ARQUITETURA E ORGANIZAÇÃO DE COMPUTADORES

SISTEMAS DE NUMERAÇÃO: OUTRAS BASES E OPERAÇÕES

Prof. Esp Ricardo André Naka

Objetivos

- Conversões entre diversas bases
- Representação de Números Fracionários
- Aritmética em outras bases

Recordando B→D

 Na aula passada vimos que converter 1101b (binário) para decimal ficaria assim:

Casa	3	2	1	0
Dígito Binário	1	1	0	1
Quantidade (Decimal)	1 x 2 ³	1 x 2 ²	0 x 2 ¹	1 x 2 ⁰

Recordando B→D

			Y	Y	1
	"Oitos	"Quatro"	"Doi:	"Uns	
	"	s"	,,,	,,,)
					and a
0	0		4		

Casa	3	2	1	0
Dígito Binário	1	1	0	1
Quantidade (Decimal)	1 x 2 ³	1 x 2 ²	0×2^{1}	1 x 2 ⁰

- $1101 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 = 3$ 13
- 1101 = 1*8 + 1*4 + 0*2 + 1*1 = 13
- Ou seja: 1101b = 13

Conversão O→D

 Será que podemos usar a mesma regra de binários para octais, substituindo as potências de 2 por potências de 8?

SIMI

Conversão O→D

 Vamos converter 03721 (octal) para decimal:

Casa	3	2	1	0
Dígito Octal	3	7	2	1
Quantidade (Decimal)	3×8^3	7 x 8 ²	2 x 8 ¹	1 x 8 ⁰

Conversão O→D

•
$$3721 = 3*8^3 + 7*8^2 + 2*8^1 + 1*8^0 =$$

$$= 3*512 + 7*64 + 2*8 + 1*1 =$$

$$= 1.536 + 448 + 16 + 1 = 2001$$

Ou seja: 03721 ≥ 2001

Conversão H→D

 Será que podemos usar a mesma regra de binários e octais para hexadecimais, substituindo as potências de 2 e 8 por potências de 16?

Conversão H→D

 Vamos converter 0x2F3C (hexa) para decimal:

Casa	3	2	1	0
Dígito Hexadecimal	2	F	3	С
Quantidade (Decimal)	2 x 16 ³	15 x 16 ²	3 x 16 ¹	12 x 16 ⁰

Conversão H→D

$$= 2*4096 + 15*256 + 3*16 + 12*1 =$$

$$= 8.192 + 3.840 + 48 + 12 = 12.092$$

0x2F3C 12.092

Ou seja: 0x2F3C = 12.092

Conversão n→D

 Essa regra é geral?

- Conversão para decimais:
 - Multiplica-se cada dígito pela correspondente potência do número da base.

Conversão n→D

 Vamos converter o número abcd, na base n, para decimal:

Casa	3	2	1	0
Dígito "base n"	а	b	С	d
Quantidade (Decimal)	a x n ³	b x n ²	c x n ¹	d x n ⁰

• $abcd = a*n^3 + b*n^2 + c*n^1 + d*n^0$

 Regra prática: converter 13 para binário

1b

13/2 =6,5

Fracionári! o!

 Regra prática: converter 13 para binário

> 01b 01b

Exat!

•
$$6/2 = 3.0$$

0

 Regra prática: converter 13 para binário

> 101b 101b

•
$$6/2 = 3.0$$

•
$$3/2 = 1.5$$

Fracionári!

0!

 Regra prática: converter 13 para binário

> 1101b 1101b

- 13/2 =6,5
- 6/2 = 3.0
- 3/2 = 1.5

• 1/2 = 0.5

Fracionári!

0!

 Regra prática: converter 13 para binário

> 1101b 1101b

- 13/2 =6,5
- 6/2 = 3.0
- 3/2 = 1.5
- 1/2 = 0.5

Fim!

• 0

Conversão D→O

 Será que podemos usar a mesma regra de binários para octais, substituindo as divisões por 2 por divisões por 8?

 Regra prática: converter 2001 para octal

• 2001/8 = 250,125...

ou 250 e sobra 1

 Regra prática: converter 2001 para octal

21

- 2001/8 = 250,125...
- 250/8 = 31,25...

ou 250 e sobra

ou 31 e sobra

2

 Regra prática: converter 2001 para octal

721

- 2001/8 = 250,125...
- 250/8 = 31,25...
- 31/8 = 3,875...

ou 250 e sobra 1

ou 31 e sobra

2

ou 3 e sobra 7

 Regra prática: converter 2001 para octal

3721

- 2001/8 = 250,125...
- 250/8 = 31,25...
- 31/8 = 3,875...
- 3/8 = 0.375...

ou 250 e sobra 1

ou 31 e sobra

2

ou 3 e sobra 7

ou 0 e sobra 3

 Regra prática: converter 2001 para octal

- 2001/8 = 250,125...
- 250/8 = 31,25...
- 31/8 = 3,875...
- 3/8 = 0.375...
- 0... **FIM**

03721 03721

ou 250 e sobra 1

ou 31 e sobra

2

ou 3 e sobra 7

ou 0 e sobra 3

Conversão D→H

 Será que podemos usar a mesma regra de octais para hexadecimais, substituindo as divisões por 8 por divisões por 16?

 Regra prática: converter 12.092 para hexa

• 12.092/16 = 755,75...

ou 755 e sobra 2 12

 Regra prática: converter 12.092 para hexa

3C

- 12.092/16 = 755,75...
- 755/16 = 47,1875...

ou 755 e sobra 12

ou 47 e sobra 3

 Regra prática: converter 12.092 para hexa

F3C

- 12.092/16 = 755,75...
- 755/16 = 47,1875...
- 47/16 = 2,9375...

ou 755 e sobra 12

ou 47 e sobra 3

ou 2 e sobra **15**

2F3C

 Regra prática: converter 12.092 para hexa

- 12.092/16 = 755,75...
- 755/16 = 47,1875...
- 47/16 = 2,9375...
- 2/16 = 0,125...

2F3C ou 755 e sobra 12

ou 47 e sobra 3

ou 2 e sobra 15

ou 0 e sobra 2

 Regra prática: converter 12.092 para hexa

> 0x2F3C 0x2F3C

- 12.092/16 = 755,75...
 - 755,75... 12
- 755/16 = 47,1875...
- 47/16 = 2,9375...
- 2/16 = 0,125...
- 0/16... **FIM**

ou 755 e sobra 12

ou 47 e sobra 3

ou 2 e sobra 15

ou 0 e sobra 2

Conversão D→n

 Será que podemos usar a mesma regra de hexadecimais para a base n, substituindo as divisões por 16 por divisões por n?

SIMI

 Regra prática: converter x1 para a base n

d

• x1/n = x2 e sobra d

 Regra prática: converter x1 para a base n

> cd Cd

- x1/n = x2 e sobra d
- x2/n = x3 e sobra c

 Regra prática: converter x1 para a base n

> bcd bcd

- x1/n = x2 e sobra d
- x2/n = x3 e sobra c
- x3/n = x4 e sobra**b**

 Regra prática: converter x1 para a base n

abcd abcd

- x1/n = x2 e sobra d
- x2/n = x3 e sobra c
- x3/n = x4 e sobra b
- X4/n = 0 e sobra **a**

Recordando Conversão D→H

 Regra prática: converter x1 para a base n

abcd abcd

- x1/n = x2 e sobra d
- x2/n = x3 e sobra c
- x3/n = x4 e sobra b
- X4/n = 0 e sobra a
- 0/n... **FIM**

Conversão a→b

- Como podemos converter de qualquer base
 <u>a</u> para qualquer base <u>b</u>?
- Converter daa para decimal
- Converter da <u>decimal</u> para <u>b</u>

- Não tem um jeito mais simples?
- Se for binário → octal ou binário → hexadecimal, sim!

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		
Octal		

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		
Octal		

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		101
Octal		=

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		101
Octal		

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		101	101
Octal			

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário		101	101
Octal			

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	011	101	101
Octal			

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	011	101	101
Octal			

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal				-

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal				

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal				5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	(101)	101
Octal				5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal			5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal			5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal		3	5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário 001	011	101	101
Octal	3	5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal	1	3	5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 3 bits...
- Observe a conversão de 1011101101b para

Binário	001	011	101	101
Octal	1	3	5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

• 10111011101b =1355 01355

- Considere a seguinte tabela:
- Converter de Octal para Binário é o
- processo exatamente inverso!

de 1011101101b para

Binário	001	011	101	101
Octal	1	3	5	5

Binário	Octal
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

1011101101b = 1355
 01355

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário

Hexadecimal

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F
0111 1000 1001 1010 1011 1100 1101 1110	7 8 9 A B C D

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário

Hexadecimal

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	1101
Hexadecimal	

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário		1101
Hexadecimal		

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	1110	1101
Hexadecimal		

Hexa
0
1
2
3
4
5
6
7
8
9
Α
В
С
D
E
F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	1110	1101
Hexadecimal		-

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal			

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal			

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário (1110	(1101)
Hexadecimal		

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal			D

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal			D

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	(1110)	1101
Hexadecimal		Е	D

Hexa
0
1
2
3
4
5
6
7
8
9
Α
В
С
D
E
F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal		Е	D

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101
Hexadecimal	2	Е	D

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Conversão B↔H

- Considere a seguinte tabela:
- Observe que existe uma correspondência a cada 4 bits...
- Observe a conversão de 1011101101b para

Binário	0010	1110	1101	
Hexadecimal	2	Е	D	

• 10111011101b =x2ED 0x2FD

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
1111	F

Conversão B↔H

Converter
Hextedecimal para
Binário é o
processo

Observe a conversão de

Binário	noceos	01110	1101
Hexadecimal	2	E	D

• 10111011101b =x2ED 0x2FD

Binário	Hexa
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	Е
1111	F

NÚMEROS FRACIONÁRIOS EM **OUTRAS BASES -BINÁRIO PARA DECIMAL**

Conversão Fracionária B→D

 O processo é o mesmo: converter 1101,1001b (binário) para decimal:

Casa	3	2	1	0	-1	-2	-3	-4
Dígito Binário	1	1	0	1	1	0	0	1
Quantidade (Decimal)	1 x 2 ³	1 x 2 ²	0 x 2 ¹	1 x 2º	1 x 2 ⁻¹	0 x 2 ⁻²	0 x 2 ⁻³	1 x 2 ⁻⁴

- $1101,1001 = 1*2^3 + 1*2^2 + 0*2^1 + 1*2^0 + 1*2^{-1} + 1*2^{-1} + 1*2^{-2} + 0*2^{-3} + 1*2^{-4} = 13,5625_{1001b}$
- Ou seja: **1101,1001b** = **13,5625**

NÚMEROS FRACIONÁRIOS EM **OUTRAS BASES -DECIMAL PARA BINÁRIO**

- Processo em duas etapas: primeiro converte a parte inteira, depois a parte fracionária
- Por exemplo, vamos converter 13,5625 para binário.
- A parte inteira é convertida exatamente da mesma forma que vimos antes

 Regra prática: converter 13 para binário

116b

13/2 =6,5

Fracionário!

 Regra prática: converter 13 para binário

> 01b 01b

Exato!

• 6/2 = 3.0

 Regra prática: converter 13 para binário

> 101b 101b

- 13/2 =6,5
- 6/2 = 3.0
- 3/2 = 1.5

Fracionário

 Regra prática: converter 13 para binário

> 1101b 1101b

- 13/2 =6,5
- 6/2 = 3.0
- 3/2 = 1.5

• 1/2 = 0.5

Fracionário!

 Regra prática: converter 13 para binário

> 1101b 1101b

- 13/2 =6,5
- 6/2 = 3.0
- 3/2 = 1.5
- 1/2 = 0.5

Fim!

• 0

- A parte fracionária é convertida com multiplicações por 2
- O preenchimento é da esquerda para a direita

 Regra prática: converter 0,5625 para binário

0,1

• 0,5625 * 2

ı

#

 Regra prática: converter 0,5625 para binário

0,10

• 0,5625 * 2

O

=

1,125

• 0,125 * 2 =

 Regra prática: converter 0,5625 para binário

• 0,5625 * 2

3023 2

=

1,125

• 0,125 * 2 =

0,250

• 0,250 * 2 =

 Regra prática: converter 0,5625 para binário

0,1001

• 0,5625 * 2

=

1,125

• 0,125 * 2 =

0,250

0,250 * 2 =

0,500

• 0,500 * 2 =

 Regra prática: converter 0,5625 para binário

0,1001b

• 0,5625 * 2

=

1,125

• 0,125 * 2 =

0,250

• 0,250 * 2 =

0,500

0,500 * 2 =

1,000

• 0,000 * 2

FIM

- 13 = 11101b
- 0,5625 =0,1001b0,1001b

Então...

 $\cdot 13,5625 = 1101,1001b$ 1101,1001b

 Vejamos essa soma:

1 5

+ 7

 Vejamos essa soma:

1 5

+ 7

10?Vejamos essa soma:

Não cabe em um dígito decimal (até 9)...

10?Vejamos essa soma:

Subtrair o "número da base" (neste caso, 10)...

10?Vejamos essa soma:

Subtrair o "número da base" (neste caso, 10)...

10?Vejamos essa soma:

E proceder com o "vai 1"

10?Vejamos essa soma:

1 5 + 7 (2)

E proceder com o "vai 1"

10?Vejamos essa soma:

10?Vejamos essa soma:

 Vamos fazer outra soma, agora em binário:

 Vamos fazer outra soma, agora em binário:

2?Vamos fazeroutra s

1 1 0 1

+ 0 1 0 1

Não cabe em um dígito binário (até 1)...

2?Vamos fazer outrage

Subtrair o

1 1 0 1 b "número da base
0 1 0 1 k (neste caso, 2)...

2

 Vamos fazer outra soma, agora em binário:

	1	1	0	1	b		1	
-	0	1	0	1	b		+	5

	1		1					
	1	1	0	1	b		1	3
+	0	1	0	1	b		+	5

	1		1				
	1	1	0	1	b	1	3
+	0	1	0	1	b	+	5

1	1		1				
	1	1	0	1	b	1	3
+	0	1	0	1	b	+	5
	\cap	0	1	\cap			

1	1		1						
	1	1	0	1	b		1		3
+	0	1	0	1	b		+	-	5
1	0	0	1	0		_			

1	1		1					
	1	1	0	1	b		1	3
+	0	1	0	1	b		+	5
1	0	0	1	0	b			

1	1		1			
	1	1	0	1	b	1 3
+	0	1	0	1	b	+ 5
1	0	0	1	0	b	1 8

16?Vamos fazer outra soma, agora em hexa:

16?Vamos fazer outra soma, agora em hexa:

16?Vamos fazer outra soma, agora em hexa:

Temporariamente representado em Decimal, para simplificar

Não cabe em um dígito hexa (até 15)...

agora em hexa:

2 5

Temporariamente representado em Decimal, para Gimplificar

Subtrair o "número da base" (neste caso, 16)... agora em hexa:

2 5

3 **C**

Temporariamente representado em Decimal, para simplificar

agora em

hexa:

Subtrair o 2 5 "número da base" (neste caso, 3 6 14)

E proceder com wai
1"

agora em hexa:
2 5

 Vamos fazer outra soma, agora em hexa:

 Vamos fazer outra soma, agora em hexa:

 Vamos fazer outra soma, agora em hexa:

Outros cálculos em outras bases

 Outros cálculos (subtração, multiplicação, divisão...) são similares aos da base 10

 Nas notas de aula estão presentes a subtração e a multiplicação...
 Verifique!

Exercícios

- 1. Converta 28 para octal
- 2. Converta 127 para hexadecimal
- 3. Converta 0x31 para decimal
- 4. Converta 0010101110b para octal
- 5. Converta 0,1 para binário
- 6. Some 001011110b com 011000111b
- 7. Some 0x77 com 0xCB

Resumo

- É possível converter as representações numéricas entre si, usando a base 10 como intermediária
- Os processos de conversão são similares
- É possível realizar operações em outras bases, com o mesmo processo da base decimal

Próxima Aula

- Como são
 representados outros
 tipos de números?
 - Como representar números negativos?

