QUIZ-2, COMPUTER VISION [2.5 marks, 30 mins]

Q1) How many pixels will lie completely inside a blob of radius 3? What must have been the σ of the LoG filter that detected this blob? [0.5 marks]

Q2) In your data, you have two channels, as shown below:

1	2	3	4
5	6	7	8
9	10	11	12
3	14	15	16

16	15	14	13
12	11	10	9
8	7	6	5
4	3	2	1

Apply SPP with spatial partitions of 1, 4 and 16 to generate a feature vector for this data. For summarizing a spatial partition, use maximum. [0.75 marks]

Q3) Using a dataset, let's say you have extracted three key patch features in your BoW model, as given below.

KP1	16	15	14	13
KP2	12	11	10	9
KP3	4	3	2	1

Your image has following patch features:

P1	16	1	14	1
P2	12	17	10	8
P3	18	0	6	5
P4	1	3	2	1
P5	13	34	23	1
P6	22	1	7	5
P7	33	12	1	1

What will be the BoW feature for such an image? Use Manhattan distance. [0.75 marks]

Q4) An eigen value and the trace of the co-variance matrix M are 2 and 6, respectively. Find the ranking scores of this potential key-point as per Harris and Shi-Thomsi. Take 'k' constant as 0.05. [0.5 marks]