Introduction to Boosting

Predrag Tadić

School of Electrical Engineering University of Belgrade

PSI:ML, August 2019

Outline

Terminology

History

AdaBoost

Variants of AdaBoost

Gradient Boosting

Concluding remarks

Ensemble (committee)

[data version control.com]

Bootstraping

- ▶ Sampling *N* out of *N* with replacement, *M* times.
- ▶ 30% of examples are not chosen in each sample.

[hackernoon.com]

Weak learner, strong learner

Weak learner simple classifier, slightly better than guessing Strong learner can achieve arbitrary accuracy with enough data

[Kidsday staff artist / Maggie Flaherty, Merrick]

Weak learner, strong learner

In the PAC framework

Notation

$$\{\mathbf{x}_i, y_i\}_{i=1}^N$$
 training set P distribution of training set $f(\mathbf{x}) = y$ true hypothesis $h(\mathbf{x}) = \hat{y}$ learned hypothesis $\Pr_P[h(\mathbf{x}) \neq f(\mathbf{x})]$ generalization error

- Strong learner (SL)
 - for any $P, f, \delta, \epsilon \geq 0$
 - ▶ for large enough *N*
 - outputs a classifier with $Pr_P[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$
 - with probability at least $1-\delta$
- Weak learner (WL)
 - for any P, f, δ and some $0 \le \epsilon < 1/2$
 - ▶ for large enough N
 - outputs a classifier with $Pr_P[h(\mathbf{x}) \neq f(\mathbf{x})] \leq \epsilon$
 - with probability at least $1-\delta$

Bagging & Boosting: training

[quantdare.com]

Bagging & Boosting: decision

[quantdare.com]

History

```
1989 Does weak learnability imply strong learnability [KV94]?
1990 3 weak learners on 3 modified distributions [Sch90]
1995 Boosting by majority [Fre95]
1996 AdaBoost [FS96]
2001 Gradient Boosting [Fri01]
2016 XGBoost [CG16]
```

First boosting algorithm [Sch90]

- Requires a continuous stream of labeled data.
- ▶ Learns 3 hypothesis on 3 modified distributions.
- Outputs their majority vote.
- Algorithm:
 - 1. Randomly choose first first N samples. Use them to learn h_1 .
 - 2. Choose next batch so that N/2 samples are misclassified by h_1 . Use it to learn h_2 .
 - 3. Choose next batch of N samples so that h_1 and h_2 disagree. Use it to learn h_3 .
 - 4. Apply recursively.

Preliminaries

$$\begin{array}{ll} \textit{h}_{\textit{l}}(\textbf{x}) & \textit{l}\text{-th WL, } \textit{h}_{\textit{l}}(\textbf{x}) = \pm 1 \text{ (e.g. stump or perceptron)} \\ \alpha_{\textit{l}} & \text{voting weight of } \textit{l}\text{-th WL} \\ \omega_{\textit{l},\textit{i}} & \text{weight of } \textit{i}\text{-th example in } \textit{l}\text{-th iteration, } \sum_{i=1}^{\textit{N}} \omega_{\textit{l},\textit{i}} = 1 \end{array}$$

 \blacktriangleright Hypothesis (strong learner) after k iterations

$$H_k(\mathbf{x}) = \frac{1}{2} \sum_{l=1}^k \alpha_l h_l(\mathbf{x})$$

▶ In iteration k, min exponential loss w.r.t. α_k and $h_k(\mathbf{x})$ only

$$E_k = \sum_{i=1}^{N} \exp\left[-y_i H_k(\mathbf{x}_i)\right]$$

$$= \sum_{i=1}^{N} \underbrace{\exp\left[-y_i H_{k-1}(\mathbf{x}_i)\right]}_{\omega_{k,i}} \exp\left[-\frac{1}{2} y_i \alpha_k h_k(\mathbf{x}_i)\right]$$

Training

- ▶ Initialization: $\omega_{1,1} = \cdots = \omega_{1,N} = 1/N$
- ▶ For k = 1, ..., K (until convergence)
 - 1. Train weak learner

choose
$$h_k$$
 to minimize $J_k = \sum_{i=1}^N \omega_{k,i} \mathbb{1}\{h_k(\mathbf{x}_i) \neq y_i\}$

2. Compute its voting weight

$$\begin{split} \epsilon_k &= \sum\nolimits_{i=1}^N \omega_{k,i} \mathbb{1}\left\{h_k(\mathbf{x}_i) \neq y_i\right\} & \text{(weighted error)} \\ \alpha_k &= \ln \frac{1-\epsilon_k}{\epsilon_k} & \text{(voting weight)} \end{split}$$

3. Update sample weights for next iteration

$$\omega_{k+1,i} \propto \omega_{k,i} e^{\alpha_k \mathbb{1}\{h_k(\mathbf{x}_i) \neq y_i\}}, \qquad \sum_{i=1}^N \omega_{k+1,i} = 1$$

Convergence

Loss is an upper limit on training error

$$\hat{\epsilon}_{k} \triangleq \frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left\{ H_{k} \left(\mathbf{x}_{i} \right) y_{i} < 0 \right\} \leq \frac{E_{k}}{N}$$

▶ If weighted error is $\leq \frac{1}{2} - \delta$ for each WL

$$E_k \le \sqrt{1 - 4\delta^2} E_{k-1} \le (1 - 4\delta^2)^{k/2} N$$
 $(E_0 \le N)$

- Both the loss and the training error are always decreasing!
- Zero training error after finite number of iterations

$$\hat{\epsilon}_k = 0$$
 for $k \ge -2 \frac{\ln N}{\ln(1 - 4\delta^2)}$

Convergence

AdaBoost I

Margins & Overfitting

Margin in boosting iteration k for example i

$$\gamma_{k,i} \triangleq y_i H_k\left(\mathbf{x}_i\right)$$

- ▶ Assume zero training error: $\gamma_{k,i} > 0$, $\forall i$
- ▶ Exponential loss $E_k = \sum_{i=1}^{N} e^{-\gamma_{k,i}}$ can still be reduced!
- **Loss** reduces more sharply for examples with smaller $\gamma_{k,i}$

AdaBoost II Margins & Overfitting

- ▶ AdaBoost tends to increase worst-case margin min_i $\gamma_{k,i}$
- How does AdaBoost avoid overfitting?
 - Stagewise addition of new learners makes learning slow
 - Impact of change is localized as iterations procees
 - Worst-case margin is pushed up (?)

Why exponential loss?

Expected exponential loss is minimized for

$$H^*(\mathbf{x}) = \underset{H(\mathbf{x})}{\arg\min} \, \mathsf{E}_{Y \mid \mathbf{x}} \, e^{-YH(\mathbf{x})}$$

▶ For binary classification with $Y = \pm 1$

$$E_{Y|x} e^{-YH(x)} = Pr(Y = 1 | x)e^{-H(x)} + Pr(Y = -1 | x)e^{H(x)}$$

▶ Differentiating w.r.t H(x) and setting to zero gives

$$H^*(\mathbf{x}) = \frac{1}{2} \ln \frac{\Pr(Y=1 \mid \mathbf{x})}{\Pr(Y=-1 \mid \mathbf{x})}$$

▶ Now, assume $Y \sim \text{Bernoulli}(\phi(\mathbf{x}))$ with

$$\phi(\mathbf{x}) = \frac{1}{1 + e^{-H(\mathbf{x})}}$$

▶ Negative log-likelihood loss is given by

$$-I(H(\mathbf{x})) = -\ln\left(1 + e^{-YH(\mathbf{x})}\right)$$

Population minimizer is the same as for exponential loss

$$\mathop{\arg\min}_{H(\mathbf{x})} \mathsf{E}_{Y \,|\, \mathbf{x}} \, e^{-YH(\mathbf{x})} = \mathop{\arg\max}_{H(\mathbf{x})} \mathsf{E}_{Y \,|\, \mathbf{x}} \, I \, \big(H(\mathbf{x}) \big)$$

Equivalence does not hold for finite data sets!

- ► Exponential loss puts more emphasis on misclassified examples
- Log-likelihood loss is more robust if
 - Bayes error rate is high
 - there are mislabeled data

Real AdaBoost [FHT00]

- Initialization: $\omega_1^{(1)} = \cdots = \omega_1^{(N)} = 1/N$
- ▶ For k = 1, ..., K (until convergence)
 - 1. Fit classifier to target

$$p_k(\mathbf{x}) = \hat{P}_{\omega}(Y = 1 \,|\, \mathbf{x})$$

2. k-th weak learner outputs

$$h_k(\mathbf{x}) = \frac{1}{2} \ln \frac{p_k(\mathbf{x})}{1 - p_k(\mathbf{x})}$$

3. Update and re-normalize the weights

$$\omega_{k+1,i} \propto \omega_{k,i} \exp\left[-y_i h_k(\mathbf{x}_i)\right], \qquad \sum_{i=1}^N \omega_{k+1,i} = 1$$

Ensemble output is

$$H_K(\mathbf{x}) = \operatorname{sign}\left(\sum_{k=1}^K h_k(\mathbf{x})\right)$$

LogitBoost [FHT00]

- Additive logistic regression models.
- Newton optimization of the Bernoulli log-likelihood.
- ▶ Start with $H(\mathbf{x}) = 0$, $\omega_{1:N} = 1/N$ and $p(\mathbf{x}_i) = 1/2$
- ▶ At iteration k, compute the weights and "working responses"

$$\omega_i = p(\mathbf{x}_i) (1 - p(\mathbf{x}_i)), \quad z_i = \min \left\{ \frac{\mathbb{1}\{y_i = 1\} - p(\mathbf{x}_i)}{\omega_i}, z_{\mathsf{max}} \right\}$$

Find $h_k(\mathbf{x})$ via weighted least-squares

$$h_k(\mathbf{x}) = \underset{h(\mathbf{x})}{\operatorname{arg min}} \sum_{i=1}^{N} \omega_i \left[z_i - h(\mathbf{x}_i) \right]^2$$

Update strong learner and probabilities

$$H(\mathbf{x}) \leftarrow H(\mathbf{x}) + \frac{1}{2}h_k(\mathbf{x}), \quad p(\mathbf{x}) \leftarrow \frac{e^{H(\mathbf{x})}}{e^{-H(\mathbf{x})} + e^{H(\mathbf{x})}}$$

Other AdaBoost modifications

- Gentle AdaBoost [FHT00]
 - ▶ Real AdaBoost + Newton steps
 - weighted least-squares regression instead of Pr estimates
 - more stable: no computation of log-ratios
- ► LPBoost [DBST02]
 - maximizes margin between classes
 - learning is formulated as a linear programming problem
 - totally corrective: weights of all past WLs are updated
- Brown Boost [Fre01]
 - "gives up" on repeatedly misclassified examples
 - robust to misslabeled datasets
- Many many more [FF12]

Gradient Boosting I

Gradient Boosting II

Gradient Boosting III

Gradient Boosting IV

Gradient Boosting V

Why does residual fitting work?

- ▶ Typical ML task: find $H(\mathbf{x})$ to minimize loss $L(y, H(\mathbf{x}))$.
- Generally unfeasible. Let's try a stagewise additive approach.
- ▶ Start with some simple $H(\mathbf{x}) = h_0(\mathbf{x})$ (e.g. regression stump).
- ▶ Add $h_1(\mathbf{x})$ to minimize resulting loss:

$$h_1^*(\mathbf{x}) = \underset{h(\mathbf{x})}{\operatorname{arg min}} L[y, H(\mathbf{x}) + h(\mathbf{x})]$$

Gradient tells us where to go! Ideally,

$$g(\mathbf{x}) \triangleq \left[\frac{\partial L(y,h)}{\partial h}\right]_{h=H(\mathbf{x})}$$

$$h_1(\mathbf{x}) = -g(\mathbf{x}) \qquad \text{(optimal direction)}$$

$$\alpha_1 = \arg\min_{\alpha} L[y, H(\mathbf{x}) + \alpha h_1(\mathbf{x})] \qquad \text{(optimal step size)}$$

▶ But loss is evaluated on $\{y_i, \mathbf{x}_i\}_{i=1}^N$ and setting

$$h_1(\mathbf{x}_i) = -g(\mathbf{x}_i)$$
 simultaneously for each i

is too hard (and would amount to overfitting, anyway)

► Approximate solution: try to fit the negative gradient

train
$$h_1(\mathbf{x})$$
 to minimize $\sum_{i=1}^{N} \left[-g(\mathbf{x}_i) - h_1(\mathbf{x}_i) \right]^2$

i.e. do a regression with negative gradient as target.

▶ For our sinusoidal regression toy example

$$L[y, H(\mathbf{x})] = \frac{1}{2} [y - H(\mathbf{x})]^{2}$$
$$-g(\mathbf{x}) = y - H(\mathbf{x})$$

This is why residual fitting works!

Typical loss functions

Huber loss is less sensitive to outliers

$$L[y, H(\mathbf{x})] = \begin{cases} (y - H(\mathbf{x}))^2 / 2, & |y - H(\mathbf{x})| \le \delta \\ \delta (|y - H(\mathbf{x})| - \delta) \end{cases}$$

What about classification? Cross-entropy loss.

Gradient tree boosting

- 0. Start with $H_0(\mathbf{x}) = \arg\min_{\chi} \sum_{i=1}^{N} L(y_i, \chi) = \text{const.}$
- 1. For k = 1, ..., K (until convergence)
 - a) Compute "pseudo-residuals" $r_{k,i} = -g(\mathbf{x}_i)$
 - b) Fit a regression tree on $\{x_i, r_{k,i}\}$. This partitions input space into regions $R_{k,1}, \ldots, R_{k,J_k}$
 - c) Compute best output for each region

$$\chi_{k,j} = \underset{\chi}{\operatorname{arg\,min}} \sum_{\mathbf{x}_i \in R_{k,j}} L\left[y_i, H_{k-1}(\mathbf{x}_i) + \chi\right]$$

d) Update strong learner

$$H_k(\mathbf{x}) = H_{k-1}(\mathbf{x}) + \sum_{j=1}^{J_k} \chi_{k,j} \mathbb{1}\{\mathbf{x} \in R_{k,j}\}$$

2. Output $H_K(\mathbf{x})$ as final model.

Gradient tree boosting for classification

- Similar as for regression.
- ▶ M-1 trees for M classes, outputting $f_{1:M-1}(\mathbf{x})$

$$\rho_{m}(\mathbf{x}) = \hat{P}(Y = m | \mathbf{x}) \\
= \begin{cases}
\frac{e^{f_{m}(\mathbf{x})}}{1 + \sum_{l=1}^{M-1} e^{f_{l}(\mathbf{x})}}, & m = 1, \dots, M-1 \\
1 - \sum_{l=1}^{M-1} p_{l}(\mathbf{x}), & m = M
\end{cases}$$

Cross-entropy (deviance) loss

$$L(y, p(\mathbf{x})) = -\sum_{m=1}^{M} \mathbb{1}\{y = m\} \ln p_m(\mathbf{x})$$
$$\frac{\partial L(y, p(\mathbf{x}))}{\partial p(\mathbf{x})} = \sum_{m=1}^{M} \mathbb{1}\{y = m\} - p_m(\mathbf{x})$$

Gradient tree boosting hyper-parameters

- Size of trees
 - controls amount of interactions between inputs
 - "experience indicates $4 \le J \le 8$ " [HTF09]
- Number of iterations K
 - ► large *K* leads to over-fitting
 - chosen through early stopping
- Shrinkage

$$H_k(\mathbf{x}) = H_{k-1}(\mathbf{x}) + \frac{\mathbf{v}}{\mathbf{v}} \sum_{j=1}^J \chi_{k,j} \mathbb{1}\{\mathbf{x} \in R_{k,j}\}$$

- smaller $\nu = less$ overfitting, but requires larger K
- set $\nu < 0.1$ and choose K via early stopping [Fri01]
- Subsampling ("stochastic gradient boosting")
 - ightharpoonup sample w/o replacement a fraction of η training examples
 - grow k-th tree using this sample
 - poor performance without shrinkage

XGBoost

- Fast implementation of gradient boosted trees.
- ▶ Reduces search space of possible splits using the distribution of features across all examples in each leaf.
- ▶ Additional regularization—objective in iteration *k* is

$$\underbrace{\sum_{i=1}^{N} L\left[y_{i}, H_{k-1}(\mathbf{x}_{i}) + h_{k}(\mathbf{x}_{i})\right]}_{\text{loss}} + \underbrace{\gamma T_{k} + \frac{\lambda}{2} \sum_{j=1}^{T_{k}} \omega_{k,j}^{2} + \alpha \sum_{j=1}^{T_{k}} |\omega_{k,j}|}_{\text{regularization}}$$

 T_k number of leafs in k-th tree $\omega_{k,j}$ output value (weight) in j-th leaf

- Uses 2nd order Taylor expansion of the objective
- Resources:
 - ► Tianqi Chens paper [CG16] and slides (2014, 2016)
 - web xgboost.ai, github repo dmlc/xbgoost

Some success stories

- Fruend & Schapire won the 2003 Gödel Prize for AdaBoost.
- Viola-Jones object detection framework [VJ01]
 - ▶ 1st framework with competitive detection rates in real-time
 - AdaBoost with Haar features
- Many more successful AdaBoost applications in [FF12]
- ► Yahoo [CZ08], Yandex (slides): gradient boosting for ranking
- XGBoost
 - Higgs Machine Learning Challenge [CH15]
 - "Dominates structured or tabular datasets on classification and regression predictive modeling" [machinelearningmastery.com]
 - List of ML competition winning solutions
 - Very popular on Kaggle

Implementations

- AdaBoost
 - ▶ available in C++, Matlab, Python, R
 - see wikipedia entry
- Gradient Boosting
 - Python/sklearn
 - R (as Generalized Boosting Model)
- XGBoost
 - Available for C++, Java, Python, R, Julia on Windows/Mac/Linux
 - Support integration with scikit-learn
 - Can be integrated into Spark, Hadoop, Flink
 - see wikipedia entry and github repo

Concluding remarks

- Pros of gradient boosted trees
 - naturally handles data of mixed types
 - can handle missing values
 - computationally scalable
 - able to deal with irrelevant inputs
 - feature importance assessment
 - interpretability
- Cons w.r.t. deep nets
 - lower predictive power
 - cannot extract features

When in doubt, use xgboost [Kaggle winner]

References I

Tiangi Chen and Carlos Guestrin.

XBGoost: a scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785-794. ACM, 2016.

Tiangi Chen and Tong He.

Higgs boson discovery with boosted trees.

In NIPS 2014 Workshop on High-energy Physics and Machine Learning, pages 69-80, 2015.

David Cossock and Tong Zhang.

Statistical analysis of bayes optimal subset ranking.

IEEE Transactions on Information Theory, 54(11):5140–5154, 2008.

References II

Artur Ferreira and Mário Figueiredo.

Boosting algorithms: A review of methods, theory, and applications.

In Ensemble machine learning, pages 35-85. Springer, 2012.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani.
Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors).

The annals of statistics, 28(2):337–407, 2000.

Yoav Freund.
Boosting a weak learning algorithm by majority. *Information and computation*, 121(2):256–285, 1995.

References III

An adaptive version of the boost by majority algorithm. *Machine learning*, 43(3):293–318, 2001.

Jerome H Friedman.

Greedy function approximation: a gradient boosting machine. *Annals of statistics*, pages 1189–1232, 2001.

Yoav Freund and Robert E Schapire.
Experiments with a new boosting algorithm.
In *Proceedings of the 13th ICML*, pages 148–156, 1996.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman.

The elements of statistical learning: data mining, inference, and prediction.

Springer, 2009.

References IV

Michael Kearns and Leslie Valiant.

Cryptographic limitations on learning boolean formulae and finite automata.

Journal of the ACM (JACM), 41(1):67–95, 1994.

Robert E Schapire.

The strength of weak learnability. *Machine learning*, 5(2):197–227, 1990.

Paul Viola and Michael Jones.

Rapid object detection using a boosted cascade of simple features.

In Computer Vision and Pattern Recognition (CVPR), 2001. Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages I–I. IEEE, 2001.