# Assignment MPI: Circuit Satisability Parallel and Grid Computing Lecture

Ivan Tishchenko

November 4, 2016

## Exercise 1. Sequential Program Please find the solution in the circuit.c file

#### Exercise 2. Parallel Program Design

- 1. Since we have 16 bits on the input, there are  $2^{16}$  possible inputs. This is the number of tasks as the exercise describes, in the code it's being implemented in a loop where we iterate exactly  $2^{16}$  times, thus having  $2^{16}$  tasks.
- 2. Yes tasks are independent due to the reason is that each of the unique 2<sup>16</sup> inputs is assigned to a task, which does its own independent computation according to the circuit and checks independently of others whether it is 1. The graph regarding tasks is depicted on Figure 1.



Figure 1: Cyclic work distribution.

The problem was solved cyclic work distribution. The type of problem is called domain decomposition and depicted on Figure 2.



Figure 2: Domain decomposition.

- 3. (a) Communication pattern is structured since we all the tasks are computing the same equation specified to the formula
  - (b) The computation time computation time is roughly the constant.
  - (c) The mapping strategy is that we divide the input data into chunks of n/p elements of data each could be calculate by one of the p process. In practice we could use the round robin approach. For example  $p_0$  gets element  $0, 0+p...n, p_1$  gets 1, 1+p...n and so on.

#### Exercise 3. Parallel Program Design

- 1. The MPI version of a sequential is in **mpi\_circuit\_1.c** fg
- 2. Total number of solutions mpi\_circuit\_2.c
- 3. The program is **mpi\_circuit\_3.c**. The benchmarked parameters can be found in **data.txt** the plotted results (**plot.jpg**) are shown on Figure 3

| Cores | Max      | Min      | Avg      |
|-------|----------|----------|----------|
| 12    | 0.000373 | 0.000242 | 0.000314 |
| 11    | 0.000413 | 0.000385 | 0.000404 |
| 10    | 0.000461 | 0.000372 | 0.000412 |
| 9     | 0.000582 | 0.000451 | 0.000496 |
| 8     | 0.000521 | 0.000365 | 0.000455 |
| 7     | 0.001546 | 0.000588 | 0.000762 |
| 6     | 0.000724 | 0.000624 | 0.000677 |
| 5     | 0.000915 | 0.000856 | 0.000891 |
| 4     | 0.001006 | 0.000735 | 0.000920 |
| 3     | 0.001510 | 0.001432 | 0.001479 |
| 2     | 0.002087 | 0.001884 | 0.001986 |
| 1     | 0.004060 | 0.004060 | 0.004060 |

### References

[1] Shastien Varrette. The Lecture slides.



Figure 3: Number of cores to execution time dependency.