Princípios de Mobilidade e IP Móvel

O que é mobilidade?

espectro de mobilidade, a partir de uma perspectiva da rede

Mobilidade: Vocabulário

Rede nativa "residência" permanente do host móvel (por ex, 128.119.40/24)

Endereço permanente:

endereço do dispositivo móvel na rede nativa; pode sempre ser usado para se comunicar com o host móvel Por ex. 128 119 40 186 Agente nativo: entidade que irá realizar as funções de mobilidade em favor do disp móvel quando este estiver em local remoto

wide area network

disp

móvel

Mobilidade: mais vocabulário

Analogia: como contatar um amigo que se mudou

Considere um amigo que troca de endereço com frequência. Como encontrá-lo?

para onde Alice se mudou?

- pesquisar nos redes sociais?
- telefonar para os pais dele?
- esperar que ele/ela comunique seu novo endereço?

Analogia: Como contactar um amigo que se mudou

Considere um amigo que troca de endereço com frequência. Como encontrá-lo?

para onde Alice se mudou?

Importância de ter uma "casa":

- Uma fonte de informação sobre vc!
- Um lugar onde as pessoas podem descobrir onde vc está!

Mobilidade: Abordagens

- Deixar a cargo do roteamento: roteadores anunciam endereço permanente do host móvel via troca de tabelas de roteamento
 - tabelas de roteamento indicam onde o host móvel se encontra atualmente
 - não requer mudanças nos sistemas finais

Mobilidade: Abordagens

- Deixar a cargo do reinato: roteadores anunciam enderez não te do host móvel da forma usual escalável para bilhões de
 - ✓ tabelas de rotea hosts móveis onde o host móvel se encontra atualmen
 - ✓ não requer mudanças nos sistemas finais
- □ Deixar a cargo dos sistemas finais:
 - ✓ roteamento indireto: comunicação de um correspondente para um host móvel passa através do agente nativo, que então encaminha para o agente externo (roteador de borda da rede visitada)
 - roteamento direto: correspondente obtém o endereço estrangeiro do host móvel e envia datagramas diretamente ao agente externo

Mobilidade: Registro

Resultado final:

- agente externo fica sabendo a respeito do host móvel
- □ agente nativo sabe a localização do host móvel

Mobilidade via Roteamento Indireto

Encaminhamento de datagramas para um host móvel remoto

externo para o host móvel pacote enviado pelo agente nativo para o dest: 128.119.40.186 agente externo: um pacote dentro de outro dest: 79.129.13.2 dest: 128.119.40.186 endereço permanente: 128 119 40 186 endereço na rede visitada: dest: 128.119.40.186 79.129.13.2 pacote enviado pelo

correspondente

pacote encaminhado pelo agente

Roteamento Indireto: comentários

- □ Hosts móveis possuem dois endereços:
 - ✓ endereço permanente: usado pelos correspondentes (para os quais a localização móvel é transparente)
 - endereço na rede visitada: usado pelo agente nativo para encaminhar pacotes para o host móvel através do agente externo
- Desvantagem:roteamento triangular
 - ✓ ineficiente quando o correspondente e host móvel estão na mesma rede

Roteamento triangular: comentários

Roteamento triangular

- ✓ desempenho muito baixo do protocolo de roteamento IP Móvel quando o nó correspondente está topologicamente próximo ao nó móvel e este por sua vez está topologicamente longe da rede local
- ✓ latência alta entre o agente nativo e os agentes externos faz com que cada mudança de ponto acesso do nó móvel produza perda significativa de pacotes

Roteamento indireto: movendo-se entre redes visitadas

- Suponha que um usuário móvel se mova de uma rede visitada para outra
 - ✓ host móvel se registra com o novo agente externo
 - ✓ novo agente externo se registra com o agente nativo
 - ✓ agente nativo atualiza o novo endereço p/ host móvel
 - ✓ pacotes continuam a ser encaminhados para o usuário móvel via o agente nativo (mas com novo endereço na rede visitada)
- □ Mudança de redes visitadas é transparente: conexões ativas podem ser mantidas!
 - ✓ obs: o antigo agente externo não precisa avisar ao agente nativo que o usuário móvel saiu da sua rede (cancelar o registro), pois o novo agente externo fará esta função

Mobilidade via Roteamento Direto

Mobilidade via Roteamento Direto: comentários

- □ Contorna o problema do roteamento triangular
- Mas não é transparente para os correspondentes, que devem consultar o agente nativo para obter o novo endereço na rede visitada
 - ✓ O que acontece se o host móvel se mudar para outra rede?

Mobilidade com roteamento direto

- agente externo âncora: agente externo da primeira rede visitada
- dados sempre serão roteados para o agente externo âncora
- qdo o usuário se move novamente: novo agente externo fornece ao âncora o novo endereço (da nova rede) para onde os novos dados devem ser enviados (via âncora)

Mobilidade - IP Móvel (RFC 5944)

<u>Definição:</u>

"O IP Móvel é um protocolo de roteamento que modifica o IP padrão de forma a permitir que hosts continuem a transmitir e receber datagramas independentemente do ponto de conexão que eles estejam utilizando para acessar a Internet (rede TCP/IP)"

Mobilidade - IP Móvel

Características:

- muitas das características vistas acima
 - ✓ agentes nativos, agentes externos, registro com o agente externo, care-of-address, encapsulamento de pacotes
 - algumas mensagens de controle adicionais
 - ⇒ permite aos nós envolvidos gerenciar suas tabelas de roteamento de forma apropriada e confiável

Mobilidade - IP Móvel

Características:

- □ três principais componentes no padrão:
 - ✓ descoberta de agente:
 - definição dos protocolos que os agentes nativos ou externos usam para oferecer seus serviços aos nós móveis e protocolos que estes nós móveis usam para solicitar serviços aos agentes
 - ✓ registro com o agente nativo: definição dos protocolos usados pelos agentes externos para anular os registros de COA do dispositivo móvel
 - ✓ roteamento indireto de datagramas

IP Móvel: roteamento indireto

IP Móvel: descoberta de agente

Necessária para que o nó móvel aprenda a identidade do agente externo (ou do agente nativo). Duas formas:

Anúncio de agente: agente externo anuncia seus serviços através de broadcast de mensagens ICMP (campo tipo = 9)

Bits H,F: home e/ou foreign agent

Bit R: registro é necessário (não é possível usar o DHCP sem o registro)

O ou mais COAs: Usuário móvel escolhe um ao se registrar

IP Móvel: descoberta de agente

Solicitação de agente:

- nós móveis que não querem esperar por mensagens de broadcast solicitam serviços ao agente externo. Isto é realizado fazendo um broadcast de uma mensagem ICMP com o campo tipo = 10
- Quando o agente recebe a mensagem ICMP, ele envia (unicast) uma mensagem de anúncio (igual à vista anteriormente) para o nó móvel que, por sua vez, irá proceder da mesma forma como no caso anterior, onde ele recebe uma mensagem de anúncio.

IP Móvel: registro com o agente nativo

IP Móvel: registro com agente nativo

Outros detalhes:

- ✓ Agente nativo recebe a solicitação de registro e associa o endereço IP permamente do nó móvel ao COA (endereço IP do agente externo)
- ✓ Agente externo irá procurar por datagramas encapsulados cujo endereço de destino combine com o endereço permanente (home address) do dispositivo móvel

Mobilidade - IP Móvel

Outras Características:

- Mensagens são encaminhadas por datagramas UDP na porta 434;
- ✓ TTL n° de segundos de validade do registro
- ✓ Trata o problema de mover entre redes diferentes e não dentro de uma rede (este problema é da camada de enlace)
- Em redes IP, o problema de suporte à mobilidade pode ser "traduzido" de forma natural em um problema de roteamento, permitindo a criação de um protocolo simples e de fácil implementação

Impacto das redes sem fio e da mobilidade nos protocolos das camadas superiores

- □ O impacto na operação é mínimo:
 - ✓ modelo de serviço de melhor esforço permanece o mesmo
 - TCP e UDP podem (e rodam) sobre protocolos para redes sem fio e com mobilidade
- Principais impactos estão no desempenho do TCP:
 - Atraso/perda de pacotes devido a erros de bit, congestionamento ou handoff
 - ▼ TCP interpreta perda como congestionamento e decrementa a sua taxa desnecessariamente (no caso de ser uma perda por erros de bits ou handoff)
 - 2 soluções possíveis: recuperação local (no receptor, camada de enlace) ou transmissor e receptor cientes do enlace sem fio distinguem motivo da perda
- □ Principais impactos na camada de aplicação:
 - Prejuízos para tráfego de tempo real, causado por atrasos maiores
 - ✓ Largura de banda limitada dos enlaces sem fio prejudica qualidade das aplicações (por ex.: imagens de pior qualidade)