Einführung in die Datenbanken

Felix Leitl

26. Juni 2024

Inhaltsverzeichnis

rundlagen	
Modellierung	
Warum Datenbanken	
Vorteile einer Datenbank	
Nachteile	
Begriffe	
Datenbank	
Datenbank-Management-System	
Datenbanksystem	
Datenbankanwendung	
Datenmodell	
Datenbankschema	
Nutzdaten	
Metadaten	
Konzeptionelles Schema	
Externes Schema	
Internes Schema	
Phasen des Datenbankentwurfs	
RM	
elationenmodell	
Bestandteile eines Datenmodells	
Begriffe	
Erweiterte Atributdefinition	
Sicherstellung der Referenziellen Integrität	
Löschen eines referenzierten Primärschlüssels	
Ändern eines referenzierten Primärschlüssels	
Integritätsbedingungen	
"System-enforced Integrity"	
Reputzerdefinierte eder globale" Integritätsbedingung	

Mapping	7
Abbildungskonzepte	7
Algorithmus	7
Reguläre Entity-Typen	7
Schwache Entity-Typen	7
M:N-Beziehungen	7
N:1-Beziehungen	8
1:1-Beziehungen	8
Mehrwertige Attribute	8
Mehrstellige Beziehungen	8
Generalisierung/Spezialisierung	8
Kategorien	8
Normalisierung	8
Anomalien	8
Funktionale Abhänigkeit $X \to Y$	9
Volle Funktionale Abhängigkeit	9
Normalformen	9
Erst Normalform (1NF)	9
Zweite Normalform (2NF)	9
Dritte Normalform (3NF)	9
Boyce-Codd-Normalform (BCNF)	9
Vierte Normalform (4NF)	9
Denormalisierung	9
Wann ist eine Denormalisierung angebracht?	9
Relationenalgebra	10
	10
SQL	10
Multidimensionale Datenmodellierung	10
Schichtenmodell	10
Transaktionen	10
Pufferverwaltung	10

Grundlagen

Modellierung

Ein Modell ist ein zweckgerichtetes Abbild der Wirklichkeit Zweck:

- Spezifizieren
- Konstruieren
- Visualisieren
- Dokumnetieren

Warum Datenbanken

- Große Software-Systeme
- Viele Anwendungen/Benutzer arbeiten mit den gleichen Daten
- Daten sollen auch nach Ende eines Programms verfügbar bleiben
- Daten sollen vor Verlust geschützt werden
- Daten sollen konsistent bleiben

Vorteile einer Datenbank

- Anwendungsneutralität
- Vermeidung redundanter Daten
- Zentrale Kontrolle der Datenintegrität
- Synchronisation im Mehrnutzerbetrieb
- Fehlertoleranz
- Perfomance
- Skalierbarkeit
- Verkürzte Entwicklungszeiten für Anwendungen
- Umsetzung von Standarts

Nachteile

- Hohe initiale Kosten
- General purpose software
- Signifikanter Overhead

Begriffe

Datenbank

Eine Datenbank ist eine Sammlung zusammenhängender Daten.

- repräsentiert einen Ausschnitt der realen Welt (Miniwelt)
- Logisch kohärente Sammlung von Daten
- Hat definierten Zweck

Datenbank-Management-System

Sammlung von Programmen zur Verwaltung einer Datenbank

- Erzeugung von DB
- Wartung von DB
- Konsistenter Zugriff auf DB

Datenbanksystem

• DB + DBMS

Datenbankanwendung

 \bullet DBS + Anwendungsprogramme

Datenmodell

• Strukturierungsvorschrift für Daten (z.B. Tabellenform)

Datenbankschema

• Beschreibung einer konkreten Datenbank

Nutzdaten

• Eigentliche Datenbank

Metadaten

- Struktur der DB
- Information über Speicherungsstrukturen

Konzeptionelles Schema

- Beschreibt sämtliche Daten auf logischer Ebene
- z.B. Patient (NR. Krankenkasse, Laborwerte)

Externes Schema

- Beschreibt den für die Anwendung relevanten Teil einer DB auf logischer Ebene
- z.B. für den Artzt: Patient (Nr., Laborwerte) und für die Verwaltung: Patient (Nr., Krankenkasse)

Internes Schema

- Beschreibt die interne Speicherungsstrukturen einer Datenbank
- Unsichtbar für Anwendung
- z.B. Index über Attribut Nr. von Patient

Phasen des Datenbankentwurfs

- Konzeptioneller Entwurf
 - Abbildung auf Semantisches Datenmodell (z.B. E/R-Modell)
- Logischer Entwurf
 - Abbildung auf Datenmodell

\mathbf{ERM}

Siehe Vorlesungsfolien

Relationenmodell

Bestandteile eines Datenmodells

- einfache Datentypen und Konstruktoren für zusammengesetzte Datentypen
- Konsitenzregeln:
 - inhärente Konsistenzregeln:
 gelten für ein Datenmodell per Konvenzion
 - explizite Konsistenzregeln:
 werden f
 ür eine Anwendung im Zuge der Datendefinition festgelegt
- Bennenungskonvention für die Bezeichnung von Datenbankelementen

Begriffe

- Relation: Menge von gleichartig aufgebauten Tupeln
- Tupel: Zeile einer Tabelle
- Kardinalität: Anzahl der Tupel in einer Relation
- Attribut: Spalte einer Tabelle

- Grad: Anzahl der Attribute
- Relationenschema:
 - Beschreibung einer Relation
 - besteht aus Relationennamen (z.B. Personen)
 - und einer Menge von Attributen (z.B. {PNr, Vorname, Nachname})
 - Jedes Attribut wird definiert über einen Attributnamen und einen Wertebereich
 - z.B. Personen (PRn, Vorname, Nachname)
- Relationales Datenbankschema: Menge von Relationalendatenbankschemata
- Wertebereich: zulässige Attribute
- Superschlüssel: definiert ein Tupel eindeutig
- Schlüsselkandidat: Minimaler Superschlüssel
- Primärschlüssel: Ausgewählter Schlüsselkandidat
- Fremdschlüssel: Attribut, dass mit Primärschlüssel einer Tabelle auf ein bestimmtes Tupel verweist

Erweiterte Atributdefinition

- NOT NULL
- UNIQUE
- PRIMARY KEY

Sicherstellung der Referenziellen Integrität

Löschen eines referenzierten Primärschlüssels

- RESTRICTED: ablehnen der Operation
- CASCADES: Alle referenzierenden Tupel werden auch gelöscht
- NULLIFIE: Referenzen werden auf NULL gesetzt
- SET DEFAULT

Ändern eines referenzierten Primärschlüssels

- RESTRICTED
- CASCADES

Integritätsbedingungen

,, System-enforced Integrity " $\,$

- Primärschlüsseleigenschaft
- Referenzielle Integrität

Benutzerdefinierte oder "globale" Integritätsbedingung

- Bedingungen aus der Anwendungsdomäne, die explizit formuliert werden müssen
- Kontrolliert durch das DBMS
- Operationen, die die Integritätsbedingungen verletzen werden abgelehnt

Mapping

Abbildungskonzepte

${f ER} ext{-Modell}$	${\bf Relation en modell}$
Entity-Typ	"Entity"-Relation
1:1- oder 1:N-Beziehungstyp	Fremdschlüssel oder
M:N-Beziehungstyp	Beziehungstabelle mit 2 FS
N-ärer Beziehungstyp	Beziehungstabelle mit N FS
Einfaches Attribut	Attribut
Zusammengesetztes Attribut	Menge von Attributen
Mehrwertiges Attribut	"Attribut"-Relation mit FS
Wertebereich	Wertebereich
Schlüsselattribut	Schlüsselkandidat \rightarrow Primärschlüssel

Algorithmus

Reguläre Entity-Typen

- Erzeuge eine Relation R, die alle einfachen Attribute von E umfasst
 - Bei zusammengesetzten Attributen nur Komponenten als eigenständige Attribute
- Wähle aus Schlüsselkandidaten einen Primärschlüssel
 - -zusammengesetzt \rightarrow Komponenten bilden zusammen den Primärschlüssel
 - Jeder Schlüsselkandidat, außer PS wird UNIQUE & NOT NULL

Schwache Entity-Typen

- Erzeuge eine Relation, die alle einfachen Attribute von W umfasst
- Füge als Fremdschlüssel alle PS-Attribute der Owner-Typen ein
- PS wird Kombination aller FSA, zusammen mit partiellem Schlüssel (falls vorhanden)

M:N-Beziehungen

- Erzeuge Relation die alle einfachen Attribute von X umfasst
- FS ightarrow PSA der beidem Relationen
- PS ist Kombination der FSA

N:1-Beziehungen

- identifiziere die Relation, die dem Entity-Typ E auf der N-Seite des Beziehungstyps entspricht
- Füge den PS des anderen ET als FS in R ein
- Füge alle einfachen Attribute des Beziehungstyps X als Attribute in R ein

1:1-Beziehungen

- Identifiziere Relationen R & S
- Nehme den PS von S bzw. R als FS von R bzw. S auf UNIQUE
- Füge alle einfachen Attribute in R bzw. S ein

Mehrwertige Attribute

- Erzeuge Relation R mit folgenden Attributen:
 - Ein Attribut A, dass dem abzubildenden Attribut A entspricht
 - Den PS K der Relation S, die zu E gehört, als FS auf S
- Der PS der Relation R ist die Kombination von A & K

Mehrstellige Beziehungen

- Erzeuge Relation R, die alle einfachen Attribute von B umfasst
- FS \rightarrow PS aller Relationen
- $PS \rightarrow Kombination aller FS$

Generalisierung/Spezialisierung

siehe VL

Kategorien

siehe VL

Normalisierung

Anomalien

- Einfüge-Anomalie (ohne hinzufügen von Info B, geht Info A nicht)
- Lösch-Anomalie
- Änderungs-Anomaile

Funktionale Abhänigkeit $X \to Y$

Y ist funktional abhängig von X, wenn es keine Tupel geben darf, in denen für gleiche X-Werte verschiedene Y-Werte auftreten

Linke Seite der FA wird "Determinante" genannt

Volle Funktionale Abhängigkeit

Y ist voll funktional abhängig von X, wenn es keine echte Teilmenge $Z \subset X$ gibt, für die gilt $Z \to Y$

Normalformen

Erst Normalform (1NF)

Eine Relation, die nur atomare Attributwerte besitzt (keine Mengen als Attributwert)

Zweite Normalform (2NF)

Eine Relation, in 1NF & deren Nicht-Schlüsselattribute voll funktional von jedem Schlüsselkandidaten abhängen

Dritte Normalform (3NF)

Eine Relation, deren Nicht-Schlüsselkandidaten nicht transitiv abhängig von einem Schlüsselkandidaten sind

Boyce-Codd-Normalform (BCNF)

Eine Relation, bei welcher jede Determinante einer FA ein Superschlüssel ist

Vierte Normalform (4NF)

Eine Relation R ist in 4NF, wenn für jede nicht-triviale mehrwertige Abhängigkeit $X \twoheadrightarrow A \in R$ gilt: X ist Superschlüssel von R

Eine mehrwerte Abhängigkeit gilt, wenn die Attributwerte von C nur von A und nicht von B abhängig sind $A \twoheadrightarrow C$ ist trivial, wenn $C \in A$ oder $B = \emptyset$

Denormalisierung

Normalisierung kostet Zugriffszeit

Wann ist eine Denormalisierung angebracht?

- Seltene Änderungen
- Viele Joins

Bei weiteren Fragen Anhang VL_06 lesen

Relation en algebra

 \mathbf{SQL}

Multidimensionale Datenmodellierung

 ${\bf Schichten modell}$

Transaktionen

Pufferverwaltung