De novo genome assembly

Nadège Guiglielmoni

Non-vertebrate animals assemblies

- Sequencing data
- Assembly algorithms
- Reads pre-processing
- Assembly post-processing
- Scaffolding approaches

illumına

ATTTGTACGGACATAGTAAAAGCATGCGCGCCATGCGCGCAACTAG

TACGGACA AAAAGCAT CAGGCGCG
GCAACTAG
ATTTGTAC TATTAAAA TGCGCGCC

CGCGCCAT

Length 35 - 700 base pairs Low error rate

ATTTGTACGGACATAGTAAAAGCATGCGCGCCCATGCGCGCAACTAG

TGCGGACATAGTA--AGCATGC
ATTTTTGTACGGACAAAGTA--A ATGCGCGCGCCATG

GCGTCATGC----AACTAG

A-AGCATGCGCGCGCCATGC---AACT

Length 10 - 100+ kilobases High error rate

PACBIO°

ATTTGTACGGACATAGTAAAAGCATGCGCGCCATGCGCGCAACTAG

TACCGGACATAGTA--AGCATCGC
ATTTTTGTACGGACAAAGTAAAA ATGCGCGCGCCAATG

GCG-CATGC----AACTAG

A-AGCATTGCGCGCCCCATGCGCGCAAACT

Length ~20 kilobases High error rate

ATTTGTACGGACATAGTAAAAGCATGCGCGCCATGCGCGCAACTAG

TACGGACATAGTAAAAGCATCGC
ATTTGTACGGACATAGTAAAA ATGCGCGCCCATG
GCGCCATGCGCGCAACTAG
AAAAGCATGCGCGCCATGCGCGCAAACT

Length ~20 kilobases Low error rate

HiFi

Assembly algorithms

Assemble the reads: reconstitute, from the set of reads, the suite of bases (A,T,G and C) characteristic of this genome

De novo assembly: no reference

Source: http://www.langmead-lab.org/teaching-materials/

Overlap: length-/ suffix of X matches length-/ prefix of Y, where / is given

I = 3

X: CTCTAGGCC

Y: TAGGCCCTC

Overlap: length-/ suffix of X matches length-/ prefix of Y, where / is given

I = 3

X: CTCTAGGCC X: CTCTAGGCC

Y: TAGGCCCTC Y: TAGGCCCTC

Overlap: length-/ suffix of X matches length-/ prefix of Y, where / is given

l = 3

X: CTCTAGGCC Y: TAGGCCCTC X: CTCTAGGCC Y: TAGGCCCTC X: CTCTAGGCC Y: TAGGCCCTC

Overlap: length-/ suffix of X matches length-/ prefix of Y, where / is given

l = 3

X: CTCTAGGCC Y: TAGGCCCTC X: CTCTAGGCC Y: TAGGCCCTC X: CTCTAGGCC Y: TAGGCCCTC

16

Overlap: length-/ suffix of X matches length-/ prefix of Y, where / is given

l = 3 a length-6 prefix

of Y matches a suffix

of X

X: CTCTAGGCC X: CTCTAGGCC X: CTCTAGGCC Y: TAGGCCCTC Y: TAGGCCCTC

Graph vocabulary:

- vertex/node
- edge/arc: connects vertices
- **directed graph** (digraph): set of vertices and directed edges

Overlap graph = directed graph

- nodes = reads
- edges = overlaps betwen reads

Assembly algorithms

- Greedy approach: find the shortest common superstring by merging the best overlapping reads
- Overlap-Layout-Consensus: disantangle repeats by looking for the shortest generalised Hamiltonian path in the overlap graph
- de Bruijn graphs

Assembly algorithms: Overlap-Layout-Consensus

Overlap-Layout-Consensus (OLC): disantangle repeats by looking for the shortest generalised Hamiltonian path in the overlap graph

Hamiltonian path: goes through each node once

Layout: simplify the graph by removing redundant edges

Assembly algorithms: Overlap-Layout-Consensus

Consensus step

de Bruijn graphs (DBG): connects words of a k length with (k-1)-long overlaps k-mers: k-length words in a highly accurate genomic dataset (Illumina, HiFi)

node centric DBG: k-mers are nodes, overlaps are edges

edge centric DBG: overlaps are nodes, k-mers are edges

Eulerian path: goes through every edge once

Figure 1 Bridges of Königsberg problem. (a) A map of old Königsberg, in which each area of the city is labeled with a different color point. (b) The Königsberg Bridge graph, formed by representing each of four land areas as a node and each of the city's seven bridges as an edge.

k = 4 ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC

$$k = 4$$
 ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC

 $ATTA \rightarrow TTAT \rightarrow TATA \rightarrow ATAT$

CGCG→GCGT→CGTA→GTAC

ATTG→TTGC→TGCG→GCGC

GCAT→CATT→ATTA→TTAT

ACGG→CGGC→GCGC

 $TATA \rightarrow ATAT \rightarrow TATT \rightarrow ATTG$

GTAC→TACG→ACGG→CGGC

GCGT→CGTA→GTAC→TACG

ATAT→TATT→ATTG→TTGC

k = 4 ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC

k = 4 ATTATAT CGCGTAC ATTGCGC GCATTAT ACGGCGC TATATTG GTACGGC GCGTACG ATATTGC

After compaction:

GCATTATATTGCG→→GCGC←→CGCGTACGGCG

Two unitigs: GCATTATATTGCGC, CGCGTACGGCGC

Remove adaptors

- Illumina: fastqc, cutadapt, Trimmomatic...
- Nanopore: Nanopore tools, Porechop

Filtering

Long reads: Filtlong

Summary

- Basic Statistics
- Per base sequence quality
- Per sequence quality scores
- Per base sequence content
- Per sequence GC content
- Per base N content
- Sequence Length Distribution
- Sequence Duplication Levels
- Overrepresented sequences
- Adapter Content
- Kmer Content

Summary Basic Statistics Per base sequence quality Per tile sequence quality Per sequence quality scores Per base sequence content Per sequence GC content Per base N content Sequence Length Distribution Sequence Duplication Levels Overrepresented sequences Adapter Content

Reads correction: reduce error rate of long reads

- self correction: long reads only
 Canu, NextDenovo, Daccord, CONSENT...
- hybrid correction: long reads & short reads
 Ratatosk, LoRDEC, CoLoRMAP, proovread...

→ Less trending with high-accuracy long reads

Assembly post-processing

- ► **Polishing**: reduce errors
- ► Haplotig purging: remove uncollapsed haplotypes
- Scaffolding: increase contiguity
- ► Gap filling: find missing sequences

Assembly post-processing: haplotig purging

Adineta vaga

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Expected haploid size 102 Mb

Assembly post-processing: haplotig purging

Haplotype 1

ATTACCAGTCTCAATGGATGGCTACTCTTTGACGATAGCT

ATTACCAGTCTCAAAGGCTGCTAGTGTTTGACGATAGCT

Assembly process

Assembly output

Assembly post-processing: haplotig purging

HaploMerger2

HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly

Shengfeng Huang*, Mingjing Kang and Anlong Xu

Identifying and removing haplotypic duplication in primary genome assemblies

Dengfeng Guan^{1,2}, Shane A. McCarthy © ², Jonathan Wood³, Kerstin Howe © ³, Yadong Wang^{1,*} and Richard Durbin © ^{2,3,*}

purge_dups

Purge Haplotigs

Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies

Michael J. Roach 6, Simon A. Schmidt and Anthony R. Borneman

Assembly post-processing: haplotig purging

PacBio assemblies

Scaffolding approaches

Scaffolding: grouping and orienting contigs to build chromosome-level scaffolds

- Mate-pairs: short reads with a long insert
- Long reads
- Genetic maps: ordered markers
- Optical maps: ordered markers
- Linked reads: barcoded short reads
- Hi-C/3C/Proximity ligation

3C

Cut with restriction enzyme

Ligate
paired-ends

Sequence using paired-ends

FARIMA SARIMA

www.dnazoo.org

Adineta vaga (rotifer)

6 scaffolds

Who Needs Sex (or Males) Anyway? Liza Gross, PloS Biology, 2007

Hi-C contact map of Adineta vaga

Scaffolding approaches: gap filling

- Short reads: GapFiller, GAPPadder, Sealer
- Long reads: FGAP, GMCloser, LR_Gapcloser, PBJelly, PGcloser, TGS-GapCloser

Assembly pipeline

Thank you for your attention! Questions?