

Wildfire Workshop

Washington Systems Center Technical Hands-On Workshops

Queue Manager Internals

At a glance

Diving deeper: Private queues

Diving deeper: Private queues

Digging into local queuing

Message A

```
Sent message:
  JMSMessage class: jms_text
 JMSType:
                   null
 JMSDeliveryMode: 2
 JMSDeliveryDelay: 0
  JMSDeliveryTime: 1585562399950
  JMSExpiration:
  JMSPriority:
                ID:414d5120514d312020202020202020200ac2815e024ce120
  JMSMessageID:
 JMSTimestamp:
                1585562399950
 JMSCorrelationID: null
  JMSDestination: queue:///DEV.QUEUE.1
 JMSReplyTo:
                null
  JMSRedelivered: false
    JMSXAppID: JmsPutGet (JMS)
    JMSXDeliveryCount: 0
    JMSXUserID: app
    JMS_IBM_PutApplType: 28
    JMS IBM PutDate: 20200330
    JMS_IBM_PutTime: 09595997
Your lucky number today is 926
```

Message details

Messages properties

Message ID	ID:414d5120514d312020202020202 02020aec50b62010a0e40	
Timestamp	2022-2-18 16:37:23	
Character set	UTF-8	
Delivery mode	Persistent	
Application ID	JmsPutGet (JMS)	
Format	MQSTR	
Expiration	0	
Priority	4	
Encoding	273	
User ID	арр	
Application data		

Your lucky number today is 369

How does physical storage work on a private queue? <u>A</u>

When messages are written to page sets...

- When messages have been in the buffer pool for 2 log checkpoints
- When buffer pool usage exceeds the deferred write threshold
- When buffer pool usage exceeds the buffer pool threshold

DEFINE BUFFPOOL BUFFERS(1000) LOCATION(BELOW) PAGECLAS(4KB)

How are private queues associated with physical storage?

Queue layer

DEFINE QLOCAL (QUEUED)

STGCLASS (ARC1)

Storage class layer

DEFINE STGCLASS(ARC1)
PSID(1)

Page set layer

DEFINE PSID(01) BUFFP00L(0)

Internal Representation of a Private Queue

Sub-queue Internal View

CHINIT Address Space Structure

How adapter tasks are assigned

How dispatcher tasks are assigned to channels

Scenario 1:

200 / 5 = 40 | 40 > 10 (from the rule of 10) | SO, 10 channels will be assigned to each dispatcher task

Active Channel Max of 200

Dispatcher Tasks allocated

How dispatcher tasks are assigned to channels

Scenario 1:

200 / 5 = 40 | 40 > 10 (from the rule of 10) | SO, 10 channels will be assigned to each dispatcher task

Active Channel Max of 200

Dispatcher Tasks allocated

Internal Representation of a Coupling facility list structure

Internal Representation of a Shared Queue

Shared Queue Message Storage

Where does logging come in?

1) Persistent

- 2) MQ Object
- 3) Queue Manager

- 1. Unit of recovery log records
- 2. Checkpoint records
- 3. Page set control records

What does a log file look like?

Concept check

When I want to offload messages from my list structure, I should use...

Why might a short message be classified as a 4k or less?

Which address space is the Pub/Sub engine associated with?

What is the size of an element in a list structure?

- (a) DB2 Blobs
- (b) Shared Message Data sets
- (c) Page sets

- (a) QMGR master address space
- (b) CHIN address space

Building Blocks Resource Managers

First Line Managers

The threads within the QMMSTR address space who do the real work within each queue manager by interacting with applications and the underlying z/OS resource managers

They include:

Connection Manager – not the channel initiator, but local connections

Recovery Manager

Log Manager

Message Manager

Topic Manager

Data Manager

Buffer Manager

Lock Manager

Storage Manager

CF Manager

Security Manager

Lock Manager

Connection Manager

Buffer Manager

Log Manager

Controlling the MQI and MQSC - Message Manager

Data and Message Managers

Positive put difference

MM puts > DM puts

Negative put difference DM puts > MM puts Positive get difference

MM gets > DM gets

Negative get difference

DM gets > MM gets

Put to waiting getter Publications or generated advantage messages from triggering

MQPUT Message Manager Data Manager

ations or generated Target queue is empty ges from triggering Not a problem

May indicate scrolling

Look for skipped

messages

Scenario: Persistent MQPut on a Triggered Queue

Scenario: MQGet from a Queue

Concept check

I want to ensure my messages are put to a queue in a serial fashion....

I want to place an MQI request to put a message....

I want to find the specific physical storage associated with a queue I am looking for....

I want to keep track of the unit of work in the event of an outage...

To recap...

Private queues use buffer pools, storage classes, and page sets to underpin queuing Shared queues use CF list structures, shared message data sets, and BLOBs to underpin queuing

Both private and shared queues use logging for recovery

Resource threads run through MQ, handling requests to the queue manager