Lending Club Data Base

Les données traitées ici concernent la société américaine Lending Club, qui accordait des prêts personnels en ligne, sans garantie, d'un montant minimum de 1 000 dollars jusqu'à 40 000 dollars. Cette base de données est traitée sous la direction du PhD Carlos M. disponible sur la page kaggel https://www.kaggle.com/datasets/adarshsng/lending-club-loan-data-csv

Import Bibliothèques

In [3]:

import numpy as np import pandas as pd

Exploration Data

In [10]: df_copy.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 466285 entries, 0 to 466284
Data columns (total 75 columns):
    Column
                                 Non-Null Count Dtype
                                  -----
0
    Unnamed: 0
                                 466285 non-null int64
                                 466285 non-null int64
                                 466285 non-null int64
466285 non-null int64
2
    member id
3
    loan_amnt
                                 466285 non-null int64
4
    funded amnt
5
    funded amnt inv
                                 466285 non-null
                                                  float64
                                 466285 non-null object
6
7
    int_rate
                                 466285 non-null float64
8
                                 466285 non-null
    installment
9
                                 466285 non-null object
    arade
10
                                 466285 non-null
    sub_grade
                                                  object
11
                                 438697 non-null
    emp_title
    emp length
                                 445277 non-null object
12
                                 466285 non-null
13
    home_ownership
                                                  object
14
    annual_inc
                                 466281 non-null
15
                                466285 non-null object
    verification status
16
                                 466285 non-null
    issue d
                                                  obiect
                                 466285 non-null
17
    loan status
                                                  object
18
    pymnt plan
                                 466285 non-null object
19
    url
                                 466285 non-null
                                                  object
20
                                 125983 non-null object
   desc
21
    purpose
                                 466285 non-null
                                                  object
22
                                 466265 non-null
    title
                                                  object
23
    zip code
                                 466285 non-null
                                                  obiect
                                 466285 non-null
24
    addr_state
                                                  object
25
    dti
                                 466285 non-null
26
    delinq 2yrs
                                 466256 non-null float64
                                 466256 non-null object
27
    earliest_cr_line
28
    inq_last_6mths
                                 466256 non-null
                                                  float64
                                 215934 non-null float64
29
    mths since last deling
30
                                 62638 non-null
    mths_since_last_record
                                                   float64
                                 466256 non-null float64
31
    open acc
32
    pub_rec
                                 466256 non-null float64
33
    revol bal
                                 466285 non-null
                                                  int64
                                 465945 non-null
34
    revol util
                                                  float64
35
    total acc
                                 466256 non-null float64
36
    initial list status
                                 466285 non-null
                                                  obiect
37
                                 466285 non-null float64
    out prncp
                                 466285 non-null float64
38
    out prncp inv
39
    total_pymnt
                                 466285 non-null
    total_pymnt_inv
                                 466285 non-null float64
41
                                 466285 non-null float64
    total_rec_prncp
42
    total rec int
                                 466285 non-null float64
    total_rec_late_fee
                                 466285 non-null float64
43
                                 466285 non-null
44
    recoveries
                                                  float64
    collection_recovery_fee
45
                                 466285 non-null float64
46
    last_pymnt_d
                                 465909 non-null object
47
    last_pymnt_amnt
                                 466285 non-null
                                                  float64
48
                                 239071 non-null object
    next_pymnt_d
49
    last_credit_pull_d
                                 466243 non-null object
                                 466140 non-null
    collections_12_mths_ex_med
    mths_since_last_major_derog 98974 non-null
51
                                                   float64
52
                                 466285 non-null int64
    policy_code
53
    application_type
                                 466285 non-null
                                                  object
    annual_inc_joint
                                 0 non-null
                                                   float64
55
                                                   float64
    dti ioint
                                 0 non-null
    verification_status_joint
56
                                 0 non-null
                                                   float64
57
                                 466256 non-null float64
    acc now deling
    tot_coll_amt
58
                                 396009 non-null
                                                  float64
                                 396009 non-null float64
59
    tot cur bal
60
    open_acc_6m
                                 0 non-null
                                                   float64
61
    open il 6m
                                 0 non-null
                                                   float64
    open il 12m
62
                                0 non-null
                                                  float64
63
    open il 24m
                                0 non-null
                                                  float64
                                                   float64
64
    mths_since_rcnt_il
                                 0 non-null
    total bal il
                               0 non-null
65
                                                   float64
                                0 non-null
                                                  float64
66
    il util
67
    open_rv_12m
                                0 non-null
                                                   float64
68
    open rv 24m
                                0 non-null
                                                   float64
69
    max_bal_bc
                                 0 non-null
                                                  float64
70
    all util
                                 0 non-null
                                                   float64
71
    total_rev_hi_lim
                                 396009 non-null float64
72
                                 0 non-null
                                                   float64
    ing fi
73
    total cu tl
                                 0 non-null
                                                  float64
74 inq_last_12m
                                 0 non-null
                                                  float64
dtypes: float64(46), int64(7), object(22)
memory usage: 266.8+ MB
```

Variables pour le Modèle PD

```
In [51]: df_concat['loan_status'].unique()
         #Mauvais: 'Charged Off', 'Default', Does not meet the credit policy. Status: Charged Off'
Out[51]: array(['Fully Paid', 'Charged Off', 'Current', 'Default'
                 'Late (31-120 days)', 'In Grace Period', 'Late (16-30 days)',
                 'Does not meet the credit policy. Status:Fully Paid'
                 'Does not meet the credit policy. Status:Charged Off'],
                dtype=object)
In [52]: df_concat['loan_status'].value_counts()
                                                                   224226
         Current
Out[52]:
         Fully Paid
                                                                   184739
                                                                    42475
         Charged Off
         Late (31-120 days)
                                                                     6900
         In Grace Period
                                                                     3146
         Does not meet the credit policy. Status: Fully Paid
                                                                     1988
         Late (16-30 days)
                                                                     1218
         Default
                                                                      832
         Does not meet the credit policy. Status:Charged Off
                                                                      761
         Name: loan_status, dtype: int64
In [53]: df_concat['loan_status'].value_counts() / df_concat['loan_status'].count()
Out[53]: Current
                                                                   0.480878
         Fully Paid
                                                                   0.396193
         Charged Off
                                                                   0.091092
         Late (31-120 days)
                                                                   0.014798
         In Grace Period
                                                                   0.006747
         Does not meet the credit policy. Status: Fully Paid
                                                                   0.004263
         Late (16-30 days)
                                                                   0.002612
                                                                  0.001784
         Default
         Does not meet the credit policy. Status:Charged Off
                                                                  0.001632
         Name: loan_status, dtype: float64
         Charged Off: 0.091092
         Default: 0.001784
         Does not meet the credit policy. Status: Charged Off: 0.001632
         Notre variable dépendante sera binaire
In [54]: #Nous attribuerons 1 à Bon et 0 à Mauvais
         df_concat['Bonus_malus'] = np.where(df_concat['loan_status'].isin(['Charged Off', 'Default', 'Does not meet the
In [55]: df_concat['Bonus_malus']
                    0
         2
                    1
         3
         4
                    1
         466280
         466281
                   0
         466282
                    1
         466283
                    1
         466284
                    1
         Name: Bonus_malus, Length: 466285, dtype: int32
         Partition de la base
In [56]: from sklearn.model_selection import train_test_split
         train_test_split(df_concat.drop('Bonus_malus', axis = 1), df_concat['Bonus_malus'])
         x_train, x_test, y_train, y_test = train_test_split(df_concat.drop('Bonus_malus', axis = 1), df_concat['Bonus_m
In [58]:
In [59]:
         x train.shape
         (419656, 207)
Out[59]:
In [60]:
         x_test.shape
          (46629, 207)
Out[60]:
In [61]: y_train.shape
         (419656,)
Out[61]:
```

In [62]: y test.shape

Traitement des variables catégorielles

Poids de l'évidence (PdE)

Nous calculons le poids de l'évidence dans le but de regrouper des catégories PdE similaires.

Pour ce faire, nous commencerons par estimer le poids de la preuve (PDE) PdE = In(%Bons / %Mauvais).

Le poids de l'évidence indique la puissance prédictive d'une variable indépendante (home_ownership) par rapport à la variable dépendante (bons_mauvais).

PdE est décrit comme une mesure de la séparation entre les bons et les mauvais clients.

"Clients mauvais" se réfère aux clients qui ont fait défaut sur un prêt, et "Bons clients" se réfère aux clients qui ont remboursé le prêt.

Tout cela est dû au fait que les catégories avec un PdE similaire ont presque la même proportion de bons et de mauvais. En d'autres termes, le comportement des deux catégories est le même.

```
In [63]:
         # La variable home ownership indica le type de logement que possède la personne
         x train['home ownership'].unique()
In [641:
         array(['MORTGAGE', 'RENT', 'OWN', 'NONE', 'OTHER', 'ANY'], dtype=object)
Out[64]:
In [65]:
         # df notre variable indépendante et dépendante
In [66]: df = pd.concat([x train['home ownership'], y train], axis = 1)
         df.head()
In [67]:
                home_ownership Bonus_malus
Out[67]:
         344531
                    MORTGAGE
         328300
                    MORTGAGE
         299890
                    MORTGAGE
                                         1
          439226
                    MORTGAGE
                                         1
          167889
                    MORTGAGE
                                         0
In [68]: # les observations par catégorie
In [69]: df.groupby(df.columns.values[0], as index = False)[df.columns.values[1]].count() #values[0]=home owership. comm
            home_ownership Bonus_malus
         0
                      ANY
         1
                MORTGAGE
                                212191
         2
                    NONE
         3
                    OTHER
                                  168
         4
                     OWN
                                 37465
                     RENT
                                169787
In [70]: # Les observations par type de logement seront ensuite utilisées pour calculer la moyenne (mean)
In [71]: df.groupby(df.columns.values[0], as index = False)[df.columns.values[1]].mean()
Out[71]:
            home_ownership Bonus_malus
         0
                               1.000000
                      ANY
         1
                MORTGAGE
                               0.917315
         2
                    NONE
                               0.818182
                    OTHER
                               0.779762
         3
          4
                     OWN
                               0.907754
```

0.890215

```
In [72]: # Concatenation des 2 tableaux
         In [73]:
In [74]: df1
Out[74]:
            home_ownership Bonus_malus home_ownership Bonus_malus
         0
                      ANY
                                                ANY
                                                         1.000000
                MORTGAGE
                                212191
                                           MORTGAGE
                                                         0.917315
         2
                    NONE
                                   44
                                               NONE
                                                         0.818182
         3
                    OTHER
                                  168
                                              OTHER
                                                         0.779762
                     OWN
                                 37465
                                                OWN
                                                         0.907754
         5
                     RFNT
                                169787
                                               RFNT
                                                         0.890215
In [75]: df1 = df1.iloc[:, [0,1,3]] #toutes les lignes et les colonnes 0,1,3
In [76]: df1
            home_ownership Bonus_malus Bonus_malus
Out[76]:
         0
                      ANY
                                           1.000000
                MORTGAGE
                                212191
                                          0.917315
         1
         2
                    NONE
                                   44
                                          0.818182
         3
                    OTHER
                                  168
                                          0.779762
         4
                     OWN
                                 37465
                                          0.907754
         5
                     RENT
                                169787
                                          0.890215
In [77]: df1.columns = [df1.columns.values[0], 'observations', '% bon']
In [78]:
         df1
            home ownership observations
                                       % bon
Out[78]:
         0
                      ANY
                                    1 1.000000
         1
                MORTGAGE
                               212191 0.917315
         2
                    NONE
                                   44 0.818182
         3
                    OTHER
                                  168 0.779762
          4
                     OWN
                                37465 0.907754
                     RENT
                               169787 0.890215
         Estimons la proportion de chaque catégorie dans la base de données
         C'est-à-dire, le nombre d'observations de chaque catégorie divisé par le total des observations
In [79]: df1['% obs'] = df1['observations']/df1['observations'].sum()
In [80]: df1
            home_ownership observations
                                       % bon
Out[80]:
                                    1 1.000000 0.000002
         0
                      ANY
         1
                MORTGAGE
                               212191 0.917315 0.505631
         2
                    NONE
                                   44 0.818182 0.000105
                                  168 0.779762 0.000400
         3
                    OTHER
          4
                     OWN
                                37465 0.907754 0.089276
                               169787 0.890215 0.404586
                     RENT
         Estimons le nombre de bons et de mauvais par catégorie
         Bons = prop_bueno observations Malos = (1 - prop_bueno) observations
```

In [81]: df1['n_bons'] = df1['%_bon']*df1['observations']
In [82]: df1['n_malus'] = (1-df1['%_bon'])*df1['observations']
df1

```
Out[82]:
           0
                         ANY
                                         1 1.000000 0.000002
                                                                   1.0
                                                                            0.0
                  MORTGAGE
                                    212191
                                           0.917315 0.505631
                                                              194646.0
                                                                        17545.0
           2
                                           0.818182 0.000105
                       NONE
                                                                  36.0
                                                                            8.0
           3
                      OTHER
                                       168
                                           0.779762
                                                    0.000400
                                                                 131.0
                                                                           37.0
                        OWN
                                     37465
                                           0.907754
                                                     0.089276
                                                               34009.0
                                                                         3456.0
                        RENT
                                    169787 0.890215 0.404586 151147.0
                                                                        18640.0
          # proportion de bons et malus par catégorie
In [83]:
           df1['%_n_bons'] = df1['n_bons']/df1['n_bons'].sum()
In [84]:
           df1['%_n_malus'] = df1['n_malus']/df1['n_malus'].sum()
In [85]:
In [86]:
           df1
             home ownership
                             observations
                                             % bon
                                                      % obs
                                                                       n malus
                                                                                % n bons
Out[86]:
                                                               n bons
                                                                                           % n malus
           0
                         ANY
                                         1 1.000000
                                                    0.000002
                                                                   1.0
                                                                            0.0
                                                                                  0.000003
                                                                                              0.000000
           1
                  MORTGAGE
                                    212191 0.917315 0.505631
                                                              194646.0
                                                                        17545.0
                                                                                  0.512267
                                                                                              0.442095
           2
                                                                                              0.000202
                       NONE
                                       44
                                           0.818182
                                                    0.000105
                                                                  36.0
                                                                            8.0
                                                                                  0.000095
           3
                      OTHER
                                       168
                                           0.779762
                                                     0.000400
                                                                 131.0
                                                                           37.0
                                                                                  0.000345
                                                                                              0.000932
           4
                        OWN
                                     37465
                                          0.907754
                                                               34009.0
                                                                         3456.0
                                                                                  0.089504
                                                                                              0.087084
                                                    0.089276
                                    169787
           5
                        RENT
                                           0.890215
                                                                        18640.0
                                                    0.404586
                                                              151147.0
                                                                                  0.397787
                                                                                              0.469687
          # PdE = ln(%Bons/%Malus) par catégorie
           df1['PdE'] = np.log(df1['% n bons']/df1['% n malus'])
In [89]:
           df1
                                                                       n_malus
                                                                                %_n_bons
                                                                                           %_n_malus
                                                                                                            PdE
             home ownership
                              observations
                                             % bon
                                                      % obs
Out[89]:
                                                               n bons
           0
                         ANY
                                         1 1.000000
                                                    0.000002
                                                                   1.0
                                                                            0.0
                                                                                  0.000003
                                                                                              0.000000
                                                                                                             inf
           1
                  MORTGAGE
                                    212191 0.917315 0.505631
                                                              194646.0
                                                                        17545.0
                                                                                  0.512267
                                                                                              0.442095
                                                                                                        0.147320
           2
                       NONE
                                       44 0.818182 0.000105
                                                                  36.0
                                                                            8.0
                                                                                  0.000095
                                                                                              0.000202 -0.755016
           3
                      OTHER
                                       168
                                           0.779762
                                                    0.000400
                                                                 131.0
                                                                           37.0
                                                                                  0.000345
                                                                                              0.000932 -0.994814
                        OWN
                                     37465
                                          0.907754
                                                    0.089276
                                                               34009.0
                                                                         3456.0
                                                                                  0.089504
                                                                                              0.087084
                                                                                                        0.027420
                                    169787 0.890215 0.404586
           5
                        RFNT
                                                              151147 0
                                                                        18640 0
                                                                                  0.397787
                                                                                              0.469687 -0.166151
In [90]:
           # classons-le en fonction du PdE du plus bas au plus élevé
           # Reset les indices
In [91]:
           df1 = df1.sort values(['PdE'])
           df1 = df1.reset_index(drop = True)
           df1
                                                                                                            PdE
Out[91]:
             home ownership observations
                                             % bon
                                                      % obs
                                                               n bons n malus
                                                                                % n bons % n malus
           0
                      OTHER
                                       168
                                           0.779762
                                                    0.000400
                                                                 131.0
                                                                           37.0
                                                                                  0.000345
                                                                                              0.000932
                                                                                                       -0.994814
                       NONE
                                       44 0.818182
                                                    0.000105
                                                                  36.0
                                                                            8.0
                                                                                  0.000095
                                                                                              0.000202
                                                                                                       -0.755016
           2
                                                                        18640 0
                        RFNT
                                    169787
                                           0.890215
                                                    0 404586
                                                              151147 0
                                                                                  0.397787
                                                                                              0.469687
                                                                                                       -0 166151
           3
                        OWN
                                     37465
                                           0.907754
                                                     0.089276
                                                               34009.0
                                                                         3456.0
                                                                                  0.089504
                                                                                              0.087084
                                                                                                        0.027420
                  MORTGAGE
                                    212191
                                           0.917315
                                                    0.505631
                                                              194646.0
                                                                        17545.0
                                                                                  0.512267
                                                                                              0.442095
                                                                                                        0.147320
           5
                         ANY
                                         1 1 000000 0 000002
                                                                   1.0
                                                                            0.0
                                                                                  0.000003
                                                                                              0.000000
                                                                                                             inf
```

Catégorie Other avec la majeur probabilité de defaut

home_ownership observations

%_bon

%_obs

n_bons n_malus

Valeur de la Information (VI)

L'analyse de la valeur d'information est une technique d'exploration de données qui aide à déterminer quelles variables d'un ensemble de données ont un pouvoir prédictif ou une influence sur la valeur d'une variable dépendante spécifique.

Notons que nous n'évaluons pas le poids des catégories contenues dans la variable, mais plutôt de la variable elle-même. cela

10% à 30% moyen 30% à 50% très fort plus de 50% c'est pas normal VI = Somme (PdE * (proportion des bons dans la catégorie - proportion des mauvais dans la catégorie)) df1['VI'] = df1['PdE']*(df1['% n bons'] - df1['% n malus']) df1['somme VI'] = df1['VI'].sum() In [93]: df1 home_ownership observations %_bon %_obs n_bons n_malus %_n_bons %_n_malus PdE VI somme_VI 0 OTHER 0.779762 0.000400 131.0 37.0 0.000345 0.000932 -0.994814 0.000585 168 inf 1 NONE 36.0 8.0 44 0.818182 0.000105 0.000095 0.000202 -0.755016 0.000081 inf 2 RENT 0.890215 0.404586 151147.0 18640.0 0.397787 0.469687 -0.166151 0.011946 169787 inf 3 OWN 37465 34009.0 3456.0 0.089504 0.907754 0.089276 0.087084 0.027420 0.000066 inf 4 MORTGAGE 17545.0 212191 0.917315 0.505631 194646.0 0.512267 0.442095 0.147320 0.010338 inf 5 ANY 1.000000 0.000002 0.0 0.000003 0.000000 1.0 inf # On enleve la catégorie ANY pour calculer la somme de la VI In [95]: df2 = df1.loc[[0,1,2,3,4], :]In [96]: home_ownership observations %_bon %_obs n_bons n_malus %_n_bons %_n_malus PdE VI somme_VI Out[96]: OTHER 0.779762 0.000400 131.0 37.0 0.000345 -0.994814 0.000585 168 0.000932 inf NONE 0.818182 0.000105 36.0 8.0 0.000095 0.000081 1 44 0.000202 -0 755016 inf 2 RENT 169787 0.890215 0.404586 151147.0 18640.0 0.397787 0.469687 -0.166151 0.011946 inf OWN 37465 0.907754 0.089276 34009.0 3456.0 0.089504 0.087084 0.027420 0.000066 inf MORTGAGE 212191 0 917315 0.505631 17545 0 0.147320 0.010338 4 194646 0 0.512267 0 442095 inf In [97]: # Calcul de la VI df2['sommeVI'] = df2['VI'].sum()In [99]: df2 VI somme_VI sommeVI n malus PdE Out[99]: home ownership observations % bon % obs n bons % n bons % n malus 0.779762 0.023015 0 OTHER 0.000400 131.0 37.0 0.000345 0.000932 -0.994814 0.000585 NONE 0.818182 0.000105 36.0 8.0 0.000095 0.000202 -0.755016 0.000081 0.023015 1 44 inf 2 RENT 169787 0.890215 0.404586 151147.0 18640.0 0.397787 0.469687 -0.166151 0.011946 inf 0.023015 3 OWN 0.089504 0.023015 37465 0.907754 0.089276 34009.0 3456.0 0.087084 0.027420 0.000066 MORTGAGE 212191 0.917315 0.505631 194646.0 17545.0 0.512267 0.442095 0.147320 0.010338 0.023015 inf

veut dire la valeur globale de la variable

2% à 10% predicteur faible

<2% le variable n'est pas un bon predicteur

Automatización du Preprocessus des Variables Catégoriques

Définissons la fonction PdE_categorica qui automatisera le processus précédent pour calculer le PdE et VI pour toute variable dépendante (catégorique) et indépendante.

```
df['n_malus'] = (1-df['% bon'])*df['observations']
               df['%_n_bons'] = df['n_bons']/df['n_bons'].sum()
               df['%_n_malus'] = df['n_malus']/df['n_malus'].sum()
               df['PdE'] = np.log(df['% n bons']/df['% n malus'])
               df = df.sort values(['PdE'])
               df = df.reset_index(drop = True)
df['delta_%_n_bons'] = df['%_n_bons'].diff().abs()
               df['delta_PdE'] = df['PdE'].diff().abs() #Diferencia Absoluta entre categorías
               df['VI'] = (df['%_n_bons'] - df['%_n_malus']) * df['PdE']
               df.replace([np.inf, -np.inf], np.nan, inplace=True) #np ignore les nan mais pas les inf, alors comme ca on
               df['sommeVI'] = df['VI'].sum()
               return df
          df_PdE = PdE_catégorique(x_train, 'home_ownership', y_train)
In [101...
In [102...
           df PdE
Out[102]:
              home_ownership observations
                                             %_bon
                                                      %_obs
                                                              n_bons n_malus
                                                                               %_n_bons
                                                                                          %_n_malus
                                                                                                          PdE delta_%_n_bons
                                                                                                                               delta PdE
                       OTHER
                                           0.779762 0.000400
                                                                 131.0
                                                                          37.0
                                                                                 0.000345
                                                                                            0.000932 -0.994814
                                                                                                                         NaN
                                                                                                                                    NaN 0
                                                                                                                                0.239798 0
            1
                        NONE
                                       44 0.818182 0.000105
                                                                 36.0
                                                                           8.0
                                                                                 0.000095
                                                                                            0.000202 -0.755016
                                                                                                                      0.000250
            2
                        RENT
                                    169787 0.890215 0.404586
                                                             151147.0
                                                                       18640.0
                                                                                 0.397787
                                                                                            0.469687 -0.166151
                                                                                                                      0.397692
                                                                                                                                0.588866 0
            3
                        OWN
                                     37465
                                          0.907754 0.089276
                                                              34009.0
                                                                        3456.0
                                                                                 0.089504
                                                                                            0.087084
                                                                                                      0.027420
                                                                                                                      0.308282
                                                                                                                                0.193570 0
            4
                   MORTGAGE
                                          0.917315 0.505631
                                                             194646 0
                                                                                            0.442095
                                                                                                      0 147320
                                                                                                                                0.119900 0
                                    212191
                                                                       17545 0
                                                                                 0.512267
                                                                                                                      0.422762
            5
                         ANY
                                         1 1.000000 0.000002
                                                                           0.0
                                                                                 0.000003
                                                                                            0.000000
                                                                                                          NaN
                                                                                                                      0.512264
                                                                                                                                    NaN
           # Graph la variable Catégorique Indépendante vs. PdE
In [104...
           import matplotlib.pyplot as plt
           import seaborn as sns
           sns.set()
          # X (la variable catégorique indépendante) et Y (PdE)
In [105...
           def graph PdE(df):
In [106...
               x = np.array(df.iloc[:,0].apply(str)) #0=
                                                                home_ownership
               y = df['PdE']
               plt.figure(figsize = (20,10))
plt.plot(x, y, marker = 'x', linestyle = '--', color = 'blue')
               plt.xlabel(df.columns[0])
               plt.ylabel('Poids de la Evidence (PdE)')
               plt.title(str('Poids de la Evidence par ' + df.columns[0]))
               #plt.xticks(rotation=90)
In [107... graph_PdE(df1)
                                                                Poids de la Evidence par home ownership
             0.2
             0.0
            -0.2
           de la Evidence
            -0.4
            -0.8
            -1.0
                   OTHER
                                               NONE
                                                                           RENT
                                                                                                       OWN
                                                                                                                                MORTGAGE
                                                                        home ownership
```

Le poids de l'évidence est utilisé pour définir les catégories à regrouper ayant un niveau prédictif similaire. Dans cette logique, nous allons regrouper les catégories Other, None, Rent et Any qui possèdent un niveau prédictif similaire.

Creation des Dummies

```
# variable dummie Casa RENT ANY OTHER NONE possèdent un niveau prédictif similaire
           x train['Home RENT ANY OTHER NONE'] = sum([x train['Home RENT'],
                                                                                  x train['Home ANY']
                                                                                  x train['Home OTHER'],
                                                                                  x train['Home NONE']])
          x train['Home RENT ANY OTHER NONE']
            344531
            328300
                        0
             299890
                        0
             439226
                         0
            167889
                        0
             239305
                        0
             167080
                         0
             177337
                         1
             23587
             160385
            Name: Home RENT ANY OTHER NONE, Length: 419656, dtype: uint8
In [114...
          # catégories de 'addr_state'
           x_train['addr_state'].unique()
In [115...
                                                  'PA',
            array(['RI', 'TN', 'IL', 'WV',
                                                         'FL', 'KS', 'OR', 'GA', 'TX',
                                                                                               'NY',
                     'CT', 'MA', 'VA', 'MI', 'NJ', 'WA',
                                                         'AR', 'CA', 'CO', 'NC', 'MN', 'NV', 'IN', 'SC', 'UT', 'LA',
                                                  'OH',
                                           'AZ'
                                                                                               'MO',
                                           'DE',
                                                  'OK',
                                                  'MS',
                     'NM', 'AL', 'MT', 'MD', 'MS', 'HI', 'NH', 'DC', 'W
'WY', 'VT', 'IA', 'ME', 'NE', 'ID'], dtype=object)
                                                         'HI', 'NH', 'DC', 'WI', 'AK',
                                                                                              'SD',
           # tableau avec fonction PdE categorica para la variable addr state
           df = PdE catégorique(x train, 'addr state', y train)
           df
In [118...
                addr state observations
                                                     % obs n bons n malus
                                                                               % n bons % n malus
                                                                                                           PdE delta % n bons delta PdE
Out[118]:
                                           % bon
                                                                                                                                             3.05872
              0
                                      12 0.500000 0.000029
                                                                                                                                       NaN
                       NE
                                                                                0.000016
                                                                                             0.000151 -2.259094
                                                                                                                        0.000011
                                                                                                                                   1.203973
                        IΑ
                                      13 0.769231 0.000031
                                                                10.0
                                                                                0.000026
                                                                                             0.000076 -1.055121
                                                                           3.0
                                                                                                                                             1.072463
                                                                                                                                   0.791963
             2
                       NV
                                   5843 0.880370 0.013923
                                                              5144.0
                                                                         699.0
                                                                                0.013538
                                                                                             0.017613 -0.263158
                                                                                                                        0.013512
                                                                                                                                             2.023203
              3
                        FL
                                  28521
                                         0.890151 0.067963 25388.0
                                                                        3133.0
                                                                                0.066816
                                                                                             0.078945 -0.166808
                                                                                                                        0.053278
                                                                                                                                   0.096350
                                                                                                                                             2.96291
              4
                                          0.891866 0.012539
                                                              4693.0
                                                                         569.0
                                                                                 0.012351
                                                                                             0.014338
                                                                                                      -0.149147
                                                                                                                        0.054465
                                                                                                                                   0.017661
                        AL
                                   5262
                                                                                                                                             1.057789
                        НІ
                                   2254
                                         0.893079 0.005371
                                                              2013.0
                                                                         241.0
                                                                                0.005298
                                                                                             0.006073
                                                                                                     -0.136509
                                                                                                                        0.007053
                                                                                                                                   0.012638
                                                                                                                                             1.535628
                                                                                                                                   0.040755
              6
                                   6761
                                         0.896909 0.016111
                                                                                                      -0.095754
                                                                                                                        0.010661
                       MO
                                                              6064.0
                                                                         697.0
                                                                                0.015959
                                                                                             0.017563
                                                                                                                                            2.96774
                                                                                                                                   0.023991
              7
                       NM
                                   2349
                                         0.899106
                                                  0.005597
                                                              2112.0
                                                                         237.0
                                                                                0.005558
                                                                                             0.005972
                                                                                                      -0.071763
                                                                                                                        0.010401
                                                                                                                                             7.288258
                                                                                                                                   0.003762
              8
                       CA
                                  64344
                                         0.899447 0.153326
                                                            57874.0
                                                                        6470.0
                                                                                0.152312
                                                                                             0.163030
                                                                                                      -0.068002
                                                                                                                        0.146754
                                                                                                                                             1.118317
                                                                                                                        0.125302
                                                                                                                                   0.004672
                       NC
                                   11405
                                         0.899868 0.027177
                                                             10263.0
                                                                        1142.0
                                                                                 0.027010
                                                                                             0.028776
                                                                                                      -0.063330
                                                                                                                                             9.35291
             10
                        ID
                                     10 0.900000 0.000024
                                                                 9.0
                                                                          1.0
                                                                                0.000024
                                                                                             0.000025
                                                                                                      -0.061869
                                                                                                                        0.026986
                                                                                                                                   0.001460
                                                                                                                                             1.48555
                                                                                                                                   0.000617
             11
                        NJ
                                   16209
                                         0.900056 0.038624
                                                             14589.0
                                                                        1620.0
                                                                                0.038395
                                                                                             0.040820
                                                                                                      -0.061252
                                                                                                                        0.038371
                                                                                                                                             2.84932
                                                                                                                                   0.004481
             12
                       NY
                                  36256 0.900458 0.086395 32647.0
                                                                        3609 0
                                                                                0.085920
                                                                                             0.090939
                                                                                                      -0.056772
                                                                                                                        0.047525
                                                                                                                                             2.574729
             13
                        ΚY
                                   3956 0.900910 0.009427
                                                                         392.0
                                                                                 0.009380
                                                                                             0.009878
                                                                                                     -0.051717
                                                                                                                        0.076540
                                                                                                                                   0.005055
                                                              3564.0
                                                                                                                                             3.054757
                                                                                                                                   0.001034
             14
                        LA
                                   4889
                                         0.901002 0.011650
                                                              4405.0
                                                                         484.0
                                                                                0.011593
                                                                                             0.012196
                                                                                                     -0.050683
                                                                                                                        0.002213
                                                                                                                                             4.038343
             15
                       MD
                                   9842 0.901849 0.023453
                                                              8876.0
                                                                         966.0
                                                                                0.023360
                                                                                             0.024341 -0.041151
                                                                                                                        0.011767
                                                                                                                                   0.009532
                                                                                                                                             1.30858
             16
                        MI
                                   10347 0.903450 0.024656
                                                              9348 0
                                                                         999 0
                                                                                0.024602
                                                                                             0.025173 -0.022931
                                                                                                                        0.001242
                                                                                                                                   0.018220
                                                                                                                                             1.42657
```

17	AR	3133	0.904245	0.007466	2833.0	300.0	0.007456	0.007559	-0.013785	0.017146	0.009146	
18	AZ	9688	0.904624	0.023086	8764.0	924.0	0.023065	0.023283	-0.009398	0.015609	0.004387	2.04684
19	VA	12840	0.904673	0.030596	11616.0	1224.0	0.030571	0.030842	-0.008835	0.007506	0.000564	2.39660
20	ОК	3709	0.905096	0.008838	3357.0	352.0	0.008835	0.008870	-0.003922	0.021736	0.004913	1.361662
21	DE	1136	0.905810	0.002707	1029.0	107.0	0.002708	0.002696	0.004420	0.006127	0.008342	5.279184
22	ОН	13705	0.906822	0.032658	12428.0	1277.0	0.032708	0.032178	0.016345	0.030000	0.011925	8.66674
23	MN	7366	0.906869	0.017552	6680.0	686.0	0.017580	0.017286	0.016902	0.015128	0.000557	4.97999
24	PA	14793	0.906983	0.035250	13417.0	1376.0	0.035311	0.034672	0.018248	0.017730	0.001346	1.16514
25	UT	3111	0.907104	0.007413	2822.0	289.0	0.007427	0.007282	0.019681	0.027884	0.001433	2.848517
26	MA	9991	0.907517	0.023808	9067.0	924.0	0.023862	0.023283	0.024591	0.016436	0.004910	1.425384
27	RI	1858	0.907966	0.004427	1687.0	171.0	0.004440	0.004309	0.029950	0.019423	0.005359	3.923409
28	WA	9449	0.908668	0.022516	8586.0	863.0	0.022597	0.021746	0.038380	0.018157	0.008430	3.265410
29	TN	5394	0.908973	0.012853	4903.0	491.0	0.012904	0.012372	0.042065	0.009693	0.003685	2.235856
30	IN	5864	0.909277	0.013973	5332.0	532.0	0.014033	0.013405	0.045744	0.001129	0.003680	2.870257
31	OR	5353	0.910517	0.012756	4874.0	479.0	0.012827	0.012070	0.060876	0.001205	0.015131	4.611836
32	SD	887	0.910936	0.002114	808.0	79.0	0.002126	0.001991	0.066020	0.010701	0.005145	8.96934{
33	WI	5328	0.911224	0.012696	4855.0	473.0	0.012777	0.011919	0.069575	0.010651	0.003555	5.974864
34	GA	13423	0.912017	0.031986	12242.0	1181.0	0.032218	0.029759	0.079417	0.019441	0.009842	1.953450
35	СТ	6508	0.914720	0.015508	5953.0	555.0	0.015667	0.013985	0.113589	0.016551	0.034171	1.910840
36	IL	16761	0.918561	0.039940	15396.0	1365.0	0.040519	0.034395	0.163859	0.024852	0.050271	1.00347
37	TX	32845	0.918740	0.078266	30176.0	2669.0	0.079417	0.067253	0.166249	0.038898	0.002390	2.022232
38	KS	3769	0.920934	0.008981	3471.0	298.0	0.009135	0.007509	0.196011	0.070282	0.029761	3.187108
39	SC	5019	0.921498	0.011960	4625.0	394.0	0.012172	0.009928	0.203787	0.003037	0.007776	4.573140
40	СО	8673	0.921596	0.020667	7993.0	680.0	0.021036	0.017135	0.205135	0.008864	0.001348	8.003059
41	VT	807	0.921933	0.001923	744.0	63.0	0.001958	0.001587	0.209812	0.019078	0.004678	7.775394
42	NH	2025	0.927901	0.004825	1879.0	146.0	0.004945	0.003679	0.295795	0.002987	0.085982	3.745490
43	AK	1135	0.928634	0.002705	1054.0	81.0	0.002774	0.002041	0.306805	0.002171	0.011010	2.248514
44	MT	1247	0.930233	0.002971	1160.0	87.0	0.003053	0.002192	0.331173	0.000279	0.024369	2.850289
45	MS	1103	0.932910	0.002628	1029.0	74.0	0.002708	0.001865	0.373184	0.000345	0.042010	3.147698
46	WY	999	0.934935	0.002381	934.0	65.0	0.002458	0.001638	0.405995	0.000250	0.032812	3.330102
47	WV	2162	0.936170	0.005152	2024.0	138.0	0.005327	0.003477	0.426484	0.002869	0.020488	7.88755
48	DC		0.942219		1223.0	75.0	0.003219	0.001890	0.532480	0.002108	0.105997	7.07581(
49	ME	4	1.000000	0.000010	4.0	0.0	0.000011	0.000000	NaN	0.003208	NaN	N

```
In [121_ if ['Adresse_ND'] in x_train.columns.values:
     pass
else:
     x_train['Adresse_ND'] = 0
```

Notons que les deux premières observations ont des valeurs très basses de PdE. Remarquons également que la dernière observation a une valeur Inf de PdE.

Dans les deux cas, le nombre d'observations est très faible, il n'aurait donc pas de sens de les laisser dans des catégories séparées.

Nous les inclurons donc dans les catégories les plus basses et les plus élevées respectivement. Et pour avoir une meilleure perspective des états restants, nous les exclurons de notre graphique.

Graphique suivant: En enlevant la dernière observation (ME) car elle n'a pas de valeur PdE En enlevant les deux premières observations (NE et IA) car elles ont un PdE très bas

L'idée est de rechercher les États qui ont une proportion d'observations pertinente.

S'il y a environ 50 États, alors en moyenne la proportion d'observations devrait être de 2%. Par conséquent, les États qui ont une proportion significativement plus élevée que 2% sont des candidats pour rester comme catégories individuelles.

En examinant le tableau : nous voyons %_obs CA, NY, FL et TX remplissent cette condition. Ensuite, nous regroupons les catégories restantes en fonction du graphique PdE. Lorsqu'il y a un "saut" significatif, il y aura une coupure.

```
In [123... # grouper Direccion ND NE IA NV
In [124... x train['Adresse ND NE IA NV'] = sum([x train['Adresse ND'],
                                                                      x train['Adresse NE'],
                                                                      x_train['Adresse_IA'],
                                                                      x train['Adresse NV']])
In [125... # FL toute seule
         # gruper AL HI MO NM
In [126... x train['Adresse AL HI MO NM'] = sum([x train['Adresse AL'],
                                                                      x_train['Adresse_HI'],
                                                                      x train['Adresse MO']
                                                                      x train['Adresse NM']])
In [127... # California toute seule
         # grouper NC ID NJ
In [128... x_train['Adresse_NC_ID_NJ'] = sum([x_train['Adresse_NC'],
                                                                      x train['Adresse ID']
                                                                      x train['Adresse NJ']])
In [129... # NY toute seule
         # grouper KY LA MD
In [130_ x_train['Adresse_KY_LA_MD'] = sum([x_train['Adresse_KY'],
                                                                      x train['Adresse LA'],
                                                                      x train['Adresse MD']])
In [131... # grouper MI AR AZ VA OK DE OH
In [132_ x_train['Adresse_MI_AR_AZ_VA_OK_DE_OH'] = sum([x_train['Adresse_MI'],
                                                                      x train['Adresse AR'],
                                                                      x_train['Adresse_AZ'],
                                                                      x_train['Adresse_VA'],
                                                                      x train['Adresse_OK'],
                                                                      x_train['Adresse_DE']
                                                                      x train['Adresse OH']])
In [133... # grouper MN PA UT MA RI WA TN IN
In [134... x_train['Adresse_MN_PA_UT_MA_RI_WA_TN_IN'] = sum([x_train['Adresse_MN'],
                                                                      x train['Adresse PA'],
                                                                      x train['Adresse UT'],
                                                                      x_train['Adresse_MA'],
                                                                      x_train['Adresse_RI'],
                                                                      x_train['Adresse_WA'],
x_train['Adresse_TN'],
                                                                      x_train['Adresse_IN']])
In [135... # grouper OR SD WI GA
In [136... x_train['Adresse_OR_SD_WI_GA'] = sum([x_train['Adresse_OR'],
                                                                      x train['Adresse SD'],
                                                                      x train['Adresse WI'].
                                                                      x_train['Adresse_GA']])
In [137... # grouper CT IL
In [138... x_train['Adresse_CT_IL'] = sum([x_train['Adresse_CT'],
                                                             x train['Adresse IL']])
In [139... # grouper NH AK MT MS WY WV DC ME
In [140... x_train['Adresse_NH_AK_MT_MS_WY_WV_DC_ME'] = sum([x_train['Adresse_NH'],
                                                                      x_train['Adresse_AK'],
                                                                      x train['Adresse MT'],
                                                                      x train['Adresse MS'],
                                                                      x train['Adresse WY'],
                                                                      x train['Adresse WV'],
                                                                      x train['Adresse DC'],
                                                                      x_train['Adresse_ME']])
```

PdE pour la variable verification_status

```
array(['Not Verified', 'Verified', 'Source Verified'], dtype=object)
Out[141]:
           df = PdE catégorique(x train, 'verification status', y train)
In [142...
           df
                               observations
                                                                                                             PdE
                                                                                                                 delta_%_n_bons
                                                                                                                                  delta_PdE
               verification status
                                               % bon
                                                        % obs
                                                                 n bons
                                                                        n malus % n bons
                                                                                             % n malus
Out[142]:
            0
                        Verified
                                      151284
                                             0.888197
                                                      0.360495
                                                               134370.0
                                                                          16914.0
                                                                                   0.353633
                                                                                               0.426196 -0.186638
                                                                                                                             NaN
                                                                                                                                       NaN
            1
                  Source Verified
                                      135048
                                            0.913808
                                                      0.321806
                                                                123408.0
                                                                          11640.0
                                                                                   0.324784
                                                                                               0.293302
                                                                                                         0.101955
                                                                                                                          0.02885
                                                                                                                                   0.288593
```

122192.0

11132.0

0.321583

0.280502

0.136676

0.00320

0.034721

La variable verification_status possède trois catégories. Les trois ont une proportion d'observations très similaire (30%) mais un PdE très différente. Pour cette raison, nous décidons de ne pas regrouper les catégories.

purpose

2

Not Verified

133324

0.916504

0.317698

```
In [145...
          x_train['purpose'].unique()
            Out[145]:
                    dtype=object)
In [146...
           df = PdE catégorique(x train, 'purpose', y train)
Out[146]:
                                  observations
                                                  %_bon
                                                            %_obs
                                                                     n_bons
                                                                             n_malus
                                                                                       %_n_bons
                                                                                                  %_n_malus
                                                                                                                   PdE
                                                                                                                        delta_%_n_bons
                                                                                                                                         delta_PdE
                         purpose
             0
                                           385
                                                0.797403
                                                         0.000917
                                                                       307.0
                                                                                 78.0
                                                                                        0.000808
                                                                                                    0.001965
                                                                                                              -0.888955
                                                                                                                                   NaN
                                                                                                                                              NaN
                       educational
             1
                    small_business
                                          6326
                                                0.799083
                                                         0.015074
                                                                      5055.0
                                                                               1271.0
                                                                                        0.013304
                                                                                                    0.032026
                                                                                                              -0.878520
                                                                                                                               0.012496
                                                                                                                                          0.010435
             2
                                                0.851393
                                                          0.000770
                                                                       275.0
                                                                                 48.0
                                                                                        0.000724
                                                                                                    0.001209
                                                                                                              -0.513524
                                                                                                                               0.012580
                                                                                                                                          0.364996
                 renewable_energy
                                           323
             3
                                          2683
                                                0.863586
                                                         0.006393
                                                                      2317.0
                                                                                366.0
                                                                                        0.006098
                                                                                                    0.009222
                                                                                                              -0.413699
                                                                                                                               0.005374
                                                                                                                                          0.099825
                           moving
             4
                            house
                                          2065
                                                0.874092
                                                          0.004921
                                                                      1805.0
                                                                                260.0
                                                                                        0.004750
                                                                                                    0.006551
                                                                                                              -0.321460
                                                                                                                               0.001347
                                                                                                                                          0.092239
                                                0.875756
             5
                                                          0.050844
                                                                     18686.0
                                                                               2651.0
                                                                                        0.049178
                                                                                                    0.066799
                            other
                                         21337
                                                                                                              -0.306256
                                                                                                                               0.044427
                                                                                                                                          0.015203
             6
                                          2118
                                                0.876298
                                                          0.005047
                                                                      1856.0
                                                                                262.0
                                                                                        0.004885
                                                                                                    0.006602
                                                                                                              -0.301259
                                                                                                                               0.044293
                                                                                                                                          0.004997
                          wedding
             7
                          medical
                                          4168
                                                0.876919
                                                          0.009932
                                                                      3655.0
                                                                                513.0
                                                                                        0.009619
                                                                                                    0.012926
                                                                                                              -0.295518
                                                                                                                               0.004735
                                                                                                                                          0.005741
             8
                                                0.895806
                                                          0.005397
                                                                      2029.0
                                                                                        0.005340
                                                                                                    0.005947
                                                                                                              -0.107627
                          vacation
                                          2265
                                                                                236.0
                                                                                                                               0.004279
                                                                                                                                          0.187891
             9
                 debt_consolidation
                                        246742
                                               0.902623
                                                         0.587963
                                                                   222715.0
                                                                              24027.0
                                                                                        0.586138
                                                                                                    0.605428
                                                                                                              -0.032379
                                                                                                                               0.580798
                                                                                                                                          0.075248
            10
                    major_purchase
                                          8810
                                                0.915210
                                                          0.020993
                                                                      8063.0
                                                                                747.0
                                                                                        0.021220
                                                                                                    0.018823
                                                                                                              0.119882
                                                                                                                               0.564918
                                                                                                                                          0.152261
            11
                home improvement
                                         23871
                                                0.916719
                                                          0.056882
                                                                     21883.0
                                                                               1988.0
                                                                                        0.057591
                                                                                                    0.050093
                                                                                                              0.139487
                                                                                                                               0.036371
                                                                                                                                          0.019605
            12
                              car
                                          4854
                                                0.918006
                                                         0.011567
                                                                      4456.0
                                                                                398.0
                                                                                        0.011727
                                                                                                    0.010029
                                                                                                              0.156461
                                                                                                                               0.045864
                                                                                                                                          0.016974
            13
                        credit_card
                                         93709
                                               0.926997 0.223300
                                                                    86868.0
                                                                               6841.0
                                                                                        0.228618
                                                                                                    0.172378
                                                                                                              0.282362
                                                                                                                               0.216891
                                                                                                                                          0.125901
```


Du nombre d'observations, nous identifions deux catégories très importantes : Consolidation de la dette et Carte de crédit, qui devraient aller seules.

Deux autres groupes pertinents (5%) qui pourraient également être autonomes ou constituer le noyau d'un cluster.

Autres et Améliorations domiciliaires

En fonction du PdE et du poids des observations, les groupes pourraient être les suivants : Éducation - Petite entreprise - Énergie renouvelable - Déménagement

Maison - Autres - Mariage - Santé - Vacances

Consolidation de la dette

Grands achats - Améliorations - Automobile

Carte de crédit

```
In [148... # Éducation - Petite entreprise - Énergie renouvelable - Déménagement
In [149... | x_train['purpose_ed_pyme_enerren_moving'] = sum([x_train['Purpose_educational']
                                                                     x train['Purpose small business'],
                                                                     x_train['Purpose_renewable_energy'],
                                                                     x train['Purpose moving']])
In [150.  # Maison - Autres - Mariage - Santé - Vacances
In [151... x_train['purpose_house_other_wedding_medical_vacation'] = sum([x_train['Purpose_house'],
                                                                     x_train['Purpose_other'],
                                                                     x_train['Purpose_wedding
                                                                     x train['Purpose_medical'],
                                                                     x_train['Purpose_vacation']])
In [152... # Consolidation de la dette
         # Grands achats - Améliorations - Automobile
         # Tarjeta de Crédito
In [153... x train['Purpose major purchase improvement car'] = sum([x train['Purpose major purchase'],
                                                                     x train['Purpose home improvement'],
                                                                     x_train['Purpose_car']])
```

grade

```
In [154... x_train['grade'].unique()
Out[154]: array(['B', 'E', 'C', 'D', 'A', 'G', 'F'], dtype=object)
```

```
df
                grade observations
                                                                                                          PdE delta_%_n_bons
                                                                                                                                 delta_PdE
                                                                                                                                                   VI so
Out[155]:
                                       %_bon
                                                 %_obs
                                                          n_bons n_malus
                                                                             %_n_bons %_n_malus
                    G
                               3000 0.751667
                                              0.007149
                                                           2255.0
                                                                      745.0
                                                                               0.005935
                                                                                           0.018772
                                                                                                     -1.151573
                                                                                                                           NaN
                                                                                                                                       NaN
                                                                                                                                            0.014784
                                                           9405.0
                    F
                                                                                                                       0.018817
                              11912 0.789540
                                               0.028385
                                                                     2507.0
                                                                               0.024752
                                                                                           0.063171
                                                                                                     -0.936939
                                                                                                                                  0.214634
                                                                                                                                            0.035996
                                                                                                                                                       0
             2
                    Ε
                              32114
                                     0.831475
                                               0.076525
                                                          26702.0
                                                                     5412.0
                                                                               0.070274
                                                                                           0.136371
                                                                                                     -0.662974
                                                                                                                       0.045522
                                                                                                                                  0.273965
                                                                                                                                            0.043820
                    D
             3
                              69267
                                     0.868191
                                               0.165057
                                                          60137.0
                                                                     9130.0
                                                                               0.158268
                                                                                           0.230056
                                                                                                     -0.374034
                                                                                                                       0.087994
                                                                                                                                  0.288940
                                                                                                                                            0.026851
                                                                                                                                                       0
                    С
                             112753
                                     0.901546
                                               0.268680
                                                         101652.0
                                                                    11101.0
                                                                               0.267526
                                                                                           0.279721
                                                                                                     -0.044574
                                                                                                                       0.109259
                                                                                                                                  0.329460
                                                                                                                                            0.000544
                    В
             5
                             123286
                                     0.931063
                                               0.293779
                                                         114787.0
                                                                     8499.0
                                                                               0.302095
                                                                                           0.214156
                                                                                                      0.344036
                                                                                                                       0.034569
                                                                                                                                   0.388610
                                                                                                                                            0.030254
             6
                                     0.965956
                                               0.160427
                                                          65032.0
                                                                     2292.0
                                                                               0.171150
                                                                                           0.057753
                                                                                                      1.086361
                                                                                                                       0.130945
                                                                                                                                            0.123190
                                                                                                                                  0.742325
```


La plupart des catégories ont un poids significatif dans le nombre d'observations à l'exception des catégories G et F,les deux ont un PdE similaire et sont candidates à être regroupées en une seule catégorie

initial_status

```
x train['initial list status'].unique()
           array(['w', 'f'], dtype=object)
Out[158]:
          df = PdE_catégorique(x_train, 'initial_list_status', y_train)
In [159...
                                            %_bon
                                                                                                                             delta PdE
Out[159]:
              initial_list_status observations
                                                     %_obs
                                                              n_bons n_malus
                                                                              %_n_bons
                                                                                         %_n_malus
                                                                                                         PdE delta_%_n_bons
                                          0.892513
                                                            243375.0
                                                                      29310.0
                                                                                                    -0.142419
                                   272685
                                                   0.649782
                                                                                0.640511
                                                                                           0.738548
                                                                                                                        NaN
                                                                                                                                  NaN
                                                                                           0.261452
                                                                                                                                0.46085 0.
                                   146971
                                          0.929401 0.350218 136595.0
                                                                       10376.0
                                                                                0.359489
                                                                                                     0.318431
                                                                                                                    0.281022
In [160...
          graph_PdE(df)
```

Il n'y a pas de sens à regrouper les deux catégories contenues dans la variable initial_status. Simplement, nous décidons de choisir la catégorie "f" comme la variable de référence.

Variables Continues

```
# Nous copions et collons la fonction PdE_discrete
        # Nous commentons les lignes de code où nous triions les valeurs par PdE et réinitialisions les indices
        def PdE continue(df, var categ, df var y):
In [162...
            df = pd.concat([df[var_categ], df_var_y], axis = 1)
            df = pd.concat([df.groupby(df.columns.values[0], as_index = False)[df.columns.values[1]].count(),
                           df.groupby(df.columns.values[0], as index = False)[df.columns.values[1]].mean()], axis=1)
            df = df.iloc[:, [0,1,3]]
            df.columns = [df.columns.values[0], 'observations', '%_bon']
            df['%_obs'] = df['observations']/df['observations'].sum()
            df['n_bons'] = df['% bon']*df['observations']
            df['n_malus'] = (1-df['%_bon'])*df['observations']
            df['%_n_bons'] = df['n_bons']/df['n_bons'].sum()
            df['% n malus'] = df['n malus']/df['n malus'].sum()
            df['PdE'] = np.log(df['%_n_bons']/df['%_n_malus'])
            #df = df.sort_values(['PdE'])
            #df = df.reset_index(drop = True)
            df['delta % n bons'] = df['% n bons'].diff().abs()
            df.replace([np.inf, -np.inf], np.nan, inplace=True) #np ignore les nan mais pas les inf, alors comme ca on
            df['sommeVI'] = df['VI'].sum()
            return df
```

Comme le résultat sera un dataframe, nous n'avons pas besoin d'apporter de changements à notre fonction de graphique, la seule différence sera que le graphique ne sera pas trié du PdE le plus bas au plus élevé

variable term

```
In [163... x_train['term_num'].unique()
Out[163]: array([36, 60], dtype=int64)
```

Bien que ce soient des variables numériques, ce sont seulement deux nombres entiers, nous pouvons donc les traiter comme des variables catégoriques. Nous n'avons pas à faire de classification. Nous créons notre tableau avec la fonction PdE_continue.

```
In [164... df = PdE continue(x train, 'term num', y train)
In [165...
          df
              term num observations
                                               % obs n bons n malus % n bons % n malus
                                                                                                   PdE delta % n bons delta PdE
                                      % bon
           0
                              304125 0.915170 0.724701 278326.0
                                                                 25799.0
                                                                          0.732495
                                                                                     0.650078
                                                                                               0.119364
                                                                                                                             NaN 0.009838
                             115531 0.879798 0.275299 101644.0
                                                                 13887.0
                                                                          0.267505
                                                                                     0.349922 -0.268570
                                                                                                               0.464989
                                                                                                                         0.387934 0.022135
```

In [166... graph_PdE(df)

Nous observons que la catégorie 36 a un PdE beaucoup plus élevé que celle de 60. Mais nous remarquons que notre graphique n'est plus trié de manière ascendante car nous avons utilisé la fonction PdE_continue. Nous créons maintenant nos variables dummy dans le dataframe x_train.

```
In [167... x_train['échéance_36'] = np.where(x_train['term_num'] == 36, 1, 0)
In [168... x_train['échéance_60'] = np.where(x_train['term_num'] == 60, 1, 0)
```

variable emp_length_num

```
In [170... # Nombre d'années pendant lesquelles la personne qui demande le crédit a été employée
In [171... x_train['emp_length_num'].unique()
Out[171]. array([10, 0, 7, 3, 1, 2, 4, 5, 9, 6, 8], dtype=int64)
```

Ce n'est pas non plus une variable continue, elle nous donne les années sous forme de nombre entier. Il ne sera donc pas nécessaire de catégoriser la variable. Cependant, comme nous pouvons le voir, elle a plusieurs valeurs de 0 à 10, ce qui implique que nous devrons réduire le nombre de catégories. De plus, nous devons respecter l'ancienneté de l'emploi lors de la combinaison des catégories.

```
In (172... df = PdE_continue(x_train, 'emp_length_num', y_train)
In (173... df
```

Out[173]:		emp_length_num	observations	%_bon	%_obs	n_bons	n_malus	%_n_bons	%_n_malus	PdE	delta_%_n_bons	delta_PdE
	0	0	51671	0.893383	0.123127	46162.0	5509.0	0.121489	0.138815	-0.133320	NaN	NaN
	1	1	26660	0.902363	0.063528	24057.0	2603.0	0.063313	0.065590	-0.035332	0.058176	0.097988
	2	2	37209	0.904405	0.088665	33652.0	3557.0	0.088565	0.089629	-0.011939	0.025252	0.023394
	3	3	32961	0.904706	0.078543	29820.0	3141.0	0.078480	0.079146	-0.008456	0.010085	0.003483
	4	4	25283	0.904284	0.060247	22863.0	2420.0	0.060171	0.060979	-0.013341	0.018309	0.004886
	5	5	27681	0.897872	0.065961	24854.0	2827.0	0.065410	0.071234	-0.085291	0.005240	0.071950
	6	6	23514	0.896827	0.056032	21088.0	2426.0	0.055499	0.061130	-0.096633	0.009911	0.011342
	7	7	23570	0.902503	0.056165	21272.0	2298.0	0.055983	0.057905	-0.033741	0.000484	0.062892
	8	8	20109	0.905018	0.047918	18199.0	1910.0	0.047896	0.048128	-0.004830	0.008087	0.028911
	9	9	16060	0.905479	0.038269	14542.0	1518.0	0.038271	0.038250	0.000554	0.009624	0.005384
	10	10	134938	0.914946	0.321544	123461.0	11477.0	0.324923	0.289195	0.116486	0.286652	0.115933

Les catégories possibles sont ;

0 va seule

1-4 ont un PdE similaire et seront combinées

5-6 vont dans le même groupe

7 va seule

8-9 vont dans le même groupe

10 a un PdE beaucoup plus élevé que les autres, en plus son poids d'observations est proche d'1/3 du total, donc elle doit aller seule

```
In [175... x_train['ancianité_<_1'] = np.where(x_train['emp_length_num'].isin([0]), 1, 0)
In [176... #Generons maintenant la catégorie pour les employés ayant entre 1 et 4 ans d'ancienneté.
In [177... x_train['ancianité_la4'] = np.where(x_train['emp_length_num'].isin([range(1,4)]), 1, 0)
In [178... # Generons maintenant les autres catégories.</pre>
```

```
x_train['ancianité_7'] = np.where(x_train['emp_length_num'].isin([7]), 1, 0)
x_train['ancianité_8a9'] = np.where(x_train['emp_length_num'].isin(range(8,9)), 1, 0)
           x_train['ancianité_10+'] = np.where(x_train['emp_length_num'].isin([10]), 1, 0)
In [180_ list(x train.columns)
'member_id',
              'loan amnt',
              'funded amnt'
              'funded_amnt_inv',
              'term',
              'int rate',
              'installment',
              'grade',
              'sub grade',
              'emp_title',
'emp_length',
              'home ownership',
              'annual_inc',
              'verification_status',
              'issue_d',
              'loan status',
              'pymnt_plan',
              'url',
'desc',
              'purpose',
              'title',
              'zip_code',
              'addr_state',
              'dti',
              'delinq_2yrs',
'earliest_cr_line',
              'inq last 6mths',
              'mths_since_last_delinq',
              'mths_since_last_record',
              'open_acc',
'pub_rec',
              'revol_bal'
              'revol_util',
              'total acc',
              'initial list status',
              'out_prncp',
              'out prncp inv',
              'total_pymnt'
              'total_pymnt_inv',
              'total_rec_prncp',
              'total_rec_int',
'total_rec_late_fee',
              'recoveries',
              'collection_recovery_fee',
              'last_pymnt_d',
              'last_pymnt_amnt',
              'next pymnt d',
              'last_credit_pull_d',
              'collections_12_mths_ex_med',
              'mths_since_last_major_derog',
              'policy code'
              'application_type',
'annual_inc_joint',
              'dti joint',
              'verification status joint',
              'acc_now_delinq',
              'tot_coll_amt',
              'tot_cur_bal',
              'open acc 6m',
              'open_il_6m',
              'open_il_12m',
'open_il_24m',
              'mths_since_rcnt_il',
              'total_bal_il',
              'il utīl',
              open_rv_12m',
              'max_bal_bc',
              'all_util',
'total_rev_hi_lim',
              'inq_fi',
              'total cu tl'
              'inq_last_12m',
              'term_num',
              'emp_length_num',
              'date',
              'nb_mois',
              'date_ler_credit',
'nb_mois_ler_crédit',
              'Home ANY',
```

In [179... x_train['ancianité_5a6'] = np.where(x_train['emp_length_num'].isin(range(5,6)), 1, 0)

```
'Home MORTGAGE',
'Home_NONE',
'Home_OTHER'
'Home_OWN',
'Home_RENT'
'Purpose_car'
'Purpose credit card',
'Purpose debt consolidation',
'Purpose_educational',
'Purpose_home_improvement',
'Purpose house',
'Purpose_major_purchase',
'Purpose_medical',
'Purpose moving',
'Purpose other',
'Purpose_renewable_energy',
'Purpose small business',
'Purpose vacation',
'Purpose_wedding',
'Grade_A',
'Grade B',
'Grade_C',
'Grade_D'
'Grade E',
'Grade F'
'Grade G'
'initial_list_status_f',
'initial list status w',
'Adresse_AK',
'Adresse_AL'
'Adresse AR',
'Adresse AZ',
'Adresse_CA',
'Adresse CO',
'Adresse CT',
'Adresse_DC',
'Adresse_DE',
'Adresse_FL',
'Adresse GA',
'Adresse HI',
'Adresse IA',
'Adresse ID',
'Adresse IL',
'Adresse_IN'
'Adresse KS',
'Adresse KY',
'Adresse_LA',
'Adresse MA',
'Adresse MD',
'Adresse ME',
'Adresse MI',
'Adresse MN',
'Adresse MO',
'Adresse MS',
'Adresse MT',
'Adresse NC',
'Adresse NE',
'Adresse NH',
'Adresse NJ',
'Adresse NM',
'Adresse NV',
'Adresse_NY',
'Adresse OH',
'Adresse_OK',
'Adresse OR',
'Adresse_PA',
'Adresse RI'
'Adresse SC',
'Adresse_SD',
'Adresse_TN',
'Adresse_TX',
'Adresse UT',
'Adresse VA',
'Adresse VT',
'Adresse_WA',
'Adresse WI',
'Adresse_WV',
'Adresse_WY',
'loan_status_Charged Off',
'loan_status_Current',
'loan status Default',
'loan status Does not meet the credit policy. Status: Charged Off',
'loan_status_Does not meet the credit policy. Status:Fully Paid',
'loan_status_Fully Paid',
'loan status In Grace Period',
'loan_status_Late (16-30 days)'
'loan_status_Late (31-120 days)',
'Verification Not Verified',
'Verification_Source Verified',
```

```
'Verification_Verified',
'Subgrade_A1',
'Subgrade_A2'
'Subgrade A3'
'Subgrade A4',
'Subgrade_A5'
'Subgrade_B1'
'Subgrade B2'
'Subgrade B3'
'Subgrade_B4'
'Subgrade B5'
'Subgrade_C1',
'Subgrade_C2'
'Subgrade_C3'
'Subgrade C4',
'Subgrade_C5'
'Subgrade_D1'
'Subgrade D2'
'Subgrade_D3'
'Subgrade_D4'
'Subgrade_D5'
'Subgrade E1'
'Subgrade E2'
'Subgrade_E3'
'Subgrade_E4'
'Subgrade_E5',
'Subgrade_F1'
'Subgrade_F2',
'Subgrade F3'
'Subgrade F4'
'Subgrade_F5'
'Subgrade_G1'
'Subgrade G2'
'Subgrade_G3'
'Subgrade_G4',
'Subgrade_G5',
'Home_RENT_ANY_OTHER_NONE',
'Adresse_ND'
'Adresse_ND_NE_IA_NV',
'Adresse AL HI MO NM',
'Adresse_NC_ID_NJ',
'Adresse_KY_LA_MD',
'Adresse MI AR AZ VA OK DE OH'
'Adresse_MN_PA_UT_MA_RI_WA_TN_IN',
'Adresse_OR_SD_WI_GA',
'Adresse_CT_IL'
'Adresse NH AK MT MS WY WV DC ME',
'purpose_ed_pyme_enerren_moving',
'purpose_house_other_wedding_medical_vacation',
'Purpose major purchase improvement car',
'Grades F G',
'échéance_36',
'échéance_60',
'ancianite < 1',
'ancianité_1a4',
'ancianité_5a6',
'ancianité_7',
'ancianité_8a9',
'ancianité_10+']
```

nb_mois_1er_crédit

Correspond aux nombres de mois passés après l'octroi du prémier crédit

```
In [181... x_train['nb_mois_ler_crédit'].unique()
```

```
109.99815191, \quad 98.00611922, \ 113.02080125, \ 130.99242284,
                                                    104.05141789, 118.04759851, 124.02718742, 114.03930266,
                                                    109.01250539, 125.04568882, 85.02844001, 112.00229984,
                                                    130.07248609, 133.02942566, 105.03706442, 137.03772151,
                                                    135.03357358, 149.0297542 , 148.0112528 , 132.01092425,
                                                      88.01823446, 111.01665332, 116.04345058, 136.01922011,
                                                    115.02494918, 129.05398468, 146.00710487, 171.04252654,
                                                    151.03390213, 166.04858416, 126.06419023, 123.04154089,
                                                    142.98445553, 160.00328549, 144.00295694, 154.05655147,
                                                    152.05240354, 167.0013758 , 155.99498963, 169.03837861,
                                                    121.03739296, 153.03805006, 157.01349104, 165.03008275,
                                                    164.04443623, 147.02560628, 128.06833816, 140.06037085,
                                                    168.0198772 , 175.0508224 , 145.02145835, 157.99913756,
                                                    134.01507218, 154.97648822, 173.04667447, 150.04825561,
                                                    162.0402883 , 170.02402513, 163.02593482, 159.01763897, 174.06517588, 172.02817306, 161.0217869 ])
                            valeur max, valeur min = x train['nb mois ler crédit'].agg(['max', 'min'])
In [182...
                            valeur_max,valeur_min
Out[182]: (175.05082239881722, 85.0284400090351)
                            on va regrouper les nombres de mois par 50 catégories afin que chaque observation soit affectée à un intervalle
In [183... x train['nb mois_ler_crédit_intervalle']=pd.cut(x_train['nb_mois_ler_crédit'],50)
In [184_ x train['nb_mois_ler_crédit_intervalle']
                             #l'observation 344531 est entre >88.629 et <= 90.43
                                                                       (88.629, 90.43]
                              344531
Out[184]:
                                                                      (88.629, 90.43]
                               328300
                               299890
                                                                   (86.829, 88.629]
                                                                   (94.031, 95.831]
                               439226
                               167889
                                                             (106.634, 108.434]
                               239305
                                                                   (84.938, 86.829]
                               167080
                                                              (106.634, 108.434]
                                                              (106.634, 108.434]
                               177337
                               23587
                                                              (133.641, 135.441]
                               160385
                                                             (104.833, 106.634]
                               Name: nb_mois_ler_crédit_intervalle, Length: 419656, dtype: category
                                \hbox{\tt Categories (50, interval[float64, right]): [(84.938, 86.829] < (86.829, 88.629] < (88.629, 90.43] < (90.43, 92.88.629) < (88.629, 90.43) < (90.43, 92.88.629) < (88.629, 90.43) < (90.43, 92.88.629) < (88.629, 90.43) < (90.43, 92.88.629) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (88.629, 90.43) < (
                               [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23] ... [.23
In [185...
                            df=PdE continue(x train, 'nb mois ler crédit intervalle', y train)
```

Out[181]: array([90.05523727, 89.03673587, 87.03258794, 94.98346989,

 106.97550258,
 101.02876856,
 102.04726996,
 103.03291649,

 92.0593852,
 120.01889156,
 93.04503173,
 141.04601737,

 94.06353313,
 142.06451878,
 86.01408653,
 96.00197129,

 99.02462063,
 91.0408838,
 127.04983675,
 138.05622292,

 97.0204727,
 107.99400398,
 100.01026715,
 122.02303949,

 119.00039015,
 106.05556582,
 117.02909711,
 139.04186944,

Out[185]:	nb m	ois_1er_crédit_intervalle	observations	%_bon	% obs	n bons	n_malus	%_n_bons	%_n_malus	PdE	delta_%_n_bons c
000(100).	0	(84.938, 86.829)	31889	0.965160	0.075988	30778.0	1111.0	0.081001	0.027995	1.062446	NaN
	1	(86.829, 88.629]	44380	0.951803	0.105753		2139.0	0.111169	0.053898	0.723959	0.030168
	2	(88.629, 90.43]	43236	0.938616	0.103027	40582.0	2654.0	0.106803	0.066875	0.468163	0.004366
	3	(90.43, 92.23]			0.077959	30423.0	2293.0	0.080067	0.057779	0.326244	0.026736
	4	(92.23, 94.031]	17130	0.922592	0.040819	15804.0	1326.0	0.041593	0.033412	0.219002	0.038474
	5	(94.031, 95.831]	28620	0.917016	0.068199	26245.0	2375.0	0.069071	0.059845	0.143384	0.027478
	6	(95.831, 97.632]	27607	0.914768	0.065785	25254.0	2353.0	0.066463	0.059290	0.114200	0.002608
	7	(97.632, 99.432]	25906	0.904424	0.061732	23430.0	2476.0	0.061663	0.062390	-0.011721	0.004800
	8	(99.432, 101.232]	23096	0.890587	0.055036	20569.0	2527.0	0.054133	0.063675	-0.162342	0.007530
	9	(101.232, 103.033]	20478	0.880555	0.048797	18032.0	2446.0	0.047456	0.061634	-0.261400	0.006677
	10	(103.033, 104.833]	9348	0.869170	0.022275	8125.0	1223.0	0.021383	0.030817	-0.365455	0.026073
	11	(104.833, 106.634]	15922	0.873634	0.037941	13910.0	2012.0	0.036608	0.050698	-0.325615	0.015225
	12	(106.634, 108.434]	12971	0.866548	0.030909	11240.0	1731.0	0.029581	0.043617	-0.388314	0.007027
	13	(108.434, 110.235]	11218	0.858888	0.026731	9635.0	1583.0	0.025357	0.039888	-0.453013	0.004224
	14	(110.235, 112.035]	11156	0.855414	0.026584	9543.0	1613.0	0.025115	0.040644	-0.481382	0.000242
	15	(112.035, 113.836]	4850	0.845773	0.011557	4102.0	748.0	0.010796	0.018848	-0.557267	0.014320
	16	(113.836, 115.636]	7590	0.825296	0.018086	6264.0	1326.0	0.016486	0.033412	-0.706442	0.005690
	17	(115.636, 117.436]	5950	0.847899	0.014178	5045.0	905.0	0.013277	0.022804	-0.540876	0.003208
	18	(117.436, 119.237]	4920	0.848374	0.011724	4174.0	746.0	0.010985	0.018798	-0.537189	0.002292
	19	(119.237, 121.037]	4387	0.827445	0.010454	3630.0	757.0	0.009553	0.019075	-0.691469	0.001432
	20	(121.037, 122.838]	1997	0.851778	0.004759	1701.0	296.0	0.004477	0.007459	-0.510482	0.005077
	21	(122.838, 124.638]	3756	0.852236	0.008950	3201.0	555.0	0.008424	0.013985	-0.506843	0.003948
	22	(124.638, 126.439]	3466	0.861800	0.008259	2987.0	479.0	0.007861	0.012070	-0.428770	0.000563
	23	(126.439, 128.239]	3195	0.846009	0.007613	2703.0	492.0	0.007114	0.012397	-0.555455	0.000747
	24	(128.239, 130.04]	1414	0.863508	0.003369	1221.0	193.0	0.003213	0.004863	-0.414359	0.003900
	25	(130.04, 131.84]	2521	0.862753	0.006007	2175.0	346.0	0.005724	0.008718	-0.420749	0.002511
	26	(131.84, 133.641]	2439	0.872079	0.005812	2127.0	312.0	0.005598	0.007862	-0.339629	0.000126
	27	(133.641, 135.441]	2215	0.851467	0.005278	1886.0	329.0	0.004964	0.008290	-0.512938	0.000634
	28	(135.441, 137.241]	2139	0.839645	0.005097	1796.0	343.0	0.004727	0.008643	-0.603507	0.000237
	29	(137.241, 139.042]	1094	0.867459	0.002607	949.0	145.0	0.002498	0.003654	-0.380419	0.002229
	30	(139.042, 140.842]	1873	0.836626	0.004463	1567.0	306.0	0.004124	0.007711	-0.625761	0.001626
	31	(140.842, 142.643]	1557	0.888889	0.003710	1384.0	173.0	0.003642	0.004359	-0.179652	0.000482
	32	(142.643, 144.443]	1192	0.877517	0.002840	1046.0	146.0	0.002753	0.003679	-0.289972	0.000890
	33	(144.443, 146.244]	1192	0.875839	0.002840	1044.0	148.0	0.002748	0.003729	-0.305491	0.000005
	34	(146.244, 148.044]	987	0.851064	0.002352	840.0	147.0	0.002211	0.003704	-0.516125	0.000537
	35	(148.044, 149.845]	395	0.896203	0.000941	354.0	41.0	0.000932	0.001033	-0.103369	0.001279
	36	(149.845, 151.645]	742	0.857143	0.001768	636.0	106.0	0.001674	0.002671	-0.467334	0.000742
	37	(151.645, 153.445]	623	0.853933	0.001485	532.0	91.0	0.001400	0.002293	-0.493310	0.000274
	38	(153.445, 155.246]	566	0.871025	0.001349	493.0	73.0	0.001297	0.001839	-0.349044	0.000103
	39	(155.246, 157.046]	468	0.833333	0.001115	390.0	78.0	0.001026	0.001965	-0.649656	0.000271
	40	(157.046, 158.847]	193	0.818653	0.000460	158.0	35.0	0.000416	0.000882	-0.751847	0.000611
	41	(158.847, 160.647]	155	0.832258	0.000369	129.0	26.0	0.000340	0.000655	-0.657378	0.000076
	42	(160.647, 162.448]	221	0.823529	0.000527	182.0	39.0	0.000479	0.000983	-0.718649	0.000139
	43	(162.448, 164.248]	217	0.806452	0.000517	175.0	42.0	0.000461	0.001058	-0.831977	0.000018
	44	(164.248, 166.049]	227	0.762115	0.000541	173.0	54.0	0.000455	0.001361	-1.094786	0.000005
	45	(166.049, 167.849]		0.781991		495.0	138.0	0.001303		-0.981790	0.000847
	46	(167.849, 169.649]		0.743405		310.0	107.0	0.000816		-1.195350	0.000487
	47	(169.649, 171.45]		0.693467		138.0	61.0	0.000363		-1.442714	0.000453
	48	(171.45, 173.25]		0.719298	0.000272	82.0	32.0	0.000216		-1.318110	0.000147
	49	(173.25, 175.051]	79	0.886076	0.000188	70.0	9.0	0.000184	0.000227	-0.207823	0.000032

le pourcentage est pratiquement nul. Cette analyse est utile pour effectuer une classification plus générale.

```
In [186...

def graph_PdE_V(df):
    x = np.array(df.iloc[:,0].apply(str)) #0= home_ownership
    y = df['PdE']
    plt.figure(figsize = (20,10))
    plt.plot(x, y, marker = 'x', linestyle = '--', color = 'blue')
    plt.xlabel(df.columns[0])
    plt.ylabel('Poids de la Evidence (PdE)')
    plt.title(str('Poids de la Evidence par ' + df.columns[0]))
    plt.xticks(rotation=90)
```

In [187... graph_PdE_V(df)

Les trois prèmieres catgéories ont un PdE très differente. Par conséqutce, nous ne les regrouperon pas et nous les retirerons pour rendre le graphique plus compréhensible.

annual_inc

Classification de la variable de revenu annuel

```
In [193...
            x_train['annual_inc_categ'] = pd.cut(x_train['annual_inc'], 50) #Classifions en 50 groupes.
In [194...
            df = PdE_continue(x_train, 'annual_inc_categ', y_train)
In [195...
            df
                                                                                                                                             delta PdE
Out[195]:
                 annual_inc_categ observations
                                                   % bon
                                                             %_obs
                                                                       n_bons n_malus
                                                                                         %_n_bons
                                                                                                     %_n_malus
                                                                                                                       PdE delta_%_n_bons
                        (-5602.104
              0
                                                                                                        0.971980 -0.018107
                                         401270 0.903870 0.956188
                                                                     362696.0
                                                                                38574.0
                                                                                           0.954539
                                                                                                                                        NaN
                                                                                                                                                   NaN
                        151858.08]
                       (151858.08,
              1
                                          16542 0.939064 0.039418
                                                                       15534.0
                                                                                 1008.0
                                                                                           0.040882
                                                                                                        0.025399
                                                                                                                  0.475969
                                                                                                                                    0.913656
                                                                                                                                               0.494076
                        301820.16]
                       (301820.16
              2
                                           1248 0.943109 0.002974
                                                                        1177.0
                                                                                    71.0
                                                                                           0.003098
                                                                                                        0.001789
                                                                                                                  0.548950
                                                                                                                                    0.037785
                                                                                                                                               0.072981
                        451782.24]
                       (451782.24
                                                 0.946588 0.000803
                                                                         319.0
                                                                                    18.0
                                                                                           0.000840
                                                                                                        0.000454
                                                                                                                  0.615726
                                                                                                                                    0.002258
                                                                                                                                               0.066775
                        601744.32]
                       (601744.32
              4
                                                                          99.0
                                                                                           0.000261
                                                                                                                                    0.000579
                                                0.925234 0.000255
                                                                                    8.0
                                                                                                        0.000202
                                                                                                                  0.256584
                                                                                                                                               0.359141
                                            107
                         751706.41
                        (751706.4
              5
                                             68 0.911765 0.000162
                                                                          62.0
                                                                                     6.0
                                                                                           0.000163
                                                                                                        0.000151
                                                                                                                  0.076281
                                                                                                                                    0.000097
                                                                                                                                               0.180303
                        901668.481
                       (901668.48
              6
                                             31 0.967742 0.000074
                                                                          30.0
                                                                                     1.0
                                                                                           0.000079
                                                                                                        0.000025
                                                                                                                  1.142104
                                                                                                                                    0.000084
                                                                                                                                               1.065822
                       1051630.56]
                      (1051630.56
                                             20 1.000000 0.000048
                                                                          20.0
                                                                                           0.000053
                                                                                                        0.000000
                                                                                                                                    0.000026
                                                                                                                                                   NaN
              7
                                                                                     0.0
                                                                                                                       NaN
                       1201592.641
                      (1201592.64,
              8
                                                 1.000000 0.000024
                                                                          10.0
                                                                                     0.0
                                                                                           0.000026
                                                                                                        0.000000
                                                                                                                       NaN
                                                                                                                                    0.000026
                                                                                                                                                   NaN
                       1351554.721
                      (1351554.72,
              9
                                               5 1.000000 0.000012
                                                                           5.0
                                                                                     0.0
                                                                                           0.000013
                                                                                                        0.000000
                                                                                                                      NaN
                                                                                                                                    0.000013
                                                                                                                                                   NaN
                        1501516.8]
                       (1501516.8,
                                                1 000000 0 000005
                                                                                           0.000005
                                                                                                       0.000000
                                                                                                                                    0.000008
             10
                                                                           20
                                                                                     0.0
                                                                                                                      NaN
                                                                                                                                                   NaN
                       1651478.88
                      (1651478.88.
             11
                                                 1.000000 0.000002
                                                                           1.0
                                                                                     0.0
                                                                                           0.000003
                                                                                                        0.000000
                                                                                                                       NaN
                                                                                                                                    0.000003
                                                                                                                                                   NaN
                       1801440.96]
                      (1801440.96
             12
                                                 1.000000
                                                           0.000005
                                                                           2.0
                                                                                     0.0
                                                                                           0.000005
                                                                                                        0.000000
                                                                                                                       NaN
                                                                                                                                    0.000003
                                                                                                                                                   NaN
                       1951403.04]
                      (1951403.04,
             13
                                                 1.000000
                                                           0.000012
                                                                           5.0
                                                                                     0.0
                                                                                           0.000013
                                                                                                        0.000000
                                                                                                                                    0.000008
                                                                                                                                                   NaN
                                              5
                                                                                                                       NaN
                      2101365.12]
                      (2101365.12,
                                              0
                                                           0.000000
             14
                                                                                               NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                                                     NaN
                                                                          NaN
                                                                                    NaN
                                                                                                            NaN
                                                                                                                      NaN
                        2251327.2]
                       (2251327.2,
             15
                                              0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      2401289.28]
                      (2401289.28
             16
                                              0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      2551251.361
                      (2551251.36
             17
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      2701213.44]
                      (2701213.44
             18
                                              0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                      NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      2851175.52]
                      (2851175.52,
                                              0
             19
                                                      NaN 0 000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                        3001137.6]
                       (3001137.6,
             20
                                              0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      3151099.68]
                      (3151099 68
             21
                                               0
                                                           0.000000
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                       NaN
                                                                                                                                                   NaN
                      3301061.76]
                      (3301061 76
             22
                                               0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                      NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                      3451023.84]
                      (3451023.84
             23
                                               0
                                                      NaN 0.000000
                                                                          NaN
                                                                                    NaN
                                                                                               NaN
                                                                                                            NaN
                                                                                                                      NaN
                                                                                                                                        NaN
                                                                                                                                                   NaN
                       3600985.921
```

24	(3600985.92, 3750948.0]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
25	(3750948.0, 3900910.08]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
26	(3900910.08, 4050872.16]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
27	(4050872.16, 4200834.24]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
28	(4200834.24, 4350796.32]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
29	(4350796.32, 4500758.4]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
30	(4500758.4, 4650720.48]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
31	(4650720.48, 4800682.56]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
32	(4800682.56, 4950644.64]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
33	(4950644.64, 5100606.72]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000000	NaN
34	(5100606.72, 5250568.8]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
35	(5250568.8, 5400530.88]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
36	(5400530.88, 5550492.96]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
37	(5550492.96, 5700455.04]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
38	(5700455.04, 5850417.12]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
39	(5850417.12, 6000379.2]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
40	(6000379.2, 6150341.28]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
41	(6150341.28, 6300303.36]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
42	(6300303.36, 6450265.44]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
43	(6450265.44, 6600227.52]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
44	(6600227.52, 6750189.6]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
45	(6750189.6, 6900151.68]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
46	(6900151.68, 7050113.76]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
47	(7050113.76, 7200075.84]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
48	(7200075.84, 7350037.92]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
49	(7350037.92, 7500000.0]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	NaN	NaN

En créant les 50 groupes, le premier couvre plus de 95 % des observations. C'est pas normal. Nous créons 100 groupes pour voir si en augmentant le nombre de groupes, nous pouvons obtenir une classification plus fine.

```
x_train['annual_inc_categ'] = pd.cut(x_train['annual_inc'], 100)
In [196...
           df = PdE_continue(x_train, 'annual_inc_categ', y_train)
In [197...
           df
Out[197]:
               annual_inc_categ observations
                                              % bon
                                                       %_obs
                                                               n_bons n_malus %_n_bons %_n_malus
                                                                                                            PdE delta_%_n_bons delta_PdE
                     (-5602.104,
             0
                                     275903 0.892865 0.657450 246344.0
                                                                         29559.0
                                                                                   0.648325
                                                                                              0.744822 -0.138753
                                                                                                                           NaN
                                                                                                                                      NaN
                      76877.04]
                      (76877.04,
                                     125367 0.928091 0.298738 116352.0
                                                                                                       0.298636
                                                                                                                        0.342111
             1
                                                                          9015.0
                                                                                   0.306214
                                                                                              0.227158
                                                                                                                                  0.437390
                      151858.08]
                     (151858.08,
             2
                                      13342 0.938840 0.031793
                                                                                   0.032966
                                                                                                       0.472054
                                                                                                                        0.273248
                                                                12526.0
                                                                           816.0
                                                                                              0.020561
                                                                                                                                  0.173417
                     226839.12]
                     (226839.12,
```

3008.0

192.0

0.007916

0.004838

0.492441

0.025049

0.020388

3200 0.940000 0.007625

301820.16]

4	(301820.16, 376801.2]	792	0.936869	0.001887	742.0	50.0	0.001953	0.001260	0.438232	0.005964	0.054209
5	(376801.2, 451782.24]	456	0.953947	0.001087	435.0	21.0	0.001145	0.000529	0.771730	0.000808	0.333497
6	(451782.24, 526763.28]	208	0.951923	0.000496	198.0	10.0	0.000521	0.000252	0.726588	0.000624	0.045142
7	(526763.28, 601744.32]	129	0.937984	0.000307	121.0	8.0	0.000318	0.000202	0.457255	0.000203	0.269333
8	(601744.32, 676725.36]	52	0.923077	0.000124	48.0	4.0	0.000126	0.000101	0.225813	0.000192	0.231442
9	(676725.36, 751706.4]	55	0.927273	0.000131	51.0	4.0	0.000134	0.000101	0.286437	0.000008	0.060625
10	(751706.4, 826687.44]	27	0.851852	0.000064	23.0	4.0	0.000061	0.000101	-0.509894	0.000074	0.796331
11	(826687.44, 901668.48]	41	0.951220	0.000098	39.0	2.0	0.000103	0.000050	0.711321	0.000042	1.221215
12	(901668.48, 976649.52]	11	0.909091	0.000026	10.0	1.0	0.000026	0.000025	0.043491	0.000076	0.667829
13	(976649.52, 1051630.56]	20	1.000000	0.000048	20.0	0.0	0.000053	0.000000	NaN	0.000026	NaN
14	(1051630.56, 1126611.6]	9	1.000000	0.000021	9.0	0.0	0.000024	0.000000	NaN	0.000029	NaN
15	(1126611.6, 1201592.64]	11	1.000000	0.000026	11.0	0.0	0.000029	0.000000	NaN	0.000005	NaN
16	(1201592.64, 1276573.68]	6	1.000000	0.000014	6.0	0.0	0.000016	0.000000	NaN	0.000013	NaN
17	(1276573.68, 1351554.72]	4	1.000000	0.000010	4.0	0.0	0.000011	0.000000	NaN	0.000005	NaN
18	(1351554.72, 1426535.76]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	0.000005	NaN
19	(1426535.76, 1501516.8]	3	1.000000	0.000007	3.0	0.0	0.000008	0.000000	NaN	0.000003	NaN
20	(1501516.8, 1576497.84]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000005	NaN
21	(1576497.84, 1651478.88]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000000	NaN
22	(1651478.88, 1726459.92]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
23	(1726459.92, 1801440.96]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
24	(1801440.96, 1876422.0]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
25	(1876422.0, 1951403.04]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	NaN	NaN
26	(1951403.04, 2026384.08]	4	1.000000	0.000010	4.0	0.0	0.000011	0.000000	NaN	0.000005	NaN
27	(2026384.08, 2101365.12]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000008	NaN
28	(2101365.12, 2176346.16]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
29	(2176346.16, 2251327.2]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
30	(2251327.2, 2326308.24]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
31	(2326308.24, 2401289.28]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
32	(2401289.28, 2476270.32]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
33	(2476270.32, 2551251.36]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
34	(2551251.36, 2626232.4]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
35	(2626232.4, 2701213.44]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
36	(2701213.44, 2776194.48]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
37	(2776194.48, 2851175.52]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
38	(2851175.52, 2926156.56]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
39	(2926156.56,	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN

1900 1976		3001137.6]										
13 13 13 13 13 16 16 16	40		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Common C	41		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
14 30 30 10 17 10 10 10 10 10 1	42		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1377904.28	43	,	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
Safe 1002-8-64 Color Col	44		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	45		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3800965 022	46		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
19 3675966 56] 0 Nam 0.000000 Nam	47		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
19 3750948-0 0	48		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	49	*	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
1	50		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3975891-12 0 Nan 0.000000 Nan	51		1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
53 4050672.161 0 Nan 0.000000 Nan <	52		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
14125653.22	53		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
55 4200834.24 0 Nah 0.00000 Nah Nah <t< td=""><td>54</td><td></td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></t<>	54		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
56 4275815.28 0 Nan 0.00000 Nan Nan <t< td=""><td>55</td><td></td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></t<>	55		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
57 A350796.32] 0 Nan 0.000000 Nan <	56		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
59 (4425777.36) 0 Nan 0.00000 Nan <	57		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4500758.4]	58		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
61	59		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
61 4650720.48] 0 Nan 0.000000 Nan <	60		1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
62 4725701.52] 0 Nan 0.00000 Nan Nan <t< td=""><td>61</td><td></td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></t<>	61		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
63 4800682.56] 0 Nan 0.00000 Nan Nan <t< td=""><td>62</td><td></td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></t<>	62		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
64 4875663.6] 0 Nan 0.00000 Nan Nan <th< td=""><td>63</td><td></td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></th<>	63		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4950644.64] 1 1.000000 0.000002 1.0 0.000003 0.000000 NaN NaN NaN NaN NaN NaN NaN NaN N	64		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
66 5025625.68] 1 1.00000 0.00002 1.0 0.0 0.00000 NaN 0.00000 NaN 67 (5025625.68, 5100606.72) 0 NaN 0.000000 NaN NaN <td>65</td> <td></td> <td>1</td> <td>1.000000</td> <td>0.000002</td> <td>1.0</td> <td>0.0</td> <td>0.000003</td> <td>0.000000</td> <td>NaN</td> <td>NaN</td> <td>NaN</td>	65		1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
67 5100606.72] 0 NaN 0.000000 NaN <	66		1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000000	NaN
68 5175587.76] 0 Nan 0.000000 Nan	67		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
69 5250568.8] 0 Nan 0.000000 Nan Nan <t< td=""><td>68</td><td>5175587.76]</td><td>0</td><td>NaN</td><td>0.000000</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td><td>NaN</td></t<>	68	5175587.76]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
71 (5325549.84) 0 NaN 0.000000 NaN NaN NaN NaN NaN NaN NaN NaN N	69		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
71	70	5325549.84]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
72 5475511.92] 0 NaN 0.000000 NaN NaN NaN NaN NaN NaN NaN NaN N	71	5400530.88]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
73 5550492.96] 0 NaN 0.000000 NaN NaN NaN NaN NaN NaN NaN NaN N	72	5475511.92]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	73	5550492.96]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	74		0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN

75	(5625474.0, 5700455.04]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
76	(5700455.04, 5775436.08]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
77	(5775436.08, 5850417.12]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
78	(5850417.12, 5925398.16]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
79	(5925398.16, 6000379.2]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
80	(6000379.2, 6075360.24]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
81	(6075360.24, 6150341.28]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
82	(6150341.28, 6225322.32]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
83	(6225322.32, 6300303.36]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
84	(6300303.36, 6375284.4]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
85	(6375284.4, 6450265.44]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
86	(6450265.44, 6525246.48]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
87	(6525246.48, 6600227.52]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
88	(6600227.52, 6675208.56]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
89	(6675208.56, 6750189.6]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
90	(6750189.6, 6825170.64]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
91	(6825170.64, 6900151.68]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
92	(6900151.68, 6975132.72]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
93	(6975132.72, 7050113.76]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
94	(7050113.76, 7125094.8]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
95	(7125094.8, 7200075.84]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
96	(7200075.84, 7275056.88]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
97	(7275056.88, 7350037.92]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
98	(7350037.92, 7425018.96]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
99	(7425018.96, 7500000.0]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	NaN	NaN

Le premier groupe capture 66 % des observations, tandis que le deuxième en capture près de 30 %. Le troisième groupe représente 3 % et le 1 % restant est réparti entre les 97 groupes restants. Qu'est-ce qui se passe ? Rappelons-nous que nous analysons la variable du revenu annuel. Ainsi, ce résultat est assez intuitif. Il y a beaucoup de personnes ayant de faibles revenus qui se concentrent dans les catégories de revenus les plus bas. Et très peu de personnes ayant des revenus élevés, très dispersées. Dans cette logique, nous pourrions former : Un groupe pour la classe moyenne supérieure, qui pourrait être celui de l'indice 2 avec des revenus entre 152K et 227K. Un groupe pour la classe aisée, c'est-à-dire à partir de l'indice 3 avec des revenus supérieurs à 227K. Et nous pourrions approfondir l'étude des revenus des indices 0 et 1.

```
In [198. df temp = x train.loc[x train['annual inc'] <= 152000, : ] #df des personnes avec les revenus plus bas <152k
```

Maintenant, générons la classification fine uniquement dans la base en excluant les observations avec des revenus élevés.

```
In [199... df_temp['annual_inc_categ'] = pd.cut(df_temp['annual_inc'], 50) #class avec les personnes des revenus bass
df = PdE_continue(df_temp, 'annual_inc_categ', y_train)
df
```

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy

df temp['annual inc categ'] = pd.cut(df temp['annual inc'], 50) #class avec les personnes des revenus bass

	ui_telli	praiiiuar_	_THC_categ]	= pu.cu	rt (ui_tell	ірі аппі	iat_IIIC .], 30) #CC	.ass avec i	es perso	illes des rever	ius bass	
Out[199]:	annua	al_inc_categ	observations	%_bon	%_obs	n_bons	n_malus	%_n_bons	%_n_malus	PdE	delta_%_n_bons	delta_PdE	
	0	(1745.896, 4898.08]	18	0.833333	0.000045	15.0	3.0	0.000041	0.000078	-0.631704	NaN	NaN	0
	1	(4898.08, 7900.16]	49	0.836735	0.000122	41.0	8.0	0.000113	0.000207	-0.607011	0.000072	0.024693	0
	2	(7900.16, 10902.24]	416	0.853365	0.001036	355.0	61.0	0.000978	0.001581	-0.479898	0.000865	0.127113	0
	3	(10902.24, 13904.32]	794	0.840050	0.001978	667.0	127.0	0.001838	0.003292	-0.582539	0.000860	0.102641	0
	4	(13904.32, 16906.4]	1654	0.857920	0.004120	1419.0	235.0	0.003911	0.006091	-0.443020	0.002073	0.139519	0
	5	(16906.4, 19908.48]	2082	0.858790	0.005187	1788.0	294.0	0.004928	0.007620	-0.435869	0.001017	0.007151	0
	6	(19908.48, 22910.56]	4130	0.861501	0.010288	3558.0	572.0	0.009806	0.014825	-0.413327	0.004878	0.022542	0
	7	(22910.56, 25912.64]	7165	0.873552	0.017849	6259.0	906.0	0.017250	0.023482	-0.308406	0.007444	0.104922	0
	8	(25912.64, 28914.72]	6767	0.869366	0.016858	5883.0	884.0	0.016214	0.022912	-0.345777	0.001036	0.037371	0
	9	(28914.72, 31916.8]	11420	0.877583	0.028449	10022.0	1398.0	0.027621	0.036234	-0.271402	0.011407	0.074375	0
	10	(31916.8, 34918.88]	10105	0.875309	0.025173	8845.0	1260.0	0.024377	0.032657	-0.292401	0.003244	0.020999	0
	11	(34918.88, 37920.96]	16226	0.875385	0.040422	14204.0	2022.0	0.039147	0.052407	-0.291705	0.014770	0.000696	0
	12	(37920.96, 40923.04]	20487	0.883145	0.051036	18093.0	2394.0	0.049865	0.062048	-0.218582	0.010718	0.073123	0
	13	(40923.04, 43925.12]	14357	0.885422	0.035766	12712.0	1645.0	0.035035	0.042635	-0.196336	0.014830	0.022247	0
	14	(43925.12, 46927.2]	18843	0.891631	0.046941	16801.0	2042.0	0.046305	0.052925	-0.133633	0.011270	0.062703	0
	15	(46927.2, 49929.28]	13101	0.890543	0.032637	11667.0	1434.0	0.032155	0.037167	-0.144845	0.014150	0.011212	0
	16	(49929.28, 52931.36]	25534	0.897509	0.063609	22917.0	2617.0	0.063161	0.067828	-0.071292	0.031006	0.073554	0
	17	(52931.36, 55933.44]	18696	0.900620	0.046575	16838.0	1858.0	0.046407	0.048156	-0.037004	0.016754	0.034287	0
	18	(55933.44, 58935.52]	11779	0.898888	0.029343	10588.0	1191.0	0.029181	0.030869	-0.056214	0.017225	0.019210	0
	19	(58935.52, 61937.6]	21261	0.894502	0.052964	19018.0	2243.0	0.052415	0.058134	-0.103570	0.023234	0.047356	0
	20	(61937.6, 64939.68]	10571	0.910983	0.026334	9630.0	941.0	0.026541	0.024389	0.084553	0.025874	0.188124	0
	21	(64939.68, 67941.76]	18032	0.904669	0.044921	16313.0	1719.0	0.044960	0.044553	0.009078	0.018419	0.075476	0
	22	(67941.76, 70943.84]	17796	0.909362	0.044333	16183.0	1613.0	0.044601	0.041806	0.064724	0.000358	0.055646	0
	23	(70943.84, 73945.92]	9457	0.913820	0.023559	8642.0	815.0	0.023818	0.021123	0.120059	0.020783	0.055336	0
	24	(73945.92, 76948.0]	15191	0.915805	0.037843	13912.0	1279.0	0.038342	0.033149	0.145531	0.014524	0.025472	0
	25	(76948.0, 79950.08]	6432	0.916978	0.016023	5898.0	534.0	0.016255	0.013840	0.160831	0.022087	0.015299	0
	26	(79950.08, 82952.16]	15317	0.918195	0.038157	14064.0	1253.0	0.038761	0.032475	0.176936	0.022506	0.016105	0
	27	(82952.16, 85954.24]	11749	0.920844	0.029269	10819.0	930.0	0.029818	0.024104	0.212733	0.008943	0.035797	0
	28	(85954.24, 88956.32]	5351	0.924126	0.013330	4945.0	406.0	0.013629	0.010523	0.258637	0.016189	0.045905	0
	29	(88956.32, 91958.4]	11100	0.926486	0.027652	10284.0	816.0	0.028343	0.021149	0.292788	0.014715	0.034151	0
	30	(91958.4, 94960.48]	5186	0.924605	0.012919	4795.0	391.0	0.013215	0.010134	0.265479	0.015128	0.027309	0
	31	(94960.48, 97962.56]	7978	0.927551	0.019874	7400.0	578.0	0.020395	0.014981	0.308519	0.007180	0.043040	0

32	(97962.56, 100964.64]	11086	0.927476	0.027617	10282.0	804.0	0.028338	0.020838	0.307409	0.007943	0.001111	0
33	(100964.64, 103966.72]	3409	0.930478	0.008492	3172.0	237.0	0.008742	0.006143	0.352916	0.019596	0.045507	0
34	(103966.72, 106968.8]	5133	0.936489	0.012787	4807.0	326.0	0.013248	0.008449	0.449789	0.004506	0.096874	0
35	(106968.8, 109970.88]	2644	0.936460	0.006587	2476.0	168.0	0.006824	0.004354	0.449294	0.006424	0.000495	0
36	(109970.88, 112972.96]	6513	0.927376	0.016225	6040.0	473.0	0.016647	0.012259	0.305922	0.009823	0.143372	0
37	(112972.96, 115975.04]	3655	0.945280	0.009105	3455.0	200.0	0.009522	0.005184	0.608118	0.007124	0.302196	0
38	(115975.04, 118977.12]	1765	0.939377	0.004397	1658.0	107.0	0.004570	0.002773	0.499397	0.004953	0.108722	0
39	(118977.12, 121979.2]	6633	0.930801	0.016524	6174.0	459.0	0.017016	0.011896	0.357910	0.012446	0.141487	0
40	(121979.2, 124981.28]	1330	0.942105	0.003313	1253.0	77.0	0.003453	0.001996	0.548349	0.013563	0.190439	0
41	(124981.28, 127983.36]	3955	0.935525	0.009853	3700.0	255.0	0.010197	0.006609	0.433683	0.006744	0.114666	0
42	(127983.36, 130985.44]	3641	0.941774	0.009070	3429.0	212.0	0.009451	0.005495	0.542296	0.000747	0.108613	0
43	(130985.44, 133987.52]	923	0.937161	0.002299	865.0	58.0	0.002384	0.001503	0.461145	0.007067	0.081151	0
44	(133987.52, 136989.6]	2109	0.950688	0.005254	2005.0	104.0	0.005526	0.002695	0.717867	0.003142	0.256722	0
45	(136989.6, 139991.68]	735	0.938776	0.001831	690.0	45.0	0.001902	0.001166	0.488887	0.003624	0.228979	0
46	(139991.68, 142993.76]	2757	0.933261	0.006868	2573.0	184.0	0.007091	0.004769	0.396750	0.005190	0.092137	0
47	(142993.76, 145995.84]	1558	0.932606	0.003881	1453.0	105.0	0.004005	0.002721	0.386283	0.003087	0.010467	0
48	(145995.84, 148997.92]	596	0.934564	0.001485	557.0	39.0	0.001535	0.001011	0.417862	0.002469	0.031578	0
49	(148997.92, 152000.0]	3934	0.933655	0.009800	3673.0	261.0	0.010123	0.006765	0.403102	0.008588	0.014760	0

Maintenant, nous voyons que le poids des observations a plus de sens. Nous voyons plusieurs groupes avec des poids entre 1 et 6 %. Graphiquons les PdE.

Analyse du graphique PdE du Revenu Annuel

À partir du graphique, nous pouvons observer une relation positive entre le revenu et le Poids de la Preuve (PdE). Autrement dit, plus le revenu est élevé, plus le PdE est élevé. Dans les cas où il y a des croissances ou des décroissances monotones, c'est-à-dire une ligne droite comme celle que nous observons, nous pouvons en toute sécurité diviser la variable en intervalles de taille égale, en tenant bien sûr compte du poids des observations. Par exemple, nous pourrions diviser les revenus de 0 à 152 000 en intervalles de 10 000 \$.

Cependant, les deux premiers intervalles auraient très peu d'observations. Ainsi, nous pourrions définir le premier intervalle de 0 à 20K, ou en d'autres termes, les revenus inférieurs à 20K. En suivant le même raisonnement, les quatre derniers intervalles auraient très peu d'observations. Par conséquent, nous pourrions définir deux intervalles de 26K, c'est-à-dire de 100K à 126K pour l'un et plus de 125K à 152K pour l'autre. Et les intervalles du milieu, qui ont le plus grand nombre d'observations, pourraient être regroupés par intervalles de 10K.

Résumé:

0-20K 20K-30K 30K-40K 40K-50K ... 80K-90K 90K-100K 100K-126K 126K-152K Nous devrions inclure dans nos catégories :

152K-227K 227K

```
x train['Revenu <20K']= np.where(x train['annual inc'] <= 20000, 1, 0)</pre>
In [201...
           x train['Revenu 20K-30K']= np.where(x train['annual inc'].isin(range(20000,30000)), 1, 0)
In [202...
           x train['Revenu 30K-40K'] = np.where(x train['annual inc'].isin(range(30000,40000)), 1, 0)
In [203...
           x_{\text{train}}[\text{"Revenu}_{40K-50K'}] = \text{np.where}(x_{\text{train}}[\text{"annual}_{\text{inc}'}].isin(\text{range}(40000,50000)), 1, 0)
           x train['Revenu 50K-60K'] = np.where(x train['annual inc'].isin(range(50000,60000)),
           x train['Revenu 60K-70K'] = np.where(x train['annual inc'].isin(range(60000,70000)), 1, 0)
           x_{\text{train}}[\text{"Revenu}_{\text{70K-80K'}}] = \text{np.where}(x_{\text{train}}[\text{"annual}_{\text{inc'}}].\text{isin}(\text{range}(70000,80000)), 1, 0)
           x_{\text{train}}[\text{"Revenu}_{80K-90K'}] = \text{np.where}(x_{\text{train}}[\text{"annual}_{\text{inc}'}].isin(\text{range}(80000,90000)), 1, 0)
           x train['Revenu 90K-100K'] = np.where(x train['annual inc'].isin(range(90000,100000)), 1, 0)
           x_{\text{train}}[\text{"Revenu}_{100K-126K'}] = \text{np.where}(x_{\text{train}}[\text{"annual}_{\text{inc'}}].\text{isin}(\text{range}(100000, 126000)), 1, 0)
           x_train['Revenu_126K-152K'] = np.where(x_train['annual_inc'].isin(range(126000,152000)), 1, 0)
           x train['Revenu 152K-227K'] = np.where(x train['annual inc'].isin(range(152000,227000)), 1, 0)
           x_train['Revenu_>227K'] = np.where(x_train['annual_inc'] > 227000, 1, 0)
```

mths since last deling

Mois du dernier impayé

La particularité de cette variable est que plusieurs clients n'ont pas de valeur numérique simplement parce qu'ils n'ont jamais été en défaut de paiement. Alors, la première chose que nous devons faire est de sélectionner les valeurs "not null", qui seront prétraitées comme une variable continue. Plus tard, nous inclurons toutes les valeurs null en tant que variable catégorique.

Créons un dataframe temporaire avec les variables indépendantes qui ont une valeur numérique dans la variable 'mths_since_last_delinq'.

```
In [204... x_temp = x_train[pd.notnull(x_train['mths_since_last_delinq'])]
In [205... x_temp['mths_since_last_delinq_categ'] = pd.cut(x_temp['mths_since_last_delinq'], 50)

C:\Users\IDEAPAD5\AppData\Local\Temp\ipykernel_21276\4149754453.py:1: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy
    x_temp['mths_since_last_delinq_categ'] = pd.cut(x_temp['mths_since_last_delinq'], 50)
```

Créons la table PdE_continue Nous utiliserons les variables indépendantes où 'mths_since_last_delinq' a des valeurs numériques Nous sélectionnerons également les valeurs de la variable dépendante uniquement pour les observations où 'mths_since_last_delinq' a une valeur numérique

```
In [206...
           df = PdE continue(x temp, 'mths since last deling categ', y train[x temp.index])
           df
In [207...
                mths_since_last_delinq_categ observations
                                                             % bon
                                                                       \mbox{\ensuremath{\%\_obs}} n_bons n_malus %_n_bons %_n_malus
                                                                                                                              PdE delta_%_n_bons
                                                                                                               0.037246 -0.217530
                                (-0.188, 3.76]
                                                           0.888908 0.030630
                                                                                5289.0
                                                                                           661.0
                                                                                                   0.029964
                                                                                                                                               NaN
                                                    12435 0.907358 0.064013 11283.0
                                                                                         1152.0
                                                                                                   0.063923
                                                                                                               0.064912 -0.015363
                                                                                                                                          0.033958
                                  (3.76, 7.52)
```

2	(7.52, 11.28]	14984	0.910838	0.077135	13648.0	1336.0	0.077321	0.075280	0.026752	0.013399
3	(11.28, 15.04]	14940	0.906961	0.076908	13550.0	1390.0	0.076766	0.078323	-0.020078	0.000555
4	(15.04, 18.8]	10446	0.912024	0.053774	9527.0	919.0	0.053974	0.051783	0.041438	0.022792
5	(18.8, 22.56]	13104	0.910943	0.067457	11937.0	1167.0	0.067628	0.065758	0.028045	0.013654
6	(22.56, 26.32]	12306	0.911832	0.063349	11221.0	1085.0	0.063571	0.061137	0.039046	0.004056
7	(26.32, 30.08]	11890	0.909924	0.061208	10819.0	1071.0	0.061294	0.060348	0.015550	0.002277
8	(30.08, 33.84)	8536	0.915183	0.043942	7812.0	724.0	0.044258	0.040796	0.081464	0.017036
9	(33.84, 37.6]	10982	0.914314			941.0	0.056886	0.053023	0.070328	0.012628
	•									
10	(37.6, 41.36]	10484	0.905666	0.053970	9495.0	989.0	0.053793	0.055728	-0.035335	0.003093
11	(41.36, 45.12]	10318	0.907637	0.053115	9365.0	953.0	0.053056	0.053699	-0.012041	0.000737
12	(45.12, 48.88]	7319	0.911190	0.037677	6669.0	650.0	0.037783	0.036626	0.031092	0.015274
13	(48.88, 52.64]	7254	0.905018	0.037342	6565.0	689.0	0.037193	0.038823	-0.042895	0.000589
14	(52.64, 56.4]	6816	0.912265	0.035088	6218.0	598.0	0.035227	0.033696	0.044452	0.001966
15	(56.4, 60.16]	6582	0.913856	0.033883	6015.0	567.0	0.034077	0.031949	0.064491	0.001150
16	(60.16, 63.92]	4567	0.901248	0.023510	4116.0	451.0	0.023319	0.025413	-0.085991	0.010759
17	(63.92, 67.68)	5939	0.906550	0.030573	5384.0	555.0	0.030503	0.031273	-0.024942	0.007184
18	(67.68, 71.44)	5790	0.904318	0.029806	5236.0	554.0	0.029664	0 031217	-0.051013	0.000838
	•									
19	(71.44, 75.2]		0.905229		4986.0	522.0	0.028248		-0.040439	0.001416
20	(75.2, 78.96]	3805	0.910907	0.019587	3466.0	339.0	0.019636	0.019102	0.027595	0.008611
21	(78.96, 82.72]	4017	0.901170	0.020679	3620.0	397.0	0.020509	0.022370	-0.086868	0.000872
22	(82.72, 86.48]	105	0.847619	0.000541	89.0	16.0	0.000504	0.000902	-0.581113	0.020005
23	(86.48, 90.24]	45	0.911111	0.000232	41.0	4.0	0.000232	0.000225	0.030117	0.000272
24	(90.24, 94.0]	27	0.925926	0.000139	25.0	2.0	0.000142	0.000113	0.228568	0.000091
25	(94.0, 97.76]	22	0.727273	0.000113	16.0	6.0	0.000091	0.000338	-1.316332	0.000051
26	(97.76, 101.52]	16	0.937500	0.000082	15.0	1.0	0.000085	0.000056	0.410889	0.000006
27	(101.52, 105.28]	10	0.900000	0.000051	9.0	1.0	0.000051	0.000056	-0.099936	0.000034
28	(105.28, 109.04]	11	0.818182	0.000057	9.0	2.0	0.000051	0.000113	-0.793084	0.000000
29	(109.04, 112.8]	3	0.666667	0.000015	2.0	1.0	0.000011	0.000056	-1.604014	0.000040
30	(112.8, 116.56)	7	0.857143	0.000036	6.0	1.0	0.000034	0.000056	-0.505402	0.000023
31	(116.56, 120.32]		1.000000		4.0	0.0	0.000023	0.000000	NaN	0.000011
32	(120.32, 124.08]	4	1.000000		4.0	0.0	0.000023	0.000000	NaN	0.000000
33	(124.08, 127.84]	2	1.000000		2.0	0.0	0.000011	0.000000	NaN	0.000011
34	(127.84, 131.6]	5	1.000000	0.000026	5.0	0.0	0.000028	0.000000	NaN	0.000017
35	(131.6, 135.36]	7	0.857143	0.000036	6.0	1.0	0.000034	0.000056	-0.505402	0.000006
36	(135.36, 139.12]	2	1.000000	0.000010	2.0	0.0	0.000011	0.000000	NaN	0.000023
37	(139.12, 142.88]	3	1.000000	0.000015	3.0	0.0	0.000017	0.000000	NaN	0.000006
38	(142.88, 146.64]	2	1.000000	0.000010	2.0	0.0	0.000011	0.000000	NaN	0.000006
39	(146.64, 150.4]	3	0.666667	0.000015	2.0	1.0	0.000011	0.000056	-1.604014	0.000000

40	(150.4, 154.16]	2	0.500000	0.000010	1.0	1.0	0.000006	0.000056	-2.297161	0.000006
41	(154.16, 157.92]	1	1.000000	0.000005	1.0	0.0	0.000006	0.000000	NaN	0.000000
42	(157.92, 161.68]	1	1.000000	0.000005	1.0	0.0	0.000006	0.000000	NaN	0.000000
43	(161.68, 165.44]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN
44	(165.44, 169.2]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN
45	(169.2, 172.96]	1	1.000000	0.000005	1.0	0.0	0.000006	0.000000	NaN	NaN
46	(172.96, 176.72]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN
47	(176.72, 180.48]	1	1.000000	0.000005	1.0	0.0	0.000006	0.000000	NaN	NaN
48	(180.48, 184.24]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN
49	(184.24, 188.0]	1	1.000000	0.000005	1.0	0.0	0.000006	0.000000	NaN	NaN

In [208… # Dans le tableau, nous remarquons qu'à partir du bin 22, la proportion d'observations est très basse.

In [209... graph_PdE_V(df)

Maintenant, faisons la classification globale en fonction du graphique. Le premier groupe a un PdE beaucoup plus bas que les suivants, alors isolons-le. Ensuite, les sept groupes suivants ont un PdE similaire (jusqu'à 30.08). Nous pourrions faire la prochaine coupe ici à 60.16. Une autre coupe à 82.72. Ensuite, les derniers groupes commencent à faire un zigzag significatif en raison du faible poids d'observations, même avec plusieurs bins sans observations. Nous pourrions les regrouper tous. Résumé : Les manquants 0.188 - 3.76 3.76 - 30.08 30.80 - 60.16 60.16 - 82.74 82.74 jusqu'à la fin

```
In [210... x_train['mths_since_last_delinq_null'] = np.where((x_train['mths_since_last_delinq'].isnull()), 1, 0)
    x_train['mths_since_last_delinq_0-4'] = np.where(x_train['mths_since_last_delinq'].isin(range(0,4)), 1, 0)
    x_train['mths_since_last_delinq_4-30'] = np.where(x_train['mths_since_last_delinq'].isin(range(4,30)), 1, 0)
    x_train['mths_since_last_delinq_30-60'] = np.where(x_train['mths_since_last_delinq'].isin(range(30,60)), 1, 0)
    x_train['mths_since_last_delinq_60-83'] = np.where(x_train['mths_since_last_delinq'].isin(range(60,83)), 1, 0)
    x_train['mths_since_last_delinq_83+'] = np.where(x_train['mths_since_last_delinq'] > 83, 1, 0)
```

delinq_2yrs

Le nombre d'incidents de défaut de paiement de plus de 30 jours dans le dossier de crédit de l'emprunteur au cours des 2 dernières années

Comme ce sont des valeurs entières et qu'il n'y en a pas tant, nous n'avons pas besoin de faire de classification fine. Générons directement la table avec les poids de preuve.

ut			

	delinq_2yrs	observations	%_bon	%_obs	n_bons	n_malus	%_n_bons	%_n_malus	PdE	delta_%_n_bons	delta_PdE	
0	0.0	344728	0.904467	0.821454	311795.0	32933.0	0.820578	0.829839	-0.011223	NaN	NaN	1.039
1	1.0	50548	0.910204	0.120451	46009.0	4539.0	0.121086	0.114373	0.057036	0.699492	0.068260	3.828
2	2.0	14666	0.908632	0.034948	13326.0	1340.0	0.035071	0.033765	0.037954	0.086015	0.019083	4.957
3	3.0	5116	0.909695	0.012191	4654.0	462.0	0.012248	0.011641	0.050824	0.022823	0.012870	3.084
4	4.0	2151	0.911204	0.005126	1960.0	191.0	0.005158	0.004813	0.069333	0.007090	0.018509	2.395
5	5.0	1119	0.907060	0.002666	1015.0	104.0	0.002671	0.002621	0.019159	0.002487	0.050173	9.712
6	6.0	575	0.918261	0.001370	528.0	47.0	0.001390	0.001184	0.159855	0.001282	0.140696	3.281
7	7.0	315	0.898413	0.000751	283.0	32.0	0.000745	0.000806	-0.079383	0.000645	0.239238	4.884
8	8.0	155	0.948387	0.000369	147.0	8.0	0.000387	0.000202	0.651897	0.000358	0.731280	1.2079
9	9.0	101	0.930693	0.000241	94.0	7.0	0.000247	0.000176	0.338291	0.000139	0.313606	2.4019
10	10.0	58	0.896552	0.000138	52.0	6.0	0.000137	0.000151	-0.099610	0.000111	0.437900	1.427
11	11.0	35	0.914286	0.000083	32.0	3.0	0.000084	0.000076	0.108030	0.000053	0.207639	9.3162
12	12.0	33	0.727273	0.000079	24.0	9.0	0.000063	0.000227	-1.278265	0.000021	1.386294	2.091
13	13.0	21	0.952381	0.000050	20.0	1.0	0.000053	0.000025	0.736638	0.000011	2.014903	2.021
14	14.0	8	0.875000	0.000019	7.0	1.0	0.000018	0.000025	-0.313184	0.000034	1.049822	2.121
15	15.0	7	0.857143	0.000017	6.0	1.0	0.000016	0.000025	-0.467334	0.000003	0.154151	4.3962
16	16.0	5	1.000000	0.000012	5.0	0.0	0.000013	0.000000	NaN	0.000003	NaN	
17	17.0	3	0.666667	0.000007	2.0	1.0	0.000005	0.000025	-1.565947	0.000008	NaN	3.121
18	18.0	4	0.750000	0.000010	3.0	1.0	0.000008	0.000025	-1.160482	0.000003	0.405465	2.0079
19	19.0	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	0.000003	NaN	
20	21.0	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	0.000000	NaN	
21	22.0	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	0.000000	NaN	
22	24.0	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000003	NaN	
23	29.0	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000000	NaN	

Nous notons que le groupe de 0 incidents de défaut de paiement a un poids significatif de 82%. À partir de 4 incidents de défaut de paiement, le poids des observations est inférieur à 1%. Tracions deux PdE.

In [213... graph_PdE_V(df)

Groupes suggérés : 0 va seul en raison de sa proportion élevée 1-4 ont un PdE similaire 5 ou plus, commence à zigzaguer et la proportion d'observations est très faible

```
In [214_ x_train['impayé_2ans_0'] = np.where((x_train['delinq_2yrs'] == 0), 1, 0)
    x_train['impayé_2ans_1-4'] = np.where((x_train['delinq_2yrs'] >= 1) & (x_train['delinq_2yrs'] <= 4), 1, 0)
    x_train['impayé_2ans_>=5'] = np.where((x_train['delinq_2yrs'] >= 5), 1, 0)
```

total acc

(21.84, 24.96]

Le nombre total de lignes de crédit actuellement dans le dossier de crédit de l'emprunteur

45116 0.907084 0.107507 40924.0

```
In [215... x train['total_acc'].unique()
                                39.,
                                             26.,
                                                          38.,
                                                                  9.,
           array([ 27.,
                                       63.,
                                                    22.,
                                                                              20.,
                                                    47.,
                   11.,
                          25.,
                                58.,
                                       31.,
                                             30.,
                                                          10.,
                                                                 24.,
                                                                        23.,
                                                                              14.,
                                                                                     37.,
                         18.,
                                                    29.,
                                                          54.,
                                                                        16.,
                                                                               7.,
                   34.,
                                35.,
                                       13.,
                                              8.,
                                                                 48.,
                                                                                     45.,
                          28.,
                                 6.,
                                       33.,
                                             15.,
                                                    43.,
                                                                                     41.,
                   61.,
                                                          55.,
                                                                 17.,
                                                                        40.,
                                                                              19.,
                                49.,
                                              5.,
                                                          44.,
                                                                              57.,
                   46.,
                          60.,
                                       42.,
                                                    56.,
                                                                        36.,
                                                    68.,
                                                          59.,
                   53.,
                         52.,
                                51.,
                                       62.,
                                              0.,
                                                                  3.,
                                                                        65.,
                                                                              73.,
                                                                                    83.,
                                76.,
                                                          77.,
                   70.,
                                                    90.,
                                                                 64.,
                                                                                    118.,
                          67.,
                                       93.,
                                             81.,
                                                                        74.,
                                                                              69.,
                         94.,
                                80.,
                                       72.,
                                             66.,
                                                     1.,
                                                          71.,
                                                                 78.,
                                                                        82., 119., 124.,
                   85., 101., 106.,
                                       79.,
                                             88.,
                                                    84.,
                                                          89.,
                                                                 75.,
                                                                        87.,
                                                                             105.,
                                                                                     95.,
                   92.,
                               91., 150.,
                                             97., 116., 102., 156.,
                                                                        96.,
                                                                              99.,
                          86.,
                  121.])
```

```
Comme il y a de nombreuses valeurs uniques, commençons par faire une classification fine
In [216...
          x train['total acc categ'] = pd.cut(x train['total acc'], 50)
In [217...
           df = PdE_continue(x_train, 'total_acc_categ', y_train)
Out[217]:
                total_acc_categ observations
                                               %_bon
                                                         %_obs n_bons n_malus %_n_bons %_n_malus
                                                                                                               PdE delta_%_n_bons
                                                                                                                                        delta_PdE
             0
                   (-0.156, 3.12]
                                              0.808140 0.001230
                                                                   417.0
                                                                              99.0
                                                                                     0.001097
                                                                                                 0.002495 -0.821127
                                         516
                                                                                                                                NaN
                                                                                                                                              NaN
             1
                     (3.12, 6.24]
                                        6763
                                              0.871802 0.016116
                                                                  5896.0
                                                                             867.0
                                                                                     0.015517
                                                                                                 0.021846 -0.342103
                                                                                                                            0.014420
                                                                                                                                      4.790241e-01
             2
                     (6.24, 9.36]
                                       16957
                                              0.887421 0.040407
                                                                 15048.0
                                                                            1909.0
                                                                                     0.039603
                                                                                                 0.048103 -0.194428
                                                                                                                            0.024086
                                                                                                                                      1.476751e-01
                    (9.36, 12.48]
                                       28247
                                              0.895281
                                                       0.067310 25289.0
                                                                            2958.0
                                                                                     0.066555
                                                                                                 0.074535 -0.113238
                                                                                                                            0.026952
                                                                                                                                      8.119061e-02
                    (12.48, 15.6]
                                       37867
                                              0.897668 0.090233 33992.0
                                                                            3875.0
                                                                                     0.089460
                                                                                                 0.097641 -0.087514
                                                                                                                            0.022904
                                                                                                                                      2.572339e-02
                    (15.6, 18.72]
                                       43601
                                              0.902915 0.103897 39368.0
                                                                            4233.0
                                                                                     0.103608
                                                                                                 0.106662 -0.029051
                                                                                                                            0.014148
                                                                                                                                      5 846280e-02
             5
                   (18.72, 21.84]
                                       45796 0.902175 0.109127 41316.0
                                                                            4480.0
                                                                                     0.108735
                                                                                                 0.112886 -0.037467
                                                                                                                            0.005127 8.415554e-03
```

4192.0

0.107703

0.105629 0.019445

0.001032 5.691195e-02

8	(24.96, 28.08]	53277	0.909924	0.126954	48478.0	4799.0	0.127584	0.120924	0.053609	0.019881	3.416378e-02
9	(28.08, 31.2]	33461	0.910822	0.079734	30477.0	2984.0	0.080209	0.075190	0.064614	0.047375	1.100509e-02
10	(31.2, 34.32]	27263	0.912996	0.064965	24891.0	2372.0	0.065508	0.059769	0.091679	0.014701	2.706519e-02
11	(34.32, 37.44]	21435	0.913179	0.051078	19574.0	1861.0	0.051515	0.046893	0.093994	0.013993	2.315366e-03
12	(37.44, 40.56]	16418	0.915459	0.039123	15030.0	1388.0	0.039556	0.034975	0.123091	0.011959	2.909616e-02
13	(40.56, 43.68]	12506	0.912842	0.029801	11416.0	1090.0	0.030044	0.027466	0.089744	0.009511	3.334616e-02
14	(43.68, 46.8]	9143	0.913048	0.021787	8348.0	795.0	0.021970	0.020032	0.092341	0.008074	2.596970e-03
15	(46.8, 49.92]	6534	0.913070	0.015570	5966.0	568.0	0.015701	0.014312	0.092617	0.006269	2.753928e-04
16	(49.92, 53.04)	5852	0.921565	0.013945	5393.0	459.0	0.014193	0.011566	0.204713	0.001508	1.120963e-01
17			0.920256	0.006694	2585.0	224.0	0.006803	0.005644	0.186741	0.007390	1.797215e-02
	(53.04, 56.16]										
18	(56.16, 59.28]	2004	0.908184	0.004775	1820.0	184.0	0.004790	0.004636	0.032562	0.002013	1.541787e-01
19	(59.28, 62.4]	1661	0.910295	0.003958	1512.0	149.0	0.003979	0.003754	0.058148	0.000811	2.558623e-02
20	(62.4, 65.52]	1557	0.903661	0.003710	1407.0	150.0	0.003703	0.003780	-0.020514	0.000276	7.866249e-02
21	(65.52, 68.64]	271	0.948339	0.000646	257.0	14.0	0.000676	0.000353	0.650925	0.003027	6.714390e-01
22	(68.64, 71.76]	175	0.937143	0.000417	164.0	11.0	0.000432	0.000277	0.442877	0.000245	2.080476e-01
23	(71.76, 74.88]	115	0.965217	0.000274	111.0	4.0	0.000292	0.000101	1.064142	0.000139	6.212647e-01
24	(74.88, 78.0]	113	0.946903	0.000269	107.0	6.0	0.000282	0.000151	0.621976	0.000011	4.421665e-01
25	(78.0, 81.12]	59	0.932203	0.000141	55.0	4.0	0.000145	0.000101	0.361945	0.000137	2.600305e-01
26	(81.12, 84.24]	35	0.914286	0.000083	32.0	3.0	0.000084	0.000076	0.108030	0.000061	2.539152e-01
27	(84.24, 87.36]	30	0.933333	0.000071	28.0	2.0	0.000074	0.000050	0.379964	0.000011	2.719337e-01
28	(87.36, 90.48]	27	0.888889	0.000064	24.0	3.0	0.000063	0.000076	-0.179652	0.000011	5.596158e-01
29	(90.48, 93.6]		0.888889	0.000043	16.0	2.0	0.000042		-0.179652		1.387779e-16
30	(93.6, 96.72] (96.72, 99.84]		0.888889	0.000021	6.0	0.0	0.000021	0.000025	-0.179652 NaN	0.000021	0.000000e+00 NaN
32	(99.84, 102.96]		1.000000	0.000014	3.0	0.0	0.000010	0.000000	NaN	0.000003	NaN
33	(102.96, 106.08]		1.000000	0.000012	5.0	0.0	0.000013	0.000000	NaN	0.000005	NaN
34	(106.08, 109.2]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
35	(109.2, 112.32]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
36	(112.32, 115.44]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
37	(115.44, 118.56]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	NaN	NaN
38	(118.56, 121.68]	2	1.000000	0.000005	2.0	0.0	0.000005	0.000000	NaN	0.000000	NaN
39	(121.68, 124.8]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000003	NaN
40	(124.8, 127.92]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
41	(127.92, 131.04]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
42	(131.04, 134.16]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
43	(134.16, 137.28]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
44	(137.28, 140.4]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
45	(140.4, 143.52]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
46	(143.52, 146.64]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
47	(146.64, 149.76]	0	NaN	0.000000	NaN	NaN	NaN	NaN	NaN	NaN	NaN
48	(149.76, 152.88]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	NaN	NaN
49	(152.88, 156.0]	1	1.000000	0.000002	1.0	0.0	0.000003	0.000000	NaN	0.000000	NaN

Les intervalles avec plus de 53 lignes de crédit ont un poids d'observations insignifiant.

Les deux premières catégories entre 0 et 6.24 ont un PdE très bas et un poids d'observations très faible.

Entre 6.24 et 21.84.

Entre 21.84 et 49.92.

À partir de 49.92, commence à zigzaguer fortement à cause de la faible quantité d'observations

```
In [219... x_train['total_acc<=6'] = np.where((x_train['total_acc'] <= 6), 1, 0)
    x_train['total_acc_6-22'] = np.where((x_train['total_acc'] > 6) & (x_train['total_acc'] <= 22), 1, 0)
    x_train['total_acc_22-50'] = np.where((x_train['total_acc'] > 22) & (x_train['total_acc'] <= 50), 1, 0)
    x_train['total_acc_>50'] = np.where((x_train['total_acc'] > 50), 1, 0)
```

dti

Ratio de dette sur le revenu Comme il s'agit d'un ratio, nous nous attendons à une variable continue, nous devons donc effectuer une classification fine

```
In [220... x_train['dti'].unique()
            \mathsf{array}(\texttt{[14.85, 16.5, 21.89, \dots, 38.21, 35.29, 38.39]})
Out[220]:
           x_train['dti_categ'] = pd.cut(x_train['dti'], 50)
In [221...
In [222...
           df = PdE_continue(x_train, 'dti_categ', y_train)
                                                                                                                                delta_PdE
                                                                                                                                                  VΙ
                dti_categ observations
                                          %_bon
                                                    %_obs n_bons n_malus %_n_bons %_n_malus
                                                                                                          PdE delta_%_n_bons
                   (-0.04
                                  1752 0.902968 0.004175
                                                             1582.0
                                                                        170.0
                                                                                0.004163
                                                                                            0.004284
                                                                                                     -0.028447
                                                                                                                                      NaN 0.000003
                      0.8
                 (0.8, 1.6]
                                        0.909995
                                                  0.005269
                                                             2012.0
                                                                        199.0
                                                                                0.005295
                                                                                            0.005014
                                                                                                      0.054486
                                                                                                                       0.001132
                                                                                                                                  0.082933 0.000015
             2
                                  2830 0.918728 0.006744
                                                                                0.006843
                                                                                            0.005795
                                                                                                      0.166094
                                                                                                                       0.001547
                                                                                                                                  0.111608 0.000174
                                                             2600.0
                                                                        230.0
                    2.399]
                   (2.399,
              3
                                  3657 0.917692 0.008714
                                                             3356.0
                                                                        301.0
                                                                                0.008832
                                                                                            0.007585
                                                                                                      0.152301
                                                                                                                       0.001990
                                                                                                                                  0.013793 0.000190
                    3.1991
                   (3.199,
                                  4607 0.920990 0.010978
                                                             4243.0
                                                                        364.0
                                                                                0.011167
                                                                                            0.009172
                                                                                                      0.196778
                                                                                                                       0.002334
                                                                                                                                  0.044477 0.000393
                    3.9991
                   (3.999,
                                  5666 0.924991 0.013502
                                                             5241.0
                                                                        425.0
                                                                                0.013793
                                                                                            0.010709
                                                                                                      0.253085
                                                                                                                       0.002627
                                                                                                                                  0.056306 0.000781
                    4.799]
                                  6751 0.922086 0.016087
                                                                                                                                  0.041151 0.000663
                                                             6225.0
                                                                        526.0
                                                                                0.016383
                                                                                            0.013254
                                                                                                      0.211934
                                                                                                                       0.002590
                    5.599]
```

_	(5.599,	7000	0.000040	0.040007	7000	504.0	0.040000	0.044740	0.00047		2 22 1222	
7	6.398] (6.398,	7666	0.923819	0.018267	7082.0	584.0	0.018638	0.014716	0.236317	0.002255	0.024383	0.000927
8	7.198]	8691	0.924520	0.020710	8035.0	656.0	0.021146	0.016530	0.246308	0.002508	0.009991	0.001137
9	7.998]	9897	0.925634	0.023584	9161.0	736.0	0.024110	0.018546	0.262387	0.002963	0.016079	0.001460
10	(7.998, 8.798]	10693	0.924156	0.025480	9882.0	811.0	0.026007	0.020435	0.241108	0.001898	0.021278	0.001343
11	(8.798, 9.598]	11563	0.919398	0.027554	10631.0	932.0	0.027979	0.023484	0.175103	0.001971	0.066005	0.000787
12	(9.598, 10.397]	12511	0.918791	0.029813	11495.0	1016.0	0.030252	0.025601	0.166945	0.002274	0.008158	0.000777
13	(10.397, 11.197]	13529	0.915145	0.032238	12381.0	1148.0	0.032584	0.028927	0.119048	0.002332	0.047897	0.000435
14	(11.197, 11.997]	14068	0.917899	0.033523	12913.0	1155.0	0.033984	0.029103	0.155040	0.001400	0.035992	0.000757
15	(11.997, 12.797]	14929	0.913457	0.035574	13637.0	1292.0	0.035890	0.032556	0.097501	0.001905	0.057539	0.000325
16	(12.797, 13.597]	15106	0.917715	0.035996	13863.0	1243.0	0.036484	0.031321	0.152602	0.000595	0.055100	0.000788
17	(13.597, 14.396]	15407	0.911339	0.036713	14041.0	1366.0	0.036953	0.034420	0.071001	0.000468	0.081601	0.000180
18	(14.396, 15.196]	15793	0.913443	0.037633	14426.0	1367.0	0.037966	0.034445	0.097320	0.001013	0.026319	0.000343
19	(15.196, 15.996]	15640	0.912340	0.037269	14269.0	1371.0	0.037553	0.034546	0.083455	0.000413	0.013865	0.000251
20	(15.996, 16.796]	15347	0.907278	0.036570	13924.0	1423.0	0.036645	0.035856	0.021753	0.000908	0.061702	0.000017
21	(16.796, 17.596]	15458	0.903028	0.036835	13959.0	1499.0	0.036737	0.037772	-0.027768	0.000092	0.049520	0.000029
22	(17.596, 18.395]	15278	0.904176	0.036406	13814.0	1464.0	0.036356	0.036890	-0.014584	0.000382	0.013184	0.000008
23	(18.395, 19.195]	14793	0.902995	0.035250	13358.0	1435.0	0.035155	0.036159	-0.028143	0.001200	0.013560	0.000028
24	(19.195, 19.995]	14711	0.897968	0.035055	13210.0	1501.0	0.034766	0.037822	-0.084251	0.000390	0.056108	0.000257
25	(19.995, 20.795]	14042	0.898376	0.033461	12615.0	1427.0	0.033200	0.035957	-0.079782	0.001566	0.004470	0.000220
26	(20.795, 21.595]	13348	0.894516	0.031807	11940.0	1408.0	0.031424	0.035479	-0.121370	0.001776	0.041588	0.000492
27	(21.595, 22.394]	12731	0.890818	0.030337	11341.0	1390.0	0.029847	0.035025	-0.159973	0.001576	0.038603	0.000828
28	(22.394, 23.194]	12281	0.887794	0.029264	10903.0	1378.0	0.028694	0.034723	-0.190689	0.001153	0.030716	0.001150
29	(23.194, 23.994]	11540	0.892028	0.027499	10294.0	1246.0	0.027092	0.031396	-0.147471	0.001603	0.043218	0.000635
30	(23.994, 24.794]	11042	0.886615	0.026312	9790.0	1252.0	0.025765	0.031548	-0.202475	0.001326	0.055004	0.001171
31	(24.794, 25.594]	9611	0.891583	0.022902	8569.0	1042.0	0.022552	0.026256	-0.152085	0.003213	0.050390	0.000563
32	(25.594, 26.393]	8743	0.893400	0.020834	7811.0	932.0	0.020557	0.023484	-0.133138	0.001995	0.018946	0.000390
33	(26.393, 27.193]	8130	0.890898	0.019373	7243.0	887.0	0.019062	0.022350	-0.159148	0.001495	0.026010	0.000523
34	(27.193, 27.993]	7536	0.886943	0.017958	6684.0	852.0	0.017591	0.021469	-0.199208	0.001471	0.040060	0.000772
35	(27.993, 28.793]	7130	0.887798	0.016990	6330.0	800.0	0.016659	0.020158	-0.190650	0.000932	0.008558	0.000667
36	(28.793, 29.593]	6597	0.886615	0.015720	5849.0	748.0	0.015393	0.018848	-0.202471	0.001266	0.011821	0.000699
37	(29.593, 30.392]	5334	0.885452	0.012710	4723.0	611.0	0.012430	0.015396	-0.213991	0.002963	0.011520	0.000635
38	(30.392, 31.192]	4357	0.883176	0.010382	3848.0	509.0	0.010127	0.012826	-0.236233	0.002303	0.022242	0.000637
39	(31.192, 31.992]	3950	0.889620	0.009412	3514.0	436.0	0.009248	0.010986	-0.172226	0.000879	0.064007	0.000299
40	(31.992, 32.792]	3433	0.882610	0.008181	3030.0	403.0	0.007974	0.010155	-0.241712	0.001274	0.069487	0.000527
41	(32.792, 33.592]	3199	0.886527	0.007623	2836.0	363.0	0.007464	0.009147	-0.203347	0.000511	0.038366	0.000342
42	(33.592)	2933	0.894647	0.006989	2624.0	309.0	0.006906	0.007786	-0.119980	0.000558	0.083367	0.000106

	34.391]		
43	(34.391, 35.191]	2081 0.887554 0.004959 1847.0 234.0 0.004861 0.005896 -0.193097 0.002045 0.073	117 0.000200
44	(35.191, 35.991]	615 0.931707 0.001465 573.0 42.0 0.001508 0.001058 0.354122 0.003353 0.5473	219 0.000159
45	(35.991, 36.791]	605 0.922314 0.001442 558.0 47.0 0.001469 0.001184 0.215118 0.000039 0.139	0.000061
46	(36.791, 37.591]	544 0.915441 0.001296 498.0 46.0 0.001311 0.001159 0.122865 0.000158 0.092	253 0.000019
47	(37.591, 38.39]	497 0.923541 0.001184 459.0 38.0 0.001208 0.000958 0.232370 0.000103 0.1099	505 0.000058
48	(38.39, 39.19]	407 0.901720 0.000970 367.0 40.0 0.000966 0.001008 -0.042611 0.000242 0.274	982 0.000002
49	(39.19, 39.99]	416 0.923077 0.000991 384.0 32.0 0.001011 0.000806 0.225813 0.000045 0.2684	124 0.000046

Les quatre premiers groupes ont un faible poids d'observations : 0 - 3.2 3.2 - 8.8 8.8 - 10.39 10.39 - 13.6 13.6 - 16 16 - 16.7 16.7 - 19.9 19.9 - 20.8 20.8 - 23.19 23.19 - 35.19 À partir de 35.19, il y a une augmentation considérable du PdE et des catégories avec un poids d'observations très faible.

```
In [224... x_train['dti<=3.2'] = np.where((x_train['dti'] <= 3.2), 1, 0)
    x_train['dti_3.2-8.8'] = np.where((x_train['dti'] > 3.2) & (x_train['dti'] <= 8.8), 1, 0)
    x_train['dti_8.8-10.4'] = np.where((x_train['dti'] > 8.8) & (x_train['dti'] <= 10.4), 1, 0)
    x_train['dti_10.4-13.6'] = np.where((x_train['dti'] > 10.4) & (x_train['dti'] <= 13.6), 1, 0)
    x_train['dti_13.6-16.0'] = np.where((x_train['dti'] > 13.6) & (x_train['dti'] <= 16.0), 1, 0)
    x_train['dti_16.0-16.7'] = np.where((x_train['dti'] > 16.0) & (x_train['dti'] <= 16.7), 1, 0)
    x_train['dti_16.7-19.9'] = np.where((x_train['dti'] > 16.7) & (x_train['dti'] <= 19.9), 1, 0)
    x_train['dti_19.9-20.8'] = np.where((x_train['dti'] > 19.9) & (x_train['dti'] <= 20.8), 1, 0)
    x_train['dti_20.8-23.2'] = np.where((x_train['dti'] > 20.8) & (x_train['dti'] <= 23.2), 1, 0)
    x_train['dti_23.2-35.2'] = np.where((x_train['dti'] > 23.2) & (x_train['dti'] <= 35.2), 1, 0)
    x_train['dti>35.2'] = np.where((x_train['dti'] > 35.2), 1, 0)
```

'mths_since_last_record'

Le nombre de mois depuis la dernière inscription publique

```
In [225... x_train['mths_since_last_record'].unique()
```

```
Out[225]: array([ nan, 48., 96., 81.,
                                         99.,
                                                                17.,
                                               69., 45., 103.,
                                                                      22., 107.,
                  49.,
                                         25.,
                                                                35.,
                                                                      65., 62.,
                       64., 111., 104.,
                                               79., 112., 61.,
                       70.,
                             78.,
                                  50.,
                                          7.,
                  53.,
                                                0.,
                                                    92.,
                                                          41.,
                                                                23.,
                                                                      85., 117.,
                                        46.,
                 88.,
                       60.,
                             93.,
                                   89.,
                                               90.,
                                                    33.,
                                                          67.,
                                                                56.,
                                                                      52., 87.,
                             37.,
                                                    94.,
                                                          27.,
                                                                91.,
                  47., 102.,
                                   84., 114., 109.,
                                                                      66., 101.,
                                                                            80.,
                  72., 113., 106.,
                                  58., 51.,
                                               20.,
                                                    38.,
                                                          82., 115.,
                                                                      95.,
                                               75.,
                                         40.,
                                                    97.,
                 108., 39., 57., 118.,
                                                           59., 42., 110.,
                             12.,
                       30.,
                                               68., 100.,
                                                          98., 119.,
                                                                      43.,
                                                                            29.,
                  44.,
                                  24., 116.,
                             18., 105.,
                  71.,
                       32.,
                                         36.,
                                               86.,
                                                    73.,
                                                          74.,
                                                                54.,
                                                                      63.,
                                                                            76.,
                  14.,
                       77.,
                                                    83.,
                                                          26.,
                                                                31.,
                                                                      15.,
                                                                           19.,
                             55., 6.,
                                         34.,
                                               8.,
                  5.,
                       16.,
                             10.,
                                   28., 11.,
                                               13.,
                                                     4.,
                                                           1.,
                                                                 3.,
                                                                       9., 121.,
                   2., 120., 129.])
```

La première chose que nous remarquons est qu'il y a des valeurs "nan" avec lesquelles nous devons composer avant de faire la classification fine.

```
In [226... df_temp = x_train[pd.notnull(x_train['mths_since_last_record'])]
```

Maintenant, effectuons la classification fine à partir des valeurs numériques dans df_temp.

```
In [227... df_temp['mths_since_last_record_categ'] = pd.cut(df_temp['mths_since_last_record'], 50)

C:\Users\IDEAPAD5\AppData\Local\Temp\ipykernel_21276\228590877.py:1: SettingWithCopyWarning:
   A value is trying to be set on a copy of a slice from a DataFrame.
   Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#ret urning-a-view-versus-a-copy
   df temp['mths since last record categ'] = pd.cut(df temp['mths since last record'], 50)
```

index sur df_temp pour sélectionner du dataframe y_train uniquement les observations avec des valeurs numériques dans la variable 'mths_since_last_record'.

```
In [228... df = PdE_continue(df_temp, 'mths_since_last_record_categ', y_train[df_temp.index])
df
```

C:\Users\IDEAPAD5\anaconda3\lib\site-packages\pandas\core\arraylike.py:397: RuntimeWarning: divide by zero enco untered in log result = getattr(ufunc, method)(*inputs, **kwargs)

Out[228]:		mths_since_last_record_categ	observations	%_bon	%_obs	n_bons	n_malus	%_n_bons	%_n_malus	PdE	delta_%_n_bons
	0	(-0.129, 2.58]	1180	0.762712	0.020979	900.0	280.0	0.017542	0.056657	-1.172413	NaN
	1	(2.58, 5.16]	140	0.942857	0.002489	132.0	8.0	0.002573	0.001619	0.463342	0.014969
	2	(5.16, 7.74]	144	0.923611	0.002560	133.0	11.0	0.002592	0.002226	0.152436	0.000019
	3	(7.74, 10.32]	282	0.939716	0.005014	265.0	17.0	0.005165	0.003440	0.406498	0.002573
	4	(10.32, 12.9]	226	0.911504	0.004018	206.0	20.0	0.004015	0.004047	-0.007874	0.001150
	5	(12.9, 15.48]	357	0.929972	0.006347	332.0	25.0	0.006471	0.005059	0.246241	0.002456
	6	(15.48, 18.06]	379	0.923483	0.006738	350.0	29.0	0.006822	0.005868	0.150619	0.000351
	7	(18.06, 20.64]	271	0.944649	0.004818	256.0	15.0	0.004990	0.003035	0.497109	0.001832
	8	(20.64, 23.22]	507	0.927022	0.009014	470.0	37.0	0.009161	0.007487	0.201797	0.004171
	9	(23.22, 25.8]	360	0.941667	0.006400	339.0	21.0	0.006608	0.004249	0.441460	0.002553
	10	(25.8, 28.38]	642	0.925234	0.011414	594.0	48.0	0.011578	0.009713	0.175660	0.004970
	11	(28.38, 30.96]	492	0.924797	0.008747	455.0	37.0	0.008869	0.007487	0.169361	0.002709
	12	(30.96, 33.54]	801	0.941323	0.014241	754.0	47.0	0.014696	0.009510	0.435227	0.005828
	13	(33.54, 36.12]	876	0.930365	0.015574	815.0	61.0	0.015885	0.012343	0.252296	0.001189
	14	(36.12, 38.7]	752	0.946809	0.013370	712.0	40.0	0.013878	0.008094	0.539180	0.002008
	15	(38.7, 41.28]	1107	0.939476	0.019681	1040.0	67.0	0.020271	0.013557	0.402265	0.006393
	16	(41.28, 43.86]	910	0.939560	0.016179	855.0	55.0	0.016665	0.011129	0.403750	0.003606
	17	(43.86, 46.44]	1390	0.938849	0.024712	1305.0	85.0	0.025436	0.017200	0.391289	0.008771

18	(46.44, 49.02]	1553	0.936896	0.027610	1455.0	98.0	0.028360	0.019830	0.357776	0.002924
19	(49.02, 51.6]	1092	0.937729	0.019414	1024.0	68.0	0.019959	0.013760	0.371946	0.008401
20	(51.6, 54.18]	1844	0.932755	0.032784	1720.0	124.0	0.033525	0.025091	0.289780	0.013566
21	(54.18, 56.76]	1191	0.941226	0.021174	1121.0	70.0	0.021850	0.014164	0.433463	0.011675
22	(56.76, 59.34]	1826	0.937568	0.032464	1712.0	114.0	0.033369	0.023068	0.369201	0.011519
23	(59.34, 61.92]	1293	0.916473	0.022988	1185.0	108.0	0.023097	0.021854	0.055349	0.010272
24	(61.92, 64.5]	1868	0.934690	0.033211	1746.0	122.0	0.034032	0.024686	0.321044	0.010935
25	(64.5, 67.08]	1837	0.939031	0.032660	1725.0	112.0	0.033622	0.022663	0.394465	0.000409
26	(67.08, 69.66]	1151	0.927020	0.020463	1067.0	84.0	0.020797	0.016997	0.201771	0.012825
27	(69.66, 72.24]	1723	0.928613	0.030633	1600.0	123.0	0.031186	0.024889	0.225556	0.010389
28	(72.24, 74.82]	1026	0.921053	0.018241	945.0	81.0	0.018419	0.016390	0.116718	0.012767
29	(74.82, 77.4]	1627	0.921328	0.028926	1499.0	128.0	0.029217	0.025900	0.120505	0.010798
30	(77.4, 79.98]	1043	0.917546	0.018543	957.0	86.0	0.018653	0.017402	0.069438	0.010564
31	(79.98, 82.56]	1528	0.913613	0.027166	1396.0	132.0	0.027210	0.026710	0.018546	0.008557
32	(82.56, 85.14]	1288	0.913043	0.022899	1176.0	112.0	0.022922	0.022663	0.011357	0.004288
33	(85.14, 87.72]	1051	0.863939	0.018685	908.0	143.0	0.017698	0.028936	-0.491618	0.005224
34	(87.72, 90.3]	1425	0.883509	0.025335	1259.0	166.0	0.024540	0.033590	-0.313933	0.006841
35	(90.3, 92.88]	1069	0.871843	0.019005	932.0	137.0	0.018166	0.027722	-0.422666	0.006374
36	(92.88, 95.46]	1759	0.876066	0.031273	1541.0	218.0	0.030036	0.044112	-0.384326	0.011870
37	(95.46, 98.04]	1967	0.883071	0.034971	1737.0	230.0	0.033856	0.046540	-0.318183	0.003820
38	(98.04, 100.62]	1404	0.896724	0.024961	1259.0	145.0	0.024540	0.029340	-0.178679	0.009317
39	(100.62, 103.2]	2262	0.898320	0.040215	2032.0	230.0	0.039606	0.046540	-0.161322	0.015067
40	(103.2, 105.78]	1698	0.902827	0.030188	1533.0	165.0	0.029880	0.033387	-0.110982	0.009726
41	(105.78, 108.36]	2582	0.904725	0.045905	2336.0	246.0	0.045532	0.049777	-0.089154	0.015651
42	(108.36, 110.94]	1831	0.915893	0.032553	1677.0	154.0	0.032687	0.031161	0.047791	0.012845
43	(110.94, 113.52]	2385	0.901048	0.042402	2149.0	236.0	0.041887	0.047754	-0.131092	0.009200
44	(113.52, 116.1]	2303	0.897525	0.040944	2067.0	236.0	0.040288	0.047754	-0.169996	0.001598
45	(116.1, 118.68]	1396	0.911891	0.024819	1273.0	123.0	0.024812	0.024889	-0.003071	0.015476
46	(118.68, 121.26]	408	0.884804	0.007254	361.0	47.0	0.007036	0.009510	-0.301288	0.017776
47	(121.26, 123.84]	0		0.000000	NaN	NaN	NaN	NaN	NaN	NaN
48	(123.84, 126.42]	0		0.000000	NaN	NaN	NaN	NaN	NaN	NaN
49	(126.42, 129.0]	7	0.000000	0.000018	0.0	1.0	0.000000	0.000202	NaN	NaN

Nous remarquons qu'il n'y a pas beaucoup d'observations dans les intervalles 1-7 et 46-49.

Définissons les groupes : Groupe "sans valeurs" 0-3 a le plus bas PdE Les groupes de 1 à 7 qui n'avaient pas beaucoup d'observations : 3 - 21 21-31 31-85 85+

Prétraitement des données d'évaluation

```
In [232... #Final x train = x train
    #Final y train = y train
    #une fois executé Ne pas Oublier de mettre comme comentaire

In [233... #x_train=x_test
    #y_train=y_test

#une fois executé Ne pas Oublier de mettre comme comentaire

In [235... # Export *.csv pour les modèles

In [236... #Final x_train.to_csv('Final x_train')
    #Final y train.to_csv('Final y_train')
    #Final x_test.to_csv('Final x_test')
    #Final y_train.to_csv('Final y_test')
```

Loading [MathJax]/extensions/Safe.js