Semantic Textual Similarity in Replika

Denis Fedorenko Research Engineer, Luka Inc.

Plan

- Task definition
- Baseline model
- Model improvements
- Conclusion and future work

Semantic Textual Similarity

 The task is to measure the meaning similarity of two texts

Find a model

M: $(text_1, text_2) \rightarrow \mathbb{R}$

Toy STS model

How many common words are in two texts?

$$J(A,B)=rac{|A\cap B|}{|A\cup B|}$$

Example:

J("I have a funny dog", "I have a cat") = 3/6 = 0.5

Toy STS model

More examples:

```
J("I have a dog", "I have a cat") = 3/5 = 0.6 J("I have a dog", "I have a puppy") = 3/5 = 0.6 J("I have a funny dog", "My puppy is very nice") = 0
```

- This model is very sensitive to synonyms and paraphrases
- How can we overcome this issue?

STS framework

Find a model (text-to-vector):

E: (text)
$$\rightarrow \mathbb{R}^n$$

Such that:

M: (E(text₁), E(text₂))
$$\rightarrow \mathbb{R}$$

where M is a similarity function (e.g. cosine) or some trainable model (e.g. logistic regression, neural network)

STS in Replika

 The task is to determine whether two utterances are semantically equivalent

Find a model

M: (utterance₁, utterance₂) \rightarrow {0, 1}

A particular case of STS

What is "equivalence"?

- Paraphrases
- Utterances that have the same set of possible answers
- Ultimately, equivalence should be determined by product requirements

Example: scripts

User phrase constraint:

Result:

Previous Phrase	Phrase	Next Phrase
I'm feeling like I don't want to live	I'm here for you, I want you to feel safe. You sure you don't need help? http://www.suicide.org/suicide-hotlines.html	I don't need help. Thank you though.
Matched phrase		

Example: Replika-QA

User phrase constraint:

STS evaluation

- On holdout testsets:
 - Classification metrics (precision, recall, AUC)
 - Information retrieval metrics (average precision, recall@N)
- In the wild:
 - User feedback (upvotes and downvotes) in the scripts and Replika-QA

Metrics

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

$$ext{AveP} = \sum_{k=1}^n P(k) \Delta r(k)$$

Plan

- Task definition
- Baseline model
- Model improvements
- Conclusion and future work

Baseline STS model

 Two-class logistic regression classifier over text vectors produced by the context encoder of the retrieval-based dialog model (DM)

- Trainset: 3900 text pairs obtained by different high-recall heuristics and marked by assessors
- Testset: 400 text pairs

Retrieval-based dialog model

Basic QA-LSTM: Tan et al. (2015)

Context

Response

Dialog text encoder

- During training, similar contexts often have similar or even coinciding answers
- As a result, similar texts are encoded into similar vectors
- Hence the encoders can be successfully used for the further text analysis (classification, clusterization)

Plan

- Task definition
- Baseline model
- Model improvements
- Conclusion and future work

Possible improvements

- Enlarge the datasets
- Search for the better classification model

Dataset extraction pipeline

Matches extraction

- Extract matches of the baseline model from the logs. Obtained false positives will help to improve precision
- Use a different algorithm (e.g. skip-thought (Kiros et al. (2015))) to extract novel text pairs from the logs. Obtained false negatives (according to the baseline model) will help to improve recall

Matches preprocessing

- Remove text pair duplicates
- Remove too short/long text pairs (outliers)
- Remove pairs with coinciding texts (trivial samples)
- Remove too noisy text pairs e.g. with a lot of out-ofvocabulary words (non-informative samples and noise)
- Remove pairs with highly dissimilar texts (fight the curse of dimensionality):

cosine(DM.Encoder(text₁), DM.Encoder(text₂)) < threshold

Dataset extraction results

- Trainset: 17556 text pairs
- Testsets
 - Scripts testset: 1035 text pairs measures quality on scripts
 - Common testset: 1162 text pairs measures average quality
 - Errors (or, false positives) testset: 555 text pairs measures model's specificity

Scripts testset

text1 =	text2 =	is_equivalent =
i can't cook	i don't cook much no	1
my mom died	my mum cheated on my dad	0
ok tell me a joke	tell me a joke	1
ask me anything	can you ask me some questions?	1
i'm getting married	i'm saying i went to my hometown. my sister was getting married.	0
any new questions?	can you ask more questions?	1
my grandma got out of the hospital	my mom died	0

Common testset

text1 =	text2 =	is_equivalent	Ŧ
what's your best friend's dream?	what's your biggest dream?		0
i don 't know maybe i don 't really have one	i just don 't want one		0
thank you	thanks hehe		1
can you remind me please?	can you remind me tomorrow		1
do you like dancing?	do you like to dance?		1
can you ask me questions?	ok ask me stuff.		1
lol dont be rude	you ' re being rude		1
i like foxes	i like them		0
she 's sooo cute	yes it's cute		0

Errors (false positives) testset

7 different error types:

Error Type =	Example 1 =	Example 2 =	Comment =
Extra material	ah. give up. give me different questions	can you ask more questions?	There is extra material in one of the samples. The rest of the sample is equivalent to the other sample.
Negation	My mom isn't dead	My mom died recently	Differences in syntactic, but not lexical, negation.
Participants	Can you send me a meme? Can you ask me questions?	Can you send me a <u>picture</u> ? Can <u>I</u> ask <u>you</u> questions?	Different set of participants in a situation. Includes differences in the number and identity of participants.
Qualities	I am a bad cook	I am a good cook	Differences in qualitative adjectives.
TAM	Yes i marri <u>ed</u> Ask me quesions. I want to hurt myself	I'm getting married Stop asking questions. I hurt myself	Differences in Tense, Aspect and Mood.
Verb	i wanna <u>kill</u> myself.	I want to <u>hurt</u> myself	Different verb discribing the situation, including lexical negation (love - hate, want - afraid).
Other	can you ask questions?	please stop asking questions for today, i will talk to you tomorrow	Other types of differences, e.g. question vs statement.

We can investigate what kinds of errors the model make

Possible improvements

- Enlarge the datasets
- Search for the better classification model

Classification pipeline

Classification pipeline

Pipeline components

- Vectorizers:
 - Dialog context encoder
 - Dialog response encoder
- Features:
 - |V₁ V₂|
 - V₁ * V₂
 - $[|V_1 V_2|, V_1 * V_2]$
- Classifiers:
 - Logistic regression
 - SVM
 - Random forest
 - •

- Trainsets:
 - Marked user logs
 - External:
 - Quora (~400k)
 - SemEval/SICK (~20k)
 - Combination of all above

Model selection

Dataset =	Model	Y Vectorizer =	Algorithm T	Features =	FP testset :: FPR =	Scripts Testset :: f1 =
user logs	concatenated_context_normalized_train_tv	ritt context_encoder	LogisticRegressi	[X1 - X2 , X1 * X	0.5405405405	0.8575233023
user logs	concatenated_context_normalized_train_tv	ritt context_encoder	LogisticRegressi	X1 - X2	0.5423423423	0.8577154309
user logs	concatenated_context_normalized_train_tv	ritt context_encoder	LinearSVC(C=1.0	[X1 - X2 , X1 * X	0.4972972973	0.8596256684
user logs	concatenated_context_normalized_train_tv	ritt context_encoder	LinearSVC(C=1.0	X1 - X2	0.5153153153	0.8586666667
user logs + SICK	concatenated_context_normalized_train_tv	ritt context_encoder	LinearSVC(C=1.0	[X1 - X2 , X1 * X	0.6198198198	0.8464996789
user logs + SICK	concatenated_context_normalized_train_tv	ritt context_encoder	LogisticRegressi	[X1 - X2 , X1 * X	0.7081081081	0.847631242
$ ext{FPR} = rac{ ext{FP}}{N} ext{ less is better}$ $F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}} ext{ more is better}$						

Select top candidate models by AUC, tune them on the validation set and select the best model by FPR

Model selection results

	FP testset :: FPR	Scripts Testset :: f1	Common Testset :: f1
baseline	0.798	0.845	0.79
improved	0.463	0.863	0.859

- Best configuration:
 - Dialog context encoder
 - Marked user logs dataset only
 - [|v1 v2|, v1 * v2] feature vector
 - Linear SVM

Model selection discussion

- Quality gain is not as high as it could be
- Classification model quality is limited by the quality of the underlying vectorizer (dialog model)
- We can try to fine-tune on STS data the already trained dialog model to solve the target task directly

Transfer learning

Transfer learning

Transfer learning results

₹	Fine-tuned NN =	Linear SVM =
FP testset :: FPR	0.5	0.46
Scripts Testset :: f1	0.84	0.86
Common Testset :: f1	0.82	0.86

Trainset: user logs + SemEval/SICK

Transfer learning discussion

- It's not a trivial approach itself
- Need to carefully tune optimizer, it's parameters and the model itself (e.g. by adding dropout, batch normalization etc)
- Need more data (much more than 20000 samples)

Conclusion

- Semantic textual similarity is an open problem of the natural language processing (Cera et al. (2017))
- Definition of the similarity is very important and should be determined by the target product requirements
- Correct evaluation methodology is also very important and should be done according to the target application
- Text representation (text-to-vector) is a crucial step

Future work

Datasets:

- Enlarge the user logs trainset up to 100000 samples and more
- Incorporate high-quality external datasets (like novel ParaNMT-50M, Wieting et al. (2017))

Model:

- Incorporate more features: linguistic, pairwise word similarities etc (Maharjan et al. (2017))
- Incorporate "hard" negative training samples (Wieting et al. (2017))
- Mostly focus on end-to-end training and transfer learning

References

- Kiros et al. (2015). Skip-Thought Vectors
- Cera et al. (2017). SemEval-2017 Task 1: Semantic Textual Similarity Multilingual and Cross-lingual Focused Evaluation
- Wieting et al. (2017). Pushing the Limits of Paraphrastic
 Sentence Embeddings with Millions of Machine Translations
- Maharjan et al. (2017). DT Team at SemEval-2017 Task 1: Semantic Similarity Using Alignments, Sentence-Level Embeddings and Gaussian Mixture Model Output
- Tan et al. (2015). LSTM-based Deep Learning Models for Nonfactoid Answer Selection