Introdução à Otimização

Aula 4
Exercícios

Ex 1. Campanha publicitária

Uma fábrica de carros produz carros de luxo e "jeeps 4x4". A direção acredita que seus clientes são homens e mulheres de alta renda. Em sua campanha publicitária, foi decidido adquirir uma quantidade de minutos ou fração de minutos para a veiculação do comercial, dividido em três tipos de programas:

- 1. programa de comédia,
- 2. noticiário e
- 3. partidas de futebol

Cada minuto de comercial veiculado em horário de programa de comédia é visto por aproximadamente 7,3 milhões de mulheres e 2,5 milhões de homem de alta renda; cada minuto de comercial em horário de noticiário é visto por aproximadamente 3,7 milhões de mulheres e por 5,3 milhões de homens. E cada minuto de comercial em horário de futebol é visto por 1,5 milhão de mulheres e 8,2 milhões de homens desta classe.

Uma entrada de um minuto em programa de comédia custa \$50.000, um minuto de propaganda no horário de noticiário tem um custo de \$75.000 e um minuto em horário de futebol custa \$100.000, podendo ser adquirida uma fração de minuto.

A fábrica quer que seu comercial seja visto por pelo menos 28 milhões de mulheres de alta renda e por 24 milhões de homens de alta renda, e que pelo menos 40% do tempo total de comercial seja veiculado em horários de noticiário.

Apresente um modelo de programação linear para determinar como a fábrica pode alcançar seus objetivos da melhor maneira possível.

Ex 2. Problema da produção em uma fazenda

Um fazendeiro pretende plantar arroz, feijão e milho. Os lucros são de \$50 por hectare de arroz, \$200 por hectare de feijão e \$80 por hectare de milho. Em sua propriedade, o fazendeiro conta com:

- uma área disponível para o plantio de 25 hectares
- 80.000 litros água disponível para irrigação
- plantar no máximo 4 hectares de milho
- o consumo de água por hectare plantado é de 15.000 litros para o arroz, 5.000 litros feijão e de 10.000 litros para o milho.
- a produção de arroz deve ser pelo menos 70% maior do que a de feijão.

Formule o problema como um modelo de programação linear para auxiliar o fazendeiro a tomar a melhor decisão.

EX 3 - Balanceamento da Produção

Uma empresa terceirizada fornece três peças diferentes para a montagem de um produto na proporção de 1:1:2. As peças <u>idênticas</u> podem ser fabricadas por dois departamentos a diferentes taxas de produção, conforme tabela abaixo.

	Taxa de produção (unid/h)			Capacidade
Depart.	Peça 1	Peça 2	Peça 3	(hs)
1	8	5	10	100
2	6	12	4	200
Lucro por unidade	25,00	27,00	20,00	

Escreva um modelo de Programação linear para auxiliar a empresa a melhor os seus resultados.

Ex 4. Problema da Dieta

Uma pessoa deve fazer uma dieta alimentar que fornece, diariamente, pelo menos as seguintes quantidades, em mg, de vitaminas: 80 de A, 70 de B, 100 de C e 60 de D. Vitaminas em excesso são prejudiciais, assim, as quantidades máximas das vitaminas são 100 de A, 90 de B, 130 de C e 120 de D.

A dieta poderá incluir leite, arroz, feijão e carne, que contém os seguintes miligramas de vitaminas em cada uma de suas unidades de medida:

Vitaminas	Leite (I)	Arroz (kg)	Feijão (kg)	Carne (kg)
Α	10	5	9	10
В	8	7	6	6
С	15	3	4	7
D	20	2	3	9
Custo unitário	1,85	2,00	3,40	12,00

Deseja-se saber o consumo diário de cada alimento de tal maneira que a dieta seja satisfeita com o menor custo possível.

Ex 5. Análise de atividades – Planejamento da produção

Uma empresa que monta PCs deve entregar para o próximo trimestre exatamente 7.000 unidades. O computador é montado a partir de teclado, monitor e gabinete. Devido às suas limitações, a empresa subcontrata parte do serviço. Os custos de produção própria e aquisição externa são:

Itens	Custo próprio	Custo externo
Teclado	6	9
Monitor	100	150
Gabinete	180	300

Os componentes produzidos passam por quatro seções. O consumo de tempo por unidades obedece à tabela, sendo que cada seção dispõe de 1.000 horas/mês.

Itens	Inspeção	Montagem	Ajuste	Cont. qualidade
Teclado	0,15	0,12		0,01
Monitor	0,10	0,20	0,25	0,02
Gabinete	0,20	0,40	0,50	0,05

Posteriormente, os itens são montados para formar o PC. Formular um modelo de PL para um plano de produção e aquisição externa trimestral com custo mínimo.

Ex 6. Análise de atividades – Planejamento da produção

Uma fábrica de panelas tem 5 produtos (p1,..., p5) que podem ser obtidos por 2 processos de produção, o normal (N) e o acelerado (A). Dependendo do processo em que o produto for produzido, será consumido um certo número de horas de trabalho dentro de cada processo, segundo a tabela.

Panelas	p1	p2	р3	p4	р5
Processo N	12	16	nc	17	8
Processo A	10	13	5	nc	nc
Lucro (\$/unidade) 57 55 63 50 60					
nc = não se aplica este processo para o respectivo tipo de panela					

Após passar pelo processo de produção, cada produto tem uma montagem final que requer 2 horas de mão-de-obra por unidade. A fábrica tem 3 máquinas para o processo normal e 2 para o processo acelerado. As máquinas trabalham em 2 turnos de 8 horas, 6 dias por semana e uma equipe de 7 pessoas trabalham em um turno de 8 horas, 6 dias por semana na montagem dos produtos. Faça um modelo de PL para determinar o esquema de produção semanal que maximize o lucro da fábrica.

Ex 7. Planejamento da produção em várias fazendas (regiões)

É preciso programar a produção agrícola alocando as atividades de plantio em 3 fazendas (regiões). Os dados técnicas são:

Fazenda/ Regiões	Área total em alqueires	Disp. de água (m³)
Α	400	600
В	600	800
С	300	380

Produtos	Área máxima de plantio – alq	Consumo de água -m³/alq	Lucro por área - \$/alq
Trigo	600	3	400
Algodão	500	2	300
Soja	325	1,5	100

Formule o problema para a alocação das atividades nas respectivas fazendas (regiões) que maximize o lucro total. Apresentar a forma explícita do modelo.

EXERCÍCIOS PARA CASA

Resolver os problemas acima pelo pacote Gusek na forma compacta