

Application No: Claims searched:

GB 0310584.8

1-21

Examiner:

Monty Siddique

Date f search:

1 June 2003

Patents Act 1977: Search Report under Section 17

Documents considered to be relevant:

Docume	112 COIDIO	ered to be relevant.	
Category	Relevant to claims	Identity of document a	nd passage or figure of particular relevance
х	1, 4, 9, 10, 12, 14, 17-19 at least	US 5753717	(AC1 OPERATORS) see figure 3; column 1 and line 7; column 2 and lines 4-6, 14, 23-25; column 3 and lines 10-12, 14-15, 21-23, 25-31, 41-43, 51-54; column 4 and lines 14-15, 21-22
A		US 5762848	(SENCORP.) Choke ring 30
A		JP 7040418 A	(SEKISUI) see drawing
x	1, 14 at least	PRIOR ART AS P INSTANT APPLI	ROVIDED BY FIGURES 1 AND 2 OF THE CATION
	l		

Categories:

Y Document indicating tack of novelty or inventive	e stej	inventive:	or	novelty	of	lack	cating	ument ind	Doc	Y
--	--------	------------	----	---------	----	------	--------	-----------	-----	---

- A Document indicating technological background and/or state of the art.
- Y Document indicating lack of inventive step if combined with one or more other documents of same category.
- P Document published on or after the declared priority date but before the filing date of this invention.
- & Member of the same patent family
- E Patent document published on or after, but with priority date earlier than, the filing date of this application.

Field of Search:

Search of GB, EP, WO & US patent documents classified in the following areas of the UKCV:

B5A

Worldwide search of patent documents classified in the following areas of the IPC7:

B29C

The following online and other databases have been used in the preparation of this search report:

WPI EPODOC JAPIO

(19)日本国特許庁 (JP) (12) 公開特許公報(A) (11)特許出願公開番号

特開平7-40418

(43)公開日 平成7年(1995)2月10日

(51) Int.Cl.⁶

識別記号

庁内整理番号 8016-4F

FΙ

技術表示箇所

B 2 9 C 47/12

// B 2 9 K 105:04

審査請求 未請求 請求項の数2 OL (全 6 頁)

(21)出願番号

特願平5-185045

(22)出願日

平成5年(1993)7月27日

(71)出願人 000002440

積水化成品工業株式会社

奈良県奈良市南京終町1丁目25番地

(72)発明者 堀野 静

茨城県古河市東本町1-18-25-401

(72)発明者 坪根 匡泰

茨城県古河市本町4丁目15-108

(72)発明者 梶本 吉則

茨城県古河市本町1-6-16

(74)代理人 弁理士 田中 宏 (外1名)

(54) 【発明の名称】 熱可塑性樹脂押出発泡体用金型

(57)【要約】

【目的】熱可塑性樹脂押出発泡体用金型に関し、金型表 面の材質の特定を規定して適正なスペリ性を維持するこ とができる熱可塑性樹脂押出発泡体用金型を提供するこ とにある

【構成】溶融樹脂と接触する金型流路面で少なくとも金 型出口から手前5mmまでの間は溶融樹脂との接触角が 45~65°である表面材質の金型で、樹脂流路の表面 粗さが6. 3 S以下であり、かつ、金型内流路の絞り込 み比が3~40である熱可塑性樹脂押出発泡体用金型で ある。

1

【特許請求の範囲】

【請求項1】 溶融樹脂と接触する金型流路面で少なく とも金型出口から手前5mmまでの間は溶融樹脂との接 触角が45~65°である表面材質の金型で、樹脂流路 の表面粗さが6.3 S以下であり、かつ、金型内流路の 絞り込み比が3~40である熱可塑性樹脂押出発泡体用 金型。

【請求項2】 熱可塑性樹脂がポリスチレン系樹脂、ポ リエチレン系樹脂、ポリプロピレン系樹脂、ポリフェニ レンオキシド系樹脂及びポリエステル系樹脂或いはこれ 10 らの樹脂の共重合体または混合樹脂であることを特徴と する請求項1記載の熱可塑性樹脂押出発泡体用金型。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂押出発泡 体用金型に関し、特に押出発泡体用金型内の流路におけ る溶融樹脂とこれに接する金型表面の材質に関する。

[0002]

【従来の技術】熱可塑性樹脂押出発泡体用金型の材質と しては、鉄を主成分としたS45CやS55Cさらにク 20 ロムを少量合金にしたSCM-4やSCM-3等が使わ れている。そして、金型内の溶融樹脂と接する金型表面 の表面処理材質としてはクロムメッキ、テフロンコーテ ィング、無電解ニッケルメッキ等がある。しかし、これ らの表面処理材質では下記のような問題点がある。

(1) クロムメッキ、無電解ニッケルメッキの場合には 溶融樹脂とのスペリ性が良くないため金型出口先端部で 発熱を起こし、品質低下の原因となる。また、金型出口 先端部で添加剤がピルドアップして先端部に付着し、製 品表面にラインが発生する。

(2) テフロンコーティングの場合には溶融樹脂とのス ベリ性は良くても、耐摩耗性が良くないため、長期間使 用すると表面処理剤が剥がれ、製品表面にラインが発生 する。

* [0003]

【発明が解決しようとする課題】本発明者は、かかる問 題点を改善するため種々検討した結果、熱可塑性樹脂押 出発泡体用金型の表面材質と溶融樹脂との接触角、及 び、樹脂流路の表面粗さ及び金型内流路の絞り込み比を 特定の範囲に選択することによって上記の問題点を解決 し、品質の向上した発泡体を得ることを見出し本発明を 完成したもので、本発明の目的は、適正なスペリ性を維 持することができる熱可塑性樹脂押出発泡体用金型を提 供することにある。

2

[0004]

【問題点を解決するための手段】本発明の要旨は溶融樹 脂と接触する金型流路面で少なくとも金型出口から手前 5mmまでの間は溶融樹脂との接触角が45~65°で ある表面材質の金型で、樹脂流路の表面粗さが6.35 以下でありかつ、金型内流路の絞り込み比が3~40で ある熱可塑性樹脂押出発泡体用金型、及び、熱可塑性樹 脂がポリスチレン系樹脂、ポリエチレン系樹脂、ポリプ ロピレン系樹脂、ポリフェニレンオキシド系樹脂、及び ポリエステル系樹脂或いはこれらの樹脂の共重合体また は混合樹脂であることを特徴とする前記の熱可塑性樹脂 押出発泡体用金型である。

【0005】本発明において、溶融樹脂との接触角測定 法は次の方法によって行う。

使用測定器:エルマ社製 接触角測定器(ゴニオメータ (法一

金属片3mm×20mm×50mmにポリスチレン1粒 子(約0.014g)を載せ、160℃ 15HR (ポ リスチレンの場合)加熱ギヤオープンにて加熱後、接触 30 角測定器にて金属と溶融樹脂の接触角を測定する。ま た、本発明における金型流路の絞り込み比とは次に式に よって表される値である。

(1)

[0006]

【数1】

金型出口から40mm手前の流路面積(A部)

金型流路の絞り込み比=・

金型出口面積(B部)

じて適宜の配合剤を添加しても良い。

【0007】次に本発明について詳細に述べる。本発明 における熱可塑性樹脂押出発泡体とは、熱可塑性樹脂と 発泡剤とを押出機内で溶融混練した後、大気中に押し出 して得られたもので、熱可塑性樹脂としては、ポリスチ レン系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹 脂、ポリフェニレンオキシド系樹脂及びポリエステル系 樹脂或いはこれらの樹脂の共重合体または混合樹脂等で ある。発泡剤としては従来よりこの種の押出発泡体の発 泡剤として使用されているものであれば何れでも良く、 例えばノルマルプタン、イソプタン或いは両者の混合 物、プロパン等、或いは炭化水素のフルオロクロル置換 体、若しくはハロゲン化炭化水素等である。更に発泡を

【0008】押出機については特に制限されるものでは 40 なく、発泡剤を含有する溶融熱可塑性樹脂組成物は押出 機の先端にある金型より大気中に押し出されると同時に 発泡する。本願発明においては、溶融樹脂と接触する押 出機の金型表面材質の接触角が45~65°にあること が必要で、この条件を満足することによって熱可塑性樹 脂押出発泡体の適正なスペリ性を維持できることが確認 出来た。この範囲を外れた時、接触角が45°未満の場 合スペリ性が良くないため、ヘッド圧力が上がる傾向と なり、金型出口近くで発熱が起こり、外観が粗くなっ た。また、接触角が65°を越える時は、スペリ性が良 コントロールするためタルク等の核剤、その他必要に応 50 過ぎて金型先端部での圧力保持が出来ず、偏肉が発生し

3

やすくなる傾向となった。又、この材質のものは耐久性 が無いため、長期連続運転ができなかった。なお、ここ で接触角について、本願発明では金型出口から手前5m mまでの間と規定するが、この金型出口から手前5mm までとは金型出口先端部から溶融樹脂の流路面に沿って 5 mmの位置までの間をいい、本願発明で接触角を金型 出口から手前5mmと規定した理由は、これ以下の長さ の金型出口のものは製作上困難であり、また、加工精度 をあげることが出来ないからである。適性発泡領域を得 るための絞り込み比の範囲についてであるが、3未満の 10 は120℃で15HRであった。接触角測定結果の結果 場合は金型出口先端部で内部発泡を起こし品質が低下す る。また、40を越えると吐出量が高い場合に表面ムラ が発生する。

*【0009】ところで、従来使用されている金型の表面 材質の接触角について測定した結果を示すと次の通りで ある。

接触角測定方法:エルマ社製の接触角測定器(ゴニオメ ーター式)を使用し、表面処理を施した3mm×20m m×50mmの金属片上に熱可塑性樹脂1粒子を載せ、 加熱ギヤオープンにて加熱後、接触角測定器にて金属と 溶融樹脂の接触角を測定する。加熱条件としては、ポリ スチレンの場合は160℃で15HR、LDPEの場合 は表1の通りである。

[0010]

【表1】

材料名	PS	LDPE
S C M - 4	3 7 °	38'
S U S - 5 0 C	39*	38.
ジルコニアセラミックス	4 6°	4 5 *
テフロンコート	85*	87°
無電解ニッケルメッキ(ニダックス)	41.	38*
無電解ニッケルメッキ(カニゼン9)	38'	40.
無電解ニッケルテフロン複合メッキ (カニフロン)	53°	48°

【0011】本発明においては、樹脂流路の表面粗さが 6. 3 S以下であり、かつ、金型内流路の絞り込み比が 3~40を必須要件とする。流路表面粗さを6.3S以 下としたのは6.35を超えると材質のスペリ性が良く 30 ても表面が粗すぎて抵抗が大きくなり、外観を悪くする 結果となった。また、金型流路の絞り込み比は、先に示 した式(1)で規定されるもので、絞り込み比が40を 越えると、吐出量が高い場合に表面ムラが発生し、3未 満では金型出口先端部で内部発泡を起こし製品の品質が 低下する。本発明における金型のスリットの形状は、特 に制限されるものではなく、環状や板状等何れでも良

【0012】本発明を図をもって説明すると、図1は本 願発明にかかる金型の説明図であり、図2は本願発明に 40 かかる他の金型の説明図である。図1において、金型1

は溶融樹脂の流路2を有し、溶融樹脂は流路2を通過し て金型出口3より環状に発泡押し出される。本願発明に おいて規定した特性を有する部分は斜線を施した部分で ある。図2は板状に押出し発泡に使用する金型の説明図 であり、本願発明において規定した特性を有する部分は 斜線を施した部分である。

[0013]

【実施例】次に実施例をもって本発明を説明する。

実施例1~3、比較例1~5

本発明の条件を具備した押出金型を使用して得られた発 泡体と本発明の条件を欠いた押出金型を使用して得られ た発泡体を対比すると、表2及び表3の通りである。

[0014]

【表2】

実施例 1 実施例 2		実施例 2		夹施例3	比較例1 プランク	
極問		PS 100部	PS 100都	P S 100部	P S 100邮	
舔加剤		母 ひんり 1部	イルク 1部	タルク 0.2部	タルク 1部	
発泡剤(wt%)	(wt%)	84.6 ベタでソト	イソプタン 3.4%	イソブタン 18.0%	インブタン 3.4%	5
タイプ		ーチェキーサ	サーキュラー	サーキュラー	サーキュラー	
口径		091	1600	1100	160 \$	
基部材質	質	S C M - 4	S CM-4	SCM-4	S CM - 4	
先蜡節材質	材質	ፈ =⊏46	カニソロン	カニフロン	SCM-4	
接触角	接炮角(45~65.)	.97	53.	48,	37,	
先确即材質長	材質長さ	ETT C E	3 0 mm	2 5 cm	30 000	
先端院	先端流路部表面粗さ	58.0	0.85	0.85	0.88	
リップ厚み	厚み	0.4 mm	0.4 mm	0.250	0.4 圖	
統路部厚み	厚み	₽.O m	5. O mm	6.05	5.0 mg	
散り込み比	み比	12.5	12.5	24.0	12.5	
日:日	: 吐出量(Kg/hr)	200	200	150	200	
スクリ	1-RPM	3 8	3 5	3.0	3 5	
۲ ۲	ヘッド圧力(kg/afl)	130	110	200	150	
製品厚み	ě	2.2 m	2.2 m	1.0 0.1	2 . 2 ram	
密度(g/リッ	10211	0.073	0.075	0.020	0.078	
r Z		0	0	0	0	6
外観		0	О	0	Δ	
政形在		0	0	0	0	
連続運	進続運転安定期間	7日以上	1日以上	1日以上	10以上	
総合評価	(何	0	0	0	۵	
			¥	1		

[0015] [表3]

		比較倒 2	五数	比較例 4	比較例 5
温	報題	PS 100 RB	PS 1008	PS 100耶	PS 1008B
⟨ □	番白翘	タルク 1部	カルク 1部	タルクゴ部	タルク 1和
	発泡剤(wt%)	イソプタン 3.4%	イソプタン 3.4%	イソブタン 3.4%	イソブタン 3.4%
	817	サーキュラー	-6下キー4	サーキュラー	サーキュラー
	口径	1 60 0	1604	1600	1600
(#	基部材質	S C M – 4	SCM-4	S C M - 4	S C M - 4
	先雄部材質	テフロンコート	グログコダ	ジルコニア	ジルコニア
	接触角(45~65')	85.	. 8 9	46.	46*
釟	先雄部材質反応	300	30 0	30 0	30 mm
	先経済路忠改同組み	0.85	0.85	8.8.5	0.85
	リップ厚み	0.4 111	0.25mm	O. 4 mm	0.4 mm
	抗路部厚み	5.0 m	1 2 mm	5.0 m	O.8 nm
	较り込み比	12.5	48.0	12.5	2.0
*	Q: 吐出氢(Kg/hr)	200	220	200	200
ŧ	スクリューRPM	3 8	3 5	3 5	3 5
	ヘッド圧力(㎏/㎡)	130	160	155	140
	製品厚み	2.2 m	1.4 m	2.2皿	2.2 пл
ıE	密度(g/リットル)	0.070	0.075	0.078	0.075
	偏肉	۵	0	٥	۵
	外觀	0	۵	۵	۵
红	成形性	0	Δ	0	۵
	連続運転安定期間	子が日3~~	1日以上	7日以上	7日以上
	熱合評価	٥	٥	٥	×~

[0016]

【発明の効果】以上述べたように、本発明は、熱可塑性 樹脂押出発泡体用金型の金型流路内における溶融樹脂と 接触する金型流路面で少なくとも金型出口から手前5m mまでの間は溶融樹脂との接触角が45~65°で、樹 脂流路の表面粗さが6.3 S以下であり、かつ、金型内 40 【図2】本発明にかかる他の金型形状の断面斜視図 流路の絞り込み比が3~40と規定したことによって、

1) 金型先端部の発熱が少ない。

- 2) ダイスエルが小さい。
- 3) 製品表面にラインの発生が少ない。 等の効果が得られるのである。

【図面の簡単な説明】

- 【図1】本発明にかかる金型形状の断面図
- 【符号の説明】
- 1 押出機 2 流路 3 金型出口

● EPODOC / EPO

PN - JP7040418 A 19950210

PD - 1995-02-10

PR - JP19930185045 19930727

OPD - 1993-07-27

TI - MOLD FOR THERMOPLASTIC RESIN EXTRUDED FOAM

IN - HORINO SHIZUKA;KAJIMOTO YOSHINORI;TSUBONE TADAYASU

PA - SEKISUI PLASTICS

IC - B29C47/12 ; B29K105/04

C WPI / DERWENT

- Mould for thermoplastic resin extrusion foam giving inhibited die swelling - has flow passage surface contacting with melted resin having specified surface roughness and having specified contact angle with melted resin

PR - JP19930185045 19930727

PN - JP7040418 A 19950210 DW199516 B29C47/12 006pp

- JP2896832B2 B2 19990531 DW199927 B29C47/12 006pp

PA - (SEKP) SEKISUI PLASTICS CO LTD

IC - B29C47/12 ;B29K105/04

- J07040418 In the mould, a flow passage surface to be contacted with a melted resin, and at least ranging from the mould outlet to5 mm inward of the outlet, is made of a material with a contact angle to melted resin of 45-65 deg. The flow passage has a surface roughness of 6.3 S or lower. The throttle ratio of the flow passage in the mould is 3-40.
 - Pref. the thermoplastic resin is polystyrene, polyethylene, polypropylene, polyphenyleneoxide, polyester, their copolymers, or their mixt.
 - ADVANTAGE The passage surface has good slipping properties, reducing the heating at the mould top portion, caused by the melted resin. Die swelling is inhibited. Line defects are reduced.
 - The contact angle is measured by heating, e.g., one particle of polystyrene placed on a metal piece to 160 deg.C for 15 hrs., and measuring the contact angle. The throttle ratio is defined as the quotient of a flow passage 40 mm inward of the mould outlet divided by the area of the mould outlet.
 - For polystyrene, the mould base material is made of SCM-4, and the top end portion is of zirconia.(Dwg.0/2)

OPD - 1993-07-27

AN - 1995-118316 [16]

none

none

© PAJ / JPO

PN - JP7040418 A 19950210

PD - 1995-02-10

AP - JP19930185045 19930727

IN - HORINO SHIZUKA; others:02

PA - SEKISUI PLASTICS CO LTD

TI - MOLD FOR THERMOPLASTIC RESIN EXTRUDED FOAM

AB - PURPOSE:To provide the title mold capable of keeping proper slip properties by specifically prescribing the material quality of the surface of the mold.

- CONSTITUTION: In a mold for thermoplastic resin extruded foam having surface material quality wherein the contact angle with a molten resin over the range from the outlet 3 of the mold to the place separated from the outlet 3 by 5mm on the surface coming into contact with the molten resin of the passage of the mold is 45-65 deg., the surface roughness of a resin passage 2 is 6.3S or less and the drawing ratio of the passage in the mold is 3-40.

SI - B29K105/04

I - B29C47/12