Trajectory Planning

Assume the angle to be a cubic function of time

$$\theta(t) = A + Bt + Ct^2 + Dt^3$$
 ----- Equation 1

Boundary Conditions:

- $\theta(0) = \theta_i$ $\theta(t_f) = \theta_f$

Initial and Final Conditions:

Solving the Equation 1 with the above conditions

$$\theta(t) = \theta i + 3 \left(\frac{\left(\theta_f - \theta_i\right)}{t_f^2} \right) t^2 - 2 \left(\frac{\left(\theta_f - \theta_i\right)}{t_f^3} \right) t^3$$

$$\frac{d\theta(t)}{dt} = 6\left(\frac{\left(\theta_f - \theta_i\right)}{t_f^2}\right)t - 6\left(\frac{\left(\theta_f - \theta_i\right)}{t_f^3}\right)t^2$$

$$\frac{d^2\theta(t)}{dt^2} = 6\left(\frac{\left(\theta f - \theta i\right)}{t_f^2}\right) - 12\left(\frac{\left(\theta f - \theta i\right)}{t_f^3}\right)t$$

 t_f is time taken for a single PTP translation

As per the cubic relation of angle with time, the angular acceleration at t_0 and t_f is assumed to be 0.

Value of t_f depends on the maximum acceleration required as the usecase

$$at t = 0$$

$$t_f = \sqrt{\frac{6\left(\theta_f - \theta_i\right)}{\alpha}}$$

EXAMPLE:

The end effector moves from A (0,0, -327.161) to B (50,0, -327.161)

• Calculate the angles using Inverse Kinematics

angular acceleration is set to $0.5 \frac{rad^2}{s}$ then t_f is 11.46 s

Angular velocity – Parabolic

Angular acceleration - linear

