

Arithmetic Logic Unit

Adding Binary Integers

$$1 + 1 = 10$$

Adding Binary Integers

- Computer's add binary numbers the same way that we do with decimal
- Columns are aligned, added, and "1's" are carried to the next column
- In computer processors, this component is called an adder

Adding Base 10 Numbers

Adding Binary Example

Have a positive attitude about negatives

Negative Binary Numbers

- When we write a negative number, we generally use a "-" as a prefix character
- However, binary numbers can only store ones and zeros

Negative Binary Numbers

- So, how we store a negative a number?
- When a number can represent both positive and negative numbers, it is called a signed integer
- Otherwise, it is unsigned

Signed Magnitude

- One approach is to use the most significant bit (msb) to represent the negative sign
- If positive, this bit will be a zero
- If negative, this bit will be a 1
- This gives a byte a range of -127 to 127 rather than 0 to 255

Signed Magnitude

 Spring 2022
 Sacramento State - Cook - CSc 35
 10

Signed Magnitude: 13 and -13

Signed Magnitude Drawback #1

- When two numbers are added, the system needs to check and sign bits and act accordingly
- For example:
 - if both numbers are positive, add values
 - if one is negative subtract it from the other
 - etc...
- There are also rules for subtracting

Signed Magnitude Drawback #2

- Also, signed magnitude also can store a positive and negative version of zero
- Yes, there are two zeroes!
- Imagine having to write Java code like...

if
$$(x == +0 | x == -0)$$

Spring 2022 Sacramento State - Cook - CSc 35

Oh noes! Two zeros?

1's Complement

- Rather than use a sign bit, the value can be made negative by inverting each bit
 - each 1 becomes a 0
 - each 0 becomes a 1
- Result is a "complement" of the original
- This is logically the same as subtracting the number from 0

Advantages / Disadvantages

- Advantages over signed magnitude
 - very simple rules for adding/subtracting
 - numbers are simply added:
 5 3 is the same as 5 + -3
- Disadvantages
 - positive and negative zeros still exist
 - so, it's not a perfect solution

1's Complement: 13 and -13

1's Complement Has Two Zeros

2's Complement

- Practically all computers use
 2's Complement
- Similar to 1's complement, but after the number is inverted, 1 is added to the result
- Logically the same as:
 - subtracting the number from 2ⁿ
 - where *n* is the total number of bits in the integer

2's Complement Advantages

- Since negatives are subtracted from 2ⁿ
 - they can simply be added
 - the extra carry 1 (if it exists) is discarded
 - this simplifies the hardware considerably since the processor only has to add
- The +1 for negative numbers...
 - makes it so there is only <u>one</u> zero
 - values range from <u>-128</u> to 127

2's Complement: 13 and -13

Just One Zero!

Adding 2's Complement

Spring 2022 Sacramento State - Cook - CSc 35 2

Unsigned or Signed?

- In reality, processors don't know (or care) if a number if unsigned or signed
- The hardware works the same either way
- It's <u>your</u> responsibility to keep track if it's signed/unsigned

It's Your Responsibility

- In many cases, you must use the correct instruction - based on whether you are treating the data as signed or unsigned
- With great programming power comes great responsibility

Multiplying Binary Numbers

 $11 \times 11 = 1001$

Multiplying Binary Numbers

- Many processors today provide complex mathematical instructions
- However, the processor only needs to know how to add
- Historically, multiplication was performed with successive additions

Multiplying Scenario

- Let's say we have two variables: A and B
- Both contain integers that we need to multiply
- Our processor can only add (and subtract using 2's complement)
- How do we multiply the values?

Spring 2022 Sacramento State - Cook - CSc 35

Multiplying: The Bad Way

- One way of multiplying the values is to create a For Loop using one of the variables – A or B
- Then, inside the loop, continuously add the other variable to a running total

Spring 2022 Sacramento State - Cook - CSc 35 29

Multiplying: The Bad Way

```
total = 0;
for (i = 0; i < A; i++)
{
   total += B;
}</pre>
```

Spring 2022 Sacramento State - Cook - CSc 35 30

Multiplying: The Bad Way

- If A or B is large, then it could take a long time
- This is <u>incredibly</u> inefficient
- Also, given that A and B could contain drastically different values – the number of iterations would vary
- Required time is <u>not</u> constant

Multiplying: The Best Way

- Computers can multiply by using long multiplication just like you do
- Number of additions is fixed to 8, 16, 32, 64 depending on the size of the integer
- The following example multiplies 2 <u>unsigned</u> 4-bit numbers

Spring 2022 Sacramento State - Cook - CSc 35

Unsigned Integer: 13 × 10

Multiplication Doubles the Bit-Count

- When two numbers are multiplied, the product will have <u>twice</u> the number of digits
- Examples:
 - 8-bit × 8-bit → 16-bit
 - 16-bit × 16-bit → 32-bit
 - 32-bit × 32-bit → 64-bit
 - 64-bit × 64-bit → 128-bit

Multiplication Doubles the Bit-Count

- So, how do we store the result?
- It is often too large to fit into any single existing register
- Processors can...
 - fit the result in the original bit-size (and raise an overflow if it does not fit)
 - ...or store the new double-sized number

Complex Math is Complex

Add & Subtract

- The Add and Subtract instructions take two operands and store the result in the first operand
- This is the same as the += and -= operators used in Visual Basic .NET, C, C++, Java, etc...

Addition

Subtraction

Negate (2's complement)

NEG register

Example: Simple Add

Spring 2022

Complex Math is Complex

Multiplication & Division

- The x86 treats multiplication quite differently than add/subtract
- Why? Intel was designed as a business processor and highprecision math is paramount

Multiplication Review

- Remember: when two n bit numbers are multiplied, result will be 2n bits
- So...
 - two 8-bit numbers → 16-bit
 - two 16-bit numbers → 32-bit
 - two 32-bit numbers → 64-bit
 - two 64-bit numbers → 128-bit

Multiplication on the x86

- Intel stores the product into <u>two</u> registers
 - RAX will contain the lower 8 bytes
 - RDX will contain the upper 8 bytes
- This maintains the high-precision result
- Instruction inputs are strange
 - first operand is <u>must</u> be stored in RAX
 - second operand <u>must</u> be a register or memory

x86 Multiplication

Multiply - Signed

Register or Memory only

Multiply - Unsigned

Signed Multiply: 1846 by 42

```
MOV rax, 1846 #First operand
MOV rbx, 42 #Need register for MUL
IMUL rbx #RAX gets low 8 bytes
#RDX gets high 8 bytes
```

Multiplication Tips

- Even though you are just using RAX as input, <u>both</u> RAX and RDX will change
- Be aware that you might lose important data, and backup to memory if needed

Additional x86 Multiply Instructions

- Over time, designers requested a low-precision version of multiplication
- Intel added "short" IMUL instructions that store into a single register
- Please Note: these do <u>not</u> exist for MUL

Spring 2022

IMUL (few more combos)

Signed Multiply: 1846 by 42

Extending Byte Size

Converting from 8-bit to 16-bit and more

Extending Unsigned Integers

- Often in programs, data needs to moved to a integer with a larger number of bits
- For example, an 8-bit number is moved to a 16-bit representation

Extending Unsigned Integers

- For unsigned numbers is fairly easy – just add zeros to the left of the number
- This, naturally, is how our number system works anyway: 456 = 000456

Unsigned 13 Extended

Extending Signed Integers

- When the data is stored in a signed integer, the conversion is a little more complex
- Simply adding zeroes to the left, will convert a negative value to a positive one
- Each type of signed representation has its own set of rules

2's Complement Incorrectly Done

Sign Magnitude Extension

- In signed magnitude, the most-significant bit (msb) stores the negative sign
- The <u>new</u> sign-bit needs to have this value
- Rules:
 - copy the old sign-bit to the new sign-bit
 - fill in the rest of the new bits with zeroes including the old sign bit

Sign Magnitude Extended: +77

Sign Magnitude Extended: +77

Sign Magnitude Extended: -77

Sign Magnitude Extended: -77

2's Complement Extension

- 2's Complement is very simple to convert to a larger representation
- Remember that we inverted the bits and added 1 to get a negative value
- Rule: copy the old mostsignificant bit to all the new bits

2's Complement Extended: +77

2's Complement Extended: +77

2's Complement Extended: -77

2's Complement Extended: -77

Complex Math is Complex

Division on the x86

- Division on the x86 is very interesting
- Since multiplication stores into to two registers, divide uses these as the numerator
- Numerator is fixed as:
 - RAX contains the lower 8 bytes
 - RDX contains the upper 8 bytes

Division on the x86

- These two registers are also used for the result
- The output contains:
 - RAX will contain the quotient (the whole number)
 - RDX will contain the remainder

x86 Division

Divide - Signed

Register or Memory only

Divide - Unsigned

Dividing Rules

- The numerator <u>must</u> be expanded to the destination size (twice the original)
- Why? Multiplication doubles the number of digits; division does the opposite
- This must be done <u>before</u> the division otherwise the result will be incorrect

On the Intel...

- You <u>must</u> setup RDX <u>before</u> you divide
- For unsigned: store 0 into it
- For signed-division:
 - RAX needs must be signextended into RDX
 - there are special instructions

 Spring 2022
 Sacramento State - Cook - CSc 35
 84

CWD (16 bit): Extend AX → DX

CDQ (32 bit): Extend EAX → EDX

CQO (64 bit): Extend RAX → RDX

Divide 64-bit: -1846 by 42

```
MOV rax, -1846 #RAX is the dividend

MOV rbx, 42 #Divisor

CQO #Sign extend to RDX

IDIV rbx #RAX gets quotient

#RDX gets remainder
```


It's all math

Behind the scenes...

- The second argument is subtracted from the first
- The result of this computation is used to determine how the operands compare
- This subtraction result is discarded

But... why subtract?

- Why subtract the operands?
- The result can tell you which is larger
- For example: A and B are both positive...
 - A B → positive number → A was larger
 - A B → negative number → B was larger
 - A B → zero → both numbers are equal

Spring 2022

Instruction: Compare

CMP arg1 , arg2

Immediate, Register, Memory

Flags

- A flag is a Boolean value that indicates the result of an action
- These are set by various actions such as calculations, comparisons, etc...

Flags

- Flags are typically stored as individual bits in the Status Register
- You can't change the register directly, but numerous instructions use it for control and logic

Zero Flag (ZF)

- True if the last computation resulted in zero (all bits are 0)
- For compare, the zero flag indicates the two operands are equal
- Used by quite a few conditional jump statements

Sign Flag (SF)

- True of the most significant bit of the result is 1
- This would indicate a negative 2's complement number
- Meaningless if the operands are interpreted as unsigned

Carry Flag (CF)

- True if a 1 is "borrowed" when subtraction is performed
- ...or a 1 is "carried" from addition
- For <u>unsigned</u> numbers, it indicates:
 - exceeded the size of the register on addition
 - or an underflow (too small value) on subtraction

Overflow Flag (OF)

- Also known as "signed carry flag"
- True if the sign bit changed when it shouldn't have
- For example:
 - (negative positive) should be negative
 - a positive result will set the flag
- For <u>signed</u> numbers, it indicates:
 - exceeded the register size
 - i.e. the value was too big/small

x86 Flags Used by Compare

Name	Description	When True
CF	Carry Flag	If an extra bit was "carried" or "borrowed" during math.
ZF	Zero Flag	All the bits in the result are zero.
SF	Sign Flag	If the most significant bit is 1.
OF	Overflow Flag	If the sign-bit changed when it shouldn't have.

 Spring 2022
 Sacramento State - Cook - CSc 35
 100

-68 vs. 30 (if interpreted as signed) 188 vs. 30 (if interpreted as unsigned)

Jump on Equality

Jump	Description	When True
JE	Equal	ZF = 1
JNE	Not equal	ZF = 0

Signed Jump Instructions

Jump	Description	When True
JG	Jump Greater than	SF = OF, ZF = 0
JGE	Jump Greater than or Equal	SF = OF
JL	Jump Less than	SF ≠ OF, ZF = 0
JLE	Jump Less than or Equal	SF ≠ OF

Unsigned Jumps

Jump	Description	When True
JA	Jump Above	CF = 0, ZF = 0
JAE	Jump Above or Equal	CF = 0
JB	Jump Below	CF = 1, ZF = 0
JBE	Jump Below or Equal	CF = 1

Unsigned Conditional Jump Example

```
__start:
__mov rax, 42
cmp rax, 13
jae Bigger
...
rax >= 13?

Bigger:
add rax, 5
```

 Spring 2022
 Sacramento State - Cook - CSc 35
 105