1

Assignment 9

Subhasish Saikia AI20MTECH14001

Abstract

This document explains the properties of inner product on \mathbb{R}^n

Download latex-tikz codes from

https://github.com/subhasishsaikia22/EE5609-Matrix-theory

1 Problem

Let $\langle , \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ denote the standard inner product on \mathbb{R}^n . For a non zero $\mathbf{w} \in \mathbb{R}^n$, define $T_{\mathbf{w}} : \mathbb{R}^n \to \mathbb{R}^n$ by $T_{\mathbf{w}}(\mathbf{v}) = \mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, \mathbf{v} \in \mathbb{R}^n$. Which of the following are true?

- 1) $\det (T_{\mathbf{w}}) = 1$
- 2) $\langle T_{\mathbf{w}}(\mathbf{v}_1), T_{\mathbf{w}}(\mathbf{v}_2) \rangle = \langle \mathbf{v}_1, \mathbf{v}_2 \rangle \quad \forall \mathbf{v}_1$
- 3) $T_{\mathbf{w}} = T_{\mathbf{w}}^{-1}$
- 4) $T_{2w} = 2T_{w}$

2 EXPLANATION

Inner Product	Let two vectors u and v be defined as:		
	$\mathbf{u} = \begin{pmatrix} u_1 \\ \mathbf{u}_2 \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{u}_n \end{pmatrix}, \mathbf{v} = \begin{pmatrix} v_1 \\ \mathbf{v}_2 \\ \cdot \\ \cdot \\ \cdot \\ \mathbf{v}_n \end{pmatrix} \in \mathbb{R}^n$ (2.0.1) then the inner product of \mathbf{u} and \mathbf{v} on \mathbb{R}^n :		
	$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^T \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$ (2.0.2)		
Inner Product			
Property used	$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \mathbf{y} = \mathbf{y}^T \mathbf{x} = \langle \mathbf{y}, \mathbf{x} \rangle$	(2.0.3)	
	linearity property:		
	$\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle = a\langle \mathbf{u}, \mathbf{w} \rangle + b\langle \mathbf{v}, \mathbf{w} \rangle$ (2.0.4)		

TABLE 1: Definition and properties used

3 Solution

Given	For n=2,
	$T_{\mathbf{w}}: \mathbb{R}^2 \to \mathbb{R}^2, T_{\mathbf{w}}(\mathbf{v}) = \mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$ (3.0.1)
	Let the standard basis vectors of \mathbb{R}^2 : $\mathbf{e_1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{e_2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and non zero vector $\mathbf{w} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
Statement 1	$\det (T_{\mathbf{w}}) = 1$
solution	$T_{\mathbf{w}}(\mathbf{e_1}) = \mathbf{e_1} - \frac{2\langle \mathbf{e_1}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{2\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \frac{2.1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$ (3.0.2)
	$T_{\mathbf{w}}(\mathbf{e}_{2}) = \mathbf{e}_{2} - \frac{2\langle \mathbf{e}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{2\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle}{\langle \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \rangle} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \frac{2.1}{2} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$ (3.0.3)
	$T_{\mathbf{w}} = \begin{pmatrix} T_{\mathbf{w}}(\mathbf{e}_1) & T_{\mathbf{w}}(\mathbf{e}_2) \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $ (3.0.4)
	$\implies \left T_{\mathbf{w}} \right = \begin{vmatrix} 0 & -1 \\ -1 & 0 \end{vmatrix} = 0 - 1 = -1 \tag{3.0.5}$
	The given statement is false
Statement 2	$\left\langle T_{\mathbf{w}}\left(\mathbf{v}_{1}\right), T_{\mathbf{w}}\left(\mathbf{v}_{2}\right) \right\rangle = \left\langle \mathbf{v}_{1}, \mathbf{v}_{2} \right\rangle \forall \mathbf{v}_{1}$

solution	$\left\langle T_{\mathbf{w}}\left(\mathbf{v}_{1}\right), T_{\mathbf{w}}\left(\mathbf{v}_{2}\right) \right\rangle = \left\langle \mathbf{v}_{1} - \frac{2\langle \mathbf{v}_{1}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, \mathbf{v}_{2} - \frac{2\langle \mathbf{v}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} \right\rangle $ (3.0.6)
	$= \left\langle \mathbf{v}_{1}, \mathbf{v}_{2} - \frac{2\langle \mathbf{v}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} \right\rangle + \left\langle -\frac{2\langle \mathbf{v}_{1}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, \mathbf{v}_{2} - \frac{2\langle \mathbf{v}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} \right\rangle $ (3.0.7)
	$= \langle \mathbf{v}_1, \mathbf{v}_2 \rangle - \frac{2\langle \mathbf{v}_2, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{v}_1, \mathbf{w} \rangle + \left\langle -\frac{2\langle \mathbf{v}_1, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, \mathbf{v}_2 \right\rangle + \left\langle -\frac{2\langle \mathbf{v}_1, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, -\frac{2\langle \mathbf{v}_2, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} \right\rangle $ (3.0.8)
	$= \langle \mathbf{v}_{1}, \mathbf{v}_{2} \rangle - \frac{2\langle \mathbf{v}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{v}_{1}, \mathbf{w} \rangle - \frac{2\langle \mathbf{v}_{1}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{w}, \mathbf{v}_{2} \rangle + \frac{4\langle \mathbf{v}_{1}, \mathbf{w} \rangle \langle \mathbf{v}_{2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle \langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{w}, \mathbf{w} \rangle $ (3.0.9)
	$= \langle \mathbf{v_1}, \mathbf{v_2} \rangle - \frac{2\langle \mathbf{v_2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{v_1}, \mathbf{w} \rangle - \frac{2\langle \mathbf{v_1}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{v_2}, \mathbf{w} \rangle + \frac{4\langle \mathbf{v_1}, \mathbf{w} \rangle \langle \mathbf{v_2}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} $ (3.0.10)
	$\implies \left\langle T_{\mathbf{w}}\left(\mathbf{v}_{1}\right), T_{\mathbf{w}}\left(\mathbf{v}_{2}\right) \right\rangle = \left\langle \mathbf{v}_{1}, \mathbf{v}_{2} \right\rangle $ $(3.0.11)$
	The given statement is correct

Statement 3	$T_{\mathbf{w}} = T_{\mathbf{w}}^{-1}$	
solution	Suppose:	
	$T_{\mathbf{w}}(\mathbf{v}) = \mathbf{u} \implies T_{\mathbf{w}}^{-1}(\mathbf{u}) = \mathbf{v}$	(3.0.12)
	Then:	
	$T_{\mathbf{w}}(\mathbf{v}) = \mathbf{u}$	(3.0.13)
	$\implies \mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w} = \mathbf{u}$	(3.0.14)
	$\implies \left\langle \mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}, \mathbf{w} \right\rangle = \langle \mathbf{u}, \mathbf{w} \rangle$	(3.0.15)
	$\implies \langle \mathbf{v}, \mathbf{w} \rangle - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \langle \mathbf{w}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle$	(3.0.16)
	$\implies -\langle \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle$	(3.0.17)
	using (3.0.14) and (3.0.17)	
	$T_{\mathbf{w}}^{-1}(\mathbf{u}) = \mathbf{v} = \mathbf{u} + \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$	(3.0.18)
	$\implies T_{\mathbf{w}}^{-1}(\mathbf{u}) = \mathbf{u} - \frac{2\langle \mathbf{u}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$	(3.0.19)
	$\implies T_{\mathbf{w}}^{-1}(\mathbf{u}) = T_{\mathbf{w}}(\mathbf{u})$	(3.0.20)
	$\implies T_{\mathbf{w}}^{-1} = T_{\mathbf{w}}$	(3.0.21)
	The given statement is correct	
Statement 4	$T_{2w} = 2T_{w}$	

	$T_{2\mathbf{w}}(\mathbf{v}) = \mathbf{v} - \frac{2\langle \mathbf{v}, 2\mathbf{w} \rangle}{\langle 2\mathbf{w}, 2\mathbf{w} \rangle} 2\mathbf{w}$	(3.0.22)
	$= \mathbf{v} - \frac{2.2.2 \langle \mathbf{v}, \mathbf{w} \rangle}{2.2 \langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$	(3.0.23)
solution	$= \mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}$	(3.0.24)
	$2T_{\mathbf{w}}(\mathbf{v}) = 2\left(\mathbf{v} - \frac{2\langle \mathbf{v}, \mathbf{w} \rangle}{\langle \mathbf{w}, \mathbf{w} \rangle} \mathbf{w}\right)$	(3.0.25)
	$\implies 2T_{\mathbf{w}}(\mathbf{v}) \neq 2T_{\mathbf{2w}}(\mathbf{v})$	(3.0.26)
	The given statement is false	

TABLE 2: solution