

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

Guías de Prácticas de Laboratorio Guías de Prácticas de Laboratorio Espáginas: 2 Fecha Emisión: 2018/01/31 Laboratorio de: Control Lineal Titulo de la Práctica de Laboratorio: LABORATORIO 1. Modelado de Sistemas Mecatrónicos

Elaborado por:	Revisado por:	Aprobado por:
Ing. Leonardo Solaque, Ph.D, Docente Ing. Adriana Riveros, M.Sc. Docente Ing. Andrés Castro, M.Sc. Docente Ing. Vladimir Prada, Ph.D. Docente	Ing. Olga Ramos, Ph.D. Jefe área Automatización y Control Programa de Ingeniería en Mecatrónica	Ing. William Gómez, Ph.D. Director de Programa Ingeniería en Mecatrónica
Programa de Ingeniería en Mecatrónica		

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

Control de Cambios

Descripción del Cambio	Justificación del Cambio	Fecha de Elaboración / Actualización
Se cambian las guías al nuevo formato	Nuevo formato para implementar	07/08/2018
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	21/01/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	29/07/2019
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	20/01/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	22/07/2020
Se cambian los sistemas a trabajar	Se requiere renovación semestral de guías	22/01/2021

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

1. FACULTAD O UNIDAD ACADÉMICA: INGENIERÍA

2. PROGRAMA: INGENIERÍA EN MECATRÓNICA

3. ASIGNATURA: CONTROL LINEAL Y LABORATORIO

4. SEMESTRE: SÉPTIMO

5. OBJETIVOS:

General: Fortalecer los conocimientos relacionados con el modelado de sistemas mecatrónicos y sus diversas representaciones, tras el uso de la teoría de Newton-Euler y Euler-Lagrange.

Específicos:

- Modelar sistemas mecatrónicos empleando la teoría de Newton-Euler y Euler-Lagrange.
- Encontrar las diversas representaciones de los sistemas mecatrónicos (ecuaciones diferenciales, funciones de transferencia, espacio de estado, etc).
- Hallar la respuesta de la dinámica de los sistemas mecatrónicos y observar su comportamiento al variar los parámetros del modelo que los representa.
- Utilizar analogías para simplificar el hallazgo de modelos de sistemas mecatrónicos.

6. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL LABORATORIO:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Computador con Matlab	1	Equipo por grupo de trabajo

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

7. MATERIALES, REACTIVOS, INSTRUMENTOS, SOFTWARE, HARDWARE O EQUIPOS DEL ESTUDIANTE:

DESCRIPCIÓN (Material, reactivo, instrumento, software, hardware, equipo)	CANTIDAD	UNIDAD DE MEDIDA
Computador con Matlab	1	Equipo por grupo de trabajo

8. PRECAUCIONES CON LOS MATERIALES, REACTIVOS, INSTRUMENTOS Y EQUIPOS A UTILIZAR: (NO APLICA EN LA SITUACIÓN ACTUAL 2020-2)

- Para el ingreso al laboratorio será necesaria la bata blanca.
- Se recomienda hacer un uso adecuado de los computadores.
- Es recomendable apagar los elementos si se va a realizar cualquier cambio en el circuito electrónico o en la parte mecánica del sistema.
- No exceder los valores máximos permitidos de voltajes y corrientes indicados para los dispositivos utilizados.
- Consultar en los manuales y datasheet correspondientes.
- No sobrepasar el máximo de potencia disipada por las resistencias.

9. PROCEDIMIENTO, MÉTODO O ACTIVIDADES:

- Responder las siguientes preguntas:
 - ¿Qué tipo de analogías existen? Realice un cuadro con las diferentes analogías incluyendo sistemas térmicos, hidráulicos, eléctricos y mecánicos
 - ¿Qué elementos son necesarios para modelar los diferentes tipos de sistemas (resistencia, masa, altura, etc)? ¿Cuáles son sus unidades?
 - ¿Qué propiedades debe cumplir un sistema lineal?
 - ¿Cómo se puede determinar la linealidad de un sistema?
 - ¿Cómo se define variable de estado?
 - ¿Qué dimensión debe tener cada una de las matrices del espacio de estados si se tienen q entradas, n estados y p salidas?

- Para los sistemas presentados desde la Figura 1 hasta la Figura 10 plantear por Newton-Euler los modelos matemáticos que representen la dinámica de los sistemas.
- Para los sistemas presentados en la Figura 1 y la Figura 9, plantear por Euler-Lagrange los modelos matemáticos que representen la dinámica de los sistemas.

Figura 1: Sistema mecánico traslacional

Figura 2: Sistema rotacional

Figura 3: Sistema mecánico rotacional-traslacional

Figura 4: Sistema mecánico con palanca (analizar para opción 1: desplazamientos angulares pequeños y para opción 2: desplazamientos angulares grandes)

Figura 5: Sistema eléctrico

Figura 6: Sistema eléctrico con operacionales

Figura 7: Sistema térmico

Figura 2: Sistema hidráulico

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

Figura 3: Masa con muelle elástico

Figura 4: Émbolo magnético

➤ Luego de encontrar las ecuaciones diferenciales que describen a los sistemas, hallar el espacio de estados y la función de transferencia según la salida que seleccione el estudiante.

LABORATORIO 1. Modelado de Sistemas Mecatrónicos

Asignar valores a los elementos de los sistemas y simular en Simulink. Para el caso de los sistemas no lineales, se debe simular utilizando Matlabfunction, s-function o empleando bloques que representen las ecuaciones diferenciales halladas en el ítem anterior.

10. RESULTADOS ESPERADOS:

- Resolución de las preguntas formuladas.
- Ecuaciones diferenciales, funciones de transferencia y espacio de estados de los diferentes sistemas mecatrónicos.
- Respuesta en simulación (Matlab) de los sistemas mecatrónicos propuestos.
- Informe en formato revista IEEE

11. CRITERIO DE EVALUACIÓN A LA PRESENTE PRÁCTICA:

Por medio de esta práctica se desarrollarán las siguientes competencias:

- Habilidad para identificar, formular y resolver problemas complejos de Ingeniería aplicando principios de Ingeniería, ciencias y matemáticas.
- > Habilidad para comunicarse efectivamente ante un rango de audiencias.
- Capacidad de funcionar de manera efectiva en un equipo cuyos miembros juntos proporcionan liderazgo, crean un entorno colaborativo e inclusivo, establecen metas, planifican tareas y cumplen objetivos.
- Capacidad de desarrollar y llevar a cabo la experimentación adecuada, analizar e interpretar datos, y usar el juicio de Ingeniería para sacar conclusiones.

Las competencias descritas anteriormente se evaluarán mediante los siguientes indicadores:

- Identifica las variables que intervienen en un problema de ingeniería.
- Propone y/o formula modelos que representan las relaciones de las variables de un problema.
- Identifica y aplica leyes, teoremas, principios para la solución de problemas de ingeniería.

- Maneja las herramientas tecnológicas y computacionales para la solución de problemas complejos de ingeniería.
- Presenta sus ideas en forma clara y concisa, utilizando un lenguaje apropiado al contexto.
- Utiliza diferentes formas de comunicación con el fin de transmitir sus ideas, dependiendo del tipo de audiencia.
- Redacta apropiadamente informes utilizando formatos estandarizados, referenciando, y utilizando reglas gramaticales y ortográficas.
- Se comunica adecuadamente con los integrantes del equipo, con el fin de desarrollar las tareas dentro de un entorno colaborativo, para cumplir los objetivos del proyecto.
- Analiza e interpreta los resultados obtenidos tras la experimentación (en laboratorios y/o mediante el uso de herramientas computacionales).
- Concluye sobre resultados obtenidos, aplicando juicios de ingeniería.