Exam 2 information

The exam will be in class, Friday, March 29.

The exam 2 covers chapters 4 - 5.2.

- Numerical Differentiation
- Elements of Numerical Integration (Non-composite numerical integration)
- Composite Numerical Integration
- Elementary theory of Initial-Value Problems
- Euler's method

This list of problems is not guaranteed to be a complete review. For a complete review make sure that you know how to do the problems discussed in the class and the problems in Homework sets 5, 6, and quiz 4.

- 1. Use non-composite trapezoid and Simpson rules to approximate $\int_0^1 x^2 dx$ and find an upper bound for the error in the your approximation.
 - 2. State Euler's method for computing an approximate solution to the IVP:

$$\frac{dy}{dt} = f(t, y)$$
 for $a \le t \le b$ with $y(a) = \alpha$

and show that it can be derived from a truncated Taylor series expansion.

- 3. Prove that the two-point forward difference formula is an order 1 approximation $(\mathcal{O}(h))$.
- 4. State the existence and uniqueness theorem for IVPs.
- 5. Use Euler's method to approximate the solution for the initial value problem:

$$\frac{dy}{dt} = 1 + (t - y)^2, \ y(2) = 1$$

for $2 \le t \le 3.5$ and h = 0.5. Show your work. Be sure to label your approximations for y(2.5), y(3), and y(3.5).

6. Determine the step size h required in order for the Composite Simpson's Rule to approximate the integral

$$\int_0^8 x \, \ln(x) \, dx$$

with an error of at most 10^{-4} .

- 7. (a) Show that the function $f(t,y) = \cos(t^2y)$ satisfies a Lipschitz condition on the domain $D = \{(t,y) \text{ such that } 0 \le t \le 2, -\infty < y < \infty\}$ and find the Lipschitz constant L.
 - (b) Prove that the initial value problem:

$$\frac{dy}{dt} = \cos(t^2y), \ y(0) = 1$$

has a unique solution for t in [0, 2].

8. Consider the data in the following table.

\overline{x}	1.0	1.1	1.2	1.3	1.4
f(x)	6	10	12	9	4

- (a) Use the Two-point FDF, BDF, and CDF formulas to approximate f'(1.2).
- (b) Use the Three-point backward-difference formula to approximate f'(1.3).

I am going to provide the following formula sheet during the 2nd exam. I hope this will help you to **reduce** the number of formulas that you need to memorize for the exam.

Error bounds for two-point FDF and CDF

$$E_{\text{FDF}} \le \frac{h}{2} \max_{x \in (x_0, x_0 + h)} |f''(x)| \qquad E_{\text{CDF}} \le \frac{h^2}{6} \max_{x \in (x_0 - h, x_0 + h)} |f''(x)|$$

Three-point FDF:

$$f'(x_0) = \frac{-3f(x_0) + 4f(x_0 + h) - f(x_0 + 2h)}{2h}$$

Error formulas for Non-Composite Numerical Integration

$$E_{\rm T} = \frac{-(b-a)^3}{12} f''(c)$$
 $E_{\rm S} = \frac{-(b-a)^5}{90 \cdot 2^5} f^{(4)}(c)$

Composite Simpson's Rule

$$\frac{h}{3} \left[f(x_0) + f(x_n) + 4 \sum_{i=1}^{n/2} f(x_{2i-1}) + 2 \sum_{i=1}^{(n/2)-1} f(x_{2i}) \right]$$

Error formulas for Composite Numerical Integration

$$E_{\text{CMR}} = \frac{(b-a) h^2}{24} f''(c)$$
 $E_{\text{CTR}} = \frac{-(b-a) h^2}{12} f''(c)$ $E_{\text{CSR}} = \frac{-(b-a) h^4}{180} f^{(4)}(c)$

Error bound for Euler's method (only for Sec: 001)

$$|y(t_i) - y_i| \le \frac{h M}{2 L} \left(e^{L(t_i - a)} - 1 \right)$$