Pre-Pràctica 3: Integració numèrica

Objectius: subroutines/functions, common blocks, if/then, mod, integració, external

— Nom del programa principal P3-1819.f.

Precisió de reals: double precision.

Tots els outputs amb 8 xifres significatives, p.ex. format(e14.8)

- 0) Per escalfar, genera una taula de 2001 numeros fent servir dues estrategies diferents:
 - a) $x_{k+1} = x_k + 0.01$, amb $x_0 = 0$ i $k = 0, 1, 2, \dots, 200000000$. Escribint cada 100000 numeros, p. ex. if ($\mod(k, 100000).eq.0$) write
 - b) $x_k = kh$, amb h = 1000 i k = 0, ..., 2000.

Haurien de ser la mateixa seqüencia? Compara-les, d'on ve la discrepància? Compara el resultat si fas servir precisió simple i doble pels reals. Quina de les dues estratègies seria doncs la més adient?

- 1) Escriu dues functions que calculi per a un valor de a, b, la integral $\int_a^b \mathbf{fcn} \ dx$.
 - a) function trapezis(a, b, Ninter, fcn) fent servir la regla trapezoïdal composta amb Ninter intervals.
 - b) function simpson(a, b, m, fcn) fent servir la regla de Simpson composta amb 2^m intervals.

Farem servir la funció a integrar com a external.

- 2) Amb les functions d'1) calcula amb 2^{20} intervals les quantitats següents fent servir els dos mètodes i escriu-les dins del fitxer **P3-1819-res1.dat**.
 - a) La longitud, en mm, de mitja circumferència de radi R=42.325 mm, $f_0(x)=R\sqrt{1-(x/R)^2}$, amb la fórmula,

Longitud =
$$\int_{-R}^{R} \sqrt{1 + f_0'(x)^2} dx \equiv \int_{-R}^{R} f_1(x) dx.$$

b) La masa total, en kg, d'una barra de longitud $L=14.32\ {\rm cm}$ i densitat lineal

$$f_2(x) = \rho_0 \sqrt{1-(3x/L)^2} (1-(3x/L))^3 \qquad \text{amb } x \in [-L/3,L/3] \,,$$
 i $\rho_0 = 8.42$ (kg/m).

3) Estudia la convergència dels resultats obtinguts a l'apartat 2). Estudia com varia l'error dels càlculs 2a) i 2b) amb la longitud dels subintervals h. Escriu els resultats en dos fitxers P3-1819-res2.dat, P3-1819-res3.dat amb tres columnes cadascun: h, resultat trapezis, resultat Simpson, per a 2a) i 2b), respectivament. Fes dues gràfiques P3-1819-fig1.png i P3-1819-fig2.png amb l'error comès en funció d'h ($m=2^2,2^3,\ldots,2^{20}$), comparat amb un ajust "a ull" amb el comportament esperat per a cada mètode. Fes servir escala logarítmica per a les ordenades.

4) Considera el canvi de variable $x = L\sin(t)/3$ a l'apartat 2b), defineix $f_3(t)$ com a la funció que cal integrar en t un cop fet el canvi de variable i estudia la convergència dels càlcus en funció d'h ($m = 2^2, 2^3, \ldots, 2^{20}$). Escriu els resultats en un fitxer amb 3 columnes: h, trapezis, Simpson, **P3-1819-res4.dat**. És millor o pitjor que sense el canvi de variable? Fes una gràfica **P3-1819-fig3.png** mostrant la convergència dels resultats comparant els càlculs amb i sense fer-ne el canvi de variable per trapezis i Simpson.

Entregable: P3-1819.f, P3-1819-res1.dat, P3-1819-res2.dat, P3-1819-res3.dat, P3-1819-res4.dat, P3-1819-fig1.png, P3-1819-fig2.png, P3-1819-fig3.png+scripts gnuplot