MOSFET

MOSFET

MOSFET stands for metal-oxide semiconductor field-effect transistor.

Unlike <u>BJT</u> which is 'current controlled', the <u>MOSFET</u> is a voltage controlled device.

The MOSFET has "gate", "Drain", "Source" and "Body" terminals.

Types of MOSFETS

n-channel
Enhancement Mode
(nMOSFET)

n-channel
p-channel
(pMOSFET)

p-channel

Cross-Sectional View of p channel Enhancement Mode Transistor

Cross-Sectional View of n channel Enhancement Mode Transistor

Enhancement mode

- Also known as Normally Off transistors.
 - A voltage must be applied to the gate of the transistor, at least equal to the threshold voltage, to create a conduction path between the source and the drain of the transistor before current can flow between the source and drain.

p channel Depletion Mode Transistor n channel Depletion Mode Transistor

Depletion mode

- Also known as Normally On transistors.
 - A voltage must be applied to the gate of the transistor, at least equal
 to the threshold voltage, to destroy a conduction path between
 the source and the drain of the transistor to prevent current from
 flowing between the source and drain.

Operation of a Enhancement mode transistor

A voltage must be applied to the gate of the transistor, at least equal to the threshold voltage, to create a conduction path between the source and the drain

Positive gate bias attracts electrons into channel. Channel now becomes more conductive

Before electron inversion layer is _ _ _ formed _ _

 $s \rightarrow D$

With no bias voltage applied to the gate terminal, there exists two back-to-back pn junctions between the drain and the source. No current flows from drain to source (the resistance will be on the order of $10^{12} \Omega$).

After electron inversion layer is formed

Symbols for n channel Enhancement Mode MOSFET

Symbols for p channel Enhancement Mode MOSFET

Symbols for n channel Depletion Mode MOSFET

Symbols for p channel Depletion Mode MOSFET

Working Modes (Enhancement mode)

Triode Region (Enhancement mode)

A voltage-controlled resistor @small V_{DS}

Positive gate bias attracts electrons into channel.

Increasing V_{GS} puts more charge in the channel, allowing more drain current to flow

Saturation Region (Enhancement mode) occurs at large V_{DS}

As the drain voltage increases, the difference in voltage between the drain and the gate becomes smaller. At some point, the difference is too small to maintain the channel near the drain \rightarrow pinch-off

Saturation Region (Enhancement mode) occurs at large V_{DS}

The saturation region is when the MOSFET experiences pinch-off. Pinch-off occurs when V_G - V_D is less than V_T .

Saturation Region (Enhancement mode) occurs at large V_{DS}

$$V_{GS} - V_{DS} < V_{T} \text{ or } V_{GD} < V_{T}$$

$$Or \quad V_{DS} > V_{GS} - V_{T}$$

Saturation Region (Enhancement mode) once pinch-off occurs, there is no further increase in drain current

n-channel MOSFET Basic Operation (Enhancement mode)

For $v_{GS} < V_{to}$, the pn junction between drain and body is reverse biased and $i_D = 0$.

When $v_{GS}=0$ then $i_D=0$ until $v_{GS}>V_{t0}$ (V_{t0} -threshold voltage)

n-channel MOSFET Basic Operation

Operation in the Triode Region

$$i_D = K [2(v_{GS} - V_{t0})v_{DS} - v_{DS}^2]$$

(K is defined by the electrical and physical parameters of the MOSFET)

n-channel MOSFET Basic Operation

Operation in the Saturation Region (v_{DS} is increased)

$$i_D = K(v_{GS} - V_{t0})^2$$

p-channel MOSFET Basic Operation

It is constructed by interchanging the n and p regions of n-channel MOSFET.

Circuit symbol for PMOS transistor.

It is a graphical analysis similar to load-line analysis of pn diode.

$$v_{DS} = vD - vS$$

$$v_{GS} = vG - vS$$

Load line

$$20 - R_D i_D(t) = v_{DS}(t)$$

Exercise:

Draw the Load line

$$20 - R_D i_D(t) = v_{DS}(t)$$

$$R_D = 1 \text{ k}\Omega$$

Load line

$$v_{DS} = v_D - v_S$$

Taking $i_D=0$ or $v_{DS}=0$ we find out the load line and the operating point Q for $V_{GS}=4V$

$$v_{GS}(t) = v_{in}(t) + V_{GG}$$

Points A & B intersection of curve and the loadline for the maximum and the minimum gate voltage

$$v_{DS} \text{ (V)}$$

$$v_{D$$

Simple NMOS amplifier circuit.

Input signal

$$v_{in}(t) = 1\sin(200\pi t)$$

(peak-to-peak amplitude is 2V)

The positive peak of the input occurs at the same time as the min. value of v_{DS} . The output is not a symmetrical sinusoid! (nonlinear distortion)

Analysis of amplifier circuits is often undertaken in two steps:

(1) The DC circuit analysis to determine the Q point. It involves the nonlinear equation solution or the load-line method. This is called bias analysis

The fixed-plus selfbias circuit

Exercise:

Find V_G voltage as a function of V_{DD} , R_1 and R_2

Analysis of amplifier circuits is often undertaken in two steps:

(1) The DC circuit analysis to determine the Q point. It involves the nonlinear equation solution or the load-line method. This is called bias analysis

Analysis of amplifier circuits is often undertaken in two steps:

(1) The DC circuit analysis to determine the Q point. It involves the nonlinear equation or the load-line method. This is called bias analysis

(2) Use a linear small-signal equivalent circuit to determine circuit

parameters

Analysis...

For saturation region

$$V_G = v_{GS} + R_S i_D$$

$$i_D = K (v_{GS} - V_{t0})^2$$
 find v_{GS}

 (b) Gate bias circuit replaced by its Thévenin equivalent

Plot of

$$V_G = v_{GS} + R_S i_D$$

For saturation region

and
$$i_D = K(v_{GS} - V_{t0})^2$$

Analysis of amplifier circuits is often undertaken in two steps:

(1) The dc circuit analysis to determine the Q point. It involves the nonlinear equation or the load-line method. This is called bias analysis

(2) Use a linear small-signal equivalent circuit to determine circuit parameters

Analysis...

find i_D
For saturation region

$$i_D = K(v_{GS} - V_{t0})^2$$

$$v_{DS} = V_{DD} - (R_D + R_S)i_D$$

 (b) Gate bias circuit replaced by its Thévenin equivalent

Self Bias Circuits (For saturation region)

Analyze the self-bias circuit shown. The transistor has $K=1mA/V^2$, $V_{to}=2V$.

$$egin{aligned} V_G = V_{DD} rac{R_2}{R_1 + R_2} \ V_G = v_{GS} + R_S i_D \ i_D = K ig(v_{GS} - V_{t0}ig)^2 \ \end{pmatrix} ext{ find } ext{v}_{GS} \end{aligned}$$

$$\begin{aligned} &\text{find i}_{\text{D}} & i_D &= K \big(v_{GS} - V_{t0} \big)^2 \\ &\text{find v}_{\text{DS}} & v_{DS} = V_{DD} - \big(R_S \big) i_D \end{aligned}$$

Small-Signal Equivalent Circuit for FETs

Output signal from an amplifier using MOSFET can be effectively modulated by small changes of input signal current. In this way it is possible to make small changes from the Q point.

Symbols:

The total quantities: $i_D(t)$, $v_{GS}(t)$

The DC point values: I_{DQ} , V_{GSQ}

The signal $i_d(t)$, $v_{qs}(t)$

$$v_{GS}(t) = V_{GSQ} + v_{gs}(t)$$

$$i_D(t) = I_{DQ} + i_d(t)$$

Small-Signal Equivalent Circuit - Transconductance

Simple NMOS amplifier circuit.

We define the transconductance as

$$g_{m} = \frac{i_{d}(t)}{v_{gs}(t)}$$
$$i_{d}(t) = g_{m}v_{gs}(t)$$

$$g_m = 2\sqrt{KI_{DQ}}$$

Small-signal equivalent circuit for FETs.

More Complex Equivalent Circuits

For more accurate analyses of FET transistor we have to add more components to an equivalent circuit.

Drain resistor: account for the effect of v_{DS} on the drain current

Correction for id

$$i_d(t) = g_m v_{gs}(t) + v_{ds} / r_d$$

FET small-signal equivalent circuit that accounts for the dependence of i_D on v_{DS} .

Drain Resistance Calculation

so at
$$v_{GS}=4V$$

$$\frac{1}{r_d} = \frac{\Delta i_D}{\Delta v_{DS}} = \frac{(10.7 - 10)mA}{(10 - 6)V} = \frac{0.7}{4} mS = 0.175 mS \qquad r_d = 5.7 k\Omega$$

Common-Source Amplifier

The dc supply voltage acts as a short circuit for the ac current.

Common-Source Amplifier

The dc supply voltage acts as a short circuit for the ac current.

Common-Source Amplifier: Gain, Rin and Rout

Equivalent circuit (once more)

$$R_{L}^{'} = \frac{1}{1/r_{d} + 1/R_{D} + 1/R_{L}}$$

Voltage gain

$$v_0 = -(g_m v_{gs}) R_L' \qquad v_{in} = v_{gs}$$

$$A_{v} = \frac{v_0}{v_{in}} = -g_m R_L$$

Input resistance

$$R_{in} = \frac{v_{in}}{i_{in}} = R_G = R_1 | R_2$$

From bias point analysis