Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 _ Aula_01 - Revisão

Tema: Sistemas de Numeração e representações de dados

Representação de dados

Função contínua em um intervalo.

Função discreta em um intervalo.

Computadores Analógicos x Digitais

Analógicos - trabalham com elementos representados por grandezas físicas com estados contínuos (corrente, tensão, pressão, vazão etc.)

Digitais - trabalham com elementos representados por valores numéricos com estados discretos (ou valores distribuídos ao longo de determinado intervalo de tempo)

Sistemas de Numeração

Exemplo:

Sistema decimal

$$1x2^7 + 0x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$
 - forma canônica $128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 = 163_{(10)}$

Sistema binário

1010 0011(2)

- número na base 2

representado apenas com algarismos {0,1}

27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	potências da base 2
128	64	32	16	8	4	2	1	valor equivalente da potência
1	0	1	0	0	0	1	1	coeficientes

Equivalentes em sistemas com potências de 2

$$1010\ 0011_{(2)} = [1010] \quad [0011]_{(16)} = A3_{(16)} \text{ e A}_{(16)} = 10 \text{ em hexadecimal} \qquad \text{(grupos de 4)} \\ = 10x16^1 + 3x16^0 \quad = 163_{(10)} \qquad \text{com algarismos} \\ \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$$

$$1010\ 0011_{(2)} = [10]\ [10]\ [00]\ [11]_{(4)} = 2203_{(4)}$$
 em quaternário (grupos de 2)
$$= 2x4^3 + 2x4^2 + 0x4^1 + 3x4^0 = 163_{(10)}$$
 com algarismos
$$\{0,1,2,3\}$$

$$1010\ 0011_{(2)} = [\underline{0}10]\ [100]\ [011]_{(8)} = 243_{(8)} \qquad \qquad \text{em octal} \qquad \qquad \text{(grupos de 3)} \\ = 2x8^2 + 4x8^1 + 3x8^0 \quad = 163_{(10)} \qquad \qquad \text{com algarismos} \\ \{0,1,2,3,4,5,6,7\}$$

OBS: Caso necessário, completar com zeros (o) para formar grupos de mesmo tamanho.

Conversões entre bases

1.) Converter decimal para binário

Sistema decimal

$$163_{(10)} = 1x10^2 + 6x10^1 + 3x10^0$$

- na forma canônica

Para converter um valor decimal (base=10) para binário (base=2), usar divisões sucessivas por 2 e tomar os restos na **ordem inversa** em que forem calculados:

operação quociente resto

$$163/2 = 81 + 1 \text{ (último)}$$

$$81 / 2 = 40 + 1$$

$$40 / 2 = 20 + 0$$

$$20 / 2 = 10 + 0$$

$$10 / 2 = 5 + 0$$

 $5 / 2 = 2 + 1$

$$2 / 2 = 1 + 0$$

$$1 / 2 = 0 + 1$$
 (primeiro)

Sistema binário

1010 0011(2)

- número na base 2

ou

27	2 ⁶	2 ⁵	2^{4}	2 ³	2 ²	2 ¹	2 ⁰	potências da base 2
128	64	32	16	8	4	2	1	valor equivalente da potência
1	0	1	0	0	0	1	1	coeficientes

2.) Converter decimal para binário

Para converter um valor binário (base=2) para decimal (base=10), usar a soma dos produtos de cada algarismo pela potência da base equivalente à posição:

Sistema binário

1010 0011(2)

- número na base 2

Sistema decimal

$$1x2^7 + 0x2^6 + 1x2^5 + 0x2^4 + 0x2^3 + 0x2^2 + 1x2^1 + 1x2^0$$
 - forma canônica

$$128 + 0 + 32 + 0 + 0 + 0 + 2 + 1 = 163_{(10)}$$

3.) Converter decimal para base 4 (quaternário)

Para converter um valor decimal para a base 4 (quaternário):

operação quociente resto 163 / 4 = 40 + 3 (último) 40 / 4 = 10 + 0 10 / 4 = 2 + 2

2 / 4 = 0 + 2 (primeiro)

Sistema quaternário

2203₍₄₎ - número na base 4

4.) Converter decimal para base 8 (octal)

Para converter um valor decimal para a base 8 (octal):

operação quociente resto

163 / 8 = 20 + 3 (último)

20 / 8 = 2 + 4

2 / 8 = 0 + 2 (primeiro)

Sistema octal

243₍₈₎ - número na base 8

5.) Converter decimal para base 16 (hexadecimal)

Para converter um valor decimal para a base 16 (hexadecimal):

operação quociente resto 163 / 16 = 10 + 3 (último) 10 / 16 = 0 + 10 (primeiro, substituindo pelo algarismo A=10)4

Sistema hexadecimal

A3₍₁₆₎ - número na base 16

6.) Converter da base 4 para decimal

Sistema quaternário

$$2203_{(2)} = 2x4^3 + 2x4^2 + 0x4^1 + 3x4^0$$
 - número na base 4 na forma canônica = $128 + 32 + 0 + 3 = 163_{(10)}$

7.) Converter da base 8 para decimal

Sistema octal

$$243_{(8)} = 2x8^2 + 4x8^1 + 3x8^0$$
 - número na base 8 na forma canônica = $128 + 32 + 3 = 163_{(10)}$

8.) Converter da base 16 para decimal

Sistema hexadecimal
$$A3_{(16)} = (A=10)x16^1+3x16^0 - número na base 16 forma canônica$$
$$= 160 + 3 = 163_{(10)}$$

9.) Converter entre bases potências múltiplas sem passar para decimal

As bases que são potências múltiplas de outra compartilham propriedades especiais, como a possibilidade de conversões entre elas, sem passar pela base decimal:

Sistema binário (base=2) para quaternário (base=4= 2^2): 1010 0011₍₂₎ = [10][10] [00][11]₍₄₎ = 2203₍₄₎ agrupar de 2 em 2 e substituir pelos dígitos equivalentes

Sistema binário (base=2) para quaternário (base=8= 2^3): 1010 0011₍₂₎ = [010][100][011]₍₈₎ = 243₍₈₎ agrupar de 3 em 3 e substituir pelos dígitos equivalentes

OBS: Caso necessário, completar com zeros para formar os grupos.

Sistema binário (base=2) para quaternário (base= $16=2^4$): 1010 0011₍₂₎ = [1010] [0011]₍₁₆₎ = A3₍₁₆₎ e A₍₁₆₎=10 agrupar de 4 em 4 e substituir pelos dígitos equivalentes

ou usar uma tabela com as principais equivalências entre essas bases de numeração.

X ₍₁₀₎	X ₍₂₎	X ₍₄₎	X ₍₈₎	X ₍₁₆₎
decimal	binário	quaternário	octal	hexadecimal
00	0000 0000	00 00	000	00
01	0000 0001	00 01	001	01
02	0000 0010	00 02	002	02
03	0000 0011	00 03	003	03
04	0000 0100	00 10	004	04
05	0000 0101	00 11	005	05
06	0000 0110	00 12	006	06
07	0000 0111	00 13	007	07
08	0000 0000	00 20	000	08
09	0000 0001	00 21	001	09
10	0000 0010	00 22	002	0A
11	0000 0011	00 23	003	0B
12	0000 0100	00 30	004	0C
13	0000 0101	00 31	005	0D
14	0000 0110	00 32	006	0E
15	0000 0111	00 33	007	0F

Representações de potências de 2.

Х	2 ^X	X ₍₁₀₎	X ₍₂₎	X ₍₄₎	X ₍₈₎	X ₍₁₆₎
0	2 ⁰	1	1	1	1	1
1	2 ¹	2	10	2	2	2
2	2 ²	4	100	10	4	4
3	2 ³	8	1000	20	10	8
4	2 ⁴	16	1 0000	100	20	10
5	2 ⁵	32	10 0000	200	40	20
6	2 ⁶	64	100 0000	1000	100	40
7	2 ⁷	128	1000 0000	2000	200	80
8	2 ⁸	256	1 0000 0000	10000	400	100
9	2 ⁹	512	10 0000 0000	20000	1000	200
10	2 ¹⁰	1024	100 0000 0000	100000	2000	400

Termos associados à representação de dados em binário

Termo	Quantidade	Observação					
bit	1	" <u>b</u> inary dig it " – dígito binário (0 ou 1)					
nibble	4 bits	dígito hexadecimal equivalente (semiocteto)					
byte	8 bits	octeto (Werner Buchholz, 1956) – unidade de armazenamento					
word	xx bits	dependente do sistema (ex.: 14, 16, 32, 54, 64 etc.)					
kiloBytes (kB)	1024 Bytes	(ex.: arquivo texto)					
MegaBytes (MB)	1024 kiloBytes (kB)	1 048 576 bytes (ex.: arquivo mp3)					
GigaBytes (GB)	1024 MegaBytes (MB)	1 073 741 824 bytes (ex.: filme)					
TeraBytes (TB)	1024 GigaBytes (GB)	1 099 511 627 776 bytes (ex.: 800 filmes)					
PetaBytes (PB)	1024 TeraBytes (TB)	1 125 899 906 842 624 bytes (ex.: acervo do Google)					
ExaBytes (EB)	1024 PetaBytes (PB)	(ex.: acervo da Internet)					
ZetaBytes (ZB)	1024 ExaBytes (EB)						
YottaByes (YB)	1024 ZetaByes (ZB)						

Representação de símbolos por códigos equivalentes (Tabela ASCII - 8 bits)

(2)			0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	(10)		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
		(16)	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0000	0	0	^@	^A	^B	^C	^D	^E	^F	^G	^Н	4	۸J	^K	^L	^M	^N	^O
0001	16	1	^P	^Q	^R	^ S	^t	^U	^\	^W	^X	^Y	^Z	^[^\	^]	^^	٨
0010	32	2		!	"	#	\$	%	&	6	()	*	+	,	-		1
0011	48	3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
0100	64	4	@	Α	В	С	D	Ε	F	G	Н	ı	J	K	L	M	N	0
0101	80	5	Р	Q	R	S	Т	U	٧	W	X	Υ	Z	[١]	^	_
0110	96	6	`	а	b	С	d	е	f	g	h	i	j	k	ı	m	n	0
0111	112	7	р	q	r	s	t	u	V	w	X	у	z	{	I	}	~	←

 $'0' = 0011\ 0000_{(2)} = 30_{(16)} = 48_{(10)}$

'A' = 0100 0001₍₂₎ = $41_{(16)}$ = $65_{(10)}$

'a' = 0110 0001₍₂₎ = $61_{(16)}$ = $97_{(10)}$ "Computador" = 43 6F 6D 70 75 74 61 64 7F $72_{(16)}$

Sistemas de Numeração - Operações aritméticas

Exemplos:

1.) Adição

Sistema binário

Relações fundamentais:

$$0_{(2)} + 0_{(2)} = 0_{(2)}$$

 $0_{(2)} + 1_{(2)} = 1_{(2)}$
 $1_{(2)} + 0_{(2)} = 1_{(2)}$
 $1_{(2)} + 1_{(2)} = 10_{(2)}$ (zero e "vai-um" para a próxima potência)

Aplicação:

1111 \leftarrow "vai-um" 101101₍₂₎ \leftarrow operando 1 111₍₂₎ \leftarrow operando 2

______ 110100₍₂₎ ← resultado

Sistema quaternário

Aplicação:

Sistema octal

Aplicação:

Sistema hexadecimal

Aplicação:

2.) Subtração

Relações fundamentais:

$$0_{(2)}$$
 - $0_{(2)}$ = $0_{(2)}$
 $0_{(2)}$ - $1_{(2)}$ = ???
 $1_{(2)}$ - $0_{(2)}$ = $1_{(2)}$
 $1_{(2)}$ - $1_{(2)}$ = $0_{(2)}$
 $1_{(2)}$ - $1_{(2)}$ = $0_{(2)}$ (zero e "vem-um" para a potência considerada)
 $1_{(2)}$ - $1_{(2)}$ = $0_{(2)}$ (zero e "vem-um" para as potências necessitadas)

Aplicação:

OBS:

Quando se "toma emprestado" na potência seguinte, um valor unitário é debitado na potência que "empresta", e "creditado" na potência que o recebe, compensada a diferença entre essas potências.

3.) Multiplicação

Sistema binário

Relações fundamentais:

$$\begin{array}{lll} 0_{(2)} * 0_{(2)} = & 0_{(2)} \\ 0_{(2)} * 1_{(2)} = & 0_{(2)} \\ 1_{(2)} * 0_{(2)} = & 0_{(2)} \\ 1_{(2)} * 1_{(2)} = & 1_{(2)} \end{array}$$

Aplicação:

11100001(2)

← resultado

4.) Divisão

Sistema binário

Aplicação:

-	11100001 ₍₂₎ 101 ₍₂₎ 101 1 ₍₂₎	-	11100001 ₍₂₎ 101 ₍₂₎ 101 10 ₍₂₎
	010		0100
-	11100001 ₍₂₎ 101 ₍₂₎ 101 101 ₍₂₎	-	11100001 ₍₂₎ 101 ₍₂₎ 101 1011 ₍₂₎
-	01000 101	-	01000 101
	00011	-	000110 101
			0000010
-	11100001 ₍₂₎ 101 ₍₂₎ 101 10110 ₍₂₎	-	11100001 ₍₂₎ 101 ₍₂₎ 101 101101 ₍₂₎
-	01000 101	-	01000 101
-	000110 101	-	000110 101
	00000101	-	00000101 101
			00000000

Sistemas de Numeração – Representações de dados

A representação de dados numéricos necessita, por vezes, utilizar uma indicação especial para sinal (positivo e negativo). Para isso, é comum reservar o primeiro bit (o mais a direita para isso), em valores inteiros ou reais. Entretanto, a representação de valores negativos necessitará de ajustes a fim de que as operações aritméticas produzam resultados coerentes.

Representações para tipos de dados comuns (em Java)

Tipos		Intervalo	Tamanho
boolean		[false:true]	1 byte
false, true			
byte		[-128 : 127]	1 byte
0, 0x00		[0:255] (sem sinal)	
char		[0:65535]	2 bytes
'0','\u0000'	<u> </u>		(Unicode)
short		[-32768 : 32767]	2 bytes
0	± a	(sinal+amplitude)	
int		[-2 ³¹ : 2 ³¹ -1]	4 bytes
0	± a	(sinal+amplitude)	
long		[-2 ⁶³ : 2 ⁶³ -1]	8 bytes
0L	± a	(sinal+amplitude)	
float		[-3.4e ⁻³⁸ : 3.4e ³⁸]	4 bytes
0.0f	± e 1.m IEEE754	(sinal+amplitude+1	.mantissa)
double		[-1.7e ⁻³⁰⁸ : 1.7e ³⁰⁸]	8 bytes
0.0, 0.0e0	± e 1.m IEEE754	(sinal+amplitude+1.	.mantissa)
String			n bytes
"", "0", <i>null</i>			

Representação binária dependente do número de bits.

A representação binária depende da quantidade de bits disponíveis e dos formatos escolhidos.

Para os valores inteiros, por exemplo, pode-se utilizar o formato em que o primeiro bit, à esquerda, para o sinal e o restante para a amplitude, responsável pela magnitude (grandeza) do valor representado.

Exemplo:

$$5_{(10)} = 101_{(2)}$$

$$+5_{(10)} = \underline{0}101_{(2)}$$

$$-5_{(10)} = \underline{1}101_{(2)}$$

Essa represesentação, contudo, não é conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

o que ultrapassa a quantidade de bits originalmente escolhida e, obviamente, não é igual a zero em sua amplitude.

Complemento de 1

Uma das possíveis representações para valores negativos pode ser aquela onde se invertem os valores individuais de cada bit.

Exemplo:

```
5_{(10)} = 101_{(2)}
+5_{(10)} = 0101_{(2)}
- 5_{(10)} = 1010_{(2)} (complemento de 1)
```

Essa represesentação, contudo, também não é conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

```
\begin{array}{rcl}
+5_{(10)} &= & \underline{\mathbf{0}}101_{(2)} \\
-5_{(10)} &= & \underline{\mathbf{1}}010_{(2)} \\
& \underline{\phantom{0}}\\
-0_{(10)} &= & \underline{\mathbf{1}}111_{(2)} \rightarrow +0_{(10)} = & \underline{\mathbf{0}}000_{(2)}
\end{array}
```

o que mantém a quantidade de bits originalmente escolhida, mas gera duas representações para zero (-0) e (+0), o que requer ajustes adicionais nas operações.

Complemento de 2

Outra das possíveis representações para valores negativos pode ser aquela onde se invertem os valores individuais de cada bit, e acrescenta-se mais uma unidade ao valor encontrado, buscando completar o que falta para atingir a próxima potència da base.

Exemplo:

```
5_{(10)} = 101_{(2)}
+5_{(10)} = 0101_{(2)}
- 5_{(10)} = 1010_{(2)} (complemento de 1, ou C<sub>1</sub>(5))
- 5_{(10)} = 1011_{(2)} (complemento de 2, ou C<sub>2</sub>(5))
```

Essa represesentação é bem mais conveniente para realizar operações, pois ao adicionar ambos, obtém-se:

com uma única representação para zero, mas com um excesso (1) que não é comportado pela quantidade de bits originalmente escolhida. Porém, se desprezado esse excesso, o valor poderá ser considerado correto, com a ressalva de que a quantidade de bits deverá ser rigorosamente observada (ou haverá risco de transbordamento – OVERFLOW).

Para efeitos práticos, o tamanho da representação deverá ser sempre indicado, e as operações deverão ajustar os operandos para a mesma quantidade de bits (de preferência, a maior possível).

Exemplo:

```
\begin{array}{lll} 5_{(10)} &=& 101_{(2)} \\ +5_{(10)} &=& \underline{\textbf{0}} 101_{(2)} \\ -5_{(10)} &=& \underline{\textbf{1}} 010_{(2)} \quad \text{(complemento de 1, com 4 bits ou C}_{14} \, (5)) \\ -5_{(10)} &=& \underline{\textbf{1}} 011_{(2)} \quad \text{(complemento de 2, com 4 bits ou C}_{24} \, (5)) \\ \\ logo, \\ C_{15} \, (5) &=& C_1 \, (\underline{\textbf{0}} 0101_{(2)}) = \underline{\textbf{1}} 1010_{(2)} \\ C_{25} \, (5) &=& C_2 \, (\underline{\textbf{0}} 0101_{(2)}) = \underline{\textbf{1}} 1011_{(2)} \\ \\ C_{18} \, (5) &=& C_1 \, (\underline{\textbf{0}} 00000101_{(2)}) = \underline{\textbf{1}} 1111011_{(2)} \\ \\ C_{28} \, (5) &=& C_2 \, (\underline{\textbf{0}} 00000101_{(2)}) = \underline{\textbf{1}} 11111011_{(2)} \end{array}
```

De modo inverso, dado um valor em complemento de 2, se desejado conhecer o equivalente positivo, basta retirar uma unidade e substituir os valores individuais de cada dígito binário.

Exemplo:

```
1011<sub>(2)</sub> (complemento de 2, com 4 bits)

1011<sub>(2)</sub> - 1 = 1010<sub>(2)</sub> e invertendo 0101<sub>(2)</sub> = +5<sub>(10)</sub>

logo, 1011<sub>(2)</sub> = -5<sub>(10)</sub>

Portanto, para diferentes quantidades de bits:

11011<sub>(2)</sub> = 11010<sub>(2)</sub> = 00101<sub>(2)</sub> = 5<sub>(10)</sub>

11111011<sub>(2)</sub> = 11111010<sub>(2)</sub> = 000000101<sub>(2)</sub> = 5<sub>(10)</sub>
```

Subtração mediante uso de complemento

Operar a subtração mediante uso de complemento pode ser mais simples do que realizar a operação diretamente, como visto anteriormente.

Aplicação:

OBS:

Quando se "toma emprestado" na potência seguinte, um valor unitário é debitado na potência que "empresta", e "creditado" na potência que o recebe, compensada a diferença entre essas potências.

Aplicação do complemento:

Para aplicar o complemento, a primeira providência é normalizar os operandos na mesma quantidade de bits, reservado o bit de sinal.

Em seguida, calcular e substituir o subtraendo pelo complemento:

C2 (
$$0\ 000111_{(2)}$$
) = C1 ($0\ 000111_{(2)}$) + $1_{(2)}$ = $1\ 111000_{(2)}$ + $1_{(2)}$ = $1\ 111001_{(2)}$
 $0\ 101001_{(2)}$
 $0\ 111_{(2)}$ $0\ -1\ 111001_{(2)}$

Para finalizar, operar a **soma** dos operandos, respeitando a quantidade de bits:

Observar que o bit que exceder a representação deverá ser desconsiderado, por não haver onde acomodá-lo. Ainda poderá haver erro por transbordamento (OVERFLOW).

Preparação

Vídeos recomendados:

Como preparação para o início das atividades, recomenda-se assistir os seguintes vídeos:

http://www.youtube.com/user/henriquencunha/videos http://blog.rustice.com.br/2010/10/fundamentos-representacao-de-dados-e.html http://www.youtube.com/watch?v=Ojd770C2GTk

Exercícios:

Orientação geral:

Apresentar solução apenas em formato texto (.txt).

Outras formas de solução, se entregues, serão avaliadas como atividades extras (.v, .c, .java, .xls). As funções poderão ser desenvolvidas em Verilog, C ou Java (ver modelo Guia_01.java), e as execuções deverão apresentar as respostas e/ou gravá-las em arquivo texto.

Planilhas deverão ser programadas e/ou usar funções nativas. Descartá-las como texto formatado. Exemplos em Verilog serão fornecidos como ponto de partida.

01.) Fazer as conversões de decimal para binário:

a.) $25_{(10)} = X_{(2)}$

b.) $50_{(10)} = X_{(2)}$

c.) $713_{(10)} = X_{(2)}$

d.) $125_{(10)} = X_{(2)}$

e.) $365_{(10)} = X_{(2)}$

01a.) mediante uso de uma função dec2bin(x)

01b.) mediante uso de uma planilha

Exemplo:

Excilipi	0.									
X ₍₁₀₎	2 ⁷	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	Σ	X ₍₂₎
	128	64	32	16	8	4	2	1		(usar dígitos)
163	1	0	1	0	0	0	1	1	128+32+2+1	10100011

01c.) mediante uso de um programa em Verilog

```
/*
   Guia_0101.

*/
module Guia_0101;
// define data
   integer   x = 13; // decimal
   reg [7:0] b = 0; // binary

// actions
   initial
   begin : main
   $display ( "Guia_0101 - Tests" );
   $display ( "x = %d" , x );
   $display ( "b = %8b", b );
   b = x;
   $display ( "b = %8b", b );
   end // main

endmodule // Guia_0101
```

02.) Fazer as conversões de binário para decimal:

```
a.) 11001_{(2)} = X_{(10)}
b.) 10110_{(2)} = X_{(10)}
c.) 100101_{(2)} = X_{(10)}
d.) 111011_{(2)} = X_{(10)}
e.) 111001_{(2)} = X_{(10)}
```

02a.) mediante uso de uma função bin2dec(x)

02b.) mediante uso de uma planilha

Exemplo:

X ₍₁₀₎ (soma)	2 ⁷ 128	2 ⁶ 64	2 ⁵ 32	2 ⁴ 16	2 ³ 8	2 ² 4	2 ¹ 2	2 ⁰	Σ	X ₍₂₎
163	1	0	1	0	0	0	1	1	128+32+2+1	10100011

02c.) mediante uso de um programa em Verilog

endmodule // Guia_0102

03.) Fazer as conversões de decimal para a base indicada:

```
a.) 77_{(10)} = X_{(4)}
b.) 45_{(10)} = X_{(8)}
c.) 67_{(10)} = X_{(16)}
d.) 171_{(10)} = X_{(16)}
e.) 135_{(10)} = X_{(16)}
```

03a.) mediante uso de uma função dec2base(base, x)

03b.) mediante uso de uma planilha

Exemplo:

Usar divisões sucessivas pela base (2) e juntar os restos na ordem inversa:

X ₍₁₀₎	X ₍₁₀₎ /2 (quociente)	X ₍₁₀₎ %2 (resto)	X ₍₂₎
<u>163</u>	81	1	1
81	40	1	1 1
40	20	0	0 11
20	10	0	0 011
10	5	0	0 0011
5	2	1	1 00011
2	1	0	0 100011
1	0	1	1 0100011
0	(parar)		<u>10100011</u>

03c.) mediante uso de um programa em Verilog

endmodule // Guia_0103

04.) Fazer as conversões de base entre as bases indicadas por agrupamento:

a.)
$$11010_{(2)} = X_{(4)}$$

b.)
$$10011_{(2)} = X_{(8)}$$

c.)
$$101101_{(2)} = X_{(16)}$$

d.)
$$110111_{(2)} = X_{(8)}$$

e.)
$$110011_{(2)} = X_{(4)}$$

DICAS: Para conferir, comparar os valores decimais equivalentes.

a.) mediante uso de uma função bin2base(x, base)

b.) mediante uso de uma planilha

Exemplos:

X ₍₁₀₎	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2 ⁰	Σ	nova base
	128	64	32	16	8	4	2	1		
163	1	0	1	0	0	0	1	1	128+32+2+1	10100011 ₍₂₎
	1	0	1	0	0	0	1	1		X ₍₄₎
	2 ¹	20	2 ¹	20	2 ¹	20	2 ¹	20	(grupos de 2)	
		4 ³		4 ²		4 ¹		4 ⁰	(em evidência)	
		64		16		4		1		(usar dígitos)
163	(1*2+	0)=2	(1*2+	0)=2	(0+	0)=0	(1*2+	1)=3	2*64+2*16+0*4+3	2203 ₍₄₎
	1	0	1	0	0	0	1	1		X ₍₁₆₎
	2 ³	2 ²	2 ¹	2 ⁰	2 ³	2 ²	2 ¹	2 ⁰	(grupos de 4)	
				16 ¹		•		16 ⁰	(em evidência)	
				16				1		(usar dígitos)
163	(1*8+	0+	1*2+	0)=10	(0+	+0+	1*2+	1)=3	(10=A)*16+3	A3 ₍₁₆₎
	1	0	1	0	0	0	1	1		X ₍₈₎
	-01	0 0	^ 2	-01	00	2 ²	2 ¹	20	(arupos do 2)	
	2 ¹	20	2 ²	2 ¹	20	2-		Z°	(grupos de 3)	
	2'	8 ²	22	2'	8 ¹	2-	2	8 ¹	(grupos de 3) (em evidência)	
	21		22	2'		Z ^z	2			(usar dígitos)

04c.) mediante uso de um programa em Verilog

05.) Converter entre símbolos e códigos de representação:

endmodule // Guia 0105

```
a.) "PUC-Minas" = X_{(16\_ASCII)}
    b.) "2019-2"
                                                                                                                        = X_{(16\_ASCII)}
   c.) "Brasil"
                                                                                                                          = X_{(2\_ASCII)}
    d.) 078 111 105 116 101_{(10)} = X_{(ASCII)}
    e.) 42 2E 48 2E 2D 4D 47_{(16)} = X_{(ASCII)}
05a.) mediante uso de funções ASCII2hex(x) e hex2ASCII(xx)
05b.) mediante uso de uma planilha
05c.) mediante uso de um programa em Verilog
                                        Guia_0105
                                */
                                module Guia_0105;
                               // define data
                                             integer x = 13; // decimal
                                             reg [7:0] b
                                                                                                                                         ; // binary
                                             reg [0:2][7:0] s = "PUC"; // 3 characters (8 bits)
                                // actions
                                             initial
                                                begin: main
                                                     $display ( "Guia_0105 - Tests" );
                                                     d = d = x 
                                                     display ( "b = \%8b", b );
                                                     sigma = sigm
                                                     b = x;
                                                     display ("b = [\%4b] [\%4b] = \%h \%h", b[7:4], b[3:0], b[7:4], b[3:0]);
                                                     s[0] = "-";
                                                     s[1] = 8'b01001101; // 'M'
                                                     s[2] = 71;
                                                     sigma = sigm
                                                  end // main
```

```
Modelo em Java
import IO.*;
  Arquitetura de Computadores I - Guia_01.
  Compilar com: javac -cp ./;IO.jar Guia_01.java
  Executar com: java -cp ./;IO.jar Guia_01
             _____ Matricula: ____
public class Guia_01
{
  Converter valor decimal para binario.
  @return binario equivalente
  @param value - valor decimal
 */
 public static String dec2bin (int value)
  return ( "0" );
 } // end dec2bin ()
  Converter valor binario para decimal.
  @return decimal equivalente
  @param value - valor binario
 public static int bin2dec (String value)
  return ( -1 );
 } // end bin2dec ()
  Converter valor decimal para base indicada.
  @return base para a conversao
  @param value - valor decimal
 public static String dec2base (int value, int base)
```

return ("0");
} // end dec2base ()

```
Converter valor binario para base indicada.
 @return valor equivalente na base indicada
 @param value - valor binario
 @param base - para a conversao
*/
public static String bin2base (String value, int base)
 return ( "0" );
} // end bin2base ( )
 Converter valor em ASCII para hexadecimal.
 @return hexadecimal equivalente
 @param value - caractere(s) em codigo ASCII
public static String ASCII2hex (String value)
 return ( "0" );
} // end ASCII2hex ()
 Converter valor em hexadecimal para ASCII.
 @return caractere(s) em codigo ASCII
 @param value - hexadecimal equivalente(s)
*/
public static String hex2ASCII (String value)
 return ( "0" );
} // end hex2ASCII ()
```

```
Acao principal.
 public static void main (String [] args)
  IO.println ( "Guia_01 - Java Tests" );
  IO.println ( "Nome: _____ Matricula: ____ " );
  IO.println ();
  IO.equals (dec2bin ( 25), "10101");
  IO.equals (dec2bin ( 50), "10101");
  IO.equals (dec2bin (713), "10101");
  IO.equals (dec2bin (125), "10101");
  IO.equals (dec2bin (365), "10101");
  IO.println ("1. errorTotalReportMsg = "+IO.errorTotalReportMsg());
  IO.equals (bin2dec ( "11001"), 0 );
  IO.equals (bin2dec ( "10110"), 0 );
  IO.equals (bin2dec ("100101"), 0 );
  IO.equals (bin2dec ("110011"), 0 );
  IO.equals (bin2dec ("111001"), 0 );
  IO.println ("2. errorTotalReportMsg = "+IO.errorTotalReportMsg());
  IO.equals (dec2base (77, 4), "10101");
  IO.equals (dec2base (45, 8), "10101");
  IO.equals (dec2base (67, 16), "10101");
  IO.equals (dec2base (171, 16), "10101");
  IO.equals (dec2base (135, 16), "10101");
  IO.println ("3. errorTotalReportMsg = "+IO.errorTotalReportMsg());
  IO.equals (bin2base ("11010", 4), "10101");
  IO.equals (bin2base ("10011", 8), "10101");
  IO.equals (bin2base ("101101", 16), "10101");
  IO.equals (bin2base ("110111", 8), "10101");
  IO.equals (bin2base ("110011", 4), "10101");
  IO.println ("4. errorTotalReportMsg = "+IO.errorTotalReportMsg());
  IO.equals (ASCII2hex ("PUC-Minas"), "10101");
                                     ), "10101" );
  IO.equals (ASCII2hex ("2019-2"
  IO.equals (ASCII2hex ("Brasil"
                                   ), "10101" );
  // OBS.: A seguir, exemplos apenas para o primeiros, acrescentar todos os outros códigos propostos!
  IO.equals (hex2ASCII ("78"
                                 ), "10101" ); // OBS.: 78 e' o primeiro decimal
  IO.equals (hex2ASCII ("42"
                                     ), "10101" ); // OBS.: 42 e' o primeiro hexadecimal (5e)!
  IO.println ("5. errorTotalReportMsg = "+IO.errorTotalReportMsg());
  IO.println ();
  IO.pause ("Apertar ENTER para terminar.");
 } // end main
} // end class
```