Especificação de algoritmos com Isabelle

Bruno Carvalho, Guilherme Schmitt, Henri Dias, João Fanti, Matheus Santos

Junho de 2016

1 Primeiro problema

1.1 Especificação

```
\label{eq:mult: N x N \rightarrow N} \\ \text{requer T} \\ \text{garante mult}(x,y) = x * y \\ \text{mult}(x,y) = \text{multacc}(x,y,0) \\ \textit{onde} \\ \\ \text{multacc: N x N x N \rightarrow N} \\ \text{requer T} \\ \text{garante multacc}(x,y,z) = x * y + z \\ \text{invariante } \forall k \in N. \text{ multacc}(m0,n0,a0) = mk * nk + ak \\ \textit{multacc01: multacc}(0,n,a) = a \\ \textit{multacc02: multacc}(k+1,n,a) = \text{multacc}(k,n,a+n) \\ \end{cases}
```

1.2 Exemplo de execução

```
\begin{array}{l} \operatorname{mult}(2,\,3) \\ = \operatorname{multacc}(2,\,3,\,0) \\ = \operatorname{multacc}(1,\,3,\,(0+3)) \\ = \operatorname{multacc}(0,\,3,\,(3+3)) \\ = 6 \end{array}
```

1.3 Teorema th01: multacc(x,y,z) = x * y + z

```
P \triangleq \forall \ x,y,z \in N. \ \mathrm{multacc}(x,y,z) = x * y + z \\ P(x) \triangleq \forall \ y,z \in N. \ \mathrm{multacc}(x,y,z) = x * y + z
```

1.3.1 Base:

$$P(0) \triangleq \forall v,z \in N. \text{ multacc}(0,v,z) = 0 * v + z$$

Seja y0 uma variável arbitrária Seja a0 uma variável arbitrária Mostrar multacc(0,y0,a0) = 0 * y0 + a0

Prova:

multacc(0,y0,a0) (por definição) 0 * y0 + a0 (por simp) a0 (por multacc01) (0 * y0) + a0 (por aritmética) 0 * y0 + a0 (por simplificação)

1.3.2 Indução:

Seja x0 uma variável arbitrária

Assumir como hipótese $P(x0) \triangleq \forall y,z \in N$. multacc(x0,y,z) = x0 * y + zDemonstrar $P(x0 + 1) \triangleq \forall y,z \in N$. multacc(x0 + 1,y,z) = (x0 + 1) * y + z

Seja y
0 uma variável arbitrária Seja a0 uma variável arbitrária Mostrar multac
c(x0 + 1,y0,a0) = (x0 + 1) * y0 + a0

Prova:

multacc x0 y0 (a0 + y0) (por multacc02) x0 * y0 + (a0 + y0) (por hipótese) x0 * y0 + a0 + y0 (por aritmética) (x0 * y0) + (y0 * 1) + a0 (por álgebra) (y0 * x0) + (y0 * 1) + a0 (por álgebra) y0 * (x0 + 1) + a0 (por álgebra) (x0 + 1) * y0 + a0 (por álgebra)

1.4 Teorema th02: mult(x,y) = x * y

$$P \triangleq \forall x,y \in N. \text{ mult}(x,y) = x * y$$

 $P(x) \triangleq \forall y \in N. \text{ mult}(x,y) = x * y$

1.4.1 Base:

$$P(0) \triangleq \forall y \in N. \text{ mult}(0,y) = 0 * y$$

```
Seja y0 uma variável arbitrária
Mostrar mult(0,y0) = 0 * y0

Prova:
multacc 0 y0 0 (por mult01)
0 (por multacc01)
```

1.4.2 Indução:

0 * y0 (por aritmética)

```
Seja x0 uma variável arbitrária
Assumir como hipótese P(x0) \triangleq \forall y \in N. \text{ mult}(x0,y) = x0 * y
Demonstrar P(x0 + 1) \triangleq \forall y \in N. mult(x0 + 1,y) = (x0 + 1) * y
Seja y0 uma variável arbitrária
Mostrar mult(x0 + 1,y0) = (x0 + 1) * y0
Prova:
mult (Suc x0) y0 (por simplificação)
multacc (Suc x0) y0 0 (por mult01)
\text{multacc x0 y0 } (0 + \text{y0}) \text{ (por multacc02)}
multacc x0 y0 y0 (por simplificação)
x0 * y0 + y0 (por th01)
y0 * x0 + y0 (por algebra)
(y0 * x0) + (y0 * 1) (por algebra)
y0 * (x0 + 1) (por algebra)
(x0 + 1) * y0 (por algebra)
(Suc x0) * y0 (por simplificação)
```

2 Segundo problema

2.1 Fatorial

2.1.1 Especificação

```
\begin{aligned} & \text{fat: } N \times N \to N \\ & \text{requer } x \geq 0 \\ & \text{garante } \operatorname{fat}(x) = x! \\ & \text{fat}(x) = \operatorname{fataux}(x,1) \\ & \text{onde} \\ & \text{fataux: } N \times N \to N \\ & \text{requer } x \geq 0 \\ & \text{garante } \operatorname{fataux}(x,y) = x! \ ^*y \\ & \text{invariante } \forall k \in N. \ \operatorname{fataux}(m0,n0) = mk! \ ^*nk \end{aligned}
```

```
fataux01: fataux 0 a = a

fataux02: fataux(n,a) = fataux((n - 1), (a * n)), se n ; 0
```

2.1.2 Exemplo de execução

```
fat(3) = fataux (3, 1)
= fataux(2, (1 * 3))
= fataux(1, ((1 * 3) * 2))
= fataux(0, (((1 * 3) * 2) * 1))
= (((1 * 3) * 2) * 1)
= ((3 * 2) * 1)
= (6 * 1)
= 6
```

2.1.3 Teorema th01: \forall cont. fataux n cont = n! * cont

```
P \triangleq \forall x,y \in N. \text{ fataux}(x,y) = x! * y

P(x) \triangleq \forall y \in N. \text{ fataux}(x,y) = x! * y
```

Base: $P(0) \triangleq \forall y \in N$. fataux(0,y) = 0! * y

Seja cont0 uma variável arbitrária Mostrar fataux $(0, \cot 0) = 0!$ * cont0

Prova:

cont0 (por fataux01) 1 * cont0 (por aritmética) 0! * cont0 (por fatorial)

Indução:

Seja m0 uma variável arbitrária

Assumir como hipótese $P(m0) \triangleq \forall y \in N$. fataux(m0,y) = m0! * yDemonstrar $P(m0 + 1) \triangleq \forall y \in N$. fataux(x0 + 1,y) = (x0 + 1)! * y

Seja a0 uma variável arbitrária

Mostrar fataux(m0 + 1, a0) = (m0 + 1)! * a0

Prova:

fataux (Suc m0) a0 (por simplificação) fataux m0 ((Suc m0) * a0) (por fataux02) m0! * ((Suc m0) * a0) (por hipótese) m0! * (Suc m0) * a0 (por aritmética) (Suc m0)! * a0 (por simplificação) (m0 + 1)! * a0 (por simplificação)

2.1.4 Teorema th02: fat n = n!

$$P \triangleq \forall x \in N. fat(x) = x!$$

 $P(x) \triangleq fat(x) = x!$

Base:
$$P(0) \triangleq fat(0) = 0!$$

Mostrar $fat(0) = 0!$

Prova:

1 (por fat01)

0! (por th01)

Indução:

Seja m0 uma variável arbitrária

Assumir como hipótese $P(m0) \triangleq fat(m0) = m0!$

Demonstrar $P(m0 + 1) \triangleq fat(m0 + 1) = (m0 + 1)!$

Mostrar
$$fat(m0 + 1) = (m0 + 1)!$$

Prova:

fat (Suc m0) (por simplificação)

fataux (Suc m0) 1 (por fat02)

(Suc m0)! * 1 (por th01)

(Suc m0)! (por aritmética)

(m0 + 1)! (por simplificação)

2.2 Somatório

2.2.1Especificação

somatorio: $N \to N$

requer: $x \ge 0$

garante somatorio(n) =

$$\sum_{i=1}^{n} i^{2} = (n/6) * (n+1) * (2 * n + 1)$$

somatorio(n) = sumaux(n,0)

onde

 $\mathbf{sumaux}\colon N\times N\to N$

requer $x \ge 0$

garante sumaux(n,t) =

$$\sum_{i=1}^{n} i^2 + t$$

invariante $\forall k \in N. \text{ sumaux}(w0,u0) =$

$$\sum_{i=1}^{wk} i^2 + uk$$

sumaux01: sumaux(0,a) = asumaux02: sumaux $(n,a) = sumaux(n - 1,n^2 + a)$, se n > 0

2.2.2 Exemplo de execução

 $somatorio(4) \\ = sumaux(4,0) \\ = sumaux(3,4*4+0) \\ = sumaux(2,3*3+4*4+0) \\ = sumaux(1,2*2+3*3+4*4+0) \\ = sumaux(0,1*1+2*2+3*3+4*4+0) \\ = 1*1+2*2+3*3+4*4+0 \\ = 30$

2.2.3 Teorema th01:

$$\sum_{i=1}^{n} i^{2} = (n/6) * (n+1) * (2 * n + 1)$$

 $P \triangleq \forall n \in N.$

$$\sum_{i=1}^{n} i^{2} = (n/6) * (n+1) * (2 * n + 1)$$

 $P(n) \triangleq$

$$\sum_{i=1}^{n} i^2 = (n/6) * (n+1) * (2 * n + 1)$$

Base:

 $P(0) \triangleq$

$$\sum_{i=1}^{0} i^2 = (0/6) * (0+1) * (2*0+1)$$

Mostrar

$$\sum_{i=1}^{0} i^2 = (0/6) * (0+1) * (2*0+1)$$

Prova:

0 (por aritmética) (n/6) * (n + 1) * (2 * n + 1) (por aritmética)

Indução: Seja n0 uma variável arbitrária Assumir como hipótese $P(n0) \triangleq$

$$\sum_{i=1}^{n0} i^2 = (n0/6) * (n0+1) * (2 * n0 + 1)$$

Demonstrar $P(n0 + 1) \triangleq$

$$\sum_{i=1}^{n0+1} i^2 = (n0+1/6) * (n0+1+1) * (2 * (n0+1) + 1)$$

Mostrar

$$\sum_{i=1}^{n0+1} i^2 = (n0+1/6) * (n0+1+1) * (2 * (n0+1) + 1)$$

Prova:

$$\sum_{i=1}^{n0+1} i^2 + (n0+1)^2$$

(por aritmética)

$$(n0/6) * (n0 + 1) * (2 * n0 + 1) + (n0 + 1)^2$$
 (por hipótese) $((n0 + 1)/6) * (n0 + 2) * (2 * (n0 + 1) + 1)$ (por aritmética)

2.2.4 Teorema th02: sumaux(n, t) =

$$\sum_{i=1}^{n} i^2 + t$$

 $P \triangleq \forall n, t \in N. sumaux(n,t) =$

$$\sum_{i=1}^{n} i^2 + t$$

 $P(n) \triangleq \forall t \in N. \ sumaux(n,t) =$

$$\sum_{i=1}^{n} i^2 + t$$

Base:

 $P(0) \triangleq \forall t \in N. \text{ sumaux}(0,t) =$

$$\sum_{i=1}^{0} i^2 + t$$

Prova:

Seja t0 uma variável arbitrária Mostrar sumaux(0,t0) =

$$\sum_{i=1}^{0} i^2 + t0$$

t0 (por sumaux01)

i=

$$\sum_{i=1}^{0} i^2 + t0$$

(por aritmética)

Indução:

Seja n0 uma variável arbitrária Assumir como hipótese $P(n0) \triangleq \forall t \in N. \text{ sumaux}(n0,t) =$

$$\sum_{i=1}^{n0} i^2 + t$$

Demonstrar

 $P(n0 + 1) \triangleq \forall t \in N. sumaux(n0 + 1,t) =$

$$\sum_{i=1}^{n0+1} i^2 + t$$

Prova:

Seja t0 uma variável arbitrária Mostrar sumaux(n0 + 1,t0) =

$$\sum_{i=1}^{n0+1} i^2 + t0$$

 $\operatorname{sumaux}(\operatorname{n0},(\operatorname{n0}\,+\,1)^2\,+\,\operatorname{t0})\,\,(\operatorname{por}\,\operatorname{sumaux}02)$

$$\sum_{i=1}^{n0+1} (n0+1)^2 + t0$$

(por hipótese)

$$\sum_{i=1}^{n0+1} i^2 + t0$$

(por aritmética)

2.2.5 Teorema th03: somatorio(n) =

$$\sum_{i=1}^{n} i^2$$

 $P \triangleq \forall n \in N. \text{ somatorio}(n) =$

$$\sum_{i=1}^{n} i^2$$

 $P(n) \triangleq \forall n \in N. \text{ somatorio}(n) =$

$$\sum_{i=1}^{n} i^2$$

Base:

 $P(0) \triangleq \forall n \in N. \text{ somatorio}(0) =$

$$\sum_{i=1}^{0} i^2$$

Prova:

Mostrar somatorio(0) =

$$\sum_{i=1}^{0} i^2$$

 $\operatorname{sumaux}(0,0)$ (por definição)

0 (por definição)

$$\sum_{i=0}^{0}i^{2}$$

(por aritmética)

Indução:

Seja n0 uma variável arbitrária Assumir como hipótese $P(n0) \triangleq \text{somatorio}(n0) =$

$$\sum_{i=1}^{n0} i^2$$

Demonstrar $P(n0 + 1) \triangleq somatorio(n0 + 1) =$

$$\sum_{i=1}^{n0+1} i^2$$

Prova:

Mostrar somatorio(n0 + 1) =

$$\sum_{i=1}^{n0+1} i^2$$

 $\begin{array}{l} sumaux(n0+1,\!0) \; (por \; definição) \\ sumaux(n0,\!(n0+1)^2+0) \; (por \; definição) \end{array}$

$$\sum_{i=1}^{n0} (n0+1)^2 + 0$$

(por definição da invariante sumaux)

$$\sum_{i=1}^{n0+1} i^2$$

(por aritmética)

2.2.6 Teorema:
$$sum(n) = (n/6) * (n+1) * (2 * n + 1)$$

$$\begin{array}{l} P \triangleq \forall n \in N. \; sum(n) = (n/6) \; * \; (n+1) \; * \; (2 \; * \; n+1) \\ P(n) \triangleq \forall n \in N \; sum(n) = (n/6) \; * \; (n+1) \; * \; (2 \; * \; n+1) \end{array}$$

Base:

$$P(0) \triangleq sum(0) = (0/6) * (0+1) * (2 * 0 + 1)$$

Mostrar sum(0) =
$$(0/6)$$
 * $(0+1)$ * $(2*0+1)$ sumaux(0,0) (por definição) 0 (por definição)

$$(0/6) * (0+1) * (2 * 0 + 1)$$
 (por aritmética)

Indução:

Seja n0 uma variável arbitrária

Assumir como hipótese $P(n0) \triangleq sum(n0) = (n0/6) * (n0 + 1) * (2 * n0 + 1)$ Demonstrar $P(n0 + 1) \triangleq sum(n0 + 1) = ((n0 + 1)/6) * (n0 + 2) * (2 * (n0 + 1) + 1)$

Prova:

Mostrar sum(n0 + 1) = ((n0 + 1)/6) * (n0 + 2) * (2 * (n0 + 1) + 1) sumaux(n0 + 1,0) (por definição) sumaux(n0,(n0 + 1)² + 0) (por definição)

$$\sum_{i=1}^{n0} i^2 + (n0+1)^2 + 0$$

$$\sum_{i=1}^{n0} i^2$$

)
$$(n0/6) * (n0 + 1) * (2 * n0 + 1) + (n0 + 1)^2$$
 (por hipótese) $((n0 + 1)/6) * (n0 + 2) * (2 * (n0 + 1) + 1)$ (por aritmética)

3 Terceiro problema

3.1 Especificação recursiva na cauda

 $\mathbf{tail_len_c} \colon \operatorname{List} \to \operatorname{N}$

requer L

garante tail_len_c L = length L $tail_len_c01$: tail_len_c [] = 0

 $tail_len_c02$: tail_len_c T = tail_len_c_aux T 0

onde

 $tail_len_c_aux$: List $x N \to N$

requer L

 $tail_len_c_aux01$: tail_len_c_aux [] a = a

 $tail_len_c_aux02$: tail_len_c_aux (h#T) a = tail_len_c_aux T (Suc(a))

3.1.1 Exemplo de execução

tail_len_c [4, 7] = tail_len_c_aux [4, 7] 0 = tail_len_c_aux [7] 1 = tail_len_c_aux [] 2 = 2

3.2 Especificação não recursiva na cauda

```
tail_len_nc: List \to N requer L garante tail_len_nc L = length L tail_len_nc01: tail_len_nc [] = 0 tail_len_nc02: tail_len_nc (h#T) = 1 + tail_len_nc T
```

3.2.1 Exemplo de execução

```
tail_len_nc [4, 5]
= tail_len_nc (1 + tail_len_nc [5])
= 1 + (tail_len_nc (1 + tail_len_nc []))
= (1 + 1 + 0)
= (2 + 0)
= 2
```

3.3 Teorema th01: $tail_{en_n} c l = length l$

```
P \triangleq tail\_len\_nc l = length l

P(l) \triangleq tail\_len\_nc l = length l
```

3.3.1 Base:

```
P([]) \triangleq tail\_len\_nc

Mostrar tail\_len\_nc [] = length []

Prova:

tail\_len\_nc [] = 0 (por tail\_len\_nc01)

tail\_len\_nc [] (por simplificação)
```

3.3.2 Indução:

```
Seja l<br/>0 uma variável arbitrária
Seja e uma variável arbitrária
Assumir como hipótes<br/>eP(l0)\triangleq tail\_len\_nc l0=length l<br/>0 Demonstrar P(e\#l0)\triangleq tail\_len\_nc (e#l0) = length (e#l0)
```

```
Prova: tail_len_nc 10 + 1 (por tail_len_nc02) length 10 + 1 (por hipótese)
```

length (e#l0) (por simplificação)

3.4 Teorema th02: $\forall a. tail_len_c_aux \ l \ a = length \ l + a$

 $P \triangleq \forall a \in N. tail_len_c_aux \ l \ a = length \ l + a$ $P(l) \triangleq \forall a \in N. tail_len_c_aux \ l \ a = length \ l + a$

3.4.1 Base:

 $P([]) \triangleq \forall a \in N. tail_len_c [] a = length [] + a$ Seja a0 uma variável arbitrária Mostrar tail_len_c_aux [] a0 = length [] + a0

Prova:

a0 (por tail_len_c_aux01) length [] + a0 (por simplificação)

3.4.2 Indução:

Seja l
0 uma variável arbitrária Seja elem uma variável arbitrária Assumir como hipótes
e $P(l0)\triangleq \forall a.$ tail_len_c_aux l
0a=lengthlo + a Demonstrar $P(elem\#l0)\triangleq \forall a.$ tail_len_c_aux (elem#l0) a = length (elem#l0) + a

Seja a0 uma variável arbitrária Mostrar P(elem#l0) \triangleq tail_len_c_aux (elem#l0) a0 = length (elem#l0) + a0

Prova:

tail_len_c_aux l0 (Suc a0) (por tail_len_c_aux02) length l0 + (Suc a0) (por hipótese) length (elem#l0) + a0 (por simplificação)

3.5 Teorema th03: tail_len_nc $T = tail_len_c T$

 $P \triangleq tail_len_nc T = tail_len_c T$ $P(l) \triangleq tail_len_nc l = tail_len_c l$

3.5.1 Base:

 $P([]) \triangleq tail_len_nc[] = tail_len_c[]$

Prova:

```
tail_len_nc [] = 0 (por tail_len_nc01) tail_len_c [] (por tail_len_c01)
```

3.5.2 Indução:

Seja T0 uma variável arbitrária Seja a0 uma variável arbitrária Assumir como hipótese $P(T0) \triangleq tail_len_nc$ $T0 = tail_len_c$ T0 Demonstrar $P(a0\#T0) \triangleq tail_len_nc$ $(a0\#T0) = tail_len_c$ (a0#T0)

Prova:

```
\begin{array}{l} \operatorname{length} \; (a0\#T0) \; (\operatorname{por} \; \operatorname{th}01) \\ = \; \operatorname{tail\_len\_c\_aux} \; (a0\#T0) \; 0 \; (\operatorname{por} \; \operatorname{th}02) \\ = \; \operatorname{tail\_len\_c} \; (a0\#T0)" \; (\operatorname{por} \; \operatorname{tail\_len\_c}02) \end{array}
```