Basefold 笔记: IOPP 可靠性分析

在本篇文章中将梳理 [ZCF23] 论文中给出的 IOPP soundness 证明思路,其与 [BKS18] 中关于 FRI 协议的 soundness 证明类似。其中用到了二叉树的方式来分析 Prover 可能作弊的点,这个思想也在 [BGKS20] DEEP-FRI 协议的 soundness 证明中出现过。

IOPP 协议

在前面第 2 篇文章中已经详细介绍了 IOPP 协议,为了后文的分析,这里简单罗列下 IOPP 协议,它是 FRI 协议的一个扩展,在理解协议的过程中,完全可以带入 FRI 协议,commit 阶段和 guery 阶段都是一致的。

协议 1 [ZCF23, Protocol 2] IOPP.commit

输入 oracle: $\pi_d \in \mathbb{F}^{n_d}$ 输出 oracles: $(\pi_{d-1},\ldots,\pi_0) \in \mathbb{F}^{n_{d-1}} \times \cdots \times \mathbb{F}^{n_0}$

- 对于 i 从 d 1 到 0:
 - 1. Verifier 从 \mathbb{F} 中采样并发送 $\alpha_i \leftarrow \mathbb{F}$ 给 Prover
 - 2. 对于每一个索引 $j\in[1,n_i]$,Prover a. 设置 $f(X):=\operatorname{interpolate}((\operatorname{diag}(T_i)[j],\pi_{i+1}[j]),(\operatorname{diag}(T_i')[j],\pi_{i+1}[j+n_i]))$ b. 设置 $\pi_i[j]=f(\alpha_i)$
 - 3. Prover 输出 oracle $\pi_i \in \mathbb{F}^{n_i}$ 。

协议 2 [ZCF23, Protocol 3] IOPP.query

输入 oracles: $(\pi_{d-1},\ldots,\pi_0)\in\mathbb{F}^{n_{d-1}} imes\ldots imes\mathbb{F}^{n_0}$ 输出:accept 或 reject

- Verifier $\Re \mu \leftarrow \$[1, n_{d-1}]$
- 对于i从d-1到0, Verifier
 - 1. 查询 oracle $\pi_{i+1}[\mu], \pi_{i+1}[\mu + n_i]$
 - 2. 计算 $p(X) := \text{interpolate}((\text{diag}(T_i)[\mu], \pi_{i+1}[\mu]), (\text{diag}(T_i')[\mu], \pi_{i+1}[\mu + n_i]))$
 - 3. 检查 $p(\alpha_i) = \pi_i[\mu]$
 - 4. 如果 i > 0 且 $\mu > n_i 1$,则更新 $\mu \leftarrow \mu n_{i-1}$
- 如果 π_0 是关于生成矩阵 G_0 的一个有效的码字,则输出 accept,否则输出 reject。

分析思路

IOPP soundness 分析的就是对于任意的一个 Prover,其可能会作弊,在这种情况下,Verifier 输出 accept 的概率最多是多少,我们希望这个概率足够的小,这样这个协议才比较安全。当然这个概率肯定和协议中的一些参数相关,在实际中,我们希望其达到一个提前给定的安全参数 λ (例如取 λ 为 128 或 256),意思是这个概率要小于 $2^{-\lambda}$ 。

我们现在来看看 IOPP 协议中对于作弊的 Prover ,有哪些地方可以钻漏洞使得 Verifier 输出 accept 。我们注意到,有两个地方 Verifier 引入了随机数。

1. 在 IOPP.commit 阶段,协议第 1 步,Verifier 会从 $\mathbb F$ 中选取随机数 α_i 给 Prover,让 Prover 去对原来的 π_{i+1} 进行折叠,得到 π_i 。

2. 在 IOPP.query 阶段,协议的第 1 步,Verifier 就会从 $[1,n_{d-1}]$ 中采样得到 μ ,然后去进行检查之前 Prover 折叠的是否正确。

假设初始作弊的 Prover 给出的 π_d 距离 C_d 有 δ 那么远,我们希望 Verifier 最后能检查出 π_0 距离 C_0 也有 δ 那么远,也就是在折叠的过程中保持这个 δ 距离,还有一种就是检查出 Prover 没有正确折叠。考虑两种情况:

- 1. Prover 非常幸运,Verifier 选取的随机数 α_i 能使得对 π_{i+1} 折叠之后的 π_i 距离对应的 C_i 没有 δ 那么远了,此时 Verifier 会输出 accept 。为什么说对于这种情况 Prover 非常幸运呢?因为这是 Proximity Gaps 告诉我们的结论,意思是说发生这种情况的概率非常非常的小(假设该概率为 ϵ),小到发生这种情况就相当于Prover 中了彩票。
- 2. Prover 没有情况 1 所说的那么幸运了,这时用随机数折叠之后的消息 π_i 距离对应的还是有 δ 那么远。由于 Verifier 在 IOPP.query 阶段是会随机选取 $\mu\leftarrow\$[1,n_{d-1}]$,然后进行检查,因此不会检查 π_i 中的所有元素,这就给了 Prover 可乘之机了。例如,用随机数折叠之后的消息 a 距离编码空间的相对 Hamming 距离会大于 δ_0 ,即 $\Delta(a,C)>\delta$ 。Verifier 会随机检查 a[i] 与 c[i] 是否相等,如果不等就会拒绝。

由于 $\Delta(a,C)>\delta$,这时 a 中有大于 δ 比例的分量与编码空间中的码字不相等,当 Verifier 选到这些不等的位置时,会进行拒绝,因此 Verifier 抓到 Prover 作弊的概率会大于 δ 。

如果 Verifier 查询 l 次,那么 Prover 能通过 Verifier 检查的概率就不会超过 $(1-\delta)^l$ 。

综合上述两种情况, Prover 作弊成功的概率不超过

$$\epsilon + (1 - \delta)^l \tag{1}$$

这是一个整体分析的思路,具体的表达式与(1) 式也会有所不同,下面来看看具体的IOPP soundness 定理。

IOPP Soundness 定理

定理 1 [ZCF23, Theorem3] (可折叠的线性编码的 IOPP Soundness) 令 C_d 表示一个 (c,k_0,d) 可折叠的线性编码,其生成矩阵为 (G_0,\ldots,G_d) 。我们用 C_i ($0 \le i < d$)表示生成矩阵 G_i 的编码,假设对于所有的 $i \in [0,d-1]$ 都有相对最小距离 $\Delta C_i \ge \Delta C_{i+1}$ 。令 $\gamma > 0$,设 $\delta := \min(\Delta^*(\pi_d,C_d),J_\gamma(J_\gamma(\Delta_{C_d})))$,其中 $\Delta^*(\pi_d,C_d)$ 是 \mathbf{v} 和 C_d 之间的相对陪集最小距离(relative coset minimum distance)。那么对于任意的(自适应选择的)Prover oracles π_{d-1},\ldots,π_0 ,Verifier 在 IOPP.query 阶段重复 ℓ 次,都输出 accept 的概率至多

为 $(1 - \delta + \gamma d)^{\ell}$ 。

定理中提到的出现的 $J_{\gamma}(J_{\gamma}(\Delta_{C_d}))$ 是两个 Johnson 函数的复合。其定义为如下。

定义 **1** [ZCF23, Definition 4] (Johnson Bound) 对于任意的 $\gamma \in (0,1]$,定义 $J_{\gamma}:[0,1] o [0,1]$ 为函数

$$J_{\gamma}(\lambda) := 1 - \sqrt{1 - \lambda(1 - \gamma)}. \tag{1}$$

相对陪集最小距离(relative coset minimum distance) 的定义如下。

定义 2 [ZCF23, Definition 5] (Relative Coset Minimum Distance) 令 n 为一个偶数,C 为一个 [n,k,d] 纠错码。 对于一个向量 $\mathbf{v} \in \mathbb{F}^n$ 和一个码字 $c \in C$, \mathbf{v} 和 c 之间的相对距离 $\Delta^*(\mathbf{v},c)$ 定义为

$$\Delta^*(\mathbf{v}, c) = \frac{2|\{j \in [1, n/2] : \mathbf{v}[j] \neq c[j] \lor \mathbf{v}[j+n/2] \neq c[j+n/2]\}|}{n}.$$
 (2)

这个定义和 [BBHR18] 中证明 soundness 用到的 Block-wise 距离定义([BBHR18, Definition 3.2])是类似的,它是相对最小 Hamming 距离的一个替代版本。将 $\{j,j+n/2\}$ 组成成一对,对比 FRI 协议,集合 $\{j,j+n/2\}$ 可以对应一个陪集。例如对于 n=8 ,设生成元为 ω ,且 $\omega^8=1$,选取映射 $x\mapsto x^2$,那么可以看到 $\{1,5\}$ 、 $\{2,6\}$ 、 $\{3,7\}$ 、 $\{4,8\}$ 对应的元素组成一个陪集,总共形成 4 个陪集。

 $\Delta^*(\mathbf{v},c)$ 衡量就是在所有的陪集中,有多少比例的陪集,使得 \mathbf{v} 与 c 在这些陪集中不完全一致。

令 $\Delta^*(\mathbf{v},C):=\min_{c\in C}\Delta^*(\mathbf{v},c)$,那么它与相对最小 Hamming 距离有这样的一个关系: $\Delta(\mathbf{v},C)\leq \Delta^*(\mathbf{v},C)$ 。

尽管多了这些不同的定义和 Johnson 函数,但是 IOPP Soundness 的证明思路与前面说的分析思路还是一致的,分两种情况讨论。我们的目的是分析作弊的 Prover 最后能够通过 Verifier 的检查,最终输出 accept 的概率。证明的思路是:

情况 1 : Prover 非常幸运,由于 Verifer 选取随机数 α_i ,导致进行折叠(fold)之后的消息距离编码空间比较近,这样 Prover 后续都能通过 Verifier 的检查。对于 Verifier 来说,也就是发生了一些"坏"的事件,定义存在 $i\in[0,d-1]$,使得

$$\Delta(\text{fold}_{\alpha_i}(\pi_{i+1}), C_i) \le \min(\Delta^*(\pi_{i+1}, C_{i+1}), J_{\gamma}(J_{\gamma}(\Delta_{C_d}))) - \gamma \tag{3}$$

用反证法通过 Correlated Agreement 定理(其能推导出对应的 Proximity Gaps 定理)可以证明发生"坏"的事件的概率是比较小的,证明得到其概率最多为 $\frac{2d}{\gamma^3|\mathbb{F}|}$ 。

情况 **2** : 假设 Prover 没有那么幸运了,也就是情况 1 中的"坏"的事件没有发生,那么Verifier 在 IOPP.query 阶段会选取 $\mu \leftarrow \$[1,n_{d-1}]$,这个时候 Prover 可能会躲过 Verifier 的检查,让 Verifier 选到了 Prover 没有作弊的那些点。重复执行IOPP.query l 次,Prover 都能够通过的概率最多为 $(1-\delta+\gamma d)^l$ 。

综合 1 和 2 就得到了对于可折叠的线性编码(Foladable Linear Codes)的 IOPP Soundness, 至少为

$$\mathbf{s}^{-}(\delta) = 1 - \left(\frac{2d}{\gamma^{3}|\mathbb{F}|} + (1 - \delta + \gamma d)^{l}\right). \tag{4}$$

也就证得了定理 1。

情况 1 的证明

下面的推论 1 证明了对于某一次 i ,折叠之后的结果距离 C_i 的相对 Hamming 距离比较近,设为事件 $B^{(i)}$,那么其概率不超过 $\frac{2}{\sqrt{3 \, |\!|\!|\,||}}$ 。那么如果发生了某些事件 B_i ,其概率不会超过这些 B_i 发生的概率之和,即

$$\Pr\left[\bigcup_{i=0}^{d-1} B^{(i)}\right] \le \sum_{i=0}^{d-1} \Pr[B^{(i)}] \le \frac{2d}{\gamma^3 |\mathbb{F}|}.$$
 (5)

我们具体来看看推论 1。

推论 1 [ZCF23, Corollary 1] 固定任意的 $i\in[0,d-1]$ 和 $\gamma,\delta>0$,使得 $\delta\leq J_\gamma(J_\gamma(\Delta_{C_d}))$,那么如果 $\Delta^*(\mathbf{v},C_{i+1})>\delta$,有

$$\Pr_{\alpha_i \leftarrow \$\mathbb{F}}[\Delta(\operatorname{fold}_{\alpha_i}(\mathbf{v}), C_i) \le \delta - \gamma] \le \frac{2}{\gamma^3 |\mathbb{F}|}. \tag{2}$$

其中的 $\mathrm{fold}_{\alpha_i}(\cdot)$ 函数定义如下。令 $\mathbf{u},\mathbf{u}'\in\mathbf{F}^{n_i}$ 是两个唯一的插值向量使得

$$\pi_{i+1} = (\mathbf{u} + \operatorname{diag}(T_i) \circ \mathbf{u}', \mathbf{u} + \operatorname{diag}(T_i') \circ \mathbf{u}')$$
(6)

那么 $fold_{\alpha_i}(\pi_{i+1})$ 定义为

$$fold_{\alpha_i}(\pi_{i+1}) := \mathbf{u}' + \alpha_i \mathbf{u}. \tag{7}$$

这其实就是对 π_{i+1} 用随机数 α_i 进行折叠的过程。

推论 1 将 [BKS18] 的推论 7.3 的结果推广到了一般的可折叠的线性编码。

推论 1 证明思路: 现在想证明用随机数 α_i fold 之后的相对 Hamming 距离比原来小,这件事发生的概率比较小,即不超过 $\frac{2}{\gamma^3|\mathbb{F}|}$ 。如果用反证法,假设这件事发生的概率比较大,那么就可以直接 Correlated Agreement 定理 (来自[BKS18] 定理 4.4) 的结论,来证明对于 affine space $U=\{\mathbf{u}+x\mathbf{u}':x\in\mathbb{F}\}$,在 C_i 中存在一个比较大的 Correlated Agree 子集 T,使得在这里面存在 $\mathbf{w},\mathbf{w}'\in C_i$ 使得分别与对应的 \mathbf{u},\mathbf{u}' 在 T 上是一致的,再将 \mathbf{w},\mathbf{w}' 进行编码,得到的码字 c_w 是在 C_{i+1} 中的,从而来估计 $\Delta^*(\mathbf{v},C_{i+1})$,能得到其不超过 δ ,与假设矛盾,因此得证。

情况 2 的证明

想要证明调用 IOPP.query l 次,Verifier 输出 accept 的概率不超过 $(1-\delta+\gamma d)^l$,我们只需要证明调用一次 IOPP.query,Verifier reject 的概率至少为 $\delta-\gamma d$ 。

用二叉树的思想来进行证明,首先定义一个"坏"的节点 (i,μ) ,如下图所示,将那些没有通过 IOPP.query 第 3 步的点表示出来。也就是当 Verifier 选取随机数 μ 之后,对任意的 $i\in[0,d-1]$ 以及任意的 $\mu\in[n_i]$,Verifier 先计算 IOPP.query 第 2 步,计算

$$p(X) := \text{interpolate}((\text{diag}(T_i)[\mu], \pi_{i+1}[\mu]), (\text{diag}(T_i')[\mu], \pi_{i+1}[\mu + n_i])) \tag{8}$$

接着检查 IOPP.query 协议的第 3 步,发现

$$p(\alpha_i) \neq \pi_i[\mu] \tag{9}$$

这时我们说节点 (i, μ) 是"坏"的。

下面考虑 i 从 d-1 到 0 ,一个 μ 能生成一棵二叉树,取遍所有的 $\mu\in[1,n_{d-1}]$ 能生成如下图所示 n_0 棵二叉树。

如果在其中有一个 (i,μ) 节点是"坏"的,假设在第 d-1 到第 i+1 层的所有节点和其孩子节点都是一致的,也就是在 IOPP.query 协议中,从 d-1 步直到第 i+1 步都通过了第 3 步的检查,但是在第 i 步,遇到了一个 (i,u) 没有通过第 3 步的检查,这个时候 Verifier 就会拒绝。在图中,从第 i+1 到第 d-1 层都为"好"的节点。那么也就是说只要整棵树中有一个坏的节点,Verifier 就会拒绝。如果用 β_i 表示的是在第 i 层坏的节点的比率,那么在第 i 层 Verifier 拒绝的概率就是 β_i ,考虑整个 IOPP.query 阶段,其拒绝的概率就是 $\sum_{i=0}^{d-1} \beta_i$,其中 $\beta_i := \Delta(\pi_i, \mathrm{fold}_{\alpha_i}(\pi_{i+1}))$,也就是那些"坏"的点,对 π_{i+1} 折叠之后与 π_i 不一致。

那么剩下的任务就是估计 $\sum_{i=0}^{d-1} eta_i$ 。[ZCF23, Claim 2] 给出了每个 eta_i 的不等式。

命题 **1** [ZCF23, Claim 2] 对任意的 $i\in[0,d]$,定义 $\delta^{(i)}:=\min(\Delta^*(\pi_i,C_i),J_\gamma(J_\gamma(\Delta_{C_d})))$ 。对所有的 $i\in[0,d-1]$ 都有

$$\beta_i \ge \delta^{(i+1)} - \delta^{(i)} - \gamma. \tag{10}$$

那么根据 soundness 中的条件, $\delta=\delta^{(d)}$ 。同时由于 $\Delta^*(\pi_0,C_0)=\Delta(\pi_0,C_0)=0$,因此 $\delta^{(0)}=0$ 。则根据命题的结论有

$$\delta = \delta^{(d)} - \delta^{(0)} = \sum_{i=0}^{d-1} \delta^{(i+1)} - \delta^{(i)} \le \sum_{i=0}^{d-1} \beta_i + \gamma d, \tag{11}$$

从而得证 $\sum_{i=0}^{d-1} \beta_i \geq \delta - \gamma d$ 。因此如果没有坏的事件 B 发生,调用一次 IOPP.query ,拒绝的概率至少为 $\delta - \gamma d$ 。至此情况 2 的结论也证明了。

References

- [BBHR18] Eli Ben-Sasson, Iddo Bentov, Ynon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (ICALP), 2018. Available online as Report 134-17 on Electronic Colloquium on Computational Complexity.
- [BGKS20] Eli Ben-Sasson, Lior Goldberg, Swastik Kopparty, and Shubhangi Saraf. DEEP-FRI: sampling outside the box improves soundness. In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference, ITCS 2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs, pages 5:1–5:32. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

- [BKS18] Eli Ben-Sasson, Swastik Kopparty, and Shubhangi Saraf. "Worst-Case to Average Case Reductions for the Distance to a Code". In: Proceedings of the 33rd Computational Complexity Conference. CCC '18. San Diego, California: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. isbn: 9783959770699.
- [ZCF23] Hadas Zeilberger, Binyi Chen, and Ben Fisch. "BaseFold: efficient field-agnostic polynomial commitment schemes from foldable codes." Annual International Cryptology Conference. Cham: Springer Nature Switzerland, 2024.