

## fundamental isomorphism theorem for coalgebras

 ${\bf Canonical\ name} \quad {\bf Fundamental Isomorphism Theorem For Coalgebras}$ 

Date of creation 2013-03-22 18:49:30 Last modified on 2013-03-22 18:49:30

Owner joking (16130) Last modified by joking (16130)

Numerical id 4

Author joking (16130) Entry type Theorem Classification msc 16W30 Let  $(C, \Delta, \varepsilon)$  and  $(D, \Delta', \varepsilon')$  be coalgebras. Recall, that if  $D_0 \subseteq D$  is a subcoalgebra, then  $(D_0, \Delta'_{|D_0}, \varepsilon'_{|D_0})$  is a coalgebra. On the other hand, if  $I \subseteq C$  is a coideal, then there is a canonical coalgebra structure on C/I (please, see http://planetmath.org/SubcoalgebrasAndCoidealsthis entry for more details).

**Theorem.** If  $f: C \to D$  is a coalgebra homomorphism, then  $\ker(f)$  is a coideal,  $\operatorname{im}(f)$  is a subcoalgebra and a mapping  $f': C/\ker(f) \to \operatorname{im}(f)$  defined by  $f'(c + \ker(f)) = f(c)$  is a well defined coalgebra isomorphism.