Aakash Ghosh

Email: ag19ms129@iiserkol.ac.in

Course: Algebra III Term: Autumn 2022

ID: 19MS129

1 Problem Sheet 1

Problem 1.5

Let $F \hookrightarrow K$ be a field extension and $a, b \in K$ be algebraic over F with minimum polynomials of degree p, q, where p, q are distinct prime numbers. Show that [F(a, b) : F] = pq.

Solution: Note that as $[F(a):F] \mid [F(a,b):F]$ and $[F(b):F] \mid [F(a,b):F]$, [F(a,b):F] is of the form kpq. Let $\{\alpha_i\}_{1\leq i\leq p}$ be a basis of $F(a)\mid_F$ and $\{\beta_j\}_{1\leq j\leq q}$ be a basis of $F(b)\mid_F$. Consider the field F' spanned by $\{\alpha_i\beta_j\}_{1\leq i\leq p,1\leq j\leq q}$. $a,b\in F'$ and therefore $F(a,b)\subseteq F'$. By our construction $[F':F]\leq pq$. Therefore, $[F(a,b):F]\leq pq$. It follows that k=1 which completes the proof.

Problem 1.1

Determine

- 1. $\left[\mathbb{Q}(\sqrt{2},\sqrt{5}),\mathbb{Q}\right]$
- 2. $[\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7}),\mathbb{Q}]$
- 3. $[\mathbb{Q}(\sqrt[3]{2},\sqrt{3}),\mathbb{Q}]$

Solution: We shall use the result of problem 1.5 proved above.

Lemma 1. If p is prime, then $x^n - p$ is irreducible over \mathbb{Q} for n > 1.

Proof. By applying Einstein's criteria over p on $x^n - p$ we get $x^n - p$ is irreducible over \mathbb{Z} . By Gauss lemma, we conclude that $x^n - p$ is irreducible over \mathbb{Q} too. \square

1. Note that $\sqrt{2}$ satisfies $x^2 - 2 = 0$. By lemma 1, this polynomial is irreducible and therefore $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$. Note that $x^2 - 5 = 0$ has $\sqrt{5}$ as root. Therefore, the minimal polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{2})$, p(x), divides $(x^2 - 5)$. We show p is not linear, i.e. $\sqrt{5} \notin \mathbb{Q}(\sqrt{2})$. Assume to the contrary and let $\sqrt{5} = a + b\sqrt{2}$ where $a, b \in \mathbb{Q}$. Then we note:

$$\begin{split} \sqrt{5} &= a + b\sqrt{2} \\ \Rightarrow 5 &= a^2 + 2b^2 + 2ab\sqrt{2} \\ \Rightarrow \sqrt{2} &= \frac{5 - a^2 - 2b^2}{2ab} \in \mathbb{Q} \end{split}$$

Which is a contradiction. Therefore, p(x) has degree 2. It follows that

$$[\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}(\sqrt{2})] \times [\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4$$

2. Like before, note that $x^2-7=0$ has $\sqrt{7}$ as root. Therefore, the minimal polynomial of $\sqrt{7}$ over $\mathbb{Q}(\sqrt{2},\sqrt{5}), p(x)$, divides (x^2-7) . Note that $\{1,\sqrt{2}\}$ is a basis of $\mathbb{Q}(\sqrt{2})$ over \mathbb{Q} and $\{1,\sqrt{5}\}$ is a basis of $\mathbb{Q}(\sqrt{5})$ over \mathbb{Q} . Therefore, as we pointed in Problem 1.5, $\{1,\sqrt{2},\sqrt{5},\sqrt{10}\}$ is a basis of $\mathbb{Q}(\sqrt{2},\sqrt{5})$ over \mathbb{Q} . We shall show $\sqrt{7} \notin \mathbb{Q}(\sqrt{2},\sqrt{5})$. Assume to the contrary and let $\sqrt{7} = a + b\sqrt{2} + c\sqrt{5} + d\sqrt{10}$. Then:

$$\sqrt{7} = a + b\sqrt{2} + c\sqrt{5} + d\sqrt{10}$$

$$\Rightarrow 7 = (a^2 + 2b^2 + 5c^2 + 10d^2) + 2ab\sqrt{2} + \left(2ac + 2(bc + ad)\sqrt{2}\right)\sqrt{5}$$

$$\Rightarrow \sqrt{5} = \frac{7 - \left((a^2 + 2b^2 + 5c^2 + 10d^2) + 2ab\sqrt{2}\right)}{2ac + (2bc + ad)\sqrt{2}} \in \mathbb{Q}(\sqrt{2})$$

Which is a contradiction. Therefore, degree of p is two and

$$[\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\sqrt{5},\sqrt{7}):\mathbb{Q}(\sqrt{2},\sqrt{5})] \times [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}] = 8$$

3. By Lemma 1, $x^2 - 3$ and $x^3 - 2$ are irreducible. As $\sqrt{3}$, $\sqrt[3]{2}$ are roots of those polynomials, $[\mathbb{Q}(\sqrt{3}) : \mathbb{Q}] = 2$, $[\mathbb{Q}(\sqrt[3]{2}) : \mathbb{Q}] = 3$. By Problem 1.5, it follows that $[\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}), \mathbb{Q}] = 2 \times 3 = 6$

Problem 1.2

Prove that finite fields can't be algebraically closed.

Solution: Let \mathbb{F} be a finite field. Consider the polynomial $p(x) = \prod_{\alpha \in \mathbb{F}} (x - \alpha) + 1$. This polynomial has no roots in \mathbb{F} . Consider the splitting field \mathbb{F}' of p over \mathbb{F} . Therefore, there exists a proper algebraic extension of \mathbb{F} and \mathbb{F} is not closed.

Problem 1.3

Prove that any extension of prime order (i.e., the degree is prime) is simple.

Solution: Let K be a prime order extension of F. Let $\alpha \in K$ such that $\alpha \notin F$. Since $[F(\alpha):F] \mid [K:F(\alpha)] = p$, it follows that $[F(\alpha):F]$ is either 1 or p. But as $\alpha \notin F$ it follows that $[F(\alpha):F] = p$. Therefore, $[K:F(\alpha)] = \frac{[K:F]}{[F(\alpha):F]} = 1$. Therefore, $K = F(\alpha)$ and K is simple.

Problem 1.4

Is $\mathbb{Q}(\sqrt{2}, \sqrt{5})$ simple?

Solution: Yes. We show $\mathbb{Q}(\sqrt{2}, \sqrt{5}) = \mathbb{Q}(\sqrt{2} + \sqrt{5})$. It is easy to see that $\mathbb{Q}(\sqrt{2} + \sqrt{5}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{5})$ as $\sqrt{2} + \sqrt{5} \in \mathbb{Q}(\sqrt{2}, \sqrt{5})$. Let p(x) be the minimal polynomial of $\sqrt{2} + \sqrt{5}$ over \mathbb{Q} . Now as $\sqrt{2} + \sqrt{5}$ is irrational, p is not linear. Assume p is quadratic and there exists rational b, c such that $x^2 + bx + c$ has $\sqrt{2} + \sqrt{5}$ as roots. Then on putting $x = \sqrt{2} + \sqrt{5}$ we get:

$$(\sqrt{2} + \sqrt{5})^2 + b(\sqrt{2} + \sqrt{5}) + c = 0$$

$$\Rightarrow 7 + c + b\sqrt{2} + (b + 2\sqrt{2})\sqrt{5} = 0$$

$$\Rightarrow \sqrt{5} = -\frac{7 + c + b\sqrt{2}}{b + 2\sqrt{2}} \in \mathbb{Q}\sqrt{2}$$

Which is not possible as shown in problem 1.1(part 1). Therefore, p is not quadratic. Now we have $deg(p) = [\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}] > 2$. By problem 1.1 we have $[\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}] = 4$. As $[\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}] \mid [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}]$, the only possible value of $[\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}]$ is 4. It follows that $[\mathbb{Q}(\sqrt{2}+\sqrt{5}):\mathbb{Q}(\sqrt{2},\sqrt{5})] = [\mathbb{Q}(\sqrt{2},\sqrt{5}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},\mathbb{$

Problem 1.6

Show that an extension $F \hookrightarrow K$ is algebraic if and only if every ring R with $F \subseteq R \subseteq K$ is a field.

Solution: Let K be algebraic. We show that R is a field. To show this we only need to show that if $\alpha \in R$, $\alpha^{-1} \in R$. As K is algebraic, there exists some polynomial p(x) such that $p(\alpha) = 0$. Let

 $p = \sum_{i=0}^{n} a_i x^i$ where $a_i \in F$. We assume p is irreducible and therefore $a_0 \neq 0$. Then

$$\sum_{i=0}^{n} a_i \alpha^i = 0$$

$$\Rightarrow \sum_{i=1}^{n} a_i \alpha^i = -a_0$$

$$\Rightarrow \alpha \left(\sum_{i=1}^{n} a_i \alpha^{i-1} \right) = -a_0$$

$$\Rightarrow \alpha \left[\frac{1}{-a_0} \left(\sum_{i=1}^{n} a_i \alpha^{i-1} \right) \right] = 1$$

Therefore, α has an inverse and R is a field.

Now we assume all such K are fields. We show F is algebraic. We prove by contradiction. Assume there exists a transcendental element α . Then $F[\alpha] \equiv F[X]$. Consider the ring F[X]. We show that this is not a field. Let p(x) be a non-zero polynomial with an inverse q(x) over K. Then: $p(\alpha)q(\alpha)=1 \Rightarrow p(\alpha)q(\alpha)-1=0$. Therefore, pq-1 has α as a root which contradict the fact that α is transcendental. Therefore, no such α exist and F is algebraic.

Problem 1.7

Let $F \hookrightarrow K$ be a field extension and $a \in K$ with its minimal polynomial of degree m. Show that $m \mid [K : F]$.

Solution: We note that m = [F(a) : F] and by tower lemma: [K : F] = [K : F(a)][F(a) : F]. The solution follows.

Problem 1.8

Does there exist a polynomial $f(X) \in \mathbb{Z}[X]$ of degree at least 2 such that f(X) is irreducible over $\mathbb{Z}_p[X]$ for each prime p?

Solution: No. Without loss of generality assume leading term of f is positive and GCD of all coefficients of f = 1. Then $\lim_{x \to \infty} f(x) = \infty$. Therefore, there exist some natural n such that $f(n) = \alpha > 1$. Let $p(\text{which can be } \alpha \text{ itself})$ be a prime factor of α . Let denote [x] to be the equivalence class of x such that $x \equiv [x] \pmod{p}$. If $f(x) = \sum_{i=1}^r c_i x^i$, then note that:

$$[f]([n]) = \sum_{i=1}^{r} [c_i][n]^i = \left[\sum_{i=1}^{r} c_i n^i\right] = [\alpha] = 0$$

Therefore, f has a root in $\mathbb{Z}/p\mathbb{Z}$ and is reducible.

Problem 1.9

Let $\overline{\mathbb{Q}} := \{x \in \mathbb{C} \mid x \text{ is algebraic over } \mathbb{Q} \}$. Is $[\overline{\mathbb{Q}} \mid \mathbb{Q}]$ finite?

Solution: Let p be a prime. Consider the equation $f_p(x) = x^p + p$. Let α_p be the root. It follows minimal polynomial of α_p divides f_p . But f_p is irreducible by Einstein's criteria and Gauss's lemma. Therefore, minimal polynomial of α_p is f_p and $[\mathbb{Q}(\alpha_p):\mathbb{Q}] = p$. As α_p is algebraic, $\alpha_p \in \overline{\mathbb{Q}}$. Therefore, $\mathbb{Q} \hookrightarrow \mathbb{Q}(\alpha_p) \hookrightarrow \overline{\mathbb{Q}}$ and $p \mid [\overline{\mathbb{Q}}:\mathbb{Q}]$. As this is true for all primes p and as there are infinite primes, $[\overline{\mathbb{Q}}:\mathbb{Q}]$ is not finite.

Problem 1.10

Prove that there exists a field F such that

- (a) F is infinite,
- (b) F is algebraic over a finite field, and
- (c) F is not algebraically closed

Solution:

2 Problem sheet 2

Problem 2.1

Find the degree of the splitting fields.

1.
$$f(X) = X^4 - 2 \in \mathbb{Q}(X)$$
 over \mathbb{Q}

2.
$$f(X) = X^4 + 1 \in \mathbb{Q}(X)$$
 over \mathbb{Q}

Solution:

1. The roots of f are $\pm \sqrt[4]{2}$, $\pm i\sqrt[4]{2}$. The splitting field contains $\sqrt[4]{2}$ and i. The smallest such field is $\mathbb{Q}(\sqrt[4]{2},i)$. By applying Einstein's criteria on f we conclude f is irreducible. As $\sqrt[4]{2}$ is a root of f, we conclude f is minimal polynomial of $\sqrt[4]{2}$ and $[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}]=4$. Now as i satisfies $p(x)=x^2+1$ and $i\notin\mathbb{Q}(\sqrt[4]{2})$, we conclude p is minimal polynomial of i over $\mathbb{Q}(\sqrt[4]{2})$. Therefore:

order of splitting field =
$$[\mathbb{Q}(\sqrt[4]{2},i),\mathbb{Q}] = [\mathbb{Q}(\sqrt[4]{2},i),\mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = 8$$

2. Let the splitting field be F. The roots of f are $\pm \frac{1}{\sqrt{2}} \pm i \frac{1}{\sqrt{2}}$. By adding the roots pairwise we get $\sqrt{2}, i \in F$. The smallest such field is $\mathbb{Q}[\sqrt{2}, i]$. It is shown before that $[\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 2$. As i satisfies $p(x) = x^2 + 1$ and $i \notin \mathbb{Q}(\sqrt{2})$, we conclude p is minimal polynomial of i over $\mathbb{Q}(\sqrt{2})$. So we have $[\mathbb{Q}(\sqrt{2}, i) : \mathbb{Q}(\sqrt{2})] = 2$ Therefore:

order of splitting field =
$$[\mathbb{Q}(\sqrt{2},i),\mathbb{Q}] = [\mathbb{Q}(\sqrt{2},i),\mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 4$$

Problem 2.2

Let $K \mid F$ be an extension of degree 2. Show that $K \mid F$ is normal.

Solution: Let for $\alpha \in K$, p be the minimal polynomial of α over F. Then p has degree 1 or 2. If p has degree 1 then p has a single root which is α , and we are done. Else let $p(x) = x^2 - bx + c = (x - \alpha)(x - \beta)$, where β is the other root of p. We need to show $\beta \in K$. Direct expansion shows that $b = \alpha + \beta \Rightarrow \beta = b - \alpha$. As K is a field, $\beta \in K$ which completes the proof.

Problem 2.3

Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3})|\mathbb{Q}$ is a normal extension.

Solution:

Lemma 2. $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$

Proof. Assume to the contrary and let $\sqrt{3} = a + b\sqrt{2}$ where $a, b \in \mathbb{Q}$. Then we note:

$$\sqrt{3} = a + b\sqrt{2}$$

$$\Rightarrow 3 = a^2 + 2b^2 + 2ab\sqrt{2}$$

$$\Rightarrow \sqrt{2} = \frac{3 - a^2 - 2b^2}{2ab} \in \mathbb{Q}$$

Which is a contradiction. \Box

Lemma 3. $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}=4]$

Proof. As shown in problem 1.1, $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$. Note that $x^2-3=0$ has $\sqrt{3}$ as root. Therefore, the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$, p(x), divides (x^2-3) . We have shown p is not linear, i.e. $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$. Therefore, p(x) has degree 2. It follows that

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})] \times [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 4$$

Lemma 4. $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$

Proof. It is easy to see that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$ as $\sqrt{2} + \sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Let p(x) be the minimal polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} . Now as $\sqrt{2} + \sqrt{3}$ is irrational, p is not linear. Assume p is quadratic and there exists rational b, c such that $x^2 + bx + c$ has $\sqrt{2} + \sqrt{3}$ as roots. Then on putting $x = \sqrt{2} + \sqrt{3}$ we get:

$$(\sqrt{2} + \sqrt{3})^2 + b(\sqrt{2} + \sqrt{3}) + c = 0$$

$$\Rightarrow 5 + c + b\sqrt{2} + (b + 2\sqrt{2})\sqrt{3} = 0$$

$$\Rightarrow \sqrt{3} = -\frac{5 + c + b\sqrt{2}}{b + 2\sqrt{2}} \in \mathbb{Q}\sqrt{2}$$

Which is not possible as shown in above. Therefore, p is not quadratic. Now we have $deg(p) = [\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] > 2$. We have shown $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}] = 4$. As $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] \mid [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]$, the only possible value of $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}]$ is 4. It follows that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}(\sqrt{2},\sqrt{3})] = [\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}]/[\mathbb{Q}(\sqrt{2}+\sqrt{3}):\mathbb{Q}] = 1$. Therefore, $\mathbb{Q}(\sqrt{2},\sqrt{3}) = \mathbb{Q}(\sqrt{2}+\sqrt{3})$

Lemma 5. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $(x^2 - 2)(x^2 - 3)$

Proof. Note that $f(x) = (x^2 - 2)(x^2 - 3) = (x + \sqrt{2})(x - \sqrt{2})(x + \sqrt{3})(x - \sqrt{3})$. It is easy to see that the splitting field of f contains $\sqrt{2}, \sqrt{3}$ and the smallest such field is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. \square

As $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2},\sqrt{3})$ is the splitting field of f over \mathbb{Q} , it is a normal extension of \mathbb{Q} .

Problem 2.4

Prove that the fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are not isomorphic

Solution: Assume $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ are isomorphic and the isomorphism is given by ϕ . Then $\phi(1) = 1$ and for any rational $r \in \mathbb{Q}$, $\phi(r) = r\phi(1) = r$. Let $p(x) = \sum_{i=1}^{n} c_i x^i$ be the minimal polynomial of $\sqrt{2}$ over \mathbb{Q} . Then note that:

$$\phi(p(x)) = \phi\left(\sum_{i=1}^{n} c_i x^i\right) = \sum_{i=1}^{n} \phi(c_i)\phi(x)^i = \sum_{i=1}^{n} c_i \phi(x)^i = p(\phi(x))$$

Putting $x = \sqrt{2}$ we conclude that $\phi\left(\sqrt{2}\right)$ is also a solution of p(x). We have shown in problem 1.1 that $p(x) = x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$. Therefore, $\phi(\sqrt{2}) \in \{\sqrt{2}, -\sqrt{2}\}$. Assume $\sqrt{2} \in \mathbb{Q}(\sqrt{3})$ and let $\sqrt{2} = a + b\sqrt{3}$ where $a, b \in \mathbb{Q}$. Then we note:

$$\begin{split} \sqrt{2} &= a + b\sqrt{3} \\ \Rightarrow 2 &= a^2 + 3b^2 + 2ab\sqrt{3} \\ \Rightarrow \sqrt{3} &= \frac{3 - a^2 - 3b^2}{2ab} \in \mathbb{Q} \end{split}$$

Which is a contradiction. It follows that $\pm\sqrt{2}\notin\mathbb{Q}(\sqrt{3})$. Which contradicts the fact that $\phi(\sqrt{2})\in\mathbb{Q}(\sqrt{3})$. Therefore, no such ϕ exists.

Problem 2.5

Let $f(X) := X^3 + X^2 + 1 \in \mathbb{Z}/2\mathbb{Z}[X]$ and α be a root of f. Show that $\mathbb{Z}/2\mathbb{Z}(\alpha)$ is the splitting field.

Solution: Note that

$$0 = f(\alpha)^2 = (\alpha^3 + \alpha^2 + 1)^2 = \alpha^6 + \alpha^4 + 1 + 2(\alpha^5 + \alpha^3 + \alpha^2) = \alpha^6 + \alpha^4 + 1 = f(\alpha^2)$$

Therefore α^2 is also a root(Note: We can easily check that 1,0 are not roots of the equation. Therefore, $\alpha \neq \alpha^2$). By using Vieta's formula, we get -1 is the product of the roots and thus $-1/\alpha^3$ is also a root. As the splitting field contains α and the smallest field containing α also contains all the other roots, we conclude that $\mathbb{Z}/2\mathbb{Z}(\alpha)$ is the splitting field.

Problem 2.6

Let p be a prime. Show that the splitting field of $X^p - 1 \in \mathbb{Q}[X]$ is of degree p - 1 over \mathbb{Q} .

Solution: Note if ζ is the p^{th} root of unity, then all the roots are given by ζ^r where $0 \le r \le p-1$. As the splitting field contains ζ and the smallest field containing ζ also contains all the other roots, we conclude that $\mathbb{Q}(\zeta)$ is the splitting field. Note that $X^p - 1 = (X - 1) \left(\sum_{i=1}^{p-1} X^i \right)$. But As $\zeta \ne 1$, $\left(\sum_{i=1}^{p-1} \zeta^i \right) = 0$. We show $f(x) = \sum_{i=1}^{p-1} x^i$ is irreducible. Note that if f(x) is irreducible if and only if $\tilde{f}(x) = f(x+1)$ is irreducible too (for if f = hg then $\tilde{f} = h(x+1)g(x+1)$). Note that:

$$\tilde{f}(x) = f(x+1) = \frac{(x+1)^p - 1}{(x+1-1)} = \frac{(x+1)^p - 1}{x} = x^{p-1} + px^{p-1} \dots \binom{p}{i} x^{i-1} \dots + \frac{p(p-1)}{2} x + px^{p-1} \dots \binom{p}{i} x^{i-1} \dots + \binom{p}{i} x^$$

We can apply Einstein's criteria on \tilde{f} to conclude it is irreducible. Therefore f is irreducible and is the minimal polynomial of ζ . It follows that order of splitting field= degree of f = p - 1.

Problem 2.7

Suppose K|F and L|K are normal extensions. Is L|F normal?

Solution: Let $F = \mathbb{Q}$, $K = \mathbb{Q}(\sqrt{2})$, $L = \mathbb{Q}(\sqrt[4]{2})$. Then [K:F], [L:K] = 2 and as shown in 2.2, they are normal extension. Consider the polynomial $p(x) = x^4 - 2$. We note p is irreducible over \mathbb{Q} by Einstein's criteria. Assume L|F is normal. As $\sqrt[4]{2}$ is a root of p then all roots of p lies in p. Note $i\sqrt[4]{2}$ is a root of p but is not in p, which is a contradiction. Therefore, p is not normal and the statement is false.

Problem 2.8

Let $K_i|F$ be finite extensions for $1 \leq i \leq n$. Then there exists a finite normal extension K|F and embeddings $\phi_i: K_i \xrightarrow{\sim} K$ such that $\phi_i|F = Id_F$.

Solution: Let K_i as each K_i is a finite extension, they are algebraic and are generated by adjoining a finite number of elements to F (one way to do so this is to adjoin elements one by one on F till no elements remain. As K_i has a finite order, this process stops in a finite number of steps). Let $K_i = F[\alpha_{(1,i)}, \alpha_{(2,i)}, \ldots]$. Consider the minimal polynomial $p_i = \prod_{i,j} p_{i,j}$ such that $p_{i,j}$ is the minimal polynomial of $\alpha_{i,j}$. Let K be the splitting field of p over F. As each $\alpha_{i,j} \in F$, F satisfies all the conditions mentioned above.

Problem 2.9

Let p be a prime integer and $n \ge 1$. What is the splitting field of $x^{p^n} - 1 \in \mathbb{Z}/p\mathbb{Z}$?

Solution: We note that in $\mathbb{Z}/p\mathbb{Z}$ we have:

$$x^{p^n} - 1 = x^{p^n} - 1 + \sum_{i=1}^{p-1} {p \choose i} \left(x^{p^{n-1}}\right)^i (-1)^{p-i} = (x^{p^{n-1}} - 1)^p$$

But in the same way we can write $(x^{p^{n-1}}-1)=(x^{p^{n-2}}-1)^p$ and so on. Continuing, we get $(x^{p^n}-1)=(x-1)^{p^n}$ in $\mathbb{Z}/p\mathbb{Z}$. Therefore, the only root is 1, and the splitting field is $\mathbb{Z}/p\mathbb{Z}$.

Problem 2.10

Let K|F be a finite normal extension and $f(x) \in F[x]$ be irreducible. Let $g, h \in K[x]$ be two irreducible factors of f in K[x]. Show that there exists an F-isomorphism $\sigma: K \xrightarrow{\sim} K$ that takes g to h

3 Problem sheet 3

Problem 3.1

Check whether $X^4 + X + 1 \in \mathbb{Q}[X]$ is a separable polynomial.

Solution: $Df = 4X^3 + 1$. Note that

$$f = \frac{x}{4}Df + \left(\frac{3x}{4} + 1\right)$$

Assume f is inseparable and they share a solution α . Put $x = \alpha$ above to get

$$\left(\frac{3}{4}\alpha + 1\right) = f(\alpha) - \frac{\alpha}{4}Df(\alpha) = 0 \Rightarrow \alpha = -\frac{4}{3}$$

It is easy to check $f\left(-\frac{4}{3}\right) \neq 0$ which contradicts the fact that α is a solution. Therefore, no such α exists and f is separable.

Problem 3.2

Show that any field of characteristic 0 is perfect.

Solution: Let F be a characteristic 0 field and let $f = \sum_{i=0}^{n} c_i x^i$ be irreducible. Let α be a root of the polynomial. Then f is the minimal polynomial of α over F. We claim that multiplicity of α in f is 1. If f has degree 1, then it has a single root α and we are done. Otherwise, we have $Df(\alpha) = 0$. Now, if we assume f has degree n then $Df = \sum_{i=0}^{n-1} (i+1)c_{i+1}x^i$. As $c_n \neq 0$, and char(F) = 0, $nc_n \neq 0$. Therefore, $Df \neq 0$. But as $Df(\alpha) = 0$ and deg(Df) = deg(f) - 1, p cannot be the minimal polynomial, which is a contradiction. Therefore, $Df(\alpha) \neq 0$ and multiplicity of α in f is 1. So F is perfect.

Problem 3.3

Let F be a field of characteristic p. Show that the map $\phi: F \to F$ defined by $\phi(a) = a^p$ is a homomorphism.

Solution: We know for any prime p(characteristic of a field is always prime) and 1 < k < p, $\binom{p}{k}$ is divisible by p. For $a, b \in F$

$$\phi(a) + \phi(b) = a^p + b^p = a^p - 1 + \sum_{i=1}^{p-1} \binom{p}{i} (a)^i (b)^{p-i} = (a+b)^p = \phi(a+b)$$

As

1.
$$\phi(a+b) = \phi(a) + \phi(b)$$

2.
$$\phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b)$$

 ϕ is a homomorphism.

Problem 3.4

Show that any algebraic extension of a perfect field is perfect.

Solution:

Problem 3.5

A nonzero polynomial $f(x) \in F[x]$ is separable if and only if it is relatively prime to its derivative in F[x] (i.e., (f(x), f'(x)) = 1)).

Solution:

f is separable $\Rightarrow (f, f') = 1$

Assume to the contrary that $(f, f') = p \neq 1$. Then all roots of p is a common root of both f and f'. Therefore, f is not separable which is a contradiction.

$(f, f') = 1 \Rightarrow f$ is separable

Assume f and f' are inseparable. Then there exists α such that $f(\alpha) = f'(\alpha) = 0$. Let p be the minimal polynomial of α . Then $p \mid f, p \mid f'$ and so $p \mid (f, f')$. But this is a contradiction as 1 is a scalar and non-scalar polynomial can divide it.

Problem 3.6

Is $f(X) = X^6 + X^5 + X^4 + 2X^3 + 2X^2 + X + 2 \in \mathbb{F}_3[X]$ a separable polynomial?

Solution: In \mathbb{F}_3 , $f' = 2x^4 + +x^3 + x$. We use Euclid's algorithm to compute the GCD.

$$x^{6} + x^{5} + x^{4} + 2x^{3} + 2x^{2} + x + 2 = (2x^{2} + x)(2x^{4} + x^{3} + x) + (x^{2} + x + 2)$$

$$2x^4 + x^3 + x = (x^2 + x + 2)(2x^2 + 2x) + x$$

$$x^2 + x + 2 = x(x+1) + 2$$

Therefore, (f, f') = 1 and by problem 3.5, f is separable.

4 Problem Sheet 4

Problem 4.1

Let F be a finite field with p^n elements. Show that the map $\phi: F \to F$ defined by $\phi(a) = a^p$ is an isomorphism. Show that ϕ has order n.

Solution: As F is finite the characteristic of F is a prime. Let it be k. Then for $a \in K$, ka = 0. As (F, +) forms a group, by Lagrange's theorem, $k|p^n$. The only prime which divides p^n is p, so k = p. By problem 3.3, ϕ is a group homomorphism. Let $\phi(\alpha) = 0$. Then $\alpha^p = 0 \Rightarrow \alpha = 0$. Therefore, $\ker(\phi) = \{0\}$ and ϕ is one-one. As F is finite, any injective map from F to itself is a bijection. Therefore, ϕ is an isomorphism.

Problem 4.2

Show that if m divides n, $x^{p^m} - x$ divides $x^{p^n} - x$

Solution:

Lemma 6. If m|n then $x^m - 1|x^n - 1$.

Proof. Write n = mk. Then

$$x^{n} - 1 = x^{mk} - 1 = (x^{m} - 1) \left(\sum_{i=0}^{k-1} x^{m} \right)$$

Now as m|n,

$$p^{m} - 1|p^{n} - 1 \Rightarrow x^{p^{m} - 1} - 1|x^{p^{n} - 1} - 1 \Rightarrow x(x^{p^{m} - 1} - 1)|x(x^{p^{n} - 1} - 1) \Rightarrow x^{p^{m}} - x|x^{p^{n}} - x|x^{p^{n}$$

Problem 4.3

Investigate whether there is a finite field with the following number of elements and construct such a field if it exists.

- (1) 72.
- (2) 625.

Solution:

- 1. No. Finite fields always have p^n elements where p is a prime. 72 is not of this form.
- 2. Yes. $625 = 5^4$. As 5 is a prime, such a field exists. It is the splitting field of $x^{625} x$ over \mathbb{F}_5

Problem 4.4

Let F be a field with ch(F) = p. Give an example to show that the map $\phi : F \to F$ defined by $\phi(a) = a^p$ need not be an automorphism of F if F is an infinite field.

Solution: Let p=3 and $F=\mathbb{F}_3[x]$. If ϕ is an automorphism, then there exists $f\in\mathbb{F}_3[x]$ such that $\phi(f)=f^3=x^3+x$ and $deg(f^3)=3deg(f)=3\Rightarrow deg(f)=1$. Let f=x-a. Then $f^3=x^3-a^3$, which cannot be equal to x^3+x . Therefore, no such f exists and ϕ is not an automorphism.

Problem 4.5

Let K|F be a finite extension where F is a finite field. Show that $|K| = (|F|)^n$ for some $n \in \mathbb{N}$.

Solution: As F, K are finite fields, $|K| = p^{\alpha}$ for some primes p. As F is a subfield, characteristic of F is also p and $|F| = p^{\beta}$ where $\beta < \alpha$. We know $\beta | \alpha$ and therefore there exists c such that $\beta c = \alpha \Rightarrow (p^{\beta})^c = p^{\alpha} \Rightarrow |F|^c = |K|$

Problem 4.6

If $f(x) \in F[x]$ is separable then the splitting field of f(x) over F is separable over F.

Solution:

Problem 4.7

Show that $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$ is simple by showing $\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) = \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$

Solution: Note that $\mathbb{Q} \hookrightarrow \mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) \hookrightarrow \mathbb{Q}(\sqrt{2}, \sqrt[3]{3})$. By following the steps similar to problem 1.1, we get $\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) = 6$. Let p be the minimal polynomial of $\sqrt{2} + \sqrt[3]{3}$ over \mathbb{Q} . p is not linear. We show p is not quadratic or cubic. Assume p is quadratic. Then $p = x^2 + bx + c$ for some $b, c \in \mathbb{Q}$. Therefore:

$$(\sqrt{2} + \sqrt[3]{3})^2 + b(\sqrt{2} + \sqrt[3]{3}) + c = 0$$
$$\Rightarrow \sqrt{2} = \frac{-c - b\sqrt[3]{3} - \sqrt[3]{3}^2 - 2}{b + 2\sqrt[3]{3}} \in \mathbb{Q}(\sqrt[3]{3})$$

Which is not true. A similar argument shows p is not cubic. Therefore deg(p) > 3 and by tower lemma, $deg(p) = [\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}]|6$. Therefore $[\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}] = 6$ and $[\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) : \mathbb{Q}]|[\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}] = 1 \Rightarrow [\mathbb{Q}(\sqrt{2} + \sqrt[3]{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt[3]{3}) : \mathbb{Q}]$

Problem 4.8

Prove that every element of a finite field can be written as a sum of two squares.

Solution:

Lemma 7. For $a \in F$, $a \neq 0$, if a has a square root, then a has exactly 2 square roots.

Proof. Let $x^2 = a$ and let $(x + y)^2 = a$. Then it follows that $2xy + y^2 = 0 \Rightarrow y(2x + y) = 0$. Therefore, y = 0 or y = -2x. Therefore, there are exactly two roots: x, -x. For a = 0, x = -x = 0

It follows that $S=\{a|\exists\ x \text{ such that } x^2=a\}$ has exactly $\frac{|F|-1}{2}+1=\frac{|F|+1}{2}$ elements. For any $a\in F$ consider $S_a=\{a-s|s\in S\}$. Then S_a also has $\frac{|F|+1}{2}$ elements. As $|S|+|S_a|=|F|+1>|F|$ by pigeonhole principle, $S\cap S_a\neq \phi$. Let e be an element in the intersection. Then $e=n^2=a-m^2$ for $n,m\in F$. Therefore, $a=n^2+m^2$.