Current Trends

- Massive amounts of data
 - ▶ Petabyte is common for many business
- ► Thousands to millions of cores
 - Consolidated data centers
 - ▶ Shift from clock rate battle to multicore, to many core...
- Cheap, COTS hardware
- Failures are common, but not common to users
- Virtualization based systems
- Making accessible (Easy to use)
 - ▶ More people requiring large scale data processing

Current Trends

- Computing Clouds
 - ► Cloud Infrastructure Services
 - ► Cloud infrastructure Software
- Distributed File Systems
- Data intensive parallel application frameworks
 - MapReduce
 - ► High level languages
- Science in the clouds
 - ► High Performance Computing (HPC)

Information Services Infrastructure Some numbers (USA)

- ▶ 38 million physical servers
 - ▶ +700% growth in next 15 years
- ▶ \$140b unused capacity
- ▶ 30%-50% server cost is related to power
- Average costs for a datacenter
 - ▶ \$5K-\$15K / sq meter
 - > \$2.5K to \$20K / server
 - ▶ \$80K to \$700K / rack
- ▶ 20-30:1 Server / Administrator ratio
 - ▶ ... but can reach >1000:1
 - ▶ 1 server can have >200 VMs

Information Services Infrastructure

- ▶ Datacenters are not green!
 - ▶ 1 server = ~150W at average load
 - ▶ 1 rack, 32-42 servers = up to ~6.3KW (<4.8KW typical)
 - ▶ 1 DC, 50K servers = 7.5MW (for servers only!)

The result is HEAT, which must be removed out of the premises

- Power Usage Effectiveness
 - ► PUE = Total Energy / IT Energy
 - ► Currently: 1.2-3
 - ▶ 30% to 100% more in other devices (cooling, network, etc...)
 - >15% is simply lost

Power Estimates⁽¹⁾

► Google: >1M servers, >400MW power

Facebook: >240MW

Amazon: >160MW

Microsoft: >1M servers, >160MW

Equinix: >740MW (in >175DCs)

► Total estimated : >400TW/h = 0.03% world power

(1) Ali Ghiasi, Overview of Largest Data Centers, IEEE,

The Dalles

https://goo.gl/maps/B6ea8N8ySYk

The Dalles

https://goo.gl/maps/B6ea8N8ySYk

Scalability

- Vertical Scaling: Add more power to a server
 - ▶ More RAM, more storage, more CPUs
- Horizontal Scaling: Add more servers
 - ► Homogeneous or not
 - ▶ Usually not homogeneous as servers are replaced in chunks
- Datacenters are designed to scale horizontally
 - ▶ Adding more sections, with more servers

Scalability

- Systems are designed to scale <u>locally</u> and <u>globally</u>
 - ► Increase reliability
 - ► Increase performance
 - Reduce Cost
- ► Local Scaling: Distribute resource usage in same DC
- ▶ Global Scaling: Distribute resource usage across world

Dimensioning

- Current landscape is too dynamic and unpredictable
- Provisioning for average user load will fail at peak time
 - ▶ Weekends, Holidays, Black Friday
- Provisioning for peak time results in a huge waste
 - ▶ Peak should reach 80% capacity at most
- What about flash peaks?
 - ▶ Viral content, Promotions, Popular content on Twitter, Reddit, FB

Problem #1: Difficult to dimension

Provisioning for the peak load

Provisioning below the peak

- Problem: Load can vary considerably
 - ▶ Peak load can exceed average load by factor 2x-10x [Why?]
 - ▶ But: Few users deliberately provision for less than the peak
 - ▶ Result: Server utilization in existing data centers ~5%-20%!!
 - ▶ Dilemma: Waste resources or lose customers!

Problem #2: Expensive

- Need to invest many \$\$\$ in hardware
 - ► Even a small cluster can easily cost \$100,000
 - ► Google The Dalles: 1.8B\$
- Need expertise
 - Planning and setting up a large cluster is highly nontrivial
 - ► Cluster may require special software, etc.
- Need maintenance
 - ► Someone needs to replace faulty hardware, install software upgrades, maintain user accounts, ...

Problems #3: Difficult to Scale

Scaling up is difficult

- ▶ Need to order new machines, install them, integrate with existing cluster can take months!
- ► Large scaling factors may require major redesign, e.g., new storage system, new interconnect, new building (!)

Scaling down is difficult

- ▶ What to do with superfluous hardware?
- Server idle power is about 60% of peak → Energy is consumed even when no work is being done
- ▶ Many fixed costs, such as construction

Case Studies: Medical Research

- Novartis Institutes for Biomedical Research
 - ► focused on the drug discovery phase of the ~10 year / \$1 billion drug development process
- ▶ 2013: ran a project to screen 10 M compounds against a common cancer target
- Compute requirements >> internal capacity / \$
- Project ran across 10,500 EC2 Spot instances (~87,000 cores) for \$4,232 in 9 hours (peanuts)
- **Equiv. of 39 years** of computational chemistry

Problem #4: Availability is hard

- ▶ No single computer can handle today's workloads
 - ▶ The Growth of Ebay: https://bit.ly/2BG8FBB
- No single computer can provide high availability
 - Hard disk replacements, upgrades, hardware failure?
- Typical availability
 - ▶ 99.999% uptime=5.26 minutes downtime per year
 - > 99.9999% uptime = 31.8 seconds downtime per year
- Availability is highly demanded
 - ► Google failed? What?

Summary

- Modern applications require huge amounts of processing and data
 - Measured in petabytes, millions of users, billions of objects
 - ▶ Need special hardware, algorithms, tools to work at this scale
- Clusters and data centers can provide the resources we need
 - ► Main difference: Scale (room-sized vs. building-sized)
 - ► Special hardware; power and cooling are big concerns
- ► Clusters and data centers are not perfect
 - ▶ Difficult to dimension; expensive; difficult to scale

- ▶ Web and Internet based on <u>on demand</u> computational services
- Infrastructure complexity **transparent** to end user
- ► Horizontal scaling with no additional delay
 - Increased throughput
- Public Clouds
 - ▶ Amazon Web Services, Windows Azure, Google AppEngine, ...
- Private Cloud Infrastructure Software
 - ► Eucalyptus, Nimbus, OpenNebula, OpenStack, Kubernetes,

- Running a DataCenter is expensive.
 - Costs too much to built (CapEx)
 - Costs too much to run (OpEx)

"Need milk? Don't buy the cow... buy the milk"

- ▶ Rent what you need instead of buying and running everything!
- Cloud Computing advantages:
 - Pay per use
 - ► Instant Scalability
 - Security
 - Reliability
 - APIs

"Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. "

Everything As a Service

SaaS

• Salesforce, Google Apps, MS Office 360

PaaS

• MS Azure, Google App Engine, Heroku

laaS

 Amazon, Google Cloud Platform, IBM Bluemix

laaS: Infrastructure As A Service

- ► Grids of virtualized servers, storage & networks
 - ► E.g. Amazon (EC2, S3, EBS), IBM Bluemix, Google Cloud Platform
- Access to infrastructure stack:
 - ► Full OS access
 - ► Firewalls
 - Routers
 - ► Load balancing
- Advantages
 - Pay per use
 - ► Instant Scalability
 - Security
 - ► Reliability
 - **APIs**

Platform as a Service

- ▶ The abstraction of applications from traditional limits of hardware
 - ▶ allowing developers to focus on application development
 - ▶ and not worry about operating systems, infrastructure scaling, load balancing and so on.
 - Examples include Google App Engine (Java, Python), MS Azure (.net), Heroku (RoR)
- Platform delivery model
 - ▶ Platforms are built upon Infrastructure, which is expensive
 - ► Estimating demand is not a science!
 - ▶ Platform management is not fun!
- Advantages
 - Pay per use
 - ► Instant Scalability
 - ► No sysadmin tasks
 - Better Security

Software as a Service

- Applications with a Web-based interface accessed via Web Services and Web 2.0.
 - ► E.g. Google Apps, SalesForce.com and social network applications such as FaceBook
- Software delivery model
 - ► Increasingly popular with SMEs
 - ▶ No hardware or software to manage
 - ► Service delivered through a browser
- Advantages
 - ► No Installation Required
 - ► Not platform specific
 - ► Automatic Upgrades
 - ► Access your data anywhere

Other

- ► Cloud as a Service
- ► Network as a Service
- ► Storage as a Service
- ► Al as a Service
- ► Energy Storage as a Service
- Security as a Service
- ...https://en.wikipedia.org/wiki/As_a_service

Cloud Types

- ► Cloud is presented with different flavors
- ► Public cloud: Commercial service; open to (almost) anyone
 - Example: Amazon AWS, Microsoft Azure, Google App Engine
- ► Community cloud: Shared by several similar organizations.
 - ► Example: Google's "Gov Cloud"
- Private cloud: Shared within a single organization.
 - Example: Internal datacenter of a large company.