FEDERATED ENSEMBLE-DIRECTED OFFLINE REINFORCEMENT LEARNING ALGORITHM (FEDORA)

SEONVIN CHO

INFORMATION AND INTELLIGENCE SYSTEMS LAB.

ELECTRONIC ENGINEERING, HANYANG UNIVERSITY

February 18, 2025

FEDERATED OFFLINE REINFORCEMENT LEARNING

Goal

- To learn the optimal policy using only offline data from the operational policies of multiple clients with different levels of expertise
- Without the clients knowing the quality of their data, or sharing it with one another or the server

Challenges

- Ensemble Heterogeneity: Learn policies of varying quality
- Pessimistic Value Computation: Q-value underestimation due to limited client datasets
- Data Heterogeneity: Varying data quality

⇒ Federated Ensemble-Directed Offline RL Algorithm(FEDORA)

RELATED WORK

Federated Learning

- To minimize $F(\theta) = \mathbb{E}_{i \sim P}[F_i(\theta)]$.
- FedAvg algorithm: $\theta^{t+1} = \sum_{i=1}^{|N|} \omega_i \theta_i^t$, where $\omega_i = \frac{|D_i|}{\sum_{j=1}^{|N|} |D_j|}$.

Reinforcement Learning

– To maximize $J(\pi) = \mathbb{E}_{\pi,P,\mu}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)].$

Offline Reinforcement Learning

- To learn π only using a static dataset by π_b without any additional interactions with the environment.
- Utilize the regularization to prevent distribution shift.

RELATED WORK

Federated Learning

– To minimize $F(\theta) = \mathbb{E}_{i \sim P}[F_i(\theta)]$.

- FedAvg algorithm: $\theta^{t+1} = \sum_{i=1}^{|N|} \omega_i \theta_i^t$, where $\omega_i = \frac{|D_i|}{\sum_{i=1}^{|N|} |D_i|}$.

Reinforcement Learning

- To maximize $J(\pi) = \mathbb{E}_{\pi,P,\mu}[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t)].$

- Offline Reinforcement Each client learns using its own dataset under specific behavior policies.

 The learned policy varies depending on the behavior policy.
 - The learned policy varies depending on the behavior policy.
 - To learn π only using a stat Simply aggregate all client models degrades performance.
 - Utilize the regularization to prevent distribution shift.
 - TD3-BC(Twin Delayed DDPG-Behavior Cloning): To prevent distribution shift.

TD3-BC

• DDPG

- Overestimate Q-values in critic.
- Update actor at every step \rightarrow instability in Q-value.
- Change target Q-values too rapidly \rightarrow unstable.

Add noise $Q_{\theta}(s,a)$ Actor With target network

TD3(Twin Delayed DDPG)

- Utilize twin Q-networks(Q_{θ_1} , Q_{θ_2}) and update minimum.
- Delay updating actor compared to critic.
- Smooth target policy with adding gaussian noise to action when computing target Q-value.

TD3-BC

• DDPG

- Overestimate Q-values in critic.
- Update actor at every step \rightarrow instability in Q-value.
- Change target Q-values too rapidly \rightarrow unstable.

TD3(Twin Delayed DDPG)

- Utilize twin Q-networks $(Q_{\theta_1},Q_{\theta_2})$ and update minimum.
- Delay updating actor compared to critic.
- Smooth target policy with adding gaussian noise to action when computing target Q-value.

DDPG

- $y \leftarrow r + \gamma Q_{\theta'}(s', \tilde{a})$
- Update \emptyset (w.r.t. actor policy π_{\emptyset}) at every t
- $\tilde{a} \leftarrow \pi_{\emptyset'}(s')$

TD3

- $y \leftarrow r + \gamma \min_{i=1,2} Q_{\theta'_i}(s', \tilde{a})$
- Update \emptyset (w.r.t. actor policy π_{\emptyset}) if $t \mod d$
- $\tilde{a} \leftarrow \pi_{\emptyset'}(s') + \epsilon \text{ where } \epsilon \sim \text{clip}(\mathcal{N}(0,\tilde{\sigma}), -c.c)$

TD3-BC

TD3 Problems

- Not suitable for offline RL. (\because requires exploration through interactions with the environment)
- The actor may select actions that deviate from the original data distribution in pursuit of optimal Q.

• <u>TD3-BC</u>

- Add BC regulation term
 - \rightarrow To favor actions contained in the dataset ${\mathcal D}$
 - To use only original data without exploration

$$\pi \leftarrow argmax_{\pi} \mathbb{E}_{s \sim \mathcal{D}} [\lambda Q(s, \pi(s)) - (\pi(s) - a)^{2}]$$

- TD3 term: $Q(s, \pi(s))$ for maximize Q-value.
- -BC term: $-(\pi(s) a)^2$ for reducing the difference between action and policy.

FEDORA

Solution

- Ensemble Heterogeneity \rightarrow Ensemble-directed learning to weigh client contribution.
 - Weights ~ entropy regularization $\omega_i = \frac{e^{\beta J_i |D_i|}}{\sum_j e^{\beta J_j |D_j|}}$ where $J_i^t = \mathbb{E}_{s \sim D_i}[Q_i^t(s, \pi_i^t(s))]$.
 - Federated policy ~ weighted combination of client policies $\pi_{fed}^{t+1} = \sum_i \omega_i \pi_i^t$.
- Pessimistic Value Computation \rightarrow Federated optimism for critic training.
 - Ensemble-directed Federation \rightarrow Optimistic target $\tilde{Q}_i^{(t,k)}(s,a) = \max(Q_i^{(t,k)}(s,a), Q_{fed}^t(s,a))$.
- Data Heterogeneity → Proximal policy update.
 - $\pi_{i}^{t,k+1} = \operatorname{argmin}_{\pi} \mathcal{L}_{actor}(\pi) \text{ where } \mathcal{L}_{actor}(\pi) = \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_{i}}[(\pi(s) \pi_{fed}^{t+1})^{2}],$
 - $\mathcal{L}_{local}(\pi) = \mathbb{E}_{(s,a)\sim D_i}[-Q_i^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^2]$

FEDORA

Solution

- Ensemble Heterogeneity → Ensemble-directed learning to weigh client contribution.
 - Weights ~ entropy regularization $\omega_i = \frac{e^{\beta J_i |D_i|}}{\sum_j e^{\beta J_j |D_j|}}$ where $J_i^t = \mathbb{E}_{s \sim D_i}[Q_i^t(s, \pi_i^t(s))].$
 - Federated policy ~ weighted combination of client policies $\pi_{fed}^{t+1} = \sum_i \omega_i \pi_i^t$.
- Pessimistic Value Computation → Federated optimism for critic training.
 - Ensemble-directed Federation \rightarrow Optimistic target $\tilde{Q}_i^{(t,k)}(s,a) = \max(Q_i^{(t,k)}(s,a), Q_{fed}^t(s,a))$.
- Data Heterogeneity → Proximal policy update.
 - $\pi_{i}^{t,k+1} = \operatorname{argmin}_{\pi} \mathcal{L}_{actor} \begin{bmatrix} \mathsf{TD3\text{-}BC}: \pi \leftarrow \operatorname{argmax}_{\pi} \mathbb{E}_{s \sim \mathcal{D}} [\lambda Q \big(s, \pi(s) \big) (\pi(s) a)^{2}] \\ \mathsf{FEDORA}: \pi \leftarrow \operatorname{argmin}_{\pi} \mathbb{E}_{(s,a) \sim \mathcal{D}} [-\lambda Q \big(s, \pi(s) \big) + (\pi(s) a)^{2}] \end{bmatrix}$
 - $\mathcal{L}_{local}(\pi) = \mathbb{E}_{(s,a)\sim D_i}[-Q_i^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^2]$

FEDORA

$$\begin{split} & \text{Eq.(8)} \ \omega_{i}^{t} = \frac{e^{\beta J_{i}^{t}}|D_{i}|}{\Sigma_{j=1}^{|N|} e^{\beta J_{j}^{t}}|D_{j}|}, \ \pi_{fed}^{t+1} = \Sigma_{i=1}^{|N|} \omega_{i}^{t} \pi_{i}^{t} \\ & \text{Eq.(9)} \ Q_{fed}^{t+1} = \sum_{i} \omega_{i}^{t} Q_{i}^{t} \\ & \text{Eq.(10)} \ Q_{i}^{(t,k+1)} = argmin_{Q} \mathbb{E}_{(\mathbf{s},\mathbf{a},r,s') \sim D_{i}} [(r + \gamma \tilde{Q}_{i}^{(t,k)}(s',a') - Q(s,a))^{2}] \\ & \text{Eq.(11)} \ \mathcal{L}_{actor}(\pi) = \mathcal{L}_{local}(\pi) + \mathbb{E}_{(\mathbf{s},\mathbf{a}) \sim D_{i}} [(\pi(\mathbf{s}) - \pi_{fed}^{t+1})^{2}], \\ & \pi_{i}^{t,k+1} = argmin_{\pi} \mathcal{L}_{actor}(\pi) \end{split}$$

Algorithm 1 Outline of Client *i*'s Algorithm

- 1: **function** train_client($\pi_{\text{fed}}^t, Q_{\text{fed}}^t$)
- 2: $\pi_i^{(t,0)} = \pi_{\text{fed}}^t$, $Q_i^{(t,0)} = Q_{\text{fed}}^t$
- 3: **for** $1 \le k < K$ **do**
- 4: Update Critic by one gradient step w.r.t. Eq. (10)
- 5: Update Actor by one gradient step w.r.t. Eq. (11)
- 6: **end for**
- 7: Decay \mathcal{L}_{local} by δ if $J_i^{fed,t} \geq J_i^t$
- 8: end function

Algorithm 2 Outline of Server Algorithm

- 1: Initialize $\pi_{\text{fed}}^1, Q_{\text{fed}}^1$
- 2: **for** $t \in 1 ...$ **do**
- 3: Send π_{fed}^t and Q_{fed}^t to $i \in \mathcal{N}$
- 4: Sample $\mathcal{N}_t \subset \mathcal{N}$
- 5: **for** $i \in \mathcal{N}_t$ **do**
- 6: *i*.train_client $(\pi_{\text{fed}}^t, Q_{\text{fed}}^t)$ (Client side)
- 7: **end for**
- 8: Compute π_{fed}^{t+1} and Q_{fed}^{t+1} for clients in \mathcal{N}_t using Eq. (8) and (9) respectively.
- 9: end for

Server

```
Initialize \ \pi_{fed}^1, Q_{fed}^1 for \ t \in 1, \cdots (\# \ of \ round) \ do Send \ \pi_{fed}^t, Q_{fed}^t \ to \ client \ i \in N \qquad \pi_{fed}^t Sample \ N_t \subset N \qquad Q_{fed}^t for \ i \in N_t \ do train'i' \ th \ client end for Compute \ \pi_{fed}^{t+1}, Q_{fed}^{t+1} \ for \ clients \ in \ N_t Ensemble \quad \pi_{fed}^{t+1} = \sum_{i=1}^{|N|} \omega_i^t \pi_i^t Federation \quad Q_{fed}^{t+1} = \sum_i \omega_i^t Q_i^t \pi_i^t end for
```

$$\begin{split} & \pi_{i}^{(t,0)} = \pi_{fed}^{t}, Q_{i}^{(t,0)} = Q_{fed}^{t} \\ & for \ 1 \leq k < K \ do \\ & \textit{Federated} \quad \tilde{Q}_{i}^{(t,k)}(s,a) = \max(Q_{i}^{(t,k)}(s,a), Q_{fed}^{t}(s,a)) \\ & \textit{Optimism} \quad Q_{i}^{(t,k+1)} = argmin_{Q} \mathbb{E}_{(s,a,r,s') \sim D_{i}} [(r + \gamma \tilde{Q}_{i}^{(t,k)}(s',a') - Q(s,a))^{2}] \\ & \textit{Proximal} \quad \mathcal{L}_{local}(\pi) = \mathbb{E}_{(s,a) \sim D_{i}} [-Q_{i}^{(t,k)}(s,\pi(s)) + (\pi(s) - a)^{2}] \\ & \textit{Policy} \quad \mathcal{L}_{actor}(\pi) = \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_{i}} [(\pi(s) - \pi_{fed}^{t+1})^{2}] \\ & \quad \pi_{i}^{t,k+1} = argmin_{\pi} \mathcal{L}_{actor}(\pi) \\ & \textit{endfor} \\ \\ & J_{i}^{fed,t} = \mathbb{E}_{s \sim D_{i}} [Q_{fed}^{t}(s,\pi_{fed}^{t})], J_{i}^{t} = \mathbb{E}_{s \sim D_{i}} [Q_{i}^{t}(s,\pi_{i}^{t}(s))] \\ & \textit{Decay } \mathcal{L}_{local} \ by \ \delta \ if \ J_{i}^{fed,t} \geq J_{i}^{t} \\ & \omega_{i}^{t} = \frac{e^{\beta J_{i}^{t}} |D_{i}|}{\Sigma_{j=1}^{|N|} e^{\beta J_{j}^{t}} |D_{j}|} \\ & \omega_{i}^{t} = \frac{e^{\beta J_{i}^{t}} |D_{i}|}{\Sigma_{j=1}^{|N|} e^{\beta J_{j}^{t}} |D_{j}|} \end{split}$$

Server

Initialize
$$\pi_{fed}^1, Q_{fed}^1$$

for $t \in 1, \cdots$ (# of round) do

$$Send \ \pi_{fed}^t, Q_{fed}^t \ to \ client \ i \in N$$

$$Sample \ N_t \subset N$$

$$for \ i \in N_t \ do$$

$$train'i' \ th \ client$$

$$end for$$

$$Compute \ \pi_{fed}^{t+1}, Q_{fed}^{t+1} \ for \ clients \ in \ N_t$$

$$\pi_{fed}^{t+1} = \sum_{i=1}^{|N|} \omega_i^t \pi_i^t$$

$$Q_{fed}^t = \sum_i \omega_i^t Q_i^t$$

$$end for$$

Pessimistic Value Computation → Federated optimism for critic training.

Optimistic target $\tilde{Q}_i^{(t,k)}(s,a) = \max(Q_i^{(t,k)}(s,a),Q_{fed}^t(s,a)).$

Server

Initialize
$$\pi_{fed}^1, Q_{fed}^1$$

 $for \ t \in 1, \cdots (\# \ of \ round) \ do$

$$Send \ \pi_{fed}^t, Q_{fed}^t \ to \ client \ i \in N$$

$$Sample \ N_t \subset N$$

$$for \ i \in N_t \ do$$

$$train'i' \ th \ client$$

$$end for$$

$$Compute \ \pi_{fed}^{t+1}, Q_{fed}^{t+1} \ for \ clients \ in \ N_t$$

$$\pi_{fed}^{t+1} = \sum_{i=1}^{|N|} \omega_i^t \pi_i^t$$

$$Q_{fed}^{t+1} = \sum_i \omega_i^t Q_i^t$$

$$end for$$

Data Heterogeneity -> Proximal policy update.

$$\pi_{\mathrm{i}}^{t,\mathrm{k+1}} = \mathrm{argmin}_{\pi} \mathcal{L}_{a\mathrm{ctor}}(\pi) \text{ where } \mathcal{L}_{a\mathrm{ctor}}(\pi) = \mathcal{L}_{\mathrm{local}}(\pi) + \mathbb{E}_{(\mathrm{s,a}) \sim D_i}[(\pi(\mathrm{s}) - \pi_{fed}^{t+1})^2],$$

$$\mathcal{L}_{local}(\pi) = \mathbb{E}_{(s,a) \sim D_i}[-Q_i^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^2]$$

$$\pi_{i}^{(t,0)} = \pi_{fed}^{t}, Q_{i}^{(t,0)} = Q_{fed}^{t}$$

$$for 1 \leq k < K \text{ do}$$

$$Q_{i}^{(t,k)}(s,a) = \max(Q_{i}^{(t,k)}(s,a), Q_{fed}^{t}(s,a))$$

$$Q_{i}^{(t,k+1)} = argmin_{Q} \mathbb{E}_{(s,a,r,s') \sim D_{i}} [(r + \gamma \tilde{Q}_{i}^{(t,k)}(s',a') - Q(s,a))^{2}]$$

$$\mathcal{L}_{local}(\pi) = \mathbb{E}_{(s,a) \sim D_{i}} [-Q_{i}^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^{2}]$$

$$\mathcal{L}_{actor}(\pi) = \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_{i}} [(\pi(s) - \pi_{fed}^{t+1})^{2}]$$

$$\pi_{i}^{t,k+1} = \operatorname{argmin}_{\pi} \mathcal{L}_{actor}(\pi)$$

$$end for$$

$$I_{i}^{fed,t} = \mathbb{E}_{s \sim D_{i}} [Q_{fed}^{t}(s,\pi_{fed}^{t})], J_{i}^{t} = \mathbb{E}_{s \sim D_{i}} [Q_{i}^{t}(s,\pi_{i}^{t}(s))]$$

$$\operatorname{Update Actor}_{e_{i}t}$$

$$\operatorname{Decay} \mathcal{L}_{local} \text{ by } \delta \text{ if } J_{i}^{fed,t} \geq J_{i}^{t}$$

$$\operatorname{Proximal Policy Update}_{e_{i}t}$$

Server

Initialize π_{fed}^1 , Q_{fed}^1 $for \ t \in 1, \cdots (\# \ of \ round) \ do$ $Send \ \pi_{fed}^t, Q_{fed}^t \ to \ client \ i \in N$ $Sample \ N_t \subset N$ $for \ i \in N_t \ do$ $train'i' \ th \ client$ end for $Compute \ \pi_{fed}^{t+1}, Q_{fed}^{t+1} \ for \ clients \ in \ N_t$ $\pi_{fed}^{t+1} = \sum_{i=1}^{|N|} \omega_i^t \pi_i^t$ $Q_{fed}^t = \sum_i \omega_i^t Q_i^t$ end for

$$\begin{split} \pi_i^{(t,0)} &= \pi_{fed}^t, Q_i^{(t,0)} = Q_{fed}^t \\ for \ 1 \leq k < K \ do \\ \tilde{Q}_i^{(t,k)}(s,a) &= \max(Q_i^{(t,k)}(s,a), Q_{fed}^t(s,a)) \\ Q_i^{(t,k+1)} &= argmin_Q \mathbb{E}_{(s,a,r,s') \sim D_i}[(r + \gamma \tilde{Q}_i^{(t,k)}(s',a') - Q(s,a))^2] \\ \mathcal{L}_{local}(\pi) &= \mathbb{E}_{(s,a) \sim D_i}[-Q_i^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^2] \\ \mathcal{L}_{actor}(\pi) &= \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_i}[(\pi(s) - \pi_{fed}^{t+1})^2] \\ \pi_i^{t,k+1} &= argmin_\pi \mathcal{L}_{actor}(\pi) \\ endfor \\ IJ_i^{fed,t} &= \mathbb{E}_{s \sim D_i}[Q_{fed}^t(s,\pi_{fed}^t)], J_i^t &= \mathbb{E}_{s \sim D_i}[Q_i^t(s,\pi_i^t(s))]_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} \geq J_i^t \\ |Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J_i^{fed,t} = \mathcal{L}_{local} \ by \ \delta \ if \ J$$

Ensemble-Directed Federated Learning

Ensemble Heterogeneity → Ensemble-directed learning to weigh client contribution.

- Weights ~ entropy regularization $\omega_i = \frac{e^{\beta J_i |D_i|}}{\sum_j e^{\beta J_j |D_j|}}$ where $J_i^t = \mathbb{E}_{s \sim D_i}[Q_i^t(s, \pi_i^t(s))]$.
- Federated policy ~ weighted combination of client policies $\pi_{fed}^{t+1} = \sum_i \omega_i \pi_i^t$.

Pessimistic Value Computation -> Federated optimism for critic training.

Optimistic target $\tilde{Q}_i^{(t,k)}(s,a) = \max(Q_i^{(t,k)}(s,a), Q_{fed}^t(s,a)).$

Client

$$\begin{split} \pi_{i}^{(t,0)} &= \pi_{fed}^{t}, Q_{i}^{(t,0)} = Q_{fed}^{t} \\ for \ 1 \leq k < K \ do \\ \tilde{Q}_{i}^{(t,k)}(s,a) &= \max(Q_{i}^{(t,k)}(s,a), Q_{fed}^{t}(s,a)) \\ Q_{i}^{(t,k+1)} &= argmin_{Q} \mathbb{E}_{(s,a,r,s') \sim D_{i}} [(r + \gamma \tilde{Q}_{i}^{(t,k)}(s',a') - Q(s,a))^{2}] \\ \mathcal{L}_{local}(\pi) &= \mathbb{E}_{(s,a) \sim D_{i}} [-Q_{i}^{(t,k)}(s,\pi(s)) + (\pi(s)-a)^{2}] \\ \mathcal{L}_{actor}(\pi) &= \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_{i}} [(\pi(s) - \pi_{fed}^{t+1})^{2}] \\ \pi_{i}^{t,k+1} &= argmin_{\pi} \mathcal{L}_{actor}(\pi) \end{split}$$
 end for

l and action

$$\begin{split} J_i^{fed,t} &= \mathbb{E}_{\mathbf{S} \sim D_i}[Q_{fed}^t(s, \pi_{fed}^t)], J_i^t = \mathbb{E}_{\mathbf{S} \sim D_i}[Q_i^t(s, \pi_i^t(\mathbf{S}))] \\ Decay \, \mathcal{L}_{\text{local}} \, by \, \delta \, if \, J_i^{fed,t} &\geq J_i^t \\ \omega_i^t &= \frac{e^{\beta J_i^t}|D_i|}{\sum_{j=1}^{|N|} e^{\beta J_j^t}|D_j|} \end{split}$$

Server

$$\begin{split} \textit{Initialize} \, \pi_{fed}^1, Q_{fed}^1 \\ \textit{for} \, t \in 1, \cdots (\# \, of \, round) \, do \\ & \textit{Send} \, \pi_{fed}^t, Q_{fed}^t \, to \, client \, i \in N \\ & \textit{Sample} \, N_t \subset N \\ & \textit{for} \, i \in N_t \, do \\ & \textit{train'i'} \, th \, client \\ & \textit{endfor} \\ & \textit{Compute} \, \pi_{fed}^{t+1}, Q_{fed}^{t+1} \, for \, clients \, in \, N_t \\ & \pi_{fed}^{t+1} = \sum_{i=1}^{|N|} \omega_i^t \pi_i^t \\ & Q_{fed}^t = \sum_i \omega_i^t Q_i^t \\ & \textit{endfor} \end{split}$$

$$\begin{split} \pi_{i}^{(t,0)} &= \pi_{fed}^{t}, Q_{i}^{(t,0)} = Q_{fed}^{t} \\ for \ 1 \leq k < K \ do \\ \tilde{Q}_{i}^{(t,k)}(s,a) &= \max(Q_{i}^{(t,k)}(s,a), Q_{fed}^{t}(s,a)) \\ Q_{i}^{(t,k+1)} &= argmin_{Q} \mathbb{E}_{(s,a,r,s') \sim D_{i}}[(r + \gamma \tilde{Q}_{i}^{(t,k)}(s',a') - Q(s,a))^{2}] \\ \mathcal{L}_{local}(\pi) &= \mathbb{E}_{(s,a) \sim D_{i}}[-Q_{i}^{(t,k)}(s,\pi(s)) + (\pi(s) - a)^{2}] \\ \mathcal{L}_{actor}(\pi) &= \mathcal{L}_{local}(\pi) + \mathbb{E}_{(s,a) \sim D_{i}}[(\pi(s) - \pi_{fed}^{t+1})^{2}] \\ \pi_{i}^{t,k+1} &= \operatorname{argmin}_{\pi} \mathcal{L}_{actor}(\pi) \\ end for \\ J_{i}^{fed,t} &= \mathbb{E}_{s \sim D_{i}}[Q_{fed}^{t}(s,\pi_{fed}^{t})], J_{i}^{t} &= \mathbb{E}_{s \sim D_{i}}[Q_{i}^{t}(s,\pi_{i}^{t}(s))] \\ Decay \ \mathcal{L}_{local} \ by \ \delta \ if \ J_{i}^{fed,t} &\geq J_{i}^{t} \\ \omega_{i}^{t} &= \frac{e^{\beta J_{i}^{t}|D_{i}|}}{\sum_{j=1}^{|N|} e^{\beta J_{j}^{t}|D_{j}|}} \end{split}$$