Ce qu'il faut savoir du cours d'Algèbre Linéaire de D.Thomine

Floryan Jourdan

8 novembre 2023

Définition 1. Soit E un espace vectoriel et $V \subset E$. \mathcal{V} est un sous espace affine de E s'il existe un sous espace vectoriel $V \subset E$ et $a \in E$ tels que $\mathcal{V} = a + V = \{a + v \mid v \in V\}$.

Rappel:

```
Une représentation paramétrique de \mathcal{V} est une écriture de la forme \mathcal{V} = a + vect(v_1, ..., v_k) ou \mathcal{V} = a + \mathbb{R}v_1 + ... + \mathbb{R}v_k ou \mathcal{V} = \{a + t_1v_1 + ... + t_kv_k \mid t_1, ..., t_k \in \mathbb{R}\} où (v_1, ..., v_k) est libre.
```

Exercice 1. Soit \mathcal{V} un sous espace affine de \mathbb{R}^n de direction V. Montrer que si $P \in \mathcal{V}$, alors \mathcal{V} est le sous espace affine passant par P et de direction V. Solution: P158 L1,

Exercice 2. Montrer que si \mathcal{V} est un sous espace affine de \mathbb{R}^n alors sa direction est l'ensemble des vecteurs PQ, où P et Q sont des points de \mathcal{V} . Solution :

Exercice 3.