Advanced Engineering Mathematics Ordinary Differential Equations Notes

Chris Doble

February 2022

Contents

1	Intr	oduction to Differential Equations
	1.1	Definitions and Terminology
		Initial Value Problems
		Differential Equations as Mathematical Models

1 Introduction to Differential Equations

1.1 Definitions and Terminology

- An equation containing the derivatives of one or more dependent variables, with respect to one or more independent variables, is said to be a differential equation
- An **ordinary differential equation** (ODE) is a differential equation that contains only ordinary (i.e. non-partial) derivatives of one or more functions with respect to a single independent variable
- A partial differential equation is a differential equation that contains only partial derivatives of one or more functions of two or more independent variables
- The **order** of a differential equation is the order of the highest derivative in the equation
- First order ODEs are sometimes written in the differential form

$$M(x,y) dx + N(x,y) dy = 0$$

n-th order ODEs in one dependent variable can be expressed by the general form

$$F(x, y, y', \dots, y^{(n)}) = 0$$

• It's possible to solve ODEs in the general form uniquely for the highest derivative $y^{(n)}$ in terms of the other n+1 variables, allowing them to be expressed in the **normal form**

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

• An *n*-th order ODE is said be **linear** in the variable *y* if it can be expressed in the form

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y - g(x) = 0$$

i.e. the dependent variable y and all of its derivatives aren't raised to a power or used in nonlinear functions like e^y or $\sin y$, and the coefficients a_0, a_1, \ldots, a_n depend at most on the independent variable x

- A nonlinear ODE is one that is not linear
- A solution to an ODE is a function ϕ , defined on an interval I and possessing at least n derivatives that are continuous on I, such that

$$F(x,\phi(x),\phi'(x),\ldots,\phi^n(x))=0$$
 for all x in I .

- The interval of definition, interval of validity, or the domain of a solution is the interval over which the solution is valid
- A solution of a differential equation that is 0 on an interval *I* is said to be a **trivial solution**
- Because solutions to differential equations must be differentiable over their interval of validity, discontinuities, etc. must be excluded from the interval
- An **explicit solution** to an ODE is one where the dependent variable is expressed solely in terms of the independent variable and constants
- An **implicit solution** to an ODE is a relation G(x,y) = 0 over an interval I provided there exists at least one function ϕ that satisfies the relation as well as the ODE on I
- When solving a first-order ODE we usually obtain a solution containing a single arbitrary constant or parameter c. A solution containing an arbitrary constant represents a set of solution called a **one-parameter** family of solutions
- When solving an *n*-th order differential equation we usually obtain an *n*-parameter family of solutions
- A solution of a differential equation that is free from arbitrary parameters is called a **particular solution**

- A **singular solution** is a solution to a differential equation that isn't a member of a family of solutions
- A system of ODEs is two or more equations involving the derivatives of two or more unknown functions of a single independent variable. A solution of such a system is a differentiable function for each equation defined on a common interval I that satisfy each equation of the system on that interval

1.2 Initial Value Problems

• An **initial value problem** is the problem of solving a differential equation with some given **initial conditions**, e.g. solve

$$\frac{d^n y}{dx^n} = f(x, y, y', \dots, y^{(n-1)})$$

subject to

$$y(x_0) = y_0, y'(x_0) = y_1, \dots, y^{(n-1)}(x_0) = y_{n-1}$$

- The domain of y = f(x) differs depending on how it's considered:
 - As a function its domain is all real numbers for which it's defined
 - As a solution of a differential equation its domain is a single interval over which it's defined an differentiable
 - As a solution of an initial value problem its domain is a single interval over which it's defined, differentiable, and contains the initial conditions
- An initial value problem may not have any solutions. If it does it may have multiple.
- First-order initial value problems of the form

$$\frac{dy}{dx} = f(x, y)$$

$$y(x_0) = y_0$$

are guaranteed to have a unique solution over an interval I containing x_0 if f(x,y) and $\partial f/\partial y$ are continuous

1.3 Differential Equations as Mathematical Models

- A mathematical model is a mathematical description of a system or phenomenon
- The **level of resolution** of a model determines how many variables are included in the model

ullet A simple model of the growth of a population P is

$$\frac{dP}{dt} = kP$$

where k > 0

ullet A simple model of radioactive decay of an amount of substance A is

$$\frac{dA}{dt} = kA$$

where k < 0

• Newton's empirical law of cooling/warming states that the rate of change of the temperature of a body is proportional to the difference between the temperature of the body and the temperature of the surrounding medium

$$\frac{dT}{dt} = k(T - T_m)$$