2003-2004 学年第二学期《编译原理》期末考试

- ;	: 填充题(如无特殊说明,每空两分)	
•	在标准的编译程序的组成部分中,属于前端部分的有:	,
	$_{-}$,和 $_{-}$ 。 给出语言为 $\{a^nb^jc^i\mid n\geqslant 0,\ j\geqslant 0,\ 0\leqslant i\leqslant n\}$ 对应的	
	语言可以使用正则文法来描述吗?	 能,给出正见
•	给定文法 G[E]: E→T+E T T→F*T F → '(' E ')' (i*i)的最左推导过程:	
•	给定文法: G[Z]: Z→WV W→aB aW a B→b bB V→bV C→c cC。说明文法 G[Z]为二义性的:	cC
	并给出等价的无二义性的文法:	。(本空 4 分 h机・
•		J / p u •
		。(本空 4 分 日元式序列:
	找出公共子表达式并进行优化后得到如下四元式序列:	o

从上面的赋值语句序列中得到等价的逆波兰表达式:

7. 对于 的闭(S→ a b	(T)	T → T,S	S S	;给出	LR(0)项组	集{T-	→ •T,	_ ° ,S}
E → T-	$+E_1$ {E.: $-E_1$ {E.:	·[E]以及翻译 val = T.val - val = T.val-H {E.val = T.	+ E1.val} E1.val}							<u> </u>
T→ i		{T.val = i.k 翻译	exVal}	求	解气] 子	9-3-2	的	值	:
·····································	(a+b)*(c-d)	-e 的抽象语	法树:		_ °					
 l0. 简单	单解释为什	么 SLR(1)分	分析技术的	的处理剂	古围要	比 LR	(1)技术的	—— り处理 —	范围	_。 小
	1	。 运行的时修 (2)全	:局变量 p	指向的	整数值	直,该	值由 mal	loc 申	请空	间
	递归子程序 2 分,语义	序方法扫描;	文法 G[P]]的句子	,并作	语义外)分,	其中	语
ムココ油 I. G[P]		· 文 垤 6 刀)	$D \rightarrow T$	<u>id</u> ';'	D 空	3	T	\rightarrow	<u>int</u>	
<u>oool</u>										
		sign ';' S + id id and		Assign	\rightarrow id	'≔' E				
以是 int i部分的时	l的要求如 ^一 或者 bool 型 l 候进行类型	+ id id <u>and</u> F,在句子 型。语义处理 型检查:首 赋值的时候	的申明部 里时,必须 先+号的萨	项将变量 两端必须	量记录: 页是整	到标识 数型变	!符表中。	在处	理语	i句
GetIdTyp	e(id.lexVal)	(id.lexVal, 获取标识符 不必作错	好的类型。	在扫描						

三: 为下列正则表达式构造 NFA, 并进行确定化和最小化。 1{10}{10 | 01} (15 分, 构造 NFA 5 分,确定化 5 分,最小化 5 分)

四:下面的流图中,循环为 B2,B3,B4 组成了一个自然循环。找出该循环中所有不变四元式(5分,不必写出数据流方程);确定哪些不变四元式不可以外提并简单说明理由(5分);将不变表达式外提,形成优化后的流图(5分)

2004-2005 学年第二学期, 计算机系《编译原理》期末考试试题

一、填充题(如无特殊说明,每空 2 分) 1、编译程序的前端部分包括:词法分析,,
2、请列出 2 种在基本块内部的优化方法:
3、在C语言程序中,局部变量 int p 存放的位置是;语句 p=malloc(sizeof(int)10)
申请得到的空间位于; 全局变量 int globalIndex 存 放 的 位 置 是
四个空请填写静态区,栈区,和堆区)
4、给出表达式 a+b*(c+d)的逆波兰表示:。
5、说明为什么文法 G[Z]: Z→AC A→aAc Ac cc ac C→cB cC B→bB b 是二义性的
。并给出等价的无二义性的文法:
(本空 4 分)。
6、给定文法 G[Z]: Z→aZb AB A→a aA B→bB b,该文法的语言是:
。该语言能否使用正则文法描述?。
如果能,给出相应的正则文法,如不能,给出理由
0
2,3,4 都是 <u>number</u>)
9、给定下图中表示的有穷自动机,请给出相应的正则文法。
和正则表达式。
A A A A A A A A A A
10、对于下面的算法四元式序列,指出公共子表达式的四元式序号:。 并在右边给出针对公共子表达式的优化之后的四元式序列(假设 t1,t2,t3,t4 不在基本块外使

用)。

2005-2006 年度第二学期, 计算机系《编译原理》期末考试试题

五、	填了	记题	(如)	无特殊说	包明,每	空2分)									
1,	编译	程序	可以	人分成以	下几个	部分:_			,	语法	分析	í,			_,代码
	生成	1,利	优化	匕。											
2、	针对	情环	下的优	化技术	:包括: _				_,					。(写	出两种
	即可)													
3、	说明	四贝	运算	拿表达式	的文法	E → E+E	, E-	> E*E	i , E→	numb	er 5	皇二义	性的文	[法(3分)。
											。并	给出	等价的	力无二	义性的
	文法	,其	中中	勺+和*的	优先级为	为 先加 后	乘(3	3分)	:						
4、	三知	正贝]表达	 达式 a{b	 c}d,给	出相应的	的 DFA	A: (4	分)				°		
					•										
	以及	2相区	並的〕	正则文法	生:(2分	(1									
- ,			——————————————————————————————————————	ilia 숙상		·	E >:		・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			亡		°	4 <i>(</i>) \
5 \ 3	行 正	トタリ	丘	归义法:	171	*F F	F → 1	(E)。	, 有 给 🖯	占寺り	LENZ	七左迭	!リコキリン	人法(4 分):
a)	设有	 す文》	去 G [[S]: S→a	a b ((T) T→	T,S	S ((其中(⁵	—— 和)为:	—— 终结	符号)	。给出	 出对应	。 Σ于规则
	T→	T,S	的全	部 LR(0)项:										c
						[T → T, ●									
													0		
)	给定	如下	的四	元式序	列,请在	E右边给	出消除	共公紀	子表过	式之	.后的	的四元	式序列	小4分	·):
	*	X	y	t1											
	+	t1	Z	t2											
	*	X	y	t3											
	*	t2	t3	t4											
	*	X	y	t5											
	+	t5	Z	X											
	*	X	y	m											
	*	m	t4	X											
8, \$	合出	语言	i 为{	$a^n b^j c^i$	n≥0, j	j≥0,0≤	≤i≤	j}的	文法	G[Z]	:				
_														o	这个
	语言	可以	人使	用正则	文法来	描述吗'	$?$ $_$ $^-$					_ 0			
)*(c+d)/a		 り抽多	 泉语法	树 (4 分	`):			

	0
	并给出这个表达式的逆波兰表示方式:
10、	是否存在能用 SLR(1)技术的处理,但是不能被 LALR(1)技术处理的文法?
11、	已知文法 G[Z]: Z→APZ AMZ AMB AP A→a aA P→+P -P - + M→*M B→b bB, 进行压缩变换后的文法如下: (4 分)
12、	。 在 C++语言中, static 的类变量的存放位置是:。假设有类 Class A,
	而 memVar 是 Class 的普通成员变量。假设在程序中有代码 Class * obj=new Class,那么 obj→memVar 的存放位置是:
13、	写出赋值表达式 x = a*b-c+d*e 的四元式序列(4 分)
	和相应的三元式序列:
二、	设有文法 G[E]: E→T+E T-E T

- 1、请使用递归下降分析技术给出扫描该文法句子的程序。必要时先修改文法。(10分)
- 2、修改上面的程序, 使之能够统计扫描的句子中总共出现了多少对括号。(5分)
- 三、已知有选择表达式的文法如下: Exp→ (BoolExp ? Exp : Exp); 其语义如下: 首先对 BoolExp 求值,如果值为真则对第一个 Exp 进行求值,其结果为第一个 Exp 的值,如果 BoolExp 的值为假,则对第二个 Exp 求值,表达式的最终结果为第二个 Exp 的值。请给 出生成相应代码的翻译方案。(10 分,如果不使用 BackPatch 扣 3 分)

四、已知源程序如下:

```
int x,y,a,b,c;
x = a+b*c;
while(a < b)
{
    x = b*c;
    y = x + a;
    a = a + 1;
}
1、给出相应的四元式序列(5分)。
2、给出相应的流图(5分)。
3、指出其中的循环不变表达式,并外提(5分)。
```

考试科目名称 编译原理 (A卷)

2007——2008 学年第 二 学期 教师 赵建华, 戴新宇 考试方式: 开卷: 闭卷

•	编译程序的前端部分包括: 词法分析,,,,,,	
2.	写出函数定义 int f(char* a, float f)对应的类型表达式:	
3.	————。 已知上下文无关文法 G[S]: S→aSa aa, 这个文法的语言是 。给出等价的正则文法	
١.	己知文法 S→SaB bB	
5.	。 在 C 语言程序中,局部变量 int p 存放的位置是	; 语句
	p=malloc(sizeof(int)10)申请得到的空间位于;全原globalIndex 存放的位置是;局部变量 static 放位置是。(以上四个空请填写静态	int si 的存
-	和堆区)(每空 1 分) S-属性的语法制导定义中所有文法符号的属性都是	屋州
5. '.	对基本块的优化有:和和和	_禺江。
•	(任写两种),通常通过实现基	本块的优
	化。对于下面的算法四元式序列,指出公共子表达式的四元 。并在右边给出针对公共子表达式的优	式序号:
	四元式序列(假设 t1,t2,t3,t4 不在基本块外使用)。	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(2) * t1 z t2 (3) + x y t3	
	(3) + x + y + t + t + t + t + t + t + t + t + t	
	(5) + x y t4	
	(6) * t3 t4 m(2	太空4分)。
3.	将中缀表达式 a+b*(c-d)改写为逆波兰表达式:	, ,
	并将表达式计算过程翻译成相应的四元式序列,结果存放在t中	
	(本空	
	给出完成同样功能的三元式序列	

注意指明开始状态和接 注意指明开始状态和接 已知文法的 E → E+T T)}的语言:
。给出接受这 注意指明开始状态和接 注意指明开始状态和接 已知文法的 E→E+T T	这个语言的确定有穷状态自动机:(用图形方式表示,
。给出接受这 注意指明开始状态和接 注意指明开始状态和接 已知文法的 E→E+T T	这个语言的确定有穷状态自动机:(用图形方式表示,
注意指明开始状态和接 注意指明开始状态和接 已知文法的 E → E+T T	
己知文法的 E → E+T T	接受状态,本空 4 分) 。
己知文法的 E → E+T T	
·	o
·	o
·	o
·	•
·	
·	
·	
这个项集的闭。	$T \rightarrow T*F \mid FF \rightarrow (E) \mid id $ 的 $LR(1)$ 项集 { $[E \rightarrow .T, +]$ },
	包 CLOSURE({[E→.T, +]}) 是
	。这个项集闭包的
F_后继项集是:	
	(不需要再次求闭包)。如果有一个 LR(1)
状态对应于这个 F 后线	
为	
/	
	进行归约。

得分

二、考虑下面的属性文法 G(D): (8分)

产生式	语 义 规 则
D → id L	enter(id.name, L.type)
$L \rightarrow$, id $L^{\scriptscriptstyle (1)}$	enter(id.name, L ⁽¹⁾ .type)
	L. type:=L ⁽¹⁾ . type
L → :T	L. type:=T. type
$T \rightarrow integer$	T.type:=integer
$T \rightarrow real$	T. type:=real

过程 enter (name, type)用来把名字 name 填入到符号表中,并给出此名字的类型 type。

- (1) 画出语句 id₁, id₂, id₃:inte ger 的带注释语法树;
- (2) 文字说明该说明语句的语义。

```
得分
```

四、已知源程序如下:

```
int x,y,a,b,c;
x = a+b*c;
repeat
{ x = b*c;
y = x + a;
b = b - 1;
}until (a>= b);
4、给出相应的四元式序列 (5分)。
5、给出相应的流图和其中的自然循环 (5分)。
6、指出其中的不变四元式,如果可以外提则外提 (5分)
```

考		<u>4</u>	扁译原理	(A <u>卷</u>)
	08——2009 学年第			
	其中类型检查属于	分为词法分 	分析、 没。 【性的:。	
	{E→E+E. E→E.+E E→E.* 保证先乘后加及左结合的运算	•		
3.	机器无关的全局优化技术有和。	。 (任意列出)	三种)	
4.	已知文法: $E \rightarrow E + T E - T$ 句子 (id+id)*(id+id) 的最左			
	和语法分析树:(4 分)			
5.	- 在求解到达定值数据流方程 d4: i = k + 1; d5: j = i + 1;	寸,基本块	:	
	d5: j=1+1; d6: i=m+n; 牛成了哪些定值:			:杀死了哪些定值:

6. 三地址代码序列如下: T1:=A+B; T2:=5; M:=T2*4; T3:=C-D; T4:=M+T3; L:=T1*T3; T4:=A+B; N:=T4 画出该序列的 DAG 图(4 分)

_____(用语言描述)

7.	已知文法 $G(M)$: $M \to TB$; $T \to Ba \mid \epsilon$; $B \to Db \mid eT \mid \epsilon$; $D \to d \mid \epsilon$, 求 $FOLLOW(T) =$
8.	
9.	正则表达式(0 1)* 的语言是什么?
	这个正则表达式和 $((\epsilon \mid 0) 1^*)^*$ 等价吗?(是/否)。
10.	已知文法 E→E+T T →T*F F → id (E)。那么句型 E+T*id 的句柄是:。该文法的 LR(0) 项集 {[E→.E+T]} 的闭包是:
	。这个闭包的 T 后继的
	闭包项集是:。给出这个文法的可行前缀 E+T*对应的任一 LR(0)有效项。
	一个人,我们可有的现在是自己的性,是 K(0) 有效项。
得分	的具体数值可以使用属性 lexval 表示;请给出计算表达式值的语法制导定义
(1	10分)
得么	三: (本题满分 10 分)用正规表达式表示字母表{a, b}上由 a、b 组成,且 不连续出现两个 a 的所有句子的集合,并给出接受该语言的 DFA。
得	

首先将 x=a/(b+c)-d*(e+f)转换成三地址指令(8分), 然后使用三个寄存器 R1、R2、R3 给出 计算这个三地址代码序列的机器代码,并给出每一步的寄存器描述符和地址描述符。(7分) (在目标机器模型中使用LD把数据从内存加载到寄存器,ST把寄存器的内容保存到内存, OP dst, src1, src2 对 src1 和 src2 中的值进行运算,并保留到 dst 中;这些位置都是寄存器, 可以是相同的寄存器。我们假设所有的中间结果都不需要保存)

五、(本题满分 15 分) 得分

下面的翻译方案计算 0 和 1 的串的值 (解释为二进制的正整数)。

$$B \to B_1 \ 0 \ \{ B.val = B_1.val \times 2 \ \}$$

 $B \to B_1 \ 1 \ \{ B.val = B_1.val \times 2 + 1 \ \}$
 $B \to 1 \ \{ B.val = 1 \ \}$

- (1) 消除基础文法中的左递归;
- 为消左递归后的文法写一个计算 B.val 的翻译方案。(10分) (2)

考试科目名称 编译原理 (A卷)

2010——2011 学年第 <u>二</u> 学期 教师 <u>许畅、陈林</u>考试方式: 开卷: <u>闭卷</u>

细	小 持穴師 (未販港人 22 人)
得	<u>分 </u>
1.	(本题 4 分)一个典型的编译程序包括:词法分析、、、中间代码生成、机器无关代码优化、、机器相关代码优化;其中"三地址代码生成"属于。
2.	L(r)={a ⁿ b ^{2m+1} n≥0, m≥0} 或 由 0 个或多个 a 连接奇数个 b 组成的串
3.	(本题 6 分) 已知文法: $E \to E + T E - T T$ $T \to T * F T / F F$ $F \to (E) id$ 请给出句子 $id / (id - id)$ 的最左推导
	请给出句子 id / (id – id)的语法树:
4.	(本题 2 分)语言{a ⁿ cb ^m n,m≥1}用正则表达式描述,用上下文无关文法描述(填"可以"或"不可以")。
5.	(本题 8 分) 为文法: S → S; A A A → i := E E → E + F F F → (E) i 设计预测分析表,则可以求得: FIRST(A) = {
6.	3024

7. (本题 6分)在全局机器无关的优化中有哪些常用的手段(列出三个):

析中有哪些基于数据流方程的具体分析技术(列出三个):	

得分 二、简答题(本题满分 68 分)

1. (本题 9 分)按照课本介绍的方法,为正则表达式(ba?)*构造对应的 NFA(只需给出 NFA 图);并使用子集构造法,将该 NFA 转换为对应的 DFA(需给出 DFA 图以及转换表)。 NFA:

状态转化表为:

NFA 状态	DFA 状态	a	b
{1, 2, 5}	A		В
{2, 3, 4, 5}	В	С	В
{2, 4, 5}	С		В

DFA:

2. (本题 4 分) 己知文法:

$$S \rightarrow a A | A b$$

$$A \rightarrow S c \mid d$$

此文法是否存在左递归?若存在,请消除其左递归(给出结果文法);否则,说明理由。

- 3. (本题 5 分)原本无冲突的 LR(1)分析表在合并同心集后得到 LALR(1)分析表,新的表中不可能存在哪种冲突,为什么?
- 4. (本题 9 分)已知文法

$$E \rightarrow E + T \mid T$$

 $T \rightarrow T F \mid F$

 $F \rightarrow F * | (E) | a | b$

- ① 给出 LR(1)项集{ $[F \rightarrow (\bullet E), +]$ }的闭包;
- ② 给出①中项集闭包相对于文法符号 E 的后继 LR(1)项集闭包。
- 5. (本题 5 分) 己知文法:

 $E \rightarrow E - T \mid T$

 $T \rightarrow num \mid num . num$

请给出一个 SDD,来确定减法表达式的类型。

注: T 有综合属性 type (属性值分为 integer 和 float 两种), E 有综合属性 type。可以使用函数 getType(type_1, type_2)来为减法表达式获取类型。

71			
产生式	语义规则		
$E \rightarrow E_1$ -T	$E.type = getType(E_1.type, T.type)$		
$E \rightarrow T$	E.type = T.type		
$T \rightarrow num$	T.type = integer		
$T \rightarrow num$. num	T.type = float		

题 10 分)请给出下面 repeat 语句的中间代码翻译方案。已知其语法如下:

 $S \rightarrow \text{repeat } S_1 \text{ while } B$

假设其他类型的语句和表达式的翻译方案已经生成。

注: S 具有综合属性 nextlist 用来表示跳转指令列表, B 具有综合属性 truelist 和 falselist 来管理布尔表达式跳转代码中的标号,(如果需要)所插入的额外标记非终结符号具有属性 instr 表示回填的目标标号。必须使用回填方法, 否则不给分。

$S \rightarrow \mathbf{repeat} \ M \ S_1 \ \mathbf{while} \ N \ B$	{ backpatch(B.truelist, M.instr);	
	$backpatch(S_1.nextlist, N.instr);$	
	S.nextlist = B.falselist;	
	<pre>gen('goto' M.instr); }</pre>	

7. (本题 6 分)下图中给出了各个对象的引用情况,当从 B 指向 D 的指针被删除后,各对象的引用计数会发生怎样的变化,请在表中填写。如果我们采用标记-清扫的方式进行垃圾回收,哪些对象将会被清扫,也请在表中标出。

х	对象	指针删除前的	指针删除后的	对象是否被清扫
	/13人	引用计数	引用计数	(清扫的请打√)
B C D E	A	1	1	
	В	1	1	
	C	2	2	
	D	1	0	√
	Е	3	1	
	F	1	0	√

- 8. (本题 4 分)给出下面基本块的 DAG 图 (标出所有被 Killed 的节点)。
 - a = b + c
 - d[i] = e
 - a = e * g
 - f = a + e

(本题 6 分)已知三地址代码片段如下:

- (1) b = 1
- (2) n = 10
- (3) d = 1 + n
- (4) c = 2
- (5) t1 = 4 * a
- (6) t2 = 1 + n
- (7) c = c + b
- (8) if c < n goto (6)
- (9) a = a + b
- (10)if a < n goto (4)
- (11)c = a b
- ① 给出相应的流图(使用三地址代码前的序号来表示对应的三地址代码),并指出其中所有的循环。
- ② 指出全局公共子表达式,并给出其所在的三地址代码的序号。
- ③ 指出每个循环中的可进行强度消减的归纳变量,并说明如何进行强度消减。
- 10. (本题 10 分)将下列三地址语句组成的基本块翻译成机器代码,并给出每条机器代码 执行后的寄存器描述符和地址描述符(目标指令从 100 开始编号;假设有三个寄存器可用 R1、R2、R3,使用课本介绍的 getReg()分配寄存器;其中 a、b、c、d 是全局变量;t、u 是临时变量,不需要保存)。

t = a * b

u = a - c

d = t + u

附机器代码格式:

取数指令: LD R, var // 将内存空间中变量 var 的值存入寄存器 R 中。

存数指令: ST var, R // 将寄存器 R 中的值存入变量 var 的内存空间中。

双目运算指令: OP dst, src1, src2 // 使用 OP 对寄存器 src1 和 src2 中的值进行计算,结果存入寄存器 dst 中(OP 包括 ADD、SUB、MUL、DIV)。