Superficies en el espacio euclídeo

- [5.1] ¿Cómo estudiar este tema?
- [5.2] Primera forma fundamental
- [5.3] Orientabilidad
- [5.4] Segunda formal fundamental

Esquema

Ideas clave

5.1. ¿Cómo estudiar este tema?

Para estudiar este tema lee las Ideas clave que encontrarás a continuación.

En este tema vamos a ver la primera y la segunda forma fundamental y algunas de sus aplicaciones. También vamos a ver el concepto de orientabilidad. Los aspectos más importantes de este tema son:

- » Primera forma fundamental.
- » Longitud de una curva, ángulo que forman dos curvas.
- » Orientabilidad.
- » Segunda forma fundamental.

5.2. Primera forma fundamental

Sea $p \in S$, la **primera forma fundamental**, I_p , es la forma cuadrática en T_pS definida como $I_p(v) = < v, v >$.

De esta forma introducimos una métrica (el producto escalar es la norma al cuadrado) que sirve para calcular la longitud de una curva sobre una superficie o el ángulo que forman dos curvas.

Sea una superficie S con una parametrización φ y sea $p \in S, p = \varphi(c)$. Una base de T_pS es $\{\varphi_u(c), \varphi_v(c)\}$, luego para cualquier $w \in T_pS$, $w = a\varphi_u(c) + b\varphi_v(c)$.

 $\varphi_u(c)$ es tangente a la curva $\varphi_u(c_1+t,c_2)$ y $\varphi_v(c)$ es tangente a la curva $\varphi_v(c_1,c_2+t)$, que son las curvas coordenadas (figura 5.1).

Figura 5.1. Representación de las curvas coordenadas Fuente: http://www.mat.rutgers.edu

¿Cuál es la expresión de la primera forma fundamental para un vector cualquiera del plano tangente, $w=a\varphi_u+b\varphi_v$?

$$I_p(a\varphi_u+b\varphi_v)=c^2<\varphi_u,\varphi_u>+2cd<\varphi_u,\varphi_v>+d^2<\varphi_v,\varphi_v>$$

Los **coeficientes de la primera forma fundamental** se denotan:

$$E=<\varphi_u,\varphi_u>$$

$$F = < \varphi_u, \varphi_v >$$

$$G = \langle \varphi_v, \varphi_v \rangle$$

Es obvio que E, G > 0.

Sea
$$\alpha: (-\varepsilon, \varepsilon) \to S$$
, $\alpha(t) = \varphi(u(t), v(t))$, $\alpha(0) = p$. Como φ_u, φ_v son base, $\alpha'(0) = u'(0)\varphi_u + v'(0)\varphi_v$.

Entonces,
$$I_p(\alpha'(0)) = I_p(u'(0)\varphi_u + v'(0)\varphi_v) = E(u')^2 + 2F(u'v') + G(v')^2$$
.

Ejemplos:

» **Plano**: tomamos una base ortonormal $\{\overrightarrow{w_1}, \overrightarrow{w_2}\}$, definimos una parametrización del plano $\varphi(u, v) = p + u\overrightarrow{w_1}, +v\overrightarrow{w_2}$.

Es obvio que:

$$\varphi_u = \overrightarrow{w_1}$$

$$\varphi_v = \overrightarrow{w_2}$$

Entonces:

$$E = <\overrightarrow{w_1}, \overrightarrow{w_1}> = 1$$

$$F = \langle \overrightarrow{w_1}, \overrightarrow{w_2} \rangle = 0$$

$$G = \langle \overrightarrow{w_2}, \overrightarrow{w_2} \rangle = 1$$

Con este ejemplo se puede ver que los coeficientes E, F y G no solo dependen de la superficie, también de la parametrización: si la base que se ha tomado no fuera ortonormal, F no sería cero (base no ortogonal) y E, G no serían uno (base no normal).

» **Cilindro**: consideramos la parametrización $\varphi(u, v) = (\cos u, \sin u, v)$.

Entonces:

$$\varphi_u = (-senu, cosu, 0)$$

$$\varphi_v = (0,0,1)$$

Figura 5.2. Representación de la base del plano tangente a un cilindro Fuente: http://es.slideshare.net/rotcehvelasquez

Puede verse que φ_u es el vector director de la tangente a la circunferencia (en rojo) del ángulo u y φ_v es vector director de las generatrices (en azul), por lo que son ortogonales.

Por tanto, si tomamos v tal que ||v|| = 1, resulta:

$$E = <(-senu, cosu, 0), (-senu, cosu, 0) >= 1$$

 $F = <(-senu, cosu, 0), (0, 0, 1) >= 0$
 $G = <(0, 0, 1), (0, 0, 1) >= 1$

» **Helicoide**: es una superficie que se construye uniendo cada punto de una hélice con el eje Z por la recta normal. Por tanto, si partimos de la parametrización de la hélice $\alpha(t) = (cost, sent, t)$, una parametrización del helicoide sería $\varphi(u, v) = (v \cdot cosu, v \cdot senu, u)$.

Figura 5.3. Representación de un helicoide Fuente: https://www.encyclopediaofmath.org/

Por tanto:

$$\varphi_u = (-v \cdot senu, v \cdot cosu, 1)$$

 $\varphi_v = (cosu, senu, 0)$

En este caso, los coeficientes de la primera forma fundamental son (tomando v tal que ||v||=1):

$$E = <(-v \cdot senu, v \cdot cosu, 1), (-v \cdot senu, v \cdot cosu, 1) >= 1 + v^{2}$$

$$F = <(-v \cdot senu, v \cdot cosu, 1), (cosu, senu, 0) >= 0$$

$$G = <(cosu, senu, 0), (cosu, senu, 0) >= 1$$

Sea $q \in S$ superficie regular sabemos que existe una parametrización φ tal que $q = \varphi(u_0, v_0)$. Entonces al par (u_0, v_0) se le llama **coordenadas** de q en φ .

Aplicaciones de la primera forma fundamental

Las principales aplicaciones de la primera forma fundamental son el cálculo de la longitud de una curva y el ángulo que forman dos curvas.

» **Longitud de una curva**: recordemos que la longitud de una curva $\alpha(t) = (u(t), v(t)), L(\alpha)$ se define como:

$$L(\alpha) = \int_{a}^{b} ||\alpha'(t)|| dt = \int_{a}^{b} \langle \alpha'(t), \alpha'(t) \rangle^{1/2} dt = \int_{a}^{b} I_{\alpha}(\alpha'(t))^{1/2} dt$$
$$= \int_{a}^{b} (E(u, v)(u')^{2} + 2F(u, v)u'v' + G(u, v)(v')^{2})^{1/2} dt$$

» **Ángulo entre curvas**: sean dos curvas $\alpha(t) = (u_1(t), v_1(t))$ y $\beta(t) = (u_2(t), v_2(t))$ definidas sobre la misma superficie, el ángulo que forman, θ , puede calcularse:

$$cos\theta = \frac{\langle \alpha'(t_0), \beta'(t_0) \rangle}{||\alpha'(t_0)|| \cdot ||\beta'(t_0)||} = \frac{(u_1, v_1) \binom{E - F}{F - G} \binom{u_2}{v_2}}{||\alpha'(t_0)|| \cdot ||\beta'(t_0)||}$$

Donde $||\alpha'(t_0)|| \le ||\beta'(t_0)||$ se calculan según la expresión de la longitud de curva.

Ejemplo: El ángulo entre dos curvas coordenadas es:

$$cos\theta = \frac{\langle \varphi_u, \varphi_v \rangle}{||\varphi_u|| \cdot ||\varphi_v||} = \frac{F}{\sqrt{EG}}$$

5.3. Orientabilidad

Una superficie es orientable si podemos definir dos caras. Por ejemplo, podemos distinguir entre la cara interior y exterior de una esfera o las dos caras de un plano.

Para determinar si una superficie tiene dos caras vamos a utilizar el concepto de campo de vectores normales de forma que si es orientable podremos definir para cada punto de la superficie un vector normal a ella.

Una de las caras estará hacia donde apunten estos vectores y la otra en dirección contraria (figura 5.4).

Figura 5.4. Representación del campo normal de una esfera Fuente: https://www.encyclopediaofmath.org/

Sea θ un abierto en una superficie S. Un **campo de vectores normal unitario** en θ es una aplicación diferenciable $N: \theta \to \mathbb{R}^3$ y tal que para todo $p \in \theta$, N(p) tiene norma 1 y es ortogonal a T_pS .

Una **superficie** S es **orientable** si existe un campo de vectores normal unitario $N: S \to \mathbb{R}^3$.

Ejemplos:

» Plano:

$$ax + by + cz + d = 0, (a, b, c) \neq 0 \Rightarrow \sqrt{a^2 + b^2 + c^2} \neq 0$$

$$N(p) = (a, b, c) \frac{1}{\sqrt{a^2 + b^2 + c^2}}$$

Figura 5.5. Representación del campo de vectores normal a un plano Fuente: $\underline{\text{http://www.c-jump.com/}}$

» Cilindro:

$$S = \{x^2 + y^2 = 1\}$$

Es fácil comprobar que (x,y,0) es perpendicular a T_pS .

Figura 5.6. Representación del campo de vectores normal a un cilindro Fuente: $\underline{\text{http://www.c-jump.com/}}$

» Esfera:

$$S = \{x^2 + y^2 + z^2 = 1\}$$

Es fácil comprobar que (x, y, z) es perpendicular a T_pS .

Figura 5.7. Representación del campo de vectores normal a una esfera Fuente: http://mathworld.wolfram.com/

Observación: dado un campo de vectores normal, N, su diferencial, $dN: T_pS \to T_pS$.

5.4. Segunda formal fundamental

La segunda forma fundamental está relacionada con el concepto de curvatura. Aunque la idea de curvatura es análoga a la que vimos para curvas, las superficies se pueden curvar de forma distinta si se recorre en sentidos distintos. Por esa razón se van a ir introduciendo distintas definiciones de curvatura.

Se llama **segunda forma fundamental** a la forma cuadrática $II_p(w) = - < dN_p(w), w >$.

Para comprender la interpretación geométrica de la segunda forma fundamental vamos a definir la curvatura normal de una curva en un punto de una superficie.

Sea $\alpha: I \to S$ una curva regular que pasa por $p \in S$. Sea k_{α} la curvatura de α en p y n_{α} el vector normal a α en p. Entonces, $k_n = k_{\alpha} < dN_p(w)$, w > se llama **curvatura normal** de α en p.

Es fácil ver que $k_n = -\langle dN_p(\alpha'), \alpha' \rangle = II_p(\alpha')$, es decir, que la segunda forma fundamental puede interpretarse como la curvatura normal.

Además se sabe (Teorema de Meusnier) que si dos curvas regulares pasan por un mismo punto p y comparten la misma tangente las curvaturas normales en p coinciden, es decir, la curvatura normal no depende de la curva sobre S escogida sino de la dirección en p.

Si se cambia el sentido en que se recorre α la curvatura normal no cambia pero si cambiamos el campo normal N por -N, entonces cambia el signo de la segunda forma fundamental.

Por tanto, dada una superficie S, $p \in S$ y $u \in T_pS$, para calcular k_n podemos tomar cualquier α tal que $\alpha(0) = p$ y $\alpha'(0) = u$ pero hay una que resulta más conveniente que el resto: la sección normal de S en p a lo largo de u.

Figura 5.8. Sección normal de una superficie Fuente: Do Carmo, M. P. (1995)

Como α es plana, n_{α} está en ese plano y es ortogonal a α en p, por tanto $n_{\alpha} = \pm N(p)$. Así, $k_n = k_{\alpha} < n_{\alpha}, N(p) >= \pm k_{\alpha} \Longrightarrow |k_n|$ es la curvatura de la sección normal.

Ejemplos:

- » **Plano**: en un plano la sección normal por un punto p a lo largo de un vector u es la recta que pasa por p y que tiene u como vector director. Por tanto la segunda forma fundamental es cero, ya que la curvatura de una recta es cero.
- » **Esfera:** como la intersección del plano normal con una esfera es un círculo máximo, $|II_p(u)| = |k_n| = constante$
- » Cilindro: la intersección de la sección normal con el cilindro puede ser:
 - o Recta: si *u* está en una generatriz. En este caso la curvatura es cero.
 - \circ Circunferencia: si u es perpendicular a una generatriz. En este caso la curvatura es constante.
 - O Una elipse en cualquier otro caso: la curvatura variará en función de la excentricidad de la elipse que depende de la inclinación del plano. Cuanto más próximo esté u a una generatriz más excéntrica será la elipse y cuanto más próximo esté u a la perpendicular de una generatriz, menos excéntrica será la elipse y más se parecerá a una esfera.

Lo + recomendado

Lecciones magistrales

Parametrización de la banda de Möbius

En esta clase magistral vamos a ver cómo se parametriza la banda de Möbius que es una de las superficies clásicas.

La lección magistral está disponible en el aula virtual

No dejes de leer...

Primera forma fundamental

En el siguiente enlace se muestran ejemplos de cálculos con la primera forma fundamental.

Accede al artículo desde el aula virtual o a través de la siguiente dirección web: http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node28.html

Segunda forma fundamental

En el siguiente enlace se muestran ejemplos de cálculos con la segunda forma fundamental.

Second fundamental form

Accede al artículo desde el aula virtual o a través de la siguiente dirección web: http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/node29.html

Ejemplos cálculos

En el siguiente enlace se muestran ejemplos de cálculos del campo normal de vectores.

Normal Curvature

Accede al artículo desde el aula virtual o a través de la siguiente dirección web: http://math.etsu.edu/multicalc/prealpha/Chap3/Chap3-8/part2.htm

+ Información

A fondo

La botella de Klein: geometría palindrómica

Este artículo hace una narración sobre la botella de Klein.

Accede al artículo desde el aula virtual o a través de la siguiente dirección web: http://culturacientifica.com/2015/12/09/la-botella-de-klein-geometria-palindromica/

Orientability

En este artículo se describen superficies orientables y no orientables.

Accede al artículo desde el aula virtual o a través de la siguiente dirección web: http://www.open.edu/openlearn/science-maths-technology/mathematics-and-statistics/mathematics/surfaces/content-section-3.2

Test

- **1.** Sea $\{\varphi_u, \varphi_v\}$ una base de T_vS . El productor escalar $<\varphi_u, \varphi_u>$ se denota por:
 - A. E.
 - B. F.
 - C. G.
- **2.** Los coeficientes de la primera forma fundamental E y G son siempre mayores que cero porque:
 - A. Es imposible que el producto escalar de un vector consigo mismo sea menor o igual que cero.
 - B. $\{\varphi_u, \varphi_v\}$ son base de T_pS y, por tanto, son no nulos.
 - C. El producto escalar es la norma al cuadrado.
- 3. Que el coeficiente de la primera forma fundamental F sea distinto de cero implica:
 - A. Que la parametrización no es ortogonal.
 - B. Que la parametrización no es ortonormal.
 - C. A y B son correctas.
- **4.** El campo de vectores de una superficie es constante si:
 - A. La superficie es un plano.
 - B. La superficie es una esfera.
 - C. La superficie es un cilindro.
- **5.** El campo de vectores normal a una superficie verifica que:
 - A. Siempre existe para cualquier superficie.
 - B. Solo existe si la superficie es orientable.
 - C. Es único para una superficie dada.
- 6. La segunda forma fundamental de un punto en una superficie:
 - A. Depende de la curva que se escoja.
 - B. Depende de la primera forma fundamental.
 - C. Depende del punto.

- 7. La curvatura normal de una esfera:
 - A. Es igual a uno.
 - B. Es una constante arbitraria.
 - C. Es una constante positiva.
- 8. Si la curvatura normal de una superficie a lo largo de una curva dada es cero:
 - A. La superficie es un plano.
 - B. La superficie es un cilindro.
 - C. Ay B son falsas.
- 9. Para calcular el ángulo que forman dos curvas en una superficie se utiliza:
 - A. La primera forma fundamental.
 - B. La segunda forma fundamental.
 - C. Ay B son falsas.
- 10. La curvatura normal:
 - A. Es igual en todos los puntos de todas las esferas.
 - B. Es igual en todos los puntos de todos los planos.
 - C. A y B son ciertas.