Vv557 Methods of Applied Mathematics II Green Functions for Partial Differential Equations

Assignment 3

Date Due: 1:00 PM, Thursday, the 21st of March 2018

This assignment has a total of (14 Marks).

Exercise 3.1

Calculate the Fourier transforms of the following elements in $L^1(\mathbb{R})$ (the theory of distributions is not needed):

i)
$$\Pi_{a,b}(x) = \begin{cases} 1 & a < x < b, \\ 0 & \text{otherwise}, \end{cases}$$
, $a, b \in \mathbb{R}$.

ii)
$$e^{-a|x|}, a > 0.$$

iii)
$$e^{-ax^2}$$
, $a > 0$.

iv)
$$\cos(x)e^{-x^2}$$
.

v)
$$\cos(2x)/(4+x^2)$$
.

vi) the convolution of
$$xe^{-x^2}$$
 and e^{-x^2} .

(5 Marks)

Exercise 3.2

Calculate the Fourier transforms of the following elements in $\mathcal{S}'(\mathbb{R})$:

i)
$$\begin{cases} e^{-\varepsilon x} & x \ge 1, \\ 0 & x < 1, \end{cases} \quad \varepsilon > 0,$$

ii)
$$\sin(3x-2)$$
,

iii)
$$x^2 \cos(x)$$
,

iv)
$$xH(x-2)$$
,

v)
$$x^2\delta(x-1)$$
.

(5 Marks)

Exercise 3.3

Consider the wave equation problem for a function $u: \mathbb{R}^2 \to \mathbb{R}$,

$$u_{tt} - u_{xx} = 0,$$
 $u(x,0) = f(x),$ $u_t(x,0) = g(x)$

where $f, g \in \mathcal{S}'(\mathbb{R})$ are given. Take the Fourier transform of the equation with respect to the x-variable to obtain an ODE in the t-variable and solve the ODE to obtain

$$\widehat{u}(\xi, t) = \widehat{f}(\xi)\cos(\xi t) + \frac{\widehat{g}(\xi)}{\xi}\sin(\xi t).$$

Then calculate the inverse Fourier transform (in the distributional sense) to obtain a solution formula for u(x,t). (4 Marks)