Линейные непрерывные операторы в евклидовом пространстве.

 $\varepsilon_1, \varepsilon_2$ — два евклидовых пространства. $A: \varepsilon_1 \to \varepsilon_2$ — линейный оператор. Иначе говоря $\forall \alpha_{1,2} \ \forall f_{1,2} \in \varepsilon_1 \ A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 A(f_1) + \alpha A(f_2)$.

Определение: A непрерывна в $f_0 \in \varepsilon_1 \Leftrightarrow \forall \varepsilon > 0 \; \exists \delta_0(\varepsilon) \; \forall f \in \varepsilon_1 : \|f - f_0\| \leq \delta_0(\varepsilon) \Rightarrow \|Af - Af_0\| \leq \varepsilon.$

Из непрерывность в f_0 следует непрерывность $A \ \forall g \in \varepsilon_1$. Так как $\forall f \in \varepsilon_1 \ \|f - g\| \le \delta_0(\varepsilon)$, то $\|Af - Ag\| = \|A(f - g) + A(f_0) - A(f_0)\| = \|A(f_0 + (f - g) - A(f_0)\| \le \delta_0(\varepsilon) \Rightarrow$ непрерывна в g. В частности при $g = 0 \ \|Af\| \le \varepsilon \ \forall \|f\| \le \delta_0(\varepsilon)$. Поэтому δ_0 — универсальное число.

Пусть $\varepsilon_1=1$, $\delta_0(1)$. $\forall f\neq 0$ $\left\|\frac{f}{\|f\|}\delta_0(1)\right\|=\delta_0(1)$. Подставим это выражение под знак оператора. $\|A(\frac{f}{\|f\|}\delta_0(1))\|\leq 1\Leftrightarrow \frac{\delta_0(1)}{\|f\|}\|Af\|\leq 1\Rightarrow$ оцениваем норму образа через норму прообраза: $\forall f\in \varepsilon_1\ \|A(f)\|\leq \frac{\|f\|}{\delta_0(1)}\Rightarrow \forall f,g\in \varepsilon_1\ \|A(f-g)\|\leq \frac{1}{\delta_0(1)}\|f-g\|$. Это липшецевость оператора A на ε_1 с $L=\frac{1}{\delta_0(1)}$. Рассмотрим наименьшую константу Липшеца и назовём её нормой.

Определение: $A: \varepsilon_1 \to \varepsilon_2, A \neq 0$ — линейный и непрерывный оператор, то $\|A\| = \inf\{L > 0 \mid \|Af\| \leq L\|f\| \quad \forall f \in \varepsilon_1\}$. Очевидно, что это так же равно $\sup_{f \in \varepsilon_1, f \neq 0} \frac{\|Af\|}{\|f\|} = L_0, L_0 \leq L$.

Пример линейного разрывного оператора:

 $\varepsilon_1 = \{ f \in C^1[0,1] \}$ со скалярным произведением $(f,g) = \int_0^1 f(t) \overline{g(t)} dt$, $\varepsilon_2 = \mathbb{C}$. Пусть $A : \varepsilon_1 \to \varepsilon_2$, $A(f) = f'(0) \ \forall f \in \varepsilon_1$. Конечность нормы — критерий непрерывности. У этого оператора норма бесконечность: возмём, например, $f_n(x) = \sin nx \in \varepsilon_1$

$$A(f_n)=n$$
 $\|A(f_n)\|=|n|$ $\|f_n\|=\sqrt{\int\limits_0^1\sin^2nxdx}\leq 1\Rightarrow \|A\|=\infty$ иначе говоря $\|A\|\geq rac{|n|}{\|f_n\|}\geq n o\infty$

Или по-другому

$$g_n = \frac{1}{\sqrt{n}} f_n \underset{\text{по норме в } \varepsilon}{\longrightarrow} 0$$
$$\|g_n\|_{\varepsilon_1} \le \frac{1}{\sqrt{n}}$$
$$A(g_n) = \sqrt{n}$$
$$\|Ag_n\| = \sqrt{n} \to \infty$$

Дадим теперь два других определения операторной нормы. $\|A\| = \sup_{f \neq 0} \frac{\|Af\|}{\|f\|} = \sup_{\|f\| = 0} \|Af\| = \lim_{f \neq 0} \|Af\|$

 $\sup_{\|f\|\leq 1}\|Af\|$. Покажем их равенство. $1\geq 2$, так как $\|f\|=1$ является сужением. С другой

стороны
$$\sup \left\|A\frac{f}{\|f\|}\right\| \leq 2 \Rightarrow 1 = 2$$
. $3 \leq 2$ так как $f \neq 0$, $\|f\| \leq 1$ $\|Af\| = \underbrace{\|f\|}_{\leq 1} \underbrace{\left\|A\frac{f}{\|f\|}\right\|}_{\leq \sup \|A\phi\|}$.

Ho $\boxed{2} \leq \boxed{3}$ так как является сужением, поэтому $\boxed{2} = \boxed{3}$.

Пример:

Пусть $\varepsilon_1 = \mathbb{C}^n$, $\varepsilon_2 = \mathbb{C}^m$. $A: \mathbb{C}^n \to \mathbb{C}^m$ задаётся комплексной матрицей $m \times n$. $Af \in \mathbb{C}^m$ $\forall f \in \mathbb{C}^n$ есть умножение матрицы на столбец. $\|Af\|_{\mathbb{C}^m}^2 = \overline{Af}^T Af = \overline{f}^T \underline{\overline{A}}^T \underline{A}f$. $M^* = \overline{M}^T = M$ $\Rightarrow M \in \mathbb{C}^{n \times n}$. Следовательно $\exists U: \mathbb{C}^n \to \mathbb{C}^n$ — унитарная матрица, то есть сохраняющая $\lambda_i \in \mathbb{R}$ $\overline{f}^T Mf = \|Af\|^2 > 0$ $\|Uf\| = \|f\|$ поэтому можно

норму. $U^{-1}MU = \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix}, \ \lambda_i \in \mathbb{R}. \ \overline{f}^T M f = \|Af\|^2 \geq 0. \ \|Uf\| = \|f\|, \ \text{поэтому можно}$

перейти к базису из собственных векторов. f=Ug, тогда $\|Af\|^2=\overline{U}\overline{g}^TMUg=\overline{g}^T\overline{U}^TMUg$, но U — унитарная, следовательно $U^{-1}=U^*=\overline{U}^T\Rightarrow \overline{U}^TMU=U^{-1}MU=\begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \Rightarrow$

 $\overline{g}^T \overline{U}^T M U g = \sum_{i=1}^n \lambda_i |g_i|^2$. Обозначим теперь $\lambda_{max} = \max \lambda_i$, тогда $\sum_{i=1}^n \lambda_i |g_i|^2 \le \lambda_{max} \sum_{i=1}^n |g_i|^2 = \lambda_{max} \|f\|^2$. Тогда $\|Af\| \le \sqrt{\lambda_{max}} \|f\|$ Обозначим $\tilde{g}_k = \delta_{kk_*}$, $\lambda_{max} = \lambda_{k_*}$, $\tilde{f} = U \tilde{g}$ и $\|\tilde{f}\| = \|\tilde{g}\| = 1$. $\sqrt{\lambda_{max}} = \|A\tilde{f}\| \le \|A\| \le \sqrt{\lambda_{max}} \Rightarrow \|A\| = \sqrt{\lambda_{max}(\overline{A}^T A)}$.

Примера

 $\varepsilon_1=\overline{\varepsilon_2}=L_2(G)=H$ — гильбертово пространство, где $G\in\mathbb{R}^m$ — измеримое множество.

$$A: L_2(G) \to L_2(G)$$

$$(Af)(x) = \int_G \underbrace{K(t,x)}_{\text{интегральное ядро}} f(t)dt$$

$$K \in L_2(G \times G) \quad \|K\|_{L_2G \times G}^2 = \iint_{G \times G} |K|^2 dt dx \le +\infty$$

$$\|Af\|^2 = \int_G |(Af)(x)|^2 dx = \int_G dx \qquad \qquad \left| \int_G dt K(t,x) f(t) \right|^2 \le \inf_{S \to G} |K|^2 dt dx \le \int_G |K(t,x)|^2 dt \int_G |f(t)|^2 dt \le \left(\iint_{G \to G} dx dt |K|^2 \right) \|f\|^2$$

Итого оценили операторную норму: $||Af||_{L_2G} \le ||K||_{L_2(G\times G)} ||f||_{L_2(G)} \, \forall f \in L_2(G) \Rightarrow \boxed{||A|| \le ||K||_{L_2(G\times G)}|}$. Свойства операторной нормы, $A,B: \varepsilon_1 \to \varepsilon_2$

- 1. $||A + B|| \le ||A|| + ||B||$
- $2. \ \|\alpha A\| = |\alpha| \|A\|$
- 3. $||A|| \Leftrightarrow Af = 0 \quad \forall \in \varepsilon_1$

Докажем эти свойства.

- 1. $||(A+B)f|| \le ||A(f)|| + ||B(f)|| \le (||A|| + ||B||)||f|| \Rightarrow ||A+B|| \le ||A|| + ||B||$
- $2. \ \|(\alpha A)f\| = \|\alpha A(f)\| = |\alpha| \|A(f)\|, \ \sup_{\|f\|=1} \|(\alpha A)f\| = |\alpha| \sup_{\|f\|=1} \|Af\|$
- 3. Очевидно

4. $A: \varepsilon_1 \to \varepsilon_2, B: \varepsilon_2 \to \varepsilon_3, T = B \cdot A \ T(f) = B(A(f)) \ \forall f \in \varepsilon_1.$ Тогда $\|T(f)\| = \|B(A(f))\| \le \|B\| \|A(f)\| \le \|B\| \|A\| \|f\| \Rightarrow \|T\| \le \|B\| \|A\|$. Следствие: $A: \varepsilon \to \varepsilon, A$ — линейный непрерывный оператор. Тогда можно формально рассмотреть $A^n f = \underbrace{A(A(\ldots A(f))\ldots)}_{n \text{ раз}}$ — произведение

в пространстве линейный операторов. Естественно получается $||A^n|| \le ||A||^n$ по индукции из пункта 4.

Наблюдение

 $F: H \to \mathbb{C}$ — линейный непрерывный функционал. По теореме Риса-Фреше $\exists ! h \in H$: $F(f) = (f,h) \ \forall f \in H$. Следовательно $\|F\|_{\text{операторная}} = \|h\|_{H}$. Получаем изометрический (так как сохраняет норму) изоморфизм между гильбертовым пространством и пространством непрерывных линейных операторов. В квантмехе это называют отождествление гильбертового пространства и наблюдателей над ним. Если ввести $H^* = \{\text{все } F: H \to \mathbb{C} \text{ линейные} \times \text{и непрерывные функционалы}\}$. То имеется линейная биекция (изоморфизм) сохраняющая норму по теореме Риса-Фреше. Норма сохраняется так как $\|F\| = \sup_{\|f\|=1} |(f,h)| = \|h\|$, в пря-

мую сторону по неравенству Коши-Буняковского, а в обратную если взять вектор $f = \frac{h}{\|h\|}$ при $h \neq 0$, то результат будет не меньше $\|h\|$.

Два типа сходимости для последовательности операторов. $\{A_n\}: \varepsilon_1 \to \varepsilon_2, \{T_n\}\varepsilon_2 \to \varepsilon_1$ линейные непрерывные функционалы.

Говорят, что $||A_n|| \to T$ по операторной норме, если $||A_n - T|| \to 0$ $n \to \infty$. Фактически это равномерная сходимость на сфере или на шаре, при чём на любом. $||A_n - T|| \to 0 \Leftrightarrow A_n(f) \rightrightarrows T(f), ||f|| < R \quad \forall R$, потому что $||A_n(f) - T(f)|| \le \underbrace{\|A_n - T\|}_{\to 0} \underbrace{\|f\|}_{\le R}$. И наоборот, если $\forall n \ge N(\varepsilon), \forall ||f|| \le 1 \; ||A_n f - T f|| \le \varepsilon$, то беря $\sup ||A_n f - T f|| = ||A_n - T||$. Сходимость по

 $\forall n \geq N(\varepsilon), \ \forall \|f\| \leq 1 \ \|A_n f - T f\| \leq \varepsilon, \ \text{то беря } \sup_{\|f\| \leq 1} \|A_n f - T f\| = \|A_n - T\|. \ \text{Сходимость по}$ норме синоним сходимости на произвольном шаре.

 $A_n \to T$ сходится поточечно, если $||A_n f - T f|| \to 0 \ \forall f \in \varepsilon_1$. Ясно, что если $A_n \to T$ по операторной норме, то очевидно сходится и поточечно. Обратное неверно.

Упражнение:

Придумать пример, когда $A_n: \varepsilon_1 \to \varepsilon_2$ линейно непрерывный поточечно сходится к разрывному.

 $||T|| = \lim ||A_n|| \ ||A_n - A_m|| \le ||A_n - T|| + ||A_m - T||$. Получается, что $||T|| - ||A_n|| \le ||T - A_n|| \to 0$ если есть сходимость по операторной норме.

Теорема Банаха-Штейнгаусса

Пусть H — гильбертово пространство, ε — евклидово, $A_n: H \to \varepsilon$, A_n поточечно сходится к T, где $T: H \to \varepsilon$ линейный оператор, тогда T — линейный непрерывный оператор, $\{A_n\}$ — ограниченная числовая последовательность, $\|T\| \le \varliminf_{n \to \infty} \|A_n\|$.

Доказательство:

Шаг первый. Если $\forall f \in H \{A_n f\}$ ограничена в ε , тогда $\{\|A_n\|\}$ ограничена. Докажем это. Посмотрим на множество $\Gamma_N = \{f \in H \mid \|A_n f\| \leq N \quad \forall n \in \mathbb{N}\}, \ N \in \mathbb{N}$. Так как последовательность $\{\|A_n f\|\}$ ограничена в ε , то такая последовательность не будет превосходить

какого-нибудь числа. Следовательно если взять числа N и смотреть на функции, которые отвечают Γ_N , то перебирая все N можно перебрать все функции. $\bigcup_{N=1}^{\infty} \Gamma_N = H$. Теперь воспользуемся полнотой, попытаемся доказать, что хотя бы в одной из этих множеств попадает шарик. Если $\exists f_0 \in H$ и $\exists N_0$ и $r_0 > 0$ так, что $B_{r_0}(f_0) = \{ f \in H \mid \|f - f_0\| \le r_0 \} \subset \Gamma_{N_0},$ тогда $||A_n f|| \le N_0$ если $\forall f \ ||f - f_0|| \le r_0$. Если взять ||w|| = 1 и рассмотреть $||A_n w||$, то $f_0 + r_0 w \in B_{r_0}(f_0)$ (к f_0 прибавили вектор единичной длина, умноженный на радиус шара и

остались в нём), тогда $\frac{1}{r_0}\|A_n(f_0+r_0w)-A_nf_0\|\leq \frac{1}{r_0}(N_0+\|A_nf_0\|)\leq \frac{N_0+R_0}{r_0}$ для любого вектора на единичной сфере. Следовательно $\|A_n\|\leq \frac{N_0+R_0}{r_0}$. Если удастся в Γ_N впихнуть шарик, то можно оценить любой элемент сферы. Пусть в любое Γ_N нельзя впихнуть никакой шар положительного радиуса. Тогда рассмотрим шар в центре 0 радиуса 1 и рассмотрим Γ_1 , в который нельзя впихнуть какой-либо шар. Рассмотрим разность этого открытого шара и Γ_1 . Получим открытое множество, в нём любая точка входит вместе с окрестностью, а значит можно выбрать шар радиуса $r_1 < \frac{1}{2}$, непересекающий Γ_1 . Рассмотрим теперь этот шар и множество Γ_2 , в которое также нельзя запихнуть ни один шар. Опять смотрим их разность (открытое множество) и выбираем шар $r_2 < \left(\frac{1}{2}\right)^2$ и так далее. Получаем последовательность вложенных шаров $B_{r_1}(f_1) \supset B_{r_2}(f_2)$ и $\forall k \ B_{r_k} \cap \Gamma_k = \varnothing$, а радиусы стремяться к нулю. Центры этих шаров образуют фундаментальную последовательность $||f_k - f_{k+p}|| \le \frac{1}{2^k} \le \varepsilon \ \forall k \ge k(\varepsilon)$. Пользяся полнотой получаем, что ряд сходится в H $f_k \to f_*$. Получаем парадокс: $f_{k+p} \in B_{r_k}(f_k)$, при $p \to \infty$ $f_{k+p} \to f_* \Rightarrow f_* \in B_{r_k}(f_k) \ \forall k$. Но каждый такой шар построен так, что $B_{r_k} \cap \Gamma_k = \varnothing$, следовательно $f_* \notin \Gamma_k \ \forall k$, но всё пространство есть объединение в том числе и f_* , получили противоречие с условием.

Следствие шага 1: Если $\sup_{n\in N}\|A_n\|=\infty,\,A_n$ — линейный непрерывный оператор, то $\exists f_*\in A_n$ $H: \sup_{\mathbb{R}^n} ||A_n f_*|| = \infty.$

Шаг второй. Если есть поточечная сходимость из полного пространства, то тогда поточечный предел — непрерывный ограниченный оператор. $A_n f \to T f \ \forall f$ в ε , следовательно $\{A_nf\}$ ограниченна в ε $\forall f\Rightarrow$ по шагу один $\sup_{n\in\mathbb{N}}\|A_n\|<+\infty.$ Тогда $\|Tf+A_nf-A_nf\|\leq$ $[Tf - A_n f] + [A_n f]$, где ||f|| = 1 (f с единичной сферы), а $||A_n|| \le R$. Следовательно ≤ 1 при $n \geq N(f)$ $\leq ||A_n|| ||f||$ $||Tf|| \le 1 + R \ \forall ||f|| = 1$ и значит $||T|| \le 1 + R$. Поэтому поточечный предел последовательности будет непрерывным. Во-вторых, $\forall ||f|| = 1, \forall \varepsilon > 0 \ \exists N(\varepsilon, f) : \forall n \geq N(\varepsilon, f) \ ||A_n f - T f|| \leq \varepsilon$ $\Rightarrow ||Tf|| \le \varepsilon + ||A_n|| ||f||$. Нижний предел последовательности с добавкой превосходит $||A_n||$, начиная с некоторого n: $\forall \varepsilon > 0 \ \forall M(\varepsilon) > 0 \ \exists n \geq M(\varepsilon) \ \varliminf_{k \to \infty} \|A_k\| + \varepsilon \geq \|A_n\|$. Если возмём $M = N(\varepsilon, f)$, то $\varepsilon + \|A_n\| \|f\| \leq \varliminf_{k \to \infty} \|A_k\| + 2\varepsilon$. Отсюда взяв супремум по f получаем, что $\|T\| \leq \varliminf_{k \to \infty} \|A_k\| + 2\varepsilon$, $\varepsilon \to +0$. Доказательство закончено.

H — гильбертово пространство, $\{e_n\}_{n=1}^{\infty}$ — ортонормированный базис в H. $\forall f \in H$ $f = \sum_{k=1}^{\infty} (f, e_k)e_k$, это ни что иное $P_k(f)$ — ортопроектор на линейную оболочку e_k . Очевидно $\|P_k\|=1$. Возникает ряд из проекторов $I=\sum_{k=1}^{\infty}P_k$, где If=f — тождественый оператор из H в H, ||I||=1. Это обозначение символизирует собой ряд Фурье: $f=\sum_{k=1}^{\infty}P_k(f)$. Это справедливо для любого f, следовательно получается, что $S_n = \sum_{k=1}^n P_k \to I$ поточечно, потому что $S_n(f) = \sum_{k=1}^n (f,e_k)e_k \to f$ в H при $n \to \infty$. А сходимости по норме здесь нет. Действительно $\|I - \sum_{k=1}^n P_k\| \ge \|(I - \sum_{k=1}^n P_k)e_{n+1}\|$. e_{n+1} с единичной сферы, а супремум по единичной сфере даст норму. Но $Ie_{n+1} = e_{n+1}$, а $P_ke_{n+1} = 0$ при k < n+1. Получаем $\|I - \sum_{k=1}^n P_k\| = \|e_n\| = 1$ $\forall n$. То есть никакой сходимости по норме нет. Но поточечная есть, она из неё следует факт, что последовательность частичных сумм S_n ограничена. Оценивать норму суммой норм проекторов плохо, так как оценка стремится к бесконечности. Лучше воспользоваться теоремой Банаха-Штейнгаусса: S_n по норме меньше некого числа R.

Спектр и резольвентное множество линейного непрерывного оператора в гильбертовом пространстве $A: H \to H$.

Введём оператор $A_{\lambda} = A - \lambda I$, $\lambda \in \mathbb{C}$. Резольвентное множество $\rho(A) = \{\lambda \in \mathbb{C} \mid \exists (A_{\lambda})^{-1} : H \to H\}$.

Замечание:

Пусть $\varepsilon_1, \varepsilon_2$ — два евклидовых пространства и линейный оператор $T : \varepsilon_1 \to \varepsilon_2$. Обратный оператор отображает образ T $T^{-1} : \operatorname{Im} T \to \varepsilon_1 \Leftrightarrow \ker T = \{0\}$. Тогда существует обратный $T^{-1} : \varepsilon_2 \rho \varepsilon_1 \Leftrightarrow \ker T = \{0\}$ и $\operatorname{Im} T = \varepsilon_2$.

Тогда можно переписать определение резольвентного множества как $\rho(A)=\{\lambda\in\mathbb{C}\mid\ker A_\lambda=0\ \text{и}\ \mathrm{Im}\,A_\lambda=H\}.$ Более того в гильбертовом пространстве обратный оператор автоматически непрерывен.

Замечание (Теорема Банаха об обратном операторе)

 $T: H_1 \to H_2$ — линейный непрерывный оператор, где $H_{1,2}$ — гильбертовы пространства. Тогда $\exists ! T^{-1}: H_2 \to H_1$ линейный и непрерывный если, и только если $\ker T = 0$ и $\operatorname{Im} T = H_2$. $\lambda \in \rho(A) \Leftrightarrow \exists (A_\lambda)^{-1}: H \to H$ — непрерывный оператор. $(I - \mu A) = -\mu A_{\frac{1}{\mu}}$, то $\frac{1}{\mu} \in \rho(A) \Leftrightarrow \exists (I - \mu A)^{-1} = -\frac{1}{\mu} (A_{\frac{1}{\mu}})$.

Определение: Спектр оператора $\sigma(A) = \mathbb{C} \setminus \rho(A)$. $\lambda \in \sigma(A)$ эквивалентно одному из двух случаев: либо $\ker A_{\lambda} \neq \{0\}$ — точечный спектр, состоящий из собственных значений $(\sigma_P(A))$ (точечный спектр может образовывать множество мощности континум), либо $\ker A_{\lambda} = \{0\}$, но $\operatorname{Im} A_{\lambda} \neq H$ — непрерывный спектр $(\sigma_C(A))$ (непрерывный спектр может быть из отдельных точек). В случае непрерывного спектра обратный оператор существует $A_{\lambda}^{-1}: \operatorname{Im} A_{\lambda} \to H$ и даже может оказаться непрерывным, если (и только если) образ его замкнут.

Пример когда обратный оператор непрерывный есть, а точка в спектре.

Пусть
$$H$$
 с ортонормированным базисом $\{e_k\}$. $f = \sum_{k=1}^{\infty} \alpha_k(f)e_k$, где $\alpha_k(f) = (f, e_k)$. Пусть оператор A производит сдвиг: $Af = \sum_{k=1}^{\infty} \alpha_k(f)e_{k+1}$. Естественно $||f|| = ||Af|| = \sqrt{\sum_{k=1}^{\infty} |\alpha_k(f)|^2}$ — это равенство Парсеваля. $\ker A = \{0\}$, $\operatorname{Im} A = (\operatorname{Lin} e_1)^{\perp}$. $A^{-1} : (\operatorname{Lin} e_1)^{\perp} \to H$, $g \in (\operatorname{Lin} e_1)^{\perp}$ $g = \sum_{k=2}^{\infty} \underbrace{\beta_k}_{(g,e_k)} e_k$ отображается в $\sum_{k=1}^{\infty} \beta_{k+1} e_k$ действием оператора A^{-1} . Получается $A^{-1}g = f \Leftrightarrow Af = g$ остоствочи им образом $||A^{-1}g|| = ||g|| \forall g \in (\operatorname{Lin} e_1)^{\perp}$ споловатон ис $||A^{-1}|| = 1$

Теорема (фон Неймана)

Если $T: H \to H$ — линейный и непрерывный так, что ряд $\sum_{n=0}^{\infty} \|T^n\|$ сходится, тогда $S_N = \sum_{n=0}^{N} T^n$ сходится по операторной норме к некоторому оператору S — линейный непрерывный оператор $S = \sum_{n=0}^{\infty} T^n$, причём $S = (I - T)^{-1}$.

Доказательство

Убедимся, что S_N обладает сходимостью. $S_N f$ — фундаментальная последовательность в H $\forall f \in H$, так как $\|S_N f - S_{N+P} f\| = \|\sum_{n=N+1}^{N+P} T^n f\| \le \sum_{n=N+1}^{N+P} \underbrace{\|T^n\|}_{\to 0} \|f\| \Rightarrow \|S_N f - S_{N+P} f\| \to 0$

 $N \to \infty$ равномерно по P. Раз фундаментальна в гильбертовом, значит сходится $S_N f \to S f$. $\|S_f\| = \lim_{N \to \infty} \|S_N f\| \le \lim_{N \to \infty} \sum_{k=1}^N \|T\|^k \|f\| \le \sum_{k=1}^\infty \|T^k\| \|f\|$. Следовательно $\|S\| \le \sum_{k=1}^\infty \|T^k\|$, следовательно S — линейный непрерывный оператор.

 $\lim_{N\to\infty}((I-T)\sum_{n=0}^{N}T^kf)=\lim_{N\to\infty}(f-T^{N+1}f). \text{ Ho } \|T^{N+1}f\|\leq \|T^{N+1}\|\|f\|\to 0 \Rightarrow (I-T)S=I.$ $S(I-T)f=\lim_{N\to\infty}(S_N(I-T)f)=\lim_{N\to\infty}((I-T^{N+1})f)=f.$ Таким образом теорема фон Неймана доказана.

Следствия:

Пусть $A: H \to H$ — линейный и непрерывный, тогда

- 1. $\forall \lambda \in \mathbb{C}$ такой, что $|\lambda| > ||A|| \Rightarrow \lambda \in \rho(A)$. При этом $(A_{\lambda})^{-1} = -\sum_{n=0}^{\infty} \frac{A^k}{\lambda^{k+1}}$, причём ряд сходиться по операторной норме.
- 2. $\rho(A)$ открыто в $\mathbb C$
- 3. Функция от λ $(A_{\lambda})^{-1}$ непрерывна на $\rho(A)$ по операторной норме
- 4. $\forall \lambda \in \rho(A) \; \exists \lim_{\text{по операторной норме}} \frac{(A_{\lambda + \Delta \lambda})^{-1} (A_{\lambda})^{-1}}{\Delta \lambda} = ((A_{\lambda})^{-1})^2$

Доказательство

1: Если $|\lambda| > \|A\|$ $A_{\lambda} = A - \lambda I = -\lambda (I - \frac{A}{\lambda})$, $\|T\| = \frac{\|A\|}{|\lambda|} < 1$ следовательно $\|T^n\| \le \|T\|^n = \left(\frac{\|A\|}{|\lambda|}\right)^n$ — это член сходящегося ряда. Значит по теореме фон Неймана $\exists (A_{\lambda})^{-1} = -\frac{1}{\lambda} \sum_{n=0}^{\infty} \frac{A^k}{\lambda^k}$ сходящегося по операторной норме