Chapter 3.2: Definition of Trigonometric Functions

Expected Skills:

- Be able to define $\sin \theta$, $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.
- Be able to determine the domain and range of the 6 trigonometric functions.
- Be able to evaluate the 6 trig functions (if defined) at the quadrantal angles or angles related to 30°, 45°, and 60°.
- Be able to use the trigonometric identity $\sin^2 \theta + \cos^2 \theta = 1$ and other given information to evaluate all 6 trigonometric functions.

Practice Problems:

1. Label all of the indicated points on the unit circle, shown below. Also, convert all of the angles from radian measurement to degree measurement.

- 2. Use your results from question (1) to evaluate each of the following without using a calculator.
 - (a) $\sin 225^{\circ}$

$$-\frac{1}{\sqrt{2}}$$

(b) $\cos \overline{240}^{\circ}$

$$\left[-\frac{1}{2}\right]$$

(c) $\tan 30^{\circ}$

$$\left\lceil \frac{1}{\sqrt{3}} \right\rceil$$

(d) $\sec \frac{11\pi}{6}$

$$\boxed{\frac{2}{\sqrt{3}}}$$

(e) $\cot \frac{\pi}{2}$

- $(f) \sin\left(-\frac{4\pi}{3}\right)$ $\boxed{\sqrt{3}}$
- (g) $\csc(-690^{\circ})$
- $\begin{array}{c} \square \\ \text{(h) } \cos \frac{23\pi}{3} \\ \boxed{\frac{1}{2}} \end{array}$
- 3. Use your results from question (1) to find all solutions in the interval $[0, 2\pi)$ to the following equations.
 - (a) $\sin \theta = 1$

$$\theta = \frac{\pi}{2}$$

(b) $\cos \theta = \frac{1}{2}$

$$\theta = \frac{\pi}{3} \text{ or } \theta = \frac{5\pi}{3}$$

(c) $\sec \theta = 2$

$$\theta = \frac{\pi}{3} \text{ or } \theta = \frac{5\pi}{3}$$

(d) $\csc \theta = \sqrt{2}$

$$\theta = \frac{\pi}{4} \text{ or } \theta = \frac{3\pi}{4}$$

(e) $\tan \theta = 0$

$$\theta = 0 \text{ or } \theta = \pi$$

- 4. Repeat question (3) providing all solutions in the interval $[2\pi, 4\pi)$.
 - (a) $\sin \theta = 1$

$$\theta = \frac{5\pi}{2}$$

(b) $\cos \theta = \frac{1}{2}$

$$\theta = \frac{7\pi}{3} \text{ or } \theta = \frac{11\pi}{3}$$

(c)
$$\sec \theta = 2$$

$$\theta = \frac{7\pi}{3} \text{ or } \theta = \frac{11\pi}{3}$$

(d)
$$\csc \theta = \sqrt{2}$$

$$\theta = \frac{9\pi}{4} \text{ or } \theta = \frac{11\pi}{4}$$

(e)
$$\tan \theta = 0$$

$$\theta = 2\pi \text{ or } \theta = 3\pi$$

5. Suppose $\sin \theta = \frac{5}{13}$ and $\frac{\pi}{2} \le \theta \le \pi$. Compute the values of $\cos \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.

$$\cos \theta = -\frac{12}{13}$$
, $\tan \theta = -\frac{5}{12}$, $\sec \theta = -\frac{13}{12}$, $\csc \theta = \frac{13}{5}$, and $\cot \theta = -\frac{12}{5}$

6. Suppose $\cos \theta = \frac{5}{13}$ and $\tan \theta < 0$. Compute the values of $\sin \theta$, $\tan \theta$, $\sec \theta$, $\csc \theta$, and $\cot \theta$.

$$\sin \theta = -\frac{12}{13}$$
, $\tan \theta = -\frac{12}{5}$, $\sec \theta = \frac{13}{5}$, $\csc \theta = -\frac{13}{12}$, and $\cot \theta = -\frac{5}{12}$

- 7. Recall that for any angle θ it follows that $\cos^2 \theta + \sin^2 \theta = 1$.
 - (a) Suppose $\theta \neq \pi k$ (where k is an integer). Divide the original identity by $\cos^2 \theta$ to derive a trigonometric identity involving tangent and secant.

Suppose $\theta \neq \pi k$ (where k is an integer). Then, it follows that $\cos \theta \neq 0$ and we may divide by $\cos \theta$.

$$\cos^2\theta + \sin^2\theta = 1$$

$$\frac{\cos^2\theta + \sin^2\theta}{\cos^2\theta} = \frac{1}{\cos^2\theta}$$

$$1 + \left(\frac{\sin \theta}{\cos \theta}\right)^2 = \left(\frac{1}{\cos \theta}\right)^2$$

$$1 + \tan^2 \theta = \sec^2 \theta$$

Divide both sides by $\cos^2 \theta$

By definition of tangent and secant

Thus,
$$1 + \tan^2 \theta = \sec^2 \theta$$
.

(b) Suppose $\theta \neq (2k+1)\frac{\pi}{2}$ (where k is an integer). Divide the original identity by $\sin^2 \theta$ to derive a trigonometric identity involving cotangent and cosecant.

$$\cot^2\theta + 1 = \csc^2\theta$$

8. Fill in the following table:

	Domain	Range
$\sin \theta$		
$\cos \theta$		
$\tan \theta$		
$\csc \theta$		
$\sec \theta$		
$\cot \theta$		

	Domain	Range
$\sin \theta$	$(-\infty,\infty)$	[-1, 1]
$\cos \theta$	$(-\infty,\infty)$	[-1, 1]
$\tan \theta$	$\theta \neq (2k+1)\frac{\pi}{2}$	$(-\infty,\infty)$
$\csc \theta$	$\theta \neq \pi k$	$(-\infty, -1] \cup [1, \infty)$
$\sec \theta$	$\theta \neq (2k+1)\frac{\pi}{2}$	$(-\infty, -1] \cup [1, \infty)$
$\cot \theta$	$\theta \neq \pi k$	$(-\infty,\infty)$

Where k is any integer.

9. For each of the following functions, determine the domain.

(a)
$$f(\theta) = \frac{\theta}{1 - \tan \theta}$$

(a) $f(\theta) = \frac{\theta}{1 - \tan \theta}$ $\theta \neq \frac{\pi}{4} + \pi k \text{ and } \theta \neq \frac{\pi}{2} + \pi k \text{ where } k \text{ is any integer.}$

(b)
$$f(\theta) = \sqrt{\sin \theta}$$

(b)
$$f(\theta) = \sqrt{\sin \theta}$$

$$\bigcup_{k=-\infty}^{\infty} [2k\pi, (2k+1)\pi] = \dots [-2\pi, -\pi] \cup [0, \pi] \cup [2\pi, 3\pi] \dots$$

5