Mathematik Hausaufgaben zum 14. Dezember

Arne Beer, MN 6489196 Tim Overath, MN 6440863 Paul Bienkowski

January 16, 2013

Aufgabe 1

a)

Bei den beiden abgebildeten Graphen besteht kein Isomorphismus, da sich bei dem 1. Graph sechs 4-Kreise und beim 2. Graph sieben 4-Kreise bilden lassen

b)

Der erste und der dritte Graph sind isomoerph zueinander

Aufgabe 2

a)

 $\frac{10.9}{2} = 45$ Kanten

b)

 $\binom{10}{3}=120$ Kreise der Länge 3

c)

 $\binom{10}{4}=210$ Kreise der Länge 3

d)

Da jeder Knoten mit jedem anderen Knoten verbunden ist, entsteht der Graph H bei allen zufällig herausgegriffenen 4 Knoten. Es gibt dann aber bei solch einer Auswahl von 4 Knoten zwei Möglichkeiten, sie zu H anzuordnen. Also ist die Menge der Teilgraphen, isomorph zum abgebildeten Graphen H sind:

$$\binom{10}{4} \cdot 2 = 420$$

Aufgabe 1

a)

n=4

n=6

b)

Zwischen H_1 und $H_2:n^2$ Kanten H_1 besitzt $\frac{3\cdot n}{2}$ H_2 besitzt $\frac{n\cdot (n-1)}{2}$ Also ist die Gesamtkantenanzahl G:

$$G=n^2+\frac{3\cdot n}{2}+\frac{n\cdot (n-1)}{2}$$

$$G = \frac{2n^2 + 3n + n^2 - n}{2}$$

$$G = \frac{3}{2}n^2 + n$$

d)

Damit ein Graph eine Eulersche Linie hat, muss jeder Knoten einen geraden Grad haben. Alle Knoten von H1 haben den Grad 3 + n, weil von jedem Knoten, der sowieso schon den Grad 3 hat, noch einmal zu jedem Knoten von H_2 eine Kante besitzt. Da n gerade ist, ist der Gesamtgrad jedes Knotens von H_1 ungerade. Es gibt also auf keinen Fall eine Eulersche Linie.

Aufgabe 1

a)

$$|P(M)| = 2^4 = 16$$

 $P(M) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{b, d\}, \{c, d\} \{a, b, c\}, \{b, c, d\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\} \}$

b)

 $\mathbf{c})$

Der Graph ist isomorph zum Graph aus der Präsenzaufgabe 2 a). Hierbei beschreibt eine 1, dass sich das Element in der Teilmenge befindet. So ist zum Beispiel das Tupel (0,0,0,0) die Darstellung der leeren Menge \emptyset und (1,0,0,0) die Repräsentation der Teilmenge a.