Part III Algebraic Topology 2014

Contents

1	Hor	nology					
	1.1	Introduction					
	1.2	Homotopy					
	1.3	Homology					
	1.4	Homology of a pair					
		Subdivision and Excision					
	1.6	Degree and Orientations					
	1.7	Cell Complexes					
2 Co	Col	nomology and Products					
	2.1	Homology with Coefficients and Cohomology					
	2.2	Notation					

iv CONTENTS

Chapter 1

Homology

1.1 Introduction

These are lecture notes for the 2014 Part III Algebraic Topology course taught by Dr. Jacob Rasmussen.

The recommended books are:

- Algebraic Topology Allen Hatcher,
- Homology Theory James W. Vick,
- Differential Forms in Algebraic Topology Raoul Bott and Loring W. Tu.

Generated: November 16, 2014, 11:03:45 (Z)

1.2 Homotopy

1.2.1 Homotopies

Definition 1.2.1 (Homotopic maps). Maps $f_0, f_1: X \to Y$ are said to be **homotopic** if there is a continuous map $F: X \times I \to Y$ such that

$$F(x,0) = f_0(x)$$
 and $F(x,1) = f_1(x) \ \forall x \in X$.

We let $\operatorname{Map}(X,Y) = \{f : X \to Y \text{ continuous}\}$. Then letting $f_t(x) = F(x,t)$ in the above definition we see that f_t is a path from f_0 to f_1 in $\operatorname{Map}(X,Y)$.

Example 1.2.2. 1. $X = Y = \mathbf{R}^n$, $f_0(\overline{x}) = \overline{0}$ and $f_1(\overline{x}) = \overline{x}$ are homotopic via $f_t(\overline{x}) = t\overline{x}$.

- 2. $S^1 = \{z \in \mathbf{C} : |z| = 1\}$ then
- 3. $S^n = {\overline{x} \in \mathbf{R}^n : |\overline{x}| = 1}$

Lemma 1.2.3. Homotopy is an equivalence relation on Map(X,Y).

Lemma 1.2.4. If $f_0 \sim f_1 : X \to Y$ and $g_0 \sim g_1 : Y \to Z$ then $g_0 \circ f_0 \sim g_1 \circ f_1$.

Corollary 1.2.5. For any space X the set $[X, \mathbb{R}^n]$ has one element.

Proof. Define
$$0_X: X \to \mathbf{R}^n$$
 by $0_X(x) = 0 \in \mathbf{R}^n$ for any $x \in X$.

Definition 1.2.6 (Contractible space). X is **contractible** if 1_X is homotopic to a constant map.

Proposition 1.2.7. Y is contractible \iff [X,Y] has one element for any space X.

Proof. (\Rightarrow) as in corollary. (\Leftarrow) [X, Y] has one element so $1_Y \sim$ a constant map. \square

Given a space X how can we tell if X is contractible? If X is contractible then it must be path connected for one.

Proof. Contractible implies that $[S^0, X]$ has one element and so $f: S^0 \to X$ extends to D^1 , and therefore X is path connected.

Similarly if $[S^1, X]$ has more than one element then X is not contractible.

Definition 1.2.8 (Simply connected). We say X is **simply connected** if $[S^1, X]$ has only one element.

We say two space X and Y are homotopy equivalent if there exists $f: X \to Y$ and $g: Y \to X$ such that $g \circ f \sim 1_X$ and $f \circ g \sim 1_Y$.

Example 1.2.9. X is contractible if and only if $X \sim \{p\}$.

Proof. X contractible $\implies 1_X \sim c$, a constant map. Choose $f: X \to \{p\}$, f(x) = p and $g: \{p\} \to X$, g(p) = c. Then $g \circ f = c \sim 1$ and $f \circ g = 1_{\{p\}}$. Converse: exercise

Exercise 1.2.10.

Given X and Y how can we determine if $X \sim Y$? How do we determine [X,Y]? For example is $S^n \sim S^m$.

1.2.2 Homotopy groups

Definition 1.2.11 (Map of pairs). A map of pairs $f: (X, A) \to (Y, B)$ is a map $f: X \to Y$ with sets $A \subset X$ and $B \subset Y$ such that $f(A) \subset B$.

If we have maps of pairs $f_0, f_1: (X, A) \to (Y, B)$ then we write $f_0 \sim f_1$ if there exists $F: (X \times I, A \times I) \to (Y, B)$ such that $F(x, 0) = f_0(x)$ and $F(x, 1) = f_1(x)$.

Definition 1.2.12 (Homotopy groups). If $* \in X$ then the *n*th homotopy group is

$$\pi_n(X,*) = [(D^n, S^{n-1}) \to (X, \{*\})].$$

We now note several properties of this definition:

- 1. $\pi_0(X,*) = \text{set of path components of } X.$
- 2. $\pi_1(X,*)$ is a group. $\pi_n(X,*)$ is an abelian group.
- 3. π_n is a functor

So given

$$f: (X, p) \to (Y, q)$$

we get

$$f_* \colon \pi_n(X, p) \to \pi_n(y, q)$$

defined by

$$f_*(\gamma) = f \circ \gamma.$$

$$n$$
 1 2 3 4 5 6 7 $\pi_n(S^2)$ 0 **Z Z** $\mathbb{Z}/2$ $\mathbb{Z}/2$ $\mathbb{Z}/12$ $\mathbb{Z}/15$

Example 1.2.13 (Homotopy groups of S^2).

1.3. HOMOLOGY 3

1.3 Homology

Our goal is to construct a functor H_* from the category of topological spaces and continuous maps to the category of **Z**-modules and **Z**-linear maps. This means to each space X we associate an abelian group $H_*(X) = \bigoplus_{n \geq 0} H_n(X)$, and to each map $f: X \to Y$ a function $f_*: H_n(X) \to H_n(Y)$ satisfying $(1_X)_* = 1_{H_n(X)}$ and $(f \circ g)_* = f_* \circ g_*$.

Some properties we would like to have for our construction are:

- 1. Homotopy invariance, if $f \sim g \colon X \to Y$ then $f_* = g_*$.
- 2. The dimension axiom, $H_n(X) = 0$ for any $n > \dim X$.

1.3.1 Chain complexes

Definition 1.3.1 (Chain complex). If R is a commutative ring then a **chain complex** over R is a pair (C, d) satisfying:

- 1. $C = \bigoplus_{n \in \mathbb{Z}} C_n$ for R-modules C_n .
- 2. $d: C \to C$ where $d = \bigoplus d_n$ for R-linear maps d_n .
- 3. $d \circ d = 0$.

The indexing by n is called a **grading**. Usually we take $C_n = 0$ for n < 0. An element of ker d_n is called **closed** or a **cycle**. An element of im d_n is called a **boundary**. d is the **boundary map** or **differential**.

Definition 1.3.2 (Homology groups). If (C, d) is a chain complex, its nth homology group is

$$H_n(C,d) = \ker d_n / \operatorname{im} d_{n+1}$$
.

If $x \in \ker d_n$ we write [x] for its image in $H_n(C)$.

Example 1.3.3. 1. $C_0 = C_1 = \mathbf{Z}$, $C_i = 0$ otherwise,

$$0 \to \mathbf{Z} \xrightarrow{\cdot 3} \mathbf{Z} \to 0$$
.

Then $H_1 = 0$, $H_0 = \mathbf{Z}/3$.

2.

$$\mathbf{Z}=\langle e\rangle \to \mathbf{Z}^2=\langle f_1,f_2\rangle \to \mathbf{Z}=\langle g\rangle \to 0$$
 with $d(e)=f_1-f_2,\, d(f_1)=d(f_2)=g,$ then $H_*(C)=0$ (exercise).

1.3.2 The chain complex of a simplex

Definition 1.3.4 (n-simplex). The n-dimensional simplex Δ^n is

$$\Delta^n = \left\{ (x_0, \dots, x_n) \in \mathbf{R}^n : \sum_i x_i = 1, \ x_i \ge 0 \forall i \right\}.$$

 Δ^n has **vertices** v_0, \ldots, v_n which are the intersections with the coordinate axes. The k-dimensional **faces** are in bijection with the k + 1element subsets of $\{0, \ldots, n\}$.

Definition 1.3.5 (Simplicial chain complex). $S_*(\Delta^n)$ is the chain complex with $S_k(\Delta^n)$ the free **Z**-module generated by the k-dimensional faces of Δ^n . So

$$S_k(\Delta^n) = \langle e_I : I = \{i_0, \dots, i_k : 0 \le i_0 \le \dots \le i_k \le n\} \rangle.$$

To define d it suffices to define $d(e_I)$, we let

$$d(e_I) = \sum_{i=0}^{k} (-1)^j e_{i_0,\dots,i_{j-1},i_{j+1},\dots,i_k} \in S_{k-1}(\Delta^n).$$