# Berechenbarkeit

Vorlesung 4: Loop-Programme

8. Mai 2025

## Termine — Modul Berechenbarkeit

| ÜBUNGEN                     | Vorlesung                               |
|-----------------------------|-----------------------------------------|
| 6.5.<br>Übung 2<br>A-Woche  | 8.5.  Loop-Programme (Übungsblatt 3)    |
| 13.5.<br>Übung 3<br>B-Woche | 15.5.<br>While-Programme                |
| 20.5.<br>Übung 3<br>A-Woche | 22.5.<br>Rekursion I<br>(Übungsblatt 4) |
| 27.5.<br>Übung 4<br>B-Woche | 29.5.                                   |
| 3.6.<br>Übung 4<br>A-Woche  | 5.6.<br>Rekursion II<br>(Übungsblatt 5) |

| Übungen                                       | Vorlesung                                             |
|-----------------------------------------------|-------------------------------------------------------|
| 10.6.<br>Übung 5<br>B-Woche (Montag Feiertag) | 12.6.<br>Entscheidbarkeit                             |
| 17.6.<br>Übung 5<br>A-Woche                   | 19.6.<br><u>Unentscheidbarkeit</u><br>(Übungsblatt 6) |
| 24.6.<br>Übung 6<br>B-Woche                   | 26.6.<br>Spez. Probleme                               |
| 1.7.<br>Übung 6<br>A-Woche                    | 3.7.<br>Klasse P                                      |
| 8.7.<br>Abschlussübung<br>beide Wochen        | 10.7.<br>NP-Vollständigkeit                           |

# Wiederholung — Turingmaschine

### Definition (§2.4 Turingmaschine; *Turing machine*)

Turingmaschine ist Tupel  $M = (Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$ 

- endl. Menge Q von **Zuständen** (states) mit  $Q \cap \Gamma = \emptyset$
- endl. Menge ∑ von Eingabesymbolen (input symbols)
- endl. Menge  $\Gamma$  von Arbeitssymbolen (work symbols) mit  $\Sigma \subseteq \Gamma$
- Übergangsrelation (transition relation)

$$\Delta \subseteq \Big( (Q \setminus \{q_+, q_-\}) \times \Gamma \Big) \times \Big( Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \Big)$$

• Leersymbol (blank)  $\square \in \Gamma \setminus \Sigma$ 

$$(\Gamma_{\mathcal{M}} = \Gamma \setminus \{\Box\})$$

- Startzustand (initial state)  $q_0 \in Q$
- Akzeptierender Zustand (accepting state)  $q_+ \in Q$
- Ablehnender Zustand (rejecting state) q<sub>−</sub> ∈ Q

⊲ = gehe nach links; ▷ = gehe nach rechts; ◇ = keine Bewegung

### §4.1 Theorem

Für jede Grammatik G existiert normierte TM M mit L(M) = L(G)

### §4.1 Theorem

Für jede Grammatik G existiert normierte TM M mit L(M) = L(G)

### Beweisansatz mit 2-Band-TM

Sei  $G = (N, \Sigma, S, P)$ 

- 1. Falls  $S \to \varepsilon \in P$  und Eingabe  $\varepsilon$ , dann akzeptiere (d.h. Kopf steht auf  $\square$ )
- 2. Sonst schreibe Startnichtterminal 5 auf Band 2

### §4.1 Theorem

Für jede Grammatik G existiert normierte TM M mit L(M) = L(G)

### Beweisansatz mit 2-Band-TM

Sei  $G = (N, \Sigma, S, P)$ 

- 1. Falls  $S \to \varepsilon \in P$  und Eingabe  $\varepsilon$ , dann akzeptiere (d.h. Kopf steht auf  $\square$ )
- 2. Sonst schreibe Startnichtterminal 5 auf Band 2
- 3. Wende Produktionen P auf Band 2 an

### §4.1 Theorem

Für jede Grammatik G existiert normierte TM M mit L(M) = L(G)

### Beweisansatz mit 2-Band-TM

Sei  $G = (N, \Sigma, S, P)$ 

- 1. Falls  $S \to \varepsilon \in P$  und Eingabe  $\varepsilon$ , dann akzeptiere (d.h. Kopf steht auf  $\square$ )
- 2. Sonst schreibe Startnichtterminal 5 auf Band 2
- 3. Wende Produktionen P auf Band 2 an
- 4. Vergleiche Bänder und akzeptiere bei Gleichheit

$$P = \{p_1, \ldots, p_n\}$$



- 2-Band-TM  $M_{\mathsf{start}} = \big(\{q_0,q_+,q_-\}, \Sigma, \Gamma, \Delta, \Box, q_0,q_+,q_-\big)$ 
  - $\Gamma = \{\Box\} \cup \Sigma \cup N$
  - Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \square, \square 
angle) 
ightarrow (q_+, \langle (\square, \diamond), (\square, \diamond) 
angle) \mid \mathcal{S} 
ightarrow arepsilon \in \mathcal{P} ig\} \ ig\{ (q_0, \langle \sigma, \square 
angle) 
ightarrow (q_+, \langle (\sigma, \diamond), (\mathcal{S}, \diamond) 
angle) \mid \sigma \in \Sigma ig\} \end{aligned}$$

2-Band-TM 
$$\mathcal{M}_{\mathsf{start}} = (\{q_0, q_+, q_-\}, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$

- $\Gamma = \{\Box\} \cup \Sigma \cup N$
- Übergänge

$$egin{aligned} \Delta &= \left\{ egin{aligned} \left( oldsymbol{q}_0, \left\langle \Box, \Box 
ight
angle 
ight) &
ightarrow \left( oldsymbol{q}_+, \left\langle \left( \Box, \diamond 
ight), \left( \Box, \diamond 
ight) 
ight
angle 
ight) &
ight| S 
ightarrow arepsilon \in P 
ight\} \ \left\{ \left( oldsymbol{q}_0, \left\langle \sigma, \Box 
ight
angle 
ight) &
ightarrow \left( oldsymbol{q}_+, \left\langle \left( \sigma, \diamond 
ight), \left( S, \diamond 
ight) 
ight
angle &
ight| \sigma \in \Sigma 
ight\} \end{aligned}$$



2-Band-TM 
$$\mathcal{M}_{\mathsf{start}} = (\{q_0, q_+, q_-\}, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$

- $\Gamma = \{\Box\} \cup \Sigma \cup N$
- Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \square, \square 
angle) 
ightarrow (q_+, \langle (\square, \diamond), (\square, \diamond) 
angle) \mid \mathcal{S} 
ightarrow arepsilon \in \mathcal{P} ig\} \ ig\{ (q_0, \langle \sigma, \square 
angle) 
ightarrow (q_+, \langle (\sigma, \diamond), (\mathcal{S}, \diamond) 
angle) \mid \sigma \in \Sigma ig\} \end{aligned}$$



2-Band-TM 
$$\mathcal{M}_{\mathsf{start}} = (\{q_0, q_+, q_-\}, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-)$$

- $\Gamma = \{\Box\} \cup \Sigma \cup N$
- Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \square, \square 
angle) 
ightarrow (q_+, \langle (\square, \diamond), (\square, \diamond) 
angle) \mid \mathcal{S} 
ightarrow arepsilon \in \mathcal{P} ig\} \ ig\{ (q_0, \langle \sigma, \square 
angle) 
ightarrow (q_+, \langle (\sigma, \diamond), (\mathcal{S}, \diamond) 
angle) \mid \sigma \in \Sigma ig\} \end{aligned}$$



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

• Kopiere Symbole Band  $1 \rightarrow 2$  mit Halt auf bel. Symbol (außer  $\square$ )



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- Kopiere Symbole Band 1 ightarrow 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- Kopiere Symbole Band 1 ightarrow 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe *r* auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- Kopiere Symbole Band 1 ightarrow 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



## 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- Kopiere Symbole Band 1 ightarrow 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe r auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### 2-Band-TM $\mathcal{M}_p'$ für Übergang $p = \ell \to r \in P$

- ullet Kopiere Symbole Band 1 o 2 mit Halt auf bel. Symbol (außer  $\Box$ )
- Lese ℓ auf Band 1 (ohne Aktionen auf Band 2)
- Bei Erfolg schreibe *r* auf Band 2 (ohne Aktionen auf Band 1)
- ullet Kopiere verbleibende Symbole Band 1 ightarrow 2



### Ableitungsschritt-TM Mp

- Umwandlung 2-Band-TM  $M'_p$  in TM  $M_p$
- Realisiert Anwendung Übergang p auf Arbeitsband
- Angewandt auf Band 2 der Gesamt-TM



$$\begin{array}{l} \textbf{2-Band-TM} \ \textit{M}_{=} = \left( \{q_0,q,q_+,q_-\}, \Gamma \setminus \{\Box\}, \Gamma, \Delta, \Box, q_0, q_+, q_- \right) \\ \bullet \ \Gamma = \Sigma \cup \textit{N} \cup \{\Box\} \\ \bullet \ \ddot{\mathsf{U}} \mathsf{berg\"{a}nge} \\ \Delta = \left\{ \left(q_0, \langle \sigma, \sigma \rangle \right) \rightarrow \left(q_0, \langle (\sigma, \triangleright), (\sigma, \triangleright) \rangle \right) \mid \sigma \in \Sigma \right\} \cup \\ \left\{ \left(q_0, \langle \Box, \Box \rangle \right) \rightarrow \left(q, \langle (\Box, \triangleleft), (\Box, \triangleleft) \rangle \right) \right\} \cup \\ \left\{ \left(q, \langle \sigma, \sigma \rangle \right) \rightarrow \left(q, \langle (\sigma, \triangleleft), (\sigma, \triangleleft) \rangle \right) \mid \sigma \in \Sigma \right\} \cup \\ \left\{ \left(q, \langle \Box, \Box \rangle \right) \rightarrow \left(q_+, \langle (\Box, \triangleright), (\Box, \triangleright) \rangle \right) \right\} \\ \cdots \quad \Box \quad \Box \quad a \quad b \quad b \quad a \quad a \quad b \quad b \quad a \quad \Box \quad \cdots \\ \cdots \quad \Box \quad \Box \quad a \quad b \quad b \quad a \quad \Box \quad \Box \cdots \\ \end{array}$$

$$\begin{split} \textbf{2-Band-TM} \ \textit{M}_{=} &= \left( \{q_0, q, q_+, q_-\}, \Gamma \setminus \{\Box\}, \Gamma, \Delta, \Box, q_0, q_+, q_- \right) \\ \bullet \ \Gamma &= \Sigma \cup \textit{N} \cup \{\Box\} \\ \bullet \ \text{Übergänge} \\ & \Delta &= \left\{ \left(q_0, \langle \sigma, \sigma \rangle \right) \rightarrow \left(q_0, \langle (\sigma, \triangleright), (\sigma, \triangleright) \rangle \right) \mid \sigma \in \Sigma \right\} \cup \\ & \left\{ \left(q_0, \langle \Box, \Box \rangle \right) \rightarrow \left(q, \langle (\Box, \triangleleft), (\Box, \triangleleft) \rangle \right) \right\} \cup \\ & \left\{ \left(q, \langle \sigma, \sigma \rangle \right) \rightarrow \left(q, \langle (\sigma, \triangleleft), (\sigma, \triangleleft) \rangle \right) \mid \sigma \in \Sigma \right\} \cup \\ & \left\{ \left(q, \langle \Box, \Box \rangle \right) \rightarrow \left(q_+, \langle (\Box, \triangleright), (\Box, \triangleright) \rangle \right) \right\} \end{split}$$



$$\begin{array}{l} \textbf{2-Band-TM} \ \textit{M}_{=} = \left( \{q_{0},q,q_{+},q_{-}\},\Gamma\setminus\{\Box\},\Gamma,\Delta,\Box,q_{0},q_{+},q_{-} \right) \\ \bullet \ \Gamma = \Sigma \cup \textit{N} \cup \{\Box\} \\ \bullet \ \text{Übergänge} \\ \qquad \Delta = \left\{ (q_{0},\langle\sigma,\sigma\rangle) \rightarrow (q_{0},\langle(\sigma,\triangleright),(\sigma,\triangleright)\rangle) \mid \sigma \in \Sigma \right\} \cup \\ \left\{ (q_{0},\langle\Box,\Box\rangle) \rightarrow (q,\langle(\Box,\triangleleft),(\Box,\triangleleft)\rangle) \right\} \cup \\ \left\{ (q,\langle\sigma,\sigma\rangle) \rightarrow (q,\langle(\sigma,\triangleleft),(\sigma,\triangleleft)\rangle) \mid \sigma \in \Sigma \right\} \cup \\ \left\{ (q,\langle\Box,\Box\rangle) \rightarrow (q_{+},\langle(\Box,\triangleright),(\Box,\triangleright)\rangle) \right\} \\ \cdots \qquad \Box \quad \Box \quad a \quad b \quad b \quad a \quad a \quad b \quad b \quad a \quad \Box \quad \Box \cdots \\ \cdots \qquad \Box \quad \Box \quad a \quad b \quad b \quad a \quad \Box \quad \Box \cdots \\ \end{array}$$

2-Band-TM 
$$M_{=} = (\{q_0, q, q_+, q_-\}, \Gamma \setminus \{\Box\}, \Gamma, \Delta, \Box, q_0, q_+, q_-)$$

- $\Gamma = \Sigma \cup N \cup \{\Box\}$
- Übergänge

$$egin{array}{lll} \Delta &= \left\{ (q_0, \langle \sigma, \sigma \rangle) 
ightarrow (q_0, \langle (\sigma, \triangleright), (\sigma, \triangleright) \rangle) \mid \sigma \in \Sigma 
ight\} \cup \\ &\left\{ (q_0, \langle \square, \square \rangle) 
ightarrow (q, \langle (\square, \triangleleft), (\square, \triangleleft) \rangle) 
ight\} \cup \\ &\left\{ (q, \langle \sigma, \sigma \rangle) 
ightarrow (q, \langle (\sigma, \triangleleft), (\sigma, \triangleleft) \rangle) \mid \sigma \in \Sigma 
ight\} \cup \\ &\left\{ (q, \langle \square, \square \rangle) 
ightarrow (q_+, \langle (\square, \triangleright), (\square, \triangleright) \rangle) 
ight\} \end{array}$$

$$2\text{-Band-TM} \ \mathcal{M}_{=} = \left( \{q_0, q, q_+, q_-\}, \Gamma \setminus \{\square\}, \Gamma, \Delta, \square, q_0, q_+, q_- \right)$$

- $\Gamma = \Sigma \cup N \cup \{\Box\}$
- Übergänge

$$egin{aligned} \Delta &= ig\{ (q_0, \langle \sigma, \sigma 
angle) 
ightarrow (q_0, \langle (\sigma, 
hd), (\sigma, 
hd) 
angle) \mid \sigma \in \Sigma ig\} \ ig\{ (q_0, \langle \Box, \Box 
angle) 
ightarrow (q, \langle (\Box, \lhd), (\Box, \lhd) 
angle) ig\} \ ig\{ (q, \langle \sigma, \sigma 
angle) 
ightarrow (q, \langle (\sigma, \lhd), (\sigma, \lhd) 
angle) \mid \sigma \in \Sigma ig\} \ ig\{ (q, \langle \Box, \Box 
angle) 
ightarrow (q_+, \langle (\Box, 
hd), (\Box, 
hd) 
angle) ig\} \end{aligned}$$



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

### <u>Beweisansatz</u>

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



#### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

#### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)



### §4.2 Lemma

Sei M TM. Dann existiert TM M' mit  $T(M') = id_{L(M)}$ 

### Beweisansatz

Nutze 2-Band-TM

• Kopiere Eingabe auf Band 2

(und Rücklauf auf 1. Zeichen)

Lasse M auf Band 1 laufen



## §4.3 Theorem

Für jede TM M existiert Grammatik G mit L(G) = L(M)

### §4.3 Theorem

Für jede TM M existiert Grammatik G mit L(G) = L(M)

### **Beweisansatz**

Es existiert TM M' mit  $T(M') = \{(w, w) \mid w \in L(M)\}$  via Lemma §4.2

- 1. Erzeuge Ausgangssituation mit markierten Rändern (linker Rand überstrichen; rechter Rand unterstrichen)
- 2. Simuliere Schritte der TM M'
- 3. Lösche überzählige

### §4.3 Theorem

Für jede TM M existiert Grammatik G mit L(G) = L(M)

### **Beweisansatz**

Es existiert TM M' mit  $T(M') = \{(w, w) \mid w \in L(M)\}$  via Lemma §4.2

- Erzeuge Ausgangssituation mit markierten Rändern (linker Rand überstrichen; rechter Rand unterstrichen)
- 2. Simuliere Schritte der TM M'
- 3. Lösche überzählige

- Grammatik-Satzform entspricht TM-Satzform (Systemsituation)
- Symbol unter Lesekopf und TM-Zustand in Nichtterminal kodiert

- 1. Erzeuge Ausgangssituation mit markierten Rändern
  - Eingabealphabet Σ und Arbeitsbandalphabet Γ
  - Nichtterminale  $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$  mit  $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \underline{\Gamma} \cup \overline{\underline{\Gamma}}$
  - Produktionen

$$P_{1} = \{S \to S'_{\square}, S \to (q_{0}, \overline{\square})\} \cup \{S' \to S'a \mid a \in \Sigma\} \cup \{S' \to (q_{0}, \overline{a}) \mid a \in \Sigma\}$$

- 1. Erzeuge Ausgangssituation mit markierten Rändern
  - Eingabealphabet Σ und Arbeitsbandalphabet Γ
  - Nichtterminale  $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$  mit  $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \underline{\Gamma} \cup \overline{\underline{\Gamma}}$
  - Produktionen

$$egin{aligned} P_1 &= \{ \mathcal{S} 
ightarrow \mathcal{S}' \underline{\square}, \ \mathcal{S} 
ightarrow (q_0, \overline{\underline{\square}}) \} \cup \ \{ \mathcal{S}' 
ightarrow \mathcal{S}' \ a \mid a \in \Sigma \} \cup \{ \mathcal{S}' 
ightarrow (q_0, \overline{a}) \mid a \in \Sigma \} \end{aligned}$$

- 1. Erzeuge Ausgangssituation mit markierten Rändern
  - Eingabealphabet Σ und Arbeitsbandalphabet Γ
  - Nichtterminale  $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$  mit  $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \underline{\Gamma} \cup \overline{\underline{\Gamma}}$
  - Produktionen

$$P_1 = \{S o S' \sqsubseteq, S o (q_0, \overline{\sqsubseteq})\} \cup \{S' o S' a \mid a \in \Sigma\} \cup \{S' o (q_0, \overline{a}) \mid a \in \Sigma\}$$

### Beweisskizze (1/3)

- 1. Erzeuge Ausgangssituation mit markierten Rändern
  - Eingabealphabet Σ und Arbeitsbandalphabet Γ
  - Nichtterminale  $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$  mit  $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \underline{\Gamma} \cup \overline{\underline{\Gamma}}$
  - Produktionen

$$P_{1} = \{S \to S' \underline{\square}, \ S \to (q_{0}, \overline{\square})\} \cup \{S' \to S' a \mid a \in \Sigma\} \cup \{S' \to (q_{0}, \overline{a}) \mid a \in \Sigma\}$$

• Ableitungen der Form:  $S \Rightarrow_G^* (q_0, \overline{a}) w \square$  (Ausgangssituation TM M')

### Beweisskizze (1/3)

- 1. Erzeuge Ausgangssituation mit markierten Rändern
  - Eingabealphabet ∑ und Arbeitsbandalphabet □
  - Nichtterminale  $\Gamma' \cup (Q \times (\Gamma' \cup \Sigma))$  mit  $\Gamma' = (\Gamma \setminus \Sigma) \cup \overline{\Gamma} \cup \underline{\Gamma} \cup \overline{\underline{\Gamma}}$
  - Produktionen

$$P_{1} = \{S \to S' \underline{\square}, \ S \to (q_{0}, \overline{\square})\} \cup \{S' \to S' a \mid a \in \Sigma\} \cup \{S' \to (q_{0}, \overline{a}) \mid a \in \Sigma\}$$

• Ableitungen der Form:  $S \Rightarrow_G^* (q_0, \overline{a}) w \square$  (Ausgangssituation TM M')

- Erzeugt geratene Eingabe aw mit markierten Rändern
- Beispielableitung (Startzustand  $q_0$  und Eingabe abaa)

$$S \Rightarrow_G S' \sqsubseteq \Rightarrow_G S' a \sqsubseteq \Rightarrow_G S' a a \sqsubseteq \Rightarrow_G S' b a a \sqsubseteq \Rightarrow_G (q_0, \overline{a}) b a a \sqsubseteq$$

### Grammatiksatzform

$$(q_0, \overline{a})baa$$

### **TM-Systemsituation**



- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ \begin{array}{l} \pmb{a}(\pmb{q},\pmb{b}) \rightarrow \pmb{(q',a)b'} \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\triangleright) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

### Beweisskizze (2/3)

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

• Beispielableitung  $(q_0, \overline{a})bbaabba \Rightarrow_G \overline{\Box}(q_a, b)baabba \Box$ 

### Beweisskizze (2/3)

- 2. Simuliere Schritte TM M'
  - Produktionen

$$\begin{split} P_2 &= \left\{ a(q,b) \rightarrow (q',a)b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta, \ a \in \Gamma \right\} \cup \\ &\left\{ (q,b) \rightarrow (q',b') \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,b)c \rightarrow b'(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{\Box})b' \mid (q,b) \rightarrow (q',b',\lhd) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b}) \rightarrow (q',\overline{b'}) \mid (q,b) \rightarrow (q',b',\diamond) \in \Delta \right\} \cup \\ &\left\{ (q,\overline{b})c \rightarrow \overline{b'}(q',c) \mid (q,b) \rightarrow (q',b',\rhd) \in \Delta, \ c \in \Gamma \right\} \cup \\ &\cdots \qquad \text{(viele weitere Varianten)} \end{split}$$

• Beispielableitung  $(q_0, \overline{a})bbaabba\Box \Rightarrow_G \overline{\Box}(q_a, b)baabba\Box \Rightarrow_G \overline{\Box}b(q_a, b)aabba\Box \Box$ 

- Produktionen P2 bilden Semantik Übergänge ab
- Varianten durch verschiedene Randsituationen
- $(q_0,a) o (q_0,a, riangle)$  wird am linken Rand zu  $(q_0,\overline{a})b o \overline{a}(q_0,b)$

- Produktionen P<sub>2</sub> bilden Semantik Übergänge ab
- Varianten durch verschiedene Randsituationen
- $(q_0, a) \rightarrow (q_0, a, \triangleright)$  wird am linken Rand zu  $(q_0, \overline{a})b \rightarrow \overline{a}(q_0, b)$



- Produktionen P2 bilden Semantik Übergänge ab
- Varianten durch verschiedene Randsituationen
- $(q_0,a) o (q_0,a, riangle)$  wird am linken Rand zu  $(q_0,\overline{a})b o \overline{a}(q_0,b)$



- 3. Lösche überzählige
  - Produktionen

```
P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b)c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \Box\} \right\} \cup \\ \left\{ (\top, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \Box\} \right\} \cup \left\{ (\top, \underline{\Box}) \rightarrow \varepsilon \right\}
```

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\underline{\Box}\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\underline{\Box}\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\underline{\Box}\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\underline{\Box}\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, \ c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

- 3. Lösche überzählige
  - Produktionen

$$P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b) c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \Box\} \right\} \cup \\ \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \Box\} \right\} \cup \left\{ (\top, \Box) \rightarrow \varepsilon \right\}$$

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, \ c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, \ c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

- 3. Lösche überzählige
  - Produktionen

$$\begin{split} P_3 &= \left\{ \Box(q_+,b) \to (q_+,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_+,b) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_+,\overline{b}) \to (\bot,b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\underline{b}) \to b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot,b)c \to b(\bot,c) \mid b \in \Gamma, \ c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \\ \left\{ (\top,\Box)c \to (\top,c) \mid c \in \{\Box,\Box\} \right\} \cup \left\{ (\top,\underline{\Box}) \to \varepsilon \right\} \end{split}$$

### Beweisskizze (3/3)

- 3. Lösche überzählige
  - Produktionen

$$P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \left\{ (\bot, b) c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \left\{ (\bot, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \Box\} \right\} \cup \left\{ (\top, \Box) \rightarrow \varepsilon \right\}$$

$$\Box \Box (q_+, a)bbaab\Box \Box \Rightarrow^2_G (\bot, a)bbaab\Box \Box$$

### Beweisskizze (3/3)

- 3. Lösche überzählige
  - Produktionen

$$P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b)c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \\ \left\{ (\top, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \underline{\Box}) \rightarrow \varepsilon \right\}$$

$$\Box \Box (q_+, a)bbaab \Box \Box \Rightarrow^2_G (\bot, a)bbaab \Box \Box \Rightarrow^*_G abbaab (\bot, \Box) \Box$$

### Beweisskizze (3/3)

- 3. Lösche überzählige
  - Produktionen

$$P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b) c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \\ \left\{ (\top, \Box) c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \underline{\Box}) \rightarrow \varepsilon \right\}$$

### Beweisskizze (3/3)

- 3. Lösche überzählige
  - Produktionen

$$P_{3} = \left\{ \Box(q_{+}, b) \rightarrow (q_{+}, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ \overline{\Box}(q_{+}, b) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (q_{+}, \overline{b}) \rightarrow (\bot, b) \mid b \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \underline{b}) \rightarrow b \mid b \in \Gamma \right\} \cup \\ \left\{ (\bot, b)c \rightarrow b(\bot, c) \mid b \in \Gamma, c \in \Gamma \cup \underline{\Gamma} \right\} \cup \\ \left\{ (\bot, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \\ \left\{ (\top, \Box)c \rightarrow (\top, c) \mid c \in \{\Box, \underline{\Box}\} \right\} \cup \left\{ (\top, \underline{\Box}) \rightarrow \varepsilon \right\}$$

## §4.4 Theorem

TM und Grammatiken gleichmächtig (für Sprachen)

# Deterministische Turingmaschinen

## §4.5 Definition (deterministische TM; deterministic TM)

```
\begin{array}{l} \mathsf{TM} \; \big(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-\big) \; \begin{array}{l} \mathsf{deterministisch} \; (\textit{deterministic}) \\ \mathsf{falls} \; \mathsf{für} \; \mathsf{alle} \; \big(q, \gamma\big) \in \big(Q \setminus \{q_+, q_-\}\big) \times \Gamma \; \mathsf{genau} \; \mathsf{ein} \; \big(q', \gamma', d\big) \; \mathsf{existiert} \\ \mathsf{mit} \; \big(q, \gamma\big) \to \big(q', \gamma', d\big) \in \Delta \\ \mathsf{d.h.} \; \Delta \colon \Big(\big(Q \setminus \{q_+, q_-\}\big) \times \Gamma\Big) \to \Big(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\}\Big) \end{array}
```

# Deterministische Turingmaschinen

## §4.5 Definition (deterministische TM; deterministic TM)

```
 \begin{array}{l} \mathsf{TM} \left( Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_- \right) \  \, \mathbf{deterministisch} \  \, \textit{(deterministic)} \\ \mathsf{falls} \  \, \mathsf{f\"{u}r} \  \, \mathsf{alle} \  \, (q, \gamma) \in \left( Q \setminus \{q_+, q_-\} \right) \times \Gamma \  \, \mathsf{genau} \  \, \mathsf{ein} \  \, \left( q', \gamma', d \right) \  \, \mathsf{existiert} \\ \mathsf{mit} \  \, \left( q, \gamma \right) \to \left( q', \gamma', d \right) \in \Delta \\ \mathsf{d.h.} \  \, \Delta \colon \left( \left( Q \setminus \{q_+, q_-\} \right) \times \Gamma \right) \to \left( Q \times \Gamma \times \{ \sphericalangle, \rhd, \diamond \} \right) \\ \end{array}
```

### Notizen

• Jede Eingabe erzeugt 1 Lauf deterministischer TM

### §4.5 Definition (deterministische TM; deterministic TM)

```
 \begin{array}{l} \mathsf{TM} \; \big(Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_-\big) \; \begin{array}{l} \mathsf{deterministisch} \; \textit{(deterministic)} \\ \mathsf{falls} \; \mathsf{f\"{u}r} \; \mathsf{alle} \; \big(q, \gamma\big) \in \big(Q \setminus \{q_+, q_-\}\big) \times \Gamma \; \mathsf{genau} \; \mathsf{ein} \; \big(q', \gamma', d\big) \; \mathsf{existiert} \\ \mathsf{mit} \; \big(q, \gamma\big) \to \big(q', \gamma', d\big) \in \Delta \\ \mathsf{d.h.} \; \Delta \colon \Big(\big(Q \setminus \{q_+, q_-\}\big) \times \Gamma\Big) \to \Big(Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\}\Big) \\ \end{array}
```

- Jede Eingabe erzeugt 1 Lauf deterministischer TM
- Det. TM kann nur in  $q_+$  und  $q_-$  halten (akzeptiert bzw. lehnt ab)

### §4.5 Definition (deterministische TM; deterministic TM)

```
 \begin{array}{l} \mathsf{TM} \; \big( Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_- \big) \; \begin{array}{l} \mathsf{deterministisch} \; (\textit{deterministic}) \\ \mathsf{falls} \; \mathsf{f\"{u}r} \; \mathsf{alle} \; \big( q, \gamma \big) \in \big( Q \setminus \{q_+, q_-\} \big) \times \Gamma \; \mathsf{genau} \; \mathsf{ein} \; \big( q', \gamma', d \big) \; \mathsf{existiert} \\ \mathsf{mit} \; \big( q, \gamma \big) \to \big( q', \gamma', d \big) \in \Delta \\ \mathsf{d.h.} \; \Delta \colon \Big( \big( Q \setminus \{q_+, q_-\} \big) \times \Gamma \Big) \to \Big( Q \times \Gamma \times \{ \sphericalangle, \rhd, \diamond \} \Big) \\ \end{array}
```

- Jede Eingabe erzeugt 1 Lauf deterministischer TM
- Det. TM kann nur in  $q_+$  und  $q_-$  halten (akzeptiert bzw. lehnt ab)
- Endlosschleifen weiterhin möglich

### §4.5 Definition (deterministische TM; deterministic TM)

```
 \begin{array}{l} \mathsf{TM} \; \big( Q, \Sigma, \Gamma, \Delta, \square, q_0, q_+, q_- \big) \; \begin{array}{l} \mathsf{deterministisch} \; (\textit{deterministic}) \\ \mathsf{falls} \; \mathsf{f\"{u}r} \; \mathsf{alle} \; \big( q, \gamma \big) \in \big( Q \setminus \{q_+, q_-\} \big) \times \Gamma \; \mathsf{genau} \; \mathsf{ein} \; \big( q', \gamma', d \big) \; \mathsf{existiert} \\ \mathsf{mit} \; \big( q, \gamma \big) \to \big( q', \gamma', d \big) \in \Delta \\ \mathsf{d.h.} \; \Delta \colon \Big( \big( Q \setminus \{q_+, q_-\} \big) \times \Gamma \Big) \to \Big( Q \times \Gamma \times \{\triangleleft, \triangleright, \diamond\} \Big) \\ \end{array}
```

- Jede Eingabe erzeugt 1 Lauf deterministischer TM
- Det. TM kann nur in  $q_+$  und  $q_-$  halten (akzeptiert bzw. lehnt ab)
- Endlosschleifen weiterhin möglich
- Simulator https://turingmachinesimulator.com/

#### §4.6 Theorem

TM und deterministische TM gleichmächtig (für Sprachen)

#### §4.6 Theorem

TM und deterministische TM gleichmächtig (für Sprachen)

#### Beweisskizze

1. Schreibe Initialzustand vor Eingabe w

 $q_0 w \square$ 

- 2. Erzeuge nächste Berechnung
- 3. Prüfe Gültigkeit Berechnung
- 4. Akzeptiere Eingabe bei Gültigkeit
- 5. Zurück zu 2.

Geg. TM 
$$M=(Q,\Sigma,\Gamma,\Delta,\Box,q_0,q_+,q_-)$$
 und Eingabe  $w\in\Sigma^*$ 

Berechnung für w ist Zeichenkette

$$q_0 w \square \# \xi_1 \# \xi_2 \# \cdots \# \xi_n$$

mit 
$$\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$$

$$\# \notin \Gamma \cup Q$$

Geg. TM 
$$\mathcal{M}=(Q,\Sigma,\Gamma,\Delta,\square,q_0,q_+,q_-)$$
 und Eingabe  $w\in\Sigma^*$ 

### Berechnung für w ist Zeichenkette

$$q_0 w \square \# \xi_1 \# \xi_2 \# \cdots \# \xi_n$$

mit 
$$\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$$

 $\# \notin \Gamma \cup Q$ 

- Zeichenketten <u>deterministisch</u> erzeugbar z.B. in längenlexikographischer Ordnung
  - $\varepsilon$ , Worte der Länge 1, Worte der Länge 2, etc.
  - Worte der Länge *k* lexikographisch aufgelistet (wie im Duden)

Geg. TM 
$$\mathcal{M}=(Q,\Sigma,\Gamma,\Delta,\square,q_0,q_+,q_-)$$
 und Eingabe  $w\in\Sigma^*$ 

### Gültige Berechnung $q_0 w \square \# \xi_1 \# \cdots \# \xi_n$ für w falls

- $\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$
- $q_0 w \square \vdash_M \xi_1 \vdash_M \cdots \vdash_M \xi_n$
- $\xi_n \in \Gamma^* \{q_+\} \Gamma^*$

Geg. TM 
$$\mathcal{M}=(Q,\Sigma,\Gamma,\Delta,\square,q_0,q_+,q_-)$$
 und Eingabe  $w\in\Sigma^*$ 

### Gültige Berechnung $q_0 w \square \# \xi_1 \# \cdots \# \xi_n$ für w falls

- $\xi_1, \ldots, \xi_n \in \Gamma^* Q \Gamma^*$
- $q_0 w \square \vdash_M \xi_1 \vdash_M \cdots \vdash_M \xi_n$
- $\xi_n \in \Gamma^* \{q_+\} \Gamma^*$

Überprüfung Gültigkeit Berechnung mit det. TM möglich

# **Turing-Berechenbarkeit**

### §4.7 Beobachtung

Für jede deterministische TM M ist T(M) partielle Funktion

# Turing-Berechenbarkeit

### §4.7 Beobachtung

Für jede deterministische TM M ist T(M) partielle Funktion

### §4.8 Definition (Turing-berechenbar; *Turing-computable*)

Partielle Funktion  $f: \Sigma^* \dashrightarrow \Gamma^*$  Turing-berechenbar falls deterministische TM M mit f = T(M) existiert

# Turing-Berechenbarkeit

### §4.7 Beobachtung

Für jede deterministische TM M ist T(M) partielle Funktion

### §4.8 Definition (Turing-berechenbar; *Turing-computable*)

Partielle Funktion  $f: \Sigma^* \dashrightarrow \Gamma^*$  Turing-berechenbar falls deterministische TM M mit f = T(M) existiert

#### Notiz

ullet Turing-berechenbare Funktionen  $f\colon \mathbb{N}^k o \mathbb{N}$  per Kodierung

#### Konventionen

• Alle Variablen  $x_1, x_2, \ldots$  vom Typ N

(beliebige Größe)

Addition auf N begrenzt

$$n \oplus z = \max(0, n+z)$$

$$n \in \mathbb{N}$$
,  $z \in \mathbb{Z}$ 

Wir schreiben einfach + statt ⊕

#### Konventionen

• Alle Variablen  $x_1, x_2, \ldots$  vom Typ N

(beliebige Größe)

• Addition auf N begrenzt

$$n \oplus z = \max(0, n+z)$$

$$n \in \mathbb{N}$$
,  $z \in \mathbb{Z}$ 

Wir schreiben einfach + statt ⊕

### §4.9 Definition (Zuweisung; assignment)

**Zuweisung** ist Anweisung der Form  $x_i = x_\ell + z$  mit  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$ 

### §4.10 Definition (Loop-Programm; Loop program)

#### **Loop-Programm** *P* entweder

• Zuweisung  $P = x_i = x_\ell + z$  für  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$ 

### §4.10 Definition (Loop-Programm; Loop program)

### **Loop-Programm** *P* entweder

- Zuweisung  $P = x_i = x_\ell + z$  für  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$
- Sequenz  $P = P_1$ ;  $P_2$  für Loop-Programme  $P_1$  und  $P_2$

### §4.10 Definition (Loop-Programm; Loop program)

#### **Loop-Programm** *P* entweder

- Zuweisung  $P = x_i = x_\ell + z$  für  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$
- Sequenz  $P = P_1$ ;  $P_2$  für Loop-Programme  $P_1$  und  $P_2$
- Iteration  $P = \mathsf{LOOP}(x_i) \{ P' \}$  für Loop-Programm P' und  $i \in \mathbb{N}$

### §4.10 Definition (Loop-Programm; Loop program)

### **Loop-Programm** *P* entweder

- Zuweisung  $P = x_i = x_\ell + z$  für  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$
- Sequenz  $P = P_1$ ;  $P_2$  für Loop-Programme  $P_1$  und  $P_2$
- Iteration  $P = \text{LOOP}(x_i) \{P'\}$  für Loop-Programm P' und  $i \in \mathbb{N}$

#### Beispiele

•  $x_2 = x_1 + 2$ ; LOOP $(x_2) \{x_3 = x_3 + 1\}$ ;  $x_1 = x_3 + 0$ 

### §4.10 Definition (Loop-Programm; Loop program)

#### **Loop-Programm** *P* entweder

- Zuweisung  $P = x_i = x_\ell + z$  für  $i, \ell \ge 1$  und  $z \in \mathbb{Z}$
- Sequenz  $P = P_1$ ;  $P_2$  für Loop-Programme  $P_1$  und  $P_2$
- Iteration  $P = \mathsf{LOOP}(x_i) \{ P' \}$  für Loop-Programm P' und  $i \in \mathbb{N}$

#### Beispiele

- $x_2 = x_1 + 2$ ; LOOP $(x_2) \{x_3 = x_3 + 1\}$ ;  $x_1 = x_3 + 0$
- $x_2 = x_1 + 2$  gleiches Programm, leichter lesbar LOOP( $x_2$ ) {  $x_3 = x_3 + 1$  }  $x_1 = x_3 + 0$

(Verzicht auf vollständige Quantifikation;  $i, \ell \geq 1$ ,  $z \in \mathbb{N}$ , etc.)

#### §4.11 Definition (Variablen und maximaler Variablenindex)

Für Loop-Programm P seien  $var(P) \subseteq \mathbb{N}$  und  $max var(P) \in \mathbb{N}$  verwendeten Variablenindices und größter verwendeter Variablenindex

$$\operatorname{var}(x_i = x_\ell + z) = \{i, \ell\}$$

$$\operatorname{var}(P_1; P_2) = \operatorname{var}(P_1) \cup \operatorname{var}(P_2)$$

$$\operatorname{var}(\operatorname{LOOP}(x_i) \{P'\}) = \{i\} \cup \operatorname{var}(P')$$

(Verzicht auf vollständige Quantifikation;  $i, \ell \geq 1$ ,  $z \in \mathbb{N}$ , etc.)

#### §4.11 Definition (Variablen und maximaler Variablenindex)

Für Loop-Programm P seien  $var(P) \subseteq \mathbb{N}$  und  $max var(P) \in \mathbb{N}$  verwendeten Variablenindices und größter verwendeter Variablenindex

$$var(x_i = x_{\ell} + z) = \{i, \ell\}$$

$$var(P_1; P_2) = var(P_1) \cup var(P_2)$$

$$var(LOOP(x_i) \{P'\}) = \{i\} \cup var(P')$$

$$var(P)=\{1,2,3\}$$
 und  $max\,var(P)=3$  für folgendes Programm  $P$   $x_2=x_1+2$  LOOP( $x_2$ ) {  $x_3=x_3+1$  }  $x_1=x_3+0$ 

- k Eingaben in Variablen  $x_1, \ldots, x_k$
- Erwartete Semantik für Zuweisung

- k Eingaben in Variablen  $x_1, \ldots, x_k$
- Erwartete Semantik für Zuweisung
- $P_1$ ;  $P_2$  führt  $P_1$  und danach  $P_2$  aus

- k Eingaben in Variablen  $x_1, \ldots, x_k$
- Erwartete Semantik für Zuweisung
- $P_1$ ;  $P_2$  führt  $P_1$  und danach  $P_2$  aus
- LOOP(x<sub>i</sub>) {P'} führt Programm P' so oft aus,
   wie Wert von x<sub>i</sub> vor Beginn Schleife anzeigt
   (Änderungen an x<sub>i</sub> in Schleife ändern Anzahl Durchläufe nicht)

- k Eingaben in Variablen  $x_1, \ldots, x_k$
- Erwartete Semantik für Zuweisung
- $P_1$ ;  $P_2$  führt  $P_1$  und danach  $P_2$  aus
- LOOP(x<sub>i</sub>) {P'} führt Programm P' so oft aus,
   wie Wert von x<sub>i</sub> vor Beginn Schleife anzeigt
   (Änderungen an x<sub>i</sub> in Schleife ändern Anzahl Durchläufe nicht)

### §4.12 Definition (Programmsemantik; program semantics)

Für Loop-Programm P mit  $\max \text{var}(P) \leq n$  ist **Semantik** von P partielle Funktion  $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ 

• 
$$||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$$

für alle  $a_1, \ldots, a_n \in \mathbb{N}$ 

• 
$$||x_2 = x_1 + 2||_2(5,2) = (5,7)$$

### §4.12 Definition (Programmsemantik; program semantics)

Für Loop-Programm P mit  $\max \text{var}(P) \leq n$  ist **Semantik** von P partielle Funktion  $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ 

- $||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$
- $||P_1; P_2||_n(a_1, \ldots, a_n) = ||P_2||_n(||P_1||_n(a_1, \ldots, a_n))$

für alle  $a_1, \ldots, a_n \in \mathbb{N}$ 

- $||x_2 = x_1 + 2||_2(5,2) = (5,7)$
- $||x_2 = x_1 + 2|$ ;  $|x_1 = x_1 5||_2(5, 2) = ||x_1 = x_1 5||_2(5, 7) = (0, 7)$

### §4.12 Definition (Programmsemantik; program semantics)

Für Loop-Programm P mit  $\max \text{var}(P) \leq n$  ist **Semantik** von P partielle Funktion  $\|P\|_n \colon \mathbb{N}^n \dashrightarrow \mathbb{N}^n$ 

- $||x_i = x_\ell + z||_n(a_1, \ldots, a_n) = (a_1, \ldots, a_{i-1}, a_\ell + z, a_{i+1}, \ldots, a_n)$
- $||P_1; P_2||_n(a_1, \ldots, a_n) = ||P_2||_n(||P_1||_n(a_1, \ldots, a_n))$
- $\|LOOP(x_i)\{P'\}\|_{n}(a_1,\ldots,a_n) = \|P'\|_{n}^{a_i}(a_1,\ldots,a_n)$

für alle  $a_1, \ldots, a_n \in \mathbb{N}$ 

- $||x_2 = x_1 + 2||_2(5, 2) = (5, 7)$
- $||x_2 = x_1 + 2|$ ;  $|x_1 = x_1 5||_2(5, 2) = ||x_1 = x_1 5||_2(5, 7) = (0, 7)$
- $\|LOOP(x_1)\{x_1 = x_1 + 1\}\|_2(5, 2) = (10, 2)$

### §4.13 Definition (Projektion; projection)

Für  $n \in \mathbb{N}$  und  $1 \le i \le n$  ist  $\pi_i^{(n)} : \mathbb{N}^n \to \mathbb{N}$  n-stellige Projektion auf i-te Stelle

$$\pi_i^{(n)}(a_1,\ldots,a_n)=a_i$$
  $a_1,\ldots,a_n\in\mathbb{N}$ 

### §4.13 Definition (Projektion; projection)

Für  $n \in \mathbb{N}$  und  $1 \le i \le n$  ist  $\pi_i^{(n)} : \mathbb{N}^n \to \mathbb{N}$  n-stellige Projektion auf i-te Stelle

$$\pi_i^{(n)}(a_1,\ldots,a_n)=a_i$$

#### Notizen

- $\pi_1^{(2)}(10,2)=10$
- $\pi_2^{(2)}(10,2)=2$

 $a_1,\ldots,a_n\in\mathbb{N}$ 

### §4.14 Definition (berechnete Funktion; computed function)

Loop-Programm P mit  $\max \text{var}(P) = n$  berechnet k-stellige partielle Funktion  $|P|_k \colon \mathbb{N}^k \dashrightarrow \mathbb{N}$  mit  $k \le n$  gegeben für alle  $a_1, \ldots, a_k \in \mathbb{N}$ 

$$|P|_k(a_1,\ldots,a_k) = \pi_1^{(n)}(\|P\|_n(a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(n-k) \text{ mal}}))$$

### §4.14 Definition (berechnete Funktion; computed function)

Loop-Programm P mit  $\max \text{var}(P) = n$  berechnet k-stellige partielle Funktion  $|P|_k \colon \mathbb{N}^k \dashrightarrow \mathbb{N}$  mit  $k \le n$  gegeben für alle  $a_1, \ldots, a_k \in \mathbb{N}$ 

$$|P|_k(a_1,\ldots,a_k) = \pi_1^{(n)}(\|P\|_n(a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(n-k) \text{ mal}}))$$

- Eingaben  $a_1, \ldots, a_k$  in ersten k Variablen  $x_1, \ldots, x_k$
- Weitere Variablen  $x_{k+1}, \ldots, x_n$  initial 0
- Auswertung Programm mit dieser initialen Variablenbelegung
- Ergebnis ist Inhalt erster Variable x<sub>1</sub> nach Ablauf

### §4.15 Definition (Loop-Berechenbarkeit; Loop-computable)

Partielle Funktion  $f: \mathbb{N}^k \dashrightarrow \mathbb{N}$  Loop-berechenbar falls Loop-Programm P mit  $f = |P|_k$  existiert

#### Nullsetzen xi

$$LOOP(x_i) \{x_i = x_i - 1\}$$

Schreibweise:  $x_i = 0$ 

#### Nullsetzen xi

$$LOOP(x_i) \{x_i = x_i - 1\}$$

Schreibweise:  $x_i = 0$ 

### Belegung $x_i$ mit Konstante $n \in \mathbb{N}$

$$x_i = 0$$
;  $x_i = x_i + n$ 

Schreibweise:  $x_i = n$ 

#### Nullsetzen xi

$$LOOP(x_i) \{ x_i = x_i - 1 \}$$

Schreibweise:  $x_i = 0$ 

### Belegung $x_i$ mit Konstante $n \in \mathbb{N}$

$$x_i = 0$$
;  $x_i = x_i + n$ 

Schreibweise:  $x_i = n$ 

Kopieren 
$$x_{\ell}$$
 nach  $x_i$ 

$$x_i = x_\ell + 0$$

Schreibweise:  $x_i = x_\ell$ 

Addition von 
$$x_k$$
 und  $x_\ell$  in  $x_i$ 

$$(i \neq \ell)$$

$$x_i = x_k$$
; LOOP $(x_\ell)$   $\{x_i = x_i + 1\}$ 

Schreibweise: 
$$x_i = x_k + x_\ell$$

Addition von 
$$x_k$$
 und  $x_\ell$  in  $x_i$ 

$$x_i = x_k$$
; LOOP $(x_\ell) \{ x_i = x_i + 1 \}$ 

Multiplikation von 
$$x_k$$
 und  $x_\ell$  in  $x_i$ 

$$x_i = 0$$
; LOOP $(x_k) \{x_i = x_i + x_\ell\}$ 

$$(i \neq \ell)$$

Schreibweise: 
$$x_i = x_k + x_\ell$$

$$(k \neq i \neq \ell)$$

Schreibweise: 
$$x_i = x_k \cdot x_\ell$$

Addition von 
$$x_k$$
 und  $x_\ell$  in  $x_i$ 

$$x_i = x_k$$
; LOOP $(x_\ell) \{x_i = x_i + 1\}$ 

Multiplikation von 
$$x_k$$
 und  $x_\ell$  in  $x_i$ 

$$x_i = 0$$
; LOOP $(x_k)$   $\{x_i = x_i + x_\ell\}$ 

Potenzieren von 
$$x_{\ell}$$
 mit  $x_k$  in  $x_i$   
 $x_i = 1$ ; LOOP $(x_{\ell})$  { $x_i = x_i \cdot x_{\ell}$ }

$$(i \neq \ell)$$

Schreibweise: 
$$x_i = x_k + x_\ell$$

$$(k \neq i \neq \ell)$$

Schreibweise: 
$$x_i = x_k \cdot x_\ell$$

$$(k \neq i \neq \ell)$$

Schreibweise: 
$$x_i = x_\ell^{x_k}$$

### Multiplikation strenge Syntax

| Zeile | Anweisung           | Kommentar           |
|-------|---------------------|---------------------|
| 1     | $x_3 = x_1 + 0$     | $x_3 = x_1$         |
| 2     | $LOOP(x_1)$         | $x_1 = 0$           |
| 3     | $\{x_1 = x_1 - 1\}$ |                     |
| 4     | $LOOP(x_2)$ {       | $(x_2 \text{ mal})$ |
| 5     | $LOOP(x_3)$         | $x_1 = x_1 + x_3$   |
| 6     | $\{x_1=x_1+1\}\}$   |                     |

#### Multiplikation strenge Syntax

| Zeile | Anweisung           | Kommentar           |
|-------|---------------------|---------------------|
| 1     | $x_3 = x_1 + 0$     | $x_3 = x_1$         |
| 2     | $LOOP(x_1)$         | $x_1 = 0$           |
| 3     | $\{x_1 = x_1 - 1\}$ |                     |
| 4     | $LOOP(x_2)$ {       | $(x_2 \text{ mal})$ |
| 5     | $LOOP(x_3)$         | $x_1 = x_1 + x_3$   |
| 6     | $\{x_1=x_1+1\}\}$   |                     |

### Berechnung Semantik

(Zeilennummern über Pfeil)

$$(2,3,0) \xrightarrow{1} (2,3,2) \xrightarrow{3} (1,3,2) \xrightarrow{3} (0,3,2) \xrightarrow{6} (1,3,2) \xrightarrow{6} (2,3,2)$$
Schleife in 2
Schleife in 5
Schleife in 5
Schleife in 5

#### Simulation "If-Then-Else"

 $(x_k, x_\ell \text{ unbenutzt})$ 

$$x_k = 1$$
;  $x_\ell = 0$   
LOOP $(x_i)$  { $x_k = 0$ ;  $x_\ell = 1$ }  
LOOP $(x_k)$  { $P_1$ }  
LOOP $(x_\ell)$  { $P_2$ }

Schreibweise:  $IF(x_i = 0) \{P_1\}$  ELSE  $\{P_2\}$ 

#### Simulation "If-Then-Else"

 $(x_k, x_\ell \text{ unbenutzt})$ 

$$x_k = 1$$
;  $x_\ell = 0$   
LOOP $(x_i)$  { $x_k = 0$ ;  $x_\ell = 1$ }  
LOOP $(x_k)$  { $P_1$ }  
LOOP $(x_\ell)$  { $P_2$ }

Schreibweise:  $IF(x_i = 0) \{P_1\}$  ELSE  $\{P_2\}$ 

#### Notizen

- Falls  $x_i > 0$ 
  - Zeile 2:  $x_{\ell} = 0$  und  $x_{\ell} = 1$
  - Zeile 3: P<sub>1</sub> nicht ausgeführt; Zeile 4: P<sub>2</sub> einmal ausgeführt

#### Simulation "If-Then-Else"

 $(x_k, x_\ell \text{ unbenutzt})$ 

```
x_k = 1; x_\ell = 0

LOOP(x_i) {x_k = 0; x_\ell = 1}

LOOP(x_k) {P_1}

LOOP(x_\ell) {P_2}
```

Schreibweise:  $IF(x_i = 0) \{P_1\}$  ELSE  $\{P_2\}$ 

#### Notizen

- Falls  $x_i > 0$ 
  - Zeile 2:  $x_k = 0$  und  $x_\ell = 1$
  - Zeile 3: P<sub>1</sub> <u>nicht</u> ausgeführt; Zeile 4: P<sub>2</sub> <u>einmal</u> ausgeführt
- Falls  $x_i = 0$ 
  - Zeile 2:  $x_k = 1$  und  $x_\ell = 0$
  - Zeile 3: P<sub>1</sub> einmal ausgeführt; Zeile 4: P<sub>2</sub> nicht ausgeführt

## Termination von Loop-Programmen

### §4.16 Beobachtung

Jedes Loop-Programm P terminiert nach endlich vielen Schritten d.h.  $|P|_k \colon \mathbb{N}^k \to \mathbb{N}$  (totale) Funktion für jedes  $k \in \mathbb{N}$ 

## Termination von Loop-Programmen

### §4.16 Beobachtung

Jedes Loop-Programm P terminiert nach endlich vielen Schritten d.h.  $|P|_k : \mathbb{N}^k \to \mathbb{N}$  (totale) Funktion für jedes  $k \in \mathbb{N}$ 

### Folgerung

Nicht jede Turing-berechenbare partielle Funktion Loop-berechenbar

## Termination von Loop-Programmen

### §4.16 Beobachtung

Jedes Loop-Programm P terminiert nach endlich vielen Schritten d.h.  $|P|_k : \mathbb{N}^k \to \mathbb{N}$  (totale) Funktion für jedes  $k \in \mathbb{N}$ 

### Folgerung

Nicht jede Turing-berechenbare partielle Funktion Loop-berechenbar

### Frage

Ist jede intuitiv berechenbare (totale) Funktion Loop-berechenbar?

## Zusammenfassung

- Äquivalenz Ausdrucksstärke TM & Grammatiken
- Deterministische TM & Turing-Berechenbarkeit
- Loop-Berechenbarkeit

Dritte Übungsserie bereits im Moodle