#### STUDENTI:

Citarella Emanuele (mat. 697086) - e.citarella1@studenti.uniba.it

Gadaleta Alessia (mat. 697885) – a.gadaleta27@studenti.uniba.it

Iacobellis Giorgia (mat. 696994) - g.iacobellis27@studenti.uniba.it

Ladisa Mattia Sebastiano (mat. 697887) – m.ladisa19@studenti.uniba.it

## Relazione Caso di Studio-Ingegneria della Conoscenza

Utilizzo di tecniche di apprendimento supervisionato per classificazione di film e serie TV in base al genere, recommender system basato su clustering e costruzione di una base di conoscenza

Repository: https://github.com/giorgiaiacobellis/Icon 2020-2021.git

#### 1. INTRODUZIONE

L'obiettivo del caso di studio è quello di sfruttare informazioni relative a film e serie tv presenti sulla piattaforma Netflix al fine di realizzare un sistema di classificazione e raccomandazione di film e serie tv stesse.

Nello specifico, il progetto è suddiviso in quattro sezioni principali:

- Preprocessing, finalizzato all'adattamento dei dati per renderli più conformi all'utilizzo successivo;
- Classificazione, sfruttando tecniche di apprendimento supervisionato con confronto e valutazione
  di diversi classificatori e relative performance, individuando il classificatore più performante per gli
  obiettivi determinati e seguente utilizzo di esso per predizione del genere di un film fornito
  dall'utente;
- Recommender system, utilizzato per suggerire all'utente film simili ad uno fornito da egli stesso, sfruttando alla base la tecnica di apprendimento non supervisionato del clustering;
- Base di conoscenza, finalizzata a consentire all'utente di effettuare domande sulle conseguenze logiche e ricevere risposte dalla macchina stessa.

### Strumenti:

Per la realizzazione è stato utilizzato il linguaggio Python, scelto poichè particolarmente performante nello sviluppo di sistemi basati su conoscenza e per la quantità di librerie disponibili e utili agli obiettivi del progetto.

Tutte le librerie e versioni utilizzate sono definite nel file "requirements.txt".

In particolare le librerie utilizzate sono state:

• *Pandas*, libreria utile per la manipolazione e l'analisi dei dati, utilizzata nella sezione relativa al preprocessing;

- *scikit-learn*, libreria utile per le tecniche di apprendimento, utilizzata nella sezione relativa alla classificazione e alla clusterizzazione;
- *matplotlib*, libreria utile alla realizzazione di grafici, utilizzata nella sezione relativa alla classificazione e alla clusterizzazione;
- *imb-learn,* libreria utile a gestire set di dati sbilanciati, utilizzata nella sezione relativa alla classificazione;
- kmodes, libreria utile a realizzare clusterizzazione mediante algoritmo K-Modes, utilizzata nella sezione relativa la clusterizzazione stessa;
- fuzzywuzzy, libreria utile a calcolare similarità tra stringhe, utilizzata nella sezione relativa la clusterizzazione;
- *numpy*, libreria utile per eseguire calcoli su vettori e matrici, utilizzata in tutte le sezioni del progetto.

Per il testing e la cross validation dei classificatori è stata utilizzata la piattaforma *Google Colaboratory*, sfruttando la potenza di calcolo messa a disposizione da essa per velocizzare il processo.

#### 2. PREPROCESSING DEI DATI

I dataset utilizzati nel caso di studio sono stati reperiti dal sito Kaggle in formato csv e sono i seguenti:

- Dataset film Netflix (2 Netflix Movie.csv)
- Dataset film e serie tv Netflix (1 Netfix Movie.csv)
- Dataset IMDB ratings film (IMDb\_rating.csv)

Le informazioni fornite dai dataset sono presentate nelle seguenti tabelle:

## 1\_Netflix\_Movie



# 2\_Netflix\_Movie

| title                                    | duration | release_year | genre                                              | director                      | cast                     | country                     | rating |
|------------------------------------------|----------|--------------|----------------------------------------------------|-------------------------------|--------------------------|-----------------------------|--------|
| #FriendButMarried                        | 102      | 2018         | Dramas, International<br>Movies, Romantic Movies   | Rako Prijanto                 | Adipati Dolken, Vanesha  | Indonesia                   |        |
| #Selfie                                  | 125      | 2014         | Comedies, Dramas,<br>International Movies          | Cristina Jacob                | Flavia Hojda, Crina Sem… | Romania                     | 6.1    |
| #Selfie 69                               | 119      | 2016         | Comedies, Dramas,<br>International Movies          | Cristina Jacob                | Maia Morgenstern, Olimp  | Romania                     | 6.3    |
| #realityhigh                             | 99       | 2017         | Comedies                                           | Fernando Lebrija              | Nesta Cooper, Kate Wals  | United States               | 5.2    |
| 10 Days in Sun City                      | 87       | 2017         | Comedies, International<br>Movies, Romantic Movies | Adze Ugah                     | Ayo Makun, Adesua Etomi  | South Africa                | 5.3    |
| 10 jours en or                           | 97       | 2012         | Comedies, Dramas,<br>International Movies          | Nicolas Brossette             | Franck Dubosc, Claude R  | France                      | 5.8    |
| 100 Meters                               | 109      | 2016         | Dramas, International<br>Movies, Sports Movies     | Marcel Barrena                | Dani Rovira, Karra Elej… | Portugal, Spain             | 7.5    |
| 1000 Rupee Note                          | 89       | 2014         | Dramas, International<br>Movies                    | Shrihari Sathe                | Usha Naik, Sandeep Path  | India                       | 7.3    |
| 12 ROUND GUN                             | 90       | 2017         | Dramas, Independent<br>Movies, Sports Movies       | Sam Upton                     | Sam Upton, Jared Abraha  | United States               | 4.7    |
| 122                                      | 95       | 2019         | Horror Movies,<br>International Movies             | Yasir Al Yasiri               | Amina Khalil, Ahmed Daw  | Egypt                       | 7.1    |
| 13 Cameras                               | 90       | 2015         | Horror Movies, Indepen                             | Victor Zarcoff                | PJ McCabe, Brianne Monc  | United States               | 5.1    |
| 13 Sins                                  | 93       | 2014         | Horror Movies,<br>Thrillers                        | Daniel Stamm                  | Mark Webber, Rutina Wes  | United States               | 6.3    |
| 14 Blades                                | 113      | 2010         | Action & Adventure,<br>International Movies        | Daniel Lee                    | Donnie Yen, Zhao Wei, W  | Hong Kong, China, Singapore | 6.3    |
| 14 Cameras                               | 89       | 2018         | Horror Movies,<br>Thrillers                        | Scott Hussion, Seth<br>Fuller | Neville Archambault, Am  | United States               | 4.5    |
| 15 August                                | 124      | 2019         | Comedies, Dramas,<br>Independent Movies            | Swapnaneel Jayakar            | Rahul Pethe, Mrunmayee   | India                       | 5.8    |
| 18 Presents                              | 114      | 2020         | Dramas, Independent Mo                             | Francesco Amato               | Vittoria Puccini, Bened  | Italy                       | 6.7    |
| 1898: Our Last Men in<br>the Philippines | 130      | 2016         | Dramas, International<br>Movies                    | Salvador Calvo                | Luis Tosar, Javier Guti  | Spain                       | 6.5    |
| 1920                                     | 143      | 2008         | Horror Movies, Interna                             | Vikram Bhatt                  | Rajneesh Duggal, Adah S  | India                       | 6.4    |
| 1922                                     | 103      | 2017         | Dramas, Thrillers                                  | Zak Hilditch                  | Thomas Jane, Molly Park  | United States               | 6.3    |
| 2 Alone in Paris                         | 97       | 2008         | Comedies, International<br>Movies                  | Ramzy Bedia, Éric<br>Judor    | Ramzy Bedia, Éric Judor… | France                      | 5.4    |
| 2 States                                 | 143      | 2014         | Comedies, Dramas,<br>International Movies          | Abhishek Varman               | Alia Bhatt, Arjun Kapoo… | India                       | 6.9    |

# IMDb\_rating

| index | title                                                  | total_votes | mean_vote |
|-------|--------------------------------------------------------|-------------|-----------|
| 0     | Miss Jerry                                             | 154         | 5.9       |
| 1     | The Story of the Kelly Gang                            | 589         | 6.3       |
| 2     | Den sorte drøm                                         | 188         | 6         |
| 3     | Cleopatra                                              | 446         | 5.3       |
| 4     | L'Inferno                                              | 2237        | 6.9       |
| 5     | From the Manger to the Cross; or,<br>Jesus of Nazareth | 484         | 5.8       |
| 6     | Madame DuBarry                                         | 753         | 6.8       |
| 7     | Quo Vadis?                                             | 273         | 6.2       |
| 8     | Independenta Romaniei                                  | 198         | 7.1       |
| 9     | Richard III                                            | 225         | 5.4       |
| 10    | Atlantis                                               | 331         | 6.6       |
| 11    | Fantômas - À l'ombre de la<br>guillotine               | 1944        | 6.6       |
| 12    | Il calvario di una madre                               | 948         | 7.2       |
| 13    | Juve contre Fantômas                                   | 1349        | 6.5       |
| 14    | Ma l'amor mio non muore                                | 100         | 6.3       |
| 15    | Maudite soit la guerre                                 | 124         | 6.7       |
| 16    | Le mort qui tue                                        | 1050        | 6.6       |
| 17    | Amore di madre                                         | 187         | 6.1       |
| 18    | Lo studente di Praga                                   | 1768        | 6.5       |
| 19    | Traffic in Souls                                       | 552         | 6         |
| 20    | Gli ultimi giorni di Pompei                            | 474         | 6.1       |

Per rendere i dati adatti e conformi alle operazioni da svolgere successivamente, sono state effettuate diverse operazioni di preprocessing, ossia:

- Unificazione dei tre dataset tramite merge per ottenere uno unico finale;
- Eliminazione delle colonne ritenute superflue ai fini del progetto;
- Rimozione dei duplicati;
- Discretizzazione della colonna year, sostituendola con la colonna year\_range;
- Riduzione dei generi associati a ciascun film, mantenendone uno unico per ciascuno;
- Standardizzazione della colonna duration, a causa di discordanze dell'unità di misura utilizzata nei diversi dataset;
- Riduzione degli attori presenti nella colonna cast, mantenendone uno unico per ciascun film, effettuando la scelta sulla base delle occorrenze degli attori stessi nel dataset e optando per quelli che risultano maggiormente citati;
- Inserimento del valore 'Movie' nella colonna *type* per le row che presentavano un valore nullo ma proveniente dal dataset contenente unicamente film e non serie tv;
- Conversione dei valori della colonna genres da categorici a numerici mediante metodo di conversione delle dummy variables, utile per la successiva operazione di imputation;
- Ridenominazione dei valori nella colonna genres, per renderli coerenti tra loro;
- Conversione dei valori nella colonna *type*, da categorici a numerici mediante tecnica di conversione del *label encoder*, utile per la successiva operazione di *imputation*;
- Conversione dei valori nella colonna year\_range, da categorici a numerici mediante tecnica di conversione del label encoder, utile per la successiva operazione di imputation;
- Conversione dei valori nella colonna director, da categorici a numerici mediante tecnica di conversione del label encoder, utile per la successiva operazione di imputation;
- Conversione dei valori nella colonna *title*, da categorici a numerici mediante tecnica di conversione del *label encoder*, utile per la successiva operazione di *imputation*;
- Riduzione dei valori presenti nella colonna country, mantenendone uno unico per ciascun film e conversione degli stessi da categorici a numeri mediante tecnica di conversione del label encoder;
- > Feature imputation per i valori della colonna ratings mancanti tramite KNNImputer;
- Feature imputation per i valori della colonna genre mancanti tramite hot-deck imputation;
- Eliminazione delle row con informazioni mancanti su cui l'operazione di values imputation era impossibile da effettuare;
- Standardizzazione dei valori della colonna ratings.

Il dataset ottenuto viene poi utilizzato per classificazione e clustering, in cui subisce ulteriori piccole modifiche per renderlo adatto alle funzioni da eseguire.

#### 3. CLASSIFICAZIONE

Classificazione e predizione sono processi che consistono nel creare modelli che possono essere usati per descrivere degli insiemi di dati o per fare predizioni future.

Il processo di classificazione può essere visto come un processo a tre fasi: addestramento, in cui si produce un modello da un insieme di dati detto training set, stima dell'accuratezza, in cui si stima l'accuratezza del modello usando un insieme di test e utilizzo del modello, in cui si classificano istanze di classe ignota.

La classificazione nel caso di studio è stata utilizzata con lo scopo di predire, tramite addestramento sul dataset precedentemente ottenuto, il genere di un film fornito dall'utente.

La feature target, ossia la label da predire, è quindi relativa la colonna *genre*.

Il dataset utilizzato è abbastanza complesso e ampio, pertanto è stata necessaria una prima fase dedita ad una ricerca accurata del classificatore più adatto, ossia quello in in grado di gestire il dataset in questione. Infatti, nel machine learning esiste il teorema "No free Lunch" che afferma che non esiste un algoritmo che vada bene per qualsiasi problema e, di conseguenza, sono necessarie varie prove per trovare il modello di predizione più accurato, valutando le performance di ciascuna alternativa, al fine di trovare la più adatta.

Il metodo utilizzato per attuare questa ricerca è stato quello di considerare i classificatori le cui caratteristiche sembravano ottimali per il caso di studio, per poi valutarne le performance tramite cross validation ed in seguito effettuare un confronto tra tutti.

Una volta trovato il più performante, questo è stato utilizzato per le predizioni del sistema.



La scelta degli algoritmi da testare si è, in parte, basata sulla guida grafica presente nell'immagine. (fonte <a href="https://scikit-learn.org/stable/tutorial/machine">https://scikit-learn.org/stable/tutorial/machine</a> learning map/).

I classificatori considerati sono:

#### - K-Nearest Neighbors Classifier (KNN)

Questo classificatore restituisce come output il genere di appartenenza del film dato in input, basando la classificazione sulla pluralità dei voti dei suoi vicini, cioè viene assegnata la classe più presente tra i k film più simili ritrovati, calcolati per similarità dal film da definire dato in input – per determinare il k, uno dei metodi maggiormente impiegati grazie alla sua efficienza è la *cross validation*, mentre riguardo i calcoli della distanza, il metodo prevede che i film siano rappresentati come vettori di posizione in uno spazio multidimensionale.

È un tipo di classificatore non generalizzante, poiché attua predizioni ricordando i dati di addestramento, piuttosto che costruendo un nuovo modello.

È la tecnica **più semplice** che si può applicare, **spesso efficace** ma **lenta** e richiede **molta memoria** poichè il costo di calcolo è quadratico.

#### - C-Support Vector Classification (SVC)

L'algoritmo SVM, seppur utilizzato per classificazioni binarie, può essere impiegato per problemi di classificazione multiclasse, utilizzando la metodologia one-vs-one.

Nello specifico, si creano k(k-1)/2 classificatori, dove k è il numero di classi, che effetuano classificazione su coppie di classi, per poi assegnare come classe finale quella con più assegnazioni.

L'SVM è basato sull'idea di trovare un iperpiano che divida al meglio un set di dati in due o più classi su x dimensioni spaziali dove x è il numero di classi. I punti dati più vicini all'iperpiano sono detti *vettori di supporto* e sono i vettori rappresentativi delle possibili classi di appartenenza.

Un iperpiano linearmente separabile è un iperpiano cui è semplice distinguere due classi, il problema è trovare quale tra le infinite rette che rappresentano l'iperpiano risulti ottimale, ossia quella che generi il minimo errore di classificazione su una nuova osservazione.

Il **metodo del kernel** ci consente di modellare modelli non lineari di dimensioni superiori. Il suo scopo è di prendere i dati come input e trasformarli nella forma richiesta qualora non sia possibile determinare un iperpiano linearmente separabile.

Nel nostro caso useremo il metodo kernel con l'SVM poichè abbiamo un modello non lineare e lo testeremo su vari kernel per trovare il più adatto.

I principali vantaggi di questo algoritmo sono i seguenti:

- Efficace in dimensioni spaziali elevate
- **Efficienza della memoria**, poiché solo un sottoinsieme dei punti di allenamento viene utilizzato nel processo decisionale effettivo di assegnazione
- Versatilità, grazie alla capacità di applicare nuovi kernel portando a una maggiore performance di classificazione.

Tra gli svantaggi principali abbiamo:

- Interpretazione non semplice, e quindi la mancanza di trasparenza dei risultati.
- Metodo non probabilistico, poiché il classificatore funziona posizionando gli oggetti sopra e sotto un iperpiano di classificazione, non esiste un'interpretazione probabilistica diretta per l'appartenenza al gruppo

#### -Bagging classifier

Il *bagging* si basa sull'addestrare più modelli dello stesso tipo, ciascuno su sottoinsiemi casuali del dataset originale e quindi aggrega le loro previsioni individuali (mediante voto o media) per formare una previsione finale.

Ogni weak learner viene addestrato in parallelo con un set di addestramento che viene generato estraendo casualmente, con sostituzione, N esempi (o dati) dal dataset originale (dove N è la dimensione del dataset). Il training set per ciascuno dei classificatori di base è indipendente l'uno dall'altro.

Il bagging viene usato soprattutto quando l'obiettivo è ridurre la varianza(overfitting) del classificatore, in modo da evitare che si abbia un'ottima precisione sui dati di addestramento e alte percentuali di errore sui dati di test.

Gli stimatori maggiormente considerati sono gli alberi di decisione, definiti in molti casi come base learner del bagging classifier.

#### -Random Forest Classifier

La *Random Forest* costruisce un insieme di alberi decisionali, uniti per ottenere una previsione più accurata e stabile.

Ogni albero in una random forest impara da un campione casuale di dati. I campioni vengono disegnati con la sostituzione, nota come *bootstrap*, il che significa che alcuni campioni verranno utilizzati più volte in un singolo albero.

L'idea è che addestrando ciascun albero su campioni diversi, sebbene ogni albero possa presentare una varianza elevata rispetto a una particolare serie di dati di addestramento, nel complesso l'intera foresta avrà una varianza inferiore, in modo da avere le predizioni finali vicine al risultato

I vantaggi del Random Forest sono la **versatilità**, perché può essere utilizzato sia per problemi di regressione che di classificazione, funzionando bene con una combinazione di caratteristiche numeriche e categoriche, e l'avere gli **iperparametri predefiniti ottimali**, perchè producono un buon risultato di previsione, consentendo anche un notevole miglioramento di essi, e di conseguenza della previsione.

In generale, questi algoritmi sono **veloci** da **addestrare**, ma piuttosto **lenti** nel creare **previsioni** una volta che sono stati addestrati, poiché richiedono un alto numero di alberi per ottenere risultati accurati.

## **TUNING DEGLI IPERPARAMETRI**

Per trovare il classificatore più performante è stato necessario anche ricercare i paramentri migliori per il caso. Gli iperparametri sono parametri che non vengono appresi direttamente all'interno dei classificatori ma devono essere forniti prima dell'apprendimento. È possibile e consigliato cercare nello spazio iperparametrico il miglior punteggio di cross validation per determinarli. Qualsiasi parametro fornito durante la costruzione di uno stimatore può essere ottimizzato in questo modo.

La ricerca degli iperparametri è stata fatta tramite l'uso di *GridSearchCV*, fornito dalla libreria *scikit-learn*, che genera in modo esaustivo candidati da una griglia di valori dei parametri specificati.

Il GridSearchCV implementa la *API estimator*: quando la si "adatta" su un set di dati vengono valutate tutte le possibili combinazioni di valori dei parametri e viene mantenuta la combinazione migliore. Successivamente si effettua di nuovo il training con il metodo e i parametri migliori su tutti i dati e si ottiene modello finale.

#### **CROSS VALIDATION**

Per evitare l'overfitting,ossia un legame eccessivo del modello ai dati che non permette di generalizzare ed effettuare correttamente la classificazione, è pratica comune quando si esegue un esperimento di apprendimento automatico tenere parte dei dati disponibili come set di test.

La procedura più comune utilizzata a questo scopo è chiamata *cross validation* (CV in breve). Nell'approccio di base, chiamato *k- fold CV*, il training set è suddiviso in k insiemi più piccoli. Per ciascuno del k sottoinsiemi si segue la seguente procedura :

- 1. Un modello viene addestrato utilizzando k-1 sottoinsiemi come dati di allenamento;
- 2. il modello risultante viene convalidato sulla parte restante dei dati

La misura delle prestazioni riportata dalla convalida incrociata k- fold è quindi la media dei valori calcolati nel ciclo.

Come scegliere il parametro k dipende dal tempo e dalle risorse disponibili. I valori usuali per k sono 3, 5, 10 o anche N, dove N è la dimensione dei dati.

#### **RISULTATI OTTENUTI:**

I modelli di classificazione devono essere valutati per determinare il loro grado di efficienza del compiere un task specifico. È importante avere classificatori con una buona performance perché sono utili in fase di predizione e, di conseguenza, permettono di ottenere predizioni ottimali.

Le metriche analizzate nella ricerca del classificatore migliore sono state:

• Precision,

$$\frac{tp}{tp + fp}$$

è il rapporto tra le istanze ritrovate e definite come rilevanti e le istanze ritrovate;

Recall,

$$\frac{tp}{tp + fn}$$

è il rapporto tra le istanze ritrovate e definite come rilevanti e le istanze effettivamente rilevanti;

Accuratezza,

$$\frac{(TP + TN)}{(TP + FP + TN + FN)}$$

è il rapporto tra le istanze correttamente predette e il totale delle istanze presenti. Testa l'abilità del modello nel predire correttamente le due classi;

F1-Score,

$$F = \frac{2PR}{P+R} = \frac{2}{\frac{1}{R} + \frac{1}{P}}$$

è un modo per combinare la precisione e il richiamo, infatti è la loro media armonica. Tiene conto sia dei falsi positivi che dei falsi negativi.

Tramite la Cross Validation, abbiamo effettuato il tuning degli iperparametri per ogni classificatore analizzato, basandoci sulle metriche precedenti quali precisione, richiamo e accuratezza.

Per ciascuno dei classificatori, abbiamo ottenuto il sottoinsieme con gli iperparametri migliori.

Inoltre, abbiamo testato ciascuno di essi per valutare le performance di classificazione per ogni genere presente nel dataset e come risultato di questi test abbiamo ottenuto un report con informazioni relative alle metriche utilizzate.

• Esempio di report per l'accuratezza per il KNN Classifier:

# Tuning degli iperparametri per la metrica accuracy

Miglior combinazione di parametri ritrovata:

{'metric': 'manhattan', 'n\_neighbors': 1, 'weights': 'uniform'} Classification report:

Il modello è stato addestrato sul training set completo

Le metriche sono state calcolate sul test set.

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| anime        | 0.99      | 1.00   | 1.00     | 360     |
| cult         | 0.99      | 1.00   | 1.00     | 360     |
| fantasy      | 0.98      | 1.00   | 0.99     | 380     |
| action       | 0.90      | 1.00   | 0.95     | 342     |
| documentary  | 0.88      | 0.96   | 0.92     | 346     |
| nature       | 0.93      | 1.00   | 0.96     | 360     |
| romantic     | 0.94      | 0.99   | 0.96     | 344     |
| sport        | 0.75      | 0.81   | 0.78     | 352     |
| thrillers    | 0.78      | 0.69   | 0.74     | 377     |
| kids         | 0.93      | 0.99   | 0.96     | 363     |
| dramas       | 0.54      | 0.27   | 0.36     | 351     |
| horror       | 0.95      | 1.00   | 0.97     | 377     |
| standup      | 0.93      | 0.96   | 0.95     | 356     |
| commedies    | 0.75      | 0.72   | 0.73     | 355     |
| musical      | 0.88      | 0.94   | 0.91     | 382     |
|              |           |        |          |         |
| accuracy     |           |        | 0.89     | 5405    |
| macro avg    | 0.88      | 0.89   | 0.88     | 5405    |
| weighted avg | 0.88      | 0.89   | 0.88     | 5405    |

I report riguardo precisione, richiamo e accuratezza degli altri classificatori utilizzati sono presenti nella cartella "classification\_results".

Inoltre, per ogni test abbiamo ottenuto la media dei valori precisione, richiamo, accuratezza e F1-Score per ogni classificatore:

#### KNN CLASSIFIER:

con iperparametri {'metric': 'manhattan', 'n\_neighbors': 1, 'weights': 'uniform'}

| KNN Classifier | Precision | Recall | F1-Score |
|----------------|-----------|--------|----------|
| accuracy       |           |        | 0,89     |
| macro avg      | 0,88      | 0,89   | 0,88     |
| weighted avg   | 0,88      | 0,89   | 0,89     |

#### **BAGGING CLASSIFIER:**

con iperparametri {'n\_estimators': 10}

| Bagging Classifier | Precision | Recall | F1-Score |
|--------------------|-----------|--------|----------|
| accuracy           |           |        | 0,89     |
| macro avg          | 0,87      | 0,88   | 0,87     |
| weighted avg       | 0,87      | 0,89   | 0,87     |

#### **RANDOM FOREST:**

con iperparametri {'max\_features': 'sqrt', 'n\_estimators': 1000}

| Random Forest Classifier | Precision | Recall | F1-Score |
|--------------------------|-----------|--------|----------|
| accuracy                 |           |        | 0,89     |
| macro avg                | 0,88      | 0,89   | 0,88     |
| weighted avg             | 0,88      | 0,89   | 0,88     |

### **SUPPORT VECTOR MACHINE:**

con iperparametri {'C': 1.0, 'gamma': 'auto', 'kernel': 'rbf', 'probability': True}

| SVC Classifier | Precision | Recall | F1-Score |
|----------------|-----------|--------|----------|
| accuracy       |           |        | 0,92     |
| macro avg      | 0,96      | 0,92   | 0,93     |
| weighted avg   | 0,96      | 0,92   | 0,93     |

Considerando tutte le combinazioni di iperparametri migliori ritrovate, è stata poi effettuata una cross validation per mettere a confronto i vari algoritmi e definirne il migliore, andando a calcolare accuratezza, precisione e richiamo.

I confronti effettuati hanno evidenziato che l'algoritmo SVC e il K-Nearest-Neighbor sono quelli che risultano essere i più adatti al caso di studio. Nonostante l'SVC risulti essere migliore in precisione e accuratezza rispetto al KNN, con una differenza minima, si è preferito utilizzare come classificatore finale per il caso di studio il KNN poichè l'SVC ha dei tempi di esecuzione molto elevati, quindi si è optato per un algoritmo efficiente e rapido.

|           | Bagging Classifier | SVC      | Random Forest | KNearestNeighbor | Best Score       |
|-----------|--------------------|----------|---------------|------------------|------------------|
| Accuracy  | 0.889364           | 0.959715 | 0.893286      | 0.903030         | SVC              |
| Precision | 0.541302           | 0.901923 | 0.623179      | 0.901229         | SVC              |
| Recall    | 0.602938           | 0.884289 | 0.689164      | 0.960617         | KNearestNeighbor |



E' stato quindi addestrato il modello con il K-Nearest-Neighbor utilizzando tutto il dataset per poter essere utilizzato nella classificazione di nuovi film.

Di seguito sono riportati alcuni esempi di utilizzo del sistema:

```
Inserire il nome del film o serie TV:Mamma mia
Mamma mia è un film? (s/n)
-> s

Inserire il paese di produzione:
-> United States

Inserire l'anno di rilascio:
-> 2008

Inserire il regista:
-> Phyllida Lloyd

Inserire un membro del cast:
-> Meryl Streep

Inserire parole chiave in inglese su film/serie TV:
-> wedding greece fathers

Inserire un voto da 1 a 10 sul film/serie TV:
-> 9

Inserire la durata di film/serie TV:
-> 108
Il genere del film o serie TV da te inserito è musical
```

```
Inserire il nome del film o serie TV:Gotham
Gotham è un film? (s/n)
 -> n
Inserire il paese di produzione:
 -> United States
Inserire l'anno di rilascio:
 -> 2014
Inserire il regista:
 -> Danny Cannon
Inserire un membro del cast:
 -> Ben McKenzie
Inserire parole chiave in inglese su film/serie TV:
 -> batman mafia joker police
Inserire un voto da 1 a 10 sul film/serie TV:
Inserire la durata di film/serie TV:
Il genere del film o serie TV da te inserito è dramas
```

```
Inserire il nome del film o serie TV:Dunkirk
Inserire il nome del film o serie TV:Shrek
Shrek è un film? (s/n)
                                                         Dunkirk è un film? (s/n)
Inserire il paese di produzione:
                                                         Inserire il paese di produzione:
 -> United States
                                                          -> United Kingdom
Inserire l'anno di rilascio:
                                                         Inserire l'anno di rilascio:
 -> 2001
                                                          -> 2017
Inserire il regista:
                                                         Inserire il regista:
-> Andrew Adamson
                                                          -> Christopher Nolan
Inserire un membro del cast:
                                                         Inserire un membro del cast:
 -> Eddie Murphy
                                                          -> Cillian Murphy
Inserire parole chiave in inglese su film/serie TV:
                                                         Inserire parole chiave in inglese su film/serie TV:
-> ogre princess swamp donkey
                                                          -> war france sea
Inserire un voto da 1 a 10 sul film/serie TV:
                                                         Inserire un voto da 1 a 10 sul film/serie TV:
 -> 8
Inserire la durata di film/serie TV:
                                                         Inserire la durata di film/serie TV:
-> 90
                                                          -> 108
Il genere del film o serie TV da te inserito è commedies
                                                         Il genere del film o serie TV da te inserito è dramas
```

#### 4. CLUSTERING E RECOMMENDATION

Il clustering è una metodologia di apprendimento non supervisionato che consente di identificare e raggruppare elementi simili appartenenti a dataset di grandi dimensioni, creando cluster ossia gruppi di questi ultimi che risultano conformi ad elementi medi, detti centroidi.

Nello specifico, si è scelto di adottare questa tecnica al fine di poter individuare delle nuove similarità e correlazioni tra i dati che non dipendessero unicamente dal genere dei film interessati, per poterle poi sfruttare alla base di un recommender system che si discostasse dai risultati ordinari.

## a. Clustering

Inizialmente, si è optato per l'utilizzo dell'algoritmo *K-Means* che, però, si è scontrato con la natura del nostro dataset. Infatti, essendo più adatto a features di tipo continuo, nonostante avessimo attuato una conversione dei dati categorici con le diverse tecniche disponibili, i risultati ottenuti non hanno soddisfatto le aspettative previste poiché i cluster risultavano estremamente imprecisi e il loro contenuto poco coerente.

Si sono, quindi, cercati nuovi algoritmi che risultassero più conformi alle necessità dettate dagli obiettivi del progetto, considerando la forte presenza di variabili categoriche nel dataset, per poi optare per la tecnica K-Modes.

Infatti, questo algoritmo estende il K-Means utilizzando una misura di similarità dedita ad elementi categorici, sostituendo l'utilizzo della media con l'utilizzo della moda ed utilizzando un metodo frequencybased utile per minimizzare la funzione di costo.

Si è scelto di individuare 3 cluster, e quindi centroidi, sfruttando il 'metodo del gomito', ossia un metodo empirico utile a trovare il numero ottimale di cluster per un set di dati all'interno di un range determinato – nello specifico, il range scelto è rimasto limitato al di sotto del numero di generi dei film presenti, in modo tale da poter individuare correlazioni non fortemente legate a questi.



Riportiamo qui di seguito gli head dei nostri cluster.

## **CLUSTER 1**

| type  | title                    | director          | cast           | genre  | country       | year_range | description                       | ratings_range |
|-------|--------------------------|-------------------|----------------|--------|---------------|------------|-----------------------------------|---------------|
| Movie | The Informant!           | Steven Soderbergh | Matt Damon     | dramas | United States | 2005-2010  | In the bustling center of Hong K  | >5            |
| Movie | Krishna Cottage          | Santram Varma     | Sohail Khan    | horror | India         | 2000-2005  | When a tough-minded ex-drug deal  | >5            |
| Movie | The Great Raid           | John Dahl         | Benjamin Bratt | dramas | United States | 2000-2005  | When three teen outcasts arrive   | >5            |
| Movie | The Pursuit of Happyness | Gabriele Muccino  | Will Smith     | dramas | United States | 2005-2010  | Psychic Hiroyuki Ehara leads var… | >5            |
| Movie | The Bucket List          | Rob Reiner        | Jack Nicholson | dramas | United States | 2005-2010  | Didem tries everything to get ac  | >5            |
| Movie | The Longshots            | Fred Durst        | Ice Cube       | dramas | United States | 2005-2010  | In this fun, fast-paced music co  | >5            |
| Movie | Poseidon                 | Wolfgang Petersen | Josh Lucas     | dramas | United States | 2005-2010  | The real Mitt Romney is revealed  | >5            |
| Movie | The Squid and the Whale  | Noah Baumbach     | Jeff Daniels   | dramas | United States | 2000-2005  | The forces of family, grief and   | >5            |
| Movie | Well Done Abba           | Shyam Benegal     | Boman Irani    | horror | India         | 2005-2010  | In 1890s Malacca, Li Lan finds h  | >5            |

#### CLUSTER 2

| type  | title              | director                                 | cast                | genre     | country     | year_range | description             | ratings_range |
|-------|--------------------|------------------------------------------|---------------------|-----------|-------------|------------|-------------------------|---------------|
| Movie | Black Rose         | Alexander Nevsky                         | Alexander Nevsky    | fantasy   | Russia      | 2010-2015  | The life of cheerleade  | >5            |
| Movie | Sisterakas         | Wenn V. Deramas                          | Ai-Ai de las Alas   | kids      | Philippines | 2010-2015  | Complications around t  | >5            |
| Movie | Zapped             | Peter DeLuise                            | Zendaya             | commedies | Canada      | 2010-2015  | This biopic chronicles  | >5            |
| Movie | Pizza, birra, faso | Israel Adrián Caetano,<br>Bruno Stagnaro | Héctor Anglada      | thrillers | Argentina   | 1995-2000  | A nameless widow juggl  | >5            |
| Movie | Head On            | Ana Kokkinos                             | Alex Dimitriades    | thrillers | Australia   | 1995-2000  | Mexican stand-up comed  | >5            |
| Movie | Miss Hokusai       | Keiichi Hara                             | Anne Watanabe       | anime     | Japan       | 2010-2015  | After a chance encount  | >5            |
| Movie | Kath & Kimderella  | Ted Emery                                | Jane Turner         | commedies | Australia   | 2010-2015  | Despite discouragement  | >5            |
| Movie | Medium             | Jacek Koprowicz                          | Władysław Kowalski  | thrillers | Poland      | 1980-1990  | A father's suicide sen… | >5            |
| Movie | Magic Snowflake    | Luc Vinciguerra                          | Nathan Simony       | kids      | France      | 2010-2015  | In Justin's dreams, he… | >5            |
| Movie | Back to the 90s    | Yanyong Kuruaungkoul                     | Dan Aaron Ramnarong | musical   | Thailand    | 2010-2015  | An epidemiologist turn  | >5            |

#### CLUSTER 3

| CLUST | EK 3                                     |                     |                                |           |               |            |                                       |               |
|-------|------------------------------------------|---------------------|--------------------------------|-----------|---------------|------------|---------------------------------------|---------------|
| type  | title                                    | director            | cast                           | genre     | country       | year_range | description                           | ratings_range |
| Movie | #realityhigh                             | Fernando Lebrija    | Nesta Cooper                   | commedies | United States | 2015-2020  | As a grisly virus rampages a city, a  | >5            |
| Movie | ¡Ay, mi madre!                           | Frank Ariza         | Estefanía de los<br>Santos     | commedies | Spain         | 2015-2020  | As Ayu and Ditto finally transition   | <5            |
| Movie | Ég man þig                               | Óskar Thór Axelsson | Jóhannes Haukur<br>Jóhannesson | commedies | Iceland       | 2015-2020  | A teenage hacker with a huge nose he… | >5            |
| Movie | Çok Filim Hareketler Bunlar              | Ozan Açıktan        | Ayça Erturan                   | commedies | Turkey        | 2005-2010  | This documentary celebrates the 50th  | <5            |
| Movie | Òlòtūré                                  | Kenneth Gyang       | Beverly Osu                    | commedies | Nigeria       | 2015-2020  | Two days before their final exams, t  | >5            |
| Movie | 1 Mile to You                            | Leif Tilden         | Billy Crudup                   | romantic  | United States | 2015-2020  | The slacker owner of a public bath h  | >5            |
| Movie | 12 ROUND GUN                             | Sam Upton           | Sam Upton                      | sport     | United States | 2015-2020  | Upon losing his memory, a crown prin  | <5            |
| Movie | 17 Again                                 | Burr Steers         | Zac Efron                      | commedies | United States | 2005-2010  | A pregnant teen is forced by her fam  | >5            |
| Movie | 18 Presents                              | Francesco Amato     | Vittoria Puccini               | commedies | Italy         | 2015-2020  | Young parents-to-be Claire and Ryan   | >5            |
| Movie | 1898: Our Last Men in the<br>Philippines | Salvador Calvo      | Luis Tosar                     | commedies | Spain         | 2015-2020  | After a teenage girl's perplexing su  | >5            |
| Movie | 20th Century Women                       | Mike Mills          | Annette Bening                 | fantasy   | United States | 2015-2020  | Nearing a midlife crisis, thirty-som  | >5            |
| Movie | 2307: Winter's Dream                     | Joey Curtis         | Paul Sidhu                     | fantasy   | United States | 2015-2020  | A bumbling Paris policeman is dogged  | <5            |
| Movie | 27, el club de los malditos              | Nicanor Loreti      | Diego Capusotto                | commedies | Argentina     | 2015-2020  | When his wife is convicted of murder  | >5            |

## b. Recommender System

Per quanto riguarda il sistema di raccomandazione, è stato adottato un approccio basato sui contenuti, incrociando gli attributi e le descrizioni dei vari film presenti nel dataset con uno apprezzato e fornito dall'utente stesso.

Nello specifico, all'utente sono richieste informazioni inerenti il film da egli apprezzato che vengono sfruttate per individuare il cluster più simile e, in questo modo, è possibile ricavare una lista di film consigliabili all'utente sulla base della similarità tra quello fornito e quelli presenti nel cluster risultato più simile.

In particolare, a seguito della clusterizzazione e l'ottenimento dei gruppi di elementi ben distinti tra loro, per calcolare le similarità si è utilizzata la libreria sopra-citata *FuzzyWuzzy* che utilizza come metrica la *distanza di Levenshtein*, ossia una metrica in grado di misurare la differenza tra due sequenze di caratteri basandosi sul numero minimo di modifiche necessarie di un singolo carattere per trasformare la parola con quella con cui viene confrontata.

Di seguito è riportato un esempio di utilizzo:

```
Benvenuto in MovieLand!
Scegli come proseguire:
1. Scopri il genere di un film o serie TV
2. Lasciati suggerire un nuovo film sulla base di un altro che hai apprezzato
--> 2
INIZIAMO!
[NB: inserire i dati dei film rispettando la dicitura ufficiale]
(es. Avengers: Infinity War-> OK ma avengers infinity war->NO)
Inserire il nome del film o serie TV:Iron Man
Iron Man è un film? (s/n)
-> s
Inserire il paese di produzione:
-> United States
Inserire l`anno di rilascio:
-> 2008
Inserire il regista:
-> Jon Favreau
Inserire un membro del cast:
-> Robert Downey Junior
Inserire parole chiave in inglese su film/serie TV:
-> superheroes marvel dc
Inserire un voto da 1 a 10 sul film/serie TV:
-> 10
Inserire la durata di film/serie TV:
-> 126
Inserisci il genere, scegliendo tra questi:
1 action
2 anime
3 commedies
```

4 cult

->7

5 documentary 6 dramas 7 fantasy 8 horror 9 kids 10 musical 11 nature 12 romantic 13 sport 14 stand-up 15 thrillers

# Ti consigliamo di guardare:

Spider-Man 3

Avengers: Infinity War

Scorpion King 5: Book of Souls

Hulk Vs.

A Boy Called Po

#### 5. BASE DI CONOSCENZA

Una base di conoscenza è una banca dati, grazie alle cui informazioni e, quindi, alle conoscenze che sono presenti al suo interno, riesce a fornire un supporto all'utente fornendogli risposte a delle domande che vengono effettuate senza la necessità di generare i possibili mondi.

Quindi, la base di conoscenza o KB è definibile come un insieme di assiomi, cioè delle proposizioni che possono essere asserite essere vere.

La base di conoscenza viene utilizzata nel caso di studio al fine di consentire all'utente e al sistema uno scambio di domande e risposte inerenti il dominio approfondito, ossia quello dei film e delle serie tv, attuando uno scambio di informazioni.

Nello specifico, l'utente può avanzare le seguenti richieste:

 Confermare la corrisponde tra titolo e genere relativi ad un film, attraverso la funzione askGenereDaTitolo, che accetta in input entrambi i dati e restituisce in output una risposta affermativa o negativa;

askGenereDaTitolo(titolo, genere) <=> titolo\_genere;

#### esempio di funzionamento di askGenereDaTitolo("titolo", "genere")

```
Digitare il titolo del film: American Psycho
Digitare il genere del film: dramas
YES
Digitare how per la spiegazione: how
askGenereDaTitolo(American Psycho,dramas) <=> American Psycho_dramas
Digitare 'how i' specificando al posto di il numero dell'atomo : how 1
American Psycho_dramas is True
```

```
Digitare il titolo del film: American Psycho
Digitare il genere del film: commedies
NO
Digitare how per la spiegazione: how
askGenereDaTitolo(American Psycho,commedies) <=> American Psycho_commedies
Digitare 'how i' specificando al posto di il numero dell'atomo : how 1
American Psycho_commedies is False
```

 Verificare se film diversi appartengano ad uno stesso genere, mediante l'utilizzo della funzione askStessoGenere, che accetta in input i titoli dei film in questione;

```
askStessoGenere(titolo1, titolo2) <=> titoli(titolo1, titolo2)
and titolo1_primoGenere
and titolo2_secondoGenere
and stessoGenere(primoGenere, secondoGenere), dove stessoGenere("genere1","genere2") indica
se i generi presenti come parametri sono o meno uguali tra loro.
```

## esempio di funzionamento di askStessoGenere("titolo1","titolo2")

```
Digitare il titolo del primo film: American Psycho
Digitare il titolo del secondo film: American Warfighter
YES
Digitare how per la spiegazione: how
askStessoGenere(American Psycho,American Warfighter) <=> American Psycho_American Warfighter and American Psycho_dramas
and American Warfighter_dramas and generiUguali(dramas,dramas)
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 1
American Psycho_dramas is True
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 2
American Warfighter_dramas) is True
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 3
```

```
Digitare il titolo del primo film: American Psycho
Digitare il titolo del secondo film: Amy
NO
Digitare how per la spiegazione: how
askStessoGenere(American Psycho,Amy) <=> American Psycho_Amy and American Psycho_dramas and Amy_musical and generiUguali
(dramas,musical)
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 1
American Psycho_dramas is True
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 2
Amy_musical) is True
Digitare 'how i' specificando in i il numero dell'atomo per ulteriori informazioni: how 3
generiUguali(American Psycho,Amy) <=> dramas_musical is False
```

Per ogni query che viene eseguita, ossia ogni interrogazione posta in modo tale da sapere se una proposizione sia conseguenza logica della base di conoscenza, la KB risponderà con YES oppure NO a seconda del tipo di clausola che le viene presentata.

Inoltre, si potrà chiedere la motivazione secondo la quale si è ottenuto un determinato risultato attraverso l'operatore *how* - in questo modo, la base potrà fornire la motivazione alla base della restituzione di una certa risposta rispetto ad un'altra mostrando le clausole utilizzate per dedurre la risposta.

Infine, l'utente ha la possibilità di richiedere una prova per ogni atomo nel corpo di una clausola.