



# MPUP 5422 Week 2 Cost-benefit analysis

XU Yuan January 15, 2020

#### How do we make decisions?

- Do you want to live in this society?
  - Everything is free.
  - You can get whatever you want.
  - You can work as much/little as you can.
- When you travel, what hotel do you choose?



#### Discussion

■ Is there an optimal level of pollution?

If so, how do we decide upon the optimal

level?



### MARGINAL THINKING





#### Marginal thinking

- What is beauty?
  - "東家之子,增之一分則太長,減之一分則太短;著粉則太白,施朱則太赤。"
    - 戰國 楚 宋玉《登徒子好色賦》

#### Average vs. marginal



## We make decisions based on marginal but not average/total costs/benefits.



#### Pollution mitigation costs







### Valuing the environment

- 1. Hedonic pricing
- 2. Lost revenue
- 3. Contingent valuation & VSL
- 4. Innovation
- 5. Discount rate
- 6. Risk

How to value the environment

Influential factors in valuing the environment





### **HEDONIC PRICING**





#### Hedonic price and estimation

- "Hedonic prices are defined as the implicit prices of attributes and are revealed to economic agents from observed prices of differentiated products and the specific amounts of characteristics associated with them."
- "Econometrically, implicit prices are estimated by the first-step regression analysis (product price regressed on characteristics) in the construction of hedonic price indexes."
  - Source: Rosen, 1974



TABLE 1 OLS ESTIMATION RESULTS

Dependent Variable: log(price) Number of Observations: 55,799 R<sup>2</sup>: 0.7127

Adj R<sup>2</sup>: 0.7126

| Variable  | Parameter<br>Estimate | Standard<br>Error | <i>t</i> -Value |
|-----------|-----------------------|-------------------|-----------------|
| Intercept | 3.89437*              | 0.10776           | 36.14           |
| DWGRADE   | 0.15671*              | 0.00242           | 64.72           |
| DWTYPE    | 0.17258*              | 0.00392           | 43.98           |
| BATHS_FU  | 0.07107*              | 0.00219           | 32.43           |
| BATHS_HA  | 0.05302*              | 0.00237           | 22.39           |
| FTPRNT    | 0.10106*              | 0.00555           | 18.21           |
| AREA      | 0.34139*              | 0.00499           | 68.45           |
| LSIZE     | 0.02337*              | 0.00153           | 15.32           |
| AGE       | -0.02158*             | 0.00102           | -21.23          |
| YRSALE    | 0.02219*              | 0.00075808        | 29.27           |
| DISTBA    | 0.06991*              | 0.00317           | 22.08           |
| BWI       | -0.01090*             | 0.00258           | -4.22           |
| DISTDC    | -0.07736*             | 0.00465           | -16.62          |
| MHHINC    | 0.18020*              | 0.00521           | 34.6            |
| POPDEN    | -0.01548*             | 0.0009972         | -15.52          |
| BLPOP     | -0.06475*             | 0.00905           | -7.15           |
| CA        | -0.27684*             | 0.00596           | -46.42          |
| CH        | -0.22990*             | 0.00567           | -40.58          |
| HO        | -0.10029*             | 0.00333           | -30.08          |
| LOWRES    | 0.06271*              | 0.01332           | 4.71            |
| COMIND    | -0.07968*             | 0.0173            | -4.61           |
| MEDHRES   | -0.03378**            | 0.01213           | -2.78           |
| CROP      | 0.01192               | 0.0152            | 0.78            |
| FOREST    | 0.02577+              | 0.01304           | 1.98            |
| CONSV     | 0.27483*              | 0.0737            | 3.73            |
| PUBLIC    | 0.07764*              | 0.02391           | 3.25            |
| MILIT     | 0.21534               | 0.14009           | 1.54            |
| OTHER     | 0.23814*              | 0.01401           | 17              |
| AAPUBLIC  | -0.15521*             | 0.02774           | -5.6            |
| AAMILIT   | 0.52320*              | 0.14892           | 3.51            |

<sup>\*, \*\*,</sup> and + indicate significance at the 0.001, 0.005, and 0.05 levels respectively. Source: Irwin, 2002

#### The effects of open space on residential property values

"Results show a premium associated with permanently preserved open space relative to developable agricultural and forested lands and support the hypothesis that open space is most valued for providing an absence of development, rather than for providing a particular bundle of open space amenities."

Source: Irwin, 2002



### LOST REVENUE





#### Economic value of SCUBA diving in the Similan islands



diving; Tapsuwan and Asafu-Adjaye, 2008

#### Direct value of reef fishery



Figure 5.9 Direct Value of reef fishery over the past 22 years





### CONTINGENT VALUATION





#### Concept

"the contingent valuation (or CV) technique ... is based on the direct elicitation of these values from individuals through the use of carefully designed and administered sample surveys. Its appeal lies in its potential to inform damage assessment in an area (lost passive-use values) where there appear to be no behavioral trails to be followed."



#### Willingness to pay vs. Willingness to accept





#### Individual willingness to pay for saving a statistical life

| United States Type of Study and Sources                                                       | Amount<br>(millions*)  |                                                             |         |         |         |  |
|-----------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------|---------|---------|---------|--|
| Average of 29 Studies                                                                         | \$ 1.95                |                                                             |         |         |         |  |
| Extra Wages for Risky Jobs (15 studies)                                                       | 1 .00-3.00             |                                                             |         |         |         |  |
| Demand and Price                                                                              |                        |                                                             | China   |         |         |  |
| Safer cars (Winston & Mannering, 1984)<br>Smoke detectors (Dardis, 1980)                      | 1.90<br>1.00- 1.80     | Variables                                                   | Median  | 95% CI  |         |  |
| Houses in polluted areas (Smith & Gilbert, 1984)<br>Life insurance (Landefeld & Seskin, 1982) | 2.30<br>1.10           | Average WTP per person<br>(Chinese yuan)                    | 14.3    | 12.7    | 15.     |  |
| Behavior                                                                                      |                        | Average WTP for saving a<br>statistical life (Chinese yuan) | 286,000 | 254,000 | 318,000 |  |
| Pedestrian tunnel use (Melinek, 1974)<br>Safety belt use (Blomquist, 1979; 1988)              | 1.80<br>1.30-3.10      | Average WTP for saving a<br>statistical life (U.S. dollar)  | 34,458  | 30,602  | 38,313  |  |
| Speed choice (Jondrow, Bowes, & Levy, 1983)<br>Driver's travel time (Miller, 1989)            | 1.30-1.60<br>1.00-1.20 |                                                             | 14.     | - 24    | -180    |  |
| Surveys                                                                                       |                        | 200                                                         |         |         |         |  |
| Cancer (Landefeld, 1979)                                                                      | 2.40                   |                                                             |         |         |         |  |

2.60

2.00

2.20

Safer bus (Jones-Lee, Hammerton, & Phillips, 1985)

Auto safety (Viscusi, Magat, & Huber, 1989)

Safer job (Gegax, 1984)

Source: CDC, 1989; Wang and Mullahy, 2006

#### Disability-Adjusted Life Years (DALYs)





### INNOVATION





#### Porter Hypothesis

## Green and Competitive: Ending the Stalemate

by Michael E. Porter and Claas van der Linde

Pollution = Inefficiency

Pollution's hidden costs – wasted resources and effort – are buried throughout a product's life cycle.

Innovating to meet regulations can bring offsets: using inputs better, creating better products, or improving product yields.





#### **Porter Hypothesis**

Our research on competitiveness highlights the role that outside pressure plays in motivating companies to innovate.

Bad regulation is damaging to competitiveness, but the right kind of regulation can enhance it.



#### Impact of innovation



### **DISCOUNT RATE**





#### Discount rate

- Impact of discount rates:
  - High discount rates indicate that the immediate future is much more important than the distant future
- When to use discount rate
  - Calculate costs and benefits over time



#### Social discount rate

- "Under more reasonable conditions, policy makers should be more patient than private citizens, whose choices define the most shortsighted Pareto optimum."
  - Source: Caplin and Leahy, 2004



### Impact of a higher discount rate









#### Extreme events and expected damage



#### How do we respond to risks?

#### Are the two scenarios the same?

| Extreme events  | Scenario I | Scenario 2 |
|-----------------|------------|------------|
| Probability     | 10%        | 0.1%       |
| Damage          | \$1,000    | \$100,000  |
| Expected damage | \$100      | \$100      |

#### Which of the scenario is preferred?

- Risk lover
- Risk neutral person
- Risk averter





#### From risk-neutral to risk-averse







## DISCUSSION





#### Privatization

- Who really values the Earth?



A video clip



