Temat ćwiczenia nr 6: Synteza parametryczna układów regulacji.

Celem ćwiczenia jest korekcja zadanego układu regulacji wykorzystując następujące metody:

- kryterium amplitudy rezonansowej i metodę dominujących stałych czasowych,
- metodę opartą na analizie charakterystyki układu otwartego.

Obie metody należy zastosować do korekcji **tego samego układu** (transmitancja obiektu wygenerowana jest losowo w skrypcie na UPEL *synteza parametryczna cz.1*).

Etapy ćwiczenia:

- 1. Wygenerować transmitancję obiektu uruchamiając skrypt na UPEL (*Synteza parametryczna cz.1*) zapisać ją w tabeli 6.1
- 2. Wyznaczyć własności eksploatacyjne dla układu przed korekcją w MATLAB/Simulink poza UPEL (instrukcja punkt 6.1) i zapisać je w tabeli 6.4
- 3. Wylosować cele syntezy parametrycznej na UPEL (Quiz *Cele syntezy dla punktu 6.4.1*) i zapisać je w tabeli 6.4
- 4. Wybrać najtańszy typ regulatora realizującego wylosowane cele
- 5. Wyznaczyć nastawy regulatora metoda z punku 6.4.1
- 6. Wyznaczyć własności eksploatacyjne dla układu po korekcji w MATLAB/Simulink poza UPEL i zapisać je w tabeli 6.4
- 7. Dla tego samego typu regulatora i obiektu, jak w punkcie 6.4.1 wyznaczyć nastawy regulatora metodą opisaną w punkcie 6.4.2 instrukcji
- 8. Wyznaczyć własności eksploatacyjne dla układu po korekcji w MATLAB/Simulink poza UPEL i zapisać je w tabeli 6.4
- 9. Dokumentację z przebiegu ćwiczenia należy przesłać w wypełnionym szablonie sprawozdania ćwiczenia nr 6 przez *Zadanie* na UPEL w trakcie trwania ćwiczeń.

Zadanie należy wykonać w czasie zajęć laboratoryjnych na UPEL (wyłącznie ta praca będzie podstawa do oceny tego ćwiczenia).

6.1. Analiza właściwości eksploatacyjnych układu zadanego.

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 6.1.

Rys.6.1. Schemat blokowy układu regulacji.

Tworząc układ z rysunku 6.1. należy uwzględnić:

- wymuszenie w(t) = 1(t),
- transmitancja obiektu G(s) wygenerowana jest losowo w skrypcie na UPEL synteza parametryczna układów regulacji
- czas symulacji przyjąć tak, żeby można było wyznaczyć własności eksploatacyjne układu (bezpośrednie wskaźniki jakości).

Na podstawie analizy przebiegów sygnałów: wymuszającego w(t) oraz wyjściowego y(t), należy wyznaczyć dla zasymulowanego układu regulacji:

- uchyb statyczny ε_s ,
- przeregulowanie κ,
- czas regulacji t_r dla zadanego odchylenia regulacji Δr , (przyjąć odchylenie regulacji na poziomie 5% maksymalnej amplitudy z dokładnością do 0.001).

Wyniki wpisać do tabeli 6.4.

6.2. Określenie celu syntezy parametrycznej układu regulacji.

Przykładowe cele cząstkowe wynikające z analizy i wymagań użytkownika:

- 1. likwidacja błędu statycznego,
- 2. zmniejszenie przeregulowania do 10%,
- 3. zmniejszenie przeregulowania do 15%,
- 4. zmniejszenie przeregulowania do 20%,
- 5. zmniejszenie przeregulowania do 25%,
- 6. zmniejszenie przeregulowania do 30%,
- 7. czas regulacji może znacznie wzrosnąć (ale nie musi),
- 8. czas regulacji nie powinien ulec dużym zmianom (może zmaleć),
- 9. skrócenie czasu regulacji.

Uwaga: Wybrane cele do realizacji przez konkretną osobę będą wylosowane w Quiz'ie na UPEL. Wszystkie wskazane cele powinny być zrealizowane jednocześnie (przez jeden, wybrany regulator o najprostszym algorytmie sterowania realizującym zadany cel).

6.3. Wybór typu regulatora.

Wybór funkcji przejścia regulatora należy zrealizować korzystając z tabeli 6.1.

Tabela 6.1

Przewidywane działanie regulatora	Regulator
Zmiana uchybu statycznego, zmiana przeregulowania, zmiana czasu	P
regulacji	
Likwidacja lub zmniejszenie uchybu statycznego, zmiana przeregulowania,	PI
wydłużenie czasu regulacji	
Skrócenie czasu regulacji, zmiana uchybu statycznego, zmiana	PD
przeregulowania	
Likwidacja lub zmniejszenie uchybu statycznego, zmiana przeregulowania,	PID
nieduża zmiana lub skrócenie czasu regulacji	

6.4. Dobór nastaw regulatora.

6.4.1. Wykorzystanie metody dominujących stałych czasowych regulatora oraz kryterium amplitudy rezonansowej.

Stałe czasowe wybranego regulatora wyznaczyć w oparciu o metodę dominujących stałych czasowych w następujący sposób:

- dla regulatora PI należy przyjąć, że T_i=T_{max mianownika transmitancji obiektu}
- dla regulatora PD należy przyjąć, że T_d=T_{max mianownika transmitancji obiektu}
- dla regulatora PID należy przyjąć, że 3.62T_d=T_{max mianownika transmitancji obiektu}, T_i=5T_d

Wymagane wzmocnienie regulatora wyznaczyć korzystając z kryterium amplitudy rezonansowej. W tym celu należy uruchomić funkcję *synteza* (na UPEL plik *synteza.m.* Komenda *help synteza* wyświetla podstawowe informacje o funkcji np. sposób zakodowania transmitancji obiektu. Po wyborze odpowiedniego typu regulatora (punkt 6.3), oraz odpowiedniej wartości amplitudy rezonansowej M_r (zgodnie z tabelą 6.2) należy metodą prób i błędów, poprzez zmianę wartości wzmocnienia K_r doprowadzić do sytuacji, w której charakterystyka amplitudowo-fazowa układu otwartego (złożonego z wybranego regulatora i

zadanego obiektu) będzie styczna do nomogramu Halla dla wybranej amplitudy rezonansowej M_r . Tak wyznaczone wzmocnienie K_r jest szukanym wzmocnieniem regulatora.

Uwaga: Otrzymane nastawy regulatora zapisać w tabeli 6.4.

tabela 6.2. Zależność pomiędzy amplitudą rezonansową M_r a przeregulowaniem κ

$M_{\rm r}$	1,1	1,16	1,27	1,36	1,5
κ%	10	15	20	25	30

6.4.2. Dobór nastaw regulatora metodą opartą na charakterystyce układu otwartego

Optymalne nastawy regulatorów podane w tabeli 6.3b wymagają aproksymacji zadanego obiektu statycznego transmitancją obiektu z opóźnieniem. Najczęściej wykorzystuje się do tego obiekt I rzędu z opóźnieniem o transmitancji:

$$G(s) = \frac{ke^{-\tau s}}{(Ts+1)}$$

Algorytm wyznaczania parametrów τ, T i k:

- 1. wyznaczenie początkowych wartości $\tau = T_0$ i $T = T_1$,
- 2. aproksymacja zadanego obiektu obiektem I rzędu z opóźnieniem z zadaną dokładnością.
- 3. wyznaczenie nastaw regulatora (odczytanie parametrów τ , T i k)

Krok 1. Wyznaczanie początkowych wartości $\tau=T_0$ i $T=T_1$

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 6.2.

Rys.6.2. Schemat blokowy otwartego układu regulacji

Tworząc układ z rysunku 6.2. należy uwzględnić:

- wymuszenie w(t) = 1(t),
- transmitancja obiektu G(s) wygenerowana jest losowo w skrypcie na UPEL synteza parametryczna układu regulacji
- parametr Step Time ustawić na 0 (w bloku *step*)
- czas symulacji przyjąć tak, żeby sygnał osiągnął wartość ustaloną.
- na wyjściu układu umieścić blok *To workspace* i charakterystykę wykreślić za pomocą funkcji *plot*.

Rys. 6.3. Przykładowa charakterystyka obiektu

odczytać w przybliżeniu parametry T₀ (jest to opóźnienie τ), T, k (A – amplituda wymuszenia).

Krok2. Aproksymacja zadanego obiektu obiektem I rzędu z opóźnieniem z zadaną dokładnościa

W tym kroku należy wyznaczyć parametry (modelu) obiektu I rzędu z opóźnieniem $G(s) = \frac{ke^{-\tau s}}{(Ts+1)}$, który najdokładniej aproksymuje zadany obiekt.

Jako miarę dokładności utworzonego modelu przyjęto funkcję kosztów:

$$I = \int_{0}^{\infty} (y(t) - y_m(t))^2 dt$$

gdzie: y(t) – odpowiedź skokowa zadanego obiektu, $y_m(t)$ – odpowiedź skokowa modelu. Dla "idealnego" modelu I powinno równać się 0.

Postać dyskretną funkcji I^+ (dla N punktów) można zapisać następująco:

$$I^{+} = T_{p} \sum_{n=1}^{N} (y^{+}(n) - y_{m}^{+}(n))^{2}$$

gdzie: N – liczba wygenerowanych punktów pomiarowych, $y^+(t)$ – odpowiedź skokowa zadanego obiektu po czasie T_p*n , $y_m(t)$ – odpowiedź skokowa modelu po czasie T_p*n .

Propozycja funkcji dla przykładowej transmitancji obiektu (**należy ją zmodyfikować**, wprowadzając transmitancję obiektu wygenerewonaego w punkcie 6.1, która wyznacza wartość funkcji I^+ dla zadanych parametrów τ i T:

```
Ip=0.1*sum((ym-y).^2); %obliczanie funkcji kosztów
plot(time,y,'r',time,ym);
```

Jako wartości początkowe parametrów *T i tau* należy przyjąć wartości wyznaczone w *kroku1* Wartości początkowe T i tau należy zdefiniować w przestrzeni roboczej Matlaba, a następnie uruchomić funkcję poleceniem: Ip=model1(T,tau).

Analizując wpływ zmian parametrów T, tau na przebieg charakterystyki modelu, należy znaleźć takie ich wartości, dla których funkcja I^+ jest bliska zeru. Należy przyjąć, że wystarczające dopasowanie modelu do rzeczywistego obiektu zostało znalezione, gdy Ip będzie mniejsze niż 0.5.

Krok 3. Wyznaczenie nastaw regulatora

k – licznik transmitancji obiektu

 τ = tau (wyznaczone w kroku 2)

T = T (wyznaczone w kroku 2)

tabela 6.3b. Nastawy regulatorów dla obiektów statycznych z opóźnieniem:

Тур	Przeregulowanie 0%	Przeregulowanie 20%	Min I ₃
regulatora	$\min T_r$	$\min T_r$	
P	$k_r = \frac{0.3}{1}$	$k_r = \frac{0.7}{}$	(brak nastaw)
	$k_r = k \frac{\tau}{T}$	$k_r = k \frac{\tau}{T}$	
PI	$k_r = \frac{0.6}{1.00}$	$k_r = \frac{0.7}{}$	$k_r = \frac{1.0}{1.0}$
	$k \frac{\tau}{-}$	$k \frac{\tau}{}$	$k \frac{\tau}{-}$
	T	T	T
	$T_i = 0.8\tau + 0.5T$	$T_i = \tau + 0.3T$	$T_i = \tau + 0.35T$
PID	_L 0.6	. 1.2	1.4
	$k_r = \frac{1}{\tau}$	$k_r = \frac{1}{\tau}$	$k_r = \frac{1}{\tau}$
	$k - \frac{\iota}{}$	$k \stackrel{\iota}{-}$	$k - \frac{\iota}{}$
	T	T	T
	$T_i = 2.4 \tau$	$T_i = 2.0 \tau$ $T_d = 0.4 \tau$	$T_i = 1.3\tau$ $T_d = 0.5\tau$
	$T_i = 2.4 \tau$ $T_d = 0.4 \tau$	$T_d = 0.4 \tau$	$T_d = 0.5 \tau$

Obliczone nastawy umieścić w tabeli 6.4.

6.4.3. Analiza właściwości eksploatacyjnych układów skorygowanych.

Używając Simulink'a w pakiecie MATLAB, zasymulować układ z rysunku 6.4.

Rys.6.4. Schemat blokowy układu skorygowanego

Wyznaczyć własności eksploatacyjne układów skorygowanych (regulatorami dobranymi w punkcie 6.4.1 i 6.4.2) i zapisać je w tabeli 6.4.

6.5. Opracowanie wyników.

Rezultaty wykonanej syntezy powinny zostać zapisane w tabeli 6.4. Odchylenie regulacji Δr dla wszystkich rozważanych przypadków przyjąć na poziomie 5% z wartości ustalonej odpowiedzi (dokładność 0.001). Wypełniona tabela 6.4 oraz wykreślone przebiegi odpowiedzi układu przed i po korekcji należy przesłać przez zadanie na UPEL przed końcem zajęć laboratoryjnych.

tabela 6.4. Wy	niki ćwiczenia						
cel syntezy:							
T. '4	. 1:1. 0	17.)					
Transmitanc	eja obiektu G	r(S):					
typ regulator	typ regulatora (transmitancja):						
	`	3 /					
	,			.			
metoda	nastawy regulatora		własności eksploatacyjne				
	K _r	T_{i}	T_d	\mathcal{E}_{S}	κ%	Δr	$t_{\rm r}$
układ	_	_	_				
zadany							
6.4.1.							
6.4.2							

Uwaga:

Analizując układ skorygowany można wykorzystać jako regulator element PID Controller dostępny w Simulinku,. Element ten ma trzy parametry:

Proportional: K_r (wzmocnienie regulatora),

Integral: K_r/T_i Derivative: K_r*T_d