Algebra and Analytic Geometry lecture

Philip Policki

9th October 2020

Contents

1	Con	plex Numbers	2
	1.1	Sets of numbers	 2
	1.2	Operation law on numbers	 2
	1.3	Divisibility	 2
	1.4	Prime Numbers	 3
		1.4.1 Theorem	 3
	1.5	Principle of Mathematical Induction	 3
	1.6	Binomial formula	 3
		1.6.1 Theorem	 3
		1.6.2 Find a given coefficient of a given equation	 4
	1.7	Complex numbers	 4
		1.7.1 Operations on complex numbers	5
		1.7.2 Polar form	 6
		1.7.3 Geometry of algebra of complex numbers	 7
		1.7.4 Roots	 8
	1.8	Polynomials	 8
		1.8.1 Bezout Theorem	 9
		1.8.2 Fundamental Theorem of Algebra	 9
		1.8.3 Rational Functions	 9
2	Mat	ricies	11

Chapter 1

Complex Numbers

1.1 Sets of numbers

- Natural Numbers $N = \{1, 2, 3, 4, ...\}$
- Integers $Z = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Rational Numbers $Q=\{\frac{p}{q};q,p\subset Z,q\neq 0\}$
- Real Numbers RAny distance from 0 on the number line

1.2 Operation law on numbers

1. Commutative law a + b = b + a

ab = ba

2. Associative law $(a+b)+c=a+(b+c)\ (ab)c=a(cb)\ a(b+c)=ab+bc$

For $\{N, Z, Q, R\}$ all the laws listed above are true

1.3 Divisibility

A|B if there is a $c \subset N$

1.4 Prime Numbers

A natural number $\neq 1$ is called a prime if it has only two divisors, namely 1 and itself.

 $Examples: 2, 3, 5, 7, \dots$

1.4.1 Theorem

Every natural number can be uniquely (up to orders of factors) described as a product of prime numbers.

Example: 24 = 2 * 2 * 2 * 3

1.5 Principle of Mathematical Induction

Law for proving statements

If $p_1, p_2, ..., p_k$ are statements and:

- 1. p_1 is true
- 2. if p_k is true, then p_{k+1} is also true

Example:

1.6 Binomial formula

Newtons formula for expanding powers of sums

$$(x + y)^1 = x + y$$

 $(x + y)^2 = x^2 + 2xy + y^2$
 $(x + y)^3 = x^3 + 3x^2y + 3xy^2 + x^2$
 $(x + y)^4 = To \ difficult \ to \ remember \ or \ to \ expand$

1.6.1 Theorem

$$(a+b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{n}a^{n-n}b^n$$

This can be simplified to:

$$\sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k$$

1.6.2 Find a given coefficient of a given equation

Question: Find the coefficient of x^4 in $(2x - \frac{1}{x})^6$

$$(2x - \frac{1}{x})^6 = (2x + \frac{-1}{x})^6$$

$$\sum_{k=0}^{6} {6 \choose k} (2x)^{6-k} (\frac{-1}{x})^k$$

To calculate 'k' to substitute it into the equation we have to have only one x so:

$$2^{6-k}x^{6-k} - x^{-k} - x^{6-k-k} - x^{6-2k}$$

Based on that and the fact that we want to get the coefficient of x^4 we do the following:

$$6 - 2k = 4$$

$$k = 1$$

So we substitute and we get:

$$\binom{6}{1}2x^{6-1}*\binom{-1}{x}^1 = \frac{6!}{5!}2x^5*\frac{-1}{x} = 6*2x^5*\frac{-1}{x} = -12x^4$$

Therefore the answer is -12

1.7 Complex numbers

Def: A complex number is a pair of real numbers.

Example: (2, 3) they are traditionally denoted by z, u, w ...

The set of all complex numbers will be denoted by \mathbb{C} so:

$$\mathbb{C} = \{(x, y) : x, y \in \mathbb{R}\}\$$

if z = (x, y) $(x, y) \in \mathbb{R}$, then x is called the real part of z and denoted as $R_e z$ and y is the imaginary part.

Geometric interpretation:

A complex number z=(x, y) can be viewed as a point on a Cartesian plane. Such plane will be called the complex plane.

As Vectors on the plane with a initial point at the origin of the plane

1.7.1 Operations on complex numbers

1. Addition:

f $z_1 = (x_1, y_1), z_2 = (x_2, y_2) \in \mathbb{C}$, then their sum is defined to be $z_1 + z_2 = (x_1 + x_2, y_1 + y_2)$ (1,0) + (b,0) = (a+b,0)

2. Multiplication:

if $z_1 = (x_1, y_1), z_2 = (x_1, y_1)$ then their product is defined to be the number $z_1z_2 = (x_1x_2 - y_1y_2, x_1y_2 + x_2y_1)$

Example: (1,2)*(3,-1) = (1*3-2(-1), 1(-1), 3*2) = (5,5)

Properties: Commutative and Associative

$$(a, 0)(b, 0) = (ab, 0)$$

$$(0,1)(0,1) = (-1,0)$$

$$z = (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + iy$$

3. Better multiplication:

$$(3+2i)(1-2i) = (3+2i)1+(3+2i)(2i) = 3+2i+6i-4 = -1+8i$$

4. Inverse:

$$z = x + iy$$

$$w = \frac{x}{x^2 + y^2} = i \frac{-y}{x^2 + y^2}$$

$$w = \frac{1}{z}$$

5. Conjugate:

Properties:

$$\overline{z} = x + i(-y) = x - iy$$

(a)
$$\overline{z+w} = \overline{z} + \overline{w}$$

(b)
$$\overline{z*w} = \overline{z}*\overline{w}$$

(c)
$$\overline{z^n} = \overline{z}^n$$

6. Modulus:

if z = x + iy the modulus is $|z| = \sqrt{x^2 + y^2}$ Properties:

•
$$|z| \ge 0$$
 and $|z| = 0 \equiv z = 0$

$$\bullet |\bar{z}| = |z|$$

$$\bullet |zw| = |z| * |w|$$

•
$$|z^n| = |z|^n \ n \in \mathbb{N}$$

$$\bullet |z+w| \le |z| + |w|$$

•
$$z\bar{z} = |z|^2$$

1.7.2 Polar form

A polar form of a complex number $z \neq 0$ is the form $z = r(\cos(\alpha) + \cos(\alpha))$ $i\sin(\alpha)$), where r>0 Example:

$$z = 3\left(\cos\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)\right)$$

If $z = r(\cos\alpha + i\sin\alpha)$, $w = rR(\cos\alpha + i\sin\alpha)$

•
$$zw = rR[\cos(\alpha + \beta) + i\sin(\alpha + \beta)]$$

•
$$\frac{z}{w} = \frac{r}{R} [\cos(\alpha - \beta) + i\sin(\alpha - \beta)]$$

•
$$z^n = r^n[\cos(n\alpha) + i\sin(n\alpha)]$$

1.7.3 Geometry of algebra of complex numbers

Examples:
1) iz is the rotation of z by
$$\frac{\pi}{2}$$
 (counterclockur'se)
(since $i = 1(\cos \frac{\pi}{2} + i \sin \frac{\pi}{2})$)

Notice that we knew before that $|zw|=|z|\cdot|w|$ 2) Consider the following problem: (Let $P=(x,y)\in \mathbb{R}^2$. Find coordinates of P'=(x,y'), which is the result of notation of P by angle of about the origin. P=(x,y)

1.7.4 Roots

Consider equation $z^n = W$.

The n^{th} root of a complex number w is the set $\{z: z^n = w\}$. We denote it by $\sqrt[n]{w}$. Properties:

- If w = 0, then $\sqrt[n]{0} = \{0\}$
- if $w \neq 0$, then $\sqrt[n]{0}$ has exactly n elements

Examples:

- $\bullet \ \sqrt{-1} = \{i, -i\}$
- $\sqrt{4}^{(\mathbb{C})} = \{2, -2\}$ it may be a real or complex root

If $w = r(\cos \alpha + i \sin \alpha)$, then $z^n = w$ has exactly n solutions given by $z_k = \sqrt[n]{r} \left[\cos\left(\frac{\alpha + 2k\pi}{n}\right) + i \sin\left(\frac{\alpha + 2k\pi}{k}\right)\right]$.

1.8 Polynomials

A (complex) polynomial is a function of the form: $W(z) = a_0 + a_1 z + ... + a_n z^n$, where $a_0, a_1, ..., a_n \in \mathbb{C}$ and are called coefficients. A degree of a nonzero polynomial is the largest n such that $a_n \neq 0$. For zero polynomial W(z) = 0 we agree that its degree is $-\infty$. Examples:

1.
$$W(z) = (i+2)z^2 + z - i$$

2.
$$W(z) = i + z^3$$

If $a_0, a_1, ..., a_n \in \mathbb{R}$, then W(z) is called a real polynomial. We can add and multiply polynomials as functions. Moreover if W_1, W_2, W_3 are polynomials, then

•
$$W_1 + W_2 = W_2 + W_1$$

•
$$(W_1 + W_2) + W_3 = W_1 + (W_2 + W_3)$$

$$\bullet \ W_1W_2 = W_2W_1$$

- $W_1(W_2W_3) = (W_1W_2)W_3 = W_1W_2W_3$
- $W_1(W_2 + W_3) = W_1W_2 + W_1W_3$

We can always divide two polynomials: W(Z): P(Z) = Q(z). If W(Z), P(Z) are polynomials, then there are polynomials Q(Z), R(Z) such that W(Z) = P(Z)Q(Z) + R(Z)

A complex number z_0 is a root of a polynomial W(Z) if $W(z_0) = 0$.

1.8.1 Bezout Theorem

 z_0 is a root of $W(z) \Leftrightarrow W(z)$ is divisible by z_0

1.8.2 Fundamental Theorem of Algebra

Every polynomial of degree ≥ 1 has at least one complex root. If W(z) is a polynomial of degree $n \geq 1$, then there are complex numbers $z_1, z_2, ..., z_n$ such that $W(z) = A(z - z_1)(z - z_2)...(z - z_n)$

1.8.3 Rational Functions

A rational function is a function of the form $f(x) = \frac{P(x)}{Q(x)}$, where P, Q are polynomials.

$$f(x) = \frac{4x^2 - x + 2}{x - 3ix^3}.$$

If both P(x), Q(x) are real polynomials, then $f(x) = \frac{P(x)}{Q(x)}$ is called a real rational function.

A rational function $f(x) = \frac{P(x)}{Q(x)}$ is called a proper rational function if the degP < degQ.

Theorem

If $f(x) = \frac{P(x)}{Q(x)}$ is a rational function, then it can be written as a sum of a polynomial and a proper rational function.

Every real rational function is a sum of a real polynomial and a real proper rational function.

Partial Fraction

A partial fraction is a (proper) rational function of the form:

•
$$\frac{A}{(x-a)^n}$$
, $A \in \mathbb{R}$, $n \in \mathbb{N}$ 1st type

•
$$\frac{Ax+B}{(ax^2+bx+c)^m}$$
, $A, B, a, b, c \in \mathbb{R}$, $m \in \mathbb{N}$ 2nd Type

Partial fractions decomposition

Every proper rational function can be written as a sum of partial fractions. Moreover if $\frac{P(x)}{Q(x)}$ is a proper rational function then

- If $(x-a)^n$ is a factor of Q(x) and $(x-a)^{n+1}$ is not, then in partial fractions decomposition we will get terms, $\frac{A_1}{(x-a)^1}$, $\frac{A_2}{(x-a)^2}$, ..., $\frac{A_n}{(x-a)^n}$
- If $ax^2 + bx + c$ with $\Delta < 0$ appears in decomposition of Q(x) exactly n times
- No other terms will appear in the decomposition of $\frac{P(x)}{Q(x)}$

If
$$W_1(x) = a_0, a_1x + ... + a_nx^n, W_2(x) = b_0, b_1x + ... + b_nx^n$$
, then $W_1 = W_2 \leftrightarrow \forall_{x \in \mathbb{R}} W_1(x) = W_2(x) \leftrightarrow \forall_{k=0,1,2,...,n} a_k = b_k \leftrightarrow \forall_{z \in \mathbb{C}} W_1(z) = W_2(x)$

Chapter 2

Matrices