CSCI 466: Networks

Lecture 2: Network Edge, Network Core

Reese Pearsall Fall 2024

Announcements

- Make sure to get the CSCI 466 role on Discord!
- Fill out the course questionnaire
- You can call me "Reese"

Devices that are connected to network are called **hosts** or **end systems**

A typical home network

How does out network get access through other networks?

Devices that are connected to network are called **hosts** or **end systems**

Devices that are connected to network are called **hosts** or **end systems**

The most common packet switch we see is called a **router**

Packet Switch

A typical home network

Devices that are connected to network are called **hosts** or **end systems**

End systems are connected together by a network of **communication links** and **packet switches**

A packet switch takes a packet arriving on one of its incoming communication links and forwards that packet on one of its outgoing communication links

The most common packet switch we see is called a **router**

End systems gain access to the internet through **Internet Service Providers (ISPs)**

Spectrum

End to Frd Communication Top Internet Service Provider State-by-State (Comcast, Comcast. Comcast. Mobile N **MCABLEVISION** Midcontinent Comcast. Comcast Comcast Century Link Midcontinent MICABLEVISION COX comcast. COX Mediacom Comcast. comcast. Comcast Comcast. Comcast. verizon Comcast. Home Ne Century Link **≝** at&t (Comcast. 😂 at&t COX Webpage X Source: 56 million web visits

End systems gain access to the internet through **Internet Service Providers (ISPs)**

Comcast

"End-to-end communication"

VouTube

Most hosts can be classified into two categories:

- Clients
- Servers

"End-to-end communication"

YouTube

Most hosts can be classified into two categories:

- Clients (Desktops, Laptops, Phones)
- Servers (Powerful computers that store web pages, videos, emails, etc)

Servers typically reside in large datacenters

"End-to-end communication"

Network Edge

The **network edge** consists of end systems

Network Edge

An **access network** is the network that physically connects an end system to the first router

The way that homes and enterprises get connected to the internet

Network Edge

The way that homes and enterprises get connected to the internet

An **access network** is the network that physically connects an end system to the first router

"Edge Routers" act as the boundary between a private network and a public network

Digital Subscriber Line (DSL)

Uses existing telephone line to connect to internet and transmit data

Digital Subscriber Line (DSL)

Uses existing telephone line to connect to internet and transmit data

Cable Internet Access

Homes will require a modem, which connects to a home PC with an Ethernet cable

Uses existing television cable lines to connect to internet and transmit data

*Shared broadcast medium

Fiber Internet Access (FTTH)

Connects homes to a shared fiber cable

Ok, but like how?

Ok, but like how?

INFRAPEDIA

https://www.youtube.com/watch?v =d0gs497KApU

Physical Mediums

Fiber Optic Cable

Physical Mediums

Twisted-Pair Copper Wire

Cheap
Easy to install
can handle a variety signals

Fiber Optic Cable

Expensive
A bit more difficult to install
Much higher speeds, can transmit long distances

Ok, but like how?

- Radio
- Microwave
- Infrared
- Satellite

Guided Medium

Unguided Medium

End systems are connected together by a network of **communication links** and **packet switches**

A packet switch takes a packet arriving on one of its incoming communication links and forwards that packet on one of its outgoing communication links

Each communication link has its own transmission rate (bits/sec)

10 Mbps 500 kbps 100 kbps

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

1500 Bytes

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

1500 Bytes

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

1500 Bytes

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

"Good morning, I hope you are having a good day!"

Generated Packet

To: Host A

John Paxton

192.42.98.11

From: Host B
Reese Pearsall
192.5.223.42

Good morning, I hope you are having a good day!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

What if we are transmitting large pieces of data?

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

What if we are transmitting large pieces of data?

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

Host A From Host B

John Paxton
192.42.98.11

192.5.223.42

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

P1

What if we are transmitting large pieces of data?

P2

We must split it up!

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Final Result:

From: Host B

Reese Pearsall

192.5.223.42

P1

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Lost, Discarded, Corrupt P1

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Final Result:

P2

Solution?

P3

Messages going from A to B are split into packets

Packets are generally small, and cannot exceed a certain size Final Result:

P2

Solution?

P3

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Final Result:

P2

Solution?

P1

Messages going from A to B are split into **packets**

Packets are generally small, and cannot exceed a certain size

Final Result:

P2

Solution?

P3

What a packet looks like depends on where it's at in its journey!

"Hello John."

What a packet looks like depends on where it's at in its journey!

User-level message

"Hello John."

What a packet looks like depends on where it's at in its journey!

Intended receiver and sender of message

What a packet looks like depends on where it's at in its journey!

Address of Sender and Receiver

What a packet looks like depends on where it's at in its journey!

Specific location of sender and receiver's homes

What a packet looks like depends on where it's at in its journey!

Specific location of sender and receiver's homes

Our original message gets encapsulated with many pieces of information

These pieces of information help make sure our mail get sent to the correct place

It's a complicated system!

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Open Systems Interconnection Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Application Layer

Messages from Network Applications

Physical Layer

Bits being transmitted over a copper wire

Questions?