Creation of Stellar Streams:

The Ghost of Sagittarius and Its Siblings

Creation of Stellar Streams:

The Ghost of Sagittarius and Its Siblings

Stellar streams are:

- 1. Trail of stars orbiting the host galaxy
- 2. Former globular clusters or dwarf galaxies
- 3. Created through tidal stripping
- 4. Have halo substructures associated with the stellar streams
- 5. Two major structures leading and trailing stream

Previous Works

The Use of Stellar Streams

- Dynamical measurement for the distribution of mass in the Milky Way
- Reconstruct and investigate the Milky Way's past, along with other galaxies

Formation

- Host galaxy and satellite are within a rotating 2-body system
- Stars escape through the two Lagrange points
- Lagrange points define the tidal radius of the system

Leading and Trailing Streams

- Outer orbit stars have higher energy orbits as they move, leading to them falling behind the satellite
- Stars stripped through the inner Lagrange point are moved forward and fall inwards
- Leads to two distinct portions of the stream

Simulation

Problems:

- Strong perturbations affect satellites
- Satellite infall is anisotropic

Goals:

- How does mass affect stellar stream production?
- How are the satellites disrupted?

Setup

Initial Conditions:

- Circular orbit
- $r = 0.4R_{vir}$
- T_{max} = 2T_{period}
 10⁶ particles

Satellite	M/M _{vir, host}	R/R _{vir, host}	V _{max} /V _{vir,}
Massive	1.9 x 10 ⁻²	9.02 x 10 ⁻²	0.45
Sagittarius	9.0 x 10 ⁻⁴	3.38 x 10 ⁻²	0.16
Small	9.9 x 10 ⁻⁵	1.66 x 10 ⁻²	0.08

NEMO

- Stellar Dynamics
 Toolbox
- Compiles into several tools
- Mostly C, some C++ & Fortran
- REPL-like pipeline

Results

Conclusions

- All satellites create streams displaced from orbital path
- Length and density of sharp bends suggest initial galaxy size
- Angle of displacement suggests initial galaxy size

Questions?