Class 10: Structural Bioinfo. Part 1

Josie (A11433761)

PDB statistics

```
PDB_data<-"Data Export Summary.csv"
PDBstats<-read.csv(PDB_data, row.names=1)
head(PDBstats)</pre>
```

	X.ray	EM	NMR	Multiple.methods	Neutron	Other
Protein (only)	167,317	15,698	12,534	208	77	32
Protein/Oligosaccharide	9,645	2,639	34	8	2	0
Protein/NA	8,735	4,718	286	7	0	0
Nucleic acid (only)	2,869	138	1,507	14	3	1
Other	170	10	33	0	0	0
Oligosaccharide (only)	11	0	6	1	0	4
	Total					
Protein (only)	195,866					
Protein/Oligosaccharide	12,328					
Protein/NA	13,746					
Nucleic acid (only)	4,532					
Other	213					
Oligosaccharide (only)	22					

```
library(readr)
pdbstats<-read_csv("Data Export Summary.csv")</pre>
```

Rows: 6 Columns: 8

-- Column specification -----

Delimiter: ","

chr (1): Molecular Type

dbl (3): Multiple methods, Neutron, Other

num (4): X-ray, EM, NMR, Total

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

pdbstats

# A tibble: 6 x 8							
`Molecular Type`	`X-ray`	EM	NMR	`Multiple methods`	Neutron	Other	Total
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 Protein (only)	167317	15698	12534	208	77	32	195866
2 Protein/Oligosacc~	9645	2639	34	8	2	0	12328
3 Protein/NA	8735	4718	286	7	0	0	13746
4 Nucleic acid (onl~	2869	138	1507	14	3	1	4532
5 Other	170	10	33	0	0	0	213
6 Oligosaccharide (~	11	0	6	1	0	4	22

15698/195866

[1] 0.08014663

167317/195866

[1] 0.8542422

sum(pdbstats\$Total)

[1] 226707

195866/(sum(pdbstats\$Total))

[1] 0.863961

Q1:EM (8.01%) X-ray (85.4%) Q2: Protein only (86.4%) Q3:HIV structures (5)

2. Visualizing the HIV-1 protease structure

Figure 1: 1HSG image from Mol-star $\,$

Figure 2: Aspartic Acid Residues interacting with MK1

Introduction to Bio3D in R

```
library(bio3d)
pdb<- read.pdb("1hsg")</pre>
```

Note: Accessing on-line PDB file

pdb

```
Call: read.pdb(file = "1hsg")

Total Models#: 1
  Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
  Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)
  Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
```

Protein sequence:

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNF

```
+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call
```

attributes(pdb)

```
$names
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
```

[1] "pdb" "sse"

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                    х
                                                           у
                                                                 z o
1 ATOM
          1
                N < NA >
                         PRO
                                          <NA> 29.361 39.686 5.862 1 38.10
                                 Α
                                       1
2 ATOM
          2
               CA <NA>
                         PRO
                                          <NA> 30.307 38.663 5.319 1 40.62
                                 Α
                                       1
3 ATOM
          3
               C <NA>
                         PRO
                                       1 <NA> 29.760 38.071 4.022 1 42.64
                                 Α
                         PRO
                                       1 <NA> 28.600 38.302 3.676 1 43.40
4 ATOM
          4
                O <NA>
                                 Α
          5
                         PRO
                                      1 <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
               CB <NA>
                                 Α
                                      1
                                          <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
          6
               CG <NA>
                         PRO
                                 Α
 segid elesy charge
1 <NA>
           N
               <NA>
2 <NA>
           С
               <NA>
3 <NA>
           C <NA>
4 <NA>
           O <NA>
5 <NA>
           С
               <NA>
  <NA>
           C
               <NA>
```

pdbseq(pdb)[25]

25 "D" Q. How many amino acids are there? Sequence Length

```
length(pdbseq(pdb))
```

[1] 198

Predicting functional motions of a single structure

```
adk <- read.pdb("6s36")
 Note: Accessing on-line PDB file
  PDB has ALT records, taking A only, rm.alt=TRUE
adk
Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
    Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
     MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
     DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
     YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
#source("https://tinyurl.com/viewpdb")
#library(r3dmol)
#library(shiny)
#view.pdb(adk)
```

modes <-nma(adk)

Building Hessian... Done in 0.02 seconds. Diagonalizing Hessian... Done in 0.458 seconds.

plot(modes)

mktrj(modes,file="adk.pdb")

Figure 3: adk protein prediction