

Baderia Global Institute of Engineering and Management, Jabalpur, Madhya Pradesh 482002

Erehmes 40

The Creation of Tomorrow

Brehmex 40

Theme:- Cyber

Problem Statement Title: Develop a real-time Al system to detect deep fake audio, images, and videos, enabling secure, trustworthy communication within enterprise environments.

Team ID:-

Team Name :- FOUR FIREWALLS

TruthShield: Real-time AI Deepfake Detection

Truth Shield is an AI-powered deepfake detection system that identifies fake voices, images, and videos in real-time. By leveraging computer vision, audio forensics, and behavioral analysis, it detects deep fakes across email, video calls, messaging platforms, and social media. Integrated with corporate security systems, it provides automated alerts and reports, ensuring immediate intervention without disrupting workflows.

Solution Overview

Problem-\$olving

Our system uses a multi-modal detection engine that combines edge computing for fast analysis and cloud validation for accuracy. It detects deepfakes in real-time and assigns a digital trust score to evaluate the credibility of communications.

INNOVATION =

Zero-Shot Learning: Detects new deepfakes without retraining

Contextual Analysis: Assesses communication behavior and history.

Real-Time Detection: Flags deepfakes instantly.

Trust Scoring: Rates credibility of interactions

Adversarial Resilience: Withstands countermeasures.

Easy Integration: Compatible with corporate security systems.

Idea submission-

www.codecrax.co

Template

TruthShield Architecture:

Real-Time Deepfake Detection Workflow

Python, JavaScript

Core languages for AI and frontend

TensorFlow, PyTorch

Deep learning model development

Transformers, Whisper, OpenCV

NLP, audio, and vision processing

FastAPI, Flask

Real-time backend APIs

Docker, AWS, Edge Devices

Scalable, low-latency deployment

REST APIs, GitHub

Integration and version control

Methodology

Data Collection

Gather real and deepfake media

? Preprocessing

Clean and prepare data for training.

Detect inconsistencies in media

Model Development

Train Al models (CNN for images, RNN for audio).

1 Deep Face Detection

05 Integration

Connect with corporate security systems

Real-Time Flagging

Implement immediate deep face detection.

7 Testing & Validation

Assess and optimize model accuracy

08 Deployment

Deploy for continuous monitoring.

FOUR FIREWALL

Q Feasibility

- Proven Al frameworks
- Real-time analysis via edge-cloud setup
- Seamless integration with security tools
- Scalable with Docker and cloud platforms

Q Challenges & Risks

- Evolving deepfake techniques
- High compute requirements
- Data privacy concerns
- Risk of model drift

Mitigation Strategies

- Use zero-shot and adversarial training
- Optimize models for edge devices
- Apply federated learning and encryption
- Continuous model updates and feedback loops

Impact And Benefits

Corporate Security Teams

Strengthens defenses against deepfake-based fraud and cyber attacks

Enterprises & Organizations

Protects brand reputation, sensitive data, and ensures communication integrity

Compliance & Legal Teams

Provides forensic evidence and audit trails for regulatory compliance

Executives and Employees

Safeguards internal communications and decision-making processes

Cybersecurity Industry

Enhances threat intelligence and deepens protection frameworks

05

Key Advantages

Social: Builds digital trust and combats misinformation

Economic: Reduces financial risks from cyber fraud

Environmental: Leverages edge AI for lower energy consumption

Long-Term Value

Scalable across sectors and geographies

Continuously improves through feedback and retraining

Future-ready for integration with national security systems

References & Research Work

01	Li, Y., Chang, M. C., & Lyu, S. (2018). <i>In Ictu Oculi: Exposing Al-Generated Fake Face Videos by Detecting Eye Blinking</i> . arXiv preprint. https://arxiv.org/pdf/1806.02877
02	Dolhansky, B., Bitton, J., Pflaum, B., Lu, J., Howes, R., Wang, M., & Ferrer, C. C. (2020). The Deep Fake Detection Challenge Dataset. arXiv preprint. https://arxiv.org/pdf/2006.07397
03	Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). MesoNet: A Compact Facial Video Forgery Detection Network. In WIGS. https://arxiv.org/pdf/1809.00888
04	Agarwal, S., Farid, H., Gu, Y., He, M., Nagano, K., & Li, H. (2019). Protecting World Leaders Against Deep Fakes. In CVPR Workshops. Open Access Paper PDF Download
05	Khalid, H., Woo, W. L., & Sugiarto, A. (2024). <i>Deepfake Video Detection: Challenges and Opportunities. Artificial Intelligence Review.</i> SpringerLink Article
06	OpenCV Documentation https://docs.opencv.org
07	TensorFlow Documentation https://www.tensorflow.org
08	PyTorch Framework https://pytorch.org
09	DeepFake Detection Challenge (DFDC) – Kaggle Competition https://www.kaggle.com/c/deepfake-detection-challenge
10	FaceForensics++ Dataset https://github.com/ondyari/FaceForensics

