Overheads: - Outline

Recap Friday:

Aromatic: extremely stable

- 1) Cyclic, planar, p orbital on each atom
- 2) odd number of electron pairs in the ring (= $4n+2 \pi e^{-}$)

Antiaromatic: fits rule #1, but NOT rule #2 (ie even pairs)

- ** extremely unstable
- ** If molecule can do anything (eg bend) to avoid being antiaromatic it will

Examples of Aromatics:

- 1) Fused rings: count double bonds in all rings (as long as p on each orbital etc)
- 2) O/N/S in ring: Count lone pairs only if in p orbital

other examples:

- whichever is "better"

cyclopentadienide: common ligand for metals

6 e- (2 C=C + -ive) ∴ aromatic

tropylium ion: most stable C+ known (aromatic) can buy $C_7H_7^+BF_4^-$ = only isolable C+

Naming Aromatics

- most named as "substituents" benzene
- order and number as with cyclohexanes

Special: for disubstituted only can use ortho, meta, para instead of numbers

ortho-dibromobenzene or *o*-dibromo...

meta-dibromobenzene or *m*-dibromo...

para-dibromobenzene or *p*-dibromo...

Special Names:

Examples:

$$NH_2$$
 3-methylaniline (or meta...)

 H_3C
 NH_2 4-aminophenol (or para...)

 $OH > NH_2$

Other Terminology:

Reactions of Benzene: same as C=C?

Because of stability, less reactive than "normal" C=C

- will not react with HBr, Br₂ etc
- need very strong E⁺

