Starting values for different sets of iteration

Fixed geometry parameter	$\alpha_{Th}/\alpha_{Tv}=5$	$\alpha_{Th}/\alpha_{Tv}=10$	$\alpha_{Th}/\alpha_{Tv}=15$	$\alpha_{Th}/\alpha_{Tv}=20$
$W_s = 1$	$x_s = L_{max} / 3, y_s = W_s * 1.2$			
$W_s = 2$	$x_s = L_{max} / 3,$ $y_s = W_s * 1.3$	$x_s = L_{max} / 3,$ $y_s = W_s * 1.2$	$x_s = L_{max} / 3,$ $y_s = W_s * 1.3$	$x_s = L_{max} / 3,$ $y_s = W_s * 1.2$
$W_s = 3$	$x_s = L_{max} / 5, y_s = W_s * 1.3$			
$W_s = 4$	$x_s = L_{max} / 6, y_s = W_s * 1.3$			
$W_s = 5$	$x_s = L_{max} / 7,$ $y_s = W_s * 1.2$	$x_s = L_{max} / 6,$ $y_s = W_s * 1.3$	$x_s = L_{max} / 7, y_s = W_s * 1.3$	
$M_s = 1$	$x_s = L_{max} / 6, y_s = W_s * 1$		$x_s = L_{max} / 5,$ $y_s = W_s * 1$	$x_s = L_{max} / 6,$ $y_s = W_s * 1$
$M_s = 2$	$x_s = L_{max} / 6,$ $y_s = W_s * 1.1$	$x_s = L_{max} / 6, y_s = W_s * 1.2$ $x_s = L_{max} / 6, y_s = W_s * 1.1$		
$M_s = 3$	$x_s = L_{max} / 6,$ $y_s = W_s * 1.2$	$x_s = L_{max} / 6,$ $y_s = W_s * 1.1$	$x_s = L_{max} / 6, y_s = W_s * 1.2$	
$M_s = 4$	$x_s = L_{max} / 4$, $y_s = W_s * 1.2$		$x_s = L_{max} / 6, y_s = W_s * 1.2$	
$M_s = 5$	$x_s = L_{max} / 4,$ $y_s = W_s * 1.2$	$x_s = L_{max} / 4$, $y_s = W_s * 1.25$		

The paper uses the following symbols:

$$S_w = W_s$$

$$S_t = M_s$$

$$X_s = X_{wmax}$$

$$Y_s = W_{max}$$

This work was part of a MSc. thesis of Mr. Pawan Kumar Sapkota (HTW) completed with supervision from Dr. P. K. Yadav and Prof. R. Liedl (both TUD) and Prof. T. Grischek (HTW)