Dataset: Iris Flower dataset

Note: Only two species of flower are displayed

In favor of null: $log_e(BF_{01}) = -10.31$, sampling = independent multinomial, a = 1.00

Fuel efficiency by type of car transmission

t(18.33) = -3.77, p = 0.001, $\hat{g} = -1.38$, $\text{Cl}_{95\%}$ [-2.17, -0.51], $n_{\text{obs}} = 32$

Transmission (0 = automatic, 1 = manual)

In favor of null: $log_e(BF_{01}) = -4.46$, $r_{Cauchy}^{JZS} = 0.71$

Pairwise comparisons: Dwass-Steel-Crichtlow-Fligner test; Adjustment (p-value): Benjamini & Hochberg

AIC = 166, BIC = 173

Summary effect: β = 0.619, Cl_{95%} [0.407, 0.830], z = 5.736, se = 0.108, p = < 0.001

In favor of null: $log_e(BF_{01}) = -3.341$, $d_{mean}^{posterior} = 0.515$, $Cl_{95\%}$ [0.225, 0.767] Heterogeneity: Q(4) = 109, p = < 0.001, $\tau_{REML}^2 = 0.056$, $l^2 = 96.81\%$

 \mathbf{X} = correlation non–significant at p < 0.05 Adjustment (p–value): None

X = correlation non-significant at <math>p < 0.05Adjustment (p-value): None

 $\mathbf{X} = \text{correlation non-significant at } p < 0.01$ Adjustment (p-value): None

Fuel economy data

 $t(14) = 1.47, p = 0.163, \widehat{g} = 0.36, \text{Cl}_{99\%} [-0.33, 1.10], n_{\text{obs}} = 15$

Source: EPA dataset on http://fueleconomy.gov

In favor of null: $log_e(BF_{01}) = 0.44$, $r_{Cauchy}^{JZS} = 0.71$

 $t(59) = 19.05, \, p = <0.001, \, \widehat{g} = 2.43, \, \text{Cl}_{95\%} \, [1.96, \, 2.99], \, n_{\text{obs}} = 60$ 12.5 10.0 7.5 median = 19.25 count 5.0 2.5 0.0 30 10 20 **Tooth length**

In favor of null: $log_e(BF_{01}) = -54.54$, $r_{Cauchy}^{JZS} = 0.71$

Note: Iris dataset by Fisher.

In favor of null: $log_e(BF_{01}) = -186.14$, $r_{Cauchy}^{JZS} = 0.80$

 $\chi^2_{\rm gof}(3) = 19.263, \, \rho = <0.001, \, \widehat{V}_{\rm Cramer} = 0.291, \, {\rm CI}_{95\%} \, [0.185, \, 0.366], \, n_{\rm obs} = 76$

In favor of null: $log_e(BF_{01}) = -4.34$, $r_{Cauchy}^{JZS} = 0.71$

 $\chi^2(2) = 11.14, \, p = 0.004, \, \widehat{W}_{\mathsf{Kendall}} = 0.82, \, \mathsf{CI}_{99\%} \, [0.82, \, 1.00], \, n_{\mathsf{pairs}} = 22$

Pairwise comparisons: Durbin-Conover test; Adjustment (p-value): Holm

Quality: Very Good

In favor of null: $log_e(BF_{01}) = 16.13$, sampling = independent multinomial, a = 1.00

Quality: Ideal

In favor of null: $log_e(BF_{01}) = 20.36$, sampling = independent multinomial, a = 1.00

Adjustment (p-value): None

Adjustment (p-value): None

sample size:

 $n_{\text{min}} = 11$

 $n_{\text{max}} = 32$

Pearson

1.0

0.5

0.0

-0.5

-1.0

 $n_{\text{min}} = 11$

nmedian = 17

 $n_{\text{max}} = 20$

Pearson

1.0

0.5

0.0

-0.5

-1.0

X = correlation non-significant at p < 0.05Adjustment (p-value): None

X = correlation non-significant at p < 0.05Adjustment (p-value): None

X = correlation non-significant at p < 0.05

Adjustment (p-value): Holm

= correlation non–significant at p < 0.05

Adjustment (p-value): Holm

cylinder count: 4

cylinder count: 6

$$t(8) = 7.82, p = < 0.001, \ \widehat{g} = 2.32, \ \text{Cl}_{95\%} \ [1.25, 4.25], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

$$t(10) = 1.99, p = 0.075, \ \widehat{g} = 0.55, \ \text{Cl}_{95\%} \ [-0.06, 1.29], r$$

In favor of null: $log_e(BF_{01}) = -6.20$, $r_{Cauchy}^{JZS} = 0.71$

In favor of null: $log_e(BF_{01}) = -0.23$, $r_{Cauchy}^{JZS} = 0.71$

cylinder count: 8

(10) = -5.01,
$$p$$
 = 0.001, \hat{g} = -1.38, $\text{Cl}_{95\%}$ [-2.49, -0.64], n_{obs} = 11

In favor of null: $log_e(BF_{01}) = -4.24$, $r_{Cauchy}^{JZS} = 0.71$

am: 0

In favor of null: $log_e(BF_{01}) = -0.16$, a = 1.00

In favor of null: $log_e(BF_{01}) = 0.85$, a = 1.00

Quality: Fair

$$\chi^{2}_{\text{Pearson}}(42) = 55.71, p = 0.076, \widehat{V}_{\text{Cramer}} = 0.12, \text{Cl}_{95\%} [-0.05, 0.07], n_{\text{obs}} = 172$$

vor of null: $log_e(BF_{01}) = -7.86$, sampling = poisson, a = 1.00

Quality: Very Good

$$\chi^2_{\text{Pearson}}(42) = 64.05, p = 0.016, \hat{V}_{\text{Cramer}} = 0.06, \text{Cl}_{95\%} [-0.01, 0.04], n_{\text{obs}} = 1187$$

vor of null: $log_e(BF_{01}) = 14.79$, sampling = poisson, a = 1.00

Quality: Ideal

$$\chi^2_{\text{Pearson}}(42) = 153.32, p = < 0.001, \hat{V}_{\text{Cramer}} = 0.09, \text{Cl}_{95\%} [0.06, 0.10], n_{\text{obs}} = 2165$$

or of null: $log_e(BF_{01}) = -25.04$, sampling = poisson, a = 1.00

All movies have IMDB rating equal to 7.

