Projeto e Análise de Algoritmos Trabalho Prático 2 - Grafos

Jordan Silva¹

¹ Instituto de Ciências Exatas Universidade Federal de Minas Gerais (UFMG) – Belo Horizonte, MG – Brasil

jordan@dcc.ufmg.br

1. Objetivo

Este trabalho tem como objetivo a implementação e análise da solução para o problema do *Quebra-Cabeça das N pastilhas*, proposto no módulo de grafos da disciplina de Projeto e Análise de Algoritmos. Este trabalho soluciona esse problema através do algoritmo **A*** e implementação de três heurísticas de programação diferentes: **Distância de Manhattan, Distância de Hamming e de Conflito Linear**.

A implementação deste trabalho foi realizada utilizando a linguagem C++11.

2. Problema

O trabalho proposto tem como o tema O Quebra-Cabeça das N pastilhas, no qual o problema à ser resolvido é um jogo de quebra-cabeça, onde você tem um tabuleiro de $N \times N$ espaços e N-1 peças. As peças desse tabuleiro são definidas como valores inteiros, são enumeradas de 1 à N-1 e estão distribuídas aleatoriamente no quebra-cabeça.

Para solucionar esse problema é necessário organizar as peças de forma a alcançar uma disposição ordenada, conforme apresentado na Figura 1. A única ação permitida para o jogador é movimentar qualquer peça da vizinha do espaço vazio para ele, sendo que esse movimento só pode ser realizado verticalmente ou horizontalmente.

Uma observação à ser feita para o problema do Quebra-Cabeça de N pastilhas é que 50% dos estados iniciais são irresolvíveis.

	1	2
3	4	5
6	7	8

Figura 1. Quebra-cabeça 3x3

Neste trabalho será necessário modelar esse problema como um grafo, considerando cada estado do quebra-cabeça como um vértice, e expandir esse grafo através de arestas entre os vértices que possuem estados válidos, onde é possível alcançar através de movimentos do espaço vazio. Também será necessário que cada vértice armazene o seu estado atual, como também o seu vértice antecessor, e a sua movimentação (Figura 2). Essas informações serão necessárias para mapear as movimentações realizadas e encontrar a solução ótima do problema (i.e., O menor número de movimentos é considerado a solução ótima).

Figura 2. Expandindo a Árvore de estados

Dados de Entrada A entrada do programa consiste em um arquivo texto, *input.txt*. O arquivo possui na sua primeira linha um valor inteiro N que informa a dimensão do quebra-cabeça. A seguir, o resto do arquivo é o estado inicial do quebra-cabeça, onde terá N linhas com N número inteiros separados por espaço. Excepcionalmente, uma das linhas possuirá um "_"(underline) informando a posição do espaço vazio (Tabela 1).

Dados de Saída Para a saída, haverá dois casos: *a*) O quebra-cabeça tem solução, então deve conter: na primeira linha do arquivo um valor inteiro que informa o tamanho do caminho achado, e em cada linha subsequente o movimento tomado pelo espaço vazio na sequência para resolver o tabuleiro, formatado em { acima, abaixo, esquerda, direita }, como pode ser visto na coluna *output.txt* da Tabela 1. *b*) O tabuleiro é irresolvível, então deve conter: 'Sem solução'.

input.txt	output.txt		
	5		
3	abaixo		
1_5	direita		
3 2 4	acima		
678	esquerda		
	esquerda		

Tabela 1. Exemplo dos dados

3. Modelagem e Solução

O problema foi modelado como o 8-puzzle problem¹. Este é um jogo de quebra-cabeça inventado e popularizado por Noyes Palmer Chapman nos anos de 1870. Esse quebra-cabeça é jogado em um tabuleiro 3 por 3, com 8 peças quadradas rotuladas de 1 à 8, e um espaço em branco. O objetivo é reorganizar essas peças de modo que fiquem em ordem. Apenas é permitido movimentar as peças verticalmente e horizontalmente para o espaço vazio.

Inttp://www.cs.princeton.edu/courses/archive/spr10/cos226/
assignments/8puzzle.html

Para generalizar o nosso problema, vamos modelar como N-puzzle problem, onde o tabuleiro do quebra-cabeça pode assumir qualquer dimensão, assim dado um tabuleiro de dimensão N, onde possuímos N-1 peças enumeradas de N-1 e 1 espaço em vazio. O nosso objetivo é reorganizar esse tabuleiro de forma que o espaço vazio esteja na posição 1 (i.e., superior esquerdo) do tabuleiro, e as outras peças organizadas em ordem crescente em suas respectivas posições.

Fez se necessário a realização de uma modelagem em forma de grafo G(V,E) para esse problema, onde cada vértice V é dado como um estado do tabuleiro, e as arestas E demonstram os estados que são alcancáveis através desse grafo. Assim, realizamos uma busca através do estado inicial desse grafo, e expandimos esse grafo buscando as soluções viáveis até encontrar a solução ótima. Para realizar essa tarefa, será apresentado na próxima seção o **Algoritmo A*** que foi utilizado para solucionar o problema, tal como as heurísticas desenvolvidas.

4. Algoritmo A*

O **Algoritmo A*** é um algoritmo amplamente usado para **Busca de Caminhos** em um grafo, onde possui um ótimo desempenho e precisão para solucionar esse tarefa. Este algoritmo usa o *best-first search* e encontra o caminho com menor custo dado um estado vértice inicial até o seu vértice objetivo. Como o *breadth-first search*, o **A*** realiza uma busca completa, e sempre irá a solução se essa existir.

O A*, diferentemente de um algoritmo BCU, não se baseia a busca somente pelo custo real do vértice, mas considera um valor heurístico para o custo. O objetivo da heurística é quantificar a distância do vértice atual para o vértice objetivo, no nosso problema as heurísticas serão baseadas nas posições das peças do quebra-cabeça. Assim, o cálculo de custo desse algoritmo é dado por

$$f(n) = g(n) + h(n) \tag{1}$$

onde a função g(h) retorna o custo real total de se alcançar o vértice n, ou a profundidade desse vértice na expansão da árvore de soluções. A função h(n) adicionada pelo \mathbf{A}^* , é uma função heurística. Nesse trabalho utilizaremos somente de heurísticas admissíveis, onde o seu custo estimado gerado é no máximo o custo real, dado como

$$h(n) \le g(n) \tag{2}$$

A implementação do **Algoritmo A*** nesse trabalho pode ser vista no Algoritmo 1, onde expandimos a nossa árvore de soluções através de todas as possibilidades viáveis de movimentos do nosso espaço vazio, e calculamos o custo para cada novo estado. O nosso algoritmo tem como condição de parada quando encontrar o vértice objetivo, i.e., quando a nossa função de heurística h(n)=0, sendo a distância do estado atual para o estado objetivo zero.

4.1. Análise de Complexidade

A complexidade de tempo desse algoritmo depende da heurística implementada, mas no pior caso, em uma busca pelo espaço de soluções sem nenhuma restrição, o número de vértices expandidos será exponencial ao tamanho da solução, sendo assim

$$O(|V|) = O(b^d) \tag{3}$$

onde b é o fator de ramificação (i.e., a quantidade de filhos de cada vértice) [Russell and Norvig 1995]. Essa complexidade é dada assumindo que o a solução exista, e esta é alcançável a partir do estado inicial; senão, o espaço de estados será infinito e o algoritmo não terminará. A complexidade de tempo é polinômial quando o espaço de busca dos estados é uma árvore, existindo um único estado objetivo à ser alcançado, e a função heurística h satisfaz as seguintes condições:

$$|h(x) - h^*(x)| = O(\log h^*(x)) \tag{4}$$

onde h^* é a heurística ótima, o custo exato do estado corrente à solução. Dessa forma, o erro de h não irá crescer mais rápido que o logaritmo da "heurística perfeita" h^* . [Pearl 1984]

Algorithm 1 Pseudo-código A*

```
1: function ASTAR(startNode, goal_node, dimension, heuristic)
        result \leftarrow []
 2:
 3:
        visited \leftarrow []
 4:
        queue \leftarrow startNode
        last \leftarrow 0
 5:
        while !empty(queue) do
 6:
 7:
            curr\_node \leftarrow top(queue)
            if curr_node \(\psi\)isited then
 8:
 9:
                 curr node insert visited
            else if cost(curr\_node) \leq cost(visited[curr\_node]) then
10:
                 visited[curr\_node] \leftarrow curr\_node
11:
            end if
12:
13:
            if curr\_node = goal_node then
                 last \leftarrow curr\_node
14:
                 break
15:
            end if
16:
            cildren \leftarrow GenerateChildren(curr\_node)
17:
            for all children do
18:
                 if children /visited or cost(children) \leq cost(visited[children]) then
19:
                     children insert queue
20:
                 end if
21:
            end for
22:
        end while
23:
24:
        while last \neq 0 do
            visited[last] insert result
25:
            last \leftarrow visited[last].parent
26:
27:
        end while
        return result
28:
29: end function
```

4.2. Distância de Manhattan

A **Distância de Manhattan** é a distância entre dois pontos medida ao longo dos eixos em ângulos retos. Esse nome faz uma alusão ao layout das ruas da cidade de Manhattan, o

que proporciona o menor caminho que um carro teria que percorrer entre dois pontos da cidade.

No nosso problema do quebra-cabeça, se x_i e y_i são as coordenadas x e y da peça i no estado s, e se $\bar{x_i}$ e $\bar{y_i}$ são as coordenadas x e y de peça i no estado objetivo, a heurística é:

$$h(s) = \sum_{i=1}^{N} (|x_i(s) - \bar{x}_i| + |y_i(s) - \bar{y}_i|)$$
(5)

onde pode ser vista a implementação através do Algoritmo 2.

4.2.1. Análise de Complexidade

Complexidade de tempo A solução através dessa heurística é na verdade a mesma complexidade de solucionar dois problemas simples. Esse algoritmo basicamente segue a mesma abordagem do **qsort**, e irá percorrer todos os N elementos da matriz e realizará uma operação aritmética simples para cada elemento. Dessa forma, temos

$$O(n)$$
 no melhor e pior caso (6)

onde n é a quantidade de elementos no vetor.

Complexidade de espaço A complexidade de espaço na implementação realizada é irrelevante, pois na realização do cálculo do algoritmo está sendo armazenado somente o somatório das distâncias das peças até seus respectivos objetivos. Logo

$$O(1)$$
 no melhor e pior caso (7)

onde esse valor será armazenado em cada vértice V, como valor da função h(n).

Algorithm 2 Pseudo-código Manhattan Distance

```
1: function MANHATTANDISTANCE(vector, dimension)
        distance \leftarrow = 0
 2:
        for i \leftarrow 1 to foes.size() do
 3:
            row \leftarrow i / dimension
 4:
            column \leftarrow i \% \ dimension
 5:
            if vector[i] \neq blank\_position then
 6:
                target\_row = vector[i] / dimension
 7:
                target\_row = vector[i] \% dimension
 8:
                distance \leftarrow distance + (abs(row - target\_row) + abs(column - target\_row))
    target\_column))
            end if
10:
        end for
11:
12:
        return distance
13: end function
```

4.3. Distância de Hamming

A definição da **Distância de Hamming** ou *Misplaced Tiles* é dado pela quantidade de peças que não estão na sua posição final (desconsiderando o espaço vazio do tabuleiro). Assim o Algoritmo 3 é dado pela contagem das peças em posições erradas, dessa forma temos

$$h(s) = \sum_{i=1}^{N} I(s_i)$$
(8)

$$I(s) = \begin{cases} 1 & \text{if } x_i(s) \neq \bar{x_i} \text{ or } y_i(s) \neq \bar{y_i} \\ 0 & \text{else} \end{cases}$$
 (9)

onde a função h(s) é definida pelo somatório das peças que não estão na posição correta, qual é dada pelo indicador I(s).

Algorithm 3 Pseudo-código Hamming Distance

```
1: function HAMMINGDISTANCE(vector, dimension)
2: distance \leftarrow = 0
3: for i \leftarrow 1 to foes.size() do
4: if vector[i] \neq blank\_position and vector[i]! = i then
5: distance \leftarrow distance + 1
6: end if
7: end for
8: return distance
9: end function
```

4.3.1. Análise de Complexidade

Complexidade de tempo A solução através dessa heurística igualmente a heurística de Manhattan, percorre todos os N elementos da matriz e verifica somente se o valor está na posição correta. Assim, na nossa implementação (Algoritmo 3) teremos a complexidade

$$O(n)$$
 no melhor e pior caso (10)

onde n é a quantidade de elementos no vetor.

Complexidade de espaço O espaço utilizado nessa heurística irá utilizar somente de uma variável, onde será armazenado o somatório com a quantidade de peças do quebra-cabeça fora da posição correta. Logo

$$O(1)$$
 no melhor e pior caso (11)

onde esse valor será armazenado em cada vértice V, como valor da função h(n).

4.4. Conflito Linear

Essa heurística tem como premissa verificar se existem peças trocas na mesma linha. Dessa forma temos um conflito linear caso duas peças t_j e t_k estejam na mesma linha; as posições finais dessas duas peças sejam nessa linha que elas estão; t_j está a direita da peça t_k , mas a posição final de t_j deveria ser à esquerda da posição final de t_k . Assim, teremos a nossa heurística da seguinte forma

$$h(s) = \sum_{i=1}^{N} \sum_{j=i+1}^{N} I(s_i, s_j)$$
(12)

$$I(t_j, t_k) = \begin{cases} 1 & \text{if } t_j \leftrightarrow t_k \\ 0 & \text{else} \end{cases}$$
 (13)

onde \leftrightarrow significa se os elementos estão em posições invertidas, como descrito na heurística.

4.4.1. Análise de Complexidade

Complexidade de tempo A implementação dessa solução é um pouco mais trabalhosa que as anteriores. Essa heurística é necessário percorrer $N^{(1.5)}$ elementos, devido a necessidade de comparar cada elemento com os outros da mesma linha. Assim, na nossa implementação (Algoritmo 4) teremos a complexidade

$$O(n)$$
 no melhor e pior caso (14)

onde n é a quantidade de elementos no vetor.

Complexidade de espaço O espaço utilizado nessa heurística irá utilizar somente de uma variável, onde será armazenado o somatório com a quantidade de peças do quebra-cabeça fora da posição correta. Logo

$$O(1)$$
 no melhor e pior caso (15)

onde esse valor será armazenado em cada vértice V, como valor da função h(n).

5. Experimentos

Neste trabalho foram realizados experimentos variando a entrada dos dados, a fim de analisar comparativamente as heurísticas implementadas, tal como o seu desempenho, a quantidade de nós explorados, análise de tempo de execução e memória utilizada. As diferentes combinações de quebra-cabeça foram geradas aleatoriamente. Esses experimentos, como também a especificação do ambiente onde os testes foram executados serão abordados nessa seção.

5.1. Ambiente de teste

A implementação dos algoritmos e os experimentos foram realizados utilizado a linguagem c++11, em um MacBook Pro (13-inch, Mid 2012); 2,5 GHz Intel Core i5; 16 GB 1600 MHz DDR3; OS X El Captain 10.11 (14D136)

Algorithm 4 Pseudo-código Linear Conflict

```
1: function LinearConflict(vector, dimension)
 2:
        distance \leftarrow = 0
 3:
        for i \leftarrow 1 to foes.size() do
            for j \leftarrow i + 1 to foes.size() do
 4:
                if vector[i] \neq blank\_position then
 5:
                    if CheckInverted(vector, i, j) then \triangleright Verifica se a peça i e j estão
 6:
    invertidas na mesma linha, e se ambas estão na linha correta.
                         distance \leftarrow distance + 1
7:
 8:
                    end if
                end if
 9:
            end for
10:
        end for
11:
        return distance
12:
13: end function
```

Tabela 2. Tabuleiros							
Custo	5	10	20	48	66		
Tabelas	$3\bar{2}4$	6 1 2 4 _ 5 7 3 8	$41\overline{6}$		12 9 13 15 11 10 14 3 7 2 5 4 8 6 1 _		

5.2. Análise dos Experimentos

Os experimentos para análise do tempo de execução foram realizados através da variação da sequência de números no tabuleiro, variação das dimensões, e execução das três heurísticas individualmente e a combinação da heurística da Distância de Manhattan + Distância de Hamming. Primeiramente escolhemos três entradas de dados distintas (Tabela 2), com as dimensões 3x3 e realizamos uma análise da quantidade de movimentos necessários para solucionar cada tabuleiro pelo tempo gasto (Figura 3), e também pela quantidade de nós explorados até encontrar a solução (Figura 4).

Figura 3. Tempo execução

Figura 4. Qtd. vértices explorados

Após a análise de tempo de execução e quantidade de vértices explorados em cada heurística, realizamos uma análise da quantidade memória utilizada e tempo gasto

para encontrar a solução do Tabuleiro de Custo 48 (Tabela 2). Como podemos visualizar na Figura 5, apenas as duas heurísticas **Manhattan** (**MD**) e **Manhattan** + **Hamming** (**MD**+**HD**) conseguiram solucionar o problema, e a combinação da **Distância de Manhattan** com a **Distância de Hamming** (**HD**) se mostrou muito superior à utilizar somente a Heurística de **Manhattan**.

Figura 5. Tabuleiro 48 - Memória Utilizada

Finalizando os nossos testes, com a **Heurística MD+HD** conseguimos resolver um problema de dimensão 5x5, com o custo de 66 movimentos (Tabela 2). Essa heurística foi a única experimentada que conseguiu resolver esse quebra-cabeça, sendo necessário uma utilização de 1.22GB de Memória RAM; 6.314.429 de vértices explorados; e foi executado em 59 segundos.

6. Conclusão

De acordo com a proposta do trabalho, este documento apresentou quatro heurísticas admissíveis para a solucionar o problema apresentado na Seção 2, sendo que uma das heurísticas é realizada a partir da combinação de duas outras. Realizamos uma análise das heurísticas implementadas e percebemos como uma diferença sútil na implementação tanto das heurísticas, como do algoritmo A* impacta na exploração do espaço de soluções e para encontrar a solução ótima mais rapidamente. Acredito que foi cumprido a proposta desse trabalho, tal como um melhor entendimento sobre o conteúdo de grafos ministrado na disciplina de Projeto e Análise de Algoritmo.

Referências

Pearl, J. (1984). Heuristics: intelligent search strategies for computer problem solving. Russell, S. and Norvig, P. (1995). Artificial intelligence: a modern approach.