PHL 120	ENGINEERING PHYSICS LAB	CATEGORY	L	Т	P	CREDIT	YEAR OF INTRODUCTION	
		BSC	0	0	2	1	2019	

Preamble: The aim of this course is to make the students gain practical knowledge to co-relate with the theoretical studies and to develop practical applications of engineering materials and use the principle in the right way to implement the modern technology.

Prerequisite: Higher secondary level Physics

Course Outcomes: After the completion of the course the student will be able to

CO 1	Develop analytical/experimental skills and impart prerequisite hands on experience for engineering laboratories						
CO 2	Understand the need for precise measurement practices for data recording						
CO 3	Understand the principle, concept, working and applications of relevant technologies and comparison of results with theoretical calculations						
CO 4	Analyze the techniques and skills associated with modern scientific tools such as lasers and fiber optics						
CO 5	Develop basic communication skills through working in groups in performing the laboratory experiments and by interpreting the results						

Mapping of course outcomes with program outcomes

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO 1	3				3			1	2			1
CO 2	3				3			1	2			1
CO 3	3				3			1	2			1
CO 4	3				3			1	2			1
CO 5	3				3	303.50		1	2			1

Mark distribution

Total Marks	CIE	ESE	ESE Duration(Internal)
	Marks	Marks	Duration(internal)
100	100	-	1 hour

Continuous Internal Evaluation Pattern:

Attendance : 20 marks
Class work/ Assessment / Viva-voce : 50 marks
End semester examination (Internally by college) : 30 marks

End Semester Examination Pattern: Written Objective Examination of one hour

SYLLABUS

LIST OF EXPERIMENTS

(Minimum 8 experiments should be completed)

- 1. CRO-Measurement of frequency and amplitude of wave forms
- 2. Measurement of strain using strain gauge and wheatstone bridge
- 3. LCR Circuit Forced and damped harmonic oscillations
- 4. Melde's string apparatus- Measurement of frequency in the transverse and longitudinal mode
- 5. Wave length measurement of a monochromatic source of light using Newton's Rings method.
- 6. Determination of diameter of a thin wire or thickness of a thin strip of paper using air wedge method.
- 7. To measure the wavelength using a millimeter scale as a grating.
- 8. Measurement of wavelength of a source of light using grating.
- 9. Determination of dispersive power and resolving power of a plane transmission grating
- 10. Determination of the particle size of lycopodium powder
- 11. Determination of the wavelength of He-Ne laser or any standard laser using diffraction grating
- 12. Calculate the numerical aperture and study the losses that occur in optical fiber cable.
- 13.I-V characteristics of solar cell.
- 14.LED Characteristics.
- 15. Ultrasonic Diffractometer- Wavelength and velocity measurement of ultrasonic waves in a liquid
- **16.** Deflection magnetometer-Moment of a magnet- Tan A position.

Reference books

- 1. S.L.Gupta and Dr.V.Kumar, "Practical physics with viva voice", Pragati PrakashanPublishers, Revised Edition, 2009
- 2. M.N.Avadhanulu, A.A.Dani and Pokely P.M, "Experiments in Engineering Physics", S.Chand&Co,2008
- 3. S. K. Gupta, "Engineering physics practicals", Krishna Prakashan Pvt. Ltd., 2014
- 4. P. R. Sasikumar "Practical Physics", PHI Ltd., 2011.