

MARS: Robustness Certification for Deep Network Intrusion Detectors via Multi-Order Adaptive Randomized Smoothing

Mengdie Huang^{1,2}, Yingjun Lin², Xiaofeng Chen¹, Elisa Bertino²

¹ Xidian University

² Purdue University

Contents

Background

Problem

Solution

Evaluation

Conclusion

Keywords

Deep Neural Network

Network **Intrusion** Detection

Natural Corruption **Evasion** Attack

Certified

Empirical Robustness Robustness

Deep Neural Network-based Network Traffic Classifier

Workflow of the DNN-based Network Intrusion Detector (NID)

- Traffic Data includes both Numeric and Non-numeric Values (e.g. protocol, network service, timestamp, etc.)
 - First, transform the raw network traffic vector x_{raw} into a numerical feature vector x_{num} .
 - Then, normalize it into a feature vector x in a continuous real number range.

Threats to Deep Neural Networks (DNNs)

- Standard Train a Base Classifier F
 - Optimization objective of standard training

$$\min_{\theta} \mathbb{E}_{(x,y_{true}) \sim \mathcal{D}_{train}} [\mathcal{L}(F_{\theta}(x), y_{true})]$$

• Evasion Attack with Adversarial Example $(x + \delta)$

Optimization objective of untargeted attack

$$\max_{||\delta||_{p} \le \epsilon} \mathcal{L}(F_{\theta}(x+\delta), y_{true})$$

$$x \qquad F_{\theta}$$

$$||\delta||_{p} \le \epsilon$$

$$||\delta||_{p} \le \epsilon$$

$$\delta$$

Standard Training

Adversarial Example

Empirical Defense vs. Certified Defense

- Perspective of Robust Defense for Deep Neural Networks (DNNs)
 - Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
 - Certified Defense
 - Provide the certified robust radius as the robustness certification of the predicted output.

Standard Training

Adversarial Training

Empirical Defense vs. Certified Defense

- Perspective of Robust Defense for Deep Neural Networks (DNNs)
 - Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
 - Certified Defense
 - Provide the certified robust radius *R* as the robustness certification of the predicted output.

Empirical Defense vs. Certified Defense

- Perspective of Robust Defense for Deep Neural Networks (DNNs)
 - Empirical Defense
 - Improve the model's prediction accuracy in adversarial attacks through robust training.
 - Certified Defense
 - Provide the certified robust radius *R* as the robustness certification of the predicted output.
 - Robustness Guarantee
 - For input x, predictions of classifier F on perturbed data within an l_p normmeasured radius R around x, are guaranteed to remain consistent.
 - ✓ That is, any small perturbation δ to x within this region, including adversarial attacks, will not change the prediction results.

Certified Defense

ullet Norm-bounded Certified Radius of DNN-based Multi-class Classifier on the Input x

Multiple Norm Types: l_2 norm, l_{∞} norm, l_1 norm,

Exact Robust Radius: R_e

Upper/ Lower Bound of Exact Robust Radius: R_u , R_l

(b) $||\delta||_{\infty} < R$

(c)
$$||\delta||_1 < R$$

Certify Robustness of DNN-based Network Traffic Classifiers

Motivation

- Certified defense efforts for network intrusion detection have been minimal, only BARS (NDSS'23).
- \succ The l_2 robustness guarantee is relatively loose and lacks certification for other l_p certified radii.

Problems to be solved:

- Pro1: Define a certified radius that can bound heterogeneous network traffic features.
- Pro2: Expend the certified robust region to tighten the robustness guarantee.
- \triangleright Pro3: Provide the multiple l_p norms-bounded robustness guarantees of the model.

Core Idea:

- Extend the real-value certified radius R to a vector $(R_1, ..., R_d) \in \mathbb{R}^d$, where R_i denotes the dimensional certified radius for the i-th feature x_i of the heterogeneous input x.
- > Introduce the multiple order information of the smoothed classifier to expand the certified region.
- \triangleright Align the sampling area of smoothing distribution with the l_p -measured surroundings of the input.

- Framework of Proposed Multi-Order Adaptive Randomized Smoothing (MARS)
 - Prediction Procedure
 - Sampling $n_k = n_{small}$ noise data \rightarrow Predict the category of the input x.
 - Certification Procedure
 - Sampling $n_k = n_{large}$ noise data \rightarrow Calculate the robust radius R of the model on the input x.

- Phase 1: Smoothing Distribution Parameters Optimization
 - Distribution Shape Optimization.
 - Encourage noised samples to be near the decision boundary of the classifier for x.
 - Distribution Scale Optimization.
 - Expand the noise sampling area by adjusting the smoothing distribution's scalar parameter.

- Phase 2: Multi-order Information-based Certified Robust Radius Calculation
 - > Zero-order Output Probability Information-based Certified Radius Calculation
 - > First-order Gradient Information-based Certified Radius Extension

- Phase 3: Dimensional Robust Radius Weight Calculation
 - Dimensional Feature Sensitivity Analysis
 - Dimensional Radius Contribution Quantification

$$s_i = \frac{d(f_\theta^c(x))}{d(x_i)} \qquad s = (s_1, ..., s_d)$$

$$R_i = w_i \times R, w_i = \frac{R_i}{R} = \frac{1/d}{\tilde{s}_i} = \frac{1}{d\tilde{s}_i}$$

Smoothing Distribution Diversity

- \triangleright Gaussian Distribution aligns with l_2 norm-bounded certified region
- \triangleright Laplacian Distribution aligns with l_1 norm-bounded certified region
- \triangleright Uniform Distribution aligns with l_{∞} norm-bounded certified region

Dataset

➤ Three datasets created from CIC-IDS-2018

Dataset	DoS-Hulk-Drift Class	Dataset Number	Infiltration-Drift Class	t Dataset Number	Diverse-Intrusio Class	ns Dataset Number
Training	Benign	52996	Benign	52996	Benign	52996
	SSH-Bruteforce	9385	SSH-Bruteforce	9385	FTP-Bruteforce	12590
	Infiltration	7390	DoS-Hulk	34789	DDoS-HOIC	53476
	-	-	-	-	Bot	22584
Test	Benign	13249	Benign	13249	Benign	13249
	SSH-Bruteforce	2346	SSH-Bruteforce	2346	FTP-Bruteforce	3148
	Infiltration	1894	DoS-Hulk	8697	DDoS-HOIC	13369
	DoS-Hulk	43486	Infiltration	9327	Bot	5646

Model

> CADE

Contrastive Autoencoder for Drifting detection and Explanation

(USENIX 2021)

> ACID

Adaptive Clusteringbased Intrusion Detection (INFOCOM 2021)

- Attack Configuration
 - Evasion Attack
 - PGD: Projected
 Gradient Descent
 - EAD: Elastic-Net Attack to DNN
 - Natural Corruption
 - Latency
 - Packet Loss

Attack Configuration

- Evasion Attack
 - PGD: Projected
 Gradient Descent
 - EAD: Elastic-Net Attack to DNN
- Natural Corruption
 - Latency
 - Packet Loss

Perturbed Featured under Latency

No	Feature Name	No	Feature Name
8	$Flow_Duration$	34	Bwd_IAT_Mean
23	$Flow_IAT_Mean$	35	Bwd_IAT_Std
24	$Flow_IAT_Std$	36	Bwd_IAT_Total
25	$Flow_IAT_Max$	50	$Packet_Length_Variance$
26	$Flow_IAT_Min$	76	$Active_Min$
27	Fwd_IAT_Min	77	$Active_Mean$
28	Fwd_IAT_Max	78	$Active_Max$
29	Fwd_IAT_Mean	79	$Active_Std$
30	Fwd_IAT_Std	80	$Idle_Min$
31	Fwd_IAT_Total	81	$Idle_Mean$
32	Bwd_IAT_Min	82	$Idle_Max$
33	Bwd_IAT_Max	83	$Idle_Std$

Attack Configuration

- Evasion Attack
 - PGD: Projected
 Gradient Descent
 - EAD: Elastic-Net Attack to DNN
- Natural Corruption
 - Latency
 - Packet Loss

Perturbed Featured under Packet Loss

No	Feature Name	No	Feature Name
9	$Total_Fwd_Packet$	53	PSH_Flag_Count
10	$Total_Bwd_packets$	54	ACK_Flag_Count
11	$Total_Length_of_Fwd_Packet$	55	URG_Flag_Count
12	$Total_Length_of_Bwd_Packet$	56	CWR_Flag_Count
21	$Flow_Byte/s$	57	ECE_Flag_Count
22	$Flow_Packets/s$	63	$Fwd_AVG_Packet/Bulk$
43	$FWD_Packets/s$	66	$Bwd_AVG_Packet/Bulk$
44	$Bwd_Packets/s$	68	$Subflow_Fwd_Packets$
50	FIN_Flag_Count	70	$Subflow_Bwd_Packets$
51	SYN_Flag_Count	74	$Act_data_pkt_forward$
52	RST_Flag_Count	-	3 0

Comparison of Certified Defense Methods

VRS: Vanilla Randomized Smoothing (ICML 2019)

→ designed for Image

> FRS: First Order-based Randomized Smoothing (NeurIPS 2020)

→ designed for Image

➤ BARS: Boundary-Adaptive Randomized Smoothing (NDSS 2023)

→ designed for Traffic

Mathad	Hatana sanaitu	Universality	Robustness Guarantee Diversity		Adversarial Attacks			Natural Corruptions		
Method	neterogenenty		l_2 Radius l_1	Radius	l_{∞} Radius	l_2 Attack	l_1 Attack	l_{∞} Attack	Latency	Loss
VRS [17]	0	•	•	0	0	0	0	0	0	0
FRS [35]	0	•	•	•	•	0	0	0	0	0
BARS [18]	•	•	•	0	0	0	0	•	0	0
MARS	•	•	•	•	•	•	•	•	•	•

[17] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. 2019. Certified adversarial robustness via randomized smoothing. In International Conference on Machine Learning (ICML). 1310–1320.

[35] Jeet Mohapatra, Ching-Yun Ko, Tsui-WeiWeng, Pin-Yu Chen, Sijia Liu, and Luca Daniel. 2020. Higher-order certification for randomized smoothing. In Advances in Neural Information Processing Systems (NeurIPS). 4501–4511.

[18] Kai Wang, Zhiliang Wang, Dongqi Han, Wenqi Chen, Jiahai Yang, Xingang Shi, and Xia Yin. 2023. BARS: Local Robustness Certification for Deep Learning based Traffic Analysis Systems. In Network and Distributed Systems Security (NDSS) Symposium.

Evaluation Metrics

- Certified Robustness
 - Mean Certified Radius
 - Certified Accuracy

Mean Certified Radius (MCR) =
$$\frac{1}{N} \sum_{i=1}^{N} R_{i}$$

 $Certified\ Accuracy\ (CerAcc) = \frac{N_{(F_{smooth}(x) = y_{true})} \& (R \ge R_{given})}{N}$

- Empirical Robustness
 - Robust Accuracy on Adversarial (Malicious) Examples

$$Recall = \frac{TP}{TP + FN}$$

Robust Accuracy on Corrupted (Malicious & Benign) Examples

$$Robust\ Accuracy\ (RobAcc) = \frac{N_{(F_{smooth}(x^*) = y_{true})}}{N} = \frac{TP + TN}{TP + TN + FP + FN}$$

- Regular Predictive Performance
 - Clean Accuracy

Clean Accuracy (CleAcc) =
$$\frac{N_{(F_{smooth}(x)=y_{true})}}{N}$$

Conclusion

- Exp 1: Comparison of l₂-bounded Certified Robustness with SOTA Method
 - \triangleright Exp Setup: n_{small} =100, n_{large} =10,000. Compare the l_2 overall MCR R of the model by category.
 - > Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.
 - For CADE trained on DoSHulk-Drift dataset, MARS shows a 0.23% and 0.03% higher MCR in Benign and Infiltration classes, respectively, than SOTA BARS.
 - For CADE trained on Infiltration-Drift dataset, MARS exhibits a 0.22%, 93.66%, and 0.2% MCR increase in Benign, SSH-Bruteforce, and DoS-HULK categories compared to BARS.

- Exp 1: Comparison of l₂-bounded Certified Robustness with SOTA Method
 - \triangleright Exp Setup: n_{small} =100, n_{large} =10,000. Compare the l_2 overall MCR R of the model by category.
 - > Observation: MARS always outperforms certified defense baselines VRS, FRS, and BARS.
 - For ACID trained on Diverse Intrusion dataset, MARS exhibits a 1.75%, 6.44%, 0.04%, and 7.49% MCR increase in Benign, FTP-Bruteforce, DDoS-HOIC, and Bot categories compared to SOTA Certified Defense BARS.

- Exp 1: Comparison of l₂-bounded Certified Robustness with SOTA Method
 - \triangleright Exp Setup: Compare the Certified Accuracy of the model w.r.t the l_2 -bounded certified radius.
 - > Observation: MARS demonstrated the certified robustness of the model in a larger region.
 - For CADE, MARS maintains 100% accuracy until the MCR threshold reaches 0.4, while the that of the SOTA methods begins to drop sharply when the threshold just exceeds 0.15.
 - For ACID, MARS shows significant advantages over SOTA until the MCR reaches 1.5.

- Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method
 - \triangleright Exp Setup: n_{small} =100, n_{large} =10,000. Compare the l_1 , l_∞ MCR of the model by category with FRS, since neither VRS nor BARS supports l_1 -bounded and l_∞ -bounded robustness certification.
 - \succ Observation: MARS consistently provides larger l_p -bounded radius compared to FRS.
 - FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network traffic features, MARS produces non-trivial l_2 , l_1 , and l_∞ radii.
 - For CADE trained on DoSHulk-Drift dataset, MARS outperforms FRS by 29.25%, 28.95%, and 28.72% in l_2 , l_1 , and l_∞ radii on Benign, respectively.

- Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method
 - \triangleright Exp Setup: n_{small} =100, n_{large} =10,000. Compare the l_1 , l_∞ MCR of the model by category with FRS, since neither VRS nor BARS supports l_1 -bounded and l_∞ -bounded robustness certification.
 - \succ Observation: MARS consistently provides larger l_p -bounded radius compared to FRS.
 - FRS fails certification on many classes (MCR=0) due to indiscriminate smoothing of network traffic features, MARS produces non-trivial l_2 , l_1 , and l_∞ radii.
 - For ACID trained on Diverse Intrusion dataset, MARS outperforms FRS by 50.78% and 51.32% in l_2 and l_1 radii on Benign, respectively.

- Exp 2: Comparison of Various l_p -bounded Certified Robustness with SOTA Method
 - \succ Exp Setup: Compare the Certified Accuracy of the model w.r.t the l_p -bounded certified radius.
 - \succ Observation: l_2 radius is usually smaller than the l_1 radius and larger than the l_∞ radius.
 - At the same radius, the area bounded by l_1 norm should be the smallest, and the area defined by l_{∞} should be the largest.
 - Different norm-bounded radii calculated experimentally are consistent with theoretical results.

- Exp 3: Comparison of Empirical Robustness against Evasion Attacks with SOTA Method
 - \triangleright Exp Setup: Attack ACID with PGD and EAD adversarial Bot. Iteration is 20. For l_2 -PGD and l_1 -EAD, perturbation limit ϵ is 1.0, with per-step budget ϵ_s of 0.75. For l_∞ -PGD, ϵ is 0.2 and ϵ_s is 0.1.
 - Observation: MARS surpasses SOTA defense in robustness against evasion attacks.
 - MARS improves robust accuracy over the Vanilla detector (base model without defense) by 13.79% for l_2 -PGD, 33.94% for l_{∞} -PGD, and 10.01% for l_1 -EAD.
 - MARS also outperforms SOTA BARS, boosting robust accuracy by 1.7% for l_2 -PGD, 7.17% for l_{∞} -PGD, and 10.11% for l_1 -EAD.
 - MARS well retain the clean accuracy of the ACID on clean Bot samples, reaching 100%.

Method	CleanAcc/Recall	RobustAcc/Recall on Adversarial Bot (%)				
Wicthod	on Clean Bot (%)	l_2 -PGD	l_{∞} -PGD	l_1 -EAD		
Vanilla	100.00±00.00	83.95±00.00	55.02±00.01	00.27±00.00		
BARS [18]	100.00±00.00	96.04±00.05	81.78±00.20	00.16 ± 00.01		
MARS	100.00±00.00	97.74±00.13	88.95±00.31	10.28±00.06		

- Exp 4: Comparison of Empirical Robustness against Natural Corruptions with SOTA Method
 - \triangleright Exp Setup: Generate natural corrupted samples from clean benign/malicious samples using Latency and PacketLoss. Use random noise following a Gaussian distribution with mean 0. Adjust the standard deviation σ in {0.5, 1.0, 1.5} to mimic the different corruption strengths.
 - > Observation: MARS surpasses SOTA in robustness against various corruption intensities.
 - MARS outperforms SOTA BARS in robust accuracy, exceeding it by 8.53% on corrupted Benign and 7.5% on corrupted Bot.

• Exp 5: l_p Certified Robustness with Different Smoothing Distributions

> Exp Setup:

- All baselines use Gaussian as the smoothing distribution.
- MARS considers distribution diversity and sequentially uses Gaussian, Laplacian, and Uniform distributions.

Observation:

- Different distributions each excel in different classes.
- Using a single distribution may miss a tighter certified radius.

- Exp 6: Dimension-Wise Certified Robustness
 - ➤ Exp Setup: MARS's Top-5 and bottom-5 dimension-wise radius of the ACID.
 - Observation:
 - The model demonstrates greater sensitivity to *inter arrival time (IAT)*-related features while showing greater robustness to *forward packet length-related* features.
 - This finding is consistent with the previous observation that the vanilla ACID model exhibited significantly reduced robust accuracy on corrupted samples using Latency.

Radius	FeatureName	Description
0.0426	Flow_IAT_Std	Standard deviation time two flows.
0.0433	Rwd Packet Length Std	Standard deviation size of packet
0.0433	Dwd_I acket_Length_Std	in backward direction.
0.0488	Active Std	Standard deviation time a flow was
0.0400	/kelive_std	active before becoming idle.
0.0560	Init Win bytes forward	Number of bytes sent in initial
0.0309	mit_wm_oytes_iorward	window in the forward direction.
0.0576	Activa May	Maximum time a flow was active
0.0370	Active_iviax	before becoming idle.
10.0741	Flow_Duration	Flow duration.
		Number of times URG flag was
10.9644	Fwd_URG_Flag	set in packets travelling in the
		forward direction (0 for UDP).
11.2367	RST_Flag_Count	Number of packets with RST.
		Number of times PSH flag was
11.3300	Bwd_PSH_Flag	set in packets travelling in the
		backward direction (0 for UDP).
11 4250	Fryd Dookst Longth Min	Minimum size of packet
11.4338	rwu_racket_Lengtn_Min	in forward direction.
2.2305	MCR	Mean certified radius per class.
	0.0426 0.0433 0.0488 0.0569 0.0576 10.0741 10.9644 11.2367 11.3300 11.4358	0.0426 Flow_IAT_Std 0.0433 Bwd_Packet_Length_Std 0.0488 Active_Std 0.0569 Init_Win_bytes_forward 0.0576 Active_Max 10.0741 Flow_Duration 10.9644 Fwd_URG_Flag 11.2367 RST_Flag_Count 11.3300 Bwd_PSH_Flag 11.4358 Fwd_Packet_Length_Min

Summary

Contribution

- Robustness Certification Framework
 - Proposed MARS, a novel certification framework to calculate the robust radius of DNN-based network intrusion detectors that requires no modification to model structure.
- Multi-Order Information Utilization
 - Introduced a method to expand certified regions by leveraging multi-order information of the classifier beyond zero-order techniques.
- Dimensional-Wise Robust Radius
 - Designed a dimensional robust radius calculation approach for inputs with heterogeneous features, like network traffic.
- New Threat Model
 - Extended empirical robustness evaluation of traffic classifier to account for natural corruption (e.g., Latency and Packet Loss) in addition to evasion attacks using adversarial examples.

Future Work

Target issues

- \triangleright Non- l_p Robustness Certification against Structural Perturbations
 - Different from the l_p -norm bounded changes of input features, for structural perturbations that change the overall structure or composition of the input (such as adding, deleting, or reordering nodes/edges in a graph), special non- l_p robustness certification is needed to evaluate and guide the model's robustness improvement.
- Robustness Certification for Multi-modal Models
 - Current certified defense techniques often face challenges in evaluating robustness across
 multiple data modalities. Designing a framework that can certify robustness by considering
 the interactions between heterogeneous and homogeneous data inputs simultaneously will
 be interesting.

Thank You!

Mengdie Huang^{1,2}, Yingjun Lin², Xiaofeng Chen¹, Elisa Bertino²

- ¹ Xidian University
- ² Purdue University

Q&A

Yingjun Lin (Link) lin1368@purdue.edu