

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE190807903V01

SPECTRUM REPORT (FHSS)

Applicant: Balena Ltd.

Address of Applicant: 6th Floor, One London Wall London, London, EC2Y 5EB

United Kingdom

Equipment Under Test (EUT)

Product Name: balenaFin

Model No.: v1.1

Trade mark: balenaFin

Applicable standards: ETSI EN 300 328 V2.2.2 (2019-07)

Date of sample receipt: 23 Aug., 2019

Date of Test: 24 Aug., 2019 to 03 Aug., 2020

Date of report issue: 24 Aug., 2020

Test Result: PASS*

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT detailed in this report complied with the standards specified above.

Version

Version No.	Date	Description
00	05 Aug., 2020	Original
01	24 Aug., 2020	Update Page 5

Tested by:

Test Engineer

Reviewed by:

Project Engineer **Date:** 24 Aug., 2020

Date: 24 Aug., 2020

Project Engineer

3 Contents

			Page
1	COVI	ER PAGE	1
2	VERS	SION	2
3	CON.	TENTS	3
4		SUMMARY	
5	_	ERAL INFORMATION	
		CLIENT INFORMATION	
		GENERAL DESCRIPTION OF E.U.T.	
		TEST ENVIRONMENT AND MODE, AND TEST SAMPLES PLANS	
		DESCRIPTION OF SUPPORT UNITS	
		MEASUREMENT UNCERTAINTY	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	6
6	RADI	O TECHNICAL SPECIFICATION IN ETSI EN 300 328	8
	6.1	JUSTIFICATION	8
		TEST CONFIGURATION OF EUT	
	6.3	TEST SETUP BLOCK	8
	6.4	Test Results	9
	6.4.1	Test Result Summary	9
	6.4.2	Transmitter unwanted emissions in the spurious domain	10
	6.4.3	Receiver spurious emissions	16
	6.4.4	Receiver Blocking	20
7	TEST	SETUP PHOTO	21
8	EUT	CONSTRUCTIONAL DETAILS	23
ΔΝ	INEX VE	ODI ICATION FORM FOR TESTING	24

4 Test Summary

Test Items	Test Requirement	Test method	Limit/Severity	Result
	Radio Spectrum	Matter (RSM) Part of	Тх	
RF Output Power	Clause 4.3.1.2	Clause 5.4.2.2.1.2	Clause 4.3.1.2.3	PASS
Duty Cycle, Tx-sequence, Tx-gap	Clause 4.3.1.3	Clause 5.4.2.2.1.3	Clause 4.3.1.3.3	N/A
Accumulated Transmit Time, Frequency Occupation and Hopping Sequence	Clause 4.3.1.4	Clause 5.4.4.2	Clause 4.3.1.4.3	PASS
Hopping Frequency Separation	Clause 4.3.1.5	Clause 5.4.5.2	Clause 4.3.1.5.3	PASS
Medium Utilisation (MU) factor	Clause 4.3.1.6	C lause 5.4.2.2.1.4	Clause 4.3.1.6.3	N/A
Adaptivity (Adaptive Frequency Hopping)	Clause 4.3.1.7	Clause 5.4.6.2	Clause 4.3.1.7	N/A
Occupied Channel Bandwidth	Clause 4.3.1.8	Clause 5.4.7.2	Clause 4.3.1.8.3	PASS
Transmitter unwanted emissions in the out-of-band domain	Clause 4.3.1.9	Clause 5.4.8.2	Clause 4.3.1.9.3	PASS
Transmitter unwanted emissions in the spurious domain	Clause 4.3.1.10	Clause 5.4.9.2	Clause 4.3.1.10.3	PASS
	Radio Spectrum	Matter (RSM) Part of	Rx	
Receiver spurious emissions	Clause 4.3.1.11	Clause 5.4.10.2	Clause 4.3.1.11.3	PASS
Receiver Blocking	Clause 4.3.1.12	Clause 5.4.11.2	Clause 4.3.1.12.4	PASS

Remark:

- 1. Tx: In this whole report Tx (or tx) means Transmitter.
- 2. Rx: In this whole report Rx (or rx) means Receiver.
- 3. Pass: Meet the requirement.
- 4. N/A: Not Applicable.
- 5. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

5 General Information

5.1 Client Information

Applicant:	Balena Ltd.
Address:	6th Floor, One London Wall London, London, EC2Y 5EB United Kingdom
Manufacturer:	Balena Ltd.
Address:	6th Floor, One London Wall London, London, EC2Y 5EB United Kingdom
Factory:	Fae Technology S.p.a.
Address:	Via C. Battisti, 136 Gazzaniga (BG) 24025 - Italia

5.2 General Description of E.U.T.

Product Name:	balenaFin
Model No.:	v1.1
Hardware version:	v10
Software version:	v2.51
Operation Frequency:	2402MHz ~ 2480MHz
Channel number:	79
Channel separation:	1MHz
Modulation type:	Frequency Hopping Spread Spectrum (FHSS)
Equipment Type:	Adaptive equipment
Modulation Technology:	GFSK, π/4 DQPSK, 8DPSK
Max. E.I.R.P Power:	GFSK: 3.46 dBm, π/4 DQPSK: 1.24 dBm, 8DPSK: 0.21 dBm
Antenna Type:	Internal Antenna
	External Antenna
Antenna gain:	Internal Antenna: 1dBi
	External Antenna: 2dBi
Power supply:	DC6V-30V

5.3 Test environment and mode, and test samples plans

	<u> </u>
Operating Environment:	
Temperature:	Normal: 15°C ~ 35°C, Extreme: -20°C ~ +55°C
Humidity:	20 % ~ 75 % RH
Atmospheric Pressure:	1008 mbar
Voltage:	Nominal: 24Vdc, Extreme: Low 5.4Vdc, High 26.4Vdc
Test mode:	
Transmitting mode:	Keep the EUT in continuously transmitting mode with modulation.
Hopping mode:	Keep the EUT in normal hopping mode.
Receiving mode:	Keep the EUT in receiving mode.
We have verified the constru	uction and function in typical operation. All the test modes were carried out with
the EUT in transmitting oper	ration.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen ZhongjianNanfang Testing Co.,Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:									
Test Equipment	Manufacturer	Model No	Sorial No.	Cal.Date	Cal. Due date				
rest Equipment	Manuacturer	Woder No.	Serial No.	(mm-dd-yy)	(mm-dd-yy)				
2 040	CAEMO	0*0*0	000	07-22-2017	07-21-2020				
3m SAC	SAEMC	Model No. Serial No. (mm-dd-yy)	07-22-2020	07-21-2021					

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

DiCanil og Antonna	CCHWADZDECK	VULB9163	497	03-07-2019	03-06-2020
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Biconical Antenna	SCHWARZBECK	VUBA9117	359	06-22-2017	06-21-2020
biconical Antenna	SCHWARZBECK	VUBA9117	309	06-22-2020	06-21-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2019	03-06-2020
Hom Antenna	SCHWARZBECK	DDHA9120D	916	03-07-2019	03-06-2020
Harn Antonna	SCHWARZBECK	DDHA0430D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA9120D	1605	06-22-2020	06-21-2021
EMI Test Software	AUDIX	E3	Ve	rsion: 6.110919b	
Dro amplifier	HP	8447D	2944A09358	03-07-2019	03-06-2020
Pre-amplifier	ПР	0447D	2944AU9336	03-07-2019	03-06-2020
Pre-amplifier	CD	PAP-1G18	11804	03-07-2019	03-06-2020
Pre-amplifier	CD	PAP-1016	11004	03-07-2019	03-06-2020
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2019	03-04-2020
Spectrum analyzer	Ronde & Schwarz	F3F30	101434	03-05-2020	03-04-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2019	03-04-2020
EIVII Test Receiver	Ronde & Schwarz	ESKFI	101070	03-05-2020	03-04-2021
Cianal Canaratar	Rohde & Schwarz	SMX	835454/016	03-05-2019	03-04-2020
Signal Generator	Ronde & Schwarz	SIVIA	033434/010	03-05-2020	03-04-2021
Signal Generator	R&S	SMR20	1008100050	03-05-2019	03-04-2020
Signal Generator	Nas	SIVINZU	1006100030	03-05-2020	03-04-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2019	03-06-2020
Cable	ZDECL	Z 100-INJ-INJ-0 I	1000430	03-07-2019	03-06-2020
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2019	03-06-2020
Cable	WIICKU-CUAX	WFK04039	K10/42-5	03-07-2019	03-06-2020
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2019	03-06-2020
Cable	SULINER	30COFLEX 100	J0193/4FE	03-07-2019	03-06-2020
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200	\	/ersion: 2.0.0.0	

Conducted method:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
Spectrum Analyzer	Agilent	N9020A	MV50510122	11-18-2018	11-17-2019
Spectrum Analyzei	Agilent	N9020A	W1130310123	Serial No. (mm-dd-yy) (MY50510123 11-18-2018 11-18-2019 MY49060014 11-18-2019 11-18-2019 1008100050 03-05-2019 0 5100041SNO12 11-25-2018 11-25-2018 11-25-2019 11-25-2019 11-25-2019 7100015SNO27 11-25-2018 11-25-2019 7100015SNO28 11-25-2019 11-25-2019 N/A N/A Version: 2.0.0.0 1409050110020 09-25-2019 0 20140828008 11-01-2018 1	11-17-2020
Vector Signal Generator	Agilent	N5182A	MV40060014	(mm-dd-yy) 11-18-2018 11-18-2019 11-18-2019 03-05-2019 03-05-2020 11-25-2018 11-25-2018 11-25-2018 11-25-2018 11-25-2018 11-25-2018 11-25-2019 N/A ersion: 2.0.0.0 09-25-2018	11-17-2019
vector Signal Generator	Agilent	NOTOZA	101149000014	11-18-2019	11-17-2020
Signal Congretor	R&S	SMR20	1009100050	03-05-2019	03-04-2020
Signal Generator	Ras	SIVIRZU	1008100050	03-05-2020	03-04-2021
Dawar Canaar	D.A.R.E	DDDaaco	45100044CNO40	11-25-2018	11-24-2019
Power Sensor	D.A.K.E	RPR3006W	11-25-201		11-24-2020
Power Sensor	D.A.R.E	RPR3006W	4.51000.44.CNIO.5.4	11-25-2018	11-24-2019
Power Sensor	D.A.K.E	RPR3006W	15100041511054	11-25-2019	11-24-2020
Power Sensor	D.A.R.E	DDDaaco	4710004ECNO07	11-25-2018	11-24-2019
Power Sensor	D.A.K.E	RPR3006W	171000155NO27	11-25-2019	11-24-2020
D 0	D 4 D E	DDDOOOGW	471000450N000	11-25-2018	11-24-2019
Power Sensor	D.A.R.E	RPR3006W	171000155NO28	11-25-2019	11-24-2020
RF Switch Unit	Ascentest	AT890-RFB	N/A	N/A	N/A
Test Software	MWRFTEST	MTS 8310	\	/ersion: 2.0.0.0	
DC Davian Committee	Via Niva Er	W/W/ 4000014	4400050440000	09-25-2018	09-24-2019
DC Power Supply	XININUOET	XinNuoEr WYK-10020K 14		09-25-2019	09-24-2020
Temperature Humidity	Hama Dir.	LIDODO 500	004.40000000	11-01-2018	10-31-2019
Chamber	HengPu	HPGDS-500	20140828008	11-01-2019	10-31-2020

6 Radio Technical Specification in ETSI EN 300 328

6.1 Justification

The EUT and test equipment were configured for testing according to ETSI EN 300 328 V2.2.2 (2019-07). The EUT was tested in the normal operating mode to represent worst-case results during the final qualification test.

6.2 Test Configuration of EUT

Operation	Operation Frequency each of channel										
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency				
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz				
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz				
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz				
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz				
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz				
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz				
19	2421MHz	39	2441MHz	59	2461MHz						

Remark: The EUT operation in above frequency list, and used test software to control the EUT for staying in continuous transmitting and receiving mode. Channel 0, 39 and 78 of Bluetooth were chosen for testing.

Clause	Tes	est Conditions Test Channel Modulation			Test mode							
No.	NVNT	NVLT	NVHT	Low	Middle	High	GFSK	π/4 DQPSK	8DPSK	Tx	Hopping	Rx
4.3.1.2	\checkmark	\checkmark	√				\checkmark	√	\checkmark		\checkmark	
4.3.1.3												
4.3.1.4	\checkmark						√	√	\checkmark		$\sqrt{}$	
4.3.1.5	\checkmark						√	√	\checkmark		$\sqrt{}$	
4.3.1.6												
4.3.1.7												
4.3.1.8	\checkmark					\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
4.3.1.9	$\sqrt{}$						V	\checkmark	$\sqrt{}$		$\sqrt{}$	
4.3.1.10	$\sqrt{}$			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$		
4.3.1.11	\checkmark			√		\checkmark	$\sqrt{}$	√	\checkmark			\checkmark
4.3.1.12	\checkmark											

Note:

6.3 Test Setup Block

^{1. &}quot; $\sqrt{}$ " means that this configuration is chosen for test.

 [&]quot;NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

6.4 Test Results

6.4.1 Test Result Summary

Clause No.	Modulation	Test Condition	Test Data	Verdict
	CESK 9 #/4 DODSK 9	NVNT		
4.3.1.2	GFSK & π/4 DQPSK & 8DPSK	NVLT	Appendix A - BT	Pass
	6DF 3K	NVHT		
4.3.1.3	N/A	N/A	N/A	N/A
4.3.1.4	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.5	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.6	N/A	N/A	N/A	N/A
4.3.1.7	N/A	N/A	N/A	N/A
4.3.1.8	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.9	GFSK & π/4 DQPSK & 8DPSK	NVNT	Appendix A - BT	Pass
4.3.1.10	GFSK & π/4 DQPSK & 8DPSK	NVNT	See Section 6.4.2	Pass
4.3.1.11	GFSK & π/4 DQPSK & 8DPSK	NVNT	See Section 6.4.3	Pass
4.3.1.12	Mormal hopping mode	NVNT	See Section 6.4.4	Pass

Note:

^{1. &}quot;NVNT" means Normal Voltage Normal Temperature, "NVLT" means Normal Voltage Low Temperature, "NVHT" means Normal Voltage High Temperature.

^{2.} During the test, pre-scan all modulation mode, found DH5, 2-DH5 and 3-DH5 modulation mode were worse case mode. so only reflects test data of worst modulation mode.

6.4.2 Transmitter unwanted emissions in the spurious domain

Internal antenna:

	GFSI	K: The lowest channel		
F(MII-)	Spurious	Emission	Limit (dDm)	Tank Bassill
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-71.72	54.00	
89.91	V	-74.40	-54.00	
37.29	V	-69.36	-36.00	
362.99	V	-65.62		
4804.00	V	-49.35	-30.00	Davis
55.22	Horizontal	-78.10	54.00	Pass
737.07	Н	-72.05	-54.00	
148.44	Н	-74.29		
158.11	Н	-73.01	-36.00	
4804.00	Н	-48.88	-30.00	
	GFSK	: The highest channel		
F(8411-)	Spurious Emission		Limit (dDas)	Took Boowle
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-71.95	54.00	
89.91	V	-74.71	-54.00	
37.29	V	-68.89	20.00	
362.99	V	-65.76	-36.00	_
4960.00	V	-49.39	-30.00	
55.22	Horizontal	-78.32	-54.00	Pass
737.07	Н	-72.01		
148.44	Н	-74.05	20.00	
158.11	Н	-73.08	-36.00	
4960.00	Н	-48.96	-30.00	

	π/4 DQF	SK: The lowest channel		
	Spurious	Emission		
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-72.08	54.00	
89.91	V	-76.30	-54.00	
37.29	V	-68.55	-36.00	
362.99	V	-66.19		
4804.00	V	-48.88	-30.00	Pass
55.22	Horizontal	-78.77	-54.00	Pass
737.07	Н	-72.58	-54.00	
148.44	Н	-74.49	-36.00	
158.11	Н	-73.10	-36.00	_
4804.00	Н	-49.01	-30.00	
	π/4 DQP	SK: The highest channe	I	
Frequency (MHz)	Spurious Emission		Limit (dRm)	Test Result
Frequency (MH2)	Polarization	Level(dBm)	Limit (dBm)	rest Result
52.58	Vertical	-72.32	-54.00	
89.91	V	-75.08	-54.00	
37.29	V	-68.71	-36.00	
362.99	V	-66.16	-36.00	
4960.00	V	-49.55	-30.00	1 .
55.22	Horizontal	-78.21	E4.00	Pass
737.07	Н	-72.23	-54.00	
148.44	Н	-73.94	20.00	
158.11	Н	-73.24	-36.00	
4960.00	Н	-49.05	-30.00	

	8DPS	K: The lowest channel		
_ (201)	Spurious	Emission		
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-72.27	54.00	
89.91	V	-75.85	-54.00	
37.29	V	-68.48	36.00	
362.99	V	-65.75		
4804.00	V	-49.35	-30.00	D
55.22	Horizontal	-79.04	54.00	Pass
737.07	Н	-72.45	-54.00	
148.44	Н	-74.53	20.00	
158.11	Н	-73.18	-36.00	
4804.00	Н	-49.05	-30.00	
	8DPSI	K: The highest channel		
Fraguency (MU=)	Spurious Emission		Limit (dRm)	Test Result
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	rest Result
52.58	Vertical	-72.76	54.00	
89.91	V	-75.56	-54.00	
37.29	V	-68.25	20.00	
362.99	V	-65.82	-36.00	
4960.00	V	-49.83	-30.00	
55.22	Horizontal	-78.55	54.00	Pass
737.07	Н	-72.14	-54.00	
148.44	Н	-74.43	20.00	
158.11	Н	-72.97	-36.00	
4960.00	Н	-48.67	-30.00	

External antenna:

	GFSK	K: The lowest channel		
	Spurious	Emission	11111(15.0)	Test Result
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	
52.58	Vertical	-70.81	54.00	
89.91	V	-75.22	-54.00	
37.29	V	-69.20	-36.00	
362.99	V	-66.21		
4804.00	V	-48.46	-30.00	
55.22	Horizontal	-77.85	54.00	Pass
737.07	Н	-71.57	-54.00	
148.44	Н	-74.97	00.00	
158.11	Н	-72.69	-36.00	
4804.00	Н	-48.36	-30.00	
	GFSK	: The highest channel		
F (2411-)	Spurious Emission		Limit (JD)	Table Daniell
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-70.88	54.00	
89.91	V	-75.36	-54.00	
37.29	V	-69.56	20.00	
362.99	V	-65.92	-36.00	Pass
4960.00	V	-48.35	-30.00	
55.22	Horizontal	-77.39	54.00	
737.07	Н	-71.84	-54.00	
148.44	Н	-75.05	20.00	
158.11	Н	-73.09	-36.00	
4960.00	Н	-48.76	-30.00	

	· · · · · · · · · · · · · · · · · · ·	SK: The lowest channel		
Frequency (MHz)	Spurious E	Emission	Limit (dBm)	Test Result
Troquency (IIII12)	Polarization	Level(dBm)	Limit (abiii)	rest result
52.58	Vertical	-71.35	-54.00	
89.91	V	-74.98	-54.00	
37.29	V	-70.26	-36.00	
362.99	V	-66.65	-36.00	
4804.00	V	-48.16	-30.00	Pass
55.22	Horizontal	-78.35	54.00	Pass
737.07	Н	-70.91	-54.00	
148.44	Н	-75.19	20.00	
158.11	Н	-72.43	-36.00	
4804.00	Н	-48.35	-30.00	
	π/4 DQPS	SK: The highest channe	I	
F(MIL-)	Spurious Emission		Limit (JDan)	Tool Doorle
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-71.14	54.00	
89.91	V	-75.14	-54.00	
37.29	V	-69.81	00.00	
362.99	V	-65.75	-36.00	
4960.00	V	-47.93	-30.00	.
55.22	Horizontal	-77.69	54.00	Pass
737.07	Н	-71.49	-54.00	
148.44	Н	-75.37		
158.11	Н	-72.68	-36.00	
4960.00	Н	-49.26	-30.00	

	8DPS	K: The lowest channel		
_ (3.11.)	Spurious	Emission		
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.58	Vertical	-71.27	54.00	
89.91	V	-75.27	-54.00	
37.29	V	-69.94	-36.00	
362.99	V	-66.69		
4804.00	V	-48.10	-30.00	Dana
55.22	Horizontal	-77.89	54.00	Pass
737.07	Н	-71.07	-54.00	
148.44	Н	-75.51	00.00	
158.11	Н	-72.76	-36.00	
4804.00	Н	-48.67	-30.00	
	8DPSI	K: The highest channel		
Frequency (MHz)	Spurious Emission		Limit (dRm)	Test Result
Frequency (MHZ)	Polarization	Level(dBm)	Limit (dBm)	rest Result
52.58	Vertical	-71.20	-54.00	
89.91	V	-75.42	-54.00	
37.29	V	-70.15	26.00	
362.99	V	-66.20	-36.00	
4960.00	V	-48.02	-30.00	5
55.22	Horizontal	-77.83	54.00	Pass
737.07	Н	-71.20	-54.00	
148.44	Н	-75.66	26.00	
158.11	Н	-72.48	-36.00	
4960.00	Н	-48.95	-30.00	

6.4.3 Receiver spurious emissions

Internal antenna:

ernai antenna:	GESI	K: The lowest channel		
	Spurious I			
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-71.25		
155.91	V	-70.64	-57.00	
4804.00	V	-61.55	-47.00	Dana
148.44	Horizontal	-70.1	57.00	Pass
818.83	Н	-71.17	-57.00	-
4804.00	Н	-63.49	-47.00	
	GFSK	: The highest channel		
F======= (8411=)	Spurious E	Emission	Limit (dDm)	Tool Doorle
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-71.28	57.00	
155.91	V	-70.8	-57.00	
4960.00	V	-61.72	-47.00	Daga
148.44	Horizontal	-69.99	-57.00	Pass
818.83	Н	-71.31		
4960.00	Н	-63.89	-47.00	

	π/4 DQF	PSK: The lowest channe)	
Francisco (MIII-)	Spurious Emission		Limit (dDms)	
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-70.75	57.00	
155.91	V	-70.85	-57.00	
4804.00	V	-61.91	-47.00	Door
148.44	Horizontal	-69.87	57.00	Pass
818.83	Н	-71.6	-57.00	
4804.00	Н	-64.64	-47.00	
	π/4 DQP	SK: The highest channe	el	
Erogueney (MH=)	Spurious Emission		Limit (dDmc)	Test Result
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	rest Result
52.39	Vertical	-70.94	57.00	
155.91	V	-70.59	-57.00	
4960.00	V	-61.69	-47.00	Door
148.44	Horizontal	-69.69	-57.00	Pass
818.83	Н	-71.37		
4960.00	Н	-64.28	-47.00	

	8DPS	K: The lowest channel		
Francisco (MIII-)	Spurious Emission		Limit (dDms)	
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-70.57	57.00	
155.91	V	-70.97	-57.00	
4804.00	V	-62.35	-47.00	Dana
148.44	Horizontal	-69.9	-57.00	Pass
818.83	Н	-71.13		
4804.00	Н	-65.06	-47.00	
	8DPS	K: The highest channel	•	
F=====================================	Spurious Emission		Limit (JDm)	Tank Bassill
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-70.47	57.00	
155.91	V	-71.29	-57.00	
4960.00	V	-61.95	-47.00	D
148.44	Horizontal	-70.21	-57.00	Pass
818.83	Н	-71.04		
4960.00	Н	-64.94	-47.00	

External antenna:

	GFS	K: The lowest channel		
_		Spurious Emission		
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-72	57.00	
155.91	V	-69.9	-57.00	
4804.00	V	-61.93	-47.00	D
148.44	Horizontal	-70.45	57.00	Pass
818.83	Н	-71.34	-57.00	
4804.00	Н	-63.94	-47.00	
	GFSF	K: The highest channel		
Francis and (8411-)	Spurious Emission		Limit (dDmc)	Took Dooulk
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-71.75	57.00	
155.91	V	-70.36	-57.00	
4960.00	V	-61.80	-47.00	Dana
148.44	Horizontal	-70.33	57.00	Pass
818.83	Н	-71.73	-57.00	
4960.00	Н	-63.58	-47.00]

	π/4 DQI	PSK: The lowest channe	el	
Francis (8411-)	Spurious Emission		Limit (dDms)	
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-71.4	57.00	
155.91	V	-70.22	-57.00	
4804.00	V	-62.38	-47.00	Data
148.44	Horizontal	-70.13	57.00	Pass
818.83	Н	-71.93	-57.00	
4804.00	Н	-63.55	-47.00]
	π/4 DQF	PSK: The highest channe	el	
Francis (MIII-)	Spurious Emission		Limit (JDm.)	Took Dooulk
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
52.39	Vertical	-71.42	57.00	
155.91	V	-70.12	-57.00	
4960.00	V	-61.97	-47.00	
148.44	Horizontal	-70.23	-57.00	- Pass
818.83	Н	-71.99		
4960.00	Н	-63.50	-47.00	

	8DPSI	K: The lowest channel			
- (A411.)	Spurious E	Emission	11	T 1 D 1/2	
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result	
52.39	Vertical	-71.84	-57.00		
155.91	V	-70.55			
4804.00	V	-62.61	-47.00	Pass	
148.44	Horizontal	-69.95	57.00		
818.83	Н	-71.54	-57.00		
4804.00	Н	-64.03	-47.00		
	8DPSK	C: The highest channel			
Spurious Emission		Emission	Limit (dDm)	Test Result	
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm) Test	rest Result	
52.39	Vertical	-71.64	57.00		
155.91	V	-70.99	-57.00	Page	
4960.00	V	-63.11	-47.00		
148.44	Horizontal	-70.17	57.00	Pass	
818.83	Н	-71.34	-57.00		
4960.00	Н	-63.79	-47.00		

6.4.4 Receiver Blocking

Test mode	Wanted signal mean power from companion device (dBm)	Blocking signal frequency (MHz)	Blocking signal Power (dBm)	PER measurement level (%)	PER Limit (%)	Results
	-69.5849	2380	2380 5		Pass	
Hopping		2504	-34	3	10	га55
		2300	-34	2	10	Pass
		2584		7		F a S S

NOTE:

- (1) The minimum performance criterion shall be PER less than or equal to 10 %.
- (2) The EUT belongs to receiver category 2 equipment.
- (3) Conducted measurements.

Test setup photo

External antenna:

8 EUT Constructional Details

Reference to the test report No.: CCISE190807901.

Report No: CCISE190807903V01

ANNEX Application form for testing In accordance with EN 300 328 V2.2.2, clause 5.4.1, the following information is provided by the supplier. The type of modulation used by the equipment: Other forms of modulation b) In case of FHSS modulation: In case of non-Adaptive Frequency Hopping equipment: The number of Hopping Frequencies: In case of Adaptive Frequency Hopping Equipment: The maximum number of Hopping Frequencies: 79 The minimum number of Hopping Frequencies: 79 The Dwell Time: 0.298s The Minimum Channel Occupation Time: 8.67ms c) Adaptive / non-adaptive equipment: ■ Non-adaptive Equipment Adaptive Equipment without the possibility to switch to a non-adaptive mode Adaptive Equipment which can also operate in a non-adaptive mode d) In case of adaptive equipment: The Channel Occupancy Time implemented by the equipment: ms ☐ The equipment has implemented an LBT based DAA mechanism In case of equipment using modulation different from FHSS: The equipment is Frame Based equipment ☐ The equipment can switch dynamically between Frame Based and Load Based equipment The CCA time implemented by the equipment: ____µs The value q as referred to in clause 4.3.2.5.2.2.2: ☐ The equipment has implemented an non-LBT based DAA mechanism ☐ The equipment can operate in more than one adaptive mode e) In case of non-adaptive Equipment: The maximum RF Output Power (e.i.r.p.): ____dBm The maximum (corresponding) Duty Cycle: % Equipment with dynamic behaviour, that behaviour is described here. (e.g. the different combinations of duty cycle and corresponding power levels to be declared): The worst case operational mode for each of the following tests: RF Output Power GFSK Power Spectral Density N/A Duty cycle, Tx-Sequence, Tx-gap Dwell time, Minimum Frequency Occupation & Hopping Sequence (only for FHSS equipment) 0.298s, 8.67ms, 79 channels Hopping Frequency Separation (only for FHSS equipment) GFSK Medium Utilisation N/A Adaptivity & Receiver Blocking GFSK Occupied Channel Bandwidth 8DPSK Transmitter unwanted emissions in the OOB domain $\pi/4DQPSK$ Transmitter unwanted emissions in the spurious domain <u>8DPSK</u> Receiver spurious emissions GFSK g) The different transmit operating modes (tick all that apply): Equipment with only 1 antenna Equipment with 2 diversity antennas but only 1 antenna active at any moment in time

Smart Antenna Systems with 2 or more antennas, but operating in a (legacy) mode where only 1

antenna is used. (e.g. IEEE 802.11™ [i.3] legacy mode in smart antenna systems)

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE190807903V01

	Operating mode 2: Smart Antenna Systems - Multiple Antennas without beam forming
	Single spatial stream / Standard throughput / (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE: Add more lines if more channel bandwidths are supported.
	Operating mode 3: Smart Antenna Systems - Multiple Antennas with beam forming
	Single spatial stream / Standard throughput (e.g. IEEE 802.11™ [i.3] legacy mode)
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 1
	High Throughput (> 1 spatial stream) using Occupied Channel Bandwidth 2
	NOTE: Add more lines if more channel bandwidths are supported.
h)	In case of Smart Antenna Systems:
	The number of Receive chains:
	The number of Transmit chains:
	Symmetrical power distribution
	asymmetrical power distribution
	In case of beam forming, the maximum beam forming gain:
	NOTE: Beam forming gain does not include the basic gain of a single antenna.
i)	Operating Frequency Range(s) of the equipment:
	Operating Frequency Range 1: 2402 MHz to 2480 MHz
	Operating Frequency Range 2: MHz NOTE: Add many lines if many Frequency Pages are assessed.
:\	NOTE: Add more lines if more Frequency Ranges are supported.
j)	Occupied Channel Bandwidth(s): Occupied Channel Bandwidth 1: 1.186 MHz
	Occupied Channel Bandwidth 2: MHz
	NOTE: Add more lines if more channel bandwidths are supported.
k)	Type of Equipment (stand-alone, combined, plug-in radio device, etc.):
IN)	Type of Equipment (Stand dione, Combined, play in radio device, ctc.).
\boxtimes	Stand-alone
	Combined Equipment (Equipment where the radio part is fully integrated within another type of equipment)
	Plug-in radio device (Equipment intended for a variety of host systems)
	Other
I)	The extreme operating conditions that apply to the equipment:
	Operating temperature range: -20 ° C to +55° C
	Operating voltage range: <u>5.4</u> V to <u>26.4</u> V ☐ AC ☒ DC
	Details provided are for the: Stand-alone equipment
	combined (or host) equipment
\	test jig
III)	The intended combination(s) of the radio equipment power settings and one or more antenna assemblies and their corresponding e.i.r.p levels:
	Antenna Type:
\boxtimes	••
	Integral Antenna
\boxtimes	Integral Antenna Antenna Gain: 1.0 dBi
\boxtimes	Antenna Gain: 1.0 dBi
	Antenna Gain: 1.0 dBi Extegral Antenna
	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi
	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi oplicable, additional beamforming gain (excluding basic antenna gain):dB
If ap	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi Oplicable, additional beamforming gain (excluding basic antenna gain):dB Temporary RF connector provided No temporary RF connector provided Dedicated Antennas (equipment with antenna connector)
If ap	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi oplicable, additional beamforming gain (excluding basic antenna gain):dB Temporary RF connector provided No temporary RF connector provided Dedicated Antennas (equipment with antenna connector) Single power level with corresponding antenna(s)
If ap	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi oplicable, additional beamforming gain (excluding basic antenna gain):dB Temporary RF connector provided No temporary RF connector provided Dedicated Antennas (equipment with antenna connector) Single power level with corresponding antenna(s) Multiple power settings and corresponding antenna(s) Number of different
If ap	Antenna Gain: 1.0 dBi Extegral Antenna Antenna Gain: 2.0 dBi oplicable, additional beamforming gain (excluding basic antenna gain):dB Temporary RF connector provided No temporary RF connector provided Dedicated Antennas (equipment with antenna connector) Single power level with corresponding antenna(s)

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 25 of 27

UUI				Report No: CCISE190807903V
Danier I e e la				
Power Level 2	<u></u>			
Power Level 3				
				s more power levels.
NOTE 2:	These power I	evels are con	ducted power	levels (at antenna connector).
				intended antenna assemblies, their corresponding
		he resulting e	i.i.r.p. levels al	so taking into account the beamforming gain (Y) if
	applicable			
Power Level	·			
	Number of ante	enna assemb	lies provided for	or this power level:
	Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
	1			
	2			
	3			
	4			
Power Level				
		anna assamh	lies provided fo	or this power level:
	Trumber of and			Ji tilis power level
	Assembly #	Gain (dBi)	e.i.r.p. (dBm)	Part number or model name
	1			
	2			
	3			
	4			
Power Level	3: dBm	<u> </u>	<u> </u>	
		enna assemh	lies provided fo	or this power level:
			e.i.r.p.	si tillo povor lovor
	Assembly #	Gain (dBi)	(dBm)	Part number or model name
	1			
	2			
	3			
	4			
n) The nom	ninal voltages	of the stand-	alone radio e	quipment or the nominal voltages of the combined
(host) ed	quipment or te	est jig in case	of plug-in de	evices:
Details provid	ed are for the:		one equipment	
		combine	d (or host) equ	uipment
		☐ test jig		
S	Supply Voltage	☐ AC mai	ns State AC vo	oltage V
	,		te DC voltage	-
In case o	f DC, indicate t		_	_
	Internal Powe	• • • •		
	External Power		AC/DC adapter	,
	Battery	c. Cappi, oi /	.c, 20 adaptor	
	Other:			
a) Describe	the test mode	e available u	thich can faci	litate testing:
•				ontrol in engineer mode.
T IOOODHII (CEE)	IIVUE AIIU CUIIII	แนบนอ แสมอม	mana moae co	ATILOT IT ETUTICET HIVUE.

p) The equipment type (e.g. Bluetooth®, IEEE 802.11™ [i.3], proprietary, etc.): Bluetooth

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.110~116, Building B, Jinyuan Business Building, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Configuration for testing

From all combinations of conducted power settings and intended antenna assembly(ies) specified in clause 5.4.1 m), specify the combination resulting in the highest e.i.r.p. for the radio equipment.

Unless otherwise specified in EN 300 328, this power setting is to be used for testing against the requirements of EN 300 328. In case there is more than one such conducted power setting resulting in the same (highest) e.i.r.p. level, the highest power setting is to be used for testing. See also EN 300 328, clause 5.3.2.3.

Highest overall e.i.r.p. value: 3.46 dBm	
Corresponding Antenna assembly gain: 2.0 dBi	Antenna Assembly #: 1
Corresponding conducted power setting: 1.46 dBm (also the power level to be used for testing)	Listed as Power Setting #: 7

Additional information provided by the applicant
Modulation:
ITU Class(es) of emission: FHSS
Can the transmitter operate unmodulated? yes no
Duty Cycle
The transmitter is intended for: Continuous duty
Intermittent duty
□ Continuous operation possible for testing purposes
About the UUT
☐ The equipment submitted are representative production models
☐ If not, the equipment submitted are pre-production models?
☐ If pre-production equipment are submitted, the final production equipment will be identical in
all respects with the equipment tested
☐ If not, supply full details
The equipment submitted is CE marked
☐ In addition to the CE mark, the Class-II identifier (Alert Sign) is affixed.
Additional items and/or supporting equipment provided
Spare batteries (e.g. for portable equipment)
Battery charging device
External Power Supply or AC/DC adapter
☐ Test Jig or interface box
RF test fixture (for equipment with integrated antennas)
☐ Host System Manufacturer:
Model #:
Model name:
Combined equipment Manufacturer: Model #:
Model name:
☐ Technical documentation (Handbook and circuit diagrams)
23 . SSITION ASSAIRCHANGE (FINITESSON AND OFFICE MAGNATIO)
End of report