7.1 a) Use a MFR with some particular concentration of A b) Use a PFR, with low-XA

c) Use a MFR, with high XA

7.3 For

Thus

B drip A and B in slowly keep XA high keep XB high

Don't have an excess of either A or B

75

7.7 Gwen

A 1 = R,
$$r_R = k_1 C_A^2$$
 and $r_R = k_2 C_A^2$ and $r_R = k_3 C_A^2$ and $r_R = k_4 C_A^2$ and $r_R = k_5 C$

For mixed flow in the first reactor

$$T_1 = \frac{C_{R1} - C_{R0}}{k_1 C_A^2}$$
 :: $k_1 = \frac{0.2 - 0}{2.5(0.4)^2} = 0.5$

Also

$$T_1 = \frac{C_{51} - C_{50}}{k_2 C_A} \stackrel{\circ}{\circ} k_2 = \frac{0.7 - 0.3}{2.5(0.4)} = 0.4$$

For the second reactor

$$T_2 = \frac{C_{A_1} - C_{A_2}}{k_1 C_{A_1}^2 + k_2 C_{A_2}} = \frac{0.4 - C_{A_2}}{0.5 C_{A_2}^2 + 0.4 C_{A_2}} = 10$$
 ° $C_{A_2} = 0.0745$

Also
$$T_2 = \frac{C_{R2} - C_{R1}}{k_1 C_{A2}}$$
 : $C_{R2} = 0.2 + 10(0.5 \times 0.0745)^2 = 0.2278$

$$= x_A = 0.9$$
 A 1-R $r_R = k_1 c_A^2 k_1 = 0.4 \frac{m^3}{mor. min}$
2 S $r_S = k_2 c_A k_2 = 2 \frac{mm}{mor. min}$

First determine Q(S/A).

$$\varphi(s_A) = \frac{r_s}{r_{R+r_s}} = \frac{2c_A}{0.4c_A^2 + 2c_A} = \frac{1}{1 + 0.2c_A}$$

$$C_{s} = \int_{4}^{40} g(\frac{40}{1+0.2c_{A}}) dC_{A} = \int_{4}^{40} \frac{dc_{A}}{1+0.2c_{A}} = \frac{1}{0.2} ln (1+0.2c_{A}) \Big|_{4}^{40} = 5 ln \frac{9}{1.8} = 8$$

$$T = \int \frac{dc_A}{-r_A} = \int \frac{dc_A}{2c_A + 0.4c_A^2} = \frac{1}{0.4} \int \frac{dc_A}{5c_A + c_A^2} = 2.5 \left[\frac{1}{5} \ln \frac{c_A}{c_A + 5} \right]_4^{40} = \frac{1}{2} \ln 2 = 0.3474$$

To maximize CR in a MFR first look at the g(BA) us CA curve

$$Q(R/A) = \frac{0.4 C_R^2}{0.4 C_R^2 + 2C_A}$$
= $C_A/C_A + 5$

Method 1 Solve analytically

$$C_R = \mathcal{G}(-\Delta C_A) = \frac{C_A}{C_A + 5} \left(40 - C_A\right)$$

$$\frac{dC_R}{dC_A} = \frac{(40-2C_A)(C_A+5)-(40C_A-C_A^2)}{(C_A+5)^2} = 0 - or C_A = 10$$

$$C_R = 20$$

$$C_S = 10$$

Method 2 Solve graphically by maximizing the shaded rectangle

9 For
$$P$$
: $\Lambda = \frac{C_{A0} - C_{AF}}{-\Gamma_{A}} = \frac{C_{A0} - C_{AF}}{0.4C_{AF}^2 + 2C_{A}} = \frac{40 - 10}{0.4(10)^2 + 2(10)}$

$$= \frac{30}{60} = \frac{1}{2} \text{ min}$$

A
$$\begin{cases} R & r_R = C_A \\ S & r_S = 1 \end{cases}$$
 $9\left(\frac{R}{R+S}\right) = \frac{C_A}{C_A+1}$ $\frac{C_{A0}=4}{C_A+1}$

First plot 9 os CA

The shaded areas of the two rectangles gives C_R .

We maximize this by trial and error. This gives $C_{A1}=2$ and $C_{A2}=0.8$

CAI=2 and CAZ=0.8

P.S. I'm not sure that this is the and
$$\frac{V_2}{V} = \frac{V_1}{V_2} = \frac{C_{A0} - C_{A1}}{V_1} = \frac{C_{A0} - C_{A1}}{V_2} = \frac{C_{A0} - C_{A2}}{V_1} = \frac{C_{A0} - C_{A2}}{V_2} = \frac{C_{A0} - C_{A2}}{V_1} = \frac{C_{A0} - C_{A1}}{V_2} = \frac{C_{A0} - C_{A2}}{V_1} = \frac{C_{A0} - C_{A1}}{V_2} = \frac{C_{A0} - C_{A2}}{V_2} = \frac{C_{A0} - C_{A2}}{V_2} = \frac{C_{A0} - C_{A1}}{V_2} = \frac{C_{A1} - C_{A2}}{V_2} = \frac{C$$

that this is the best solution. and

$$C_{R1} = 9.2C_{A} = \frac{C_{A1}}{C_{A1}+1} (C_{A0}-C_{A1}) = \frac{2}{2+1} (4-2) = 1.33$$

$$C_{R2} = \frac{C_{A2}}{C_{A2}+1} (C_{A1}-C_{A2}) = \frac{0.8}{0.8+1} (9-0.8) = 0.533$$

$$C_{Rmax} = 1.86 \frac{mvl}{lit}$$

$$A \stackrel{R}{\Rightarrow} S r_8 = 2C_A$$

$$O(S/A) = \frac{r_s}{-r_A} = \frac{2C_A}{(1+C_A)^2}$$

$$O_{0.2} \stackrel{R}{\Rightarrow}$$

a) For plug flow go to CAF=0 for maximum

b) For mixed flow let's solve analytically. Note we could also solve graphically.

$$C_8 = 9(-\Delta C_A) = \frac{2C_A}{(1+C_A)^2}(4-C_A)$$

differentiating & setting to zero gives

$$\frac{dC_{3}}{dC_{A}} = \frac{[2(4-C_{A})+2c_{A}(-1)](1+C_{A})^{2}-2c_{A}(4-C_{A})2(1+c_{A})}{(1+C_{A})^{4}} = 0$$

%
$$C_{A}(at C_{Sopt}) = \frac{2}{3}$$

 $C_{A}(at C_{A} = \frac{2}{3}) = 2(\frac{2}{3})/(1+\frac{2}{3})^{2} = \frac{12}{25}$
 $C_{Shor} = \frac{12}{25}(4-\frac{2}{3}) = 1.6$

7.17 For reactions in parallel first evaluate & draw the 9 os CA curve

CA	Q(R/A) = 16CA/2 16CA/2+12CA+CA2	
10	0.185	
	0.55	

The highest value for comes where $C_A = 0$ and where g = 1

so operate the mixed flow reactor at X+>1. Here

$$C_{A0}=10$$
 $C_{R0}=0$
 $C_{R0}=0$
 $C_{S0}=0$
 $C_{S0}=0$
 $C_{S0}=0$
 $C_{S0}=0$
 $C_{S0}=0$

7.19 First find the gus Ca curve, then decide which reactor type to use

CA	9(T/A) = CAZ 16G/2+12G+CAZ	$\frac{1}{-\Gamma_A} = \frac{1}{16C_1^{1/2} + 12C_A + C_A^2}$
10	0,37	0,0037
4	0.34	0.0042
4	0.167	0.0104
gared ⁶	0.03	0.03
0.1		0.16

Nexts to find or plot - YA US CA

First let us calculate 9, the instantaneous fractional yield. This is obtained directly from the mixed flow run because 9 = 0 m

CAO	·Ca	C.,	0=0= CR	
~ A O	- A	_ {<	J = Cm-G	1
100	90	7	7/10=0.7	ж.
100	80	13	0.65	
100	70	18	0,60	
100	60	22	0,55	
100	50	25	0,50	
100	40	27	0.42	,
100	30	28	0,40	
100	20	28	0.35	
100	10	27	0,30	
100	0	25	25/100=0,25	
			Westerland (And Chillipping Applications and assume construction control and bridge (in the efficiency and assume control and an efficiency and an efficiency and assume control and ass	

So for mixed flow with Goo 100

$$g(R_A) = \frac{50C_A}{50C_A + 100C_B} = \frac{1}{3}$$

$$V = \frac{f_{A0}}{c_{A0}} \cdot \frac{c_{A0} - c_{A}}{c_{A0}} = \frac{360}{30} \cdot \frac{30 - 3}{320 + \frac{3}{10}} = 600 \text{ lst}$$

CA=3 NS/M3 CB=3 NS/M3

(continued) is
$$C_{Rf} = \int_{0}^{6} (R_{I}R) dC_{A} = \int_{0}^{30} \frac{1}{C_{A} + 2C_{B}} dC_{A} = \left[C_{A} - 6 \ln (C_{A} + 6) \right]_{3}^{30} = 18.68$$

$$C_{Sf} = \int_{0}^{6} (S_{I}A) dC_{A} = \int_{0}^{30} \frac{1}{C_{A} + 2C_{B}} dC_{A} = \left[6 \ln (C_{A} + 6) \right]_{3}^{30} = 8.32$$

$$S_{0} = \int_{0}^{6} \frac{18.68}{8.32} = 2.25$$

$$C_{Sf} = \frac{18.68}{8.32} = 2.25$$
Finally $V = \frac{F_{AD}}{C_{A}} \int_{0}^{6} \frac{dC_{A}}{C_{A}} = \frac{300}{30} \int_{0}^{300} \frac{dC_{A}}{50C_{A} + 100(8)} = \left[(10) \left(\frac{1}{50} \right) \ln \left(\frac{50C_{A} + 300}{50C_{A} + 300} \right) \right]_{3}^{30}$

$$= 0.2773 \text{ m}^{3} = 277.3 \text{ lit}$$

7.27a) Villeneuve's question - What is the result of a single battle?

Let F= the number of French ships, and let B= the number of British ships. Then according to the problem statement

Separating and integrating gives

$$\int_{B}^{F} dF = \int_{B}^{B} dB - or f_{0}^{2} - F^{2} = B_{0}^{2} - B^{2}$$
Fo

If we start with fo=33 & Bo=27, then at the end of the battle B=0. Thus replacing in (i) gives

$$F^2 = 33^2 - 27^2 = 360$$
 or $F = 19 - \epsilon ships$

7.27 (continued)

Nelson's question - What is the result of 2 bailes in succession?

Let the British fight f ships in the 1st battle then to-f ships in the 2rd. Applying Equis to the two balles we have

For the 1st bande: $B_0^2 - B_1^2 = f^2 - \delta$ | this means that the for the 2st bande $B_1^2 - B_2^2 = (F_0 - F)^2 - 0$ | f ships are all destroyed

Combining gives $B_n^2 - B_z^2 = (F_0 - F)^2 + F^2$ (11)

To maximize Bz take dB2 =0 from which we find f= \frac{1}{2}. Thus the British should fight 1/2 the French fleet in each battle. So for f=16 or 17 we find that the British are left with

B2 = 1/184, or 13 to 14 ships -

The difference in the two answers shows how math. affected European history.

Comment Equation is represents the SQUARE FIREPOWER LAW. This says that the strength of a force is proportional to the square of its firepower, and it applies to battles with cooperative action. Thus 4 toughts working together as a team can take on 16 others - one at a time.

The British war office had a couple of mathematicians on their staff who in essence did the above calculation. The French military probably were more "practical", and didn't spend money on "useless" activities.

It would be interesting to consider historical battles (Thermopolae, Jutland, Coral sea, querrila warfare) from the standpoint of this law. For more on this subject see the section on Mathematics & Warfare in "World of Mathematics" by James Newman. This problem has many interesting extensions: suppose k values are unequal, suppose a 3rd party fights both (crazy solution), how to minimize the total killing but still achieve a decision, etc.