DNA Replication Basics

1.	True or False: The Hidden Message Problem is a well-defined computational problem.
	False
	True
2.	Compute
	Count(CGCGATACGTTACATACATGATAGACCGCGCGCGCGATCATATCGCGATTATC, CGCG).
	5
3.	What is the most frequent 3-mer of
	TAAACGTGAGAAACGTGCTGATTACACTTGTTCGTGTGGTAT?
	GTG

4. What is the reverse complement of TTGTGTC?

GACACAA

5. Solve the Pattern Matching Problem with Text = GACGATATACGACGATA and Pattern = ATA to find all starting positions of Pattern in Text. Return the starting positions in increasing order (make sure to use 0-based indexing!)

4614

DNA Replication via GC Skew

1.	The position of the E. coli genome at which the skew attains a minimum value is most
	likely near which of the following?

the replication terminus

the origin of replication

the middle of the reverse strand

the middle of the forward strand

2. Compute the Hamming distance between CTACAGCAATACGATCATATGCGGATCCGCAGTGGCCGGTAGACACACGT and CTACCCCGCTGCTCAATGACCGGGACTAAAGAGGCGAAGATTATGGTGTG.

36

3. Identify the value of i for which $Skew_i$ (GATACACTTCCCGAGTAGGTACTG) attains a minimum value.

12

4. Compute *Count*₂(CATGCCATTCGCATTGTCCCAGTGA, CCC).

15

5. The *d*-neighborhood of the *k*-mer *Pattern* is the collection of all *k*-mers that are at most Hamming distance *d* from *Pattern*. How many 5-mers are in the 2-neighborhood of *Pattern* = TGCAT? Note that the *d*-neighborhood of *Pattern* includes *Pattern*.

106

Regulatory Motif Search Basics and Pseudocounts

1.	Which type of algorithm enumerates every possible candidate solution to a problem and then checks each one individually?
	Greedy algorithm
	Machine learning algorithm
	Combinatorial algorithm
	Randomized algorithm
	Dynamic programming algorithm
	Brute force search
2.	True or false: a motif of lowest score with respect to a collection of strings does not need to appear as a substring of one of the strings.
	True
	False
3.	Order the following probability distributions from lowest to highest entropy:
	A: (0.5, 0, 0, 0.5)
	B: (0.25, 0.25, 0.25, 0.25)
	C: (0, 0, 0, 1)
	D: (0.25, 0, 0.5, 0.25)
	B, D, A, C
	B, C, A, D
	C, D, B, A
	C, A, D, B

D, B, C, A

4. Consider the following profile matrix:

A: 0.4 0.3 0.0 0.1 0.0 0.9

C: 0.2 0.3 0.0 0.4 0.0 0.1

G: 0.1 0.3 1.0 0.1 0.5 0.0

T: 0.3 0.1 0.0 0.4 0.5 0.0

Which of the following strings is a consensus string for this profile matrix? (Select all that apply.)

AAGAGA TCGCGA AGGTCA AAGCTA ACGCGA ACGTTA

5. Consider the following motif matrix:

CTCGATGAGTAGGAAAGTAGTTTCACTGGGCGAACCACCCCGGCGCTAATCCTAGTGCCC
GCAATCCTACCCGAGGCCACATATCAGTAGGAACTAGAACCACCACGGGTGGCTAGTTTC
GGTGTTGAACCACGGGGTTAGTTTCATCTATTGTAGGAATCGGCTTCAAATCCTACACAG
Which of the following 7-mers is a median string for this motif matrix? (Select all that apply.)

AATCCTA TCTGAAG AACGCTG GTCAGCG GTAGGAA GATGAGT

6. Consider the following profile matrix *Profile*:

A: 0.4 0.3 0.0 0.1 0.0 0.9

C: 0.2 0.3 0.0 0.4 0.0 0.1

G: 0.1 0.3 1.0 0.1 0.5 0.0

T: 0.3 0.1 0.0 0.4 0.5 0.0

Compute Pr(GAGCTA|*Profile*). (Express your answer as a decimal and do not round your answer.)

0.0054

Regulator Motif Search via Randomization

1.	True or False: RandomizedMotifSearch performs well when given a uniform profile matrix.
	True
	False
2.	True or False: RandomizedMotifSearch and GibbsSampler are usually run on many choices of initial k -mers.
	True
	False
3.	True or False: it is not possible for RandomizedMotifSearch to move from a collection of motifs with lower score to a collection of motifs with higher score.
	False
	True
4.	Which of the following motif-finding algorithms is guaranteed to find an optimum solution? In other words, which of the following are <i>not</i> heuristics? (Select all that apply.)
	GibbsSampler
	BruteForceMotifSearch
	GreedyMotifSearch (without pseudocounts)
	MedianString

5. Assume we are given the following strings *Dna*: TGACGTTC TAAGAGTT GGACGAAA CTGTTCGC.

Then, assume that **RandomizedMotifSearch** begins by randomly choosing the following 3-mers *Motifs* of *Dna*: TGA GTT GAA TGT

What are the 3-mers after one iteration of **RandomizedMotifSearch**? In other words, what are the 3-mers *Motifs*(*Profile*(*Motifs*), *Dna*)? Please enter your answer as four space-separated strings.

TGA TAA GGA TGT