SAMO 2010 – Junior First Round SOLUTIONS

1. B.
$$4 \times 5 + 3 \times 6 = 20 + 18 = 38$$

- 2. D. Since 5 is a factor the number must end in either 5 or 0. Since there is no factor of 2, the last digit cannot be 0 so must be 5
- 3. C. $19 \div 11 = 1,72727...$ which uses 3 different digits
- 4. C. The prime possibilities are 23; 37; 53; 73
- 5. B. $45^2 = 2025$ and 2025 2010 is 15
- 6. A. $5^{104} \times 4^{52} = 5^{104} \times 2^{104} = 10^{104} = 1000...$ (i.e. 1 followed by 104 zeros) so sum of the digits is 1
- 7. D. With the OR as one unit (in two ways) we have four things to arrange. So number of possibilities is $2 \times 4 \times 3 \times 2 = 48$

8. A.
$$\frac{11!-9!}{11!+9!} = \frac{11.10.9!-9!}{11.10.9!+9!} = \frac{(11.10-1).9!}{(11.10+1)9!} = \frac{110-1}{110+1}$$

- 9. E. If the jug has capacity x ml then $80\% \times 60\% \times x = 192$. So 0.48x = 192 and $x = 192 \div 0.48 = 4 \times 48 \div 0.48 = 400$
- 10. A. PM = 1 unit. The shaded trapezium's area is (average of parallel sides) × (distance between parallel sides) = $(1+6) \times \frac{1}{2} \times 4 = 14$
- 11. A. Putting x into the left empty cell on the bottom, so that the other empty cell must contain 21-x, we work upwards and then have A = x + 31 + 57 x = 88.

		Α				
	x+	x+31		<i>-x</i>		
X	<i>x</i> +10		21		36-x	
10	10 <i>x</i>		2	1-x	1	5

- 12. A. a = 6b and 4b = c and a + c = 30. Therefore 6b + 4b = 30 and b = 3
- Suppose the square starts with sides of length x cm. Because of the smaller squares being removed, the base of the box has sides of length $x 2 \times 5$, and therefore the volume of the box is $5(x 10)^2$. But then $(x 10)^2 = 121$, so x 10 = 11 and thus x = 21.
- 14. E. If the distance between Apetown and Beeville is x km, then the first speed is $\frac{x}{2}$

and the second speed is
$$\frac{x}{3,2}$$
. The difference between these is 30, so $\frac{x}{2} - \frac{x}{3,2} = 30$, and thus $(3,2-2)x = 2 \times 3,2 \times 30 = 192$, so $x = 192 \div 1,2 = 160$.

OR

if v is the first speed, then we seek the value of 2v, and we know that $3.2 \times (v - 30) = 2v$. This gives $v = 3.2 \times 30 \div 1.2 = 80$, so the required distance is 160 km.

B. BD + DC must exceed BC. Also DB + BC must exceed DC. Thus 10 > 2x + 1 > 4. Then $\frac{9}{2} > x > \frac{3}{2}$, and since x is an integer, it must be 4 or 3 or 2, so sum of possible values is 9.

Figure 1 = 4 matches =
$$1 \times 4$$

Figure 2 = 10 matches = 2×5
Figure 3 = 18 matches = 3×6
Figure 4 = 28 matches = 4×7
.....
Figure 20 = $20 \times (20 + 3) = 460$

17. C. If the number of boys is x, the number of girls is 100 - x. Then considering A symbols gives 0.40x = 0.50(100 - x) + 4, so that 0.4x = 50 - 0.5x + 4, giving 0.9x = 54 and so x = 60.

19. Let the even numbers be 2n, 2(n-1), 2(n-2), ..., 2(n-10). Their sum is (2n + 2n + 2n + ...) - 2(1 + 2 + 3 + ... + 10) $= 11.2n - 2.\frac{1}{2}.10.11 = 11.2n - 11.10 = 11(2n - 10).$ Since this is p, $2n - 10 = \frac{p}{11}$, and then $2n = \frac{p}{11} + 10$. (see formula sheet)

OR

Let the even numbers be m - 10, m - 8, m - 6, ..., m + 6, m + 8, m + 10. Then their sum is 11m and is also p, so the largest is $\frac{p}{11} + 10$

20. C. Let A mean "Anne is telling the truth", \overline{B} mean "Barbara is lying" etc. Then either $A \Rightarrow \overline{B} \Rightarrow C \Rightarrow \overline{D}$ and two girls (Barbara and Diane) are lying or $\overline{A} \Rightarrow B \Rightarrow \overline{C} \Rightarrow D$ and two girls (Anne and Catherine) are lying.