

Extended Human Upper Body Detection

Bachelor-Thesis Larissa Triess

08/13/2015

Contents

2

Introduction

Motivation and Aim

Image Databases

Train a Detector

Evaluation Metric

Evaluation

Starting Conditions

RGB vs. Gray-Scale Images

Single Parameter Evaluation

Combination of Rotation Plane Detectors

Summary

Conclusion & Outlook

INTRODUCTION

Motivation and Aim

- Human detection for surveillance and autonomous driving systems
- Reliable detection of humans in all postures
- Upper body detection more robust than whole body detection

Image Databases

Graz-02

John Doe

MIT dataset

Erika Muster

Train a Detector

Matlab Cascade Object Detector

Pretrained classification models
e.g. face, nose, eye, upper body
Custom classifier made by training function

Evaluation Metric

Calculation of a match: PASCAL measure

$$a_0 = \frac{area(BB_{dt} \cap BB_{gt})}{area(BB_{dt} \cup BB_{gt})} > 0.5$$

Evaluation of a classifier with precision and recall:

$$precision = \frac{TP}{TP + FP} \qquad recall = \frac{TP}{TP + FN}$$

Precision: fraction of retrieved instances that are relevant

Recall: fraction of relevant instances that are retrieved

EVALUATION

Starting Conditions

Evaluation of pretrained upper body detector:

- Less than 10% of side view persons are detected (recall)
- Precision for side views under 50%
- Detection of front view persons insufficient as well

Starting Conditions

Evaluation of pretrained upper body detector:

- Less than 10% of side view persons are detected (recall)
- Precision for side views under 50%
- Detection of front view persons insufficient as well

RGB vs. Gray-Scale Images

Detectors with default parameters

With RGB images reach higher precision better to be sure an object is an upper body

With gray-scale images reach higher recall better to detect as many upper bodies as possible

Single Parameters of Cascade Detector

Training Parameters

Parameter Name	Values
ObjectTrainingSize	Auto
NegativeSamplesFactor	1, 2 , 3, 4
NumCascadeStages	1, 2, 5, 10, 15, 20 , 25, 30, 35, 40, 45, 50
FalseAlarmRate	0.1, 0.3, 0.5 , 0.7, 0.9
TruePositiveRate	0.99, 0.995 , 0.999, 0.9999
FeatureType	Histograms of Oriented Gradients (HOG), Local Binary Pattern (LBP), Haar-like features

Single Parameter Evaluation

Single Parameter Evaluation

Single Parameter Evaluation

Combination of best Single Parameters

Combination for Best Precision

Combination for Best Recall

Combination of best Single Parameters

Combination for Best Precision

Combination for Best Recall

Detectors are not suitable for reliable detection of humans Complex parameter combinations

Combination of Rotation Plane Detectors

Example Image:

Combination of Rotation Plane Detectors

Detectors running on all evaluation images:

Combination of Rotation Plane Detectors

Detectors running on all evaluation images:

Combination of Detectors

Detected bounding boxes on evaluation images

Combination of Detectors

Detected bounding boxes on evaluation images

SUMMARY

Summary

Default Cascade Detector
70% recall improvement for side view

RGB vs. Gray-Scale
with RGB images reach higher precision
with gray-scale images reach higher recall

Single Parameters
high correlation of parameters

Combination of Rotation Plane Detectors combination results in higher overall recall

Conclusion and Outlook

- Additional detector parameters
- Dependence on field of application and images
- Differences in image type

- Next step: evaluation as a function of two parameters, than three, etcetera
- Influence of amount of rotation plane detectors
- Additional detectors for different angles?

Human Upper Body, Side View

Thanks for your attention...

Questions?