

COMP20008 Elements of Data Processing

Semester 1 2020

Recommender Systems

Plan today

MIELIBOURNE

- Why recommender systems?
- Recommender systems and collaborative filtering
 - Popularity based
 - Collaborative filtering memory based
 - Item-Item
 - User-User
- Friday's lecture
 - Content-based and model-based collaborative filtering
 - System evaluation

Why recommender systems?

MIELBOUKNE

- Scarcity to Abundance
- Internet changed shopping behaviours
- Online business is heavily dependent on recommender systems.

Why recommender systems?

MIELBOUKNE

• The Long Tail by Chris Anderson: "In 1988, a British mountain climber named Joe Simpson wrote a book called 'Touching the Void', a harrowing account of near death in the Peruvian Andes. It got good reviews but, only a modest success, it was soon forgotten. Then, a decade later, a strange thing happened. Jon Krakauer wrote 'Into Thin Air', another book about a mountain-climbing tragedy, which became a publishing sensation. Suddenly Touching the Void started to sell again".

 "A lot of times, people don't know what they want until you show it to them" – Steve Jobs

Recommender systems – examples

MICLIBOURNE

- LinkedIn
- Facebook
- Twitter
- Youtube
- Netfix
- Amazon

The Revenant: A Novel of Revenge

Michael Punke 1,250

Paperback \$9.52

Ready Player One: A Novel
> Ernest Cline

9,210

Paperback \$8.37

The Life We Bury

Allen Eskens

1,896

Paperback \$8.75

The 5th Wave: The First Book of the 5th Wave Series

Rick Yancey 2.006

Paperback

\$6.70

Recommender systems

MELDUUKNE

- "75% of what people watch is from some sort of recommendation" (Netflix)
- "If I have 3 million customers on the web, I should have 3 million stores on the web." (Amazon CEO)

Movie recommender systems

- finding best matched movies,
- reducing search times and frustration.

Users	Titanic	Batman	Inception	Superman	The Martian	Jurassic World
Harry	3	2	-	-	1	-
Ming	-	-	1	2	-	-
Peter	1	-	-	3	2	1

Recommender systems – How it works

MELBOURNE

- An online system where many users interact with many items.
- Each user has a profile
- User rate items
 - Explicitly: give a score
 - Implicitly: web usage mining: Time spent on viewing the item, etc.
- System does the rest, How?

Popularity based recommendation

MICHBUURRE

- Show popular items.
- Which item is popular?
- Simple but not personalised.

Collaborative filtering

MIELIBOURNE

- Collaborative Filtering: Making predictions about a user's missing data according to the collective behaviour of many other users
 - Look at users' collective behavior (e.g. ratings)
 - Active user history
 - Combine!
- Item-based collaborative filtering (Item-Item)
- User-based collaborative filtering (User-User)

Collaborative filtering – A framework

MICHOUNDE

I: n-items

	R	i_1	i_2	•••	i_j	•••	i_n	
	u_1	3	4	2			1	
SIC	u_2	2					5	
-users	÷	1		2		1		
: <i>m</i> -	u_i	3		4	r_{ij} ?		<	$f: U \times I \to R$
n	:				2		3	
	u_m		5	3	4	3		

- Given
 - A set of m users U and a set of n Items I
 - A $m \times n$ Interaction Matrix or Rating Matrix R
- Find unknown ratings r_{ij}

Item-based method: Intuition

MICHBUUKNI

People like things similar to other things they like

- Search for similarities among items
 - Many users like both Batman and Superman→ the two movies are similar.
 - Similarity is collective similarity in ratings by many users.
- Recommend items similar to those rated by the target user.
 - Superman and Batman are similar
 - If Peter liked Batman then recommend Superman to Peter.

Item based collaborative filtering

MIELIBOURNE

Three questions to address:

- How to measure item similarities?
- How to find similar items?
- How to combine ratings of these items?

Q1: Measure item-similarity

Example similarity between item i_i and item i_i :

- Euclidean distance with mean imputation
 - Imputation with their mean values

•
$$mean(i_i) = \frac{3+3+2}{3} = 2.7$$

•
$$mean(i_i) = 3.75$$

Similarity score based on Euclidean distance

$$sim(i_i,i_j)=rac{1}{1+d(i_j,i_i)}$$
 where $d(i_i,i_j)=\sqrt{\sum_{k=1}^m(r_{ki}-r_{kj})^2}$ - $d(i_i,i_j)=3.24$

$$- d(i_i, i_j) = 3.24$$

$$= \sqrt{(3-3.75)^2 + (2.7-3.5)^2 + (2.7-3)^2 + (3-3.5)^2 + (2-4)^2 + (2.7-4)^2 + (2.7-4.5)^2}$$

$$- sim(i_i, i_j) = \frac{1}{1+3.24} = 0.24$$

Q2: How to find similar items?

MICHBUUKNE

• We have an answer to Q1, for item x1, we have the similarities between it and other items:

sim(x1, x2)	sim(x1, x3)	sim(x1, x4)	sim(x1, x5)	sim(x1,x6)
0.48	0.4	0.20	0.33	0.35

The target user a has rated some items:

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
а	?	4	_	5	3	3

- Choose a number k, find k-most similar items to x1 for user a
- Let k = 3, which 3 items?
 - Items x2, x6, and x5
 - scores 0.48, 0.35, and 0.33.

can't use

sine user basn't rate this

Q3: How to combine ratings of similar items?

MELBOUKNE

- Predict the rating of item x1 for user a
- From Q1 and Q2, we get:
 - For user a, the 3 (k = 3) most similar items to x1: x2, x6, x5

sim(x1, x2)	sim(x1, x3)	Sim(x1, x4)	sim(x1, x5)	sim(x1,x6)
0.48	0.4	0.20	0.33	0.35

- The ratings of these 3 items by user a: 4, 3.5, 3

	<i>x</i> 1	<i>x</i> 2	<i>x</i> 3	<i>x</i> 4	<i>x</i> 5	<i>x</i> 6
а	?	4	-	5	3	3

 Rating = weighted average over the ratings of the 3 most similar items

$$- r_{a,x1} = \frac{0.48 \times 4 + 0.33 \times 3 + 0.35 \times 3}{0.48 + 0.33 + 0.35} = 3.41$$

Item-based Collaborative Filtering – Algorithm

MIELIBOURNE

- Phase 1 For each item j,
 - Compute similarities between j and other items.
 similarity: e.g. Euclidean distance with mean imputation.
 - Batch, Off-line calculate similarity in advance
- Phase 2 Predict rating of item j by user a based on the k-most similar items (among items rated by a)
 - Predicted rating = weighted average over the ratings of the k-most similar items.

$$r_{aj} = \frac{\sum_{i \in k-similar-items} sim(i,j) \times r_{ai}}{\sum_{i \in k-similar-items} sim(i,j)}$$

Online

Item-based filtering – Practice example

MELBOUKNE

• Predict r_{aj} (a = Tim; j = Inception)

Users	Titanic	Batman	Inception	Superman	The Martian	Jurassic World
Michelle	2.5		3	3.5	2.5	3
Tom	3	3.5		5	3	3.5
Lao	2.5	3		3.5		4
Chan		3.5	3	4	2.5	
Mary		4	2	3	2	3
Tim	3	4	r _{aj} ?	5	3.5	3
John		4.5		4	1	

Phase – 1 offline: similarities between Inception and other movies

sim(Inception,	sim(Inception,	sim(Inception,	sim(Inception, The Martian)	sim(Inception,
Titanic)	Batman)	Superman)		Jurassic World)
0.48 (d=1.08)	0.24 (d=3.24)	0.20 (d=3.89)	0.33 (d=2.05)	0.34 (d=1.97)

choose K=3

Item-based filtering – Practice example cont.

MELBOUKNI

- Phase 2 online:
 - select 3-most similar items (k=3) w.r.t. (Tim, Inception)

sim(Inception,	sim(Inception,	sim(Inception,	sim(Inception, The Martian)	sim(Inception,
Titanic)	Batman)	Superman)		Jurassic World)
0.48	0.24	0.20	0.33	0.34

Users	Titanic	Batman	Inception	Superman	The Martian	Jurassic World
Michell e	2.5		3	3.5	2.5	3
Tom	3	3.5		5	3	3.5
Lao	2.5	3		3.5		4
Chan		3.5	3	4	2.5	
Mary		4	2	3	2	3
Tim	3	4	?	5	3.5	3
John		4.5		4	1	

weighted avg over the ratings of the 3-most similar items

$$- r_{aj} = \frac{0.48 \times 3 + 0.33 \times 3.5 + 0.34 \times 3}{0.48 + 0.33 + 0.34} = 3.14$$

Item-based collaborative filtering Summary

MIELBOUKNE

- Item similarities computation is off-line → make online comparison efficient
- So, efficient at runtime.
- Developed by Amazon, suited for situations #users >> #items
- What do we do with new items?

 1. randomly severt people to rate
 2. or change to other method

 eg. content base d

User-based collaborative filtering: Intuition

MICHBOURNE

People like things liked by other people with similar taste

- Search for similarities among users
 - Two users Jane and Bob tend to like same movies; they have similar taste in movies.
- Recommend items like by users similar to the target user.
 - Jane and Bob have similar rating behaviours (taste),
 - If Jane liked Batman then recommend Batman to Bob.
- Mathematically similar to Item-based methods.

```
transpose the matrix
use 1 use 2 user 3
item 1

3
```


User-based method

MIELBOURNE

Q2: how to find similar users?

Q1: How to measure similarity between users

17.5

 u_2

Euclidean distance with mean imputation

$$u_1$$
 17 - 20 18 17 18.5 u_2 8 $\frac{|\psi_1|}{|\psi_2|}$ 17 14 17.5

•
$$sim(u_1, u_2) = \frac{1}{1+d(u_1, u_2)} = 0.08$$

 $d(u_1, u_2) = 11.9 = \frac{1}{\sqrt{(17-8)^2 + (18.1 - 14.1)^2 + (20 - 14.1)^2 + (18 - 17)^2 + (17 - 14)^2 + (18.5 - 17.5)^2}}$

- Compute mean value for user1's missing values (18.1)
- Compute mean value for user2's missing values (14.1)
- Compute Euclidean distance between resulting rows
- Convert the distance into a similarity (high similarity for low distance, low similarity for high distance)

User-based: Q2: How to find similar users?

Q3: How to combine ratings?

MICIDOOKIAE

- Selecting similar users and making prediction
- With respect to user a and item j:
 - Choose k most similar users who have rated item j.
 - Prediction of rating is weighted average of the ratings of item
 j from the top-k similar users.

User-based method

MELBUUKNE

- Mathematically similar to Item-based method.
- However:
 - Item-based performs better in many practical cases: movies,
 books, etc.
 - User preference is dynamic; relatively static for item based High update frequency of offline-calculated information
 - Sparsity problem with user based method.

```
if you have a new user, have no way to compare with other user
```

- No recommendation for new users
- Scalability issues
 - As the number of users increase, more costly to find similar users.
 - Offline clustering of users

Scale-up search of k-similar users

MIELIDOURNE

Scale up search of k-similar users

MELBOURNE

Options for Q1: Similarity metrics

MIELBOUKNE

- Item-item: Considers the similar items
- User-user: Considers the similar users
- We looked at Euclidean distance based similarity.
- The other two popular similarity measures are
 - Cosine similarity and
 - Pearson Correlation (centered cosine similarity).

Cosine similarity

MELBOURNE

- Cosine similarity is a measure of similarity between two vectors
 X, Y.
 - a dot product between two vectors X, Y.
 - X, Y: 2 vectors of ratings by user x and user y
 - X, Y: 2 vectors of ratings of item x and item y

•
$$cos(X,Y) = \frac{X \cdot Y}{(\|X\| \cdot \|Y\|)} = \frac{\sum_{i=1}^{n} X_i \times Y_i}{\sqrt{\sum_{i=1}^{n} x_i^2} \times \sqrt{\sum_{i=1}^{n} y_i^2}}$$

• cos(X,Y) > cos(X,Z)

XY is more similar

Centred cosine similarity

MELBOURNE

some one will rate between [5,10] -> different people, different thought to

• Cosine similarity

Missing values in vectors are imputed with the value 0

- Issue: 0 has very different meanings in different vector context
 - Two users, one is tough and one is easy
 - Two items having higher and lower ratings.
 - Misleading results
 - let X_{nrom} be normalised values of X and Y_{nrom} normalised Y
 - $centred_cos(X,Y) = cos(X_{norm},Y_{norm}) =$

$$\frac{\sum_{i=1}^{n}(X_i-\bar{x})\times(Y_i-\bar{y})}{\sqrt{\sum_{i=1}^{n}(x_i-\bar{x})^2}\times\sqrt{\sum_{i=1}^{n}(y_i-\bar{y})^2}}$$
 Pearson where lattern

Centred cosine similarity is Pearson correlation.

Summary

MILLBOURNE

- We learnt:
 - Popularity based.
 - Item-based and user-based collaborative filtering (Gen 1)
 - Simple but reasonably powerful.
 - Achieves some level of personalisation.
 - Different measurements of similarities.
 - Some limitations with these approaches.
 - Cold start problem new items/users
 - · Scalability issues -> particularly with user-based