From AGM to BIGCLAM

Mining of Massive Datasets Leskovec, Rajaraman, and Ullman Stanford University

From AGM to BigCLAM

Relaxation: Memberships have strengths

- F_{uA} : The membership strength of node u to community A ($F_{uA} = 0$: no membership)
- Each community A links nodes independently:

$$P_A(u,v) = 1 - \exp(-F_{uA} \cdot F_{vA})$$

Factor Matrix F

Community membership strength matrix F

- $P_A(u,v) = 1 \exp(-F_{uA} \cdot F_{vA})$
 - Probability of connection is proportional to the product of strengths
 - Notice: If one node doesn't belong to the community ($F_{uC} = 0$) then P(u, v) = 0
- Prob. that at least one common community C links the nodes:
 - $P(u,v) = 1 \prod_{\mathcal{C}} (1 P_{\mathcal{C}}(u,v))$

 F_u vector of community membership strengths of u

From AGM to BigCLAM

- Community \boldsymbol{A} links nodes $\boldsymbol{u}, \boldsymbol{v}$ independently:

$$P_A(u,v) = 1 - \exp(-F_{uA} \cdot F_{vA})$$

Then prob. at least one common C links them:

$$P(u,v) = 1 - \prod_{C} (1 - P_{C}(u,v))$$

$$= 1 - \exp(-\sum_{C} F_{uC} \cdot F_{vC})$$

$$= 1 - \exp(-F_{u} \cdot F_{v}^{T})$$

For example:

$$F_u$$
: 0 1.2 0 0.2

$$F_{v}$$
: 0.5 0 0 0.8

$$F_w$$
: 0 1.8 1 0

Node community membership strengths

Then:
$$F_u \cdot F_v^T = 0.16$$

And: $P(u, v) = 1 - exp(-0.16) = 0.14$
But: $P(u, w) = 0.88$
 $P(v, w) = 0$