PH2255 Course:

Introduction to Statistical Methods

Exercise 4

Thomas Bass

22 January 2021

0.1 Question 1

Using Kirchoff's first law to sum the voltages around the LCR circuit:

$$V = IZ = I(R + i\omega L + frac1i\omega C)$$
(1)

We can rewrite this in differential form:

$$L\ddot{q} + r\dot{q} + \frac{1}{C}q = 0 \tag{2}$$

This is in the same form as a damped mechanical oscillator $\ddot{q} + \gamma \dot{q} + \omega_0^2 q = 0$ Therefore $\omega_0 = \sqrt{1/LC}$ From definition $\omega = \frac{2\pi}{T} = 2\pi f$

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{1}{LC}} \tag{3}$$

0.2 Question 2

Using values of $L=5mH=5\times 10^{-3}H$ and $C=1nF=1\times 10^{-9}F$: $f_0=71,176.25Hz$

0.3 Question 3

For $\Delta \phi = 0$, f = 71.18kHz

Peak-to-peak voltages:

CH1: 1.463*V* CH2: 1.082*V*

 $V_2/V_1 = 0.7395$

This small

 $\sim 10Hz$

discrepancy comes from additional impedance from the connections/wires in the circuit.

0.4 Question 4

Starting frequency $f_{\min} = 60kHz$, at $V_2/V_1 = 0.1296$ Ending frequency $f_{\max} = 82kHz$, at $V_2/V_1 = 0.1357$

0.5 Question 6

$$|Z| = \sqrt{R^2 + (\omega L - 1/\omega C)^2} \tag{4}$$

At resonance, $\omega L - 1/\omega C = 0$, therefore that term drops out of the equation, giving us a minimum value |Z| = R.

At high frequencies, the Inductor term ωL dominates.

At low frequencies, the Capacitor term $1/\omega C$ dominates.

0.6 Question 7

0.7 Question 8

A Python Code