Exercise 2.2 (Solutions)_{Page 53} Calculus and Analytic Geometry, MATHEMATICS 12

Question #1

Find from first principles, the derivatives of the following expensions w.r.t. their respective independent variables:

(i)
$$\left(ax+b\right)^3$$

(ii)
$$(2x+3)^5$$

(iii)
$$(3t+2)^{-2}$$

(iv)
$$(ax+b)^{-5}$$

$$(v) \qquad \frac{1}{(az-b)^7}$$

Solution

(i) Let
$$y = (ax+b)^3$$

 $\Rightarrow y + \delta y = (a(x+\delta x)+b)^3$
 $\Rightarrow \delta y = (ax+b+a\delta x)^3 - y$
 $= ((ax+b)+a\delta x)^3 - (ax+b)^3$
 $= [(ax+b)^3 + 3(ax+b)^2(a\delta x) + 3(ax+b)(a\delta x)^2 + (a\delta x)^3] - (ax+b)^3$
 $= 3a(ax+b)^2 \delta x + 3a^2(ax+b) \delta x^2 + a^3 \delta x^3$
 $= \delta x (3a(ax+b)^2 + 3a^2(ax+b) \delta x + a^3 \delta x^2)$

Dividing by δx

$$\frac{\delta y}{\delta x} = 3a(ax+b)^2 + 3a^2(ax+b)\delta x + a^3\delta x^2$$

Taking limit as $\delta x \to 0$

$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[3a(ax+b)^2 + 3a^2(ax+b)\delta x + a^3\delta x^2 \right]$$

$$\Rightarrow \frac{dy}{dx} = 3a(ax+b)^2 + 3a^2(ax+b)(0) + a^3(0)^2$$

$$\Rightarrow \frac{dy}{dx} = 3a(ax+b)^2 + 0 + 0 \qquad \Rightarrow \boxed{\frac{dy}{dx} = 3a(ax+b)^2}$$

(ii) Let
$$y = (2x+3)^5$$

 $\Rightarrow y + \delta y = (2(x+\delta x)+3)^5$
 $\Rightarrow \delta y = (2x+2\delta x+3)^5 - y$
 $= ((2x+3)+2\delta x)^5 - (2x+3)^5$
 $= \left[\binom{5}{0}(2x+3)^5 + \binom{5}{1}(2x+3)^4(2\delta x) + \binom{5}{2}(2x+3)^3(2\delta x)^2 + \dots + \binom{5}{5}(2\delta x)^5\right] - (2x+3)^5$
 $\dots + \binom{5}{5}(2\delta x)^5 - (2x+3)^5$

FSc-II / Ex- 2.2 - 2

$$= \left[(1)(2x+3)^5 + 2\binom{5}{1}(2x+3)^4 \delta x + 4\binom{5}{2}(2x+3)^3 \delta x^2 + \dots \right]$$
$$\dots + 32\binom{5}{5}\delta x^5 - (2x+3)^5$$
$$= 2\binom{5}{1}(2x+3)^4 \delta x + 4\binom{5}{2}(2x+3)^3 \delta x^2 + \dots + 32\binom{5}{5}\delta x^5$$

Dividing by δx

$$\frac{\delta y}{\delta x} = 2 \binom{5}{1} (2x+3)^4 + 4 \binom{5}{2} (2x+3)^3 \delta x + \dots + 32 \binom{5}{5} \delta x^4$$

Taking limit as $\delta x \rightarrow 0$

$$\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \lim_{\delta x \to 0} \left[2 \binom{5}{1} (2x+3)^4 + 4 \binom{5}{2} (2x+3)^3 \delta x + \dots + 32 \binom{5}{5} \delta x^4 \right]$$

$$\Rightarrow \frac{dy}{dx} = \left[2 \binom{5}{1} (2x+3)^4 + 0 + 0 + \dots + 0 \right]$$

$$\Rightarrow \frac{dy}{dx} = 2(5)(2x+3)^4 \quad \text{or} \quad \left[\frac{dy}{dx} = 10(2x+3)^4 \right]$$

(iii) Let
$$y = (3t+2)^{-2}$$

 $\Rightarrow y + \delta y = (3(t+\delta t)+2)^{-2}$
 $\Rightarrow \delta y = (3t+3\delta t+2)^{-2} - y$
 $\Rightarrow \delta y = ((3t+2)+3\delta t)^{-2} - (3t+2)^{-2}$
 $= (3t+2)^{-2} \left[1 + \frac{3\delta t}{3t+2} \right]^{-2} - (3t+2)^{-2} = (3t+2)^{-2} \left[\left(1 + \frac{3\delta t}{3t+2} \right)^{-2} - 1 \right]$
 $= (3t+2)^{-2} \left[\left(1 + (-2) \frac{3\delta t}{3t+2} + \frac{-2(-2-1)}{2!} \left(\frac{3\delta t}{3t+2} \right)^2 + \dots \right] - 1 \right]$
 $\Rightarrow \delta y = (3t+2)^{-2} \left[1 - \frac{6\delta t}{3t+2} + \frac{-2(-3)}{2} \left(\frac{\delta t}{3t+2} \right)^2 + \dots - 1 \right]$
 $= (3t+2)^{-2} \left[-\frac{6\delta t}{3t+2} + 3\left(\frac{3\delta t}{3t+2} \right)^2 + \dots \right]$
 $= (3t+2)^{-1} \cdot \frac{3\delta t}{3t+2} \left[-2 + 3\left(\frac{3\delta t}{3t+2} \right) + \dots \right]$

Dividing by δt

$$\frac{\delta y}{\delta t} = 3(3t+2)^{-2-1} \left[-2 + \left(\frac{3\delta t}{3t+2} \right) + \dots \right]$$

Taking limit when $\delta t \rightarrow 0$, we have

$$\lim_{\delta t \to 0} \frac{\delta y}{\delta t} = \lim_{\delta t \to 0} 3(3t+2)^{-3} \left[-2 + \left(\frac{3\delta t}{3t+2} \right) + \dots \right]$$

$$\Rightarrow \frac{dy}{dx} = 3(3t+2)^{-3} \left[-2 + 0 - 0 + \dots \right] \Rightarrow \boxed{\frac{dy}{dx} = -6(3t+2)^{-3}}$$

(iv) Let
$$y = (ax+b)^{-5}$$

Do yourself

(v) Let
$$y = \frac{1}{(az-b)^7} = (az-b)^{-7}$$

 $\Rightarrow y + \delta y = (a(z+\delta z)-b)^{-7}$
 $\Rightarrow \delta y = ((az-b)+a\delta z)^{-7} - (az-b)^{-7}$
 $\Rightarrow \delta y = (az-b)^{-7} \left[\left(1 + \frac{a\delta z}{(az-b)}\right)^{-7} - 1 \right]$