Agile Programming Contest 2021 Round 9

Thursday 18 November 2021 20:00 P.M. - 24:00 P.M.

Task Setter

Mr. Akarapon Watcharapalakorn (PeaTT~)

Mr. Phumipat Chaiprasertsud (MAGCARI)

Mr. Warat Palpai (Waratpp123)

Miss Wichada Chaiprasertsud (Wasrek)

1. อไจล์สามกลีบ (AG Petal)

ที่มา: ข้อหกสิบห้า Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17 ไอ้พวกสามกลีบเป็นนักเคลื่อนไหวทางการเมือง พอพวกสามกลีบไปเจอคนอื่น มักจะบ่มเพาะให้มีความคิดเหมือน ๆ กัน สมมติว่าคนแต่ละคนมีค่าความสมัยใหม่อยู่ v[i] หน่วย ตอนพวกสามกลีบไปเจอกลุ่มคนหนึ่ง ๆ จะปรับความคิดของคนในกลุ่มนั้น ๆ โดยแต่ละวัน พวกสามกลีบจะทำสองอย่างต่อไปนี้อย่างใดอย่างหนึ่ง

- 1. ถ้าคนใดคนหนึ่งพวกสามกลีบคิดว่ามีความสมัยใหม่เกินสมควร ก็จะพูดหว่านล้อมให้ลดความสมัยใหม่ลง 1 หน่วย
- 2. ถ้าคนใดคนหนึ่งมีความสมัยใหม่น้อยเกิน ก็จะพยายามเพิ่มความสมัยใหม่ให้เพิ่มขึ้น 1 หน่วย

ถ้ากลุ่มคนกลุ่มหนึ่งมาเจอกับสามกลีบ สามกลีบจะบ่มเพาะคนเหล่านี้สำเร็จ ก็ต่อเมื่อค่าความสมัยใหม่ของคนกลุ่มนั้น เท่ากันทั้งหมด <u>มีคนอยู่ N คนยืนเรียงกันอยู่เป็นเส้นตรง สามกลีบจะแบ่งคนกลุ่มนี้เป็น K กลุ่ม ซึ่งแต่ละกลุ่มต้องยืนติดกัน</u> โดยจะ บ่มเพาะคนเหล่านี้แยกกัน ซึ่งหมายความว่า แต่ละกลุ่มอาจถูกบ่มเพาะให้มีค่าความสมัยใหม่ที่ไม่เท่ากันก็ได้ แต่สามกลีบก็ขี้เกียจจะ EDUCATE คนอื่นเหลือเกิน จึงอยากบ่มเพาะให้เสร็จไวที่สุด เขาก็อยากรู้ว่าบ่มเพาะคนทั้ง N คน โดยแบ่งเป็นกลุ่มดังกล่าวได้สำเร็จ ไวสุดกี่วัน

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อช่วยหาว่าพวกสามกลีบบ่มเพาะคนทั้งหมดได้สำเร็จไวสุดกี่วัน

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก 2 จำนวน คือ N และ Q ซึ่ง 1 <= N <= 1,500 และ 1 <= Q <= 50 บรรทัดที่สอง รับจำนวนเต็มบวก N จำนวน คือ v[i] เมื่อ 1 <= i <= N ซึ่ง $1 <= v[i] <= 10^6$ Q บรรทัดต่อมา รับจำนวนเต็มบวก 1 จำนวน คือ K เมื่อ 1 <= K <= 50 15% ของชุดข้อมูลทดสอบมี N = 100

<u>ข้อมูลส่งออก</u>

มีทั้งหมด () บรรทัดแสดงคำตอบของแต่ละคำถามย่อย

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
7 1	5
6 4 6 12 13 9 7	
3	

คำอธิบายตัวอย่างที่ 1

ในคำถามย่อยที่หนึ่ง พวกสามกลีบจะแบ่งคนเป็น 3 กลุ่มคือ คนที่มีความสมัยใหม่เป็น [6, 4, 6], [12, 13] และ [9, 7] โดยเขาจะบ่มเพาะคนที่มีค่าความสมัยใหม่เป็น 4 ในกลุ่มแรกให้มีความสมัยใหม่ขึ้นเป็น 6 ในสองวันแรก ในกลุ่มที่สองเขาจะบ่ม เพาะคนที่มีความสมัยใหม่ 13 ให้เหลือ 12 ภายใน 1 วัน และบ่มเพาะคนที่มีความสมัยใหม่ 9 ให้เหลือ 7 ภายในสองวัน ใช้เวลาบ่ม เพาะรวมกันทั้งหมด 2 + 1 + 2 = 5 วันซึ่งน้อยที่สุดเท่าที่จะเป็นไปได้แล้ว

+++++++++++++++++

2. อไจล์กระดานการ์ด (AG CardBoard)

ที่มา: ข้อหกสิบหก Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17 ศาสตราจารย์โดโด้เป็นผู้เชี่ยวชาญและชำนาญการพิเศษสาขาทฤษฎีเกมของโลกยุคปัจจุบัน แต่ตอนนี้เขาว่างงานมาก ๆ แบบไม่มีอะไรจะทำเลย เขาจึงสร้างเกมขึ้นมาเกมหนึ่งซึ่งประกอบด้วยกระดานที่มีการ์ดแปะอยู่ การ์ดแต่ละใบนั้นมี 2 หน้า คือหน้า สีแดง และหน้าสีเขียว ทั้งสองหน้าจะมีตัวเลขจำนวนเต็มบวกที่มีค่าไม่เกินหนึ่งพันล้านเขียนอยู่ (ทั้งสองหน้าจะมีเลขเหมือนหรือ ต่างกันก็ได้)

กระบวนการเล่นเกม มีดังนี้

- 1. ผู้เล่นมีคะแนนเริ่มต้น 0 คะแนน โดยเป้าหมายของผู้เล่นคือเล่นเกมให้จบโดยมีคะแนนน้อยที่สุดเท่าที่จะทำได้
- 2. ตราบเท่าที่มีการ์ดอย่างน้อย 2 ใบแปะอยู่บนกระดาน ผู้เล่นจะได้ทำตามคำสั่งต่อไปนี้
- 2a. เลือกหยิบการ์ด 2 ใบจากบนกระดานออกมา เลือกตัวเลขหน้าสีแดงของการ์ดใบหนึ่งเป็นเลข R และ ตัวเลขหน้าสีเขียวของการ์ดอีกใบเป็นเลข G
 - 2b. เพิ่มคะแนน R^G ให้แก่ผู้เล่น (เมื่อกำหนดให้ ^ คือการ XOR)
 - 2с. คืนการ์ดหนึ่งใบกลับไปยังกระดานเหมือนเดิม ส่วนอีกใบให้ทิ้งลงถุงดำไปได้เลย
 - 3. เกมนี้จะจบก็ต่อเมื่อเหลือการ์ดแค่ 1 ใบ (ไม่สามารถดำเนินเกมต่อไปได้แล้วนั่นเอง)

ศาสตราจารย์โดโด้ได้เรียกคุณที่เป็นศิษย์รักเข้าไปเล่นเกมนี้ให้เขาดู ทำให้คุณต้องเล่นให้ดีที่สุดให้สมกับความคาดหวังของ อาจารย์

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อหาคะแนนที่น้อยที่สุดที่เป็นไปได้ หากคุณเล่นเกมนี้อย่างเหมาะสม

<u>ข้อมูลนำเข้า</u>

บรรทัดแรกรับจำนวนเต็มบวก Q แทนจำนวนคำถาม โดย Q <= 10 ในแต่ละคำถาม
บรรทัดแรก รับจำนวนเต็มบวก N แทนการ์ดที่แปะอยู่บนกระดาน โดย N <= 10³
บรรทัดที่ 2 รับจำนวนเต็มบวก N จำนวนแทนตัวเลขหน้าสีแดงของการ์ดแต่ละใบ
บรรทัดที่ 3 รับจำนวนเต็มบวก N จำนวนแทนตัวเลขหน้าสีเขียวของการ์ดแต่ละใบ

ข้อมูลส่งออก

Q บรรทัด แต่ละบรรทัดตอบคะแนนที่น้อยที่สุดที่เป็นไปได้ในเกมนั้น ๆ เมื่อเล่นเกมอย่างเหมาะสม

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	1
2	5
1 2	
3 3	
3	
1 101 501	
3 2 3	

คำอธิบายตัวอย่างที่ 1

ในคำถามแรก

การ์	ดใบที่	ตัวเลขหน้าสีแดง	ตัวเลขหน้าสีเขียว
	1	1	3
	2	2	3

มีวิธีการเล่นดังนี้

รอบ	การ์ดหน้าสีแดง		การ์ดหน้าสีเขียว		การ์ดใบที่ทิ้ง	คะแนนที่ได้จากรอบนี้
100	การ์ดใบที่	ตัวเลข	การ์ดใบที่	ตัวเลข	1119AIPONIN	พอดนาเทพา แบบน
1	2	2	1	3	1	2 ^ 3 = 1

คะแนนรวมที่น้อยที่สุด คือ 1 คะแนน

ในคำถามที่ 2

การ์ดใบที่ ตัวเลขหน้าสีแดง		ตัวเลขหน้าสีเขียว
1	1	3
2	101	2
3	501	3

นีวิธีการเล่นดังนี้

5011	การ์ดหน้าสีแดง		การ์ดหน้าสีเขียว		าร์ดใบที่ทิ้ง	คะแนนที่ได้จากรอบนี้
รอบ	การ์ดใบที่	ตัวเลข	การ์ดใบที่	ตัวเลข	LI LANIP O NINIA	พอแนนเหม เกา อก น
1	1	1	2	2	2	1 ^ 2 = 3
2	1	1	3	3	1	1 ^ 3 = 2

คะแนนรวมที่น้อยที่สุด คือ 3 + 2 = 5 คะแนน

+++++++++++++++++

3. อไจล์พีระมิด (AG_Pyramid)

ที่มา: ข้อหกสิบเจ็ด Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17 นักผจญภัยคนหนึ่งได้หลับลงด้วยความเหนื่อยและอ่อนล้าหลังจากที่ได้ทำโจทย์มาเป็นระยะเวลาเนิ่นนาน เขาตื่นมาใน ความฝันของเขา ซึ่งเขาได้พบว่าเขาได้ถูกนำมาปล่อยอยู่บนดาวดวงหนึ่งซึ่งมีลักษณะเป็นพีระมิดฐานสามเหลี่ยมที่ตำแหน่ง A ดังรูป ทางที่เขาจะเดินได้มีเพียงบริเวณขอบของพีระมิดทั้ง 6 เส้นทางเพียงเท่านั้น (บริเวณที่เชื่อมระหว่างจุด A, B, C, D สองจุดใด ๆ ที่ อยู่ติดกันเข้าด้วยกัน) ขอบแต่ละด้านจะใช้เวลาเดินทาง 1 วันเท่ากันทั้งหมด เขามีเวลาทั้งหมด N วันในการสำรวจดาวดวงนี้ ทั้งเขา ต้องเดินทางในทุกวัน และเมื่อผ่านไป N วัน เขาจะต้องอยู่ที่จุด A พอดี เขาจะสามารถเดินสำรวจได้กี่รูปแบบ

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก Q โดยที่ 1 <= Q <= 5,000

Q บรรทัดถัดมา รับจำนวนเต็มบวก N แทนจำนวนวันในแต่ละคำถาม โดยที่ $1 <= N <= 10^7$

<u>ข้อมูลส่งออก</u>

Q บรรทัด แสดงจำนวนรูปแบบที่เขาสามารถเดินได้ mod 1,000,000,007

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	3
2	6
3	

คำอธิบายตัวอย่างที่ 1

เมื่อ N=2 จะเดินได้ 3 รูปแบบ คือ

- 1. A -> B -> A
- 2. A -> C -> A
- 3. A -> D -> A

+++++++++++++++++

4. อไจล์เครื่องเรียงพิมพ์ (AG_Char Print)

ที่มา: ข้อหกสิบแปด Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17
เครื่องเรียงพิมพ์เครื่องหนึ่งมีรายการตัวอักษรภาษาอังกฤษพิมพ์เล็กที่ใช้เรียงพิมพ์ได้เรียงต่อกัน จำนวน N ตัวอักษร
ตัวอักษรเหล่านี้เมื่อใช้พิมพ์แล้วจะไม่สามารถใช้ซ้ำอีกได้ ยกตัวอย่างเช่น ตัวอักษรในรายการอาจจะเป็น

ในการจะพิมพ์ข้อความจากตัวอักษรในรายการ ผู้จัดพิมพ์จะต้องนำตัวอักษรแต่ละตัวในรายการมาใช้ ยกตัวอย่างเช่น ถ้า จะพิมพ์ข้อความว่า catbat ผู้จัดพิมพ์ก็จะต้องไปหยิบตัวอักษร c หนึ่งตัวจากรายการมาใช้ จากนั้นหยิบตัวอักษร a จากรายการ แล้วหยิบตัว t จากรายการ ตามลำดับไปเรื่อย ๆ ในการหยิบตัวอักษรจะมีค่าใช้จ่ายเท่ากับ 1 + จำนวนตัวอักษรก่อนหน้าในรายการ

เครื่องพิมพ์มีสองโหมดการทำงาน ในโหมด 0 เมื่อพิมพ์เสร็จ ตัวอักษรที่ใช้แล้วจะต้องถูกวางกลับที่เดิม ในโหมด 1 ตัวอักษรที่พิมพ์แล้วจะถูกทิ้งไป ตัวอย่างการทำงานในการพิมพ์ข้อความ catbat ในการพิมพ์สองโหมดแสดงดังด้านล่างตัวเลขใน วงเล็บคือค่าใช้จ่ายในการยกตัวอักษร

โหมด 0		โหมด 1	
c - a a b <u>c</u> e d d e c t f g h a a t	(4)	c - a a b <u>c</u> e d d e c t f g h a a t	(4)
a - <u>a</u> a b <u>c</u> e d d e c t f g h a a t	(1)	a - <u>a</u> a b e d d e c t f g h a a t	(1)
t - <u>a</u> a b <u>c</u> e d d e c <u>t</u> f g h a a t	(10)	t-abeddec <u>t</u> fghaat	(8)
b - <u>a</u> a <u>b</u> <u>c</u> e d d e c <u>t</u> f g h a a t	(3)	b - a <u>b</u> e d d e c f g h a a t	(2)
a - <u>a a b c</u> e d d e c <u>t</u> f g h a a t	(2)	a - <u>a</u> e d d e c f g h a a t	(1)
t - <u>a a b c</u> e d d e c <u>t</u> f g h a a <u>t</u>	(16)	t - e d d e c f g h a a <u>t</u>	(11)
รวมค่าใช้จ่าย 36 หน่วย		รวมค่าใช้จ่าย 27 หน่วย	

จงเขียนโปรแกรมรับโหมดการทำงาน รายการตัวอักษร และข้อความที่ต้องการพิมพ์ แล้วคำนวณค่าใช้จ่ายในการพิมพ์

<u>ข้อมูลนำเข้า</u>

บรรทัดแรกระบุโหมดการทำงาน

บรรทัดที่สองระบุรายการตัวอักษร ประกอบด้วยตัวอักษรพิมพ์เล็ก จำนวนไม่เกิน 300,000 ตัวอักษร บรรทัดที่สามระบุข้อความที่ต้องการพิมพ์ ประกอบด้วยตัวอักษรพิมพ์เล็ก ไม่เกิน 100,000 ตัวอักษร 10% ของชุดข้อมูลทดสอบ จะมี ความยาวของรายการและข้อความที่ต้องการพิมพ์ไม่เกิน 1,000 45% ของชุดข้อมูลทดสอบ จะมี โหมด 0

45% ของชุดข้อมูลทดสอบ จะมี โหมด 1

<u>ข้อมูลส่งออก</u>

มีหนึ่งบรรทัด เป็นค่าใช้จ่ายที่ต้องใช้ ถ้าตัวอักษรในรายการไม่พอพิมพ์ให้ตอบ -1 **หมายเหตุ** ข้อนี้จะให้คะแนนเป็น group test case ตาม subtasks หากตอบมาเฉพาะ -1 จะได้ 0 คะแนน

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
0	36
aabceddectfghaat	
catbat	
1	27
aabceddectfghaat	
catbat	

+++++++++++++++++

5. อไจล์ปรมาณูชาวนครฯ (AG_Destruction)

ที่มา: ข้อหกสิบเก้า Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17 ในเมืองนครศรีธรรมราช เป็นที่เลื่องชื่อเกี่ยวกับสถาปัตยกรรมไทยเดิม แต่ในปัจจุบันสถาปัตยกรรมบางส่วนก็ผุพัง และอาจ ทำรายได้ให้กับจังหวัดได้ไม่เท่าการเปลี่ยนเป็นเมืองอุตสาหกรรมสมัยใหม่ (เรื่องนี้แต่งขึ้นเองไม่ใช่เรื่องจริงแต่อย่างใด)

สถาปัตยกรรมดังกล่าวมีทั้งหมด N สถานที่เรียงกันเป็นเส้นตรง โดยแต่ละสถานที่ i เมื่อ 1 <= i <= N มีมูลค่า ∨[i] หน่วย ในบางครั้งสถานที่นั้นอาจมีมูลค่าติดลบ โดยสถานที่ทั้งแถวเส้นตรงนี้มีมูลค่ารวมเท่ากับ ∨[1]+∨[2]+∨[3]+...+∨[N] หน่วย

โดยผู้ว่าราชการจังหวัดได้มีนโยบาย 'หนึ่งตำบล หนึ่งปรมาณู' โดยจะส่งเรื่องไปให้แต่ละตำบลทั้ง K ตำบล ไปตกลงเลือก จำนวนเต็มบวก L และ R เป็นของตนเอง เพื่อยิงระเบิดปรมาณูให้สถาปัตยกรรมที่อยู่ในช่วง L ถึง R สลายสิ้นจนหมดไป แต่มี เงื่อนไขสำหรับการตกลงระหว่างตำบลดังนี้

- ช่วงที่เลือกต้องไม่ซ้อนทับกัน
- ช่วงที่เลือกห้ามติดกัน
- 3. แต่ละช่วงต้องครอบคลุมสถาปัตยกรรม**อย่างน้อย M สถานที่**
- 4. ทุกตำบลต้องเลือกช่วง ไม่มีใครอุบอิบไม่เลือกเด็ดขาด

แต่คุณก็รู้ดีว่า การระเบิดดังกล่าว อาจส่งผลกระทบต่อหลาย ๆ ด้าน รวมทั้งยังมีคนบางส่วนอยากรักษามูลค่าของ สถาปัตยกรรมเหล่านี้เอาไว้ จึงอยากทราบว่า มูลค่าของสถาปัตยกรรมที่เหลืออยู่รวมกัน**มากที่สุดเท่าไหร่** ไม่ว่าจะระเบิดอย่างไรก็ ตาม ถ้าไม่เหลือเลยให้มูลค่ารวมเป็น 0 และรับรองว่าข้อมูลนำเข้าสามารถมีวิธีในการส่งระเบิดแน่นอน

<u>งานของคูณ</u>

จงเขียนโปรแกรมเพื่อช่วยหาว่ามูลค่าของสถาปัตยกรรมที่เหลืออยู่รวมกันมากที่สุดเท่าไหร่

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก 1 จำนวน คือ Q แทนจำนวนชุดทดสอบ ซึ่ง 1 <= Q <= 3 ซึ่งในแต่ละคำถาม มีสองบรรทัด

บรรทัดแรก รับจำนวนเต็มบวก 3 จำนวน คือ N, K และ M ซึ่ง 1 <= N, M <= 50,000 และ 1 <= K <= 1,000 บรรทัดที่สอง รับจำนวนเต็ม N จำนวน คือ v[i] เมื่อ 1 <= i <= N ซึ่ง -10^9 <= v[i] <= 10^9

15% ของชุดข้อมูลทดสอบมี N, M, K <= 500

<u>ข้อมูลส่งออก</u>

มีทั้งหมด Q บรรทัดแสดงคำตอบของแต่ละคำถามย่อย

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
2	26
7 1 3	17
1 0 4 8 5 7 6	
12 3 2	
2 -8 3 -4 5 -7 3 5 -2 2 4 1	

คำอธิบายตัวอย่างที่ 1

มีทั้งสิ้น 2 คำถาม ได้แก่

ในคำถามย่อยที่หนึ่ง มีสถาปัตยกรรมทั้งหมด 7 สถานที่ ต้องเลือกช่วงเพื่อระเบิด 1 ช่วงที่มีความยาวอย่างน้อย 3 สถานที่ โดยจะเลือกช่วงสถานที่ที่ 1 ถึง 3 [1, 0, 4] เพื่อให้เหลือมูลค่ามากที่สุดคือ 8 + 5 + 7 + 6 = 26 หน่วย

ในคำถามย่อยที่สอง มีสถาปัตยกรรมทั้งหมด 12 สถานที่ ต้องเลือกช่วงเพื่อระเบิด 3 ช่วงที่มีความยาวอย่างน้อย 2 สถานที่ โดยจะเลือกสามช่วงได้แก่ ช่วงสถานที่ที่ 2 ถึง 4 [-8, 3, -4] ช่วงสถานที่ 6 ถึง 7 [-7, 3] และช่วงสถานที่ 9 ถึง 10 [-2, 2] เพื่อให้เหลือมูลค่ามากที่สุดคือ 2 + 5 + 5 + 4 + 1 = 17 หน่วย

-++++++++++++++++

6. อไจล์หลุมดำ (AG_Blackhole)

ที่มา: ข้อเจ็ดสิบ Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17

การเดินทางในอวกาศมีอุปสรรคมากมายคอยขัดขวางคุณอยู่ แต่ในวันนี้เราจะสนใจเพียงแค่หลุมดำเพียงอย่างเดียวเท่านั้น คุณมีหน้าที่ช่วยเหลือเจ้าหน้าที่ให้เดินทางได้อย่างปลอดภัยจากพื้นที่หมายเลข 1 ไปยังพื้นที่หมายเลข N

การเดินทางระหว่างพื้นที่จะต้องใช้ทางวาร์ประหว่างพื้นที่เท่านั้น โดยทางวาร์ปจะมีทั้งหมดเพียง N-1 ทางวาร์ปเท่านั้น และทางวาร์ปทั้งหมดสามารถเดินทางได้ทั้ง 2 ทิศทาง (รับประกันว่าสามารถเดินทางจากพื้นที่หมายเลข 1 ไปยังพื้นที่หมายเลขอื่นๆ ได้เสมอ)

หน้าที่ของคุณ คือการประมวลผลสภาพหลุมดำ และตอบคำถามนักเดินทาง ดังต่อไปนี้

- 1. ได้รับข้อมูลว่า มีหลุมดำเกิดขึ้นในพื้นที่หมายเลข X
- 2. นักเดินทางถามว่า หากเดินทางจากพื้นที่หมายเลข 1 ไปยังพื้นที่หมายเลข X โดยใช้ทางวาร์ปน้อยครั้งที่สุด จะ เจอหลุมดำแรกที่พื้นที่ใด หากไม่เจอหลุมดำในการเดินทางให้ตอบ -1

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อตอบคำถามของนักเดินทาง

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวก N Q แทนจำนวนพื้นที่และจำนวนหน้าที่ที่คุณต้องทำตามลำดับ โดย
N-1 บรรทัดต่อมา รับจำนวนเต็มบวก U V แทนทางวาร์ประหว่างพื้นที่หมายเลข U และพื้นที่หมายเลข V
Q บรรทัดต่อมา รับจำนวนเต็มบวก C X แทนประเภทหน้าที่ที่คุณต้องทำ และหมายเลขพื้นที่ที่สนใจ
หาก C=0 หมายความว่า คุณได้รับข้อมูลว่า มีหลุมดำเกิดขึ้นในพื้นที่หมายเลข X

หาก C=1 หมายความว่า มีนักเดินทางถามว่าหากเดินทางจากพื้นที่หมายเลข 1 ไปยังพื้นที่หมายเลข X โดยใช้ทาง วาร์ปน้อยครั้งที่สุด จะเจอหลุมดำแรกที่พื้นที่ใด

30% ของข้อมูลชุดทดสอบ จะมี N, Q <= 10^4

<u>ข้อมูลส่งออก</u>

K บรรทัด เมื่อ K คือจำนวนคำถามที่นักเดินทางถาม แต่ละคำถามให้ตอบหมายเลขของพื้นที่ที่จะเจอหลุมดำเป็นครั้งแรก

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
9 6	-1
1 2	8
1 3	-1
2 4	2
2 9	
5 9	
7 9	
8 9	
6 8	
1 3	
0 8	
1 6	
1 7	
0 2	
1 9	

คำอธิบายตัวอย่างที่ 1

เริ่มต้น มีต้นไม้ดังภาพ

มีทั้งสิ้น 6 หน้าที่ที่คุณต้องทำ ได้แก่

ลำดับ	กระบวนการ	คำอธิบาย	ผลคำตอบ
1	1 3	เดินทางจาก 1 -> 3	-1
2	0 8	พื้นที่หมายเลข 8 เกิดหลุมดำ	-
3	1 6	เดินทางจาก 1 -> 2 -> 9 -> <mark>8</mark> -> 6	8
4	1 7	เดินทางจาก 1 -> 2 -> 9 -> 7	-1
5	0 2	พื้นที่หมายเลข 2 เกิดหลุมดำ	-
6	1 9	เดินทางจาก 1 -> <mark>2</mark> -> 9	2

++++++++++++++++

7. อไจล์ป้ายบอกทาง (AG Sign)

ที่มา: ข้อเจ็ดสิบเอ็ด Agile Programming Contest 2021 โจทย์สำหรับติวผู้แทนศูนย์ สอวน. คอมพิวเตอร์ ม.บูรพา รุ่น17
คุณกำลังเดินอย่างสนุกสนานอยู่ในเกาะแห่งหนึ่งในบียูยูแลนด์ เกาะนี้มีลักษณะเป็นเกาะย่อย ๆ เกาะที่ 1 ถึง N เรียงเป็น เส้นตรงจากซ้ายไปขวา แต่ละเกาะมีป่ายบอกทางอยู่ ตอนแรกทุกป้ายจะชี้ทางขวาทั้งหมด เราจะทำการอพยพจำนวน Q ครั้งโดยที่ เริ่มอพยพตั้งแต่เกาะที่ S ไปยังเกาะที่ T โดยเราจะเดินตามป้ายบอกทาง กล่าวคือจากเกาะที่ i ถ้าป้ายชี้ทางขวาจะเดินทางไปที่เกาะ i + 1 แต่ถ้าชี้ทางซ้ายเราจะเดินทางไปยังเกาะที่ i – 1 แต่แบบนี้คุณยังรู้สึกว่าไม่พอใจก่อนจะเดินทางไปยังเกาะถัดไปคุณก็ไปเปลี่ยน ทิศป้ายจากขวาเป็นซ้าย จากซ้ายเป็นขวาเสียก่อน แต่ถ้าคุณอยู่ที่เมืองที่ 1 คุณจะไม่เปลี่ยนทิศป้ายเพราะเกรงว่าจะไม่มีเกาะที่ 0 เทพเจ้าแห่งบียูยูแลนด์จึงต้องการรู้ว่าถ้าอพยพจากเกาะที่ S ไปยังเกาะที่ T ต้องเดินทางกี่รอบ (นับเกาะเริ่มต้นด้วย)

<u>งานของคุณ</u>

จงเขียนโปรแกรมเพื่อหาว่าอพยพจากเกาะที่ S ไปยังเกาะที่ T ต้องเดินทางกี่รอบ (นับเกาะเริ่มต้นด้วย)

<u>ข้อมูลนำเข้า</u>

บรรทัดแรก รับจำนวนเต็มบวกสองจำนวน คือ N, Q แทนจำนวนเกาะ และจำนวนคำถาม โดยที่ 1 <= N, Q <= 10^5 อีก Q บรรทัดถัดมา รับจำนวนเต็มบวกสองจำนวน คือ S, T โดยที่ 1 <= S <= T <= N 20% ของชุดข้อมูลทดสอบ จะมีค่า N, Q ไม่เกิน 500 50% ของชุดข้อมูลทดสอบ จะมีค่า N, Q ไม่เกิน 5,000

<u>ข้อมูลส่งออก</u>

มี Q บรรทัด แสดงว่าถ้าอพยพจากเกาะที่ S ไปยังเกาะที่ T ต้องเดินทางกี่รอบในแต่ละคำถาม

ตัวอย่าง

ข้อมูลนำเข้า	ข้อมูลส่งออก
7 3	4
2 5	6
3 4	1
2 2	

คำอธิบายตัวอย่างที่ 1

ในตอนแรกทิศของป้ายเป็นดังนี้

| \rightarrow |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |

ในคำถามย่อยที่ 1 ถ้าอพยพจากเกาะที่ 2 ไปเกาะที่ 5 จะใช้การเดินทาง 4 ครั้งดังนี้

1	2	3	4	5	6	7	คำอธิบาย	
\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	🛨 เราเริ่มที่เกาะที่ 2 เดินตามป้ายก็คือเดินมาเกาะที่ 3		
\rightarrow	+	\rightarrow	\rightarrow	\rightarrow	\rightarrow	🛨 เมื่อเราเดินมาเกาะที่ 3 จะเปลี่ยนทิศป้ายของเกาะที่ 2		
\rightarrow	+	+	\rightarrow	\rightarrow	\rightarrow	🛨 เมื่อเราเดินมาเกาะที่ 4 จะเปลี่ยนทิศป้ายของเกาะที่ 3		
\rightarrow	+	←	←	\rightarrow	\rightarrow	🛨 เมื่อเราเดินมาเกาะที่ 5 จะเปลี่ยนทิศป้ายของเกาะที่ 4		
\rightarrow	+	←	←	←	\rightarrow	🗕 พอเดินถึงเมืองที่ 5 จะจบการอพยพ แต่คุณก็เปลี่ยนทิศป้ายด้วย		

ในคำถามย่อยที่ 2 ถ้าอพยพจากเกาะที่ 3 ไปเกาะที่ 4 จะใช้การเดินทาง 6 ครั้งดังนี้

1	2	3	4	5	6	7	คำอธิบาย	
\rightarrow	4	+	+	←	\rightarrow	🗕 เราเริ่มที่เกาะที่ 3 เดินตามป้ายก็คือเดินมาเกาะที่ 2		
\rightarrow	+	\rightarrow	+	←	\rightarrow	\rightarrow	เมื่อเราเดินมาเกาะที่ 2 จะเปลี่ยนทิศป้ายของเกาะที่ 3	
\rightarrow	\rightarrow	\rightarrow	+	←	\rightarrow	\rightarrow	👈 เมื่อเราเดินมาเกาะที่ 1 จะเปลี่ยนทิศป้ายของเกาะที่ 2	
\rightarrow	\rightarrow	\rightarrow	←	←	\rightarrow	→ เมื่อเราเดินมาเกาะที่ 2 ไม่ต้องเปลี่ยนทิศป้ายของเกาะที่ 1		
\rightarrow	+	\rightarrow	+	←	\rightarrow	🛨 เมื่อเราเดินมาเกาะที่ 3 จะเปลี่ยนทิศป้ายของเกาะที่ 2		
\rightarrow	+	←	←	←	\rightarrow	🛨 เมื่อเราเดินมาเกาะที่ 4 จะเปลี่ยนทิศป้ายของเกาะที่ 3		
\rightarrow	←	←	\rightarrow	←	\rightarrow	\rightarrow	พอเดินถึงเมืองที่ 4 จะจบการอพยพ แต่คุณก็เปลี่ยนทิศป้ายด้วย	

ในคำถามย่อยที่ 3 ถ้าอพยพจากเกาะที่ 2 ไปยังเกาะที่ 2 หมายความว่าคุณเดินทางถึงจุดหมายแล้วคือใช้การเดินทาง 1 ครั้งแต่คุณก็เปลี่ยนทิศป้ายด้วยกลายเป็น

→	\rightarrow	←	\rightarrow	←	\rightarrow	\rightarrow
1	2	3	4	5	6	7

++++++++++++++++++

8. รถรดน้ำต้นไม้พลังงานไดโน (Water Truck TOI16)

ที่มา: ข้อสอบโอลิมปิกวิชาการระดับชาติครั้งที่ 16 ณ ศูนย์ สอวน. ม.ขอนแก่น

มหาวิทยาลัยขอนแก่นเป็นมหาวิทยาลัยที่มีทัศนียภาพที่สวยงาม บนถนนทุกเส้นที่วิ่งผ่านมีดอกไม้หรือต้นไม้ข้างทางตลอด สองฝั่งถนน แต่พืชพรรณไม้เหล่านี้ต้องการการดูแลรักษาโดยเฉพาะการรดน้ำอย่างสม่ำเสมอ ดังนั้นทางมหาวิทยาลัยจึงได้ทำ นวัตกรรมสร้างรถสำหรับรดน้ำต้นไม้อัจฉริยะที่ใช้พลังงานสะอาดจากเซลล์พลังงานไดโน (Dino energy cell) ที่ชื่อว่า "รถรดน้ำ ต้นไม้พลังงานไดโน" ในที่นี้เพื่อความสะดวกเราจะเรียกรถดังกล่าวว่า "รถไดโน"

รถไดโนมีความเป็นอัจฉริยะในด้านสามารถดึงความชื้นจากอากาศมาสะสมเป็นน้ำสำหรับรดน้ำต้นไม้อย่างไม่จำกัดระหว่าง ที่เดินทาง พร้อมทั้งจะเดินทางไปยังทุกเส้นทางเมื่อได้รับการดาวน์โหลดแผนที่เส้นทางการรดน้ำ โดยแผนที่เส้นทางการรดน้ำ ประกอบไปด้วยจุดยอด (vertex) และเส้นเชื่อม (edge) ระหว่างจุดยอด แทนเส้นทางที่รถไดโนจะเดินทางผ่านเพื่อรดน้ำ และแต่ละ เส้นเชื่อมจะมีค่าตัวเลขกำกับไว้ซึ่งเป็นปริมาณของพลังงานที่รถไดโนต้องใช้เพื่อผ่านแต่ละเส้นทาง โดยแต่ละเส้นเชื่อมในแผนที่ เส้นทางการรดน้ำไม่ว่าจะเป็นขาไปหรือขากลับรถไดโนใช้พลังงานเท่ากัน และทุก ๆ จุดยอดจะสามารถเดินทางไปยังจุดยอดอื่นได้ เสมอ

เมื่อรถไดโนได้รับการดาวน์โหลดแผนที่ ภารกิจจะเริ่มด้วยการออกเดินทางตามแผนที่จากจุดยอดเริ่มต้นซึ่งเป็นจุดยอด [0] เดินทางให้ผ่านทุกเส้นเชื่อมและกลับมายังที่จุดยอด [0] เสมอ แต่เพื่อเป็นการประหยัดพลังงาน รถไดโนจะต้องคำนวณการใช้ พลังงานให้น้อยที่สุดและพอดีกับการเดินทางผ่านทุกเส้นเชื่อมและกลับมายังจุดยอด [0] ตามเงื่อนไขที่กำหนด

เนื่องด้วยรถไดโนกำลังถูกพัฒนาดังนั้นแผนที่เส้นทางที่จะใช้ได้ยังเป็นรูปแบบที่จำกัด โดยเป็นไปตามเงื่อนไขต่อไปนี้

- แต่ละจุดยอดมีเส้นเชื่อมได้ไม่เกิน 3 เส้นเชื่อม
- ถ้ามีจุดยอดจำนวน V จุด และเส้นเชื่อมจำนวน E เส้น จะกำหนดให้ -1 <= E V <= 2

ทั้งนี้เพื่อให้รถไดโนทำงานได้อย่างมีประสิทธิภาพทีมพัฒนานวัตกรรมรถไดโนต้องการให้ท่านช่วยเขียนโปรแกรมเพื่อหาว่า รถไดโนจะต้องประจุพลังงานน้อยที่สุดเป็นจำนวนกี่หน่วย เพื่อจะให้รถไดโนสามารถรดน้ำตามเงื่อนไขที่กำหนดให้

ตัวอย่างดังภาพที่ 1. สี่เหลี่ยมหมายเลข [0] แทนจุดยอดเริ่มต้น วงกลมหมายเลขต่าง ๆ แทนจุดยอด เส้นทึบแทนเส้นเชื่อม และตัวเลขกำกับบนเส้นเชื่อมแทนปริมาณหน่วยพลังงานที่รถไดโนต้องใช้เพื่อผ่านเส้นเชื่อมนั้น จากภาพดังกล่าว มีหนึ่งในเส้นทางที่ เมื่อรถไดโนเดินทางตามเงื่อนไขที่กำหนดจะใช้พลังงานน้อยที่สุด คือ

- 1. การเดินทางของรถไดโนเริ่มต้นที่จุดยอด [0]
- 2. เดินทางต่อไปยังจุดยอด (3) (ใช้พลังงาน 1 หน่วย)
- 3. รถไดโนเดินทางต่อไปยังจุดยอด (5), (4), (2), (1) และ (5) ตามลำดับ (ใช้พลังงาน 2+4+3+4+6=19 หน่วย)
- 4. จากนั้นเดินทางต่อไปยังจุดยอด (3) (ใช้พลังงาน 2 หน่วย)
- 5. เดินทางต่อไปยังจุดยอด (6), (7), (6), (8), (6) และ (3) ตามลำดับ (ใช้พลังงาน 7+5+5+6+6+7= 36 หน่วย)
- 6. เดินทางกลับมายังจุดยอด [0] (ใช้พลังงาน 1 หน่วย)

โดยสรุปแล้วรถไดโนใช้พลังงานในการเดินทางทั้งสิ้น 1+19+2+36+1=59 หน่วย

ภาพที่ 1. ภาพตัวอย่างของแผนที่ซึ่งมีจุดยอดทั้งหมด 9 จุดยอด และมีจุดยอด [0] เป็นจุดเริ่มต้น

<u>งานของคูณ</u>

จงเขียนโปรแกรมที่มีประสิทธิภาพเพื่อหาว่า เมื่อรถไดโนได้รับแผนที่ รถไดโนใช้พลังงานน้อยที่สุดกี่หน่วยเพื่อที่จะเดินทาง ตามแผนที่และเงื่อนไขที่กำหนดให้

<u>ข้อมูลนำเข้า</u>

มีจำนวน E + 1 บรรทัด ดังนี้

บรรทัดที่ 1 ประกอบด้วยจำนวนเต็ม 2 จำนวนคือ E และ V แต่ละจำนวนคั่นด้วยช่องว่าง เมื่อ E คือ จำนวนเส้นเชื่อม และ V คือ จำนวนจุดยอด โดย 5 <= E <= 100,000; 5 <= V <= 100,000 และ <math>-1 <= E-V <= 2

E บรรทัดต่อมา ประกอบด้วยจำนวนเต็ม 3 จำนวนคือ si, vi และ wi ตามลำดับแต่ละจำนวนคั่นด้วยช่องว่าง โดย si และ vi คือ vertex และ wi คือ พลังงานที่รถไดโนต้องใช้เพื่อเดินทางผ่านเส้นเชื่อมระหว่าง vertex ที่ (si) และ (vi) เมื่อ 0 <= si, vi <= V-1 และ si ไม่เท่ากับ vi, 1 <= wi <= 1,000 เมื่อ i= 1, ..., E

<u>ข้อมูลส่งออก</u>

แสดงพลังงานน้อยที่สุดเพื่อที่รถไดโนจะเดินทางตามแผนที่และเงื่อนไขที่กำหนดให้

<u>ตัวอย่าง</u>

ข้อมูลนำเข้า	ข้อมูลส่งออก
9 8	59
0 3 1	
3 5 2	
5 4 4	
4 2 3	
2 1 4	
1 5 6	
6 3 7	
6 7 5	
6 8 6	
7 6	57
0 1 10	
0 2 2	
1 2 1	
2 3 8	
3 4 10	
4 5 5	
3 1 5	

ข้อมูลเพิ่มเติมเกี่ยวกับชุดทดสอบ

ข้อมูลแนะนำที่เกี่ยวข้องกับชุดทดสอบ มีดังนี้

ค่า $E-V$	ค่า V	คะแนนสูงสุดของชุดทดสอบนี้
-1	ไม่เกิน 50,000	10%
0	ไม่เกิน 10	10%
0	ไม่เกิน 2,000	30%
1	ไม่เกิน 10	10%
1	ไม่เกิน 10,000	20%
2	ไม่เกิน 50,000	20%