

Projected Global SWE Changes from HighResolution Land Surface Simulations

Melissa Wrzesien^{1,2}, Sujay Kumar¹, Wanshu Nie³, and Justin Pflug^{1,2}

¹NASA Goddard Space Flight Center, Greenbelt, MD, USA ²University of Maryland, College Park, MD, USA ³Johns Hopkins University, Baltimore, MD, USA

Earth Information System efforts open and accessible science for improving understanding of the earth system

ElS is a NASA-wide effort that integrates NASA's Earth Science observations and modeling capabilities to produce new science and support decision making.

Fire

Freshwater

Sea Level Rise

Greenhouse Gases

Earth Information System efforts open and accessible science for improving understanding of the earth system

ElS is a NASA-wide effort that integrates NASA's Earth Science observations and modeling capabilities to produce new science and support decision making.

- Synthesize information about the water cycle by integrating available remote sensing data
 with advanced models and data fusion tools
- Provide an open science environment for addressing water security challenges facing the society
- Work with relevant stakeholders to provide actionable information about freshwater availability, quality, variability, and extremes

See https://eis.mysmce.com/ for more information!

Visit the project website at eis.mysmce.com/

Open science tools

- Development of Jupyter
 Notebooks for case studies allows scientific users to interact with the data and perform analyses
- Open science encourages more community engagement
- EIS data shared at SnowEx
 Hackweek modeling tutorial

Hackweek tutorials available here: https://snowex.hackweek.io/intro.html

Interactive Discoveries

When Fires Disturb Eco-Hydrology

Fire, either natural or otherwise, is a pervasive ecological and hydrological disturbance that sparks extensive impacts to underlying vegetation, soil, and the ecosystem. Fires modulate ecosystem evapotranspiration (ET) by directly affecting

ediately after burning, thereby reducing

Explore the data at:

https://www.earthdata.nasa.gov/dashboard/eis/discoveries/tws-trends

EIS focus areas

Fire-hydrology interactions

Science translation with AI

Inland and coastal flooding

Water security assessments

Shifts in water cycle fluxes and storage

Downscaling CMIP6 Global Climate Models

- NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP)
- Downscales CMIP6 GCMs to ¼
 degree resolution
- Daily data available from 1950 2100
- Downscaled using the Bias-Correction Spatial Disaggregation (BCSD) method
- Data available on the NASA Center for Climate Simulation (NCCS)
- 4 Shared Socioeconomic Pathways (SSPs) scenarios

Figure. Spatial pattern of years exceeding the 2-degree warming with respect to the baseline period (1950-1979). The 15-year moving average of the ensemble median of near-surface air temperature from 35 CMIP6 models (SSP585 scenario) was used in detecting the years exceeding the 2-degree warming.

Figure from https://www.nasa.gov/nex/gddp

Model setup and description

- Simulations run using the NASA Land Information System (LIS)
- Global model domain at 10 km spatial resolution
- Forcing data provided by the NEX-GDDP downscaled projections
 - SSP2-4.5
 - SSP5-8.5
- Daily output of land surface variables, including total precipitation, SWE, and temperature
- 23 ensemble members

Average March SWE 1995-2014

Average March SWE 2075-2094

Results: SWE maps

Comparing ensembleaveraged (23 members) March conditions in historical (1995-2014) and end-century (2075-2094) decadal snapshot periods

Results: Projected **SWE** differences

- SWE decreases in midlatitudes, in coastal areas, and in mountain areas
- Some increases in SWE in higher latitudes

Zooming in:

Projected SWE differences for Western United States

Upper Colorado River Basin average SWE – historical and projected

Average SWE for: 1950s: 22.1 ± 13 mm

2090s: 13.4 ± 10 mm

Columbia River Basin average SWE – historical and projected

Average SWE for:

1950s: 100.5 ± 30 mm

2090s: 67.8 ± 25 mm

Average March SWE 2075-2094

Summary

- Earth Information System efforts are pushing for open and accessible science
 - Designed for scientific and nonscientific community
- Preliminary results from CMIP6forced land surface model simulations suggest widespread declines in March SWE in midlatitude mountain regions
- Ongoing work considers changes rain-on-snow frequency and intensity

Average March SWE 2075-2094

Thank you!

melissa.l.wrzesien@nasa.gov

