제25강 Intra-AS 라우팅 프로토콜

Computer Networking: A Top Down Approach

컴퓨터 네트워크 (2019년 1학기)

박승철교수

한국기술교육대학교 컴퓨터공학부

Pre-study Test:

- 1) 인터넷에서 독립적인 라우팅 도메인의 이름은?
- 1 ISP
- 2 AS
- 3 Enterprise
- 4 Internet
- 2) 다음 중 Intra-AS 라우팅 프로토콜이 아닌 것은?
- 1 BGP
- OSPF
- 3 RIP
- 4 IGRP
- 3) 다음 중 링크 상태 라우팅 알고리즘을 적용한 프로토콜은?
- 1 BGP
- OSPF
- 3 RIP
- 4 IGRP

- 4) 다음 중 OSPF의 특징이 아닌 것은?
- ① Dijkstra 알고리즘을 적용한다.
- ② 링크의 비용을 관리자가 설정할 수 있다.
- ③ 라우터는 라우팅 테이블 정보를 브로드캐스팅한다.
- ④ 계층적인 영역(area)들로 AS가 구성될 수 있다.
- 5) 다음 중 RIP의 특징이 아닌 것은?
- ① 거리 벡터 알고리즘을 적용한다.
- ② 라우팅 테이블 정보를 이웃 라우터에게 전달한다.
- ③ 링크의 비용을 관리자가 설정할 수 있다.
- ④ 계층적인 영역(area)들로 AS가 구성될 수 없다.
- 6) 다음 중 Inter-AS 라우팅 프로토콜은 무엇인가?
- 1 BGP
- OSPF
- 3 RIP
- **4** IGRP

Making routing scalable

our routing study thus far - idealized

- all routers identical
- network "flat"
- ... not true in practice

Making routing scalable

인터넷을 하나의 라우팅 도메인으로 관리할 경우:

scale: with billions of destinations:

- can't store all destinations in routing tables!(라우팅 테이블 크기)
- routing table exchange would swamp links!(라우팅 트래픽 크기)

Making routing scalable

administrative autonomy

- internet = network of networks
- each network admin may want to control routing in its own network
- (ISP 단위 관리 또는 ISP를 다수의 관리 단위로 구분)

Internet approach to scalable routing

aggregate routers into regions known as "autonomous systems" (AS) (a.k.a. "domains")

intra-AS routing

- routing among hosts, routers in same AS ("network")
- all routers in AS must run same intra-domain protocol
- routers in different AS can run different intra-domain routing protocol
- gateway router: at "edge" of its own AS, has link(s) to router(s) in other AS'es

inter-AS routing

- routing among AS'es
- gateways perform interdomain routing (as well as intra-domain routing)

Inter-AS tasks

- suppose router in AS1 receives datagram destined outside of AS1:
 - router should forward packet to gateway router, but which one?

AS1 must:

- learn which dests are reachable through AS2, which through AS3
- propagate this reachability info to all routers in AS1

job of inter-AS routing!

Intra-AS Routing

- also known as interior gateway protocols (IGP)
- most common intra-AS routing protocols:
 - RIP: Routing Information Protocol(Distance Vector Routing Algorithm)
 - OSPF: Open Shortest Path First (IS-IS protocol essentially same as OSPF)(Link State Routing Algorithm)
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary for decades, until 2016)

Intra-AS Routing : RIP 메시지

Command	Version	Reserved		
Family of Net1		Route Tag for Net1		
IP Address of Net1				
Subnetmask for Net1				
Next Hop for Net1				
Distance to Net1				
Family of Net2		Route Tag for Net2		
IP Address of Net2				
Subnetmask for Net2				
Next Hop for Net2				
Distance to Net2				
• • •				

Intra-AS Routing: RIP 문제점

- ① 과도한 RIP 라우팅 트래픽(평균 30초마다 라우팅 정보 전달)
- ② 라우팅 테이블 갱신 시간에 따른 성능 저하
- ③ 느린 라우팅 전파 속도
- 4 차등화된 링크 비용 설정 불가

OSPF (Open Shortest Path First)

- "open": publicly available
- uses link-state algorithm
 - 1 link state packet dissemination
 - 2 topology map at each node
 - 3 route computation using Dijkstra's algorithm
- router floods OSPF link-state advertisements to all other routers in entire AS
 - carried in OSPF messages directly over IP (rather than TCP or UDP
 - link state: for each attached link
- IS-IS routing protocol: nearly identical to OSPF

(a) An Example Router Link

Link Type	Link ID	Link Data
Type 1: Point-to-Point	Neighbor Address	Interface Number/Router Address
Type 2 : Transient	Designated Router Address	Router Address(source)
Type 3 : Stub	Network Address	Networkmask
Type 4 : Virtual	Neighbor Address	Router Address(source)

OSPF "advanced" features

- 1 security: all OSPF messages authenticated (to prevent malicious intrusion) : 인증, 재현 공격방어
- 2 multiple same-cost paths allowed (only one path in RIP)
- 3 for each link, multiple cost metrics for different TOS (e.g., satellite link cost set low for best effort ToS; high for real-time ToS)
- 4 integrated uni- and multi-cast support:
 - Multicast OSPF (MOSPF) uses same topology data base as OSPF
- 5 hierarchical OSPF in large domains.

Hierarchical OSPF

Hierarchical OSPF

- two-level hierarchy: local area, backbone.
 - link-state advertisements only in area
 - each nodes has detailed area topology; only know direction (shortest path) to nets in other areas.
- area border routers: "summarize" distances to nets in own area, advertise to other Area Border routers.
- backbone routers: run OSPF routing limited to backbone.
- boundary routers: connect to other AS' es.

After-study Test:

- 1) 인터넷에서 독립적인 라우팅 도메인의 이름은?
- 1 ISP
- 2 AS
- 3 Enterprise
- 4 Internet
- 2) 다음 중 Intra-AS 라우팅 프로토콜이 아닌 것은?
- 1 BGP
- OSPF
- 3 RIP
- 4 IGRP
- 3) 다음 중 링크 상태 라우팅 알고리즘을 적용한 프로토콜은?
- 1 BGP
- OSPF
- 3 RIP
- 4 IGRP

- 4) 다음 중 OSPF의 특징이 아닌 것은?
- ① Dijkstra 알고리즘을 적용한다.
- ② 링크의 비용을 관리자가 설정할 수 있다.
- ③ 라우터는 라우팅 테이블 정보를 브로드캐스팅한다.
- ④ 계층적인 영역(area)들로 AS가 구성될 수 있다.
- 5) 다음 중 RIP의 특징이 아닌 것은?
- ① 거리 벡터 알고리즘을 적용한다.
- ② 라우팅 테이블 정보를 이웃 라우터에게 전달한다.
- ③ 링크의 비용을 관리자가 설정할 수 있다.
- ④ 계층적인 영역(area)들로 AS가 구성될 수 없다.
- 6) 다음 중 Inter-AS 라우팅 프로토콜은 무엇인가?
- 1 BGP
- OSPF
- 3 RIP
- **4** IGRP