

219746

Priority Date(s): ..7-4-86.....
.....
Complete Specification File: 24-3-87
Class: H01Q 3/38.....
.....
.....
Publication Date: 29 AUG 1989
P.O. Journal, No: 1323.....

N.Z. No.

NEW ZEALAND
Patents Act 1953
COMPLETE SPECIFICATION

PHASE SHIFTER CONTROL

We, HAZELTINE CORPORATION, a corporation organized and existing under the laws of the State of Delaware, United States of America of 500 Commack Road, Commack, New York 11725, United States of America, do hereby declare the invention, for which we pray that a Patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:-

BEST AVAILABLE COPY

219746

DOCKET R4291.05
FRA:mfk

1 PHASE SHIFTER CONTROL

2 Background of the Invention

3 This invention relates to phased array
4 antennas and, more particularly, to a system for
5 forming a beam of radiation at various frequencies of
6 radiation.

7 Arrays of radiating elements are utilized
8 for forming beams of radiant energy for both
9 electromagnetic energy and sonic energy. In the case
10 of sonic energy, the beams are generally formed by
11 transducers of a sonar system. In the case of
12 electromagnetic energy, the radiating elements may
13 take the form of dipoles or other form of radiating
14 elements. In both the cases of electromagnetic and
15 sonic energies, beam-steering units form the beam and
16 direct the beam by the control of delay or phase shift
17 of the radiant energy from one radiating element
18 relative to the radiant energy from a second radiating
19 element of the array. The beam may be made to scan
20 across a region of space, or may be made to jump from
21 region to region as in the case of the tracking of
22 targets located in different directions from the
23 antenna.

219746

1 While the invention is useful in all of
2 the foregoing situations, it is most readily described
3 for the case of a scanning antenna radiating
4 electromagnetic energy as in the case of a phased-
5 array antenna of a microwave landing system for
6 aircraft at an airport. Therein, a beam scans back
7 and forth to both sides of a runway for use by an
8 incoming aircraft in the generation of guidance
9 signals which guide the aircraft to the runway.
10 Typically, such a beam would be scanned approximately
11 30° to either side of the runway.

12 A problem arises in that the beam-steering
13 unit is designed to produce a beam at a specific
14 frequency of electro-magnetic energy. However, in the
15 foregoing microwave landing system (MLS), it is
16 desirable that the beam-forming be accomplished over a
17 range of frequencies so as to accommodate different
18 signal channels, each characterized by its own
19 frequency, for use by respective ones of the incoming
20 aircraft.

21 One attempt at solution of the foregoing
22 problem is the utilization of beam-steering units
23 which have been adapted to form beams at each of a
24 number of frequencies. Typically, a beam-steering
25 unit includes a memory for storing data as to the
26 requisite phase shift where phase shifters are
27 utilized, or delay where delay units are utilized, for

219746

1 each radiating element for each direction in which the
2 beam is to be pointed relative to the antenna array.
3 In the case of a scanning antenna, many incremental
4 steps in direction are provided, with each step being
5 less than a beamwidth, so that the beam appears to be
6 smoothly scanned through space even though it is, in
7 fact, being scanned by a rapid succession of steps in
8 direction. The foregoing storage of phase data or
9 delay data would be repeated for a second frequency
10 and for a third frequency, and again for still further
11 frequencies, in the case where the beams are to be
12 formed at different frequencies of radiation.
13 Thereby, the beam-steering unit is able to form and
14 steer the beams at different frequencies of radiation.

15 The foregoing solution to the problem is
16 disadvantageous in that it requires far more storage
17 than would be required for the single frequency case.
18 The disadvantage is manifested both in terms of system
19 cost and system complexity. In the case of an MLS
20 wherein redundant circuits may be utilized to obtain
21 high reliability, the disadvantage of the utilization
22 of additional memory becomes magnified.

23 Summary of the Invention

24 The foregoing problem is overcome and
25 other advantages are provided by a beam forming system
26 which incorporates the invention to provide for the

219746

1 multiple frequency capability without the need for the
2 additional storage of phase or delay data for each of
3 the frequencies at which the antenna is to radiate.
4 While the invention is equally applicable to systems
5 employing either phase shifters or delay units, the
6 description of the invention is facilitated by
7 considering a specific scanning system utilizing phase
8 shifters.

9 The theory of the invention can be
10 understood with reference to the formulation of the
11 amount of phase shift required to direct a beam in a
12 specific angle relative to the array. As is well
13 known, the requisite phase shift is proportional to
14 the spacing between two radiating elements, to the
15 frequency, and to the sine of the angle between the
16 beam and a normal to the array. A separate set of
17 data is stored for each angle, and also for each
18 radiating element to accommodate the various distances
19 between one element and its neighbors. It is also
20 noted from the foregoing formulation that a shift in
21 frequency has the same effect as a shift in the sine
22 of the angle.

23 To compensate for a shift in frequency,
24 the beam-steering unit of the invention commands a
25 value of the sine of an angle other than the one to
26 which the beam is to be pointed. Thereby, the beam
27 actually points in a direction closely approximating

219746

1 the desired angle. The invention is most useful in
2 the situation of the scanning beam wherein the
3 scanning takes place, as noted above, by a sequence of
4 stepwise increments of the beam direction. By
5 commanding a value of sine of the angle, somewhat
6 different from the sine of the actual angle desired, a
7 sequence of stepwise increments in the beam direction
8 still results. There may be more or less steps,
9 depending on whether the instant frequency is greater
10 than or less than the design frequency for which the
11 data is stored in the memory. Thus, the resultant
12 sequence of steps may be more coarse or more fine than
13 the steps of the original sequence. However, as long
14 as the resulting steps are smaller than the beamwidth,
15 an incoming aircraft still responds as though there is
16 a continuously scanned beam.

17 With respect to the design of the
18 electrical circuitry of the beam forming unit of the
19 invention, it is recognized that for a beam pointing
20 straight ahead of the array, the sine is zero at all
21 frequencies. And for slight deviations in beam
22 direction from the normal to the array, there are
23 relatively small differences in the sine at the
24 various frequencies for which the array is to
25 radiate. However, at relatively large angles of
26 deviation of the normal to the array, such as 30°,
27 the resultant differences in phase shift may have

219746

1 passed through many multiples of 360°, depending on
2 the length of the array relative to a wavelength of
3 the radiation. Thus, it is appreciated that in
4 directing the offset commands of the sine, and
5 considering that the multiples of 360° phase shift
6 are to be dropped in the designation of the phase
7 shift of an individual phase shifter, the largest
8 changes in the stepwise increments of beam direction
9 occur for the largest deviations of the beam direction
10 from the normal to the array. As the beam scans past
11 the normal to the array, the changes in the steps
12 become smaller and, accordingly, the beam steering
13 commands essentially "catch up" with the beam-steering
14 commands for radiation at the design frequency.

15 Brief Description of the Drawing

16 The foregoing aspects and other features
17 of the invention are explained in the following
18 description, taken in connection with the accompanying
19 drawing wherein:

20 Fig. 1 is a diagrammatic view of an array
21 of radiating elements of a phased-array antenna
22 showing differences in phase shift resulting from a
23 wavefront of radiation angled relative to the array;

24 Fig. 2A shows two sets of stepped beam
25 positions, the solid lines designating beams at a

219746

1 lower frequency while the dashed lines indicate beams
2 at a higher frequency;
3 Fig. 2B shows beam angle, relative to a
4 normal to an array of Figs. 1 and 2A, as a function of
5 scanning time, Fig. 2B also showing beam pointing
6 error in the absence of the frequency compensation of
7 the invention, and a negligible residual error
8 resulting from the frequency compensation of the
9 invention;
10 Fig. 3 is a block diagram of phase shift
11 and transmitter circuitry for use with the array of
12 Fig. 1;
13 Fig. 4 is a block diagram of circuitry of
14 the invention for applying command signals to the
15 phase shifters of Fig. 3 for stepping the beam
16 direction in accordance with the invention; and
17 Fig. 5 is a diagrammatic presentation of
18 the contents of a programmable read-only memory of
19 Fig. 4 for commanding an increment in a phase angle of
20 individual ones of phasors of Figs. 3 and 4; and
21 Fig. 6 is a further diagrammatic
22 presentation of the programmable read-only
23 memory of Fig. 5 showing the portion of the memory
24 employed for scanning a beam at different frequencies
25 of radiation.

219746

1 Detailed Description

2 With reference to Figs. 1 and 2A, an
3 incident wavefront of radiant energy impinges upon the
4 array of radiating elements from a direction offset
5 from a normal to the array. The spacing between the
6 elements of the array, the wavelength, the angle of
7 the direction of propagation, and the phase shift are
8 all identified by symbols shown in Fig. 1. Since the
9 mathematical description of the requisite phase is the
10 same for both an incoming and an outgoing beam of
11 radiation, the description applies equally well to
12 transmitted and received beams. In particular, it is
13 noted that Fig. 1 provides the mathematical
14 formulation for the requisite phase shift for each
15 element of the array, the requisite phase shift being
16 dependent on the number of elements between which the
17 phase shift is measured, the frequency of the
18 radiation, and on the sine of the angle of propagation
19 relative to a normal to the array.

20 A shift in frequency or wavelength, a
21 lower frequency being associated with a longer
22 wavelength, results in a shift in beam position as
23 depicted in Fig. 2A. This is in accord with the
24 formula presented in Fig. 1 which shows that the
25 required phase shift varies with the wavelength.
26 Thus, a shift in frequency without a corresponding
27 change in the command to the phase shifters (to be

219746

1 described subsequently) results in a shifting of the
2 beam position for all beams other than the beam
3 pointing straight ahead of the array.

4 The mathematical relationships presented
5 in Fig. 1 show the effect of beam pointing angle as a
6 function of radiation frequency in terms of center, or
7 midband, values of wavelength and frequency. The
8 mathematical relationships show that the sine of the
9 beam pointing angle varies inversely with the
10 radiation frequency. As depicted in Fig. 2A, a
11 decrease in radiation frequency from the center
12 frequency offsets the beam away from the center beam
13 position, while an increase in frequency offsets the
14 beam towards the center position. This shift is
15 observed for a fixed value of phase shift. A
16 different value of the phase angle produces each of
17 the three beam positions of Fig. 2A.

18 Fig. 2A also demonstrates the scanning of
19 a beam for an MLS, the scanned beam being received by
20 an incoming aircraft flying towards the array. While
21 only a few beam positions are shown in Fig. 2A, it is
22 to be understood that many steps of beam scanning are
23 employed, the steps being sufficiently close together
24 such that the incremental changes in direction are
25 less than a beamwidth so that a receiver within the
26 aircraft responds as though there were a continuously
27 moving beam. In Fig. 2A, the set of phase-shift

219746

1 commands for each beam direction is indicated by a
2 subscript. Thus, it is seen that, at each beam
3 position, both the beam at the lower frequency and the
4 beam at the higher frequency have the same phase-shift
5 command. However, the resulting beam positions are
6 offset from each other due to a shift in the
7 wavelength and frequency, as noted above. As a
8 practical matter, in the design of the preferred
9 embodiment of the invention, the design frequency is
10 set at the highest frequency of interest, with all of
11 the other frequencies which are to be accommodated
12 being at lower frequencies than the design frequency.
13 By setting the design frequency at the highest
14 frequency of interest, there are more values of stored
15 phase shift data which permit a reduction in the
16 coarseness of the steps in direction for the stepwise
17 scanning at the frequencies lower than the design
18 frequency.

19 In Fig. 2B, three graphs are presented in
20 time registration with each other to show beam
21 direction and error as a function of scanning time, as
22 a beam of Fig. 2A is scanned about the antenna array
23 of Fig. 2A. The upper graph depicts a variation in
24 beam direction as a function of frequency in the
25 absence of the frequency compensation of the
26 invention. A linear scan at the center radiation
27 frequency as a function of scanning time, is indicated

219746

1 by a dashed line. A beam at a higher radiation
2 frequency would tend to deflect with a greater angle
3 than is desired and a beam at higher radiation
4 frequency would deflect at a lesser angle than is
5 desired. The deflections of the higher and lower
6 frequency beams are indicated by solid lines, and
7 result in a nonlinear error as shown in the second
8 graph.

9 In accordance with a feature of the
10 invention, the effect of the frequency shift on beam
11 position is compensated by commanding a different
12 value of phase shift as a function of scanning time,
13 and dependent on a selected value of radiation
14 frequency. Thereby, either of the solid lines of the
15 first graph, corresponding to either the low frequency
16 or the high frequency situation, is made to coincide
17 with the dashed line to produce a linear relationship
18 between beam direction and scanning time. As a result
19 of this compensation for different values of radiation
20 frequency, the beam pointing error is reduced to
21 essentially an insignificant residual error depicted
22 in the third graph of Fig. 2B. The construction of
23 the system of the invention to provide for the
24 foregoing frequency compensation will now be described
25 with reference to Figs. 3-6.

26 With reference also to Fig. 3, there is
27 shown an antenna array 20 having radiating elements 22

219746

1 corresponding to the array of the elements of Figs. 1
2 and 2A. The radiating elements 22 are coupled by
3 phasors 24 and a power divider 26 to a transmitter
4 28. The transmitter 28 provides electromagnetic power
5 which is divided by the divider 26 among the
6 respective elements 22. The electromagnetic power
7 flows through the phasors 24 which impart the
8 requisite phase shift so that the power radiates from
9 the respective elements 22 with the requisite phase
10 shifts to produce one of the beams shown in Fig. 2A.
11 Each of the phasors 24 in the preferred embodiment of
12 the invention is constructed with a digitally operated
13 phase shifter 30 and a counter 32 which provides a
14 multidigit signal to activate the respective sections
15 of the phase-shifter 30. A scan PROM 34 (programmable
16 read-only memory) provides signals to each of the
17 counters 32 which increment their respective counts to
18 the required values of phase-shift command. Each of
19 the phasors 24 includes a decoder 35 connected between
20 the scan PROM 34 and the counter 32 for decoding a
21 phasor identification signal transmitted by the PROM
22 34, thereby insuring that the increment command
23 signals of the PROM 34 are properly identified and
24 applied to the respective ones of the phasors 24.
25 While each of the phasors 24 employ a
26 digital phase-shifter 30 operated by a counter 32, it
27 is to be understood that other circuitry can be

219746

1 utilized for directing the command to the phase
2 shifter 30. For example, in lieu of the counter 32
3 and the PROM 34, an alternative form of memory could
4 be utilized for applying directly a multi-digit signal
5 to the phase-shifters 30. However, due to the fact
6 that the antenna system employing the invention
7 generates only a scanning beam for an MLS, it has been
8 found useful to employ the counter 32 with the PROM 34
9 storing sets of commands for incrementing the
10 respective counts of the counters 32 to the required
11 phase-shifts.

12 With reference also to Fig. 4, a beam
13 scanning unit 36 comprises the phasors 24 and the scan
14 PROM 34 previously seen in Fig. 3. The unit 36
15 includes a CPU 38 (central processing unit) and a
16 timer 40 which are driven by a clock 42. Clock pulses
17 from the timer 40 are passed by an AND gate 44 to an
18 address controller 46. The address controller 46
19 includes a counter (not shown), and provides an
20 address to the PROM 34, the address being incremented
21 by the counter of the controller 46 in response to the
22 reception of clock pulses from the gate 44. The beam
23 scanning unit 36 further comprises an address
24 controller 48, a PROM 50 storing data with respect to
25 frequency and the sine of the beam pointing angle, and

219746

1 a switch 52 which selects an output terminal of the
2 PROM 50 in response to a control signal from the CPU
3 38.

4 A graph 54 shows two sets of digital
5 signals in temporal registration with each other, the
6 upper set being coupled by the line 56 from the timer
7 40 to the gate 44 while the signals of the lower set
8 are coupled by the line 58 from the switch 52 to the
9 gate 44. A graph 60 describes the digital signals
10 outputted on a bus 62 by the PROM 34, the signals
11 being applied by the bus 62 to respective ones of the
12 phasors 24.

13 In operation, the CPU 38 provides signals
14 to the timer 40, the phasors 24, the controller 48 and
15 the switch 52 to provide the desired scanning of a
16 beam from the array 20. The controller 48 includes a
17 counter (not shown) which increments in response to
18 pulses from the timer 40, the counter providing a
19 sequence of addresses to the PROM 50. The memory of
20 the PROM 50 is divided in sections, one section
21 corresponding to the central frequency of each band of
22 receiver channels to be utilized in the MLS for
23 guiding the aircraft of Fig. 2A. For example, in the
24 usual MLS wherein there are 200 separate receiver
25 channels, it has been found adequate to divide the
26 spectral space into 24 separate bands for transmission
27 by the antenna array 20 of Figs. 2A and 3. Each

219746

1 section of the memory of the PROM 50 is set for the
2 center frequency of one of the foregoing frequency
3 bands. All of the sections of the PROM 50 are
4 simultaneously addressed by the controller 48, the
5 address commanding a specific beam angle for directing
6 the beam of Fig. 2A. The individual sections of the
7 PROM 50 have corresponding output terminals of which
8 one is selected by the switch 52.

9 Depending upon whether a wide scan or a
10 narrow scan is desired, the CPU 38 presets the counter
11 of the controller 48 to a desired beam angle after
12 which the addresses provided by the controller 48 are
13 incremented by the timer pulses for stepping the beam
14 of Fig. 2A to provide for the scanning of the beam.

15 The data stored in the PROM 50 is of relatively simple
16 form, the data being simply a set of signals
17 designating the increment or non-increment of the
18 counter of the controller 46. The resulting clock
19 pulses exiting from the PROM 50 via the switch 52 are
20 of the same form as the pulses of the timer 40, the
21 two sets of pulses differing only in respect to the
22 presence and absence of certain pulses; the two sets
23 of pulses are coupled via the lines 58 and 56 to the
24 AND gate 44.

25 The scan PROM 34 stores data with respect
26 to the phase-shift commands for operation of the
27 phasors 24. Since the phasors 24 have been

219746

1 constructed with counters 32, the phase-shift commands
2 provided on bus 62 have the format of a sequence of
3 digital words each of which comprises a field of
4 digits which identify a phasor, followed by a pulse
5 which increments the count of an individual one of the
6 counters 32.

7 With respect to the construction of the
8 phasors 24, it is noted that the phase-shifters 30
9 comprise sections of well-known diode phase-shifters
10 of microwave energy. Each section of the
11 phase-shifter 30 includes well-known transmission
12 lines, such as waveguides, having a length equal to an
13 integral number of quarter wavelengths. One segment
14 provides phase-shift in increments of 180° , a second
15 section in increments of 90° , and a third section in
16 increments of 45° . While only three sections shown
17 in the diagram of Fig. 3, it is to be understood that
18 a fourth section having increments of 22.5° is
19 advantageously employed and that, if desired, a still
20 further section for yet finer control of the beam may
21 be utilized. In the case of four sections, the
22 counters 32 count modulo-16. The counters 32 include
23 a preset terminal and an up/down terminal for
24 receiving signals from the CPU 38 to designate a
25 starting count and increments therefrom. Thus, by
26 receipt of a specified number of increment pulses
27 along bus 62, a counter 32 can be driven to any

219746

1 . desired output count. Each output line of the counter
2 32 carries one digit of the count. Each of these
3 lines is coupled to a corresponding one of the
4 sections of the phase-shifter 30 for driving that
5 section. Each output line of the counter 32 provides
6 a logic 1 or a logic 0 depending on the value of the
7 output count. The logic 1 signals activate the
8 corresponding sections of the phase-shifter 30 to
9 which the output signals of the counter 32 are
10 applied. Thereby, the microwave signals receive a
11 phase-shift equal to the sum of the phase-shifts
12 introduced by the individual sections of the
13 phase-shifter 30.

14 As a useful feature in the implementation
15 of the invention, it is noted that the steps in the
16 scanning direction are sufficiently small such that
17 for any one step the phase shift imparted by any one
18 of the phase shifters 30 may remain unchanged, or may
19 be changed by the smallest phase increment, plus or
20 minus 22.5° in the case of a four-element phase
21 shifter. But such change is never greater than the
22 foregoing smallest phase instrument. Accordingly, the
23 count of a counter 32 of a phasor 24 is never altered
24 by more than a count of one for each stepwise
25 increment in beam position during a scanning of the
26 beam. As a result, the scan PROM 34 sends simply a
27 logic 1 or logic 0 (in addition to the phasor

219746

1 identity) and the CPU 38 sends an up/down signal to a -
2 phasor 24 at each step of a scan. The CPU 38 also
3 sends a reset signal to the counter 32 in each phasor
4 24 for initializing the value of the count at a
5 convenient point in the scanning process. For
6 example, a reset to zero may be employed when the beam
7 passes by the center position, this being zero degrees
8 beam angle, in each sweep of the scan.

9 In accordance with the invention, the
10 average repetition frequency of pulses on line 58 is
11 equal to one-half of the repetition frequency of the
12 pulses on line 56 at the design frequency of the beam
13 scanning unit 36. For lower values of frequency,
14 pulses may be added to, or deleted from the line 58.
15 The pulses on line 58 serve to gate the pulses on the
16 line 56 through the gate 44, the absence of a pulse on
17 line 58 serving to blank the appearance of a pulse on
18 line 56. Thereby, the number of clock pulses on line
19 56 from the timer 40 which are applied to the
20 controller 46 depends on the presence of a pulse on
21 line 58. By way of comparison with a single frequency
22 system, the PROM 50 along with the controller 48 and
23 the switch 52 would be deleted, and pulses from the
24 timer 40 would be applied at one-half the present rate
25 directly to the controller 46. It is the presence of
26 the PROM 50 with the controller 48 and the switch 52
27 which apply the gating pulses via the gate 44 that

219746

1 convert a single frequency system to a multiple-
2 frequency beam-scanning unit 36 of the invention.
3 The counter in the controller 46 is preset
4 by a signal from the CPU 38 and, thereafter, counts
5 clock pulses supplied by the gate 44. Depending upon
6 whether a wide scan or a narrow scan is desired, the
7 CPU 38 presets the counter of the controller 46 to a
8 desired count for addressing the PROM 34 the count
9 providing the desired beam angle at the start of a
10 scan. Thereafter, the count of the controller 46 is
11 incremented by the clock pulses supplied by the timer
12 40 via the gate 44 for stepping the beam of Fig. 2A to
13 provide for the scanning of the beam. The CPU 38 also
14 applies an enable signal to the counter of the
15 controller 46 during each scan interval. A scan
16 interval terminates upon termination of the enable
17 signal, at which point further addressing of the PROM
18 50 and further flow of gating pulses on line 58 are
19 terminated. By virtue of the presetting of the
20 counter of the controller 46 to the beam starting
21 position in a scan, and by terminating further
22 incrementing in the addressing by the controller 46 at
23 the final beam position in a scan, the PROM 34 is
24 activated to provide the phase command signals for the
25 desired range of scan.
26 The operation of the scan PROM 34 under a
27 control of the controller 46 may be further understood

219746

1 with reference to Figs. 5 and 6. In Fig. 5, the
2 horizontal axis represents increments of time during
3 an interval of scan, each increment of time
4 corresponding to an individual address of the PROM
5 34. The vertical axis represents identification
6 numbers of the phasors 24. In order to accomplish a
7 full scan at the highest radiation frequency, the
8 entire contents of the PROM 34 is outputted to the
9 phasors 24. With each address from the controller 46,
10 the PROM 34 advances to the next location on the
11 horizontal axis of Fig. 5 to output incrementing
12 pulses 64 shown stored at various locations in Fig. 5.

13 Fig. 6 is a simplified representation of
14 the graph of Fig. 5 with the PROM address being
15 presented on the horizontal axis. For a full scan at
16 the highest radiation frequency, the controllers 46
17 and 48 are both preset by the CPU 38 to the address
18 shown at the left side of Fig. 6. Scanning continues
19 until the address at the right side of Fig. 6 is
20 reached. For a full scan at the lowest radiation
21 frequency, the range of addresses is reduced as
22 indicated in Fig. 6. As shown in Fig. 2A, in the case
23 of the lower radiation frequency, the beam tends to
24 deflect through a greater scan angle than is the case
25 for the higher radiation frequency even though the
26 phase angle is the same. Accordingly, the full scan
27 at any frequency is to be attained by using more or

219746

1 less of the stored phase increment commands of Fig. 5
2 in accordance with the selected radiation frequency.
3 By way of example, by use of approximately 20,000 time
4 increments and addresses on the horizontal axis of
5 Fig. 5, with each time increment being 50 microseconds
6 duration, a complete scan can be executed in one
7 second. For a scan of approximately 40 degrees to
8 either side of center, this being a total scan sector
9 of 80 degrees, the foregoing 20,000 addresses provides
10 for very small increments in beam angle, namely 250
11 addresses per degree of beam angle. Such small
12 increments in beam angle permit the scanning unit 36
13 to operate without requiring an increment greater than
14 a count of one to a counter 32 of a phasor 24 during
15 the scanning of the beam.

16 In the foregoing addressing of the PROM
17 34, as depicted in Figs. 5 and 6, irrespectively of
18 whether the complete contents of the PROM 34 are
19 employed, or whether only a portion of the contents of
20 the PROM 34 are employed, the total elapsed time of a
21 single scan is the same. At lower frequencies,
22 wherein less storage regions of the PROM 34 are
23 addressed, additional intervals of time are made up by
24 logic zeros appearing in the pulse train on line 58 as
25 depicted in the graph 54. More logic zeros appear on
26 line 58 for the lower frequencies than at the higher
27 frequencies. This accounts for the increased number

1 of addresses appearing in a single scan for the higher
2 frequency radiation than the lower frequency radiation.

3 Thereby, the beam-steering unit 36
4 compensates for changes in frequency of the
5 transmitted radiation by altering the commanded angle
6 to the PROM 34 which, in turn, makes a corresponding
7 change in the commanded phase shift by the phase
8 shifters 30. The phasors 24 then institute a phase
9 shift which closely approximates the amount of phase
10 shift actually required to steer the beam to the
11 desired angle at the new frequency of the radiation.
12 While the total number of steps appearing in the
13 incrementally stepped scan may differ as a function of
14 frequency, there are a sufficient number of steps to
15 provide increments in direction which are smaller than
16 a beamwidth so as to provide the appearance of a
17 smoothly scanned beam. In accordance with the
18 invention, the foregoing features have been attained
19 by use of only one PROM 34 storing phase shift
20 commands for the single frequency case. The only
21 other stored data required is that of the PROM 50,
22 which data relates to the addressing of the PROM 34 to
23 accomplish the skipping (or addition) of steps to the
24 scan.

219746

WHAT WE CLAIM IS

Claim 1. A multiple frequency antenna system for operation at a selected frequency within a preselected frequency band defined by a first frequency and a second frequency, said system comprising:

- (a) a phased array antenna;
- (b) a set of phase shifters coupled to elements of said antenna for imparting phase shift to radiant energy of said elements;
- (c) memory means coupled to said phase shifters for commanding phase shift to respective ones of said phase shifters to scan a beam of the radiant energy at the first frequency to a commanded angle relative to said antenna;
- (d) address means for addressing said memory means with said commanded angle to provide said phase shift; and
- (e) altering means coupled to said address means for altering said address in accordance with a shift in frequency of said radiant energy from the first frequency to the selected frequency, the amount of said altering substantially compensating for said frequency shift to provide the required phase shift for the required beam angle for radiation at the selected frequency.

-23-

1 Claim 2. A system according to Claim 1
2 further comprising a central processing unit (CPU)
3 coupled to said address means to provide a sequence
4 of addresses for a step-wise scan of said beam of
5 radiation.

Claim 3. A system according to Claim 2 further comprising timing means for providing a sequence of clock pulses, and wherein said address means is implemented in response to receipt of said clock pulses, said altering means including a means for storing sequences of clock pulses corresponding to the difference between the selected frequency and the first frequency, a train of clock pulses of said storing means being coupled with a train of clock pulses from said timing means to provide a gating of said clock pulses of said timing means for altering the amount of incrementing of said address means.

Claim 4. A system according to Claim 3 wherein said altering means includes gating means coupled between said timing means and said address means to provide said gating of said clock pulses of said timing means.

219746

Claim 5. A system according to Claim 4 wherein aid CPU is coupled to said phase shifters and to said address means for pre-setting said phase shifters and pre-setting said address means for scanning a beam of radiant energy at the first frequency.

Claim 6. A system according to Claim 4 wherein said sequence of clock pulses stored within said storing means of said altering means comprises a set of clock pulses spaced apart with differing temporal spacings, the format of spacing of the clock pulses for a one selected frequency of radiant energy within the preselected frequency band differing from the format of the clock pulses for a second selected frequency of the radiant energy within the preselected frequency band whereby the average pulse repetition frequency of the stored sequence of clock pulses at said one selected frequency of the radiant energy differs from the average pulse repetition frequency of the stored sequence of clock pulses at said second selected frequency of the radiant energy.

Claim 7. A system according to Claim 6 wherein the changes in direction of said beam of radiation relative to said antenna occurring with each step of said step-wise scan is less than a beamwidth to approximate a continuously scanned beam at a plurality of differing frequencies within the preselected frequency band of said radiant energy.

219746

Claim 8. A method of step scanning a phased array antenna for operating at a selected frequency within a preselected frequency band defined by a first frequency and a second frequency, said method comprising the steps of:

(a) storing a set of phase shift commands as a function of beam angle for each of said phase shifters at the first frequency of radiation;

(b) sequentially addressing said storing means to provide for a scanning of a beam of radiation at said first frequency of said antenna; and

(c) altering said addressing in a sequence of addresses for said scanning, said altering being done as a function of the difference between the first frequency and the selected frequency of the radiant energy to provide for compensation in the relationship of commanded phase shift versus the selected frequency as a function of a beam angle.

Claim 9. A method according to Claim 8 wherein said addressing is accomplished by incrementing a count of clock pulses, and wherein said altering is accomplished by gating out certain ones of said clock pulses to provide an average repetition frequency of counted clock pulses which differs as a function of the difference between the first frequency and the selected frequency of radiant energy of said antenna.

219746

Claim 10. A method according to Claim 9 wherein said gating is accomplished by storing sequences of clock pulses spaced apart by differing amounts of temporal spacing.

Claim 11. A method according to Claim 10 wherein said gating is further accomplished by varying the temporal spacing of the stored sequence as a function of scan angle to provide a rate of incrementing at frequencies between the first frequency and the second frequency which is equal to a rate of incrementing at said first frequency for beams of radiation directed substantially at a normal to the array.

Claim 12. A method according to Claim 11 further comprising an implementing of phase shift commands by counting incrementing pulses of a sequence of such pulses in a stored phase shift command, said counting including a coupling of a resulting count to phase shifters connecting with radiating elements of said antenna.

Claim 13. A Phase Shifter Control of the type specified and substantially as illustrated in the accompanying drawings and described in the specification with reference thereto.

HAZELTINE CORPORATION
By Their Attorneys
HENRY HUGHES LIMITED
By:

M. S. Hunter

219746

115

FIG. I

HAZELTINE CORPORATION

By: [Signature]

1974

R. Reach

219746

FIG. 2a

FIG. 2b

HAZELTINE CORPORATION

By R. D. REACH
PEPPER HUGHES LABORATORIES

R. D. Reach

219746
16

FIG. 3

HAZELTINE CORPORATION

MINNEAPOLIS, MINNESOTA

U.S. PATENT AND TRADEMARK OFFICE

Ruth Beach

1141

219746

FIG. 4

HAZELTINE CORPORATION

1100 HAZELTINE AVENUE

MINNEAPOLIS, MINNESOTA 55428

Ron Reich

219746

FIG. 5

FIG. 6

HAZELTINE CORPORATION

34 High Street, Weybridge,
Surrey KT13 8RS, U.K.

For *Rubach*

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.