数理统计笔记

目录

1	样本与抽样分布	2
	1.1 抽样分布	2

1 样本与抽样分布

定义 1.1 (样本):设随机变量 X 服从分布 F,若随机变量序列 $X_1, X_2, ..., X_n$ 具有同一分布 F 且相互独立,则称这一随机变量序列为从总体 F 或总体 X 得到的容量为 n 的样本, $x_1, x_2, ..., x_n$ 为 X 的 n 个独立观测值。

反之,若一随机变量序列是总体 F 的一个样本,则序列中的随机变量同分布为 F,且相互独立。

定义 1.2 (经验分布函数):有 样本 $x_1,x_2,...,x_n$,用 $S(x),-\infty < z < \infty$ 表示 $x_1,x_2,...,x_n$ 中不大于 x 的随机变量的个数,定义经验分布函数 F(z) 为

$$F_{n(x)} = \frac{1}{n}S(x), \quad -\infty < x < \infty$$

1.1 抽样分布

1.1.1 统计量

定义 1.1.1.1 (统计量与统计量的观测值):若有一随机变量序列 $X_1,X_2,...,X_n$ 是总体 F 的一个容量为 n 的样本,则称不含有位置参数的函数函数 $g(X_1,X_2,...,X_n)$ 为统计量。

由定义可知, $g(X_1,X_2,...,X_n)$ 也是一个随机变量,若有 $x_1,x_2,...,x_n$ 是样本的观测值,则 $g(x_1,x_2,...,x_n)$ 是随机变量 $g(X_1,X_2,...,X_n)$ 的观测值。

有总体 $X, E(X) = \mu, D(X) = \sigma^2$,下方为常见的统计量:

定义 1.1.1.2 (样本平均值):
$$\overline{X}=\frac{1}{n}\sum_{i=1}^{n}X_{i}$$
 . 根据定义可得 $E\left(\overline{X}\right)=n\mu, D\left(\overline{X}\right)=\frac{\sigma^{2}}{n}$

定义 1.1.1.3 (样本方差):
$$S^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \overline{X} \right)^2 = \frac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n \overline{X}^2 \right)$$
根据定义可得, $E(S^2) = D(X) = \sigma^2$

定义 1.1.1.4 (样本标准差):
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2}$$

定义 1.1.1.5 (样本 k 阶原点矩):
$$A_k = \frac{1}{n} \sum_{i=1}^n X_i^k, \quad k = 1, 2, 3, ...$$

定义 1.1.1.6 (样本 k 阶中心矩):
$$B_k = \frac{1}{n} \sum_{i=1}^n \left(X_i - \overline{X} \right)^k, \quad k = 2, 3, ...$$

抽样分布即为统计量为 $g(X_1, X_2, ..., X_n)$ 的分布, 如 χ^2 分布。

1.1.2 χ^2 分布

定义 1.1.2.1 (χ^2 分布):设样本 $X_1, X_2, ..., X_n$ 相互独立,且均服从 N(0,1) 分布,则 有 $X=X_1^2+X_2^2+...+X_n^2$ 服从自由度为 n 的 χ^2 分布。即 $X\sim\chi^2(n)$ 。

 χ^2 分布有如下几条性质:

性质:

1. 可加性

2. 均值与方差

若 $X \sim \chi^2(n_1), Y \sim \chi^2(n_2)$ 则 $X + Y \sim \chi^2(n_1 + n_2).$

若 $X \sim \chi^2(n)$, 则 E(X) = n, D(X) = 2n.

3. 上α分位点

在 χ^2 分布的密度图形中,当 $x=x_\alpha$ 时, $x>x_\alpha$ 的面积为 α ,称此点为上 α 分位点。 此时有 $P\{X>x_\alpha\}=\alpha$.

t 分布, F 分布定义暂略

- 5. 正态总体的 样本均值与样本1差的分布.
- (1) 设总体 X~N(4, σ²), X1, X2,···, Xn 为总体 X 的 个 样本,则:
 - ① $\tilde{\chi} \sim N(\mathcal{A}, \frac{\sigma^2}{\kappa})$; ② $\frac{(n-i)S^2}{\sigma^2} \sim \chi^2(n-i)$; ③ $\tilde{\chi}$ 与 S^2 独立.