Tutorial 03, Michaelmas Term

Research Methods for Political Science (PO3600)

Stefan Müller

24 October 2017

Trinity College Dublin http://muellerstefan.net/research-methods

Table of contents

1. Paper Assignment 1

Paper Assignment 1

Paper Assignment 1 (Research Proposal)

Students taking the entire module

- Research proposal; Friday 15 December 2017
- Research paper based on the proposal (10%); 15 December 2017
- Assignment is **in pairs**

One Term Students

- Research proposal (30%); 24 November 2017
- Research paper based on the proposal (50%); 15 December 2017
- Assignment is individual

Contents of the Research Proposal

- 1. Introduction: Explanatory (!) research question, relevance (200 words)
- 2. Short discussion of the literature and outline of theoretical argument (400 words)
- 3. Design of the study, including type of data; operationalisation (valid and reliable!); datasets; control variables (400 words)
- 4. How could/would you analyse your data; if statistical analysis, what type of analysis is necessary? (200 words)
- 5. Indicate how each of you has contributed

One-Term students

The following is only relevant for one-term students!

- Statistics training will be more limited, but possible to study bivariate relationships using contingency tables, chi square, phi, correlations, t-tests, proportion tests
- Take limitations in terms of statistical analysis into account when deciding about research question and design

Important Things to Consider

- 1. Answer question based on existing data
- 2. Be creative and insightful
- 3. Write an empirical study, not a literature study
- 4. Word count is low, so be concise
- 5. Questions? Thomas Chadefaux has office hours
- 6. Detailed instructions are on Blackboard

Recap

1. Mean:
$$\bar{x} = \frac{\sum x}{n}$$

2. Standard deviation:
$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{n-1}}$$

3. Standard error of the mean:
$$sd(\bar{X}) = \frac{\sigma}{\sqrt{n}}$$

4. 95 % confidence interval:
$$CI = \bar{x} \pm 1.96 * sd(\bar{X})$$

Confidence intervals

For a given statistic calculated from a sample, the confidence interval is a range of values around that statistic that are believed to contain, with a certain probability, the true value of that statistic (population value).

A 95% confidence interval will contain the population mean 19 out of 20 times.

Calculate confidence intervals

```
Sample mean (\bar{x}): 170(cm)
```

Sample standard deviation (σ): 10

Sample size (n): 30

Standard error of the mean $(sd(\bar{X}))$

Task: Estimate the 95 % confidence intervals

Standard error =
$$sd(\bar{X}) = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{30}} = 2.74$$

$$CI = 170 \pm 1.96 * 2.74$$

$$CI_{low} = 170 - 1.96 * 2.74 = 164.6$$

$$CI_{high} = 170 + 1.96 * 2.7 = 175.4$$

The History of the t-test

https://www.youtube.com/watch?v=U9Wr7VEPGXA

One-sample t-test (I)

IQ in general population is 100. We take a random sample of 30 high school students and find $\bar{x}=110,~\sigma=10.$

 H_0 : The observed average IQ equals the general population's IQ.

 H_1 : The observed average IQ differs from the general population IQ.

Selecting sampling distribution and critical region: Population standard deviation (σ) is unknown: t-distribution with n-1 degrees of freedom (n=30, df=29). $\alpha=0.05$

One-sample t-test (II)

Calculate test-statistic: $t = \frac{observed\ value-expected\ value\ under\ H_0}{standard\ error}$

$$t = \frac{X - \mu}{\frac{\sigma}{\sqrt{n}}}$$

$$t = \frac{110 - 100}{\frac{10}{\sqrt{30}}}$$

$$t = 5.47$$

Two-tailed t-test based on simulated rents