Discrete Mathematics 2

Supervisior: Marton Havasi Lectures 4-6 11/15/2018

Instructions: Everyone has to do the Core questions. You may skip practice questions under two conditions: 1. You are absolutely certain that you will gain nothing from solving it. That means you went through the solution mentally and you are 100% sure you know how to solve it for full marks in the exam. 2. You are spending the time you saved to solve the tryhard questions. I trust everyone to make responsible decisions.

Practice questions

1. Exercise sheet 2.2.4

What are $rem(55^2, 79)$, $rem(23^2, 79)$, $rem(23 \cdot 55, 79)$, and $rem(55^{78}, 79)$?

2. Exercise sheet 2.1.4

Let m be a positive integer.

1. Prove the associativity of the addition and multiplication operations in \mathcal{Z}_m ; that is, that for all i, $j, k \text{ in } \mathcal{Z}_m,$

$$(i +_m j) +_m k = i +_m (j +_m k)$$
 and $(i \cdot_m j) \cdot_m k = i \cdot_m (j \cdot_m k)$

- 2. Prove that the additive inverse of k in \mathcal{Z}_m is $[-k]_m$.
- 3. Exercise sheet 2.3.2

A decimal (respectively binary) repunit is a natural number whose decimal (respectively binary) representation consists solely of 1's.

- 1. What are the first three decimal repunits? And the first three binary ones?
- 2. Show that no decimal repunit strictly greater than 1 is square, and that the same holds for binary repunits. Is this the case for every base? Hint: Use Lemma 26 of the notes.

Core questions

- 1. 2014, Paper 2, Question 7 Link
- 2. Consider the statement

$$\forall$$
 natural number x . $x^{100} - 1 \equiv \prod_{1 \leq i \leq k} (x - a_i) \mod 101$

Where $\{a_1, \ldots, a_k\}$ is a finite set of natural numbers.

Find the minimum of $\sum_{1 \leq i \leq k} a_i$ such that satisfies the statement above.

Did you consider all the edge cases?

Tryhard questions (please don't cheat by looking them up online)

- 1. One of Euler's conjectures was disproved in the 1960s by three American mathematicians when they showed there was a positive integer such that $133^5 + 110^5 + 84^5 + 27^5 = n^5$. Find the value of n without using a calculator.
- 2. Show that there exists an infinite set S of positive integers such that for any two distinct elements mand n of S, the integers $2^m - 3$ and $2^n - 3$ are coprime.