Multi-Task Feature Selection using the Multiple Inclusion Criterion (MIC)

Paramyeer S. Dhillon¹ Brian Tomasik² Dean Foster³ Lyle Ungar¹

> ¹Computer and Information Science ³Statistics, Wharton School University of Pennsylvania, Philadelphia, PA, U.S.A

²Computer Science Department Swarthmore College, Swarthmore, PA, U.S.A

ECML-PKDD 2009

Outline

- Introduction
- Previous Work
- MIC: The Model
- Experiments
- Conclusion

Multiple Inclusion Criterion (MIC)

- Addresses Joint feature selection for related tasks
 - A set of related tasks, with shared feature space
 - Large number of available features, only a handful are finally relevant.
 - Goal is better predictive accuracy and interpretability of selected features
 - Example tasks: predict size of the tumor and prognosis, using gene expression values.

Multiple Inclusion Criterion (MIC)

- Addresses Joint feature selection for related tasks
 - A set of related tasks, with shared feature space
 - Large number of available features, only a handful are finally relevant.
 - Goal is better predictive accuracy and interpretability of selected features
 - Example tasks: predict size of the tumor and prognosis, using gene expression values.
- MIC imposes sparsity at two levels ($\ell_0 \ell_0$)
 - Small number of features selected for each task (first ℓ_0)
 - Small number of tasks associated with each feature (second ℓ_0)

Previous Work

- BBLasso [Obozinski, Taskar and Jordan '09]
 - \ell_1/\ell_2 penalty to enforce "Block sparsity", feature added to all or none of the tasks.
 - Convex problem.
 - Exact solution to approximate problem

Previous Work

- BBLasso [Obozinski, Taskar and Jordan '09]
 - \ell_1/\ell_2 penalty to enforce "Block sparsity", feature added to all or none of the tasks.
 - Convex problem.
 - Exact solution to approximate problem
- Proposed method: MIC
 - uses $\ell_0 \ell_0$ penalty
 - non-convex problem, but greedy algorithm yields good approximation in practice.
 - Approximate solution to exact problem

General Methodology

- MIC uses MDL based coding scheme to specify a penalized likelihood method.
- The Total Description Length (TDL) can be written as:

$$S = S_E + S_M$$

 $S_E \longmapsto$ # Bits for encoding the residual errors given the model.

 $S_M \longmapsto \#$ Bits for encoding the model

General Methodology

- MIC uses MDL based coding scheme to specify a penalized likelihood method.
- The Total Description Length (TDL) can be written as:

$$S = S_E + S_M$$

 $S_E \longmapsto \#$ Bits for encoding the residual errors given the model. $S_M \longmapsto \#$ Bits for encoding the model

 Maximize reduction in Description Length when adding a feature 'j' to the model:

$$\max \quad \Delta S_i = \Delta S_{iE} - \Delta S_{iM}$$

Simple ℓ_0 regression - Independent MIC (baseline)

• Assume a simple linear regression model: $Y = WX + \epsilon$

ECML-PKDD 2009

Simple ℓ_0 regression - Independent MIC (baseline)

- Assume a simple linear regression model: $Y = WX + \epsilon$
- In this case: $S_E = -\log\left(exp(-rac{\sum_{i=1}^n(y_i-wx_i)^2}{2\sigma^2})
 ight)$
- $S_M = log(m) + 2$ i.e. bits to code the feature (RIC Penalty) and its coefficient (AIC Penalty).

Coding Schemes for MIC

• The goal is to maximize $\Delta S_j^k = \Delta S_{jE}^k - \Delta S_{jM}^k$ i.e. the reduction in TDL by adding a feature 'j' to a subset k of h tasks.

Coding Schemes for MIC

- The goal is to maximize $\Delta S_j^k = \Delta S_{jE}^k \Delta S_{jM}^k$ i.e. the reduction in TDL by adding a feature 'j' to a subset k of h tasks.
- The cost to code S_{jE}^k i.e. the decrease in error by adding the feature to the model of k tasks is:
- $S_E = -\log(P(Y|X, w))$ $P(Y|X, w) = \frac{1}{((2\pi)^h|\Sigma|)^{\frac{n}{2}}} \exp(-\frac{1}{2}\sum_{i=1}^n [(y_i - wx_i)^T \Sigma^{-1} (y_i - wx_i)])$

where Σ is the $h \times h$ covariance matrix.

7/14

Coding Schemes for MIC contd ...

- The cost to code the model is S_{iM}^k is $I_l + I_H + I_\theta$
- Cost to code:
 - The feature being included: $I_l = log(m)$.
 - How many and which of the h tasks have that feature $I_H = log(h) + log(h)$
 - The coefficient of the feature being included: $I_{\theta} = 2 \times k$.

Variations of MIC

Full MIC

- A feature is added to all or none of the tasks
- Similar to BBLasso [Obozinski, Taskar & Jordan '09]
- I_H bits saved in the coding

ECML-PKDD 2009

Variations of MIC

Full MIC

- A feature is added to all or none of the tasks
- Similar to BBLasso [Obozinski, Taskar & Jordan '09]
- I_H bits saved in the coding

Independent MIC

- Each task is modeled in isolation.
- I_H bits saved in the coding

9/14

Variations of MIC

Full MIC

- A feature is added to all or none of the tasks
- Similar to BBLasso [Obozinski, Taskar & Jordan '09]
- I_H bits saved in the coding

Independent MIC

- Each task is modeled in isolation.
- I_H bits saved in the coding

Partial MIC

A feature can be added to all, none or a subset of the tasks.

Experimental Setup

Name	# Tasks	# Obs.	# Features	Source
	h	n	m	
Yeast Dataset	20	104	6715	[Litvin et. al. '09]
Breast Cancer	5	100	5000	[van't Veer et. al. '02]

- We compared the three versions of MIC (Partial, Full and Independent) against BBLasso [Obozinski et. al. '09] and AndoZhang [Ando et. al. '05]
- For BBLasso and AndoZhang we used their standard
 implementations from Berkeley Transfer Learning Toolkit.

Experiments contd...

Table: 5 fold CV accuracies. *Note:* AndoZhang's NA values are due to the fact that it does not explicitly select features.

Method	Test Error	# Features Selected	# Active Coefs.			
Yeast Dataset						
Partial MIC	$\textbf{0.38} \pm \textbf{0.04}$	4 ± 0	22 ± 4			
Full MIC	$\boldsymbol{0.39 \pm 0.04}$	3 ± 0	64 ± 4			
Independent	$\textbf{0.41} \pm \textbf{0.05}$	9 ± 1	9 ± 1			
AndoZhang	$\boldsymbol{0.39 \pm 0.03}$	NA	NA			
BBLasso	$\textbf{0.43} \pm \textbf{0.03}$	63 ± 14	$\textbf{1268} \pm \textbf{279}$			

Experiments contd...

Table: 5 fold CV accuracies. *Note:* AndoZhang's NA values are due to the fact that it does not explicitly select features.

Method	Test Error	# Features Selected.	# Active Coefs.			
Breast Cancer Dataset						
Partial MIC	$\textbf{0.33} \pm \textbf{0.08}$	2 ± 0	3 ± 0			
Full MIC	$\textbf{0.37} \pm \textbf{0.08}$	2 ± 0	11 ± 1			
Independent	$\textbf{0.36} \pm \textbf{0.08}$	2 ± 0	2 ± 0			
AndoZhang	$\textbf{0.44} \pm \textbf{0.03}$	NA	NA			
BBLasso	$\textbf{0.33} \pm \textbf{0.08}$	12 ± 4	61 ± 19			

Conclusion

- MIC gives flexible coding schemes for doing "joint feature selection" in related tasks.
- Coding schemes can easily be customized to fit the problem at hand
- They capture the spirit of Bayesian priors
- Significantly (5% level, paired t-test) better than AndoZhang, on Yeast and Breast Cancer datasets.
- Comparable in accuracy to BBLasso, but provides simpler and sparser models.

ECML-PKDD 2009

Thanks

