1 Общи свойства

1.1 Функция

Числова функция: подмножество на равнината $\Gamma_f \subset \mathbb{R}^2$, за което от $(x, y) \in \Gamma_f$ и $(x, u) \in \Gamma_f$ следва y = u. Образно казано, всяка вертикална права пресича Γ_f в най-много една точка.

Неформално казано, функцията е "правило", по което на някои числа се съпоставя най-много едно число

Означение: $f: \mathbb{R} \longrightarrow \mathbb{R}$

Дефиниционна област: $D_f = \{x \in \mathbb{R} : \exists y \in \mathbb{R} : (x, y) \in \Gamma_f\}$

Област на стойностите: $R_f = \{ y \in \mathbb{R} : \exists x \in \mathbb{R} : (x, y) \in \Gamma_f \}$

Примери:

•
$$f(x) = \begin{cases} 1 & \text{ sa } x \in \mathbb{Q} \\ 0 & \text{ sa } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

$$\bullet \ \chi_A(x) = \left\{ \begin{array}{ll} 1 & \text{ sa } & x \in A \\ 0 & \text{ sa } & x \notin A \end{array} \right.$$

• Абсолютна стойност $|x| = \max(x, -x)$

• Цяла част $[x] = \max \{n \in \mathbb{Z} : n \le x\}$

• Дробна част $\{x\} = x - [x]$

1.2 Композиция на функции (съставна, "сложна" функция)

За дадени функции f и g дефинираме композицията им чрез $g \circ f\left(x\right) = g\left(f\left(x\right)\right)$.

$$D_{g \circ f} = \{ x \in D_f : f(x) \in D_g \}$$

Композицията е асоциативна, но не е (най-често) комутативна операция.

Примери:

• f(x) и |f(x)|

1.3 Ограничени (неограничени) в множество $A\subset D_f$

- ullet ограничена отгоре: $f(x) \le c$ за всяко $x \in A$
- ullet неограничена отгоре: за всяко c има $x \in A$ с f(x) > c
- ullet ограничена отдолу: $f(x) \ge c$ за всяко $x \in A$
- $|f(x)| \le c$ за всяко $x \in A$
- неограничена е еквивалентно на неограничена отгоре ИЛИ неограничена отдолу
- сума (разлика) и произведение на ограничени е ограничена $|f(x)| \leq C_f \,,\; |g(x)| \leq C_g \quad \Rightarrow \quad |f(x)+g(x)| \leq |f(x)|+|g(x)| \leq C_f \,+\, C_g$ $|f(x)| \leq C_f \,,\; |g(x)| \leq C_g \quad \Rightarrow \quad |f(x)g(x)| \leq |f(x)| \,.\, |g(x)| \leq C_f \,.\, C_g$
- ullet ако f е ограничена в A и f е ограничена в B, то f е ограничена в $A\cup B$

Пример $\frac{x+1}{x^2+1}$ е ограничена (отгоре и отдолу) в $\mathbb R$

Пример $x^2 - 4x + 1$ е ограничена отдолу в $\mathbb R$

1.4 Монотонни в множество $A \subset D_f$

- ullet растяща $f(x) \leq f(y)$ за всеки $x \leq y, \ x \in A, \ y \in A$
- ullet строго растяща f(x) < f(y) за всеки $x < y, x \in A, y \in A$
- ullet намаляваща $f(x) \geq f(y)$ за всеки $x \leq y, \, x \in A, \, y \in A$
- ullet строго намаляваща f(x) > f(y) за всеки $x < y, x \in A, y \in A$
- сума на растящи (намаляващи) е растяща (намаляваща)
- произведение на растящи (намаляващи) И НЕОТРИЦАТЕЛНИ е растяща (намаляваща)
- съставна функция от две растящи (намаляващи) е растяща
- съставна функция от растяща и намаляваща е намаляваща
- ullet f е растяща (намаляваща) $\Leftrightarrow -f$ е намаляваща (растяща)

Пример 1 x^3 строго расте в \mathbb{R}

Пример 2 x^2 строго намалява в $(-\infty, 0]$ и строго расте в $[0, +\infty)$

Пример 3 [x] расте в \mathbb{R}

Пример 4 $\frac{1}{x}$ строго намалява в $(-\infty\,,\,0)$ и строго намалява в $(0\,,\,+\infty)$, но не е намаляваща в $\mathbb{R}\setminus\{0\}$

1.5 Четни, нечетни

Само в симетрично относно 0 множество $A\subset D_f$

- симетрично относно 0 множество $A \subset D_f$ $\iff A = -A \iff \{x \in A \iff -x \in A\}$
- ullet четна f(-x)=f(x) за всяко $x\in A$
- ullet нечетна f(-x) = -f(x) за всяко $x \in A$
- сума (разлика) на четни (нечетни) е четна (нечетна)
- произведение на четни (нечетни) е четна
- произведение на четна и нечетна е нечетна
- съставна функция от две нечетни е нечетна
- съставна функция от четна и нечетна е четна
- за да бъде съставна функция четна е достатъчно вътрешната функция да е четна

Пример 1 x^2 е четна в $\mathbb R$

Пример 2 x^3 е нечетна в $\mathbb R$

Пример 3 $x \sin x$ е четна в \mathbb{R}

Пример 4 $\frac{\sin x}{\sqrt{|x|}}$ е нечетна в $\mathbb{R} \setminus \{0\}$

Пример 5 $\operatorname{tg} \frac{x - x^3}{x^2 + 1}$ е нечетна

Пример 6 $\sin^2 x$ и $\sin x^2$ са четни в $\mathbb R$

Пример 7 $\{x^2\}$ е четна, въпреки че $\{x\}$ не е нито четна, нито нечетна

1.6 Периодични

Само в "периодично" множество $A \subset D_f$

- "периодично" множество (с период T>0) A=A+T $\iff \{x\in A\iff x+T\in A\}$
- ullet периодична с период T>0-f(x)=f(x+T) за всяко $x\in A$
- сума (разлика), произведение на периодични ??? отношението на периодите е рационално число
- за да бъде съставна функция периодична е достатъчно вътрешната функция да е периодична
- за да бъде съставна функция периодична е достатъчно външната функция да е периодична и вътрешната да е линейна

Пример 1 "трион"

Пример 2 $\sin \frac{3x}{2} + \cos \frac{2x}{5}$ е периодична, какъв е периодът?

1.7 Обратими функци

- f е обратима в множество $A \subset D_f$, ако $f(x) \neq f(y)$ за всеки $x \neq y, x \in A, y \in A$
- основни равенства
 - -g(f(x))=x за всяко $x\in D_f=R_g$
 - -f(g(x))=x за всяко $x\in D_g=R_f$
- строго монотонна е обратима
- обратното не винаги е вярно $f(x) = \begin{cases} 2x & \text{за} & x \in [0, 1) \\ -x + 4 & \text{за} & x \in [1, 2] \end{cases}$
- обратната на растяща (намаляваща) е растяща (намаляваща)
- обратната на нечетна е нечетна (а за четна???)
- ullet графика на обратната функция симетрична на графиката на функцията, на която е обратна, относно правата y=x

Пример 1 x^3 е обратима в \mathbb{R}

Пример 2 x^2 е обратима само в $[0, +\infty)$

Пример 3
$$\frac{1-x}{x}$$
 е обратима — обратна $\frac{1}{1+x}$

2 Рационални функции

2.1 Полиноми

- \bullet Основни едночлени x^{2n} "прилича" на x^2 , а x^{2n+1} на x^3
- Многочлен (полином) $P(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$, степен на полинома
- Теорема: Нека за полинома P(x) от степен n съществува число b, за което P(b)=0 . Тогава съществува полином Q(x) от степен n-1 , за който $P(x)=(x-b)\,Q(x)$.
- ullet Следствие: Полином P(x) от степен n има най-много n различни нули.
- Принцип за сравняване на коефициентите: Нека P(x) и Q(x) са два полинома, от степен най-много n, за които $P(b_i) = Q(b_i)$ за n+1 различни числа $b_1, b_2, \ldots b_{n+1}$. Тогава P(x) = Q(x) за всяко $x \in \mathbb{R}$ и коефициентите им пред равните степени са равни.
- Пример: $\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$

• Дефиниция: $\binom{x}{k}$ е единствения полином от степен k, който в $0, 1, \ldots k-1$ има стойност 0, а в k – стойност 1.

$$\binom{x}{k} = \frac{x(x-1)\dots(x-k+1)}{k!}.$$

Примери:
$$\binom{-1}{k} = (-1)^k$$
, $\binom{-2}{k} = (-1)^k (k+1)$, $\binom{-\frac{1}{2}}{k} = \frac{(-1)^k (2k-1)!!}{(2k)!!}$.

Пример Графики на
$$\begin{pmatrix} x \\ 4 \end{pmatrix}$$
 — синьо, $\begin{pmatrix} x \\ 5 \end{pmatrix}$ — червено

2.2 Рационални функции

- Деление на полиноми: За всеки два полинома P(x) (от степен n) и Q(x) съществуват полиноми R(x) (от степен най-много n-1) и S(x), за които Q(x)=P(x)S(x)+R(x).
- Рационална функция частно на два полинома $R(x) = \frac{Q(x)}{P(x)}$.
- Всяка рационална функция е сума на полином и "правилна" дроб.

Експонента и натурален логаритъм

3.1 Експонента

- Дефиниция: $e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n$
- Мотивация
- Основно равенство: $e^{x+y} = e^x e^y$
- Свойства:
 - $-e^x>0$ за всяко $x\in\mathbb{R}$

 - $-e^x \ge 1+x$ за всяко $x \in \mathbb{R}$ $-e^x \le \frac{1}{1-x}$ за всяко x < 1
 - $-e^{x}$ е строго растяща, следователно обратима.
 - за всяко y>0 съществува $x\in\mathbb{R}$, за което $e^x=y$. Може да се покаже, че $x = \lim_{n \to \infty} n \left(\sqrt[n]{y} - 1 \right)$.

3.2 Натурален логаритъм

Натурален логаритъм – обратната на експонентата (единственото решение на уравнението $e^x = y$ за y > 0).

Свойства:

- $\ln(xy) = \ln x + \ln y$ за всяко x > 0 и всяко y > 0
- $\ln(x+1) \le x$ за всяко x > -1
- $\ln(x+1) \ge \frac{x}{x+1}$ за всяко x > -1
- $\ln x$ е строго растяща

Степен с положителна основа

Степен с положителна основа – $a^b = e^{b \ln a}$ за a > 0 .

Свойства:

- $\bullet \quad a^{b+c} = a^b a^c$

- a^x е обратима за $a \neq 1$.
- Логаритъм с положителна основа $a \neq 1$ обратната на a^x .
- $\bullet \quad \log_a x = \frac{\ln x}{\ln a}$

4 Тригонометрични и обратни тригонометрични функции

4.1 Тригонометрични функции

4.1.1 Радиан

4.1.2 Тригонометрична окръжност

4.1.3 Аргументът като лице

4.1.4 Основни равенства

- $\sin 0 = 0$, $\cos 0 = 1$, $\sin \frac{\pi}{2} = 1$, $\cos \frac{\pi}{2} = 0$
- $\sin(x+y) = \sin x \cos y + \cos x \sin y$
- $\sin(x y) = \sin x \cos y \cos x \sin y$
- $\bullet \cos(x+y) = \cos x \cos y \sin x \sin y$
- $\bullet \cos(x y) = \cos x \cos y + \sin x \sin y$
- Питагорова теорема $\cos^2 x + \sin^2 x = 1$

Доказателство на картина

 $\sin x$

– периодична с период 2π , нечетна, обратима в $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (строго растяща)

 $\cos x$

— периодична с период 2π , четна, обратима в $[0,\pi]$ (строго намаляваща)

 $\cot x = \frac{\cos x}{\sin x} - \text{периодична с период } \pi \,,\, \text{нечетна, обратима в } (0\,,\,\pi) \; (\text{строго намаляваща})$

Основно неравенство

$$0 < \sin x < x < \operatorname{tg} x$$
 — за всяко $x \in \left(0, \frac{\pi}{2}\right)$

Обосновка

4.2 Обратни тригонометрични функции

 $\arcsin x$

— дефинирана в [-1, 1], стойности $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, строго растяща, нечетна $\sin(\arcsin x) = x$ за $x \in [-1, 1]$, $\arcsin(\sin x) = x$ за $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Построяване на графиката на функцията $\arcsin(\sin x)$ — дефинирана навсякъде, периодична с период 2π , в $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ съвпада с x, а в $\left[\frac{\pi}{2},\frac{3\pi}{2}\right]$ — с π — x.

 $\arccos x$

— дефинирана в $[-1\,,\,1]$, стойности $[0\,,\,\pi]$, строго намаляваща, $\arccos(-x)=\pi-\arccos x$, $\cos(\arccos x)=x$ за $x\in[-1\,,\,1]$, $\arccos(\cos x)=x$ за $x\in[0\,,\,\pi]$

Връзки

 $\operatorname{arctg} x$ — дефинирана в \mathbb{R} , стойности $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$, строго растяща, нечетна $\operatorname{tg}\left(\operatorname{arctg} x\right)=x$ за $x\in\mathbb{R}$, $\operatorname{arctg}\left(\operatorname{tg} x\right)=x$ за $x\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

 $\operatorname{arcctg} x$

— дефинирана в \mathbb{R} , стойности $(0,\pi)$, строго намаляваща, $\operatorname{arcctg}(-x) = \pi - \operatorname{arcctg} x$ $\operatorname{ctg}(\operatorname{arcctg} x) = x$ за $x \in \mathbb{R}$, $\operatorname{arcctg}(\operatorname{ctg} x) = x$ за $x \in (0,\pi)$

Връзки

Доказателства и задачи

Две важни тъждества:

•
$$\sin(2\operatorname{arctg} x) = \frac{2x}{1+x^2}$$
 so $x \in \mathbb{R}$

 $\operatorname{\textsc{Monagement}(2\operatorname{arctg} x)} = 2\sin(\operatorname{arctg} x)\cos(\operatorname{arctg} x) = 2 \cdot \frac{x}{\sqrt{1+x^2}} \cdot \frac{1}{\sqrt{1+x^2}} = \frac{2x}{1+x^2}$

•
$$\cos(2\operatorname{arctg} x) = \frac{1 - x^2}{1 + x^2}$$
 so $x \in \mathbb{R}$

 $Aokasamescemeo: \cos(2\operatorname{arctg} x) = \cos^2(\operatorname{arctg} x) - \sin^2(\operatorname{arctg} x) = \left(\frac{1}{\sqrt{1 + x^2}}\right)^2 - \left(\frac{x}{\sqrt{1 + x^2}}\right)^2 = \frac{1 - x^2}{1 + x^2}$

Някои от твърденията, цитирани преди:

•
$$\arcsin(\sin x) = \pi - x$$
 sa $x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$

Доказателство:
$$x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \Rightarrow \alpha = (\pi - x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$$

 $\beta = \arcsin(\sin x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]. \sin \alpha = \sin x = \sin \beta \Rightarrow \alpha = \beta.$

- $\arccos(-x) = \pi \arccos x$ $\angle Aokasameacmeo: \arccos x \in [0, \pi] \Rightarrow \alpha = (\pi - \arccos x) \in [0, \pi], \beta = \arccos(-x) \in [0, \pi].$ $\cos \alpha = -\cos x = \cos \beta \Rightarrow \alpha = \beta.$
- $\arcsin x + \arccos x = \frac{\pi}{2} \quad \exists a \ x \in [-1, 1]$ $\mathcal{A}_{0\kappa a \beta a men c m 6 0} : \arccos x \in [0, \pi] \Rightarrow \quad \alpha = \left(\frac{\pi}{2} \arccos x\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right],$ $\beta = \arcsin x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]. \quad \sin \alpha = \cos \arccos x = x = \sin \beta \Rightarrow \alpha = \beta.$
- $\sin(\arccos x) = \sqrt{1 x^2}$ 3a $x \in [-1, 1]$ $\angle Jorasame acmeo: \arccos x \in [0, \pi] \Rightarrow \sin(\arccos x) \ge 0$. $\sin^2(\arccos x) = 1 - \cos^2(\arccos x) = 1 - x^2 \Rightarrow \sin(\arccos x) = \sqrt{1 - x^2}$.

- $\operatorname{tg}(\operatorname{arcctg} x) = \frac{1}{x}$ 3a $x \neq 0$ $\operatorname{Доказателство:} \operatorname{tg}(\operatorname{arcctg} x) = \frac{1}{\operatorname{ctg}(\operatorname{arcctg} x)} = \frac{1}{x}$.
- $\cos(\operatorname{arctg} x) = \frac{1}{\sqrt{1+x^2}}$ $\exists a \ x \in \mathbb{R}$ $\operatorname{\mathcal{A}\!\mathit{okasameacmbo}}: \ \operatorname{arctg} x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \Rightarrow \cos(\operatorname{arctg} x) > 0$. $\cos^2(\operatorname{arctg} x) = \frac{\cos^2(\operatorname{arctg} x)}{\sin^2(\operatorname{arctg} x) + \cos^2(\operatorname{arctg} x)} = \frac{1}{\operatorname{tg}^2(\operatorname{arctg} x) + 1} = \frac{1}{x^2 + 1}$ $\Rightarrow \cos(\operatorname{arctg} x) = \frac{1}{\sqrt{1+x^2}}.$

Задачи

- Да се пресметне: $\arctan 2 + \arctan 3$.
 - Peшeниe: $0 < \operatorname{arctg} 2 < \frac{\pi}{2}$, $0 < \operatorname{arctg} 3 < \frac{\pi}{2} \implies 0 < \operatorname{arctg} 2 + \operatorname{arctg} 3 < \pi$.

 $\cos(\operatorname{arctg} 2 + \operatorname{arctg} 3) = \cos(\operatorname{arctg} 2) \cdot \cos(\operatorname{arctg} 3) - \sin(\operatorname{arctg} 2) \sin(\operatorname{arctg} 3) =$ $= \frac{1}{\sqrt{5}} \cdot \frac{1}{\sqrt{10}} - \frac{2}{\sqrt{5}} \cdot \frac{3}{\sqrt{10}} = -\frac{1}{\sqrt{2}} \implies \operatorname{arctg} 2 + \operatorname{arctg} 3 = \frac{3\pi}{4}.$

• Да се докаже, че $\arctan x + \arctan y = \arctan \frac{x+y}{1-xy}$ за xy < 1. $Pewehue: -\pi < \arctan x + \arctan y < \pi$, $\cos (\arctan x) = \arctan y = \arctan y$. $= \cos (\arctan x) \cdot \cos (\arctan y) - \sin (\arctan x) \sin (\arctan y) =$ $= \frac{1}{\sqrt{1+x^2}} \cdot \frac{1}{\sqrt{1+y^2}} - \frac{x}{\sqrt{1+x^2}} \cdot \frac{y}{\sqrt{1+y^2}} = \frac{1-xy}{\sqrt{1+x^2} \cdot \sqrt{1+y^2}} > 0$ $\Rightarrow \alpha = (\arctan x + \arctan y) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. $\beta = \arctan \frac{x+y}{1-xy} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\tan \alpha = \frac{\tan \alpha x}{1-\tan \alpha x} + \tan \alpha x$. $\tan \alpha x = \frac{\tan \alpha x}{1-\tan \alpha x} + \frac{\tan \alpha x}{1-\tan \alpha x} = \frac$