1.8

Problem. Fix a natural number $b \ge 2$. Show that every positive real number in x in [0,1] has a b-adic expansion of the form

$$x = \sum_{n=1}^{\infty} \frac{x_n}{b^n},$$

with each $0 \le x_n \le b - 1$.

1.9

Problem. Suppose

$$\sum_{n=1}^{\infty} \frac{x_n}{b^n} = \sum_{n=1}^{\infty} \frac{y_n}{b^n},$$

with $0 \le x_n \le b-1$ and $0 \le y_n \le b-1$ integers. Show that either $x_n = y_n$ for all n, or there is an m such that one of the following two cases occurs:

- $x_m = y_m + 1$ and for $n \ge m + 1$, $y_n = b 1$ and $x_n = 0$;
- $y_m = x_m + 1$ and for $n \ge m + 1$, $x_n = b 1$ and $y_n = 0$.

1.10

Problem. Show that a number $x \in [0,1]$ is rational if and only if its decimal expansion is eventually periodic. Deduce that irrational numbers have unique decimal expansions.

Solution. Let x be rational. Then, $x = \frac{p}{q}$, with $p \in \mathbb{Z}_{>0}$, $q \in \mathbb{Z}_{>0}$, with $\frac{p}{q}$ in lowest terms, with q > p.

We write $10x = x_1 + y_1$, with $x_1 = \lfloor 10x \rfloor$ and $y_1 = 10x - \lfloor 10x \rfloor$. Thus, we have

$$y_1 = \frac{10p}{q} - \frac{qx_1}{q}$$
$$= \frac{10p - qx_1}{q}$$
$$= \frac{m_1}{q}.$$

We want to show that $0 \le m_1 < q$.

Now, we take $10y_1 = x_2 + y_2$, with

$$y_2 = \frac{10m_1}{q} - \frac{qx_2}{q}$$
$$= \frac{m_2}{q}.$$

Repeatedly, we get $y_n = \frac{m_n}{q}$.

We have $0 \le x_i < 10$, and $0 \le m_i < q$. Thus, looking at the set of pairs $(x_1, m_1), (x_2, m_2), \ldots$ Since x_i and m_i are limited, there cannot be infinitely many distinct pairs; thus, there will necessarily be a value of n such that $(x_k, m_k) = (x_{k+n}, m_{k+n})$.

1.11

Problem. Show that the collection of polynomials with rational coefficients is a countably infinite set.

Solution. Let $\mathcal{P}_n(\mathbb{Q})$ denote the set of polynomials with degree n with coefficients in \mathbb{Q} . We construct a bijection

$$\mathcal{P}_{n}\left(\mathbb{Q}\right) \to \prod_{k=0}^{n} \mathbb{Q},$$

where ∏ denotes the Cartesian product, by taking

$$a_0 + a_1 x + \cdots + a_n x^n \mapsto (a_0, a_1, \dots, a_n).$$

Since $\prod_{k=0}^{n} \mathbb{Q}$ is a countable Cartesian product of countable sets, this means $\mathcal{P}_{n}(\mathbb{Q})$ is countable.

Finally, we have $\mathbb{Q}[x]$, the set of all polynomials with rational coefficients, is

$$\mathbb{Q}[x] = \bigcup_{k=0}^{\infty} \mathcal{P}_k(\mathbb{Q}),$$

meaning $\mathbb{Q}[x]$ is countable.

1.12

1.13

Extra Problem 1

Extra Problem 2

Problem. If $|A| \le |B|$, then $|P(A)| \le |P(B)|$.

Solution. Let $f: A \hookrightarrow B$ be an injection. Given $S \subseteq A$, we have $f(S) \subseteq B$, meaning $S \in P(A)$ implies $f(S) \in P(B)$. We let $g: P(A) \to P(B)$ be induced by f, with

$$g(S) = f(S)$$
$$= \{f(x) \mid x \in S\}.$$

Extra Problem 3

Extra Problem 4