Численные методы. Лабораторная работа №1.

ПИН-21 Чендемеров Алексей

March 27, 2021

```
[1]: import numpy as np
```

0.1 Задание 1

Зададим коэффициенты для полинома

$$(x-1)(x-2)...(x-20) = 0$$

```
[2]: coefs = np.array(range(1, 21))
  print(coefs)
  p = np.poly(coefs)
  print(p)
```

```
[ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]

[ 1.00000000e+00 -2.10000000e+02 2.06150000e+04 -1.25685000e+06

5.33279460e+07 -1.67228082e+09 4.01717716e+10 -7.56111184e+11

1.13102770e+13 -1.35585183e+14 1.30753501e+15 -1.01422999e+16

6.30308121e+16 -3.11333643e+17 1.20664780e+18 -3.59997952e+18

8.03781182e+18 -1.28709312e+19 1.38037598e+19 -8.75294804e+18

2.43290201e+18]
```

Найдём корни (корни действительные)

```
[3]: np.roots(p)
```

```
[3]: array([20.00003842, 18.99944526, 18.00332672, 16.98821521, 16.02622951, 14.95636365, 14.05068644, 12.9559752, 12.0299548, 10.98552896, 10.00542601, 8.9985865, 8.0002459, 6.9999773, 5.99999991, 5.00000023, 3.99999998, 3., 2., 1.])
```

Изменим один из коэффициентов на 10^{-7} и заново найдём корни (стали комплексными).

```
[4]: p[1] += 1e-7 np.roots(p)
```

```
[4]: array([20.42191428+0.99919021j, 20.42191428-0.99919021j, 18.15709998+2.47016309j, 18.15709998-2.47016309j, 15.31451742+2.69846576j, 15.31451742-2.69846576j, 12.84588825+2.06157319j, 12.84588825-2.06157319j, 10.92152839+1.10102893j, 10.92152839-1.10102893j,
```

```
9.57172741+0.j , 9.11219077+0.j , 7.99387715+0.j , 7.00032223+0.j , 5.99998503+0.j , 5.00000068+0.j , 3.99999999+0.j , 3. +0.j , 2. +0.j , 1. +0.j ])
```

Попробуем закастовать 2^{1023} в float и потом вывести его в научном формате (получилось).

```
[5]: print('{:e}'.format(2**1023))
```

8.988466e+307

Теперь попробуем закастовать 2^{1024} (не получилось, т.к. размер порядка ограничен 1024)

```
[6]: print('{:e}'.format(2**1024))
```

```
OverflowError Traceback (most recent call last)
<ipython-input-6-f24da7173b90> in <module>
----> 1 print('{:e}'.format(2**1024))

OverflowError: int too large to convert to float
```

Максимальное целое число

```
[7]: np.finfo('d').max
```

[7]: 1.7976931348623157e+308

Минимальное целое число

```
[8]: np.finfo('d').min
```

[8]: -1.7976931348623157e+308

16 символов после запятой

```
[9]: np.sqrt(2)
```

[9]: 1.4142135623730951

Ошибки не происходит, скорее всего, из-за того, что Python поддерживает длинную арифметику или из-за реализации функций в numpy

```
[10]: np.float_power(10, 8) + np.float_power(10,-7)
```

[10]: 100000000.0000001

```
[11]: np.float_power(10, 8) + np.float_power(10,-8)
```

[11]: 100000000.00000001

Считал для 10^{11} и 10^{10} и ошибки не происходило (скорее всего из-за длинной арифметики или внутреннего представления float в Python) [Хотя СРуthon явно представляет float как 64 битное число.]

```
[12]: summ = 1
for i in range(int(1e11)):
    summ += 1e-10
print(summ)
```

При n=53 происходит ошибка

```
[16]: print('n\t\teps\t\t\t\t\t\tresult')
for i in range(0, 60):
    eps = 2 ** -i
    print(f'{i:<5}\t\t{eps:<25}\t\t\t{(1+eps-1)/eps:<25}')</pre>
```

n	eps	result
0	1	1.0
1	0.5	1.0
2	0.25	1.0
3	0.125	1.0
4	0.0625	1.0
5	0.03125	1.0
6	0.015625	1.0
7	0.0078125	1.0
8	0.00390625	1.0
9	0.001953125	1.0
10	0.0009765625	1.0
11	0.00048828125	1.0
12	0.000244140625	1.0
13	0.0001220703125	1.0
14	6.103515625e-05	1.0
15	3.0517578125e-05	1.0
16	1.52587890625e-05	1.0
17	7.62939453125e-06	1.0
18	3.814697265625e-06	1.0

```
19
                 1.9073486328125e-06
                                                                    1.0
20
                 9.5367431640625e-07
                                                                    1.0
21
                 4.76837158203125e-07
                                                                    1.0
22
                 2.384185791015625e-07
                                                                    1.0
23
                 1.1920928955078125e-07
                                                                    1.0
24
                 5.960464477539063e-08
                                                                    1.0
25
                 2.9802322387695312e-08
                                                                    1.0
26
                 1.4901161193847656e-08
                                                                    1.0
27
                 7.450580596923828e-09
                                                                    1.0
28
                 3.725290298461914e-09
                                                                    1.0
29
                 1.862645149230957e-09
                                                                    1.0
30
                 9.313225746154785e-10
                                                                    1.0
31
                 4.656612873077393e-10
                                                                    1.0
32
                 2.3283064365386963e-10
                                                                    1.0
33
                 1.1641532182693481e-10
                                                                    1.0
34
                 5.820766091346741e-11
                                                                    1.0
35
                 2.9103830456733704e-11
                                                                    1.0
36
                 1.4551915228366852e-11
                                                                    1.0
37
                 7.275957614183426e-12
                                                                    1.0
38
                 3.637978807091713e-12
                                                                    1.0
39
                 1.8189894035458565e-12
                                                                    1.0
40
                 9.094947017729282e-13
                                                                    1.0
41
                 4.547473508864641e-13
                                                                    1.0
42
                 2.2737367544323206e-13
                                                                    1.0
43
                 1.1368683772161603e-13
                                                                    1.0
44
                 5.684341886080802e-14
                                                                    1.0
45
                 2.842170943040401e-14
                                                                    1.0
46
                 1.4210854715202004e-14
                                                                    1.0
47
                 7.105427357601002e-15
                                                                    1.0
48
                 3.552713678800501e-15
                                                                    1.0
49
                 1.7763568394002505e-15
                                                                    1.0
                 8.881784197001252e-16
50
                                                                    1.0
51
                 4.440892098500626e-16
                                                                    1.0
52
                 2.220446049250313e-16
                                                                    1.0
53
                 1.1102230246251565e-16
                                                                    0.0
                                                                    0.0
54
                 5.551115123125783e-17
55
                 2.7755575615628914e-17
                                                                    0.0
56
                 1.3877787807814457e-17
                                                                    0.0
57
                 6.938893903907228e-18
                                                                    0.0
58
                 3.469446951953614e-18
                                                                    0.0
59
                 1.734723475976807e-18
                                                                    0.0
```

Из-за переполнения ответ становится неправильным – обычная практика в олимпиадном программировании, например.

```
[15]: I = 1 / np.exp(1)
    print('n\t\tI')
    print(f'{1:<5}\t\t{I:<25}')</pre>
```

```
for n in range(2, 31):
    I = 1 - n * I
    print(f'{n:<5}\t\t{I:<25}')</pre>
```

```
Ι
n
1
                0.36787944117144233
2
                0.26424111765711533
3
                0.207276647028654
4
                0.17089341188538398
5
                0.14553294057308008
6
                0.1268023565615195
                0.11238350406936348
7
8
                0.10093196744509214
9
                0.09161229299417073
                0.0838770700582927
10
11
                0.07735222935878028
12
                0.07177324769463667
13
                0.06694777996972334
14
                0.06273108042387321
15
                0.059033793641901866
16
                0.05545930172957014
17
                0.05719187059730757
                -0.029453670751536265
18
                1.559619744279189
19
20
                -30.19239488558378
21
                635.0402925972594
22
                -13969.886437139707
23
                321308.38805421325
24
                -7711400.313301118
                192785008.83252797
25
26
                -5012410228.645727
                135335076174.43463
27
28
                -3789382132883.17
29
                109892081853612.92
                -3296762455608386.5
```

Находит правильно, если учитывать погрешностии округлять результат (например с ϵ = 10^{-16})

```
[14]: def mysin(x):
    u = x
    i = 1
    flag = False
    summ = u
    while True:
        u = u * (- (x ** 2) / ((2*(i-1)+2)*(2*(i-1)+3)))
        i += 1
```

```
summ += u
   if flag:
        break
   if np.abs(u) < 1e-17:
        flag = True
   return summ

points = [0, np.pi / 3, np.pi / 2, np.pi, np.pi*2]
   sins = [mysin(x) for x in points]
   print(points)
   print(sins)</pre>
```

```
[0, 1.0471975511965976, 1.5707963267948966, 3.141592653589793, 6.283185307179586]
[0.0, 0.8660254037844385, 1.000000000000002, 2.4790609271195177e-16, 4.3878932039122245e-16]
```

Опять происходит переполнение для больших входных x, поэтому в реальности все подобные алгоритмы приводят входные данные к какому-то ограниченному диапазону (очевидно, что для тригонометрических функций достаточно отрезка от $\frac{-\pi}{2}$ до $\frac{\pi}{2}$ или от 0 до π)

```
[13]: def mysin_print(x):
          u = x
          print('n\t\tu')
          print(f'{0:<5}\t\t{u:<25}')</pre>
          i = 1
          flag = False
          summ = u
          while True:
              u = u * (- (x ** 2) / ((2*(i-1)+2)*(2*(i-1)+3)))
              print(f'{i:<5}\t\t{u:<25}')</pre>
              i += 1
              summ += u
              if flag:
                   break
              if np.abs(u) < 1e-17:
                   flag = True
          return summ
      x = []
      x.append(mysin_print(np.pi*12))
      print()
      x.append(mysin_print(np.pi*13))
      print()
      x.append(mysin_print(np.pi*14))
      print()
      print(x)
```

n u

0	37.69911184307752
1	-8929.807683926347
2	634562.4183707595
3	-21472731.555832986
4	423854731.73371917
5	-5476291888.243632
6	49891231866.331665
7	-337650323385.4057
8	1764251532907.3298
9	-7331564081604.561
10	24809018443430.754
11	-69682111574511.336
12	165056370017519.22
13	-334162271990305.9
14	584875761040825.1
15	-893805272556234.8
16	1202932425236984.8
17	-1436668294789759.5
18	1532902456774330.0
19	-1470037975755849.5
20	1273934043683861.5
21	-1002516282597193.5
22	719595571991636.6
23	-473036911148918.7
24	285837990621617.4
25	-159309622036949.84
26	82153303460817.77
27	-39312514201256.56
28	17503712624598.932
29	-7269631665207.737
30	2822887423366.538
31	-1027125608753.4813
32	350907349452.402
33	-112781005824.58708
34	34161756873.01164
35	-9768908599.904654
36	2641514063.327634
37	-676428942.4853929
38	164278262.77512643
39	-37889654.49554902
40	8310131.128111686
41	-1735314.3950649824
42	345415.79678938625
43	-65612.52160125064
44	11906.285368049981
45	-2066.1156302264953
46	343.1990561106805
47	-54.62064991132304
ΤI	07.0200 1 33113230 1

```
48
                8.336353712708581
49
                -1.2211727390276248
50
                0.17183750741604203
51
                -0.023245709461550114
                0.003025397227360346
52
53
                -0.0003791010602881931
54
                4.576853202541888e-05
55
                -5.327378536917623e-06
56
                5.982453449912522e-07
57
                -6.485431457966371e-08
                6.791367942759498e-09
58
                -6.873699295661437e-10
59
60
                6.728002593741318e-11
61
                -6.3721126598701246e-12
62
                5.842705345742685e-13
63
                -5.1892184832045295e-14
64
                4.466470951748517e-15
65
                -3.727452375943013e-16
66
                3.01751035197196e-17
67
                -2.370677289564589e-18
68
                1.808319648740604e-19
n
0
                40.840704496667314
1
                -11353.464977769787
2
                946858.0568581794
3
                -37602960.50558273
4
                871116003.0622387
5
                -13208994427.893934
6
                141231512001.13235
7
                -1121756936946.623
8
                6878857452614.389
9
                -33548773983349.1
10
                133233615531831.55
11
                -439187273162442.8
12
                1220913641423325.2
13
                -2900910193215591.0
14
                5958880893733033.0
15
                -1.068730506338276e+16
16
                1.6880711128882252e+16
17
                -2.3660843700707324e+16
18
                2.9628690122834868e+16
19
                -3.334653382151728e+16
                3.39151154800249e+16
20
21
                -3.132290290025647e+16
22
                2.638658969391714e+16
23
                -2.0357011609439044e+16
24
                1.4436541276415564e+16
```

25	-9442987754031000.0
26	5715005638943512.0
27	-3209568610193969.0
28	1677143530466761.5
29	-817479133738897.4
30	372547832210119.0
31	-159087571280886.38
32	63786587867943.414
33	-24060080875503.332
34	8553138989088.722
35	-2870487041743.0176
36	910933521753.6548
37	-273766403733.79266
38	78030121571.13542
39	-21121610984.363304
40	5436738990.627072
41	-1332394983.6526499
42	311258504.99936146
43	-69388895.28578915
44	14777594.474539159
45	-3009582.7762294146
46	586707.941668782
47	-109586.4751253036
48	19629.102401870667
49	-3374.6257835378537
50	557.302121881652
51	-88.47890721980497
52	13.514611377740636
53	-1.9874690249194729
54	0.28160253847929045
55	-0.038468685944267056
56	0.005069875975414267
57	-0.000645031752139395
58	7.927270771728507e-05
59	-9.416319240877441e-06
60	1.0816854988904039e-06
61	-1.20232676617014e-07
62	1.2938301501657544e-08
63	-1.3486195505518861e-09
64	1.3623108680397445e-10
65	-1.3342832168331302e-11
66	1.26767784748653e-12
67	-1.16884462564903e-13
68	1.0463663355478251e-14
69	-9.098636652018564e-16
70	7.688039814716382e-17
71	-6.3150630645581e-18
72	5.044680288484288e-19
. =	,

n	u
0	43.982297150257104
1	-14180.203868457116
2	1371539.4245829931
3	-63170573.85861541
4	1697220006.385679
5	-29847040443.17852
6	370111425747.61163
7	-3409329799355.2793
8	24246883576935.53
9	-137146787068041.94
10	631672782179605.5
11	-2414890617243964.5
12	7785778254272807.0
13	-2.1454615469456176e+16
14	5.111172313197143e+16
15	-1.063147178105709e+17
16	1.9475350808100528e+17
17	-3.165877779620511e+17
18	4.597754060317196e+17
19	-6.00141071992664e+17
20	7.078892519640264e+17
21	-7.582342346771482e+17
22	7.407881313973412e+17
23	-6.628177692761962e+17
24	5.4514576439738144e+17
25	-4.135502411624303e+17
26	2.902718239944355e+17
27	-1.8906200068522304e+17
28	1.1457693051132858e+17
29	-6.476986546377322e+16
30	3.4233218046690564e+16
31	-1.6953965852899512e+16
32	7883767176814510.0
33	-3448822702892051.5
34	1421898781436465.5
35	-553436897454549.5
36	203689466288653.28
37	-70995595094748.62
38	23468368730313.99
39	-7367447095129.922
40	2199367670042.8867
41	-625117574468.1617
42	169363302545.8232
43	-43788233634.46938
44	10815349655.944696
45	-2554538659.6424766

46	577560548.8078797
47	-125112838.78435919
48	25990505.58017433
49	-5182141.581022749
50	992530.1704559936
51	-182751.99953884477
52	32373.921981269843
53	-5521.556106674785
54	907.3337234501068
55	-143.74978561860064
56	21.97184649906847
57	-3.242049797850811
58	0.4620954019208789
59	-0.06365880695443715
60	0.008481012347932486
61	-0.0010932980415693815
62	0.0001364465907034843
63	-1.6494693096842047e-05
64	1.9324148942774502e-06
65	-2.1950354826054636e-07
66	2.418643110330005e-08
67	-2.5863603839303394e-09
68	2.685254052327308e-10
69	-2.7079915867620456e-11
70	2.6537253869466307e-12
71	-2.5280602150226737e-13
72	2.3421393812182525e-14
73	-2.111049236971358e-15
74	1.851851661828974e-16
75	-1.5815896199131873e-17
76	1.315571946675627e-18
77	-1.0661492401644133e-19

[-0.26048840103934273, -2.9021751309903294, -83.11717551225941]