Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_0^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha}$	1
$\tau_1^{\#2}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\sigma_1^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	3
$\sigma_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi}$	8
$\tau_{1}^{\#1}\alpha\beta + ik \ \sigma_{1}^{\#2}\alpha\beta == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	5
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\beta \delta \epsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\alpha \delta}{}_{\delta} ==$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta \epsilon}$	
	$3 \eta^{eta\chi} \partial_\phi \partial^\phi \partial_\epsilon \partial_\delta \sigma^{\alpha\delta\epsilon} +$	
	$3~\eta^{lpha\chi}~\partial_{\phi}\partial^{\phi}\partial_{\epsilon}\partial^{\epsilon}\sigma^{eta\delta}{}_{\delta}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} t^{\chi\delta} ==$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 n^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t^{\chi}_{\chi}$	
Total constraints/gauge generators:		27

Quadratic (free) action $S == \iiint (\frac{1}{6} (6 f^{\alpha\beta} t_{\alpha\beta} + 6 \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + 4 t_2 \omega_{i\theta\alpha} \partial^{\theta} f^{\alpha i} + 2 t_2 \partial_{\alpha} f_{i\theta} \partial^{\theta} f^{\alpha i} - t_2 \partial_{\alpha} f_{\alpha\theta} \partial^{\theta} f^{\alpha i} + t_2 \partial_{\theta} f_{\alpha i} \partial^{\theta} f^{\alpha i} - t_2 \partial_{\theta} f_{\alpha} + t_2 \partial_{\theta} f_{\alpha i} + d_2 \partial_{\theta} f^{\alpha i} - t_2 \partial_{\theta} f_{\alpha} + d_2 \partial_{\theta} f^{\alpha i} + d_2 $	$G_{-+}^{\#1}$ $G_{-+}^{\#2}$ $G_{-+}^{\#1}$ $G_{-+}^{\#2}$ $G_{-+}^{\#2}$ $G_{-+}^{\#2}$
---	---

$t_{1}^{\#2}$	0	0	0	0	0	0	0	
$\tau_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$\sigma_{1^{-}}^{\#1}{}_{lpha}\;\sigma_{1^{-}}^{\#2}{}_{lpha}\;\iota_{1^{-}}^{\#2}{}_{lpha}\;\iota_{1^{-}}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0	r#2 1 ⁻ α
$\sigma_{1^{-}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	$f_{1^-}^{\#1} \alpha^{-1}$
$\tau_{1}^{\#1}_{+}\alpha_{\beta}$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	$\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	$\frac{1}{r_3 - \frac{r_4}{2}} + \frac{3 k^2}{t_2}$ $\frac{r_3 - \frac{r_4}{2}}{(1 + k^2)^2}$	0	0	0	0	$eta = \omega_{1^-}^{\#1} lpha \omega_{1^-}^{\#2} lpha f_{1^-}^{\#1} lpha f_{1^-}^{\#2} lpha$
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{k^2 (6r_3 - 3r_4) + 2t_2}{(k + k^3)^2 (2r_3 - r_4)t_2}$	$-\frac{i(k^2(6r_3-3r_4)+2t_2)}{k(1+k^2)^2(2r_3-r_4)t_2}$	0	0	0	0	$\omega_{1}^{\#2}{}_{\alpha\beta}$ $f_{1}^{\#1}{}_{\alpha\beta}$
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{k^2 (2 r_3 - r_4)}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3-r_4)}$	$\frac{i\sqrt{2}}{k(1+k^2)(2r_3-r_4)}$	0	0	0	0	$\omega_{1+\alpha\beta}^{\#1}$
	$\sigma_1^{*1} + \alpha^{\beta}$	$\sigma_{1}^{#2} + \alpha^{\beta}$	$\tau_{1}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} + ^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + \alpha$	

)	0	0	0	0	0	0	~	- r4)			τ <u>*</u> -				
<u> </u>	0	0	0	0	0	0	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$(-2r_3+r_4)$	0	0	$\sigma_{2}^{\#1}$		k ⁻ (-2 r ₃ +r ₄)	0	c
•	0	0	0	0	0	0		$\alpha\beta$ k^2	$\alpha\beta$	βχ	J	$+\alpha\beta$		$+^{\alpha\beta}$	$\beta \chi$
>	0	0	0	0	0	0		$\omega_2^{\#1} +^{\alpha\beta}$	$f_2^{\#1} + \alpha \beta$	$\omega_{2}^{\#1} +^{lphaeta\chi}$		σ^{*1}_{+}	. 7	$\tau_{2}^{\#1} + 0$	$A#1 + \alpha \beta X$
7									ω_0	#1 0 ⁺	f_0^3	$f_0^{#1} f_0^{#1}$	#2 0 ⁺	ω	#1 0 ⁻
-	<i>ikt</i> 2 3	$\frac{k^2 t_2}{3}$	0	0	0	0	$\omega_{0^+}^{\#1}$	† -2		₃ - 2 r	4) () (0	()
3							$f_{0}^{#1}$	+)) (0	()
3	2 2	$\frac{1}{3}$ ikt_2	0	0	0	0	$f_{0+}^{#2}$		()	() (0	()
		i					$\omega_{0}^{\#1}$	†	()	(0	$k^2 r_2$	+
, 3	0.1	kt_2							$\sigma_0^{\#_2}$	L	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$		$\sigma_{0}^{\#1}$	
3 '4/	$\frac{\sqrt{2}\ t_2}{3}$	$i\sqrt{2}$	0	0	0	0	$\sigma_{0^+}^{\sharp 1}$	† -2	1 k ² r ₃ +		0	0		0	
7		- <u>1</u> 3					$ au_{0}^{\#1}$	†	0		0	0		0	
<	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha}$	+α	$+^{\alpha}$	$+^{\alpha}$	$ au_{0}^{\#2}$	†	0		0	0		0	
- + 1	$\omega_1^{\#2}$ †	$f_{1}^{\#1}$ \dagger	$\omega_{1^{\bar{-}}}^{\#1}$	$\omega_1^{\#2}$ 1	$f_{1}^{\#1}$	$f_{1}^{\#2}$	$\sigma_0^{\sharp 1}$	†	0		0	0	$\frac{1}{k^2}$	$r_2 + t_2$	
											_		_		_

Massive and massless spectra

Unitarity	conditions
Unitarity	conditions

 $r_2 < 0 \&\& t_2 > 0$