Theoretische Physik 6 Höhere Quantenmechanik und Quantenfeldtheorie

T. Hurth

2. Übungsblatt

Ausgabe: 30. 10. 2012 Abgabe: Donnerstag, 8. 11. 2012 Besprechung: 15. 11. 2012

Aufgabe 4: (2)

Zeigen Sie, dass in einem beliebigen Zustand $|\psi\rangle$ von N Fermionen für den Erwartungswert der Besetzungszahlen $n_k = \langle \psi | a_k^{\dagger} a_k | \psi \rangle$ die Ungleichungen $0 \le n_k \le 1$ gelten.

Hinweis: Ein beliebiger Zustand kann als Linearkombination von antisymmetrisierten und normierten Basiszuständen $|\underline{c}\rangle$ ($\underline{c}=(c_1,c_2,\ldots,c_N)$) geschrieben werden. Gehen Sie in die Besetzungszahldarstellung.

Aufgabe 5: (2)

Leiten Sie aus den Antivertauschungsregeln für a_k, a_k^{\dagger} (Vernichter bzw. Erzeuger für Fermionen)

$$\{a_k, a_{k'}\} = 0, \quad \{a_k^{\dagger}, a_{k'}^{\dagger}\} = 0, \quad \{a_k, a_{k'}^{\dagger}\} = \delta_{k,k'}$$
 (11)

die Eigenschaft

$$N_k(N_k - 1) = 0 (12)$$

für den Teilchenzahloperator $N_k = a_k^{\dagger} a_k$ her. Interpretieren Sie (12).

Aufgabe 6a (Bonusaufgabe): (6)

Ergänzen Sie die in der Vorlesung begonnene Rechnung, mit der gezeigt werden soll, dass der freie Anteil der Hamiltonoperators H_0 für ein System von N Fermionen

$$H_0 = \sum_{i=1}^{N} H_{0,i} \tag{13}$$

in der Besetzungszahldarstellung die Form

$$H_0 = \sum_{k,l=0}^{\infty} a_k^{\dagger} a_l \left\langle k | H_{0,i} | l \right\rangle \tag{14}$$

annimmt, wobei

$$\langle k|H_{0,i}|l\rangle = \int d^3x \,\psi_k^*(x)H_{0,i}(x)\psi_l(x) \,.$$
 (15)

Die $\psi_k(x)$ bilden einen vollständigen Satz von orthonormierten Wellenfunktionen für die 1-Teilchenzustände $|k\rangle$. Als Basis für den N-Teilchen-Hilbertraum der Fermionen können dann die antisymmetrisierten Zustände

$$|\underline{c}\rangle = \sum_{P} \sigma(P) |c_{P_1} \dots c_{P_N}\rangle$$
 (16)

gewählt werden, wobei $\underline{c} = (c_1, \dots, c_N)$ und (P_1, \dots, P_N) eine Permutation der Teilchenindizes $(1, \dots, N)$ ist.

Gehen Sie dazu folgendermaßen vor:

In der Ortsdarstellung (13) findet man für die Matrixelemente in den Zuständen (16) folgendes Ergebnis:

Fall a) die Indizes in \underline{b} (definiert analog zu \underline{c}) und \underline{c} stimmen alle überein, d.h. $\underline{b} = \underline{c}$:

$$\langle \underline{b}|H_0|\underline{c}\rangle = \sum_{i=1}^{N} \langle c_i|H_{0,i}|c_i\rangle; \qquad (17)$$

Fall b) die Indizes in \underline{b} und \underline{c} stimmen bis auf ein Paar überein, d.h. es gibt ein $b_k \in \underline{b}$ und ein $c_l \in \underline{c}$ mit $b_k \neq c_l$ und $b_j = c_j$ für $j \neq k, l$:

$$\langle \underline{b}|H_0|\underline{c}\rangle = \sigma(P_0)\langle b_k|H_{0,i}|c_l\rangle,\tag{18}$$

wobei P_0 die Permutation mit $P_{0,k} = l$ ist.

Führen Sie nun die Berechnung der Matrixelemente $\langle \underline{b}|H_0|\underline{c}\rangle$ in der Besetzungszahldarstellung, Gl. (14), aus und zeigen Sie, dass die Gleichungen (17) und (18) ebenfalls gelten.

Hinweis: Die zwei Fälle lassen sich auch mit Hilfe der Teilchenzahloperatoren N_k (siehe Aufgabe 5) charakterisieren. Zum Beispiel kann man im Fall b) schreiben:

$$N_{b_k}|\underline{b}\rangle = 1|\underline{b}\rangle$$
, $N_{b_k}|\underline{c}\rangle = 0|\underline{c}\rangle$;
 $N_{c_l}|\underline{b}\rangle = 0|\underline{b}\rangle$, $N_{c_l}|\underline{c}\rangle = 1|\underline{c}\rangle$.

Wie kann man den Zustand $|\underline{b}\rangle$ aus $|\underline{c}\rangle$ erhalten, wenn man die Erzeugungs- und Vernichtungsoperatoren verwendet?

Notieren Sie bitte die Zeit, die Sie für die Bearbeitung der Aufgaben benötigt haben.