Aula 12 - Camada de Rede, Circuitos vs. Datagramas, Roteadores

Diego Passos

Universidade Federal Fluminense

Redes de Computadores

Material adaptado a partir dos slides originais de J.F Kurose and K.W. Ross.

Camada de Rede: Conceitos Básicos

Camada de Rede

- Transporta segmento do host de origem ao host de destino.
- No lado transmissor, encapsula segmentos em datagramas.
- No lado receptor, entrega segmentos à camada de transporte.
- Protocolos de camada de rede atuam em todos os nós (roteadores, hosts).
- Roteador examina campos de cabeçalho em todos os datagramas IP que passam por ele.

Duas Funções Chave da Camada de Rede

- **Encaminhamento:** mover pacotes da entrada para a saída de um roteador.
- Roteamento: determina rota usada por pacote da origem ao destino.
 - Algoritmos de roteamento.

- Analogia:
 - Roteamento: processo de planejar uma viagem da origem ao destino.
 - **Encaminhamento:** processo de realizar um trecho da viagem.

Sinergia entre Roteamento e Encaminhamento

algoritmo de roteamento determina rota fim-a-fim através da rede

tabela de roteamento determina encaminhamento local neste roteador

Estabelecimento de Conexão

- Terceira função importante em **algumas** redes.
 - e.g., ATM, frame relay, X.25.
- Antes de iniciarem o fluxo de dados, hosts e roteadores intermediários estabelecem uma conexão virtual.
 - Roteadores participam do processo.
- Serviço orientado a conexão na camada de rede vs. na camada de transporte:
 - **Rede:** conexão entre dois *hosts* (pode também envolver roteadores intermediários em caso de circuitos virtuais).
 - **Transporte:** entre dois processos.

Modelo de Serviço da Rede

- Pergunta: qual o modelo de serviço para o "canal" que transporta datagramas entre origem e destino?
- Exemplos de serviço para datagramas individuais:
 - Garantia de entrega.
 - Garantia de entrega com menos de 40 ms de atraso.

- Exemplos de serviço para um fluxo de datagramas:
 - Entrega ordenada.
 - Garantia de vazão mínima para o fluxo.
 - Restrições sobre alterações no espaçamento entre pacotes.

Modelos de Serviço da Rede: Exemplos

Arquitetura	Modelo de	Garantias?				Aviso de
da Rede	Serviço	Banda	Perda	Ordenação	Atraso	Congestionamento
Internet	Melhor Esforço	Não	Não	Não	Não	Não (inferida via perdas)
ATM	CBR	Taxa Constante	Sim	Sim	Sim	Não há
ATM	VBR	Taxa Garantida	Sim	Sim	Sim	Não há
ATM	ABR	Mínima Garantida	Não	Sim	Não	Sim
ATM	UBR	Nenhuma	Não	Sim	Não	Não

Redes de Circuitos Virtuais

Serviços Orientados e Não-Orientados a Conexão

- Redes de datagramas proveem serviço não-orientado a conexão na camada de rede.
- Redes de circuitos virtuais proveem serviço orientado a conexão na camada de rede.
- Análogo aos serviços do TCP/UDP com e sem conexão na camada de transporte, mas:
 - **Serviço**: host a host.
 - Não há escolha: rede provê um ou outro.
 - Implementação: no núcleo da rede.

Circuitos Virtuais

- Caminho fim-a-fim se comporta de maneira similar a circuito telefônico.
 - Em termos de desempenho.
 - Ações da rede ao longo do caminho fim-a-fim.

- Estabelecimento de chamada para cada conexão antes do fluxo de dados.
- Cada pacote carrega um identificador de circuito virtual (ou VC), ao invés de endereço do destinatário.
- Cada roteador no caminho fim-a-fim mantém "estado" para cada conexão passante.
- Recursos de enlaces, roteadores (banda, buffers) podem ser alocados para o VC.
 - Recursos dedicados = serviço previsível.

Implementação de um Circuito Virtual

• Um VC consiste de:

- 1. Caminho entre origem e destino.
- 2. Número(s) de identificação, um para cada enlace no caminho.
- 3. Entradas nas tabelas de roteamento nos roteadores do caminho.
- Pacote pertencente ao VC carrega do número do VC (ao invés do endereço do destinatário).
- Número do VC pode ser alterado a cada salto do caminho.
 - Novo número do VC vem da tabela de roteamento.

Circuitos Virtuais: Tabela de Roteamento

tabela de roteamento no roteador de cima à esquerda:

Interface de entrada	# VC de chegada	Interface de saída	# VC de saída
1	12	3	22
2	63	1	18
3	7	2	17
1	97	3	87
•••	•••	•••	•••

Em rede de circuitos virtuais, roteadores mantêm informação de estado da conexão!

Circuitos Virtuais: Protocolos de Sinalização

- Usados para estabelecimento, manutenção e finalização do VC.
- Usados em redes ATM, frame relay, X.25.
- Não são utilizados na Internet atual.

Redes de Datagramas

- Sem estabelecimento de conexão na camada de rede.
- Roteadores: sem estado sobre conexões fim-a-fim.
 - Não há o conceito de "conexão" no nível da rede.
- Pacotes encaminhados usando o endereço de destino do host.

Redes de Datagramas: Tabela de Roteamento (I)

4 bilhões de endereços, então ao invés de listar destinatários individuais, listamos **faixas de endereços** (entradas da tabela são agregadas)

Redes de Datagramas: Tabela de Roteamento (II)

Faixa de Endereços de Destino				Enlace
11001000 até	00010111	00010000	0000000	
3	00010111	00010111	11111111	0
11001000 até	00010111	00011000	0000000	
0	00010111	00011000	11111111	1
11001000 até	00010111	00011001	0000000	2
11001000	00010111	00011111	11111111	
Caso contrário				3

• Pergunta: e se os endereços não são divididos de forma tão organizada?

Casamento por Prefixo mais Longo

Casamento por Prefixo mais longo

Ao procurar por uma entrada na tabela de roteamento para um destino, opte sempre pelo **prefixo mais longo** que casa com o endereço do destino.

Faixa de Endereços de Destino	Enlace
11001000 00010111 00010*** ******	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** *****	2
Caso contrário	3

• Exemplos:

• Destino: 11001000 00010111 00010110 10100001. Qual interface?

Destino: 11001000 00010111 00011000 10101010. Qual interface?

Datagrama ou Circuitos Virtuais: Por Quê?

- Internet (datagrama):
 - Dados trocados entre computadores.
 - Serviço "elástico", sem requisitos temporais estritos.
 - Muitos tipos diferentes de enlaces.
 - Características variadas.
 - Difícil prover serviço uniforme.
 - Dispositivos finais "inteligentes" (computadores).
 - Podem se adaptar, realizar controle, recuperação de erros.
 - Núcleo simples, complexidade nas bordas.

- ATM (VC):
 - Evoluiu da telefonia.
 - Conversação humana:
 - Requisitos temporais estritos.
 - Garantias de serviço necessárias.
 - Sistemas finais "burros".
 - Telefones.
 - Complexidade no núcleo da rede.

Roteadores: Arquiteturas

Aquiteturas de Roteadores: Visão Geral

- Duas funções chave em um roteador:
 - Execução de algoritmos/protocolos de roteamento (RIP, OSPF, BGP).
 - Encaminhamento de datagramas de enlaces de entrada para enlaces de saída.

Funções das Portas de Entrada

- Camada física:
 - Recepção no nível dos bits.
- Camada de enlace:
 - e.g., Ethernet.
 - Vide capítulo 5.

Comutação:

- Dado destino do datagrama, procurar porta de saída usando tabela de roteamento em memória.
- Objetivo: completar processamento da porta de entrada na "velocidade de linha".
- Enfileiramento: se datagramas chegam mais rápido que taxa de encaminhamento para dentro da malha de comutação.

Malhas de Comutação

- Transferem pacotes do buffer da porta de entrada para o buffer da porta de saída apropriada.
- **Taxa de comutação:** taxa na qual pacotes podem ser transferidos das entradas para as saídas.
 - Comumente medida como um múlitplo da velocidade da linha das portas de entrada/saída.
 - N entradas: taxa de comutação desejada de N vezes a velocidade da linha.
- Três tipos básicos de malha de comutação:

Comutação Através da Memória

• Primeira geração de roteadores:

- Computadores comuns com comutação feita diretamente pelo processador.
- Pacotes copiados para a memória principal do sistema.
- Taxa limitada pela vazão da memória.
 - Dois usos do barramento por datagrama.

Comutação Através de um Barramento

- Datagrama passa da porta de entrada para a porta de saída através de um barramento compartilhado.
- Contenção no barramento: taxa de comutação limitada pela banda do barramento.
- Barramento de 32 Gb/s, Cisto 5600: taxa suficiente para roteadores de acesso e empresariais.

Comutação Através de uma Rede de Interconexão

- Supera limitações de banda do barramento.
- Rede banyan, crossbar, outras redes de interconexão inicialmente desenvolvidas para conectar processadores em computadores multiprocessados.
- Projeto avançado: fragmentam datagramas em células de comprimento fixo comutadas pela malha.
- Cisco 12000: comuta 60 Gb/s através da rede de interconexão.

Portas de Saída

- Enfileiramento necessário devido à taxa mais alta da malha de comutação.
 - Datagramas podem ser perdidos devido a congestionamento, falta de buffer.
- Escalonamento de datagramas.
 - Prioridades: quem recebe melhor desempenho? Neutralidade da rede?

Enfileiramento na Porta de Saída

- Ocorre quando a taxa de chegada da malha de comutação excede velocidade da linha da porta de saída.
- Enfileiramento (atraso) e perdas devido a overflow do buffer da porta de saída!

Quanto Buffer Alocar?

- Recomendação da RFC 3439: *buffer* deve ser capaz de armazenar aproximadamente 250 ms de dados.
 - 250 ms: RTT "típico" da Internet.
 - Tamanho do buffer: $RTT \times C$.
 - Onde *C* é a capacidade do enlace.
 - e.g., C = 10 Gb/s, RTT = 250 ms, 2,5 Gb de buffer.
 - Recomendação recente: com N fluxos, tamanho do buffer igual a:

$$\frac{RTT \times C}{\sqrt{N}}$$

Enfileiramento na Porta de Entrada

- Malha de comutação mais lenta que portas de entrada combinadas ⇒ enfileiramento pode ocorrer nas filas das portas de entrada.
 - Enfileiramento (atraso) e perdas devido a overflow do buffer da porta de saída!
- Bloqueio de cabeça de linha (Head-of-line Blocking, ou HOL): datagrama da frente da fila não permite que outros enfileirados sejam comutados.

