MTH 451/EGR 551 - Homework 5

Due Monday March 29, 2021 at 5 p.m.

Please submit all computer codes you developed to solve these problems.

1. A simple continuation method for solving a parameter dependent system of nonlinear equations is as follow.

Input: $H(x,\lambda), x_0, \Lambda = [\lambda_1, \lambda_2, \dots, \lambda_N], \epsilon_t > 0$

Output: (x_k, λ_k) such that $H(x_k, \lambda_k) = 0, k = 1, 2, ..., N$

- 1: **for** k = 1, 2, ..., N **do**
- 2: $\lambda = \Lambda_k$
- 3: Set $x_k^0 = x_{k-1}$ as an initial estimate, solve $H(x,\lambda) = 0$ to get x_k using a damped Newton's method
- 4: end for
 - (a) Implement this algorithm in MATLAB/Octave using a damped Newton's method to solve the equations $H(x,\lambda)$ for some given continuation parameter λ . Your solver interface should have the following format.

 $X = solver_name(H, x0, Lambda, tol)$

Here, H is the function that computes $H(x,\lambda)$ given the vector x and the continuation parameter λ . The initial estimate is x0. The vector Lambda contains the values of continuation parameters where the problem will be solved. The convergence tolerance tol. The matrix X stores the solution of the equations for each element of Lambda. The i-th row of X has the solution to the equations for $\lambda = \text{Lambda}[i]$.

(b) Use the implementation above to find a solution to the following nonlinear equations.

$$f_1 = a_1 \cos \theta_1 + a_2 \cos \theta_2 + a_3 \cos \theta_3 - 4.5 = 0,$$

$$f_2 = a_1 \sin \theta_1 + a_2 \sin \theta_2 + a_3 \sin \theta_3 + 3.0 = 0,$$

where $a_1 = 1.5$, $a_2 = 5.0$ and $a_3 = 3.0$.

The equations f_1 and f_2 represent the x-axis and y-axis components of the loop closure equation for a four bar mechanism. Here, a_1 is the crank of the mechanism with the ground pivot at (0,0); a_2 is the connecting rod; and a_3 is the follower link with ground pivot at (4.5,-3).

Solve these equations for $\theta_1 = 0, 0.02\pi, 0.04\pi, \dots, 2\pi$. (That is, $\theta_1 = \texttt{linspace}(0, 2 * \texttt{pi}, 101);.) Assume that <math>\theta_2$ and θ_3 are unknowns, and θ_1 is the continuation parameter. Using the results obtained plot the points

$$x_p = a_1 \cos \theta_1 + 10.5 \cos \theta_2 + 0.5 \cos(\theta_2 - \pi/2),$$

 $y_p = a_1 \sin \theta_1 + 10.5 \sin \theta_2 + 0.5 \sin(\theta_2 - \pi/2).$

1

Also plot (θ_1, θ_2) and (θ_1, θ_3) .