Baccalauréat 2017 Session Normale

Honneur - Fraternité - Justice

Série : Sciences de la Nature Epreuve: Mathématiques Durée: 4 heures Coefficient: 6

Exercice1: (3 points)

Le tableau ci-contre donne les résultats d'une étude d'efficacité d'un vaccin, sur un groupe de 1000 personnes.

	Vaccinée	Non vaccinée	Total
Malade	100	. 150	250
Non malade	600	150	750
Total	700	300	1000

On choisit au hasard une personne de ce groupe, et on note V l'évènement « la personne est vaccinée » et M l'évènement « la personne est malade ».

Pour chacune des six questions suivantes, une seule des réponses proposées est correcte.

Nº	Question	Réponse A	Réponse B	Réponse C	
1	La probabilité p(V) est	0.7	0.6	0.1	(0.5 pt)
2	La probabilité p(M) est	0.1	0.15	0.25	(0.5 pt)
3	La probabilité p(V∩M) est	0.1	0.155	0.85	(0.5 pt)
4	la probabilité p _v (M) est	7	1 .	1	(0.5 pt)
		10	4	7	

Le choix est répété, de façon indépendante, durant 10 jours successifs, à raison d'une personne du groupe par jour. Soit X la variable aléatoire égale au nombre de personnes à la fois malades et vaccinées choisies. Soit E l'événement « au moins une personne malade et vaccinée est choisie durant ces dix jours »

	5	La probabilité p(E) est	1-(0.9)10	1-(0.1)10	1-(0.85)10	(0.5 pt)
L	6	L'espérance mathématique de X est	1	2	3	(0.5 pt)

Recopie sur la feuille de réponse et complète le tableau ci-contre en choisissant la bonne réponse. Aucune justification n'est demandée

Question n°	1	2	3	4	5	6
Réponse						

Exercice 2: (5 points)

Exercice 2: (5 points) 1° Pour tout complexe z on pose: $P(z) = z^3 - 10z^2 + 36z - 40$	
a) Calculer P(2)	(0.5pt)
b) Déterminer les réels a et b tels que pour tout z on a : $P(z) = (z-2)(z^2 + az + b)$	(0.5pt)
c) Résoudre, dans l'ensemble des nombres complexes, l'équation P(z) = 0.	(0.5pt)
2° Dans le plan complexe muni d'un repère orthonormé direct (O; u, v), on considère les points	
A, B et C d'affixes respectives : $z_A = 4 - 2i$, $z_B = 2$ et $z_C = 4 + 2i$.	
a) Placer les points A, B et C dans le repère (O; u, v).	(0.5pt)
b) Déterminer la nature du triangle ABC.	(0.5pt)
c) Déterminer l'affixe z _D du point D tel que ABCD soit un parallélogramme.	(0.5pt)
3) Pour tout nombre $z \neq 4+2i$; on pose: $f(z) = \frac{z-4+2i}{z-4-2i}$.	
a) Vérifier que $f(z_p) = i$ et interpréter graphiquement.	(0.25pt)
b) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que $ f(z) = 1$.	(0.5pt)
c) Déterminer et construire Γ_2 l'ensemble des points M du plan d'affixe z tel que	(0.5.0)
$ \mathbf{f}(\mathbf{z})-1 =\sqrt{2}$	(0.5pt)
4° On pose $z_0 = f(2i)$. Pour tout entier naturel n on note $z_n = z_0^n$.	
a) Ecrire z_0 sous forme algébrique, puis vérifier que $z_0 = \sqrt{2} e^{-i\frac{\pi}{4}}$.	(0.25pt)
b) Déterminer la plus petite valeur de l'entier n telle que $ z_n \ge 2017$.	(0.25pt)
c) Vérifier que le point d'affixe z ₂₀₁₈ appartient à l'axe des imaginaires purs.	(0.25pt)

Exercice 3: (5 points) Soit f la fonction définie sur \mathbb{R} parf(x) = $e^{-x} + 2x - 2$ et soit (C) sa courbe représentative dans	1
un repère orthonormé $(0; \vec{i}, \vec{j})$.	
1° a) Calculer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} (f(x)-(2x-2))$. Interpréter graphiquement.	(0.75pt
b) Calculer $\lim_{x \to -\infty} f(x)$, $\lim_{x \to -\infty} \frac{f(x)}{x}$ et interpréter graphiquement.	(0.75 _{pt}
2° a) Calculer la dérivée $f'(x)$ et vérifier que $f'(-\ln 2) = 0$.	(0.5pt)
b) Etudier le signe de f'(x) puis dresser le tableau de variation de f	(0.5pt)
3° a) Montrer que l'équation $f(x) = 0$ admet exactement deux solutions α et β .	(0.5pt)
Vérifier que $-1.7 < \alpha < -1.6$ et $0.7 < \beta < 0.8$	(отори)
b) Représenter la courbe (C) de f dans un repère orthonormé $(0; \vec{i}, \vec{j})$	(0.25pt)
4° On définit les suites (u_n) et (v_n) pour tout entier naturel n par : $u_n = e^{-n}$ et $v_n = 2n - 2$	
a) Montrer que (u,) est une suite géométrique et qu'elle est décroissante	(0.25pt)
b) Montrer que (v,) est une suite arithmétique et qu'elle est croissante	(0.25pt)
c) Ces deux suites sont-elles adjacentes ? Justifier.	(0.25pt)
5° Pour tout entier naturel n, on pose $S_n = f(0) + f(1) + f(2) + + f(n)$	(0.5m)
a) Exprimer S _n en fonction de n	(0.5pt)
b) Calculer $\lim_{n \to +\infty} S_n$ et $\lim_{n \to +\infty} \frac{S_n}{n^2}$	(0.5pt)
Exercice4: (7 points)	
Soit f la fonction numérique définie sur $]0,+\infty[$ par $f(x)=(2-2x)(\ln x-2)$ et Γ sa courbe dans	
un repère orthonormé $(0; \vec{i}, \vec{j})$	
1° On considère la fonction g définie sur $]0,+\infty[$ par $g(x)=\frac{1}{x}+1-\ln x$	
a) Calculer $\lim_{x\to\infty} g(x)$ et $\lim_{x\to\infty} g(x)$	(0.5pt)
b) Calculer la dérivée g'(x) puis dresser le tableau de variation de g	(0.75pt)
c) Montrer que g réalise une bijection de]0,+∞[sur un intervalle J que l'on déterminera	(0.5pt)
d) Montrer que l'équation $g(x) = 0$ admet sur $]0,+\infty[$ une unique solution α telle que	(0.75pt)
$3.5 < \alpha < 3.6$. En déduire le signe de g(x) sur $]0,+\infty[$.	(31,57)
2° a) Calculer $\lim_{x\to 0^+} f(x)$, $\lim_{x\to +\infty} f(x)$, $\lim_{x\to +\infty} \frac{f(x)}{x}$ et interpréter graphiquement.	(1pt)
b) Calculer la dérivée $f'(x)$ et montrer que pour tout $x > 0$, $f'(x) = 2g(x)$.	(0.5pt)
c) Dresser le tableau de variation de f.	.(0.5pt)
3° a) Montrer que $f(\alpha) = \frac{2(1-\alpha)^2}{\alpha}$ où α est le réel trouvé dans la question 1° d)	(0.25pt)
b) Donner une équation de la tangente T à la courbe Γ au point A d'abscisse $x_0 = 1$	(0.25pt)
c) Montrer que Γ coupe (Ox) en un deuxième point B, autre que A, d'abscisse x_B tel que 7.38 $< x_B < 7.39$	(0.25pt)
4° a) Construire Γ et T dans le repère $(0; \vec{i}, \vec{j})$. (on prendra $\alpha = 1.8$ et $f(\alpha) = 2.7$)	(0.5pt)
b) Discuter graphiquement, suivant les valeurs du paramètre réel m, le nombre de solutions de l'équation $(2-2x)\ln x = m$	(0.25pt)
5° a) A l'aide d'une intégration par parties montrer que $\int_1^2 (2-2x) \ln x dx = -\frac{1}{2}$.	(0.5pt)
b) En déduire l'aire du domaine plan délimité par la courbe Γ de f, l'axe des abscisses et les droites d'équations respectives $x=1$ et $x=2$	(0.5pt)
Fin	-