ПЕРЕВІРКА ЗАКОНУ КУЛОНА

ФФ-93 Тор А. В., Другий А. В.

Мета роботи

Перевірити закон Кулона:

- 1. Визначити залежність сили від заряду;
- 2. визначити залежність сили від відстані;
- 3. визначити електричну сталу в системі SI.

1. Експериментальні результати та їх обробка

Результати досліджень занесемо до табл. 1.

Таблиця 1. Результати дослідження

a = 4 cm		a = 5 cm		a = 6 cm		a = 7 cm		a = 8 cm	
q, нКл	F , м ${ m H}$	q, нКл	F , м ${ m H}$	q, нКл	F , м ${ m H}$	q, нКл	F , м ${ m H}$	q, нКл	F, м H
5.1	0.03	4.4	0.04	4.5	0.02	4.5	0.02		
10.2	0.18	9.2	0.09	8.2	0.08	8.3	0.08		
15.5	0.39	13.8	0.19	13.2	0.12	12.4	0.11	12.4	0.07
20.1	0.65	18.0	0.32	17.1	0.19	16.8	0.16	16.0	0.11
23.8	0.94	21.8	0.46	23.0	0.36	21.0	0.24	20.9	0.16

На основі результатів дослідження (табл. 1), побудуємо графіки (рис. 1).

Для більш точної нелінійної апроксимації за формулою $F = A \cdot q^2 \cdot q^{\sigma/2} + B$, будемо підбирати показник степеря σ самостійно, домагаючись найменшої похибки в значенні параметра A. В теорії, параметр B = 0, однак в нашому випадку він може містити інформацію про додаткові сили пружності з боку дрота, яким наша кулька під'єднана до джерела високої напруги та інші невраховані сили, які дають внесок в систематичну похибку.

З результатів апроксимації за формулою отримуємо наступні дані включені до табл. 2. Показник степеня $\sigma=1\cdot 10^{-4}$.

Таблиця 2. Результати апроксимації графіків 1

$1/a^2$, M^{-2}	$A = F/q^2$, 10^{12} H/Кл ²	$\Delta(F/q^2)$, 10^{12} H/Kл^2	σ
625	1.66	0.03	$1 \cdot 10^{-4}$
400	0.93	0.01	$1 \cdot 10^{-4}$
278	0.64	0.04	$1 \cdot 10^{-4}$
204	0.48	0.05	$1 \cdot 10^{-4}$
156	0.31	0.03	$1\cdot 10^{-4}$

На основі результатів апроксимації (табл. 2), побудуємо графіки (рис. 2).

Результати апроксимації графіка 2 за формулою $A = \frac{k}{4} \cdot (1/a^2) \cdot (1/a^2)^{\varepsilon/2}$ дають отримане значення $\varepsilon = 2 \cdot 10^{-2}$. Аналогічно, ми підбирали показник степеря ε самостійно, домагаючись найменшої похибки для k.

Для значення константи k результати апроксимації дають:

$$k = (10.5 \pm 0.5) \cdot 10^9 \, \frac{\text{H} \cdot \text{m}^2}{\text{K} \pi^2} \tag{1}$$

Табличне прецизійне значення

$$k = 8.9875517923(14) \cdot 10^9 \, \frac{\text{H} \cdot \text{m}^2}{\text{K}\pi^2}$$
 (2)

Таким чином, відмінність нашого значення від табличного становить $\approx 17\%$.

Висновки

В результаті дослідів було перевірено закон Кулона. Встановлено, що сила взаємодії однойменних прямо пропорційна квадрату $F \propto q^{2+\sigma}$. Оцінка σ дає величину:

$$\sigma \le 1 \cdot 10^{-4}.$$

Також було перевірено «закон обернених квадратів» $F \propto \frac{1}{r^{2+\varepsilon}}$. Оцінка ε дає величину:

$$\varepsilon \le 2 \cdot 10^{-2}$$
.

Для значення константи k результати апроксимації дають:

$$k = (10.5 \pm 0.5) \cdot 10^9 \frac{\text{H} \cdot \text{m}^2}{\text{K}\pi^2}$$

Табличне прецизійне значення

$$k = 8.9875517923(14) \cdot 10^9 \frac{\text{H} \cdot \text{M}^2}{\text{K}\pi^2}$$

Відмінність нашого значення від табличного становить $\approx 17\%$.

Для перевірки закону Кулона в нашій роботі ми користувались прямим методом, який має низьку точність, оскільки ефекти електростатичної індукції призводять до того, що заряди наводяться практично на всіх тілах, що оточуючих використовуваний прилад, а також, ці ефекти призводять до того, що заряд на кулькі розподілений нерівномірно. На точність також впливає і явище стікання електричного заряду з кульки. Однак, основна похибка обумовлена тим, що коромисло не вдається встановити в початкове положення, тобто визначити, коли нитка не закручена, бо цьому перешкоджає рух повітря навколо кульки.

Для більш точної перевірки закону «обернених квадратів» сьогодні користуються непрямими методами, які полягають у вимірювання електричних потенціалів на концентричних сферах.