UFRGS - INSTITUTO DE MATEMÁTICA Departamento de Matemática Pura e Aplicada MAT01168 - Turma A - 2017/2 Prova da área I

1-6	7	8	Total

Nome:	artão:	

 ${\bf Regras\ Gerais:}$

- Não é permitido o uso de calculadoras, telefones ou qualquer outro recurso computacional ou de comunicação.
- Trabalhe individualmente e sem uso de material de consulta além do fornecido.
- Devolva o caderno de questões preenchido ao final da prova.

Regras para as questões abertas

- $\bullet~$ Seja sucinto, completo e claro.
- Justifique todo procedimento usado.
- Indique identidades matemáticas usadas, em especial, itens da tabela.
- Use notação matemática consistente.

Tabela do operador $\vec{\nabla}$:

f=f(x,y,z) e g=g(x,y,z) são funções escalares; $\vec{F}=\vec{F}(x,y,z)$ e $\vec{G}=\vec{G}(x,y,z)$ são funções vetoriais.

1.	$\vec{\nabla}\left(f+g\right) = \vec{\nabla}f + \vec{\nabla}g$
2.	$\vec{\nabla} \cdot \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \cdot \vec{F} + \vec{\nabla} \cdot \vec{G}$
3.	$\vec{\nabla} \times \left(\vec{F} + \vec{G} \right) = \vec{\nabla} \times \vec{F} + \vec{\nabla} \times \vec{G}$
4.	$ec{ abla}\left(fg ight)=fec{ abla}g+gec{ abla}f$
5.	$\vec{\nabla} \cdot \left(f \vec{F} \right) = \left(\vec{\nabla} f \right) \cdot \vec{F} + f \left(\vec{\nabla} \cdot \vec{F} \right)$
6.	$\vec{\nabla} imes \left(f \vec{F} ight) = \vec{\nabla} f imes \vec{F} + f \vec{\nabla} imes \vec{F}$
7.	$\vec{\nabla} \cdot \vec{\nabla} f = \vec{\nabla}^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$
	onde $\vec{\nabla}^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ é o operador laplaciano
8.	$ec{ abla} imes\left(ec{ abla}f ight)=0$
9.	$\vec{\nabla} \cdot \left(\vec{\nabla} \times \vec{F} \right) = 0$
10.	$ec{ abla} imes \left(ec{ abla} imes ec{F} ight) = ec{ abla} \left(ec{ abla} \cdot ec{F} ight) - ec{ abla}^2 ec{F}$
10. 11.	$\vec{\nabla} \times \left(\vec{\nabla} \times \vec{F} \right) = \vec{\nabla} \left(\vec{\nabla} \cdot \vec{F} \right) - \vec{\nabla}^2 \vec{F}$ $\vec{\nabla} \cdot \left(\vec{F} \times \vec{G} \right) = G \cdot \left(\vec{\nabla} \times \vec{F} \right) - F \cdot \left(\vec{\nabla} \times \vec{G} \right)$
	, , , ,

Curvatura, torção e aceleração:				
Nome	Definição			
Curvatura	$\kappa = \left\ \frac{d\vec{T}}{ds} \right\ = \left\ \frac{\frac{d\vec{T}}{dt}}{\frac{ds}{dt}} \right\ = \frac{\ \vec{r}'(t) \times \vec{r}''(t)\ }{\ \vec{r}''(t)\ ^3}$			
Torção	$\tau = -\frac{d\vec{B}}{ds} \cdot \vec{N} = \frac{(\vec{r}'(t) \times \vec{r}''(t)) \cdot \vec{r}'''(t)}{\ \vec{r}'(t) \times \vec{r}''(t)\ ^2}$			
Módulo da Torção	$ au = \left\ \frac{d\vec{B}}{ds} \right\ = \left\ \frac{\frac{d\vec{B}}{dt}}{\frac{ds}{dt}} \right\ $			
Aceleração normal	$a_N = \frac{\ \vec{a} \times \vec{v}\ }{v} = \frac{v^2}{\rho} = \kappa v^2$			
Aceleração tangencial	$a_T = \frac{\vec{a} \cdot \vec{v}}{v} = \frac{dv}{dt}$			

Equações de Frenet-Serret:

$\frac{d\vec{T}}{ds}$	=		$\kappa ec{N}$	
$\frac{d\vec{N}}{ds}$	=	$-\kappa \vec{T}$		$+\tau\vec{B}$
$\frac{d\vec{B}}{ds}$	=		$-\tau \vec{N}$	

• Questão 1 (1.0 ponto) Considere que uma partícula descreva a trajetória dada por

$$x(t) = t$$
, $y(t) = e^t$, $z(t) = t^2$, $t \in \mathbb{R}$

- Assinale as alternativas que indicam, respectivamente, as componentes tangencial e normal da aceleração no instante t=0.
 - $(X) \ a_T = \frac{\sqrt{2}}{2}$

 $() a_N = \frac{\sqrt{2}}{2}$

() $a_T = \frac{\sqrt{2}}{4}$

 $(\)\ a_N=\frac{\sqrt{2}}{4}$

() $a_T = \frac{3\sqrt{2}}{2}$

(X) $a_N = \frac{3\sqrt{2}}{2}$

() $a_T = \frac{5\sqrt{2}}{2}$

 $(\)\ a_N = \frac{5\sqrt{2}}{2}$

 $(\)\ a_T = \frac{3\sqrt{2}}{4}$

 $(\)\ a_N = \frac{3\sqrt{2}}{4}$

ullet Questão 2 (1.0 ponto) Considere a figura formada por 4 curvas: C_0 , C_1 , C_2 e C_3 . Sabe-se que C_0 é um círculo de raio 2 centrado no centro de curvatura da curva C_2 relativo ao ponto P. Também sabe-se que todas as curvas passam pelo ponto P. Definimos as curvaturas no ponto P para as curvas C_0 , C_1 , C_2 e C_3 por κ_0 , κ_1 , κ_2 e κ_3 , respectivamente. Marque na primeira coluna o valor de κ_2 e na segunda assinale a alternativa com a afirmação correta.

() $\kappa_2 = \frac{1}{4}$

() $\kappa_1 < \kappa_2 < \kappa_3$

(X) $\kappa_2 = \frac{1}{2}$

() $\kappa_3 < \kappa_1 < \kappa_2$

() $\kappa_2 < \kappa_1 < \kappa_3$

() $\kappa_2 = 1$

() $\kappa_1 = \kappa_2 = \kappa_3$

() $\kappa_2 = 2$

(X) $\kappa_1 > \kappa_2 > \kappa_3$

• Questão 3 (1.0 ponto) Considere a seguinte expressão

$$\vec{F} \times \left(\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) \right) + \vec{F} \times \vec{\nabla}^2 \vec{F}$$

Na primeira coluna, assinale a alternativa que apresenta uma forma simplificada da mesma expressão e, na segunda, o valor da expressão para o campo $\vec{F} = x^2\vec{i} + y^2\vec{j}$.

() $\vec{\nabla}(\vec{\nabla} \cdot \vec{F}) \times \vec{F}$ () $2(x^2 - y^2)\vec{i} + 2(x^2 - y^2)\vec{j} + 2(x^2 - y^2)\vec{k}$

() $\vec{\nabla}(\vec{\nabla}\cdot\vec{F})$

() $(y^2-2)\vec{i}+(2-x^2)\vec{j}+2\vec{k}$

(X) $\vec{F} \times \vec{\nabla} (\vec{\nabla} \cdot \vec{F})$

() $(2-y^2)\vec{i} + (2-x^2)\vec{j} + 2(x^2+y^2)\vec{k}$

() $\vec{\nabla} \times \vec{F}$

(X) $2(x^2 - y^2)\vec{k}$

 $(\quad) \ \ (\vec{\nabla} \cdot \vec{F})(\vec{\nabla} \times \vec{F})$

() $(y^2 - x^2)\vec{i} + (y^2 - x^2)\vec{j} + 2(x^2 + y^2)\vec{k}$

- Questão 4 (1.0 ponto) Considere o campo $\vec{F} = F_1(x,y)\vec{i} + F_2(x,y)\vec{j}$ dado no gráfico ao lado. Em cada coluna assinale uma alternativa correta.
 - () O divergente é positivo somente na região $x \geq y$. () O divergente não existe em toda linha
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} \ge 0$ em todos os pontos.
- (X) $\vec{k} \cdot \vec{\nabla} \times \vec{F} \leq 0$ em todos os pontos.
- () O divergente é nulo em todos os pontos. () $\vec{k}\cdot\vec{\nabla}\times\vec{F}=0$ em todos os pontos.
- () O divergente é negativo em todos os
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} \ge 0$ somente na região x > y
- (X) O divergente é positivo em todos os
- () $\vec{k} \cdot \vec{\nabla} \times \vec{F} \ge 0$ somente na região x < y.

• Questão 5 (1.0 ponto) Considere o campo de velocidades e as três circunferências, C_1 , C_2 e C_3 , orientadas positivamente no sentido horário. Definimos

$$I_1 = \oint_{C_1} \vec{F} \cdot d\vec{r}, \quad I_2 = \oint_{C_2} \vec{F} \cdot d\vec{r} \quad \mathrm{e} \quad I_3 = \oint_{C_3} \vec{F} \cdot d\vec{r}$$

Em cada coluna assinale uma alternativa correta. () $I_1>0,\,I_2>0,$ e $I_3>0.$ () $|I_1|\geq |I_3|\geq |I_2|.$

- () $I_1 > 0$, $I_2 < 0$, e $I_3 < 0$.
- () $|I_1| \ge |I_2| \ge |I_3|$.
- () $I_1 > 0$, $I_2 > 0$, e $I_3 < 0$.
- () $|I_2| \ge |I_3| \ge |I_1|$.
- (X) $I_1 < 0, I_2 > 0, e I_3 > 0.$
- (X) $|I_3| \ge |I_2| \ge |I_1|$.
- () $I_1 < 0, I_2 < 0, e I_3 > 0.$
- () $|I_2| \ge |I_1| \ge |I_3|$.

• Questão 6 (1.0 ponto) Sejam $\vec{F} = (e^{-(r-2)} - e^{(r-2)})\hat{r}$ e as três esferas S_1, S_2 e S_3 , com raios 1, 2 e 3, respectivamente, todas orientadas para fora. Definimos

$$I_1 = \iint_{S_1} \vec{F} \cdot \vec{n} dS$$
, $I_2 = \iint_{S_2} \vec{F} \cdot \vec{n} dS$ e $I_3 = \iint_{S_3} \vec{F} \cdot \vec{n} dS$.

Em cada coluna assinale uma alternativa correta. (X) $I_1>0,\,I_2=0,\,$ e $I_3<0.$ () $|I_1|=|I_3|\leq |I_2|.$

- () $I_1 > 0$, $I_2 > 0$, e $I_3 < 0$. () $I_1 < 0, I_2 = 0, e I_3 > 0.$
- (X) $|I_3| \ge |I_1| \ge |I_2| = 0$.
- () $I_1 < 0, I_2 < 0, e I_3 > 0.$
- () $|I_3| = |I_1| \ge |I_2| > 0$. () $|I_1| \leq |I_2| \leq |I_3|$.
- () $I_1 > 0$, $I_2 > 0$, e $I_3 > 0$.
- () $|I_1| = |I_2| \ge |I_3|$.

• Questão 7 (2.0) Considere a região V por um lado pela superfície S_1 de equação

$$x = \sqrt{1 - y^2 - z^2}, \quad 0 \le x \le 1$$

e por outro pelo plano x=0 e o campo $\vec{F}=(x^3+1)\vec{i}+(y^3+z)\vec{j}+(z^3+x)\vec{k}$.

(a) Use o teorema da divergência para calcular o fluxo de \vec{F} através da superfície S que limita V orientada para fora.

(b) Calcule o valor de $\iint_{S_1} \vec{F} \cdot \vec{n} dS$. Dica: use o resultado do item a.

Solução: a) Observe que $\vec{\nabla} \cdot \vec{F} = 3x^2 + 3y^2 + 3z^2$ e a superfície é um hemisfério de raio 1 e $x \ge 0$. Logo

$$\begin{split} \iint_{S} \vec{F} \cdot \vec{n} dS &= \iiint_{V} \vec{\nabla} \cdot \vec{F} dV \\ &= \int_{-\pi/2}^{\pi/2} \int_{0}^{\pi} \int_{0}^{1} 3\rho^{2} \rho^{2} \operatorname{sen}(\phi) d\rho d\phi d\theta \\ &= \frac{6\pi}{5} \end{split}$$

Solução: b) O teorema da divergência nos dá

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} dV \quad = \quad \iint_{S} \vec{F} \cdot \vec{n} dS = \iint_{S_{1}} \vec{F} \cdot \vec{n} dS + \iint_{D} \vec{F} \cdot \vec{n} dS$$

onde Dé o disco $y^2+z^2\leq 1$ no plano x=0. Temos, pelo item a)

$$\iiint_{V} \vec{\nabla} \cdot \vec{F} dV = \frac{6\pi}{5}.$$

Também,

$$\iint_{D} \vec{F} \cdot \vec{n} dS = \iint_{D} (-x^{3} - 1) dA = -\iint_{D} 1 dA = -\pi.$$

Logo,

$$\iint_{S_1} \vec{F} \cdot \vec{n} dS = \frac{6\pi}{5} + \pi = \frac{11\pi}{5}.$$

ullet Questão 8 (2.0 pontos) Considere a circunferência C que limita a superfície aberta de equação

$$z = \sqrt{x^2 + y^2}, \ 0 \le z \le 2$$

orientada no sentido anti-horário (em relação ao eixo z) e o campo $\vec{F} = z^2 \vec{i} + 2x \vec{j} - y^3 \vec{k}$. Faça o que se pede:

(a) Calcule o fluxo do rotacional de \vec{F} através do disco de equação

$$x^2 + y^2 \le 2^2$$
, $z = 2$.

(b) Calcule o valor de

$$\oint_C \vec{F} \cdot d\vec{r}.$$

Solução: a) Temos que

$$\vec{\nabla} \times \vec{F} = \left| \begin{array}{ccc} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ z^2 & 2x & -y^3 \end{array} \right| = -3y^2 \vec{i} + 2z \vec{j} + 2\vec{k}.$$

Seja Do disco no plano $z=2,\,x^2+y^2\leq 4.\,$ Definimos G=z-2e temos $\vec{\nabla}G=\vec{k}.\,$ Assim,

$$\iint_{D} \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = \iint_{D} 2 dA = 8 \pi.$$

Solução: b) Pelo teorema de Stokes

$$\oint_C \vec{F} \cdot d\vec{r} = \iint_D \vec{\nabla} \times \vec{F} \cdot \vec{n} dS = 8\pi.$$