Notes

Kerwann

February 26, 2021

Contents

Self-gravitating thin disk with bulb

1 Self-gravitating thin disk with bulb

Consider a self gravitating disk with surface density Σ and gravitational potential Φ . Let v be its velocity field and P its pression field. Then it is described by the system

$$\frac{\partial \Sigma}{\partial t} + \boldsymbol{\nabla} \cdot (\Sigma \boldsymbol{v}) = 0, \tag{1}$$

1

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla)(\boldsymbol{v}) = -\frac{1}{\Sigma} \nabla P - \nabla \Phi, \tag{2}$$

$$\Delta \Phi = 4\pi G \Sigma \delta(z). \tag{3}$$

Here, $\Phi = \Phi_{bulb} + \Phi_{disk} + \Phi_{DH} = \Phi_{bulb} + \Phi_{sg}$. Furthermore, Φ_{bulb} is such that it doesn't yield any contribution to the surface density, i.e. $\Delta\Phi_{\rm bulb}=0$, nor the pressure field, hence $\Sigma=\Sigma_{\rm disk}+\Sigma_{\rm DH}$ and $P=P_{\rm disk}+P_{\rm DH}$. Letting $q = \Sigma_{\rm disk}/\Sigma$, we have

$$\Sigma = \Sigma_{\text{disk}} + \Sigma_{\text{DH}} = \Sigma_{\text{disk}} \left(1 + \frac{\Sigma_{\text{DH}}}{\Sigma_{\text{disk}}} \right) = \frac{1}{q} \Sigma_{\text{disk}}.$$
 (4)

Suppose that we have a polytrope gas such that $P = \kappa \Sigma^{\Gamma}$ and let

$$\psi = \int \frac{\mathrm{d}P(\Sigma)}{\Sigma} \Leftrightarrow \nabla \psi = \frac{\nabla P}{\Sigma}.$$
 (5)

Then

$$\psi = \frac{\kappa \Gamma}{\Gamma - 1} \Sigma^{\Gamma - 1}.$$
 (6)

Letting $\Psi = \Phi + \psi$, we obtain

$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \boldsymbol{\nabla})(\boldsymbol{v}) = -\boldsymbol{\nabla}\Psi. \tag{7}$$

If $\Sigma_{\rm disk} \propto \Sigma_{\rm DH}$ then $q \in [0,1]$ is constant and this system of equation can be rewritten as

$$\frac{\partial \Sigma_{\text{disk}}}{\partial t} + \frac{1}{r} \frac{\partial (r \Sigma_{\text{disk}} v_r)}{\partial r} + \frac{1}{r} \frac{\partial (\Sigma_{\text{disk}} v_\theta)}{\partial \theta} = 0, \tag{8}$$

$$\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_r}{\partial \theta} - \frac{(v_\theta)^2}{r} = -\frac{\partial \Psi}{\partial r},$$

$$\frac{\partial v_\theta}{\partial t} + v_r \frac{\partial v_\theta}{\partial r} + \frac{v_\theta}{r} \frac{\partial v_\theta}{\partial \theta} + \frac{v_r v_\theta}{r} = -\frac{1}{r} \frac{\partial \Psi}{\partial \theta},$$
(10)

$$\frac{\partial v_{\theta}}{\partial t} + v_{r} \frac{\partial v_{\theta}}{\partial r} + \frac{v_{\theta}}{r} \frac{\partial v_{\theta}}{\partial \theta} + \frac{v_{r} v_{\theta}}{r} = -\frac{1}{r} \frac{\partial \Psi}{\partial \theta}, \tag{10}$$

$$\Delta\Phi_{\rm sg} = 4\pi G \frac{1}{q} \Sigma_{\rm disk} \delta(z). \tag{11}$$

Let M be the total mass of the galactic disk+bulb. Let $\Phi_{\text{bulb}} = -GM(1-x)/\sqrt{c^2+r^2}$ with $x \in [0,1]$. An equilibrium state is given by the Plummer equilibrium, such that

$$v_r^0 = 0, \qquad (v_\theta^0)^2 = r \frac{\partial \Psi^0}{\partial r},\tag{12}$$

$$\psi^0 = \frac{\kappa \Gamma}{\Gamma - 1} (\Sigma^0)^{\Gamma - 1} = \frac{\kappa \Gamma}{(\Gamma - 1)q^{\Gamma - 1}} (\Sigma_{\text{disk}}^0)^{\Gamma - 1}, \tag{13}$$

$$\Sigma_{\text{disk}}^0 = \frac{xM}{2\pi a^2} \frac{1}{(1 + (r/a)^2)^{3/2}},\tag{14}$$

$$\Phi_{\rm sg}^0 = -\frac{GMx}{aq} \frac{1}{\sqrt{1 + (r/a)^2}}.$$
 (15)

(16)

Therefore, letting $\xi = (r^2 - a^2)/(r^2 + a^2) \Leftrightarrow r/a = \sqrt{(1+\xi)/(1-\xi)}$ and

$$\varepsilon = \frac{\text{sg internal energy}}{|\text{total sg energy}|} = \frac{3a\kappa\Gamma}{GM} \left(\frac{M}{2\pi a^2}\right)^{\Gamma-1},$$

we obtain

$$\begin{split} \Psi^0 &= -\frac{GM(1-x)}{\sqrt{c^2+r^2}} - \frac{GMx}{aq} \left(\frac{1-\xi}{2}\right)^{1/2} + \frac{\kappa\Gamma}{(\Gamma-1)} (\Sigma_{\rm disk}^0/q)^{\Gamma-1}, \\ &= -\frac{GM(1-x)}{\sqrt{c^2+r^2}} + \frac{GM}{a} \left[-(x/q) \left(\frac{1-\xi}{2}\right)^{1/2} + \frac{\varepsilon(x/q)^{\Gamma-1}}{3(\Gamma-1)} \left(\frac{1-\xi}{2}\right)^{3(\Gamma-1)/2} \right], \\ (v_\theta^0)^2 &= r \frac{\partial \Psi^0}{\partial r} = r \frac{\partial \Psi^0}{\partial \xi} \frac{\partial \xi}{\partial r} = 4 \left(\frac{r}{a}\right)^2 \left(\frac{1-\xi}{2}\right)^2 \frac{\partial \Psi^0}{\partial \xi} = (1+\xi)(1-\xi) \frac{\partial \Psi^0}{\partial \xi}, \\ &= \frac{GM}{a} \left[\frac{a(1-x)}{c} \left(\frac{r}{c}\right)^2 \left(\frac{1}{1+(r/c)^2}\right)^{3/2} + \left(\frac{1+\xi}{2}\right) \left(\frac{1-\xi}{2}\right)^{1/2} \left(\frac{x}{q} - \varepsilon \left(\frac{x}{q}\right)^{\Gamma-1} \left(\frac{1-\xi}{2}\right)^{\frac{3\Gamma}{2}-2} \right) \right], \end{split}$$

with

$$\frac{1-\xi}{2} = \frac{a^2}{r^2 + a^2} = \frac{1}{1 + (r/a)^2}; \quad \frac{1+\xi}{2} = \frac{r^2}{r^2 + a^2} = \frac{(r/a)^2}{1 + (r/a)^2}.$$

Note that for x=1 (no bulb) and q=1 (purely self-gravitating system), we recover the expression of Toomre

$$v_{\theta}^0 = \left(\frac{GM}{a}\right)^{1/2} \left(\frac{1+\xi}{2}\right)^{1/2} \left(\frac{1-\xi}{2}\right)^{1/4} \sqrt{1-\varepsilon \left(\frac{1-\xi}{2}\right)^{\frac{3\Gamma}{2}-2}}.$$

The perturbative equation at 1st order are

$$\begin{split} &\frac{\partial v_r^p}{\partial t} + \frac{v_\theta^0}{r} \frac{\partial v_r^p}{\partial \theta} - 2 \frac{v_\theta^0 v_\theta^p}{r} = -\frac{\partial \Psi^p}{\partial r}, \\ &\frac{\partial v_\theta^p}{\partial t} + v_r^p \frac{\partial v_\theta^0}{\partial r} + \frac{v_\theta^0}{r} \frac{\partial v_\theta^p}{\partial \theta} + \frac{v_r^p v_\theta^0}{r} = -\frac{1}{r} \frac{\partial \Psi^p}{\partial \theta}, \\ &\Delta \Phi_{\rm sg}^p = 4\pi G \frac{1}{q} \Sigma_{\rm disk}^p \delta(z), \\ &\psi^p = \frac{\kappa \Gamma}{q^{\Gamma - 1}} (\Sigma_{\rm disk}^0)^{\Gamma - 2} \Sigma_{\rm disk}^p. \end{split}$$

We define $X^p(r,\theta,t)=\sum_{m\in\mathbb{Z}}X^p_m(r,t)e^{im\theta}$ and look for a temporal dependency in $e^{-i\omega t}$. Aoki & Iye say that there is this following correspondance between surface density and gravitational potential through the Poisson equation:

$$(\Sigma_{\text{disk}})_{m}^{p}(r,\theta) = \frac{xM}{2\pi a^{2}} \left(\frac{1-\xi}{2}\right)^{3/2} \sum_{n=|m|}^{\infty} a_{n}^{m} \widehat{P_{n}^{|m|}}(\xi) e^{-i\omega t}, \tag{17}$$

$$(\Phi_{\rm sg})_m^p(r,\theta) = -\frac{GMx}{aq} \left(\frac{1-\xi}{2}\right)^{1/2} \sum_{n=|m|}^{\infty} \frac{a_n^m}{2n+1} \widehat{P_n^{|m|}}(\xi) e^{-i\omega t}.$$
 (18)