ABSTRACT FORWARD PROPAGATE

KILDALL'S ALGORITHM

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}(l_0) := \alpha(\mathsf{P});
   \hat{\mu}(l) := \bot, for l \in L \setminus \{l_0\};
   while S \neq \emptyset do{
        l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               \mathsf{F} := \hat{sp}(\hat{\mu}(l), c);
               if \neg (\mathsf{F} \leq \hat{\mu}(l')) then{
                    \hat{\mu}(l') := \hat{\mu}(l') \sqcup F;
                    S := S \cup \{l'\};
```

- Does this algorithm actually calculate the abstract JOP?
- What are the conditions under which it is guaranteed to terminate?

ABSTRACT FORWARD PROPAGATE KILDALL'S ALGORITHM

```
AbstractForwardPropagate(\Gamma_c, P)
   S := \{l_0\};
   \hat{\mu}_K(l_0) := \alpha(\mathsf{P});
   \hat{\mu}_{K}(l) := \bot, for l \in L \setminus \{l_{0}\};
   while S \neq \emptyset do{
        l := Choose S;
         S := S \setminus \{l\};
         foreach (l, c, l') \in T do{
               F := f_c(\hat{\mu}_K(l));
               if \neg (\mathsf{F} \leq \hat{\mu}_{\mathsf{K}}(l')) then{
                    \hat{\mu}_{K}(l') := \hat{\mu}_{K}(l') \sqcup F;
                    S := S \cup \{l'\};
```

EXAMPLE - KILDALL'S ALGORITHM

EXAMPLE - KILDALL'S ALGORITHM

EXAMPLE - ABSTRACT JOP

EXAMPLE - ABSTRACT JOP

EXAMPLE - KILDALL VS ABSTRACT JOP

 $\hat{\mu}_K \neq \hat{\mu}$: This is because Kildall's Algorithm applies join eagerly We will prove that $\hat{\mu}_K \geq \hat{\mu}$

PROPERTIES OF KILDALL'S ALGORITHM

- 1. The values computed using Kildall's algorithm are an overapproximation of the abstract JOP, if the underlying Al framework is monotonic.
- 2. In general, Kildall's algorithm computes the least solution to a system of equations.
- 3. If the abstract domain satisfies the ascending chain condition, then Kildall's algorithm is guaranteed to terminate.

DATAFLOW EQUATIONS

- Program $\Gamma_c = (V, L, l_0, l_e, T)$ induces a system of data flow equations:
 - $X_{l_0} = d_0$
 - For all other locations $l \in L \setminus \{l_0\}, \ X_l = \bigsqcup_{(l',c,l) \in T} \hat{f}_c(X_{l'})$
- For collecting semantics, replace d_0 with c_0 , \square with \cup and \hat{f}_c with f_c .

EXAMPLE - DATAFLOW EQUATIONS

DATAFLOW EQUATIONS AS FUNCTION

- Consider the 'vectorised' lattice $(\bar{D}, \leq 1)$, where $\bar{D} = D^{|L|}$.
 - $\bar{d} \leq \bar{d}' \Leftrightarrow \forall l \in L . \bar{d}(l) \leq \bar{d}'(l)$
 - Homework: Prove that if (D, \leq) is a complete lattice, then $(\bar{D}, \bar{\leq})$ is also a complete lattice.
- We can view the data flow equations as a function $\bar{f}:\bar{D}\to\bar{D}$:

•
$$(\bar{f}(\bar{d}))(l_0) = d_0$$

$$\hat{f}(\bar{d}))(l) = \int_{(l',c,l)\in T} \hat{f}_c(\bar{d}(l'))$$

DATAFLOW EQUATIONS AS FUNCTION

EXAMPLE

$$\bar{f}(d_{l_0},d_{l_1},d_{l_2}) = (d_0,\hat{f}_{p_1}(d_{l_0}) \sqcup \hat{f}_{p_3}(d_{l_2}),\hat{f}_{p_2}(d_{l_1}))$$

DATAFLOW EQUATIONS AS FUNCTION

- If every abstract transfer function $\hat{f}:D\to D$ is monotonic, then the function $\bar{f}:\bar{D}\to\bar{D}$ is also monotonic.
 - Homework: Prove this.
- We have a monotonic function \bar{f} on a complete lattice \bar{D} . Hence, we can apply Knaster-Tarski fixpoint theorem.
- The least fixpoint $lfp(\bar{f})$ exists, and is in fact the least solution to the dataflow equations.
- We will show that Kildall's algorithm actually computes $lfp(\bar{f})$.
- Note that we can also use the sequence \bot , $\bar{f}(\bot)$, $\bar{f}^2(\bot)$, ... to compute $lfp(\bar{f})$.
 - This method is also called Kleene Iteration.

LFP INTRODUCES THE LEAST OVER APPROXIMATION: EXAMPLE

(+-,+,+,+) is a solution to the data flow equations, And (+-,+-,+-) is also another solution

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

• Given Al $(D, \leq, \alpha, \gamma, \hat{F}_D)$, if all functions in \hat{F}_D are monotonic, then Abstract JOP $\leq lfp(\bar{f})$.

Proof: Abstract JOP
$$\hat{\mu}(l) = \bigsqcup_{\pi \in \Pi_l} \hat{f}_{\pi}(d_0)$$

Let $lfp(\bar{f}) = \bar{d}$. We have to show that $\forall l \in L \cdot \hat{\mu}(l) \leq \bar{d}(l)$.

We will show that for all locations l, all paths $\pi \in \Pi_l$, $\hat{f}_{\pi}(d_0) \leq \bar{d}(l)$.

This proves the required result. Why?

We will use induction on length of the paths.

Base Case: Paths π of length 0 are empty and end at l_0 . Hence, $\hat{f}_{\pi}(d_0)=d_0$.

Since
$$\bar{f}(\bar{d})=\bar{d}$$
 and $(\bar{f}(\bar{d}))(l_0)=d_0$, we have $\bar{d}(l_0)=d_0$.

Thus,
$$\hat{f}_{\pi}(d_0) \leq \bar{d}(l_0)$$

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

Inductive Case: Assume that the claim holds for all paths of length n.

Consider a path π of length n+1 ending at location l.

ABSTRACT JOP $\leq lfp(\bar{f})$ FOR MONOTONIC AI FRAMEWORK PROOF

Inductive Case: Assume that the claim holds for all paths of length n.

Consider a path π of length n+1 ending at location l.

Let π' be the prefix of the path of length n, ending at location l'.

By Inductive Hypothesis, $\hat{f}_{\pi'}(d_0) \leq \bar{d}(l')$.

Since \hat{f}_p is monotonic, $\hat{f}_p(\hat{f}_{\pi'}(d_0)) \leq \hat{f}_p(\bar{d}(l'))$.

Hence, $\hat{f}_{\pi}(d_0) \leq \hat{f}_p(\bar{d}(l'))$.

Now
$$\bar{f}(\bar{d}) = \bar{d}$$
. Hence, $\bar{d}(l) = \bigsqcup_{(l',p,l) \in T} \hat{f}_p(\bar{d}(l'))$.

Hence, $\hat{f}_p(\bar{d}(l')) \leq \bar{d}(l)$. Thus, $\hat{f}_\pi(d_0) \leq \bar{d}(l)$.

EXAMPLE - LFP VS ABSTRACT JOP

DISTRIBUTIVE AND INFINITELY DISTRIBUTIVE FUNCTIONS

- Given two posets (D_1, \leq_1) and (D_2, \leq_2) , function $f: D_1 \to D_2$ is called distributive if for $x, y \in D_1$ such that $x \sqcup_1 y$ exists, then $f(x) \sqcup_2 f(y)$ also exists, and $f(x \sqcup_1 y) = f(x) \sqcup_2 f(y)$.
- Given two posets (D_1, \leq_1) and (D_2, \leq_2) , function $f: D_1 \to D_2$ is called infinitely distributive if for all $X \subseteq D_1$ such that $\sqcup_1 X$ exists, then $\sqcup_2 f(X)$ also exists, and $\sqcup_2 f(X) = f(\sqcup_1 X)$.
- Exercise: If f is distributive, then f is also monotonic.