

المتابعة الزمنية لتحول كيميائي في محلول مائي

الشعب: علوم تجريبية رياضيات ، تقني رياضي

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

الأستاذ : فرقاني فارس

سلسلة تمارين-1 (مستوى 02)

التمرين (1):

 (S_1) ($2K^+_{(aq)} + S_2O_8^{2-}_{(aq)}$) هن محلول (S_1) لبير و کسو ديکبريتات البوتاسيوم $V_1 = 50 \; \mathrm{mL}$ عندما نمز ج حجما $(K^{+}_{(aq)} + I^{-}_{(aq)})$ مع حجم $V_{2} = 50 \text{ mL}$ من محلول (S_{2}) أيود البوتاسيوم $C_{1} = 2 . 10^{-1} \text{ mol/L}$ تركيزه المولي $S_2O_8^{2^2}$ تركيزه المولى I^- و شوارد البيروكسوديكبريتات كيميائي بين شوارد اليود I^- و شوارد البيروكسوديكبريتات و فق المعادلة:

 $2\Gamma_{(aq)} + S_2O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$

1- حدد الثنائيتين ox/red المشار كتين في التفاعل أ

2- مثل جدول التقدم لهذا التفاعل ، عين المتفاعل المحد علما أن التحول تام .

4- أوجد تراكيز الأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة $t=t_{1/2}$ ، علما أن حجم الوسط التفاعلي . $V_s = 100 \text{ mL}$ هو

الأحوية :

1- الثنائيتين ox/red المشاركتين في التفاعل:

 $(S_2O_8^{2-}_{(aq)}/SO_4^{2-}_{(aq)}) \cdot (I_2_{(aq)}/I_{(aq)})$

2- جدول التقدم و المتفاعل المحد:

حالة الجملة	التقدم	$2I_{(aq)} + S_2O_8^{2}_{(aq)} = I_{2(aq)} + 2SO_4^{2}_{(aq)}$				
ابتدائية	$\mathbf{x} = 0$	5.10 ⁻²	10^{-2}	0	0	
انتقالية	X	$5. 10^{-2} - 2x$	$10^{-2} - x$	X	2x	
نهائية	X_f	$5.10^{-2} - 2x_f$	$10^{-2} - x_f$	x_f	$2x_{\rm f}$	

- إذا اختفى 'I كليا:

$$5.10^{-2} - 2x = 0 \rightarrow x = 2.5.10^{-2} \text{ mol}$$

 $S_2O_8^{2-}$ کلیا:

$$10^{-2} - x = 0 \rightarrow x = 10^{-2}$$

. $x_{max} = x_f = 10^{-2} \text{ mol/L}$: إذن

$\frac{1}{2}$ الأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة $\frac{1}{2}$

- اليود I الناتج .
- شوارد الكبريت الناتجة
- ـ شو ار د البو د ⁻I المتبقية
- شوارد البيروكسوديكبريتات $S_2O_8^{2-}$ المتبقية
- \mathring{m}_{e} التي لم تدخل إلى التفاعل .

 $\frac{4}{4}$ - تراكيز الأفراد الكيميائية عند اللحظة $\frac{t_{1/2}}{1_{2}}$: الأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة $t_{1/2}$ هي : SO_4^{-2} ، I_2 ، I_2 ، I_3 ، I_4 بالإضافة إلى شوار K^{+} التي لم تدخل إلى التفاعل و لم تظهر في المعادلة .

- حسب تعريف زمن نصف التفاعل:

$$t = t_{1/2} \rightarrow x_{1/2} = \frac{x_f}{2} = \frac{10^{-2}}{2} = 5.10^{-3} \text{ mol}$$

- اعتمادا على جدول التقدم بكون:

$$[I_2]_{1/2} = \frac{n_{1/2}(I_2)}{V_S} = \frac{x_{1/2}}{V_S} = \frac{5.10^{-3}}{0.10} = 0.05 \text{ mol/L}$$

في اللحظة t=0 ، و هذا الأخير يكون مساوي لمجموع عدد مولات K^+ في المحلولين الممزوجين لأن كلاهما \mathbf{K}^+ يحتوى على الشو ار د

$$\left[K^{+}\right]_{1/2} = \frac{n_{1/2}(K^{+})}{V_{S}} = \frac{n_{0}(K^{+})}{V_{S}} = \frac{n_{1}(K^{+}) + n_{2}(K^{+})}{V_{S}}$$

حيث : $n_1(K^+)$ هي كمية مادة K^+ في المحلول $N_1(S_1)$ لمحلول بير وكسو ديكبريتات البوتاسيوم . البوتاسيوم بالمحلول (S_2) المحلول يود البوتاسيوم K^+ هي كمية مادة K^+

و منه:

$$\left[K^{+}\right]_{1/2} = \frac{\left[K^{+}\right]_{01}V_{1} + \left[K^{+}\right]_{02}V_{2}}{V_{S}}$$

في المحلول ($K^+ + S_2 O_8^{2-}$) يكون : $2C_1 = 2C_1$ و في المحلول ($K^+ + I^-$) يكون : $2C_1 = 2C_1$ و منه يصبح :

$$\begin{split} \left[K^{+}\right]_{1/2} &= \frac{2C_{1}V_{1} + C_{2}V_{2}}{V_{S}} \\ \left[K^{+}\right]_{1/2} &= \frac{(2 \cdot 2 \cdot 10^{-1} \cdot 0.05) + (1 \cdot 0.05)}{0.05 + 0.05} = 0.7 \text{ mol/L} \end{split}$$

التمرين (2):

يحفظ الماء الأكسجيني $H_2O_{2 (aq)}$ (يسمى أيضا محلول بروكسيد الهيدروجين) في قارورات خاصة بسبب التفكك الذاتي البطيء وفق المعادلة :

 $2H_2O_{2(aq)} = 2H_2O_{(\ell)} + O_{2(aq)}$

تحمل الورقة الملصقة على قارورته في المُحتبر الكتّابة ماء أكسجيني (10V)، و تعني (1L) من الماء الأكسجيني ينتج بعد تفككه 10L من غاز ثنائي الأكسجين في الشرطين النظاميين حيث الحجم المولي $V_{\rm M}=22.~4~L.mol^{-1}$. 1- مثل جدول تقدم التفاعل المنمذج لتفكك الماء الأكسجيني .

 $V(O_2)$ عنه بدلالة $V(H_2O_2)$ حجم الماء الأكسجيني يعبر عنه بدلالة $V(O_2)$ حجم الماء الأكسجيني المتفكك و $V(O_2)$ حجم غاز ثنائي الأكسجين الناتج عن هذا التفكك في الشرطين النظاميين بالعلاقة التالية :

$$C = \frac{2}{V_M} \cdot \frac{V(O_2)}{V(H_2O_2)}$$

 $C = 0.893 \; \mathrm{mol.L^{-1}}$. هو الأكسجيني السابق هو الأكسجيني الماء الأكسجيني السابق عن التركيز المولي الماء الأكسجيني السابق هو

<u>الأجوبة :</u>

1- جدول التقدم:

الحالة	$2H_2O_{2(aq)} =$	$2H_2O_{(\ell)}$	$ O_2$
ابتدائية	$n_0(H_2O_2)$	بزيادة	0
انتقالية	$n_0(H_2O_2) - 2x$	بزيادة	X
نهائية	$n_0(H_2O_2) - 2x_f$	بزيادة	X_{f}

$$\underline{: C = \frac{2}{V_{M}} \cdot \frac{V(O_{2})}{V}} = \frac{1}{2}$$

من جدول التقدم:

: كمية مادة $\mathrm{H}_2\mathrm{O}_2$ المتفككة (ليس المتبقية) في كل لحظة هي

•
$$n(H_2O_2) = 2x$$
(1)

- كمية O₂ الناتجة عن التفكك هي :

- بتعویض (2) فی (1) نجد:

$$n(H_2O_2) = 2(O_2)$$

$$C.V(H_2O_2) = 2\frac{V(O_2)}{V_M} \rightarrow C = \frac{2}{V_M} \frac{V(O_2)}{V(H_2O_2)}$$

3- حساب تركيز الماء الأكسجيني:

حسب تعريف (10V) يمكن كتابة القاعدة الثلاثية التالية:

$$\left\{ \begin{array}{l} 1L \ (H_2O_2) \ \rightarrow \ 10L \ (O_2) \\ V(H_2O_2) \ L \ \rightarrow \ V(O_2) \ L \end{array} \right.$$

و منه نکتب :

$$10 \text{ V}(\text{H}_2\text{O}_2) = \text{V}(\text{O}_2) \rightarrow \frac{\text{V}(\text{O}_2)}{\text{V}(\text{H}_2\text{O}_2)} = 10$$

بالتعويض في عبارة С السابقة نجد:

$$C = \frac{2}{V_M} . 10 = \frac{2}{22.4} . 10 = 0.893 \text{ mol/L}$$

<u>التمرين (3) :</u>

يعرف محلول بيروكسيد الهيدروجين بالماء الأكسجيني ، الذي يستعمل في تطهير الجروح و تنظيف العدسات اللاصقة و كذلك في التبييض.

يتفكك الماء الأكسجيني ذاتيا وفق التفاعل المنمذج بالمعادلة الكيميائية التالية:

$$2H_2O_{2 (aq)} = 2H_2O_{(\ell)} + O_{2 (g)}$$

في مخبر الثانوية توجد قارورة تحتوي على على $500~\mathrm{mL}$ من الماء الأكسجيني S_0 منتج حديثا كتب عليها ماء أكسجيني $m C_0 = 0.89~mol/L:$ ، قام أحد التلاميذ بحساب قيمة التركيز الموافقة فوجد ، $m C_0 = 0.89~mol/L$

طلب الأستاذ من مجموعة من التلاميذ تحضير 100 من محلول (S) بتمديد عينة من المحلول (S_0) مرة . تأخذ كل مجموعة حجما من المحلول S ، و تضيف إليه حجما معينا من محلول يحتوي على شوارد الحديد الثلاثي كوسيط وفق الجدول التالي :

D	С	В	A	رمز المجموعة
2	0	5	1	حجم الوسيط المضاف (mL)
48	50	45	49	H_2O_2 (mL) حجم
50	50	50	50	حجم الوسط التفاعلي

1- ضع بروتوكولا تجريبيا لتحضير المحلول S مع ذكر الزجاجيات و الأدوات المستعملة 1

2- ما دور الوسيط؟ ما نوع الوساطة؟

3- تأخذ كل مجموعة ، في لحظات زمنية مختلفة ، حجما مقداره mL من الوسط التفاعلي الخاص بها و يوضع في الماء البارد و الجليد و تجرى له عملية المعايرة بمحلول برمنغنات البوتاسيوم المحمضة (بإضافة قطرات من حمض الكبريت المركز) . سمحت عملية المعايرة برسم المنحنيات االبيانية (الشكل-2) .

أ- حدد البيان الخاص بكل مجموعة .

<u>الأجوبة :</u>

1- البروتوكول التجريبي:

- نحسب أو لا حجم المحلّول S_0 الواجب أخذه بالماصة .

باعتبار V_0 حجم المحلول S_0 قبل التمديد و V حجم المحلول الناتج بعد التمديد ، و حيث أن معامل التمديد هو f=40 هو

$$V = 40 V_0 \rightarrow V_0 = \frac{V}{40} = \frac{200}{40} = 5 \text{ mL}$$

- نأخذ $\,\mathrm{mL}\,$ 5 من المحلول $\,\mathrm{S}_0$ بواسطة ماصة سعتها $\,\mathrm{mL}\,$ 5 و نضعها في حوجلة سعتها $\,\mathrm{200~mL}\,$ 20 ثم نضيف الماء المقطر حتى خط العيار مع الرج للحصول على محلول متجانس .

2- دور الوسيط: هو تسريع التفاعل من دون أن يدخل فيه .

- نوع الوساطة : متجانسة لأن الوسيط و المحلول يشكلان طورا واحد (سائل) .

3- أ- البيان الخاص بكل مجموعة:

- يكون التفاعل أسرع كلما كان الوسيط مناسب و بازدياد كمية الوسيط يكون التفاعل أسرع و أسرع ، و حيث أن التراكيز الابتدائية للمتفاعلات نفسها في كل مجموعة يكون :

(C) البيان (1) المجموعة

(A) البيان (2) المجموعة

(D) البيان (3) المجموعة

(B) البيان (4) المجموعة

<u>التمرين (4) :</u>

لدراسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O_7^{2-}_{(aq)}$ و محلول حمض الأوكساليك $C_2H_2O_4_{(aq)}$ نمز ج للراسة تطور حركية التحول بين شوارد البيكرومات البوتاسيوم $V_1=40~\mathrm{mL}$ تركزه المولي في اللحظة $V_1=40~\mathrm{mL}$ من محلول بيكرومات البوتاسيوم $V_2=60~\mathrm{mL}$ مع حجم $V_2=60~\mathrm{mL}$ من محلول حمض الأوكساليك تركيزه المولي مجهول $V_2=60~\mathrm{mL}$

1- أكتب معادلة التفاعل الكيميائي الحادث ، علما أنه تفاعل أكسدة إرجاعية تشارك فيه التنائيتان:

 $(CO_2/H_2C_2O_4) \cdot (Cr_2O_7^{2-}/Cr^{3+})$

- . أحسب الكمية الابتدائية شوارد البيكرومات $\operatorname{Cr_2O_7^{2-}}_{(aq)}$ ثم أنشئ تقدم التفاعل المذكور
 - . بدلالة الزمن $\operatorname{Cr}^{3+}_{(aq)}$ بدلالة الزمن -3

- 3- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟
- $[Cr^{3+}_{(aq)}]$ عبر عن السرعة الحجمية للتفاعل بدلالة التركيز المولي لشوارد الكروم -4
 - 5- تتناقص سرعة التفاعل بمرور الزمن ، فسر ذلك على المستوى المجهري .
 - 6- أوجد من البيان:
 - أ- التقدم النهائي ${
 m X}_{
 m f}$.
 - ب- باعتبار التحول تاما عين المتفاعل المحد علما أن H^+ بوفرة .
 - C_2 التركيز المولي لمحلول حمض الأوكساليك

الأجوبة :

1- معادلة التفاعل:

$$\times 3 \mid H_2C_2O_4 = 2CO_2 + 2H^+ + 2e^-$$

$$\times 1$$
 | $Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$

$$3H_2C_2O_4 + Cr_2O_7^{2-} + 14H^+ = 2Cr^{3+} + 6CO_2 + 6H^+ + 4H_2O_3$$

و باختزال ⁺H نجد :

$$3H_2C_2O_4{_{(aq)}} + Cr_2O_7{^{2\text{-}}{_{(aq)}}} + 8H^{^+}{_{(aq)}} = 2Cr^{3\text{+}}{_{(aq)}} + 6CO_2{_{(aq)}} + 4H_2O_{(\ell)}$$

2- کمیة مادة $\operatorname{Cr}_2 \operatorname{O}_7^{2}$ و جدول التقدم:

$$n_0(Cr_2O_7^{2-}) = C_1V_1 = 0.2 \cdot 0.04 = 8 \cdot 10^{-5} \text{ mol}$$

الحالة	التقدم	$3C_2H_2O_4$	$+ Cr_2O_7^{2-}$	- 8H ⁺ :	$= 2Cr^{3+}$	+ 6CO ₂ +	- 7H ₂ O
ابتدائية	$\mathbf{x} = 0$	C_2V_2	8.10 ⁻³	بزيادة	0	0	بزيادة
انتقالية	X	$C_2V_2 - 3x$	8 . 10 ⁻³ - x	بزيادة	2x	6x	بزيادة
نهائية	X_{f}	C_2V_2 - $3x_f$	8.10^{-3} - x_f	بزيادة	$2x_{\rm f}$	$6x_f$	بزيادة

3- تصنيف التفاعل:

من البيان التفاعل بلغ حده بعد حوالي 20 دقيقة ، إذن يمكن القول عن التفاعل الحادث أنه بطيء .

4- عبارة السرعة الحجمية بدلالة [Cr³⁺]

ر مزنا للسرعة الحجمية بـ ${
m v}$ يكون :

$$v = \frac{1}{V} \frac{dx}{dt}$$

- من جدول التقدم:

$$n(Cr^{3+}) = 2x \rightarrow x = \frac{n(Cr^{3+})}{2}$$

بالتعويض في عبارة السرعة الحجمية:

$$v = \frac{1}{V} \frac{d(\frac{n(Cr^{3+})}{2})}{dt} = \frac{1}{2V} \frac{d n(Cr^{3+})}{dt} = \frac{1}{2V} \frac{d [Cr^{3+}]V}{dt} = \frac{V}{2V} \frac{d [Cr^{3+}]}{dt} \rightarrow v = \frac{1}{2} \frac{d [Cr^{3+}]}{dt}$$

5- التفسير المجهري لتناقص السرعة:

أثناء التفاعل تتناقص تراكيز المتفاعلات ، و هذا يؤدي إلى تناقص التصادمات الفعالة بين جزيئات المتفاعلات و بتناقص التصادمات الفعالة بين جزيئات المتفاعلات تتناقص سرعة التفاعل

6- أ- التقدم النهائي: من البيان ·

$$n_f(Cr^{3+}) = 4 \cdot 10^{-3} \text{ mol}$$

من جدول التقدم:

$$n_f(Cr^{3+}) = 2x_f \rightarrow x_f = \frac{n_f(Cr^{3+})}{2} = \frac{4.10^{-2}}{2} = 2.10^{-3} \text{ mol}$$

<u>ب- المتفاعل المحد:</u> يما أن التفاعل تام يكون:

$$x_{max} = x_f = 2 \cdot 10^{-3} \text{ mol}$$

و من جدول التقدم:

 $n_f(Cr_2O_7^{2-}) = 8 \cdot 10^{-3} - x_f = 8 \cdot 10^{-3} - 2 \cdot 10^{-3} = 6 \cdot 10^{-3} \text{ mol } \neq 0$ هذا يعنى أن -Cr₂O₇² لم يختفي كليا في نهاية التفاعل ، أي أنه ليس المتفاعل المحد و بما أن التفاعل لم يكون في نسب ستوكيومترية فمن المؤكد أن المتفاعل المحد هو حمض الأوكساليك .

ب- التركيز المولي لمحلول حمض الأوكساليك : بما أن حمض الأوكساليك التقدم : بما أن حمض الأوكساليك متفاعل محد يكون اعتمادا على جدول التقدم :

$$C_2V_2 - 3x_f = 0 \rightarrow C_2 = \frac{3x_f}{V_2} = \frac{3.2.10^{-3}}{0.06} = 0.1 \text{ mol/L}$$

تمارين مقترحة

التمرين (5): (بكالوريا 2008 – علوم تجريبية) (الحل المفصل: تمرين مقترح 02 على الموقع)

ندرس تفكك الماء الأكسجيني (H_2O_2) ، عند درجة حرارة ثابتة $\theta=12^{\circ}C$ و في وجود وسيط مناسب . ننمذج التحول الكيميائي الحاصل بتفاعل كيميائي معادلته :

 $2H_2O_{2 (aq)} = 2H_2O_{(\ell)} + O_{2 (g)}$

(نعتبر أن حجم المحلول يبقى ثابتا ُخلال مده التحول ، و أن الحجم المولي للغاز في شروط التجربة $V_{\rm S}=500~{\rm mL}$ من الماء الأكسجيني تركيزه المولي ($V_{\rm M}=24~{\rm L/mol}$) . نأخذ في اللحظة $V_{\rm S}=500~{\rm mL}$. $\left[H_2O_2\right]_0=8.0\cdot10^{-2}~{\rm mol/L}$.

نجمع ثنائي الأكسجين المتشكل و نقيس حجمه ($V_{\rm O_2}$) تحت ضغط ثابت كل أربع دقائق ، و نسجل النتائج كما في الجدول التالي :

t(min)	0	4	8	12	16	20	24	28	32	36	40
V_{O_2} (mL)	0	60	114	162	204	234	253	276	288	294	300
$[H_2O_2]$ (mol/L)											

1- أنشئ جدول لتقدم التفاعل الكيميائي الحاصل.

2- أكتب عبارة التركيز المولي $[H_2O_2]$ للماء الأكسجيني في اللحظة t بدلالة :

 $V_{O_2} \cdot V_M \cdot V_S \cdot [H_2 O_2]_0$

3-أ/ أكمل الجدول السابق.

ب/ ارسم المنحنى البياني f(t)=f(t) باستعمال سلم مناسب .

ج/ أعط عبارة السرعة الحجمية للتفاعل الكيميائي .

د/ أحسب سرعة التفاعل الكيميائي في اللحظتين $t_1=16~{
m min}$ و $t_2=24~{
m min}$. و استنتج كيف تتغير سرعة التفاعل مع الزمن .

هـ/ عين زّمن نصف التفاعل $t_{1/2}$ بيانيا .

4- إذا أجريت التجربة السابقة في الدرجة $^{\circ}C=0$ ، أرسم كيفيا شكل منحنى تغير $[H_2O_2]$ بدلالة الزمن على البيان السابق مع التبرير .

<u>أجوبة مختصرة :</u>

1) جدول التقدم:

حالة الجملة	التقدم	$2H_2O_2$	$= 2H_2O$	+ O ₂
ابتدائية	$\mathbf{x} = 0$	4.10 ⁻²	0	0
انتقالية	X	$4 \cdot 10^{-2} - 2x$	2x	X
نهائية	X_{f}	$4.10^{-2}-2x_{\rm f}$	$2x_f$	$\mathbf{x}_{\mathbf{f}}$

$$[H_2O_2] = [H_2O_2]_0 - 2 \frac{V(O_2)}{V_S.V_M}$$
 (2)

: اعتمادا على هذه العلاقة نكمل الجدول (
$$[{\rm H_2O_2}] = 8.10^{-2} - \frac{2}{0.5.24} {
m V(O_2)}$$
 (أ - 3

t (min)	0	4	8	12	16	20
$V(O_2)$ (mL)	0	60	114	162	204	234
$[H_2O_2]$ mol/L	$8.0 \cdot 10^{2}$	$7.0 \cdot 10^{-2}$	$6.1 \cdot 10^{-2}$	$5.3 \cdot 10^{-2}$	$4.6 \cdot 10^{-2}$	$4.1 \cdot 10^{-2}$
	24	28	32	36	40	
	253	276	288	294	300	
	$3.8 ext{ } 10^{-2}$	$3.4 10^{-2}$	$3.2 \cdot 10^{-2}$	$3.1 ext{ } 10^{-2}$	$3.0 ext{ } 10^{-2}$	

$$v = \frac{1}{V} \frac{dx}{dt} (\Rightarrow -3)$$

:
$$v = -\frac{V}{2} \frac{d[H_2O_2]}{dt}$$
 (على المنحنى) د

$$t = 16 \text{ min} \rightarrow \frac{d[H_2O_2]}{dt} = -1.6.10^{-3} \rightarrow v = 4.0.10^{-4} \text{ mol/min}$$

 $t = 24 \text{ min} \rightarrow \frac{d[H_2O_2]}{dt} = -8.0.10^{-4} \rightarrow v = 2.0.10^{-4} \text{ mol/min}$

من النتائج المتحصل عليها نلاحظ أن السرعة تتناقص مع مرور الزمن .
 هـ) اعتمادا على تعريف
$$t_{1/2}$$
 نجد : $t_{1/2} = 10^{-2} \, \mathrm{mol}$ و عند حساب $t_{1/2} = 10^{-2} \, \mathrm{mol}$ عند زمن نصف التفاعل $t_{1/2} = 20 \, \mathrm{min}$: نجد : $t_{1/2} = 0.04 \, \mathrm{mol/L}$ ، بالاسقاط في البيان نجد : $t_{1/2} = 0.04 \, \mathrm{mol/L}$

التمرين (6): (بكالوريا 2008 – رياضيات) (الحل المفصل: تمرين مقترح 04 على الموقع)

نريد دراسة تطور التحول الكيميائي الحاصل بين شوارد محلول (S_1) لبيروكسوديكبريتات البوتاسيوم (ريد دراسة تطور التحول الكيميائي الحاصل بين شوارد محلول (S_2) ليود البوتاسيوم $(K^+_{(aq)} + I^-_{(aq)})$ في درجة حرارة ثابتة . لهذا $V_1 = 50 \, \text{mL}$ المخرض نمزج في اللحظة $V_1 = 2.0 \, \cdot 10^{-1} \, \text{mol}$ من المحلول $V_1 = 50 \, \text{mL}$ من المحلول $V_2 = 50 \, \text{mL}$. $V_2 = 50 \, \text{mL}$

نتابع تغيرات كمية $S_2O_8^{-2}$ المتبقية في الوسط التفاعلي في لحظات زمنية مختلفة ، فنحصل على البيان الموضح

ننمذج التحول الكيميائي الحاصل بالتفاعل الذي معادلته:

$$2I^{\text{-}}_{(aq)} + S_2O_8^{2\text{-}}_{(aq)} = I_{2(aq)} + 2\overset{"}{S}O_4^{2\text{-}}_{(aq)}$$

- 1- حدد الثنائيتين ox/red المشاركتين في التفاعل .
 - 2- أنشئ جدولا لتقدم التفاعل .
 - 3- حدد المتفاعل المحد علما أن التحول تام.
- 4- عرف زمن نصف التفاعل $(t_{1/2})$ و استنتج قيمته بيانيا .
- $t_{1/2}$ عند اللحظة $t_{1/2}$ أوجد التراكيز المولية للأنواع الكيميائية المتواجدة في الوسط التفاعلي عند اللحظة
 - $t=10 \ \mathrm{min}$. $t=10 \ \mathrm{min}$. استنتج بيانيا قيمة السرعة الحجمية للتفاعل في اللحظة

أجوبة مختصرة :

- . $(S_2O_8^{2-}_{(aq)}/SO_4^{2-}_{(aq)})$, $(I_{2(aq)}/I_{(aq)})$ (1
 - 2) جدول التقدم:

حالة الجملة	التقدم	$2I_{(aq)} + S_2O_8^{2-}_{(aq)} = I_{2(aq)} + 2SO_4^{2-}_{(aq)}$				
ابتدائية	$\mathbf{x} = 0$	5.10 ⁻²	10^{-2}	0	0	
انتقالية	X	$5. 10^{-2} - 2x$	$10^{-2} - x$	X	2x	
نهائية	X_{f}	$5.10^{-2} - 2x_f$	$10^{-2} - x_f$	$\mathbf{x}_{\mathbf{f}}$	$2x_{\rm f}$	

. ${
m S_2O_8}^{2-1}$ و المتفاعل المحد هو شوار د البيروكسيدوكبريتات ${
m X_{max}}={
m x_f}=10^{-2}~{
m mol}$ (3

غو منه : $t_{1/2}$ هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي ، و منه :

$$t = t_{1/2} \rightarrow x = x_{1/2} = \frac{x_f}{2} = 5.10^{-3} \text{ mol}$$

نحسب $n_{1/2}(S_2O_8^{2-})=5$. 10^{-3} mol : عند $t_{1/2}$ عند $n_{1/2}(S_2O_8^{2-})=5$. $t_{1/2}=17.5$ min : الاعتبار سلم الرسم نجد $t_{1/2}=17.5$ min :

$$\begin{split} \left[I_{2}\right]_{1/2} &= 0.05 \text{ mol/L} \, \cdot \, \left[I^{-}\right]_{1/2} = 0.4 \text{ mol/L} \, \cdot \, \left[S_{2}O_{8}^{\,\, 2^{-}}\right]_{1/2} = 0.05 \text{ mol/L} \, \, (50.000) \, \\ &= 0.1 \, \text{mol/L} \, \cdot \, \left[SO_{4}^{\,\, 2^{-}}\right]_{1/2} = 0.1 \, \text{mol/L} \, \, (10.000) \, \\ &= 0.1 \, \text{mol/L} \, \cdot \, \left[SO_{4}^{\,\, 2^{-}}\right]_{1/2} = 0.1 \, \text{mol/L} \, \, \end{split}$$

هو ميل
$$\frac{dn(S_2O_8^{-2})}{dt} = -2.7 \cdot 10^{-4} : حيث : v = -\frac{1}{V_S} \frac{dn(S_2O_8^{-2})}{dt} = 2.7 \cdot 10^{-3} \text{ mol/L.min } (6 - 10^{-2})$$

المماس عند اللحظة: t = 10 min

التمرين (7): (بكالوريا 2011 – علوم تجريبية) (الحل المفصل: تمرين مقترح 09 على الموقع)

يعرف محلول بيروكسيد الهيدروجين بالماء الأكسجيني ، الذي يستعمل في تطهير الجروح و تنظيف العدسات اللاصقة و كذلك في التبييض .

يتفكك الماء الأكسجيني ذاتياً وفق التفاعل المنمذج بالمعادلة الكيميائية التالية:

 $2H_2O_{2\;(aq)} = 2H_2O_{(\ell)} + O_{2\;(g)}$

- 1- أقترح على التلاميذ في حصة الأعمال التطبيقية دراسة حركية التحول السابق. وضع الأستاذ في متناولهم المواد و الوسائل التالية:
- قارورة تحتوي على ML منتج حديثا كتب عليها ماء أكسجيني S_0 منتج حديثا كتب عليها ماء أكسجيني ، الحجم (كل ML من الماء الأكسجيني يحرر ML من غاز ثنائي الأكسجين في الشرطين النظاميين ، الحجم المولى $V_M = 22.4 \; L/mol$
 - الزجاجبات:
 - حوجلات عيارية : 250 mL ، 200 mL ، 100 mL ، 50 mL .
 - ماصات عيارية : mL ، 1 mL ، 5 mL و إجاصة مص .
 - سحاحة مدرجة سعتها : 50 mL .
 - بيشر سعته : 250 mL
 - قارورة حمض الكبريت المركز %98.
 - حامل

قام الأستاذ بتفويج التلاميذ إلى أربع مجموعات مصغرة (D · C · B · A) ثم طلب منهم القيام بما يلي :

أولا: تحضير محلول S بحجم ML أي بتمديد عينة من المحلول S 40 مرة .

- 1- ضع بروتوكولا تجريبيا لتحضير المحلول S .
- 2- أنشى جدو لا لتقدم التفاعل . (تفكك الماء الأكسجيني) .
- S_0 استنتج التركيز المولي S_0 استنتج التركيز المولي للمحلول S_0

ثانيا: تأخذ كل مجموعة مجما من المحلول S، و تضيف إليه حجما معينا من محلول يحتوي على شوارد الحديد الثلاثي كوسيط و فق الجدول التالي:

جمو عة	A	В	С	D
سيط المضاف (mL)	1	5	0	2
H_2O_2 (m)	49	45	50	48
سط التفاعلي	50	50	50	50

1- ما دور الوسيط؟ ما نوع الوساطة؟

2- تأخذ كل مجموعة ، في لحظات زمنية مختلفة ، حجما مقداره mL من الوسط التفاعلي الخاص بها و يوضع في الماء البارد و الجليد و تجرى له عملية المعايرة بمحلول برمنغنات البوتاسيوم المحمضة (بإضافة قطرات من حمض الكبريت المركز). ما الغرض من استعمال الماء البارد و الجليد ؟

3- سمحت عملية المعايرة برسم المنحنيات االبيانية (الشكل-2).

أ- حدد البيان الخاص بكل مجموعة.

 S_0 المحلول المعاير والمولي S_0 المحلول المعاير والمولي المحلول S_0 المحلول S_0 المحلول المعاير والمولي المحلول المحلول المحلول المحلول والمحلول المحلول والمحلول والمحلول والمحلول المحلول والمحلول وال

جـ هل النتائج المتوصل إليها متطابقة مع ما هو مسجل على القارورة ؟

<u>أَجِوبِة مختصرة :</u>

ار د د د د د

1) البروتوكول التجريبي:

- نحسب أو لا حجم المحلّول S_0 الواجب أخذه بالماصة .

باعتبار V_0 حجم المحلول S_0 قبل التمديد و V حجم المحلول الناتج بعد التمديد ، و حيث أن معامل التمديد هو f=40

$$V = 40 V_0 \rightarrow V_0 = \frac{V}{40} = \frac{200}{40} = 5 \text{ mL}$$

- نأخذ mL من المحلول S_0 بواسطة ماصة سعتها mL و نضعها في حوّجلة سعتها 200~mL ثم نضيف الماء المقطر حتى خط العيار مع الرج للحصول على محلول متجانس .

2) جدول التقدم:

الحالة	التقدم	2H ₂ O =	$=$ O_2 +	$2H_2O$
ابتدائية	$\mathbf{x} = 0$	n_0	0	بزيادة
انتقالية	X	n_0 - $2x$	X	بزيادة
نهائية	$\mathbf{x}_{\mathbf{f}}$	n_0 - $2x_f$	$\mathbf{x}_{\mathbf{f}}$	بزيادة

انيا:

- 1) دور الوسيط: هو تسريع التفاعل من دون أن يدخل فيه ، نوع الوساطة: متجانسة لأن الوسيط و المحلول يشكلان طورا واحد (سائل).
 - 2- الغرض من استعمال الماء البارد و الجليد هو إيقاف تطور التفاعل .
 - (D) ، البيان (A) ، البيان (C) ، البيان (C) ، البيان (B) ، البيان (C) ، البيان (B) ، البيان (A) ، البيان (B) ، المجموعة (B) .
- - ج) النتائج المتوصل إليها متطابقة مع ما هو مسجل في القارورة في حدود أخطاء التجربة و القياس .

التمرين (8): (بكالوريا 2012 - علوم تجريبية) (الحل المفصل: تمرين مقترح 10 على الموقع)

لدراسة تطور التفاعل الحادث بين محلول حمض الأوكساليك $H_2C_2O_{4(aq}$ و محلول بيكرومات البوتاسيوم $V_1=100~\text{mL}$ و محلول $V_1=100~\text{mL}$ و محلول $V_1=100~\text{mL}$ من محلول $V_1=100~\text{mL}$ و حجم $V_2=100~\text{mL}$ و حجم $V_2=100~\text{mL}$ من محلول حمض الأوكساليك الذي تركيزه المولي $V_1=100~\text{mol.L}^{-1}$ و حجم $V_2=100~\text{mL}$ و حجم $V_1=100~\text{mc}$ من محلول بيكرومات البوتاسيوم الذي تركيزه المولي $V_1=100~\text{mol.L}^{-1}$ و بضع قطرات من حمض الكبريت المركز بنتابع تطور المزيج التفاعلي من خلال معايرة شوارد الكروم $V_1=100~\text{mc}$ المتشكلة بدلالة الزمن فنحصل على المنحنى البياني (الشكل-1) الذي يمثل تطور التركيز المولي لشوارد الكروم $V_1=100~\text{mc}$ بدلالة الزمن .

1- كيف نصنف هذا التفاعل من حيث مدة استغراقه ؟

	$3H_2C_2O_{4 \text{ (aq)}}$	$3H_2C_2O_{4 (aq)} + Cr_2O_{7 (aq)}^{2-} + 8H_{(aq)}^+ = 2Cr_{(aq)}^{3+} + 6CO_{2 (aq)} + 4H_2O_{(\ell)}$							
الحالة	كمية المادة (mmol)								
ابتدائية									
انتقالية									
نهائية									

هل التفاعل تام أم غير تام ؟ لماذا ؟

 $t_{1/2}$ ، ثم قدر قيمته بيانيا $t_{1/2}$ ، ثم قدر قيمته بيانيا

 $Cr^{3+}_{(aq)}$. ثم عبر عنها بدلالة التركيز المولى لشوارد الكروم V . أ- عرف السرعة الحجمية V

t=8~s و t=0 ب- احسب السرعة الحجمية في اللحظتين

جـ فسر على المستوى المجهري تناقص هذه السرعة مع مرور الزمن .

أجوبة مختصرة :

1) من البيان التفاعل بلغ حده بعد حوالي 20 دقيقة ، إذن يمكن القول عن التفاعل الحادث أنه بطيء .

2) جدول التقدم:

	$3H_2C_2O_{4 (aq)} + Cr_2O_7^{2-}_{(aq)} + 8H^+_{(aq)} = 2Cr^{3+}_{(aq)} + 6CO_{2 (aq)} + 4H_2O_{(\ell)}$									
الحالة		كمية المادة (mmol)								
ابتدائية	3	بوفرة 0 0 بوفرة 3.0 3								
انتقالية	3 - 3x									
نهائية	3 - 3x _f	$0.8 - x_{\rm f}$	بوفرة	$2x_{\rm f}$	$6x_f$	بوفرة				

. $Cr_2O_7^{2-}$ و المتفاعل المحد هو $x_{max}=x_f=8$. 10^{-4} mol

، $x_{1/2} = \frac{x_f}{2} = 4.10^{-4} \text{ mol}$ ، نصف التفاعل $t_{1/2} = 4.10^{-4} \text{ mol}$ ، نصف التفاعل $t_{1/2} = 4.10^{-4} \text{ mol}$ ، نصف التفاعل والتفاعل والتفاعل المنافع المنافع

 $t_{1/2} = 4 \text{ s}$: بالإسقاط في البيان

بالعلاقة : $v = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$ ، $v = \frac{1}{V} \frac{dx}{dt}$ ، $v = \frac{1}{V} \frac{dx}{dt}$.

.
$$v = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$$
 ، $v = \frac{1}{V} \frac{dx}{dt}$: بالعلاقة

$$\frac{2}{dt} \frac{dt}{dt}$$
 : عيث $v = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$ عبد $v = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$ عبد $v = \frac{1}{2} \frac{d[Cr^{3+}]}{dt}$ عبد $t = 0 \rightarrow \frac{d[Cr^{3+}]}{dt} = 1.33.10^{-3}$ $\rightarrow v = 0.667.10^{-3} \text{ mol/L.s}$

•
$$t = 0 \rightarrow \frac{d[Cr^{3+}]}{dt} = 1.33.10^{-3} \rightarrow v = 0.667 \cdot 10^{-3} \text{ mol/L.s}$$

•
$$t = 8 \text{ s} \rightarrow \frac{d[Cr^{3+}]}{dt} = 0.75.10^{-3} \rightarrow v = 0.375.10^{-3} \text{ mol/L.s}$$

ج) تناقص تركيز المتفاعلات أثناء التفاعل يؤدي إلى تناقص التصادمات الفعالة بين جزيئات المتفاعلات و بتناقص التصادمات الفعالة بين جزيئات تتناقص سرعة التفاعل

التمرين (9): (بكالوريا 2012 - علوم تجريبية) (الحل المفصل: تمرين مقترح 11 على الموقع)

t=0 لأجل الدراسة الحركية لتفاعل محلول يود البوتاسيوم مع الماء الأكسجيني ، نحضر في بيشر في اللحظة المزيج التفاعلي S المشكل من الحجم $V_1 = 368$ mL من محلول يود البوتاسيوم الذي تركيزه المولى $m C_2 = 0.10 \; mol.L^{-1}$ و الحجم $m V_2 = 32 \; mL$ من الماء الأكسجيني الذي تركيزه المولي $m C_1 = 0.05 \; mol.L^{-1}$ و كمية كافية من حمض الكبريت المركز ، فيتم إرجاع الماء الأكسجيني بواسطة شوارد اليود $\Gamma_{(aa)}$ وفق تفاعل بطيء ينتج عنه ثنائي اليود . ننمذج التفاعل الكيميائي الحادث بالمعادلة الآتية :

$$H_2O_{2~(aq)} + 2I^{\text{-}}_{~(aq)} + 2H^{\text{+}}_{~(aq)} = 2H_2O_{(\ell)} + I_{2~(aq)}$$

نتابع التطور الحركي للتفاعل من خلال قياس التركيز المولي لثنائي اليود المتشكل في لحظات زمنية متعاقبة ، و ذلك

باستعمال طريقة المعايرة اللونية الأتية:

 $V = 40.0 \; \mathrm{mL}$ في اللحظة t عينة حجمها $V = 40.0 \; \mathrm{mL}$ من المزيج التفاعلي S و نسكبها في بيشر يحتوي الجليد المنصهر و النشاء ، فيتلون المزيج بالأزرق ، بعد ذلك نضيف تدريجيا إلى هذه العينة محلولًا مائيا لثيوكبريتات الصوديوم الذي تركيزه المولي $^{-1}_{\rm caq} = 0.10~{
m mol.L}^{-1}$ الذي تركيزه المولي $^{-1}_{\rm caq} = 0.10~{
m mol.L}^{-1}$ الذي تركيزه المولي الأزرق المولي الأزرق المولي الأزرق المولي الأزرق المولي المول الُحُجِم $V_{\rm E}$ لثيوكُبريتات الصوديوم المضاف و معادلة تفاعل المعايرة نستنتج التركيز المولي لثنائي اليود في

t نعيد العملية في لحظات متعاقبة ، ثم نرسم تطور التركيز المولي لثنائي اليود $I_{2(aq)}$ المتشكل بدلالة الزمن فنحصل على المنحنى البياني (الشكل-5).

1- أ- ارسم بشكل تخطيطي عملية المعايرة .

ب- ما هي الوسيلة التي نستعملها لأخذ 40 mL من المزيج التفاعلي ؟

جـ اكتب معادلة تفاعل المعايرة .

. $S_4O_6^{2-}$ (aq) $S_2O_3^{2-}$ و الثنائيتان مرجع/مؤكسد المساهمتان في هذا التحول هما الثنائيتان مرجع مؤكسد المساهمتان في هذا التحول التحول هما

 $m V_E$ عرف التكافؤ ، ثم جد العبارة الحرفية الموافقة للتركيز المولي لثنائي اليود $m [I_{2(aq)}]$ بدلالة الحجم m V و الحجم m Zو التركيز المولى C_3 لثيوكبريتات الصوديوم.

3- أنشئ جدو لا للتقدم المميز لتفاعل يود البوتاسيوم و الماء الأكسجيني و بين أن الماء الأكسجيني هو المتفاعل المحد

 $t=100~{
m s}$ السرعة الحجمية للتفاعل ، ثم احسب قيمتها في اللحظة $v=100~{
m s}$

 $t_{1/2}$ جد بیاینا زمن نصف التفاعل $t_{1/2}$

أجوبة مختصرة :

ب) الوسيلة التي نستعملها لأخذ 40 mL من المزيج التفاعلي هي ماصة عيارة بحجم 20 mL (على دفعتين)

 $I_2 + 2S_2O_3^{2} = 2I^7 + S_4O_6^{2} (\Rightarrow$

2) عند التكافؤ تتفاعل كل كمية مادة المحلول المراد معايرته (الموجود في البشير) مع كل كمية مادة المحلول المعاير (الموجود بالسحاحة) المضافة عند التكافؤ ، بعبارة أخرى عند التكافؤ يكون التفاعل في الشروط

$$\left[I_{2}\right] = \frac{C_{3}V_{E}}{2V}$$
 ، الستوكيومترية

3) جدول التقدم:

الحالة	التقدم	H_2O_2 (aq)	$-2\Gamma_{(aq)}$	$+ 2H^{+}_{(aq)} =$	$= 2H_2O_{(\ell)} +$	$I_{2 (aq)}$
ابتدائية	$\mathbf{x} = 0$	$3.2 \cdot 10^{-3}$	$1.84 \cdot 10^{-2}$	بزيادة	بزيادة	0
انتقالية	X	$3.2 \cdot 10^{-3} - x$	$1.84 \cdot 10^{-2} - 2x$	بزيادة	بزيادة	X
نهائية	$\mathbf{x}_{\mathbf{f}}$	$3.2 \cdot 10^{-3} - x_f$	$1.84 \cdot 10^{-2} - 2x_{\rm f}$	بزيادة	بزيادة	X_f

. H_2O_2 و المتفاعل المحد هو الماء الأكسيجيني $x_{max}=x_f=9.2$. $10^{-3}~mol$

4) السرعة الحجمية للتفاعل هي مقدار تغير تقدم التفاعل بالنسبة للزمن في 1L من الوسط التفاعلي يعبر عنها

بالعلاقة : $v=\tan\alpha$ ميا مماس المنحنى عند $v=\tan\alpha=2$. 10^5 mol/L.min ، $v=\frac{1}{V}\frac{dx}{dt}$. t=100 s

$$t=t_{1/2}$$
 \to $x=x_{1/2}=rac{x_f}{2}$ \to $\left[I_2
ight]_{1/2}=rac{\left[I_2
ight]_f}{2}$: عسب تعریف زمن نصف التفاعل یمکن کتابة $t=t_{1/2}$. $t_{1/2}=50~{
m s}$. $t_{1/2}=50~{
m s}$

التمريين (10): (بكالوريا 2010 – علوم تجريبية) (الحل المفصل: تمرين مقترح 16 على الموقع)

 C_0 نأخذ عينة من منظف طبي للجروح عبارة عن سائل يحتوي أساسا على ثنائي اليود $I_{2\ (aq)}$ تركيزه المولي فنضيف لها قطعة من الزنك $Zn_{(s)}$ فنلاحظ تناقص الشدة اللونية للمنظف .

1- أكتب معادلة التفاعل المنمّذج للتحول الكيميائي الحادث ، علما أن الثنائيتين الداخلتين في التفاعل هما:

 $(Zn^{2+}_{(aq)}/Zn_{(s)})$, $(I_{2(aq)}/I_{(aq)})$

2- التجربة الأولى: عند درجة الحرارة 20° C نضيف إلى حجم V=50 mL عند درجة الحرارة $I_{2(aq)}$ نضيف إلى حجم $I_{2(aq)}$ إلى الشكل التجربة الأولى: عن طريق المعايرة تغيرات $I_{2(aq)}$ بدلالة الزمن $I_{3(aq)}$ فنحصل على البيان $I_{3(aq)}$ (الشكل) .

أ- اقترح بروتوكولا تجريبيا للمعايرة المطلوبة مع رسم الشكل التخطيطي .

ب عرف السرعة الحجمية لاختفاء I_2 مبينا طريقة حسابها بيانيا .

جـ كيف تتطور السرعة الحجمية لاختفاء I_2 مع الزمن ؟ فسر ذلك .

3- التجربة الثانية: نأخذ نفس الحجم V من نفس العينة عند الدرجة 20°C ، نضعها في حوجلة عيارية سعتها 100 mL ثم نكمل الحجم بواسطة الماء المقطر إلى خط العيار و نسكب محتواها في بيشر و نضيف إلى المحلول قطعة من الزنك.

. علل البيان (2) التجربة الأولى علل البيان $[I_{2(aq)}] = f(t)$ و ارسمه ، كيفيا ، في نفس المعلم مع البيان (1) للتجربة الأولى . علل

4- التجربة الثالثة: نأخذ نفس الحجم V من نفس العينة ، ترفع درجة الحرارة إلى $0^{\circ}C$ ، توقع شكل البيان (3) $I_{2(aa)} = f(t)$

5- ما هي العوامل الحركية التي تبرزها هذه التجارب؟ ماذا تستنتج؟

أجوبة مختصرة :

. $Zn_{(s)} + I_{2(aq)} = Zn^{2+}_{(aq)} + 2I_{(aq)}(1$

2- أ) البروتوكُول التجريبي :

- نأخذ عينات مختلفة متساوية الحجم من الوسط التفاعلي .

- نضع في السحاحة محلول مرجع مثل ثيوكبريتات الصوديوم .

- عند لحظة t_1 معينة نضيف قطع من الجليد إلى العينة المراد معايرتها بغرض توقيف التفاعل ثم نضيف لها قطرات من صمغ النشاء فيتلون محلول العينة بالأزرق .
- نضيف قطرة قطرة من المحلول المرجع الموجود في السحاحة حتى يختفي اللون الأزرق مما يدل على بلوغ التكافؤ
 - من عبارة التكافؤ نستنتج تركيز I_2 في العينة و هو نفسه تركيز I_2 في الوسط التفاعلي .
 - نعيد نفس العملية عند لحظات أخرى مختلفة و ندون النتائج في جدول .
- ، $v' = \frac{1}{V} \frac{dx}{dt}$: عنها بالعلاقة وحدة الحجم الوسط التفاعلي يعبر عنها بالعلاقة و $v' = \frac{1}{V} \frac{dx}{dt}$: تحسب من خلال علاقة بين السرعة الحجمية التفاعل عند لحظة و ميل مماس المنحنى عند نفس اللحظة و هذه العلاقة يمكن إيجادها باعتماد على جدول التقدم وحيث نجد : $v' = \frac{d[I_2]}{dt}$.
- جـ) السرعة الحجمية تتناقص مع مرور الزمن بسبب تناقص تركيز الوسط التفاعلي بـ I_2 . يفسر ذلك بتناقص التصادمات الفعالة التي تتناقص بتناقص التركيز .
- 3) عند التمديد تتناقص تراكيز الأفراد الكيميائي في الوسط التفاعلي و بتناقصها تتناقص سرعة التفاعل بفعل تناقص التصادمات الفعالة ، إذن يكون البيان (2) كما يلي :

4) بارتفاع درجة الحرارة تزداد سرعة التفاعل بفعل ازدياد التصادمات الفعالة و عليه يكون البيان (3) كما يلي:

5) العوامل الحركية التي تبرزها هذه التجربة هي: التركيز المولي للمتفاعلات ، درجة الحرارة .

التمرين (11): (بكالوريا 2011 – علوم تجريبية) (الحل المفصل: تمرين مقترح 17 على الموقع)

لدر اسة تطور حركية التحول بين شوارد البيكرومات $Cr_2O_7^{2-}_{(aq)}$ و محلول حمض الأوكساليك $C_2H_2O_4_{(aq)}$ نمز ج لدر اسة تطور حركية التحول بين شوارد البيكرومات البيكرومات البوتاسيوم $(2K^+_{(aq)} + Cr_2O_7^{2-}_{(aq)})$ تركزه المولي في اللحظة t=0s من محلول بيكرومات البوتاسيوم المولي مع حجم $m V_2 = 60~mL$ من محلول حمض الأوكساليك تَرْكيزه المولي مُجّهول $m V_2 = 60~mL$ مع حجم $m C_1 = 0.2~mol.L^{-1}$

1- إذا كانت الثنائيتان المشاركتان في التفاعل هما:

و $(Cr_2O_7^{2-}_{(aq)}/Cr^{3+}_{(aq)})$ و $(CO_2_{(aq)}/C_2H_2O_2_{(aq)})$. أ- أكتب المعادلة المعبرة عن التفاعل أكسدة - إرجاع المنمذج للتحول الكيميائي الحادث .

ب- أنشئ جدو لا لتقدم التفاعل .

 cr^{3+} بدلالة الزمن . 2- يمثل (الشكل-1) المنحنى البياني لتطور كمية مادة

أو جد من البيان:

 $t=20~{
m min}$ في اللحظة ${
m Cr}^{3+}_{(aq)}$ في اللحظة

ب- التقدم النهائي X_f .

 $t_{1/2}$ جـ- زمن نصف التفاعل

3- أ- باعتبار التحول تاما عين المتفاعل المحد

 C_2 ب- أوجد التركيز المولى لمحلول حمض الأوكساليك

أحوية مختصرة :

$$H^{+} = 2Cr^{3+} + 6CO_2 + 7H_2O8Cr_2O_7^{2-} + 3C_2H_2O_4 + (1-1)^{1}$$

ب- جدول التقدم:

الحالة	التقدم	$Cr_2O_7^{2-} + 3C_2H_2O_4 + 8H^+ = 2Cr^{3+} + 6CO_2 + 7H_2O$						
ابتدائية	x = 0	8.10 ⁻³	C_2V_2	بزيادة	0	0	بزيادة	
انتقالية	X	8 . 10 ⁻³ - x	C_2V_2 - 3x	بزيادة	2x	6x	بزيادة	
نهائية	X_{f}	8.10^{-3} - x_f	C_2V_2 - $3x_f$	بزيادة	$2x_{\rm f}$	$6x_f$	بزيادة	

.
$$x_f = \frac{n_f(Cr^{3+})}{2} = 2.10^{-3} \text{ mol } (\because \text{ v}(Cr^{3+})) = \frac{dn(Cr^{3+})}{dt} = 3.5.10^{-5} \text{ mol/min } (\i-2)$$

.
$$t_{1/2}=5.1~{
m min}$$
 : بالاسقاط في البيان نجد ، $x_{1/2}=rac{x_{
m f}}{2}=10^{-3}~{
m mol}$. (ج

: من جدول التقدم ، $x_{max}=x_f=2$. $10^{-3}\ mol$: و من جدول التقدم ، $x_{max}=x_f=2$

 $n_{\rm f}(Cr_2{O_7}^{2\text{-}})=8$. $10^{\text{-}3}$ - $x_{\rm f}=8$. $10^{\text{-}3}$ - 2 . $10^{\text{-}3}=6$. $10^{\text{-}3}$ mol $\,\neq 0$

هذا يعني أن $\operatorname{Cr}_2O_7^{2-}$ لم يختفي كليا في نهاية التفاعل ، أي أنه ليس المتفاعل المحد و بما أن التفاعل لم يكون في الشروط الستوكيومترية فمن المؤكد أن المتفاعل المحد هو حمض الأوكساليك .

. $C_2 = \frac{3x_f}{V_2} = 0.1 \, \text{mol/L}$: بما أن حمض الأوكساليك متفاعل محد يكون اعتمادا على جدول التقدم بالأوكساليك متفاعل محد يكون اعتمادا على جدول التقدم

التمريين (12): (بكالوريا 2013 - رياضيات) (الحل المفصل: تمرين مقترح 19 على الموقع)

كتب على قارورة ماء جافيل المعلومات التالية:

- يحفظ في مكان بارد معزولا عن الأشعة الضوئية .

- لا يمزج مع منتوجات أخرى .

- بلملامسته لمحلول حمضى ينتج غاز سام .

 Cl_2 إن ماء جافيل منتوج شائع يستعمل في التنظيف و التطهير . نحصل على ماء جافيل من تفاعل غاز ثنائي الكلور مع محلول هيدروكسيد الصوديوم $(Na^+_{(aq)} + HO^-_{(aq)})$ ينمذج هذا التحول بالمعادلة (1) :

$$Cl_{2(g)} + 2HO_{(aq)}^{-} = ClO_{(aq)}^{-} + Cl_{(aq)}^{-} + H_{2}O_{(\ell)}$$
(1)

يتفكك ماء جافيل ببطء في الشروط العادية وفق المعادلة (2):

$$2ClO_{(aq)}^{-} = 2Cl_{(aq)}^{-} + O_{2(g)}$$
(2)

أما في وسط حمضي ينمذج التفاعل وفق المعادلة (3):

$$ClO^{\text{-}}_{(aq)} + Cl^{\text{-}}_{(aq)} + 2H_3O^{\text{+}}_{(aq)} = Cl_{2(g)} + 3H_2O_{(\ell)}$$

(2) أنجز جدول التقدم للتفاعل المنمذج وفق المعادلة (2)

2- اعتمادا على البيانين (الشكل-8) ، المعبرين عن تغيرات تركيز شوارد (aq) في التفاعل المنمذج بالمعادلة (2) بدلالة الزمن .

 $heta_1=30^\circ C$: من أجل درجتي الحرارة : ClO في اللحظة : t=8 semaines في اللحظة : $\theta_2=40^\circ C$ في اللحظة : $\theta_2=40^\circ C$

$$v = -\frac{1}{2} \times \frac{d[ClO^{-}]}{dt}$$
: بالشكل التالي : $v = -\frac{1}{2} \times \frac{d[ClO^{-}]}{dt}$

 $\theta_1 = 30^{\circ} \text{C}$: $\theta_2 = 40^{\circ} \text{C}$) and item $\theta_1 = 30^{\circ} \text{C}$: $\theta_2 = 40^{\circ} \text{C}$

د- هل النتائج المتحصل عليها في السؤالين (2-أ) ، (2-ج-) تبرر المعلومة " يحفظ في مكان بارد " ؟ علل 3- عرف زمن نصف التفاعل ، ثم جد قيمته انطلاقا من المنحني (2) ، علما أن التفكك تام .

4- أعطرمز و اسم الغاز السام المشار على القارورة.

أجوبة مختصرة :

1) **جدول التقدم**:

الحالة	2C10 =	= 2C1 ⁻ -	$+$ O_2
ابتدائية	$n_0(ClO^-)$	0	0
انتقالية	$n_0(ClO^-)$ - 3x	2x	X
نهائية	$n_0(ClO^-) - 3x_f$	$2x_{\rm f}$	X

$$[ClO^-]=1.25 \; mol/L \; \leftarrow \; \theta = 40^\circ \; \cdot \; [ClO^-]=1.85 \; mol/L \; \leftarrow \; \theta = 30^\circ \; (^1-2) \; + \; v = -\frac{1}{2} \; \frac{d[ClO^-]}{dt} \; (-2) \; + \; v = -\frac{1}{2} \;$$

■ θ = 30 ° →
$$\frac{d[ClO^{-}]}{dt}$$
 = -0.135 → v = 6.75 · 10⁻² mol/L.sem
■ θ = 40° → $\frac{d[ClO^{-}]}{dt}$ = -0.270 → v = 1.35 · 10⁻¹ mol/L.sem

د) نعم هذه النتائج تبرر ما كتب على اللاصقة ، لأن ارتفاع درجة الحرارة تزيد من سرعة التفاعل و بالتالي ازدياد سرعة تفكك -CIO ، هذه الشاردة هي التي تضفي على ماء جافيل ميزة التنظيف و لجعلها تبقى في ماء جافيل مدة أطول يجب وضع ماء جافيل في مكان بارد .

 $\frac{1}{2}$ (من نصف التفاعل هو الزمن اللازم لبلوع التفاعل نصف تقدمه النهائي ، بما أن التفاعل تام فإن كمية $\frac{1}{2}$ (3) زمن نصف التفاعل هو الزمن اللازم لبلوع التفاعل نصف تقدمه النهائي ، بما أن التفاعل تام فإن كمية $\frac{1}{2}$ (10) بالإسقاط في البيان نهاية التفاعل تكون معدومة ، و بالتالي عند اللحظة $\frac{1}{2}$ $\frac{1}{2}$ (10) بالإسقاط في البيان نجد $\frac{1}{2}$.

التمرين (13): (بكالوريا 2009 - رياضيات) (الحل المفصل: تمرين مقترح 20 على الموقع)

يحفظ الماء الأكسجيني (محلول لبروكسيد الهيدروجين H_2O_2 في قارورات خاصة بسبب التفكك الذاتي البطيء). تحمل الورقة الملصقة على قارورته في المختبر الكتابة ماء أكسجيني (10V)، و تعني (1L) من الماء الأكسيجيني ينتج بعد تفككه 10L من غاز ثنائي الأكسجين في الشروطين النظاميين حيث الحجم المولي $V_M = 22.4 \ L.mol^{-1}$.

1- ينمذج التقكك الذاتي للماء الأكسجيني بالتفاعل ذي المعادلة الكيميائية التالية:

 $2H_2O_{2(aq)} = 2H_2O_{(\ell)} + O_{2(aq)}$

أ- بين أن التركيز المولى الحجمى للماء الأكسجيني هو $C=0.893~{
m mol.L}^{-1}$.

ب- نضع في حوجلة حجما V_i من الماء الأكسجيني و نكمل الحجم بالماء المقطر إلى V_i .

• كيف تسمى هذه العملية ؟

• استنتج الحجم V_i علما أن المحلول الناتج تركيزه المولى V_i علما أن

2- لغرض التأكد من الكتابة السابقة (10V) عايرنا 20~ mL عايرنا عايرنا الممدد بواسطة محلول برمنغنات البوتاسيوم ($K^+_{(aq)} + MnO_{4(aq)}^{-1}$) المحمض ، تركيزه المولي $C_2 = 0.02~$ mol.L التكافؤ $V_E = 38~$ mL التكافؤ

أ- أكتب معادلة التفاعل أكسدة- إرجاع المنمذج لتحول المعايرة علما أن الثنائيتين الداخلتين في هذا التفاعل هما:

 $(\ MnO_{4\ (aq)}\ /\ Mn^{2+}{}_{(aq)}\)$ ' $(\ O_{2\ (aq)}\ /H_{2}O_{2\ (aq)}\)$

ب- استنتج التركيز المولي الحجَمْتي لَمحَلولُ الْمَاء الْأكسجَينُيّ الابتدائي ُ، و هل تتوافق هذه النتيجة التجريبية مع ما كتب على ملصوقة القارورة ؟

<u>أجوبة مختصرة :</u>

(1-1) - 1 المختفية في (0_2) هي كمية (0_2) المادة الناتجة في كل لحظة ، و (0_2) هي كمية (0_2) المختفية في كل لحظة يكون اعتمادا على جدول التقدم :

$$n(O_2) = x$$
 , $n(H_2O_2) = 2x$

ومنه نجد في النهاية:

$$C = \frac{2 \text{ V}(O_2)}{V_M.V} = \frac{2 \text{V}(O_2)}{22.4 \times V}$$

ومن تعريف $V(O_2)=10$ يتشكل $V(O_2)=10$ من $V(O_2)=10$ من بالتعويض في العبارة الأخيرة :

$$C = \frac{2 \times 10}{22.4 \times 1} = 0.893 \text{ mol/L}$$

ب) تسمى العملية بالتخفيف (أو التمديد) .

$$V_i = \frac{C_1 V_1}{C} = 0.011 L = 11 \text{ mL } (\Rightarrow$$

. $5H_2O_2 + 2MnO_4^- + 6H^+ = 5O_2 + 2Mn^{2+} + 8H_2O$ († -2

. C=0.1~mol/L و هي نفس القيمة تقريبا المتحصل عليها سابقا $C=\frac{5~C_2V_E}{2V}=0.095~\text{mol/L}$ ب

التمرين (14): (الحل المفصل: تمرين مقترح 21 على الموقع)

نريد دراسة التحول الكيميائي البطيء و التام المنمذج بالمعادلة الآتية:

$$2I_{(aq)} + S_2O_8^{2}_{(aq)} = I_{2(aq)} + 2S_2O_4^{2}_{(aq)}$$

لهذا الغرض نمزج في اللحظة t=0 حجما $V_1=50~mL$ من المحلول ($2K^+_{(aq)}+S_2O_8^{2-}_{(aq)}$) تركيزه المولي $V_1=50~mL$ من المحلول ($(K^+_{(aq)}+I^-_{(aq)}+I^-_{(aq)})$ غير المحلول ($V_2=50~mL$ مع حجم $V_3=50~mL$ مع حجم $V_4=50~mL$ من المحلول ($V_2=50~mL$ مع حجم $V_3=50~mL$ من المحلول ($V_3=50~mL$

إن متابعة تغيرات كمية المادة المتبقية في الوسط التفاعلي لكل من : $S_2^2O_8^{2-2}$ و I^- خلال الزمن سمحت بالحصول على المنحنيين (1) ، (2)

- $n(I^{-})$ عدد المنحنى الموافق لتطور كمية المادة لشوارد اليود المتبقية
- 2- هل المزيج الابتدائي في نسب ستوكيومترية ؟ استنتج المتقاعل المحد
 - علما أن التفاعل تام و كذا مقدار التقدم الأعظمي Xmax .
 - $t_{1/2}$ و احسب قيمته بيانيا $t_{1/2}$
 - $S_2O_8^{2-}$ إذا علمت أن سرعة اختفاء $S_2O_8^{2-}$ هي :

 $v(S_2O_8^{2^2}) = 6.10^{-3} \text{ mol/L}$

استنتج سرعة اختفاء I و كذا سرعة التفاعل .

<u>أجوبة مختصرة :</u>

- $n_0(S_2O_8^{2-})=C_1V_1=0.05\ \, {
 m mol}\,:$ فنجد $n_0(S_2O_8^{2-})$ نحسب (1) فنجد $n_0(S_2O_8^{2-})$ و هذا يتوافق مع المنحنى (2) ، و بالتالي المنحنى $n(I^-)$ يوافق نطور $n(I^-)$.
- 2) المزيج الابتدائي ليس في الشروط الستوكيومترية لأن :

غير $n_0(S_2O_8^{2-}) = 0.05 \, \text{mol}$ ، $\frac{n_0(\Gamma)}{2} = 0.075 \, \text{mol}$

- . $x_{max} = 0.75 \text{ mol} \cdot S_2 O_8^{-2}$ متساويين ، المتفاعل المحد هو
- . $t_{1/2} = 0.025 \text{ mol}$. قيمته : قيمته الذَّر اللازم لبلوغ التفاعل نصف تقدمه النهائي ، قيمته $t_{1/2} = 0.025 \text{ mol}$
 - $v = 6 \cdot 10^{-2} \text{ mol/min} \cdot v(\Gamma) = 1.2 \cdot 10^{-2} \text{ mol/min} (4)$

التمرين (15): (الحل المفصل: تمرين مقترح 22 على الموقع)

ندرس تجريبيا التفاعل البطيء بين شوار د $^+$ و شوراد الثيوكبريتات 2 وفق المعادلة :

 $S_2O_3^{2-} + 2H^+ = S + SO_3 + H_2O$

قمنا بثلاث تجارب في ظروف مختلفة ، الجدول المرفق يعطى شروط و نتائج التجارب الثلاث .

03	02	01	رقم التجربة
20	20	0	(mL) حجم الماء : V_0 (mL)
5	5	5	ر کیزه $\mathrm{C}_1=1\;\mathrm{mol}/\mathrm{L}$. حجم محلول ثیوکبریتات الصودیوم ترکیزه
25	25	45	$ m C_2 = 0.2 \; mol/L$ حجم محلول حمض كلور الماء تركيزه المولي : $ m V_2 \; (mL)$
0	20	20	درجة الحرارة (°C)
m_3	m_2	$m_1 = 16$	$({ m t_1} < { m t_f})$. (10^{-3} g) ${ m t_1} = 20$ min کتلة الکبریت المترسبة خلال

- 1- ما هو الهدف من إضافة الماء في التجارب.
 - 2- عرف العامل الحركي.
- 3- أحسب التراكيز الابتدائية لكل من ${\rm S}_2{\rm O}_3^2$ و ${\rm H}^+$ في كل من التجربتين (1) ، (2) . استنتج أي هاتين التجربتين يكون فيها التفاعل أسرع .
 - m_2 عارن بين الكتلتين m_1 و m_2 خلال 20 دقيقة الأولى من التفاعل من دون حساب m_2
- 5- مثل جدول تقدم التفاعل و أعتمادا عليه أحسب كتلة الكبريت المترسبة في نهاية التفاعل في التجربة (3) و اعتمادا على هذه النتيجة و أذكر كيف نغير في درجة الحرارة θ في هذه التجربة للحصول على نفس كتلة الكبريت المترسبة في التجربة (1) أي : $m_1 = m_3$ برر إجابتك .

يعطى : M(S) = 32 g/mol

أجوبة مختصرة :

- 1) هو تخفيف التراكيز المولية للأنواع الكيميائية المتواجدة في الوسط التفاعلي ، و بتخفيف التراكيز المولية تقل سرعة التفاعل مما يجعل دراسة تطور الجملة أسهل .
- 2) العامل الحركي هو كل عامل يؤثر في سرعة التفاعل من دون المساس بالتركيب المولي (حالة الجملة) عند نهاية التفاعل ب

$$\left[\mathrm{H^{+}}\right]_{0} = \frac{\mathrm{C_{2}V_{2}}}{\mathrm{V_{1} + V_{2}}} = 0.18 \ \mathrm{mol/L} \qquad \text{`} \left[\mathrm{S_{2}O_{3}}^{2\text{-}}\right]_{0} = \frac{\mathrm{C_{1}V_{1}}}{\mathrm{V_{1} + V_{2}}} = 0.10 \ \mathrm{mol/L} \ \ \underline{: (1)} = 0.10 \ \mathrm{mol/L}$$

$$\left[H^{+}\right]_{0} = \frac{C_{2}V_{2}}{V_{1} + V_{2} + V_{0}} = 0.10 \text{ mol/L } \cdot \left[S_{2}O_{3}^{2-}\right]_{0} = \frac{C_{1}.V_{1}}{V_{1} + V_{2} + V_{0}} = 0.10 \text{ mol/L } \cdot \frac{(2)}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{2}V_{2}}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{2}V_{2}}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{2}V_{2}}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{2}.V_{1}}{(2)} = \frac{C_{2}.V_{2}}{(2)} = \frac{C_{1}.V_{1}}{(2)} = \frac{C_{2}.V_{2}}{(2)} = \frac{C_{$$

- التفاعل الأسرع: نلاحظ أن التركيز الابتدائي لـ $S_2O_3^2$ في المزيج هو نفسه في التجربتين و أن التركيز الابتدائي لـ H^+ يكون أكبر في التجربة (1) ، لأن التفاعل يكون أسرع كلما كانت التراكيز الابتدائية للمتفاعلات أكبر.

4) كون أن التفاعل يكون أسرع في التجربة (1) تكون سرعة تشكل النواتج أكبر في هذه التجربة ، لذا فكتلة (S) المترسبة في التجربة (I) تكون أكبر ، أي I I ، و هذا خلال I دقيقة الأولى من التفاعل .

5- جدول التقدم:

الحالة	التقدم	$S_2O_3^{2-}$	$+$ $2H^+$ $=$	S +	SO ₃ +	H ₂ O
ابتدائية	$\mathbf{x} = 0$	5.10 ⁻³	5.10 ⁻³	0	0	0
انتقالية	X	5 . 10 ⁻³ - x	$5.10^{-3} - 2x$	X	X	2x
نهائية	X_{f}	$5.10^{-3} - x_f$	$5.10^{-3}-2x_{\rm f}$	X_f	X_{f}	$2x_f$

 $m(S) = 80.10^{-3} \text{ g} = m_3$: (1) المترسبة في نهاية التفاعل (S) المترسبة في نهاية التفاعل

ن ريادة $m_3>m_1$ لذلك يجب تخفيض سرعة التفاعل في التجربة (3) حتى نحصل على $m_3=m_1$ ، وحيث أن زيادة السرعة متعلق بزيادة درجة الحرارة (و العكس صحيح) يجب إذن خفض درجة الحرارة لخفض سرعة التفاعل في التجربة (3) حتى نحصل على $m_3=m_1$.

التمرين (16): (الحل المفصل: تمرين مقترح 23 على الموقع)

نمزج في اللحظة t=0 كمية قدر ها 0.03~mol من محلول برمنغنات البوتاسيوم $K^++MnO_4^-$) مع كمية قدر ها V=1 لمي وسط تفاعلي وسط تفاعلي محلول حمض الأكز اليك $H_2C_2O_4$ في وسط حمضي V=1 لمحمه V=1 .

تكتب معادلة التفاعل المنمذج للتحول بالشكل:

$$5H_2C_2O_4 + 2MnO_4^- + 6H^+ = 2Mn^{2+} + 10CO_2 + 8H_2O$$
(1)

لمتابعة هذا التحول نأخذ خلال أزمنة مختلفة t حجما t للمزيج ثم نعاير كمية شوار د البرمنغنات المتبقية t للمزيج محلول لكبريتات الحديد الثنائي ذي التركيز t التركيز t المتبقية محلول لكبريتات الحديد الثنائي ذي التركيز t

1- مثل جدول التقدم التفاعل (1) . هل المزيج الابتدائي ستوكيومتري ؟

 $[CO_{2}] = 0.15 - 5[MnO_{4}]$: نتحققُ العلاقة : $[CO_{2}] = 0.15 - 5[MnO_{4}]$

3- أكتب معادلة المعايرة ثم:

 $V_{\rm P}$ ، C بدلالة $V_{\rm E}$ بدلالة التكافؤ ، استنتج عبارة حجم محلول كبريتات الحديد الثنائي المضاف عند التكافؤ و $V_{\rm P}$ بدلالة $V_{\rm E}$ و $\left[{\rm MnO_4}^{-1}\right]$.

t(s)	0	30	60	90	120	150	210
$V_{E}\left(mL\right)$	6	4.8	3.8	3	2.4	2	1.2
$[MnO_4^{-1}]10^{-2} mol/L$							

. $t=90~{
m s}$ في اللحظة CO $_2$ في اللحظة الحجمية لتشكل ب

د- عرف ثم حدد زمن نصف التفاعل .

. (MnO_4^{-1}/Mn^{2+}) ، (Fe^{3+}/Fe^{2+}) : يعطى

أجوبة مختصرة :

1) جدول التقدم:

الحالة	$5H_2C_2O_4$	- 2MnO ₄₋	$+ 6H^{+} =$	$= 2Mn^{2+}$ -	+ 10CO ₂ +	- 8H ₂ O
ابتدائية	0.05	0.03	بزيادة	0	0	بزيادة
انتقالية	0.05 - 5x	0.03 - 2x	بزيادة	2x	10x	بزيادة
نهائية	$0.05 - 5x_{\rm f}$	$0.03 - 2x_{\rm f}$	بزيادة	$2x_f$	$10x_f$	بزيادة

$$rac{
m n_0(MnO_4^-)}{2} = 0.015
m mol$$
 : المزيج الابتدائي ليس في الشروط الستوكيومترية أن (2

. فهما لیس متساویان $\frac{n_0(H_2C_2O_4)}{5}=0.01$

. $V_{\rm E} = \frac{5[{\rm MnO_4}^-]V_{\rm E}}{C}$ ، الشروك الستوكيومترية

ب) إكمال الجدول:

						<u> </u>	، ب
t(s)	0	30	60	90	120	150	210
$V_{E}(mL)$	6	4.8	3.8	3	2.4	2	1.2
$[MnO_4^-].10^{-2} mol/L$	3	2.4	1.9	1.5	1.2	1	0.6

د) زمن نصف التفاعل هو الزمن اللازم لبلوغ التفاعل نصف تقدمه النهائي ، نحسب $\left[\mathrm{MnO_4}^ight]_{1/2}$ ، ثم نقوم الإسقاط فنجد $\mathrm{t_{1/2}} \approx 50~\mathrm{s}$.