Линейная алгебра

Краткие заметки. Автор: Темплин К.Э

Содержание

Векторное пространство	3
1.1 Линейное подпространство	. 3
Линейное отображение	4
Базис линейного пространства. Размерность	4
Системы линейных уравнений	6
Факты о ядре и образе линейного отображения, преобразования коор-	6
	1.1 Линейное подпространство

1 Векторное пространство

Линейное пространство является группой по сложению. Про умножение вектора на число можно сказать, что:

• $\forall l \in L$ можно умножить на любое число a. И также получится вектор из линейного пространства \mathcal{L} . То есть умножение:

$$\cdot \; : \; \mathbb{C} \times \mathcal{L} \longrightarrow \mathcal{L}$$

- $1 \cdot l = l, l \in \mathcal{L}$
- Умножение должно быть ассоциативным
- Свойство дистрибутивности

Определение. Линейным пространством называется множество векторов, являющееся группой по сложению и такое, что умножение обладается свойствами ассоциативности, дистрибутивности. Также при умножении вектора на единицу вектор получается тот же вектор.

1.1 Линейное подпространство

Определение. Пусть некоторое множество \mathcal{M} является подмножеством некоторого линейного пространства \mathcal{L} также является линейным пространством. Тогда \mathcal{M} называют линейным подпространством \mathcal{L} .

Чтобы подмножество \mathcal{M} было линейным подпространством необходимо и достаточно, чтобы операции умножения и сложения для всех элементов \mathcal{M} переводили их в элементы \mathcal{M} .

2 Линейное отображение

Определение. Отображение $f: \mathcal{L} \longrightarrow \mathcal{M}$ называется **линейным**, если выполнены следующие свойства:

- $f(l_1 + l_2) = f(l_1) + f(l_2)$
- $\forall l \in \mathcal{L}, \ \beta \in \mathbb{C} \ f(\beta l) = \beta f(l)$

Пример: линейное пространство \mathcal{L} - множество функций, определённых на некотором множестве \mathbb{R} . Линейная функция - значение в точке x_0 . Действительно,

- $(f+g)(x_0) = f(x_0) + g(x_0)$
- $\bullet \ (\beta f)(x_0) = \beta f(x_0)$

3 Базис линейного пространства. Размерность

Определение. Базисом называется такой набор векторов, что любой вектор линейного пространства \mathcal{L} однозначным образом выражается через данный набор векторов.

Определение. Пространство называется конечномерным, если оно состоит нулевого вектора (нульмерное) или если у него есть базис из конечного числа векторов. В ином случае пространство будем называть **бесконечномерным**.

Определение. Размерностью базиса называется количество векторов в наборе.

Определение. Линейной комбинацией векторов l_1, \ldots, l_n называется:

$$C_1l_1 + C_2l_2 + \cdots + C_nl_n$$

 $r \partial e \ C_i \in \mathbb{C}$

Определение. Линейная комбинация векторов $l_1, ..., l_n$ называется линейно зависимой, тогда и только тогда, когда существует такой нетривиальный набор $C_1, ..., C_n$, что

$$C_1l_1 + C_2l_2 + \cdots + C_nl_n = 0$$

и линейно независимой в обратном случае.

Определение. Набор векторов является базисом, когда его линейная комбинация является линейно независимой.

Определение. Pазмерность пространства – это максимальное число содержащихся в нем линейно независимых векторов. Обозначается, как $\dim \mathcal{L}$

Теорема. В одном и том же конечномерном линейном пространстве базисы имеют одну и ту же размерность.

Доказательство. Пусть m_1, \ldots, m_n и l_1, \ldots, l_k - два базиса линейного пространства \mathcal{L} и k > n. Рассмотрим нулевой вектор, его можно разложить по второму базису:

$$0 = \lambda_1 l_1 + \dots + \lambda_k l_k$$

каждый вектор из этого базиса разложим по базису m_1, \ldots, m_n Получится система из k уравнений с n неизвестными, но эта система всегда имеет нетривиальное решение, т.к l>n. Значит мы смогли найти такой набор $\lambda_1, \ldots, \lambda_k$, чтобы линейная система равнялась нулевому вектору. Значит система является линейно зависимой и базисом не является.

Определение. Линейной оболочкой, натянутой на набор векторов называется множество всех линейных комбинаций данного набора.

Конечномерное пространство является линейной оболочкой своего любого базиса.

Определение. (Теорема о продолжении базиса) Если набор линейно независимых векторов l_1, \ldots, l_n входит в больший набор векторов $l_1, \ldots, l_n, l_{n+1}, l_k$, то набор векторов l_1, \ldots, l_k можно дополнить некоторыми векторами из l_{n+1}, \ldots, l_k так, что новый набор будет линейно независим, а линейные оболочки дополненного набора и большого набора будет совпадать.

Теорема. (Монотонность размерности) Пусть $\mathcal{L} \subset \mathcal{M}$ - линейное подпространство пространства \mathcal{M} и $\mathcal{L} \neq \mathcal{M}$. Тогда $\dim \mathcal{L} < \dim \mathcal{M}$

Доказательство. Пусть $n = \dim \mathcal{L}, \ k = \dim \mathcal{M}$. Пусть e_1, \ldots, e_n - базис пространства $\mathcal{L},$ а h_1, \ldots, h_k - базис пространства \mathcal{M} . Рассмотри набор векторов $\{e_1, \ldots, e_n, h_1, \ldots, h_k\}$.

Линейная оболочка этого набора совпадает с пространством \mathcal{M} . По предыдушему утверждению из h_1, \ldots, h_k можно выбрать, скажем, r < k векторо так, чтобы система $\{e_1, \ldots, e_n, h_1, \ldots, h_r\}$ являлась линейно независимой.

Значит, набор $\{e_1, \ldots, e_n, h_1, \ldots, h_r\}$ является базисом пространства \mathcal{M} . Если бы не потребовалось добавлять ни одного вектора из h_i , тогда бы это значило, что $\mathcal{L} = \mathcal{M}$, но это не так по условию, значит dim $\mathcal{L} < \dim \mathcal{M}$

4 Системы линейных уравнений

Нам дана система линейных уравнений вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n} = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n} = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn} = b_m \end{cases}$$

Теорема. *Метод Гаусса*: составим матрицу данной системы:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix}$$

Далее её приводим к треугольному виду. Так чтобы слева относительно диагонали образовались нули. Потом обратным ходом выражаем все переменные.

5 Факты о ядре и образе линейного отображения, преобразования координат

Определение. Ядром линейного отображения $f: \mathcal{L} \longrightarrow \mathcal{M}$ называется множество векторов пространства \mathcal{L} , переходящих в 0 при отображении f. Обозначается как $\ker f$. То есть $\forall l \in \ker f: f(l) = 0$

Теорема. ker f является линейным подпространством \mathcal{L} .

Доказательство. Необходимо доказать, что если $l_1, l_2 \in \ker f$, то

- $l_1 + l_2 \in \ker f$
- $\lambda l_1 \in \ker f$, $\lambda \in \mathbb{C}$

Так как $l_1, l_2 \in \ker f \implies$

$$f(l_1) = f(l_2) = 0$$

Так как f - линейное, значит:

$$f(l_1 + l_2) = f(l_1) + f(l_2) = 0 \implies l_1 + l_2 \in \ker f$$

$$f(\lambda l_1) = \lambda f(l_1) = 0 \implies \lambda l_1 \in \ker f$$

А это значит, что $\ker f$ - линейное подпространство \mathcal{L} .

Определение. Образом линейного отображения называется такое подмножество векторов линейного пространства \mathcal{M} , в которые переходят какие-то векторы из \mathcal{L} . Обозначается как $\operatorname{Im} f$. То есть $l \in \operatorname{Im} f$, если $\exists m \in \mathcal{L} : f(m) = l$

Теорема. Теорема о ядре и образе Пусть \mathcal{L} - конечномерное линейное пространство, а $f: \mathcal{L} \longrightarrow \mathcal{M}$ - линейное отображение. Тогда:

$$\dim \mathcal{L} = \dim \ker f + \dim \operatorname{Im} f$$