Aula 04 Função de Produção

Claudio R. Lucinda

FEA-RP/USP

Agenda

Produção e Custos – Introdução

Agenda

- 1 Produção e Custos Introdução
- Produção e Custos
 2

Agenda

1 Produção e Custos – Introdução

- 2 Formas Funcionais Produção e Custos
- 3 Estimação de Funções de Produção

Produção e Custos

- Agora vamos mudar o foco de nossa análise. Até o momento, estávamos preocupados com a modelagem do comportamento do produtor; agora, nos preocuparemos com o comportamento do produtor.
- Nesta aula, nos preocuparemos inicialmente com a derivação das principais primitivas do comportamento do produtor: a função de produção e a função custos, para apresentar algumas formas funcionais comuns para a modelagem da função custos.
- Peculiaridades da modelagem da decisão do produtor:
 - Viés de Seleção da Amostra: a atrição da amostra não é completamente aleatória.
 - Problemas de Endogeneidade entre a quantidade produzida e uso dos insumos.
 - Ineficiência

Pontos Interessantes na Modelagem de Produção:

- Em geral, na análise da produção e custos, estamos interessados nos seguintes elementos:
 - Escala: Verificação de se a empresa ou o setor exibem retornos constantes de escala, crescentes ou decrescentes;
 - Substituição: O grau de substituição dos fatores de produção em resposta a alterações na quantidade produzida;
 - Separabilidade: A capacidade de separação das relações de produção – ou de custos – em componentes aninhados ou aditivos.
 - Progresso Técnico: Mudança na forma pela qual os fatores de produção são combinados para a produção.
 - Distribuição da renda: Como as parcelas da renda se distribuem entre os fatores de produção;
 - Custo Marginal: Obtenção de estimativas de custos marginais para as análises subsequentes.

Formas Funcionais

- Agora, começaremos a detalhar as formas funcionais mais comumente utilizadas para a modelagem de produção e custos.
- Em certo sentido, a modelagem que colocaremos é próxima das escolhas feitas no contexto da modelagem de funções de utilidade indireta: uma vez que não é de se esperar que observemos diretamente a primitiva relevante, tentaremos aproximar qual seria a "verdadeira" a partir dos dados observados.
 - Afinal de contas, NÃO EXISTE UMA FUNÇÃO DE PRODUÇÃO ESCONDIDA EM ALGUM ARMÁRIO EM CADA EMPRESA

Formas Funcionais Flexíveis

 Todas estas funções podem ser vistas como expansões lineares em parâmetros que podem aproximar uma função arbitrária.
 Esta expansão pode ser vista na seguinte forma:

$$f^*(\mathbf{x}) \approx f(\mathbf{x}) = \sum_{i=1}^N a_i h^i(\mathbf{x})$$

- Em que os ai eram parâmetros, os hi são funções conhecidas e os x são vetores de variáveis.
- Se algumas condições são satisfeitas para uma dada realização do vetor \mathbf{x}^* , podemos dizer que $f(\mathbf{x}^*)$ é uma aproximação da função verdadeira no ponto.
- Além disso, aproxima os valores da primeira e segunda derivadas da função também. Consideramos esta uma forma funcional flexível parsimoniosa.

Forma Funcional Flexível Parsimoniosa – Problemas

função como esta com uma base de dados com um domínio extensivo — ou seja, com valores que mapeiam muito do quadrante relevante da variável x — é bem provável que a função obtida não será uma aproximação de segunda ordem da função de produção verdadeira em qualquer ponto.

• Um cuidado adicional: quando estamos estimando uma

- Como resultado, os efeitos de estática comparativa resultantes podem ser bem diferentes dos resultados da função verdadeira.
- Ou seja, podemos rejeitar uma hipótese mesmo quando a função verdadeira não rejeitaria.

Formas Funcionais – Exemplos:

Forma Funcional	Fórmula	Restrições
Cobb-Douglas (Cobb e Douglas 1928)	$\ln y = a_0 + \sum_{j=1}^J a_j \ln z_j$	$\sum_{j=1}^J a_j = 1$ para homog. li
CES (Arrow et. al 1961)	$y^{ ho} = a_0 + \sum_{j=1}^J a_j z_j^{ ho}$	$a_0 = 0$ para Homog.lin.
Leontief/Linear Generalizada (Diewert 1971)	$y = a_0 + \sum_{j=1}^{J} a_j \sqrt{z_j} + \sum_{k=1}^{J} \sum_{j=1}^{J} a_{kj} \sqrt{z_k z_j}$	$a_i = 0, i = 0, \cdots J$ para Homog. Lin.
Translog (Christensen, Jorgenson e Lau (1971))	$\ln y = a_0 + \sum_{j=1}^{J} a_j \ln z_j + \sum_{k=1}^{J} \sum_{j=1}^{J} a_{kj} \ln z_k \ln z_j$	$\sum a_j = 1$ e $\sum a_{ij} = 0$ para Homog. Lin.
Cobb-Douglas Generalizada (Diewert (1971))	$\ln y = a_0 + \sum_{k=1}^{J} \sum_{j=1}^{J} a_{jk} \ln((z_k + z_j)/2)$	$\sum_k \sum_j a_{jk} = 1$ para H. L.
Quadrática (Lau (1974))	$y = a_0 + \sum_{j=1}^{J} a_j z_j + \sum_{k=1}^{J} \sum_{j=1}^{J} a_{kj} z_k z_j$	
Côncava Generalizada (McFadden (1974))	$y = \sum_{k=1}^{J} \sum_{j=1}^{J} z_j \phi^{kj} \left(\frac{z_k}{z_j} \right) a_{kj}$	ϕ^{kj} é uma função côncava conhecida

Estimação de Funções de Produção

- A estimação das funções de produção começou com o trabnalho de Cobb e Douglas (1928), que buscavam testar as implicações da teoria da distribuição baseada na produtividade marginal dos fatores.
- A principal crítica deste tipo de literatura é que os dados sobre fatores de produção, quando estamos falando em quantidades agregadas, são determinados simultaneamente aos valores do produto;
- desta forma, a função de produção não seria identificável.
- Vamos ilustrar este ponto mais detalhadamente, considerando a seguinte equação:,

$$q = a + \alpha z + \beta x + u$$

 Em que q é o log da quantidade produzida, z é o log do capital (ou qualquer outra quantidade de fatores "fixos" de produção), e x o log de todos os insumos variáveis.

Estimação de Funções de Produção (II):

 A demanda pelo insumo variável, supondo que as empresas escolham as quantidades de x ao observar a realização de u, é dada por:

$$X = \left[\frac{p}{w}\beta e^{a+u}Z^{\alpha}\right]^{\frac{1}{1-\beta}}$$

- Uma vez que a escolha de X depende de u, temos problemas de endogeneidade.
- Um segundo problema é o da seleção de amostra. Um exemplo clássico é o de Dunne, Roberts e Samuelson (1988) encontrou taxas de saída maiores do que 30% entre intervalos de 5 e 5 anos.
- É de se supor que o principal determinante deste padrão de saída não é o componente aleatório ortogonal à escolha das variáveis.
 - Pelo contrário! É de se supor que as decisões da empresa tenham papel preponderante nas decisões de saída (i.e., falência) das empresas.

Endogeneidade da Função de Produção

- Dois exemplos de endogeneidade como a mencionada no slide anterior:
 - **1** Vamos supor que observemos um *cross section* de empresas. Algumas delas são mais produtivas e têm melhores gestores. E por isso, elas podem precisar de menos trabalho para produzir a mesma quantidade. Ou seja, estas empresas vão produzir mais com menos trabalho e por isso OLS vai subestimar β_I
 - ② Suponha que, agora observamos um painel e, em cada período a empresa tem um choque de produtividade positivo por ela observado e com este valor vai contratar mais. Ou seja, no final o aumento de produção com o choque de produtividade vai ser devido às duas coisas mas OLS vai atribuir TODO o aumento de produção ao aumento de trabalho, sobrestimando β_I
- Ou seja, pode ir para qualquer direção.
- Usualmente, assumimos que o problema da endogeneidade é mais presente no trabalho.

Atrição da Amostra em Funções de Produção

- Pra ilustrar melhor este ponto, suponha que as empresas sejam monpólios que são dotados exogenamente de diferentes quantidades de capital.
- Desta forma, dependendo do valor de u, elas podem decidir sair ou não.
 - Ou seja, se u for "muito ruim", pode ser melhor vender o valor residual da empresa.
- Isto pode ser racionalizado com a seguinte regra de saída:

$$\chi(u, Z, p, w, a, \beta, \alpha) = 0$$
 se $\Pi(u, Z, p, w, a, \beta, \alpha) < \Psi$

 Em que Π é a parte variável dos lucros e Ψo valor residual da empresa.

Atrição de Amostra em Funções de Produção

- O ponto aqui é que esta condição gerará uma correlação entre u e Z condicional à empresa estar no mercado.
- Isto ocorre porque as empresas com maiores estoques de capital devem ter maiores lucros variáveis e, portanto, podem suportar piores choques u sem sair do mercado.
 - Ou seja, devemos observar apenas aquelas empresas em que o Z é relativamente grande e/ou u relativamente pequeno.
 - Isso implica que as empresas menores devem sair da amostra

Soluções Tradicionais para o Problema:

- Existem duas formas de lidar com alguns dos problemas mencionados aqui:
 - Aproveitamento de amostra de dados em painel
 - Utilização de Variáveis Instrumentais
- Vamos representar nosso modelo da seguinte forma:

$$y_{it} = \beta_0 + \beta_k k_{it} + \beta_I l_{it} + \omega_{it} + \eta_{it}$$

- Em que ω_{it} representa a parte de informação não observada pelo econometrista que é observada pela empresa na tomada de suas decisões, e η_{it} representa a parte da informação não observada pelo econometrista que também não é observada pela empresa.
 - ω_{it} : capacidade gerencial
 - η_{it} : comportamento anômalo.

Solução I – Dados em Painel

- Uma solução interessante para o problema da endogeneidade é utilizar a informação da estrutura em painel dos dados.
- Aqui estamos considerando que a parte ω_{it} é constante ao longo do tempo
- Neste caso, podemos usar os diferentes estimadores mencionados em Wooldridge (2002), e que alguns de vocês viram no curso de Econometria com Dados em Painel:
 - Primeiras Diferenças:

$$(y_{it} - y_{it-1}) = \beta_k(k_{it} - k_{it-1}) + \beta_l(I_{it} - I_{it-1}) + (\eta_{it} - \eta_{it-1})$$

• Efeitos Fixos: $(y_{it} - \bar{y}_i) = \beta_k (k_{it} - \bar{k}_i) + \beta_l (l_{it} - \bar{l}_i) + \eta_{it}$

Dados em Painel:

- Dada a hipótese que η_{it} são independentes das escolhas de insumos em qualquer instante do tempo, podemos estimar as duas equações por OLS.
 - Esta hipótese é a chamada "exogeneidade estrita". Em alguns casos, podemos estimar este modelo de efeitos fixos sob a premissa de "exogeneidade seqüencial", em que η_{it} não é correlacionado com a escolha de insumos nos instantes anteriores à t.
- Esta premissa de ω constante ao longo do tempo também resolveria o problema da atrição da amostra, caso a regra de saída dependa somente de ω , e não de η_{it} .
- No entanto, existem algumas limitações da abordagem com dados em painel.

Dados em Painel – Limitações

- ullet úma premissa complicada assumir que os ω sejam constantes ao longo do tempo, especialmente quando bases de microdados mais longas estão disponíveis.
- Além disso, pode haver interesse nas mudanças em ω propriamente dito.
- Outro problema é que, quando há erros de medida nos insumos, os estimadores de dados em painel podem gerar estimativas piores que OLS em especial, β_k muito baixos
 - Griliches e Hausman (1986) mostram que quando os insumos são mais correlacionados que os erros de medida, pode se reduzir a razão sinal/ruído nas variáveis independentes (a parcela da variabilidade mais devida a alterações na variável mesmo do que nos erros de medida).
- Um terceiro problema é que, em geral, efeitos fixos dão estimativas muito baixas para os coeficientes de retornos de escala.

Solução II – Variáveis Instrumentais:

- As abordagens de variáveis instrumentais se baseiam na premissa que é possível encontrar instrumentos adequados.
- Alguns instrumentos "naturais"
 - Preços dos fatores de produção: se eles forem independentes de ω , tudo bem
- Estamos, neste caso, assumindo que não existe poder de mercado por parte das empresas na aquisição de insumos.
- No entanto, existem problemas com esta abordagem:
 - Preços pagos por insumos não são reportados pelas empresas
 - Nem sempre há variação econometricamente "boa" nestas variáveis
 - \bullet É difícil imaginar que ω não seja afetado pelos preços dos insumos
 - Não resolve a questão da saída

Solução III – Painéis Dinâmicos

- Uma linha de ataque aos problemas mencionados anteriormente envolve a estimação de modelos de painel dinâmico.
- Vamos começar supondo o seguinte modelo:

$$y_{it} = \gamma_t + \beta_k k_{it} + \beta_I I_{it} + f_i + \eta_{it}$$

$$\eta_{it} = \rho \eta_{it-1} + \epsilon_{it}$$

$$\epsilon_{it} \sim MA(0)$$

- Assume-se que a parte da produtividade tenha um componente aleatório e um componente persistente – para refletir o fato que a produtividade apresenta forte persistência ao longo do tempo.
- Este modelo tem uma representação dinâmica da seguinte forma:

$$y_{it} = \beta_{l} I_{it} - \rho \beta_{l} I_{it-1} + \beta_{k} k_{it} - \rho \beta_{k} k_{it-1} + \rho y_{it-1} + (\gamma_{t} - \rho \gamma_{t-1}) + (f_{i}(1 - \rho) + \epsilon_{it})$$

Painéis Dinâmicos

Podemos reescrever esta equação como:

$$y_{it} = \pi_1 I_{it} + \pi_2 I_{it-1} + \pi_3 k_{it} + \pi_4 k_{it-1} + \pi_5 y_{it-1} + \gamma_t^* + (f_i^* + \epsilon_{it})$$

- Sujeita a duas restrições:
 - $\pi_2 = -\pi_1 \pi_5$
 - $\pi_4 = -\pi_3\pi_5$
- Arellano e Bond (1991) supõem as seguintes premissas sobre as condições iniciais:
 - $E(\mathbf{x_{i1}}\epsilon_{it}) = 0$, sendo que $\mathbf{x_{it}} = (y_{it}, l_{it}, k_{it})$
- Podemos utilizar as seguintes condições de momento:

$$m(\theta) = E(\mathbf{x_{it-s}}\Delta\epsilon_{it}) = 0$$

• Em que $s \ge 2$ caso não tenhamos erros de medida.

Painéis Dinâmicos (II):

- O problema é que a estimação tem propriedades ruins quando os níveis defasados da série, os $\mathbf{x_{it-s}}$ são pouco correlacionados com as primeiras diferenças subseqüentes $\Delta \epsilon_{it}$.
- Causas possíveis para isso:
 - Processo marginal de determinação de l_{it} e k_{it} são muito persistentes, próximos a ter uma raiz unitária.
- Neste casos, os x_{it-s} são instrumentos fracos

Problemas de GMM-Diff

- Esta abordagem também tem suas limitações. Em algumas aplicações, é comum encontrar estimativas muito baixas de β_I e β_k e grandes erros-padrão.
- Geralmente, a validade das restrições sobre-identificadoras é rejeitada. Além disso, a hipótese que o processo dos η seja exatamente AR(1) pode ser rejeitada, o que implica que os $\mathbf{x_{it-2}}$ não seriam instrumentos válidos.
- Além disso, a transformação em primeira diferença pode levar ao mesmo problema no caso de erros de medida nas variáveis

GMM – Sistema

• Supondo adicionalmente que $E(\Delta I_{it}f_i^*) = E(\Delta k_{it}f_i^*) = 0$, e que as condições iniciais incluam $E(\Delta y_{i2}f_i^*) = 0$, podemos incluir as seguintes condições de momento na estimação:

$$m^2(\theta) = E(\Delta \mathbf{x_{it-s}}(f_i^* + \epsilon_{it})) = 0$$

- Com s=1 caso não haja erros de medida.
- Este é o chamado estimador GMM em Sistema de Blundell e Bond (1998).
- Podemos testar a adequação das restrições adicionais por meio de um teste de diferença de Sargan:
 - Calcular a diferença entre os valores da função objetivo e comparar com o valor crítico de uma distribuição χ^2 , com número de graus de liberdade igual à diferença de condições d ortogonalidade nos dois casos.