Foundations Homework 7

TJ Liggett

24 October 2019

Chapter Three

Exercise 1 Let the universal set $U = \{1, 2, 3, ..., 14, 15\}$. Define $S = \{1, 2, ..., 10\}$, $A = \{2, 4, 6, 8, 10\}$, $B = \{1, 3, 5, 7, 9\}$, $C = \{3, 6, 9\}$, $D = \{8, 9, 10, 11, 12\}$. Define each of the following:

(a)
$$A \cup B = \{x | x \in \mathbb{N}, x < 11\}$$

(b)
$$B \cup C = \{1, 3, 5, 6, 7, 9\}$$

(c)
$$A \cap B = \emptyset$$

(d)
$$B \cap C = \{3, 9\}$$

(e)
$$S \setminus A = \{1, 3, 5, 7, 9\}$$

(f)
$$A \setminus B = A$$

(g)
$$B \setminus D = \{1, 3, 5, 7\}$$

(h)
$$D^C = \{1, 2, 3, 4, 5, 6, 7, 13, 14, 15\}$$

(i)
$$S^C = \{11, 12, 13, 14, 15\}$$

Assignment 2 Prove each of the following:

(a) $A \cup (B \cup C) = (A \cup B) \cup C$:

Let $x \in A \cup (B \cup C)$. Then x is an element of either set A or the union of set B and C. Hence, by definition of set unions, x is an element of set A, B, or C. It follows that x is an element of either the union of set A and B or set C. Thus, $A \cup (B \cup C) \subseteq (A \cup B) \cup C$. Similarly, let $x \in (A \cup B) \cup C$. Then x is an element of either the union of set A and B or set C, and by set unions, x is an element of A, B, or C. Thus x is an element of either set A or the union of set B and C, and $(A \cup B) \cup C \subseteq A \cup (B \cup C)$. Since both $A \cup (B \cup C) \subseteq (A \cup B) \cup C$ and $(A \cup B) \cup C \subseteq A \cup (B \cup C)$, $(B \cup C) \subseteq (A \cup B) \cup C$.

- (b) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$: Let $x \in A \cup (B \cap C)$. Then either x is an element of A or both B and C. Assume x is an element of A. Then x is an element in both $A \cup B$ and $A \cup C$, and thus $(A \cup B) \cap (A \cup C)$. Likewise, if x is and element of both B and C, C is an element in both C is an element in both C is an element of both C in the C in the C is an element of C in the C
- (c) $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$: Let $x \in A \cap (B \setminus C)$. Then x is in both set A and $(B \setminus C)$. Thus $x \in A$, B but not $A \cap C$. Hence $x \in (A \cap B) \setminus (A \cap C)$, and $A \cap (B \setminus C) \subseteq (A \cap B) \setminus (A \cap C)$. Likewise, let $x \in (A \cap B) \setminus (A \cap C)$. Then $x \in A$, B, but x is not in $(A \cap C)$, and thus not in C. It follows that $x \in A \cap (B \setminus C)$. Thus, $(A \cap B) \setminus (A \cap C) \subseteq A \cap (B \setminus C)$. Therefore, $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C)$.
- (d) $(A \setminus B) \cup B = A$ if and only if $B \subseteq A$: Let $(A \setminus B) \cup B = A$, $x \in B$. Then $x \in (A \setminus B) \cup B$, and thus $x \in A$. Hence, if $(A \setminus B) \cup B = A$, then $B \subseteq A$. Let $B \subseteq A$, $x \in (A \setminus B) \cup B$. Then either $x \in (A \setminus B)$ or $x \in B$. Since $B \subseteq A$, in either case $x \in A$, and thus $(A \setminus B) \cup B \subseteq A$. Now let $x \in A$. Since $B \subseteq A$, then either x is in B or not. If $x \in B$, then it is trivial that $x \in (A \setminus B) \cup B$. If not, by definition $x \in (A \setminus B)$, and $x \in (A \setminus B) \cup B$. Hence, $A \subseteq (A \setminus B) \cup B$. Thus if $B \subseteq A$, then $(A \setminus B) \cup B = A$. Therefore, $(A \setminus B) \cup B = A$ if and only if $B \subseteq A$.