Teorie množin

Tomáš Turek

15. října 2023

Poznámka: Následující text jsou moje osobní zápisky z Teorie množin z roku 2021-2022. V textu se můžou vyskytovat jak gramatické chyby, tak i technicé chyby (jako ne zcela správný důkaz apod.), tím pádem berte text jako doplňek přednášky.

Obsah

1	Úvo	od					
	1.1	Jazyk teorie množin					
		1.1.1 Symboly					
		1.1.2 Formule					
		1.1.3 Rozšíření jazyka (zkratky)					
	1.2	Axiomy logiky ("jak se chovají logické symboly")					
2	Axiomy teorie množin						
	2.1	1. Axiom existence množin					
	2.2	2.Axiom extensionality					
	2.3	3. Schéma axiomu vydělení					
		2.3.1 Značení:					
	2.4	4. Axiom dvojice					
	2.5	5. Axiom sumy (axiom of the union)					
	2.6	6. Axiom potence (power set, potenční množina)					
	2.7	7. Schéma axiomu nahrazení					
	2.8	8.Axiom fundovanosti (foundation, regularity)					
3	Třío	$\mathrm{d}\mathbf{y}$					
	3.1	Rozšíření jazyka:					
	3.2	Atomické proměnné					
	3.3	Eliminace třídových termů					
	3.4	Třídové operace					
4	Relace 12						
	4.1	Značení:					
	4.2	Uspořádání					
		4.2.1 Značení:					
_	a						
5		vnávání mohutností 17					
	5.1	Konečné množiny					
6	Při	rozená čísla 23					
	6.1	9. Axiom nekonečna ("Existuje induktivní množina.")					
	6.2	Spočetné množiny					
	6.3	Axiom výběru					
		6.3.1 Princip výběru					
		6.3.2 10.Axiom výběru (AC - axiom of choice)					
	6.4	Princip maximality (PM)					
		6.4.1 Princip maximality II (PMS)					
	6.5	Princip trichotomie \leq (PT)					
	6.6	Princip dobrého uspořádání (VVO)					

7	Ordinální čísla				
	7.1	"Typy dobře uspořádaných množin."	31		
		7.1.1 Značení:	32		
	7.2	Princip transfinitní indukce	33		

1. Úvod

1.1 Jazyk teorie množin

Jazyk teorie $x \in Y$. Také se bude používat *metajazyk* jako například: "definovat", "formule" a "třída".

1.1.1 Symboly

- Proměnné pro množiny X,Y,Z,x_1,x_2,\ldots
- Binární predikátový (relační) symbol = a taky ∈ (náležení).
- Dále také logické spojky: \neg , \wedge , \vee , \rightarrow , \leftarrow (\Leftarrow , \Rightarrow).
- Také kvantifikátory: \forall a \exists .
- Samozřejmě i závorky (), [].

1.1.2 Formule

Atomické formule x = y a $x \in y$.

- 1. Jsou-li φ , ψ formule, pak $\neg \varphi$, $\varphi \lor \psi$, $\varphi \land \psi$, $\varphi \to \psi$, $\varphi \leftrightarrow \psi$ jsou také formule (popřípadě i uzávorkované).
- 2. Je-li φ formule, pak $(\forall x)\varphi$ a $(\exists x)\varphi$ jsou také formule.

Každá formule pak lze dostat z atomických formulí konečně mnoha pravidly 1 a 2.

1.1.3 Rozšíření jazyka (zkratky)

- $x \neq y$ je pro $\neg(x = y)$.
- $x \notin y$ je pro $\neg (x \in y)$.
- $x \subseteq y$ je pro "x je podmnožina y" $(\forall u)(u \in x \to u \in y)$.
- $x \subset y$ je pro "x je vlastní podmnožina" $(x \subseteq y \land x \neq y)$.

Cvičeni: Napište formulí "množina x je prázdná".

1.2 Axiomy logiky ("jak se chovají logické symboly")

Axiomy výrokové logiky např.: schéma axiomů: Jsou-li φ, ψ formule, pak

$$\varphi \to (\psi \to \varphi)$$

je **axiom**.

Axiomy predikátové logiky např.: Schéma axiomů: Jsou-li φ, ψ formule, x proměnná, která není volná ve $\varphi,$ pak

$$(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$$

je axiom.

Axiomy pro rovnost:

- x je proměnná, pak x = x je axiom.
- x,y,z jsou proměnné, R je relační symbol, pak

$$(x = y) \to (\forall z)(R(x,z) \leftrightarrow R(y,z))$$

$$(x = y) \to (\forall z) (x \in z \leftrightarrow y \in z)$$

$$(x = y) \to (\forall z)(z \in x \leftrightarrow z \in y)$$

Odvozovací pravidla:

- $Z \varphi, \varphi \to \psi$ odvoď ψ .
- $Z \varphi'$ odvoď $(\forall x)\varphi$.

2. Axiomy teorie množin

"Jak se chová \in ." "Jaké množiny existují."

Zermelo-Fraenkelova teorie, zkráceně **ZF** má celkem 9 axiomů (resp. 7 axiomů a 2 schémata). Pak je ještě 10.axiom výběru (**AC**) to pak je **ZF+AC=ZFC**.

2.1 1. Axiom existence množin

"Existuje množina."

$$(\forall x)(x=x)$$

2.2 2.Axiom extensionality

Udává souvislost mezi ∈ a =. "Množina je určena svými prvky."

$$(\forall z)(z \in x \leftrightarrow z \in y) \to x = y$$

Cvičeni: Dokažte $((x \subseteq y) \land (y \subseteq z)) \rightarrow x \subset z$.

2.3 3. Schéma axiomu vydělení

Je-li $\varphi(x)$ formule, která neobsahuje volnou proměnnou z. Pak:

$$(\forall a)(\forall x)(\exists z)(x \in z \leftrightarrow (x \in a \land \varphi(x))$$

je axiom.

"Z množiny a vybereme prvky s vlastností $\varphi(x)$ a ty vytvoří novou množinu z." Díky axiomu extenzionality je taková z právě jedna.

2.3.1 Značení:

- $\{x; x \in a \land \varphi(x)\}$ je zkrácení.
- $\{x \in a; \varphi(x)\}$ "Množina všech prvků a splňující $\varphi(x)$."

Definice 1. • Průnik: $a \cap b$ je $\{x, x \in a \land x \in b\}$.

• Rozdíl: $a \setminus b$ je $\{x, x \in a \land x \notin b\}$

Cvičení:

- Napište formulí "množina a je jednoprvková".
- Dokažte, že množina všech množin neexistuje.

2.4 4.Axiom dvojice

$$(\forall a)(\forall b)(\exists z)(\forall x)(x \in z \leftrightarrow (x = a \lor x = b))$$

"(Ne)každým dvěma množinám a,b existuje množina z, která má za prvky právě a,b."

Definice 2. • $\{a,b\}$ je **neuspořádaná dvojice** množin a,b, jakožto dvouprvková množina s prvky a,b (pokud $a \neq b$).

• {a} znamená {a,a}, nebo-li jednoprvková množina s prvkem a.

 $P\check{r}iklad$. Můžeme vytvořit $\{\emptyset\}, \{\{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \dots$

Cvičení: Dokažte $(\forall z)(x \in z \leftrightarrow y \in z) \rightarrow x = y$.

Definice 3. (a,b) je **uspořádaná dvojice** množin a,b. To je pak množina $\{\{a\},\{a,b\}\}$ Poznámka. Pro a = b je $(a,b) = \{\{a\},\{a,a\}\} = \{\{a\},\{a\}\} = \{\{a\}\}\}$.

Lemma 1.

$$(x,y) = (u,v) \leftrightarrow (x = u \land y = v)$$

 $D\mathring{u}kaz$. • \leftarrow

- $\{x\} = \{u\}$ plyne z axiomu extensionality.
- $\{x,y\} = \{u,v\}; \{\{x\},\{x,y\}\} = \{\{u\},\{u,v\}\}$
- ullet \rightarrow
- $\{\{x\},\{x,y\}\}=\{\{u\},\{u,v\}\}$ to pak znamená, že $\{x\}=\{u\}\vee\{x\}=\{u,v\}$ kde v obou případech x=u.

- $\{u,v\} = \{x\} \lor \{u,v\} = \{x,y\} \text{ tedy } v = x \lor v = y$
- Pokud v = x pak z x = u plyne, že v = u = x.

Definice 4. Jsou-li $a_1, a_2, a_3, \ldots, a_n$ množiny, definujeme **uspořádanou** n-**tici** $(a_1, a_2, a_3, \ldots, a_n)$. Následně (a_1) znamená a_1 a je-li definována (a_1, \ldots, a_k) pak $(a_1, \ldots, a_k, a_{k+1})$ je $((a_1, \ldots, a_k), a_{k+1})$.

Lemma 2.

$$(a_1, a_2, a_3, \dots, a_n) = (b_1, b_2, b_3, \dots, b_n) \leftrightarrow (a_1 = b_1 \land \dots \land a_n = b_n)$$

 $D\mathring{u}kaz$. Jako cvičení.

2.5 5.Axiom sumy (axiom of the union)

$$(\forall a)(\exists z)(\forall x)(x \in z \leftrightarrow (\exists y)(x \in y \land y \in a))$$

Definice 5. $\bigcup a \ je \ suma \ množiny \ a. \ Tzn \ ``\{x, (\exists y)(x \in y \land y \in a)\} \ ".$

Pozorování: Pokud $a = \{b,c\}$, pak $\bigcup \{b,c\} = \{x, x \in b \lor x \in c\}$.

Definice 6. $b \cup c$ je $\bigcup \{b,c\}$ sjednocení množin b,c.

Definice 7. Jsou-li $a_1, \ldots a_n$ množiny, definujeme **neuspořádanou** n**-tici** $\{a_1, \ldots a_n\}$ (n-prvkovou množinu, pokud každé a_i je různé) rekurzivně. Je-li definovaná $\{a_1, \ldots a_k\}$ pro $k \geq 2$, pak $\{a_1, \ldots a_k, a_{k+1}\}$ je $\{a_1, \ldots a_k\} \cup \{a_{k+1}\}$.

2.6 6. Axiom potence (power set, potenční množina)

$$(\forall a)(\exists z)(\forall x)(x \in z \leftrightarrow x \subseteq a)$$

"Existuje množina z jejichž prvky jsou právě podmnožiny množiny a."

Definice 8. $\mathcal{P}(a)$ je " $\{x; x \subseteq a\}$ " potenční množina $[2^a]$ množiny a (potence a).

 $P\check{r}iklad. \ \mathcal{P}(\emptyset) = \{\emptyset\} \ a \ \mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$

Cvičení: Co je $\mathcal{P}(\bigcup a)$ a jestli $\bigcup (\mathcal{P}(a)) = a$?

2.7 7.Schéma axiomu nahrazení

"Obraz množiny funkcí je množina." Je-li $\psi(u,v)$ formule, která neobsahuje volné proměnné w,z, pak

 $(\forall u)(\forall v)(\forall w)((\psi(u,v) \land \psi(u,w)) \to v = w) \to (\forall a)(\forall z)(\forall v)(v \in z \leftrightarrow (\exists u)(u \in a \land \psi(u,v)))$ je axiom.

- "Je-li ψ funkce (částečná) určená formulí: $\psi(u,v)$ je f(u)=v, pak obrazem a touto funkcí je opět množina (z)."
- Také implikuje schéma vydělení: $\varphi(u) \wedge u = v$.
- Poznámka: transfinitní rekurze, konstrukce $\omega + \omega$, Zornovo lemma, věta o dobrém uspořádání.

2.8 8.Axiom fundovanosti (foundation, regularity)

$$(\forall a)(a \neq \emptyset \rightarrow (\exists x)(x \in a \land x \cap a = \emptyset))$$

"Každá množina má prvek, který je s ní disjunktní."

Cvičení: Ukažte, že Axiom fundovanosti zakazuje existenci konečných cyklů relace \in . Tedy množiny y takové, že $y \in y$, ale i y_1, y_2, \ldots, y_n takové, že $y_1 \in y_2 \in \cdots \in y_n \in y_1$.

Díky axiomu fundovanosti lze všechny množiny vygenerovat z prázdné množiny operacemi \mathcal{P}, \bigcup .

3. Třídy

Definice 9. $\varphi(x)$ je formule a $\{x; \varphi(x)\}$ označuje "seskupení" množin, pro které platí $\varphi(x)$.

- Pokud $\varphi(x)$ je tvaru $x \in a \land \psi(x)$, pak je to množina (axiom vydělení).
- $\{x; \varphi(x)\}\$ je třídový term, soubor které označuje je **třída** určená formulí $\varphi(x)$.
- "Definovatelný soubor množin."
- Je-li y množina, pak $y = \{x; x \in y \land x = x\}$ je třída.
- Tedy každá množina je i třída.
- Vlastní třída je třída, která není množinou.

3.1 Rozšíření jazyka:

- Ve formulích na místě volných proměnných připustíme třídové termy.
- Navíc proměnné pro třídy jsou X,Y,\ldots (nebude možné je kvantifikovat).

3.2 Atomické proměnné

- $x = y, x \in y, x = X, x \in X, X \in x, X = Y, X \in Y$
- Plus ještě výrazy vzniklé nahrazením $\{x, \varphi(x)\}$ za x a $\{y, \varphi(y)\}$ za y.
- Ostatní formule rozšířeného jazyka vznikají pomocí logických spojek $(\neg, \lor, \land, \leftarrow, \rightarrow, \leftrightarrow)$ a kvantifikací množinových proměnných $((\forall x) \dots (\exists y) \dots)$.
- Formule s třídovými termy bez třídových proměnných označován jako "zkrácený zápis" formule základního jazyka.
- Formule s třídovými proměnnými označované jako "schéma formulí" základního (popř. rozšířeného) jazyka.

3.3 Eliminace třídových termů

x,y,z,X,Y jsou proměnné a $\varphi(x),\psi(x)$ formule základního jazyka. X zastupuje $\{x,\varphi(x)\}$ a Y zastupuje $\{y,\varphi(y)\}$.

- 1. $z \in X$ zastupuje $z \in \{x, \varphi(x)\}.$
 - "z je prvkem třídy všech množin, splňující $\varphi(x)$."
 - Nahradíme: $\varphi(z)$.
- 2. z = X zastupuje $z = \{x, \varphi(x)\}.$

- "Množina z se rovná třídě X."
- Nahradíme: $(\forall u)(u \in z \leftrightarrow \varphi(u))$.
- 3. $X \in Y$ zastupuje $\{x, \varphi(x)\} \in \{y, \psi(y)\}.$
 - Nahradíme: $(\exists u)(\forall v)((v \in u \leftrightarrow \varphi(v)) \land \psi(u)).$
- 4. $X \in y$ zastupuje $\{x, \varphi(x)\} \in y$.
 - Nahradíme: $(\exists u)(\forall v)((v \in u \leftrightarrow \varphi(v)) \land u \in y)$.
- 5. X = Y zastupuje $\{x, \varphi(x)\} = \{y, \psi(y)\}.$
 - Nahradíme: $(\forall u)(\varphi(u) \leftrightarrow \psi(v))$

Meta pozorování: Formule rozšířeného jazyka určují stejné třídy jako formule základního jazyka. Příklad $\{x; x \notin \{z, \psi(z)\}\} \rightarrow \{x; \neg \psi(x)\}.$

3.4 Třídové operace

Definice 10. • $A \cap B$ je $\{x, x \in A \land x \in B\}$.

- $A \cup B$ je $\{x, x \in A \lor x \in B\}$.
- $A \setminus B$ je $\{x, x \in A \land x \notin B\}$.
- Pokud $A = \{x, \varphi(x)\}\ a\ B = \{y, \psi(y)\}, \ pak\ A \cap B = \{z, \varphi(z) \land \psi(z)\}.$

Definice 11. $\{x; x = x\}$ je **univerzální třída**, která se značí jako V.

- A je třída, (absolutní) doplněk A je $V \setminus A$, který se značí jako -A.
- $A \subseteq B, A \subset B$ značí, že A je podtřídou B (popř. vlastní podtřídou).

Cvičení: Rozepište v základním jazyce teorie množin.

- 1. $\bigcup A \text{ nebo-li suma t \check{r}idy } A \text{ je } \{x, (\exists a)(a \in A \land x = a)\}$
- 2. $\bigcap A$ nebo-li průnik třídy A je $\{x, (\forall a)(a \in A \rightarrow x = a)\}$
- 3. $\mathcal{P}(A)$ nebo-li potenciál třídy A je $\{a, a \subseteq A\}$.

$$\bigcap \emptyset = V, \text{ protože } \{x, (\forall a)(a \in \emptyset \to x \in a)\}. \\
Cvičení: a \neq \emptyset, \text{ je } \bigcap a \text{ množina?} \\
Cvičení: \text{ Je } \mathcal{P}(V) = V^2?$$

Lemma 3. Univerzální třída V není množina.

$$D\mathring{u}kaz$$
. $Cvi\check{c}en\acute{\iota}$.

Lemma 4. Je-li A třída a množina, průnik $A \cap a$ je množina.

Důkaz. Schéma axiomu vydělení
$$A = \{x, \varphi(x)\}, a \cap A = \{x, x \in a \land \varphi(x)\}.$$

Definice 12. Kartézský součin tříd A,B značen $A \times B$ je $\{(a,b), a \in A \land b \in B\}$ což je zkrácený zápis pro $\{x, (\exists a)(\exists b)(x = (a,b) \land a \in A \land b \in B)\}.$

Lemma 5. Jsou-li a,b množiny pak i $a \times b$ je množina.

 $D\mathring{u}kaz$. • Platí $a \times b \subseteq \mathcal{P}(\mathcal{P}(a \cup b))$.

- Vpravo je množina axiomu dvojice, sumy, dvakrát potence.
- Pak podle lemma (axiomu vydělení) $A=a\times b, a=\mathcal{P}(\mathcal{P}(a\cup b))$ tedy $a\times b$ je množina.
- Pokud $u \in a, v \in b$, pak $\{u\}, \{u,v\} \subseteq a \cup b \text{ tedy } \{u\}, \{u,v\} \in \mathcal{P}(a \cup b)$, stejně pak $\{\{u\}, \{u,v\}\} \subseteq \mathcal{P}(a \cup b)$ a $\{\{u\}, \{u,v\}\} \in \mathcal{P}(\mathcal{P}(a \cup b))$.

Definice 13. X je třída, pak $X^1 = X$, induktivně pak $X^n = X^{n-1} \times X$.

 X^n je třída všech uspořádaných n-tic prvků X.

Pozorování: $V^n \subset V^{n-1} \subset \cdots \subset V^1 = V$

Cvičení: Ukažte, že obecně neplatí $X \times X^2 = X^3$. Například pro $X = \{\emptyset\}$.

4. Relace

Definice 14. • $T\check{r}ida\ R\ je\ (bin\acute{a}rn\acute{i})\ \textbf{relace},\ pokud\ R\subseteq V\times V.$

- $xRy \ zkratka \ za \ (x,y) \in R$.
- n-ární relace je $R \subseteq V^n$.

Příklad. • Relace náležení E je $\{(x,y), x \in y\}$.

• Relace identity Id je $\{(x,y), x = y\}$.

Definice 15. Je-li X relace (libovolná třída), pak:

- Dom(X) je $\{u,(\exists v)(u,v) \in X\}$
- Rng(X) je $\{v, (\exists u)(u,v) \in X\}$
- Je-li Y třída, pak $X \sqcup Y(X[Y])$ je $\{z, (\exists y)(y \in Y \land (y,z) \in X\}.$
- Nebo-li obraz třídy Y třídou X.
- $X \upharpoonright Y$ je $\{(y,z), y \in Y \land (y,z) \in X\}$.
- ullet Zúžení třídy X na třídu Y. (restrikce, parcelizace)

Lemma 6. Je-li x množina, Y třída, pak Dom(x), Rng(x), $x \upharpoonright Y$, $x \sqcap Y$ jsou množiny.

Důkaz. • Vnoříme do větší množiny.

- Platí $Dom(x) \subseteq \bigcup(\bigcup(x))$.
- Když $u \in Dom(x)$ pak $(\exists v)(u,v) \in x$ a $u \in \{u\} \in (u,v) \in x$. Tedy $\{u\} \in \bigcup (x)$, tedy $u \in \bigcup (\bigcup (x))$.
- Podobně i pro $Rng(x) \subseteq \bigcup(\bigcup(x)).$
- $v \in Rng(x) : (\exists u)(u,v) \in x$
- $v \in \{u,v\} \in (u,v) \in x \text{ tedy } v \in \bigcup(\bigcup(x)).$
- Pak už jenom $x \upharpoonright Y \subseteq x; x \sqcap Y \subseteq Rng(x)$

Definice 16. • R,S jsou relace. Pak R^{-1} je $\{(u,v),(v,u)\in R\}$.

- Nebo-li relace **inverzní** k R.
- $R \circ S \ je \ \{(u,v); (\exists w)((u,w) \in R \land (w,v) \in S)\}.$
- Nebo-li složení relací R a S.

Poznámka. $(f \circ g)(x) = g(f(x))$ Cvičení

- Ověřte, že pro libovolnou relaci R je $Id \circ R = R = R \circ Id$.
- $(x,y) \in E \circ E \leftrightarrow x \in \bigcup y$

Definice 17. Relace F je zobrazení (funkce) pokud:

$$(\forall u)(\forall v)(\forall w)(((u,v) \in F \land (u,w) \in F) \rightarrow v = w)$$

"Pro každé $v \in Dom(F)$ existuje právě jedna množina v taková, že $(u,v) \in F$." Píšeme F(u) = v.

Definice 18. • F je zobrazení třídy X **do** třídy Y; $F: X \to Y$, pokud Dom(F) = X a $Rng(F) \subseteq Y$.

- F je zobrazení třídy X **na** třídu Y; pokud navíc platí Rng(F) = Y.
- F je **prosté** zobrazení pokud F^{-1} je zobrazení.
- $Pokud\ (\forall v)(\forall u)(\forall w)((F(u) = w \land F(v) = w) \rightarrow u = v).$
- "Každý prvek Rng(F) má právě jeden vzor."

Pozorování: Pokud F je prosté zobrazení, pak F^{-1} je také prosté zobrazení.

Definice 19. A je třída, φ je formule pak:

- $(\exists x \in A)\varphi$ je zkratka za $(\exists x)(x \in A \land \varphi)$.
- $(\forall x \in A)\varphi$ je zkratka za $(\forall x)(x \in A \to \varphi)$.

4.1 Značení:

Obraz / vzor třídy X zobrazením F.

- F[X] místo $F \sqcup X : F[X] = \{y, (\exists x \in X)y = F(x)\}$
- $F^{-1}[X]$ místo $F^{-1} \sqcup X : F^{-1}[X] = \{y, (\exists x \in X) x = F(y)\}$

Definice 20. A je třída, a je množina, pak ^aA je $\{f; f: a \rightarrow A\}$, třída všech zobrazení z a do A.

Poznámka. • Z axiomu nahrazení Rng(f) je množina, $f\subseteq a\times Rng(f),$ tedy f je množina.

- Nelze definovat BA pokudB je vlastní třída a $A\neq\emptyset,$ protože je-li Dom(f) vlastní třída, pak je i f.
- $^{\emptyset}A = \{\emptyset\}$
- $x\emptyset = \emptyset$

Lemma 7. 1. Pro libovolné množiny x,y je ^xy množina.

2. Je-li $x \neq \emptyset$, Y je vlastní třída, pak ^xY je vlastní třída.

Důkaz. 1. Pokud $f: x \to y$. pak $f \subseteq x \times y$, tedy $f \in \mathcal{P}(x \times y)$. Tedy $xy \subseteq \mathcal{P}(x \times y)$.

- 2. Pro $y \in Y$ definujeme konstantní zobrazení $K_y : x \to Y$ tak, že $(\forall u \in x)(K_y(u) = y)$. $K_y = x \times y$, protože $x \neq \emptyset$, pro $y \neq y'$ platí $K_y \neq K_{y'}$. $K = \{K_y, y \in Y\}$ máme $K \subseteq Y$.
 - Teď sporem: Pokud xY je množina, pak K je množina. Definujeme $F:K\to Y$ jako $F(K_y)=y$. Z axiomu nahrazení Y je množina a to je spor.

4.2 Uspořádání

Definice 21. Relace $R(\subseteq V \times V)$ je na třídě A: Reflexivní:

$$(\forall x \in A)((x,x) \in R)$$

Antireflexivní:

$$(\forall x \in A)((x,x) \notin R)$$

Symetrická:

$$(\forall x, y \in A)((x,y) \in R \leftrightarrow (y,x) \in R)$$

Slabě antisymetrická:

$$(\forall x, y \in A)(((x,y) \in R \land (y,x) \in R) \rightarrow y = x)$$

Antisymetrická

$$(\forall x \in A)(\forall y \in A)(xRy \to \neg(yRx))$$

Trichotomická:

$$(\forall x \in A)(\forall y \in A)(xRy \lor yRx \lor x = y)$$

Tranzitivní:

$$(\forall x, y, z \in A)((xRy \land yRz) \rightarrow xRz)$$

Pozorování: Tyto vlastnosti jsou **dědičné**, to znamená, že platí na každé podtřídě $B\subseteq A$.

- **Definice 22.** Relace R je **uspořádání na třídě** A, pokud R je reflexivní, slabě antisymetrická a tranzitivní.
 - $x,y \in A$ jsou porovnatelné (srovnatelné) relací R pokud $xRy \vee yRx$.

4.2.1 Značení:

 $x \leq_R y$ znamená xRy, neboli "x je menší nebo rovno y vzhledem k R."

Definice 23. • Uspořádání R je **lineární** pokud R je trichotomické.

- R' je **ostré** uspořádání pokud je tvaru R \ Id (je antireflexivní, antisymetricá a tranzitivní).
- $x <_R y \ značí \ xR'y$

Cvičení: Doplňte tabulku ANO/NE.

Relace	Uspořádání?	Ostré?
\overline{E}		
Id		

Definice 24. Nechť R je uspořádání na třídě A a nechť $X \subseteq A$. Řekněme, že $a \in A$ je (vzhledem k R a A):

- Majorita (horní mez) třídy X, pokud $(\forall x \in X)(x \leq_R a)$.
- Minoranta (dolní mez) třídy X, pokud $(\forall x \in X)(a \leq_R x)$.
- Maximální prvek třídy X, pokud $a \in X \land (\forall x \in X)(\neg(a <_R x))$.
- Minimální prvek třídy X, pokud $a \in X \land (\forall x \in X)(\neg(x <_R a))$.
- Největší prvek třídy X, pokud $a \in X$ a a je majoranta X.
- Největší prvek třídy X, pokud $a \in X$ a a je minoranta X.
- Supremum třídy X, pokud a je nejmenší prvek třídy všech majorant X.
- Infimum třídy X, pokud a je největší prvek třídy všech minorant X.

Pozorování: Největší implikuje maximální, pokud R je lineární, tak platí i opačná implikace. Také největší a supremum je vždy nejvýše 1. Lze značit jako $a = \max_{R}(X)$ a $a = \sup_{R}(X)$.

Definice 25. • X je shora omezená, pokud existuje majoranta X v A.

- X je zdola omezená, pokud existuje minoranta X v A.
- X je **dolní množina**, pokud $(\forall x \in X)(\forall y \in A)(y \leq_R x \to y \in X)$.
- Analogicky i horní množina.
- $x \in A$, $pak \mid \leftarrow, x \mid je \{y, y \in A \land y \leq_R x\}$. Nebo-li horní ideál omezená x.

Pozorování: R uspořádání na A, pak pro libovolné $x,y \in A$ platí $x \leq_R y \leftrightarrow |\leftarrow,x| \subseteq |\leftarrow,y|$.

Poznámka. • Konstrukce \mathbb{R} z \mathbb{Q} : **Dedekindovy řezy**.

• $X\subseteq \mathbb{Q}, X$ je dolní množina (vzhledem k \subseteq) a navíc existuje-li sup X, pak sup $X\subseteq X$.

Definice 26. Uspořádání R na třídě A je **dobré**, pokud každá neprázdná podmnožina $A: (u \subseteq A)$ má nejmenší prvek vzhledem k R.

Cvičení: Napsat definice pomocí logických formulí.

Pozorování: "Dobré" je dědičná vlastnost. Dobré implikuje lineární.

Cvičení: Najděte nějaké množiny, na nichž je E dobré ostré uspořádání.

Definice 27. Ekvivalence je pokud je reflexivní, symetrická a tranzitivní.

5. Srovnávání mohutností

Definice 28. • Množiny x,y mají **stejnou mohutnost** (psáno $x \approx y$) pokud existuje prosté zobrazení x na y (nebo-li bijekce). Někdy označováno jako x je ekvivalentní y.

- Množina x má **mohutnost menší nebo rovnou** mohutnosti y (psáno $x \leq y$) pokud existuje prosté zobrazení x do y. Někdy označováno jako x je subvalentní y.
- $x \text{ m\'a men\'s\'i mohutnost } ne\check{z} \text{ } y \text{ } (ps\'ano \text{ } x \prec y) \text{ } pokud \text{ } plat\'i \text{ } x \preceq y \land \neg (x \approx y)).$

Pozorování: $x\subseteq y\to x\preceq y$ (identita), $x\subset y\to x\preceq y$ (ne $x\prec y$, například $\mathbb{N}\approx\mathbb{N}\setminus\{1\}$).

 $Pozn\acute{a}mka.$ To jestli \preceq je trichotomická v **ZF** nelze rozhodnout. Přidáím axiomu výběru už ale ano.

Lemma 8. Jsou-li x,y,z množiny, potom:

- 1. $x \approx x$
- 2. $x \approx y \rightarrow y \approx x$
- 3. $((x \approx y) \land (y \approx z)) \rightarrow x \approx z$, tedy $\approx je$ ekvivalence.
- 4. $x \leq x$
- 5. $x \leq y \land y \leq z \rightarrow x \leq z$

Důkaz. Prakticky jen triviální, stačí najít dané zobrazení.

- *Id*
- $F \rightarrow F^{-1}$
- $F \wedge G \rightarrow F \circ G$
- *Id*
- $F \wedge G \rightarrow F \circ G$

Pozorování: $x \approx y \rightarrow (x \leq y \land y \leq x)$

Theorem 1 (Cantor-Bernstein).

$$(x \prec y \land y \prec x) \rightarrow x \approx y$$

 $D\mathring{u}kaz$. Důkaz se provede pomocí grafů. Také bude potřeba dodatečné lemma, které bude později. Jako graf si představíme bipartitní, kde jedna partita je x a druhá y. Následně přidáme orientované hrany jakožto funkce f a g, kde $f: x \to y, g: y \to x$ jsou prosté zobrazení. Teď se podíváme na komponenty grafu.

- 1. Buď může být kružnice sudé délky.
- 2. Nebo cesta s počátkem.
- 3. Anebo cesty obousměrné.

Nyní uvažme "indukovaná" zobrazení: $(\hat{f}): \mathcal{P}(x) \to \mathcal{P}(y)$. Tahle funkce je monotónní vzhledem k inkluzi. Definujeme $H: \mathcal{P}(x) \to \mathcal{P}(x)$ takto: Pro $u \subseteq x$ necht H(u) = x - g[y - f[u]]. H je monotónní vzhledem k inkluzi. $u_1 \subseteq u_2 \Rightarrow f[u_1] \subseteq f[u_2] \Rightarrow y - f[u_1] \supseteq y - f[u_2] \Rightarrow g[y - f[u_2] \Rightarrow H(u_1) \subseteq H(u_2)$. Podle lemma o pevném bodě $(\exists c)(H(c) = c)$, tedy $x - g[y - f[c]] = c \Rightarrow x - c = g[y - f[c]]$. Tedy g^{-1} je prosté zobrazení $x \setminus c$ na $y \setminus f[c]$. Stačí definovat $h: x \to y$ jako:

$$h(u) = \begin{cases} f(u) & \text{pokud } u = c \\ g^{-1}(u) & \text{jinak} \end{cases}$$

h je prosté zobrazení x na y.

Definice 29. Zobrazení $H : \mathcal{P}(x) \to \mathcal{P}(x)$ je **monotónní** (vzhledem k inkluzi) pokud pro každé dvě množiny $u,v \subseteq x$ platí $u \subseteq v \to H(u) \subseteq H(v)$.

Lemma 9. Je-li $H: \mathcal{P}(x) \to \mathcal{P}(x)$ zobrazení monotónní vzhledem k inkluzi, pak existuje podmnožina $c \subseteq x$ taková, že H(c) = c. Též označován jako **pevný bod**.

 $D\mathring{u}kaz.$ $A=\{u,u\subseteq x\wedge u\subseteq H(u)\},$ $c=\bigcup A$ neboli supremum. $u\in A$ pak dostanu dvě možnosti:

- 1. $u \subseteq c$
- 2. $u \subseteq H(u) \subseteq H(c)$ (díky tomu, že H je monotónní)

Z toho pak plyne, že H(c) je majoranta a tedy $c \subseteq H(c)$. Pak z monotonie platí $H(c) \subseteq H(H(c))$, tedy $H(c) \in A$, takže $H(c) \subseteq c$, nebo-li c je majoranta. Z obou inkluzí pak plyne, že c = H(c).

Cvičení: Ilustrace monotňní funkce $h:[0,1] \to [0,1]$.

Cvičení: $A \subseteq \mathcal{P}(x)$ a uspořádání \subseteq , pak $\sup_{\subset} A = \bigcup A$ a $\inf_{\subseteq} A = \bigcap A$.

Příklad. • $\omega = \mathbb{N}_0$ pak $\omega \approx \omega \times \omega$

- $f: \omega \to \omega \times \omega$ jako f(n) = (0,n)
- $q: \omega \times \omega \to \omega$ jako $q((m,n)) = 2^m 3^n$
- Podle Věty platí $\omega \approx \omega \times \omega$. item $h: \omega \to \omega \times \omega$ jako $h((m,n)) = 2^m (2n+1) 1$

Cvičení: Ověřte, že g je prosté a h je bijekce.

Cvičení: $\mathbb{N} \approx \mathbb{Q}$

Cvičení: $[0,1] \approx [0,1] \times [0,1]$

Lemma 10. Nechť x,y,z,x_1,y_1 jsou množiny, pak:

1.
$$x \times y \approx y \times x$$

2.
$$x \times (y \times z) \approx (x \times y) \times z$$

3.
$$(x \approx x_1 \land y \approx y_1) \rightarrow (x \times y \approx x_1 \times y_1)$$

4.
$$x \approx y \to \mathcal{P}(x) \approx \mathcal{P}(y)$$

5.
$$\mathcal{P}(X) \approx^x 2$$
, $kde\ 2 = \{\emptyset, \{\emptyset\}\}$

Důkaz. Vždy jde o to najít vhodné funkce.

- 1. $(u,v) \rightarrow (v,u)$
- 2. $(u,(b,c)) \to ((u,b),c)$
- 3. $f: x \to x_1, g: y \to y_1: (a,b) \to (f(a),g(b))$
- 4. $f: x \to y, u \to f[u]$ (izomorfismus vzhledem k inkluzi)
- 5. Pro $u \subseteq x$ definujeme charakteristickou funkci $\chi_a : x \to 2$, kde;

$$\chi_a(v) = \begin{cases} 1 & v \in a \\ 0 & v \notin a \end{cases}$$

Zobrazení $\{(a, \chi_a); a \subseteq x\}$ je prosté a zobrazuje $\mathcal{P}(x)$ na x2 .

5.1 Konečné množiny

Definice 30 (Tarski). Množina x je konečná, označíme <math>Fin(x), pokud každá neprázdná podmnožina $\mathcal{P}(x)$ má maximální prvek vzhledem k inkluzi.

Cvičení: Napište definici pomocí formule.

Pozorování: x je konečná právě tehdy, když každá neprázdná podmnožina $\mathcal{P}(x)$ má minimální prvek vzhledem k inkluzi.

$$D\mathring{u}kaz$$
. Uvažme $d: \mathcal{P}(x) \to \mathcal{P}(x)$ jako $d(u) = x \setminus u$. $u \subseteq v \Leftrightarrow d(u) \supseteq d(v)$

Definice 31. Množina a je **Dedekindovsky konečná** pokud má větší mohutnost než každá vlastní podmnožina $b \subset a$. (Nebo-li neexistuje prosté zobrazení a na b.)

Lemma 11. Je-li množina a konečná tak je i Dedekindovsky konečná.

 $D\mathring{u}kaz$. Nutno dokázat, že pokud $b \subset a$ pak $b \preceq a$. Sporem: $b \approx a$. Nechť $y = \{b, b \subset a \land b \approx a\}, y \neq \emptyset, y \in \mathcal{P}(a)$. Nechť $c \in y$ je minimální prvek y vzhledem k \subseteq . Nechť $f: a \to a$ je prosté zobrazení a na c. d = f[c]. $f \upharpoonright c$ je prosté zobrazení c na d. Tedy $c \approx d$, tedy $d \in y$. $d \subseteq c: (\exists x)(x \in a \setminus c)$ pak $f(x) \in c \setminus d$. Spor s minimalitou volby c.

Poznámka. Opačná implikace v **ZF** není dokazatelná.

- Existuje lineární uspořádání ≤, které je dobré, pak i ≥ je dobré.
- Existuje lineární uspořádání a každá 2 lineární uspořádání jsou izomorfní.
- x je konečná $\Leftrightarrow \mathcal{P}(\mathcal{P}(x))$ je dedekindovsky konečná.

Theorem 2. 1. Je-li a konečná uspořádaná množina (relací \leq) pak každá její neprázdná podmnožina $b \subseteq a$ má maximální prvek. 2. Každé lineární uspořádání na konečné množině je dobré.

 $D\mathring{u}kaz$. 1. Pro každé $x \in a$ uvažme $|\leftarrow, x| = \{y, y \in a \land y \leq x\}$.

- $u = \{ (x, x), x \in b \}, u \subseteq \mathcal{P}(a), u \neq \emptyset$
- Z konečnosti aexistuje $m \in b$ takové, že $| \leftarrow , m]$ je maximální prvek vzhledem k $\subseteq.$
- $x \le y \Leftrightarrow |\leftarrow, x| < |\leftarrow, y|$
- Tedy m je maximální prvek b vzhledem k \subseteq .
- Minimální prvek se najde podobně, akorát to bude horní množina a minimální prvek.

2. Minimální prvek v lineárním uspořádání je už nejmenší.

Definice 32. F je zobrazení A_1 do A_2 , R_1,R_2 jsou relace. F je **izomorfismus** tříd A_1,A_2 vzhledem k R_1,R_2 pokud F je prosté zobrazení A_1 na A_2 a $(\forall x \in A_1)(\forall y \in A_2)(x,y) \in R_1 \leftrightarrow (F(x),F(y)) \in R_2$.

Definice 33. A je mmožina uspořádaná relací R. B je mmožina uspořádaná relací S. Zobrazení F je **počátkové vnoření** A do B, pokud $A_1 = Dom(F)$ je dolní podmnožina A a $B_1 = Rng(F)$ je dolní podmnožina B. A F je izomorfismus A_1 a B_1 vzhledem k R, S.

Lemma 12. Nechť F,G jsou počátkové vnoření dobře uspořádané množiny A do dobře uspořádané množiny B. Potom $F \subseteq G$ nebo $G \subseteq F$.

 $D\mathring{u}kaz$. Necht R je dobré uspořádání množiny A. Necht S je dobré uspořádání množiny B. Dom(F), Dom(G) jsou dolní podmnožiny A. R je lineární, tedy $Dom(F) \leq Dom(G) \vee Dom(G) \leq Dom(F)$. (BÚNO: $Dom(F) \leq Dom(G)$, jinak přejmenuji množiny). Dokážeme $(\forall x \in Dom(F))F(x) = G(x)$. Sporem Necht x je nejmenší (vzhledem kx) prvek množiny $\{z, z \in A \land G(z) \neq F(z)\}$. Tedy $\{z, z \in A \land G(z) \neq F(z)\}$. Tedy $\{z, z \in A \land G(z) \neq F(z)\}$. Tedy $\{z, z \in A \land G(z) \neq F(z)\}$. Necht $\{z, z \in A \land G(z) \neq F(z)\}$. Vecht $\{z, z \in A \land G(z) \neq F(z)\}$. Pak $\{z, z \in A \land G(z) \neq F(z)\}$. Je-li $\{z \in Dom(G)\}$ pak buď: $\{z \in A\}$ is $\{z \in A\}$ at $\{z \in A\}$ in $\{z \in A\}$ at $\{z \in A\}$ in $\{z \in A\}$ at $\{z \in A\}$ in $\{z \in A\}$ in $\{z \in A\}$ in $\{z \in A\}$ at $\{z \in A\}$ in $\{z \in A$

Cvičení: Lineární uspořádání jsou každé dvě dolní množiny porovnatelné inkluzí. Cvičení: Co když místo dobrého uspořádání bude jen lineární uspořádání.

Theorem 3 (O porovnávání dobrých uspořádání.). A je množina dobře uspořádaná relací R. B je množina dobře uspořádaná relací S. Pak existuje právě jedno zobrazení F, které je izomorfismus A a dolní množiny B, nebo B a dolní množiny A.

 $D\mathring{u}kaz$. P je množina všech počátečních vnoření A do B. Necht $F = \bigcup P$. F je zobrazení: Když $(x,y_1)(x,y_2) \in F$ existuje počáteční vnoření F_1, F_2 , že $(x,y_1) \in F_1, (x,y_2) \in F_2$. Podle lemma $F_1 \subseteq F_2$ nebo naopak. Předpokládejme, že nastala tato situace. Tedy $(x,y_1) \in F_2$; F_2 je zobrazení, tedy $y_1 = y_2$. F je počáteční vnoření: Když $x_1 <_R x_2 \in Dom(F)$ tak existuje počáteční vnoření F' že $x_2 \in Dom(F')$. Tedy $x_1 \in Dom(F') \subseteq Dom(F)$. Podobně pro $Rng(F) = \bigcup Rng(F')$ je dolní. $F(x_1) = F'(x_1) <_S F'(x_2) = F(x_2)$, $Dom(F) = A \lor Rng(F) = B$. Sporem: $A \setminus Dom(F), B \setminus Rng(F)$ jsou neprázdné, mající nejmenší prvky a,b. Definujeme $F' = F \cup \{(a,b)\}$ je počáteční vnoření $F' \in P, F' \subseteq F$ a to je spor.

Cvičení: Jednoznačnost F.

Cvičení: Sjednocení dolních množin je dolní množina.

Theorem 4. a je konečná množina, pak každé lineární uspořádání na a jsou izomorfní.

 $D\mathring{u}kaz$. R,S jsou dvě lineární uspořádání a také dobrá uspořádání. (a,R) je izomorfní dolní množině (a,S) nebo dolní množina (a,R) je izomorfní (a,S). Dolní množina $b,b\approx a$, z Dedekindovy konečnosti platí, že a=b.

Lemma 13 (Zachovávání konečnosti.). 1. $(Fin(x) \land y \subseteq x) \rightarrow Fin(y)$

- 2. $(Fin(x) \land y \approx x) \rightarrow Fin(y)$
- 3. $(Fin(x) \land y \leq x) \rightarrow Fin(y)$

 $D\mathring{u}kaz.$ 1. $w \subseteq \mathcal{P}(y) \subseteq \mathcal{P}(x)$

- 2. $\mathcal{P}(y)$ je izomorfní $\mathcal{P}(x)$
- 3. Plyne z 1 a 2.

Lemma 14 (sjednocení konečných množin). 1. $Fin(x) \wedge Fin(y) \rightarrow Fin(x \cup y)$

2. $Fin(x) \rightarrow (\forall y)Fin(x \cup \{y\})$

 $D\mathring{u}kaz.$ $w \subseteq \mathcal{P}(x \cup y)$ neprázdná. $w_1 = \{u, (\exists t \in w)(u = t \cap x)\} \subseteq \mathcal{P}(x)$. Má maximální prvek $v_1.$ $w_2 = \{u, (\exists t \in w)(t \cap x = v_1 \land t \cap y = u)\} \subseteq \mathcal{P}(y)$. Má maximální prvek $v_2.$ $v_1 \cup v_2$ je maximální prvek w.

Definice 34. Třída všech konečných množin $Fin = \{x, Fin(x)\}.$

Theorem 5 (Princip indukce pro konečné množiny). *Je-li X třída, pro kterou platí:*

- 1. $\emptyset \in X$,
- 2. $x \in X \to (\forall y)(x \cup \{y\} \in X)$, pak $Fin \subseteq X$.

Důkaz. Sporem: Pokud $x \in Fin \setminus X$. nechť $w = \{v, v \subseteq x \land v \in X\}$. Podle 1: $\emptyset \in w$. $w \subseteq \mathcal{P}(x)$, neprázdná. w má maximální prvek v_0 . $v_0 \subseteq x$. $v_0 \in X$, tedy $v_0 \neq x$ a $v_0 \subset X$. Tedy existuje $y \in x \setminus v_0$. Nechť $v_1 = v_0 \cup \{y\}$. Podle 2: $v_1 \in X$. Tedy $v_1 \in w$, spor s maximalitou v_0 .

Lemma 15. $Fin(x) \to Fin(\mathcal{P}(x))$

 $D\mathring{u}kaz$. Indukcí: Nechť $X = \{x, Fin(\mathcal{P}(x))\}$. $\emptyset \in X$, protože $\mathcal{P}(\emptyset) = \{\emptyset\}$ je konečná. Nechť $x \in X, y$ je množina. Chceme aby $x \cup \{y\} \in X$. BÚNO: $y \notin x$ (jinak triviální). Rozdělíme $\mathcal{P}(x \cup \{y\})$ na dvě části: $\mathcal{P}(x \cup \{y\}) = \mathcal{P}(x) \cup (\mathcal{P}(x \cup \{y\}) \setminus \mathcal{P}(x))$. Platí $\mathcal{P}(x) \approx z$, kde z se rovná předchozímu druhému prvku v sjednocení. Pro $u \in \mathcal{P}(x)$ definujeme $f(u) = u \cup \{y\}$. f je prosté zobrazení $\mathcal{P}(x)$ na z. Podle předpokladu $Fin(\mathcal{P}(x))$. Podle lemma Fin(z). Podle lemma o sjednocení $Fin(\mathcal{P}(x) \cup z)$. Podle principu indukce $Fin \subseteq X$.

Dusledek. $Fin(x) \cap Fin(y) \rightarrow Fin(x \times y)$

Důkaz. Nechť $z = x \cup y$, víme Fin(z). $x \times y \subseteq z \times z \subseteq \mathcal{P}(\mathcal{P}(z))$.

Lemma 16 (sjednocení konečně mnoha konečných množin je konečná množina). Je-li Fin(a) a ($\forall b \in a$)Fin(b), pak $Fin(\bigcup a)$.

 $D\mathring{u}kaz$. Indukcí: $X = \{x, x \subseteq Fin \to Fin(\bigcup x)\}$.

- 1. $\emptyset \in X$, protože $\bigcup \emptyset = \emptyset$.
- 2. Nechť $x \in X, y$ množina. Chceme aby $x \cup \{y\} \in X$.

Předpokládejme, že $x \cup \{y\} \subseteq Fin$. Speciálně $x \subseteq Fin$. $\bigcup (x \cup \{y\}) = \bigcup x \cup y$. Obě dvě jsou konečné a sjednocení tím pádem je také konečné. Tedy $x \cup \{y\} \in X$. Podle principu indukce $Fin \subseteq X$.

Důsledek (Dirichletův princip pro konečné množiny.). Je-li nekonečná množina sjednocení konečně mnoha množin, pak jedna z nich musí být nekonečná.

Lemma 17 (Každá konečná množina je srovnatelná se všemi množinami.). $Fin(x) \rightarrow (\forall y)(y \leq x \lor x \leq y)$

 $D\mathring{u}kaz$. Indukcí: $x = \{x, (\forall y)(y \leq x \lor x \leq y)\}.$

- 1. $\emptyset \in X$, protože $(\forall y)\emptyset \subseteq y$ tedy $\emptyset \prec y$.
- 2. Nechť $x \in X, u$ je množina. BÚNO: $u \notin X$. Chceme $x \cup \{u\} \in X$, nechť X je množina.

Když $y \leq x$, pak $x \leq x \cup \{u\}$ z tranzitivity $y \leq x \cup \{u\}$. Nechť $x \prec y$. g je prosté zobrazení x do y. Nechť $v \in X \setminus Rng(g)$. Definujeme $h = g \cup \{(u,v)\}, h$ je prosté zobrazení $x \cup \{u\}$ do y. Tedy $x \cup \{u\} \leq y$. Z principu indukce $Fin \subseteq X$.

Cvičení: Fin(x) a $f: x \to y$, pak $Rng(f) \preceq x$ (pomocí indukce). Cvičení: $(\forall x)Fin(x)$ lze dobře uspořádat (indukcí).

6. Přirozená čísla

Definice 35 (von Neumann). $0 = \emptyset$; $1 = \{0\} = \{\emptyset\}$; $2 = \{0,1\} = \{\emptyset, \{\emptyset\}\}$; $3 = \{0,1,2\} = \dots$, Myšlenka: "Přirozené číslo je množina všech menších přirozených čísel."

Definice 36. w je **induktivní množina**, pokud $\emptyset \in w \land (\forall v \in w)(v \cup \{v\} \in w)$.

6.1 9. Axiom nekonečna ("Existuje induktivní množina.")

$$(\exists z)(0 \in z \land (\forall x)(x \in z \to x \cup \{x\} \in z))$$

Definice 37. *Množina všech přirozených čísel* ω $je \cap \{w, w \text{ je induktivní množina}\}.$

Lemma 18. ω je nejmenší induktivní množina.

 $D\mathring{u}kaz$. $0 \in \omega$, $x \in \omega$, x patří do každé induktivní množiny. $x \cup \{x\}$ patří do každé induktivní množiny. $x \cup \{x\} \in \omega$.

Prvky ω jsou **přirozená čísla** v teorii množin.

Definice 38. Funkce následník $S:\omega\to\omega$. Pro $v\in\omega:S(v)=v\cup\{v\}$. "Následník čísla v."

Theorem 6 (Princip (slabé) indukce pro přirozená čísla.). Je-li $X \subseteq \omega$ taková, že platí:

1. $0 \in X$,

2.
$$x \in X \to S(x) \in X$$
. Pak $X = \omega$.

 $D\mathring{u}kaz$. 1 a 2 dohromady říká, že X je induktivní, tedy $\omega \subseteq X$.

 $P\check{r}iklad$. Důkaz indukcí: Chceme dokázat: $(\forall n \in \omega)(\varphi(n))$. Dokazujeme: 1. $\varphi(0)$ a 2. $(\forall n \in \omega)(\varphi(n) \to \varphi(S(n)))$.

П

Poznámka. Princip silné indukce: 2: $((\forall m \in \omega) m \in X) \to n \in X$.

Lemma 19 (\in je ostré uspořádání). Pro libovolné $m,n \in \omega$ platí:

- 1. $n \in \omega \to n \subseteq \omega$
 - "Prvky přirozených čísel jsou přirozená čísla."
- 2. $m \in n \to m \subseteq n$
 - "Náležení je tranzitivní na ω."
- 3. $n \not\subseteq n$
 - "∈ je antireflexivní na ω."

Z toho všeho plyne, že se jedná o ostré uspořádání.

Důkaz. Indukcí:

- 1. $0 \subseteq \omega$, a indukční krok $n \in \omega$, předpokládáme, že $n \subseteq \omega$. Pak $\{n\} \subseteq \omega$ tedy $n \cup \{n\} \subseteq \omega$.
- 2. Indukcí podle n:
 - 1. Krok: $m \notin 0$ tím pádem implikace splněna.
 - 2. Krok $X = \{n, n \in \omega \land (\forall m) (m \in n \to m \subseteq n)\}.$
 - Víme $0 \in X$.
 - Nechť $n \in X$, víme $S(n) \in \omega$.
 - Nechť $m \in S(n) = n \cup \{n\}$. Pak buď $m \in n$ a z IP pak $m \subseteq n$ anebo m = n tím pádem také $m \subseteq n \subseteq S(n)$.
- 3. $0 \nsubseteq 0$ platí, nechť $n \in \omega$ a $n \nsubseteq n$.
 - Sporem $S(n) \subseteq S(n) = n \cup \{n\}$. Z toho pak plyne, že buď $S(n) \subseteq \{n\}$ anebo $S(n) \subseteq n$. V obou případech je $S(n) \subseteq n$, ale to pak znamená, že $n \in S(n) \subseteq n$ což je spor s předpokladem.

Lemma 20. Každé přirozené číslo je konečná množina.

 $D\mathring{u}kaz$. Indukcí: $Fin(\emptyset)$ víme. Podle lemma $Fin(x) \to (\forall y)Fin(x \cup \{y\})$, speciálně pro $Fin(x \cup \{x\})$ a to je následník.

Theorem 7. Množina x je konečná právě tehdy, $když\ (\exists n \in \omega)x \approx n$.

 $D\mathring{u}kaz. \Leftarrow Fin(n)$ tedy $Fin(x). \Rightarrow$ indukcí: $X = \{x; (\exists n \in \omega)x \approx n\}$. Víme, že $0 \in X$ protože $0 \approx 0$. Necht $x \in X, y$ množina. Víme, že $(\exists n \in \omega)n \approx x. \ y \in x$ pak $x \cup \{y\} = x \approx n, y \notin x$ pak $x \cup \{y\} \approx S(n) = n \cup \{n\}$. K bijekci x a n přidáme (y,n). Tedy $Fin \subseteq X$. \square

Lemma 21. Množina ω i každá induktivní množina je nekonečná.

 $D\mathring{u}kaz$. Podle lemma: $1 \ n \in \omega \to n \subseteq \omega$, tedy $n \in \mathcal{P}(n)$ tedy $\omega \subseteq \mathcal{P}(n)$, ω je neprázdná ale nemá maximální prvek vzhledem k inkluzi. Když $n \subseteq \omega$ pak podle lemma 3. $n \not\subseteq n$ a tedy $n \subset n \cup \{n\} = S(n)$. $\omega \subseteq W$ tedy i induktivní množiny.

Cvičení: ω je Dedekindovsky nekonečná.

Lemma 22 (Linearita \in na ω .). $m,n \in \omega$, platí:

- 1. $m \in n \leftrightarrow m \subset n$
- 2. $m \in n \lor m = n \lor n \in m$ (trichotomie)

Důkaz. 1. \rightarrow plyne z lemma 2 $m \in n \rightarrow m \subset n \land n \nsubseteq n$

- \leftarrow indukcí podle n; n = 0 nelze splnit.
- Indukční krok. Nechť platí pro nějaké n a $\forall m$.

- Necht $m \subset S(n) = n \cup \{n\}$ a $m \subseteq n$, kdyby ne pak $n \in m$ tedy $n \subseteq m$ tedy $S(n) = n \cup \{n\} \subseteq m$ a to je spor.
- $m \subset n \text{ z IP } m \in n \subseteq S(n) \text{ tedy } m \in S(n)$
- $m = n \text{ pak } n \in S(n)$
- 2. Pro $n \in \omega$ necht $A(n) = \{m \in \omega, m \in n \lor m = n \lor n \in m\}$.
 - Dokážeme, že A(n) je induktivní, indukcí podle m.
 - $n = 0 : 0 \in A(0)$, protože 0 = 0
 - Je-li $m \in A(0)$, pak: $m = 0 : 0 \in \{m\}$ anebo $0 \in m$ a z obou plyne $0 \in m \cup \{m\} = S(n)$.
 - Tedy $S(n) \in A(0)$.
 - Tedy $A(0) = \omega$.
 - Tedy také $(\forall n \in \omega) 0 \in A(n)$.
 - $n \in \omega, m \in \omega$, předpokládejme, že $m \in A(n)$. Ukážeme, že $S(m) \in A(n)$.
 - $m \in n \to m \subset n$; $\{m\} \subseteq n \text{ tedy } S(m) \subseteq n \text{ z toho plyne, že } S(m) = n \vee S(m) \in n$.
 - $m = n \lor n \in m$ potom $n \in m \cup \{m\} = S(m)$
 - Ve všech případech ke $S(m) \in A(n)$.

Theorem 8. Množina ω je dobře (ostře) uspořádaná relací \in .

 $D\mathring{u}kaz$. Necht $a\subseteq\omega, a\neq\emptyset$. Zvolme $n\in a$. Není-li n nejmenší (minimální), tak definuji $b=n\cap a$. n je konečná, tak i b je konečná a neprázdná. $b\subseteq\omega$ tedy b má minimální prvek m vzhledem k náležení. m je minimální i v množině a: kdyby $(\exists x\in a)x\in m$, tak víme, že $m\in n$, tedy $m\subseteq n$, tedy $x\in n$, tedy $x\in b$. To je spor s minimalitou m v b. \in je lineární na ω , tedy m je nejmenší prvek v a. Tedy \in je dobré uspořádání.

Poznámka. Nekonečná množina A s lineárním (ostrým) uspořádáním < pro každé $a \in A: |\leftarrow, a|$ je konečná. Pak < je dobré a (A, <) je izomorfní (ω, \in) .

Theorem 9 (Charakterizace uspořádání \in na ω). Nechť A je nekonečná množina, lineárně uspořádaná (ostře) relací < tak, že pro každé $a \in A$ je dolní množina $|\leftarrow,a|$ konečná. Pak < je dobré a množiny A, ω jsou izomorfní vzhledem $k <, \in$.

 $D\mathring{u}kaz$. < je dobré: $\emptyset \neq c \in A$. Nechť $a \in c$, předpokládejme, že a není minimální v c, pak definujeme $b = c \cap |\leftarrow, a|$. b je konečná. Tedy má minimální prvek m, m je minimální i v c. Protože $m \leq a$, pak $x \leq a$ tedy $x \in |\leftarrow, a|$ tedy $x \in b$ a to je spor. Izomorfismus: podle věty o porovnávání dobrých uspořádání jsou 2 možnosti:

- 1. A je izomorfní s dolní podmnožinou $B \subseteq \omega$, pak B není shora omezená. Neexistuje $n \in \omega(\forall b \in B)b \in n$. Sporem $B \subseteq S(n)$ tedy B by byla konečná a to je spor.
 - To znamená, že $(\forall n \in \omega)$ je menší než nějaký prvek $b \in B$. B je dolní množina, tedy $n \in B \to \omega \subseteq B \to \omega = B$.
- 2. ω je izomorfní dolní podmnožině $C \subseteq A$. C není shora omezená, kdyby ano, tak $\exists a \in A : C \subseteq |\leftarrow, a|, C$ by byla konečná, spor. $(\forall a \in A, \exists c \in C : a \subseteq c, C$ je dolní, tedy C = A.

6.2 Spočetné množiny

Definice 39. Množina x je spočetná, pokud $x \approx \omega$. Množina x je nejvýše spočetná, pokud je konečná nebo spočetná. Jinak je množina nespočetná.

Theorem 10. 1. Každá shora omezená množina $A \subseteq \omega$ je konečná, každá shora neomezená $A \subseteq \omega$ je spočetná.

2. Každá podmnožina spočetné množiny je nejvýše spočetná.

 $D\mathring{u}kaz$. 1. A omezená, to znamená, že $\exists n: A\subseteq S(n)$. Takže $Fin(S(n))\to Fin(A)$.

- Pokud je A neomezená, pak je nekonečná. To lze dokázat sporem, že kdyby byla konečná, pak má A maximální prvek m, tedy je shora omezená m, to je spor.
- A je lineárně uspořádaná \in . Pro každé $n \in A$ je $|\leftarrow,n] \subseteq S(n)$, tedy $|\leftarrow,n|$ je konečná. Podle charakterizační věty A je izomorfní ω . Takže $A \approx \omega$.

2. A je spočetná $f:A\to\omega$ (bijekce). $B\subseteq A$, pak $B\approx f[B]\subseteq\omega$. Podle 1) je f[B] spočetná anebo konečná.

 $P\check{r}iklad$. Lexikografické uspořádání na $\omega \times \omega$.

 $(m_1,n_1) <_L (m_2,n_2) \leftrightarrow (m_1 \in m_2 \lor ((m_1 = m_2) \land (n_1 \in n_2)))$

Cvičení: Ověřte, že $<_L$ je dobré uspořádání na $\omega \times \omega$.

Cvičení: Ověřte, že $<_L$ na $\omega \times 2$ je izomorfní s (ω, \in) .

Cvičení: Ověřte, že $<_L$ na $2 \times \omega$ není izomorfní $s (\omega, \in)$.

Definice 40. Maximo-lexikografické uspořádání na $\omega \times \omega$ je:

$$\max(m,n) = \begin{cases} m & n \in m \\ n & jinak \end{cases}$$

$$(m_1,n_1) <_{ML} (m_2,n_2)$$

$$\updownarrow$$

$$((\max(m_1,n_1) \in \max(m_2,n_2)) \lor ((\max(m_1,n_1) = \max(m_2,n_2))) \lor ((m_1,n_1) <_L (m_2,n_2))))$$

Cvičení: Ověřte, že $\omega \times \omega <_{ML}$ je izomorfní (ω, \in) .

Theorem 11. Jsou-li A,B spočetné množiny, pak $A \cup B$ a $A \times B$ jsou spočetné.

 $D\mathring{u}kaz$. $f:A\to\omega$ a $g:B\to\omega$ jsou bijekce. Definujeme $h:A\cup B\to\omega\times 2\approx\omega$ jako:

$$h(x) = \begin{cases} (f(x),0) & x \in A \\ (g(x),1) & x \in B \setminus A \end{cases}$$

h je prosté. Tedy $A \cup B \subseteq \omega \times 2 \approx \omega \wedge \omega \preceq A \preceq A \cup B$ a z Cantor-Bernsteinovy věty implikuje, že $\omega \approx A \cup B$. $A \times B$ definujeme $k : A \times B \to \omega \times \omega$ jako k((a,b)) = (f(a),g(b)), k je bijekce. Opět mám $A \times B \approx \omega \times \omega \approx \omega$.

Důsledek. \mathbb{Z}, \mathbb{Q} jsou spočetné. Kde \mathbb{Z} lze modelovat jako množinu dvojic, kde první je číslo a druhé bool jestli je kladné nebo ne. A \mathbb{Q} jako množinu dvojic (m,n) kde je číslo nejmenší společný dělitel (m,n)=1 a číslo je $\frac{m}{n}$.

Důsledek. Konečná sjednocení, konečné součiny jsou spočetné. **Dirichletův princip**: je-li A nespočetná, $A = A_1 \cup A_2 \cup \cdots \cup A_n$, potom aspoň jedna množina A_i je nespočetná. Konečná podmnožina $[A]^{<\omega}$ konečné posloupnosti jsou spočetné.

Cvičení: Je-li A nespočetné, B spočetná, C konečná, potom $A \cup C$, $A \setminus C$ jsou nespočetné a $B \cup C$, $B \setminus C$ jsou spočetné, $A \cup B$, $A \setminus B$ jsou nespočetné.

Poznámka. Spočetné sjednocení spočetně mnoha množin $\bigcup A$, kde A je spočetná a $(\forall a \in A)$ jsou spočetné.

Theorem 12 (Cantor).

$$x \prec \mathcal{P}(x)$$

 $D\mathring{u}kaz$. Pomocí diagonální metody. \preceq : $f(y)=\{y\}, f: x\to \mathcal{P}(x)$ je prosté. Definujme $y=\{t,t\in x\land t\notin f(t)\}$. Potom $y\subseteq \mathcal{P}(x)$ nemá vzor při f. Kdyby

$$f(v) = y : \begin{cases} v \in y & \text{pak } v \notin f(v) = y & \text{SPOR} \\ v \notin y = f(v) & \text{tedy } v \in y & \text{SPOR} \end{cases}$$

Důsledek. $\mathcal{P}(\omega)$ je nespočetná.

 $D\mathring{u}sledek.\ V$ není množina: $\mathcal{P}(V)\subseteq V,$ kdyby byla množina, pak by musela platit Cantorova věta.

Theorem 13.

$$\mathcal{P}(\omega) \approx \mathbb{R} \approx [0,1]$$

 $D\mathring{u}kaz$. Víme $\mathcal{P}(\omega) \approx^{\omega} 2$ podmnožiny \leftrightarrow charakteristická funkce \leftrightarrow posloupnosti (a_0,a_1,a_2,\dots) , kde $a_i \in \{0,1\}$. $[0,1] \approx^{\omega} 2: a \in [0,1]$ zapíšu v binární soustavě tak, že pokud je to nula, tak je to nekonečně nul a jinak vždy tak, aby obsahovalo nekonečno jedniček. \leftarrow použijeme trojkovou soustavu. $(a_0,a_1,a_2,\dots) \to a = \sum_{n=0}^{\infty} \frac{a_n}{3^{n+1}}$. Cantor-Bernstein $\to [0,1] \approx^{\omega} 2$. (pozn.: Cantorovo diskontinuum). $[0,1] \subseteq \mathbb{R}$, $\mathbb{E} \to [0,1]$ nějakou vhodnou funkci např. $\frac{\pi/2 - \arctan(x)}{\pi}$.

Poznámka. Množina algebraických čísel (tj. kořeny polynomů s racionálními koeficienty) je spočetná.

Cvičení: Pokrytí N intervaly.

- 1. Konečně.
 - $A \subseteq I_1 \cup I_2 \cup \cdots \cup I_n \text{ pak } \sum (b_i a_i \ge 1)$
- 2. Nekonečně.
 - $\forall \epsilon > 0 : \exists I_1, I_2, \dots, A \subseteq \bigcup I_i; \sum (b_i a_i) < \epsilon$

Poznámka. Hypotéza kontinua je, že každá nekonečná podmnožina \mathbb{R} je buď spočetná anebo ekvivalentní s \mathbb{R} .

6.3 Axiom výběru

6.3.1 Princip výběru

Pro každý rozklad r množiny x existuje **výběrová množina**. To jest $v \subseteq x$, pro kterou platí $(\forall u \in r)(\exists x)(v \cap u = \{x\})$.

Definice 41. Je-li X množina, pak funkce f definovaná na X splňující $(y \in X \land y \neq \emptyset) \rightarrow f(y) \in y$ se nazývá **selektor** na množině X.

6.3.2 10. Axiom výběru (AC - axiom of choice)

Na každé množině existuje selektor.

Ekvivalentně

Každou množinu lze dobře uspořádat. ≤ je trichotomická. Zornovo lemma.

Důsledek. • Každý vektorový prostor má bázi.

- Součin kompaktních topologických prostorů je kompaktní.
- Hahn-Banachova věta.
- Princip kompaktnosti.
- Banach Tarski (rozdělení koule na malé části a vytvoření dvou stejně velkých koulí).

Definice 42. (Indexový) soubor množin $\langle F_j; j \in J \rangle$. Kde F je zobrazení s definovaným obrazem J. Pro $j \in J$: $F_j = F(j)$. J je **indexová třída** a jeho prvky jsou **indexy**.

Lze definovat:

$$\begin{cases} \bigcup_{j \in J} F_j \text{ jako } \{x, (\exists j \in J) x \in F_j)\} \\ \bigcup_{j \in J} F_j = \bigcup Rng(F) \end{cases}$$

$$\begin{cases} \bigcap_{j \in J} F_j \text{ jako } \{x, (\forall j \in J) x \in F_j)\} \\ \bigcap_{j \in J} F_j = \bigcap Rng(F) \end{cases}$$

Kartézský součin souboru množin indexovaného množinou J je $X_{j\in J}F_j:\{f,f:J\to\bigcup_{j\in J}F_j\wedge(\forall j\in J)f(j)\in F_j\}.$

Lemma 23. Je-li J množina, pak XF_j je množina. Je-li $(\forall j \in J)F_j = Y$, pak $X_{j \in J}F_j = Y$.

 $D\mathring{u}kaz$. Axiom nahrazení. Rng(F) je množina, $\bigcup Rng(F)$ je množina. $^J\bigcup_{j\in J}F_j$ je množina. $XF_j\subseteq ^J\bigcup_{j\in J}F_j$.

Lemma 24. NTJE: (Následující tvrzení jsou si ekvivalentní.)

- 1. Axiom výběru.
- 2. Princip výběru.
- 3. Pro každou množinovou relaci s existuje funkce $f \subseteq s$ taková, že Dom(f) = Dom(s).

4. Kartézský součin $X_{i \in x} a_i$ neprázdného souboru neprázdných množin je neprázdný.

 $D\mathring{u}kaz$. $1\Rightarrow 2:r$ rozklad X, podle 1 existuje selektor f na r. Pak Rng(f) je výběrová množina. $2\Rightarrow 3:$ BÚNO: $s\neq\emptyset$. Vytvoříme rozklad s. $n=\{\{i\}\times s \mid \{i\}; i\in Dom(s)\}=\{\{(i,x),(i,x)\in s\}, i\in Dom(s)\}$. Výběrová množina n je funkce, která je podmnožina s a má stejný definiční obor. $3\Rightarrow 4:$ Máme soubor množin $< a_i, i\in x>$. Vytvoříme relaci $s=\{(i,y), i\in x \land y\in a_i\}$. Funkce $f\subseteq s:Dom(f)=Dom(s)=x$ je prvkem $X_{i\in x}a_i$. $4\Rightarrow 1:x$ množina. BÚNO: $x\neq\emptyset,\emptyset\in X.$ $ID\upharpoonright x$ určuje soubor $< y;y\in x>$. Každý prvek $X_{y\in x}y$ je selektor na x.

Lemma 25. Sjednocení spočetného souboru spočetných množin je spočetné. (Popřípadě je všude místo spočetné nejvýše spočetné.)

 $D\mathring{u}kaz$. Soubor $\langle B_j; j \in J \rangle$. BŮNO: $I = \omega$. Najděme prosté zobrazení $\bigcup_{j \in \omega} B_j$ do $\omega \times \omega$. Uvažujme soubor $\langle E_j; j \in \omega \rangle$ kde E_j je množina všech prostých zobrazení B_j do ω . Podle lemma 4) je $X_{j \in \omega} E_j$ neprázdný, tedy existuje soubor $\langle f_j; j \in \omega \rangle$, kde $f_j \in F_j$. Definujme $h; \bigcup_{j \in \omega} B_j \to \omega \times \omega$ jako $h(x) = (j, f_j(x))$. Kde j je nejmenší prvek ω pro který $x \in B_j$.

Poznámka. Bez AC je bezesporné ZF a to, že " $\mathbb R$ jsou spočetným sjednocením spočetných množin".

6.4 Princip maximality (PM)

- $AC \leftrightarrow PM$
- Je-li A množina uspořádaná relací \leq tak, že každý řetězec má horní mez.
- Pak pro každé $a \in A$ existuje maximální prvek $b \in A$ takový, že $a \leq b$.

Definice 43. $B \subseteq A$ je **řetězec** pokud B je lineárně uspořádaná \leq .

Poznámka. V aplikacích často pro (A, \subseteq) ; $A \subseteq \mathcal{P}(x)$ stačí ověřit, že $\bigcup B \in A$.

Cvičení: Ukažte pomocí PM: Je-li (A, \leq) uspořádaná množina, pak pro každý řetězec $B \subseteq A$ existuje maximální řetězec C splňující $B \subseteq C \subseteq A$.

6.4.1 Princip maximality II (PMS)

Je-li (A, \leq) uspořádaná množina, kde každý řetězec má suprémum, pak pro každé $a \in A$ existuje $b \in A$ maximální prvek splňující $a \leq b$.

Cvičení: Dokažte: PM↔PMS.

6.5 Princip trichotomie \leq (PT)

Pro každé dvě množiny x,y platí $x \leq y$ nebo $y \leq x$.

Lemma 26. $PM \rightarrow PT$.

 $D\mathring{u}kaz$. Definuji množinu $D=\{f,f \text{ prost\'e zobrazen\'e } \land Dom(f)\subseteq x \land Rng(f)\subseteq y\}$. (D,\subseteq) splňuje předpoklady PM. Tedy má maximální prvek g. Kdyby $x \setminus Dom(f) \neq \emptyset$ a $y \setminus Rng(f) \neq \emptyset$, pak lze g rozšířit o novou dvojici (u,v), spor s maximalitou g. Pokud Dom(f)=x, pak $x \leq y$. Pokud Rng(f)=y, pak g^{-1} je prost\'e zobrazen´e y do x, tedy $y \leq y$.

Cvičení: Sjednocení řetězce prostých zobrazení je prosté zobrazení.

6.6 Princip dobrého uspořádání (VVO)

- Každou množinu lze dobře uspořádat.
- Známo jako Zermelova věta.
- $AC \leftrightarrow VVO$

Lemma 27. $VVO \rightarrow AC$

 $D\mathring{u}kaz. \ x \neq \emptyset, \emptyset \notin x$ podle VVO máme dobré uspořádání na $\bigcup x$. Každý $y \in x$ je neprázdná podmnožina $\bigcup x$, tedy má nejmenší prvek $\min_{\leq} y$. Definujeme $f: x \to \bigcup x$ jako $f(y) = \min_{\leq}(y)$. Tato f je selektorem na množině x.

 $Cvi\check{c}en\acute{i}: PM \rightarrow VVO$

7. Ordinální čísla

7.1 "Typy dobře uspořádaných množin."

- Kardinální čísla ⊆ ordinální čísla. Mohutnosti dobře uspořádaných množin. S (AC) mohutnosti všech množin.
- Ordinální čísla jsou dobře uspořádaná ∈, platí pro ně princip transfinitní indukce.

Definice 44. Třída X je **tranzitivní** pokud $x \in X \rightarrow x \subseteq X$.

 $P\check{r}iklad. \ \omega$ i každé $n \in \omega$ jsou tranzitivní i V.

 $Cvi\check{c}eni: X \ tranzitivni \leftrightarrow \bigcup X \subseteq X$

Lemma 28. 1. Jsou-li X,Y tranzitivní pak $X \cap Y, X \cup Y$ jsou tranzitivní.

- 2. X třída, pro kterou každé $x \in X$ je tranzitivní množina, pak $\bigcap X$ a $\bigcup X$ jsou tranzitivní.
- 3. Je-li X tranzitivní třída, pa $k \in je$ tranzitivní na $X \leftrightarrow každý x \in X$ je tranzitivní množina.

Důkaz. 1. Je pozorování.

- 2. Plyne analogicky z 1.
- 3. Jako Cvičení.

Definice 45. Množina x je **ordinální číslo (ordinála)** pokud x je tranzitivní množina $a \in je$ dobré uspořádání na x. Třídu všech ordinálních čísel značíme On.

Příklad. ω a každé $n \in \omega$ je ordinální číslo.

Důsledek. Pro každou nekonečnou množinu x platí $\omega \leq x$.

Lemma 29. On je tranzitivní třída.

 $D\mathring{u}kaz. \ y \in x \in On$. Máme $y \leq x, \in$ je dobré ostré uspořádání na $y. \in$ je dobré ostré na x. Z lemma 3) je y tranzitivní množina. y je ordinála.

Lemma 30. \in je tranzitivní na On.

Lemma 31. $x,y \in On$, pak:

- 1. $x \notin x$
- $2. x \cap y \in On$
- 3. $x \in y \leftrightarrow x \subset y$

Důkaz. 1. Sporem z antireflexivity \in na x.

2. Přímo z definice.

3. \rightarrow z tranzitivity y a 1) $\leftarrow y \setminus x \neq \emptyset \subset y, y \setminus x$ má nejmenší prvek z. Platí z = x (Cvičeni).

Theorem 14. \in je dobré ostré uspořádání třídy On.

 $D\mathring{u}kaz$. Antireflexivita z lemma 1), tranzitivita pak dohromady dává ostré uspořádání. Trichotomie: $x \neq y \in On$ podle lemma 2) $x \cap y \in On$. Sporem kdyby $x \cap y \subset x \wedge x \subset y$ pak $x \cap y \in y \wedge x \cap y \in x$, tedy $x \cap y \in x \cap y$ a to je spor s lemma 1). Když tedy $x \cap y = x$ pak $x \subset y$ tedy $x \in y$. Z toho plyne, že se jedná o lineární uspořádání. Pro dobrost stačí existence minimálního prvku ($Cvi\check{c}eni$).

 $D\mathring{u}sledek.\ On$ je vlastní třída. Je-li X vlastní třída, tranzitivní, dobře uspořádaná \in , pakX=On.

7.1.1 Značení:

- $\alpha, \beta, \gamma, \dots$ jsou ordinální čísla.
- $\alpha < \beta$ místo $\alpha \in \beta$.
- $\alpha < \beta$ místo $\alpha \in beta \vee \alpha = \beta$.

Lemma 32. 1. Množina $x \subseteq On$ je ordinální číslo $\leftrightarrow x$ je tranzitivní.

- 2. $A \subseteq On, A \neq \emptyset$, pak $\bigcap A$ je nejmenší prvek A vzhledem $k \leq$.
- 3. $a \subseteq On \ mno\check{z}ina, \ pak \cup a \in On \ a \cup a = \sup_{a \in O} a$.

 $D\mathring{u}kaz$. 1. \rightarrow z definice, \leftarrow z věty.

- 2. Z věty a $\bigcap A = \inf A$.
- 3. $\bigcup a$ je tranzitivní, $\bigcup a \subseteq On$ podle 1) je ordinální číslo.

Důsledek. ω je supremum množiny všech přirozených čísel v On. Konečné ordinály jsou právě přirozená čísla.

Cvičení: Důkaz: $\bigcup \omega \in On \wedge \bigcup \omega = \sup_{\alpha} \omega$. Zbývá ověřit $\omega = \bigcup \omega$.

Lemma 33. $\alpha \in On$, pak $\alpha \cup \{\alpha\}$ je nejmenší ordinální číslo větší než α .

 $D\mathring{u}kaz$. $\alpha \subseteq On$ protože On je tranzitivní. $\alpha \cup \{\alpha\}$ je tranzitivní množina ordinálních čísel. Podle lemma 1) $\alpha \cup \{\alpha\}$ je ordinální číslo. Je-li $\beta \in On, \beta \in \alpha\{\alpha\}$, pak $\beta \in \alpha \vee \beta = \alpha$ tedy $\beta \subseteq \alpha$.

Definice 46. $\alpha \cup \{\alpha\}$ je **následník** α . α je **předchůdce** $\alpha \cup \{\alpha\}$. α je **izolované** pokud $\alpha = 0$ nebo pokud α má předchůdce, jinak je **limitní**.

Theorem 15 (O typu dobrého uspořádání.). *Je-li a množina dobře uspořádaná relací r,* pak existuje právě jedno ordinální číslo α a právě jeden izomorfismus (a,r) a (α, \leq) . (Bez důkazu.)

Definice 47. α je typ dobrého uspořádání r.

Poznámka. Na $On^2 = On \times On$ lze definovat lexikografické uspořádání i maximo-lexikografické uspořádání.

7.2 Princip transfinitní indukce

Je-li $A \subseteq On$ třída splňující $(\forall \alpha \in On)(\alpha \subseteq A \rightarrow \alpha \in A)$, potom A = On.

 $D\mathring{u}kaz$. Sporem: $On \setminus A \neq \emptyset$ díky dobrému uspořádání \in existuje nejmenší prvek $\alpha \in On \setminus A$. Potom každé $\beta \in \alpha$ už je prvkem A, tedy $\alpha \subseteq A$, z předpokladu věty $\alpha \in A$ a to je spor.

Theorem 16 (Druhá verze principu transfinitní indukce.). Je-li $A \subseteq On$ třída splňující:

- 1. $0 \in A$
- 2. Pro každý $\alpha \in On \ plati \ \alpha \in A \to \alpha \cup \{\alpha\} \in A$.
- 3. Je-li α lineární pak $\alpha \subseteq A \rightarrow \alpha \in A$.

Pak A = On.

Theorem 17 (O konstrukci transfinitních rekurzí.). *Je-li G* : $V \to V$ *třídové zobrazení*, pak existuje právě jedno zobrazení $F: On \to V$ splňující $(\forall \alpha \in On)F(\alpha) = G(F \upharpoonright \alpha)$. *Varianty:*

- $F(\alpha = G(F[\alpha])$
- $F(\alpha) = G(\alpha, F \upharpoonright \alpha)$
- $G_1(F(\beta))$ je-li α následník β , jinak $G_2(F[\alpha])$ je-li α limitní.

Důkaz. Je pomocí transfinitní indukce a axiomu nahrazení.

Příklad. m + n : F(m) = n + m se dá nadefinovat jako F(0) = n, F(S(m)) = S(F(m)). AC \rightarrow VVO: A množina g selektor na $\mathcal{P}(A)$ tak f(0) = g(A) a $f(\beta) = g(A - f[\beta]).$