(一) 公交乘务排班优化问题概述

▶ 公交乘务排班问题属活动资源的优化利用问题。一般是根据给定的乘务任务、乘务规则等条件,考虑一定的优化目标,对乘务员(组)的出乘时间、地点,担当的乘务任务、时刻,退乘时间、地点等做出具体安排,以确保一定周期内的所有乘务任务被执行。

公交乘务排班问题的基本元素和各元素的基本属性如下:

- 1)公交线路:具有出发站、出发时刻、到达站、到达时刻、中途停站等基本属性;
- 2) 乘务员类型(组):包括司机、售票员等属性;
- 3)乘务规则:包括间休时间、工作时间、休息时间、乘务周期、月工时等乘务值乘规则。
- 4)目标函数:乘务成本最小、需要的乘务员数量最少等。
- 5)约束条件:乘务员的工作时间必须满足乘务规则;每个线路、 每个班次都必须有乘务员值乘;乘务员劳动负衡均衡等约束 条件。

例1. 下面是某条线路的基本情况:

1、该线路的开收班时间:

冬令(12月~3月): 6:20~18:10, 夏令(4月~11月): 6:15~18:20

- 2、该线路的司机人数: 15人
- 3、该线路排班间隔:

平时: 8~10分钟/班;

上下班高峰(6:00~8:30,11:30~13:30,16:30~18:00): 4~8分钟/班

节假日: 5~10分钟/班

4、该线路的运行时间:

正常: 80~85分钟/班

高峰: 100~120分钟/班

规定: (1)司机每天上班时间不超过8小时; (2)司机连续开车不得超

过4小时; (3)每名司机至少每月完成120班次。

问题一: 针对五月份的节假日和非节假日,分别求出每日最少班次总数;

问题二: 阐述你对上述规定的理解, 并根据你的理解建立适当的数学模型,

合理地设计五月份该线路的司机排班方案。

(二)模型建立与求解

- 1、问题一: 数学模型的建立
 - (1) 假设将非节假日一天的工作时间分为**n**个时段

$$\min Z = \sum_{i=1}^{s} x_{i}$$

$$\sum_{i=1}^{k} x_{i} m_{i} \ge \sum_{i=1}^{k} Q_{i} \qquad k = 1, 2, 3, 4, 5, 6.$$

$$S.T. \begin{cases} \sum_{i=1}^{k} x_{i} m_{i} \ge \sum_{i=1}^{k} Q_{i} & k = 1, 2, 3, 4, 5, 6. \\ 8 \le m_{i} \le 10 & i = 2, 4, 6. \\ 4 \le m_{i} \le 8 & i = 1, 3, 5. \end{cases}$$

 Q_i ——第i个时段的时长,i=1,2…,n m_i ——表示发车间隔; x_i ——表示发车班次用

问题一:

- 1、数学模型的建立
 - (2) 若节假日,用Q表示节假日一天的工作时长,发车间隔用*m*表示,则例1中节假日最少班次的数学公式为:

$$\min Z = \frac{Q}{m}, \qquad 5 \le m \le 10.$$

```
问题一的模型文件:
  {string} Times ={"T1", "T2", "T3", "T4", "T5", "T6"};
  float Q[Times] = [135, 180, 120, 180, 90, 20];
  float m[Times] = [8, 10, 8, 10, 8, 10];
  dvar int+ x[Times] in 0..50;
  minimize
     sum(o in Times) x[o];
  subject to {
   (x["T1"]-1)*m["T1"] <= Q["T1"];
     Q["T1"] <= x["T1"] * m["T1"];
   x["T1"]*m["T1"]+(x["T2"]-1)*m["T2"]<=Q["T1"]+Q["T2"];
     Q[T1]+Q[T2]<=x[T1]*m[T1]+x[T2]*m[T2];
```

```
问题一的模型文件(续):
  x["T1"]*m["T1"]+x["T2"]*m["T2"]+(x["T3"]-1)*m["T3"]<=Q["T1"]+Q["T2"]+Q["T3"];
              Q["T1"]+Q["T2"]+Q["T3"] <= x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T3"];
      x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T3"]+(x["T4"]-
   1)*m["T4"]<=Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"];
   Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"]<=x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["T3"]+x["
  4"]*m["T4"];
      x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T3"]+x["T4"]*m["T4"]+(x["T5"]-
   1)*m["T5"]<=Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"]+Q["T5"];
   Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"]+Q["T5"] <= x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T1"]
  3"]+x["T4"]*m["T4"]+x["T5"]*m["T5"];
  x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T3"]*m["T3"]+x["T4"]*m["T4"]+x["T5"]*m["T5"]+(x["T6"]-
   1)*m["T6"]<=Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"]+Q["T5"]+Q["T6"];
   Q["T1"]+Q["T2"]+Q["T3"]+Q["T4"]+Q["T5"]+Q["T6"]<=x["T1"]*m["T1"]+x["T2"]*m["T2"]+x["T
  3"]*m["T3"]+x["T4"]*m["T4"]+x["T5"]*m["T5"]+x["T6"]*m["T6"];
```

// solution (optimal) with objective 82 x = [17 18 15 18 12 2]

据此,得到该 线路非节假日 的最少班次排 班如右:

高峰期(6:15-		平时(8:30-			(11:30-		(13:30-		(16:30-			
	8:30) 11:30)			13:30	0)	16:3	30)	18:00	0)	18:20)		
发车时 间	班次	发车时 间	班次	发车时 间	班次	发车时 间	班次	发车时 间	班次	发车时间	班次	
06:15	1	08:31	18	11:31	36	13:31	51	16:31	69	18:07	81	
06:23	2	08:41	19	11:39	37	13:41	52	16:39	70	18:17	82	
06:31	3	08:51	20	11:47	38	13:51	53	16:47	71			
06:39	4	09:01	21	11:55	39	14:01	54	16:55	72			
06:47	5	09:11	22	12:03	40	14:11	55	17:03	73			
06:55	6	09:21	23	12:11	41	14:21	56	17:11	74			
07:03	7	09:31	24	12:19	42	14:31	57	17:19	75			
07:11	8	09:41	25	12:27	43	14:41	58	17:27	76			
07:19	9	09:51	26	12:35	44	14:51	59	17:35	77			
07:27	10	10:01	27	12:43	45	15:01	60	17:43	78			
07:35	11	10:11	28	12:51	46	15:11	61	17:51	79			
07:43	12	10:21	29	12:59	47	15:21	62	17:59	80			
07:51	13	10:31	30	13:07	48	15:31	63					
07:59	14	10:41	31	13:15	49	15:41	64					
08:07	15	10:51	32	13:23	50	15:51	65					
08:15	16	11:01	33			16:01	66					
08:23	17	11:11	34			16:11	67					
		11:21	35			16:21	68					

求解结果:

时间 (6:20-18:10)

节假日的最少班次排班如右:

发车时间	班次										
06:15	1	08:15	13	10:15	25	12:15	37	14:15	49	16:15	61
06:25	2	08:25	14	10:25	26	12:25	38	14:25	50	16:25	62
06:35	3	08:35	15	10:35	27	12:35	39	14:35	51	16:35	63
06:45	4	08:45	16	10:45	28	12:45	40	14:45	52	16:45	64
06:55	5	08:55	17	10:55	29	12:55	41	14:55	53	16:55	65
07:05	6	09:05	18	11:05	30	13:05	42	15:05	54	17:05	66
07:15	7	09:15	19	11:15	31	13:15	43	15:15	55	17:15	67
07:25	8	09:25	20	11:25	32	13:25	44	15:25	56	17:25	68
07:35	9	09:35	21	11:35	33	13:35	45	15:35	57	17:35	69
07:45	10	09:45	22	11:45	34	13:45	46	15:45	58	17:45	70
07:55	11	09:55	23	11:55	35	13:55	47	15:55	59	17:55	71
08:05	12	10:05	24	12:05	36	14:05	48	16:05	60	18:05	72
										18:15	73

问题二:

1、数学模型的建立

(1) 非节假日

目标函数: $\min \sum_{j=1}^{19} X_j$

约束条件:

$$\sum_{i=1}^{19} (a_i \bullet x_j) = 44$$

$$\sum_{i=1}^{19} (b_i \bullet x_j) = 38$$

式中:

a_i ——表示非节假日一天内第i个司机工作的高峰班次数

b_i——表示非节假日一天内第i个司机工作的非高峰班次数

 x_i —表示司机排班情况

司机排班情况

	X 1	X 2	X 3	X 4	X 5	Хб	Х7	Х8	X 9	X 10	X 11	X 12	X 13	X 14	X 15	X 16	X 17	X 18	X 19
đi	0	\bigcirc					1	1	1	1	2	2	2	2	93	9	9	4	4
bi	1	2	3	4	LO	0	1	2	3	4	0	1	2	9	0	-	2	0	1

```
模型编码:
{string} Categories ={"C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9", "C10",
"C11", "C12", "C13", "C14", "C15", "C16", "C17", "C18", "C19"};
int a[Categories] = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4];
int b[Categories] = [1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 0, 1, 2, 3, 0, 1, 2, 0, 1];
dvar int+ x[Categories] in 0..50;
minimize
   sum(o in Categories) x[o];
subject to {
 sum( o in Categories )
   a[o]*x[o] == 44;
 sum( o in Categories )
    b[o]*x[o] == 38;
```

求解结果:

该结果给出了一天需要的最少司机人数为17人,同时给出了一个可行的排班方案,即17位司机中,有1位采用第2种排班情况,有5位采用第5种排班情况,有11位采用第19种排班情况。

问题二:

1、数学模型的建立

(1) 节假日

对于节假日,通过问题一可以求解出一天内总班次为73;

$$\sum_{i=1}^{R_2} c_i = 73 ;$$

式中:

c_i——节假日一天内第i个司机工作的班次

数

 $80c_i \le 480$;

T₂——节假日所有汽车运行时间之和

R₂——节假日一天内需要的最少司机人数

$$T_2 = 73 \times 80$$
:

$$R2 = 13$$

因为 $R_2 \ge T_2 / 480$ 所以R2 = 13

节假日一天的司机安排表:

一天中每位司机被安排的班次												
1号司机	1	14	27	40	53	66						
2号司机	2	15	28	41	54	67						
<u>3号司机</u>	3	16	29	42	55	68						
4号司机	4	17	30	43	56	69						
5号司机	5	18	31	44	57	70						
6号司机	6	19	32	45	58	71						
7号司机	7	20	33	46	59	72						
8号司机	8	21	34	47	60	73						
9号司机	9	22	35	48	61							
10号司机	10	23	36	49	62							
11号司机	11	24	37	50	63							
12号司机	12	25	38	51	64							
13号司机	13	26	39	52	65							