PODSTAWY PROGRAMOWANIA DEKLARATYWNEGO HASKELL

Ćwiczenia 7

Zadania powtórkowe (20p.)

Zadanie 1.

Podać typ danej funkcji. Obowiązuje znajomość wszystkich funkcji omówionych na wykładzie. Np. typ funkcji map:

map ::
$$(a -> b) -> [a] -> [b]$$

Podać wartości danej funkcji. Np.

Wartością map (>1) [3,2,1,0,-1] jest [True,True,False,False,False] Wartością map (*2) [3,2,1,0,-1] jest [6,4,2,0,-2]

Zadanie 2.

Napisać definicję funkcji obliczającej n-ty wyraz ciągu danego wzorem $a_n=a_{n-1}+2a_{n-2}$ ($a_1=0$, $a_2=5$) a) rekurencyjną, b) w wersji "akumulatorowej".

Zadanie 3.

Napisać definicję funkcji, która w liście przestawia a) pierwszy element z drugim, b) pierwszy element z ostatnim, c) drugi element z przedostatnim.

Zadanie 4.

Napisać definicję funkcji, której wartością jest liczba wystąpień elementu d w liście l.

Zadanie 5.

Napisać funkcję sprawdzającą równość dwóch list.

Zadanie 6.

Napisać funkcję sprawdzającą równość dwóch zbiorów.

Zadanie 7. (8p.)

Napisać funkcję, która porządkuje niemalejąco elementy listy liczbowej wykorzystując algorytm sortowania a) przez proste wstawianie, b) "bąbelkowego".

Zadanie 8.

Napisać funkcję, która dla dwóch uporządkowanych niemalejąco list liczbowych *l1* i *l2* daje w wyniku uporządkowaną niemalejąco listę elementów z list *l1* i *l2* .

Zadanie 9.

Napisać funkcję, która dla dwóch drzew binarnych d1 i d2 zwraca wartość *True*, gdy drzewo d1 jest poddrzewem drzewa d2.

Zadanie 10. (3p.)

Napisać funkcję, której wartością jest długość a) najdłuższej, b) najkrótszej gałęzi w drzewie binarnym.

Zadanie 11.

Poniższa funkcja ma sprawdzać, czy podana lista jest pusta. Dlaczego definicja ta jest niepoprawna? Jak należy poprawić?

```
pusta1 :: [a] -> Bool
pusta1 x = (x == [])
```

Zadanie 12.

Poniższy program ma konwertować ciągi cyfr (String) na liczby (Int). Wyjaśnić, na czym polega błąd w definicji i ten błąd usunąć.

```
import Data.Char
naInt :: String -> Int
naInt = foldl (\x acc -> acc * 10 + digitToInt x) 0
```

Zadanie 13.

```
Dla danej listy l wypisać listę par [(element, liczba wystąpień), ...]. Przykład: w [2,3,4,1,2,5,3,2,4,4,2 ] = [(2,4),(3,2),(4,3),(1,1),(5,1)] w ['a','a','b','a'] = [('a',3),('b',1)]
```

Zadanie 14. (4p.)

Dla danej listy par (x,y) należy zwrócić listę tych par posortowaną wg odległości od punktu (0,0).

```
Przykład: f[(0,3),(1,1),(2,1),(1,0)] = [(1,0),(1,1),(2,1),(0,3)]
```

Zadanie 15. (5p.)

Wartością funkcji prime jest lista liczb pierwszych. Napisać:

- a) funkcję, której wartością będzie lista par, w których drugi element będzie liczbą pierwszą, a pierwszy jej numerem, np. pierwsze = [(1,2),(2,3),(3,5),(4,7),....]
- b) funkcję znajdującą liczbę pierwszą o podanym numerze, np. p 3 = 5.

```
primes = filterPrime [2..] where filterPrime (p:xs) = p: filterPrime [x \mid x <- xs, x \mod p /= 0]
```

Uwaga:

Wykonane zadania **7, 10, 14, 15** należy przekazać do **19.04.2018, 13:30** przez OLAT "Ćwiczenia 7". Wszystkie definicje funkcji mają być zapisane w jednym pliku .hs z numerem zadania w komentarzu. Nazwa pliku ma zawierać nazwisko Studenta i numer ćwiczeń.