

Universidad Nacional Autónoma de México Facultad de Ingeniería

PROGRAMA DE ESTUDIO

PROG	<u>RAMACIÓN ORIENTADA A</u>	A OBJETOS 1323	3	10
	Asignatura	Clave	Semestre	Crédito
INGENII	ERÍA ELÉCTRICA	INGENIERÍA EN COMPUTACIÓN	INGEN EN COM	NIERÍA IPUTACIÓN
	División	Departamento	Licenci	atura
Asign	atura:	Horas/semana:	Horas/seme	estre:
Oblig	atoria X	Teóricas 4.0	Teóricas	64.0
Optat	iva	Prácticas 2.0	Prácticas	32.0
		Total 6.0	Total	96.0
Modalidad: (Curso teórico-práctico			
Seriación obl	igatoria antecedente: Est	tructura de Datos y Algoritmos I		
Temario		liotecas reusables, empleando un o		
nún NÚN	M. NOMBRE			
1.			нов	RAS
2.	El paradigma orientado a	obietos	HOF	
4.	El paradigma orientado a UML	objetos	2	4.0
	UML		12	4.0 2.0
3. 4.	UML Tipos, expresiones y conti		12 10	4.0
3.	UML Tipos, expresiones y contr Herencia y polimorfismo	rol de flujo	12 10 8	4.0 2.0 0.0
3. 4.	UML Tipos, expresiones y contr Herencia y polimorfismo Manejo de excepciones y	rol de flujo	12 10 8	4.0 2.0 0.0 8.0
3. 4. 5.	UML Tipos, expresiones y contr Herencia y polimorfismo	rol de flujo	12 10 8 8	4.0 2.0 0.0 8.0 8.0
3. 4. 5. 6.	UML Tipos, expresiones y contr Herencia y polimorfismo Manejo de excepciones y Flujo de entrada y salida	rol de flujo	12 10 8 8	4.0 2.0 0.0 8.0 8.0 8.0
3. 4. 5. 6. 7.	UML Tipos, expresiones y contr Herencia y polimorfismo Manejo de excepciones y Flujo de entrada y salida Programación de hilos	rol de flujo	12 10 8 8 8 2	4.0 2.0 0.0 8.0 8.0 4.0
3. 4. 5. 6. 7.	UML Tipos, expresiones y contr Herencia y polimorfismo Manejo de excepciones y Flujo de entrada y salida Programación de hilos	rol de flujo	12 10 8 8 8 2 10	4.0 2.0 0.0 8.0 8.0 4.0 0.0

1 El paradigma orientado a objetos

Objetivo: El alumno interpretará los conceptos de la programación orientada a objetos para aplicarlo a eventos del mundo real.

Contenido:

- 1.1 Elementos básicos del paradigma orientado a objetos.
 - 1.1.1 Tipos de datos primitivos y abstractos.
 - **1.1.2** Objetos.
- 1.2 Propiedades básicas del paradigma orientado a objetos.
 - 1.2.1 Abstracción.
 - 1.2.2 Cohesión.
 - **1.2.3** Encapsulamiento.
 - 1.2.4 Modularidad.
 - 1.2.5 Herencia.
 - 1.2.6 Polimorfismo.
 - 1.2.7 Acoplamiento.
 - **1.2.8** Jerarquía de clases.

2 UML

Objetivo: El alumno clasificará las diferentes vistas en el diseño orientado a objetos para aplicarlo en la solución de problemas.

Contenido:

- 2.1 Diseño estático.
- 2.2 Diseño dinámico.

3 Tipos, expresiones y control de flujo

Objetivo: El alumno aplicará las técnicas y herramientas de la programación orientada a objetos para la solución de problemas.

Contenido:

- 3.1 Generalidades.
 - 3.1.1 Identificadores.
 - **3.1.2** Palabras reservadas.
 - 3.1.3 Comentarios.
 - 3.1.4 Descripción de una clase.
 - **3.1.5** Descripción de un objeto.
- 3.2 Tipos de datos.
 - **3.2.1** Primitivos y su jerarquía.
 - 3.2.2 Referencias o instancias.
 - 3.2.3 Conversiones entre tipos primitivos (moldeado o casting).
 - **3.2.4** Operadores aritméticos.
 - **3.2.5** Operadores de asignación.
 - **3.2.6** Operadores relacionales.
 - **3.2.7** Operadores especiales (in/decremento (post o pre), concatenación, acceso a variables y métodos y de agrupación).
 - 3.2.8 Operadores a nivel de bits.

3.2.9 Operadores lógicos.

- 3.3 Arreglos.
- **3.4** Tipos y ámbito de las variables.
 - 3.4.1 Elementos estáticos.
 - **3.4.2** Elementos constantes.
- 3.5 Tipos de clases (públicas, sin modificador, abstractas, finales e internas).
- 3.6 Estructuras de selección.
 - **3.6.1** Estructura if-else.
 - **3.6.2** Estructura switch-case.
 - **3.6.3** Estructura ternaria.
- 3.7 Estructuras de selección
 - **3.7.1** Estructura while.
 - **3.7.2** Estructura do-while.
 - **3.7.3** Estructura for.

4 Herencia y polimorfismo

Objetivo: El alumno aplicará las diferentes propiedades de la programación orientada a objetos para la resolución de problemas.

Contenido:

- 4.1 Herencia.
- 4.2 Método constructor.
- 4.3 Polimorfismo (moldeado o casting entre tipos referencia o instancias).
- **4.4** Referencias a this y a la clase base.
- **4.5** Modificadores de acceso (encapsulamiento).
- **4.6** Tipos de clases: abstractas, comunes y finales.
- 4.7 Interfaces.
- 4.8 Paquetes y documentación.

5 Manejo de excepciones y errores

Objetivo: El alumno clasificará los diferentes tipos de errores y excepciones para generar programas y aplicaciones con calidad.

Contenido:

- **5.1** Definición y diferencia entre error y excepción.
- **5.2** Jerarquía de clases de errores.
- **5.3** Estructura try-catch-finally.
- **5.4** Manejo de errores y excepciones.

6 Flujo de entrada y salida

Objetivo: El alumno construirá programas con el principio de flujo de entrada y salida para procesar información a partir de un problema resuelto.

Contenido:

- **6.1** Fundamentos de entrada y salida.
- **6.2** Jerarquía de clases de los flujos de datos.
- **6.3** Manipulación de archivos y carpetas.

- **6.4** Flujos de entrada de datos.
 - **6.4.1** Lectura de archivo.
 - **6.4.2** Lectura de teclado.
- **6.5** Flujos de salida de datos (escritura de archivo).
- 6.6 Procesamiento del flujo.

7 Programación de hilos

Objetivo: El alumno aplicará los conceptos avanzados de la programación orientada a objetos para la resolución de problemas complejos.

Contenido:

- 7.1 Definición de hilo.
- 7.2 Ciclo de vida del hilo.
- 7.3 Control básico del hilo.
- 7.4 Clases para el manejo de hilos.
- 7.5 Planificador y prioridad.
- 7.6 Métodos sincronizados.

8 Introducción a patrones

Objetivo: El alumno aplicará los patrones de diseño adecuados para aplicarlo la resolución de problema de ingeniería.

Contenido:

- **8.1** Definición de patrón de diseño.
- 8.2 Diseñando problemas.
- 8.3 Patrones de creación.
- **8.4** Patrones estructurales.
- **8.5** Patrones de comportamiento.

Bibliografía básica

Temas para los que se recomienda:

DEITEL, Paul, DEITEL, Harvey

Java How to Program (early objects) plus MyProgrammingLab

Todos

with Pearson eText 9th edition

New Jersey

Prentice Hall, 2011

DEITEL, Paul, DEITEL, Harvey

C++ How to Program

Todos

8th edition

New Jersey

Prentice Hall, 2011

DEITEL, Paul, DEITEL, Harvey

C# 2010 for Programmers

Todos

4th edition

New Jersey

Prentice Hall, 2010

Bibliografía complementaria	Temas para los que se recomiend
Alfaomega, 2012	
Buenos Aires	
Algoritmos a fondo: con implementación en C y JAVA	Todos
SZNAJDLEDER, Pablo	
McGraw-Hill Osborne Media, 2012	
Boston	
Java Programming (Oracle Press)	Todos
SARANG, Poornachandras	
O Reilly Media, 2004	
Boston	
3rd edition	
Java Threads	7
OAKS, Scott, WONG, Henry	
O Reilly Media, 2006	
Boston	
Learning UML 2.0	2
MILES, Russ, HAMILTON, Kim	
Prentice Hall, 2004	
New Jersey	
Object-Oriented Analysis and Design and Iterative Development 3rd edition	
Applying UML and Patterns: An Introduction to	2, 8
LARMAN, Craig	
Cambridge University Press, 2011	
Software Architectures Washington	
Software Modeling and Design: UML, Use Cases, Patterns, and	2, 8
GOMAA, Hassan	
Addison-Wesley Professional, 1994	
Software Boston	
Design Patterns: Elements of Reusable Object-Oriented	•
$\mathbf{D} + \mathbf{D} = \mathbf{E} \mathbf{I} + \mathbf{C} \mathbf{D} + \mathbf{I} \mathbf{I} + \mathbf{O} \mathbf{I} + \mathbf{I} \mathbf{I}$	8

da:

ARLOW, Jim, NEUSTADT, Ila UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design 2nd edition

2

Boston

Addison-Wesley Professional, 2005

(6/7)

2

FLANAGAN, David

Java In A Nutshell Todos

5th edition

New Jersey

O Reilly Media, 2005

FOWLER, Martin

UML Distilled: A Brief Guide to the Standard Object

Modeling Language 3th edition

Washington

Addison-Wesley Professional, 2003

-	7	77	
	1	′′)	

Sugerencias didácticas			
Exposición oral	X	Lecturas obligatorias	X
Exposición audiovisual	X	Trabajos de investigación	X
Ejercicios dentro de clase	X	Prácticas de taller o laboratorio	X
Ejercicios fuera del aula	X	Prácticas de campo	
Seminarios		Búsqueda especializada en internet	
Uso de software especializado		Uso de redes sociales con fines académicos	
Uso de plataformas educativas			
Forma de evaluar			
Exámenes parciales	X	Participación en clase	X
Exámenes finales	X	Asistencia a prácticas	X
Trabajos y tareas fuera del aula	X		

Perfil profesiográfico de quienes pueden impartir la asignatura

Licenciatura en Ingeniería en Computación, Ciencias de Computación, Matemáticas Aplicadas o una carrera similar. Deseable haber realizado estudios de posgrado, contar con conocimientos y experiencia en el área de ciencias de la computación, contar con experiencia docente o haber participado en cursos o seminario de iniciación en la práctica docente.