

Lecture 21: Introduction to
Generalized Linear Models;

<u>Course</u> > <u>Unit 7 Generalized Linear Models</u> > <u>Exponential Families</u>

13. Variance in Terms of the

> Canonical Parameter

13. Variance in Terms of the Canonical Parameter Variance in Terms of the Canonical Parameter

Practice: The Mean and Variance of Binomial Distribution

2/2 points (graded)

Recall that the pmf of a Binomial distribution $\mathsf{Binom}\,(n,p)\,,\,$ with known n can be written as:

$$f_{ heta}\left(y
ight) \;=\; \exp\left(rac{y heta-b\left(heta
ight)}{\phi}+c\left(y,\phi
ight)
ight).$$

Refer to the answer of $b(\theta)$ and ϕ to the problem *Practice: Binomial Distribution as a Canonical Exponential Family* 2 pages before this one.

Compute $b'(\theta)$.

(Is this equal to $\mathbb{E}\left[Y\right]$?)

Compute $\phi b''(\theta)$.

$$\phi \, b'' \, (\theta) = \boxed{ \begin{array}{c} \text{n*e^{+}theta/(1+e^{+}theta)^{2}} \\ \hline \frac{n \cdot e^{\theta}}{(1+e^{\theta})^{2}} \end{array}} \quad \checkmark \text{ Answer: n*e^{+}theta/(1+e^{+}theta)^{2}}$$

Note: Express your answers in terms of the canonical parameter θ .

STANDARD NOTATION

Solution:

Recall

$$b\left(heta
ight) \; = \; n \ln \left(1 + e^{ heta}
ight).$$

Taking the derivative gives

$$b'(heta) \,=\, rac{db}{d heta}(heta) \,=\, rac{ne^ heta}{1+e^ heta}.$$

Recall that $heta=\ln\left(rac{p}{1-p}
ight)$ so $e^{ heta}=rac{p}{1-p}.$ Plugging this in to the equation above gives

$$b'\left(heta\left(p
ight)
ight) \;=\; rac{ne^{ heta}}{1+e^{ heta}} = np$$

which is, as expected, equal to $\mathbb{E}\left[Y
ight]$ where $Y\sim\mathsf{Binom}\,(n,p)$.

Take the second derivative of $b(\theta)$:

$$b''(\theta) = \frac{db}{d\theta} \frac{ne^{\theta}}{1 + e^{\theta}}$$

$$= n \frac{e^{\theta} (1 + e^{\theta}) - (e^{\theta}) e^{\theta}}{(1 + e^{\theta})^2}$$

$$= n \frac{e^{\theta}}{(1 + e^{\theta})^2}$$

Recall that $\phi=1$, so $\phi b''(\theta)=b''(\theta)$. Rewriting $\phi b''(\theta)$ in terms of p gives $\phi b''(\theta(p))=np(1-p)$, which is indeed the variance of a binomial variable $Y\sim \mathsf{Binom}\,(n,p)$.

Submit

You have used 1 of 3 attempts

1 Answers are displayed within the problem

The Log-Partition Function b

4/4 points (graded)

For each proposed function b shown below, indicate (based only on its second derivative) whether it could potentially be a log-partition function of some exponential family **with dispersion** $\phi = 1$.

•
$$b(\theta) = \theta^2 - 2\theta + 1$$

Valid		
Invalid		
✓		
$ullet \; b\left(heta ight) = \sqrt{ heta}$		
Valid		
Invalid		
✓		
$ullet \ b\left(heta ight) = \ln heta$		
Valid		
Invalid		
✓		
$ullet \ b\left(heta ight)= heta$		
Valid		
Invalid		
✓		
olution:		

Recall that in a canonical exponential family, $b''(\theta) \cdot \phi = \mathsf{Var}(Y)$ in lecture, which is always non-negative, i.e. $b(\theta)$ must be convex. Not all of the functions listed satisfy this property.

- Yes. Since the second derivative is positive, it is convex and therefore valid.
- No. Since the second derivative is negative, it is not convex and therefore invalid.
- No. Since the second derivative is negative, it is not convex and therefore invalid.
- Yes. Since the second derivative is non-negative, it is convex and therefore valid.

Submit You have used 1 of 1 attempt

Answers are displayed within the problem

Discussion

Topic: Unit 7 Generalized Linear Models: Lecture 21: Introduction to Generalized Linear Models; Exponential Families / 13. Variance in Terms of the Canonical Parameter

Add a Post

Show all posts ▼ by recent activity ▼

There are no posts in this topic yet.

★

© All Rights Reserved