

```
# Required Python Packages
#######################
import pandas as pd
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
# File Paths
########################
INPUT_PATH = "breast-cancer-wisconsin.data"
OUTPUT_PATH = "breast-cancer-wisconsin.csv"
# Headers
########################
HEADERS = ["CodeNumber", "ClumpThickness", "UniformityCellSize", "UniformityCellShape",
"MarginalAdhesion",
     "SingleEpithelialCellSize", "BareNuclei", "BlandChromatin", "NormalNucleoli", "Mitoses",
"CancerType"]
#######################
# Function name : read data
# Description : Read the data into pandas dataframe
# Inpt: path of CSV file
# Output : Gives the data
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
def read_data(path):
 data = pd.read_csv(path)
 return data
# Function name : get headers
# Description : dataset headers
# Input : dataset
# Output : Returns the header
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
def get_headers(dataset):
 return dataset.columns.values
# Function name : add headers
# Description: Add the headers to the dataset
# Input : dataset
# Output: Updated dataset
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
#######################
def add_headers(dataset, headers):
 dataset.columns = headers
 return dataset
```

Visit: www.marvellousinfosystems.com


```
# Function name : data_file_to_csv
# Input: Nothing
# Output: Write the data to CSV
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
def data_file_to_csv():
  # Headers
  headers = ["CodeNumber", "ClumpThickness", "UniformityCellSize", "UniformityCellShape",
"MarginalAdhesion",
        "SingleEpithelialCellSize", "BareNuclei", "BlandChromatin", "NormalNucleoli", "Mitoses",
        "CancerType"]
  # Load the dataset into Pandas data frame
  dataset = read_data(INPUT_PATH)
  # Add the headers to the loaded dataset
  dataset = add_headers(dataset, headers)
  # Save the loaded dataset into csv format
  dataset.to_csv(OUTPUT_PATH, index=False)
  print ("File saved ...!")
# Function name : split dataset
# Description : Split the dataset with train_percentage
# Input: Dataset with related information
# Output : Dataset after splitting
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
def split dataset(dataset, train_percentage, feature_headers, target_header):
  # Split dataset into train and test dataset
  train_x, test_x, train_y, test_y = train_test_split(dataset[feature_headers],
dataset[target_header],
                             train_size=train_percentage)
  return train_x, test_x, train_y, test_y
# Function name : handel_missing_values
# Description : Filter missing values from the dataset
# Input: Dataset with mising values
# Output : Dataset by remocing missing values
# Author : Piyush Manohar Khairnar
# Date: 01/02/2022
def handel_missing_values(dataset, missing_values_header, missing_label):
  return dataset[dataset[missing_values_header] != missing_label]
# Function name : random_forest_classifier
# Description: To train the random forest classifier with features and target data
# Author : Piyush Manohar Khairnar
# Date: 01/02/2022
def random forest classifier(features, target):
  clf = RandomForestClassifier()
  clf.fit(features, target)
  return clf
# Function name : dataset statistics
```

Visit: www.marvellousinfosystems.com


```
# Description: Basic statistics of the dataset
# Input : Dataset
# Output: Description of dataset
# Author: Piyush Manohar Khairnar
# Date: 01/02/2022
def dataset statistics(dataset):
  print(dataset.describe())
# Function name: main
# Description: Main function from where execution starts
# Author : Piyush Manohar Khairnar
# Date: 01/02/2022
def main():
  # Load the csv file into pandas dataframe
  dataset = pd.read_csv(OUTPUT_PATH)
  # Get basic statistics of the loaded dataset
  dataset_statistics(dataset)
  # Filter missing values
  dataset = handel_missing_values(dataset, HEADERS[6], '?')
  train_x, test_x, train_y, test_y = split_dataset(dataset, 0.7, HEADERS[1:-1], HEADERS[-1])
  # Train and Test dataset size details
  print("Train_x Shape :: ", train_x.shape)
  print("Train_y Shape :: ", train_y.shape)
print("Test_x Shape :: ", test_x.shape)
  print("Test_y Shape :: ", test_y.shape)
  # Create random forest classifier instance
  trained_model = random_forest_classifier(train_x, train_y)
  print("Trained model :: ", trained_model)
  predictions = trained_model.predict(test_x)
  for i in range(0, 205):
     print("Actual outcome :: {} and Predicted outcome :: {}".format(list(test_y)[i], predictions[i]))
  print("Train Accuracy :: ", accuracy_score(train_y, trained_model.predict(train_x)))
  print("Test Accuracy :: ", accuracy_score(test_y, predictions))
print(" Confusion matrix ", confusion_matrix(test_y, predictions))
#######################
# Application starter
######################
if __name__ == "___main___":
  main()
```