HIGH STRENGTH NONMAGNETIC STEEL

Patent Number:

JP3056646

Publication date:

1991-03-12

Inventor(s):

ISHIZAKA JUNJI; others: 04

Applicant(s):

JAPAN STEEL WORKS LTD:THE

Requested Patent:

☐ JP3056646

Application Number: JP19890190672 19890725

Priority Number(s):

IPC Classification:

C22C38/00; C22C38/58; H01F1/00

EC Classification:

Equivalents:

Abstract

PURPOSE: To obtain a high strength nonmagnetic steel excellent in stress corrosion cracking resistance by adding proper amounts of N or Nb to an 18Mn-18Cr- N steel having a specific composition consisting of C, Si, Mn, Ni, Cr, N, and Fe. CONSTITUTION: This steel is a high strength nonmagnetic steel having a composition consisting of, by weight, <=0.2% C, <=1.0% Si, 15-25% Mn, <=1% Ni, 15-25% Cr, 0.4-1.0% N, further 0.02-0.15% V and/or 0.02-0.15% Nb, and the balance Fe with inevitable impurities. This steel is improved in strength by adding, independently or in combination, proper amounts of V or Nb as solid solution strengthening element to an 18Mn-18Cr-N steel while making the most of the superior stress corrosion cracking resistance of the 18Mn-18Cr-N steel. By using this steel as a retaining ring material for dynamo member, a dynamo can be made lightweight and miniaturized.

① 特許出願公開

⑫公開特許公報(A) 平3-56646

@Int. Cl. 3

H 01 F

識別記号

庁内整理番号

码公開 平成3年(1991)3月12日

C 22 C 38/00

302 A

7047 - 4 K

7303-5E В

審査請求 未請求 請求項の数 1 (全3頁)

❷発明の名称

高強度非磁性鋼

願 平1-190672 20特

願 平1(1989)7月25日 ②出

徊発 明者

淳 二 石 坂

北海道室蘭市茶津町 4 番地 株式会社日本製鋼所内

北海道室蘭市茶津町 4 番地 株式会社日本製鋼所内

明 ⑫発 者 波多野 ⊞. 勝 折

隆司 北海道室蘭市茶津町4番地 株式会社日本製鋼所内

明 @発 者 利

北海道室蘭市茶津町 4 番地 株式会社日本製鋼所内

⑫発 明 者 村 上 垣 板 @発 明 者

冉 司 純

東京都千代田区有楽町1丁目1番2号 株式会社日本製鋼

所内

勿出 頭 人 株式会社日本製鋼所

東京都千代田区有楽町1丁目1番2号

扫

1. 発明の名称

高强度非磁性鋼

2. 特許請求の範囲

重量パーセントで、 C 0.2%以下、Si 1.0%以 下、Mn15~25%、Ni 1 %以下、Cr15~25%以下、 N 0.4~1.0 %を含有し、さらにV0.02~0.15%、 Nb0.02~0.15%の少くとも1種を含有し、残部が Fe及び不可避不純物からなる高強度非磁性鋼。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は発電機部材のリテーニングリング材と して用いられる耐応力腐食割れ性にすぐれた高強 度非磁性鋼に関する。

(従来の技術)

発電機部材のリテーニングリング材としては、 従来、一般に18nn - 5 €r 綱が多く使われている。 近年、材料に要求される強度は高くなる傾向にあ り、従って、その高強度を得るために、冷間加工 率を上昇させているが、それに伴い、材料の応力

腐食割れ感受性が増大している。この観点から、 最近、18mn-5 Cr鋼に替る材料として、耐応力腐 食割れ性にすぐれた18Mn-18Cr-N調が、特閒昭 57-155350 号公報等に開示され、広く使用されつつあ

〔発明が解決しようとする課題〕

発電効率の向上、発電機の軽量化、小型化の観 点から、リテーニングリング材の高強度化が強く 要望されている。

本発明は、この要望に鑑て為されたもので、上 記の18Mn-18Cr-N鋼のすぐれた耐応力腐食割れ・ 性を生かし、さらに、高強度化を図った新規な耐 応力腐食割れ性にすぐれた高強度非磁性綱を提供 することを目的とする.

(課題を解決するための手段)

上記目的を達成する具体的な手段は、18Mn-18 Cr-N鋼に固溶強化元素であるV、Nbを単独、あ るいは複合で適量添加することにより、高強度化 を図った。すなわち、本発明の構成は、重量パー セントで、C 0.2%以下、Sil%以下、Mn15~25 %、Ni 1 %以下、Cr15~25%以下、N 0.4~1.0 %を含有し、さらに、V0.02~0.15%、Nb0.02~ 0.15%の少くとも1種を含有し、残部がFe及び不可避不純物からなる高強度非磁性鋼である。

(作用)

本発明の高強度非磁性網の製造方法は、所望組成の網塊を溶製し、これを1150°~1250℃に加熱後鍛造する。ついで、1000~1200℃の溶体化処理を施した後、冷間加工を行い、加工硬化させ、高強度を有する非磁性網からなるリテーニングリングとする。

つぎに本発明の高強度非磁性調に含有する各成分の作用とその限定理由について説明する。

C: 0.2%以下

Cはオーステナイト相を安定させ、強度を向上させる作用があるが、過剰に含有させると、応力 腐食割れ感受性を増大し、朝延性を阻害するため、 冷間加工性が低下するので、その上限を 0.2%と した。

Si: 1%以下

$N: 0.4 \sim 1.0 \%$

窒素は本発明上、特に重要な元素であり、オーステナイト相に固溶して、強度、耐応力腐食割れ性を向上させる作用を有しているが、 0.4%未満の含有量では、充分な強度、耐応力腐食割れ性が得られず、また、 1.0%を超えて含有させると、
翻延性が阻害されるので、その含有量を 0.4~1.0%に定めた。

V: 0.02~0.15, Nb: 0.02~0.15%

本発明知においては、 V、 Nbを添加することによって C 含有量を低目にすることができる。 すっちゃっちゃっとの 20%以上単独あるいはできるは 15 名とは オーステナイト相に 固溶して 結晶 では 15 名を 20 では 15 名を 20 では 20 でも 20 で

(実施例)

Siは本発明鋼の溶製時に脱酸剤として作用するが、1%を超えて含有させると、靭延性が低下するので、上限を1%に定めた。

Mn: 15~25%

Mnはオーステナイト相を安定させ、強度、加工 硬化性を向上させるためには15%以上必要である が、25%を超えて含有させると、加工硬化性が阻 害されるので、その含有量を15~25%に定めた。

Ni: 1%以下

Niはオーステナイト相を安定させ、靱延性を向上させるが、1%を超えて含有させると、応力腐食割れ感受性が増大するので、その上限を1%に定めた。

Cr: 15~25%

Crは本発明細の主要構成成分であり、高強度、耐応力隔食割れ性を改善するためには、15%以上のCr含有量が必要であるが、25%を超えて含有させると、フェライトを生成して非磁性としての特性が被じられるので、その含有範囲を15~25%に定めた。

(効果)

以上説明した如く、本発明により、従来の18hn - 18Cr - N 鋼よりもさらに高強度のリテーニング 材が得られ、発電効率の向上、発電機の軽量化、 小型化等に大きく寄与するものと確信する。

特許出願人

株式会社 日本製鋼所代表者 八木 直彦

						,	
8 一	GENTLE CORPLACE SO SO SO STATES	Gits(& (kg-m)	9.1	9.9	8.8	11.3	16.6
		£ 3	52.2	53.6	51.2	56.4	62.8
		£ %	15.4	15.7	15.6	17.0	22.1
		31提注さ (kg(/m³)	142.9	10.3	147.8	138.6	119.5
	化学组成 (原型%) 合品	0.2%[4]) (hg(/m²)	140.6	146.9	147.2	136.9	118.3
		Z Z	ı	0.12	0.05	1	ı
		>	0.10		0.06	i	1
		2	0.709 0.10	0.698	0.681 0.06 0.05	0.563	0.431
		C.r	19.09	18.77	18.66	18.57	4.83
		:- 2	0.21	0.23	0.26	0.24	0.19
		Mn	19.09 0.21	18.77 0.23	18.69 0.26	18.56	5 0.42 0.33 . 17.65 0.19
		S i	0.31	0.37	0.32	0.35	0.33
		ပ	9.0	0.06	3 0.05	9.0	0.42
	# 3	इं 🌣 ह	-	2	٣	4	
[本乳明質			祖朱紹	