Exercise sheet 1 Advanced Algorithms

Master Données et Systèmes Connectés Master Machine Learning and Data Mining Master Cyber-Physical Social Systems

Amaury Habrard

amaury.habrard@univ-st-etienne.fr

LABORATOIRE HUBERT CURIEN, UMR CNRS 5516 Université Jean Monnet Saint-Étienne amaury.habrard@univ-st-etienne.fr

Semester 1

Exercise 1

Since f is O(g), we have for some constants c > 0 and $n_0 \ge 0$ that:

$$f(n) \leq c \times g(n)$$
.

Dividing both sides by c, we get that $g(n) \ge \frac{1}{c} f(n)$ for all $n \ge n_0$. So we have for all $n \ge n_0$ the existence of a constant c' = 1/c such that

$$g(n) \geq c' \times f(n)$$
,

this implies that $g = \Omega(f)$.

Since f is O(g), there exists constants c > 0 and $n_0 \ge 0$ that: $f(n) \le c \times g(n)$.

Since g is O(h), there exists constants c'>0 and $n_0'\geq 0$ that: $g(n)\leq c'\times h(n)$.

Now when $n \ge \max(n_0, n'_0)$, we have:

$$f(n) \le c \times g(n) \le c \times c' \times h(n)$$

thus f is O(h) using constants $n_0'' = \max(n_0, n_0')$ and $c'' = c \times c'$.

The proofs for other claims are similar,

Since f is $\Omega(g)$, there exists constants c > 0 and $n_0 \ge 0$ that: $f(n) \ge c \times g(n)$.

Since g is $\Omega(h)$, there exists constants c'>0 and $n_0'\geq 0$ that: $g(n)\geq c'\times h(n)$.

Now when $n \ge \max(n_0, n'_0)$, we have:

$$f(n) \ge c \times g(n) \ge c \times c' \times h(n)$$

thus f is $\Omega(h)$ using constants $n_0'' = \max(n_0, n_0')$ and $c'' = c \times c'$.

The 3rd case with θ (item 3), is deduced by the two preceding cases

Since f is O(h), there exists constants c > 0 and $n_0 \ge 0$ that: $f(n) \le c \times h(n)$.

Since g is O(h), there exists constants c' > 0 and $n'_0 \ge 0$ that: $g(n) \le c' \times h(n)$.

Now when $n \ge \max(n_0, n'_0)$, we have:

$$f(n) + g(n) \le c \times h(n) + c' \times h(n) = (c + c') \times h(n)$$

thus f + g is O(h) using constants $n_0'' = \max(n_0, n_0')$ and c'' = c + c'.

Since g is O(f), there exists constants c > 0 and $n_0 \ge 0$ that: $g(n) \le c \times f(n)$.

Then when $n \geq n_0$, we have:

$$f(n)+g(n) \le f(n)+c \times f(n) = (1+c) \times f(n)$$

thus $f+g$ is $O(f)$ using constants $n_0''=n_0$ and $c''=1+c$.

Also, we have $n \ge n_0$, we have:

$$f(n)+g(n)\geq f(n)$$
, since $g(n)$ is a positive function, thus $f+g$ is $\Omega(f)$ using constants $n_0'''=n_0$ and $c'''=1$.

f + g is both O(f) and $\Omega(f)$, thus f + g is $\theta(f)$.

Exercise 2.1

This is false in general since it could be that g(n) = 1 for all n, f(n) = 2 for all n, and then $\log_2 g(n) = 0$, whence we cannot write $\log_2 f(n) \le c \log_2 g(n)$.

On the other hand, if we simply require $g(n) \ge 2$ for all n beyond some n_1 , then the statement holds. Since f = O(g) implies there exists¹ c > 1, $n_0 \ge 0$ s.t. $f(n) \le c \cdot g(n)$ for all $n \ge n_0$, we have

$$\begin{split} \log_2 f(n) &\leq \log_2(cg(n)) \\ &\leq \log_2(c) + \log_2(g(n)) \text{ by a property of } \log \\ &\leq \log_2(c) \times \log_2(g(n)) + \log_2 g(n) = (\log_2(c) + 1)(\log_2(g(n))) \end{split}$$

once $n \ge \max(n_0, n_1)$ since $\log_2 g(n) \ge 1$ beyond this point. We have then found an index $n_0' = \max(n_0, n_1)$ and a constant $\underline{c'} = \log_2 c + 1$ allowing us to conclude that $\log_2(f) = O(\log_2(g))$.

¹Note: we must also ensure $\log_2(c) \geq 0$ here, but we can assume c > 1 for $O(\cdot)$ relationships without loss of generality since even if a constant between 0 and 1 is considered at first, then a constant greater than one works as well.

Exercise 2.2

This is false: take f(n) = 2n and g(n) = n.

Then $2^{f(n)} = 4^n$ while $2^{g(n)} = 2^n$.

If you assume that $2^f = O(2^g)$, then there exists c > 0 and $n_0 \ge 0$ s.t. for every $n \ge n_0$: $4^n \le c2^n$.

This implies that $2^n \le c$ (or in other words $n \le \log_2(c)$) which means that it cannot be true for every n greater than n_0 , thus the claim is false.

Exercise 2.3

This is true. Since $f(n) \le cg(n)$ for all $n \ge n_0$, we have $(f(n))^2 \le c^2(g(n))^2$ for all $n \ge n_0$ (you just have to write the definition properly)

Exercise 3

First, f_1, f_2, f_4 are easy (they belong to classic functions: exponential, polynomial, logarithm): $f_4 = O(f_2)$ and $f_2 = O(f_1)$.

Now for f_3 , it starts to be smaller than 10^n but once $n \ge 10$, then clearly $10^n \le n^n$. This is exactly what we need for the definition of $O(\cdot)$ (take c=1 and $n_0=10$), thus $f_1=O(f_3)$.

Now f_5 is a bit more complex. The solution here is to take logarithms to make things clearer. Here $\log_2(f_5(n)) = \sqrt{\log_2 n} = (\log_2 n)^{1/2}$. For the other functions we have $\log_2(f_4(n)) = \log_2(\log_2(n))$ while $\log_2(f_2(n)) = \frac{1}{3}\log_2(n)$.

Let $z = \log_2 n$, we can see these as $\underline{\text{functions of } z}$: $\log_2(f_2(n)) = \frac{1}{3}z$, $\log_2 f_4(n) = \log_2(z)$ and $\log_2(f_5(n)) = z^{1/2}$.

Exercise 3 (ctd)

Now it is easier to see what is going on. First, let's compare f_4 and f_5 .

For $z \ge 16$, we have $\log_2(z) \le \sqrt{z}$ (you can try to do a simple analysis of the function $f(z) = \ln(z)/\ln(2) - \sqrt{z}$, global maximum at $4/\ln(2)^2$)).

But the condition $z \ge 16$ is the same as $n \ge 2^{16} = 65,536$. Thus once $n \ge 2^{16}$, we have $\log_2 f_4(n) \le \log_2 f_5(n)$, and so $f_4(n) \le f_5(n)$ since \log_2 is a monotonic increasing function.

Thus we can write $f_4(n) = O(f_5(n))$.

Exercise 3 (ctd)

Similarly we have $z^{1/2} \le \frac{1}{3}z$ once $z \ge 9$ (you can do a simple analysis of the function $f(z) = z^{1/2} - \frac{1}{3}z$, global maximum at 9/4) in other words, once $n \ge 2^9 = 512 = n_0$.

For n above this bound we have $\log_2 f_5(n) \leq \log_2 f_2(n)$ and hence $f_5(n) \leq f_2(n)$, and so we can write $f_5(n) = O(f_2(n))$.

Essentially, we have discovered that $2^{\sqrt{\log_2 n}}$ is a function whose growth rate lies somewhere between that of logarithms and polynomials.