Application of GLM Advancements to Non-Life Insurance Pricing

Leonardo Stincone

Università degli Studi di Trieste

11 Maggio 2021

1. Il Pricing nelle Assicurazioni Danni

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Indice

1. Il Pricing nelle Assicurazioni Danni

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

3. Applicazione Pratica

Che cos'è un Contratto Assicurativo

Contratto di Assicurazione, Art. 1882, Codice Civile Italiano

L'assicurazione è il contratto col quale l'assicuratore, verso il pagamento di un **premio**, si obbliga a rivalere l'assicurato, entro i limiti convenuti,

- 1 del danno ad esso prodotto da un sinistro,
- ② ovvero a pagare un capitale o una rendita al verificarsi di un evento attinente alla vita umana.

Da un punto di vista matematico

Distribuzione composta

Assumiamo che

- ① $\forall n > 0, \ Z_1 | N = n, \ Z_2 | N = n, \ \dots, \ Z_n | N = n \ \text{siano i.i.d.};$
- $oldsymbol{2}$ la distribuzione di $Z_i|N=n,\;i\leq n$ non dipenda da n

Sotto queste ipotesi diciamo che

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

Proprietà

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- **1** $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n, i \leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

$$E(S) = E(N)E(Z)$$

Da un punto di vista matematico

Distribuzione composta

Assumiamo che:

- **1** $\forall n > 0, Z_1 | N = n, Z_2 | N = n, \dots, Z_n | N = n \text{ siano i.i.d.};$
- 2 | a distribuzione di $Z_i|N=n, i \leq n$ non dipenda da n.

Sotto queste ipotesi diciamo che:

$$S = \begin{cases} 0 & \text{if } N = 0\\ \sum_{i=1}^{N} Z_i & \text{if } N > 0 \end{cases}$$

Proprietà

$$E(S) = E(N)E(Z)$$

ha distribuzione composta.

Variabili Esplicative e Personalizzazione

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sull'assicurato;
- Informazioni assicurative sull'assicurato;
- Opzioni della polizza assicurativa;
- Informazioni sull'assicurato in quanto cliente;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$f: \quad \mathcal{X} \quad \longrightarrow \quad R_{-}$$

$$x_i \quad \longmapsto \quad P_i$$

Modellare una variabile risposta

Modellare una variabile risposta Y_i significa stimare una funzione $r(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$r: \ \mathcal{X} \longrightarrow \ \mathcal{C} \ \mathbf{x}_i \longmapsto \ F_{Y_i}, E(Y_i), Var(Y_i)$$

Variabili Esplicative e Personalizzazione

Variabili esplicative

Possibili variabili esplicative per il pricing delle assicurazioni motor:

- Informazioni sul veicolo assicurato:
- Informazioni generiche sull'assicurato;
- Informazioni assicurative sull'assicurato;
- Opzioni della polizza assicurativa;
- Informazioni sull'assicurato in quanto cliente;
- Dati telematici.

Queste variabili possono essere codificate come un vettore di numeri reali:

$$\boldsymbol{x}_i = (x_{i1}, x_{i2}, \dots, x_{ip}) \in \mathcal{X} \subseteq \mathbb{R}^p$$

Regola di Pricing

Una Regola di Pricing è una funzione $f(\cdot)$ che da una $x_i \in \mathcal{X}$ restituisce un prezzo P_i :

$$f: \quad \mathcal{X} \quad \longrightarrow \quad R_+$$
 $\quad \boldsymbol{x}_i \quad \longmapsto \quad P_i$

Modellare una variabile risposta

Modellare una variabile risposta Y_i significa stimare una funzione $r(\cdot)$ che da una $\boldsymbol{x}_i \in \mathcal{X}$ restituisce la distribuzione di Y_i o alcuni suoi momenti:

$$r: \ \mathcal{X} \longrightarrow \ \mathcal{C} \ \mathbf{x}_i \longmapsto \ F_{Y_i}, E(Y_i), Var(Y_i)$$

Variabili Risposta

Distribuzione di Poisson

$$p_N(n) = P(N=n) = e^{-\lambda} \frac{\lambda^n}{n!}, \quad \lambda > 0$$

Distribuzione Gamma

$$f_Z(z) = \frac{\rho^{\alpha}}{\Gamma(\alpha)} z^{\alpha-1} e^{-\rho z}, \quad \alpha > 0, \ \rho > 0$$

Pricing Tecnico e Commerciale

Definizione di Premio

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- 2 Aspettativa del Cliente
 - New Business: Probabilità di Conversion
 - Rinnovi: Probabilità di Retentior
- 3 Strategia di Business
 - ▶ Lifetime value
 - Profitti/crescita

Pricing Tecnico e Commerciale

Definizione di Premio

$$\begin{split} P_i^{(\mathrm{risk})} &= E(S_i) \\ P_i^{(\mathrm{tech})} &= E(S_i) + \mathrm{Expenses}_i \\ & & \\ &$$

Ottimizzazione del Prezzo

Si basa su

- Pricing Tecnico
- Aspettativa del Cliente
 - New Business: Probabilità di Conversion
 - ▶ Rinnovi: *Probabilità di Retention*
- 3 Strategia di Business
 - ▶ Lifetime value
 - Profitti/crescita

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning

3. Applicazione Pratica

Modelli Lineari Generalizzati (GLM)

Modelli Lineari Generalizzati (GLM)

Dato
$$\mathcal{D} = \{(\boldsymbol{x}_1, \omega_1, y_1), \dots, (\boldsymbol{x}_n, \omega_n, y_n)\}$$

con $\boldsymbol{y} = (y_1, \dots, y_n)^t$ realizzazione di $\boldsymbol{Y} = (Y_1, \dots, Y_n)^t$.

Assumiamo che:

1 $Y = (Y_1, \dots, Y_n)^t$ siano indipendenti con distribuzione appartenente a una stessa famiglia esponenziale lineare:

$$f(y_i; \theta_i, \phi, \omega_i) = \exp\left\{\frac{\omega_i}{\phi} \left[y_i \theta_i - b(\theta_i)\right]\right\} c(y_i, \phi, \omega_i), \quad y_i \in \mathcal{Y} \subseteq \mathbb{R}$$

Q $oldsymbol{x}_i = (1, x_{i1}, \dots, x_{ip})^t$ agisca su Y_i tramite il predittore lineare η_i

$$\eta_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

3 η_i sia legato a $\mu_i = E(Y_i)$ tramite la funzione legame $g(\cdot)$

$$g(\mu_i) = \eta_i = oldsymbol{x}_i^t oldsymbol{eta}$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$L: \quad \mathbb{R}^{p+1} \times \Lambda \quad \longrightarrow \quad [0, +\infty[$$
$$(\boldsymbol{\beta}, \phi) \quad \longmapsto \quad f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi)$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right) = \log L\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right)$$
 e $\boldsymbol{\beta}^*$ sono i parametri del modello saturo

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Stima di un GLM

Stima di massima verosimiglianza

Data la funzione di verosimiglianza

$$\begin{array}{cccc} L: & \mathbb{R}^{p+1} \times \Lambda & \longrightarrow & [0, +\infty[\\ & (\boldsymbol{\beta}, \phi) & \longmapsto & f_{\boldsymbol{Y}}(\boldsymbol{y}; \boldsymbol{\theta}, \phi) \end{array}$$

La stima di massima verosimiglianza è:

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} L\left(\boldsymbol{\beta}, \phi; \boldsymbol{y}\right)$$

Devianza

La devianza è

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = -2\phi \left(\ell \left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y} \right) - \ell_S \left(\boldsymbol{\beta}^*, \phi; \boldsymbol{y} \right) \right)$$

dove
$$\ell\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right) = \log L\left(\hat{\boldsymbol{\beta}}, \phi; \boldsymbol{y}\right)$$
 e $\boldsymbol{\beta}^*$ sono i parametri del modello saturo.

La stima di massima verosimiglianza può essere ottenuta come:

$$\hat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} D(\boldsymbol{\beta}, \boldsymbol{y})$$

Effetto delle variabili in un GLM

Variabili quantitative ed effetti non lineari

Funzione Legame e risposta

Grafici per visualizzare l'effetto delle variabili

Nessun effetto - non raggruppati

Effetto positivo - non raggruppati

Nessun effetto - raggruppati

Effetto positivo - raggruppati

Criteri per la selezione delle variabili nei GLM

Criteri per la selezione delle variabili

- Visualizzazione
- Test di verifica di ipotesi

$$\begin{cases} H_0: & \beta_{j_k} = 0 \ \forall k \in \{1, 2, \dots, s\} \\ H_1: & \exists k: \beta_{j_k} \neq 0 \end{cases}$$

Criteri di informazione

$$AIC = -2\ell(\beta) + 2(p+1)$$

$$BIC = -2\ell(\beta) + \log(n)(p+1)$$

- Divisione del dataset tra training set e test set
- Cross validation

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Confronto tra i modelli

Applicazione Pratica

Modelli Additivi Generalizzati (GAM)

Modelli Additivi Generalizzati (GAM)

- \bigcirc Variabile risposta Y come GLM;
- 2 Predittore lineare

$$\eta_i = oldsymbol{x}_i^t oldsymbol{eta} + \sum_{l=1}^q f_l(z_{i,l}), \quad i \in \{1, 2, \dots, n\}$$

con $f_l(\cdot)$ spline cubica;

3 Funzione legame $g(\cdot)$ come GLM.

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\mathbf{f}} = \underset{\mathbf{f}}{\operatorname{arg\,min}} \left\{ D(\mathbf{f}, \mathbf{y}) + \sum_{l=1}^{q} \lambda_l \int_{a_l}^{b_l} (f_l''(x_l))^2 dx \right\}$$

con $\lambda_1,\lambda_2,\ldots,\lambda_q$ iperparametri di smoothing.

GAM: esempio

-0.75

-0.75

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM Algoritmi di Machine Learning Confronto tra i modelli

3. Applicazione Pratica

Trade-off tra Bias e Varianza

Scomposizione dello scarto quadratico medio (MSE)

$$MSE\left(\tilde{\beta}_{j}\right) \stackrel{\mathsf{def}}{=} E\left(\left(\tilde{\beta}_{j} - \beta_{j}\right)^{2}\right) = \underbrace{\left(E(\tilde{\beta}_{j}) - \beta_{j}\right)^{2}}_{\mathsf{Bias}^{2}} + \underbrace{Var\left(\tilde{\beta}_{j}\right)}_{\mathsf{Variance}}$$

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

con

ullet $\lambda \geq 0$ iperparametro di penalizzazione

Modello sottostante:GLM

Regressione Ridge: esempio

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

con

ullet $\lambda \geq 0$ iperparametro di penalizzazione

 $Modello\ sottostante: GLM$

Regressione LASSO: esempio

Stima di Massima Verosimiglianza con Penalizzazione

$$\hat{\boldsymbol{\beta}} = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) + \lambda \sum_{j=1}^{p} \left(\alpha |\beta_j| + (1 - \alpha) |\beta_j|^2 \right) \right\}$$

dove

- $\lambda \geq 0$ iperparametro di penalizzazione
- $\alpha \in [0,1]$ iperparametro che determina il peso della penalizzazione LASSO
 - $ightharpoonup \alpha = 0 \implies \text{Regressione Ridge}$
 - $ightharpoonup \alpha = 1 \implies \mathsf{Regressione} \ \mathsf{LASSO}$

Modello sottostante: GLM

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM)
Modelli Additivi Generalizzati (GAM)
Stimatori Shrinkage per i GLM
Stimatori Bayesiani per i GLM
Algoritmi di Machine Learning
Confronto tra i modelli

3. Applicazione Pratica

Il Framework Bayesiano

Teorema di Bayes

$$\pi(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{p(\boldsymbol{y}|\boldsymbol{\theta})\pi(\boldsymbol{\theta})}{p(\boldsymbol{y})}$$

Stimatori Bayesiani per i GLM

Stima di Massima Verosimiglianza

$$\hat{oldsymbol{eta}}^{ML} = rg \max_{oldsymbol{eta} \in \mathbb{R}^{p+1}} L\left(oldsymbol{eta}, \phi \mid oldsymbol{y}
ight) \ = rg \max_{oldsymbol{eta} \in \mathbb{R}^{p+1}} \ell\left(oldsymbol{eta}, \phi \mid oldsymbol{y}
ight) \ = rg \min_{oldsymbol{eta} \in \mathbb{R}^{p+1}} D\left(oldsymbol{eta}, oldsymbol{y}
ight) \ eta \in \mathbb{R}^{p+1}$$

Stima di Massimo a Posteriori

$$\begin{split} \hat{\boldsymbol{\beta}}^{MAP} &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \boldsymbol{\pi} \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ L \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \boldsymbol{\pi} (\boldsymbol{\beta}) \right\} \\ &= \operatorname*{arg\,max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ \ell \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) + \log \left(\boldsymbol{\pi} (\boldsymbol{\beta}) \right) \right\} \\ &= \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D (\boldsymbol{\beta}, \boldsymbol{y}) - 2 \boldsymbol{\phi} \log \left(\boldsymbol{\pi} (\boldsymbol{\beta}) \right) \right\} \end{split}$$

Stimatori Bayesiani per i GLM

Stima di Massima Verosimiglianza

$$\hat{\boldsymbol{\beta}}^{ML} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\arg \max} L\left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y}\right)$$

$$= \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\arg \max} \ell\left(\boldsymbol{\beta}, \phi \mid \boldsymbol{y}\right)$$

$$= \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\arg \min} D\left(\boldsymbol{\beta}, \boldsymbol{y}\right)$$

Stima di Massimo a Posteriori

$$\begin{split} \hat{\boldsymbol{\beta}}^{MAP} &= \mathop{\arg\max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \pi \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \\ &= \mathop{\arg\max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ L \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) \pi(\boldsymbol{\beta}) \right\} \\ &= \mathop{\arg\max}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ \ell \left(\boldsymbol{\beta}, \boldsymbol{\phi} \mid \boldsymbol{y} \right) + \log \left(\pi(\boldsymbol{\beta}) \right) \right\} \\ &= \mathop{\arg\min}_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} \left\{ D(\boldsymbol{\beta}, \boldsymbol{y}) - 2\boldsymbol{\phi} \log \left(\pi(\boldsymbol{\beta}) \right) \right\} \end{split}$$

Regressione Ridge e LASSO come Stimatori Bayesiani

Considerazioni sugli Stimatori Bayesiani

Altre distribuzioni a priori

• Diverse varianze a priori

$$\beta_j \sim \mathcal{N}(0, \sigma_j^2)$$

Diverse medie a priori

$$\beta_j \sim \mathcal{N}(\beta_{j0}, \sigma_j^2)$$

Altre distribuzioni a priori

$$\pi(\beta_j) = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{1}{2\sigma^2}\beta_j^2} & \text{if } \beta_j \ge 0\\ 0 & \text{altrimenti} \end{cases}$$

Vantaggi stimatori Bayesiani

- Introduzione informazione esterna ai dati con una robusta metodologia statistica
- Rimpiazzamento degli offset Scelgo σ_j^2 tale che $\hat{m{m{eta}}}^{MAP}=\hat{m{m{m{\beta}}}}^{ ext{offse}}$
 - Ho accortezza di quanto è forte la correzzione applicata
 - Se cambio qualche altro parametro e rifitto il modello, in automatico $\hat{\boldsymbol{\beta}}^{MAP}$ viene ristimato

Considerazioni sugli Stimatori Bayesiani

Altre distribuzioni a priori

• Diverse varianze a priori

$$\beta_j \sim \mathcal{N}(0, \sigma_j^2)$$

• Diverse medie a priori

$$\beta_j \sim \mathcal{N}(\beta_{j0}, \sigma_j^2)$$

Altre distribuzioni a priori

$$\pi(\beta_j) = \begin{cases} \frac{\sqrt{2}}{\sqrt{\pi}\sigma} e^{-\frac{1}{2\sigma^2}\beta_j^2} & \text{if } \beta_j \geq 0\\ 0 & \text{altrimenti} \end{cases}$$

Vantaggi stimatori Bayesiani

- Introduzione informazione esterna ai dati con una robusta metodologia statistica
- Rimpiazzamento degli offset Scelgo σ_j^2 tale che $\hat{oldsymbol{eta}}^{MAP}=\hat{oldsymbol{eta}}^{ ext{offset}}$
 - ▶ Ho accortezza di quanto è forte la correzzione applicata
 - Se cambio qualche altro parametro e rifitto il modello, in automatico $\hat{\boldsymbol{\beta}}^{MAP}$ viene ristimato

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning

Controlled trail infodem

3. Applicazione Pratica

Algoritmi di Machine Learning

Modelli di Machine Learning

- Gradient Boosting Machine (GBM)
- Random Forest (RF)
- Neural Network (NN)
- Altri . . .

Caratteristiche

 Funzione di regressione con minime assunzioni

$$E(Y_i) = \boldsymbol{f}(x_{i1}, \dots, x_{ip})$$

 Sofisticati algoritmi per prevenire l'overfitting

Algoritmi di Machine Learning

Modelli di Machine Learning

- Gradient Boosting Machine (GBM)
- Random Forest (RF)
- Neural Network (NN)
- Altri . . .

Caratteristiche

 Funzione di regressione con minime assunzioni

$$E(Y_i) = \boldsymbol{f}(x_{i1}, \dots, x_{ip})$$

 Sofisticati algoritmi per prevenire l'overfitting

Indice

1. Il Pricing nelle Assicurazioni Dann

2. Modelli Statistici per il Pricing nelle Assicurazioni Danni

Modelli Lineari Generalizzati (GLM) Modelli Additivi Generalizzati (GAM) Stimatori Shrinkage per i GLM Stimatori Bayesiani per i GLM Algoritmi di Machine Learning Confronto tra i modelli

3. Applicazione Pratica

Confronto tra i modelli

	GLM Classici	GBM/RF/NN	GLM Advancements
Interpretabilità	***		会会会
Controllo delle variabili	**	★ ☆☆	**
Utilizzo di informazioni esterne	***		**
Automazione e scalabilità		食食食	
Flessibilità		会会会	

L'importanza del Controllo delle Variabili nel Pricing

Il pricing si basa su

- Osservazioni sul portafoglio passato
- Assunzioni sul portafoglio futuro

Necessità tecniche per il controllo delle variabili

- Dati non rappresentativi del portafoglio futuro
- Stime con alta varianza su certi cluster

Necessità commerciali per il controllo delle variabil

- Vincoli normativi
- Pricing opzioni
- Aspettative del cliente
- Strategia di business

L'importanza del Controllo delle Variabili nel Pricing

Il pricing si basa su

- Osservazioni sul portafoglio passato
- Assunzioni sul portafoglio futuro

Necessità tecniche per il controllo delle variabili

- Dati non rappresentativi del portafoglio futuro
- Stime con alta varianza su certi cluster

Necessità commerciali per il controllo delle variabili

- Vincoli normativi
- Pricing opzioni
- Aspettative del cliente
- Strategia di business

Indice

- 1. Il Pricing nelle Assicurazioni Dann
- 2. Modelli Statistici per il Pricing nelle Assicurazioni Dann

Modelli Lineari Generalizzati (GLM)

Modelli Additivi Generalizzati (GAM)

Stimatori Shrinkage per i GLM

Stimatori Bayesiani per i GLM

Algoritmi di Machine Learning

Contronto tra i modelli

3. Applicazione Pratica

Dataset: Esposizione e Variabile Risposta

Origine del Dataset

Portafogio RCA costituito da polizze di una provincia italiana nel periodo 2014-2019

Set	Osservazioni	Esposizione (rischi anno)	Assicurati	Esposizione per Assicurato	Numero Sinistri	Frequenza Sinistri
Train	227 226	107 998.4	27 346	3.95	4 823	0.045
Test	56 603	26 806.3	6 824	3.93	1 131	0.042
Tot	283 829	134 804.7	34 170	3.95	5 954	0.044

Variabili esplicative

Descrizione	Numero di variabili per categoria
Informazioni sul veicolo assicurato	12
Informazioni generiche sull'assicurato	14
Informazioni assicurative sull'assicurato	9
Opzioni della polizza assicurativa	11
Informazioni sull'assicurato in quanto cliente	2
Dati telematici	4
Totale	52

Modelli e Valutazione

Modelli considerati

ld	Model
Mod1	GLM Tot
Mod2	Elastic Net Tot
Mod3	Ridge Tot
Mod4	GLM AIC
Mod5	Elastic Net AIC
Mod6	GAM AIC
Mod7	GBM Tot

Valutazione

Metrica di confronto:

Devianza della distribuzione di Poissor calcolata sul test set

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = 2 \sum_{i=1}^{n} \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right\}$$

Modelli e Valutazione

Modelli considerati

ld	Model
Mod1	GLM Tot
Mod2	Elastic Net Tot
Mod3	Ridge Tot
Mod4	GLM AIC
Mod5	Elastic Net AIC
Mod6	GAM AIC
Mod7	GBM Tot

Valutazione

Metrica di confronto:

Devianza della distribuzione di Poisson calcolata sul test set

$$D(\hat{\boldsymbol{\beta}}, \boldsymbol{y}) = 2 \sum_{i=1}^{n} \left\{ y_i \log \left(\frac{y_i}{\hat{\mu}_i} \right) - (y_i - \hat{\mu}_i) \right\}$$

Elastic Net: Tuning degli Iperparametri

Risultati

ld	Model	Test Deviance	Time	α	λ
Mod1	GLM Tot	8 458 147	2.7s	0	0
Mod2	Elastic Net Tot	8 458 024	1h 30m	0.06	2.01e-04
Mod3	Ridge Tot	8 457 465	1h 30m	0	4.64e-04
Mod4	GLM AIC	8 458.023	7h 27m	0	0
Mod5	Elastic Net AIC	8 458.236	8h 54m	0	1.63e-05
Mod6	GAM AIC	9 728.570	7h 45m	0	0
Mod7	GBM Tot	8 504.178	2h 30m		

Conclusioni

Possibili Sviluppi

- ullet Utilizzare diverse distribuzioni a priori per i diversi eta_j
- Considerare interazioni
- Ulteriore esplorazione sui GAM
- Modelli geografici
- Implementare i modelli su dataset più grandi con adeguate implementazioni informatiche

Grazie per l'attenzione

Backup

Elastic Net AIC: Tuning degli Iperparametri

Elastic Net AIC: Tuning degli Iperparametri

Confronto tra i coefficienti

Confronto tra i coefficienti: outlier

model	value
GLM Tot	-6.447
EN Tot	0.000
Ridge Tot	-0.003
GLM AIC	-6.574
EN AIC	-0.095

Coefficienti azzerati

GLM Tot	Elastic Net Tot	GLM AIC	n		
$\neq 0$	$\neq 0$	$\neq 0$	51		
$\neq 0$	$\neq 0$	0	48	121	
$\neq 0$	0	$\neq 0$	6	121	
$\neq 0$	0	0	16		
0	$\neq 0$	0	23	20	
0	0	0	15	38	

