

深度學習基本原理 (Fundamentals of Deep Learning)

第一部分:深度學習(Deep Learning)簡介

課程大綱

● 第1部分:深度學習簡介

第2部分:神經網路如何訓練

第3部分:卷積神經網路

(Convolutional Neural Networks)

第4部分:資料增強與部署

第5部分:預訓練模型

第6部分: 進階架構

要查看課程講義,請切換到全螢幕顯示並點擊"備忘稿"按鈕

本課程的目標

讓您快速上手並立即投入

建立基礎以立即處理深度學習(deep learning)專案

我們不會涵蓋所有領域,但我們會有一個很好基礎作為起點

作為你之後閱讀文章、跟隨教學進度、進一步學習課程的基礎

人類與機器學習(Machine Learning)的比較

放鬆性的警覺(Relaxe Alertness)

人類	機器
休息與消化 (Rest and Digest)	訓練(Training)
戰鬥或逃跑 (Fight-or-flight)	推論/預測(Prediction)

讓我們開始吧

人工智慧(AI)的起源

製造電腦的其中一個目的是為了完成人類的任務

早期,人們認為通用智慧 (generalized intelligence) 是 可以實現的

事實證明它比預期的更加困難得多

早期神經網路(Neural Networks)

•

•

•

專家系統(Expert Systems)

高度複雜

由數百名工程師編寫程式

嚴謹的具有多重規則的程式設計

專家系統(Expert Systems) - 限制

這三張圖片是什麼?

孩子們如何學習?

•

•

•

數據

•

•

運算能力

.需要一種方式讓我們的人工「大腦」在有限時間內觀察大量數據。

GPU的重要性

什麼是深度學習(Deep Learning)?

深度學習(Deep Learning)顛覆了傳統程式開發

傳統程式開發

設計一個分類器(Classifier)

定義一組分類規則(classification rules)

將這些規則設計到電腦程式中

輸入範例資料,程式使用這些規則進行 分類

機器學習(Machine Learning)

構建分類器(Classifier)

向模型輸入資料範例

模型進行猜測,我們告訴它是否正確

模型在訓練過程中學習正確分類。系統自行學習規則

何時選擇深度學習(Deep Learning)

程式設計

如果規則是清晰且直接的,通常最好直接編寫程式碼

深度學習(Deep Learning)

如果規則是細微的、複雜的、難以 辨別的,則使用深度學習(deep learning)

深度學習(Deep Learning)與其他人工智慧(AI)的比較

神經網路的深度與複雜度(Depth and complexity of networks) 高達數十億個參數(parameters)(且持續增長) 模型中的多層結構(Many layers) 擅長學習複雜規則(complex rules)

深度學習(Deep Learning)如何改變世界

電腦視覺(Computer Vision)

自然語言處理(Natural Language Processing)

推薦系統(Recommender Systems)

強化學習(Reinforcement Learning)

實作練習(Hands on Exercises)

- 熟悉開發深度學習模型的過程
- · 接觸不同的模型和資料類型(datatypes)
- 為進行你自己的專案提供一個好的開始起點

課程結構

課程平台

本課程的軟體環境

- 主要深度學習框架:
 - TensorFlow + Keras (Google)
 - PyTorch (Meta)
 - MXNet (Apache)
- 我們將使用 PyTorch
- 建議你未來也接觸其他框架

第一個實作練習: 分類手寫數字(Classify Handwritten Digits)

Hello Neural Networks

訓練網路正確分類手寫數字

傳統上對電腦而言這是重要且困難的任務

嘗試像神經網路(Neural Network)一樣學習

接觸範例,並嘗試找出其運作規則

