

Blockchain Principles and Applications

Amir Mahdi Sadeghzadeh, PhD

Data and Network Security Lab (DNSL)
Trustworthy and Secure AI Lab (TSAIL)

Recap

Fruitchains

Main idea: separate transactions (& their rewards) from blocks in the longest chain

Cryptographic Sortition

How to do PoW for both types of blocks simultaneously?

Optimal chain quality

Scaling Throughput

Bitcoin Tx per second

≈4200 Tx/block 1 block / 10 mins

 \Rightarrow max: 7 Tx/sec

Ethereum Tx per second

Ethereum avg Tx per second:

Simple Tx: 21k Gas max 30M Gas per block

⇒ max 1428 tx/block

1 Block/12s

 \Rightarrow max 119 tx/s

≈ 15 Tx/sec

In comparison ...

Visa: up to 24,000 Tx/sec (regularly 2,000 Tx/sec)

PayPal: 200 Tx/sec

Ethereum: 15 Tx/sec

Bitcoin: 7 Tx/sec

Goal: scale up blockchain Tx speed

Idea 3: Prism 1.0 or Fruitchains

Bitcoin-NG is a good idea: it separated security from payload/data Prism 1.0 is similar to Bitcoin-NG

- Consist of proposer blocks and transaction blocks
 But
- Transaction blocks are not linked but referred by proposer blocks
- The PoW for transaction blocks is easy for throughput
- The PoW for proposer blocks is hard for security

Scaling Latency

Bitcoin latency

Time from when a transaction was broadcast until the transaction is confirmed in the ledger

- τ_1 : Time from when a transaction was broadcast until the transaction is put into a mined block B
- τ_2 : Time from when the transaction was put into a mined block B until block B is k-deep in the longest chain

$$\tau = \tau_1 + \tau_2$$

 τ_2 is the real bottleneck, depends on how large k is.

Bitcoin latency

Assume low forking (
$$\lambda\Delta\ll 1$$
),
$$\tau=\frac{k}{(1-\beta)\lambda}$$
 Depth of blocks From Lecture 6, error probability Block arrival rate

$$\tau = \frac{\frac{1}{c}\log(\frac{1}{\epsilon})}{(1-\beta)\lambda} = O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$$

Latency and security are coupled

Bitcoin latency

$$\tau = O(\frac{1}{\lambda}\log(\frac{1}{\epsilon}))$$

Bitcoin: $\frac{1}{\lambda}$ = 10 minutes

Improve Bitcoin latency

Only way to improve latency is to

- reduce k; but this reduces security
- Increase λ ; but this also reduces security

Ethereum:
$$\frac{1}{\lambda} = 15s$$
; $k = 100$

- latency = 25 minutes
- Way better than Bitcoin performance; improvement simply by picking better parameters.

Improve Bitcoin latency

Question: can we make relatively small changes to the longest chain protocol and PoW mining while scaling latency?

Key Requirement:

- Do not want latency to depend on security level
- Decouple security from latency

Prism

Prism achieves optimal latency

Decoupling principle: separate performance from security

Prism 1.0 achieves optimal throughput; last lecture

Decoupling voting

k-deep confirmation rule is a form of voting

Satoshi's Table

q=0.3 z=0 P=1.0000000 z=5 P=0.1773523 z=10 P=0.0416605 z=15 P=0.0101008 z=20 P=0.0024804 z=25 P=0.0006132

1 deep => .45 25 deep => 0.0006 Can think of one block = one vote underneath B

k-deep = k votes in sequence

Really need k large to sample the miners

Bitcoin → Deconstruct

Voting Proposing Ledger construction vote

- 1. Select votes along longest voter chain
- 2. Order the proposer blocks by votes

Bitcoin -> Deconstruct -> Prism

Ledger Construction: For each level choose the proposer block with maximum votes

Prism

- Proposal rule: longest chain
- Voting rule:
 - a) each voter chain votes for one and only one proposer block at each level
 - b) each voter block votes for all the proposer levels that have not been voted by its parent.
- Mining rule: honest miner picks to be proposer/voter/transaction block at random

Cryptographic sortition

How do you prevent adversary from m focusing its mining power on a specific type of blocks or on a specific voter chain?

Superblock

header Proposer block content Tx block content Voter block 1 content ... Voter block m content

 $h < T_{prop}$

 $T_{prop} \leq h < T_{prop} + T_{tx}$

header Tx block

header Voter block i content

Fast confirmation

Ledger Construction: For each level choose the proposer block with maximum votes

Resources

• ECE/COS 470, Pramod Viswanath, Princeton 2024