NASA Technical Memorandum 87602

WIND TUNNEL RESULTS FOR A HIGH-SPEED, NATURAL LAMINAR-FLOW AIRFOIL DESIGNED FOR GENERAL AVIATION AIRCRAFT

WILLIAM G. SEWALL

P-13

ROBERT J. McGHEE

JEFFERY K. VIKEN

EDGAR G. WAGGONER

BETTY S. WALKER

PETTY F. MILLARD

10-02

117217 DATE OVEREN

(NASA-TH-87602) WIND TUNNEL RESULTS FOR A HIGH-SPEED, NATURAL LAMINAR-FLOW AIRFOIL DESIGNED FOR GENERAL AVIATION AIRCRAFT (NASA) 73 p CSCL 01A

N88-14078

Unclas

G3/02 0117217

NOVEMBER 1985

Date for general release November 30, 1987

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23665

INTRODUCTION

During the past decade, several new advanced technology airfoils for general aviation have evolved from the research efforts at Langley Research Center. These new airfoils offer superior maximum lift and higher lift-to-drag ratios than the older general aviation airfoils. Reference 1 presents a summary of these airfoils.

Recent interest in viscous drag reduction has inspired airfoil design with laminar boundary layers on large segments of each surface. The laminar boundary layers are maintained by arranging favorable pressure gradients in the airfoil pressure distribution without any active boundary layer control. These types of airfoils have been designated natural laminar flow (NLF) airfoils. While these natural laminar flow airfoils attain minimum drag at the low-lift design condition, the high maximum lift of earlier airfoils is an additional requirement for general aviation applications.

This report presents wind tunnel test results on an NLF airfoil designed for the high speed applications of a business jet. The airfoil, designated as the HSNLF(1)-0213, is designed for a Mach number of 0.70 at a lift coefficient of 0.20 and Reynolds number of 11 million. At these conditions, the airfoil pressure distribution allows laminar boundary layers on 50 percent of the upper surface and 70 percent of the lower surface. In addition, a maximum lift coefficient of 1.60 at landing conditions, Mach number of 0.10, Reynolds number of 6 million, was a design condition.

The wind tunnel tests were conducted in two facilities, the Langley 6- by 28-Inch Transonic Tunnel for the high-speed conditions, and the Langley Low-Turbulence Pressure Tunnel for the low-speed maximum lift performance.

SYMBOLS

C _p	pressure coefficient, $\frac{p_{\ell}-p}{q}$
С	airfoil chord, 6 in. (6x28), 24 in. (LTPT)
cc	section chord-force coefficients, $\int c_p d \frac{z}{c}$
c _d	section profile-drag coefficient, \int wake c_d^i d $\frac{h}{c}$
c'd	point-drag coefficient
c _{&}	section-lift coefficient
c _m	section pitching-moment coefficient about quarter-chord point
	$- \int c_p (x/c - 0.25) d \frac{x}{c} + \int c_p \frac{z}{c} d \frac{z}{c}$
c _n	section normal force coefficient,
	$-\int c_{p} d\frac{x}{c}$
h	vertical distance in wake profile, in.

M free-stream Mach number

free-stream static pressure, lb/in² (6x28), lb/ft²(LTPT)

q free-stream dynamic pressure, 1b/in²(6x28), 1b/ft²(LTPT)

R Reynolds number based on free-stream conditions and airfoil

chord

x airfoil abscissa, in.

y spanwise station, in.

z airfoil ordinate, in.

α

angle of attack, deg

δf

flap deflection, positive downward, deg

Subscripts:

corr quantity from 6-by 28-inch transonic tunnel test with

corrections including the sidewall boundary-layer interference

local point on airfoil surface

max maximum

meas. measured quantity in test data that has some correction

Abbreviations:

HSNLF high-speed natural laminar flow

LTPT Low-Turbulence Pressure Tunnel

NTF National Transonic Facility

AIRFOIL DESIGNATION

The airfoil shape is designated as the HSNLF(1)-0213 and is sketched in figure 1. The "HSNLF" denotes high-speed natural laminar flow, the (1) indicates the first in a series, and the 0213 denotes a lift coefficient of 0.2 and thickness ratio of 13 percent chord.

AIRFOIL DESIGN

This airfoil was designed jointly by Mr. Jeffrey Viken under contract to NASA Langley Research Center and the Applied Aerodynamics Group of the National Transonic Facility Aerodynamics Branch. The airfoil was specifically adapted for the wing design of a prototype business jet.

Initially. this airfoil consisted of a scale-down version of the NLF(1)-0414F airfoil described in references 2 and 3. The design conditions selected were a Reynolds number of 11 million, Mach number of 0.70, and lift coefficient of 0.25, which was provided by an optimum cruise flap setting on the NLF(1)-0414F airfoil.

The resulting contour yielded a pressure distribution shown in figure 2, which had some undesirable characteristics. First of all, since the minimum pressure on the upper surface had an aft location at 70 percent chord, the resulting pressure recovery had adverse gradients severe enough to cause boundary-layer separation near the trailing edge. Second, the lower surface leading edge region had a slightly excessive adverse pressure gradient that could cause boundary-layer transition at lift coefficients lower than the design condition. This would cause higher drag levels due to the loss in laminar boundary layers on the lower surface. In addition, there was an undesirable moment load on the trailing edge flap.

These problem areas were alleviated by first, recontouring the upper surface to move the minimum pressure location to 50 percent chord and thereby reduce the adverse pressure gradients in the pressure recovery. Second, the leading edge region of the lower surface was recontoured to provide favorable pressure gradients at the lower lift coefficients to maintain the laminar boundary layers. Figure 3 presents a comparison of the initial and final airfoil designs, where the final airfoil had minimum pressure located at 50 and 70 percent chord on the upper and lower surfaces respectively, thus allowing extensive regions of laminar flow. The airfoil shape is defined from the coordinates given in Table I.

MODELS, APPARATUS, AND PROCEDURE

Models

The airfoil was first tested in the Langley 6- by 28-Inch Transonic Tunnel to determine the high speed performance. Figure 4 is a photograph of the model, which had a 6-inch chord and width. The model spanned the tunnel with both ends mounted into endplates that fit turntables in the test section. Both upper and lower surfaces of the model were instrumented for static pressure orifices with their locations given in Table II. There were 51 orifices in the midspan region of the model, and 9 orifices 0.125 inches from the end of the model on the upper surface. The model was machined from a solid piece of 17-4 stainless steel to within 0.002 inches of the required shape. The tubes to the orifices are routed entirely in the lower surface and the passageways covered with metal filler. This allowed a smooth upper surface with minimal interruptions to disturb the laminar boundary layer.

Pressures measured on the model were integrated to give normal force and pitching moment coefficients. The model was tested with both smooth surfaces and with forced transition located at 0.05 chord on both surfaces. The forced transition consisted of a thin spanwise strip of clear spray adhesive.

After the high speed investigation, the airfoil was then tested at low speeds in the Langley Low-Turbulence Pressure Tunnel to determine the maximum lift. This model, shown in figure 5, had a 2-foot chord and was equipped with a split flap attachment to evaluate lift increments with a simple high-lift device. This model was not instrumented for pressures, as in the high speed test. Each end of the model attached to a unique external force balance system that was especially designed for high lift models in this facility. The model was fabricated by

recontouring the surfaces of an existing model and wrapping fiberglass skin around the resulting shape. The final surfaces were hand-worked to accuracies with 0.002 inches of the required shape.

WIND TUNNELS

6- by 28-Inch Transonic Tunnel

The Langley 6- by 28-Inch Transonic Tunnel is a two-dimensional blowdown tunnel used primarily for testing airfoils at moderate Reynolds numbers with independent control of both Mach number and stagnation pressure. A detailed description of the facility is available in references 4 and 5 in addition to the following brief description.

The 6- by 28-Inch Transonic Tunnel operates on direct blowdown from a supply of dry, compressed air which is supplied from an offsite centrifugal compressor at 14,000 cfm and 300 psig. The compressor fills two reservoirs to obtain sufficient air volume for adequate run time. The main reservoir is the Langley Low-Turbulence Pressure Tunnel (LTPT), which has both high volume (approximately 65,000 cu. ft.) and a high pressure shell capable of 10 atmospheres. An additional reservoir consists of 4 storage tanks each having 2,000 cu ft. of volume at 300 psig, but the LTPT provides the majority of the air supply. For almost all test conditions, the LTPT is used as a reservoir for the 6- by 28-Inch Transonic Tunnel and therefore, both facilities cannot run simultaneously.

Normal test conditions for most models include Mach numbers ranging from 0.35 to 0.90 and stagnation pressures ranging from 1.5 to 6.0 atmospheres. Mach number is controlled by choker doors downstream of the test section while stagnation pressure is set by the valve that regulates the supply air. These ranges of conditions provide the best flow quality and permit adequate run time.

The test section has solid sidewalls and slotted top and bottom walls to alleviate the severe transonic wall interference problems. Reference 5 describes the slotted top and bottom walls in detail. The test section is 6 inches wide and actually 28.50 inches in height with all four walls undiverged over the entire test section length.

Figure 6 shows the test apparatus which consists of two opposing turntables in each sidewall that hold the model by the end plates and rotate to set angle of attack. In addition, a wake survey probe traverses the model wake vertically for drag measurements, and is sketched in figure 6.

Low Turbulence Pressure Tunnel

The Langley Low-Turbulence Pressure Tunnel is a closed-throat, single return tunnel which can be operated at stagnation pressures from 1 to 10 atmospheres at corresponding Mach numbers of 0.46 to 0.22. These combinations of conditions provide a maximum unit Reynolds number of 15 million per foot in the test section which is 3 feet wide and 7.5 feet high. The current configuration of the tunnel is described in detail in reference 6 and a brief description is given here.

The model and support system are shown in figures 7 and 8. The airfoil model is mounted between two endplates which are connected to inner drums. The inner

drums are held in place by outer drums and a yoke-arm support system. The yoke support system is mounted to a force balance which is, in turn, connected to the tunnel through a balance platform. The yoke arm is fabricated from aluminum in a monocoque structure to minimize weight loads on the balance system. The balance provided direct lift force and pitching moments for this test.

Model angle of attack is controlled by a motor-driven, externally-mounted pitch mechanism that rotates the bearing-mounted inner drums. A multipath labyrinth seal is used to minimize air leakage from the test section into the outer tunnel plenum. An electrical fouling indicator is incorporated in the seal to detect any fouling at the seal components.

The wake survey rake, illustrated in figure 9, is used to measure the static and total pressure within the model's wake, as well as the mean wake flow angle. As shown in figure 9, several different types of probes are on this rake, and the rake itself is supported by a remote-controlled survey apparatus that can position the rake at different spanwise positions. The entire rake and survey apparatus appears in figure 10, and its capabilities are well documented in reference 6. For this test, the rake was used for drag measurements.

INSTRUMENTATION

6- by 28-Inch Transonic Tunnel

All test data were obtained by a high speed data acquisition system and recorded on magnetic tape. Each pressure measurement was made with a combination of a precision variable capacitance transducer coupled with a signed conditioner, as described in reference 7. Output signals from the wake total pressure measurements passed through 20-Hz low-pass filters before entering the data acquisition system. This range of filtered frequencies was reported in reference 4. Geometric angle of attack signals were provided by a digital shaft encoder attached to a rack and pinion mechanism on a test section turntable. A similar encoder arrangement provides the vertical position of the wake survey probe to the data acquisition system. Both the angle of attack and the wake survey probe can be pre-programed to operate automatically along with the stagnation pressure and Mach number.

Low-Turbulence Pressure Tunnel

The same data acquisition system mentioned above for the 6- by 28-inch transonic tunnel was used for the LTPT. In addition, the system was arranged for real-time display of lift force, pitching moment, and drag coefficients along with the wake total pressure profile. Pressure measurements for the wake were made with the same type of transducer-signal conditioner system used in the 6- by 28-inch transonic tunnel. Total and static freestream pressures were measured with precision quartz manometers. Geometric angle of attack was measured by a digital shaft encoder coupled to a rack and pinion mechanism attached to the inner drum of the model support system.

TEST AND METHODS

High-Speed Tests

The high-speed tests in the 6- by 28-inch transonic tunnel were conducted over Reynolds number ranges of 3.5 to 6.5 million at 0.35 Mach number and from 4 to 11 million at Mach numbers of 0.5 to 0.8.

Since the airfoil was designed for natural laminar flow, the model was first tested with smooth, clean metallic surfaces to allow the most rearward boundary-layer transition with the existing tunnel flow quality. Forced boundary-layer transition as indicated in the model description, was then applied and the model retested over the same range of conditions.

The data was recorded as surface pressure distributions which were integrated to give normal force, axial force and pitching-moment coefficients. Total pressure surveys of the model's wake and static pressures on the tunnel sidewall that were adjacent to the wake were used to calculate the drag coefficient by the method in reference 8.

The data was recorded as surface pressure distributions which were integrated to give normal force, axial force and pitching-moment coefficients. Total pressure surveys of the model's wake and static pressures on the tunnel sidewall that were adjacent to the wake were used to calculate the drag coefficient by the method in reference 8.

Corrections have been applied to the data that account for lift interference and some of the interference caused by the sidewall boundary layer. The lift interference was experimentally determined from unpublished data on a 3-inch and 6-inch chord model of the NACA 0012 airfoil. This correction looses validity in the transonic range, but appears valid up to a Mach number of 0.7. The correction deals with the angle of attack error at a given normal force coefficient and is given as:

$$\alpha_{\text{corr.}} = \alpha_{\text{meas.}} - \Delta \alpha$$

$$\Delta \alpha = (1.671 M_{\text{meas.}} - .114) \times c_{\text{ncorr.}}$$

The sidewall boundary layer problem, discussed in detail in references 9 and 10, is a two-part problem. Historically, the primary concern was the interaction of trailing-edge boundary-layer separation on the model with boundary layer separation on the sidewall. This interaction destroys the two-dimensional character of the airfoil test and can severely compromise the maximum lift measurement. This problem is addressed by either having sufficient test section width as compared to the sidewall boundary-layer thickness or actively controlling the sidewall boundary layer with various devices. This problem has not been addressed for this facility and reference 9 indicates the facility limitations.

The second problem with the sidewall boundary layer concerns the effect of the model-induced pressure gradients in changing the displacement thickness of the sidewall boundary layer. The behavior, studied in detail in reference 10, affects the continuity equation for two-dimensional flow even though the sidewall boundary layer has experienced no separation. Reference 10 shows derived corrections that account for the sidewall boundary layer effects by using transonic similarity

rules. These rules define an equivalent two-dimensional Mach number and pressure coefficient, where the Mach number correction has been calculated and curved-fitted against the measured Mach number:

$$M_{corr.} = 0.9731 M_{meas.} - 0.01268$$
 for $M_{meas.} < 0.5916$ and $M_{corr.} = 0.99366 M_{meas.} - 0.02483$ for $M_{meas.} = 0.591$

The correction for pressure coefficient results in the following normal force and pitching moment corrections:

$$(c_{n,m})_{corr.} = (c_{n,m})_{meas.} \times \frac{B}{1-M^2}_{corr.}$$

where, for $M_{\text{meas.}} < .6323$, $B = -0.6675M_{\text{meas.}}^2 + .0791M_{\text{meas.}} + 1.0406$

and for
$$M_{\text{meas}}$$
. .6323, $B = -4.1123M_{\text{meas}}^3 + 7.7301M_{\text{meas}}^2 - 5.7215M_{\text{meas}} + 2.3905$

No correction has been applied to the drag coefficient from the 6-by 28-inch transonic tunnel. These corrections are based on small disturbance theory and do not address the separated sidewall boundary layer problem mentioned earlier in conjunction with the maximum lift measurement.

TEST AND METHODS

Low-Speed Test

The model was tested at Reynolds numbers based on chord of 3 million to 9 million and a Mach number range of 0.10 to 0.30. The model was tested both with smooth surfaces for natural transition and with fixed transition at 0.05 chord on both surfaces. For fixed transition, a strip of no. 100 carborundum particles was glued to the surfaces with clear lacquer and had a width of 0.05 inches.

For several test runs, thin hot-film gages were mounted on the model upper surface to determine the location of boundary-layer transition. These results are shown in figure 11.

Since the force and moment data were measured with a balance for the low speed test and calculated by integrating pressure distributions for the high speed test, some comparison of balance data and integrated pressure data would be useful. Figure 12 shows this comparison for a previous test in the LTPT on an NACA 4416 airfoil. The agreement between the balance-measured force data and the force data from integrated pressure distributions is considered excellent.

Section profile-drag coefficients were computed from the wake-rake total and static pressure by the method of reference 11.

Standard low-speed wind-tunnel boundary corrections given in reference 11 have been applied to the section data. Corrections were applied to the free-stream dynamic pressure due to solid and wake blockage. Also, the lift, pitching moment, and angle of atack were corrected due to the floor and ceiling boundaries. These corrections are as follows:

$$\alpha = \alpha_{\text{meas.}} + 0.133 (c_{\text{l}_{\text{meas.}}} + 4 c_{\text{m}_{\text{meas.}}})$$

$$c_{\text{l}_{\text{corr.}}} = (c_{\text{l}_{\text{meas.}}})(0.978 - 0.133 c_{\text{d}_{\text{meas.}}})$$

$$c_{\text{m}} = (c_{\text{m}_{\text{meas.}}})(0.993 - 0.133 c_{\text{d}_{\text{meas.}}}) + 0.0037 c_{\text{l}_{\text{meas.}}}$$

$$c_{\text{d}} = (c_{\text{d}_{\text{meas.}}})(0.989 - 0.133 c_{\text{d}_{\text{meas.}}})$$

No corrections have been made to the data that account for the sidewall boundary layer effect as in the high speed test because the boundary layer displacement thickness is a much smaller fraction of the tunnel width. The LTPT has approximately 1 percent of its width occupied by sidewall boundary layer displacement thickness compared to approximately 2.5 percent width for the 6- by 28-inch tunnel. The maximum lift measurements in LTPT consequently offer more accuracy than those in the 6- by 28-inch tunnel.

PRESENTATION OF RESULTS

Airfoil section data from the high- and low-speed tests are tabulated in Appendix A and B. Selected pressure distributions and section data are presented graphically in the following figures:

1. Measured chordwise pressure distributions from test in the 6- by 28-inch transonic tunnel presented with the corrected values of angle of attack, Mach number, normal-force coefficient, and pitching-moment coefficient.

Conditions	Figure
Model smooth, $M_{corr.} = 0.34$, $R = 3x10^6$ and $5x10^6$	13
Model smooth, $R = 4x10^6$, $M_{corr.} = .70$, .74, .75, .77	14
Fixed transition at 0.05c,	
$R = 11 \times 10^6$, $M_{corr.} = .69$, .73, .75, 77	15

2. Effect of Mach number on section characteristics from test in 6- by 28-inch transonic tunnel.

	Conditions	<u>Figure</u>
	$M_{corr.} = 0.695$ to .772, model smooth, $R = 4x10^6$	16
	$M_{corr.} = 0.676$ to .770, fixed transiton at 0.05c,	
	$R = 11x10^6$	17
3.	Effect of Reynols number on section characteristics from test in 6- by 28-inch tunnel.	
	Conditions	Figure
	$M_{corr.} = 0.49$, model has fixed trans. at 0.05c,	
	$R = 4x10^6$ and $9x10^6$	18
	$M_{corr.} = 0.70$, model smooth, $R = 4 \times 10^6$, 9×10^6 and 10×10^6	19
	$M_{corr.} = 0.34$, model smooth, $R = 3x10^6$ and $5x10^6$,	
	(normal-force and pitching-moment coefficients only)	20
4.	Effect of Mach number on section characteristics from test in LTPT.	
	Conditions	Figure
	$M = 0.10$ to .29, model smooth, $R = 6x10^6$	21
5.	Effect of Reynolds number on section characteristics from test	in LTPT.
	Conditions	Figure
	$M = 0.20$, $R = 3.0 \times 10^6$ to 6.0×10^6 ; $M = 0.14$, $R = 6.0 \times 10^6$	
	and $9.0x10^6$, model smooth	22
6.	Effect of fixed transition on section characteristics from test in LTPT.	
	Conditions	Figure
	$M = 0.20$, $R = 3.7 \times 10^6$ to 6×10^6	23
7.	Effect of trailing-edge split flap on section lift and pitching-moment coefficients from test in LTPT.	
	Conditions	Figure
	$M = 0.10$ to .14, $\delta_f = 0$ and 60°	
	Flap length = 0., 20c, model smooth, $R = 6x10^6$	24

8. Effect of Mach number and Reynolds number on maximum lift coefficient from test in LTPT.

	Conditions	Figure
	$M = 0.10$ to .29, $R = 3x10^6$ to $6x10^6$ model smooth	25
9.	Variation of drag coefficient with Reynolds number from test in	LTPT.
	Conditions	Figure
	$c_{\ell} = 0.2$, $M = .30$, $R = 3x10^6$ to $9x10^6$	
	Model is both smooth and has fixed transition at 0.05c	26
10.	Variation of drag coefficient with Mach number from test in 6- by 28-inch transonic tunnel.	
	Conditions	Figure
	$c_n = .26$, model smooth with $R = 4x10^6$,	
	fixed transition at 0.05c with $R = 11x10^6$	27

SUMMARY OF RESULTS

This investigation provided the following results:

- 1. Boundary-layer transition, measured in the LTPT, moved forward by approximately 0.10c at the design lift coefficient ($c_{\ell} \approx 0.25$) as the chord Reynolds number increased from 3 million to 9 million. The transition occurred between 0.50c to 0.70c on the lower surface.
- 2. The maximum lift coefficient measured in the LTPT was about 1.7 for the basic airfoil and about 2.5 with a 60-degree, 0.20c trailing-edge split-flap.
- 3. Increasing the Mach number from 0.10 to 0.30 at a fixed Reynolds number of 6 million reduced the maximum lift coefficient measured in the LTPT by only 10 percent.
- 4. Fixed boundary-layer transition near the leading edge of the airfoil decreased the maximum lift coefficient measured in the LTPT by approximately 0.04.
- 5. The minimum drag coefficient at the design lift coefficient was 0.0036 at a chord Reynolds number of 6 million, as measured in the LTPT forM < 0.30. For the high-speed test in the 6- by 28-inch transonic tunnel, the minimum drag at the design Mach number of 0.70 and chord Reynolds number of 4 million was 0.0072.

6. From the high-speed test, the drag-rise Mach number at a lift coefficient of 0.26 occurred at a Mach number of 0.725 for the smooth model at a chord Reynolds number of 4 million. With fixed boundary-layer transition at 0.05c, and chord Reynolds number of 11 million, the drag-rise Mach number dropped to 0.712

REFERENCES

- 1. McGhee, Robert J.; Beasley, William D.; and Whitcomb, Richard T.: NASA Low-and Medium-Speed Airfoil Development. NASA TM-78709, 1979.
- 2. Viken, Jeffrey K.: Aerodynamic Design Considerations and Theoretical Results for a High Reynolds Number Natural Laminar Airfoil. Master's Thesis, George Washington University, January 1983.
- 3. McGhee, Robert J.; Viken, Jeffrey K.; Pfenninger, Werner; Beasley, William D.; and Harvey, William D.: Experimental Results for a Flapped Natural-Laminar-Flow Airfoil With High Lift/Drag Ratio. NASA TM 85788, 1984.
- Ladson, Charles L.: Description and Calibration of the Langley
 by 28-Inch Transonic Tunnel. NASA TN D-8070, 1975.
- 5. Sewall, William G.: Description of Recent Changes to the Langley 6- by 28-Inch Transonic Tunnel. NASA TM 81947, May 1981.
- 6. McGhee, Robert J.; Beasley, William D.; and Foster, Jean M.: Recent Modifications and Calibration of the Langley Low-Turbulence Pressure Tunnel. NASA TP-2328. 1984.
- 7. Bynum, D. S.; Ledford, R. L.; and Smotherman, W. E.: Wind Tunnel Pressure Measuring Techniques. AGARD-AG-145-70, 1970.
- 8. Baals, Donald D.; and Mourhess, Mary J.: Numerical Evaluation of the Wake-Survey Equations for Subsonic Flow Including the Effect of Energy Addition. NACA WR L-5, 1945 (Formerly NACA ARR L5H27)
- 9. Bingham, Gene J.; Noonan, Kevin W.; and Sewall, William G.: Two-Dimensional Aerodynamic Characteristics of an Airfoil Designed for Rotorcraft Application. NASA TP-1965, 1981.
- Sewall, William G.: Effects of Sidewall Boundary Layers in Two-Dimensional Subsonic and Transonic Wind Tunnels. AIAA Journal, Vol. 20, September 1982, pp. 1253-1256.
- 11. Pankhurst, R. C.; and Holder, D. W.: Wind-Tunnel Technique. Sir Issac Pitman and Sons, Ltd. (London), 1965.

TABLE 1: COORDINATES FOR THE HSNLF(1)-0213 AIRFOIL

* HSNLF(1)-0213 AIRFOIL	*	
	REACE COORDINAT		
X/C	Z/C	X/C	Z/C
0.0	0.0	.525	0600226
.00025	00159901	.550	0598030
.00050	00230222	.575	0593236
.00075	00286038	.600	0585655
.0010	00334494	.625	0574839
.0015	00419028	.650	0559400
.0020	00492252 00556459	.675	0538433
.0025		.680 .700	0533504
.005	00795793 0112011	.725	0509298 0463495
.010 .020	0155117	.750	0410619
.030	0187992	.775	0367508
.040	0215501	.780	0359926
.050	0239056	.800	0331313
.060	0260205	.820	0304965
.080	0297664	.825	0298719
.090	0314631	.850	0269506
.100	0330753	.875	0243247
.125	0367325	.900	0218780
.150	0399681	.920	0200204
.175	0428315	.925	0195751
.200	0453554	.950	0175194
.225	0476378	.975	0158287
.250	0497128	.980	0155455
.275	0515824	.990	0150271
.300	0532687	1.0	0145600
.325	0547767	1.0	-,0175600
.350	0561033	•	
.375	0572318		
.400	0581716		
.425	0589204		
.450	0594701		
.475	0598050		
.500	0599816		
	, , , , , , , , , , , , , , , , , , ,		

TABLE 1: CONCLUDED.

* HSNLF	(1)-0213 AIRFOIL *		
UPPER S	SURFACE COORDINATES		
X/C	Z/C	X/C	Z/C
0.0	0.0	.525	.0689648
.00025	.00301272	.550	.0667772
.00050	.00428352	.575	.0640790
.00075	.00526275	.600	.0607751
.0010	.00608870	.625	.0568193
.0015	.00746999	•650	.0521886
.0020	.00862628	.675	.0469746
.0025	.00963673	.680	.0458726
.005	.0135129	.700	.0413226
.010	.0186690	.725	.0354629
.020	.0252367	.750	.0295444
.030	.0300557	.775	.0238415
.040	.0340027	.780	.0227189
.050	.0374370	.800	.0182871
.060	.0404896	.820	.0140757
.080	.0457286	.825	.0130549
.090	.0480263	.850	.00810483
.100	.0501504	.875	.00350601
.125	.0548232	.900	00057777
.150	.0587791	.920	00358925
.175	.0621388	.925	00430936
.200	.0649785	.950	00761355
.225	.0673697	.975	0106563
.250	.0693627	.980	0112067
.275	.0709735	.990	0122354
.300	.0722353	1.0	013220
.325	.0731582		
.350	.0737502		
.375	.0740317		
.400	.0740003		
.425	.0736666		
.450	.0730084		
.475	.0720296		
.500	.0706895		

TABLE 2: ORIFICE LOCATIONS ON HSNLF(1)-0213 AIRFOIL MODEL TESTED IN THE 6- BY 28-INCH TRANSONIC TUNNEL

ORIFICE NO.	X/C	Y/C	Z/C
LOWER SURFACE			
12345678901123456789012322222222222222222222222222222222222	0.01353 0.02503 0.02503 0.025003 0.025005 0.0250	083	0.01297 01293 029331 029331 029331 0293 0293 0293 0293 0583 0583 0599 0599 0599 0599 0221 0159

TABLE 2: CONCLUDED.

ORIFICE N	10. X/C	Y/C	Z/C
UPPER SURFA	CE	·	
27 89 31 33 33 33 33 41 42 44 44 45 47 49 51	0.0127 0.0244 0.05037 0.05998 0.09998 0.1498 0.2505 0.2505 0.3506 0.3505 0.45005 0.5555 0.6507 0.6507 0.75012 0.9518 0.9518	0.083	0.0213 0.0281 0.0281 0.03857 0.04507 0.05550 0.06550 0.0743 0.0743 0.0743 0.0743 0.0642 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412 0.06412
ORIFICES NEAD	R SIDEWAL	L	
ORIFICE NO.	X/C	Y/C	Z/C
UPPER SURFACE	E		
52 53 54 55 56 57 58 59 60	0.0000 0.0128 0.0749 0.0932 0.5005 0.6000 0.7004 0.8003 0.9008	0.4795	0.0000 0.0215 0.0451 0.0507 0.0713 0.0614 0.0419 0.0188 0.0000

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX A._

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115

MODEL SMOOTH RUNS 1-13 RUN 1

					VOIA I					
ALPHA DEG	ALPHA,C Deg	MACH	MACH, C	CN	CN,C	CM	CM, C	CD	PN (X 10-6)	POINT
-4.13	-4.03	.362	.339	1863	1945	0339	0354	***	2.75	2
-1.96	-1.98	.363	.341	.0317	.0331	0353	0368	***	2.75	3
• 02	09	.359	.336	.2228	.2326	0201	0210	***	2.84	4
2.02	1.81	. 354	.332	.4297	.4487	0253	0264	***	2.86	5
4.05	3.73	.360	.337	.6203	.6475	0258	0269	***	2.85	6
6.03	5.61	.353	.331	.8425	.8797	0378	0395	***	2.81	7
8.04	7.54	.356	.334	1.0040	1.0482	0322	0336	***	2.77	9
10.01	9.45	.359	.336	1.1083	1.1570	0232	0242	***	2.89	9
10.99	10.41	. 357	.335	1.1497	1.2003	0216	0226	***	2.88	10
12.01	11.42	.352	.330	1.2019	1.2550	0142	0148	***	2.82	ii
12.99	12.41	.357	.335	1.1578	1.2087	0110	0115	***	2.82	12
13.99	13.41	.354	.331	1.1576	1.2087	0132	0138	***	2.89	13
15.00	14.46	.356	.334	1.0856	1.1334	0181	0189	***	2.87	14
					RUN 2					
ALPHA	ALPHA, C	MACH	MACH . C	CN	CN, C	CM	CM+C	CD	RN	POINT
DEG	DEG								(X 10-6)	
09	19	.371	.348	.1947	.2032	0131	0137	.00530	2.77	17
•03	08	.367	. 345	.2033	.2122	0138	0144	.00570	2.78	18
3.99	3.69	.351	.328	.6019	.6285	0198	0207	.00915	2.69	20
6.00	5.60	.355	.333	.7932	.8282	0205	0214	.01135	2.75	21
8.01	7.51	.364	.342	.9711	1.0135	0201	0210	.01480	2.76	22
9.95	9.39	.361	.339	1.1035	1.1519	0217	0227	***	2.70	23
11.99	11.40	.357	.335	1.1710	1.2225	0181	0189	***	2.71	24
13.95	13.38	.350	• 328	1.1581	1.2093	0203	0212	***	2.70	25
15.97	15.43	.347	.325	1.1134	1.1628	0560	0585	***	2.70	26
					RUN 3					
ALPHA Deg	ALPHA,C Deg	MACH	MACHOC	CN	CN,C	CM	CM,C	CD	RN (X 10-6)	POINT
-4.12	-4.01	.356.	.334	2257	2356	0065	0068	***	2.95	29
-1.97	-1.97	.358	.335	.0009	.0009	0116	0121	***	3.02	30
01	11	.362	.340	.2028	.2117	0138	0144	***	3.05	31
.00	10	.361	.339	.2032	.2121	0137	0143	***	2.95	28
2.04	1.83	.356	.334	•4136	.4318	0172	0180	***	2.96	32
3.96	3.66	.361	.339	•5939	.6199	0211	0220	***	3.10	33
5.99	5.58	.359	.337	.9132	.8489	0218	0228	***	3.04	34
8.02	7.52	.364	.341	.9693	1.0117	0234	0244	***	3.08	35
9.97	9.40	.362	.339	1.1054	1.1538	0215	0224	***	3.09	36
11.15	10.56	.358	.335	1.1720	1.2235	0203	0212	***	3.12	37
12.00	11.39	• 353	•330	1.2244	1.2785	0253	0264	***	3.07	38
12.97	12.37	.357	.335	1.1935	1.2460	0163	0170	***	3.08	39
14.03	13.45	.356	.334	1.1660	1.2174	0134	0140	***	3.10	40
15.05	14.47	.355	.332	1.1589	1.2100	0323	0337	***	3.10	41
16.12	15.55	.359	.336	1.1203	1.1695	0563	0588	***	3.14	42

ORIGINAL PAGE IS OF POOR QUALITY

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONTINUED

					RUN 4					
ALPHA Deg	ALPHA, C DEG	MACH	MACH, C	CN	CN+C	CM	CM,C	CD	RN (X 10-5)	POINT
-4.02	-3.91	.360	.338	2196	229?	0072	0075	***	4.95	47
-1.97	-1.97	.360	.339	.0020	.0021	0113	0118	***	4.99	48
07	17	.359	.337	.1997	.2085	0143	0149	***	4.98	45
06	16	.353	.331	.2090	.2182	0141	0147	***	4.93	46
.03	08	.359	.337	.2208	.2305	0143	0149	***	4.94	49
1.97	1.75	.353	.331	.4361	.4554	0188	0196	***	4.84	50
4.03	3.71	.360	.338	.6384	.6664	0217	0227	***	4.99	51
5.99	5.56	.357	.334	.8574	.8951	0242	0253	***	4.93	52
8.01	7.48	.359	.336	1.0456	1.0915	0251	0262	***	4.96	53
9.98	9.38	.352	.330	1.2177	1.2715	0246	0257	***	4.86	54
10.97	10.33	.352	.329	1.2998	1.3573	0313	0327	***	4.90	55
11.98	11.35	.356	.333	1.2513	1.3064	0139	0145	***	4.93	56
12.97	12.34	.358	.335	1.2441	1.2988	0181	0189	***	4.98	57
13.99	13.36	.358	.336	1.2487	1.3036	0299	0312	***	4.95	58
14.97	14.37	• 360	.337	1.1764	1.2280	0246	0257	***	5.01	59
					RUN 5					
ALPHA	ALPHA, C	MACH	MACH, C	CN	CN.C	CM	CM+C	CD	RN	POINT
DEG	DEG								(X 10-6)	
10	21	.360	.337	.2101	.2193	0147	0153	***	6.58	70
06	17	.360	.338	.2079	.2170	0151	0158	***	6.58	62
2.02	1.81	.357	.334	.4240	.4427	0181	0189	***	6.60	63
3.98	3.66	.353	.331	.6493	.6780	0228	0238	***	6.53	64
5.99	5.57	• 360	.338	.8290	.8654	0242	0253	***	6.71	65
8.04	7.51	.355	.332	1.0577	1.1043	0261	0273	***	6.64	66
10.04	9.43	.357	.335	1.2014	1.2542	0227	0237	***	6.73	67
11.04	10.41	.358	.336	1.2406	1.2951	0206	0215	***	6.78	68
11.47	10.83	.351	.329	1.2970	1.3544	0192	0200	***	6.66	69
11.50	10.86	.348	.326	1.3081	1.3661	0220	0230	***	6.43	71
11.97	11.34	.353	.331	1.2675	1.3234	0235	0245	***	6.64	72
12.52	11.89	.351	.328	1.2752	1.3316	0172	0180	***	6.58	73
13.00	12.36	.350	.328	1.2985	1.3560	0319	0333	***	6.65	74
					RUN _. 6					
ALPHA	ALPHA,C	MACH	MACH, C	CN	CN,C	CM	CM.C	CD	RN	POINT
DEG	DEG			•	0.170	•		•	(X 10-6)	
-2.05	-2.05	.730	.700	0041	0042	0153	0157	.00757	4.21	81
-1.03	-1.18	.731	.702	.1280	.1316	0178	0183	.00691	4.26	82
07	36	.728	.699	.2575	.2647	0214	0220	.00743	4.26	80
01	31	•726	•697	.2660	.2734	0210	0216	.00702	4.27	83
.99	• 54	• 727	.697	.3968	.4078	0236	0243	.00650	4.32	84
1.47	• 96	.725	.695	.4558	.4685	0239	0246	.00797	4.34	85
2.02	1.42	.728	.698	.5276	.5423	0238	0245	.00907	4.32	86
2.51	1.85	.723	•693	.5894	-6058	0247	0254	.00742	4.31	87
2.97	2.24	.722	•692	•6467	.6647	0235	0242	.01000	4.40	88

APPENDIX A.-

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONTINUED

				RUN 7					
ALPHA,C DEG	MACH	MACH.C	CN	CN,C	CM	CM+C	CD	RN (X 10-6)	POINT
-2.09	.725	.695	0044	0045	0154	0158	.00737	4.37	91
-1.18	.730	.700	.1279	.1315	0176	0181	.00657	4.28	92
32	.724	.695	.2597	.2669	0214	0220	.00657	4.24	90
32	.725	.696	.2620	.2693	0209	0215	.00644	4.34	93
.55	.728	.698	.3909	.4018	0233	0239	.00699	4.28	94
•96	.725	.695	.4593	.4721	0240	0247	.00735	4.38	95
1.42	.722	.692	.5258	.5404	0241	0248	.00779	4.30	96
1.82	.723	.693	.5930	•6095	0242	0249	.00848	4.36	97
2.25	.723	.694	.6466	.6646	0241	0248	.00966	4.40	98
				RUN 8					
ALPHA,C DEG	MACH	MACH,C	CN	CN,C	CM	CM,C	CĐ	RN (X 10-6)	POINT
-2.05	.744	.715	0011	0011	0164	0169	.00714	4.27	101
-1.19	.747	.717	.1352	.1389	0198	0203	.00647	4.25	102
77	.746	.716	.2049	.2106	0219	0225	.00703	4.19	103
35	.747	.717	.2678	.2752	0233	0239	.00687	4.25	104
34	.748	.718	.2677	.2751	0229	0235	.00686	4.18	100
.08	.745	.715	.3356	.3449	0248	0255	.00728	4.27	105
• 52	.745	.716	.4009	.4120	0264	0271	.00794	4.24	106
.94	.744	.715	.4686	.4816	0280	0288	.00774	4.28	107
1.37	.743	.713	.5244	.5389	0280	0288	.00935	4.26	108
				RUN 9					
ALPHA, C	MACH	MACH. C	CN	CN.C	CM	CM.C	CD	RN	POINT
DEG								(X 10-6)	
-2.03	.769	.740	.0093	•0096	0182	0187	.00796	3.86	111
-1.20	.767	.738	.1435	.1474	0222	0228	.00749	3.95	112
39	.764	.734	.2680	.2754	0259	0266	.00927	3.92	110
35	.763	.734	.2729	.2804	0266	0273	.00865	3.89	114
.07	.767	.737	.3302	.3393	0288	0296	.01123	3.87	115
.52	.764	.734	.3926	.4034	0302	0310	.01259	3.95	116
.95	.762	.732	.4492	.4616	0317	0326	.01435	3.92	117
1.38	.765	.735	.4959	.5095	0333	0342	.01630	3.94	118
	DEG -2.09 -1.183232 .55 .96 1.42 1.82 2.25 ALPHA,C DEG -2.05 -1.19773534 .08 .52 .94 1.37 ALPHA,C DEG -2.03 -1.203935 .07 .52 .95	DEG -2.09 .725 -1.18 .73032 .72432 .725 .55 .728 .96 .725 1.42 .722 1.82 .723 2.25 .723 ALPHA, C MACH DEG -2.05 .744 -1.19 .74777 .74635 .74734 .748 .08 .745 .52 .745 .94 .744 1.37 .743 ALPHA, C MACH DEG -2.03 .769 -1.20 .76739 .76435 .76435 .76435 .76435 .76435 .76435 .76435 .76435 .764	DEG -2.09 .725 .695 -1.18 .730 .700 -32 .724 .695 -32 .725 .696 .55 .728 .698 .96 .725 .695 1.42 .722 .692 1.82 .723 .693 2.25 .723 .694 ALPHA,C MACH MACH,C DEG -2.05 .744 .715 -1.19 .747 .71777 .746 .71635 .747 .71734 .748 .718 .08 .745 .715 .52 .745 .716 .94 .744 .715 1.37 .743 .713 ALPHA,C MACH MACH,C DEG -2.03 .769 .740 -1.20 .767 .73839 .764 .734 .07 .767 .73839 .764 .734 .07 .767 .737 .52 .764 .734 .07 .767 .737 .52 .764 .734	DEG -2.09 .725 .6950044 -1.18 .730 .700 .127932 .724 .695 .259732 .725 .696 .2620 .55 .728 .698 .3909 .96 .725 .695 .4593 1.42 .722 .692 .5258 1.82 .723 .693 .5930 2.25 .723 .694 .6466 ALPHA,C MACH MACH,C CN DEG -2.05 .744 .7150011 -1.19 .747 .717 .135277 .746 .716 .204935 .747 .717 .267834 .748 .718 .2677 .08 .745 .715 .3356 .52 .745 .716 .4009 .94 .744 .715 .4686 1.37 .743 .713 .5244 ALPHA,C MACH MACH,C CN DEG -2.03 .769 .740 .0093 -1.20 .767 .738 .143539 .764 .734 .268035 .763 .734 .268035 .763 .734 .268035 .763 .734 .268035 .763 .734 .268035 .763 .734 .268035 .764 .734 .268035 .763 .734 .268035 .763 .734 .268035 .764 .734 .268035 .763 .734 .268035 .763 .734 .268035 .763 .734 .3302 .52 .764 .734 .3926 .95 .762 .732 .4492	DEG -2.09	ALPHA, C MACH MACH, C CN CN, C CM -2.09	ALPHA,C MACH MACH,C CN CN,C CM CM,C -2.09 .725 .6950044004501540158 -1.18 .730 .700 .1279 .13150176018132 .724 .695 .2597 .26690214022032 .725 .696 .2620 .269302090215 .55 .728 .698 .3909 .40180233 .0239 .96 .725 .695 .4593 .472102400247 1.42 .722 .692 .5258 .540402410248 1.82 .723 .693 .5930 .609502420249 2.25 .723 .694 .6466 .666602410248 ALPHA,C MACH MACH,C CN CN,C CM CM,C DEG -2.05 .744 .7150011001101640169 -1.19 .747 .717 .1352 .13890198 .020377 .746 .716 .2049 .21060219022535 .747 .717 .2678 .27520233 .023934 .748 .718 .2677 .2751 .0229 .0235 .52 .745 .716 .4009 .41200264 .0255 .52 .745 .716 .4009 .41200264 .0271 .94 .744 .715 .4686 .481602800288 1.37 .743 .713 .5244 .538902800288 ALPHA,C MACH MACH,C CN CN,C CM CM,C DEG -2.03 .769 .740 .0093 .009601820187 -1.20 .767 .738 .1435 .14740222022839 .764 .734 .2680 .27540229028839 .764 .734 .2680 .27540259028839 .764 .734 .2680 .27540259026635 .763 .734 .2729 .280402660273 .07 .767 .737 .3302 .3393 .0288 .029635 .766 .734 .3926 .403403020310 .95 .762 .732 .4492 .461603170326	ALPHA,C MACH MACH,C CN CN,C CM CM,C CD -2.09 .725 .6950044004501540158 .00737 -1.18 .730 .700 .1279 .131501760181 .0065732 .724 .695 .2597 .266902140220 .0065732 .725 .696 .2620 .266902140220 .0065732 .728 .698 .3909 .401802330239 .00649 .96 .725 .695 .4593 .472102400247 .00735 1.42 .722 .692 .5258 .540402410226 .00779 1.82 .723 .693 .5930 .609502420249 .00848 2.25 .723 .694 .6466 .664602410248 .00966 RUN 8 ALPHA,C MACH MACH,C CN CN,C CM CM,C CD -2.05 .744 .7150011001101640169 .00714 -1.19 .747 .717 .1352 .138901980203 .0064777 .746 .716 .2049 .210602190225 .0070335 .747 .717 .2678 .275202330239 .0086734 .748 .718 .2647 .275102290235 .00686 .08 .745 .715 .3356 .344902480255 .00728 .52 .745 .716 .4009 .412002640271 .00728 .94 .744 .715 .4686 .481602600228 .00774 1.37 .743 .713 .5244 .538902800288 .00935 RUN 9 ALPHA,C MACH MACH,C CN CN,C CM CM,C CD -2.03 .769 .740 .0093 .009601820187 .00796 -1.20 .767 .738 .1435 .147402220228 .0077439 .764 .734 .2680 .275402990268 .00935 .07 .767 .738 .1435 .147402220228 .0077439 .764 .734 .2729 .28040266 .00273 .00865 .07 .767 .737 .3302 .339302800288 .00739 .95 .762 .732 .4492 .461603170326 .01435	ALPHA,C MACH MACH,C CN CN,C CM CM,C CD RN (X 10-6) -2.09 .725 .6950044004501540158 .00737 4.33 -1.18 .730 .700 .1279 .131501760181 .00657 4.2832 .724 .695 .2597 .266902140220 .00657 4.2832 .725 .696 .2620 .269302090215 .00644 4.34 .55 .728 .698 .3909 .40180233 .0239 .00644 4.34 .96 .725 .695 .4593 .472102400247 .00735 4.38 1.42 .722 .692 .5258 .540402410248 .00779 4.30 1.42 .723 .693 .5930 .609502420249 .00848 4.36 2.25 .723 .694 .6466 .664602410248 .00779 4.30 2.25 .723 .694 .6466 .664602410248 .00779 4.30 RUN 8 ALPHA,C MACH MACH,C CN CN,C CM CM,C CD RN (X 10-6) -2.05 .744 .7150011001101640169 .00714 4.27 -1.19 .747 .717 .1352 .138901980203 .00647 4.2577 .746 .716 .2049 .210602190225 .00703 4.1935 .747 .717 .2678 .27520233 .0029 .00687 4.2534 .748 .718 .2677 .27510229 .0235 .00686 4.18 .08 .745 .715 .3356 .34490249 .0229 .0235 .00686 4.18 .08 .745 .715 .3356 .344902480255 .00708 4.27 .52 .745 .715 .3356 .344902480255 .00708 4.27 .52 .745 .715 .4686 .481602800288 .00935 4.26 RUN 9 ALPHA,C MACH MACH,C CN CN,C CM CH,C CD RN (X 10-6) -2.03 .769 .740 .0093 .009601820187 .00796 3.86 -1.20 .767 .738 .1435 .147402220228 .00749 3.9539 .764 .734 .2680 .275402680288 .00935 4.26 -2.03 .769 .740 .733 .2680 .275402690288 .00935 4.26 -2.03 .769 .740 .733 .2302 .339302880296 .01123 3.87 .39 .764 .734 .2729 .280402660273 .00865 3.89 .07 .767 .737 .3302 .339302880296 .01123 3.87 .39 .764 .734 .3926 .403403020310 .01259 3.95 .95 .766 .734 .3926 .403403020310 .01259 3.95 .95 .766 .734 .3926 .403403020310 .01259 3.95

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX A.-

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONTINUED

					RUN 1	0				
ALPHA Deg	ALPHA,C Deg	MACH	MACH+C	CN	CN, C	CM	CM.C	CD	RN (X 10-6)	POINT
-2.05	-2.05	.784	.754	.0023	.0024	0217	0223	.00916	3.97	121
-1.03	-1.20	.781	.751	.1378	.1416	0271	0278	.01000	3.94	122
54	78	.784	.754	.1920	.1972	0292	0300	.01260	3.94	123
07	37	.789	.759	.2445	.2511	0333	0342	.01662	3.92	120
02	34	.784	.754	.2569	.2639	0317	0326	.01412	3.91	124
.47	•09	.786	.756	.3076	.3160	0334	0343	.01839	3.91	125
.96	.52	.781	.752	.3617	.3716	0343	0352	.01936	3.96	126
1.48	.97	.782	.752	.4157	.4270	0365	0375	.02194	3.92	127
1.97	1.40	.779	.749	.4671	.4799	0368	0378	.02308	3.98	128
					RUN 1	1				
ALPHA	ALPHA, C	MACH	MACH,C	CN	CN.C	CM	CM, C	CD	RN	POINT
DEG	DEG								(X 10-6)	
-2.02	-2.00	.805	.775	0174	0179	0246	0253	***	3.86	131
-1.05	-1.19	.804	.774	.1087	.1116	0301	0309	.01791	3.85	132
51	72	.804	.774	.1688	.1733	0336	0345	.02054	3.80	133
03	30	.904	.774	.2172	.2230	0351	0360	.02224	3.84	134
01	29	.807	.777	.2175	.2233	0358	0368	.02256	3.89	130
.47	.12	.801	.771	.2792	.2867	0375	0385	***	3.85	135
.98	•57	.803	.773	.3228	.3315	0387	0397	***	3.87	136
1.48	1.00	.797	.767	.3813	.3916	0405	0416	***	3.84	137
2.00	1.47	.797	•767	.4256	.4371	0408	0419	***	3.90	138
					RUN 1	?				
ALPHA	ALPHA.C	MACH	MACH,C	CN	CN.C	CM	CM.C	CD	RN	POINT
DEG	DEG					•			(X 10-6)	. •••
-2.02	-2.02	.731	• 702	.0040	.0041	0155	0159	.00698	8.43	141
-1.07	-1.22	.724	.695	.1299	.1335	0183	0188	.00748	8.45	142
52	75	.724	.694	.2004	.2060	0197	0202	.00789	8.51	143
06	36	.729	.700	.2607	.2679	0217	0223	.00782	8.39	149
• 52	.14	.725	.696	.3347	.3440	0223	0229	.00833	8.83	145
1.02	•56	.725	.695	.4044	.4156	0237	0244	.00849	8.89	146
					RUN 1	3				
ALPHA	ALPHA,C	MACH	MACH,C	CN	CN,C	CM	CM, C	CD	RN	POINT
DEG	DEG								(X 10-6)	
-1.04	-1.18	.725	•696	.1270	.1305	0179	0184	.00768	10.39	153
55	76	.723	.693	.1908	.1961	0193	0198	.00806	10.68	154
04	33	.720	•691	.2609	.2682	0207	0213	.00826	10.22	157
01	31	.716	.687	.2675	.2750	0209	0215	.00780	10.16	152
.47	•09	.724	.694	.3358	.3451	0230	0236	.00855	10.42	158
.98	•53	.724	.694	.4010	.4122	0241	0248	.00870	10.52	159

APPENDIX A.-

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONTINUED MODEL HAS FIXED TRANSITION AT 0.05C RUNS 16-37

					RUN 1	5				
ALPHA DEG	ALPHA,C DEG	MACH	MACH+C	CN	CN,C	CM	C M , C	CD	RN (X 10-6)	POINT
-2.03	-2.02	.517	.490	0104	0108	0118	0122	.00833	3.91	182
-1.02	-1.10	.517	.491	.1005	.1041	0131	0136	.00808	3.85	183
07	23	.513	.487	.2036	.2110	0153	0159	.00839	3.80	181
.02	15	.520	.493	.2137	.2214	0149	0154	.00843	3.95	184
.99	.74	.514	.488	.3217	.3334	0173	0179	.00836	3.92	185
2.02	1.69	.516	.489	.4295	.4451	0184	0191	.00864	3.90	186
2.97	2.55	.516	.490	•5360	.5555	0195	0202	.00890	3.86	187
4.01	3.51	.514	.488	.6506	.6743	0205	0212	.00846	3.94	188
					RUNS 17	,18				
ALPHA DEG	ALPHA,C DEG	MACH	MACH+C	CN	CN.C	CM	CM, C	CD	RN (X 10-6)	POINT
-2.05	-2.04	.510	.484	0187	0194	0107	0111	.00686	8.42	191
-1.02	-1.10	.512	. 485	.1005	.1042	0129	0134	.00794	8.55	192
06	22	.513	.486	.2099	.2176	0157	0163	.00682	8.49	199
03	19	.507	.481	.2142	.2221	0152	0158	.00726	8.44	204
03	19	.510	.484	.2093	.2170	0151	0157	.00754	8.29	190
.05	12	.512	. 486	.2237	.2319	0154	0160	.00768	8 . 65	193
1.02	.76	.512	.485	.3325	.3446	0172	0178	.00826	8.77	194
2.02	1.68	.509	.483	.4510	.4675	0193	0200	.00765	8.48	200
2.03	1.69	.510	.483	. 4484	. 4648	0193	0200	.00859	8.81	195
3.00	2.57	.509	.482	.5610	.5816	0208	0216	.00832	8.54	201
3.01	2.58	.512	. 485	.5607	.5812	0203	0210	.00778	8.61	205
3.01	2.58	.510	.484	.5577	.5781	0208	0216	.00859	8.63	196
4.02	351	.510	.483	.6733	.6980	0216	0224	.00935	8.67	206
4.05	3.53	.515	. 488	.6776	.7022	0222	0230	.00890	8.69	202
5.01	4.41	.510	.483	.7849	.8137	0219	0227	.01010	8.86	207
					RUNS 19	, 20				
ALPHA	AL PHA, C	MACH	MACH,C	CN	CN,C	CM	CM+C	CD	RN	POINT
D€G	DEG								(X 10-6)	
-2.04	-2.02	.707	.678	0164	0169	0139	0143	.00787	11.02	210
99	-1.13	.703	.674	.1253	.1288	0169	0174	.00831	11.22	211
54	74	.705	.675	.1802	.1853	0182	0187	.00779	11.22	215
05	32	.704	.675	.2490	.2560	0194	0199	.00816	10.71	209
05	32	.707	.677	.2448	.2517	0196	0202	.00865	11.11	219
.03	25	.705	.675	.2590	.2663	0198	0204	.00809	11.37	216
.54	.19	.702	.673	.3261	.3353	0212	0218	.00909	11.10	217
1.49	1.00	.707	.677	.4502	.4629	0228	0234	.00885	11.50	221

APPENDIX A.-

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONTINUED

					PUNS 21	• 22				
ALPHA Deg	ALPHA,C DEG	MACH	MACH,C	CN	CN,C	CM	CM,C	CD	RN (X 10-6)	POTNT
-2.03	-2.01	.728	•698	0168	0173	0150	0154	.00841	11.11	225
-1.01	-1.15	.728	.699	.1221	.1255	0180	0185	.00836	11.30	226
05	34	.730	.701	.2532	.2602	0214	0220	.00833	10.97	224
.00	30	.724	.694	.2630	.2703	0212	0218	.00827	10.80	230
.49	•12	.720	.690	.3286	.3378	0223	0229	.00832	10.93	231
1.03	.58	.723	.694	.3986	.4097	0236	0243	.00904	11.12	232
2.03	1.44	.720	•690	•5306	.5454	0244	0251	.00951	11.09	236
					RUNS 23	, 24				
ALPHA Deg	ALPHA,C Deg	MACH	MACHOC	CN	CN.C	CM	CM,C	CD	RN (X 10-6)	POINT
-2.05	-2.03	.746	.716	0188	0193	0159	0163	.00867	11.15	239
-1.02	-1.17	.743	.714	.1318	.1354	0204	0210	.00896	11.19	240
52	75	743	.714	.1988	.2043	0223	0229	.00870	11.35	241
09	39	.740	.710	.2578	.2649	0226	0232	.00865	10.87	238
.49	.10	.737	.707	.3411	.3505	0246	0253	.01004	10.42	243
.99	.52	.746	.716	.4016	.4127	0291	0299	.01174	10.64	244
1.49	.95	.744	.714	.4650	.4779	0315	0324	.01281	10.78	245
1.99	1.38	.742	.712	.5247	5392	0328	0337	.01548	10.95	246
					RUNS 25	. 26				
ALPHA	ALPHA, C	MACH	MACH + C	CN	CN, C	CM	CM, C	CD	RN	POINT
DEG	DEG								(X 10-6)	
-2.08	-2.06	.760	.731	0179	0184	0179	0184	.00898	10.56	249
-1.05	-1.21	.759	•730	.1315	.1351	0236	0242	.00996	10.66	250
01	34	. 754	.725	.2763	.2839	0280	0288	.01309	10.30	248
.53	.12	.760	.731	.3482	.3578	0352	0362	.01542	10.55	253
.99	.54	.762	.732	.3747	.3850	0363	0373	.02137	10.63	254
1.48	.99	.762	•732	.4118	.4231	0365	0375	***	10.78	255
2.02	1.48	.761	•731	.4538	•4663	0363	0373	***	10.93	256
					RUNS 27	, 28				
ALPHA	ALPHA, C	MACH	MACH, C	CN	CN, C	CM	CM.C	CD	RN	POINT
DEG	DEG								(X 10-6)	
-2.04	-2.03	.781	.751	0114	0117	0245	0252	.01309	10.45	259
-1.04	-1.18	.780	• 750	.1171	.1203	0300	0308	.01715	10.57	260
55	76	.780	.750	.1692	.1738	0315	0324	.02149	10.74	261
14	40	.781	.751	.2101	.2158	0340	0349	.02219	10.32	258
•64	•28	.778	.748	.2984	.3066	0371	0381	***	10.39	263
1.00	•63	.783	.754	•3004	.3086	0342	0351	***	10.57	264
1.48	1.08	.785	. 755	.3214	.3301	0320	0329	***	10.71	265
2.03	1.58	.783	•753	.3680	.3780	0318	0327	***	10.85	266

APPENDIX A.-

HSNLF(1)-0213 AIRFOIL, LANGLEY 6-BY 28-INCH TRANSONIC TUNNEL, TEST 115-CONCLUDED

					RUNS 29	30				
ALPHA DEG	ALPHA,C DEG	MACH	MACH+C	CN	CN+C	CM	CM.C	CD	RN (X 10-6)	POINT
-2.05	-1.99	.802	.772	0479	0492	0282	0290	.01912	10.73	269
-1.01	-1.10	.799	.769	.0690	.0709	0297	0305	***	10.89	270
51	65	.799	.769	.1140	.1171	0295	0303	***	11.11	271
06	25	.801	.771	.1488	.1528	0287	0295	***	10.56	268
.53	.27	.799	.769	.2114	.2171	0302	0310	***	10.66	273
• 96	.70	.805	.775	.2028	.2082	0220	0226	***	10.82	274
1.49	1.16	.797	.767	.2675	.2747	0248	0255	***	10.96	275
2.00	1.61	.797	•767	.3108	.3192	0266	0273	***	11.14	276
					RUNS 31	32				
ALPHA DEG	ALPHA,C Deg	MACH	MACH,C	CN	CN,C	CM	CM,C	CD	RN (X 10-6)	POINT
-2.04	-2.03	.710	.681	0119	0122	0145	0149	.00817	11.13	281
-1.04	-1.17	.712	.682	.1221	.1255	0173	0178	.00757	11.27	282
51	72	.708	.679	.1939	.1993	0189	0194	.00841	11.42	283
05	33	.703	.673	.2531	•2602	0194	0199	.00796	10.71	280
.51	.15	.702	.672	.3302	.3395	0206	0212	.00883	10.70	285
1.13	.68	.702	.673	.4105	.4221	0224	0230	.00896	10.98	286
1.49	.99	.701	.672	.4585	.4715	0224	0230	.00917	11.22	287
2.03	1.46	.703	.673	•5265	.5414	.0227	.0233	.00950	11.39	288
					RUNS 33	34				
ALPHA Deg	ALPHA,C DEG	MACH	MACH,C	CN	CN,C	CM	CM,C	CD	RN (X 10-6)	POINT
-2.03	-2.02	.727	.697	0127	0131	0152	0156	.00804	11.23	291
-1.01	-1.16	.726	.697	.1310	.1346	0182	0187	.00826	11.37	292
51	73	.723	.694	.1972	.2027	0201	0207	.00875	11.45	293
05	35	.729	.699	.2614	.2687	0217	0223	.00862	10.97	290
.54	.16	.722	.692	.3422	.3517	0219	0225	.00891	11.08	295
1.03	.58	.721	.692	.4035	.4147	0232	0238	.00904	11.19	296
1.54	1.00	.727	.697	.4754	.4886	0249	0256	•00998	11.40	297
2.03	1.42	.725	•695	.5402	•5552	0258	0265	.01072	11.53	298
					RUNS 35,	36,37				
ALPHA	ALPHA,C	MACH	MACH + C	CN	CN, C	CM	CM,C	CD	RN	POINT
DEG	DEG	.,,,,			,	-			(X 10-6)	
09	25	.517	.491	.2102	.2178	0154	0160	.00839	8.49	305
05	21	.513	.486	.2125	.2203	0155	0161	.00822	8.45	300
03	19	.513	.486	.2138	.2216	0152	0158	.00752	8.46	310
1.97	1.63	.517	.490	.4436	.4597	0187	0194	.00836	8.54	301
4.02	3.50	.514	.488	.6705	.6949	0215	0223	.00874	8.57	302
4.53	3.96	.512	.486	.7347	.7615	0217	0225	.00941	8.60	303
5.06	4.45	.514	.487	.7912	.8200	0220	0228	.01024	8.51	306
5.54	4.89	.512	.485	.8444	.8753	0215	0223	.01000	8.51	307
5.99	5.30	.514	.487	-8895 0305	.9219	0201	0208	.01024	8.63	308
6.50	5.79	.509	.482	.9305	.9646	0195	0202	.01228	8.51	311
7.49	6.73	.509	.482	.9929	1.0293	0151	0157	.01705	8.68	313
8.02	7.23	.508	.481	1.0350	1.0730	0101	0105	.01740	8.74	314

ORIGINAL PAGE IS OF POOR QUALITY

APPENDIX B.-

HSNLF(1)-0213 AIRFOTL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313

MODEL SMOOTH RUNS 3,5,6,9,10,12,13,15,17,19-22,29

RUNS 3,29 M = 0.22 R = 3.0 MILLION

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		B14
ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT
	COFFFICIENT	COEFFICIENT	COEFFICIENT
-4.04	288	.0079	•0074
-4.01	229	•0079	.0162
-3.14	187	•0074	0001
-3.13	166	.0074	•0056
-2.03	053	.0051	•0046
-2.02	055	.0051 .	.0061
-1.00	.059	.0047	0075
-1.00	.049	•0048	0028
.03	.194	.0048	0167
•03	.204	•004B	0119
• 0 4	.211	•0049	0166
•05	.216	•0048	00R2
1.04	.282	•0049	006?
1.06	.330	• 0049	.0123
2.07	.410	•0060	0027
2.08	.411	•0060	0216
2.10	•425	•0060	0159
3.09	.497	•0080	0114
3.09	.507	.0080	0095
4.01	.611	•0091	0201
4.03	•656	•0091	0006
4.11	.591	•009 <i>2</i>	0184
6.11	.859	•0116	0069
6.12	.880	.0116	0057
P.37	1.045	•0157	0181
8.37	1.070	.0157	0177
10.20	1.176	***	0115
10.21	1.206	****	005?
12.1P	1.312	****	0125
12.18	1.301	***	0084
14.19	1.366	****	0231
14.20	1.368	***	0179
15.28	1.409	****	0148
15.29	1.413	****	0129
16.20	1.394	***	0093
16.20	1.411	****	0093
17.16	1.216	****	0515
17.16	1.218	****	0416

HENLE(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

APPENDIX B.-

RUNS 5,6 M = 0.17 R = 4.0 MILLION

ALPHA, DEG	LIFT COEFFICIENT	DRAG CDEFFICIENT	PITCHING-MOMENT COEFFICIENT
	201		
-4.56	326	.0074	0155
-4.02	209	.0072	.0086
-3.03	126	•0068	015?
-3.01	105	.0068	0005
-2.57	018	•0064	.0080
-2.02	041	•0052	0186
-2.01	021	•0052	0088
-1.50	•046	•0047 .	0053
-1.49	•046	•0047	.0031
-1.01	.091	•0039	0148
-1.00	.103	•0039	0092
• 03	.174	•0040	0236
•04	•216	•0040	0159
•05	•225	•0038	0110
•06	.244	•0038	0032
1.07	•332	•0046	0182
1.07	•348	•0046	0051
1.23	.325	•0043	0198
1.24	.332	•0043	0156
1.56	•339	•0053	0314
1.57	.378	•0053	0130
2.05	• 422	•0063	0247
2.06	•420	•0063	0084
2.57	.480	•0070	0086
3.07	•503	•0078	0197
3.07	•519	.0078	0145
4.34	.622	.0090	0256
4.34	.636	•0090	0216
5.09	.676	•0097	0204
5.10	.727	.0097	0188
6.10	.812	.0107	0326
6.11	.844	.0107	0168
8.29	1.034	.0136	0244
8.29	1.053	.0136	0217
10.23	1.160	.0178	0308
10.24	1.203	.0178	0291
12.20	1.309	****	0361
12.20	1.327	****	0281
12.21	1.347	****	0205
14.19	1.439	****	0283
14.19	1.430	****	0274
15.20	1.488	****	0261
15.21	1.505	****	0129
16.22	1.510	****	0238
16.22	1.516	****	0206
17.21	1.507	****	0310
17.22	1.540	****	0167
17.72	1.518	****	0246
18.14	1.165	****	0874
18.16	1.253	****	0767
- ·			

APPENDIX B.-

HSNLF(1)-0213 AIRFDIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUNS 9,10 M = 0.14 R = 6.0 MILLION

ALPHA, DEG	LIFT . COEFFICIENT	DRAG COEFFICIENT	PITCHING-MOMENT COEFFICIENT
-4.0R	266	•0068	0092
-4.08	274	.0068	0023
-3.09	187	•0064	0192
-3.08	154	.0064	0124
-2.57	103	.0061	0180
-2.57	105	.0061	0158
-2.08	088	.0056	0198 0183
-2.08	054	.0056	0175
-1.51	003	.0037	0171
-1.51	•00B	.0037	0173
-1.03	.028	•0038	0266
-1.02	.052	•0038	0190
01	.170	.0037	0152
.04	.152	.0038	0265
.04	.180	.0038	0228
.04	.183	.0038	0203
• 05	.172	.0038	0151
1.04	•260	.0045	0271
1.05	.285	.0045	0177
2.05	•382	•0059	0215
2.05	.386	.0059	0192
2.06	•367	•0059	0290
2.07	.388	•0059	0221
3.07	.514	•0070	0377
3.08	•508	•0070	0213
4.06	• 595	.0077	0354
4.07	•633	.0077	0251
5.09	.718	•0083	0252
5.10	•743	•0083	0226
6.15	.842	.0091	0284
6.15	.839	•0091	0236
8.15	1.038	.0113	0328
8.15	1.053	.0113	0320
10.17	1.215	.0146	0279
10.18	1.252	.0146	0234
12.19	1.364	.0190	0327
12.19	1.382	.0190	0304
14.19	1.480	***	0337
14.20	1.509	****	0207
16.22 16.22	1.585	****	0238
	1.593 1.589	****	0211
17.21 17.22	1.637	****	0321
18.22	1.652	****	0171 0205
18.23	1.660	****	0205
18.71	1.613	****	0145 0292
18.72	1.643	****	0244
19.17	1.181	****	0244 1068
19.19	1.318	****	0954
19.22	1.413	****	0678

APPENDIX B.-

HENLE(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 12	M =	0.20	R =	6.0	MILLION
--------	-----	------	-----	-----	---------

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT
	COEFFICIENT	CDEFFICIENT	COEFFICIENT
-1.00	.091	.0037	0113
-1.00	•092	•0037	00R3
•05	•208	.0039	0132
.05	•217	•0039	0108
1.06	•326	.0047	0167
1.06	• 32 4	.0047	0125
2.06	•427	•0061	0195
2.06	.434	•0061	0170
3.06	•520	.0071	025B
3.06	• 547	•0071	0191
4.05	.642	•0079	0201
4.05	•652	•0079	0242
6.13	•872	•0098	0274
6.14	.881	•0098	0237
8.10	1.070	.0120	0299
8.10	1.084	.0119	0218
10.18	1.267	•0150	0263
10.18	1.277	.0150	0198
12.21	1.418	.0224	0249
12.21	1.436	•0224	0199
14.30	1.527	****	0205
14.30	1.526	***	0196
15.31	1.586	***	0143
15.31	1.592	****	0128
16.22	1.624	****	7174
16.23	1.635	***	0122
16.70	1.640	***	0166
16.71	1.637	***	0130
17.21	1.622	***	0187
17.21	1.647	***	0183
17.63	1.489	****	0405
17.64	1.524	***	0434
18.19	1.339	***	0833
18.22	1.436	****	0495

45NLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 212-CONTIN

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 13 M = 0.14 R = 4.0 MILLION

APPENDIX B.-

ALPHA, DEG	LIFT COEFFICIENT	DRAG	PITCHING-MOMENT
	CUEFFICIENT	COEFFICIENT	COEFFICIENT
•01	.142	.0042	0452
•02	.178	.0042	0274
2.03	•393	.0057	0504
2.03	•362	•0057	0401
4.04	•538	•0085	0530
4.06	•566	•0085	0397
6.10	.823	•0106	0331
6.10	•833	.0106	0336
8.12	•945	•0132	0597
8.12	.961	•0132	0600
10.14	1.178	•0171	0461
10.15	1.202	.0171	0420
12.16	1.285	***	0594
12.17	1.315	****	0459
14.17	1.399	***	0537
14.17	1.398	****	0514
15.18	1.459	****	0451
15.19	1.485	****	0325
16.17	1.449	****	0651
16.19	1.496	****	0431
16.69	1.542	***	0383
16.69	1.551	***	0335
17.16	1.549	****	0503
17.17	1.521	****	0399
17.68	1.492	****	0602
17.68	1.502	****	0565
18.22	1.446	****	0489
16.24	1.527	****	0417
16.63	1.258	****	1152
18.67	1.404	****	0740

APPENDIX B.-

HSMLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 15 M = 0.11 R = 5.0 MILLION

ALPHA, DEG	LIFT COEFFICIENT	DRAG Coefficient	PITCHING-MOMENT COEFFICIENT
			000.77016147
•01	.149	.0040	0370
•02	.186	.0040	0259
2.06	•385	.0058	0362
2.07	.401	•0058	0321
4.07	•584	.0081	0426
4.08	•634	.0081	0276
6.13	.811	•0100	0513
6.15	.841	.0100	0300
P.13	1.023	.0121	0423
8.13	1.034	.0121	0445
10.16	1.188	.0150	0509
10.17	1.218	.0150	0410
12.18	1.375	.0221	0396
12.19	1.390	.0221	0290
14.18	1.466	****	0490
14.19	1.480	***	0455
15.21	1.523	****	0445
15.22	1.535	****	0373
16.20	1.547	****	0412
16.21	1.589	****	0347
17.26	1.596	****	0535
17.26	1.577	****	0445
17.70	1.611	****	0505
17.71	1.603	****	0400
18.29	1.593	****	0548
16.30	1.595	****	0400
18.70	1.611	****	0324
18.72	1.631	****	0283
19.11	•986	***	1436
19.14	1.135	****	1313

APPENDIX B.-

HSNLF(1)-0213 ATREDIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 17 $M = 0.10$ R = 6.0 MILLIO	RUN	17	M =	0.10	R =	6.0	MILLION
----------------------------------	-----	----	-----	------	-----	-----	---------

ALPHA, DEG	LIFT COEFFICIENT	DRAG COEFFICIENT	PITCHING-MOMENT COEFFICIENT
-1.01	.114	.0037	0124
-1.00	.156	.0037	•0079
•04	.225	.0037	0077
•04	.242	.0037	0065
1.07	.325	.0044	0363
1.09	.334	•0044	0127
2.05	.387	•0059	0352
2.06	.426	•0059	0238
3.07	•552	•0069	0261
3.07	•560	•0069	0212
4.08	.661	•0078	0308
4.09	•672	•0078	0249
6.14	.882	.0094	0237
6.14	.878	•0094	0202
8.13	1.058	•0115	0368
8.14	1.100	.0115	0252
10.19	1.237	.0139	0425
10.22	1.322	•0139	0199
12.19	1.439	.0181	0241
12.19	1.454	.0181	0244
14.21	1.552	****	0205
14.21	1.548	****	0176
16.24	1.609	****	0328
16.25	1.663	****	0204
17.25	1.674	****	0204
17.25	1.688	****	0136
17.74	1.675	****	0224
17.74	1.691	****	0158
18.24	1.642	****	0353
18.27	1.715	****	0105
18.73	1.670	****	0206
18.74	1.714	****	0065
18.93	1.053	***	9.9000
18.93	1.377	***	9.9000
19.22	1.425	***	9.9000
19.23	1.415	****	9.9000

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED RUN 19 M=0.14 R=9.0 MILLION

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT	
	COEFFICIENT	CDEFFICIENT	COEFFICIENT	
-4.06	261	•0063	0040	
-4.05	256	•0063	•0008	
-3.57	207	•0062	0059	
-3.57	192	•0062	0027	
-3.08	151	•0060	0047	
-3.08	131	•0060	0036	
-2.62	091	•0058	0070	
-2.62	088	•0058	0057	
-2.04	044	•0055	0168	
-2.03	025	•0055	0093	
-1.54	.016	•0049	0152	
-1.53	•036	•0049	0098	
99	•08 <i>2</i>	•0040	0167	
98	•095	•0040	0105	
•05	.187	.0040	0187	
•05	•203	•0040	0195	
1.07	•300	•0048	0103	
1.07	.320	•0048	0098	
1.55	•357	•0053	0175	
1.55	•370	•0053	0127	
2.12	.428	•0059	0117	
3.06	•522	•0066	0197	
4.08	.633	.0073	0176	
4.08	•624	.0073	0150	
5.10	•750	.0080	0203	
5.10	•753	.0080	0163	
6.22	.868	.0090	0150	
6.22	.890	•0090	0100	
7.12	.970	•0098	0188	
7.12	•972	.0098	0169	
8.16	1.060	.0107	0224	
8.17	1.099	.0107	0134	
10.28	1.282	.0129	0211	
10.29	1.311	.0129	0159	
12.21	1.449	.0161	0169	
12.21	1.450	.0161	0150	
14.23	1.569	****	0119	
14.23	1.577	****	0087	
16.23	1.636	****	0119	
16.23	1.654	****	0093	
17.23	1.672	****	0092	
17.23	1.666	****	0061	
18.24	1.631	****	•0077	
18.24	1.660	****	•0021	
18.72	1.678	****	0104	
18.73	1.705	****	0005	
19.24	1.686	****	0004	
19.24	1.683	****	•0070	
19.67	1.150	****	0991	
19.63	1.169	****	0860	
	2123,		• • • • • • • • • • • • • • • • • • • •	

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 20 M = 0.25 R = 6.0 MILLION

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT	
	COEFFICIENT	COEFFICIENT	COEFFICIENT	
.04	.181	•0039	0268	
•05	.198	•0039	0190	
1.04	.307	.0048	0236	
1.04	.308	.0048	0220	
2.09	• 4 2 4	.0062	0266	
2.10	•430	.0062	0214	
4.08	.632	.0080	0289	
4.08	.653	.080	0290	
6.11	.859	.0099	0374	
6.11	.867	•0099	0264	
8.15	1.074	.0123	0331	
8.15	1.098	.0123	0261	
10.17	1.263	•0158	0365	
10.17	1.272	.0158	0323	
12.19	1.420	***	0290	
12.19	1.425	****	0290	
14.25	1.537	****	0266	
14.25	1.518	****	0211	
15.20	1.558	****	0323	
15.21	1.568	****	0255	
16.21	1.591	****	0237	
16.22	1.596	****	0210	
16.68	1.428	****	0538	
16.68	1.457	****	0456	
17.21	1.418	***	0650	
17.21	1.397	****	0580	
17.64	1.315	****	0792	
17.65	1.366	****	0635	

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 21 M = 0.29 R = 6.0 MILLION

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT	
	COEFFICIENT	CDEFFICIENT	COEFFICIENT	
•03	.200	.0041	0176	
•03	•205	.0041	0183	
1.05	.314	•0050	0160	
1.06	.330	.0050	0156	
2.07	.427	•0063	0199	
2.07	.431	•0063	0168	
4.08	.645	.0082	0261	
4.09	•656	.0082	0230	
6.12	.880	.0101	0282	
6.13	.885	.0101	0202	
8.18	1.088	.0127	0306	
6.19	1.103	.0127	0240	
10.17	1.269	.0167	0269	
10.17	1.279	.0167	0263	
12.19	1.404	****	0230	
12.19	1.412	***	0198	
14.20	1.496	***	0155	
14.21	1.504	****	0155	
15.20	1.466	***	0196	
15.21	1.493	****	0140	
16.23	1.406	****	0270	
16.24	1.414	****	0253	
16.66	1.350	****	0392	
16.67	1.356	****	0368	
17.17	1.269	****	0629	
17.17	1.238	****	0547	

APPENDIX B.-

HSNLF(1)-0213 ATREDIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 22	M		0.20	R =	3.7	MILL	ION
--------	---	--	------	-----	-----	------	-----

	COEFFICIENT	DRAG CDEFFICIENT	PITCHING-MOMENT COEFFICIENT	
	***		•••	
-4.06	266	.0076	0089	
-4.05	236	•0076	0017	
-3.08	149	.0071	0137	
-3.08	154	.0071	0103	
-2.04	051	•0055	0190	
-2.03	056	.0055	0100	
-1.00	•099	•0044	0132	
-1.00	•116	•0044	0067	
.03	.177	.0045	01A7	
•04	•231	.0044	0164	
1.03	•283	•0045	0281	
1.05	.337	.0045	0056	
2.05	•405	•0060	0217	
2.06	•407	•0060	0134	
4.12	•626	.0088	0228	
4.13	•655	•0088	0187	
6.14	.859	.0111	0198	
6.14	.864	.0111	0141	
8.16	1.074	.0138	0102	
8.16	1.100	.0138	0114	
10.16	1.217	.0194	0195	
10.17	1.241	•0194	0104	
12.19	1.344	****	0239	
12.20	1.373	****	0064	
14.19	1.445	***	0189	
14.19	1.446	****	0163	
15.22	1.500	****	0146	
16.16	1.515	****	0231	
16.21	1.522	****	0186	
16.21	1.537	***	0137	
17.21	1.495	****	0253	
17.21	1.501	****	0208	
17.64	1.292	****	0495	
17.66	1.362	****	0387	
18.13	1.177	****	0789	
18.15	1.249	****	0669	

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED MODEL HAS FIXED TRANSITION AT 0.05C RUNS 26-28

RUN 26 M = 0.14 R = 6.0 MILLION

			•
ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT
	COEFFICIENT	COEFFICIENT	COEFFICIENT
-4.06	289	•0069	0230
-4.05	267	•0089	0117
-3.06	177	.0087	0239
-3.05	153	•0087	0177
-2.09	032	.0084	0124
-2.09	036	.0084	0118
-1.54	010	.0083	0328
-1.53	.023	.0083	0172
-1.01	.076	•0082	0216
-1.00	.092	.0082	0082
•03	.178	.0081	0190
.04	.203	.0081	0231
1.03	.284	.0081	0303
1.04	•303	.0081	0252
2.05	•406	.0083	0250
2.06	.433	.0083	0215
3.10	•524	.0087	0278
3.10	•538	.0087	0294
4.07	.617	•0092	0400
4.07	•602	•0092	0364
5.09	•726	•0100	0281
5.10	•753	.0100	0269
6.10	.822	.0108	0430
6.11	.840	.0108	0310
8.13	1.030	.0127	0431
P.14	1.063	.0127	0318
10.15	1.224	.0152	0460
10.16	1.253	.0152	0345
12.19	1.388	.0190	0427
12.20	1.400	.0190	0371
14.18	1.462	****	0557
14.19	1.508	****	0390
16.21	1.561	****	0342
16.22	1.595	****	0257
17.22	1.609	****	0389
17.22	1.617	****	0334
17.70	1.602	****	0456
17.71	1.627	****	0360
18.18	1.427	****	0541
18.19	1.517	****	0526

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 27 M = 0.17 R = 4.0 MILLION

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT	
ACT	COEFFICIENT	COEFFICIENT	COEFFICIENT	
-4.06	268	•0095	0159	
-4.04	259	•0095	.0127	
-3.10	168	.0093	0169	
-3.10	157	.0093	0155	
-2.10	050	•0090	0151	
-2.09	036	•0090	0165	
-1.06	•043	•0088	0223	
-1.05	.049	.0088	0183	
•02	.181	.0087	0216	
.03	.198	.0087	0079	
1.03	•286	.0088	0263	
1.04	•302	•0088	0181	
2.04	•365	•0091	0388	
2.06	.421	•0091	0177	
3.06	•496	.0094	0334	
3.07	•520	.0094	0259	
4.07	•604	.0100	0368	
4.08	•634	•0100	0287	
6.10	.815	.0118	0340	
6.11	.840	.0119	0314	
6.11	.812	.0119	0522	
6.12	.829	.0119	0345	
0.16	1.052	•0143	0511	
8.17	1.022	.0143	0382	
10.15	1.193	.0160	0383	
10.16	1.209	.0180	0269	
12.18	1.355	****	0274	
12.18	1.355	***	0240	
14.19	1.443	****	0424	
14.21	1.498	****	0205	
16.20	1.537	***	0287	
16.20	1.535	***	0272	
17.20	1.547	***	0363	
17.21	1.546	***	0236	
17.71	1.514	****	0413	
17.72	1.518	****	0337	
18.16	1.144	****	0755	
18.20	1.397	****	0599	
18.61	1.168	****	0927	
18.62	1.248	****	0874	

APPENDIX B.-

HSNLF(1)-0213 ATREDIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 28 M = 0.20 R = 3.7 MILLION

ALPHA, DEG	LIFT CDEFFICIENT	DRAG CDEFFICIENT	PITCHING-MOMENT
	CUEFFICIENT	CHEFFICIENT	COEFFICIENT
-4.10	262	.0097	0101
-4.10	251	•0097	0053
-2.10	052	•0093	0117
-2.10	025	.0093	0042
-1.02	.040	.0090	0245
-1.01	.074	.0090	0095
.03	.187	•0089	0152
•04	.226	.0089	0009
1.04	.278	.0090	0259
1.05	.288	•0090	0195
2.05	.367	.0092	0357
2.07	•406	.0092	0170
4.06	•590	.0101	0474
4.07	.588	.0101	0272
6.11	.860	.0121	0240
6.11	.862	•0120	0221
8.13	1.020	.0148	0362
8.13	1.029	.0148	0303
10.15	1.185	.0199	0327
10.16	1.216	.0199	0263
12.18	1.325	****	0385
12.18	1.325	****	0333
14.19	1.457	****	0276
14.20	1.465	****	0145
15.22	1.475	****	0241
15.22	1.485	****	0191
16.22	1.521	****	0226
16.23	1.554	****	0190
17.21	1.503	****	0295
17.22	1.513	****	0168
17.63	1.238	****	0708
17.65	1.337	****	0531
18.16	1.130	***	0923
18.17	1.159	****	0735

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED MODEL HAS TRAILING-EDGE SPLIT FLAP(0.20C) AT 60 DEG RUNS 30-32

RUN 30 M = 0.17 R = 4.0 MILLION

ALPHA, DEG	LIFT	DRAG	PITCHING-MOMENT
	COEFFICIENT	COEFFICIENT	COEFFICIENT
97	1.336	****	2518
96	1.374	***	2546
•08	1.480	****	2473
.08	1.489	****	2417
2.10	1.627	****	2599
2.12	1.669	****	2402
4.13	1.846	****	2466
4.14	1.885	****	2407
6.15	2.023	****	2500
6.16	2.049	****	2465
8.19	2.217	****	2608
8.20	2.243	****	2500
9.20	2.305	****	2552
9.20	2.311	****	2528
10.21	2.402	****	2639
10.21	2.415	****	2518
11.19	2.255	****	2643
11.20	2.342	****	2700
12.17	2.142	****	2824
12.16	2.132	***	2647
13.13	1.962	***	2935
13.15	2.010	***	2720

APPENDIX B.-

HSNLF(1)-0213 AIRFOIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONTINUED

RUN 31 M = 0.14 R = 6.0 MILLION

ALPHA, DEG	LIFT COEFFICIENT	DRAG COEFFICIENT	PITCHING-MOMENT COEFFICIENT
96	1.364	****	2377
94	1.438	****	2213
•11	1.480	****	2410
•12	1.495	****	2355
2.11	1.676	****	2441
2.11	1.690	****	2384
4.15	1.869	****	2423
4.16	1.876	****	2270
6.17	2.063	***	2416
6.18	2.073	****	2365
8.24	2.220	****	2442
8.26	2.290	****	2294
9.20	2.317	****	2493
9.21	2.323	****	2379
10.22	2.405	****	2391
10.22	2.426	****	2360
10.48	2.439	****	2458
10.48	2.432	****	2386
10.72	2.443	****	2393
10.72	2.461	****	2354
11.20	2.355	****	2529
11.20	2.382	****	2526
12.17	2.169	****	2593
12.18	2.186	****	2446
13.15	2.093	****	2805
13.16	2.124	****	2642

APPENDIX B

HSNLF(1)-0213 ATREDIL, LANGLEY LOW TURBULENCE PRESSURE TUNNEL, TEST 313-CONCLUDED

PUN 32 $M = 0.10$ f	₹ =	6.0	MILLION
---------------------	-----	-----	---------

ALPHA, DEG	LIFT COEFFICIENT	DRAG CDEFFICIENT	PITCHTNG-MOMENT COEFFICIENT
97	1.425	***	2082
96	1.439	****	2037
•11	1.487	****	2154
•11	1.509	****	2151
2.13	1.670	****	2267
2.13	1.705	****	
4.15	1.834	****	2748
4.15	1.850	****	2318
	2.060	****	2253
6.20 6.21	2.052	****	2249
7.22	2.092	****	2126
7.22 7.24	2.159	****	2385
		****	2186
8.20	2.218		2269
8.21	2.233	***	2087
9.22	2.294	***	2268
9.23	2.339	***	2168
10.22	2.383	***	2231
10.22	2.437	***	2301
10.23	2.402	***	2193
10.23	2.407	***	2172
10.71	2.448	****	2287
10.72	2.506	****	2194
11.13	2.498	***	2277
11.13	2.501	****	2210
11.23	2.518	****	2121
11.23	2.542	****	2170
11.69	2.288	****	2415
11.70	7.320	****	2487
12.04	2.252	****	2553
12.05	2.311	****	2604
12.16	2.079	****	2472
12.20	2.295	****	2444
13.14	1.956	****	2684
13.17	2.094	***	2508

Figure 1.- Section shape HSNLF(1)-0213 airfoil.

Figure 2.- Initial theoretical pressure distribution of the HSNLF(1)-0213 airfoil provided by scaling down the NLF(1)-0414F airfoil.

Figure 3.- Final design of the HSNLF(1)-0213 airfoil after modification of the upper and lower surfaces to reduce the adverse pressure gradients in the original design.

(a) Upper surface.

(b) Lower surface, showing routing of tubes.

Figure 4.- Photograph of ${\sf HSNLF}(1){\sf -}0213$ airfoil model tested in the 6- by 28-Inch Transonic Tunnel.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 5.- Photograph of HSNLF(1)-0213 airfoil model tested in the Low-Turbulence Pressure Tunnel (LTPT). Model has a simulated trailing-edge split flap deflected 60 degrees.

Figure 6.- Model and wake-survey probe installation in Langley 6- by 28-Inch Transonic Tunnel. All dimensions are in inches.

Figure 7.- Airfoil model mounted in wind tunnel.

Figure 8.- Model support and force balance system for the Langley Low-Turbulence Pressure Tunnel (looking upstream).

Figure 9.- Wake survey rake.

Figure 10.- Sketch of remote controlled survey apparatus for the Langley Low-Turbulence Pressure Tunnel.

Figure 11.- Results from hot-film sensors for laminar and turbulent boundarylayer assessment from test in LTPT.

Figure 11.- Concluded.

Figure 12.- Comparison of force-balance measurements to integrated pressure measurements for a NACA 4416 airfoil tested in the Low-Turbulence Pressure Tunnel.

Figure 13.- Measured chordwise pressure distributions from test in 6- by 28-Inch Transonic Tunnel presented with corrected values of angle of attack, Mach number, normal force coefficient, and pitching-moment coefficient. Model smooth, R = 3×10^6 and 5×10^6 . Open symbols denote upper surface; centered symbols denote lower surface.

(b) $M_{corr} = 0.34$, $R = 5 \times 10^6$. Figure 13.- Concluded.

Figure 14.- Measured chordwise pressure distributions from test in 6- by 28-Inch Transonic Tunnel presented with corrected values of angle of attack, Mach number, normal force coefficient, and pitching-moment coefficient. Model smooth, R = 4×10^6 . Open symbols denote upper surface; centered symbols denote lower surface.

(d) $M_{corr} = 0.77$.

Figure 14.- Concluded.

Figure 15.- Measured chordwise pressure distributions from test in 6- by 28-Inch Transonic Tunnel presented with corrected values of angle of attack, Mach number, normal force coefficient, and pitching-moment coefficient. Model has fixed transition at 0.05c, R = 11×10^6 . Open symbols denote upper surface; centered symbols denote lower surface.

ORIGINAL PAGE IS OF POOR QUALITY

(d) $M_{corr} = 0.77$.

Figure 15.- Concluded.

Figure 16.- Effect of Mach number on section characteristics from test in 6- by 28-Inch Transonic Tunnel. Model smooth, $R=4\times10^6$.

ORIGINAL PAGE IS OF POOR QUALITY R 11.1 X 10⁶ .676 11.0 .695 .713 10.9 1.0 .004 .008 .012 .016 .020 .024 -.2 Moorr R .730 .752 .770 10.6 X 10⁶ 0 10.6 10.9

Figure 17.- Effect of Mach number on section characteristics from test in 6- by 28-Inch Transonic Tunnel. Model has fixed transition at 0.05c, R = 11×10^{6} .

.004 .008 .012 .016 .020 .024 C_d

 $\alpha_{\rm corr}$ deg

Figure 18.- Effect of Reynolds number on section characteristics from test in 6- by 28-Inch Transonic Tunnel. Model has fixed transition at 0.05c.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 19.- Effect of Reynolds number on section characteristics from test in 6- by 28-Inch Transonic Tunnel. Model smooth.

Figure 20.- Effect of Reynolds number on normal-force and pitching-moment coefficients from test in 6- by 28-Inch Transonic Tunnel. Mcorr = 0.34, model smooth.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 21.- Effect of Mach number on section characteristics from test in LTPT. Model smooth, R = 6×10^6 .

Figure 22.- Effect of Reynolds number on section characteristics from test in LTPT.

Model smooth.

Figure 23.- Effect of fixed transition on section characteristics from test in LTPT.

(b) M = 0.14.

.004 ..008

.012

.016 .020

.024

.028 -.2

20 0

4 α,deg 12

0

Figure 24.- Effect of trailing-edge split flap on section lift and pitching-moment coefficients from test in LTPT. Flap is 0.20c in length, R = 6×10^{6} , model smooth.

Figure 25.- Effect of Mach number and Reynolds number on maximum lift coefficient from test in LTPT.

Figure 26.- Variation of drag coefficient with Reynolds number from test in LTPT. $\alpha=0;\ M<0.30.$

○ Model smooth□ Fixed trans. at 0.05c

Figure 27.- Variation of section drag coefficient with Mach number. $c_n = 0.26$.

1. Report No. NASA TM-87602	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Wind Tunnel Results for a High-Speed, Natural Laminar-Flow Airfoil Designed for General Aviation Aircraft		5. Report Date November 1985 6. Performing Organization Code 505-60-21-01
7. Author(s) W. G. Sewall, R. C E. G. Waggoner, B. S. Wall	J. McGhee, J. K. Viken,* ker, and B. F. Millard	8. Performing Organization Report No.
9. Performing Organization Name and Address		10. Work Unit No.
National Aeronautics and S Langley Research Center Hampton, VA 23665-5225	Space Administration	11. Contract or Grant No.
		13. Type of Report and Period Covered
2. Sponsoring Agency Name and Address		Technical Memorandum
National Aeronautics and S Washington, DC 20546	ace Administration	14. Sponsoring Agency Code
15. Supplementary Notes		
*FSCON Hampton VA		

16. Abstract

Two dimensional wind-tunnel tests have been conducted on a high-speed natural laminar-flow airfoil, the HSNLF(1)-0213, in both the Langley 6- by 28-inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 \times 106 to 11 \times 106. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 \times 106. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low-speed results were also obtained with a 0.20 chord trailing-edge split-flap deflected 60°.

17. Key Words (Suggested by Author(s))
HSNLF(1)-0213
Airfoils
Low-speed characteristics
Laminar flow
General aviation

18. Distribution Statement

Subject Category 02

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages

22. Price

72