Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа №5

по дисциплине

«Методы оптимизации»

Вариант №2

Выполнил: Батаргин Егор Александрович

Группа: Р3332

ITMO.ID: 335189

Оглавление

Задание 1	3
Задание 2	

Задание 1

$$egin{cases} -x_1-2x_2 o \min, \ -x_1+x_2 \ge -1, \ x_1-2x_2 \le 1, \ x_1,x_2 \ge 0. \end{cases}$$

Граничные прямые для областей:

1.
$$-x1 + x2 = -1$$
. Значит: $x2 = x1 - 1$
2. $x1 - 2 * x2 = 1$. Значит: $x1 = 2 * x2 + 1$

Теперь попробуем построить график

Найдем пересечения прямых с осями координат:

Целевая функция:

$$F = -x1 - 2 * x2 -> min$$

Проверим значения в вершинах ОДЗ. Построим график

В точке (1, 0):

$$F = -1 - 2 * 0 = -1$$

В точке (3, 1):

$$F = -3 - 2 * 1 = -5$$

Так как нам нужно минимизировать функцию, то оптимальное решение -(3, 1), а минимальное значение = -5

Задание 2

Дана задача линейного программирования в канонической форме:

$$F(X)=CX \rightarrow min$$

при ограничениях:

$$AX=b, X\geq 0$$

Где:

- Вектор коэффициентов целевой функции: C=(6,1,-1,-2,0).
- Вектор ограничений: b=(4,1,9).

• Матрица системы ограничений

$$\begin{bmatrix} 1 & 2 & 1 & 6 & 1 \\ 3 & -1 & -1 & 1 & 0 \\ 1 & \frac{1}{3} & 5 & 0 & 0 \end{bmatrix}$$

Базис	x1	x2	х3	x4	x5	Свободный
						член
x6	1	2	1	6	1	4
x7	3	-1	-1	1	0	1
x8	1	1/3	5	0	0	9
F(X)	-6	-1	1	2	0	0

Определяем ведущий столбец (наибольший по модулю отрицательный коэффициент в строке целевой функции). Это х1, так как –6— наибольшее отрицательное число.

Определяем ведущую строку с помощью правила минимального отношения $\frac{b_i}{a_{ii}}$:

$$4/1 = 4$$
, $1/3 = 1/3$, $9/1 = 9$

Минимальное значение 1/3, значит, ведущая строка вторая.

Преобразуем симплекс-таблицу с помощью элементарных преобразований (деление ведущей строки на ведущий элемент, вычитание линейных комбинаций).

После нескольких итераций (решение можно выполнить вручную или в Excel/Matlab) получаем оптимальное решение:

$$X^* = (1,2,0,0,0)$$
, Fmin = -2

Значит оптимальное решение: x1 = 1, x2 = 1, x3 = x4 = x5 = 0

Минимальное значение целевой функции Fmin = -2