Thermo

Thermodynamik 1

Tutorium 1

Thermodynamische Begriffe und Grundlagen

Fakultät III – Prozesswissenschaften

Größen

Zustandsgrößen

- beschreiben den Zustand eines Systems
- z.B. Druck, Temperatur, Dichte,
 Masse, innere Energie, ...

Prozessgrößen

- beschreiben den Prozess
 zwischen zwei Zuständen
 (Zustandsänderung)
- z.B. Wärme(strom),
 Arbeit/Leistung

Zustandsgrößen

extensiv

intensiv

- ändern sich bei einer Teilung des Systems
- z.B. Masse, Volumen, Energie

- ändern sich bei einer Teilung des Systems NICHT
- z.B. Druck, Temperatur,
 Dichte

<u>Beispiel:</u> Teilt man einen Vorlesungsraum durch Einziehen einer Wand in zwei Hälften, wäre das Volumen bzw. die Masse der Luft in beiden Teilen halb so groß wie im gesamten Raum. Temperatur, Druck und Dichte der Luft würden jedoch gleich bleiben.

Thermo

Spezifische Größen

- beziehen sich auf eine Bezugsgröße (Masse/Stoffmenge)
- z.B. massenspezifische innere Energie

$$u = \frac{U}{m} \qquad [u] = \frac{J}{kg}$$

⇒ spezifische Größen sind intensive Größen

Erhaltungsgrößen

- können weder erzeugt noch vernichtet werden
- Energie und Masse sind demnach Erhaltungsgrößen
 - ➡ Energie-, Massenerhaltung

Systemeigenschaften

- abgeschlossen: kein Energie-/Stofftransport über die Systemgrenze
- **geschlossen**: nur Energietransport über die Systemgrenze möglich
- offen: Energie- und Stofftransport über die Systemgrenze möglich

Begriffe der Systemanalyse

- Systemgrenze: grenzt das System von der thermodynamischen Umgebung ab
- adiabat: kein Wärmetransport über die Systemgrenze
 ⇒ perfekt isoliert
- Phase: homogener Bereich mit räumlich konstanten Eigenschaften (Dichte, Zusammensetzung, ...)