

100m Dual Laser Calibration Laser Range Finder Module

Key Properties

- Measuring Range: 0.06m ~ 30m/60m/100m

- Measure Accuracy: ±3.0 mm @ 25°C

- Measure Frequency: $1^{\sim}10$ Hz

- Laser Wavelength: 620~690 nm

- Eye Safety: Class 2 (<1mW)

- Communication Interface: TTL (UART)

- Dual Laser Calibration

Application

Measurement / Industrial / Robot / Auto Control Applications

Product Code

Product	Measure Range	Frequency	Туре	Communication Interface				
LRF: Laser Rang Finder	30M: 30 meter	10: 10Hz	PH: Precise High-end	Default: TTL (UART)				
	60M: 60 meter			USB: TTL to USB cable				
	100M: 100 meter			BT: Bluetooth				
Example: LRF30M10PH								

Introduction

LRF100M10PH is a high precision laser rangefinder module with dual calibration design to maintain absolute accuracy when operating under different environmental conditions. The small-size and lightweight feature is convenient for OEM users to integrate into systems and equipment, and the TTL UART communication interface provides users to develop and program their own application.

The LRF100M10PH offers measuring ranges from 30 up to 100 meters. The compact units with small dimensions: only 37.5 x 45.3 x 19.2 mm. They are designed for users to easily connect the Laser measurement unit to a PC or an MCU through TTL(UART) communication . A Bluetooth option is also available, please refer to the IADIY Laser Distance measuring BT-series. The unit has a 1mm resolution and an accuracy of ±3.0mm along with a high sampling rate. (up to 10 samples / second)

1. Specifications

Model Name	LRF30M10PH	LRF60M10PH	LRF100M10PH			
Measuring Range	0.06 ~ 30 meters	0.06 ~ 60 meters	0.06 ~ 100 meters			
Measure Accuracy		± 3.0 mm @ 25°C				
Measure Rate		1 ~ 10 Hz				
Mechanical Dimension		37.5 x 45.3 x 19.2 mm				
Distance Resolution		1 mm				
Starting Current	N	Min. 300mA, Typ. 500m	Α			
Operating Current		<200 mA				
Operating Voltage(DC)		2.5 ~ 3.0 V				
Transmission Mode		TTL (UART)				
Transmission Interfaces	Fer	nale USB type-B conne	ctor			
Baud Rate		9600				
Operating Temperature		0~50 ℃				
Storage Temperature		-20~70 ℃				
Buzzer Sound		60 ± 20 dB				
Weight		~16 g				
Laser Beam Size	2.5	x 5 mm @ 3 meter (FW	/HM)			
Laser Wavelength	620~690 nm					
Laser Safety		<1 mW (Class 2)				

2. Pin Assignment

Pin	Function	Description
1	Vin	Vcc
2	RxD	UART Rx, TTL level
3	TxD	UART Tx, TTL level
4	PWREN	Power Enable, used for system ON (High) and
		OFF(Low) or can be used as Reset pin
5	GND	Ground

3. Dimensions

4. Electrical Characteristics

Value	Symbol	Min	Typical	Max	Unit
Voltage Input	Vin	2.5	3.0	3.1	V
Current Input	lin	300	500	-	mA
UART Rx Logic 1	Vuth	3.0	3.3	3.4	V
UART Rx Logic 0	Vutl	-0.3	0	0.8	V
UART Tx Logic 1	Vurh	3.0	3.3	3.4	V
UART Tx Logic 0	Vurl	-0.3	0	0.3	V
Power Enable Logic 1	Vpeh	3.0	3.3	Vin+0.3	V
Power Enable Logic 0	Vpel	-0.3	0	0.1	V

5. Connection

Note

- 1. UART configuration parameters: 8N1 with 9600 baud rate.
- 2. Users should check their OS version (Operating System) to confirm that RS232 data transmission is available.

6. Communication Format

Master (PC/	Master (PC/MCU) Read/Write											
Initiate	Address	Command	Data 1	•••••	Data N	Check Sum	End					
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte					
Slave (Laser	Slave (Laser Distance Measuring Kit)											
Initiate	Address	Command	Data 1		Data N	Check Sum	End					
1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte	1 Byte					

Initiate: 0xAA End: 0xA8

Address: 0 is the master, 1-127 are the slave/devices on the Bus.

The master can communicate with all the slave devices on the Bus.

Data: Some commands may have no response.

Check Sum: Only Bit 7 to avoid conflict with Initiate or End. The highest level is set at 0.

Check Sum = (Address+Command+Data 1+···+Data n) & 0x7F.

7. Commands

0x08	Read Status
0x04	Read Address
0x41	Set Address
0x42	Laser ON
0x43	Laser OFF
0x44	Single measurement
0x45	Continuous measurement
0x46	Stop continuous measurement

8. Commands details (Set slave as 0x01)

Read Device status										
Master	End									
	0xAA	0x09	0xA8							
Slave	Initiate	Address	Command	Data 1	Check Sum	End				
	0xAA	0x01	0x08	0x00	0x09	0xA8				

[※]Slave response: 0x00 as Not ready yet; 0x01 as Standby; 0x31 as Error. When an error message is displayed, we suggest to the user to reset the system by following the procedure below:

- 1. Set the Power Enable pin level low for 200ms and then back high, and check if the system works.
- 2. If not, please contact IADIY for further service.

Read Slave Address										
Master	Initiate	Address	Command	Check Sum	End					
	0xAA	0x00	0x04	0x04	0xA8					
Slave	Initiate	Address	Command	Data 1	Check Sum	End				
	0xAA 0x01 0x04 0x01 0x06 0xA8									

Set Slave Add	Set Slave Address										
Master	Initiate	Address	Command	Data 1	Check Sum	End					
0xAA 0x00 0x41 0x02 0x43 0x											
Slave	Initiate	Data 1	Check Sum	End							
	0xAA 0x02 0x41 0x01 0x44 0xA8										
※Master comn	※Master command: Set slave Address as 0x02; Slave response: 1-Success, 0-Failed										

Laser ON						
Master	Initiate	Address	Command	Check Sum	End	
	0xAA	0x01	0x42	0x43	0xA8	
Slave	Initiate	Address	Command	Data 1	Check Sum	End
	0xAA	0x01	0x42	0x01	0x44	0xA8

[%]This Command is for user to easily aim at the target, but is not a necessary procedure for the measurement
%Slave response: 1-Success, 0-failed

Laser OFF									
Master	Initiate	Address	Command	Check Sum	End				
	0xAA	0x01	0x43	0x44	0xA8				
Slave	Initiate	Address	Command	Data 1	Check Sum	End			
0xAA 0x01 0x43 0x01 0x45 0xA8									
*Slave respons	%Slave response: 1-Success, 0-failed								

Single m	Single measurement											
Master	Initiate	Address	Command	Check Sum	End							
	0xAA	0x01	0x44	0x45	0xA8							
Slave	Initiate	Address	Command	Data1	Data2	Data3	Data4	Data5	Data6	Check Sum	End	
Cond.1	0xAA	0x01	0x44	0x30'0'	0x32 ′2 ′	0x33 ′3 ′	0x34 ′4′	0x35 ′5 ′	0x36 ′6 ′	0x79	0xA8	
Cond.2	0xAA	0x01	0x44	0x45'E'	0x52'R'	0x52' R '	0x32'2'	0x35 ′5 ′	0x35 ′5 ′	0x74	0xA8	
※ 1. Slav	e response	e: Data Byte	coding with A	SCII								

Continuous Measurement											
Master	Initiate	Address	Command	Check Sum	End						
	0xAA	0x01	0x45	0x46	0xA8						
Slave	Initiate	Address	Command	Data 1	Data2	Data3	Data4	Data5	Data6	Check Sum	End
Cond.1	0xAA	0x01	0x44	0x30 ′0 ′	0x32 ′2 ′	0x33 ′3 ′	0x34'4'	0x35 ′5 ′	0x36' 6 '	0x79	0xA8
Cond.2	0xAA	0x01	0x44	0x45' E '	0x52'R'	0x52'R'	0x32'2'	0x35 ′5 ′	0x35 ′5 ′	0x74	0xA8

[☆]The Continuous measurement command allows the Laser Distance Measuring kit to feedback measurement data continuously. There are 2 ways to stop the continuous mode: 1. STOP Continuous measurement command, and 2: Level Low the supply power, such as system OFF.

※The slave response is shown above.

For example: If the measuring distance is 23456mm, Data will be shown as above Cond.1;

But if the system fails, the error code will be 255, the response data will be shown as Cond. 2, other error codes will display "ERRxxx".

Error code	Problem	Description				
ERR204	calculate error	The Target moved too fast				
EDDAEE	Mode signal reception	Use a reflective film on the target, or find a more adapted				
ERR255	Weak signal reception	measurement point on the target				
500056	Character al according	Use a reflective film on the target ,or move the target away				
ERR256	Strong signal reception	from any light source				

STOP Continuous Measurement									
Master	Initiate	Address	Command	Check Sum	End				
	0xAA	0x01	0x46	0x47	0xA8				
Slave	Initiate	Address	Command	Data 1	Check Sum	End			
	0xAA	0x01	0x46	0x01	0x48	0xA8			

ON/OFF Buzzer									
Master	Initiate	Address Command		Data 1 Check Sum		End			
	0xAA	0x01	0x47	0x01	0x49	0xA8			
Slave	Initiate	Address	Command	Data 1	Check Sum	End			
	0xAA	0x01	0x47	0x01	0x49	0xA8			

[★]Users can use this command to turn ON or OFF the Buzzer on the Laser Distance measuring kit by sending 0 for OFF or 1 for ON. The example above shows a command to turn the Buzzer ON, and Slave response is: 1- Success, 0-failed.

Notice

- 1. User should always remember to turn OFF the power of the Laser Distance Measuring Kit when the measurement is complete, as keeping the power on might reduce the life-time of the Laser and of the light receiving element inside the Laser Distance Measuring Kit.
- 2. Resistors of a few hundred Ohm are preferentially added between the pins UART Rx, UART Tx and the user's MCU in order to limit the voltage discrepancy between the two systems that would lead to current loss.
- 3. Measure Accuracy ± 3.0 mm @ 25°C, room environment.

The outdoor measurement accuracy can be roughly calculated using the following formula.

Accuracy reference (mm) = $(L-20) \times C \times 0.3 + 2$

L: measure distance (M), C: constant=1

- 4. The measure rate changes automatically based on reflectance and environmental conditions.
- 5. Continuous testing at low temperatures (0°) should not exceed 30 minutes.
- 6. Measurement targets should avoid direct light exposure

Laser Safety

The light emitted from these devices has been set in accordance with IEC60825. However, staring into the beam, whether directly or indirectly, must be avoided.

Class I

The maximum permissible exposure (MPE) cannot be exceeded, it includes High-power lasers within an enclosure that prevents exposure to the radiation and that cannot be opened without shutting down the laser. For example, a continuous laser at 600nm can emit up to 0.39mW, but for shorter wavelengths, the maximum emission is lower.

Class II

"Caution", visible laser light less than 1.0mW. Considered eye safe, normal exposure to this type of beam will not cause permanent damage to the retina.

Class IIIA

"Danger", visible laser light between 1.0mW and 5.0mW. Considered eye safe with caution. Focusing of this light into the eye could cause some damage.

Class IIIB

"Danger", infrared(IR), and high power visible lasers considered dangerous to the retina if exposed. NB: it is important to note that while complying with the above classifications, unless otherwise stated. Our laser diode products are not certified and are designed solely for use in OEM products. The way in which device is used in the final product may alter its original design classification, and it is the responsibility of the OEM to ensure compliance with the relevant standards.

Specifications are subject to change without notice.

