Las Positas

Las Positas College 3000 Campus Hill Drive Livermore, CA 94551-7650 (925) 424-1000 (925) 443-0742 (Fax)

Course Outline for MATH 1

CALCULUS I

Effective: Fall 2016

I. CATALOG DESCRIPTION:

MATH 1 — CALCULUS I — 5.00 units

An introduction to single-variable differential and integral calculus including: functions, limits and continuity; techniques and applications of differentiation and integration; the Fundamental Theorem of Calculus; areas and volumes of solids of revolution.

5.00 Units Lecture

Prerequisite

MATH 20 - Pre-Calculus Mathematics with a minimum grade of C

Grading Methods:

Letter Grade

Discipline:

MIN **Lecture Hours:** 90.00 **Total Hours:** 90.00

II. NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: 1

III. PREREQUISITE AND/OR ADVISORY SKILLS:

Before entering the course a student should be able to:

A. MATH20

- 1. Find zeros of polynomials using the Rational Root Theorem and synthetic division;
- Graph algebraic functions and relations;
- Prepare detailed graphs of conic sections;
- Create mathematical models using algebraic or transcendental functions;
- Graph using translations, reflections and distortions;
- Identify and use the trigonometric functions in problem solving;
- Simplify trigonometric expressions and prove trigonometric identities;
- Develop and use exponential, logarithmic and trigonometric formulas;
- Graph exponential, logarithmic and trigonometric functions and their inverses;
- 10. Recognize the relationship between functions and their inverses graphically and algebraically
- 11. Solve and apply equations including rational, linear, polynomial, exponential, absolute value, radical, and logarithmic, and solve linear, nonlinear, and absolute value inequalities
- Solve trigonometric equations, triangles, and applications
- Graph the basic trigonometric functions and apply changes in period, phase and amplitude to generate new graphs
- Solve systems of equations and inequalities
- 15. Identify special triangles and their related angle and side measures

IV. MEASURABLE OBJECTIVES:

Upon completion of this course, the student should be able to:

- A. Evaluate the limit of a function at a real number;
- B. Determine whether a function is continuous at a point or an interval;
- Find and interpret average and instantaneous rates of change;
- State the definition of the derivative as the limit of a difference quotient and use the definition to find the derivative of a function;
- Interpret the derivative as the slope of a tangent line and find the equation of a tangent line to a function;
- Explain the definitions of velocity and acceleration and use the derivative to find the velocity and acceleration of an object in motion, given the position function for the object; State and apply the rules for differentiating algebraic and trigonometric functions. Utilize the chain rule when differentiating functions;

- Work with differentials and their applications;
- Use calculus-based methods to analyze functional behavior;
- K. Sketch the graphs of functions using the methods of calculus;
- Find all maxima, minima and points of inflection of a function;
- M. Use implicit differentiation;

- N. Evaluate the limit of a function at infinity;
- Apply differentiation to solve related rate and optimization problems;
- Apply the Mean Value Theorem;
- Utilize Newton's Method;
- R. Evaluate a definite integral as the limit of a Riemann sum; S. Apply the Fundamental Theorem of Integral Calculus;
- Evaluate integrals by the method of substitution;
- U. Find areas between curves and volumes of solids of revolution;
- V. Use the precise definition of a limit to prove a limit exists.

V. CONTENT:

- A. Limits
 - Left-hand limits and right-hand limits
 - 2. Computing limits
 a. Numerically
 b. Graphically
 - c. Algebraically
 3. Limits of trigonometric functions
 - 4. Limits at infinity
 - 5. Precise definition of a limit
- B. Average and instantaneous rates of change C. Continuity
- - Definition of continuity
 Continuity at a real number
 Continuity on an interval
 Discontinuous functions
 a. Types of discontinuities
 b. Removable discontinuities
- D. Intermediate Value Theorem
- Secant and tangent lines
- F. Average and instantaneous rates of change; velocity and acceleration G. Definition of the derivative as the limit of a difference quotient
- H. Interpretation of the derivative
 - 1. Slope of a tangent line
 - Rate of change
 - 3. Derivative as a function
- I. Differentiation formulas and techniques
 - 1. Differentiation of constant-valued function
 - Power rule
 - 3. Product rule
 - Quotient rule
 - Trigonometric functions
 - Chain rule
 - Implicit derivative
 - 8. Higher-order derivatives
- J. Applications of differentiation
 - 1. Rate of change
 - Related rates
 - 3. Optimization
- K. Functional analysis
 - 1. Mean Value Theorem
 - Critical numbers
- Maximum and minimum values (absolute and local)
 Curve sketching: algebraic, rational and trigonometric functions
 First Derivative Test

 - Second Derivative Test
 Test for Concavity and Points of Inflection
 - Extrema
 - 5. Asymptotic behavior

 - a. Limits at infinityb. Horizontal and vertical asymptotes
- M. Differentials and their applications N. Newton's Method
- O. Antiderivatives
- P. Definite integral
 - 1. Interpretation as area under a curve
 - 2. Defined as limit of a Riemann Sum
 - 3. Evaluation of a definite integral as the limit of a Riemann Sum
- Q. Indefinite integrals
- R. Properties of definite and indefinite integrals
- S. Fundamental Theorem of Calculus
- T. Integration
 - As antidifferentiation
 - 2. Method of substitution
- U. Applications of integration
 - 1. Area under a curve
 - Area between curves
 - Volume of a solid of revolution
- V. Inverse functions
 - 1. Differentiation of inverse functions

VI. METHODS OF INSTRUCTION:

- A. Discussion -
- B. Lecture -
- Web- or CD-Rom-based tutorials
- Student presentations
- E. Collaborative learning

A. Homework

1. Homework should be assigned from the text and should include a sufficient number and variety of problems to develop both skill and conceptual understanding. A typical assignment should that an average student 1 to 2 hours for each hour in class.

- Collaborative learning, done in small groups of 2-4 students, can be used to introduce new concepts, build skills, or teach problem solving. Students may be asked to present their results on the board.
 Example collaborative learning assignment: Have each group solve a curve-sketching problem and then present their work
- to the rest of the class, explaining the process they used and their results.

VIII. EVALUATION:

A. Methods

- Exams/Tests
 Quizzes
 Home Work

- 4. Other:
 - a. Collaborative Group Activities

B. Frequency

- Exams/Tests
 a. Recommend minimum of four exams
 b. Comprehensive final examination
- 2. Quizzes
 - a. Announced or unannounced, in-class or take home at the discretion of the instructor
- 3. Homework
 - a. Assigned for each section covered
- Collaborative Group Activities
 a. At the discretion of the instructor

IX. TYPICAL TEXTS:

- Larson, R., & Edwards, B. (2014). Calculus (10th ed.). Boston, MA: Cengage Learning.
 Briggs, W., Cochran, L., & Gillett, B. (2015). Calculus (2nd ed.). Boston, MA: Pearson.
 Rogawski, J., & Adams, C. (2015). Calculus (3rd ed.). New York, NY: W.H Freeman.

X. OTHER MATERIALS REQUIRED OF STUDENTS:

A. Graphing calculator may be required