Algoritmalara Giriş 6.046J/18.401J

Ders 9

Rastgele yapılanmış ikili arama ağaçları

- Beklenen düğüm derinliği
- Yüksekliği çözümlemek
 - Dışbükeylik önkuramı
 - Jensen'in eşitsizliği
 - Üstel yükseklik
- Post mortem (süreç sonrası)

Prof. Erik Demaine

İkili-arama-ağacı sıralaması

$$T \leftarrow \emptyset$$
 $i=1$ den n' ye kadar değiştiğinde,

▶ Boş bir BST(ikili arama ağacı) yarat.

AĞAÇ ARAYA YERLEŞTİRMESİ \mathbf{YAP} (T, A[i])

T'nin içinde sıralı adımlama yap.

BST sıralaması çözümlemesi

BST sıralaması çabuk sıralama karşılaştırmalarının aynısını, başka bir düzende yapar!

Ağacı oluşturmanın beklenen süresi asimptotik olarak çabuk sıralamanın koşma süresinin aynıdır.

Düğüm derinliği

Bir düğüm derinliği = Ağaç Araya Yerleştirmesi için yapılan karşılaştırmalar. Tüm girdi permütasyonları eşit olasılıklı varsayılırsa:

Ortalama düğüm derinliği

$$= \frac{1}{n} E \begin{bmatrix} \sum_{i=1}^{n} & \text{(Boğum i' yi araya yerleştirmek için gerekli karşılaştırmaların sayısı)} \end{bmatrix}$$

$$= \frac{1}{n}O(n \lg n)$$
 (Çabuk sıralama analizi)
= $O(\log n)$

Ağacın beklenen yüksekliği

Ama, ortalama düğüm derinliğinin rastgele yapılanmış bir ikili arama ağacında (BST) = $O(\lg n)$ olması ağacın beklenen yüksekliğinin de $O(\lg n)$ olduğu anlamına gelmeyebilir (buna rağmen öyledir).

Örnek.

Rastgele yapılanmış bir ikili arama ağacının yüksekliği

Çözümlemenin ana hatları:

- *Jensen'in eşitsizliği*ni, kanıtlayın; yani: Her dışbükey fonksiyon f ve rastgele değişken X için $f(E[X]) \le E[f(X)]$ olduğunu kanıtlayın.
- Rastgele yapılanmış bir BST'de *üstel yüksekliği* n düğüm için çözümleyin; burada rastgele değişken $Y_n = 2^{X_n}$ 'dir, ve X_n ağacın yüksekliğini tanımlayan rastgele değişkendir.
- Şunu kanıtlayın: $2^{E[X_n]} \le E[2^{X_n}] = E[Y_n] = O(n^3)$ olsun ve böylece $E[X_n] = O(\lg n)$ çıksın.

Dışbükey fonksiyonlar

 $f: \mathbb{R} \to \mathbb{R}$ fonksiyonu *dışbükeydir*; eğer tüm $\alpha, \beta \ge 0$ ise.. Ayrıca $\alpha + \beta = 1$ ve

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y)$$

tüm $x,y \in \mathbb{R}$ ise..

Dışbükeylik önkuramı

Önkuram. $f: \mathbb{R} \to \mathbb{R}$ dışbükey bir fonksiyon olsun, ve $\alpha_1, \alpha_2, ..., \alpha_n$ negatif olmayan gerçek sayılar olsun; öyle ki $\sum_k \alpha_k = 1$ 'dir. Bu durumda, herhangi bir gerçek sayı $x_1, x_2, ..., x_n$ için:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) \leq \sum_{k=1}^{n} \alpha_k f(x_k) \text{ olur.}$$

Kanıtlama. *n* kullanarak tümevarımla. n = 1 için $\alpha_1 = 1$, ve böylece $f(\alpha_1 x_1) \le \alpha_1 f(x_1)$ olur.

Tümevarım adımı:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

Cebir.

Tümevarım adımı:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

$$\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

Dışbükeylik.

Tümevarım adımı:

$$f\left(\sum_{k=1}^{n} \alpha_k x_k\right) = f\left(\alpha_n x_n + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

$$\leq \alpha_n f(x_n) + (1 - \alpha_n) f\left(\sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} x_k\right)$$

$$\leq \alpha_n f(x_n) + (1 - \alpha_n) \sum_{k=1}^{n-1} \frac{\alpha_k}{1 - \alpha_n} f(x_k)$$

Tümevarım.

Tümevarım adımı:

$$f\left(\sum_{k=1}^{n} \alpha_{k} x_{k}\right) = f\left(\alpha_{n} x_{n} + (1 - \alpha_{n}) \sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} x_{k}\right)$$

$$\leq \alpha_{n} f(x_{n}) + (1 - \alpha_{n}) f\left(\sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} x_{k}\right)$$

$$\leq \alpha_{n} f(x_{n}) + (1 - \alpha_{n}) \sum_{k=1}^{n-1} \frac{\alpha_{k}}{1 - \alpha_{n}} f(x_{k})$$

$$= \sum_{k=1}^{n} \alpha_{k} f(x_{k}) \qquad \square \qquad \text{Cebir.}$$

Dışbükeylik önkuramı: sonsuz durum

Önkuram. $f: \mathbb{R} \to \mathbb{R}$ bir dışbükey fonksiyon ve $\alpha_1, \alpha_2, \ldots$, negatif olmayan gerçek sayılar olsun; öyle ki $\sum_k \alpha_k = 1$. Bu koşullarda, her gerçek sayı x_1, x_2, \ldots , için:

$$f\left(\sum_{k=1}^{\infty}\alpha_k x_k\right) \leq \sum_{k=1}^{\infty}\alpha_k f(x_k) \quad \text{olur;}$$

bu toplamların var olduğu farz edildiğinde..

Dışbükeylik önkuramı: sonsuz durum

Kanıt. Dışbükeylik önkuramı gereği, her $n \ge 1$ için,

$$f\left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k\right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k).$$

Dışbükeylik önkuramı: sonsuz durum

Kanıt. Dışbükeylik önkuramı gereği, her $n \ge 1$ için,

$$f\left(\sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} x_k\right) \leq \sum_{k=1}^{n} \frac{\alpha_k}{\sum_{i=1}^{n} \alpha_i} f(x_k).$$

Her iki tarafta da limit alma işlemi yaparak (eşitsizlik kesin olmadığından bunu yapabiliriz):

$$\lim_{n \to \infty} f\left(\frac{1}{\sum_{i=1}^{n} \alpha_{i}} \sum_{k=1}^{n} \alpha_{k} x_{k}\right) \leq \lim_{n \to \infty} \frac{1}{\sum_{i=1}^{n} \alpha_{i}} \sum_{k=1}^{n} \alpha_{k} f(x_{k})$$

$$\to 1 \to \sum_{k=1}^{\infty} \alpha_{k} x_{k}$$

$$\to 1 \to \sum_{k=1}^{\infty} \alpha_{k} f(x_{k})$$

Jensen'in eşitsizliği

Önkuram. f bir dışbükey fonksiyon ve X rastgele bir değişken olsun. Öyleyse, $f(E[X]) \le E[f(X)]'$ dir.

Kanıt.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$$

Beklenenin tanımı.

Jensen'in eşitsizliği

Önkuram. f bir dışbükey fonksiyon ve X rastgele bir değişken olsun. Öyleyse, $f(E[X]) \le E[f(X)]$ 'dir.

Kanıt.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$$

$$\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$$

Dışbükeylik önkuramı (sonsuz durum).

Jensen'in eşitsizliği

Önkuram. f bir dışbükey fonksiyon ve X rastgele bir değişken olsun. Öyleyse, $f(E[X]) \le E[f(X)]$ 'dir.

Kanıt.

$$f(E[X]) = f\left(\sum_{k=-\infty}^{\infty} k \cdot \Pr\{X = k\}\right)$$

$$\leq \sum_{k=-\infty}^{\infty} f(k) \cdot \Pr\{X = k\}$$

$$= E[f(X)]. \square$$

Şaşırtıcı, ama doğru adım - bunu düşünün.

BST yüksekliği çözümlemesi

 X_n rastgele yapılanmış ikili arama ağacının n düğümlü durumunun yüksekliğini tanımlayan rastgele değişken olsun, ve $Y_n = 2^{X_n}$ de ağacın üstel yüksekliği olsun.

Ağacın kökünün rankı (rütbesi) k ise,

$$X_n = 1 + \max\{X_{k-1}, X_{n-k}\} \text{ dir,}$$

çünkü kökün hem sağ hem de sol alt ağaçları rastgele yapılanmıştır. Bu nedenle,

$$Y_n = 2 \cdot \max\{Y_{k-1}, Y_{n-k}\}$$
 olur.

Çözümleme (devamı)

Göstergesel rastgele değişken Z_{nk} 'yi tanımlayın:

$$Z_{nk} = \begin{cases} 1 & \text{eğer k\"ok\"un r\"utbesi } k \text{ ise,} \\ 0 & \text{diğer durumlarda.} \end{cases}$$

Böylece,
$$Pr\{Z_{nk} = 1\} = E[Z_{nk}] = 1/n$$
, ve

$$Y_n = \sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\}).$$

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

Her iki tarafın beklenenini alın.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$
$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

Beklenenin doğrusallığı.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

$$= 2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$

Kökün rankının alt ağaçların köklerinin ranklarından bağımsızlığı.

$$E[Y_n] = E\left[\sum_{k=1}^n Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

$$= \sum_{k=1}^n E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

$$= 2\sum_{k=1}^n E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$

$$\leq 2\sum_{k=1}^n E[Y_{k-1} + Y_{n-k}]$$

İki negatif olmayan sayının en büyük değeri en çok toplamları olabilir ve $E[Z_{nk}] = 1/n$.

$$E[Y_{n}] = E\left[\sum_{k=1}^{n} Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})\right]$$

$$= \sum_{k=1}^{n} E[Z_{nk} (2 \cdot \max\{Y_{k-1}, Y_{n-k}\})]$$

$$= 2\sum_{k=1}^{n} E[Z_{nk}] \cdot E[\max\{Y_{k-1}, Y_{n-k}\}]$$

$$\leq \frac{2}{n} \sum_{k=1}^{n} E[Y_{k-1} + Y_{n-k}]$$

$$= \frac{4}{n} \sum_{k=0}^{n-1} E[Y_{k}]$$
Her terim iki kez görünür; yeniden dizin oluşturun.

Artı değerli bir c sabiti için, $E[Y_n] \le cn^3$ olduğunu gösterirken yerine koyma metodunu kullanın; burada c' yi ilk durum koşullarını

sağlaması için yeterince

büyük seçebiliriz.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$

Artı değerli bir c sabiti için, $E[Y_n] \le cn^3$

olduğunu göstermek için, yerine koyma metodunu kullanın; burada *c'* yi ilk durum koşullarını sağlaması için yeterince büyük seçebiliriz.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$

$$\leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3$$

Yerine koyma.

Artı değerli bir c sabiti için, $E[Y_n] \leq cn^3$ olduğunu gösterirken yerine koyma metodunu kullanın; burada c' yi ilk durum koşullarını sağlaması için yeterince büyük seçebiliriz.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$

$$\leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3$$

$$\leq \frac{4c}{n} \int_0^n x^3 dx$$

Entegral metodu.

Artı değerli bir c sabiti için, $E[Y_n] \leq cn^3$ olduğunu gösterirken yerine koyma metodunu kullanın; burada c' yi ilk durum koşullarını sağlaması için yeterince büyük seçebiliriz.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$

$$\leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3$$

$$\leq \frac{4c}{n} \int_0^n x^3 dx$$

$$= \frac{4c}{n} \left(\frac{n^4}{4}\right)$$

Entegrali çözün.

Artı değerli bir c sabiti için, $E[Y_n] \leq cn^3$ olduğunu gösterirken yerine koyma metodunu kullanın; burada c' yi ilk durum koşullarını sağlaması için yeterince büyük seçebiliriz.

$$E[Y_n] = \frac{4}{n} \sum_{k=0}^{n-1} E[Y_k]$$

$$\leq \frac{4}{n} \sum_{k=0}^{n-1} ck^3$$

$$\leq \frac{4c}{n} \int_0^n x^3 dx$$

$$= \frac{4c}{n} \left(\frac{n^4}{4}\right)$$

$$= cn^3. \quad \text{Algebra.}_{\text{(cebir)}}$$

Herşey bir araya getirilirse,

$$yani 2^{E[X_n]} \le E[2^{X_n}]$$

Jensen'in eşitsizliği çıkar, çünkü $f(x) = 2^x$ dışbükeydir.

Herşey bir araya getirilirse,

$$2^{E[X_n]} \le E[2^{X_n}]$$
$$= E[Y_n]$$

Tanımlama.

Herşey bir araya getirilirse,

$$2^{E[X_n]} \le E[2^{X_n}]$$

$$= E[Y_n]$$

$$\le cn^3.$$

Biraz önce gösterdiğimiz şey.

Herşey bir araya getirilirse,

$$2^{E[X_n]} \le E[2^{X_n}]$$

$$= E[Y_n]$$

$$\le cn^3.$$

Her iki tarafta lg alındığında sonuç:

$$E[X_n] \le 3 \lg n + O(1)$$
 olur.

Süreç sonrası

- S. Çözümleme bu denli zor olmalı mı?
- S. Üstel yüksekliğin çözümlenmesiyle neden uğraşmalı?
- S. Neden yinelemeyi direkt olarak

$$X_n = 1 + \max\{X_{k-1}, X_{n-k}\}$$

üzerinden geliştirmemeli?

Süreç sonrası (devamı)

C.

 $\max\{a, b\} \le a + b$ eşitsizliği

zayıf bir üst sınır sağlar, çünkü |a-b| büyüdükçe sağ altağaç, sol altağaca yavaş yaklaşır.

$$\max\{2^a, 2^b\} \le 2^a + 2^b$$

sınırlaması olduğunda |a-b| büyüdükçe sağ alt ağacın sol altağaca yaklaşması hızlanır. Jensen'in eşitsizliği kapsamında $f(x) = 2^x$ 'in dışbükeyliğini kullanıp, üstellerin toplamıyla işlem yaparak sıkı bir çözümleme elde edebiliriz.

Düşünce egzersizleri

- Çözümlemeyi ne olacağını görmek için doğrudan X_n kullanarak yapın.
- Kanıtlamada neden üstellerin kullanıldığını
 iyi anlamaya çalışın. 4. kuvvet işe yarar mıydı?
- Daha da basit bir kanıt bulabilir misiniz? (İşlediğimiz kanıt kitaptakinden biraz daha basit — umarım doğrudur!).