

KERSEMI ELECTRONIC CO.,LTD.

30V N-Channel MOSFET

Bottom View

SOT23

Top View

Product summary

V_{DS}	30V
b (at $V_{GS}=10V$)	5.7A
$R_{DS(ON)}(at V_{GS=10V})$	$<$ 26.5m Ω
$R_{DS(ON}$ (at $V_{GS} = 4.5V$)	$<$ 32m Ω
$R_{DS(ON)}(at V_{CS} = 2.5V)$	< 48mO

General Description

The AO3400A combines advanced trench MOSFET technology with a low resistance package to provide extremely low R $_{\rm DS(ON)}$. This device is suitable for use as a load switch or in PWM applications.

Absolute Maximum Ratings T _A =25℃ unless otherwise noted						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage		V _{DS}	30	V		
Gate-Source Voltage		V _{GS}	±12	V		
Continuous Drain	T _A =25℃		5.7			
Current	T _A =70℃	'D	4.7	Α		
Pulsed Drain Current ^C		I _{DM}	30			
T _A =25℃		В	1.4	10/		
Power Dissipation ^B	T _A =70℃	P _D	0.9	W		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C		

Thermal Characteristics						
Parameter		Symbol	Тур	Max	Units	
Maximum Junction-to-Ambient A	t ≤ 10s	D	70	90	€\M	
Maximum Junction-to-Ambient AD	Steady-State	$R_{\theta JA}$	100	125	€\M	
Maximum Junction-to-Lead	Steady-State	$R_{\theta JL}$	63	80	C/W	

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC PARAMETERS								
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$		30			V	
1 70	Zero Gate Voltage Drain Current	V_{DS} =30V, V_{GS} =0V				1	μΑ	
I _{DSS}	Zoro Gato Voltage Brain Garrent		T _J =55℃			5	μπ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$		0.65	1.05	1.45	V	
$I_{D(ON)}$	On state drain current	V_{GS} =4.5V, V_{DS} =5V		30			Α	
R _{DS(ON)} Static	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =5.7A			18	26.5	mΩ	
			T _J =125℃		28	38	11122	
	otatio Brain oddice on resistance	V_{GS} =4.5V, I_{D} =5A			19	32	mΩ	
		V_{GS} =2.5V, I_D =3A		24	48	mΩ		
g _{FS}	Forward Transconductance	V_{DS} =5V, I_D =5.7A			33		S	
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V			0.7	1	V	
Is	Maximum Body-Diode Continuous Curre	rent				2	Α	
DYNAMIC	PARAMETERS							
C _{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz			630		pF	
Coss	Output Capacitance				75		pF	
C_{rss}	Reverse Transfer Capacitance				50		pF	
R_g	Gate resistance	V _{GS} =0V, V _{DS} =0V, f=1MHz		1.5	3	4.5	Ω	
SWITCHII	NG PARAMETERS							
Q_g	Total Gate Charge				6	7	nC	
Q_{gs}	Gate Source Charge	V_{GS} =4.5V, V_{DS} =15V, I_{D} =5.7A			1.3		nC	
Q_{gd}	Gate Drain Charge				1.8		nC	
t _{D(on)}	Turn-On DelayTime				3		ns	
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_L =2.6 Ω , R_{GEN} =3 Ω			2.5		ns	
t _{D(off)}	Turn-Off DelayTime				25		ns	
t _f	Turn-Off Fall Time				4		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =5.7A, dI/dt=100A/μs			8.5		ns	
Q_{rr}	Body Diode Reverse Recovery Charge	I _F =5.7A, dI/dt=100A/μ	เร		2.6		nC	

A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25° C. The value in any given application depends on the user's specific board design. B. The power dissipation P_D is based on $T_{J(MAX)}=150^\circ$ C, using $\le 10s$ junction-to-ambient thermal resistance. C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150^\circ$ C. Ratings are based on low frequency and duty cycles to keep

initialT_J=25° C.

D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150° C. The SOA curve provides a single pulse rating.

KSM3400A

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

KSM3400A

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

