Math143Hw12

Trustin Nguyen

December 4, 2023

Exercise 1: Segre embeddings.

(a) Let $\sigma_{1,1}: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ be the morphism given by

$$[x_1:x_2] \times [y_1:y_2] \mapsto [x_1y_1:x_1y_2:x_2y_1:x_2y_2]$$

Let $[z_1:\cdots:z_4]$ be the coordinates on \mathbb{P}^3 . Prove that $\sigma_{1,1}(\mathbb{P}^1\times\mathbb{P}^1)=\mathbb{V}(z_1z_4-z_2z_3)$.

Proof. We have $\Im \sigma_{1,1} \subseteq \mathbb{V}(z_1z_4 - z_2z_3)$ because

$$[x_1y_1 : x_1y_2 : x_2y_1 : x_2y_2] \in \Im\sigma_{1,1}$$
$$x_1y_1x_2y_2 - x_1y_2x_2y_1 = 0$$

Now for the other containment, we need that $\mathbb{V}(z_1z_4 - z_2z_3) \subseteq \Im\sigma_{1,1}$. Suppose that $[z_1:z_2:z_3:z_4] \in \mathbb{V}(z_1z_4 - z_2z_3)$. Then we have two cases:

- $z_1 = 0$. Then $z_2 z_3 = 0$ and either z_2, z_3 is 0. If $z_2 = 0$, we have:

$$\sigma_{1,1}([0:x_2] \times [y_1:y_2]) = [0:0:y_1:y_2]$$

 $\sigma_{1,1}([0:1] \times [z_3:z_4]) = [0:0:z_3:z_4]$

If $z_3 = 0$, we have

$$\sigma_{1,1}([x_1 : x_2] \times [0 : y_2]) = [0 : x_1y_2 : 0 : x_2y_2]$$

 $\sigma_{1,1}([z_2 : z_4] \times [0 : 1]) = [0 : z_2 : 0 : z_4]$

and if $z_2, z_3 = 0$,

$$\sigma_{1,1}([0:x_2] \times [0:y_2]) = [0:0:0:x_2y_2]$$

 $\sigma_{1,1}([0:z_4] \times [0:1]) = [0:0:0:z_4]$

so we have that in all cases, there is an element in the preimage that gets mapped to the element in $V(z_1z_4 - z_2z_3)$.

- If $z_1 \neq 0$, we have

$$z_1 z_4 - z_2 z_3 = 0 \implies z_4 = \frac{z_2 z_3}{z_1}$$

Now if $[z_1 : z_2 : z_3 : z_4] \in \mathbb{V}(z_1 z_4 - z_2 z_3)$, then:

$$[z_1: z_2: z_3: z_4] = [1: \frac{z_2}{z_1}: \frac{z_3}{z_1}: \frac{z_4}{z_1}]$$

$$= [1: \frac{z_2}{z_1}: \frac{z_3}{z_1}: \frac{z_2z_3}{z_1^2}]$$

$$= \sigma_{1,1}([1: \frac{z_3}{z_1}] \times [1: \frac{z_2}{z_1}])$$

which completes the proof.

$$[x_1:x_2] \times [y_1:y_2:y_3] \mapsto [x_1y_1:x_1y_2:x_1y_3:x_2y_1:x_2y_2:x_2y_3]$$

Let $[z_1:\cdots:z_6]$ be the coordinates on \mathbb{P}^5 . Find a matrix M whose entries are polynomials in z_i and an integer k so that $\sigma_{1,2}(\mathbb{P}^1\times\mathbb{P}^2)\subseteq\mathbb{P}^5$ is the set of points where rank $M\leqslant k$. Prove that $\sigma_{1,2}(\mathbb{P}^1\times\mathbb{P}^2)=\{[z_1:\cdots:z_6]: \text{rank }M\leqslant k\}$ for your chose M and k. (This implies that $\sigma_{1,2}(\mathbb{P}^1\times\mathbb{P}^2)$ is the vanishing of the $(k+1)\times(k+1)$ minors of M.)

Proof. The matrix is

$$M = \begin{bmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \end{bmatrix}$$

Let k = 1. Then what is to be proved is that:

$$\sigma_{1,2}(\mathbb{P}^1 \times \mathbb{P}^2) = \left\{ \begin{bmatrix} z_1 : z_2 : \cdots : z_6 \end{bmatrix} : \operatorname{rank} \left(\begin{bmatrix} z_1 & z_2 & z_3 \\ z_4 & z_5 & z_6 \end{bmatrix} \right) \leqslant 1 \right\} = J$$

 $(\Im \sigma_{1,2} \subseteq J)$ If we have a point

$$[x_1y_1: x_1y_2: x_1y_3: x_2y_1: x_2y_2: x_2y_3]$$

in the image, then we check that:

$$\begin{bmatrix} x_1y_1 & x_1y_2 & x_1y_3 \\ x_2y_1 & x_2y_2 & x_2y_3 \end{bmatrix}$$

has rank ≤ 1 . This is true because, either $x_1, x_2 \neq 0$, we can divide wlog the top row by x_1 and multiply by x_2 to get a rank of ≤ 1 .

 $(J \subseteq \Im \sigma_{1,2})$ The rank cannot be 0 because there is no origin in \mathbb{P}^5 . Then if we have rank 1, one row is a scalar multiple of the other. So we have the set of points in J as

$$[z_1:z_2:z_3:rz_1:rz_2:rz_3]$$

where z_1, z_2, z_3 , r not all 0. But this is just in the image of $\sigma_{1,2}$ as

$$\sigma_{1,2}([1:r] \times [z_1:z_2:z_3]) = [z_1:z_2:z_3:rz_1:rz_2:rz_3]$$

which completes the proof.

(c) (Optional) Do you see how to generalize this to $\sigma_{m,n}$?

Proof. In general, for the mapping:

$$\sigma_{m,n}([x_1:x_2:\cdots:x_m]\times[y_1:y_2:\cdots:y_n])=[z_1:z_2:\cdots:z_{mn}]$$

we will have a matrix:

$$\begin{bmatrix} z_1 & z_2 & \dots & z_n \\ z_{n+1} & z_{n+2} & \dots & z_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ z_{(m-1)n+1} & z_{(m-1)n+2} & \dots & z_{mn} \end{bmatrix}$$

and the image will be given by when the rank is 1.

Exercise 2: Function fields.

(a) Prove from the definition that the map $k(\mathbb{P}^1) \to k(x)$ defined by $F/G \mapsto F(x,1)/G(x,1)$ is an isomorphism of fields. (Check that it is one-to-one and onto.)

Proof. (Injectivity) Suppose that $F/G \mapsto \frac{F(x,1)}{G(x,1)} = 0$. Then F(x,1) = 0. We also know that $F \in \Gamma(\mathbb{P}^1) = k[x,y]$. So we have that

$$F(x,y) = a_0 x^d + a_1 x^{d-1} y + a_2 x^{d-2} y^2 + \dots + a_{d-1} x y^{d-1} + a_d x y^d$$

And therefore,

$$F(x, 1) = a_0 x^d + a_1 x^{d-1} + \dots + a_d = 0$$

and all $a_i = 0$. So when we rehomogenize, all the coefficients are still 0 and F = 0 so it is injective.

(Surjectivity) Suppose that

$$\frac{a_0 + a_1 x + \dots + a_d x^d}{b_0 + b_1 x + \dots + b_e x^e} \in k(x)$$

We can homogenize the denominator and numerator:

$$F'(x,y) = a_0 y^d + a_1 x y^{d-1} + \dots + a_d x^d$$

and

$$G'(x, y) = b_0 y^e + b_1 x y^{e-1} + \dots + b_e x^e$$

If the degree of G' is greater than that of F', we just multiply F' by y^{e-d} . So $y^{e-d}F(x,y)$ has the same degree as G'. Then

$$\varphi\left(\frac{y^{e-d}F'(x,y)}{G'(x,y)}\right) = \frac{F'(x,1)}{G'(x,1)} = \frac{\alpha_0 + \alpha_1x + \cdots + \alpha_dx^d}{b_0 + b_1x + \cdots + b_ex^e}$$

On the other hand if the degree of G' is less than that of F', then we can multiply G'(x, y) by y^{d-e} to get:

$$\varphi\left(\frac{F'(x,y)}{y^{d-e}G'(x,y)}\right) = \frac{F'(x,y)}{G'(x,y)} = \frac{a_0 + a_1x + \dots + a_dx^d}{b_0 + b_1x + \dots + b_ex^e}$$

So we have an element of the preimage.

Optional: generalize this to an isomorphism $k(\mathbb{P}^n) \to k(x_1, \dots, x_n)$.

(b) Suppose $\varphi: X \to Y$ is a dominant morphism of projective algebraic sets and $U \subseteq Y$ is a non-empty open subset. Prove that $\varphi^{-1}(U)$ is a non-empty open subset.

Proof. Suppose for contradiction that $U \cap \phi(X) = \emptyset$. Since U is non-empty, we have U^c is not all of Y and it is a closed set. Furthermore, if $y \in \phi(X)$, then $\underline{y} \notin U$, therefore, $y \in U^c$. So $\phi(X) \subseteq U^c$. Since U^c is closed, then the closure of $\overline{\phi(X)} = U^c \neq Y$, contradiction. So there is an element of $U \cap \phi(X)$. So there is an element $x \in X$ such that $\phi(X) \in U$, and therefore, the preimage is non-empty. \square

Exercise 3: Local rings.

(a) Suppose $\varphi: X \to Y$ is an isomorphism and $\varphi(P) = Q$. Prove that the pullback on function fields induces an isomorphism on local rings $O_Q(Y) \to O_P(X)$.

Recall that we can view ideals $\mathfrak{m}_Q(Y) \subseteq O_Q(Y)$ and $\mathfrak{m}_P(X) \subseteq O_P(X)$ as abelian subgroups. Show that the isomorphism $O_Q(Y) \to O_P(X)$ induces an isomorphism $\mathfrak{m}_Q(Y) \to \mathfrak{m}_P(X)$ (as abelian groups).

Proof. It was show that since $\varphi: X \to Y$ is an isomorphism, there is an isomorphism φ^* on $k(Y) \to k(X)$. Consider $\varphi^{*'} = \varphi^*_{|O_Q(Y)|}$ and $\psi^{*'} = \psi^*_{|O_P(X)|}$. And $\psi^* = (\varphi^*)^{-1}$. We need to show that $\varphi^{*'}\psi^{*'}$ is the identity on $O_P(X)$ and $\psi^{*'}\varphi^{*'}$ is the identity on $O_O(Y)$.

(Part I) If $(U, \alpha) \in O_P(X)$, then $\alpha(P)$ is defined, we have

$$\psi^{*\prime}(U,\alpha) = (U',\alpha \circ \psi)$$

We see that indeed the RHS is in $O_Q(Y)$ because $(\alpha \circ \psi)(Q) = \alpha(P)$ which is defined. So $\alpha \circ \psi$ is defined at Q. Then with the last composition:

$$\varphi^{*\prime}(\mathsf{U}',\alpha\circ\psi)=(\mathsf{U}'',\alpha\circ\psi\circ\varphi)$$

We see that $\alpha \circ \psi \circ \phi$ is defined again at P because $(\alpha \circ \psi \circ \phi)(P) = \alpha(P)$ which is by definition, defined at P. Lastly, $(U'', \alpha \circ \psi \circ \phi) = (U, \alpha)$ because $\alpha, \alpha \circ \psi \circ \phi$ are defined in $U \cap U''$ by definition, and $\psi \circ \phi$ is the identity on X. The same proof works for the composition $\psi^{*'}\phi^{*'}$.

(Part II) We just need to show that the isomorphism on $\pi: O_Q(Y) \to O_P(X)$ restricts to a mapping of non-units to non-units. This is because if a non-unit maps to a unit:

$$\pi(a) = b$$

Then b has an inverse, π is surjective, so

$$\pi(c) = b^{-1}$$

and therefore,

$$\pi(a)\pi(c) = 1 = \pi(ac)$$

Since π is injective, ac = 1, so a was a unit, contradiction. So non-units map to non-units.

Then this sends $\mathfrak{m}_Q(Y)$ to some subset of $\mathfrak{m}_P(X)$ in $O_P(X)$. Since there is an isomorphism on the local rings, we also know that there is a mapping $O_P(X) \to O_Q(Y)$ that restricts to sending non-units to non-units. So it sends $\mathfrak{m}_P(X)$ to some subset of $\mathfrak{m}_Q(Y)$. But the mappings are injective, which shows an isomorphism of $\mathfrak{m}_P(X) \cong \mathfrak{m}_Q(Y)$.

(b) (Extra credit - you may use this in the subsequent parts even if you do not solve it) Suppose X and Y are isomorphic. Prove that X is smooth if and only if Y is smooth. (Hint: Use the following alternate characterization of snoothness: X is smooth at P if and only if $\dim X = \dim_k \mathfrak{m}_P(X)/\mathfrak{m}_P(X)^2$. Here, $\mathfrak{m}_P(X)^2$ is the ideal generated by products \mathfrak{ab} with $\mathfrak{a} \in \mathfrak{m}_P(X)$ and $\mathfrak{b} \in \mathfrak{m}_P(X)$. We then view this as a subgroup of $\mathfrak{m}_P(X)$ and take the quotient as groups. This group has the structure of a vector space over k and is called the *Zariski tangent space*. You may assume without proof that $\dim X = \dim Y$.) Note that this implies that P is a smooth point of X if and only if Q is a smooth point of Y.

Proof. We want to show that X smooth \Longrightarrow Y smooth. Using the previous question, an isomorphism on X,Y induces an isomorphism on $m_P(X)$ and $m_Q(Y)$ for $P \in X$, $\varphi(P) = Q \in Y$. Let this isomorphism be π . We will prove that $m_P(X)^2 \cong m_Q(Y)^2$.

(Surjectivity) Suppose that we had

$$fg \in m_Q(Y)^2$$

for f, $g \in m_Q(Y)$. We have that $\pi(f') = f$, $\pi(g') = g$. Then $\pi(f'g') = fg$.

(Injectivity) We have that if $\pi(fg) = 0$, either f = 0, g = 0. Then π restricts to an isomorphism on $m_Q(Y)^2 \cong m_P(X)^2$.

As abelian groups, we have that there is a mapping obtained from π :

$$\pi': \mathfrak{m}_{P}(X) \to \frac{\mathfrak{m}_{Q}(Y)}{\mathfrak{m}_{Q}(Y)^{2}}$$
$$f \mapsto \pi(f) + \mathfrak{m}_{Q}(Y)^{2}$$

Clearly, $\mathfrak{m}_P(X)^2 \subseteq \ker \pi'$. Suppose that an element of $f \in \mathfrak{m}_P(X)$ is mapped to a product in $\mathfrak{m}_O(Y)$. So

$$\pi(f) = f_1 f_2$$

Recall that π restricts to an isomorphism on $\mathfrak{m}_P(X)^2 \cong \mathfrak{m}_Q(Y)^2$. Then there is a backwards mapping showing that

$$\pi^{-1}(\pi(f)) = \pi^{-1}(f_1f_2) = \pi^{-1}(f_1)\pi^{-1}(f_2) = f$$

So f is a product. So we get $\ker \pi' = \mathfrak{m}_P(X)^2$. We conclude that by the first isomorphism theorem,

$$\frac{m_P(X)}{m_P(X)^2} \cong \frac{m_Q(Y)}{m_O(Y)^2}$$

Since X is smooth, dim $X = \dim \frac{\mathfrak{m}_P(X)}{\mathfrak{m}_P(X)^2}$. It has a dimension over k, so we can find a basis $\{\overline{\lambda_1}, \ldots, \overline{\lambda_i}\}$. Where

$$\overline{\lambda_i} = \lambda_i + m_P(X)^2$$

Every element of $\frac{m_P(X)}{m_P(X)^2}$ can be uniquely expressed as

$$\alpha_1\overline{\lambda_1}+\dots+\alpha_j\overline{\lambda_j}$$

We have shown an isomorphism of $\frac{\mathfrak{m}_P(X)}{\mathfrak{m}_P(X)^2} \cong \frac{\mathfrak{m}_Q(Y)}{\mathfrak{m}_Q(Y)^2}$. Let this mapping be given by φ . Let φ have an additional action on k as the identity such that:

$$\phi(\alpha_1\overline{\lambda_1}+\dots+\alpha_j\overline{\lambda_j})=\alpha_1\phi(\overline{\lambda_1})+\dots+\alpha_j\phi(\overline{\lambda_j})$$

We need to show that $\phi(\overline{\lambda_i})$ are linearly independent. If the RHS is 0, suppose there is a nontrivial relation, where some $a_i \neq 0$. Then

$$\phi(\alpha_1\overline{\lambda_1}+\cdots+\alpha_j\overline{\lambda_j})=0$$

where

$$\alpha_1\overline{\lambda_1}+\cdots+\alpha_j\overline{\lambda_j}\neq 0$$

But $a_1\overline{\lambda_1}+\cdots+a_j\overline{\lambda_j}\in\frac{\mathfrak{m}_P(X)}{\mathfrak{m}_P(X)^2}$, and ϕ is an isomorphism. So the kernel of ϕ with its regular action (without acting as identity on k) is nontrivial which is a contradiction.

Because $\phi(\overline{\lambda_i})$ are linearly independent, ϕ is injective. We also have an inverse map ϕ^{-1} which is also injective by the same reason above. So we actually get an isomorphism of vector spaces. We have the equality:

$$\dim X = \dim \frac{m_P(X)}{m_P(X)^2} = \dim \frac{m_Q(Y)}{m_Q(Y)^2}$$

and since $\dim X = \dim Y$, we have

$$\dim \frac{m_Q(Y)}{m_Q(Y)^2} = \dim Y$$

So that means that Y is smooth. The direction that Y is smooth \implies X is smooth is symmetric, so we are done.

(c) Prove that V(y) and $V(y - x^3)$ are isomorphic affine varieties.

Proof. We need to show that there is a morphism and inverse morphism:

$$\varphi: V(y) \to V(y - x^3)$$

$$\psi: V(y - x^3) \to V(y)$$

$$\varphi \circ \psi = id_{V(y - x^3)}$$

$$\psi \circ \varphi = id_{V(y)}$$

Define:

$$\varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y))$$

where

$$\varphi_1(x, y) = x$$
$$\varphi_2(x, y) = y^3$$

 φ is a polynomial map because $\varphi_1, \varphi_2 \in k[x, y]$. Similarly, define

$$\psi(x,y) = (x,0)$$

Suppose that $P = (x, 0) \in V(y)$. Then

$$\psi(\varphi(P)) = \psi(x, 0) = (x, 0)$$

and if $Q = (x, x^3) \in V(y - x^3)$,

$$\varphi(\psi(Q)) = \varphi(x) = \varphi(x, 0) = (x, x^3)$$

which shows that they are isomorphic.

(d) Prove that the projective closures of V(y) and $V(y-x^3)$ are not isomorphic. Do you see why this happens geometrically?

Proof. Check that V(y) is smooth:

$$f_x = 0$$
 $f_1 = 1$

So $f_x \neq f_y \neq 0$, and there are no singular points. In the last question, we proved an isomorphism, and since V(y) is smooth, $V(y-x^3)$ is smooth also. By definition, the projective closures $\mathbb{V}(y)$ and $\mathbb{V}(z^2y-x^3)$ are smooth also. Check for singular points on $\mathbb{V}(z^2y-x^3)$:

$$F_x = 3x^2$$
$$F_y = z^2$$

$$F_z = 2yz$$

We see that [0:1:0] makes all of them 0. And for $F=z^2y-x^3$, F([0:1:0])=0 also. So $\mathbb{V}(z^2y-x^3)$ is not smooth, contradiction. This happens because the projective closure of $y-x^3$ looks like z^2-x^3 which is a cusp at [0:1:0].

Exercise 4: Let $F \in k[x, y, z]$ be a homogeneous polynomial of degree n.

(a) Show that $xF_x + yF_y + zF_z = nF$ where F_x , F_y , F_z denote the partial derivatives of F with respect to x, y, z respectively

Proof. We have that

$$F = \sum F_i$$

where each F_i are of the form $a_i x^{r_1} y^{r_2} z^{r_3}$ and $r_1 + r_2 + r_3 = n$. Then

$$F_x = \sum F_{ix}$$

and

$$xF_x + yF_y + zF_z = \sum xF_{ix} + yF_{iy} + zF_{iz}$$

We have:

$$\begin{split} x F_{ix} &= r_1 a_i x^{r_1} y^{r_2} z^{r_3} \\ y F_{iy} &= r_2 a_i x^{r_1} y^{r_2} z^{r_3} \\ z F_{iz} &= r_3 a_i x^{r_1} y^{r_2} z^{r_3} \end{split}$$

and therefore,

$$xF_{ix} + yF_{iy} + zF_{iz} = a_i(r_1 + r_2 + r_3)x^{r_1}y^{r_2}z^{r_3}$$

= $a_i(n)x^{r_1}y^{r_2}z^{r_3}$
= nF_i

Therefore

$$xF_x + yF_y + zF_z = \sum_i nF_i$$
$$= n \sum_i F_i$$
$$= nF$$

and we're done.

(b) Now suppose F has no repeated factors. Let $P \in U_i \subseteq \mathbb{P}^2$. Recall that we say $\mathbb{V}(F)$ is singular at P if V(f) is singular at P where f is the dehomogenization of F with respect to the i-th coordinate. Show that a point $P \in \mathbb{P}^2$ is a singular point of $\mathbb{V}(F)$ if and only if $F(P) = F_x(P) = F_y(P) = F_z(P) = 0$.

Proof. The operation of taking the partial derivative and dehomogenization on a variable other than the derivative commutes. So that means $f_x(P) = 0 \iff F_x(P) = 0$.

 (\rightarrow) Since P is singular in $\mathbb{V}(F)$, we have $f_x(P) = f_y(P) = f(P) = 0$. And $f_x(P) = 0 \iff F_x(P) = 0$. Also, $f(P) = 0 \implies F(P) = 0$ because F([x:y:1]) = f(x,y). By the previous problem, we have

$$xF_x(P) + yF_y(P) + zF_z(P) = nF(P)$$

and therefore,

$$zF_z(P) = 0$$

so $F_z(P) = 0$. If the point does not lie in U_3 , we can use another affine chart with the same result. So we are done here.

 (\leftarrow) $P \in \mathbb{P}^2$, it is in one of U_i wlog say U_1 . Then $F(P) = F(1, P_2, P_3) = f(P_2, P_3) = 0$ or in other words, $P \in V(f)$.

Now we need to show $f_y(P) = f_z(P) = 0$. But that comes from the fact proved earlier that dehomogenization and partial differentiation commutes. So

$$F_y([1:P_2:P_3]) = (F(1,y,z))_y(P_2,P_3) = f_y(P_2,P_3) = 0$$

We conclude both $f_y(P) = f_z(P) = 0$. So P is singular on V(f) and therefore on V(F).

(c) Suppose that $P \in U_i$ is a smooth point of $\mathbb{V}(F)$. Recall that the projective tangent line at P is the projective closure of the tangent line of V(f), where f is the dehomogenization of F with respect to the i-th coordinate. Prove that the projective tangent space at P is the vanishing of

$$xF_x(P) + yF_y(P) + zF_z(P)$$

Proof. Since P is smooth in $\mathbb{V}(F)$, then P is smooth in V(f). Suppose wlog that $P = [P_1 : P_2 : 1] \in U_3$. Then we can dehomogenize F:

$$F \rightarrow F(x, y, 1) = F_d$$

 $F = a_0 + a_1x + a_2y + a_3z + z_4x^2 + \cdots$
 $F_d = a_0 + a_3 + a_1x + a_2y + \cdots$

Now we want to find $T_{(P_1,P_2)}(F_d)$. Compute the translation, $x \mapsto x + P_1$, $y \mapsto y + P_2$. So we have that the tangent space is the vanishing of the degree 1 terms in

$$F_d(x + P_1, y + P_2) = c + F_{dx}(0, 0)x + F_{dy}(0, 0)y + \{\text{higher degree terms}\}\$$

Then the tangent space is $\mathbb{V}(F_{dx}(0,0)x + F_{dy}(0,0)y)$. Undoing our change of variables, we have $\mathbb{V}(F_{dx}(0,0)x + F_{dy}(0,0)y - F_{dx}(0,0)P_1z - F_{dy}(0,0)P_2z)$. Since $F_x(P) = F_{dx}(0,0)$, and so on, then this can be changed to

$$V(F_x(P)x + F_y(P)y + (-F_x(P)P_1 - F_y(P)P_2)z)$$

Using the fact that

$$nF = xF_x + yF_u + zF_z$$

then

$$nF(P) = 0 = P_1F_x(P) + P_2F_u(P) + F_z(P)$$

or

$$-P_1F_x(P) - P_2F_y(P) = F_z(P)$$

So

$$V(F_{x}(P)x + F_{y}(P)y + (-F_{x}(P)P_{1} - F_{y}(P)P_{2})z)$$

$$= V(xF_{x}(P) + yF_{y}(P) + zF_{z}(P))$$

Since it does not matter what affine chart we started with, we will always get the same result. So we are done. \Box

Exercise 5: For each of the following projective plane curves, find their singular points and the multiplicities and tangent cone at each of the singular points.

(a)
$$x^2y^3 + x^2z^3 + y^2z^3$$

Proof. By the previous problem, the singular points are when

$$x^2y^3 + x^2z^3 + y^2z^3 = 0$$

and

$$F_x(P) = 0$$
$$F_y(P) = 0$$
$$F_z(P) = 0$$

We have

$$F_x = 2xy^3 + 2xz^3$$

$$F_y = 3x^2y^2 + 2yz^3$$

$$F_z = 3x^2z^2 + 3u^2z^2$$

Now we simultaneously solve for the 0's:

$$2xy^3 + 2xz^3 = 0$$
 $3x^2y^2 + 2yz^3 = 0$ $3x^2z^2 + 3y^2z^2 = 0$
 $2x(y^3 - z^3) = 0$ $y(3x^2y + 2z^3) = 0$ $3z^2(x^2 + y^2) = 0$

From the first equation, we require x = 0, or $y^3 = z^3$. For the second, we require y = 0 or $3x^2y + 2z^3 = 0$. For the third, we require $3z^2 = 0$ or $(x^2 + y^2) = 0$. Go through the cases:

- x = 0. Then by the second equation, y = 0 or $2z^3 = 0$. In either case, the last equation is 0 also and $[0:0:1], [0:1:0] \in V(F)$.
- $-y^3=z^3$. By the third equation, either x=y=0 or z=0. If x=y=0, we have x=y=z=0 which is impossible. If z=0, y=0, then $F_y(P)=0$. So [1:0:0] is another possible solution.

These are the singular points.

(Multiplicities) We see that each singular point is 0 in their affine chart. So we dehomogenize and find the lowest degree:

- [1:0:0]. We have

$$F(1, y, z) = y^3 + z^3 + y^2 z^3$$

The lowest degree is 3 which is the multiplicity of V(F) at [1:0:0].

- [0:1:0]. We have

$$F(x, 1, z) = x^2 + x^2 z^3 + z^3$$

The lowest degree is 2 so the multiplicity is 2.

- [0:0:1]. We have

$$F(x, y, 1) = x^2y^3 + x^2 + y^2$$

and the lowest degree is 2.

(Tangent Cones) Take the lowest degree terms of the previous dehomogenizations:

-
$$\mathbb{T}C_{[1:0:0]}(\mathbb{V}(F)) = y^3 + z^3$$
.

-
$$\mathbb{T}C_{[0:1:0]}(\mathbb{V}(F)) = x^2$$
.

$$- \mathbb{T}C_{[1:0:0]}(\mathbb{V}(F)) = x^2 + y^2.$$

so we are done.

(b) $y^2z - x(x-z)(x-\lambda z), \lambda \in k$

Proof. We require $F(P) = F_x(P) = F_y(P) = F_z(P) = 0$. So calculate the derivatives:

$$y^{2}z - x(x - z)(x - \lambda z) = y^{2}z - x(x^{2} - (\lambda + 1)xz + \lambda z^{2})$$
$$= y^{2}z - x^{3} + (\lambda + 1)x^{2}z + \lambda xz^{2}$$

We have

$$F_x = -3x^2 + 2(\lambda + 1)xz + \lambda z^2$$

$$F_u = 2yz$$

$$F_z = y^2 + (\lambda + 1)x^2 + 2\lambda xz$$

- Case 1: $F_y = 0 \implies y = 0$. Then

$$F(x,0,z) = 0 \implies x(x-z)(x-\lambda z) = 0$$

* x = 0. This means that $F_x(0, 0, z)$ implies z = 0 which is impossible.

* $x = \lambda z$. Then

$$F_z(\lambda z, 0, z) = (\lambda^3 + 3\lambda^2)z^2$$

 $z \neq 0$ so $\lambda = 0, -3$. Also,

$$F_x(\lambda z, 0, z) = (-\lambda^2 + 3\lambda)z^2$$

So $\lambda = 0, 3$. Then $\lambda = 0$, x = 0 = z, contradiction.

- Case 2: $F_y = 0 \implies z = 0$. Then

$$F_x(x, y, 0) = -3x^2$$

So x = 0. Now plug this into F_z to get:

$$F_z(0, y, 0) = y^2$$

So y = 0, which is impossible.

-z = y = 0. This is impossible since $F_x(x, 0, 0) = 0$ implies that x = 0.

None of the cases work out, so there are no singular points.

(c) $x^n + y^n + z^n, n > 0$.

Proof. We need $x^n + y^n + z^n = 0$ and

$$F_x = nx^{n-1}$$

$$F_{y} = ny^{n-1}$$

$$F_{\tau} = nz^{n-1}$$

To be 0 at P. This is true when $P = [0:0:0] \notin \mathbb{P}^2$. So there are no singular points.

Exercise 6: For each point $[a:b:c:d:e:f] \in \mathbb{P}^5$, we can associate the degree 2 plane curve

$$C = \mathbb{V}(ax^2 + bxy + cxz + dy^2 + eyz + fz^2) \subseteq \mathbb{P}^2$$

given $C \subseteq \mathbb{P}^2$, we write $[C] \in \mathbb{P}^5$ for the point [a:b:c:d:e:f] corresponding to the coefficients. (Note: this is well-defined because if we rescale the coefficients a,b,c,d,e,f it does not change the vanishing set.) This problem is about relating degree 2 curves with certain properties to algebraic subsets of \mathbb{P}^5 .

(a) Fix a point $P = [x_0 : y_0 : z_0] \in \mathbb{P}^2$. Prove that the set $\{[C] \in \mathbb{P}^5 : P \in C\}$ is a hyperplane in \mathbb{P}^5 . (In fact, you should find it is the hyperplane $v_{2,2}(P)^*$.)

Proof. We have that the a, b, c, d, e, f that make

$$ax_0^2 + bx_0y_0 + cx_0z_0 + dy_0^2 + ey_0z_0 + fz_0^2 = 0$$

can be seen as variables of the hyperplane with coefficients $x_0^2, x_0y_0, \dots, z_0^2$ because they are fixed:

$$x_0^2 a + x_0 y_0 b + x_0 z_0 c + y_0^2 d + y_0 z_0 e + z_0^2 f = 0$$

So the set

$$\{[C] \in \mathbb{P}^5 : P \in C\} = \mathbb{V}(x_0^2 a + x_0 y_0 b + x_0 z_0 c + y_0^2 d + y_0 z_0 e + z_0^2 f)$$

as desired.

(b) Prove that there exists a curve $C = \mathbb{V}(ax^2 + bxy + cxz + dy^2 + eyz + fz^2)$ through any 5 points $P_1, \ldots, P_5 \in \mathbb{P}^2$.

Proof. We can use a matrix argument:

$$\begin{bmatrix} x_1^2 & x_1y_1 & x_1z_1 & y_1^2 & y_1z_1 & z_1^2 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_5^2 & x_5y_5 & x_5z_5 & y_5^2 & y_5z_5 & z_5^2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \\ e \\ f \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

has non-trivial 0's because this is a mapping from a 6 dimensional vector space to one of 5 dimensions. So there exists a, b, c, d, e, f not all 0 such that the curve C passes through P_1, \ldots, P_5 .

(c) Prove that the set

$$\{[a:b:c:d:e:f] \in \mathbb{P}^5 : \text{mult}_{P}(ax^2 + bxy + cxz + dy^2 + eyz + fz^2) \ge 2\}$$

is isomorphic to \mathbb{P}^2 . (Hint: you might want to perform a change of coordinates to reduce to the case P = [0:0:1].)

Proof. Perform a change of coordinates so that $P \rightarrow [0:0:1]$. This corresponds to some rotation.

Then we get some new vanishing $\mathbb{V}(ax^{2\prime} + bx'y' + cx'z' + dy^{2\prime} + ey'z' + fz^{2\prime})$. So dehomogenize:

$$\mathbb{V}(ax^{2\prime}+bx\prime y^{\prime}+cx^{\prime}+dy^{2\prime}+ey^{\prime}+f)$$

So the multiplicity is ≥ 2 when

$$c = e = f = 0$$

and this is isomorphic to \mathbb{P}^2 because we just have

$$\{[a:b:d]:a,b,d \in k \text{ not all } 0\}$$

(d) Prove that the set $\{[C] \in \mathbb{P}^5 : C \text{ is a line}\}\$ is projectively equivalent to $v_{2,2}(\mathbb{P}^2) \subseteq \mathbb{P}^5$.

Proof. We have that

$$C = \mathbb{V}(ax^2 + bxy + cxz + dy^2 + eyz + fz^2)$$

is the vanishing of a degree 2 polynomial in \mathbb{P}^2 , so it splits into two lines. Then we require that it splits into a product of two lines that are the same, so

$$C = \mathbb{V}((ux + vy + wz)^2)$$

Then

$$(ux + vy + wz)^2 = u^2x + v^2y^2 + w^2z^2 + 2uvxy + 2vwyz + 2uwxz$$

So we get

$$[a:b:c:d:e:f] = [u^2:2uv:2uw:v^2:2vw:w^2]$$

and therefore, we take the set of all such points for u, v, w varied over k:

$$\{[C] \in \mathbb{P}^5 : C \text{ is a line}\} = \{[u^2 : 2uv : 2uw : v^2 : 2vw : w^2] : u, v, w \in k \text{ not all } 0\}$$

Now $v_{2,2}: \mathbb{P}^2 \to \mathbb{P}^5$ is

$$[x:y:z] \mapsto [x^2:xy:xz:y^2:yz:z^2]$$

So there is a change of coordinates given by the invertible matrix:

$$\begin{bmatrix} 1 & & & & & \\ & 2 & & & & \\ & & 2 & & & \\ & & & 1 & & \\ & & & & 2 & \\ & & & & 1 \end{bmatrix} \begin{bmatrix} x^2 \\ xy \\ xz \\ y^2 \\ yz \\ z^2 \end{bmatrix} = \begin{bmatrix} u^2 \\ 2uv \\ 2uw \\ v^2 \\ 2vw \\ w^2 \end{bmatrix}$$

So we have $\{[C]: C \text{ is a line}\}$ is projectively equivalent to $\nu_{2,2}(\mathbb{P}^2)$.

Exercise 7: Suppose k is algebraically closed. Let $F \in k[x, y, z]$ be an irreducible homogeneous polynomial of degree 2. Prove that $\mathbb{V}(F)$ is projectively equivalent to $\mathbb{V}(yz - x^2)$. In other words, all irreducible conics are projectively equivalent.

(Hint: Let P be a point in $\mathbb{V}(F)$. There is a change of coordinates that takes P to [0:1:0]. In these coordinates, if we write $F = ax^2 + bxy + cxz + dy^2 + eyz + fz^2$, then what do you know about d? Can b and e both vanish? Find a change of coordinates so that $F = a'x^2 + c'xz + yz + f'z^2 = a'x^2 + (c'x + y + f'z)z$. Can a' vanish?)

Proof. If we do a change of coordinates so that $P \rightarrow [0:1:0]$ and write

$$F = ax^2 + bxy + cxz + dy^2 + eyz + fz^2$$

then [0:1:0] must vanish on this so

$$0 = d$$

and so

have

$$F = ax^2 + bxy + cxz + eyz + fz^2$$

Suppose for contradiction that b = e = 0. Then we have

$$F = ax^2 + cxz + fz^2$$

Notice that when we dehomogenize, the polynomial becomes reducible:

$$F(x, 1) = \alpha x^2 + cx + f = gh$$

So when we rehomogenize, the polynomial becomes reducible, which is a contradiction. Then we have

$$F = ax^2 + cxz + fz^2 + bxy + eyz$$

Wlog, suppose that $e \neq 0$. Then we have the change of coordinates

$$x \mapsto x$$
$$y \mapsto y$$
$$bx + ez \mapsto z$$

Then the inverse of this change of coordinates is given by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ b & 0 & e \end{bmatrix}$, and

since $e \ne 0$, we have that this is invertible. If instead, e = 0, $b \ne 0$, then we can modify the map to $bx + ez \mapsto x$. So under this change of coordinates, we have F goes to

$$ax^{2} + cxz + fz^{2} + y(bx + ez) \mapsto a'x^{2} + c'xz + f'z^{2} + yz$$

= $a'x^{2} + (c'x + y + f'z)z$

We have that a' cannot vanish, otherwise, we have that F was not irreducible as we get (c'x + y + f'z)z. Now we have a change of coordinates $c'x + y + f'z \mapsto a'y$. The inverse

of this is given by the matrix $\begin{bmatrix} 1 & 0 & 0 \\ c' & a' & f' \\ 0 & 0 & 1 \end{bmatrix}$ which is invertible. Under this mapping, we

$$F \mapsto a'x^2 + a'yz$$

Rescaling, we see that $\mathbb{V}(F)$ is projectively equivalent to $\mathbb{V}(x^2 + yz)$ because there is a change of coordinates by composition. So all irreducible conics are projectively equivalent.

Exercise 8: (Extra Credit) Recall that given a point $P = [a_1 : \cdots : a_{n+1}] \in \mathbb{P}^n$, we write

$$P^* = \mathbb{V}(a_1x_1 + \dots + a_{n+1}x_{n+1}) \subseteq \mathbb{P}^n$$

for the corresponding hyperplane in \mathbb{P}^n . Let $P \in \mathbb{P}^m$ and $Q \in \mathbb{P}^n$. Prove that

$$\sigma_{m,n}^{-1}(\sigma_{m,n}(P\times Q)^*)=P^*\times\mathbb{P}^n\cup\mathbb{P}^m\times Q^*\subseteq\mathbb{P}^m\times\mathbb{P}^n$$

Proof.