

InstaGraM: Instance-level Graph Modeling for Vectorized HD Map Learning Juyeb Shin¹ Francois Rameau² Hyeonjun Jeong¹ Dongsuk Kum¹

¹KAIST

²SUNY Korea

Introduction

Understanding road scene

Traditional approach: offline generated HD map and localization

Limitations

- Requires offline mapping with multiple high-cost sensors and a large amo unt of resources
- Relies on the accuracy of localization
- Limits autonomous vehicles to operate in geographically restricted (unma pped) area

Online HD map detection

We propose neural network that predicts HD map elements

Experimental Results Divider Ped. crossing Boundary Divider Total Results Divider Ped. crossing Total Results

Method	Modality	Backbone	Epochs	AP _{divider}	AP_{ped}	$AP_{boundary}$	mAP	FPS
HDMapNet	L	PP	30	24.1	10.4	37.9	24.1	-
HDMapNet	C+L	EffNet-B0 & PP	30	29.6	16.3	46.7	31.0	-
HDMapNet1	С	EffNet-B0	30	21.7	14.4	33.0	23.0	0.6
Ours	C	EffNet-B0	30	40.8	30.0	39.2	36.7	20.3
VectorMapNet	L	PP	110	37.6	25.7	38.6	34.0	-
VectorMapNet	C+L	R50 & PP	110	50.5	37.6	47.5	45.2	-
VectorMapNet ²	С	R50	110	47.3	36.1	39.3	40.9	3.0
Ours	С	EffNet-B4	30	47.2	33.8	44.0	41.7	18.2
11 i at al IIDManNati An Online IID Man Construction and Evaluation Framework ICD A 2022								

¹Li et al. HDMapNet: An Online HD Map Construction and Evaluation Framework. ICRA 2022 ²Liu et al. VectorMapNet: End-to-end Vectorized HD Map Learning. ICLR 2023

Conclusion & Future Work

Conclusion

- InstaGraM stably predicts the structure of the map elements
- Proposed instance-level graph modeling and network outperforms comparison models by up to 13.7 mAP, with up to 33× faster computation

Future work

Extend to temporal aggregation with vehicle poses for a complete mapping of environment (automatic HD map generation)