

Max-Margin Learning with A Random Sample of Spanning Trees

Hongyu Su

Helsinki Institute for Information Technology HIIT Department of Computer Science Aalto University

February 12, 2015

Multilabel classification

- Multilabel classification is an important research field in machine learning.
 - ► For example, a document can be classified as "science", "genomics", and "drug discovery".
 - ▶ Each input variable $\mathbf{x} \in \mathcal{X}$ is associated with multiple output variables $\mathbf{y} \in \mathcal{Y}, \mathcal{Y} = \mathcal{Y}_1 \times \cdots \times \mathcal{Y}_l, \mathcal{Y}_i = \{+1, -1\}.$
 - ▶ The goal is to find a mapping function that predicts the best values of an output given an input $f \in \mathcal{H} : \mathcal{X} \to \mathcal{Y}$.
- The central problems of multilabel classification:
 - ▶ The size of the output space y is exponential in the number of microlabels.
 - The dependency of microlabels needs to be exploited to improve the prediction performance.

Structured output learning

- ▶ There is an *output graph* connecting multiple labels.
 - A set of nodes represents multiple labels.
 - A set of edges represents the correlation between labels.
- Hierarchical classification:
 - ► The output graph is a rooted tree or a directed graph defining different levels of granularities.
 - ► For example, SSVM, ...
- Graph labeling:
 - The output graph often takes a general form (e.g., a tree, a chain).
 - ► For example, M³N, CRF, MMCRF, ...
- ▶ The output graph is assumed to be known *apriori*.

Research question

- The output graph is hidden in many applications.
 - ► For example, a surveillance photo can be tagged with "building", "road", "pedestrian", and "vehicle".
- We study the problem in structured output learning when the output graph is not observed.
- In particular:
 - Assume the dependency can be expressed by a complete set of pairwise correlations.
 - Build a structured output learning model with a complete graph as the output graph.
 - ▶ Solve the optimization problem and the inference problem $(\mathcal{NP}\text{-hard}).$

In this presentation

- A structured prediction model which performs max-margin learning on a random sample of spanning tree.
- Two ways to combine the set of random spanning trees.
 - conical combination
 - convex combination
- The corresponding optimization problem.

Model

- ▶ Training examples comes in pair $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m \in \mathcal{X} \times \mathcal{Y}$.
- ▶ A complete graph G = (E, V) is used as the output graph.
- $ightharpoonup \Gamma_G(\mathbf{y}_i)$ is the output feature map of \mathbf{y}_i on G

$$\begin{split} & \Gamma_G(\mathbf{y}_i) = \{\Gamma_e(\mathbf{y}_{i,e})\}_{e \in G}, \\ & \Gamma_e(\mathbf{y}_{i,e}) = [\mathbf{1}_{\mathbf{y}_{i,e} = = 00}, \mathbf{1}_{\mathbf{y}_{i,e} = = 01}, \mathbf{1}_{\mathbf{y}_{i,e} = = 10}, \mathbf{1}_{\mathbf{y}_{i,e} = = 11}] \end{split}$$

ightharpoonup A joint feature map of $(\mathbf{x}_i, \mathbf{y}_i)$

$$\phi_G(\mathbf{x}_i,\mathbf{y}_i) = \varphi(\mathbf{x}_i) \otimes \Gamma_G(\mathbf{y}_i) = \{\phi_e(x_i,\mathbf{y}_{i,e})\}_{e \in G}.$$

A compatibility score is defined as

$$F(\mathbf{x}, \mathbf{y}; \mathbf{w}_G) = \langle \mathbf{w}_G, \phi_G(\mathbf{x}, \mathbf{y}) \rangle = \sum_{e \in G} \langle \mathbf{w}_{G,e}, \phi_e(\mathbf{x}, \mathbf{y}_e) \rangle$$

• w ensures an input \mathbf{x}_i with a correct multilabel \mathbf{y}_i achieves a higher score than with any incorrect multilabel $\mathbf{y} \in \mathcal{Y}$.

Model (cont.)

ightharpoonup The predicted output y(x) for a given input x is computed by

$$\mathbf{y}(\mathbf{x}) = \mathop{\mathrm{argmax}}_{\mathbf{y} \in \mathcal{Y}} F(\mathbf{x}, \mathbf{y}; \mathbf{w}_G) = \mathop{\mathrm{argmax}}_{\mathbf{y} \in \mathcal{Y}} \langle \mathbf{w}_G, \phi_G(\mathbf{x}, \mathbf{y}) \rangle,$$

which is called inference problem.

▶ The inference problem is \mathcal{NP} -hard for most joint feature maps on the complete graph.

How to learn w on a complete graph?

▶ The *margin* of an example \mathbf{x}_i is

$$\gamma_{G}(\mathbf{x}_{i};\mathbf{w}_{G}) = F(\mathbf{x}_{i},\mathbf{y}_{i};\mathbf{w}_{G}) - \max_{\mathbf{y} \in \mathcal{Y}/\mathbf{y}_{i}} F(\mathbf{x}_{i},\mathbf{y};\mathbf{w}_{G}).$$

- w is solved by maximum-margin principle which aims to maximize $\gamma(\mathbf{x}_i; \mathbf{w}_G)$ over all training example.
- ► The problems are:
 - ▶ The \mathcal{NP} -hardness of the inference problem on a complete graph.
 - ▶ A large parameter space: $\Theta(k^2)$
- We aim to use a joint feature map that allows the inference problem be solved in polynomial time.

Superposition of random trees

- \triangleright S(G) is a complete set of spanning tree generate from G.
- $\mathbf{w}_T = {\{\mathbf{w}_{G,e}\}_{e \in T}}$ is the projection of \mathbf{w}_G on T.
- $\phi_T(\mathbf{x}, \mathbf{y}) = \{\phi_e(\mathbf{x}, \mathbf{y})\}_{e \in T}$ is the projection of $\phi_G(\mathbf{x}, \mathbf{y})$ on T.
- Rewrite

$$\begin{split} F(\mathbf{x}, \mathbf{y}, \mathbf{w}_G) &= \sum_{e \in G} \langle \mathbf{w}_{G,e}, \phi_{G,e}(\mathbf{x}, \mathbf{y}_e) \rangle \\ &= \frac{1}{\ell^{\ell-2}} \sum_{T \in S(G)} \sqrt{\frac{\ell}{2}} \langle \mathbf{w}_T, \phi_T(\mathbf{x}, \mathbf{y}_e) \rangle \\ &= \frac{1}{n} \sum_{i=1}^n a_{T_i} \langle \hat{\mathbf{w}}_{T_i}, \hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}_e) \rangle, \\ &\frac{1}{n} \sum_{i=1}^n a_{T_i}^2 = 1, \ \frac{1}{n} \sum_{i=1}^n a_{T_i} \leq 1, \ a_{T_i} \geq 0, \ n = \ell^{\ell-2}. \end{split}$$

How many trees?

- ▶ If there is a predictor \mathbf{w}_G on complete graph achieves a margin on some training data, with high probability we need n spanning tree predictors $\{\mathbf{w}_{T_i}\}_{i=1}^n$ to achieve a close margin. n is quadratic in terms of ℓ .
- Recall

$$F(\mathbf{x}, \mathbf{y}, \mathbf{w}_{T}) = \frac{1}{n} \sum_{i=1}^{n} a_{T_{i}} \langle \hat{\mathbf{w}}_{T_{i}}, \hat{\phi}_{T_{i}}(\mathbf{x}, \mathbf{y}_{e}) \rangle,$$

$$\frac{1}{n} \sum_{i=1}^{n} a_{T_{i}}^{2} = 1, \frac{1}{n} \sum_{i=1}^{n} a_{T_{i}} \leq 1, a_{T_{i}} \geq 0, \quad \text{and} \quad$$

Conical combination

- ▶ A sample \mathcal{T} of n spanning trees drawn from G.
- Normalized feature weights $\hat{\mathbf{w}}_{T_i} = \frac{\mathbf{w}_{T_i}}{||\mathbf{w}_{T_i}||}, T_i \in \mathcal{T}.$
- Normalized feature vectors $\hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}) = \frac{\phi_{T_i}(\mathbf{x}, \mathbf{y})}{||\phi_{T_i}(\mathbf{x}, \mathbf{y})||}, T_i \in \mathcal{T}.$
- Conical combination of spanning trees

$$F(\mathbf{x}, \mathbf{y}, \mathbf{w}_{\mathcal{T}}) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} q_{i} \langle \hat{\mathbf{w}}_{T_{i}}, \hat{\phi}_{T_{i}}(\mathbf{x}, \mathbf{y}) \rangle$$

$$\sum_{i=1}^{n} q_i^2 = 1, \ q_i \ge 0, \ \forall i \in \{1, \cdots, n\}.$$

Conical combination (cont.)

▶ To solve $\{\mathbf{w}_{T_i}\}_{T_i \in \mathcal{T}}$, we need to work on the optimization problem

$$\begin{split} \min_{\boldsymbol{\xi}, \gamma, \mathbf{q}, \mathcal{W}} \quad & \frac{1}{2\gamma^2} + \frac{C}{\gamma} \sum_{k=1}^m \xi_k \\ \text{s.t.} \quad & \frac{1}{\sqrt{n}} \sum_{i=1}^n q_i \langle \hat{\mathbf{w}}_{\mathcal{T}_i}, \hat{\phi}_{\mathcal{T}_i}(\mathbf{x}_k, \mathbf{y}_k) \rangle - \max_{\mathbf{y} \in \mathcal{Y}} \frac{1}{\sqrt{n}} \sum_{i=1}^n q_i \langle \hat{\mathbf{w}}_{\mathcal{T}_i}, \hat{\phi}_{\mathcal{T}_i}(\mathbf{x}_k, \mathbf{y}) \rangle \\ & \geq \gamma - \xi_k, \xi_k \geq 0, \forall k \in \{1, \cdots, m\}, \sum_{i=1}^n q_i^2 = 1, q_i \geq 0, \forall i \in \{1, \cdots, n\}. \end{split}$$

This is equivalent to

$$\begin{aligned} & \min_{\mathbf{w}_{T_i}, \xi_i} & \frac{1}{2} \sum_{i=1}^n ||\mathbf{w}_{T_i}||^2 + C \sum_{k=1}^m \xi_k \\ & \text{s.t.} & \frac{1}{\sqrt{n}} \sum_{i=1}^n \left\langle \mathbf{w}_{T_i}, \boldsymbol{\phi}_{T_t}(\mathbf{x}_k, \mathbf{y}_k) \right\rangle - \max_{\mathbf{y} \neq \mathbf{y}_k} \frac{1}{\sqrt{n}} \sum_{i=1}^n \left\langle \mathbf{w}_{T_t}, \boldsymbol{\phi}_{T_i}(\mathbf{x}_k, \mathbf{y}) \right\rangle \geq 1 - \xi_k, \\ & \xi_k > 0 , \forall \ k \in \{1, \dots, m\}. \end{aligned}$$

Convex combination

- ▶ A sample \mathcal{T} of n spanning trees drawn from G.
- Normalized feature weights $\hat{\mathbf{w}}_{T_i} = \frac{\mathbf{w}_{T_i}}{||\mathbf{w}_{T_i}||}, T_i \in \mathcal{T}.$
- Normalized feature vectors $\hat{\phi}_{T_i}(\mathbf{x}, \mathbf{y}) = \frac{\phi_{T_i}(\mathbf{x}, \mathbf{y})}{||\phi_{T_i}(\mathbf{x}, \mathbf{y})||}, T_i \in \mathcal{T}.$
- Conical combination of spanning trees

$$F(\mathbf{x}, \mathbf{y}, \mathbf{w}_{T}) = \frac{1}{n} \sum_{i=1}^{n} q_{i} \langle \hat{\mathbf{w}}_{T_{i}}, \hat{\phi}_{T_{i}}(\mathbf{x}, \mathbf{y}) \rangle$$
$$\sum_{i=1}^{n} q_{i} = 1, \ q_{i} \geq 0, \ \forall i \in \{1, \dots, n\}.$$

Convex combination (cont.)

▶ To solve $\{\mathbf{w}_{T_i}\}_{T_i \in \mathcal{T}}$, we need to work on the optimization problem

$$\begin{split} \min_{\xi,\gamma,\mathbf{q},\mathcal{W}} \quad & \frac{1}{2\gamma^2} + \frac{C}{\gamma} \sum_{k=1}^m \xi_k \\ \text{s.t.} \quad & \frac{1}{n} \sum_{i=1}^n q_i \langle \hat{\mathbf{w}}_{\mathcal{T}_i}, \hat{\phi}_{\mathcal{T}_i}(\mathbf{x}_k, \mathbf{y}_k) \rangle - \max_{\mathbf{y} \in \mathcal{Y}} \frac{1}{n} \sum_{i=1}^n q_i \langle \hat{\mathbf{w}}_{\mathcal{T}_i}, \hat{\phi}_{\mathcal{T}_i}(\mathbf{x}_k, \mathbf{y}) \rangle \\ & \geq \gamma - \xi_k, \xi_k \geq 0, \forall k \in \{1, \cdots, m\}, \sum_{i=1}^n q_i = 1, q_i \geq 0, \forall i \in \{1, \cdots, n\}. \end{split}$$

This is equivalent to

$$\begin{aligned} & \min_{\mathbf{w}_{T_i}, \xi_i} & \frac{1}{2} \left(\sum_{i=1}^n ||\mathbf{w}_{T_i}|| \right)^2 + C \sum_{k=1}^m \xi_k \\ & \text{s.t.} & \frac{1}{n} \sum_{i=1}^n \left\langle \mathbf{w}_{T_i}, \boldsymbol{\phi}_{T_t}(\mathbf{x}_k, \mathbf{y}_k) \right\rangle - \max_{\mathbf{y} \neq \mathbf{y}_k} \frac{1}{n} \sum_{i=1}^n \left\langle \mathbf{w}_{T_t}, \boldsymbol{\phi}_{T_i}(\mathbf{x}_k, \mathbf{y}) \right\rangle \geq 1 - \xi_k, \\ & \xi_k \geq 0, \ \forall k \in \{1, \dots, m\}. \end{aligned}$$

Convex combination (cont.)

This can be expressed equivalently as

$$\begin{aligned} & \min_{\mathbf{w}_{T_i}, \xi_i, \lambda_i} & \frac{1}{2} \sum_{i=1}^n \frac{1}{\lambda_i} ||\mathbf{w}_{T_i}||^2 + C \sum_{k=1}^m \xi_k \\ & \text{s.t.} & \frac{1}{n} \sum_{i=1}^n \left\langle \mathbf{w}_{T_i}, \boldsymbol{\phi}_{T_t}(\mathbf{x}_k, \mathbf{y}_k) \right\rangle - \max_{\mathbf{y} \neq \mathbf{y}_k} \frac{1}{n} \sum_{i=1}^n \left\langle \mathbf{w}_{T_t}, \boldsymbol{\phi}_{T_i}(\mathbf{x}_k, \mathbf{y}) \right\rangle \geq 1 - \xi_k, \\ & \xi_k \geq 0, \, \forall k \in \{1, \dots, m\}, \, \sum_{i=1}^n \lambda_i = 1, \, \lambda_i \geq 0, \, \forall i \in \{1, \dots, n\}. \end{aligned}$$

Conclusions

- Theoretical study shows if a large margin structured output learner exists, then the combination of a random sample of spanning trees will achieve a similar margin with a high probability.
- ► The K-best inference algorithm is tractable which is proved theoretically and empirically.
- ▶ RTA is not constrained by the availability of the output graph, it can therefore be applied to a wider range of multilabel classification problem where the output graph is believed to play an important role during learning.