МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа аэрокосмических технологий

Отчёт о выполнении лабораторной работы 1.3.1

Определение модуля Юнга на основе исследований деформации растяжений и изгиба

Автор: Говорухин Матвей Сергеевич Группа Б03-201

1 Аннотация

Цель работы: экспериментально получить зависимость между напряжением и деформацией (закон Гука) для двух простейших напряженных состояний упругих тел: одноосного растяжения и чистого изгиба; по результатам измерений вычислить модуль Юнга.

В работе используются: в первой части —прибор Лермантова, проволока из исследуемого материала, зрительная труба со шкалой, набор грузов, микрометр, рулетка; во второй части —стойка для изгибания балки, индикатор для измерения величины прогиба, набор исследуемых стержней, грузы, линейка, штангенциркуль.

2 Определения модуля Юнга по измерениям изгиба балки

2.1 Теоретические сведения

Модуль Юнга определятся по формуле:

$$E = \frac{Pl^3}{4ab^3 y_{\text{max}}} \tag{1}$$

где P - нагрузка на стержень, l - расстояние меду точками опоры, a - ширина балки ,b - высота балки.

2.2 Экспериментальная установка

Рис. 1: Схема установки для измерения модуля Юнга

Экспериментальная установка состоит из прочной стойки с опорным- ми призмами А и Б (рис. 2). На ребра призм опирается исследуемый стержень (балка) В. В середине стержня на призме Д подвешена пло- щадка П с грузами. Измерять стрелу прогиба можно с помощью индикатара И, укрепляемого на отдельной штанге. Полный оборот большой стрелки индикатора соответствует 1 мм и одному делению малого циферблата.

2.3 Ход работы

2.3.1 Измерение линейных размеров

Расстояние между ребрами призм A и Б $l = 50.4 \pm 0.5$ мm.

N	1	2	3	4	5	6	7	8
а_дерево	19,9	19,9	20,1	20,1	20,2	20,3	20,3	20,2
b_дерево	9,6	9,7	9,8	9,6	9,7	9,5		

Таблица 1: Измерение линейных размеров деревянного стержня

N	1	2	3	4	5	6	7
а_металл	21,4	21,1	20,8	20,7	21,1	21,4	21,2
b_металл	3, 80	3, 82	3, 81	3, 80	3, 81	3, 82	

Таблица 2: Измерение линейных размеров металлического стержня

N	1	2	3	4	5	6	7	8
m, g	496.2	508.7	503.0	497.2	500.0	502.0	503.5	504.5

Таблица 3: Измерение массы

Для нахождения случайной погрешности воспользуемся формулой: $\sigma_{\text{случ}} = \frac{1}{N} \sqrt{\sum_{i=1}^n (a_i - \overline{a})^2}$ При измерении штангенциркулем $\sigma_{\text{1сист}} = 0.1$ мм. Для измерении микрометром $\sigma_{\text{2сист}} = 0.01$ мм. Откуда:

$$a_{\rm m} = (20.13 \pm 0.11) {\rm mm} \quad b_{\rm m} = (9.65 \pm 0.11) {\rm mm} \quad a_{\rm m} = (21.10 \pm 0.13) {\rm mm} \quad b_{\rm m} = (3.81 \pm 0.01) {\rm mm}$$

2.3.2 Измерение стрелы прогиба деревянной балки

N_m	1	1->2	1->3	1->4	1->5	1->6	1->7	1->8
у	0.77	1,55	2,32	3,10	3,90	4,69	5,48	6,28

Таблица 4: измерение стрелы прогиба при увеличении нагрузки на дерево плоскостью

N_m	1->8	1->7	1->6	1->5	1->4	1->3	1->2	1	0
у	6,28	5,52	4,75	3,99	3,21	2,45	1,67	0,86	-0,08

Таблица 5: измерение стрелы прогиба при увеличении нагрузки на дерево плоскостью

N_m	0	1	1->2	1->3	1->4	1->5	1->6	1->7	1->8
·		1 ′		· '	· '	l '	· '	1,32	· · ·
y_down	0,04	0,22	0,43	0,62	0,80	0,98	1,16	1,33	1,50

Таблица 6: измерение стрелы прогиба при увеличении и уменьшении нагрузки на дерево ребром

N_m	0	1	1->2	1->3	1->4	1->5	1->6	1->7	1->8
· — ·	,	. ,	,	/	/	· /	· /	4, 82	· /
y_down	0,03	0,72	1,43	2,11	2,80	3,50	4,17	4,87	5,53

Таблица 7: Измерение стрелы прогиба металлического стержня при увеличении и уменьшении нагрузки

2.3.3 обработка результатов

Построим графики с помощью этих данных вида y = kP + b Из формулы (1) следует, что Модуль Юнга определятся как:

$$E=rac{Mgl^3}{4ab^3u}=rac{C}{k}$$
, где $k-\,$ коэффициент наклона. $C=rac{l^3}{4ab^3}$

коэффициенты наклона прямых аппроксимаций графиков:

$$k_1 = 0.0001595$$
 $k_2 = 0.0000377$ $k_m = 0.0001401$

Из данных, полученных выше:

$$C_1 = (17.69 \pm 0.61) \cdot 10^5 \frac{1}{M}$$
 $C_2 = (40.66 \pm 0.82) \cdot 10^4 \frac{1}{M}$ $C_m = (27.43 \pm 0.29) \cdot 10^6 \frac{1}{M}$

$$E_{\rm дер1} = (1.11 \pm 0.04) \cdot 10^{10} \frac{\rm H}{\rm m^2} \qquad E_{\rm дер2} = (1.08 \pm 0.02) \cdot 10^{10} \frac{\rm H}{\rm m^2} \qquad E_{\rm m} = (19.58 \pm 0.20) \cdot 10^{10} \frac{\rm H}{\rm m^2}$$

Отсюда:

$$E_{\rm gep} = (1.10 \pm 0.04) \cdot 10^{10} \frac{\rm H}{{
m m}^2} ~~ E_{\rm met} = (19.58 \pm 0.20) \cdot 10^{10} \frac{\rm H}{{
m m}^2}$$

Таким образом, в пределах погрешностей модули Юнга совпадают и соответствуют значениям в справочниках. Модуль Юнга деревянной балки совпадает с модулем Юнга сосны, а модулю Юнга металлической балки совпадает с модулем Юнга железа.

