

Arrays

College of Computer Science, CQU

Outline

- Array ADT
- Matrix
- Symmetric Matrix
- Triangular Matrix
- Symmetric Band Matrix
- Sparse Matrix

Representation, Transposing

Arrays

Array:

a set of pairs (index and value)

data structure:

For each index, there is a value associated with that index.

representation (possible):

implemented by using consecutive memory.

The Array ADT

Objects: A set of pairs <index, value> where for each value of index there is a value from the set item. Index is a finite ordered set of one or more dimensions, for example, {0, ..., n-1} for one dimension, {(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)} for two dimensions, etc.

Methods:

```
for all A ∈ Array, i ∈ index, x ∈ item, j, size ∈ integer
Array Create(j, list)

// return an array of j dimensions where list is a j-tuple whose kth element is the

//size of the kth dimension. Items are undefined.

Item Retrieve(A, i)

// if (i ∈ index) return the item associated with index value i in array A

// else return error

Array Store(A, i, x)

// if (i in index) return an array that is identical to array A except the new pair

// <i, x> has been inserted else return error
```


- Two-dimensional arrays are a particularly common representation for matrices.
- A matrix, also referred to as a general matrix, is an m by n ordered collection of numbers. It is represented symbolically as:

$$oldsymbol{A} = egin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \ddots \\ \vdots & & \ddots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

where the matrix is named \mathbf{A} and has m rows and n columns. And \mathbf{a}_{ij} is the element in ith row and jth column of matrix \mathbf{A} .

A matrix appears as two-dimensional, but physically it is stored in a linear fashion. How to represent this two-dimensional array?

- Common ways to index into multi-dimensional arrays include:
- Row-major order:

The elements of each row are stored in order.

Column-major order:

The elements of each column are stored in order.

1	4	7	2	5	8	3	6	9
			l					

Row-major order:

- So,in order to map logical view to physical structure, we need indexing formula.
 - Row-major order: Assume that the base address is at M, the address of a_{ii} will be obtained as

$$Address(a_{ij})=M+((i-1)*n+j-1)*d$$

 Column-major order:Considering the base address at M,the formula will stand as

$$Address(a_{ij})=M+((j-1)*m+i-1)*d$$

$$oldsymbol{A} = egin{bmatrix} a_{11} & \dots & a_{1n} \\ \ddots & & \ddots \\ \ddots & & \ddots \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$

按行序为主序存放

 $a_{m-10} \ a_{m-11} \ \dots \ a_{m-1n-1}$

$$LOC(i,j) = LOC(0,0) +$$

 $(n \times i + j) \times d$

按列序为主序存放

$$LOC(i,j) = LOC(0,0) + (m \times j + i) \times d$$

Arrays_01

推广到一般情况 n维数组的行序为主序存储地址计算公式

 b_1, b_2, \ldots, b_n 是n维的维界,数组元素A (j_1, j_2, \ldots, j_n) 的存储位置为 $LOC[j_1, j_2, \ldots, j_n] = LOC[0, 0, \ldots, 0] + (j_1*b_2*b_3*\ldots*b_n + j_2*b_3*\ldots*b_n + j_n-1*b_n + j_n-1*d$

= LOC[0,0,...,0] +
$$(\sum_{i=1}^{n} j_i \prod_{k=i+1}^{n} b_k + j_n)*d$$

n-1

练习

假设有二维数组 $A_{6\times8}$,每个元素用相邻的6个字节存储,存储器按字节编址。已知A的起始存储位置(基地址)为1000,计算:

- (1)数组A的体积(即存储量);
- (2)数组A的最后一个元素a₅₇的第一个字节的地址;
- (3) 按行存储时,元素a₁₄的第一个字节的地址;
- (4) 按列存储时,元素a₄₇的第一个字节的地址。

Symmetric Matrix

- □ The matrix **A** is symmetric if it has the property **A** equal to \mathbf{A}^{T} , which means:
 - It has the same number of rows as it has columns; that is, it has n rows and n columns.
 - The value of every element a_{ij} on one side of the main diagonal equals its mirror image a_{ji} on the other side: a_{ij} equal to a_{ji} .
 - \blacksquare $A ==A^T$
 - $\mathbf{a}_{ij} == \mathbf{a}_{ji}$

Symmetric Matrix

The following matrix illustrates a symmetric matrix of order n; that is, it has n rows and n columns. The subscripts on each side of the diagonal appear the same to show which elements are equal:

$$\boldsymbol{A} = \begin{bmatrix} a_{11} \, a_{21} \, a_{31} \, \dots \, a_{n1} \\ a_{21} \, a_{22} \, a_{32} \, & \dots \\ a_{31} \, a_{32} \, a_{33} \, & \dots \\ & \dots \, & \dots \\ & \dots \, & \dots \\ a_{n1} \, \dots \, & \dots \, a_{nn} \end{bmatrix}$$

Symmetric Matrix

- When a symmetric matrix is stored in lower-packed storage mode, the lower triangular part of the symmetric matrix is stored, including the diagonal, in a one-dimensional array.
- □ The lower triangle can be packed by row or columns. The matrix is packed sequentially row by row (column by column) in n(n+1)/2 elements of a one-dimensional array.
- When the matrix is packed sequentially row by row ,to calculate the location k of element a_{ij} of matrix **A** in an array, use the following formula:

$$k=i*(i-1)/2+j-1$$
 $i>=j$, lower triangular part $k=j*(j-1)/2+i-1$ $i< j$, upper triangular part

按行序为主序:

A matrix of the form

is called a triangular matrix.

- There are two types of triangular matrices: upper triangular matrix and lower triangular matrix. Triangular matrices have the same number of rows as they have columns; that is, they have n rows and n columns.
- A matrix **U** is an **upper triangular matrix** if its nonzero elements are found only in the upper triangle of the matrix, including the main diagonal; that is: u_{ij} equal to 0 (or constant C) if i greater than j
- A matrix **L** is an **lower triangular matrix** if its nonzero elements are found only in the lower triangle of the matrix, including the main diagonal; that is: I_{ij} equal to 0 (or constant C) if i less than j

The following matrices, **U** and **L**, illustrate upper and lower triangular matrices of order n, respectively:

$$U = \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ 0 & u_{22} & u_{23} & & & \\ 0 & 0 & u_{33} & & & \\ & & & & & \\ \vdots & & & & \ddots & \\ \vdots & & & & \ddots & \\ 0 & 0 & \dots & \dots & 0 & u_{nn} \end{bmatrix} \qquad L = \begin{bmatrix} l_{11} & 0 & 0 & \dots & 0 \\ l_{21} & l_{22} & 0 & & & \\ l_{31} & l_{32} & l_{33} & & & \\ \vdots & & & & \ddots & \vdots \\ \vdots & & & & \ddots & \vdots \\ l_{n1} & \dots & \dots & \dots & l_{nn} \end{bmatrix}$$

- when a lower-triangular matrix is stored in lower-triangular-packed storage mode, the lower triangle of the matrix is stored, including the diagonal, in a one-dimensional array. The lower triangle is packed by row or by columns. The elements are packed sequentially, row by row (column by column), in n(n+1)/2 elements of a one-dimensional array. To calculate the location of each element of the triangular matrix in the array, use the technique described in Symmetric Matrix.
- □ When an upper-triangular matrix is stored in upper-triangularpacked storage mode, the upper triangle of the matrix is stored, including the diagonal, in a one-dimensional array.

Symmetric Band Matrix

■ A symmetric band matrix is a symmetric matrix whose nonzero elements are arranged uniformly near the diagonal, such that: a_{ij} equal to 0 if |i-j| greater than k, where k is the half band width.

Symmetric Band Matrix

□ The following matrix illustrates a symmetric band matrix of order n, where the half band width k equal to q-1:

$$A = \begin{bmatrix} a_{11} a_{21} a_{31} & . & . & a_{q1} 0 & . & . & 0 \\ a_{21} a_{22} a_{32} & & & 0 & . & . \\ a_{31} a_{32} a_{33} & & & & 0 & . \\ . & & & . & & & 0 \\ . & & & & . & & . \\ a_{q1} & & & . & & . & . \\ 0 & & & & . & & . & . \\ . & 0 & & & & . & . & . \\ . & 0 & & & & . & . & . \\ 0 & . & . & 0 & . & . & . & . \end{bmatrix}$$

Only the band elements of the symmetric band matrix are stored.

★对角矩阵 $a_{12}0$ **a**₁₁ \mathbf{a}_{21} \mathbf{a}_{22} \mathbf{a}_{23} $0 \dots$ a_{32} a_{33} a_{34} 0 0 $0 \dots a_{n-1,n-2} \quad a_{n-1,n-1} \quad a_{n-1,n}$ $0 \dots a_{n,n-1}$

按行序为主序:

 $Loc(a_{ii})=Loc(a_{11})+[3(i-1)+(j-i)]*d$

Sparse Matrix

A sparse matrix is a matrix having a relatively small number of nonzero elements.

	col l	col 2	col 3
row l	- 27	3	4
row 2	6	82	- 2
row 3	109	- 64	11
row 4	12	8	9
row 5	48	27	47

15/15

	col1	col2	col3	col4	co	ol5 col6
row0	15	0	0	22	0	-15
row1	0	11	3	0	0	0
row2	0	0	0	-6	0	0
row3	0	0	0	0	0	0
row4	91	0	0	0	0	0
row5	0	0	28	0	0	0
				8/30	5	

sparse matrix data structure?

稀疏矩阵

假设m行n列的矩阵含t个非零元素,则称

$$\delta = \frac{t}{m \times n}$$

为稀疏因子。

通常认为 $\delta \leq 0.05$ 的矩阵为稀疏矩阵。

Sparse Matrix Representation

The standard representation of a matrix is a two dimensional array defined as

```
a[MAX_ROWS][MAX_COLS]
```

- We can locate quickly any element by writing a[i][j]
- Sparse matrix wastes space
 - We must consider alternate forms of representation.
 - Our representation of sparse matrices should store only nonzero elements.
 - Each element is characterized by <row, col, value>.

Sparse Matrix Representation

- Figure shows how the sparse matrix is represented in the array a.
 - Represented by a two-dimensional array.
 - Each element is characterized by <row, col, value>.

row, column in ascending order

Transposing A Matrix

- Transpose a Matrix
 - For each row i
 - take element <i, j, value> and store it in element <j, i, value> of the transpose.
 - difficulty: where to put <j, i, value>
 (0, 0, 15) ====> (0, 0, 15)
 (0, 3, 22) ====> (3, 0, 22)
 (0, 5, -15) ====> (5, 0, -15)
 (1, 1, 11) ====> (1, 1, 11)
 Move elements down very often.
 - For all elements in column j,
 - place element <i, j, value> in element <j, i, value>

Transposing A Matrix

Assign A[i][j] to B[j][i]

place element <i, j, value> in element <j, i, value>

For all columns i ← For all elements in column j

Scan the array "columns" times. The array has "elements" elements.

```
void transpose(term a[], term b[])
/* b is set to the transpose of a */
  int n,i,j, currentb;
  n = a[0].value; /* total number of elements */
  b[0].row = a[0].col; /* rows in b = columns in a */
  b[0].col = a[0].row; /* columns in b = rows in a */
  b[0].value = n;
  if (n > 0) { /* non zero matrix */
    currentb = 1;
    for (i = 0; i < a[0].col; i++)
    /* transpose by the columns in a */
       for (j = 1; j \le n; j++)
       /* find elements from the current column */
         if (a[j].col == i) {
         /* element is in current column, add it to b */
           b[currentb].row = a[j].col;
           b[currentb].col = a[i].row;
           b[currentb].value = a[j].value;
            currentb++:
    ==> O(columns*elements)
```

EX: A[6][6] transpose to B[6][6]

i=1 j=8 a[i].col = 2 != i

Matrix A

	Row (اهز	Value)
a[0]	6	6	. 8	
[1]	0	0	15	
[2]	0	3	22	
[3]	0	5	-15	
[4]	1	1	11	
[5]	1	2	3	
[6]	2	3	-6	
[7]	4	0	91	
[8]	5	2	28	

Row Col Value

```
0 6 6 8
1 0 0 15
2 0 4 91
3 1 1 11
```

```
void transpose(term a[], term b[])
/* b is set to the transpose of a */
   int n,i,j, currentb;
   n = a[0].value; /* total number of elements */
   b[0].row = a[0].col; /* rows in b = columns in a */
   b[0].col = a[0].row; /* columns in b = rows in a */
   b[0].value = n;
   if (n > 0 ) { /* non zero matrix */ Set Up row & column
                                      in B[6][6]
    currentb = 1;
     for (i = 0; i < a[0].col; i++)
     /* transpose by the columns in a */
       for (j = 1; j \le n; j++)
        /* find elements from the current column */
          if (a[i].col == i) {
          /* element is in current column, add it to b */
             b[currentb].row = a[j].col;
             b[currentb].col = a[j].row;
             b[currentb].value = a[i].value;
             currentb++;
                                          And So on...
```

Transposing A Matrix

- Discussion: compared with 2-D array representation
 - O(columns*elements) vs. O(columns*rows)
 - elements --> columns * rows when non-sparse,
 O(columns²*rows)
- Problem: Scan the array "columns" times.
 - In fact, we can transpose a matrix represented as a sequence of triples in O(columns + elements) time.
- Solution:
 - First, determine the number of elements in each column of the original matrix.
 - Second, determine the starting positions of each row in the transpose matrix.

C	ol		1	2	3	4	5	6	7		
Row-terms[col] 2			2	2	1	0	1	0			
Starting-pos[col] 1			1	3	5	7	8	8	9		
			2	4	6			9			
	;	:	3	5	7			i	;	0	
0	i	J 7	e]			→ 0	7	J	e	
1	6	7	8				√1	,	6	8	
$p \rightarrow 1$	1	2	12				1	1	3	-3	
p →2	1	3	9				$\sqrt{2}$	1	6	15	
p →3	3	1	-3				3	2	1	12	
p-4	3	6	14		/	>>	4	2	5	18	
p → 5	4	3	24				5	3	1	9	
р—6	5	2	18				→ 6	3	4	24	
p → 7	6	1	15				7	4	6	-7	
p →8	6	4	-7				8	6	3	14	

M.data

T.data Arrays_01

Fast Matrix Transposing

```
Cost:
                                      void fast_transpose(term a[], term b[])
Additional row terms and
                                      /* the transpose of a is placed in b */
starting_pos arrays are required.
                                         int row_terms[MAX_COL], starting_pos[MAX_COL];
                                         int i,j, num_cols = a[0].col, num_terms = a[0].value;
Let the two arrays row_terms
                                         b[0].row = num\_cols; b[0].col = a[0].row;
and starting_pos be shared.
                                         b[0].value = num_terms;
                                        if (num_terms > 0) { /* nonzero matrix */
                                           for (i = 0; i < num\_cols; i++)
                     For columns
                                           - row_terms[i] = 0;
                                           -for (i = 1; i <= num_terms; i++)
                     For elements
Buildup row_term
                                             row_terms[a[i].col]++;
                                           starting_pos[0] = 1;
& starting_pos
                                           for (i = 1; i < num\_cols; i++)
                   For cohlumns
                                             - starting_pos[i] =
                                                        starting_pos[i-1] + row_terms[i-1];
                                           for (i = 1; i <= num_terms; i++) {
                                              j = starting_pos[a[i].col]++;
                   For elements
       transpose
                                             b[j].row = a[i].col; b[j].col = a[i].row;
                                             b[j].value = a[i].value;
```

Fast Matrix Transposing

After the execution of the third **for** loop, the values of *row_terms* and *starting_pos* are:
[0] [1] [2] [3] [4] [5]

row_terms = 2 1 2 2 0 1 starting_pos = 1 3 4 6 8 8

	row	col	value		row	col	value
$\overline{a[0]}$	6	6	8	$\overline{b[0]}$	6	6	8
[1]	0	0	15	[1]	0	0	15
[2]	0	3	22	[2]	0	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1	11	[4]	2	1	3
[5]	1	2	3	[5]	2	5	28
[6]	2	3	-6 ^{tra}	$nspose \frac{[5]}{[6]}$	3	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
	(a))			(b)	
		**					

Matrix A

```
Row Col Value
a[0]
           6
           0
 [1]
 [2]
           0
 [3]
           0
                         -15
 [4]
 [5]
                  3
 [6]
 [7]
                  0
                          28
 [8]
```

```
void fast_transpose(term a[], term b[])
/* the transpose of a is placed in b */
  int row_terms[MAX_COL], starting_pos[MAX_COL];
  int i, j, num_cols = a[0].col, num_terms = a[0].value;
  b[0].row = num\_cols; b[0].col = a[0].row;
  b[0].value = num_terms;
  if (num_terms > 0) { /* nonzero matrix */
    for (i = 0; i < num\_cols; i++)
       row_terms[i] = 0;
    for (i = 1; i <= num_terms; i++)
      row_terms[a[i].col]++;
    starting_pos[0] = 1;
    for (i = 1; i < num\_cols; i++)
       starting_pos[i] =
                  starting_pos[i-1] + row_terms[i-1];
     for (i = 1; i <= num_terms; i++) {
       j = starting_pos[a[i].col]++;
       b[j].row = a[i].col; b[j].col = a[i].row;
       b[j].value = a[i].value;
```

I = 8

Matrix A Row Col Value

```
      a[0]
      6
      6
      8

      [1]
      0
      0
      15

      [2]
      0
      3
      22

      [3]
      0
      5
      -15

      [4]
      1
      1
      11

      [5]
      1
      2
      3

      [6]
      2
      3
      -6

      [7]
      4
      0
      91

      [8]
      5
      2
      28
```

Row Col Value

0	6	6	8
1	0	0	15
2	0	4	91
2 3 4 5 6	1	1	11
4	2	1	11 3
5	2 2 3	5	28 22
6		0	22
7			^
	3	Z	-0

Bata Structuse

[0] [1] [2] [3] [4] [5] row_terms = 2 1 2 2 0 1 starting_pos = 3 4 5 8 8 9

```
void fast_transpose(term a[], term b[])
/* the transpose of a is placed in b */
  int row_terms[MAX_COL], starting_pos[MAX_COL];
  int i, j, num_cols = a[0].col, num_terms = a[0].value;
  b[0].row = num\_cols; b[0].col = a[0].row;
  b[0].value = num_terms;
  if (num_terms > 0) { /* nonzero matrix */
     for (i = 0; i < num\_cols; i++)
       row_terms[i] = 0;
     for (i = 1; i <= num_terms; i++)
       row_terms[a[i].col]++;
     starting_pos[0] = 1;
     for (i = 1; i < num\_cols; i++)
       starting_pos[i] =
                  starting_pos[i-1] + row_terms[i-1];
     for (i = 1; i <= num_terms; i++) {
       j = starting_pos[a[i].col]++;
       b[j].row = a[i].col; b[j].col = a[i].row;
       b[j].value = a[i].value;
```

Represented as an array of linked lists

■ Here is an example of a sparse two-dimensional array, and how it can be represented as an *array* of linked lists:

- With this representation,
 - It is efficient to step through all the elements of a row
 - It is expensive to step through all the elements of a column
 - Clearly, we could link columns instead of rows
 - Why not both?

Another implementation

☐ If we want efficient access to both rows and columns, we need another array and additional data in each node

Do we really need the row and column number in each node?

Yet another implementation

Instead of arrays of pointers to rows and columns, you can use linked lists:

Would this be a good data structure?

This may be the best implementation if most rows and most columns are totally empty

Reference

□ 《数据结构(C语言版)》,严蔚敏,吴伟民编著,清华大学出版社,1997年第1版,P91-99