

Contents

Executive Summary	3	
Our Work Approach	5	
Key Takeaways	14	

Executive Summary

- Our Work Approach
- Key Takeaways
- Questions

Executive Summary > Introduction

Our team consisted of interesting individuals with diverse cultures, across different continents, and different time zones ...

Executive Summary

- Our Work Approach
- Key Takeaways
- Questions

Executive Summary > Problem Statement & Project Objectives

Data availability and its demonstrable value have created demand amongst employers for individuals with the necessary skills and experience. Our objective is to utilize the job descriptions of job postings for three commonly sought-after positions in data analytics in order to extract insights in their similarities and differences.

- **Executive Summary**
- **Our Work Approach**
- **Overall Approach**
 - Methodology
 - Key Takeaways
- Questions

Our Work Approach > Overall Approach

Our Work Approach > Data Cleaning

- **Executive Summary**
- **Our Work Approach**
- Overall Approach
- Methodology
- Key Takeaways
- Questions

1 - Addressing Extra Columns

- Each data set had some non-descript columns that needed investigating.
- For the Business Analyst dataset, the non-descript columns were the result of a subset of rows being shifted.

2 - Combining Datasets

- Before combining datasets, a target column in each dataset was created to indicate the job type: business analyst, data analyst, or data scientist
- After combining datasets, subsequent cleaning was done

3 - Imputing Founded Year

- KDE was used to impute the missing values for the Founded Year column
- Grid search was applied to find the optimal bandwidth
- A sample was drawn from the fitted KDE to fill missing values

4 - Imputing Rating

- KDE was used to impute the missing values of the Rating column
- Grid search was applied to find optimal bandwidth
- A sample was drawn from the fitted KDE to fill missing values

- Miscellaneous

- Cleaned up Job Description by replacing meta characters
- Cleaned up Company Name column by removing embedded ratings
- Dropped columns that weren't needed for analysis e.g., Revenue (categorical) which had mostly missing values

6

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Our Work Approach > Feature Engineering

```
'Company - Private': 1,
'Company - Public': 1,
'Nonprofit Organization': 0,
'Subsidiary or Business Segment': 1,
'Government': 0,
'College / University': 0,
'1 to 50 employees': 0,
'51 to 200 employees': 1,
'201 to 500 employees': 2,
'501 to 1000 employees': 3,
'1001 to 5000 employees': 4,
```

37.0

37.0

37.0

66.0

66.0

66.0 Example of hourly syntax: \$34-\$53 Per Hour(Glassdoor est.) Example of salary syntax: \$37K-\$66K (Glassdoor est.)

02 - Company & Size columns

- Company Ownership and Size columns were both string type
- New features were created of integer type to reflect the categorical nature of the strings

03 - Text Data Processing

Job Description was taken through various transformations to create a feature space suitable for NLP work

	JobTitle	JobDescription	Rating	CompanyName	Location	Headquarters	Size	Industry	Sector	JobType	OrganizationAge	SalaryLower	SalaryUpper	SalaryAvg	IsBusiness
0	Data Analyst, Center on Immigration and Justic	Are you eager to roll up your sleeves and harn	3.2	Vera Institute of Justice	New York, NY	New York, NY	2.0	Social Assistance	Non-Profit	Data Analyst	60	37000.0	66000.0	51500.0	0
1	Quality Data Analyst	Overview Provides analytical and technical su	3.8	Visiting Nurse Service of New York	New York, NY	New York, NY	6.0	Health Care Services & Hospitals	Health Care	Data Analyst	128	37000.0	66000.0	51500.0	0

Our Work Approach > Exploratory Data Analysis (1 of 2)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Data Scientist | Mell | data | Mell | data | Mell | data | data

Our Work Approach > Exploratory Data Analysis (2 of 2)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Hierarchical Clustering + TFIDF

Actual vs K-Means Label Comparison

index	cluster	
Business Analyst	0	1874
	1	18
	2	2200
Data Analyst	0	316
	1	80
	2	1857
Data Scientist	0	326
	1	1162
	2	2421
	Q	

Our Work Approach > Modeling (1 of 4)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Top2Vec – Overall Dataset

["Are you eager to roll up your sleeves and harness data to drive policy change? Do you enjoy sifting through complex datasets to illuminate trends 'Overview Provides analytical and technical support for the integration of multiple data sources used to prepare internal and external reporting for 'We're looking for a Senior Data Analyst who has a love of mentorship, data visualization, and generating actionable insights from raw data. In this 'Requisition NumberRR-0001939 Remote: Yes We collaborate. We create. We innovate. Intriqued? You're a business professional with an innate curiosi "ABOUT FANDUEL GROUP FanDuel Group is a world-class team of brands and products all built with one goal in mind - to give fans new and innovative t

Topic 1

Latent Dirichlet Allocation (LDA)

```
The topic would be 0
['analyst', 'analysis', 'ability', 'management', 'team', 'requirements', 'skills', 'work', 'business', 'data']
The topic would be 1
['ibm', 'hadoop', 'engineer', 'python', 'data', 'ml', 'aws', 'spark', 'learning', 'machine']
The topic would be 2
['lab', 'molecular', 'gs', 'scientist', 'biology', 'cell', 'scientific', 'research', 'clinical', 'laboratory']
```

Data Scientist

Topic 0

Topic 1

Data Analyst

Topic 0

Topic 1

Business Analyst

Topic 0

Topic 1

Our Work Approach > Modeling (2 of 4)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Job Title Classification Accuracy					
	Naïve Bayes	SVM			
No preprocessing	0.822	0.8639			
Stopwords removed	0.8235	0.8644			
Stopwords removed + stemming	0.8203	0.8634			
Job Description Clas	ssification Accuracy				
No preprocessing	0.7172	0.7252			
Stopwords removed	0.7248	0.7471			
Stopwords removed + stemming	0.733	0.7503			

Job Title SVM (Stopwords Removed + stemmed)

Parameters (after Grid Search)				
Loss	Hinge			
Penalty	12			
Alpha	0.001			
Random State	1			
Ngram	(1, 2)			

	precision	recall	f1-score	support
Business Analyst	0.97	0.91	0.94	822
Data Analyst Data Scientist	0.67 0.97	0.95 0.78	0.79 0.86	470 759
Data Scientist	0.97	0.78	0.00	759
accuracy			0.87	2051
macro avg	0.87	0.88	0.86	2051
weighted avg	0.90	0.87	0.88	2051

Job Description SVM (Stopwords Removed + stemmed)

Parameters (after Grid Search)				
Loss	Hinge			
Penalty	12			
Alpha	0.001			
Random State	1			
Ngram	(1, 2)			

	precision	recall	f1-score	support
Business Analyst Data Analyst Data Scientist	0.76 0.62 0.74	0.88 0.31 0.83	0.82 0.42 0.78	822 470 759
accuracy macro avg weighted avg	0.70 0.72	0.68 0.73	0.73 0.67 0.71	2051 2051 2051

Our Work Approach > Modeling (3 of 4)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Job Title - Neural Network

Layer (type)	Output	Shape	Param #
embedding (Embedding)	(None,	50, 100)	216500
global_max_pooling1d (Global	(None,	100)	0
dense (Dense)	(None,	25)	2525
dropout (Dropout)	(None,	25)	0
dense_1 (Dense)	(None,	3)	78

Total params: 219,103 Trainable params: 219, 103 Non-trainable params: 0

Trainable params: 4,165,103 Non-trainable params: 0

Model: "sequential"

Job Description - Neural Network

Model: "sequential_1" Layer (type) Output Shape Param # embedding_1 (Embedding) (None, 800, 100) 4158700 global_max_pooling1d_1 (Glob (None, 100) dense_2 (Dense) (None, 50) 5050 dropout_1 (Dropout) (None, 50) 0 dense 3 (Dense) (None, 25) 1275 dropout_2 (Dropout) (None, 25) 0 dense_4 (Dense) (None, 3) 78 Total params: 4,165,103

Training and validation accuracy Training acc Validation acc Validation acc 0.75 0.70 0.65 0.60 0.55 0.50	Testin	ng Accuracy: 0.7465
0.80 - Taining acc Validation acc va	0.05	Iraining and validation accuracy
0.80 - Validation acc	0.00 1	— Training acc
0.70 - 0.65 - 0.60 - 0.55 - 0.50 -	0.80 -	
0.65 - 0.60 - 0.55 - 0.50 -	0.75 -	
0.60 - 0.55 - 0.50 -	0.70 -	
0.55 -	0.65 -	
0.50	0.60 -	
*	0.55 -	
	0.50 -	
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0		2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Training Accuracy: 0.8522

	precision	recall	f1-score	support
0 1 2	0.99 0.61 0.97	0.86 0.97 0.78	0.92 0.75 0.86	3258 1788 3157
accuracy macro avg weighted avg	0.86 0.90	0.87 0.85	0.85 0.84 0.86	8203 8203 8203
	precision	recall	f1-score	support
$\frac{0}{1}$	0.85 0.51 0.90	0.76 0.78 0.72	0.80 0.61 0.80	834 465 752
accuracy macro avg	0.75	0.75	0.75 0.74	2051 2051

Our Work Approach > Modeling (4 of 4)

Executive Summary

Our Work Approach

Overall Approach

Methodology

Key Takeaways

Questions

Job Title + Salary - Neural Network

Total params: 223,163 Trainable params: 223,163 Non-trainable params: 0

0 1 2	0.98 0.65 1.00	0.90 1.00 0.78	0.94 0.79 0.88	3258 1788 3157
accuracy macro avg weighted avg	0.87 0.91	0.89 0.87	0.87 0.87 0.88	8203 8203 8203
	precision	recall	f1-score	support
0 1 2	0.97 0.66 0.99	0.90 0.99 0.77	0.93 0.79 0.87	834 465 752
accuracy macro avg weighted avg	0.88 0.91	0.89 0.87	0.87 0.86 0.88	2051 2051 2051

precision recall f1-score support

Job Description + Salary - Neural Network

Layer (type)	Output Shape	Param #	Connected to
input_3 (InputLayer)	[(None, 800)]	0	
embedding_3 (Embedding)	(None, 800, 100)	4158700	input_3[0][0]
input_4 (InputLayer)	[(None, 1)]	0	
global_max_pooling1d_3 (GlobalM	(None, 100)	0	embedding_3[0][0]
dense_9 (Dense)	(None, 5)	10	input_4[0][0]
concatenate_1 (Concatenate)	(None, 105)	0	global_max_pooling1d_3[0][0] dense_9[0][0]
dense_10 (Dense)	(None, 50)	5300	concatenate_1[0][0]
dropout_5 (Dropout)	(None, 50)	0	dense_10[0][0]
dense_11 (Dense)	(None, 25)	1275	dropout_5[0][0]
dropout_6 (Dropout)	(None, 25)	0	dense_11[0][0]
dense_12 (Dense)	(None, 3)	78	dropout_6[0][0]

Non-trainable params: 0

Training Accuracy: 0.8497

	precision	recall	f1-score	support	
0	0.92	0.90	0.91	3258	
1	0.63	0.91	0.74	1788	
2	0.99	0.76	0.86	3157	
accuracy			0.85	8203	
macro avg	0.85	0.86	0.84	8203	
veighted avg	0.88	0.85	0.86	8203	
	precision	recall	f1-score	support	
0	0.80	0.84	0.82	834	
1	0.54	0.68	0.60	465]
2	0.92	0.72	0.81	752	
accuracy			0.76	2051	
macro avg	0.75	0.74	0.74	2051	
veighted avg	0.78	0.76	0.76	2051	

Key Takeaways > Results, Conclusions, Recommendations

- **Executive Summary**
- Our Work Approach
- **Key Takeaways**
- Questions

Model Performance

NB, SVM, and NN both arrived at similar accuracy (SVM outperformed NB)

Ambiguity

Difficult to differentiate between various job descriptions

Other Features

Salary seemed somewhat promising based on EDA but showed little improvement for modeling

Challenges

Conclusion

Modeling

Steep learning curve given inexperience in NLP

Orchestration

Aggregating individual development into final notebook (each person doing their work in a decentralized fashion) Working on final notebook in parallel

Future Improvements

Other NLP Techniques

Choose techniques that suit the task

Job Title

Better validation that the datasets include only the jobs they are supposed to

Model Selection

Given the EDA, utilize other models

- **Executive Summary**
- Our Work Approach
- Key Takeaways
- Questions

Questions