- A cache contains 4 blocks. The main memory contains 16 blocks. Each block is 2 words. Each word is 16-bit.
 - a. How many bits are there in a main memory address?

16 blocks * 2 words = 32 (2^5) -> 5 bits

b. In the main memory address, how many bits are there in each of the TAG, BLOCK and WORD fields (direct)?

- c. In the main memory address, how many bits are there in each of the TAG, SET and WORD fields (block set associative; 2 blocks /set)
- d. What is the size of the cache memory (in bits) assuming direct-mapping? 140 bits
- e. What is the size of the cache memory (in bits) assuming full associative mapping? 148 bits
- f. What is the size of the cache memory (in bits) assuming block set associative with 2 blocks perset? 144 bits
- g. What is the size of the main memory (in bits)? 512 bits
- h. In which cache block will memory block 9 blocks be mapped (direct mapping)? 9 mod 4 = block 1
- In which cache block will memory address 9 be mapped (direct mapping)?

9 -> 1001

01 00 1 -> block 0

j. In which cache set will memory block 9 blocks be mapped (block set associative mapping)? cache sets = 4 blocks in cache / 2 blocks per set

9 mod 2 = set 1

k. In which cache set will memory address 9 be mapped (block set associative mapping)?

9 -> 1001

 $0010 \ \underline{0} \ 1 \rightarrow set \ 0$

- Given the following main memory block access: 1,7,5,0,2,1,3,6,1,3,4,7,9 and assuming that cache access time is 1ns and memory access time is
 - i. Show the cache memory (direct-mapped) after memory blocks are accessed

Seq	Hit	Miss	Block
1		1	1
7		7	3
5		5	1
0		0	0
2		2	2
1		1	1
3		3	3
6		6	2
1	1		1
3	3		3
4		4	0
7		7	3
9		9	1

Block	Data	BI
0	0,4	
1	1,5,1,9	
2	2,6	
3	7,3,7	

Block	Data
0	4
1	9
2	6
3	7

Cache Memory

- ii. Compute for the total time needed for the instruction during execution of the program Total access time: 2*2*1 + 11*2*11 + 11*1 = 257ns
- iii. Show the cache memory (Full associative+LRU) after memory blocks are accessed

Seq	Hit	Miss	Block
1		1	0
7		7	1
5		5	2
0		0	3
2		2	0
1		1	1
3		3	2
6		6	3
1	1		
3	3		
4		4	0
7		7	3
9		9	1

Block	Age	Data
0	2	1,2,4
1	0	7,1,9
2	3	5,3
3	1	0.6.7

Block	Data	
0	4	
1	9	
2	3	
3 7		
Cache Memory		

iv. Compute for the total time needed for the instruction during execution of the program

Total access time: hit*words*cat + miss*words*(mat+1) = 2*2*1 + 11*2*11 + 11*1 = 257ns

v. Show the cache memory (Full associative+MRU) after memory blocks are accessed

Seq	Hit	Miss	Block
1		1	0
7		7	1
5		5	2
0		0	3
2		2	3
1	1		
3		3	0
6		6	0
1		1	0
3		3	0
4		4	0
7	7		
9		9	1

Block	Last	Data
0		1,3,6,1,3,4
1	1	7,9
2		5
2		0.0

BIOCK	Data	
0	4	
1	9	
2	5	
3	2	
Casha Managari		

vi. Show the cache memory (Block set Associative+LRU) after memory blocks are accessed

Seq	Hit	Miss	Set
1		1	1
7		7	1
5		5	1
0		0	0
2		2	0
1		1	1
3		3	1
6		6	0
1	1		1
3	3		1
4		4	0
7		7	1
0		q	1

Set	Block 0	Block 1
0	0,6	2,4
Age	1	0
1	1,5,3,9	7,1,7
Age	0	1

Set	Block 0	Block 1
0	6	4
1	9	7

vii. Compute for the total time needed for the instruction during execution of the program Total access time: 2*2*1 + 11*2*11 + 11*1 = 257ns