

01.10.2024

Statistical Methods in AI (CS7.403)

Lecture-15: Introduction to CNN/Deep Learning

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

@vikataravi

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

Classification

Classification

Traditional approach: Extract features, feed to NN

Wouldn't it be nice if we could feed the image directly?

... and let the "learning process" figure out which features to extract?

MNIST Handwritten Digits Dataset

Flatten image, Feed to NN

For color images / 2-D structures

#Hidden Units: 120,000

#Params: 14.4 billion

 Need huge training data to prevent over-fitting!

Do we really need full connectivity?

#Hidden Units: 120,000

#Params: 14.4 billion

 Need huge training data to prevent over-fitting!

Do we really need full connectivity?

Head + Body + Tail + Legs = sparrow

Do we really need full connectivity?

Head + Body + Tail + Legs = sparrow

- Images are 2D.
- Assumption: Object image = combination of 2D image patterns

- Images are 2D.
- Assumption: Object image = combination of 2D image patterns
- Machine Learning Strategy:
 - a) [Pre-final layer] Determine 2D image patterns
 - b) Map 2D image patterns → Target label

- Images are 2D.
- Assumption: Object image = combination of 2D image patterns
- Machine Learning Strategy:
 - [Pre-final layer] Determine 2D image patterns
 - Map 2D image patterns → Target label
- NOTE: 2D image patterns are smaller than image

Hierarchical decomposition of input/features

- Images are 2D.
- Assumption: Object image = hierarchical combination of 2D image patterns
- Machine Learning Strategy:
 - [All except pre-final] Determine 2D image patterns
 - Pre-final layer] Map 2D image patterns → Target label
- NOTE: 2D image patterns are smaller than image

Efficient!

- Images are 2D.
- Assumption: Object image = hierarchical combination of 2D image patterns
- Machine Learning Strategy:
 - [All except pre-final] Determine 2D image patterns
 - Pre-final layer] Map 2D image patterns → Target label
- NOTE: 2D image patterns are smaller than image

Neural Networks don't really learn such conveniently interpretable Representations – this is just a toy illustration

SPOILER ALERT!

From: mNeuron: A Matlab Plugin to Visualize Neurons from Deep Models, Donglai Wei et. al.

- Pattern detectors = Filters
- What should be the size of filters?
- How many filters do we need at each level?
- How many levels?

How do filters work?

- Determine the filter (aka kernel)
- 'Scan' the filter on input image / representation
- Output = A record of all input locations that 'match' the filter

$$\begin{pmatrix} 0 & 1 & 2 \\ 2 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$$

How do filters work?

A

Input

Kernel Convolution		
-1	-1	-1
-1	8	-1
-1	-1	-1

0	0	0
0	-1	1
0	0	0

Features

Wouldn't it be nice if we could feed the image directly?

... and let the "learning process" figure out which features to extract?

Wouldn't it be nice if we could feed the image directly?

... and let the "learning process" figure out which features to extract?

(which filters to construct)

30	3,	22	1	0
02	02	10	3	1
30	1,	22	2	3
2	0	0	2	2
2	0	0	0	1

12	12	17
10	17	19
9	6	14

output

input

Multiple filters, multiple 'feature maps'

Convolution Layer

Input to next layer

Convolution Layer

Design choices: Filter size, # of filters

Design choices: Filter size, # of filters

12	12	17
10	17	19
9	6	14

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

- Motivation: We care about presence of features, not their exact location!
- Dimensionality Reduction
- Prevents overfitting

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters	
and stride 2	

6	8
3	4

- Motivation: We care about presence of features, not their exact location!
- Dimensionality Reduction
- Prevents overfitting

Fully-connected layers

Convolution (in general)

Convolution Layer

Convolutional Neural Network

Pooling Layer

1	1	2	4
5	6	7	8
3	2	1	0
1	2	3	4

max pool with 2x2 filters and stride 2

6	8
3	4

Fully-connected Layer

										ΓΕ: Filte	r	
a_1	a_2	a_3	a_4	a_5					st	ride=2		
a_6	a_7	a_8	a_9	a_{10}		w_1	w_2	w_3			7	
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}		w_4	w_5	w_6		Z_1	Z_2	
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}		w_7	w_8	w_9		Z_3	Z_4	
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}								
$z_4 =$	$ w_1\rangle$	$< a_{13}$	+w	$_2 \times a$	+	$w_3 >$	$\langle a_{15} \rangle$	$+w_{2}$	$_{4} \times a$	18	w_9	$\times a_{23}$

$$A * W = Z$$

$$\frac{\partial L}{\partial w_1} = \left[\frac{\partial z_1}{\partial w_1} \frac{\partial L}{\partial z_1} + \left[\frac{\partial z_2}{\partial w_1} \frac{\partial L}{\partial z_2} + \left[\frac{\partial z_3}{\partial w_1} \frac{\partial L}{\partial z_3} + \left[\frac{\partial z_4}{\partial w_1} \frac{\partial L}{\partial z_4} \right] \right] \right]$$

$$z_{1} = w_{1} \times a_{1} + w_{2} \times a_{2} + w_{3} \times a_{3} + w_{4} \times a_{6} \dots w_{9} \times a_{13}$$

$$z_{2} = w_{1} \times a_{3} + w_{2} \times a_{4} + w_{3} \times a_{5} + w_{4} \times a_{8} \dots w_{9} \times a_{15}$$

$$z_{3} = w_{1} \times a_{11} + w_{2} \times a_{12} + w_{3} \times a_{13} + w_{4} \times a_{16} \dots w_{9} \times a_{23}$$

$$z_{4} = w_{1} \times a_{13} + w_{2} \times a_{14} + w_{3} \times a_{15} + w_{4} \times a_{18} \dots w_{9} \times a_{25}$$

$$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$$

$$\frac{\partial L}{\partial w_1} = \left[\frac{\partial z_1}{\partial w_1} \right] \frac{\partial L}{\partial z_1} + \left[\frac{\partial z_2}{\partial w_1} \right] \frac{\partial L}{\partial z_2} + \left[\frac{\partial z_3}{\partial w_1} \right] \frac{\partial L}{\partial z_3} + \left[\frac{\partial z_4}{\partial w_1} \right] \frac{\partial L}{\partial z_4}$$

$$z_{1} = w_{1} \times a_{1} + w_{2} \times a_{2} + w_{3} \times a_{3} + w_{4} \times a_{6} \dots w_{9} \times a_{13}$$

$$z_{2} = w_{1} \times a_{3} + w_{2} \times a_{4} + w_{3} \times a_{5} + w_{4} \times a_{8} \dots w_{9} \times a_{15}$$

$$z_{3} = w_{1} \times a_{11} + w_{2} \times a_{12} + w_{3} \times a_{13} + w_{4} \times a_{16} \dots w_{9} \times a_{23}$$

 $= w_1 \times a_{13} + w_2 \times a_{14} + w_3 \times a_{15} + w_4 \times a_{18} \dots w_9 \times a_{25}$

$$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Z_1	Z_2
Z_3	Z_4

$\frac{\partial L}{\partial w_1} = a$	$1\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a$	$2\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a$	$3\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a$	$6\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$\frac{\partial L}{\partial z_3} +$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a$	$7\frac{\partial L}{\partial z_1}$	-a	$\frac{\partial L}{\partial z_2} +$	a_1	$+\frac{\partial L}{\partial z_3}+$	a_1	$\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_3$	$\frac{\partial L}{\partial z_1}$	a_1	$0 \frac{\partial L}{\partial z_2}$	a_1	$8\frac{\partial L}{\partial z_3}$ -	a_2	$0 \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_1$	$1\frac{\partial L}{\partial z_1}$	-a	$3\frac{\partial L}{\partial z_2}$	-a	$1\frac{\partial L}{\partial z_3}$	-a	$3\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_1$	$2\frac{\partial L}{\partial z_1}$	-a	$4\frac{\partial L}{\partial z_2}$	-a	$22\frac{\partial L}{\partial z_3}$	-a	$4 \frac{\partial L}{\partial z_4}$
o r	$3\frac{\partial L}{\partial z_1}$	-a	$5\frac{\partial L}{\partial z_2}$		$3\frac{\partial L}{\partial z_3}$	-a	$25 \frac{\partial L}{\partial z_4}$
	$\frac{\partial L}{\partial z_1}$		$\frac{\partial L}{\partial z_2}$		$\frac{\partial L}{\partial z_3}$		$\frac{\partial L}{\partial z_4}$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Z_1	Z_2
Z_3	Z_4

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$rac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$\frac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1}$ =	$= a_1 \frac{\partial L}{\partial z_1}$	$+a_3\frac{\partial L}{\partial z_2} + a_{11}\frac{\partial L}{\partial z_3} + a_{13}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2}$ =	$=a_2rac{\partial L}{\partial z_1}$	$-a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3}$ =	$=a_3\frac{\partial L}{\partial z_1}$	$+a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4}$ =	$= a_6 \frac{\partial L}{\partial z_1}$	$+a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5}$ =	$=a_7 \frac{\partial L}{\partial z_1}$	$+a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} =$	$a_8 \frac{\partial L}{\partial z_1}$	$-a_{10}\frac{\partial L}{\partial z_2} + a_{18}\frac{\partial L}{\partial z_3} + a_{20}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} =$	$a_{11} \frac{\partial L}{\partial z_1}$	$+a_{13}\frac{\partial L}{\partial z_2}+a_{21}\frac{\partial L}{\partial z_3}+a_{23}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} =$	$a_{12} \frac{\partial L}{\partial z_1}$	$+a_{14}\frac{\partial L}{\partial z_2}+a_{22}\frac{\partial L}{\partial z_3}+a_{24}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} =$	$a_{13} \frac{\partial L}{\partial z_1}$	$+a_{15}\frac{\partial L}{\partial z_2}+a_{23}\frac{\partial L}{\partial z_3}+a_{25}\frac{\partial L}{\partial z_4}$

$$\times \frac{\partial L}{\partial z_1}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a ₁₀
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$rac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$rac{\partial L}{\partial z_4}$

	$+a_3 \frac{\partial L}{\partial z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1}$	$+a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1}$	$+a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1}$	$+a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1}$	$+a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} -$	$-a_{10}\frac{\partial L}{\partial z_2} + a_{18}\frac{\partial L}{\partial z_3} + a_{20}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1}$	$+a_{13}\frac{\partial L}{\partial z_2} + a_{21}\frac{\partial L}{\partial z_3} + a_{23}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1}$	$+a_{14}\frac{\partial L}{\partial z_2} + a_{22}\frac{\partial L}{\partial z_3} + a_{24}\frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1}$	$+a_{15} \frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

$$egin{array}{c|cccc} a_1 & a_2 & a_3 \\ \hline a_6 & a_7 & a_8 \\ \hline a_{11} & a_{12} & a_{13} \\ \hline \end{array}$$

$$egin{array}{c|cccc} a_3 & a_4 & a_5 \\ \hline a_8 & a_9 & a_{10} \\ \hline a_{13} & a_{14} & a_{15} \\ \hline \end{array}$$

$$\times \frac{\partial L}{\partial z_2}$$

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$rac{\partial L}{\partial z_1}$	$\frac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$rac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} = a_1 \frac{\partial L}{\partial z_1} + a_3 \frac{\partial L}{\partial z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1} + a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1} + a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1} + a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} + a_{10} \frac{\partial L}{\partial z_2} + a_{18} \frac{\partial L}{\partial z_3} + a_{20} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1} + a_{13} \frac{\partial L}{\partial z_2} + a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1} + a_{14} \frac{\partial L}{\partial z_2} + a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1} + a_{15} \frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

a_1	a_2	a_3	
a_6	a_7	a_8	1000
a_{11}	a_{12}	a ₁₃	

$$\times \frac{\partial L}{\partial z_2} + \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{16} & a_{17} & a_{18} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}$$

$$\times \frac{\partial L}{\partial z_3} + \begin{bmatrix} a_{13} & a_{14} & a_{15} \\ a_{18} & a_{19} & a_{20} \\ a_{23} & a_{24} & a_{25} \end{bmatrix}$$

$\frac{\partial L}{\partial w_1}$	$\frac{\partial L}{\partial w_2}$	$\frac{\partial L}{\partial w_3}$
$\frac{\partial L}{\partial w_4}$	$\frac{\partial L}{\partial w_5}$	$\frac{\partial L}{\partial w_6}$
$\frac{\partial L}{\partial w_7}$	$\frac{\partial L}{\partial w_8}$	$\frac{\partial L}{\partial w_9}$

$$egin{array}{c|cccc} w_1^* & w_2^* & w_3^* \ \hline w_4^* & w_5^* & w_6^* \ \hline w_7^* & w_8^* & w_9^* \ \hline \end{array}$$

$$\begin{bmatrix} w_1 & w_2 & w_3 \\ w_4 & w_5 & w_6 \\ w_7 & w_8 & w_9 \end{bmatrix} - \alpha \times \begin{bmatrix} w_1 & w_2 & w_3 \\ w_2 & w_3 & w_4 \end{bmatrix}$$

$$\frac{\partial L}{\partial w_1} \quad \frac{\partial L}{\partial w_2} \quad \frac{\partial L}{\partial w_3}$$

$$\frac{\partial L}{\partial w_4} \quad \frac{\partial L}{\partial w_5} \quad \frac{\partial L}{\partial w_6}$$

$$\frac{\partial L}{\partial w_7} \quad \frac{\partial L}{\partial w_8} \quad \frac{\partial L}{\partial w_9}$$

CNN - forward & backpropagation

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9
		I like this

Z_1	Z_2
Z_3	Z_4

a_1	a_2	a_3	a_4	a_5
a_6	a_7	a_8	a_9	a_{10}
a_{11}	a_{12}	a_{13}	a_{14}	a_{15}
a_{16}	a_{17}	a_{18}	a_{19}	a_{20}
a_{21}	a_{22}	a_{23}	a_{24}	a_{25}

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

$\frac{\partial L}{\partial z_1}$	$rac{\partial L}{\partial z_2}$
$rac{\partial L}{\partial z_3}$	$rac{\partial L}{\partial z_4}$

$\frac{\partial L}{\partial w_1} = a_1 \frac{\partial L}{\partial z_1} + a_3 \frac{\partial L}{\partial z_2} + a_{11} \frac{\partial L}{\partial z_3} + a_{13} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_2} = a_2 \frac{\partial L}{\partial z_1} + a_4 \frac{\partial L}{\partial z_2} + a_{12} \frac{\partial L}{\partial z_3} + a_{14} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_3} = a_3 \frac{\partial L}{\partial z_1} + a_5 \frac{\partial L}{\partial z_2} + a_{13} \frac{\partial L}{\partial z_3} + a_{15} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_4} = a_6 \frac{\partial L}{\partial z_1} + a_8 \frac{\partial L}{\partial z_2} + a_{16} \frac{\partial L}{\partial z_3} + a_{18} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_5} = a_7 \frac{\partial L}{\partial z_1} + a_9 \frac{\partial L}{\partial z_2} + a_{17} \frac{\partial L}{\partial z_3} + a_{19} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_6} = a_8 \frac{\partial L}{\partial z_1} + a_{10} \frac{\partial L}{\partial z_2} + a_{18} \frac{\partial L}{\partial z_3} + a_{20} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_7} = a_{11} \frac{\partial L}{\partial z_1} + a_{13} \frac{\partial L}{\partial z_2} + a_{21} \frac{\partial L}{\partial z_3} + a_{23} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_8} = a_{12} \frac{\partial L}{\partial z_1} + a_{14} \frac{\partial L}{\partial z_2} + a_{22} \frac{\partial L}{\partial z_3} + a_{24} \frac{\partial L}{\partial z_4}$
$\frac{\partial L}{\partial w_9} = a_{13} \frac{\partial L}{\partial z_1} + a_{15} \frac{\partial L}{\partial z_2} + a_{23} \frac{\partial L}{\partial z_3} + a_{25} \frac{\partial L}{\partial z_4}$

	_	_				_					_						$\frac{\partial L}{\partial w_1}$	$\frac{\partial L}{\partial w_2}$	$\frac{\partial L}{\partial w_3}$
a_1	a_2	a_3			<i>a</i> ₃	a_4	a_5		a_{11}	a_{12}	a_{13}		a_{13}	a_{14}	a_{15}		∂w_1	∂w_2	∂w_3
	a_7		$\times \frac{\partial L}{\partial z_1}$	+	a_8	a_9	a ₁₀	$\times \frac{\partial L}{\partial z_2}$ +	a_{16}	a_{17}	a_{18}	$\times \frac{\partial L}{\partial z_3}$ +	a ₁₈	a_{19}	a_{20}	$\times \frac{\partial L}{\partial z_4} =$	$\frac{\partial L}{\partial w_4}$	$\frac{\partial L}{\partial w_5}$	$\frac{\partial L}{\partial w_6}$
a_{11}	a ₁₂	a ₁₃			a_{13}	a_{14}	a ₁₅		a_{21}	a_{22}	a_{23}		a_{23}	a_{24}	a_{25}		$\frac{\partial L}{\partial w_7}$	$\frac{\partial L}{\partial w_8}$	$\frac{\partial L}{\partial w_9}$
																	∂w_7	∂w_8	∂w_9

Convolution

ulti-Neuron Networks :: Backpropagation

$$|J = \left| \sum_{i=1}^{n} \frac{1}{2} \left| (y - \hat{y}) \right|^2$$

$$\frac{\partial J}{\partial W^{(2)}} = (a^{(2)})^T \delta^{(3)}$$
$$\delta^{(3)} = -(y - \hat{y})f'(z^{(3)})$$

$$\delta^{(3)} = -(y - \hat{y})f'(z^{(3)})$$

$$\frac{\partial J}{\partial W^{(1)}} = X^T \delta^{(2)} \qquad \frac{\partial J}{\partial W^{(1)}} = \frac{\partial J}{\partial W$$

$$\delta^{(2)} = \delta^{(3)} (W^{(2)})^T f'(z^{(2)})$$

$$\frac{\partial J}{\partial W^{(2)}} = \frac{\partial J}{\partial z^{(3)}} \times$$

loss from previous layer

$$\frac{\partial J}{\partial W^{(1)}} = \frac{\partial J}{\partial z^{(2)}} \times \frac{\partial J}{\partial z^{(2)}}$$

 $z^{(2)} = XW^{(1)} \tag{1}$

 $a^{(2)} = f(z^{(2)})$ (2)

 $z^{(3)} = a^{(2)} W^{(2)} \tag{3}$

 $\hat{y} = f(z^{(3)})$ (4)

$$\frac{\partial z^{(2)}}{\partial W^{(1)}}$$
 loss from local gradient

 $J = \sum_{i=1}^{n} \frac{1}{2} (y - f(f(XW^{(1)})) W^{(2)}))^{2}$

$$z^{(2)} = XW^{(1)}$$
 (1)

$$a^{(2)} = f(z^{(2)})$$
 (2)

$$z^{(3)} = a^{(2)}W^{(2)}$$
 (3)

$$\hat{y} = f(z^{(3)})$$
 (4)

$$\frac{\partial J}{\partial W^{(2)}} = \underbrace{\frac{\partial J}{\partial z^{(3)}}}_{\text{loss from previous layer}} \times \underbrace{\frac{\partial z^{(3)}}{\partial W^{(2)}}}_{\text{loss from local gradient}}$$

$$\frac{\partial J}{\partial W^{(1)}} = \underbrace{\frac{\partial J}{\partial z^{(2)}}}_{\text{loss from previous layer}} \times \underbrace{\frac{\partial z^{(2)}}{\partial W^{(1)}}}_{\text{loss from local gradient}}$$

$$\frac{\partial \mathbf{0}}{\partial \mathbf{X}}$$
 & $\frac{\partial \mathbf{0}}{\partial \mathbf{F}}$ are local gradients

 $\frac{\partial L}{\partial z}$ is the loss from the previous layer which has to be backpropagated to other layers

Backpropagation in a Convolutional Layer of a CNN

Finding the gradients:

$$\frac{\partial L}{\partial F}$$
 = Convolution (Input X, Loss gradient $\frac{\partial L}{\partial O}$)

$$\frac{\partial L}{\partial X} = \text{Full Convolution} \left(\begin{array}{c} 180^{\circ} \text{rotated } \\ \text{Filter F} \end{array} \right), \quad \text{Convolution} \left(\begin{array}{c} 180^{\circ} \text{rotated } \\ \text{Filter F} \end{array} \right)$$

Backprop in pooling layer

0.1	0.5	1.2	-0.7
8.0	-0.2	-0.5	0.3
0.4	0.9	-0.1	-0.2
-0.6	0.1	0.5	0.3

max-pooling

0.8	1.2	
0.9	0.5	

Mask

		х	
х			
	х		
		х	

Activations

0	0	0.5	0
1.3	0	0	0
0	0.4	0	0
0	0	0.1	0

unpooling

1.3	0.5	
0.4	0.1	

Gradients

max locations

ImageNet Challenge

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

Case Study: AlexNet

- Winner of ImageNet LSVRC-2010.
- Trained over 1.2M images using SGD with regularization.
- Deep architecture (60M parameters.)
- Optimized GPU implementation (cuda-convnet)

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with deep convolutional neural networks." NIPS 2012.

AlexNet Architecture

AlexNet Architecture

- Convolutional layers cumulatively contain about 90-95% of computation, only about 5% of the parameters
- Fully-connected layers contain about 95% of parameters.

Filters learnt by AlexNet

- What is a convolution: https://www.youtube.com/watch?v=KuXjwB4LzSA
- Backprop in CNN: https://www.youtube.com/@far1din619/videos
- Local and layer gradients
 - https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c