Rotational Magnetic Levitation: A Folded/SHS Framework with Practitioner Playbook

September 20, 2025

Abstract

We provide an experiment-ready guide to rotational magnetic levitation (RML) accompanied by a concise theoretical scaffold based on Floquet averaging, stable Hamiltonian structures (SHS), and a folded symplectic normal form for vertical equilibrium. The practical portion covers hardware setup, tuning, measurement plans, and troubleshooting. The theoretical portion explains why a small vertical bias field $B_{r,z}$ selects a Reeb-like direction, how fast rotation yields a phase-locked "blue phase," and why stable levitation occurs at a fold where the averaged vertical force crosses zero with negative slope. We conclude with experiment recipes, scaling laws, and data-analysis templates that tie directly to the model.

Contents

1	Qui	ick-Start for Practitioners	2					
	1.1	Hardware and Materials	2					
	1.2	Safety and Alignment	2					
	1.3	First-Levitation Protocol (Minimal Knobs)						
	1.4	Knobs and Qualitative Effects	17.					
	1.5	Minimal Measurement Set						
	1.6	Troubleshooting	11.1					
2	Des	sign of Experiments (DoE)	2					
	2.1	Core Factor Sweeps						
	2.2	Response Variables	4					
	2.3	Recommended Plots	4					
	2.4	Example DoE Table	1					
3	Theory to Practice: Intuition, Formulas, Predictions							
	3.1	One-Paragraph Intuition	4					
	3.2	Working Formulas in the Blue Phase	4					
	3.3	Folded Normal Form for Vertical Equilibrium	-					
	3.4	SHS Picture & Reeb-Locked Orbit	-					
	3.5	Practitioner Predictions (Immediately Testable)						
4	Exp	periment Recipes	-					
	4.1	Mapping the Reeb Direction (Bias-Sweep)						
	4.2	Height–Frequency Curves (Core Plot)						
	4.3	Basin Mapping with Damping						

	4.4 Size Scaling Test				
5	Data Analysis Checklist	6			
6	Extensions and Variations	6			
A	Floquet/Kapitza Averaging Sketch	6			
В	SHS on the Energy Shell	6			
\mathbf{C}	C Folded Symplectic Normal Form for Vertical Motion				
D	Scaling Relations	7			
E	Bill of Materials (Sketch) & CAD Notes	7			
F	Analysis Notebook Outline	7			

1 Quick-Start for Practitioners

1.1 Hardware and Materials

- Rotor magnet (Rm): Diametrically magnetized cylinder or sphere on a high-speed motor with RPM readout.
- Floater magnet (Fm): Smaller permanent magnet (sphere or short cylinder) to levitate.
- Bias magnet (Bm): Small static magnet mounted above the rotor to supply a controllable vertical field component $B_{r,z}$. A micrometer stage is recommended.
- Alignment: 3-axis stages to set rotor-floater separation d and to position Bm.
- Damping option: Adjustable aluminum plate or viscous bath (water/glycerin) for capture assistance.
- **Sensing:** High-speed camera, optional IMU on Fm, Hall sensors, and a laser distance sensor for vertical height z.

Recommended starting geometry. Rotor radius $R_r \approx 15-25$ mm; Floater radius $R_f \approx 5-10$ mm; initial separation $d_0 \approx 10-40$ mm; NdFeB (N42-N52).

1.2 Safety and Alignment

Use a clear shield around the rotor; verify balance to target RPM (e.g., 12–18k RPM). Fix the spin axis vertical. Verify polarities and field magnitudes with a Gaussmeter.

1.3 First-Levitation Protocol (Minimal Knobs)

- 1. Dial a small vertical bias: set $B_{r,z} \sim 1\%-10\%$ of the transverse field at Fm.
- 2. Set separation: start at $d \approx 25$ mm.
- 3. **Spin up:** sweep rotor frequency ω_r slowly from low to high.
- 4. Watch for capture (blue phase): small constant tilt θ_f , steady phase lag ϕ , stable height.
- 5. Remove damping (if used): steady levitation should persist after capture.

Tell-tales of success. Nearly constant $\theta_f \ll 1$ rad, steady ϕ , height decreases mildly as ω_r increases.

If capture fails. Increase $B_{r,z}$ and/or introduce damping (aluminum plate within 5–10 mm below Fm) to enlarge the basin of attraction.

1.4 Knobs and Qualitative Effects

- Increasing ω_r : decreases levitation height and θ_f .
- Increasing $B_{r,z}$: widens capture basin, decreases θ_f , stabilizes phase-lock.
- Increasing R_f : raises required ω_r (since $I_f \propto R_f^5$).
- Increasing remanence: weaker effect on thresholds; modestly increases height.

1.5 Minimal Measurement Set

- Levitation height $z(\omega_r)$ (or separation $d(\omega_r)$).
- Floater orientation: tilt $\theta_f(\omega_r, B_{r,z})$ and phase lag $\phi(\omega_r, B_{r,z})$.
- Capture probability vs $B_{r,z}$ (with/without damping).

1.6 Troubleshooting

- Jitter or no capture: increase $B_{r,z}$ or add damping; check rotor wobble.
- Sudden drop at high ω_r : mode transition; back off ω_r or adjust d.
- Floater spins uncontrollably: excess $B_{r,\perp}$ asymmetry; reduce rotor tilt or lower ω_r .
- Extreme sensitivity to nearby objects: likely near the fold $F_z \simeq 0$; increase $B_{r,z}$.

2 Design of Experiments (DoE)

2.1 Core Factor Sweeps

- ω_r : 6–18 krpm, 8–10 levels.
- $B_{r,z}$: 0, 0.5, 1, 2, 5 mT (measured at floater location with rotor off).
- $d: 10-40 \,\mathrm{mm}$ in steps of $2.5-5 \,\mathrm{mm}$.
- R_f : 5, 6, 8, 10 mm (same material).

2.2 Response Variables

Levitation height z, tilt θ_f , phase lag ϕ , capture probability, time-to-capture, mode labels (UD/Side/Mixed/U), drop frequency.

2.3 Recommended Plots

- $z \text{ vs } \omega_r \text{ at fixed } B_{r,z} \text{ (expect decreasing trend)}.$
- θ_f, ϕ vs ω_r for several $B_{r,z}$.
- Stability maps in (ω_r, d) for each $B_{r,z}$.
- Capture probability vs $B_{r,z}$ with/without damping.
- Threshold ω_r vs R_f (log-log slope $\approx 5/2$; see §D).

2.4 Example DoE Table

Factor	Levels	Units	Notes	Role
ω_r	6–18k (10)	rpm	evenly spaced	primary sweep
$B_{r,z}$	0, 0.5, 1, 2, 5	mT	measured w/ rotor off	bias control
d	10:5:40	mm	fixed by stage	geometry
R_f	5, 6, 8, 10	mm	same grade NdFeB	inertia scaling

Table 1: Suggested factors and levels for initial DoE.

3 Theory to Practice: Intuition, Formulas, Predictions

3.1 One-Paragraph Intuition

A fast, nearly transverse rotating field from the rotor produces a periodic torque on the floater. A small static vertical field $B_{r,z}$ selects a preferred axis (the "Reeb" direction). Above a critical speed the floater phase-locks: its tilt θ_f and phase lag ϕ become approximately constant while it precesses at the drive rate. In this locked regime the time-averaged vertical force F_z is non-monotone in distance and crosses zero with negative slope, producing a restoring force (stable levitation). Damping helps capture but is not required to maintain the locked state.

3.2 Working Formulas in the Blue Phase

Let I_f be the floater moment of inertia, m_f its magnetic moment, and $B_{r,\perp}$ the transverse amplitude of the rotor field at the floater. In the locked steady state,

$$\phi \approx \frac{\zeta_{\text{rot}} \,\omega_r}{I_f \omega_r^2 - m_f B_{r,z}}, \qquad \theta_f \approx \frac{m_f B_{r,\perp}}{I_f \omega_r^2 - m_f B_{r,z}}.$$
 (1)

Implications. Increasing ω_r or $B_{r,z}$ decreases θ_f and ϕ . Finite I_f is essential (drag alone cannot replace it). For a sphere of radius R_f , $I_f \propto R_f^5$, so thresholds scale strongly with size.

3.3 Folded Normal Form for Vertical Equilibrium

Let $F_z(d; \omega_r, B_{r,z}, \ldots)$ denote the time-averaged vertical force. Near a stable levitation distance d_{\star} ,

$$F_z(d) \approx K (d - d_\star) + \cdots, \qquad K < 0.$$
 (2)

The fold set is $\Sigma = \{F_z = 0\}$. Stability corresponds to crossing with negative slope; practically, a gentle tap yields return rather than escape.

3.4 SHS Picture & Reeb-Locked Orbit

On a fixed energy shell $\mathcal{M}^3 = \{H_{\text{eff}} = E\}$, there exists a 1-form λ (contact-like) such that $\lambda \wedge d\lambda > 0$ and the restricted dynamics are conformal to the Reeb field R of λ . The small $B_{r,z}$ provides coorientation and sets the Reeb direction (precession). The blue phase corresponds to a closed Reeb-type orbit whose linearization has one stable direction (vertical) and a neutral direction along the orbit.

3.5 Practitioner Predictions (Immediately Testable)

- **P1.** $\theta_f(\omega_r, B_{r,z})$ and $\phi(\omega_r, B_{r,z})$ follow Eq. (1); fits estimate I_f and effective field coefficients.
- **P2.** $z(\omega_r)$ strictly decreases at fixed $B_{r,z}$, with inflections near mode transitions.
- **P3.** Hysteresis/monodromy under slow loops in $(\omega_r, B_{r,z})$ encircling Σ : height and phase do not return identically.
- **P4.** Capture probability increases with $B_{r,z}$ and with damping during approach; steady state persists after damping is removed.
- **P5.** Nano-regime crossover: intrinsic spin angular momentum can substitute for drive-induced twist, enabling stabilization in static fields.

4 Experiment Recipes

4.1 Mapping the Reeb Direction (Bias-Sweep)

Fix d. For each $B_{r,z}$, sweep ω_r upward; record θ_f, ϕ, z . Expected: decreasing θ_f, ϕ with both ω_r and $B_{r,z}$; widening capture basin with larger $B_{r,z}$.

4.2 Height-Frequency Curves (Core Plot)

For multiple $B_{r,z}$, measure $z(\omega_r)$. Expected: monotone decrease; inflection indicates proximity to a mode transition.

4.3 Basin Mapping with Damping

Place an aluminum plate at gaps 2–20 mm. From randomized initial conditions, measure capture probability into the blue phase. *Expected:* strong improvement at small gaps; once captured, levitation persists after removing the plate.

4.4 Size Scaling Test

Repeat the core plot for $R_f = 5, 6, 8, 10$ mm. Estimate minimum ω_r for robust capture. Expected: $\omega_{r, \min} \propto R_f^{5/2}$ (holding geometry constant).

4.5 Hysteresis/Monodromy Loop

Perform slow parameter loops: increase ω_r while decreasing $B_{r,z}$, then reverse; track z, ϕ . Expected: loop area > 0 in $(\omega_r, B_{r,z})$ plane (contact-geometric phase).

5 Data Analysis Checklist

- Fit θ_f and ϕ to Eq. (1) to extract I_f and field coefficients.
- Segment time-series into modes (UD/Side/Mixed/U) using spectral features of z(t), $\theta_f(t)$, $\phi(t)$.
- Construct stability regions in (ω_r, d) for each $B_{r,z}$.
- Quantify capture probability vs $B_{r,z}$ and plate gap; fit a logistic curve.

6 Extensions and Variations

- Non-axisymmetric rotors: tilt magnetization by α to control $B_{r,z}$ without a separate bias magnet.
- Multi-rotor lattices: levitate arrays and probe synchronization/collective phases.
- Fluid media: vary viscosity to map capture-time vs damping while holding steady-state height.
- Sensing upgrade: 3D Hall-sensor ring to reconstruct **B** and test averaging model.

A Floquet/Kapitza Averaging Sketch

Let the rotor field be

$$\mathbf{B}_r(t) = B_{r,\perp} \left(\cos \omega_r t \,\hat{\mathbf{x}} + \sin \omega_r t \,\hat{\mathbf{y}}\right) + B_{r,z} \,\hat{\mathbf{z}}.\tag{3}$$

The floater dipole $\mathbf{m}_f = m_f \hat{m}_f$ obeys rigid-body dynamics with torque $\boldsymbol{\tau} = \mathbf{m}_f \times \mathbf{B}_r$ and optional rotational drag $-\zeta_{\text{rot}}\boldsymbol{\omega}_f$. Averaging over $2\pi/\omega_r$ yields an effective correction of order $B_{r,\perp}^2/\omega_r^2$ and a gyroscopic term $\propto I_f\omega_r$. In the locked regime, \hat{m}_f maintains constant θ_f , ϕ in the drive frame, leading to Eq. (1).

B SHS on the Energy Shell

Let H_{eff} denote the averaged Hamiltonian on $T^*(\mathbb{S}^2 \times \mathbb{R})$. On a fixed energy level $\mathcal{M}^3 = \{H_{\text{eff}} = E\}$, choose a 1-form λ such that $\lambda \wedge d\lambda > 0$ and the Hamiltonian vector field restricts to be conformal to the Reeb field R of λ . The small but nonzero $B_{r,z}$ supplies coorientation and selects the Reeb direction (precession axis). The locked blue phase is a closed Reeb-type orbit with one stable transverse direction (vertical).

C Folded Symplectic Normal Form for Vertical Motion

In reduced vertical coordinates (d, p_d) , the averaged 2-form may flip sign across the fold set $\Sigma = \{F_z(d) = 0\}$. A local model is

$$\omega = \omega_0 + s \, \mathrm{d}s \wedge \lambda,\tag{4}$$

where s is the signed distance to Σ and λ is the contact 1-form inherited from the locked precession. Stability at d_{\star} corresponds to $\partial_d F_z|_{d_{\star}} < 0$.

D Scaling Relations

For a solid sphere of radius R_f and density ρ ,

$$I_f = \frac{8\pi}{15} \rho R_f^5. \tag{5}$$

Balancing $I_f \omega_r^2 \sim m_f B_{r,z}$ with $m_f \propto R_f^3$ suggests

$$\omega_{r,\min} \propto R_f^{5/2},$$
 (6)

if the field geometry is approximately size-invariant. The tilt obeys $\theta_f \propto B_{r,\perp}/(I_f\omega_r^2 - m_f B_{r,z})$, and increasing ω_r typically reduces the equilibrium distance d_{\star} .

E Bill of Materials (Sketch) & CAD Notes

BLDC with encoder; 3D-printed chuck with set screws; acrylic shield; micrometer stages for d and Bm; Gaussmeter; aluminum plate on a linear stage. Provide slotted mounts to tune lateral offset and Bm height precisely.

F Analysis Notebook Outline

Inputs: RPM vs time, z(t), $\theta_f(t)$, $\phi(t)$, $B_{r,z}$, d, R_f .

Processing: smoothing, phase extraction, mode classification (spectral clustering), locked-state parameter estimation.

Fits: rational θ_f , ϕ models (Eq. (1)); logistic for capture vs bias/damping; $\omega_{r,\min}(R_f)$ slope.

Outputs: stability maps, scaling plots, residuals, parameter tables.

One-Page Executive Summary

Add a small vertical bias $B_{r,z}$. Spin up slowly. Seek a small, constant θ_f and steady ϕ . Height drops as ω_r rises. Use an aluminum plate only for capture. Measure $z(\omega_r)$, $\theta_f(\omega_r, B_{r,z})$, capture probability vs $B_{r,z}$. Fit the rational formulas to extract inertial/field scales. Stable levitation sits on the fold $F_z = 0$; negative slope means you're safe. The SHS/Reeb picture explains stability of a non-minimum energy configuration once phase-locked.