Conteúdo

1	Resultados		
	1.1	Caso estático	2
	1.2	Caso aleatório	2
	1.3	Velocidade e distância constantes	2
2	Test	es	6
	2.1	Definições da velocidade	6
		2.1.1 Velocidade seletiva	6
		2.1.2 Velocidade dependente de Φ	7
		2.1.3 Velocidade periódica	7

Capítulo 1

Resultados

1.1 Caso estático

Figura 1.1: Caso estático para N=12 para várias probabilidades de cópia p. (a) K=0. (b) K=4.

1.2 Caso aleatório

Para avaliar a influência da velocidade estudamos o caso aleatório. Neste, em cada iteração, as posições de todos os agentes são sorteadas aleatoriamente dentro do domínio. Em seguida um agente é sorteado e avaliado. O gráfico do custo está na figura 1.2(a) e do número de vizinhos B na figura 1.2(b).

1.3 Velocidade e distância constantes

Este caso (dinâmica 10) refere-se a velocidade e distância de interação constantes no tempo. A motivação é que o movimento seletivo (com uma probabilidade ω quando estiver inte-

Figura 1.2: Resultados para a rede aleatória em função de δ. (a) Gráfico C vs. M. (b) Gráfico B vs. M.

ragindo) não resultou em diferença efetiva. Nem mesmo quando fizemos ω em função da fitness Φ dos vizinhos do agente analisado. Assim, nessa dinâmica a velocidade e a distância de interação são:

$$v = v_c = \frac{v_0}{\sqrt{\rho}},$$
 $d = d_0 = \frac{\delta}{\sqrt{\rho}}.$

Os resultados para essas dinâmicas estão nas figuras de 1.3(a) até 1.5(b).

Fizemos um gráfico também para um número de agentes apenas: M=53. A ideia é verificar nesse valor a inversão da influência de v_0 em função de δ . Esse valor de M foi escolhido pois é onde ocorre o pico no gráfico de $v_0=0$ na figura 1.4(a). Os resultados estão nas figuras 1.5(a) e 1.5(b).

Figura 1.3: Gráfico do custo C vs número de agentes M para vários valores de δ . (a) Velocidade $v_0 = 0.0$. (c) Velocidade $v_0 = 5.0$. Número de vizinhos em função de δ . (b) $v_0 = 0.0$. (d) $v_0 = 5.0$. Tudo considerando K = 4 e p = 0.5.

Figura 1.4: Gráfico de C vs. M para vários valores de velocidade, considerando K=4 e p=0.5. A linha vertical tracejada (em vermelho escuro) representa o número de vizinhos B para o δ em questão. (a) $\delta=2.0$. RN= random network. (b) $\delta=1.5$.

Figura 1.5: Gráfico do custo C considerando apenas um número de agentes M=53, K=4 e p=0.5. (a) Custo C vs. velocidade v_0 para vários valores de δ . (b) Custo C vs. δ para vários valores de v_0 .

Capítulo 2

Testes

Neste capítulo estão alguns dos testes realizados.

2.1 Definições da velocidade

2.1.1 Velocidade seletiva

Esta dinâmica é definida da seguinte forma: quando um agente é sorteado ele irá se mover apenas se ele for um máximo local. Os gráficos do custo para diferentes valores de velocidade estão nas figuras 2.1(a) e 2.1(b). Como o número de vizinhos depende apenas da distância δ , os resultados para este caso são iguais para os mostrados na figura 1.3(d).

Figura 2.1: Velocidade seletiva: o agente sorteado se movo apenas se for máximo local. Gráfico de C vs. M para K=4 e p=0.5. (a) Distância $\delta=2.0$. (b) Distância $\delta=1.5$.

Figura 2.2: Influência da definição da velocidade para K = 4, p = 0.5 e $\delta = 2$.

2.1.2 Velocidade dependente de Φ

Testamos também a definição da velocidade em função da fitness Φ .

$$v_i(t) = v_0 r \Phi_i(t),$$

$$v(t) = v_0 r \Phi_M(t),$$

$$v_c = v_0 r \Phi_g(t).$$
(2.1)

onde os valores médios das fitness são:

$$\Phi_m(t) = \frac{1}{M} \sum_i \Phi_i(t),$$

$$\Phi_g = \frac{1}{2^N} \sum_j \Phi_j(t),$$

A soma em j é sobre todos os valores possíveis de Φ . O resultado está na figura 2.2

2.1.3 Velocidade periódica

Se um agente depois de se mover voltar ao mesmo lugar, não haverá mudança em seus vizinhos. Assim, pode existir uma velocidade onde isso ocorre, e nesse caso, o custo não será alterado. Nesta seção fazemos um teste para verificar esse efeito. Primeiro restringimos o movimento em uma dimensão (eixo x) considerando a velocidade constante $v=v_c$ (dinâmica 10). Neste caso se o agente se deslocar de uma distância L (lado do quadrado do domínio) ele irá voltar na mesma posição. Queremos encontrar o valor v_p de v_0 tal que $v_c=L$. O lado é definido como $L=\sqrt{M/\rho}$ enquanto que $v_c=v_p/\sqrt{\rho}$. Logo $v_p=\sqrt{M}$. Os resultados para dois valores de M estão nas figuras 2.3(a) e 2.3(b).

Figura 2.3: Velocidade periódica: velocidade apenas em x para analisar o efeito da periodicidade. Gráfico de C vs. v_0 para K=4 e p=0.5. (a) M=200 e $v_p=17.32$. (b) M=53 e $v_p=7.28$.