

UNIVERSIDADE FEDERAL DO PIAUÍ - UFPI CAMPUS MINISTRO PETRÔNIO PORTELA – TERESINA CENTRO DE CIÊNCIAS DA NATUREZA- CCN DEPARTAMENTO DE QUÍMICA

CONCEITOS BÁSICOS DE LIGAÇÕES QUÍMICA

Teresina, PI

Ligações Químicas

São forças que unem átomos formandos moléculas, agrupamentos de átomos ou sólidos iônicos.

Os elétrons mais externos do átomo são os responsáveis pela ocorrência da ligação química.

Ligações Químicas

Quebram-se facilmente

vidro

Difícil de quebrar

aço

As ligações químicas tem forte influência sobre diversas propriedades dos materiais.

Conduzem corrente elétrica

metais

Isolantes

Ligações Químicas

- Ligação química: é a força atrativa que mantém dois ou mais átomos unidos.
- Ligação covalente: resulta do compartilhamento de elétrons entre dois átomos.
 - Normalmente encontrada entre elementos não-metálicos.
- Ligação iônica: resulta da transferência de elétrons de um metal para um nãometal.
- Ligação metálica: é a força atrativa que mantém metais puros unidos.

Símbolos de Lewis

- Para um entendimento através de figuras sobre a localização dos elétrons em um átomo, representamos os elétrons como pontos ao redor do símbolo do elemento.
- O número de elétrons disponíveis para a ligação é indicado por pontos desemparelhados.
- Esses símbolos são chamados símbolos de Lewis.
- Geralmente colocamos os elétrons nos quatro lados de um quadrado ao redor do símbolo do elemento.

Símbolos de Lewis

TABELA 8.1 Símbolos de Lewis					
Elemento	Configuração eletrônica	Símbolo de Lewis	Elemento	Configuração eletrônica	Símbolo de Lewis
Li	$[He]2s^1$	Li·	Na	$[Ne]3s^1$	Na ·
Be	$[He]2s^2$	·Be·	Mg	$[Ne]3s^2$	·Mg·
В	[He] $2s^22p^1$	٠Ġ٠	Al	[Ne] $3s^23p^1$	·Àl·
C	[He] $2s^22p^2$	·ċ·	Si	[Ne] $3s^23p^2$	·Ṣi·
N	[He] $2s^22p^3$	·Ņ:	P	$[Ne]3s^23p^3$	·P·
O	[He] $2s^22p^4$: Ċ :	S	[Ne] $3s^23p^4$: Ṣ :
F	[He] $2s^22p^5$	٠ <u>Ë</u> :	Cl	[Ne] $3s^23p^5$	· Ël:
Ne	$[He]2s^22p^6$:Ņe:	Ar	$[Ne]3s^23p^6$:Är:

A regra do octeto

- Todos os gases nobres, com exceção do He, têm uma configuração s^2p^6 .
 - A regra do octeto: os átomos tendem a ganhar, perder ou compartilhar elétrons até que eles estejam rodeados por 8 elétrons de valência (4 pares de elétrons).
 - Cuidado: existem várias exceções à regra do octeto.

Símbolos de Lewis

- Para um entendimento através de figuras sobre a localização dos elétrons em um átomo, representamos os elétrons como pontos ao redor do símbolo do elemento.
- O número de elétrons disponíveis para a ligação é indicado por pontos desemparelhados.
- Esses símbolos são chamados símbolos de Lewis.
- Geralmente colocamos os elétrons nos quatro lados de um quadrado ao redor do símbolo do elemento.

Símbolos de Lewis

TABELA 8.1 Símbolos de Lewis					
Elemento	Configuração eletrônica	Símbolo de Lewis	Elemento	Configuração eletrônica	Símbolo de Lewis
Li	$[He]2s^1$	Li·	Na	$[Ne]3s^1$	Na ·
Be	$[He]2s^2$	·Be·	Mg	$[Ne]3s^2$	·Mg·
В	[He] $2s^22p^1$	٠Ġ٠	Al	[Ne] $3s^23p^1$	·Àl·
C	[He] $2s^22p^2$	·ċ·	Si	[Ne] $3s^23p^2$	·Ṣi·
N	[He] $2s^22p^3$	·Ņ:	P	$[Ne]3s^23p^3$	·P·
O	[He] $2s^22p^4$: Ċ :	S	[Ne] $3s^23p^4$: Ṣ :
F	[He] $2s^22p^5$	٠ <u>Ë</u> :	Cl	[Ne] $3s^23p^5$	· Ël:
Ne	$[He]2s^22p^6$:Ņe:	Ar	$[Ne]3s^23p^6$:Är:

Mecânica quântica e orbitais atômicos

- Se resolvermos a equação de Schrödinger, teremos as funções de onda e as energias para as funções de onda.
- Chamamos as funções de onda de *orbitais*.
 - A equação de Schrödinger necessita números quânticos:
 - 1. Número quântico principal, n. Este é o mesmo n de Bohr. À medida que n aumenta, o orbital torna-se maior e o elétron passa mais tempo mais distante do núcleo.

Mecânica quântica e orbitais atômicos

- **2. O número quântico azimuthal,** l. Esse número quântico depende do valor de n. Os valores de l começam de 0 e aumentam até n -1. Normalmente utilizamos letras para l (s, p, d e f para l = 0, 1, 2, e 3). Geralmente nos referimos aos orbitais s, p, d e f.
- **3. O** número quântico magnético, m_l . Esse número quântico depende de l. O número quântico magnético tem valores inteiros entre -l e +l. Fornecem a orientação do orbital no espaço.

Mecânica quântica e orbitais atômicos

TABELA 6.2 Relação entre os valores de n , l e m_l até $n=4$						
n	Valores possíveis de <i>l</i>	Designação do subnível	Valores possíveis de m_l	Número de orbitais no subnível	Número total de orbitais no nível	
1	0	1 <i>s</i>	0	1	1	
2	0	2s	0	1		
	1	2 <i>p</i>	1, 0, –1	3	4	
3	0	3s	0	1		
	1	3 <i>p</i>	1, 0, –1	3		
	2	3 <i>d</i>	2, 1, 0, –1, –2	5	9	
4	0	4s	0	1		
	1	4p	1, 0, –1	3		
	2	4d	2, 1, 0, –1, –2	5		
	3	4 <i>f</i>	3, 2, 1, 0, –1, –2, –3	7	16	

Orbitais e Números Quânticos

4-Número Quântico de Spin (ms)

Esse número determina o sentido do giro de rotação do elétron em torno do seu próprio eixo.

Valores: ms = +1/2 e ms = -1/2

Orbitais e números quânticos

Spin eletrônico

TABELA 6.2 Relação entre os valores de n , l e m_l até n = 4					
n	Valores possíveis de <i>l</i>	Designação do subnível	Valores possíveis de m_l	Número de orbitais no subnível	Número total de orbitais no nível
1	0	1 <i>s</i>	0	1	1
2	0	2s	0	1	
	1	2 <i>p</i>	1, 0, –1	3	4
3	0	3s	0	1	
	1	3 <i>p</i>	1, 0, –1	3	
	2	3 <i>d</i>	2, 1, 0, –1, –2	5	9
4	0	4s	0	1	
	1	4p	1, 0, –1	3	
	2	4d	2, 1, 0, –1, –2	5	
	3	4 <i>f</i>	3, 2, 1, 0, –1, –2, –3	7	16

n= 1, 2, 3,	4,
/ = 0, 1, 2, m = -1,,	.4, , n-1 (s, p, d, f,) 0,, +1
$m_s = +\frac{1}{2}, -\frac{1}{2}$	1/2

s:			
p:			
	d:	 	
	f:		

Ex.:
$$1s^2$$

$$n = 1$$
; $l = 0$ (subcamada s); $m_l = 0$; $m_s = +\frac{1}{2}$

$$n = 1$$
; $I = 0$ (subcamada s); $m_I = 0$; $m_S = -\frac{1}{2}$

TABELA PERIÓDICA

gases inertes

deficiência de 1 e 2 e

1 e 2 e

metais de transição

CONFIGURAÇÃO

Estado fundamental → quando todos os elétrons ocupam as menores energias possíveis de acordo com as restrições anteriores;

Elétrons de valência \rightarrow são aqueles que ocupam a camada eletrônica mais externa.

CONFIGURAÇÃO ELETRÔNICA

$$_{6}$$
 C \longrightarrow 1s² 2s² 2p²

$$\longrightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$$

₃₅Br

 \rightarrow 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰4s² 4p⁵

LIGAÇÕES PRIMÁRIAS – LIGAÇÃO IÔNICA

Ocorre entre elementos metálicos que tendem a perder elétrons (cátions) e não-metálicos que tendem a ganhar elétrons (ânions).

LIGAÇÃO IÔNICA

- A ligação é não-direcional e as forças são de origem eletrostática;
- A ligação predominantemente nos materiais cerâmicos é a iônica.
- → A energia de ligação são relativamente elevadas, na faixa de 600 a 1500 kJ/mol.

Ligação iônica

Considere a reação entre o sódio e o cloro:

Na(s) +
$$\frac{1}{2}$$
Cl₂(g) \rightarrow NaCl(s) ΔH°_{f} = -410,9 kJ

$$\Delta H_{f}^{\circ} = -410.9 \text{ kJ}$$

Ligação iônica

- A reação é violentamente exotérmica.
- Inferimos que o NaCl é mais estável do que os elementos que o constituem. Por quê?
 - O Na perdeu um elétron para se transformar em Na⁺ e o cloro ganhou o elétron para se transformar em Cl⁻. Observe: Na⁺ tem a configuração eletrônica do Ne e o Cl⁻ tem a configuração do Ar.
- Isto é, tanto o Na⁺ como o Cl⁻ têm um octeto de elétrons circundando o íon central.

Ligação iônica

- O NaCl forma uma estrutura muito regular na qual cada íon Na⁺ é circundado por 6 íons Cl⁻.
- Similarmente, cada íon Cl⁻ é circundado por seis íons Na⁺.
- Há um arranjo regular de Na⁺ e Cl⁻ em 3D.
- Observe que os íons são empacotados o mais próximo possível.
- Observe que não é fácil encontrar uma fórmula molecular para descrever a rede iôniça.

- Quando dois átomos similares se ligam, nenhum deles quer perder ou ganhar um elétron para formar um octeto.
- Quando átomos similares se ligam, eles compartilham pares de elétrons para que cada um atinja o octeto.
- Cada par de elétrons compartilhado constitui uma ligação química.
- Por exemplo: $H + H \rightarrow H_2$ tem elétrons em uma linha conectando os dois núcleos de H.

O comprimento e força da ligação química resultam do equilíbrio devido à repulsão entre cargas iguais e atração entre cargas opostas.

Estruturas de Lewis

• As ligações covalentes podem ser representadas pelos símbolos de Lewis dos elementos:

Nas estruturas de Lewis, cada par de elétrons em uma ligação é representado por uma única linha:

Ligações múltiplas

- É possível que mais de um par de elétrons seja compartilhado entre dois átomos (ligações múltiplas):
 - Um par de elétrons compartilhado = ligação simples (H₂);
 - Dois pares de elétrons compartilhados = ligação dupla (O_2) ;
 - Três pares de elétrons compartilhados = ligação tripla (N_2) .

• Em geral, a distância entre os átomos ligados diminui à medida que o número de pares de elétrons compartilhados aumenta.

LIGAÇÃO METÁLICA

- ✓ A ligação resultante é não direcional;
- Os elétrons de valência passam a se comportar como elétrons "livres"
- Formam uma "nuvem eletrônica".
- ✓ Encontrada em metais e suas ligas.

Características dos Compostos Metálicos.

- > Alta condutividade elétrica e térmica.
- Permitem grande deformação plástica pois as ligações são móveis ou seja não são rígidas como as iônicas e as covalentes.
- Possuem o brilho metálico, como os elétrons são muito móveis trocam de nível energético com facilidade emitindo fótons.

Aço - Fe e C.
Aço inoxidável - Fe, C , Cr e Ni.
Amálgama dental - Hg, Ag e Sn
Bronze — Cu e Sn
Latão — Cu e Zn

- Em uma ligação covalente, os elétrons estão compartilhados.
- O compartilhamento de elétrons para formar uma ligação covalente não significa compartilhamento igual daqueles elétrons.
- Existem algumas ligações covalentes nas quais os elétrons estão localizados mais próximos a um átomo do que a outro.
 - O compartilhamento desigual de elétrons resulta em ligações polares.

Eletronegatividade

- **Eletronegatividade:** é a habilidade de um átomo de atrair elétrons para si *em certa molécula* .
- Pauling estabeleceu as eletronegatividades em uma escala de 0,7 (Cs) a 4,0 (F).
 - A eletronegatividade aumenta:
 - ao logo de um período e
 - ao/subir em um grupo.

Eletronegatividade e polaridade de ligação

- A diferença na eletronegatividade entre dois átomos é uma medida da polaridade de ligação:
 - as diferenças de eletronegatividade próximas a 0 resultam em ligações covalentes apolares (compartilhamento de elétrons igual ou quase igual);
 - as diferenças de eletronegatividade próximas a 2 resultam em ligações covalentes polares (compartilhamento de elétrons desigual);
 - as diferenças de eletronegatividade próximas a 3 resultam em ligações iônicas (transferência de elétrons).

Eletronegatividade e polaridade de ligação

- Não há distinção acentuada entre os tipos de ligação.
- A extremidade positiva (ou polo) em uma ligação polar é representada por δ + e o polo negativo por δ -.

>ATIVIDADE DE FIXAÇÃO

- 1- Determine a formula do composto binário estavel formado pela reação do Nitrogênio com o Flúor, e desenhe a correspondente estrutura de Lewis.
- 2. O elemento "A" possui número atômico igual a 6, enquanto o elemento "B" possui número atômico igual a 8. A molécula que representa corretamente o composto formado por esses dois elementos é:
- 3. À molécula de água, H₂O, pode-se adicionar o próton H⁺, produzindo o íon hidrônio H₃O⁺.

$$H - \ddot{O} - H + H^+ \rightarrow \begin{pmatrix} H - \ddot{O} - H \\ H \end{pmatrix}^+$$

Formação do íon hidrônio

No hidrônio, quantos pares de elétrons pertencem, no total, tanto ao hidrogênio quanto ao oxigênio?