

Department of Computer science and Engineering

PES UNIVERSITY

UE19CS202: Data Structures and its Applications (4-0-0-4-4)

Λ	D	D		۸т	ΊO	NI
н	~	~	L./	4 I	11.1	ıv

Abstract

Graph representation: Representation of Computer Network Topology, Different types of Topology

Dr.Sandesh and Saritha
Sandesh_bj@pes.edu
Saritha.k@pes.edu

Graph representation: Representation of Network Topology:

Graph data structure is mainly in telecommunication and Computer Networks. Networking uses the Notation G(N,L) instead of G(V,E) for a graph were N is the set of nodes and L is the set of links.

Topology is the order in which nodes and edges are arranged in the network.

The different types of Network topology are

1. Ring topology (cycle): Ring topology is also called as cycle graph. A simple graph with two degrees of vertices is called cycle graph. In ring Topology each vertex is connected to other two vertices, So that they form a network which looks like a circle or ring.

Ring topology

Adjacency matrix for the above graph

	Α	В	С	D	E	F
Α	0	1	0	0	0	1
В	1	0	1	0	0	0
С	0	1	0	1	0	0
D	0	0	1	0	1	0
E	0	0	0	1	0	1
F	1	0	0	0	1	0

Adjacency list representation for ring topology

2. Star topology: Star topology is a network topology in the form of merging from the central vertex to each vertex.

A graph of V vertices represents a star topology if it satisfies the following three conditions:

- 1. The centre node has degree n− 1.
- 2. All nodes except the central node have degree 1.
- 3. No of edges = No of Vertices -1.

Star topology

Adjacency matrix representation for Star topology

	Α	В	С	D	E
Α	0	1	1	1	1
В	1	0	0	0	0
С	1	0	0	0	0
D	1	0	0	0	0
E	1	0	0	0	0

3. **Mesh topology**: Mesh topology uses a complete graph form. All the nodes in mesh topology are interconnected. Every node has degree n-1

Mesh Topology

Adjacency matrix for the above graph

	Α	В	С	D	E	F
Α	0	1	1	1	1	1
В	1	0	1	1	1	1
С	1	1	0	1	1	1
D	1	1	1	0	1	1
E	1	1	1	1	0	1
F	1	1	1	1	1	0

4. Hybrid Topology

Hybrid topology is the combination of two or more topologies.

Hybrid Topology

Adjacency matrix for the above graph

	Α	В	С	D	Ε	F
Α	0	1	1	0	1	1
В	1	0	0	0	0	0
С	1	0	0	1	0	0
D	0	0	1	0	1	0
E	1	0	0	0	0	0
F	1	0	0	0	0	0

