Total No. of Questions-8]

[Total No. of Printed Pages-4

B.E. IV Semester Examination

BE - IV/6(A)

214635

Computer Engineering

Course No.: MTH - 413

Discrete Mathematics

Time Allowed-3 Hours

Maximum Marks-100

Note: Attempt any five questions selecting at least Two question from each section. Use of calculator is allowed.

Section - A

- 1. a) Define mathematical induction. Prove that $2^{n} \times 2^{n} 1$ is divisible by $3 \forall n \ge 1$.
 - b) Determine the no. of integers between 1 to 250 that are divisible by any one of the integers 2,3,5 and 7.
 - Define a countable set. Show that the set of integers
 z is countable. (6,7,7)
- 2. a) Prove that the argument $p,q \vdash (p \lor r) \land q$ is valid without using truth table.
 - b) Let R be a binary relation on the set of all positive integers S.t $R = \{(a,b)/a = b^2\}$. Is R reflexive or Symm. or Antisymmetric or Transitive or on equivalence relation or partial order relation?
 - Prove that a function $f: R \to R$, defined by $f(x) = x^3$ is one one onto. (7,7,6)

[Turn Over

400

- 3. a) Show that any two left cosets of H in G are either identical or disjoint.
 - b) Define cyclic group. Prove that every subgroup of a cyclic group is cyclic
 - Let $\{x,y\}$..) be a semi gp. Where x.x = y show that y.y = y. (7,7,6)
- Show that union of two subgroups $H_1 \& H_2$ of a gp. G is a subgp. of G iff $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$.
 - b) Define field. Let $Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$. Prove that $(Q\sqrt{2}; +; .)$ is a field where +,. Stand for addition and multiplication.
 - c) Define homomorphism of groups. Show that each of the following mappings is a homomorphism.

i)
$$f_1:(C,+) \rightarrow (R,+)$$
 where $f_1(x+iy) = x$

ii)
$$f_2:(C,+)\to(C,+)$$
 where $f_2(x+iy)=iy$ (7,7,6)

Section - B

- 5. a) Define the following terms with suitable example:
 - i) Directed graph
 - ii) Weighted graph
 - iii) Loop
 - iv) Complete graph
 - v) Multigraph.

- b) Prove that a graph G has Eulter path iff it has either no vertex of odd degree or two vertices of odd degree.

 (10,10)
- 6. a) Prove that the no. of edges in a complete graph with n vertices: is n(n-1)/2.
 - b) Is there exist a non simple graph G with deg. seq. (1,1,3,3,3,4,6,7)? Justify your answer.
 - c) Draw the complements of the following graphs:

(1)

(7,6,7)

- 7. a) Explain chinese postman problem.
 - b) Prove that a tree with n-vertices has n-1 edges.
 - c) Define spanning tree. Generate a spanning tree for:

[Turn Over

(6,7,7)

- 8. a) A graph G has 31 edges, 8 vertices of degree 4 and all other vertices are of degree 3. Find the no. of vertices in G.
 - b) Explain Dijkstra's algorithm. Apply this algorithm to determine a shortest path between a & z in the graph given below. (5,15)

