COL334 ASSIGNMENT 1

ARPIT CHAUHAN - 2019CS10332 August 22, 2021

1. Networking Tools

A.

Local IP address on IITD Wi-Fi: 10.184.31.187
Local IP address on AIRTEL 4G: 172.20.10.6

[Yogeshs-MacBook-Air:~ pranshu\$ ipconfig getifaddr en0
10.184.31.187
[Yogeshs-MacBook-Air:~ pranshu\$ ipconfig getifaddr en0
172.20.10.6
Yogeshs-MacBook-Air:~ pranshu\$

The public IP address on IITD Wi-Fi: 103.27.8.103
The public IP address on AIRTEL 4G: 106.198.208.38

Pranshu — -bash — 80×24

[Yogeshs-MacBook-Air:~ pranshu\$ curl ifconfig.me

[103.27.8.103Yogeshs-MacBook-Air:~ pranshu\$

[Yogeshs-MacBook-Air:~ pranshu\$ curl ifconfig.me

106.198.208.38Yogeshs-MacBook-Air:~ pranshu\$

We observe that the IP address changes on changing the ISP because of a change in the network infrastructure. Here we have used 'ipconfig' which is a utility that communicates with the IPConfiguration agent to retrieve and set IP configuration parameters.

В.

- Here we consider the default DNS server and 3 open DNS servers, 1.1.1.1 (Cloudflare), 8.8.8.8 (Google Public DNS), and 9.9.9.9 (Quad9).
- Results obtained for default DNS server -

Yogeshs-MacBook-Air:~ pranshu\$ nslookup www.google.com Server: 10.10.2.2 Address: 10.10.2.2#53 Non-authoritative answer: www.google.com Address: 142.250.194.196 Yogeshs-MacBook-Air:~ pranshu\$ nslookup www.facebook.com Server: 10.10.2.2 Address: 10.10.2.2#53 Non-authoritative answer: www.facebook.com canonical name = star-mini.c10r.facebook.com. star-mini.c10r.facebook.com Name: Address: 157.240.16.35

Domain\DNS 10.10.2.		1.1.1.1	8.8.8.8	9.9.9.9
www.google.com	142.250.194.196	142.250.195.36	142.250.195.4	142.250.204.100
www.facebook.com	157.240.16.35	157.240.16.35	157.240.239.35	157.240.13.35

Results obtained for <u>www.google.com</u> on open DNS servers -

```
Yogeshs-MacBook-Air:~ pranshu$ nslookup www.google.com 1.1.1.1
Server:
               1.1.1.1
Address:
               1.1.1.1#53
Non-authoritative answer:
Name: www.google.com
Address: 142.250.195.36
Yogeshs-MacBook-Air:~ pranshu$ nslookup www.google.com 8.8.8.8
Server:
               8.8.8.8
Address:
               8.8.8.8#53
Non-authoritative answer:
Name: www.google.com
Address: 142.250.195.4
```

```
[Yogeshs-MacBook-Air:~ pranshu$ nslookup www.google.com 9.9.9.9 Server: 9.9.9.9 Address: 9.9.9.9#53

Non-authoritative answer:
Name: www.google.com
Address: 142.250.204.100
```

Results obtained for <u>www.facebook.com</u> on open DNS servers -

```
Yogeshs-MacBook-Air:~ pranshu$ nslookup www.facebook.com 1.1.1.1
Server:
               1.1.1.1
Address:
               1.1.1.1#53
Non-authoritative answer:
www.facebook.com
                      canonical name = star-mini.c10r.facebook.com.
Name: star-mini.c10r.facebook.com
Address: 157.240.16.35
Yogeshs-MacBook-Air:~ pranshu$ nslookup www.facebook.com 8.8.8.8
Server:
               8.8.8.8
Address:
               8.8.8.8#53
Non-authoritative answer:
www.facebook.com
                       canonical name = star-mini.c10r.facebook.com.
Name: star-mini.c10r.facebook.com
Address: 157.240.239.35
Yogeshs-MacBook-Air:~ pranshu$ nslookup www.facebook.com 9.9.9.9
Server: 9.9.9.9
Address:
               9.9.9.9#53
Non-authoritative answer:
                       canonical name = star-mini.c10r.facebook.com.
www.facebook.com
Name: star-mini.c10r.facebook.com
Address: 157.240.13.35
```

- Here we are using the **nslookup** command which is a program to query Internet domain name servers
- We observe that on changing the DNS server, the IP addresses of the domains change but not by much. This change is due to the fact that these domains have multiple host servers which have similar but different addresses.

```
[Yogeshs-MacBook-Air:~ pranshu$ host -t ns google.com google.com name server ns1.google.com. google.com name server ns3.google.com. google.com name server ns2.google.com. google.com name server ns4.google.com. [Yogeshs-MacBook-Air:~ pranshu$ nslookup www.google.com ns1.google.com Server: ns1.google.com Address: 216.239.32.10#53

Name: www.google.com Address: 142.250.182.164
```

 Here, a Non-authoritative label means the result of the DNS query is coming indirectly from the authoritative DNS server. If we specify the exact DNS server for the domain, we don't get the Non-authoritative label

C.

• I used the **ping [-m ttl] [-s packetsize] [-c count] host** command for 3 different hosts using IITD Wi-fi and made the following observations.

HOST	Minimum TTL to reach Destination	Maximum Packet Size(data bytes)
www.iitd.ac.in	5	35512
www.google.com	12	1472
www.facebook.com	11	1472

```
[Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 35512 -c 1 www.iitd.ac.in PING www.iitd.ac.in (103.27.9.24): 35512 data bytes 35520 bytes from 103.27.9.24: icmp_seq=0 ttl=60 time=11.142 ms

--- www.iitd.ac.in ping statistics ---

1 packets transmitted, 1 packets received, 0.0% packet loss round-trip min/avg/max/stddev = 11.142/11.142/11.142/0.000 ms
[Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 35513 -c 1 www.iitd.ac.in PING www.iitd.ac.in (103.27.9.24): 35513 data bytes

--- www.iitd.ac.in ping statistics ---

1 packets transmitted, 0 packets received, 100.0% packet loss Yogeshs-MacBook-Air:~ pranshu$
```

```
[Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 1472 -c 1 www.google.com
PING www.google.com (142.250.192.4): 1472 data bytes
76 bytes from 142.250.192.4: icmp_seq=0 ttl=117 time=30.031 ms
wrong total length 96 instead of 1500

--- www.google.com ping statistics ---
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 30.031/30.031/30.031/0.000 ms
[Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 1473 -c 1 www.google.com
PING www.google.com (142.250.192.4): 1473 data bytes

--- www.google.com ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss
Yogeshs-MacBook-Air:~ pranshu$
```

```
Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 1472 -c 1 www.facebook.com
PING star-mini.c10r.facebook.com (157.240.16.35): 1472 data bytes
1480 bytes from 157.240.16.35: icmp_seq=0 ttl=54 time=25.648 ms

--- star-mini.c10r.facebook.com ping statistics ---
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 25.648/25.648/25.648/0.000 ms
[Yogeshs-MacBook-Air:~ pranshu$ sudo ping -s 1473 -c 1 www.facebook.com
PING star-mini.c10r.facebook.com (157.240.16.35): 1473 data bytes

--- star-mini.c10r.facebook.com ping statistics ---
1 packets transmitted, 0 packets received, 100.0% packet loss
Yogeshs-MacBook-Air:~ pranshu$
```

- We observe that ping packets with a much larger packet size were successfully transmitted for <u>www.iitd.ac.in</u> than <u>www.google.com</u> and <u>www.facebook.com</u>. 8 additional bytes of ICMP header data are also sent along with the specified number of data bytes to be sent.
- Here we have used the ping utility that uses the ICMP protocol's mandatory ECHO_REQUEST datagram to elicit an ICMP ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams (``pings") have an IP and ICMP header, followed by a ``struct timeval" and then an arbitrary number of ``pad" bytes used to fill out the packet.

Traceroute to www.google.com using AIRTEL 4G connected via Hotspot to my laptop.

```
| Yogeshs-MacBook-Air:~ pranshu$ traceroute -I www.google.com | traceroute to www.google.com (142.250.182.132), 64 hops max, 72 byte packets | 172.20.10.1 (172.20.10.1) | 6.410 ms | 7.046 ms | 3.849 ms | 2 10.50.96.4 (10.50.96.4) | 51.916 ms | 25.278 ms | 47.840 ms | 3 10.50.96.202 (10.50.96.202) | 32.859 ms | 30.812 ms | 46.478 ms | 4 * * * * | 5 10.206.30.165 (10.206.30.165) | 65.667 ms | * 64.287 ms | 6 dsl-ncr-dynamic-029.24.23.125.airtelbroadband.in (125.23.24.29) | 33.288 ms | 27.572 ms | 70.316 ms | 7 72.14.217.194 (72.14.217.194) | 40.951 ms | 34.434 ms | 49.928 ms | 8 108.170.251.113 (108.170.251.113) | 57.602 ms | 44.432 ms | 38.607 ms | 9 108.170.251.114 (108.170.251.1124) | 30.196 ms | 37.938 ms | 46.312 ms | 142.250.63.116 (142.250.63.116) | 32.727 ms | 49.59.518 ms | 172.14.239.59 (72.14.239.59) | 65.117 ms | 67.514 ms | 81.057 ms | 12 74.125.242.145 (74.125.242.145) | 77.900 ms | 62.557 ms | 73.127 ms | 13 216.239.56.63 (216.239.56.63) | 69.814 ms | 80.008 ms | 61.855 ms | 14 maa05s22-in-f4.1e100.net (142.250.182.132) | 78.131 ms | 66.956 ms | 69.986 ms | Yogeshs-MacBook-Air:~ pranshu$
```

Traceroute to www.google.com using IITD Wi-Fi

```
Yogeshs-MacBook-Air:~ pranshu$ traceroute -I www.google.com
traceroute to www.google.com (142.250.77.68), 64 hops max, 72 byte packets
                              2.089 ms 3.579 ms
   10.184.0.14 (10.184.0.14)
                                                  1.722 ms
   10.255.1.34 (10.255.1.34) 1.794 ms 1.918 ms
                                                  1.797 ms
   10.119.233.65 (10.119.233.65)
                                  1.996 ms
                                            3.856 ms
                                                      1.928 ms
   10.1.207.69 (10.1.207.69) 3.520 ms
                                       3.575 ms
                                                  3.434 ms
   10.119.234.162 (10.119.234.162) 3.619 ms
                                              3.446 ms
   72.14.195.56 (72.14.195.56) 3.897 ms
                                         4.209 ms
                                                    4.402 ms
   108.170.251.108 (108.170.251.108)
                                      5.027 ms
                                                4.914 ms
                                                          4.759 ms
8
   142.250.230.114 (142.250.230.114)
                                     27.813 ms
                                                 27.485 ms
                                                            28.524 ms
   216.239.54.93 (216.239.54.93) 27.102 ms
                                             27.608 ms
                                                        27.090 ms
10
   108.170.248.193 (108.170.248.193) 26.937 ms
                                                 27.040 ms
                                                            26.916 ms
   142.250.238.197 (142.250.238.197) 29.319 ms
                                                 29.460 ms
                                                            29.088 ms
11
   bom07s27-in-f4.1e100.net (142.250.77.68)
                                             27.526 ms
                                                                   28.355 ms
                                                        27.610 ms
Yogeshs-MacBook-Air:~ pranshu$
```

- The Internet is a large and complex aggregation of network hardware, connected together by gateways. Tracking the route one's packets follow (or finding the miscreant gateway that's discarding your packets) can be difficult. **traceroute** utilizes the IP protocol `time to live' field and attempts to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to some host.
- '* * 'at any hop represents that the particular gateway either doesn't send ICMP "time exceeded" messages or sends them with a TTL too small to reach us (hop 4 in the 1st traceroute above).
- In the above two instances of traceroute, all the gateways use IPv4. In case some paths were to default to IPv6, we could use some additional flags to force traceroute to use IPv4.
- In general, traceroute uses IPv4 by default. We could use **traceroute6** to print the route IPv6 packets will take to a network node
- Traceroute by default uses UDP datagrams which are unreliable and thus some servers in the path may refuse to respond. So, we use the -I flag which forces traceroute to use ICMP ECHO instead of UDP datagrams. This change helps some of the missing routers to reply.
- Another possible attempt to make some of the missing routers to reply is by increasing the number of probes per ttl which is generally 3 by default.
- In both the traceroutes, several of the initial IP addresses such as 10.*.*.* and 172.20.10.1 are private
 i.e. they have been reserved by the Internet Assigned Numbers Authority (IANA) for private
 networks.

• traceroute6 calls to <u>www.google.com</u> using IITD Wi-Fi and AIRTEL 4G respectively.

2. Packet Analysis

A.

- As we can observe in the screenshot below, the DNS request-response takes approximately 50ms to complete.
- Here, we have used Wireshark which is a very useful tool to sniff packets on the wire.
- First, we use the sudo killall -HUP mDNSResponder; sleep 2; command to flush the local DNS cache and also clear the Safari browser cache and history. Then, we apply a DNS filter using Wireshark which grabs all packets while we visit http://apache.org from our browser.

	V 0.	Time	Source	Destination	Protocol	l Lengtt Info
		295 14.550139	10.184.31.187	1.1.1.1	DNS	70 Standard query 0x5996 HTTPS apache.org
-	•	296 14.550943	10.184.31.187	1.1.1.1	DNS	70 Standard query 0x8b17 A apache.org
4		297 14.601401	1.1.1.1	10.184.31.187	DNS	86 Standard query response 0x8b17 A apache.org A 151.101.2.132
		301 14.622234	1.1.1.1	10.184.31.187	DNS	154 Standard query response 0x5996 HTTPS apache.org SOA ns-558.awsdns-05.net

В.

- Next, we apply an HTTP filter on the packet trace and visit the same website again after flushing the local DNS cache and clearing the browser cache as well.
- Approx **32 HTTP GET requests** were generated in loading the web page as can be counted from the screenshot attached below.

			ne screensnot atta		
No.		Source	Destination		ol Length Info
	138 6.402724	10.184.31.187	151.101.2.132	HTTP	418 GET / HTTP/1.1
	189 6.414315	151.101.2.132	10.184.31.187	HTTP	105 HTTP/1.1 200 OK (text/html)
	191 6.426577	10.184.31.187	151.101.2.132	HTTP	393 GET /css/min.bootstrap.css HTTP/1.1
	192 6.428009	10.184.31.187	151.101.2.132	HTTP	386 GET /css/styles.css HTTP/1.1
	210 6.445058	10.184.31.187	151.101.2.132	HTTP	448 GET /img/support-apache.jpg HTTP/1.1
	211 6.445905	10.184.31.187	151.101.2.132	HTTP	477 GET /img/trillions-and-trillions/why-apache-thumbail.jpg HTTP/1.1
	212 6.446183	10.184.31.187	151.101.2.132	HTTP	485 GET /img/trillions-and-trillions/apache-everywhere-thumbnail.jpg HTTP/1.1
	215 6.447020	10.184.31.187	151.101.2.132	HTTP	452 GET /img/asf-estd-1999-logo.jpg HTTP/1.1
	329 6.462677	151.101.2.132	10.184.31.187	HTTP	290 HTTP/1.1 200 OK (JPEG JFIF image)
	346 6.463349	10.184.31.187	151.101.2.132	HTTP	379 GET /js/jquery-2.1.1.min.js HTTP/1.1
	524 6.480884	151.101.2.132	10.184.31.187	HTTP	385 HTTP/1.1 200 OK (JPEG JFIF image)
	528 6.480890	151.101.2.132	10.184.31.187	HTTP	249 HTTP/1.1 200 OK (application/javascript)
	533 6.481814	10.184.31.187	151.101.2.132	HTTP	372 GET /js/bootstrap.js HTTP/1.1
	534 6.482012	10.184.31.187	151.101.2.132	HTTP	372 GET /js/slideshow.js HTTP/1.1
	569 6.489572 573 6.490323	151.101.2.132 10.184.31.187	10.184.31.187	HTTP HTTP	265 HTTP/1.1 200 OK (application/javascript)
			151.101.2.132	HTTP	491 GET /img/trillions-and-trillions/trillions-and-trillions-thumbnail.jpg HTTP/1.1
	642 6.499428 644 6.499819	151.101.2.132	10.184.31.187	HTTP	415 HTTP/1.1 200 OK (JPEG JFIF image)
		10.184.31.187	151.101.2.132	HTTP	485 GET /img/trillions-and-trillions/apache-innovation-thumbnail.jpg HTTP/1.1
	697 6.511716 701 6.512261	151.101.2.132 10.184.31.187	10.184.31.187	HTTP	211 HTTP/1.1 200 OK (JPEG JFIF image) 445 GFT /img/2020-report ing HTTP/1 1
	795 6.525617	151.101.2.132	151.101.2.132 10.184.31.187	HTTP	445 GET /img/2020-report.jpg HTTP/1.1 536 HTTP/1.1 200 OK (JPEG JFIF image)
	800 6.526080	10.184.31.187	151.101.2.132	HTTP	443 GET /img/community.jpg HTTP/1.1
	877 6.608284	151.101.2.132	10.184.31.187	HTTP	443 GET / Img/community.jpg HTTP/1.1 428 HTTP/1.1 200 OK (text/css)
	885 6.608569	151.101.2.132	10.184.31.187	HTTP	395 HTTP/1.1 200 OK (text/css)
	889 6.609834	10.184.31.187	151.101.2.132	HTTP	448 GET /img/the-apache-way.jpg HTTP/1.1
	897 6.616899	10.184.31.187	151.101.2.132	HTTP	443 GET /img/ApacheCon.jpg HTTP/1.1
	1097 6.641575	151.101.2.132	10.184.31.187	HTTP	303 HTTP/1.1 200 OK (JPEG JFIF image)
	1098 6.641576	151.101.2.132	10.184.31.187	HTTP	377 HTTP/1.1 200 OK (JPEG JFIF image)
	1103 6.642191	10.184.31.187	151.101.2.132	HTTP	456 GET /logos/res/libcloud/default.png HTTP/1.1
	1104 6.642624	10.184.31.187	151.101.2.132	HTTP	456 GET /logos/res/geronimo/default.png HTTP/1.1
	1269 6.664688	151.101.2.132	10.184.31.187	HTTP	545 HTTP/1.1 200 OK (PNG)
	1275 6.665109	10.184.31.187	151.101.2.132	HTTP	452 GET /logos/res/reef/default.png HTTP/1.1
	1499 6.720881	151.101.2.132	10.184.31.187	HTTP	564 HTTP/1.1 200 OK (JPEG JFIF image)
	1501 6.721418	10.184.31.187	151.101.2.132	HTTP	453 GET /logos/res/mxnet/default.png HTTP/1.1
+	1550 6.771571	10.184.31.187	216.58.203.14	HTTP	404 GET /cse.js?cx=005703438322411770421:5mgshgrgx2u HTTP/1.1
	1714 6.920877	216.58.203.14	10.184.31.187	HTTP	286 HTTP/1.1 404 Not Found (text/html)
	1927 7.017655	151.101.2.132	10.184.31.187	HTTP	232 HTTP/1.1 200 OK (JPEG JFIF image)
	1935 7.020919	151.101.2.132	10.184.31.187	HTTP	384 HTTP/1.1 200 OK (application/javascript)
	1947 7.029377	10.184.31.187	151.101.2.132	HTTP	397 GET /fonts/glyphicons-halflings-regular.woff2 HTTP/1.1
	1953 7.033418	10.184.31.187	151.101.2.132	HTTP	456 GET /logos/res/nlpcraft/default.png HTTP/1.1
	1990 7.041640	151.101.2.132	10.184.31.187	HTTP	575 HTTP/1.1 200 OK (PNG)
	1994 7.068767	10.184.31.187	151.101.2.132	HTTP	453 GET /logos/res/toree/default.png HTTP/1.1
	2583 7.173069	151.101.2.132	10.184.31.187	HTTP	262 HTTP/1.1 200 OK (PNG)
+	2978 7.201740	151.101.2.132	10.184.31.187	HTTP	430 HTTP/1.1 200 OK (PNG)
	3423 7.224714	151.101.2.132	10.184.31.187	HTTP	331 HTTP/1.1 200 OK (JPEG JFIF image)
	3772 7.266675	151.101.2.132	10.184.31.187	HTTP	253 HTTP/1.1 200 OK (PNG)
	4247 7.291697	151.101.2.132	10.184.31.187	HTTP	145 HTTP/1.1 200 OK (PNG)
	4423 7.320577	10.184.31.187	216.58.203.14	HTTP	388 GET /adsense/search/async-ads.js HTTP/1.1
	4544 7.465459	10.184.31.187	142.250.67.174	HTTP	447 GET /generate_204 HTTP/1.1
	4614 7.492198	142.250.67.174	10.184.31.187	HTTP	149 HTTP/1.1 204 No Content
	4657 7.513977	216.58.203.14	10.184.31.187	HTTP	274 HTTP/1.1 200 OK (text/javascript)
	4716 7.553184	151.101.2.132	10.184.31.187	HTTP	235 HTTP/1.1 200 OK (font/woff2)
	5242 8.183366	10.184.31.187	151.101.2.132	HTTP	385 GET /favicons/favicon-194x194.png HTTP/1.1
	5245 8.185041	10.184.31.187	151.101.2.132	HTTP	392 GET /favicons/android-chrome-192x192.png HTTP/1.1
	5248 8.189653	10.184.31.187	151.101.2.132	HTTP	383 GET /favicons/favicon-96x96.png HTTP/1.1
	5254 8.191593	10.184.31.187	151.101.2.132	HTTP	383 GET /favicons/favicon-32x32.png HTTP/1.1
	5260 8.195836	10.184.31.187	151.101.2.132	HTTP	377 GET /favicons/favicon.ico HTTP/1.1
	5261 8.196333	10.184.31.187	151.101.2.132	HTTP	383 GET /favicons/favicon-16x16.png HTTP/1.1
	5266 8.196836	151.101.2.132	10.184.31.187	HTTP	469 HTTP/1.1 200 OK (PNG)
	5312 8.372741	151.101.2.132	10.184.31.187	HTTP	311 HTTP/1.1 200 OK (PNG)
	5317 8.379765	151.101.2.132	10.184.31.187	HTTP	464 HTTP/1.1 200 OK (PNG)
	5346 8.384369	151.101.2.132	10.184.31.187	HTTP	128 HTTP/1.1 200 OK (PNG)
	5380 8.734875	151.101.2.132	10.184.31.187	HTTP	128 HTTP/1.1 200 OK (PNG)
	5404 8.880952	151.101.2.132	10.184.31.187	HTTP	126 HTTP/1.1 200 OK (PNG)
	J-104 0:0003JZ	131.101.2.132	10.104.31.10/	HILLE	120 IIIII/111 200 UN (FNO)

- If we observe the HTTP request-responses in the above output, we can understand how web pages are structured as various components such as images, text, and styles stored separately.
- We can observe that different requests are made to the JavaScript, Image, Logos, and CSS folders for different components of the website.
- The first GET request is made to download the HTML page of the website which contains links to various objects such as the JS file, CSS file, fonts, and images required by the webpage. Subsequently, GET requests corresponding to these objects are made which are then rendered upon receiving the HTTP response.

C.

- The total time is taken to download a webpage is calculated as the time between the first DNS request and the time when the last content object was received.
- To calculate the above time, we use Wireshark to grab all the packets while visiting
 http://apache.org and then apply DNS and HTTP filters to obtain the time when the first
 DNS request was made and the time when the last content object was received, respectively.
- It took approximately 2.66 seconds to download the entire webpage.

D.

• Following is the Wireshark output after running a packet trace for http://www.cse.iitd.ac.in with an HTTP filter.

١	lo.	Time	Source	Destination	Protocol	ol Length Info
\exists	→ 323	15.127462	10.184.31.187	103.27.9.152	HTTP	426 GET / HTTP/1.1
4	_ 327	15.132002	103.27.9.152	10.184.31.187	HTTP	285 HTTP/1.1 301 Moved Permanently (text/html)
П	358	15.305477	10.184.31.187	23.55.244.169	HTTP	421 GET /MFgwVqADAgEAME8wTTBLMAkGBSsOAwIaBQAEFEjayaD7K9MtT%2FDeaNL1Z7c1%2BbPEBBQULrMX
H	362	15.388798	23.55.244.169	10.184.31.187	OCSP	431 Response

- We observe that we get an HTTP/1.1 301 Moved Permanently response which is used for permanent redirecting, meaning current links or records using the URL this response is received for should be updated.
- The 301 redirects are considered a best practice for upgrading users from HTTP to HTTPS.
- The possible reason behind this may be that http://www.cse.iitd.ac.in uses HTTPS instead of HTTP, thus we do not obtain any HTTP traffic while visiting the website.
- We were easily obtaining the HTTP traffic for http://apache.org possibly because it uses HTTP and not HTTPS.
- HTTPS is basically HTTP with encryption. The only difference between the two protocols is that HTTPS uses TLS (SSL) to encrypt normal HTTP requests and responses. As a result, HTTPS is far more secure than HTTP.

3. Implementing traceroute using ping

The task is to implement a traceroute using the ping command available in the terminal. We need to
take the domain name as input and print the IP addresses of the hops on the way to the destination IP
address and also save the RTT vs Hop plot.

Algorithm

- We know that **traceroute** utilizes the IP protocol `time to live' field and attempts to elicit an ICMP TIME_EXCEEDED response from each gateway along the path to some host. We use a similar strategy to implement traceroute using ping, hop by hop.
- We ping the domain in consideration with varying ttl values starting from ttl = 1 until we reach a point where we can successfully transmit the ping packet to the required destination.
- For all the ttl values lesser than the minimum number of hops required to reach the destination address, we obtain the following message on the terminal.

```
Yogeshs-MacBook-Air:~ pranshu$ ping -m 1 -c 1 www.google.com
PING www.google.com (142.250.196.4): 56 data bytes
36 bytes from 172.20.10.1: Time to live exceeded
Vr HL TOS Len ID Flg off TTL Pro cks Src Dst
4 5 00 5400 8322 0 0000 01 01 2d6e 172.20.10.6 142.250.196.4
```

- We observe that the displayed message contains the IP address of the router up to which the ping packet could reach. We can extract the IP address of the router from this message.
- Using the above strategy, we store the IP addresses of all the routers on the path to the destination address. Then we ping each such address to obtain the RTT(Round Trip Time) of each server on the way and plot the required graph.
- The following plot was obtained for www.google.com


```
Yogeshs-MacBook-Air:COL334 pranshū$ /usr/local/bin/python3 /Users/pranshu/Desktop/Sem-5/COL334/COL334-Computer_Networks/A1/tra
ceroute.py
www.google.com
Hop Number 1
IP: 172.20.18.1
Hop Number 2
IP: 10.50.96.4
Hop Number 3
IP: 10.50.96.202
Hop Number 4
Request Timeout
Hop Number 5
IP: 10.206.38.177
Hop Number 6
IP: 125.23.24.29
Hop Number 7
IP: 72.14.217.194
Hop Number 8
IP: 172.253.69.191
Hop Number 9
IP: 188.170.2551.106
Hop Number 10
IP: 188.170.255.37
Hop Number 11
IP: 64.233.174.2
Hop Number 12
IP: 188.170.253.97
Hop Number 13
IP: 216.239.59.231
Hop Number 13
IP: 216.239.59.231
Hop Number 14
IP: 172.217.160.132

Terminal output for www.google.com
```

Terminal output for www.google.com