ASMD Multiplier Test Plan

Module Name/Internal ID: ASMD_MULT

Engineer(s):

Oluwaseyifunmi Williams

Jonathan Defo

1. Revision

Rev	Comments	Date	Approval: Team/Date
1.0	Initial Creation	12/09/2024	

2. Required Documents

ID N	lame	Revision
A	ASMD_MUTIPLIER Logic Requirements Document	8/7/2023

3. Supplemental Documents

ID	Name	Revision
	https://en.wikipedia.org/wiki/Algorithmic_state_machine	

4. Acronyms

Abbreviation	Definition
ASMD	Algorithmic state machine with DataPath

Table Of Contents

- 1 Revision
- 2 Required Documents
- 3 Supplemental Documents
- 4 Acronyms
- 5 Scope
- 6 Functional Verification/Test Plan

5. Scope

This document describes in detail, the test plan and test results for the XXX module.

6. Functional Verification

ASMD_MULT_TP001: Verify that the module implements the inputs and asserts ready bit according to given condition:

Verifies: ASMD_MULT_F001

Methods: visual inspection, compilation warnings, synthesis.

Results:

Port	Direction	Width	Description
clk	input	1'b1	Input Clock Signal
rst	input	1'b1	Input Synchronous Reset Signal
start	Input	1'b1	Input module start signal
word0	input	[word-lenght]'b1	Input word 0
word1	input	[word-lenght]'b1	Input word 1
ready	Output	1'b1	Module ready output signal

produce	Output	[word-lenght*2]'b1	Module multiplication product output

ASMD_MULT_TP002: Verify that module implements wordlength with a default value of

Verifies: ASMD_MULT_F002

Methods: visual inspection, compilation warnings.

Results:

Name	Default Value	Description
word_length	4	Input bit length

ASMD_MULT_TP003:

Verifies: ASMD_MULT_F003.

Initialize Testbench:

- Set up the clock signal (clk).
- Initialize the reset signal to 0.

Assert Reset Signal:

• Set reset to 1 for a brief period to simulate the assertion of the reset.

Monitor Outputs:

- Check the ready signal to verify it is asserted (1).
- Check the product signal to verify it is set to zeros.

• De-assert Reset Signal:

• Set reset back to 0 and verify that the module transitions out of the reset state correctly.

Methods: simulation.

Results:

Signal	Expected Value	Description
ready	1'b1	Ready signal should be asserted upon reset.
product	2*word_length bits of 0	Product output should be reset to all zeros.

ASMD_MULT_TP004:

Verifies: ASMD_MULT_F004.

- 1. Set word0 (binary) and word1 = (binary).
- 2. Initially, Set start = 0,
- 3. Set ready = 1
- 4. Set Start to 1 for a brief period to simulate the deassertion of the reset.
- 5. Check the product after the multiplication.
- 6. Ensure that ready is asserted again once the multiplication is complete.

Methods: simulation.

Results: After the multiplication is complete, product should be word0 * word1