|      | H2 Mathematics Paper 1 (9740/01) Solution                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qn   | Soln                                                                                                                                                                |
| 1    | $S_n = \frac{100}{2} [2a + 99d] = 10000 \implies 2a + 99d = 200$                                                                                                    |
|      | a, a+d, a+4d are consecutive terms in GP: $\frac{a+d}{a} = \frac{a+4d}{a+d}$                                                                                        |
|      | $\Rightarrow (a+d)^2 = a(a+4d)$                                                                                                                                     |
|      | $\Rightarrow d^2 = 2ad \Rightarrow d = 2a \text{ since } d \neq 0.$                                                                                                 |
|      | Sub $d = 2a$ into $2a + 99 d = 200$ , get $d = 2$ and $a = 1$ .                                                                                                     |
| 2    | $Ax^{2} + By^{2} + Cy = 8$ (2,1) $\Rightarrow$ 4A + B + C = 8(1)                                                                                                    |
|      | Diff (*) wrt x: $2Ax + 2By \frac{dy}{dx} + C \frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{-2Ax}{2By + c}$                                                    |
|      | Tangent at (2,1) // y-axis : $2B + C = 0$ (2)                                                                                                                       |
|      |                                                                                                                                                                     |
|      | Diff again wrt $x: 2A + 2B \left[ y \frac{d^2 y}{dx^2} + \left( \frac{dy}{dx} \right)^2 \right] + C \frac{d^2 y}{dx^2} = 0$                                         |
|      | When y = 0, $\frac{dy}{dx} = \sqrt{\frac{3}{2}}$ and $\frac{d^2y}{dx^2} = \frac{9}{4} \implies 2A + 2B\left(\frac{3}{2}\right) + C\left(\frac{9}{4}\right) = 0$ (3) |
| 2    | Solve the 3 eqns: get $A = 3$ , $B = 4$ and $C = -8$                                                                                                                |
| 3    | $\Rightarrow \frac{6x - 4 + (2x - 1)(x - 3)}{x - 3} \le 0 \Rightarrow \frac{2x^2 - x - 1}{x - 3} \le 0 \Rightarrow \frac{(2x + 1)(x - 1)}{x - 3} \le 0$             |
|      | $\Rightarrow (x-3)(2x+1)(x-1) \le 0$                                                                                                                                |
|      | $\Rightarrow x \le -\frac{1}{2} \text{ or } 1 \le x < 3$                                                                                                            |
|      |                                                                                                                                                                     |
|      | 7C - 1                                                                                                                                                              |
|      | Replace $x$ by $\sin \theta$ , $\sin \theta \le -\frac{1}{2}$ , $1 \le \sin \theta < 3$                                                                             |
|      | $\Rightarrow \frac{7\pi}{6} \le \theta \le \frac{11\pi}{6}  \text{or}  \theta = \frac{\pi}{2}$                                                                      |
| 4    | Reversing the transformations:                                                                                                                                      |
| (i)  | a Stretch parallel to y-axis by factor $\frac{1}{2}$ gives $y = \frac{1}{y}$                                                                                        |
|      | a. Stretch parallel to y-axis by factor ½ gives $y = \frac{1}{2\sqrt{4-x^2}}$                                                                                       |
|      | b. Translate 1 unit to the right gives $y = \frac{1}{2\sqrt{4-(x-1)^2}}$                                                                                            |
|      | $2\sqrt{4-(x-1)^2}$                                                                                                                                                 |
|      | c. Reflection in y-axis gives $y = \frac{1}{2\sqrt{4 - (-x - 1)^2}} = \frac{1}{2\sqrt{4 - (x + 1)^2}} = f(x)$                                                       |
| 4    | The graphs of $y = g(x)$ and $y = g^{-1}(x)$ :                                                                                                                      |
| (ii) | ↑ v                                                                                                                                                                 |
|      | y = g(x)                                                                                                                                                            |
|      |                                                                                                                                                                     |
|      |                                                                                                                                                                     |
|      | $\frac{1}{B}$                                                                                                                                                       |
|      | $-\frac{1}{-2!} - \sqrt{3}$                                                                                                                                         |
|      | -2 -V3   V2 VA                                                                                                                                                      |
|      | $y = g^{-1}(x)$                                                                                                                                                     |
|      | <del>-</del>                                                                                                                                                        |
| 1    |                                                                                                                                                                     |

| 4     | area of the region bounded by $y = g^{-1}(x)$ , the x-axis and the line $x = 1$ = region A = region B                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (iii) | = Rectangle $-\int_{-\sqrt{3}}^{0} y  dx$                                                                                                                                                                                                         |
|       | $= (1)\left(\sqrt{3}\right) - \int_{-\sqrt{3}}^{0} \frac{1}{\sqrt{4 - x^2}} dx = \sqrt{3} - \left[\sin^{-1}\left(\frac{x}{2}\right)\right]_{-\sqrt{3}}^{0} = \sqrt{3} - \left[0 - \left(-\frac{\pi}{3}\right)\right] = \sqrt{3} - \frac{\pi}{3}.$ |
| 5     | $S_n = \frac{2}{1 \times 2 \times 3} + \frac{2}{2 \times 3 \times 4} + \frac{2}{3 \times 4 \times 5} + \dots + \frac{2}{n(n+1)(n+2)}$                                                                                                             |
|       | $S_1 = \frac{1}{3} = \frac{1}{2} - \frac{1}{2 \times 3}, S_2 = \frac{5}{12} = \frac{1}{2} - \frac{1}{3 \times 4}, S_3 = \frac{9}{20} = \frac{1}{2} - \frac{1}{4 \times 5}.$                                                                       |
|       | (ii) $S_n = \frac{1}{2} - \frac{1}{(n+1)(n+2)}$ by observation.                                                                                                                                                                                   |
|       | (iii) Let $P_n$ be the statement " $S_n = \frac{1}{2} - \frac{1}{(n+1)(n+2)}$ " for $n \in \mathbb{Z}^+$                                                                                                                                          |
|       | $P_I$ is true from (i)                                                                                                                                                                                                                            |
|       | Assume that $P_k$ is true for some $k \in Z^+$ ie. $S_k = \frac{1}{2} - \frac{1}{(k+1)(k+2)}$                                                                                                                                                     |
|       | We need to show that $P_{k+1}$ is true, ie to prove that $S_{k+1} = \frac{1}{2} - \frac{1}{(k+2)(k+3)}$                                                                                                                                           |
|       | LHS = $S_{k+1} = S_k + (k+1)$ th term                                                                                                                                                                                                             |
|       | $=\frac{1}{2}-\frac{1}{(k+1)(k+2)}+\frac{2}{(k+1)(k+2)(k+3)}$                                                                                                                                                                                     |
|       | 2 - (k+1)(k+2) - (k+1)(k+2)(k+3)                                                                                                                                                                                                                  |
|       | $= \frac{1}{2} - \frac{k+3-2}{(k+1)(k+2)(k+3)}$                                                                                                                                                                                                   |
|       | $=\frac{1}{2}-\frac{1}{(k+2)(k+3)}=\text{RHS}$                                                                                                                                                                                                    |
|       | $2  (k+2)(k+3)$ Therefore $P_{k+1}$ is true.                                                                                                                                                                                                      |
|       | Since $P_1$ is true and $P_k$ is true $\Rightarrow P_{k+1}$ is true, $\therefore$ by MI, $P_n$ is true for $n \in \mathbb{Z}^+$                                                                                                                   |
| 6     | (i) By pythagoras' theorem: $l = \sqrt{4 + r^2}$ and $R^2 = r^2 + (2 - R)^2 \Rightarrow r^2 = 4R - 4$                                                                                                                                             |
|       |                                                                                                                                                                                                                                                   |
|       | $A = \pi r l \implies A = \pi \sqrt{4R - 4} \sqrt{4R}$                                                                                                                                                                                            |
|       | $\therefore A = 4\pi\sqrt{R^2 - R}$                                                                                                                                                                                                               |
|       | (ii) $\frac{dA}{dt} = \frac{dA}{dR} \times \frac{dR}{dV} \times \frac{dV}{dt}$                                                                                                                                                                    |
|       | $V = {}^{1} \sigma D^{3} \rightarrow {}^{0} = A \sigma D^{2}$                                                                                                                                                                                     |
|       | $\frac{dA}{dt} = \frac{2\pi(2R-1)}{\sqrt{R^2 - R}} \times \frac{1}{4\pi R^2} \times 8$ $V = \frac{\pi}{3} \times \frac{\pi}{dR} \Rightarrow \frac{\pi}{dR} = 4\pi R$                                                                              |
|       | $\frac{dA}{dt} = \frac{2\pi(4-1)}{\sqrt{4-2}} \times \frac{1}{4\pi(4)} \times 8 = \frac{3}{\sqrt{2}} = \frac{3\sqrt{2}}{2}$                                                                                                                       |
| 7     | at $\sqrt{4-2}$ $4\pi(4)$ $\sqrt{2}$ 2<br>(i) Since the sequence converges to L,                                                                                                                                                                  |
|       | ie as $n \to \infty$ , $x_n \to L$ and $x_{n+1} \to L$ $L = \frac{1}{3} \left( 2L + \frac{1}{L^2} \right) \Rightarrow 3L = 2L + \frac{1}{L^2} \Rightarrow L^3 = 1 \Rightarrow L = 1$                                                              |
|       | (ii) Consider $x_{n+1} - x_n = \frac{1}{3} \left( 2x_n + \frac{1}{x_n^2} \right) - x_n$                                                                                                                                                           |

Method 1: 
$$x_{n+1} - x_n = \frac{1}{3} \left( 2x_n + \frac{1}{x_n^2} \right) - x_n = \frac{1}{3x_n^2} \left( 2x_n^3 + 1 - 3x_n^3 \right) = \frac{1}{3x_n^2} \left( 1 - x_n^3 \right)$$

Since  $x_n > L = 1$ ,  $1 - x_n^3 < 0 \implies x_{n+1} - x_n < 0 \implies x_{n+1} < x_n$ .

Method 2: Use GC, sketch  $y = \frac{1}{3} \left( 2x + \frac{1}{x^2} \right) - x$ 

From the graph, for  $x_n > L = 1$ ,

$$y < 0 \Longrightarrow x_{n+1} - x_n < 0 \Longrightarrow x_{n+1} < x_n$$
.



(iii) The sequence is such that 
$$0 < x_0 < 1$$
, and from (i)  $n \to \infty, x_n \to 1$ . From (ii),  $x_1 > 1, x_2 > 1, x_3 > 1, \dots$  and  $1 < x_n, \dots, x_4 < x_3 < x_2 < x_1$  the sequence will decrease and converge to the limit 1 from the right for  $n \ge 1$ .

Since L = 1, 
$$d_{n+1} = x_{n+1} - L = x_{n+1} - 1$$

$$d_{n+1} = x_{n+1} - 1 = \frac{1}{3} \left( 2x_n + \frac{1}{x_n^2} \right) - 1 = \frac{1}{3} \left( 2(1+d_n) + \frac{1}{(1+d_n)^2} \right) - 1$$

$$= \frac{1}{3} \left( 2 + 2d_n + (1+d_n)^{-2} - 3 \right) = \frac{1}{3} \left( -1 + 2d_n + 1 + (-2)d_n + \frac{(-2)(-3)}{2!}d_n^2 + \dots \right) \approx d_n^2$$

Range of validity is  $|d_n| < 1 \Rightarrow -1 < d_n < 1$ .

8a 
$$(y+5)^2 = x-3$$
 ----(1)  $(y+5)^2 = x-3 \Rightarrow y = -5 \pm \sqrt{x-3}$   
 $y = x-10$  ----(2)

Points of intersections are 4, -6) and (7, -3)

Volume generated

$$= \pi \int_{3}^{4} \left(-5 - \sqrt{x - 3}\right)^{2} dx + \pi \int_{4}^{7} (x - 10)^{2} dx - \pi \int_{3}^{7} \left(-5 + \sqrt{x - 3}\right)^{2} dx = 127.2345 \approx 127 (3 \text{ s.f.})$$

$$\int e^{-2x} \cos x \, dx = -\frac{1}{2} e^{-2x} \cos x - \frac{1}{2} \int e^{-2x} \sin x \, dx$$

$$\int e^{-2x} \cos x \, dx = -\frac{1}{2} e^{-2x} \cos x + \frac{1}{4} e^{-2x} \sin x - \frac{1}{4} \int e^{-2x} \cos x \, dx$$

$$\frac{5}{4} \int e^{-2x} \cos x \, dx = -\frac{1}{2} e^{-2x} \cos x + \frac{1}{4} e^{-2x} \sin x + C$$

$$\int e^{-2x} \cos x \, dx = -\frac{2}{5} e^{-2x} \cos x + \frac{1}{5} e^{-2x} \sin x + C$$

At 
$$x = 0$$
,  $t = 0$ . At  $x = 1$ ,  $t = \frac{\pi}{2}$ 

$$\frac{\mathrm{dy}}{\mathrm{dx}} = \frac{\mathrm{dy}}{\mathrm{dt}} \left( \frac{\mathrm{dt}}{\mathrm{dx}} \right) = \frac{-2e^{-2t}}{\cos t} = -2$$

Equation of tangent at x = 0: y = -2x + 1



Exact area bounded

$$= \int_0^1 y \, dx \quad *(Since the area of both triangles are the same)$$

$$= \int_0^{\frac{\pi}{2}} e^{-2t} \cos t \, dt \qquad = \left[ -\frac{2}{5} e^{-2t} \cos t + \frac{1}{5} e^{-2t} \sin t \right]_0^{\frac{\pi}{2}} = \frac{1}{5} \left( e^{-\pi} + 2 \right)$$

(i) 
$$y = \frac{2x^2 - a}{x + k}$$
  $\Rightarrow$   $\frac{dy}{dx} = \frac{(x + k)(4x) - (2x^2 - a)}{(x + k)^2} = \frac{2x^2 + 4kx + a}{(x + k)^2}$ 

For the curve to have at least 1 tangent parallel to the x-axis,  $\frac{dy}{dx} = 0$  must have real roots,

i.e.  $2x^2 + 4kx + a = 0$  has real roots

$$(4k)^2 - 4(2)(a) \ge 0 \Rightarrow 16k^2 - 8a \ge 0 \Rightarrow 2k^2 \ge a$$

Since  $2k^2 \neq a$ ,  $\therefore k^2 > \frac{a}{2} \implies k > \sqrt{\frac{a}{2}}$  or  $k < -\sqrt{\frac{a}{2}}$  (rejected  $\because k > 0$ )

(ii) 
$$y = \frac{2x^2 - a}{x + k} = 2x - 2k + \frac{2k^2 - a}{x + k}$$

When  $2k^2 = a$ , y = 2x - 2k

Thus, the graph is a straight line.



From diagram,  $0 < b \le 2$ 



**10** (i) A(0,1,0) lies on 
$$p_2$$
: 8(0)+ $a$ (1) + (0) = 4 hence  $a$  = 4.

Director vector of 
$$L : \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$$

$$\therefore L: \underline{r} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \quad \lambda \in \Box$$

10 (ii) 
$$\overrightarrow{AB} \perp L$$
 and  $\overrightarrow{AB} \perp \underline{n}_1$ 

$$\Rightarrow \overrightarrow{AB} \square \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} = 5 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}. \text{ Hence } \overrightarrow{AB} \square \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Let 
$$\overrightarrow{AB} = k \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix} \implies \overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ k \end{pmatrix}$$



$$\frac{\begin{vmatrix} 8 \\ 0B \end{vmatrix} \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} - 4}{\sqrt{8^2 + 4^2 + 1^2}} = 5 \Rightarrow \begin{pmatrix} 0 \\ 1 \\ k \end{pmatrix} \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} - 4 = \pm 45 \quad \Rightarrow \quad k = \pm 45. \qquad \overrightarrow{OB} = \begin{pmatrix} 0 \\ 1 \\ 45 \end{pmatrix} \text{ or } \begin{pmatrix} 0 \\ 1 \\ -45 \end{pmatrix}$$

$$\frac{\text{Method 2}}{}$$

## Method 2

BC = 5 = length of projection of  $\overrightarrow{AB}$  onto  $n_2$ 

$$= \left| \overrightarrow{AB} \Box \hat{n}_2 \right| = \frac{1}{\sqrt{8^2 + 4^2 + 1^2}} \begin{pmatrix} 0 \\ 0 \\ k \end{pmatrix} \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} = \left| \frac{k}{9} \right|.$$

Hence 
$$\frac{k}{9} = \pm 5 \Rightarrow k = \pm 45$$
.

$$\overrightarrow{AB} = \begin{pmatrix} 0 \\ 0 \\ 45 \end{pmatrix} \text{ or } \overrightarrow{AB} = \begin{pmatrix} 0 \\ 0 \\ -45 \end{pmatrix}$$

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + \overrightarrow{AB} \Rightarrow \overrightarrow{OB} = \begin{pmatrix} 0 \\ 1 \\ 45 \end{pmatrix} \text{ or } \begin{pmatrix} 0 \\ 1 \\ -45 \end{pmatrix}$$

**10** Method 1 :

(iii) Acute angle between line AB and  $p_2$ 

= acute angle between  $p_1$  and  $p_2 = |\hat{p}_1 \Box \hat{p}_2|$ 

$$=\cos^{-1}\left|\widehat{n}_{1}\widehat{n}_{2}\right| = \cos^{-1}\left|\frac{1}{\sqrt{5}}\begin{pmatrix}2\\1\\0\end{pmatrix}\frac{1}{\sqrt{64+16+1}}\begin{pmatrix}8\\4\\1\end{pmatrix}\right| = \cos^{-1}\left|\frac{20}{9\sqrt{5}}\right| = 6.4^{\circ}$$

Method 2:

acute angle between line AB and  $p_2$ 

$$= \sin^{-1} \left| \frac{\overrightarrow{AB}}{|\overrightarrow{AB}|} \right| \widehat{\underline{n}}_{2} = \sin^{-1} \left| \frac{1}{45} \begin{pmatrix} 0 \\ 0 \\ 45 \end{pmatrix} \right| \frac{1}{\sqrt{64 + 16 + 1}} \begin{pmatrix} 8 \\ 4 \\ 1 \end{pmatrix} = \sin^{-1} \left| \frac{45}{45 \times 9} \right| = 6.4^{\circ}$$

10  $p_3: 2x+y+\beta z=6$ .

(iv)  $\begin{bmatrix} n_3 \\ -2 \\ 0 \end{bmatrix} = \begin{pmatrix} 2 \\ 1 \\ \beta \end{pmatrix} \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix} = 0 \text{ for all values of } \beta.$ 

Hence  $p_3 // L ----(1)$ 

 $2(0) + 1 + \beta(0) = 1 \neq 6 \implies A(0,1,0)$  does not lie on  $p_3$ ----(2)

Hence line L does not intersect  $p_3$ . Therefore  $p_1$ ,  $p_2$  and  $p_3$  do not meet at a common point.

When  $\beta = 0$ ,

 $p_3: 2x + y = 6$ ,  $p_1: 2x + y = 1$ ,  $p_2, 8x + 4y + z = 4$ 

Geometrically,  $p_1$  and  $p_3$  are parallel with  $p_2$  intersecting both  $p_1$  and  $p_3$ .



Angle that locus of Z makes with the real axis =  $\frac{\pi}{4} + \theta$ .

$$c = 2ia - a = ia + (ia - a)$$
  $\Rightarrow \overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{BC}$ 

Geometrical relationship: AC is the diameter of the circle with centre B. [Or A, B, C are collinear; Or B is the midpt of A and C]

(i) 
$$|z+a-2\mathrm{i}a| = |z-c|$$
 = Distance between Z and C. Least  $|z+a-2\mathrm{i}a| = \sqrt{2} + \frac{1}{2}(\sqrt{2}) = \frac{3\sqrt{2}}{2}$ 

(ii) 
$$\angle ABD = \cos^{-1} \left( \frac{\sqrt{2}/2}{\sqrt{2}} \right) = \frac{\pi}{3} \implies \angle ACD = \frac{\pi}{6}$$

Acute angle *CA* makes with the real axis =  $\frac{\pi}{2} - \left(\frac{\pi}{4} + \theta\right) = \frac{\pi}{4} - \theta$ 

Largest 
$$arg(z+a-2ia) = \frac{\pi}{6} - \left(\frac{\pi}{4} - \theta\right) = \theta - \frac{\pi}{12}$$