CS 3313 Foundations of Computing:

Lab 7

Decidable vs Undecidable problems

- Algorithm = Turing machine that halts on all inputs (always halts)
 - Decision problem: the answer is "Yes" or "No"
- A problem is undecidable if there is no algorithm (Turing machine that always halts) that solves the problem
 - Problem = language
 - How do we show a problem is undecidable need to prove the problem is undecidable
- A problem is decidable if there is an algorithm (Turing machine that always halt) to solve the problem
 - How do we show a problem is solvable provide an algorithm that solves the problem
 - Key observation: the algorithm can be deterministic or non-deterministic when we are trying to prove it is solvable/decidable

Decidable Problems

- A problem is *decidable* if there is an algorithm to answer it
 - Recall: An "algorithm," formally, is a TM that halts on all inputs, accepted or not
- Otherwise, the problem is *undecidable*.

- Language is *Turing-recognizable* if it is accepted by a TM
 - TM halts and accepts if the string is in the language
 - However, TM may not halt if the string is not in the language

Recall Definitions

Decidable Language: A language L is decidable if there is a
 Turing machine that accepts the language and <u>halts on all inputs</u>

- Turing-recognizable Language: if there is a Turing machine that accepts the language by *halting when the input string is in the language*
 - The machine may or may not halt if the string is not in the language

Recall the Relationships Among Language Classes

Recall Proof that A_{TM} is Undecidable

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M(w) = 1 \}$$

• Assume that A_{TM} is decided by TM H

$$H(\langle M, w \rangle) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w \end{cases}$$

• Use *H* to build a TM *D* that checks whether a TM *M* accepts its own description, and then does the opposite:

On Input $\langle M \rangle$, where M is a TM

- 1. Run *H* on input $\langle M, \langle M \rangle \rangle$
- 2. Output the opposite of what *H* outputs

$$D(\langle M \rangle) = \begin{cases} \text{accept} & \text{if } M \text{ does not accept } \langle M \rangle \\ \text{reject} & \text{if } M \text{ accepts } \langle M \rangle \end{cases}$$

• Now consider what happens if we run D on $\langle D \rangle$

$$D(\langle D \rangle) = \begin{cases} \text{accept} & \text{if } D \text{ does not accept } \langle D \rangle \\ \text{reject} & \text{if } D \text{ accepts } \langle D \rangle \end{cases}$$

Decidability...and Reducibility proof technique

- Reducibility of a problem A to problem B
- Given two problems A and B, problem A is <u>reducible</u> to problem
 B if an algorithm for solving B can be used to solve problem A
 - Therefore, solving A cannot be harder than solving B
 - If A is undecidable and A is reducible to B, then B is undecidable
- Idea: If you had a black box that can solve instances of B, can you solve instances of A using calls to this Black box?
 - The black box is the assumed Algorithm for B
- Crucial step in the proof is the reduction "algorithm"
 - This process should be an "algorithm" i.e., a TM that always halts

Example: Proof that the halting problem is undecidable

- $HALT_{TM} = \{ \langle M, w \rangle / M \text{ halts on } w \}$
- Given any input and any machine, will the machine terminate or run forever?
- Assume algorithm B for HALT
- Reducibility algorithm R ($HALT_{TM}$ reducible to A_{TM}):
 - Run $B(\langle M, w \rangle)$, if it rejects then reject M does not halt on w
 - Otherwise Run M(w) and output what it outputs
 - This algorithm R decides A_{TM}

Exercise 1: $L = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$

$$L = \{ \langle M \rangle / M \text{ is a TM and } L(M) = \emptyset \}$$

- Given a Turing machine M, does M accept any input?
 - (i.e., does *M* accept the empty set)

Exercise 2: $L = \{(M_1, M_2) \mid L(M_1) \subseteq L(M_2)\}$ is Undecidable

- Given any two Turing machines M₁, M₂ is the language accepted by M₁ a subset of language accepted by M₂?
 - Hint: Reduce to Exercise 1