PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: F28F 19/06, B23B 15/20

A1

(11) International Publication Number:

WO 99/60323

(43) International Publication Date:

25 November 1999 (25.11.99)

(21) International Application Number:

PCT/US99/10447

(22) International Filing Date:

19 May 1999 (19.05.99)

(30) Priority Data:

09/081,452

19 May 1998 (19.05.98)

US

(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application

US Filed on 09/081,452 (CIP) 19 May 1998 (19.05.98)

(71) Applicant (for all designated States except US): REYNOLDS METALS COMPANY [US/US]; 6601 West Broad Street, Richmond, VA 23230–1701 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): SUBHASISH, Sircar [IN/US]; 6601 West Broad Street, Richmond, VA 23230–1701 (US).

(74) Agent: BRODY, Christopher, W.; Dickinson Wright PLLC, Suite 800, 1901 L Street, N.W., Washington, DC 20036–3506 (US). (81) Designated States: DE, IN, JP, US, ZA, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: ALUMINUM ALLOY COMPOSITION, ARTICLE AND METHOD OF USE

(57) Abstract

An aluminum alloy composition consists essentially of controlled amounts of iron, silicon, copper, manganese, magnesium, titanium, zinc, zirconium and free machining elements with the balance being aluminum and incidental impurities. The alloy provides improvements in combined strength, corrosion resistance, machinability and brazeability. A component or articles made from the aluminum alloy can be machined to the right configuration and can be brazed to another component to form a high quality brazed joint. In addition, the article can withstand corrosive environments and has the necessary mechanical properties to interface with other components. The alloy is adapted for particular use as a component in a heat exchanger assembly (20), such as a connector block (10) having one or more machined surfaces or passageways (33).

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	\mathbf{UG}	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
\mathbf{CG}	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
\mathbf{CZ}	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

ALUMINUM ALLOY COMPOSITION, ARTICLE AND METHOD OF USE

Field of the Invention

The present invention is directed to an aluminum alloy composition, an article made from the composition and a method of use and, in particular, to a composition which combines the properties of machinability, brazeability, corrosion resistance and strength.

Background Art

In the prior art, the use of aluminum alloy compositions in heat exchanger applications is well known. Aluminum alloys are used for heat exchanger headers, tubing, fins and connector blocks. Typically, the connector blocks are brazed to the header to facilitate the hookup of fluid supply and takeaway lines of a system requiring fluid cooling, e.g., an air conditioning system.

When manufacturing the heat exchanger assemblies, the components are often clamped together and furnace brazed using either clad materials, filler brazing materials or a combination of both.

One significant problem that occurs during the manufacturing of the assembly is the formation of an inferior brazing joint between the connector block and the heat exchanger header. Prior to brazing, the connector blocks are often machined and combined with fasteners to facilitate

connection to the fluid supply or takeaway lines. Because of physical property requirements associated with machining and the fastener use, prior art connector blocks are usually made from AA6000 series aluminum alloys. These types of aluminum alloys exhibit poor machinability and are not easily brazed due to their high magnesium content, especially in a controlled atmosphere brazing process. Consequently, it is often difficult to obtain a high quality brazed joint between the connector block and another component of a heat exchanger assembly. Utilizing a more brazeable alloy such as a standard or commercial AA3000 series alloy does not present an acceptable alternative as a material for connector block The AA3000 series alloys, while being brazeable, are use. generally too soft to adequately machine or have the necessary mechanical properties to facilitate mechanically fastening the connector block to other components.

As such, a need has developed to provide an improved composition for heat exchanger application or other uses where machinability, brazeability, strength and corrosion resistance are required. In response to this need, the present invention provides an improved aluminum alloy composition and an article made therefrom which combines machinability, strength, corrosion resistance and brazeability. The inventive aluminum alloy article has the required mechanical properties making it especially suitable for use as a heat exchanger component. The aluminum alloy composition and article also facilitate

brazing processes when assembling the inventive article with other components.

Summary of the Invention

Accordingly, it is a first object of the present invention to provide an aluminum alloy composition exhibiting machinability and brazeability.

Another object of the present invention is to provide an aluminum alloy composition having good corrosion resistance and mechanical properties.

One other object of the present invention is to provide an aluminum alloy article made from the inventive composition.

A still further object of the present invention is to provide a method of brazing the aluminum alloy article.

Other objects and advantages of the present invention will become apparent as a description thereof proceeds.

In satisfaction of the foregoing objects and advantages, the present invention provides an aluminum alloy composition consisting essentially of, in weight percent, up to about 0.6% silicon, up to about 1.2% iron, up to about 0.7% copper, between about 0.1 and 1.8% manganese, up to about 1.5% magnesium, up to about 0.4% chromium, up to about 0.4% zinc, up to about 0.2% zirconium, between about 0.03 and 0.4% titanium, and at least one free machining element selected from the group consisting of bismuth, indium and tin or a compound thereof, wherein each of the bismuth and tin are up to about 1.5% and the indium ranges between about 0.05 and

0.5%, with the balance being aluminum and incidental impurities.

The alloy composition has more preferred limits wherein the silicon is up to about 0.2%, the iron is up to about 0.7%, the copper is up to about 0.5%, the manganese ranges between about 0.2 and 1.7%, the magnesium is up to about 0.8%, the chromium is up to about 0.2%, the zinc is up to about 0.25%, and the titanium ranges between about 0.03 and 0.3%. The ranges of the at least one free machining element are further defined wherein tin and bismuth are each up to about 1.3% and the indium ranges between about 0.05 and 0.3%.

In another embodiment, the silicon ranges between about 0.03 and 0.12%, the iron ranges between about 0.03 and 0.4%, the copper ranges between about 0.01 and 0.5%, the manganese ranges between about 0.5 and 1.6%, the magnesium is up to about 0.7%, the chromium is up to about 0.1%, and the titanium ranges between about 0.03 and 0.2%. The ranges of the at least one free machining element are further defined wherein tin and bismuth are each up to about 1.0% and the indium ranges between about 0.05 and 0.2%. Other embodiments are described below.

In yet another embodiment, the alloy composition has limits wherein the silicon ranges between 0.01 and 0.15%, the iron ranges between 0.01 and 0.5%, the copper ranges between 0.01 and 0.4%, the manganese ranges between 0.2 and 1.7%, the magnesium is from zero up to 0.4%, an amount of chromium is up to 0.2%, an amount of zinc is up to 0.25%, an amount of

zirconium is up to 0.3%, titanium ranges between 0.03 and 0.3%, and an amount of at least one of tin and bismuth is up to 1.3%.

The invention also includes an article made from the inventive alloy composition. A preferred article is one that is machined and brazed. An example of such an article is a heat exchanger component which includes at least one machined portion such as a passageway, recess, seat, threaded portion or the like, e.g., a heat exchanger connector block. The component can include more than one passageway or machined portion and fasteners secured thereto to facilitate connecting the component to other components or structure.

The invention also comprises the article in combination with another component, for example, a connector block and a heat exchanger assembly wherein the assembly has cooling tubes, fins, headers and fluid supply and takeaway lines.

A further aspect of the invention includes an improved brazing process wherein the inventive article is brazed using a flux. The article permits effective brazing with minimal amounts of flux.

Brief Description of the Drawings

Reference is now made to the drawings of the invention wherein:

Figure 1 is a partial schematic drawing showing a heat exchanger assembly with an exemplary connector block made from the inventive composition;

Figure 2 is an end view of the assembly of Figure 1; and

Figure 3 shows another embodiment of the inventive article.

Description of the Preferred Embodiments

The present invention offers significant improvements in the field of aluminum alloys compositions and articles made therefrom such as heat exchangers components, heat exchanger assemblies and brazing methods. The invention overcomes the dilemma facing engineers and designers when seeking an aluminum alloy composition for a particular application that requires a combination of machinability, strength, corrosion resistance and brazeability.

The aluminum alloy of the invention is ideally suited as an article for use in an application requiring strength, brazeability, machinability and corrosion resistance. particular application for the inventive alloy is a heat exchanger component that is machined, brazed, subjected to corrosive environments and subjected to mechanical forces for mechanical attachment to other heat exchanger components. component particularly adapted as the inventive aluminum alloy article is a connector block that links the inlet and outlet of a heat exchanger to cooling fluid supply and takeaway These connector blocks are often extruded shapes and lines. require machining operations to form one or more passageways therein as well as other recesses or configurations in the connector block body like o-ring seals and seats with good surface finish to prevent leakage. Although the connector

blocks can be extruded, they could also be forged or subjected to other forms of hot deformation to form the desired shape.

Having the combined properties of machinability, brazeability, strength and corrosion resistance in an aluminum alloy composition and an article made therefrom is unexpected when compared with known prior art alloys exhibiting only some of the desired properties. For example, machinable alloys such as AA6262 have poor brazeability. Brazeable alloys such as standard or commercial AA3000 series alloys do not have the strength nor machinability for use as an article that is machined, brazed and subjected to mechanical forces such as torques.

The properties of machinability, brazeability, strength and corrosion resistance are related to the controlled compositional limits of the inventive aluminum alloy and its article form. In one aspect, the alloy has controlled amounts of iron, silicon, copper, manganese, chromium, The term "amount" is intended to mean a finite titanium. amount of the named alloying element in a specified percentage which is deemed to be greater than percentages normally classified as incidental impurities in aluminum alloys. Another aspect of the alloy composition includes controlled levels of magnesium wherein the alloy may be either magnesiumfree or may include a defined magnesium amount. another aspect, at least one of bismuth, indium and tin are included in amounts effective to provide the enhanced machinability without the loss of other properties,

particularly mechanical properties. Zirconium is added for strength and corrosion resistance. Ranges of the various elements are detailed below in terms of broad and more narrow limits.

In its broadest embodiment, the inventive aluminum alloy consists essentially of, in weight percent, of the following composition: up to about 0.6% silicon; up to about 1.2% iron; up to about 0.7% copper; between about 0.1 and 1.8% manganese; up to about 1.5% magnesium; up to about 0.4% chromium; up to about 0.4% zinc; up to about 0.2% zirconium; between about 0.03 and 0.4% titanium; and one or more free machining elements set forth in an amount effective to improve machinability of the alloy with the balance being aluminum and incidental impurities. The free machining elements can be selected from the group consisting of tin, indium and bismuth and compounds thereof. The tin and bismuth can each range up to about 1.5% and the indium can range between about 0.05 and 0.5%. Unless otherwise noted, all percentages listed below are in weight percent.

A preferred embodiment of the inventive alloy further defines certain elements wherein the silicon is up to about 0.2%, the iron is up to about 0.7%, the copper is up to about 0.5%, the manganese ranges between about 0.2 and 1.7%, the magnesium is up to about 0.8%, the chromium is up to about 0.2%, the zinc is up to about 0.25%, and the titanium ranges between about 0.03 and 0.3%. The at least one free machining

element ranges are further defined as up to about 1.3% for the tin and bismuth and between about 0.05 and 0.3% for indium.

In a more preferred embodiment of the invention, the silicon ranges between about 0.03 and 0.12%, the iron ranges between about 0.03 and 0.4%, the copper ranges between about 0.01 and 0.5%, the manganese ranges between about 0.5 and 1.6%, the magnesium is up to about 0.7%, the chromium is up to about 0.1%, and the titanium ranges between about 0.03 and 0.2%. The at least one free machining element ranges are further defined as up to about 1.0% for the tin and bismuth and between about 0.05 and 0.2% for indium.

An even more preferred embodiment defines the alloy wherein the silicon is between about 0.03 and 0.09%, the iron is up to about 0.15%, the copper ranges between about 0.1 and 0.4%, the manganese is between about 1.0 and 1.6%, the magnesium ranges from an essentially magnesium free composition, i.e., less than 0.01%, to up to about 0.3%, the titanium ranges between about 0.1 and 0.2%, and the tin is up to about 0.75%.

In another embodiment, the inventive aluminum alloy consists essentially of a finite amount of silicon up to about 0.2%, a finite amount of iron up to about 0.7%, and a finite amount of copper up to about 0.5%.

A further embodiment of the inventive alloy further defines certain elements of the composition wherein the silicon ranges between about 0.01 and 0.15%, the iron ranges

between about 0.01 and 0.5%, the copper ranges between about 0.01 and 0.4%, and the magnesium is from zero to up to 0.4%.

In yet another embodiment of the invention, the copper ranges between 0.03 and 0.4%, and the magnesium is from zero to up to 0.35%.

One other embodiment defines the alloy wherein the iron ranges between 0.03 and 0.15%, and the copper ranges between 0.2 and 0.4. It should be understood that ranges or limits of one embodiment may be combined with or substituted for other embodiment amounts. More specific embodiments are identified in Table I wherein the ALLOYS include the listed elements with the balance being aluminum and incidental impurities.

TABLE I

	~·)	13	(O	8/20	Mg	Cr	Ni	Zn	Ti	Bi	In	Sn	Zr
ALLOY	Si	Fe_	Cu	Mn			<.01	.03	.04	<.01	<.01	<.01	.10
A	.16	.60	.09	1.07	<.01	.27		.03	.04	<.01	<.01	<01	.10
В	.12	.14	.27	1.38	.17	.19	<.01		.05	1.05	<.01	<.01	.10
C	.10	.10	.28	1.47	.22	.19	<.01	.03			<.01	.74	.10
D	.10	.10	.29	1.42	.17	.19	<.01	.03	.04	<.01		.13	.10
E	.10	.12	.29	1.38	.19	.19	<.01	.03	.04	<.01	.14		.09
F	.17	.59	.09	1.12	<.01	.27	<.01	.03	.04	<.01	.15	.13	
			.08	1.17	<.01	.27	<.01	.03	.05	.79	<.01	<.01	.10
<u>G</u>	.17	.63_		1.13	<.01	.27	<.01	.03	.04	<.01	<.01	.74	.10
H	.16	.61	.09		.08	.20	<.01	.02	.04	<.01	<.01	<.01	<.01
I	.20	.69	.29	1.53			<.01	.02	.04	<.01	.17	.16	<.01
J	.19	.71	.29	1.31	.09	.21		.03	.03	.80	<.01	<.01	<.01
K	.19	.66	.28	1.36	.08	.17	<.01		.04	<.01	<.01	.79	<.01
L	.20	.65	.29	1.41	.09	.18	<.01	.03		.69	<.01	.47	<.01
M	.20	.64	.29	1.40	.10	.17	<.01	.03	.04		<.01	.34	<.01
N	.20	.66	.29	1.38	.08	.17	<.01	.03	.04	.38		<.01	.10
0	.06	<0.1	0.3	1.50	< 0.01	<0.01	<.01	0.025	.15	0.8	<.01		.10
		<0.1	0.3	1.50	<0.01	<0.01	<.01	0.025	.15	0.47	<.01	0.36	
P	.06			1.50	< 0.01	< 0.01	<.01	0.025	.15	<.01	<.01	0.8	.10
Q	.06	<0.1	0.3	1.50	-0.01	10.0%			-				

The inventive alloy is particularly useful as a connector block for use in a heat exchanger application, e.g., a

The connector block is made from the inventive condenser. alloy and has at least one machined portion and further having an inlet and an outlet for the passage of fluid through the connector block and to or from the heat exchanger. connector block can have more than one inlet and outlet or passageway depending on the particular heat exchanger design and application. For example, the connector block could have body having one inlet connector block passageway interconnecting a source of inlet fluid and the exchanger, and a second outlet passageway directing fluid from an outlet of the heat exchanger to outlet tubing downstream of the connector block.

5

10

15

The connector block can also have threaded studs extending from the connector block body, the studs interfacing with another body or connector that is used to facilitate attachment of fluid supply and takeaway lines to the connector block or provide structural support, e.g., attach the heat exchanger to an adjacent structure.

Figures 1 and 2 illustrate an exemplary connector block 20 10 in combination with a heat exchanger 20. The heat exchanger 20 is illustrated with one header 21 (the other header not shown), cooling tubing 25 and fins 27. Although not shown, the header 21 has internal baffles to direct the fluid passing through the tubing 25 on its journey through the entire heat exchanger for the proper cooling.

The connector block 10 has a connector block body 1 divided into an inlet portion 3 and an outlet portion 5. The

inlet portion 3 has an inlet opening 7 and an outlet opening 9 defining a passageway 8, the opening 9 aligned with an opening 22 in the header 21 of the heat exchanger 20 via the tubing 12. Fluid enters inlet 7, passes through the inlet portion 3 and into the header 21 via the tubing 12 for cooling.

5

10

15

20

25

The outlet portion 5 has an inlet 11 and an outlet 13 defining a passageway 14, the inlet 11 in communication with an opening (not shown) in the header 21. Cooled fluid exits the header 21 and passes through the outlet portion 5 by entering the inlet 11 and exiting the outlet 13 to begin another fluid cycle, e.g., a refrigeration cycle.

The connector block body 1 is shown with a pair of threaded studs 15, each stud threaded into a complementary threaded bore in the body 1. The studs are used to align and attach a mating connector (not shown) which can hook up fluid supply and takeaway lines to the connector block 10 or provide structural support, e.g., attach a condenser to an automobile body. It should be understood that other connector block configurations can be utilized with the alloy of the invention. For example, a separate connector block could be used for each inlet to the header and the header outlet. The connector block could be designed without the need for tubing 12 or could have different studs or other attachment devices to facilitate connector block hookup to either of the inlet or outlet tubing of a system requiring fluid cooling.

The connector block passageways 8 and 14 are formed by machining the connector block body 1. The passageways can

WO 99/60323 PCT/US99/10447 also include lips, steps, seats, threads or other machined

configurations as deemed necessary to interface with heat exchanger components or other fasteners, connectors or the like.

5 Figure 3 shows another connector block configuration designated by the reference numeral 30 and having a body 31 with a machined passageway 33 therethrough. The passageway 33 has a first opening 35 and a second opening 37, the opening 37 designed to align with an opening in a header. Depending on 10 the direction of flow of fluid through the passageway 33, one of the openings, either 35 or 37, is an inlet and the other becomes an outlet. Although passageways are depicted Figures 1-3, the inventive article could be formed with one or more passageways therein by an operation other than machining, e.g., extrusion or the like. In this instance, the article 15 may then be subjected to machining a portion thereof to meet final dimensional tolerances, finishes or the like. Again, other configurations can be utilized providing that article is need of some degree of machining.

With reference back to Figure 1, the connector block is shown with brazed portions 17 wherein the connector block is secured to the header 21 for a fluid-tight fit. The connector block 10 can be brazed to the heat exchanger by any known techniques, but controlled atmosphere furnace brazing is preferred. The appropriate cladding material or filler metal, e.g., an AA4000 series aluminum-silicon filler metal, can be used as part of the brazing process. Using the inventive

13

20

alloy for the connector block 10 permits a low level of flux to be used during the brazing cycle, thereby reducing flux consumption and cost. For example, when brazing a prior art AA6000 series connector block to a heat exchanger, the amount of flux required can be as high as 100 to 200 g/m^2 of flux, wherein m^2 represents the area to be brazed and g is the weight in grams of flux. Even with these levels of flux, the resultant braze using prior art connector blocks can still include porosity within the brazed joint or stitching, i.e., intermittent porosity pockets where the filler metal joins the materials being brazed together.

10

15

20

In contrast to the undesirable brazeability of the prior alloys commonly employed for connector blocks, the highly brazeable. connector block of the invention is Further, brazing can be successfully done, i.e., a joint without porosity, stitching or the like, using flux levels ranging up to 50 $\mathrm{g/m^2}$, more preferably 3-20 $\mathrm{g/m^2}$ and as low as 4 to 5 g/m^2 . The low level of magnesium in the inventive alloy minimizes the formation of magnesium compounds magnesium oxide or flouride. Magnesium oxide forms during the brazing process and can be difficult to remove from the brazed thereby compromising the integrity of the braze. Magnesium flouride, a high melting point compound, can be formed by interaction with a flourine-containing flux, such formation also interfering with the brazing process. 25

block, while The inventive alloy connector acceptable brazeability, also has the desired machinability

and strength to permit the connector block to be machined and connected to various other components. The connector block is typically formed by first casting an aluminum alloy into a cast shape such as a billet. The billet is then homogenized as is known in the art to form a suitable material for extrusion, forging or other hot deformation operation. The shape is then hot deformed, for example, extruded, into an elongated workpiece. The hot deformed workpiece is cut into pieces of selected width. These pieces are then machined to form the desired passageways, contours, recesses, seats, threads or whatever other configurations are necessary so that the connector block can interface with a heat exchanger, a tubing connector or other components related thereto.

5

10

15

20

25

The block should have the extruded connector machinability to enable the necessary passageways and the like formed therein. The inventive alloy combines machinability without the loss of the necessary strength and ductility for connector block use. To demonstrate the unique properties of the connector block material, various alloy compositions were tested for machinability. The machining tests, using an AA6061 aluminum alloy as a base alloy for comparison purposes, turned one inch diameter bars downed to 0.900 inch in one pass on a lathe. Sample bars were turned on a lathe, running at 2000 RPM with a feed rate of 0.021 inches per minute and a cut depth of 0.050 inches, and using a carbide tool, for approximately 8 inches in length. A second test was conducted wherein the samples were drilled using a 1/4

inch drill bit, the bit run at 2000 RPM and the same feed rate as stated above. The drilled hole extended about one inch into each sample. No chip breaker or coolant was used in either test.

As can be seen from Table II, Alloys C-H and J-N all 5 exhibited desirable machining properties, i.e., small chip or small curl-shaped machining debris. Alloys D, H and L-M showed particularly impressive machining capabilities. alloys showing desirable machining properties also exhibited acceptable strength properties. For example, comparing Alloy 10 B with Alloy C, Alloy C has significantly better machinability with comparable strength and elongation values. A comparison between Alloy I with Alloys J-N reveals a similar finding. These comparisons demonstrate that the alloys of the invention provide the necessary machinability without compromising the 15 mechanical properties needed when using the alloy in a connector block application.

TABLE II

ALLOY	UTS YS (KSI)		% ELONG.	Machining Debris (turning)		Machining Debris (Drilling)		Machining
	1	()		SIZE	SHAPE		SHAPE	Element(s)
A	22.8	17.3	33.5	long	thickened		compacted	none
В	27.9	19.9	28.5	long strings	thickened ragged	two long	strings strings	none
C	26.4	19.1	30.0			small/ medium chips	chips/ strings	Bi
D	27.7	21.1	20.0	small	single curls	small	chips	Sn
E	29.3	22.2	18.0	small	chips/curls	small	chips	Sn, In
F	23.9	15.8	29.0	small	chips	small	chips	Sn, In
G	23.5	15.7	31.5	small	chips/curls			Bí
H	24.0	15.2	29.0	very small	chips	very small	chips	Sn
I	27.4	19.5	26.5	long/ stringy	stringy	two long	compacted strings	none
J	27.3	20.5	23.5	very small	curls/chips	small	chips	Sn, In
K	25.3	17.7	28.5	small	chips with some compacting	long strings	strings	Bi
L	26.2	17.6	20.0	small	chips	very small	chips	Sn
M	26.1	18.7	23.5	small	curls	very small	chips	Sn. Bi
N	26.5	20.5	25.5	small	curls	small	chips	Sn. Bi
6061				medium length curls short curls	curls	small/ medium	broken chips/some strings	

One of the more important strength requirements for the connector block is the ability to withstand the application of a torque. In many applications, threaded studs are attached to the connector block body by threading them into complementary threaded bores. The threaded studs are then used to attach a connector block connector that may hold the fluid supply and takeaway lines together or facilitate attachment to a support member. Thus, the connector block

body must be able to receive the studs without stud stripping during installation. In one application, the studs may be subjected to approximately 40-60 inch pounds of torque force during installation and must withstand approximately 200 inch pounds of force without stripping.

5

10

15

20

25

Alloys A and F-H were tested for torque strength to demonstrate that they had the requisite strength to meet the connector block specification outlined above. A tapped bore, i.e., 8 mm diameter x 1.25 mm pitch, was formed in each alloy sample. The sample was held in a vise and threaded studs were torqued into the bore using a torque load of 48 inch pounds (5.4 Nm). No failures occurred. The torque was raised to a maximum of 200 inch pounds (22-23 Nm). No thread failure occurred, thereby showing that the inventive alloys still had the necessary strength to meet the connector block torque specifications.

The free machining elements of bismuth, indium and tin can improve machinability via three different mechanisms. First, when a free machining element is used alone, the element exists in the matrix of the alloy material as an individual dispersoid. When the material is being machined and a tool contacts a locale containing one or more of the dispersoids, the matrix material and the dispersoids flow differently with respect to each other. A mismatch of displacement occurs between the two different materials thereby causing the materials to separate from each other upon application of the machining force. This separation results

in void formation. Further interaction causes coalescing of the voids which then results in material being separated from the workpiece, i.e., chip formation, during machining.

Second, when at least two free machining elements are used, e.g., bismuth and tin or tin and indium, a low melting point compound can be formed in the matrix. With this low melting point compound present in the alloy, a local increase in the alloy temperature due to machining of an article made from the alloy brings the low melting point compound to a soft or liquid state. In this state, the low melting point compound loses its strength thereby facilitating the formation of small machining debris such as one or more chips. The chips can then be easily removed from the machining area without interfering with the machining operation.

15 Third, since the free machining elements are relatively low melting point materials, elemental melting or softening can occur during machining. This phenomenon can occur particularly when the machining operation is severe so as to cause a significant temperature rise in the workpiece. The 20 melting or softening of the free machining elements causes the same effect as described above for low melting point compounds to enhance machining debris removal.

The inventive alloy also exhibits corrosion resistance which is required for materials for use in heat exchanger applications as evidenced by excellent corrosion test results in SWAAT testing as described in ASTM G85 Annex 3. Even better corrosion resistance can be achieved by utilizing the

19

inventive composition when controlling titanium levels between 0.07 and 0.3%, more preferably 0.1 and 0.2%, see Alloys O, P and Q in Table I.

The comparisons and test work described above demonstrate

that the aluminum alloy article of the invention can be machined, subjected to the application of torquing forces and brazed to form part of a heat exchanger assembly. Further, the brazing operation can be performed at flux levels significantly lower than methods presently used in the prior art.

10

15

While a connector block is illustrated as one type of a heat exchanger article requiring machining, corrosion resistance, strength and brazeability, other articles or components requiring the same properties can be made with the compositions described above.

Each and every element in this application can be replaced in part or whole by another element which will functionally provide the same effect as the specifically described elements. As an example, titanium in the alloy may 20 be replaced by vanadium or hafnium or zirconium, or another element with similar properties, to provide the same functionality as titanium in improving corrosion resistance of the alloy. Similarly, indium, tin and bismuth may be replaced in part or whole by other elements which essentially provide the same functional effect.

As such, an invention has been disclosed in terms of preferred embodiments thereof which fulfill each and every one

of the objects of the present invention as set forth above and provides a new and improved aluminum alloy composition and an article made therefrom and a method of brazing.

Of course, various changes, modifications and alterations

from the teachings of the present invention may be contemplated by those skilled in the art without departing from the intended spirit and scope thereof. It is intended that the present invention only be limited by the terms of the appended claims.

What Is Claimed Is:

1 An aluminum alloy composition consisting essentially of, in weight percent, up to about 0.6% silicon, up to about 2 1.2% iron, up to about 0.7% copper, between about 0.1 and 1.8% 3 manganese, up to about 1.5% magnesium, up to about 0.4% 4 chromium, up to about 0.4% zinc, up to about 0.2% zirconium, 5 between about 0.03 and 0.4% titanium, and at least one free machining element selected from the group consisting of 7 bismuth, indium and tin or at least one compound thereof, 8 wherein each of the bismuth and tin is up to about 1.5% and 9 indium ranges between 0.05 and 0.5%, with the balance being 10 11 aluminum and incidental impurities.

- 2. The composition of claim 1, wherein silicon is up to about 0.2%, iron is up to about 0.7%, copper is up to about 0.5%, manganese ranges between about 0.2 and 1.7%, magnesium is up to about 0.8%, chromium is up to about 0.2%, zinc is up to about 0.25%, titanium ranges between about 0.03 and 0.3%, tin and bismuth are each up to about 1.3% and indium ranges between about 0.05 and 0.3%.
- 3. The composition of claim 2, wherein silicon ranges between about 0.03 and 0.12%, iron ranges between about 0.03 and 0.4%, copper ranges between about 0.01 and 0.5%, manganese ranges between about 0.5 and 1.6%, magnesium is up to about 0.7%, chromium is up to about 0.1%, titanium ranges between

6 about 0.03 and 0.2%, tin and bismuth are each up to about 1.0%

- 7 and indium ranges between about 0.05 and 0.2%.
- 1 4. The composition of claim 3, wherein silicon is
- 2 between about 0.03 and 0.09%, iron is up to about 0.15%,
- 3 copper ranges between about 0.1 and 0.4%, manganese is between
- 4 about 1.0 and 1.6%, magnesium ranges from an essentially
- 5 magnesium free composition, i.e., less than 0.01%, to up to
- 6 about 0.3%, titanium ranges between about 0.1 and 0.2%, and
- 7 tin is up to about 0.75%.
- 1 5. The composition of claim 1, wherein the silicon is
- 2 in a finite amount up to about 0.2%, the iron is in a finite
- 3 amount up to about 0.7%, the copper is in a finite amount up
- 4 to about 0.5%.
- 1 6. The composition of claim 5, wherein the silicon
- 2 ranges between about 0.01 and 0.15%, the iron ranges between
- 3 about 0.01 and 0.5%, the copper ranges between about 0.01 and
- 4 0.4%, and the magnesium is from zero to up to 0.4%.
- 7. The composition of claim 6, wherein the copper
- 2 ranges between about 0.01 and 0.4%, and the magnesium is from
- 3 zero to up to 0.35%.
- 1 8. The composition of claim 1, wherein the at least one
- 2 machining element comprises bismuth and tin or tin and indium.
- 1 9. The composition of claim 1, wherein the at least one
- 2 machining element comprises either bismuth or tin.

1 10. An aluminum alloy article having the composition as

- 2 in any of claims 1-9.
- 1 11. The aluminum alloy article of claim 10, wherein the
- 2 article has a machined portion therein.
- 1 12. The aluminum alloy article of claim 10, wherein the
- 2 article is a heat exchanger component.
- 1 13. In a heat exchanger assembly having a plurality of
- 2 cooling tubes interconnected between a pair of headers,
- 3 adjacent cooling tubes separated by fins, and at least one
- 4 connector block having a machined portion therein and being
- 5 brazed to one of the headers so that a passageway in the
- 6 connector block is in communication with one of an inlet and
- 7 an outlet of one of the headers, the improvement comprising
- 8 the at least one connector block being an aluminum alloy
- 9 article having a composition as in any one of claims 1-9.
- 1 14. In a method of brazing an article to a substrate
- 2 using a flux, the improvement comprising forming the article
- 3 of the aluminum alloy composition as in any one of claims 1-9.
- 1 15. The method of claim 14, wherein the flux is applied
- 2 in an amount of up to 50 grams of flux per square meter of
- 3 area to be brazed.
- 1 16. The method of claim 15, wherein the flux amount is
- 2 up to 20 g/m^2 .

1 17. The method of claim 15, wherein the brazing is

- 2 furnace brazing.
- 1 18. The composition of as in any one of claims 1-9,
- 2 wherein titanium ranges between 0.07 and 0.3% to enhance
- 3 corrosion resistance as measured using ASTM G85 Annex 3.
- 19. The composition of claim 18, wherein titanium ranges
- 5 between 0.1 and 0.2%.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US99/10447

A. CLASSIFICATION OF SUBJECT MATTER IPC(6): F28F 19/06; B23B 15/20 US CL: 165/178, 134.1, 905; 228/183; 428/654, 933 According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Minimum d	ocumentation searched (classification system followe	d by classification symbols)						
U.S. :	165/178, 134.1, 905; 228/183; 428/654, 933							
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched NONE								
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) NONE								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category*	Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.					
X	US 5,744,255 A (DOKO et al.) 28 Ap	oril 1998, column 3, lines 50-	1-12, 14, 18-19					
Y	65.							
X	US 5,375,760 A (DOKO) 27 Decemb	1-12, 14, 18-19						
Y	65.	13, 15-17						
x	US 4,244,756 A (TANABE et al.) 13	1-12, 18-19						
Y		13-17						
Further documents are listed in the continuation of Box C. See patent family annex.								
"A" dos	ecial categories of cited documents: cument defining the general state of the art which is not considered be of particular relevance	"T" later document published after the inte date and not in conflict with the appl the principle or theory underlying the	ication but cited to understand					
"E" ear	clier document published on or after the international filing date cument which may throw doubts on priority claim(s) or which is	e claimed invention cannot be red to involve an inventive step						
cite spe	ed to establish the publication date of another citation or other social reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive	step when the document is					
me	document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination being obvious to a person skilled in the art							
the priority date claimed								
	Date of the actual completion of the international search 26 AUGUST 1999 Date of mailing of the international search report 14 OCT 1999							
Name and mailing address of the ICA/IIC								
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Authorized officer LEONARD R. LEO Dianu Smath								
Facsimile N	lo. (703) 305-3230	Telephone No. (703) 308-0861						