EE 382V: Social Computing Fall 2018

Lecture 6: August 25

Lecturer: Vijay Garg Scribe: Ari Bruck

6.1 Demange, Gale, and Sotomayor aka DGS/Auction Algorithm

After the discussion of the KuhnMunkres algorithm, the professor introduced a new algorithm. The algorithm will provide the best possible assignment of goods and bidders such that the prices are maximized.

```
Input :Bipartite graph with non-negative integer weights on the edges, B: set of Bidders, G: set of Goods, W_{i,j}: \text{ weight between bidder } i \text{ and good } j Output :Maximum weight matching Q: \text{Queue of Bidders} P_j: \text{Price of Good j} Owner_j: \text{Current winning bidder of Good } j n_m: \text{Size of the matching (In the example in class } n_g \leq n_b \text{ [more bidders than goods] so } n_m = n_g) \delta: \text{The incremental price increase in auction price as a result of a matching}
```

Algorithm 1 DGS/Auction

```
1: for all goods \overline{j} do
        P_i \leftarrow 0
                                                                                                ▶ Each good's price starts at 0
        Owner_i \leftarrow \texttt{NULL}
                                                                                               ⊳ bidders do not own any good
 4: Q \leftarrow B
                                                                                                  ▷ all bidders are in the queue
5: n_m \leftarrow \min(n_g, n_b)
6: \delta \leftarrow \frac{1}{n_m + 1}
 8: while Q \neq \emptyset do
 9:
        i \leftarrow Q.dequeue()
        find j that maximizes W_{i,j} - P_j
                                                                          ▶ Find the good that has best "effective" payoff
10:
        if W_{i,j} - P_j \ge 0 then
                                                                        ▶ If the good adds to the overall weight matching
11:
             Q.enqueue(Owner_i)
                                                                                                        ▷ Replace current owner
12:
             Owner_i \leftarrow i
                                                                                                                   ⊳ with new one
13:
             P_i \leftarrow P_i + \delta
                                                                                  ▶ Increase the auction price for that good
15: return (j, Owner_j) \forall j. \triangleright maximum weight matching has been found, return all goods and their owners
```

<u>Correctness:</u> The proof of correctness is based on showing that the algorithm gets into an equilibrium, a situation where all bidders "are happy".

6-2 Lecture 6: August 25

<u>Definition:</u> Bidder i is δ -happy with respect to P if \exists good j s.t. **either:**

 $Owner_i = i$

AND

 $\forall \text{ goods } j' : \delta + W_{i,j} - P_j \ge W_{i,j'} - P_{j'}$

OR

 $Owner_i \neq i$

AND

 $\forall \text{ goods } j : W_{i,j} \leq P_j$

Loop Invariant: \forall bidders $\not\subset Q$ are δ -happy

Initially: TRUE

Q is initialized to all bidders

At Runtime: TRUE

For the bidder i dequeued in an iteration, the loop exactly chooses the j that makes him happy, if such j exists, and the δ -error is due to the final increase in P_j .

Therefore this iteration cannot hurt the invariant for any other i': any increase in P_j for j that is not owned by i' does not hurt the inequality while an increase for the j that was owned by i' immediately enqueues i'.

The running time analysis above implies that the algorithm terminates, at which point Q must be empty and thus all bidders must be δ -happy.

6.1.1 δ -Happy Bidders

Claim: If all bidders are δ -happy then for every matching M'

$$n\delta + \sum_{i=owner_j} W_{i,j} \ge \sum_{(i,j)\in M'} W_{i,j}$$

Proof: Fix a bidder i and assume i receives item j by this algorithm such that:

$$\delta + W_{i,j} - P_j \ge W_{i,j'} - P_{j'}$$
 where j' is item received in M'

Sum over all
$$i = \sum_{i=owner_j} (\delta + W_{i,j} - P_j) \ge \sum_{i,j'} (W_{i,j'} - P_{j'})$$

= $n\delta + \sum_{i=owner_j} (W_{i,j} - P_j) \ge \sum_{i,j'} (W_{i,j'} - P_{j'})$

Since both the algorithm and M' give matchings, each j appears at most once on the left hand side and at most once on the right hand side.

Moreover, if some j does not appear on the left hand side then it was never picked by the algorithm and thus $P_j = 0$. Thus when we subtract $\sum_j P_j$ from both sides of the inequality, the LHS becomes the LHS

Lecture 6: August 25 6-3

of the inequality in the lemma and the RHS becomes at most the RHS of the inequality in the lemma such that

$$= n\delta + \sum_{i=owner_j} W_{i,j} \ge \sum_{i,j'} W_{i,j'}$$

Some things to note: In the algorithm, either some bidder gets out of Q or the price of good j goes up by δ . Since all weights (prices) $\in \mathbb{Z}$ (rational prices can be scaled to integers), then $n\delta < 1$.

No P_j can ever increase once its value is above $C = \max_{i,j} W_{i,j}$. It follows that the total number of iterations of the main loop is at most $Cn/\delta = O(Cn^2)$ where n is the total number of vertices (goods+bidders). Each loop can be trivially implemented in O(n) time, giving total running time of $O(Cn^3)$, which for the unweighted case, C = 1, matches the running time of the basic alternating paths algorithm on dense graphs.

References

[] NOAM NISAN, Auction Algorithm for Bipartite Matching, Turing's Invisible Hand: Computation, Economics, and Game Theory (July 2009), https://agtb.wordpress.com/2009/07/13/auction-algorithm-for-bipartite-matching/