Chapter 5: Process Synchronization

Chapter 5: Process Synchronization

- Background
- The Critical-Section Problem
- Peterson's Solution
- Semaphores
- Classic Problems of Synchronization

Objectives

- To present the concept of process synchronization.
- To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data
- To present solution of the critical-section problem
- To examine several classical process-synchronization problems

Background

- Processes can execute concurrently
 - May be interrupted at any time, partially completing execution
- Concurrent access to shared data may result in data inconsistency
- Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes
- Illustration of the problem:
 Suppose that we wanted to provide a solution to the consumer-producer problem that fills *all* the buffers. We can do so by having an integer **counter** that keeps track of the number of full buffers. Initially, **counter** is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the consumer after it consumes a buffer.

Producer

```
while (true) {
    /* produce an item in next produced */

    while (counter == BUFFER_SIZE) ;
        /* do nothing */
    buffer[in] = next_produced;
    in = (in + 1) % BUFFER_SIZE;
    counter++;
}
```


Consumer

```
while (true) {
    while (counter == 0)
        ; /* do nothing */
    next_consumed = buffer[out];
    out = (out + 1) % BUFFER_SIZE;
        counter--;
    /* consume the item in next consumed */
}
```


Race Condition

• counter++ could be implemented as

```
register1 = counter counter=5
register1 = register1 + 1 reg1=6
counter = register1 counter=6
```

• **counter--** could be implemented as

• Consider this execution interleaving with "count = 5" initially:

```
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6}
S5: consumer execute counter = register2 {counter = 4}
```

• A situation where all processes access and manipulate the same data concurrently and outcome of execution depends on particular order in which the access takes place is called race condition.

Critical Section Problem

- Consider system of n processes $\{p_0, p_1, \dots p_{n-1}\}$
- Each process has critical section segment of code
 - Process may be changing common variables, updating table, writing file, etc
 - When one process in critical section, no other may be in its critical section
- *Critical section problem* is to design protocol to solve this
- Each process must ask permission to enter critical section in entry section, may follow critical section with exit section, then remainder section

Critical Section

• General structure of process P_i

```
entry section

critical section

exit section

remainder section
} while (true);
```


Solution to Critical-Section Problem

- 1. Mutual Exclusion If process P_i is executing in its critical section, then no other processes can be executing in their critical sections
- 2. **Progress** If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely
- 3. **Bounded Waiting** A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted
 - Assume that each process executes at a nonzero speed
 - No assumption concerning **relative speed** of the *n* processes

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or nonpreemptive

- Preemptive allows preemption of process when running in kernel mode
- Non-preemptive runs until exits kernel mode, blocks, or voluntarily yields CPU
 - 4 Essentially free of race conditions in kernel mode

Peterson's Solution

- Good algorithmic description of solving the problem
- Two process solution
- Assume that the **load** and **store** machine-language instructions are atomic; that is, cannot be interrupted
- The two processes share two variables:
 - int turn;
 - Boolean flag[2]
- The variable turn indicates whose turn it is to enter the critical section
- The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies that process P; is ready!

Algorithm for Process P

```
do {
  flag[i] = true;
  turn = j;
  while (flag[j] && turn = = j);
     critical section
  flag[i] = false;
    remainder section
} while (true);
```


Algorithm for Process P

```
Process 0
do {
    flag[0] = true;
    turn = 1;
   while (flag[1] && turn = = 1);
       critical section
    flag[0] = false;
        remainder section
    } while (true);
                   0
```

```
process 1

do {
    flag[1] = true;
    turn = 0;
    while (flag[0] && turn = = 0);
        critical section

    flag[1] = false;
        remainder section
} while (true);
```


Peterson's Solution (Cont.)

- Provable that the three CS requirement are met:
 - 1. Mutual exclusion is preserved

```
P<sub>i</sub> enters CS only if:
   either flag[j] = false or turn = i
```

- 2. Progress requirement is satisfied
- 3. Bounded-waiting requirement is met

Semaphore

- Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to synchronize their activities.
- Semaphore S integer variable
- Can only be accessed via two indivisible (atomic) operations
 - wait() and signal()4 Originally called P() and V()
- Definition of the wait() operation s=1

```
wait(S) {
    while (S <= 0)
        ; // busy wait
    S--;
</pre>
```

Definition of the signal() operation

```
signal(S) {
   S++;
}
```


Semaphore Usage

- Counting semaphore integer value can range over an unrestricted domain
- Binary semaphore integer value can range only between 0 and 1
 - Same as a mutex lock
- Can solve various synchronization problems
- Consider P_1 and P_2 that require S_1 to happen before S_2 Create a semaphore "synch" initialized to 0
- Can implement a counting semaphore S as a binary semaphore

Semaphore Implementation

- Must guarantee that no two processes can execute the wait() and signal() on the same semaphore at the same time
- Thus, the implementation becomes the critical section problem where the wait and signal code are placed in the critical section
 - Could now have busy waiting in critical section implementation
 - 4 But implementation code is short
 - 4 Little busy waiting if critical section rarely occupied
- Note that applications may spend lots of time in critical sections and therefore this is not a good solution

Semaphore Implementation with no Busy waiting

- With each semaphore there is an associated waiting queue
- Each entry in a waiting queue has two data items:
 - value (of type integer)
 - pointer to next record in the list
- Two operations:
 - **block** place the process invoking the operation on the appropriate waiting queue
 - wakeup remove one of processes in the waiting queue and place it in the ready queue

```
• typedef struct{
  int value;
  struct process *list;
} semaphore;
```


Implementation with no Busy waiting (Cont.)

```
wait(semaphore *S) {
   S->value--;
   if (S->value < 0) {
      add this process to S->list;
      block();
}
signal(semaphore *S) {
   S->value++;
   if (S->value <= 0) {
      remove a process P from S->list;
      wakeup(P);
```


Deadlock and Starvation

- **Deadlock** two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes
- Let S and Q be two semaphores initialized to 1. s=0 q=0

```
P_0 \qquad \qquad P_1 \\ \text{wait(S);} \qquad \qquad \text{wait(Q);} \\ \text{wait(Q);} \qquad \qquad \text{wait(S);} \\ \cdots \qquad \qquad \cdots \\ \text{signal(S);} \qquad \qquad \text{signal(Q);} \\ \text{signal(Q);} \qquad \qquad \text{signal(S);} \\
```

- Starvation indefinite blocking
 - A process may never be removed from the semaphore queue in which it is suspended
- **Priority Inversion** Scheduling problem when lower-priority process holds a lock needed by higher-priority process
 - Solved via priority-inheritance protocol

Classical Problems of Synchronization

- Classical problems used to test newly-proposed synchronization schemes
 - Bounded-Buffer Problem
 - Readers and Writers Problem
 - Dining-Philosophers Problem

Bounded-Buffer Problem

- *n* buffers, each can hold one item
- Semaphore **mutex** initialized to the value 1
- Semaphore **full** initialized to the value 0
- Semaphore **empty** initialized to the value n

Bounded Buffer Problem (Cont.)

• The structure of the producer process

```
12
0
Empty=3
         Mutex= 1
                    full=1
    do {
           /* produce an item in next produced */
        wait(empty);
        wait(mutex);
           /* add next produced to the buffer */
        signal(mutex);
        signal(full);
     } while (true);
```


Bounded Buffer Problem (Cont.)

- The structure of the consumer process
- Full=0 mutex=0

```
Do {
   wait(full);
   wait(mutex);
       /* remove an item from buffer to next_consumed */
   signal(mutex);
   signal(empty);
       /* consume the item in next consumed */
   } while (true);
```


Readers-Writers Problem

- A data set is shared among a number of concurrent processes
 - Readers only read the data set; they do *not* perform any updates
 - Writers can both read and write
- Problem allow multiple readers to read at the same time
 - Only one single writer can access the shared data at the same time
- Several variations of how readers and writers are considered all involve some form of priorities
- Shared Data
 - Data set
 - Semaphore rw_mutex initialized to 1
 - Semaphore **mutex** initialized to 1
 - Integer **read_count** initialized to 0

Readers-Writers Problem (Cont.)

• The structure of a writer process

Readers-Writers Problem (Cont.)

• The structure of a reader process

```
do {
       wait(mutex);
       read count++;
       if (read count == 1)
       wait(rw mutex);
    signal(mutex);
       /* reading is performed */
    wait(mutex);
       read count--;
       if (read count == 0)
    signal(rw mutex);
    signal(mutex);
} while (true);
```


Readers-Writers Problem Variations

- *First* variation no reader kept waiting unless writer has permission to use shared object
- **Second** variation once writer is ready, it performs the write ASAP
- Both may have starvation leading to even more variations
- Problem is solved on some systems by kernel providing reader-writer locks

Dining-Philosophers Problem

- Philosophers spend their lives alternating thinking and eating
- Don't interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl
 - Need both to eat, then release both when done
- In the case of 5 philosophers
 - Shared data
 - 4 Bowl of rice (data set)
 - 4 Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

• The structure of Philosopher *i*:

```
do {
    wait (chopstick[i] );
    wait (chopStick[ (i + 1) % 5] );
                // eat
     signal (chopstick[i] );
    signal (chopstick[ (i + 1) % 5] );
                     think
} while (TRUE);
```

• What is the problem with this algorithm?

Dining-Philosophers Problem Algorithm (Cont.)

- Deadlock handling
 - Allow at most 4 philosophers to be sitting simultaneously at the table.
 - Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section.
 - Use an asymmetric solution -- an odd-numbered philosopher picks up first the left chopstick and then the right chopstick. Even-numbered philosopher picks up first the right chopstick and then the left chopstick.

Problems with Semaphores

- Incorrect use of semaphore operations:
 - signal (mutex) wait (mutex)
 - wait (mutex) ... wait (mutex)
 - Omitting of wait (mutex) or signal (mutex) (or both)
- Deadlock and starvation are possible.