2. Genetic Algorithms

Computational Music Creativity

to recap the theory

What are genetic algorithms (GAs)?

What are genetic algorithms (GAs)?

Genetic algorithms are optimization techniques inspired by natural selection

Core idea

Solutions evolve over generations to optimize a specific objective

 Population: A set of candidate solutions (individuals)

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution

# of legs	height	width	color
5	80	90	red

- Population: A set of candidate solutions (individuals)
- Chromosomes: Encoded version of the candidate solution
- Fitness function: Measures how effective a solution is

Formalising GA: Genetic operators

- Selection
- Crossover (recombination)
- Mutation

GA step by step

GA for music generation

- Encode music elements as chromosomes
- 2. Craft the fitness function
- 3. Run the algorithm

Encoding music as chromosomes

- Melody
- 1 note per gene
- Pitch + duration

C4-0.5 D4-1.0 C4-1.0 E4-2.0 C4-4.0

genetic algorithms

genetic algorithms

Slow

- Slow
- Difficult to predict

- Slow
- Difficult to predict
- Conflict across metrics

- Slow
- Difficult to predict
- Conflict across metrics
- Premature convergence

Why I love GAs

Crazy as s**t

<u>lamus</u> (2010)

Why I love GAs

- Good results, if used correctly
- Edge of chaos
- Route to transformational creativity?

John Cage

Universals in the world's musics

Steven Brown and Joseph Jordania

Psychology of Music published online 15 December 2011

DOI: 10.1177/0305735611425896

The online version of this article can be found at: http://pom.sagepub.com/content/early/2011/11/23/0305735611425896

Published by:

http://www.sagepublications.com

On behalf of:

and Psychology Research

Society for Education, Music and Psychology Research

Table 1. A typology of musical universals. Four types of universals are recognized, as described in the text. Below each class of universal is listed a few examples of that type. This listing is not meant to be comprehensive. See text for full listing.

- Type 1: CONSERVED UNIVERSALS = all musical utterances · use of discrete pitches
- octave equivalence
- transposability of music
 - music organized into phrases
 - arousal factors in emotive expression: tempo, amplitude, register

 - Type 2: PREDOMINANT PATTERNS = all musical systems or styles
 - scales have seven of fewer pitches per octave
 - predominance of precise (isometric) rhythms in music
 - divisional organization of durational/rhythmic structure
 - use of motivic patterns in melody generation
 - use of idiophones and drums
 - religious/ritual context for music-making

small tempo range for any given musical form/style

- use of verbal texts in vocal music
- communication-promoting or social-positive attitude towards music
- Type 3: COMMON PATTERNS = many musical systems or styles
 - predominance of syllabic singing use of aerophones
 - 'voice/instrument cross imitation'
 - use of acoustic depiction in music

 - association of dance with music
- Type 4: RANGE UNIVERSALS = a discrete set of possible states for all musical systems/styles

 - measured vs. unmeasured rhythmic types
 - monophonic vs. heterophonic vs. homophonic vs. polyphonic texture types
 - solo vs. group performance arrangements
- ostinato vs. stophic vs. through-composed sectional arrangements

My idea to get to Nirvana

- 1. Use music universals as fitness function
- 2. Run GA
- 3. See the (transformational?) folly that unfolds

Tips to use GAs

- Study music theory
- Start with one metric, then add more
- Change one metric at a time
- Avoid roulette wheel for selection

Activity 1: Fitness function design

Goal: Create a multi-objective fitness function for generating a pop-rock drum beat:

- What (3-4) metrics would you use? Why?
- How do you think they'll interact?

Instructions:

- Work in groups (5 people)
- 10' to come up with solution
- 5' to discuss together

GA for jazz impros, using a human as the fitness function

GenJam (Al Biles, 1994)

GenJam: 3 modes

Learning:

- Build up fitness value
- No genetic operators

Breeding

- Apply genetic operators
- Half of the population replaced

Demo

Performance

GenJam: Architecture

Phrases

- Gene = 1 measure
- 4x measures per phrase
- Population: 48 phrases

Measures

- Gene = musical event
- 8 eight notes -> one 4/4 bar
- Population: 64 measures

Phrases

- Gene = 1 measure
- 4x measures per phrase
- Population: 48 phrases

Measures

- Gene = musical event
- 8 eight notes -> one 4/4 bar
- Population: 64 measures

What do these values represent?

Measure genes

- 0 = rest
- 1 14 note
- 15 = hold

Chord	Scale	Notes
Cmaj7	Major (avoid 4th)	CDEGAB
C7	Mixolydian (~ 4th)	C D E G A Bb
Cm7	Minor (avoid 6th)	C D Eb F G Bb
Cm7b5	Locrian (~ 2nd)	C Eb F Gb Ab Bb
Cdim	W/H Diminished	C D Eb F F# G# A B
C+	Lydian Augmented	CDEF#G#AB
C7+	Whole Tone	C D E F# G# A#
C7#11	Lydian Dominant	C D E F# G A Bb
C7#9	Altered Scale	C Db Eb E F# G# Bb
C7b9	H/W Diminished	C Db Eb E F# G A Bb
Cm7b9	Phrygian	C Db Eb F G A Bb
Cmaj7	Lydian	CDEF#GAB
#11	118	

Fitness: Interactive GA

- During *learning* mode human mentor:
 - Is presented with many phrases
 - Gives feedback
- Mentor gives "g" or "b":
 - o "g" -> +1 to phrase / measure
 - "b" -> -1 to phrase / measure

Genetic operators

- Active in *breeding* mode
- At each generation half of the measure population replaced
- Operators
 - Tournament selection
 - One-point crossover
 - 6 musically meaningful mutations per population

Genetic operators

- Active in breeding mode
- At each generation half of the measure population replaced
- Operators
 - Tournament selection
 - One-point crossover
 - 6 musically meaningful mutations per population

Mutation Operator	Mutated Measure	
None (Original Measure)	9 7 0 5 7 15 15 0	
Reverse	0 15 15 7 5 0 7 9	
Rotate Right (e.g., 3)	15 15 0 9 7 0 5 7	
Invert (15 - value)	6 8 15 10 8 0 0 15	
Sort Notes Ascending	5 7 0 7 9 15 15 0	
Sort Notes Descending	9 7 0 7 5 15 15 0	
Transpose Notes (eg. +3)	12 10 0 8 10 15 15 0	

Mutation Operator	Mutated Phrase
None (Original Phrase)	57 57 11 38
Reverse	38 11 57 57
Rotate Right (e.g., 3)	57 11 38 57
Genetic Repair	57 57 11 29
Super Phrase	41 16 57 62
Lick Thinner	31 57 11 38
Orphan Phrase	17 59 43 22

Training

Process:

- Alternating between *learning* and breeding phases
- Mentor listens to 24 new phrases per generation

Outcome:

- Over generations, solos evolve from dissonant to coherent and melodic
- Pitch and interval distributions shift to align with musical norms

Performance

- Demo mode
- Phrases are selected with tournament selection
- Selected phrases are played back in real-time

GenJam limitations

• ...

GenJam: A Genetic Algorithm for Generating Jazz Solos

Activity 2: Genetic encoding

Goal: Propose a chromosome representation for a 4-bar drum beat in 4/4 time (kick, snare, hi-hat, crash cymbal).

- Work in groups (5 people)
- 10' to come up with solution
- 7' to discuss together

Assignment 1: Genetic Harmonizer Upgrade

Re-adapt the genetic algorithm you've seen in the tutorial to harmonize a melody in a jazz style.

Deadline: 25 January at midnight