Murat Osmanoglu











most popular form of the representation: if-then rule

• the rule is : If x is a, then y is b

the fact is : x is a

the result is : y is b

most popular form of the representation: if-then rule

• the rule is : If x is a, then y is b

the fact is : x is a

the result is : y is b

modus ponens

fact : x is a

rule : if x is a, then y is b

result : y is b

modus tollens

fact : y is not b

rule : if x is a, then y is b

result : a is not b

most popular form of the representation: if-then rule

• the rule is : If x is a, then y is b

the fact is : x is a

the result is : y is b

#### modus ponens

fact : x is a

rule : if x is a, then y is b

result : y is b

| р | 9 | p <b>→</b> q | [p∧(p <b>→</b> q)] <b>→</b> q |
|---|---|--------------|-------------------------------|
| 1 | 1 | 1            | 1                             |
| 1 | 0 | 0            | 1                             |
| 0 | 1 | 1            | 1                             |
| 0 | 0 | 1            | 1                             |

most popular form of the representation: if-then rule

the rule is : If x is A, then y is B

the fact is  $x ext{ is } A'$ 

the result is : y is B'

most popular form of the representation: if-then rule

• the rule is : If x is A, then y is B

If A(x), then B(y)

the fact is x is A'

the result is : y is B'

most popular form of the representation: if-then rule

• the rule is : If x is A, then y is B

If A(x), then  $B(y) : R(x, y) (A(x) \rightarrow B(y))$ 

the fact is x is A'

the result is : y is B'

most popular form of the representation: if-then rule

the rule is : If x is A, then y is B

If A(x), then  $B(y) : R(x, y) (A(x) \rightarrow B(y))$ 

the fact is x is A'

the result is : y is B'

'if temperature is high, then humidity is fairly high'

 $High(x) \rightarrow Fairly_High(y)$ 

most popular form of the representation: if-then rule

the rule is : If x is A, then y is B

If A(x), then  $B(y) : R(x, y) (A(x) \rightarrow B(y))$ 

the fact is  $x ext{ is } A'$ 

the result is : y is B'

#### modus ponens

fact : x is A'

rule : if x is A, then y is B

result : y is B'

most popular form of the representation: if-then rule

• the rule is : If x is A, then y is B

If A(x), then  $B(y) : R(x, y) (A(x) \rightarrow B(y))$ 

the fact is x is A'

the result is : y is B'

modus ponens

fact : x is A' : R(x)

rule : if x is A, then y is B: R(x, y)

result : y is B' :  $R(y) = R(x) \circ R(x, y)$ 

consider the fuzzy rule and the premise given as:
 'x and y are approximately equal' and 'x is small'

consider the fuzzy rule and the premise given as:
 'x and y are approximately equal' and 'x is small'
 R(x, y) = ApproximatelyEqual(x, y)

consider the fuzzy rule and the premise given as:
 'x and y are approximately equal' and 'x is small'
 R(x, y) = ApproximatelyEqual(x, y)
 R(x) = Small(x)

consider the fuzzy rule and the premise given as:

'x and y are approximately equal' and 'x is small'

R(x, y) = Approximately Equal(x, y)

| R(x,y) | 1   | 2   | 3   | 4   |
|--------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5 | 0   | 0   |
| 2      | 0.5 | 1.0 | 0.5 | 0   |
| 3      | 0   | 0.5 | 1.0 | 0.5 |
| 4      | 0   | 0   | 0.5 | 1.0 |

consider the fuzzy rule and the premise given as:

'x and y are approximately equal' and 'x is small'

R(x, y) = Approximately Equal(x, y)

| R(x,y) | 1   | 2   | 3   | 4   |
|--------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5 | 0   | 0   |
| 2      | 0.5 | 1.0 | 0.5 | 0   |
| 3      | 0   | 0.5 | 1.0 | 0.5 |
| 4      | 0   | 0   | 0.5 | 1.0 |

| R(x)         | 1   | 2   | 3   | 4   |
|--------------|-----|-----|-----|-----|
| $\mu_{R}(x)$ | 1.0 | 0.7 | 0.4 | 0.1 |

• consider the fuzzy rule and the premise given as:

'x and y are approximately equal' and 'x is small'

R(x, y) = Approximately Equal(x, y)

|   |     | 2                      |     |     | R(x)         | 1   | 2   | 3   | 4   |
|---|-----|------------------------|-----|-----|--------------|-----|-----|-----|-----|
| 1 | 1.0 | 0.5                    | 0   | 0   | $\mu_{R}(x)$ | 1.0 | 0.7 | 0.4 | 0.1 |
| 2 | 0.5 | 1.0                    | 0.5 | 0   |              |     |     |     |     |
| 3 | 0   | 0.5                    | 1.0 | 0.5 | R(y)         | 1   | 2   | 3   | 4   |
| 4 | 0   | 0.5<br>1.0<br>0.5<br>0 | 0.5 | 1.0 | $\mu_{R}(y)$ |     |     |     |     |

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

| R(x,y) | 1   | 2                      | 3   | 4   | R(x)         | 1   | 2   | 3   | 4   |
|--------|-----|------------------------|-----|-----|--------------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5<br>1.0<br>0.5<br>0 | 0   | 0   | $\mu_{R}(x)$ | 1.0 | 0.7 | 0.4 | 0.1 |
| 2      | 0.5 | 1.0                    | 0.5 | 0   |              |     |     |     |     |
| 3      | 0   | 0.5                    | 1.0 | 0.5 | R(y)         | 1   | 2   | 3   | 4   |
| 4      | 0   | 0                      | 0.5 | 1.0 | $\mu_{R}(y)$ |     |     |     |     |

$$R(y) = R(x) \circ R(x, y)$$

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

| R(x,y) | 1   | 2                      | 3   | 4   | R(x)               | 1   | 2   | 3   | 4   |
|--------|-----|------------------------|-----|-----|--------------------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5<br>1.0<br>0.5<br>0 | 0   | 0   | $\mu_{R}(x)$       | 1.0 | 0.7 | 0.4 | 0.1 |
| 2      | 0.5 | 1.0                    | 0.5 | 0   |                    |     |     |     |     |
| 3      | 0   | 0.5                    | 1.0 | 0.5 | R(y)               | 1   | 2   | 3   | 4   |
| 4      | 0   | 0                      | 0.5 | 1.0 | μ <sub>R</sub> (γ) |     |     |     |     |

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} \left( \min \left( \mu_{R}(x), \mu_{R}(x, y) \right) \right)$$

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

| R(x,y) | 1   | 2                      | 3   | 4   | _ R | (x)              | 1   | 2   | 3   | 4   |
|--------|-----|------------------------|-----|-----|-----|------------------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5<br>1.0<br>0.5<br>0 | 0   | 0   | μţ  | (x)              | 1.0 | 0.7 | 0.4 | 0.1 |
| 2      | 0.5 | 1.0                    | 0.5 | 0   |     |                  |     |     |     |     |
| 3      | 0   | 0.5                    | 1.0 | 0.5 | R   | (y)              | 1   | 2   | 3   | 4   |
| 4      | 0   | 0                      | 0.5 | 1.0 | μ   | <sub>R</sub> (y) | 1.0 |     |     |     |

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} (\min (\mu_{R}(x), \mu_{R}(x, y))$$

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

|   |     | 2                      |     |     | R(x)              | ) 1   | 2   | 3   | 4   |
|---|-----|------------------------|-----|-----|-------------------|-------|-----|-----|-----|
| 1 | 1.0 | 0.5                    | 0   | 0   | $\mu_{R}(x)$      | 1.0   | 0.7 | 0.4 | 0.1 |
| 2 | 0.5 | 1.0                    | 0.5 | 0   |                   |       |     |     |     |
| 3 | 0   | 0.5                    | 1.0 | 0.5 | -                 | )   1 |     |     |     |
| 4 | 0   | 0.5<br>1.0<br>0.5<br>0 | 0.5 | 1.0 | μ <sub>R</sub> (γ | ) 1.0 | 0.7 | 0.5 | 0.4 |

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} (\min (\mu_{R}(x), \mu_{R}(x, y))$$

• consider the fuzzy rule and the premise given as : 'x and y are approximately equal' and 'x is 2' R(x,y) = ApproximatelyEqual(x,y)

| R(x,y) | 1   | 2   | 3   | 4   |
|--------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5 | 0   | 0   |
| 2      | 0.5 | 1.0 | 0.5 | 0   |
| 3      | 0   | 0.5 | 1.0 | 0.5 |
| 4      | 0   | 0   | 0.5 | 1.0 |

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} (\min (\mu_{R}(x), \mu_{R}(x, y))$$

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

| R(x,y) | 1   | 2   | 3   | 4   |
|--------|-----|-----|-----|-----|
| 1      | 1.0 | 0.5 | 0   | 0   |
| 2      | 0.5 | 1.0 | 0.5 | 0   |
| 3      | 0   | 0.5 | 1.0 | 0.5 |
| 4      | 0   | 0   | 0.5 | 1.0 |

$$R(x)$$
 1 2 3 4  $\mu_R(x)$  0 1.0 0 0

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} (\min (\mu_{R}(x), \mu_{R}(x, y))$$

consider the fuzzy rule and the premise given as:

$$R(x, y) = Approximately Equal(x, y)$$

$$R(x) = Small(x)$$

|   |     | 2                      |     |     | R(x)         | 1   | 2   | 3   | 4 |
|---|-----|------------------------|-----|-----|--------------|-----|-----|-----|---|
| 1 | 1.0 | 0.5                    | 0   | 0   | $\mu_{R}(x)$ | 0   | 1.0 | 0   | 0 |
| 2 | 0.5 | 1.0                    | 0.5 | 0   |              |     |     |     |   |
| 3 | 0   | 0.5                    | 1.0 | 0.5 | R(y)         | 1   | 2   | 3   | 4 |
| 4 | 0   | 0.5<br>1.0<br>0.5<br>0 | 0.5 | 1.0 | $\mu_{R}(y)$ | 0.5 | 1.0 | 0.5 | 0 |

$$R(y) = R(x) \circ R(x, y)$$

$$\mu_{R}(y) = \max_{x} (\min (\mu_{R}(x), \mu_{R}(x, y))$$

most popular form of the representation: if-then rule

• The rule is :  $R(x, y) (A(x) \rightarrow B(y))$ 

most popular form of the representation: if-then rule

• The rule is :  $R(x, y) (A(x) \rightarrow B(y))$ 

$$\mu_{R}(x, y) = f(\mu_{A}(x), \mu_{B}(y))$$

- most popular form of the representation: if-then rule
- The rule is :  $R(x, y) (A(x) \rightarrow B(y))$

$$\mu_R(x, y) = f(\mu_A(x), \mu_B(y))$$

Mamdani

$$f(\mu_A(x), \mu_B(y)) = \mu_A(x) \wedge \mu_B(y)$$

- most popular form of the representation: if-then rule
- The rule is :  $R(x, y) (A(x) \rightarrow B(y))$

$$\mu_{R}(x,y) = f(\mu_{A}(x), \mu_{B}(y))$$

$$Mamdani$$

$$f(\mu_{A}(x), \mu_{B}(y)) = \mu_{A}(x) \wedge \mu_{B}(y)$$

$$f(\mu_{A}(x), \mu_{B}(y)) = \mu_{A}(x) \wedge \mu_{B}(y)$$

$$f(\mu_{A}(x), \mu_{B}(y)) = \mu_{A}(x) \wedge \mu_{B}(y)$$

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

$$\mu_A(t)$$
 0.1 0.2 0.6 0.9

| D | _ | 'fa | in | l. | hic  | h'    |
|---|---|-----|----|----|------|-------|
| D | _ | ) u |    | ıy | IIIC | / T \ |

| В                  | 40  | 60  | 80  | 90  |
|--------------------|-----|-----|-----|-----|
| μ <sub>B</sub> (h) | 0.3 | 0.5 | 0.8 | 1.0 |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

#### B = 'fairly high'

| В            | 40  | 60  | 80  | 90  |
|--------------|-----|-----|-----|-----|
| $\mu_{B}(h)$ | 0.3 | 0.5 | 0.8 | 1.0 |

#### Mamdani

| R(t,h) | 40 | 60 | 80 | 90 |
|--------|----|----|----|----|
| 10     |    |    |    |    |
| 20     |    |    |    |    |
| 30     |    |    |    |    |
| 40     |    |    |    |    |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

| В            | 40  | 60  | 80  | 90  |
|--------------|-----|-----|-----|-----|
| $\mu_{B}(h)$ | 0.3 | 0.5 | 0.8 | 1.0 |

#### Mamdani

| R(t,h) | 40  | 60  | 80  | 90  |
|--------|-----|-----|-----|-----|
| 10     | 0.1 | 0.1 | 0.1 | 0.1 |
| 20     |     |     |     |     |
| 30     |     |     |     |     |
| 40     |     |     |     |     |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

| В            | 40  | 60  | 80  | 90  |
|--------------|-----|-----|-----|-----|
| $\mu_{B}(h)$ | 0.3 | 0.5 | 0.8 | 1.0 |

#### Mamdani

| R(t,h) | 40  | 60  | 80  | 90  |
|--------|-----|-----|-----|-----|
| 10     | 0.1 | 0.1 | 0.1 | 0.1 |
| 20     | 0.2 | 0.2 | 0.2 | 0.2 |
| 30     | 0.3 | 0.5 | 0.6 | 0.6 |
| 40     | 0.3 | 0.5 | 0.8 | 0.9 |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

| Α          | 10  | 20  | 30  | 40  |   |
|------------|-----|-----|-----|-----|---|
| $\mu_A(t)$ | 0.1 | 0.2 | 0.6 | 0.9 | - |

A - 'high'

|                        |     | •   |     |     |
|------------------------|-----|-----|-----|-----|
| В                      | 40  | 60  | 80  | 90  |
| <br>μ <sub>R</sub> (h) | 0.3 | 0.5 | 0.8 | 1.0 |

| Mamdani |     |     |     |     | Larsen |    |    |    |    |  |
|---------|-----|-----|-----|-----|--------|----|----|----|----|--|
| R(t,h)  | 40  | 60  | 80  | 90  | R(t,h) | 40 | 60 | 80 | 90 |  |
| 10      | 0.1 | 0.1 | 0.1 | 0.1 | 10     |    |    |    |    |  |
| 20      | 0.2 | 0.2 | 0.2 | 0.2 | 20     |    |    |    |    |  |
| 30      | 0.3 | 0.5 | 0.6 | 0.6 | 30     |    |    |    |    |  |
| 40      | 0.3 | 0.5 | 0.8 | 0.9 | 40     |    |    |    |    |  |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

| Α          | 10  | 20  | 30  | 40  |
|------------|-----|-----|-----|-----|
| $\mu_A(t)$ | 0.1 | 0.2 | 0.6 | 0.9 |

A - 'high'

|                        |     | •   |     |     |
|------------------------|-----|-----|-----|-----|
| В                      | 40  | 60  | 80  | 90  |
| <br>μ <sub>κ</sub> (h) | 0.3 | 0.5 | 0.8 | 1.0 |

| Mamdani |     |     |     |     | Larsen |      |    |    |    |   |
|---------|-----|-----|-----|-----|--------|------|----|----|----|---|
| R(t,h)  | 40  | 60  | 80  | 90  | R(t,h) | 40   | 60 | 80 | 90 | _ |
| 10      | 0.1 | 0.1 | 0.1 | 0.1 | 10     | 0.03 |    |    |    |   |
| 20      | 0.2 | 0.2 | 0.2 | 0.2 | 20     |      |    |    |    |   |
| 30      | 0.3 | 0.5 | 0.6 | 0.6 | 30     |      |    |    |    |   |
| 40      | 0.3 | 0.5 | 0.8 | 0.9 | 40     |      |    |    |    |   |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

|            | A = r |     |     |     |   |
|------------|-------|-----|-----|-----|---|
| Α          | 10    | 20  | 30  | 40  |   |
| $\mu_A(t)$ | 0.1   | 0.2 | 0.6 | 0.9 | - |

1 - 1 - 1 - 1 - 1 - 1 - 1

| Mamdani |     |     |     |     | Larsen |      |      |    |    |   |
|---------|-----|-----|-----|-----|--------|------|------|----|----|---|
| R(t,h)  | 40  | 60  | 80  | 90  | R(t,h) | 40   | 60   | 80 | 90 |   |
| 10      | 0.1 | 0.1 | 0.1 | 0.1 | 10     | 0.03 | 0.05 |    |    | _ |
| 20      | 0.2 | 0.2 | 0.2 | 0.2 | 20     |      |      |    |    |   |
| 30      | 0.3 | 0.5 | 0.6 | 0.6 | 30     |      |      |    |    |   |
| 40      | 0.3 | 0.5 | 0.8 | 0.9 | 40     |      |      |    |    |   |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

|            | A = r |     |     |     |
|------------|-------|-----|-----|-----|
| Α          | 10    | 20  | 30  | 40  |
| $\mu_A(t)$ | 0.1   | 0.2 | 0.6 | 0.9 |

A = 11=:=1=1

|                        | _   | •   |     |     |   |
|------------------------|-----|-----|-----|-----|---|
| В                      | 40  | 60  | 80  | 90  |   |
| <br>μ <sub>Β</sub> (h) | 0.3 | 0.5 | 0.8 | 1.0 | _ |

|        | Marr | ndani |     |     |   |        | Lar  | sen  |      |    |  |
|--------|------|-------|-----|-----|---|--------|------|------|------|----|--|
| R(t,h) | 40   | 60    | 80  | 90  | _ | R(t,h) | 40   | 60   | 80   | 90 |  |
| 10     | 0.1  | 0.1   | 0.1 | 0.1 |   | 10     | 0.03 | 0.05 | 0.08 |    |  |
| 20     | 0.2  | 0.2   | 0.2 | 0.2 |   | 20     |      |      |      |    |  |
| 30     | 0.3  | 0.5   | 0.6 | 0.6 |   | 30     |      |      |      |    |  |
| 40     | 0.3  | 0.5   | 0.8 | 0.9 |   | 40     |      |      |      |    |  |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

|            | A - 1 | ligri |     |     |   |
|------------|-------|-------|-----|-----|---|
| Α          | 10    | 20    | 30  | 40  |   |
| $\mu_A(t)$ | 0.1   | 0.2   | 0.6 | 0.9 | • |

1 - "high"

|        | Man | ndani |     |     |        | Lar  | sen  |      |     |  |
|--------|-----|-------|-----|-----|--------|------|------|------|-----|--|
| R(t,h) | 40  | 60    | 80  | 90  | R(t,h) | 40   | 60   | 80   | 90  |  |
| 10     | 0.1 | 0.1   | 0.1 | 0.1 | 10     | 0.03 | 0.05 | 0.08 | 0.1 |  |
| 20     | 0.2 | 0.2   | 0.2 | 0.2 | 20     |      |      |      |     |  |
| 30     | 0.3 | 0.5   | 0.6 | 0.6 | 30     |      |      |      |     |  |
| 40     | 0.3 | 0.5   | 0.8 | 0.9 | 40     |      |      |      |     |  |

consider the fuzzy rule given as:

'if temperature is high, then humidity is fairly high'

 $R(t, h) = A(t) \rightarrow B(h)$  where A in T and B in H

|                    | A - 1 | ligh |     |     |   |
|--------------------|-------|------|-----|-----|---|
| Α                  | 10    | 20   | 30  | 40  |   |
| μ <sub>Α</sub> (†) | 0.1   | 0.2  | 0.6 | 0.9 | _ |

1 - 'hich'

|   |   |    | •  | J   |     |   |
|---|---|----|----|-----|-----|---|
|   | В | 40 | 60 | 80  | 90  |   |
| • |   |    |    | 0.8 | 1.0 | • |

|        | Man | ndani      |     |     |    | Lar                          | rsen |      |     |  |
|--------|-----|------------|-----|-----|----|------------------------------|------|------|-----|--|
| R(t,h) | 40  | 60         | 80  | 90  | -  | 1) 40                        |      |      |     |  |
| 10     | 0.1 | 0.1        | 0.1 | 0.1 | 10 | 0.03<br>0.06<br>0.18<br>0.27 | 0.05 | 0.08 | 0.1 |  |
| 20     | 0.2 | 0.2<br>0.5 | 0.2 | 0.2 | 20 | 0.06                         | 0.1  | 0.16 | 0.2 |  |
| 30     | 0.3 | 0.5        | 0.6 | 0.6 | 30 | 0.18                         | 0.3  | 0.48 | 0.6 |  |
| 40     | 0.3 | 0.5        | 8.0 | 0.9 | 40 | 0.27                         | 0.45 | 0.72 | 0.9 |  |

consider the fuzzy rule given as:

R(t,h) = 'if temperature is high, then humidity is fairly high' A' = 'temperature is fairly high'

consider the fuzzy rule given as:

R(t,h) = 'if temperature is high, then humidity is fairly high' A' = 'temperature is fairly high'

| A'         | 10   | 20   | 30  | 40  |   |
|------------|------|------|-----|-----|---|
| $\mu_A(t)$ | 0.02 | 0.15 | 0.5 | 0.8 | - |

| R(t,h) | 40  | 60  | 80  | 90  |
|--------|-----|-----|-----|-----|
| 10     | 0.1 | 0.1 | 0.1 | 0.1 |
| 20     | 0.2 | 0.2 | 0.2 | 0.2 |
| 30     | 0.3 | 0.5 | 0.6 | 0.6 |
| 40     | 0.3 | 0.5 | 0.8 | 0.9 |

consider the fuzzy rule given as:

R(t,h) = 'if temperature is high, then humidity is fairly high' A' = 'temperature is fairly high'

A' = 'fairly high'

| A'         | 10   | 20   | 30  | 40  |   |
|------------|------|------|-----|-----|---|
| $\mu_A(t)$ | 0.02 | 0.15 | 0.5 | 0.8 | - |

| R(t,h) | 40  | 60  | 80  | 90  |
|--------|-----|-----|-----|-----|
| 10     | 0.1 | 0.1 | 0.1 | 0.1 |
| 20     | 0.2 | 0.2 | 0.2 | 0.2 |
| 30     | 0.3 | 0.5 | 0.6 | 0.6 |
| 40     | 0.3 | 0.5 | 0.8 | 0.9 |

#### Mamdani

| B'                  | 40  | 60  | 80  | 90  |
|---------------------|-----|-----|-----|-----|
| μ <sub>Β'</sub> (h) | 0.3 | 0.5 | 0.8 | 0.8 |

#### Multiple Input Multiple Output

• R: if  $x_1$  is  $A_1, x_2$  is  $A_2, ..., x_n$  is  $A_n$ , then  $z_1$  is  $C_1, z_2$  is  $C_2, ..., z_m$  is  $C_m$ 

#### Multiple Input Multiple Output

• R: if  $x_1$  is  $A_1, x_2$  is  $A_2, ..., x_n$  is  $A_n$ , then  $z_1$  is  $C_1, z_2$  is  $C_2, ..., z_m$  is  $C_m$ 

 $R_1$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_1$  is  $C_1$ 

 $R_2$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_2$  is  $C_2$ 

. . .

 $R_m$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_m$  is  $C_m$ 

#### Multiple Input Multiple Output

• R: if  $x_1$  is  $A_1, x_2$  is  $A_2, ..., x_n$  is  $A_n$ , then  $z_1$  is  $C_1, z_2$  is  $C_2, ..., z_m$  is  $C_m$ 

 $R_1$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_1$  is  $C_1$ 

 $R_2$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_2$  is  $C_2$ 

. . .

 $R_m$ : if  $x_1$  is  $A_1$ ,  $x_2$  is  $A_2$ , ...,  $x_n$  is  $A_n$ , then  $z_m$  is  $C_m$ 

 a multiple input multiple output fuzzy system can considered as a collection of multiple input single output fuzzy systems

$$R = \{R_1, R_2, ..., R_m\}$$

#### Two Input Single Output

input : x is A' and y is B'

 $R_1$ : if x is  $A_1$  and y is  $B_1$ , then z is  $C_1$ 

 $R_2$ : if x is  $A_2$  and y is  $B_2$ , then z is  $C_2$ 

. . .

 $R_m$ : if x is  $A_m$  and y is  $B_2$ , then z is  $C_m$ 

output : z is C'

#### Two Input Single Output

• input : x is A' and y is B'

 $R_1$ : if x is  $A_1$  and y is  $B_1$ , then z is  $C_1$ 

 $R_2$ : if x is  $A_2$  and y is  $B_2$ , then z is  $C_2$ 

. . .

 $R_m$ : if x is  $A_m$  and y is  $B_2$ , then z is  $C_m$ 

output: z is C'

•  $R_i$ : if x is  $A_i$  and y is  $B_i$ , then z is  $C_i$ 

 $R_i: (A_i \text{ and } B_i) \rightarrow C_i$ 

#### Two Input Single Output

```
• input : x is A' and y is B'
```

$$R_1$$
: if x is  $A_1$  and y is  $B_1$ , then z is  $C_1$ 

$$R_2$$
: if x is  $A_2$  and y is  $B_2$ , then z is  $C_2$ 

. . .

$$R_m$$
: if x is  $A_m$  and y is  $B_2$ , then z is  $C_m$ 

• 
$$R_i$$
: if x is  $A_i$  and y is  $B_i$ , then z is  $C_i$ 

$$R_i: (A_i \text{ and } B_i) \rightarrow C_i$$

$$R_i: (A_i \rightarrow C_i)$$
 and  $(B_i \rightarrow C_i)$ 

#### Two Input Single Output

```
input: x is A' and y is B'
```

$$R_1$$
: if x is  $A_1$  and y is  $B_1$ , then z is  $C_1$ 

$$R_2$$
: if x is  $A_2$  and y is  $B_2$ , then z is  $C_2$ 

. . .

$$R_m$$
: if x is  $A_m$  and y is  $B_2$ , then z is  $C_m$ 

• 
$$R_i$$
: if x is  $A_i$  and y is  $B_i$ , then z is  $C_i$ 

$$R_i: (A_i \text{ and } B_i) \rightarrow C_i$$

$$R_i: (A_i \rightarrow C_i)$$
 and  $(B_i \rightarrow C_i)$ 

$$R_i = R_{i,1} \wedge R_{i,2}$$

### Inference

most popular form of the representation: if-then rule

• the rule is : If x is A, then z is C

If A(x), then  $C(z) : R(x, z) (A(x) \rightarrow C(z))$ 

the fact is x is A'

the result is z is C'

Mamdani

 $R(y) = R(x) \circ R(x, z)$ 

min for the implication

Larsen

 $R(y) = R(x) \circ R(x, z)$ 

product for the implication

### Fuzzy Input

• the fact is : x is A'

the rule is : If x is A, then z is C

the result is  $z \in C'$ 

### Fuzzy Input

• the fact is  $x ext{ is } A'$ 

the rule is : If x is A, then z is C

the result is : z is C'

•  $C' = A' \circ (A \rightarrow C) = A' \circ R$ 

### Fuzzy Input

• the fact is  $x ext{ is } A'$ 

the rule is : If x is A, then z is C

the result is : z is C'

•  $C' = A' \circ (A \rightarrow C) = A' \circ R$ 

 $\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$ 

### Fuzzy Input

```
• the fact is x 	ext{ is } A'
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

• 
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{C'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{R}(x,z) \}$$

### Fuzzy Input

• the fact is  $x ext{ is } A'$ 

the rule is : If x is A, then z is C

the result is z = z + c'

•  $C' = A' \circ (A \rightarrow C) = A' \circ R$ 

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{R}(x,z) \} = \max_{x} \{ \mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{C}(z)) \}$$

### Fuzzy Input

```
the fact is : x is A'
   the rule is : If x is A, then z is C
    the result is z \in C'
• C' = A' o (A→C) = A' o R
\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_A(x) \rightarrow \mu_C(z))
\mu_{C'}(z) = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{R}(x,z) \} = \max_{x} \{ \mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{C}(z)) \}
        = \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)
```

### Fuzzy Input

the fact is : x is A'

the rule is : If x is A, then z is C

• 
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land \mu_{\mathcal{R}}(x,z) \} = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land (\mu_{\mathcal{A}}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$





### Fuzzy Input

the fact is : x is A'

the rule is : If x is A, then z is C

• 
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land \mu_{\mathcal{R}}(x,z) \} = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land (\mu_{\mathcal{A}}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$





### Fuzzy Input

• the fact is : x is A'

the rule is : If x is A, then z is C

• 
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land \mu_{\mathcal{R}}(x,z) \} = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land (\mu_{\mathcal{A}}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$



### Fuzzy Input

• the fact is : x is A'

the rule is : If x is A, then z is C

• 
$$C' = A' \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_{A'}(x) \circ (\mu_{A}(x) \rightarrow \mu_{C}(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land \mu_{\mathcal{R}}(x,z) \} = \max_{x} \{ \mu_{\mathcal{A}'}(x) \land (\mu_{\mathcal{A}}(x) \land \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_{A'}(x) \wedge \mu_{A}(x) \} \wedge \mu_{C}(z) = \alpha_{1} \wedge \mu_{C}(z)$$



#### Singleton Input

• the fact is :  $x ext{ is } x_0$ 

the rule is : If x is A, then z is C

the result is : z is C'

•  $C' = x_0 \circ (A \rightarrow C) = A' \circ R$ 

#### Singleton Input

• the fact is :  $x ext{ is } x_0$ 

the rule is : If x is A, then z is C

the result is : z is C'

•  $C' = x_0 \circ (A \rightarrow C) = A' \circ R$ 

 $\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$ 

```
• the fact is : x is x_0
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

the result is 
$$z \in C'$$

• 
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, z) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_C(z)) \}$$

```
• the fact is : x is x_0
   the rule is : If x is A, then z is C
    the result is z \in C'
• C' = x_0 \circ (A \rightarrow C) = A' \circ R
\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))
\mu_{C'}(z) = \max_{x} \{\mu_0 \wedge \mu_R(x,z)\} = \max_{x} \{\mu_0 \wedge (\mu_A(x) \wedge \mu_C(z))\}
         = \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)
```

```
• the fact is : x is x_0
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

• 
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, z) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_C(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$





```
• the fact is : x is x_0
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

• 
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, z) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_{\mathcal{C}}(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$





```
• the fact is : x is x_0
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

• 
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, z) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_C(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$



```
• the fact is : x is x_0
```

the rule is : If 
$$x$$
 is  $A$ , then  $z$  is  $C$ 

• 
$$C' = x_0 \circ (A \rightarrow C) = A' \circ R$$

$$\mu_{C'}(z) = \mu_0 \circ (\mu_A(x) \rightarrow \mu_C(z))$$

$$\mu_{\mathcal{C}'}(z) = \max_{x} \{ \mu_0 \wedge \mu_R(x, z) \} = \max_{x} \{ \mu_0 \wedge (\mu_A(x) \wedge \mu_C(z)) \}$$

$$= \max_{x} \{ \mu_0 \wedge \mu_A(x) \} \wedge \mu_C(z) = \alpha_1 \wedge \mu_C(z)$$



### Single Input Single Output

input : x is A'

 $R_1$ : if x is  $A_1$ , then z is  $C_1$ :  $A_1 \rightarrow C_1$ 

 $R_2$ : if x is  $A_2$ , then z is  $C_2$ :  $A_2 \rightarrow C_2$ 

output : z is C'

### Single Input Single Output

```
    input: x is A'
        R<sub>1</sub>: if x is A<sub>1</sub>, then z is C<sub>1</sub>: A<sub>1</sub> → C<sub>1</sub>
        R<sub>2</sub>: if x is A<sub>2</sub>, then z is C<sub>2</sub>: A<sub>2</sub> → C<sub>2</sub>
        output: z is C'
    C' = A'o (R<sub>1</sub> U R<sub>2</sub>) = A' o [(A<sub>1</sub> → C<sub>1</sub>) U (A<sub>2</sub> → C<sub>2</sub>)]
```

### Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```

•  $C' = A' \circ (R_1 \cup R_2) = A' \circ [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$  $C' = [A' \circ (A_1 \rightarrow C_1)] \cup [A' \circ (A_2 \rightarrow C_2)] = C_1' \cup C_2'$ 

### Single Input Single Output

```
    input: x is A'
        R<sub>1</sub>: if x is A<sub>1</sub>, then z is C<sub>1</sub> : A<sub>1</sub> → C<sub>1</sub>
        R<sub>2</sub>: if x is A<sub>2</sub>, then z is C<sub>2</sub> : A<sub>2</sub> → C<sub>2</sub>
        output: z is C'
        C' = A'o (R<sub>1</sub> ∪ R<sub>2</sub>) = A' o [(A<sub>1</sub> → C<sub>1</sub>) ∪ (A<sub>2</sub> → C<sub>2</sub>)]
        C' = [A' o (A<sub>1</sub> → C<sub>1</sub>)] ∪ [A' o (A<sub>2</sub> → C<sub>2</sub>)] = C<sub>1</sub>' ∪ C<sub>2</sub>'
        µ<sub>C'</sub>(z) = max { µ<sub>C-1'</sub>(z), µ<sub>C-2'</sub>(z) }
```

### Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```





### Single Input Single Output

```
• input: x is A'
R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1
R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2
output: z is C'
```

•  $C' = A'o (R_1 \cup R_2) = A'o [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$   $C' = [A'o (A_1 \rightarrow C_1)] \cup [A'o (A_2 \rightarrow C_2)] = C_1' \cup C_2'$  $\mu_{C'}(z) = \max \{ \mu_{C_1}(z), \mu_{C_2}(z) \}$ 





### Single Input Single Output

• input: x is A'  $R_1: \text{if } x \text{ is } A_1, \text{ then } z \text{ is } C_1 : A_1 \twoheadrightarrow C_1$   $R_2: \text{if } x \text{ is } A_2, \text{ then } z \text{ is } C_2 : A_2 \twoheadrightarrow C_2$ output: z is C'

•  $C' = A'o (R_1 \cup R_2) = A'o [(A_1 \rightarrow C_1) \cup (A_2 \rightarrow C_2)]$   $C' = [A'o (A_1 \rightarrow C_1)] \cup [A'o (A_2 \rightarrow C_2)] = C_1' \cup C_2'$  $\mu_{C'}(z) = \max \{ \mu_{C_1}(z), \mu_{C_2}(z) \}$ 







### Two Input Single Output

input: x is A' and y is B'

R: if x is A and y is B, then z is C: (A and B)  $\rightarrow$  C

output : z is C'

### Two Input Single Output

```
    input: x is A' and y is B'
    R: if x is A and y is B, then z is C: (A and B) → C
    output: z is C'
```

•  $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$ 

- input: x is A' and y is B'
   R: if x is A and y is B, then z is C : (A and B) → C
   output: z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$  $C' = [A' \circ (A \rightarrow C)] \cap [A' \circ (B \rightarrow C)] = C_1' \cap C_2'$

- input: x is A' and y is B'
   R: if x is A and y is B, then z is C: (A and B) → C
   output: z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$   $C' = [A' \circ (A \rightarrow C)] \cap [A' \circ (B \rightarrow C)] = C_1' \cap C_2'$  $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$

- input: x is A' and y is B'
   R: if x is A and y is B, then z is C : (A and B) → C
  - output : z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \to C] = A' \circ [(A \to C) \cap (B \to C)]$   $C' = [A' \circ (A \to C)] \cap [A' \circ (B \to C)] = C_1' \cap C_2'$  $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$



- input: x is A' and y is B'
   R: if x is A and y is B, then z is C : (A and B) → C
  - output : z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \to C] = A' \circ [(A \to C) \cap (B \to C)]$   $C' = [A' \circ (A \to C)] \cap [A' \circ (B \to C)] = C_1' \cap C_2'$  $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$



- input: x is A' and y is B'

  R: if x is A and y is B, then z is  $C: (A \text{ and } B) \rightarrow C$ 
  - output : z is C'
- $C' = A' \circ R = A' \circ [(A \text{ and } B) \rightarrow C] = A' \circ [(A \rightarrow C) \cap (B \rightarrow C)]$   $C' = [A' \circ (A \rightarrow C)] \cap [A' \circ (B \rightarrow C)] = C_1' \cap C_2'$  $\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \}$



#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

#### Singleton Input

```
 the fact is : x is 3 and y is 4
```

the rule is : If 
$$x$$
 is  $A$  and  $y$  is  $B$ , then  $z$  is  $C$ 

the result is 
$$z is C'$$

where 
$$A = (0, 2, 5)$$
,  $B = (3, 5, 6)$ , and  $C = (1, 3, 5)$ 

• 
$$\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$$
 where  $\alpha_1 = \mu_A(x_0)$ 

$$\mu_{C/2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

#### Singleton Input

```
• the fact is x = x = 3 and y = 4
```

the rule is : If 
$$x$$
 is  $A$  and  $y$  is  $B$ , then  $z$  is  $C$ 

the result is 
$$z \in C'$$

where 
$$A = (0, 2, 5)$$
,  $B = (3, 5, 6)$ , and  $C = (1, 3, 5)$ 

• 
$$\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$$
 where  $\alpha_1 = \mu_A(x_0)$   
 $\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$  where  $\alpha_2 = \mu_B(y_0)$   
 $\mu_{C'}(z) = \min \{ \mu_{C_1}(z), \mu_{C_2}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_C(z)$ 

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \wedge \mu_{C}(z)$$





#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z \in C'$ 

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$  where  $\alpha_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$  $\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z)$  where  $\alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$ 

#### Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--
the rule is : If x is A and y is B, then z is C
the result is : z is C'
where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)
```

•  $\mu_{C_{-1}}(z) = \alpha_1 \wedge \mu_C(z)$  where  $\alpha_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_{-2}}(z) = \alpha_2 \wedge \mu_C(z) \text{ where } \alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_{-1}}(z), \mu_{C_{-2}}(z)\} = (\alpha_1 \wedge \alpha_2) \wedge \mu_C(z)$ 

#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = a_1 \wedge \mu_C(z)$  where  $a_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_2}(z) = a_2 \wedge \mu_C(z) \text{ where } a_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_1}(z), \mu_{C_2}(z)\} = (a_1 \wedge a_2) \wedge \mu_C(z)$ 







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = a_1 \wedge \mu_C(z)$  where  $a_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_2}(z) = a_2 \wedge \mu_C(z) \text{ where } a_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_1}(z), \mu_{C_2}(z)\} = (a_1 \wedge a_2) \wedge \mu_C(z)$ 







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = \alpha_1 \wedge \mu_C(z)$  where  $\alpha_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_2}(z) = \alpha_2 \wedge \mu_C(z) \text{ where } \alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_1}(z), \mu_{C_2}(z)\} = (\alpha_1 \wedge \alpha_2) \wedge \mu_C(z)$ 







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = a_1 \wedge \mu_C(z)$  where  $a_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_2}(z) = a_2 \wedge \mu_C(z) \text{ where } a_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_1}(z), \mu_{C_2}(z)\} = (a_1 \wedge a_2) \wedge \mu_C(z)$ 







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 6) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 5), B = (3, 5, 6), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = a_1 \wedge \mu_C(z)$  where  $a_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$   $\mu_{C_2}(z) = a_2 \wedge \mu_C(z) \text{ where } a_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$   $\mu_{C'}(z) = \min\{\mu_{C_1}(z), \mu_{C_2}(z)\} = (a_1 \wedge a_2) \wedge \mu_C(z)$ 





#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = \alpha_1 \cdot \mu_C(z)$  where  $\alpha_1 = \mu_A(x_0)$ 

 $\mu_{C_2}(z) = \alpha_2 \cdot \mu_C(z)$  where  $\alpha_2 = \mu_B(y_0)$ 

#### Singleton Input

```
    the fact is : x is 3 and y is 4
    the rule is : If x is A and y is B, then z is C
    the result is : z is C'
    where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)
```

• 
$$\mu_{C_1}(z) = \alpha_1 \cdot \mu_C(z)$$
 where  $\alpha_1 = \mu_A(x_0)$   
 $\mu_{C_2}(z) = \alpha_2 \cdot \mu_C(z)$  where  $\alpha_2 = \mu_B(y_0)$   
 $\mu_{C'}(z) = \min \{ \mu_{C_1}(z), \mu_{C_2}(z) \} = (\alpha_1 \wedge \alpha_2) \cdot \mu_C(z)$ 

#### Singleton Input

• the fact is x = x = 3 and y = x = 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

$$\mu_{C_2}(z) = \alpha_2 \cdot \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \cdot \mu_{C}(z)$$







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

$$\mu_{C/2}(z) = \alpha_2 \cdot \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \cdot \mu_{C}(z)$$







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

$$\mu_{C/2}(z) = \alpha_2 \cdot \mu_C(z)$$
 where  $\alpha_2 = \mu_B(y_0)$ 

$$\mu_{C'}(z) = \min \{ \mu_{C_1'}(z), \mu_{C_2'}(z) \} = (\alpha_1 \wedge \alpha_2) \cdot \mu_{C}(z)$$





#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = \alpha_1 \cdot \mu_C(z)$  where  $\alpha_1 = \mu_A(x_0)$   $\mu_{C_2}(z) = \alpha_2 \cdot \mu_C(z)$  where  $\alpha_2 = \mu_B(y_0)$  $\mu_{C'}(z) = \min \{ \mu_{C_1}(z), \mu_{C_2}(z) \} = (\alpha_1 \land \alpha_2) \cdot \mu_C(z)$ 



#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

#### Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)-- the rule is : If x is A and y is B, then z is C the result is : z is C'
```

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)

•  $\mu_{C_1}(z) = \alpha_1 \cdot \mu_C(z)$  where  $\alpha_1 = \max_x \{\min(\mu_A(x), \mu_{A'}(x))\}$  $\mu_{C_2}(z) = \alpha_2 \cdot \mu_C(z)$  where  $\alpha_2 = \max_y \{\min(\mu_B(y), \mu_{B'}(y))\}$ 

#### Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--
the rule is : If x is A and y is B, then z is C
the result is : z is C'
where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)
• \mu_{C_1}(z) = \alpha_1 \cdot \mu_C(z) where \alpha_1 = \max_x \{ \min(\mu_A(x), \mu_{A'}(x)) \}
```

#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)





#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is z is C'

where A = (0, 2, 6), B = (3, 6, 7), and C = (1, 3, 5)



#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

- the consequence of the fuzzy rule is represented by a fuzzy set with a monotonic membership function
- the output for each rule will be a crisp value induced by the rule's matching degree

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $a = a_1 \wedge a_2$  where  $a_1 = \mu_A(x_0)$  and  $a_2 = \mu_B(y_0)$ 

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $\alpha = \alpha_1 \wedge \alpha_2$  where  $\alpha_1 = \mu_A(x_0)$  and  $\alpha_2 = \mu_B(y_0)$  $z = \mu_C^{-1}(\alpha)$ 

#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $a = a_1 \wedge a_2$  where  $a_1 = \mu_A(x_0)$  and  $a_2 = \mu_B(y_0)$  $z = \mu_C^{-1}(a)$ 







#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $a = a_1 \wedge a_2$  where  $a_1 = \mu_A(x_0)$  and  $a_2 = \mu_B(y_0)$  $z = \mu_C^{-1}(a)$ 







#### Singleton Input

• the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $a = a_1 \wedge a_2$  where  $a_1 = \mu_A(x_0)$  and  $a_2 = \mu_B(y_0)$  $z = \mu_C^{-1}(a)$ 





#### Singleton Input

the fact is : x is 3 and y is 4

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

•  $\alpha = \alpha_1 \wedge \alpha_2$  where  $\alpha_1 = \mu_A(x_0)$  and  $\alpha_2 = \mu_B(y_0)$  $z = \mu_C^{-1}(\alpha)$ 



#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)

#### Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--
the rule is : If x is A and y is B, then z is C
the result is : z = z_0
where A = (0, 2, 6) and B = (3, 6, 7)
```

•  $a_1 = \max_{x} \{ \min(\mu_A(x), \mu_{A'}(x)) \}$  and  $a_2 = \max_{y} \{ \min(\mu_B(y), \mu_{B'}(y)) \}$ 

#### Fuzzy Input

```
• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--
the rule is : If x is A and y is B, then z is C
the result is : z = z_0
where A = (0, 2, 6) and B = (3, 6, 7)
```

#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)







#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)





#### Fuzzy Input

• the fact is : x is A' and y is B' --A'=(2, 4, 5) and B'=(2, 3, 5)--

the rule is : If x is A and y is B, then z is C

the result is  $z = z_0$ 

where A = (0, 2, 6) and B = (3, 6, 7)



#### Mean of Maximum

$$z^* = (a + b) / 2$$
 where the membership function gets the maximum value at the interval [a, b]

#### Mean of Maximum

$$z^* = (a + b) / 2$$

where the membership function gets the maximum value at the interval [a, b]



#### Mean of Maximum

$$z^* = (a + b) / 2$$

where the membership function gets the maximum value at the interval [a, b]



$$z^* = (4 + 7) / 2 = 5.5$$

$$z^* = (\sum \mu_{\mathcal{C}}(z_i).z_i)/(\sum \mu_{\mathcal{C}}(z_i))$$

$$z^* = (\sum \mu_{\mathcal{C}}(z_i).z_i)/(\sum \mu_{\mathcal{C}}(z_i))$$



$$z^* = (\sum \mu_C(z_i).z_i)/(\sum \mu_C(z_i))$$



$$z^* = (\sum \mu_{\mathcal{C}}(z_i).z_i)/(\sum \mu_{\mathcal{C}}(z_i))$$



#### Bisector of Area

#### Bisector of Area



#### Bisector of Area



#### Bisector of Area



#### Defuzzification

#### Bisector of Area

 $z^*$  such that  $I(a, z^*) = I(z^*, b)$  where the membership function gets the nonzero value at the interval [a, b]



#### Defuzzification

#### Bisector of Area

 $z^*$  such that  $I(a, z^*) = I(z^*, b)$  where the membership function gets the nonzero value at the interval [a, b]





 $1,000 \times 10^3$ 

Market value, \$



market value = 700



location = 6



market value = 700



location = 6



market value = 700



location = 6

 $a_3 = 1.0$ 



#### 1. House Evaluation

- 1. If (Market\_value is Low) then (House is Low)
- 2. If (Location is Bad) then (House is Low)
- If (Location is Bad) and (Market\_value is Low) then (House is Very\_low)
- 4. If (Location is Bad) and (Market\_value is Medium) then (House is Low)
- 5. If (Location is Bad) and (Market\_value is High) then (House is Medium)
- 6. If (Location is Bad) and (Market\_value is Very\_high) then (House is High)
- 7. If (Location is Fair) and (Market\_value is Low) then (House is Low)
- 8. If (Location is Fair) and (Market\_value is Medium) then (House is Medium)
- 9. If (Location is Fair) and (Market\_value is High) then (House is High)
- 10.If (Location is Fair) and (Market\_value is Very\_high) then (House is Very\_high)
- 11.If (Location is Excellent) and (Market\_value is Low) then (House is Medium)
- 12.If (Location is Excellent) and (Market\_value is Medium) then (House is High)
- 13.If (Location is Excellent) and (Market\_value is High) then (House is Very\_high)
- 14.If (Location is Excellent) and (Market\_value is Very\_high) then (House is Very\_high)





















