}$ is continuous at $u = \dim_{\mathrm{F}} X$.

Example ($\dim_{\mathrm{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the 'pointwise sharp' example and B with $\dim_{\mathbf{F}} B = \dim_{\mathbf{H}} B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \geqslant t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \leqslant u \} \geqslant 2t s$.

Example ($\dim_{\mathbf{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the 'pointwise sharp' example and B with $\dim_{\mathbf{F}} B = \dim_{\mathbf{H}} B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \ge t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \le u \} \ge 2t s$.

Example ($\dim_{\mathbf{F}} X$ gives discontinuous bounds)

Fix $s \in (0,1]$ and $t \in (s/2,s)$. Let A be the set from the 'pointwise sharp' example and B with $\dim_{\mathbf{F}} B = \dim_{\mathbf{H}} B = t$. Then

- $\dim_{\mathbf{F}}(A \cup B) = t$; $\dim_{\mathbf{H}}(A \cup B) = s$.
- If $u \geqslant t$, $\dim_{\mathsf{H}} \{ e \in S^1 : \dim_{\mathsf{H}} P_e(A \cup B) \leqslant u \} \geqslant 2t s$.

Theorem (Fraser-dO, 2024+)

Let X be a Borel set in \mathbb{R}^d . If $\underline{\partial_+} \dim_{\mathrm{F}}^{\theta} X|_{\theta=0} \geqslant d-1$, then the function $u \mapsto \dim_{\mathrm{H}} \{e \in S^{d-1} : \dim_{\mathrm{H}} P_e(X) < u\}$ is continuous at $u = \dim_{\mathrm{F}} X$.

Theorem (Fraser-dO, 2024+)

Let X be a Borel set in \mathbb{R}^d . If $\underline{\partial_+} \dim_{\mathrm{F}}^{\theta} X|_{\theta=0} \geqslant d-1$, then the function $u \mapsto \dim_{\mathrm{H}} \{e \in S^{d-1} : \dim_{\mathrm{H}} P_e(X) < u\}$ is continuous at $u = \dim_{\mathrm{F}} X$.

Theorem (Fraser-dO, 2024+)

Let X be a Borel set in \mathbb{R}^d . If $\underline{\partial_+} \dim_{\mathrm{F}}^\theta X|_{\theta=0} \geqslant d-1$, then the function $u \mapsto \dim_{\mathrm{H}} \{e \in S^{d-1} : \dim_{\mathrm{H}} P_e(X) < u\}$ is continuous at $u = \dim_{\mathrm{F}} X$.

Question

Is $\underline{\partial_+} \dim_{\mathrm{F}}^{\theta} X|_{\theta=0} > 0$ sufficient? Or perhaps $\underline{\partial_+} \dim_{\mathrm{F}}^{\theta} X|_{\theta=0} \geqslant \rho$ for some $\rho > 0$?

Danke schön!