TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI THÀNH PHỐ HỒ CHÍ MINH KHOA CƠ BẢN – BỘ MÔN TOÁN

BÀI GIẢNG ĐẠI SỐ TUYẾN TÍNH

CHƯƠNG I. MA TRẬN, ĐỊNH THỨC, HỆ PHƯƠNG TRÌNH TUYẾN TÍNH

§3. Tính khả nghịch và hạng của ma trận

ThS. Đinh Tiến Dũng

NỘI DUNG

- 1. Ma trận khả nghịch.
- 2. Tính chất của ma trận nghịch đảo.
- 3. Cách tìm ma trận nghịch đảo.
- 4. Hạng của ma trận.
- 5. Ma trận bậc thang.

§3. Tính khả nghịch và hạng của ma trận

I. MA TRẬN KHẢ NGHỊCH

Dịnh nghĩa

Ma trận vuông A cấp n được gọi là khả nghịch nếu có ma trận vuông B cấp n sao cho $AB = BA = I_n$. Khi đó B được gọi là ma trận nghịch đảo của A . Ký hiệu: $B = A^{-1}$.

*VD: Cho
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$. Chứng tỏ rằng $B = A^{-1}$.

Giải Ta thấy: A.
$$B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$

$$B.A = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

$$V\hat{a}y A.B = B.A = I_2 \ n\hat{e}n B = A^{-1}.$$

II. CÁC TÍNH CHẤT

- 1) Ma trận A khả nghịch \Leftrightarrow **det** $A \neq 0$. Khi đó A gọi là ma trận không suy biến.
- 2) Ma trận A không khả nghịch ⇔ det A = 0. Khi đó A gọi là ma trận suy biến.
- 3) Ma trận nghịch đảo của A nếu có thì duy nhất.
- 4) Nếu A khả nghịch thì A^{-1} cũng khả nghịch và $(A^{-1})^{-1} = A$.
- 5) Nếu A khả nghịch thì A^m cũng khả nghịch và $(A^m)^{-1} = (A^{-1})^m$ $(m \in N^*)$.
- 6) Nếu A,B khả nghịch thì kA $(k \neq 0)$ cũng khả nghịch và $(AB)^{-1}=B^{-1}A^{-1}$ đồng thời $(kA)^{-1}=\frac{1}{k}A^{-1}$.
- 7) Cho ma trận A khả nghịch, khi đó $det(A^{-1}) = \frac{1}{det(A)}$

* Ví dụ: Cho
$$A = \begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix}$$
. Tìm ma trận A^{-1} và chứng tỏ rằng:
$$det(A^{-1}) = \frac{1}{\det(A)}.$$

Giải

$$det(A) = \begin{vmatrix} 1 & -1 \\ 0 & 2 \end{vmatrix} = 2 \quad (1)$$

$$A^{-1} = \frac{1}{det(A)} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix} \Rightarrow det(A^{-1}) = \begin{bmatrix} 1 & \frac{1}{2} \\ 0 & \frac{1}{2} \end{bmatrix} = \frac{1}{2} \quad (2)$$

Từ (1) và (2)
$$\Rightarrow det(A^{-1}) = \frac{1}{det(A)}$$
.

III. CÁCH TÌM MA TRẬN NGHỊCH ĐẢO

Phương pháp dùng phần bù đại số

Phương pháp biến đổi sơ cấp

Phương pháp ma trận khối(tham khảo)

1) Phương pháp dùng phần bù đại số

* Định lý

Cho ma trận vuông $A=[a_{ij}]_n$ cấp n. Nếu det $A\neq 0$ thì A có ma trận nghịch đảo và

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \vdots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{bmatrix}.$$

Trong đó $A_{ij} = (-1)^{i+j} det(M_{ij})$ và gọi là phần bù đại số của phần tử a_{ij} .

* Ví dụ 1. Tìm ma trận nghịch đảo (nếu có) của $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$.

Giải

Ta thấy det $A = -1 \neq 0 \implies A$ khả nghịch.

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 5 & 3 \\ 0 & 8 \end{vmatrix} = 40; \ A_{12} = (-1)^{1+2} \begin{vmatrix} 2 & 3 \\ 1 & 8 \end{vmatrix} = -13; \quad A_{13} = (-1)^4 \begin{vmatrix} 2 & 5 \\ 1 & 0 \end{vmatrix} = -5;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 0 & 8 \end{vmatrix} = -16; \ A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 3 \\ 1 & 8 \end{vmatrix} = 5; \ A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & 2 \\ 1 & 0 \end{vmatrix} = 2;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 2 & 3 \\ 5 & 3 \end{vmatrix} = -9; \ A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 2 & 3 \end{vmatrix} = 3; \ A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & 2 \\ 2 & 5 \end{vmatrix} = 1.$$

$$A^{-1} = \frac{1}{\det A} \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \frac{1}{-1} \begin{bmatrix} 40 & -16 & -9 \\ -13 & 5 & 3 \\ -5 & 2 & 1 \end{bmatrix} = \begin{bmatrix} -40 & 16 & 9 \\ 13 & -5 & -3 \\ 5 & -2 & -1 \end{bmatrix}.$$

* Chú ý: Phần bù đại số của dòng viết lên cột.

* Ví dụ 2. Tìm ma trận nghịch đảo của $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ biết $ad-bc \neq 0$.

Giải

Ta thấy $det(A) = ad - bc \neq 0 \implies A khả nghịch.$

$$A_{11} = (-1)^{1+1}.det(d) = d; A_{12} = (-1)^{1+2}.det(c) = -c;$$

$$A_{21} = (-1)^{2+1}$$
. $det(b) = -b$; $A_{22} = (-1)^{2+2}$. $det(a) = a$.

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} \frac{d}{ad - bc} & \frac{-b}{ad - bc} \\ \frac{-c}{ad - bc} & \frac{ad - bc}{ad - bc} \end{bmatrix}.$$

Quy tắc: Khi tìm ma trận nghịch đảo của ma trận vuông cấp hai $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ ta ghi nhớ: "Chính đổi vị trí-Phụ đổi dấu rồi chia det(A)".

* Ví dụ 3. Cho các ma trận
$$A = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$, $C = \begin{bmatrix} 2 & 1 \\ -2 & 4 \end{bmatrix}$.

- a) Tìm ma trận nghịch đảo của A;
- b) Tìm ma trận X sao cho: AX + B = C;

Giải
a)
$$Ta \ c\'o \ det(A) = -2. Vậy \ A^{-1} = \begin{bmatrix} \frac{4}{-2} & \frac{-3}{-2} \\ \frac{-2}{-2} & \frac{1}{-2} \end{bmatrix} = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & \frac{-1}{2} \end{bmatrix}.$$

b)
$$AX + B = C \Leftrightarrow AX = C - B \Leftrightarrow A^{-1}(AX) = A^{-1}(C - B)$$

 $\Leftrightarrow (A^{-1}A).X = A^{-1}(C - B) \Leftrightarrow I_2.X = A^{-1}(C - B) \Leftrightarrow X = A^{-1}(C - B)$
 $\Leftrightarrow X = \begin{bmatrix} -2 & \frac{3}{2} \\ 1 & \frac{-1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -5 & \frac{7}{2} \\ 2 & \frac{-3}{2} \end{bmatrix}.$

BÀI TẬP NHÓM

Tìm ma trận nghịch đảo (nếu có) của ma trận sau bằng phương pháp phần bù đại số: $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}$.

Đáp án:

2) Phương pháp biến đổi sơ cấp (Gauss-Jordan)

Muốn tìm ma trận nghịch đảo của ma trận vuông cấp **n** không suy biến A ta làm như sau:

- Ghép A với ma trận đơn vị I_n lập ma trận mở rộng $[A|I_n]$.
- Thực hiện các phép biến đổi sơ cấp trên dòng để biến đổi ma trận $[A|I_n]$ sao cho A biến thành ma trận đơn vị I_n . Khi đó I_n sẽ biến thành A^{-1} . Từ đó trích ra được A^{-1} .

$$[A|I_n] \xrightarrow{\text{Bdsc trên hàng}} [I_n|A^{-1}] \longrightarrow \text{Suy ra } A^{-1}$$

- * Chú ý: Các phép biến đổi trên ma trận sau gọi là PBĐSC trên hàng:
 - Đổi chỗ hai dòng cho nhau.
 - Nhân một dòng với một số k khác 0.
 - Nhân một dòng với một số k bất kỳ rồi cộng ngay vào dòng khác.

* Ví dụ 1. Tìm nghịch đảo (nếu có) của ma trận $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{pmatrix}$.

$$\operatorname{Ta} \operatorname{co} \left[A \middle| I_{3} \right] = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 2 & 0 & 1 & 0 \\ 1 & 2 & 3 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{-d_{1} + d_{2} \to d_{2}} \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 & 1 \end{bmatrix}$$

$$-\frac{d_2 + d_3 \to d_3}{\begin{vmatrix} 0 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} } \begin{bmatrix} 1 & 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{-d_3 + d_1 \to d_1} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ -d_3 + d_2 \to d_2 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 1 - 1 \\ 0 & 1 & 2 - 1 \\ 0 & -1 & 1 \end{bmatrix}$$

Vậy ma trận nghịch đảo của
$$A$$
 là: $A^{-1} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.

* Ví dụ 2. Tìm nghịch đảo của ma trận
$$A = \begin{pmatrix} 6 & 3 & 2 \\ 1 & 1 & 0 \\ -2 & 0 & -1 \end{pmatrix}$$
.

$$[A|I_{3}] = \begin{bmatrix} 6 & 3 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ -2 & 0 & -1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{d_{1} \leftrightarrow d_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 6 & 3 & 2 & 1 & 0 & 0 \\ -2 & 0 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\xrightarrow{-6d_{1} + d_{2} \to d_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -3 & 2 & 1 & -6 & 0 \\ 0 & 2 & -1 & 0 & 2 & 1 \end{bmatrix} \xrightarrow{2d_{2} \to d_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -6 & 4 & 2 & -12 & 0 \\ 0 & 6 & -3 & 0 & 6 & 3 \end{bmatrix}$$

$$\xrightarrow{d_{2} + d_{3} \to d_{3}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -6 & 4 & 2 & -12 & 0 \\ 0 & 0 & 1 & 2 & -6 & 3 \end{bmatrix} \xrightarrow{-4d_{3} + d_{2} \to d_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & -6 & 0 & -6 & 12 & -12 \\ 0 & 0 & 1 & 2 & -6 & -3 \end{bmatrix}$$

$$\xrightarrow{-\frac{1}{6} d_{2} \to d_{2}} \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & 2 & -6 & -3 \end{bmatrix} \xrightarrow{-d_{2} + d_{1} \to d_{1}} \begin{bmatrix} 1 & 0 & 0 & -1 & 3 & 2 \\ 0 & 1 & 0 & 1 & -2 & 2 \\ 0 & 0 & 1 & 2 & -6 & -3 \end{bmatrix} = [I_{3}|A^{-1}]$$

Vậy ma trận nghịch đảo của A là:
$$A^{-1} = \begin{bmatrix} -1 & 3 & 2 \\ 1 & -2 & 2 \\ 2 & -6 & -3 \end{bmatrix}$$
.

BÀI TẬP NHÓM

Tìm ma trận nghịch đảo (nếu có) của ma trận sau bằng phương

$$ph\'{a}p~Gauss~A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 2 & 1 & 1 \end{pmatrix}.$$

Đáp án:

IV. HẠNG CỦA MA TRẬN

Dịnh nghĩa

Cho ma trận A cỡ m_{\times} n. Hạng của ma trận A là cấp cao nhất của các định thức con khác không của A. Ký hiệu rank(A) hay r(A).

- * Chú ý: Định thức con của A là định thức được trích ra từ ma trận A bằng cách lấy giao của k dòng bất kỳ với k cột bất kỳ của A.
 - $r(A) \le min\{m,n\}; r(A) = 0 \ n\acute{e}u \ A=O; r(A^t) = r(A).$
- * Ví dụ 1: Tìm hạng của ma trận $A = \begin{pmatrix} 1 & -4 & -2 \\ 0 & 0 & 0 \\ 0 & -0 & -3 \end{pmatrix}$.

Lấy các phần tử thuộc giao của 2 dòng d_1 và d_3 với 2 cột c_1 và c_3 ta lập được định thức con cấp hai: $\begin{vmatrix} 1 & 2 \\ 0 & 3 \end{vmatrix} = 3 \neq 0$.

Đây là định thức con cấp cao nhất khác không của A. Vậy r(A)=2.

Giải

Lấy các phần tử thuộc giao của 3 dòng d_1 , d_2 , d_3 giao với 3 cột c_1 , c_2 , c_3 ta lập được định thức con cấp 3:

$$\begin{vmatrix} 2 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & -3 \end{vmatrix} = 2.1.(-3) = -6 \neq 0$$

Đây là định thức con cấp 3, định thức con cấp cao nhất khác không của A. Vậy r(A)=3.

V. MA TRẬN BẬC THANG

1) Định nghĩa

Ma trận $A_{m \times n}$ được gọi là ma trận bậc thang (dòng) nếu thoả mãn các điều kiện sau:

- i. Các hàng khác không (có phần tử khác không) luôn nằm phía trên các hàng không (có tất cả các phần tử đều bằng 0) nếu có.
- ii. Trên hai hàng khác không thì phần tử khác không đầu tiên ở hàng dưới (tính từ trái qua) luôn nằm ở bên phải cột chứa phần tử khác không đầu tiên của hàng trên.
- * VD. Ma trận nào sau đây là ma trận bậc thang dòng? Vì sao?

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 8 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 3 & 1 & 4 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

A là ma trận bậc thang dòng, B không phải vì vi phạm đkiện ii.

* Ví dụ: Ma trận nào sau đây là ma trận bậc thang dòng? Vì sao?

$$C = \begin{bmatrix} 0 & 3 & 1 & 4 & 0 \\ 0 & 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad D = \begin{bmatrix} 0 & 3 & -1 & 4 & 0 \\ 0 & 0 & 0 & -2 & 3 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Vậy C là ma trận bậc thang dòng, D không phải vì vi phạm điều kiện *ii*.

2) Tính chất

- Mọi ma trận đều có thể đưa về ma trận bậc thang dòng bằng các phép biến đổi sơ cấp.
- Hạng của ma trận bậc thang (dòng) đúng bằng số dòng khác không của ma trận ấy.
- · Các phép biến đổi sơ cấp không làm thay đổi hạng của ma trận.

3. Tìm hạng của ma trận bằng cách biến đổi sơ cấp

Muốn tìm hạng của ma trận A bất kỳ, ngoài cách dùng định nghĩa ta còn cách biến đổi sơ cấp rất hiệu quả. Phương pháp này gồm các bước:

- * Bước 1. Sử dụng các phép biến đổi sơ cấp để đưa A về dạng bậc thang dòng. Các phép biến đổi sơ cấp:
 - Đổi chỗ hai dòng (cột) cho nhau.
 - Nhân một dòng (cột) với một số k khác 0.
 - Nhân một dòng (cột) với một số k bất kỳ rồi cộng ngay vào dòng (cột) khác.
- * Bước 2. Kết luận hạng của ma trận A đúng bằng số dòng khác 0 của ma trận bậc thang.

* Ví dụ 1. Tìm hạng ma trận sau:
$$A = \begin{bmatrix} 0 & 4 & 5 & 7 \\ 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 6 \end{bmatrix}$$
.

Giải:

Ta có:
$$A = \begin{bmatrix} 0 & 4 & 5 & 7 \\ 1 & 2 & 1 & 5 \\ 0 & 3 & 0 & 6 \end{bmatrix} \xrightarrow{d_1 \leftrightarrow d_2} \begin{bmatrix} 1 & 2 & 1 & 5 \\ 0 & 4 & 5 & 7 \\ 0 & 3 & 0 & 6 \end{bmatrix}$$

Suy ra
$$r(A) = 3$$
.

* Ví dụ 2. Tìm hạng ma trận sau:
$$A = \begin{bmatrix} 3 & 4 & 5 & 7 \\ 1 & 2 & 3 & 5 \\ 2 & 3 & 4 & 6 \end{bmatrix}$$
.

Giải:

Ta có:
$$A = \begin{bmatrix} 3 & 4 & 5 & 7 \\ 1 & 2 & 3 & 5 \\ 2 & 3 & 4 & 6 \end{bmatrix} \xrightarrow{d_1 \leftrightarrow d_2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 3 & 4 & 5 & 7 \\ 2 & 3 & 4 & 6 \end{bmatrix}$$

$$\frac{-3d_1 + d_2 \to d_2}{-2d_1 + d_3 \to d_3} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -2 & -4 & -8 \\ 0 & -1 & -2 & -4 \end{bmatrix}$$

$$\frac{-\frac{1}{2}d_2 + d_3 \to d_3}{-2} \begin{bmatrix} 1 & 2 & 3 & 5 \\ 0 & -2 & -4 & -8 \\ 0 & 0 & 0 & 0 \end{bmatrix}. \text{ Suy ra } r(A) = 2.$$

Giải

$$A \xrightarrow{-d_2+d_1\to d_1} \begin{bmatrix} 1 & 3 & 5 & -1 & 1 \\ 2 & -1 & -3 & 4 & 3 \\ 5 & 1 & -1 & 7 & 2 \\ 7 & 7 & 9 & 1 & 7 \end{bmatrix} \xrightarrow{-2d_1+d_2\to d_2} \begin{bmatrix} 1 & 3 & 5 & -1 & 1 \\ 0 & -7 & -13 & 6 & 1 \\ 0 & -14 & -26 & 12 & -3 \\ 0 & -14 & -26 & 8 & 0 \end{bmatrix}$$

$$\xrightarrow{-2d_2+d_3\to d_3} \begin{bmatrix} 1 & 3 & 5 & -1 & 1 \\ 0 & -7 & -13 & 6 & 1 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & -4 & -2 \end{bmatrix} \xrightarrow{d_3\leftrightarrow d_4} \begin{bmatrix} 1 & 3 & 5 & -1 & 1 \\ 0 & -7 & -13 & 6 & 1 \\ 0 & 0 & 0 & -4 & -2 \\ 0 & 0 & 0 & 0 & -5 \end{bmatrix}.$$

 $Suy\ ra\ r(A)=4.$

BÀI TẬP NHÓM 1

Tìm hạng ma trận sau:
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 6 & 8 & 11 \\ 3 & 6 & 9 & 12 & 14 \\ 4 & 8 & 12 & 16 & 20 \end{bmatrix}$$

Đáp án:

BÀI TẬP NHÓM 2

Tìm hạng ma trận sau:
$$A = \begin{bmatrix} 2 & 2 & 3 & 1 & -2 \\ 2 & 0 & -1 & -1 & 1 \\ 3 & -1 & 1 & 1 & 1 \\ 4 & 1 & 1 & 1 & 2 \end{bmatrix}$$

4

BÀI TẬP VỀ NHÀ

Câu 1: Tìm ma trận nghịch đảo của ma trận
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 1 \\ 3 & 1 & 4 \end{bmatrix}$$
.

Câu 2: Tìm hạng của ma trận :
$$A = \begin{bmatrix} 1 & 2 & 1 & 2 & -3 \\ 3 & 6 & 5 & -8 & 13 \\ 4 & 8 & 5 & 1 & -1 \\ -2 & -4 & -3 & 3 & -5 \end{bmatrix}$$
.

Câu 3: Cho ma trận :
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 3 \\ 0 & 3 & 1 \end{bmatrix}$$
. Tìm A^{-1} .

Câu 4: Biện luận hạng của ma trận sau theo m :
$$B = \begin{bmatrix} 1 & 1 & 2 & -1 \\ 2 & 0 & 3 & -4 \\ 1 & 3 & m & 1 \\ -1 & 1 & -1 & m \end{bmatrix}$$
.

Câu 5: Cho ma trận:
$$A = \begin{bmatrix} 2 & 5 & 6 & 7 \\ 0 & 3 & -1 & 2 \\ 0 & 9 & -1 & m \\ 0 & 15 & -5 & 16 - m \end{bmatrix}$$
. Tìm m để rank(A)=4.