ECE 35, Fall 2022 -	– Section B	our sequence number	
Final			
Grade	Last name		
/ 31	First + middle name(s)		
	PID		

Instructions:

- Do not look at the questions or start writing until it is announced that you can do so.
- You must follow the Final Exam Procedures that were posted on Canvas. If you are unsure of anything, ask. As a reminder:
 - Your phone should be turned off and put inside your bag
 - Calculators are not allowed.
 - This is a closed book exam.
 - Follow the Academic Integrity standards
- These pages contain the exam questions.
 - Do not write any of your work here except for scratch work. It will not be graded.
 - You need to <u>write your final answer in the answer boxes</u> here. Make sure you list units.
 - Keep these question pages stapled together. The last page is the equation sheet; you may detach this if you want.
 - o Make sure you write your PID on EACH page.
 - o Read each problem completely and thoroughly before beginning.

(1) (7 points)

(a) The ammeter and voltmeter are ideal.What is the reading X of the voltmeter?What is the reading Y

of the ammeter?

(b) What is the voltage v_a ?

(c) What is the power *P* received by the current source ?

(d) What is the voltage v_b ? What is the current i_a ?

v_b

$$i_a$$

(e) What is the Thevenin resistance R_{th} between A and B?

- (2) (7 points) For this question, you should make reasonable numerical approximations if needed. Consider the circuit below.
 - For t < 0 s, switch S_1 is in position 1, switch S_2 is in position 3, and the system has reached steady state.
 - At time t = 0 s, switch S_1 moves from position 1 to position 2 (you may assume that i_{S1} turns off at that point). Switch S_2 stays in position 3 (closed).
 - At time t = 2 s, switch S_2 moves from position 3 to position 4 (open). Switch S_1 stays in position 2.

(a) Find the capacitor voltage v_c at time $t=0^-s$ (i.e., immediately before switch S_1 moves).

Find the node voltage v_a at time $t = 0^+$ s (i.e., immediately after switch S_1 moves).

- (b) Find the node voltage v_a at time $t=2^-$ s. (i.e., immediately before switch S_2 moves).
- (c) Find the node voltage v_a at time $t=6~\mathrm{s}$.

$v_a(0^+ s)$

$$v_a(6 s)$$

$$i_{S1} = 8\cos\left(10t - \frac{\pi}{2}\right)A$$
$$i_{S2} = 5 A$$

- (3) (6 points) For all the circuits in this question, you may assume that they are in steady-state.
 - (a) Find the phasor of $v_x(t)=8\sin\left(20t+\frac{\pi}{4}\right)$ V. You can write your answer in cartesian or polar coordinates.
- V_x

(b) Find the current i_b at time $t=\frac{\pi}{10}\,\mathrm{s}.$

 $i_b\left(\frac{\pi}{10}\mathrm{s}\right)$

(c) Note the similarity to circuit in part (b). Find the voltage v_{S2} of the voltage source at time $t=\frac{\pi}{10}\,\mathrm{s}$. Find the current i_c at time $t=\frac{\pi}{10}\,\mathrm{s}$.

(d) Find the current i_d at time $t = \frac{\pi}{10}$ s.

 $i_d\left(\frac{\pi}{10}s\right)$

(e) Find the maximum value of the waveform $v_a(t)$.

v_{a max}

- (4) (6 points) The circuits below represent AC circuits in steady-state in the phasor domain (for the complex numbers, you may assume units are V, A, Ω , etc. as appropriate). The independent current sources are AC sources with $\omega = 5$ rad/s. Each box represents the impedance of a single circuit element (a resistor, capacitor or inductor).
 - (a) Find the phasor V_a . You can write your answer in cartesian or polar coordinates.

(b) In the circuit below, we set $\alpha = \frac{\pi}{2}$ (the figure is clearly not drawn to scale). Find the average power P_S supplied by the current source I_{S2} .

(c) For the same circuit as in part (b), we change α to $\alpha = \frac{\pi}{6}$.

Find the average power P_s supplied by the current source I_{s2} .

 $P_{\mathcal{S}}$

Find the average power P_1 <u>received</u> by the element with impedance \mathbf{Z}_2 .

 P_2

Find the magnitude of the phasor V_x .

 $|V_x|$

Find the RMS value of i_x .

 i_{xRMS}

Page	6	of	7

(5) *(5 points)*

(a) Consider the circuit below. You are not given the values of k and V_s (but you are told that all sources are DC sources). We are considering the circuit after the switch closes.

We measure that when the voltage v_c reaches 6 V, the current i_c is 2 A. Similarly, when the voltage v_c becomes 10 V, the current i_c drops to 0 A.

Find the Norton equivalent resistance R_N between A and B when we remove the capacitor from the circuit.

(b) Consider the circuit below. The unknown values of k and V_s are the same as in the circuit above. The switch closes at time t = 400 s (you do not know if the system has reached steady state before the switch closes).

Find the time constant au associated with $i_a(t)$ for t > 400 s.

PID

ECE35 Equation Sheet

Basics:
$$i \triangleq \frac{dq}{dt}$$
 $v_{ab} \triangleq \frac{dw}{dq}$ $R = \rho \frac{l}{A}$

Capacitors:
$$C = \epsilon \cdot \frac{A}{d}$$
 $Q = C \cdot v$ $w_C = \frac{1}{2}Cv^2$

Inductors:
$$L = \mu \cdot \frac{N^2 A}{l}$$
 $B \sim i$ $w_L = \frac{1}{2} L i^2$

AC power:
$$p(t) = \frac{1}{2}V_mI_m \cdot \cos(\theta_v - \theta_i) + \frac{1}{2}V_mI_m \cdot \cos(2\omega t + \theta_v + \theta_i)$$

$$P = \frac{1}{2}V_m I_m \cos(\theta_v - \theta_i) \qquad Q = \frac{1}{2}V_m I_m \sin(\theta_v - \theta_i) \qquad X_{rms} = \sqrt{\frac{1}{T} \int_0^T x(t)^2 dt}$$

Trigonometry:
$$\sin(-\alpha) = -\sin(\alpha)$$
 $\cos(-\alpha) = \cos(\alpha)$

$$\sin(\pi - \alpha) = \sin(\alpha)$$
 $\cos(\pi - \alpha) = -\cos(\alpha)$

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos(\alpha)$$
 $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$

$$\sin\left(\alpha - \frac{\pi}{2}\right) = -\cos(\alpha)$$
 $\cos\left(\alpha - \frac{\pi}{2}\right) = \sin(\alpha)$

$$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$$
 $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha)$

$$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$$

$$\alpha: \quad 0 \quad \frac{\pi}{6} \quad \frac{\pi}{4} \quad \frac{\pi}{3} \quad \frac{\pi}{2}$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$$

$$\sin(\alpha)\sin(\beta) = 0.5 \cdot (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin(\alpha) \cdot \cos(\alpha) \cdot \cos(\alpha$$

$$\cos(\alpha)\cos(\beta) = 0.5 \cdot (\cos(\alpha - \beta) + \cos(\alpha + \beta)) \qquad \tan(\alpha): \ 0 \qquad \frac{\sqrt{3}}{3} \qquad 1 \qquad \sqrt{3} \qquad \infty$$

$$\sin(\alpha)\cos(\beta) = 0.5 \cdot (\sin(\alpha - \beta) + \sin(\alpha + \beta))$$