Exercise 3.

- (a) Prove by induction that given $n \in \mathbb{Z}_+$, every nonempty subset of $\{1, 2, \ldots, n\}$ has a largest element
- (b) Explain why you cannot conclude from (a) that every nonempty subset of \mathbb{Z}_+ has a largest element

Proof.

- (a) Let A be the subset of \mathbb{Z}_+ such that $\forall n \in A$, every nonempty subset of $\{1, 2, \ldots, n\}$ has a largest element. Then $1 \in A$ since the only nonempty subset of $\{1\}$ is itself, and 1 is thus its largest element. Suppose that $n \in A$, and consider a nonempty subset A_0 of $\{1, 2, \ldots, n+1\}$. If $n+1 \in A_0$, then it is the largest element of A_0 . Otherwise, $A_0 \cap \{1, 2, \ldots, n\}$ is nonempty and $n \in A$, so that A_0 has a largest element. By induction we deduce that $A = \mathbb{Z}_+$.
- (a) The previous point showed that every nonempty subset of \mathbb{Z}_+ that has an upper bound has a largest element. There are nonempty subsets of \mathbb{Z}_+ that do not have an upper bound, for example \mathbb{Z}_+ itself, so the result would not hold for any nonempty subset of \mathbb{Z}_+ .