```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import pylab
from sklearn.model_selection import train_test_split
from sklearn import metrics

from sklearn.ensemble import RandomForestRegressor
from sklearn import metrics
from sklearn import preprocessing
```

Loading the Dataset

First we load the dataset and find out the number of columns, rows, NULL values, etc.

```
df = pd.read_csv('uber.csv')
df.info()
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 17848 entries, 0 to 17847
    Data columns (total 9 columns):
     #
         Column
                           Non-Null Count Dtype
         -----
                           -----
         Unnamed: 0
                           17848 non-null int64
     1
         key
                           17848 non-null object
     2
         fare amount
                           17847 non-null float64
     3
         pickup_datetime
                           17847 non-null object
         pickup_longitude
     4
                           17847 non-null float64
                           17847 non-null float64
     5
         pickup latitude
         dropoff_longitude 17847 non-null float64
     6
     7
         dropoff latitude
                           17847 non-null float64
         passenger count
                           17847 non-null float64
    dtypes: float64(6), int64(1), object(2)
    memory usage: 1.2+ MB
df.head()
```

→		Unnamed: 0	key	fare_amount	pickup_datetime	pickup_longitude	pickup_l
	0	24238194	2015-05-07 19:52:06.0000003	7.5	2015-05-07 19:52:06 UTC	-73.999817	4(
	1	27835199	2009-07-17 20:04:56.0000002	7.7	2009-07-17 20:04:56 UTC	-73.994355	4(
	2	44984355	2009-08-24 21:45:00.00000061	12.9	2009-08-24 21:45:00 UTC	-74.005043	4(
	3	25894730	2009-06-26 08:22:21.0000001	5.3	2009-06-26 08:22:21 UTC	-73.976124	4(
	4	17610152	2014-08-28 17:47:00.000000188	16.0	2014-08-28 17:47:00 UTC	-73.925023	4(
	1)
Next steps:		ps: Gene	erate code with df	View rec	ommended plots	New interactive she	et

df.describe()

 $\overline{\Rightarrow}$

•	Unnamed: 0	fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude
count	1.784800e+04	17847.000000	17847.000000	17847.000000	17847.000000
mean	2.765310e+07	11.417429	-72.595005	39.951854	-72.580938
std	1.599173e+07	10.173691	11.458450	6.095753	10.197475
min	4.800000e+01	2.500000	-748.016667	-74.009697	-75.350437
25%	1.383501e+07	6.000000	-73.992000	40.734977	-73.991591
50%	2.755475e+07	8.500000	-73.981823	40.752377	-73.980073
75%	4.140304e+07	12.500000	-73.967328	40.767152	-73.963307
max	5.542169e+07	350.000000	40.770667	41.366138	40.828377

Cleaning

```
df = df.drop(['Unnamed: 0', 'key'], axis=1)
df.isna().sum()
```

1

fare_amount pickup_datetime 1 pickup_longitude

pickup_latitude 1

dropoff_longitude

dropoff_latitude

passenger_count

dtype: int64

Remove null rows

df.dropna(axis=0,inplace=True)

df.dtypes

	0
fare_amount	float64
pickup_datetime	object
pickup_longitude	float64
pickup_latitude	float64
dropoff_longitude	float64
dropoff_latitude	float64
passenger_count	float64

dtype: object

Fix data type of pickup_datetime from Object to DateTime

df.pickup_datetime = pd.to_datetime(df.pickup_datetime, errors='coerce')

Separating the date and time into separate columns for more usability.

```
df= df.assign(
   second = df.pickup_datetime.dt.second,
   minute = df.pickup_datetime.dt.minute,
   hour = df.pickup datetime.dt.hour,
   day= df.pickup_datetime.dt.day,
   month = df.pickup datetime.dt.month,
   year = df.pickup_datetime.dt.year,
   dayofweek = df.pickup_datetime.dt.dayofweek
)
df = df.drop('pickup_datetime',axis=1)
df.info()
     <class 'pandas.core.frame.DataFrame'>
     Index: 17847 entries, 0 to 17846
     Data columns (total 13 columns):
          Column
                             Non-Null Count
                                             Dtype
          -----
     - - -
          fare amount
      0
                             17847 non-null float64
      1
          pickup_longitude
                             17847 non-null float64
      2
          pickup latitude
                             17847 non-null float64
      3
          dropoff_longitude
                             17847 non-null float64
      4
          dropoff_latitude
                             17847 non-null float64
      5
          passenger_count
                             17847 non-null float64
      6
          second
                             17847 non-null int32
      7
          minute
                             17847 non-null int32
      8
          hour
                             17847 non-null int32
      9
          day
                             17847 non-null int32
      10
         month
                             17847 non-null int32
      11
          year
                             17847 non-null
                                             int32
      12
         dayofweek
                             17847 non-null
                                             int32
     dtypes: float64(6), int32(7)
     memory usage: 1.4 MB
```

df.head()

→		fare_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
	0	7.5	-73.999817	40.738354	-73.999512	40.723217
	1	7.7	-73.994355	40.728225	-73.994710	40.750325
	2	12.9	-74.005043	40.740770	-73.962565	40.772647
	3	5.3	-73.976124	40.790844	-73.965316	40.803349
	4	16.0	-73.925023	40.744085	-73.973082	40.761247
	4					>

Next steps: Generate code with df

View recommended plots

New interactive sheet

Haversine Formula

Calculatin the distance between the pickup and drop co-ordinates using the Haversine formual for accuracy.

```
d = 2rsin^{-1} \left( \sqrt{sin^2 \left( \frac{\Phi_2 - \Phi_1}{2} \right) + cos(\Phi_1)cos(\Phi_2)sin^2 \left( \frac{\lambda_2 - \lambda_1}{2} \right)} \right)
incorrect coordinates = df.loc[
    (df.pickup latitude > 90) | (df.pickup latitude < -90) |
    (df.dropoff_latitude > 90) |(df.dropoff_latitude < -90) |</pre>
    (df.pickup_longitude > 180) |(df.pickup_longitude < -180) |</pre>
    (df.dropoff longitude > 90) |(df.dropoff longitude < -90)</pre>
]
df.drop(incorrect_coordinates, inplace = True, errors = 'ignore')
def distance_transform(longitude1, latitude1, longitude2, latitude2):
    long1, lati1, long2, lati2 = map(np.radians, [longitude1, latitude1, longitude2, latituc
    dist_long = long2 - long1
    dist lati = lati2 - lati1
    a = np.sin(dist_lati/2)**2 + np.cos(lati1) * np.cos(lati2) * np.sin(dist_long/2)**2
    c = 2 * np.arcsin(np.sqrt(a)) * 6371
    # long1,lati1,long2,lati2 = longitude1[pos],latitude1[pos],longitude2[pos],latitude2[pos
    # c = sqrt((long2 - long1) ** 2 + (lati2 - lati1) ** 2)asin
    return c
df['Distance'] = distance_transform(
    df['pickup_longitude'],
    df['pickup_latitude'],
    df['dropoff_longitude'],
    df['dropoff_latitude']
)
df.head()
```

$\overline{\Rightarrow}$	fa	re_amount	pickup_longitude	pickup_latitude	dropoff_longitude	dropoff_latitude
	0	7.5	-73.999817	40.738354	-73.999512	40.723217
	1	7.7	-73.994355	40.728225	-73.994710	40.750325
	2	12.9	-74.005043	40.740770	-73.962565	40.772647
	3	5.3	-73.976124	40.790844	-73.965316	40.803349
	4	16.0	-73.925023	40.744085	-73.973082	40.761247
	1					>
Next	t steps:	Generate	e code with df	View recommend	ded plots New into	eractive sheet

Outliers

We can get rid of the trips with very large distances that are outliers as well as trips with 0 distance.

```
plt.scatter(df['Distance'], df['fare_amount'])
plt.xlabel("Distance")
plt.ylabel("fare_amount")
```



```
plt.figure(figsize=(20,12))
sns.boxplot(data = df)
```



```
df.drop(df[df['Distance'] >= 60].index, inplace = True)
df.drop(df[df['fare_amount'] <= 0].index, inplace = True)

df.drop(df[(df['fare_amount']>100) & (df['Distance']<1)].index, inplace = True )

df.drop(df[(df['fare_amount']<100) & (df['Distance']>100)].index, inplace = True )

plt.scatter(df['Distance'], df['fare_amount'])

plt.xlabel("Distance")

plt.ylabel("fare_amount")
```


Coorelation Matrix

To find the two variables that have the most inter-dependence

```
corr = df.corr()
corr.style.background_gradient(cmap='BuGn')
```

	fare_amount	<pre>pickup_longitude</pre>	<pre>pickup_latitude</pre>	dropoff_longitude	dro
fare_amount	1.000000	0.011058	-0.010620	0.010744	
pickup_longitude	0.011058	1.000000	-0.978635	0.999992	
pickup_latitude	-0.010620	-0.978635	1.000000	-0.978642	
dropoff_longitude	0.010744	0.999992	-0.978642	1.000000	
dropoff_latitude	-0.010569	-0.978618	0.999987	-0.978626	
passenger_count	0.008514	0.005076	-0.009071	0.005062	
second	-0.006353	-0.018881	0.021698	-0.018794	
minute	-0.007230	0.011759	-0.011255	0.011740	
hour	-0.003587	-0.003357	0.007316	-0.003647	
day	-0.001046	0.007920	-0.012252	0.007937	
month	0.029099	-0.014126	0.014966	-0.014099	
year	0.124357	0.002281	-0.005746	0.002297	
dayofweek	0.011921	-0.016376	0.012885	-0.016308	
Distance	0.855590	-0.111318	0.101323	-0.111493	
4					•

Standardization

For more accurate results on our linear regression model

```
X = df['Distance'].values.reshape(-1, 1)  #Independent Variable
y = df['fare_amount'].values.reshape(-1, 1)  #Dependent Variable

from sklearn.preprocessing import StandardScaler
std = StandardScaler()
y_std = std.fit_transform(y)
print(y_std)

x_std = std.fit_transform(X)
print(x_std)

The continuation of the properties of the p
```

```
[-0.03672194]]
[[-0.43899682]
[-0.22366223]
[ 0.49353483]
...
[ 1.69990844]
[-0.42274548]
[-0.64312305]]
```

Splitting the Dataset

Training and Test Set

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x_std, y_std, test_size=0.2, random_stat
```

Simple Linear Regression

Training the simple linear regression model on the training set

```
from sklearn.linear_model import LinearRegression
l_reg = LinearRegression()
l_reg.fit(X_train, y_train)

print("Training set score: {:.2f}".format(l_reg.score(X_train, y_train)))
print("Test set score: {:.7f}".format(l_reg.score(X_test, y_test)))

Training set score: 0.73
    Test set score: 0.7316693

y_pred = l_reg.predict(X_test)

result = pd.DataFrame()
result[['Actual']] = y_test
result[['Predicted']] = y_pred

result.sample(10)
```

3101	1.079390	1.160677	ılı
540	0.453533	0.242715	
1738	-0.923353	-0.775808	
851	-0.547838	-0.369444	
3192	-0.506115	-0.478435	
407	1.162837	1.863157	
1794	-0.464391	-0.379238	
1199	-0.766888	-0.639975	
3288	-0.506115	-0.368911	
2955	0.328361	-0.253541	

```
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))
print('Mean Absolute % Error:', metrics.mean_absolute_percentage_error(y_test, y_pred))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))
print('R Squared (R²):', np.sqrt(metrics.r2_score(y_test, y_pred)))
```

Mean Absolute Error: 0.26722036563873924
Mean Absolute % Error: 1.3303893172593673
Mean Squared Error: 0.2556415197241215
Root Mean Squared Error: 0.5056100470957055
R Squared (R²): 0.8553767201239891

1 Squarea (1): 0:0555707201255051

Visualization

```
plt.subplot(2, 2, 1)
plt.scatter(X_train, y_train, color = 'red')
plt.plot(X_train, l_reg.predict(X_train), color = "blue")
plt.title("Fare vs Distance (Training Set)")
plt.ylabel("fare_amount")
plt.xlabel("Distance")

plt.subplot(2, 2, 2)
plt.scatter(X_test, y_test, color = 'red')
plt.plot(X_train, l_reg.predict(X_train), color = "blue")
plt.ylabel("fare_amount")
plt.xlabel("Distance")
plt.title("Fare vs Distance (Test Set)")
```

```
plt.tight_layout()
plt.show()
\rightarrow
              Fare vs Distance (Training Set)
                                                           Fare vs Distance (Test Set)
         12.5
                                                     10.0
         10.0
      fare amount
                                                  fare_amount
                                                      7.5
          7.5
                                                      5.0
          5.0
                                                      2.5
          2.5
                                                      0.0
          0.0
                  0
                                       10
                                                                                  10
                             5
                           Distance
                                                                      Distance
cols = ['Model', 'RMSE', 'R-Squared']
# create a empty dataframe of the colums
# columns: specifies the columns to be selected
result tabulation = pd.DataFrame(columns = cols)
# compile the required information
linreg_metrics = pd.DataFrame([[
     "Linear Regresion model",
     np.sqrt(metrics.mean_squared_error(y_test, y_pred)),
     np.sqrt(metrics.r2_score(y_test, y_pred))
]], columns = cols)
result_tabulation = pd.concat([result_tabulation, linreg_metrics], ignore_index=True)
result_tabulation
     <ipython-input-30-2d9e8cc5ba0b>:14: FutureWarning: The behavior of DataFrame concatenati
       result_tabulation = pd.concat([result_tabulation, linreg_metrics], ignore_index=True)
```

RandomForestRegressor

0 Linear Regresion model 0.50561

Training the RandomForestRegressor model on the training set

Model

RMSE R-Squared

0.855377

```
rf_reg = RandomForestRegressor(n_estimators=100, random_state=10)
# fit the regressor with training dataset
rf_reg.fit(X_train, y_train)
🗦 /usr/local/lib/python3.10/dist-packages/sklearn/base.py:1473: DataConversionWarning: A 🤉
       return fit_method(estimator, *args, **kwargs)
             RandomForestRegressor
     RandomForestRegressor(random_state=10)
# predict the values on test dataset using predict()
y_pred_RF = rf_reg.predict(X_test)
result = pd.DataFrame()
result[['Actual']] = y test
result['Predicted'] = y_pred_RF
result.sample(10)
\rightarrow
              Actual Predicted
      2077 -0.339219
                        0.018979
                                   th
      404
            0.286637
                       -0.034636
      821
           -0.401805
                       -0.643803
      1902
            0.380516
                       0.043388
      1699
            0.078018
                       0.055099
      1803 -0.297496
                       -0.202261
      1461
            1.663523
                       1.218121
      1559
           -0.756457
                       -0.558009
      3388
            0.161466
                       0.037964
      2362
           0.536980
                       -0.680729
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred_RF))
print('Mean Absolute % Error:', metrics.mean_absolute_percentage_error(y_test, y_pred_RF))
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred_RF))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred_RF)))
print('R Squared (R2):', np.sqrt(metrics.r2_score(y_test, y_pred_RF)))
→ Mean Absolute Error: 0.3052581448929417
     Mean Absolute % Error: 1.4662409641542689
     Mean Squared Error: 0.3075490233637449
     Root Mean Squared Error: 0.554571026437322
```

Visualization

Price

2

```
# Build scatterplot
plt.scatter(X_test, y_test, c = 'b', alpha = 0.5, marker = '.', label = 'Real')
plt.scatter(X_test, y_pred_RF, c = 'r', alpha = 0.5, marker = '.', label = 'Predicted')
plt.xlabel('Carat')
plt.ylabel('Price')
plt.grid(color = '#D3D3D3', linestyle = 'solid')
plt.legend(loc = 'lower right')

plt.tight_layout()
plt.show()
```