

T-TEST

HYPOTHESIS TESTING

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

1-Sample t-Test

F-Test

2-Sample t-Test

Paired t-Test

1-sample t-test is a statistical method used to determine whether the mean of a single sample differs significantly from a known or hypothesized population mean.

Hypothesis

$$H_o$$
: $\mu_1 = \mu_o$ H_a : $\mu_1 \neq \mu_o$ (p-value $\leq \alpha$)

Assumptions

- Continuous data
- Normal data

<u>syntax</u>

```
from scipy import stats

t_stat, p_value = stats.ttest_1samp(
    sample_data, pop_mean)
```

<u>options</u>

```
alternative = 'two-sided' # default
alternative = 'larger' # u1 > u0
alternative = 'smaller' # u1 < u0</pre>
```

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1283.78	32.50
Wind	779.86	88.28
Hydroelectric	1796.86	96.24
Oil and Gas	1160.69	60.66
Coal	1139.33	42.59
Solar	167.58	36.08
Biomass	55.12	2.13

Perform a <u>1-sample t-test</u> to determine whether the mean electricity production (in MWh) for each production type in the given dataset differs significantly from known population parameters.

dataset

"electricity-normal-sample.csv"

F-TEST

F-TEST_

F-test is a statistical test used to compare the variances of **two samples** and determine if they are significantly different.

Hypothesis

$$H_o$$
: $\sigma_1^2 = \sigma_2^2$

$$H_a$$
: $\sigma_1^2 \neq \sigma_2^2$ (p-value $\leq \alpha$)

Assumptions

- Continuous data
- Normal data

```
<u>syntax</u>
from scipy import stats
# F-statistic
if var_1 > var_2:
   f stat = var 1/var 2
else:
   f_stat = var_2/var 1
p_value = 1 - stats.f.cdf(
   f_stat, dof_1, dof_2)
```


2-sample t-test is a statistical method used to compare the means of **two independent groups** to determine if they are significantly different from each other.

Hypothesis

$$H_o$$
: $\mu_1 = \mu_1$ H_a : $\mu_1 \neq \mu_2$ (p-value $\leq \alpha$)

<u>Assumptions</u>

- Continuous data
- Normal data

<u>syntax</u>

```
from scipy import stats

t_stat, p_value = stats.ttest_ind(
    sample_1 data, sample_2 data)
```

<u>options</u>

```
alternative = 'two-sided' # default
alternative = 'larger' # u1 > u1
alternative = 'smaller' # u1 < u2
equal_var = True # default</pre>
```

PAIRED T-TEST

PAIRED T-TEST

Paired t-test is a statistical method used to compare the means of two related groups to determine if they are significantly different from each other.

Hypothesis

$$H_o$$
: $\mu_1 = \mu_1$ H_a : $\mu_1 \neq \mu_2$ (p-value $\leq \alpha$)

<u>Assumptions</u>

- Continuous data
- Normal data

<u>syntax</u>

```
from scipy import stats

t_stat, p_value = stats.ttest_rel(
    sample_1 data, sample_2 data)
```

<u>options</u>

```
alternative = 'two-sided' # default
alternative = 'larger' # u1 > u1
alternative = 'smaller' # u1 < u2
equal_var = True # default</pre>
```

EXERCISE

The dataset contains the electricity production in MWh by the following production types:

Туре	μ	σ
Nuclear	1283.78	32.50
Wind	779.86	88.28
Hydroelectric	1796.86	96.24
Oil and Gas	1160.69	60.66
Coal	1139.33	42.59
Solar	167.58	36.08
Biomass	55.12	2.13

Perform a <u>2-sample t-test</u> to compare the means of electricity production (in MWh) between two distinct groups in the dataset.

dataset

"<u>electricity-normal-sample.csv</u>"

LABORATORY

