

UNCLASSIFIED

AD NUMBER

AD531281

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM

Distribution limited to U.S. Gov't.
agencies only; Test and Evaluation; Jul
74. Other requests for this document must
be referred to Director, Naval Research
Lab., Washington, D. C. 20375.

AUTHORITY

NRL ltr, 1 Jul 2002

THIS PAGE IS UNCLASSIFIED

UNCLASSIFIED

AD NUMBER

0531 281

CLASSIFICATION CHANGES

TO

UNCLASSIFIED

FROM

SECRET

AUTHORITY

31 DEC 89, IAW OCA MRKNGS ON DOC

**Reproduced From
Best Available Copy**

THIS PAGE IS UNCLASSIFIED

SECRET

NRL Report 7765
Copy No. 106

AU531281
DATE

Probability of Detecting Ships With an OTH Radar System

[Unclassified Title]

JON DAVID WILSON

Radar Analysis Staff
Radar Division

Reproduced From
Best Available Copy

July 10, 1974

NATIONAL SECURITY INFORMATION
*Unauthorized Disclosure Subject to Criminal
Sanctions*

NAVAL RESEARCH LABORATORY
Washington, D.C.

D D C
REF ID: A6531281
SEP 17 1974
REGULATED
D

DDC CONTROL
NO 42495

SECRET, classified by CNO msg 021634Z, June 1971.
Exempt from GDS of E.O. 11652 by CNO msg 021634Z.
Ex. Cat. (3). Auto. declass. on Dec. 31, 1989.

SECRET

REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished to DTIC contained pages that may have the following quality problems:

- Pages smaller or larger than normal.
- Pages with background color or light colored printing.
- Pages with small type or poor printing; and or
- Pages with continuous tone material or color photographs.

Due to various output media available these conditions may or may not cause poor legibility in the microfiche or hardcopy output you receive.

If this block is checked, the copy furnished to DTIC contained pages with color printing, that when reproduced in Black and White, may change detail of the original copy.

SECRET

NATIONAL SECURITY INFORMATION

Unauthorized Disclosure Subject to Criminal Sanctions.

Reproduced From
Best Available Copy

SECRET

SECRET

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER NRL Report 7765	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) PROBABILITY OF DETECTING SHIPS WITH AN OTH RADAR SYSTEM [Unclassified Title]		5. TYPE OF REPORT & PERIOD COVERED This is an interim report; work is continuing
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Jon David Wilson		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Research Laboratory Washington, D.C. 20375		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS R02-46A WF 12-111-704
11. CONTROLLING OFFICE NAME AND ADDRESS Department of the Navy Naval Air Systems Command Washington, D.C. 20361		12. REPORT DATE July 10, 1974
		13. NUMBER OF PAGES 46
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		15. SECURITY CLASS. (of this report) SECRET
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE XGDS (3) - 1989
16. DISTRIBUTION STATEMENT (of this Report) Distribution limited to U.S. Government Agencies only; test and evaluation; July 1974. Other requests for this document must be referred to the Director, Naval Research Laboratory, Washington, D.C. 20375.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
<p style="text-align: right;">D D C</p>		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Over-the-horizon radar Probability of ships detection Probability of skywave propagation Sea clutter spectrum		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) (U) An over-the-horizon (OTH) radar uses ionospheric reflection of high-frequency radio waves to propagate to areas far beyond the normal radar horizon. Two principle probabilities are associated with an OTH radar; the probability of successfully propagating to a given region via the ionosphere and the probability of detecting a target in sea clutter, given that propagation occurred. A particular radar system was examined and tables of probabilities were generated for various ionospheric and target parameters. An example illustrates the method of combining these probabilities to obtain a composite probability of (Continued)		

SECRET

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract (Continued)

detection. The probability of propagating was calculated by a computer program that used radar parameters, the ionospheric parameters, the geographical location, and the time of day and year as inputs. The probability of detection involved a computer implementation of the radar range equation.

SECRET

CONTENTS

INTRODUCTION	1
PROBABILITY OF PROPAGATION	1
PROBABILITY OF DETECTION	15
RESULTS	17
ACKNOWLEDGMENTS	43
REFERENCES	43

PROBABILITY OF DETECTING SHIPS WITH AN OTH RADAR SYSTEM [Unclassified Title]

INTRODUCTION

(U) This report is based on one phase of a study being conducted at the Naval Research Laboratory (NRL) [1-6] to compare the cost and effectiveness of three different radar systems used for ocean surveillance. The three candidate systems are an airborne radar, a satellite-borne radar, and a ground-based over-the-horizon (OTH) radar. For this report, the probability of detection of one particular OTH system has been calculated. The methods used, however, can be applied to any OTH system.

PROBABILITY OF PROPAGATION

(S) The ability of a radar system to propagate to a given range at a given time of the year was found by using RADARC, which is a computer program written by the Institute of Telecommunication Sciences to meet OTH radar analysis requirements as specified by NRL [7]. This program calculates the median clutter-to-noise ratio (C/N) for an OTH radar. The size of the backscatter area is calculated from virtual height ionograms using geometrical optics techniques. The noise considered includes atmospheric, galactic, and man-made sources. Atmospheric and ionospheric losses are included and the C/N is calculated from the radar range equation. This calculation was performed for sporadic E, E, F₁, and F₂ layer propagation modes. If the clutter return and signal return are assumed to be affected by the ionosphere in a similar manner, propagation is defined by requiring the signal return from 1000-m² target to be large enough against noise to yield a probability of detection P_D equal to 0.9 and a probability of false alarm P_{fa} equal to 10^{-6} for a Type 1 OTH FM-CW radar system [6]. This system has the following parameters:

- 100-kw average power
- 0.1-s frequency sweep (prf = 10 per second)
- 20- μ s compressed pulse length
- 2.5-km horizontal aperture, receive ($\approx 0.25^\circ - 1^\circ$), transmit ($\approx 6^\circ - 10^\circ$).

We now calculate the C/N required for propagation.

(S) First, in order to obtain a $P_{fa} = 10^{-6}$ and a $P_D = 0.9$, the integrated signal-to-noise ration (S/N) should be 12 dB. The FM-CW radar system is assumed to have 10 frequency sweeps per second, a coherent integration time of 25 s, and a total integration time of 250 s. From Rubin and Difranco [8], the noncoherent integration gain for 10 noncoherent pulses is found to be 7 dB. With coherent integration, the noise spectrum extends from -5 to +5 Hz and is separated into 250 doppler bins of width 0.04 Hz. Thus,

Note: Manuscript submitted May 14, 1974.

the required S/N per doppler bin is 6 dB, (13 dB - 7 dB), and the S/N in a cycle bandwidth is -8 dB, or [6 dB + 10 log (0.04)]. Since the signal and clutter are assumed to propagate in a similar manner, the signal-to-clutter ratio (S/C) is given by

$$\frac{S}{C} = \frac{\sigma_T}{\frac{\sigma_0 \theta_B R c \tau}{2}} = -33 \text{ dB} \quad (1)$$

where

- σ_T = target cross section (30 dBsm),
- σ_0 = relative sea clutter cross section (-17 dB)
- θ_B = antenna beamwidth (1°)
- R = radar range, 1000 n.mi.
- c = speed of light
- τ = effective pulse width, 20 μs .

Now, the required C/N for propagation is calculated from

$$\frac{C}{N} = \frac{\frac{S}{N}}{\frac{S}{C}} = 25 \text{ dB}.* \quad (2)$$

Even though the madre antenna pattern is wired into RADARC, the received clutter and noise powers are independent of the receive antenna beamwidth,[†] and consequently, RADARC can be used to calculate propagation for the FM-CW radar system. The only alterations made to the program were to eliminate printed output and to add the punched output used in calculating the propagation statistics.

(S) The ability to propagate was found for four months, (January, April, July, or October), two times (day or night), and three sunspot numbers (20, 45, or 75, which are the 25th, 50th, and 75th percentiles). The radar is situated in Maine (latitude 45° N, longitude 67° W). For each of the 24 conditions, the radar model RADARC was used to calculate the C/N every 2 hr for three azimuth angles (14° , 59° , and 104°), spanning a 90° sector. For each set of parameters, one-bounce propagation via four layers (sporadic E , E , F_1 , F_2) was considered and the maximum C/N chosen. The number of occasions out of 18 (6 times, 2 hr apart, and 3 azimuths) that the C/N exceeded 25 dB is given in Tables 1-24. We can interpret these numbers divided by 18 as a probability of propagation. If

*Specifically, a C/N of 25 dB is equivalent to our defined propagation at 1000 n.mi. for a 30-dB target and the particular frequency that yields a 1° beamwidth. For other ranges, targets, and frequencies, 25 dB was still used since C/N varies rapidly with range and hence a change in the threshold (25 dB) would have little effect on the region of propagation.

†When the transmit beamwidth is larger than the receive beamwidth, the receive array is sampling an extended source. When the beamwidth narrows, the clutter (or atmospheric noise) patch narrows, but the gain of the array increases.

SECRET

NRL REPORT 7765

(U) Table 1
Number of successful propagations out of 18 possible
opportunities, in January, in nighttime with SNS=20
as a function of range and frequency

RANGE (NM)	MONTH = JAN		NIGHT		SUN SPOT = 20			
	6	9	12	15	18	21	24	27

500	16	13	9	0	0	0	0	0
1000	18	16	13	10	7	3	0	0
1500	17	2	0	0	0	0	0	0
2000	15	5	0	0	0	0	0	0

(U) Table 2
Number of successful propagations out of 18 possible
opportunities, in January, in daytime with SSN=20
as a function of range and frequency

RANGE (NM)	MONTH = JAN		DAY		SUN SPOT = 20			
	6	9	12	15	18	21	24	27

500	18	18	9	0	0	0	0	0
1000	16	18	18	14	4	0	0	0
1500	3	9	13	12	8	3	0	0
2000	2	4	4	5	5	5	0	0

(U) Table 3
 Number of successful propagations out of 18 possible
 opportunities, in April, in nighttime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = APR		NIGHT		SUN SPOT #		20	
	6	9	12	15	18	21	24	27

500	18	12	6	0	0	0	0	0
1000	18	16	12	8	3	0	0	0
1500	15	8	4	0	0	0	0	0
2000	12	10	5	1	0	0	0	0

(U) Table 4
 Number of successful propagations out of 18 possible
 opportunities, in April, in daytime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = APR		DAY		SUN SPOT #		20	
	6	9	12	15	18	21	24	27

500	18	18	4	0	0	0	0	0
1000	8	16	15	11	2	0	0	0
1500	0	4	9	10	1	0	0	0
2000	0	2	5	7	5	0	0	0

SECRET

NRL REPORT 7765

(U) Table 5
 Number of successful propagations out of 18 possible
 opportunities, in July, in nighttime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = JUL		NIGHT		SUN SPOT = 20			
	6	9	12	15	18	21	24	27
500	18	18	15	4	3	0	0	0
1000	18	18	18	17	15	8	5	2
1500	13	11	6	1	0	0	0	0
2000	7	11	6	3	0	0	0	0

(U) Table 6
 Number of successful propagations out of 18 possible
 opportunities, in July, in daytime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = JUL		DAY		SUN SPOT = 20			
	6	9	12	15	18	21	24	27
500	17	16	16	2	1	0	0	0
1000	5	13	17	10	13	13	6	1
1500	0	3	9	8	0	0	0	0
2000	0	1	2	3	3	0	0	0

(U) Table 7
 Number of successful propagations out of 18 possible
 opportunities, in October, in nighttime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		NIGHT		SUN SPOT =		20	
	6	9	12	15	18	21	24	27

500	18	15	9	2	0	0	0	0
1000	18	18	15	12	8	4	2	0
1500	16	7	1	0	0	0	0	0
2000	14	10	1	0	0	0	0	0

(U) Table 8
 Number of successful propagations out of 18 possible
 opportunities, in October, in daytime with SSN=20
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		DAY		SUN SPOT =		20	
	6	9	12	15	18	21	24	27

500	18	18	9	0	0	0	0	0
1000	11	18	18	17	6	2	0	0
1500	3	7	14	15	8	2	0	0
2000	0	4	6	9	13	7	0	0

SECRET

NRL REPORT 7765

(U) Table 9

Number of successful propagations out of 18 possible opportunities, in January, in nighttime with SSN=45 as a function of range and frequency

RANGE (NM)	MONTH = JAN		NIGHT		SUN SPOT = 45			
	6	9	12	15	18	21	24	27
500	16	13	8	0	0	0	0	0
1000	18	16	13	9	5	3	0	0
1500	17	5	0	0	0	0	0	0
2000	15	11	0	0	0	0	0	0

(U) Table 10

Number of successful propagations out of 18 possible opportunities, in January, in daytime with SSN=45 as a function of range and frequency

RANGE (NM)	MONTH = JAN		DAY		SUN SPOT = 45			
	6	9	12	15	18	21	24	27
500	18	18	13	0	0	0	0	0
1000	15	18	18	16	7	0	0	0
1500	3	8	15	14	11	7	2	0
2000	1	6	9	5	8	7	5	0

JON DAVID WILSON

SECRET

(U) Table 11
 Number of successful propagations out of 18 possible
 opportunities, in April, in nighttime with SSN=45
 as a function of range and frequency

RANGE (NM)	MONTH = APR		NIGHT		SUN SPOT #		45	
	6	9	12	15	18	21	24	27
<hr/>								
500	18	13	5	6	0	0	0	0
1000	18	17	14	8	3	0	0	0
1500	14	14	5	2	0	0	0	0
2000	12	13	8	4	0	0	0	0

(U) Table 12
 Number of successful propagations out of 18 possible
 opportunities, in April, in daytime with SSN=45
 as a function of range and frequency

RANGE (NM)	MONTH = APR		DAY		SUN SPOT #		45	
	6	9	12	15	18	21	24	27
<hr/>								
500	17	18	3	0	0	0	0	0
1000	5	13	18	9	2	0	0	0
1500	0	3	8	12	7	0	0	0
2000	0	2	5	6	8	4	0	0

SECRET

SECRET

NRL REPORT 7765

(U) Table 13

Number of successful propagations out of 18 possible opportunities, in July, in nighttime with SSN=45
as a function of range and frequency

RANGE (NM)	MONTH = JUL		NIGHT		SUN SPOT *		45	
	6	9	12	15	18	21	24	27
<hr/>								
500	10	18	15	3	2	0	0	0
1000	18	18	18	16	14	8	5	2
1500	12	15	7	3	0	0	0	0
2000	6	14	6	6	1	0	0	0

(U) Table 14

Number of successful propagations out of 18 possible opportunities, in July, in daytime with SSN=45
as a function of range and frequency

RANGE (NM)	MONTH = JUL		DAY		SUN SPOT *		45	
	6	9	12	15	18	21	24	27
<hr/>								
500	16	18	15	2	1	0	0	0
1000	5	11	17	8	13	13	6	1
1500	0	2	6	13	1	0	0	0
2000	0	0	2	2	8	0	0	0

(U) Table 15
 Number of successful propagations out of 18 possible
 opportunities, in October, in nighttime with SSN=45
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		NIGHT		SUN SPOT #		45	
	6	9	12	15	18	21	24	27

500	18	15	9	0	0	0	0	0
1000	18	18	15	12	8	4	1	0
1500	15	12	3	0	0	0	0	0
2000	14	14	5	1	0	0	0	0

(U) Table 16
 Number of successful propagations out of 18 possible
 opportunities, in October, in daytime with SSN=45
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		DAY		SUN SPOT #		45	
	6	9	12	15	18	21	24	27

500	18	18	16	0	0	0	0	0
1000	10	18	18	17	13	1	0	0
1500	3	6	12	18	14	8	2	0
2000	0	2	5	9	13	13	6	1

SECRET

NRL REPORT 7765

(U) Table 17

Number of successful propagations out of 18 possible opportunities, in January, in nighttime with SSN=75 as a function of range and frequency

RANGE (NM)	MONTH = JAN		NIGHT		SUN SPOT #		75	
	6	9	12	15	18	21	24	27

500	16	13	8	0	0	0	0	0
1000	18	15	13	9	4	1	0	0
1500	18	10	1	0	0	0	0	0
2000	15	14	2	0	0	0	0	0

(U) Table 18

Number of successful propagations out of 18 possible opportunities, in January, in daytime with SSN=75 as a function of range and frequency

RANGE (NM)	MONTH = JAN		DAY		SUN SPOT #		75	
	6	9	12	15	18	21	24	27

500	18	18	12	2	0	0	0	0
1000	2	18	18	16	9	4	0	0
1500	3	7	13	16	13	10	5	2
2000	2	4	7	12	10	10	7	5

JON DAVID WILSON

SECRET

(U) Table 19

Number of successful propagations out of 18 possible opportunities, in April, in nighttime with SSN=75
as a function of range and frequency

RANGE (NM)	MONTH = APR		NIGHT		SUN SPOT =		75	
	6	9	12	15	18	21	24	27
<hr/>								
500	18	14	5	0	0	0	0	0
1000	18	18	14	8	3	0	0	0
1500	15	18	11	4	0	0	0	0
2000	11	15	14	6	2	0	0	0

(U) Table 20

Number of successful propagations out of 18 possible opportunities, in April, in daytime with SSN=75
as a function of range and frequency

RANGE (NM)	MONTH = APR		DAY		SUN SPOT =		75	
	6	9	12	15	18	21	24	27
<hr/>								
500	16	18	7	0	0	0	0	0
1000	5	14	18	14	4	0	0	0
1500	0	3	7	12	11	5	0	0
2000	0	2	4	7	11	10	3	0

SECRET

12

SECRET

NRL REPORT 7765

(U) Table 21
 Number of successful propagations out of 18 possible
 opportunities, in July, in nighttime with SSN=75
 as a function of range and frequency

RANGE (NM)	MONTH = JUL		NIGHT			SUN SPOT =	75		
	6	9	12	15	18	21	24	27	
500	18	18	14	3	1	0	0	0	
1000	18	18	18	15	14	7	5	1	
1500	12	15	10	6	1	0	0	0	
2000	6	14	13	7	4	0	0	0	

(U) Table 22
 Number of successful propagations out of 18 possible
 opportunities, in July, in daytime with SSN=75
 as a function of range and frequency

RANGE (NM)	MONTH = JUL		DAY			SUN SPOT =	75		
	6	9	12	15	18	21	24	27	
500	14	18	17	1	1	0	0	0	
1000	2	10	18	9	17	16	5	1	
1500	0	2	5	13	4	0	0	0	
2000	0	0	2	3	7	1	0	0	

JON DAVID WILSON

SECRET

(U) Table 23
 Number of successful propagations out of 18 possible
 opportunities, in October, in nighttime with SSN=75
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		NIGHT		SUN SPOT =		75	
	6	9	12	15	18	21	24	27
<hr/>								
500	18	15	9	0	0	0	0	0
1000	18	18	15	12	7	3	0	0
1500	15	15	7	1	0	0	0	0
2000	13	17	12	3	0	0	0	0

(U) Table 24
 Number of successful propagations out of 18 possible
 opportunities, in October, in daytime with SSN=75
 as a function of range and frequency

RANGE (NM)	MONTH = OCT		DAY		SUN SPOT =		75	
	6	9	12	15	18	21	24	27
<hr/>								
500	18	18	17	4	0	0	0	0
1000	9	18	18	18	16	7	0	0
1500	2	5	11	18	15	14	8	3
2000	0	3	6	9	16	13	13	8

SECRET

the tables are compared, the following general conclusions can be reached about propagation when using the optimal frequency for a given range:

- Better at night than during the day
- Better in winter than in summer
- For the sunspot numbers considered, better for the higher sunspot numbers
- Propagation is very close to 100% for the shorter ranges.

The following conclusions can be reached about frequency preferences:

- Higher frequencies during daytime
- Higher frequencies during summertime
- Higher frequencies for higher sunspot numbers
- Higher frequencies for longer ranges.

PROBABILITY OF DETECTION

(U) In the previous section successful propagation was defined in terms of detection of targets against noise. Consequently, in this section we will consider only the detection of targets in sea clutter.

(C) The basic assumption is that the target return (small region) and the clutter return (extended region) will be affected in the same way by passage through the ionosphere. This allows us to calculate the S/C at the input to the processor from the target and clutter radar cross sections. The principal signal enhancement is from doppler processing with an additional noncoherent integration of the doppler cells.

(S) The S/C was calculated from Eq. (1) with three different target cross sections, 1000-m² and 3000-m² destroyers and a 50,000-m² aircraft carrier; and four ranges, 500, 1000, 1500, and 2000 n.mi, for each target type. The doppler processing gain was calculated for a set of radial velocities from -30 to +30 knots and a range of operating frequencies from 5 to 30 MHz. We assumed the target to be in one doppler cell and a 2-dB loss for processing and target doppler spread. The clutter level in a given doppler cell was obtained by normalizing a sample clutter spectrum. Two sample clutter spectra were derived from a working paper by Dr. James R. Barnum of Standford Research Institute [9]. One asymmetrical spectrum represents the type of clutter spectrum observed with approaching (or receding) winds. The other spectrum is symmetric and is typical of the spectra observed in crosswind conditions.

(U) One observed clutter spectrum was used to generate both spectra. This particular spectrum was chosen on the basis of its clean appearance, but all of the candidate spectra from Ref. 9 have certain features in common, such as the Bragg scatter peaks, the lowered level of clutter between these peaks, and the even lower level of clutter in the doppler cells outside of the peak. The symmetrical (crosswind) clutter spectrum was obtained by averaging the clutter cells symmetrically placed about the carrier frequency. This process yielded a spectrum that appears to be a valid approximation to observed

crosswind spectra. This approximation was used because there was always at least a small asymmetry in the levels of the approaching and receding Bragg scattering lines of the observed spectra (an asymmetry would favor either the approaching or receding targets).

(U) The asymmetrical clutter spectrum is shown in Fig. 1. This spectrum was extended to ± 5 Hz at a -42 dB level. The sea clutter, of course, does not have a plateau at some particular level below the Bragg line peak but has been measured on the Madre radar (with a 70-dB dynamic range) to drop off to at least 65 to 70 dB below the peak at ± 5 Hz. The -42 dB plateau seems to be a feature of the radar on which the spectrum was measured. This would make little difference in our results: If the target is not in a Bragg line peak, it is detected. The two large spikes correspond to the Bragg scatter of ocean waves. The relative amplitude of the two spikes is a function of the angle of the ocean wavefront to the radar wavefront and hence depends on local wind direction [10]. The doppler offset of these spikes from the carrier frequency depends on the carrier frequency. The particular spectrum shown as measured at 20 MHz. At other radar frequencies, the spectral line spacing expands and contracts with the square root of the carrier frequency [11].

(U) Fig. 1—Typical clutter doppler spectrum

(S) The doppler cell in which the target appears is calculated from the radial speed V_r and operating wavelength λ by

$$\text{Doppler cell} = \frac{2V_r}{\lambda(0.04)}. \quad (3)$$

(S) The clutter energy in that cell is calculated from the normalized clutter spectrum (shifted by the operating frequency). The S/C obtained for this radial speed and operating frequency combination is interpolated into a table of values, giving the P_d for 10 pulses [8]. For purposes of display, an array of symbols indicating the probability level for each combination of speed and frequency is printed. The P_d results for the approaching wind clutter spectrum are given in Figs. 2-13 and the crosswind results are given in Figs. 14-25. In the figures, an integer N indicates that P_d is between $0.1(N)$ and $0.1(N + 1)$ and a blank indicates that P_d is less than 0.1. The following observations can be made.

- Smaller targets can be detected only at the higher radial velocities, whereas the largest target can be detected in all doppler cells except those occupied by the Bragg scatter lines.
- Better detection performance is observed in the nonsymmetrical spectrum. This can be attributed (a) to the concentration of clutter energy in the larger Bragg scatter peak where detection is impossible in any case, and (b) to the consequent reduction of clutter energy in the remaining doppler cells.
- Targets can be detected in more of the doppler cells at higher frequencies. This is because the target doppler is proportional to frequency, whereas the clutter spectrum expands as the square root of the frequency. Thus, as the frequency is raised targets obscured by the clutter peak move into doppler cells of lower clutter.

(U) This last point may be the result of using one clutter spectrum taken at one carrier frequency and expanded and contracted for other frequencies. The clutter spectrum is affected by both sea state and frequency, but we did not have available sufficient data to make quantitative adjustment to the assumed spectrum. The doppler level in the cells away from the Bragg lines increases with the carrier frequency, and our sample spectrum was measured at a relatively high frequency. This means that at low frequencies the clutter levels used in our calculation are too high, but again, it would not affect our results; if a target is not in a Bragg line peak, it is detected.

(U) The preceding detection curves (Figs. 2-25) were based on the assumption that $\sigma_0 = -17$ dB. However, since there is some controversy over the value of σ_0 (Barnum has data that indicate $\sigma_0 = -23$ dB [12]), additional detection curves are generated for $\sigma_0 = -23$ dB. These curves are displayed in Figs. 26-49. Obviously the only difference between the results and the previous results is an improvement of 6 dB.

RESULTS

(S) To obtain a composite P_d , we multiply the probability of propagation (from Tables 1-24) by the probability of detection given that propagation is successful (Figs. 2-49). Two examples, one for $\sigma_0 = -17$ dB the other for $\sigma_0 = -23$ dB, are shown in Figs. 50 and 51, respectively. The composite P_d for each of four ranges is plotted vs radial speed. The target has a 3000-m^2 radar cross section in April, in daytime under crosswind conditions, with a sunspot number of 45. The operating frequency for each range is the frequency that yields the best composite P_d over the largest speed range. Only closing speeds are shown because of the symmetrical clutter spectrum. From these curves it appears that it is very difficult to detect a 3000-m^2 target at radial speeds below 15 knots if $\sigma_0 = -17$ dB and

RADIAL SPEED (KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999961	13321										3
6	999999999982	25421										1599
7	999999999994	137542										279999
8	99999999999961	158753										38999999
9	999999999999971	29865										599999999
10	999999999999982	379761										16999999999
11	999999999999993	1489871										179999999999
12	999999999999994	599982										289999999999
13	999999999999995	299982										389999999999
14	9999999999999961	399993										499999999999
15	999999999999996	499994										599999999999
16	9999999999999971	48999										19999999999999
17	9999999999999982	59999										69999999999999
18	999999999999998	199991										179999999999999
19	999999999999999	199991										299999999999999
20	9999999999999994	299991										899999999999999
21	9999999999999994	299991										399999999999999
22	9999999999999995	399992										399999999999999
23	9999999999999999	389992										999999999999999
24	9999999999999991	99993										499999999999999
25	9999999999999991	99993										599999999999999
26	9999999999999996	99993										159999999999999
27	9999999999999997	99994										199999999999999
28	9999999999999997	199994										199999999999999
29	9999999999999998	199995										699999999999999
30	9999999999999992	199995										799999999999999

(S) Fig. 2— P_d of 1000-m² target at 500-n.mi. range in approaching sea clutter,
 $\sigma_0 = -17$ dB

RADIAL SPEED (KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	9999999994											
6	999999999961											27
7	999999999982											4999
8	999999999994											169999
9	999999999995	1										2999999
10	99999999999961	121										899999999
11	99999999999997	1411										19999999999
12	999999999999982	2521										199999999999
13	99999999999999	3631										169999999999
14	999999999999994	4742										799999999999
15	999999999999995	4743										3999999999999
16	999999999999991	1873										38999999999999
17	999999999999996	2974										49999999999999
18	9999999999999971	2985										99999999999999
19	999999999999992	3985										59999999999999
20	999999999999992	3996										199999999999999
21	999999999999998	4896										699999999999999
22	999999999999999	4897										799999999999999
23	999999999999994	1997										299999999999999
24	999999999999994	2998										299999999999999
25	999999999999995	2998										899999999999999
26	999999999999998	2999										999999999999999
27	9999999999999981	3999										499999999999999
28	9999999999999981	3999										499999999999999
29	9999999999999981	3999										999999999999999
30	9999999999999986	4999										999999999999999

(S) Fig. 3— P_d of 1000-m² target at 1000-n.mi. range in approaching sea clutter, $\sigma_0 \approx -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	9999999751												
6	99999999972												3
7	999999999983											1567	
8	999999999995											168998	
9	9999999999961											7999999	
10	999999999999972											489999999	
11	999999999999983						1					5999999999	
12	999999999999994					1						69999999999	
13	999999999999995					2						29999999999	
14	9999999999999951					2						279999999999	
15	9999999999999991					131						899999999999	
16	9999999999999997					42						499999999999	
17	99999999999999972					531						1999999999999	
18	9999999999999992					541						5999999999999	
19	9999999999999998					641						19999999999999	
20	9999999999999999					652						69999999999999	
21	9999999999999994					1452						27999999999999	
22	9999999999999995					1463						39999999999999	
23	9999999999999999					563						89999999999999	
24	9999999999999991					574						89999999999999	
25	9999999999999991					574						49999999999999	
26	9999999999999996					674						49999999999999	
27	9999999999999997					685						99999999999999	
28	9999999999999997					785						19999999999999	
29	9999999999999999					796						69999999999999	
30	9999999999999992					1796						69999999999999	

(S) Fig. 4— P_d of 1000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999986642												
6	99999999663												1
7	999999999751											234	
8	999999999992											35675	
9	999999999993											4678867	
10	999999999994											157897689	
11	99999999999951											2689987999	
12	99999999999991											27999999999	
13	99999999999972											89999999999	
14	99999999999992					1						1499999999999	
15	99999999999998					1						5999999999999	
16	99999999999994					1						1999999999999	
17	99999999999994					21						6999999999999	
18	99999999999991					21						2999999999999	
19	99999999999996					31						7999999999999	
20	99999999999996					32						3899999999999	
21	99999999999991					12						4999999999999	
22	99999999999992					131						19999999999999	
23	99999999999998					231						59999999999999	
24	99999999999998					241						59999999999999	
25	99999999999998					241						19999999999999	
26	99999999999993					352						29999999999999	
27	99999999999998					352						69999999999999	
28	99999999999998					452						79999999999999	
29	99999999999998					462						29999999999999	
30	99999999999999					463						39999999999999	

(S) Fig. 5— P_d of 1000-m² target at 2000-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999999661	489999994	599
6	999999999999982	1699999961	1179999
7	999999999999994	279999971	38999999
8	9999999999999961	499999993	499999999
9	9999999999999971	599999994	15999999999
10	9999999999999992	169999995	17999999999
11	9999999999999993	299999991	279999999999
12	99999999999999941	289999991	899999999999
13	99999999999999991	399999992	499999999999
14	99999999999999991	99999992	59999999999999
15	999999999999999968	99999993	15999999999999
16	999999999999999981	169999994	19999999999999
17	999999999999999982	169999994	27999999999999
18	999999999999999982	179999995	299999999999999
19	999999999999999985	179999996	899999999999999
20	9999999999999999862	299999996	489999999999999
21	9999999999999999864	39999991	499999999999999
22	9999999999999999865	39999991	1999999999999999
23	9999999999999999865	49999991	1999999999999999
24	9999999999999999864	9999991	699999999999999
25	999999999999999984	9999992	699999999999999
26	999999999999999984	9999992	2999999999999999
27	999999999999999985	5999992	2999999999999999
28	999999999999999984	9599993	2999999999999999
29	999999999999999986	6999993	8999999999999999
30	999999999999999988	9999993	8999999999999999

(S) Fig. 6-- P_d of 3000-m² target at 500-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99999999995	1477643	37
6	999999999971	269865	599
7	999999999983	14899861	169999
8	999999999994	599982	28999999
9	9999999999951	3799993	499999999
10	999999999996	4899994	599999999
11	9999999999972	599995	169999999999
12	9999999999998	199996	179999999999
13	99999999999993	279997	799999999999
14	99999999999994	279997	389999999999
15	99999999999999	389998	999999999999
16	999999999999996	999993	499999999999
17	999999999999961	999993	999999999999
18	999999999999991	159994	59999999999999
19	999999999999992	169994	16999999999999
20	999999999999998	699995	19999999999999
21	999999999999998	799996	79999999999999
22	999999999999993	799996	28999999999999
23	999999999999994	899996	29999999999999
24	999999999999994	299997	89999999999999
25	9999999999999951	399997	99999999999999
26	9999999999999991	399998	49999999999999
27	9999999999999992	499998	49999999999999
28	9999999999999992	499998	59999999999999
29	9999999999999992	599999	19999999999999
30	9999999999999991	159999	19999999999999

(S) Fig. 7-- P_d of 3000-m² target at 1000-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999961		13321										3
6	9999999999982		25421									1599	
7	99999999999994		147542								279999		
8	9999999999999961		158754							48999999			
9	99999999999999971		29865						59999999				
10	99999999999999982		1379761						169999999999				
11	99999999999999993		1469871						279999999999				
12	99999999999999994		599982						28999999999999				
13	99999999999999995		299992						39999999999999				
14	999999999999999961		399993						49999999999999				
15	99999999999999997		499994						59999999999999				
16	999999999999999981		58999						19999999999999				
17	999999999999999992		59999						69999999999999				
18	999999999999999998		199991						1799999999999999				
19	999999999999999999		199991						2999999999999999				
20	999999999999999994		299991						8999999999999999				
21	999999999999999994		299991						3999999999999999				
22	999999999999999998		399992						3999999999999999				
23	999999999999999999		389992						9999999999999999				
24	999999999999999991		99993						4999999999999999				
25	999999999999999991		99993						5999999999999999				
26	999999999999999997		99994						1599999999999999				
27	999999999999999997		199994						1999999999999999				
28	999999999999999997		199994						1999999999999999				
29	999999999999999998		199995						6999999999999999				
30	999999999999999992		199995						7999999999999999				

(S) Fig. 8- P_d of 3000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99999999983		11										1
6	999999999951		21								279		
7	9999999999971		1421								48999		
8	99999999999983		25421								15999999		
9	99999999999994		6532								26999999		
10	99999999999995		14653								39999999		
11	99999999999991		25854								499999999999		
12	999999999999971		26965								59999999999999		
13	999999999999992		7976								16999999999999		
14	999999999999998		189861								19999999999999		
15	999999999999994		199971								27999999999999		
16	999999999999994		25998								89999999999999		
17	999999999999999		26998								3899999999999999		
18	999999999999995		7999								4999999999999999		
19	999999999999996		7999								9999999999999999		
20	9999999999999971		8999								5999999999999999		
21	999999999999991		8999								1999999999999999		
22	999999999999992		19999								1999999999999999		
23	999999999999998		15999								6999999999999999		
24	999999999999998		69991								1799999999999999		
25	999999999999999		69991								2999999999999999		
26	999999999999993		79991								2999999999999999		
27	999999999999994		79991								7999999999999999		
28	999999999999994		79991								8999999999999999		
29	999999999999995		89992								3999999999999999		
30	999999999999999		89992								4999999999999999		

(S) Fig. 9- P_d of 3000-m² target at 2000-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

JON DAVID WILSON

SECRET

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 10- P_d of 50,000-m² target at 500-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 11— P_d of 50,000-m² target at 1000-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

SECRET

RADIAL SPEED(KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 12— P_d of 50,000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

5	99999999999999999999996423389999999999999771	144999999
6	9999999999999999999999864590999999999999982	2699999999
7	999999999999999999999999867099999999999993	389999999999
8	999999999999999999999999999978999999999995	59999999999999
9	999999999999999999999999999980999999999999	69999999999999
10	99971	299999999999999
11	9981	389999999999999
12	992	499999999999999
13	999	599999999999999
14	999	699999999999999
15	99	169999999999999
16	9995	199999999999999
17	9996	899999999999999
18	9996	299999999999999
19	997	299999999999999
20	997	999999999999999
21	998	499999999999999
22	998	499999999999999
23	992	599999999999999
24	992	999999999999999
25	993	999999999999999
26	9999999999999999999999999999999999999993	699999999999999
27	9999999999999999999999999999999999999994	699999999999999
28	9999999999999999999999999999999999999994	799999999999999
29	9999999999999999999999999999999999999994	199999999999999
30	9999999999999999999999999999999999999995	199999999999999

(S) Fig. 13 P_d of 50,000-m² target at 2000 n.mi. range in approaching sea clutter, $c_0 = -7$ dB

	RADIAL SPEED(KNOTS)												
	*30	*25	*20	*15	*10	*5	0	5	10	15	20	25	30
5	951												159
6	99972						1						27999
7	9999983						2						3899999
8	999999951						131						1599999999
9	9999999961						252						1699999999
10	99999999972						363						279999999999
11	99999999983						474						389999999999
12	99999999994						585						499999999999
13	99999999999						696						999999999999
14	9999999999951						696						15999999999999
15	9999999999991						797						199999999999999
16	9999999999997						393						79999999999999
17	999999999999992						494						299999999999999
18	999999999999998						15951						899999999999999
19	999999999999993						15951						399999999999999
20	999999999999994						14961						499999999999999
21	999999999999991						696						1099999999999999
22	999999999999995						797						599999999999999
23	999999999999995						797						599999999999999
24	999999999999991						898						1999979999999999
25	999999999999992						898						2999999999999999
26	999999999999997						898						7999999999999999
27	999999999999997						999						7999999999999999
28	999999999999997						999						7999999999999999
29	999999999999993						999						3999999999999999
30	999999999999993						999						3999999999999999

(S) Fig. 14— P_d of a 1000-m² target at 500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

	RADIAL SPEED(KNOTS)												
	*30	*25	*20	*15	*10	*5	0	5	10	15	20	25	30
5	2												2
6	9841												1489
7	99961												169999
8	9999973												37999999
9	99999984												489999999
10	999999951												15999999999
11	999999961						1						16999999999
12	9999999972						1						279999999999
13	99999999983						1						3899999999999
14	99999999993						2						3999999999999
15	99999999994						131						4999999999999
16	999999999991						3						19999999999999
17	999999999995						4						59999999999999
18	9999999999961						5						169999999999999
19	9999999999992						5						299999999999999
20	9999999999997						6						799999999999999
21	99999999999992						6						299999999999999
22	99999999999993						171						399999999999999
23	99999999999999						171						699999999999999
24	99999999999994						181						499999999999999
25	99999999999994						181						499999999999999
26	99999999999995						191						599999999999999
27	99999999999991						292						199999999999999
28	99999999999991						292						199999999999999
29	99999999999996						292						699999999999999
30	99999999999996						393						699999999999999

(S) Fig. 15— P_d of a 1000-m² target at 1000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

SECRET

NRL REPORT 7765

RADIAL SPEED(KNOTS)													
	*30	*25	*20	*15	*10	*5	0	5	10	15	20	25	30
5													
6	841												148
7	99962												26999
8	999973												3799999
9	99999941												149999999
10	999999991												199999999
11	999999992												299999999
12	9999999993												399999999
13	99999999984												489999999
14	99999999999												999999999
15	9999999999951												1599999999999
16	9999999999996												6999999999999
17	99999999999961						1						169999999999999
18	99999999999992						1						299999999999999
19	99999999999998						1						899999999999999
20	999999999999993						2						399999999999999
21	999999999999999						2						999999999999999
22	999999999999999						3						999999999999999
23	999999999999994						3						499999999999999
24	9999999999999951						4						159999999999999
25	9999999999999991						4						199999999999999
26	9999999999999991						4						199999999999999
27	9999999999999996						5						699999999999999
28	9999999999999997						5						799999999999999
29	9999999999999992						6						299999999999999
30	9999999999999992						6						299999999999999

(S) Fig. 16— P_d of a 1000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)													
	*30	*25	*20	*15	*10	*5	0	5	10	15	20	25	30
5													
6	51												15
7	9873												3789
8	999841												1489999
9	9999991												1999999
10	99999996												69999999
11	99999997												79999999
12	9999999981												18999999999
13	99999999951												15999999999
14	99999999996												69999999999
15	99999999992												29999999999
16	999999999973												3799999999999
17	999999999993												3999999999999
18	999999999998												8999999999999
19	999999999995												5999999999999
20	9999999999991												19999999999999
21	9999999999996												69999999999999
22	9999999999995						1						69999999999999
23	9999999999992						1						39999999999999
24	9999999999992						1						29999999999999
25	9999999999997						1						79999999999999
26	9999999999998						2						89999999999999
27	9999999999993						2						39999999999999
28	9999999999994						2						469999999999999
29	9999999999999						2						999999999999999
30	9999999999999						3						999999999999999

(S) Fig. 17— P_d of a 1000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99961		37973										16999
6	9999883		1599951										38899999
7	999999951		1699961										1599999999
8	99999999961		3899983										169999999999
9	999999999972		4999994										27999999999999
10	9999999999984		99999										48999999999999
11	9999999999991		1699961										1999999999999999
12	99999999999961		1799971										1699999999999999
13	99999999999996		1899981										6999999999999999
14	99999999999992		299992										2999999999999999
15	99999999999998		399993										8999999999999999
16	999999999999984		99999										4899999999999999
17	999999999999991		99999										1999999999999999
18	999999999999995		99999										5999999999999999
19	99999999999996		99999										6999999999999999
20	99999999999992		99999										2999999999999999
21	99999999999992		1699961										2999999999999999
22	99999999999997		1799971										7999999999999999
23	99999999999998		79997										8999999999999999
24	99999999999994		89998										4999999999999999
25	99999999999994		89998										4999999999999999
26	99999999999999		99999										9999999999999999
27	99999999999999		99999										9999999999999999
28	99999999999999		99999										9999999999999999
29	99999999999996		99999										6999999999999999
30	99999999999996		99999										6999999999999999

(S) Fig. 18— P_d of a 3000-m² target at 500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	994		131										499
6	999611		252										1169999
7	9999982		363										28999999
8	99999994		15851										4999999999
9	9999999951		26962										159999999999
10	99999999961		37973										169999999999
11	99999999972		998										279999999999
12	99999999998		19991										899999999999
13	99999999994		19991										499999999999
14	99999999994		19991										499999999999
15	999999999951		29992										159999999999
16	999999999991		38983										19999999999999
17	9999999999962		38983										26999999999999
18	9999999999992		49994										29999999999999
19	999999999998		49994										49999999999999
20	99999999999983		59995										38999999999999
21	9999999999994		999										49999999999999
22	9999999999991		999										19999999999999
23	99999999999991		19991										19999999999999
24	99999999999995		19991										59999999999999
25	99999999999996		19991										69999999999999
26	99999999999992		19991										29999999999999
27	99999999999992		29992										29999999999999
28	99999999999992		29992										29999999999999
29	99999999999997		29992										79999999999999
30	99999999999998		39993										89999999999999

(S) Fig. 19— P_d of a 3000-m² target at 1000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

SECRET

NRL REPORT 7765

RADIAL SPEED(KNOTS)														
	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	
5	551													159
6	99972						1							27999
7	999993						2							399999
8	999999951						141							1599999999
9	999999961						252							1699999999
10	99999999972						363							279999999999
11	99999999983						474							3899999999999
12	999999999994						585							4999999999999
13	999999999999						696							9999999999999
14	9999999999961						797							16999999999999
15	9999999999991						898							19999999999999
16	9999999999997						999							299999999999999
17	99999999999992						1100							899999999999999
18	99999999999998						1211							199999999999999
19	99999999999993						1322							299999999999999
20	99999999999994						1433							399999999999999
21	99999999999991						1544							499999999999999
22	99999999999995						1655							599999999999999
23	99999999999995						1766							599999999999999
24	99999999999991						1877							199999999999999
25	99999999999992						1988							299999999999999
26	99999999999997						2099							399999999999999
27	99999999999997						2200							499999999999999
28	99999999999997						2311							599999999999999
29	99999999999993						2422							199999999999999
30	99999999999994						2533							299999999999999

(S) Fig. 20— P_d of a 8000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)														
	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30	
5	62													26
6	9984													4899
7	999961													1699999
8	99999972						1							27999999
9	99999983						2							38999999
10	99999994						131							49999999
11	999999951						141							159999999999
12	999999961						252							169999999999
13	999999997						363							799999999999
14	9999999982						363							28999999999999
15	9999999998						474							89999999999999
16	99999999994						181							49999999999999
17	99999999999						181							99999999999999
18	999999999995						292							59999999999999
19	9999999999961						292							16999999999999
20	9999999999991						393							19999999999999
21	9999999999997						393							99999999999999
22	99999999999972						494							279999999999999
23	99999999999992						494							299999999999999
24	99999999999998						595							899999999999999
25	99999999999999						595							949999999999999
26	99999999999994						696							4949999999999999
27	99999999999994						696							4949999999999999
28	99999999999995						696							5999999999999999
29	99999999999991						797							1999999999999999
30	99999999999991						797							1999999999999999

(S) Fig. 21— P_d of a 8000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99999999993		1799999999999971		39999999999								
6	99999999995		39999999999993		599999999999								
7	9999999999971		59999999999995		17999999999999								
8	99999999999981		169999999999961		18999999999999								
9	99999999999992		279999999999972		29999999999999								
10	99999999999993		39999999999993		39999999999999								
11	99999999999999		4999999999994		99999999999999								
12	999999999999995		15999999999951		599999999999999								
13	999999999999991		6999999999996		199999999999999								
14	999999999999997		1999999999991		799999999999999								
15	999999999999982		2999999999992		289999999999999								
16	999999999999992		3899999999983		299999999999999								
17	999999999999999		3999999999993		999999999999999								
18	999999999999994		1699999999991		499999999999999								
19	999999999999994		1999999999991		499999999999999								
20	999999999999995		1599999999951		599999999999999								
21	999999999999991		69999999996		199999999999999								
22	999999999999991		6999999996		199999999999999								
23	999999999999996		7999999997		699999999999999								
24	999999999999997		7999999997		799999999999999								
25	999999999999997		3999999993		799999999999999								
26	999999999999992		3999999993		299999999999999								
27	999999999999992		4999999994		299999999999999								
28	999999999999993		4999999994		399999999999999								
29	999999999999993		5999999995		399999999999999								
30	999999999999996		1999999991		699999999999999								

(S) Fig. 22— P_d of a 50,000-m² target at 500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999993		17999999999971		39999999999								
6	9999999995		289999999982		59999999999								
7	9999999996		39999999993		69999999999								
8	99999999981		9999999999		189999999999								
9	99999999992		169999999961		299999999999								
10	99999999993		179999999971		399999999999								
11	99999999994		8999999998		499999999999								
12	99999999995		3999999993		599999999999								
13	99999999996		4999999994		699999999999								
14	999999999971		5999999995		179999999999								
15	999999999991		6999999996		199999999999								
16	999999999998		1999999991		899999999999								
17	9999999999992		2999999992		299999999999								
18	9999999999992		27999999972		299999999999								
19	9999999999999		3899999983		499999999999								
20	9999999999999		9999999999		999999999999								
21	9999999999994		9999999999		499999999999								
22	9999999999995		9999999999		599999999999								
23	9999999999996		9999999999		699999999999								
24	9999999999995		15999999951		599999999999								
25	9999999999991		6999999996		199999999999								
26	9999999999996		6999999996		699999999999								
27	9999999999997		6999999996		799999999999								
28	9999999999997		7999999997		799999999999								
29	9999999999999		7999999997		999999999999								
30	99999999999992		7999999997		299999999999								

(S) Fig. 23— P_d of a 50,000-m² target at 1000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999995		2999999999992										599999999
6	99999999971		4999999994										179999999999
7	999999999982		6999999996										289999999999
8	999999999994		7999999997										499999999999
9	9999999999995		2999999992										599999999999
10	9999999999996		3999999993										699999999999
11	99999999999971		4999999994										799999999999
12	99999999999991		99999999										199999999999
13	99999999999992		1699999961										299999999999
14	99999999999992		1699999961										299999999999
15	99999999999999		1799999971										999999999999
16	99999999999994		899999998										499999999999
17	99999999999995		899999998										599999999999
18	99999999999999		399999993										999999999999
19	99999999999996		49999994										699999999999
20	99999999999996		49999994										699999999999
21	99999999999991		59999995										199999999999
22	99999999999991		59999995										199999999999
23	99999999999992		69999996										899999999999
24	99999999999992		199999991										899999999999
25	99999999999999		19999991										999999999999
26	99999999999992		29999992										299999999999
27	99999999999992		29999992										299999999999
28	99999999999993		29999992										399999999999
29	99999999999999		39999993										999999999999
30	99999999999999		39999993										999999999999

(S) Fig. 24— P_d of a 50,000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99999972		699999996										279999999
6	999999994		2899999982										49999999999
7	9999999996		399999993										69999999999
8	99999999991		499999994										199999999999
9	99999999992		69999996										299999999999
10	99999999993		179999971										399999999999
11	99999999994		189999981										499999999999
12	999999999999		99999999										999999999999
13	999999999996		39999993										499999999999
14	999999999991		39999993										199999999999
15	999999999997		49999994										799999999999
16	9999999999981		59999995										189999999999
17	9999999999992		69999996										299999999999
18	999999999999		19999991										999999999999
19	999999999993		19999991										399999999999
20	9999999999993		29999992										399999999999
21	9999999999999		29999992										999999999999
22	9999999999999		29999992										999999999999
23	9999999999995		39999993										599999999999
24	9999999999995		999999										599999999999
25	9999999999996		999999										699999999999
26	9999999999999		999999										999999999999
27	9999999999999		999999										999999999999
28	9999999999991		19999991										199999999999
29	9999999999997		19999991										799999999999
30	9999999999998		19999991										899999999999

(S) Fig. 25— P_d of a 50,000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -17$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
5	9999999999999994					27999999971							2899
6	9999999999999961					4899999993							4499999
7	99999999999999971					1599999994							169999999
8	99999999999999993					1799999996							27999999999
9	99999999999999991					28999999971							38999999999
10	999999999999999951					4999999998							49999999999
11	999999999999999961					5999999993							5999999999999
12	99999999999999997311699999994												199999999999999
13	999999999999999999948169999995												279999999999999
14	999999999999999999998129999995												899999999999999
15	99999999999999999999996229999996												489999999999999
16	99999999999999999999996438999997												149999999999999
17	99999999999999999999999549999997												599999999999999
18	999999999999999999999999649999998												169999999999999
19	999999999999999999999999984999998												2999999999999999
20	99999999999999999999999999084999999												7999999999999999
21	99999999999999999999999999976999993												7999999999999999
22	999999999999999999999999999987999993												3999999999999999
23	999999999999999999999999999987999994												3999999999999999
24	999999999999999999999999999987999994												8999999999999999
25	999999999999999999999999999987999995												1999999999999999
26	999999999999999999999999999987999995												5999999999999999
27	999999999999999999999999999987999995												5999999999999999
28	999999999999999999999999999988999996												6999999999999999
29	99999999999999999999999999998999996												1999999999999999
30	999999999999999999999999999989999996												2999999999999999

(S) Fig. 26— P_d of a 1000-m² target at 500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
5	99999999999822					197999761							169
6	99999999999994					25999982							28999
7	999999999999961					3799993							4999999
8	999999999999971					8999995							159999999
9	999999999999982					16999961							1799999999
10	999999999999999					27999971							289999999999
11	999999999999995					899998							399999999999
12	999999999999991					499999							499999999999
13	999999999999996					599999							19999999999999
14	9999999999999972					599999							16999999999999
15	9999999999999992					699999							19999999999999
16	9999999999999999					199996							79999999999999
17	9999999999999993					2999961							29999999999999
18	9999999999999994					2899971							89999999999999
19	9999999999999951					3899971							49999999999999
20	9999999999999991					999982							49999999999999
21	99999999999999821					99998							19999999999999
22	9999999999999981					99999							59999999999999
23	9999999999999971					199999							69999999999999
24	99999999999999871					169999							19999999999999
25	9999999999999974					169999							29999999999999
26	99999999999999894					169999							79999999999999
27	99999999999999941					179999							79999999999999
28	9999999999999999179999												89999999999999
29	9999999999999995189999												39999999999999
30	9999999999999998489999												49999999999999

(S) Fig. 27— P_d of a 1000-m² target at 1000-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

SECRET

NRL REPORT 7765

RADIAL SPEED(KNOTS)

		-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30	
5	999999999994	366532	26
6	9999999999961	158754	4899
7	99999999999972	379875	1599999
8	99999999999993	4899871	179999999
9	99999999999994	259982	2899999999
10	99999999999995	369993	39999999999
11	999999999999961	479994	599999999999
12	999999999999997	899995	159999999999
13	9999999999999982	159995	6999999999999
14	9999999999999993	169996	2799999999999
15	9999999999999999	279997	8999999999999
16	9999999999999994	899992	39999999999999
17	9999999999999995	899992	99999999999999
18	9999999999999991	499993	49999999999999
19	9999999999999991	499993	59999999999999
20	9999999999999997	599994	199999999999999
21	9999999999999997	599994	699999999999999
22	99999999999999982	699995	169999999999999
23	99999999999999992	699995	299999999999999
24	9999999999999993	199996	799999999999999
25	9999999999999993	299996	899999999999999
26	99999999999999991	299997	3899999999999999
27	99999999999999991	299997	3999999999999999
28	99999999999999991	399997	3999999999999999
29	99999999999999991	399998	9999999999999999
30	99999999999999995	499998	9999999999999999

(S) Fig. 28— P_d of a 1000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

		-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30	
5	99999999961	13321	3
6	99999999983	25421	1599
7	999999999994	147542	279999
8	999999999961	158754	48999999
9	9999999999971	29865	59999999
10	9999999999982	137971	16999999999
11	9999999999993	1589871	27999999999
12	9999999999994	599982	289999999999
13	9999999999995	299992	399999999999
14	99999999999991	399993	499999999999
15	99999999999997	499994	599999999999
16	99999999999972	58999	19999999999999
17	99999999999992	59999	69999999999999
18	99999999999998	199991	17999999999999
19	99999999999999	199991	29999999999999
20	99999999999994	299991	89999999999999
21	99999999999994	299991	39999999999999
22	99999999999995	399992	99999999999999
23	99999999999999	389992	49999999999999
24	99999999999991	99993	59999999999999
25	99999999999991	99993	15999999999999
26	99999999999997	99994	19999999999999
27	99999999999997	199994	19999999999999
28	99999999999997	199994	69999999999999
29	99999999999998	199995	79999999999999
30	99999999999992	199995	99999999999999

(S) Fig. 29— P_d of a 1000-m² target at 2000-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

SECRET

JON DAVID WILSON

SECRET

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	9999999999999996482289999999999966	4489999
6	999999999999999764499999999999981	16999999999
7	99999999999999997569999999999993	27999999999
8	9999999999999998779999999999994	4899999999999
9	9999999999999999899999999999999	5999999999999
10	9999999999999999908999999999996	299999999999999
11	99999999999999999099999999999971	379999999999999
12	99999999999999999099999999999982	489999999999999
13	99999999999999999099999999999999	499999999999999
14	99999999999999999099999999999999	599999999999999
15	99999999999999999099999999999999	699999999999999
16	99999999999999999099999999999994	199999999999999
17	99999999999999999099999999999995	799999999999999
18	99999999999999999099999999999996	2999999999999999
19	99999999999999999099999999999996	2999999999999999
20	99999999999999999099999999999997	999999999999999
21	99999999999999999099999999999997	3999999999999999
22	99999999999999999099999999999998	3999999999999999
23	99999999999999999099999999999991	4999999999999999
24	99999999999999999099999999999992	9999999999999999
25	99999999999999999099999999999992	9999999999999999
26	99999999999999999099999999999992	5999999999999999
27	99999999999999999099999999999993	6999999999999999
28	99999999999999999099999999999993	6999999999999999
29	99999999999999999099999999999994	9999999999999999
30	99999999999999999099999999999994	1999999999999999

(S) Fig. 30— P_d of a 3000-m² target at 500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999999982	169999999995	17999
6	99999999999999041	228999999971	3889999
7	999999999999990621	49999999982	15999999999
8	999999999999990731	169999999994	169999999999
9	999999999999990841279999995	279999999999	279999999999
10	999999999999990964289999999	489999999999	489999999999
11	999999999999990953309999971	19999999999999	19999999999999
12	999999999999990976499999981	16999999999999	16999999999999
13	999999999999990986499999992	69999999999999	69999999999999
14	999999999999990997569999993	29999999999999	29999999999999
15	999999999999990998679999993	89999999999999	89999999999999
16	999999999999990998879999999	49999999999999	49999999999999
17	999999999999990999089999999	19999999999999	19999999999999
18	999999999999990999098999999	59999999999999	59999999999999
19	999999999999990999999999999	69999999999999	69999999999999
20	999999999999990999999999999	29999999999999	29999999999999
21	999999999999990999999999971	29999999999999	29999999999999
22	999999999999990999999999971	79999999999999	79999999999999
23	99999999999999099999999998	89999999999999	89999999999999
24	99999999999999099999999998	49999999999999	49999999999999
25	99999999999999099999999999	49999999999999	49999999999999
26	99999999999999099999999999	99999999999999	99999999999999
27	99999999999999099999999999	99999999999999	99999999999999
28	99999999999999099999999999	99999999999999	99999999999999
29	99999999999999099999999999	69999999999999	69999999999999
30	99999999999999099999999999	69999999999999	69999999999999

(S) Fig. 31— P_d of a 3000-m² target at 1000-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

SECRET

32

SECRET

NRL REPORT 7765

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999999994	8799999971		2899
6	9999999999999961	499999993		449999
7	9999999999999972	159999994		16999999
8	9999999999999993	179999996		2799999999
9	99999999999999941	2899999971		3899999999
10	99999999999999951	489999998		4999999999
11	99999999999999961	59999993		5999999999
12	99999999999999973	116999994		1999999999
13	99999999999999982	216999995		2799999999
14	99999999999999993	312999995		899999999999
15	999999999999999962	299999996		489999999999
16	999999999999999984	399999997		149999999999
17	9999999999999999854	599999997		599999999999
18	9999999999999999864	69999998		169999999999
19	9999999999999999884	99999999		29999999999999
20	99999999999999998956	99999999		79999999999999
21	99999999999999998976	9999993		79999999999999
22	99999999999999998987	9999993		39999999999999
23	99999999999999998987999994	999999994		49999999999999
24	99999999999999998997999994	999999995		99999999999999
25	99999999999999998997999995	999999995		19999999999999
26	99999999999999998997999995	999999995		59999999999999
27	99999999999999998998999995	999999995		59999999999999
28	99999999999999998998999996	999999996		69999999999999
29	99999999999999998998999996	999999996		19999999999999
30	99999999999999998998999997	999999997		29999999999999

(S) Fig. 32— P_d of a 3000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	999999999999771	48999994		599
6	99999999999983	169999961		1179999
7	99999999999994	279999981		3899999
8	999999999999961	49999993		499999999
9	999999999999971	15999994		1699999999
10	999999999999982	16999995		1799999999
11	999999999999993	29999991		289999999999
12	9999999999999941	38999991		899999999999
13	9999999999999951	39999992		499999999999
14	9999999999999961	9999992		599999999999
15	9999999999999973	19999993		169999999999
16	9999999999999982	11699994		29999999999999
17	9999999999999982	21699995		27999999999999
18	9999999999999983	31799995		39999999999999
19	99999999999999851	7999996		89999999999999
20	999999999999998623	9999996		48999999999999
21	99999999999999864	39999991		49999999999999
22	999999999999998649999991	49999991		19999999999999
23	99999999999999864999991	19999999999999		19999999999999
24	99999999999999865999991	69999999999999		69999999999999
25	99999999999999864999992	69999999999999		69999999999999
26	9999999999999985999992	29999999999999		29999999999999
27	9999999999999985999992	29999999999999		29999999999999
28	9999999999999985999993	39999999999999		39999999999999
29	9999999999999985999993	89999999999999		89999999999999
30	9999999999999985999994	89999999999999		89999999999999

(S) Fig. 33— P_d of a 3000-m² target at 2000-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

JON DAVID WILSON

SECRET

RADIAL SPEED(KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 34— P_d of a 50,000-m² target at 500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

5	99982	3999999999999
6	9994	5999999999999
7	99951	179999999999999
8	99971	189999999999999
9	9982	2999999999999999
10	994	4999999999999999
11	995	9999999999999999
12	99961	6999999999999999
13	9996	19999999999999999
14	9992	79999999999999999
15	992	28999999999999999
16	9983	29999999999999999
17	9994	99994999999999999
18	9991	49999999999999999
19	991	49999999999999999
20	99951	59999999999999999
21	996	19999999999999999
22	996	19999999999999999
23	997	69999999999999999
24	997	79999999999999999
25	993	79999999999999999
26	994	29999999999999999
27	994	39999999999999999
28	995	39999999999999999
29	995	39999999999999999
30	999	99999999999999999

(S) Fig. 35— P_d of a 50,000-m² target at 1000-n.mi. range in approaching sea clutter, $G_0 = -23$ dB

SECRET

SECRET

NRL REPORT 7765

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 36— P_d of a 50,000-m² target at 1500-n.mi. range in approaching sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 37 - P_d of a 50,000-m² target at 2000-n.mi. range in approaching sea clutter, $a_{\text{sc}} = -23$ dB.

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99994						116999611						49999
6	999999961						3899983						167999999
7	999999973						4999994						379999999
8	99999999994						6999996						49999999999
9	9999999999951						7999997						1599999999999
10	9999999999997						2919992						7999999999999
11	99999999999993						2999992						39999999999999
12	999999999999984						3999993						48999999999999
13	999999999999991						4999994						199999999999999
14	9999999999999951						6999995						159999999999999
15	9999999999999992						6999996						299999999999999
16	9999999999999997						1999991						799999999999999
17	9999999999999993						1999991						399999999999999
18	9999999999999998						1999991						899999999999999
19	9999999999999999						2999992						999999999999999
20	9999999999999995						2999992						599999999999999
21	9999999999999995						2999992						599999999999999
22	9999999999999999						3999993						999999999999999
23	9999999999999991						99999						199999999999999
24	9999999999999996						99999						699999999999999
25	9999999999999997						99999						799999999999999
26	9999999999999991						99999						199999999999999
27	9999999999999991						99999						199999999999999
28	9999999999999992						99999						299999999999999
29	9999999999999998						99999						899999999999999
30	9999999999999999						99999						999999999999999

(S) Fig. 38— P_d of a 1000-m² target at 500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	9972						363						2799
6	999944						15851						449999
7	99999951						26962						159999999
8	999999972						38983						2799999999
9	9999999983						1599951						38999999999
10	99999999994						69996						499999999999
11	99999999995						29992						5999999999999
12	999999999991						39993						1999999999999
13	9999999999972						39993						2799999999999
14	9999999999997						49994						7999999999999
15	99999999999983						59995						3899999999999
16	99999999999991						69996						1499999999999
17	99999999999995						69996						5999999999999
18	999999999999951						79997						15999999999999
19	999999999999991						79997						19999999999999
20	999999999999997						89998						79999999999999
21	999999999999997						29992						79999999999999
22	999999999999993						29992						39999999999999
23	999999999999993						39993						39999999999999
24	999999999999998						39993						89999999999999
25	999999999999991						49994						19999999999999
26	999999999999995						49994						59999999999999
27	999999999999995						59995						59999999999999
28	999999999999995						59995						59999999999999
29	999999999999991						59995						19999999999999
30	999999999999992						69996						29999999999999

(S) Fig. 39— P_d of a 1000-m² target at 1000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	983		2									389
6	9999511		141									1159999
7	99999971		252									1799999
8	999999983		474									3899999999
9	9999999994		15851									4999999999
10	999999999951		26962									159999999999
11	999999999961		797									169999999999
12	999999999997		898									799999999999
13	9999999999992		999									29999999999999
14	99999999999983		19991									38999999999999
15	99999999999994		19991									49999999999999
16	99999999999991		27972									199999999999999
17	999999999999951		27972									159999999999999
18	999999999999991		38983									199999999999999
19	999999999999996		38983									699999999999999
20	999999999999972		49994									279999999999999
21	999999999999993		999									399999999999999
22	999999999999998		999									899999999999999
23	999999999999998		999									899999999999999
24	999999999999994		999									499999999999999
25	999999999999999		19991									599999999999999
26	9999999999999991		19991									199999999999999
27	9999999999999991		19991									199999999999999
28	9999999999999991		19991									199999999999999
29	9999999999999996		19991									699999999999999
30	9999999999999997		29992									799999999999999

(S) Fig. 40— P_d cf a 1000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	951											159
6	99972		1									27999
7	999994		2									499999
8	999999951		141									1599999999
9	999999961		252									1699999999
10	999999972		363									27999999999
11	999999983		474									389999999999
12	99999999994		585									499999999999
13	99999999999		696									999999999999
14	9999999999961		696									16999999999999
15	9999999999991		797									19999999999999
16	9999999999997		494									79999999999999
17	9999999999992		494									29999999999999
18	9999999999998		15951									89999999999999
19	9999999999993		15951									39999999999999
20	9999999999994		16961									49999999999999
21	99999999999991		696									199999999999999
22	99999999999995		797									599999999999999
23	99999999999996		797									699999999999999
24	99999999999991		898									199999999999999
25	99999999999992		898									299999999999999
26	99999999999997		999									799999999999999
27	99999999999997		999									799999999999999
28	99999999999998		999									899999999999999
29	99999999999993		999									399999999999999
30	99999999999994		999									499999999999999

(S) Fig. 41— P_d of a 1000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

JON DAVID WILSON

SECRET

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
5	999999962					6999999996					269999999		
6	9999999983					1899999981					3899999999		
7	9999999995					2999999992					5999999999		
8	999999999991					4999999994					199999999999		
9	99999999999991					5999999995					199999999999		
10	99999999999992					6999999996					29999999999999		
11	99999999999993					17999999971					3999999999999999		
12	99999999999999					899999998					9999999999999999		
13	999999999999995					299999992					5999999999999999		
14	999999999999999					399999993					9999999999999999		
15	999999999999997					499999994					7999999999999999		
16	9999999999999971					499999994					1799999999999999		
17	9999999999999991					599999995					1999999999999999		
18	9999999999999999					199999991					9999999999999999		
19	9999999999999992					199999991					2999999999999999		
20	9999999999999993					199999991					3999999999999999		
21	9999999999999999					299999992					9999999999999999		
22	9999999999999999					299999992					4999999999999999		
23	9999999999999994					289999982					5999999999999999		
24	9999999999999995					9999999					5999999999999999		
25	9999999999999995					0999999					9999999999999999		
26	9999999999999999					0999999					9999999999999999		
27	9999999999999999					0999999					9999999999999999		
28	9999999999999997					0999999					7999999999999999		
29	9999999999999997					199999991					7999999999999999		
30	9999999999999997					199999991					7999999999999999		

(S) Fig. 42— P_d of a 3000-m² target at 500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
5	9999833					55999955					3389999		
6	999999951					179999971					1599999999		
7	9999999972					289999982					2799999999		
8	9999999984					399999993					489999999999		
9	999999999995					9999999					599999999999		
10	999999999992					6999996					299999999999		
11	9999999999972					179999971					279999999999		
12	9999999999983					189999981					389999999999		
13	9999999999994					8999998					499999999999		
14	9999999999995					9999999					599999999999		
15	9999999999996					9999999					699999999999		
16	99999999999991					4999994					1999999999999999		
17	99999999999997					5999995					7999999999999999		
18	999999999999991					5999995					1999999999999999		
19	999999999999992					6999996					2999999999999999		
20	999999999999999					6999996					9999999999999999		
21	999999999999993					7999997					3999999999999999		
22	9999999999999993					7999997					3999999999999999		
23	999999999999994					1999991					4999999999999999		
24	999999999999999					1999991					5999999999999999		
25	999999999999999					2999992					9999999999999999		
26	999999999999995					2999992					5999999999999999		
27	999999999999996					2999992					6999999999999999		
28	999999999999996					3999993					6999999999999999		
29	999999999999999					3999993					9999999999999999		
30	999999999999991					4999994					1999999999999999		

(S) Fig. 43— P_d of a 3000-m² target at 1000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

SECRET

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99994					116999611							49999
6	999999961					3899983							169999999
7	999999973					499994							379999999
8	999999999941					699996							1499999999999
9	9999999999951					799997							1599999999999
10	9999999999997					299992							7999999999999
11	9999999999993					299992							3999999999999
12	99999999999984					399993							4899999999999
13	99999999999991					499994							1999999999999
14	99999999999951					599995							1599999999999
15	99999999999992					699996							2999999999999
16	99999999999997					199991							7999999999999
17	99999999999993					199991							3999999999999
18	99999999999998					199991							8999999999999
19	99999999999999					299992							9999999999999
20	99999999999995					299992							5999999999999
21	99999999999995					299992							5999999999999
22	99999999999999					399993							9999999999999
23	99999999999991					9999							1999999999999
24	99999999999997					9999							7999999999999
25	99999999999997					9999							7999999999999
26	99999999999991					9999							1999999999999
27	99999999999992					9999							2999999999999
28	99999999999992					9999							2999999999999
29	99999999999998					9999							8999999999999
30	99999999999999					9999							9999999999999

(S) Fig. 44— P_d of a 3000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

	-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
--	-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99961					37973							16999
6	99999883					1599951							3899999
7	999999941					1699961							149999999
8	9999999981					3899983							169999999
9	99999999972					499994							2799999999999
10	999999999983					9999							3899999999999
11	999999999991					69996							1999999999999
12	9999999999951					1799971							1599999999999
13	999999999996					1899981							6999999999999
14	9999999999992					2899982							2999999999999
15	999999999998					3999993							8999999999999
16	9999999999984					9999							4899999999999
17	9999999999991					9999							1999999999999
18	9999999999995					9999							5999999999999
19	9999999999996					9999							6999999999999
20	9999999999992					9999							2999999999999
21	9999999999992					69996							2999999999999
22	9999999999997					1799971							7999999999999
23	9999999999998					79997							8999999999999
24	9999999999993					89998							3999999999999
25	9999999999994					89998							4999999999999
26	9999999999999					89998							9999999999999
27	9999999999999					9999							9999999999999
28	9999999999999					9999							9999999999999
29	9999999999995					9999							5999999999999
30	9999999999996					9999							6999999999999

(S) Fig. 45— P_d of a 3000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

JON DAVID WILSON

SECRET

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

(S) Fig. 46— P_d of a 50,000-m² target at 500-n.mi. range in crosswind sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED (KNOTS)

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

5	9999999999994	39999999999999999993	49999999999999999999
6	9999999999995	15599999999999999951	59999999999999999999
7	999999999999971	17999999999999999971	17999999999999999999
8	999999999999982	38999999999999999983	28999999999999999999
9	999999999999994	14999999999999999941	49999999999999999999
10	999999999999995	19999999999999999951	59999999999999999999
11	9999999999999961	26999999999999999962	16999999999999999999
12	999999999999997	7999999999999999997	79999999999999999999
13	9999999999999982	13999999999999999931	28999999999999999999
14	9999999999999993	14999999999999999941	39999999999999999999
15	9999999999999999	5999999999999999995	99999999999999999999
16	9999999999999994	2999999999999999992	49999999999999999999
17	9999999999999995	12999999999999999921	15999999999999999999
18	9999999999999991	379999999999999731	19999999999999999999
19	9999999999999991	17999999999999971	19999999999999999999
20	99999999999999971	1899999999999981	19999999999999999999
21	99999999999999971	1599999999999951	17999999999999999999
22	99999999999999982	2599999999999952	28999999999999999999
23	99999999999999993	3699999999999963	39999999999999999999
24	99999999999999993	3699999999999963	39999999999999999999
25	9999999999999994	4399999999999934	49999999999999999999
26	9999999999999994	9999999999999939	99999999999999999999
27	9999999999999994	4999999999999949	49999999999999999999
28	9999999999999994	4999999999999949	49999999999999999999
29	9999999999999994	4999999999999949	49999999999999999999
30	9999999999999996	68999999999986	69999999999999999999

(S) Fig. 47— P_d of a 50,000-m² target at 1000-n.mi. range in crosswind sea clutter, $\sigma_0 = -23$ dB

SECRET

SECRET

NRL REPORT 7765

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	99999999996	4999999999999994	69999999999
6	999999999981	11699999999999961	1899999999999
7	9999999999993	2899999999999982	3999999999999
8	9999999999994	49999999999994	4999999999999
9	99999999999996	1599999999999951	6999999999999
10	99999999999971	69999999999996	179999999999999
11	99999999999992	279999999999972	299999999999999
12	999999999999982	389999999999983	289999999999999
13	999999999999993	99999999999999	399999999999999
14	999999999999999	14999999999994	999999999999999
15	999999999999995	169999999999951	599999999999999
16	9999999999999961	6999999999996	169999999999999
17	9999999999999991	69999999999996	199999999999999
18	999999999999997	399999999993	799999999999999
19	999999999999997	399999999993	799999999999999
20	9999999999999982	4899999999984	289999999999999
21	9999999999999993	19999999999991	399999999999999
22	9999999999999993	19999999999991	399999999999999
23	9999999999999999	299999999992	999999999999999
24	9999999999999999	299999999992	999999999999999
25	9999999999999999	6999999996	999999999999999
26	9999999999999995	7999999997	599999999999999
27	9999999999999996	7999999997	699999999999999
28	99999999999999961	7999999997169999999999999999	699999999999999
29	99999999999999961	8999999998169999999941	99999999999999999999
30	9999999999999999	149999999994199999999999999999	99999999999999999999

(S) Fig. 48— P_d of a 50,000-m² target at 1500-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

RADIAL SPEED(KNOTS)

-30	-25	-20	-15	-10	-5	0	5	10	15	20	25	30
-----	-----	-----	-----	-----	----	---	---	----	----	----	----	----

5	9999999993	27999999999972	39999999999
6	99999999995	3999999999993	5999999999999
7	999999999971	15999999999951	1799999999999
8	999999999981	1699999999961	1899999999999
9	999999999992	2899999999982	2999999999999
10	999999999994	3999999999993	4999999999999
11	999999999999	499999999994	9999999999999
12	99999999999961	1599999999951	16999999999999
13	99999999999991	699999999996	19999999999999
14	99999999999997	299999999992	79999999999999
15	999999999999982	299999999992	289999999999999
16	999999999999992	389999999983	299999999999999
17	999999999999999	399999999993	999999999999999
18	999999999999994	199999999991	499999999999999
19	999999999999994	199999999991	499999999999999
20	999999999999995	159999999951	599999999999999
21	999999999999991	6999999996	199999999999999
22	999999999999991	6999999996	199999999999999
23	999999999999996	7999999997	699999999999999
24	999999999999997	7999999997	799999999999999
25	999999999999997	3999999993	799999999999999
26	999999999999992	4999999994	299999999999999
27	999999999999993	4999999994	399999999999999
28	999999999999993	4999999994	399999999999999
29	999999999999993	5999999995	399999999999999
30	999999999999999	1999999991	999999999999999

(S) Fig. 49— P_d of a 50,000-m² target at 2000-n.mi. range in crosswind
sea clutter, $\sigma_0 = -23$ dB

(S) Fig. 51—Composite P_d of a 3000-m^2 target in crosswind sea clutter, $\sigma_0 = -23 \text{ dB}$

(S) Fig. 50—Composite P_d of a 3000-m^2 target in crosswind sea clutter, $\sigma_0 = -17 \text{ dB}$

below 13 knots if $\sigma_0 = -23$ dB. The composite P_d 's are limited at long ranges by the probability of propagation. Thus, the composite P_d would be raised by any feature which improves propagation, such as allowing multiple-bounce propagation or increasing power.

ACKNOWLEDGMENTS

(U) I would like to thank Dr. G. V. Trunk for his assistance in formulating the criteria for propagation, and Dr. J. R. Barnum for the advanced copy of sea clutter data and his helpful remarks concerning the nature of sea clutter.

REFERENCES

1. H.L. Stalford, "A Minimum-Distance Method for Ocean Surveillance Resolution," NRL Report 7677, Mar. 22, 1974.
2. H.L. Stalford, "A Combinatorial Occupancy Method for Determining Parameter Resolution in a Multi-Target Environment," NRL Report 7702, May 1, 1974.
3. H.L. Stalford, "Solitary Occupancy for Unequal Cell Probabilities with Application to Doppler Radars for Ocean Surveillance," NRL Report 7708, May 20, 1974.
4. H.L. Stalford, "Probability That N ships in an Ocean Surveillance Range-Azimuth Cell Occupy Separate Doppler Bins," NRL Report 7715, May 22, 1974.
5. H.L. Stalford, "Probability of Resolving N Ships From Radar Observations," NRL Report 7726, May 23, 1974.
6. W.B. Gordon, "Cost Analysis of an OTH Radar System," NRL Report 7752, pending publication.
7. J.M. Headrick, J.F. Thomason, DIL. Lucas, S.R. McCammon, R.A. Hanson, and J.L. Lloyd, "Virtual Path Tracing for HF Radar Including an Ionospheric Model," NRL Memorandum Report 2226, Mar. 29, 1971.
8. W.L. Rubin and J.V. Difranco, "Radar Detection," *Electro-Tech., Sci. Eng. Ser.* 64, 61-91 (Apr. 1964).
9. J.R. Barnum, "Assorted Sea-Clutter and Single-Signal Spectra Contents and Notes," Stanford Research Institute, Oct. 17, 1973.
10. A.E. Long and D.B. Trizna, "Mapping of North Atlantic Winds by HF Radar Sea Backscatter Interpretation," *IEEE Trans. Antennas and Propagation*, AP-21 (No. 5), (Sept. 1973).
11. M.I. Skolnik, editor, *Radar Handbook*, McGraw-Hill, New York, 1970, Chap. 26.
12. J.R. Barnum, "Ship Ahoy Through March 1973," *Proceedings of the OHD Technical Review Meeting* of May 2-3, 1973, Vol 1, Detection Results, Equipment and Techniques, p. 57-90.

**Naval Research Laboratory
Technical Library
Research Reports Section**

DATE: July 1, 2002

FROM: Mary Templeman, Code 5227

TO: Code 5300 Paul Hughes

CC: Tina Smallwood, Code 1221.1 *8/21/02*

SUBJ: Review of NRL Reports

Dear Sir/Madam:

Please review NRL Reports 7583, 7631, 7752, 7765, and MR-3079 for:

- Possible Distribution Statement
 Possible Change in Classification

Thank you,

Mary Templeman

Mary Templeman
(202)767-3425

maryt@library.nrl.navy.mil

The subject report can be:

- Changed to Distribution A (Unlimited) *for Reports 3079, 7765, and 7752*
 Changed to Classification _____
 Other: *Reports 7583 AND 7631 should retain their limited distribution statements*

Paul K. Hughes Jr.
Signature

8/21/2002
Date

-- 1 OF 1
-- 1 - AD NUMBER: 531281
-- 2 - FIELDS AND GROUPS: 15/4, 17/9
-- 5 - CORPORATE AUTHOR: NAVAL RESEARCH LAB WASHINGTON D C
-- 6 - UNCLASSIFIED TITLE: PROBABILITY OF DETECTING SHIPS WITH AN OTH
RADAR SYSTEM.
-- 9 - DESCRIPTIVE NOTE: INTERIM REPT.,
--10 - PERSONAL AUTHORS: WILSON, JON DAVID ;
--11 - REPORT DATE: 10 JUL 1974
--12 - PAGINATION: 48P MEDIA COST: \$ 7.00 PRICE CODE: AA
--14 - REPORT NUMBER: NRL-7765
--16 - PROJECT NUMBER: NRL-R02-46A, WF12-111
--17 - TASK NUMBER: WF12-111-704
--20 - REPORT CLASSIFICATION: UNCLASSIFIED
--22 - LIMITATIONS (ALPHA): DISTRIBUTION LIMITED TO U.S. GOV'T.
-- AGENCIES ONLY; TEST AND EVALUATION; JUL 74. OTHER REQUESTS FOR
-- THIS DOCUMENT MUST BE REFERRED TO DIRECTOR, NAVAL RESEARCH LAB.,
-- WASHINGTON, D. C. 20375.
--23 - DESCRIPTORS: (*OVER THE HORIZON DETECTION, *RADAR), (*SHIPS,
-- OVER THE HORIZON DETECTION), PROBABILITY, OCEAN SURVEILLANCE, SEA
-- CLUTTER, IONOSPHERIC PROPAGATION, COMPUTER PROGRAMS, COST
-- EFFECTIVENESS, RADAR SIGNALS, PROPAGATION, RADAR EQUIPMENT,
-- SPACEBORNE, AIRBORNE, GROUND STATIONS, TARGET ACQUISITION,

-- DETECTION
--24 - DESCRIPTOR CLASSIFICATION: UNCLASSIFIED
--25 - IDENTIFIERS: RADARC COMPUTER PROGRAMS
--26 - IDENTIFIER CLASSIFICATION: UNCLASSIFIED

APPROVED FOR PUBLIC
RELEASE - DISTRIBUTION
UNLIMITED