Перевірка гіпотези про математичне сподівання

Задачі

- 1. Із нормально розподіленої генеральної сукупності з відомим середнім квадратичним відхиленням $\sigma=5$ одержано вибірку обсягу n=50 і за нею знайдено вибіркове середнє $\bar{x}=27.7$. Потрібно для рівня значущості a=0.05 перевірити нульову гіпотезу H_0 : $a=a_0=29$ за наявності конкуруючої гіпотези:
- A) $H_1: a \neq a_0$
- Б) H_1 : $a < a_0$
- 2. Для вибірки обсягу n=16 значень нормально розподіленої випадкової величини X генеральної сукупності знайдено вибіркове середнє $\bar{x}=118.2$ та стандарт S=3.6. Потрібно для рівня значущості $\alpha=0.05$ перевірити нульову гіпотезу H_0 : $\alpha=a_0=120$ за конкуруючої гіпотези:
- A) $H_1: a \neq a_0$
- Б) H_1 : $a < a_0$
 - 3. Масу 200 деталей наведено у вигляді статистичного розподілу:

•				, ,			
	x_i	145	147	149	151	153	155
	n_i	14	22	50	80	24	10

Вважаючи, що ознака ξ — маса деталі — має нормальний закон розподілу, за рівня значущості 0.05, перевірити гіпотезу H_0 : a = 150.

- 4. Завод, що виготовляє лампочки, гарантує середній час роботи лампочки 800 годин із стандартним відхиленням s = 120 год. Береться вибірка з 25 лампочок із середнім часом роботи 750 год. Чи можна стверджувати, що досліджувана вибірка не задовольняє гарантії, якщо вважати, що генеральна сукупність має нормальний закон розподілу.
- 5. Проектний діаметр валиків, що виготовляються автоматом, дорівнює 35мм. Вимірювання 20 вибраних випадково валиків дали наступні результати

x_i	34,8	34,9	35,1	35,2	35,3
n_i	2	3	7	4	4

При рівні значущості $\alpha = 0.05$ перевірити гіпотезу, що вироби відповідають стандарту.

6. Під час перевірки діаметрів 17 установочних кілець було здобуто такі числові характеристики: $\bar{x} = 12,075 \text{ мм i } s^2 = 0,065 \text{ мм}^2$. Вважаючи, що розмір, який

- контролюється, має нормальний закон розподілу, перевірити гіпотезу H_0 : a = 12 мм при H_1 : $a \ne 12$ мм, якщо $\alpha = 0.05$.
- 7. У вибірці, що складається з 625 однакових деталей, середня довжина деталей 20,05 мм із середньоквадратичним відхиленням s=0,1 мм. Чи можна стверджувати, що дана вибірка взята з сукупності деталей із середньою довжиною 20 мм.

Інтервальне оцінювання математичного сподівання нормально розподіленої величини.

Задачі

- Відомо, що випадкова величина X (відсоткове відношення ринкової та номінальної цін на акції на фондовому ринку) нормально розподілена і D(X) = 3.61. Спостереження дали такі результати: 98.2, 100.2, 98.1, 96.2, 99.8, 101.2, 99.2, 104.1, 102.6, 103.8, 101.2, 99.4, 106.1, 102.6, 100.6, 98.8, 98.2, 101.1, 100.6, 99.8.
 Оцінити невідоме математичне сподівання випадкової величини X за допомогою довірчого інтервалу з надійністю γ=0.95.
- 2. За спостереженнями випадкова величина X- річний прибуток фермерів (у тис.грн.) характеризується таким статистичним розподілом вибірки

прибуток	5	6	7	8	9	10	11	12
К- тьфермерів	1	2	4	6	7	5	3	2

Припускаючи, що випадкова величина X має нормальний закон розподілу, знайти інтервальну оцінку невідомого математичного сподівання з надійністю 0.99.

- 3. Для галузі, що включає 1200 фірм, складено випадкову вибірку з 19 фірм. За цією вибіркою виявилось, що у фірмі в середньому працює 77.5 чоловіка за середньоквадратичного відхилення 25 чоловік. Користуючись 95% довірчим інтервалом, оцінити середню кількість працівників у фірмі. Припускається, що кількість працівників має нормальний розподіл.
- 4. Верстат-автомат штампує валики. За вибіркою обсягом n=100 обчислено вибіркову середню діаметрів виготовлених валиків. Знайти з надійністю 0.95 точність δ, з якою вибіркова середня оцінює математичне сподівання діаметрів виготовлених валиків, якщо відомо, що σ=2мм.
- 5. Відомо, що зріст 15-річної дитини є випадковою величиною із нормальним розподілом, причому σ(X)=8 см. Скільки потрібно виконати спостережень, щоб знайти інтервал завширшки 6 см, який із імовірністю 0.99 накриє невідоме математичне сподівання досліджуваної випадкової величини?

- 6. Перевірка чисельності співробітників у 20-ти комерційних банках «Аваль» дала такі результати: середнє число співробітників становить 49 чол., а середнє квадратичне її відхилення (виправлене) 15 чол. Оцінити середню кількість працівників банку з надійністю $\gamma = 0.95$, знаючи, що випадкова величина X кількість працівників банку є нормально розподілена.
- 7. За результатами опитування 50-ти осіб фірми встановлено, що їх місячна заробітна плата характеризується таким інтервальним статистичним розполілом:

Розмір	400 –	450 –	500 –	550 –	600 –	650 –
зарплати	-450	- 500	-550	- 600	- 650	- 700
К-тьосіб	3	8	12	18	6	3

Оцінити з імовірністю 0,99 середню місячну зарплату працівників фірми.

Перевірка гіпотези про рівність математичних сподівань двох нормально розподілених випадкових величин

Задачі

- 1. Для нормально розподілених випадкових величин Xі Y утворено вибірки обсягами n=40іm=50, відповідно, і обчислено їх вибіркові середні значення $\bar{x}=9.8$, $\bar{y}=9.6$. Необхідно перевірити гіпотезу H_0 : $a_x=a_y$ за альтернативної гіпотези H_1 : $a_x \neq a_y$, якщо $\sigma_x=\sigma_y=0.3$ і $\alpha=0.01$.
- 2. За двома незалежними малими вибірками значень випадкових величин Xі Y, обсяги яких, відповідно, становлять n=5іm=6, знайдено вибіркові середні $\bar{x}=3.3,\ \bar{y}=2.48$ та варіанси $S_x^2=0.25$ і $S_y^2=0.108$. Для рівня значущості $\alpha=0.05$ перевірити нульову гіпотезу H_0 : $a_x=a_y$, де конкуруюча гіпотеза H_1 : $a_x\neq a_y$.
- 3. Групі 10 школярів молодших класів дали стандартний текст на перевірку швидкості читання. Після того провели додатковий курс підготовки і знову перевірили швидкість читання. Оцінки ставили по 10-бальній шкалі

школяр	1	2	3	4	5	6	7	8	9	10
Оцінка I тест	7	5	6	8	3	8	7	8	4	4
Оцінка II тест	6	7	7	8	5	9	8	7	6	7

Чи можна стверджувати, що додаткові заняття дали користь? α = 0,05.

4. На підприємстві розроблено 2 методи виготовлення виробів. Щоб перевірити, чи однаково матеріалоємнісні ці методи, зібрано статистичні дані про витрати сировини на одиницю готової продукції в процесі роботи двома методами:

І метод	2,0	2,7	2,5	2,9	2,3	2,6
II метод	2,5	3,2	3,5	2,8	3,5	-

Припускаючи, що витрати сировини в обох випадках розподілені за нормальним законом, перевірити гіпотезу про рівність середніх витрат в обох методах.

5. Для нормально розподілених випадкових величин ξ і η утворено вибірки об'ємом n=40 і m=50 відповідно і обчислено їх вибіркові середні значення $\overline{x}=9,8$ і $\overline{y}=9,6$. Перевірити гіпотезу H_0 : $E\xi=E\eta$ за альтернативної гіпотези H_1 : $E\xi\neq E\eta$ якщо $\sigma(\xi)=\sigma(\eta)=0,3$ і $\alpha=0,01$