High Performance Computational Motion

Young J. Kim

http://graphics.ewha.ac.kr
Computer Science and Engineering
Ewha Womans University

Introduction

✓ Founded in 1886

✓ World's largest female-only college

✓ First female-only college offering engineering program

✓ Ranked 1st among Korean universities in 2014 Leiden ranking

Ewha Womans University

Female-only students

- √ 16K undergrad
- √6K grad
- √ 1K faculty members
- √9 colleges and 16 grad schools

Ewha Womans University

Graphics Lab at Ewha

Faculty, Postdoc I Ph.D. 2, MS/Ph.D. 3, M.S. 2 Intern I, Staff I

Computational Motion

- Spatial reasoning
- Physically-based animation

(more on this later by Yun-hyeong)

Robot motion planning

(more on this later by Youngeun)

High Performance

- Real-time constraints
- Complicated problems
- Parallel processing

(more on this later by SeongKi)

Spatial Reasoning

- Collision Detection
- Penetration Depth

(more on this later by Yeojin)

- Distance Calculation
- Distance Fields
- Swept Volume

Cont. Collision Detection

140K Triangles, 110 FPS 68K Triangles, 186 FPS

Articulated Models

131K Triangles, 1.22ms 0.9M Triangles, 535 ms

Massive Bodies on GPUs

k-IOS for Proximity Query

Simple and Parallel Proximity Algorithm

Distance Computation

Collision Detection

Scalable Collision Detection on CPU and GPU

Benchmarking Scenarios

We apply our parallel collision detection algorithms to each benchmark and measure their scalability by varying the number of cores and changing the hardware platform on CPUs and GPUs

Out-of-Core Proximity Computation for Particle-based Fluid Simulation

Results

- Test machine configuration
 - Two hexa-core Intel CPUs and a GPU (Geforce GTX780, 3GB video memory)

Shape Deviation Measure

 Hausdorff distance quantifies deviation between two geometric models

Large Hausdorff Distance Value

Small Hausdorff Distance Value

Hausdorff Distance Computation

Penetration Depth

- Spoon: I.3K triangles
- Cup: 8.4K triangles

• Time: I~7 msec

Penetration Depth

- Bunny: 40K triangles
- Dragon: I74K triangles

• Time: 2~15 msec

Generalized Penetration Depth

Rigid

Articulated

Distance Fields

Bunny

(35k vertices, 69k triangles, 317K sampling points)

The timing of distance field: 66ms

Swept Volume

Solid Modeling

A swept volume is created when a polyhedral model sweeps in space.

Physically-based Animation

VirtualPhysics

Rigid Body Dynamics

Real-time Particle Dynamics

Articulated Body Dynamics

Physics-based Game

Space Foosball Junkyard Foosball

6DoF Haptics

Benchmarks Setup

6DoF PHANToM Premium 1.5

Motion Planning

Initial Gonalgewatiguration Collision-free Motion

Motion Planning Results

Alpha Puzzle (18 minutes)

Flange (42.9 secs)

Car Seat Removal

(245K triangles, 3 mins)

Wiper Removal

(27K triangles, 20 mins)

Optimization-based Collision Avoidance

Benckmark2

Non-Constraint

Our Method

Real-time Footstep Planning

Robot Grasping Planning

Courtesy of Zhixing Xue, FZI

Deformable Motion Planning

Bar/Sphere (636 triangles)

Human Organs (14K triangles)

Summary

- Spatial Reasoning
- High Performance
- Applications to Graphics, Robotics, CAD, Haptics

Acknowledgements

Min Tang, Xinyu Zhang, Fuchang Liu, Youngeun Lee, Yi Li, Changsoo Je, Minkyoung Lee (Ewha)

Duksu Kim, Sungeui Yoon (KAIST)

Dinesh Manocha (UNC)

Liangjun Zhang (Samsung)

Stephane Redon (INRIA)

Zhixing Xue (KIT)

Jyg-Ming Lien (George Mason)

Nicolas Perin, Abderrahmane Kheddar (CNRS)

Kineo Cam (Benchmarking models)

IITA, KEIT, NRF (ITRC, IT core research)

Thank you for listening!

http://graphics.ewha.ac.kr