8 Algorithms for Decentralized Optimization

8.1 Establish an analogous argument to the one in Section 8.3.2 for the gradient-tracking recursion (8.58)–(8.59).

Solution. In network quantities, the gradient tracking recursion takes the form:

$$w_i = \mathcal{A}^\mathsf{T} w_{i-1} - \mu g_{i-1}$$
$$g_i = \mathcal{A}^\mathsf{T} g_{i-1} + \nabla \mathcal{J}(w_i) - \nabla \mathcal{J}(w_{i-1})$$

Assuming the algorithm converges to some set of fixed-points w_{∞}, g_{∞} , we have:

$$w_{\infty} = \mathcal{A}^{\mathsf{T}} w_{\infty} - \mu g_{\infty}$$
$$g_{\infty} = \mathcal{A}^{\mathsf{T}} g_{\infty} + \nabla \mathcal{J}(w_{\infty}) - \nabla \mathcal{J}(w_{\infty}) = \mathcal{A}^{\mathsf{T}} g_{\infty}$$

It follows that g_{∞} is consensual. We can then examine the evolution of the centroid:

$$\frac{1}{K} \sum_{k=1}^{K} g_{k,i} = \frac{1}{K} \sum_{k=1}^{K} g_{k,i-1} + \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i}) - \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i-1})$$

After iterating and telescoping:

$$\frac{1}{K} \sum_{k=1}^{K} g_{k,i} = \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i})$$

Since g_{∞} is consensual, it follows that $g_{k,\infty} = \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,\infty})$. Then, for the centroid of the weights, we have:

$$\frac{1}{K} \sum_{k=1}^{K} w_{k,\infty} = \frac{1}{K} \sum_{k=1}^{K} w_{k,\infty} - \frac{\mu}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,\infty}) \Longrightarrow \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,\infty}) = 0$$

Finally, we have:

$$w_{\infty} = \mathcal{A}^{\mathsf{T}} w_{\infty} - \mu g_{\infty} = \mathcal{A}^{\mathsf{T}} w_{\infty}$$

It then follows that w_{∞} is consensual, hence $w_{k,\infty}=w_{\infty}$ for all k and from $\sum_{k=1}^{K} \nabla J_k(w_{\infty}) = 0$ that it is optimal.

© 2023. All rights reserved. This draft cannot be copied or distributed in print or electronically without the written consent of the authors S. Vlaski and A. H. Sayed.

8.2 For a deterministic optimization problem of your choice, implement the consensus+innovation, EXTRA and gradient-tracking algorithms and show that consensus+innovations exhibits a bias, while EXTRA and gradient-tracking converge exactly. How do these findings change with the choice of the step-size μ ?

Solution. The solution is provided as a Jupyter notebook in the separate file Problem_8_2.ipynb.

8.3 Show the exact incremental adjustments to the derivation of the EXTRA algorithm in Section 8.3 that lead to Exact diffusion (8.65)–(8.67).

Solution. We begn with (8.41), repeated here for reference:

$$\mathcal{L}(w, \lambda) = \mathcal{J}(w) + \eta \lambda^{\mathsf{T}} \mathcal{B} w + \frac{\eta}{2} w^{\mathsf{T}} \mathcal{L} w$$

Instead of performing straight gradient descent as in (8.42)–(8.43), we descend incrementally, first along $\mathcal{J}(w)$ and subsequently along the remaining terms. This yields:

$$\psi_i = w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1})$$

$$w_i = \psi_i - \mu \eta \mathcal{L} \psi_i - \mu \eta \mathcal{B}^\mathsf{T} \lambda_{i-1}$$

$$\lambda_i = \lambda_{i-1} + \mu \eta \mathcal{B} w_i$$

With the choice $\eta = \mu^{-1}$ and $\mathcal{A}^{\mathsf{T}} = I - \mu \eta \mathcal{L} = I - \mathcal{L}$, we have:

$$\psi_i = w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1})$$

$$w_i = \mathcal{A}^\mathsf{T} \psi_i - \mathcal{B}^\mathsf{T} \lambda_{i-1}$$

$$\lambda_i = \lambda_{i-1} + \mathcal{B} w_i$$

We can write this compactly as:

$$w_i = \mathcal{A}^\mathsf{T} (w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1})) - \mathcal{B}^\mathsf{T} \lambda_{i-1}$$
$$\lambda_i = \lambda_{i-1} + \mathcal{B} w_i$$

We now follow a similar argument to EXTRA to eliminate the dual variable. The primal update at time i-1 is evaluated to:

$$\mathbf{w}_{i-1} = \mathcal{A}^\mathsf{T} \left(\mathbf{w}_{i-2} - \mu \nabla \mathcal{J}(\mathbf{w}_{i-2}) \right) - \mathcal{B}^\mathsf{T} \lambda_{i-2}$$

Subtracting:

$$\begin{split} w_{i} - w_{i-1} &= \mathcal{A}^{\mathsf{T}} \left(w_{i-1} - w_{i-2} - \mu \nabla \mathcal{J}(w_{i-1}) + \mu \nabla \mathcal{J}(w_{i-2}) \right) - \mathcal{B}^{\mathsf{T}} \left(\lambda_{i-1} - \lambda_{i-2} \right) \\ &= \mathcal{A}^{\mathsf{T}} \left(w_{i-1} - w_{i-2} - \mu \nabla \mathcal{J}(w_{i-1}) + \mu \nabla \mathcal{J}(w_{i-2}) \right) - \mathcal{B}^{\mathsf{T}} \mathcal{B} \ w_{i-1} \\ &= \mathcal{A}^{\mathsf{T}} \left(w_{i-1} - w_{i-2} - \mu \nabla \mathcal{J}(w_{i-1}) + \mu \nabla \mathcal{J}(w_{i-2}) \right) - \mathcal{L} \ w_{i-1} \end{split}$$

After rearranging:

$$w_i = \mathcal{A}^{\mathsf{T}} (2 w_{i-1} - w_{i-2} - \mu \nabla \mathcal{J}(w_{i-1}) + \mu \nabla \mathcal{J}(w_{i-2}))$$

We can formulate this relation in multiple steps as:

$$\psi_i = w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1})$$

$$\phi_i = w_{i-1} + \psi_i - \psi_{i-1}$$

$$w_i = \mathcal{A}^\mathsf{T} \phi_i$$

which is the Exact diffusion algorithm in network form.

8.4 Show the exact incremental adjustments to the derivation of the NEXT algorithm in Section 8.4 that lead to Aug-DGM (8.68)–(8.70).

Solution. Let us examine the next algorithm, which we repeat here for reference:

$$w_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} w_{\ell,i-1} - \mu g_{k,i-1}$$
$$g_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} g_{k,i-1} + \nabla J_k(w_{k,i}) + \nabla J_k(w_{k,i-1})$$

The first update in $w_{k,i}$ is reminiscent of a consensus+innovations update, where the local gradient in the innovation is replaced by the gradient tracking variable $g_{k,i-1}$. This motivates a diffusion-type update, where the averaging operation is applied to both the weight and the innovation term, of the form:

$$w_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \left(w_{\ell,i-1} - \mu g_{\ell,i-1} \right)$$

Similarly, we may apply the averaging opperations to the driving term of the dynamic consensus algorithm in $g_{k,i}$, resulting in:

$$g_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \left(g_{k,i-1} + \nabla J_k(w_{k,i}) + \nabla J_k(w_{k,i-1}) \right)$$

Together, these recursions correspond exactly to Aug-DGM (8.68)–(8.70).

9 Convergence of Decentralized Algorithms

9.1 Verify that the network basis transformation of the diffusion algorithm (9.26) satisfies the decomposition (9.27)–(9.28).

Solution. Analogously to (9.12), we have for the diffusion recursion:

$$\begin{split} \boldsymbol{\mathcal{V}}^\mathsf{T} \, \boldsymbol{w}_i &= \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}}^\mathsf{T} \, \boldsymbol{w}_{i-1} - \boldsymbol{\mu} \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}}^\mathsf{T} \widehat{\boldsymbol{\nabla}} \widehat{\boldsymbol{\mathcal{J}}}(\boldsymbol{w}_{i-1}) \\ &= \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}}^\mathsf{T} \boldsymbol{\mathcal{V}} \boldsymbol{\mathcal{V}}^\mathsf{T} \, \boldsymbol{w}_{i-1} - \boldsymbol{\mu} \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}}^\mathsf{T} \boldsymbol{\mathcal{V}} \boldsymbol{\mathcal{V}}^\mathsf{T} \widehat{\boldsymbol{\nabla}} \widehat{\boldsymbol{\mathcal{J}}}(\boldsymbol{w}_{i-1}) \\ &= \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{V}} \boldsymbol{\mathcal{V}}^\mathsf{T} \, \boldsymbol{w}_{i-1} - \boldsymbol{\mu} \boldsymbol{\mathcal{V}}^\mathsf{T} \boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{V}} \boldsymbol{\mathcal{V}}^\mathsf{T} \widehat{\boldsymbol{\nabla}} \widehat{\boldsymbol{\mathcal{J}}}(\boldsymbol{w}_{i-1}) \\ &= \boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{V}}^\mathsf{T} \, \boldsymbol{w}_{i-1} - \boldsymbol{\mu} \boldsymbol{\mathcal{A}} \boldsymbol{\mathcal{V}}^\mathsf{T} \widehat{\boldsymbol{\nabla}} \widehat{\boldsymbol{\mathcal{J}}}(\boldsymbol{w}_{i-1}) \end{split}$$

We note that the only difference to (9.12) for the consensus+innovations algorithm is Λ pre-multiplying the gradient term $\mathcal{V}^{\mathsf{T}}\widehat{\nabla \mathcal{J}}(w_{i-1})$. Then, proceeding with (9.16) accordingly, we find:

$$\begin{bmatrix} \sqrt{K}\boldsymbol{w}_{c,i} \\ \boldsymbol{v}_{2}^{\mathsf{T}} \boldsymbol{w}_{i} \end{bmatrix}$$

$$= \begin{bmatrix} I_{M} & 0 \\ 0 & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M} \\ \boldsymbol{v}_{2}^{\mathsf{T}} \end{bmatrix} \boldsymbol{w}_{i-1} - \mu \begin{bmatrix} I_{M} & 0 \\ 0 & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M} \\ \boldsymbol{v}_{2}^{\mathsf{T}} \end{bmatrix} \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1})$$

$$= \begin{bmatrix} \frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M} \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \end{bmatrix} \boldsymbol{w}_{i-1} - \mu \begin{bmatrix} I_{M} & 0 \\ 0 & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M} \\ \boldsymbol{v}_{2}^{\mathsf{T}} \end{bmatrix} \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1})$$

$$= \begin{bmatrix} \left(\frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M}\right) \boldsymbol{w}_{i-1} \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \boldsymbol{w}_{i-1} \end{bmatrix} - \mu \begin{bmatrix} I_{M} & 0 \\ 0 & \Lambda_{2} \end{bmatrix} \begin{bmatrix} \left(\frac{1}{\sqrt{K}} \mathbb{1}^{\mathsf{T}} \otimes I_{M}\right) \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1}) \\ \boldsymbol{v}_{2}^{\mathsf{T}} \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1}) \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \boldsymbol{w}_{k,i-1} \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \boldsymbol{w}_{i-1} \end{bmatrix} - \mu \begin{bmatrix} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \widehat{\nabla J}_{k}(\boldsymbol{w}_{k,i-1}) \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1}) \end{bmatrix}$$

$$= \begin{bmatrix} \sqrt{K} \boldsymbol{w}_{c,i-1} \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \boldsymbol{w}_{i-1} \end{bmatrix} - \mu \begin{bmatrix} \frac{1}{\sqrt{K}} \sum_{k=1}^{K} \widehat{\nabla J}_{k}(\boldsymbol{w}_{k,i-1}) \\ \Lambda_{2} \boldsymbol{v}_{2}^{\mathsf{T}} \widehat{\nabla \vartheta}(\boldsymbol{w}_{i-1}) \end{bmatrix}$$

Relations (9.27)–(9.28) then follow directly after normalization and substitutions.

© 2023. All rights reserved. This draft cannot be copied or distributed in print or electronically without the written consent of the authors S. Vlaski and A. H. Sayed.

9.2 Show that the network centroid satisfies (9.31) for the EXTRA, Exact diffusion, gradient-tracking and AUG-DGM algorithms.

Solution. For the EXTRA and Exact diffusion algorithms, this is most immediately seen from the primal-dual recursions, namely (8.42) for EXTRA and the recursions in Problem 8.3. We repeat both recursions here for reference:

$$\begin{aligned} \mathbf{w}_i &= \mathcal{A}^\mathsf{T} \, \mathbf{w}_{i-1} - \mu \nabla \mathcal{J}(\mathbf{w}_{i-1}) - \mu \eta \mathcal{B}^\mathsf{T} \lambda_{i-1} \\ \mathbf{w}_i &= \mathcal{A}^\mathsf{T} \, (\mathbf{w}_{i-1} - \mu \nabla \mathcal{J}(\mathbf{w}_{i-1})) - \mu \eta \mathcal{B}^\mathsf{T} \lambda_{i-1} \end{aligned}$$

The two recursions correspond to those of the consensus+innovations and diffusion algorithms respectively, with an additional common correction term $-\mu\eta\mathcal{B}^{\mathsf{T}}\lambda_{i-1}$ for bias correction. Recall that $\mathcal{B} = \mathcal{B}^{\mathsf{T}}$ is the square root of \mathcal{L} , and hence shares eigenvectors with \mathcal{L} , where the eigenvalues are the square roots of the eigenvalues of \mathcal{L} . Then:

$$(\mathbb{1}^\mathsf{T} \otimes I_M) \, \mathfrak{B}^\mathsf{T} = 0$$

and hence:

$$\frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) w_{i}$$

$$= \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{A}^{\mathsf{T}} w_{i-1} - \mu \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \nabla \mathcal{J}(w_{i-1}) - \mu \eta \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{B}^{\mathsf{T}} \lambda_{i-1}$$

$$= \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{A}^{\mathsf{T}} w_{i-1} - \mu \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \nabla \mathcal{J}(w_{i-1})$$

$$\frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) w_{i}$$

$$= \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{A}^{\mathsf{T}} \left(w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1}) \right) - \mu \eta \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{B}^{\mathsf{T}} \lambda_{i-1}$$

$$= \frac{1}{K} \left(\mathbb{1}^{\mathsf{T}} \otimes I_{M} \right) \mathcal{A}^{\mathsf{T}} \left(w_{i-1} - \mu \nabla \mathcal{J}(w_{i-1}) \right)$$

It follows that the network centroids of the EXTRA and Exact diffusion algorithms satisfy the same recursions as those of the consensus+innovations and diffusion algorithms respectively, and hence satisfy (9.31).

For the NEXT and Aug-DGM algorithms, we follow a different argument. Recall recursions (8.58) and (8.68)–(8.69) for NEXT and Aug-DGM respectively:

$$w_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} w_{\ell,i-1} - \mu g_{k,i-1}$$
$$w_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} (w_{\ell,i-1} - \mu g_{\ell,i-1})$$

For both, we find for the network centroid:

$$w_{c,i} = \frac{1}{K} \sum_{k=1}^{K} w_{k,i} = \frac{1}{K} \sum_{k=1}^{K} w_{k,i-1} - \frac{\mu}{K} \sum_{k=1}^{K} g_{k,i-1} = w_{c,i-1} - \frac{\mu}{K} \sum_{k=1}^{K} g_{k,i-1}$$

We hence need to evaluate the centroid of the gradient tracking term $g_{k,i-1}$, for which we have recursions (8.59) and (8.70):

$$g_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} g_{\ell,i-1} + \nabla J_k(w_{k,i}) - \nabla J_k(w_{k,i-1})$$
$$g_{k,i} = \sum_{\ell \in \mathcal{N}_k} a_{\ell k} \left(g_{\ell,i-1} + \nabla J_k(w_{\ell,i}) - \nabla J_k(w_{\ell,i-1}) \right)$$

In both cases, we find for the centroid:

$$\frac{1}{K} \sum_{k=1}^{K} g_{k,i} = \frac{1}{K} \sum_{k=1}^{K} g_{k,i-1} + \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i}) - \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i-1})$$

Iterating starting at i = 0 and telescoping, we have:

$$\frac{1}{K} \sum_{k=1}^{K} g_{k,i} = \frac{1}{K} \sum_{k=1}^{K} \nabla J_k(w_{k,i})$$

We then have the result after substitutions.