基本的な教師あり学習

- 決定木
- ナイーブベイズ
- ロジスティック識別

3. 識別 一概念学習と決定木一

- 問題設定
 - 教師あり学習
 - ラベル入力 → ラベル出力

ラベル特徴

contact-lenses データ

3.2 概念学習とは

- 概念学習とは
 - 正解の概念を説明する特徴ベクトルの性質 (論理 式)を求めること
 - 論理式の例 (乱視 = あり) \wedge (ドライアイ = なし) \Rightarrow soft
- 学習の方法
 - 可能な論理式が少数
 - 正解概念の候補を絞り込んでゆく(候補削除アルゴリズム)
 - 可能な論理式が多数
 - バイアス(偏見)をかけて探索する 🖳

3.4 決定木の学習

• 学習した決定木の例

3.4 決定木の学習

- 決定木学習の考え方
 - ノードは、データを分割する条件を持つ
 - できるだけ同一クラスのデータがリーフに偏るように
 - 分割後のデータ集合に対して、同様の操作を行う
 - 全てのリーフが単一クラスの集合になれば終了

属性の分類能力 (1/2)

- 分類能力の高い属性を決定する方法
 - その属性を使った分類を行うことによって、なる べくきれいにクラスが分かれるように
 - ・エントロピー
 - データ集合 S の乱雑さを表現
 - 正例の割合: p^+ , 負例の割合: p^-
 - エントロピーの定義

$$Entropy(S) = -p^{+} \log p^{+} - p^{-} \log p^{-}$$

属性の分類能力 (2/2)

- 情報獲得量
 - 属性 A を用いた分類後のエントロピーの減少量
 - 値 v を取る訓練例の集合:Sv
 - Sv の要素数: |Sv|
 - 情報獲得量の定義

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{|S|} Entropy(Sv)$$

Weka での決定木学習

実行例

入力

• 出力 hard

バイアスの検討

なぜ単純な木の方がよいか

• オッカムの剃刀

「データに適合する最も単純な仮説を選べ」

- 複雑な仮説
 - → 表現能力が高い
 - → 偶然にデータを説明できるかもしれない
- 単純な仮説
 - → 表現能力が低い
 - → 偶然にデータを説明できる確率は低い
 - → でも説明できた!
 - \rightarrow 必然

連続値属性の扱い

連続値 A を持つ属性から真偽値 (A < c?) を値 とするノードを作成

→c をどうやって決めるか

気温	40	48	60	72	80	90
playTennis	No	No	Yes	Yes	Yes	No

連続値属性の扱い

4. 識別 一統計的手法一

• 数值特徵

涙量 = 正常

4.1 統計的識別とは

• 最大事後確率則による識別

$$m{x}$$
:特徴ベクトル $C_{MAP} = rg \max_i P(\omega_i | m{x})$ $\omega_i \quad (1 \leq i \leq c)$: クラス

- データから直接的にこの確率を求めるのは難しい
- ベイズの定理 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

$$C_{MAP} = \arg \max_{i} P(\omega_{i}|\boldsymbol{x})$$

$$= \arg \max_{i} \frac{P(\boldsymbol{x}|\omega_{i})P(\omega_{i})}{P(\boldsymbol{x})}$$

$$= \arg \max_{i} P(\boldsymbol{x}|\omega_{i})P(\omega_{i})$$

4.1 統計的識別とは

• 事前確率

$$P(\omega_i)$$

- 特徴ベクトルを観測する前の、各クラスの起こりや すさ
- 事前確率の最尤推定

$$P(\omega_i) = \frac{n_i}{N}$$

N: 全データ数、 n_i : クラス i のデータ数

4.1 統計的識別とは

• 尤度

 $P(\boldsymbol{x}|\omega_i)$

- 特定のクラスから、ある特徴ベクトルが出現する尤 もらしさ
- d 次元ベクトルの場合の最尤推定
 - 値の組合せが データ中に出 現しないもの 多数

Weka の weather.nominal データ 3×3×2×2=36 種類の組合せ

- ナイーブベイズの近似
 - 全ての特徴が独立であると仮定

$$P(\boldsymbol{x}|\omega_i) = P(x_1, \dots, x_d|\omega_i)$$
$$= \prod_{j=1}^d P(x_j|\omega_i)$$

$$C_{NB} = \arg\max_{i} P(\omega_i) \prod_{j=1}^{a} P(x_j | \omega_i)$$

• 尤度の最尤推定

$$P(x_j|\omega_i) = \frac{n_{ij}}{n_i}$$

 n_{ij} : クラスi のデータのうち、j 次元目の値が x_{ij} の個数

ゼロ頻度問題

確率の m 推定

$$P(x_j|\omega_i) = \frac{n_{ij} + mp}{n_i + m}$$

p: 事前に見積もった各特徴値の割合

m: 事前に用意する標本数

• ラプラス推定

- m: 特徴値の種類数、 p: 等確率 とすると、 *mp=1*

weather.nominal データ

<u>≗</u>) ∨	<u>≰</u> Viewer <u>X</u>									
Relat	Relation: weather.symbolic									
No.	1: outlook Nominal	2: temperature Nominal	3: humidity Nominal	4: windy Nominal	5: play Nominal					
1	sunny	hot	high	FALSE	no					
2	sunny	hot	high	TRUE	no					
3	overcast	hot	high	FALSE	yes					
4	rainy	mild	high	FALSE	yes					
5	rainy	cool	normal	FALSE	yes					
6	rainy	cool	normal	TRUE	no					
7	overcast	cool	normal	TRUE	yes					
8	sunny	mild	high	FALSE	no					
9	sunny	cool	normal	FALSE	yes					
10	rainy	mild	normal	FALSE	yes					
11	sunny	mild	normal	TRUE	yes					
12	overcast	mild	high	TRUE	yes					
13	overcast	hot	normal	FALSE	yes					
14	rainy	mild	high	TRUE	no					
	Undo OK Cancel									

実行例

入力

$$m{x}$$
=(sunny, hot, high, false) $P(yes) = 0.63$ $P(no) = 0.38$ $P(m{x}|yes) = 3/12 \times 3/12 \times 4/11 \times 7/11 = 0.0144$ $P(m{x}|no) = 4/8 \times 3/8 \times 5/7 \times 3/7 = 0.0574$ $P(m{x}|yes) \cdot P(yes) = 0.0091 < P(m{x}|no) \cdot P(no) = 0.0218$

• 出力

no

5.2 数値特徴に対するベイズ識別 5.2.1 数値特徴に対するナイーブベイズ識別

$$C_{NB} = \arg\max_{i} P(\omega_i) \prod_{j=1}^{d} p(x_j | \omega_i)$$

- 確率密度関数 $p(x_j|\omega_i)$ の推定
 - 正規分布を仮定

$$p(z) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(z-\mu)^2}{2\sigma^2})$$

5.2.1 数値特徴に対するナイーブベイズ識別

diabetes データ

No.	1: preg Numerio	2: plas Numerio	3: pres Numerio	4: skin Numerio	5: insu Numerio	6: mass Numerio	7: pedi Numerio	8: age Numerio	9: class Nominal	
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive	_
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative	
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive	
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative	
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive	
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative	
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested_positive	
8	10.0	115.0	0.0	0.0	0.0	35.3	0.134	29.0	tested_negative	
9	2.0	197.0	70.0	45.0	543.0	30.5	0.158	53.0	tested_positive	
10	8.0	125.0	96.0	0.0	0.0	0.0	0.232	54.0	tested_positive	
11	4.0	110.0	92.0	0.0	0.0	37.6	0.191	30.0	tested_negative	
12	10.0	168.0	74.0	0.0	0.0	38.0	0.537	34.0	tested_positive	
13	10.0	139.0	80.0	0.0	0.0	27.1	1.441	57.0	tested_negative	
14	1.0	189.0	60.0	23.0	846.0	30.1	0.398	59.0	tested_positive	
15	5.0	166.0	72.0	19.0	175.0	25.8	0.587	51.0	tested_positive	
16	7.0	100.0	0.0	0.0	0.0	30.0	0.484	32.0	tested_positive	
17	0.0	118.0	84.0	47.0	230.0	45.8	0.551	31.0	tested_positive	
18	7.0	107.0	74.0	0.0	0.0	29.6	0.254	31.0	tested_positive	
19	1.0	103.0	30.0	38.0	83.0	43.3	0.183	33.0	tested_negative	
20	1.0	115.0	70.0	30.0	96.0	34.6	0.529	32.0	tested_positive	+
Undo OK Cancel										

5.2.1 数値特徴に対するナイーブベイズ識別

5. 識別 一生成モデルと識別モデルー

- ラベル特徴
- 数值特徵

5.1 数値特徴に対する「教師あり・識別」問題の定義

クラス境界が複雑 非線形識別面 ⇒ ニューラルネット 高次元へマッピング⇒ SVM

5.2.2 生成モデルの考え方

- 事後確率を求めるにあたって、同時確率を求め ている
 - データが生成される様子をモデル化していると見る ことも出来る
 - 事前確率に基づいてクラスを選ぶ
 - そのもとで、特徴ベクトルを出力する

$$P(\omega_i|m{x}) = rac{p(m{x}|\omega_i)P(\omega_i)}{p(m{x})}$$
 事後確率を求めるより、 $= rac{p(\omega_i,m{x})}{p(m{x})}$ のではないか?

難しい問題を解いている のではないか?

5.3.1 識別モデルの考え方

• 事後確率を直接求める

この値が正なら正例、 負なら負例となるように 重み w を学習する この平面を 求めている ことになる

確率と対応づけるには?

5.3.1 識別モデルの考え方

- ロジスティック識別
 - 入力が正例である確率

$$P(\oplus | \boldsymbol{x}) = \frac{1}{1 + \exp(-(\boldsymbol{w} \cdot \boldsymbol{x} + w_0))}$$

-∞ ~ +∞ の値域を持つ ものを、順序を変えずに 0 ~ 1 にマッピング

• 最適化対象 = モデルが学習データを生成する確率

$$E(\boldsymbol{w}) = -\log P(D|\boldsymbol{w}) = -\log \prod_{\boldsymbol{x}_i \in D} o_i^{y_i} (1 - o_i)^{(1 - y_i)}$$

 $o = P(\oplus | \boldsymbol{x})$

 $y = o \ or \ 1$

正解ラベル

 $oldsymbol{E}(oldsymbol{w})$ を最急勾配法で最小化

• 重み更新量の計算

$$\frac{\partial E(\boldsymbol{w})}{\partial w_j} = \sum_{\boldsymbol{x}_i \in D} \left(\frac{y_i}{o_i} - \frac{1 - y_i}{1 - o_i}\right) o_i (1 - o_i) x_{ij}$$
$$= \sum_{\boldsymbol{x}_i \in D} (y_i - o_i) x_{ij}$$

• 重みの更新式

$$w_j \leftarrow w_j - \eta \sum_{\boldsymbol{x}_i \in D} (y_i - o_i) x_{ij}$$

diabetes データ

<u>¥</u> Viewer <u>X</u>										3
Relat	Relation: pima_diabetes									
No.	1: preg Numerio	2: plas Numerio	3: pres Numerio	4: skin Numerio	5: insu Numerio	6: mass Numeric	7: pedi Numerio	8: age Numerio	9: class Nominal	
1	6.0	148.0	72.0	35.0	0.0	33.6	0.627	50.0	tested_positive	-
2	1.0	85.0	66.0	29.0	0.0	26.6	0.351	31.0	tested_negative	
3	8.0	183.0	64.0	0.0	0.0	23.3	0.672	32.0	tested_positive	
4	1.0	89.0	66.0	23.0	94.0	28.1	0.167	21.0	tested_negative	
5	0.0	137.0	40.0	35.0	168.0	43.1	2.288	33.0	tested_positive	
6	5.0	116.0	74.0	0.0	0.0	25.6	0.201	30.0	tested_negative	
7	3.0	78.0	50.0	32.0	88.0	31.0	0.248	26.0	tested_positive	
8	10.0	115.0	0.0	0.0	0.0	35.3	0.134	29.0	tested_negative	
9	2.0	197.0	70.0	45.0	543.0	30.5	0.158	53.0	tested_positive	
10	8.0	125.0	96.0	0.0	0.0	0.0	0.232	54.0	tested_positive	
11	4.0	110.0	92.0	0.0	0.0	37.6	0.191	30.0	tested_negative	
12	10.0	168.0	74.0	0.0	0.0	38.0	0.537	34.0	tested_positive	
13	10.0	139.0	80.0	0.0	0.0	27.1	1.441	57.0	tested_negative	
14	1.0	189.0	60.0	23.0	846.0	30.1	0.398	59.0	tested_positive	
15	5.0	166.0	72.0	19.0	175.0	25.8	0.587	51.0	tested_positive	
16	7.0	100.0	0.0	0.0	0.0	30.0	0.484	32.0	tested_positive	
17	0.0	118.0	84.0	47.0	230.0	45.8	0.551	31.0	tested_positive	
18	7.0	107.0	74.0	0.0	0.0	29.6	0.254	31.0	tested_positive	
19	1.0	103.0	30.0	38.0	83.0	43.3	0.183	33.0	tested_negative	
20	1.0	115.0	70.0	30.0	96.0	34.6	0.529	32.0	tested_positive	+
							Undo		K Cancel	

実行例

入力

```
姓城 血糖値 血圧 ....
\mathbf{x}=(6, 148, 72, 35, 0, 33.6, 0.627, 50)
g(\mathbf{x}) = 6 \times 0.06 + 148 \times 0.02 - 72 \times 0.01 + 33.6 \times 0.04 + 0.627 \times 0.47 + 50 \times 0.01 - 4.18
= 0.559
P(tested\_positive) = 1/(1 + \exp(-g(\mathbf{x}))) = 0.636
```

• 出力

tested_positive