PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARAÍSO FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA

CURSO EIE 803-01 PROYECTO SUBESTACIONES ELÉCTRICAS Y LÍNEAS DE TRANSMISIÓN

Profesor: Carlos Rojas Agüero

APLICACIÓN CÁLCULO CAPACIDAD DE CORRIENTE IEEE STD 738

Temario

- Cálculo Capacidad de Corriente en Estado Estacionario.
- Corriente en el Conductor en Función de los Parámetros del Sistema.
- Temperatura del Conductor en Función de los Parámetros del Sistema.
- Construcción de Tablas Corriente/Temperatura de Conductores.
- > Cálculo Capacidad de Corriente en estado Transitorio.

CÁLCULO DE CAPACIDAD DE CORRIENTE EN ESTADO ESTACIONARIO NORMA IEEE Std. 738 - 2012

Ejemplo de Aplicación

Determine la capacidad térmica en estado estacionario para el conductor Drake, 795 kcmil, 26/7 ACSR, bajo las siguientes condiciones:

- > Velocidad del viento 0,61 m/s al nivel del mar y perpendicular al conductor.
- > Emisividad térmica 0,8.
- Absorción solar 0,8.
- > Temperatura ambiente 40 °C.
- > Temperatura máxima permisible en el conductor 100 °C.
- Diámetro exterior del conductor 28,14 mm.
- > Resistencia del conductor:
 - $R(25 \, {}^{\circ}C) = 7,283 \times 10^{-5} \, Ohm/m$.
 - $R(75 \, ^{\circ}C) = 8,688 \times 10^{-5} \, Ohm/m.$
- ► La línea tiene su recorrido en la dirección Este-Oeste, con azimuth $Z_1=90^\circ$.
- ➤ La latitud corresponde a 30° norte.
- Atmósfera limpia.
- > Altitud promedio del sol, 11:00 am, el día 10 de Junio (día 161 del año).

$$T_c = 100 \, ^{\circ} C$$
 $T_a = 40 \, ^{\circ} C$
 $T_{film} = \frac{100 + 40}{2} = 70 \, ^{\circ} C$
A nivel del mar

$$\mu_f = 2,043 \cdot 10^{-5} (kg/m - s) o (N - s/m^2)$$

$$\rho_f = 1,029 (kg/m^3)$$

$$k_f = 0,02945 (W/m \cdot {}^{\circ}C)$$

Calor Disipado por Convección (q_c)

$$q_c = 3.635 \cdot \rho_f^{0.5} \cdot D^{0.75} \cdot (T_c - T_a)^{1.25}$$

$$q_c = 42,4 (W/m)$$

$$q_c = 0.754 \cdot \left(\frac{D \cdot \rho_f \cdot V_w}{\mu_f}\right)^{0.6} \cdot k_f \cdot k_a \cdot (T_c - T_a)$$

$$q_c = 77,06 \, (W/m)$$

$$q_c = \left[1,01+1,347 \cdot \left(\frac{D \cdot \rho_f \cdot V_w}{\mu_f}\right)^{0.52}\right] \cdot k_f \cdot k_a \cdot (T_c - T_a)$$

$$q_c = 81,93 (W/m)$$

$$D = 0.02814 m$$

$$\mu_f = 2,043 \cdot 10^{-5} \ (kg/m \cdot s)$$

$$T_c = 100 \,{}^{\circ}C$$

$$k_f = 0.02945 (W/m \,{}^{\circ}C)$$

$$T_a = 40 \, ^{\circ} C$$

$$V_{w} = 0.61 (m/s)$$

$$\rho_f = 1,029 \, (kg/m^3)$$

 $k_a = 1$ Viento perpendicular al conductor

$$q_r = 17.8 \cdot D \cdot \varepsilon \cdot \left[\left(\frac{T_c + 273}{100} \right)^4 - \left(\frac{T_a + 273}{100} \right)^4 \right]$$

$$q_r = 39,1 (W/m)$$

$$D = 0,02814 m$$

$$T_c = 100 \,{}^{\circ}C$$

$$T_a = 40 \, ^{\circ} C$$

$$\varepsilon = 0.8$$

Altitud (H_C) y Azimuth (Z_C) del Sol

El día del año correspondiente al 10 de Junio es:

$$N = 31 + 28 + 31 + 30 + 31 + 10 = 161$$

La declinación solar para el 10 de Junio está dada por:

$$\delta = 23,46 \cdot sen \left[\frac{284 + N}{365} \cdot 360 \right]$$

$$\delta = 23^{\circ}$$

Altitud (H_C) y Azimuth (Z_C) del Sol

$$H_C = sen^{-1} [\cos(Lat) \cdot \cos(\delta) \cdot \cos(\omega) + sen(Lat) \cdot sen(\delta)]$$

$$H_C = 74.8^{\circ}$$

$$\chi = \frac{sen(\omega)}{sen(Lat) \cdot \cos(\omega) - \cos(Lat) \cdot tg(\delta)}$$

$$\chi = -2,24$$

$$\chi < 0$$
 $\omega @ 11 AM = -15^{\circ}$
 $C = 180^{\circ}$

$$C = 180^{\circ}$$

$$Z_C = C + tg^{-1}(\chi)$$

$$Z_{C} = 114^{\circ}$$

Calor Recibido del Sol (q_s)

$$q_s = \alpha \cdot Q_{SE} \cdot \sin(\theta) \cdot A'$$

$$q_s = 22,44 (W/m)$$

$$\theta = \cos^{-1} \left[\cos (H_C) \cdot \cos (Z_C - Z_1) \right] = 76.1^{\circ}$$

$$H_C = 74.8^{\circ} con \ atm\'osfera \ lim \ pia \implies Q_{SE} = 1027 \ (W/m^2)$$

$$Z_C = 114^{\circ}$$

$$Z_l = 90^{\circ} o 270^{\circ} (Direcci\'{o}n \ L\'{i}nea \ Este - Oeste)$$

$$\alpha = 0.8$$

$$A' = 0.02814 (m)$$

$$R(T_C) = \left[\frac{R(T_{High}) - R(T_{Low})}{T_{High} - T_{Low}}\right] \cdot (T_C - T_{Low}) + R(T_{Low})$$

$$T_{High} = 75^{\circ} C$$

 $T_{Low} = 25^{\circ} C$
 $R(25^{\circ} C) = 7,283 \cdot 10^{-5} (\Omega/m)$
 $R(75^{\circ} C) = 8,688 \cdot 10^{-5} (\Omega/m)$
 $T_{C} = 100^{\circ} C$

$$R(100^{\circ}C) = 9.390 \cdot 10^{-5} (\Omega/m)$$

Corriente Térmica Estado Estacionario

$$I = \sqrt{\frac{q_c + q_r - q_s}{R(T_c)}}$$

$$I = 1025 (A)$$

$$q_c = 81,93 (W/m)$$

$$q_r = 39,10 (W/m)$$

$$q_s = 22,44 (W/m)$$

$$R(100^{\circ}C) = 9.390 \cdot 10^{-5} (\Omega/m)$$

CORRIENTE EN EL CONDUCTOR EN FUNCIÓN DE LOS PARÁMETROS DEL SISTEMA

TEMPERATURA DEL CONDUCTOR EN FUNCIÓN DE LOS PARÁMETROS DEL SISTEMA

CONSTRUCCIÓN DE TABLAS CORRIENTE/TEMPERATURA DE CONDUCTORES

CORRIENTE EN AMPERES CONDUCTOR DRAKE 795 kcmil 26/7 ACSR													
Temp Máx	Temperatura Ambiente °C												
Cond °C	-15	-10	-5	0	5	10	15	20	25	30	35	40	
100	1389	1358	1327	1295	1262	1228	1193	1156	1118	1078	1036	992	
110	1438	1410	1381	1351	1321	1289	1256	1222	1187	1151	1113	1074	
120	1485	1459	1432	1404	1365	1345	1315	1284	1251	1218	1183	1147	
130	1530	1505	1479	1453	1426	1398	1370	1341	1311	1280	1248	1215	
140	1572	1549	1524	1500	1474	1448	1422	1394	1366	1337	1308	1277	
150	1613	1590	1568	1544	1520	1496	1471	1445	1419	1392	1364	1335	
160	1652	1631	1609	1587	1564	1541	1517	1493	1468	1443	1417	1390	
170	1690	1670	1649	1628	1606	1584	1562	1539	1515	1491	1467	1441	
180	1727	1707	1688	1667	1647	1626	1605	1583	1561	1538	1515	1491	

Notas

- 1.- Velocidad del viento de 2 pie/seg.
- 2.- Emisividad igual a 0,5
- Absorción solar igual a 0,5

Ciudad	Latitud			
Iquique	20° 32'			
Antofagasta	23º 38'			
Calama	22° 28'			
Copiapó	27º 18'			
Vallenar	28º 35'			
La Serena	29º 54'			
Quintero	32º 47'			
Valparaíso	33º 10'			
Santiago	33º 27'			
Curicó	34º 58'			

Ciudad	Latitud
Chillán	36º 36'
Concepción	36º 47'
Temuco	38º 46'
Valdivia	39º 38'
Osorno	40° 36'
Puerto Montt	41º 28'
Puerto Aysén	45° 24'
Coihaique	45° 35'
Punta Arenas	53° 80'

CÁLCULO DE CAPACIDAD DE CORRIENTE EN ESTADO TRANSITORIO NORMA IEEE Std. 738 - 2012

Ejemplo de Aplicación

Determine la capacidad térmica en estado estacionario para el conductor Drake, 795 kcmil, 26/7 ACSR, bajo las siguientes condiciones:

- > Velocidad del viento 0,61 m/s al nivel del mar y perpendicular al conductor.
- > Emisividad térmica 0,5.
- Absorción solar 0,5.
- > Temperatura ambiente 40 °C.
- Temperatura máxima permisible en el conductor 100 °C.
- Diámetro exterior del conductor 28,12 mm.
- Resistencia del conductor:
 - $R(25 \, {}^{\circ}C) = 7,284 \times 10^{-5} \, Ohm/m$.
 - $R(75 \, ^{\circ}C) = 8,689 \times 10^{-5} \, Ohm/m$.
- \triangleright La línea tiene su recorrido en la dirección Este-Oeste, con azimuth $Z_1=45^\circ$.
- ➤ La latitud corresponde a 43° norte.
- Atmósfera limpia.
- > Altitud promedio del sol, 11:00 am, el día 10 de Junio (día 161 del año).
- Ifinal 1200 A

