Announcement

- Updated lab hours / locations are posted on course website!
- Course grade cutoffs

Floating Points

B&O Readings: 2.4

CSE 361: Introduction to Systems Software

Instructor:

I-Ting Angelina Lee

Q: How Might A Computer Represent a Real Number?

Fractional Binary Numbers

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Examples of Fractional Binary Numbers

Value
Representation

5 3/4 101.112

2 7/8 **10.111**₂

1 7/16 **1.0111**₂

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Fixed Point Representation

- We might try representing fractional binary numbers by picking a fixed place for an implied binary point
 - "fixed point binary numbers"
- The position of the binary point affects the range and precision of the representation
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Problem: no good way to pick where the fixed point should be.
 - Sometimes you need range, sometimes you need precision the more you have of one, the less of the other.

Fixed Point vs. Floating Point

Example: 4-digit positive decimal fixed point versus floating point:

Fix point, say fixed at xxx.x:

range: 0.1 – 999.9

Floating point:

- $x_1x_2x_3y_1$ that encodes $x \cdot 10^y$
- X can range between 0 999 and
 y can range between -4 5
- You can choose between range versus precision.

Representable Numbers: Limitation Due to Fixed Width

- Can only exactly represent numbers of the form x/2^k
- Other rational numbers have repeating bit representations

Value	Representation		
1/ 3	0.01010101[01] 2		
1/ 5	0.001100110011[0011]2		
1/10	0.0001100110011[0011]2		

Recap: What We Learned Thus Far

- The difference between fixed point and floating point
 - Floating point allows one to trade off between range and precision
- Fundamental limitation of the fixed-width binary representation of real values:
 - Some values cannot be represented precisely!

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point operations and rounding
- Floating point in C

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by numerical concerns

Nice standards for rounding, overflow, underflow

Analogous to scientific notation

- Not 12000000 but 1.2 x 10⁷; not 0.0000012 but 1.2 x 10⁻⁶
 - (write in C code as: 1.2e7; 1.2e-6)

IEEE Floating Point Representation

Numerical Form:

$$V_{10} = (-1)^s M 2^E$$

- Sign bit s determines whether number is negative (s=1) or positive (s=0)
- Mantissa M (or Significand) represents a fractional value.
- Exponent E weights value by a (possibly negative) power of two

Encoding

- MSB S is sign bit s
- exp field encodes E (is not equal to E)
- frac field encodes M (is not equal to M)

-		S	ехр	frac
---	--	---	-----	------

Precisions

■ Single precision: 32 bits

S	ехр	frac
1	8-bits	23-bits

■ Double precision: 64 bits

S	ехр	frac
1	11-bits	52-bits

Extended precision: 80 bits

S	exp	frac
1	15-bits	64-bits

Three Kinds of Floating Point Values

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$

$$s \quad exp \quad frac$$

$$k \quad n$$

"Normalized" values

most values

"Denormalized" values:

- special exp field
- for values close to 0 or equals to 0

Special values: reserved for values +/- infinity, NaN

- special exp field
- +/- infinity: when results overflow (including dividing by 0)

• e.g.
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -1.0/0.0 = -\infty$

- NaN (Not a Number): from operations with undefined results
 - e.g. sqrt(-1), $\infty \infty$, $\infty \cdot 0$

Case #1: Normalized Values

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$
s exp frac
k n

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Mantissa coded with implied leading 1: M = 1.xxx...x2
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - xxx...x: bits of frac (don't bother to store the leading 1)
 - Range from [1, 2.0)
- Exponent coded as biased value: E = exp bias
 - exp: unsigned value exp
 - bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (exp: 1...254, E: -126...127)
 - Double precision: 1023 (exp: 1...2046, E: -1022...1023)
- We can almost compare floating points using integer comparison

Normalized Encoding Example (32 bits)

- Value: float f = 12345.0;
 - **12345**₁₀ = 11000000111001₂

Mantissa

```
M =
frac=
```

Exponent, E = exp - bias (bias = 127)

```
E = bias = exp =
```

■ Result:

S

exp

frac

Normalized Encoding Example (32 bits)

■ Value: float f = 12345.0; ■ 12345₁₀ = 11000000111001₂ = 1.1000000111001₂ x 2¹³ (normalized form)

■ Mantissa, M

 \blacksquare Exponent, E = exp - bias (bias = 127)

```
E = 13

bias = 127

exp = 13+127 = 140 = 10001100_2
```

Result:

0 10001100 10000001110010000000000000 s exp frac

Recap: Normalized Values

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$

$$k$$
frac
$$n$$

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = exp bias
 - exp: interpret as unsigned value with bias = 127
 - E = -126 ... 127 for single precision, -1022..1023 for double precision
- Mantissa coded with implied leading 1: M = 1.xxx...x2

Q: Given the normalized encoding, what is the smallest positive normalized value a float in C can represent?

A: with
$$M = 1.0...0$$
, and $E = 1-127 = -126$, $V = 2^{-126}$

Want more precision when we get closer to 0!

Case #2: Denormalized Values (For Zero & Numbers REALLY Close to Zero)

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$

$$k$$
frac
$$n$$

- Condition: exp = 000...0
- Special Case: exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0
- Exponent value: E = 1 Bias (instead of E = exp (0) bias)
 - E is always -126 for single precision and -1022 for double precision
- Mantissa coded with implied leading 0: M = 0.xxx...x2
 - Max M = 0.111...1, which is 1-8
 - Combining with E = -126, this provides smooth transition from normalized values to denormalized values.

Case #3: Special Values

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$

$$s \quad exp \quad frac$$

$$k \quad n$$

- Condition: exp = 111...1
- Case #3A: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows (positive and negative)
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case #3B: exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value cannot be determined
 - Bits in frac are used to store reasons for NaN
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

Special Properties of Encoding

FP Zero Same as Integer Zero

- All bits = 0
- There is a -0.0 and a +0.0

Can (Almost) Use Unsigned Integer Comparison

- Must first compare sign bits
- Must consider -0 = 0
- NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? (False)
- Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Tiny Floating Point Example

6-bit Floating Point Representation

- the sign bit is in the most significant bit
- the next three bits are the exponent, with a bias of 3
- the last two bits are the frac

Same general form as IEEE Format

- normalized, denormalized
- representation of 0, NaN, infinity

Distribution of Values

- 6-bit IEEE-like format
 - 3 exponent bits
 - 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

6-bit IEEE-like format

- 3 exponent bits
- 2 fraction bits
- Bias is $2^{3-1}-1=3$

Gradual Underflow

Recap: What We Learned Thus Far

- The IEEE floating point representation:
 - Normalized (most values)
 - Denormalized (0s or values very close to 0)
 - Special values (+/- infinity and NaN)
- Understanding the floating point representation helps you understand the mathematical properties of floating point operations and how they interact with other integer data types.

Puzzle

S	ехр	frac
1	8-bits	23-bits

- What's the smallest positive integer value that cannot be represented precisely using float in C?
- Answer: 2²⁴ + 1
- In generally, assuming we have enough exp bits (i.e., within range), the answer would be 2⁽ⁿ⁺¹⁾ + 1 for n-bit frac.

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Floating point operations and rounding
- Floating point in C

Floating Point Multiplication

- $-(-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}$
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Mantissa M: M1 x M2
 - Exponent E: E1 + E2

Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Implementation

Biggest chore is multiplying the Mantissas

Floating Point Addition

- - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, mantissa M:
 - Result of signed align & add
 - Exponent E: E1

Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

Floating Point Operations: Basic Idea

$$V = (-1)^{s} \cdot M \cdot 2^{E}$$

$$s exp$$

$$s exp$$

$$s$$

$$23$$

- $\mathbf{x} +_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} + \mathbf{y})$
 - E could be very different
 - the binary point needs to line up
- $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$
 - need to ensure that the resulting exponent is still in range

Basic idea

- First compute exact result
- Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

IEEE Rounding Modes

Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Towards zero	\$1	\$1	\$1	\$2	- \$1
■ Round down $(-\infty)$	\$1	\$1	\$1	\$2	- \$2
Round up $(+\infty)$	\$2	\$2	\$2	\$3	- \$1
Nearest Even (default)	\$1	\$2	\$2	\$2	- \$2

Round to nearest Even:

- When more than halfway, round up; when less than halfway, round down.
- When exactly halfway between two possible values, round it so that least significant digit is even
- The default rounding mode.
- Why? So that we don't introduce statistical bias.
- All others are statistically biased

Rounding Binary Numbers

When exactly halfway between two possible values

Round so that least significant digit is even

Binary Fractional Numbers

- "Even" when least significant bit is 0
- "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2—down)	2
2 3/16	10.001102	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.002	(1/2—up)	3
2 5/8	10.101002	10.102	(1/2—down)	2 1/2