# STL (Theory) – Outer Loop

Time series decomposition

### The main idea



### Outer loop summary

#### **Outer loop**

#### **ITERATE**

- Extract seasonal(t) and trend(t) from inner loop
- 2. Compute residuals:
  y(t) trend(t) seasonal(t)
- 3. Compute weights from residuals  $\rho_t$  to pass to LOESS in the inner loop . This is to down-weight outliers.



### Outer loop summary

#### **Outer loop**

#### ITERATE

- Extract seasonal(t) and trend(t) from inner loop
- Compute residuals: y(t) – trend(t) – seasonal(t)
- 3. Compute weights from residuals  $\rho_t$  to pass to LOESS in the inner loop . This is to down-weight outliers.



### Compute weights from residuals

- 1. Compute residuals:  $R_t = y_t T_t S_t$
- 2. Compute robustness weights:  $\rho_t = B(\frac{|R_t|}{h})$  where  $h = 6 \times median(|R_t|)$
- 3. Use  $\rho_t$  as robustness weights in LOESS in the inner loop for 1) cycle-subseries smoothing and 2) trend smoothing. For the first iteration set  $\rho_t=1$

$$B(x) = \frac{(1 - x^2)^2, |x| < 1}{0, \quad |x| \ge 1}$$



### Outer loop summary



### Parameters from outer loop

| Symbol | Statsmodels | Description                                          | Typical value                      |
|--------|-------------|------------------------------------------------------|------------------------------------|
| $n_o$  | outer_iter  | Number of iterations in the outer loop               | 1 or 2                             |
| N/A    | robust      | A flag to indicate whether to use robustness weights | Set true if suspect outliers exist |

### The main idea



## STL extracts the seasonality and trend iteratively using LOESS

### Summary

STL is robust to outliers

There are two main parameters to set in practice, the remaining default parameters are normally sufficient

The seasonal component can vary in time and is not necessarily periodic