ouees-201706 Part 2: Distributed system flasco

Kenji Rikitake

20-JUN-2017
School of Engineering Science
Osaka University
Toyonaka, Osaka, Japan
@jj1bdx

Copyright © 2017 Kenji Rikitake.
This work is licensed under a <u>Creative Commons</u>
Attribution 4.0 International License.

Lecture notes on GitHub

- https://github.com/jj1bdx/oueees-201706public/
- Don't forget to check out the issues!

Some thoughts on Part 1 report answers

- You can program or write code
- Sharing requires synchronization
- Social sharing is another issue
- Reusing software is not sharing
- Decoupling is hard

Modern computing is cloud computing

Cloud Computing

Having secure access to all your applications and data from any network device

Cloud Computing

Having secure access to all your applications and data from any network device

Web services are clusters of computers and networks

Thousands or millions of servers connected together

A physical server is separated into multiple virtual machines

Example of networks connecting multiple nodes

Reference: Baran, Paul. On Distributed Communications: I. Introduction to Distributed Communications Networks. Santa Monica, CA: RAND Corporation, 1964. https://www.rand.org/pubs/ research memoranda/ RM3420.html. Figure 1 in

Centralized network

All nodes are connected to the single core

One hop to the core

Two hops between non-core nodes

No communication path between the nodes if the core fails

Decentralized network

A few nodes are connected to the core

Some nodes are connected to local concentrated nodes

Hierarchical structure

Distributed network

No core exists anymore

No hierarchical structure

Multiple redundant paths are available between two nodes

Many hops are required to reach between two nodes

Consistency Availability

Data store requirements¹

Consistency: all clients get responses to requests that make sense

Availability: all operations eventually return successfully

Partition Tolerance: system works even under network split

¹ CAP Confusion: Problems with 'partition tolerance', Cloudera Engineering Blog

Partition happens

Consistent under partition: resynchronize after partition ends (unavailable before synchronization)

Available under partition: data between partitioned subsystems will be inconsistent (consistency to be recovered when partition ends)

... mutually conflicting

If consistency and availability are both required, then...

Consistent and available system should not include networks within

(In large-scale systems this kind of assumption is practically not feasible)

False assumptions on concurrent programming

- Sequences are preserved
- Sequences are predictable
- All data are available before a time limit
- All operations complete before a time limit
- All functions are operational at any time
- ... and more issues not described here

Implications

- Distributed systems are mutually dependent with each other
- A node failure may cause a total system failure at once if badly designed
- Concurrency is hard
- Satisfying consistency and availability is even harder

Themes on part 3: How large systems fail Fallacies of teamwork Centralized power individual freedom

Photo and figure credits:

- All photos are modified and edited by Kenji Rikitake
- Photos are from Unsplash.com unless otherwise noted
- Title: NASA
- Modern Computing is Cloud Computing: Rayi Christian Wicaksono
- Cloud Computing: https://commons.wikimedia.org/wiki/File:Cloud-applications-SVG.svg, licensed under CCO.1.0 Universal Public Domain Dedication
- Intertwined network of computers: https://en.wikipedia.org/wiki/File:Cloud Computing.jpg, licensed under https://en.wikipedia.org/wiki/File:Cloud Computing.jpg, licensed under Cloud Computing.jpg,
- Web services are clusters of computers: Kenji Rikitake, at Kyoto University ACCMS, April 2017
- Networks: Irina Blok
- Networks Split: Pietro De Grandi
- Netsplit: https://commons.wikimedia.org/wiki/File:Netsplit_split.svg, in public domain
- Concurrency: Daria Shevtsova
- Themes on part 3: Redd Angelo