

SRM Institute of Science and Technology College of Engineering and Technology

A1 В

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

SRM Nagar, Kattankulathur - 603203, Chengalpattu District, Tamilnadu

Academic Year: 2021-22 (Even)

Test

: CLAT-1

Date

: 07/04/2022

Course Code & Title :18MAB302T-Discrete Mathematics for Engineers

: 1 Period (50 minutes) Duration

	1SMAB302T – Discrete Mathematics for Engineers		Program Outcomes (POs)													
			Graduate Attributes									PSO				
S. Course Outcomes (COs)				3	. 4	5	6	7	8	9	10	11	12	1	2	3
No.	Course Outcomes (COs)	1.	2		-	J				М	M		Н			
1	Problem solving in sets, relations and functions.	M	Н	М		,				IVI	"			-	-	ļ. -
2	Solving problems in basic counting principles, inclusion exclusion and number theory.	М	н		М	M				М			Н	-	-	-
3	Solving problems of mathematical logic, inference theory and mathematical induction.	М	н							М			Н .	-	-	-
4	Gaining knowledge in groups, rings and fields. Solving problems in coding theory.	М	н		М	,				М		,	Н	-	-	-
5	Gaining knowledge in graphs and properties. Learning about trees, minimum spanning trees and graph coloring.	M	н	М						М	М		Н	-	-	-
6	Learning mathematic0al reasoning, combinatorial analysis, algebraic structures and graph theory.	М	Н							M	ks: 25		Н	-	-	-

·Course Articulation Matrix:

Part - A

	$(3 \times 4 = 12 \text{ Marks})$					
Instructions: Answer all Questions Q. Question		Mar	BL	CO	PO	PI .Code
No 1	Prove that $(A - C) \cap (C - B) = \emptyset$ analytically where A, B, C are	ks 4	2	1	1	1.1.1
	sets.					211
2	Draw the Hasse diagram representing the partial ordering $\{(A, B) \mid A \subseteq B, A, B \in P(S) \text{ where } S = \{x, y, z\}\}$. Here P(S) denotes the power set of the set S.	4	3 .	1	2	2.1.1
3	Give an example of a relation R such that (i) R is reflexive, transitive but not symmetric. (ii) R is neither symmetric nor anti – symmetric.	4	3	1	2	2.4.4
1						

	Part - B $(1x 13 = 13 Marks)$,				
4	a) Given $R = \{(1, 1), (1, 2), (1, 4), (2, 2), (2, 3), (3, 4), (4, 1)\}$ defined on the set $A = \{1, 2, 3, 4\}$, find the transitive closure of R	7	3	1	2	2.1.3
	using Warshall's algorithm.				-	į
	b) Prove that when two functions are bijective, then their composition will always yield a bijective function.	6	2	1	2	2.1.2

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Audit Professor/Course Coordinator

8 MAB 302T - Discrete Mathematics for Ergeneers I Yr / I Sem - CLATI - A1 / Set B Part -A (A-C) n(C-B) = {x|x ∈ A and x ∈ C and x ∈ C and x ∈ B} = 2x | x e A and (x & c and x & C) and x & B} = {x | (xeA and xep) and x &By Y(2) marks. = 2x | x ed and x EBg $= \frac{1}{2} \left| x \in \phi \cap \overline{S} \right| = \frac{1}{2} \left| x \in \phi \right| = \phi$ $P(S) = \{ \phi, \{ 90\}, \{ 4\}, \{ 2\}, \{ 2\}, \{ A = \{ x, y\}, B = \{ y, 2\}, C = \{ x, 2\}, S \} \}$ $R = \{(\phi, \phi), (\phi, \{x\}), (\phi, \{y\}), (\phi, \{z\}), (\phi, A), (\phi, B), (\phi, C), (\phi, S), (\phi, C), ($ ({xb,{xb), ({xb,A), ({xx,c), ({xx,s), ({\gamma\gam ({2),(2)), (42),B), ({23,C), ({21,S), (A,S),(B,S),(C,S)}. R -> I mooks Harre Diagram -> 3 marchs C={2/E} 9 B={4/2} A={21}) \$ 3)in 2= {(1,1), (2) A= {1,2,3} or any other (i) $R_1 = \{(1,1), (2,2), (3,3), (1,2)\}$ correct answer. Each @ marks. (ii) $R_2 = \{ (1,1), (1,2), (2,1), (1,3) \}$ [No explanation needed]