

Probabilidad y estadística

Práctica 5

Variables bidimensionales - Covarianza - Cambios de variables

1. Se analizaron las longitudes y los anchos de la bandeja de plástico rectangular para un CD que está instalada en una computadora personal. Las mediciones se redondearon al milímetro mas cercano. Sean X:"la longitud medida" e Y:"el ancho medido". La f.d.p. conjunta de (X,Y) está dada por:

y / x	129	130	131
15	0.12	0.42	0.06
16	0.08	0.28	0.04

- (a) ¿Cuál es la probabilidad de que una cubierta de CD tenga una dimensión de 130 x 16 mm?
- (b) Hallar las distribuciones marginales de X e Y, k(x) y q(y).
- (c) Determine la probabilidad de que la cubierta del CD tenga una longitud de 129 mm.
- (d) Determine la probabilidad de que una cubierta de CD tenga un ancho de 16 mm.
- (e) Hallar E(X), E(Y), V(X), V(Y).
- (f) Calcular la f.d.p. condicional P(Y/X=130). ¿Son X e Y independientes?. Explique.
- 2. Un software puede hacer llamadas a dos subrutinas A y B. En una ejecución elegida al azar, sean X: "número de llamadas hechas a la subrutina A"
 - Y: "número de llamadas hechas a la subrutina B"

La f.d.p. conjunta de (X, Y) está dada por:

x / y	1	2	3
1	0.15	0.10	0.10
2	0.10	0.20	0.15
3	0.05	0.05	0.10

- (a) Determine k(x) y q(y).
- (b) Determine E(X), E(Y), V(X), V(Y).
- (c) Determine cov(X, Y). Son $X \in Y$ independientes?. Explique.
- (d) Hallar el coeficiente de correlación ρ_{XY} .
- (e) Hallar la matriz de covarianza, C_{XY} .
- 3. Con referencia al ejercicio anterior:
 - (a) Calcular E(X+Y) y V(X+Y).
 - (b) Calcular la probabilidad de que el total de llamadas (X + Y) sea igual a 4.
 - (c) Calcular la probabilidad de que el número de llamadas a la subrutina A sea mayor que el número de llamadas a la subrutina B.
- 4. Se toman dos cursos A y B, y el número de desaprobados de los dos cursos son variables independientes. Sean:
 - X:"número de desaprobados en el curso A"
 - Y:"número de desaprobados en el curso B".

Las distribuciones están dadas por:

	\overline{x}	0	1	2	3
p	(x)	0.30	0.25	0.25	0.20

y	0	1	2	3
p(y)	0.40	0.20	0.15	0.25

- (a) Hallar la f.d.p. conjunta de (X, Y)
- (b) Hallar la probabilidad de que el número de desaprobados en ambas aulas sea el mismo.
- (c) Hallar la probabilidad de que el número de desaprobados en el aula A sea mayor al número de desaprobados en el aula B.
- 5. El tiempo de vida de un cierto componente, en años, tiene una función de densidad dada por:

$$f(x) = \begin{cases} e^{-x} &, & x > 0\\ 0 &, & x \le 0 \end{cases}$$

Están disponibles dos de dichos componentes, cuyos tiempos de vida son independientes. Sean las v.a.:

X: "tiempo de vida del primer componente"

Y: "tiempo de vida del segundo componente"

- (a) ¿Cuál será el valor de ρ_{XY} ?
- (b) Hallar:

i.
$$P(X \le 1, Y \le 1)$$

ii.
$$E(X)$$
 y $E(Y)$

iii.
$$E(X+Y)$$

Responder las siguiente preguntas:

• ¿Cuál de las dos oraciones siguientes es correcta sobre la función de distribución de probabilidad conjunta evaluada en el par de valores (x_0, y_0) ?

1.
$$p(x_0, y_0) = P(X = x_0 \land Y = y_0)$$

2.
$$p(x_0, y_0) = P(X = x_0 \lor Y = y_0)$$

- ¿Qué significa la independencia estadística entre dos variables aleatorias?
- ¿Qué significa la covarianza y cuándo es igual a cero?
- ¿A qué es igual $P(X = x_0/Y = y_0)$ si cov(X, Y) = 0?
- ¿Qué significa el coeficiente de correlación lineal, cuándo es igual a cero y cuándo es igual a uno?
- Si cov(X,Y) = 0 ¿Qué forma tiene la matriz de covarianza? ¿Cuáles son los valores que están en al diagonal de la matriz?