特許協力条約に基づいて公開された国際出願

(51) 国際特許分類6 C07C 233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D 493/08, 495/08, A61K 31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38

(11) 国際公開番号

WO97/00853

(43) 国際公開日

1997年1月9日(09.01.97)

(21) 国際出願番号

PCT/JP96/01685

A1

(22) 国際出願日

1996年6月19日(19.06.96)

(30)優先権データ

特願平7/154575

1995年6月21日(21.06.95)

(71) 出願人(米国を除くすべての指定国について) 塩野義製薬株式会社(SHIONOGI & CO., LTD.)[JP/JP] 〒541 大阪府大阪市中央区道修町三丁目1番8号 Osaka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

大谷光昭(OHTANI, Mitsuaki)[JP/JP]

〒630 奈良県奈良市高畑町1342 Nara, (JP)

有村昭典(ARIMURA, Akinori)[JP/JP]

〒558 大阪府大阪市住吉区南住吉1丁目7-32-304 Osaka, (JP)

め 達男(TSURI, Tatsuo)[JP/JP]

〒651-11 兵庫県神戸市北区鈴蘭台北町9丁目20番6号 Hyogo, (JP)

岸野淳二(KISHINO, Junji)[JP/JP]

〒654-01 兵庫県神戸市須磨区神の谷3丁目3番17号 Hyogo, (JP)

本摩恒利(HONMA, Tsunetoshi)[JP/JP]

〒630-02 奈良県生駒市青山台117-42 Nara, (JP)

(74) 代理人

弁理士 青山 葆, 外(AOYAMA, Tamotsu et al.) 〒540 大阪府大阪市中央区城見1丁目3番7号

IMPビル 青山特許事務所 Osaka, (JP)

(81) 指定国 AL, AU, BB, BG, BR, CA, CN, CZ, EE, GE, HU. IL, IS, JP, KR, LK, LR, LT, LV, MG, MK, MN, MX, NO, NZ, PL, RO, SG, SI, SK, TR, TT, UA, US, UZ, VN, ARIPO特許 (KE, LS, MW, SD, SZ, UG), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類

国際調査報告書

BICYCLIC AMINO DERIVATIVES AND PGD2 ANTAGONIST CONTAINING THE SAME (54) Title:

ビシクロ環系アミノ誘導体およびそれを含有するPGD2拮抗剤 (54)発明の名称

(57) Abstract

Compounds of general formula (I), salts thereof or hydrates thereof wherein (a) represents (b) or (c), for example, the compounds (d) and (e), which are useful as a PGD₂ antagonist and thus usable in, f r example, a remedy for systemic mastocytosis or systemic mast cell

(57) 要約

(式中、

は、

を表し、一例として、

である化合物またはその塩もしくは水和物は、PGD2拮抗剤として有用であり、例えば全身性肥満細胞症や全身性肥満細胞活性化障害の治療剤、抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として用いることができる。特に鼻閉症の治療に有用である。

情報としての用途のみ

PCTに基づいて公開される国際出版をパンフレット第一頁にPCT加盟国を同定するために使用されるコード

ピシクロ環系アミノ誘導体およびそれを含有するPGD2拮抗剤

技術分野

本発明は、ビシクロ環系アミノ誘導体およびそれらを含有するプロスタグランジンD₂(以下、PGD₂という)拮抗剤に関する。

背景技術

本発明に関わるビシクロ環系アミノ誘導体の一部のものはトロンボキサン A_2 (TXA_2)拮抗剤として有用であることが知られている(特公平5-79060号明細書)。しかしながら、特公平5-79060号に記載された化合物については、いずれも TXA_2 拮抗剤としての有用性が開示されているにすぎず、本発明で明らかにされた PGD_2 拮抗剤としての用途については、何ら示唆されていない。

即ち、 TXA_2 は、その作用として血小板凝集作用、血栓形成作用等があることが知られているが、 TXA_2 拮抗剤は、 TXA_2 に拮抗することで、抗血栓剤、心筋梗塞、喘息の治療剤として有用であると考えられている。

一方、本発明のPGD₂拮抗剤は、PGD₂の生産過多に起因する症状の改善、さらに詳しくは、肥満細胞機能不全が関与する疾患、例えば全身性肥満細胞症及び全身性肥満細胞活性化障害の治療剤、さらには抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として有用である。

(cyclooxygenase)により、アラキドン酸(arachidonic acid)からPGG $_2$ 、PGH $_2$ を経て産生される。PGD $_2$ は種々の強力な生理的、病的な作用を有し、例えば、強い気管収縮を起こし気管支喘息の病態を形づくる、さらに全身性アレルギー状態においては末梢血管を拡張しアナフィラキシーショックの原因となる、などである。とりわけPGD $_2$ をアレルギー性鼻炎の鼻閉症状の発現の原因物質の一つであるとする考えが注目を集めている。そのため、鼻閉症状の軽減を目的とする薬物としてPGD $_2$ の生合成阻害剤、あるいは受容体拮抗剤の開発が考えられている。しかし、PGD $_2$ の生合成阻害剤は他の生体内でのプロスタグランジン類の合成に大きな影響を及ぼす可能性があることから、PGD $_2$ 受容体に特異的な、PGD $_2$ 受容体拮抗剤(遮断薬)の開発が望まれている。

発明の開示

本発明者らは、 PGD_2 受容体に特異的な PGD_2 受容体拮抗剤(遮断薬)を開発するために鋭意、研究した結果、下記一般式(I)で示される化合物またはその塩が PGD_2 受容体拮抗剤として強力な作用を有し、かつ化学的、生化学的に安定な化合物であることを見い出し、本発明を完成するに至った。

即ち、本発明は、式(I)で示される化合物またはその塩もしくは水和物を有効成分として含有するPGD₂拮抗剤を提供するものである。:

$$Y$$
A -R
(I)
(CH₂)m-N-Z-X₁-X₂-X₃

(式中、

は、

を表わし、

Aはヘテロ原子もしくはフェニレンを介在していてもよく、オキソ基を有してい

てもよく、および/または不飽和結合を有していてもよいアルキレン;

Bは水素、アルキル、アラルキルまたはアシル;

R t C O O R₁, C H₂ O R₂ z t t t C O N (R₃) R₄;

R₁は水素またはアルキル;

R₂は水素またはアルキル;

 R_3 および R_4 はそれぞれ独立して水素、アルキル、ヒドロキシまたはアルキルスルホニル;

 X_1 は単結合、フェニレン、ナフチレン、チオフェンジイル、インドールジイル またはオキサゾールジイル :

 X_2 は単結合、-N=N-、-N=CH-、-CH=N-、-CH=N-N-、

- -CH=N-O-, -C=NNHCSNH-, -C=NNHCONH-,
- -CH = CH CH (OH) CC (C1) = CC (C1) CC
- $-(CH_2)$ n-、 \bot f=V>、-N (R_5) -、-N (R_{51}) CO-、
- $-N (R_{52}) SO_2^2 -, -N (R_{53}) CON (R_{54}) -,$
- $-CON(R_{55})$ -, $-SO_2N(R_{56})$ -, -O-, -S-, -SO-,
- $-SO_2$ -、-CO-、オキサジアゾールジイル、チアジアゾールジイル またはテトラゾールジイル :

 X_3 はアルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロ環、シクロアルキル、シクロアルケニル、チアゾリニリデンメチル、チアゾリジニリデンメチル、一 $CH=NR_5$ または $-N=C(R_7)R_8$;

 R_5 、 R_{51} 、 R_{52} 、 R_{53} 、 R_{54} 、 R_{55} および R_{56} は水素またはアルキル; R_6 は水素、アルキル、ヒドロキシ、アルコキシ、カルバモイルオキシ、チオカルバモイルオキシ、ウレイドまたはチオウレイド;

 R_7 および R_8 はそれぞれ独立してアルキル、アルコキシまたはアリール:nは1または2;

Zは-SO₂-または-CO-;

mはOまたは1;

これらの定義において、置換基が環状のものはニトロ、アルコキシ、スルファ モイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロ ゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルコキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、 $-N=PPh_3$ 、オキソ、チオキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよい)

発明を実施するための最良の形態

上記の PGD_2 拮抗剤となり得る化合物を更に具体的に示せば、式(I)で示される化合物において、

が、

を表わし、mが0であり、ZがS O_2 のとき、 X_1 および X_2 がともに単結合であり、 X_3 がアルキル、フェニル、ナフチル、スチリル、キノリルまたはチエニルを表わし、これらの置換基のうち、環状のものがニトロ、アルコキシ、置換もしくは非置換アミノ、ハロゲン、アルキルおよびヒドロキシアルキルから選ばれる $1\sim 3$ 個の基で置換されていてもよい化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I)で示される化合物において、

が、

を表わし、mが1のとき、 X_1 および X_2 がともに単結合であり、 X_3 がハロゲンで置換されていてもよいフェニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I)で示される化合物において、

が、

を表わし、mが1 のとき、 X_1 がフェニル、 X_2 が-C H_2 -または-N=N-であり、 X_3 がフェニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式 (I) で示される化合物は、式 (Ia):

$$\begin{array}{c}
A - R \\
N - SO_2 - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ia)

(式中、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。

ただし、(1) X_1 および X_2 が単結合であり、 X_3 が置換もしくは非置換フェニルまたはナフチル、および(2) Aが 5 - へ プテニレン、<math>R が C O O R_1 (R_1 は水素またはメチル)、 X_1 が 1、4 - 7 ェニレン、 X_2 が単結合、 X_3 が 7 ェニルである場合を除く)で示される化合物またはその塩もしくは水和物として例示される。

同様に、式 (I) で示される化合物は、式 (Ib):

(式中、

は、

を表わし、A、B、R、X₁、X₂およびX₃が前記と同意義である。ただし、X

 $_1$ および X_2 が単結合であり、 X_3 がフェニルである場合および X_1 が単結合で X_2 が-O-であるとき、 X_3 がベンジルである場合を除く)で示される化合物またはその塩もしくは水和物として例示される。

更に具体的には、式(Ia)で示される化合物において、 X_1 および X_2 が単結合であり、 X_3 がイソオキサゾリル、チアジアゾリル、イソチアゾリル、モルホリル、インドリル、ベンゾフリル、ジベンソフリル、ジベンゾジオキシニル、ベンゾチエニル、ジベンゾチエニル、カルパゾリル、キサンテニル、フェナントリジニル、ジベンゾオキセピニル、ジベンゾチエピニル、シンノリル、クロメニル、ベンゾイミダゾリルまたはジヒドロベンゾチエピニルである化合物またはその塩もしくは水和物が挙げられる。

同様に、式(Ia)で示される化合物において、 X_1 が単結合、 X_2 がフェニレン、 X_3 がアルケニル、アルキニル、-CH=NR₆または-N=C(R₇)R₈を表わす化合物またはその塩もしくは水和物が挙げられる。

同様に、式(Ia)で示される化合物において、Rが $COOR_1$ 、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、-CONH-、-NHCO-またはエチニレンおよび X_3 がフェニル、チアソリニリデンメチル、チアソリジニリデンメチルまたはチエニルを表わす化合物またはその塩もしくは水和物が挙げられる。

更に具体的には、式(Ib)で示される化合物において、

が、

を表わす化合物またはその塩もしくは水和物が挙げられる。さらに好ましい態様としては、式(I b)で示される化合物において、R がC O O R $_1$ (R $_1$ は前記と同意義である)で示される化合物またはその塩もしくは水和物が挙げられる。

同様に、式(I b)で示される化合物において、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-O

VV > //UU0000 FC1/JP90/U1000

-、-S-、-CO-、-CON (R_{55}) - (R_{55} は前記と同意義である)、-N (R_{51}) CO- (R_{51} は前記と同意義である) および X_3 がフェニルである 化合物またはその塩もしくは水和物が挙げられる。

更に具体的には、式(Ib)で示される化合物において、

が、

を表わす化合物またはその塩もしくは水和物が挙げられる。さらに好ましい態様としては、Bが水素、 X_1 および X_2 がともに単結合であり、 X_3 がチエニル、チアゾリル、チアジアゾリル、イソチアゾリル、ピロリル、ピリジル、ベンゾフリル、ペンゾイミダゾリル、ペンゾチエニル、ジベンゾフリル、ジベンゾチエニル、キノリルまたはインドリルである化合物またはその塩が挙げられる。同様に、 X_1 がフェニレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-S-または-O-、および X_3 がアリールまたはヘテロ環である化合物またはその塩もしくは水和物が挙げられる。

尚、上記一般式 (Ia) および (Ib) で示される化合物は本発明者らにより合成された新規化合物である。

本明細書において用いる各種語句の定義は、以下の通りである。

「アルキレン」とは、 $C_1 \sim C_9$ の直鎖状又は分枝状のアルキレンを意味し、例えば、メチレン、メチルメチレン、ジメチルメチレン、メチルエチルメチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン、ヘキサメチレン、ヘプタメチレン、オクタメチレンまたはノナメチレン等が挙げられる。上記アルキレンは、ヘテロ原子(酸素原子、硫黄原子または窒素原子等)もしくはフェニレン(例えば、1、4-フェニレン、1、3-フェニレン、1、2-フェニレン等)を介在していてもよく、オキソ基を有してもよく、および/または二重結合または三重結合を鎖上に1個又はそれ以上、任意の位置に含んでいてもよい。例えば、

 $-(CH_2)_2-O-CH_2-, -(CH_2)_2-O-(CH_2)_2-, -(CH_2)$ $_{2}$ -O-(CH₂) $_{3}$ -, -(CH₂) $_{2}$ -O-(CH₂) $_{4}$ -, -(CH₂) $_{2}$ -O $-(CH_2)_5-,-(CH_2)_2-O-(CH_2)_6-,-(CH_2)_2-S-(CH_2)_1$ H_2) 2-, - (CH2) 3-S- (CH2) 2-, -CH2-S-CH2-, -CH $_{2}$ -S-(CH₂) $_{4}$ -, -CH₂-N (CH₃) -CH₂-, -CH₂-NH- (C H_2) 2-, - (CH2) 2-N (CH2CH3) - (CH2) 3-, - (CH2) 2 -1, 4-7 ± 2 $\nu \nu - CH₂-<math>\nu - (CH₂)$ $_2-0-1$, 3-7 ± 2 $\nu \nu - C$ H_2- , $-(CH_2)_2-O-1$, $2-7x=\nu\nu-CH_2-$, $-(CH_2)_2-O$ -1, $4-7x=\nu\nu-CH_2-$, $-CH=CH-S-CH_2-1$, $4-7x=\nu$ ν -CH₂-, -CH=CH-S-1, 3-7x= $\nu\nu$ - (CH₂) ₂-, 2- τ キソプロピレン、3ーオキソペンチレン、5ーオキソヘキシレン、ピニレン、1 ープロペニレン、2ープロペニレン、1ープテニレン、2ープテニレン、3ープ テニレン、1、2ープタジエニレン、1、3ープタジエニレン、1ーペンテニレ ン、2一ペンテニレン、3一ペンテニレン、4一ペンテニレン、1,2一ペンタ ジエニレン、1,3-ペンタジエニレン、1,4-ペンタジエニレン、2,3-ペンタジエニレン、2, 4ーペンタジエニレン、1ーヘキセニレン、2ーヘキセ ニレン、3ーヘキセニレン、4ーヘキセニレン、5ーヘキセニレン、1,2ーヘ キサジエニレン、1,3一ヘキサジエニレン、1,4一ヘキサジエニレン、1, 5 - ヘキサジエニレン、2, 3 - ヘキサジエニレン、2, 4 - ヘキサジエニレン、 2, 5-ヘキサジエニレン、3, 4-ヘキサジエニレン、3, 5-ヘキサジエニ レン、4,5-ヘキサジエニレン、1,1-ジメチル-4-ヘキセニレン、1-ヘプテニレン、2一ヘプテニレン、3一ヘプテニレン、4一ヘプテニレン、5一 ヘプテニレン、2, 2-ジメチル-5-ヘプテニレン、6-ヘプテニレン、1, 2-ヘプタジエニレン、1,3-ヘプタジエニレン、1,4-ヘプタジエニレン、 1, 5-ヘプタジエニレン、1, 6-ヘプタジエニレン、2, 3-ヘプタジエニ レン、2,4-ヘプタジエニレン、2,5-ヘプタジエニレン、2,6-ヘプタ ジエニレン、3.4-ヘプタジエニレン、3.5-ヘプタジエニレン、3.6-ヘプタジエニレン、4,5-ヘプタジエニレン、4,6-ヘプタジエニレン又は 5. 6-ヘプタジエニレン、1-プロピニレン、3-ブチニレン、2-ペンチニ

TC1/JP96/01 85

レン、 $5-\Lambda$ キシニレン、 $6-\Lambda$ プチニレン、 $-(CH_2)-CH=CH-O-(CH_2)_2-$ 、 $-(CH_2-S-(CH_2)_3-$ 、 $-(CH_2-S-CH_2-S$

「アルキル」とは、 $C_1 \sim C_{20}$ の直鎖状又は分枝状のアルキルを意味し、例えば、メチル、エチル、n ープロピル、i ープロピル、n ーブチル、i ープチル、s ープチル、t ープチル、t ーペンチル、t ーペンチル、t ーペンチル、t ーペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、トリデシル、テトラデシル、ペンタデシル、ヘキサデシル、ヘプタデシル、イコシル等が挙げられる。

「アリール」とは、 $C_6 \sim C_{14}$ の単環または縮合環を意味し、フェニル、ナフチル(例えば、1ーナフチル、2ーナフチル)、アンスリル(例えば、1ーアンスリル、2ーアンスリル、9ーアンスリル)、フェナンスリル(例えば、2ーフェナンスリル、3ーフェナンスリル、9ーフェナンスリル)、フルオレニル(例えば、2ーフルオレニル)等が挙げられる。特に、フェニルが好ましい。

「アラルキル」とは、前記アルキル基に前記アリール基が置換したもので、これらは置換可能な全ての位置で結合しうる。例えば、ベンジル、フェネチル、フェニルプロピル (例えば、3ーフェニルプロピル)、ナフチルメチル (例えば、 α ーナフチルメチル)、アンスリルメチル (例えば、9ーアンスリルメチル)、フェナンスリルメチル (例えば、3ーフェナンスリルメチル)等が挙げられる。

「アシル」とは、脂肪族カルボン酸由来の $C_1 \sim C_9$ のアシルを意味し、例えば、ホルミル、アセチル、プロピオニル、プチリル、パレリル等が挙げられる。

「アルキルスルホニル」とは、スルホニルに上記アルキルが置換したもので、 例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル等が挙げられる。

「アルケニル」とは、上記アルキルに1個又はそれ以上の二重結合を有する直鎖または分岐状の $C_2 \sim C_{20}$ アルケニルを意味し、例えば、ビニル、1-プロペニル、2-プロペニル、1-プテニル、2-プテニル、3-プテニル、1, 2- プタジエニル、1-ペンテニル、1, 2-ペンタジエニル、2-ヘキセニル、1.

2- へキサジエニル、3- ペプテニル、1.5- ペプタジエニル等が挙げられる。「アルキニル」とは、上記アルキルに1 個又はそれ以上の三重結合を有する直鎖または分岐状の $C_2 \sim C_2$ のアルキニルを意味し、例えば、エチニル、1- プロピニル、2- プロピニル、1- プチニル、2- プチニル等が挙げられる。

「ヘテロ環」とは、任意に選ばれる、酸素原子、硫黄原子および/または窒素 原子を環内に1個以上含み、かつ炭素環もしくは他のヘテロ環と縮合していても よい5~7員の環を意味し、これらは置換可能な任意の位置で結合しうる。例え ば、ピロリル (例えば、1-ピロリル、3-ピロリル)、インドリル (例えば、 2-インドリル、3-インドリル、6-インドリル)、カルパゾリル (例えば、 2 一カルパソリル、3 一カルパソリル)、イミダソリル(例えば、1 一イミダソ リル、4 一イミダゾリル)、ピラゾリル(例えば、1 一ピラゾリル、3 一ピラゾ リル)、ベンソイミダソリル(例えば、2-ベンソイミダソリル、5-ベンソイ ミダゾリル)、インダゾリル(例えば、3-インダゾリル)、インドリジニル(例 えば、6 一インドリジニル)、ピリジル(例えば、2 一ピリジル、3 一ピリジル、 4一ピリジル)、キノリル(例えば、8一キノリル)、イソキノリル(例えば、 ニル (例えば、2 -- フェナンスリジニル、3 -- フェナンスルジニル) 、ピリダジ ニル(例えば、3ーピリダジニル)、ピリミジニル(例えば、4ーピリミジニル)、 ピラジニル (例えば、2-ピラジニル)、シンノリニル (例えば、3-シンノリ ニル)、フタラジニル(例えば、5一フタラジニル)、キナゾリニル(例えば、 2-キナゾリニル)、イソオキサゾリル(例えば、3-イソオキサゾリル、4-イソオキサゾリル)、ベンソイソオキサゾリル(例えば、1,2一ペンソイソオ キサゾールー4ーイル、2.1ーベンソイソオキサゾールー3ーイル)、オキサ ゾリル (例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾリル)、 ペンソオキサソリル (例えば、2一ペンソオキサソリル)、ベンソオキサジアソ リル(例えば、4一ペンソオキサジアソリル)、イソチアソリル(例えば、3一 イソチアゾリル、4-イソチアゾリル)、ペンゾイソチアゾリル(例えば、1, 2-ベンゾイソチアゾール-3-イル、2、1-ベンゾイソチアゾール-5-イ

ル)、チアソリル(例えば、2一チアソリル)、ベンソチアソリル(例えば、2 ーペンソチアソリル)、チアジアソリル(例えば、1,2,3ーチアジアソール - 4-イル)、オキサジアゾリル(例えば、1,3,4-オキサジアゾール-2 ーイル)、ジヒドロオキサジアゾリル(例えば、4,5-ジヒドロー1.2,4 ーオキサジアゾールー3ーイル)、フリル(例えば、2ーフリル、3ーフリル)、 ベンゾフリル (例えば、3-ベンゾフリル)、イソベンゾフリル (例えば、1-イソペンゾフリル)、チエニル(例えば、2-チエニル、3-チエニル)、ペン ゾチエニル (例えば、1 ーベンゾチオフェンー2 一イル、2 一ペンゾチオフェン 一1一イル)、テトラソリル(例えば、5 -- テトラソリル)、ベンソジオキソリル (例えば、1, 3-ベンゾジオキソール-5-イル)、ジベンゾフリル(例えば、 2 一ジベンゾフリル、3 一ジベンゾフリル)、ジベンゾオキセピニル (例えば、 ジベンゾ[b, f]オキセピン-2-イル)、ジヒドロジベンゾオキセピニル (例 えば、ジヒドロジベンソ[b, f]オキセピン-2-イル)、クロメニル(例えば、 2 Hークロメン-3ーイル、4 Hークロメン-2ーイル)、ジベンゾチエピニル (例えば、ジベンゾ[b, f]チエピン-3 -イル、ジヒドロジベンゾ[b, f]チエ フェノチアジニル (例えば、2 -フェノチアジニル)、シクロペンタチエニル (例 えば、シクロペンタ[b]チオフェンー3一イル)、シクロヘキサチエニル(例え ば、シクロヘキサ[b]チオフェンー3一イル) 等が挙げられる。

「シクロアルキル」とは、 $C_3 \sim C_8$ の環状アルキルを意味し、例えば、シクロプロビル、シクロプチル、シクロペンチル、シクロヘキシル等が挙げられる。

「シクロアルケニル」とは、 $C_3 \sim C_8$ の環状アルケニルを意味し、例えば、シクロプロペニル(例えば、1 一シクロプロペニル)、シクロプテニル(例えば、2 一シクロプテンー1 一イル)、シクロペンテニル(1 一シクロペンテンー1 一イル)、シクロヘキセニル(例えば、1 一シクロヘキセンー1 一イル)等が挙げられる。

「アルコキシ」とは、 $C_1 \sim C_6$ のアルコキシを意味し、例えば、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-プトキシ等が挙げられる。

「置換もしくは非置換アミノ」における置換アミノとは、例えば、メチルアミ

ノ、エチルアミノ、ジメチルアミノ、シクロヘキシルアミノ、フェニルアミノ、 ジフェニルアミノ等のモノーもしくはジー置換アミノ、ピペリジノ、ピペラジノ、 モルホリノ等の環状アミノが挙げられる。

「アシルオキシ」とは、前記の「アシル」から誘導されるアシルオキシを意味 し、例えば、アセチルオキシ、プロピオニルオキシ、ブチリルオキシ、バレリル オキシ等が挙げられる。

「ハロゲン」とは、フッ素、塩素、臭素、ヨウ素を意味する。

「アルコキシカルボニル」とは、前記の「アルコキシ」から誘導されるアルコキシカルボニルを意味し、例えば、メトキシカルボニル、エトキシカルボニル、フェニルオキシカルボニル等が挙げられる。

「アラルキルオキシカルボニル」とは、前記の「アラルキル」から誘導される アラルキルオキシカルボニルを意味し、例えば、ペンジルオキシカルボニル、フェネチルオキシカルボニル等が挙げられる。

「アリールオキシカルボニル」とは、前記の「アリール」から、誘導されるアリールオキシカルボニルを意味し、例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等が挙げられる。

「アルケニルオキシ」とは、前記の「アルケニル」から、誘導されるアルケニ ルオキシを意味し、例えば、ピニルオキシ、1ープロペニルオキシ、2ープテニ ルオキシ等が挙げられる。

「ヒドロキシアルキル」とは、前記の「アルキル」から、誘導されるヒドロキシアルキルを意味し、例えば、ヒドロキシメチル、ヒドロキシエチル、ヒドロキシブロビル等が挙げられる。

「アルキルチオ」とは、前記の「アルキル」から、誘導されるアルキルチオを 意味し、例えば、メチルチオ、エチルチオ、プロピルチオ等が挙げられる。

「アルキレンジオキシ」とは、 $C_1 \sim C_3$ 、例えば、メチレンジオキシ、エチレンジオキシ、プロピレンジオキシ等が挙げられる。

「フェニレン」、「ナフチレン」、「チオフェンジイル」、「インドールジイル」、「オキサゾールジイル」、「オキサジアゾールジイル」、「テトラゾールジイル」においては、置換可能な任意の2箇所で、隣接する基と結合しうる。

また、前記の定義において、置換基が環状のものは、ニトロ、アルコキシ、スルファモイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルキルオキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、ーN=PPh $_3$ 、オキソ、チオキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよいが、環上におけるそれらの置換基は、置換可能な任意の位置で置換していてもよい。

一般式(I)の化合物の塩としては、アルカリ金属塩(例えば、リチウム塩、ナトリウム塩もしくはカリウム塩等)、アルカリ土類金属塩、(例えば、カルシウム塩等)、有機塩基(例えば、トロメタミン、トリメチルアミン、トリエチルアミン、1000円のインスをは、1000円では、アルカリ土類金属塩、(例えば、カルシアミン、2000円のインスをは、1000円では、アルフリルアミン、アロピルエチルアミン、1000円のインスをは、アルフリルアミン、ジンクロペキシルアミン、Nonでは、インジルアミン、メチルベンジルアミン、フルフリルアミン、ベンジルアミン、メチルベンジルアミン、Nonでは、1000円では

水和物とは、式(I)で示される化合物またはその塩の水和物を意味し、例えば、1水和物、2水和物を挙げることができる。

本発明化合物は、一般式(I)で示され、その全ての立体異性体(ジアステレオマー、エピマー、エナンチオマーなど)又はラセミ体を含む。

一般式(I)で示される化合物の中、m=1の化合物、とくに、後記の表 3 b および 3 c に示した化合物は、特開平 2-1 8 0 8 6 2 明細書に記載された公知化合物である。

化合物]は、下記反応式で示されるごとく、一般式(II)で示されるアミノ化合物に部分構造式 $Z=X_1-X_2-X_3$ に対応するスルホン酸またはカルボン酸の反応性誘導体を反応させることにより製造することができる。

(式中、A、B、R、 X_1 、 X_2 、 X_3 、YおよびZは前記と同意義である。)

反応は通常のアミノ基のアシル化反応の条件に従って行えばよく、例えば、酸ハロゲン化物による縮合反応の場合、溶媒としてエーテル系溶媒(例えば、ジェチルエーテル、テトラヒドロフラン、ジオキサン)、ベンゼン系溶媒(例えば、ベンゼン、トルエン、キシレン)、ハロゲン化炭化水素系溶媒(例えば、ジクロロメタン、ジクロロエタン、クロロホルム)、その他、酢酸エチル、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリルなどを使用し、要すれば塩基(例えば、トリエチルアミン、ピリジン、N、Nージメチルアミノピリジン、Nーメチルモルホリンなどの有機塩基、あるいは水酸化ナトリウム、水酸化カリウム、炭酸カリウムなどの無機塩基)の存在下、冷却下ないし室温あるいは加熱下、好ましくは-20℃ないし氷冷下あるいは室温ないし反応系の加熱環流温度

で、数分ないし数十時間、好ましくは0.5時間ないし24時間、より好ましくは1時間ないし12時間実施すればよい。

他の反応性誘導体あるいは遊離の酸とアミン(II)との反応においても、各 反応性誘導体あるいは遊離酸の性質に応じて、公知の方法に従い、反応条件を定 めればよい。

反応生成物は通常の精製法、例えば、溶媒抽出、クロマトグラフィー、再結晶 法などにより、精製することができる。

本反応法における原料化合物(II)の具体例を示すと、3-アミノ[2.2.1] ビシウロ環系化合物の具体例としては、7-(3-アミノビシクロ[2.2.1]ヘブ トー2ーイル) -5ーヘプテン酸、7ー(3ーアミノビシクロ[2.2.1]ヘプトー ピシクロ[2.2.1]ヘプトー2ーイル) -5ーヘプテン酸、6ー(3ーアミノピシ 00[2.2.1]0プト-2-10]-5-0キセン酸等が例示される。また、2-アミノ-6, 6 - ジメチル[3.1.1]ビシクロ環系化合物の具体例としては、7 -(2-7) = (2-7プテン酸等が例示される。また、これら原料化合物のヘプテン酸鎖は飽和となっ てヘプタン酸となってもよいし、一O一、一S一、一NH一等のヘテロ原子もしく はヘテロ基あるいはフェニレンが鎖の途中に介在してもよいし、オキソ基で置換 されていてもよく、7-(3-アミノビシクロ[2.2.1]ヘプト-2-7ル) ヘブ タン酸、4-[2-(2-r)]/2 アミノビシクロ[3.1.1] ヘプト-3-(3-1) エトキシ フェニル酢酸、 $7-(3-r \le 1)$ アミノビシクロ[2.2.1] ヘプト-2-(7-1) -6-(7-1)キソヘプタン酸等が例示される。これらの原料化合物は、特公平5-79060 号明細書、特公平6-23170号明細書に記載された公知化合物であるか、あ るいはこれらの明細書に記載の方法に従って創造することができる。

PCT/JP96/01685

ン酸またはカルボン酸、アリールスルホン酸またはカルボン酸、アラルキルオキシスルホン酸またはカルボン酸、ヘテロ環置換スルホン酸またはカルボン酸、ヘテロアリールアルキルスルホン酸またはカルボン酸、および置換アミノスルホン酸またはまたはカルボン酸である。これらのスルホン酸およびカルボン酸は、それぞれ前配定義の置換基を有することができる。また、これらのスルホン酸およびカルボン酸は、市販品として入手可能であるか、あるいは既知の化合物から既知の方法に従って容易に合成できるものである。反応に際し、これらのスルホン酸およびカルボン酸は、必要に応じて、対応する上記の反応性誘導体とすることができる。例えば、酸ハロゲン化物とするときは、ハロゲン化チオニル(例えば、塩化チオニル)、ハロゲン化リン(例えば、三塩化リン、五塩化リン)、ハロゲン化オギザリル(例えば、塩化オギザリル)等と公知の方法(例えば、新実験化学講座14巻1787頁(1978);Synthesis 852-854(1986);新実験化学講座22巻115頁(1992))に従って反応させればよい。他の反応性誘導体についても同様に公知の方法で調製することができる。

本発明目的化合物(I)の中、側鎖 A が不飽和結合、特に二重結合を有する化合物は、下記一般式(I I I)で表わされるアルデヒド誘導体に、側鎖 A-R 部分の残余部分に対応するイリド化合物をウィティッヒ(Wittig)反応の条件に従って反応させ製造することもできる。

(式中、A、B、R、 X_1 、 X_2 、 X_3 、YおよびZは前記と同意義である。)

原料化合物(III)は、例えば、特開平2-256650号明細書に記載の方法に従って製造することができる。また、側鎖A-R部分の残余部分に対応するイリド化合物は、対応するハロゲン化アルカン酸もしくはそのエステル誘導体、エーテル誘導体、アミド誘導体等とトリフェニルホスフィンとを塩基の存在下、公知の方法に従い反応させ合成することができる。

本発明目的化合物(I)においてRがCOOHである化合物は、所望により、

対応するエステル誘導体、アルコール誘導体、エーテル誘導体、アミド誘導体とすることもできる。例えば、エステル誘導体はカルボン酸を公知の方法に従いエステル化することにより製造することができる。また、エステル誘導体を還元すればアルコール誘導体とすることができるし、アミド化すればアミド誘導体とすることもできる。エーテル誘導体はアルコール誘導体を Oーアルキル化することによっても製造することができる。

本発明の化合物(I)はインビトロでPGD2受容体と結合することによるPGD2拮抗作用を示し、PGD2の生産過多に起因する肥満細胞機能不全と関連した疾患の治療剤として有用である。例えば全身性肥満細胞症や全身性肥満細胞活性化障害の治療剤、抗気管収縮剤、抗喘息剤、抗アレルギー性鼻炎剤、抗アレルギー性結膜炎剤、抗蕁麻疹剤、虚血再灌流傷害治療薬、抗炎症剤として用いることができる。特に、本発明化合物(I)は、インビボで鼻閉抑制作用を示すことから、鼻閉症の治療剤として有用である。

本発明の化合物(I)を治療に用いるには、通常の経口又は非経口投与用の製剤として製剤化する。本発明の化合物(I)を含有する医薬組成物は、経口及び非経口投与のための剤形をとることができる。即ち、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投与用製剤などの非経口製剤とすることもできる。

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例、トウモロコシでん粉)、充填剤(例、ラクトース、微結晶性セルロース)、崩壊剤(例、でん粉グリコール酸ナトリウム)又は滑沢剤(例、ステアリン酸マグネシウム)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ

器に適応可能な液剤として、点眼剤として使用する場合も液剤又は懸濁化剤として用いる。特に鼻閉症治療のための点鼻薬として用いる場合、通常の製剤化の方法に従って、液剤、懸濁化剤として用いるか、あるいは粉末化剤 (例、ヒドロキシプロピルセルロース、カーボボール)等を加え、粉末剤として鼻孔に加える。あるいは、低沸点の溶媒とともに特殊な容器に充填し、噴射剤として用いることができる。

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり 本発明はこれらに限定されるものではない。

実施例!

COOCH₃

$$(II-1)$$

$$(Ia-1)$$

$$(Ia-2)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

$$(Ia-3)$$

 4R) -3-(2-ジベンソフリル) スルホニルアミノビシクロ [2.2.1] ヘプトー2ーイル] -5-ヘプテン酸メチル (1a-1) (342 mg, 0.710 mmol)を得た。収率 71%。

融点:115-116℃

元素分析 (C₂₇ H₃₁ NO₅ Sとして)

計算値(%): C,67.34;H,6.49;N,2.91;S,6.66

実測値(%): C,67.16;H,6.47;N,2.99;S,6.66

IR (CHCl3): 3382,3024,2952,2874,1726,1583,1465,1442,1319,1245,1154,1121,1104,1071,1019,890,840,817/cm.

1H NMR(CDCl3) δ : 0.94-1.92(14H,m),2.15-2.24(3H,m),2.99-3.07(1H,m), 3.66(3H,s),4.98(1H,d,J=6.6Hz),5.10-5.22(2H,m),7.39-7.46(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.53(1H,d,J=2.1Hz).

[α]D=-0.6° (CHCl3,c=1.01%,23°C).

([α]365=+37.0° (CHCl3,c=1.01%,23°C).

(2) -7- [(1 S, 2 R, 3 R, 4 R) -3- (2-ジベンゾフリル) スルホニルアミノビシクロ [2. 2. 1] ヘプトー2ーイル] -5ーヘプテン酸メチル (1 a-1) (2 3 4 mg, 0.5 0 mmol)をメタノール(6 ml)ーテトラヒドロフラン(4 ml)に溶解し、氷冷下1 N水酸化カリウム(1.5 0 ml, 1.5 0 mmol)を加えた後、室温まで昇温し、1 6時間反応させた。溶媒を溜去した後、残渣に酢酸エチル(5 0 ml)と水(1 0 ml)を加え、さらに1 N塩酸(2.0 0 ml, 2.0 0 mmol)を加え、有機層を分取した。有機層を飽和食塩水で洗った後、無水硫酸ナトリウムで乾燥した。溶媒を溜去した後、残渣をシリカゲルカラムクロマトグラフィー (n・ヘキサン・酢酸エチル=1:1,0.2%酢酸) で精製し、(2) -7

PC1/JP96/01 65

,1153,1121,1104,1072,906/cm.

1H NMR(CDCl3) δ : 0.93-1.94(14H,m),2.12-2.19(1H,m),2.26(2H,t,J=7.2H z),3.00-3.08(1H,m),5.12-5.25(2H,m),5.26(1H,d,J=6.6Hz),7.38-7.45(1H,m),7.51-7.70(3H,m),7.87-8.13(2H,m),8.54(1H,d,J=2.1Hz).

 $[\alpha]D=+6.8^{\circ}$ (CHCl3,c=1.08%,23°C).

(2) -7-[(15, 2R, 3R, 4R) -3-(2ージベンゾフリル) スルホニルアミノビシクロ[2.2.1] ヘプトー2ーイル] -5ーヘプテン酸(1a-2)(453 mg, 0.97 mmol)をメタノール(5 ml)に溶解し、氷冷下1Nナトリウムメトキシド/メタノール溶液(1.034規定,0.937 ml, 0.97 mmol)を加えた後、室温まで昇温し、1時間反応させた。溶媒を溜去して、ナトリウム塩(1a-3)(457 mg, 0.933 mmol)を得た。収率96%。

無晶状粉末

元素分析 (C 26 H 28 N O 5 S N a ・ 0.6 H 2 O として)

計算値(%): C,62.41;H,5.88;N,2.80;S,6.41;Na,4.59

実測値(%): C,62.45;H,5.92;N,2.99;S,6.49;Na,4.46

IR (KBr): 3434,3280,3074,3007,2952,2873,1566,1467,1444,1417,1344,1 315,1270,1248,1200,1189,1154,1124,1107,1075,1058,895,842,818/cm.

1H NMR(CD3OD) δ : 1.02-2.05(16H,m),2.16-2.23(1H,m),2.94-3.00(1H,m), 4.98-5.05(2H,m),7.41-7.48(1H,m),7.53-7.62(1H,m),7.66(1H,d,J=8.4Hz),7.7(1H,d,J=8.4Hz),8.57(1H,d,J=2.1Hz).

[α]D=-15.2° (CH3OH,c=1.07%,22°C).

実施例2

(Z) -7-[(1S, 2R, 3R, 4R) -3-アミノビシクロ[2, 2, 2]]1] ヘプトー2 —イル] -5 —ヘプテン酸メチル トリフルオロ酢酸塩 (II-2) (特公平5-79060号、参考例4に準じて製造) 232 mg (0.636 mmol) を塩化メチレン (5 ml) に溶解し、氷冷下、トリエチルアミン 0.2 7 9 ml(2.0 mmol)と4ーピフェニルカルボニルクロリドを加え、同温度で7時間 撹拌する。反応液をシリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサ ン=1:4) で精製し、(Z) -7-[(1S, 2R, 3R, 4R) -3-(4 ーピフェニル) カルボニルアミノビシクロ[2.2.1] ヘプトー2ーイル]ー 5 — ヘプテン酸メチル (1 k — 1 1) 2 2 1 mg (0.5 1 2 mmol) を得た。こ の化合物 (1k-11) (190 mg, 0.440 mmol) をメタノール (6 ml) に溶解し、氷冷下1N KOH (1.10 ml. 1.10 mmol) を加え室温で15 時間撹拌した。反応液を減圧下濃縮した後、残渣に水 (20 ml) と1N HC1 (2 ml)を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗った後硫酸ナ トリウムで乾燥後、濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢 酸エチル: \land キサン=1:1) (0.3%酢酸) で精製して(Z) \frown 7 \frown [(1S, 2 R, 3 R, 4 R) -3-(4-ピフェニル) カルボニルアミノビシクロ [2. 2. 1] ヘプトー2ーイル] ー5ーヘプテン酸(1k-12)172 mg(0.4 12 mmol) を得た。収率94%。

下記に示す化合物は、以下の方法でも製造できる。

<u>実施例3</u>

窒素雰囲気下、4-カルボキシブチルトリフェニルホスホニウムプロマイド(14.8 g、33.3 mmol)およびテトラヒドロフラン(80 ml)から成る懸濁液にカリウム <math>t-プチレート(7.55 g,67.3 mmol)を室温で加える。室温のまま1時間撹拌した後、<math>-20℃に冷却してN-[(1S,2S,3S,4R)-3-ホルミルメチルビシクロ[2.2.1] ヘプト<math>-2-イル] ベンゼンスルホンアミ

PCT/JP96/01685

ド(III—1) (特開平2—256650号、参考例2)(3.25 g、11.1 mmol)のテトラヒドロフラン溶液(20 ml)をゆっくり加える。-20℃で約1時間半撹拌を続けた後、氷浴を除き、更に1時間撹拌する。反応液に2N塩酸を加え酢酸エチルで抽出し、水及び食塩水で洗浄後濃縮する。得られた粗生成物にトルエンと1N水酸化ナトリウム溶液を加えて水層を分取する。有機層をもう一度水洗し、先程の水層と合わせた後、2N塩酸を加える。酢酸エチルで抽出後、水及び食塩水で洗浄し、硫酸ナトリウムで乾燥後濃縮する。残渣をシリカゲルカラムクロマトグラフィーにより精製し、(Z) —7—[(1R, 2S, 3S, 4S) —3—フェニルスルホニルアミノビシクロ[2.2.1] ヘプトー2—イル] —5—ヘプテン酸カルシウム(1d—1)を得る(3.29g、収率79%)。

融点:62℃

元素分析(C 20 H 27 N O 4 S として)

計算值(%):C, 63.63;H, 7.21;N, 3.71;S, 8.49

実測値(%):C, 63.56;H, 7.21;N, 3.83;S, 8.43

 $[\alpha]D = +5.3 \pm 0.5$ ° (CHC13, C=1.003%,22°C)

 $[\alpha]D=+27.1\pm0.7^{\circ} (MeOH, C=1.015\%,24\%)$

IR(Nujol) 3282, 3260, 3300, 2400, 1708, 1268, 1248, 1202, 1162, 1153, 1095, 1076/cm

1H NMR δ 0.88-2.10(m, 14H), 2.14(br s, 1H), 2.34(t, J=7.2Hz, 2H), 2.95-3.07(m, 1H), 5.13-5.35(m, 3H), 7.45-7.64(m, 3H), 7.85-7.94(m, 2H), 9.52(br s, 1H)

上記実施例と同様にして製造した化合物を以下に示す。

No.	$R_{\mathbf{i}}$	X ₁ -X ₂ -X ₃
la-1	CH ₃	(F)
1a-2	н	√_ }•
la-3	Na	
1a-4	СН₃	→
1a-5	н	
	••	
1a-6	CH ₃	
1a-7	н	
1a-8		-
12-9	СН₃	-CF ₃
	Н	
1a-10	CH ₃	
la-11	Н	SO ₂ NH ₂
la-12		
1a-12 1a-13	CH₃ H	
	п	
la-14	CH ₃	
1a-15	Н	
1- 14		
1a-16 1a-17	CH ₃	√ / √ / ·
14-1/	Н	
1a-18	CU	
la-19	CH₃ H	
	••	's'
1a-20	CH ₃	_
1a-21	н	
		`\$´ `\$ <u>´</u>
1a-22	н	
		NO ₂
1a-23	н	~_ >∕-осн₃
		NO ₂

No.	R ₁	X_1 X_2 - X_3
1a-24	CH₃	
12-25	н	
1a-26	Na	
		_
la-27	CH ₃	
1a-28	н	N=N-N
1a-29	Na	
1a-30	C 11	_
1a-31	CH ₃	N=N-()OAc
14-31	н	
12-32	CH₃	_
1a-33		N=N-()-OH
	н	3
1a-34	CH ₃	N=CH-(T)
1a-35	CH ₃	
1a-36	н	—()−CH=CH ₂
		·
1a-37	CH3	
1a-38	н	
la-39	CH ₃	
1a-40 .	H	
1a-41		
14-11	н	OCH ₃
		() 55.13
1a-42	CH ₃	
1a-43	н	`s \\\
1a-44	CH3	
1a-45	н	
		_

1a-46 CH ₃ 1a-47 H 1a-48 Na 1a-49 CH ₃ 1a-50 H 1a-51 CH ₃ 1a-52 H 1a-53 CH ₃ 1a-54 H 1a-55 CH ₃ 1a-56 H 1a-57 CH ₃ 1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H	No.	R ₁	$X_1-X_2-X_3$	
1a-50	12-47	н	- 	
1a-52				
1a-54 H S 1a-55 CH ₃ 1a-56 H 1a-57 CH ₃ 1a-58 H 1a-59 CH ₃ 1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H 1a-67 CH ₃	1a-52			
1a-56 H 1a-57 CH ₃ 1a-58 H 1a-59 CH ₃ 1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H 1a-67 CH ₃			NH ₂	
1a-57 CH ₃ 1a-58 H 1a-59 CH ₃ 1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H 1a-67 CH ₃				
1a-58 H 1a-59 CH ₃ 1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H 1a-67 CH ₃	18-56	Н		
1a-59		СН₃		
1a-60 H 1a-61 CH ₃ 1a-62 H 1a-63 CH ₃ 1a-64 H 1a-65 CH ₃ 1a-66 H 1a-67 CH ₃	12-58	н		
1a-61				
1a-63				
1a-66 H — ОН		СН3	(CH ₂) ₅ CH ₃	
			-ОН	
			{-}-F	

1a-69 CH ₃ 1a-70 H CH ₃ 1a-71 CH ₃ 1a-72 H	
1a-71 CH ₃	
/ / /	
1a-73 CH ₃	
1a-74 H OAc	
1a-75 CH ₃	
1a-76 H COOR1	
1a-77 CH ₃	
1a-78 H	
1a-79 H ———————————————————————————————————	
1a-80 CH ₃	
1a-81 H	
1a-82 CH ₃ NO ₂	
1a-83 H	
1a-84 H NH ₂ OCH ₃	
1a-85 H ———————————————————————————————————	
1a-86 H ———————————————————————————————————	
1a-87 H ———————————————————————————————————	

No.	R ₁	X ₁ -X ₂ -X ₃	
1a-88 1a-89	CH₃ H	—————————————————————————————————————	
1a-90 1a-91	сн₃ н		
1a-92 1a-93	CH₃ H		
1a-94	н	————————————————————————————————————	
1a-95	н	-C-H-C-N	
1a-96	н	—С-N-С-ОН	
1a-97	н	-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-N-C-	
1 a-9 8 1a-99	H Na	OCH₃ OCH₃ OCH₃	

No.	R ₁	X ₁ -X ₂ -X ₃	
1a-100 1a-101	СН ₃ Н	NH S NH	
1a-102	CH ₃	NNa	
1a-103	CH ₃		
1a-104	н	STAH	
1a-105 1a-106	СН ₃ Н	N-OCH3	
1a-107 1a-108	CH₃ H	N-OC ₂ H ₅	
1a-109 1a-110	CH₃ H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1a-111 1a-112	CH₃	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1a-113 1a-114	СН₃ Н	-√Ph Ph	

No.	R ₁	$X_1-X_2-X_3$
1a-115 1a-116 1a-117 1a-118	CH ₃ H Na <i>H</i> Pr	-CH ₂ -
1a-119 1a-120 1a-121	CH ₃ Na H	─
1a-122 1a-123	CH₃ H	—————————————————————————————————————
12-124	CH ₃	-CH ₂ -CMs
1a-125 1a-126	СН ₃ Н	-CH ₂ -COAc
1a-127 1a-128	CH₃ H	-СH ₂ -СОН
1 a-12 9	CH ₃	CH ₂ -COCH ₃
1a-130 1a-131	СН ₃ Н	
1a-132 1a-133	CH₃ H	————————————————————————————————————
la-134	н	
1a-135 1a-136	CH₃ H	-
12-137 12-138	СН₃ Н	-CH ₂
1a-139 1a-140	CH₃ H	-CH ₂ -

No.	R ₁	X ₁ -X ₂ -X ₃
1a-141 1a-142	СН ₃ Н	-CH ₂ -NC
la-143	н	
1a-144	Н	NO ₂
1a-145	н .	NH ₂
1a-146	н	NO ₂
la-147	Ħ	- OCH-
1a-148	H	OCH ₃
la-149	н	
1a-150	Н	ÓH ÓH
1a-151	н	OAC OOU
		ОСН ₃

No.	R ₁	$X_1-X_2-X_3$
1a-152	н	
1a-153	н	
12-154	. н	CH3O
1a-155	н	
12-156	H	
1a-157	н	-Cs s
la-158	н	-SO ₂
1a-159	н	—————————————————————————————————————
1a-160	н	NH NH

No.	R ₁	$X_{1}-X_{2}-X_{3}$
1a-161	н	
la-162	н	CH ₃ O
la-163	. н	HO
la-164	н	C ₂ H ₅ O
1a-165	н	CH ₃ O NO ₂
12-166	н	CH ₃ O NO ₂
12-167	H	
1a-168	н	
1a- 1 69	н	N OCH3
la-170	н	OCH3
1a-171	СН3	сн _э н _э с
1a-172	Н	S CI

No.	R ₁	X ₁ -X ₂ -X ₃
1a-173	н	
12-174	н	
la-175	CH ₃	
1 a-17 6	н	HT C
la-177	CH ₃	
1a-178	н	N OCH3
1a-179	CH ₃	
1a-180	H	Н — ОН
12-181	н	ČH ₃
1a-182	CH ₃	
12-183	н	H H

No.	R ₁	$X_1-X_2-X_3$
1a-184	н	
1a-185	н	NH NH
1a-186 1a-187	СН ₃	CI CI
1a-188 1a-189	СН₃ Н	COOR ₁
1a-190 1a-191	CH₃ H	COOR ₁
1a-192 1a-193	СН ₃ Н	COOR ₁

No.	X ₁ -X ₂ -X ₃	
12-194	CH₃O	
1a-19 5	CH ₃ O	
1a-196	CH₃O	
12-197	CH ₃ O ————————————————————————————————————	
12-198		
12-199	осн ₃	
1a-200	CH ₃ O	
1a-0201	O ₂ N	
1a-202	-NO ₂	
1a-203	CH ₃ O NO ₂	

No.	X ₁ -X ₂ -X ₃
1a-204	CH3O
1a-205	CH ₃ O
1a-206	N=N-\OCH ₃
1a-207	OCH ₃
1a-208	N=CH-CH-OCH ₃
1a-209	CH ₃ O, ————————————————————————————————————
1a-210	CH3O
1a-211	CH ₃ O
1a-212	OCH ₃
. 1 a-213	OCH ₃ OCH ₃ OCH ₃

No.	$X_{1}-X_{2}-X_{3}$
1a-214	CH ₃ O
1a-215	OCH ₃
1a-216	OCH ₃
1 a-217	CH ₃ O
12-218	CH ₉ O
1a-219	-S
1a-220	CH ₃ O S
1a-221	→N-Ö-←
1a-222	
1a-223	————————————————————————————————————

No.

 $X_1 - X_2 - X_3$

1a-224	CH ₃ O ————————————————————————————————————
1a-225	O ₂ N,
1a-226	СН₃О
1a-227	CH ₃ O
1a-228	CH ₃ O
1a-229	CH ₃ O NH ₂
1a-230	CH ₃ O NO ₂
1a-231	СН3О СООН
la-232	
la-233	-CI CI CI
la-234	-CF ₃
1a-235	—————————————————————————————————————

,		
	No.	X ₁ -X ₂ -X ₃
	la-236	
	1a-237	OCH ₃ NO ₂ OCH ₃
	1a-238	OCH3 OCH3
	12-239	CH³O OCH³
	1a-240	CH3O OCH3
	12-241	CH ₃ O OCH ₃
	1a-242	CH ₃ O OCH ₃
	1a-243	CH ₃ O OCH ₃ CH ₃ O OCH ₃
	12-244	OCH ₃ OCH ₃ OCH ₃ OCH ₃
	la-245	-N-S-OCH3 OCH3
1	a-246	CH ₃ O OCH ₃ OCH ₃ OCH ₃

_		
	No.	$X_{1}-X_{2}-X_{3}$
	1a-247	CH ₃ O OCH ₃ OCH ₃
	1 a-24 8	CH₃O O CH₃O O CH₃ O O O O O O O O O O O O O O O O O O O
	la-2 4 9	CH³O Ö Ö N N
	la-250	CH3O OCH3
·	la-251	CH ₃ O OCH ₃ OCH ₃
	1a-252	CH ₃ O OCH ₃ CH ₃ O OCH ₃ OCH ₃
	1a-253	OCH ₃ OCH ₃ OCH ₃ OCH ₃
	1a-254	CH ₃ O OCH ₃ OCH ₃ OCH ₃
	la-255	O CH ₃ CH ₃
	la-256	— Ö-N- ОСН3 СН3О
1	a-257	OCH ₃ OCH ₃ OCH ₃

No.	X ₁ -X ₂ -X ₃
1a-258	—⟨¯⟩-s-⟨¯⟩
1a-259	сн₃о ————————————————————————————————————
12-260	CH ₃ O ————————————————————————————————————
1a-261	CH3O
la-262	CH₃O NH-
1a-263	CH ₃ O
1a-264	CH ₃ O
12-265	OCH ₃
1a-266	NH-CD-OCH3
1a-267	—————————————————————————————————————
1a-268	S—CH ₃
la-269	CH ₃
1a-270	-√s-√
la-271	CH₃ ———————————————————————————————————

	No.	X ₁ -X ₂ -X ₃
	1a-272	
	la-273	—————————————————————————————————————
	1a-274	-CH ₂ -COCH ₃
	1a-275	CH ₃ O
	la-276	CH ₃ O CH ₂
;	la-277	сн ₉ о
1	la-278	CH3O
1:	a-279	OCH3
12	a-280	CH3O CH3O
la	a-281	CH ₃ O O
la	-282	CH ₃ O O O O O O O O O O O O O O O O O O O
la	-283	

No.	X ₁ -X ₂ -X ₃	
la-284		
12-285	CH3O	
1a-286	CH30	
1a-287	CH ₃ O O S	
1a-288	CH₃O NH	•
1a-289	CH ₃ O N-CH ₃	
1a-290	CH ₃ O SO ₂	
la-291	CH ₃ O	
1 a-2 92	CH ₃ O NH	
1a-293	CH3O	
1a-294	CH ₉ O	

•	
No.	X ₁ -X ₂ -X ₃
1a-295	CH3O
1a-296	CH³O H
1a-297	CH ₃ O CH ₃
1a-298	
1a-299	CH ₃ O H NO ₂
. 1a-300	CH ₃ O H OCH ₃
1a-301	CH3O OCH3
1a-302	CH ₃ O NH NO ₂
1a-303	CH ₃ O OCH ₃
12-304	NH
1a-305	O ₂ N NH

No.	R ₁	$X_1-X_2-X_3$
1b-1	CH ₃	
1b-2	CH ₃	-CH ₂ -C
1b-3	н	-CH ₂ -C
1b-4	н	
1b-5	Н	CH₃O
1b-6	н	CH ₃ O
1b-7	н	CH ₃ O
1b-8	н	CH ₃ O CH ₂
1b-9	н	CH ₃ O
1b-10	н	CH ₃ O

No.	R ₁	$X_1-X_2-X_3$
1b-11	Н	OCH3 OCH3 OCH3
16-12	Н	————————————————————————————————————
1b-13	н	CH₃O OCH₃ OCH₃ OCH₃
1b-14	Н	CH ₃ O
1b-15	Н	- ⟨¯⟩-s-⟨¯⟩

No.	R_1	V V V
lc-1	CH ₃	$X_1-X_2-X_3$
1c-2	CH ₃	N=N-
1c-3	κ	
lc-4	н	——————————————————————————————————————
1c-5	н	
1c-6	н	OCH ₃
1c-7	Н.	CH ₃ O OCH ₃
1c-8	н	
1c-9	н	
1c-10	н	CH₃O
lc-11	н	CH ₃ O OCH ₃ OCH ₃
1c-12	н	CH ₃ O OCH ₃

表1 d

No.	R ₃ R ₄	X_1 - X_2 - X_3
1d-1	H SO ₂ CH ₃	-\(\big \rightarrow \rightarr
1d-2 1d-3 1d-4	н н н ОН н SO₂CH₃	-CH ₂ -C
1d-5	H SO₂CH₃	
1d-6	H SO₂CH₃	CH ₃ O
1d-7	н so₂cн₃	CH ₃ O ————————————————————————————————————
· 1d-8	H SO₂CH₃	CH ₃ O CH ₂
1d-9	H SO₂CH₃	CH ₃ O
1d-10	H SO₂CH₃	CH3O

No.	R ₃ R ₄	$X_1-X_2-X_3$
1d-11	H SO₂CH₃	OCH3 OCH3
1d-12	H SO₂CH₃	—————————————————————————————————————
1d-13	H SO₂CH₃	CH ₃ O OCH ₃ OCH ₃ OCH ₃
1d-14	н sо₂сн ₃	CH ₃ O
1 d-1 5	H SO₂CH₃	- √_>-s-√_>

	No.	Ri	X_1 - X_2 - X_3
	le-l	н	
·	1e-2	н	CH ₃ O
	1e-3	H .	—————————————————————————————————————
	1e-4	н	
	16-5	Н	ОСН ₃ ОСН ₃
	1e-6	н	CH ₃ O
	1e-7	н	СНЗО
	1e-8	н	CH ₃ O
	1e-9	н	СН ₃ О ОСН ₃ ОСН ₃ ОСН ₃
	1e-10	Н	CH ₃ O

No.	R ₂	$X_1-X_2-X_3$
1f-1	н	
1f-2	н	CH ₃ O
16-3	н	—⟨¯}-cH₂-⟨¯⟩
16-4	н	
1f-5	н	OCH3 OCH3 OCH3
1 f-6	н	CH ₃ O
16-7	н	CH ₃ O CH ₂
1f-8	н	CH ₃ O
16-9	н	СH ₃ O ОСН ₃ - С-N — ОСН ₃ ОСН ₃
1f-10	н	CH ₃ O

No.	R ₁	$X_1-X_2-X_3$
1g-1	н	
1g-2	н	CH ₃ O
1g-3	н	-CH ₂ -C
1g-4	н	
1g-5	н	ОСН ₃
1g-6	. н	CH ₃ O
1g-7	' н	- ⟨□⟩-•-⟨□⟩
1g-8	н	CH ₃ O
1g-9	н	CH ₃ O
1g-10 .	н .	CH ₃ O OCH ₃ OCH ₃
1g-11	Н	CH ₃ O, OCH ₃

No.	R ₁	X ₁ -X ₂ -X ₃
1h-1	н	
1h-2	Н	-CH ₂ -C
1Ь-3	Н	
1h-4	Н	ОСН ₃
1h-5	Н	CH ₃ O
1h-6	Н	- √>-∘-√>
1h-7	н	CH ₃ O CH ₂
1h-8	Н	CH ₃ O
1h-9	Н	СH ₃ O ОСН ₃ ОСН ₃ ОСН ₃
1h-10	. Н	CH ₉ O

表1i

 No.	R ₂	X ₁ -X ₂ -X ₃
1i-1	н	
1i-2	н	-CH ₂ -C
1i-3	н	
1i-4	н	————————————————————————————————————
1i-5	н	CH ₃ O OCH ₃
1i-6	н	- ⟨□}-∘-⟨□⟩
1i-7	H .	
1i-8	н	CH ₃ O
1i-9	н	CH ₃ O CH ₂
1i-10	н	CH ₃ O OCH ₃ OCH ₃
1i-11	н	CH ₃ O OCH ₃
1i-12	н	СН3О

No.	R ₁	X ₁ -X ₂ -X ₃	
1j-1	СН3		
1j-2	н	—(/_CH₂-(/)	
1j-3	Na		
1j-4	н	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
1j-5	СН₃		
1j-6	CH ₃		
11-7	н		
1j-8	СНз		
1j-9	CH ₃		
1j-10	н	——————————————————————————————————————	
1j-11	CH ₃	O=C	
1j-12	Н		
·		→	
1j-13	CH ₃	,C=0	
1j-14	н		
1j-15	CH₃		
1j-16	н	- (_)	

No.	R ₁	X ₁ -X ₂ -X ₃	
1j-17	н		
1j-18 1j-19	CH₃ H		
1j-20 1j-21	с н ₃	CI CI	
1j-22	н		
1j-23 1j-24	СН ₃		
1j-25 1j-26	СН ₃	~~~~~	
1j-27	н	-N-	
1j-28 1j-29	CH₃ H	-N_O	

	No.	R_1	$X_1-X_2-X_3$
	1j -3 0	Н	CH ₃ O ————————————————————————————————————
	1j-31	Н	-N=N-()-OCH ₃
	1j-32	Н	CH₃O, ————————————————————————————————————
	1j-33	Н	CH ₃ O
	1j-34	Н	CH ₃ O
;	1j-35	Н	CH ₃ O
1	j-36	Н	OCH3 OCH3
1	j-37	Н	OCH3
1j-		н	CH ₃ O OCH ₃ OCH ₃ OCH ₃

表1k

No.	R ₁	X ₁ -X ₂ -X ₃
1k-1	н	-0-CH ₂ -
1k-2	СН₃	—√
1k-3	н	
1k-4	н	
1k-5	н	
1k-6	н	
1k-7	н	─
1k-8	H .	
1k-9	н	
1k-10	н	
lk-11	CH ₃	
1k-12	н	

No.	R ₁	$X_1-X_2-X_3$
1k-13	н	-√N=N-√DCH ₃
1k-14	н	
1k-15	н	CH3O
· 1k-16	н	
lk-17	н	CH ₃ O
1k-18	Н	-CH ₂ -C
1k-19	н	OCH3
1k-20	Н	—⟨¯⟩-s-⟨¯⟩

No.	R ₁	$X_1-X_2-X_3$
lm-1 lm-2	CH₃ H	
1m-3	СН3	
1m-4	H' -	
1m-5	CH ₃	
1m-6	Н	- N=N-
lm-7	CH ₃	
1m-8	Н	─ _0 ─
1m-9	CH ₃	
1m-10	н	
lm-11	СН₃	
lm-12	н	~о~он
1m-13 lm-14	CH ₃	
	Н	-{_}-о-{_}-осн₃
lm-15 lm-16	CH3	
110-10	Н	——————————————————————————————————————
lm-17	CH ₃	
lm-18	н .	— С— ОН

No.	R_1	$X_{1}-X_{2}-X_{3}$
lm19 lm-20	CH₃ H	——————————————————————————————————————
1m-21	н	
lm-22	н	
1m-23 1m-24	CH₃ H	
1m-25 1m-26	СН ₃ Н	-OAc
lm-27 lm-28	СН ₃ Н	———ОН
1m-29 1m-30	CH₃ H	————осн ₃
1m-31	Н	
1m-32	н	
1m-33	н	

No.	R_1	X ₁ -X ₂ -X ₃
1m-34	. н	CH ₃ O
1m-35	Н	CH3O
1m-36	H	N=N-()-OCH3
lm-37	Н	CH3O
1m-38	H	OCH3 OCH3 OCH3
1m-39	Н	CH ₃ O OCH ₃ OCH ₃ OCH ₃
1m-40	Н	OCH3 OCH3

No.	R_1	$X_{1}-X_{2}-X_{3}$	
2a-1 2a-2	CH₃ H		
2a-3 2a-4	СН₃ Н	N=AL-	
2a-5 2a-6	Na CH₃		
2a-7 2a-8	Н		
2a-9 2a-10	н Сн _з	—— сно	
2a-11	Н	NH S-O	
2a-12 2a-13	CH₃ H	-C-NH	
2a-14 2a-15	сн₃ н		
2a-16 2a-17	сн _з н		
2a-18 2a-19	сн _в		
2a-20 2a-21 2a-22	CH ₃ H Na		
2a-23 2a-24	СН₃ н		

No.	R ₁	$X_1-X_2-X_3$	
² 2a-25 2a-26	CH₃ H	-CH ₂ -	
2a-27 2a-28	CH₃ H	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2a-29 2a-30	CH ₃ H	N-0-	
2a-31	СНз	N-N-()	
2a-32 2a-33	СН ₃ Н	-CH2-N N	
2a-34 2a-35	CH₃ H		
2a-36 2a-37	СН₃ Н	-H	
2a-38 2a-39	СН ₃ Н	—√	
2a-40 2a-41	СН ₃ Н	NH2	
2a-42 2a-43	CH₃ H	N, NH₂	
2a-44 2a-45	CH₃ H		
2a-46 2a-47	CH₃ H		

No.	R_1	$X_{1}-X_{2}-X_{3}$
2a-48 2a-49	СН ₃ Н	N=N N=N
2a-50 2a-51	СН ₃ Н	
2a-52 2a-53	CH₃ H	NH₂ —CN
2a-54 2a-55	СН ₃	-√N-N N-N
2a-56 2a-57	СН ₃ Н	N-N CH ₃
2a-58 2a-59	СН ₃ н	N=N N=N
2a-60 2a-61	CH3	
2a-62 2a-63	CH₃ H	
2a-64 2a-65	CH₃ H	N-O-
2a-66 2a-67	. CH³	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-68 2a-69	СН₃ Н		
2a-70 2a-71	СН ₃ Н	(-)-OAc	
2a-72 2a-73	СН ₃ Н		,
2a-74 2a-75	СН₃ Н		
2a-76 2a-77	сн₃ н	-(OAc	·
2a-78 2a-79	CH ₃	——————————————————————————————————————	
2a-80 2a-81	СН ₃ Н	- С → С → ОСН3	
2a-82 2a-83	CH₃ H	———OAc	
2a-84 2a-85	CH₃ H		
2a-86 2a-87	СН ₃ Н	С	

No.	R _I	$X_1-X_2-X_3$	
2a-88 2a-89	CH ₃	10/	
2a-90	Н		
2a-91	н СН ₃		
2a-92 2a-93	СН ₃ Н		
2a-94 2a-95	СН _З		
2a-96 2a-97	Na	. Les	
20-57	Ca ^{1/2}		
2a-98	CH3		
2a-99	н	√ > 	
2a-100	CH ₃		
22-101	.Н	NO TO	
2a-102	CH₃	7	
2a-103	н	N,O CH3	
2a-104	CH ₃		
2a-105	н	осн _з	
2a-106	CH ₃	= H.0	
2a-107	Н	-C-N-O	
22-108	CH3		
2a-109	H	-(~)-s-(~)	
22-110	Na		
2a-111	CH₃		
2a-112	н	-()-cı	

No.	R_1	X ₁ -X ₂ -X ₃
2a-113 2a-114	СН ₃ Н	——————————————————————————————————————
2a-115 2a-116	сн _э н	—∕_СH₃
2a-117 2a-118	СН ₃ Н	
2a-119	н	
2a-120	н	ÓAc —
2a-121	н	óн — <mark>⟨¯</mark> ⟩
2a-122	н	оснз
2a-123	н	-ch ₂ -
2a-124	н	-cH₂-⟨□⟩
2a-125	н	OH OH

No.	R_1	$X_1-X_2-X_3$
2a-126	н	———Br
2a-127	н	
2a-128	н	-H-
2a-129	н	
2a-130	н	
2a-131	н	
2a-132	H.	HO
2a-133	н	HO S
2a-134	н	-CH ₂ -O-
2a-135	н	
2a-136	н	

No.	R ₁	$X_{1}-X_{2}-X_{3}$
2a-137	н	
2a-138	н	————————————————————————————————————
2a-139	н	
2a-140	н	No.
2a-141	н	-OCH3
2a-142	н	H ₃ CO
2a-143	н	HO
22-144	. н	Hồ S
2a-145	н	-\(\bar{\sigma}\)-\(\bar{\sigma}\)
2a-146	н	
2a-147	Н	-√SCH3

No.	R_1	$X_{1}-X_{2}-X_{3}$
2a-148	н	——————————————————————————————————————
2a-149	н	
2a-150	н	
2a-151	н	Ts N
2a-152	н	H ₃ C N
2a-153	H	H ₃ C
2a-154	н	−CH ₃
2a-155 ·	н	-
2a-156	н	T N N N N N N N N N N N N N N N N N N N
2a-157	н	H ₃ C S N
2a-158	н	s.n
2a-159	н	————́~

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-160	н	HOOC	
2a-161	н	H ₃ C — S.N CH ₃	
2a-162	н	-\(\bigc_{\text{NO}_2}\)	
2a-163	H .	\rightarrow	·
2a-164	H		
2a-165	н	-()v	
2a-166	н	~~~~	
2a-167	н		
2a-168	н		
2a-169	н	-()-S-()-OCH3	
2a-170	н	-(s)	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-171	н	S CH ₃	
2a-172	н	H ₃ C S	
2a-173	н	SBr	
22-174	н	Br Br	
2a-175	н	H ₃ CS-S	
2a-176	н	CH₃	
2a-177	н	S OCH₃	
2a-178	н	S-s-C	
2 a-1 79	Н	Br S	
22-180	н	S OCH3	
2a-181	н	у scн ₃	
2a-182	н	S SCH3	

No.	R ₁	X ₁ -X ₂ -X ₃	
2a-183	н	-\(\)-\(\)-\(\)-\(\)	
2a-184	н	s	
2a-185	H		
2a-186	Н		
2a-187	н	H ₀ CQ	
2a-188	Н	-€D	
2a-189	н	~ N CH₃	
2a-190	н	The second secon	
2a-191	н	N.CH ₃	
2a-192	Н	N C ₂ H ₅	
2a-193	н	N Ac	

No.	R ₁	$X_{1}-X_{2}-X_{3}$	
2a-194	н	S	
2a-195	н	H ₃ C S	
2a-196	н	S CH ₃	
2a-197	н		
2a-198	H		
2a-199	н	OH OH	
2a-200	н		
2a-201	н		
2a-202	н	(
2a-203	Н		

No.	X_1 - X_2 - X_3	• .
2a-204	CH ₃	
2a-205	S CF3	
2a-206	S C ₂ H ₅	
2a-207	S C3H7	
2a-208	CH ₃	
2a-20 9	S S	
2a-210	S C4H9	
2a-211	CH₃	
2a-212	CH ₃	·
2a-213	S	

No.	$X_1-X_2-X_3$	
2a-214	C(CH ₃) ₃	
2a-215	S	
2a-216	S C	
2a-217		
2a-218	S OCH3	
2a-219	S H ₃ C	
2a-220	S H ₃ CO	
22-221	S CH₂OH	
22-222	CH ₂ OCH ₃	
2a-223	сосн _з	

No.	$X_1-X_2-X_3$	
2a-224	—(¯)—s—(¯)—сн ₃	
2a-225	—⟨¯}_s-⟨¯} _{CH3}	
2a-226	-SSSS	
2a-227	-C	
2a-228	CH ₃ S-CH ₃ CH ₃ CH ₃	•
2a-229		
2a-230	-CH ₃ -S-CH ₃	
2a-231	H₃CO ————————————————————————————————————	
2a-232	H ₃ CO S—CH ₃	
2a-233	H ₃ CO ————————————————————————————————————	

1 2 2 11 11 12 22

No.	X ₁ -X ₂ -X ₃	
2a-234	H ₃ CO	
2a-235	H ₃ CO ————————————————————————————————————	
22-236	H ₃ CO OCH ₃	
2a-237	H ₃ CO - S - S - S - S - S - S - S - S - S -	
2a-238	H ₃ CO H ₃ CO 	·
2a-239	-S-C-S-C-S-C-H ₃	
22-240	H₃C ——S———S	
22-241	H ₃ CO CH ₃ ——S——————————————————————————————————	
2a-242	CH ₃ OCH ₃	
2a-243	CH ₃ -S-S-S	

No.	$X_1-X_2-X_3$	
2a-244	OCH ₃ S H ₃ C	
2a-245	OCH ₃	
2a-246	OCH ₃ CH ₃ CH ₃	
2a-247	OCH ₃ -s- H ₃ CO	•
2a-248	OCH3	
2a-249	OCH ₃ OCH ₃ OCH ₃	
2a-250	HOH ₂ C	
2a-251	−CS−S−C H ₃ COH ₂ C	

No.	X ₁ -X ₂ -X ₃	
2a-252	CH ₃	
2a-253	S-CH ₃	
2a-254	H ₃ c´ ————————————————————————————————————	
2a-255	H ₃ CO ————————————————————————————————————	
2a-256	H ₃ CO CH ₃	
2a-257	СООН	

No.	X ₁ -X ₂ -X ₃	
2a-258	H ₃ CO	
2a-259	H3CO	
2a-260	OCH ₃	
2a-261	S OCH3	
2a-262	у Осна	
2a-263	S OCH3	
2a-264	CH₃ S	
2a-265	S CH ₃	
2a-266	SCH ₃	
2a-267	SCH ₃	

No.	X ₁ -X ₂ -X ₃	
2a-268	SOO	
2a-269		
2a-270	S	
2 a-27 1		
22-272	HO	
2a-273	D°D	
2a-274	-CSO	
2a-275	HON	·
2a-276	HO	
2a-277	-CSO	

No.	X ₁ -X ₂ -X ₃	
2a-278	S NH ₃	
2a-279	S N C ₂ H ₅	
2a-280	S N COCH ₃	
2a-281	₩ L L L L L L L L L L L L L	
2a-282	S CH ₃	
2a-283	S N C ₂ H ₅	
2a-284	S NOCH ₃	
2a-285	N-N S	
2a-286	O _B O	
2a-287	NN CH3	

No.	$X_1-X_2-X_3$
2a-288	N _{C2} H ₅
2a-289	COCH3
2a-290	
22-291	-CH ₈
2a-292	N _{C2} H ₅
2a-293	COCH₃
2a-294	
2a-295	-C-N-CH
22-296	ОСН3 ОСН3 ОСН3

No.	X ₁ -X ₂ -X ₃	1
2a-297	—————————————————————————————————————	
2a-298	—————————————————————————————————————	·
2a-299	н ₃ со осн ₃ осн ₃ осн ₃	
2a-300	CH ₃	
2a-301		
2a-302		
2a-303	-\(\bigc_{\bigchi_1}^{\bigchi_2}\)-\(\bigc_{\bigchi_1}^{\bigchi_2}\)\(\bigchi_2^{\bigchi_1}\)	
2a-304	—————————————————————————————————————	
22-305	—————————————————————————————————————	
2a-306	—————————————————————————————————————	

No.	$X_{1}-X_{2}-X_{3}$	
2a-307	H ₃ CO OCH ₃ OCH ₃ OCH ₃	
2a-308		
2a-309		
2a-310	OCH³ OCH³	
2a-311		
2a-312	—————————————————————————————————————	
2a-313	————————————————————————————————————	
22-314		
2a-315	H ₃ CO OCH ₃ OCH ₃ OCH ₃	

			1	
-	No.	R _I	X ₁ -X ₂ -X ₃	
	2b-1	н		
	2b-2	н	S	

表2c

No.	R_1	$X_1-X_2-X_3$	
2c-1	Н		
2c-2	н	$\overline{}$	
2c-3	Н	-	

表2d

No.	R ₁	$X_1-X_2-X_3$	
2d-1	н		
2d-2	н	$\overline{}$	
2d-3	н		

-	8	
æ	"	•
TT.	L	•
X	4	C

No.	R_1	$X_1 - X_2 - X_3$
261	Н	-(-)-0-(-)
2e-2	Н	
2e-3	Н	

表21

No.	R_1	$X_1 - X_2 - X_3$	
2f-1	Н	- ⟨¯⟩-o-⟨¯⟩	
2f-2	Н		
26-3	Н		

No.	$X_{1}-X_{2}-X_{3}$
2h-1	\(\sigma_s\)
2h-2	S CH ₃
2h-3	
2h-4	-\(\sigma\)-s-\(\sigma\)
2h-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2h-6	

表21

No.	X ₁ -X ₂ -X ₃
2i-1	
2i-2	сн,
2i-3	S
2i-4	-\$-\$-
2i-5	─ ~~ ~
2i-6	

	No.	$X_1-X_2-X_3$
	2j-1	
	2j-2	у сна
	2j. 3	
	2j-4	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	2 j-5	~ ~~
	2 j-6	
表21	NHCOX ₁ -X ₂ -X ₃	
<u>-</u>	No.	X_1 - X_2 - X_3
	2k-1	
	2k-2	S CH ₃
	2k-3	
	2k-4	-\s-\
	2k-5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	2k-6	

表3a

No.	R ₁	X ₁ -X ₂ -X ₃
3a-1 3a-2	CH₃ H	~
3a-3 3a-4 3a-5 3a-6 3a-7	CH₃ H H₃N ⁺ C(CH₂OH)₃ Na 1/2 Ca	- ○○
3a-8	H	——tBu
3a-9	H	
3a-10 3a-11	сн ₃	——————————————————————————————————————
3a-12 . 3a-13	СН ₃ Н	Br Br
3a-14	CH₃	Br
3a-15 3a-16	СН₃ Н	
32-17 3a-18	CH₃ H	

LC1/1130/01082

No.	R ₁	$X_1-X_2-X_3$	
32-19	CH ₃	H₃C(
3a-20	н	—∕—CH ₃	
3a-21	СН₃	H₃C	
3a-22	н	- S Br	
3a-23	CH ₃		
3a-24	Н	—(¯)—сн ₂ он	
3a-25	н	—(СН ₂) ₃ СН ₃	
32-26	CH₃		
32-27	н	-(CH ₂) ₇ CH ₃	
3a-28	CH ₃	~CI NO₂	
3a-29	H	OCH ₃	
3a-30	CH₃	-√_>cı	
3a-31	Ch	NH ₂	
3a-32	CH₃ H		
3a-33	Na Na		
3a-34	н		
3a-35	Na		

表3b

No.	R ₁	X ₁ -X ₂ -X ₃
3b-1	CH ₃	-CH ₂
3b-2	н	
3b-3	н	N=N-
3b-4	Н	Br

表3c

No.	R ₁	X ₁ -X ₂ -X ₃	
3c-1	н	-\(\bar{\rightarrow}\)-N=N-\(\bar{\rightarrow}\)	

表3d

No.	R ₁	$X_1-X_2-X_3$	
3d-1 3d-2	1/2 Ca Na	-	
3d-3	Na	—(¯)—сн₃	
3d-4	Na	-CI	
3d-5	CH ₃		
3d-6	Н		
3d-7	CH ₃		
3d-8	Н		
3d-9	Na		
3d-10	CH ₃		
3d-11	Н		
3d-12	Na		
3d-13	1/2 Ca		
3d-14	н		
3 d-1 5	Na		

	<u> </u>		i i		
	No.	R ₁	$X_1-X_2-X_3$		
	3d-16	н	-(_)-		
	3d-17	н	-(CH ₂).	₄CH ₃	
	3d-18	н	—(СН ₂)₃СН₃	ı	
	3d-19	CH ₃		•	
	3d-20	Н	—инсн ₃		
	3d-21	СН₃			
	3d-22	н	N	•	
	3d-23	н	-√_Br		
•	3d-24	н			
	3d-25				
	3d-26	H Na	-{-} C₂H₅	ラセミ体	
	3d-27 3d-28	H Na	C ₂ H ₅	ラセミ体	
	3d-29 3d-30	H Na	→ Br	ラセミ体	
₹3 e					
			a		

N	lo.	R ₁	X_1 - X_2 - X_3
3e-1	l	1/2Ca	-€

FC1/JF70/U1000

上記化合物の物性値を以下に示す。尚、上記化合物No.は、表中の化合物のNo.と対応する。

No.1 a - 4

[α]D=-11.5° (CHCl3,c=1.01,23.5°C).

No.1 a - 5

 $[\alpha]D = -10.0^{\circ} (CHCl3, c=1.01, 25.0^{\circ}).$

No.1 a - 6

CDC13 300MHz

0.93-1.96(14H,m), 2.20-2.26(3H,m), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz),

5.10-5.24(2H,m),7.37-7.51(3H,m),7.54-7.64(3H,m),7.76-7.88(2H,m),8.11(1H,m).

IR(CHCl3):3384,3278,3026,2952,2874,1727,1436,1411,1324,1155,1097/cm.

[α]D=-9.0° (CHCl3,c=1.04,22.0°C).

No.1 a - 7

CDC13 300MHz

0.93-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 3.04(1H,m), 5.15-5.25(2H,m),

5.28(1H,d,J=6.9Hz),7.36-7.50(3H,m),7.54-7.63(3H,m),7.76-7.89(2H,m),

8.12(1H,m).

IR(CHCl3):3268,3028,2952,2872,1708,1452,1410,1324,1155,1097 /cm.

[α]D=-9.1° (CHCl3,c=1.01,24.0°C).

No.1 a - 8

CDC13 300MHz

0.94-1.99(14H,m), 2.21-2.29(3H,m), 3.05(1H,m), 3.67(3H,s), 4.92(1H,d,J=6.3Hz),

5.14-5.30(2H,m),7.70-7.78(6H,m),7.96-8.01(2H,m).

IR(CHCl3):3376,3272,3018,2946,2868,1727,1616,1435,1388,1324,1162,1130,1 069 /cm.

 $[\alpha]D=+1.6^{\circ}$ (CHCl3,c=1.01,24.0°C). mp.117-119°C.

No.1 a - 9

CDCl3 300MHz

0.95-2.08(14H,m), 2.19(1H,m), 2.32(2H,t,J=7.2Hz), 3.06(1H,m), 5.20-5.30(2H,m), 5.34(1H,d,J=6.6Hz), 7.69-7.78(6H,m), 7.96-8.03(2H,m).

IR(CHCl3):3260,3020,2950,2868,1708,1389,1324,1162,1130,1069 /cm.

[α]D=+13.3° (CHCl3,c=1.05,24.0°).

mp.118-120℃

No.1 a - 10

CDCl3 300MHz

0.96-1.98(14H,m), 2.15-2.32(3H,m), 3.04(1H,m), 3.66(3H,s), 5.12-

5.26(5H,m), 7.67-7.78(4H,m), 7.93-8.07(4H,m).

IR(CHCl3):3276,3018,2946,2868,1726,1595,1435,1341,1162,1095/cm.

[α]D= -1.5° (CHCl3,c=1.01,25.0°C).

mp.133-139℃.

No.1 a - 1 1

CD3OD 300MHz

1.05-1.98(14H,m),2.13-2.22(3H,m),2.97(1H,m),5.09-5.22(2H,m),7.85-

7.92(4H,m),7.95-8.05(4H,m).

IR(KBr): 3385, 3261, 3069, 3003, 2954, 2872, 1708, 1596, 1428, 1413, 1378, 1343, 132, 133, 134

6,1236,1186,1160,1096 /cm.

mp.144-146℃.

No.1 a - 12

CDC13 300MHz

 $0.96 \cdot 1.96(14H,m), 2.22 \cdot 2.27(3H,m), 3.03(1H,m), 3.66(3H,s), 3.87(3H,s), 4.86(1H,m), 4.3 \cdot 6.9 \cdot 7.51, 5.18 \cdot 5.24(2H,m), 6.99 \cdot 7.02(2H,m), 7.55 \cdot 7.66(2H,m), 7.66 \cdot 7.69(2H,m), 7.89 \cdot 7.92(2H,m).$

IR(CHCl3):3374,3270,3016,2948,2870,1726,1608,1518,1487,1458,1437,1248,1 157,1037.

[α]D=+4.2° (CHCl3,c=1.01,24°C).

mp.85-87℃.

No.1 a - 1 3

CDCl3 300MHz

0.97 - 1.99(14H,m), 2.18(1H,m), 2.30(2H,t,J=7.2Hz), 3.04(1H,m), 3.86(3H,s), 5.18(1H,d,J=5.7Hz), 5.23 - 5.26(2H,m), 6.99 - 7.02(2H,m), 7.55 - 7.58(2H,m), 7.66 - 7.68(2H,m), 7.89 - 7.92(2H,m).

IR(CHCl3):3380,3260,3020,2948,2868,1708,1608,1519,1487,1458,1306,1293,1 248,1156 /cm.

[α]D=+18.3° (CHCl3,c=1.00,25.5°C).

No.1 a - 14

CDC13 300MH₂

0.98.2.00/1411 - 0.00/177 . . .

FC1/JP90/01085

0.95-2.00(14H,m), 2.17(1H,m), 2.32(2H,t,J=7.2Hz), 3.03(1H,m), 5.20(1H,d,J=6.9Hz), 5.24-5.28(2H,m), 7.13(1H,dd,J=4.8,3.3Hz), 7.38(1H,d,J=4.8Hz), 7.43(1H,d,J=3.3Hz), 7.73(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz).

IR(CHCl3):3260,3022,2948,2868,1709,1593,1404,1321,1154/cm.

 $[\alpha]D = +20.8^{\circ}$ (CHCl3,c=1.07,23°C).

mp.71.73℃.

No.1 a - 16

CDC13 300MHz

0.98-2.00(14H,m), 2.27(2H,t,J=7.5Hz), 2.28(1H,m), 3.13(1H,m), 3.66(3H,s), 4.90(1H,d,J=6.9Hz), 5.25-5.29(2H,m), 7.40-7.65(6H,m), 7.76(1H,d,J=8.4Hz), 7.90-8.02(4H,m).

IR(CHCl3):3376,3276,3018,2946,2868,1726,1593,1435,1394,1322,1159/cm. $[\alpha]D=+7.0^{\circ}$ (CHCl3,c=1.07,24°C).

No.1 a - 17

CDCl3 300MHz

 $1.02-2.07(14H,m), 2.25(1H,m), 2.34(2H,t,J=6.6Hz), 3.14(1H,m), 5.28-5.33(3H,m), \\7.39-7.57(4H,m), 7.62-7.65(2H,m), 7.76(1H,d,J=8.1Hz), 7.89-8.02(4H,m). \\IR(CHCl3): 3260, 2948, 2868, 1709, 1593, 1394, 1324, 1157/cm. \\ [\alpha]D=+20.2° (CHCl3, c=1.02, 24°C).$

No.1 a - 18

CDC13 300MHz

1.05 - 1.97(14H,m), 2.25(2H,t,J=7.2Hz), 2.33(1H,m), 3.12(1H,m), 3.67(3H,s), 4.91(1H,d,J=6.6Hz), 5.24 - 5.29(2H,m), 7.24(1H,d,J=3.9Hz), 7.39 - 7.45(3H,m), 7.56(1H,d,J=3.9Hz), 7.59 - 7.62(2H,m).

IR(CHCl3):3372,3272,,3018,2946,2868,1727,1433,1331,1152/cm. [α]D=-5.7° (CHCl3,c=1.01,23°C).

CANDA JUI CAUD.

No.1 a - 19

CDC13 300MHz

1.05-2.05(14H,m), 2.28-2.33(3H,m), 3.13(1H,m), 5.18(1H,d,J=6.3Hz), 5.27-5.31(2H,m), 7.24(1H,d,J=4.2Hz), 7.39-7.42(3H,m), 7.56(1H,d,J=4.2Hz), 7.58-7.62(2H,m)

IR(CHCl3):3372,3254,3018,2948,2868,1707,1431,1328,1151/cm.

 $[\alpha]D = +4.5^{\circ} (CHC13,c=1.01,21.5^{\circ}).$

No.1 a - 20

CDCl3 300MHz

1.05-2.00(14H,m), 2.26(2H,t,J=7.5Hz), 2.33(1H,m), 3.11(1H,m), 3.68(3H,s), 4.92(1H,d,J=6.0Hz), 5.27(2H,m), 7.05(1H,m), 7.10(1H,d,J=3.6Hz), 7.25(1H,m), 7.32(1H,m), 7.49(1H,d,J=3.6Hz).

IR(CHCl3):3372,3272,3018,2946,2686,1727,1438,1417,1333,1151/cm.

[α]D=-9.2° (CHCl3,c=1.01,25°C).

No.1 a - 21

CDC13 300MHz

1.02-2.01(14H,m), 2.28-2.34(3H,m), 3.13(1H,m), 5.12(1H,d,J=6.9Hz), 5.28-5.32(2H,m), 7.06(1H,m), 7.10(1H,d,J=3.9Hz), 7.25(1H,m), 7.32(1H,m), 7.50(1H,d,J=3.9Hz).

IR(CHCl3):3350,3250,2948,1709,1440,1420,1330,1151.

 $[\alpha]D=+2.5^{\circ}$ (CHCl3,c=1.00,25°C).

No.1 a - 2 2

CDC13 300MHz

 $0.96-2.05(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.0Hz), 3.11(1H,m), 5.20-5.34(2H,m), \\ 5.41(1H,d,J=6.6Hz), 7.31-7.49(5H,m), 7.62(1H,d,J=7.8Hz), 8.11(1H,d,d,J=1.8anz), \\ 6.41(1H,d,J=6.6Hz), 7.31-7.49(5H,m), 7.62(1H,d,J=7.8Hz), 8.11(1H,d,d,J=1.8anz), \\ 6.41(1H,d,J=6.6Hz), 7.31-7.49(5H,m), 7.62(1H,d,J=7.8Hz), \\ 6.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=6.6Hz), 7.41(1H,d,J=$

d7.8Hz), 8.35(1H, d, J=1.8Hz).

IR(CHCl3):3384,3271,3025,2958,1708,1608,1559,1537,1357,1168/cm.

 $[\alpha]D=+18.3(CHC13,C=0.31,22^{\circ}).$

No.1 a - 23

CDC13 300MHz

 $0.97 \cdot 2.07 (14 \mathrm{H,m}), 2.24 (1 \mathrm{H,m}), 2.35 (2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 3.09 (1 \mathrm{H,m}), 3.86 (3 \mathrm{H,s}), 5.24 \cdot 100 (100 \mathrm{H,m}), 5.24 \cdot 100 (100 \mathrm{H,m}$

5.35(2H,m), 5.44(1H,d,J=6.3Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.59(1H,d,J=6.3Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.59(1H,d,J=6.2Hz), 6.97-7.00(2H,m), 7.26-7.28(2H,m), 7.26-7

=8.1Hz),8.06(1H,d.d,J=2.1and8.1Hz),8.29(1H,d,J=2.1Hz).

IR(CHCl3):3384,3270,2959,1709,1609,1535,1519,1357,1302,1255,1226,1169/c

m.

 $[\alpha]D=+17.0^{\circ}(CHCl3, C=1.00,21^{\circ}C).$

No.1No.1 a - 24

CDC13 300MHz

0.95-2.00(14H,m),2.20-2.25(1H,m),2.26(2H,t,J=7.2Hz),3.02-3.10(1H,m),

3.66(3H,s), 4.92(1H,d,J=6.6Hz), 5.16-5.31(2H,m), 7.52-7.60(3H,m), 7.94

8.06(6H,m).

IR(CHCl3):3376,3020,2946,2868,1726,1436,1366,1298,1164,1090,890/cm.

 $[\alpha]D=+11.2\pm0.5^{\circ}(CHCl3,c=1.04,23.5^{\circ})$

mp.101-103℃

No.1 a - 25

CDCl3 300MHz

 $0.95 \cdot 2.08(14H,m), 2.15 \cdot 2.22(1H,m), 2.33(2H,t,J=6.9Hz), 3.02 \cdot 3.10(1H,m), \quad 5.21 \cdot 3.02 \cdot 3.10(1H,m), \quad 5.21 \cdot 3.02 \cdot 3.10(1H,m), \quad 5.21 \cdot 3.02 \cdot 3.02 \cdot 3.10(1H,m), \quad 5.21 \cdot 3.02 \cdot 3.02$

5.31(2H,m), 5.34(1H,d,J=6.3Hz), 7.51-7.59(3H,m), 7.92-8.07(6H,m).

IR(CHCl3):3258,3022,2948,2868,1707,1399,1328,1298,1163,1089,1051,892/cm

 $[\alpha]D=+29.8\pm0.7^{\circ}(CHCl3,c=1.05,25^{\circ})$

mp.158-160℃

No.1 a - 26

Anal. Calcd for C26H30N3O4SNa 0.8H2O:C,60.29;H,6.15;N,8.11;S,6.19;Na, 4.44.

Found: C,60.15; H,6.19; N,8.15; S,6.03; Na,4.98.

 $[\alpha]D = -16.6^{\circ}$ (CHCl3,c=1.04,25.0°C).

No.1 a - 27

CDCl3 300MHz

0.92-1.98(14H,m),2.20(1H,m),2.26(2H,t,J=7.5Hz),3.03(1H,m),3.12(6H,s),3.66(3H,s),4.87(1H,d,J=6.6Hz),5.16-5.32(2H,m),6.73-6.80(2H,m),7.88-8.00(6H,m). IR(CHCl3):3376,3020,2946,1726,1601,1518,1442,1419,1362,1312,1163,1133,1088/cm.

 $[\alpha]D=+55.3^{\circ}$ (CHCl3,c=0.53,24.0°C).

mp.158-168℃

No.1 a - 2 8

CDCl3+CD3OD 300MHz

0.99-2.14(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.94(1H,m), 3.12(6H,s), 5.22-5.38(2H,m), 6.73-6.81(2H,m), 7.87-8.00(6H,m).

IR(KBr):3434,3309,2946,1708,1604,1520,1442,1416,1366,1312,1252,1164,115 5,1134,1091/cm.

[α]D= 測定不能 (着色 , エネルギー不足)

mp.193-196℃

No.1 a - 29

CD3OD 300MHz

5.27(2H,m),6.80-6.87(2H,m),7.84-8.00(6H,m).

IR(KBr):3433,3087,3004,2949,2871,1604,1565,1520,1444,1420,1364,1312,125 3,11638,1136,1090 /cm.

[α]D= 測定不能

No.1 a - 30

CDCl3 300MHz

0.95-1.99(14H,m), 2.22(1H,m), 2.26(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 3.66(3H,s), 4.95(1H,d,J=6.9Hz), 5.15-5.30(2H,m), 7.26-7.32(2H,m), 7.97-8.06(6H,m). IR(CHCl3): 3374, 2996, 2946, 2868, 1763, 1728, 1591, 1495, 1435, 1368, 1299, 1228, 1192, 1163, 1139 /cm.

 $[\alpha]D=+12.9^{\circ}$ (CHCl3,c=1.04,26.0°C).

No.1 a - 31

CDC13 300MHz

0.93-2.01(14H,m), 2.19(1H,m), 2.31(2H,t,J=7.2Hz), 2.35(3H,s), 3.06(1H,m), 5.17-5.32(2H,m), 7.25-7.32(2H,m), 7.96-8.07(6H,m).

IR(CHCl3):3267,3028,2952,2874,1759,1708,1592,1495,1368,1328,1299,1163,1 138,1088,1050,1008/cm.

 $[\alpha]D=+21.7^{\circ}(CHCl3,C=0.51,22^{\circ}).$

No.1 a - 32

CDC13 300MHz

0.93-1.99(14H,m),2.21(1H,m),2.27(2H,t,J=7.2Hz),3.05(1H,m),3.67(3H,s),4.92(1H,d,J=6.6Hz),5.15-5.30(2H,m),6.72(1H,s),6.96-7.00(2H,m),7.86-8.04(6H,m). IR(CHCl3):3374,3276,3018,2946,2686,1725,1605,1589,1502,1433,1396,1330,1 271,1164,1135,1089 /cm. [α]D= +18.6° (CHCl3,c=1.00,26.0°C).

No.1 a - 3 3

CDCl3+CD3OD 300MHz

0.98-2.08(14H,m), 2.20(1H,m), 2.28(2H,t,J=7.2Hz), 2.98(1H,m), 5.18-5.32(2H,m), 6.92-6.99(2H,m), 7.85-8.02(6H,m).

IR(KBr):3385,3248,2948,2876,1717,1601,1505,1430,1399,1296,1280,1219,116 5,1136,1092 /cm.

[α]D= -16.0° (CH3OH,c=1.08,26.0°).

mp.208-210℃

No.1 a - 34

mp.82-83°C [α]D=+10.6° (CHCl3,c=1.01,23.5°C).

No.1 a - 35

mp.80-82°C [α]D= -1.8° (CHCl3,c=1.07,22.0°C).

No.1 a - 36

TLC Rf=0.25 (酢酸エチル-n-ヘキサン=1:1 (0.3%酢酸))

No.1 a - 37

CDC13 300MHz

0.92-1.96(14H,m),2.21(1H,m),2.27(2H,t,J=7.4Hz),3.01(1H,m),3.66(3H,s),4.71(

1H,d,J=6.6Hz), 5.14-5.29(2H,m), 7.12(1H,d,J=16.2Hz), 7.24(1H,d,J=16.2Hz), 7.24(1H,d,J=16.2Hz)

8-7.42(3H,m), 7.52-7.56(2H,m), 7.62(2H,d,J=8.7Hz), 7.85(2H,d,J=8.7Hz).

IR(CHCl3):3384,3283,3023,2954,2876,1730,1595,1494,1317,1163,1147/cm.

 $[\alpha]D = +10.5^{\circ} (CHCl3,c=1.01,24^{\circ}C).$

mp 116-117 ℃.

No.1 a - 3 8

CDC13 300MHz

0.00 1.00/1477 \ 0.444

7.11(1H,d,J=16.2Hz), 7.23(1H,d,J=16.2Hz), 7.28-7.41(3H,m), 7.52-7.55(2H,m), 7.61(2H,d,J=8.7Hz), 7.86(2H,d,J=8.7Hz).

IR(CHCl3):3515,3384,3270,3022,3015,2957,2876,2669,1708,1595,1496,1320,1 157/cm.

 $[\alpha]D = +27.1^{\circ} (CHCl3,c=1.02,24^{\circ}C).$

No.1 a - 39

CDC13 300MHz

 $0.92 \cdot 1.99(14H,m), 2.15(1H,m), 2.28(2H,t,J=7.4Hz), 3.01(1H,m), 3.68(3H,s), 4.96(1H,d,J=6.6Hz), 5.16 \cdot 5.32(2H,m), 6.60(1H,d,J=12.0Hz), 6.74(1H,d,J=12.0Hz), 7.16 \cdot 7.23(5H,m), 7.35(2H,d,J=8.4Hz), 7.72(2H,d,J=8.4Hz).$

IR(CHCl3):3384,3283,3023,3015,2954,2876,1730,1595,1493,1324,1163,1147/cm.

 $[\alpha]D = +13.7^{\circ}$ (CHCl3,c=1.00,24°C).

No.1 a - 40

CDC13 300MHz

 $0.90 \cdot 2.16(14H,m), 2.12(1H,m), 2.34(2H,t,J=7.2Hz), 3.02(1H,m), 5.16(1H,d,J=6.9Hz), 5.23 \cdot 5.34(2H,m), 6.60(1H,d,J=12.3Hz), 6.74(1H,d,J=12.3Hz), 7.14 \cdot 7.24(5H,m), 7.35(2H,d,J=8.1Hz), 7.72(2H,d,J=8.1Hz).$

IR(CHCl3):3515,3384,3269,3025,3021,3014,2957,2876,2668,1709,1595,1322,1 162,1147 /cm.

[α]D= +26.4° (CHCl3,c=1.00,24°C).

No.1 a - 41

CDC13 300MHz

0.98 - 1.99(14 H,m), 2.17(1 H,m), 2.32(2 H,t,J = 7.2 Hz), 3.00(1 H,m), 3.84(3 H,s), 5.20 - 1.00(1 H,m), 3.84(3 H,s), 3.00(1 H,m), 3.00(1 H,m),

7.49(2H,m), 7.58(2H,d,J=8.4Hz), 7.83(2H,d,J=8.4Hz).

IR(CHCl3):3258,3018,3002,2950,1709,1590,1509,1457,1404,1302,1250,1153/cm.

 $[\alpha]D = +30.2^{\circ} (CHCl3,c=1.00,23^{\circ}).$

mp.99-100 ℃

No.1 a - 42

CDC13 300MHz

1.01-1.99(14H,m),2.28(2H,t,J=7.2Hz),2.30(1H,m),3.10(1H,m),3.66(3H,s),5.07(1H,br),5.25-5.30(2H,m),6.98-7.04(2H,m),7.16(1H,d,J=16.2Hz),7.28-7.37(3H,m),7.47-7.50(3H,m).

IR(CHCl3):3372,3276,3020,2946,2870,1727,1491,1433,1331,1152 /cm. [α]D= -11.5° (CHCl3.c=1.07.21.5°)

No.1 a - 43

CDC13 300MHz

0.98-2.00(14H,m), 2.11-2.36(3H,m), 3.12(1H,m), 5.10(1H,d,J=6.6Hz), 5.29-

5.32(2H,m), 6.99-7.04(2H,m), 7.23(1H,d,J=21.6Hz), 7.32-7.49(6H,m).

IR(CHCl3):3380,3248,3020,2948,2868,1709,1491,1430,1329,1151/cm.

[α]D= +3.4° (CHCl3,c=1.03,25°C).

No.1 a - 44

CDC13 300MHz

1.00-2.00(14H,m), 2.13(1H,m), 2.29(2H,t,J=7.4Hz), 2.90-3.13(5H,m), 3.68(3H,s),

4.74(1H,d,J=6.6Hz),5.15-5.30(2H,m),7.18-7.29(7H,m),7.76(2H,d,J=8.1Hz).

IR(CHCl3):3384,3282,3063,3028,3023,3016,2953,2876,1730,1599,1496,1319,1

157/cm.

[a]D=+2 3° (CHC12 -- 1 00 0=00

No.1 a - 45

CDC13 300MHz

0.90-2.05(14H,m), 2.09(1H,m), 2.35(2H,t,J=6.9Hz), 2.90-3.13(5H,m), 5.18(1H,d,J=6.6Hz), 5.24-5.34(2H,m), 7.10-7.27(7H,m), 7.76(2H,d,J=8.4Hz).

IR(CHCl3):3510,3384,3270,3087,3063,3026,3018,3014,2955,2876,2670,1708,1 599,1496,1318,1157/cm.

 $[\alpha]D=+8.5^{\circ}$ (CHCl3,c=1.01,25°C).

No.1 a - 46

[α]D=+6.8° (CHCl3,c=1.05,25°C). mp.99-100°C.

No.1 a - 47

CDCl3 300MHz

 $0.97 \cdot 2.01(14H,m), 2.14(1H,m), 2.36(2H,t,J=7.2Hz), 3.02(1H,m), 5.23(1H,d,J=5.4Hz), 5.26-5.30(2H,m), 7.37-7.39(3H,m), 7.54-7.58(2H,m), 7.63-7.66(2H,m), 7.85-7.88(2H,m).$

IR(CHCl3):3375,3260,3022,2948,2212,1707,1596,1497,1396,1322,1160/cm. [α]D=+25.0° (CHCl3,c=1.02,24°C). mp.117-118°C.

No.1 a - 48

CD3OD 300MHz

1.05-1.93(14H,m), 2.10-2.15(3H,m), 2.96(1H,m), 5.08-5.28(2H,m), 7.38-7.40(3H,m), 7.554-7.56(2H,m), 7.69(1H,d,J=8.4Hz), 7.87(1H,d,J=8.4Hz).

No.1 a - 49

CDC13 300MHz

 $0.96 \cdot 1.97(14H,m), 2.24(1H,m), 2.31(2H,t,J=6.9Hz), 3.05(1H,m), 3.69(3H,s), 5.15(1H,d,J=6.6Hz), 5.25 \cdot 5.27(2H,m), 7.40 \cdot 7.43(3H,m), 7.61 \cdot 7.64(2H,m), 7.85(1H,d,J=8.1Hz), 8.07(1H,dd,J=8.1,1.8Hz), 8.58(1H,d,J=1.8Hz).$

PC1/JP90/01085

IR(CHCl3):3374,3020,2948,2870,2212,1726,1606,1530,1493,1437,1345,1167/c m.

[α]D=+2.4° (CHCl3,c=1.03,25°C). mp.77-79°C.

No.1 a - 50

CDCl3 300MHz

 $1.00-2.02(14H,m), 2.20(1H,m), 2.34(2H,t,J=6.6Hz), 3.08(1H,m), 5.26-5.29(2H,m), \\ 5.41(1H,d,J=6.9Hz), 7.40-7.43(3H,m), 7.61-7.64(2H,m), 7.84(1H,d,J=8.1Hz), 8.07 \\ (1H,dd,J=8.4,1.8Hz), 8.57(1H,dd,J=1.8Hz).$

IR(CHCl3):3380,3254,2952,2880,2212,1707,1606,1531,1493,1409,1344,1166. [α]D=+23.4° (CHCl3,c=1.00,25 $^{\circ}$ C).

No.1 a - 51

CDC13 300MHz

0.95-1.98(14H,m), 2.23(1H,m), 2.30(2H,t,J=7.2Hz), 3.00(1H,m), 3.66(3H,s), 4.56(2H,br), 4.70(1H,d,J=6.9Hz), 5.20-5.29(2H,m), 7.15(1H,dd,J=7.8,1.8Hz), 7.23(1H,d,J=1.8Hz), 7.36-7.39(3H,m), 7.46(1H,d,J=7.8Hz), 7.53-7.56(2H,m).

IR(CHCl3):3494,3386,3028,2952,2874,1725,1611,1559,1497,1422,1317,1162/c m.

No.1 a - 52

CDCl3 300MHz

0.96-2.04(16H,m), 2.20(1H,m), 2.36(2H,t,J=6.9Hz), 2.99(1H,m), 5.17(1H,d,J=6.3Hz), 5.28-5.31(2H,m), 7.18(1H,dd,J=9.6,1.8Hz), 7.25(1H,m), 7.36-7.39(3H,m), 7.46(1H,d,J=7.8Hz), 7.52-7.56(2H,m).

IR(CHCl3):3482,3378,3260,3022,2948,2868,1708,161

2,1495,1422,1317/cm.

 $[\alpha]D=+15.0^{\circ} (CHCl3,c=1.00,24^{\circ}).$

No.1 a - 5 3

CDC13 300MHz

1.01-2.05(15H,m),2.31(2H,t,J=7.2Hz),3.10(1H,m),3.67(3H,s),5.02(1H,br),5.26-5.33(2H,m),7.18(1H,d,J=4.2Hz),7.36-7.39(3H,m),7.48(1H,d,J=4.2Hz),7.51-7.55 (2H,m).

IR(CHCl3):3372,3270,3018,3004,2946,2868,2202,1726,1486,1433,1336,1154/cm.

[α]D=+0.6° (CHCl3,c=1.11,25°C), [α]436 +17.8° (CHCl3,c=1.11,25°C).

No.1 a - 54

CDC13 300MHz

 $0.99 \cdot 2.11(14H,m), 2.27(1H,m), 2.37(2H,t,J=7.5Hz), 3.13(1H,m), 5.16(1H,d,J=6.6Hz), 5.31 \cdot 5.35(2H,m), 7.18(1H,d,J=3.6Hz), 7.37 \cdot 7.39(3H,m), 7.50(1H,d,J=3.6Hz), 7.52 \cdot 7.55(2H,m).$

IR(CHCl3):3484,3370,3246,2948,2868,2202,1708,1486,1429,1335,1153/cm. [α]D=+17.8° (CHCl3,c=1.00,24 $^{\circ}$). mp.95-96 $^{\circ}$

No.1 a - 55

CDC13 300MHz

0.95-1.92(14H,m),2.15(1H,m),2.24(2H,t,J=7.5Hz),3.00(1H,m),3.66(3H,s),5.10-5.30(3H,m),7.40-7.60(7H,m),7.70(1H,d,J=7.8Hz),8.08(1H,d,J=8.1Hz). IR(CH Cl3):3356,3020,2948,2868,2210,1727,1490,1458,1437,1341,1165/cm. [α]D=-58.4° (CHCl3,c=1.00.26 $\mathbb C$). mp.84-85 $\mathbb C$

No.1 a - 56

CDC13 300MHz

0.95-1.95(14H,m), 2.10(1H,m), 2.27(2H,t,J=6.9Hz), 3.00(1H,m), 5.17-5.21(2H,m), 5.38(1H,d,J=6.9Hz), 7.39-7.60(7H,m), 7.70(1H,dd,J=7.8,1.5Hz), 8.07(1H,J=6.6,1.5Hz).

L L 1/U1 / U/U1 U0:

IR(CHCl3):3364,3026,2952,2874,2212,1707,1597,1491,1458,1411,1341,1164/c m.

[α]D=-43.1° (CHCl3,c=1.00,25°C).

No.1 a - 57

CDC13 300MHz

0.99-1.97(14H,m), 2.23-2.30(3H,m), 3.01(1H,m), 3.67(3H,s), 5.17-5.26(3H,m), 7.36-7.38(3H,m), 7.50-7.56(3H,m), 7.60(1H,m), 7.83(1H,m), 8.05(1H,m).

IR(CHCl3):3376,3020,2946,2870,1727,1598,1491,1437,1412,1330,1245,1163/cm.

[α]D=-12.7° (CHCl3,c=1.00,24°C).

No.1 a - 58

CDC13 300MHz

0.97-1.98(14H,m), 2.20(1H,m), 2.33(2H,t,J=6.9Hz), 3.02(1H,m), 5.19-5.28(3H,m), 7.36-7.38(3H,m), 7.47-7.55(3H,m), 7.69(1H,m), 7.83(1H,m), 8.04(1H,m).

IR(CHCl3):3376,3260,3022,3002,2948,2868,2220,1708,1598,1490,1455,1412,1 327,1162/cm.

[α]D=-8.6° (CHCl3,c=1.01,24°C).

No.1 a - 59

CDC13 300MHz

 $0.95 \cdot 1.99(24H,m), 2.20(1H,m), 2.28(2H,t,J=7.8Hz), 2.53(1H,s), 2.96(1H,m), 3.69(3H,s), 4.99(1H,d,J=6.6Hz), 5.18 \cdot 5.20(2H,m), 7.53(2H,d,J=8.4Hz), 7.82(2H,d,J=8.4Hz).$

IR(CHCl3):3583,3376,3002,2936,2852,1725,1591,1490,1437,1393,1325,1160/cm.

[α]D=-8.8° (CHCl3,c=1.00,24°C).

No.1 a - 60

CDC13 300MHz

0.96-2.05(24H,m), 2.22(1H,m), 2.33(2H,m), 2.88(1H,m), 5.22-5.26(2H,m), 5.30(1H,d,J=5.7Hz), 7.50(2H,d,J=8.7Hz), 7.80(2H,d,J=8.7Hz).

IR(CHCl3):3376,3260,3022,2936,2852,1710,1592,1491,1452,1395,1325,1159/c m.

[α]D=-8.9° (CHCl3,c=1.06,24°C), mp.88-91°C

No.1 a - 61

CDC13 300MHz

0.95-2.24(23H,m), 2.29(2H,m), 2.99(1H,m), 3.69(3H,s), 4.76(1H,d,J=6.3Hz), 5.21-5.24(2H,m), 6.28(1H,m), 7.50-7.53(2H,m), 7.77-7.80(2H,m).

IR(CHCl3):3374,3270,3018,2942,2868,2196,1726,1589,1490,1435,1324,1158/c m.

[α]D=+7.7° (CHCl3,c=1.02,24°C), mp.93-95°C

No.1 a - 62

CDC13 300MHz

0.96-2.45(23H,m),2.36(2H,d,J=6.9Hz),2.99(1H,m),5.24(1H,d,J=6.3Hz),5.24-5.3 2(2H,m),6.28(1H,m),7.50-7.53(2H,m),7.78-7.81(2H,m). IR(CHCl3):3468,3374, 3260,3020,2942,2868,2196,1598,1490,1455,1398,1322,1157/cm. $[\alpha] D = +19.4^{\circ} (CHCl3.c = 1.03.24 ^{\circ})$

No.1 a - 63

CDCl3 300MHz

 $0.93 \cdot 1.95(25H,m), 2.16(1H,m), 2.29(2H,t,J=7.2Hz), 2.43(2H,t,J=6.9Hz), 2.94(1H,m), 3.69(3H,s), 4.95(1H,d,J=6.9Hz), 5.21 \cdot 5.24(2H,m), 7.49(2H,d,J=8.7Hz), 7.79(2H,J=8.7Hz).$

IR(CHCl3):3376,3018,2946,2866,2222,1727,1592,1456,1435,1325,1158/cm. [α]D=+3.7° (CHCl3,c=1.00,25 $^{\circ}$).

No.1 a - 64

CDC13 300MHz

0.93-1.97(26H,m), 2.35(2H,t,J=7.2Hz), 2.43(2H,t,J=7.2Hz), 3.00(1H,m), 5.08(1H,d,J=6.6Hz), 5.26-5.27(2H,m), 7.49(2H,d,J=8.7Hz), 7.78(2H,d,J=8.7Hz).

IR(CHCl3):3260,3020,2948,2864,2222,1708,1592,1489,1456,1397,1324,1156/c m.

[α]D=+14.4° (CHCl3,c=1.00,25°) mp.70-71°C.

No.1 a - 65

CDC13 300MHz

0.95-1.98(14H,m),2.18(1H,m),2.30(2H,t,J=7.2Hz),3.00(1H,m),3.67(3H,s),4.83(1H,d,J=6.9Hz),5.22-5.25(2H,m),5.54(1H,br),6.82-6.85(2H,m),7.42-7.45(2H,m),7.59-7.62(2H,m),7.82-7.85(2H,m).

IR(CHCl3):3576,3374,3018,2946,2868,2208,1725,1607,1587,1514,1435,1325,1 270,1162,1133/cm.

[α]D=+9.1° (CHCl3,c=1.03,24°C), mp.111-112°C

No.1 a - 66

CDC13 300MHz

0.97-2.03(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.00(1H,m), 5.17(1H,d,J=6.6Hz), 5.26-5.30(2H,m), 6.82-6.85(2H,m), 7.42-7.45(2H,m), 7.59-7.62(2H,m), 7.82-7.85(2H,m).

IR(CHCl3):3260,2948,2870,2208,1709,1607,1587,1514,1396,1325,1270,1162,1 133/cm.

[α]D=-21.0° (CHCl3,c=1.00,23°C), mp.161-162°C

No.1 a - 67

CDC13 300MHz

0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.82(

1H,d,J=6.6Hz),5.19-5.27(2H,m),7.05-7.10(2H,m),7.51-7.56(2H,m),7.61-7.64(2H,m),7.84-7.87(2H,m).

IR(CHCl3):3374,3280,3020,2946,2868,2214,1727,1589,1509,1435,1327,1233,1 161,1134/cm.

[α]D=+6.7° (CHCl3,c=1.01,24°C), mp.84-85°C

No.1 a - 68

CDC13 300MHz

0.96-2.01(14H,m), 2.15(1H,m), 2.34(2H,t,J=6.9Hz), 3.02(1H,m), 5.23-5.27(3H,m),

7.04-7.10(2H,m), 7.51-7.56(2H,m), 7.61-7.64(2H,m), 7.85-7.88(2H,m).

IR(CHCl3):3374,3258,3020,2948,2868,2214,1708,1589,1509,1455,1398,1322,1 156/cm.

[α]D=+22.6° (CHCl3,c=1.02,24°C), mp.135-136°C

No.1 a - 69

CDC13 300MHz

0.95-1.98(14H,m), 2.19(1H,m), 2.29(2H,t,J=7.2Hz), 2.39(3H,s), 3.01(1H,m), 3.69(1H,m), 3.

3H,s),4.80(1H,d,J=6.6Hz),5.20-5.29(2H,m),7.18(2H,d,J=8.1Hz),7.44(2H,

1Hz),7.62(2H,d,J=8.4Hz),7.84(2H,d,J=8.4Hz).

IR(CHCl3):3374,3022,2946,2868,2210,1727,1589,1511,1436,1323,1161,1133/c m.

[α]D=+9.2° (CHCl3,c=1.02,24°C).

mp.116-118℃

No.1 a - 70

CDC13 300MHz

PC1/JP90/01085

 $1.15-2.00(14H,m), 2.13(1H,m), 2.33-2.38(5H,m), 3.04(1H,m), 5.14(1H,d,J=6.6Hz), \\5.25-5.30(2H,m), 7.17(2H,d,J=7.8Hz), 7.44(2H,d,J=7.8Hz), 7.62(2H,d,J=8.4Hz), \\7.85(2H,d,J=8.4Hz).$

IR(CHCl3):3380,3260,3020,2948,2868,2210,1708,1590,1511,1396,1324,1160,1 133/cm. [α]D=+24.6° (CHCl3.c=1.00.24°C).

No.1 a - 71

CDC13 300MHz

0.95-1.96(14H,m),2.19(1H,m),2.29(2H,t,J=7.2Hz),3.00(1H,m),3.20(1H,s),3.65(3H,s),4.81(1H,d,J=6.6Hz),5.20-5.27(2H,m),7.46-7.54(4H,m),7.62-7.65(2H,m),7.85-7.88(2H,m).

IR(CHCl3):3374,3290,3018,3002,2946,2868,2212,2110,1726,1591,1507,1435, 1401,1324,1161/cm.

[α]D=+9.6° (CHCl3,c=1.01,24°C), mp.136-138°C,

No.1 a - 72

CDC13 300MHz

0.96-2.01(14H,m), 2.14(1H,m), 2.35(2H,t,J=7.2Hz), 3.05(1H,m), 3.20(1H,s), 5.16(1H,d,J=7.2Hz), 5.26-5.29(2H,m), 7.45-7.53(4H,m), 7.63(2H,d,J=8.4Hz), 7.87(2H,d,J=8.4Hz).

IR(CHCl3):3462,3374,3290,3024,2948,2868,2212,2110,1708,1591,1508,1455,1401,1321,1274,1160,1132/cm.

[α]D=+24.3° (CHCl3,c=1.03,24°C), mp.96-99°C

No.1 a - 73

CDC13 300MHz

0.95-1.98(14H,m), 2.19(1H,m), 2.27-2.32(5H,m), 3.01(1H,m), 3.67(3H,s), 4.80(1H,d,J=6.6Hz), 5.20-5.27(2H,m), 7.12(2H,m), 7.56(2H,m), 7.63(2H,m), 7.84(2H,m).

IR(CHCl3):3374,3276,3018,2946,2868,2214,1762,1730,1589,1506,1435,1368,1

161/cm.

[α]D=+7.8° (CHCl3,c=1.02,24°C), mp.102-104°C

No.1 a - 74

CDC13 300MHz

0.95-2.05(14H,m),2.15(1H,m),2.32-2.37(5H,m),3.02(1H,m),5.14(1H,d,J=6.6Hz), 5.26-5.30(2H,m),7.10-7.13(2H,m),7.54-7.57(2H,m),7.62-7.64(2H,m),7.84-7.87(2H,m).

IR(CHCl3):3482,3250,3022,2946,2868,2214,1716,1709,1589,1507,1454,1396,1 368,1322,1195,1161/cm.

[α]D=+15.0° (CHCl3,c=1.00,24°C), mp.129-131°C

No.1 a - 75

CDC13 300MHz

0.95-1.99(14H,m), 2.20(1H,m), 2.30(2H,t,J=7.2Hz), 3.02(1H,m), 3.67(3H,s), 3.94(3H,s), 4.79(1H,d,J=6.6Hz), 5.19-5.29(2H,m), 7.60-7.63(2H,m), 7.65-7.67(2H,m), 7.86-7.89(2H,m), 8.04-8.06(2H,m).

IR(CHCl3):3378,3018,2946,2880,1720,1604,1435,1307,1276,1161,1106 /cm. [α]D=+7.3° (CHCl3,c=1.01,25°C), mp.132-133°C

No.1 a - 76

CDC13+CD3OD 300MHz

 $1.04-2.05(14H,m), 2.19(1H,m), 2.32(2H,t,J=6.9Hz), 2.93(1H,m), 5.27-5.31(2H,m), \\7.60-7.63(2H,m), 7.65-7.68(2H,m), 7.86-7.89(2H,m), 8.05-8.07(2H,m).$

IR(CHCl3):3402,3299,2955,2876,2665,2549,1455,1422,1313,1281,1164 /cm.

[α]D=-21.1° (CH30H,c=1.03,23°C), mp.227-229(dec.)

No.1 a - 77

CDC13 300MHz

0.96-1.99(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),3.02(1H,m),3.68(3H,s),4.88(1H,d,J=6.3Hz),5.19-5.29(2H,m),7.67-7.72(4H,m),7.89-7.91(2H,m),8.24-8.27(2 H,m).

IR(CHCl3):3376,3276,3020,2946,2870,2214,1726,1594,1519,1455,1435,1389, 1344,1161/cm.

[α]D=+7.7° (CHCl3,c=1.02), mp.87-89°C

No.1 a - 78

CDC13 300MHz

0.98-2.00(14H,m), 2.18(1H,m), 2.34(2H,t,J=7.2Hz), 3.02(1H,m), 5.24-5.28(2H,m),

5.32(1H,d,J=5.7Hz),7.67-7.72(4H,m),7.89-7.92(2H,m),8.23-8.26(2H,m).

IR(CHCl3):3374,3260,2948,2214,1708,1595,1344,1160/cm.

 $[\alpha]D=+23.3^{\circ}$ (CHCl3,c=1.00),

mp.102-103℃

No.1 a - 79

CDC13 300MHz

0.93-2.02(14H,m), 2.13(1H,m), 2.36(2H,t,J=7.1Hz), 3.05(1H,m), 3.84(3H,s), 5.18(1H,m), 5.1H,br),5.27-5.31(2H,m),6.88-6.91(2H,m),7.48-7.50(2H,m),7.60-7.63(2H,m),7.8 3-7.85(2H,m).

IR(CHCl3):3380,3252,3020,2950,2868,2208,1708,1589,1511,1457,1396,1321,1 286,1160/cm.

[α]D=+26.7° (CHCl3,C=1.00). mp.75-77°C

No.1 a - 80

CDC13 300MHz

0.96-1.99(14H,m),2.21(1H,m),2.30(2H,t,J=7.8Hz),3.02(1H,m),3.68(3H,s),4.80(

1H,d,J=6.6Hz), 5.19-5.28(2H,m), 7.51-7.77(5H,m), 7.87-7.90(2H,m), 8.13(1H,m).

IR(CHCl3):3374,3270,3018,2946,2868,2216,1726,1607,1567,1527,1495,1456,1

PC1/JP96/01685

436,1344,1296,1161/cm.

[α]D=+7.4° (CHCl3,c=1.00,22°), mp.68-70°

No.1 a - 81

CDCl3 300MHz

 $0.97-2.01(14H,m), 2.16(1H,m), 2.34(2H,t,J=7.2Hz), 3.01(1H,m), 5.22-5.28(3H,m), \\7.51(1H,m), 7.65(1H,m), 7.70-7.76(3H,m), 7.88-7.91(2H,m), 8.12(1H,dd,J=6.9Hz, 1.5Hz).$

IR(CHCl3):3480,3382,3262,3026,2952,2872,2218,1708,1607,1567,1526,1396,1 343,1225,1160/cm.

[α]D=+22.0° (CHCl3,c=1.00), mp.92-94 $^{\circ}$

No.1 a - 82

CDCl3 300MHz

0.95-1.98(14H,m),2.20(1H,m),2.29(2H,t,J=7.2Hz),3.01(1H,m),3.67(3H,s),4.30(2H,br),4.79(1H,d,J=6.9Hz),5.20-5.29(2H,m),6.71-6.76(2H,m),7.18(1H,m),7.37(1H,dd,J=7.8,1.2Hz),7.61-7.65(2H,m),7.83-7.87(2H,m).

IR(CHCl3):3376,3020,2946,2868,2202,1725,1613,1589,1484,1454,1315,1253,1 161/cm.

[α]D=+8.9° (CHCl3,c=1.00,22°C). mp.68-70°C

No.1 a - 83

CDC13 300MHz

 $0.97 \cdot 1.99(14H,m), 2.17(1H,m), 2.33(2H,t,J=6.9Hz), 2.99(1H,m), 5.20 \cdot 5.28(2H,m), \\ 5.37(1H,d,J=6.9Hz), 6.45(2H,br), 6.71 \cdot 6.76(2H,m), 7.19(1H,dd,J=7.8,6.6Hz), 7.3 \\ 7(1H,m), 7.62(2H,d,J=8.4Hz), 7.85(2H,d,J=8.4Hz).$

IR(CHCl3):3478,3378,3260,3022,2950,2868,2204,1708,1613,1589,1484,1454,1 396,1316,1160/cm.

 $[\alpha]D=+17.1^{\circ}$ (CHCl3,c=1.01).

No.1 a - 84

CDC13 300MHz

5.33(2H,m), 5.45(1H,d,J=6.6Hz), 6.91-6.94(2H,m), 7.56-7.59(2H,m), 7.81(1H,d.t,m)

J=8.1Hz), 8.04(1H,d.d,J=8.1&1.8Hz), 8.57(1H,d,J=2.1Hz).

IR(CHCl3):3492,3254,3028,2954,2202,1708,1597,1512,1344,1291,1250/cm.

[α]D=+27.4° (CHCl3,C=0.53,23°C).

No.1 a - 85

CDC13 300MHz

 $0.96 - 2.05(14 \mathrm{H,m}), 2.20(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 2.99(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 5.22 - 2.05(14 \mathrm{H,m}), 2.20(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 2.99(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 5.22 - 2.05(1 \mathrm{H,m}), 2.20(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 2.99(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 5.22 - 2.05(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 2.99(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 5.22 - 2.05(1 \mathrm{H,m}), 2.35(2 \mathrm{H,t,J} = 6.9 \mathrm{Hz}), 2.99(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 5.22 - 2.05(1 \mathrm{H,m}), 3.84(3 \mathrm{H,s}), 3.84(3 \mathrm{H$

5.31(3H,m), 6.89(2H,d,J=8.7Hz), 7.19(1H,brs), 7.29(1H,brs), 7.45-7.50(3H,m).

IR(CHCl3):3478,3378,3020,2950,2868,2202,1708,1606,1511,1421,1311,1287, 1248,1155/cm.

[α]D=+17.1° (CHCl3,C=1.00,23°C).

No.1 a - 86

CDC13 300MHz

1.03-2.05(14H,m), 2.21(1H,m), 2.37(2H,t,J=6.9Hz), 3.04(1H,m), 5.29-5.33(2H,m),

5.57(1H,d,J=6.3Hz),6.84-6.87(2H,m),7.50-7.53(2H,m),7.79(1H,d,J=8.1Hz),8.03

(1H,d,d,J=1.5and8.1Hz),8.57(1H,d,J=1.5Hz).

IR(CHCl3):3250,3024,2950,2868,2200,1707,1515,1344,1271,1166,1143/cm.

[α]D=+21.2° (CHCl3,C=0.26,22°C).

No.1 a - 87

.

CD3OD 300MHz

1.04-2.00(14H,m), 2.18(1H,m), 2.26(2H,t,J=5.4Hz), 2.93(1H,m), 5.19-5.24(2H,m),

6.77-6.80(2H,m),7.05(1H,d.d,J=2.land8.1Hz),7.22(1H,d,J=2.1Hz),7.38-7.42(3

H,m).

IR(CHCl3):3377,2952,2873,2204,1705,1607,1515,1425,1312,1267,1222,1153/cm.

[α]D=-15.6° (CH3OH,C=1.02,22°C).

No.1 a - 88

CDC13 300MHz

 $0.90 \cdot 1.96(14H,m), 2.22 \cdot 2.31(3H,m), 2.95(1H,m), 3.65(3H,s), 4.87(1H,d,J=6.6Hz), \\ 5.13 \cdot 5.28(2H,m), 7.46 \cdot 7.62(3H,m), 7.82 \cdot 7.89(4H,m), 7.90 \cdot 7.96(2H,m), 8.42(1H,brs).$

IR(CHCl3):3376,3016,2946,2868,1720,1677,1592,1514,1498,1429,1376,1314,1 241,1156,1094 /cm.

[α]D= -10.7° (CHCl3,c=1.04,22.0°C) mp.134-136°C

No.1 a - 89

CDCl3+CD3OD 300MHz

0.96-2.08(14H,m), 2.23(1H,m), 2.28(2H,t,J=7.2Hz), 2.89(1H,m), 5.20-5.32(2H,m), 7.46-7.62(3H,m), 7.82-7.97(6H.m).

IR(KBr):3272,3007,2952,2874,1708,1660,1592,1527,1498,1433,1400,1317,126 0,1152,1094 /cm.

[α]D= -24.4° (CH3OH,c=1.02,25.0°C).

No.1 a - 90

. CDCl3 300MHz

0.89-1.96(14H,m),2.23-2.33(3H,m),2.92(1H,m),3.67(3H,s),4.85(1H,d,J=6.3Hz), 5.10-5.25(2H,m),7.81-7.90(4H,m),8.10-8.18(2H,m),8.31-8.40(2H,m),8.77(1H,s). IR(CHCl3):3372,3018,2946,2868,1718,1685,1592,1527,1436,1397,1346,1318,1

256,1154,1099 /cm.

 $[\alpha]D = -16.1^{\circ} (CHCl3, c=1.00, 23.0^{\circ}).$

No.1 a - 91

CDCl3+CD3OD 300MH2

0.94-2.02(14H,m),2.18-2.36(3H,m),2.87(1H,m),5.15-5.30(2H,m),7.82-7.92(4H,

m),8.09-8.16(2H,m),8.30-8.37(2H,m).

IR(KBr):3284,3112,3006,2952,2874,1707,1593,1528,1498,1399,1348,1320,125 9,1153,1093 /cm.

[α]D= -26.3° (CH3OH,c=1.01,22°C).

No.1 a - 92

CDC13 300MHz

0.93-1.95(14H,m), 2.22-2.31(3H,m), 2.98(1H,m), 3.68(3H,s), 5.07(1H,d,J=6.9Hz),

5.10-5.24(2H,m),7.18(1H,m),7.35-7.43(2H,m),7.70(2H,d,J=7.8Hz),7.88-8.05(4

H,m),8.50(1H,brs).

IR(CHCl3):3382,3008,2952,1720,1675,1599,1525,1499,1438,1321,1253,1161,1 087 /cm.

[α]D= -16.6° (CHCl3,c=1.03,24.0°C) mp.100-101°C

No.1 a - 93

CDCl3+CD3OD 300MHz

 $0.96 \cdot 2.00(14H,m), 2.18 \cdot 2.35(3H,m), 2.90(1H,m), 5.15 \cdot 5.30(2H,m), 7.18(1H,m), 7.3$

3-7 42(2H m) 7 65 7 74(9H) 7 00 0 00 7

A ~ A/UA 7U/UAU05

5.27(2H,m),6.88-6.98(2H,m),7.54-7.64(2H,m),7.94-8.12(4H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,130 2,1248,1162,1107.1090.1032/cm

[α]D= -19.1° (CH3OH,c=1.01,24°C).

No.1 - a - 95

CD30D 300MHz

1.04-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.93-3.02(7H,m),5.13-5.27(2

H,m),6.82-6.92(2H,m),7.51-7.59(2H,m),7.95-8.02(2H,m),8.04-8.11(2H,m).

IR(KBr):3370,3006,2953,1708,1649,1604,1541,1512,1460,1441,1414,1328,130 2,1248,1162,1107,1090.1032/cm

[α]D==-17.6° (CH3OH,c=1.01,24°C).

No.1 a - 9 6

CD3OD 300MHz

1.05-2.02(14H,m),2.14(1H,m),2.23(2H,t,J=7.2Hz),2.98(1H,m),5.13-5.27(2H,m),6.75-6.84(2H,m),7.43-7.52(2H,m),7.94-8.12(4H.m).

IR(KBr):3339,3197,2953,2875,1707,1644,1606,1541,1514,1446,1325,1293,125 9,1240,1225,1161,1091/cm.

[α]D= -18.7° (CH3OH,c=1.00,24°C). mp.193-196°C

No.1 a - 97

d6-DMSO 300MHz

1.05-2.08(15H,m),2.15(2H,t,J=7.5Hz),2.89(1H,m),5.18-5.28(2H,m),6.78-7.12(3

H,m), 7.73(1H,d.d,J=1.4and 7.8Hz), 7.91-7.95(3H,m), 8.14(2H,d,J=8.4Hz), 9.71(1H,s).

IR(KBr):3407,3191,2953,1711,1646,1614,1603,1537,1457,1326,1162,1151/cm

[α]D=-20.7° (CH3OH,C=1.01,21°C).

N.1a - 98

CDC13 300MHz

0.93-2.00(14H,m), 2.21(1H,m), 2.31(2H,t,J=7.2Hz), 2.93(1H,m), 3.84(3H,s), 3.85(1H,m), 3.

6H,s, 5.15-5.30(2H,m), 5.45(1H,d,J=6.3Hz), 7.04(2H,s), 7.78-7.86(2H,m), 7.90-7.

98(2H,m),8.58(1H,s).

IR(CHCl3):3264,3008,2954,2874,1707,1670,1607,1537,1506,1451,1421,1308,1 158,1129,1088/cm.

[α]D= -7.2° (CHCl3,C=1.01,23.5°C). mp.147-149°C

No.1 a - 99

CD3OD 300MHz

1.04-1.98(14H,m),2.21(1H,m),2.10(2H,t,J=7.2Hz),2.95(1H,m),3.76(3H,s),3.86(

6H,s, 5.07-5.24(2H,m), 7.19(2H,s), 7.99(2H,d,J=8.7Hz), 8.13(1H,d,J=8.7Hz).

IR(KBr):3354,3002,2950,2874,1656,1607,1570,1508,1452,1413,1314,1233,118

5,1157,1127,1092/cm.

[α]D= .20.3° (CH3OH,C=1.00,23.5°C).

No.1 a - 1 0 0

CDCl3 300MHz

1.14-1.97(14H,m),2.19(1H,m),2.28(2H,t,J=7.4Hz),3.04(1H,m),3.69(3H,s),5.03(

1H,d,J=6.9Hz), 5.15-5.29(2H,m), 7.65(2H,d,J=8.4Hz), 7.87(1H,s), 7.98(2H,d,J=8.4Hz)

4Hz).

IR(CHCl3):3386,3271,3025,3015,2955,2877,1755,1712,1608,1331,1162/cm.

[α]D= -29.4° (CH3OH,c=1.01,25°C).

No.1 a - 1 0 1

d6-DMSO

1.00-2.20(17H,m), 2.84(1H,m), 5.00-5.20(2H,m), 7.78(2H,d,J=8.2Hz), 7.84(1H,s),

PCT/JP96/01685

7.89-7.95(3H,m).

IR(KBr):3269,3065,3008,2952,2874,2763,1746,1707,1607,1322,1157 /cm. $[\alpha]D= -26.2^{\circ}$ (CH3OH,c=1.01,25°C).

No.1 a - 102

CD30D

1.00-2.25(17H,m), 2.92(1H,s), 3.64(3H,s), 5.07-5.21(2H,m), 7.53(1H,s), 7.77(2H,d), J=8.6Hz, 7.90(2H,d), J=8.6).

IR(KBr):3430,3277,3006,2952,2873,1720,1687,1620,1571,1438,1312,1156 /cm.

[α]D= -27.3° (CH3OH,c=0.51,26°C). mp 230-232°C

No.1 a - 1 0 3

CDC13 300MHz

0.94-1.96(14H,m), 2.19(1H,m), 2.28(2H,t,J=7.2Hz), 3.04(1H,m), 3.69(3H,s), 5.11(1H,d,J=6.6Hz), 5.15-5.28(2H,m), 7.60(2H,d,J=8.4Hz), 7.67(1H,s), 7.98(2H,d,J=8.4Hz).

IR(CHCl3):3381,3021,2955,2876,1735,1605,1437,1411,1325,1231,1177 /cm. $[\alpha]D=+8.6^{\circ}$ (CHCl3,c=1.00,23°C).

No.1 a - 1 0 4

CDC13 300MHz

0.94-1.96(14H,m), 2.21(1H,m), 2.31(2H,t,J=6.8Hz), 2.99(1H,m), 5.18-5.28(2H,m),

5.45(1H,d,J=6.6Hz), 7.61(2H,d,J=8.7Hz), 7.67(1H,s), 7.99(2H,d,J=8.7Hz).

IR(CHCl3):3382,3222,3028,3019,2957,2876,1736,1709,1604,1412,1322,1301,1 286,1179,1162 /cm.

 $[\alpha]D = +10.4^{\circ} (CHC13, c=1.00, 23^{\circ}).$

No.1 a - 1 0 5

CDC13 300MHz

0.92-1.98(14H,m), 2.17(1H,m), 2.26(2H.d, J=7.5Hz), 3.01(1H,m), 3.69(3H,s), 4.01(1H,m), 4

3H,s, 4.84(1H,d,J=6.3Hz), 5.14-5.30(2H,m), 7.71(2H,d,J=8.7Hz), 7.87(2H,d,J=8.7Hz)

7Hz),8.09(1H,s).

IR(CHCl3):3385,3284,3025,3015,2954,2877,2821,1730,1598,1459,1438,1403,1

341,1160,1052 /cm.

 $[\alpha]D=+3.6^{\circ} (CHCl3,c=1.00,26^{\circ}).$

No.1 a - 106

CDC13 300MHz

0.92-2.08(14H,m),2.14(1H,m),2.34(2H,d,J=7.2Hz),3.02(1H,m),4.01(3H,s),5.19(

1H,d,J=6.9Hz), 5.23-5.32(2H,m), 7.71(2H,d,J=8.4Hz), 7.88(2H,d,J=8.4Hz), 8.09(2H,d,J=8.4Hz)

1H,s).

IR(CHCl3):3510,3384,3268,3028,3021,3014,2957,2877,2821,2667,2821,2666,1

707,1598,1459,1404,1341,1324,1160,1052 /cm.

 $[\alpha]D=+11.8^{\circ}$ (CHCl3,c=1.01,25°C). mp 95-96°C

No.1 a - 1 0 7

CDCl3 300MHz

0.92-1.97(14H,m), 1.34(3H,t,J=7.2Hz), 2.18(1H,m), 2.28(2H.d,J=7.4Hz), 3.01(1H,m), 2.28(2H,d,J=7.4Hz), 3.01(1H,m), 2.28(2H,d,J=7.4Hz), 3.01(1H,m), 2.28(2H,d,J=7.4Hz), 3.01(1H,m), 3.01(1H,m)

m), 3.68(3H, s), 4.26(2H, q, J=7.2Hz), 4.86(1H, d, J=6.6Hz), 5.15-5.29(2H, m), 7.71(2Hz), 4.86(1H, d, J=6.6Hz), 5.15-5.29(2H, d, J=6.6Hz), 5.15-5.29(2H, d, J=6.6Hz), 5.15-5.29(2Hz), 5.15-

H.d J=8 7Hz) 7 87/9H d 1-9 7H \ 0 00/177 \

m),4.27(2H,q,J=7.2Hz),5.20(1H,d,J=6.6Hz),5.21-5.35(2H,m),7.71(2H,d,J=8.4Hz),7.88(2H,d,J=8.4Hz),8.10(1H,s).

IR(CHCl3):3514,3384,3270,3025,3015,3015,2957,2877,1708,1599,1458,1403,1 324,1324,1160,1050 /cm.

 $[\alpha]D=+12.7^{\circ}$ (CHCl3,c=1.00,25°C).

No.1 a - 109

[α]D=+8.5° (CHCl3,c=1.00,25°C). mp109.0-111.0°C

No.1 a - 1 1 0

CDCl3:CD3OD(95:5)

0.92-2.06(14H,m), 2.20(1H,m), 2.30(2H,d,J=7.2Hz), 2.99(1H,m), 5.22-5.33(2H,m),

7.54-7.66(3H,m), 8.07(2H,d,J=9.0Hz), 8.12-8.20(2H,m), 8.29(2H,d,J=9.0Hz).

IR(Nujol):3270,2956,2924,2854,1716,1548,1485,1319,1167/cm.

[α]D=+17.0° (CHCl3,c=1.00,25°C). mp.166.5-168°C

No.1 a - 1 1 1

[α]D=+2.6° (CHCl3,c=1.00,24°C), mp120.0-121.0°C

No.1 a - 1 1 2

CDCl3 300MHz

0.96-2.04(14H,m),2.19(1H,m),2.33(2H,d,J=7.1Hz),3.07(1H,m),5.28-5.31(2H,m),5.33(1H,d,J=6.6Hz),7.54-7.63(3H,m),8.05(2H,d,J=8.4Hz),8.18-8.23(2H,m),8.41 (2H,d,J=8.4Hz).

IR(CHCl3):3384,3269,3025,3015,2957,2877,1708,1598,1496,1457,1417,1326,1 164 /cm.

[α]D= +12.2° (CHCl3,c=1.00,24°C). mp.163-164°C

No.1 a - 1 1 3

 $[\alpha]D= +22.1^{\circ} (CHCl3,c=1.05,25^{\circ}). mp.90-92^{\circ}$

No.1 a - 1 1 4

 $[\alpha]D= +2.2^{\circ} (CHCl3,c=1.02,25^{\circ}C).$

No.1 a - 1 1 5

CDCl3 300MHz

0.90-1.98(14H,m), 2.15-2.22(1H,m), 2.27(2H,t,J=7.2Hz), 2.95-3.04(1H,m),

3.68(3H,s),4.04(2H,s),4.85(1H,d,J=6.6Hz),5.10-5.27(2H,m),7.12-

7.34(7H,m),7.76-7.82(2H,m).

IR(CHCl3):3384,3026,2952,1727,1595,1493,1436,1318,1155,1091,890/cm.

 $[\alpha]D==0$

 $[\alpha]436=+4.9\pm0.4^{\circ}(CHCl3,c=1.05,23^{\circ})$

No.1 a - 1 1 6

CDC13 300MHz

0.90-2.10(14H,m), 2.10-2.18(1H,m), 2.32(2H,t,J=7.2Hz), 2.96-3.04(1H,m),

4.04(2H,s), 5.14(1H,d,J=6.6Hz), 5.16-5.28(2H,m), 7.12-7.34(7H,m), 7.76-

7.82(2H,m).

IR(CHCl3):3260,3020,2950,1709,1407,1318,1154,1091,892/cm.

 $[\alpha]D=+9.1\pm0.5^{\circ}(CHCl3,c=1.04,23^{\circ})$

No.1 a - 1 1 7

CD3OD 300MHz

0.96-2.18(17H m) 2.80.2.02(1H m) 4.05(0H) 4.05 5.02(0H) -

No.1 a - 1 1 8

CDCl3 300MHz

0.98-1.70(15H,m), 1.80-2.00(5H,m), 2.20-2.40(3H,m), 2.98(1H,m), 4.06(2H,s), 4.72(1H,d,J=6.3Hz), 5.00-5.23(3H,m), 7.16(2H,d,J=8.4Hz), 7.26-7.33(5H,m), 7.79(2H,d,J=8.1Hz).

IR(CHCl3):3376,3020,2948,2868,1716,1596,1492,1453,1407,1318,1155,1105/c m.

 $[\alpha]D=+2.4^{\circ}$ (CHCl3,c=1.08,24°C).

No.1 a - 1 1 9

CDCl3 300MHz

0.90-2.02(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.00(1H,m), 3.68(3H,s), 4.86(1H,d,J=6.9Hz), 5.13-5.34(2H,m), 7.00-7.09(4H,m), 7.22(1H,m), 7.37-7.45(2H,m), 7.79-7.86(2H,m).

IR(CHCl3):3376,3018,2946,2868,1727,1582,1486,1321,1243,1151,1093 /cm. [α]D= +4.5° (CHCl3,c=1.05,23.5°C).

No.1 a - 1 2 0

CD3OD 300MHz

 $1.00-2.00(14H,m), 2.13(2H,t,J=7.5Hz), 2.16(1H,m), 2.91(1H,m), 5.05-5.33(2H,m), \\7.04-7.11(4H,m), 7.18-7.25(1H,m), 7.38-7.48(2H,m), 7.80-7.87(2H,m).$

IR(KBr):3430,3278,3006,2952,2873,1583,1487,1410,1322,1298,1245,1152,109 /cm.

 $[\alpha]D = -8.8^{\circ} (CH3OH, c=1.05, 25.0^{\circ}).$

No.1 a - 1 2 1

CDCl3 300MHz

0.90-2.10(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.2Hz), 3.01(1H,m), 5.20(1H,d,J=6.9)

Hz),5.22-5.35(2H,m),7.00-7.09(4H,m),7.18-7.25(1H,m),7.37-7.45(2H,m),7.79-7.86(2H,m).

IR(CHCl3):3260,3020,2948,2868,1708,1582,1486,1409,1321,1296,1243,1151,1 093 /cm.

 $[\alpha]D = +13.1^{\circ} (CHCl3,c=1.04,24.0^{\circ}).$

No.1 a - 1 2 2

CDC13 300MHz

0.90-2.00(14H,m), 2.23(1H,m), 2.28(2H,t,J=7.5Hz), 2.96(1H,m), 3.67(3H,s), 4.69(1H,m), 2.23(1H,m), 2.23(1H,m), 2.28(2H,t,J=7.5Hz), 2.96(1H,m), 3.67(3H,s), 4.69(1H,m), 4.69(1

1H,d,J=6.6Hz), 5.15-5.32(2H,m), 6.22(1H,s), 6.98-7.40(5H,m), 7.30-7.38(2H,m), 7.30-7.38(2H,m),

68-7.74(2H,m).

IR(CHCl3):3416,3370,3018,2946,2868,1725,1587,1508,1437,1400,1320,1149,1 094 /cm.

 $[\alpha]D = +6.2^{\circ} (CHCl3, c=1.04, 25.0^{\circ}).$

No.1 a - 1 2 3

CDC13 300MHz

0.90-2.04(14H,m), 2.18(1H,m), 2.33(2H,t,J=7.2Hz), 2.96(1H,m), 5.04-5.35(3H,m),

6 00 7 19/9U \ 7 10 7 00/0TT \ -

PCT/JP90/01685

148,1091 /cm.

[α]D= +2.7° (CHCl3,c=1.09,23.0°C).

No.1 a - 1 2 5

CDCl3 300MHz

 $0.90-2.00(14H,m), 2.18(1H,m), 2.28(2H,t,J=7.2Hz), 2.29(3H,s), 3.00(1H,m), 3.68(3H,s), 4.04(2H,s), 4.80(1H,d,J=6.6Hz), 5.11-5.29(2H,m), 6.99-7.06(2H,m), 7.12-7. \\ 19(2H,m), 7.31(2H,d,J=8.1Hz), 7.79(2H,d,J=8.1Hz).$

IR(CHCl3):3382,3280,3024,2950,2874,1730,1596,1504,1435,1407,1367,1318,1 196,1155,1091 /cm.

[α]D= +2.9° (CHCl3,c=1.06,23.0°C).

No.1 a - 1 2 6

CDCl3 300MHz

0.90-2.02(14H,m), 2.14(1H,m), 2.29(3H,s), 2.32(2H,t,J=7.2Hz), 3.01(1H,m), 4.03(2H,s), 5.10(1H,d,J=6.6Hz), 5.15-5.30(2H,m), 6.98-7.06(2H,m), 7.11-7.18(2H,m), 7.30(2H,d,J=8.1Hz), 7.79(2H,d,J=8.1Hz).

IR(CHCl3):3374,3260,3020,2948,2868,1749,1708,1596,1504,1407,1369,1317,1 195,1155,1091 /cm.

 $[\alpha]D = +10.0^{\circ} (CHCl3, c=1.09, 23.0^{\circ}).$

No.1 a - 1 2 7

CDC13 300MHz

 $0.87 \cdot 1.95(14H,m), 2.18 \cdot 2.32(3H,m), 2.95(1H,m), 3.69(3H,s), 3.96(2H,s), 4.79(1H,m), 3.69(3H,s), 4.97 \cdot 5.17(2H,m), 5.54(1H,s), 6.75 \cdot 6.82(2H,m), 6.97 \cdot 7.05(2H,m), 7.25 \cdot 7.33(2H,m), 7.75 \cdot 7.81(2H,m).$

IR(CHCl3):3382,3026,2950,2874,1722,1595,1511,1436,1407,1317,1257,1154,1 090 /cm.

 $[\alpha]D = -2.1^{\circ} (CHCl3, c=1.00, 21.5^{\circ}).$

```
البولسالديد لايقا ماديادا
```

No.1 a - 1 2 8

CDC13 300MHz

0.85-2.02(14H,m), 2.18(1H,m), 2.31(2H,t,J=7.2Hz), 2.96(1H,m), 3.95(2H,s), 5.05-5.27(3H,m), 6.73-6.82(2H,m), 6.96-7.04(2H,m), 7.25-7.32(2H,m), 7.74-7.81(2H,m), 7.25-7.32(2H,m), 7.74-7.81(2H,m), 7.25-7.32(2H,m), 7.25-7.32(2H,m)

IR(CHCl3):3262,3020,2948,2868,1708,1596,1511,1407,1315,1242,1154,1091 / cm.

 $[\alpha]D=+4.8^{\circ}$ (CHCl3,c=1.04,22°C).

No.1 a - 1 2 9

CDCl3 300MHz

 $0.89 - 1.98(14H,m), 2.18(1H,m), 2.27(2H,t,J=7.2Hz), 2.99(1H,m), 3.68(3H,s), 3.79(3H,s), 3.98(2H,s), 4.81(1H,d,J=6.6Hz), 5.10 - 5.27(2H,m), 6.81 - 6.87(2H,m), 7.03 - 7.\\ 10(2H,m), 7.25 - 7.32(2H,m), 7.75 - 7.82(2H,m).$

IR(CHCl3):3382,3276,3006,2950,2874,1726,1609,1509,1457,1436,1407,1315,1 244,1154,1091,1033/cm.

[α]D=+19.3° (CHCl3,C=1.05,23°C).

No.1 a - 1 3 0

CDC13 300MHz

0.90-2.00(14H,m),2.20(1H,m),2.30(2H,t,J=7.2Hz),2.98(1H,m),3.69(3H,s),4.81(1H,d,J=6.6Hz),5.12-5.32(2H,m),5.46(1H,brs),6.84-7.01(6H,m),7.76-7.83(2H,m) IR(CHCl3):3380,3284,3024,2952,2874,1724,1588,1504,1488,1436,1321,1296,1149,1091/cm.

[α]D=+28.9° (CHCl3,C=1.01,23°C).

No.1 a - .1 3 1

•

CDCl3 300MHz

.

0.92-2.10(14H,m), 2.18(1H,m), 2.34(2H,t,J=6.9Hz), 2.96(1H,m), 5.18-5.35(3H,m), 6.84-7.01(6H,m), 7.75-7.83(2H,m).

IR(CHCl3):3270,3028,2952,2874,1708,1589,1505,1489,1456,1322,1297,1238,1 148,1091/cm.

[α]D=+7.7° (CHCl3,C=1.09,24°C).

No.1 a - 1 3 2

CDCl3 300MHz

0.91-2.02(14H,m), 2.19(1H,m), 2.29(2H,t,J=7.2Hz), 2.99(1H,m), 3.68(3H,s), 3.83(2H,s), 3.

3H,s, 4.82(1H,d,J=6.6Hz), 5.14-5.33(2H,m), 6.90-7.04(6H,m), 7.76-7.83(2H,m).

IR(CHCl3):3384,3006,2952,2874,1727,1589,1502,1488,1459,1438,1321,1295,1 231,1150,1092.1033/cm.

[α]D=+3.1° (CHCl3,C=1.01,23°C).

No.1 a - 1 3 3

TLC Rf=0.21 (酢酸エチル:n-ヘキサン=1:1 (0.3%酢酸))

No.1 a - 1 3 4

CDCl3 300MHz

0.97-2.10(14H,m), 2.20(1H,m), 2.36(2H,t,J=6.9Hz), 3.04(1H,m), 5.22-5.33(2H,m),

5.41(1H,d,J=6.6Hz),7.02(1H,d,J=9.0Hz),7.09-7.13(2H,m),7.26-7.32(1H,m),7.43

-7.49(2H,m), 7.93(1H,d.d,J=2.4and9.0Hz), 8.46(1H,d,J=2.4Hz).

IR(CHCl3):3384,3270,3020,2958,1709,1610,1587,1537,1479,1352,1271,1252,1 167/cm.

[α]D=+20.9° (CHCl3,C=0.51,22°C).

No.1 a - 1 3 5

CDC13 300MHz

0.96-2.02(14H,m), 2.21(1H,m), 2.29(2H,t,J=7.2Hz), 3.07(1H,m), 3.68(3H,s), 5.04(1H,m), 5.

1H,d,J=6.9Hz), 5.16-5.33(2H,m), 7.48-7.55(2H,m), 7.64(1H,m), 7.76-7.82(2H,m), 7.88-7.94(2H,m), 7.98-8.04(2H,m).

IR(CHCl3):3384,3282,3026,2952,2874,1727,1663,1596,1446,1396,1316,1274,1 163,1090 /cm.

 $[\alpha]D=+3.1^{\circ} (CHCl3,c=1.03,22.0^{\circ}).$

No.1 a - 1 3 6

CDC13 300MHz

 $0.95-2.05(14H,m), 2.19(1H,m), 2.34(2H,t,J=7.2Hz), 3.08(1H,m), 5.10-5.40(2H,m), \\ 5.35(1H,d,J=6.8Hz), 7.45-7.58(2H,m), 7.64(1H,m), 7.74-7.84(2H,m), 7.84-7.95(2H,m), \\ 7.95-8.06(2H,m).$

IR(CHCl3):3260,3018,2950,2870,1708,1662,1595,1446,1395,1316,1274,1162,1 090 /cm.

 $[\alpha]D=+12.9^{\circ}$ (CHCl3,c=1.05,21.5°C).

No.1 a - 1 3 7

CDC13 300MHz

0.97-2.04(14H,m), 2.27(1H,m), 2.31(2H,t,J=7.2Hz), 3.07(1H,m), 3.70(3H,s), 5.15-5.30(3H,m), 7.48-7.68(5H,m), 7.96-8.02(2H,m).

IR(CHCl3):3382,3030,2952,2878,1725,1446,1329,1154,1098 /cm.

 $[\alpha]D = -12.1^{\circ} (CHCl3, c=1.03, 22.0^{\circ}).$

No.1 a - 138

CDC13 300MHz

;

0.95-2.04(14H,m), 2.25(1H,m), 2.35(2H,t,J=7.2Hz), 3.08(1H,m), 5.15-5.34(2H,m), 5.41(1H,d,J=6.6Hz), 7.48-7.68(5H,m), 7.98-8.03(2H,m).

IR(CHCl3):3370,3242,3022,2950,2870,1707,1445,1408,1329,1154,1099 /cm.

[α]D=-0.6° (CHCl3,c=1.06,21.5°C) [α]365 +30.7° (CHCl3,c=1.06,21.5°C).

rc1/Jry0/01085

No.1 a - 1 3 9

CDCl3 300MHz

0.92-2.19(14H,m), 2.27-2.34(3H,m), 3.26(1H,m), 3.65(3H,s), 4.28(2H,s), 4.37(1H,d,J=7.4Hz), 5.34-5.50(2H,m), 7.37-7.62(9H,m).

IR(CHCl3):3389,3294,3028,3015,2954,2877,1730,1600,1488,1325,1151,1129 / cm.

 $[\alpha]D = -24.8^{\circ} (CHCl3,c=1.01,24^{\circ}).$

No.1 a - 1 4 0

CDCl3 300MHz

0.92-2.22(15H,m),2.34(2H,t,J=7.1Hz),3.24(1H,m),4.29(2H,s),4.81(1H,d,J=7.4Hz),5.32-5.52(2H,m),7.36-7.62(9H,m).

IR(CHCl3):3510,3388,3251,3031,3015,2956,2877,2668,1708,1601,1488,1318,1 151,1129 /cm.

[α]D= -24.6° (CHCl3,c=1.02,25°C).

No.1 a - 141

CDC13 300MHz

0.92-2.19(15H,m), 2.32(2H,t,J=7.2Hz), 3.26(1H,m), 3.65(3H,s), 4.31(2H,s), 4.48(1H,d,J=7.4Hz), 5.33-5.49(2H,m), 7.42-7.80(8H,m).

IR(CHCl3):3388,3285,3018,2955,2877,2225,1730,1597,1479,1320,1152,1129 / cm.

[α]D= -20.1° (CHCl3),c=0.96,25°C).

No.1a - 142

CDC13 300MHz

0.92-2.22(15H,m), 2.35(2H,t,J=6.8Hz), 3.25(1H,m), 4.32(2H,s), 4.86(1H,d,J=7.4Hz), 5.33-5.53(2H,m), 7.43-7.80(8H,m).

IR(CHCl3):3512,3388,3258,3031,3023,3014,2956 2877,2225,1708,1597,1479,

1319,1151,1128 /cm.

 $[\alpha]D = -19.3^{\circ} (CHCl3, c=1.09, 23^{\circ}).$

No.1 a - 1 4 3

CDCl3 300MHz

 $1.00-1.93(14H,m), 2.17(1H,m), 2.27(2H,t,J=7.2Hz), 3.07(1H,m), 5.17-5.22(2H,m), \\ 5.36(1H,d,J=6.9Hz), 7.77(1H,d,J=9.0Hz), 8.11-8.17(2H,m), 8.36(1H,d,d,J=2.1and d9.0Hz), 8.51(1H,d,J=1.8Hz), 8.65(1H,d,J=2.1Hz).$

IR(CHCl3):3382,3266,3026,2954,2874,1708,1632,1585,1528,1458,1419,1345,1 153/cm.

 $[\alpha]D=+7.6^{\circ}$ (CHCl3,C=1.04,22°C).

No.1 a - 1 4 4

CDC13 300MHz

 $0.95 \cdot 1.90(14H,m), 2.17(1H,m), 2.25(2H,t,J=7.5Hz), 3.02(1H,m), 5.09(1H,d,J=6.6Hz), 5.15 \cdot 5.21(2H,m), 6.72(1H,d,J=8.4Hz), 6.85(1H,s), 7.54(1H,d,J=8.4Hz), 7.72(1H,d,J=9.0Hz), 7.83(1H,d,d,J=1.8and9.0Hz), 8.32(1H,d,J=1.8Hz).$

IR(CHCl3):3380,3260,3022,2948,2868,2352,1709,1636,1460,1425,1313,1291,1 265,1148,1130/cm.

 $[\alpha]D=+12.9^{\circ}$ (CHCl3,C=1.02,22.5°C).

No.1 a - 145

CDC13 300MHz

1

0.97 - 1.90(14H,m), 2.15(1H,m), 2.27(2H,t,J=6.9Hz), 3.02(1H,m), 3.08(6H,s), 5.12(1H,d,J=6.3Hz), 5.19 - 5.25(2H,m), 6.78 - 6.84(2H,m), 7.53(1H,d,J=8.7Hz), 7.76 - 7.83(2H,m), 8.30(1H,d,J=1.8Hz).

IR(CHCl3):3272,3030,2950,2874,1708,1635,1601,1511,1457,1425,1357,1328,1 151,1124/cm.

[α]D=+6.3° (CHCl3,C=1.04,23°C).

PC1/JPY /01685

No.1 a - 1 4 6

CDCl3 300MHz

 $0.95 - 2.00(14 \mathrm{H,m}), 2.16(1 \mathrm{H,m}), 2.29(2 \mathrm{H,t,J} = 7.2 \mathrm{Hz}), 3.05(1 \mathrm{H,m}), 4.10(3 \mathrm{H,s}), 5.13 - 2.00(14 \mathrm{H,m}), 2.20(2 \mathrm{H,t,J} = 7.2 \mathrm{Hz}), 3.05(1 \mathrm{H,m}), 4.10(3 \mathrm{H,s}), 5.13 - 2.00(14 \mathrm{H,m}), 2.20(2 \mathrm{H,t,J} = 7.2 \mathrm{Hz}), 3.05(1 \mathrm{H,m}), 4.10(3 \mathrm{H,s}), 5.13 - 2.00(14 \mathrm{H,m}), 6.00(14 \mathrm{H,m})$

5.28(2H,m), 5.38(1H,d,J=6.9Hz), 7.67-7.74(2H,m), 8.08(1H,d,d,J=1.8and9.0Hz),

8.11(1H,s),8.61(1H,d,J=1.8Hz).

IR(CHCl3):3260,3020,2948,2868,1708,1639,1606,1528,1470,1455,1424,1349,1

311,1238,1174,1149,1120,1079,1060,1022/cm.

 $[\alpha]D=+7.8^{\circ}$ (CHCl3,C=1.00,23°C).

No.1 a - 1 4 7

CDCl3 300MHz

0.92 - 1.92(14 H,m), 2.17(1 H,m), 2.25(2 H,t,J = 7.2 Hz), 3.01(1 H,m), 3.97(3 H,s), 5.10 - 1.0 Hz

5.27(5H,m), 6.92(1H,s), 7.29(1H,s), 7.52(1H,d,J=8.7Hz), 7.82(1H,d,d,J=2.1and8.

7Hz),8.33(1H,d,J=2.1Hz).

IR(CHCl3):3380,3264,3002,2950,2868,1708,1634,1476,1452,1426,1317,1264,1

218,1169,1147,1115,1068,1031/cm.

[α]D=+5.6° (CHCl3,C=1.02,23°C).

No.1 a - 148

CDC13 300MHz

0.90-1.98(14H,m), 2.15(1H,m), 2.28(2H,t,J=6.9Hz), 2.91(6Hs), 3.03(1H,m), 4.01(3H,m), 4.0

H,s, 5.15-5.26(3H,m), 7.18(1H,s), 7.38(1H,s), 7.59(1H,d,J=8.7Hz), 7.87(1H,d,d,J

=2.1and8.7Hz),8.40(1H,d,J=2.1Hz).

IR(CHCl3):3384,3266,2956,1709,1632,1602,1495,1473,1458,1430,1317,1231,1

148,1121/cm.

[α]D=+11.2° (CHCl3,C=1.01,23°C).

N.1a - 149

CDC13 300MHz

 $0.99 \cdot 1.90(14H,m), 2.17(1H,m), 2.28(2H,t,J=7.2Hz), 3.00(1H,m), 5.13 \cdot 5.19(2H,m),$

 $5.43(1 \text{H,d,J} = 6.0 \text{Hz}), 7.02(1 \text{H,d.d,J} = 2.4 \text{and} \\ 9.0 \text{Hz}), 7.38 - 7.41(2 \text{H,m}), 7.58(1 \text{H,d,J}), 7.$

=8.7Hz),7.96(1H,d.d,J=1.8and8.7Hz),8.45(1H,d,J=1.8Hz).

IR(CHCl3):3270,3020,2948,2868,1709,1601,1478,1448,1419,1315,1147,1120/c

m.

[α]D=-11.4° (CHCl3,C=1.01,23°C).

No.1 a - 150

CDC13 300MHz

0.97-1.88(14H,m), 2.12-2.31(3H,m), 2.38(3H,s), 3.01(1H,m), 5.14-5.19(2H,m), 5.3

6(1 H,d,J=6.6 Hz), 7.24(1 H,d.d,J=2.4 and 9.0 Hz), 7.59(1 H,d,J=6.3 Hz), 7.66(1 H,d,J=6.6 Hz), 7.66(1 H,d,J=6.

=8.7Hz),7.72(1H,d,J=2.4Hz),8.01(1H,d.d,J=1.8and8.7Hz),8.49(1H,d,J=1.8Hz).

IR(CHCl3):3470,3374,3260,3018,2950,2868,1709,1474,1444,1412,1370,1319,1

266,1162,1145,1118/cm.

[α]D=+4.9° (CHCl3,C=1.00,24°C).

No.1 a - 1 5 1

CDC13 300MHz

5.20(2H,m), 5.32(1H,d,J=6.6Hz), 7.11(1H,d.d,J=2.4and9.3Hz), 7.45(1H,d,J=2.4and9.3Hz), 7.45(1H,d,J=2.4and9.3Hz)

Hz), 7.50(1H,d,J=9.3Hz), 7.62(1H,d,J=8.7H), 7.97(1H,d,d,J=2.1and8.7Hz), 8.50(1H,d,d,J=2.1and8.7Hz)

1H,d,J=2.1Hz).

IR(CHCl3):3260,3018,2948,1708.1483 1454 1432 1314 1287 1268 1188 1160

PC1/JP96/01085

 $0.98-2.04(14H,m), 2.15(1H,m), 2.30(2H,t,J=6.6Hz), 3.04(1H,m), 5.17-5.29(3H,m), \\7.41(1H,d.d,J=1.5and8.1Hz), 7.64-7.68(2H,m), 7.92(1H,d,J=8.4Hz), 8.00(1H,d.d,J=1.8and8.4Hz), 8.49(1H,d,J=1.8Hz).$

IR(CHCl3):3266,3028,2952,2872,1707,1629,1591,1456,1416,1318,1275,1150/c m.

[α]D=+3.2° (CHCl3,C=1.04,23°C).

No.1 a - 1 5 3

CDCl3 300MHz

 $0.97 \cdot 1.88(14H,m), 2.16(1H,m), 2.26(2H,t,J=7.2Hz), 3.03(1H,m), 4.64 \cdot 4.65(2H,m), \\ 5.16 \cdot 5.50(5H,m), 6.13(1H,m), 7.14(1H,d.d,J=2.7and9.0Hz), 7.46 \cdot 7.52(2H,m), 7.6 \\ 3(1H,d,J=8.7Hz), 7.97(1H,d.d,J=1.8and8.7Hz), 8.49(1H,d,J=1.8Hz).$

IR(CHCl3):3374,3260,3020,2948,2868,1708,1599,1478,1446,1414,1314,1284,1 268,1184,1148,1120/cm.

[α]D=+5.3° (CHCl3,C=1.00,23°C).

No.1 a - 154

CDC13 300MHz

 $0.99-2.00(15H,m), 2.26(2H,t,J=7.2Hz), 3.03(1H,m), 4.07(3H,s), 5.23-5.27(2H,m), \\ 5.36(1H,d,J=7.2Hz), 7.20(1H,s), 7.36-7.48(2H,m), 7.55-7.58(1H,m), 7.91-7.93(1H,m), 8.52(1H,s).$

IR(CHCl3):3362,3257,3020,2948,2868,1708,1637,1602,1579,1488,1457,1437,1413,1345,1318,1301,1276,1182,1104/cm.

 $[\alpha]D = +19.4^{\circ} (CHC13, C=1.01, 25^{\circ})$

mp.88-90℃

No.1 a - 155

CDC13 300MHz

0.92-2.02(14H,m), 2.15(1H,m), 2.31(2H,t,J=7.2Hz), 3.01(1H,m), 4.10(2H,s), 5.10(2H,s), 5.

ï

ートルシーン ショルカカウ

1H,d,J=6.6Hz), 5.18-5.35(2H,m), 7.04-7.26(5H,m), 7.67-7.76(2H,m).

IR(CHCl3):3266,3028,2952,2952,2872,1708,1599,1574,1478,1457,1418,1301,1 258,1147,1124,1101,1080/cm.

[α]365 +33.4° (CHCl3,C=1.00,23°C).

No.1 a - 156

CDC13 300MHz

0.91-2.21(15H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m),5.11(1H,d,J=6.6Hz),5.27-5.3 5(2H,m),6.85-6.96(5H,m),7.35(1H,d,J=2.1Hz),7.42(1H,d.d,J=2.1and8.7Hz). IR(CHCl3):3384,3263,2957,1708,1587,1489,1462,1416,1290,1222,1151,1123/c m.

[α]D=+6.4° (CHCl3,C=1.00,23°C).

No.1 a - 157

CDCl3 300MHz

0.97-1.91(14H,m), 2.18(1H,m), 2.26(2H,t,J=6.9Hz), 3.04(1H,m), 5.18-5.26(3H,m), 7.52-7.56(2H,m), 7.88-8.00(3H,m), 8.25(1H,m), 8.69(1H,m).

IR(CHCl3):3382,3268,2952,2874,1707,1457,1425,1409,1318,1152/cm.

[α]D=+4.4° (CHCl3,C=1.02,22°C).

No.1 a - 158

CDCl3 300MHz

1.02-1.97(14H,m), 2.20(1H,m), 2.29(2H,t,J=7.2Hz), 3.06(1H,m), 5.19-5.24(2H,m),

5.58(1H,d,J=6.6Hz), 7.62(1H,m), 7.72(1H,m), 7.86-7.91(2H,m), 7.96(1H,d,J=7.8Hz), 8.04(1H,d,d,J=1.5and8.1Hz), 8.34(1H,d,J=1.2Hz).

IR(CHCl3):3490,3260,3020,2950,2870,1707,1456,1399,1312,1165/cm.

[α]D=-8.3° (CHCl3,C=1.00,23°C).

No.1 a - 159

۲.

CDC13 300MHz

 $0.92 \cdot 1.88(14H,m), 2.13(1H,m), 2.24(2H,m), 3.02(1H,m), 3.90(3H,s), 5.12 \cdot 5.26(3H,m), 7.29 \cdot 7.58(4H,m), 7.97(1H,d.d,J=1.8and 7.5Hz), 8.13(1H,d,J=7.5Hz), 8.64(1H,d,J=1.8Hz).$

IR(CHCl3):3382,3266,3018,2956,1708,1629,1594,1476,1467,1325,1245,1227,1158,1146/cm.

 $[\alpha]D=+14.6^{\circ}$ (CHCl3,C=1.00,22°).

No.1 a - 160

CDCl3 300MHz

0.93-1.88(14H,m),2.18-2.24(3H,m),3.00(1H,m),5.08-5.21(3H,m),7.28-7.33(1H,m),7.47-7.51(3H,m),7.90(1H,d.d,J=1.5and7.8Hz),8.10(1H,d,J=7.8Hz),8.63-8.64 (2H,m).

IR(CHCl3):3465,3380,3275,3020,2957,2876,1708,1627,1604,1495,1473,1457,1 328,1240,1222,1156,1149/cm.

[α]D=+8.2° (CHCl3,C=1.01,22°).

No.1 a - 1 6 1

CDC13 300MHz

 $0.98-1.88(14H,m), 2.17(1H,m), 2.24(2H,t,J=7.2Hz), 3.05(1H,m), 5.16-5.20(2H,m), \\ 5.35(1H,d,J=6.6Hz), 7.40(1H,m), 7.55(1H,m), 7.63(1H,d,J=8.1Hz), 7.89(1H,d,d,J=1.5and8.1Hz), 8.01(1H,m), 8.06(1H,d,J=8.1Hz), 8.12(1H,d,J=1.5Hz). \\ IR(CHCl3):3478,3266,3028,2952,2874,1708,1454,1417,1323,1196,1148/cm. \\ [\alpha]D=+21.9° (CHCl3,C=1.01.23°C).$

No.1 a - 1 6 2

CDC13 300MHz

0.96-1.98(14H,m), 2.02(1H,m), 2.25(2H,t,J=7.2Hz), 3.05(1H,m), 4.10(3H,s), 5.14-5.25(2H,m), 5.41(1H,d,J=7.2Hz), 7.35-7.42(1H,m), 7.51-7.64(3H,m), 7.94-8.00(1H,m), 7.94-8.00(1H

H,m),8.16(1H,s).

IR(CHCl3):3368,3274,3028,2952,2874,1708,1633,1583,1465,1452,1438,1413,1 315,1151,1103,1053.1024/cm.

 $[\alpha]D=+15.1^{\circ} (CHCl3,C=1.01,23^{\circ}). mp.108-110^{\circ}$

No.1 a - 1 6 3

ĭ

d6-DMSO 300MHz

 $0.97 \cdot 1.84(14H,m), 1.92(1H,m), 2.04(2H,t,J=7.5Hz), 2.90(1H,m), 5.08 \cdot 5.23(2H,m), \\7.32(1H,s), 7.38 \cdot 7.61(2H,m), 7.62(1H,s), 7.68 \cdot 7.71(1H,m), 7.92(1H,s), 8.14 \cdot 8.17(1H,m), 10.7(1H,s), 11.9(1H,s).$

IR(KBr):3350,3295,2952,2874,1707,1636,1601,1466,1431,1389,1315,1251,117 4,1146,1106/cm.

[α]D= -25.3° (CH3OH,C=1.01,25°C). mp.159-162°C

No.1 a - 164

CDC13 300MHz

0.98-1.96(17H,m), 2.05(1H,m), 2.25(2H,t,J=7.2Hz), 3.07(1H,m), 4.32(2H,q,J=7.2Hz), 5.19-5.23(2H,m), 5.31(1H,d,J=7.8Hz), 7.38(1H,m), 7.41-7.62(3H,m), 7.95(1H,m), 8.15(1H,s).

IR(CHCl3):3360,3018,2946,2870,1709,1633,1457,1445,1425,1394,1314,1176,1 152,1105/cm.

[α]D= +12.7° (CHCl3,C=1.02,25°C). mp.108-109°C

No.1 a - 165

CDC13 300MHz

÷

0.95-1.98(15H,m), 2.26(2H,t,J=7.5Hz), 3.04(1H,m), 4.15(3H,s), 5.20-5.26(2H,m),

5.34(1H,d,J=6.9Hz),7.41-7.47(1H,m),7.65-7.68(2H,m),7.89-7.92(1H,m),8.32(1H,s).

IR(CHCl3):3366,3087,3022,2957,1708,1632,1538,1463,1408,1364,1346,1308,1

```
227,1212,1205,1167/cm.
```

 $[\alpha]D=+19.6^{\circ} (CHCl3,C=1.01,25^{\circ}C).$

No.1 a - 166

CDCl3 300MHz

0.97-2.02(15H,m), 2.27(2H,t,J=6.9Hz), 3.07(1H,m), 4.14(3H,s), 5.21-5.27(2H,m), 4.14(3H,s), 5.21-5.27(2H,m), 4.14(3H,s), 5.21-5.27(2H,m), 4.14(3H,s), 5.21-5.27(2H,m), 4.14(3H,s), 5.21-5.27(2H,m), 4.14(3H,s), 5.21-5.27(2H,m), 5.21-5.27(2

5.47(1H,d,J=6.9Hz),7.64(1H,s),7.72(1H,d.d,J=0.6and9.0Hz),8.25(1H,s),8.47(1

H,d.d,J=2.4 and 9.0Hz),8.94(1H,d.d,J=0.6 and 2.4Hz).

IR(CHCl3):3373,2957,1708,1639,1587,1528,1467,1428,1415,1345,1221,1184,1 155/cm.

 $[\alpha]D = +14.4^{\circ} (CHCl3, C=0.50, 25^{\circ})$

No.1 a - 1 6 7

CDCl3 300MHz

0.92-2.00(14H,m), 2.15(1H,m), 2.27(2H,t,J=7.2Hz), 3.04(1H,m), 3.97(2H,s), 5.15-5.30(3H,m), 7.35-7.47(2H,m), 7.55-7.63(1H,m), 7.80-7.96(3H,m), 8.05(1H,d,J=0.3)

Hz).

IR(CHCl3):3260,3020,2948,2868,1707,1451,1413,1319,1172,1144,1101,1071/c m.

 $[\alpha]D=+18.2^{\circ}$ (CHCl3,C=1.04,22°C).

No.1 a - 1 6 8

CDC13 300MHz

0.90-1.88(14H,m), 2.16(1H,m), 2.25(2H,t,J=6.9Hz), 3.00(1H,m), 5.00-5.19(2H,m),

5.35(1H,d,J=6.6Hz), 7.25-7.30(1H,m), 7.48-7.50(2H,m), 7.73(1H,d,d,J=1.5and8.

1Hz),8.08-8.14(3H,m),8.93(1H,s).

IR(CHCl3):3466,3380,3276,3016,2957,1708,1630,1495,1458,1324,1241,1150/c

m.

[α]D=+18.0° (CHCl3,C=1.00,22°C).

No.1 a - 169

CDC13 300MHz

7

0.87-1.86(14H,m), 2.15(1H,m), 2.25(2H,t,J=6.9Hz), 2.98(1H,m), 3.89(3H,s), 5.00-0.87-1.86(14H,m), 2.15(1H,m), 2.25(2H,t,J=6.9Hz), 2.98(1H,m), 3.89(3H,s), 5.00-0.87-1.86(14H,m), 2.15(1H,m), 2.25(2H,t,J=6.9Hz), 2.98(1H,m), 3.89(3H,s), 5.00-0.87-1.86(1H,m), 5.00-0.87-1.86(1H,

5.22(2H,m), 5.27(1H,d,J=6.9Hz), 6.88(1H,d,d,J=2.1and8.4Hz), 6.94(1H,d,J=2.1and8.4Hz), 6.94(1H,

Hz), 7.69(1H, d.d, J=1.5 and 7.8Hz), 7.92-8.01(3H, m), 8.83(1H, s).

IR(CHCl3):3465,3378,3276,3022,2957,1708,1630,1609,1569,1459,1433,1314,1 281,1229,1151/cm.

[α]D=+19.3° (CHCl3,C=1.01,21°C).

No.1 a - 170

CDC13 300MHz

0.88-2.25(17H,m), 3.04(1H,m), 3.84(3H,s), 3.95(3H,s), 5.06-5.26(3H,m), 6.87-6.93(2H,m), 7.69(1H,d.d,J=1.6and8.2Hz), 7.93-9.05(3H,m).

IR(CHCl3):3026,2957,1708,1630,1601,1460,1331,1243,1224,1152/cm.

[α]D=+17.2° (CHCl3,C=1.00,22°C).

No.1 a - 171

CDC13 300MHz

0.95-2.00(14H,m), 2.16-2.32(3H,m), 2.66(3H,s), 3.14(1H,m), 3.68(3H,s), 5.09(1H,m), 5.09(

 $d_{J}=6.8Hz$), 5.10-5.28(2H,m), 7.45(1H,d.d., J=1.8&8.6Hz), 7.75-7.84(2H,m).

IR(CHCl3):3374,3018,2946,2868,1725,1585,1513,1436,1340,1278,1153,1112 / cm.

[α]D= -14.7° (CHCl3,c=1.07,25.0°C).

No.1 a - 172

CDC13 300MHz

٠,

0.97 - 2.02(14 H, m), 2.23(1 H, m), 2.28(2 H, t, J = 7.2 Hz), 2.66(3 H, s), 3.14(1 H, m), 5.12 - 3.14(1 H, m), 2.28(2 H, t, J = 7.2 Hz), 2.66(3 H, s), 3.14(1 H, m), 5.12 - 3.14(1 H, m), 3.14(1

5.22(2 H,m), 5.41(1 H,d,J = 7.2 Hz), 7.45(1 H,d.d.,J = 2.1 & 8.7 Hz), 7.76(1 H,d,J = 8.7 Hz), 7.45(1 H,d.d.,J = 8.7 Hz), 7.76(1 H,d.J = 8.7 Hz), 7.76(1

),7.78(1H,d,J=2.1Hz).

IR(CHCl3):3372,3250,3022,2950,2868,1707,1514,1419,1336,1279,1154,1112 / cm.

[α]D= -4.1° (CHCl3,c=1.08,26.0°C) m.p.141-143°C

No.1 a - 173

CDC13 300MHz

 $1.15 \cdot 2.42(17H,m), 2.91(1H,m), 5.15(1H,d,J=4.2Hz), 5.25 \cdot 5.40(2H,m), 7.85(1H,t,J=7.2Hz), 8.00(1H,t,J=8.1Hz), 8.15 \cdot 8.20(2H,m), 8.67(1H,d,J=8.1Hz), 8.73(1H,d,J=8.1Hz), 8.83(1H,s), 9.43(1H,s).$

IR(KBr):3422,3269,3046,2952,2871,1711,1617,1447,1333,1243,1161,1146/cm.

[α]D=-41.0° (CH30H,C=1.01,23°).

No.1 a - 174

CDCl3+d6-DMSO 300MHz

 $1.00-1.92(14H,m), 2.20(2H,t,J=6.6Hz), 2.35(1H,m), 2.92(1H,m), 5.05-5.22(2H,m), \\ 6.63(1H,d,J=5.4Hz), 7.77-7.92(3H,m), 8.31(1H,d,d,J=1.8and8.7Hz), 8.59(1H,d,J=8.7Hz), 8.73(1H,d,J=8.7Hz), 9.01(1H,s), 9.55(1H,d,J=1.8Hz).$

IR(KBr):3433,3252,2952,2871,1696,1578,1423,1335,1308,1219,1185,1160,110 6/cm.

[α]D=-19.3° (DMSO,C=0.50,23°C).

No.1 a - 175

CDC13 300MHz

0.96-1.87(14H,m), 2.20-2.25(3H,m), 2.95(1H,m), 3.66(3H,s), 4.74(1H,d,J=6.6Hz),

5.10-5.12(2H,m), 6.88(1H,d,J=1.2Hz), 7.37-7.50(3H,m), 7.56(1H,dd,J=8.7,1.5Hz),

7.68-7.77(3H,m), 8.06(1H,s), 9.44(1H,dd,J=1.2Hz).

IR(CHCl3):3462,3374,3026,3006,2952,2872,1724,1610,1580,1484,1452,1358,1

309,1147.

[α]D=+16.4° (CHCl3,c=1.05,26°C). mp.130-132°C.

No.1 a - 176

7

CDCl3+CD3OD 300MHz

1.00-2.02(14H,m), 2.22(1H,m), 2.29(2H,t,J=6.9Hz), 2.88(1H,m), 5.16-5.26(2H,m), 6.87(1H,s), 7.28-7.57(4H,m), 7.69(1H,d,J=8.4Hz), 7.75-7.78(2H,m), 7.99(1H,s).

IR(KBr):3254,2944,1704,1484,1453,1358,1305,1147. [α]D=+13.0° (CH3OH,c=1.02,24°C), mp.160-161°C

No.1 a - 177

CDC13 300MHz

0.96-1.88(14H,m),1.88-2.26(3H,m),2.94(1H,m),3.67(3H,s),3.87(3H,s),4.67(1H,brs),5.08-5.14(2H,m),6.77(1H,d,J=1.5Hz),6.99-7.02(2H,m),7.53-7.57(1H,m),7.6 5-7.70(3H,m),8.00(1H.s).9.27(1H.brs)

IR(CHCl3):3426,3376,3006,2952,1724,1610,1495,1438,1357,1308,1282,1249,1 177,1147/cm.

[α]D=+18.1° (CHCl3,C=1.02,22°).

No.1 a - 1 7 8

CDCl3+CD3OD 300MHz

 $0.96 \cdot 1.91(14H,m), 2.19(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.16-1.91(14H,m), 2.19(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.16-1.91(1H,m), 2.27(2H,t,J=6.0Hz), 2.85(1H,m), 3.87(3H,s), 5.16-1.91(1H,m), 5.16-1.91$

5.23(2H,m), 6.99-7.02(2H,m), 7.41(1H,m), 7.64-7.73(3H,m), 7.92(1H,m).

IR(CHCl3):3366,3261,3004,2954,2873,1705,1611,1496,1458,1438,1304,1286,1 253,1180,1149.1128/cm.

f. Im

\$

[α]D=+14.6° (CHCl3,C=1.02,22°C).

0.96-1.87(14H,m), 2.15-2.23(3H,m), 2.93(1H,m), 3.85(3H,s), 5.10-5.16(2H,m), 6.9 0-6.93(2H,m), 7.50(1H,m), 7.60-7.65(3H,m), 7.91(1H,d,J=0.9Hz).

IR(CHCl3):3369,3270,2950,2873,1719,1612,1498,1456,1440,1359,1306,1269,1 219,1146,1127/cm.

[α]D=+18.1° (CH30H,C=1.00,22°).

No.1 a - 1 8 0

CDCl3+CD3OD 300MHz

1.03-1.86(14H,m),2.08-2.17(3H,m),2.91(1H,m),5.06-5.10(2H,m),6.76(1H,m),6.8 6-6.90(2H,m),7.48(1H,m),7.61-7.69(3H,m),7.89(1H,m).

IR(CHCl3):3360,3259,2954,2873,1706,1612,1497,1457,1360,1306,1272,1230,1 176,1148,1126/cm.

[α]D=+20.3° (CH3OH,C=1.00,22°).

No.1 a - 181

CDCl3 300MHz

0.97-1.96(14H,m), 2.15(1H,m), 2.29(2H,t,J=6.9Hz), 3.05(1H,m), 3.81(3H,s), 5.08(1H,d,J=6.9Hz), 5.23-5.25(2H,m), 6.62(1H,s), 7.47-7.54(5H,m), 7.59(1H,m), 7.70(1H,m), 7.97(1H,m).

IR(CHCl3):3380,3260,3020,2946,2868,1708,1466,1388,1328,1149/cm. [α]D=+32.9° (CHCl3,c=1.07,22 $^{\circ}$).

No.1 a - 1 8 2

CDC13 300MHz

0.94-1.90(14H,m), 2.25(2H,t,J=7.5Hz), 2.30(1H,m), 2.98(1H,m), 3.70(3H,s), 4.83(1H,d,J=6.6Hz), 5.13-5.16(2H,m), 6.95(1H,d,J=1.5Hz), 7.11-7.23(2H,m), 7.43(1H,d,J=8.1Hz), 7.65(1H,d,J=8.1Hz), 7.79-7.93(4H,m), 9.08(1H,br). IR(CHCl3):3458, 3372, 3020, 3002, 2946, 2868, 1719, 1598, 1452, 1422, 1321, 1300, 1

157/cm.

[α]D=-6.6° (CHCl3,c=1.00), mp150-151°C

No.1 a - 1 8 3

CDCl3 300MHz

•

 $0.95-1.94(14H,m), 2.26(1H,m), 2.28(2H,t,J=7.5Hz), 3.00(1H,m), 5.16-5.19(2H,m), \\ 5.32(1H,d,J=7.2Hz), 6.93(1H,d,J=1.2Hz), 7.13(1H,m), 7.22(1H,dd,J=7.8,6.6Hz), \\ 7.42(1H,d,J=7.8Hz), 7.63(1H,d,J=7.8Hz), 7.76(2H,d,J=8.4Hz), 7.90(2H,d,J=8.4Hz), \\ 2), 8.95(1H,br).$

IR(CHCl3):3458,3374,3260,3020,3002,2948,2868,1708,1598,1452,1422,130 1,1156/cm.

 $[\alpha]D=+17.9^{\circ}$ (CHCl3,c=1.01,22°C).

No.1 a - 1 8 4

CDC13 200MHz

 $0.92 \cdot 2.00(14H,m), 2.20(1H,m), 2.34(2H,t,J=6.8Hz), 3.05(1H,m), 5.20 \cdot 5.36(3H,m), \\7.39 \cdot 7.44(2H,m), 7.61 \cdot 7.66(1H,m), 7.80 \cdot 7.84(1H,m), 8.05(2H,d,J=8.6Hz), 8.40(2H,d,J=8.6Hz).$

IR(CHCl3):3384,3271,3019,2958,1709,1615,1599,1551,1453,1405,1344,1326,1 243,1163/cm.

[α]D=+18.5° (CHCl3,C=1.00,21°C).

No.1 a - 185

CDC13 300MHz

 $0.89-2.20(15H,m), 2.26(2H,d.t,J=2.1and7.2Hz), 2.99(1H,m), 5.08(1H,d,J=6.3Hz), \\ 5.09-5.24(2H,m), 6.90(1H,d,J=1.2Hz), 7.32-7.48(4H,m), 7.64-7.72(3H,m), 8.20(1H,d,J=1.2Hz), 9.00(1H,s).$

IR(CHCl3):3464,3375,3275,3022,2956,1707,1605,1490,1449,1356,1322,1219,1 147,1131/cm.

[α]D=+21.6° (CHCl3,C=1.01,23°C).

No.1 a - 186

CDCl3:300MHz

1.36-2.24(14H,m), 2.31(2H,t,J=7.4Hz), 2.49(1H,bs), 3.37(1H,m), 3.67(3H,s), 5.38-5.50(2H,m), 7.40-7.68(9H,m).

IR(CHCl3):3375,1727,1602,1435,1362,1221,1207,1168,1045/cm.

No.1 a - 187

CDCl3:300MHz

1.10-2.25(14H,m), 2.36(2H,t,J=7.2Hz), 2.47(1H,m), 3.37(1H,m), 5.35-5.54(2H,m), 5.62(1H,d,J=7.2Hz), 7.39-7.70(9H,m).

IR(CHCl3):3674,3496,3376,3234,3012,2952,2880,2650,1725(sh),1709,1602,14 85,1420,1360,1167/cm.

 $[\alpha]D=+32^{\circ} (CHCl3,c=1.69).$

No.1 a - 188

CDC13 200MHz

0.86-1.92(14H,m), 2.22(3H,m), 2.36(3H,s), 2.95(1H,m), 3.67(3H,s), 3.93(3H,s), 4.8 1(1H,d,J=6.2Hz), 5.04-5.20(2H,m), 7.02-7.05(2H,m), 7.31(1H,d,J=8.6Hz), 7.39(1H,d,J=7.8Hz), 7.79-7.89(3H,m).

IR(CHCl3):3385,3286,3029,3019,3015,2954,2877,1718,1617,1598,1567,1507,1 311,1269,1153 /cm.

[α]D= -29.4° (CHCl3,c=1.01,25°C).

No.1 a - 189

[α]D=-7.7° (CHCl3,c=1.00,24°C).

No.1 a - 190

[α]D=-17.3° (CHCl3,c=1.00,24°C).

No.1 a - 1 9 1

CDCl3 300MHz

0.95-2.20(14H,m), 2.30(1H,m), 2.36(2H,d,J=6.9Hz), 3.21(1H,m), 4.25(2H,s), 5.07(1H,m), 5.

1H,d,J=7.8Hz),5.35-5.48(2H,m),7.25(1H,dd,J=1.8 and 8.1Hz),7.32-7.35(2H,m

),7.59(1H,d,J=8.1Hz),7.94(1H,s),8.14(1H,d,J=2.7Hz),8.23(1H,d.d,J=2.7and8.7

Hz).

IR(CHCl3):3386,3026,3015,2957,2877,2633,1702,1617,1573,1530,1348,1123 /

cm.

[α]D= -6.1° (CHCl3,c=1.01,25°C).

No.1 a - 1 9 2

CDC13 300MHz

0.92-2.20(14H,m), 2.13(3H,m), 3.23(1H,m), 3.64(3H,s), 3.94(3H,s), 4.22(2H,s), 4.3

6(1H,d,J=7.8Hz),5.37-5.42(2H,m),7.16-7.42(6H,m),7.53(1H,d,J=8.4Hz),7.94(1

H,s).

IR(CHCl3):3389,3022,3013,2953,2877,1716,1616,1560,1485,1340,1326,1124 /

cm.

[α]D= -15.2° (CHCl3,c=1.01,25°C).

No.1 a - 193

CDC13 300MHz

0.92-2.20(14H,m),2.25(1H,m),2.35(2H,t,J=7.2Hz),3.17(1H,m),4.22(2H,s),4.91(

1H,d,J=7.5Hz), 5.37-5.42(2H,m), 7.13-7.43(6H,m), 7.60(1H,d,J=8.1Hz), 8.05(1H,d,J=8.1Hz)

s).

IR(CHCl3):3511,3387,3029,3020,3011.2957.2877.2651.1698 1614 1560 1505 1

No.1b-1

CDC13 300MHz

 $0.98 \cdot 1.56(15H,m), 1.85 \cdot 1.90(5H,m), 2.23(1H,m), 3.05(1H,m), 3.66(3H,s), 4.77(1H,d,J=6.0Hz), 5.08 \cdot 5.28(2H,m), 7.46(3H,m), 7.38 \cdot 7.54(2H,d,J=7.5Hz), 7.72(2H,d,J=8.4Hz), 7.93(2H,d,J=8.4Hz).$

IR(CHCl3):3384,3028,2952,2876,1719,1595,1391,1322,1155/cm.

[α]436 +4.0~+6.0(CHCl3,c=1.00,23°C).

mp.96-98℃

No.1b-2

CDCl3 300MHz

0.98-1.52(15H,m), 1.85-1.90(5H,m), 2.17(1H,m), 3.00(1H,m), 3.67(3H,s), 4.05(2H,s), 4.83(1H,d,J=6.0Hz), 5.05-5.23(2H,m), 7.14(2H,d,J=7.2Hz), 7.17-7.32(5H,m), 7.78(2H,d,J=8.4Hz).

IR(CHCl3):3384,3026,2952,2874,1719,1595,1453,1407,1320,1180/cm. [α]D=+2.5° (CHCl3,c=1.02,24°C).

No.1b-3

CDC13 300MHz

0.96-2.05(20H,m),2.07(1H,m),3.07(1H,m),4.04(2H,s),5.21-5.35(2H,m),5.55(1H,d,J=6.9Hz),7.14(2H,d,J=6.6Hz),7.20-7.32(5H,m),7.78(2H,d,J=8.1H). IR(CHCl3):3250,3022,2950,1699,1596,1495,1453,1405,1318,1153/cm. $[\alpha]D=+17.1^{\circ}$ (CHCl3.c=1.01.25°C)

mp.129-131℃.

No.1b-4

CDC13 200MHz

0.90-2.10(15H,m), 1.19(3H,s), 1.20(3H,s), 3.11(1H,m), 5.24-5.32(2H,m), 5.70(1H,d,J=6.6Hz), 7.38-7.68(4H,m), 7.96-8.04(2H,m), 8.53(1H,d,J=1.4Hz).

IR(CHCl3):3384,3246,2958,1701,1632,1595,1468,1445,1322,1216,1202,1190,1 155,1122/cm.

 $[\alpha]D=+10.8^{\circ}$ (CHCl3,C=0.51,23°C).

No.1b-5

;

1.02-2.10(15H,m),1.16(6H,s),3.02(1H,m),4.09(3H,s),5.23-5.28(2H,m),5.76(1H,d,J=7.2Hz),7.36-7.63(4H,m),7.97(1H,d,J=7.8Hz),8.16(1H,s).

IR(CHCl3):3369,2959,1702,1635,1585,1468,1454,1441,1415,1318,1222,1189,1 170,1154/cm.

[α]D=+9.9° (CHCl3,C=1.00,23°C).

No.1c-1

CDC13 300MHz

1.10-2.02(14H,m),2.27(2H,t,J=7.5Hz),2.50(1H,m),2.89(3H,s),3.31(1H,m),3.64(3H,s),5.16-5.30(2H,m),7.34-7.42(3H,m),7.50-7.59(2H,m),7.62-7.68(2H,m),7.76-7.82(2H,m).

IR(CHCl3):3020,2946,2868,2212,1727,1596,1495,1437,1339,1156,1135,1084 / cm.

[α]D=-16.1° (CHCl3,c=1.05,25.0°C).

m.p.100-102℃

No.1c-2

CDC13 300MHz

1.10-2.05(14H,m), 2.23(2H,t,J=7.5Hz), 2.53(1H,m), 2.91(3H,s), 3.35(1H,m), 3.62(3H,s), 5.02-5.30(2H,m), 7.50-7.60(3H,m), 7.90-8.08(6H,m).

IR(CHCl3):3016,2946,2868,1728,1437,1398,1340,1160,1086 /cm.

[α]D=-32.5° (CHCl3,c=1.00,25.0°C).

No.1c-3

CD3OD 300MHz

1.15-2.05(14H,m),2.13(2H,t,J=7.2Hz),2.47(1H,m),2.91(3H,s),3.27(1H,m),4.90-5.30(2H,m),7.37-7.44(3H,m),7.53-7.61(2H,m),7.71-7.77(2H,m),7.81-7.87(2H,m),

IR(KBr):3412,2999,2951,2871,2217,1560,1399,1243,1159,1137,1103,1084. [α]D=-8.6° (CH3OH,c=1.03,23°C).

No.1d-1

CDC13 300MHz

1.00-2.16(15H,m),2.36(2H,t,J=7.2Hz),3.17(1H,m),3.33(3H,s),5.23-5.43(3H,m),7.51-7.59(3H,m),7.91-8.10(6H,m),9.02(1H,brs).

IR(CHCl3):3382,3268,3028,2954,2874,1715,1442,1400,1337,1162,1120,1089/c m.

 $[\alpha]D=+40.0^{\circ}$ (CHCl3,C=0.53,22°).

No.1d-2

CDCl3 300MHz

1.03-2.30(17H,m), 3.03(1H,m), 4.03(2H,s), 5.26(2H,m), 5.84(1H,br), 5.25-5.29(1H,d,J=6.6Hz), 6.03(1H,br), 7.14(2H,d,J=8.1Hz), 7.26-7.31(5H,m), 7.80(2H,d,J=8.1Hz).

IR(CHCl3):3376,3002,2946,1669,1595,1492,1454,1406,1318,1154/cm. [α]D=+4.3° (CHCl3,c=1.00.23°C).

No.1d-3

ς,

CDCl3 300MHz

0.96-2.17(17H,m),2.33(2H,t,J=6.9Hz),3.01(1H,m),4.04(2H,s),5.10(1H,d,J=6.6Hz),5.21-5.26(2H,m),7.14(2H,d,J=8.7Hz),7.16-7.32(5H,m),7.78(2H,d,J=8.4Hz). IR(CHCl3):3260,3020,2946,1711,1596,1492,1457,1407,1318,1154/cm. [α]D=+9.3° (CHCl3.c=1.09.25 $^{\circ}$).

No.1d-4

CDCl3 300MHz

0.95-2.14(15H,m), 2.34(2H,t,J=7.2Hz), 3.09(1H,m), 3.30(3H,s), 4.04(2H,s), 5.19(1H,d,J=7.2Hz), 5.22-5.39(2H,m), 7.10-7.35(7H,m), 7.81(2H,d,J=8.1Hz), 9.10(1H,b)rs).

IR(CHCl3):3382,3260,3028,2952,2874,2670,1713,1595,1492,1450,1405,1338,1 160,1120,1092/cm.

[α]D=+22.2° (CHCl3,C=1.07,22°).

No.1d-5

CDC13 300MHz

1.00-2.10(14H,m), 2.30-2.39(3H,m), 3.15(1H,m), 3.35(3H,s), 5.18-5.40(3H,m), 7.4 1(1H,d.t.,J=0.9and7.8Hz), 7.50-7.69(3H,m), 7.88-8.15(2H,m), 8.60(1H,d,J=1.5Hz), 9.06(1H,s).

IR(CHCl3):3382,3268,3028,2954,2874,1714,1442,1402,1338,1188,1155,1 121,1072/cm.

[α]D=+15.3° (CHCl3,C=1.00,22°).

No.le-1

CDC13 300MHz

1.19-2.45(19H,m), 2.58(1H,m), 5.63(1H,d,J=3.0Hz), 7.42-7.65(4H,m), 7.94-8.03(2H,m), 8.49-8.50(1H,m).

IR(CHCl3):3293,3024,1710,1595,1584,1467,1445,1410,1324,1222,1213,1206,1 190,1160/cm.

[α]D=-41.1° (CHCl3,C=1.01,23°C).

No.1e-2

CDCl3 300MHz

FC1/JP90/01685

1.10-2.25(19H,m), 2.94(1H,m), 4.12(3H,s), 5.53(1H,d,J=7.2Hz), 7.39(1H,m), 7.50-7.62(3H,m), 7.96(1H,d,J=7.5Hz), 8.13(1H,s).

IR(CHCl3):3367,3025,2955,1711,1634,1600,1584,1468,1454,1440,1415,1342,1 317,1222,1189,1157/cm.

 $[\alpha]D=+1.2^{\circ}$ (CHCl3,C=1.00,25°C).

No.1f-1

CDCl3 300MHz

1.08-2.47(19H,m), 2.56(1H,m), 3.52(2H,t,J=6.6Hz), 5.59(1H,d,J=2.4Hz), 7.40-7.66(4H,m), 7.95-8.04(2H,m), 8.50(1H,d,J=1.8Hz).

IR(CHCl3):3624,3383,3295,2950,2877,1705,1595,1584,1468,1445,1405,1347,1 337,1324,1224,1190,1160/cm.

[α]D=-54.1° (CHCl3,C=1.01,23°C).

No.1f- 2

CDCl3 300MHz

1.08-2.24(19H,m), 2.94(1H,m), 3.53(2H,t,J=6.3Hz), 4.13(3H,s), 5.47(1H,d,J=6.6Hz), 7.36-7.63(4H,m), 7.96(1H,d,J=6.3Hz), 8.14(1H,s).

IR(CHCl3):3625,3368,3025,3013,2949,2877,1710,1634,1600,1584,1468,1454,1440,1415,1342,1317,1232,1220,1189,1157/cm.

[α]D=-5.6° (CHCl3,C=1.00,25°C).

No.1g - 1

CDC13 200MHz

1.17-2.34(15H,m), 3.22(1H,m), 5.10-5.16(2H,m), 5.45(1H,d,J=7.0Hz), 7.35-7.66(4H,m), 7.95-8.01(2H,m), 8.51(1H,d,J=2.0Hz).

IR(CHCl3):3383,3275,2959,1707,1595,1584,1468,1445,1425,1319,1269,1248,1 190,1149,1123/cm.

 $\{\alpha\}D=+64.3^{\circ}\ (CHCl3,C=1.01,23^{\circ}).$

No.1g-2

CDCl3 300MHz

1.10-2.15(13H,m),2.36(2H,t,J=7.2Hz),3.21(1H,m),4.09(3H,s),5.10-5.22(2H,m), 5.43(1H,d,J=7.8Hz),7.36-7.62(4H,m),7.96(1H,d,J=7.8Hz),8.12(1H,s).

IR(CHCl3):3366,2959,1708,1635,1600,1585,1467,1454,1440,1415,1345,1318,1 233,1189,1152/cm.

 $[\alpha]D=+103.1^{\circ}$ (CHCl3,C=1.01,23°C).

No.1h-1

CDCl3 300MHz

0.90-1.60(17H,m), 1.83(1H,m), 2.11(1H,m), 2.22(2H,t,J=7.2Hz), 3.07(1H,m), 5.11(1H,d,J=7.2Hz), 7.38-7.47(1H,m), 7.50-7.60(1H,m), 7.60-7.72(2H,m), 7.88-8.12(2H,m), 8.54(1H,d,J=0.9Hz).

IR(CHCl3):3382,3274,2926,1707,1464,1442,1318,1266,1188,1153,1121,1105,1 071,1019/cm.

 $[\alpha]D=-2.8^{\circ}$ (CHCl3,C=1.01,23°C).

No.1i-1

[α]365 +50.9° (CHCl3,c=1.01,24°C).

No.1i - 2

CDC13 300MHz

 $0.98 \cdot 1.70(11H,m), 1.80 \cdot 2.00(5H,m), 2.19(1H,m), 3.03(1H,m), 3.64(2H,t,J=6.6Hz), \\ 4.05(2H,s), 4.69(1H,d,J=6.6Hz), 5.15(1H,m), 5.25(1H,m), 7.16(2H,d,J=7.2Hz), 7.2 \\ 7 \cdot 7.32(5H,m), 7.77(2H,d,J=8.4Hz).$

IR(CHCl3):3376,3004,2946,2316,1596,1492,1453,1407,1318,1154/cm.

[α]D= +3.5° (CHCl3,c=1.00,22°).

mp.80.5-82.0℃

No.1j-1

[α]436=-7.5 ± 0.5° (CHCl3,c=1.05,22°C).

No.1j-2

 $[\alpha]D=-9.7\pm0.5$ (CHCl3,c=1.06,22°C).

No.1j-3

[α]D==+15.0±0.5*(CH3OH,c=1.06,24.5°C).

mp.101-108°C

No.1j-4

 $[\alpha]D=-28.0\pm0.6$ (CHCl3,c=1.06,24°C).

mp.159-161℃

1j-5

[α]D==-12.5 ± 0.5° (CHCl3,c=1.04,23°C).

mp.99-101℃

No.1j-6

CDC13 300MHz

0.90-2.03(14H,m), 2.20(1H,m), 2.30(2H,t,J=7.3Hz), 3.00(1H,m)3.68(3H,s), 4.76(1.20)

H,d,J=6.8Hz), 5.13-5.35(2H,m), 7.01-7.08(4H,m), 7.19-7.26(1H,m), 7.37-7.46(2H,m)

m),7.80-7.84(2H,m).

IR(CHCl3):3382,3280,3080,3016,2952,2900,1727,1582,1486,1432,1322,1150/c

m.

 $[\alpha]D = -31.0^{\circ} (CHCl3, c=1.05, 26^{\circ}).$

No.1j-7

CDC13 300MHz

0.91-2.09(14H,m), 2.15(1H,m), 2.35(2H,t,J=7.5Hz), 3.01(1H,m), 5.17(1H,d,J=6.8Hz), 5.21-5.34(2H,m), 7.01-7.08(4H,m), 7.15-7.27(1H,m), 7.37-7.43(2H,m), 7.80-7.85(2H,m).

IR(CHCl3):3474,3386,3270,3024,2958,2900,2675,1711,1584,1488,1420,1323,1 298,1150/cm.

 $[\alpha]D = -13.4^{\circ} (CHCl3,c=1.01,26^{\circ}).$

No.1j-8

CDCl3 300MHz

 $0.95-2.14(13H,m), 2.30(2H,t,J=7.5Hz), 2.36(1H,m), 2.84(1H,m), 2.91(1J=4.8Hz), \\ 3.66(3H,s), 5.33-5.52(2H,m), 6.82-6.87(1H,m), 6.93-7.00(2H,m), 7.09-7.15(4H,m), \\ 7.28-7.36(2H,m), 7.54-7.59(1H,m).$

IR(CHCl3):3350,3010,2950,2880,1728,1603,1582,1489 1461,1438,1360,1160/c m.

 $[\alpha]D = +75.1^{\circ} (CHCl3,c=1.13,26^{\circ}C).$

No.1j-9

CDC13 300MHz

0.95-2.03(14H,m),2.20(1H,m),2.29(2H,t,J=7.5Hz),3.06(1H,m),3.68(3H,s),4.98(1H,d,J=7.4Hz),5.14-5.34(2H,m),7.46-7.54(2H,m),7.60-7.68(1H,m),7.75-7.80(2H,m),7.88-7.92(2H,m),7.99-8.03(2H,m).

IR(CHCl3):3384,3280,3020,2960,2888,1727,1662,1600,1316,1273,1163/cm. $[\alpha]D = -41.0^{\circ}$ (CHCl3,c=1.17,26°C).

No.1j - 10

CDCl3+CD3OD 300MHz

0.94-2.08(14H,m), 2.21(1H,m), 2.34(2H,t,J=6.2Hz), 3.04(1H,m), 5.21-5.35(2H,m), 5.40(1H,m), 7.49-7.58(2H,m), 7.64-7.68(1H,m), 7.79-8.06(6H,m).

PC1/JP96/01085

IR(CHCl3):3475,3370,3250,3018,2956,2976,2650,1709,1662,1595,1445,1420, 1395,1317,1274,1163/cm.

 $[\alpha]D = -17.1^{\circ} (CHCl3,c=1.13,25^{\circ}).$

No.1j-11

CDCl3 300MH₂

1.06-1.98(14H,m),2.24-2.29(3H,m),3.13(1H,m),3.66(3H,s),5.10-5.24(2H,m),5.4 0(1H,d,J=6.3Hz),7.39-7.49(3H,m),7.59-7.64(3H,m),7.80-7.83(2H,m),8.08-8.11(1H,m).

IR(CHCl3):3302,3012,2948,2905,1727,1661,1593,1435,1332,1312,1287,1271,1 165/cm.

 $[\alpha]D = +15.6^{\circ} (CHCl3, c=1.03, 26^{\circ}).$

No.1j-12

CDCl3 300MHz

1.08-1.98(14H,m),2.23(1H,m),2.33(2H,t,J=7.5Hz),3.16(1H,m),5.18-5.26(2H,m), 5.39-5.45(1H,m),7.39-7.49(3H,m),7.60-7.64(3H,m),7.80-7.83(2H,m),8.09-8.12(1H,m).

IR(CHCl3):3325,3022,2956,2872,2680,1708,1662,1603,1598,1425,1340,1316,1 288,1271,1165/cm.

 $[\alpha]D = +9.7^{\circ} (CHC13,c=0.52,25^{\circ}C).$

No.1j-13

CDC13 300MHz

0.95-2.00(14H,m), 2.20(1H,m), 2.27(2H,t,J=6.3Hz), 3.03(1H,m), 3.67(3H,s), 4.99(1H,d,J=6.6Hz), 5.12-5.31(2H,m), 7.47-7.55(2H,m), 7.60-7.69(2H,m), 7.76-7.81(2H,m), 7.96-8.05(1H,m), 8.08-8.14(1H,m), 8.27-8.28(1H,m).

IR(CHCl3):3674,3538,3376,3276,3012,2948,2860,1726,1662,1595,1440,1335.1 317,1297,1274,1166,1150/cm.

```
[\alpha]D=+10.2° (CHCl3,c=1.00,25°C).
```

No.1j-14

CDC13 300MHz

0.93-2.08(14H,m), 2.21(1H,m), 2.32(2H,t,J=6.3Hz), 3.00(1H,m), 5.20-5.36(2H,m),

5.38(1H,d,J=6.2Hz),7.50-7.55(2H,m),7.63-7.71(2H,m),7.77-7.81(2H,m),7.99-8.

04(1H,m),8.10-8.18(1H,m),8.32-8.36(1H,m).

IR(CHCl3):3674,3480,3374,3258,3012,2950,2875,2650,1709,1662,1598,1418,1 335,1317,1274,1143/cm.

[α]D=+61.0° (CHCl3,c=1.19,25°C).

No.1j-15

CDC13 300MHz

0.90-2.00(14H,m), 2.19(1H,m), 2.30(2H,t,J=7.3Hz), 3.01(1H,m), 3.67(3H,s), 4.82(1H,m), 4.

1H,d,J=6.6Hz), 5.14-5.34(2H,m), 7.36-7.39(3H,m), 7.53-7.57(2H,m), 7.62-7.66(2)

H,m),7.83-7.88(2H,m).

IR(CHCl3):3376,3276,3010,2948,2868,2212,1727,1597,1500,1437,1325,1161/c

m.

[α]D=-7.2° (CHCl3,c=1.00,26°C).

No.1j-16

CDC13 300MHz

0.93-2.03(14H,m), 2.15(1H,m), 2.36(2H,t,J=7.5Hz), 3.05(1H,m), 5.20-5.40(3H,m),

7.36-7.39(3H,m), 7.55-7.66(4H,m), 7.84-7.88(2H,m).

IR(CHCl3):3470,3376,3260,3012,2950,2868,2675,2212,1708,1596,1503,1416,1

206 1200 1100

CDC13 300MHz

1.00-1.60(9H,m), 1.79-1.89(5H,m), 2.17(1H,bs), 2.23(2H,t,J=7.2Hz), 3.03(1H,m),

5.10-5.23(2H,m), 5.49(1H,d,J=6.6Hz), 7.40(1H,t,J=7.4Hz), 7.53(1H,t,J=7.2Hz), 7.53(1H

60-7.68(2H,m), 7.98-8.03(2H,m), 8.55(1H,d,J=1.5Hz).

IR(CHCl3):3516,3384,3270,2666,1708,1632,1595,1584,1467,1445,1425,1374,1 345,1321,1269,1248,1218/cm.

 $[\alpha]D = -7.8$ ° (CHCl3,c=1.01,22°C).

No.1j-18

CDCl3 300MHz

0.90-2.03(14H,m),2.19(1H,m),2.30(2H,t,J=7.5Hz),3.00(1H,m),3.67(3H,s),4.80(1H,d,J=6.4Hz),5.14-5.35(2H,m),6.99-7.04(2H,m),7.16-7.22(2H,m),7.34-7.49(4H,m),7.57-7.61(1H,m).

IR(CHCl3):3376,3276,3012,2948,2875,1727,1583,1488,1471,1432,1330,1311,1 **150/cm**.

 $[\alpha]D=+54.0^{\circ} (CHCl3,c=0.99,25^{\circ}).$

No.1j - 19

CDC13 300MHz

0.91-2.09(14H,m), 2.15(1H,m), 2.34(2H,t,J=7.5Hz), 3.01(1H,m), 5.16(1H,d,J=6.6Hz), 5.24-5.40(2H,m), 7.01-7.08(2H,m), 7.15-7.25(2H,m), 7.35-7.53(4H,m), 7.59-7.65(1H,m).

IR(CHCl3):3470,3376,3260,3012,2950,2875,2640,1708,1583,1488,1471,1430,1 335,1305,1149/cm.

 $[\alpha]D= -21.0^{\circ} (CHCl3,c=1.30,25^{\circ}).$

No.1j - 20

CDC13 300MHz

1.17(1H,m), 1.26-1.34(2H,m), 1.54-2.24(11H,m), 2.31(2H,t,J=7.4Hz), 2.48(1H,bs),

3.37(1H,m),3.67(3H,s),5.35-5.50(2H,m),7.39-7.68(9H,m). IR(CHCl3):3377,1727,1601,1435,1362,1168/cm.

No.1j - 21

CDCl3 300MHz

1,10-2.25(14H,m),2.36(2H,t,J=7.2Hz),2.47(1H,m),2.89(1H,m),5.35-5.53(2H,m), 5.63(1H,d,J=7.2Hz),7.40-7.71(9H,m).

IR(CHCl3):3674,3496,3374,3234,3010,2952,2870,2640,1730(sh),1710,1605,14 85,1425,1360,1167/cm.

[α]D=-43.0° (CHCl3,c=1.01,25°C).

No.1j-22

CDC13 300MHz

0.98-1.95(14H,m), 2.25-2.31(3H,m), 2.95(1H,m), 5.19-5.30(2H,m), 5.33(1H,d,J=3.48)

9Hz),6.58(1H,d,J=7.5Hz),6.80(1H,t,J=7.5Hz),6.99-7.05(1H,m),7.44-7.53(6H,m),

7.60-7.73(9H,m), 7.94-7.73(3H,m), 8.23-8.26(2H,m), 10.66(1H,s).

IR(CHCl3):3475,3372,3260,3008,2952,2868,2722,1725,1710(sh),1663,1590,1571,1525,1448,1437,1345.1314.1161.1112/cm.

[α]D=+12.9° (CHCl3,c=0.12,23°C).

No.1j - 23

CDC13 300MHz

 $0.94 \sim 1.94(14H,m), 2.23 \cdot 2.30(3H,m), 2.98(1H,m), 3.68(3H,s), 5.09(1H,d,J=6.2Hz),$ $5.15 \cdot 5.28(2H,m), 7.14 \cdot 7.22(1H,m), 7.34 \cdot 7.42(2H,m), 7.68 \cdot 7.73(2H,m), 7.89 \cdot 8.03(4H,m), 8.51(1H,s).$

IR(CHCl3):3372,3275,1724,1673,1599,1438,1320,1161/cm.

 $[\alpha]D = +17.0$ ° (CHCl3,c=1.38,25°).

No.1j - 24

LC1/0LA0/01092

CDCl3+CD3OD 300MHz

0.96-2.05(14H,m), 2,25-2.34(3H,m), 2.92(1H,m), 5.16-5.34(2H,m), 7.14-7.22(1H,m), 7.29-7.42(2H,m), 7.70(2H,d,J=7.6Hz), 7.92-8.05(4H,m).

IR(CHCl3):3616,3426,3375,3010,2950,2828,2645,1708,1672,1599,1439,1323,1 161/cm.

[α]D=+21.0° (CH30H,c=1.00,22°C).

No.1j - 25

CDC13 300MHz

 $1.03(1H,m), 1.18-2.01(13H,m), 2.20(1H,bs), 2.27(2H,t,J=7.4Hz), 3.08(1H,m), 3.66\\ (3H,s), 5.11(1H,d,J=6.6Hz), 5.14-5.34(2H,m), 7.54-7.62(3H,m), 8.04-8.32(6H,m).\\ IR(CHCl3): 3384, 3278, 1726, 1605, 1484, 1448, 1331, 1161/cm.$

No.1j - 26

CDCl3+CD3OD 300MHz

1,03-2.10(14H,m),2.22(1H,m).2.31(2H,t,J=7.5Hz),2.98(1H,m),5.23-5.38(2H,m),7.55-7.66(3H,m),8.05-8.08(2H,m),8.14-8.18(2H,m),8.28-8.31(2H,m).

IR(Nujol):3260,2720,2660,1711,1545,1460,1317,1163/cm.

[α]D=+15.8° (CH3OH,c=1.01,22°).

No.1j-27

 $[\alpha]D = +16.7^{\circ} (CHCl3,c=1.00,23^{\circ}).$

No.1j - 2 8

CDC13 300MHz

1.01(1H,m),1.14-1.29(2H,m),1.46-2.19(11H,m),2.33(2H,t,J=7.2Hz),2.41(1H,bs), 3.18-3.21(5H,m),3.68(3H,s),3.73-3.76(4H,m),4.37(1H,d,J=7.2Hz),5.35-5.45(2H,m).

IR(CHCl3):3392,1727,1435,1335,1148/cm.

 $[\alpha]D=+10.7$ ° (CHCl3,c=1.39,26°C).

No.1j - 29

CDC13 300MHz

1.00(1H,m), 1.20-1.29(2H,m), 1,48-2.25(12H,m), 2.37(2H,t,J=7.2Hz), 3.17-3.22(5-2)

H,m), 3.74-3.79(4H,m), 4.79(1H,d, J=7.8Hz), 5.34-5.54(2H,m).

IR(CHCl3):3470,3390,3270,2675,1709,1455,1420,1315,1147/cm.

 $[\alpha]D = +16.8$ ° (CHCl3,c=1.42,26°C).

No.1k-1

[α]D= -25.4° (CHCl3,c=1.08,23°C).

No.1k-2

CDC13 200MHz

1.07-2.28(14H,m), 2.32(2H,t,J=7.4Hz), 2.63(1H,m), 3.63(3H,s), 3.93(1H,m), 5.30-2.28(14H,m), 2.32(2H,t,J=7.4Hz), 2.63(1H,m), 3.63(3H,s), 3.93(1H,m), 3.63(2H,s), 3.93(1H,m), 3.63(2H,s), 3.93(1H,m), 3.63(2H,s), 3.93(1H,m), 3.63(2H,s), 3.93(1H,m), 3.63(2H,s), 3.93(2H,s), 3.93(2H,s),

5.52(2H,m),6.35(1H,d,J=7.0Hz),7.48-7.60(3H,m),7.88-8.02(6H,m).

IR(CHCl3):3438,3002,2946,2868,1727,1652,1514,1485,1363,1310,1245,1154 / cm.

[α]D==-80.4° (CHCl3,c=1.01,24.0°).

No.1k-3

CDCl3 200MHz

1.10-2.26(14H,m), 2.37(2H,t,J=7.2Hz), 2.60(1H,m), 3.93(1H,m), 5.30-5.50(2H,m),

6.33(1H,d,J=7.5Hz),7.48-7.58(3H,m),7.88-7.99(6H,m).

IR(CHCl3):3446,3004,2952,2874,1709,1652,1515,1485,1305,1153 /cm.

[α]D==-96.4° (CHCl3,c=1.05,23.0°).

No.1k-4

Ł

CDC13 300MH₂

PC1/JP96/01085

1.05-2.17(14H,m), 2.38(2H,t,J=7.2Hz), 2.52(1H,m), 3.81(1H,m), 5.33-5.50(2H,m), 6.08(1H,d,J=7.6Hz), 7.39-7.53(3H,m), 7.57-7.62(6H,m).

IR(CHCl3):3420,3250,3008,2948,2870,2660,2208,1735(sh),1705,1640,1500/cm

[α]D=-21.9±0.6° (CHCl3,c=1.02,22°).

No.1k-5

CDCl3 300MHz

1.05-2.14(14H,m), 2.38(2H,t,J=7.2Hz), 2.51(1H,m), 3.81(1H,m), 5.34-5.46(2H,m), 6.07(1H,d,J=7.6Hz), 7.33-7.56(5H,m).

IR(CHCl3):3422,3250,3010,2950,2876,2664,2558,2210,1735(sh),1705,1645,15 02,1441,1410,1307,1276/cm.

[α]D=-63.6±1.9° (CHCl3,c=0.56,22°C).

No.1k-6

CDC13 300MHz

1.04-2.24(14H,m),2.36(2H,t,J=7.5Hz),2.58(1H,m),3.88(1H,m),5.30-5.43(2H,m),6.21(1H,d,J=7.2Hz),7.41-7.49(3H,m),7.73-7.77(2H,m).

IR(CHCl3):3447,3011,2955,1708,1653,1603,1578,1515,1486,1457,1312,1211,1 164/cm.

[α]D=-60.3° (CHCl3,C=1.00,23°C).

No.1k-7

CDC13 300MHz

1.04-2.22(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.87(1H,m), 5.30-5.44(2H,m), 6.17(1H,d,J=8.7Hz), 6.99-7.40(7H,m), 7.73(2H,d,J=7.5Hz).

IR(CHCl3):3449,3013,2955,1739,1708,1651,1609,1588,1522,1487,1243,1227,1 169/cm.

[α]D=-60.2° (CHC13,C=0.92,23°C).

No.1k-8

CDCl3 300MHz

 $1.04-2.25(14H,m), 2.34(2H,t,J=7.5Hz), 2.56(1H,m), 3.87(1H,m), 5.30-5.44(2H,m), \\ 6.19(1H,d,J=7.5Hz), 6.83-6.94(6H,m), 7.69(2H,d,J=8.7Hz).$

IR(CHCl3):3599,3455,3012,2955,1711,1644,1604,1577,1524,1507,1492,1290,1 236,1197,1170/cm.

[α]D=-47.7° (CHCl3,C=1.01,22°C).

No.1k-9

CDCl3 300MHz

1.04-2.20(14H,m),2.31(3H,s),2.36(2H,t,J=7.2Hz),2.56(1H,m),3.86(1H,m),5.30-5.43(2H,m),6.16(1H,d,J=7.2Hz),7.00-7.11(6H,m),7.74(2H,d,J=8.7Hz).

IR(CHCl3):3450,3010,2955,1750,1709,1651,1609,1596,1523,1489,1370,1247,1 227,1183/cm.

[α]D=-54.7° (CHCl3,C=1.01,22°C).

No.1k-10

CDCl3 300MHz

1.04-2.22(14H,m),2.35(2H,t,J=7.2Hz),2.56(1H,m),3.82(3H,s),3.86(1H,m),5.30-

5.43(2H,m), 6.17(1H,d,J=6.9Hz), 6.89-7.01(6H,m), 7.70(2H,d,J=8.7Hz).

IR(CHCl3):3023,2955,1742,1708,1649,1613,1602,1577,1522,1507,1490,1227,1 210,1170/cm.

[α]D=-58.1° (CHCl3,C=1.01,22°C).

No.1m-1

CDCl3 300MHz

1.06-2.25(14H,m),2.32(2H,t,J=7.4Hz),2.61(1H,m),3.63(3H,s),3.91(1H,m),5.33-5.47(2H,m),6.24(1H,d,J=6.9Hz),7.35-7.38(3H,m),7.53-7.60(4H,m),7.75-7.78(2

H,m).

IR(CHCl3):3438,3008,2946,2875,2212,1732,1650,1605,1519,1496/cm; α [α]D= +76° (CHCl3,c=1.39,24°C)

No.1m-2

CDC13 300MHz

1.05-2.20(14H,m),2.36(2H,t,J=6.2Hz),2.59(1H,m),3.89(1H,m),5.29-5.48(2H,m),6.26(1H,d,J=7.0Hz),7.26-7.38(3H,m),7.52-7.60(4H,m),7.73-7.77(2H,m).
IR(CHCl3):3444,3012,2952,2874,2664,2214,1718(sh),1708,1649,1605,1520,1498/cm.

 $[\alpha]D = +81.4^{\circ} (CHCl3,c=1.01,23^{\circ})$

No.1m-3

CDCl3 300MHz

1.06-2.23(14H,m),2.32(2H,t,J=7.0Hz),2.62(1H,m),3.63(3H,s),3.93(1H,m),5.30-5.50(2H,m),6.28(1H,d,J=7.0Hz),7.38-7.51(3H,m),7.58-7.67(4H,m),7.83-7.88(2H,m).

IR(CHCl3):3438,3008,2948,2875,1783(w),1727,1650,1608,1580(w),1523,1501, 1482/cm.

 $[\alpha]D = +59^{\circ} (CHCl3,c=1.49,25^{\circ})$

No.1m-4

CDC13 300MHz

1.08-2.25(14H,m),2.36(2H,t,J=7.4Hz),2.59(1H,m),3.91(1H,m),5.28-5.48(3H,m),6.29(1H,d,J=7.4Hz),7.38-7.50(3H,m),7.61-7.67(4H,m),7.81-7.86(2H,m).
IR(CHCl3):3436,3010,2948,2868,1727,1715(sh),1649,,1615(w),1524,1502,1482,1372/cm.

 $[\alpha]D = +72^{\circ} (CHCl3,c=0.98,25^{\circ})$

No.1m-5

CDC13 300MHz

1.09-2.20(14H,m), 2.32(2H,t,J=7.2Hz), 2.63(1H,m), 3.63(3H,s), 3.92(1H,m), 5.31-1.09-2.20(14H,m), 2.32(2H,t,J=7.2Hz), 2.63(1H,m), 3.63(3H,s), 3.92(1H,m), 3.63(2H,m), 3.63(2H

5.51(2H,m), 6.35(1H,d,J=7.0Hz), 7.51-7.60(3H,m), 7.92-7.97(6H,m).

IR(CHCl3):3436,3008,2946,2875,1727,1652,1608(w),1515,1484/cm.

 $[\alpha]D = +82^{\circ} (CHCl3,c=0.99,25^{\circ}C)$

No.1m-6

CDCl3 300MHz

1.09-2.23(14H,m), 2.37(2H,t,J=7.2Hz), 2.60(1H,m), 3.92(1H,m), 5.30-5.49(2H,m), 6.32(1H,d,J=7.4Hz), 7.51-7.55(3H,m), 7.85-7.98(6H,m).

IR(CHCl3):3436,3010,2950,2875,2670,1727,1715(sh),1650,1605(w),1515,1484/cm.

 $[\alpha]D = +84^{\circ} (CHC13, c=1.54, 25^{\circ}C)$

No.1m-7

CDC13 300MHz

1.03-2.18(14H,m), 2.32(2H,t,J=7.4Hz), 2.59(1H,m), 3.64(3H,s), 3.89(1H,m), 5.29-1.03-2.18(14H,m), 2.32(2H,t,J=7.4Hz), 2.59(1H,m), 3.64(3H,s), 3.89(1H,m), 3.89(1H

5.49(2H,m), 6.16(1H,d,J=7.8Hz), 6.98-7.06(4H,m), 7.14-7.20(1H,m), 7.34-7.41(2H,m), 6.16(1H,d,J=7.8Hz), 6.98-7.06(4H,m), 7.14-7.20(1H,m), 7.34-7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41(2H,m), 7.41

H,m),7.73-7.78(2H,m).

IR(CHCl3):3438,3008,2946,2868,1727,1648,1610,1586,1519,1485/cm.

[α]D= +54° (CHCl3,c=1.29,25°C).

No.1m-8

CDCl3 300MHz

1.06-2.21(14H,m), 2.36(2H,t,J=7.5Hz), 2.58(1H,m), 3.88(1H,m), 5.31-5.46(2H,m),

6.17(1H,d,J=6.9Hz),6.99-7.05(4H,m),7.15-7.21(1H,m),7.36-7.41(2H,m),7.72-7.

75(2H,m).

IR(CHCl3):3436,3010,2948,2868,2675,1730(sh),1709,1647,1608,1586,1520,14

```
85/cm.  [\alpha]D = +56^{\circ} (CHC13,c=0.97,25^{\circ}C)
```

No.1m-9

CDCl3 300MHz

 $1.05 \cdot 2.18(14H,m), 2.29 \cdot 2.34(5H,m), 2.59(1H,m), 3.64(3H,s), 3.89(1H,m), 5.32 \cdot 5.4$ $6(2H,m), 6.16(1H,d,J=7.5Hz), 7.00 \cdot 7.11(6H,m), 7.74 \cdot 7.77(2H,m).$

IR(CHCl3):3440,3010,2946,2868,1729,1649,1595,1519,1488/cm.

 $[\alpha]D= +47^{\circ} (CHC13,c=0.82,25^{\circ}).$

No.lm-10

CDC13 300MHz

1.04-2.20(14H,m),2.31-2.39(5H,m),2.57(1H,m),3.87(1H,m),5.28-5.47(2H,m),6.1 7(1H,d,J=7.0Hz),6.99-7.12(6H,m),7.72-7.76(2H,m).

IR(CHCl3):3674,3572,3438,3010,2948,2868,2626,1748,1710,1648,1615,1595,1 520,1489/cm.

 $[\alpha]D = +51^{\circ} (CHCl3,c=0.91,25^{\circ})$

No.1m-11

CDC13 300MHz

1.04-2.16(14H,m),2.31(2H,t,J=7.2Hz),2.59(1H,m),3.63(3H,s),3.89(1H,m),5.29-

5.49(2H,m), 6.24(1H,d,J=7.4Hz), 6.54(1H,s), 6.83-6.93(6H,m), 7.69-7.73(2H,m).

IR(CHCl3):3674,3588,3438,3296,3010,2946,2868,1725,1646,1603,1520,1504,1 489/cm.

 $[\alpha]D= +51^{\circ} (CHCl3,c=0.91,25^{\circ})$

No.1m-12

CDC13 300MHz

1.04-2.21(14H,m), 2.33(2H,t,J=8.0Hz), 2.56(1H,m), 3.87(1H,m), 5.28-5.48(2H,m),

6.23(1H,d,J=8.0Hz),6.75(1H,m),6.87-6.94(6H,m),7.66-7.71(2H,m),9.63(1H,bs). IR(CHCl3):3674,3582,3436,3275,3010,2950,2868,2675,1727,1710(sh),1643,16 03,1522,1504,1490/cm.

 $[\alpha]D = +30^{\circ} (CHCl3,c=0.97,25^{\circ})$

No.1m-13

CDCl3 300MHz

1.01-2.18(14H,m), 2.31(2H,t,J=7.4Hz), 2.58(1H,m), 3.63(3H,s), 3.82(3H,s), 3.89(1H,m), 3.63(3H,s), 3.89(1H,m), 3.

H,m),5.29-5.48(2H,m),6.14(1H,d,J=7.0Hz),6.88-7.02(6H,m),7.70-7.74(2H,m).

IR(CHCl3):3442,3402,3004,2946,2868,1727,1648,1600,1518,1499/cm.

 $[\alpha]D=+42^{\circ} (CHCl3,c=1.82,26^{\circ}C)$

No.1m-14

CDCl3 300MHz

1.05-2.21(14H,m), 2.35(2H,t,J=7.2Hz), 2.55(1H,m), 3.82(3H,s), 3.88(1H,m), 5.27-2.21(14H,m), 2.35(2H,t,J=7.2Hz), 2.55(1H,m), 3.82(3H,s), 3.88(1H,m), 3.82(3H,s), 3.82(3H,s),

5.46(2H,m), 6.16(1H,d,J=7.2Hz), 6.88-7.02(6H,m), 7.68-7.73(2H,m).

IR(CHCl3):3438,3012,2948,2870,2650,1730(sh),1709,1647,1615(sh),1601,1519, 1492/cm.

 $[\alpha]D=+64^{\circ} (CHCl3,c=0.70,25^{\circ})$

No.1m-15

CDC13 300MHz

1.05-2.20(14H,m),2.29-2.36(5H,m),2.62(1H,m),3.63(3H,s),3.92(1H,m),5.30-5.5

0(2H,m),6.25(1H,d,J=7.2Hz) 7 16.7 21(2H m) 7 50 7 C4(4H) 7 80 5 65 7

No.lm-16

CDC13 300MHz

1.08-2.21(14H,m), 2.34-2.40(5H,m), 2.59(1H,m), 3.90(1H,m), 5.29-5.48(2H,m), 6.29(1H,d,J=7.0Hz), 7.18(2H,d,J=8.6Hz), 7.58-7.64(4H,m), 7.83(2H,d,J=8.2Hz).

IR(CHCl3):3438,3012,2948,2870,2622,1749,1710,1649,1610,1526,1508,1487/c m.

 $[\alpha]D=+66^{\circ} (CHCl3,c=1.21,24^{\circ}C)$

No.lm-17

CDC13 300MHz

1.06-2.19(14H,m), 2.32(2H,t,J=7.2Hz), 2.62(1H,m), 3.63(3H,s), 3.93(1H,m), 5.30

5.50(2H,m), 6.32(1H,d,J=7.6Hz), 6.41(1H,s), 6.94(2H,d,J=9.0Hz), 7.47(2H,d,J=9.0Hz)

0Hz),7.58(2H,d,J=8.6Hz),7.81(2H,d,J=8.6Hz).

IR(CHCl3):3580,3434,3284,3010,2946,2868,1726,1646,1606,1528,1490/cm.

 $[\alpha]D=+62.4^{\circ} (CHCl3,c=1.01,23^{\circ})$

No.lm-18

CDC13+CD3OD 300MHz

1.11-2.18(14H,m),2.32(2H,t,J=7.4Hz),2.59(1H,m),3.88(1H,m),5.30-5.49(2H,m), 6.55(1H,d,J=7.0Hz),6.92(2H,d,J=8.6Hz),7.47(2H,d,J=8.6Hz),7.59(2H,d,J=8.6Hz),7.79(2H,d,J=8.2Hz)

IR(Nujol):3398,3175,2725,1696,1635,1601,1531,1510/cm.

 $[\alpha]D=+99.5^{\circ}$ (CH3OH,c=1.011,25°C)

No.1m-19

CDC13 300MHz

1.05-2.20(14H,m), 2.32(2H,t,J=7.4Hz), 2.61(1H,m), 3.63(3H,s), 3.86(3H,s), 3.94(1H,m), 5.30-5.50(2H,m), 6.24(1H,d,J=7.0Hz), 6.99(2H,d,J=8.6Hz), 7.53-7.63(4H,m), 7.82(2H,d,J=8.6Hz).

rc1/Jry0/U1085

IR(CHCl3):3440,3006,2946,2875,1726,1649,1606,1527,1510,1489/cm. [α]D=+68° (CHCl3,c=0.88,26°C)

No.1m-20

2

CDC13 300MHz

1.09-2.20(14H,m), 2.35(2H,t,J=7.3Hz), 2.58(1H,m), 3.85(3H,s), 3.89(1H,m), 5.28-5.48(2H,m), 6.35(1H,d,J=7.2Hz), 6.98(2H,d,J=8.8Hz), 7.51-7.61(4H,m), 7.81(2H,d,J=8.4Hz), 8.34(1H,bs).

IR(CHCl3):3446,3012,2952,2881,2640,1730(sh),1707,1647,1606,1527,1510,14 89/cm.

 $[\alpha]D=+83^{\circ}$ (CHCl3,c=1.00,25°C).

No.lm-21

CDCl3 300MHz

1.05-2.14(14H,m),2.37(2H,t,J=7.2Hz),2.51(1H,m),3.81(1H,m),5.34-5.46(2H,m),6.11(1H,d,J=7.5Hz),7.33-7.48(3H,m),7.53-7.55(2H,m).

IR(CHCl3):3420,3250,3008,2948,2870,2660,2210,1735(sh),1705,1645,1503,1441,1409/cm.

[α]D=+59.2±1.0° (CHCl3,c=1.023,22°).

No.1m-22

CDCl3 300MHz

1.05-2.17(14H,m),2.37(2H,t,J=7.2Hz),2.52(1H,m),3.82(1H,m),5.32-5.47(2H,m),6.20(1H,d,J=7.6Hz),7.38-7.53(3H,m),7.58-7.61(6H,m),9.11(1H,bs).

IR(CHCl3):3420,3250,3010,2984,2870,2675,2208,1730(sh),1705,1640,1500,14 06/cm.

[α]D=+57.4° (CHCl3,c=1.83,23°C).

No.1m - 23

CDC13 300MHz

1.05-2.18(14H,m),2.31(2H,t,J=7.5Hz),2.60(1H,m),3.63(3H,s),3.90(1H,m),5.32-

5.47(2H,m), 6.22(1H,d,J=6.9Hz), 7.40-7.49(3H,m), 7.76-7.79(2H,m).

IR(CHCl3):3438,3008,2946,2868,1727,1651,1603,1585,1512,1484/cm.

[α]D=+52° (CHCl3,c=1.49,25°C).

No.1m-24

CDC13 300MHz

 $1.05-2.21(14H,m), 2.36(2H,t,J=7.2Hz), 2.57(1H,m), 3.89(1H,m), 5.28-5.47(2H,m), \\ 6.22(1H,d,J=7.0Hz), 7.39-7.55(3H,m), 7.73-7.79(2H,m).$

IR(CHCl3):3676,3572,3436,3010,2948,2875,1730(sh),1709,1650,1600,1580,15 14,1484/cm.

[α]D=+57° (CHCl3,c=0.97,26°C).

No.1m-25

CDC13 300MHz

1.04-2.18(14H,m), 2.28-2.35(5H,m), 2.59(1H,m), 3.62(3H,s), 3.88(1H,m), 5.29-5.49(2H,m), 6.20(1H,d,J=7.2Hz), 7.15(2H,d,J=9.0Hz), 7.80(2H,d,J=8.8Hz).

IR(CHCl3):3436,3010,2946,2868,1752,1727,1653,1602,1519,1491/cm.

[α]D=+53° (CHCl3,c=1.63,25°C).

No.1m-26

CDC13 300MHz

1.05-2.19(14H,m), 2.32-2.38(5H,m), 2.56(1H,m), 3.88(1H,m), 5.29-5.47(2H,m), 6.25(1H,d,J=7.4Hz), 7.15(2H,d,J=9.0Hz), 7.78(2H,d,J=8.6Hz).

IR(CHCl3):3434,3016,3006,2948,2880,2622,1752,1730(sh),1710,1651,1605,15 20,1492/cm.

[α]D=+58° (CHCl3,c=3.68,24°C)

No.1m-27

CDCl3 300MHz

1.05-2.16(14H,m), 2.30(2H,t,J=7.5Hz), 2.57(1H,m), 3.62(3H,s), 3.87(1H,m), 5.27-1.05-2.16(14H,m), 2.30(2H,t,J=7.5Hz), 2.57(1H,m), 3.62(3H,s), 3.87(1H,m), 3.87(1H

5.47(2H,m),6.32(1H,d,J=7.4Hz),6.85(2H,d,J=8.6Hz),7.62(2H,d,J=8.6Hz),8.35(

1H,s).

IR(CHCl3):3580,3450,3216,3010,2946,2868,1726,1640,1608,1584,1528,1496/c

m.

 $[\alpha]D=+56.2^{\circ} (CHCl3,c=0.713,23^{\circ}C)$

No.1m-28

CDCl3 200MHz

1.10-2.25(14H,m), 2.32(2H,t,J=7.2Hz), 2.55(1H,bs), 3.82-3.93(1H,m), 5.27-5.47(2H,bs), 3.82-3.93(1H,bs), 3.82-3.93(1H,b

H,m), 6.25(1H,d,J=7.4Hz), 6.86(2H,d,J=8.6Hz), 7.62(2H,d,J=8.6Hz).

IR(CHCl3):3438,3242,2675,1730(sh),1708,1639,1607,1585/cm.

No.1m-29

CDC13 300MHz

1.05-2.18(14H,m), 2.31(2H,t,J=7.4Hz), 2.58(1H,m), 3.64(3H,s), 3.85(3H,s), 3.89(1H,m), 3.64(3H,s), 3.89(1H,m), 3.

 $H,m),5.29\cdot5.48(2H,m),6.14(1H,d,J=6.6Hz),6.92(2H,d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d,J=9.0Hz),7.74(2H_d$

0Hz).

[α]D=+62° (CHCl3,c=1.10,24°C).

No.lm-31

CDCl3+CD3OD 300MHz

1.16-2.20(14H,m), 2.31(2H,t,J=7.2Hz), 2.59(1H,m), 3.85(1H,m), 5.31-5.51(2H,m),

7.13-7.21(1H,m),7.31-7.42(2H,m),7.68-7.93(6H,m).

IR(Nujol):3344,3175,2715,2675,1699,1631,1566/cm.

[α]D=+67° (CH3OH,c=1.01,24°C).

No.1m-32

CDC13 200MHz

1.09-2.23(14H,m),2.33(2H,t,J=7.1Hz),2.57(1H,bs),3.40-3.93(9H,m),4.41(1H,bs),

5.29-5.48(2H,m), 6.44(1H,d,J=7.4Hz), 7.43(2H,d,J=8.2Hz), 7.80(2H,d,J=7.8Hz).

IR(CHCl3):3434,3354,1726,1720(sh),1660(sh),1626/cm.

No.1m - 33

CDC13 200MHz

 $1.14-2.25(14\mathrm{H,m}), 2.37(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 5.30-5.51(2\mathrm{H,m}), 2.37(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 2.37(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 2.30-5.51(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,J=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,d=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,d=7.3Hz}), 2.64(1\mathrm{H,bs}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,d=7.3Hz}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,d=7.3Hz}), 3.93-4.01(1\mathrm{H,m}), 3.30-5.51(2\mathrm{H,t,d=7.3Hz}), 3.93-4.01(1\mathrm{H,t,d=7.3Hz}), 3.$

H,m),6.47(1H,d,J=7.4Hz),7.63-7.74(2H,m),7.79(2H,s),7.89-7.93(1H,m),8.00(1H,

dd, J=2.3, 1.0Hz), 8.30(1H, d, J=1.0Hz), 8.65-8.73(2H, m).

IR(CHCl3):3450,2675,1728,1707,1649,1528,1509/cm.

 $[\alpha]D=+82.8\pm1.2^{\circ} (CHCl3,c=1.01,23^{\circ}).$

No.2a-1

 $[\alpha]D=+69.0^{\circ} (MeOH,c=1.01,25^{\circ})$

No.2a-2

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.30(1

H,m), 5.35-5.52(2H,m), 6.32(1H,d, J=8.7Hz), 7.36-7.49(3H,m), 7.58-7.62(2H,m), 7.66 and 7.80(each 2H,each d, J=8.7Hz).

IR(CHCl3):3116,3014,2925,2870,2663,1708,1651,1610,1524,1504,1484,1472 / cm.

 $[\alpha]D = +64.1^{\circ} (MeOH, c=1.02, 25^{\circ}C).$

No.2a-3

 $[\alpha]D=+76.6^{\circ} (MeOH,c=1.18,26^{\circ}).$

No.2a-4

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.15 and 1.25(each 3H,each s),1.64-2.51(14H,m),4.31(1 H,m),5.36-5.53(2H,m),6.33(1H,d,J=8.4z),7.50-7.56(3H,m),7.85-7.98(6H,m). IR(CHCl3):3515,3452,3014,2925,2870,1740,1708,1654,1517,1486,1470 /cm. $[\alpha]D=+79.5^{\circ}$ (MeOH,c=1.18, 22°C).

No.2a-5

CD3OD 300MHz

0.98(1H,d,J=9.9Hz),1.18 and 1.25(each 3H,each s),1.56-1.71(3H,m),1.98-2.4 0(11H,m),4.17(1H,m),5.41-5.52(2H,m),7.52-7.61(3H,m),7.91-8.01(6H,m). IR(KBr):3416,3063,2983,2921,2869,1704,1643,1566,1518,1488,1408 /cm. $[\alpha]D=+62.0^{\circ}$ (MeOH,c=1.00, 25°C).

No.2a-6

[0] D 104 10 01 0-

COULUIUS AUIAO

No.2a-8

 $[\alpha]D=+74.0^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-9

[α]D=+71.0° (MeOH,c=1.10,25°C).

No.2a-10

[α]D=+74.7° (MeOH,c=1.00,25°C).

No.2a-11

[α]D=+72.1° (MeOH,c=1.00,25°C).

No.2a-12

[α]D=+53.1° (CHCl3,c=1.01,26°C).

m.p.155.0-156.0℃

No.2a-13

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.18 and 1.25(each 3H,each s),1.63-2.40(14H,m),4.30(1 H,m),5.46-5.58(2H,m),6.44(1H,d,J=8.4Hz),7.49 and 7.77(each 2H,each d,J=8.7Hz),7.54(1H,s).

IR(CHCl3):3689,3378,3028,3014,2924,1713,1652,1602,1522,1496 /cm.

 $[\alpha]D= +78.3^{\circ} (MeOH,c=0.84,25^{\circ}).$

m.p.205.0-206.0℃

No.2a-14

[α]D=+72.5° (MeOH,c=1.07,25°C).

No.2a-15

ていいし フロノリション

CDC13 300MHz

0.99(1H,d,J=9.9Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),4.27(1H,m),5.30-5.50(2H,m),6.29(1H,d,J=9.0Hz),7.11 and 7.20(each 1H,each d,J=16.2Hz),7.29-7.55(5H,m),7.57 and 7.72(each 2H,each d,J=8.7Hz).

IR(CHCl3):3453,3083,3022,3013,2925,2870,1708,1650,1607,1560,1522,1496 / cm.

[α]D= +72.3° (MeOH,c=1.00,27°). m.p.115.0-117.0°

No.2a-16

CDCl3 300MHz

0.92(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.48(14H,m),3.62(3 H,s),4.29(1H,m),5.30-5.50(2H,m),6.20(1H,d,J=8.7Hz),6.59 and 6.68(each 1H, each,d,J=12.3Hz),7.23(5H,s),7.29 and 7.59(each 2H,each d,J=8.1Hz). IR(CHCl3):3453,3024,3016,2924,2870,1730,1651,1607,1520,1495 /cm. [α]D= +56.8° (MeOH,c=1.04,24°C).

No.2a-17

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.50-2.38(14H,m),4.26(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.4Hz),6.59 and 6.70(each 1H,each d,J=12.3Hz),7.23(5H,s),7.30 and 7.57(each 2H,each d,J=8.7Hz).

IR(CHCl3):3452,3081,3019,3014,2925,2870,2665,1708,1650,1607,1521,1495 / cm.

 $[\alpha]D= +61.6^{\circ} (MeOH,c=1.00,27^{\circ}).$

No.2a-18

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each,s),1.50-2.50(14H,m),3.61(3

PCT/JP96/01685

H,s),4.31(1H,m),5.35-5.51(2H,m),6.33(1H,d,J=8.4Hz),7.48-7.64(4H,m),7.79-7.83(2H,m),7.91(1H,dt,J=1.5 and 7.8Hz),8.01(1H,dt,J=1.5 and 7.8Hz),8.13(1H,t,J=1.5Hz).

IR(CHCl3):3450,3026,3013,2925,2870,1730,1659,1600,1510 /cm. [α]D= +56.0° (MeOH,c=1.01,25°C).

No.2a-19

CDCl3 300MHz

0.95(1H,d,J=9.9Hz),1.14 and 1.21(each 3H,each s),1.53-2.60(14H,m),4.25(1H,m),5.35-5.64(2H,m),7.21(1H,d,J=7.8Hz),7.49-7.68(4H,m),7.76-7.84(3H,m),8.25(1H,m),8.43(1H,m).

IR(CHCl3):3382,3196,3025,3015,2925,2870,1725,1652,1599,1577,1521 /cm. [α]D= +55.9° (MeOH,c=1.00,25°C).

No.2a-20

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.62(3H,s),4.31(1H,m),5.35-5.51(2H,m),6.24(1H,d,J=8.4Hz),7.40-7.52(3H,m),7.71-7.76(2H,m).

IR(CHCl3):3453,3025,3013,2925,2870,1730,1753,1579,1514,1486 /cm. [α]D= +61.2° (MeOH,c=1.04,25°C).

No.2a-21

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.28(1 H,m),5.34-5.51(2H,m),6.27(1H,d,J=8.7Hz),7.41-7.53(3H,m),7.71-7.74(2H,m). IR(CHCl3):3452,3063,3027,3014,2925,2871,1708,1652,1578,1515,1486 /cm. $[\alpha]D=+62.0^{\circ}$ (MeOH,c=1.01,27°C).

d6-DMSO 300MHz

0.86(1H,d,J=9.9Hz),1.10 and 1.16(each 3H,each s),1.42-1.52(3H,m),1.85-2.4 6(11H,m),3.98(1H,m),5.32-5.43(2H,m),7.41(3H,m),7.88(2H,d,J=6.6Hz),8.19(1H,d,J=6.6Hz).

IR(KBr):3367,3060,2984,2922,2868,1634,1563,1529,1487/cm.

[α]D=+47.7° (MeOH,c=1.00,25°C).

No.2a-23

 $[\alpha]D=+62.7^{\circ} (MeOH, c=1.01, 27^{\circ}C).$

No.2a-24

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.25(each 3H,each s),1.52-2.50(14H,m),4.31(1H,m),5.36-5.52(2H,m),6.34(1H,d,J=8.4Hz),7.47-7.52(2H,m),7.59-7.64(1H,m),7.78-7.83(6H,m).

IR(CHCl3):3449,3027,3013,2925,2869,1708,1656,1599,1518,1493 /cm.

 $[\alpha]D= +63.1^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-25

[α]D=+35.1° (MeOH,c=1.00,25°C).

No.2a-26

 $[\alpha]D=+35.5^{\circ} (MeOH, c=1.02, 25^{\circ}).$

No 22-27

each d,J=8.7Hz,),6.98-7.05(2H,m),7.16(1H,t,J=7.5Hz),7.34-7.41(2H,m). IR(CHCl3):3455,3024,3016,2924,2870,1730,1651,1588,1520,1487 /cm. [α]D=+56.4° (MeOH,c=1.01,25°C).

No.2a-28

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.26(1H,m),5.34-5.51(2H,m),6.20(1H,d,J=9.0Hz),7.01 and 7.70(each 2H,each d,J=9.0Hz),6.98-7.15(2H,m),7.17(1H,t,J=7.5Hz),7.34-7.40(2H,m).

IR(CHCl3):3454,3031,3018,2925,2870,1708,1650,1588,1523,1487/cm. [α]D= +56.2° (MeOH,c=1.00.25°C).

No.2a-29

 $[\alpha]D=+53.0^{\circ} (MeOH, c=1.03, 25^{\circ}).$

No.2a-30

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.25(1H,m),5.30-5.50(2H,m),6.23(1H,d,J=8.7Hz),6.36(1H,s),7.26-7.39(10H,m),7.60 and 7.68(each 2H,each d,J=8.4Hz,).

IR(CHCl3):3451,3088,3064,3029,3014,2925,2869,1707,1652,1522,1495 /cm. [α]D=+54.2° (MeOH,c=1.00,25°C).

No.2a-31

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),3.63(3H,s),4.31(1H,m),5.30-5.50(2H,m),6.26(1H,d,J=8.4Hz),6.90(1H,t,J=7.4Hz),7.13(1H,d,J=8.7Hz),7.29(2H,t,J=8.0Hz),7.67-7.75(5H,m),7.82(1H,s). IR(Nujol):3380,3244,1723,1638,1601.1578,1535,1495 /cm.

[α]D=+73.6° (MeOH,c=0.50,26°C). m.p.133.0-134.0°C

No.2a-32

 $[\alpha]D=+56.1^{\circ} (MeOH, c=1.02, 26^{\circ}).$

No.2a-33

CDCl3 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each,3H,each s),1.50-2.50(14H,m),4.25(1 H,m),5.13(2H,s),5.30-5.70(3H,m),6.41(1H,d,J=8.2Hz),6.89(1H,s),7.09(1H,s),7. 17 and 7.72(each 2H,each d,J=8.2Hz),7.62(1H.s).

IR(CHCl3):3450,3125,3031,3013,2925,2870,2467,1917,1708,1654,1615,1575,1

523,1497 /cm.

[α]D=+55.2° (MeOH,c=1.01,26°C).

No.2a-34

[α]D=+72.9° (MeOH,c=1.03,25°C).

No.2a-35

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.13 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.28(1

H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.7Hz),7.34-7.37(3H,m),7.52-7.55(2H,m),7.

58 and 7.71(each 2H,each d,J=8.7Hz).

IR(CHCl3):3515,3452,3030,3012,2925,2870,1739,1708,1652,1607,1555,1521,1 497 /cm.

 $[\alpha]D=+74.3^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-36

¥

[a]D=+23 4° (MeOH c=1 07 25°)

```
No.2a-37
```

CDCl3 300MHz

0.83(1H,d,J=10.5Hz),0.95 and 1.18(each 3H,each s),1.44-2.46(14H,m),3.92(1 H m) 5.34-5.52(3H m) 7.90 7.50 7.50 (2H m)

H,m),5.34-5.52(3H,m),7.26-7.54(9H,m),7.62(1H,s).
IR(CHCl3):3432,3310,3189,3023,3014,2924,2870,1704,1610,1594,1523,1487 /

cm.

[α]D=+25.3° (MeOH,c=1.00,26°C).

No.2a-38

[α]D=+70.9° (MeOH,c=1.02,25°C).

No.2a-39

[α]D=+70.6° (MeOH,c=1.01,25°C).

No.2a-40

[α]D=+74.7° (MeOH,c=1.00,25°C).

No.2a-41

[α]D=+72.1° (MeOH,c=1.01,24°C).

No.2a-42

[α]D=+69.2° (MeOH,c=1.00,25°C).

No.2a-43

[α]D=+70.8° (MeOH,c=1.00,25°C).

No.2a-44

[α]D=+60.4° (MeOH,c=1.00,26°C).

PCT/JP96/01685

No.2a-45

,

CDCl3 300MHz

0.97(1H,d,J=9.9Hz),1.13 and $1.23(each 3H,each s),1.55\cdot2.52(14H,m),4.29(1H,m),5.34\cdot5.54(2H,m),6.33(1H,d,J=9.0Hz),7.10(1H,t,J=7.4Hz),7.34(2H,t,J=7.4Hz),7.52(2H,m),7.68$ and 7.75(each 2H,each d,J=8.4Hz),7.80(1H,s),8.10(1H,s),10.09(1H,s).

IR(CHCl3):3393,3195,3093,3033,3013,2925,2870,1698,1656,1598,1537,1498 / cm.

 $[\alpha]D=+59.4^{\circ}$ (MeOH,c=1.01,24°C).

No.2a-46

[α]D=+63.5° (MeOH,c=1.00,25°C).

No.2a-47

CDCl3 300MHz

0.97(1H,d,J=9.9Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),4.29(1H,m),5.35-5.52(2H,m),6.32(1H,d,J=8.7Hz),7.26(1H,m),7.41(2H,t,J=7.8Hz),7.6 4(2H,d,J=7.5Hz),7.73 and 7.77(each 2H,each d,J=8.4Hz),7.95(1H,s),9.20(1H,s),10.38(1H,s).

IR(CHCl3):3450,3339,3003,2992,2925,2870,1706,1653,1596,1523,1495/cm. [α]D=+63.3° (MeOH,c=1.00,25 $^{\circ}$ C).

No.2a-48

[α]D=+63.8° (MeOH,c=1.00,24°C).

No.2a-49

CDC13 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.26(each 3H,each s),1.55-2.52(14H,m),4.34(1

H,m),5.36-5.54(2H,m),6.35(1H,d,J=9.0Hz),7.50-7.62(3H,m),7.90 and 8.33(eac h 2H,each d,J=8.4Hz),8.21(2H,m).

IR(CHCl3):3451,3029,3022,3016,2925,2870,1708,1655,1542,1508,1498,1471,1 459 /cm.

[α]D=+63.5° (MeOH,c=1.02,25°C).

m.p.135.0·137.0℃

No.2a-50

 $[\alpha]D=+68.9^{\circ} (MeOH,c=1.01,24^{\circ}).$

No.2a-51

d6-DMSO 300MHz

0.87(1H,d,J=9.9Hz),1.10 and 1.17(each 3H,each s),1.40-1.60(3H,m),1.90-2.4 0(11H,m),3.98(1H,m),5.35-5.46(2H,m),7.64(1H,s),7.65 and 7.91(each 2H,each d,J=8.7Hz),8.06(1H,d,J=6.0Hz),9.32(1H,bs).

IR(KBr):3385,2962,1734,1707,1632,1529,1498 /cm.

[α]D=+68.4° (MeOH,c=1.01,24°C).

No.2a-52

[α]D=+76.2° (MeOH,c=1.01,24°C).

No.2a-53

[α]D=+73.9° (MeOH,c=1.02,24°C).

No.2a-54

[α]D=+68.1° (MeOH,c=1.00,24°C).

No.2a-55

[α]D=+67.8° (M OH,c=1.00,24°C).

T CT19T 2M01092

```
No.2a-56
```

 $[\alpha]D=+65.4^{\circ} (MeOH,c=1.03,25^{\circ}).$

No.2a-57

;

 $[\alpha]D=+63.4^{\circ} (MeOH,c=1.01,24^{\circ}).$

No.2a-58

[α]D=+66.6° (MeOH,c=1.01,24°C).

No.2a-59

[α]D=+65.5° (MeOH,c=1.00,24°C).

No.2a-60

[α]D=+60.9° (MeOH,c=1.02,25°C).

No.2a-61

CDC13 300MHz

0.97(1H,d,J=10.0Hz),1.10 and 1.22(each 3H,each s),1.50-2.50(14H,m),4.26(1H,m),5.30-5.54(2H,m),6.28(1H,d,J=8.6Hz),6.60 and 6.82(each 1H,each d,J=12.4Hz),7.12(2H,d,J=6.0Hz),7.25 and 7.62(each 2H,each d,J=8.6Hz),8.47(2H,d,J=6.0Hz).

IR(CHCl3):3452,3027,3019,3013,2925,2870,2480,1708,1651,1606,1520,1494 / cm.

 $[\alpha]D=+61.6^{\circ} (MeOH,c=1.01,25^{\circ}).$

No.2a-62

 $[\alpha]D=+72.0^{\circ} (MeOH, c=0.93, 25^{\circ}).$

てしていいにょいい109つ

No.2a-63

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.50-2.50(14H,m),4.29(1H,m),5.36-5.55(2H,m),6.35(1H,d,J=9.1Hz),7.04 and 7.27(each 1H,each d,J=16.5Hz),7.37(2H,d,J=6.6Hz),7.56 and 7.76(each 2H,each d,J=8.4Hz),8.57(2H,d,J=6.6Hz).

IR(CHCl3):3452,3024,3018,3014,2925,2870,2470,1933,1708,1652,1605,1521,1 496 /cm.

[α]D=+69.2° (MeOH,c=1.01,25°C).

No.2a-64

[α]D=+56.9° (MeOH,c=1.24,25°C).

No.2a-65

CDC13 300MHz

0.98(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.54-2.46(14H,m),4.27(1 H,m),5.23(2H,s),5.34-5.52(2H,m),6.26(1H,d,J=8.4Hz),7.32-7.45(5H,m),7.64 and 7.71(each 2H,each d,J=8.4Hz),8.15(1H,s).

IR(CHCl3):3452,3088,3065,3032,3013,2925,2870,1708,1653,1611,1559,1522,1 496 /cm.

 $[\alpha]D=+61.0^{\circ} (MeOH, c=0.91, 25^{\circ}).$

No.2a-66

 $[\alpha]D=+76.0^{\circ} (MeOH, c=1.01, 25^{\circ}).$

No.2a-67

CDC13 300MHz

0.98(1H,d,J=10.4Hz),1.14 and 1.24(each 3H,each s),1.54-2.46(14H,m),4.28(1H,m),5.32-5.53(2H,m),6.27(1H,d,J=8.6Hz),6,92-7.31(each 1H,each d,J=16.4H

z),7.02(1H,dd,J=5.8 and 3.6Hz),7.12(1H,d,J=3.6Hz),7.24(1H,d,J=5.8Hz),7.51 and 7.70(each 2H,each d,J=8.4Hz).

IR(CHCl3):3453,3029,3013,2925,2870,1739,1650,1604,1524,1515,1494 /cm.

[α]D=+76.2° (MeOH,c=1.00,24°C).

m.p.104.0-106.0°C

No.2a-68

 $[\alpha]D=+57.7^{\circ} (MeOH, c=1.01, 25^{\circ}).$

No.2a-69

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.54-2.48(14H,m),4.28(1H,m),5.34-5.53(2H,m),6.29(1H,d,J=9.0Hz),6,54-6.74(each 1H,each d,J=12.0Hz),7.02(1H,dd,J=4.8 and 3.3Hz),6.97(1H,dd,J=3.3 and 1.2Hz),7.13(1H,dd,J=4.8 and 1.2Hz),7.44 and 7.70(each 2H,each d,J=8.7Hz).

IR(CHCl3):3453,3025,3010,2925,2870,1708,1650,1607,1559,1523,1493 /cm. [α]D=+58.4° (MeOH,c=1.00,25°C).

No.2a-70

 $[\alpha]D=+48.6^{\circ} (MeOH,c=1.00,25^{\circ}C).$

No.2a-71

CDCl3 300MHz

```
No.2a-72
```

[α]D=+51.2° (M OH,c=1.02,25°C).

No.2a-73

CDCl3 300MHz

 $0.97(1H,d,J=9.9Hz),1.11 \ and \ 1.23(each \ 3H,each \ s),1.54\cdot2.48(14H,m),4.27(1H,m),5.32\cdot5.52(2H,m),6.24(1H,d,J=9.0Hz),6.83\cdot6.94(6H,m),7.65(2H,d,J=9.0Hz),6.83\cdot6.94(6H,d,J=9.0Hz),6.83\cdot$

IR(CHCl3):3598,3451,3199,3033,3012,2925,2870,1708,1642,1604,1524,1507,1 491 /cm.

[α]D=+52.2° (MeOH,c=1.01,25°C).

No.2a-74

[α]D=+51.5° (MeOH,c=0.92,25°C).

No.2a-75

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.46(14H,m),3.82(3H,s),4.25(1H,m),5.32-5.52(2H,m),6.19(1H,d,J=8.7Hz),6.89-7.01(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3450,3025,3008,2925,2870,2837,1741,1649,1612,1521,1505,1490 / cm.

 $[\alpha]D=+51.1^{\circ} (MeOH,c=1.00,25^{\circ}).$

No.2a-76

[α]D=+60.4° (MeOH,c=0.98,25°C).

No.2a-77

てていいい さいいしのひつ

CDC13 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),2.34(3H,s),4.29(1H,m),5.32-5.54(2H,m),6.32(1H,d,J=8.4Hz),7.19 and 7.60(each 2H,each d,J=8.4Hz),7.63 and 7.79(each 2H,each d,J=8.4Hz).

IR(CHCl3):3452,3027,3012,2925,2870,1751,1709,1651,1611,1560,1527,1509,1 489 /cm.

[α]D=+61.2° (MeOH,c=1.00,25°C).

No.2a-78

,

[α]D=+67.4° (MeOH,c=1.01,25°C).

No.2a-79

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.15 and $1.24(each 3H,each s),1.54\cdot2.54(14H,m),4.31(1H,m),5.32\cdot5.54(2H,m),6.36(1H,d,J=8.2Hz),6.93$ and 7.48(each,2H,each d,J=8.6Hz),7.59 and 7.75(each 2H,each d,J=8.4Hz).

IR(CHCl3):3593,3448,3192,3030,3010,2925,2870,1708,1644,1608,1591,1559,1 530,1516,1491 /cm.

 $[\alpha]D=+65.8^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-80

[α]D=+66.9° (MeOH,c=1.01,25°C).

No.2a-81

CDC13 300MHz

0.99(1H,d,J=10.5Hz),1.15 and 1.24(each 3H,each s),1.54-2.48(14H,m),3.86(3H,s),4.29(1H,m),5.34-5.52(2H,m),6.20(1H,d,J=8.7Hz),6.99 and 7.55(each 2H,each d,J=9.0Hz),7.61 and 7.77(each 2H,each d,J=8.7Hz).

IR(CHCl3):3450,3009,2925,2870,2838,1740,1708,1650,1608,1557,1528,1512,1

```
491 /cm.
```

[α]D=+66.2° (MeOH,c=1.01,25°C).

No.2a-82

[α]D=+57.7° (MeOH,c=1.02,24°C).

No.2a-83

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.54-2.48(14H,m),2.33(3H,s),4.26(1H,m),5.32-5.52(2H,m),6.25(1H,d,J=8.7Hz),7.16 and 7.75(each 2H,each d,J=8.7Hz).

IR(CHCl3):3452,3030,3022,3012,2925,2870,1754,1709,1654,1604,1585,1522,1 493 /cm.

[α]D=+57.4° (MeOH,c=1.01,24°C).

No.2a-84

[α]D=+57.8° (MeOH,c=1.01,24°C).

No.2a-85

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.54-2.48(14H,m),4.25(1 H,m),5.32-5.52(2H,m),6.28(1H,d,J=8.7Hz),6.87 and 7.57(each 2H,each d,J=9.0Hz).

IR(CHCl3):3590,3450,3166,3019,3012,2925,2871,1708,1637,1608,1583,1531,1498 /cm.

[α]D=+56.0° (MeOH,c=1.01,24°C).

No.2a-86

[α]D=+59.3° (MeOH,c=1.01,22°C).

CDC13 300MHz

0.98(1H,d,J=10.0Hz),1.13 and 1.23(each 3H,each s),1.54-2.48(14H,m),3.85(3H,s),4.25(1H,m),5.32-5.53(2H,m),6.19(1H,d,J=8.8Hz),6.93 and 7.69(each 2H,each d,J=9.0Hz).

IR(CHCl3):3450,3030,3017,3012,2925,2870,2840,1740,1708,1647,1606,1575,1 525,1496 /cm.

[α]D=+58.2° (MeOH,c=0.99,22°C).

No.2a-88

[α]D=+50.9° (MeOH,c=1.02,25°C).

No.2a-89

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.18 and 1.26(each 3H,each s),1.56-2.48(14H,m),4.29(1H,m),5.36-5.54(2H,m),7.03(1H,d,J=8.7Hz),7.21(1H,s),7.43(2H,m),7.74(1H,ddd,J=1.8,6.9 and 8.7Hz),8.22(1H,dd,J=1.8 and 8.1Hz).

IR(CHCl3):3443,3087,3023,3014,2925,2870,1708,1685,1658,1630,1517,1466 / cm.

 $[\alpha]D=+57.1^{\circ} (MeOH, c=1.01, 22^{\circ}).$

m.p.117.0-118.0℃

No.2a-90

[α]D=+54.1° (MeOH,c=1.01,22°C).

H,m),5.34-5.52(2H,m),6.49-6.53(2H,m),7.11(1H,dd,J=0.9 and 3.6Hz),7.44(1H,dd,J=0.9 and 1.8Hz).

IR(CHCl3):3437,3033,3022,3014,2925,2870,1739,1708,1655,1595,1520,1472 / cm.

[α]D=+55.0° (MeOH,c=1.00,22°C).

No.2a-92

[α]D=+50.3° (MeOH,c=1.00,22°C).

No.2a-93

CDC13 300MHz

0.95(1H,d,J=10.5Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.25(1H,m),5.34-5.52(2H,m),6.12(1H,d,J=8.7Hz),7.07(1H,dd,J=3.9 and 5.1Hz),7.45-7.48(2H,m).

IR(CHCl3):3450,3023,3011,2925,2870,1739,1708,1645,1531,1501,1471 /cm. [α]D=+49.1° (MeOH,c=1.02,24°C).

No.2a-94

[α]D=+51.5° (MeOH,c=1.00,24°C).

No.2a-95

CDC13 300MHz

0.96(1H,d,J=10.5Hz),1.11 and 1.23(each 3H,each s),1.52-2.46(14H,m),4.25(1H,m),5.34-5.56(2H,m),6.14(1H,d,J=8.7Hz),7.34(2H,d,J=2.0Hz),7.85(1H,t,J=2.0Hz).

IR(CHCl3):3452,3114,3030,3013 2925,2870,1708,1649,1535,1498,1471 /cm. $[\alpha]D=+55.5^{\circ}$ (MeOH,c=1.00,25°C).

m.p.87.0-88.0℃

CD3OD 300MHz

0.94(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.50-1.76(3H,m),1.94-2.

39(11H,m),4.11(1H,m),5.39-5.49(2H,m),7.43-7.51(2H,m),8.05(1H,m).

IR(KBr):3369,3084,2985,2921,2868,1630,1566,1538,1503 /cm.

 $[\alpha]D=+38.8^{\circ}$ (MeOH, c=1.01,22°C).

No.2a-97

CD3OD 300MHz

0.93(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.48-1.58(3H,m),1.96-2.3

6(11H,m),4.10(1H,m),5.35-5.50(2H,m),7.42-7.51(2H,m),8.06(1H,m).

IR(KBr):3447,3087,2987,2922,2868,1629,1545,1501 /cm.

[α]D=+52.9° (MeOH,c=1.01,24°C).

No.2a.98

[α]D=+53.2° (MeOH,c=1.02,23°C).

No.2a-99

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.26-2.45(24H,m),4.25(2 H,m),5.34-5.52(2H,m),6.18(1H,d,J=8.7Hz),6.91 and 7.66(each 2H,each d,J=9.0Hz).

IR(CHCl3):3455,3029,3019,2939,2862,1738,1709,1645,1605,1523,1494 /cm. [α]D=+51.4° (MeOH,c=1.00,23°C).

No.2a-100

[α]D=+49.3° (MeOH,c=1.00,24°C).

No.2a-101

[α]D=+51.3° (MeOH,c=1.00,24°C).

No.2a-102

 $[\alpha]D=+48.8^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-103

CDCl3 300MHz

0.94(1H,d,J=10.2Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.48(3 H,d,J=0.3Hz),4.20(1H,m),5.32-5.54(2H,m),6.46(1H,bs),7.12(1H,d,J=9.0Hz). IR(CHCl3):3415,3144,3029,3011,2926,2871,1708,1671,1598,1538,14564 /cm. $[\alpha]D=+49.6^{\circ}$ (MeOH,c=1.01,23 $^{\circ}$).

No.2a-104

[α]D=+77.0° (MeOH,c=1.02,23°C).

No.2a-105

CDC13 300MHz

0.93(1H,d,J=9.9Hz),1.09 and 1.21(each 3H,each s),1.51-2.44(14H,m),3.90(6H,s),4.20(1H,m),5.38-5.50(2H,m),5.87(1H,d,J=9.0Hz),6.25 and 7.54(each 1H,each d,J=15.6Hz),6.84(1H,d,J=8.1Hz),7.03(1H,d,J=1.8Hz),7.09(1H,dd,J=1.8 and 8.1Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

[α]D=+77.3° (MeOH,c=1.01,23°C).

No.2a-106

[α]D=+67.0° (MeOH,c=1.00,25°C).

No.2a-107

1 - 1141 20101003

[α]D=+66.6° (MeOH,c=1.01,24°C). m.p.168.0-170.0°C

No.2a-108

.

 $[\alpha]D=+61.8^{\circ} (MeOH,c=1.00,22^{\circ}).$

No.2a-109

CDCl3 300MH₂

0.96(1H,d,J=10.2Hz),1.10 and 1.22(each 3H,each s),1.51-2.45(14H,m),4.25(1H,m),5.33-5.49(2H,m),6.21(1H,d,J=8.7Hz),7.25 and 7.60(each 2H,each d,J=8.7Hz),7.33-7.41(5H,s).

IR(CHCl3):3453,3062,3028,3014,2925,2870,1739,1708,1651,1594,1557,1515,1 481 /cm.

 $[\alpha]D=+61.0^{\circ} (MeOH, c=1.01, 22^{\circ}).$

No.2a-110

CD3OD 300MHz

0.94(1H,d,J=9.9Hz),1.13 and 1.22(each 3H,each s),1.54-2.37(14H,m),4.12(1 H,m),5.38-5.49(2H,m),7.25 and 7.68(each 2H,each d,J=8.7Hz),7.41(5H,s). IR(KBr):3435,3058,2986,2920,2866,1635,1595,1562,1521,1482,1439,1411 /cm

[α]D=+47.3° (MeOH,c=1.01,23°C).

No.2a-111

[α]D=+65.6° (MeOH,c=1.01,24°C).

No.2a-112

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.27(1.25)

A CAIVA POINTINDS

H,m),5.35-5.50(2H,m),6.22(1H,d,J=8.4Hz),7.40 and $7.66(each\ 2H,each\ d,J=9.0Hz).$

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

[α]D=+65.6° (MeOH,c=1.01,22°C).

No.2a-113

[α]D=+59.6° (MeOH,c=1.00,24°C).

No.2a-114

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.12 and 1.24(each 3H,each s),1.52-2.46(14H,m),4.29(1H,m),5.35-5.51(2H,m),6.28(1H,d,J=8.4Hz),7.70 and 7.83(each 2H,each d,J=8.4Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513 / cm.

 $[\alpha]D=+60.6^{\circ}$ (MeOH,c=1.01,22°C).

No.2a-115

[α]D=+59.7° (MeOH,c=0.99,24°C).

No.2a-116

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.39(3H,s),4.27(1H,m),5.33-5.51(2H,m),6.24(1H,d,J=9.0Hz),7.23 and 7.62(each 2H,each d,J=8.4Hz).

IR(CHCl3):3439,3028,3012,2937,2871,2841,1739,1708,1661,1620,1600,1513/c m.

 $[\alpha]D=+59.7^{\circ} (MeOH, c=0.99, 24\%).$

CTIGE SOLOTOS

No.2a-117

[α]D=+56.7° (MeOH,c=1.00,23°C).

No.2a-118

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.44(14H,m),4.23(1H,m),5.34-5.51(2H,m),6.02(2H,s),6.13(1H,d,J=8.7Hz),6.83(1H,dd,J=1.2 and 7.8Hz),7.22-7.25(2H,m).

IR(CHCl3):3453,3031,3020,3012,2924,2870,1740,1708,1650,1619,1605,1519,1 504,1480 /cm.

[α]D=+57.2° (MeOH,c=1.02,23°C).

No.2a-119

CDC13 300MHz

0.96(1H,d,J=10.5Hz),1.07 and 1.23(each 3H,each s),1.51-2.44(14H,m),2.32(3H,s),4.26(1H,m),5.37-5.52(2H,m),6.40(1H,d,J=9.0Hz),7.09(1H,m),7.30(1H,m),7.46(1H,m),7.66(1H,m).

IR(CHCl3):3443,3028,3012,2925,2870,1766,1747,1709,1657,1607,1516,1479 / cm.

[α]D=+53.2° (MeOH,c=0.99,21°C).

No.2a-120

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.53-2.44(14H,m),4.30(1H,m),5.35-5.52(2H,m),6.42(1H,d,J=8.7Hz),6.85(1H,m),6.99(1H,dd,J=1.2 and 8.4Hz),7.27(1H,m),7.39(1H,m).

IR(CHCl3):3463,3033,3021,3014,2992,2924,2870,1708,1643,1597,1523,1488 / cm.

[α]D=+46.3° (MeOH,c=1.01,21°C).

No.2a-121

CDCl3 300MHz

0.98(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.47-2.47(14H,m),3.95(3H,s),4.31(1H,m),5.32-5.50(2H,m),6.98(1H,dd,J=0.9 and 8.4Hz),7.09(1H,ddd,J=0.9,7.7 and 8.4Hz),7.45(1H,m),8.19(1H,dd,J=2.1 and 8.1Hz),8.32(1H,d,J=9.0Hz).

IR(CHCl3):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600,1 536,1483,1470 /cm.

[α]D=+38.1° (MeOH,c=1.02,23°C).

No.2a-122

[α]D=+42.3° (MeOH,c=0.99,23°).

No.2a-123

[α]D=+38.7° (MeOH,c=1.00,21°C).

No.2a-124

[α]D=+45.0° (MeOH,c=1.01,21°C). m.p.119.0-120.0°C

No.2a-125

 $[\alpha]D=+49.8^{\circ} (MeOH,c=1.01,22^{\circ}).$

No.2a-126

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.47(14H,m),4.26(1H,m),5.34-5.50(2H,m),6.22(1H,d,J=8.7Hz),7.55-7.61(4H,m).

COULUNC TOLLO

IR(CHCl3):3400,3078,3028,3020,3007,2924,2870,2842,1736,1708,1640,1600,1 536,1483,1470 /cm.

 $[\alpha]D=+63.0^{\circ} (MeOH, c=1.01, 23^{\circ}).$

No.2a-127

CDC13 300MHz

0.91(1H,d,J=10.2Hz),1.10 and 1.20(each 3H,each s),1.50-2.42(14H,m),4.23(1 H,m),5.31-5.51(2H,m),6.45(1H,d,J=8.4Hz),7.01(1H,t,J=7.4Hz),7.22-7.27(2H,m),7.33-7.40(4H,m),7.53(2H,d,J=9.0Hz),8.30 and 8.48(each 1H,each s). IR(CHCl3):3452,3028,3022,3015,2925,2870,1708,1654,1590,1514,1478 /cm. [α]D=+59.5° (MeOH,c=1.01.23°C).

No.2a-128

d6-DMSO 300MHz

0.84(1H,d,J=9.9Hz),1.06 and 1.19(each 3H,each s),1.37-2.37(14H,m),3.79(1H,m),5.35-5.51(2H,m),6.08(1H,d,J=8.7Hz),6.85-6.90(1H,m),7.18-7.23(2H,m),7.35-7.38(2H,m),8.42(1H,s),12.00(1H,s).

IR(Nujol):3395,3345,2925,2866,2623,2506,1697,1658,1638,1597,1557 /cm. $[\alpha]D=+26.0^{\circ}$ (MeOH,c=1.01,23°C).

m.p.164.0-166.0℃

No.2a-129

CDC13 300MHz

1.01(1H,d,J=10.0Hz), 1.17 and 1.25(each 3H,each s), 1.54-2.52(14H,m), 4.34(1H,m), 5.36-5.57(2H,m), 6.42(1H,d,J=8.6Hz), 7.51-7.60(2H,m), 7.77(1H,dd,J=1.8 and 8.6Hz), 7.85-7.96(3H,m), 8.24(1H,bs).

IR(CHCl3):3451,3060,3028,3010,2925,2870,1708,1652,1629,1600,1517,1502 / cm.

 $[\alpha]D=+68.6^{\circ} (MeOH,c=1.00,22^{\circ}).$

```
No.2a-130
```

CDCl3 300MHz

1.02(1H,d,J=10.2Hz),1.04 and 1.26(each 3H,each s),1.54-2.52(14H,m),4.41(1

H,m),5.41-5.58(2H,m),6.14(1H,d,J=9.0Hz),7.43-7.59(4H,m),7.85-7.92(2H,m),8.

27(1H,dd,J=1.8 and 7.2Hz).

IR(CHCl3):3436,3032,3010,2924,2870,2664,1708,1652,1512,1498 /cm.

 $[\alpha]D=+93.9^{\circ} (MeOH, c=1.00, 22^{\circ})$

m.p.94.0-96.0℃

No.2a-131

[α]D=+50.2° (MeOH,c=0.95,21°C).

No.2a-132

[α]D=+10.9° (MeOH,c=0.92,21°C).

No.2a-133

[α]D=+60.4° (MeOH,c=1.00,21°C).

No.2a-134

[α]D=+38.5° (MeOH,c=1.01,23°C).

No.2a-135

 $[\alpha]D=+52.5^{\circ}$ (MeOH,c=1.01,23°C).

m.p.180.0-182.0℃

No.2a-136

[α]D=+35.3° (MeOH,c=1.02,23°C).

m.p.79.0-80.0℃

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.43(3H,t,J=6.9Hz),1.52

-2.44(14H,m), 4.03(2H,q,J=6.9Hz), 4.26(1H,m), 5.33-5.50(2H,m), 6.19(1H,d,J=8.44(14H,m), 4.03(2H,q,J=6.9Hz), 4.26(1H,m), 5.33-5.50(2H,m), 6.19(1H,d,J=8.44(14H,m), 6.19(1H

7Hz),6.88-7.00(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3455,3031,3024,3014,2988,2925,2870,1741,1708,1649,1602,1521,1 504,1490 /cm.

 $[\alpha]D=+52.0^{\circ} (MeOH, c=1.01, 23^{\circ}).$

No.2a-138

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.35(6H,d,J=6.0Hz),1.53

-2.46(14H,m), 4.25(1H,m), 4.51(1H,m), 5.33-5.50(2H,m), 6.12(1H,d,J=9.0Hz), 6.8

7-6.99(6H,m),7.65-7.68(2H,m).

IR(CHCl3):3454,3031,3014,2980,2925,2870,1741,1708,1649,1602,1522,1490 /

cm.

 $[\alpha]D=+50.0^{\circ} (MeOH,c=1.05,22^{\circ}).$

No.2a-139

CDC13 300MH₂

1.00(1H,d,J=10.2Hz),1.16 and 1.24(each 3H,each s),1.59-2.52(14H,m),4.31(1

H,m),5.40-5.53(2H,m),6.36(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.12(1H,m),7.3

CDC13 300MHz

 $0.97(1H,d,J=10.2Hz),1.18 \ and \ 1.23(each \ 3H,each \ s),1.57-2.50(14H,m),4.35(1H,m),5.32-5.55(2H,m),6.42(1H,d,J=8.7Hz),6.70(1H,d,J=1.5Hz),7.21-7.24(2Hm),7.46(1H,m),7.76(1H,m),7.86(1H,d,J=3.0Hz),10.20(1H,s).$

IR(CHCl3):3465,3010,2924,1739,1604,1546,1504 /cm.

[α]D=+39.4° (MeOH,c=1.01,22°C).

m.p.167.0-168.0℃

No.2a-141

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.55-2.44(14H,m),3.84(3H,s),4.27(1H,m),5.34-5.52(2H,m),6.28(1H,d,J=9.0Hz),6.91 and 7.47(each 2H,each d,J=9.0Hz),6.98 and 7.14(each 1H,each d,J=16.5Hz),7.54 and 7.70(each 2H,eachd,J=8.7Hz).

IR(CHCl3):3453,3025,3015,2925,2870,2839,1740,1708,1649,1602,1510,1493,1 470 /cm.

[α]D=+73.4° (MeOH,c=1.02,22°).

m.p.155.0-157.0℃

No.2a-142

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.79(3H,s),4.27(1H,m),5.34-5.50(2H,m),6.24(1H,d,J=9.0Hz),6.49 and 6.62(each 1H,each d,J=12.3Hz),6.77 and 7.16(each 2H,each d,J=8.7Hz),7.32 and 7.59(each 2H,each d,J=8.1Hz).

IR(CHCl3):3453,3025,3014,2925,2870,2839,1739,1708,1649,1606,1510, 1494 /cm.

[α]D=+60.7° (MeOH,c=0.99,22°C).

PC1/JP96/01685

```
No.2a-143
```

[
$$\alpha$$
]D=+57.3° (MeOH,c=1.01,23°C).

No.2a-144

 $[\alpha]D=+12.2^{\circ} (MeOH, c=1.00, 23^{\circ}).$

m.p.114.0-116.0℃

No.2a-145

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.21(each 3H,each s),1.52-2.44(14H,m),4.25(1

H,m),5.33-5.49(2H,m),6.37(1H,d,J=8.7Hz),7.45-7.47(3H,m),7.62-7.66(2H,m),7.

69 and 7.80(each 2H,each d,J=7.5Hz,).

IR(CHCl3):3449,3058,3027,3012,2925,2870,1708,1655,1513,1481,1043 /cm.

[α]D=+61.0° (MeOH,c=1.01,23°C).

No.2a-146

CDCl3 300MHz

0.95(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.41(14H,m),4.25(1

H,m), 5.33-5.49(2H,m), 6.33(1H,d,J=8.4Hz), 7.49-7.61(3H,m), 7.91-7.92(2H,m), 7.

82 and 7.97(each 2H,each d,J=8.7Hz,).

IR(CHCl3):3447,3029,3023,3015,2925,2870,1708,1660,1514,1484,1321,1161 /

cm.

 $[\alpha]D=+62.0^{\circ} (MeOH,c=1.00,22^{\circ}).$

No.2a-147

IR(CHCl3):3453,3027,3015,2925,2870,2665,1708,1648,1596,1516,1484 /cm. [α]D=+67.7° (MeOH,c=0.82,22 $^{\circ}$).

No.2a-148

[α]D=+72.5° (MeOH,c=1.01,25°C).

No.2a-149

[α]D=+67.8° (MeOH,c=0.98,25°C).

No.2a-150

CDCl3 300MHz

0.94(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.22(1 H,m),5.36-5.55(2H,m),6.48(1H,d,J=8.4Hz),8.35(1H,s),8.90(1H,s).

IR(CHCl3):3443,3374,3091,3024,3012,2925,2871,1709,1652,1525,1494 /cm.

[α]D=+58.1° (MeOH,c=1.01,23°C).

m.p.120.0-122.0℃

No.2a-151

[α]D=+40.6° (MeOH,c=1.01,23°C).

No.2a-152

CDC13 300MHz

0.96(1H,d,J=10.5Hz),1.10 and 1.24(each 3H,each s),1.50-2.50(14H,m),2.71(3H,s),4.26(1H,m),5.37-5.51(2H,m),6.02(1H,d,J=9.0Hz),8.73(1H,s).

IR(CHCl3):3463,3435,3087,3025,3014,2925,2870,1708,1649,1523,1503 /cm. [α]D=+54.1° (MeOH,c=1.02.22°C).

No.2a-153

CDC13 300MHz

 $0.95(1H,d,J=9.9Hz),1.11 \ and \ 1.23(each \ 3H,each \ s),1.50-2.50(14H,m),2.50(3H,s),4.26(1H,m),5.36-5.51(2H,m),6.01(1H,d,J=8.4Hz),6.88(1H,d,J=5.1Hz),7.26(1H,d,J=5.1Hz).$

IR(CHCl3):3469,3431,3025,3013,2925,2871,2664,1708,1639,1544,1505 /cm. [α]D=+35.8° (MeOH,c=1.03,22°C).

No.2a-154

CDC13 300MHz

0.95(1H,d,J=9.9Hz),1.10 and 1.22(each 3H,each s),1.52-2.46(14H,m),2.51(3H,d,J=1.2Hz),4.26(1H,m),5.34-5.50(2H,m),6.00(1H,d,J=8.4Hz),6.73(1H,dd,J=5.1 and 3.6Hz),7.29(1H,d,J=3.6Hz).

IR(CHCl3):3450,3431,3026,3011,2925,2869,1739,1708,1639,1547,1508 /cm. [α]D=+50.5° (MeOH,c=1.01,22°C).

No.2a-155

CDCl3 300MHz

0.99(1H,d,J=10.2Hz),1.19 and 1.25(each 3H,each s),1.53-2.48(14H,m),4.31(1H,m),5.36-5.51(2H,m),6.79(1H,d,J=9.3Hz),7.29(1H,m),7.41(1H,m),7.48(1H,s),7.51(1H,m),7.66(1H,d,J=8.1Hz).

IR(CHCl3):3436,3029,3024,3015,2925,2871,2670,1708,1659,1598,1510 /cm. [α]D=+69.1° (MeOH,c=1.01,22 $^{\circ}$).

No.2a-156

CDCl3:CD3OD=10:1 300MHz

0.99(1H,d,J=9.9Hz),1.11 and 1.21(each 3H,each s),1.56-2.58(14H,m),4.22(1H,m),5.35-5.59(2H,m),6.83(1H,d,J=8.4Hz),7.48(1H,d,J=8.4Hz),7.61(1H,dd,J=1.5Hz),8.09(1H,d,J=1.5Hz),8.12(1H,s).

IR(KBr):3422,3115,2985,2922,2869,2609,1708,1636,1578,1529,1470 /cm. [α]D=+62.8° (MeOH,c=1.01,22 $^{\circ}$).

[α]D=+40.0° (MeOH,c=0.95,22°).

No.2a-158

CDC13 300MHz

1.00(1H,d,J=10.5Hz),1.17 and 1.24(each 3H,each s),1.54-2.50(14H,m),4.34(1H,m),5.36-5.52(2H,m),7.80(1H,d,J=9.0Hz),9.30(1H,s).

IR(CHCl3):3410,3122,3030,3012,2925,2871,2668,1709,1667,1538,1466 /cm. $[\alpha]D=+44.9^{\circ}$ (MeOH,c=0.99,22°C).

No.2a-159

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.13 and 1.22(each 3H,each s),1.55-2.43(14H,m),3.03(6 H,s),4.23(1H,m),5.32-5.51(2H,m),6.16(1H,d,J=8.7Hz),6.87 and 7.63(each 2H,each d,J=8.7Hz).

IR(CHCl3):3457,3028,3006,2924,2870,2654,1739,1709,1637,1608,1608,1534,1 501 /cm.

[α]D=+64.8° (MeOH,c=1.01,22°C).

No.2a-160

d6-DMSO 300MHz

m.p.161.0-162.0℃

0.83(1H,d,J=9.9Hz),1.02 and 1.19(each 3H,each s),1.38-1.61(3H,m),1.90-2.3 2(11H,m),3.90(1H,m),5.41-5.44(2H,m),7.32(1H,dd,J=0.9 and 7.2Hz),7.45-7.60 * (2H,m),7.77(1H,dd,J=0.9 and 7.8Hz),8.03(1H,d,J=6.9Hz),12.40(1H,s). IR(Nujol):3315,2924,2856,2656,2535,1737,1703,1637,1598,1581,1541 /cm. [α]D=+78.5° (MeOH,c=1.01,24°C).

 $[\alpha]D=+65.3^{\circ}$ (MeOH,c=1.00,22°C).

No.2a-162

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.13 and 1.25(each 3H,each s),1.53-2.45(14H,m),4.30(1H,m),5.36-5.51(2H,m),6.32(1H,d,J=8.4Hz),7.88 and 8.28(each 2H,each d,J=9.0Hz).

IR(CHCl3):3448,3029,3016,2925,2870,1708,1664,1602,1527,1484,1347 /cm. [α]D=+72.7° (MeOH,c=1.02,22 $^{\circ}$).

No.2a-163

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.55-2.51(14H,m),4.26(1H,m),5.36-5.57(2H,m),6.68(1H,d,J=7.8Hz),7.41(1H,dd,J=4.8 and 8.1Hz),8.20(1H,d,J=8.1Hz),8.66(1H,d,J=4.8Hz),9.00(1H,s).

IR(CHCl3):3448,3026,3013,2925,2870,2534,1709,1658,1590,1515,1471 /cm. [α]D=+71.3° (MeOH,c=1.01,22 $^{\circ}$).

No.2a-164

[α]D=+40.8° (MeOH,c=0.98,22°).

No.2a-165

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.11 and 1.24(each 3H,each s),1.55-2.52(14H,m),4.24(1H,m),5.37-5.57(2H,m),6.63(1H,d,J=7.8Hz),7.59 and 8.63(each 2H each d,J=6.0Hz).

IR(CHCl3):3447,3346,3028,3016,2925,2870,2538,1941,1708,1662,1556,1516 / cm.

[α]D=+75.4° (MeOH,c=1.01,22°C).

No.2a-166

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.51-2.44(14H,m),2.95(6H,s),4.25(1H,m),5.33-5.50(2H,m),6.19(1H,d,J=8.7Hz),6.77 and 6.97(each 2H,each d,J=8.4Hz),6.94 and 7.65(each 2H,each d,J=9.0Hz).

IR(CHCl3):3453,3024,3016,2924,2871,2806,1739,1708,1647,1612,1604,1515,1 490 /cm.

[α]D=+53.1° (MeOH,c=1.02,23°C). m.p.104.0-105.5°C

No.2a-167

CDC13 300MHz

1.01(1H,d,J=9.9Hz),1.19 and 1.26(each 3H,each s),1.56-2.53(14H,m),4.37(1H,m),5.35-5.55(2H,m),6.47(1H,d,J=8.4Hz),7.61-7.71(2H,m),7.79(2H,s),7.89-7.97(2H,m),8.27(1H,d,J=2.1Hz),8.66-8.73(2H,m).

IR(CHCl3):3450,3024,3014,2925,2870,2667,1707,1650,1531,1509 /cm. [α]D=+70.5° (MeOH,c=1.00,22 γ).

No.2a-168

CDC13 300MHz

1.02(1H,d,J=10.2Hz),1.20 and 1.26(each 3H,each s),1.56-2.50(14H,m),4.38(1 H,m),5.36-5.56(2H,m),6.51(1H,d,J=8.4Hz),7.61-7.93(7H,m),8.74(1H,d,J=8.4Hz),9.15(1H,s).

IR(CHCl3):3517,3451,3060,3028,3011,2925,2870,2664,1709,1651,1519,1498/c m.

 $[\alpha]D=+54.4^{\circ} (MeOH,c=1.00,23^{\circ}).$

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.09 and 1.21(each 3H,each s),1.50-2.44(14H,m),3.85(3H,s),4.24(1H,m),5.32-5.48(2H,m),6.19(1H,d,J=8.4Hz),6.94 and 7.45(each 2H,each d,J=9.0Hz),7.11 and 7.45(each 2H,each d,J=8.7Hz).

IR(CHCl3):3516,3453,3029,3009,2925,2870,2840,2665,1708,1650,1593,1515,1493,1482 /cm.

[α]D=+57.8° (MeOH,c=1.00,23°C).

No.2a-170

CDC13 300MHz

0.98(1H,d,J=10.2Hz),1.15 and 1.24(each 3H,each s),1.52-2.50(14H,m),4.28(1H,m),5.33-5.54(2H,m),6.25(1H,d,J=8.2Hz),7.38-7.44(2H,m),7.74(1H,s),7.81-7.86(2H,m).

IR(CHCl3):3517,3448,3427,3024,3013,2925,2870,2669,1708,1650,1562,1535,1 500 /cm.

 $[\alpha]D=+61.6^{\circ} (MeOH, c=1.00, 23^{\circ}).$

No.2a-171

CDCl3 300MHz

0.96(1H,d,J=10.2Hz,1.11 and 1.22(each 3H,each s),1.52-2.42(14H,m),2.48(3H,s),4.21(1H,m),5.31-5.52(2H,m),6.06(1H,d,J=8.2Hz),6.97 and 7.59(each 1H,each d,J=1.2Hz).

IR(CHCl3):3452,3113,3028,3007,2925,2870,2669,1708,1645,1554,1509 /cm. $[\alpha]D=+52.4^{\circ}$ (MeOH,c=1.00,23°C).

No.2a-172

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.09 and 1.28(each 3H,each s),1.50-2.40(14H,m),2.69(3

T CTINT SOLUTION

H,s), 4.24(1H,m), 5.35-5.51(2H,m), 5.96(1H,d,J=8.7Hz), 7.03 and 7.07(each 1H, each d,J=5.4Hz).

IR(CHCl3):3451,3031,3013,2925,2870,2666,1708,1647,1542,1497 /cm. [α]D=+51.2° (MeOH,c=1.00,23 Σ).

No.2a-173

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and 1.23(each 3H,each s),1.50-2.45(14H,m),4.22(1H,m),5.35-5.49(2H,m),6.05(1H,d,J=8.4Hz),7.26 and 7.75(each 1H,each d,J=1.5Hz).

IR(CHCl3):3451,3011,3029,3011,2925,2870,1708,1652,1538,1500 /cm. [α]D=+50.6° (MeOH,c=1.01,23 $^{\circ}$ C).

No.2a-174

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.13 and 1.23(each 3H,each s),1.52-2.50(14H,m),4.29(1H,m),5.35-5.51(2H,m),7.02(1H,d,J=8.4Hz),7.32 and 8.16(each 1H,each d,J=3.9Hz).

IR(CHCl3):3417,3115,3023,3014,2925,2870,1708,1645,1530 /cm. $[\alpha]D=+48.8^{\circ}$ (MeOH,c=1.02,23°C).

No.2a-175

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.50-2.52(14H,m),2.52(3H,s),4.29(1H,m),5.34-5.51(2H,m),7.78(1H,d,J=9.0Hz),7.24 and 7.52(each 1H,each d,J=5.4Hz).

IR(CHCl3):3329,3093,3023,3015,2924,2871,1708,1640,1526 /cm. [α]D=+45.0° (MeOH,c=1.01,23°).

CDCl3 300MHz

0.95(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.46(14H,m),2.40(3H,d,J=0.9Hz),4.24(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.7Hz),6.95(1H,m),7.57(1H,d,J=3.3Hz).

IR(CHCl3):3517,3444,3103,3024,3013,2926,2870,1739,1708,1649,1636,1507/c m.

 $[\alpha]D=+54.8^{\circ}$ (MeOH,c=1.01,23°C).

m.p.97.0-99.0℃

No.2a-177

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.52-2.45(14H,m),3.93(3H,s),4.27(1H,m),5.34-5.50(2H,m),6,35(1H,d,J=3.3Hz),7.80(1H,d,J=8.7Hz),8.10 (1H,d,J=3.3Hz).

IR(CHCl3):3395,3121,3031,3019,3012,2925,2871,1739,1709,1640,1557,1533 / cm.

[α]D=+22.8° (MeOH,c=1.01,23°C).

m.p.109.0-112.0℃

No.2a-178

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.10 and 1.23(each 3H,each s),1.51-2.45(14H,m),4.24(1H,m),5.35-5.50(2H,m),6.09(1H,d,J=8.4Hz),7.17-7.31(6H,m),7.95(1H,d,J=1.5Hz).

IR(CHCl3):3510,3451,3062,3031,3022,3011,2925,2870,2662,1708,1651,1582,1 5351497,1477/cm.

 $[\alpha]D=+47.9^{\circ} (MeOH,c=1.01,25^{\circ}).$

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.48(14H,m),4.30(1H,m),5.36-5.52(2H,m),6.73(1H,d,J=9.0Hz),6.26 and 7.37(each 1H,each d,J=6.0Hz).

IR(CHCl3):3509,3429,3115,3094,3025,3014,2925,2871,2666,1708,1649,1529,1 510 /cm.

[α]D=+51.0° (MeOH,c=1.02,25°C).

No.2a-180

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.14 and 1.24(each 3H,each s),1.52-2.46(14H,m),3.89(3 H,s),4.21(1H,m),5.35-5.50(2H,m),6.05(1H,d,J=8.4Hz),6.46 and 7.04(each 1H,each d,J=1.8Hz).

IR(CHCl3):3516,3450,3114,3031,3010,2925,2871,1708,1648,1546,1511,1477 / cm.

 $[\alpha]D=+49.1^{\circ}$ (MeOH,c=1.01,25°C).

No.2a-181

CDC13 300MHz

0.97(1H,d,J=10.2Hz),1.14 and 1.23(each 3H,each s),1.52-2.48(14H,m),2.42(3H,s),4.31(1H,m),5.34-5.52(2H,m),8.07(1H,d,J=9.3Hz),7.27 and 8.17(each 1H,each d,J=3.3Hz).

IR(CHCl3):3510,3301,3112,3023,3007,2924,2871,2663,1708,1636,1534 /cm. [α]D=+41.0° (MeOH,c=0.96,25 $^{\circ}$ C).

No.2a-182

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.23(each 3H,each s),1.53-2.46(14H,m),2.51(3

PC1/3F90/01085

H,s),4.21(1H,m),5.35-5.51(2H,m),6.05(1H,d,J=8.1Hz),7.26 and $7.78(each\ 1H,each\ d,J=1.8Hz).$

IR(CHCl3):3509,3450,3109,3024,3012,2925,2870,2666,1708,1650,1535,1498,1471 /cm.

[α]D=+52.9° (MeOH,c=0.95,25°C).

No.2a-183

CDC13 300MHz

0.96(1H,d,J=10.5Hz),1.12 and 1.22(each 3H,each s),1.52-2.46(14H,m),4.25(1H,m),5.33-5.51(2H,m),6.17(1H,d,J=8.7Hz),7.01-7.05(3H,m).7.14 and 7.62(each 2H,each d,J=8.7Hz),7.27-7.34(2H,m).

IR(CHCl3):3428,3026,3015,2925,2870,2666,1739,1708,1643,1613,1594,1526,1 499 /cm.

[α]D=+64.8° (MeOH,c=1.02,23°C).

No.2a-184

CDC13 300MHz

1.01(1H,d,J=10.2Hz), 1.18 and 1.26(each 3H,each s), 1.55-2.50(14H,m), 4.35(1H,m), 5.35-5.55(2H,m), 6.42(1H,d,J=8.7Hz), 7.46-7.52(2H,m).7.73(1H,dd,J=1.8), and 8.4Hz), 7.83-7.89(2H,m), 8.21(1H,m), 8.59(1H,d,J=1.5Hz).

IR(CHCl3):3451,3031,3014,2925,2870,2660,1739,1708,1650,1604,1513,1463 / cm.

[α]D=+58.3° (MeOH,c=1.00,23°C).

No.2a-185

CDC13 300MHz

 $1.00(1H,d,J=10.2Hz),1.18 \text{ and } 1.25(\text{each 3H,each s}),1.55\cdot2.50(14H,m),4.34(1H,m),5.35\cdot5.54(2H,m),6.36(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.50(1H,m),7.5$ $7\cdot7.59(2H,m),7.79(1H,dd,J=1.8 \text{ and } 8.1Hz),7.99(1H,d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz),8.39(1H_d,J=7.8Hz$

1.8Hz).

IR(CHCl3):3451,3030,3020,2870,2665,1708,1652,1632,1603,1586,1514,1469,1 448 /cm.

[α]D=+59.4° (MeOH,c=1.01,24°C).

No.2a-186

CDCl3 300MHz

 $1.00(1H,d,J=10.5Hz),1.17 \ and \ 1.25(each \ 3H,each \ s),1.54-2.50(14H,m),4.33(1H,m),5.35-5.54(2H,m),6.37(1H,d,J=8.7Hz),7.37(1H,t,J=7.4Hz),7.51(1H,t,J=7.8Hz),7.56(1H,m),7.70(1H,dd,J=1.2 \ and \ 8.4Hz),7.97(3H,m).$

IR(CHCl3):3451,3030,3014,2924,2870,2671,1739,1708,1652,1577,1517,1488,1 471 /cm.

[α]D=+72.2° (MeOH,c=1.00,24°C).

No.2a-187

CDCl3 300MHz

1.00(1H,d,J=9.8Hz),1.18 and 1.25(each 3H,each s),1.54-2.53(14H,m),4.07(3H,s),4.37(1H,m),5.30-5.54(2H,m),7.34(1H,m),7.47(1H,s),7.47-7.60(2H,m),7.93(1H,d,J=7.8Hz),8.43(1H,s),8.49(1H,d,J=9.0Hz).

IR(CHCl3):3397,3074,3027,3020,3009,2924,1738,1708,1647,1633,1534,1465,1 453 /cm.

 $[\alpha]D=+43.7^{\circ} (MeOH, c=1.01, 25^{\circ}).$

No.2a-188

CDCl3 300MHz

0.97(1H,d,J=10.2Hz),1.11 and $1.23(each 3H,each s),1.53\cdot2.50(14H,m),4.23(1H,m),5.37\cdot5.50(2H,m),6.10(1H,d,J=9.0Hz),6.20(1H,m),6.51(1H,m),6.97(1H,m),10.81(1H,bs).$

IR(CHCl3):3450,3236,3112,3029,3015,2925,2871,2645,1701,1616,1558,1516

/cm.

 $[\alpha]D=+50.6^{\circ} (MeOH,c=1.01,24^{\circ}).$

No.2a-189

CDCl3 300MHz

0.94(1H,d,J=9.9Hz),1.11 and 1.23(each 3H,each s),1.50-2.46(14H,m),3.93(3H,s),4.18(1H,m),5.35-5.52(2H,m),6.03(1H,d,J=9.3Hz),6.09(1H,m),6.48(1H,m),6.73(1H,m).

IR(CHCl3):3452,3102,3028,3007,2925,2871,2666,1739,1708,1650,1536,1499,1 471 /cm.

[α]D=+49.8° (MeOH,c=1.01,23°C).

m.p.101.5-103.5℃

No.2a-190

CDC13 300MHz

0.94(1H,d,J=10.2Hz),1.11 and 1.21(each 3H,each s),1.54-2.47(14H,m),4.23(1H,m),5.33-5.52(2H,m),6.06(1H,d,J=9.0Hz),6.34(1H,m),6.75(1H,m),6.36(1H,m),9.71(1H,bs).

IR(CHCl3):3470,3215,3030,3020,3010,2925,2871,2664,1709,1613,1564,1510 /cm.

[α]D=+43.3° (MeOH,c=1.01,24°C).

No.2a-191

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.55-2.44(14H,m),3.66(3H,s),4.20(1H,m),5.35-5.51(2H,m),5.93(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 and 2.7Hz),6.56(1H,t,J=2.7Hz),7.19(1H,t,J=1.8Hz).

IR(CHCl3):3452,3031,3018,3006,2925,2871,2662,1736,1710,1634,1609,1556,1498 /cm.

要性に 製造 一

[α]D=+43.1° (MeOH,c=1.01,23°C).

No.2a-192

CDC13 300MHz

 $0.96(1H,d,J=10.5Hz),1.11 \ and \ 1.21(each \ 3H,each \ s),1.43(3H,t,J=7.5Hz),1.54$ $-2.44(14H,m),3.93(2H,q,J=7.5Hz),4.21(1H,m),5.33-5.51(2H,m),5.94(1H,d,J=8.4Hz),6.27(1H,dd,J=1.8 \ and \ 2.7Hz),6.62(1H,t,J=2.7Hz),7.26(1H,t,J=1.8Hz).$ $IR(CHCl3):3630,3452,3032,3018,3006,2925,2871,2661,1735,1710,1633,1610,1555,1497 \ /cm.$

[α]D=+40.1° (MeOH,c=1.00,23°C).

No.2a-193

CDC13 300MHz

0.95(1H,d,J=10.2Hz),1.10 and $1.22(each 3H,each s),1.53\cdot2.49(14H,m),2.58(3H,s),4.21(1H,m),5.35\cdot5.54(2H,m),6.15(1H,d,J=8.1Hz),6.52(1H,dd,J=1.8 and 3.6Hz),7.29(1H,t,J=3.6Hz),7.94(1H,t,J=1.8Hz).$

IR(CHCl3):3516,3450,3410,3152,3027,3015,2925,2871,2670,1732,1648,1574,1 509 /cm.

[α]D=+45.0° (MeOH,c=1.01,25°C).

No.2a-194

CDC13 300MHz

0.99(1H,d,J=10.2Hz),1.11 and 1.24(each 3H,each s),1.52-2.53(14H,m),4.34(1 H,m),5.33-5.57(2H,m),6.21(1H,d,J=8.6Hz),7.35-7.50(2H,m),7.83(1H,s),7.86(1H,m).8.31(1H,m).

IR(CHCl3):3443,3067,3013,2925,2870,2665,1708,1651,1515,1493 /cm. [α]D=+55.7° (MeOH,c=1.01,23 $^{\circ}$ C).

N .2a-195

CDC13 300MHz

1.01(1H,d,J=10.0Hz),1.06 and 1.26(each 3H,each s),1.50-2.64(14H,m),2.68(3H,s),4.40(1H,m),5.36-5.61(2H,m),6.02(1H,d,J=9.4Hz),7.30-7.42(2H,m),7.73-7.86(2H,m).

IR(CHCl3):3510,3434,3062,3029,3014,2924,2871,2669,1708,1650,1563,1539,1 500 /cm.

[α]D=+72.4° (MeOH,c=1.00,23°C). m.p.111.0-112.0°C

No.2a-196

CDCl3 300MHz

0.42 and 1.04(each 3H,each s),0.80(1H,d,J=10.0Hz),1.11-2.48(14H,m),2.24(3 H,s),4.02(1H,m),5.23-5.44(2H,m),5.53(1H,d,J=8.8Hz),7.27-7.31(2H,m),7.42-7.48(3H,m),7.93(1H,s).

IR(CHCl3):3419,3114,3025,3006,2924,2871,2662,1737,1709,1636,1540,1519 / cm.

[α]D=+43.7° (MeOH,c=1.01,23°).

No.2a-197

CDCl3 300MHz

0.95(1H,d,J=10.0Hz),1.09 and 1.23(each 3H,each s),1.54-2.46(18H,m),2.77(4H,bs),4.21(1H,m),5.32-5.54(2H,m),6.02(1H,d,J=8.6Hz),7.43(1H,s).

IR(CHCl3):3445,3101,3024,3014,2928,2865,2661,1739,1708 1646,1550,1507 / cm.

 $[\alpha]D=+51.9^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-198

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.11 and 1.22(each 3H,each s),1.50-2.44(14H,m),4.24(1

H,m),4.42(2H,s),5.35-5.49(2H,m),6.25(1H,d,J=8.1Hz),7.33(1H,m),7.43(1H,dd,J=1.5and 7.5Hz),7.49(1H,d,J=8.1Hz),7.60-7.63(1H,m),7.68(1H,dd,J=1.8 and 7.8Hz),8.02(1H,d,J=1.8Hz),8.19(1H,dd,J=1.5 and 8.1Hz).

IR(CHCl3):3448,3030,3012,2925,2870,1739,1708,1671,1588,1559,1514,1472 / cm.

[α]D=+56.9° (MeOH,c=1.01,24°C).

No.2a-199

CDC13 300MHz

 $0.96(1H,d,J=10.2Hz),1.11 \ and \ 1.22(each \ 3H,each \ s),1.51-2.46(14H,m),3.40(1H,m),3.76(1H,m),4.24(1H,m),5.33-5.51(3H,m),6.25(1H,m),7.16(1H,m),7.24-7.3\\ 3(2H,m),7.46(1H,d,J=7.5Hz),7.52-7.60(2H,m),7.85(1H,dd,J=1.8 \ and \ 4.5Hz).\\ IR(CHCl3):3583,3447,3062,3028,3013,2924,2871,2663,1708,1651,1600,1557,1514,1471 \ /cm.$

 $[\alpha]D=+54.8$ ° (MeOH,c=1.00,23°C).

No.2a-200

CDC13 300MHz

0.96(1H,d,J=10.2Hz),1.12 and 1.23(each 3H,each s),1.51-2.46(14H,m),4.25(1H,m),5.34-5.51(2H,m),6.25(1H,d,J=8.4Hz),7.02 and 7.10(each,1H,each d,J=12.3Hz),7.23-7.33(4H,m),7.50(1H,m),7.64(1H,dd,J=1.8 and <math>7.8Hz),7.82(1H,d,J=1.8Hz).

IR(CHCl3):3450,3060,3025,3014,2925,2871,2662,1708,1653,1596,1542,1513,1 473 /cm.

[α]D=+62.5° (MeOH,c=1.00,24°C).

No.2a-201

CDC13 300MH₂

0.95(1H,d,J=9.9Hz),1.15 and 1.22(each 3H,each s),1.55-2.60(14H,m),4.26(1

H,m),5.35-5.63(2H,m),7.14(1H,d,J=9.9Hz),7.34 and 7.40(each,1H,each d,J=1 2.9Hz),7.62-7.73(4H,m),8.25-8.30(2H,m),8.72(1H,d,J=1.5Hz).

IR(CHCl3):3443,3389,3297,3061,3030,3016,2925 2870,1726,1708 1652,1603, 1521,1483,1472,1309 /cm.

 $[\alpha]D=+61.1^{\circ} (MeOH,c=1.01,23^{\circ}).$

No.2a-202

CDCl3 300MHz

0.96(1H,d,J=10.2Hz),1.09 and $1.22(each 3H,each s),1.52\cdot2.43(14H,m),2.63(3H,s),4.25(1H,m),5.33\cdot5.49(2H,m),6.19(1H,d,J=8.4Hz),7.10$ and $7.58(each,2H,each d,J=9.0Hz),7.21(1H,m),7.30\cdot7.32(2H,m),7.46(1H,d,J=7.5Hz).$

IR(CHCl3):3511,3453,3062,3032,3014,2925 2870,1739,1708,1650,1595,1556,1 516,1482,1471 /cm.

[α]D=+60.2° (MeOH,c=1.01,25°).

No.2a-203

CDCl3 300MHz

0.96(1H,d,J=10.5Hz),1.09 and 1.23(each 3H,each s),1.52-2.43(14H,m),4.23(1H,m),5.35-5.51(2H,m),5.93(1H,d,J=8.7Hz),6.56(1H,dd,J=0.9 and 1.8Hz),7.43(1H,t,J=1.8Hz),7.92(1H,dd,J=0.9 and 1.8Hz).

IR(CHCl3):3517,3450,3134,3031,3008,2925,2870,2667,1708,1656,1588,1570,1 514 /cm.

 $[\alpha]D=+46.7^{\circ} (MeOH,c=0.92,25^{\circ}).$

N .2b-1

(17) 0 0

No2c-1

[α]D= +60.5° (MeOH,c=1.01,22 $^{\circ}$).

No.2c-2

 $[\alpha]D= +55.8^{\circ} (MeOH,c=0.92,22^{\circ}).$

No.2c-3

 $[\alpha]D = +54.7^{\circ} (MeOH,c=1.01,22^{\circ}).$

No.2d-1

 $[\alpha]D = -6.2^{\circ} \text{ (MeOH,c=1.00,21°C)}.$

No.2d-2

 $[\alpha]D=+15.8^{\circ}$ (MeOH,c=0.34,22°C).

No.2d-3

[α]D=+31.6° (MeOH,c=1.01,22°).

No.2e-1

 $[\alpha]D= -9.4^{\circ} (MeOH,c=1.00,22^{\circ}).$

No.2e-2

[α]D= -1.8° (MeOH,c=1.02,23°C).

No.2e-3

[α]D= -6.7° (MeOH,c=1.01,23°C).

N .2f-1

~ T.OT > 0.0100

```
[\alpha]D= +6.8^{\circ} (MeOH,c=1.01,23^{\circ}).
```

No.2f-2

 $[\alpha]D = -2.6^{\circ} (MeOH, c=1.00, 22^{\circ}).$

No.2f-3

 $[\alpha]D = -3.5^{\circ} \text{ (MeOH,c=1.01,22°C)}.$

No.2g-1

 $[\alpha]D = +54.6^{\circ} \text{ (MeOH,c=1.01,24°C)}.$

No.3a-2

CDC13 300MHz

 $0.98 \cdot 2.15(14H,m), 2.31(2H,t,J=7.2Hz), 2.35 \cdot 2.40(1H,m), 3.10 \cdot 3.20(1H,m), \\ 5.00(1H,d,J=6.9Hz), 5.30 \cdot 5.48(2H,m), 6.75(1H,d,J=10.2Hz), 7.38 \cdot 7.52(6H,m). \\ IR(CDCl3): 3266, 3028, 2954, 2874, 1709, 1620, 1448, 1412, 1318, 1141, 970, 892/cm.$

[α]D=+20.3 \pm 0.6° (CHCl3,c=1.05,24°C).

No.3a-3

CDCl3 300MHz

0.95-2.00(14H,m), 2.20-2.29(3H,m), 3.00-3.08(1H,m), 3.66(3H,s), 5.00(1H,d,m), 3.00(1H,d,m), 3.00

J=6.6Hz), 5.13-5.29(2H,m), 7.38-7.52(3H,m), 7.59-7.65(2H,m), 7.69-

7.75(2H, m), 7.92-7.98(2H, m).

IR(CHCl3):3376,3018,2946,2868,1727,1594,1436,1395,1322,1157,1095,890/cm.

 $[\alpha]D=+2.3\pm0.4^{\circ}(CHC13,c=1.03,22^{\circ}).$

mp.65-66.5℃

No.3a-4

CDCl3 300MHz

0.93-2.05(14H,m), 2.15-2.22(1H,m), 2.31(2H,t,J=7.2Hz), 3.01-3.10(1H,m),

5.18-5.31(3H,m),7.38-7.52(3H,m),7.58-7.66(2H,m),7.69-7.76(2H,m),7.92-

7.98(2H,m)

IR(CHCl3):3374,3260,3020,2948,2868,1708,1594,1479,1396,1319,1156,1095,1 052,891/cm.

 $[\alpha]D=+13.1\pm0.5^{\circ}(CHCl3,c=1.16,24^{\circ}C).$

No.3a-6

CD3OD 300MHz

1.04-1.95(14H,m),2.07(2H,t,J=7.8Hz),2.14-2.22(1H,m),2.94-3.00(1H,m), 5.04-5.25(2H,m),7.36-7.52(3H,m),7.66-7.71(2H,m),7.78-7.85(2H,m),7.91-7.97(2H,m).

IR(KBr):3421,3278,2951,2872,1562,1481,1409,1317,1156,1097,1057,895/cm. [α]D=-15.3 \pm 0.5° (CHCl3,c=1.06,23 $^{\circ}$). mp.105-112 $^{\circ}$

No.3a-11

CDCl3 300MHz

0.90-2.04(14H,m), 2.08-2.19(1H,m), 2.35(2H,t,J=7.2Hz), 2.95-3.04(1H,m), 5.17-5.32(3H,m), 7.56-7.63(2H,m), 7.83-7.95(2H,m).

IR(CHCl3):3260,3020,2948,2868,1707,1569,1456,1383,1325,1268,1160,1088, 1053,1006,892/cm.

 $[\alpha]D=+8.3\pm0.5^{\circ}(CHCl3,c=1.00,22^{\circ}).$

No.3a-16

CDCl3 300MHz

0.80-1.90(14H,m),1.98-2.04(1H,m),2.27(2H,t,J=7.2Hz),2.88(6H,s),2.90-

2.98(1 H,m), 4.88 - 5.00(2 H,m), 5.13(1 H,d,J = 7.2 Hz), 7.18(1 H,d,J = 7.5 Hz), 7.48 - 7.2 Hz

7.60(2H,m), 8.25-8.33(2H,m), 8.53(1H,d,J=8.7Hz).

IR(CHCl3):3272,3020,2946,2866,2782,1708,1573,1455,1407,1311,1229,1160, 1142,1070,942,891/cm.

[α]D=-19.7 \pm 0.6° (CHCl3,c=1.08,23.5 $^{\circ}$ C).

No.3a-31

٠.

CDCl3 300MHz

0.80-1.85(14H,m), 2.02-2.08(1H,m), 2.20(2H,t,J=7.2Hz), 2.85-2.95(1H,m),

3.68(3H,s),4.80-4.92(2H,m),4.96(1H,d,J=6.9Hz),7.50-7.70(3H,m),7.92-

7.98(1H,m), 8.07(1H,d,J=8.4Hz), 8.29(1H,dd,J=1.5&7.5Hz), 8.65

(1H,d,J=8.7Hz).

IR(CHCl3):3374,3016,2946,2868,1727,1506,1435,1318,1160,1133,1105,1051, 984,890/cm.

[α]D=-39.3±0.8 (CHCl3,c=1.07,22 $^{\circ}$).

No.3a-32

CDC13 300MHz

 $0.80 - 1.90(14 \text{H,m}), 1.95 - 2.05(1 \text{H,m}), 2.27(2 \text{H,t,J} = 7.2 \text{Hz}), 2.90 - 2.96(1 \text{H,m}), \quad 4.85 - 2.05(1 \text{H$

5.00(2H,m), 5.23(1H,d,J=6.6Hz), 7.50-7.72(3H,m), 7.95(1H,d,J=8.1Hz),

8.07(1H,d,J=8.4Hz), 8.29(1H,dd,J=1.2&7.5Hz), 8.66(1H,d,J=9.0Hz).

IR(CHCl3):3270,3020,2948,2868,1708,1455,1412,1317,1159,1132,1104,1079,1051,983,891/cm.

[α]D=-29.2 ± 0.6° (CHC13,c=1.08,22°C).

No.3a-33

CD3OD 300MHz

0.94-1.84(14H,m),1.96-2.08(3H,m),2.77-2.84(1H,m),4.67-4.84(2H,m),7.55-

7.75(3H,m), 8.02(1H,d,J=7.8Hz), 8.12-8.26(2H,m), 8.74(1H,d,J=8.7Hz).

IR(KBr):3432,3298,2951,2872,1564,1412,1315,1159,1134,1107,1082,1058,

```
986/cm.
```

 $[\alpha]D=-79.9\pm1.2^{\circ}(CH3OH,c=1.00,23^{\circ}).$

No.3a-34

CDC13 300MHz

 $0.97 - 1.91(14H,m), 2.13 - 2.20(1H,m), 2.42(2H,t,J=7.2Hz), 3.00 - 3.07(1H,m), \quad 5.06 - 3.07(1H,m), \quad 5.07(1H,m), \quad 5.07$

5.24(2H,m), 5.33(1H,d,J=6.9Hz), 7.57-7.68(2H,m), 7.82-8.00(4H,m),

8.45(1H,d,J=1.2Hz)

IR(CHCl3):3260,3020,2948,1708,1408,1319,1154,1129,1073,953,893/cm.

 $[\alpha]D=+20.7\pm0.6^{\circ}(CHCl3,c=1.07,22^{\circ}).$

No.3a-35

CD3OD 300MHz

1.03-2.20(m,17H), 2.97(m,1H), 5.02(m,2H), 7.64(m,2H), 8.00(m,4H), 8.43(S,1H).

IR(KBr):3360,3285,1562,1407,1316,1153,1130,1075/cm.

 $[\alpha]D==0$

 $[\alpha]365=+20.9\pm0.6$ (CH3OH,c=1.04,23°C).

No.3d-1

CDC13 300MHz

0.93-2.55(m,17H),3.02(m,1H),5.24(m,2H),6.48(m,1H),7.35-7.60(m,3H),7.85-

8.00(m, 2H)

. IR(Nujol): 3275,1548,1160,1094,758,719,689,591,557/cm.

[α]D=+19.0±0.6° (CH3OH,c=1.010,26.5°C).

元素分析(C 20 H 26 N O 4 S・1/2 C a・1.0 H 2 Oとして)

計算值: C, 57.94; H, 6.82; N, 3.38; Ca, 4.83;

H2O, 4.35

実測値: C, 57.80; H, 6.68; N, 3.68; Ca, 5.06; H2O, 4.50

CTION SOLUTION

No.3d-6

[α]D=-20.7±0.6° (CHCl3,c=1.00,24°C).

No.3d-7

 $[\alpha]D=-3.2\pm0.4^{\circ}(CHCl3:c=1.03,22^{\circ}).$

mp.65-67℃

No.3d-8

[α]D=-14.5 ± 0.5° (CHCl3,c=1.07,24°C).

No.3d-9

[α]D=+12.2±0.5°(CH3OH,c=1.00,23°C).

mp.119-125℃

No.3d-10

[α]D=+39.7±0.8° (CHCl3,c=1.07,22°C).

No.3d-11

[α]D=+29.2±0.7° (CHCl3,c=1.06,22°C).

No.3d-12

 $[\alpha]D=+76.4\pm1.1^{\circ}(CH3OH,c=1.03,24^{\circ}).$

No.3d-14

[α]D=-20.6 ± 0.6° (CHCl3,c=1.07,22°C).

No.3d-15

[α]365=-28.0 ± 0.7° (CH3OH,c=1.03,24.5°C).

```
No.3d-16
```

[α]D=-8.7±0.5° (CHCl3,c=1.06,22°C).

No.3d-17

CDC13 300MH₂

 $0.80-2.15(m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),2.15\\ (m,24H),2.32(t,J=7Hz,2H),2.68(t,J=7Hz,2H),3.02(m,1H),5.22(m,2H),5.38(d,J=7Hz,1H),7.30(A2B2q-Apart,J=8Hz,2H),7.81(A2B2qBpart,J=8Hz,2H),9.86\\ (br.s,1H).$

 $[\alpha]D==0$

 $[\alpha]365=-9.7\pm0.5^{\circ}$ (CHCl3,c=1.03,22°).

No.3d-24

[α]D=+19.2±0.6° (CHCl3,c=1.05,23°C).

No.3d-26

CD3OD 300MHz

 $0.90 - 2.20(20 \mathrm{H,m}), 2.88(1 \mathrm{H,m}), 3.07(2 \mathrm{H,q,J} = 7.0 \mathrm{Hz}), 5.00 \cdot 5.40(2 \mathrm{H,m}), 7.20 \cdot 10.00 \cdot$

7.60(4H,m), 7.95(1H,m).

IR(KBr):3415,3254,1698,1564,1314,1154/cm.

No.3d-28

CD3OD 300MHz

0.90-2.20(20H,m),2.73(2H,q,J=7.0Hz),2.93(1H,m),5.00-5.30(2H,m),7.40-

7.50(2H,m),7.60-7.77(2H,m).

IR(KBr):3435,3280,1562,1323,1304,1151/cm.

No.3d-30

元素分析 C20H25BrNO4SNa

Calc.C50.21;H5.27;Br16.70;N2.93;S6.70;Na4.81

found.C50.22;H5.40;Br15.57;N2.88;S6.41;Na5.10

IR(KBr):3425,3280,3085,1697,1570,1410,1321,1165,1155/cm.

No.3e-1

CD3OD 300MHz

0.71(1H,d,J=10.2Hz),1.04(3H,s),1.12(3H,s),1.35-2.28(14H,m), 2.42(3H,s),3.17-10.2Hz

3.25(1H,m), 5.18-5.39(2H,m), 7.37(2H,d,J=8.4Hz), 7.75(2H,d,J=8.4Hz).

IR(CHCl3):3400,3289,2986,2924,2870,1559,1424,1322,1305,1160,1095,1075,1 030/cm.

[α]D=+25.9±0.7° (CH3OH,c=1.00,23°C).

上記実施例で得た化合物につき、以下の実験例に示す方法で、インビボ及びインビトロ活性を試験した。

実験例1 PGD2受容体の結合実験

試験材料及び試験方法

(1)ヒト血小板膜画分の調製

健常人(成人男性及び女性)の静脈より3.8%クエン酸ナトリウムの入ったプラスチック製シリンジにて採血した血液をプラスチック製試験管に入れ、軽く転倒混和した後、室温で、1800 rpm、10分間遠心分離し、上清の多血小板血漿[PRP(Platelet rich plasma)]を採取した。この PRPをさらに室温、2300 rpm、22分間の遠心分離に付し、血小板を得た。得られた血小板は homogenizer (Ultra-Turrax)を用いてホモジナイズした後、4℃、20000 rpm、10分間遠心分離を3回行い、血小板膜画分を得た。膜画分は蛋白定量後、2 mg/mlとし、結合実験に供するまで-80℃で冷凍保存した。

(2) PGD₂受容体の結合実験

結合反応液(50 m M Tris/HCl, pH 7.4, 5 m M M g C 12) 0.2 ml Ic. Lhm 小板膜画分(0.1 mg)及び $5 \text{ n M } [3\text{ H}] \text{ PGD}_2$ (115 Ci/mmol) を加え、4 CTO 90 分間反応させた。反応後ガラス繊維濾紙を用いて濾過し、冷生理食塩水で数回洗浄し、濾紙に残った放射活性を測定した。特異的結合量は全結合量から非特異的結合量(10 μ M PGD_2 存在下での結合量)を差し引いた値とした。各化合物の結合阻害活性は、化合物非存在下での結合量を100 % CUC とん合物存在下での結合量(%)を求めて置換曲線を作成することにより、50 % pm 制濃度(10 C So (ii) を算出した。結果を以下に示す。

化合物番号,	結合活性 (μ M)	化合物番号	結合活性 (μ M)
3a-4	0.6	2a-4	0.54
la-115	8. 6	2a-17	0.12
1a-28	0.045	2a-21	5. 2
la-47	0.0086	2a-28	0.046

la-100	0.56	2a-95	1. 6
la-176	0.047	2a-109	0.003
1a-2	0.13		ı
la-162	0.027		

実験例2 ヒト血小板を使ったPGD2受容体の拮抗活性

化合物番号	ヒト血小板 cAMP 上昇阻害 I C 5 0 (μ M)
3a-16	0.37
1a-121	2.11
1a-28	0.30
la-47	2.09
2a-2	0.77
2a-4	0.94
2a-35	1. 5 2
2a.75	0.71

実験例3 鼻閉モデルによる実験

モルモットを用いる鼻腔抵抗の測定及び抗鼻閉作用の評価の方法を以下に示す。 1%卵白アルブミン (OVA) 溶液を超音液ネブライザーでエアロゾル化し、これをハートレイ (Hartley) 系雄性モルモットに1週間隔で2回、各10分間吸入させて感作し、その7日後に抗原を暴露して反応を惹起した。ペントバルビタール (30 mg/kg, i.p.) 麻酔下にモルモットの気管を切開して鼻腔側と肺側にそれぞれカニューレを装着し、肺側には毎分60回、1回4 ml の空気を送気する人工呼吸器を接続した。ガラミン (2 mg/kg, i.v.)でモルモットの自発呼吸を停止させた後、鼻腔側のカニューレより人工呼吸器を用いて毎分70回、1回4 ml の空気を鼻吻側に送り、この送気に必要な空気圧を側枝に装着したトランスデューサーを介して測定し、鼻腔抵抗の指標とした。抗原の暴露は3%OVA溶液のエアロゾルを人工呼吸器と鼻腔カニューレの間に3分間発生させることにより行った。被検薬物は抗原暴露の10分前に静注した。成績は0から30分間の鼻腔抵抗を連続的に測定し、その30分間のAUC (縦軸に鼻腔抵抗 (cm H2O)、横軸に時間 (0~30分間))を指標に、ビークルに対する抑制率として表示した。結果を以下に示す。

化合物番号	抑制率 (%)	備考
	1 mg/Kg(i.v.)	
1a-28	4 4	
1a-98	6 9	
1a-100	5 0	
la-115	6 6	
la-116	4 8	
la-120	5 8	3mg/Kg(i.v.)
1a-2	8 2	
la-162	8 0	
la-176	6 0	
1a-267	6 2	

合計 120.0mg

2a-4	6 0	
2a-21	5 2	
2a-28	5 4	
2a-95	7 7	
2a-96	7 7	10mg/Kg(p.o.)
2a-109	7 3	
2a-110	6 6	10mg/Kg(p.o.)
2a-194	7 9	

製剤例1

錠剤の製造

40mgの有効成分を含有する錠剤を常法により製造した。40mg錠の組成を以下に示す。

製剤例2

顆粒剤の製造

(+) - (z) -7-[$(1R, 2S, 3S, 4S)$ -3	
一ペンゼンスルホンアミドビシクロ[2.2.1]ヘプト	
─2 ─イル]─5 ─ヘプテン酸カルシウム二水和物	100.0mg
ヒドロキシプロピルセルロース	30.0mg
カルメロースカルシウム	30.0mg
タルク	10.0mg

ポロクサマー188	20.0mg
結晶セルロース	70.0mg
トウモロコシデンプン	300.0mg
乳糖	440.0mg

1. 式(I):

(式中、

は、

を表わし、

Aはヘテロ原子もしくはフェニレンを介在していてもよく、オキソ基を有していてもよく、および/または不飽和結合を有していてもよいアルキレン;

Bは水素、アルキル、アラルキルまたはアシル;

R t COOR 1. CH 2 OR 2 E C t CON (R3) R4;

R₁は水素またはアルキル;

R₂は水素またはアルキル;

 R_3 および R_4 はそれぞれ独立して水素、アルキル、ヒドロキシまたはアルキルスルホニル;

 X_1 は単結合、フェニレン、ナフチレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル;

 X_2 は単結合、-N=N-、-N=CH-、-CH=N-、-CH=N-N-、

$$-CH=N-O-$$
, $-C=NNHCSNH-$, $-C=NNHCONH-$.

$$-CH = CH - CH (OH) - CC (C1) = CC (C1) - CC$$

$$-(CH2)$$
 n- $,$ \bot $+$ \bot ν ν $,$ $-$ N $(R5) - $,$ -N $(R51)$ CO- $,$$

$$-N(R_{52})SO_2-, -N(R_{53})CON(R_{54})-,$$

$$-CON(R_{55})$$
 -, $-SO_2N(R_{56})$ -, $-O-$, $-S-$, $-SO-$.

C > 1100055

またはテトラソールジイル:

 X_3 はアルキル、アルケニル、アルキニル、アリール、アラルキル、ヘテロ環、シクロアルキル、シクロアルケニル、チアゾリニリデンメチル、チアゾリジニリデンメチル、一 $CH=NR_6$ または $-N=C(R_7)R_8$;

 R_5 、 R_{51} 、 R_{52} 、 R_{53} 、 R_{54} 、 R_{55} および R_{56} は水素またはアルキル; R_6 は水素、アルキル、ヒドロキシ、アルコキシ、カルバモイルオキシ、チオカルバモイルオキシ、ウレイドまたはチオウレイド;

 R_7 および R_8 はそれぞれ独立してアルキル、アルコキシまたはアリール; nは1または2;

Zd-SO₂-sct-CO-:

mは0または1:

これらの定義において、置換基が環状のものはニトロ、アルコキシ、スルファモイル、置換もしくは非置換アミノ、アシル、アシルオキシ、ヒドロキシ、ハロゲン、アルキル、アルキニル、カルボキシ、アルコキシカルボニル、アラルコキシカルボニル、アリールオキシカルボニル、メシルオキシ、シアノ、アルケニルオキシ、ヒドロキシアルキル、トリフルオロメチル、アルキルチオ、 $-N=PPh_3$ 、オキソ、チオキソ、ヒドロキシイミノ、アルコキシイミノ、フェニルおよびアルキレンジオキシから選ばれる $1\sim3$ 個の基で置換されていてもよい)である化合物またはその塩もしくは水和物を有効成分として含有する PGD_2 拮抗剤。

2. 有効成分が式 (I) で示される化合物において、

が、

$$\bigcirc$$

を表わし、mが0であり、ZがS O_2 のとき、 X_1 および X_2 がともに単結合であり、 X_3 がアルキル、フェニル、ナフチル、スチリル、キノリルまたはチェニルを表わし、これらの置換基のうち、環状のものがニトロ、アルコキシ、置換もし

くは非置換アミノ、ハロゲン、アルキルおよびヒドロキシアルキルから選ばれる $1 \sim 3$ 個の基で置換されていてもよい化合物またはその塩もしくは水和物である 請求の範囲第1項記載の PGD_2 拮抗剤。

3. 有効成分が式(I)で示される化合物において、

が、

۶

を表わし、mが1のとき、 X_1 および X_2 がともに単結合であり、 X_3 がハロゲンで置換されていてもよいフェニルである化合物またはその塩もしくは水和物である請求の範囲第1項記載の PGD_2 拮抗剤。

4. 有効成分が式(I)で示される化合物において、

が、

を表わし、mが1のとき、 X_1 がフェニル、 X_2 が-C H_2 -または-N=N-であり、 X_3 がフェニルである化合物またはその塩もしくは水和物である請求の範囲第1項記載のPG D_2 拮抗剤。

- 5. 鼻閉治療剤である請求の範囲第1項記載のPGD2拮抗剤。
- 6. 式(Ia):

$$\begin{array}{c}
A - R \\
N - SO_2 - X_1 - X_2 - X_3 \\
B
\end{array}$$
(Ia)

(式中、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。

ただし、(1) X_1 および X_2 が単結合であり、 X_3 が置換もしくは非置換フェニルまたはナフチル、および(2) Aが 5 - へプテニレン、<math>R が C O OR_1 $(R_1$ は水素またはメチル)、 X_1 が 1 、 4 - フェニレン、 X_2 が単結合、 X_3 がフェニルである場合を除く)で示される化合物またはその塩もしくは水和物。

- $7. X_1$ および X_2 が単結合であり、 X_3 がイソオキサゾリル、チアジアゾリル、イソチアゾリル、モルホリル、インドリル、ベンゾフリル、ジベンゾフリル、ジベンゾフリル、ジベンゾチエニル、カルパゾリル、キサンテニル、フェナントリジニル、ジベンゾオキセピニル、ジベンゾチエピニル、シンノリル、クロメニル、ベンゾイミダゾリルまたはジヒドロベンゾチエピニルであり、A、B、R、は前記と同意義である請求の範囲第 6 項記載の化合物またはその塩もしくは水和物。
- 8. X_1 が単結合、 X_2 がフェニレン、 X_3 がアルケニル、アルキニル、一 $CH=NR_6$ または-N=C(R_7) R_8 を表わし、A、B、R、 R_6 、 R_7 および R_8 は前記と同意義である請求の範囲第 6 項記載の化合物またはその塩もしくは水和物。
- 9. $RMCOOR_1$ 、 X_1 がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、-CONH-、-NHCO-またはエチニレンおよび X_3 がフェニル、チアゾリニリデンメチル、チアゾリジニリデンメチルまたはチエニルを表わし、A、B、 R_1 、 R_6 、 R_7 および R_8 は前記と同意義である請求の範囲第 6 項記載の化合物またはその塩もしくは水和物。

10. 式(Ib):

$$Y$$
 N
 CO
 X_1
 X_2
 X_3
 X_4
 X_5
 X_4
 X_5
 X_5

(式中、

は、

を表わし、A、B、R、 X_1 、 X_2 および X_3 が前記と同意義である。ただし、 X_1 および X_2 が単結合であり、 X_3 がフェニルである場合および X_1 が単結合で X_2 が一〇一であるとき、 X_3 がベンジルである場合を除く)で示される化合物またはその塩もしくは水和物。

11. 式 (Ib) で示される化合物において、

が、

を表わし、A、B、R、 X_1 、 X_2 および X_3 は前記と同意義である請求の範囲第10項記載の化合物またはその塩もしくは水和物。

- 12. Rが $COOR_1(R_1$ は前記と同意義である)で示される請求の範囲第11項記載の化合物またはその塩もしくは水和物。
- $13. X_1$ がフェニレンまたはチオフェンジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-O-、-S-、-CO-、-CON(R_{55}) $-(R_{55})$ は前記と同意義である)または-N(R_{51})+CO-000($+R_{51}$ 00)に対記と同意義で

ある)および X_3 がフェニルまたはチエニルである請求の範囲第11項記載の化合物またはその塩もしくは水和物。

14. 式(Ib)で示される化合物において、

が、

を表わし、A、B、R、 X_1 、 X_2 、 X_3 およびZが前記と同意義である請求の範囲第10 記載の化合物またはその塩もしくは水和物。

15. Bが水素、 X_1 および X_2 がともに単結合であり、 X_3 がチエニル、チアソリル、チアジアソリル、イソチアソリル、ピロリル、ピリジル、ペンゾフリル、ペンゾイミダソリル、ペンゾチエニル、ジペンソフリル、ジベンゾチエニル、キノリルまたはインドリルである請求の範囲第14記載の化合物またはその塩もしくは水和物。

 $16. X_1$ がフェニレン、チオフェンジイル、インドールジイルまたはオキサゾールジイル、 X_2 が単結合、-N=N-、-CH=CH-、エチニレン、-S-または-O-、および X_3 がアリールまたはヘテロ環である請求の範囲第15記載の化合物またはその塩もしくは水和物。

IN I LKNATIONAL SEARCH REPORT

International application No.

PCT/JP96/01685 CLASSIFICATION OF SUBJECT MATTER Int. C16 C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38 According to International Patent Classification (IPC) or to both national classification and IPC FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int. C1⁶ C07C233/52, 233/84, 271/24, 311/06, 311/11, 311/13, 311/19, C07D493/08, 495/08, A61K31/16, 31/18, 31/27, 31/33, 31/34, 31/35, 31/38 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAS ONLINE C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP, 6-279395, A (Ono Pharmaceutical Co., Ltd.), X October 4, 1994 (04. 10. 94) 1 - 16& EP, 608847, A JP; 2-180862, A (Ono Pharmaceutical Co., Ltd.), X July 13, 1990 (13. 07. 90) 1 - 16 & EP, 312906, A & US, 5168101, A JP, 63-139161, A (Shionogi & Co., Ltd.), X June 10, 1988 (10. 06. 88) 1 - 16 & EP, 226346, A & US, 4861913, A & US, 4960909, A & US, 4976891, A & US, 5041635, A & US, 5043451, A & US, 5043456, A JP, 60-178876, A (E.R. Squibb & Sons, Inc.), X September 12, 1985 (12. 09. 85) 1 - 16& EP, 150709, A & US, 4526901, A Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority "A" document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention "E" earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be "L" document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive cited to establish the publication date of another citation or other step when the document is taken alone special reason (as specified) "Y" document of particular relevance; the claimed invention cannot be "O" document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art the priority date claimed "&" document member of the same patent family Date of the actual completien f the international search Date of mailing of the international search report September 13, 1996 (13. 09. 96) September 24, 1996 (24. 09. 96) Name and mailing address of the ISA/ Authorized officer Japanese Patent Office

Telephon No.

Facsimile No.

DET POTTISA 1210 (cannot a

A. 発明 a	の風する公麻の公務 /日曜井かの本 /		
Int Ci	の属する分野の分類(国際特許分類(IPC))	
311/10	1 C07C233/52, 233/84, 2 9, C07D493/08, 495/08, A	371/24, $311/06$, $311/11$	1. 311/12
31/2/	9, C07D493/08, 495/08, A 31/35, 31/38	61K31/16, 31/18, 31/2	7 21/22
01/ 54,	31/35, 31/38		71, 01/ 33,
B. 調査を	合った分野		
調査を行った	最小限資料(国際特許分類(IPC))		
Int Cl			
311/10	6 C07C233/52, 233/84, 2 6, C07D493/08, 495/08, A	71/24, 311/06, 311/11	311/10
1 1 / 2 /	31/35, 31/38	61K31/16, 31/18, 31/2	7 21/13,
1/34,	31/35, 31/38	, , , , , , , , , , , , , , , , , , , ,	7, 31/33,
最小限資料以	外の資料で調査を行った分野に含まれるもの		
	:_		
国際調査で使	用した電子データペース(データベースの名)	称、調査に使用した田野(
		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	
	CAS ONLINE		
			•
C. 関連す	7 1.600 4 1		
別用文献の	ると認められる文献		
カテゴリー*	引用本卦在 不由		関連する
·/-/ *	引用文献名 及び一部の箇所が関連する	るときは、その関連する箇所の表示	請求の範囲の番号
X			明なり配置の番号
	JP, 6-279395, A (小野薬品工業	株式会社)4.10月.1994 (04	1-16
	. 10. 94) &EP, 608847, A		
X	IP 2-180860 4 //		
	JP, 2-180862, A (小野薬品工業	株式会社)13.7月.1990(13	1-16
			- 10
	. 07. 90) &EP, 312906, A,	&US, 5168101, A	
X			
	JP, 63-139161, A (塩野義製薬	森天会社)10.6月.1988(10	
	. 06. 88) &FP 225245		1-16
	. 06. 88) &EP, 226346, A,	&US, 4861913, A, &US.	
C欄の続き	にも文献が列挙されている。		
		□ パテントファミリーに関する別	紙を参照。
引用文献の)カテゴリー 		· ·
A」特に関連	『のある文献ではなく、一般的技術水準を示す	の日の後に公表された文献	Δ
<i>500</i>		一一一一一人。	れた文献であって
E」先行文献	ではあるが、国際出願日以後に公表されたも	「四段と才信するものではなく」	発明の原理又は理
• >		間の理解のために引用するもの	
」優先権主	張に疑義を提起する文献又は他の文献の発行	「X」特に関連のある文献であって、当	該文献のみで発明
H 42 U \	は心が行列な坪田を確立するために引用みょ	の 新 現 性 又 は 進 歩 性 が な い と 去 っ	られるもの
	出ていずり		該文献と他の1以
リリロ頭によ	る開示、使用、展示等に冒及する文献	上の文献との、当業者にとって自	明である組合せに
P」国際出願	日前で、かつ優先権の主張の基礎となる出願	よって理学性がないと考えられる	もの
		「&」同一パテントファミリー文献	
際調査を完了		国際調本機との物とこ へん へつ	00
	13.09.96	国際調査報告の発送日 24.09.	90
			•
調査機関の	名称及びあて先	格 库克木克 (共享	
日本国	特許庁(ISA/JP)	特許庁審査官(権限のある職員)	4H 7106
郵	便番号100	中	<u> </u>
東京都	千代田区霞が関三丁目4番3号	佐藤 修	
		電話番号 03-3581-1101 #	5120 2 A A F

	国於關查報告	国際出願番号 PCT	/JP96	/01685
C (続き) .	関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連	するときは、その関連する箇所の	表示	関連する 請求の範囲の番号
	4960909, A, &US, 49768			明小り起西の音を
			5, A,	
	US, 5043451, A, &US, 50			
X	JP, 60-178876, A (イー・ア	ール・スクイブ・アンド・サンズ	・インコ	1-16
	ーポレイテツド) 12.9月.1985 (
	9, A, &US, 4526901, A		00,0	
	1 1 2 2 3 3 3 1, R			
			T.	
	,			
		·		
		•		
			ľ	
	·			
1				

様式PCT/ISA/210 (第2ページの続き) (1909年75

