## Ayudantía 5: Ondas y Óptica

1. Para un espejo esférico de radio R como el de la figura, muestre que un rayo que llega desde muy lejos paralelo a un ángulo  $\varphi$  de éste, convergeré a una distancia f desde la superficie igual a:

$$f(\varphi) = \frac{R}{2}(2 - \frac{1}{\cos \varphi})$$

¿Qué sucede para ángulos pequeños?



2. Considere una onda polarizada elípticamente que penetra desde el vacío en un material de índice de refracción con un ángulo de incidencia  $\theta$ . Este campo puede ser escrito como:

$$\vec{E}(\vec{r},t) = E_0 \cos(\vec{k} \cdot \vec{r} - \omega t)\hat{s} + 2E_0 \sin(\vec{k} \cdot \vec{r} - \omega t)\hat{p}$$

Donde  $E_0$  es una constante,  $\hat{s}$  un vector unitario perpendicular al plano de incidencia y  $\hat{p}$  uno paralelo a este mismo, tal que  $\hat{s} \times \hat{p} = \hat{k}$ , donde  $\hat{k}$  representa la dirección hacia donde se propaga la onda. Escriba el campo electromagnético refractado en términos de los vectores  $\hat{p}_t$  y  $\hat{s}_t$  de la onda refractada. ¿Cómo se relacionan estos vectores  $\hat{p}_t$  y  $\hat{s}_t$  con los vectores de polarización incidentes  $\hat{p}$  y  $\hat{s}$ ?