COMP 4983: Lab Exercise #9

Instructions:

In this lab, you will

construct the maximal margin classifier on paper for a trivial dataset

Maximal Margin Classifier (on paper)

In this lab, you will

- · draw a hyperplane in a 2-dimensional space
- · construct a maximal margin classifier for a trivial dataset
- 1) Draw the hyperplane $1+3X_1-X_2=0$. Indicate the region for which $1+3X_1-X_2>0$, as well as the region for which $1+3X_1-X_2<0$.
- 2) Consider a training set consisting of the following seven (7) training samples:

Sample	Input Vector	Output Value
x_1	(3, 4)	Red
x_2	(2, 2)	Red
x_3	(4, 4)	Red
x_4	(1, 4)	Red
<i>x</i> ₅	(2, 1)	Blue
<i>x</i> ₆	(4, 3)	Blue
<i>x</i> ₇	(4, 1)	Blue

- a) Plot the training samples and draw the maximal margin hyperplane given the training samples.
- b) Indicate the margin, M, for the maximal margin hyperplane.
- c) Derive the equation for the maximal margin hyperplane in the form of $\beta_0+\beta_1X_1+\beta_2X_2=0$ subject to $\sum_{j=1}^p\beta_j^2=1$.
- d) Predict the output value for the test sample (3.5, 2).