Têtel: A szuprémum elv. Legyen $H \subset \mathbb{R}$ és tegyük fel, hogy

(ii) H felülről korlátos

 $\exists \min \{K \in \mathbb{R} \mid K \text{ lelső korlátia } H\text{-nak}\}$

 $A:=H\quad \text{\'es}\quad B:=\left\{K\in\mathbb{R}\mid K \text{ felső korlátja H-nak}\right\}.$

A feltételek miatt $A \neq \emptyset$ és $B \neq \emptyset$, továbbá

 $\forall a \in A \text{ és } \forall K \in B \text{ esetén } a \leq K.$

A teljességi axiómából következik, hogy

 $\exists\,\xi\in\mathbb{R}:\ a\leq\xi\leq K\quad\forall\,a\in A\ \text{\'es}\ \forall\,K\in B\ \text{eset\'en}.$

A fenti bizonyítás értelemszerű módosításával megkapjuk az előző tételnek az alsó korlátokra vonatkozó párját.

Tétel: A teljes indukció elve. Tegyük fel, hogy minden n : A(n) állítás, és azt tudnik hogy

(i) A(0) igaz,
 (ii) ha A(n) igaz, akkor A(n + 1) is iga;

Ekkor az A(n) állítás minden n természetes számra iga.

Bizonvítás, Legven

$$S := \{n \in \mathbb{N} \mid A(n) \text{ igaz}\}.$$

Ekkor $S\subset\mathbb{N}$ és S induktív balmaz, hiszen $0\in S$, és ha $n\in S$, azaz A(n)igaz, akkor A(n+1) is igaz, ezért $n+1\in S$ beljésül, hiszektősképpen S induktív balmaz. Mixel \mathbb{N} a legszűkebb induktív halmaz, ezért az $\mathbb{N}\subset S$ tartalmazás is fennáll, tehát $S=\mathbb{N}.$ Ez pedig azt jelenti, hogy az állítás minden a természetes számra igaz. \blacksquare

Tétel: Az arkhimédészi tulajdonság. Minden a>0 és minden b valós számhoz alyan n természetes szám, hagy $b< n\cdot a$, azaz

 $\forall a > 0 \text{ \'es } \forall b \in \mathbb{R}$ esetén $\exists n \in \mathbb{N}, hogy b < n \cdot a$.

Szemléletesen:

n-szer felmérve
$$b$$

Bizonyítás. Indirekt módon. Tegyük fel, hogy

$$\exists a > 0 \text{ és } \exists b \in \mathbb{R}, \text{ hogy } \forall n \in \mathbb{N}: b \geq n \cdot a$$

$$H:=\{n\cdot a\in\mathbb{R}\mid n\in\mathbb{N}\}.$$

Ekkor $H \neq \emptyset$ és H felülről korlátos, hiszen $n \cdot a \leq b$ minden $n \in \mathbb{N}$ -re. A szuprémum elv \Longrightarrow $\exists \ \sup H =: \xi.$

Ekkor
$$\xi$$
 a legkisebb felső korlátja H -nak, tehát $\xi-a$ nem felső korlát. Ez azt jelenti, hogy

 $\exists\, n_0\in\mathbb{N}:\ n_0\cdot a>\xi-a\quad\Longrightarrow\quad (n_0+1)\cdot a>\xi.$

Ez viszont ellentmondás. mert
$$\xi$$
 felső korlát, azaz $(n_0 + 1) \cdot a \le \xi$.

Következmények:

 2^o Az $\mathbb N$ halmaz felülrő nem korlátos, azaz $\forall\,b\in\mathbb R$ számhoz $\exists\,n\in\mathbb N:\ b< n.$

Tétel: A Cantor-tulajdonság. Ha minden n természetes számra adott az $[a_n,b_n]\subset\mathbb{R}$

 $[a_{n+1},b_{n+1}]\subset [a_n,b_n] \quad (n\in\mathbb{N}),$

akkor

$$\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset.$$

A Cantor-tulajdonságot úgy szoktuk szavakba foglalni, hogy egymásba skatulyázott korlátos zárt intervallumok közös része nem űres. Ezt szemlélteti az alábi ábra.

Bizonyítás. A teljességi axiómát fogjuk alkalmazni. Legyen

$$A:=\{a_n\mid n\in\mathbb{N}\}\quad \text{is}\quad B:=\{b_n\mid n\in\mathbb{N}\}.$$

Belátiuk, hogy ekkor

 $a_n \leq b_m$ tetszőleges $n, m \in \mathbb{N}$ esetén.

Valóban.

(i) ha n ≤ m, akkor a_n ≤ a_m ≤ b_m.

(ii) ha m < n, akkor $a_n \le b_n \le b_m$.

Mivel $A \neq \emptyset$ és $B \neq \emptyset$, ezért (*) miatt a teljességi axióma feltételei teljesülnek, így

 $\exists \xi \in \mathbb{R} : a_n \leq \xi \leq b_m \quad \forall n, m \in \mathbb{N} \text{ in dexre.}$

Han=m,akkor azt kapjuk, hogy

$$a_n \leq \xi \leq b_n \quad \Longleftrightarrow \quad \xi \in [a_n,b_n] \ \, \forall \, n \in \mathbb{N} \, \operatorname{eset\acute{e}n},$$

és ez azt jelenti, hogy

$$\xi\in\bigcap_{n\in\mathbb{N}}[a_n,b_n]\neq\emptyset.$$

Tétel: A határérték egyértelmű. Ha az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozat konvergens, akkor a konvergencia definiciójában szereplő A szám egyértelműen létezik.

Bizonyítás. Tegyűk fel, hogy az (a_n) sorozatra (1) az A_1 és az A_2 számokkal is teljesül. Indirekt módon tegyűk fel azt is, hogy $A_1 \neq A_2$. Ekkor $\forall \varepsilon > 0$ számhoz

$$\begin{split} &\exists \, n_1 \in \mathbb{N}, \,\, \forall \, n > n_1 \, \colon \, |a_n - A_1| < \varepsilon \, \text{ \'es } \\ &\exists \, n_2 \in \mathbb{N}, \,\, \forall \, n > n_2 \, \colon \, |a_n - A_2| < \varepsilon. \end{split}$$

$$\varepsilon := \frac{|A_1 - A_2|}{2}$$

(pozitív) számot. Az ennek megfelelő n_1, n_2 indexeket figyelembe véve legyen

$$n_0 := \max \{n_1, n_2\}.$$

Ha $n\in\mathbb{N}$ és $n>n_0,$ akkor nyilván $n>n_1$ és $n>n_2$ is fennáll, következésképpen

$$|A_1 - A_2| = |(A_1 - a_n) + (a_n - A_1)| \le |a_n - A_1| + |a_n - A_2| < \varepsilon + \varepsilon = |A_1 - A_2|,$$

amiből (a nyilván nem igaz) $|A_1 - A_2| < |A_1 - A_2|$ következne. Ezért csak $A_1 = A_2$ lehet.

5. tétel: Műveletek nullasorozatokkal. Tegyők fel, hogy $\lim (a_n)=0$ és $\lim (b_n)=Ekhor$

10° $(a_n + b_n)$ is nullasorozat; 20° $ha(c_n)$ horidios sorozat, akkor $(c_n \cdot a_n)$ is nullasorozat; 30° $(a_n \cdot b_n)$ is nullasorozat.

 $\mathbf{1}^{o}$ Mivel $\lim (a_{n}) = \lim (b_{n}) = 0$, ezért

$$\begin{split} \forall \, \varepsilon > 0 \cdot \text{hoz} \,\, \exists \, n_1 \in \mathbb{N}, \,\, \text{hogy} \,\, \forall \, n > n_1 : \,\, |a_n| < \frac{\varepsilon}{2} \,\, \text{\'es} \\ \forall \, \varepsilon > 0 \cdot \text{hoz} \,\, \exists \, n_2 \in \mathbb{N}, \,\, \text{hogy} \,\, \forall \, n > n_2 : \,\, |b_n| < \frac{\varepsilon}{2}. \end{split}$$

Legyen $n_0 := \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$|a_n+b_n|\leq |a_n|+|b_n|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon,$$

ės ez azt jelenti, hogy lim $(a_n+b_n)=0$, azaz (a_n+b_n) valóban millasorozat.

2º A (c.) sorozat korlátos, ezért

$$\exists\, K>0: \ |c_n|< K \quad (n\in \mathbb{N}).$$

$$\forall \, \varepsilon > 0 \text{-hoz} \,\, \exists \, n_0 \in \mathbb{N}, \,\, \text{hogy} \,\, \forall \, n > n_0 : \,\, |a_n| < \frac{\varepsilon}{K},$$

követ kezésképpen minden $n>n_0$ indexre

$$|c_n \cdot a_n| < K \cdot \frac{\varepsilon}{V} = \varepsilon$$
,

3º Mivel minden konvergens sorozat korlátos, ezért a $\lim (b_n) = 0$ feltételhől következik, hogy (b_n) korlátos sorozat. Az állítás tehát 2^o közvetlen követ kezménye.

6. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozat konvergens. Legyen

$$\lim (a_n) = A \in \mathbb{R}$$
 és $\lim (b_n) = B \in \mathbb{R}$.

Ekkor 3º ha $b_n \neq 0 \ (n \in \mathbb{N})$ és $\lim (b_n) \neq 0$, akkor

$$\left(\frac{a_n}{b_n}\right) \quad is \ konvergens \quad \acute{e}s \quad \lim\left(\frac{a_n}{b_n}\right) = \frac{\lim\left(a_n\right)}{\lim\left(b_n\right)} = \frac{A}{B}.$$

Legyen (x_n) egy valós sorozat. Azt már tudjuk, hogy

ha (x_n) konvergens, és $\alpha \in \mathbb{R}$ a határértéke \iff $(x_n - \alpha)$ nullasorozat

 3^o A bizonyításhoz először egy önmagában is érdekes állítást igazolunk

Segédtétel. Ha $b_n \neq 0 \ (n \in \mathbb{N})$ és (b_n) konvergens, továbbá $B := \lim (b_n) \neq 0$, akkor az

 $\left(\frac{1}{|b_n|}\right)$

reciprok-sorozat korlátos.

Ennek bizonyításához legyen $\varepsilon:=|B|/2.$ Ekkor egy alkalmas $n_0\in\mathbb{N}$ küszőbindex mellett

$$|b_n - B| < \varepsilon = \frac{|B|}{2} \quad \forall n > n_0 \text{ index re.}$$

Így minden $n > n_0$ esetén

$$|b_n| = |B+b_n-B| \geq |B| - |b_n-B| > |B| - \frac{|B|}{2} = \frac{|B|}{2}.$$

$$\left|\frac{1}{b_n}\right| < \frac{2}{|B|}, \quad \text{ha } n > n_0,$$

következésképpen az

$$\left|\frac{1}{b_n}\right| \le \max\left\{\frac{1}{|b_0|}, \frac{1}{|b_1|}, \dots, \frac{1}{|b_{n_0}|}, \frac{2}{|B|}\right\}$$

egyenlőtlenség már minden $n\in\mathbb{N}$ számra teljesül, ezért az $\left(1/|b_n|\right)$ sorozat valóban korlátos. A segédtételt tehát bebizonyítottuk. \square

Most azt látjuk be, hogy az

$$\left(\frac{1}{b_n}\right)$$
 sorozat konvergens és $\lim \left(\frac{1}{b_n}\right) = \frac{1}{B}$

3. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határ

$$\lim (a_n) = A \in \overline{\mathbb{R}}, \quad \lim (b_n) = B \in \overline{\mathbb{R}}.$$

1º Négy eset lehetséges

1. eset: $A,B \in \mathbb{R}$ és A < B, vagyis (a_n) és (b_n) konvergens sorozatok. Ekkor az

$$\varepsilon := \frac{B-A}{2} > 0$$

számhoz $\lim (a_n) = A \text{ miatt}$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1: A - \varepsilon < a_n < A + \varepsilon = \frac{A+B}{2}$$

továbbá lim $(b_n) = B$ szerint

$$\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : B - \varepsilon = \frac{A+B}{2} < b_n < B + \varepsilon.$$

Így az $N := \max\{n_1, n_2\}$ köszőbindexszel azt kapjuk, hogy

$$a_n < \frac{A+B}{2} < b_n \ \forall n > N \text{ indexed},$$

és ez az állítás bizonyításását jelenti.

2. eset: $A \in \mathbb{R}$ is $B = +\infty$. Mivel az (a_n) sorozat konvergens és $\lim (a_n) = A$. ezért $\varepsilon := 1$ -hez $\exists n_1 \in \mathbb{N}$, hogy minden $n > n_1$ indexre

A lim $(b_n)=+\infty$ feltételből pedig az következik, hogy az A+1számhoz $\exists\, n_2\in\mathbb{N}.$ hogy minden $n>n_2$ indexre

$$A + 1 < b_n$$

Îgy $\forall\, n>N:=\max\,\{n_1,n_2\}$ index esetén az

$$a_n < A + 1 < b_n$$

egyenlőtlenség teljesül.

3. eset: $A=-\infty$ és $B\in\mathbb{R}$ bizonyítása hasonló.

4. eset: $A=-\infty$ és $B=+\infty$ bizonyítása is hasonló.

 2^{α} Indirekt módon bizonyitunk. Tegyűk fel, hogy A>B. Ekkor az 1^{α} állítás sze $\exists N\in\mathbb{N}$, hogy minden n>N indexre $b_n<a_n$, ami ellentmond a feltételnek.

Megiegyzés. Figyeliük meg. hogy 1° és 2° "majdnem" egymás megfordításai.

egyegyezes Frigerjuk meg nogy 1 + o 2, majorum 1920 san tengovunsan karakaraka Az 19 álltás megfordássa sem igaz, azaz az $a_0 + b$, felétértéből sem következtethetünk az < B egyenlőtlenségre. Tekintsük például az $a_n := -1/n$ és a $b_n := 1/n$ $(n \in \mathbb{N}^+)$ sozozatokat. A 2^o álltás megfordítása sem igaz. Legyen például $a_n := 1/n$ és $b_n := -1/n$ $(n \in \mathbb{N}^+)$.