Worksheet 10

To accompany Chapter 4.2 Exponential Fourier Series

Colophon

This worksheet can be downloaded as a PDF file. We will step through this worksheet in class.

An annotatable copy of the notes for this presentation will be distributed before the second class meeting as Worksheet 10 in the Week 5: Classroom Activities section of the Canvas site. I will also distribute a copy to your personal Worksheets section of the OneNote Class Notebook so that you can add your own notes using OneNote. You are expected to have at least watched the video presentation of Chapter 4.2 of the notes before coming to class. If you

haven't watch it afterwards! After class, the lecture recording and the annotated version of the worksheets will be made available through Canvas.

Agenda

Symmetry in Exponential Fourier Series

Example

 Exponents and Euler's Equation • The Exponential Fourier series

The Exponential Function e^{at} • You should already be familiar with e^{at} because it appears in the solution of differential equations.

Case when a is real.

title('exp(at) -- a real')

It pops up again and again in tables and properies of the Laplace Transform.

It is also a function that appears in the definition of the Laplace and Inverse Laplace Transform.

When a is real the function e^{at} will take one of the two forms illustrated below:

plot(t, exp(t), t, exp(0.*t), t, exp(-t))axis([-1,2,-1,8])

In []: %% The decaying exponential t=linspace(-1,2,1000);

xlabel('t (s)') ylabel('exp(t) and exp(-t)') legend('exp(t)','exp(0)','exp(-t)') grid hold off You can regenerate this image generated with this Matlab script: expon.m. ullet When a < 0 the response is a decaying exponential (red line in plot) • When a = 0 $e^{at} = 1$ -- essentially a model of DC • When a > 0 the response is an *unbounded* increasing exponential (blue line in plot)

Case when a is imaginary

- $e^{j\omega t} = \cos \omega t + j\sin \omega t$

0.6

0.4

Phasor Plot

0.5

Case where a is complex We shall not say much about this case except to note that the Laplace transform equation includes such a number. The variable s in the Laplace Transform $\int_{0}^{\infty} f(t)e^{-st}dt$ The consequences of a complex s have particular significance in the development of system stability theories and in control

term to solve per harmonic.

Important

or

Odd Functions

Half-wave symmetry

Example 1

or more compactly $f(t) = \sum_{k=-n}^{n} C_k e^{jk\Omega_0 t}$

$$C_k = \frac{1}{T} \int_0^T f(t) e^{-jk\Omega_0 t} \ dt$$
 Symmetry in Exponential Fourier Series

The Exponential Fourier Series $f(t)=\cdots+C_{-2}e^{-j2\Omega_0t}+C_{-1}e^{-j\Omega_0t}+C_0+C_1e^{j\Omega_0t}+C_2e^{j2\Omega_0t}+\cdots$

The C_k coefficents, except for C_0 are *complex* and appear in conjugate pairs so

By a similar argument, all odd functions have no cosine terms so the a_k coefficients are 0. Therefore both C_{-k} and C_k are imaginary.

For odd functions, all coefficients C_k are imaginary.

If there is *half-wave symmetry*, $C_k = 0$ for k even.

Relation of C_{-k} to C_k $C_{-k}=C_k^st$ always

A 2π π 0 ωt

-A

T

 $\frac{C_n}{k = \text{odd}} = \frac{A}{2j\pi k} \left(e^{-jk\pi} - 1 \right)^2 = \frac{A}{2j\pi k} (-1 - 1)^2 = \frac{A}{2j\pi k} (-2)^2 = \frac{2A}{j\pi k}$

Computing coefficients of Exponential Fourier Series in Matlab

title('Exponential Fourier Series for Square Waveform with Odd Symmetry') xlabel('Hamonic frequencies: k\Omega 0 (rad/sec)');

ylabel('|c|k|');

stem(w,angle(Xw), 'o-');

subplot(212)

In []: Xw = subs(X,A,1);

Refer to the notes.

xlabel('Hamonic frequencies: k\Omega 0 (rad/sec)');

• When $\omega t = 2\pi$: $e^{j\omega t} = e^{j2\pi}e^{j0} = 1$

Hence

Plot In []: subplot(211) stem(w,abs(Xw), 'o-');

ylabel('\angle c_k [radians]');

In []: [X, w] = FourierSeries(xt, T0, k_vec)

Convert symbolic to numeric result

Plot the numerical results from Matlab calculation.

 The exponential Fourier series Symmetry in Exponential Fourier Series Example

- above. For example see $e^{j2\pi}$ above. Some answers for you

cos(omegat) + jsin(omegat) 0.5

• $e^{j\omega t}$ when $\omega t = \pi/2$ • $e^{j\omega t}$ when $\omega t = \pi$ • $e^{j\omega t}$ when $\omega t = 3\pi/2$ • $e^{j\omega t}$ when $\omega t = 2\pi$

is a complex exponential. systems analysis and design. Look out for them in EG-243. **Two Other Important Properties** By use of trig. identities, it is relatively straight forward to show that: $\cos \omega t = \frac{e^{j\omega t} + e^{-j\omega t}}{2}$ and $\sin \omega t = \frac{e^{j\omega t} - e^{-j\omega t}}{i2}$ We can use this result to convert the *Trigonometric Fourier Series* into an *Exponential Fourier Series* which has only one integral

 $C_{-k} = C_k^*$ **Evaluation of the complex coefficients** The coefficients are obtained from the following expressions*:

 $C_k = \frac{1}{2\pi} \int_0^{2\pi} f(\Omega_0 t) e^{-jk(\Omega_0 t)} d(\Omega_0 t)$

Since the coefficients of the Exponential Fourier Series are complex numbers, we can use symmetry to determine the form of

the coefficients and thereby simplify the computation of series for wave forms that have symmetry. **Even Functions** For even functions, all coefficients C_k are real.

No symmetry If there is no symmetry the Exponential Fourier Series of f(t) is complex.

Compute the Exponential Fourier Series for the square wave shown below assuming that $\omega = 1$

1.5

Square wave is an [odd/even/neither] function?

• Coefficients C_k are [real/imaginary/complex]?

• Square wave [has/does not have] half-wave symmetry?

• Subscripts *k* are [odd only/even only/both odd and even]?

• DC component is [zero/non-zero]?

Some questions for you

Hence

Solution

Example 2

Solution

EFS_SQW

In []:

Solution: See efs_sqw.m.

For n odd*, $e^{-jk\pi} = -1$. Therefore

 st You may want to verify that $C_0=0$ and

Verify the result of Example 1 using MATLAB.

Calculates the Exponential Fourier for a Square Wave with Odd Symmetry.

• $C_0 = [?]$

• What is the integral that needs to be solved for
$$C_k$$
?

• What is the integral that needs to be solved for C_k ?

• Oblique $\frac{1}{2\pi} \left[\int_0^\pi A e^{-jk(\Omega_0 t)} \, d(\Omega_0 t) + \int_\pi^{2\pi} (-A) e^{-jk(\Omega_0 t)} \, d(\Omega_0 t) \right] = \frac{1}{2\pi} \left[\frac{A}{-jk} e^{-jk(\Omega_0 t)} \Big|_0^\pi + \frac{-A}{-jk} e^{-jk(\Omega_0 t)} \Big$

• When $\omega t = 3\pi/2$: $e^{j\omega t} = e^{j3\pi/2} = -j$

• $C_0 = 0$ • Coefficients C_k are imaginary! • Subscripts *k* are **odd only**! • What is the integral that needs to be solved for C_k ? $C_k = \frac{1}{2\pi} \int_0^{2\pi} f(\Omega_0 t) e^{-jk(\Omega_0 t)} d(\Omega_0 t) = \frac{1}{2\pi} \left[\int_0^{\pi} A e^{-jk(\Omega_0 t)} d(\Omega_0 t) + \int_{\pi}^{2\pi} (-A) e^{-jk(\Omega_0 t)} d(\Omega_0 t) \right]$

Answers to in-class problems Some important values of ωt - Solution

It is also worth being aware that $n\omega t$, when n is an integer, produces rotations that often map back to the simpler cases given

Computing Trig. Fourier Series from Exp. Fourier Series **Summary** Exponents and Euler's Equation

• When $\omega t = 0$: $e^{j\omega t} = e^{j0} = 1$ • When $\omega t = \pi/2$: $e^{j\omega t} = e^{j\pi/2} = j$ • When $\omega t = \pi$: $e^{j\omega t} = e^{j\pi} = -1$

 Square wave is an odd function! • DC component is zero! • Square wave has half-wave symmetry!