결측치(missing values) 처리

seaborn은 파이썬의 데이터 시각화 라이브러리 중 하나이다.

- anscombe: Anscombe의 사분면 그림 데이터셋으로, 데이터 분석의 중요성을 보여주는 네 가지 서로 다른 데이터셋이 포함되어 있습니다.
- iris: 붓꽃 데이터셋으로, 꽃잎과 꽃받침의 길이 및 너비에 대한 측정값을 포함합니다.
- tips: 레스토랑에서의 식사 정보를 포함하는 데이터셋으로, 식사 금액, 팁, 성별, 흡연 여부 등이 포함됩니다.
- titanic: 데이터셋은 타이타닉호에서 탑승객들의 정보와 생존 여부를 포함한 데이터셋입니다.
 - o survived: 생존 여부를 나타내는 이진 변수 (0: 사망, I: 생존)
 - ⋄ pclass: 승객의 좌석 등급 (1, 2, 3)
 - o sex: 성별 (male: 남성, female: 여성)
 - age: 나이
 - sibsp: 함께 탑승한 형제자매/배우자의 수
 - parch: 함께 탑승한 부모/자녀의 수
 - ∘ fare: 요금
 - ∘ embarked: 탑승 항구 (C: Cherbourg, Q: Queenstown, S: Southampton) class:
 - 승객의 좌석 등급 (First, Second, Third)
 - ∘ who: 승객의 성별과 나이를 결합한 열 (man, woman, child)
 - ∘ adult male: 성인 남성 여부 (True, False)
 - ∘ deck: 선실 번호
 - embark town: 탑승 항구의 도시 이름
 - ∘ alive: 생존 여부 (yes, no)
 - ° alone: 혼자 여행한 여부 (True, False)

seaborn 라이브러리의 titanic 데이터 셋 로드하기

import seaborn as sns df=sns.load_dataset('titanic') # 타이타닉 데이터 로드하기 df

	survived	pcrass	sex	age	SIDSP	parcn	Tare	embarked	crass	wno
0	0	3	male	22.0	1	0	7.2500	S	Third	man
1	1	1	female	38.0	1	0	71.2833	C	First	woman
2	1	3	female	26.0	0	0	7.9250	S	Third	woman
3	1	1	female	35.0	1	0	53.1000	S	First	woman
4	0	3	male	35.0	0	0	8.0500	S	Third	man
***		•••			•••					
886	0	2	male	27.0	0	0	13.0000	S	Second	man
887	1	1	female	19.0	0	0	30.0000	S	First	woman
888	0	3	female	NaN	1	2	23.4500	S	Third	woman
889	1	1	male	26.0	0	0	30.0000	C	First	man
890	0	3	male	32.0	0	0	7.7500	Q	Third	man
891 ro	ws × 15 colu	mns								•

데이터 셋 정보확인

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype
0	survived	891 non-null	int64
1	pclass	891 non-null	int64
2	sex	891 non-null	object

```
3
                                  float64
     age
                  714 non-null
 4
     sibsp
                 891 non-null
                                  int64
     parch
                  891 non-null
                                  int64
                  891 non-null
                                  float64
     embarked
                  889 non-null
                                 object
                  891 non-null
    class
                                  category
                  891 non-null
 9 who
                                 object
 10 adult_male
                 891 non-null
                                 bool
                  203 non-null
 11 deck
                                 category
 12 embark_town
                 889 non-null
                                 object
 13 alive
                  891 non-null
                                 object
 14 alone
                 891 non-null
                                 bool
dtypes: bool(2), category(2), float64(2), int64(4), object(5)memory
usage: 80.7+ KB
```

df.describe()

	survived	pclass	age	sibsp	parch	fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	0.383838	2.308642	23.799293	0.523008	0.381594	32.204208
std	0.486592	0.836071	17.596074	1.102743	0.806057	49.693429
min	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	2.000000	6.000000	0.000000	0.000000	7.910400
50%	0.000000	3.000000	24.000000	0.000000	0.000000	14.454200
75%	1.000000	3.000000	35.000000	1.000000	0.000000	31.000000
max	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

value_counts()로 who 열을 구성하는 각 값들의 개수 출력

df['who'].value_counts()

man 537 woman 271 child 83 Name: who, dtype: int64

df['deck'].value_counts(dropna=False) # 누락 데이터 개수까지 확인시 dropna=False 사용할 것.

NaN 688 C 59 B 47 D 33 E 32 A 15 F 13 G 4 Name: deck, dtype: int64

데이터프레임에서 각 셀이 결측치인지 확인하기

- df.isnull()
- df.isna()

df.isnull() # df.isna()와 동일

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who	adult_
0	False	False	False	False	False	False	False	False	False	False	
1	False	False	False	False	False	False	False	False	False	False	
2	False	False	False	False	False	False	False	False	False	False	
3	False	False	False	False	False	False	False	False	False	False	
4	False	False	False	False	False	False	False	False	False	False	
***										***	
886	False	False	False	False	False	False	False	False	False	False	
887	False	False	False	False	False	False	False	False	False	False	
888	False	False	False	True	False	False	False	False	False	False	

```
889FalseFalseFalseFalseFalseFalseFalseFalseFalseFalse890FalseFalseFalseFalseFalseFalseFalseFalse891 rows × 15 columns
```

각 열의 결측치 개수 확인

df.isnull().sum()

```
survived
pclass
                  0
                  0
sex
                177
age
sibsp
parch
fare
embarked
class
adult_male
                688
deck
embark_town
                  0
alive
alone
dtype: int64
                  0
```

특정 열의 결측치 개수

df['deck'].isnull().sum() # df['deck'].notnull().sum() : 결측치가 아닌 개수

결측치 변경

- df.fillna(값)
- df.fillna(method='ffill') #f: foreward, 바로 앞 행의 값으로 채우기
- df.fillna(method='bfill') # b : backward,바로 다음 행의 값으로 채우기

결측치를 모두 0으로 채우기

df_NaN=df

df_NaN['age'].fillna(0,inplace=True)

df_NaN

	survived	pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	male	22.0	1	0	7.2500	S	Third	man
1	1	1	female	38.0	1	0	71.2833	С	First	woman
2	1	3	female	26.0	0	0	7.9250	S	Third	woman
3	1	1	female	35.0	1	0	53.1000	S	First	woman
4	0	3	male	35.0	0	0	8.0500	S	Third	man
***		•••	***				***		***	
886	0	2	male	27.0	0	0	13.0000	S	Second	man
887	1	1	female	19.0	0	0	30.0000	S	First	woman
888	0	3	female	0.0	1	2	23.4500	S	Third	woman
889	1	1	male	26.0	0	0	30.0000	C	First	man
890	0	3	male	32.0	0	0	7.7500	Q	Third	man

결측치를 이웃 행의 값으로 치환

• df.fillna(method='ffill')

891 rows × 15 columns

df.fillna(method='bfill')

df_NaN['deck'].fillna(method='bfill',inplace=True) # inplace=True 는 데이터프레임 자체에 적용 df_NaN

survived		pclass	sex	age	sibsp	parch	fare	embarked	class	who
0	0	3	male	22.0	1	0	7.2500	S	Third	man
1	1	1	female	38.0	1	0	71.2833	C	First	woman
2	1	3	female	26.0	0	0	7.9250	S	Third	woman
3	1	1	female	35.0	1	0	53.1000	S	First	woman
4	0	3	male	35.0	0	0	8.0500	S	Third	man
***			•••						•••	
886	0	2	male	27.0	0	0	13.0000	S	Second	man
887	1	1	female	19.0	0	0	30.0000	S	First	woman
888	0	3	female	0.0	1	2	23.4500	S	Third	woman
889	1	1	male	26.0	0	0	30.0000	C	First	man
890	0	3	male	32.0	0	0	7.7500	Q	Third	man
891 rows × 15	5 col	umns								>

결측치를 승객이 가장 많이 승선한 도시이름으로 치환.

df1=df.copy()

df1['embark_town'][825:830]

825 Queenstown 826 Southampton 827 Cherbourg 828 Queenstown 829 NaN

Name: embark_town, dtype: object

embark_town열에서 결측치가 있는 행을 제외한 빈도수가 가장 높은 값의 항목명
most_freq=df1['embark_town'].value_counts(dropna=True).idxmax()
most_freq

'Southampton'

결측치를 승객이 가장 많이 승선한 도시이름으로 치환

df1['embark_town'].fillna(most_freq,inplace=True)

df1['embark_town'][825:830]

825 Queenstown
826 Southampton
827 Cherbourg
828 Queenstown
829 Southampton

Name: embark_town, dtype: object

결측치가 있는 행 제거하기.

기존 데이터프레임을 복사

df2=df

embarked 열에서 결측치가 있는 행을 삭제

df2.dropna(subset=['embarked'],inplace=True)

df2.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 889 entries, 0 to 890
Data columns (total 15 columns):
# Column Non-Null Count Dtype
                          889 non-null
889 non-null
                                                  int64
int64
       survived
       pclass
       sex
                           889 non-nul
                                                  object
       age
sibsp
                          712 non-null
889 non-null
                                                  float64
int64
                                                  int64
float64
       parch
                           889 non-null
       fare
                           889 non-null
                                                  object
category
       embarked
                          889 non-null
       class
                           889 non-null
 9 who
10 adult_male
                          889 non-null
                                                  object
bool
                                                  category
       deck
                           201 non-null
      embark_town
                          889 non-null
                          889 non-null
  13 alive
14 alone
                                                  object
bool
      alone
dtypes: bool(2), category(2), float64(2), int64(4), object(5) memory usage: 87.3+ KB
```

열에 결측치를 제외한 것이 500개 이상인 열만 남기기

데이터셋에서 deck열의 NaN 비율이 높아서 분석에서 제외하는 것이 의미가 있다. Thresh(임계치)를 사용.

df2.dropna(axis=1,thresh=500,inplace=True)
df2.info()