"Analisis Sederhana Data Longitudinal"

Anggota Kelompok 3:

- 1. Elviana Saputri (11190940000041)
- 2. Rosa Amalia Nursinta (11190940000043)
- 3. Meissy Astariva Putri (1119094000063)

Uji t Dependent

```
> Maju <- subset(dataT21, Kategori == 'Maju')</pre>
> Maju01 <- subset(Maju, Jahun == 2004 | Jahun == 2018)
> t.test(KadarGula ~ Tahun, data = Maju01, paired = TRUE)
      Paired t-test
data: KadarGula by Tahun
t = -0.48637, df = 2, p-value = 0.6748
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -38.07328 30.33995
sample estimates:
mean of the differences
              -3.866667
```

```
Berkembang <- subset(dataT21, Kategori == 'Berkembang')</pre>
> Berkembang01 <- subset(Berkembang, Tahun == 2004 | Tahun == 2018)
> View(Berkembang01)
> t.test(KadarGula ~ Tahun, data = Berkembang01, paired = TRUE)
      Paired t-test
data: KadarGula by Tahun
t = -1.6071, df = 10, p-value = 0.1391
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -19.156581 3.102036
sample estimates:
mean of the differences
              -8.027273
```


> Uji t Independent

```
> t_test(KadarGula ~ Tahun, data = Maju01 , paired = FALSE)
      Welch Two Sample t-test
data: KadarGula by Tahun
t = -0.27617, df = 3.7092, p-value = 0.7971
alternative hypothesis: true difference in means between group 2004 and
group 2018 is not equal to 0
95 percent confidence interval:
 -43.97104 36.23771
sample estimates:
mean in group 2004 mean in group 2018
          86.76667
                             90.63333
```

```
> t.test(KadarGula ~ Tahun, data = Berkembang01 , paired = FALSE)
      Welch Two Sample t-test
data: KadarGula by Tahun
t = -0.67655, df = 19.303, p-value = 0.5067
alternative hypothesis: true difference in means between group 2004 and group 2018 is
not equal to 0
95 percent confidence interval:
-32.83452 16.77998
sample estimates:
mean in group 2004 mean in group 2018
                             72.11818
          64,89891
```

Uji t Dependent

```
> Nasi <- subset(dataT21, MakananPokok == 'Nasi')</pre>
> Nasi01 <- subset(Nasi, Tahun == 2004 | Tahun == 2018)
> View(Nasi01)
> t.test(KadarGula ~ Tahun, data = Nasi01, paired = TRUE)
      Paired t-test
data: KadarGula by Tahun
t = -1.1974, df = 11, p-value = 0.2563
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -16.177489 4.777489
sample estimates:
mean of the differences
                   -5.7
```

```
> Roti <- subset(dataT21, MakananPokok == 'Roti')
> Roti01 <- <u>subset(Roti, Tahun</u> == 2004 | <u>Tahun</u> == 2018)
> View(Roti01)
> t.test(KadarGula ~ Tahun, data = Roti01, paired = TRUE)
      Paired t-test
data: KadarGula by Tahun
t = -315, df = 1, p-value = 0.002021
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -16.38531 -15.11469
sample estimates:
mean of the differences
                 -15.75
```


> Uji t Independent

```
> t.test(KadarGula ~ Tahun, data = Nasi01 , paired = FALSE)
      Welch Two Sample t-test
data: KadarGula by Tahun
t = -0.48646, df = 21.601, p-value = 0.6315
alternative hypothesis: true difference in means between group 2004 and group 2018 is
not equal to \theta
95 percent confidence interval:
 -30.02619 18.62619
sample estimates:
mean in group 2004 mean in group 2018
          67.99167
                             73,69167
```

```
> t.test(KadarGula ~ Tahun, data = Roti01 , paired = FALSE)
      Welch Two Sample t-test
data: KadarGula by Tahun
t = -49.195, df = 1.9081, p-value = 0.0005572
alternative hypothesis: true difference in means between group 2004 and group 2018 is
not equal to 0
95 percent confidence interval:
 -17.19313 -14.30687
sample estimates:
mean in group 2004 mean in group 2018
             74.70
                                90.45
```

Rata-Rata Respon Kovariat Makanan Pokok

- Tingkat kadar gula darah pada negara dengan makanan pokok nasi lebih rendah dibanding negara dengan makanan pokok roti.
- Perubahan tingkat kadar gula darah di awal pengamatan hingga akhir pengamatan mengalami kenaikan baik pada negara maju maupun negara berkembang.

Rata-Rata Respon Kovariat Kategori Negara

- Tingkat kadar gula darah pada negara berkembang jauh lebih rendah dibanding negara-negara maju.
- Perubahan tingkat kadar gula darah di awal pengamatan hingga akhir pengamatan mengalami kenaikan baik pada negara maju maupun negara berkembang.

Regresi Linear untuk respon yang hanya diambil diawal studi

```
lm(formula = KadarGula ~ Kategori + MakananPokok, data = dataT23)
Residuals:
   Min
            10 Median
-42.275 -17.269 4.525 14.875 34.525
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                            7.649
                                   8.390 4.14e-06 ***
(Intercept) 64.175
KategoriMaju 22.900
                        16.758
                                   1.367
                                            0.199
MakananPokokRoti -0.925
                        19.651 -0.047
                                            0.963
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 24.67 on 11 degrees of freedom
Multiple R-squared: 0.1535, Adjusted R-squared: -0.0004532
F-statistic: 0.9971 on 2 and 11 DF, p-value: 0.4
```

Call:

Nilai koefisen

 $\beta_0 = 64.175$ adalah rata-rata kadar gula untuk kategori negara berkembang dan makanan pokok roti.

 β_1 = 22.900 adalah kenaikan rata-rata kadar gula untuk kategori negara maju dibandingkan negara berkembang dengan makanan pokok yang sama

 $\beta_2 = -0.925$ adalah penurunan ratarata kadar gula pada negara dengan makanan pokok roti dibandingkan makanan pokok nasi dengan kategori negara yang sama.

Regresi Linear untuk respon yang hanya diambil di awal studi

Call:

lm(formula = KadarGula ~ Kategori + MakananPokok, data = dataT23)

Residuals:

Min 1Q Median 3Q Max -42.275 -17.269 4.525 14.875 34.525

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 64.175 7.649 8.390 4.14e-06 ***
KategoriMaju 22.900 16.758 1.367 0.199
MakananPokokRoti -0.925 19.651 -0.047 0.963

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 24.67 on 11 degrees of freedom

Multiple R-squared: 0.1535, Adjusted R-squared: -0.0004532

F-statistic: 0.9971 on 2 and 11 DF, p-value: 0.4

Signifikansi variabel

- Multiple R-Squared = 0.1535, artinya sebesar 15.35% model mampu menjelaskan keragaman respon kadar gula, dan sekitar 84.65% keragaman data yang tidak mampu dijelaskan oleh variabel penjelas dan terletak komponen error.
- Uji-F Simultan
 - Hipotesis Uji:

 $H_0: \beta_i = 0$ (model tidak layak), i = 0,1,2

H₀: $\exists \beta_i = 0 \text{ (model layak)}, i = 0,1,2$

- $\alpha = 5\% = 0.05$
- Statistik Uji :

$$F_{2,11,\alpha=0.05} = 3.98, F_{hitung} = 0.9971, Pvalue = 0.4$$

Daerah Kritis:

Ho ditolak jika $F_{hitung} > F_{tabel}$ atau Pvalue < 0.05

• Keputusan:

 $F_{hitung} < F_{tabel}$ atau Pvalue > 0.05, maka Ho diterima

Kesimpulan :

Berdasarkan Uji-F memperlihatkan bahwa tidak cukup bukti untuk variabel Kategori Negara dan Makanan Pokok secara bersama-sama mempengaruhi Tingkat Kadar Gula.

Apakah prosedur kedua dan ketiga sudah tepat untuk data longitudinal?

Prosedur regresi linear pada data longitudinal ini sudah tepat, karena data yang semula merupakan data cross-sectional dan time-series, kami ubah terlebih dahulu dengan mengambil nilai respon pada satu tahun saja, sehingga data ini menjadi data cross-sectional yang dapat dianalisis menggunakan analisis regresi linear.

