ECE 606, Fall 2019, Assignment 10

Zhijie Wang, Student ID number: 20856733

zhijie.wang@uwaterloo.ca

November 19, 2019

1. Proof. Suppose $s \leq_k t$ and let m_1 be the polynomial time reduction function such that $x \in s$ if and only if $m_1(s) \in t$. Similarly, suppose $t \leq_k u$ and let m_2 be the polynomial time reduction function such that $x \in t$ if and only if $m_2(x) \in u$. Then we can compute $m_2 \circ m_1$ in polynomial time, and x ins if and only if $m_2(m_1(x)) \in u$.

Therefore, $s \leq_k u$, which means \leq_k is transitive.

2. Proof. By construction. We propose the following mapping m. Given an instance $\langle G = \langle V_G, E_G \rangle$, $H = \langle V_H, E_H \rangle >$ of Iso, we first check if $|V_G| = |V_H|$ and $|E_G| = |E_H|$, then m directly maps $\langle G, H \rangle$ as the instance of SubIso, else, removed a vertex from G as G', then m maps $\langle G, H \rangle$ to $\langle G, G' \rangle$.

We first observe that m is computable in time polynomial in the size of G and H.

For the "only if' direction, suppose G and H is isomorphic, then, G and H must have the same size of vertexes and edges, $\langle G, H \rangle$ must be a true instance of SubIso.

For the "if" direction, suppose G and H is not isomorphic, then, we do a case analysis. 1) If G and H has the same size, for the purpose of contradiction, H has a subgraph which is isomorphic to G, then G is also isomorphic to H because they have the same vertexes and edges numbers, which is a contradiction. 2) If G and H don't have the same size, for the purpose of contradiction, G' has a subgraph which is isomorphic to G, then the size of G' must not less than G, which is a contradiction.

Therefore, Iso \leq_k SubIso.

3. (a) Since HAMPATH \leq_k HAMPATHSTARTEND, if we can prove HAMPATHSTARTEND \leq_k HAMCYCLE, then, HAMPATH \leq_k HAMCYCLE.

Proof. By construction. We propose the following mapping m. Given an instance < G = < V, E > , a, b > of HampathStartEnd, introduce two new vertexes $x, y \notin V$. Let $V' = V \cup \{x, y\}$, then introduce three new edges < x, a >, < b, y >, < x, y >. Let G' = < V, E' >. The function m maps < G, a, b > to < G' >.

We first observe that m is computable in time polynomial in the size of G.

For the "only if" direction, suppose G has a Hamiltonian path $a \leadsto b$, then G' also have a Hamiltonian cycle $x \to a \leadsto b \to y \to x$.

For the "if" direction, suppose G has no Hamiltonian path from a to b, and for the purpose of contradiction, G' has a Hamiltonian cycle. Then, such a cycle must be $x \to a \leadsto b \to y \to x$, thus, G has a Hamiltonian path $a \leadsto b$, which is a contradiction.

Therefore, HAMPATHSTARTEND \leq_k HAMCYCLE, HAMPATH \leq_k HAMCYCLE.

(b) Since HAMPATHSTARTEND \leq_k HAMPATH, if we can prove HAMCYCLE \leq_k HAMPATHSTARTEND, then, HAMCYCLE \leq_k HAMPATH.

Proof. By construction. We propose the following mapping m. Given an instance $\langle G = \langle V, E \rangle \rangle$ of HAMCYCLE, introduce two new vertexes $x,y \notin V$. Let $V' = V \cup \{x,y\}$, then introduce two new edges $\langle x,s \rangle, \langle y,r \rangle$, where s,r is two connected vertex in V. Let $G' = \langle V,E' \rangle$. The function m maps $\langle G \rangle$ to $\langle G',x,y \rangle$.

We first observe that m is computable in time polynomial in the size of G.

For the "only if" direction, suppose G has a Hamiltonian cycle $s \leadsto r \to s$, then G' also have a Hamiltonian path $x \to s \leadsto r \to y$.

For the "if" direction, suppose G has no Hamiltonian cycle, and for the purpose of contradiction, G' has a Hamiltonian path from x to y. Then, such a path must be $x \to s \leadsto r \to y$, thus, G has a Hamiltonian cycle $s \leadsto s$ because s and r are connected, which is a contradiction.

Therefore, HamCycle \leq_k HamPathStartEnd, HamCycle \leq_k HamPath.

4. *Proof.* First, we define a decision problem UNSAT: given a boolean formula in propositional logic, is it unsatisfiable?

Then, for every input f of UNSAT, we can simply maps it to $\neg f$, therefore, SAT \leq_c UNSAT because SAT can be polynomial-time if UNSAT is polynomial-time.

Hence, a formula f is unsatisfiable if and only if $\neg f$ is tautology, therefore, UNSAT can be polynomial-time if TAUT is polynomial-time, UNSAT \leq_c TAUT.

Finally, SAT \leq_c UNSAT \leq_c TAUT, then, SAT \leq_c TAUT.