Mastering Machine Learning Model Training

A Complete Guide to Building Unsupervised Models

Edgar Rios Linares

Roadmap

Building Blocks of Unsupervised Learning

Definition

The model works with data that does not have predefined labels or outcomes.

Discover patterns in the data.

Definition

The model works with data that does not have labels or predefined results.

Does not require labeled data (lower cost).

Useful when the underlying structure of the data is not known.

Ideal for exploring large volumes of data.

Components

Unlabeled dataset

Features

Objective function

Components

Unlabeled Dataset:

The data is "raw" and has no explicit target variable.

Features:

Variables used to train the model.

Objective Function:

Defines how the model should organize the data.

1. Preprocessing

Data Cleaning and Normalization

2. Model Selection

k-means, DBSCAN, PCA, Autoencoders

3. Parameter Optimization

Elbow Method, Silhouette Score

4. Performance Evaluation

coefficient

Silhouette, intra-cluster and inter-cluster, Dunn's

1. Preprocessing

Outliers

Critical for identifying data anomalies.

Data Cleaning

Duplicates

Essential for ensuring data integrity.

Advanced Techniques

Basic Techniques

Normalization with Logarithm

Advanced technique for transforming data distributions.

Data Normalization

Min-Max Normalization

Simple method for scaling data to a specific range.

2. Model Selection

3. Parameter Optimization

3. Parameter Optimization

4. Performance Evaluation

Metric	Objective	Interpretation
Silhouette Score	How well the clusters are separated	≈1 is good, ≈0 is confusing, <0 is bad
Distance Intra-Cluster	Cohesion within a cluster	Lower values are better compaction
Distance Inter-Cluster	Separation between clusters	Higher values are better separation
Dunn's coefficient	Relationship between separation and cohesion	Higher values are better clustering

Evaluation Metrics

Clustering Evaluation Metrics

Silhouette Score

A measure of how similar an object is to its own cluster compared to other clusters.

Distance Intra-Cluster

The average distance between points within the same cluster.

Distance Inter-Cluster

The average distance between points in different clusters.

Dunn's Coefficient

A metric that evaluates the compactness and separation of clusters.

Practical Example

Segment customers in a bank

1.Preprocessing

Read dataset and Normalization

2. Model Selection

Select variables, use k-means model

3. Parameter Optimization

Review Elbow Method

4. Performance Evaluation

Silhouette, intra-cluster and inter-cluster, Dunn's coefficient

Practical Example

STEP 1

	CustomerID	Genre	Age	Annual Income (k	\$) Spending	Score (1-100)
0	1	Male	19		15	39
1	2	Male	21		15	81
2	3	Female	20		16	6
3	4	Female	23		16	77

STEP 2

STEP 3

STEP 4

```
from sklearn.metrics import silhouette_score

silhouette_avg = silhouette_score(X, y_kmeans)
print(f"Silhouette Score: {silhouette_avg:.3f}")

Silhouette Score: 0.468
```

Educator in Al

Artificial Intelligence

Data Engineering

Machine Learning

Data Science

TLinkedin —> https://www.linkedin.com/in/erlinares/

☐ GitHub: https://github.com/erlinares/365_Al_Journey/

Discord: https://discord.gg/5fFM2zh8

Edgar Rios Linares