LECTURE	6 (2	10/02/2	25)							
UP TO	NOM	WE.	CONSIDER	ÆD	(EXAD)	ENTI	AL INT	EURATO	ors F	OR
• [IN EA 1	2 PRC	OBLEMS	=> E×	PONEN	TIAL	QUA DRAT	URE R	LULES	
• St	HI LINEI	42 PR	2013LEMS	⇒ 5	XPONEI	JTIAL	RUNGE-	KUTTA	METHO!	25
					XPONEN				WETHOR	
					(ME				HEM HI	
45 A	NATUR	VAL QU	JESTION	ME	CAN	ASK				
		ME	D 0 S0	MC-111	N C		Fund	D () 18	`^ 0	2 2 8 1 2
	CAN	Wt	DO 30	"H- (FT)	M O LC	71 <u>2</u>	FULY N	ONCI NI	UNK P	KOBLEMS,
=> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	, DEI	JELOPINI	Jnt 1	50-0	ALUED	EXF	SNENTIA.	ROSI	EN BROC	e Methods
	,									
EX PON	JENTIA	L RO	EMBR OCK	MET	HO122					
UP TO	NOW	WE AC	SUMED	70	HAVE	AT Y	tand f	4	AT (ID A)	SEPARATION
AMONG			2 PART				MON A			
(NON		- C((0 : 1 (F		CBITT) /(()	, D	A 100010	۷۱۱۷۰ کی	K LUK	
CIVOIV	5111,	(, \) [-]	. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4 \			1 ((0 12			
			1 = Ayl	1) 30	2011		1610,7]	7	
) M(o) = Mo						J	1.
		0	0				V.O.C.	yHm		(d _m)
BUT	MORE	LN (CENERAL	ME	\equiv \subset	ULD	HAVE		+ \e(2-574 (4/4,15))25
		(1, (4	1- 1/m	(41)	+,	¿ (o,	+*		٥	NI NI
		1000	Ŧ(7(1))			(A)	y(t)	e R
) u (o) - 1/0						0	
						-				
70 OBT			EAR PAR				R PART) WE
PERFOR	Α	LINEAL	NOLAZ IZ	ALO	NG T	HE	NN HEBU	CAL S	DLU TIO	V Mm
(MAICH	15 21	LL TO	BE	DETER	MINED)	THIS M	(EAN	S THA	
CONSIDER										

FOR THE CONVERGENCE PROOF OF EXPONENTIAL ROSENBROCK EULER WE ASSUME THAT fly(+1) = Ay(+)+ g(y(+)). AS USUAL WE ASSUME THAT ALL OCCURING DERIVATIVES ARE BOUNDED. THEOREM 3 (CONVERGENCE OF EXPONENTIAL POSENBLOCK EVLER) CONSIDER PROBLEM (A) AND INTEGRATOR (O). ASSUME & IS SUFFICIENTLY OFTEN DIFFERENTABLE. THEN HERE OFFIS ON THE CONSTANT C MAY DEPEND ON THE FINAL TIME to BUT ON W PROOF FROM THE V.O.C. FORMULA WE GET (SEE (I))

THE V.O.C. FORMULA WE GET (SEE (I))

THE V.O.C. FORMULA WE GET (SEE (I))

THE V.O.C. FORMULA WE GET (SEE (I)) FOR SHORTHAND NOTATION WE SET hom(t) = an (w(t)) so THAT

Therefore the set of the set o BY TAYLOR EXPANDING hm WE GET $h(t_n + s) = h_m(t_n) + h_m(t_n) s + \int h''(t_{m+6})(s-6)d6$. HENCE BY PLUGGING IT IN THE V.OC. FORMULA WE GET $\frac{y(t_{m+1})}{y(t_{m+1})} = e^{-\tau} y(t_{m}) + z(t_{1}(z)_{m}) k_{m}(t_{m}) + z^{2} (q_{2}(z)_{m}) k$ WE COMPARE THIS WITH THE NUMERICAL SOLUTION

MATHER ET MAN + Z(J(Z)) an (MA)

```
y(tm) - ym+1 = e 2100 (y(tm) - ym) + zy(z]m) (Lm(tm) - ym(ym))
                  +7^{2} \psi_{2} (7)_{m} \lambda_{m}(+_{m}) + \int_{0}^{2} (2-5)^{3}m \left[\lambda^{m}(+_{m}+\delta)(s-6)d6ds\right]
                                                              gm (y(H) = f(y(H))
 FOR THE PART
l_{m}(t_{n}) - g_{n}(y_{m}) = g_{m}(y_{n}t_{n}) - g_{m}(y_{m})
                                                                         - 3m y4)
                      = (f(yla)) - In y(ta)) - (f(yn) - In yn)
                      = (Ay(tm) + g(y(tm)) - In y(tm)) -
                         (Aym + g(ym) - 3 m /m)
SINCE f(y(t)) = Ay(t) + O(y(t)) => J_m = \frac{\partial f}{\partial y} = A + \frac{\partial g}{\partial y} (y_m)
AND SO
                    = (a(ytm)) - (30) (ym) w(tm)) -
                     (8(Mm) - 308 (Mm) Mm)
                   = (q(ykm)) - q(ym)) - \frac{2y}{3y}(ym)(ykm) - ym)
  SINCE & IS LIPSCHITZ (AS BDD DERIVATIVES) WE HAVE
FOR THE PART
   l_{m}(t_{m}) = \frac{\partial u_{m}}{\partial u_{m}} | u_{m}(t_{m}) = \left(\frac{\partial u_{m}}{\partial u_{m}}(u_{m}(t_{m})) - \frac{\partial u_{m}}{\partial u_{m}}(u_{m})\right) | u_{m}(t_{m})
 =1> 11 R' (+m) 1) = C | M(+m) - Mm)
```


Mnos + Mm + 2 (1 (2)m) f(tm, Mm) + 2 (2 (2)m) Vm THIS IS THE EXPONENTIAL POSENBROCK EULER METHOD FOR NON AUTONOMOUS SYSTEMS. STANDARD ROSENBROCK METHODS THEY ARE ESSENTIALLY IMEX SCHEMES IN WHICH YOU EXPLOIT BACOBLAND 4 (+1 = Ayl+) +g(y(+1)) FOR SEMILINEAR SYSTEMS WE STUDED BF EULER (I - ZA) ym = ym + g(ym) ROSENBROCK METHOD FOR 4 (+)= & [y(+)) 15 $(I - \frac{c}{2} I_m) \kappa_s = z f(y_m)$ Mnn = Mn + K1 -> SECOND-ORDER A- STABLE LABORATORY (2, y(1,x)=82xxy(+,x)+ 1+(y(+x)) -> IN SPACE SECOND ONDER L Mo = 4 x (1-x) CENTERED F.D. HOM. DIR. B.C. TO CHECK THE JACOBIAN $\frac{dF}{dy}\Big|_{\bar{y}} \vee \sim \frac{m(F(\bar{y}+i\epsilon v))}{2}$ \(\theta\(\xi^2\) COMPLEX STEP