Data Science

May 5, 2020. Clustering II.

AIT-BUDAPEST

AQUINCUM INSTITUTE OF TECHNOLOGY

Roland Molontay

DBSCAN algorithm

- DBSCAN: Density-based spatial clustering of applications with noise
 - Density: number of data points within a certain radius (*Eps*)
 - Core points: data points that have at least MinPts points within distance Eps of them (in their Eps-neighborhood)
 - The core points form the interior of the clusters
 - Border points: data points that have fewer than MinPts points in their Epsneighborhood, but they themselves are in the Eps-neighborhood of a core point
 - The border points form the borders of the clusters
 - Noise points (outliers): data points that are neither core points nor border points
 - Noise points are not clustered

Core points, border points, noise points

DBSCAN algorithm

- Group the data points: core points, border points, noise points
- Noise points won't be clustered (they are ignored)
- A point q is said to be **reachable** from p if there exists a path $p_1, p_2, ..., p_n$ with $p_1 = p$ and $p_n = q$, where each p_{i+1} is in the *Eps*-neighborhood of core point p_i
 - All points on the path must be core points, with the possible exception of the last point
- If *p* is a core point, then it forms a **cluster** with all points that are reachable from it

DBSCAN – types of data points

The data

Types of points: core, border and noise

DBSCAN - example

Clusters

DBSCAN - example

(MinPts=4, Eps=9.75)

(MinPts=4, Eps=9.62)

Evaluation of DBSCAN

- Insensitive to noise
- Not all the data points are clustered
- It can automatically handle outliers (by ignoring them)
- Treats clusters with differing size and shapes well
- Can't handle clusters with differing density
- Sensitive for the choice of hyperparameters (MinPts, Eps)

Determining the hyperparameters

- Plot the distance of the kth nearest neighbor for the data points
 - Idea: in dense areas the kth nearest neighbors are almost constants but the kth nearest neighbor of a noise point is much further away
 - Can we observe an angle in the graph?
 - The corresponding distance value is a reasonable choice for Eps

Problem

Which clustering algorithm would you use if the goal was to find the two natural clusters (marked by blue and yellow colors)? Consider the following algorithms: k-means, hierarchical clustering (both single and complete linkage) and DBSCAN.

Revisiting K-means

- A variant: K-medoid algorithm
- Applying K-means for image compression

K-means for image compression

- Pixels: three-dimensional vectors (RGB color codes)
 - Let's cluster the pixels
 - Pixels are substituted with the centroid of their corresponding cluster

2 means 4 means 8 means 16 means

K-medoids

- Very similar to K-means algorithm but in contrast to K-means, K-medoids choose data points (medoids) as centers
 - Medoid: The representative object of the cluster whose average dissimilarity to all the objects in the cluster is minimal
- An advantage that it can be used with any arbitrary distance defined between data points
 - E.g. it can be used for discrete attributes as well

Validation of clustering

- The aim is to quantify how good a clustering is
- We aim to compare two clustering results
- Are there "natural" clusters in the data? Or does the algorithm just find clusters that are not really present in the data?
- This is a challenging task since no ground truth is known (no true labels) – unsupervised learning

Clusters in randomly generated data

Data points generated uniformly at random on the unit square

DBSCAN

K-means (K=3)

Hierarchical (complete linkage)

Validation using expert knowledge

- We make the problem supervised by adding labels to the records with the help of a domain expert
 - Then the evaluation is similar to the usual evaluation techniques of classification problems
 - Do the clusters that were given by the expert agree with the result of the clustering algorithm? To what extent?

Comparing the distance matrix and the clustering

- Compare the distance matrix (or similarity matrix) with the incidence matrix
 - Incidence matrix: $A_{ij}=1$, if the *i*th and *j*th records belong to the same cluster, and 0 otherwise
- What is the "correlation" between the two matrices?
- Visual inspection: reorder the distance matrix in such a way that the records that belong to the same clusters be next to each other
 - Does the distance matrix have a block structure?

Visual inspection of distance matrix

Using SSE

- We can compare two clustering outcomes with the same number of clusters
 - Which has the smaller SSE?

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist(x, c_i)^2$$

Silhouette coefficient

- Silhouette coefficient measures how similar an object is to its own cluster (cohesion) compared to other clusters (separation)
- Let i be a record
 - Let **a(i)** be the average distance between *i* and all other data points in the same cluster
 - Let be b(i) be the smallest average distance of i to all points in any other cluster (of which i is not a member)

a

The silhouette coefficient of data point i:

$$s(i) = 1 - a(i)/b(i)$$
 if $a(i) < b(i)$ or $s(i) = b(i)/a(i) - 1$ if $a(i) > b(i)$ (usually that is NOT the case)

- Usually the value is between 0 and 1
- High value indicates that the record is well matched to its own cluster and poorly matched to neighboring clusters
- The average of s(i) over all points of a cluster measures how tightly grouped all points in the cluster are
- The average s(i) over the entire dataset measures how well the data have been clustered

The validation of clustering – closing thought

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes

Acknowledgement

- András Benczúr, Róbert Pálovics, SZTAKI-AIT, DM1-2
- Krisztián Buza, MTA-BME, VISZJV68
- Bálint Daróczy, SZTAKI-BME, VISZAMA01
- Judit Csima, BME, VISZM185
- Gábor Horváth, Péter Antal, BME, VIMMD294, VIMIA313
- Lukács András, ELTE, MM1C1AB6E
- Tim Kraska, Brown University, CS195
- Dan Potter, Carsten Binnig, Eli Upfal, Brown University, CS1951A
- Erik Sudderth, Brown University, CS142
- Joe Blitzstein, Hanspeter Pfister, Verena Kaynig-Fittkau, Harvard University, CS109
- Rajan Patel, Stanford University, STAT202
- Andrew Ng, John Duchi, Stanford University, CS229

