N x CO₂ x BNF growth chamber experiment

LEMONTREE Experimental Working Group – March 01, 2022

Increasing CO₂ generally decreases stomatal conductance and photosynthetic capacity...

... which tends to correspond with stimulations in whole plant growth

Discrepancies in leaf and whole plant responses to CO₂ may lead to tradeoffs between leaf and whole plant nutrient allocation

Maintain photosynthesis with greater water use efficiency at expense of nitrogen use efficiency, or vice versa

Maintain photosynthesis with greater water use efficiency at expense of nitrogen use efficiency, or vice versa

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between nutrient and water use?

Key questions

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between leaf nutrient allocation and whole plant growth?

How does atmospheric CO₂ modify effects of soil nutrient availability on tradeoffs between nutrient and water use?

To what extent does inoculation with nitrogen-fixing bacteria influence the two questions listed above?

Experimental setup

Growth chamber experiment

• Individually potted soybean (*Glycine max* L.)

Planted in unfertilized, steam sterilized potting soil

 Will grow at maximum light setting on 16:8 light: dark schedule and constant temperature (25°C) for 8-week period

Experimental setup

Nutrient acquisition strategy treatments

+ BNF

- BNF

Soil nitrogen treatments

0 ppm N

70 ppm N

140 ppm N

210 ppm N

280 ppm N

350 ppm N

Atmospheric carbon dioxide treatments

400 ppm CO₂

1000 ppm CO₂

All treatments will be combined in a full-factorial design with 6 reps per treatment combination (n = 144 total)

Plant measurements

Leaf measurements

- Leaf nitrogen allocation (N_{mass}; SLA; N_{area})
- A_{net} , V_{cmax25} , J_{max25} , g_{s} , R_{d25}
- J_{max25} : V_{cmax25} ; R_{d25} : V_{cmax25} ; stomatal limitation
- PNUE, χ (from leaf δ¹³C),
 N_{area}:g_s, V_{cmax}:g_s

Whole plant measurements

- Carbon costs to acquire nitrogen (Root carbon mass / whole plant nitrogen mass)
- Whole plant biomass
- Total leaf area
- Root nodule number, root nodule biomass

Timeline for Experiment 4

• Start experiment in March/April 2022; end in May/June 2022

Harvest and tissue processing finished by August 2022

- Data analysis finished by September 2022
 - Could perhaps lead a working group meeting on results

Extra slides

Hypothesis 1a: Increasing CO₂ should increase leaf production and whole plant growth through a stimulation in whole plant nutrient demand

Hypothesis 1a: Increasing CO₂ should increase leaf production and whole plant growth through a stimulation in whole plant nutrient demand

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth, but will depend on whether individuals associate with nitrogen-fixing bacteria

Hypothesis 1b: Increased soil nutrient supply should increase the positive effect of eCO₂ on leaf production and whole plant growth, but will depend on whether individuals associate with nitrogen-fixing bacteria

Inoculation with BNF should increase total leaf area and growth under low soil nutrients, but have similar total leaf area and growth under high soil nutrients

Hypothesis 2

Hypothesis 2a: Increasing CO₂ will have a direct positive effect on leaf-level photosynthesis due to increased substrate needed to drive photosynthesis forward

Hypothesis 2b: Increasing CO₂ will decrease leaf-level photosynthesis as a function of reduced stomatal conductance

Hypothesis 2d: Increasing CO₂ will decrease leaf-level photosynthesis as a function of reduced maintenance costs for photosynthetic capacity <u>and</u> reduced stomatal conductance

Hypothesis 2

Timeline for Experiment 4

 Start experiment in March/April 2022 using growth chambers in ESB I

- Only one growth chamber available
 - Two separate trial runs for each CO₂ treatment (2 months each)
 - Temperature, relative humidity, and PAR sensors set up through both trials
- Harvest and tissue processing should take another 2 months
- Data analysis, manuscript draft finished by end of calendar year?

Products from Experiment 4

- 1-2 publications
 - Structural carbon costs to acquire nitrogen responses to N fixation, N fertilization, and CO₂
 - Leaf and whole plant nitrogen allocation responses to N fixation, N fertilization, and CO₂
- A few conferences in winter 2022 (AGU?) and summer 2023 (BSA/ESA)