Nama : Dwi Jelita Adhliyah Mata Kuliah : Pemprograman Lanjut

Kelas : TIF A'22 Dosen Pengampu : Liza Afriyanti, M.Kom

NIM : 12250120331

No	Judul dan	Latar Belakang	Tujuan Penelitian	Objek yang diteliti	Metode	Hasil
•	Penulis				Penelitian	
1.	Penerapan	Banyak orang yang	Untuk menentukan cara	Berupa pola dan	Metode Kuantitatif	Berdasarkan hasil
	Algoritma Naïve	mengurangi kontak	kerja E-money ataupun	kecenderungan	Dataset yang	penelitian yang telah
	Bayes untuk	mata dengan orang	uang. Saldo E-money	memeriksa dalam	digunakan adalah	dilakukan
	Mengidentifikasi	lain, tak terkecuali	dapat digunakan kapan	sekumpulan besar data	data Sales	RapidMiner digunakan
	Strategi Marketing	ketika bertransaksi.	saja, data mining disini	menggunakan metode	Peformance di bulan	oleh para peneliti
	dalam Penjualan	Salah satu opsi untuk	merupakan sebuah proses	probabilistik dari	Januari, Juli dan	untuk
	Deposit E-Money	membantu	untuk mengetahui	teorema bayes, serta	Desember 2020 dari	Menghasilkan serta
	(Raden Putri	mengurangi kontak	informasi penting dari	datas set yang digunakan	salah satu aplikasi	menunjukkan data
	Pratiwi, Iddina	langsung dengan	data yang sangat banyak	adalah data sales.	Startup Fintech,	tersebut merupakan
	Tazro , Christina	orang lain ketika	sehingga dapat		diperoleh data	Penerapan algoritma
	Juliane (2022))	bertransaksi sehingga	menghasilkan sebuah		penjualan untuk E-	Naive Bayes tidak
		dalam penelitian ini	data yang lebih akurat.		Money saja	sepenuhnya benar
		penulis			sebanyak 157.209	untuk mengidentifikasi
		mengelompokkan ke-			data kemudian data	strategi pemasaran
		4 E-Money tersebut			difilter untuk	saat menjual deposito

		mana yang akan menjadi produk terlaris dalam penjualan deposi E- Money.			profider E-Money GoPay, OVO, Dana dan LinkAja saja, sehingga di dapat data sebanyak 67,971 data.	E-money.
2.	Penerapan Algoritma Fisher Yates Shuffle Pada Aplikasi TOEFL Preparation Berbasis Web (Yanuar Arviansyah, Nurfaizah , Retno Waluyo (2020))	Algoritma pengacakan soal pada aplikasi yang digunakan yaitu algoritma Fisher. TOEFL adalah suatu tes yang digunakan untuk mengukur dan melakukan evaluasi serta kemampuan berbahasa Inggris yang dimiliki seseorang yang berasal dari negara yang tidak sama dan juga diikuti oleh pertanyaan yang tidak sama jumlahnya	Memberikan pengetahuan, keterampilan, kecakapan hidup dan sikap untuk mengembangkan diri, mengembangkan profesi, bekerja, usaha mandiri, atau melanjutkan pendidikan ke jenjang yang lebih tinggi. Structure and Written Expression untuk Permutasi yang dihasilkan dari algoritma ini memiliki probabilitas yang sama	Metode fisher yates versi modern yang digunakan sekarang, angka yang terpilih tidak dicoret tetapi posisinya ditukar dengan angka terakhir dari angka yang belum terpilih akan didapat Sistem aplikasi yang baik adalah sistem yang dapat dikembangkan sesuai dengan kondisi dan pengembangan dimana sistem tersebut akan di aplikasikan, model extreme programming atau sering juga dikenal dengan metode XP.	Metodologi penelitian yang digunakan dalam penelitian kualitatif dimulai dari: Observasi, Wawancara, Dokumentasi, Studi Pustaka, Perencanaan kebutuhan sistem, Perancangan, Penulisan kode program Pengujian dilakukan untuk mengetahui	Setelah mencoba metode black box test semua hasilnya memenuhi persyaratan, sehingga dapat disimpulkan bahwa algoritma Fisher-Yates Shuffle dapat diterapkan pada aplikasi persiapan TOEFL berbasis web untuk tes online di United Kingdom Purwokerto dengan hasil soal secara acak, sehingga peserta tidak bekerja sama dalam suatu masalah. Selain itu, memfasilitasi kegiatan pendidikan persiapan TOEFL.

					keunggulan dan kelemahan aplikasi	
3.	Pengaruh	Tautan antara	1. Pengaruh penerapan	Deskripsi algoritma	Metode Kuantitatif	Algoritma akan
	penerapan	matematika dan komputer dari	algoritma terhadap hasil	pemrograman komputer	Penelitian ini	memberikan keluaran
	algoritma terhadap	Algoritma dan	belajar siswa untuk	yang menunjukkan	merupakan	yang dikehendaki dari
	pembelajaran	Pemrograman untuk memahami konsep	semua siswa	aliran atau langkah-	penelitian Quasi-	sejumlah masukan
	pemprograman	pemrograman	2. Pengaruh penerapan	langkah program dan	Experimental.	yang diberikan.
	koomputer	komputer yang	algoritma	hubungan antara		Algoritma yang baik
	(Allen Marga	mencakup pembuatan algoritma dan konsep	hasil belajar siswa	debugging dan		harus mampu
	Retta, Asnurul	pemrograman dasar	sebagai kemampuan awal	memelihara kode yang		memberikan hasil
	Isroqmi, Tika Dwi	seperti: data pengulangan, fungsi,	(tinggi, sedang dan	membangun tutorial		yang sedekat mungkin
	Nopriyanti(2020))	pengulangan, fungsi, dan array, operasi	rendah).	pemrograman komputer		nilai sebenarnya.
		string dan matematika		untuk mengunduh		
		pemrograman		program,		
		dilemparkan ke dalam bahasa pemrograman		1 -0 - ,		
		komputer, algoritma				
		juga memainkan				
		peran penting.				
4.	Penerapan	Penilaian kompetensi	Pada penelitian ini,	Algoritma	Dari data yang telah	Berdasarkan hasil
	Algoritma K-	staf IT diperlukan	algoritma K-Means digunakan untuk	pengelompokan iteratif	diinput, kemudian	penelitian yang telah
	Means Clustering	untuk menentukan	mengidentifikasi cluster	yang melakukan partisi	dilakukan	dilakukan untuk
	Untuk Mengetahui	kemampuan	dalam database perangkat lunak,	set data menjadi	pembersihan data	mengetahui
	Kemampuan	karyawan.	perangkat lunak,	beberapa K cluster data,	dan seleksi data lalu	kemampuan karyawan

Karvawan IT Pengelompokkan Zakiyah, (Dina kemampuan Nita Merlina, Nissa karyawan untuk Almira mengetahui Mayangky(2022)) kemampuan karvawan, vaitu dengan mengolah dan menguji algoritma K-Means Cluster. menganalisis hasil dan mengelompokkan data pegawai dari hasil pengujian kemampuan dengan baik, sangat baik, rendah dan sedang, sangat rendah dari hasil pengujian yang telah dilakukan

keterampilan teknis dalam pengembangan, keterampilan pemeliharaan teknis. ketepatan waktu, kerja tim. kemampuan menyampaikan ide kepemimpinan, keterampilan pengembangan diri. Kemampuan untuk mengetahui, membentuk, dan kelompok staf TI dengan kemampuan "sangat baik", "baik", "cukup", "kurang" dan "tidak sama sekali"

yaitu fakta dan statistik
yang dikumpulkan
bersama untuk
digunakan dalam
berbagai analisis atau
sebagai referensi untuk
mendukung berbagai
kajian atau pendapat dan
memudahkan
pengambilan keputusan
para pemimpin bisnis.

data tersebut diolah dan diuji coba menggunakan metode Algoritma K-Means Clustering dengan langkah menentukan awal iumlah cluster. selanjutnya menentukan nilai centeroid, kemudian menghitung iarak terdekat dengan pusat cluster dan mengelompokannya

IT, maka karyawan dengan kemampuan baik sekali, baik. cukup, kurang, dan kurang sekali dimana kemampuan sangat baik terdiri dari 2 (dua) anggota, karyawan dengan kemampuan baik terdiri dari 2 (dua) karyawan anggota, kemampuan dengan cukup terdiri dari 1 (satu) anggota, karyawan dengan kemampuan kurang terdiri dari 2 (dua) anggota, dan karyawan dengan kemampuan kurang sekali teridiri

						dari 3 (tiga) anggota
5.	Penerepan	Saat ini literatur	Kata yang digunakan	Mengenai buku yang	Metode Kualitatif	Algoritma boyer
	algoritma Boyer	sering digunakan	dalam penelitian ini	didigitalkan dengan	Metodologi	moore relatif lebih
	Moore dan metode	dalam bentuk digital	adalah algoritma	langkah hasil konversi	Penelitian yang	cepat pada alfabet
	N-gram pada	dalam format pdf.	pencocokan string	yang dilakukan dengan	digunakan dalam	besar (panjang pola
	aplikasi penyunting	Perlu dilakukan	matching Boyer Moore,	merekomendasikan kata-	penelitian ini	teks), hasilnya bukan
	naskah bahasa	perubahan yang	yang digunakan untuk	kata bahasa Indonesia	meliputi studi	untuk string biner atau
	indonesia berbasis	membutuhkan banyak	mencocokkan kata kunci	menggunakan algoritma	literatur, analisis	membentuk pola
	web	waktu dan tenaga,	yang dimasukkan untuk	Nazief dan Adriani.	kebutuhan,	pendek, untuk
	(Dini Surianto,	penggunaan algoritma	menemukan pola yang	Algoritma stemming	perancangan sistem,	membuat string biner
	Dedi Triyanto,	Boyer-Moore dalam	relevan. Metode yang	dikembangkan untuk	pembuatan sistem,	lebih diutamakan
	Uray Ristian	aplikasi untuk	diterapkan juga	melakukan algoritma	pengujian, dan	menggunakan
	(2020))	menemukan kata	menggunakan metode N-	pengejaan. Metode	analisis hasil	algoritma knuth-
		yang salah di	gram yang mencocokkan	penelitian ini adalah	pengujian.	morris-pratt.
		database, dan	simbol atau huruf (string)	metode Approximate		Algoritma yang
		algoritma Boyer-	agar memiliki prioritas di	String Matching untuk		ditemukan oleh Bob
		Moore, yang tidak	atas string biner.	mentransformasikannya		Boyer dan J. Strother
		cocok dengan kata,		menjadi string karakter		Moore ini telah
		yang mana harus		yang lain, yaitu dengan		menjadi standar untuk
		dihasilkan dari		mengganti jumlah kata		berbagai literatur
		perhitungan		yang relatif banyak,		pencarian string

	menggunakan metode n-gram untuk mendapatkan hasil yang lebih baik dengan kata lain dalam database		perataan kata yang muncul mungkin tidak sesuai.		
algoritma untuk mencari jarak terdekat tempat wisata kota Malang raya (Mukhlis , Mira Orisa , F.X Ariwibisono(2020))	Kota Malang merupakan kota terbesar kedua di Jawa Timur setelah Surabaya. Saat ini banyak warga yang mengeluhkan macet dan semrawut akibat banyaknya kendaraan luar kota yang berlibur di kawasan wisata kota Malang. Kebutuhan masyarakat akan tujuan perjalanan yang efisien berdasarkan jarak tempuh terdekat dapat diselesaikan dengan aplikasi ini.	Untuk mengelola informasi spasial dalam bentuk peta digital, teknologi GIS menggabungkan fungsifungsi seperti database, query dan analisis statistik. Properti ini membedakan GIS dari sistem informasi lainnya, membuat GIS sangat berguna untuk strategi dan perencanaan strategis, memprediksi apa yang akan terjadi. Kemudian hasilnya ditampilkan pada website GIS berupa peta yang menunjukkan jarak terpendek yang dapat ditempuh wisatawan menuju tempat-tempat	dengan cara menghitung dan membandingkan tiap-tiap node sehingga ditemukan jarak terdekat, setelah ditemukan maka diberikan marker permanen pada titik tersebut. Setelah diberikan marker maka akan dibandingkan lagi untuk mencari jarak terdekat menuju titik tujuan, maka akan	Metode Kualitatif Data masukakan tersebut akan dimodelkan dalam sebuah persamaan sehingga dapat dilakukkan proses perhitungan. Proses perhitungan dilakukan menggunakan Algoritma A* dengan bahasa pemrograman web.	Lokasi awal menggunakan tombol untuk memudahkan melacak lokasi saat ini dan target dapat dipilih dari kotak kombo yang diberikan. Informasi lokasi tersebut digunakan untuk memudahkan penentuan destinasi wisata yang ingin dikunjungi di Kota Malang

7.	Penerapan Algoritma Spatial Map Matching dengan API Menggunakan GPS untuk Posisi Tumpangan Kendaraan (Farhan Zayid, Egi Ferdiana (2020))	Penelitian ini mengembangkan aplikasi Neon, jejaring sosial seluler yang memfasilitasi berbagi kendaraan untuk tujuan perjalanan yang sama. Pada hasil selisih interval terdapat jarak yang signifikan antara lokasi titik interval data pada aplikasi sebelumnya (nebengers) dengan lokasi titik yang diterapkan pada Algoritma Spatial Map Matching.	menarik di Malang Raya. GPS banyak diimplementasikan untuk kebutuhan sehari-hari seperti pelacakan kendaraan, pemantauan gempa dan bencana, sistem informasi geografis regional, navigasi jalan, aplikasi militer, dan penunjuk arah maritim. Artinya dalam hal ini kita dapat mengembangkan teknologi GPS untuk smartphone dan menggunakannya untuk memecahkan masalah yang muncul di sekitar kita dan membuatnya lebih mudah untuk digunakan.	Satelit GPS terus mengirimkan sinyal radio digital yang berisi informasi lokasi satelit dan waktu ke penerima terkait. Semakin lama waktu yang dibutuhkan untuk mencapai penerima, semakin jauh jarak satelit dari stasiun penerima. C. API (Antarmuka Pemrograman Aplikasi)	Metode kualitatif, analisis untuk mendapatkan data yang dibutuhkan, proses analisis dapat berupa observasi, wawancara, studi pustaka, dan pencarian penelitian yang dianggap relevan.	Berdasarkan hasil uji kelayakan diperoleh kesimpulan bahwa semua proses dalam penerapan algoritma spatial map matching untuk menentukan koordinat yang tepat dari aplikasi penggerak kendaraan bekerja secara fungsional sesuai dengan yang diharapkan.
8.	Penerapan algoritma apriori untuk penentuan tingkat pesanan	Persaingan dunia bisnis, terutama di dunia yang semakin sulit mencetak, menuntut pengembang untuk	Untuk mengetahui pesanan terbanyak memerlukan algoritma apriori untuk mengetahuinya dan dengan bantuan alat	Algoritma apriori merupakan algoritma market basket analysis yang digunakan untuk menghasilkan association rule.	Metode Kualitatif	Pola frekuensi tinggi yang mengandung k- item atau k-item set yang supportnya lebih besar dari support minimum.

	(Fricles Ariwisanto Sianturi (2018)	mengembangkan strategi serta meningkatkan pesanan produk print- on-demand. Setiap hari semakin banyak informasi pemesanan yang dapat digunakan untuk mengembangkan strategi pemasaran jika diolah dengan baik	Tanagra dapat mengetahui produk yang paling banyak dipesan. Algoritma apriori adalah jenis aturan asosiasi dalam penambangan data. Oleh karena itu, setiap perusahaan harus memiliki sistem pengolahan data yang baik sehingga dapat dihasilkan laporan bulanan atau tahunan dari data kejadian tersebut.	Algoritma apriori yang bertujuan untuk menemukan frequent itemsets dijalankan pada sekumpulan data Market basket analysis salah satu teknik dari data mining yang mempelajari tentang perilaku kebiasaan konsumen dalam membeli barang secara bersamaan dalam satu waktu		Pada fase ini mencari kombinasi produk yang memenuhi persyaratan minimum untuk titik henti basis data. Analisis data dilakukan berdasarkan teknik algoritma apriori dengan beberapa langkah yang telah ditentukan
9.	Penerapan Algoritma Dijkstra Pada Game Learning Matematika Berbasis Android (John Adler , Bagas Farid Ramadhan (2021))	Membangun dan merancang game maze dengan nilai edukasi yang bagus untuk anak-anak, menggunakan algoritma Dijkstra sebagai sistem kecerdasan buatan untuk menemukan cara tercepat menuju suatu tempat. Yang melatih pemikiran dan perkembangan otak anak, agar kelak	Game learning juga dapat diterapkan pada beberapa genre game lainnya, oleh karena itu pembelajaran game dapat dijadikan salah satu alternatif pembelajaran. Selain untuk permainan, algoritma ini juga dapat digunakan secara cerdas untuk mencari tempat tercepat, alternatif pembelajaran di sekolah dan aplikasi tersebut bertujuan untuk	Komponen dan Spesifikasi dalam beberapa komponen diperlukan untuk membangun aplikasi ini, seperti perangkat keras (Hardware), perangkat lunak (Software) dan algoritma pembantu yang disebut Dijkstra.	Metode Kualitatif, Metode yang digunakan dalam penerapan algoritma Dijkstra pada game learning matematika ini menggunakan metode waterfall. Metode waterfall memiliki tahapan- tahapan yang	Algoritma Dijkstra juga memiliki sisi pembelajaran tidak langsung, salah satunya menemukan keluaran yang melatih otak untuk berpikir. Oleh karena itu dipilih algoritma Dijkstra sebagai asisten kecerdasan buatan dalam game ini, dan implementasi sistem ini harus menggunakan alat

		anak tidak lagi bergantung pada permainan yang merusak.	membantu dan mendorong pembelajaran khususnya dalam bidang matematika.		mendasari alur pengembangan aplikasi yang akan dibangun	bantu yang mendukung kemampuan sistem untuk bekerja dengan lancar.
10.	Penerapan Algoritma Crawling dalam Otomatisasi Verifikasi Pembayaran Tiket Seminar (Eldy Dwi Sentosa, Iskandar Fitri, Agus Iskandar (2019))	Proses verifikasi biaya seminar bagi mahasiswa di Universitas Nasional masih menggunakan sistem manual dalam pembayaran seminar, sehingga membutuhkan waktu yang lebih lama untuk memproses biaya seminar.	Tujuan dari penelitian ini adalah untuk mempercepat proses konfirmasi pembayaran seminar di kampus universitas nasional	Kajian terkait dengan judul Perancangan dan Pengembangan Sistem Informasi Seminar dan Portal Jurnal Berbasis Web Menggunakan Framework CodeIgniter juga telah dilakukan dan aplikasi ini membantu memberikan informasi seminar yang bermanfaat bagi para dosen.	Metode kualitatif, Metode Perancangan yang digunakan dalam penelitian ini meliputi metode pembayaran, sistem keamanan website, perancangan sistem, dan penerapan Algoritma Crawling.	Penelitian tersebut mengarah pada aplikasi yang dapat mempercepat proses pengendalian dengan menggabungkan jumlah transfer yang dilakukan oleh peserta dengan yang ada di database. Sistem pembayaran seminar ini dapat menghemat waktu dalam memproses pembayaran seminar