

Comparison of Hybrid and Quantum Neural Networks

By Neema Badihian and Saaketh Rayaprolu

History of Neural Networks

- 1943 Neurologist Warren McCulloch & Mathematician Walter Pitts create electric circuit to model neurons
- 1949 Donald Hebb suggests neural pathways get stronger the more they are used
- 1958 Frank Rosenblatt creates single perceptron

History of Neural Networks

- 1959 Bernard Widrow & Marcian Hoff creater Multiple Adaptive Linear Elements (MADALINE) to eliminate noise in phone lines
- 1969 Marvin Minsky & Seymour Papert criticize Rosenblatt's perceptron and identify issues in neural networks
- 1982 Jon Hopfield creates Hopfield Net which uses recurrent neural network

History of Neural Networks

- 1985 D.B. Parker publishes report on Paul Werbos' 1974 dissertation of backpropagation
- Now Neural Networks are stronger than ever!

Neural Network Uses

- Handwriting Recognition
- Facial Recognition
- Financial Analysis
- Weather Prediction
- Medical Diagnostics

Classical Neural Network Layers

- Input Layer
 - Takes in data to analyze
- Hidden Layer
 - Manipulates data
- Output Layer
 - Returns results

Classical Neural Network Logic

Forward Propagation

- Input external data
- Neurons are multiplied by weight, adjusted by the bias, and summed

$$z_{m}^{(1)} = \Sigma_{1}^{n} a_{n}^{(0)} w_{n,m}^{(0)} + b_{n}^{(0)}$$

- $z_m^{(1)} = \Sigma_1^n a_n^{(0)} w_{n,m}^{(0)} + b_n^{(0)}$ Result is passed to an activation function
 - $a_{3}^{(1)} = g(z_{3}^{(1)})$
 - Makes neural network non-linear
- Repeat process until the output layer

Classical Neural Network Logic

Backward Propagation

- Loss function determines output similarity to expected results
- Gradient descent method minimizes loss function
- New weights and biases are calculated and passed to appropriate neurons

Classical Neural Network Logic

 Forward and backward propagation are repeated as necessary

Quantum Neural Networks

- Expands uses of neural networks to quantum chemistry, higher complexity optimization problems, etc
- Works best on quantum machines, very complex operations for classical machines to handle

Quantum Neural Network - Training

- Given input, L hidden layers, and output layer
- Initialize input qubits with unitaries encoding values of the data (can be arbitrary)
- - $U^{l} = U^{l}_{N}U^{l}_{N-1}...U^{l}_{2}U^{l}_{1}$: unitaries between layers l-1 and l (akin to weights): updates iteratively
- Can be redefined as: $\rho^{\text{out}} = \epsilon^{\text{out}}(\epsilon^{\text{L}}(...\epsilon^{\text{l}}(\rho^{\text{in}})...))$

Quantum Neural Network - Feed Forward

- All U_x are initialized as ansatze
 Channel ε^l(ρ^{l-1}_x) = U^l(ρ^{l-1}_x ⊗|0...0⟩_l⟨0...0|)U^{l†}
 For each step l, apply channel ε^l and then trace out the *l*-1 system
- Parameter matrix entry $K_j^l = (\eta/X)2^{m_l-1}\sum_x tr_{rest}(M_j^l)$ $M_j^l = [\epsilon^l(\rho_x^{l-1}), \epsilon^l(id_{l-1}\otimes\sigma_x^l)]$
- In essence, the feed-forward process acts on multiple levels of multilayer operations

Quantum Neural Network - Cost

- - Range: [0,1]
- Each step updates U→e^{i∈K}U
 - K is a matrix made of all K^l, defined earlier
- At any point, only two layers of memory are needed

Hybrid Neural Networks

- Accuracy of quantum algorithms + classical cost functions for speed
- Hadamard and Ry gates to encode data
- PQC is used to manipulatedata stored in perceptrons
- Classical activation relieson expected values

Hybrid Neural Network - Encoding

- ↓ |Ψ_{encoded}⟩ = ⊗R_γ(a_i) · H|0⟩^{⊗n}
 → Hadamard all qubits to place system in uniform superposition
- \diamond R_v gates with angle θ representing the data being encoded into each neuron
 - R_v is used because rotation occurs on X-Z plane (all real values)
 - Operational overhead decreases when not using complex numbers

Hybrid Neural Network - Weights

- Repeating m times for m qubits in the next layer:
 - Entangle all qubits with CNOT
 - Common methods: Full, Linear, Circular
 - Apply R_γ gates with angle ω representing weight of neuron
 - ω is an ansatz that iteratively gets refined Parametrized Quantum Circuits (PQC) are utilized due to high operational efficiency

Hybrid Neural Network - Activation

- Common activation functions:
 - Measurement of qubits under Z basis: $\langle \sigma_z^i \rangle$
 - Expectation is used because quantum tomography is inefficient to implement
 - Fidelity with a fixed state: $|\langle \psi_{fixed} | \psi_i \rangle|^2$
 - Use classical channels to initialize measurement data as θ for next layer of qubits (feedback loop)
 - First multiply output value by π to normalize new θ from [-1 , 1] to [- π , π]

Next Steps

- Complexity comparisons of Classical, Quantum, and Hybrid NN's
 - Why QNNs are the most complex to run
 - Whether benefits of HNN actually outweigh CNN and QNN (likely circumstantial)
 - Runtime analyses of NNs and implementation of HNN

THANKS!

ANY QUESTIONS?

QREDITS

- https://www.nature.com/articles/s41467-020-14 454-2.pdf
- https://arxiv.org/pdf/1912.06184.pdf
- https://arxiv.org/pdf/2108.01468.pdf
- https://towardsdatascience.com/a-concise-histo ry-of-neural-networks-2070655d3fec
- https://kasperfred.com/series/introduction-to-neural-networks/computational-complexity-of-neural-networks