A2.61 Decision Trees WithOut Weight Balance

```
[ ] from sklearn import tree
    dt = tree.DecisionTreeClassifier()
    dt = dt.fit(X_train, y_train)
    from sklearn.metrics import classification_report
    print("Decision Tree withOut Class Weight Balancing - Classification Report (Test Set Results):")
    print(classification_report(y_test,dt.predict(X_test)))
    from sklearn.metrics import classification_report
    print("Decision Tree withOut Class Weight Balancing - Classification Report (Train Set Results):")
    print(classification_report(y_train,dt.predict(X_train)))
    from sklearn.metrics import confusion_matrix
    import seaborn as sns
    confmat = confusion_matrix(y_test, dt.predict(X_test))
    fig, ax = plt.subplots(figsize=(8,8))
    g = sns.heatmap(confmat,annot=True,ax=ax, fmt='0.1f',cmap='Accent_r')
    g.set_yticklabels(g.get_yticklabels(), rotation = 0, fontsize = 12)
    g.set_xticklabels(g.get_xticklabels(), rotation = 90, fontsize = 12)
    ax.set_xlabel('Predicted labels');ax.set_ylabel('True labels');
```

The given code can be broken down into the following steps:

1. **Decision Tree Classifier Initialisation and Training**:
```python

from sklearn import tree

dt = tree.DecisionTreeClassifier()

dt = dt.fit(X\_train, y\_train)

٠.,

- The code imports the decision tree module from `sklearn`.
- It initialises a decision tree classifier with default parameters.
- The classifier is trained on 'X train' and 'y train'.
- 2. \*\*Evaluate the Decision Tree Classifier on the Test Set\*\*:

```
```python
```

from sklearn.metrics import classification_report print(classification_report(y_test, dt.predict(X_test)))

- The model's performance is evaluated on the test dataset.
- A classification report is printed, which will provide the precision, recall, F1-score, and support for each class, as well as some overall metrics like accuracy.
- 3. **Evaluate the Decision Tree Classifier on the Training Set**:

```
```python
```

from sklearn.metrics import classification\_report print(classification\_report(y\_train, dt.predict(X\_train)))

- Similarly, the model's performance is evaluated on the training dataset. This can be useful to compare with the test set results and identify potential overfitting.
- 4. \*\*Visualize the Confusion Matrix\*\*:

```
```python
```

from sklearn.metrics import confusion_matrix import seaborn as sns

confmat = confusion matrix(y test, dt.predict(X test))

```
fig, ax = plt.subplots(figsize=(8,8))
```

g = sns.heatmap(confmat, annot=True, ax=ax, fmt='0.1f', cmap='Accent_r')

g.set yticklabels(g.get yticklabels(), rotation = 0, fontsize = 12)

g.set_xticklabels(g.get_xticklabels(), rotation = 90, fontsize = 12)

ax.set_xlabel('Predicted labels'); ax.set_ylabel('True labels');

• • •

- The confusion matrix is calculated for the test dataset using the decision tree's predictions.
- This matrix is then visualized using a heatmap from the `seaborn` library. The `heatmap` visually presents how many samples of each class were correctly or incorrectly predicted.
 - The axis labels are set for better understanding, and the number of samples in

A2.61 Decision Trees WithOut Weight Balance - 30/05/2024, 14:57 / 3

	precision	recall	f1-score	support
0	0.67	1.00	0.80	2
1	1.00	0.86	0.92	7
accuracy			0.89	9
macro avg	0.83	0.93	0.86	9
eighted avg	0.93	0.89	0.90	9
	precision	recall	f1-score	support
0	1.00	1.00	1.00	4
1	1.00	1.00	1.00	16
accuracy			1.00	20
macro avg	1.00	1.00	1.00	20

This output represents the performance metrics of a decision tree model evaluated on two sets, commonly referred to as the test set and the training set. Let's break down the results:

Test Set Evaluation:

1. **Class 0**:

- **Precision**: 0.67 (or 67%) Out of all the instances predicted as class 0, 67% were truly class 0.
- **Recall**: 1.00 (or 100%) Out of all the actual instances of class 0, 100% were correctly predicted by the model.
 - **F1-score**: 0.80 The harmonic mean of precision and recall for class 0.
- **Support**: 2 The true number of instances belonging to class 0 in the test set.

2. **Class 1**:

- **Precision**: 1.00 (or 100%) Out of all the instances predicted as class 1, 100% were truly class 1.
- **Recall**: 0.86 (or 86%) Out of all the actual instances of class 1, 86% were correctly predicted by the model.
 - **F1-score**: 0.92 The harmonic mean of precision and recall for class 1.
- **Support**: 7 The true number of instances belonging to class 1 in the test set.

3. **Overall Metrics**:

- **Accuracy**: 0.89 (or 89%) Overall, 89% of all predictions made for the test set were correct.
- **Macro avg F1-score**: 0.86 The average F1-score of both classes, treating both classes equally.
- **Weighted avg F1-score**: 0.90 The average F1-score of both classes, weighted by the number of true instances for each label.

Training Set Evaluation:

For class 0 and class 1 in the training set, the precision, recall, and F1-score are all 1.00 (or 100%). This means that the model has made perfect predictions on the training set for both classes.

- **Support**:

- **Class 0**: 4 The true number of instances belonging to class 0 in the training set.
- **Class 1**: 16 The true number of instances belonging to class 1 in the training set.

- **Overall Metrics**:

- **Accuracy**: 1.00 (or 100%) Overall, all predictions made for the training set were correct.
 - **Macro avg and Weighted avg F1-score**: Both are 1.00.