

PLANO DE ENSINO

Data de Emissão: 15/01/2017

Instituto de Informática

Departamento de Informática Teórica

Dados de identificação

Disciplina: BIOLOGIA COMPUTACIONAL

Período Letivo: 2016/2 Período de Início de Validade: 2016/2

Professor Responsável pelo Plano de Ensino: MARCIO DORN

Sigla: INF05018 Créditos: 4

Carga Horária: 60h CH Autônoma: 0h CH Coletiva: 60h CH Individual: 0h

Súmula

Algoritmos, Modelos e Métodos da Ciência da Computação aplicados à biologia e ciências naturais, com ênfase em problemas de interesse biológico. Pré-requisitos: INF05512 Teoria dos Grafos e Análise Combinatória.

Currículos		
Currículos	Etapa Aconselhada	Natureza
BIOTECNOLOGIA MOLECULAR		Eletiva
BIOINFORMÁTICA	6	Obrigatória
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO		Eletiva

Objetivos

Os objetivos desta disciplina são: (i) proporcionar aos alunos uma introdução à Bioinformática e à Biologia Computacional, com ênfase nos problemas computacionais existentes na análise de sequências e nos algoritmos comumente usados para solucioná-los, (ii) mostrar a utilização de técnicas computacionais para modelagem e análise de sistemas biológicos.

Conteúdo Programático

Semana: 1 a 3

Título: Introdução a Biologia Computacional

Conteúdo: 1. Introdução à disciplina;

2. Conceitos básicos de Biologia Molecular;

3. Conceitos básicos de Algoritmos;

4. Conceitos básicos de Programação;

5. Conceitos básicos de Técnicas de Desenvolvimento de Algoritmos;

6. Conceitos básicos de Computabilidade e Complexidade de Algoritmos.

Semana: 4 a 7

Título: Comparação de sequências

Conteúdo: 1. Introdução/motivação;

2. Algoritmo básico;

3. Comparação local;

4. Comparação semi-global;

5. Extensões aos Algoritmos básicos;

6. Comparando sequências múltiplas: método básico e heurísticas.

Semana: 8 a 9

Título: Rearranjo de Genomas

Conteúdo: 1. Introdução;

2. Rearranjo de Genomas;

3. Modelos;

4. Algortimos e heurísticas.

Semana: 10 a 11

Título: Montagem de fragmentos de DNA

Conteúdo: 1. Introdução;

PLANO DE ENSINO

Data de Emissão: 15/01/2017

2. Técnicas:

3. Modelos: maior superstring comum, reconstrução, multicontagem;

4. Algoritmos e Heurísticas.

Semana: 12 a 13

Título: Árvores Filogenéticas

Conteúdo: 1. Introdução;

2. definição do problema;

3. Estados com caracteres binários;

4. Dois caracteres;

5. Parsimônia e compatibilidades em filogenias

Semana: 14 a 15

Título: Modelos Computacionais de Processos Biológicos

Conteúdo: 1. Introdução;

2. Modelos computacionais;

3. Redes Bayesianas; ODEs; Algebras de processos (CSP, Bioambients, ...);

4. Outros modelos (redes neurais, hidden markov models, L-systems, etc).

Semana: 15 a 16

Título: Trabalhos

Conteúdo: Apresentação de trabalhos.

Metodologia

Aulas expositivas sobre os principais tópicos. Alguns tópicos serão cobertos por seminários de alunos e pela realização de trabalhos de desenvolvimento.

Carga Horária

Teórica: 60 Prática: 0

Experiências de Aprendizagem

Leitura de artigos, elaboração de seminários, elaboração e apresentação de trabalhos.

Critérios de avaliação

Os alunos serão avaliados pelo desempenho em seminários a serem apresentados ao longo da disciplina, além de trabalhos envolvendo a implementação de soluções computacionais para problemas biológicos apresentados durante a disciplina.

Atividades de Recuperação Previstas

Os alunos que obtiveram nota final menor do que 6 poderão realizar uma atividade de recuperação.

Bibliografia

Básica Essencial

Bolouri, Hamid. Computational modeling of gene regulatory networks - A primer. Imperial College Press, 2008. ISBN 0262024810. Disponível em: http://labsfhcrcorg/bolouri/files/Computational_Modeling_Of_Gene_Regulatory_Networkspdf

Hugo Verli (organizador). Bioinformática da Biologia à Flexibilidade Molecular. SBBq, 2014. ISBN 978-85-69288-00-8. Disponível em: http://www.ufrgsbr/bioinfo/ebook/

Setubal, Joao Carlos. Meidanis, Joao. Introduction to computational molecular biology. Boston Pws, 1997. ISBN 0534952623.

Básica

Sem bibliografias acrescentadas

Complementar

Sem bibliografias acrescentadas

Outras Referências

Não existem outras referências para este plano de ensino.

PLANO DE ENSINO

Data de Emissão: 15/01/2017

Observações

Estão previstas Atividades Autônomas do Aluno com uma carga horária de 6 (seis) horas-aula a serem desenvolvidas ao longo do semestre. As atividades previstas podem incluir: realização de temas e trabalhos, leitura de texto (capítulos de livros ou artigos), resolução de listas de exercícios entre outras.

O Professor poderá se valer de aulas presenciais ou à distância (utilização de recursos da EAD).

A Disciplina poderá contar com o apoio de Professores Assistentes (Alunos de Pós-Graduação) em Atividades Didáticas.