Correlation Power Analysis Attack on AES-128 Encryption

Last-Round Key Recovery Using Hamming Distance Leakage Model

Shubham Rawat 251110060

Sankalp Sharma 251110063

Kajal Kumari 251110040

Divakar Bajpai 251110029

Venkatesh Kumar 251110617

Abstract

This report presents a comprehensive implementation and analysis of a Correlation Power Analysis (CPA) attack targeting the Advanced Encryption Standard (AES-128) cryptographic implementation. The attack exploits side-channel power consumption leakage during the last round of AES decryption to recover a single byte of the 10th round key. We employ the Hamming Distance (HD) leakage model, which captures the power consumption characteristics arising from bit transitions in hardware registers. Utilizing a dataset of 100,000 power traces containing plaintext-ciphertext pairs and corresponding power measurements, we successfully recovered byte 10 of the round key with value 0xCO.

1 Detailed procedure

1.1 Dataset Description

The experimental dataset consists of power traces collected during AES-128 encryption operations:

- Total Traces: 100,000 encryptions
- Samples per Trace: 1,249 time points
- Data Format: CSV file with columns:
 - Column 0: Plaintext (32 hex characters)
 - Column 1: Ciphertext (32 hex characters)
 - Columns 2-1250: Power measurements (floating-point values)
- Target: Byte 10 of the 10th round key

1.2 Hypothesis Matrix Construction

The build_H function generates the hypothesis matrix $H \in \mathbb{R}^{M \times 256}$:

Algorithm 1 Hypothesis Matrix Construction (Hamming Distance Model)

```
1: Input: Ciphertext bytes c \in \mathbb{R}^D, State bytes s \in \mathbb{R}^D, Number of traces D
2: Output: Hypothesis matrix H \in \mathbb{R}^{D \times 256}
3: Initialize H as zero matrix of size D \times 256
4: for each key guess k = 0 to 255 do
        for each trace i = 0 to D - 1 do
5:
            V \leftarrow c[i] \oplus k
                                                                     > XOR ciphertext with key guess
6:
            V \leftarrow \text{InvSBox}[V]
                                                                                   ▶ Apply inverse S-box
7:
            V \leftarrow s[i] \oplus V
                                                    ▶ Hamming Distance: XOR with previous state
8:
            H[i,k] \leftarrow \text{HammingWeight}(V)
                                                                               ▷ Count number of 1-bits
9:
10:
        end for
11: end for
12: \mathbf{return}\ H
```

1.3 Correlation Computation Algorithm

The run_cpa function computes correlations efficiently using matrix operations:

1.4 Byte Index Computation

For AES-128, ciphertext bytes are represented as 32-character hexadecimal strings. To extract byte b:

```
byte\_position = 2b: 2b+2 For byte 10, accounting for inverse ShiftRows transformation: inv\_shift = [0,5,10,15,4,9,14,3,8,13,2,7,12,1,6,11] \\ target\_byte = 10 \\ shifted\_position = inv\_shift[target\_byte]  # Position 10 \\ # Extract from hex string: positions 20:22
```

2 Implementation Details

2.1 Attack Execution

```
# Build hypothesis matrix using HD model
H_hd = build_H(c_bytes, usedD, s_bytes, model="HD")

# Run CPA attack
guess_hd, corr_hd = run_cpa(H_hd, T)

# Compute maximum correlation
max_corr_hd = np.max(np.abs(corr_hd))

# Display results
print(f"Byte_{\( \) \{ target_byte: 2d \}:_\( \) HD_\( \) guess_\( \)=_\( \{ guess_hd: 3d \}")
print(f"HD_\( \) guess_\( \)=_\( \) \{ guess_hd: 02X \},\( \) "
f"max_\( \) | corr \( \) \( \) \{ max_corr_hd: .4f \}")
```

2.2 Computational Complexity

The algorithm's time complexity is dominated by matrix multiplication:

- Hypothesis Construction: $O(M \times 256)$ where M = 100,000
- Correlation Computation: $O(256 \times M \times N)$ where N = 1,249
- Total Operations: Approximately 3.2×10^{10} floating-point operations

NumPy's optimized BLAS routines enable efficient execution on standard hardware.

3 Experimental Results and Conclusion

3.1 Key Recovery Results

The CPA attack successfully recovered byte 10 of the AES-128 round key:

Table 1: Attack Results Summary

Parameter	Value	Unit
Target Byte Index	10	-
Recovered Key Value (HD Model)	0xC0	hex
Decimal Value	192	dec
Maximum Absolute Correlation	0.0320	-
Number of Traces Used	100,000	traces
Samples per Trace	1,249	samples

3.2 Correlation Trace Analysis

Figure 1: Correlation vs Sample

Figure 2: Key Prediction through correlation