OCVXI: un peu de calcul différentiel

Vu lors du cours d'introduction: pour trouver le point optimal de $f(x) = ax^2 + bx + c$ (a>0), on cherche le point d'annulation de la dérivée: f'(x) = 2ax + b _ f'(x) = 0 (=) $x^* = -\frac{b}{2a}$

Pour $f(x) = x^4 - 2x^2$ en revanche, les zéros de la derivée ne sont par forcement des points optimain (f'(o) = 0 mais $\infty = 0$ n'est par un point optimal). Par contre, les points optimain ($\infty = \pm 1$) sont des zeros de la dérivée

I'equivalence x^* optimal (=> $f'(x^*)$ => dans le premier cas n'est viver que parce que la fonction est convexe. Mois quoi qu'il en soit, il y a en lier à expliciter entre point cuitique (zéro de la dérivée), point optimal, derivée en en point et convexité de la fonction.

1) Rappels sur la dérivée : le cas d'une fonction fill_1

On appelle nombre derivé de f en ∞ la limite, si elle existe, du rapport $f'(x_0) = \lim_{x \to \infty} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to \infty} \frac{f(x_0 + h) - f(x_0)}{h}$

- f'(x) = perte de la targerte au graphe de f au point (xo, f(20))

Equation de la tangerte: Tx :xx = f(xx) + (x - xx) f'(xx)

 $\int_{\infty} : h \mapsto \int (\infty) + h \int (\infty)$

Propriété: Si le nombre derivé f'100) existe, alors f'est continue en 20

On appelle désirée de f la fonction $f': x \rightarrow f'(x)$ f' associe à tout point $x \in D_p$ la perte de la tangerte au point (x, f(x)) du graphe de f $G_{x}(f)$

Mais la notion de nombre derivé (et de fonction dérivée) ne s'étend par aux fonctions $f: \mathbb{R}^n \to \mathbb{R}$ puisque l'écriture $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \to \mathbb{R}^n \times \mathbb{R}$ ne se généralise par si $f: \mathbb{R}^n \to \mathbb{R}$

Rapper: On dit que f est négligéable devant g au point a, et on note $f = o_{a}(g)$ S'il existe une fonction $E: \mathbb{R} \to \mathbb{R}$ avec $E(x) \to 0$ telle que f(x) = E(x)g(x) au voisinnage de a $x \to a$

→ c'est équivalent à lun $\frac{f(x)}{g(x)} = 0$ si g ne s'annulle par au voisinnage de a (sauféventuellement en a)

— les notations $f = o_a(g)$ et f(x) = E(x)g(x) sont équivalentes

Lien entre nombre desivé et déve Coppement limité

Si f est dérivable en seo, de dérivée $f'(x_0)$: $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$ (=> $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-hf'(x_0)}{h} = 0$ (=> $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)-hf'(x_0)}{h} = 0$

Donc $f(x_0+h) = f(x_0) + h f'(x_0) + o_0(h)$ c'est l'ecriture du developpement limité à l'ordre I de f en xeo équation de la targete T_{∞} — l'approximation de l'ipar sa targete est d'autant meisseure que h est petit

Das P'eviture du DLI, la variable est h

2) La différentielle

Dans l'écriture du DL1 f(x54h) = f(x6) + h f'(x6) + Oo(h), on retrouve la targete h Lo h f'(x6) (application linéaire) Cette idée s'étend en dimension n'et permet de définir la notion de <u>différentiabilité</u> d'une fonction f. 187° _ 18

Définition: on dit que $f:\mathbb{R}^n \to \mathbb{R}$ et différentiable en ∞ s'il existe une application linéaire $df_{\infty}:\mathbb{R}^n \to \mathbb{R}$ (Se note aussi $d_{\infty}f$) telle que: $f(\infty+h) = f(\infty) + df_{\infty}(h) + \|h\| E(h)$ avec $E:\mathbb{R}^n \to \mathbb{R}$ et $E(h) \to 0$ $\|h\| \to E(h)$

Pour $f: \mathbb{R} - \mathbb{R}$. Si fet différentiable en $x_0: f(x_0+h) = f(x_0) + df_{x_0}(h) + o_0(h)$ over df_{x_0} ene application lineaire $df_{x_0}: h \mapsto dh$ over $d \in \mathbb{R}$

Denc $f(x_0 + h) = f(x_0) + dh + O(h)$ \iff $f(x_0 + h) - f(x_0) = d + O(1)$ $\iff f(x_0 + h) - f(x_0) = d + O(1)$ $\iff f(x_0 + h) - f(x_0) = d + O(1)$

Donc si f'est différentiable en 200, f'est dérivable en 200 et dfx. h Lo h f'(xo)

f continue en 200 (puisque dérivable => continue)

△ Différentielle et dérivée sont deux choses différentes (même si les deux notions sont liées)

Exemple $f: \mathbb{R} \to \mathbb{R}$ En un point $x_0: f'(x_0) = 2x_0 \to c'est$ la pette de la tangerte au graphe de f au point $(x_0, x_0^2 = f(x_0))$

Que vant la différentielle en se de $f: x \mapsto x^2$? $f(x_0+h) = (x_0+h)^2 = x_0^2 + 2x_0h + h^2 = f(x_0) + 2x_0h + h^2 \qquad h \to c'est we application lineaure en h \to c'est danc la différentielle Danc la différentielle de <math>f$ en se est df_{∞} : $h \mapsto 2x_0h = hf'(x_0)$

Pour une fonction f: 17 - 17, la différentielle est donc l'application linéaire "tangeite" en un point du graphe donné, alors que la dérivée en ce point est la perte de celtre tangente

Pour f: 18th _ 18 : pour trouver la différentielle en un point donné, il faut (pour le moment) en revenir à la définition : on éaût/linéarise f(25th) et on identifie le terme linéaire par rapport à h

Exemple: $f: \mathbb{R}^n \to \mathbb{R}$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + x_0^T h + h^T x_0 + h^T h = x_0^T x_0 + 2x_0^T h + \frac{1}{2} h h^2$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + h^T h + h^T x_0 + h^T h = x_0^T x_0 + 2x_0^T h + \frac{1}{2} h h^2$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + x_0^T h + h^T x_0 + h^T h = x_0^T x_0 + 2x_0^T h + \frac{1}{2} h h^2$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + x_0^T h + h^T x_0 + h^T h = x_0^T x_0 + 2x_0^T h + \frac{1}{2} h h^2$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + x_0^T h + h^T x_0 + h^T h = x_0^T x_0 + \frac{1}{2} h h^2$ $f(x_0 + h) = (x_0 + h)^T (x_0 + h) = x_0^T x_0 + x_0^T h + h^T x_0 + h^T h = x_0^T x_0 + \frac{1}{2} h h^2$

La différentielle en xo est done l'application linéaire ofxo: h -> 2 xoth

3) Lier etre différentielle et gradient

Rappel: Dérivée partielle en un point d'une fonction $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ Soit $a = (a_1, ..., a_n)^T \in \mathbb{R}^n$. On dit que la ke dérivée partielle de f en a existe, et en note $\frac{\partial f}{\partial x_n}(a)$ ($\equiv \partial_k f(a)$) si l'application $c_f: L \longrightarrow f(a_1, ..., a_k, L, ..., a_n)$ est dérivable en o, auquelle $a_1 = c_1(a)$