TA 151 H8

UC-NRLF
B 3 141 148

Chas. C. Swofford 304 C.E. Berkeley. Coli

478 ann

HANDBOOK OF MATHEMATICS FOR ENGINEERS

Mc Graw-Hill Book Co. Inc.

Coal Age V Electric Railway Journal Electrical World

▼ Engineering News-Record American Machinist The Contractor Engineering & Mining Journal - Power Metallurgical & Chemical Engineering Electrical Merchandising

Handbook of Mathematics for Engineers

BY

EDWARD V. HUNTINGTON, Ph. D.

ASSOCIATE PROFESSOR OF MATHEMATICS, HARVARD UNIVERSITY

WITH TABLES OF WEIGHTS AND MEASURES BY

LOUIS A. FISCHER, B. S.

CHIEF OF DIVISION OF WEIGHTS AND MEASURES, U. S. BUREAU OF STANDARDS

REPRINT OF SECTIONS 1 AND 2 OF L. S. MARKS'S
"MECHANICAL ENGINEERS' HANDBOOK"

FIRST Edition
SECOND IMPRESSION

McGRAW-HILL BOOK COMPANY, Inc. 239 WEST 39TH STREET. NEW YORK

LONDON: HILL PUBLISHING CO., Ltd. 6 & 8 BOUVERIE ST., E.C. 1918

H8

H8

Lillary

ENGINEERING LIBRARY

M SALES HE TO A SHARE THE TO SEE THE

COPYRIGHT, 1918, BY THE McGraw Hill Book Company, Inc.

COPYRIGHT, 1916, BY EDWARD V. HUNTINGTON.

ANAMAS AGON LINE VILLENIE

PREFACE

This Handbook of Mathematics is designed to contain, in compact form, accurate statements of those facts and formulas of pure mathematics which are most likely to be useful to the worker in applied mathematics.

It is not intended to take the place of the larger compendiums of pure mathematics on the one hand, or of the technical handbooks of engineering on the other hand; but in its own field it is thought to be more comprehensive than any other similar work in English.

Many topics of an elementary character are presented in a form which permits of immediate utilization even by readers who have had no previous acquaintance with the subject; for example, the practical use of logarithms and logarithmic cross-section paper, and the elementary parts of the modern method of nomography (alignment charts), can be learned from this book without the necessity of consulting separate treatises.

Other sections of the book to which special attention may be called are the chapter on the algebra of complex (or imaginary) quantities, the treatment of the catenary (with special tables), and the brief résumé of the theory of vector analysis.

The mathematical tables (including several which are not ordinarily found) are carried to four significant figures throughout, and no pains have been spared to make them as nearly self-explanatory as possible, even to the reader who makes only occasional use of such tables.

For the Tables of Weights and Measures, which add greatly to its usefulness, the book is indebted to Mr. Louis A. Fischer of the U. S. Bureau of Standards.

All the matter included in the present volume was originally prepared for the Mechanical Engineers' Handbook (Lionel S. Marks, Editor-in-Chief), and was first printed in 1916, as Sections 1 and 2 of that Handbook. The author desires to express his indebtedness to Professor Marks, not only for indispensable advice as to the choice of the topics which would be most useful to engineers, but also for great assistance in many details of the presentation.

All the misprints that have been detected have been corrected in the plates. Notification in regard to any further corrections, and any suggestions toward the improvement or possible enlargement of the book, will be cordially welcomed by the author or the publishers.

E. V. H.

CAMBRIDGE, MASS. April 29, 1918. HO AND THE

The first of the contraction of

the complete of process and the control of the cont

the analysis of the second of

The state of

CONTENTS

	Page
Preface	v
SECTION 1. Mathematical Tables and Weights and Measures	1
(For detailed Table of Contents, see page 1.)	
SECTION 2. Mathematics:	
Arithmetic; Geometry and Mensuration; Algebra; Trigonometry;	
Analytical Geometry; Differential and Integral Calculus; Graphical	
Representation of Functions; Vector Analysis	87
(For detailed Table of Contents, see page 87.)	
INDEX	187

PUBLICATION

a Director have made to the constitution of the control of the con

Communicate Programmers of the foreign party of the programmer of the continuous party of the programmer of the continuous party of the programmer of the continuous party of the programmer of

ASSESSED 1965、APPENDED 1965年1965年1965年1965年1965日

SECTION 1

MATHEMATICAL TABLES

AND

WEIGHTS AND MEASURES

BY

EDWARD V. HUNTINGTON, Ph. D., Associate Professor of Mathematics, Harvard University, Fellow Am. Acad. Arts and Sciences.

LOUIS A. FISCHER, B. S., Chief of Division of Weights and Measures, U. S. Bureau of Standards.

CONTENTS

MATHEMATICAL TABLES		WEIGHTS AND MEASURES	
BY E. V. HUNTINGTON	PAGE	BY LOUIS A. FISCHER I	AGE
Squares of Numbers	2	U. S. Customary Weights and	
Cubes of Numbers	8	Measures	70
Square Roots of Numbers	12	Metric Weights and Measures	71
Cube Roots of Numbers	16	Systems of Units	72
Three-halves Powers of Numbers	22	Conversion Tables:	
Reciprocals of Numbers	24	Lengths	74
Circles (Areas, Segments, etc.).	28	Areas	76
Spheres (Volumes, Segments, etc.)	36	Volumes and Capacities	76
Regular Polygons	39	Velocities	78
Binomial Coefficients	39	Masses (Weights)	78
Common Logarithms	40	Pressures	79
Degrees and Radians	44	Energy, Work, Heat	79
Trigonometric Functions	46	Power	81
Exponentials	57	Density	81
Hyperbolic (Napierian) Logarithms.	58	Heat Transmission and Con-	
Hyperbolic Functions	60	duction	82
Multiples of 0.4343 and 2.3026	. 62	Values of Foreign Coins	82
Residuals and Probable Errors	63	Time	83
Compound Interest and Annuities.	64	Terrestrial Gravity	84
Decimal Equivalents	69	Specific Gravity and Density	84

SQUARES OF NUMBERS

											bin.:
N	0	1	2	3	4	5	6	7	8	9	Avg.
1.00	1.000	1.002	1.004	1.006	1.008	1.010	1.012	1.014	1.016	1.018	2
1	1.020	1.022	1.024	1.026	1.028	1.030	1.032	1.034	1.036	1.038	
2	1.040	1.042	1.044	1.047	1.049	1.051	1.053	1.055	1.057	1.059	
3	1.061	1.063	1.065	1.067	1.069	1.071	1.073	1.075	1.077	1.080	
4	1.082	1.084	1.086	1.088	1.090	1.092	1.094	1.096	1.098	1.100	
1.05	1.102	1.105	1.107	1.109	1.111	1.113	1.115	1.117	1.119	1.121	3
6	1.124	1.126	1.128	1.130	1.132	1.134	1.136	1.138	1.141	1.143	
7	1.145	1.147	1.149	1.151	1.153	1.156	1.158	1.160	1.162	1.164	
8	1.166	1.169	1.171	1.173	1.175	1.177	1.179	1.182	1 184	1.186	
9	1.188	1.190	1.192	1.195	1.197	1.199	1.201	1.203	1.206	1.208	
1.10	1.210	1.212	1.214	1.217	1.219	1.221	1.223	1.225	1.228	1.230	
1	1.232	1.234	1.237	1.239	1.241	1.243	1.245	1.248	1.250	1.252	
2	1.254	1.257	1.259	1.261	1.263	1.266	1.268	1.270	1.272	1.275	
3	1.277	1.279	1.281	1.284	1.286	1.288	1.209	1.293	1.295	1.297	
4	1.300	1.302	1.304	1.306	1.309	1.311	1.313	1.316	1.318	1.320	
1.15	1.322	1.325	1.327	1.329	1.332	1.334	1,336	1.339	1.341	1.343	
6	1.346	1.348	1.350	1.353	1.355	1.357	1,360	1.362	1.364	1.367	
7	1.369	1.371	1.374	1.376	1.378	1.381	1,383	1.385	1.388	1.390	
8	1.392	1.395	1.397	1.399	1.402	1.404	1,407	1.409	1.411	1.414	
9	1.416	1.418	1.421	1.423	1.426	1.428	1,430	1.433	1.435	1.438	
1.20	1.440	1.442	1.445	1.447	1.450	1.452	1.454	1.457	1.459	1.462	
1	1.464	1.467	1.469	1.471	1.474	1.476	1.479	1.481	1.484	1.486	
2	1.488	1.491	1.493	1.496	1.498	1.501	1.503	1.506	1.508	1.510	
3	1.513	1.515	1.518	1.520	1.523	1.525	1.528	1.530	1.533	1.535	
4	1.538	1.540	1.543	1.545	1.548	1.550	1.553	1.555	1.558	1.560	
1.25	1.562	1.565	1.568	1.570	1.573	1.575	1.578	1.580	1.583	1.585	3
6	1.588	1.590	1.593	1.595	1.598	1.600	1.603	1.605	1.608	1.610	
7	1.613	1.615	1.618	1.621	1.623	1.626	1.628	1.631	1.633	1.636	
8	1.638	1.641	1.644	1.646	1.649	1.651	1.654	1.656	1.659	1.662	
9	1.664	1.667	1.669	1.672	1.674	1.677	1.680	1.682	1.685	1.687	
1.30	1.690	1.693	1.695	1.698	1.700	1.703	1.706	1.708	1.711	1.713	
1	1.716	1.719	1.721	1.724	1.727	1.729	1.732	1.734	1.737	1.740	
2	1.742	1.745	1.748	1.750	1.753	1.756	1.758	1.761	1.764	1.766	
3	1.769	1.772	1.774	1.777	1.780	1.782	1.785	1.788	1.790	1.793	
4	1.796	1.798	1.801	1.804	1.806	1.809	1.812	1.814	1.817	1.820	
1.35	1.822	1.825	1.828	1.831	1.833	1.836	1.839	1.841	1.844	1.847	
6	1.850	1.852	1.855	1.858	1.860	1.863	1.866	1.869	1.871	1.874	
7	1.877	1.880	1.882	1.885	1.888	1.891	1.893	1.896	1.899	1.902	
8	1.904	1.907	1.910	1.913	1.915	1.918	1.921	1.924	1.927	1.929	
9	1.932	1.935	1.938	1.940	1.943	1.946	1.949	1.952	1.954	1.957	
1.40	1.960	1.963	1.966	1.968	1.971	1.974	1.977	1.980	1.982	1.985	
1	1.988	1.991	1.994	1.997	1.999	2.002	2.005	2.008	2.011	2.014	
2	2.016	2.019	2.022	2.025	2.028	2.031	2.033	2.036	2.039	2.042	
3	2.045	2.048	2.051	2.053	2.056	2.059	2.062	2.065	2.068	2.071	
4	2.074	2.076	2.079	2.082	2.085	2.088	2.091	2.094	2.097	2.100	
1.45	2.102	2.105	2.108	2.111	2.114	2.117	2.120	2.123	2.126	2.129	
6	2.132	2.135	2.137	2.140	2.143	2.146	2.149	2.152	2.155	2.158	
7	2.161	2.164	2.167	2.170	2.173	2.176	2.179	2.182	2.184	2.187	
8	2.190	2.193	2.196	2.199	2.202	2.205	2.208	2.211	2.214	2.217	
9	2.220	2.223	2.226	2.229	2.232	2.235	2.238	2.241	2.244	2.247	

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

SQUARES (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
1.50	2.250	2.253	2.256	2.259	2.262	2.265	2.268	2.271	2.274	2.277	3
1	2.280	2.283	2.286	2.289	2.292	2.295	2.298	2.301	2.304	2.307	
2	2.310	2.313	2.316	2.320	2.323	2.326	2.329	2.332	2.335	2.338	
3	2.341	2.344	2.347	2.350	2.353	2.356	2.359	2.362	2.365	2.369	
4	2.372	2.375	2.378	2.381	2.384	2.387	2.390	2.393	2.396	2.399	
1.55	2.402	2.406	2.409	2.412	2.415	2.418	2.421	2.424	2.427	2.430	
6	2.434	2.437	2.440	2.443	2.446	2.449	2.452	2.455	2.459	2.462	
7	2.465	2.468	2.471	2.474	2.477	2.481	2.484	2.487	2.490	2.493	
8	2.496	2.500	2.503	2.506	2.509	2.512	2.515	2.519	2.522	2.525	
9	2.528	2.531	2.534	2.538	2.541	2.544	2.547	2.550	2.554	2.557	
1.60	2.560	2,563	2.566	2.570	2.573	2,576	2.579	2.582	2.586	2.589	
1	2.592	2,595	2.599	2.602	2.605	2,608	2.611	2.615	2.618	2.621	
2	2.624	2,628	2.631	2.634	2.637	2,641	2.644	2.647	2.650	2.654	
3	2.657	2,660	2.663	2.667	2.670	2,673	2.676	2.680	2.683	2.686	
4	2.690	2,693	2.696	2.699	2.703	2,706	2.709	2.713	2.716	2.719	
1.65	2.722	2.726	2.729	2.732	2.736	2.739	2.742	2.746	2.749	2.752	E. Allerina
6	2.756	2.759	2.762	2.766	2.769	2.772	2.776	2.779	2.782	2.786	
7	2.789	2.792	2.796	2.799	2.802	2.806	2.809	2.812	2.816	2.819	
8	2.822	2.826	2.829	2.832	2.836	2.839	2.843	2.846	2.849	2.853	
9	2.856	2.859	2.863	2.866	2.870	2.873	2.876	2.880	2.883	2.887	
1.70	2.890	2.893	2.897	2.900	2.904	2.907	2.910	2.914	2.917	2.921	
1	2.924	2.928	2.931	2.934	2.938	2.941	2.945	2.948	2.952	2.955	
2	2.958	2.962	2.965	2.969	2.972	2.976	2.979	2.983	2.986	2.989	
3	2.993	2.996	3.000	3.003	3.007	3.010	3.014	3.017	3.021	3.024	
4	3.028	3.031	3.035	3.038	3.042	3.045	3.049	3.052	3.056	3.059	
1.75	3.062	3.066	3,070	3.073	3.077	3.080	3.084	3.087	3.091	3.094	4
6	3.098	3.101	3,105	3.108	3.112	3.115	3.119	3.122	3.126	3.129	
7	3.133	3.136	3,140	3.144	3.147	3.151	3.154	3.158	3.161	3.165	
.8	3.168	3.172	3,176	3.179	3.183	3.186	3.190	3.193	3.197	3'201	
9	3.204	3.208	3,211	3.215	3.218	3.222	3.226	3.229	3.233	3.236	
1.80	3.240	3.244	3.247	3.251	3.254	3.258	3.262	3.265	3.269	3.272	
1	3.276	3.280	3.283	3.287	3.291	3.294	3.298	3.301	3.305	3.309	
2	3.312	3.316	3.320	3.323	3.327	3.331	3,334	3.338	3.342	3.345	
3	3.349	3.353	3.356	3.360	3.364	3.367	3,371	3.375	3.378	3.382	
4	3.386	3.389	3.393	3.397	3.400	3.404	3,408	3.411	3.415	3.419	
1.85	3.422	3.426	3.430	3.434	3.437	3.441	3,445	3.448	3.452	3,456	10
6	3.460	3.463	3.467	3.471	3.474	3.478	3,482	3.486	3.489	3,493	
7	3.497	3.501	3.504	3.508	3.512	3.516	3,519	3.523	3.527	3,531	
8	3.534	3.538	3.542	3.546	3.549	3.553	3,557	3.561	3.565	3,568	
9	3.572	3.576	3.580	3.583	3.587	3.591	3,595	3.599	3.602	3,606	
1.90	3.610	3.614	3.618	3.621	3.625	3.629	3,633	3.637	3.640	3.644	S-Browning
1	3.648	3.652	3.656	3.660	3.663	3.667	3,671	3.675	3.679	3.683	
2	3.686	3.690	3.694	3.698	3.702	3.706	3,709	3.713	3.717	3.721	
3	3.725	3.729	3.733	3.736	3.740	3.744	3,748	3.752	3.756	3.760	
4	3.764	3.767	3.771	3.775	3.779	3.783	3,787	3.791	3.795	3.799	
1.95	3.802	3.806	3.810	3.814	3.818	3.822	3.826	3.830	3.834	3.838	
6	3.842	3.846	3.849	3.853	3.857	3.861	3.865	3.869	3.873	3.877	
7	3.881	3.885	3.889	3.893	3.897	3.901	3.905	3.909	3.912	3.916	
8	3.920	3.924	3.928	3.932	3.936	3.940	3.944	3.948	3.952	3.956	
9	3.960	3.964	3.968	3.972	3.976	3.980	3.984	3.988	3.992	3.996	

 $\pi^2 = 9.86960$ $1/\pi^2 = 0.101321$ $e^2 = 7.38906$

SQUARES (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
2.00	4.000	4.004	4.008	4.012	4.016	4.020	4.024	4.028	4.032	4.036	4
1	4.040	4.044	4.048	4.052	4.056	4.060	4.064	4.068	4.072	4.076	
2	4.080	4.084	4.088	4.093	4.097	4.101	4.105	4.109	4.113	4.117	
3	4.121	4.125	4.129	4.133	4.137	4.141	4.145	4.149	4.153	4.158	
4	4.162	4.166	4.170	4.174	4.178	4.182	4.186	4.190	4.194	4.198	
2.05	4.202	4.207	4.211	4.215	4.219	4.223	4.227	4.231	4.235	4.239	
6	4.244	4.248	4.252	4.256	4.260	4.264	4.268	4.272	4.277	4.281	
7	4.285	4.289	4.293	4.297	4.301	4.306	4.310	4.314	4.318	4.322	
8	4.326	4.331	4.335	4.339	4.343	4.347	4.351	4.356	4.360	4.364	
9	4.368	4.372	4.376	4.381	4.385	4.389	4.393	4.397	4.402	4.406	
2.10	4.410	4.414	4.418	4.423	4.427	4.431	4.435	4.439	4.444	4.448	
1	4.452	4.456	4.461	4.465	4.469	4.473	4.477	4.482	4 486	4.490	
2	4.494	4.499	4.503	4.507	4.511	4.516	4.520	4.524	4.528	4.533	
3	4.537	4.541	4.545	4.550	4.554	4.558	4.562	4.567	4.571	4.575	
4	4.580	4.584	4.588	4.592	4.597	4.601	4.605	4.610	4.614	4.618	
2.15	4.622	4.627	4.631	4.635	4.640	4.644	4.648	4.653	4.657	4.661	
6	4.666	4.670	4.674	4.679	4.683	4.687	4.692	4.696	4.700	4.705	
7	4.709	4.713	4.718	4.722	4.726	4.731	4.735	4.739	4.744	4.748	
8	4.752	4.757	4.761	4.765	4.770	4.774	4.779	4.783	4.787	4.792	
9	4.796	4.800	4.805	4.809	4.814	4.818	4.822	4.827	4.831	4.836	
2.20	4.840	4.844	4.849	4.853	4.858	4.862	4.866	4.871	4.875	4.880	
1	4.884	4.889	4.893	4.897	4.902	4.906	4.911	4.915	4.920	4.924	
2	4.928	4.933	4.937	4.942	4.946	4.951	4.955	4.960	4.964	4.968	
3	4.973	4.977	4.982	4.986	4.991	4.995	5.000	5.004	5.009	5.013	
4	5.018	5.022	5.027	5.031	5.036	5.040	5.045	5.049	5.054	5.058	
2.25	5.062	5.067	5.072	5.076	5.081	5.085	5.090	5.094	5.099	5.103	5
6	5.108	5.112	5.117	5.121	5.126	5.130	5.135	5.139	5.144	5.148	
7	5.153	5.157	5.162	5.167	5.171	5.176	5.180	5.185	5.189	5.194	
8	5.198	5.203	5.208	5.212	5.217	5.221	5.226	5.230	5.235	5.240	
9	5.244	5.249	5.253	5.258	5.262	5.267	5.272	5.276	5.281	5.285	
2.30	5.290	5.295	*5.299	5.304	5.308	5.313	5.318	5.322	5.327	5.331	
1	5.336	5.341	5.345	5.350	5.355	5.359	5.364	5.368	5.373	5.378	
2	5.382	5.387	5.392	5.396	5.401	5.406	5.410	5.415	5.420	5.424	
3	5.429	5.434	5.438	5.443	5.448	5.452	5.457	5.462	5.466	5.471	
4	5.476	5.480	5.485	5.490	5.494	5.499	5.504	5.508	5.513	5.518	
2.35	5.522	5.527	5.532	5.537	5.541	5.546	5.551	5.555	5.560	5.565	
6	5.570	5.574	5.579	5.584	5.588	5.593	5.598	5.603	5.607	5.612	
7	5.617	5.622	5.626	5.631	5.636	5.641	5.645	5.650	5.655	5.660	
8	5.664	5.669	5.674	5.679	5.683	5.688	5.693	5.698	5.703	5.707	
9	5.712	5.717	5.722	5.726	5.731	5.736	5.741	5.746	5.750	5.755	
2.40	5.760	5.765	5.770	5.774	5.779	5.784	5.789	5.794	5.798	5.803	
1	5.808	5.813	5.818	5.823	5.827	5.832	5.837	5.842	5.847	5.852	
2	5.856	5.861	5.866	5.871	5.876	5.881	5.885	5.890	5.895	5.900	
3	5.905	5.910	5.915	5.919	5.924	5.929	5.934	5.939	5.944	5.949	
4	5.954	5.958	5.963	5.968	5.973	5.978	5.983	5.988	5.993	5.998	
2.45	6.002	6.007	6.012	6.017	6.022	6.027	6.032	6.037	6.042	6.047	1
6	6.052	6.057	6.061	6.066	6.071	6.076	6.081	6.086	6.091	6.096	
7	6.101	6.106	6.111	6.116	6.121	6.126	6.131	6.136	6.140	6.145	
8	6.150	6.155	6.160	6.165	6.170	6.175	6.180	6.185	6.190	6.195	
9	6.200	6.205	6.210	6.215	6.220	6.225	6.230	6.235	6.240	6.245	

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

SQUARES (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
2.50	6.250	6.255	6.260	6.265	6.270	6.275	6.280	6.285	6.290	6.295	5
1	6.300	6.305	6.310	6.315	6.320	6.325	6.330	6.335	6.340	6.345	
2	6.350	6.355	6.360	6.366	6.371	6.376	6.381	6.386	6.391	6.396	
3	6.401	6.406	6.411	6.416	6.421	6.426	6.431	6.436	6.441	6.447	
4	6.452	6.457	6.462	6.467	6.472	6.477	6.482	6.487	6.492	6.497	
2.55	6.502	6.508	6.513	6.518	6.523	6.528	6.533	6.538	6.543	6.548	
6	6.554	6.559	6.564	6.569	6.574	6.579	6.584	6.589	6.595	6.600	
7	6.605	6.610	6.615	6.620	6.625	6.631	6.636	6.641	6.646	6.651	
8	6.656	6.662	6.667	6.672	6.677	6.682	6.687	6.693	6.698	6.703	
9	6.708	6.713	6.718	6.724	6.729	6.734	6.739	6.744	6.750	6.755	
2.60	6.760	6.765	6.770	6.776	6.781	6.786	6.791	6.796	6.802	6.807	
1	6.812	6.817	6.823	6.828	6.833	6.838	6.843	6.849	6.854	6.859	
2	6.864	6.870	6.875	6.880	6.885	6.891	6.896	6.901	6.906	6.912	
3	6.917	6.922	6.927	6.933	6.938	6.943	6.948	6.954	6.959	6.964	
4	6.970	6.975	6.980	6.985	6.991	6.996	7.001	7.007	7.012	7.017	
2.65	7.022	7.028	7.033	7.038	7.044	7.049	7.054	7.060	7.065	7.070	
6	7.076	7.081	7.086	7.092	7.097	7.102	7.108	7.113	7.118	7.124	
7	7.129	7.134	7.140	7.145	7.150	7.156	7.161	7.166	7.172	7.177	
8	7.182	7.188	7.193	7.198	7.204	7.209	7.215	7.220	7.225	7.231	
9	7.236	7.241	7.247	7.252	7.258	7.263	7.268	7.274	7.279	7.285	
2.70	7.290	7.295	7.301	7.306	7.312	7.317	7.322	7.328	7.333	7.339	
1	7.344	7.350	7.355	7.360	7.366	7.371	7.377	7.382	7.388	7.393	
2	7.398	7.404	7.409	7.415	7.420	7.426	7.431	7.437	7.442	7.447	
3	7.453	7.458	7.464	7.469	7.475	7.480	7.486	7.491	7.497	7.502	
4	7.508	7.513	7.519	7.524	7.530	7.535	7.541	7.546	7.552	7.557	
2.75	7.562	7.568	7.574	7.579	7.585	7.590	7.596	7.601	7.607	7.612	6
6	7.618	7.623	7.629	7.634	7.640	7.645	7.651	7.656	7.662	7.667	
7	7.673	7.678	7.684	7.690	7.695	7.701	7.706	7.712	7.717	7.723	
8	7.728	7.734	7.740	7.745	7.751	7.756	7.762	7.767	7.773	7.779	
9	7.784	7.790	7.795	7.801	7.806	7.812	7.818	7.823	7.829	7.834	
2.80	7.840	7.846	7.851	7.857	7.862	7.868	7.874	7.879	7.885	7.890	
1	7.896	7.902	7.907	7.913	7.919	7.924	7.930	7.935	7.941	7.947	
2	7.952	7.958	7.964	7.969	7.975	7.981	7.986	7.992	7.998	8.003	
3	8.009	8.015	8.020	8.026	8.032	8.037	8.043	8.049	8.054	8.060	
4	8.066	8.071	8.077	8.083	8.088	8.094	8,100	8.105	8.111	8.117	
2.85	8.122	8.128	8.134	8.140	8.145	8.151	8.157	8.162	8.168	8.174	
6	8.180	8.185	8.191	8.197	8.202	8.208	8.214	8.220	8.225	8.231	
7	8.237	8.243	8.248	8.254	8.260	8.266	8.271	8.277	8.283	8.289	
8	8.294	8.300	8.306	8.312	8.317	8.323	8.329	8.335	8.341	8.346	
9	8.352	8.358	8.364	8.369	8.375	8.381	8.387	8.393	8.398	8.404	
2.90	8.410	8.416	8.422	8.427	8.433	8.439	8.445	8.451	8.456	8.462	- 0 W 5 K
1	8.468	8.474	8.480	8.486	8.491	8.497	8.503	8.509	8.515	8.521	
2	8.526	8.532	8.538	8.544	8.550	8.556	8.561	8.567	8.573	8.579	
3	8.585	8.591	8.597	8.602	8.608	8.614	8.620	8.626	8.632	8.638	
4	8.644	8.649	8.655	8.661	8.667	8.673	8.679	8.685	8.691	8.697	
2.95	8.702	8.708	8.714	8.720	8.726	8.732	8.738	8.744	8.750	8.756	
6	8.762	8.768	8.773	8.779	8.785	8.791	8.797	8.803	8.809	8.815	
7	8.821	8.827	8.833	8.839	8.845	8.851	8.857	8.863	8.868	8.874	
8	8.880	8.886	8.892	8.898	8.904	8.910	8.916	8.922	8.928	8.934	
9	8.940	8.946	8.952	8.958	8.964	8.970	8.976	8.982	8.988	8.994	

 $\pi^2 = 9.86960$ $1/\pi^2 = 0.101321$ $e^2 = 7.38906$

SQUARES (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
3.00	9.000	9.006	9.012	9.018	9.024	9.030	9.036	9.042	9.048	9.054	6
1	9.060	9.066	9.072	9.078	9.084	9.090	9.096	9.102	9.108	9.114	
2	9.120	9.126	9.132	9.139	9.145	9.151	9.157	9.163	9.169	9.175	
3	9.181	9.187	9.193	9.199	9.205	9.211	9.217	9.223	9.229	9.236	
4	9.242	9.248	9.254	9.260	9.266	9.272	9.278	9.284	9.290	9.296	
3.05	9.302	9.309	9.315	9.321	9.327	9.333	9.339	9.345	9.351	9.357	
6	9.364	9.370	9.376	9.382	9.388	9.394	9.400	9.406	9.413	9.419	
7	9.425	9.431	9.437	9.443	9.449	9.456	9.462	9.468	9.474	9.480	
8	9.486	9.493	9.499	9.505	9.511	9.517	9.523	9.530	9.536	9.542	
9	9.548	9.554	9.560	9.567	9.573	9.579	9.585	9.591	9.598	9.604	
3.10	9.610	9.616	9.622	9.629	9.635	9.641	9.647	9.653	9.660	9.666	
1	9.672	9.678	9.685	9.691	9.697	9.703	9.709	9.716	9.722	9.728	
2	9.734	9.741	9.747	9.753	9.759	9.766	9.772	9.778	9.784	9.791	
3	9.797	9.803	9.809	9.816	9.822	9.828	9.834	9.841	9.847	9.853	
4	9.860	9.866	9.872	9.878	9.885	9.891	9.897	9.904	9.910	9.916	
3.15 6 3.1 2	9.922 9.986 10.24	9.929 9.992 10.30	9.935 9.998 10.37	9.941 10.005 10.43	9.948	9.954	9.960 9.99 10.63	9.967 10.05 10.69	9.973 10.11 10.76	9.979 10.18 10.82	6 6
3 4	10.89 11.56	10.96 11.63	11.02 11.70	11.76	11.16 11.83	11.22 11.90	11.29 11.97	11.36 12.04	11.42	11.49 12.18	7
3.5	12.25	12.32	12.39	12.46	12.53	12.60	12.67	12.74	12.82	12.89	8
6	12.96	13.03	13.10	13.18	13.25	13.32	13.40	13.47	13.54	13.62	
7	13.69	13.76	13.84	13.91	13.99	14.06	14.14	14.21	14.29	14.36	
8	14.44	14.52	14.59	14.67	14.75	14.82	14.90	14.98	15.05	15.13	
9	15.21	15.29	15.37	15.44	15.52	15.60	15.68	15.76	15.84	15.92	
4.0	16.00	16.08	16.16	16.24	16.32	16.40	16.48	16.56	16.65	16.73	9
1	16.81	16.89	16.97	17.06	17.14	17.22	17.31	17.39	17.47	17.56	
2	17.64	17.72	17.81	17.89	17.98	18.06	18.15	18.23	18.32	18.40	
3	18.49	18.58	18.66	18.75	18.84	18.92	19.01	19.10	19.18	19.27	
4	19.36	19.45	19.54	19.62	19.71	19.80	19.89	19.98	20.07	20.16	
4.5	20.25	20.34	20.43	20.52	20.61	20.70	20.79	20.88	20.98	21.07	10
6	21.16	21.25	21.34	21.44	21.53	21.62	21.72	21.81	21.90	22.00	
7	22.09	22.18	22.28	22.37	22.47	22.56	22.66	22.75	22.85	22.94	
8	23.04	23.14	23.23	23.33	23.43	23.52	23.62	23.72	23.81	23.91	
9	24.01	24.11	24.21	24.30	24.40	24.50	24.60	24.70	24.80	24.90	

 $\pi^2 = 9.86960 \quad (\pi/2)^2 = 2.46740 \quad 1/\pi^2 = 0.101321$

Explanation of Table of Squares (pp. 2-7).

This table gives the value of N^2 for values of N from 1 to 10, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure).

To find the square of a number N outside the range from 1 to 10, note that moving the decimal point one place in column N is equivalent to moving it two places in the body of the table. For example:

 $(3.217)^2 = 10.35;$ $(0.03217)^2 = 0.001035;$ $(3217)^2 = 10350000$

This table can also be used inversely, to give square roots.

SQUARES (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
5.0	25.00	25.10	25.20	25.30	25.40	25.50	25.60	25.70	25.81	25.91	10
1	26.01	26.11	26.21	26.32	26.42	26.52	26.63	26.73	26.83	26.94	
2	27.04	27.14	27.25	27.35	27.46	27.56	27.67	27.77	27.88	27.98	
3	28.09	28.20	28.30	28.41	28.52	28.62	28.73	28.84	28.94	29.05	
4	29.16	29.27	29.38	29.48	29.59	29.70	29.81	29.92	30.03	30.14	
5.5	30.25	30.36	30.47	30.58	30.69	30.80	30.91	31.02	31.14	31.25	12
6	31.36	31.47	31.58	31.70	31.81	31.92	32.04	32.15	32.26	32.38	
7	32.49	32.60	32.72	32.83	32.95	33.06	33.18	33.29	33.41	33.52	
8	33.64	33.76	33.87	33.99	34.11	34.22	34.34	34.46	34.57	34.69	
9	34.81	34.93	35.05	35.16	35.28	35.40	35.52	35.64	35.76	35.88	
6.0	36.00	36.12	36.24	36.36	36.48	36.60	36.72	36.84	36.97	37.09	13
1	37.21	37.33	37.45	37.58	37.70	37.82	37.95	38.07	38.19	38.32	
2	38.44	38.56	38.69	38.81	38.94	39.06	39.19	39.31	39.44	39.56	
3	39.69	39.82	39.94	40.07	40.20	40.32	40.45	40.58	40.70	40.83	
4	40.96	41.09	41.22	41.34	41.47	41.60	41.73	41.86	41.99	42.12	
6.5	42.25	42.38	42.51	42.64	42.77	42.90	43.03	43.16	43.30	43.43	14
6	43.56	43.69	43.82	43.96	44.09	44.22	44.36	44.49	44.62	44.76	
7	44.89	45.02	45.16	45.29	45.43	45.56	45.70	45.83	45.97	46.10	
8	46.24	46.38	46.51	46.65	46.79	46.92	47.06	47.20	47.33	47.47	
9	47.61	47.75	47.89	48.02	48.16	48.30	48.44	48.58	48.72	48.86	
7.0	49.00	49.14	49.28	49.42	49.56	49.70	49.84	49.98	50.13	50.27	15
1	50.41	50.55	50.69	50.84	50.98	51.12	51.27	51.41	51.55	51.70	
2	51.84	51.98	52.13	52.27	52.42	52.56	52.71	52.85	53.00	53.14	
3	53.29	53.44	53.58	53.73	53.88	54.02	54.17	54.32	54.46	54.61	
4	54.76	54.91	55.06	55.20	55.35	55.50	55.65	55.80	55.95	56.10	
7.5	56.25	56.40	56.55	56.70	56.85	57.00	57.15	57.30	57.46	57.61	16
6	57.76	57.91	58.06	58.22	58.37	58.52	58.68	58.83	58.98	59.14	
7	59.29	59.44	59.60	59.75	59.91	60.06	60.22	60.37	60.53	60.68	
8	60.84	61.00	61.15	61.31	61.47	61.62	61.78	61.94	62.09	62.25	
9	62.41	62.57	62.73	62.88	63.04	63.20	63.36	63.52	63.68	63.84	
8.0	64.00	64.16	64.32	64.48	64.64	64.80	64.96	65.12	65.29	65.45	17
1	65.61	65.77	65.93	66.10	66.26	66.42	66.59	66.75	66.91	67.08	
2	67.24	67.40	67.57	67.73	67.90	68.06	68.23	68.39	68.56	68.72	
3	68.89	69.06	69.22	69.39	69.56	69.72	69.89	70.06	70.22	70.39	
4	70.56	70.73	70.90	71.06	71.23	71.40	71.57	71.74	71.91	72.08	
8.5	72.25	72.42	72.59	72.76	72.93	73.10	73.27	73.44	73.62	73.79	18
6	73.96	74.13	74.30	74.48	74.65	74.82	75.00	75.17	75.34	75.52	
7	75.69	75.86	76.04	76.21	76.39	76.56	76.74	76.91	77.09	77.26	
8	77.44	77.62	77.79	77.97	78.15	78.32	78.50	78.68	78.85	79.03	
9	79.21	79.39	79.57	79.74	79.92	80.10	80.28	80.46	80.64	80.82	
9.0	81.00	81.18	81.36	81.54	81.72	81.90	82.08	82.26	82.45	82.63	19
1	82.81	82.99	83.17	83.36	83.54	83.72	83.91	84.09	84.27	84.46	
2	84.64	84.82	85.01	85.19	85.38	85.56	85.75	85.93	86.12	86.30	
3	86.49	86.68	86.86	87.05	87.24	87.42	87.61	87.80	87.98	88.17	
4	88.36	88.55	88.74	88.92	89.11	89.30	89.49	89.68	89.87	90.06	
9.5	90.25	90.44	90.63	90.82	91.01	91.20	91.39	91.58	91.78	91.97	20
6	92.16	92.35	92.54	92.74	92.93	93.12	93.32	93.51	93.70	93.90	
7	94.09	94.28	94.48	94.67	94.87	95.06	95.26	95.45	95.65	95.84	
8	96.04	96.24	96.43	96.63	96.83	97.02	97.22	97.42	97.61	97.81	
9	98.01	98.21	98.41	98.60	98.80	99.00	99.20	99.40	99.60	99.80	
10.0	100.0										

Moving the decimal point ONE place in N requires moving it TWO places in body of table (see p. 6).

CUBES OF NUMBERS

N	0	1	2	3	4	5	6	7	8	9	Avg.
1.00	1.000	1.003	1.006	1.009	1.012	1.015	1.018	1.021	1.024	1.027	3
1	1.030	1.033	1.036	1.040	1.043	1.046	1.049	1.052	1.055	1.058	
2	1.061	1.064	1.067	1.071	1.074	1.077	1.080	1.083	1.086	1.090	
3	1.093	1.096	1.099	1.102	1.106	1.109	1.112	1.115	1.118	1.122	
4	1.125	1.128	1.131	1.135	1.138	1.141	1.144	1.148	1.151	1.154	
1.05	1.158	1.161	1.164	1.168	1.171	1.174	1.178	1.181	1.184	1.188	4
6	1.191	1.194	1.198	1.201	1.205	1.208	1.211	1.215	1.218	1.222	
7	1.225	1.228	1.232	1.235	1.239	1.242	1.246	1.249	1.253	1.256	
8	1.260	1.263	1.267	1.270	1.274	1.277	1.281	1.284	1.288	1.291	
9	1.295	1.299	1.302	1.306	1.309	1.313	1.317	1.320	1.324	1.327	
1.10	1.331	1.335	1.338	1.342	1.346	1.349	1.353	1.357	1.360	1.364	
1	1.368	1.371	1.375	1.379	1.382	1.386	1.390	1.394	1.397	1.401	
2	1.405	1.409	1.412	1.416	1.420	1.424	1.428	1.431	1.435	1.439	
3	1.443	1.447	1.451	1.454	1.458	1.462	1.466	1.470	1.474	1.478	
4	1.482	1.485	1.489	1.493	1.497	1.501	1.505	1.509	1.513	1.517	
1.15	1.521	1.525	1.529	1.533	1.537	1.541	1.545	1.549	1.553	1.557	
6	1.561	1.565	1.569	1.573	1.577	1.581	1.585	1.589	1.593	1.598	
7	1.602	1.606	1.610	1.614	1.618	1.622	1.626	1.631	1.635	1.639	
8	1.643	1.647	1.651	1.656	1.660	1.664	1.668	1.672	1.677	1.681	
9	1.685	1.689	1.694	1.698	1.702	1.706	1.711	1.715	1.719	1.724	
1.20	1.728	1.732	1.737	1.741	1.745	1.750	1.754	1.758	1.763	1.767	5
1	1.772	1.776	1.780	1.785	1.789	1.794	1.798	1.802	1.807	1.811	
2	1.816	1.820	1.825	1.829	1.834	1.838	1.843	1.847	1.852	1.856	
3	1.861	1.865	1.870	1.875	1.879	1.884	1.888	1.893	1.897	1.902	
4	1.907	1.911	1.916	1.920	1.925	1.930	1.934	1.939	1.944	1.948	
1.25	1.953	1.958	1.963	1.967	1.972	1.977	1.981	1.986	1.991	1.996	- 400
6	2.000	2.005	2.010	2.015	2.019	2.024	2.029	2.034	2.039	2.044	
7	2.048	2.053	2.058	2.063	2.068	2.073	2.078	2.082	2.087	2.092	
8	2.097	2.102	2.107	2.112	2.117	2.122	2.127	2.132	2.137	2.142	
9	2.147	2.152	2.157	2.162	2.167	2.172	2.177	2.182	2.187	2.192	
1.30	2.197	2.202	2.207	2.212	2.217	2.222	2.228	2.233	2.238	2.243	
1	2.248	2.253	2.258	2.264	2.269	2.274	2.279	2.284	2.290	2.295	
2	2.300	2.305	2.310	2.316	2.321	2.326	2.331	2.337	2.342	2.347	
3	2.353	2.358	2.363	2.369	2.374	2.379	2.385	2.390	2.395	2.401	
4	2.406	2.411	2.417	2.422	2.428	2.433	2.439	2.444	2.449	2.455	
1.35	2.460	2.466	2.471	2.477	2.482	2.488	2.493	2.499	2.504	2.510	6
6	2.515	2.521	2.527	2.532	2.538	2.543	2.549	2.554	2.560	2.566	
7	2.571	2.577	2.583	2.588	2.594	2.600	2.605	2.611	2.617	2.622	
8	2.628	2.634	2.640	2.645	2.651	2.657	2.663	2.668	2.674	2.680	
9	2.686	2.691	2.697	2.703	2.709	2.715	2.721	2.726	2.732	2.738	
1.40	2.744	2.750	2.756	2.762	2.768	2.774	2.779	2.785	2.791	2.797	
1	2.803	2.809	2.815	2.821	2.827	2.833	2.839	2.845	2.851	2.857	
2	2.863	2.869	2.875	2.881	2.888	2.894	2.900	2.906	2.912	2.918	
3	2.924	2.930	2.936	2.943	2.949	2.955	2.961	2.967	2.974	2.980	
4	2.986	2.992	2.998	3.005	3.011	3.017	3.023	3.030	3.036	3.042	
1.45	3.049	3.055	3.061	3.068	3.074	3.080	3.087	3.093	3.099	3.106	7
6	3.112	3.119	3.125	3.131	3.138	3.144	3.151	3.157	3.164	3.170	
7	3.177	3.183	3.190	3.196	3.203	3.209	3.216	3.222	3.229	3.235	
8	3.242	3.248	3.255	3.262	3.268	3.275	3.281	3.288	3.295	3.301	
9	3.308	3.315	3.321	3.328	3.335	3.341	3.348	3.355	3.362	3.368	

Moving the decimal point ONE place in N requires moving it THREE places in body of table (see p. 10).

CUBES (continued)

001	DED (C	onunue	1)						SVAIN	7-7-6-6	
N	0	1	2	3	4	5	6	7	8	9	Avg.
1.50	3.375	3.382	3.389	3.395	3.402	3.409	3.416	3.422	3.429	-3.436	7
1	3.443	3.450	3.457	3.464	3.470	3.477	3.484	3.491	3.498	3.505	
2	3.512	3.519	3.526	3.533	3.540	3.547	3.554	3.561	3.568	3.575	
3	3.582	3.589	3.596	3.603	3.610	3.617	3.624	3.631	3.638	3.645	
4	3.652	3.659	3.667	3.674	3.681	3.688	3.695	3.702	3.709	3.717	
1.55	3.724	3.731	3.738	3.746	3.753	3.760	3.767	3.775	3.782	3.789	8
6	3.796	3.804	3.811	3.818	3.826	3.833	3.840	3.848	3.855	3.863	
7	3.870	3.877	3.885	3.892	3.900	3.907	3.914	3.922	3.929	3.937	
8	3.944	3.952	3.959	3.967	3.974	3.982	3.989	3.997	4.005	4.012	
9	4.020	4.027	4.035	4.042	4.050	4.058	4.065	4.073	4.081	4.088	
1.60	4.096	4.104	4.111	4.119	4.127	4.135	4.142	4.150	4.158	4.166	
1	4.173	4.181	4.189	4.197	4.204	4.212	4.220	4.228	4.236	4.244	
2	4.252	4.259	4.267	4.275	4.283	4.291	4.299	4.307	4.315	4.323	
3	4.331	4.339	4.347	4.355	4.363	4.371	4.379	4.387	4.395	4.403	
4	4.411	4.419	4.427	4.435	4.443	4.451	4.460	4.468	4.476	4.484	
1.65	4.492	4.500	4.508	4.517	4.525	4.533	4.541	4.550	4.558	4.566	9
6	4.574	4.583	4.591	4.599	4.607	4.616	4.624	4.632	4.641	4.649	
7	4.657	4.666	4.674	4.683	4.691	4.699	4.708	4.716	4.725	4.733	
8	4.742	4.750	4.759	4.767	4.776	4.784	4.793	4.801	4.810	4.818	
9	4.827	4.835	4.844	4.853	4.861	4.870	4.878	4.887	4.896	4.904	
1.70	4.913	4.922	4,930	4.939	4.948	4.956	4.965	4.974	4.983	4.991	
1	5.000	5.009	5.018	5.027	5.035	5.044	5.053	5.062	5.071	5.080	
2	5.088	5.097	5.106	5.115	5.124	5.133	5.142	5.151	5.160	5.169	
3	5.178	5.187	5.196	5.205	5.214	5.223	5.232	5.241	5.250	5.259	
4	5.268	5.277	5.286	5.295	5.304	5.314	5.323	5.332	5.341	5.350	
1.75	5.359	5,369	5.378	5.387	5.396	5.405	5.415	5.424	5.433	5.442	10
6	5.452	5,461	5.470	5.480	5.489	5.498	5.508	5.517	5.526	5.536	
7	5.545	5,555	5.564	5.573	5.583	5.592	5.602	5.611	5.621	5.630	
8	5.640	5,649	5.659	5.668	5.678	5.687	5.697	5.707	5,716	5.726	
9	5.735	5,745	5.755	5.764	5.774	5.784	5.793	5.803	5.813	5.822	
1.80	5.832	5.842	5.851	5.861	5.871	5.881	5.891	5.900	5.910	5.920	
1	5.930	5.940	5.949	5.959	5.969	5.979	5.989	5.999	6.009	6.019	
2	6.029	6.039	6.048	6.058	6.068	6.078	6.088	6.098	6.108	6.118	
3	6.128	6.139	6.149	6.159	6.169	6.179	6.189	6.199	6.209	6.219	
4	6.230	6.240	6.250	6.260	6.270	6.280	6.291	6.301	6.311	6.321	
1.85	6.332	6.342	6.352	6.362	6.373	6.383	6.393	6.404	6.414	6.424	11
6	6.435	6.445	6.456	6.466	6.476	6.487	6.497	6.508	6.518	6.529	
7	6.539	6.550	6.560	6.571	6.581	6.592	6.602	6.613	6.623	6.634	
8	6.645	6.655	6.666	6.677	6.687	6.698	6.708	6.719	6.730	6.741	
9	6.751	6.762	6.773	6.783	6.794	6.805	6.816	6.827	6.837	6.848	
1.90	6.859	6.870	6.881	6.892	6.902	6.913	6.924	6.935	6.946	6.957	
1	6.968	6.979	6.990	7.001	7.012	7.023	7.034	7.045	7.056	7.067	
2	7.078	7.089	7.100	7.111	7.122	7.133	7.144	7.156	7.167	7.178	
3	7.189	7.200	7.211	7.223	7.234	7.245	7.256	7.268	7.279	7.290	
4	7.301	7.313	7.324	7.335	7.347	7.358	7.369	7.381	7.392	7.403	
1.95	7.415	7.426	7.438	7.449	7.461	7.472	7.484	7.495	7.507	7.518	17
6	7.530	7.541	7.553	7.564	7.576	7.587	7.599	7.610	7.622	7.634	
7	7.645	7.657	7.669	7.680	7.692	7.704	7.715	7.727	7.739	7.751	
8	7.762	7.774	7.786	7.798	7.810	7.821	7.833	7.845	7.857	7.869	
9	7.881	7.892	7.904	7.916	7.928	7.940	7.952	7.964	7.976	7.988	
	The second second second										

N	C	1	2	3	4	5	6	7	8	9	Avg.
2.00	8.000	8.012	8.024	8.036	8.048	8.060	8.072	8.084	8.096	8.108	12
1	8.121	8.133	8.145	8.157	8.169	8.181	8.194	8.206	8.218	8.230	
2	8.242	8.255	8.267	8.279	8.291	8.304	8.316	8.328	8.341	8.353	
3	8.365	8.378	8.390	8.403	8.415	8.427	8.440	8.452	8.465	8.477	
4	8.490	8.502	8.515	8.527	8.540	8.552	8.565	8.577	8.590	8.603	
2.05	8.615	8.628	8.640	8.653	8.666	8.678	8.691	8.704	8.716	8.729	13
6	8.742	8.755	8.767	8.780	8.793	8.806	8.818	8.831	8.844	8.857	
7	8.870	8.883	8.895	8.908	8.921	8.934	8.947	8.960	8.973	8.986	
8	8.999	9.012	9.025	9.038	9.051	9.064	9.077	9.090	9.103	9.116	
9	9.129	9.142	9.156	9.169	9.182	9.195	9.208	9.221	9.235	9.248	
2.10	9.261	9.274	9.287	9.301	9.314	9.327	9.341	9.354	9.367	9.381	14
1	9.394	9.407	9.421	9.434	9.447	9.461	9.474	9.488	9.501	9.515	
2	9.528	9.542	9.555	9.569	9.582	9.596	9.609	9.623	9.636	9.650	
3	9.664	9.677	9.691	9.704	9.718	9.732	9.745	9.759	9.773	9.787	
4	9.800	9.814	9.828	9.842	9.855	9.869	9.883	9.897	9.911	9.925	
2.15 2.1 2 3 4	9.938 10.65 12.17 13.82	9.952 10.79 12.33 14.00	9.966 10.94 12.49 14.17	9.980 11.09 12.65 14.35	9.994 11.24 12.81 14.53	10.008 9.94 11.39 12.98 14.71	10.08 11.54 13.14 14.89	10.22 11.70 13.31 15.07	10.36 11.85 13.48 15.25	10.50 12.01 13.65 15.44	14 14 15 16 18
2.5	15.62	15.81	16.00	16.19	16.39	16.58	16.78	16.97	17.17	17.37	20
6	17.58	17.78	17.98	18.19	18.40	18.61	18.82	19.03	19.25	19.47	21
7	19.68	19.90	20.12	20.35	20.57	20.80	21.02	21.25	21.48	21.72	23
8	21.95	22.19	22.43	22.67	22.91	23.15	23.39	23.64	23.89	24.14	24
9	24.39	24.64	24.90	25.15	25.41	25.67	25.93	26.20	26.46	26.73	26
3.0	27.00	27.27	27.54	27.82	28.09	28.37	28.65	28.93	29.22	29.50	28
1	29.79	30.08	30.37	30.66	30.96	31.26	31.55	31.86	32.16	32.46	30
2	32.77	33.08	33.39	33.70	34.01	34.33	34.65	34.97	35.29	35.61	32
3	35.94	36.26	36.59	36.93	37.26	37.60	37.93	38.27	38.61	38.96	34
4	39.30	39.65	40.00	40.35	40.71	41.06	41.42	41.78	42.14	42.51	36
3.5	42.88	43.24	43.61	43.99	44.36	44.74	45.12	45.50	45.88	46.27	39
6	46.66	47.05	47.44	47.83	48.23	48.63	49.03	49.43	49.84	50.24	40
7	50.65	51.06	51.48	51.90	52.31	52.73	53.16	53.58	54.01	54.44	42
8	54.87	55.31	55.74	56.18	56.62	57.07	57.51	57.96	58.41	58.86	44
9	59.32	59.78	60.24	60.70	61.16	61.63	62.10	62.57	63.04	63.52	47
4.0	64.00	64.48	64.96	65.45	65,94	66.43	66.92	67.42	67.92	68.42	49
1	68.92	69.43	69.93	70.44	70,96	71.47	71.99	72.51	73.03	73.56	52
2	74.09	74.62	75.15	75.69	76,23	76.77	77.31	77.85	78.40	78.95	54
3	79.51	80.06	80.62	81.18	81,75	82.31	82.88	83.45	84.03	84.60	58
4	85.18	85.77	86.35	86.94	87,53	88.12	88.72	89.31	89.92	90.52	59
4.5 6 6 7	91.12 97.34 103.8	91.73 97.97 104.5	92.35 98.61 105.2	92.96 99.25 105.8	93.58 99.90 106.5	94.20 100.54 100.5 107.2	94.82 101.2 107.9	95.44 101.8 108.5	96.07 102.5 109.2	96.70 103.2 109.9	62 64 7 7 7
4.5 6 6 7 8 9	1000					100.5	101.2 107.9 114.8 122.0	101.8 108.5 115.5 122.8	102.5 109.2 116.2 123.5	103.2 109.9 116.9 124.3	

Explanation of Table of Cubes (pp. 8-11).

This table gives the value of N^3 for values of N from 1 to 10, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the cube of a number N outside the range from 1 to 10, note that moving the decimal point one place in column N is equivalent to moving it three places in the body of the table. For example: $(4.852)^3 = 114.2$; $(0.4852)^3 = 0.1142$; $(485.2)^3 = 114200000$ This table may also be used inversely, to give cube roots.

CUBES (continued)

001	DES (CO	ntinue	1)		SIG. S				1807.63		
N	0	1	2	3	4	5	6	7	8	9	Avg.
5.0 1 2 3 4	125.0 132.7 140.6 148.9 157.5	125.8 133.4 141.4 149.7 158.3	126.5 134.2 142.2 150.6 159.2	127.3 135.0 143.1 151.4 160.1	128.0 135.8 143.9 152.3 161.0	128.8 136.6 144.7 153.1 161.9	129.6 137.4 145.5 154.0 162.8	130.3 138.2 146.4 154.9 163.7	131.1 139.0 147.2 155.7 164.6	131.9 139.8 148.0 156.6 165.5	8
5.5 6 7 8 9	166.4 175.6 185.2 195.1 205.4	167.3 176.6 186.2 196.1 206.4	168.2 177.5 187.1 197.1 207.5	169.1 178.5 188.1 198.2 208.5	170.0 179.4 189.1 199.2 209.6	171.0 180.4 190.1 200.2 210.6	171.9 181.3 191.1 201.2 211.7	172.8 182.3 192.1 202.3 212.8	173.7 183.3 193.1 203.3 213.8	174.7 184.2 194.1 204.3 214.9	10
6.0 1 2 3 4	216.0 227.0 238.3 250.0 262.1	217.1 228.1 239.5 251.2 263.4	218.2 229.2 240.6 252.4 264.6	219.3 230.3 241.8 253.6 265.8	220.3 231.5 243.0 254.8 267.1	221.4 232.6 244.1 256.0 268.3	222.5 233.7 245.3 257.3 269.6	223.6 234.9 246.5 258.5 270.8	224.8 236.0 247.7 259.7 272.1	225.9 237.2 248.9 260.9 273.4	11 12
6.5 6 7 8 9	274.6 287.5 300.8 314.4 328.5	275.9 288.8 302.1 315.8 329.9	277.2 290.1 303.5 317.2 331.4	278.4 291.4 304.8 318.6 332.8	279.7 292.8 306.2 320.0 334.3	281.0 294.1 307.5 321.4 335.7	282.3 295.4 308.9 322.8 337.2	283.6 296.7 310.3 324.2 338.6	284.9 298.1 311.7 325.7 340.1	286.2 299.4 313.0 327.1 341.5	13
7.0 1 2 3 4	343.0 357.9 373.2 389.0 405.2	344.5 359.4 374.8 390.6 406.9	345.9 360.9 376.4 392.2 408.5	347.4 362.5 377.9 393.8 410.2	348.9 364.0 379.5 395.4 411.8	350.4 365.5 381.1 397.1 413.5	351.9 367.1 382.7 398.7 415.2	353.4 368.6 384.2 400.3 416.8	354.9 370.1 385.8 401.9 418.5	356.4 371.7 387.4 403.6 420.2	15 16 17
7.5 6 7 8 9	421.9 439.0 456.5 474.6 493.0	423.6 440.7 458.3 476.4 494.9	425.3 442.5 460.1 478.2 496.8	427.0 444.2 461.9 480.0 498.7	428.7 445.9 463.7 481.9 500.6	430.4 447.7 465.5 483.7 502.5	432.1 449.5 467.3 485.6 504.4	433.8 451.2 469.1 487.4 506.3	435.5 453.0 470.9 489.3 508.2	437.2 454.8 472.7 491.2 510.1	18
8.0 1 2 3 4	512.0 531.4 551.4 571.8 592.7	513.9 533.4 553.4 573.9 594.8	515.8 535.4 555.4 575.9 596.9	517.8 537.4 557.4 578.0 599.1	519.7 539.4 559.5 580.1 601.2	521.7 541.3 561.5 582.2 603.4	523.6 543.3 563.6 584.3 605.5	525.6 545.3 565.6 586.4 607.6	527.5 547.3 567.7 588.5 609.8	529.5 549.4 569.7 590.6 612.0	20 21
8.5 6 7 8 9	614.1 636.1 658.5 681.5 705.0	616.3 638.3 660.8 683.8 707.3	618.5 640.5 663.1 686.1 709.7	620.7 642.7 665.3 688.5 712.1	622.8 645.0 667.6 690.8 714.5	625.0 647.2 669.9 693.2 716.9	627.2 649.5 672.2 695.5 719.3	629.4 651.7 674.5 697.9 721.7	631.6 654.0 676.8 700.2 724.2	633.8 656.2 679.2 702.6 726.6	22 23 24
9.0 1 2 3 4	729.0 753.6 778.7 804.4 830.6	731.4 756.1 781.2 807.0 833.2	733.9 758.6 783.8 809.6 835.9	736.3 761.0 786.3 812.2 838.6	738.8 763.6 788.9 814.8 841.2	741.2 766.1 791.5 817.4 843.9	743.7 768.6 794.0 820.0 846.6	746.1 771.1 796.6 822.7 849.3	748.6 773.6 799.2 825.3 852.0	751.1 776.2 801.8 827.9 854.7	25 26 27
9.5 6 7 8 9	857.4 884.7 912.7 941.2 970.3	860.1 887.5 915.5 944.1 973.2	862.8 890.3 918.3 947.0 976.2	865.5 893.1 921.2 949.9 979.1	868.3 895.8 924.0 952.8 982.1	871.0 898.6 926.9 955.7 985.1	873.7 901.4 929.7 958.6 988.0	876.5 904.2 932.6 961.5 991.0	879.2 907.0 935.4 964.4 994.0	882.0 909.9 938.3 967.4 997.0	28 29
10.0	1000.0	A HE		this	1						286
			$\pi^3 =$	31.006	3	$1/\pi^3 = 0.03$	322515 +	-	7		

Moving the decimal point ONE place in N requires moving it THREE places in body of table (see p. 10).

SQUARE ROOTS OF NUMBERS

N	0	1	2	3	4	5	6	7	8	9	Avg.
1.0	1.000	1.005	1.010	1.015	1.020	1.025	1.030	1.034	1.039	1.044	5
1	1.049	1.054	1.058	1.063	1.068	1.072	1.077	1.082	1.086	1.091	
2	1.095	1.100	1.105	1.109	1.114	1.118	1.122	1.127	1.131	1.136	
3	1.140	1.145	1.149	1.153	1.158	1.162	1.166	1.170	1.175	1.179	
4	1.183	1.187	1.192	1.196	1.200	1.204	1.208	1.212	1.217	1.221	
1.5	1.225	1.229	1.233	1.237	1.241	1.245	1.249	1.253	1.257	1.261	1
6	1.265	1.269	1.273	1.277	1.281	1.285	1.288	1.292	1.296	1.300	
7	1.304	1.308	1.311	1.315	1.319	1.323	1.327	1.330	1.334	1.338	
8	1.342	1.345	1.349	1.353	1.356	1.360	1.364	1.367	1.371	1.375	
9	1.378	1.382	1.386	1.389	1.393	1.396	1.400	1.404	1.407	1.411	
2.0	1.414	1.418	1.421	1.425	1.428	1.432	1.435	1.439	1.442	1.446	3
1	1.449	1.453	1.456	1.459	1.463	1.466	1.470	1.473	1.476	1.480	
2	1.483	1.487	1.490	1.493	1.497	1.500	1.503	1.507	1.510	1.513	
3	1.517	1.520	1.523	1.526	1.530	1.533	1.536	1.539	1.543	1.546	
4	1.549	1.552	1.556	1.559	1.562	1.565	1.568	1.572	1.575	1.578	
2.5	1.581	1.584	1.587	1.591	1.594	1.597	1.600	1.603	1.606	1.609	
6	1.612	1.616	1.619	1.622	1.625	1.628	1.631	1.634	1.637	1.640	
7	1.643	1.646	1.649	1.652	1.655	1.658	1.661	1.664	1.667	1.670	
8	1.673	1.676	1.679	1.682	1.685	1.688	1.691	1.694	1.697	1.700	
9	1.703	1.706	1.709	1.712	1.715	1.718	1.720	1.723	1.726	1.729	
3.0	1.732	1.735	1.738	1.741	1.744	1.746	1.749	1.752	1.755	1.758	See and the
1	1.761	1.764	1.766	1.769	1.772	1.775	1.778	1.780	1.783	1.786	
2	1.789	1.792	1.794	1.797	1.800	1.803	1.806	1.808	1.811	1.814	
3	1.817	1.819	1.822	1.825	1.828	1.830	1.833	1.836	1.838	1.841	
4	1.844	1.847	1.849	1.852	1.855	1.857	1.860	1.863	1.865	1.868	
3.5	1.871	1.873	1.876	1.879	1.881	1.884	1.887	1.889	1.892	1.895	
6	1.897	1.900	1.903	1.905	1.908	1.910	1.913	1.916	1.918	1.921	
7	1.924	1.926	1.929	1.931	1.934	1.936	1.939	1.942	1.944	1.947	
8	1.949	1.952	1.954	1.957	1.960	1.962	1.965	1.967	1.970	1.972	
9	1.975	1.977	1.980	1.982	1.985	1.987	1.990	1.992	1.995	1.997	
4.0	2.000	2.002	2.005	2.007	2.010	2.012	2.015	2.017	2.020	2.022	2
1	2.025	2.027	2.030	2.032	2.035	2.037	2.040	2.042	2.045	2.047	
2	2.049	2.052	2.054	2.057	2.059	2.062	2.064	2.066	2.069	2.071	
3	2.074	2.076	2.078	2.081	2.083	2.086	2.088	2.090	2.093	2.095	
4	2.098	2.100	2.102	2.105	2.107	2.110	2.112	2.114	2.117	2.119	
4.5	2.121	2.124	2.126	2.128	2.131	2.133	2.135	2.138	2.140	2.142	1
6	2.145	2.147	2.149	2.152	2.154	2.156	2.159	2.161	2.163	2.166	
7	2.168	2.170	2.173	2.175	2.177	2.179	2.182	2.184	2.186	2.189	
8	2.191	2.193	2.195	2.198	2.200	2.202	2.205	2.207	2.209	2.211	
9	2.214	2.216	2.218	2.220	2.223	2.225	2.227	2.229	2.232	2.234	

 $\sqrt{\pi} = 1.77245 + 1/\sqrt{\pi} = 0.56419$ $\sqrt{\pi/2} = 1.25331$ $\sqrt{e} = 1.64872$

Explanation of Table of Square Roots (pp. 12-15).

This table gives the values of \sqrt{N} for values of N from 1 to 100, correct to four figures.

(Interpolated values may be in error by 1 in the fourth figure.)

To find the square root of a number N outside the range from 1 to 100, divide the digits of the number into blocks of two (beginning with the decimal point), and note that moving the decimal point two places in N is equivalent to moving it one place in the square root of N. For example:

$$\sqrt{2.718} = 1.648; \ \sqrt{271.8} = 16.48; \ \sqrt{0.0002718} = 0.01648; \ \sqrt{27.18} = 5.213; \ \sqrt{2718} = 52.13; \ \sqrt{0.002718} = 0.05213.$$

SQUARE ROOTS (continued)

N	0	1	2	3	4	. 5	6	7	8	9	Avg.
5.0	2.236	2.238	2.241	2.243	2.245	2.247	2.249	2.252	2.254	2.256	2
1	2.258	2.261	2.263	2.265	2.267	2.269	2.272	2.274	2.276	2.278	
2	2.280	2.283	2.285	2.287	2.289	2.291	2.293	2.296	2.298	2.300	
3	2.302	2.304	2.307	2.309	2.311	2.313	2.315	2.317	2.319	2.322	
4	2.324	2.326	2.328	2.330	2.332	2.335	2.337	2.339	2.341	2.343	
5.5	2.345	2.347	2.349	2.352	2.354	2.356	2.358	2.360	2.362	2.364	S Handalla
6	2.366	2.369	2.371	2.373	2.375	2.377	2.379	2.381	2.383	2.385	
7	2.387	2.390	2.392	2.394	2.396	2.398	2.400	2.402	2.404	2.406	
8	2.408	2.410	2.412	2.415	2.417	2.419	2.421	2.423	2.425	2.427	
9	2.429	2.431	2.433	2.435	2.437	2.439	2.441	2.443	2.445	2.447	
6.0	2.449	2.452	2.454	2.456	2.458	2.460	2.462	2.464	2.466	2.468	
1	2.470	2.472	2.474	2.476	2.478	2.480	2.482	2.484	2.486	2.488	
2	2.490	2.492	2.494	2.496	2.498	2.500	2.502	2.504	2.506	2.508	
3	2.510	2.512	2.514	2.516	2.518	2.520	2.522	2.524	2.526	2.528	
4	2.530	2.532	2.534	2.536	2.538	2.540	2.542	2.544	2.546	2.548	
6.5	2.550	2.551	2.553	2.555	2.557	2.559	2.561	2.563	2.565	2.567	
6	2.569	2.571	2.573	2.575	2.577	2.579	2.581	2.583	2.585	2.587	
7	2.588	2.590	2.592	2.594	2.596	2.598	2.600	2.602	2.604	2.606	
8	2.608	2.610	2.612	2.613	2.615	2.617	2.619	2.621	2.623	2.625	
9	2.627	2,629	2.631	2.632	2.634	2.636	2.638	2.640	2.642	2.644	
7.0	2.646	2.648	2.650	2.651	2.653	2.655	2.657	2.659	2.661	2.663	Tales Name
1	2.665	2.666	2.668	2.670	2.672	2.674	2.676	2.678	2.680	2.681	
2	2.683	2.685	2.687	2.689	2.691	2.693	2.694	2.696	2.698	2.700	
3	2.702	2.704	2.706	2.707	2.709	2.711	2.713	2.715	2.717	2.718	
4	2.720	2.722	2.724	2.726	2.728	2.729	2.731	2.733	2.735	2.737	
7.5	2.739	2.740	2.742	2.744	2.746	2.748	2.750	2.751	2.753	2.755	No.
6	2.757	2.759	2.760	2.762	2.764	2.766	2.768	2.769	2.771	2.773	
7	2.775	2.777	2.778	2.780	2.782	2.784	2.786	2.787	2.789	2.791	
8	2.793	2.795	2.796	2.798	2.800	2.802	2.804	2.805	2.807	2.809	
9	2.811	2.812	2.814	2.816	2.818	2.820	2.821	2.823	2.825	2.827	
8.0 1 2 3 4	2.828 2.846 2.864 2.881 2.898	2.830 2.848 2.865 2.883 2.900	2.832 2.850 2.867 2.884 2.902	2.834 2.851 2.869 2.886 2.903	2.835 2.853 2.871 2.888 2.905	2.837 2.855 2.872 2.890 2.907	2.839 2.857 2.874 2.891 2.909	2.841 2.858 2.876 2.893 2.910	2.843 2.860 2.877 2.895 2.912	2.844 2.862 2.879 2.897 2.914	na Last
8.5	2.915	2.917	2.919	2.921	2.922	2.924	2.926	2.927	2.929	2.931	Na Contraction
6	2.933	2.934	2.936	2.938	2.939	2.941	2.943	2.944	2.946	2.948	
7	2.950	2.951	2.953	2.955	2.956	2.958	2.960	2.961	2.963	2.965	
8	2.966	2.968	2.970	2.972	2.973	2.975	2.977	2.978	2.980	2.982	
9	2.983	2.985	2.987	2.988	2.990	2.992	2.993	2.995	2.997	2.998	
9.0	3.000	3.002	3.003	3.005	3.007	3.008	3.010	3.012	3.013	3.015	08
1	3.017	3.018	3.020	3.022	3.023	3.025	3.027	3.028	3.030	3.032	
2	3.033	3.035	3.036	3.038	3.040	3.041	3.043	3.045	3.046	3.048	
3	3.050	3.051	3.053	3.055	3.056	3.058	3.059	3.061	3.063	3.064	
4	3.066	3.068	3.069	3.071	3.072	3.074	3.076	3.077	3.079	3.081	
9.5 6 7 8 9	3.082 3.098 3.114 3.130 3.146	3.084 3.100 3.116 3.132 3.148		3.087 3.103 3,119 3.135 3.151	3.089 3.105 3.121 3.137 3.153	3.090 3.106 3.122 3.138 3.154	3.092 3.108 3.124 3.140 3.156	3.094 3.110 3.126 3.142 3.158	3.095 3.111 3.127 3.143 3.159	3.097 3.113 3.129 3.145 3.161	

Moving the decimal point TWO places in N requires moving it ONE place in body of table (see p. 12).

SQUARE ROOTS (continued)

		(00.1	- inaca	2	1 6 6 CA					ER C
0	1	2	3	4	5	6	7	8	9	Avg.
3.162 3.317 3.464 3.606 3.742	3.178 3.332 3.479 3.619 3.755	3.194 3.347 3.493 3.633 3.768	3.209 3.362 3.507 3.647 3.782	3.225 3.376 3.521 3.661 3.795	3.240 3.391 3.536 3.674 3.808	3.256 3.406 3.550 3.688 3.821	3.271 3.421 3.564 3.701 3.834	3.286 3.435 3.578 3.715 3.847	3.302 3.450 3.592 3.728 3.860	16 15 14 13
3.873 4.000 4.123 4.243 4.359	3.886 4.012 4.135 4.254 4.370	3.899 4.025 4.147 4.266 4.382	3.912 4.037 4.159 4.278 4.393	3.924 4.050 4.171 4.290 4.405	3.937 4.062 4.183 4.301 4.416	3.950 4.074 4.195 4.313 4.427	3.962 4.087 4.207 4.324 4.438	3.975 4.099 4.219 4.336 4.450	3.987 4.111 4.231 4.347 4.461	12 11
4.472	4.483	4.494	4.506	4.517	4.528	4.539	4.550	4.561	4.572	10
4.583	4.593	4.604	4.615	4.626	4.637	4.648	4.658	4.669	4.680	
4.690	4.701	4.712	4.722	4.733	4.743	4.754	4.764	4.775	4.785	
4.796	4.806	4.817	4.827	4.837	4.848	4.858	4.868	4.879	4.889	
4.899	4.909	4.919	4.930	4.940	4.950	4.960	4.970	4.980	4.990	
5.000	5.010	5.020	5.030	5.040	5.050	5.060	5.070	5.079	5.089	9
5.099	5.109	5.119	5.128	5.138	5.148	5.158	5.167	5.177	5.187	
5.196	5.206	5.215	5.225	5.235	5.244	5.254	5.263	5.273	5.282	
5.292	5.301	5.310	5.320	5.329	5.339	5.348	5.357	5.367	5.376	
5.385	5.394	5.404	5.413	5.422	5.431	5.441	5.450	5.459	5.468	
5.477	5.486	5.495	5.505	5.514	5.523	5.532	5.541	5.550	5.559	8
5.568	5.577	5.586	5.595	5.604	5.612	5.621	5.630	5.639	5.648	
5.657	5.666	5.675	5.683	5.692	5.701	5.710	5.718	5.727	5.736	
5.745	5.753	5.762	5.771	5.779	5.788	5.797	5.805	5.814	5.822	
5.831	5.840	5.848	5.857	5.865	5.874	5.882	5.891	5.899	5.908	
5.916	5.925	5.933	5.941	5.950	5.958	5.967	5.975	5.983	5.992	
6.000	6.008	6.017	6.025	6.033	6.042	6.050	6.058	6.066	6.075	
6.083	6.091	6.099	6.107	6.116	6.124	6.132	6.140	6.148	6.156	
6.164	6.173	6.181	6.189	6.197	6.205	6.213	6.221	6.229	6.237	
6.245	6.253	6.261	6.269	6.277	6.285	6.293	6.301	6.309	6.317	
6.325	6.332	6.340	6.348	6.356	6.364	6.372	6.380	6.387	6.395	
6.403	6.411	6.419	6.427	6.434	6.442	6.450	6.458	6.465	6.473	
6.481	6.488	6.496	6.504	6.512	6.519	6.527	6.535	6.542	6.550	
6.557	6.565	6.573	6.580	6.588	6.595	6.603	6.611	6.618	6.626	
6.633	6.641	6.648	6.656	6.663	6.671	6.678	6.686	6.693	6.701	
6.708	6.716	6.723	6.731	6.738	6.745	6.753	6.760	6.768	6.775	7
6.782	6.790	6.797	6.804	6.812	6.819	6.826	6.834	6.841	6.848	
6.856	6.863	6.870	6.877	6.885	6.892	6.899	6.907	6.914	6.921	
6.928	6.935	6.943	6.950	6.957	6.964	6.971	6.979	6.986	6.993	
7.000	7.007	7.014	7.021	7.029	7.036	7.043	7.050	7.057	7.064	
	3.162 3.317 3.464 3.472 3.873 4.000 4.123 4.243 4.243 4.243 4.599 4.472 4.583 4.4796 4.899 5.000 5.196 5.292 5.385 5.477 5.5687 5.677 5.745 5.831 6.000 6.083 6.164 6.245 6.481 6.537 6.638 6.708 6.708 6.708 6.708 6.928	3.162 3.178 3.317 3.332 3.464 3.479 3.606 3.619 3.742 3.755 3.873 3.886 4.000 4.012 4.123 4.135 4.243 4.254 4.359 4.370 4.472 4.483 4.583 4.593 4.690 4.701 4.796 4.806 4.899 4.909 5.000 5.010 5.099 5.109 5.196 5.292 5.301 5.385 5.394 5.477 5.565 6.575 5.667 5.753 5.831 5.840 5.477 5.486 5.775 5.831 5.840 5.477 5.565 6.600 6.008 6.083 6.091 6.164 6.173 6.245 6.253 6.325 6.332 6.403 6.411 6.481 6.481 6.481 6.481 6.482 6.790 6.856 6.863 6.790 6.856 6.863	3.162 3.178 3.194 3.317 3.332 3.347 3.464 3.479 3.493 3.606 3.619 3.633 3.742 3.755 3.768 3.873 3.886 3.899 4.000 4.012 4.025 4.123 4.135 4.147 4.243 4.254 4.266 4.359 4.370 4.382 4.472 4.483 4.593 4.604 4.583 4.593 4.604 4.583 4.593 4.604 4.690 4.701 4.712 4.796 4.806 4.817 4.796 4.806 4.817 4.796 5.206 5.215 5.292 5.301 5.310 5.385 5.394 5.404 5.477 5.486 5.495 5.568 5.577 5.586 5.577 5.586 5.567 5.765 5.765 5.745 5.753 5.762 5.831 5.840 5.848 5.916 5.925 5.933 6.000 6.008 6.017 6.083 6.091 6.099 6.103 6.091 6.099 6.104 6.173 6.181 6.245 6.253 6.261 6.325 6.332 6.340 6.401 6.411 6.419 6.481 6.488 6.496 6.557 6.565 6.573 6.536 6.641 6.648 6.782 6.790 6.797 6.856 6.863 6.870 6.792 6.856 6.863 6.870 6.792 6.856 6.863 6.870 6.928 6.935 6.943	3,162 3,178 3,194 3,209 3,317 3,332 3,347 3,362 3,464 3,479 3,493 3,507 3,606 3,619 3,633 3,647 3,742 3,755 3,768 3,782 3,873 3,886 3,899 3,912 4,000 4,012 4,025 4,037 4,123 4,135 4,147 4,159 4,243 4,254 4,266 4,278 4,254 4,264 4,264 4,278 4,259 4,370 4,382 4,393 4,472 4,483 4,494 4,506 4,583 4,593 4,604 4,615 4,690 4,701 4,712 4,722 4,796 4,806 4,817 4,827 4,899 4,909 4,919 4,930 5,000 5,010 5,020 5,030 5,099 5,109 5,119 5,128 5,196 5,206 5,215 5,225 5,292 5,301 5,310 5,320 5,385 5,394 5,404 3,413 5,477 5,486 5,495 5,505 5,568 5,575 5,566 5,575 5,567 5,666 5,675 5,683 5,745 5,753 5,762 5,771 5,831 5,840 5,848 5,857 5,916 5,925 5,933 5,941 6,000 6,008 6,017 6,025 6,083 6,091 6,099 6,107 6,164 6,173 6,181 6,189 6,245 6,255 6,255 6,255 5,265 5,255 6,255 6,255 5,265 5,255 6,255 6,255 5,265 5,255 6,255 6,255 5,265 5,255 6,255 6,255 5,265 5,255 5,263 5,745 5,753 5,762 5,771 5,831 5,840 5,848 5,857	3.162 3.178 3.194 3.209 3.225 3.317 3.332 3.347 3.362 3.376 3.464 3.479 3.493 3.507 3.521 3.606 3.619 3.633 3.647 3.631 3.742 3.755 3.768 3.782 3.795 3.873 3.886 3.899 3.912 3.924 4.000 4.012 4.025 4.037 4.050 4.123 4.135 4.147 4.159 4.171 4.123 4.135 4.147 4.159 4.171 4.243 4.254 4.266 4.278 4.290 4.359 4.370 4.382 4.393 4.405 4.472 4.483 4.494 4.506 4.517 4.583 4.593 4.604 4.615 4.626 4.690 4.701 4.712 4.722 4.733 4.796 4.806 4.817 4.827 4.873 4.796 4.806 4.817 4.827 4.837 4.796 5.206 5.215 5.225 5.235 5.196 5.206 5.215 5.225 5.235 5.292 5.301 5.310 5.320 5.329 5.385 5.394 5.404 5.413 5.422 5.477 5.486 5.495 5.505 5.514 5.568 5.577 5.586 5.595 5.604 5.657 5.666 5.675 5.683 5.692 5.745 5.753 5.762 5.771 5.779 5.831 5.840 5.848 5.857 5.865 5.916 5.925 5.933 5.941 5.950 6.000 6.008 6.017 6.025 6.033 6.083 6.091 6.099 6.107 6.116 6.164 6.173 6.181 6.189 6.197 6.225 6.332 6.340 6.348 6.396 6.083 6.091 6.099 6.107 6.116 6.164 6.173 6.181 6.189 6.197 6.225 6.332 6.340 6.348 6.356 6.083 6.091 6.099 6.007 6.016 6.164 6.173 6.181 6.189 6.197 6.225 6.332 6.340 6.348 6.356 6.263 6.411 6.419 6.427 6.434 6.481 6.488 6.496 6.504 6.512 6.557 6.565 6.573 6.580 6.588 6.708 6.716 6.723 6.731 6.738 6.782 6.790 6.797 6.804 6.812 6.876 6.863 6.870 6.877 6.884 6.876	0 1 2 3 4 5 3.162 3.178 3.194 3.209 3.225 3.240 3.317 3.332 3.347 3.362 3.376 3.391 3.464 3.479 3.493 3.507 3.521 3.536 3.606 3.619 3.633 3.647 3.661 3.674 3.742 3.755 3.768 3.782 3.795 3.808 3.873 3.886 3.899 3.912 3.924 3.937 4.000 4.012 4.025 4.037 4.050 4.062 4.123 4.135 4.147 4.159 4.171 4.183 4.243 4.254 4.266 4.278 4.290 4.301 4.359 4.370 4.382 4.393 4.405 4.416 4.472 4.483 4.494 4.506 4.517 4.528 4.583 4.974 4.0464 6.15 4.626 4.637 4.690 4.701 4.712 4.722 4.733 4.743 4.796 4.806 4.817 4.827 4.837 4.848 4.899 4.909 4.919 4.930 4.940 4.950 5.000 5.010 5.020 5.030 5.040 5.050 5.099 5.109 5.119 5.128 5.138 5.148 5.916 5.206 5.215 5.225 5.235 5.244 5.292 5.301 5.310 5.320 5.329 5.339 5.385 5.394 5.404 5.413 5.422 5.431 5.477 5.486 5.495 5.505 5.514 5.525 5.568 5.577 5.586 5.595 5.604 5.612 5.657 5.666 5.675 5.883 5.692 5.701 5.745 5.745 5.753 5.762 5.771 5.779 5.788 5.831 5.840 5.848 5.857 5.862 5.771 5.784 5.916 5.925 5.933 5.941 5.950 5.958 6.083 6.091 6.099 6.107 6.116 6.124 6.164 6.173 6.181 6.189 6.197 6.205 6.235 6.332 6.340 6.348 6.356 6.364 6.403 6.411 6.419 6.427 6.434 6.442 6.481 6.488 6.496 6.504 6.512 6.519 6.557 6.565 6.573 6.580 6.580 6.589 6.633 6.641 6.468 6.656 6.663 6.671 6.708 6.716 6.723 6.731 6.738 6.745 6.870 6.870 6.877 6.885 6.892	3.162 3.178 3.194 3.209 3.225 3.240 3.256 3.317 3.332 3.347 3.362 3.376 3.391 3.406 3.464 3.479 3.493 3.507 3.521 3.536 3.550 3.606 3.619 3.633 3.647 3.661 3.674 3.681 3.742 3.755 3.768 3.782 3.795 3.808 3.821 3.873 3.886 3.899 3.912 3.924 3.937 3.950 4.000 4.012 4.025 4.037 4.050 4.062 4.074 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.472 4.483 4.494 4.506 4.517 4.528 4.539 4.583 4.593 4.604 4.615 4.626 4.637 4.648 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.796 4.806 4.817 4.827 4.837 4.848 4.858 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.899 4.909 4.919 4.930 4.900 4.950 5.000 5.010 5.020 5.030 5.040 5.050 5.060 5.099 5.109 5.119 5.128 5.138 5.138 5.148 5.158 5.196 5.206 5.215 5.225 5.235 5.244 5.254 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.385 5.394 5.404 5.413 5.422 5.431 5.441 5.477 5.486 5.495 5.505 5.148 5.523 5.532 5.545 5.575 5.566 5.675 5.683 5.692 5.701 5.710 5.745 5.753 5.762 5.771 5.779 5.788 5.797 5.831 5.840 5.848 5.857 5.865 5.874 5.882 5.916 5.925 5.933 5.941 5.950 5.958 5.967 6.000 6.008 6.017 6.025 6.033 6.042 6.052 6.083 6.091 6.099 6.107 6.116 6.124 6.132 6.164 6.173 6.181 6.189 6.197 6.205 6.213 6.225 6.332 6.340 6.348 6.356 6.033 6.042 6.450 6.083 6.091 6.099 6.107 6.116 6.124 6.132 6.164 6.173 6.181 6.189 6.197 6.205 6.213 6.255 6.332 6.340 6.348 6.356 6.336 6.042 6.450 6.403 6.411 6.419 6.427 6.434 6.442 6.450 6.403 6.411 6.419 6.427 6.434 6.442 6.450 6.825 6.332 6.340 6.348 6.556 6.633 6.042 6.450 6.836 6.091 6.099 6.107 6.116 6.124 6.132 6.164 6.173 6.181 6.189 6.197 6.205 6.213 6.255 6.332 6.340 6.348 6.356 6.334 6.042 6.450 6.504 6.403 6.411 6.419 6.427 6.434 6.442 6.450 6.836 6.641 6.648 6.656 6.663 6.671 6.678	3.162 3.178 3.194 3.209 3.225 3.240 3.256 3.271 3.317 3.332 3.347 3.362 3.376 3.391 3.406 3.421 3.464 3.479 3.493 3.507 3.521 3.536 3.550 3.564 3.688 3.701 3.742 3.755 3.768 3.782 3.795 3.808 3.681 3.683 3.701 3.742 3.755 3.768 3.782 3.795 3.808 3.621 3.688 3.701 3.742 3.755 3.768 3.782 3.795 3.808 3.621 3.684 3.688 3.701 3.742 3.755 3.768 3.782 3.795 3.808 3.621 3.634 4.082 4.025 4.037 4.050 4.062 4.074 4.087 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.207 4.234 4.254 4.266 4.278 4.290 4.301 4.313 4.324 4.254 4.266 4.278 4.290 4.301 4.313 4.324 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4.494 4.506 4.517 4.528 4.539 4.550 4.590 4.701 4.712 4.722 4.733 4.743 4.754 4.764 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.764 4.899 4.999 4.919 4.930 4.940 4.950 4.900 4.970 5.090 5.010 5.020 5.030 5.040 5.050 5.060 5.070 5.099 5.109 5.119 5.128 5.138 5.148 5.167 5.196 5.206 5.215 5.225 5.235 5.244 5.254 5.263 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.385 5.394 5.404 5.413 5.422 5.431 5.441 5.450 5.621 5.205 5.215 5.225 5.235 5.244 5.254 5.263 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.865 5.575 5.666 5.675 5.683 5.692 5.701 5.710 5.718 5.745 5.753 5.762 5.771 5.779 5.788 5.797 5.805 5.831 5.840 5.848 5.857 5.865 5.874 5.852 5.933 5.941 5.950 5.958 5.967 5.975 6.000 6.008 6.017 6.025 6.033 6.042 6.050 6.053 6.083 6.091 6.099 6.109 6.107 6.116 6.124 6.132 6.140 6.254 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.245 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.245 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.411 6.419 6.427 6.434 6.442 6.450 6.458 6.656 6.663 6.671 6.678 6.686 6.670 6.678 6.683 6.671 6.678 6.686 6.670 6.678 6.680 6.670 6.876 6.870 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.804 6.870 6.877 6.885 6.892 6.899 6.907 6.906 6.906 6.906 6.906 6.906 6.906 6.906 6.906 6.892 6.899 6.907 6.804 6.870	3.162 3.178 3.194 3.209 3.225 3.240 3.256 3.271 3.286 3.317 3.332 3.347 3.362 3.376 3.391 3.406 3.421 3.435 3.464 3.479 3.493 3.507 3.521 3.536 3.550 3.564 3.578 3.606 3.619 3.633 3.647 3.661 3.674 3.688 3.701 3.715 3.724 3.755 3.768 3.782 3.795 3.808 3.821 3.834 3.847 3.843 3.742 3.493 3.755 3.768 3.782 3.795 3.808 3.821 3.834 3.847 3.843 3.400 4.012 4.025 4.037 4.050 4.062 4.074 4.087 4.099 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.274 4.234 4.254 4.266 4.278 4.290 4.301 4.313 4.324 4.336 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4.450 4.506 4.507 4.468 4.658 4.669 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.664 4.674 4.899 4.790 4.701 4.712 4.722 4.733 4.743 4.754 4.764 4.775 4.890 4.990 4.919 4.919 4.930 4.940 4.950 4.900 4.970 4.980 5.000 5.010 5.020 5.030 5.040 5.050 5.060 5.070 5.079 5.099 5.109 5.119 5.128 5.138 5.148 5.158 5.167 5.177 5.196 5.206 5.215 5.225 5.235 5.244 5.254 5.263 5.277 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.367 5.365 5.575 5.666 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.675 5.668 5.677 5.785 5.895 5.891 5.891 6.000 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.109 6.096 6.076 6.166 6.083 6.091 6.099 6.099 6.109 5.888 5.877 5.865 5.895 5.804 5.804 5.882 5.891 5.899 5.966 6.033 6.041 6.419 6.427 6.434 6.442 6.450 6.458 6.666 6.083 6.091 6.099 6.099 6.109 6.076 6.116 6.124 6.132 6.140 6.148 6.168 6.083 6.091 6.099 6.090 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.090 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.090 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.090 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.090 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.083 6.091 6.099 6.090 6.098 6.097 6.091 6.196 6.226 6.233 6.241 6.249 6.245 6.253 6.261 6.269 6.277 6.285 6.293 6.301 6.309 6.091 6.099	3.162 3.178 3.194 3.209 3.225 3.240 3.256 3.271 3.286 3.302 3.317 3.332 3.347 3.362 3.376 3.391 3.406 3.421 3.435 3.450 3.464 3.479 3.493 3.507 3.521 3.536 3.550 3.564 3.578 3.592 3.606 3.619 3.633 3.647 3.661 3.674 3.688 3.701 3.715 3.728 3.724 3.755 3.768 3.782 3.795 3.808 3.821 3.834 3.847 3.860 3.873 3.886 3.899 3.912 3.924 3.937 3.950 3.962 3.975 3.987 4.000 4.012 4.025 4.037 4.050 4.062 4.074 4.087 4.099 4.111 4.123 4.135 4.147 4.159 4.171 4.183 4.195 4.207 4.219 4.231 4.243 4.254 4.266 4.278 4.290 4.301 4.313 4.132 4.236 4.347 4.359 4.370 4.382 4.393 4.405 4.416 4.427 4.438 4.450 4.461 4.472 4.483 4.494 4.506 4.517 4.528 4.539 4.550 4.561 4.572 4.583 4.593 4.604 4.615 4.626 4.637 4.648 4.658 4.669 4.680 4.690 4.701 4.712 4.722 4.733 4.743 4.754 4.764 4.775 4.782 4.796 4.806 4.817 4.827 4.837 4.848 4.858 4.868 4.879 4.899 4.909 4.919 4.930 4.940 4.950 4.970 4.980 4.990 4.990 5.000 5.010 5.020 5.030 5.040 5.050 5.060 5.070 5.079 5.089 5.099 5.109 5.119 5.128 5.138 5.148 5.158 5.167 5.177 5.187 5.196 5.206 5.215 5.225 5.235 5.244 5.254 5.263 5.273 5.285 5.292 5.301 5.310 5.320 5.329 5.339 5.348 5.357 5.367 5.376 5.385 5.394 5.404 5.413 5.422 5.431 5.441 5.450 5.459 5.468 5.675 5.566 5.575 5.666 5.675 5.663 5.692 5.711 5.779 5.788 5.745 5.753 5.762 5.771 5.779 5.788 5.745 5.753 5.762 5.771 5.779 5.788 5.745 5.753 5.762 5.771 5.779 5.788 5.795 5.803 5.844 5.848 5.89 5.900 6.008 6.017 6.025 6.033 6.042 6.050 6.058 6.066 6.075 6.083 6.091 6.099 6.109 6.018 6.184 6.189 6.197 6.205 6.233 6.241 6.249 6.237 6.235 6.241 6.249 6.237 6.235 6.241 6.249 6.237 6.235 6.236 6.261 6.269 6.277 6.285 6.293 6.301 6.309 6.319 6.309 6.309 6.009 6.008 6.016 6.026 6.033 6.042 6.050 6.058 6.066 6.075 6.083 6.091 6.099 6.109 6.107 6.116 6.124 6.412 6.413 6.418 6.486 6.486 6.486 6.656 6.633 6.641 6.488 6.486 6

SQUARE ROOTS OF CERTAIN FRACTIONS

N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}	N	\sqrt{N}
1/2 1/3 2/3 1/4 3/4 1/6 2/5	0.7071 0.5774 0.8165 0.5000 0.8660 0.4472 0.6325	3/5 4/5 1/6 5/6 1/7 3/7	0.7746 0.8944 0.4082 0.9129 0.3780 0.5345 0.6547	\$4 54 54 54 18 38 58 78	0.7559 0.8452 0.9258 0.3536 0.6124 0.7906 0.9354	16 36 46 56 76 86 112	0.3333 0.4714 0.6667 0.7454 0.8819 0.9428 0.2887	5/12 7/12 11/12 1/16 3/16 5/16 7/16	0.6455 0.7638 0.9574 0.2500 0.4330 0.5590 0.6614	9/16 11/16 13/16 15/16 15/16 1/32 1/64 1/50	0.7500 0.8292 0.9014 0.9682 0.1768 0.1250 0.1414

SQUARE ROOTS (continued)

N	0	1	2	3	4	5	6	7	8	9	Avg.
0.	7.071	7.078	7.085	7.092	7.099	7.106	7.113	7.120	7.127	7.134	Service of the Servic
1.	7.141	7.148	7.155	7.162	7.169	7.176	7.183	7.190	7.197	7.204	
2.	7.211	7.218	7.225	7.232	7.239	7.246	7.253	7.259	7.266	7.273	
3.	7.280	7.287	7.294	7.301	7.308	7.314	7.321	7.328	7.335	7.342	
4.	7.348	7.355	7.362	7.369	7.376	7.382	7.389	7.396	7.403	7.409	
5.	7.416	7.423	7.430	7.436	7.443	7.450	7.457	7.463	7.470	7.477	
6.	7.483	7.490	7.497	7.503	7.510	7.517	7.523	7.530	7.537	7.543	
7.	7.550	7.556	7.563	7.570	7.576	7.583	7.589	7.596	7.603	7.609	
8.	7.616	7.622	7.629	7.635	7.642	7.649	7.655	7.662	7.668	7.675	
9.	7.681	7.688	7.694	7.701	7.707	7.714	7.720	7.727	7.733	7.740	
0.	7.746	7.752	7.759	7.765	7.772	7.778	7.785	7.791	7.797	7.804	というない はんき
1.	7.810	7.817	7.823	7.829	7.836	7.842	7.849	7.855	7.861	7.868	
2.	7.874	7.880	7.887	7.893	7.899	7.906	7.912	7.918	7.925	7.931	
3.	7.937	7.944	7.950	7.956	7.962	7.969	7.975	7.981	7.987	7.994	
4.	8.000	8.006	8.012	8.019	8.025	8.031	8.037	8.044	8.050	8.056	
5.	8.062	8.068	8.075	8.081	8.087	8.093	8.099	8.106	8.112	8.118	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6.	8.124	8.130	8.136	8.142	8.149	8.155	8.161	8.167	8.173	8.179	
7.	8.185	8.191	8.198	8.204	8.210	8.216	8.222	8.228	8.234	8.240	
8.	8.246	8.252	8.258	8.264	8.270	8.276	8.283	8.289	8.295	8.301	
9.	8.307	8.313	8.319	8.325	8.331	8.337	8.343	8.349	8.355	8.361	
0.	8.367	8.373	8.379	8.385	8.390	8.396	8.402	8.408	8.414	8.420	
1.	8.426	8.432	8.438	8.444	8.450	8.456	8.462	8.468	8.473	8.479	
2.	8.485	8.491	8.497	8.503	8.509	8.515	8.521	8.526	8.532	8.538	
3.	8.544	8.550	8.556	8.562	8.567	8.573	8.579	8.585	8.591	8.597	
4.	8.602	8.608	8.614	8.620	8.626	8.631	8.637	8.643	8.649	8.654	
5.	8.660	8.666	8.672	8.678	8.683	8.689	8.695	8.701	8.706	8.712	The State of the S
6.	8.718	8.724	8.729	8.735	8.741	8.746	8.752	8.758	8.764	8.769	
7.	8.775	8.781	8.786	8.792	8.798	8.803	8.809	8.815	8.820	8.826	
8.	8.832	8.837	8.843	8.849	8.854	8.860	8.866	8.871	8.877	8.883	
9.	8.888	8.894	8.899	8.905	8.911	8.916	8.922	8.927	8.933	8.939	
0.	8.944	8.950	8.955	8.961	8.967	8.972	8.978	8.983	8.989	8.994	
1.	9.000	9.006	9.011	9.017	9.022	9.028	9.033	9.039	9.044	9.050	
2.	9.055	9.061	9.066	9.072	9.077	9.083	9.088	9.094	9.099	9.105	
3.	9.110	9.116	9.121	9.127	9.132	9.138	9.143	9.149	9.154	9.160	
4.	9.165	9.171	9.176	9.182	9.187	9.192	9.198	9.203	9.209	9.214	
5.	9.220	9.225	9.230	9.236	9.241	9.247	9.252	9.257	9.263	9.268	
6.	9.274	9.279	9.284	9.290	9.295	9.301	9.306	9.311	9.317	9.322	
7.	9.327	9.333	9.338	9.343	9.349	9.354	9.359	9.365	9.370	9.375	
8.	9.381	9.386	9.391	9.397	9.402	9.407	9.413	9.418	9.423	9.429	
9.	9.434	9.439	9.445	9.450	9.455	9.460	9.466	9.471	9.476	9.482	
0.	9.487	9.492	9.497	9.503	9.508	9.513	9.518	9.524	9.529	9.534	
1.	9.539	9.545	9.550	9.555	9.560	9.566	9.571	9.576	9.581	9.586	
2.	9.592	9.597	9.602	9.607	9.612	9.618	9.623	9.628	9.633	9.638	
3.	9.644	9.649	9.654	9.659	9.664	9.670	9.675	9.680	9.685	9.690	
4.	9.695	9.701	9.706	9.711	9.716	9.721	9.726	9.731	9.737	9.742	
5.	9.747	9.752	9.757	9.762	9.767	9.772	9.778	9.783	9.788	9.793	
6.	9.798	9.803	9.808	9.813	9.818	9.823	9.829	9.834	9.839	9.844	
7.	9.849	9.854	9.859	9.864	9.869	9.874	9.879	9.884	9.889	9.894	
8.	9.899	9.905	9.910	9.915	9.920	9.925	9.930	9.935	9.940	9.945	
9.	9.950	9.955	9.960	9.965	9.970	9.975	9.980	9.985	9.990	9.995	

Moving the decimal point TWO places in N requires moving it ONE place in body of table (see p. 12).

CUBE ROOTS OF NUMBERS

N	0	1	2	3	4	5	6	7	8	9	Avg.
1.0	1.000	1.003	1.007	1.010	1.013	1.016	1.020	1.023	1.026	1.029	3
1	1.032	1.035	1.038	1.042	1.045	1.048	1.051	1.054	1.057	1.060	
2	1.063	1.066	1.069	1.071	1.074	1.077	1.080	1.083	1.086	1.089	
3	1.091	1.094	1.097	1.100	1.102	1.105	1.108	1.111	1.113	1.116	
4	1.119	1.121	1.124	1.127	1.129	1.132	1.134	1.137	1.140	1.142	
1.5	1.145	1.147	1.150	1.152	1.155	1.157	1.160	1.162	1.165	1.167	2
6	1.170	1.172	1.174	1.177	1.179	1.182	1.184	1.186	1.189	1.191	
7	1.193	1.196	1.198	1.200	1.203	1.205	1.207	1.210	1.212	1.214	
8	1.216	1.219	1.221	1.223	1.225	1.228	1.230	1.232	1.234	1.236	
9	1.239	1.241	1.243	1.245	1.247	1.249	1.251	1.254	1.256	1.258	
2.0	1.260	1.262	1.264	1.266	1.268	1.270	1.272	1.274	1.277	1.279	
1	1.281	1.283	1.285	1.287	1.289	1.291	1.293	1.295	1.297	1.299	
2	1.301	1.303	1.305	1.306	1.308	1.310	1.312	1.314	1.316	1.318	
3	1.320	1.322	1.324	1.326	1.328	1.330	1.331	1.333	1.335	1.337	
4	1.339	1.341	1.343	1.344	1.346	1.348	1.350	1.352	1.354	1.355	
2.5	1.357	1.359	1.361	1.363	1.364	1.366	1.368	1.370	1.372	1.373	
6	1.375	1.377	1.379	1.380	1.382	1.384	1.386	1.387	1.389	1.391	
7	1.392	1.394	1.396	1.398	1.399	1.401	1.403	1.404	1.406	1.408	
8	1.409	1.411	1.413	1.414	1.416	1.418	1.419	1.421	1.423	1.424	
9	1.426	1.428	1.429	1.431	1.433	1.434	1.436	1.437	1.439	1.441	
3.0	1.442	1.444	1.445	1.447	1.449	1.450	1.452	1.453	1.455	1.457	
1	1.458	1.460	1.461	1.463	1.464	1.466	1.467	1.469	1.471	1.472	
2	1.474	1.475	1.477	1.478	1.480	1.481	1.483	1.484	1.486	1.487	
3	1.489	1.490	1.492	1.493	1.495	1.496	1.498	1.499	1.501	1.502	
4	1.504	1.505	1.507	1.508	1.510	1.511	1.512	1.514	1.515	1.517	
3.5	1.518	1.520	1.521	1.523	1.524	1.525	1.527	1.528	1.530	1.531	1
6	1.533	1.534	1.535	1.537	1.538	1.540	1.541	1.542	1.544	1.545	
7	1.547	1.548	1.549	1.551	1.552	1.554	1.555	1.556	1.558	1.559	
8	1.560	1.562	1.563	1.565	1.566	1.567	1.569	1.570	1.571	1.573	
9	1.574	1.575	1.577	1.578	1.579	1.581	1.582	1.583	1.585	1.586	
4.0	1.587	1.589	1.590	1.591	1.593	1.594	1.595	1.597	1.598	1.599	
1	1.601	1.602	1.603	1.604	1.606	1.607	1.608	1.610	1.611	1.612	
2	1.613	1.615	1.616	1.617	1.619	1.620	1.621	1.622	1.624	1.625	
3	1.626	1.627	1.629	1.630	1.631	1.632	1.634	1.635	1.636	1.637	
4	1.639	1.640	1.641	1.642	1.644	1.645	1.646	1.647	1.649	1.650	
4.5	1.651	1.652	1.653	1.655	1.656	1.657	1.658	1.659	1.661	1.662	Report of the
6	1.663	1.664	1.666	1.667	1.668	1.669	1.670	1.671	1.673	1.674	
7	1.675	1.676	1.677	1.679	1.680	1.681	1.682	1.683	1.685	1.686	
8	1.687	1.688	1.689	1.690	1.692	1.693	1.694	1.695	1.696	1.697	
9	1.698	1.700	1.701	1.702	1.703	1.704	1.705	1.707	1.708	1.709	

 $\sqrt[3]{\pi} = 1.46459$ $1/\sqrt[3]{\pi} = 0.682784$

Explanation of Table of Cube Roots (pp. 16-21).

This table gives the values of $\sqrt[3]{N}$ for all values of N from 1 to 1000, correct to four figures. (Interpolated values may be in error by 1 in the fourth figure.)

To find the cube root of a number N outside the range from 1 to 1000, divide the digits of the number into blocks of three (beginning with the decimal point), and note that moving the decimal point three places in column N is equivalent to moving it one place in the cube root of N. For example:

 $\sqrt[3]{2.718} = 1.396;$ $\sqrt[3]{2718} = 13.96;$ $\sqrt[3]{0.000002718} = 0.01396.$ $\sqrt[3]{27.18} = 3.007;$ $\sqrt[3]{271.8} = 3.007;$ $\sqrt[3]{271.8} = 6.477;$ $\sqrt[3]{271800} = 64.77;$ $\sqrt[3]{0.0002718} = 0.06477.$

N	0	1	2	3	4	5	6	7	8	9	Avg.
5.0	1.710	1.711	1 712	1.713	1.715	1.716	1.717	1.718	1.719	1.720	1
1	1.721	1.722	1.724	1.725	1.726	1.727	1.728	1.729	1.730	1.731	
2	1.732	1.734	1.735	1.736	1.737	1.738	1.739	1.740	1.741	1.742	
3	1.744	1.745	1.746	1.747	1.748	1.749	1.750	1.751	1.752	1.753	
4	1.754	1.755	1.757	1.758	1.759	1.760	1.761	1.762	1.763	1.764	
5.5	1.765	1.766	1.767	1.768	1.769	1.771	1.772	1.773	1.774	1.775	
6	1.776	1.777	1.778	1.779	1.780	1.781	1.782	1.783	1.784	1.785	
7	1.786	1.787	1.788	1.789	1.790	1.792	1.793	1.794	1.795	1.796	
8	1.797	1.798	1.799	1.800	1.801	1.802	1.803	1.804	1.805	1.806	
9	1.807	1.808	1.809	1.810	1.811	1.812	1.813	1.814	1.815	1.816	
6.0	1.817	1.818	1.819	1.820	1.821	1.822	1.823	1.824	1.825	1.826	0411
1	1.827	1.828	1.829	1.830	1.831	1.832	1.833	1.834	1.835	1.836	
2	1.837	1.838	1.839	1.840	1.841	1.842	1.843	1.844	1.845	1.846	
3	1.847	1.848	1.849	1.850	1.851	1.852	1.853	1.854	1.855	1.856	
4	1.857	1.858	1.859	1.860	1.860	1.861	1.862	1.863	1.864	1.865	
6.5	1.866	1.867	1.868	1.869	1.870	1.871	1.872	1.873	1.874	1.875	
6	1.876	1.877	1.878	1.879	1.880	1.881	1.881	1.882	1.883	1.884	
7	1.885	1.886	1.887	1.888	1.889	1.890	1.891	1.892	1.893	1.894	
8	1.895	1.895	1.896	1.897	1.898	1.899	1.900	1.901	1.902	1.903	
9	1.904	1.905	1.906	1.907	1.907	1.908	1.909	1.910	1.911	1.912	
7.0	1.913	1.914	1.915	1.916	1.917	1.917	1.918	1.919	1.920	1.921	THE PERSON
1	1.922	1.923	1.924	1.925	1.926	1.926	1.927	1.928	1.929	1.930	
2	1.931	1.932	1.933	1.934	1.935	1.935	1.936	1.937	1.938	1.939	
3	1.940	1.941	1.942	1.943	1.943	1.944	1.945	1.946	1.947	1.948	
4	1.949	1.950	1.950	1.951	1.952	1.953	1.954	1.955	1.956	1.957	
7.5	1.957	1.958	1.959	1.960	1.961	1.962	1.963	1.964	1.964	1.965	
6	1.966	1.967	1.968	1.969	1.970	1.970	1.971	1.972	1.973	1.974	
7	1.975	1.976	1.976	1.977	1.978	1.979	1.980	1.981	1.981	1.982	
8	1.983	1.984	1.985	1.986	1.987	1.987	1.988	1.989	1.990	1.991	
9	1.992	1.992	1.993	1.994	1.995	1.996	1.997	1.997	1.998	1.999	
8.0	2.000	2.001	2.002	2.002	2.003	2.004	2.005	2.006	2.007	2.007	
1	2.008	2.009	2.010	2.011	2.012	2.012	2.013	2.014	2.015	2.016	
2	2.017	2.017	2.018	2.019	2.020	2.021	2.021	2.022	2.023	2.024	
3	2.025	2.026	2.026	2.027	2.028	2.029	2.030	2.030	2.031	2.032	
4	2.033	2.034	2.034	2.035	2.036	2.037	2.038	2.038	2.039	2.040	
8.5	2.041	2.042	2.042	2.043	2.044	2.045	2.046	2.046	2.047	2.048	
6	2.049	2.050	2.050	2.051	2.052	2.053	2.054	2.054	2.055	2.056	
7	2.057	2.057	2.058	2.059	2.060	2.061	2.061	2.062	2.063	2.064	
8	2.065	2.065	2.066	2.067	2.068	2.068	2.069	2.070	2.071	2.072	
9	2.072	2.073	2.074	2.075	2.075	2.076	2.077	2.078	2.079	2.079	
9.0	2.080	2.081	2.082	2.082	2.083	2.084	2.085	2.085	2.086	2.087	
1	2.088	2.089	2.089	2.090	2.091	2.092	2.092	2.093	2.094	2.095	
2	2.095	2.096	2.097	2.098	2.098	2.099	2.100	2.101	2.101	2.102	
3	2.103	2.104	2.104	2.105	2.106	2.107	2.107	2.108	2.109	2.110	
4	2.110	2.111	2.112	2.113	2.113	2.114	2.115	2.116	2.116	2.117	
9.5	2.118	2.119	2.119	2.120	2.121	2.122	2.122	2.123	2.124	2.125	
6	2.125	2.126	2.127	2.128	2.128	2.129	2.130	2.130	2.131	2.132	
7	2.133	2.133	2.134	2.135	2.136	2.136	2.137	2.138	2.139	2.139	
8	2.140	2.141	2.141	2.142	2.143	2.144	2.144	2.145	2.146	2.147	
9	2.147	2.148	2.149	2.149	2.150	2.151	2.152	2.152	2.153	2.154	

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

N	0	1	2	3	4	5	6	7	8	9	Avg.
10.	2.154	2.162	2.169	2.176	2.183	2.190	2.197	2.204	2.210	2.217	7 6
1.	2.224	2.231	2.237	2.244	2.251	2.257	2.264	2.270	2.277	2.283	
2.	2.289	2.296	2.302	2.308	2.315	2.321	2.327	2.333	2.339	2.345	
3.	2.351	2.357	2.363	2.369	2.375	2.381	2.387	2.393	2.399	2.404	
4.	2.410	2.416.	2.422	2.427	2.433	2.438	2.444	2.450	2.455	2.461	
15.	2.466	2.472	2.477	2.483	2.488	2.493	2.499	2.504	2.509	2.515	5
6.	2.520	2.525	2.530	2.535	2.541	2.546	2.551	2.556	2.561	2.566	
7.	2.571	2.576	2.581	2.586	2.591	2.596	2.601	2.606	2.611	2.616	
8.	2.621	2.626	2.630	2.635	2.640	2.645	2.650	2.654	2.659	2.664	
9.	2.668	2.673	2.678	2.682	2.687	2.692	2.696	2.701	2.705	2.710	
20.	2.714	2.719	2.723	2.728	2.732	2.737	2.741	2.746	2.750	2.755	4
1.	2.759	2.763	2.768	2.772	2.776	2.781	2.785	2.789	2.794	2.798	
2.	2.802	2.806	2.811	2.815	2.819	2.823	2.827	2.831	2.836	2.840	
3.	2.844	2.848	2.852	2.856	2.860	2.864	2.868	2.872	2.876	2.880	
4.	2.884	2.888	2.892	2.896	2.900	2.904	2.908	2.912	2.916	2.920	
25.	2.924	2.928	2.932	2.936	2.940	2.943	2.947	2.951	2.955	2.959	
6.	2.962	2.966	2.970	2.974	2.978	2.981	2.985	2.989	2.993	2.996	
7.	3.000	3.004	3.007	3.011	3.015	3.018	3.022	3.026	3.029	3.033	
8.	3.037	3.040	3.044	3.047	3.051	3.055	3.058	3.062	3.065	3.069	
9.	3.072	3.076	3.079	3.083	3.086	3.090	3.093	3.097	3.100	3.104	
30.	3.107	3.111	3.114	3.118	3.121	3.124	3.128	3.131	3.135	3.138	3
1.	3.141	3.145	3.148	3.151	3.155	3.158	3.162	3.165	3.168	3.171	
2.	3.175	3.178	3.181	3.185	3.188	3.191	3.195	3.198	3.201	3.204	
3.	3.208	3.211	3.214	3.217	3.220	3.224	3.227	3.230	3.233	3.236	
4.	3.240	3.243	3.246	3.249	3.252	3.255	3.259	3.262	3.265	3.268	
35.	3.271	3.274	3.277	3.280	3.283	3.287	3.290	3.293	3.296	3.299	
6.	3.302	3.305	3.308	3.311	3.314	3.317	3.320	3.323	3.326	3.329	
7.	3.332	3.335	3.338	3.341	3.344	3.347	3.350	3.353	3.356	3.359	
8.	3.362	3.365	3.368	3.371	3.374	3.377	3.380	3.382	3.385	3.388	
9.	3.391	3.394	3.397	3.400	3.403	3.406	3.409	3.411	3.414	3.417	
40.	3.420	3.423	3.426	3.428	3.431	3.434	3.437	3.440	3.443	3.445	
1.	3.448	3.451	3.454	3.457	3.459	3.462	-3.465	3.468	3.471	3.473	
2.	3.476	3.479	3.482	3.484	3.487	3.490	3.493	3.495	3.498	3.501	
3.	3.503	3.506	3.509	3.512	3.514	3.517	3.520	3.522	3.525	3.528	
4.	3.530	3.533	3.536	3.538	3.541	3.544	3.546	3.549	3.552	3.554	
45.	3.557	3.560	3.562	3.565	3.567	3.570	3.573	3.575	3.578	3.580	2
6.	3.583	3.586	3.588	3.591	3.593	3.596	3.599	3.601	3.604	3.606	
7.	3.609	3.611	3.614	3.616	3.619	3.622	3.624	3.627	3.629	3.632	
8.	3.634	3.637	3.639	3.642	3.644	3.647	3.649	3.652	3.654	3.657	
9.	3.659	3.662	3.664	3.667	3.669	3.672	3.674	3.677	3.679	3.682	

CUBE ROOTS OF CERTAIN FRACTIONS

40	N	$\sqrt[3]{N}$	N	$\sqrt[3]{N}$	N	$\sqrt[3]{N}$	N	$\sqrt[3]{N}$	N	$\sqrt[3]{\vec{N}}$	N	$\sqrt[3]{N}$
	14 14 34 14 34 15 35	.7937 .6934 .8736 .6300 .9086 .5848 .7368	3/5 4/5 1/6 5/6 1/7 2/7 3/7	.8434 .9283 .5503 .9410 .5228 .6586 .7539	\$4 \$4 \$4 \$6 \$1 \$3 \$5 \$8 \$5 \$8 \$7 \$8	.8298 .8939 .9499 .5000 .7211 .8550 .9565	16 26 46 56 76 86 1/12	.4807 .6057 .7631 .8221 .9196 .9615 .4368	5/12 7/12 11/12 1/16 3/16 5/16 7/16	.7469 .8355 .9714 .3969 .5724 .6786 .7591	916 1116 1316 1516 152 164 150	.8255 .8826 .9331 .9787 .3150 .2500 .2714

N	0	1	2	3	4	5	6	7	8	9	Avg.
50.	3.684	3.686	3.689	3.691	3.694	3.696	3 699	3.701	3.704	3.706	2
1.	3.708	3.711	3.713	3.716	3.718	3.721	3 723	3.725	3.728	3.730	
2.	3.733	3.735	3.737	3.740	3.742	3.744	3.747	3.749	3.752	3.754	
3.	3.756	3.759	3.761	3.763	2.766	3.768	3.770	3.773	3.775	3.777	
4.	3.780	3.782	3.784	3.787	3.789	3.791	3.794	3.796	3.798	3.801	
55.	3.803	3.805	3.808	3.810	3.812	3.814	3.817	3.819	3.821	3.824	
6.	3.826	3.828	3.830	3.833	3.835	3.837	3.839	3.842	3.844	3.846	
7.	3.849	3.851	3.853	3.855	3.857	3.860	3.862	3.864	3.866	3.869	
8.	3.871	3.873	3.875	3.878	3.880	3.882	3.884	3.886	3.889	3.891	
9.	3.893	3.895	3.897	3.900	3.902	3.904	3.906	3.908	3.911	3.913	
60.	3.915	3.917	3.919	3.921	3.924	3.926	3.928	3.930	3.932	3.934	
1.	3.936	3.939	3.941	3.943	3.945	3.947	3.949	3.951	3.954	3.956	
2.	3.958	3.960	3.962	3.964	3.966	3.968	3.971	3.973	3.975	3.977	
3.	3.979	3.981	3.983	3.985	3.987	3.990	3.992	3.994	3.996	3.998	
4.	4.000	4.002	4.004	4.006	4.008	4.010	4.012	4.015	4.017	4.019	
65.	4.021	4.023	4.025	4.027	4.029	4.031	4.033	4.035	4.037	4.039	in the
6.	4.041	4.043	4.045	4.047	4.049	4.051	4.053	4.055	4.058	4.060	
7.	4.062	4.064	4.066	4.068	4.070	4.072	4.074	4.076	4.078	4.080	
8.	4.082	4.084	4.086	4.088	4.090	4.092	4.094	4.096	4.098	4.100	
9.	4.102	4.104	4.106	4.108	4.109	4.111	4.113	4.115	4.117	4.119	
70.	4.121	4.123	4.125	4.127	4.129	4.131	4.133	4.135	4.137	4.139	
1.	4.141	4.143	4.145	4.147	4.149	4.151	4.152	4.154	4.156	4.158	
2.	4.160	4.162	4.164	4.166	4.168	4.170	4.172	4.174	4.176	4.177	
3.	4.179	4.181	4.183	4.185	4.187	4.189	4.191	4.193	4.195	4.196	
4.	4.198	4.200	4.202	4.204	4.206	4.208	4.210	4.212	4.213	4.215	
75.	4.217	4.219	4.221	4.223	4.225	4.227	4.228	4.230	4.232	4.234	
6.	4.236	4.238	4.240	4.241	4.243	4.245	4.247	4.249	4.251	4.252	
7.	4.254	4.256	4.258	4.260	4.262	4.264	4.265	4.267	4.269	4.271	
8.	4.273	4.274	4.276	4.278	4.280	4.282	4.284	4.285	4.287	4.289	
9.	4.291	4.293	4.294	4.296	4.298	4.300	4.302	4.303	4.305	4.307	
80.	4.309	4.311	4.312	4.314	4.316	4.318	4.320	4.321	4.323	4.325	
1.	4.327	4.329	4.330	4.332	4.334	4.336	4.337	4.339	4.341	4.343	
2.	4.344	4.346	4.348	4.350	4.352	4.353	4.355	4.357	4.359	4.360	
3.	4.362	4.364	4.366	4.367	4.369	4.371	4.373	4.374	4.376	4.378	
4.	4.380	4.381	4.383	4.385	4.386	4.388	4.390	4.392	4.393	4.395	
85.	4.397	4.399	4.400	4.402	4.404	4.405	4.407	4.409	4.411	4.412	
6.	4.414	4.416	4.417	4.419	4.421	4.423	4.424	4.426	4.428	4.429	
7.	4.431	4.433	4.434	4.436	4.438	4.440	4.441	4.443	4.445	4.446	
8.	4.448	4.450	4.451	4.453	4.455	4.456	4.458	4.460	4.461	4.463	
9.	4.465	4.466	4.468	4.470	4.471	4.473	4.475	4.476	4.478	4.480	
90.	4.481	4.483	4.485	4.486	4.488	4.490	4.491	4.493	4.495	4.496	7.0
1.	4.498	4.500	4.501	4.503	4.505	4.506	4.508	4.509	4.511	4.513	
2.	4.514	4.516	4.518	4.519	4.521	4.523	4.524	4.526	4.527	4.529	
3.	4.531	4.532	4.534	4.536	4.537	4.539	4.540	4.542	4.544	4.545	
4.	4.547	4.548	4.550	4.552	4.553	4.555	4.556	4.558	4.560	4.561	
95.	4.563	4.565	4.566	4.568	4.569	4.571	4.572	4.574	4.576	4.577	
6.	4.579	4.580	4.582	4.584	4.585	4.587	4.588	4.590	4.592	4.593	
7.	4.595	4.596	4.598	4.599	4.601	4.603	4.604	4.606	4.607	4.609	
8.	4.610	4.612	4.614	4.615	4.617	4.618	4.620	4.621	4.623	4.625	
9.	4.626	4.628	4.629	4.631	4.632	4.634	4.635	4.637	4.638	4.640	

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

N	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	Avg. diff.
10 1 2 3 4	4.642 4.791 4.932 5.066 5.192	4.657 4.806 4.946 5.079 5.205	4.672 4.820 4.960 5.092 5.217	4.688 4.835 4.973 5.104 5.229	4.703 4.849 4.987 5.117 5.241	4.718 4.863 5.000 5.130 5.254	4.733 4.877 5.013 5.143 5.266	4.747 4.891 5.027 5.155 5.278	4.762 4.905 5.040 5.168 5.290	4.777 4.919 5.053 5.180 5.301	15 14 13
15 6 7 8 9	5.313 5.429 5.540 5.646 5.749	5.325 5.440 5.550 5.657 5.759	5.337 5.451 5.561 5.667 5.769	5.348 5.463 5.572 5.677 5.779	5.360 5.474 5.583 5.688 5.789	5.372 5.485 5.593 5.698 5.799	5,383 5.496 5.604 5.708 5.809	5.395 5.507 5.615 5.718 5.819	5.406 5.518 5.625 5.729 5.828	5.418 5.529 5.636 5.739 5.838	11 10
20	5.848	5.858	5.867	5.877	5.887	5.896	5.906	5.915	5.925	5.934	9
1	5.944	5.953	5.963	5.972	5.981	5.991	6.000	6.009	6.018	6.028	
2	6.037	6.046	6.055	6.064	6.073	6.082	6.091	6.100	6.109	6.118	
3	6.127	6.136	6.145	6.153	6.162	6.171	6.180	6.188	6.197	6.206	
4	6.214	6,223	6.232	6.240	6.249	6.257	6.266	6.274	6.283	6.291	
25	6.300	6.308	6.316	6.325	6.333	6.341	6.350	6.358	6.366	6.374	8
6	6.383	6.391	6.399	6.407	6.415	6.423	6.431	6.439	6.447	6.455	
7	6.463	6.471	6.479	6.487	6.495	6.503	6.511	6.519	6.527	6.534	
8	6.542	6.550	6.558	6.565	6.573	6.581	6.589	6.596	6.604	6.611	
9	6.619	6.627	6.634	6.642	6.649	6.657	6.664	6.672	6.679	6.687	
30	6.694	6.702	6.709	6.717	6.724	6.731	6.739	6.746	6.753	6.761	7
1	6.768	6.775	6.782	6.790	6.797	6.804	6.811	6.818	6.826	6.833	
2	6.840	6.847	6.854	6.861	6.868	6.875	6.882	6.889	6.896	6.903	
3	6.910	6.917	6.924	6.931	6.938	6.945	6.952	6.959	6.966	6.973	
4	6.980	6.986	6.993	7.000	7.007	7.014	7.020	7.027	7.034	7.041	
35	7.047	7.054	7.061	7.067	7.074	7.081	7.087	7.094	7.101	7.107	6
6	7.114	7.120	7.127	7.133	7.140	7.147	7.153	7.160	7.166	7.173	
7	7.179	7.186	7.192	7.198	7.205	7.211	7.218	7.224	7.230	7.237	
8	7.243	7.250	7.256	7.262	7.268	7.275	7.281	7.287	7.294	7.300	
9	7.306	7.312	7.319	7.325	7.331	7.337	7.343	7.350	7.356	7.362	
40	7.368	7.374	7.380	7.386	7.393	7.399	7.405	7.411	7.417	7.423	
1	7.429	7.435	7.441	7.447	7.453	7.459	7.465	7.471	7.477	7.483	
2	7.489	7.495	7.501	7.507	7.513	7.518	7.524	7.530	7.536	7.542	
3	7.548	7.554	7.560	7.565	7.571	7.577	7.583	7.589	7.594	7.600	
4	7.606	7.612	7.617	7.623	7.629	7.635	7.640	7.646	7.652	7.657	
45	7.663	7.669	7.674	7.680	7.686	7.691	7.697	7.703	7.708	7.714	5
6	7.719	7.725	7.731	7.736	7.742	7.747	7.753	7.758	7.764	7.769	
7	7.775	7.780	7.786	7.791	7.797	7.802	7.808	7.813	7.819	7.824	
8	7.830	7.835	7.841	7.846	7.851	7.857	7.862	7.868	7.873	7.878	
9	7.884	7.889	7.894	7.900	7.905	7.910	7.916	7.921	7.926	7.932	

AUXILIARY TABLE OF TWO-THIRDS POWERS AND THREE-HALVES POWERS (see pp. 22-23) (To assist in locating the decimal point)

N	$N^{2/3}\big(=\sqrt[3]{N^2}\big)$	$N^{3/2} \left(= \sqrt{N^3} \right)$	
.0001 .001 .01 .1 .1 .10. .100. .1000.	.002154 .01 .0464 .2154 1. .4.64 21,54 100, 464,16	.000001 00003162 .001 .03162278 1, 31.62278 1000. 31622.78	For complete table of three-halves powers, see pp. 22-23. That table, used inversely, provides a complete table of two-thirds powers.

N	0.	1.	2.	3.	4.	5.	6.	7.	8.	9.	Avg.
50	7.937	7.942	7.948	7.953	7.958	7.963	7.969	7.974	7.979	7.984	5
1	7.990	7.995	8.000	8.005	8.010	8.016	8.021	8.026	8.031	8.036	
2	8.041	8.047	8.052	8.057	8.062	8.067	8.072	8.077	8.082	8.088	
3	8.093	8.098	8.103	8.108	8.113	8.118	8.123	8.128	8.133	8.138	
4	8.143	8.148	8.153	8.158	8.163	8.168	8.173	8.178	8.183	8.188	
55	8.193	8.198	8.203	8.208	8.213	8.218	8.223	8.228	8.233	8.238	部がある。
6	8.243	8.247	8.252	8.257	8.262	8.267	8.272	8.277	8.282	8.286	
7	8.291	8.296	8.301	8.306	8.311	8.316	8.320	8.325	8.330	8.335	
8	8.340	8.344	8.349	8.354	8.359	8.363	8.368	8.373	8.378	8.382	
9	8.387	8.392	8.397	8.401	8.406	8.411	8.416	8.420	8.425	8.430	
60	8.434	8.439	8.444	8.448	8.453	8.458	8.462	8.467	8.472	8.476	4
1	8.481	8.486	8.490	8.495	8.499	8.504	8.509	8.513	8.518	8.522	
2	8.527	8.532	8.536	8.541	8.545	8.550	8.554	8.559	8.564	8.568	
3	8.573	8.577	8.582	8.586	8.591	8.595	8.600	8.604	8.609	8.613	
4	8.618	8.622	8.627	8.631	8.636	8.640	8.645	8.649	8.653	8.658	
65	8.662	8.667	8.671	8.676	8.680	8.685	8.689	8.693	8.698	8.702	
6	8.707	8.711	8.715	8.720	8.724	8.729	8.733	8.737	8.742	8.746	
7	8.750	8.755	8.759	8.763	8.768	8.772	8.776	8.781	8.785	8.789	
8	8.794	8.798	8.802	8.807	8.811	8.815	8.819	8.824	8.828	8.832	
9	8.837	8.841	8.845	8.849	8.854	8.858	8.862	8.866	8.871	8.875	
70	8.879	8.883	8.887	8.892	8.896	8.900	8.904	8.909	8.913	8.917	
1	8.921	8.925	8.929	8.934	8.938	8.942	8.946	8.950	8.955	8.959	
2	8.963	8.967	8.971	8.975	8.979	8.984	8.988	8.992	8.996	9.000	
3	9.004	9.008	9.012	9.016	9.021	9.025	9.029	9.033	9.037	9.041	
4	9.045	9.049	9.053	9.057	9.061	9.065	9.069	9.073	9.078	9.082	
75	9.086	9.090	9.094	9.098	9.102	9.106	9.110	9.114	9.118	9.122	100 m
6	9.126	9.130	9.134	9.138	9.142	9.146	9.150	9.154	9.158	9.162	
7	9.166	9.170	9.174	9.178	9.182	9.185	9.189	9.193	9.197	9.201	
8	9.205	9.209	9.213	9.217	9.221	9.225	9.229	9.233	9.237	9.240	
9	9.244	9.248	9.252	9.256	9.260	9.264	9.268	9.272	9.275	9.279	
80	9.283	9.287	9.291	9.295	9.299	9.302	9.306	9.310	9.314	9.318	
1	9.322	9.326	9.329	9.333	9.337	9.341	9.345	9.348	9.352	9.356	
2	9.360	9.364	9.368	9.371	9.375	9.379	9.383	9.386	9.390	9.394	
3	9.398	9.402	9.405	9.409	9.413	9.417	9.420	9.424	9.428	9.432	
4	9.435	9.439	9.443	9.447	9.450	9.454	9.458	9.462	9.465	9.469	
85	9.473	9.476	9.480	9.484	9.488	9.491	9.495	9,499	9.502	9.506	
6	9.510	9.513	9.517	9.521	9.524	9.528	9.532	9,535	9.539	9.543	
7	9.546	9.550	9.554	9.557	9.561	9.565	9.568	9,572	9.576	9.579	
8	9.583	9.586	9.590	9.594	9.597	9.601	9.605	9,608	9.612	9.615	
9	9.619	9.623	9.626	9.630	9.633	9.637	9.641	9,644	9.648	9.651	
90	9.655	9.658	9.662	9.666	9.669	9.673	9.676	9.680	9.683	9.687	
1	9.691	9.694	9.698	9.701	9.705	9.708	9.712	9.715	9.719	9.722	
2	9.726	9.729	9.733	9.736	9.740	9.743	9.747	9.750	9.754	9.758	
3	9.761	9.764	9.768	9.771	9.775	9.778	9.782	9.785	9.789	9.792	
4	9.796	9.799	9.803	9.806	9.810	9.813	9.817	9.820	9.824	9.827	
95	9.830	9.834	9.837	9.841	9.844	9.848	9.851	9.855	9.858	9.861	
6	9.865	9.868	9.872	9.875	9.879	9.882	9.885	9.889	9.892	9.896	
7	9.899	9.902	9.906	9.909	9.913	9.916	9.919	9.923	9.926	9.930	
8	9.933	9.936	9.940	9.943	9.946	9.950	9.953	9.956	9.960	9.963	
9	9.967	9.970	9.973	9.977	9.980	9.983	9.987	9.990	9.993	9.997	
100	10.00	Sare C		orten a	, KE		0.51	ACE.	(15)		

Moving the decimal point THREE places in N requires moving it ONE place in body of table (see p. 16).

THREE-HALVES POWERS OF NUMBERS (see also p. 20)

	VIII 11				0.	ONIDELLE	(see also p. 20)					
N	0	1	2	3	4	5 ,	6	7	8	9	Avg.	
1. 2. 3. 4. 4.	1.000 2.828 5.196 8.000	1.154 3.043 5.458 8.302	1.315 3.263 5.724 8.607	1.482 3.488 5.995 8.917	1.657 3.718 6.269 9.230	1.837 3.953 6.548 9.546	2.024 4.192 6.831 9.866	2.217 4.437 7.117 10.190	2.415 4.685 7.408	2.619 4.939 7.702	183 237 280 313	
4. 5. 6. 7. 8. 9.	11.18 14.70 18.52 22.63 27.00	11.52 15.07 18.92 23.05 27.45	11.86 15.44 19.32 23.48 27.90	12.20 15.81 19.72 23.91 28.36	12.55 16.19 20.13 24.35 28.82	12.90 16.57 20.54 24.78 29.28	13.25 16.96 20.95 25.22 29.74	10.19 13.61 17.34 21.37 25.66 30.21	10.52 13.97 17.73 21.78 26.11 30.68	10.85 14.33 18.12 22.20 26.55 31.15	33 35 38 41 44 46	
10. 1. 2. 3. 4.	31.62 36.48 41.57 46.87 52.38	32.10 36.98 42.09 47.41 52.95	32.58 37.48 42.61 47.96 53.51	33.06 37.99 43.14 48.50 54.08	33.54 38.49 43.66 49.05 54.64	34.02 39.00 44.19 49.60 55.21	34.51 39.51 44.73 50.15 55.79	35.00 40.02 45.26 50.71 56.36	35.49 40.53 45.79 51.26 56.94	35.99 41.05 46.33 51.82 57.51	49 51 53 55 57	
15. 6. 7. 8. 9.	58.09 64.00 70.09 76.37 82.82	58.68 64.60 70.71 77.00 83.47	59.26 65.20 71.33 77.64 84.13	59.85 65.81 71.96 78.28 84.79	60.43 66.41 72.58 78.93 85.45	61.02 67.02 73.21 79.57 86.11	61.62 67.63 73.84 80.22 86.77	62.21 68.25 74.47 80.87 87.44	62.80 68.86 75.10 81.51 88.10	63.40 69.48 75.73 82.17 88.77	59 61 63 65 66	
20. 1. 1.	89.44 96.23	90.11 96.92	90.79 97.61	91.46 98.30	92.14 99.00	92.82 99.69	93.50 100.38		94.86	95.55 102.5	68 69 7 7 7	
2. 3. 4.	103.2 110.3 117.6	103.9 111.0 118.3	104.6 111.7 119.0	105.3 112.5 119.8	106.0 113.2 120.5	106.7 113.9 121.3	100.4 107.4 114.6 122.0	108.2 115.4 122.8	101.8 108.9 116.1 123.5	109.6 116.8 124.3	7 7 7	
25. 6. 7. 8. 9.	125.0 132.6 140.3 148.2 156.2	125.8 133.3 141.1 149.0 157.0	126.5 134.1 141.9 149.8 157.8	127.3 134.9 142.6 150.5 158.6	128.0 135.6 143.4 151.3 159.4	128.8 136.4 144.2 152.1 160.2	129.5 137.2 145.0 152.9 161.0	130.3 138.0 145.8 153.8 161.9	131.0 138.7 146.6 154.6 162.7	131.8 139.5 147.4 155.4 163.5	8 8 8 8	
30. 1. 2. 3. 4.	164.3 172.6 181.0 189.6 198.3	165.1 173.4 181.9 190.4 199.1	166.0 174.3 182.7 191.3 200.0	166.8 175.1 183.6 192.2 200.9	167.6 176.0 184.4 193.0 201.8	168.4 176.8 185.3 193.9 202.6	169,3 177,6 186,1 194,8 203,5	170.1 178.5 187.0 195.6 204.4	170.9 179.3 187.8 196.5 205.3	171.8 180.2 188.7 197.4 206.2	8 8 9 9	
35. 6. 7. 8. 9.	207.1 216.0 225.1 234.2 243.6	208.0 216.9 226.0 235.2 244.5	208.8 217.8 226.9 236.1 245.4	209.7 218.7 227.8 237.0 246.4	210.6 219.6 228.7 238.0 247.3	211.5 220.5 229.6 238.9 248.3	212.4 221.4 230.6 239.8 249.2	213.3 222.3 231.5 240.8 250.1	214.2 223.2 232.4 241.7 251.1	215.1 224.2 233.3 242.6 252.0	9 9 9 9	
40. 1: 2. 3. 4.	253.0 262.5 272.2 282.0 291.9	253.9 263.5 273.2 283.0 292.9	254.9 264.5 274.1 283.9 293.9	255.8 265.4 275.1 284.9 294.9	256.8 266.4 276.1 285.9 295.9	257.7 267.3 277.1 286.9 296.9	258.7 268.3 278.0 287.9 297.9	259.7 269.3 279.0 288.9 298.9	260.6 270.2 280.0 289.9 299.9	261.6 271.2 281.0 290.9 300.9	10 10 10 10 10	
45. 6. 7. 8. 9.	301.9 312.0 322.2 332.6 343.0	302.9 313.0 323.2 333.6 344.1	303.9 314.0 324.3 334.6 345.1	304.9 315.0 325.3 335.7 346.2	305.9 316.1 326.3 336.7 347.2	306.9 317.1 327.4 337.8 348.3	307.9 318.1 328.4 338.8 349.3	308.9 319.1 329.4 339.9 350.4	310.0 320.2 330.5 340.9 351.4	311.0 321.2 331.5 342.0 352.5	10 10 10 10	

This table gives N^{32} from N=1 to N=100. Moving the decimal point TWO places in N requires moving it THREE places in body of table. Thus: $(7.23)^{32} = 19.44; \qquad (723.)^{32} = 19440; \qquad (0.0723)^{32} = 0.01944$ $(72.3)^{32} = 614.8; \qquad (7230.)^{32} = 614800; \qquad (0.723)^{32} = 0.6148$ Used inversely, table gives M^{23} from M=1 to M=1000. Thus: $(0.6148)^{23} = 0.7230$.

THREE-HALVES POWERS (continued) (See also p. 20)

N	0	1	2	3	. 4	5	6	7	8	9	Avg.
50.	353.6	354.6	355.7	356.7	357.8	358.9	359.9	361.0	362.1	363.1	======
1.	364.2	365.3	366.4	367.4	368.5	369.6	370.7	371.7	372.8	373.9	
2.	375.0	376.1	377.1	378.2	379.3	380.4	381.5	382.6	383.7	384.8	
3	385.8	386.9	388.0	389.1	390.2	391.3	392.4	393.5	394.6	395.7	
4.	396.8	397.9	399.0	400.1	401.2	402.3	403.4	404.6	405.7	406.8	
55. 6. 7. 8. 9.	407.9 419.1 430.3 441.7 453.2	409.0 420.2 431.5 442.9 454.3	410.1 421.3 432.6 444.0 455.5	411.2 422.4 433.7 445.1 456.6	412.3 423.6 434.9 446.3 457.8	413.5 424.7 436.0 447.4 459.0	414.6 425.8 437.2 448.6 460.1	415.7 426.9 438.3 449.7 461.3	416.8 428.1 439.4 450.9 462.4	417.9 429.2 440.6 452.0 463.6	11 11 11 11 11 12
60. 1. 2. 3. 4.	464.8 476.4 488.2 500.0 512.0	465.9 477.6 489.4 501.2 513.2	467.1 478.8 490.6 502.4 514.4	468.2 479.9 491.7 503.6 515.6	469.4 481.1 492.9 504.8 516.8	470.6 . 482.3 494.1 506.0 518.0	471.7 483.5 495.3 507.2 519.2	472.9 484.6 496.5 508.4 520.4	474.1 485.8 497.7 509.6 521.6	475.3 487.0 498.9 510.8 522.8	12 12 12 12 12 12
65. 6. 7. 8. 9.	524.0 536.2 548.4 560.7 573.2	525.3 537.4 549.6 562.0 574.4	526.5 538.6 550.9 563.2 575.7	527.7 539.8 552.1 564.5 576.9	528.9 541.1 553.3 565.7 578.1	530.1 542.3 554.6 566.9 579.4	531.3 543.5 555.8 568.2 580.6	532.5 544.7 557.0 569.4 581.9	533.8 546.0 558.3 570.7 583.2	535.0 547.2 559.5 571.9 584.4	12 12 12 12 12 13
70.	585.7	586.9	588.2	589.4	590.7	591.9	593.2	594.5	595.7	597.0	13
1.	598.3	599.5	600.8	602.1	603.3	604.6	605.9	607.1	608.4	609.7	13
2.	610.9	612.2	613.5	614.8	616.0	617.3	618.6	619.9	621.2	622.4	13
3.	623.7	625.0	626.3	627.6	628.8	630.1	631.4	632.7	634.0	635.3	13
4.	636.6	637.9	639.2	640.4	641.7	643.0	644.3	645.6	646.9	648.2	13
75.	649.5	650.8	652.1	653.4	654.7	656.0	657.3	658.6	659.9	661.2	13
6.	662.6	663.9	665.2	666.5	667.8	669.1	670.4	671.7	673.0	674.4	13
7.	675.7	677.0	678.3	679.6	680.9	682.3	683.6	684.9	686.2	687.6	13
8.	688.9	690.2	691.5	692.9	694.2	695.5	696.8	698.2	699.5	700.8	13
9.	702.2	703.5	704.8	706.2	707.5	708.8	710.2	711.5	712.9	714.2	13
80.	715.5	716.9	718.2	719.6	720.9	722.3	723.6	725.0	726.3	727.7	13
1.	729.0	730.4	731.7	733.1	734.4	735.8	737.1	738.5	739.8	741.2	14
2.	742.5	743.9	745.3	746.6	748.0	749.3	750.7	752.1	753.4	754.8	14
3.	756.2	757.5	758.9	760.3	761.6	763.0	764.4	765.8	767.1	768.5	14
4.	769.9	771.2	772.6	774.0	775.4	776.8	778.1	779.5	780.9	782.3	14
85.	783.7	785.0	786.4	787.8	789:2	790.6	792.0	793.4	794.8	796.1	14
6.	797.5	798.9	800.3	801.7	803.1	804.5	805.9	807.3	808.7	810.1	14
7.	811.5	812.9	814.3	815.7	817.1	818.5	819.9	821.3	822.7	824.1	14
8.	825.5	826.9	828.3	829.7	831.1	832.6	834.0	835.4	836.8	838.2	14
9.	839.6	841.0	842.5	843.9	845.3	846.7	848.1	849.5	851.0	852.4	14
90.	853.8	855.2	856.7	858.1	859.5	860.9	862.4	863.8	865.2	866.7	14
1.	868.1	869.5	870.9	872.4	873.8	875.2	876.7	878.1	879.6	881.0	14
2.	882.4	883.9	885.3	886.8	888.2	889.6	891.1	892.5	894.0	895.4	14
3.	896.9	898.3	899.8	901.2	902.7	904.1	905.6	907.0	908.5	909.9	15
4.	911.4	912.8	914.3	915.7	917.2	918.6	920.1	921.6	923.0	924.5	15
95.	925.9	927.4	928.9	930.3	931.8	933.3	934.7	936.2	937.7	939.1	15
6.	940.6	942.1	943.5	945.0	946.5	948.0	949.4	950.9	952.4	953.9	15
7.	955.3	956.8	958.3	959.8	961.3	962.7	964.2	965.7	967.2	968.7	15
8.	970.2	971.6	973.1	974.6	976.1	977.6	979.1	980.6	982.1	983.5	15
9.	985.0	986.5	988.0	989.5	991.0	992.5	994.0	995.5	997.0	998.5	15
100.	1000.0					or to the					

Moving the decimal point TWO places in N requires moving it THREE places in body of table (see also auxiliary table on p. 20).

RECIPROCALS OF NUMBERS

N	0	1	2	3	4	5	6	7	8	9	Avg.
1.00 1 2 3 4	.9901 .9804 .9709 .9615	.9990 .9891 .9794 .9699 .9606	.9980 .9881 .9785 .9690 .9597	.9970 .9872 .9775 .9681 .9588	.9960 .9862 .9766 .9671 .9579	.9950 .9852 .9756 .9662 .9569	· .9940 .9843 .9747 .9653 .9560	.9930 .9833 .9737 .9643 .9551	.9921 .9823 .9728 .9634 .9542	.9911 .9814 .9718 .9625 .9533	-1 -9
1.05	.9524	.9515	.9506	.9497	.9488	.9479	.9470	.9461	.9452	.9443	-8
6	.9434	.9425	.9416	.9407	.9398	.9390	.9381	.9372	.9363	.9355	
7	.9346	.9337	.9328	.9320	.9311	.9302	.9294	.9285	.9276	.9268	
8	.9259	.9251	.9242	.9234	.9225	.9217	.9208	.9200	.9191	.9183	
9	.9174	.9166	.9158	.9149	.9141	.9132	.9124	.9116	.9107	.9099	
1.10	.9091	.9083	.9074	.9066	.9058	.9050	.9042	.9033	.9025	.9017	
1	.9009	.9001	.8993	.8985	.8977	.8969	.8961	.8953	.8945	.8937	
2	.8929	.8921	.8913	.8905	.8897	.8889	.8881	.8873	.8865	.8857	
3	.8850	.8842	.8834	.8826	.8818	.8811	.8803	.8795	.8787	.8780	
4	.8772	.8764	.8757	.8749	.8741	.8734	.8726	.8718	.8711	.8703	
1.15	.8696	.8688	.8681	.8673	.8666	.8658	.8651	.8643	.8636	.8628	-7
6	.8621	.8613	.8606	.8598	.8591	.8584	.8576	.8569	.8562	.8554	
7	.8547	.8540	.8532	.8525	.8518	.8511	.8503	.8496	.8489	.8482	
8	.8475	.8467	.8460	.8453	.8446	.8439	.8432	.8425	.8418	.8410	
9	.8403	.8396	.8389	.8382	.8375	.8368	.8361	.8354	.8347	.8340	
1.20	.8333	.8326	.8319	.8313	.8306	.8299	.8292	.8285	.8278	.8271	-6
1	.8264	.8258	.8251	.8244	.8237	.8230	.8224	.8217	.8210	.8203	
2	.8197	.8190	.8183	.8177	.8170	.8163	.8157	.8150	.8143	.8137	
3	.8130	.8123	.8117	.8110	.8104	.8097	.8091	.8084	.8078	.8071	
4	.8065	.8058	.8052	.8045	.8039	.8032	.8026	.8019	.8013	.8006	
1.25	.8000	.7994	.7987	.7981	.7974	.7968	.7962	.7955	.7949	.7943	
6	.7937	.7930	.7924	.7918	.7911	.7905	.7899	.7893	.7886	.7880	
7	.7874	.7868	.7862	.7855	.7849	.7843	.7837	.7831	.7825	.7819	
8	.7812	.7806	.7800	.7794	.7788	.7782	.7776	.7770	.7764	.7758	
9	.7752	.7746	.7740	.7734	.7728	.7722	.7716	.7710	.7704	.7698	
1.30	.7692	.7686	.7680	.7675	.7669	.7663	.7657	.7651	.7645	.7639	
1	.7634	.7628	.7622	.7616	.7610	.7605	.7599	.7593	.7587	.7582	
2	.7576	.7570	.7564	.7559	.7553	.7547	.7541	.7536	.7530	.7524	
3	.7519	.7513	.7508	.7502	.7496	.7491	.7485	.7479	.7474	.7468	
4	.7463	.7457	.7452	.7446	.7440	.7435	.7429	.7424	.7418	.7413	
1 35	.7407	.7402	.7396	.7391	.7386	.7380	.7375	.7369	.7364	.7358	-5
6	.7353	.7348	.7342	.7337	.7331	.7326	.7321	.7315	.7310	.7305	
7	.7299	.7294	.7289	.7283	.7278	.7273	.7267	.7262	.7257	.7252	
8	.7246	.7241	.7236	.7231	.7225	.7220	.7215	.7210	.7205	.7199	
9	.7194	.7189	.7184	.7179	.7174	.7168	.7163	.7158	.7153	.7148	
1.40 1 2 3 4	.7143 .7092 .7042 .6993 .6944	.7138 .7087 .7037 .6988 .6940	.7133 .7082 .7032 .6983 .6935	.7128 .7077 .7027 .6978 .6930	.7123 .7072 .7022 .6974 .6925	.7117 .7067 .7018 .6969	.7112 .7062 .7013 .6964 .6916	.7107 .7057 .7008 .6959 .6911	.7102 .7052 .7003 .6954 .6906	.7097 .7047 .6998 .6949 .6901	136 2 6 8
1.45 6 7 8	.6897 .6849 .6803 .6757	.6892 .6845 .6798 .6752 .6707	.6887 .6840 .6793 .6748 .6702	.6882 .6835 .6789 .6743	.6878 .6831 .6784 .6739 .6693	.6873 .6826 .6780 .6734 .6689	.6868 .6821 .6775 .6729	.6863 .6817 .6770 .6725 .6680	.6859 .6812 .6766 .6720 .6676	.6854 .6807 .6761 .6716	

 $1/\pi = 0.318310$ 1/e = 0.367879

Moving the decimal point in either direction in N requires moving it in the OPPO-SITE direction in body of table (see p. 26).

RECIPROCALS (continued)

1023		1110	Contin	,aca,				MOSE		Million.	
N	0	1	2	3	4	5	6	7	8	9	Avg.
1.50	.6667	.6662	.6658	.6653	.6649	.6645	.6640	.6636	.6631	.6627	-4
1	.6623	.6618	.6614	.6609	.6605	.6601	.6596	.6592	.6588	.6583	
2	.6579	.6575	.6570	.6566	.6562	.6557	.6553	.6549	.6545	.6540	
3	.6536	.6532	.6527	.6523	.6519	.6515	.6510	.6506	.6502	.6498	
4	.6494	.6489	.6485	.6481	.6477	.6472	.6468	.6464	.6460	.6456	
1.55	.6452	.6447	.6443	.6439	.6435	.6431	.6427	.6423	.6418	.6414	A STATE OF THE STA
6	.6410	.6406	.6402	.6398	.6394	.6390	.6386	.6382	.6378	.6373	
7	.6369	.6365	.6361	.6357	.6353	.6349	.6345	.6341	.6337	.6333	
8	.6329	.6325	.6321	.6317	.6313	.6309	.6305	.6301	.6297	.6293	
9	.6289	.6285	.6281	.6277	.6274	.6270	.6266	.6262	.6258	.6254	
1.60	.6250	.6246	.6242	.6238	.6234	.6231	.6227	.6223	.6219	.6215	
1	.6211	.6207	.6203	.6200	.6196	.6192	.6188	.6184	.6180	.6177	
2	.6173	.6169	.6165	.6161	.6158	.6154	.6150	.6146	.6143	.6139	
3	.6135	.6131	.6127	.6124	.6120	.6116	.6112	.6109	.6105	.6101	
4	.6098	.6094	.6090	.6086	.6083	.6079	.6075	.6072	.6068	.6064	
1.65	.6061	.6057	.6053	.6050	.6046	.6042	.6039	.6035	.6031	.6028	
6	.6024	.6020	.6017	.6013	.6010	.6006	.6002	.5999	.5995	.5992	
7	.5988	.5984	.5981	.5977	.5974	.5970	.5967	.5963	.5959	.5956	
8	.5952	.5949	.5945	.5942	.5938	.5935	.5931	.5928	.5924	.5921	
9	.5917	.5914	.5910	.5907	.5903	.5900	.5896	.5893	.5889	.5886	
1.70	.5882	.5879	.5875	.5872	.5869	.5865	.5862	.5858	.5855	.5851	-3
1	.5848	.5845	.5841	.5838	.5834	.5831	.5828	.5824	.5821	.5817	
2	.5814	.5811	.5807	.5804	.5800	.5797	.5794	.5790	.5787	.5784	
3	.5780	.5777	.5774	.5770	.5767	.5764	.5760	.5757	.5754	.5750	
4	.5747	.5744	.5741	.5737	.5734	.5731	.5727	.5724	.5721	.5718	
1.75	.5714	.5711	.5708	.5705	.5701	.5698	.5695	.5692	.5688	.5685	
6	.5682	.5679	.5675	.5672	.5669	.5666	.5663	.5659	.5656	.5653	
7	.5650	.5647	.5643	.5640	.5637	.5634	.5631	.5627	.5624	.5621	
8	.5618	.5615	.5612	.5609	.5605	.5602	.5599	.5596	.5593	.5590	
9	.5587	.5583	.5580	.5577	.5574	.5571	.5568	.5565	.5562	.5559	
1.80	.5556	.5552	.5549	.5546	.5543	.5540	.5537	.5534	.5531	.5528	
1	.5525	.5522	.5519	.5516	.5513	.5510	.5507	.5504	.5501	.5498	
2	.5495	.5491	.5488	.5485	.5482	.5479	.5476	.5473	.5470	.5467	
3	.5464	.5461	.5459	.5456	.5453	.5450	.5447	.5444	.5441	.5438	
4	.5435	.5432	.5429	.5426	.5423	.5420	.5417	.5414	.5411	.5408	
1.85	.5405	.5402	.5400	.5397	.5394	.5391	.5388	.5385	.5382	.5379	
6	.5376	.5373	.5371	.5368	.5365	.5362	.5359	.5356	.5353	.5350	
7	.5348	.5345	.5342	.5339	.5336	.5333	.5330	.5328	.5325	.5322	
8	.5319	.5316	.5313	.5311	.5308	.5305	.5302	.5299	.5297	.5294	
9	.5291	.5288	.5285	.5283	.5280	.5277	.5274	.5271	.5269	.5266	
1.90	.5263	.5260	.5258	.5255	.5252	.5249	.5247	.5244	.5241	.5238	
1	.5236	.5233	.5230	.5227	.5225	.5222	.5219	.5216	.5214	.5211	
2	.5208	.5206	.5203	.5200	.5198	.5195	.5192	.5189	.5187	.5184	
3	.5181	.5179	.5176	.5173	.5171	.5168	.5165	.5163	.5160	.5157	
4	.5155	.5152	.5149	.5147	.5144	.5141	.5139	.5136	.5133	.5131	
1.95	.5128	.5126	.5123	.5120	5118	.5115	.5112	.5110	.5107	.5105	- 2
6	.5102	.5099	.5097	.5094	.5092	.5089	.5086	.5084	.5081	.5079	
7	.5076	.5074	.5071	.5068	.5066	.5063	.5061	.5058	.5056	.5053	
8	.5051	.5048	.5045	.5043	.5040	.5038	.5035	.5033	.5030	.5028	
9	.5025	.5023	.5020	.5018	.5015	.5013	.5010	.5008	.5005	.5003	

Moving the decimal point in either direction in N requires moving it in the OPPO-SITE direction in body of table (see p. 26).

RECIPROCALS (continued)

N	0	1	2	3	4	. 5	6	7	8	9	Avg.
2.0	.5000	.4975	.4950	.4926	.4902	.4878	.4854	.4831	.4808	.4785	- 24
1	.4762	.4739	.4717	.4695	.4673	.4651	.4630	.4608	.4587	.4566	- 21
2	.4545	.4525	.4505	.4484	.4464	.4444	.4425	.4405	.4386	.4367	- 20
3	.4348	.4329	.4310	.4292	.4274	.4255	.4237	.4219	.4202	.4184	- 18
4	.4167	.4149	.4132	.4115	.4098	.4082	.4065	.4049	.4032	.4016	- 17
2.5	.4000	.3984	.3968	3953	3937	3922	3906	.3891	.3876	.3861	- 15
6	.3846	.3831	.3817	3802	3788	3774	3759	.3745	.3731	.3717	- 14
7	.3704	.3690	.3676	3663	3650	3636	3623	.3610	.3597	.3584	- 13
8	.3571	.3559	.3546	3534	3521	3509	3497	.3484	.3472	.3460	- 12
9	.3448	.3436	.3425	3413	3401	3390	3378	.3367	.3356	.3344	- 12
3.0	.3333	.3322	.3311	3300	.3289	.3279	.3268	.3257	.3247	.3236	- 11
1	.3226	.3215	.3205	3195	.3185	.3175	.3165	.3155	.3145	.3135	- 10
2	.3125	.3115	.3106	3096	.3086	.3077	.3067	.3058	.3049	.3040	- 10
3	.3030	.3021	.3012	3003	.2994	.2985	.2976	.2967	.2959	.2950	- 9
4	.2941	.2933	.2924	2915	.2907	.2899	.2890	.2882	.2874	.2865	- 8
3.5	.2857	.2849	.2841	.2833	.2825	.2817	.2809	.2801	.2793	.2786	-8
6	.2778	.2770	.2762	.2755	.2747	.2740	.2732	.2725	.2717	.2710	-8
7	.2703	.2695	.2688	.2681	.2674	.2667	.2660	.2653	.2646	.2639	-7
8	.2632	.2625	.2618	.2611	.2604	.2597	.2591	.2584	.2577	.2571	-7
9	.2564	.2558	.2551	.2545	.2538	.2532	.2525	.2519	.2513	.2506	-6
4.0 1 2 3 4	.2500 .2439 .2381 .2326 .2273	.2494 .2433 .2375 .2320 .2268	.2488 .2427 .2370 .2315 .2262	.2481 .2421 .2364 .2309 .2257	.2475 .2415 .2358 .2304 .2252	.2469 .2410 .2353 .2299 .2247	.2463 .2404 .2347 .2294 .2242	.2457 .2398 .2342 .2288 .2237	.2451 .2392 .2336 .2283 .2232	.2445 .2387 .2331 .2278 .2227	-6 -6 -6 -5
4.5	.2222	.2217	.2212	.2208	.2203	.2198	.2193	.2188	.2183	.2179	-5
6	.2174	.2169	.2165	.2160	.2155	.2151	.2146	.2141	.2137	.2132	-5
7	.2128	.2123	.2119	.2114	.2110	.2105	.2101	.2096	.2092	.2088	-4
8	.2083	.2079	.2075	.2070	.2066	.2062	.2058	.2053	.2049	.2045	-4
9	.2041	.2037	.2033	.2028	.2024	.2020	.2016	.2012	.2008	.2004	-4

 $1/\pi = 0.318310$ 1/e = 0.367879

Explanation of Table of Reciprocals (pp. 24-27).

This table gives the values of 1/N for values of N from 1 to 10, correct to four figures.

(Interpolated values may be in error by 1 in the fourth figure.)

To find the reciprocal of a number N outside the range from 1 to 10, note that moving the decimal point any number of places in either direction in column N is equivalent to moving it the same number of places in the opposite direction in the body of the table. For example:

 $\frac{1}{3.217} = 0.3108$; $\frac{1}{3217} = 0.0003108$; $\frac{1}{0.003217} = 310.8$

RECIPROCALS (continued)

REC	IPRO	OLLD (contin	ueu)					The state of		
N	0	1	2	3	4	5	6	7	8	9	Avg.
5.0 .1 .2 .3 .4	.2000 .1961 .1923 .1887 .1852	.1996 .1957 .1919 .1883 .1848	.1992 .1953 .1916 .1880 .1845	.1988 .1949 .1912 .1876 .1842	.1984 .1946 .1908 .1873 .1838	.1980 .1942 .1905 .1869 .1835	.1976 .1938 .1901 .1866 .1832	.1972 .1934 .1898 .1862 .1828	.1969 .1931 .1894 .1859 .1825	.1965 .1927 .1890 .1855 .1821	-4 -3
5.5	.1818	.1815	.1812	.1808	.1805	.1802	.1799	.1795	.1792	.1789	
.6	.1786	.1783	.1779	.1776	.1773	.1770	.1767	.1764	.1761	.1757	
.7	.1754	.1751	.1748	.1745	.1742	.1739	.1736	.1733	.1730	.1727	
.8	.1724	.1721	.1718	.1715	.1712	.1709	.1706	.1704	.1701	.1698	
.9	.1695	.1692	.1689	.1686	.1684	.1681	.1678	.1675	.1672	.1669	
6.0	.1667	.1664	.1661	.1658	.1656	.1653	.1650	.1647	.1645	.1642	- 2
.1	.1639	.1637	.1634	.1631	.1629	.1626	.1623	.1621	.1618	.1616	
.2	.1613	.1610	.1608	.1605	.1603	.1600	.1597	.1595	.1592	.1590	
.3	.1587	.1585	.1582	.1580	.1577	.1575	.1572	.1570	.1567	.1565	
.4	.1563	.1560	.1558	.1555	.1553	.1550	.1548	.1546	.1543	.1541	
6.5	.1538	.1536	.1534	.1531	.1529	.1527	.1524	.1522	.1520	.1517	
.6	.1515	.1513	.1511	.1508	.1506	.1504	.1502	.1499	.1497	.1495	
.7	.1493	.1490	.1488	.1486	.1484	.1481	.1479	.1477	.1475	.1473	
.8	.1471	.1468	.1466	.1464	.1462	.1460	.1458	.1456	.1453	.1451	
.9	.1449	.1447	.1445	.1443	.1441	.1439	.1437	.1435	.1433	.1431	
7.0	.1429	.1427	.1425	.1422	.1420	.1418	.1416	.1414	.1412	.1410	
.1	.1408	.1406	.1404	.1403	.1401	.1399	.1397	.1395	.1393	.1391	
.2	.1389	.1387	.1385	.1383	.1381	.1379	.1377	.1376	.1374	.1372	
.3	.1370	.1368	.1366	.1364	.1362	.1361	.1359	.1357	.1355	.1353	
.4	.1351	.1350	.1348	.1346	.1344	.1342	.1340	.1339	.1337	.1335	
7.5	.1333	.1332	.1330	.1328	.1326	.1325	.1323	.1321	.1319	.1318	
.6	.1316	.1314	.1312	.1311	.1309	.1307	.1305	.1304	.1302	.1300	
.7	.1299	.1297	.1295	.1294	.1292	.1290	.1289	.1287	.1285	.1284	
.8	.1282	.1280	.1279	.1277	.1276	.1274	.1272	.1271	.1269	.1267	
.9	.1266	.1264	.1263	.1261	.1259	.1258	.1256	.1255	.1253	.1252	
8.0	.1250	.1248	.1247	.1245	.1244	.1242	.1241	.1239	.1238	.1236	-1
.1	.1235	.1233	.1232	.1230	.1229	.1227	.1225	.1224	.1222	.1221	
.2	.1220	.1218	.1217	.1215	.1214	.1212	.1211	.1209	.1208	.1206	
.3	.1205	.1203	.1202	.1200	.1199	.1198	.1196	.1195	.1193	.1192	
.4	.1190	.1189	.1188	.1186	.1185	.1183	.1182	.1181	.1179	.1178	
8.5	.1176	.1175	.1174	.1172	.1171	.1170	.1168	.1167	.1166	.1164	
.6	.1163	.1161	.1160	.1159	.1157	.1156	.1155	.1153	.1152	.1151	
.7	.1149	.1148	.1147	.1145	.1144	.1143	.1142	.1140	.1139	.1138	
.8	.1136	.1135	.1134	.1133	.1131	.1130	.1129	.1127	.1126	.1125	
.9	.1124	.1122	.1121	.1120	.1119	.1117	.1116	.1115	.1114	.1112	
9.0	.1111	.1110	.1109	.1107	.1106	.1105	.1104	.1103	.1101	.1100	
.1	.1099	.1098	.1096	.1095	.1094	.1093	.1092	.1091	.1089	.1088	
.2	.1087	.1086	.1085	.1083	.1082	.1081	.1080	.1079	.1078	.1076	
.3	.1075	.1074	.1073	.1072	.1071	.1070	.1068	.1067	.1066	.1065	
.4	.1064	.1063	.1062	.1060	.1059	.1058	.1057	.1056	.1055	.1054	
9.5	.1053	.1052	.1050	.1049	.1048	.1047	.1046	.1045	.1044	.1043	
.6	.1042	.1041	.1040	.1038	.1037	.1036	.1035	.1034	.1033	.1032	
.7	.1031	.1030	.1029	.1028	.1027	.1026	.1025	.1024	.1022	.1021	
.8	.1020	.1019	.1018	.1017	.1016	.1015	.1014	.1013	.1012	.1011	
.9	.1010	.1009	.1008	.1007	.1006	.1005	.1004	.1003	.1002	.1001	
				-		The same of the			-		

Moving the decimal point in either direction in N requires moving it in the OPPOSITE direction in body of table (see p. 26).

CIRCUMFERENCES OF CIRCLES BY HUNDREDTHS

(For circumferences by eighths, see p. 32)

2 5	11000		(101			by eighths	, see p. c				_
D	0	1	2	3	4	5	6	7	8	9	Avg.
1.0	3.142	3.173	3.204	3.236	3.267	3.299	3.330	3.362	3.393	3.424	31
.1	3.456	3.487	3.519	3.550	3.581	3.613	3.644	3.676	3.707	3.738	
.2	3.770	3.801	3.833	3.864	3.896	3.927	3.958	3.990	4.021	4.053	
.3	4.084	4.115	4.147	4.178	4.210	4.241	4.273	4.304	4.335	4.367	
.4	4.398	4.430	4.461	4.492	4.524	4.555	4.587	4.618	4.650	4.681	
1.5	4.712	4.744	4.775	4.807	4.838	4.869	4.901	4.932	4.964	4.995	
.6	5.027	5.058	5.089	5.121	5.152	5.184	5.215	5.246	5.278	5.309	
.7	5.341	5.372	5.404	5.435	5.466	5.498	5.529	5.561	5.592	5.623	
.8	5.655	5.686	5.718	5.749	5.781	5.812	5.843	5.875	5.906	5.938	
.9	5.969	6.000	6.032	6.063	6.095	6.126	6.158	6.189	6.220	6.252	
2.0	6.283	6.315	6.346	6.377	6.409	6.440	6.472	6.503	6.535	6.566	
.1	6.597	6.629	6.660	6.692	6.723	6.754	6.786	6.817	6.849	6.880	
.2	6.912	6.943	6.974	7.006	7.037	7.069	7.100	7.131	7.163	7.194	
.3	7.226	7.257	7.288	7.320	7.351	7.383	7.414	7.446	7.477	7.508	
.4	7.540	7.571	7.603	7.634	7.665	7.697	7.728	7.760	7.791	7.823	
2.5	7.854	7.885	7.917	7.948	7.980	8.011	8.042	8.074	8.105	8.137	
.6	8.168	8.200	8.231	8.262	8.294	8.325	8.357	8.388	8.419	8.451	
.7	8.482	8.514	8.545	8.577	8.608	8.639	8.671	8.702	8.734	8.765	
.8	8.796	8.828	8.859	8.891	8.922	8.954	8.985	9.016	9.048	9.079	
.9	9.111	9.142	9.173	9.205	9.236	9.268	9.299	9.331	9.362	9.393	
3.0	9.425 9.739	9.456 9,770	9.488 9.802	9.519 9.833	9.550 9.865	9.582 9.896	9.613 9.927	9.645 9.959	9.676 9.990	9.708 10.022	31
1 .2 .3 .4	10.05 10.37 10.68	10.08 10.40 10.71	10.12 10.43 10.74	10.15 10.46 10.78	10.18 10.49 10.81	10.21 10.52 10.84	10.24 10.56 10.87	10.27 10.59 10.90	10.30 10.62 10.93	10.02 10.34 10.65 10.96	,
3.5	11.00	11.03	11.06	11.09	11.12	11.15	11.18	11.22	11.25	11.28	
.6	11.31	11.34	11.37	11.40	11.44	11.47	11.50	11.53	11.56	11.59	
.7	11.62	11.66	11.69	11.72	11.75	11.78	11.81	11.84	11.88	11.91	
.8	11.94	11.97	12.00	12.03	12.06	12.10	12.13	12.16	12.19	12.22	
.9	12.25	12.28	12.32	12.35	12.38	12.41	12.44	12.47	12.50	12.53	
4.0	12.57	12.60	12.63	12.66	12.69	12.72	12.75	12.79	12.82	12.85	
.1	12.88	12.91	12.94	12.97	13.01	13.04	13.07	13.10	13.13	13.16	
.2	13.19	13.23	13.26	13.29	13.32	13.35	13.38	13.41	13.45	13.48	
.3	13.51	13.54	13.57	13.60	13.63	13.67	13.70	13.73	13.76	13.79	
.4	13.82	13.85	13.89	13.92	13.95	13.98	14.01	14.04	14.07	14.11	
4.5	14.14	14.17	14.20	14.23	14.26	14.29	14.33	14.36	14.39	14.42	
.6	14.45	14.48	14.51	14.55	14.58	14.61	14.64	14.67	14.70	14.73	
.7	14.77	14.80	14.83	14.86	14.89	14.92	14.95	14.99	15.02	15.05	
.8	15.08	15.11	15.14	15.17	15.21	15.24	15.27	15.30	15.33	15.36	
.9	15.39	15.43	15.46	15.49	15.52	15.5 5	15.58	15.61	15.65	15.68	

Explanation of Table of Circumferences (pp. 28-29)

This table gives the product of π times any number D from 1 to 10; that is, it is a table

of multiples of π . (D = diameter.)Moving the decimal point one place in column D is equivalent to moving it one place in the body of the table.

Circumference = $\pi \times \text{diam}$. = 3.141593 $\times \text{diam}$.

Conversely,

Diameter = $\frac{1}{2}$ × circumf. = 0.31831 × circumf.

CIRCUMFERENCES BY HUNDREDTHS (continued)

D	0	1	2	3	4	5	6	7	8	9	Avg.
5.0	15.71	15.74	15.77	15.80	15.83	15.87	15.90	15.93	15.96	15.99	3
.1	16.02	16.05	16.08	16.12	16.15	16.18	16.21	16.24	16.27	16.30	
.2	16.34	16.37	16.40	16.43	16.46	16.49	16.52	16.56	16.59	16.62	
.3	16.65	16.68	16.71	16.74	16.78	16.81	16.84	16.87	16.90	16.93	
.4	16.96	17.00	17.03	17.06	17.09	17.12	17.15	17.18	17.22	17.25	
5.5	17.28	17.31	17.34	17.37	17.40	17.44	17.47	17.50	17.53	17.56	
.6	17.59	17.62	17.66	17.69	17.72	17.75	17.78	17.81	17.84	17.88	
.7	17.91	17.94	17.97	18.00	18.03	18.06	18.10	18.13	18.16	18.19	
.8	18.22	18.25	18.28	18.32	18.35	18.38	18.41	18.44	18.47	18.50	
.9	18.54	18.57	18.60	18.63	18.66	18.69	18.72	18.76	18.79	18.82	
6.0	18.85	18.88	18.91	18.94	18.98	19.01	19.04	19.07	19.10	19.13	to l
.1	19.16	19.20	19.23	19.26	19.29	19.32	19.35	19.38	19.42	19.45	
.2	19.48	19.51	19.54	19.57	19.60	19.63	19.67	19.70	19.73	19.76	
.3	19.79	19.82	19.85	19.89	19.92	19.95	19.98	20.01	20.04	20.07	
.4	20.11	20.14	20.17	20.20	20.23	20.26	20.29	20.33	20.36	20.39	
6.5 .6 .7 .8	20.42 20.73 21.05 21.36 21.68	20.45 20.77 21.08 21.39 21.71	20.48 20.80 21.11 21.43 21.74	20.51 20.83 21.14 21.46 21.77	20.55 20.86 21.17 21.49 21.80	20.58 20.89 21.21 21.52 21.83	20.61 20.92 21.24 21.55 21.87	20,64 20,95 21,27 21,58 21,90	20.67 20.99 21.30 21.61 21.93	20.70 21.02 21.33 21.65 21.96	B 10 20 K
7.0	21.99	22.02	22.05	22.09	22.12	22.15	22.18	22.21	22.24	22.27	AN A
.1	22.31	22.34	22.37	22.40	22.43	22.46	22.49	22.53	22.56	22.59	
.2	22.62	22.65	22.68	22.71	22.75	22.78	22.81	22.84	22.87	22.90	
.3	22.93	22.97	23.00	23.03	23.06	23.09	23.12	23.15	23.18	23.22	
.4	23.25	23.28	23.31	23.34	23.37	23.40	23.44	23.47	23.50	23.53	
7.5	23.56	23.59	23.62	23.66	23.69	23.72	23.75	23.78	23.81	23.84	S prompt
.6	23.88	23.91	23.94	23.97	24.00	24.03	24.06	24.10	24.13	24.16	
.7	24.19	24.22	24.25	24.28	24.32 •	24.35	24.38	24.41	24.44	24.47	
.8	24.50	24.54	24.57	24.60	24.63	24.66	24.69	24.72	24.76	24.79	
.9	24.82	24.85	24.88	24.91	24.94	24.98	25.01	25.04	25.07	25.10	
8.0	25.13	25.16	25.20	25.23	25.26	25.29	25.32	25.35	25.38	25.42	Service Service
.1	25.45	25.48	25.51	25.54	25.57	25.60	25.64	25.67	25.70	25.73	
.2	25.76	25.79	25.82	25.86	25.89	25.92	25.95	25.98	26.01	26.04	
.3	26.08	26.11	26.14	26.17	26.20	26.23	26.26	26.30	26.33	26.36	
.4	26.39	26.42	26.45	26.48	26.52	26.55	26.58	26.61	26.64	26.67	
8.5	26.70	26.73	26.77	26.80	26.83	26.86	26.89	26.92	26.95	26.99	10 mm
.6	27.02	27.05	27.08	27.11	27.14	27.17	27.21	27.24	27.27	27.30	
.7	27.33	27.36	27.39	27.43	27.46	27.49	27.52	27.55	27.58	27.61	
.8	27.65	27.68	27.71	27.74	27.77	27.80	27.83	27.87	27.90	27.93	
.9	27.96	27.99	28.02	28.05	28.09	28.12	28.15	28.18	28.21	28.24	
9.0	28.27	28.31	28.34	28.37	28.40	28.43	28.46	28.49	28.53	28.56	
.1	28.59	28.62	28.65	28.68	28.71	28.75	28.78	28.81	28.84	28.87	
.2	28.90	28.93	28.97	29.00	29.03	29.06	29.09	29.12	29.15	29.19	
.3	29.22	29.25	29.28	29.31	29.34	29.37	29.41	29.44	29.47	29.50	
.4	29.53	29.56	29.59	29.63	29.66	29.69	29.72	29.75	29.78	29.81	
9.5	29.85	29.88	29.91	29.94	29.97	30.00	30.03	30.07	30.10	30.13	
.6	30.16	30.19	30.22	30.25	30.28	30.32	30.35	30.38	30.41	30.44	
.7	30.47	30.50	30.54	30.57	30.60	30.63	30.66	30.69	30.72	30.76	
.8	30.79	30.82	30.85	30.88	30.91	30.94	30.98	31.01	31.04	31.07	
.9	31.10	31.13	31.16	31.20	31.23	31.26	31.29	31.32	31.35	31.38	
10.0	31.42	4			13,75			286			

Moving the decimal point ONE place in D requires moving it ONE place in body of table (see p. 28).

AREAS OF CIRCLES BY HUNDREDTHS

(For areas by eighths, see p. 32)

D	0	1	2	3	4	5	6	7	8	9	Avg. diff.
1.0	0.785	0.801	0.817	0.833	0.849	0.866	0.882	0.899	0.916	0.933	16
.1	0.950	0.968	0.985	1.003	1.021	1.039	1.057	1.075	1.094	1.112	18
.2	1.131	1.150	1.169	1.188	1.208	1.227	1.247	1.267	1.287	1.307	20
.3	1.327	1.348	1.368	1.389	1.410	1.431	1.453	1.474	1.496	1.517	21
.4	1.539	1.561	1.584	1.606	1.629	1.651	1.674	1.697	1.720	1.744	23
1.5	1.767	1.791	1.815	1.839	1.863	1.887	1.911	1.936	1.961	1.986	24
.6	2.011	2.036	2.061	2.087	2.112	2.138	2.164	2.190	2.217	2.243	26
.7	2.270	2.297	2.324	2.351	2.378	2.405	2.433	2.461	2.488	2.516	27
.8	2.545	2.573	2.602	2.630	2.659	2.688	2.717	2.746	2.776	2.806	29
.9	2.835	2.865	2.895	2.926	2.956	2.986	3.017	3.048	3.079	3.110	31
2.0	3.142	3.173	3.205	3.237	3.269	3,301	3.333	3.365	3.398	3.431	32
.1	3.464	3.497	3.530	3.563	3.597	3,631	3.664	3.698	3.733	3.767	34
.2	3.801	3.836	3.871	3.906	3.941	3,976	4.011	4.047	4.083	4.119	35
.3	4.155	4.191	4.227	4.264	4.301	4,337	4.374	4.412	4.449	4.486	37
.4	4.524	4.562	4.600	4.638	4.676	4,714	4.753	4.792	4.831	4.870	38
2.5	4.909	4.948	4.988	5.027	5.067	5.107	5.147	5.187	5.228	5.269	40
.6	5.309	5.350	5.391	5.433	5.474	5.515	5.557	5.599	5.641	5.683	42
.7	5.726	5.768	5.811	5.853	5.896	5.940	5.983	6.026	6.070	6.114	43
.8	6.158	6.202	6.246	6.290	6.335	6.379	6.424	6.469	6.514	6.560	45
.9	6.605	6.651	6.697	6.743	6.789	6.835	6.881	6.928	6.975	7.022	46
3.0	7.069	7.116	7.163	7.211	7.258	7.306	7.354	7.402	7.451	7.499	48
.1	7.548	7.596	7.645	7.694	7.744	7.793	7.843	7.892	7.942	7.992	49
.2	8.042	8.093	8.143	8.194	8.245	8.296	8.347	8.398	8.450	8.501	51
.3	8.553	8.605	8.657	8.709	8.762	8.814	8.867	8.920	8.973	9.026	53
.4	9.079	9.133	9.186	9.240	9.294	9.348	9.402	9.457	9.511	9.566	54
3.5 .5 .6 .7 .8	9.621 10.18 10.75 11.34 11.95	9.676 10.24 10.81 11.40 12.01	9.731 10.29 10.87 11.46 12.07	9.787 10.35 10.93 11.52 12.13	9.842 10.41 10.99 11.58 12.19	9.898 10.46 11.04 11.64 12.25	9.954 10.52 11.10 11.70 12.32	10.010 10.01 10.58 11.16 11.76 12.38	10.07 10.64 11.22 11.82 12.44	10.12 10.69 11.28 11.88 12.50	56 6 6
4.0	12.57	12.63	12.69	12.76	12.82	12.88	12.95	13.01	13.07	13.14	7
.1	13.20	13.27	13.33	13.40	13.46	13.53	13.59	13.66	13.72	13.79	
.2	13.85	13.92	13.99	14.05	14.12	14.19	14.25	14.32	14.39	14.45	
.3	14.52	14.59	14.66	14.73	14.79	14.86	14.93	15.00	15.07	15.14	
.4	15.21	15.27	15.34	15.41	15.48	15.55	15.62	15.69	15.76	15.83	
4.5	15.90	15.98	16.05	16.12	16.19	16.26	16.33	16.40	16.47	16.55	8
.6	16.62	16.69	16.76	16.84	16.91	16.98	17.06	17.13	17.20	17.28	
.7	17.35	17.42	17.50	17.57	17.65	17.72	17.80	17.87	17.95	18.02	
.8	18.10	18.17	18.25	18.32	18.40	18.47	18.55	18.63	18.70	18.78	
.9	18.86	18.93	19.01	19.09	19.17	19.24	19.32	19.40	19.48	19.56	

Explanation of Table of Areas of Circles (pp. 30-31)

Moving the decimal point one place in column D is equivalent to moving it two places in the body of the table. (D = diameter.)

Area of circle = $\frac{\pi}{4}$ × (diam.2) = 0.785398 × (diam.2)

Conversely,

Diam. =
$$\sqrt{\frac{4}{\pi}} \times \sqrt{\text{area}} = 1.128379 \times \sqrt{\text{area}}$$

AREAS OF CIRCLES BY HUNDREDTHS (continued)

D	0	1	2	3	4	5	6	7	8	9	Avg. diff.
5.0	19.63	19.71	19.79	19.87	19.95	20.03	20.11	20.19	20.27	20.35	8
.1	20.43	20.51	20.59	20.67	20.75	20.83	20.91	20.99	21.07	21.16	
.2	21.24	21.32	21.40	21.48	21.57	21.65	21.73	21.81	21.90	21.98	
.3	22.06	22.15	22.23	22.31	22.40	22.48	22.56	22.65	22.73	22.82	
.4	22.90	22.99	23.07	23.16	23.24	23.33	23.41	23.50	23.59	23.67	
5.5	23.76	23.84	23.93	24.02	24.11	24.19	24.28	24.37	24.45	24.54	
.6	24.63	24.72	24.81	24.89	24.98	25.07	25.16	25.25	25.34	25.43	
.7	25.52	25.61	25.70	25.79	25.88	25.97	26.06	26.15	26.24	26.33	
.8	26.42	26.51	26.60	26.69	26.79	26.88	26.97	27.06	27.15	27.25	
.9	27.34	27.43	27.53	27.62	27.71	27.81	27.90	27.99	28.09	28.18	
6.0	28.27	28.37	28.46	28.56	28.65	28.75	28.84	28.94	29.03	29.13	10
.1	29.22	29.32	29.42	29.51	29.61	29.71	29.80	29.90	30.00	30.09	
.2	30.19	30.29	30.39	30.48	30.58	30.68	30.78	30.88	30.97	31.07	
.3	31.17	31.27	31.37	31.47	31.57	31.67	31.77	31.87	31.97	32.07	
.4	32.17	32.27	32.37	32.47	32.57	32.67	32.78	32.88	32.98	33.08	
6.5	33.18	33.29	33.39	33.49	33.59	33.70	33.80	33.90	34.00	34.11	11
.6	34.21	34.32	34.42	34.52	34.63	34.73	34.84	34.94	35.05	35.15	
.7	35.26	35.36	35.47	35.57	35.68	35.78	35.89	36.00	36.10	36.21	
.8	36.32	36.42	36.53	36.64	36.75	36.85	36.96	37.07	37.18	37.28	
.9	37.39	37.50	37.61	37.72	37.83	37.94	38.05	38.16	38.26	38.37	
7.0	38.48	38.59	38.70	38.82	38.93	39.04	39.15	39.26	39.37	39.48	12
.1	39.59	39.70	39.82	39.93	40.04	40.15	40.26	40.38	40.49	40.60	
.2	40.72	40.83	40.94	41.06	41.17	41.28	41.40	41.51	41.62	41.74	
.3	41.85	41.97	42.08	42.20	42.31	42.43	42.54	42.66	42.78	42.89	
.4	43.01	43.12	43.24	43.36	43.47	43.59	43.71	43.83	43.94	44.06	
7.5	44.18	44.30	44.41	44.53	44.65	44.77	44.89	45.01	45.13	45.25	
.6	45.36	45.48	45.60	45.72	45.84	45.96	46.08	46.20	46.32	46.45	
.7	46.57	46.69	46.81	46.93	47.05	47.17	47.29	47.42	47.54	47.66	
.8	47.78	47.91	48.03	48.15	48.27	48.40	48.52	48.65	48.77	48.89	
.9	49.02	49.14	49.27	49.39	49.51	49.64	49.76	49.89	50.01	50.14	
8.0	50.27	50.39	50.52	50.64	50.77	50.90	51.02	51.15	51.28	51.40	13
.1	51.53	51.66	51.78	51.91	52.04	52.17	52.30	52.42	52.55	52.68	
.2	52.81	52.94	53.07	53.20	53.33	53.46	53.59	53.72	53.85	53.98	
.3	54.11	54.24	54.37	54.50	54.63	54.76	54.89	55.02	55.15	55.29	
.4	55.42	55.55	55.68	55.81	55.95	56.08	56.21	56.35	56.48	56.61	
8.5	56.75	56.88	57.01	57.15	57.28	57.41	57.55	57.68	57.82	57.95	14
.6	58.09	58.22	58.36	58.49	58.63	58.77	58.90	59.04	59.17	59.31	
.7	59.45	59.58	59.72	59.86	59.99	60.13	60.27	60.41	60.55	60.68	
.8	60.82	60.96	61.10	61.24	61.38	61.51	61.65	61.79	61.93	62.07	
.9	62.21	62.35	62.49	62.63	62.77	62.91	63.05	63.19	63.33	63.48	
9.0	63.62	63.76	63.90	64.04	64.18	64.33	64.47	64.61	64.75	64.90	15
.1	65.04	65.18	65.33	65.47	65.61	65.76	65.90	66.04	66.19	66.33	
.2	66.48	66.62	66.77	66.91	67.06	67.20	67.35	67.49	67.64	67.78	
.3	67.93	68.08	68.22	68.37	68.51	68.66	68.81	68.96	69.10	69.25	
.4	69.40	69.55	69.69	69.84	69.99	70.14	70.29	70.44	70.58	70.73	
9.5	70.88	71.03	71.18	71.33	71.48	71.63	71.78	71.93	72.08	72.23	16
.6	72.38	72.53	72.68	72.84	72.99	73.14	73.29	73.44	73.59	73.75	
.7	73.90	74.05	74.20	74.36	74.51	74.66	74.82	74.97	75.12	75.28	
.8	75.43	75.58	75.74	75.89	76.05	76.20	76.36	76.51	76.67	76.82	
.9	76.98	77.13	77.29	77.44	77.60	77.76	77.91	78.07	78.23	78.38	

Moving the decimal point ONE place in D requires moving it TWO places in body of table (see p. 30).

CIRCUMFERENCES AND AREAS OF CIRCLES BY EIGHTHS, ETC. (For tenths, see p. 28)

A LONG		43/4/19									
Diam.	Circum.	Area	Diam.	Circum.	Area	Diam.	Circum.	Area	Diam.	Circum.	Area
164 182 364	.04909 .09817 .1473	.00019 .00077 .00173	78 5764 29/32 59/64	2.749 2.798 2.847 2.896	.6013 .6230 .6450 .6675	1/16 1/8 3/16	12.57 12.76 12.96 13.16	12.57 12.96 13.36 13.77	9 1/8 1/4 3/8	28.27 28.67 29.06 29.45	63.62 65.40 67.20 69.03
16	.1963	.00307	15/16	2.945	.6903	1/4	13.35	14.19	1/2	29.85	70.88
564	.2454	.00479	61/64	2.994	.7135	5/16	13.55	14.61	5/8	30.24	72.76
352	.2945	.00690	31/32	3.043	.7371	3/8	13.74	15.03	3/4	30.63	74.66
764	.3436	.00940	63/64	3.093	.7610	7/16	13.94	15.47	7/8	31.02	76.59
16	.3927	.01227	1	3.142	.7854	1/2	14.14	15.90	10	31.42	78.54
964	.4418	.01553	1/6	3.338	.8866	9/16	14.33	16.35	18	31.81	80.52
532	.4909	.01917	1/8	3.534	.9940	5/8	14.53	16.80	14	32.20	82.52
1164	.5400	.02320	3/16	3.731	1.108	11/16	14.73	17.26	38	32.59	84.54
316	.5890	.02761	3/4	3.927	1.227	34	14.92	17.72	1/2	32.99	86.59
1364	.6381	.03241	5/16	4.123	1.353	13/16	15.12	18.19	5/8	33.38	88.66
7/82	.6872	.03758	3/8	4.320	1.485	7/8	15.32	18.67	3/4	33.77	90.76
15/64	.7363	.04314	7/16	4.516	1.623	15/16	15.51	19.15	7/8	34.16	92.89
14	.7854	.04909	1/2	4.712	1.767	5	15.71	19.63	11	34.56	95.03
1764	.8345	.05542	9/16	4.909	1.917	1/16	15.90	20.13	38	34.95	97.21
952	.8836	.06213	5/8	5.105	2.074	1/8	16.10	20.63	34	35.34	99.40
1964	.9327	.06922	11/16	5.301	2.237	3/16	16.30	21.14	38	35.74	101.6
516	.9817	.07670	34	5.498	2.405	1/4	16.49	21.65	1/2	36.13	103.9
2164	1.031	.08456	13/16	5.694	2.580	5/16	16.69	22.17	5/8	36.52	106.1
11/32	1.080	.09281	7/8	5.890	2.761	3/8	16.89	22.69	3/4	36.91	108.4
23/64	1.129	.1014	15/16	6.087	2.948	7/16	17.08	23.22	7/8	37.31	110.8
3/8	1.178	.1104	2	6.283	3.142	1/2	17.28	23.76	12	37.70	113.1
25/64	1.227	.1198	1/16	6.480	3.341	9/16	17.48	24.30	18	38.09	115.5
13/32	1.276	.1296	1/8	6.676	3.547	5/8	17.67	24.85	14	38.48	117.9
27/64	1.325	.1398	3/16	6.872	3.758	11/16	17.87	25.41	38	38.88	120.3
7/16	1.374	.1503	1/4	7.069	3.976	3/4	18.06	25.97	1/2	39.27	122.7
29/64	1.424	.1613	5/16	7.265	4.200	13/16	18.26	26.53	5/8	39.66	125.2
15/32	1.473	.1726	3/8	7.461	4.430	7/8	18.46	27.11	3/4	40.06	127.7
31/64	1.522	.1843	7/16	7.658	4.666	15/16	18.65	27.69	7/8	40.45	130.2
1/2	1.571	.1963	1/2	7.854	4.909	6	18.85	28.27	13	40.84	132.7
83/64	1.620	.2088	9/16	8.050	5.157	18	19.24	29.46	18	41.23	135.3
17/32	1.669	.2217	5/8	8.247	5.412	14	19.63	30.68	14	41.63	137.9
35/64	1.718	.2349	11/16	8.443	5.673	38	20.03	31.92	38	42.02	140.5
916	1.767	.2485	3/4	8.639	5.940	1/2	20.42	33.18	1/2	42.41	143.1
3764	1.816	.2625	13/16	8.836	6.213	5/8	20.81	34.47	5/8	42.80	145.8
1932	1.865	.2769	7/8	9.032	6.492	3/4	21.21	35.78	3/4	43.20	148.5
3964	1.914	.2916	15/16	9.228	6.777	7/8	21.60	37.12	7/8	43.59	151.2
56	1.963	.3068	3	9.425	7.069	7	21.99	38.48	14	43.98	153.9
41/64	2.013	.3223	1/16	9.621	7.366	18	22.38	39.87	18	44.37	156.7
21/32	2.062	.3382	1/8	9.817	7.670	14	22.78	41.28	14	44.77	159.5
43/64	2.111	.3545	3/16	10.01	7.980	38	23.17	42.72	38	45.16	162.3
11/16	2.160	.3712	14	10.21	8.296	1/2	23.56	44.18	1/2	45.55	165.1
4564	2.209	.3883	516	10.41	8.618	5/8	23.95	45.66	5/8	45.95	168.0
23/32	2.258	.4057	38	10.60	8.946	3/4	24.35	47.17	3/4	46.34	170.9
47/64	2.307	.4236	716	10.80	9.281	7/8	24.74	48.71	7/8	46.73	173.8
34	2.356	.4418	1/2	11.00	9.621	8	25.13	50.27	15	47.12	176.7
4964	2.405	.4604	9/16	11.19	9.968	14	25.53	51.85	18	47.52	179.7
2532	2.454	.4794	5/8	11.39	10.32	14	25.92	53.46	14	47.91	182.7
8164	2.503	.4987	11/16	11.58	10.68	38	26.31	55.09	38	48.30	185.7
13/6	2.553	.5185	34	11.78	11.04	1/2	26.70	56.75	14	48.69	188.7
53/64	2.602	.5386	13/16	11.98	11.42	5/8	27.10	58.43	58	49.09	191.7
27/62	2.651	.5591	7/8	12.17	11.79	3/4	27.49	60.13	34	49.48	194.8
55/64	2.700	.5800	15/16	12.37	12.18	7/8	27.88	61.86	78	49.87	197.9

CIRCUMFERENCES AND AREAS BY EIGHTHS-(continued)

1								-			
Diam.	Circum.	Area	Diam.	Circum.	Area	Diam.	Circum.	Area	Diam.	Circum.	Area
16 16 14 36	50.27 50.66 51.05 51.44	201.1 204.2 207.4 210.6	19 14 58 34 78	61.26 61.65 62.05 62.44	298.6 302.5 306.4 310.2	23 18 14 38	72.26 72.65 73.04 73.43	415.5 420.0 424.6 429.1	29 14 15 34	91.11 91.89 92.68 93.46	660.5 672.0 683.5 695.1
14 58 34 38	51.84 52.23 52.62 53.01	213.8 217.1 220.4 223.7	20 18 14 38	62.83 63.22 63.62 64.01	314.2 318.1 322.1 326.1	1/4 5/8 3/4 7/8	73.83 74.22 74.61 75.01	433.7 438.4 443.0 447.7	30 14 15 34	94.25 95.03 95.82 96.60	706.9 718.7 730.6 742.6
17 38 34 38	53.41 53.80 54.19 54.59	227.0 230.3 233.7 237.1	15 58 34 78	64.40 64.80 65.19 65.58	330.1 334.1 338.2 342.2	24 34 34 34 34	75.40 76.18 76.97 77.75	452.4 461.9 471.4 481.1	31 1/4 1/2 3/4	97.39 98.17 98.96 99.75	754.8 767.0 779.3 791.7
14 58 84 78	54.98 55.37 55.76 56.16	240.5 244.0 247.4 250.9	21 18 14 38	65.97 66.37 66.76 67.15	346.4 350.5 354.7 358.8	25 14 16 16 34	78.54 79.33 80.11 80.90	490.9 500.7 510.7 520.8	32 34 34 34 34	100.5 101.3 102.1 102.9	804.2 816.9 829.6 842.4
18 18 14 36	56.55 56.94 57.33 57.73	254.5 258.0 261.6 265.2	14 58 34 78	67.54 67.94 68.33 68.72	363.1 367.3 371.5 375.8	26 14 15 34	81.68 82.47 83.25 84.04	530.9 541.2 551.5 562.0	33 14 14 14 34	103.7 104.5 105.2 106.0	855.3 868.3 881.4 894.6
14 58 34 78	58.12 58.51 58.90 59.30	268.8 272.4 276.1 279.8	22 16 14 36	69.12 69.51 69.90 70.29	380.1 384.5 388.8 393.2	27 14 14 15 34	84.82 85.61 86.39 87.18	572.6 583.2 594.0 604.8	34 34 34 34	106.8 107.6 108.4 109.2	907.9 921.3 934.8 948.4
19 18 14 38	59.69 60.08 60.48 60.87	283.5 287.3 291.0 294.8	12 58 34 78	70.69 71.08 71.47 71.86	397.6 402.0 406.5 411.0	28 34 34 34	87.96 88.75 89.54 90.32	615.8 626.8 637.9 649.2	35 34 34 34	110.0 110.7 111.5 112.3	962.1 975.9 989.8 1003.8

AREAS OF C	IRCLES.	Diameters:	in Feet	and Inches	s, Areas in	Square l	reet

	1					In	ches				100	
Feet	1											
	0	1	2.	3	4	5	6	7	8	9	10	- 11
0	10000	.0055	.0218	.0491	.0873	.1364	.1963	2673	.3491	.4418	.5454	.6600
1	7854	.9218	1.069	1.227	1.396	1.576	1.767	1.969	2.182	2.405	2.640	2.885
2	3.142	3,409	3.687	3.976	4.276	4.587	4.909	5.241	5.585	5.940	6,305	6.681
2 3	7.069	7.467	7.876	8.296	8.727	9.168	9.621	10.08	10.56	11.04	11.54	12.05
4	12.57	13.10	13.64	14.19	14.75	15.32	15.90	16.50	17.10	17.72	18.35	18.99
5	19.63	20.29	20.97	21.65	22.34	23.04	23.76	24,48	25.22	25.97	26.73	27.49
6	28.27	29.07	29.87	30.68	31.50	32.34	33.18	34.04	34.91	35.78	36.67	37.57
7	38.48	39.41	40.34	41.28	42.24	43.20	44.18	45.17	46.16	47.17	48.19	49.22
8	50.27	51.32	52.38	53.46	54.54	55.64	56.75	57.86	58.99	60.13	61.28	62.44
9	63.62	64.80	66.00	67.20	68.42	69.64	70.88	72.13	73.39	74.66	75.94	77.24
10	78.54	79.85	81.18	82.52	83.86	85.22	86.59	87.97	89.36	90.76	92.18	93.60
11	95.03	96.48	97.93	99.40	100.9	102.4	103.9	105.4	106.9	108.4	110.0	111.5
12	113.1	114.7	116.3	117.9	119.5	121.1	122.7	124.4	126.0	127.7	129.4	131.0
13	132.7	134.4	136.2	137.9	139.6	141.4	143.1	144.9	146.7	148.5	150.3	152.1
14	153.9	155.8	157.6	159.5	161.4	163.2	165.1	167.0	168.9	170.9	172.8	174.8

If given diameter is not found in this table, reduce diameter to feet and decimals of a foot by aid of the following auxiliary table, and then find area from pp. 30-31.

Fro	m Inch	es and	Frac	tions	of an	Inch t	o Dec	imals	of a F	oot	-68
Inches Feet	.0833	.1667	.2500	.3333	.4167	.5000	.5833	. 6667	.7500	. 8333	.9167
Inches Feet Example.						.0625 .0313		46 ft.			

SEGMENTS OF CIRCLES, GIVEN h/c

Given: h = height; c = chord. (For explanation of this table, see p. 38)

-	D:									
$\frac{h}{c}$	Diam.	Diff	Arc	Diff	$\frac{\text{Area}}{h \times c}$	Diff.	Central angle, v	Diff	Diam.	Diff.
.00			1.000	0	.6667	0	0.000	458	.0000	4
2	25.010 12.520	12490 *4157	1.000 1.001 1.002	1	.6667 .6669 .6671	2	4.58 9.16 13.73	458 457 457	.0004 .0016 .0036	12
3 4	8.363 6.290	*2073 *1240	1.002 1.004	2 3	.6671 .6675	2 2 4 5	13.73 18.30	457 454	.0036	12 20 28 35
.05	5.050	*823	1.007	100 100	.6680	22.3	22.84°	453	.0099	
6 7	4.227 3.641 3.205	*586 *436	1.010 1.013 1.017	3	.6686 .6693 .6701	7	27.37 31.88	451 448	.0142 .0192 .0250	50
8 9	3.205 2.868	*337 *268	1.017	3 4 4 5	.6701 .6710	6 7 8 9	36.36 40.82	446 442	.0250	43 50 58 64 71
.10	2.600		1.026	Contract of	.6720		45.24°	439	.0385	
1 2	2.383 2.203	*217 *180 *150	1.032 1.038	6	.6731 .6743	11 12 13	49.63 53.98	435	.0462 .0545	83
3 4	2.053 1.926	*150 *127 *109	1.044	6 6 7 8	.6756 .6770	14	58.30 62.57	432 427 423	.0633	77 83 88 94 99
.15	1.817	*94	1.050		.6785		66.80°	418	.0826	
6 7	1.723 1.641 1.569	*82 *72	1.067 1.075 1.084	8	.6801 .6818 .6836	16 17 18	70.98 75.11 79.20	413	.0929	103 107 111
7 8 9	1.569 1.506	*63	1.084	10	.6836 .6855	19	79.20 83.23	403 398	.1147	115
.20	1.450	56 50	1.103	11	.6875		87.21°	392	.1379	120
1 2 3	1.400 1.356 1.317	44	1.114 1.124 1.136	10	.6896 .6918	22	91.13 95.00	387	.1499	123 124
3 4	1.317	44 39 35 32	1.136	11	.6941 .6965	21 22 23 24 24	98.81 102.56	381 375 370	.1379 .1499 .1622 .1746 .1873	127
.25	1.250		1.159 1.171		.6989		106.26°	364	.2000	
6 7	1.222	26	1.184	12 13 13	.7014 .7041	27	109.90 113.48 117.00	358 352	.2128	130
7 8 9	1.173	28 26 23 21 19	1.197	14	.7068 .7096	25 27 27 28 29	117.00	345 341	.2387	128 130 129 130 130
.30	1.133	17	1.225		.7125		123.86°	334		
2 3	1.116	15 13 13	1.239	14 15 15	.7154 .7185	31	127.20 130.48	328 322	.2647 .2777 .2906 .3034	130 129 128
3	1.088 1.075	13	1.269	15	.7216 .7248	29 31 31 32 32	133.70 136.86	316 311	.3034 .3162	128 127
.35	1.064	10	1.300 1.316	16	.7280		139.97° 143.02	305	.3289	
6	1.054 1.046	8	1.316 1.332 1.349	16 17	.7314 .7348	34	143.02 146.01 148.94	299 293	3289 3414 3538	125 124 123
6 7 8 9	1.038	8 8 7 6	1.349	17	.7383 .7419	34 34 35 36 36	148.94 151.82	288 282	.3661 .3783	122
.40	1.025		1.383		.7455		154.64°	277	.3902	119
1 2	1.020	5	1.401 1.419 1.437	18 18 18	.7492 .7530	37 38	157.41 160.12	271 266	.4021 .4137	116
3 4	1.011	5 4 3 2	1.437 1.455	18	.7568 .7607	38 39 40	162.78 165.39	261 256	.4252	115 112 111
.45	1.006		1.474	19	.7647	40	167.95°	251	.4475	
6 7 8 9	1.003	3	1.493 1.512	19	.7687 .7728	41	170.46 172.91	245 241	.4584	109 107 105
8 9	1.001	1	1.531 1.551	20 20	.7769 .7811	42 43	175.32 177.69	237	.4796 .4899	103
.50	1.000	0	1.571	20	.7854	43	180.00°	231	.5000	101
	ALCOHOL:				ATTICAL TO THE		The second second			

^{*} Interpolation may be inaccurate at these points.

SEGMENTS OF CIRCLES, GIVEN h/D

Given: h = height; D = diameter of circle. (For explanation of this table, see p. 38)

GI	ven: n	- neigh	10, 1	- Clain	leter of circle.	(ror exp	Tallauic	II OI UII	is oabi	o, see pr	00)
h	Arc	Ħ.	Area	Ħ	Central #	Chord	Diff.	Arc	Ħ	Area	#
\overline{D}	D	Diff	D^2	Diff	Central ti	D	Ä	Circur	nf. A	Circle	Diff.
.00 1 2 3 4	0.0000 .2003 .2838 .3482 .4027	2003 *835 *644 *545 *483	.0000 .0013 .0037 .0069 .0105	13 24 32 36 42	0.00° 2296 22.96 *956 32.52 *738 39.90 *625 46.15 *553	.0000 .1990 .2800 .3412 .3919	*1990 *810 *612 *507 *440	.0000 .0638 .0903 .1108 .1282	*638 *265 *205 *174 *154	.0000 .0017 .0048 .0087 .0134	17 31 39 47 53
.05 6 7 8 9	.4510 /.4949 .5355 .5735 .6094	*439 *406 *380 *359 *341	.0147 .0192 .0242 .0294 .0350	45 50 52 56 59	51.68° *504 56.72 *465 61.37 *435 65.72 *411 69.83 *391	.4359 .4750 .5103 .5426 .5724	*391 *353 *323 *298 *276	.1436 .1575 .1705 .1826 .1940	*139 *130 121 114 108	.0187 .0245 .0308 .0375 .0446	58 63 67 71 74
.10 1 2 3 4	.6435 .6761 .7075 .7377 .7670	*326 *314 *302 *293 *284	.0409 .0470 .0534 .0600 .0668	61 64 66 68 71	73.74° *374 77.48 *359 81.07 *347 84.54 *335 87.89 *326	.6000 .6258 .6499 .6726 .6940	*258 *241 *227 *214 *201	.2048 .2152 .2252 .2348 .2441	104 100 96 93 91	.0520 .0599 .0680 .0764 .0851	79 81 84 87 90
.15 6 7 8 9	.7954 .8230 .8500 .8763 .9021	276 270 263 258 252	.0739 .0811 .0885 .0961 .1039	72 74 76 78 79	91.15° 94.31 316 97.40 309 100.42 302 103.37 295 289	.7141 .7332 .7513 .7684 .7846	*191 *181 *171 162 154	.2532 .2620 .2706 .2789 .2871	88 86 83 82 81	.0941 .1033 .1127 .1224 .1323	92 94 97 99 101
.20 1 2 3 4	0.9273 0.9521 0.9764 1.0004 1.0239	248 243 240 235 233	.1118 .1199 .1281 .1365 .1449	81 82 84 84 86	106.26° 109.10 284 111.89 279 114.63 274 117.34 271	.8000 .8146 .8285 .8417 .8542	146 139 132 125 118	.2952 .3031 .3108 .3184 .3259	79 77 76 75 74	.1424 .1527 .1631 .1737 .1846	103 104 106 109 109
.25 6 7 8 9	1.0472 1.0701 1.0928 1.1152 1.1374	229 227 224 222 219	.1535 .1623 .1711 .1800 .1890	88 88 89 90	120.00° 122.63 263 125.23 260 127.79 256 130.33 254	.8660 .8773 .8879 .8980 .9075	113 106 101 95 90	.3333 .3406 .3478 .3550 .3620	73 72 72 70 70	.1955 .2066 .2178 .2292 .2407	111 112 114 115 116
.30 1 2 3 4	1.1593 1.1810 1.2025 1.2239 1.2451	217 215 214 212 210	.1982 .2074 .2167 .2260 .2355	92 93 93 95 95	132.84° 135.33 249 137.80 247 140.25 245 142.67 242	.9165 .9250 .9330 .9404 .9474	85 80 74 70 65	.3690 .3759 .3828 .3896 .3963	69 69 68 67 67	.2523 .2640 .2759 .2878 .2998	117 119 119 120 121
.35 6 7 8 9	1.2661 1.2870 1.3078 1.3284 1.3490	209 208 206 206 206 204	.2450 .2546 .2642 .2739 .2836	96 96 97 97 98	145.08° 147.48 240 149.86 238 152.23 237 154.58 235	.9539 .9600 .9656 .9708 .9755	61 56 52 47 43	.4030 .4097 .4163 .4229 .4294	67 66 66 65 65	3119 3241 3364 3487 3611	122 123 123 124 124
.40 1 2 3 4	1.3694 1.3898 1.4101 1.4303 1.4505	204 203 202 202 201	.2934 .3032 .3130 .3229 .3328	98 98 99 99 100	156.93° 159.26 233 161.59 233 163.90 231 166.22 232	.9798 .9837 .9871 .9902 .9928	39 34 31 26 22	.4359 .4424 .4489 .4553 .4617	65 65 64 64 64	.3735 .3860 .3986 .4112 .4238	125 126 126 126 126
.45 6 7 8 9	1.4706 1.4907 1.5108 1.5308 1.5508	201 201 200 200 200	.3428 .3527 .3627 .3727 .3827	99 100 100 100 100	168.52° 170.82 230 173.12 230 175.42 230 177.71 229 177.71 229	.9950 .9968 .9982 .9992 .9998	18 14 10 6 2	.4681 .4745 .4809 .4873 .4936	64 64 64 63 64	.4364 .4491 .4618 .4745 .4873	127 127 127 128 127
.50	1.5708		.3927		180.00°	1.0000		.5000		.5000	PINT
* 1	nternol	ation n	new he	inaccu	rate at these n	ointe		ANTAL S			

^{*} Interpolation may be inaccurate at these points.

VOLUMES OF SPHERES BY HUNDREDTHS

D	0	1	2	3	4.	5	6	7	8	9	Avg.
1.0 .1 .2	.5236 .6969 .9048	.5395 .7161 .9276	.5556 .7356 .9508	.5722 .7555 .9743	.5890 .7757 .9983	.6061 .7963 1.0227	.6236 .8173	.6414 .8386	.6596 .8603	.6781 .8823	173 208 236
.1 .2 .2 .3 .4	1.150 1.437	1.177 1.468	1.204 1.499	1.232 1.531	1.260 1.563	1.023 1.288 1.596	1.047 1.317 1.630	1.073 1.346 1.663	1.098 1.376 1.697	1.124 1.406 1.732	25 29 33
1.5 .6 .7 .9	1.767 2.145 2.572 3.054 3.591	1.803 2.185 2.618 3.105 3.648	1.839 2.226 2.664 3.157 3.706	1.875 2.268 2.711 3.209 3.764	1.912 2.310 2.758 3.262 3.823	1.950 2.352 2.806 3.315 3.882	1.988 2.395 2.855 3.369 3.942	2.026 2.439 2.903 3.424 4.003	2.065 2.483 2.953 3.479 4.064	2.105 2.527 3.003 3.535 4.126	38 43 48 54 60
2.0 .1 .2 .3 .4	4.189 4.849 5.575 6.371 7.238	4.252 4.919 5.652 6.454 7.329	4.316 4.989 5.729 6.538 7.421	4.380 5.060 5.806 6.623 7.513	4.445 5.131 5.885 6.709 7.606	4.511 5.204 5.964 6.795 7.700	4.577 5.277 6.044 6.882 7.795	4.644 5.350 6.125 6.970 7.890	4.712 5.425 6.206 7.059 7.986	4.780 5.500 6.288 7.148 8.083	66 73 80 87 94
2.5	8.181 9.203	8.280 9.309	8.379 9.417	8.479 9.525	8.580 9.634	8.682 9.744	8.785 9.855	8.888 9.966	8.992 10.079 10.08	9.097	102 110 11
.6 .7 .8 .9	10.31 11.49 12.77	10.42 11.62 12.90	10.54 11.74 13.04	10.65 11.87 13.17	10.77 11.99 13.31	10.89 12.12 13.44	11.01 12.25 13.58	11.13 12.38 13.72	11.25 12.51 13.86	11.37 12.64 14.00	12 13 14
3.0 .1 .2 .3 .4	14.14 15.60 17.16 18.82 20.58	14.28 15.75 17.32 18.99 20.76	14.42 15.90 17.48 19.16 20.94	14.57 16.06 17.64 19.33 21.13	14.71 16.21 17.81 19.51 21.31	14.86 16.37 17.97 19.68 21.50	15.00 16.52 18.14 19.86 21.69	15.15 16.68 18.31 20.04 21.88	15.30 16.84 18.48 20.22 22.07	15.45 17.00 18.65 20.40 22.26	15 16 17 18 19
3.5 .6 .7 .8 .9	22.45 24.43 26.52 28.73 31.06	22.64 24.63 26.74 28.96 31.30	22.84 24.84 26.95 29.19 31.54	23.03 25.04 27.17 29.42 31.78	23.23 25.25 27.39 29.65 32.02	23.43 25.46 27.61 29.88 32.27	23.62 25.67 27.83 30.11 32.52	23.82 25.88 28.06 30.35 32.76	24.02 26.09 28.28 30.58 33.01	24.23 26.31 28.50 30.82 33.26	20 21 22 23 25
4.0 .1 .2 .3 .4	33.51 36.09 38.79 41.63 44.60	33.76 36.35 39.07 41.92 44.91	34.02 36.62 39.35 42.21 45.21	34.27 36.88 39.63 42.51 45.52	34.53 37.15 39.91 42.80 45.83	34.78 37.42 40.19 43.10 46.14	35.04 37.69 40.48 43.40 46.45	35.30 37.97 40.76 43.70 46.77	35.56 38.24 41.05 44.00 47.08	35.82 38.52 41.34 44.30 47.40	26 27 28 30 31
4.5 .6 .7 .8 .9	47.71 50.97 54.36 57.91 61.60	48.03 51.30 54.71 58.27 61.98	48.35 51.63 55.06 58.63 62.36	48.67 51.97 55.41 59.00 62.74	49.00 52.31 55.76 59.37 63.12	49.32 52.65 56.12 59.73 63.51	49.65 52.99 56.47 60.10 63.89	49.97 53.33 56.83 60.48 64.28	50.30 53.67 57.19 60.85 64.67	50.63 54.02 57.54 61.22 65.06	33 34 35 37 38

Explanation of Table of Volumes of Spheres (pp. 36-37).

Moving the decimal point one place in column D is equivalent to moving it three places in the body of the table. (D = diameter.)

Volume of sphere =
$$\frac{\pi}{6}$$
 × (diam.*) = 0.523599 × (diam.*)

Conversely,

Diam. =
$$\sqrt[3]{4}$$
 $\sim \sqrt[3]{\text{volume}} = 1.240701 \times \sqrt[3]{\text{volume}}$

VOLUMES OF SPHERES (continued)

D	0	1	2	3	4	5	6	7	8	9	Awa
5.0 .1 .2 .3 .4	65.45 69.46 73.62 77.95 82.45	65.84 69.87 74.05 78.39 82.91	66.24 70.28 74.47 78.84 83.37	66.64 70.69 74.90 79.28 83.83	67.03 71.10 75.33 79.73 84.29	67.43 71.52 75.77 80.18 84.76	67.83 71.94 76.20 80.63 85.23	68.24 72.36 76.64 81.08 85.70	68.64 72.78 77.07 81.54 86.17	69.05 73.20 77.51 81.99 86.64	
5.5 .6 .7	87.11 91.95 96.97	87.59 92.45 97.48	88.07 92.94 97.99	88.55 93.44 98.51	89.03 93.94 99.02	89.51 94.44 99.54	90.00 94.94 100.06	90.48 95.44	90.97 95.95	91.46 96.46	
.6 .7 .7 .8 .9	102.2 107.5	102.7 108.1	103.2 108.6	103.8 109.2	104.3 109.7	104.8 110.3	100.1 105.4 110.9	100.6 105.9 111.4	101.1 106.4 112.0	101.6 107.0 112.5	
6.0 .1 .2 .3 .4	113.1 118.8 124.8 130.9 137.3	113.7 119.4 125.4 131.5 137.9	114.2 120.0 126.0 132.2 138.5	114.8 120.6 126.6 132.8 139.2	115.4 121.2 127.2 133.4 139.8	115.9 121.8 127.8 134.1 140.5	116.5 122.4 128.4 134.7 141.2	117.1 123.0 129.1 135.3 141.8	117.7 123.6 129.7 136.0 142.5	118.3 124.2 130.3 136.6 143.1	
6.5 .6 .7 .8	143.8 150.5 157.5 164.6 172.0	144.5 151.2 158.2 165.4 172.8	145.1 151.9 158.9 166.1 173.5	145.8 152.6 159.6 166.8 174.3	146.5 153.3 160.3 167.6 175.0	147.1 154.0 161.0 168.3 175.8	147.8 154.7 161.7 169.0 176.5	148.5 155.4 162.5 169.8 177.3	149.2 156.1 163.2 170.5 178.1	149.8 156.8 163.9 171.3 178.8	
7.0 .1 .2 .3 .4	179.6 187.4 195.4 203.7 212.2	180.4 188.2 196.2 204.5 213.0	181.1 189.0 197.1 205.4 213.9	181.9 189.8 197.9 206.2 214.8	182.7 190.6 198.7 207.1 215.6	183.5 191.4 199.5 207.9 216.5	184.3 192.2 200.4 208.8 217.4	185.0 193.0 201.2 209.6 218.3	185.8 193.8 202.0 210.5 219.1	186.6 194.6 202.9 211.3 220.0	S185-45
7.5 .6 .7 .8	220.9 229.8 239.0 248.5 258.2	221.8 230.8 240.0 249.4 259.1	222.7 231.7 240.9 250.4 260.1	223.6 232.6 241.8 251.4 261.1	224.4 233.5 242.8 252.3 262.1	225,3 234,4 243,7 253,3 263,1	226.2 235.3 244.7 254.3 264.1	227.1 236.3 245.6 255.2 265.1	228.0 237.2 246.6 256.2 266.1	228.9 238.1 247.5 257.2 267.1	Call County Co
8.0 .1 .2 .3 .4	268.1 278.3 288.7 299.4 310.3	269.1 279.3 289.8 300.5 311.4	270.1 280.3 290.8 301.6 312.6	271.1 281.4 291.9 302.6 313.7	272.1 282.4 292.9 303.7 314.8	273.1 283.4 294.0 304.8 315.9	274.2 284.5 295.1 305.9 317.0	275.2 285.5 296.2 307.0 318.2	276.2 286.6 297.2 308.1 319.3	277.2 287.6 298.3 309.2 320.4	THE PERSON
8.5 .6 .7 .8	321.6 333.0 344.8 356.8 369.1	322.7 334.2 346.0 358.0 370.4	323.8 335.4 347.2 359.3 371.6	325.0 336.5 348.4 360.5 372.9	326.1 337.7 349.6 361.7 374.1	327.3 338.9 350.8 362.9 375.4	328.4 340.1 352.0 364.2 376.6	329.6 341.2 353.2 365.4 377.9	330.7 342.4 354.4 366.6 379.2	331.9 343.6 355.6 367.9 380.4	
9.0 .1 .2 .3 .4	381.7 394.6 407.7 421.2 434.9	383.0 395.9 409.1 422.5 436.3	384.3 397.2 410.4 423.9 437.7	385.5 398.5 411.7 425.2 439.1	386.8 399.8 413.1 426.6 440.5	388.1 401.1 414.4 428.0 441.9	389.4 402.4 415.7 429.4 443.3	390.7 403.7 417.1 430.7 444.7	392.0 405.1 418.4 432.1 446.1	393.3 406.4 419.8 433.5 447.5	1
9.5 .6 .7 .8	448.9 463.2 477.9 492.8 508.0	450.3 464.7 479.4 494.3 509.6	451.8 466.1 480.8 495.8 511.1	453.2 467.6 482.3 497.3 512.7	454.6 469.1 483.8 498.9	456.0 470.5 485.3 500,4	457.5 472.0 486.8 501.9	458.9 473.5 488.3 503.4	460.4 474.9 489.8 505.0	461.8 476.4 491.3 506.5	1
0.0	523.6	209.6	311.1	312.7	514.2	515.8	517.3	518.9	520.5	522.0	

Moving the decimal point ONE place in D requires moving it THREE places in body of table (see p. 36).

SEGMENTS OF SPHERES

(h = height of segment; D = diam. of sphere)

D D³	h	Vol. segm.	Diff.	Vol. segm.	Diff.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	\overline{D}	D^3	Ä	Vol. sphere	Q	
1 0.0002	0.00	0.0000		0.0000		
\$\frac{1}{3} \cdot 0.0024 & \frac{1}{10} & 0.0047 & \frac{1}{26} & \cdot 0.0024 & \frac{1}{14} & 0.0047 & 26 & \cdot 0.0024 & \frac{1}{14} & 0.0047 & 26 & \cdot 0.0034 & \frac{1}{16} & 0.0073 & \frac{1}{26} & \cdot 0.0034 & \frac{1}{16} & 0.0044 & \frac{1}{36} & \cdot 0.0073 & \frac{1}{29} & 0.0140 & \frac{1}{36} & \cdot 0.0073 & \frac{1}{29} & 0.0182 & \frac{1}{22} & \cdot 0.0120 & \frac{1}{27} & 0.0228 & \frac{1}{22} & \cdot 0.0120 & \frac{1}{27} & 0.0228 & \frac{1}{22} & \cdot 0.0120 & \frac{1}{27} & 0.0228 & \frac{1}{22} & \cdot 0.0147 & \frac{1}{29} & 0.0336 & \frac{1}{20} & 0.0242 & \frac{3}{24} & 0.0463 & \frac{1}{20} & 0.0242 & \frac{3}{24} & 0.0463 & \frac{1}{20} & 0.0279 & \frac{3}{27} & 0.0533 & \frac{7}{24} & 0.0636 & \frac{7}{29} & 0.0336 & \frac{1}{20} & 0.0442 & \frac{1}{24} & 0.0636 & \frac{7}{29} & 0.0343 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0855 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0848 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0848 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0545 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0545 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0545 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0545 & \frac{1}{20} & 0.0448 & \frac{1}{20} & 0.0545 & \frac{1}{	9/5/	0.0002	2	0.0003	3	
4 0.0024 10 0.0047 26 10 0.0038 16 0.0073 31 0.0054 19 0.0104 36 8 0.0095 22 0.0182 42 9 0.0120 25 0.0228 45 20 0.028 32 0.0397 61 0.0176 2 0.0336 56 1 0.0029 37 0.0533 70 1 0.0242 34 0.0463 40 0.0279 37 0.0533 70 1 0.0339 61 0.0359 41 0.0686 79 0.0495 47 0.0403 44 0.0769 38 0.0448 47 0.0855 9 0.0448 47 0.0596 51 0.1138 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1452 110 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1239 110 0.0596 51 0.1344 10 0.0596 51 0.1344 10 0.0596 51 0.1239 110 0.0596 51 0.1239 110 0.0596 51 0.1239 110 0.0596 51 0.1344 10 0.0596 51 0.1239 110 0.0596 51 0.1239 110 0.0596 51 0.1239 110 0.0596 51 0.1239 110 0.0596 51 0.1344 10 0.0596 51	2	0.0006		0.0012	- 14	
14 0.007 26 0.0038 16 0.0073 31 20 0.0074 31 20 0.0084 16 0.0073 31 20 0.0140 31 20 0.0095 25 0.0122 42 25 0.0122 42 27 0.0122 42 28 0.0122 42 29 0.0140 27 0.0280 52 0.0128 52 0.0140 27 0.0280 32 0.0336 56 0.0282 37 0.0463 70 0.0279 39 0.0533 74 0.0279 39 0.0533 74 0.0279 39 0.0533 74 0.0279 39 0.0533 74 0.0279 39 0.0533 74 0.0295 30 0.0484 47 0.0855 91 0.0403 45 0.0966 83 0.0448 47 0.0855 91 0.0495 50 0.0946 94 0.0760 53 0.1138 10 0.0507 2 0.0649 55 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1138 10 0.0506 53 0.1239 105 0.0545 10 0.0406 44 0.0760 58 0.1452 110 0.0566 53 0.1344 108 0.0566 54 0.0235 125 0.0818 60 0.1562 114 0.0566 65 0.0235 125 0.0818 60 0.1562 114 0.0566 65 0.0235 125 0.0818 67 0.2160 10 0.0566 55 0.0235 125 0.0818 67 0.2160 10 0.0566 55 0.0235 125 0.0646 77 0.0939 63 0.1793 120 0.1066 65 0.2035 125 0.0646 77 0.0939 63 0.1793 120 0.1066 65 0.2035 125 0.0066 65 0.2035			10		21	
	7	0.0024	14	0.0047	26	table the value of (vol./D3); then, by
7 0.0073 19 0.0140 36 vol. segment = $D^3 \times (vol./D^3)$ 7 0.0075 22 0.0162 42 0.0035 25 0.0162 42 0.0120 27 0.0228 55 0.0162 27 0.0228 55 0.0162 27 0.0280 34 0.0397 66 0.0208 34 0.0397 66 0.0279 39 0.0533 74 0.0636 75 0.0399 44 0.0686 78 0.0399 44 0.0686 79 0.0495 50 0.0946 94 0.0483 45 0.0769 88 0.0448 47 0.0855 91 0.0495 50 0.0946 94 0.0585 91 0.0495 50 0.0946 94 0.0585 91 0.0495 50 0.0946 94 0.0586 20 0.0495 50 0.0495 50 0.0946 94 0.0586 20 0.0649 55 0.1138 101 0.0596 55 0.1344 105 0.0596 56 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0769 58 0.1452 108 0.0006 65 0.2035 125 0.0818 60 0.1666 114 0.0769 58 0.1452 108 0.1002 64 0.1913 120 0.1066 65 0.2035 125 0.1066 65 0.2035 125 0.1066 65 0.2035 125 0.1066 65 0.2035 125 0.1066 65 0.2035 125 0.1066 67 0.2287 127 0.1625 67 0.2417 130 0.1198 67 0.2682 135 0.1475 72 0.2887 134 0.1404 71 0.2682 135 0.1694 74 0.2682 135 0.1694 74 0.2682 135 0.1694 74 0.2682 135 0.1694 74 0.2355 144 0.1604 77 0.2682 135 0.1694 74 0.2355 147 0.1620 74 0.3995 141 0.1919 76 0.3665 145	0.05	0.0038	16		31	a simple multiplication,
0.0120 27 0.0228 56 0.0120 27 0.0228 52 0.0120 0.0147 29 0.0280 52 0.0160 0.0147 29 0.0280 56 0.0208 34 0.0242 37 0.0463 70 0.0279 39 0.0533 74 0.0279 39 0.0533 74 0.053 74 0.0279 39 0.0533 74 0.0686 79 0.0495 50 0.0946 94 0.0495 50 0.0946 94 0.0495 50 0.0946 94 0.0495 50 0.0946 94 0.0506 51 0.1348 101 0.0506 51 0.1344 108 0.0760 58 0.1452 110 0.0506 51 0.1344 108 0.0760 58 0.1452 110 0.0506 55 0.1344 108 0.0760 58 0.1452 110 0.0506 55 0.1344 108 0.0760 58 0.1452 110 0.0506 55 0.1344 108 0.0760 58 0.1452 110 0.0506 55 0.1344 108 0.0760 58 0.1452 110 0.0506 55 0.0235 122 0.1066 65 0.2035 122 0.1066 65 0.2035 123 0.1138 0.1138 0.002 0.0506 0.1676 117 0.0268 134 0.1002 0.0506 0.1676 117 0.0268 134 0.1002 0.0506 0.1676 117 0.0268 134 0.1002 0.1066 0.0506 0.0235 122 0.1066 0.0506 0.0002 0.000	6		19		36	vol. segment = $D^3 \times (\text{vol.}/D^3)$
9 0.0120 $\frac{27}{27}$ 0.0228 $\frac{50}{22}$ volume of the segment to the entire volume of the sphere, 0.10 0.0174 29 0.0336 56 1 0.0176 29 0.0336 56 2 0.0208 32 0.0337 61 3 0.0242 37 0.0463 70 4 0.0279 39 0.0533 74 6.15 0.0318 41 0.0607 79 7 0.0403 45 0.0769 83 8 0.0448 45 0.0855 86 9 0.0495 50 0.0946 94 1 0.0596 51 0.1138 98 2 0.0649 53 0.1239 101 2 0.0649 53 0.1239 101 3 0.0704 55 0.134 105 4 0.0760 58 0.1452 110 0.25 0.0818<	8		22		42	
0.10 0.0147 29 0.0280 1 0.0147 32 0.0336 61 0.0203 34 0.0397 66 3 0.0242 37 0.0633 76 66 0.0279 39 0.0533 76 77 0.0535 76 0.0535 94 0.0666 8 0.0448 45 0.0855 86 9 0.0495 50 0.0945 50 0.0945 50 0.0945 50 0.0945 50 0.0532 10 0.0532 10 0.0704 55 0.1239 101 0.0506 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 65 0.0576 0.0576 65 0.0576 65 0.0576 0.0576 65 0.0576 0.			25		52	volume of the segment to the entire
1 0.0176 27 0.0336 32 0.0397 61 22 0.0208 34 0.0443 34 0.0443 66 34 0.0279 37 0.0533 774 0.053 37 0.0533 774 0.053 37 0.0533 774 0.053 37 0.0533 774 0.053 44 0.0686 38 0.0448 47 0.0686 83 0.0448 47 0.0855 91 0.0946 91 0.0995 50 0.0946 91 0.0995 50 0.0995 50 0.0946 91 0.0995 50 0.0946 91 0.0596 51 0.1338 101 0.0596 51 0.1338 101 0.0596 53 0.1239 105 0.0549 53 0.1239 105 0.0549 53 0.1239 105 0.0566 0.0576 58 0.1452 110 0.0566 0.0878 60 0.01562 114 0.0039 61 0.1666 65 0.0378 67 0.2287 130 0.1066 65 0.2383 0.1239 101 0.0596 51 0.1562 114 0.0039 61 0.1666 65 0.2381 122 0.1666 124 124 124 124 124 124 124 124 124 124	0.10	0.0147		0.0200		
3 0.0242 37 0.0463 70 4 0.0279 39 0.0533 74 0.15 0.0318 41 0.0607 76 6 0.0359 41 0.0686 79 7 0.0403 44 0.0769 83 8 0.0448 45 0.0855 86 9 0.0495 57 0.0946 91 1 0.0596 53 0.138 101 2 0.0596 53 0.138 101 3 0.0704 56 0.1452 110 0.25 0.0818 60 0.1562 114 6 0.0878 60 0.1666 65 0.2035 125 0.1066 65 0.2035 125 0.1131 67 0.2160 127 0.1198 67 0.2247 130 0.1334 70 0.2582 135 0.1475 72 0.2817 130 0.1560 73 0.3004 134 0.1604 74 0.3235 142 0.1600 73 0.3004 143 0.1600 73 0.3004 144 0.1604 74 0.3235 144 0.1604 77 0.0268 135 0.1606 75 0.3810 147 0.1768 75 0.3810 147 0.1768 75 0.3810 147 0.1768 75 0.3810 147 0.1768 75 0.3810 147 0.2149 77 0.4104 78 0.4104 78 0.4252 149 0.45 0.2227 78 0.4252 149 0.45 0.2237 78 0.4450 150 150 0.500	0.10	0.0147	29	0.0236	56	
1	2	0.0208	34	0.0397		(Use Table of Multiples of π , p. 28)
0.15			37		70	Explanation of Table on p. 24
6 0. 0359 41 0.0686 79 7 0.0403 44 0.0769 83 8 0.0448 47 0.0856 89 9 0.0495 47 0.0946 91 0.20 0.0545 51 0.1040 98 1 0.0596 53 0.1138 101 2 0.0649 55 0.1334 105 3 0.0764 55 0.1344 105 0.25 0.0818 60 0.1562 114 6 0.0878 60 0.1562 114 6 0.0878 60 0.1562 114 7 0.0939 63 0.1913 122 9 0.1066 64 0.2035 125 0.1198 67 0.2287 127 1 0.1198 67 0.2417 130 0.30 0.1131 67 0.2548 134 4 0.1404 71 0.2682 134 0.1562 17 0.0334 70 0.2548 134 0.1562 17 0.0568 75 0.3377 143 0.1604 0.1606 75 0.3377 143 0.1604 0.1606 75 0.3377 143 0.1604 0.1643 75 0.3377 143 0.404 0.1843 76 0.35520 145 0.405 0.2227 78 0.4252 149 0.456 0.2237 78 0.4104 148 0.456 0.2237 78 0.4104 148 0.456 0.2237 78 0.4252 149 0.457 0.2338 78 0.4401 150 0.50 0.2618 0.5000 0.500 0.2618 0.5000 0.500 0.2618 0.5000	4	0.0279	39	0.0555	74	
7 0.0403 44 0.0865 83 0.0769 86 0.0495 50 0.0495 90 0.0495 50 0.0946 91 0.00946 91 0.00946 91 0.00946 91 0.00946 91 0.0596 53 0.1138 101 2 0.0596 53 0.1138 101 2 0.0649 55 0.1344 108 4 0.0760 56 0.1452 108 0.25 0.0818 60 0.1562 114 0.0878 61 0.1676 117 0.0939 63 0.1793 120 0.1066 65 0.2035 125 0.1314 67 0.2035 125 0.1818 67 0.2287 130 0.1334 69 0.2548 134 0.1404 70 0.2682 134 0.1404 70 0.2682 134 0.1404 70 0.2682 134 0.1694 74 0.3335 142 0.1768 75 0.3377 142 0.1768 75 0.3310 0.1843 76 0.3520 1.0995 77 0.3957 147 0.2149 77 0.4104 148 0.22149 77 0.4252 149 0.22149 77 0.4004 148 0.22149 77 0.4004 149 0.2233 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.2227 78 0.4451 150 0.4451 150 0.2539 79 0.44551 150 0.2539 79 0.4850 150 0.5000	0.15		41		70	
8 0.04405 45 0.0855 91 0.0946 94 0.0495 50 0.0946 94 0.0495 50 0.0946 94 0.0495 50 0.0946 94 0.0500 51 0.1138 98 101 0.0506 53 0.1239 105 2 0.0649 53 0.1239 105 3 0.0704 56 0.1452 110 0.25 0.0818 60 0.1562 114 6 0.0878 60 0.1666 114 7 0.0939 61 0.1793 117 7 0.0939 63 0.1913 122 9 0.1066 65 0.2035 125 0.30 0.1131 67 0.2165 67 0.2217 130 3 0.1334 70 0.2548 131 4 0.1404 71 0.2682 135 0.35 0.1475 72 0.2817 130 6 0.1547 73 0.2955 139 7 0.1620 73 0.3094 139 7 0.1620 73 0.3094 139 8 0.1694 74 0.3235 142 9 0.1768 75 0.3377 143 0.40 0.1843 76 0.3520 145 0.40 0.1843 76 0.3565 145 0.2027 77 0.3957 147 0.2149 78 0.4104 148 0.45 0.2227 78 0.4252 149 0.250 0.2618 0.5000	6					Take the second
9 0.0495 70 0.0946 94 1 ment, form the ratio h/c , and find from the table the value of (diam./c), (arc/c), or (area/hc); then, by a simple multiplication, diam. = $c \times$ (arc/c), arc = $c \times$ (arc/c). 10 .1131			45		86	
0.20	9	0.0495	47		91	
1	0.00	0.0545		0.1040	74	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.20	0.0545	51		98	
0.25 0.0818 60 0.1562 114 area = $h \times c \times (area/hc)$.	2		53			
0.25 0.0818 60 0.1562 114 area = $h \times c \times (area/hc)$.			56			
0.25 0.0818 60 0.1562 114 area = $h \times c \times$ (area/hc). 7 0.0939 61 0.1793 117 8 0.1002 64 0.1913 120 9 0.1002 64 0.1913 122 1 0.1002 64 0.2035 125 0.30 0.1131 67 0.2287 130 1 0.1988 67 0.2287 130 2 0.1265 69 0.2417 130 3 0.1334 70 0.2682 135 0.35 0.1475 72 0.2817 138 6 0.1547 72 0.2955 138 7 0.1620 73 0.3094 141 8 0.1694 74 0.3235 142 9 0.1768 75 0.3810 147 2 0.1919 76 0.3665 145 2 0.1919 76<	4	0.0760	58	0.1452		
6 0.0878	0.25	0.0818	40		114	
9 0.1066 65 0.2035 125 h to D. See p. 106. 0.30 0.1131 67 0.2287 130 1.198 67 0.2417 130 2.0 1.265 67 0.2417 131 2.0 1.334 69 0.2548 134 4 0.1404 71 0.2682 135 0.150 1.475 72 0.2817 138 6 0.1547 73 0.3094 139 8 0.1694 74 0.3235 141 8 0.1694 74 0.3235 141 9 0.1768 75 0.3377 143 0.1919 76 0.3665 145 2 0.1995 77 0.3915 147 3 0.2012 77 0.3957 147 0.2149 78 0.4104 148 0.420 0.2305 78 0.4401 150 0.2305 78 0.4401 150 0.2539 79 0.4850 150 0.500 0.2618 0.5000 h to D. See p. 106. Explanation of Table on p. 35 Given, h = height of segment, h				0.1676		
9 0.1066 65 0.2035 125 h to D. See p. 106. 0.30 0.1131 67 0.2287 130 1.198 67 0.2417 130 2.0 1.265 67 0.2417 131 2.0 1.334 69 0.2548 134 4 0.1404 71 0.2682 135 0.150 1.475 72 0.2817 138 6 0.1547 73 0.3094 139 8 0.1694 74 0.3235 141 8 0.1694 74 0.3235 141 9 0.1768 75 0.3377 143 0.1919 76 0.3665 145 2 0.1995 77 0.3915 147 3 0.2012 77 0.3957 147 0.2149 78 0.4104 148 0.420 0.2305 78 0.4401 150 0.2305 78 0.4401 150 0.2539 79 0.4850 150 0.500 0.2618 0.5000 h to D. See p. 106. Explanation of Table on p. 35 Given, h = height of segment, h	8	0.0939	63	0.1793	120	
0.30	9		64		122	
2 0.1265 69 0.2417 131 Given, $h = height of segment,$ 3 0.1334 70 0.2682 134 $D = diam.$ of circle. 0.35 0.1475 72 0.2817 138 or the area of the segment, form the formula of the chord, the length of are, or the area of the segment, form the ratio h/D , and find from the table the value of $(chord/D)$, or $(area/D^2)$; then, by a simple multiplication, 0.40 0.1843 76 0.3520 145 0.3665 145 0.3665 145 0.2027 77 0.3957 147 0.2149 77 0.4104 148 0.2149 77 0.4104 148 0.2227 78 0.4252 149 0.2336 78 0.4401 150 0.2539 78 0.4451 150 0.2539 78 0.4850 150 0.500 0.2618 0.5000	0.20	0 1121		0.21(0	123	n to D. See p. 100.
2 0.1265 69 0.2417 131 Given, $h = height of segment,$ 3 0.1334 70 0.2682 134 $D = diam.$ of circle. 0.35 0.1475 72 0.2817 138 or the area of the segment, form the formula of the chord, the length of are, or the area of the segment, form the ratio h/D , and find from the table the value of $(chord/D)$, or $(area/D^2)$; then, by a simple multiplication, 0.40 0.1843 76 0.3520 145 0.3665 145 0.3665 145 0.2027 77 0.3957 147 0.2149 77 0.4104 148 0.2149 77 0.4104 148 0.2227 78 0.4252 149 0.2336 78 0.4401 150 0.2539 78 0.4451 150 0.2539 78 0.4850 150 0.500 0.2618 0.5000	0.30	0.1131	67	0.2100	127	Explanation of Table on p. 35
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	0.1265		0.2417	131	
0.35 0.1475 72 0.2817 138 or the area of the segment, form the 7 0.1620 74 0.3094 141 value of (chord/D) , or the area of the segment, form the 7 0.1620 74 0.3335 141 value of (chord/D) , or $(\operatorname{area}/D^2)$; then, by a simple multiplication, (chord/D) 2 0.1995 76 0.3810 145 2 0.1995 76 0.3810 145 2 0.1995 76 0.3810 145 3 0.2072 77 0.3957 147 4 0.2149 78 0.4104 148 148 0.2217 6 0.2305 78 0.4401 148 0.450 150 0.2539 78 0.4850 150 0.2539 78 0.4850 150 0.500 0.2618 0.5000	3		70		134	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1404	71	0.2002	135	
7 0.1620 74 0.3094 141 value of (chord/D) , (arc/D) , or $(\operatorname{area}/D^2)$; then, by a simple multiplication, (chord/D) , (arc/D) , or $(\operatorname{area}/D^2)$; then, by a simple multiplication, (chord/D) , (arc/D) , or $(\operatorname{area}/D^2)$; then, by a simple multiplication, (chord/D) , (arc/D) , are			72		138	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	6		73	0.2955	139	ratio h/D , and find from the table the
9 0.1768 $\frac{77}{75}$ 0.3377 $\frac{142}{145}$ (area/ D^2); then, by a simple multiplication, $\frac{1}{2}$ 0.1949 $\frac{1}{2}$ 0.1995 $\frac{76}{76}$ 0.3665 $\frac{145}{145}$ are $\frac{1}{2}$ 0.2072 $\frac{77}{77}$ 0.3957 $\frac{147}{147}$ 4 0.2149 $\frac{1}{2}$ 0.4104 $\frac{1}{2}$ 148 $\frac{1}{2}$ 0.2227 $\frac{1}{2}$ 8 0.4201 $\frac{1}{2}$ 149 $\frac{1}{2}$ 149 $\frac{1}{2}$ 150 $\frac{1}{2}$ 170 $\frac{1}{2}$ 171 $\frac{1}{2}$ 172 $\frac{1}{2}$ 173 $\frac{1}{2}$ 174 $\frac{1}{2}$ 175 $\frac{1}{2}$ 176 $\frac{1}{2}$ 177 $\frac{1}{2}$ 177 $\frac{1}{2}$ 178 0.4201 $\frac{1}{2}$ 179 $\frac{1}{2}$ 179 $\frac{1}{2}$ 170	8	0.1694	74	0.3235	141	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	0.1768	75	0.3377	143	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.40	0 1843		0.3520		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	0.1919	76		145	
147 147	2		77	0.3810	147	
0.45 0.2227 78 0.4252 149 tended at the center, the ratio of the arc of the segment to the whole circumference, and the ratio of the area of the segment to the area of the whole circle. See p. 106.	3		77		147	
6 0.2305 78 0.4401 150 arc of the segment to the whole circumference, and the ratio of the area of the segment to the whole circumference, and the ratio of the area of the whole circle. See p. 106.		0.4177	78	0.7107	148	
7 0.2363 78 0.4551 150 arc of the segment to the whole circumference, and the ratio of the area of the segment to the whole circumference, and the ratio of the area of the whole circle. See p. 106.			78		149	
0.50 0.2618 0.5000 whole circle. See p. 106.	6	0.2305	78	0.4401	150	
0.50 0.2618 0.5000 whole circle. See p. 106.	8	0.2461	78	0.4700	149	
0.50 0.2618 0.5000 whole circle. See p. 106.	9		79	0.4850		
	0.50	0 2618		0.5000	Works	whole circle. See p. 106.
			Allen			

NOTE. Vol. segm. = $\frac{1}{16} \pi h^2 (3D-2h)$.

REGULAR POLYGONS

n = number of sides; $v = 360^{\circ}/n = \text{angle subtended at the center by one side};$

 $a = \text{length of one side} = R\left(2\sin\frac{v}{2}\right) = r\left(2\tan\frac{v}{2}\right);$

 $R = \text{radius of circumscribed circle} = a\left(\frac{v}{2}\csc\frac{v}{2}\right) = r\left(\sec\frac{v}{2}\right);$

 $r = \text{radius of inscribed circle} = R\left(\cos\frac{v}{2}\right) = a\left(\frac{1}{2}\cot\frac{v}{2}\right);$

Area =
$$a^2\left(\frac{1}{4} n \cot \frac{v}{2}\right) = R^2\left(\frac{1}{2} n \sin v\right) = r^2\left(n \tan \frac{v}{2}\right)$$
.

n	v	$\frac{\text{Area}}{a^2}$	$\frac{\text{Area}}{R^2}$	Area r2	$\frac{R}{a}$	$\frac{R}{r}$	$\frac{a}{R}$	$\frac{a}{r}$	$\frac{r}{R}$	$\frac{r}{a}$
3	120°	0.4330	1.299	5:196	0.5774	2.000	1.732	3.464	0.5000	0.2887
4	90°	1.000	2.000	4.000	0.7071	1.414	1.414	2.000	0.7071	0.5000
5	72°	1.721	2.378	3.633	0.8507	1.236	1.176	1.453	0.8090	0.6882
6.	60°	2.598	2.598	3.464	1.0000	1.155	1.000	1.155	0.8660	0.8660
7	51°.43	3.634	2.736	3.371	1.152	1.110	0.8678	0.9631	0.9010	1.038
8	45°	4.828	2.828	3.314	1.307	1.082	0.7654	0.8284	0.9239	1.207
9	40°	6.182	2.893	3.276	1.462	1.064	0.6840	0.7279	0.9397	1.374
10	36°	7.694	2.939	3.249	1.618	1.052	0.6180	0.6498	0.9511	1.539
12	30°	11.20	3.000	3.215	1.932	1.035	0.5176	0.5359	0.9659	1.866
15	24°	17.64	3.051	3.188	2.405	1.022	0.4158	0.4251	0.9781	2.352
16	22°.50	20.11	3.062	3.183	2.563	1.020	0.3902	0.3978	0.9808	2.514
20	18°	31.57	3.090	3.168	3.196	1.013	0.3129	0.3168	0.9877	3.157
24	15°	45.58	3.106	3.160	3.831	1.009	0.2611	0.2633	0.9914	3.798
32	11°.25	81.23	3.121	3.152	5.101	1.005	0.1960	0.1970	0.9952	5.077
48	7°.50	183.1	3.133	3.146	7.645	1.002	0.1308	0.1311	0.9979	7.629
64	5°.625	325.7	3.137	3.144	10.19	1.001	0.0981	0.0983	0.9988	10.18

BINOMIAL COEFFICIENTS

(For table giving binomial coefficients for fractional values of n, see p. 116).

$$(n)_0 = 1; (n)_1 = n; (n)_2 = \frac{n(n-1)}{1 \times 2}; (n)_3 = \frac{n(n-1)(n-2)}{1 \times 2 \times 3}; \text{ etc.}; \text{ in general,}$$

$$(n)_r = \frac{n(n-1)(n-2) \dots (n-[r-1])}{1 \times 2 \times 3 \dots \times r}.$$
 Another notation: $\binom{n}{r} = (n)_r$.

n	(n)o	(n) ₁	(n) ₂	(n)3	(n)4	(n) s	(n)6	(n)1	(n) s	(n) 9	$(n)_{10}$	$(n)_{11}$	(n)12	(n)13
1 2 3 4	1	1 2 3 4	1 3 6	1 4	::::: i									
5 6 7 8 9 10 11 12 13 14 15	1	5 6 7 8 9 10 11 12 13 14	10 15 21 28 36 45 55 66 78 91	10 20 35 56 84 120 165 220 286 364 455	5 15 35 70 126 210 .330 495 715 1001 1365	1 6 21 56 126 252 462 792 1287 2002 3003	1 7 28 84 210 462 924 1716 3003 5005	1 8 36 120 330 792 1716 3432 6435	1 9 45 165 495 1287 3003 6435	1 10 55 220 715 2002 5005	1 11 66 286 1001 3003	1 12 78 364 1365	1 13 91 455	1 14 105

For n = 14, $(n)_{14} = 1$; for n = 15, $(n)_{14} = 15$, and $(n)_{15} = 1$.

COMMON LOGARITHMS (special table)

Num- ber	0	1	2	3	4	5	6	7	8	9	Avg.
1.00	0.0000	0004	0009	0013	0017	0022	0026	0030	0035	0039	4
1.01	0043	0048	0052	0056	0060	0065	0069	0073	0077	0082	
1.02	0086	0090	0095	0099	0103	0107	0111	0116	0120	0124	
1.03	0128	0133	0137	0141	0145	0149	0154	0158	0162	0166	
1.04	0170	0175	0179	0183	0187	0191	0195	0199	0204	0208	
1.05	0212	0216	0220	0224	0228	0233	0237	0241	0245	0249	
1.06	0253	0257	0261	0265	0269	0273	0278	0282	0286	0290	
1.07	0294	0298	0302	0306	0310	0314	0318	0322	0326	0330	
1.08	0334	0338	0342	0346	0350	0354	0358	0362	0366	0370	
1.09	0374	0378	0382	0386	0390	0394	0398	0402	0466	0410	
1.10	0.0414	0418	0422	0426	0430	0434	0438	0441	0445	0449	
1.11	0453	0457	0461	0465	0469	0473	0477	0481	0484	0488	
1.12	0492	0496	0500	0504	0508	0512	0515	0519	0523	0527	
1.13	0531	0535	0538	0542	0546	0550	0554	0558	0561	0565	
1.14	0569	0573	0577	0580	0584	0588	0592	0596	0599	0603	
1.15	0607	0611	0615	0618	0622	0626	0630	0633	0637	0641	
1.16	0645	0648	0652	0656	0660	0663	0667	0671	0674	0678	
1.17	0682	0686	0689	0693	0697	0700	0704	0708	0711	0715	
1.18	0719	0722	0726	0730	0734	0737	0741	0745	0748	0752	
1.19	0755	0759	0763	0766	0770	0774	0777	0781	0785	0788	
1.20	0.0792	0795	0799	0803	0806	0810	0813	0817	0821	0824	
1.21	0828	0831	0835	0839	0842	0846	0849	0853	0856	0860	
1.22	0864	0867	0871	0874	0878	0881	0885	0888	0892	0896	
1.23	0899	0903	0906	0910	0913	0917	0920	0924	0927	0931	
1.24	0934	0938	0941	0945	0948	0952	0955	0959	0962	0966	
1.25	0969	0973	0976	0980	0983	0986	0990	0993	0997	1000	3
1.26	1004	1007	1011	1014	1017	1021	1024	1028	1031	1035	
1.27	1038	1041	1045	1048	1052	1055	1059	1062	1065	1069	
1.28	1072	1075	1079	1082	1086	1089	1092	1096	1099	1103	
1.29	1106	1109	1113	1116	1119	1,123	1126	1129	1133	1136	
1.30	0.1139	1143	1146	1149	1153	1156	1159	1163	1166	1169	
1.31	1173	1176	1179	1183	1186	1189	1193	1196	1199	1202	
1.32	1206	1209	1212	1216	1219	1222	1225	1229	1232	1235	
1.33	1239	1242	1245	1248	1252	1255	1258	1261	1265	1268	
1.34	1271	1274	1278	1281	1284	1287	1290	1294	1297	1300	
1.35	1303	1307	1310	1313	1316	1319	1323	1326	1329	1332	
1.36	1335	1339	1342	1345	1348	1351	1355	1358	1361	1364	
1.37	1367	1370	1374	1377	1380	1383	1386	1389	1392	1396	
1.38	1399	1402	1405	1408	1411	1414	1418	1421	1424	1427	
1.39	1430	1433	1436	1440	1443	1446	1449	1452	1455	1458	
1.40	0.1461	1464	1467	1471	1474	1477	1480	1483	1486	1489	
1.41	1492	1495	1498	1501	1504	1508	1511	1514	1517	1520	
1.42	1523	1526	1529	1532	1535	1538	1541	1544	1547	1550	
1.43	1553	1556	1559	1562	1565	1569	1572	1575	1578	1581	
1.44	1584	1587	1590	1593	1596	1599	1602	1605	1608	1611	
1.45	1614	1617	1620	1623	1626	1629	1632	1635	1638	1641	
1.46	1644	1647	1649	1652	1655	1658	1661	1664	1667	1670	
1.47	1673	1676	1679	1682	1685	1688	1691	1694	1697	1700	
1.48	1703	1706	1708	1711	1714	1717	1720	1723	1726	1729	
1.49	1732	1735	1738	1741	1744	1746	1749	1752	1755	1758	

Moving the decimal point n places to the right [or left] in the number requires adding + n [or - n] in the body of the table (see p. 42).

COMMON LOGARITHMS (special table, continued)

Numper	. 0	1 '	2	3	4	5	6	7	8	9	Avg.
1.50	0.1761	1764	1767	1770	1772	1775	1778	1781	1784	1787	3
1.51	1790	1793	1796	1798	1801	1804	1807	1810	1813	1816	
1.52	1818	1821	1824	1827	1830	1833	1836	1838	1841	1844	
1.53	1847	1850	1853	1855	1858	1861	1864	1867	1870	1872	
1.54	1875	1878	1881	1884	1886	1889	1892	1895	1898	1901	
1.55	1903	1906	1909	1912	1915	1917	1920	1923	1926	1928	
1.56	1931	1934	1937	1940	1942	1945	1948	1951	1953	1956	
1.57	1959	1962	1965	1967	1970	1973	1976	1978	1981	1984	
1.58	1987	1989	1992	1995	1998	2000	2003	2006	2009	2011	
1.59	2014	2017	2019	2022	2025	2028	2030	2033	2036	2038	
1.60	0.2041	2044	2047	2049	2052	2055	2057	2060	2063	2066	
1.61	2068	2071	2074	2076	2079	2082	2084	2087	2090	2092	
1.62	2095	2098	2101	2103	2106	2109	2111	2114	2117	2119	
1.63	2122	2125	2127	2130	2133	2135	2138	2140	2143	2146	
1.64	2148	2151	2154	2156	2159	2162	2164	2167	2170	2172	
1.65	2175	2177	2180	2183	2185	2188	2191	2193	2196	2198	
1.66	2201	2204	2206	2209	2212	2214	2217	2219	2222	2225	
1.67	2227	2230	2232	2235	2238	2240	2243	2245	2248	2251	
1.68	2253	2256	2258	2261	2263	2266	2269	2271	2274	2276	
1.69	2279	2281	2284	2287	2289	2292	2294	2297	2299	2302	
1.70	0.2304	2307	2310	2312	2315	2317	2320	2322	2325	2327	2
1.71	2330	2333	2335	2338	2340	2343	2345	2348	2350	2353	
1.72	2355	2358	2360	2363	2365	2368	2370	2373	2375	2378	
1.73	2380	2383	2385	2388	2390	2393	2395	2398	2400	2403	
1.74	2405	2408	2410	2413	2415	2418	2420	2423	2425	2428	
1.75	2430	2433	2435	2438	2440	2443	2445	2448	2450	2453	
1.76	2455	2458	2460	2463	2465	2467	2470	2472	2475	2477	
1.77	2480	2482	2485	2487	2490	2492	2494	2497	2499	2502	
1.78	2504	2507	2509	2512	2514	2516	2519	2521	2524	2526	
1.79	2529	2531	2533	2536	2538	2541	2543	2545	2548	2550	
1.80	0.2553	2555	2558	2560	2562	2565	2567	2570	2572	2574	
1.81	2577	2579	2582	2584	2586	2589	2591	2594	2596	2598	
1.82	2601	2603	2605	2608	2610	2613	2615	2617	2620	2622	
1.83	2625	2627	2629	2632	2634	2636	2639	2641	2643	2646	
1.84	2648	2651	2653	2655	2658	2660	2662	2665	2667	2669	
1.85	2672	2674	2676	2679	2681	2683	· 2686	2688	2690	2693	
1.86	2695	2697	2700	2702	2704	2707	2709	2711	2714	2716	
1.87	2718	2721	2723	2725	2728	2730	2732	2735	2737	2739	
1.88	2742	2744	2746	2749	2751	2753	2755	2758	2760	2762	
, 1.89	2765	2767	2769	2772	2774	2776	2778	2781	2783	2785	
1.90	0.2788	2790	2792	2794	2797	2799	2801	2804	2806	2808	
1.91	2810	2813	2815	2817	2819	2822	2824	2826	2828	2831	
1.92	2833	2835	2838	2840	2842	2844	2847	2849	2851	2853	
1.93	2856	2858	2860	2862	2865	2867	2869	2871	2874	2876	
1.94	2878	2858	2882	2885	2887	2889	2891	2894	2896	2898	
1.95	2900	2903	2905	2907	2909	2911	2914	2916	2918	2920	
1.96	2923	2925	2927	2929	2931	2934	2936	2938	2940	2942	
1.97	2945	2947	2949	2951	2953	2956	2958	2960	2962	2964	
1.98	2967	2969	2971	2973	2975	2978	2980	2982	2984	2986	
1.99	2989	2991	2993	2995	2997	2999	3002	3004	3006	3008	

COMMON LOGARITHMS

Num- ber	0	1	2	3	4	5	6	7	8	9	Avg. diff.
1.0	0.0000	0043	0086	0128	0170	0212	0253	0294	0334	0374	40-41
1.1	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755	
1.2	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106	
1.3	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430	
1.4	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732	
1.5	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014	See pages 40-41
1.6	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279	
1.7	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529	
1.8	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765	
1.9	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989	
2.0	0.3010	3032	3054	3075	3096	3118	3139	3160	3181	3201	21
2.1	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404	20
2.2	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598	19
2.3	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784	18
2.4	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962	17
2.5	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133	17
2.6	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298	16
2.7	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456	16
2.8	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609	15
2.9	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757	15
8.0	0.4771	4786	4800	4814	4829	4843	4857	4871	4886	4900	14
3.1	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038	14
3.2	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172	13
3.3	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302	13
3.4	5315	5328	5340	5353	5366	5378	5391	5403	5416	5428	13
3.5	5441	5453 -	5465	5478	5490	5502	5514	5527	5539	5551	12
3.6	5563	5575	5587	5599	5611	5623	5635	5647	5658	5670	12
3.7	5682	5694	5705	5717	5729	5740	5752	5763	5775	5786	12
3.8	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899	11
3.9	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010	11
4.0 4.1 4.2 4.3 4.4	0.6021 6128 6232 6335 6435	6031 6138 6243 6345 6444	6042 6149 6253 6355 6454	6053 6160 6263 6365 6464	6064 6170 6274 6375 6474	6075 6180 6284 6385 6484	6085 6191 6294 6395 6493	6096 6201 6304 6405 6503	6107 6212 6314 6415 6513	6117 6222 6325 6425 6522	11 10 10 10
4.5 4.6 4.7 4.8 4.9	6532 6628 6721 6812 6902	6542 6637 6730 6821 6911	6551 6646 6739 6830 6920	6561 6656 6749 6839 6928	6571 6665 6758 6848 6937	6580 6675 6767 6857 6946	6590 6684 6776 6866 6955	6599 6693 6785 6875 6964	6609 6702 6794 6884 6972	6618 6712 6803 6893 6981	10 10 9 9

These two pages give the common logarithms of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right [or left] in the number is equivalent to adding n [or -n] to the logarithm. Thus, $\log 0.017453 = 0.2419 - 2$, which may also be written $\overline{2}.2419$ or 8.2419 - 10. See p. 91. Graphs, p. 174. $\log (ab) = \log a + \log b$ $\log (a^N) = N \log a$

$$\log (ab) = \log a + \log b \qquad \log (a^N) = N \log a$$
$$\log \left(\frac{a}{b}\right) = \log a - \log b \qquad \log \left(\frac{N}{\sqrt{a}}\right) = \frac{1}{N} \log a$$

COMMON LOGARITHMS (continued)

Num-	0	1	2	3	4	5	6	7	8	9	Avg. diff.
5.0 5.1 5.2 5.3 5.4	0.6990	6998	7007	7016	7024	7033	7042	7050	7059	7067	9
	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152	8
	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235	8
	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316	8
	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396	8
5.5	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474	8
5.6	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551	8
5.7	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627	8
5.8	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701	7
5.9	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774	7
6.0	0.7782	7789	7796	7803	7810	7818	7825	7832	7839	7846	7 7 7 7 7
6.1	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917	
6.2	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987	
6.3	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055	
6.4	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122	
6.5	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189	7
6.6	8195	8202	8209	8215	8222	8228	82 35	8241	8248	8254	7
6.7	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319	6
6.8	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382	6
6.9	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445	6
7.0	0.8451	8457	8463	8470	8476	8482	8488	8494	8500	8506	6 6 6 6
7.1	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567	
7.2	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627	
7.3	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686	
7.4	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745	
7.5	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802	6 6 6 5
7.6	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859	
7.7	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915	
7.8	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971	
7.9	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025	
8.0	0.9031	9036	9042	9047	9053	9058	9063	9069	9074	9079	55555
8.1	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133	
8.2	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186	
8.3	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238	
8.4	9243	9248	9253	9258	9263	- 9269	9274	9279	9284	9289	
8.5	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340	5 5 5 5 5 5
8.6	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390	
8.7	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440	
8.8	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489	
8.9	9494	9499	9504	9509	9513	9518	9523	9528	9533	9538	
9.0	0.9542	9547	9552	9557	9562	9566	9571	9576	9581	9586	55555
9.1	9590	9595	9600	9605	9609	9614	9619	9624	9628	9633	
9.2	9638	9643	9647	9652	9657	9661	9666	9671	9675	9680	
9.3	9685	9689	9694	9699	9703	9708	9713	9717	9722	9727	
9.4	9731	9736	9741	9745	9750	9754	9759	9763	9768	9773	
9.5	9777	9782	9786	9791	9795	9800	9805	9809	9814	9818	5 4 4 4 4
9.6	9823	9827	9832	9836	9841	9845	9850	9854	9859	9863	
9.7	9868	9872	9877	9881	9886	9890	9894	9899	9903	9908	
9.8	9912	9917	9921	9926	9930	9934	9939	9943	9948	9952	
9.9	9956	9961	9965	9969	9974	9978	9983	9987	9991	9996	

DEGREES AND MINUTES EXPRESSED IN RADIANS (See also p. 69)

		De	grees				Hundi	edths		Min	utes
10	.0175	61°	1.0647	121°	2.1118	0°.01	.0002	0°.51	.0089	1'	.0003
2 3	.0349	2 3	1.0821 1.0996	2 3	2.1293	2 3	.0003	2 3	.0091	3'	.0006
4	.0698	4	1.1170	4	2.1642	4	.0007	4	.0094	4'	.0012
50	.0873	65°	1.1345	125°	2.1817	.05	.0009	.55	.0096	5'	.0015
6	.1047	6 7	1.1519	6 7	2.1991 2.2166	6 7	.0010	6 7	.0098	6' 7'	.0017
7 8	.1396	8	1.1868	8	2.2340	8	.0014	8	.0101	8'	.0023
9	.1571	9	1.2043	9	2.2515	9	.0016	9	.0103	9'	.0026
10°	.1745	70°	1.2217 1.2392	130°	2.2689 2.2864	0°.10	.0017	0°.60	.0105	10' 11'	.0029
2	.1920	2	1.2566	2	2.3038	2	.0021	2	.0106 .0108	12'	.0035
3	.2269	3	1.2741	3	2.3213	3	.0023	3	.0110	13'	.0038
4 15°	.2443	75°	1.2915	4 135°	2.3387 2.3562	.15	.0024	.65	.0112	15'	.0041
	.2793	6	1.3265	6	2.3736	6	.0028	6	.0115	16'	.0047
6 7 8	.2967	7	1.3439	7	2.3911	7	.0030	7	.0117	17'	.0049
9	.3142	8 9	1.3614	8 9	2.4086 2.4260	8 9	.0031	8 9	.0119	19'	.0052
20°	.3491	80°	1.3963	140°	2.4435	0°.20	.0035	0°.70	.0122	20'	.0058
1	.3665	1	1.4137	1	2.4609	1	.0037	1	.0124	21'	.0061
2 3	.3840 .4014	2 3	1.4312	2 3	2.4784 2.4958	2 3	.0038	3	.0126 .0127	23'	.0064
4	.4189	4	1.4661	4	2.5133	4	.0042	4	.0129	24'	.0070
25°	.4363	85°	1.4835	145°	2.5307	.25	.0044	.75	.0131	25'	0073
6 7	.4538 .4712	6 7	1.5010 1.5184	6 7	2.5482 2.5656	6 7	.0045	6 7	.0133	26' 27'	.0076
8	.4887	8	1.5359	8	2.5831	8	.0049	8	.0136	28'	.0081
9 30°	.5061	9	1.5533	9 150°	2.6005 2.6180	0°.30	.0051	0°.80	.0138	29' 30'	0084
30	.5236 .5411	90°	1.5882	150	2.6354	0.30	.0054	0.80	.0140	31'	.0087
2	,5585	2	1.6057	. 2	2.6529	2	.0056	2	.0143	32'	.0093
3 4	.5760 .5934	3	1.6232	3 4	2.6704 2.6878	3 4	.0058	3 4	.0145	33' 34'	.0096
35°	.6109	95°	1.6581	155°	2.7053	35	.0061	.85	.0148	35'	.0102
6	.6283	6	1.6755 1.6930	6	2.7227 2.7402	6 7	.0063	6	.0150	36' 37'	.0105
7 8	.6458 .6632	7 8	1.7104	7 8	2.7576	8	.0066	8	.0152	38'	.0108
9	.6807	9	1.7279	9	2.7751	9	.0068	9	.0155	39'	.0113
40°	.6981 .7156	100°	1.7453 1.7628	160°	2.7925 2.8100	0°.40	.0070	0°.90	.0157 .0159	40' 41'	.0116
1 2 3	.7330	2	1.7802	2	2.8274	2	.0073	2 3	.0161	42'	.0122
	.7505		1.7977	3	2.8449	3	.0075		.0162	43'	.0122
4 45°	.7679 .7854	105°	1.8151	165°	2.8623 2.8798	.45	.0077	.95	.0164	44'	.0128
6	.8029	6	1.8500	6	2.8972	6	.0080	6	.0168	46'	.0134
6 7	.8203	7	1.8675 1.8850	7	2.9147 2.9322	7	.0082	7	.0169	47'	.0137
8 9	.8378 .8552	8 9	1.9024	8 9	2.9322	8 9	.0084	8 9	.0171	48'	.0140
50°	.8727	110°	1.9199	170°	2.9671	0°.50	.0087	1°.00	.0175	50'	.0145
1	.8901 .9076	1 2	1.9373 1.9548	1 2	2.9845 3.0020	6	21.1	8		51'	.0148
2 3	.9250	3	1.9722	3	3.0194	8				52'	.0151
4	.9425	4	1.9897	4	3.0369	8159		11/8	Tell 10 S	54'	.0157
55°	.9599 .9774	115°	2.0071 2.0246	175°	3.0543 3.0718	WE H	2	1		55'	.0160
7	.9948	7	2.0420	7	3.0892	1	-	1		56' 57'	.0163
8 9	1.0123	8 9	2.0595 2.0769	8 9	3.1067 3.1241	Line of				58'	.0169
60°	1.0297	120°	2.0769	180°	3.1416					59' 60'	.0172
- 00	1.04/2	120	2.0777	100	3.1710					00	.0175

Arc $1^{\circ} = 0.0174533$ Arc 1' = 0.000290888 Arc 1'' = 0.00000484814 1 radian = $57^{\circ}.295780 = 57^{\circ}.17'.7468 = 57^{\circ}.17'.44''.806$

RADIANS EXPRESSED IN DEGREES

		17.		2.4		200		ROLL OF	7/4/13	Interpola	ation
0.01	0°.57	.64	36°.67	1.27	72°.77	1.90	108°.86	2.53	144°.96		
2	1°.15	.65	37°.24	8	73°.34	1	109°.43	4	145°.53 146°.10	.0002	0°.01
3	10.72	6	37°.82	9	73°.91	2	110°.01	2.55	146°.10	04	.02
4	2°.29	7	38°.39	1.30	74°.48	3	110°.58	6	146°.68	06	.03
.05	· 2°.86	8	38°.96	1	75°.06	4	111°.15	7	147°.25	08	.05
6	3°.44	9	39°.53	2	75°.63	1.95	111°.73 112°.30	8	147°.82 148°.40	.0010	0°.06
7	4°.01	.70	40°.11	3	76°.20	6	112°.30	9	148°.40	12	.07
8	4°.58	1	40°.68	4	76°.78	7	112°,87	2.60	148°.97	14	.08
9	5°.16	2	41°.25	1.35	77°.35	8	113°.45	1	149°.54	16	.09
.10	5°.73	3	41°.83	6	77°.92	9	114°.02	2	150°.11	18	.10
1	6°.30	14	42°,40	7	78°.50	2.00	114°.59	3	150°.69	.0020	0°.11
2	6°.88	.75	42°.97	8	79°.07	1	115°.16	4	151°.26	22	.13
2 3	7°.45	6	43°.54	9	700 64	2	115°.74	2.65	151°.83	24	.14
4	8°.02	7	44°.12	1.40	80°.21	3	116°.31	6	152°.41	26	.15
.15	8°.59	8	440.69	1	80°.79	4	116°.88	7	152°.98	28	.16
6	9°.17	9	45°.26	2	81°.36	2.05	117°.46	8	153°.55	.0030	0°.17
7	90.74	.80	45°.84	3	81°.93	6	118°.03	9	154º 13	32	18
8	10°.31	1	46°.41	4	82°.51	7	118°.60	2.70	154°.70	34	.19
9	10°.89	2	46°.98	1.45	83°.08	8	119°.18	1	155°.27	36	.21
.20	11°.46	3	47°.56	6	83°.65	9	119°.75	2	155°.84	38	.22
1	12°.03	4	48°.13	7	84°.22	2.10	120°.32	3	156°.42	.0040	0°.23
2	12°.61	.85	48°.70	8	84°.80	1	120°.89	4	156°.99	42	.24
3	13°.18	6	49°.27	9	85°.37	2	121°.47	2.75	157°.56	44	.24
4	13°.75	7	490.85	1.50	85°.94	3	122°.04	6	158°.14	46	.26
.25	14°.32	8	50°.42	1.50	86°.52	4	122°.61	7	158°.71	48	.28
6	140.90	9	50°.99		87°.09	2.15	123°.19	8	159°.28	.0050	00.29
7	15°.47	.90	51°.57	2 3	87°.66		123°.76	9	159°.86	52	30
8	16°.04	.90	52°.14	4	88°.24	6 7	124°.33		160°.43	54	31
9	16°.62	2	52°.71		88°.81	8	124°.90	2.80	161°.00	56	32
	17°.19	3		1.55	000.01		1240.90		1610.00	58	33
.30	17°.76		53°.29	6	89°.38	9	125°.48	2	161°.57	.0060	0°.34
1	170.76	4	53°.86	7	89°.95	2.20	126°.05	3	162°.15		0.54
2	18°.33	.95	54°.43	8	90°.53	1	126°.62	4	162 .72	62	36
3	18°.91	6	55°.00	9	91°.10	- 2	127°.20	2.85	163°.29	64	.37
4	19°.48	7	55°.58	1.60	91°.67	3	127°.77	6	163°.87	66	.38
.35	20°.05	8	56°.15	1	92°.25	4	128°.34	7	164°.44	68	.39
6	20°.63	9	56°.72	2	92°.82	2.25	128°.92	8	165°.01	.0070	0°.40
7	21°.20	1.00	57°.30	3	93°.39	6	129°.49	9	165°.58	72 74	.41
8 9	21°.77	1	57°.87	4	93°.97	7	130°.06	2.90	166°.16	74	.42
	22°.35	2	58°.44	1.65	94°.54	8	130°.63	1	1660,73	76	.44
.40	22°.92	3	59°.01	6	95°.11	9	131°.21	2	167°.30	78	.45
1	23°.49	4	59°.59	7	95°.68	2.30	131°.78	3	167°.88	.0080	0°.46
2	24°.06	1.05	60°.16	8	96°.26	1	132°.35	4	168°.45	82	.47
3	24°.64	6	60°.73	9	96°.83	2	132°.93	2.95	169°.02	84	.48
4	25°.21	7	61°.31	1.70	97°.40	3	133°.50	6	169°.02 169°.60	86	.49
.45	25°.78	8	61°.88	1	97°.98	4	134°.07	7	170°.17	88	.50
6	26°.36	9	62°.45	2	98°.55	2.35	134°.65	8	170°.74	.0090	0°.52
7	26°.93	1.10	63°.03	3	99º.12	6	135°.22	9	171°.31	92	.53
8	27°.50	1	63°.60	4	99°.69	7	135°.79	3.00	171°.89	94	.54
9	28°.07	2	64°.17	1.75	100°.27	8	136°.36	1	172°.46	96	.55
.50	28°.65	3	64°.74	6	100°.84	9	136°.94	2	173°.03	98	.56
1	29°.22	4	65°.32	7	101°.41	2.40	137°,51	3	173°.61	The same of the sa	
2	29°.79	1.15	65°.89	8	101°.99	1	138°.08	4	174°.18	Multiples	of T
3	30°.37	6	66°.46	, š	102°.56	2	138°.66	3.05	174°.75		
4	30°.94	7	67°.04	1.80	103°.13	3	139°.23	6	175°.33	11 3,1416	180°
.55	31°.51	8	67°.61	1.00	103°.71	4	139°.80	7	175°.90	2 6.2832	360°
6	32°.09	9	68°.18	2	104°.28	2.45	140°.37	8	176°.47	3 9.4248	540°
7	32°.66	1.20	68°.75	3	104°.85	2.40	140°.95	9	177°.04	4 12.5664	720°
8	33°.23	1.40	69°.33	4	105°.42	7	140°.95		1770.63	5 15.7080	900°
9	33°.80	2	69°.90		106°.42		141°.52	3.10	177°.62 178°.19		
	34°.38	3	70°.47	1.85	106°.00	8 9		1	1700.19	6 18.8496	1080°
.60	340.95	4		6			1420.67	2	178°.76	7 21.9911	1260°
1			71°.05	7	107°.14	2.50	1430.24	3	179°.34	8 25.1327	1440°
2	35°.52	1.25	71°.62 72°.19	8	107°.72	1	143°.81	4	179°.91	9 28.2743	1620°
31	36°.10	6	12.19	9	108°.29	2	144°.39	3.15	180°.48	10 31.4159	1800°
-									Mary and the		

NATURAL SINES AND COSINES

Natural Sines at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Deg.	°.0 =(0')	°.1 (6')	°.2 (12')	°.3 (18′)	°.4 (24')	°.5 (30')	°.6 (36')	°.7 (42')	°.8 (48')	°.9 (54')			Avg.
0° 1 2 3 4	0.0000 0175 0349 0523 0698	0017 0192 0366 0541 0715	0035 0209 0384 0558 0732	0052 0227 0401 0576 0750	0070 0244 0419 0593 0767	0087 0262 0436 0610 0785	0105 0279 0454 0628 0802	0122 0297 0471 0645 0819	0140 0314 0488 0663 0837	0157 0332 0506 0680 0854	0.0000 0175 0349 0523 0698 0.0872	90° 89 88 87 86 85	17 17 17 17 17
5 6 7 8 9	0.0872 1045 1219 1392 1564	0889 1063 1236 1409 1582	0906 1080 1253 1426 1599	0924 1097 1271 1444 1616	0941 1115 1288 1461 1633	0958 1132 1305 1478 1650	0976 ,1149 1323 1495 1668	0993 1167 1340 1513 1685	1011 1184 1357 1530 1702	1028 1201 1374 1547 1719	1045 1219 1392 1564 0.1736	84 83 82 81 80°	17 17 17 17 17
10° 11 12 13 14	0.1736 1908 2079 2250 2419	1754 1925 2096 2267 2436	1771 1942 2113 2284 2453	1788 1959 2130 2300 2470	1805 1977 2147 2317 2487	1822 1994 2164 2334 2504	1840 2011 2181 2351 2521	1857 2028 2198 2368 2538	1874 2045 2215 2385 2554	1891 2062 2233 2402 2571	1908 2079 2250 2419 0.2588	79 78 77 76 75	17 17 17 17 17
15 16 17 18 19	0.2588 2756 2924 3090 3256	2605 2773 2940 3107 3272	2622 2790 2957 3123 3289	2639 2807 2974 3140 3305	2656 2823 2990 3156 3322	2672 2840 3007 3173 3338	2689 2857 3024 3190 3355	2706 2874 3040 3206 3371	2723 2890 3057 3223 3387	2740 2907 3074 3239 3404	2756 2924 3090 3256 0.3420	74 73 72 71 70°	17 17 17 17 17
20° 21 22 23 24	0.3420 3584 3746 3907 4067	3437 3600 3762 3923 4083	3453 3616 3778 3939 4099	3469 3633 3795 3955 4115	3486 3649 3811 3971 4131	3502 3665 3827 3987 4147	3518 3681 3843 4003 4163	3535 3697 3859 4019 4179	3551 3714 3875 4035 4195	3567 3730 3891 4051 4210	3584 3746 3907 4067 0.4226	69 68 67 66 65	16 16 16 16
25 26 27 28 29	0.4226 4384 4540 4695 4848	4242 4399 4555 4710 4863	4258 4415 4571 4726 4879	4274 4431 4586 4741 4894	4289 4446 4602 4756 4909	4305 4462 4617 4772 4924	4321 4478 4633 4787 4939	4337 4493 4648 4802 4955	4352 4509 4664 4818 4970	4368 4524 4679 4833 4985	4384 4540 4695 4848 0,5000	64 63 62 61 60°	16 16 16 15
30° 31 32 33 34	0.5000 5150 5299 5446 5592	5015 5165 5314 5461 5606	5030 5180 5329 5476 5621	5045 5195 5344 5490 5635	5060 5210 5358 5505 5650	5075 5225 5373 5519 5664	5090 5240 5388 5534 5678	5105 5255 5402 5548 5693	5120 5270 5417 5563 5707	5135 5284 5432 5577 5721	5150 5299 5446 5592 0.5736	59 58 57 56 55	15 15 15 15 14
35 36 37 38 39	0.5736 5878 6018 6157 6293	5750 5892 6032 6170 6307	5764 5906 6046 6184 6320	5779 5920 6060 6198 6334	5793 5934 6074 6211 6347	5807 5948 6088 6225 6361	5821 5962 6101 6239 6374	5835 5976 6115 6252 6388	5850 5990 6129 6266 6401	5864 6004 6143 6280 6414	5878 6018 6157 6293 0.6428	54 53 52 51 50°	14 14 14 14 14 13
40° 41 42 43 44	0.6428 6561 6691 6820 6947	6441 6574 6704 6833 6959	6455 6587 6717 6845 6972	6468 6600 6730 6858 6984	6481 6613 6743 6871 6997	6494 6626 6756 6884 7009	6508 6639 6769 6896 7022	6521 6652 6782 6909 7034	6534 6665 6794 6921 7046	6547 6678 6807 6934 7059	6561 6691 6820 6947 0.7071	49 48 47 46 45 °	13 13 13 13 13 12
45°	0.7071												
		°.9 =(54')	°.8 (48')	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°.3 (18')	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	
	_	(For a	,		174)			54		Mak	ural Co]

(For graphs, see p. 174.)

Natural Cosines

NATURAL SINES AND COSINES (continued)
Natural Sines at intervals of 0°.1, or 6'. (For 10'intervals, see pp. 52-56)

110	turar	DIIIO	at II	1001 A	ars or	0 .1, 0	or o.	(101)	10 11	TOT V M.	s, see pr	0. 52-5	0)
Deg.	°.0 =(0')	°.1 (6')	°.2 (12')	°.3 (18')	°.4 (24')	°.5 (30')	°.6 (36')	°.7 (42')	°.8 (48')	°.9 (54')			Avg.
45° 46 47 48 49	0.7071 7193 7314 7431 7547	7083 7206 7325 7443 7559	7096 7218 7337 7455 7570	7108 7230 7349 7466 7581	7120 7242 7361 7478 7593	7133 7254 7373 7490 7604	7145 7266 7385 7501 7615	7157 7278 7396 7513 7627	7169 7290 7408 7524 7638	7181 7302 7420 7536 7649	0.7071 7193 7314 7431 7547 0.7660	45° 44 43 42 41 40°	12 12 12 12 12
50°	0.7660	7672	7683	7694	7705	7716	7727	7738	7749	7760	7771	39	11
51	7771	7782	7793	7804	7815	7826	7837	7848	7859	7869	7880	38	11
52	7880	7891	7902	7912	7923	7934	7944	7955	7965	7976	7986	37	11
53	7986	7997	8007	8018	8028	8039	8049	8059	8070	8080	8090	36	10
54	8090	8100	8111	8121	8131	8141	8151	8161	8171	8181	0,8192	35	10
55 · 56 · 57 · 58 · 59	0.8192 8290 8387 8480 8572	8202 8300 8396 8490 8581	8211 8310 8406 8499 8590	8221 8320 8415 8508 8599	8231 8329 8425 8517 8607	8241 8339 8434 8526 8616	8251 8348 8443 8536 8625	8261 8358 8453 8545 8634	8271 8368 8462 8554 8643	8281 8377 8471 8563 8652	8290 8387 8480 8572 0.8660	34 33 32 31 30°	10 10 9 9
60°	0.8660	8669	8678	8686	8695	8704	8712	8721	8729	8738	8746	29	9
61	8746	8755	8763	8771	8780	8788	8796	8805	8813	8821	8829	28	8
62	8829	8838	8846	8854	8862	8870	8878	8886	8894	8902	8910	27	8
63	8910	8918	8926	8934	8942	8949	8957	8965	8973	8980	8988	26	8
64	8988	8996	9003	9011	9018	9026	9033	9041	9048	9056	0,9063	25	7
65	0,9063	9070	9078	9085	9092	9100	9107	9114	9121	9128	9135	24	7
66	9135	9143	9150	9157	9164	9171	9178	9184	9191	9198	9205	23	7
67	9205	9212	9219	9225	9232	9239	9245	9252	9259	9265	9272	22	7
68	9272	9278	9285	9291	9298	9304	9311	9317	9323	9330	9336	21	6
69	9336	9342	9348	9354	9361	9367	9373	9379	9385	9391	0.9397	20°	6
70°	0.9397	9403	9409	9415	9421	9426	9432	9438	9444	9449	9455	19	66555
71	9455	9461	9466	9472	9478	9483	9489	9494	9500	9505	9511	18	
72	9511	9516	9521	9527	9532	9537	9542	9548	9553	9558	9563	17	
73	• 9563	9568	9573	9578	9583	9588	9593	9598	9603	9608	9613	16	
74	9613	9617	9622	9627	9632	9636	9641	9646	9650	9655	0,9659	15	
75	0.9659	9664	9668	9673	9677	9681	9686	9690	9694	9699	9703	14	4 4 4 3 3
76	9703	9707	9711	9715	9720	9724	9728	9732	9736	9740	9744	13	
77	9744	9748	9751	9755	9759	9763	9767	9770	9774	9778	9781	12	
78	9781	9785	9789	9792	9796	9799	9803	9806	9810	9813	9816	11	
79	9816	9820	9823	9826	9829	9833	9836	9839	9842	9845	0.9848	10°	
80°	0.9848	9851	9854	9857	9860	9863	9866	9869	9871	9874	9877	9	3 3 2 2 2 2
81	9877	9880	9882	9885	9888	9890	9893	9895	9898	9900	9903	8	
82	9903	9905	9907	9910	9912	9914	9917	9919	9921	9923	9925	7	
83	9925	9928	9930	9932	9934	9936	9938	9940	9942	9943	9945	6	
84	9945	9947	9949	9951	9952	9954	9956	9957	9959	9960	0.9962	5	
85	0.9962	9963	9965	9966	9968	9969	9971	9972	9973	9974	9976	4	1 1 0 0
86	9976	9977	9978	9979	9980	9981	9982	9983	9984	9985	9986	3	
87	9986	9987	9988	9989	9990	9990	9991	9992	9993	9993	9994	2	
88	9994	9995	9995	9996	9996	9997	9997	9997	9998	9998	0.9998	1	
89	0.9998	9999	9999	9999	9999	0000	0000	0000	0000	0000	1.0000	0°	
90°	1.0000												28
		°.9 =(54')	°.8 (48')	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°.3 (18')	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	

Natural Cosines

NATURAL TANGENTS AND COTANGENTS
Natural Tangents at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

							-						-
Deg.	=(0')	°.1 (6')	°.2 (12')	°.3 (18')	°.4 (24')	(30')	°.6 (36')	°.7 (42')	°.8 (48')	°.9 (54')			Avg.
- FOV	100			100							0.0000	90°	
0° 1 2 3 4	0.0000 0175 0349 0524 0699	0192 0367 0542	0035 0209 0384 0559 0734	0052 0227 0402 0577 0752	0070 0244 0419 0594 0769	0087 0262 0437 0612 0787	0105 0279 0454 0629 0805	0122 0297 0472 0647 0822	0140 0314 0489 0664 0840	0157 0332 0507 0682 0857	0175 0349 0524 0699 0.0875	89 88 87 86 85	17 17 17 18 18
5 6 7 8 9	0.0875 1051 1228 1405 1584	1069 1246 1423	0910 1086 1263 1441 1620	0928 1104 1281 1459 1638	0945 1122 1299 1477 1655	0963 1139 1317 1495 1673	0981 1157 1334 1512 1691	0998 1175 1352 1530 1709	1016 1192 1370 1548 1727	1033 1210 1388 1566 1745	1051 1228 1405 1584 0,1763	84 83 82 81 80°	18 18 18 18
10° 11 12 13 14	0.1763 1944 2126 2309 2493	1962 2144 2327	1799 1980 2162 2345 2530	1817 1998 2180 2364 2549	1835 2016 2199 2382 2568	1853 2035 2217 2401 2586	1871 2053 2235 2419 2605	1890 2071 2254 2438 2623	1908 2089 2272 2456 2642	1926 2107 2290 2475 2661	1944 2126 2309 2493 0.2679	79 78 77 76 75	· 18 18 18 18 18
15 16 17 18 19	0.2679 2867 3057 3249 3443	2886 3076 3269	2717 2905 3096 3288 3482	2736 2924 3115 3307 3502	2754 2943 3134 3327 3522	2773 2962 3153 3346 3541	2792 2981 3172 3365 3561	2811 3000 3191 3385 3581	2830. 3019 3211 3404 3600	2849 3038 3230 3424 3620	2867 3057 3249 3443 0.3640	74 73 72 71 70°	19 19 19 19 20
20° 21 22 23 24	0.3640 3839 4040 4245 4452	3859 4061 4265	3679 3879 4081 4286 4494	3699 3899 4101 4307 4515	3719 3919 4122 4327 4536	3739 3939 4142 4348 4557	3759 3959 4163 4369 4578	3779 3979 4183 4390 4599	3799 4000 4204 4411 4621	3819 4020 4224 4431 4642	3839 4040 4245 4452 0.4663	69 68 67 66 65	20 20 21 21 21 21
25 26 27 28 29	0.4663 4877 5095 5317 5543	4899 5117 5340	4706 4921 5139 5362 5589	4727 4942 5161 5384 5612	4748 4964 5184 5407 5635	4770 4986 5206 5430 5658	4791 5008 5228 5452 5681	4813 5029 5250 5475 5704	4834 5051 5272 5498 5727	4856 5073 5295 5520 5750	4877 5095 5317 5543 0.5774	64 63 62 61 60°	21 22 22 23 23
80° 31 32 33 34	0.5774 6009 6249 6494 6745	6032 6273 6519	5820 6056 6297 6544 6796	5844 6080 6322 6569 6822	5867 6104 6346 6594 6847	5890 6128 6371 6619 6873	5914 6152 6395 6644 6899	5938 6176 6420 6669 6924	5961 6200 6445 6694 6950	5985 6224 6469 6720 6976	6009 6249 6494 6745 0.7002	59 58 57 56 55	24 24 25 25 26
35 36 37 38 39	0.7002 7265 7536 7813 8098	7292 7563 7841	7054 7319 7590 7869 8156	7080 7346 7618 7898 8185	7107 7373 7646 7926 8214	7133 7400 7673 7954 8243	7159 7427 7701 7983 8273	7186 7454 7729 8012 8302	7212 7481 7757 8040 8332	7239 7508 7785 8069 8361	7265 7536 7813 8098 0.8391	54 53 52 51 50°	26 27 28 28 29
40° 41 42 43 44	0.8391 8693 9004 9325 0.9657	9036 9358	8451 8754 9067 9391 9725	8481 8785 9099 9424 9759	8511 8816 9131 9457 9793	8541 8847 9163 9490 9827	8571 8878 9195 9523 9861	8601 8910 9228 9556 9896	8632 8941 9260 9590 9930	8662 8972 9293 9623 9965	8693 9004 9325 0.9657 1.0000	49 48 47 46 45°	30 31 32 33 34
45°	1.0000		1			4					10	Mile.	- 10
		°.9 =(54')	°.8 (48')	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°.3 (18')	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	

(For graphs, see p. 174.)

Natural Cotangents

NATURAL TANGENTS AND COTANGENTS (continued)
Natural Tangents at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Nati	ural T	angen	ts at	inter	vals of	f 0°.1, or	r 6'. ((For 10	O'inte	rvals,	see pp.	52-5	6)
Deg.	°.0 =(0')	°.1 (6')	°.2 (12')	°.3 (18')	°.4 (24')	°.5 (30')	°.6 (36′)	°.7 (42')	°.8 (48')	°.9 (54')			Avg. diff.
	138		- 49	*	STERN						1.0000	45°	
45° 46 47 48 49	1.0000 0355 0724 1106 1504	0035 0392 0761 1145 1544		0105 0464 0837 1224 1626	0141 0501 0875 1263 1667	0176 0538 0913 1303 1708	0212 0575 0951 1343 1750	0247 0612 0990 1383 1792	0283 0649 1028 1423 1833	0319 0686 1067 1463 1875	0355 0724 1106 1504 1.1918	44 43 42 41 40°	35 37 38 40 41
50° 51 52 53 54	1.1918 2349 2799 3270 3764	1960 2393 2846 3319 3814	2002 2437 2892 3367 3865	2045 2482 2938 3416 3916	2088 2527 2985 3465 3968	2131 2572 3032 3514 4019	2174 2617 3079 3564 4071	2218 2662 3127 3613 4124	2261 2708 3175 3663 4176	2305 2753 3222 3713 4229	2349 2799 3270 3764 1.4281	39 38 37 36 35	43 45 47 49 52
55 56 57 58 59	1,4281 4826 5399 6003 1,6643	4335 4882 5458 6066 6709	4388 4938 5517 6128 6775	4442 4994 5577 6191 6842	4496 5051 5637 6255 6909	4550 5108 5697 6319 6977	4605 5166 5757 6383 7045	4659 5224 5818 6447 7113	4715 5282 5880 6512 7182	4770 5340 5941 6577 7251	4826 5399 6003 6643 1.7321	34 33 32 31 30°	55 57 60 64 67
60° 61 62 63 64	1.732 1.804 1.881 1.963 2.050	1.739 1.811 1.889 1.971 2.059	1.746 1.819 1.897 1.980 2.069	1.753 1.827 1.905 1.988 2.078	1.760 1.834 1.913 1.997 2.087	1.767 1.842 1.921 2.006 2.097	1.775 1.849 1.929 2.014 2.106	2.023	1.789 1.865 1.946 2.032 2.125	1.797 1.873 1.954 2.041 2.135	1.804 1.881 1.963 2.050 2.145	29 28 27 26 25	7 8 8 9 9
65 66 67 68 69	2.145 2.246 2.356 2.475 2.605	2.154 2.257 2.367 2.488 2.619	2.164 2.267 2.379 2.500 2.633	2.174 2.278 2.391 2.513 2.646	2.184 2.289 2.402 2.526 2.660	2.194 2.300 2.414 2.539 2.675	2.204 2.311 2.426 2.552 2.689	2.322 2.438 2.565	2.225 2.333 2.450 2.578 2.718	2.236 2.344 2.463 2.592 2.733	2.246 2.356 2.475 2.605 2.747	24 23 22 21 20°	10 11 12 13 14
70° 71 72 73 74	2.747 2.904 3.078 3.271 3.487	2.762 2.921 3.096 3.291 3.511	2.778 2.937 3.115 3.312 3.534	2.793 2.954 3.133 3.333 3.558	2.808 2.971 3.152 3.354 3.582	2.824 2.989 3.172 3.376 3.606	2.840 3.006 3.191 3.398 3.630	3.024 3.211 3.420	2.872 3.042 3.230 3.442 3.681	2,888 3,060 3,251 3,465 3,706	2.904 3.078 3.271 3.487 3.732	19 18 17 16 15	16 17 19 22 24
75 76 77 78 79	3.732 4.011 4.331 4.705 5.145	3.758 4.041 4.366 4.745 5.193	3.785 4.071 4.402 4.787 5.242	3.812 4.102 4.437 4.829 5.292	3.839 4.134 4.474 4.872 5.343	3.867 4.165 4.511 4.915 5.396	3.895 4.198 4.548 4.959 5.449	4 230	4.264 4.625 5.050	3.981 4.297 4.665 5.097 5.614	4.011 4.331 4.705 5.145 5.671	14 13 12 11 10°	28 32 37 44 53
80° 81 82 83 84	5.671 6.314 7.115 8.144 9.514	5.730 6.386 7.207 8.264 9.677	5.789 6.460 7.300 8.386 9.845	5.850 6.535 7.396 8.513 10.02	5.912 6.612 7.495 8.643 10.20	5.976 6.691 7.596 8.777 10,39		6 855 7.806 9.058	6.174 6.940 7.916 9.205 10.99	6.243 7.026 8.028 9.357 11.20	6.314 7.115 8.144 9.514 11.43	9 8 7 6 5	
85 86 87 88 89	11.43 14.30 19.08 28.64 57.29	11.66 14.67 19.74 30.14 63.66	11.91 15.06 20.45 31.82 71.62	12.16 15.46 21.20 33.69 81.85	12.43 15.89 22.02 35.80 95.49	12.71 16.35 22.90 38.19 114.6	23.86 40.92	13.30 17.34 24.90 44.07 191.0	13.62 17.89 26.03 47.74 286.5	13.95 18.46 27.27 52.08 573.0	14,30 19.08 28.64 57.29	4 3 2 1 0°	B 11078
90°	00											314	
		°.9 =(54')	°.8 (48′)	°.7 (42')	°.6 (36')	°.5 (30′)	°.4 (24')	°.3 (18′)	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	
	Maria N						HONGT	1	Vatu	ral C	otane	ente	

Natural Cotangents

NATURAL SECANTS AND COSECANTS

Natural Secants at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

Deg.	°.0 =(0')	°.1. (6')	°. 2 (12')	°.3 (18')	°.4 (24')	°.5 (30')	°.6 (36')	°.7 (42')	°.8 (48')	°.9 (54')	s, see pp.		Avg.
			FI.	Way:							1.0000	90°	
0° 1 2 3 4	1,0000 0002 0006 0014 0024	0000 0002 0007 0015 0026	0000 0002 0007 0016 0027	0000 0003 0008 0017 0028	0000 0003 0009 0018 0030	0000 0003 0010 0019 0031	0001 0004 0010 0020 0032	0001 0004 0011 0021 0034	0001 0005 0012 0022 0035	0001 0006 0013 0023 0037	0002 0006 0014 0024 1.0038	89 88 87 86 85	0 0 1 1
5	1.0038	0040	0041	0043	0045	0046	0048	0050	0051	0053	0055	84	2 2 2 3 3
6	0055	0057	0059	0061	0063	0065	0067	0069	0071	0073	0075	83	
7	0075	0077	0079	0082	0084	0086	0089	0091	0093	0096	0098	82	
8	0098	0101	0103	0106	0108	0111	0114	0116	0119	0122	0125	81	
9	0125	0127	0130	0133	0136	0139	0142	0145	0148	0151	1.0154	80°	
10°	1.0154	0157	0161	0164	0167	0170	0174	0177	0180	0184	0187	79	3
11	0187	0191	0194	0198	0201	0205	0209	0212	0216	0220	0223	78	4
12	0223	0227	0231	0235	0239	0243	0247	0251	0255	0259	0263	77	4
13	0263	0267	0271	0276	0280	0284	0288	0293	02 97	0302	0306	76	4
14	0306	0311	0315	0320	0324	0329	0334	0338	0343	0348	1.0353	75	5
15	1.0353	0358	0363	0367	0372	0377	0382	0388	0393	0398	0403	74	5 6 6 7
16	0403	0408	0413	0419	0424	0429	0435	0440	0446	0451	0457	73	
17	0457	0463	0468	0474	0480	0485	0491	0497	0503	0509	0515	72	
18	0515	0521	0527	0533	0539	0545	0551	0557	0564	0570	0576	71	
19	0576	0583	0589	0595	0602	0608	0615	0622	0628	0635	1.0642	70°	
20°	1.0642	0649	0655	0662	0669	0676	0683	0690	0697	0704	0711	69	7
21	0711	0719	0726	0733	0740	0748	0755	0763	0770	0778	0785	68	7
22	0785	0793	0801	0808	0816	0824	0832	0840	0848	0856	0864	67	8
23	0864	0872	0880	0888	0896	0904	0913	0921	0929	0938	0946	66	8
24	0946	0955	0963	0972	0981	0989	0998	1007	1016	1025	1.1034	65	9
25 26 27 28 29	1.1034 1126 1223 1326 1434	1043 1136 1233 1336 1445	1052 1145 1243 1347 1456	1061 1155 1253 1357 1467	1070 1164 1264 1368 1478	1079 1174 1274 1379 1490	1089 1184 1284 1390 1501	1098 1194 1294 1401 1512	1107 1203 1305 1412 1524	1117 1213 1315 1423 1535	1126 1223 1326 1434 1.1547	64 63 62 61 60 °	9 10 10 11
30°	1.1547	1559	1570	1582	1594	1606	1618	1630	1642	1654	1666	59	12
31	1666	1679	1691	1703	1716	1728	1741	1753	1766	1779	1792	58	13
32	1792	1805	1818	1831	1844	• 1857	1870	1883	1897	1910	1924	57	13
33	1924	1937	1951	1964	1978	1992	2006	2020	2034	2048	2062	56	14
34	2062	2076	2091	2105	2120	2134	2149	2163	2178	2193	1.2208	55	15
35	1.2208	2223	2238	2253	2268	2283	2299	2314	2329	2345	2361	54	15
36	2361	2376	2392	2408	2424	2440	2456	2472	2489	2505	2521	53	16
37	2521	2538	2554	2571	2588	2605	2622	2639	2656	2673	2690	52	17
38	2690	2708	2725	2742	2760	2778	2796	2813	2831	2849	2868	51	18
39	2868	2886	2904	2923	2941	2960	2978	2997	3016	3035	1.3054	50°	19
40°	1.3054	3073	3093	3112	3131	3151	3171	3190	3210	3230	3250	49	20
41	3250	3270	3291	3311	3331	3352	3373	3393	3414	3435	3456	48	21
42	3456	3478	3499	3520	3542	3563	3585	3607	3629	3651	3673	47	22
43	3673	3696	3718	3741	3763	3786	3809	3832	3855	3878	3902	46	23
44	3902	3925	3949	3972	3996	4020	4044	4069	4093	4118	1.4142	45°	24
45°	1.4142				Hall.							4.5	
		°.9 =(54')	°.8 (48')	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°.3 (18')	°.2. (12')	°1 (6')	°.0 (0')	Deg.	

NATURAL SECANTS AND COSECANTS (continued)
Natural Secants at intervals of 0°.1, or 6'. (For 10' intervals, see pp. 52-56)

	urai	Bocan	us at	Inter	vais	10.1, 0		(FOF 1	.O inu	ervais	see pp	. 52-	00)
Deg.	°.0 =(0')	°.1 (6')	°.2 (12')	°.3 (18')	°.4 (24')	°.5 (30')	°.6 (36')	°.7 (42')	°.8 (48')	°.9 (54')			Avg. diff.
		P.S. 48				30				Tales	1.4142	45°	
45° 46 47 48 49	1.4142 4396 4663 4945 5243	4422 4690 4974	4448 4718 5003	4217 4474 4746 5032 5335	4242 4501 4774 5062 5366	4267 4527 4802 5092 5398	4293 4554 4830 5121 5429	4318 4581 4859 5151 5461	4344 4608 4887 5182 5493	4370 4635 4916 5212 5525	4396 4663 4945 5243 1.5557	44 43 42 41 40°	25 27 28 30 31
50° 51 52 53 54	1.5557 5890 6243 6616 7013	5925 6279	6316	5655 5994 6353 6733 7137	5688 6029 6390 6772 7179	5721 6064 6427 6812 7221	5755 6099 6464 6852 7263	5788 6135 6502 6892 7305	5822 6171 6540 6932 7348	5856 6207 6578 6972 7391	5890 6243 6616 7013 1.7434	39 38 37 36 35	33 35 37 40 42
55 56 57 58 59	1.7434 7883 8361 8871 1.9416	7929 8410 8924	7976 8460 8977	7566 8023 8510 9031 9587	7610 8070 8561 9084 9645	7655 8118 8612 9139 9703	7700 8166 8663 9194 9762	7745 8214 8714 9249 9821	7791 8263 8766 9304 9880	7837 8312 8818 9360 9940	7883 8361 8871 1.9416 2.0000	34 33 32 31 30°	45 48 51 54 58
60° 61 62 63 64	2.000 2.063 2.130 2.203 2.281	2.069	2.076 2.144 2.218	2.151 2.226	2.025 2.089 2.158 2.233 2.314	2.031 2.096 2.166 2.241 2.323	2.037 2.103 2.173 2.249 2.331	2.043 2.109 2.180 2.257 2.340	2.050 2.116 2.188 2.265 2.349	2.056 2.123 2.195 2.273 2.357	2.063 2.130 2.203 2.281 2.366	29 28 27 26 25	6 7 7 8 8
65 66 67 68 69	2.366 2.459 2.559 2.669 2.790	2.468 2.570 2.681	2.478 2.581 2.693	2.393 2.488 2.591 2.705 2.829	2.402 2.498 2.602 2.716 2.842	2.411 2.508 2.613 2.729 2.855	2.421 2.518 2.624 2.741 2.869	2.430 2.528 2.635 2.753 2.882	2.439 2.538 2.647 2.765 2.896	2.449 2.549 2.658 2.778 2.910	2.459 2.559 2.669 2.790 2.924	24 23 22 21 20°	9 10 11 12 13
70° 71 72 73 74	2.924 3.072 3.236 3.420 3.628	3.087 3.254 3.440	3.103 3.271 3.460	3.119 3.289 3.480	2.981 3.135 3.307 3.500 3.719	2.996 3.152 3.326 3.521 3.742	3.011 3.168 3.344 3.542 3.766	3.026 3.185 3.363 3.563 3.790	3.041 3.202 3.382 3.584 3.814	3.056 3.219 3.401 3.606 3.839	3.072 3.236 3.420 3.628 3.864	19 18 17 16 15	15 16 18 21 24
75 76 77 78 79	3.864 4.134 4.445 4.810 5.241	4.163 4.479 4.850	4.192 4.514 4.890	4.222	3.967 4.253 4.584 4.973 5.436	3.994 4.284 4.620 5.016 5.487	4.021 4.315 4.657 5.059 5.540	4.049 4.347 4.694 5.103 5.593	4.077 4.379 4.732 5.148 5.647	4.105 4.412 4.771 5.194 5.702	4.134 4.445 4.810 5.241 5.759	14 13 12 11 10°	27 31 36 43 52
80° 81 82 83 84	5.759 6.392 7.185 8.206 9.567	6.464 7.276 8.324	6.537 7.368 8.446	6.611 7.463	5.996 6.687 7.561 8.700 10.25	6.059 6.765 7.661 8.834 10.43	6.123 6.845 7.764 8.971 10.63	6.188 6.927 7.870 9.113 10.83	6.255 7.011 7.979 9.259 11.03	6.323 7.097 8.091 9.411 11.25	6.392 7.185 8.206 9.567 11.47	9 8 7 6 5	
85 86 87 88 89	11.47 14.34 19.11 28.65 57.30	14.70 19.77 30.16	15.09 20.47 31.84	12.20 15.50 21.23 33.71 81.85	12.47 15.93° 22,04 35.81 95.49	12.75 16.38 22.93 38.20 114.6	13.03 16.86 23.88 40.93 143.2	13.34 17.37 24.92 44.08 191.0	17.91 26.05 47.75	13.99 18.49 27.29 52.09 573.0	14.34 19.11 28.65 57.30	4 3 2 1 0°	
90°	00				234								
		°.9 =(54')	°.8 (48')	°.7 (42')	°.6 (36')	°.5 (30')	°.4 (24')	°.3 (18')	°.2 (12')	°.1 (6')	°.0 (0')	Deg.	
	100		Total Control		-					1	~		

Natural Cosecants

TRIGONOMETRIC FUNCTIONS (at intervals of 10')

Annex -10 in columns marked *. (For 0.°1 intervals, see pp. 46-51) Ra-De-Sines Cosines Tangents Cotangents grees dians Nat. Log. * Nat. Log. * Nat. Log. * Nat. Log. 0° 00 0.0000 0000 1.0000 0.0000 .0000 m 1.5708 90° 00' 10 0.0029 .0029 7.4637 .7648 1.0000 .0000 .0029 7.4637 2,5363 343.77 1.5679 50 20 0 0058 .0058 1.5650 1.5621 1.5592 1.0000 .0000 .0058 .7648 171.89 2352 40 30 0 0087 .0087 9408 1.0000 .0000 .0087 9409 114.59 .0591 30 20 40 0.0116 .0116 8.0658 0.9999 .0000 .0116 8.0658 85.940 1.9342 50 0.0145 .0145 .1627 .9999 1.5563 .0000 .0145 .1627 68.750 .8373 10 1º 00 0.0175 .0175 8.2419 .9998 9.9999 57.290 890 .0175 8.2419 1.7581 1.5533 00 10 0.0204 .0204 .3088 9998 .9999 .0204 .3089 49.104 .6911 1.5504 50 20 30 .3668 0.0233 .0233 .9997 3669 .6331 .9999 .023342.964 1.5475 40 0.0262 .0262 .4179 9997 .9999 .0262 1.5446 .4181 38.188 .5819 30 40 .0291 0.0291 .4637 .9996 9998 .0291 34.368 4638 .5362 1.5417 20 50 0.0320 .0320 .5050 .9995 .9998 .5053 .0320 31.242 .4947 1.5388 10 00 .0349 8.5428 .9994 9.9997 0.0349 .0349 8.5431 1.5359 28.636 1.4569 88° 00 10 .0378 .5776 0.0378 .9993 .9997 .0378 .5779 26.432 24.542 .4221 1.5330 50 20 0.0407 .0407 .6097 .9992 .9996 .0407 .6101 3899 40 30 0.0436 .0436 .6397 .9990 .9996 .0437 22.904 1.5272 30 20 .6401 .3599 40 0.0465 21,470 .0465 .6677 .9989 .9995 .0466 .6682 .3318 1.5243 50 0.0495 .0494 .6940 .9988 .9995 .0495 .6945 20,206 1.5213 .3055 10 3º 00' 0.0524 .0523 8.7188 9,9994 .9986 .0524 8.7194 19.081 1.2806 1.5184 87° 00 10 0.0553 .0552 .7423 .9985 .9993 .0553 .7429 .7652 .2571 18.075 1.5155 50 .7645 .7857 20 0.0582 .0581 .9983 .9993 .0582 2348 1.5126 17.169 40 30 0610 0.0611 .9981 .9992 .0612 .7865 .8067 1.5097 1.5068 16.350 .2135 30 40 0.0640 .0640 .8059 .9980 .9991 15.605 .1933 20 50 .0669 1.5039 0.0669 .8251 .9978 .9990 14.924 .1739 .0670 .8261 10 1.1554 .1376 .1205 00 0.0698 .0698 8.8436 .9976 9.9989 .0699 8.8446 14.301 13.727 1.5010 86° 00 .0727 .8613 .9974 .8624 10 0.0727 .9989 .0729 1.4981 50 0.0756 .0756 .8783 .9971 20 .9988 .0758 .8795 13.197 1.4952 40 30 0.0785 .0785 8946 .9969 .9987 .0787 .8960 .1040 1.4923 12.706 30 40 0.0814 .0814 9104 .9967 .9986 .0816 .9118 12.251 1.4893 20 .0882 50 .9256 .9964 .0843 0.0844 .9985 .0846 .9272 11.826 .0728 1.4864 10 9.9983 5° 00' 8.9403 .9962 0.0873 .0872 .0875 8,9420 11.430 1.0580 1,4835 85° 00 10 20 0.0902 .0901 .9545 .9959 9982 11.059 1.4806 .0904 .9563 .0437 50 .0929 9682 9981 .0934 .9701 .0299 1.4777 40 30 0.0960 .0958 .9816 .9954 9980 .0963 .9836 10.385 .0164 1,4748 30 20 40 .0987 9945 .9951 0034 0.0989 .9979 .0992 .9966 10.078 1.4719 .9948 .9977 50 .1016 9.0070 0.1018 .1022 9,0093 9.7882 0.9907 1,4690 0.1047 .9945 1.4661 00 .1045 9.0192 9,9976 .1051 9.0216 9.5144 0.9784 840 00 .1080 10 0.1076 .1074 .0311 .9942 .9975 .0336 9.2553 9664 1.4632 50 0.1105 .1103 .0426 .9939 .9973 .1110 9.0098 .9547 20 1.4603 40 30 0.1134 .9972 .9971 .1132 .0539 .9936 .1139 .0567 8.7769 8.5555 .9433 1.4574 30 .0648 .9932 40 .1161 .1169 .9322 1.4544 20 .0755 50 0.1193 .1190 .9929 .9969 .1198 .0786 8.3450 .9214 1.4515 10 .1219 00 0.1222 9.0859 .9925 9,9968 .1228 9.0891 8,1443 0.9109 1,4486 83° 001 .1248 .0961 .9922 .9966 0.1251 .1257 .0995 7.9530 7.7704 1.4457 10 .9005 50 0.1280 .1060 9918 .9964 .1287 .1096 1.4428 40 20 .8904 .1305 .1157 .9914 .1194 30 0.1309 .9963 .1317 7.5958 .8806 1,4399 30 0.1338 .1334 .1252 .9911 .9961 .1291 20 .1346 7.4287 40 .8709 1.4370 50 0.1367 .1363 .1345 .9907 9959 .1376 .1385 7.2687 .8615 1.4341 10 00' 0.1396 .1392 9.1436 .9903 9.9958 .1405 9.1478 7.1154 0.8522 1.4312 82° 00 .9956 .1421 .1525 .9899 1.4283 10 0.1425 .1435 .1569 6.9682 .8431 50 .1612 0.1454 .1658 6.8269 1.4254 .1449 .9894 .9954 .1465 .8342 40 20 30 0.1484 0.1513 .1478 .1697 .9890 .9952 .1495 .1745 6.6912 .8255 1.4224 30 .1781 .9886 9950 .1524 .1831 6.5606 1.4195 20 40 8169 0.1542 50 .1536 .1863 .9881 .9948 .1554 .1915 6,4348 .8085 1.4166 10 90 00 .1564 9,1943 .9877 9,9946 .1584 9.1997 0.8003 1.4137 81º 00' 0.1571 6.3138 Nat. Log. * Nat. Log. * Nat. Log. * Nat. Log. Ra-De-Sines Cosines Cotangents Tangents

dians

grees

TRIGONOMETRIC FUNCTIONS (continued)
Annex -10 in columns marked*. (For 0.°1 intervals, see pp. 46-51)

De- grees	Ra- dians	Sines	Cosines	Tangents	Cotangents	Control of the Control
9° 00′ 10 20 30 40 50	0.1571 0.1600 0.1629 0.1658 0.1687 0.1716	Nat. Log.* .1564 9.1943 .1593 .2022 .1622 .2176 .1659 .2176 .1679 .2251 .1708 .2324	Nat. Log.* .9877 9.9946 .9872 .9944 .9868 .9942 .9863 .9940 .9858 .9938 .9853 .9936	Nat. Log.* .1584 9.1997 .1614 .2078 .1644 .2158 .1673 .2236 .1703 .2313 .1733 .2389	Nat. Log. 6.3138 0.8003 6.1970 .7922 6.0844 .7842 5.9758 .7764 5.8708 .7687 5.7694 .7611	1.4137 1.4108 1.4079 1.4050 1.4021 1.3992 10
10° 00′ 10 20 30 40 50	0.1745 0.1774 0.1804 0.1833 0.1862 0.1891	.1736 9.2397 .1765 .2468 .1794 .2538 .1822 .2606 .1851 .2674 .1880 .2740	.9848 9.9934 .9843 .9931 .9838 .9929 .9833 .9927 .9827 .9924 .9822 .9922	.1763 9.2463 .1793 .2536 .1823 .2609 .1853 .2680 .1883 .2750 .1914 .2819	5.6713 0.7537 5.5764 .7464 5.4845 .7391 5.3955 .7320 5.3093 .7250 5.2257 .7181	1.3963 80° 00′ 1.3934 50 1.3904 40 1.3875 30 1.3846 20 1.3817 10
11° 00′ 10 20 30 40 50 12° 00′	0.1920 0.1949 0.1978 0.2007 0.2036 0.2065 0.2094	.1908 9.2806 .1937 .2870 .1965 .2934 .1994 .2997 .2022 .3058 .2051 .3119	.9816 9.9919 .9811 .9917 .9805 .9914 .9799 .9912 .9793 .9909 .9787 .9907 .9781 9.9904	.1944 9.2887 .1974 .2953 .2004 .3020 .2035 .3085 .2065 .3149 .2095 .3212	5.1446 0.7113 5.0658 .7047 4.9894 .6980 4.9152 .6915 4.8430 .6851 4.7729 .6788	1.3788 79° 00′ 1.3759 50 1.3730 40 1.3701 30 1.3672 20 1.3643 10 1,3614 78° 00′
10 20 30 40 50	0.2094 0.2123 0.2153 0.2182 0.2211 0.2240 0.2269	.2079 9.3179 .2108 .3238 .2136 .3296 .2164 .3353 .2193 .3410 .2221 .3466 .2250 9.3521	9781 9.9904 9775 9901 9769 9899 9763 9896 9757 9893 9750 9890 9744 9.9887	.2126 9.3275 .2156 3336 .2186 3397 .2217 3458 .2247 3517 .2278 3576 .2309 9.3634	4.7046 0.6725 4.6382 .6664 4.5736 .6603 4.5107 .6542 4.4494 .6483 4.3897 .6424 4.3315 0.6366	1,3614 78° 00′ 1,3584 50 1,3555 40 1,3526 30 1,3497 20 1,3468 10 1,3439 77° 00′
10 20 30 40 50 14° 00'	0.2298 0.2327 0.2356 0.2385 0.2414 0.2443	.2278 .3575 .2306 .3629 .2334 .3682 .2363 .3734 .2391 .3786 .2419 9.3837	.9737 .9884 .9730 .9881 .9724 .9878 .9717 .9875 .9710 .9872 .9703 9,9869	2339 3,691 2370 3748 2401 3804 .2432 3859 .2462 3914 .2493 9,3968	4.2747 .6309 4.2747 .6309 4.2193 .6252 4.1653 .6196 4.1126 .6141 4.0611 .6086 4.0108 0.6032	1.3410 50 1.3381 40 1.3352 30 1.3323 20 1.3294 10 1.3265 76° 00′
10 20 30 40 50 15° 00′	0.2473 0.2502 0.2531 0.2560 0.2589 0.2618	2447 3887 2476 3937 .2504 3986 .2532 .4035 .2560 .4083 .2588 9.4130	9696 9866 9689 9863 9681 9859 9674 9856 9667 9853 9659 9,9849	2524 .4021 .2555 .4074 .2586 .4127 .2617 .4178 .2648 .4230 .2679 9.4281	3.9617 .5979 3.9136 .5926 3.8667 .5873 3.8208 .5822 3.7760 .5770 3.7321 0.5719	1.3235 1.3235 1.3206 40 1.3177 1.3148 1.3119 1.3090
10 20 30 40 50 16° 00′	0.2647 0.2676 0.2705 0.2734 0.2763 0.2793	.2616 .4177 .2644 .4223 .2672 .4269 .2700 .4314 .2728 .4359 .2756 9.4403	.9652 .9846 .9644 .9843 .9636 .9839 .9628 .9836 .9621 .9832 .9613 9.9828	.2711 .4331 .2742 .4381 .2773 .4430 .2805 .4479 .2836 .4527 .2867 9,4575	3.6891 .5669 3.6470 .5619 3.6059 .5570 3.5656 .5521 3.5261 .5473 3.4874 0.5425	1.3061 50 1.3032 40 1.3003 30 1.2974 20 1.2945 10 1.2915 74° 00′
10 20 30 40 50 17° 00'	0.2822 0.2851 0.2880 0.2909 0.2938 0.2967	.2784 .4447 .2812 .4491 .2840 .4533 .2868 .4576 .2896 .4618 .2924 9.4659	.9605 .9825 .9596 .9821 .9588 .9817 .9580 .9814 .9572 .9810 .9563 9.9806	.2899 .4622 .2931 .4669 .2962 .4716 .2994 .4762 .3026 .4808 .3057 9,4853	3.4495 5378 3.4124 5331 3.3759 5284 3.3402 5238 3.3052 5192 3.2709 0.5147	1.2886 50 1.2857 40 1.2828 30 1.2799 20 1.2770 10 1.2741 73° 00′
10 20 30 40 50 18° 00′	0.2996 0.3025 0.3054 0.3083 0.3113 0.3142	.2952 .4700 .2979 .4741 .3007 .4781 .3035 .4821 .3062 .4861 .3090 9.4900	.9555 .9802 .9546 .9798 .9537 .9794 .9528 .9790 .9520 .9786 .9511 9.9782	.3089 .4898 .3121 .4943 .3153 .4987 .3185 .5031 .3217 .5075 .3249 9.5118	3.2371 .5102 3.2041 .5057 3.1716 .5013 3.1397 .4969 3.1084 .4925 3.0777 0.4882	1.2712 50 1.2683 40 1.2654 30 1.2625 20 1.2595 10 1.2566 72° 00′
		Nat. Log.*	Nat. Log.*	Nat. Log.* Cotangents	Nat. Log. Tangents	Ra- De- dians grees

De-

grees

18° 00'

10 20

30

40

50

00

20

30

40

TRIGONOMETRIC FUNCTIONS

(continued) (For 0.°1 intervals, see pp. 46-51) Annex -10 in columns marked *. Ra-Sines Cosines Tangents Cotangents dians Nat. Nat. Log. * Nat. Log. * Log. * Nat. Log. 9,4900 .9511 9.9782 9.5118 1.2566 720 00' 0.3142 3090 .3249 3.0777 0.4882 3281 0.3171 3118 .4939 .9502 .9778 5161 3.0475 .4839 50 0.3200 3145 4977 .9492 .9774 3314 .5203 3.0178 .4797 1.4508 40 0.3229 3173 5015 .9483 .9770 3346 5245 2.9887 .4755 1.2479 30 5052 .9474 .5287 20 0.3258 .9765 .3378 2,9600 .4713 1.2450 .3201 0.3287 .3228 .5090 .9465 .9761 .3411 .5329 2.9319 .4671 1.2421 10 0.3316 3256 9.5126 .9455 9.9757 .3443 9.5370 2,9042 0,4630 1.2392 00 .4589 .4549 .4509 .5411 .5451 .5491 .9446 1.2363 50 3283 .5163 .9752 .3476 2.8770 0.3345 .5199 .9436 .9748 .3508 1.2334 40 0.3374 .3311 2.8502 30 20 .3541 0.3403 3338 5235 .9426 .9743 2.8239 9417 3365 5270 .9739 5531 2,7980 .4469 1.2275 0.3462 3393 5306 .9407 .9734 .3607 5571 2.7725 4429 1 2246 10 0.3491 9.5341 .9397 9.9730 3640 9.5611 2.7475 2.7228 0.4389 1.2217 70° 00 3420 .5650 .5689 0.3520 3448 .5375 .5409 .9387 .9725 3673 .4350 1,2188 50 0.3549 0.3578 .9377 2.6985 .4311 1,2159 3475 .9721 .3706 40 .3502 .5443 .9367 .9716 .3739 .5727 2.6746 .4273 1.2130 30 .4234 .5477 .5510 .9356 .9711 .5766 .5804 1.2101 20 0.3607 .3529 .3772 2.6511 2.6279 0.3636 3557 .9346 .9706 .3805 .4196 10 9.5543 9.9702 3839 9.5842 0.4158 1.2043 69° 00 0.3665 3584 .9336 2.6051 .5576 5879 2.5826 .4121 1.2014 0.3694 .3611 .9325 .9697 3872 50 5917 2.5605 .3638 0.3723 0.3752 .3906 40 .9315 9692 .4083 1.1985 .3665 .5641 .9304 .9293 .9687 .3939 5954 2.5386 .4046 1.1956 30 2.5172 0.3782 3692 5673 9682 3973 5991 4009 1.1926 20 .9677 5704 .9283 2,4960 1.1897 0.3811 3719 4006 .6028 .3972 10 9.5736 9.9672 .4040 .9272 0.3936 004 0.3840 3746 9.6064 2.4751 1.1868 680 0.3869 3773 .5767 .9261 .9667 .4074 .6100 2.4545 3900 1.1839 50 0.3898 .5798 .9250 .9661 .4108 2.4342 3864 3800 .6136 1.1810 40 0.3927 0.3956 .3828 1.1781 3827 5828 .9239 .9656 .4142 .6172 .6208 2,4142 30 20 5859 2.3945 3854 .9228 .9651 3792 1,1752

50 20° 00 10 20 30 40 50 21° 00' 10 20 30 40 50 220 00' 10 20 30 40 0.3985 5889 50 3881 .9216 .9646 .4210 .6243 2.3750 .3757 1.1723 10 230 00 9,5919 .9205 9.9640 2.3559 0.3721 1.1694 67° 004 0.4014 3907 .4245 9.6279 50 10 0.4043 0.4072 3934 .5948 .5978 .9194 .9635 .4279 .6314 2.3369 .3686 1.1665 20 3961 9182 .9629 4314 .6348 2.3183 3652 1.1636 40 3617 30 20 30 0.4102 .3987 .6007 .9171 .9624 .4348 .6383 2.2998 1.1606 0.4131 .6036 .9159 .9618 .4383 .6417 2.2817 .3583 1.1577 30 .4014 1.1548 10 50 0.4160 .6065 .9147 .9613 .4417 .6452 2.2637 .4041 1.1519 00 9,9607 .4452 0.3514 240 004 0.4189 4067 9,6093 .9135 9,6486 2,2460 66° 50 .9602 .6520 2.2286 .3480 1.1490 10 0,4218 .4094 .6121 .9124 .4487 3447 20 0.4247 .4120 .6149 .9112 .9596 .4522 .6553 2.2113 1.1461 40 0.4276 .9590 2.1943 2.1775 3413 30 30 .4147 .6177 .9100 1.1432 0.4305 9088 .4592 .6620 3380 1.1403 20 40 .6205 .4173 .4100 .9579 .6654 2.1609 50 0.4334 .6232 .9075 .4628 .3346 1.1374 10 9.9573 .9567 .9561 0.4363 .9063 1.1345 65° 00 25° 00' 4226 9.6259 .4663 9.6687 2.1445 0.3313 0.4392 9051 .6720 2.1283 2.1123 3280 1.1316 50 .4253 .6286 .4699 10 0.4422 .4279 .6313 9038 .4734 .6752 .3248 1.1286 40 20 9555 .6785 .3215 0.4451 2.0965 1.1257 30 30 .4305 .6340 .9026 .4770 0.4480 0.4509 .9549 .9543 .3183 1.1228 40 .9013 4806 .6817 2.0809 20 .6366 .4331 50 .4358 .6392 .9001 .4841 .6850 2.0655 .3150 1.1199 10 64° 260 00 0.4538 .4384 9.6418 .8988 9.9537 .4877 9.6882 2.0503 0.3118 1.1170 004 0.4567 0.4596 .4410 .8975 .9530 .4913 .6914 2.0353 .3086 1.1141 50 40 30 20 10 .6444 .3054 9524 .4950 .6946 20 30 .4436 .6470 .8962 2.0204 1.1112 0.4625 .6977 .4462 .6495 8949 .9518 4986 2.0057 3023 1.1083 7009 1.1054 40 50 .8936 9512 .5022 1.9912 2991 0.4683 .9505 .5059 .7040 .2960 1.1025 10 .4514 .6546 .8923 1.9768 0.4712 63° 00' 27° 00 .8910 9,9499 5095 9.7072 1.9626 0.2928 1.0996 .4540 9.6570 Nat. Log. 4 Nat. Log. Nat. Log. Nat. Log. * De-Ra-Cosines Sines Cotangents Tangents

dians

grees

TRIGONOMETRIC FUNCTIONS (continued)

Annex -10 in columns marked*. (For 0°.1 intervals, see pp. 46-51)

De- grees	Ra- dians	Sines	Cosines	Tangents	Cotangents	
27° 00′ 10 20 30 40 50	0.4712 0.4741 0.4771 0.4800 0.4829 0.4858	Nat. Log. .4540 9.659 .4592 .662 .4617 .664 .4643 .666 .4669 .669	8910 9.9499 8897 .9492 8884 .9486 8870 .9479 8857 .9473 8884 .9466	Nat. Log.* .5095 9.7072 .5132 .7103 .5169 .7134 .5206 .7165 .5243 .7196 .5280 .7226	Nat. Log. 1.9626 0.2928 1.9486 .2897 1.9347 .2866 1.9210 .2835 1.9074 .2804 1.8940 .2774	1.0996 63° 00′ 1.0966 50 1.0937 40 1.0908 30 1.0879 20 1.0850 10
28° 00′ 10 20 30 40 50	0.4887 0.4916 0.4945 0.4974 0.5003 0.5032	.4695 9.671 .4720 .674 .4746 .676 .4772 .678 .4797 .6810 .4823 .6832	.8816 .9453 .8802 .9446 .8788 .9439 .8774 .9432 .8760 .9425	.5317 9.7257 .5354 .7287 .5392 .7317 .5430 .7348 .5467 .7378 .5505 .7408	1.8807 0.2743 1.8676 .2713 1.8546 .2683 1.8418 .2652 1.8291 .2622 1.8165 .2592	1.0821 62° 00′ 1.0792 50 1.0763 40 1.0734 30 1.0705 20 1.0676 10
29° 00′ 10 20 30 40 50	0.5061 0.5091 0.5120 0.5149 0.5178 0.5207	.4848 9.685 .4874 .6870 .4899 .690 .4924 .692 .4950 .6940 .4975 .6968	.8732 .9411 .8718 .9404 .8704 .9397 .8689 .9390 .8675 .9383	.5543 9.7438 .5581 .7467 .5619 .7497 .5658 .7526 .5696 .7556 .5735 .7585	1.8040 0.2562 1.7917 .2533 1.7796 .2503 1.7675 .2474 1.7556 .2444 1.7437 .2415	1.0647 61° 00′ 1.0617 50 1.0588 40 1.0559 30 1.0530 20 1.0501 10
30° 00′ 10 20 30 40 50	0.5236 0.5265 0.5294 0.5323 0.5352 0.5381	.5000 9.6990 .5025 .7012 .5050 .7033 .5075 .7055 .5100 .7076 .5125 .7097	.8646 .9368 .8631 .9361 .8616 .9353 .8601 .9346 .8587 .9338	.5774 9.7614 .5812 .7644 .5851 .7673 .5890 .7701 .5930 .7730 .5969 .7759	1.7321 0.2386 1.7205 .2356 1.7090 .2327 1.6977 .2299 1.6864 .2270 1.6753 .2241	1.0472 60° 00′ 1.0443 50 1.0414 40 1.0385 30 1.0356 20 1.0327 10
31° 00′ 10 20 30 40 50	0.5411 0.5440 0.5469 0.5498 0.5527 0.5556	5150 9.7118 5175 .7139 5200 .7160 .5225 .7181 .5250 .7201 .5275 .7222	.8496 .9292	.6009 9.7788 .6048 .7816 .6088 .7845 .6128 .7873 .6168 .7902 .6208 .7930	1.6643 0.2212 1.6534 .2184 1.6426 .2155 1.6319 .2127 1.6212 .2098 1.6107 .2070	1.0297 59° 00′ 1.0268 50 1.0239 40 1.0210 30 1.0181 20 1.0152 10
32° 00′ 10 20 30 40 50	0.5585 0.5614 0.5643 0.5672 0.5701 0.5730	.5299 9.7242 .5324 .7262 .5348 .7282 .5373 .7302 .5398 .7322 .5422 .7342	.8480 9.9284 .8465 .9276 .8450 .9268 .8434 .9260 .8418 .9252 .8403 .9244	.6249 9.7958 .6289 .7986 .6330 .8014 .6371 .8042 .6412 .8070 .6453 .8097	1.6003 0.2042 1.5900 .2014 1.5798 .1986 1.5697 .1958 1.5597 .1930 1.5497 .1903	1.0123 58° 00′ 1.0094 50 1.0065 40 1.0036 30 1.0007 20 0.9977 10
33° 00′ 10 20 30 40 50	0.5760 0.5789 0.5818 0.5847 0.5876 0.5905	.5446 9.7361 .5471 .7380 .5495 .7400 .5519 .7419 .5544 .7438 .5568 .7457	.8387 9.9236 .8371 .9228 .8355 .9219 .8339 .9211 .8323 .9203 .8307 .9194	.6494 9.8125 .6536 .8153 .6577 .8180 .6619 .8208 .6661 .8235 .6703 .8263	1.5399 0.1875 1.5301 .1847 1.5204 .1820 1.5108 .1792 1.5013 .1765 1.4919 .1737	0.9948 57° 00′ 0.9919 50 0.9890 40 0.9861 30 0.9832 20 0.9803 10
34° 00′ 10 20 30 40 50	0.5934 0.5963 0.5992 0.6021 0.6050 0.6080	.5592 9.7476 .5616 .7494 .5640 .7513 .5664 .7531 .5688 .7550 .5712 .7568	.8290 9.9186 .8274 .9177 .8258 .9169 .8241 .9160 .8225 .9151 .8208 .9142	.6745 9.8290 .6787 .8317 .6830 .8344 .6873 .8371 .6916 .8398 .6959 .8425	1.4826 0.1710 1.4733 .1683 1.4641 .1656 1.4550 .1629 1.4460 .1602 1.4370 .1575	0 9774 56° 00′ 0.9745 50 0.9716 40 0.9687 30 0.9657 20 0.9628 10
35° 00′ 10 20 30 40 50	0.6109 0.6138 0.6167 0.6196 0.6225 0.6254	.5736 9.7586 .5760 .7604 .5783 .7622 .5807 .7640 .5831 .7657 .5854 .7675	.8192 9.9134 .8175 .9125 .8158 .9116 .8141 .9107 .8124 .9098 .8107 .9089	.7002 9.8452 .7046 .8479 .7089 .8506 .7133 .8533 .7177 .8559 .7221 .8586	1.4281 0.1548 1.4193 .1521 1.4106 .1494 1.4019 .1467 1.3934 .1441 1.3848 .1414	0.9599 55° 00′ 0.9570 50 0.9541 40 0.9512 30 0.9483 20 0.9454 10
36° 00′	0.6283	.5878 9.7692 Nat. Log. 1	.8090 9.9080 Nat. Log. *	.7265 9.8613 Nat. Log.*	1.3764 0.1387 Nat. Log.	0.9425 54° 00′
	NAME OF THE PERSON OF THE PERS	Cosines	Sines	Cotangents	Tangents	Ra- dians grees

TRIGONOMETRIC FUNCTIONS (continued)
Annex -10 in columns marked*. (For 0°.1 intervals, see pp. 46-51)

De- grees	Ra- dians	Sines	Cosines	Tangents	Cotangents		
36° 00′ 10 20 30 40 50	0.6283 0.6312 0.6341 0.6370 0.6400 0.6429	Nat. Log.* .5878 9.7692 .5901 .7710 .5925 .7727 .5948 .7744 .5972 .7761 .5995 .7778	Nat. Log.* .8090 9.9080 .8073 .9070 .8056 .9061 .8039 .9052 .8021 .9042 .8004 .9033	Nat. Log.* .7265 9.8613 .7310 .8639 .7355 .8666 .7400 .8692 .7445 .8718 .7490 .8745	Nat. Log. 1.3764 0.1387 1.3680 .1361 1.3597 .1334 1.3514 .1308 1.3432 .1282 1.3351 .1255	0.9425 0.9396 0.9367 0.9338 0.9308 0.9279	54° 00′ 50 40 30 20 10
37° 00′ 10 20 30 40 50 38° 00′	0.6458 0.6487 0.6516 0.6545 0.6574 0.6603 0.6632	.6018 9.7795 .6041 .7811 .6065 .7828 .6088 .7844 .6111 .7861 .6134 .7877	.7986 9.9023 .7969 .9014 .7951 .9004 .7934 .8995 .7916 .8985 .7898 .8975	.7536 9.8771 .7581 .8797 .7627 .8824 .7673 .8850 .7720 .8876 .7766 .8902	1.3270 0.1229 1.3190 .1203 1.3111 .1176 1.3032 .1150 1.2954 .1124 1.2876 .1098	0.9250 0.9221 0.9192 0.9163 0.9134 0.9105	53° 00′ 50 40 30 20 10
30 40 50 39° 00'	0.6632 0.6661 0.6690 0.6720 0.6749 0.6778	.6157 9.7893 .6180 .7910 .6202 .7926 .6225 .7941 .6248 .7957 .6271 .7973 .6293 9.7989	.7880 9.8965 .7862 .8955 .7844 .8945 .7826 .8935 .7808 .8925 .7790 .8915 .7771 9.8905	.7813 9.8928 .7860 .8954 .7907 .8980 .7954 .9006 .8002 .9032 .8050 .9058	1.2799 0.1072 1.2723 .1046 1.2647 .1020 1.2572 .0994 1.2497 .0968 1.2423 .0942 1.2349 0.0916	0.9076 0.9047 0.9018 0.8988 0.8959 0.8930 0.8901	52° 00′ 50 40 30 20 10 51° 00′
10 20 30 40 50 40° 00′	0.6836 0.6865 0.6894 0.6923 0.6952 0.6981	.6316 .8004 .6338 .8020 .6361 .8035 .6383 .8050 .6406 .8066	.7753 .8895 .7735 .8884 .7716 .8874 .7698 .8864 .7679 .8853	.8146 .9110 .8195 .9135 .8243 .9161 .8292 .9187 .8342 .9212 .8391 9.9238	1.2276 .0890 1.2203 .0865 1.2131 .0839 1.2059 .0813 1.1988 .0788	0.8872 0.8843 0.8814 0.8785 0.8756 0.8727	50 40 30 20 10 50° 00′
10 20 30 40 50 41° 00′	0.7010 0.7039 0.7069 0.7098 0.7127 0.7156	.6450 .8096 .6472 .8111 .6494 .8125 .6517 .8140 .6539 .8155 .6561 9.8169	.7642 .8832 .7623 .8821 .7604 .8810 .7585 .8800 .7566 .8789 .7547 9.8778	.8441 .9264 .8491 .9289 .8541 .9315 .8591 .9341 .8642 .9366 .8693 9.9392	1.1847 .0736 1.1778 .0711 1.1708 .0685 1.1640 .0659 1.1571 .0634 1.1504 0.0608	0.8698 0.8668 0.8639 0.8610 0.8581 0.8552	50 40 30 20 10 49° 00′
10 20 30 40 50 42° 00′ 10	0.7185 0.7214 0.7243 0.7272 0.7301 0.7330 0.7359	.6583 .8184 .6604 .8198 .6626 .8213 .6648 .8227 .6670 .8241 .6691 9.8255	.7547 9.8778 .7528 .8767 .7509 .8756 .7490 .8745 .7470 .8733 .7451 .8722 .7431 9.8711 .7412 .8699	.8744 .9417 .8796 .9443 .8847 .9468 .8899 .9494 .8952 .9519 .9004 9.9544 .9057 .9570	1.1436 .0583 1.1369 .0557 1.1303 .0532 1.1237 .0506 1.1171 .0481 1.1106 0.0456 1.1041 .0430	0.8523 0.8494 0.8465 0.8436 0.8407 0.8378 0.8348	50 40 30 20 10 48° 00' 50
20 30 40 50 43° 00'	0.7389 0.7418 0.7447 0.7476	.6713 .8269 .6734 .8283 .6756 .8297 .6777 .8311 .6799 .8324 .6820 9.8338	.7392 .8688 .7373 .8676 .7353 .8665 .7333 .8653	.9110 .9595 .9163 .9621 .9217 .9646 .9271 .9671 .9325 9.9697	1.0977 .0405 1.0913 .0379 1.0850 .0354 1.0786 .0329	0.8319 0.8290 0.8261 0.8232 0.8203	40 30 20 10 47° 00'
10 20 30 40 50 44° 00′	0.7534 0.7563 0.7592 0.7621 0.7650 0.7679	.6841 .8351 .6862 .8365 .6884 .8378 .6905 .8391 .6926 .8405 .6947 9.8418	.7314 9.8641 .7294 .8629 .7274 .8618 .7254 .8606 .7234 .8594 .7214 .8582 .7193 9.8569	.9380 .9722 .9435 .9747 .9490 .9772 .9545 .9798 .9601 .9823 .9657 9.9848	1.0661 .0278 1.0599 .0253 1.0538 .0228 1.0477 .0202 1.0416 .0177 1.0355 0.0152	0.8174 0.8145 0.8116 0.8087 0.8058 0.8029	50 40 30 20 10 46° 00′
10 20 30 40 50 45° 00′	0.7709 0.7738 0.7767 0.7796 0.7825 0.7854	.6967 .8431 .6988 .8444 .7009 .8457 .7030 .8469 .7050 .8482 .7071 9.8495	7173 .8557 .7153 .8545 .7133 .8532 .7112 .8520 .7092 .8507 .7071 9.8495	.9713 .9874 .9770 .9899 .9827 .9924 .9884 .9949 .9942 .9975 1.0000 0.0000	1.0295 .0126 1.0235 .0101 1.0176 .0076 1.0117 .0051 1.0058 .0025 1.0000 0.0000	0.7999 0.7970 0.7941 0.7912 0.7883 0.7854	50 40 30 20 10 45° 00'
		Nat. Log.*	Nat. Log.*	Nat. Log.*	Nat. Log.		
		Cosines	Sines	Cotangents	Tangents	Ra- dians	De- grees

EXPONENTIALS [en and en]

EAP)NENTI.	ALS	le" and	e "]						1100	
n	Diff.	n	en Diff.	n	e ⁿ	n	e-ª Diff.	n	e-n	n	e-=
0.00 .01 .02 .03 .04	1.000 10 1.010 10 1.020 10 1.030 11 1.041 10	0.50 .51 .52 .53 .54	1.649 1.665 1.682 1.699 1.716 1.716	1.0 .1 .2 .3 .4	2.718* 3.004 3.320 3.669 4.055	0.00 .01 .02 .03 .04	1.000 -10 0.990 -10 .980 -10 .970 -10 .961 - 9	0.50 51 52 53 54	.607 .600 .595 .589 .583	1.0 .1 .2 .3 .4	368* 333 301 273 247
0.05 .06 .07 .08 .09	1.051 1.062 11 1.073 1.083 11 1.094	0.55 .56 .57 .58 .59	1.733 1.751 1.768 1.768 1.786 1.804 1.804	1.5 .6 .7 .8 .9	4.482 4.953 5.474 6.050 6.686	0.05 .06 .07 .08 .09	.951 - 9 .942 - 10 .932 - 9 .923 - 9 .914 - 9	0.55 .56 .57 .58 .59	.577 .571 .566 .560 .554	1.5 6 .7 .8 .9	.223 .202 .183 .165 .150
0.10 .11 .12 .13 .14	1.105 1.116 1.127 1.139 1.150 12	0.60 .61 .62 .63 .64	1.822 1.840 1.859 1.859 1.878 1.896 20	2.0 .1 .2 .3 .4	7.389 8.166 9.025 9.974 11.02	0.10 .11 .12 .13 .14	.905 — 9 .896 — 9 .887 — 9 .878 — 9 .869 — 8	0.60 .61 .62 .63 .64	.549 .543 .538 .533 .527	2.0 .1 .2 .3 .4	.135 .122 .111 .100 .0907
0.15 .16 .17 .18 .19	1.162 1.174 1.185 1.197 1.209 12	0.65 .66 .67 .68 .69	1.916 1.935 1.954 1.974 1.994 20	.8	12.18 13.46 14.88 16.44 18.17	0.15 .16 .17 .18 .19	.861 — 9 .852 — 8 .844 — 9 .835 — 9 .827 — 8	0.65 .66 .67 .68 .69	.522 .517 .512 .507 .502	2.5 .6 .7 .8 .9	.0821 .0743 .0672 .0608 .0550
0.20 .21 .22 .23 .24	1.221 1.234 1.246 1.259 1.271 1.271 13	0.70 .71 .72 .73 .74	2.014 2.034 2.054 2.054 2.075 2.096 21	3.0 .1 .2 .3 .4	20.09 22.20 24.53 27.11 29.96	0.20 .21 .22 .23 .24	.819 — 8 .811 — 8 .803 — 8 .795 — 8 .787 — 8	0.70 .71 .72 .73 .74	.497 .492 .487 .482 .477	3.0 .1 .2 .3 .4	.0498 .0450 .0408 .0369 .0334
0.25 .26 .27 .28 .29	1.284 1.297 1.310 1.310 1.323 1.336 14	0.75 .76 .77 .78 .79	2.117 2.138 22 2.160 21 2.181 22 2.203 23	3.5 .6 .7 .8 .9	33.12 36.60 40.45 44.70 49.40	0.25 .26 .27 .28 .29	779 — 8 771 — 8 .763 — 8 .756 — 7 .756 — 8 .748 — 7	0.75 .76 .77 .78 .79	.472 .468 .463 .458 .454	3.5 .6 .7 .8 .9	.0302 .0273 .0247 .0224 .0202
0.30 31 32 33 34	1.350 13 1.363 14 1.377 14 1.391 14 1.405 14	0.80 .81 .82 .83 .84	2.226 2.248 22 2.270 23 2.293 23 2.316 24	4.0	54.60 60.34 66.69 73.70 81.45	0.30 31 32 33 34	.741 — 8 .733 — 7 .726 — 7 .719 — 7 .712 — 7	.81 .82 .83 .84	.449 .445 .440 .436 .432	4.0 .1 .2 .3 .4	.0183 .0166 .0150 .0136 .0123
0.35 .36 .37 .38 .39	1.419 1.433 1.448 1.462 1.462 1.477 15	0.85 .86 .87 .88 .89	2.340 2.363 2.387 2.411 2.435 2.435 2.5	5.0 6.0 7.0	90.02 148.4 403.4 1097.	0.35 .36 .37 .38 .39	.705 — 7 .698 — 7 .691 — 7 .684 — 7 .677 — 7	0.85 .86 .87 .88 .89	.427 .423 .419 .415 .411	4.5 8.0 6.0 7.0	.0111 .00674 .00248 .000912
0.40 .41 .42 .43 .44	1.492 1.507 1.507 1.522 1.537 1.537 1.553 15	0.90 .91 .92 .93 .94	2.460 24 2.484 25 2.509 26 2.535 25 2.560 26	8.0 9.0 10.0 $\pi/2$ $2\pi/2$	2981. 8103. 22026. 4.810 23.14	0.40 .41 .42 .43 .44	.670 — 6 .664 — 7 .657 — 6 .651 — 7 .644 — 6	0.90 .91 .92 .93 .94	.407 .403 .399 .395 .391	8.0 9.0 10.0 π/2 2π/2	.000335 .000123 .000045 .208 .0432
0.45 .46 .47 .48 .49	1.568 1.584 1.600 1.616 1.616 1.632 17	0.95 .96 .97 .98 .99	2.586 2.612 2.638 2.638 2.664 2.691 2.691 27	$3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$ $8\pi/2$	111.3 535.5 2576. 12392. 59610. 286751.	0.45 .46 .47 .48 .49	.638 - 7 .631 - 6 .625 - 6 .619 - 6 .613 - 6	0.95 .96 .97 .98 .99	387 383 379 375 372	$3\pi/2$ $4\pi/2$ $5\pi/2$ $6\pi/2$ $7\pi/2$ $8\pi/2$.00898 .00187 .000388 .000081 .000017 .000003
0.50	1.649	1.00	2.718	3#/Z	200731.	0.50	0.607	1.00	.368	OR/L	•00000

^{*} Note: Do not interpolate in this column. e = 2.71828 1/e = 0.367879 $\log_{10}e = 0.4343$ 1/(0.4343) = 2.3026

 $log_{10}(0.4343) = \bar{1}.6378$ $log_{10}(e^n) = n(0.4343)$ For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

HYPERBOLIC LOGARITHMS

	n	n (2.3026)	n (0.6974-3)
These two pages give the natural (hyperbolic, or Napierian) logarithms (\log_s) of numbers between 1 and 10, correct to four places. Moving the decimal point n places to the right [or left] in the number is equivalent to adding n times 2.3026 [or n times 3.6974] to the logarithm. Base $e = 2.71828 +$	1	2.3026	0.6974-3
	2	4.6052	0.3948-5
	3	6.9078	0.0922-7
	4	9.2103	0.7897-10
	5	11.5129	0.4871-12
	6	13.8155	0.1845-14
	7	16.1181	0.8819-17
	8	18.4207	0.5793-19
	9	20.7233	0.2767-21

Num- ber.	0	1	2	3	4	5	6	7	8	9	Avg.
1.0	0.0000	0100	0198	0296	0392	0488	0583	0677	0770	0862	95
1.1	0953	1044	1133	1222	1310	1398	1484	1570	1655	1740	87
1.2	1823	1906	1989	2070	2151	2231	2311	2390	2469	2546	80
1.3	2624	2700	2776	2852	2927	3001	3075	3148	3221	3293	74
1.4	3365	3436	3507	3577	3646	3716	3784	3853	3920	3988	69
1.5	0.4055	4121	4187	4253	4318	4383	4447	4511	4574	4637	65
1.6	4700	4762	4824	4886	4947	5008	5068	5128	5188	5247	61
1.7	5306	5365	5423	5481	5539	5596	5653	5710	5766	5822	57
1.8	5878	5933	5988	6043	6098	6152	6206	6259	6313	6366	54
1.9	6419	6471	6523	6575	6627	6678	6729	6780	6831	6881	51
2.0	0.6931	6981	7031	7080	7129	7178	7227	7275	7324	7372	49
2.1	7419	7467	7514	7561	7608	7655	7701	7747	7793	7839	47
2.2	7885	7930	7975	8020	8065	8109	8154	8198	8242	8286	44
2.3	8329	8372	8416	8459	8502	8544	8587	8629	8671	8713	43
2.4	8755	8796	8838	8879	8920	8961	9002	9042	9083	9123	41
2.5	0.9163	9203	9243	9282	9322	9361	9400	9439	9478	9517	39
2.6	9555	9594	9632	9670	9708	9746	9783	9821	9858	9895	38
2.7	0.9933	9969	*0006	*0043	*0080	*0116	*0152	*0188	*0225	*0260	36
2.8	1.0296	0332	0367	0403	0438	0473	0508	0543	0578	0613	35
2.9	0647	0682	0716	0750	0784	0818	0852	0886	0919	0953	34
3.0	1.0986	1019	1053	1086	1119	1151	1184	1217	1249	1282	33
3.1	1314	1346	1378	1410	1442	1474	1506	1537	1569	1600	32
3.2	1632	1663	1694	1725	1756	1787	1817	1848	1878	1909	31
3.3	1939	1969	2000	2030	2060	2090	2119	2149	2179	2208	30
3.4	2238	2267	2296	2326	2355	2384	2413	2442	2470	2499	29
3.5 3.6 3.7 3.8 3.9	1.2528 2809 3083 3350 3610	2556 2837 3110 3376 3635	2585 2865 3137 3403 3661	2613 2892 3164 3429 3686	2641 2920 3191 3455 3712	2669 2947 3218 3481 3737	2698 2975 3244 3507 3762	2726 3002 3271 3533 3788	2754 3029 3297 3558 3813	2782 3056 3324 3584 3838	28 27 27 27 26 25
4.0	1.3863	3888	3913	3938	3962	3987	4012	4036	4061	4085	25
4.1	4110	4134	4159	4183	4207	4231	4255	4279	4303	4327	24
4.2	4351	4375	4398	4422	4446	4469	4493	4516	4540	4563	23
4.3	4586	4609	4633	4656	4679	4702	4725	4748	4770	4793	23
4.4	4816	4839	4861	4884	4907	4929	4951	4974	4996	5019	22
4.5	1.5041	5063	5085	5107	5129	5151	5173	5195	5217	5239	22
4.6	5261	5282	5304	5326	5347	5369	5390	5412	5433	5454	21
4.7	5476	5497	5518	5539	5560	5581	5602	5623	5644	5665	21
4.8	5686	5707	5728	5748	5769	5790	5810	5831	5851	5872	20
4.9	5892	5913	5933	5953	5974	5994	6014	6034	6054	6074	20

 $\log_e x = (2.3026) \log_{10} x$ $\log_{10} x = (0.4343) \log_e x$ where 2.3026 = \log_{10} and 0.4343 = $\log_{10} e$ (see p. 62). For graphs, see p. 174.

HYPERBOLIC LOGARITHMS (continued)

Num- ber	0	1	2	3	4	5	6	7	8	9	Avg.
5.0 5.1 5.2 5.3 5.4	1.6094	6114	6134	6154	6174	6194	6214	6233	6253	6273	20
	6292	6312	6332	6351	6371	6390	6409	6429	6448	6467	19
	6487	6506	6525	6544	6563	6582	6601	6620	6639	6658	19
	6677	6696	6715	6734	6752	6771	6790	6808	6827	6845	18
	6864	6882	6901	6919	6938	6956	6974	6993	7011	7029	18
5.5	1.7047	7066	7084	7102	7120	7138	7156	7174	7192	7210	18
5.6	7228	7246	7263	7281	7299	7317	7334	7352	7370	7387	18
5.7	7405	7422	7440	7457	7475	7492	7509	7527	7544	7561	17
5.8	7579	7596	7613	7630	7647	7664	7681	7699	7716	7733	17
5.9	7750	7766	7783	7800	7817	7834	7851	7867	7884	7901	17
6.0	1.7918	7934	7951	7967	7984	8001	8017	8034	8050	8066	16
6.1	8083	8099	8116	8132	8148	8165	8181	8197	8213	8229	16
6.2	8245	8262	8278	8294	8310	8326	8342	8358	8374	8390	16
6.3	8405	8421	8437	8453	8469	8485	8500	8516	8532	8547	16
6.4	8563	8579	8594	8610	8625	8641	8656	8672	8687	8703	15
6.5 6.6 6.7 6.8 6.9	1.8718 8871 9021 9169 9315	8733 8886 9036 9184 9330	8749 8901 9051 9199 9344	8764 8916 9066 9213 9359	8779 8931 9081 9228 9373	8795 8946 9095 9242 9387	8810 8961 9110 9257 9402	8825 8976 9125 9272 9416	8840 8991 9140 9286 9430	8856 9006 9155 9301 9445	15 15 15 15 15 14
7.0	1.9459	9473	9488	9502	9516	9530	9544	9559	9573	9587	14
7.1	9601	9615	9629	9643	9657	9671	9685	9699	9713	9727	14
7.2	9741	9755	9769	9782	9796	9810	9824	9838	9851	9865	14
7.3	1.9879	9892	9906	9920	9933	9947	9961	9974	9988	*0001	13
7.4	2.0015	0028	0042	0055	0069	0082	0096	0109	0122	0136	13
7.5	2.0149	0162	0176	0189	0202	0215	0229	0242	0255	0268	13
7.6	0281	0295	0308	0321	0334	0347	0360	0373	0386	0399	13
7.7	0412	0425	0438	0451	0464	0477	0490	0503	0516	0528	13
7.8	0541	0554	0567	0580	0592	0605	0618	0631	0643	0656	13
7.9	0669	0681	0694	0707	0719	0732	0744	0757	0769	0782	12
8.0 8.1 8.2 8.3 8.4	2.0794 0919 1041 1163 1282	. 0807 0931 1054 1175 1294	0819 0943 1066 1187 1306	0832 0956 1078 1199 1318	0844 0968 1090 1211 1330	0857 0980 1102 1223 1342	0869 0992 1114 1235 1353	0882 1005 1126 1247 1365	0894 1017 1138 1258 1377	0906 1029 1150 1270 1389	12 12 12 12 12 12
8.5	2.1401	1412	1424	1436	1448	1459	1471	1483	1494	1506	12
8.6	1518	1529	1541	1552	1564	1576	1587	1599	1610	1622	12
8.7	1633	1645	1656	1668	1679	1691	1702	1713	1725	1736	11
8.8	1748	1759	1770	1782	1793	1804	1815	1827	1838	1849	11
8.9	1861	1872	1883	1894	1905	1917	1928	1939	1950	1961	11
9.0	2.1972	1983	1994	2006	2017	2028	2039	2050	2061	2072	=======================================
9.1	2083	2094	2105	2116	2127	2138	2148	2159	2170	2181	
9.2	2192	2203	2214	2225	2235	2246	2257	2268	2279	2289	
9.3	2300	2311	2322	2332	2343	2354	2364	2375	2386	2396	
9.4	2407	2418	2428	2439	2450	2460	2471	2481	2492	2502	
9.5	2.2513	2523	2534	2544	2555	2565	2576	2586	2597	2607	10
9.6	2618	2628	2638	2649	2659	2670	2680	2690	2701	2711	10
9.7	2721	2732	2742	2752	2762	2773	2783	2793	2803	2814	10
9.8	2824	2834	2844	2854	2865	2875	2885	2895	2905	2915	10
9.9	2925	2935	2946	2956	2966	2976	2986	2996	3006	3016	10
10.0	2.3026									W. Dat	0.3

Moving the decimal point n places to the right [or left] in the number requires adding n times 2.3026 [or n times (0.6974-3)] in the body of the table. See auxiliary table of multiples on top of the preceding page.

HYPERBOLIC SINES $\left[\sinh x = \frac{1}{2}(e^x - e^{-x})\right]$

x	0	1	2	3	4	5	6	7	8	9	Avg.
0.0	.0000	.0100	.0200	.0300	.0400	.0500	.0600	.0701	.0801	.0901	100
1	.1002	.1102	.1203	.1304	.1405	.1506	.1607	.1708	.1810	.1911	101
2	.2013	.2115	.2218	.2320	.2423	.2526	.2629	.2733	.2837	.2941	103
3	.3045	.3150	.3255	.3360	.3466	.3572	.3678	.3785	.3892	.4000	106
4	.4108	.4216	.4325	.4434	.4543	.4653	.4764	.4875	.4986	.5098	110
0.5	.5211	.5324	.5438	.5552	.5666	.5782	.5897	.6014	.6131	.6248	116
6	.6367	.6485	.6605	.6725	.6846	.6967	.7090	.7213	.7336	.7461	122
7	.7586	.7712	.7838	.7966	.8094	.8223	.8353	.8484	.8615	.8748	130
8	.8881	.9015	.9150	.9286	.9423	.9561	.9700	.9840	.9981	1.012	138
9	1.027	1.041	1.055	1.070	1.085	1.099	1.114	1.129	1.145	1.160	15
1.0	1.175	1.191	1.206	1.222	1.238	1.254	1.270	1.286	1.303	1.319	16
1	1.336	1.352	1.369	1.386	1.403	1.421	1.438	1.456	1.474	1.491	17
2	1.509	1.528	1.546	1.564	1.583	1.602	1.621	1.640	1.659	1.679	19
3	1.698	1.718	1.738	1.758	1.779	1.799	1.820	1.841	1.862	1.883	21
4	1.904	1.926	1.948	1.970	1.992	2.014	2.037	2.060	2.083	2.106	22
1.5	2.129	2.153	2.177	2.201	2.225	2.250	2.274	2.299	2.324	2.350	25
6	2.376	2.401	2.428	2.454	2.481	2.507	2.535	2.562	2.590	2.617	27
7	2.646	2.674	2.703	2.732	2.761	2.790	2.820	2.850	2.881	2.911	30
8	2.942	2.973	3.005	3.037	3.069	3.101	3.134	3.167	3.200	3.234	33
9	3.268	3.303	3.337	3.372	3.408	3.443	3.479	3.516	3.552	3.589	36
2.0	3.627	3.665	3.703	3.741	3.780	3.820	3.859	3.899	3.940	3.981	39
1	4.022	4.064	4.106	4.148	4.191	4.234	4.278	4.322	4.367	4.412	44
2	4.457	4.503	4.549	4.596	4.643	4.691	4.739	4.788	4.837	4.887	48
3	4.937	4.988	5.039	5.090	5.142	5.195	5.248	5.302	5.356	5.411	53
4	5.466	5.522	5.578	5.635	5.693	5.751	5.810	5.869	5.929	5.989	58
2.5	6.050	6.112	6.174	6.237	6.300	6.365	6.429	6.495	6.561	6.627	64
6	6.695	6.763	6.831	6.901	6.971	7.042	7.113	7.185	7.258	7.332	71
7	7.406	7.481	7.557	7.634	7.711	7.789	7.868	7.948	8.028	8.110	79
8	8.192	8.275	8.359	8.443	8.529	8.615	8.702	8.790	8.879	8.969	87
9	9.060	9.151	9.244	9.337	9.431	9.527	9.623	9.720	9.819	9.918	96
3.0	10.02	10.12	10.22	10.32	10.43	10.53	10.64	10.75	10.86	10.97	11
1	11.08	11.19	11.30	11.42	11.53	11.65	11.76	11.88	12.00	12.12	12
2	12.25	12.37	12.49	12.62	12.75	12.88	13.01	13.14	13.27	13.40	13
3	13.54	13.67	13.81	13.95	14.09	14.23	14.38	14.52	14.67	14.82	14
4	14.97	15.12	15.27	15.42	15.58	15.73	15.89	16.05	16.21	16.38	16
3.5	16.54	16.71	16.88	17.05	17.22	17.39	17.57	17.74	17.92	18.10	17
6	18.29	18.47	18.66	18.84	19.03	19.22	19.42	19.61	19.81	20.01	19
7	20.21	20.41	20.62	20.83	21.04	21.25	21.46	21.68	21.90	22.12	21
8	22.34	22.56	22.79	23.02	23.25	23.49	23.72	23.96	24.20	24.45	24
9	24.69	24.94	25.19	25.44	25.70	25.96	26.22	26.48	26.75	27.02	26
4.0	27.29	27.56	27.84	28.12	28.40	28.69	28.98	29.27	29.56	29.86	29
1	30.16	30.47	30.77	31.08	31.39	31.71	32.03	32.35	32.68	33.00	32
2	33.34	33.67	34.01	34.35	34.70	35.05	35.40	35.75	36.11	36.48	35
3	36.84	37.21	37.59	37.97	38.35	38.73	39.12	39.52	39.91	40.31	39
4	40.72	41.13	41.54	41.96	42.38	42.81	43.24	43.67	44.11	44.56	43
4.5	45.00	45.46	45.91	46.37	46.84	47.31	47.79	48.27	48.75	49.24	47
6	49.74	50 24	50.74	51.25	51.77	52.29	52.81	53.34	53.88	54.42	52
7	54.97	55.52	56.08	56.64	57.21	57.79	58.37	58.96	59.55	60.15	58
8	60.75	61.36	61.98	62.60	63.23	63.87	64.51	65.16	65.81	66.47	64
9	67.14	67.82	68.50	69.19	69.88	70.58	71.29	72.01	72.73	73.46	71
5.0	74.20								4	THE R	

If x > 5, sinh $x = \frac{1}{2}(e^z)$ and logic sinh x = (0.4343)x + 0.6990 - 1, correct to four significant figures. For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

HYPERBOLIC COSINES [$\cosh x = \frac{1}{2}(e^x + e^{-x})$]

æ	0	1	12	3	4	5	6	7	8	9	Avg.
0.0	1.000 1.005 1.020 1.045 1.081	1.000 1.006 1.022 1.048 1.085	1.000 1.007 1.024 1.052 1.090	1.000 1.008 1.027 1.055 1.094	1.001 1.010 1.029 1.058 1.098	1.001 1.011 1.031 1.062 1.103	1.002 1.013 1.034 1.066 1.108	1.002 1.014 1.037 1.069 1.112	1.003 1.016 1.039 1.073 1.117	1.004 1.018 1.042 1.077 1.122	1 2 3 4 5
0.5 6 7 8 9	1.128	1.133	1.138	1.144	1.149	1.155	1.161	1.167	1.173	1.179	6
	1.185	1.192	1.198	1.205	1.212	1.219	1.226	1.233	1.240	1.248	7
	1.255	1.263	1.271	1.278	1.287	1.295	1.303	1.311	1.320	1.329	8
	1.337	1.346	1.355	1.365	1.374	1.384	1.393	1.403	1.413	1.423	10
	1.433	1.443	1.454	1.465	1.475	1.486	1.497	1.509	1.520	1.531	11
1.0	1.543	1.555	1.567	1.579	1.591	1.604	1.616	1.629	1.642	1.655	13
1	1.669	1.682	1.696	1.709	1.723	1.737	1.752	1.766	1.781	1.796	14
2	1.811	1.826	1.841	1.857	1.872	1.888	1.905	1.921	1.937	1.954	16
3	1.971	1.988	2.005	2.023	2.040	2.058	2.076	2.095	2.113	2.132	18
4	2.151	2.170	2.189	2.209	2.229	2.249	2.269	2.290	2.310	2.331	20
1.5	2.352	2,374	2.395	2.417	2.439	2.462	2.484	2.507	2.530	2.554	23
6	2.577	2,601	2.625	2.650	2.675	2.700	2.725	2.750	2.776	2.802	25
7	2.828	2,855	2.882	2.909	2.936	2.964	2.992	3.021	3.049	3.078	28
8	3.107	3,137	3.167	3.197	3.228	3.259	3.290	3.321	3.353	3.385	31
9	3.418	3,451	3.484	3.517	3.551	3.585	3.620	3.655	3.690	3.726	34
2.0	3.762	3.799	3.835	3.873	3,910	3.948	3.987	4.026	4.065	4.104	38
1	4.144	4.185	4.226	4.267	4,309	4.351	4.393	4.436	4.480	4.524	42
2	4.568	4.613	4.658	4.704	4,750	4.797	4.844	4.891	4.939	4.988	47
3	5.037	5.087	5.137	5.188	5,239	5.290	5.343	5.395	5.449	5.503	52
4	5.557	5.612	5.667	5.723	5,780	5.837	5.895	5.954	6.013	6.072	58
2.5	6.132	6.193	6.255	6.317	6.379	6.443	6.507	6.571	6.636	6.702	64
6	6.769	6.836	6.904	6.973	7.042	7.112	7.183	7.255	7.327	7.400	70
7	7.473	7.548	7.623	7.699	7.776	7.853	7.932	8.011	8.091	8.171	78
8	8.253	8.335	8.418	8.502	8.587	8.673	8.759	8.847	8.935	9.024	86
9	9.115	9.206	9.298	9.391	9.484	9.579	9.675	9.772	9.869	9.968	95
3.0	10.07	10.17	10.27	10.37	10.48	10.58	10.69	10.79	10.90	11.01	11
1	11.12	11.23	11.35	11.46	11.57	11.69	11.81	11.92	12.04	12.16	12
2	12.29	12.41	12.53	12.66	12.79	12.91	13.04	13.17	13.31	13.44	13
3	13.57	13.71	13.85	13.99	14.13	14.27	14.41	14.56	14.70	14.85	14
4	15.00	15.15	15.30	15.45	15.01	15.77	15.92	16.08	16.25	16.41	16
3.5	16.57	16.74	16.91	17.08	17.25	17.42	17.60	17.77	17.95	18.13	17
6	18.31	18.50	18.68	18.87	19.06	19.25	19.44	19.64	19.84	20.03	19
7	20.24	20.44	20.64	20.85	21.06	21.27	21.49	21.70	21.92	22.14	21
8	22.36	22.59	22.81	23.04	23.27	23.51	23.74	23.98	24.22	24.47	23
9	24.71	24.96	25.21	25.46	25.72	25.98	26.24	26.50	26.77	27.04	26
4.0	27.31	27.58	27.86	28.14	28.42	28.71	29.00	29.29	29.58	29.88	29
1	30.18	30.48	30.79	31.10	31.41	31.72	32.04	32.37	32.69	33.02	32
2	33.35	33.69	34.02	34.37	34.71	35.06	35.41	35.77	36.13	36.49	35
3	36.86	37.23	37.60	37.98	38.36	38.75	39.13	39.53	39.93	40.33	39
4	40.73	41.14	41.55	41.97	42.39	42.82	43.25	43.68	44.12	44.57	43
4.5	45.01	45.47	45.92	46.38	46.85	47.32	47.80	48.28	48.76	49.25	47
6	49.75	50.25	50.75	51.26	51.78	52.30	52.82	53.35	53.89	54.43	52
7	54.98	55.53	56.09	56.65	57.22	57.80	58.38	58.96	59.56	60.15	58
8	60.76	61.37	61.99	62.61	63.24	63.87	64.52	65.16	65.82	66.48	64
9	67.15	67.82	68.50	69.19	69.89	70.59	71.30	72.02	72.74	73.47	71
5.0	74.21										
If	2 > 5 or	osh z = 16	(or) an	d lorge	oneh m-	= (0 4343) + +	0 8000	_1 00	rreat to	four ain	ni6-

If x > 5, $\cosh x = \frac{1}{2}(e^x)$ and $\log_{10} \cosh x = (0.4343)x + 0.6990 - 1$, correct to four significant figures. For table of multiples of 0.4343, see p. 62. Graphs, p. 174.

x	0	1	2	3	4	5	6	/7	8	9	Avg.
0.0	.0000	.0100	.0200	.0300	.0400	.050ò	.0599	.0699	.0798	.0898	100
1	.0997	.1096 .2070	.1194	.1293	.1391	.1489	.1587 .2543	.1684	.1781	.1878	98
3	.1974	.3004	.2165	.3185	.3275	.3364	.3452	.2636 .3540	.3627	.2021	94
4	.3800	.3885	.3969		.4136	.4219	.4301	.4382	.4462	.4542	89 82
0.5	.4621	.4700	.4777	.4854	4930	.5005	.5080	.5154	.5227	.5299	75
6	.5370	.5441	.5511	.5581	.5649	.5717	.5784	.5850	.5915	. 5980	67
8	.6640	.6107 .6696	.6169	.6805	.6291 .6858	.6352	.6411	.6469 .7014		.6584	60
9	.7163	.7211	7259		.7352	.7398	.7443	.7487	.7531	.7574	52 45
1.0	.7616	.7658			.7779	.7818	.7857	.7895			
1	.8005	.8041	.8076	.8110	.8144	.8178	.8210	.8243	.8275	.8306	1 33
2	.8337 .8617	.8367 .8643	.8397	.8426 .8693	.8455 .8717	.8483 .8741	.8511	.8538 .8787	.8565	.8591	28
4	.8854	.8875	.8896	.8917	.8937	.8957	.8977	.8996	.8810 .9015		24
1.5	.9052	.9069	.9087	.9104	.9121	.9138	.9154	.9170			
6	.9217	.9232	.9246	.9261	.9275	.9289	.9302	.9316	.9329	.9342	l j2
7	.9354	.9367	.9379	.9391	.9402	.9414	.9425	.9436	.9447	.9458	111
8	.9468 .9562	.9478 .9571	.9488	.9498 .9587	.9508 .9595	.9518 .9603	.9527 .9611	.9536 .9619			1 8
2.0	.9640	.9647	.9654		.9668	.9674	.9680	.9687			
1	.9705	.9710	.9716		.9727	.9732	.9738	.9743			544
2	.9757	.9762	.9767	.9771	.9776	.9780	.9785	.9789	.9793	.9797	1 2
3	.9801 .9837	.9805 .9840	.9809	.9812	.9816 .9849	.9820	.9823	.9827	.9830		1 4
2.5		.9869	.9871		.9876	.9852 .9879	.9881	.9858			
	.9866 .9890	.9892	.9895		.9899	.9901	.9903	.9905			1 4
6	.9910	.9912	.9914		.9917	.9919	.9920	.9922		.9925	1 5
8	.9926	.9928	.9929	.9931	.9932	.9933	.9935	.9936	.9937	.9938	222
2.9	.9940	.9941	.9942		.9944	.9945	.9946	.9947	.9949		
3.	.9951	.9959	.9967		.9978 .9997	.9982 .9998	.9985	.9988			1
4.						ecimal plac			p. 174		
VIU	LTIPL	ES OF	0.4343	(0.4	342944	$8 = \log_{10}$	e) .				
x	0	1	2	3	4	5		6	7	8	9
0.	0.0000	0.0434	0.0869	0.1303	0.1737	0.2171		606 0	.3040		0.390
1.	0.4343 0.8686	0.4777 0.9120	0.5212 0.9554	0.5646	0.6080	0.6514 1.0857	0.6	949 0 292 1		0.7817 1.2160	0.825
3.	1.3029	1.3463	1.3897	1.4332		1.5200			.6069	1.6503	1.259
4.	1.7372	1.7806	1.8240	1.8675		1.9543	1.9			2.0846	2.128
5.	2.1715	2.2149	2.2583	2.3018		2.3886	2.4	320 2		2.5189	2.562
6.	2.6058	2.6492	2.6926	2.7361	2.7795	2.8229	2.8				2.996
7.	3.0401	3.0835 3.5178	3.1269 3.5612	3.1703 3.6046		3,2572 3,6915		006 3 349 3			3.430 3.865
9.	3.9087	3.9521	3.9955	4.0389	4.0824	4.1258	4.1		.2127	4.2561	4.299
MU	LTIPL	ES OF	2.3020	(2.3	3025851	= 1/0.43	43)				
x	0	1	2	3	4	5		6	7	8	9
0.	0.0000	0.2303	0.4605	0.6908	0.9210	1.1513				1.8421	2.072
1.	2.3026	2.5328	2.7631	2.9934 5.2959	3.2236 5.5262	3.4539 5.7565	3.6	841 3	.9144	4.1447	4.374
2.	4.6052 6.9078	4.8354 7.1380	5.0657 7.3683	5.2959 7.5985	5.5262 7.8288	5.7565 8.0590	5.9	867 6 893 8	.2170 .5196	6.4472 8.7498	6.677 8.980
4.	9.2103	9.4406	9,6709	9,9011	10,131	10.362	10.2	592 1	0.822	11.052	5.980 11.28
5.	11.513	11.743	11.973	12.204	12,434	12.664					
6.	13.816	14.046	14.276	14.506	14.737	14.967	15.	197 1	5.427	15.658	13.58 15.88
7.	16.118	16.348	16.579	16.809	17.039	17.269	17.	500 1	7.730	17.960	18.19
	18.421	18.651	18.881	19.111	19,342	19.572	10		0.032	20.263	20.49
8.	20.723	20,954	21.184	21,414	21.644	21.875	22.	802 2	2.335	22.565	22.7

STANDARD DISTRIBUTION OF RESIDUALS (p. 121)

a = any positive quantity; y = the number of residuals which are numerically < a; r = the probable error of a single

observation;
n = number of observations.

a y Diff. r n .000 .054 .107 0.0 54 53 53 53 51 23 .160 0.5 .264 50 49 6789 .363 48 .411 45 .456 .500 .542 .582 .619 1.0 42 123 40 37 36 33 .655 .688 .719 .748 .775 .800 1.5 31 29 27 25 23 67 8 .823 .843 .862 .879 2.0 20 19 17 16 13 23 4 .895 2.5 .908 13 10 .921 .931 .941 .950 678 1097 9 .957 3.0 66544 .963 .969 .978 3.5 .982 3231 .985 .987 7 8 .990 9 .991 ż 4.0 .993 6 5.0 .999

FACTORS FOR COMPUTING PROBABLE ERROR (p. 121)

	Bes	ssel	Pete	rs
n	0.6745	0.6745	0.8453	0.8453
13	$\sqrt{(n-1)}$	$\sqrt{n(n-1)}$	$\sqrt{n(n-1)}$	$n\sqrt{n-1}$
2 3 4	.6745 .4769 .3894	.4769 .2754 .1947	.5978 .3451 .2440	.4227 .1993 .1220
5 6 7 8 9	.3372 .3016 .2754 .2549 .2385	.1508 .1231 .1041 .0901 .0795	.1890 .1543 .1304 .1130 .0996	.0845 .0630 .0493 .0399 .0332
10 11 12 13 14	.2248 .2133 .2034 .1947 .1871	.0711 .0643 .0587 .0540 .0500	.0891 .0806 .0736 .0677 .0627	.0282 .0243 .0212 .0188 .0167
15 16 17 18 19	.1803 .1742 .1686 .1636	.0465 .0435 .0409 .0386 .0365	.0583 .0546 .0513 .0483 .0457	.0151 .0136 .0124 .0114 .0105
20 21 22 23 24	.1547 .1508 .1472 .1438 .1406	.0346 .0329 .0314 .0300 .0287	.0434 .0412 .0393 .0376 .0360	.0097 .0090 .0084 .0078 .0073
25 26 27 28 29	.1377 .1349 .1323 .1298 .1275	.0275 .0265 .0255 .0245 .0237	.0345 .0332 .0319 .0307 .0297	.0069 .0065 .0061 .0058 .0055
30 31 32 33 34	.1252 .1231 .1211 .1192 .1174	.0229 .0221 .0214 .0208 .0201	.0287 .0277 .0268 .0260 .0252	.0052 .0050 .0047 .0045 .0043
35 36 37 38 39	.1157 .1140 .1124 .1109 .1094	.0196 .0190 .0185 .0180 .0175	.0245 .0238 .0232 .0225 .0220	.0041 .0040 .0038 .0037 .0035
40 45	.1080 .1017	.0171 .0152	.0214	.0034 .0028
50 55	.0964	.0136	.0171 .0155	.0024
60 65	.0878	.0113	.0142	.0018
70 75	.0812 .0784	.0097	.0122	.0015
80 85	.0759 .0736	.0085	.0106 .0100	.0012
90 95 100	.0715 .0696	.0075 .0071	.0094 .0089	.0010 .0009
100	.06/8	.0068	.0085	.0008

COMPOUND INTEREST. AMOUNT OF A GIVEN PRINCIPAL. The amount A at the end of n years of a given principal P placed at compoun interest to-day is $A = P \times x$ or $A = P \times y$ or $A = P \times z$, according as the interest

	(at the rate of r per cent. per annum) is compounded annually, semi-annually, of quarterly; the factor x or y or z being taken from the following tables. Values of x . (Interest compounded annually; $A = P \times x$.) Years $r = 2$ 246 3 316 4 446 5 6 7													
Years	r = 2	21/2	3	31/2	4	41/2	5	6	7					
1	1.0200	1.0250	1,0300°	1.0350	1.0400	1.0450	1.0500	1.0600	1.0700	ıla				
2	1.0404	1.0506	1,0609	1.0712	1.0816	1.0920	1.1025	1.1236	1.1449					
3	1.0612	1.0769	1,0927	1.1087	1.1249	1.1412	1.1576	1.1910	1.2250					
4	1.0824	1.1038	1,1255	1.1475	1.1699	1.1925	1.2155	1.2625	1.3108					
5	1.1041	1.1314	1.1593	1.1877	1.2167	1.2462	1.2763	1.3382	1.4026	the form				
6	1.1262	1.1597	1.1941	1.2293	1.2653	1.3023	1.3401	1.4185	1.5007					
7	1.1487	1.1887	1.2299	1.2723	1.3159	1.3609	1.4071	1.5036	1.6058					
8	1.1717	1.2184	1.2668	1.3168	1.3686	1.4221	1.4775	1.5938	1.7182					
9	1.1951	1.2489	1.3048	1.3629	1.4233	1.4861	1.5513	1.6895	1.8385					
10	1.2190	1.2801	1.3439	1.4106	1.4802	1.5530	1.6289	1.7908	1.9672	computed from the formula = $[1 + (r/100)]^n$.				
11	1.2434	1.3121	1.3842	1.4600	1.5395	1.6239	1.7103	1.8983	2.1049					
12	1.2682	1.3449	1.4258	1.5111	1.6010	1.6959	1.7959	2.0122	2.2522					
13	1.2936	1.3785	1.4685	1.5640	1.6651	1.7722	1.8856	2.1329	2.4098					
14	1.3195	1.4130	1.5126	1.6187	1.7317	1.3519	1.9799	2.2609	2.5785					
15	1.3459	1.4483	1.5580	1.6753	1.8009	1.9353	2.0789	2.3966	2.7590					
16	1.3728	1.4845	1.6047	1.7340	1.8730	2.0224	2.1829	2.5404	2.9522					
17	1.4002	1.5216	1.6528	1.7947	1.9479	2.1134	2.2920	2.6928	3.1588					
18	1.4282	1.5597	1.7024	1.8575	2.0258	2.2085	2.4066	2.8543	3.3799					
19	1.4568	1.5987	1.7535	1.9225	2.1068	2.3079	2.5270	3.0256	3.6165	This table is				
20	1.4859	1.6386	1.8061	1.9898	2.1911	2.4117	2.6533	3.2071	3.8697					
25	1.6406	1.8539	2.0938	2.3632	2.6658	3.0054	3.3864	4.2919	5.4274					
30	1.8114	2.0976	2.4273	2.8068	3.2434	3.7453	4.3219	5.7435	7.6123					
40	2.2080	2.6851	3.2620	3.9593	4.8010	5.8164	7.0400	10.286	14.974					
50	2.6916	3.4371	4.3839	5.5849	7.1067	9.0326	11.467	18.420	29.457					
60	3.2810	4.3998	5.8916	7.8781	10.520	14.027	18.679	32.988	57.946					
	Va	lues of z	. (Inte	erest con	npounde	ed semi-	annually	A = P	× y.)					
Years	r=2	21/2	3	31/2	4	432	5	6	7					
1 2 3 4	1.0201 1.0406 1.0615 1.0829	1.0252 1.0509 1.0774 1.1045	1.0302 1.0614 1.0934 1.1265	1.0353 1.0719 1.1097 1.1489	1.0404 1.0824 1.1262 1.1717	1.0455 1.0931 1.1428 1.1948	1.0506 1.1038 1.1597 1.2184	1.0609 1.1255 1.1941 1.2668	1.0712 1.1475 1.2293 1.3168					
5	1.1046	1.1323	1.1605	1.1894	1.2190	1.2492	1.2801	1.3439	1.4106	(r/200)]²n.				
6	1.1268	1.1608	1.1956	1.2314	1.2682	1.3060	1.3449	1.4258	1.5111					
7	1.1495	1.1900	1.2318	1.2749	1.3195	1.3655	1.4130	1.5126	1.6187					
8	1.1726	1.2199	1.2690	1.3199	1.3728	1.4276	1.4845	1.6047	1.7340					
9	1.1961	1.2506	1.3073	1.3665	1.4282	1.4926	1.5597	1.7024	1.8575					
10	1.2202	1.2820	1.3469	1.4148	1.4859	1.5605	1.6386	1.8061	1.9898	= [1 + (r/)				
11	1.2447	1.3143	1.3876	1.4647	1.5460	1.6315	1.7216	1.9161	2.1315					
12	1.2697	1.3474	1.4295	1.5164	1.6084	1.7058	1.8087	2.0328	2.2833					
13	1.2953	1.3812	1.4727	1.5700	1.6734	1.7834	1.9003	2.1566	2.4460					
14	1.3213	1.4160	1.5172	1.6254	1.7410	1.8645	1.9965	2.2879	2.6202					
15	1.3478	1.4516	1.5631	1.6828	1.8114	1.9494	2.0976	2.4273	2.8068	Formula: y =				
16	1.3749	1.4881	1.6103	1.7422	1.8845	2.0381	2.2038	2.5751	3.0067					
17	1.4026	1.5256	1.6590	1.8037	1.9607	2.1308	2.3153	2.7319	3.2209					
18	1.4308	1.5639	1.7091	1.8674	2.0399	2.2278	2.4325	2.8983	3.4503					
19	1.4595	1.6033	1.7608	1.9333	2.1223	2.3292	2.5557	3.0748	3.6960					
20	1.4889	1.6436	1.8140	2.0016	2.2080	2.4352	2.6851	3.2620	3.9593	Fo				
25	1.6446	1.8610	2.1052	2.3808	2.6916	3.0420	3.4371	4.3839	5.5849					
30	1.8167	2.1072	2.4432	2.8318	3.2810	3.8001	4.3998	5.8916	7.8781					
40	2.2167	2.7015	3.2907	4.0064	4.8754	5.9301	7.2096	10.641	15.676					
50	2.7048	3.4634	4.4320	5.6682	7.2446	9.2540	11.814	19.219	31.191					
60	3.3004	4.4402	5.9693	8.0192	10.765	14.441	19.358	34.711	62.064					

Values of z. (Interest compounded quarterly; $A = P \times z$; see opposite page)

Years	r=2	21/2	3	31/2	4	41/2	5	6	7	
1 2 3 4	1.0202 1.0407 1.0617 1.0831	1.0252 1.0511 1.0776 1.1048	1.0303 1.0616 1.0938 1.1270	1.0355 1.0722 1.1102 1.1496	1.0406 1.0829 1.1268 1.1726	1.0458 1.0936 1.1437 1.1960	1.0509 1.1045 1.1608 1.2199	1.0614 1.1265 1.1956 1.2690	1.0719 1.1489 1.2314 1.3199	
5 6 7 8 9	1.1049 1.1272 1.1499 1.1730 1.1967	1.1327 1.1613 1.1906 1.2206 1.2514	1.1612 1.1964 1.2327 1.2701 1.3086	1.1903 1.2326 1.2763 1.3215 1.3684	1.2202 1.2697 1.3213 1.3749 1.4308	1.2508 1.3080 1.3679 1.4305 1.4959	1.2820 1.3474 1.4160 1.4881 1.5639	1,3469 1,4295 1,5172 1,6103 1,7091	1.4148 1.5164 1.6254 1.7422 1.8674	(r/400)] ⁴ⁿ .
10	1.2208	1.2830	1.3483	1.4169	1.4889	1.5644	1.6436	1.8140	2.0016	= [1 + (r/
11	1.2454	1.3154	1.3893	1.4672	1.5493	1.6360	1.7274	1.9253	2.1454	
12	1.2705	1.3486	1.4314	1.5192	1.6122	1.7108	1.8154	2.0435	2.2996	
13	1.2961	1.3826	1.4748	1.5731	1.6777	1.7891	1.9078	2.1689	2.4648	
14	1.3222	1.4175	1.5196	1.6288	1.7458	1.8710	2.0050	2.3020	2.6420	
15	1.3489	1.4533	1.5657	1.6866	1.8167	1.9566	2.1072	2.4432	2.8318	Formula: z
16	1.3760	1.4900	1.6132	1.7464	1.8905	2.0462	2.2145	2.5931	3.0353	
17	1.4038	1.5276	1.6621	1.8083	1.9672	2.1398	2.3274	2.7523	3.2534	
18	1.4320	1.5661	1.7126	1.8725	2.0471	2.2378	2.4459	2.9212	3.4872	
19	1.4609	1.6056	1.7645	1.9389	2.1302	2.3402	2.5705	3.1004	3.7378	
20	1.4903	1.6462	1.8180	2.0076	2.2167	2.4473	2.7015	3.2907	4.0064	Fo
25	1.6467	1.8646	2.1111	2.3898	2.7048	3.0609	3.4634	4.4320	5.6682	
30	1.8194	2.1121	2.4514	2.8446	3.3004	3.8285	4.4402	5.9693	8.0192	
40	2.2211	2.7098	3.3053	4.0306	4.9138	5.9892	7.2980	10.828	16.051	
50	2.7115	3.4768	4.4567	5.7110	7.3160	9.3693	11.995	19.643	32.128	
60	3.3102	4.4608	6.0092	8.0919	10.893	14.657	19.715	35.633	64.307	

AMOUNT OF AN ANNUITY

The amount S accumulated at the end of n years by a given annual payment Y set aside at the end of each year is $S = Y \times v$, where the factor v is to be taken from the following table. (Interest at r per cent. per annum, compounded annually.)

Values of v

					Value	8 01 0		the said to be		
Years	r = 2	23/2	3	31/2	4	41/2	5	6	7	
1 2 3 4	1.0000 2.0200 3.0604 4.1216	1.0000 2.0250 3.0756 4.1525	1.0000 2.0300 3.0909 4.1836	1.0000 2.0350 3.1062 4.2149	1.0000 2.0400 3.1216 4.2465	1.0000 .2.0450 3.1370 4.2782	1.0000 2.0500 3.1525 4.3101	1.0000 2.0600 3.1836 4.3746	1.0000 2.0700 3.2149 4.4399	(100)
5	5.2040	5.2563	5.3091	5.3625	5.4163	5.4707	5.5256	5.6371	5.7507	- 17 ÷
6	6.3081	6.3877	6.4684	6.5502	6.6330	6.7169	6.8019	6.9753	7.1533	
7	7.4343	7.5474	7.6625	7.7794	7.8983	8.0192	8.1420	8.3938	8.6540	
8	8.5830	8.7361	8.8923	9.0517	9.2142	9.3800	9.5491	9.8975	10.260	
9	9.7546	9.9545	10.159	10.368	10.583	10.802	11.027	11.491	11.978	
10	10.950	11.203	11.464	11.731	12.006	12.288	12.578	13.181	13.816	$(r/100)$] ⁿ $\div (r/100)$.
11	12.169	12.483	12.808	13.142	13.486	13.841	14.207	14.972	15.784	
12	13.412	13.796	14.192	14.602	15.026	15.464	15.917	16.870	17.888	
13	14.680	15.140	15.618	16.113	16.627	17.160	17.713	18.882	20.141	
14	15.974	16.519	17.086	17.677	18.292	18.932	19.599	21.015	22.550	
15	17.293	17.932	18.599	19.296	20.024	20.784	21.579	23.276	25.129	$v = \{[1 + (x - 1)] = (x - 1)\}$
16	18.639	19.380	20.157	20.971	21.825	22.719	23.657	25.673	27.888	
17	20.012	20.865	21.762	22.705	23.698	24.742	25.840	28.213	30.840	
18	21.412	22.386	23.414	24.500	25.645	26.855	28.132	30.906	33.999	
19	22.841	23.946	25.117	26.357	27.671	29.064	30.539	33.760	37.379	
20	24.297	25.545	26.870	28.280	29.778	31.371	33.066	36.786	40.995	Formula:
25	32.030	34.158	36.459	38.950	41.646	44.565	47.727	54.865	63.249	
30	40.568	43.903	47.575	51.623	56.085	61.007	66.439	79.058	94.461	
40	60.402	67.403	75.401	84.550	.95.026	107.03	120.80	154.76	199.64	Fori
50	84.579	97.484	112.80	131.00	152.67	178.50	209.35	290.34	406.53	
60	114.05	135.99	163.05	196.52	237.99	289.50	353.58	533.13	813.52	

PRINCIPAL WHICH WILL AMOUNT TO A GIVEN SUM

The principal P, which, if placed at compound interest to-day, will amount to a giv sum A at the end of n years is $P = A \times x'$ or $P = A \times y'$ or $P = A \times z'$, according the interest (at the rate of r per cent. per annum) is compounded annually, semi-annuall or quarterly; the factor x' or y' or z' being taken from the following tables.

Values of x'. (Interest compounded annually; $P = A \times x'$)

E-43-	A THE	Values	of x'.	(Interes	t compo	ounded	annually	P = A	$\times x'$	
Years	r = 2	21/2	3	31/2	4	41/2	5	6	7	
1 2 3 4	.98039 .96117 .94232 .92385	.97561 .95181 .92860 .90595	.97087 .94260 .91514 .88849	.96618 .93351 .90194 .87144	.96154 .92456 .88900 .85480	.95694 .91573 .87630 .83856	.95238 .90703 .86384 .82270	.94340 .89000 .83962 .79209	.93458 .87344 .81630 .76290	i,
5 6 7 8 9	.90573 .88797 .87056 .85349 .83676	.88385 .86230 .84127 .82075 .80073	.86261 .83748 .81309 .78941 .76642	.84197 .81350 .78599 .75941 .73373	.82193 .79031 .75992 .73069 .70259	.80245 .76790 .73483 .70319 .67290	.78353 .74622 .71068 .67684 .64461	.74726 .70496 .66506 .62741 .59190	.71299 .66634 .62275 .58201 .54393	$)) \mathbf{-n} = 1/x.$
10 11 12 13 14	.82035 .80426 .78849 .77303 .75788	.78120 .76214 .74356 .72542 .70773	.74409 .72242 .70138 .68095 .66112	.70892 .68495 .66178 .63940 .61778	.67556 .64958 .62460 .60057 .57748	.64393 .61620 .58966 .56427 .53997	.61391 .58468 .55684 .53032 .50507	.55839 .52679 .49697 .46884 .44230	.50835 .47509 .44401 .41496 .38783	$[1 + (r/100)]^{-n}$
15 16 17 18 19	.74301 .72845 .71416 .70016 .68643	.69047 .67362 .65720 .64117 .62553	.64186 .62317 .60502 .58739 .57029	.59689 .57671 .55720 .53836 .52016	.55526 .53391 .51337 .49363 .47464	.51672 .49447 .47318 .45280 .43330	.48102 .45811 .43630 .41552 .39573	.41727 .39365 .37136 .35034 .33051	.36245 .33873 .31657 .29586 .27651	ll B
20 25 30	.67297 .60953 .55207	.61027 .53939 .47674	.55368 .47761 .41199	.50257 .42315 .35628	.45639 .37512 .30832	.41464 .33273 .26700	.37689 .29530 .23138	.31180 .23300 .17411	.25842 .18425 .13137	Formula:
40 50 60	.45289 .37153 .30478	.37243 .29094 .22728	.30656 .22811 .16973	.25257 .17905 .12693	.20829 .14071 .09506	.17193 .11071 .07129	.14205 .08720 .05354	.09722 .05429 .03031	.066 78 .03395 .01726	
	Va	alues of	y'. (In	terest c	ompoun	ded sen	i-annual	ly; P =	$A \times y'$	
Years	r = 2	21/2	3	316	4	416	5	6	7	

Years	r = 2	21/2	3	31/2	4	41/2	5	6	7	
1 2 3 4	.98030 .96098 .94205 .92348	.97546 .95152 .92817 .90540	.97066 .94218 .91454 .88771	.96590 .93296 .90114 .87041	.96117 .92385 .88797 .85349	.95647 .91484 .87502 .83694	.95181 .90595 .86230 .82075	.94260 .88849 .83748 .78941	.93351 .87144 .81350 .75941	
5	.90529	.88318	.86167	.84073	.82035	.80051	.78120	.74409	.70892	$)]^{-2n} = 1/y$
6	.88745	.86151	.83639	.81206	.78849	.76567	.74356	.70138	.66178	
7	.86996	.84037	.81185	.78436	.75788	.73234	.70773	.66112	.61778	
8	.85282	.81975	.78803	.75762	.72845	.70047	.67362	.62317	.57671	
9	.83602	.79963	.76491	.73178	.70016	.66998	.64117	.58739	.53836	
10	.81954	.78001	.74247	.70682	.67297	.64082	.61027	.55368	.50257	1 + (r/200)]-2n
11	.80340	.76087	.72069	.68272	.64684	.61292	.58086	.52189	.46915	
12	.78757	.74220	.69954	.65944	.62172	.58625	.55288	.49193	.43796	
13	.77205	.72398	.67902	.63695	.59758	.56073	.52623	.46369	.40884	
14	.75684	.70622	.65910	.61523	.57437	.53632	.50088	.43708	.38165	
15	.74192	.68889	.63976	.59425	.55207	.51298	.47674	.41199	.35628	lla: y' = [1
16	.72730	.67198	.62099	.57398	.53063	.49065	.45377	.38834	.33259	
17	.71297	.65549	.60277	.55441	.51003	.46930	.43191	.36604	.31048	
18	.69892	.63941	.58509	.53550	.49022	.44887	.41109	.34503	.28983	
19	.68515	.62372	.56792	.51724	.47119	.42933	.39128	.32523	.27056	
20	.67165	.60841	.55126	.49960	.45289	.41065	.37243	.30656	.25257	Formula:
25	.60804	.53734	.47500	.42003	.37153	.32873	.29094	.22811	.17905	
30	.55045	.47457	.40930	.35313	.30478	.26315	.22728	.16973	.12693	
40	.45112	.37017	.30389	.24960	.20511	.16863	.13870	.09398	.06379	
50	.36971	.28873	.22563	.17642	.13803	.10806	.08465	.05203	.03206	
60	.30299	.22521	.16752	.12470	.09289	.06925	.05166	.02881	.01611	

Values of z'. (Interest compounded quarterly; $P = A \times z'$; see opposite page)

Years	r = 2	23/2	3	31/2	4	432	5	6	7	
1 2 3 4	.98025 .96089 .94191 .92330	.97539 .95138 .92796 .90512	.97055 .94198 .91424 .88732	.96575 .93268 .90074 .86989	.96098 .92348 .88745 .85282	.95624 .91439 .87437 .83611	.95152 .90540 .86151 .81975	.94218 .88771 .83639 .78803	.93296 .87041 .81206 .75762	
5	.90506	.88284	.86119	.84010	.81954	.79952	.78001	.74247	.70682)]-4n = 1/z.
6	.88719	.86111	.83583	.81132	.78757	.76453	.74220	.69954	.65944	
7	.86966	.83991	.81122	.78354	.75684	.73107	.70622	.65910	.61523	
8	.85248	.81924	.78733	.75670	.72730	.69908	.67198	.62099	.57390	
9	.83564	.79908	.76415	.73079	.69892	.66849	.63941	.58509	.53550	
10	.81914	.77941	.74165	.70576	.67165	.63923	.60841	.55126	.49960	1 + (r/400)]-4n
11	.80296	.76022	.71981	.68159	.64545	.61126	.57892	.51939	.46611	
12	.78710	.74151	.69861	.65825	.62026	.58451	.55086	.48936	.43486	
13	.77155	.72326	.67804	.63570	.59606	.55893	.52415	.46107	.40570	
14	.75631	.70546	.65808	.61393	.57280	.53447	.49874	.43441	.37851	
15	.74137	.68809	.63870	.59291	.55045	.51108	.47457	.40930	.35313	ila: z' = [1
16	.72673	.67115	.61989	.57260	.52897	.48871	.45156	.38563	.32946	
17	.71237	.65464	.60164	.55299	.50833	.46733	.42967	.36334	.30737	
18	.69830	.63852	.58392	.53405	.48850	.44687	.40884	.34233	.28676	
19	.68451	.62281	.56673	.51576	.46944	.42732	.38903	.32254	.26754	
20	.67099	.60748	.55004	.49810	.45112	.40862	.37017	.30389	.24960	Formula:
25	.60729	.53630	.47369	.41845	.36971	.32670	.28873	.22563	.17642	
30	.54963	.47347	.40794	.35154	.30299	.26120	.22521	.16752	.12470	
40	.45023	.36903	.30255	.24810	.20351	.16697	.13702	.09235	.06230	
50	.36880	.28762	.22438	.17510	.13669	.10673	.08337	.05091	.03113	
60	.30210	.22417	.16641	.12358	.09181	.06823	.05072	.02806	.01555	

ANNUITY WHICH WILL AMOUNT TO A GIVEN SUM (SINKING FUND)

The annual payment, Y, which, if set aside at the end of each year, will amount with accumulated interest to a given sum S at the end of n years is $Y = S \times v'$, where the factor v' is given below. (Interest at r per cent. per annum, compounded annually.) Values of v'

Years	r = 2	21/2	3	31/2	4	41/2	5	6	7	
2 3 4	.49505 .32675 .24262	.49383 .32514 .24082	.49261 .32353 .23903	.49140 .32193 .23725	.49020 .32035 .23549	.48900 .31877 .23374	.48780 .31721 .23201	.48544 .31411 .22859	.48309 .31105 .22523	= 1/v.
5	.19216	.19025	.18835	.18648	.18463	.18279	.18097	.17740	.17389	0)]n - 1]
6	.15853	.15655	.15460	.15267	.15076	.14888	.14702	.14336	.13980	
7	.13451	.13250	.13051	.12854	.12661	.12470	.12282	.11914	.11555	
8	.11651	• .11447	.11246	.11048	.10853	.10661	.10472	.10104	.09747	
9	.10252	.10046	.09843	.09645	.09449	.09257	.09069	.08702	.08349	
10	.09133	.08926	.08723	.08524	.08329	.08138	.07950	.07587	.07238	[[1 + (r/100)]*
11	.08218	.08011	.07808	.07609	.07415	.07225	.07039	.06679	.06336	
12	.07456	.07249	.07046	.06848	.06655	.06467	.06283	.05928	.05590	
13	.06812	.06605	.06403	.06206	.06014	.05828	.05646	.05296	.04965	
14	.06260	.06054	.05853	.05657	.05467	.05282	.05102	.04758	.04434	
15	.05783	.05577	.05377	.05183	.04994	.04811	.04634	.04296	.03979	(r/100) ÷ [
16	.05365	.05160	.04961	.04768	.04582	.04402	.04227	.03895	.03586	
17	.04997	.04793	.04595	.04404	.04220	.04042	.03870	.03544	.03243	
18	.04670	.04467	.04271	.04082	.03899	.03724	.03555	.03236	.02941	
19	.04378	.04176	.03981	.03794	.03614	.03441	.03275	.02962	.02675	
20	.04116	.03915	.03722	.03536	.03358	.03188	.03024	.02718	.02439	Formula:
25	.03122	.02928	.02743	.02567	.02401	.02244	.02095	.01823	.01581	
30	.02465	.02278	.02102	.01937	.01783	.01639	.01505	.01265	.01059	
40	.01656	.01484	.01326	.01183	.01052	.00934	.00828	.00646	.00467	For
50	.01182	.01026	.00887	.00763	.00655	.00560	.00478	.00344	.00238	
60	.00877	.00735	.00613	.00509	.00420	.00345	.00283	.00188	.00121	

PRESENT WORTH OF AN ANNUITY

The capital C, which, if placed at interest to-day, will provide for a given annual payment Y for a term of n years before it is exhausted is $C = Y \times w$, where the factor w is given below. (Interest at r per cent. per annum, compounded annually.) Values of w

Years	r=2	21/2	3	31/2	4	41/2	5	6	7	000
1	0.9804	0.9756	0.9709	0.9662	0.9615	0.9569	0.9524	0.9434	0.9346	
2	1.9416	1.9274	1.9135	1.8997	1.8861	1.8727	1.8594	1.8334	1.8080	x/a
3	2.8839	2.8560	2.8286	2.8016	2.7751	2.7490	2.7232	2.6730	2.6243	a
4	3.8077	3.7620	3.7171	3.6731	3.6299	3.5875	3.5460	3.4651	3.3872	R
5	4.7135	4.6458	4.5797	4.5151	4.4518	4.3900	4.3295	4.2124	4.1002	0
6 7	5.6014	5.5081	5.4172	5.3286	5.2421	5.1579	5.0757	4.9173	4.7665	7
1	6.4720	6.3494	6.2303	6.1145	6.0021	5.8927	5.7864	5.5824	5.3893	1/100]
8 9	7.3255	7.1701	7.0197 7.7861	6.8740 7.6077	6.7327 7.4353	6.5959 7.2688	6.4632	6.2098	5.9713	-
	8.1622	7.9709		110000			7.1078	6.8017	6.5152	+
10	8.9826	8.7521	8.5302	8.3166	8.1109	7.9127	7.7217	7.3601	7.0236	2
11	9.7868	9.5142	9.2526	9.0016 9.6633	8.7605 9.3851	8.5289 9.1186	8.3064	7.8869	7.4987	
12	10.575	10.258	9.9540	10.303	9.9856	9.1100	8.8633 9.3936	8.3838 8.8527	7.9427 8.3577	6
14	12.106	11.691	11.296	10.921	10.563	10.223	9.8986	9.2950	8.7455	10
15	12.849	12.381	11.938	11.517	11.118	10.740	10.380			(r/100)]-n]
16	13.578	13.055	12.561	12.094	11.652	11.234	10.380	9.7122 10.106	9.1079 9.4466	
17	14.292	13.712	13,166	12.651	12.166	11.707	11.274	10.100	9.7632	+
18	14.992	14.353	13.754	13.190	12.659	12.160	11.690	10.828	10.059	二
19	15.678	14.979	14.324	13.710	13.134	12.593	12.085	11.158	10.336	1
20	16.351	15.589	14.877	14.212	13.590	13.008	12,462	11,470	10.594	e =
25	19.523	18,424	17.413	16.482	15.622	14.828	14.094	12.783	11.654	1 1
30	22,396	20,930	19.600	18.392	17.292	16.289	15.372	13.765	12.409	g 1
40	27.355	25.103	23.115	21.355	19.793	18.402	17.159	15.046	13.332	Formula $w = [1]$
50	31.424	28.362	25.730	23,456	21,482	19.762	18.256	15.762	13.801	F
60	34.761	30.909	27.676	24.945	22,623	20,638	18,929	16.161	14.039	4.19
	21.701	20.707	27.070	-1.713	025	20.000	.0.727	10.101	1-1.037	

ANNUITY PROVIDED FOR BY A GIVEN CAPITAL

The annual payment Y provided for for a term of n years by a given capital C placed at interest to-day is $Y = C \times w'$. (Interest at r per cent. per annum, compounded annually; the fund supposed to be exhausted at the end of the term.)

Values of w'

The same		and the same of			v andob	or w	ALL I			
Years	r = 2	21/2	3	31/2	4	41/2	5	6	7	
2	.51505	.51883	.52261	.52640	.53020	.53400	.53780	.54544	.55309	-
3	.34675	.35014	.35353	.35693	.36035	.36377	.36721	.37411	.38105	1 .
4	.26262	.26582	.26903	.27225	.27549	.27874	.28201	.28859	.29523	=
5	.21216	.21525	.21835	.22148	.22463	.22779	.23097	.23740	.24389	(r/100)]-n
6	.17853	.18155	.18460	.18767	.19076	.19388	.19702	.20336	.20980	17
7	.15451	.15750	.16051	.16354	.16661	.16970	.17282	.17914	.18555	5
8	.13651	.13947	.14246	.14548	.14853	.15161	.15472	.16104	.16747	+6
9	.12252	.12546	.12843	.13145	.13449	.13757	.14069	.14702	.15349	. 0
10	.11133	.11426	.11723	.12024	.12329	.12638	.12950	.13587	.14238	127
11	.10218	.10511	.10808	.11109	.11415	.11725	.12039	.12679	.13336	15
12	.09456	.09749	.10046	.10348	.10655	.10967	.11283	.11928	.12590	二十
13	.08812	.09105	.09403	.09706	.10014	.10328	.10646	.11296	.11965	4 %
14	.08260	.08554	.08853	.09157	.09467	.09782	.10102	.10758	.11434	
15	.07783	.08077	.08377	.08683	.08994	.09311	.09634	.10296	.10979	[r/100] $1/w =$
16	.07365	.07660	.07961	.08268	.08582	.08902	.09227	.09895	.10586	1,3
17	.06997	.07293	.07595	.07904	.08220	.08542	.08870	.09544	.10243	三二
18	.06670	.06967	.07271	.07582	.07899	.08224	.08555	.09236	.09941	111
19	.06378	.06676	.06981	.07294	.07614	.07941	.08275	.08962	.09675	
20	.06116	.06415	.06722	.07036	.07358	.07688	.08024	.08718	.09439	,a
25	.05122	.05428	.05743	.06067	.06401	.06744	.07095	.07823	.08581	1 ::
30	.04465	.04778	.05102	.05437	.05783	.06139	.06505	.07265	.08059	F
40	.03656	.03984	.04326	.04683	.05052	.05434	.05828	.06646	.07467	Formula:
50	.03182	.03526	.03887	.04263	.04655	.05060	.05478	.06344	.07238	0
60	.02877	.03235	.03613	.04009	.04420	.04845	.05283	.06188	.07121	14
A STATE OF THE PARTY OF THE PAR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							The second second		

DECIMAL EQUIVALENTS

From minutes and seconds into decimal parts of a degree

0'	00.0000	0"	0°.0000
1	.0167	Ĭ	.0003
2	.0333	2	.0006
12345678910	.05	3	.0008
1	.0667	1	.0011
61	.0833	5"	.0014
2	.10	3	.0017
9		6 7 8	
6	.1167	6	.0019
8	.1333	8	.0022
9	.15 0°.1667	9	.0025
10	0.1667	10"	0°.0028
1 2 3 4	.1833	1	.0031
2	.20	2	.0033
3	.2167	3	.0036
4	.2333	4	.0039
15'	.25	15"	.0042
6	.2667	6	.0044
15' 6 7 8	.2833	7 8	.0047
8	.30	8	.005
9	.3167	9	.0053
20'	Nº 3333	20"	0°.0056
1	.35	1	.0058
2	.35	2	.0061
3	.3833	3	.0064
25'	.40	25"	.0067
25'	.4167	25"	.0069
6	.4333	6	.0072
6 7 8	.45	6 7 8	.0075
8	.4667	8	.0078
9	.4833	9	.0081
30'	00 50	30"	0°.0083
1	5167	1	.0086
2 3	.5167 .5333	2	.0089
3	.55	3	.0092
4	.5667	4	.0094
35'	.5833	35"	.0097
6	.60	6	.01
7	.6167	7	.0103
8	6222	7 8	.0106
9	.6333 .65	9	.0108
40'	0°.6667	40"	0°.0111
1	.6833	1	.0114
2	.70	2	.0117
3	.7167	3	.0119
4	.7333	1	0122
45'	.75	45"	.0122 .0125
47	.7667	45	.0128
6	.7833	6	.0128
8		8	.0133
0	.80	9	.0133
9	.8167	E0"	.0136 0°.0139
50'	0°.8333	50"	.0142
2	.85	1	.0142
2	.8667	3	.0144
1	.8833	3	.0147
651	.90	4	.015
22	.9167 .9333	55"	.0153
7	.9555	0	.0156
1 2 3 4 55' 6 7 8 9	.95	6 7 8	.0158
0	.9667	8	.0161
9	.9833	9	.0164
60'	1.00	60"	0°.0167
	(15) IF	100	-
			The state of
-			

7	LENTS										
	8, 0	From decimal parts of a degree into minutes and seconds (exact values)									
	0°.00	0'	vai	0°.50	30'						
	1	0'	36"	1	30'	36"					
	2 3	1'	12" 48" 24"	2 3	31' 31'	12"					
	4	3'	24"	4	32'	24"					
	0°.05	3'	36"	0°.55	32' 33' 33'	36"					
	7	A	12"	7	34	12"					
	8 9	4'	48"	8 9	34'	48"					
	0°.10	6'	200	0°.60	36'	200					
	1	6	36"	1 2	36' 37'	36"					
	3	7'	12"	3	37'	12"					
	0°.15	8'	24"	0°.65	38'	24"					
	6	9'	36"	6	39'	36"					
	7 8	10' 10'	12" 48"	7 8	40'	12" 48"					
	9	111	24"	9	41'	24"					
	0°.20	12' 12'	36"	0°.70	42'	36"					
1	2	113	12"	2	43'	127					
	3 4	13'	48"	3 4	43'	48"					
	0°.25	15'	T.W.	0°.75	45'	877					
	6 7	15'	36" 12"	6	45'	36" 12"					
	8	16/	48"	7 8	46'	48"					
	0°.30	17'	24"	9	47'	24"					
	0.30	18'	36"	0°.80	48'	36"					
	2 3	19'	12"	2 3	49'	12"					
	4	20'	48"	4	50'	48"					
ı	0°.35	21'	0/#	0°.85	51'	0 1					
	6 7	21'	36" 12"	6 7	51' 52'	36" 12"					
	8	122'	48"	8	52' 53'	48"					
	0°.40	23'	24"	0°.90		24"					
l	1	24'	36"	1	54' 55'	36"					
1	2 3	25'	12"	2 3	55	12" 48"					
1	4	261	24"	4	55' 56'	24"					
1	0°.45	27'	36"	0°.95	57' 57'	36"					
	7	28'	12"	7	158'	12"					
1	8 9	28'	48"	8 9	58' 59'	48"					
	0°.50	30'	24	1°.00	60'	27					
-	12/25	0°.0	00	0"0)						
			1	3".6							
			2	10" 8							
	4.76	00.0	4	0".0 3".6 7".2 10".8 14".4							
1	- Marie	0°.0	6	21"	,	7/6/					
1			7	25".2							
			8	21".6 25".2 28".8 32".4 36"							
	70.5	0°.0		36"							
	-	-		-							

Common fractions									
-				Exact					
8 ths	16 ths	32	64 ths	decimal					
ths	tiis	nds	сцз	values					
1950			1	.01 5625					
		1	2 3	.03 125					
		2	3	.04 6875					
	-1	4	5	.06 25 .07 8125					
		3	6 7	.09 375					
1	-	4	7 8	.10 9375					
A SIN	2	4	9	.14 0625					
		5	10						
	3	6	11	.17 1875					
	,	0	13	.18 75 .20 3125					
		7	13						
2	4	8	15						
- 4	1		17	.26 5625					
		9	18	.28 125					
	5	10	19 20	.29 6875					
	,	10	21 22	.31 25 .32 8125					
		11	22	.34 375 .35 9375 .37 5 .39 0625					
3	6	12	23 24	.35 9375					
		12	25	.39 0625					
		13	26	40 625					
	7	14	27 28	.42 1875 .43 75					
	1		29	45 3125					
		15	29 30 31	.46 875					
4	8	16	31						
	۰		33	.51 5625					
Child		17	34	.22 122					
Land Land	9	18	35	.54 6875 56 25					
	,		36 37 38	.56 25 .57 8125 .59 375					
		19	38	.59 375 .60 9375					
5	10	20	39 40	62.5					
1			41	1 64 0675					
		21	42	1 /7 1075					
74	11	22	44	.68 75					
			45	.68 75 .70 3125 .71 875 .73 4375					
		23	46	.71 875 .73 4375 .75 .76 5625 .78 125 .79 6875					
6	12	24	48	.75					
	-		49	.76 5625					
1		25	50 51	.78 125 .79 6875					
1911	13	26	52 53	1 .81 25					
		07	53	.82 8125					
		27	54	.84 375 .85 9375					
7	14	28	56	.87 5					
Steen .		20	57	00 0/25					
3734		29	58 59	.90 625 .92 1875					
138	15	30	60	.92 1875 .93 75 .95 3125					
		21	61	.95 3125					
Marie .		31	62	.96 875 .98 4375					
	ENLEY		0)	נוכד טו.					

WEIGHTS AND MEASURES

BY

LOUIS A. FISCHER

In the United States the measures of weight and length commonly employed are identical with the corresponding English units, but the capacity measures differ from those now in use in the British Empire, the U. S. gallon being defined as 231 cu. in. and the bushel as 2150.42 cu. in., whereas the corresponding British imperial units are, respectively, 277.418 cu. in., and 2219.344 cu. in. (1 imp. gal. = 1.2 U. S. gal., approx.; 1 imp. bu. = 1.03 U. S. bu., approx.).

The metric system of weights and measures was legalized and its use made permissive in the United States by an Act of Congress, passed in 1866. In 1872, by the concurrent action of the principal governments of the world, it was agreed to establish an International Bureau of Weights and Measures

near Paris.

Prior to 1891 the British imperial yard was regarded as the real standard of the United States. In 1891, the Office of Weights and Measures (now Bureau of Standards) fixed the value of the United States yard in terms of the international meter, according to the ratio: one yard = 3600/3937 meters. At the same time, the pound was fixed in terms of the international kilogram, according to the relation: one pound = 453.59243 grams.

U. S. Customary Weights and Measures

Measures of Leng	th	Measures of Area			
12 inches 3 feet 5½ yards = 16½ feet	=1 foot =1 yard =1 rod, pole or	144 square inches = 1 square 9 square feet = 1 square 30½ square yards = 1 square perch	are yard		
40 poles = 220 yards 8 furlongs = 1760 yards = 5280 feet 3 miles 4 inches 9 inches	perch =1 furlong =1 mile =1 league =1 hand =1 span	160 square rods = 10 square chains = 43,560 sq. ft. = 5645 sq. varas (Texas) 640 acres = 1 square mile = 6	= 1 acre 1 "section" of U. S. Govt. surveyed land		
• Nautical Units 6080.2 feet = 1 n 6 feet = 1 fa 120 fathoms = 1 ca 1 nautical mile per hr. = 1 k	thom able length	1 circular inch = area of circle 1 inch in diameter 1 square inch = 1.2732 cir. in. 1 circular mil = area of circle 0.001 in. in diam. 1,000,000 cir. mils=1 cir. in.			
Surveyor's or Gunter's	Measure	Measures of Volume			
7.92 inches = 1 II 100 links=66 ft.=4 rods=1 c 80 chains = 1 r	ink hain	1728 cubic inches = 27 cubic feet = 1 cord of wood = 12 1 perch of masonry = 16	1 cubic yard 8 cu. ft.		

U. S. Customary Weights and Measures—(continued)

Measures of Volume

Weights

(The grain is the same in all systems)

Liquid or Fluid Messure

	miquiu or riuic	TATOODULU
	4 gills	=1 pint
	2 pints	=1 quart
	4 quarts	=1 gallon
	7.4805 gallons	=1 cubic foot
ì	(There is no standard !	liquid "barrel.")

Apothecaries' Liquid Measure

60 minims = 1 liquid dram or drachm 8 drams = 1 liquid ounce

16 ounces = 1 pint

Water Measure

The Miner's Inch is the quantity of water that will pass through an orifice 1 sq. in. in cross-section under a head of from 4 to 6½ in., as fixed by statutes, and varies from ½ ocu. ft. to ½ ocu. ft. per sec. The units now most in use are 1 cu. ft. per sec. and 1 gal. per sec., the U. S. Reclamation Service employing the former. See p. 260.

Dry Measure

2 pints = 1 quart 8 quarts = 1 peck 4 pecks = 1 bushel

Shipping Measure 1 Register ton = 100 cu. ft.

1 U. S. shipping ton = 40 cu. ft. = {32.14 U. S. bu. 31.14 imp. bu. 1 British shipping ton = 42 cu. ft. = {32.70 imp. bu. 33.75 U. S. bu.

Board Measure

1 board foot = { 144 cu. in. = volume of board 1 ft. sq. and 1 in. thick,

No. of board feet in a $\log = [\frac{1}{4}(d-4)]^2L$, where $d=\dim$ of \log (usually taken inside the bark at small end), in., and $L=\log$ length of \log , it. The 4 in. deducted are an allowance for slab. This rule is variously known as the Doyle, Conn. River, St. Croix, Thurber, Moore and Beeman, and the Scribner rule.

Avoirdupois Weight

16 drams = 437.5 grains = 1 ounce
16 ounces = 7000 grains = 1 pound
100 pounds = 1 cental
2000 pounds = 1 short ton
2240 pounds = 1 long ton
Also (in Great Britain);

14 pounds =1 stone 2 stone = 28 lb. =1 quarter

4 quarters = 112 lb. = 1 hundredweight (cwt.) 20 hundredweight = 1 long ton

Troy Weight

24 grains = 1 pennyweight (dwt.) 20 pennyweights = 480 grains = 1 ounce

12 ounces = 5760 grains = 1 pound 1 Assay Ton = 29,167 milligrams, or as many milligrams as there are troy ounces in a ton of 2000 lb. avoirdupois. Consequently, the number of milligrams of precious metal yielded by an assay ton

of ore gives directly the number of troy ounces that would be obtained from a ton of 2000 lb. avoirdupois.

Apothecaries' Weight

20 grains = 1 scruple 3 3 scruples = 60 grains = 1 dram 3 8 drams = 1 ounce 3 12 ounces = 5760 grains = 1 pound

Weight for Precious Stones

1 carat = 200 milligrams
(Adopted by practically all important nations.)

Circular Measure

60 seconds = 1 minute 60 minutes = 1 degree 90 degrees = 1 quadrant

360 degrees = circumference

57.2957795 degrees = 1 radian (or angle (=57° 17'44.806") having arc of length equal to radius)

METRIC SYSTEM

The fundamental unit of the metric system is the **meter**—the unit of length, from which the units of volume (liter) and of mass (gram) are derived. All other units are the decimal subdivisions or multiples of these. These three units are simply related: one cubic decimeter equals one liter, and one liter of water weighs one kilogram. The metric tables are formed by combining the words "meter," "gram," and "liter" with numerical prefixes.

All lengths, areas, and cubic measures in the following conversion tables are derived from the international meter. The customary weights are likewise derived from the kilogram. All capacities are based on the practical equivalent: 1 cubic decimeter equals 1 liter. (The liter is defined as the volume occupied by the mass of 1 kilogram of water under a pressure of 76 cm. of mercury and at the temperature of 4 deg. cent. According to the best information, 1 liter = 1.000027 cubic decimeters.)

The customary weights derived from the international kilogram are based on the value 1 avoirdupois lb. = 453.59243 grams. The value of the troy lb. is based on the same relation and also the equivalent 5760/7000

avoirdupois lb. equals 1 troy lb.

Metric Measures

Length				Area			
Unit	Sym- bol	Value in meters		Unit	Sym- bol		lue in sq. meters
Micron Millimeter Centimeter Decimeter Meter (unit) Dekameter Hectometer Kilometer Myriameter Megameter	mm. cm. dm. m. dkm. hm. km.	0.000001 0.001 0.01 0.1 1.0 10.0 100.0 1,000.0 1,000.0		Sq. millimeter Sq. centimeter Sq. decimeter Sq. meter (centiare) Sq. dekameter (are) Hectare Sq. kilometer	mm. ² cm. ² dm. ² a. ha. km. ²	1,000	0.000001 0.0001 1.0 100.0 0,000.0
	Volume			Cub	ic mea	sure	
Tinia	0	rum h al	Value in	IInit	0	m h al	Value in

Unit	Symbol	Value in liters	Unit	Symbol	Value in cubic meters	
MilliliterLiter (unit)Kiloliter	ml.or cm. ⁸ l. or dm. ⁸ kl. or m. ⁸	0.001 1.0 1,000.0	Cubic kilometer Cubic hectometer Cubic dekameter	km. ³ hm. ³ dkm. ³	10° 106 10°	
Centiliter Deciliter Dekaliter Hectoliter	cl. dl. dkl. hl.	0.01 0.1 10.0 100.0	Cubic meter Cubic decimeter Cubic centimeter Cubic millimeter Cubic micron	m.8 dm.8 cm.8 mm.8	1 10-8 10-8 10-9 10-18	

Weight									
Unit	Symbol	Value in grams	Unit	Symbol	Value in grams				
Microgram	mg. cg. dg.	0.000001 0.001 0.01 0.1	Dekagram	kg.	10.0 100.0 1,000.0 10,000.0 100,000.0 1,000,000.0				

SYSTEMS OF UNITS

The principal units of interest to mechanical engineers can all be derived from the three fundamental units of force, length, and time. These three fundamental units may be chosen at pleasure; each such choice gives rise to a "system" of units. The following table gives the units of the four "systems" most often met with in the literature.

UNITS 73

The precise definitions of the fundamental units in these systems are as follows. (In these definitions the "standard pound body" and the "standard kilogram body" refer to two special lumps of metal, carefully preserved at London and Paris, respectively; the "standard locality" means sea level, 45 deg. latitude; or, more strictly, any locality in which the acceleration due to gravity has the value 980.665 cm. per sec.² = 32.1740 ft. per sec.², which may be called the **standard acceleration**.

The **pound** (force) is the force required to support the standard pound body against gravity, in vacua, in the standard locality; or, it is the force which, if applied to the standard apound body, supposed free to move, would give that body the "standard acceleration." The word "pound" is used for the unit of both force and mass, and consequently is ambiguous. To avoid uncertainty it is desirable to call the units

'pound force" and "pound mass," respectively.

The kilogram (force) is the force required to support the standard kilogram against gravity, in vacuo, in the standard locality; or, it is the force which, if applied to the standard kilogram body, supposed free to move, would give that body the "standard acceleration." The word "kilogram" is used for the unit of both force and mass and consequently is ambiguous. To avoid uncertainty it is desirable to call the units "kilogram force" and "kilogram mass," respectively.

The poundal is the force which, if applied to the standard pound body, would give that body an acceleration of 1 ft. per sec.2; that is, 1 poundal = 1/32.1740 of a pound

force.

The **dyne** is the force which, if applied to the standard gram body, would give that body an acceleration of 1 cm. per sec.²; that is, 1 dyne = 1/980.665 of a gram force.

Systems of Units

bystems of onics									
Name of unit			Metric "gravita- tional" sys- tem, or "kilogram- meter-sec- ond" system	Metric "absolute" system, or "C. G. S." system	British "absolute" system (little used)				
ForceLengthTime.	F L T	1 lb. 1 ft. 1 sec.	i kg. 1 m. 1 sec.	1 dyne 1 cm. 1 sec.	1 poundal 1 ft. 1 sec.				
Velocity Acceleration Pressure Impulse or	$L/T \ L/T^2 \ F/L^2$	1 ft. per sec. 1 ft. per sec. ² 1 lb. per ft. ²	1 m. per sec. 1 m. per sec. ² 1 kg. per m. ²	1 cm. per sec. 1 cm. per sec. ² 1 dyne per cm. ²	1 ft. per sec. 1 ft. per sec. ² 1 pdl. per ft. ²				
momentum Work or	FT	1 lbsec.	1 kgsec.	1 dyne-sec.	1 pdlsec.				
energy	FL	1 ftlb.	1 kgm.	1 dyne-cm. = 1 "erg."	1 ftpdl.				
Power	FL/T	1 ftlb. per	1 kgm. per	1 dyne-cm. per	1 ftpdl. per				
Mass	$F/(L/T^2)$	1 lb. per (ft. per sec.2) = 1 "slug."	1 kg. per (m. per sec.²) = 1 "metric slug."	1 dyne per (cm. per sec.2) = 1 gram mass.	1 pdl. per (ft. per sec.2) = 1 pound mass.				

NOTE. The "slug" (also called the "geepound," or the "engineer's unit of mass"), the "metric slug," and the "poundal" are never used in practice.

Other common units are as follows:

Work: 1 joule = 10^7 ergs = 10,000,000 dyne-cm.

1 kilowatt-hour = 3,600,000 joules = 3600×10^{10} dyne-cm.

Power: 1 horse power = 550 ft.-lb. per sec.

1 poncelet = 100 kg.-m. per sec.

1 force de cheval = 75 kg.-m. per sec.

1 watt = 1 joule per sec. = 10,000,000 dyne-cm. per sec.

1 kilowatt = 1000 watts = 1010 dyne-cm. per sec.

A new horse power of 550,220 ft.-lb. per sec., or 746 watts, has been proposed, but has not been accepted by mechanical engineers.

The weight of a body (in a given locality) always means a force, namely, the force, re-

quired to support the body against gravity (in that locality). When no particular locality is specified, the standard locality may be assumed. Thus, the "standard weight" of the pound body is 1 lb.; the "standard weight" of the kilogram body is 1 kg.

Heat Units. The units of heat commonly used are (1) the quantity of heat required to raise the temperature of 1 gram of water 1 deg. cent. at a mean temperature of 15 deg. cent., or (2) the heat required to raise the temperature of 1 lb. of water 1 deg. fahr. The former quantity is called the gram-calorie (small calorie), while the latter is known as the British thermal unitor B.t.u.

Force Equivalents

Dynes \times 106	Kilograms	Pounds	Poundals	
1	1.020	2.248	72.33	
	0.00848	0.03518	1.85933	
0.9807	1	2.205	70.93	
1.99149		0.34334	1.85084	
0.4448	0.4536	1	32.17	
1.64819	1.65667		1.50750	
0.01383	0.01410	0.03108	1	
2.14067	2.14916	2.49249		

The kilogram-calorie (large calorie), which is equal to 1000 g.-cal., is largely used in engineering work in metric countries. * 1 therm = 1 g.-cal.

CONVERSION TABLES Length Equivalents

mongon additioned								
Centimeters	Inches	Feet	Yards	Meters	Chains	Kilometers	Miles	
1	0.3937 T.59517	0.03281 2.51598	0.01094 2.03886	0.01 2.00000	0.034971 4.69644	10 ⁻⁵ 5.00000	0.0₅6214 6.79335	
2.540	1	0.0 ₈ 8333	0.02778	0.0254	0.041263	0.04254	0.041578	
0.40483		4.92082	2.44370	2.40483	5.10127	5.40483	5.19818	
30.48 1.48402	12 1.07918	1	0.3333 1.52288	0.3048 1.48402	0.01515 2.18046	0.0 ₃ 3098 4.48402	$\frac{0.031645}{4.21608}$	
91.14 1.96114	36 1.55630	3 0.47712	1	0.9144 1.96114	0.04545 2.65758	0.0 ₃ 9144 4.96114	0.035682 $\overline{4.75449}$	
100	39.37	3.281	1.0936	1	0.04971	0.001	0.036214	
2.00000	1.59517	0.51598	0.03886		2.69644	3.00000	4.79335	
2012	792	66	22	20.12	1	0.02012	0.0125	
3.30356	2.89873	1.81954	1.34242	1.30356		2.30356	2.09691	
100000	39370	3281	1093.6	1000	49.71	1	0.6214	
5.00000	4.59517	3.51598	3.03886	3.00000	1.69644		1.79335	
160925	63360	5280	1760	1609	80	1.609	1	
5.20665	4.80182	3.72263	3.24551	3.20665	1.90309	0.20665		

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 03, 94, etc., mean that that figure is to be repeated the indicated number of times.

Conversion of Lengths

	Conversion of Benguis										
	Inches	Milli-	Feet	Meters	Yards	Meters	Miles	Kilo-			
	to milli-	meters	to	to	to	to	to kilo-	meters			
	meters	to inches	meters	feet	meters	yards	meters	to miles			
1	25.40	0.03937	0.3048	3.281	0.9144	1.094	1.609	0.6214			
2	50.80	0.07874	0.6096	6.562	1.829	2.187	3.219	1.243			
3	76.20	0.1181	0.9144	9.842	2.743	3.281	4.828	1.864			
4	101.60	0.1575	1.219	13.12	3.658	4.374	6.437	2.485			
5	127.00	0.1968	1.524	16.40	4.572	5.486	8.047	3,107			
6	152.40	0.2362	1.829	19.68	5.486	6.562	9.656	3,728			
7	177.80	0.2756	2.134	22.97	6.401	7.655	11.27	4,350			
8	203.20	0.3150	2.438	26.25	7.315	8.749	12.87	4,971			
9	228.60	0.3543	2.743	29.53	8.230	9.842	14.48	5,592			

^{*}See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Mechanical Equivalent of Heat. See p. 311.* The value most commonly accepted among American engineers as the work equivalent of 1 mean B.t.u. is 777.5 ft.-lb., and the mean gram-calorie = 4.183 joules, which are the values used throughout this book. The U. S. Bureau of Standards does not recommend any special value; for its own purposes it takes the 59 deg. fahr. B.t.u. as 778.2 ft.-lb. and the 68 deg. B.t.u. as 777.5 ft.-lb. The 15 deg. calorie = 4.187 joules; 20 deg. calorie = 4.183 joules. There is an uncertainty of about 1 part in 1000 in these values.

Conversion of Lengths: Inches and Millimeters

Conversion of Lengths: Inches and Millimeters												
			Commo		ions of rom 1/64			mill	imeter	8		
64ths	Milli- meters	64ths	Milli- meters	64ths	Milli- meters	64ths	Mi		64ths	Milli- meters	64ths	Milli- meters
1 2 3 4	0.397 0.794 1.191 1.588	13 14 15 16	5.159 5.556 5.953 6.350	25 26 27 28	9.922 10.319 10.716 11.113	37 38 39 40	14.6 15.6 15.4 15.8	081 478	49 50 51 52	19.447 19.844 20.241 20.638	57 58 59 60	22.622 23.019 23.416 23.813
5 6 7 8	1.984 2.381 2.778 3.175	17 18 19 20	6.747 7.144 7.541 7.938	29 30 31 32	11.509 11.906 12.303 12.700	41 42 43 44	16.2 16.6 17.6 17.6	669 066	53 54 55 56	21.034 21.431 21.828 22.225	61 62 63 64	24.209 24.606 25.003 25.400
9 10 11 12	3.572 3.969 4.366 4.763	23	8.334 8.731 9.128 9.525	33 34 35 36	13.097 13.494 13.891 14.288	45 46 47 48	17.1 18.1 18.1 19.1	256 653				
Decimals of an inch to millimeters. (From 0.01 in. to 0.99 in.)												
	0	1	2	3	4	1	5	6		7	8	9
.0 .1 .2 .3 .4	2.540 5.080 7.620 10.160	0.254 2.794 5.334 7.874 10.414	0.508 3.048 5.588 8.128 10.668	0.76 3.30 5.84 8.38 10.92	12 3.55 12 6.09 13 8.63	56 3 96 6 36 8	.270 .810 .350 .890 .430	4. 6. 9.	524 064 604 144 684	1.778 4.318 6.858 9.398 1.938	2.032 4.572 7.112 9.652 12.192	2.286 4.826 7.366 9.906 12.446
.5 .6 .7 .8 .9	12.700 15.240 17.780 20.320 22.860	12.954 15.494 18.034 20.574 23.114	13.208 15.748 18.288 20.828 23.368	13.46 16.00 18.54 21.08 23.62	12 16.25 12 18.79 32 21.33	56 16 96 19 36 21	.970 .510 .050 .590 .130	16. 19. 21.	764 304 844	4.478 7.018 19.558 22.098 24.638	14.732 17.272 19.812 22.352 24.892	14.986 17.526 20.066 22.606 25.146
-014		Millin	neters to	decim	als of ar	inch.	(F	rom	1 to 9	9 mm.)		
	0.	1.	2.	3.	4.		5.	(5.	7.	8.	9
0 1 2 3 4	0.3937 0.7874 1.1811 1.5748	0.0394 0.4331 0.8268 1.2205 1.6142	0.0787 0.4724 0.8661 1.2598 1.6535	0.118 0.511 0.905 1.299 1.692	8 0.55 5 0.94 2 1.338	12 0.5 49 0.5 36 1.3	1969 5906 9843 3780 7717	1.0	0299 0236 1173	0.2756 0.6693 1.0630 1.4567 1.8504	0.3150 0.7087 1.1024 1.4961 1.8898	0.3543 0.7480 1.1417 1.5354 1.9291
5 6 7 8 9	1.9685 2.3622 2.7559 3.1496 3.5433	2.0079 2.4016 2.7953 3.1890 3.5827	2.0472 2.4409 2.8346 3.2283 3.6220	2.086 2.480 2.874 3.267 3.661	03 2.519 10 2.913 17 3.303	97 2.5 34 2.5 71 3.5	1654 5591 9528 3465 7402	2.5	984 9921 8858	2.2441 2.6378 3.0315 3.4252 3.8189	2.2835 2.6772 3.0709 3.4646 3.8583	2.3228 2.7165 3.1102 3.5039 3.8976
	Soo Mos	alra' Ma	CTANIC	. Far	CINEEDO	, H.	nno	7.77				20000

^{*}See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Area Equivalents (For conversion table see p. 77)

Square meters	Square inches	Square feet	Square yards	Square rods	Square chains	Roods	Acres	Square miles or sections
1	1550 3.19033	10.76 1.03197	1.196 0.07773	0.0395 2.59699	0.002471 3.39288	0.0 ₈ 9884 3.99494	0.0 ₈ 2471 4.39288	0.0 ₆ 3861 7.58670
0.0 ₂ 6452 4 80967	1	0.006944 3.84164	$\frac{0.0011}{3.88740}$	0.0 ₄ 2551 5.40667	0.0 ₆ 1594 6.20255	0.0 ₆ 6377 7.80461	0.0 ₆ 1594 7.20255	0.0,4910 10.39637
0.09290 2.96803	144 2.15836	1,	$\frac{0.1111}{1.04576}$	0.003673 3.56503	$\frac{0.032296}{4.36091}$	0.0 ₄ 9184 5.96297	0.0 ₄ 2296 4.36091	0.0 ₇ 3587 8.55473
0.8361 1.92227	1296 3.11260	9 0.95424	1	$\frac{0.03306}{2.51927}$	$\frac{0.002066}{3.31515}$	0.0 ₃ 8264 4.91721	0.0002066 4.31515	0.0 ₆ 3228 7.50898
25.29 1.40300	39204 4.59333	272.25 2.43497	30.25 1.48072	1	0.0625 2.79588	$\frac{0.02500}{2.39794}$	$\frac{0.00625}{3.79588}$	$\frac{0.069766}{6.98970}$
404.7 2.60712	627264 5.79745	4356 3.63909	484 2.68484	16 1.20412	1	$\frac{0.4}{1.60206}$	1.00000	0.0001562 4.19382
1012 3.00506	1568160 6.19539	10890 4.03703	1210 3.08278	40 1.60206	2.5 0.39794	1	0.25 1.39794	0.0 ₈ 3906 4.59176
4047 3.60712	6272640 6.79745	43560 4.63909	4840 3.68484	160 2.20412	1.00000	0.60206	1	$\frac{0.001562}{3.19382}$
2589 ₂ 8 6.41330		27878400 7.44527	3097600 6.49102	102400 5.01030	3.80618	2560 3.40824	2.80618	1

(1 hectare = 100 ares = 10,000 centiares or square meters)

Volume and Capacity Equivalents (For conversion table see p. 77)

					-				
			U. S.		quarts	U. S.	gallons		
Cubic inches	Cubic feet	Cubic yards	Apothe- cary liquid ounces	Liquid	Dry	Liquid	Dry	Bushels U. S.	Liters (l)
. 1	0.0 ₃ 5787 4.76246	0.0 ₄ 2143 5.33109	0.5541 T.74360	$\frac{0.01732}{2.23845}$	$\frac{0.01488}{2.17263}$	0.024329 3.63639		0.0 ₃ 4650 4.66748	$\frac{0.01639}{2.21450}$
1728 3.23754	1	0.03704 $\overline{2.56864}$	957.5 2.98114	29.92 1.47599	25.71 1.41017	7.481 0.87393	6.429 0.80811	$\frac{0.8036}{1.90502}$	28.32 1.45205
46656 4.66891	27 1.43136	1	25853 4.41251	807.9 2.90736	694.3 2.84153	202.0 2.30530	173.6 2.23948	21.70 1.33638	764.6 2.88341
1.805 0.25640	0.001044 3.01886	$\begin{array}{c} 0.043868 \\ \overline{5.58749} \end{array}$	1	0.03125 $\overline{2}.49485$	$\frac{0.02686}{2.42903}$	$\frac{0.007813}{3.89279}$	$\frac{0.006714}{3.82697}$	4.92388	$\frac{0.02957}{2.47091}$
57.75 1.76155	0.03342 $\overline{2.52401}$	$\frac{0.001238}{3.09264}$	32 1.50515	1	0.8594 1.93418	0.25 1.39794	$\frac{0.2148}{1.33212}$	$\frac{0.02686}{2.42903}$	0.9464 1.97606
67.20 1.82737	$\frac{0.03889}{2.58983}$	0.001440 3.15847	37.24 1.57097	1.164 0.06582	1	$\frac{0.2909}{1.46376}$	0.25 1.39794	$\frac{0.03125}{2.49485}$	1.101 0.04188
231 2.36361	$\frac{0.1337}{1.12607}$	0.004951 3.69470	128 2.10721	4 0.60206	3.437 0.53624	1	0.8594 1.93418	0.1074 1.03109	3.785 0.57812
268.8 2.42943	0.1556 1.19189	0.005761 3.76053	148.9 2.17303	4.655 0.66788	0.60206		1	0.125 1.09691	4.405 0.64394
2150 3.33252	1.244 0.09498	0.04609 2.66362	1192 3.07612	37.24 1.57097	32 1.50515	9.309 0.96891	0.90309	1	35.24 1.54703
61.02 1.78550	$\frac{0.03531}{2.54795}$	0.001308 3.11659	33.81 1.52909	1.057 0.02394	0.9081 1.95812	0.2642 1.42188	0.2270 1.35606	$\frac{0.02838}{2.45297}$	1

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 03, 94, etc., mean that that figure is to be repeated the indicated number of times.

Conversion of Areas

	Sq. in. to sq. cm.	Sq. cm. to sq. in.	Sq. ft. to sq. m.	Sq. m. to sq. ft.	Sq. yd. to sq. m.	Sq. m. to sq. yd.	Acres to hec- tares	Hec- tares to acres		Sq. km. to sq. mi.
1 2 3 4	6.452	0.1550	0.0929	10.76	0.8361	1.196	0.4047	2.471	2.590	0.3861
	12.90	0.3100	0.1858	21.53	1.672	2.392	0.8094	4.942	5.180	0.7722
	19.35	0.4650	0.2787	32.29	2.508	3.588	1.214	7.413	7.770	1.158
	25.81	0.6200	0.3716	43.06	3.345	4.784	1.619	9.884	10.360	1.544
5	32.26	0.7750	0.4645	53.82	4.181	5.980	2.023	12.355	12.950	1.931
6	38.71	0.9300	0.5574	64.58	5.017	7.176	2.428	14.826	15.540	2.317
7	45.16	1.085	0.6503	75.35	5.853	8.372	2.833	17.297	18.130	2.703
8	51.61	1.240	0.7432	86.11	6.689	9.568	3.237	19.768	20.720	3.089
9	58.06	1.395	0.8361	96.87	7.525	10.764	3.642	22.239	23.310	3.475

Conversion of Volumes or Cubic Measure

	Cu. in.	Cu. cm.	Cu. ft.	Cu. m.	Cu. yd.	Cu. m.	Gallons	Cu. ft.
	to							
	cu. cm.	cu. in.	cu. m.	cu. ft.	Cu. m.	cu. yd.	cu. ft.	gallons
1	16.39	0.06102	0.02832	35.31	0.7646	1.308	0.1337	7.481
2	32.77	0.1220	0.05663	70.63	1.529	2.616	0.2674	14.96
3	49.16	0.1831	0.08495	105.9	2.294	3.924	0.4011	22.44
4	65.55	0.2441	0.1133	141.3	3.058	5.232	0.5348	29.92
5	81.94	0.3051	0.1416	176.6	3.823	6.540	0.6685	37.41
6	98.32	0.3661	0.1699	211.9	4.587	7.848	0.8022	44.89
7	114.7	0.4272	0.1982	247.2	5.352	9.156	0.9359	52.36
8	131.1	0.4882	0.2265	282.5	6.116	10.46	1.070	59.85
9	147.5	0.5492	0.2549	317.8	6.881	11.77	1.203	67.33

Conversion of Volumes or Capacities

	Liquid ounces to cu. cm.	Cu. cm. to liquid ounces	Pints to liters	Liters to pints	Quarts to liters	Liters to quarts	Gallons to liters	Liters to gallons	Bushels to hecto- liters	Hecto- liters to bushels
1 2 3 4	29.57	0.03381	0.4732	2.113	0.9464	1.057	3.785	0.2642	0.3524	2.838
	59.15	0.06763	0.9464	4.227	1.893	2.113	7.571	0.5283	0.7048	5.676
	88.72	0.1014	1.420	6.340	2.839	3.170	11.36	0.7925	1.057	8.513
	118.3	0.1353	1.893	8.453	3.785	4.227	15.14	1.057	1.410	11.35
5	147.9	0.1691	2.366	10.57	4.732	5.283	18.93	1.321	1.762	14.19
6	177.4	0.2029	2.839	12.68	5.678	6.340	22.71	1.585	2.114	17.03
7	207.0	0.2367	3.312	14.79	6.625	7.397	26.50	1.849	2.467	19.86
8	236.6	0.2705	3.785	16.91	7.571	8.453	30.28	2.113	2.819	22.70
9	266.2	0.3043	4.259	19.02	8.517	9.510	34.07	2.378	3.172	25.54

Conversion of Masses

	Grains to grams	Grams to grains	Ounces (avoir.) to grams	Grams to ounces (avoir.)	Pounds (avoir.) to kilo- grams		Short tons (2000 lb.) to metric tons	Metric tons (1000 kg.) to short tons	Long tons (2240 lb.) to metric tons	Metric tons to long tons
1 2 3 4	0.06480	15.43	28.35	0.03527	0.4536	2.205	0.907	1.102	1.016	0.984
	0.1296	30.86	56.70	0.07055	0.9072	4.409	1.814	2.205	2.032	1.968
	0.1944	46.30	85.05	0.1058	1.361	6.614	2.722	3.307	3.048	2.953
	0.2592	61.73	113.40	0.1411	1.814	8.818	3.629	4.409	4.064	3.937
5	0.3240	77.16	141.75	0.1764	2.268	11.02	4.536	5.512	5.080	4.921
6	0.3888	92.59	170.10	0.2116	2.722	13.23	5.443	6.614	6.096	5.905
7	0.4536	108.03	198.45	0.2469	3.175	15.43	6.350	7.716	7.112	6.889
8	0.5184	123.46	226.80	0.2822	3.629	17.64	7.257	8.818	8.128	7.874
9	0.5832	138.89	255.15	0.3175	4.082	19.84	8.165	9.921	9.144	8.857

Velocity Equivalents (For conversion table see p. 80)

Centimeters per sec.	Meters per sec.	Meters per min.	Kilo- meters per hour	Feet per sec.	Feet per min.	Miles per hour	Knots
1	0.01	0.6 1.77815	0.036 2.55630	0.03281 2.51598	1.9685 0.29414	$\frac{0.02237}{2.34965}$	0.01942 2.28825
100	1	60	3.6	3.281	196.85	2.237	1.942
2.00000		1.77815	0.55630	0.51598	2.29414	0.34965	0.28825
1.667 0.22184	0.01667 2.22184	1	0.06 2.77815	0.05468 2.73783	3.281 0.51598	0.03728 2.57150	$\frac{0.03237}{2.51018}$
27.78	0.2778	16.67	1	0.9113	54.68	0.6214	0.53960
1.44370	T.44370	1.22184		1.95968	1.73783	1.79335	T.73207
30.48	0.3048	18.29	1.097	0 1	60	0.6818	0.59209
1.48402	T.48402	1.26217	0.04032		1.77815	1.83367	1.77238
0.5080 1.70586	0.005080 3.70586	0.3048 1.48402	0.01829 2.26217	$\frac{0.01667}{2,22185}$	1	0.01136 2.05553	0.00987 3.99423
44.70	0.4470	26.82	1.609	1.467	88	1	0.86839
1.65035	T.65035	1.42850	0.20670	0.16633	1.94448		1.93871
51.497	0.51497	30.898	1.8532	1.68894	101.337	1.15155	1
1.71178	T.71178	1.48993	0.26793	0.22761	2.00577	0.06128	

Mass Equivalents (For conversion table see p. 77)

	(For conversion table see p. 11)										
		Our	ices	Pou	nds		Tons				
Kilograms	Grains	Troy and apoth.	Avoir- dupois	Troy and apoth.	Avoir- dupois	Short	Long	Metric			
1	15432 4.18843	32.15 1.50719	35.27 1.54745	2.6792 0.42801	2.205 0.34333		0.089842 4.99309	0.001			
0.046480 5.81157	1	0.0 ₂ 2083 3.31876	$\frac{0.022286}{3.35902}$	0.0 ₃ 1736 4.23958	0.0 ₃ 1429 4.15490		0.076378 8.80465	0.076480 8.81157			
0.03110 $\overline{2.49281}$	480 2.68124	1	1.09714 0.04026	0.08333 2.92082	$\frac{0.06857}{2.83614}$		0.043061 5.48590	0.0 ₄ 3110 5.49281			
$\frac{0.02835}{2.45255}$	437.5 2.64098	0.9115 1.95974	1	0.07595 2.88056	$\frac{0.0625}{2.79588}$	0.0 ₄ 3125 5.49485	$\frac{0.042790}{5.44563}$	$\frac{0.042835}{5.45255}$			
0.3732 1.57199	5760 3.76042	12 1.07918	13.17 1.11944	1	0.8229 1.91532	$\frac{0.034114}{4.61429}$	0.0 ₃ 3673 4.56508				
0.4536 1.65667	7000 3.84510	14.58 1.16386	16 1.20412	1.215 0.08468	1	$\frac{0.0005}{4.69897}$	0.034464 4.64975	$\frac{0.034536}{4.65667}$			
907.2 2.95770	140 ₆ 7.14613	29167 4.46489	320 ₈ 4.50515	2431 3.38571	2000 3.30103	1	0.8929 1.95078	$\frac{0.9072}{1.95770}$			
1016 3.00691	15680 ₄ 7.19535	326 ₈ 4.51411	35840 4.55437	2722 3.43492	2240 3.35025	1.12 0.04922	1	1.016 0.00691			
1000 3.00000	15432356 7.18843	32151 4.50719	35274 4.54745	2679 3.42801	2205 3.34333	1.102 0.04230	0.9842 1.99309	1			

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 94, etc., mean that that figure is to be repeated the indicated number of times.

Pressure Equivalents (For conversion table see p. 80)

(For conversion cable see p. 50)											
Megabars or megadynes per sq. cm.	Kilo- grams per sq. cm. (Metric atmos-	Pounds per sq. in.	Short tons per sq. ft.	Atmos- pheres	mercu	ons of ary at erature C.		ns of war ature			
aq. cm.	pheres)				Meters	Inches	Meters	Inches	Feet		
ALCO L	1.0197	14.50 1.16148	1.044 0.01882	0.9869 1.99427	0.7500 1.87508	29.53 1.47025	10.21	401.8	33.48 1.52484		
0.9807 1.99152	1	14.22 1.15300	1.024 0.01034	0.9678 $\overline{1.98579}$	0.7355 1.86660	28.96 1.46177	10.01 1.00038	394.0 2.59555	32.84 1.51636		
0.06895 2.83852	$\frac{0.07031}{2.84700}$	1	0.072 2.85733	$\frac{0.06804}{2.83279}$	$\frac{0.05171}{2.71360}$	2.036 0.30876	0.7037 1.84738	27.70 1.44254	2.309 0.36336		
0.9576 1.98119	0.9765 T.98966	13.89 1.14267	n share	$\frac{0.9450}{1.97545}$	$\frac{0.7182}{1.85627}$	28.28 1.45143	9.773 0.99004	384.8 2.58521	32.06 1.50603		
1.0133 0.00573	1.0333 0.01421	14.70 1.16722	1.058	n V	0.76 T.88081	29.92 1.47598	10.34 1.01459	407.2 2.60976	33.93 1.53058		
1.3333 0.12492	1.3596 0.13340	19.34 1.28640	1.392 0.14373	1.316 0.11919	1	39.37 1.59517	13.61 1.13378	535.7 2.72894	44.64 1.64976		
$\frac{0.03386}{2.52975}$	$\frac{0.03453}{2.53823}$	$\frac{0.4912}{1.69124}$	$\frac{0.03536}{2.54857}$	$\frac{0.03342}{2.52402}$	$\frac{0.02540}{2.40484}$	1	0.3456 T.53861	13.61 1.13378	1.134 0.05460		
$\frac{0.09798}{2.99114}$	$\frac{0.09991}{2.99962}$	1.421 0.15262	$\frac{0.1023}{1.00996}$	$\frac{0.09670}{2.98541}$	0.07349 2.86622	2.893 0.46139		39.37 1.59517	3.281 0.55198		
0.002489 3.39598	0_002538 3.40446	$\frac{0.03610}{2.55746}$	$\frac{0.002599}{3.41479}$	3.39024	$\frac{0.001867}{3.27106}$	$\frac{0.07349}{2.86622}$	$\frac{0.02540}{2.40484}$	1	0.08333 2.92082		
0.02986 2.47516	0.03045 2.48364	0.4332 1.63664	0.03119 2.49397	0.02947 2.46942	$\frac{0.02240}{2.35024}$	0.8819 1.94540	0.3048 T.48402	12 1.07918	1		

Energy or Work Equivalents (For conversion table see p. 80)

(For conversion table see p. 80)											
Joules = 107 ergs	Kilogram- meters	Foot- pounds	Kilo- watt- hours	Cheval- vapeur- hours	Horse- power- hours	Liter- atmos- pheres	Kilo- gram- calories	British thermal units			
1	0.10197 1.00848	0.7376 1.86780	0.0 ₆ 2778 7.44370	0.0 ₆ 3777 7.57711	0.0 ₆ 3725 7.57113	0.009869 3.99427	0.0 ₈ 2390 4.37848				
9.80665 0.9915207	1	7.233 0.85932	0.0 ₅ 2724 6.43522	0.0 ₅ 37037 6.56863	0.0 ₅ 3653 6.56265	0.09678 2.98579	0.002344 3.37000				
1.356 0.13220	0.1383 1.14068	1	0.0 ₆ 3766 7.57590	0.0 ₆ 51206 7.70932	0.0 ₆ 50505 7.70333	0.01338 2.12647	0.0 ₃ 3241 4.51068	0.001286 3.10929			
3.6×10 ⁶ 6.55630	3.671×10 ⁶ 5.56478	2.655×10 ⁶ 6.42410	1,	1.3596 0.13342	1.341 0.12743	35528 4.55057	860.5 2.93478	3415 3.53339			
2.648×10 ⁶ 6.42288	270000. 5.43138	1.9529×106 6.29068	$\frac{0.7355}{1.86658}$	1	0.9863 1.99401	26131. 4.41715	632.9 2.80135	2512 3.39996			
2.6845×106 6.42887	2.7375×10 ⁵ 5.43735	1.98×10 ⁶ 6.29667	$\frac{0.7457}{1.87257}$	1.0139 0.00598	1	26494 4.42314	641.7 2.80735	2547 3.40595			
101.33 2.00573	10.333 1.01421	74.73 1.87353	0.042815 5.44943	0.0 ₄ 3827 5.58284	0.0 ₄ 3774 5.57686	1	0.02422 2.38425	0.09612 2.98281			
4183 3.62153	426.6 2.63000	3086 3.48932	0.001162 3.06522	0.001580 3.19864	0.001558 3.19265	41.29 1.61579	-1	3.968 0.59861			
1054 3.02291	107.5 2.03139	777.52 2.89071	0.0a2928 4.46661	0.0 ₃ 3981 4.60003	$\begin{array}{c c} 0.0_33927 \\ \hline 4.59405 \end{array}$	10.40 1.01719	0.25200 1.40139	1			

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 0s, 9s, etc., mean that that figure is to be repeated the indicated number of times.

1. I carl = 4.186 and Joules

Linear and Angular Velocity Conversion Factors

	Cm. per	Feet per	Cm. per	Miles	Feet per	Miles	Radians	Rev. per
	sec. to	min. to	sec. to	per hour	sec. to	per hour	per sec.	min. to
	feet per	cm. per	miles	to cm.	miles	to feet	to rev.	radians
	min.	sec.	per hour	per sec.	per hour	per sec.	per min.	per sec.
1	1.97	0.508	0.0224	44.7	0.682	1.47	9.55	0.1047
2	3.94	1.016	0.0447	89.4	1.364	2.93	19.10	0.2094
3	5.91	1.524	0.0671	134.1	2.046	4.40	28.65	0.3142
4	7.87	2.032	0.0895	178.8	2.727	5.87	38.20	0.4189
5	9.84	2.540	0.1118	223.5	3.409	7.33	47.75	0.5236
6	11.81	3.048	0.1342	268.2	4.091	8.80	57.30	0.6283
7	13.78	3.556	0.1566	312.9	4.773	10.27	66.85	0.7330
8	15.75	4.064	0.1789	357.6	5.455	11.73	76.39	0.8378
9	17.72	4.572	0.2013	402.3	6.136	13.20	85.94	0.9425

Conversion of Pressures

	Pounds per sq. in. to kilograms per sq. em.	Kilograms per sq. cm. to pounds per sq. in.	Atmospheres to pounds per sq. in.	Pounds per sq. in. to atmospheres	Atmospheres to kilograms per sq. cm.	Kilograms per sq. cm. to atmos- pheres
1 2 3 4	0.0703	14.22	14.70	0.0680	1.033	0.9678
	0.1406	28.45	29.39	0.1361	2.067	1.936
	0.2109	42.67	44.09	0.2041	3.100	2.903
	0.2812	56.89	58.79	0.2722	4.133	3.871
5	0.3515	71.12	73.48 .	0.3402	5.166	4.839
6	0.4218	85.34	88.18	0.4082	6.200	5.807
7	0.4922	99.56	102.9	0.4763	7.233	6.774
8	0.5624	113.8	117.6	0.5443	8.266	7.742
9	0.6328	128.0	132.3	0.6124	9.300	8.710

Conversion of Energy, Work, Heat

	Ftlb. to kilo- gram- meters	Kilo- gram- meters to ftlb.	Ftlb. to B.t.u.	B.t.u. to ftlb.	Kilo- gram- meters to large calories	Large calories to kilo- gram- meters	Joules to small calories	Small calories to joules
1	0.1383	7.233	0.001286	777.5	0.002344	426.6	0.2390	4.183
2	0.2765	14.47	0.002572	1555.0	0.004688	853.2	0,4780	8.367
3	0.4148	21.70	0.003858	2333.0	0.007033	1280.0	0.7170	12.55
4	0.5530	28.93	0.005144	3110.0	0.009377	1706.0	0.9560	16.73
5	0.6913	36.16	0.006431	3888.0	0.01172	2133.0	1.195	20.92
6	0.8295	43.40	0.007717	4665.0	0.01407	2560.0	1.434	25.10
7	0.9678	50.63	0.009003	5443.0	0.01641	2986.0	1.673	29.28
8	1.106	57.86	0.01029	6220.0	0.01875	3413.0	1.912	33.47
9	1.244	65.10	0.01157	6998.0	0.02110	3839.0	2.151	37.65

Conversion of Power

	Horse powers to kilowatts	Kilowatts to horse powers		Kilowatts to metric horse powers	Horse powers to metric horse powers	norse powers					
1 2 3 4	0.7457 1.491 2.237 2.983	1,341 2,682 4,023 5,364	0.7354 1.471 2.206 2.942	1.360 2.719 4.079 5,439	1.014 2.028 3.042 4.056	0.9863 1.973 2.959 3.945					
5 6 7 8	3.728 4.474 5.220 5.965 6.710	6.705 8.046 9.387 10.73	3.677 4.413 5.148 5.884 6.619	6.799 8.158 9.518 10.88 12.24	5.069 6.083 7.097 8.111 9.125	4.932 5.918 6.904 7.890 8.877					

Power Equivalents (For conversion table see p. 80)

550 stand- ard ftlb. per sec.	Kilo- watts (1000 joules per sec.)	Cheval- vapeur (metric h.p.)	Ponce- lets	Mkg. per sec.	Ftlb. per sec.	Kg cal. per sec.	B.t.u per sec.
1	0.7457 1.87256	1.014 0.00599	0.7604 1.88105	76.04 1.88105	550 2.74036	0.1783 1.25104	0.7074 1.84965
1.341 0.12743 0.9863 1.99402	0.7355 1.86659	1.360 0.13343 1	1.020 0.00848 0.75 1.87506	102.0 2.00848 75 1.87506	737.6 2.86780 542.3 2.73438	0.2390 1.37848 0.1758 1.24506	0.9486 1.97709 0.6977 1.84367
1.315 0.11896	0.9807 1.99152	1.333 0.12493	1	100 2.00000	723.3 2.85932	0.2344 1.37000	0.9303 1.96861
$\frac{0.01315}{2.11896}$	0.009807 3.99152	0.01333 $\overline{2.12493}$	0.01 2.00000	1	7.233 0.85932	0.002344 3.37000	0.009303 2.96861
$\frac{0.00182}{3.25946}$	$\frac{0.001356}{3.13219}$	0.00184 3.26562	0.00138 3.14067	0.1383 3.14067	1	0.0 ₃ 3241 4.51068	0.001286 3.10929
5.610 0.74896	4.183 0.62153	5.688 0.75494	4.266 0.63000	426.6 2.63000	3086 3.48932	1	3.968 0.59861
1.414 0.15035	1.054 0.02291	1.433 0.15632	1.075 0.03139	107.5 2.03139	777.5 2.89071	0.2520 1.40138	1

The equivalents are given in the heavier type. Logarithms of the equivalents are given immediately below.

Subscripts after any figure, 03, 94, etc., mean that that figure is to be repeated the indicated number of times.

Density Equivalents and Conversion Factors

	F	quivaler	nts	April 10	Conversion factors					
Grams per cu. cm.	Lb. per cu. in.	Lb. per cu. ft.	Short tons (2000 lb.) per cu. yd.	Lb. per U. S. gal.		Grams per cu. cm. to lb. per cu. ft.	Lb. per cu. ft. to grams per cu. cm.	Grams per eu. cm. to short tons per cu. yd.	Short tons per cu. yd. to grams per cu. cm.	
1	$\frac{0.03613}{2.55787}$	62.43 1.79539	0.8428 1.92572	8.345 0.92143	1 2	62.43 124.90	0.01602 0.03204	0.8428 1.6860	1.186 2.373	
27.68 1.44217	1	1728 3.23754	23.33· 1.36792	231 2.36361	3 4	187.30 249.70	0.04806 0.06407	2.5280 3.3710	3.600 4.746	
$\frac{0.01602}{2.20466}$	0.035787 $\overline{4.76245}$	1	0.0135	0.1337 1.12613	5 6	312.40 374.60	0.08009 0.09611	4.2140 5.0570	5.933 7.119	
1.186 0.07428	0.04286 2.63205	74.07 1.86964	1	9.902 0.99572	7 8	437.00 499.40	0.11210 0.12820	5.9000 6.7420	8.306 9.492	
0.1198 1.07855	0.004329 3.63639	7.481 0.87396	0.1010 $\overline{1.00432}$	1	9	561.90 624.30	0.14420 0.16020	7.5850 8.4280	10.680 11.870	

Conversion of Heat Transmission and Conduction

_						
	Small calories per sq. cm. to B.t.u. per sq. ft.	B.t.u. per sq. ft. to small calories per sq. cm.	Small calories per sq. cm. per cm. to B.t.u. per sq. ft. per in.	B.t.u. per sq. ft. per in. to small calories per sq. cm. per cm.	Small calories per sec. per sq. cm. per 1 deg. cent. per cm. thick, to B.t.u. per hr. per sq. ft. per 1 deg. fahr. per in. thick	
1 2 3 4	3.687	0.2712	1.451	0.6892	2.903×10 ³	0.0 ₃ 3445
	7.374	0.5424	2.902	1.378	5.806×10 ³	0.0 ₃ 6890
	11.06	0.8136	4.353	2.068	8.709×10 ³	0.0 ₂ 1034
	14.75	1.085	5.804	2.757	11.61×10 ³	0.0 ₂ 1378
5 6 7 8 9	18.44	1.356	7.255	3.446	14.52 × 10 ³	0.0 ₂ 1722
	22.12	1.627	8.706	4.135	17.42 × 10 ³	0.0 ₂ 2067
	25.81	1.898	10.16	4.824	20.32 × 10 ³	0.0 ₂ 2412
	29.50	2.170	11.61	5.514	23.22 × 10 ³	0.0 ₂ 2756
	33.18	2.441	13.06	6.203	26.13 × 10 ³	0.0 ₂ 3100

Note. 1 gram-calorie per sq. cm. = 3.687 B.t.u. per sq. ft.
1 gram-calorie per sq. cm. per cm. = 1.451 B.t.u. per sq. ft. per in.
1 gram-calorie per sec. per sq. cm. for a temp. grad. of 1 deg. cent. per cm.
= 360 kilogram-calories per hour per sq. m. for a temp. grad. of 1 deg. cent. per m.
= 2.903 × 10³ B.t.u. per hour per sq. ft. for a temp. grad. of 1 deg. fahr. per in.

Values of Foreign Coins (Legal standards: (G) = gold; (S) = silver)

Country	Monetary unit	Value in terms of U.S. money	Country	Monetary unit	Value in terms of U.S. money
Argentina (G)	Peso	€0.9647	Great Britain (G)	Pound ster-	\$4.8665
Austria-Hungary (G) Belgium (G and S). Bolivia (G). Brazil (G). British colonies in. Australasia and Africa (G). Canada (G). Central American States: Coeta Rica (G) British Honduras (G or S). Guatemala (S). Honduras (S). Salvador (S). Nicaragua (S). Chile (G). China (S). Colombia (G). Ecuador (G). Egypt (G). Finland (G).	Crown Franc Boliviano Milreis Pound ster-	0.2026 0.1929 0.3893 0.5463	Creece (G and S) Haiti (G) India (British) (G) Italy (G and S) Japan (G) Liberia (G) Mexico (G) Netherlands (G) Norway (G) Panama (G) Persia (G and S) Peru (G) Philippine Islands (G) Portugal (G) Roumania (G) Roumania (G) Russia (G) Santo Domingo (G) Servia (G) Spain (G and S) Straits Settlement (G) Sweden (G) Switzerland (G) Turkey (G)	ling. Drachma. Gourde. Rupee. Lira. Yen. Dollar. Peso. Florin. Crown. Balboa. Kran. Libra. Peso. Leu. Ruble. Dollar. Dinar Tical. Peseta. Dollar. Crown. Franc	0.1929 0.9647 0.3244 0.1929 0.4984 1.0000 Variablo 4.8665 0.5005 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929 0.1929
France (G or S) German Empire (G)	Franc Mark	0.1929 0.2381	Uruguay (G) Venezuela (G)	Peso Bolivar	1.0340 0.1929

TIME 83

TIME

Three kinds of time are recognized by astronomers, viz., Kinds of Time. sidereal, apparent solar, and mean solar time. The sidereal day is the interval between two consecutive transits of some fixed celestial object across any given meridian, or it is the interval required by the earth to make one complete revolution on its axis. This interval is constant but it is inconvenient as a time unit because the noon of the sidereal day occurs at all hours of the day and night. The apparent solar day is the interval between two consecutive transits of the sun across any given meridian. On account of the variable distance between the sun and earth, the variable speed of the earth in its orbit, the effect of the moon, etc., this interval is not constant and consequently cannot be kept by any simple mechanism, such as clocks or watches. To overcome the objection noted above, the mean solar day was devised. The mean solar day is the length of the average apparent solar day. Like the sidereal day it is constant, and like the apparent solar day its noon always occurs at approximately the same time of day. astronomical day begins at mean solar noon and the hours run from one to twenty-four, while the civil day (mean solar) begins 12 hours earlier, at midnight, and the hours run from one to twelve, and then repeat from noon to midnight.

The Year. There are three different kinds of year used, the sidereal, the tropical, and the anomalistic. The sidereal year is the time taken by the earth to complete one revolution around the sun from a given star to the same star again. Its length is 365 days, 6 hours, 9 minutes, and 9 seconds. The tropical year is the time included between two successive passages of the vernal equinox by the sun, and since the equinox moves westward 50."2 of arc a year, the tropical year is shorter by 20'23."5 in time than the sidereal year. As the seasons depend upon the earth's position with respect to the equinox, the tropical year is the year of civil reckoning. The anomalistic year is the interval between two successive passages of the perihelion, namely, the time of the earth's nearest approach to the sun. The anomalistic year is only used in special calculations in astronomy.

The Calendar. The month depended originally upon the changes of the moon. The Mohammedan nations still use a lunar calendar with years of twelve lunar months, which alternately contain 355 and 356 days. According to their method of reckoning the same month falls in different seasons, and their calendars gain 1 year on ours every 33 years. The Julian Calendar (established 45 B. C.) discards all consideration of the moon and adopts 365¼ days as the true length of the year. It is still used in Russia and generally by the Greek Church. Gregorian Calendar: The true length of the tropical year is 365 days, 5 hr., 48 min., 45.5 sec., a difference of 11 min., 14.5 sec. by which the Julian year is too long. This amounts to a little more than 3 days in 400 years. To correct for this, those century years are made leap years which are divisible by 400 without remainder.

Standard Time. Prior to 1883 each city of the U. S. had its own time, which was determined by the time of passage of the sun across the local meridian. A system of standard time is used at present, according to which the United States, which extends from 65 deg. to 125 deg. West longitude, is divided into four sections, each of 15 deg. of longitude. The first or eastern section includes all territory between the Atlantic coast and an irregular line drawn from Detroit, Mich., through Pittsburg to Charleston, S. C., its most southern point. The time of this section is that of the 75-deg. meridian, which is 5

hr. slower than Greenwich time. The second (central) section includes all territory between the line mentioned, and an irregular line drawn from Bismarck, N. D., to the mouth of the Rio Grande. The third (mountain) section includes all territory between the last-named line and a line which passes through the western part of Idaho, Utah and Arizona. The fourth (Pacific) section covers the rest of the country to the Pacific Ocean. Standard time is uniform in each of these sections, but the time in one section differs by exactly 1 hr. from the section next to it. In cities situated on the border line of two sections, as, say, Pittsburg and Atlanta, the standard times of both sections are used, and in such cities when the time is given, it should be specified as eastern, central, etc. The system of standard time has been adopted in almost all civilized countries. All continental Europe, except Russia, uses a time 1 hr. faster than that of Greenwich; in Japan and Australia the time is 9 hr. faster.

TERRESTRIAL GRAVITY

By standard gravity is meant any locality where $g_0 = 980.665$ cm. per sec. per sec., or 32.1740 ft. per sec. per sec. This value, g_0 , is assumed to be the value of g at sea level and latitude 45 deg.

Acceleration of Gravity

(U. S. Coast and Geodetic Survey, 1912)

Latitude.	g		g/g0	Latitude.		-/-	
deg.	Cm./sec.2	Ft./sec.2		deg.	Cm./sec.2	Ft./sec.2	0/00
0	978.0	32.088	0.9973	50	981.1	32.187	1.0004
10	978.2 978.6	32.093 32.08	0.9975	60 70	981.9 982.6	32.215 32.238	1.0013
20 30 40	979.3 980.2	32.130 32.158	0.9986 0.9995	80 90	.983.1 983.2	32.253 32.258	1.0024

Correction for altitude above sea level: -0.3 cm. per sec.² for each 1000 meters; -0.003 ft. per sec.² for each 1000 feet.

SPECIFIC GRAVITY AND DENSITY

The specific gravity of a solid or liquid is the ratio of the mass of the body to the mass of an equal volume of water at some standard temperature. At the present time a temperature of 4 deg. cent. (39 deg. fahr.) is commonly used by physicists, but the engineer uses 60 deg. fahr. The specific gravity of gases is usually expressed in terms of hydrogen or air.

The density of a body is its mass per unit volume. If the gram is used as the unit of mass and the milliliter as the unit of volume, the figures representing the density are the same as the specific gravity of the body referred to water at 4 deg. cent. as unity. The customary unit is pounds per cu. ft.

The specific gravity of liquids is usually measured by means of an hydrometer (see p. 254).* Special arbitrary hydrometer scales are used in various trades and industries. The most common of these are the Baumé, Twaddell and Beck. Twaddell's hydrometer is used for liquids heavier than water. The number of degrees, N, which it indicates may be converted to specific gravities, G, by the formula G = (5N + 1000)/1000. The formula for the Beck hydrometer is $G = 170/(170 \pm N)$; for the Brix hydrometer $G = 400/(400 \pm N)$. In both of these the + sign is to be used for liquids lighter than water, the - sign for heavier liquids. For the salinometer (salometer), see p. 1734.* The specific gravities corresponding to the indications of the Baumé hydrometer are given in the following tables.

*See Marks' MECHANICAL ENGINEERS' HANDBOOK.

Specific Gravities at $\frac{60^{\circ}}{60^{\circ}}$ Fahr. Corresponding to Degrees Baumé for Liquids Lighter than Water

Calculated from the formula, specific gravity $\frac{60^{\circ}}{60^{\circ}}$ fahr. = $\frac{140}{130 + \text{Deg. Bé.}}$

Degrees Baumé	Specific gravity	Degrees Baumé	Specific	Degrees Baumé	Specific gravity	Degrees Baumé	Specific	Degrees Baumé	Specific gravity	Degrees Baumé	Specific gravity
10 11 12 13 14	1.0000 0.9929 0.9859 0.9790 0.9722	25 26 27 28 29	0.9032 0.8974 0.8917 0.8861 0.8805	40 41 42 43 44	0.8235 0.8187 0.8140 0.8092 0.8046	55 56 57 58 59	0.7568 0.7527 0.7487 0.7447 0.7407	70 71 72 73 74	0.7000 0.6965 0.6931 0.6897 0.6863	85 86 87 88 89	0.6512 0.6482 0.6452 0.6422 0.6393
15 16 17 18 19	0.9655 0.9589 0.9524 0.9459 0.9396	30 31 32 33 34	0.8750 0.8696 0.8642 0.8589 0.8537	45 46 47 48 49	0.8000 0.7955 0.7910 0.7865 0.7821	60 61 62 63 64	0.7368 0.7330 0.7292 0.7254 0.7216	75 76 77 78 79	0.6829 0.6796 0.6763 0.6731 0.6699	90 91 92 93 94	0.6364 0.6335 0.6306 0.6278 0.6250
20 21 22 23 24	0.9333 0.9272 0.9211 0.9150 0.9091	35 36 37 38 39	0.8485 0.8434 0.8383 0.8333 0.8284	50 51 52 53 54	0.7778 0.7735 0.7692 0.7650 0.7609	65 66 67 68 69	0.7179 0.7143 0.7107 0.7071 0.7035	80 81 82 83 84	0.6667 0.6635 0.6604 0.6573 0.6542	95 96 97 98 99 100	0.6222 0.6195 0.6167 0.6140 0.6114 0.6087

Specific Gravities at $\frac{60^{\circ}}{60^{\circ}}$ Fahr. Corresponding to Degrees Baumé for Liquids Heavier than Water

Calculated from the formula, specific gravity $\frac{60^{\circ}}{60^{\circ}}$ fahr. = $\frac{145}{145 - \text{Deg. Baum6}}$

	YOU TO									10/5	-
Degrees Baumé	Specific gravity	Degrees Baumé	Specific gravity	Degrees Baumé	Specific	Degrees Baumé	Specific	Degrees Baumé	Specific	Degrees Baumé	Specific
0 1 2 3	1.0000 1.0069 1.0140 1.0211	12 13 14 15	1.0902 1.0985 1.1069 1.1154	24 25 26 27	1.1983 1.2083 1.2185 1.2288	36 37 38 39	1.3303 1.3426 1.3551 1.3679	48 49 50 51	1.4948 1.5104 1.5263 1.5426	60 61 62 63	1.7059 1.7262 1.7470 1.7683
4 5 6 7	1.0284 1.0357 1.0432 1.0507	16 17 18 19	1.1240 1.1328 1.1417 1.1508	28 29 30 31	1.2393 1.2500 1.2609 1.2719	40 41 42 43	1.3810 1.3942 1.4078 1.4216	52 53 54 55	1.5591 1.5761 1.5934 1.6111	64 65 66 67	1.7901 1.8125 1.8354 1.8590
8 9 10 11	1.0584 1.0662 1.0741 1.0821	20 21 22 23	1.1600 1.1694 1.1789 1.1885	32 33 34 35	1.2832 1.2946 1.3063 1.3182	44 45 46 47	1.4356 1.4500 1.4646 1.4796	56 57 58 59	1.6292 1.6477 1.6667 1.6860	68 69 70	1.8831 1.9079 1.9333

Mohs's Scale of Hardness

Talc. 2. Gypsum. 3. Calc spar. 4. Fluor spar. 5. Apatite.
 Feldspar. 7. Quartz. 8. Topaz. 9. Sapphire. 10. Diamond.

SECTION 2

MATHEMATICS

BY

EDWARD V. HUNTINGTON, Ph. D.

ASSOCIATE PROFESSOR OF MATHEMATICS, HARVARD UNIVERSITY, FELLOW AM. ACAD.

ARTS AND SCIENCES

CONTENTS

ARITHMETIC			PAGE
	PAGE	The Parabola	138
Numerical Computation	88	The Ellipse	140
ogarithms	91	The Hyperbola	144
The Slide Rule	94	The Catenary	147
Computing Machines	97	Other Useful Curves	151
Financial Arithmetic	98		
GEOMETRY AND MENSURAT	TON	DIFFERENTIAL AND INTEGE	LAS
		CALCULUS	
Geometrical Theorems	99	Designation 1 Direction	155
Geometrical Constructions	101	Derivatives and Differentials	157
Lengths and Areas of Plane Figures.	105	Maxima and Minima	159
Surfaces and Volumes of Solids	107	Expansion in Series	160
ALGEBRA		Indeterminate Forms	163
		Curvature	163
Formal Algebra	112	Table of Indefinite Integrals	164
Solution of Equations in One Un-		Definite Integrals	169
known Quantity	116	Differential Equations	171
Solution of Simultaneous Equations	119	moderate waith and on the secretary	
Determinants	123	GRAPHICAL REPRESENTATIO	NOF
maginary or Complex Quantities	124	FUNCTIONS	
TRIGONOMETRY		Equations Involving Two Variables	173
Formal Trigonometry	128	Equations for Empirical Curves.	174
Solution of Plane Triangles	132	Logarithmic Cross-section Paper.	176
Solution of Tiane Triangles	134	Semi-logarithmic Paper	177
Typerbolic Functions		Equations Involving Three Variables	178
Typerbone Functions	135	Equations Involving Four Variables	182
ANALYTICAL GEOMETRY		Chines See Minister Charles	
The Point and the Straight Line	136	VECTOR ANALYSIS	
The Circle	137	Vector Analysis	185

COPYRIGHT, 1916, BY EDWARD V. HUNTINGTON

MATHEMATICS

EDWARD V. HUNTINGTON

ARITHMETIC

NUMERICAL COMPUTATION

Number of Significant Figures. In any engineering computation, the data are ordinarily the results of measurement, and are correct only to a limited number of significant figures. Each of the numbers 3.840 and 0.003840 is said to be given "correct to four figures;" the true value lies in the first case between 3.8395 and 3.8405; in the second case, between 0.0038395 and 0.0038405. The absolute error is less than 0.001 in the first case, and less than 0.000001 in the second; but the relative error is the same in both cases, namely, an error of less than "one part in 3840."

If a number is written as 384000, the reader is left in doubt whether the number of correct significant figures is 3, 4, 5, or 6. This doubt can be removed by writing the number as 3.84×10^5 or 3.840×10^5 or 3.8400×10^5 or 3.8400×10^5 .

In any numerical computation, the possible or desirable degree of accuracy should be decided on and the computation should then be so arranged that the required number of significant figures, and no more, is secured. Carrying out the work to a larger number of places than is justified by the data, is to be avoided, (1) because the form of the results leads to an erroneous impression of their accuracy, and (2) because time and labor are wasted in super-fluous computation. The labor of working with six-place tables is nearly three times as great as that with four-place tables. In computations involving several steps, it is desirable to retain one extra figure until just before the final result is reached, in order to protect the last figure against the possible cumulative effect of small tabular errors. In discarding superfluous figures, if the first discarded figure is 5 or more, increase the preceding figure by 1. Thus, 3.14159, written correct to four figures, is 3.142; correct to three figures, 3.14. Again, 6.1297, correct to four figures, is 6.130.

Addition. In adding numbers, note that a doubtful final 0.2056x figure in any one number will render doubtful the whole col-2.572xx umn in which that figure lies; hence all figures to the right of 14.25xxx that column are superfluous, and contribute nothing to the 576.1xxxx accuracy of the result.

593.1

Subtraction. The "Austrian" or "shop" method is recommended. The mental process is as follows, the figures here printed in boldface type being the only ones written down:

[3 plus how many is 12?] 3 plus 9 is 12; 1 to carry.	14752
[7 plus how many is 15?] 7 plus 8 is 15; 1 to carry.	8463
5 plus 2 is 7. 8 plus 6 is 14.	6289

23026)31416(1

23026

6909

1380

101(4

92

9(4

2303) 8390(3

230) 1481(6

23)

2)

This method is especially useful when it is desired to subtract from a given number the sum of several other numbers.

7 plus 1 is 8; plus 5 is 13; plus 9 is 22; 2 to carry. 5 plus 0 is 5; plus 2 is 7; plus 8 is 15; 1 to carry. 3 plus 1 is 4; plus 1 is 5; plus 2 is 7.	14752 3125 101		
		5 plus 3 is 8; plus 6 is 14.	5237
			6000

The use of a wavy line to indicate subtraction is also recommended, as it will minimize the danger of adding when subtraction is intended.

Multiplication. In long examples in multiplication, the arrangement of work here illustrated is recommended, since it facilitates the abbreviation of the work by the omission, in practice, of all the figures on the right of the vertical line.

The position of the decimal point should be determined 4956
8372
39648
3468

346 92

The position of the decimal point should be determined by reference to the first, or left-hand, figures of the numbers, rather than by "pointing off" so-and-so many places from

the right-hand end. For the right-hand figures of a number are the least important ones, and in many cases are entirely unknown (especially when the slide rule or a computing machine is used). The mental process for determining the decimal point is as follows:

(a) If the multiplier is a number like 3.1416, with only one figure preceding the decimal point, think of this number as "a little over 3;" then the product must be "a little over three times the number which is being multiplied;" and this gives the position of the decimal point at once, by inspection.

(b) If the multiplier is a number like 3141.6 [or 0.000 003 141 6], think of this number as "about 3, with the point moved three places to the right" [or "about 3, with the point moved six places to the left"]; then think what the answer would be if the multiplier were simply "about 3," and shift the decimal point accordingly.

Multiplication Tables. Crelle's large volume (Berlin, G. Reimer) gives the product of every three-figure number by every three-figure number; Peters's (Berlin, G. Reimer), of every four-figure number by every two-figure number. The smaller table of H. Zimmermann (Berlin, Wm. Ernst) gives the product of every three-figure number by every two-figure number.

Division. In long division, where the numbers are given only approximately, the work can be much abbreviated without loss of accuracy by "cutting off" one figure of the divisor at each step, instead of "bringing down" a doubtful zero in the dividend. Thus, $3.1416 \div 2.3026 = 1.3644$.

To determine the position of the decimal point in a problem of fractional division, shift the point (mentally) in both numerator and denominator (the same number of places in each) until the denominator is a number in the "standard form," that is, a number with only one figure preceding the decimal point. (This will not change the value

of the fraction.) Then estimate the approximate magnitude of the quotient by inspection. Thus:

$$\frac{0.2718}{3141.6} = \frac{0.000\ 2718}{3.1416} = \text{``about } 0.000\ 09\text{''} = 0.000\ 08652;$$

$$\frac{31.416}{0.002718} = \frac{31\ 416}{2.718} = \text{``about } 10\ 000\text{''} = 11\ 558.$$

Reciprocals. The reciprocal of N is 1/N. Instead of dividing by a long number N, it is often better to multiply by the reciprocal of N. The table of reciprocals on pp. 24-27 gives the reciprocal of any number, correct to four figures. Barlow's Table (Spon & Chamberlain, New York) gives the reciprocal of every four-figure number correct to seven figures (but without facilities for interpolation). The reciprocals of numbers having more than four figures are best found by the use of a large table of logarithms.

Reciprocals of $1 \pm x$ when x is Small. $1/(1+x) = 1 - x + [\text{error} < x^2, \text{ if } x \text{ is between 0 and 1}],$ $= 1 - x + x^2 - [\text{error} < x^2, \text{ if } x \text{ is between 0 and 1}].$ $1/(1-x) = 1 + x + [\text{error} < x^2 + 2x^3, \text{ if } x \text{ is between 0 and } \frac{1}{2}],$ $= 1 + x + x^2 + [\text{error} < x^3 + 2x^4, \text{ if } x \text{ is between 0 and } \frac{1}{2}].$ NOTE. $1/(a \pm b) = (1/a)[1/(1 \pm x)], \text{ where } x = b/a.$

Notation by Powers of 10. All questions concerning the position of the decimal point are readily answered if each number is expressed in the "standard form," that is, as the product of two factors, one of which is a number with only one figure preceding the decimal point, while the other is a positive or negative power of 10. Thus, 3.1416×10^3 means 3.1416 with the point moved three places to the right, that is, 3141.6. Again, 3.1416×10^{-6} means 3.1416 with the point moved six places to the left, that is, 0.000031416. This notation by powers of 10 should always be used in dealing with very large or very small numbers. Among electrical engineers its use is very general, even for numbers of moderate size.

Square Root. (a) If four figures of the root are sufficient, take the answer directly from the table of square roots, pp. 12-15. (b) To obtain a root of six or seven figures from the table, use the formula: $\sqrt{N} = a + [(N-a^2)/2a]$ (approx.), where a is the nearest value of \sqrt{N} obtainable from the table, with three or four ciphers annexed. Here a^2 must be found exactly, by direct multiplication, so that at least three significant figures of the difference $N-a^2$ shall be known correctly; but this done, the division of $N-a^2$ by 2a should be carried to only three figures (logarithms or slide rule may be used).

NOTE. The simplest way to obtain any root of a seven-figure number correct to seven figures is to use a seven-place table of logarithms, if such a table is at hand.

Square Roots of $1 \pm x$ when x is Small.

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - [\text{error less than } \frac{1}{2}x^2 \text{ if } 0 < x < 1]$$

$$= 1 + \frac{1}{2}x - \frac{1}{2}x^2 + [\text{error } < \frac{1}{2}x^3 \text{ if } 0 < x < 1]$$

$$(1-x)^{\frac{1}{2}} = 1 - \frac{1}{2}x - [\text{error } < \frac{1}{2}x^2 + \frac{1}{2}x^3 \text{ if } 0 < x < \frac{1}{2}]$$

$$= 1 - \frac{1}{2}x - \frac{1}{2}x^2 - [\text{error } < \frac{1}{2}x^3 + \frac{1}{2}x^4 \text{ if } 0 < x < \frac{1}{2}]$$

$$\text{NOTE. } \sqrt{a+b} = \sqrt{a} (1+x)^{\frac{1}{2}}, \text{ where } x = b/a.$$

Cube Root. (a) If four figures of the root are sufficient, take the answer directly from the table of cube roots, pp. 16-21. (b) To obtain a root of six or seven figures from the table, use the formula: $\sqrt[3]{N} = a + [(N - a^3)/3a^2]$ (approx.), where a is the nearest value of $\sqrt[3]{N}$ obtainable from the table, with three or four ciphers annexed. Here a^3 must be found correct to seven or eight figures, by direct multiplication, so that at least three significant figures of the difference $N - a^3$ shall be known; but this done, the division of $N - a^3$ by $3a^3$ should be carried to only three or four figures (logarithms or the slide rule may be used).

Note. The simplest way to obtain any root of a seven-figure number correct to seven figures is to use a seven-place table of logarithms, if such a table is at hand.

Cube Roots of 1±x when x is Small.

$$\begin{array}{lll} (1+x)^{\frac{1}{3}} &= 1+\frac{1}{3}x - [\mathrm{error} < \frac{1}{3}6x^2 \ \mathrm{if} \ 0 < x < 1], \\ &= 1+\frac{1}{3}6x - \frac{1}{3}6x^2 + [\mathrm{error} < \frac{1}{3}6x^3 \ \mathrm{if} \ 0 < x < 1], \\ (1-x)^{\frac{1}{3}} &= 1-\frac{1}{3}6x - [\mathrm{error} < \frac{1}{3}6x^2 + \frac{1}{3}6x^3 \ \mathrm{if} \ 0 < x < \frac{1}{3}], \\ &= 1-\frac{1}{3}6x - \frac{1}{3}6x^2 - [\mathrm{error} < \frac{1}{3}6x^3 + \frac{1}{3}6x^4 \ \mathrm{if} \ 0 < x < \frac{1}{3}]. \\ \mathrm{Note.} & \sqrt[3]{a+b} = \sqrt[3]{a}(1+x)^{\frac{1}{3}}, \ \mathrm{where} \ x = b/a. \end{array}$$

LOGARITHMS

Tables of Logarithms. The use of a table of logarithms greatly reduces the labor of multiplication, division, raising to powers, and extracting roots. The table on pp. 42-43 is carried out to four significant figures, and the following explanations should be sufficient to permit the use of the table readily, even by one without previous experience. For algebraic theory, see p. 113.

If more than four-figure accuracy is required, recourse must be had to a larger table. Five-place tables are available in great variety; the Macmillan Tables, 1913, are perhaps as convenient as any. If more than five figures are required, use Bremiker's six-place table, or proceed at once to a seven-place table: Schrön (Vieweg und Sohn, Braunschweig); Bruhns; Vega-Bremiker. If extreme accuracy is required, use the eight-place table by Bauschinger and Peters (Engelmann, Leipzig). Logarithmic paper, see p. 176.

To Find the Logarithm of Any Given (Positive) Number.

(a) WHEN THE GIVEN NUMBER IS BETWEEN 1 AND 10.

An inspection of the table on pp. 42-43 shows that as the number increases from 1 to 9.99... the logarithm of that number increases continuously from 0 to 0.999... For example, $\log 2.97 = 0.4728$; $\log 2.98 = 0.4742$.

If the given number contains four significant figures, it is necessary to inter-

polate between the tabulated values, as follows:

To find log 2.973, notice that this number is $\frac{3}{10}$ of the way from 2.97 to 2.98; hence its logarithm will be (approximately) $\frac{3}{10}$ of the way from 0.4728 to 0.4742. The difference here is 14 units, and $\frac{3}{10}$ of this difference is 4 (to the nearest unit); hence, by adding this 4 to 4728, log 2.973 = 0.4732. This process of interpolating should be performed mentally; the step of finding the tabular difference will be facilitated by a glance at the last column on the right, which gives, for each line of the table, the average of the differences along that line.

Again, to find log 4.098: From table, log 4.09 = 0.6117; adding $\frac{9}{10}$ of the difference (11), or about 9, gives: log 4.098 = 0.6126. Or better, since $\frac{9}{10}$ of the way forward is equal to $\frac{9}{10}$ of the way back, find in table log 4.10 = 0.6128, and subtract $\frac{9}{10}$ of 11, or 2, giving log, 4.098 = 0.6126. It should be noted that any interpolated value may

be in error by 1 in the last place.

If the given number contains more than four significant figures, it should be cut down to four figures (see p. 88), since the later figures will not affect

the result in four-place computations.

(b) When the Given Number is Less Than 1 or More Than 10, it is simply necessary to notice that every such number can be regarded as obtainable from some number between 1 and 10 by merely shifting the decimal point (see p. 90); and that according to the rule at the foot of the table, moving the decimal point n places to the right [or left] in the number-column is equivalent to adding n [or -n] to the logarithm in the body of the table.

For example, to find $\log 2973$. Here $2973 = 2.973 \times 10^3$ (i.e., 2.973 with the decimal point moved 3 places to the right). From the table, $\log 2.973 = 0.4732$. Hence, $\log 2973 = 0.4732 + 3$, which may be written as 3.4732.

Again, to find log 0.0002973. Here $0.0002973 = 2.973 \times 10^{-4}$ (i.e., 2.973 with the decimal point moved 4 places to the left). From the table, log 2.973 = 0.4732. Hence, $\log 0.0002973 = 0.4732 - 4$. (This may be written as 4.4732, if desired, and is equal of course, to - 3.5268; this latter form, however, is not convenient in practice.)

It is thus evident that the logarithm of every positive number may be regarded as consisting of two parts: a decimal fraction, which is always positive (or zero); and a whole number, which may be positive, negative, or zero. The fractional part is called the mantissa, and is found from the table; the whole-number part is called the characteristic, and is determined by inspection.

To Find the Number Corresponding to a Given Logarithm.

(a) WHEN THE GIVEN LOGARITHM IS A POSITIVE DECIMAL FRACTION (CHARAC-TERISTIC ZERO), simply reverse the process for finding the logarithm of a number between 1 and 10.

For example, given $\log N = 0.4732$; to find N. In the body of the table it is seen that 0.4732 lies a little beyond 0.4728; hence N must lie a little beyond 2.97. By taking differences it is found that 4728 is in fact 3/14 of the way from 0.4728 to the next higher logarithm; therefore N must be 1/4 of the way from 2.97 to the next higher number. But $\frac{4}{14}$ of 1 is 0.3 (to the nearest tenth), hence N=2.973.

Again, given $\log N=0.6126$; to find N. Here, 0.6126 is $\frac{4}{11}$ of the way from 0.6117

to the next higher logarithm; therefore N must be %11 of the way from 4.09 to the next

higher number. But %1 of 1 is 0.8 (to the nearest tenth), hence N=4.098.

(b) WHEN THE GIVEN LOGARITHM HAS ANY GIVEN VALUE (CHARACTERISTIC NOT ZERO), proceed as follows: First, be sure the given logarithm is in the "standard form," that is, a positive decimal fraction (mantissa) plus a positive or negative whole number (characteristic). For example, if $\log N$ is originally given in the form $\log N = -3.5268$, this must first be reduced to the (equivalent) form $\log N = 0.4732 - 4$ (or 4.4732), before entering the table. Having the logarithm given in the standard form, suppose for the moment that the characteristic is zero, and find in the table the number corresponding to the given mantissa; then move the decimal point to the right or left according as the value of the characteristic is positive or negative.

For example, given $\log N = 0.4732 + 3$; to find N. From the table, the number corresponding to 0.4732 is 2.973. The characteristic (+3) directs that the decimal

point be moved 3 places to the right; hence $N = 2.973 \times 10^3 = 2973$. Again, given $\log N = 0.4732 - 4$; to find N. From the table, the number corre-

sponding to 0.4732 is 2.973. The characteristic (-4) indicates that the decimal point is to be moved 4 places to the left; hence $N = 2.973 \times 10^{-4} = 0.0002973$.

The number corresponding to a given logarithm is called its antiloga-Thus, if $\log 2973 = 0.4732 + 3$, then 2973 = antilog (0.4732 + 3).

In most tables of logarithms the decimal point is omitted, the tables being in fact not tables of logarithms, but tables of mantissas. This omission is of no consequence to the experienced computer, but is often perplexing to one who makes only occasional use of such tables.

Note 2. Many computers prefer to write negative characteristics in the form of some positive number minus some multiple of 10; thus, 0.4732 - 4 = 6.4732 - 10; 0.4732 - 13 = 7.4732 - 20; etc.

Fundamental Properties of Logarithms. The usefulness of logarithms in computation depends on the following properties:

(1)
$$\log (ab) = \log a + \log b$$
; (3) $\log (a^n) = n \log a$;

(2)
$$\log (a/b) = \log a - \log b$$
; (4) $\log \sqrt[n]{a} = (1/n) \log a$; (5) $\log 10^n = n$

It is to be noted also that $\log 1 = 0$, $\log 10 = 1$, and $\log (1/n) = -\log n$.

To Multiply by Logarithms. Find from the table the log, of each factor, and add; the result will be the log, of the product. Then find the product itself from the table.

To Divide by Logarithms. First Method: Find from the table the log, of the numerator and the log, of the denominator, and subtract the second from the first; the result will be the logarithm of the quotient. Then find the quotient itself from the table.

```
EXAMPLE. To find x = \frac{4.098}{0.0002973} log 4.098 = 0.6126 log 0.0002973 = 0.4732 - 4
Answer: x = 1.378 \times 10^4 = 13780 log x = 0.1394 + 4
```

In order to avoid negative mantissas in cases where a larger mantissa would have to be subtracted from a smaller, modify the upper logarithm by adding and subtracting 1.

EXAMPLE. To find
$$x = \frac{0.0291}{63.4}$$
. $\log 0.0291 = 0.4639 - 2 = 1.4639 - 3$ $\log 63.4 = 0.8021 + 1 = 0.8021 + 1$ $\log x = 0.0004590$.

To Divide by Logarithms. Second Method: Instead of subtracting the log. of a number, it is often convenient to add the cologarithm of that number; the colog. of N being defined by: $\operatorname{colog} N = \log (1/N) = -\log N$.

To find the colog. of a number, write the log. of the number in the standard form, and subtract it from 1.0000 - 1, as in the following examples:

This subtraction should be performed mentally. Thus, to subtract the mantissa, subtract each digit from 9 until the last non-zero digit is arrived at, and subtract this from 10; to subtract the characteristic, follow the regular rule of algebra ("reverse the sign and add"). Hence, if the logarithm itself is already written down, or can be read off from the table without interpolation, the cologarithm can be written down at once, by inspection. The use of cologarithms is not essential in logarithmic computation, but it often facilitates a compact arrangement of the work, especially in cases where the denominator of a fraction is itself the product of two or more factors.

To Find the nth Power of a Number by Logarithms. Find from the table the log. of the number, and multiply it by n; the result will be the logarithm of the nth power of that number. Then find the power itself from the tables.

Example 1. Find
$$x = (0.0291)^3$$
 $\log 0.0291 = 0.4639 - 2$ Answer: $x = 2.464 \times 10^{-6}$ $= 0.00002464$, $\log x = 1.3917 - 6 = 0.3917 - 5$.

Example 2. Find
$$x = (0.0291)^{1.41}$$
 $\log 0.0291 = 0.4639 - 2 = -1.5361$ Answer: $x = 6.825 \times 10^{-3}$ $0 = 0.006825$ 1.41 15361 61444 15361 $1 = 0.8341 - 3$

To Find the nth Root of a Number by Logarithms. Find from the table the log. of the number, and divide it by n; the result will be the log. of the nth root of that number. Then find the root itself from the table.

EXAMPLE, Find
$$x = \sqrt[3]{4.098}$$
 log 4.098 = 0.6126
Answer: $x = 1.600$ log $x = 0.2042$

In order to avoid fractional characteristics, if the characteristic is not divisible by n, make it so divisible by adding and subtracting a suitable number before dividing.

Example. Find
$$x = \sqrt[3]{0.0004590}$$
. $\log 0.0004590 = 0.6618 - 7$
Answer: $x = 7.714 \times 10^{-2}$ $3)2.6618 - 6$
 $= 0.07714$ $\log x = 0.8873 - 2$

But if the characteristic is positive, it is simpler to write it in front of the mantissa, and then divide directly.

THE SLIDE RULE

The slide rule is an indispensable aid in all problems in multiplication, division, proportion, squares, square roots, etc., in which a limited degree of accuracy is sufficient. The ordinary 10-in. Mannheim rule (see below) costs \$3 to \$4.50 and gives three significant figures correctly; the 20-in. rule (\$12.50) gives from three to four figures; the Fuller spiral rule (\$30) or the Thacher cylindrical rule (\$35) gives from four to five figures. For many problems the slide rule gives results more rapidly than a table of logarithms; it requires, however, more care in placing the decimal point in the answer. In all work with the slide rule, the position of the decimal point should be determined by inspection (see p. 89), only the sequence of digits being obtained from the instrument itself. Rapidity in the use of the instrument depends mainly on the skill with which the eye can estimate the values of the various divisions on the scale; expertness in this respect comes only with practice. The following explanations should be sufficient to permit the use of the ordinary slide rule successfully without previous experience and without knowledge of logarithms.

Multiplication and Division with a (Theoretical) Complete Logarithmic Scale. Consider a complete logarithmic scale (D, Fig. 1), assumed to extend indefinitely in both directions, only the main section, from 1 to 10, however, being usually available. Note that the divisions within the several sections are indentical, except that the numeral attached to each division of any one section is ten times the numeral attached to the corresponding division in the preceding section. [The distances laid off from 1 are proportional to the logarithms of the corresponding numbers, the distance from 1 to 10 being taken as unity.] Consider also a duplicate scale, C, numbered from 1 to 10, and arranged to slide along the fixed scale D as in the figures. By means of such a scale D, and slide C, any two numbers between 1 and 10 (and hence any two numbers whatever, with proper attention to the decimal point) can be multiplied or divided, as in the following examples.

To Multiply 4 by 6. In Fig. 1, starting with point 1 of the fixed scale, run the eye along from 1 to 4; then set the 1 of the slide opposite this point 4, and run the eye forward along the slide from 1 to 6; the point thus reached on the fixed scale is 24, which is equal to 4×6 . This process gives the distance from 1 to 4 plus the distance from 1 to 6, and is, in fact, a mechanical method of adding the logarithms of these numbers; hence the result is the product of the numbers. Conversely,

To DIVIDE 4 BY 6. In Fig. 2, starting with the point 1 of the fixed scale, run the eye along from 1 to 4; then set the 6 of the slide opposite the point 4, and run the eye backward along the slide from 6 to 1; the point thus reached on the fixed scale is 0.667, which is equal to $4 \div 6$. This process gives the distance from 1 to 4 minus the distance from 1 to 6; and is, in fact, a mechanical method of subtracting the logarithms of these numbers; hence the result is their quotient.

Multiplication and Division, Using Only a Single Section of the Scale. If only the main section of scale D is available (as is usually the case in practice), the result of multiplication may fall beyond the scale, as it does in Fig. 1. In such cases divide the first factor by 10 before beginning to multiply; this will bring the result within the scale, without affecting the sequence of digits.

For example, to multiply 4 by 6. Having found that the setting shown in Fig. 1 is not successful, reset the stide as in Fig. 3, with 10 instead of 1 opposite 4; run the eye backward along the slide from 10 to 1, thus reaching the (unrecorded) point corresponding to $4 \div 10$; then, continuing from this point, run the eye forward along the slide from 1 to 6, as before; the point finally reached on the main scale is 2.4, which has the same sequence of digits as the required value 24. After a little practice, this preliminary step of dividing by 10 will be performed almost intuitively. Whether or not this step is necessary in any given case, can be determined only by trial.

The general rule for multiplication may be stated as follows, if preferred: To find the product of two factors, find one factor on the fixed scale; opposite this, set (tentatively) point 1 of the slide; on the slide find the second factor, and opposite this read the product on the main scale, if possible. If the product falls beyond the scale, begin over again, using point 10 of the slide instead of point 1.

In division also, the result may fall beyond the main section of the scale, as it does in Fig. 2. In such cases, it suffices merely to multiply the result by 10 in order to bring it within the scale; this will not affect the sequence of

digits.

For example, to divide 4 by 6, set the slide as in Fig. 4, and follow out mentally the steps indicated by the arrows. It will be noticed that the supplementary step of multiplying by 10 is performed by simply running the eye along the slide from 1 to 10 without resetting the slide; for this reason, division on the slide rule is slightly easier than multiplication.

The Ordinary Mannheim Slide Rule has four scales, A, B, C, D, as shown in Fig. 5. Scales C and D are essentially the same as the C and D scales described above, and the principle just explained shows how they are used in multiplication and division. The fact that the D scale covers only the main section from 1 to 10 (all decimal points being omitted) is practically no restriction on the scope of the scale, as is seen in the preceding examples. A runner is provided, so that intermediate positions reached in the course of an extended computation may be indicated temporarily on the scale without the necessity of reading off their numerical values. The best runners are those which have no side frame to obscure the numerals.

In problems involving successive multiplications and divisions, arrange the work so that multiplication and division are performed alternately.

For example, to calculate $\frac{a \times b \times c}{d \times e}$, divide the product $a \times b$ by d; multiply this quotient by c; and divide this product by e. Each operation will require only one shifting either of the slide (for multiplication) or of the runner (for division).

To multiply a number of different quantities by a constant multiplier, x, set the point 1 of slide opposite x, and read, by aid of the runner, the products of x by all the quantities which do not fall beyond the scale; then reset the slide, setting 10 instead of 1 opposite x, and read the products of x by all the remaining quantities.

To divide a number of different quantities by a constant divisor, y, first find (by the slide rule) the quotient $1 \div y$, and then use this as a constant multiplier.

Scales A and B are exactly like scales C and D, except that they cover two sections of the complete logarithmic scale, the graduations being only half as fine. Either pair of scales may be used for multiplication and division; C and D give more accurate readings, but have the disadvantage that in the case of multiplication the slide must often be shifted to the other end in order to keep the result on the scale—an inconvenience which is not present when the less accurate scales A and B are employed.

By the use of both pairs of scales, problems in squares and square roots may be readily solved; for every number on A, except for the decimal point, is the square of the number directly below it on D (use the runner).

A scale of sines, tangents, and logarithms is often printed on the back of the slide. For further details concerning the use of the slide rule in various problems, see the instruction books furnished with each instrument: Wm. Cox, "Manual of the Mannheim Slide Rule;" F. A. Halsey, "Manual of the Slide Rule:" etc.

Other Types of Slide Rules. The duplex slide rule (\$5 to \$18 according to length) shows on one face the regular A, B, C, D scales, and on the other face the scales A, B', C', D (where B' and C' are the same as B and C, only numbered in the reverse order), with a runner encircling the whole scale. This arrangement makes possible the solution of more complicated problems with fewer settings of the slide, but if the rule is to be used only for simple problems, the multiplicity of scales is rather confusing. Less complicated is the polyphase rule, which is like a Mannheim rule with the addition of a single inverted scale, C', printed in the middle of the slide. The log log duplex slide rule (10 in., \$8) is especially adapted for handling complex problems involving fractional powers or roots, hyperbolic logarithms, etc. A number of circular slide rules are on the market, the best of which are operated by a milled thumbnut. like the stem wind of a watch. The advantage of the circular rule, aside from its compact size (some models are scarcely larger than a watch), lies in the fact that the scale is endless, so that the slide never has to be reset in order to bring the result within the scale. A disadvantage is found in the necessity of reading the figures in oblique positions, or else continually turning the instrument as a whole in the hand. The Fuller and Thacher rules already mentioned are invaluable for problems requiring greater accuracy than can be obtained with the ordinary rules. There are also many special slide rules, adapted to various special types of computation, such as calculating discharge of water through pipes, horse power of engines, dimensions of lumber, stadia measurements, etc. One of the most recent devices of this kind is the Ross meridiograph (L. Ross, San Francisco, Cal.), which is a circular slide rule for solving certain cases of spherical triangles. The Eichhorn trigonometrical slide rule solves any plane triangle.

COMPUTING MACHINES

For certain purposes computing machines have ceased to be luxuries and have become almost necessities; but they are expensive, and should be selected with reference to the special work which is to be done. The machines may be classified roughly into three groups, as follows:

Adding Machines, Non-listing. Of the machines of this kind, the most convenient in the hands of a careful operator is the well-known Comptometer (Felt & Tarrant Co., Chicago, Ill.; \$250 to \$350 according to size), or the recent Burroughs non-listing adding machine (Detroit, Mich., \$175). To add a number, simply press a key in the proper column; the result appears on the dials in front of the keyboard. Multiplication as well as addition can be performed on this machine with great rapidity, and division also after a little practice. Weight, about 15 lb. Much less rapid, but less expensive and requiring somewhat less skill in operation, is the Barrett adding machine (Philadelphia, Pa.) with multiplying attachment. Other key-operated machines are the Mechanical Accountant (Providence, R. I.), and the Austin (Baltimore, Md.). The American adding machine (American Can Co., Chicago, Ill.; \$39,50) is operated by pulling up a finger-lever for each digit. Small machines, operated by the use of a stylus, are the Rapid computer (Benton Harbor, Mich., \$25); the Gem (Automatic Adding Machine Co., New York; \$10), the Arithstyle (New York, \$36) and the Triumph (Brooklyn, N. Y., \$35). These machines, while much less rapid than the key-operated machines, are useful in simple addition. The Underwood typewriter is now supplied with a complete electrically driven adding machine attached, and the Wahl adding attachment is supplied on the Remington and other typewriters. Ray Subtracto-Adder (Richmond, Va., \$25).

Adding and Listing Machines. The machines of this group not only add, but also print the items, totals and sub-totals. The Burroughs (Detroit, Mich.), the Wales (Adder Machine Co., Wilkes-Barre, Pa.), the Comptograph (Chicago, Ill.) and the White (New Haven, Conn.), resemble each other in having an 81-key keyboard; the Dalton (Cincinnati, Ohio) and the Commercial (White Adding Machine Co., New Haven,

Conn.) have a 10-key and a 9-key keyboard respectively, admitting of operation by the touch method. On all these machines, in order to add a number, first depress the proper keys and then pull a handle (or, in the case of electrically driven machines, press a button) to record the item. Multiplication cannot be performed conveniently, except on the Dalton. Subtraction can be performed only by adding the complement, except on the Commercial and on one type of the Burroughs. The prices range from \$125 to \$600, according to size and style, new models being constantly devised for special commercial purposes. A new and more portable machine of the 81-key type is the Barrett adding and listing machine (Philadelphia, Pa., \$250). A cheaper machine, with a 10key keyboard, is the Standard (St. Louis, Mo.). The new American adding and listing machine (American Can Co., Chicago, Ill.), operated by pulling up a finger-lever for each digit, costs only \$88. The Ellis (Newark, N. J.) is an elaborate adding and listing machine having a complete typewriter incorporated with it. The Elliott-Fisher bookkeeping machine (Harrisburg, Pa.) and the Moon-Hopkins billing machine (St. Louis, Mo.) are intended primarily for commercial use; the latter is a complicated electric machine (\$750) which combines many of the features of an adding and listing machine with those of a calculating machine.

Calculating Machines (so-called). Machines of this third group are intended primarily for multiplication and division; the types which have a keyboard can be used effectively for addition and subtraction also. They are all non-listing. The earliest commercially successful types were the Thomas and the Brunsviga. In both these types the multiplicand is set up by moving pegs in slots, or (in the newest models) by depressing keys, and the multiplication is effected by turning a handle for each digit of the multiplier—twice for a digit 2, three times for a digit 3, etc.; the result then appears on the dials. In the Thomas type the handle always turns in the same direction, the change from multiplication to division being effected by a shift key. Brunsviga type the handle is turned forward for multiplication and backward for division. Among the best examples of the Thomas type now on the American market are the Tim, with a single row of dials, the Unitas, with a double row of dials (both sold by Oscar Müller Co., New York City; also with keyboard and electric drive), and the Reuter (Philadelphia, Pa.). Prices, \$300 upward. Another machine of this type, with keyboard, is the Record (U. S. Adding Machine Co., New York City). Brunsviga is represented by Carl H. Reuter, Philadelphia, Pa.; various models, somewhat similar type are the Triumphator (New York City; \$250), and Colt's calculator (Culmer Engineering Co., New York City). A new machine, on the same principle, but with keyboard, is the Monroe (made in Orange, N. J.; \$250). The Millionaire (W. A. Morschhauser, New York City; \$400), is from the mechanical point of view, the only true multiplying machine on the market (except the Moon-Hopkins). After the multiplicand is set up on the pegs, the digits of the multiplier are indicated successively by moving a pointer, the handle being turned only once for each digit. Further, the movement of the carriage is automatic. The newest models have keyboard and electric drive. The Ensign electric calculating machine (Boston, Mass.; \$400) is a new machine with an 81-key keyboard on which it adds like an adding machine, and a secondary 10-key keyboard by means of which it multiplies and divides quite as rapidly as any of the calculating machines, the proper key being pressed just once for each digit of the multiplier. The National calculator (New York), and the Lamb calculator (Calculator Mfg. Co., New York) are less expensive machines devised for figuring payrolls and labor costs. A still simpler device for the same purpose is the Calculacard (New York). The machine called the Calculagraph (New York) is a time clock which automatically computes labor costs. For graphical methods of computation, see pp. 106, 119, 170, 173-185.

FINANCIAL ARITHMETIC

For the facts which are commonly required in regard to compound interest, sinking funds, etc., see the headings of the tables on pp. 64-68.

ELEMENTARY GEOMETRY AND MENSURATION

GEOMETRICAL THEOREMS

(For geometrical constructions, see p. 101)

Right Triangles. $a^2+b^2=c^2$. (See Fig. 1). $\angle A+\angle B=90^\circ$. $p^2=mn$. $a^2=mc$. $b^2=nc$. See also p. 105 and p. 132.

Oblique Triangles. (See also pp. 105, 134.) Sum of angles = 180°. An exterior angle = sum of the two opposite interior angles. (Fig. 1.)

The medians, joining each vertex with the middle point of the opposite side, meet in the center of gravity G (Fig. 2), which trisects each median.

The altitudes meet in a point called the orthocenter, O.

The perpendiculars erected at the midpoints of the sides meet in a point C, the center of the circumscribed circle. [In any triangle G, O, and C lie in line, and G is two-thirds of the way from O to C.]

The bisectors of the angles meet in the center of the inscribed circle (Fig. 3).

The largest side of a triangle is opposite the largest angle; it is less than the sum of the other two sides, and greater than their difference.

Similar Figures. Any two similar figures, in a plane or in space, can be placed in "perspective," that is, so that straight lines joining corresponding points of the two figures will pass through a common point (Fig. 4). That is, of two similar figures, one is merely an enlargement of the other. Assume that each length in one figure is k times the corresponding length in the other; then each area in the first figure is k^2 times the corresponding area in the second, and each volume in the first figure is k^3 times the corresponding volume in the second. If two lines are cut by a set of parallel lines (or parallel planes), the corresponding segments are proportional.

The Circle. (See also pp. 106, 137.) An angle inscribed in a semicircle is a right angle (Fig. 5). An angle inscribed in a circle, or an angle between a chord and a tangent, is measured by half the intercepted arc (Fig. 6). An angle formed by any two lines which meet a circle is measured by half the sum or half the difference of the intercepted arcs, according as the point of intersection of the lines lies inside (Fig. 7) or outside the circle (Fig. 8).

A tangent is perpendicular to the radius drawn to the point of contact. If a variable line through A (Figs. 9 and 10) cuts a circle in P and Q, then

 $\overline{AP} \times \overline{AQ}$ is constant; in particular, if A is an external point, $\overline{AP} \times \overline{AQ} = \overline{AT^2}$, where \overline{AT} is the tangent from A.

The radical axis (Fig. 11) of two circles is a straight line such that the tangents drawn from any point of this line to the two circles are of equal length. If the two circles intersect, the radical axis passes through their points of intersection. In any case, the radical axis bisects the common tangents of the two circles. The three radical axes of a set of three circles meet in a common point. (For equations, see p. 137.)

Dihedral Angles. The dihedral angle between two planes is measured by a plane angle formed by two lines, one in each plane, perpendicular to the edge (Fig. 12). (For solid angles, see p. 110.)

In a tetrahedron, or triangular pyramid, the four medians, joining each vertex with the center of gravity of the opposite face, meet in a point, the center of gravity of the tetrahedron; this point is ¾ of the way from any vertex to the center of gravity of the opposite face. The four perpendiculars erected at the circumcenters of the four faces meet in a point, the center of the circumscribed sphere. The four altitudes meet in a point called the orthocenter of the tetrahedron. The planes bisecting the six dihedral angles meet in a point, the center of the inscribed sphere.

Regular Polyhedra (see also p. 110): Regular tetrahedron (Fig. 13), bounded by four equilateral triangles; cube (Fig. 14), bounded by six squares; octahedron (Fig. 15), bounded by eight equilateral triangles; dodecahedron (Fig. 16), bounded by twelve regular pentagons; icosahedron (Fig. 17), bounded by twenty equilateral triangles. Figs. 13-17 show how these solids can be made by cutting the surface out of paper and folding it together.

The Sphere. (See also p. 109.) If AB is a diameter, any plane perpendicular to AB cuts the sphere in a circle, of which A and B are called the poles. A great circle on the sphere is formed by a plane passing through the center. A spherical triangle is bounded by arcs of great circles (see p.

134). In two polar triangles, each angle in one is the supplement of the corresponding side in the other. In two symmetrical triangles, the sides and angles of one are equal to the corresponding sides and angles of the other, but arranged in the reverse order (like right-handed and left-handed gloves).

GEOMETRICAL CONSTRUCTIONS

To Bisect a Line AB (Fig. 18). (a) From A and B as centers, and with equal radii, describe arcs intersecting in P and Q, and draw PQ, which will bisect AB in M.

(b) Lay off AC = BD = approximately half of AB, and then bisect CD.

To Draw a Parallel to a Given Linel Through a Given Point A (Fig. 19). With point A as center draw an arc just touching the line l; with any point O of the line as center, draw an arc BC with the same radius. Then a line through A touching this arc will be the required parallel. Or, use a straight edge and triangle. Or, use a sheet of celluloid with a set of lines parallel to one edge and about $\frac{1}{4}$ in. apart ruled upon it.

To Draw a Perpendicular to a Given Line from a Given Point A Outside the Line (Fig. 20). (a) With A as center, describe an arc cutting the line in R and S, and bisect RS in M. Then M is the foot of the perpendicular. (b) If A is nearly opposite one end of the line, take any point B of the line and bisect AB in O; then with O as center, and OA or OB as radius, draw an arc cutting the line in M. Or, (c) use a straight edge and triangle.

To Erect a Perpendicular to a Given Line at a Given Point P. (a) Lay off PR = PS (Fig. 21), and with R and S as centers draw arcs intersecting at A. Then PA is the required perpendicular. (b) If P is near the end of the line, take any convenient point O (Fig. 22) above the line as center, and with radius OP draw an arc cutting the line in Q. Produce QO to meet the arc in A; then PA is the required perpendicular. (c) Lay off PB = 4 units of any scale (Fig. 23); from P and B as centers lay off PA = 3 and BA = 5; then APB is a right angle.

To Divide a Line AB into n Equal Parts (Fig. 24). Through A draw a line AX at any angle, and lay off n equal steps along this line. Connect the last of these divisions with B, and draw parallels through the other divi-

sions. These parallels will divide the given line into n equal parts. A similar method may be used to divide a line into parts which shall be proportional to any given numbers.

To Construct a Mean Proportional (or Geometric Mean) Between Two Lengths, m and n (Fig. 25). Lay off AB = m and BC = n and construct a semicircle on AC as diameter. Let the perpendicular erected at B meet the circumference at P. Then $BP = \sqrt{mn}$. (See p. 115.)

To Divide a Line AB in Extreme and Mean Ratio (the "golden section"). At one end, B, of the given line (Fig. 26), erect a perpendicular, BO, equal to half AB, and join OA. Along OA lay off OP = OB, and along AB lay off AX = AP. Then X is the required point of division; that is, $\overline{AX^2} = AB \times BX$. Numerically, $AX = \frac{1}{2}(\sqrt{5} - 1)(AB) = 0.618(AB)$.

To Bisect an Angle AOB (Fig. 27). Lay off OA = OB. From A and B as centers, with any convenient radius, draw arcs meeting in M; then OM is the required bisector.

To draw the bisector of an angle when the vertex of the angle is not accessible (Fig. 28). Parallel to the given lines a, b, and equidistant from them, draw two lines a', b' which intersect; then bisect the angle between a' and b'.

To Draw a Line Through a Given Point A and in the Direction of the Point of Intersection of Two Given Lines, when this point of intersection is inaccessible (Fig. 29). Draw any two parallel lines PQ and P'Q' as in the figure; through P' draw a line parallel to PA, and through Q' draw a line parallel to QA; let these lines intersect in A', and draw the line AA'. This line AA' will (if produced) pass through the intersection of the two given lines.

To Construct, Approximately, the Length of a Circular Arc (Rankine). In Fig. 30 draw a tangent at A. Prolong the chord BA to C, making AC = C

14 AB. With C as center, and radius CB, draw are cutting the tangent in D. Then $AD = \operatorname{arc} AB$, approximately (error about 4 min. in an are of 60 deg.). Conversely, to find an arc AB on a given circle to equal a given length AD, take E one-fourth of the way from A to D, and with E as center and radius ED draw an arc cutting the circumference in B. Then arc AB = AD, approximately.

To Inscribe a Hexagon in a Circle (Fig. 31). Step around the circumference with a chord equal to the radius. Or, use a 60-deg. triangle.

To Circumscribe a Hexagon About a Circle (Fig. 32). Draw a chord AB equal to the radius. Bisect the arc AB in T. Draw the tangent at T (parallel to AB), meeting OA and OB in P and Q. Then draw a circle with radius OP or OQ and inscribe in it a hexagon, one side being PQ.

Fig. 31.

Fig. 32.

Fig. 33.

To Inscribe an Octagon in a Square (Fig. 33). From the corners as centers, and with radius equal to half the diagonal, draw four arcs, cutting the sides in eight points. The points will be the vertices of the octagon.

To Inscribe an Octagon in a Circle. Draw two perpendicular diameters, and bisect each of the quadrant arcs.

To Circumscribe an Octagon About a Draw a square about the circle, and draw the tangents to the circle at the points where the circle is cut by the diagonals of the square.

To Construct a Polygon of n Sides, One Side AB being Given (Fig. 34). With A as center and AB as radius, draw a semicircle,

Fig. 34.

and divide it into n parts, of which n-2 parts (counting from B) are to be used. Draw rays from A through these points of division, and complete the construction as in the figure (in which n = 7). Note that the center of the polygon must lie in the perpen-

dicular bisector of each side.

To Draw a Tangent to a Circle from an external point A (Fig. 35). Bisect AC in M; with M as center and radius MC, draw are cutting circle in P: then P is the required point of tangency.

Fig. 35.

To Draw a Common Tangent to Two Given Circles (Fig. 36). Let C and c be the centers and R and r the radii (R > r). From C as center, draw

two concentric circles with radii R + rand R-r: draw tangents to these circles from c; then draw parallels to these lines at distance r. These parallels will be the required common tangents.

To Draw a Circle Through Three Given Points A, B, C, or to find the center of a given circular arc (Fig. 37). Draw the perpendicular bisectors of

Fig. 38.

AB and BC; these will meet in the center, O.

To Draw a Circular Arc Through Three Given Points When the Center is not Available (Fig. 38). With A and B as centers, and chord AB as radius, draw arcs, cut by BC in R and by AC in S. Divide RA into n equal parts, 1, 2, 3, . . . Divide BS into the same number of equal parts, and continue these divisions at 1', 2', 3', . . . Connect A with 1', 2', 3', . . .

and B with 1, 2, 3, Then the points of intersection of corresponding lines will be points of the required arc. (Construction valid only when CA = CB.)

To Draw a Circle Through Two Given Points, A, B, and Touching a Given Line, I (Fig. 39). Let AB meet line lin

Fig. 39. Fig. 40.

C. Draw any circle through A and B, and let CT be tangent to this circle from C. Along l, lay off CP and CQ equal to CT. Then either P or Q is the required point of tangency. (Two solutions.) Note that the center of the required circle lies in the perpendicular bisector of AB.

To Draw a Circle Through One Given Point, A, and Touching Two Given Lines, l and m (Fig. 40). Draw the bisector of the angle between l and m, and let B be the reflection of A in this line. Then draw a circle through A and B and touching l (or m), as in preceding construction. (Two solutions.)

To Draw a Circle Touching Three Given Lines (Fig. 41). Draw the bisectors of the three angles; these will meet in the center O. (Four solutions.) The perpendiculars from O to the three lines give the points of tangency.

Fig. 41.

To Draw a Circle Through Two Given Points A, B, and Touching a Given Circle (Fig. 42). Draw any circle through A and B, cutting the given circle in C and D. Let AB and CD meet in E, and let ET be tangent

from E to the circle just drawn. With E as center, and radius ET, draw an arc cutting the given circle in P and Q. Either P or Q is the required point of contact. (Two solutions.)

To Draw a Circle Through One Given Point, A, and Touching Two Given Circles (Fig. 43). Let S be a center of

Fig. 42. Fig. 43.

similitude for the two given circles, that is, the point of intersection of two external (or internal) common tangents. Through S draw any line cutting one circle in two points, the nearer of which shall be called P, and the other in two points, the more remote of which shall be called Q. Through A, P, Q

draw a circle cutting SA in B. Then draw a circle through A and B and touching one of the given circles (see preceding construction). This circle will touch the other given circle also. (Four solutions.)

To Draw an Annulus Which Shall Contain a Given Number of Equal Contiguous Circles (Fig. 44). (An annulus is a ring-shaped area enclosed between two concentric circles.) Let R + r and R - r be the inner and outer radii of the annulus, r being the radius of each of the n circles. Then the required relation between these

Fig 44.

 $(R + r)[\sin (180^{\circ}/n)]/[1 + \sin (180^{\circ}/n)].$ For methods of constructing ellipses and other curves, see pp. 139-156.

LENGTHS AND AREAS OF PLANE FIGURES

Right Triangle (Fig. 45). $a^2 + b^2 = c^2$.

Area = $\frac{1}{2}ab = \frac{1}{2}a^2 \cot A = \frac{1}{2}b^2 \tan A = \frac{1}{4}c^2 \sin 2A$.

quantities is given by $r = R \sin (180^{\circ}/n)$, or r =

Equilateral Triangle (Fig. 46). Area = $\frac{1}{4}a^2\sqrt{3} = 0.43301a^2$.

Any Triangle (Fig. 47). $s = \frac{1}{2}(a+b+c)$, $t = \frac{1}{2}(m_1 + m_2 + m_3)$,

 $r = \sqrt{(s-a)(s-b)(s-c)/s}$ = radius inscribed circle,

 $R = \frac{1}{2} a / \sin A = \frac{1}{2} b / \sin B = \frac{1}{2} c / \sin C = \text{radius circumscribed circle};$

Area = $\frac{1}{2}$ base \times altitude = $\frac{1}{2}ah$ = $\frac{1}{2}ab$ sin $C = rs = \frac{abc}{4R}$

 $= \sqrt{s(s-a)(s-b)(s-c)} = \frac{4}{3} \sqrt{t(t-m_1)(t-m_2)(t-m_3)}$

 $= r^2 \cot \frac{1}{2} A \cot \frac{1}{2} B \cot \frac{1}{2} C = 2R^2 \sin A \sin B \sin C$

 $=\pm\frac{1}{2}\{(x_1y_2-x_2y_1)+(x_2y_3-x_3y_2)+(x_3y_1-x_1y_3)\},$ where $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ are co-ordinates of vertices. See also p. 134.

Rectangle (Fig. 48). Area = $ab = \frac{1}{2}D^2 \sin u$. [u = angle betweendiagonals D, D.1

Rhombus (Fig. 49). Area = $a^2 \sin C = \frac{1}{2}D_1D_2$. [C = angle between two adjacent sides; D_1 , D_2 = diagonals.]

Parallelogram (Fig. 50). Area = $bh = ab \sin C = \frac{1}{2}D_1D_2 \sin u$. [u =angle between diagonals D_1 and D_2 ; $D_1^2 + D_2^2 = 2(a^2 + b^2)$.

Trapezoid (Fig. 51). Area = $\frac{1}{2}(a + b)h = \frac{1}{2}D_1D_2 \sin u$. [Bases a and b] are parallel; $u = \text{angle between diagonals } D_1 \text{ and } D_2$.]

Quadrilateral Inscribed in a Circle (Fig. 52). Area = $\frac{1}{2}D_1D_2 \sin u =$ $\sqrt{(s-a)(s-b)(s-c)(s-d)} = \frac{1}{2}(ac+bd)\sin u; \quad s = \frac{1}{2}(a+b+c+d).$ Any Quadrilateral (Fig. 53). Area = $\frac{1}{2}D_1D_2 \sin u$.

Note. $a^2 + b^2 + c^2 + d^2 = D_1^2 + D_2^2 + 4m^2$, where m = distance betweenmidpoints of D_1 and D_2 .

Polygons. See table, p. 39.

Fig. 52.

Fig. 53.

Fig. 55.

Circle. Area = $\pi r^2 = \frac{1}{2}Cr = \frac{1}{4}Cd = \frac{1}{4}\pi d^2 = 0.785398d^2$ (table, p. 30). Here r = radius, d = diam., $C = \text{circumference} = 2\pi r = \pi d$ (table, p. 28).

Annulus (Fig. 54). Area = $\pi(R^2 - r^2) = \pi(D^2 - d^2)/4 = 2\pi R'b$, where $R' = \text{mean radius} = \frac{1}{2}(R + r)$, and b = R - r.

Sector (Fig. 55). Area = $\frac{1}{2}rs = \pi r^2(A/360^\circ) =$ $\frac{1}{2}r^2$ rad A, where rad A = radian measure of angle A, and s = length of arc = r rad A (table, p. 44).

Segment (Fig. 56). Area = $\frac{1}{2}r^2$ (rad $A - \sin A$) = $\frac{1}{2}[r(s-c)+ch]$, where rad A = radian measure of angle A (table, pp. 34-35, 44). For small arcs, $s = \frac{1}{2}(8c' - c)$, where c' =chord of half the arc. (Huygens's approximation.) Note. $c = 2\sqrt{h(d-h)}$; $c' = \sqrt{dh}$ or $d = c'^2/h$, where d = diameter of circle; $h = r (1 - \cos \frac{1}{2}A)$, $s = 2r \operatorname{rad} \frac{1}{2}A$.

Ribbon bounded by two parallel curves (Fig. 57). If a straight line AB moves so that it is always per-

Fig. 56.

Fig. 57.

pendicular to the path traced by its middle point G, then the area of the ribbon or strip thus generated is equal to the length of AB times the length of the path traced by G. (It is assumed that the radius of curvature of G's path is never less than 1/2 AB, so that successive positions of the generating line will not intersect.)

Simpson's Rule (Fig. 58). Divide the given area into n panels (where n is some even number) by means of n + 1 parallel lines, called ordinates, drawn at constant distance h apart; and denote the lengths of these ordinates by $y_0, y_1, y_2, \dots, y_n$. (Note that y_0 or y_n may be zero.) Then Area = $\frac{1}{2}h[(y_0 + y_n) + 4(y_1 + y_3 + y_5...)]$ $+2(y_2+y_4+y_6...)$], approx. The greater

Fig. 58.

the number of divisions, the more accurate the result. Note: Taking y = f(x), where x varies from x = a to x = b, and h = (b - a)/n, then the

 $-\frac{1}{180}\frac{(b-a)^5}{n^4}f''''(X)$, where f''''(X) is the value of the fourth derivative of f(x) for some (unknown) value, x = X, between a and b.

Ellipse (Fig. 59; see also p. 140). Area of ellipse = πab . Area of shaded segment = $xy + ab \sin^{-1}(x/a)$. Length of perimeter of ellipse = $\pi(a + b)K$, where $K = [1 + \frac{1}{2}m^2 + \frac{1}{2}64m^4 + \frac{1}{2}64m^6 + \dots], m = (a - b)/(a + b)$. For $m = 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \quad 0.5 \quad 0.6 \quad 0.7 \quad 0.8 \quad 0.9 \quad 1.0 \quad K = 1,002 \quad 1.010 \quad 1.023 \quad 1.040 \quad 1.064 \quad 1.092 \quad 1.127 \quad 1.168 \quad 1.216 \quad 1.273$

Hyperbola (Fig. 60; see also p. 144). In any hyperbola, shaded area $A = ab \log_e \left(\frac{x}{a} + \frac{y}{b}\right)$. In an equilateral hyperbola (a = b), area $A = a^2 \sinh^{-1}(y/a) = a^2 \cosh^{-1}(x/a)$. For tables of hyperbolic functions, see p. 60. Here x and y are co-ordinates of point P.

Parabola (Fig. 61; see also p. 138). Shaded area $A = \frac{1}{2}ch$. In Fig. 62, length of arc $OP = s = \frac{1}{2}PT + \frac{1}{2}p \log_{\sigma} \cot \frac{1}{2}u$. Here c = any chord; p = semi-latus rectum; PT = tangent at P. Note: OT = OM = x.

Other Curves. For lengths and areas, see pp. 147-156.

SURFACES AND VOLUMES OF SOLIDS

Regular Prism (Fig. 63). Volume = $\frac{1}{2}nrah = Bh$. Lateral area = nah = Ph. Here n = number of sides; B = area of base; P = perimeter of base.

Right Circular Cylinder (Fig. 64). Volume $\pi r^2 h = Bh$. Lateral area $= 2\pi r h = Ph$. Here B = area of base; P = perimeter of base.

Truncated Right Circular Cylinder (Fig. 65). Volume $= \pi r^2 h = Bh$. Lateral area $= 2\pi r h = Ph$. Here $h = \text{mean height} = \frac{1}{2}(h_1 + h_2)$; B = area of base; P = perimeter of base.

Any Prism or Cylinder (Fig. 66). Volume =Bh=Nl. Lateral area =Ql. Here l= length of an element or lateral edge; B= area of base; N= area of normal section; Q= perimeter of normal section.

Any Truncated Prism or Cylinder (Fig. 67). Volume = Nl. Lateral area = Qk. Here l = distance between centers of gravity of areas of the two bases; k = distance between centers of gravity of perimeters of the two bases; N = area of normal section; Q = perimeter of normal section. For a truncated triangular prism with lateral edges a,b,c, l = k = $\frac{1}{2}(a+b+c)$. Note: l and k will always be parallel to the elements.

Special Ungula of a right circular cylinder. (Fig. 68.). Volume = $\frac{3}{6}r^2H$. Lateral area = 2rH. r = radius. (Upper surface is a semi-ellipse.)

Any Ungula of a right circular cylinder. (Figs. 69 and 70.) Volume = $H(\frac{3}{4}a^3 \pm cB)/(r \pm c) = H[a(r^2 - \frac{1}{2}a^2) \pm r^2c \operatorname{rad} u]/(r \pm c)$. Lateral area = $H(2ra \pm cs)/(r \pm c) = 2rH(a \pm c \operatorname{rad} u)/(r \pm c)$. If base is greater (less) than a semicircle, use $+ (-) \operatorname{sign} r = \operatorname{radius}$ of base; $B = \operatorname{area}$ of base; $s = \operatorname{arc}$ of base; $u = \operatorname{half}$ the angle subtended by arc s at center; $\operatorname{rad} u = \operatorname{radian}$ measure of angle u (see table, p. 44).

Hollow Cylinder (right and circular). Volume = $\pi h(R^2 - r^2) = \pi h b(D - b)$ = $\pi h b(d + b) = \pi h bD' = \pi h b(R + r)$. Here h = 1 altitude; r,R(d,D) = 1 inner and outer radii (diameters); b = 1 thickness = R - r; D' = 1 mean diam. = $\frac{1}{2}(d + D) = 1$ = 1 =

Regular Pyramid (Fig. 71). Volume = 1/4 altitude

Fig. 71. Fig. 72.

Fig. 73.

 \times area of base = $\frac{1}{2}hran$. Lateral area = $\frac{1}{2}$ slant height \times perimeter of base = $\frac{1}{2}san$. Here r = radius of inscribed circle; a = side (of regular polygon); n = number of sides; $s = \sqrt{r^2 + h^2}$. Vertex of pyramid directly above center of base.

Right Circular Cone. Volume = $\frac{1}{2}\pi r^2 h$. Lateral area = πrs . Here r = radius of base; h = altitude; s = slant height = $\sqrt{r^2 + h^2}$.

Frustum of Regular Pyramid (Fig. 72).

Volume = $\frac{1}{6}hran[1 + (a'/a) + (a'/a)^2].$

Lateral area = slant height \times half sum of perimeters of bases = slant height \times perimeter of mid-section = $\frac{1}{2}sn(r+r')$. Here r,r' = radii

of inscribed circles; $s = \sqrt{(r - r')^2 + h^2}$; a,a' = sides of lower and upper bases; n = number of sides.

Frustum of Right Circular Cone (Fig. 73). Volume = $\frac{1}{2\pi}r^2h[1+(r'/r)+(r'/r)^2] = \frac{1}{2\pi}h(r^2+rr'+r'^2) = \frac{1}{2\pi}h[(r+r')^2+\frac{1}{2\pi}(r-r')^2].$ Lateral area = $\pi s(r+r')$; $s = \sqrt{(r-r')^2+h^2}$.

Any Pyramid or Cone. Volume = $\frac{1}{12}Bh$. B = area of base; h = perpendicular distance from vertex to plane in which base lies.

Any Pyramidal or Conical Frustum (Fig. 74). Volume = $\frac{1}{2}h(B + \sqrt{BB'} + B') = \frac{1}{2}hB[1 + (P'/P) + (P'/P)^2]$. Here B, B' = areas of lower and upper bases; P, P' = perimeters of lower and upper bases.

Obelisk (Frustum of a rectangular pyramid. Fig. 75).

Volume = $\frac{1}{2}h[(2a+a_1)b+(2a_1+a)b_1] = \frac{1}{2}h[ab+(a+a_1)(b+b_1)+a_1b_1].$

Wedge (Rectangular base; a_1 parallel to a,a and at distance h above base. Fig. 76). Volume = $\frac{1}{2}hb(2a+a_1)$.

Sphere. Volume = $V = \frac{4}{3}\pi r^3 = 4.188790r^3 = \frac{1}{3}\pi d^3 = 0.523599d^3$ (table, p. 36) = $\frac{2}{3}$ volume of circumscribed cylinder. Area = $A = 4\pi r^2$ = four great circles (table, p. 30) = $\pi d^2 = 3.14159d^2$ = lateral area of circumscribed cylinder. Here r = radius; $d = 2r = \text{diameter} = \sqrt[3]{6V/\pi} = 1.24070 \sqrt[3]{V} = \sqrt{A/\pi} = 0.56419\sqrt{A}$.

Hollow Sphere, or spherical shell. Volume = $\frac{94\pi(R^3 - r^3)}{8\pi(D^3 - d^3)} = \frac{4\pi R_1^{2t} + \frac{1}{24\pi t^3}}{4\pi t^3}$. Here R,r = outer and inner radii; D,d = outer and inner diameters; t = thickness = R - r; $R_1 =$ mean radius = $\frac{1}{24\pi t^3}$.

Spherical Segment of One Base. Zone (spherical "cap" of Fig. 78). Volume = $\frac{1}{24\pi}h(3a^2 + h^2) = \frac{1}{24\pi}h^2(3r - h)$ (table, p. 38). Lateral area (of zone) = $2\pi rh = \pi(a^2 + h^2)$. Note: $a^2 = h(2r - h)$, where r = radius of sphere.

Any Spherical Segment. Zone (Fig. 77). Volume = $\frac{1}{6}\pi h(3a^2 + 3a_1^2 + h^2)$. Lateral area (zone) = $2\pi rh$. Here r = radius of sphere. If the inscribed frustum of a cone be removed from the spherical segment, the volume remaining is $\frac{1}{6}\pi hc^2$, where c = slant height of frustum = $\sqrt{h^2 + (a - a_1)^2}$.

Fig. 77.

Fig. 78.

Spherical Sector (Fig. 78). Volume = $\frac{1}{2}r \times \text{area}$ of cap = $\frac{2}{3}\pi r^2h$. Total area = area of cap + area of cone = $2\pi rh + \pi ra$. Note: $a^2 = h(2r - h)$.

Spherical Wedge bounded by two plane semicircles and a lune. (Fig. 79.) Volume of wedge \div volume of sphere $= u/360^{\circ}$. Area of lune \div area of sphere $= u/360^{\circ}$. u = dihedral angle of the wedge.

Spherical Triangle bounded by arcs of three great circles. (Fig. 80.) Area of triangle = $\pi r^2 E/180^\circ$ = area of octant $\times E/90^\circ$. E = spherical excess = 180° – (A + B + C), where A, B, and C are angles of the triangle. See also p. 134.

Solid Angles. Any portion of a spherical surface subtends what is called a solid angle at the center of the sphere. If the area of the given

portion of spherical surface is equal to the square of the radius, the subtended solid angle is called a steradian, and this is commonly taken as the unit. The entire solid angle about the center is called a steregon, so that 4π steradians = 1 steregon. A so-called "solid right angle" is the solid angle subtended by a quadrantal (or trirectangular) spherical triangle, and a "spherical degree" (now little used) is a solid angle equal to $\frac{1}{160}$ of a solid right angle. Hence 720 spherical degrees = 1 steregon, or π steradians = 180 spherical degrees. If u = the angle

Fig. 79. Fig. 80.

which an element of a cone makes with its axis, then the solid angle of the cone contains $2\pi(1 - \cos u)$ steradians.

Regular Polyhedra. A = area of surface; V = volume; a = edge.

Name of solid (see p. 100)	Bounded by	A/a²	V/a3
Tetrahedron	4 triangles	1.7321	0.1179
Cube	6 squares	6.0000	1.0000
Octahedron	8 triangles	3.4641	0.4714
Dodecahedron	12 pentagons	20.6457	7.6631
Icosahedron	20 triangles	8.6603	2.1817

Ellipsoid (Fig. 81). Volume = $\frac{1}{2}\pi abc$, where a, b, c = semi-axes.

Spheroid (or ellipsoid of revolution). The volume of any segment made by two planes perpendicular to the axis of revolution may be found accurately by the prismoidal formula (p. 111).

Paraboloid of Revolution (Fig. 82). Volume = $1/2\pi r^2h = 1/2$ volume of circumscribed cylinder.

Segment of Paraboloid of Revolution (Bases perpendicular to axis, Fig. 83). Volume of segment = $\frac{1}{2}\pi(R^2 + r^2)h$.

Barrels or Casks (Fig. 84). Volume = $\aleph_{12}\pi h(2D^2 + d^2)$ approx. for circular staves. Volume = $\aleph_{15}\pi h(2D^2 + Dd + \frac{3}{4}d^2)$ exactly for parabolic staves.

For a standing cask, partially full, compute contents by the prismoidal formula, p. 111. Roughly, the number of gallons, G, in a cask is given by $G = 0.0034n^2h$, where n = number of inches in the mean diameter, or $\frac{1}{2}(D+d)$, and h= number of inches in the height.

Torus, or Anchor Ring (Fig. 85). Volume = $2\pi^2 cr^2$. Area = $4\pi^2 cr$ (Proof by theorems of Pappus).

Fig. 85.

Theorems of Pappus. 1. Assume that a plane figure, area A, revolves about an axis in its plane but not cutting it; and let s = length of circular arc traced by its center of gravity. Then volume of the solid generated by A is V = As. For a complete revolution, $V = 2\pi rA$, where r = distancefrom axis to center of gravity of A.

2. Assume that a plane curve, length l, revolves about an axis in its plane but not cutting it; and let s = length of circular arc traced by its center of gravity. Then area of the surface generated by l is S = ls. For a complete revolution, $S = 2\pi r l$, where r = distance from axis to center of

gravity of l.

NOTE. If V_1 or S_1 about any axis is known, then V_2 or S_2 about any parallel axis can be readily computed when the distance between the axes is known.

Generalized Theorems of Pappus. Consider any curved path of length s. If (1) a plane figure, area A [or (2) a plane curve, length l] moves so that its center of gravity slides along this curved path (Fig. 86), while the plane of A [or l] remains always perpendicular to the path, then (1) the volume generated by A is V = As[and (2) the area generated by l is S = ls]. The

path is assumed to curve so gradually that successive positions of A [or l] will not intersect.

The Prismoidal Formula (Fig. 87). Volume = $\frac{1}{6}h(A + B + 4M)$, where h = altitude, A and B = areas of bases and M = area of a plane section

midway between the This formula is bases. exactly true for any solid lying between two parallel planes and such that the area of a section at distance x from one of these planes is

Fig. 87. Fig. 88.

expressible as a polynomial of not higher than the third degree in x. It is approximately true for many other solids.

Simpson's Rule may be applied to finding volumes, if the ordinates y_1, y_2 , be interpreted as the areas of plane sections, at constant distance h apart (p. 106).

Cavalieri's Theorem. Assume two solids to have their bases in the same plane. If the plane section of one solid at every distance x above the base is equal in area to the plane section of the other solid at the same distance x above the base, then the volumes of the two solids will be equal. See Fig. 88.

ALGEBRA

FORMAL ALGEBRA

Notation. The main points of separation in a simple algebraic expression are the + and - signs. Thus, $a + b \times c - d \div x + y$ is to be interpreted as $a + (b \times c) - (d \div x) + y$. In other words, the range of operation of the symbols \times and \div extends only so far as the next + or - sign. As between the signs \times and \div themselves, $a \div b \times c$ means, properly speaking, $a \div (b \times c)$; that is, the \div sign is the stronger separative; but this rule is not always strictly followed, and in order to avoid ambiguity it is better to use the parentheses.

The range of influence of exponents and radical signs extends only over the next adjacent quantity. Thus, $2ax^3$ means $2a(x^3)$, and $\sqrt{2}ax$ means $(\sqrt{2})$ (ax). Instead of $\sqrt{2}ax$, it is safer, however, to write $\sqrt{2}ax$, or, bet-

ter, $ax\sqrt{2}$.

Any expression within parentheses is to be treated as a single quantity. A horizontal bar serves the same purpose as parentheses.

The notation $a \cdot b$, or simply ab, means $a \times b$; and a : b, or a/b, means a + b. The symbol |a| means the "absolute value of a," regardless of sign; thus,

|-2| = |+2| = 2.

The symbol n! (where n is a whole number) is read: "n factorial," and means the product of the natural numbers from 1 to n, inclusive. Thus $1! = 1; 2! = 1 \times 2; 3! = 1 \times 2 \times 3; 4! = 1 \times 2 \times 3 \times 4;$ etc.

The symbol ≠ or + means, "not equal to"; ± means "plus or minus."

The symbol = is sometimes used for "approximately equal to."

Addition and Subtraction. a + b = b + a. (a+b)+c=a+(b+c). a-(-b)=a+b. a-a=0.

a + (x - y + z) = a + x - y + z. a - (x - y + z) = a - x + y - z. A minus sign preceding a parenthesis operates to reverse the sign of every term within, when the parentheses are removed.

Multiplication and Simple Factoring. ab = ba. (ab)c = a(bc). a(b+c) = ab + ac. a(b-c) = ab - ac. Also, $a \times (-b) = -ab$, and $(-a) \times (-b) = ab$; "unlike signs give minus; like signs give plus."

 $(a+b)(a-b)=a^2-b^2$.

 $(a + b)^2 = a^2 + 2ab + b^2$, $(a - b)^2 = a^2 - 2ab + b^2$. $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$, $(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$; etc. (See table of binomial coefficients, p. 39; also p. 114.)

 $a^2 - b^2 = (a - b)(a + b),$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2).$

 $a^{n} - b^{n} = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^{2} + \dots + ab^{n-2} + b^{n-1}).$

 $a^n + b^n$ is factorable by a + b only when n is odd; thus, $a^3 + b^3 = (a + b)(a^2 - ab + b^2),$

 $a^5 + b^5 = (a + b)(a^4 - a^3b + a^2b^2 - ab^3 + b^4);$ etc.

The following transformation is sometimes useful:

$$ax^{2} + bx + c = a \left[\left(x + \frac{b}{2a} \right)^{2} - \left(\frac{\sqrt{b^{2} - 4ac}}{2a} \right)^{2} \right].$$

Fractions. If m is not zero, $\frac{ma + mb + mc}{mx + my} = \frac{a + b + c}{x + y}$; that is, both numerator and denominator of a fraction may be multiplied or divided by any quantity different from zero, without altering the value of the fraction.

To add two fractions, reduce each to a common denominator, and add the $\frac{x}{x}$ $\frac{y}{x}$ $\frac{y}{x}$ $\frac{y}{x}$ $\frac{y}{x}$ $\frac{y}{x}$ $\frac{y}{x}$ $\frac{y}{x}$

numerators:
$$\frac{a}{b} + \frac{x}{y} = \frac{ay}{by} + \frac{bx}{by} = \frac{ay + bx}{by}$$
.

To multiply two fractions:
$$\frac{a}{b} \times \frac{x}{y} = \frac{ax}{by}$$
; $\frac{a}{b} \times x = \frac{a}{b} \times \frac{x}{1} = \frac{ax}{b}$.

To divide one fraction by another, invert the divisor and multiply:

$$\frac{a}{b} \div \frac{x}{y} = \frac{a}{b} \times \frac{y}{x} = \frac{ay}{bx}; \quad \frac{a}{b} \div x = \frac{a}{b} \times \frac{1}{x} = \frac{a}{bx}.$$

Ratio and Proportion. The notation a:b::c:d, which is now passing out of use, is read: "a is to b as c is to d," and means simply (a/b) = (c/d), or ad = bc. a and d are called the "extremes," b and c the "means," and d the "fourth proportional" to a, b, and c. The "mean proportional" between two numbers is the square root of their product; also called the "geometric mean" of the numbers (p.115). If a/b = c/d, then (a + b)/b = (c + d)/d, and (a - b)/b = (c - d)/d; whence also, (a + b)/(a - b) = (c + d)/(c - d). If a/x = b/y = c/z = ... = r, then

$$(a+b+c+...)/(x+y+z+...) = r.$$

Variation. The notation $x \propto y$ is read: "x varies directly as y," or "x is directly proportional to y," and means x = ky, where k is some constant. To determine the constant k, it is sufficient to know any pair of values, as x_1 and y_1 , which belong together; then $x_1 = ky_1$, and hence $x/x_1 = y/y_1$, or $x = (x_1/y_1)y$. The expression "x varies inversely as y," or "x is inversely proportional to y," means that x is proportional to 1/y, or x = k/y.

Exponents. $a^{m+n}=a^ma^n$. $a^{m-n}=a^m/a^n$. $a^0=1$ (if $a\neq 0$). $a^{-m}=1/a^m$. $(a^m)^n=a^{mn}$. $a^{1/n}=\sqrt[4]{a}$. Thus: $a^{1/2}=\sqrt{a}$, and $a^{1/3}=\sqrt[3]{a}$. $a^{m/n}=\sqrt[n]{a^m}$. Thus: $a^{2/3}=\sqrt[3]{a^2}$ and $a^{3/2}=\sqrt{a^3}$. $(\sqrt[n]{a})^n=a$. $(ab)^n=a^nb^n$. $(a/b)^n=a^n/b^n$. $(-a)^n=a^n$ if n is even. $(-a)^n=-a^n$ if n is odd. If n is positive and increases indefinitely, a^n becomes infinite if a>1, and approaches 0 if a<1 (a being always positive). Graphs, p. 174; series, p. 160.

Radicals. Except in the simple cases of square root and cube root, radical signs should always be replaced by fractional exponents: $\sqrt[n]{a} = a^{1/n}$. $(\sqrt{a})^n = (a^{1/n})^n = a$. If n is odd, $\sqrt[n]{-a} = -\sqrt[n]{a}$; but if n is even, $\sqrt[n]{-a}$ is imaginary. Every positive number a has two square roots, one positive and the other negative; but the notation \sqrt{a} always means the positive root; thus, $\sqrt{9} = 3$; $-\sqrt{9} = -3$. If the denominator of a fraction is of the form $\sqrt{a} \pm \sqrt{b}$, it is possible to "rationalize the denominator" by multiplying both numerator and denominator by $\sqrt{a} \mp \sqrt{b}$. Thus:

$$\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}} = \frac{(\sqrt{a} + \sqrt{b})(\sqrt{a} + \sqrt{b})}{(\sqrt{a} - \sqrt{b})(\sqrt{a} + \sqrt{b})} = \frac{a + b + 2\sqrt{ab}}{a - b}$$

Logarithms. (For the use of logarithms in numerical computation, see p. 91.) The logarithm of a (positive) number N is the exponent of that power to which the base (10 or e) must be raised to produce N. Thus, $x = \log_{10} N$ means that $10^x = N$, and $x = \log_e N$ means that $e^x = N$. Logarithms to base 10 are called **common**, **denary**, or **Briggsian** logarithms. For table of 4-place common logarithms see pp. 40-43.

Logarithms to base e are called **hyperbolic**, **natural**, or **Napierian** logarithms. Here $e = 1 + 1 + 1/2! + 1/3! + 1/4! + \dots = 2.718281828459...$ For table of 4-place hyperbolic logarithms see pp. 58, 59.

If the subscript 10 or e is omitted, the base must be inferred from the context, the base 10 being used in numerical computation, and the base e

in theoretical work. In either system,

The two systems are related as follows:

 $\log_{10}e = M = 0.4342944819 \dots$; $\log_e 10 = 1/M = 2.3025850930 \dots$ $\log_{10}x = 0.4343 \log_e x$; $\log_e x = 2.3026 \log_{10}x$.

For tables of multiples of M and 1/M, see p. 62. For graphs of the logarithmic and exponential functions, see p. 174; series, p. 160.

The Binomial Theorem. (For table of binomial coefficients, see p. 39 and p. 116.)

Let
$$(n)_1 = n$$
, $(n)_2 = \frac{n(n-1)}{1 \times 2}$, $(n)_3 = \frac{n(n-1)(n-2)}{1 \times 2 \times 3}$, $(n)_4 = \frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}$, . . .

Then, for any value of n, provided |x| < 1,

$$(1+x)^n = 1 + (n)_1 x + (n)_2 x^2 + (n)_3 x^3 + (n)_4 x^4 + \dots$$

(If n is a positive integer, the series breaks off with the term in x^n , and is valid without restrictions on x, see p. 112.)

The most useful special cases are the following:

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \dots (|x| < 1)$$

$$\sqrt[3]{1+x} = (1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 - \frac{10}{243}x^4 + \dots$$
 (|x| < 1)

$$\frac{1}{1+x} = (1+x)^{-1} = 1 - x + x^2 - x^3 + x^4 - \dots$$
 (|x| < 1)

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \frac{35}{128}x^4 - \dots (|x| < 1)$$

$$\frac{1}{\sqrt[3]{1+x}} = (1+x)^{-\frac{1}{3}} = 1 - \frac{1}{3}x + \frac{2}{9}x^2 - \frac{14}{81}x^3 + \frac{35}{243}x^4 - \dots (|x| < 1)$$

$$\sqrt{(1+x)^3} = (1+x)^{\frac{3}{2}} = 1 + \frac{3}{2}x + \frac{3}{8}x^2 - \frac{1}{16}x^3 + \frac{3}{128}x^4 - \dots (|x| < 1)$$

$$\frac{1}{\sqrt{(1+x)^3}} = (1+x)^{-\frac{3}{2}} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 - \frac{35}{16}x^3 + \frac{315}{128}x^4 - \dots (|x| < 1)$$

with corresponding formulæ for $\sqrt{1-x}$, etc., obtained by reversing the signs of the odd powers of x. Also, provided |b| < |a|:

$$(a+b)^n = a^n \left(1 + \frac{b}{a}\right)^n = a^n + (n)_1 a^{n-1}b + (n)_2 a^{n-2}b^2 + (n)_3 a^{n-3}b^3 + \dots$$

where $(n)_1$, $(n)_2$, etc., have the values given above.

Arithmetical Progression. In an arithmetical progression, a; a + d; a + 2d; a + 3d; . . ., each term is obtained from the preceding term by adding a constant, called the constant difference, d. If n is the number of terms, the last term is l = a + (n - 1)d; the "average" term is $\aleph(a + l)$;

and the sum of the *n* terms is *n* times the average term, or $S = \frac{1}{2}n(a+l)$. The arithmetical mean between *a* and *b* is (a+b)/2.

Geometrical Progression. In a geometrical progression, a; ar; ar^2 ; ar^3 ; . . ., each term is obtained from the preceding term by multiplying by a constant, called the constant ratio, r. The nth term is ar^{n-1} . The sum of the first n terms is $S = a(r^n - 1)/(r - 1) = a(1 - r^n)/(1 - r)$. If r is a positive or negative fraction, that is, if -1 < r < +1, then r^n will approach zero as n increases, and the sum of n terms will approach a/(1 - r) as a limit. The geometric mean between a and b is \sqrt{ab} ; also called the mean proportional between a and b (p. 113; construction, p. 102).

The harmonic mean between a and b is 2ab/(a+b).

Summation of Certain Series by Second and Third Differences.

Let $a_1, a_2, a_3, \ldots a_n$ be any series of n numbers, as in the first column of the adjoining scheme. By subtracting each number from the next following, form the column of "first differences," and by repeating this process, form the columns of second, third, etc., differences. If the kth differences are all equal, so that subsequent differences are all zero, the original series is called an arithmetical series of the kth order. In this special case the series can be summed as follows: Denote the numbers which stand at the head of the successive columns of differences by D', D'', D''', \ldots . Then the nth term of the series is a_n , and the sum of the first n terms is S_n , where

$$a_{n} = a_{1} + (n-1)D' + \frac{(n-1)(n-2)}{1 \times 2}D'' + \frac{(n-1)(n-2)(n-3)}{1 \times 2 \times 3}D''' + \dots$$

$$S_{n} = na_{1} + \frac{n(n-1)}{1 \times 2}D' + \frac{n(n-1)(n-2)}{1 \times 2 \times 3}D'' + \dots$$

$$+ \frac{n(n-1)(n-2)(n-3)}{1 \times 2 \times 3 \times 4}D''' + \dots$$

If the series is, for example, of the third order, each of these formulæ will stop with the term involving D'''; and only a few terms of the series are required for the computation of the D's. (Differentials, p. 159.)

Sum of the Squares or Cubes of the First n Natural Numbers.

$$\begin{array}{l} 1+2+3+\ldots +(n-1)+n=\frac{1}{2}n(n+1).\\ 1^2+2^2+3^2+\ldots +(n-1)^2+n^2=\frac{1}{2}n(n+1)(2n+1).\\ 1^3+2^3+3^3+\ldots +(n-1)^3+n^3=[\frac{1}{2}n(n+1)]^2. \end{array}$$

Formula for Interpolation by Second Differences. In any ordinary table giving a quantity y as a function of a variable x, let it be required to find the value of y corresponding to a value of x which is not given directly in the table, but which lies between two tabulated values, as x_1 and x_2 . If $x = x_1 + md$, where $d = x_2 - x_1 =$ the constant interval between two successive x's, and m is some proper fraction, then the corresponding value of y will be given by the formula

$$y = y_1 + mD' + \frac{m(m-1)}{1 \times 2}D'' + \frac{m(m-1)(m-2)}{1 \times 2^4 \times 3}D''' + \dots$$

where D', D", D", . . . are the first, second, third, . . . differences in the

116 ALGEBRA

series of y's which begins with y_1 (see above), provided the function is of such a nature that the differences of higher orders become negligibly small.

The coefficients of D', D'', D''', . . . in the formula are the binomial coefficients for fractional values of m (see following table). The several terms of the formula (with careful attention to sign) are the successive corrections which must be added to y_1 ; the sum of these corrections should be rounded out to the nearest unit of the last significant place before adding. If D' < 4, the term involving D'', and later terms, can be neglected; the formula then reduces to $y = y_1 + mD'$, which is the familiar formula for ordinary, or "linear," interpolation. If D''' < 8 (or D''''' < 12, or D'''''' < 16), the term involving D''' (or D''''', or D'''''') can be neglected.

Binomial Coefficients for Fractional Values of m

	/ \		/ \	
m	(m) ₂	(m) ₈	(m) ₄	(m)g
0.0	- 0.0000	0.0000	- 0.0000	0.0000
0.1	- 0.0450	0.0285	- 0.0207	0.0161
0.2	- 0.0800	0.0480	- 0.0336	0.0255
0.3	- 0.1050	0.0595	- 0.0402	0.0297
0.4	- 0.1200	0.0640	- 0.0416	0.0300
0.5	- 0.1250	0.0625	- 0.0391	0.0273
0.6	- 0.1200	0.0560	- 0.0336	0.0228
0.7	- 0.1050	0.0455	- 0.0262	0.0173
0.8	- 0.0800	0.0320	- 0.0176	0.0113
0.9	- 0.0450	0.0165	0.0087	0.0054

Here
$$(m)_2 = \frac{m(m-1)}{1 \times 2}$$
, $(m)_3 = \frac{m(m-1)(m-2)}{1 \times 2 \times 3}$, $(m)_4 = \frac{m(m-1)(m-2)(m-3)}{1 \times 2 \times 3 \times 4}$, etc. Compare p. 39.

Permutations. The number of possible permutations or arrangements of n different elements is $1 \times 2 \times 3 \times \ldots \times n = n!$ (read: "n factorial"). If among the n elements there are p equal ones of one sort, q equal ones of another sort, r equal ones of a third sort, etc., then the number of possible permutations is $(n!)/(p! \times q! \times r! \times \ldots)$, where $p + q + r + \ldots = n$.

Combinations. The number of possible combinations or groups of n elements taken r at a time (without repetition of any element within any one group), is $[n(n-1)(n-2)(n-3) \dots (n-r+1)]/(r!) = (n)_r$. (See table of binomial coefficients, p. 39.) If repetitions are allowed, so that a group, for example, may contain as many as r equal elements, then the number of combinations of n elements taken r at a time is $(m)_r$, where m = n + r - 1. Note: $(n)_1 + (n)_2 + \dots + (n)_n = 2^n - 1$.

SOLUTION OF EQUATIONS IN ONE UNKNOWN QUANTITY

Roots of an Equation. An equation containing a single variable x will in general be true for some values of x and false for other values. Any value of x for which the equation is true is called a **root** of the equation. To "solve" an equation means to find all its roots. Any root of an equation, when substituted therein for x, will "satisfy" the equation. An equation which is true for all values of x, like $(x+1)^2 = x^2 + 2x + 1$, is called an **identity** [often written $(x+1)^2 \equiv x^2 + 2x + 1$].

Types of Equations.

(a) Algebraic Equations:

of the first degree (linear), e.g., 2x + 6 = 0 (root: x = -3); of the second degree (quadratic), e.g., $x^2 - 2x - 3 = 0$ (roots: -1, 3); of the third degree (cubic), e.g., $x^3 - 6x^2 + 5x + 12 = 0$ (roots: -1, 3, 4).

(b) Transcendental Equations: exponential equations, e.g., $2^x = 32$ (root: x = 5); $2^x = -32$ (no root); trigonometric equations, e.g., $10 \sin x - \sin 3x = 4$ (roots: 30° , 150°).

Legitimate Operations on Equations. An equation which is true for a particular value of x will remain true for that value of x after any one of the following operations is performed:

Adding any quantity to both sides; subtracting any quantity from both sides; transposing any term from one side to the other, provided its sign be changed; multiplying or dividing both sides by any quantity which is not zero; changing the signs of all the terms; raising both sides to any positive integral power; extracting any odd root of both sides; extracting any even root of both sides, provided the ± sign is used; taking the logarithms of both sides (both sides being positive); taking the sin, cos, tan, etc., of both sides.

Notice, however, that the new equation obtained by some of these operations may possess "additional roots" which did not belong to the original equation. This occurs especially when both sides are squared; thus, x = -2 has only one root, namely, -2; but $x^2 = 4$, obtained by squaring, has not only the root -2 but also another root, +2.

Equations of the First Degree (Linear Equations). Solution: Collect all the terms involving x on one side of the equation, thus: ax = b, where a and b are known numbers. Then divide through by the coefficient of x, obtaining x = b/a as the root.

Equations of the Second Degree (Quadratic Equations). Solution: Throw the equation into the standard form $ax^2 + bx + c = 0$. Then the two roots are:

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

The roots are real-and-distinct, coincident, or imaginary, according as $b^2 - 4ac$ is positive, zero, or negative. The sum of the roots is $x_1 + x_2$ = -b/a; the product of the roots is $x_1x_2 = c/a$.

GRAPHICAL SOLUTION. Write the equation in the form $x^2 = px + q$, and plot the parabola $y_1 = x^2$, and the straight line $y_2 = px + q$. The abscisse of the points of intersection will be the roots of the equation. If the line does not cut the parabola, the roots are imaginary.

Equations of the Third Degree with Term in x2 Absent. Solution: After dividing through by the coefficient of x3, any equation of this type can be written $x^3 = Ax + B$. Let p = A/3 and q = B/2. The general solution is as follows:

Case 1.
$$q^2 - p^3$$
 positive. One root is real, namely
$$x_1 = \sqrt[3]{q} + \sqrt{q^2 - p^3} + \sqrt[3]{q} - \sqrt{q^2 - p^3};$$
a other two roots are inscriptly.

the other two roots are imaginary.

Case 2. $q^2 - p^3 = zero$. Three roots real, but two of them equal.

 $x_1 = 2\sqrt[3]{q}$, $x_2 = -\sqrt[3]{q}$, $x_3 = -\sqrt[3]{q}$. Case 3. $q^2 - p^3$ negative. All three roots real and distinct. Determine an angle u between 0 and 180°, such that $\cos u = q/(p\sqrt{p})$. Then $x_1 = 2\sqrt{p}\cos(u/3), x_2 = 2\sqrt{p}\cos(u/3 + 120^\circ), x_3 = 2\sqrt{p}\cos(u/3 + 240^\circ).$

GRAPHICAL SOLUTION. Plot the curve $y_1 = x^2$, and the straight line $y_2 = Ax + B$. The abscissæ of the points of intersection will be the roots of the equation.

Equations of the Third Degree (General Case). Solution: The general cubic equation, after dividing through by the coefficient of the highest

power, may be written $x^3 + ax^2 + bx + c = 0$. To get rid of the term in x^2 , let $x = x_1 - a/3$. The equation then becomes $x_1^3 = Ax_1 + B$, where $A = 3(a/3)^2 - b$, and $B = -2(a/3)^3 + b(a/3) - c$. Solve this equation for x_1 , by the method above, and then find x itself from $x = x_1 - (a/3)$.

GRAPHICAL SOLUTION. Without getting rid of the term in x2, write the equation in the form $x^3 = -a[x + (b/2a)]^2 + [a(b/2a)^2 - c]$, and solve by the graphical method.

General Properties of Algebraic Equations. An algebraic equation of the nth degree in x is an equation of the type

$$a_0x^n + a_1x^{n-1} + a_2x^{n-2} + \dots + a_{n-1}x + a_n = 0$$

where the a's are any given numbers (ao not zero), the expression on the left being called a polynomial of the nth degree in x. Such an equation will, in general, have n roots; but some of these n roots may be equal, and

some may be imaginary. Imaginary roots always occur in pairs.

If the equation is written in the form: (a polynomial in x) = 0, then (1) if a is a root of the equation, x-a is a factor of the polynomial; (2) if the polynomial can be factored in the form (x-p)(x-q)(x-r) . . . = 0, each of the quantities p, q, r, \ldots is a root of the equation; (3) if x is very large (either positive or negative), the higher powers of x are the most important; (4) if x is very small, the higher powers may be neglected.

Short Method of Substitution in a Polynomial. To find the value of $4x^4 - 14x^3 + 23x - 26$ when x = 3, for example, first arrange the terms in order of descending powers of x, and write the detached coefficients, with

their signs, in a row, taking care to supply

a zero coefficient for any missing term, in- 4 - 14 0 -26(3cluding the constant term. Then, beginning 12 15 at the left, bring down the first coefficient; multiply this by 3, and add to the second 4 - 2 - 11 coefficient; multiply this result by 3 again,

and add to the third coefficient; and so on. The final result, - 11, is the

value of the polynomial when x = 3.

Short Method of Dividing a Polynomial by x - a. The device just explained gives not only the value of the polynomial when x = 3, but also the result of dividing the polynomial by x-3. Thus, in the case illustrated, the quotient is $4x^3 - 2x^2 - 6x + 5$ and the remainder is -11. That is, $4x^4 - 14x^3 + 0x^2 + 23x - 26 = (x - 3)(4x^3 - 2x^2 - 6x + 5) - 11.$

Exponential Equations. To solve an equation of the form $a^x = b$, take the logarithms of both sides: $x \log a = \log b$, whence $x = (\log b)/(\log a)$. For example, if $3^x = 0.4$, $x = \log 0.4/\log 3 = (0.6021 - 1)/0.4771 =$ -0.3979/0.4771 = -0.8340. Notice that the complete logarithm must be taken, not merely the mantissa.

Trigonometric Equations. (1) To solve $a \cos x + b \sin x = c$, where a and b are positive: Find the acute angle u for which tan u = b/a, and the angle v (between 0 and 180°) for which $\cos v = c/\sqrt{a^2 + b^2}$. Then $x_1 = u + v$ and $x_2 = u - v$ are roots of the equation.

(2) To solve $a \cos x - b \sin x = c$, where a and b are positive: Find uand v as above. Then $x_1 = -(u + v)$ and $x_2 = -(u - v)$ are roots of the

equation.

General Method of Solution by Trial and Error. This method is applicable to a numerical equation of any form, and can be carried out to any desired degree of approximation. It is especially useful when a first approximation to a root is already known. Write the equation in the form f(x) = 0, where f(x) means any function of x, and plot the curve y = f(x) for a sufficient number of values of x to obtain a general idea of the shape of the curve. Then pick out the regions in which the curve appears to cross the axis of x, and plot the curve more accurately in each of these regions. Thus, by successive approximations, plotting the important parts of the curve on a larger and larger scale, determine as accurately as necessary the points where the curve crosses the axis—that is, the values of x which make f(x) equal to zero.

Thus, suppose that f(x) = 3.0 when x = 2.6 and -5.0 when x = 2.7 (see Fig. 1). Then the curve must cross the axis somewhere between x = 2.6 and x = 2.7; and since it will not vary greatly from a straight line between those points, it is seen that it must

cross near 2.64. Suppose the value of f(x) when computed for x = 2.64, is -0.2, and when computed for x = 2.63 is +0.7; then the root lies between x = 2.63 and 2.64. Plotting this section on the larger scale, it is seen that the next guess should be about 2.638; and so on.

Instead of writing the original equation with all the terms on the left-hand side, it is often better to divide the expression into two parts, say $f_1(x)$ and $f_2(x)$, writing the equation in the form $f_1(x) = f_2(x)$. If then the two curves $y_1 = f_1(x)$ and $y_2 = f_2(x)$ be plotted separately, on the same diagram, the value of x corresponding to their point of intersection will be the desired root.

SOLUTION OF SIMULTANEOUS EQUATIONS

The Meaning of a System of Simultaneous Equations. To solve a system of n simultaneous equations in n unknowns, means to find all the sets of values of the unknowns (if any) which, when substituted in the given equations, will satisfy all the equations at the same time. If a system of equations has no solution, the equations are "inconsistent;" if it has an infinite number of solutions, the equations are "not all independent."

Simultaneous Equations of the First Degree in Two Unknowns. Factors

$$\begin{array}{c|cccc} (1) & a_1x + b_1y = c_1 & b_2 & -a_2 \\ (2) & a_2x + b_2y = c_2 & -b_1 & a_1 \\ \hline (a_1b_2 - a_2b_1)x = b_2c_1 - b_1c_2 & \therefore x = (b_2c_1 - b_1c_2)/(a_1b_2 - a_2b_1) \\ (a_1b_2 - a_2b_1)y = a_1c_2 - a_2c_1 & \therefore y = (a_1c_2 - a_2c_1)/(a_1b_2 - a_2b_1) \\ \hline \end{array}$$

Here (1) is multiplied by b_2 , (2) by $-b_1$, and the products added so as to eliminate y; again, (1) is multiplied by $-a_2$, (2) by a_1 , and the products added so as to eliminate x. (The process is most conveniently performed as follows: Write the multipliers, as b_2 and $-b_1$, at the right of the equations; multiply the first term of each equation by its proper multiplier and add; then multiply the second term of each equation by its proper multiplier, and add; and so on. This is simpler than the common practice of multiplying out each equation separately before adding.) If $a_1b_2 - a_2b_1 = 0$, the equations have no solution when $c_1 \neq c_2$, and an infinite number of solutions when

 $c_1 = c_2$. The following special solution is possible when the sum and difference of the two unknowns are given:

Let
$$x + y = m$$
 (1)
and $x - y = n$ (2)
(1) + (2): $2x = m + n$ $\therefore x = \frac{1}{2}(m + n)$
(1) - (2): $2y = m - n$ $\therefore y = \frac{1}{2}(m - n)$

Simultaneous Equations of the Second Degree in Two Unknowns.
(a) When the product of the unknowns, and their sum or difference, are given:

(b) When the product and the sum of the squares are given:

(c) When the sum or difference, and the sum of the squares, are given:

Then proceed as in case (a), above. Then proceed as in case (a), above.

(d) When one equation is of the first degree and the other of the second, as ax + by = c, and $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$: Solve the first equation for y in terms of x, and substitute in the second. This will give a quadratic equation in x. Solve this quadratic for the two values of x, and for each of these values of x find the corresponding value of y by substituting in the equation of the first degree.

Simultaneous Equations of the First Degree in n Unknowns. For example:

Factors

(a)
$$2x - y + 3z + 5w = 29$$
 3 1 2
(b) $5x + 2y - 2z + 3w = 15$ 5 5
(c) $3x - 4y + 7z - w = 12$ 5 5
(d) $4x + 3y - 5z + 2w = 3$ 5 - 5
(e) $-19x - 13y + 19z = 12$ -2 -31 (f) $17x - 21y + 38z = 89$ 1 19
(g) $-16x - 17y + 31z = 43$ 19
(h) $55x + 5y = 65$ 16
(i) $285x + 80y = 445$ -1

(j)
$$595x = 595$$
; $\therefore x = 1$; $5y = 65 - 55x = 65 - 55 = 10$; $\therefore y = 2$; $19z = 12 + 19x + 13y = 12 + 19 + 26 = 57$; $\therefore z = 3$; $2w = 3 - 4x - 3y + 5z = 3 - 4 - 6 + 15 = 8$; $\therefore w = 4$.

Here w is eliminated from (a) and (b), obtaining (e); from (a) and (c), obtaining (f); and from (a) and (d), obtaining (g). Then z is eliminated from (e) and (f), obtaining (h), and from (e) and (g), obtaining (h). Then (e) is eliminated from (h) and (e), obtaining (e), which contains only the single variable x. Hence x = 1. Now substituting this value of x in either (h) or (e), (e) is found; substituting these values of (e) in either (e), (e), or (g), (e) is found; and so on. (Solution by determinants, see p. 123.)

Approximate Solution of a Set of Simultaneous Equations of the First Degree When the Number of Equations is Greater Than the Number of Unknowns. (Method of Least Squares.)

Case 1. Single Unknown Quantity. Given n equations in one unknown x; for example, n equally careful, independent measurements of some physical quantity:

$$x = x_1, x = x_2, \ldots x = x_n.$$

As the "best" value of x, take the arithmetic mean, x_0 , of the several determinations, namely, $x_0 = (x_1 + x_2 + \ldots + x_n)/n$. The quantities $v_1 = x_0 - x_1$, $v_2 = x_0 - x_2$, ... $v_n = x_0 - x_n$ are called the **residuals** of the observed values with respect to x_0 , and their absolute values (that is, their numerical values without regard to sign) are denoted by $|v_1|$, $|v_2|$, ... $|v_n|$. It can be shown that the sum of the squares of the residuals with respect to x_0 is smaller than the sum of the squares of the residuals with respect to any other value x'_0 ; hence the name of the method: "least squares."]

The quantities r and r_0 , defined exactly by Bessel's formulæ:

$$r = \frac{0.6745}{\sqrt{n-1}} \sqrt{v_1^2 + v_2^2 + \dots + v_n^2},$$

$$r_0 = \frac{0.6745}{\sqrt{n(n-1)}} \sqrt{v_1^2 + v_2^2 + \dots + v_n^2},$$

or given approximately by the simpler formulæ of Peters:

$$r = \frac{0.8453}{\sqrt{n(n-1)}} (|v_1| + |v_2| + \dots + |v_n|),$$

$$r_0 = \frac{0.8453}{n\sqrt{n-1}} (|v_1| + |v_2| + \dots + |v_n|),$$

are called the **probable error of a single observation** (r), and the **probable error of the mean** (r_0) , for the given series of observations. Note that $r_0 = r/\sqrt{n}$. For tables of the coefficients, see p. 63. This quantity r (or r_0) is best regarded as merely a conventional means of recording the relative precision of different sets of observations. If r is small, it may be inferred that most errors of the "accidental" class have been eliminated; but it should be especially noted that the smallness of r gives no information in regard to "constant" or "systematic" errors.

A statement like "x is equal to 2.36 with a probable error of 0.02," is written: $x = 2.36 \pm 0.02$, and is usually understood to mean that the true value of x, as far as can be told, is just as likely to lie inside as outside the

interval from 2.34 to 2.38.

122 ALGEBRA

To test the distribution of residuals, arrange the residuals in order of magnitude, without regard to sign, and count the number, y, of residuals which are numerically less than some assigned value a; divide y by n, the total number of observations, and divide a by r, the probable error of a single observation. Do this for various values of a, and compare the results with the table on p. 63, which gives the standard distribution of residuals, as found from experience from a large number of different series of observations. In particular, the number of residuals numerically less than r should be about equal to the number numerically greater than r (if n is large). If any large discrepancy appears, the series of observations should be regarded as unsatisfactory.

Note. The "mean square error" sometimes met with is equal to the probable error divided by 0.6745.

Case 2. Several Unknown Quantities. Assume that there have been obtained by measurement or observation n different equations of the first degree involving, say, three unknown quantities,

Given Equations $a_1x + b_1y + c_1z = p_1$ $a_2x + b_2y + c_2z = p_2$ $a_nx + b_ny + c_nz = p_n$

x, y, z. There are then n simultaneous equations in three unknowns, and if n > 3 there will be, in general, no set of values of x, y, z which will satisfy all these n equations exactly. In such a case, the "best" set of values, x0, y0, z0, may be found by the method of least squares as follows. (The

process usually involves a large amount of labor; the use of a computing

machine is advisable.)

First, arrange the n given equations in the form indicated, being careful not to modify any of them by multiplication or division. (Any of the coefficients may of course be zero.)

Next, form the three "normal equations" as follows: (1) Multiply each of the given equations by the coefficient of x in that equation, and add; the

result will be the first normal equation. Normal Equations (2) Multiply each of the given equations $[aa]x_0 + [ab]y_0 + [ac]z_0 = [ap]$ by the coefficient of y in that equation, and

 $[ca]x_0 + [cb]y_0 + [cc]z_0 = [cp]$

 $[ba]x_0 + [bb]y_0 + [bc]z_0 = [bp]$ add; the result will be the second normal equation. (3) Similarly for the third. { Notation: $[aa] = a_1^2 + a_2^2 + \dots + a_n^2;$ $[ab] = a_1b_1 + a_2b_2 + \dots + a_nb_n;$ $[ap] = a_1p_1 + a_2p_2 + \dots + a_np_n;$ etc.}

Finally, solve the three normal equations for the three unknowns in the

usual way.

The quantities $v_1 = a_1x_0 + b_1y_0 + c_1z_0 - p_1$, etc., are called the **residuals** with respect to x_0 , y_0 , z_0 . [It can be shown that the sum of the squares of the residuals with respect to x_0 , y_0 , z_0 is smaller than the corresponding quantity with respect to any other set of values, x'_0 , y'_0 , z'_0 ; this relation is taken as the criterion for the "best" set of values of x, y, z.]

The probable error of a single observation is

$$r = rac{0.6745}{\sqrt{n-m}} \sqrt{v_{1}^{2} + v_{2}^{2} + \dots + v_{n}^{2}}, ext{ or approximately,}$$
 $r = rac{0.8453}{\sqrt{n(n-m)}} (|v_{1}| + |v_{2}| + \dots + |v_{n}|),$

where m = the number of unknown quantities (here m = 3).

DETERMINANTS

Determinants are used chiefly in formulating theoretical results; they are seldom of use in numerical computation.

Evaluation of Determinants:

Of the second order:

$$\begin{vmatrix} a_1b_1 \\ a_2b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

Of the third order:

$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} = a_1\begin{vmatrix} b_2c_2 \\ b_3c_3 \end{vmatrix} - a_2\begin{vmatrix} b_1c_1 \\ b_3c_3 \end{vmatrix} + a_3\begin{vmatrix} b_1c_1 \\ b_2c_2 \end{vmatrix}$$

$$= a_1(b_2c_3 - b_3c_2) - a_2(b_1c_3 - b_3c_1) + a_3(b_1c_2 - b_2c_1)$$

Of the fourth order:

$$\begin{vmatrix} a_1b_1c_1d_1 \\ a_2b_2c_2d_2 \\ a_3b_3c_3d_3 \\ a_4b_4c_3d_4 \end{vmatrix} = a_1 \begin{vmatrix} b_2c_2d_2 \\ b_3c_3d_3 \\ b_4c_4d_4 \end{vmatrix} - a_2 \begin{vmatrix} b_1c_1d_1 \\ b_3c_3d_3 \\ b_4c_4d_4 \end{vmatrix} + a_3 \begin{vmatrix} b_1c_1d_1 \\ b_2c_2d_2 \\ b_4c_4d_4 \end{vmatrix} - a_4 \begin{vmatrix} b_1c_1d_1 \\ b_2c_2d_2 \\ b_3c_3d_3 \end{vmatrix}$$

etc. In general, to evaluate a determinant of the nth order, take the elements of the first column with signs alternately plus and minus, and form the sum of the products obtained by multiplying each of these elements by its corresponding **minor**. The minor corresponding to any element a_1 is the determinant (of next lower order) obtained by striking out from the given determinant the row and column containing a_1 .

Properties of Determinants.

1. The columns may be changed to rows and the rows to columns:

$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} = \begin{vmatrix} a_1a_2a_3 \\ b_1b_2b_3 \\ c_1c_2c_3 \end{vmatrix}$$

- 2. Interchanging two columns changes the sign of the result.
- 3. If two columns are equal, the determinant is zero.
- 4. If the elements of one column are m times the elements of another column, the determinant is zero.
- 5. To multiply a determinant by any number m, multiply all the elements of any one column by m.

6.
$$\begin{vmatrix} a_1 + p_1 + q_1, & b_1 & c_1 \\ a_2 + p_2 + q_2, & b_2 & c_2 \\ a_3 + p_3 + q_3, & b_3 & c_3 \end{vmatrix} = \begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} + \begin{vmatrix} p_1b_1c_1 \\ p_2b_2c_2 \\ p_3b_3c_3 \end{vmatrix} + \begin{vmatrix} q_1b_1c_1 \\ q_2b_2c_2 \\ q_3b_3c_3 \end{vmatrix}$$

7.
$$\begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} = \begin{vmatrix} a_1 + mb_1, b_1 & c_1 \\ a_2 + mb_2, b_2 & c_2 \\ a_3 + mb_3, b_3 & c_3 \end{vmatrix}$$

Solution of Simultaneous Equations by Determinants.

If
$$a_1x + b_1y + c_1z = \mathbf{p}_1$$

 $a_2x + b_2y + c_2z = \mathbf{p}_2$ where $D = \begin{vmatrix} a_1b_1c_1 \\ a_2b_2c_2 \\ a_3b_3c_3 \end{vmatrix} \neq 0$,

then
$$x = D_1/D$$
, $y = D_2/D$, where $D_1 = \begin{vmatrix} \mathbf{p}_1b_1c_1 \\ \mathbf{p}_2b_2c_2 \\ \mathbf{p}_3b_3c_3 \end{vmatrix}$, $D_2 = \begin{vmatrix} a_1\mathbf{p}_1c_1 \\ a_2\mathbf{p}_2c_2 \\ a_3\mathbf{p}_3c_3 \end{vmatrix}$, $D_3 = \begin{vmatrix} a_1b_1\mathbf{p}_1 \\ a_2b_2\mathbf{p}_2 \\ a_3b_3\mathbf{p}_3 \end{vmatrix}$

Similarly for a larger (or smaller) number of equations.

124

THE ALGEBRA OF IMAGINARY OR COMPLEX QUANTITIES

In the algebra of imaginary or complex quantities, the objects on which the operations of the algebra are performed are not numbers in any ordinary sense of the word, but are best thought of as points in a plane (or as vectors drawn from a fixed origin to these points). The "complex plane" is determined by three fundamental points, O, U, i, arranged as in Fig. 2 and called the zero point, the unit point, and the imaginary unit point, respectively. All points on the line through O and U are called real points—positive if on the right of O, negative if on the left. All the remaining points in the plane are called imaginary points-

imaginary points. The position of any point A in the plane may be determined by the distance from the origin O, measured in terms of OU as the unit length, and the angle φ which OA makes with the positive direction of the axis of reals. The distance r is sometimes called the modulus or ab-

those on the line through O and i being called the pure

Fig. 2.

solute value of the point; the angle φ is sometimes called the amplitude or argument of the point. The notation $A = (3, \angle 120^{\circ})$ means the point whose distance, r, is 3 times OU, and whose angle, φ , is 120°. The development of the algebra depends wholly on the definitions of three fundamental operations denoted by A + B, $A \times B$, and e^A , as follows.

Addition and Subtraction. The sum, A+B, of two points A and B is defined as the point reached by starting from A and performing a journey equal in length and direction to the journey from O to B. That is, the vector

from O to A + B is the vector sum of the vectors OA and OB. In case A and B are not in line with O, the point A + Bis the fourth vertex of a parallelogram of which OA and OB are the sides (Fig. 3). Conversely, if any two points A and B are given, there is a definite point X such that A = B + X; this point X is called the remainder, A minus B, and is denoted by A - B. The point O - B is denoted for brevity

by -B. With these definitions of A + B and A - B, all the ordinary laws of addition and subtraction that hold in the algebra of real numbers hold also in the algebra of complex quantities. In particular, the zero point O has all the formal properties of the number zero, and is denoted by 0.

[Note: If A and B are "real" points, A + B and A - B will also be real.

Repeated Addition. Multiples and Submultiples. The point $A + A + A + \dots + A$ to n terms is called the nth multiple of A and is denoted by nA. The points U, 2U, 3U, . . . are denoted, for brevity, by 1, 2, 3, Conversely, if any point A, and any positive integer nare given, there is a definite point X such that nX = A; this point X is called the nth submultiple of A, and is denoted by A/n. The points U/2, U/3, . . . are denoted, for brevity,

by 1/2, 1/3, Multiplication and Division. The product, $A \times B$, or $A \cdot B$, or AB, of two points A and B is defined as the point whose angle is the sum of the angles of the given points, and whose distance is the product of the distances. (See Fig. 4.) Thus, if $A = (5, <120^{\circ})$ and $B = (2, <270^{\circ})$, then AB = 0(10, $\geq 30^{\circ}$). Conversely, if any two points A and B are given. provided B is not zero, there is a definite point X such that

Fig. 4.

A = BX. This point X is called the quotient, A divided by B, and is denoted by A/B (where $B \neq 0$). Thus, the point A/B is a point whose angle is the angle of A minus the angle of B, and whose distance is the distance of A divided by the distance of B. The point U/B $(B \neq 0)$ is called the reciprocal of the point B, and is denoted by 1/B. (See Fig. 5.) With these definitions of AB and A/B the elementary laws of multiplication and division that hold in the algebra of real numbers hold also in the algebra of complex quantities. In particular, the point U has all the formal properties of the number unity, and is denoted by 1.

[Note: If A and B are real, AB and A/B will also be real.]

Repeated Multiplication. Powers and Roots. The point $A \times A \times A \times ... \times A$ to n factors is called the nth power of A and is denoted by A^n (Fig. 6). Conversely, if any point A (not 0) and any positive integer n are given, there will be n distinct points X such that $X^n = A$; each of these points is called an nth root of A, some one of them, usually the one with the smallest positive angle, being de-

noted by $\sqrt[n]{A}$ or $A^{1/n}$. Thus, the point $\sqrt[n]{A}$ is a point whose distance is the nth root of the distance of A, and whose angle is 1/nth of the angle of A. All the nth roots of A will lie on the circumference of a circle about O as center, and will divide that circumference into n equal parts (Fig. 7). Every point A (not 0) has two square roots. three cube roots, etc. Hence the theorem "If $A^n = B^n$ then A = B" does not hold in this algebra, and the ordinary rules for radical signs must be applied with caution. For example, if A and B are positive reals, $\sqrt{-A \cdot \sqrt{-B}} = -\sqrt{AB}$ and not $\sqrt{(-A)(-B)}$, which would give $+\sqrt{AB}$.

Fig. 6.

[Note: If A is real and positive, $\sqrt[n]{A}$ will be real and positive: if A is real and negative, $\sqrt[n]{A}$ will be real if n is odd and imaginary if n is even.

Properties of i. The point i is the point whose distance is 1 and whose angle is 90 deg. It follows from the definition above that multiplying any point A by i has the effect of rotating the point through an angle of + 90° without changing its distance from O. In particular,

 $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, etc.; $i = \sqrt{-1}$, $-i = -\sqrt{-1}$; where "1" denotes not the number one, but the point U.

Similarly, multiplying any point A by -1 has the effect of rotating the point through 180 deg.

First Standard Form for a Complex Quantity (Fig. 8). Any point A can be expressed in the form x + iy, where x and y are real points. For example, the three cube roots of 1 are 1, $-\frac{1}{2} + \frac{1}{2}i\sqrt{3}$, and $-\frac{1}{2} - \frac{1}{2}i\sqrt{3}$.

Fig. 7.

Fig. 8.

In general,
$$(x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2)$$
;
 $(x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 - y_1y_2) + i(x_2y_1 + x_1y_2)$;

$$\frac{x_1 + iy_1}{x_2 + iy_2} = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2} + i\frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}.$$

If two complex quantities are equal, their real parts must be equal, and the coefficients of their pure imaginary parts must also be equal. That is, if $x_1 + iy_1 = x_2 + iy_2$, then $x_1 = x_2$ and $y_1 = y_2$. Thus a single equation between complex quantities is equivalent to two equations between real quantities.

Conjugate Imaginaries. Two points A = x + iy and B = x - iy are called conjugate imaginaries. Two such points are symmetrically situated with regard to the axis of reals. The sum and product of two conjugate imaginaries will be real.

Second Standard Form for a Complex Quantity. Since $x = r \cos \varphi$ and $y = r \sin \varphi$, any point A = x + iy can be expressed $A = r (\cos \varphi + i \sin \varphi)$, where r is real and positive (namely, the distance of A), and φ is real (namely the angle of A). For example, the three cube roots of 1 are 1, $\cos 120^{\circ} + i \sin 120^{\circ}$, and $\cos 240^{\circ} + i \sin 240^{\circ}$. In general, $[r_1 (\cos \varphi_1 + i \sin \varphi_1)] [r_2 (\cos \varphi_2 + i \sin \varphi_2)] = r_1 r_2 [(\cos (\varphi_1 + \varphi_2) + i \sin (\varphi_1 + \varphi_2)]; [r(\cos \varphi + i \sin \varphi)]^n = r^n [\cos(n\varphi) + i \sin (n\varphi)]$ (De Moivre's Theorem).

The Exponential Function, e^A , or $\exp A$, of any point A = x + iy is defined as the point whose distance is e^x and whose angle (measured in radians) is y. That is, $e^{x+iy} = e^x(\cos y + i \sin y)$. Here e^x means the ordinary exponential function of the real quantity x, where e = 2.718.

From this definition, the usual formal laws of exponents can be deduced:

 $e^A e^B = e^{A+B}$, $(e^A)^n = e^{nA}$, $e^{-A} = 1/e^A$; $e^1 = e$, $e^0 = 1$.

The function e^A is a periodic function with a pure imaginary period $2\pi i$; that is, $e^A \pm k^2 \pi^i = e^A$, where k is any positive integer.

If A is made to move along a line parallel to the axis of reals [or axis of pure imaginaries], the corresponding point e^A will move along a straight line through O [or along a circle about O as center].

Properties of e^{i\varphi}. The point $e^{i\varphi}$ is a point whose distance is 1 and whose angle is φ . It follows from the definitions above that multiplying any point **A** by $e^{i\varphi}$ has the effect of rotating the point through an angle φ , without changing its distance from O. In particular, $e^{i\pi} = -1$, $e^{-i\pi} = -1$; $e^{i\pi/2} = i$; $e^{-i\pi/2} = -i$; $e^{2\pi i} = 1$.

Third Standard Form for a Complex Quantity. Any point A can be expressed in the form $A = re^{i\varphi}$, where r is the distance and φ the angle of the point. For example, the three cube roots of 1 are 1, $e^{\frac{i}{2}\pi i}$, $e^{\frac{i}{2}\pi i}$. In general,

$$(r_1e^{i\varphi_1})(r_2e^{i\varphi_2}) = (r_1r_2)e^{i(\varphi_1+\varphi_2)}; \quad (re^{i\varphi})^n = (r^n)e^{in\varphi}.$$
If $x + iy = re^{i\varphi}$, then $r = \sqrt{x^2 + y^2}$, $\sin \varphi = \frac{y}{r}$, $\cos \varphi = \frac{x}{r}$, $\tan \varphi = \frac{y}{x}$.

If two complex quantities are equal, their distances will be equal, and their angles will differ at most by some multiple of 2π . Thus, if $r_1e^{i\varphi_1} = r_2e^{i\varphi_1}$ then $r_1 = r_2$ and $\varphi_1 = \varphi_2$ or $\varphi_2 \pm k2\pi$. Here again a single equation between complex quantities is equivalent to two equations between real quantities.

Definition of A^B. Let $A = re^{i\varphi}$; then $A^B = \exp[(\log_e r + i\varphi)B]$.

For example, $i^i = e^{-\pi/2}$ where $i = \sqrt{-1}$.

If a is a positive real, $a^{x+iy} = a^{x} [\cos(y \log_e a) + i \sin(y \log_e a)].$

Trigonometric and Hyperbolic Functions of a Complex Variable. If A is any point, then, by definition,

$$\sin A = \frac{e^{iA} - e^{-iA}}{2i}, \cos A = \frac{e^{iA} + e^{-iA}}{2}, \tan A = \frac{\sin A}{\cos A} \quad (\cos A \neq 0);$$

$$\sinh A = \frac{e^{A} - e^{-A}}{2}, \cosh A = \frac{e^{A} + e^{-A}}{2}, \tanh A = \frac{\sinh A}{\cosh A}.$$

Hence the formulæ that hold for these functions in the real case (p. 131; p. 135; p. 161) hold also for the complex case. Further:

where $\sin x$, $\sinh x$, etc., are the ordinary trigonometric and hyperbolic functions of the real variables x and y. The functions $\sin A$ and $\cos A$ are periodic with a real period 2π . The functions $\sinh A$ and $\cosh A$ are periodic with a pure imaginary period $2\pi i$.

Logarithmic and Other Inverse Functions of a Complex Variable. If any point A is given, there will be an infinite number of points X such that $e^X = A$; any one of these points may be called a logarithm of A, and be denoted by $\log A$. All the values of the logarithm of A may be obtained from any one value by adding multiples of $2\pi i$.

If $x + iy = re^{i\varphi}$, then $\log_e(x + iy) = \log_e r + i\varphi \pm k \cdot 2\pi i$.

If any point A is given, there will be an infinite number of points X such that $\sin X = A$; any one of these may be denoted by $\sin^{-1}A$. The functions

cos-1 A, sinh-1 A, etc., are defined in a similar way.

The elementary laws of operation which hold for these functions in the algebra of reals hold also, in a general way, in the algebra of complex quantities; but caution must be used, on account of the ambiguity in the symbols $\log A$, $\sin^{-1}A$, etc., which denote many-valued functions.

Differentiation of Functions of a Complex Variable. If w = f(z), the derivative of w with respect to z is defined as

 $dw/dz = \lim \{ [f(z + \Delta z) - f(z)]/\Delta z \}$ when Δz approaches 0.

It can be shown that $\lim \{[\exp \Delta z - 1]/\Delta z\} = 1$; hence $d(e^z) = e^z dz$, $d(\sin z) = \cos z \, dz$, etc., so that the formulæ for differentiation here are the same as in the case of a real variable (p. 157).

NOTE. For the algebra of vector analysis, which differs in important respects from the algebra of complex quantities, see p. 185.

TRIGONOMETRY

FORMAL TRIGONOMETRY

Angles, or Rotations. An angle is generated by the rotation of a ray, as Ox, about a fixed point O in the plane. Every angle has an initial line (OA) from which the rotation started (Fig. 1), and a terminal line (OB) where it stopped; and the counterclockwise direction of rotation is taken as

positive. Since the rotating ray may revolve as often as desired, angles of any magnitude, positive or negative, may be obtained. Two angles are congruent if they may be superposed so that their initial lines coincide and their terminal lines coincide. That is, two congruent angles are either equal or differ by some multiple of 360 Two angles are complementary if their sum is 90 deg.; supplementary if their sum is 180 deg. (The acute angles of a right-angled triangle are complementary.) If the initial line is placed so that it runs horizontally to the right, as in Fig. 2, then the angle is said to be an angle in the 1st, 2nd, 3rd, or 4th quadrant according as the terminal line lies across the region marked I, II, III, or IV. The angles 0 deg., 90 deg., 180 deg., 270 deg. are called the quadrantal angles.

Units of Angular Measurement.

(1) Sexagesimal Measure. (360 degrees = 1 revolution.) 1 degree = 1° = 160 of a right angle. The degree is usually divided into 60 equal parts called minutes ('), and each minute into 60 equal parts called seconds ("); while the second is subdivided decimally. But for many purposes it is more convenient to divide the degree itself into decimal parts, thus avoiding the use of minutes and seconds. (See tables, pp. 46-51.)

(2) CENTESIMAL MEASURE, used chiefly in France. (400 grades = 1 revolution.) 1 grade = 3100 of a right angle. The grade is always divided decimally, the following terms being sometimes used: 1 "centesimal minute" = 1/100 of a grade; 1 "centesimal second" = 1/100 of a centesimal minute. reading Continental books it is important to notice carefully which system

is employed.

(3) RADIAN, OR CIRCULAR, MEASURE. (π radians = 180 degrees.) 1 radian = the angle subtended by an arc whose length is equal to the length of the radius. The radian is constantly used in higher mathematics and in mechanics, and is always divided decimally. Table, pp. 44-45. 1 radian = $57^{\circ}.30 - = 57^{\circ}.2957795131 = 57^{\circ} 17' 44''.806247 = 180^{\circ}/\pi$.

 $1^{\circ} = 0.01745 \dots$ radian = 0.0174532925 radian.

1' = 0.00029 08882 radian. 1'' = 0.00000 48481 radian.(For 10-place conversion tables, see the Smithsonian Tables of Hyperbolic Functions, Washington, D. C.)

Definitions of the Trigonometric Functions. Let x be any angle whose initial line is OA and terminal line OP (see Fig. 3). Drop a perpendicular from P on OA or OA produced. In the right triangle OMP, the three sides

Fig. 3.

are MP = "side opposite" O (positive if running upward); OM = "side adjacent" to O (positive if running to the right); OP = "hypothenuse" or "radius" (may always be taken as positive); and the six ratios between these sides are the principal trigonometric functions of the angle x; thus:

sine of
$$x = \sin x = \text{opp/hyp} = MP/OP$$
;
cosine of $x = \cos x = \text{adj/hyp} = OM/OP$;
tangent of $x = \tan x = \text{opp/adj} = MP/OM$;
cotangent of $x = \cot x = \text{adj/opp} = OM/MP$;
secant of $x = \sec x = \text{hyp/adj} = OP/OM$;
cosecant of $x = \csc x = \text{hyp/opp} = OP/MP$.

The last three are best remembered as the reciprocals of the first three: $\cot x = 1/\tan x$; sec $x = 1/\cos x$; esc $x = 1/\sin x$.

Other functions in use are the versed sine, the coversed sine, and the exterior secant:

vers $x = 1 - \cos x$; covers $x = 1 - \sin x$; exsec $x = \sec x - 1$. For graphs, see p. 174; series, p. 161.

Signs of the Trigonometric Functions

If x is in quadrant	I	II	III	IV
sin x and csc x are	+	+	646F/H	
cos x and sec x aretan x and cot x are	+	THE THE PARTY	7000	was to

vers x and covers x are always positive.

Variations in the Functions as x Varies from 0 deg. to 360 deg. are shown in the accompanying table. The variations in the sine and cosine are

Fig. 4.

best remembered by noting the changes in the lines MP and OM (Fig. 4) in the "unit circle" (that is, a circle with radius = OP = 1), as P moves around the circumference.

	00. 000 1000			Values at			
x	0° to 90°	90° to 180°	180° to 270°	270° to 360°	30°	45°	60°
sin x	+0 to +1	+1 to +0	-0 to -1	-1 to -0	34	3/2√2	1/2/3
ese x	+ ∞ to +1	+1 to + ∞	- ∞ to -1	$-1 \text{ to } -\infty$	2	$\sqrt{2}$	33/3
cos x	+1 to +0	-0 to -1	-1 to -0	+0 to +1	1/2/3	3/2√2	34
sec x	+1 to +∞	- ∞ to -1	-1 to -∞	+ ∞ to +1	33/3	$\sqrt{2}$	2
tan x	+0 to + ∞	- ∞ to -0	+0 to + ∞	- ∞ to -0	14/3	10	$\sqrt{3}$
cot x	+ ∞ to +0	-0 to- ∞	+ to +0	-0 to - ∞	. $\sqrt{3}$	1	34√3
vers x	+0 to +1 +1 to +0	+1 to +2 +0 to +1	+2 to +1 +1 to +2	+1 to +0 +2 to +1	SIE		

 $\sqrt{2} = 1.4142$; $\frac{1}{2}\sqrt{2} = 0.7071$; $\sqrt{3} = 1.7321$; $\frac{1}{2}\sqrt{3} = 0.8660$; $\frac{1}{2}\sqrt{3} = 0.5774$; $\frac{2}{3}\sqrt{3} = 1.1547$

Trigonometrical Tables. The tables on pp. 46-56 give the values of the principal trigonometric functions and of their logarithms, correct to four places of decimals, the angle advancing either by tenths of a degree (p. 46) or by 10 min. (p. 52). These tables will be found adequate for most

computations in which an accuracy of 1 part in 1000 is sufficient. If much computing is to be done, it is advisable to use a separate volume of tables, containing more facilities for interpolation, and printed in larger type, such as the four-place tables of E. V. Huntington (Harvard Coöperative Society, Cambridge, Mass.), with convenient marginal tabs; the five-place tables published by Macmillan or many others; the six-place tables of Bremiker; the standard seven-place tables of Schrön, Vega, or Bruhns (angles advancing by 10 sec.); or the great eight-place of Bauschinger and Peters (angles advancing at intervals of 1 sec. from 0 deg. to 90 deg.). The larger tables give only the logarithms of the functions, not the natural values.

To Find Any Function of a Given Angle. (Reduction to the first quadrant.) It is often required to find the functions of any angle x from a table that includes only angles between 0 deg. and 90 deg. If x is not already between 0 deg. and 360 deg., first "reduce to the first revolution" by simply adding or subtracting the proper multiple of 360 deg.; [for any function of (x) = the same function of $(x \pm n \times 360^{\circ})$]. Next reduce to the first quadrant as follows:

If	x is between	90° and 180°	180° and 270°	270° and 360°	
Subtract		90° from x	180° from x	270° from x	
Then	sin x	$= -\csc (x-90^{\circ})$ = $-\cot (x-90^{\circ})$			

The "reduced angle" $(x - 90^{\circ}, \text{ or } x - 180^{\circ}, \text{ or } x - 270^{\circ})$ will in each case be an angle between 0° and 90° , whose functions can then be found in the table.

[Note. The formulæ for sine and cosine are best remembered by aid of the unit circle.]

To Find the Angle When One of Its Functions is Given. In general, there will be two angles between 0 deg. and 360 deg. corresponding to any given function. The following tabulated rules show how to find these angles.

Given	First find from the tables an acute angle xo such that	Then the required angles x_1 and x_2 will be	
$\sin x = +a$	$\sin x_0 = a$	x ₀ and 180°-x ₀	
$\cos x = +a$	$\cos x_0 = a$	x_0 and $[360^{\circ} - x_0]$	
$\tan x = +a$	$\tan x_0 = a$	x_0 and $[180^{\circ} + x_0]$	
$\cot x = +a$	$\cot x_0 = a$	x_0 and $[180^{\circ} + x_0]$	
$\sin x = -a$	$\sin x_0 = a$	[180°+x ₀]and [360°-x ₀]	
$\cos x = -a$	$\cos x_0 = a$	$180^{\circ} - x_0$ and $[180^{\circ} + x_0]$	
$\tan x = -a$	$\tan x_0 = a$	$180^{\circ} - x_0$ and $[360^{\circ} - x_0]$	
$\cot x = -a$	$\cot x_0 = a$	$180^{\circ} - x_0$ and $[360^{\circ} - x_0]$	

The angles enclosed in brackets lie outside the range from 0 deg. to 180 deg., and hence cannot occur as angles in a triangle.

For solution of trigonometric equations, see p. 118.

Relations Between the Functions of a Single Angle. (See Fig. 5.)

$$\sin^{2}x + \cos^{2}x = 1; \tan x = \frac{\sin x}{\cos x}; \cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x};$$

$$1 + \tan^{2}x = \sec^{2}x = \frac{1}{\cos^{2}x}; 1 + \cot^{2}x = \csc^{2}x = \frac{1}{\sin^{2}x};$$

$$\sin x = \sqrt{1 - \cos^{2}x} = \frac{\tan x}{\sqrt{1 + \tan^{2}x}} = \frac{1}{\sqrt{1 + \cot^{2}x}};$$

$$\cos x = \sqrt{1 - \sin^{2}x} = \frac{1}{\sqrt{1 + \tan^{2}x}} = \frac{\cot x}{\sqrt{1 + \cot^{2}x}};$$
Functions of Negative Angles. $\sin (-x) = -\sin x;$

 $\cos(-x) = \cos x$; $\tan(-x) = -\tan x$. Functions of the Sum and Difference of Two Angles.

Fig. 5.

```
\sin (x + y) = \sin x \cos y + \cos x \sin y;
\cos(x + y) = \cos x \cos y - \sin x \sin y;
\tan (x + y) = [\tan x + \tan y]/[1 - \tan x \tan y];
\cot (x+y) = [\cot x \cot y - 1]/[\cot x + \cot y];
\sin (x - y) = \sin x \cos y - \cos x \sin y;
\cos(x-y) = \cos x \cos y + \sin x \sin y;
\tan (x - y) = [\tan x - \tan y]/[1 + \tan x \tan y];
\cot (x - y) = [\cot x \cot y + 1]/[\cot y - \cot x];
\sin x + \sin y = 2 \sin \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y);
\sin x - \sin y = 2 \cos \frac{1}{2}(x + y) \sin \frac{1}{2}(x - y);
\cos x + \cos y = 2 \cos \frac{1}{2}(x + y) \cos \frac{1}{2}(x - y);
\cos x - \cos y = -2 \sin \frac{1}{2}(x+y) \sin \frac{1}{2}(x-y);
\tan x + \tan y = \frac{\sin (x + y)}{\cos x \cos y}; \cot x + \cot y = \frac{\sin (x + y)}{\sin x \sin y};
\tan x - \tan y = \frac{\sin (x - y)}{\cos x \cos y}; \cot x - \cot y = \frac{\sin (y - x)}{\sin x \sin y};
\sin^2 x - \sin^2 y = \cos^2 y - \cos^2 x = \sin (x + y) \sin (x - y);
\cos^2 x - \sin^2 y = \cos^2 y - \sin^2 x = \cos (x + y) \cos (x - y);
\sin (45^{\circ} + x) = \cos (45^{\circ} - x); \tan (45^{\circ} + x) = \cot (45^{\circ} - x);
\sin (45^{\circ} - x) = \cos (45^{\circ} + x): \tan (45^{\circ} - x) = \cot (45^{\circ} + x).
```

In the following transformations, a and b are supposed to be positive, $c = \sqrt{a^2 + b^2}$, A = the positive acute angle for which $\tan A = a/b$, and B = the positive acute angle for which $\tan B = b/a$:

$$a \cos x + b \sin x = c \sin (A + x) = c \cos (B - x);$$

 $a \cos x - b \sin x = c \sin (A - x) = c \cos (B + x).$

Functions of Multiple Angles and Half Angles.

$$\sin 2x = 2 \sin x \cos x; \sin x = 2 \sin \frac{1}{2}x \cos \frac{1}{2}x; \cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1; \tan 2x = \frac{2 \tan x}{1 - \tan^2 x}; \cot 2x = \frac{\cot^2 x - 1}{2 \cot x};$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x; \tan 3x = \frac{3 \tan x - \tan^3 x}{1 + \tan^3 x}$$

$$\sin 3x = 3 \sin x - 4 \sin^3 x; \tan 3x = \frac{3 \tan x - \tan^3 x}{1 - 3 \tan^2 x}$$
$$\cos 3x = 4 \cos^3 x - 3 \cos x;$$

$$\sin (nx) = n \sin x \cos^{n-1} x - (n)_3 \sin^3 x \cos^{n-3} x + (n)_5 \sin^5 x \cos^{n-5} x - \dots; \\ \cos (nx) = \cos^n x - (n)_2 \sin^2 x \cos^{n-2} x + (n)_4 \sin^4 x \cos^{n-4} x - \dots; \\ \text{where } (n)_2, (n)_3, \dots \text{ are the binomial coefficients (see p. 39).} \\ \sin \frac{1}{2}x = \pm \sqrt{\frac{1}{2}(1 - \cos x)}; 1 - \cos x = 2 \sin^2 \frac{1}{2}x; \\ \cos \frac{1}{2}x = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}; 1 + \cos x = 2 \cos^2 \frac{1}{2}x; \\ \tan \frac{1}{2}x = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}; \\ \tan \left(\frac{x}{2} + 45^\circ\right) = \pm \sqrt{\frac{1 + \sin x}{1 - \sin x}}.$$

Here the + or - sign is to be used according to the sign of the left-hand side of the equation.

Relations Between Three Angles Whose Sum is 180°.

 $\sin A + \sin B + \sin C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \cos \frac{1}{2}C;$ $\cos A + \cos B + \cos C = 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \sin \frac{1}{2}C + 1;$ $\sin A + \sin B - \sin C = 4 \sin \frac{1}{2}A \sin \frac{1}{2}B \cos \frac{1}{2}C;$ $\cos A + \cos B - \cos C = 4 \cos \frac{1}{2}A \cos \frac{1}{2}B \sin \frac{1}{2}C - 1;$ $\sin^2 A + \sin^2 B + \sin^2 C = 2 \cos A \cos B \cos C + 2;$ $\sin^2 A + \sin^2 B - \sin^2 C = 2 \sin A \sin B \cos C;$ $\tan A + \tan B + \tan C = \tan A \tan B \tan C;$ $\cot \frac{1}{2}A + \cot \frac{1}{2}B + \cot \frac{1}{2}C = \cot \frac{1}{2}A \cot \frac{1}{2}B \cot \frac{1}{2}C;$ $\cot A \cot B + \cot A \cot C + \cot B \cot C = 1;$ $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C;$ $\sin 2A + \sin 2B - \sin 2C = 4 \cos A \cos B \sin C.$

Inverse Trigonometric Functions. The notation $\sin^{-1}x$ (read: antisine of x, or inverse sine of x; sometimes written arc $\sin x$) means the principal angle whose sine is x. Similarly for $\cos^{-1}x$, $\tan^{-1}x$, etc. (The principal angle means an angle between -90° and $+90^{\circ}$, in case of \sin^{-1} and \tan^{-1} , and between 0° and 180° in the case of \cos^{-1} .) For graphs, see p. 174.

SOLUTION OF PLANE TRIANGLES

The "parts" of a plane triangle are its three sides, a, b, c, and its three angles A, B, C (A being opposite a, B opposite b, C opposite c, and A+B+C=180°). A triangle is, in general, determined by any three parts (not all angles). To "solve" a triangle means to find the unknown parts from the known. The fundamental formulæ are:

Law of sines:
$$\frac{a}{b} = \frac{\sin A}{\sin B}$$
. Law of cosines: $c^2 = a^2 + b^2 - 2ab \cos C$.

Right Triangles. Use the definitions of the trigonometric functions, selecting for each unknown part a relation which connects that unknown with known quantities; then solve the resulting equations. Thus, in Fig. 6, if $C = 90^{\circ}$, then $A + B = 90^{\circ}$, $c^2 = a^2 + b^2$,

$$\sin A = a/c, \cos A = b/c, \tan A = a/b, \cot A = b/a.$$

If A is very small, use tan $\frac{1}{2}A = \sqrt{(c-b)/(c+b)}$.

Oblique Triangles. There are four cases. It is highly desirable in all these cases to draw a sketch of the triangle approximately to scale before commencing the computation, so that any large numerical error may be readily detected.

Case 1. Given Two Angles (provided their sum is < 180 deg.), and One

Side (say a, Fig. 7). The third angle is known, since $A + B + C = 180^{\circ}$.

To find the remaining sides, use $b = \frac{a \sin B}{\sin A}$, $c = \frac{a \sin C}{\sin A}$ Or, drop a perpendicular from either B or C on the opposite

side, and solve by right triangles. Check: $c \cos B + b \cos C = a$.

Case 2. Given Two Sides (say a and b), and the Included Angle (C); and suppose a > b. Fig. 8.

First Method: Find c from $c^2 = a^2 + b^2 - 2ab \cos C$ [or $c^2 = (a - b)^2 + b^2 +$ 2ab vers C]; then find the smaller angle, B, from $\sin B = (b/c) \sin C$; and finally, find A from $A = 180^{\circ} - (B + C)$. Check: $a \cos B + b \cos A = c$.

Second Method: Find $\frac{1}{2}(A - B)$ from the law of tangents:

 $tan \frac{1}{2}(A - B) = [(a - b)/(a + b)] \cot \frac{1}{2}C$ and $\frac{1}{2}(A + B)$ from $\frac{1}{2}(A + B) = 90^{\circ} - C/2$; hence A = $\frac{1}{2}(A+B) + \frac{1}{2}(A-B)$ and $B = \frac{1}{2}(A+B) - \frac{1}{2}(A-B)$. Then find c from $c = a \sin C/\sin A$ or $c = b \sin C/\sin B$. Check: $a \cos B + b \cos A = c$.

Third Method: Drop a perpendicular from A to the opposite side, and

solve by right triangles.

Case 3. GIVEN THE THREE SIDES (provided the largest is less than the

sum of the other two), Fig. 9.

First Method: Find the largest angle A (which may be acute or obtuse) from cos $A = (b^2 + c^2 - a^2)/2bc$ {or vers $A = [a^2 - (b - c)^2]/2bc$ } and then find B and C (which will always be acute) from $\sin B = b \sin A/a$ and $\sin C = c \sin A/a$. Check: $A + B + C = 180^\circ$.

Second Method: Find A, B, and C from $\tan \frac{1}{2}A = r/(s-a)$,

 $\tan \frac{1}{2}B = r/(s-b)$, $\tan \frac{1}{2}C = r/(s-c)$, where $s = \frac{1}{2}(a+b+c)$, and

 $r = \sqrt{(s-a)(s-b)(s-c)/s}$. Check: $A + B + C = 180^{\circ}$. Third Method: If only one angle, say A, is required, use

 $\sin \frac{1}{2}A = \sqrt{(s-b)(s-c)/bc} \text{ or }$ $\cos \frac{1}{2}A = \sqrt{s(s-a)/bc}$

according as ½A is nearer 0° or nearer 90°.

OPPOSITE ONE OF THEM (B). This is the "ambiguous

Case 4. GIVEN TWO SIDES (say b and c) AND THE ANGLE Fig. 9. case" in which there may be two solutions, or one, or none (see Fig. 10).

First, try to find C from $\sin C = c \sin B/b$. If $\sin C > 1$, there is no solution. If $\sin C = 1$, $C = 90^{\circ}$ and the triangle is a right triangle. If $\sin C < 1$, this determines two angles C, namely, an acute angle C_1 , and an obtuse angle $C_3 = 180^{\circ} - C_1$. Then C_1 will yield a solution when and only when $C_1 + B < 180^{\circ}$ (see Case 1); and similarly C_2 will yield a solution when and only when $C_2 + B < 180^{\circ}$ (see Case 1).

Other Properties of Triangles. (See also p. 99 and p. 105.)

Area = $\frac{1}{2}ab \sin C = \sqrt{s(s-a)(s-b)(s-c)} = rs$, where $s = \frac{1}{2}(a+b+c)$,

and r = radius of inscribed circle = $\sqrt{(s-a)(s-b)(s-c)/s}$. Radius of circumscribed circle = R, where

 $2R = a/\sin A = b/\sin B = c/\sin C; r = 4R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \frac{abc}{4Rs}.$

The length of the bisector of the angle C is

$$z = \frac{2\sqrt{abs(s-c)}}{a+b} = \frac{\sqrt{ab[(a+b)^2-c^2]}}{a+b}.$$

The median from C to the middle point of c is $m = \frac{1}{2}\sqrt{2(a^2 + b^2) - c^2}$.

SOLUTION OF SPHERICAL TRIANGLES

For the occasional solution of a spherical triangle the following formulæ will be sufficient. For a detailed discussion, see any text-book on spherical

trigonometry.

Let a, b, c be the sides of the spherical triangle, that is, portions of arcs of great circles of the sphere; and let A, B, C be the angles of the triangle, that is, the angles made by tangents drawn to the sides at their points of intersection on the sphere. The sum of the angles will always be greater than two right angles, and may be nearly six right angles. The angle $E = A + B + C - 180^{\circ}$ is called the **spherical excess** of the triangle. (See also p. 100.)

$$\frac{\sin a}{\sin A} = \frac{\sin b}{\sin B}; \qquad \frac{\sin b}{\sin B} = \frac{\sin c}{\sin C}; \qquad \frac{\sin c}{\sin C} = \frac{\sin a}{\sin A}.$$

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$,

with similar formulæ for cos b and cos c.

$$\cos A = -\cos B \cos C + \sin B \sin C \cos a,$$

with similar formulæ for cos B and cos C:

In the special case of a right spherical triangle, in which $C = 90^{\circ}$,

$$\cos c = \cos a \cos b = \cot A \cot B$$
; $\cos a = \frac{\cos A}{\sin B}$; $\cos b = \frac{\cos B}{\sin A}$;

$$\sin A = \frac{\sin a}{\sin c}$$
; $\cos A = \frac{\tan b}{\tan c}$; $\tan A = \frac{\tan a}{\sin b}$

 $\frac{\text{The area of a spherical triangle}}{\text{area of a great circle}} = \frac{\text{spherical excess}}{180^{\circ}}.$

HYPERBOLIC FUNCTIONS

The hyperbolic sine, hyperbolic cosine, etc., of any number x, are functions of x which are closely related to the exponential e^x , and which have formal properties very similar to those of the trigonometric functions, sine, cosine, etc. Their definitions and fundamental properties are as follows (see also p. 127; graphs, p. 175; table, p. 60; series, p. 161):

 $\sinh x = \frac{1}{2}(e^x - e^{-x})$; $\cosh x = \frac{1}{2}(e^x + e^{-x})$; $\tanh x = \sinh x/\cosh x$;

```
 \begin{aligned} & \operatorname{csch} x = 1/\sinh x; \; \operatorname{sech} \; x = 1/\cosh x; \; \operatorname{coth} \; x = 1/\tanh x; \\ & \operatorname{cosh}^2 x - \sinh^2 x = 1; \; 1 - \tanh^2 x = \operatorname{sech}^2 x; \; 1 - \coth^2 x = -\operatorname{csch}^2 x; \\ & \operatorname{sinh} (-x) = -\operatorname{sinh} x; \; \operatorname{cosh} (-x) = \operatorname{cosh} x; \; \tanh (-x) = -\tanh x; \\ & \operatorname{sinh} (x \pm y) = \sinh x \operatorname{cosh} y \pm \operatorname{cosh} x \operatorname{sinh} y; \\ & \operatorname{cosh} (x \pm y) = \operatorname{cosh} x \operatorname{cosh} y \pm \operatorname{sinh} x \operatorname{sinh} y; \\ & \tanh (x \pm y) = (\tanh x \pm \tanh y)/(1 \pm \tanh x \tanh y); \\ & \tanh (x \pm y) = (\tanh x \pm \tanh x + \tanh y)/(1 \pm \tanh x + \tanh x + \tanh y); \\ & \sinh 2x = 2 \sinh x \operatorname{cosh} x; \operatorname{cosh} 2x = \operatorname{cosh}^2 x + \sinh^2 x; \\ & \tanh 2x = (2 \tanh x)/(1 + \tanh^2 x); \\ & \sinh \frac{1}{2}x = \sqrt{\frac{1}{2}} \; (\operatorname{cosh} \; x - 1); \; \operatorname{cosh} \frac{1}{2}x = \sqrt{\frac{1}{2}} (\operatorname{cosh} \; x + 1); \\ & \tanh \frac{1}{2}x = (\operatorname{cosh} \; x - 1)/(\operatorname{sinh} \; x) = (\operatorname{sinh} \; x)/(\operatorname{cosh} \; x + 1). \end{aligned}
```

The inverse hyperbolic sine of y, denoted by $\sinh^{-1}y$, is the number whose hyperbolic sine is y; that is, the notation $x = \sinh^{-1}y$ means $\sinh x = y$. Similarly for $\cosh^{-1}y$, $\tanh^{-1}y$, etc. These functions are closely related to the logarithmic function, and are especially valuable in the integral calculus. For graphs, see p. 175.

$$\begin{array}{ll} \sinh^{-1}(y/a) &= \log_{e}(y + \sqrt{y^{2} + a^{2}}) - \log_{e} a; \\ \cosh^{-1}(y/a) &= \log_{e}(y + \sqrt{y^{2} - a^{2}}) - \log_{e} a; \\ \tanh^{-1}\frac{y}{a} &= \frac{1}{2}\log_{e}\frac{a + y}{a - y}; \quad \coth^{-1}\frac{y}{a} &= \frac{1}{2}\log_{e}\frac{y + a}{y - a}. \end{array}$$

The **anti-gudermannian** of an angle u, denoted by $\mathrm{gd}^{-1}u$, is a number defined by $\mathrm{gd}^{-1}u = \log_e \tan (34\pi + 32u) = \int \sec u \ du$. When u is small, $\mathrm{gd}^{-1}u = u + 36u^3 + 324u^5 + 63604u^7 + \dots$

ANALYTICAL GEOMETRY

THE POINT AND THE STRAIGHT LINE

Rectangular Co-ordinates (Fig. 1). Let $P_1 = (x_1, y_1), P_2 = (x_2, y_2)$. Then, distance $P_1P_2 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$; slope of $P_1P_2 = m = \tan u$ = $(y_2 - y_1)/(x_2 - x_1)$; co-ordinates of mid-point are $x = \frac{1}{2}(x_1 + x_2)$, $y = \frac{1}{2}(y_1 + y_2)$; co-ordinates of point (1/n)th of the way from P_1 to P_2 are $x = x_1 + (1/n)(x_2 - x_1), y = y_1 + (1/n)(y_2 - y_1).$

Let m_1 , m_2 be the slopes of two lines; then, if the lines are parallel, $m_1 = m_2$;

if the lines are perpendicular to each other, $m_1 = -1/m_2$.

Equations of a Straight Line.

- 1. Intercept Form (Fig. 2): $\frac{x}{a} + \frac{y}{b} = 1$. (a, b = intercepts of the line on the axes.)
- 2. Slope Form (Fig. 3): y = mx + b. ($m = \tan u = \text{slope}$; b = intercept on the y-axis; see also Fig. 2, p. 174.)

3. Normal Form (Fig. 4): $x \cos v + y \sin v = p$. (p = perpendicular from origin to line; v = angle p makes with the x-axis.)

4. Parallel-intercept Form (Fig. 5): $\frac{y-b}{c-b} = \frac{x}{k}$ (b, c = intercepts on two parallels at distance k apart.)

- 5. General Form: Ax + By + C = 0. [Here a = -C/A, b = -C/B, m = -A/B, $\cos v = A/R$, $\sin v = B/R$, p = -C/R, where $R = \pm \sqrt{A^2 + B^2}$ (sign to be so chosen that p is positive).]
 - 6. Line Through (x_1, y_1) with Slope $m: y y_1 = m(x x_1)$.
 - 7. Line Through (x_1, y_1) and (x_2, y_2) : $y y_1 = \frac{y_2 y_1}{x_2 x_1} (x x_1)$.
 - 8. Line Parallel to x-axis: x = a; to y-axis: y = b.

Angles and Distances.

If $u = \text{angle between two lines whose slopes are } m_1, m_2, \text{ then}$

$$\tan u = \frac{m_2 - m_1}{1 + m_2 m_1}$$
. If parallel, $m_1 = m_2$. If perpendicular, $m_1 m_2 = -1$.

If u =angle between the lines Ax + By + C = 0 and A'x + B'y + C' = 0, then

then
$$\cos u = \frac{AA' + BB'}{\pm \sqrt{(A^2 + B^2)(A'^2 + B'^2)}}.$$
 If parallel, $A/A' = B/B'$. If perpendicular, $AA' + BB' = 0$.

The equations of the bisectors of the angles between the two lines just mentioned are.

$$\frac{Ax + By + C}{\sqrt{A^2 + B^2}} \mp \frac{A'x + B'y + C'}{\sqrt{A'^2 + B'^2}} = 0.$$

The equation of a line through (x_i, y_i) and meeting a given line y = mx + b at an angle u, is

$$y - y_1 = \frac{m + \tan u}{1 - m \tan u} (x - x_1).$$

The distance from (x_0, y_0) to the line Ax + By + C = 0 is

$$D = \left| \frac{Ax_0 + By_0 + C}{\sqrt{A^2 + B^2}} \right| \dots$$

where the vertical bars mean "the absolute value of."

The distance from (x_0, y_0) to a line which passes through (x_1, y_1) and makes an angle u with the x-axis, is

$$D = (x_0 - x_1) \sin u - (y_0 - y_1) \cos u.$$

Polar Co-ordinates (Fig. 6). Let (x, y) be the rectangular and (r, θ) the polar co-ordinates of a given point P. Then $x = r \cos \theta$; $y = r \sin \theta$; $x^2 + y^2 = r^2$.

Transformation of Co-ordinates. If origin is moved to point (x_0, y_0) , the new axes being parallel to the old, $x = x_0 + x'$, $y = y_0 + y'$.

Fig. 6.

If axes are turned through the angle u, without change of origin,

$$x = x' \cos u - y' \sin u, \quad y = x' \sin u + y' \cos u.$$

THE CIRCLE

(See also pp. 99, 103-105, 106)

Equation of Circle with center (a,b) and radius r:

$$(x-a)^2+(y-b)^2=r^2.$$

If center is at the origin, the equation becomes $x^2 + y^2 = r^2$. If circle goes through the origin and center is on the x-axis at point (r, 0), equation becomes $x^2 + y^2 = 2rx$. The general equation of a circle is

 $x^2 + y^2 + Dx + Ey + F = 0$; it has center at (-D/2, -E/2), and radius $= \sqrt{(D/2)^2 + (E/2)^2 - F}$ (which may be real, null, or imaginary).

The equation of the radical axis of two circles, $x^2 + y^2 + Dx + Ey + F = 0$ and $x^2 + y^2 + D'x + E'y + F' = 0$, is (D - D')x + (E - E')y + (F - F') = 0. The tangents drawn to two circles from any point of their radical axis are of equal length. If the circles intersect, the radical axis passes through their points of intersection (see p. 100).

The equation of the tangent to $x^2 + y^2 = r^2$ at (x_1, y_1) is $x_1x + y_1y = r^2$. The tangent to $x^2 + y^2 + Dx + Ey + F = 0$ at (x_1, y_1) is $x_1x + y_1y + \frac{1}{2}D(x + x_1) + \frac{1}{2}E(y + y_1) + F = 0$. The line y = mx + b will be tangent to the circle $x^2 + y^2 = r^2$ if $b = a\sqrt{1 + m^2}$.

Equations of Circle in Parametric Form. It is sometimes convenient to express the co-ordinates x and y of the moving point P (Fig. 7) in terms of an auxiliary variable, called a parameter.

Thus, if the parameter be taken as the angle u which the radius OP makes with the x-axis, then the equations of the circle in parametric form will be $x = a \cos u$; $y = a \sin u$. For every value of the parameter u, there corresponds a point (x, y) on the circle. The ordinary equation $x^2 + y^2 = a^2 \cos u$ be obtained from the parametric equations by eliminating u.

Fig. 7.

THE PARABOLA

The parabola (see also p. 107) is the locus of a point which moves so that its distance from a fixed line (called the **directrix**) is always equal to its distance from a fixed point F (called the **focus**). See Fig. 8. The point half-way from focus to directrix is the **vertex**, O, The line through the focus, perpendicular to the directrix, is the **principal axis**. The breadth of the curve at the focus is called the **latus rectum**, or **parameter**, = 2p, where p is the distance from focus to directrix. (Compare also Fig. 3, p. 174.)

Any section of a right circular cone made by a plane parallel to a tangent plane of the cone will be a parabola.

Equation of Parabola, origin at vertex (Fig. 8): $y^2 = 2px$.

Polar Equation of Parabola, referred to F as origin and Fx as axis (Fig. 9): $r = p/(1 - \cos \theta)$.

Equation Referred to the Tangents at the ends of the latus rectum as axes (Fig. 10): $x^{\frac{1}{2}} + y^{\frac{1}{2}} = a^{\frac{1}{2}}$, where $a = p\sqrt{2}$.

Equation of Tangent to $y^2 = 2px$ at (x_1,y_1) : $y_1y = p(x + x_1)$. The

line y = mx + b will be tangent to $y^2 = 2px$ if b = p/(2m).

The tangent PT at any point P bisects the angle between PF and PH (Fig. 8). A ray of light from F, reflected at P, will move off parallel to the principal axis. The **subtangent**, TM, is bisected at O. The **subnormal**, MN, is constant, and equal to p. The locus of the foot of the perpendicular from the focus on a moving tangent is the tangent at the vertex (Fig. 11). The locus of the point of intersection of perpendicular tangents is the directrix (Fig. 12). The locus of the mid-points of a set of parallel chords whose slope is m is a straight line parallel to the principal axis at a distance p/m,

and is called a **diameter** (Fig. 13). If M is the mid-point of a chord PQ, and if T is the point of intersection of the tangents at P and Q, then TM is parallel to the principal axis, and is bisected by the curve (Fig. 13).

To Construct a Tangent to a Given Parabola. (1) At a given point of contact, P (Fig. 14): Find T so that OT = OM, or FT = FP. Then TP is the tangent at P. Or, make MN = p = 2(OF): then PN is the normal at P.

the tangent at P. Or, make MN = p = 2(OF); then PN is the normal at P. (2) From a given external point, Q (Fig. 15): With Q as center and radius QF draw circle cutting the directrix in H; draw HP parallel to principal axis; then P is required point of contact. As check, note that QP is the perpendicular bisector of FH.

To Construct a Parabola. 1. Given Any Two Points, P and Q, the Tangent PT at One of Them, and the Direction of the Principal Axis OX. In Fig. 16, let K be a variable point on a line through Q parallel to OX. Draw KR parallel to PT (meeting PQ in R), and draw RS parallel to OX (meeting PK in S); then S is a point of the curve. Note. A line through P parallel to the principal axis bisects all chords parallel to the tangent PT.

2. GIVEN THE VERTEX O AND FOCUS F. (a) In Fig. 17 draw Oy perpendicular to OF, and slide the vertex of a right angle along Oy so that one side always passes through F; then the other side will always be a tangent to the parabola.

(b) Take a piece of paper (Fig. 18) with a straight edge, d, and mark a point F near the edge. Let K be a variable point of the edge, and fold the paper so that K coincides with F. The crease will be a tangent to the parabola which has focus F and directrix d.

(c) In Fig. 19, let M be a variable point of the principal axis, and lay off MN = 2(OF) = p. With F as center and radius FN draw a circle, cutting the perpendicular at M in P. Then P is a point of the curve, and PT and PN are

the tangent and normal at P.

3. GIVEN TWO TANGENTS AND THEIR POINTS OF CONTACT, P AND Q (Fig. 20). Divide TP and QT into any number of equal parts (here 4). Then the lines 11, 22, 33, . . . will be tangents to the parabola. This method is especially advantageous in drawing rather flat arcs.

The Radius of Curvature of $y^2 = 2px$ at a point P = (x,y) is $R = (p + 2x)^{3/2}/\sqrt{p}$, or $R = p/\sin^3 v$, where v = the angle which the tangent at P makes with PF (Fig. 21). At the vertex, R = p. To construct the radius of curvature at any point P, lay off PR = 2(PF) parallel to the principal axis, and draw RC perpendicular to the axis, meeting the normal, PN, in C. Then C is the center of curvature for the point P, and a circle about C with radius CP will coincide closely with the parabola in the neighborhood of P.

THE ELLIPSE

The ellipse (see also p. 107) has two foci, F and F' (Fig. 22), and two directrices, DH and D'H'. If P is any point of the curve, PF + PF' is constant, = 2a; and PF/PH (or PF'/PH') is also constant, = e, where e is the eccentricity (e < 1). Either of these properties may be taken as the definition of the curve. The relations between e and the semi-axes a and b are as shown in Fig. 23. Thus, $b^2 = a^2(1 - e^2)$, $ae = \sqrt{a^2 - b^2}$, $e^2 = 1 - (b/a)^2$. The semi-latus rectum $= p = a(1 - e^2) = b^2/a$. Note that b is always less than a, except in the special case of the circle, in which b = a and e = 0.

Any section of a right circular cone made by a plane which cuts all the elements of one nappe of the cone will be an ellipse; if the plane is perpendicular to the axis of the cone, the ellipse becomes a circle.

Equation of Ellipse, center as origin:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, or $y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$.

If P = (x, y) is any point of the curve, PF = a + ex, PF' = a - ex.

Equations of the Ellipse in Parametric Form: $x = a \cos u$, $y = b \sin u$, where u is the eccentric angle of the point P = (x,y). See Fig. 28.

Polar Equation, focus as origin, axes as in Fig. 24: $r = p/(1 - e \cos \theta)$. Equation of the Tangent at (x_1, y_1) : $b^2x_1x + a^2y_1y = a^2b^2$.

The line y = mx + k will be a tangent if $k = \pm \sqrt{a^2m^2 + b^2}$. The normal at any point P bisects the angle between PF and PF' (Fig. 25). The locus of the foot of the perpendicular from the focus on a moving tangent is the circle on the major axis as diameter (Fig. 26). The locus of the point of intersection of perpendicular tangents is a circle with radius $\sqrt{a^2 + b^2}$ (Fig. 27).

Ellipse as a Flattened Circle. Eccentric Angle. If the ordinates in a circle are diminished in a constant ratio, the resulting points will lie on an ellipse (Fig. 28). If Q traces the circle with uniform velocity, the corresponding point P will trace the ellipse, with varying velocity. The angle u in the figure is called the eccentric angle of the point P.

Conjugate Diameters are lines through the center, each of which bisects all the chords parallel to the other (Fig. 29). If m_1 and m_2 are the slopes, then $m_1m_2 = -b^2/a^2$. One pair of conjugate diameters are the diagonals of the rectangle circumscribing the ellipse. The eccentric angles of the ends of two conjugate diameters differ by 90 deg. Thus (Fig. 30), if CQ and CQ' are perpendicular radii in the circle, CP and CP' will be conjugate semi-diameters in the ellipse. A parallelogram formed by tangents drawn parallel to a pair of conjugate diameters has a constant area, = 4ab (Fig. 31). Also, if a', b' are conjugate semi-diameters, and w the angle between them, then $a'^2 + b'^2 = a^2 + b^2$ and $a'b' = ab/\sin w$.

To Construct a Tangent to a Given Ellipse. (1) At a Given Point of Contact, P. Bisect the angle between the focal radii PF and PF' (Fig. 25).

(2) FROM A GIVEN EXTERNAL POINT, R. (a) Through R draw any two lines cutting the ellipse, one in A and B, the other in C and D (Fig. 32). Through the point of intersection of AC and BD, draw a line cutting the ellipse in P and Q. Then P and Q are the required points of contact. (b) With R as a center and radius RF, draw an arc; with F' as center and radius 2a draw an arc, intersecting the first in S; and let SF' meet the curve in T. Then T is the point of contact (Fig. 33).

To Construct an Ellipse, Given a and b. (1) In Fig. 34, with O as center, draw circles with radii a and b (and also a third circle with radius a + b). Let a variable ray through O cut these circles in J, K (and S); through J and K draw parallels to the axes, meeting in P. Then P is a point of the ellipse (and SP is the normal at P).

(2) In Fig. 35, let P divide a line AB so that PA = a and PB = b. Then if

A and B slide on the axes, P will describe an ellipse.

(3) In Fig. 36, let PBA be a straight line such that PA = a and PB = b. Then if A and B slide on the axes, P will trace an ellipse. (Use a strip of

paper, with the points P, B, and A marked on it.)

(4) Find the foci, F and F', by striking an arc of radius a with center at B (Fig. 37). Drive pins at F, F', and B, and adjust a loop of thread around them. Then remove the pin at B, and replace it by a pencil point; by moving the pencil so as to keep the string taut, the complete ellipse can be drawn at one sweep. Or, use a mechanical ellipsograph.

(5) and (6). Apply methods (1) and (2) of the following paragraph to

the special case in which OP and OQ are perpendicular semi-axes.

To Construct an Ellipse, Given a Pair of Conjugate Semi-diameters, OP and OQ. (1) Complete the parallelogram, as in Fig. 38. Divide QD and QO into n equal parts, 1, 2, 3, . . . and 1', 2', 3', . . . Connect P with 1, 2, 3, . . . and P' with 1', 2', 3' . . . The points of intersection of corresponding lines will be points of the ellipse.

(2) Take any point K on PQ (Fig. 39). Draw EKU, and draw KV parallel to OP. Then UV will be a tangent. By varying K along PQ as many tangents

may be drawn as desired, thus "enveloping" the ellipse.

(3) Through P (Fig. 40), draw a perpendicular PT to OQ, and lay off PR = PS = OQ. Then if the line RPT is made to slide with one end on OR and the other on OQ, P will trace the ellipse. Further, the bisectors of the angle ROS show the directions of the principal axes, and OR + OS = 2a and

OR - OS = 2b. Also, if a line through P perpendicular to RS (and therefore tangent to the ellipse at P) meets the minor axis in M, a circle with M as center and MR or MS as radius will cut the major axis in the two foci.

To Construct an Ellipse Approximately by Circular Arcs. [Methods (1) and (2) employ two radii, (3) and (4) employ three radii.] (1) In Fig. 41, lay off OL = OA and BS = BL = a - b. Bisect SA in T, and draw THK perpendicular to BA. Then H is one center, with radius HA, and K is the other center, with radius KB. The junction point Q of the two arcs will fall a little outside the true ellipse.

(2) In Fig. 42, lay off OU = OV = OB = b. Draw UG perpendicular to the axis and DG at 45°. With G as center draw an auxiliary are with radius

=AV=a-b, and through D draw DMN just touching this arc. Then M is one center (with radius MA) and N is the other center (with radius NB). The junction point P of the two arcs will be a true point of the ellipse. [E. V. Huntington.]

(3) Through D (Fig. 43) draw DC_1C_3 perpendicular to AB. Call $C_1A = r_1$ and $C_3B = r_3$. Lay off BE = BO (=b), and on ED as diameter draw a semi-circle cutting the minor axis in W; then $BW = \sqrt{ab} = r_3$. Lay off $AZ = r_3$.

BW. From C_1 with radius $C_1Z(=r_2-r_1)$, and from C_3 with radius C_3W $(=r_3-r_2)$, draw arcs intersecting in C_2 . Draw C_3C_2 extended and C_2C_1 extended. Then draw in the three arcs, with centers at C_1 , C_2 , C_3 and radii r_1 , r_2 , r_3 . Note. Since r_1 and r_3 are the radii of curvature of the ellipse at A and B, this construction gives a curve which is a little too sharp at A and a little too flat at B. A more accurate construction is the following:

(4) In Fig. 44, lay off BE = BH = BO = b. Through the mid-point X of BE draw XG perpendicular to the axis, and through D draw DG at an angle of 45 deg. From G as center draw an auxiliary arc with radius = DH (= a - b), and through D draw DC_1C_3 just touching this arc. Take C_1A as r_1 and C_3B as r_3 . On DE as diameter draw a semi-circle cutting the minor axis in W, and take $BW (= \sqrt{ab})$ as r_3 . Lay off AZ = BW. From C_1

with radius $C_1Z(=r_2-r_1)$, and from C_3 with radius $C_3W(=r_3-r_2)$, draw arcs intersecting in C_2 . Then C_1 , C_2 , C_3 are the required centers. [E.

V. Huntington.]

Radius of Curvature of Ellipse at Any Point P = (x, y) is $R = a^2b^2(x^2/a^4 + y^2/b^4)^{3/2} = p/\sin^3 v$, where v is the angle which the tangent at P makes with PF or PF'. At end of major axis, $R = b^2/a = MA$; at end of minor axis, $R = a^2/b = NB$ (see Fig. 45). To construct the radius of curvature at any other point P

Fig. 45. Fig. 46.

(Fig. 46), draw the normal at P (by bisecting the angle between PF and PF') and let it meet the major axis in N. At N draw a perpendicular to PN meeting PF in H. At H draw a perpendicular to PH meeting PN in C. Then C is the center of curvature for the point P, and a circle about C with radius CP will coincide closely with the ellipse in the neighborhood of P. [Note. If the circle of curvature meets the ellipse in Q, then the tangent at P and the line PQ are equally inclined to the axis.]

THE HYPERBOLA

The hyperbola (see also p. 107) has two foci, F and F', at distances \pm ae from the center, and two directrices, DH and D'H', at distances \pm a/e from

Fig. 48.

the center (Fig. 47). If P is any point of the curve, |PF - PF'| is constant, = 2a; and PF/PH (or PF'/PH') is also constant, = e (called the **eccentricity**), where e > 1. Either of these properties may be taken as the definition of the

curve. The curve has two branches which approach more and more nearly two straight lines called the **asymptotes**. Each asymptote makes with the principal axis an angle whose tangent is b/a. The relations between e, a, and b are shown in Fig. 48: $b^2 = a^2(e^2 - 1)$, $ae = \sqrt{a^2 + b^2}$, $e^2 = 1 + (b/a)^2$. The semi-latus rectum, or ordinate at the focus, is $p = a(e^2 - 1) = b^2/a$.

Any section of a right circular cone made by a plane which cuts both nappes

of the cone will be a hyperbola. (Compare also Fig. 3, p. 174.)

Equation of the Hyperbola, center as origin:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, or $y = \pm \frac{b}{a} \sqrt{x^2 - a^2}$.

If P = (x,y) is on the right-hand branch, PF = ex - a, PF' = ex + a. If P is on the left-hand branch, PF = -ex + a, PF' = -ex - a.

Equations of Hyperbola in Parametric Form. (1) $x = a \cosh u$, $y = b \sinh u$. (For tables of hyperbolic functions, see pp. 60 and 61.) Here u may be interpreted as A/a^2 , where A is the area shaded in Fig. 49.

Fig. 49. Fig. 50.

(2) $x = a \sec v$, $y = b \tan v$, where v is an auxiliary angle of no special geometric interest.

Polar Equation, referred to focus as origin, axes as in Fig. 50:

$$r = p/(1 - e \cos \theta).$$

Equation of the Tangent at (x_1,y_1) : $b^2x_1x - a^2y_1y = a^2b^2$.

The line y = mx + k will be a tangent if $k = \pm \sqrt{a^2m^2 - b^2}$. The tan-

Fig. 51.

Fig. 52.

Fig. 53.

gent at any point P (Fig. 51) bisects the angle between PF and PF'. The locus of the foot of the perpendicular from the focus on a moving tangent is the circle on the principal axis as diameter (Fig. 52). The locus of the point of intersection of perpendicular tangents is a circle with radius $\sqrt{a^2 - b^2}$, which will be imaginary if b > a (Fig. 53).

Properties of the Asymptotes. (Fig. 54.) If P is any point of the curve, the product of the perpendicular distances from P to the two asymptotes is constant, = $a^2b^2/(a^2 + b^2)$. Also, the product of the oblique distances (the distance to each asymptote being measured parallel to the other) is constant, and equal to $\frac{1}{2}(a^2 + b^2)$. If a line cuts the hyperbola and its asymptotes, the parts of the line intercepted between the curve and the asymptotes are equal. The part of a tangent intercepted between the asymptotes is bisected by the point of contact. The triangle bounded by the asymptotes and a variable tangent is of constant area, = ab. If a line through Q perpendicular to the principal axis meets the asymptotes in R and S (see Fig. 54), then $\overline{QR} \times \overline{QS} = b^2$. If a line through Q parallel to the principal axis meets the asymptotes in Q and Q and Q are Q are Q and Q are Q are Q and Q and Q are Q are Q and Q are Q and Q are Q are Q.

Fig. 54.

Conjugate Hyperbolas are two hyperbolas having the same asymptotes with semi-axes interchanged (Fig. 55). The equation of the hyperbola conju-

gate to
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$.

Conjugate Diameters are lines through the center, each of which bisects all the chords parallel to the other—a chord which does not meet the given hyperbola being understood to be terminated by the conjugate hyperbola (Fig. 55). If m_1 and m_2 are the slopes, then $m_1m_2 = b^2/a^2$. Each asymptote, regarded as a diameter, is its own conjugate. If a parallelogram is formed by tangents drawn parallel to a pair of conjugate diameters, its vertices will lie on the asymptotes, and its area will be constant = 4ab. If a', b' are conjugate semi-diameters, and w the angle between them, then $a'^2 - b'^2 = a^2 - b^2$, and $a'b' = ab/\sin w$.

Equilateral Hyperbola (a = b). Equation referred to principal axes (Fig. 56): $x^2 - y^2 = a^2$. Note. p = a. Equation referred to asymptotes as axes (Fig. 57): $xy = a^2/2$. (See also Fig. 3, p. 174.)

Asymptotes are perpendicular. Eccentricity = $\sqrt{2}$. Any diameter is equal in length to its conjugate diameter.

Fig. 56.

Fig. 57.

To Construct a Tangent at any given point P of a hyperbola. In Fig. 58, draw PA and PB parallel to the asymptotes, and take OS = 2(OA) and OT = 2(OB). Then ST is the tangent at P.

Fig. 58.

To Construct a Hyperbola, given the asymptotes and any point P. (1) In Fig. 59 let TPT' be a variable line through P, and lay off T'P' = TP;

then P' is a point of the curve.

(2) In Fig. 60, draw PA and PB parallel to the asymptotes. Lay off OA' = n(OA) and OB' = (1/n)(OB), where n is any number; and through A' and B' draw parallels to the axes; these will meet in a point P' of the curve.

(3) (Fig. 61.) Take any point K in the ordinate PM, and draw OK meeting the line through P parallel to the x-axis in R. Draw a parallel to the x-axis through K and a parallel to the y-axis through R, meeting in Q. Then Q is a point of the curve.

THE CATENARY

The catenary is the curve in which aflexible chain or cord of uniform density will hang when supported by the two ends. Let w =

weight of the chain per unit length; T = the tension at any point P; and $T_{h_1}T_v =$ the horizontal and vertical components of T. The horizontal component T_h is the same at all points of the curve.

The length $a = T_h/w$ is called the **parameter** of the catenary, or the distance from the lowest point O to the **directrix** DQ (Fig. 62). When a is very large, the curve is very flat. For methods of finding a in any given case, see problems 1-6 below.

The rectangular equation, referred to the lowest point as origin, is $y = a [\cosh (x/a) - 1]$. (For table of hyperbolic functions, see p. 60.) In case of

very flat arcs (a large), $y = \frac{x^2}{2a} + \ldots$; $s = x + \frac{x^3}{a^2} + \ldots$, approximately,

so that in such a case the catenary closely resembles a parabola.

If the perpendicular from O to the tangent at P meets the directrix in Q, then $DQ = \operatorname{arc} OP = s$ and OQ = y + a. The radius of curvature at P is $R = (y + a)^2/a$, which is equal in length to the portion of the normal intercepted between P and the directrix.

Problems on the Catenary (Fig. 62). When any two of the four quantities x, y, s, T/w are known, the remaining two, and also the parameter a, can be found, as follows:

(1) GIVEN x AND y. Compute y/x, and find from Table 1 the value of the auxiliary variable z. Then compute a = x/z, $s = a \sinh z$, and $T = wa \cosh z$. Or, having z, find s/x and wx/T by using Tables 3 and 2 inversely, and hence (since x is known) compute s and T/w without the use of a.

Table 1. Giving z when y/x is Known. Then a = x/z

y/x	0	1	2	3	4	5	6	7	8	9
0.4	0.1993	0.0200 0.2191 0.4140 0.6016 0.7797 0.9471 1.1034	0.0400 0.2389 0.4332 0.6199 0.7969 0.9632 1.1184	0.0600 0.2586 0.4522 0.6381 0.8140 0.9792 1.1334	0.0800 0.2782 0.4712 0.6561 0.8311 0.9951 1.1482	0.0999 0.2978 0.4901 0.6741 0.8480 1.0109 1.1629	0.1199 0.3173 0.5089 0.6919 0.8647 1.0266 1.1775	0.1398 0.3368 0.5276 0.7097 0.8814 1.0422 1.1920	0.1597 0.3562 0.5463 0.7274 0.8980 1.0576 1.2064	0.1795 0.3756 0.5648 0.7449 0.9145 1.0730 1.2207
	Note.	y/x = 0	(cosh z -	1)/z.						

(2) GIVEN x AND T/w. Compute wx/T, and find from Table 2 the value of the auxiliary variable z. Then compute a = x/z, y = a, $(\cosh z - 1)$ and $s = a \sinh z$. Or, having z, find y/x and s/x by using Tables 1 and 3 inversely, and hence (since x is known) compute y and s without the use of a.

Table 2. Giving z when wx/T is Known. Then a = x/z

wx/T	0	-1	2	3	4	5	6	7	8	9
0.0	0.0000	0.0100	0.0200	0.0300	0.0400	0.0501	0.0601	0.0702	0.0803	0.0904
0.1	0.1005	0.1107	0.1209	0.1311	0.1414	0.1517	0.1621	0.1725	0.1830	0.1936
	0.2042	0.2149	0.2256	0.2365	0.2474	0.2584	0.2695	0.2807	0.2920	0.3035
0.3	0.3150	0.3267	0.3385	0.3505	0.3626	0.3749	0.3874	0.4000	0.4129	0.4259
	0.4392	0.4528	0.4666	0.4806	0.4950	0.5097	0.5248	0.5403	0.5562	0.5726
	0.5894	0.6068	0.6249	0.6436	0.6632	0.6836	0.7051	0.7277	0.7517	0.7775
	0.8053		0.8695	0.9082	0.9541	1.0132	1.1110			

Note. $wx/T = z/\cosh z$. For every value of wx/T there are two values of z, one less than 1.200 and one greater than 1.200. Only the smaller of these values is tabulated.

(3) GIVEN x AND s. Compute s/x, and find from Table 3 the value of the auxiliary variable z. Then compute a = x/z, y = a (cosh z - 1), and T = wa cosh z. Or, having z, find y/x and wx/T by using Tables 1 and 2 inversely, and hence (since x is known) compute y and T/w without the use of a.

GIVING z WHEN s/x IS KNOWN. THEN a = x/z

s/x	0	1	2	3	4	5	6	7	8	9
1.000 1 2 3 4	0.0774 0.1095 0.1341 0.1548	0.0245 0.0812 0.1122 0.1363 0.1567	0.0346 0.0848 0.1149 0.1385 0.1586	0.0424 0.0883 0.1174 0.1407 0.1605	0.0490 0.0916 0.1200 0.1428 0.1623	0.0548 0.0948 0.1224 0.1448 0.1642	0.0600 0.0980 0.1249 0.1469 0.1660	0.0648 0.1010 0.1272 0.1489 0.1678	0.0693 0.1039 0.1296 0.1509 0.1696	0.0735 0.1067 0.1319 0.1529 0.1713
1.005 6 7 8 9	0.1731 0.1896 0.2047 0.2188 0.2321	0.1748 0.1911 0.2062 0.2202 0.2334	0.1765 0.1927 0.2076 0.2215 0.2346	0.1782 0.1942 0.2091 0.2229 0.2359	0.1799 0.1958 0.2105 0.2242 0.2372	0.1815 0.1973 0.2119 0.2255 0.2384	0.1831 0.1988 0.2133 0.2269 0.2397	0.1848 0.2003 0.2147 0.2282 0.2409	0.1864 0.2018 0.2161 0.2295 0.2421	0.1880 0.2033 0.2175 0.2308 0.2434
1.01	0.2446 0.3454 0.4224 0.4870	0.2565 0.3539 0.4293 0.4930	0.2678 0.3621 0.4361 0.4989	0.2787 0.3702 0.4428 0.5047	0.2892 0.3781 0.4494 0.5105	0.2993 0.3859 0.4559 0.5162	0.3091 0.3934 0.4623 0.5218	0.3186 0.4009 0.4686 0.5274	0.3278 0.4082 0.4748 0.5329	3367 0.4153 0.4809 0.5383
1.05 6 7 8 9	0.5437 0.5947 0.6414 0.6848 0.7253	0.5490 0.5996 0.6459 0.6889 0.7292	0.5543 0.6044 0.6504 0.6931 0.7331	0.5595 0.6091 0.6548 0.6972 0.7369	0.5647 0.6139 0.6591 0.7013 0.7408	0.5698 0.6186 0.6635 0.7053 0.7446	0.5749 0.6232 0.6678 0.7094 0.7484	0.5799 0.6278 0.6721 0.7134 0.7522	0.5849 0.6324 0.6763 0.7174 0.7559	0.5898 0.6369 0.6806 0.7213 0.7597
1,10	0.7634			:			Note:	s/x =	sinh z/	'z
(4) Grv										
$a = \frac{s^2}{2y} -$	$\frac{y}{2}$. Or,	if y/s	is sma	x = 0	8 1-	$-\frac{2}{3}\left(\frac{y}{s}\right)$	$^{2}-\frac{2}{15}$	$\left(\frac{y}{s}\right)^4$		4.3

(4) GIVEN
$$y$$
 AND s . Then $\frac{1}{w} = \frac{s^2}{2y} + \frac{y}{2}$, $x = \left(\frac{s^2}{y} - y\right) \tanh^{-1} \left(\frac{y}{s}\right)$, $a = \frac{s^2}{2y} - \frac{y}{2}$. Or, if y/s is small, $x = s \left[1 - \frac{2}{3}\left(\frac{y}{s}\right)^2 - \frac{2}{15}\left(\frac{y}{s}\right)^4 - \dots\right]$.

(5) GIVEN y AND T/w . Then $a = \frac{T}{s^2} - y$, $x = \left(\frac{T}{s} - y\right) \cosh^{-1} \frac{T/w}{(T/s) - s}$.

 $s = \sqrt{2y(T/w) - y^2}$. Or, if y/(T/w) is small,

$$x = \sqrt{\frac{2yT}{w}} \left[1 - \frac{7}{12} \frac{wy}{T} - \cdots \right], \quad \frac{s-x}{s} = \frac{1}{3} \frac{wy}{T}, \text{ approximately,}$$

$$s = \sqrt{\frac{2yT}{w}} \left[1 - \frac{1}{4} \frac{wy}{T} - \frac{1}{32} \left(\frac{wy}{T} \right)^2 - \frac{1}{128} \left(\frac{wy}{T} \right)^3 - \cdots \right].$$

(6) GIVEN s AND
$$T/w$$
. Then $x = \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2} \tanh^{-1} \left(\frac{ws}{T}\right)$,

$$y = \frac{T}{w} - \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2}, \quad a = \frac{T}{w} \sqrt{1 - \left(\frac{ws}{T}\right)^2}. \quad \text{Or, if } ws/T \text{ is small,}$$

$$x = s \left[1 - \frac{1}{6} \left(\frac{ws}{T}\right)^2 - \frac{11}{120} \left(\frac{ws}{T}\right)^4 - \cdots\right], \quad y = s \left[\frac{1}{2} \left(\frac{ws}{T}\right) + \frac{1}{8} \left(\frac{ws}{T}\right)^3 + \cdots\right]$$

$$a = \frac{T}{w} \left[1 - \frac{1}{2} \left(\frac{ws}{T}\right)^2 - \frac{1}{8} \left(\frac{ws}{T}\right)^4 - \cdots\right].$$

Given the Length 2L of a Chain Supported at Two Points A and B not in the Same Level, to find a. (See Fig. 63; b and c are supposed known.) Let $(\sqrt{L^2 - b^2})/c = s/x$; enter Table 3 with this value of s/x, and find the corresponding value of the auxiliary variable z. Then a = c/z. NOTE. The co-ordinates of the mid-point M of AB (see Fig. 63) are $x_0 = a \tanh^{-1}(b/L)$, $y_0 = (L/\tanh z) - a$, so that the position of the lowest point is determined.

Correction for Sag in Chaining Uphill (Fig. 64). Let l = length of tape (corrected for stretch and temperature), w = weight per unit length of tape, A = angle between the chord AB and the horizontal.

If the tension P at the upper end is known, compute wl/P and find k from Table 4. If the tension Q at the lower end is known, compute wl/Q and find k from Table 5. In either case, chord AB = l - kl.

Table 4. Giving k											T.	ABL	E 5	. (Grv	ING	k		
$\frac{wl}{P}$	$A = 0^{\circ}$	10°	20°	30°	40°	50°	60°	70°	80°	$\frac{wl}{Q}$	$A = 0^{\circ}$	10°	20°	30°	40°	50°	60°	70°	80°
.01 .02 .03 .04 .05	004 007	000 002 004 006 010	000 001 003 006 009	000 001 003 005 008	000 001 002 004 006	000 001 002 003 004	000 001 002	000 000 000 001 001	000 000 000 000 000	.01 .02 .03 .04 .05	004 007	000 002 004 006 010	001 003 006	001 003 005	001 002 004	001 001 003	000 000 001 002 002	000 000 001	000 000 000
.06 .07 .08 .09	027 034	020 026 033	018 024 031	016 021 026	012	009 012 015	005 007 009	003 003 004	000 001 001 001 001	.06 .07 .08 .09	027 034	020 026 032	018 023 029	015 019 024	011 015 019	008 011 013	005 006 008	002	001 001 001
.11 .12 .13 .14 .15	070 082	060 070 081	055	048 057 066	038 045 053	027 032 038	017	008 009 011	002 002 002 003 003	.11 .12 .13 .14 .15	070 082	057	051 060 069	043 050 057	033 038 044	023 026 030	014 016 018	005 006 007 008 010	002 002 002
·16 .17 .18 .19 .20	151	121 136 152	113 128 143	099 112 125	070 079 090 101 113	057 065 073	035 040 045	017 019 021	004 004 005 006 006	.16 .17 .18 .19 .20	136 151	114 128 142	101 113 125	084 092 103	064 071 079	044 049 054	026 029 032	011 012 013 015 016	003 003 004

NOTE. $k = 1 - \{[1 - \sqrt{1 - 2m \sin u + m^2}]/[m \sin A]\}$, where m = wl/P and u is given by

Correction for Stretch in Chaining Uphill. Let L = unstretched length of tape at working temperature, w = weight per unit length of tape, A = angle

 $^{[1-\}sqrt{1-2m}\sin u+m^2]\sec u=[\sinh^{-1}(\tan u)-\sinh^{-1}(\tan u-m\sec u)]\tan A$. Also, Q=P-wl $(1-k)\sin A$, where k is the value in Table 4 corresponding to the given values of P and A.

between chord AB and the horizontal, F= area of cross-section, E= Young's modulus of elasticity (for steel, E=29,000,000 lb. per sq.in.), l= stretched length (along curve).

If the tension P at the upper end is known, compute wL/P and find m from

Table 6. Then l = L + (LP/FE) (1 = m).

If the tension Q at the lower end is known, compute wL/Q and find n from Table 7. Then l = L + (LQ/FE)(1+n).

TABLE 6. GIVING m										TABLE 7. GIVING n											
$\frac{w\hat{L}}{P}$	A = 0°	10°	20°	30°	40°	50°	60°	70°	80°	90°	$\frac{wL}{Q}$	A =	10°	20°	30°	40°	50°	60°	70°	80°	90°
.10	.001	.010	.018	.026	.033	.039	.044	.047	.049	.050	.00 .10 .20		.000 .008 .014	.016	.024	.032	.038	.043	.047	.049	.050

OTHER USEFUL CURVES

The Cycloid is traced by a point on the circumference of a circle which rolls without slipping along a straight line. **Equations** of cycloid, in parametric form (axes as in Fig. 65): x = a (rad $u - \sin u$), $y = a(1 - \cos u)$, where a is

the radius of the rolling circle, and rad u is the radian measure of the angle u through which it has rolled. The tangent and normal at any point pass through the highest and lowest points of the corresponding position of the generating circle. The radius of curvature at any point P is $PC = 4a \sin(u/2) = 2\sqrt{2ay} = \text{twice the length of the normal, } PN$. The evolute,

ad sin (u/2) = 2V 2ay = twice the length of r locus of centers of curvature, is an equal cycloid. To construct a cycloid (Fig. 66), divide the semi-circumference of the generating circle into n equal parts (here 4) and lay off these arcs along the base (from 0 to 4'). Describe arcs with centers at 1', 2', . . . and radii equal to the chords 01, 02, . . ., and sketch the cycloid as a curve tangent to all of these arcs. Or, on horizontal lines through 1, 2, lay off distances equal to 01', 02', etc.; the points

FIG. 07.

tances equal to O1', O2', etc.; the points thus reached will lie on the cycloid. The area of one arch = $3\pi a^2$, length of arc of one arch = 8a. Area

bounded by the ordinate of the point P corresponding to any value of u is a^2 (32 rad $u-2\sin u+14\sin 2u$) = $\frac{32}{2}ax-\frac{12}{2}y\sqrt{(2a-y)y}$. Length of arc OP=4a $(1-\cos \frac{12}{2}u)=4a-2\sqrt{2a(2a-y)}$.

The Trochoid is a more general curve, traced by any point on a radius of the rolling circle, at distance b from the center (Fig. 67). It is a prolate trochoid if b < a, and a curtate or looped trochoid if b > a. The equations in either case are x = a rad a - b sin a, a and a curve a rad a

The Epicycloid (or Hypocycloid) is a curve generated by a point on the circumference of a circle of radius a which rolls without slipping on the outside (or inside) of a fixed circle of radius c. For the equations, put b=a in the equations of the epi- (or hypo-) trochoid, below. The normal at any point P passes through the point of contact N of the corresponding position of the rolling circle. To construct the curve (Figs. 68 and 69),

divide the semi-circumference of the rolling circle into n equal parts, by points 1, 2, 3 . . ., and lay off these arcs (A1, A2, A3) along the circumference of the base circle, as A1', A2', A3', . . . Describe circles with centers at 1', 2', 3', . . . and radii equal to the chords A1, A2, A3, . . .; then the required curve will be tangent to all these circles. Or, with O as center, draw arcs through 1, 2, 3, . . ., meeting the radius OA in 1^0 , 2^0 , 3^0 , . . ., and the radii O1', O2', O3', . . . in 1'', 2'', 3'', . . .; then from 1'', 2'', 3'', . . . iay off arcs equal to 1^01 , 2^02 , 3^03 , . . . respectively; the points thus reached will be points of the curve.

The area $OAP = \frac{a(c \pm a)(c \pm 2a)}{2c}$ (rad $u - \sin u$), where the upper sign applies to the epicycloid, the lower to the hypocycloid, and rad u = the radian measure of the angle u shown in Figs. 68 and 69. Arc $AP = (4 \ a/c)(c \pm a)(1 - \cos \frac{1}{2} u)$; arc $AD = (4a/c)(c \pm a)$. [In Fig. 69, $D = 4^n$.]

Radius of curvature at any point P is $R = \frac{4a(c \pm a)}{c \pm 2a} \sin \frac{1}{2}u$; at A, R = 0;

at D,
$$R = \frac{4a(c \pm a)}{c \pm 2a}$$
.

Special Cases. If $a = \frac{1}{2}c$, the hypocycloid becomes a straight line, diameter of the fixed circle (Fig. 70). In this case the hypotrochoid traced by any

point rigidly connected with the rolling circle (not necessarily on the circumference) will be an ellipse. If $a = \frac{1}{4}c$, the curve generated will be the four-cusped hypocycloid, or **astroid**, (Fig. 71), whose equation is $x^{\frac{2}{4}} + y^{\frac{4}{3}} = c^{\frac{4}{3}}$. If a = c, the epicycloid is the **cardioid**, whose equation in polar coordinates (axes as in Fig. 72) is $r = 2c(1 + \cos \theta)$. Length of cardioid = 16c.

The Epitrochoid (or Hypotrochoid) is a curve traced by any point rigidly attached to a circle of radius a, at distance b from the center, when this circle rolls without slipping on the outside (or inside) of a fixed circle of radius c.

The equations are
$$x = (c \pm a) \cos \left(\frac{a}{c}u\right) \mp b \cos \left[\left(1 \pm \frac{a}{c}\right)u\right],$$

$$y = (c \pm a) \sin\left(\frac{a}{c_{\perp}}u\right) - b \sin\left[\left(1 \pm \frac{a}{c}\right)u\right]$$
, where $u =$ the angle which the

moving radius makes with the line of centers; take the upper sign for the epiand the lower for the hypo-trochoid. The curve is called prolate or curtate according as b < a or b > a. When b = a, the special case of the epi- or hypocycloid arises.

The Involute of a Circle is the curve traced by the end of a taut string which is unwound from the circumference of a fixed circle, of radius c. If QP

is the free portion of the string at any instant (Fig. 73), QP will be tangent to the circle at Q, and the length of QP = length of arc QA; hence the construc-

tion of the curve. The equations of the curve in parametric form (axes as in figure) are $x = c(\cos u + \operatorname{rad} u \sin u)$, $y = c(\sin u - \operatorname{rad} u \cos u)$, where rad u is the radian measure of the angle u which OQ makes with the x-axis. Length of arc $AP = \frac{1}{2}c(\operatorname{rad} u)^2$; radius of curvature at P is QP.

The Spiral of Archimedes (Fig. 74) is traced by a point P which, starting from O, moves with uniform velocity along a ray OP, while the ray itself revolves with uniform angular velocity about O. Polar equation: r = k rad θ , or r = a ($\theta/360^{\circ}$). Here $a = 2\pi k = t$ he distance, measured along a radius, from each coil to the next.

In order to construct the curve, draw radii O1, O2, O3, . . . making angles $\frac{1}{n}$ (360°), $\frac{2}{n}$ (360°), $\frac{3}{n}$ (360°), . . . with Ox, and along these radii lay off distances equal to $\frac{1}{n}a$, $\frac{2}{n}a$, $\frac{3}{n}a$, . . .; the points thus reached will

lie on the spiral. The figure shows one-half of the curve, corresponding to positive values of θ .

Construction for tangent and normal: Let PT and PN be the tangent and normal at any point P, the line TON being perpendicular to OP. Then $OT = r^2/k$, and ON = k, where $k = a/(2\pi)$. Hence the construction.

The radius of curvature at P is $R = (k^2 + r^2)^{\frac{3}{2}}/(2k^2 + r^2)$. To construct the center of curvature, C, draw NQ perpendicular to PN and PQ perpendicular to OP; then OQ will meet PN in C. Length of arc $OP = \frac{1}{2}k \left[\operatorname{rad} \theta \sqrt{1 + (\operatorname{rad} \theta)^2 + \sinh^{-1}(\operatorname{rad} \theta)} \right]$. After many windings, arc $OP = \frac{1}{2}r^2/k$, approximately.

Hyperbolic Spiral. Fig. 75.

Logarithmic Spiral.

The Hyperbolic Spiral is the curve whose polar equation is $r = a/\text{rad }\theta$. To construct the curve, take a series of points along Ox (Fig. 75); through each of these points, with center at O, draw an arc extending into the upper half of the plane; and along each of these arcs lay off a length = a. The points thus reached will lie on the curve. A line parallel to the x-axis, at distance a, is an asymptote of the curve. The curve winds around and around the point O without ever reaching it (asymptotic point). The figure shows one-half of the curve, corresponding to positive values of O. If O are the tangent and normal at any point O, the line O being perpendicular to O and O being perpendicular to O and O are the

then OT = a, and $ON = r^2/a$. Hence a construction for the tangent and normal. Radius of curvature at P is $R = r/\sin^2 v$, where v = angle between OP and the tangent at P. Construction: At N draw a perpendicular to PN, meeting PO in Q; at Q draw a perpendicular to PQ, meeting PN in C; then C is the center of curvature for the point P.

The Logarithmic Spiral (Fig. 76), is a curve which cuts the radii from O at a constant angle v, whose cotangent is m. Polar equation: $r = ae^{m \operatorname{rad} \theta}$. Here a is the value of r when $\theta = 0$. For large negative values of θ , the curve winds around O as an asymptotic point. If PT and PN are the tangent and normal at P, the line TON being perpendicular to OP (not shown in fig.), then ON = rm, and $PN = r\sqrt{1 + m^2} = r/\sin v$. Radius of curvature at

P is PN. The evolute of the spiral is an equal spiral whose axis makes an angle $\frac{1}{2}\pi - (\log_e m)/m$ with the axis of the given spiral. Area swept out by the radius r from r=0 (where $\theta=-\infty$) to r=r, is $A=r^2/(4m)=1$ half the triangle OPT. Length of arc from O to $P=s=r/\cos v=PT$.

Tractrix.

The Tractrix, or Schiele's Anti-friction Curve (Fig. 77), is a curve such that the portion PT of the tangent between the point of contact and the x-axis is

constant = a. Its equation is $x = \pm a \left[\cosh^{-1} \frac{a}{y} - \sqrt{1 - \left(\frac{y}{a} \right)^2} \right]$, or, in

parametric form, $x = \pm a [t - \tanh t]$, $y = a/\cosh t$. (For tables of hyperbolic functions, see p. 60.) The x-axis is an asymptote of the curve. Length of arc $BP = a \log_e (a/y)$. The evolute (locus of centers of curvature) is the catenary whose lowest point is at B, and whose directrix is Ox.

The Cissoid (Fig. 78) is the locus of a point P such that OP, laid off on a variable ray from O, is equal to BD, the portion of the ray lying between a fixed circle through O and a fixed tangent at the point A opposite O. If a is the radius of the circle, the polar equation is $r = 2a \sin^2 \theta / \cos \theta$. Rectangular equation, $y^2(2a - x) = x^3$.

The Lemniscate (Fig. 79) is the locus of a point P the product of whose distances from two fixed points F, F' is constant, equal to $\frac{1}{2}a^2$. The distance $FF' = a\sqrt{2}$. Polar equation is $r = a\sqrt{\cos 2\theta}$. Angle between OP and the normal at P is 2θ . The two branches of the curve cross at right angles at O.

Maximum y occurs when $\theta = 30^{\circ}$ and $r = a/\sqrt{2}$, and is equal to $4a\sqrt{2}$. Area of one loop = $a^2/2$.

The Helix (Fig. 80) is the curve of a screw thread on a cylinder of radius r. The curve crosses the elements of the cylinder at a constant angle, v. The pitch, h, is the distance between two coils of the helix, measured along an element of the cylinder; hence $h = 2\pi r \tan v$. Length of one coil = $\sqrt{(2\pi r)^2 + h^2}$ = $2\pi r/\cos v$. To construct the projection of a helix on a plane containing the axis of the cylinder, draw a rectangle. breadth 2r and height h, to represent the plane, with a semicircle below it, as in the figure, to represent the base of the cylinder. Divide h into equal parts (here 8), numbered from 1 to 8; think of the circumterence as also divided into 8 equal parts, represented on the semicircle by numbers from 1' to 4' and back again from 4' to 8'. Then the point of intersection of a horizontal line through Helix. 1,2, . . . with a vertical line through 1', 2', . . . will

Fig. 80.

be a point of the required projection. If the cylinder is rolled out on a plane, the development of the helix will be a straight line, with slope equal to tan v.

DIFFERENTIAL AND INTEGRAL CALCULUS

DERIVATIVES AND DIFFERENTIALS

Derivatives and Differentials. A function of a single variable x may be denoted by f(x), F(x), etc. The value of the function when x has the value x_0 is then denoted by $f(x_0)$, $F(x_0)$, etc. The **derivative** of a function y = f(x) may be denoted by f'(x), or by dy/dx. The value of the derivative at a given point $x = x_0$ is the **rate of change** of the function at that point; or, if the function is represented by a curve in the usual way (Fig. 1), the value of the derivative at any point shows the **slope of the curve** (that is,

the slope of the tangent to the curve) at that point (positive if the tangent points upward, and negative

if it points downward, moving to the right).

The increment, Δy (read: "delta y"), in y is the change produced in y by increasing x from x_0 to $x_0 + \Delta x$; that is, $\Delta y = f(x_0 + \Delta x) - f(x_0)$. The differential, dy, of y is the value which Δy would have if the curve coincided with its tangent. (The differential, dx, of x is the same as Δx when x is the independent variable.) Note that the derivative depends only on the value of x_0 , while x_0 and x_0 depend not only on x_0 but also on the value of x_0 . The ratio

only on x_0 but also on the value of Δx . The ratio $\Delta y/\Delta x$ represents the slope of the secant, and dy/dx the slope of the tangent (see Fig. 1). If Δx is made to approach zero, the secant approaches the tangent as a limiting position, so that the derivative = f'(x) = f'(x)

$$\frac{dy}{dx} = \lim_{\Delta x \doteq 0} \left[\frac{\Delta y}{\Delta x} \right] = \lim_{\Delta x \doteq 0} \left[\frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} \right]. \text{ Also, } dy = f'(x) dx.$$

The symbol "lim" in connection with $\Delta x \doteq 0$ means "the limit, as Δx approaches 0, of ..." [A constant c is said to be the **limit** of a variable u if, whenever any quantity m has been assigned, there is a stage in the variation-process beyond which |c - u| is always less than m; or, briefly, c is the limit of u if the difference between c and u can be made to become and remain as small as we please.]

To find the derivative of a given function at a given point: (1) If the function is given only by a curve, measure graphically the slope of the tangent at the point in question; (2) if the function is given by a mathematical expression, use the following rules for differentiation. These rules give, directly, the differential, dy, in terms of dx; to find the derivative, dy/dx, divide through by dx.

Rules for Differentiation. (Here u, v, w, ... represent any functions of a variable x, or may themselves be independent variables. a is a constant which does not change in value in the same discussion; e = 2.71828.)

1.
$$d(a + u) = du$$
. 2. $d(au) = adu$.

3.
$$d(u + v + w + ...) = du + dv + dw + ...$$

$$4. \ d(uv) = udv + vdu.$$

5.
$$d(uvw...) = (uvw...)\left(\frac{du}{u} + \frac{dv}{v} + \frac{dw}{w} + ...\right)$$

$$6. \ d\frac{u}{v} = \frac{vdu - udv}{v^2}$$

7.
$$d(u^m) = mu^{m-1}du$$
 when m is not = -1,

Thus, $d(u^2) = 2udu$; $d(u^3) = 3u^2du$; etc.

8.
$$d\sqrt{u} = \frac{du}{2\sqrt{u}}$$
 9. $d\left(\frac{1}{u}\right) = -\frac{du}{u^2}$

10.
$$d(e^u) = e^u du$$
. 11. $d(a^u) = (\log_e a) a^u du$.

12.
$$d \log_e u = \frac{du}{u}$$
 13. $d \log_{10} u = (\log_{10} e) \frac{du}{u} = (0.4343...) \frac{du}{u}$

14. $d \sin u = \cos u du$.

14.
$$d \sin u = \cos u du$$
.
15. $d \csc u = -\cot u \csc u du$.
16. $d \cos u = -\sin u du$.
17. $d \sec u = \tan u \sec u du$.

18.
$$d \tan u = \sec^2 u du$$
.

20.
$$d \sin^{-1} u = \frac{du}{\sqrt{1 - u^2}}$$
 21. $d \csc^{-1} u = -\frac{du}{u\sqrt{u^2 - 1}}$

22.
$$d \cos^{-1} u = -\frac{du}{\sqrt{1-u^2}}$$

22.
$$d \cos^{-1} u = -\frac{du}{\sqrt{1 - u^2}}$$
 23. $d \sec^{-1} u = \frac{du}{u\sqrt{u^2 - 1}}$
24. $d \tan^{-1} u = \frac{du}{1 + u^2}$ 25. $d \cot^{-1} u = -\frac{du}{1 + u^2}$

26.
$$d \log_{\theta} \sin u = \cot u \, du$$
.

27.
$$d \log_{\bullet} \tan u = \frac{2du}{\sin 2u}$$

19. $d \cot u = -\csc^2 u \, du$.

28.
$$d \log_{\bullet} \cos u = - \tan u \, du$$
.

28.
$$d \log_e \cos u = -\tan u \, du$$
. 29. $d \log_e \cot u = -\frac{2du}{\sin 2u}$

$$30. d \sinh u = \cosh u \, du.$$

31.
$$d \operatorname{csch} u = - \operatorname{csch} u \operatorname{coth} u du$$
.
33. $d \operatorname{sech} u = - \operatorname{sech} u \operatorname{tanh} u du$.

32.
$$d \cosh u = \sinh u du$$
.
34. $d \tanh u = \operatorname{sech}^2 u du$.

35.
$$d \coth u = - \operatorname{csch}^2 u \, du$$
.

36.
$$d \sinh^{-1} u = \frac{du}{\sqrt{u^2 + 1}}$$

36.
$$d \sinh^{-1} u = \frac{du}{\sqrt{u^2 + 1}}$$
 37. $d \operatorname{csch}^{-1} u = -\frac{du}{u\sqrt{u^2 + 1}}$ 38. $d \operatorname{cosh}^{-1} u = \frac{du}{\sqrt{u^2 - 1}}$ 39. $d \operatorname{sech}^{-1} u = -\frac{du}{u\sqrt{1 - u^2}}$ 40. $d \tanh^{-1} u = \frac{du}{1 - u^2}$ 41. $d \coth^{-1} u = \frac{du}{1 - u^2}$

38.
$$d \cosh^{-1} u = \frac{du}{\sqrt{u^2 - 1}}$$

39.
$$d \operatorname{sech}^{-1} u = -\frac{uu}{u\sqrt{1 - u^2}}$$

40.
$$d \tanh^{-1} u = \frac{du}{1 - u^2}$$

41.
$$d \coth^{-1} u = \frac{du}{1 - u^2}$$

42.
$$d(u^v) = (u^{v-1})(u \log_e u \, dv + v \, du).$$

Derivatives of Higher Orders. The derivative of the derivative is called the second derivative; the derivative of this, the third derivative; and on. Notation: if y = f(x),

$$f''(x) = D_x y = \frac{dy}{dx}$$
; $f'''(x) = D_x^2 y = \frac{d^2 y}{dx^2}$; $f''''(x) = D_x^2 y = \frac{d^3 y}{dx^3}$; etc.

NOTE. If the notation d^2y/dx^2 is used, this must not be treated as a fraction, like dy/dxbut as an inseperable symbol, made up of a symbol of operation, d^2/dx^2 , and an operand y

The geometric meaning of the second derivative is this: if the original function y = f(x) is represented by a curve in the usual way, then at any point where f''(x) is positive, the curve is concave upward, and at any point where f''(x) is negative, the curve is concave downward (Fig. 2). When f''(x) = 0, the curve usually has a point of inflection.

Fig. 2.

The differ-Differentials of Higher Orders. ential of the differential is called the second differential; the differential of this, the third differential; etc. These quantities are of little importance except in the case where dx = a constant. In this case

$$dy = f'(x)dx$$
; $d^2y = f''(x)\cdot(dx)^2$; $d^3y = f'''(x)\cdot(dx)^3$; . . .

The first, second, third, etc., differentials are close approximations to the first, second, third, etc., differences (p. 115), and are therefore sometimes useful in constructing tables. Thus, denoting the first, second, third, etc., differences by D', D'', etc., and, assuming always that dx = a constant,

Functions of Two or More Variables may be denoted by f(x, y, ...), F(x, y, ...), etc. The derivative of such a function u = f(x, y, ...) formed on the assumption that x is the only variable (y, . . . being regarded for the moment as constants) is called the partial derivative of u with respect to

x, and is denoted by $f_x(x,y)$, or D_xu , or $\frac{\partial x}{\partial x}$, or $\frac{\partial u}{\partial x}$. Similarly, the partial derivative of u with respect to y is $f_y(x,y)$, or D_yu , or $\frac{d_yu}{dy}$, or $\frac{\partial u}{\partial y}$

Note. In the third notation, d_xu denotes the differential of u formed on the assumption that x is the only variable. If the fourth notation, $\partial u/\partial x$, is used, this must not be treated as a fraction like du/dx; the $\partial/\partial x$ is a symbol of operation, operating on u, and the " $\partial_x x$ " must not be separated.

Partial derivatives of the second order are denoted by f_{xx} , f_{xy} , f_{yy} , or by $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial x \partial y}$, $\frac{\partial^2 u}{\partial y^2}$, the last symbols being "inseparable." Similarly for higher derivatives. Note that $f_{xy} = f_{yx}$.

If increments Δx , Δy , (or dx, dy) are assigned to the independent variables x, y, the increment, Δu , produced in u = f(x,y) is

$$\Delta u = f(x + \Delta x, y + \Delta y) - f(x,y);$$

while the differential, du, that is, the value which Δu would have if the partial derivatives of u with respect to x and y were constant, is given by

$$du = (f_x) \cdot dx + (f_y) \cdot dy.$$

Here the coefficients of dx and dy are the values of the partial derivatives of u at the point in question.

If x and y are functions of a third variable t, then the equation

$$\frac{du}{dt} = (f_x) \frac{dx}{dt} + (f_y) \frac{dy}{dt}$$

expresses the rate of change of u with respect to t, in terms of the separate rates of change of x and y with respect to t.

For the graphical representation of u = f(x,y), see p. 178.

Implicit Functions. If f(x,y) = 0, either of the variables x and y is said to be an implicit function of the other. To find dy/dx, either (1) solve for y in terms of x, and then find dy/dx directly; or (2) differentiate the equation through as it stands, remembering that both x and y are variables, and then divide by dx; or (3) use the formula $dy/dx = -(f_x/f_y)$, where f_x and f_y are the partial derivatives of f(x,y) at the point in question.

MAXIMA AND MINIMA

A Function of One Variable, as y = f(x), is said to have a maximum at a point $x = x_0$, if at that point the slope of the curve is zero and the concavity

downward (see Fig. 3); a sufficient condition for a maximum is $f'(x_0) = 0$ and $f''(x_0)$ negative. Similarly, f(x) has a **minimum** if the slope is zero and the concavity upward; a sufficient condition for a minimum is $f'(x_0) = 0$ and $f''(x_0)$ positive. If $f'(x_0) = 0$ and $f''(x_0) = 0$

 $f''(x_0)$ positive. If $f'(x_0) = 0$ and $f''(x_0) = 0$ and $f'''(x_0) \neq 0$, the point x_0 will be a **point of inflection**. If $f'(x_0) = 0$ and $f'''(x_0) = 0$ and $f'''(x_0) = 0$, the point x_0 will be a maximum if $f''''(x_0) < 0$, and a minimum if $f''''(x_0) > 0$. It is usually sufficient, however, in any practical case, to find the values of x which make f'(x) = 0, and then decide, from a general knowledge of the curve, which of these values (if any) give

maxima or minima, without investigating the higher derivatives.

A Function of Two Variables, as u = f(x,y), will have a maximum at a point (x_0,y_0) if at that point $f_x = 0$, $f_y = 0$, and $f_{xx} < 0$, $f_{yy} < 0$; and a **minimum** if at that point $f_x = 0$, $f_y = 0$, and $f_{xx} > 0$, $f_{yy} > 0$; provided, in each case, $(f_{xx})(f_{yy}) - (f_{xy})^2$ is positive. If $f_x = 0$ and $f_y = 0$, and f_{xx} and f_{yy} have opposite signs, the point (x_0,y_0) will be a "saddle point" of the surface representing the function (p. 178).

EXPANSION IN SERIES

The range of values of x for which each of the series is convergent is stated at the right of the series.

Arithmetical and Geometrical Series, and the Binomial Theorem. See p. 114.

Exponential and Logarithmic Series.

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots; \qquad -\infty < x < +\infty.$$

$$a^{x} = e^{mx} = 1 + \frac{m}{1!} x + \frac{m^{2}}{2!} x^{2} + \frac{m^{3}}{3!} x^{3} + \dots; \quad a > 0, \quad -\infty < x < +\infty,$$

$$\text{where } m = \log_{e} a = (2.3026)(\log_{10} a).$$

$$\log_{e} (1 + x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \frac{x^{5}}{5} - \dots; \qquad -1 < x < +1.$$

$$\log_{e} (1 - x) = -x - \frac{x^{2}}{2} - \frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{x^{5}}{5} - \dots; \qquad -1 < x < +1.$$

$$\log_{e} \left(\frac{1 + x}{1 - x}\right) = 2 \left(x + \frac{x^{3}}{3} + \frac{x^{5}}{5} + \frac{x^{7}}{7} + \dots\right); \qquad -1 < x < +1.$$

$$\log_{e} \left(\frac{x + 1}{1 - x}\right) = 2 \left(\frac{1}{x} + \frac{1}{3x^{3}} + \frac{1}{5x^{5}} + \frac{1}{7x^{7}} + \dots\right); \qquad x < -1 \text{ or } +1 < x.$$

$$\log_{e} x = 2 \left[\frac{x - 1}{x + 1} + \frac{1}{3} \left(\frac{x - 1}{x + 1}\right)^{3} + \frac{1}{5} \left(\frac{x - 1}{x + 1}\right)^{5} + \dots\right]; \qquad 0 < x < \infty.$$

$$\log_{e} (a + x) = \log_{e} a + 2 \left[\frac{x}{2a + x} + \frac{1}{3} \left(\frac{x}{2a + x}\right)^{3} + \frac{1}{5} \left(\frac{x}{2a + x}\right)^{5} + \dots\right];$$

Series for the Trigonometric Functions. In the following formulæ, all angles must be expressed in radians. If D = the number of degrees in the angle, and x = its radian measure, then x = 0.017453 D.

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots; \qquad -\infty < x < +\infty.$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \dots; \qquad -\infty < x < +\infty.$$

$$\tan x = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \frac{62x^9}{2835} + \dots; \qquad -\pi/2 < x < +\pi/2.$$

$$\cot x = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \frac{x^7}{4725} - \dots; \qquad -\pi < x < +\pi.$$

$$\sin^{-1} y = y + \frac{y^3}{6} + \frac{3y^6}{40} + \frac{5y^7}{112} + \dots; \qquad -1 \le y \le +1.$$

$$\tan^{-1} y = y - \frac{y^3}{3} + \frac{y^5}{5} - \frac{y^7}{7} + \dots; \qquad -1 \le y \le +1.$$

Series for the Hyperbolic Functions (x a pure number).

 $\cos^{-1} y = \frac{1}{2}\pi - \sin^{-1} y$:

sinh
$$x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots;$$
 $-\infty < x < \infty.$ $\cosh x = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots;$ $-\infty < x < \infty.$ $\sinh^{-1} y = y - \frac{y^3}{6} + \frac{3y^5}{40} - \frac{5y^7}{112} + \dots;$ $-1 < y < +1.$ $\tanh^{-1} y = y + \frac{y^3}{3} + \frac{y^5}{5} + \frac{y^7}{7} + \dots;$ $-1 < y < +1.$

 $\cot^{-1} y = \frac{1}{2}\pi - \tan^{-1} y.$

General Formulæ of Maclaurin and Taylor. If f(x) and all its derivatives are continuous in the neighborhood of the point x = 0 (or x = a), then, for any value of x in this neighborhood, the function f(x) may be expressed as a power series arranged according to ascending powers of x (or of x - a), as follows:

(1)
$$f(x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

 $+ \frac{f^{(n-1)}(0)}{(n-1)!}x^{n-1} + (P_n)x^n.$ (Maclaurin.)
(2) $f(x) = f(a) + \frac{f''(a)}{1!}(x-a) + \frac{f'''(a)}{2!}(x-a)^2 + \frac{f''''(a)}{3!}(x-a)^3 + \dots$
 $+ \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + (Q_n)(x-a)^n.$ (Taylor.)

Here $(P_n)x^n$, or $(Q_n)(x-a)^n$, is called the **remainder term**; the values of the coefficients P_n and Q_n may be expressed as follows: $P_n = \{f^{(n)}(sx)\}/n! = \{(1-t)^{n-1} f^{(n)}(tx)\}/(n-1)!$ $Q_n = \{f^{(n)}[a+s(x-a)]\}/n! = \{(1-t)^{n-1} f^{(n)}[a+t(x-a)]\}/(n-1)!$ where s and t are certain unknown numbers between 0 and 1: the s-form is

where s and t are certain unknown numbers between 0 and 1; the s-form is due to Lagrange, the t-form to Cauchy.

The error due to neglecting the remainder term is less than $(P_n)x^n$, or 11

 $(\overline{Q}_n)(x-a)^n$, where \overline{P}_n , or \overline{Q}_n , is the largest value taken on by P_n , or Q_n , when s or t ranges from 0 to 1. If this error, which depends on both n and x, approaches 0 as n increases (for any given value of x), then the general-expression-with-remainder becomes (for that value of x) a convergent infinite series.

The sum of the first few terms of Maclaurin's series gives a good approximation to f(x) for values of x near x = 0; Taylor's series gives a similar approximation for values near x = a.

Fourier's Series. Let f(x) be a function which is finite in the interval from x = -c to x = +c and has only a finite number of discontinuities in that interval (see note below), and only a finite number of maxima and minima. Then, for any value of x between -c and c,

$$f(x) = \frac{1}{2} a_0 + a_1 \cos \frac{\pi x}{c} + a_2 \cos \frac{2\pi x}{c} + a_3 \cos \frac{3\pi x}{c} + \dots$$
$$+ b_1 \sin \frac{\pi x}{c} + b_2 \sin \frac{2\pi x}{c} + b_3 \sin \frac{3\pi x}{c} + \dots$$

where the constant coefficients are determined as follows:

$$a_n = \frac{1}{c} \int_{-c}^{c} f(t) \cos \frac{n\pi t}{c} dt, \quad b_n = \frac{1}{c} \int_{-c}^{c} f(t) \sin \frac{n\pi t}{c} dt.$$

In case the curve y = f(x) is symmetrical with respect to the origin, the a's are all zero, and the series is a sine series. In case the curve is symmetrical with respect to the y-axis, the b's are all zero, and a cosine series results. (In this case, the series will be valid not only for values of x between -c and c, but also for x = -c and x = c.) A Fourier's series can be integrated term by term; but the result of differentiating term by term will in general not be a convergent series.

NOTE. If $x = x_0$ is a point of discontinuity, $f(x_0)$ is to be defined as $\frac{1}{2}[f_1(x_0) + f_2(x_0)]$, where $f_1(x_0)$ is the limit of f(x) when x approaches x_0 from below, and $f_2(x_0)$ is the limit of f(x) when x approaches x_0 from above.

Examples of Fourier's Series.

1. If y = f(x) is the curve in Fig. 4,

$$y = \frac{h}{2} - \frac{4h}{\pi^2} \left(\cos \frac{\pi x}{c} + \frac{1}{9} \cos \frac{3\pi x}{c} + \frac{1}{25} \cos \frac{5\pi x}{c} + \dots \right)$$

2. If y = f(x) is the curve in Fig. 5,

$$y = \frac{4h}{\pi} \left(\sin \frac{\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} + \frac{1}{5} \sin \frac{5\pi x}{c} + \dots \right)$$

3. If y = f(x) is the curve in Fig. 6,

$$y = \frac{2h}{\pi} \left(\sin \frac{\pi x}{c} - \frac{1}{2} \sin \frac{2\pi x}{c} + \frac{1}{3} \sin \frac{3\pi x}{c} - \dots \right)$$

INDETERMINATE FORMS

In the following paragraphs, f(x), g(x) denote functions which approach 0; F(x), G(x) functions which increase indefinitely; and U(x) a function which approaches 1; when x approaches a definite quantity a. The problem in each case is to find the limit approached by certain combinations of these functions when x approaches a. The symbol \doteq is to be read "approaches."

Case 1. "0" To find the limit of f(x)/g(x) when $f(x) \doteq 0$ and $g(x) \doteq 0$,

use the theorem that $\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)}$, where f'(x) and g'(x) are the derivatives of f(x) and g(x). This second limit may be easier to find than the first. If $f'(x) \doteq 0$ and $g'(x) \doteq 0$, apply the same theorem a second time: $\lim \frac{f'(x)}{g'(x)} = \lim \frac{f''(x)}{g''(x)}; \text{ and so on.}$

Case 2. " $\frac{\infty}{\infty}$ " If $F(x) \doteq \infty$ and $G(x) \doteq \infty$, then $\lim_{x \to \infty} \frac{F(x)}{G(x)} = \lim_{x \to \infty} \frac{F'(x)}{G'(x)}$ precisely as in Case 1.

Case 3. " $0 \cdot \infty$." To find the limit of $f(x) \cdot F(x)$ when $f(x) \doteq 0$ and $F(x) \doteq \infty$, write $\lim [f(x) \cdot F(x)] = \lim \frac{f(x)}{1/F(x)}$, or $= \lim \frac{F(x)}{1/f(x)}$; then proceed as in Case 1 or Case 2.

Case 4. "0"." If $f(x) \doteq 0$ and $g(x) \doteq 0$, find $\lim_{x \to 0} [f(x)]^{g(x)}$ as follows: let $y = [f(x)]^{g(x)}$, and take the logarithm of both sides thus:

$$\log_e y = g(x) \log_e f(x);$$

next, find $\lim [g(x) \log_e f(x)]$, = m, by Case 3; then $\lim y = e^m$.

Case 5. " 1^{∞} ." If $U(x) \doteq 1$ and $F(x) \doteq \infty$, find $\lim_{x \to \infty} [U(x)]^{F(x)}$ as follows: let $y = [U(x)]^{F(x)}$, and take the logarithm of both sides, as in Case 4.

Case 6. " ∞ 0." If $F(x) \doteq \infty$ and $f(x) \doteq 0$, find $\lim_{x \to 0} [F(x)]^{f(x)}$ as follows: let $y = [F(x)]^{f(x)}$, and take the logarithm of both sides, as in Case 4. Case 7. " $\infty - \infty$." If $F(x) \doteq \infty$ and $G(x) \doteq \infty$, write $\lim_{x \to \infty} [F(x) - G(x)]$

 $=\lim \frac{\frac{1}{G(x)} - \frac{1}{F(x)}}{1}$; then proceed as in Case 1. Sometimes it is shorter to ex- $F(x) \cdot G(x)$

pand the functions in series. It should be carefully noticed that expressions like 0/0, ∞/∞ , etc., do not represent mathematical quantities.

CURVATURE

The radius of curvature R of a plane curve at any point P (Fig. 7) is the distance, measured along the normal, on the concave side of the curve, to the center of curvature, C, this point being the limiting position of the point of intersection of the normals at P and a neighboring point Q, as Q is made to approach P along the curve. If the equation of the curve is

$$R = \frac{ds}{du} = \frac{[1 + (y')^2]^{\frac{3}{2}}}{y''}$$

y = f(x),

Fig. 7.

where $ds = \sqrt{dx^2 + dy^2} =$ the differential of arc, $u = \tan^{-1} [f'(x)] =$ the angle which the tangent at P makes with the x-axis, and y' = f''(x) and y'' = f''(x) are the first and second derivatives of f(x) at the point P. Note that $dx = ds \cos u$ and $dy = ds \sin u$. The curvature, K, at the point P, is K = 1/R = du/ds; that is, the curvature is the rate at which the angle u is changing with respect to the length of arc s. If the slope of the curve is small, $K \approx f''(x)$.

If the equation of the curve in polar co-ordinates is $r = f(\theta)$, where r = radius

vector and θ = polar angle, then

$$R = \frac{[r^2 + (r')^2]^{\frac{3}{2}}}{r^2 - rr'' + 2(r')^2},$$

where $r' = f'(\theta)$ and $r'' = f''(\theta)$.

The evolute of a curve is the locus of its centers of curvature. If one curve is the evolute of another, the second is called the involute of the first.

INDEFINITE INTEGRALS

An integral of f(x)dx is any function whose differential is f(x)dx, and is denoted by $\int f(x)dx$. All the integrals of f(x)dx are included in the expression $\int f(x)dx + C$, where $\int f(x)dx$ is any particular integral, and C is an arbitrary constant. The process of finding (when possible) an integral of a given function consists in recognizing by inspection a function which, when differentiated, will produce the given function; or in transforming the given function into a form in which such recognition is easy. The most common integrable forms are collected in the following brief table; for a more extended list, see B. O. Peirce's "Table of Integrals" (Ginn & Co.).

GENERAL FORMULÆ

1.
$$\int adu = a \int du = au + C$$
 2.
$$\int (u + v)dx = \int udx + \int vdx$$

3.
$$\int udv = uv - \int vdu \qquad 4. \quad \int f(x)dx = \int f[F(y)]F'(y)dy, \ x = F(y)$$

5.
$$\int dy \int f(x,y) dx = \int dx \int f(x,y) dy.$$

FUNDAMENTAL INTEGRALS

6.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
; when $n \neq -1$

7.
$$\int \frac{dx}{x} = \log_e x + C = \log_e cx$$
 8. $\int e^x dx = e^x + C$

9.
$$\int \sin x dx = -\cos x + C$$
 10.
$$\int \cos x dx = \sin x + C$$

11.
$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$
 12. $\int \frac{dx}{\cos^2 x} = \tan x + C$

13.
$$\int \frac{dx}{\sqrt{1-x^2}} = \sin^{-1}x + C = -\cos^{-1}x + c$$

14.
$$\int \frac{dx}{1+x^2} = \tan^{-1}x + C = -\cot^{-1}x + c$$

RATIONAL FUNCTIONS

16.
$$\int \frac{dx}{a+bx} = \frac{1}{b} \log_e (a+bx) + C = \frac{1}{b} \log_e c(a+bx)$$

17.
$$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$$
 18. $\int \frac{dx}{(a+bx)^2} = -\frac{1}{b(a+bx)} + C$

19.
$$\int \frac{dx}{1-x^2} = \frac{1}{2} \log_e \frac{1+x}{1-x} + C = \tanh^{-1} x + C, \quad \text{when } x < 1$$

20.
$$\int \frac{dx}{x^2 - 1} = \frac{1}{2} \log_{\theta} \frac{x - 1}{x + 1} + C = -\coth^{-1} x + C, \quad \text{when } x > 1$$

21.
$$\int \frac{dx}{a+bx^2} = \frac{1}{\sqrt{ab}} \tan^{-1} \left(\sqrt{\frac{b}{a}} x \right) + C$$

22.
$$\int \frac{dx}{a - bx^2} = \frac{1}{2\sqrt{ab}} \log_a \frac{\sqrt{ab} + bx}{\sqrt{ab} - bx} + C$$
 when $a > 0$, $b > 0$
$$= \frac{1}{\sqrt{ab}} \tanh^{-1} \left(\sqrt{\frac{b}{a}}x\right) + C$$

23.
$$\int \frac{dx}{a + 2bx + cx^{2}} = \frac{1}{\sqrt{ac - b^{2}}} \tan^{-1} \frac{b + cx}{\sqrt{ac - b^{2}}} + C \left\{ \begin{array}{l} \text{when} \\ ac - b^{2} > 0 \end{array} \right\}$$

$$= \frac{1}{2\sqrt{b^{2} - ac}} \log_{e} \frac{\sqrt{b^{2} - ac} - b - cx}{\sqrt{b^{2} - ac} + b + cx} + C \right\}$$

$$= -\frac{1}{\sqrt{b^{2} - ac}} \tanh^{-1} \frac{b + cx}{\sqrt{b^{2} - ac}} + C,$$
when
$$b^{2} - ac > 0;$$

24.
$$\int \frac{dx}{a + 2bx + cx^2} = -\frac{1}{b + cx} + C$$
, when $b^2 = ac$

25.
$$\int \frac{(m+nx)dx}{a+2bx+cx^2} = \frac{n}{2c} \log_e (a+2bx+cx^2) + \frac{mc-nb}{c} \int \frac{dx}{a+2bx+cx^2}$$

26. In $\int \frac{f(x)dx}{a+2bx+cx^2}$, if f(x) is a polynominal of higher than the first degree, divide by the denominator before integrating.

27.
$$\int \frac{dx}{(a+2bx+cx^2)^p} = \frac{1}{2(ac-b^2)(p-1)} \times \frac{b+cx}{(a+2bx+cx^2)^{p-1}} + \frac{(2p-3)c}{2(ac-b^2)(p-1)} \int \frac{dx}{(a+2bx+cx^2)^{p-1}}$$
28.
$$\int \frac{(m+nx)dx}{(a+2bx+cx^2)^p} = -\frac{n}{2c(p-1)} \times \frac{1}{(a+2bx+cx^2)^{p-1}} + \frac{mc-nb}{c} \int \frac{dx}{(a+2bx+cx^2)^p}$$
29.
$$\int x^{m-1}(a+bx)^n dx = \frac{x^{m-1}(a+bx)^{n+1}}{(m+n)b} - \frac{(m-1)a}{(m+n)b} \int x^{m-2}(a+bx)^n dx$$

 $= \frac{x^m(a+bx)^n}{m+n} + \frac{na}{m+n} \int x^{m-1}(a+bx)^{n-1} dx$

IRRATIONAL FUNCTIONS

30.
$$\int \sqrt{a + bx} \, dx = \frac{2}{3b} (\sqrt{a + bx})^3 + C$$

31.
$$\int \frac{dx}{\sqrt{a+bx}} = \frac{2}{b}\sqrt{a+bx} + C$$

32.
$$\int \frac{(m+nx)dx}{\sqrt{a+bx}} = \frac{2}{3b^2} (3mb-2an+nbx)\sqrt{a+bx} + C$$

33.
$$\int \frac{dx}{(m+nx)\sqrt{a+bx}}$$
; substitute $y = \sqrt{a+bx}$, and use 21 and 22

34.
$$\int \frac{f(x, \sqrt[n]{a + bx})}{F(x, \sqrt[n]{a + bx})} dx; \text{ substitute } \sqrt[n]{a + bx} = y$$

35.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \sin^{-1} \frac{x}{a} + C = -\cos^{-1} \frac{x}{a} + c$$

36.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \log_e \left[x + \sqrt{a^2 + x^2} \right] + C = \sinh^{-1} \frac{x}{a} + c$$

37.
$$\int \frac{dx}{\sqrt{x^2 - a^2}} = \log_{\theta} \left[x + \sqrt{x^2 - a^2} \right] + C = \cosh^{-1} \frac{x}{a} + c$$

$$= \frac{1}{\sqrt{c}} \sinh^{-1} \frac{b + cx}{\sqrt{ac - b^2}} + C, \quad \text{when } ac - b^2 > 0;$$

$$1 \quad b + cx$$

$$= \frac{1}{\sqrt{c}} \cosh^{-1} \frac{b + cx}{\sqrt{b^2 - ac}} + C, \quad \text{when } b^2 - ac > 0;$$

$$= \frac{-1}{\sqrt{-c}}\sin^{-1}\frac{b+cx}{\sqrt{b^2-ac}} + C, \quad \text{when } c < 0$$

39.
$$\int \frac{(m+nx)dx}{\sqrt{a+2bx+cx^2}} = \frac{n}{c} \sqrt{a+2bx+cx^2}$$

40.
$$\int \frac{1}{\sqrt{a+2bx+cx^2}} \frac{1}{mc} \frac{1}{mc} \frac{1}{mc} \frac{1}{x} \frac{1}{x}$$
, where $X = \sqrt{a+2bx+cx^2}$

41.
$$\int \sqrt{a^2 + x^2} \, dx = \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \log_e \left(x + \sqrt{a^2 + x^2} \right) + C$$
$$= \frac{x}{2} \sqrt{a^2 + x^2} + \frac{a^2}{2} \sinh^{-1} \frac{x}{a} + c$$

42.
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1} \frac{x}{a} + C$$

43.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log_e \left(x + \sqrt{x^2 - a^2} \right) + C$$

$$= \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \frac{x}{a} + c$$

$$44. \int \sqrt{a + 2bx + cx^2} \, dx = \frac{b + cx}{2c} \sqrt{a + 2bx + cx^2}$$

$$+ \frac{ac - b^2}{2c} \int \frac{dx}{\sqrt{a + 2bx + cx^2}} + C$$

TRANSCENDENTAL FUNCTIONS

48.
$$\int \frac{\log_e x}{x^2} \, dx = -\frac{\log_e x}{x} - \frac{1}{x} + C$$

49.
$$\int \frac{(\log_e x)^n}{x} dx = \frac{1}{n+1} (\log_e x)^{n+1} + C$$

50.
$$\int \sin^2 x \, dx = -\frac{1}{4} \sin 2x + \frac{1}{2}x + C = -\frac{1}{2} \sin x \cos x + \frac{1}{2}x + C$$

51.
$$\int \cos^2 x \, dx = \frac{1}{4} \sin 2x + \frac{1}{2}x + C = \frac{1}{2} \sin x \cos x + \frac{1}{2}x + C$$

52.
$$\int \sin mx \, dx = -\frac{\cos mx}{m} + C$$
 53.
$$\int \cos mx \, dx = \frac{\sin mx}{m} + C$$

54.
$$\int \sin mx \cos nx \, dx = -\frac{\cos (m+n)x}{2(m+n)} - \frac{\cos (m-n)x}{2(m-n)} + C$$

55.
$$\int \sin mx \sin nx \, dx = \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)} + C$$

57.
$$\int \tan x \, dx = -\log_{\theta} \cos x + C \qquad 58. \int \cot x \, dx = \log_{\theta} \sin x + C$$

59.
$$\int \frac{dx}{\sin x} = \log_e \tan \frac{x}{2} + C$$
 60.
$$\int \frac{dx}{\cos x} = \log_e \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) + C$$

• 61.
$$\int \frac{dx}{1 + \cos x} = \tan \frac{x}{2} + C$$
 62. $\int \frac{dx}{1 - \cos x} = -\cot \frac{x}{2} + C$

63.
$$\int \sin x \cos x \, dx = \frac{1}{2} \sin^2 x + C$$
 64. $\int \frac{dx}{\sin x \cos x} = \log_e \tan x + C$

$$65.* \int \sin^n x \, dx = -\frac{\cos x \sin^{n-1} x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

$$66.* \int \cos^n x \, dx = \frac{\sin x \, \cos^{n-1} x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, dx$$

If n is an odd number, substitute $\cos x = z$ or $\sin x = z$.

68.
$$\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} - \int \cot^{n-2} x \, dx$$

69.
$$\int \frac{dx}{\sin^n x} = -\frac{\cos x}{(n-1)\sin^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\sin^{n-2} x}$$

70.
$$\int \frac{dx}{\cos^n x} = \frac{\sin x}{(n-1)\cos^{n-1} x} + \frac{n-2}{n-1} \int \frac{dx}{\cos^{n-2} x}$$

$$71.* \int \sin^p x \cos^q x \, dx = \frac{\sin^{p+1} x \cos^{q-1} x}{p+q} + \frac{q-1}{p+q} \int \sin^p x \cos^{q-2} x \, dx$$
$$= -\frac{\sin^{p-1} x \cos^{q+1} x}{p+q} + \frac{p-1}{p+q} \int \sin^{p-2} x \cos^q x \, dx$$

$$p + q p + q^{2}$$

$$= -\frac{\sin^{p-1}x\cos^{q+1}x}{p+q} + \frac{p-1}{p+q} \int \sin^{p-2}x\cos^{q}x \, dx$$

$$72. * \int \sin^{-p}x\cos^{q}x \, dx = -\frac{\sin^{-p+1}x\cos^{q+1}x}{p-1} + \frac{p-q-2}{p-1} \int \sin^{-p+2}x\cos^{q}x \, dx$$

$$\sin^{p+1}x\cos^{-q+1}x q - p - 2 C$$

$$73.* \int \sin^p x \cos^{-q} x \, dx = \frac{\sin^{p+1} x \cos^{-q+1} x}{q-1} + \frac{q-p-2}{q-1} \int \sin^p x \cos^{-q+2} x \, dx$$

74.
$$\int \frac{dx}{a + b \cos x} = \frac{2}{\sqrt{a^2 - b^2}} \tan^{-1} \left(\sqrt{\frac{a - b}{a + b}} \tan \frac{1}{2} x \right) + C, \text{ when } a^2 > b^2$$

$$= \frac{1}{\sqrt{b^2 - a^2}} \log_e \frac{b + a \cos x + \sin x \sqrt{b^2 - a^2}}{a + b \cos x} + C,$$

$$= \frac{2}{\sqrt{b^2 - a^2}} \tanh^{-1} \left(\sqrt{\frac{b - a}{b + a}} \tan \frac{1}{2} x \right) + C,$$
when $a^2 < b^2$

75.
$$\int \frac{\cos x \, dx}{a + b \cos x} = \frac{x}{b} - \frac{a}{b} \int \frac{dx}{a + b \cos x} + C$$

76.
$$\int \frac{\sin x \, dx}{a + b \cos x} = -\frac{1}{b} \log_{\theta} (a + b \cos x) + C$$

77.
$$\int \frac{A + B\cos x + C\sin x}{a + b\cos x + c\sin x} dx = A \int \frac{dy}{a + p\cos y}$$

$$+ (B\cos u + C\sin u) \int \frac{\cos y \, dy}{a + p\cos y} - (B\sin u - C\cos u) \int \frac{\sin y \, dy}{a + p\cos y},$$

where $b = p \cos u$, $c = p \sin u$ and x - u = y.

80.
$$\int \sin^{-1}x \, dx = x \sin^{-1}x + \sqrt{1 - x^2} + C$$

81.
$$\int \cos^{-1} x \, dx = x \cos^{-1} x - \sqrt{1 - x^2} + C$$

82.
$$\int \tan^{-1} x \, dx = x \tan^{-1} x - \frac{1}{2} \log_e (1 + x^2) + C$$

83.
$$\int \cot^{-1}x \, dx = x \cot^{-1}x + \frac{1}{2}\log_{6}(1+x^{2}) + C$$

[•] If p or q is an odd number, substitute $\cos x = z$ or $\sin x = s$.

84.
$$\int \sinh x \, dx = \cosh x + C$$
85.
$$\int \tanh x \, dx = \log_{\bullet} \cosh x + C$$
86.
$$\int \cosh x \, dx = \sinh x + C$$
87.
$$\int \coth x \, dx = \log_{\bullet} \sinh x + C$$
88.
$$\int \operatorname{sech} x \, dx = 2 \tan^{-1} (e^{x}) + C$$
89.
$$\int \operatorname{sech} x \, dx = \log_{\bullet} \tanh (x/2) + C$$
90.
$$\int \sinh^{2} x \, dx = \frac{1}{2} \sinh x \cosh x - \frac{1}{2}x + C$$
91.
$$\int \cosh^{2} x \, dx = \frac{1}{2} \sinh x \cosh x + \frac{1}{2}x + C$$
92.
$$\int \operatorname{sech}^{2} x \, dx = \tanh x + C$$
93.
$$\int \operatorname{csch}^{2} x \, dx = -\coth x + C$$

DEFINITE INTEGRALS

The definite integral of f(x)dx from x = a to x = b, denoted by $\int_a^b f(x)dx$, is the limit (as n increases indefinitely) of a sum of n terms:

$$\int_a^b f(x) dx = \lim_{n = \infty} [f(x_1) \Delta x + f(x_2) \Delta x + f(x_3) \Delta x + \dots + f(x_n) \Delta x],$$

built up as follows: Divide the interval from a to b into n equal parts, and call each part Δx , = (b-a)/n; in each of these intervals take a value of x (say x_1, x_2, \ldots, x_n), find the value of the function f(x) at each of these points, and multiply it by Δx , the width of the interval; then take the limit of the sum of the terms thus formed, when the number of terms increases indefinitely, while each individual term approaches zero.

Geometrically, $\int_a^b f(x)dx$ is the area bounded by the curve y = f(x), the x-axis, and the ordinates x = a and x = b (Fig. 8); that is, briefly, the "area under the curve, from a to b." The

fundamental theorem for the evaluation of a definite integral is the following:

 $\int_a^b f(x) dx = \left[\int f(x) dx \right]_{x=b} - \left[\int f(x) dx \right]_{x=a};$

that is, the definite integral is equal to the difference between two values of any one of the indefinite integrals of the function in question. In other words, the limit of a sum can be found whenever the function can be integrated.

Fig. 8.

Properties of Definite Integrals.

$$\int_a^b = -\int_b^a; \int_a^c + \int_a^b = \int_a^b.$$

THE MEAN-VALUE THEOREM FOR INTEGRALS.

$$\int_a^b F(x) \ f(x)dx = F(X) \int_a^b f(x)dx,$$

provided f(x) does not change sign from x = a to x = b; here X is some (unknown) value of x intermediate between a and b.

THEOREM ON CHANGE OF VARIABLE. In evaluating $\int_{x-a}^{x-b} f(x)dx$, f(x)dx may be replaced by its value in terms of a new variable t and dt, and x=a and x=b by the corresponding values of t, provided that throughout the interval the relation between x and t is a one-to-one correspondence (that is, to each value of x there corresponds one and only one value of t, and to each value of t there corresponds one and only one value of t).

DIFFERENTIATION WITH RESPECT TO THE UPPER LIMIT. If b is variable, then $\int_a^b f(x)dx$ is a function of b, whose derivative is

$$\frac{d}{db}\int_a^b f(x)dx = f(b).$$

DIFFERENTIATION WITH RESPECT TO A PARAMETER.

$$\frac{\partial}{\partial c} \int_a^b f(x,c) dx = \int_a^b \frac{\partial f(x,c)}{\partial c} dx.$$

Functions Defined by Definite Integrals. The following definite integrals have received special names, and their values have been tabulated; see, for example, B. O. Peirce's "Table of Integrals."

- 1. Elliptic integral of the first kind = $F(u, k) = \int_0^u \frac{dx}{\sqrt{1 k^2 \sin^2 x}} (k^2 < 1)$
- 2. Elliptic integral of the second kind = $E(u, k) = \int_0^u \sqrt{1 k^2 \sin^2 x} \ dx$ $(k^2 < 1)$
- 3, 4. Complete elliptic integrals of the first and second kinds; put $u = \pi/2$ in (1) and (2).
 - 5. The Probability integral = $\frac{2}{\sqrt{\pi}} \int_0^x e^{-x^2} dx$
 - 6. The Gamma function = $\Gamma(n) = \int_{0}^{\infty} x^{n-1}e^{-x}dx$

Approximate Methods of Integration. Mechanical Quadrature.

(1) Use Simpson's rule. See p. 106.

(2) Expand the function in a power series, and integrate term by term.

(3) Plot the area under the curve y = f(x) from x = a to x = b on squared paper and measure this area roughly by "counting squares," or more accurately, by the use of a planimeter (\$14 to \$35; instruction for use with each instrument).

(4) Coradi's Mechanical Integraph (\$240) provides a means of drawing on paper the curve $y = \int f(x)dx$, when the curve y = f(x) is given, and can be used to facilitate the solution of certain differential equations. Full instructions for use with each instrument.

Double Integrals. The notation $\int \int f(x, y) dy dx$ means $\int \{ \int f(x,y) dy \} dx$, the limits of integration in the inner, or first, integral being functions of x (or constants).

EXAMPLE. To find the weight of a plane area whose density, w, is variable, say w = f(x, y). The weight of a typical element, dx dy, is f(x, y)dx dy. Keeping x and dx constant, and summing these elements from, say, y = $F_1(x)$ to $y = F_2(x)$, as determined by the shape of the

Fig. 9.

boundary, the weight of a typical strip perpendicular to the x-axis is $dx \int_{y=F_{2}(x)}^{y=F_{2}(x)} f(x,y) dy.$ Finally, summing these strips from, say, x=a to x=b, the

weight of the whole area is $\int_{x=a}^{x=b} \int_{y=F_1(x)}^{y=F_2(x)} f(x,y)dy \right\}, \text{ or, briefly, } \int \int f(x,y)dy dx.$

DIFFERENTIAL EQUATIONS

An ordinary differential equation is one which contains a single independent variable, or argument, and a single dependent variable, or function, with its derivatives of various orders. A partial differential equation is one which contains a function of several independent variables, and its partial derivatives of various orders. The order of a differential equation is the order of the highest derivative which occurs in it. A solution of a differential equation is any relation between the variables, which, when substituted in the given equation, will satisfy it. The general solution of an ordinary differential equation of the nth order will contain n arbitrary constants. A differential equation is usually said to be solved when the problem is reduced to a simple quadrature, that is, an integration of the form $y = \int f(x) dx$.

Methods of Solving Ordinary Differential Equations

DIFFERENTIAL EQUATIONS OF THE FIRST ORDER

(1) If possible, separate the variables; that is, collect all the x's and dx on one side, and all the y's and dy on the other side; then integrate both sides, and add the constant of integration.

(2) If the equation is homogeneous in x and y, the value of dy/dx in terms of x and y will be of the form $\frac{dy}{dx} = f\left(\frac{y}{x}\right)$. Substituting y = xt will enable

the variables to be separated. Solution: $\log_e x = \int \frac{dt}{f(t) - t} + C$.

(3) The expression f(x,y)dx + F(x,y)dy is an exact differential if $\frac{\partial f(x,y)}{\partial y} = \frac{\partial F(x,y)}{\partial x} (=P, \text{ say})$. In this case the solution of f(x,y)dx + F(x,y)dy = 0 is

or $\int f(x,y)dx + \int [F(x,y) - \int Pdx]dy = C$ $\int F(x,y)dy + \int [f(x,y) - \int Pdy]dx = C$

- (4) Linear differential equation of the first order: $\frac{dy}{dx} + f(x) \cdot y = F(x)$. Solution: $y = e^{-P} \left\{ \int b^P F(x) dx + C \right\}$, where $P = \int f(x) dx$.
- (5) Bernoulli's equation: $\frac{dy}{dx} + f(x) \cdot y = F(x) \cdot y^n$. Substituting $y^{1-n} = v$ gives $\frac{dv}{dx} + (1-n)f(x) \cdot v = (1-n)F(x)$, which is linear in v and x.
- (6) Clairaut's equation: y = xp + f(p), where p = dy/dx. The solution consists of the family of lines given by y = Cx + f(C), where C is any constant, together with the curve obtained by eliminating p between the equations y = xp + f(p) and x + f'(p) = 0, where f'(p) is the derivative of f(p).

DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

(7)
$$\frac{d^2y}{dx^2} = -n^2y. \quad \text{Solution: } y = C_1 \sin(nx + C_2)$$
or $y = C_3 \sin nx + C_4 \cos nx$

(8)
$$\frac{d^2y}{dx^2} = +n^2y$$
. Solution: $y = C_1 \sinh (nx + C_2)$
or $y = C_3 e^{nx} + C_4 e^{-nx}$

(9)
$$\frac{d^2y}{dx^2} = f(y)$$
. Solution: $x = \int \frac{dy}{\sqrt{C_1 + 2P}} + C_2$, where $P = \int f(y) dy$.

(10)
$$\frac{d^2y}{dx^2} = f(x)$$
. Solution: $y = \int Pdx + C_1x + C_2$, where $P = \int f(x)dx$ or $y = xP - \int xf(x)dx + C_1x + C_2$

(11)
$$\frac{d^2y}{dx^2} = f\left(\frac{dy}{dx}\right)$$
. Putting $\frac{dy}{dx} = z$, $\frac{d^2y}{dx^2} = \frac{dz}{dx}$, $x = \int \frac{dz}{f(z)} + C_1$ and $y = \int \frac{dz}{dz} + C_2$

 $\int \frac{zdz}{f(z)} + C_2$; then eliminate z from these two equations.

(12) The equation for damped vibration: $\frac{d^2y}{dx^2} + 2b\frac{dy}{dx} + a^2y = 0$.

Case I. If $a^2 - b^2 > 0$, let $m = \sqrt{a^2 - b^2}$. Solution:

$$y = C_1 e^{-bx} \sin(mx + C_2)$$
 or $y = e^{-bx} [C_3 \sin(mx) + C_4 \cos(mx)]$ Case II. If $a^2 - b^2 = 0$, solution is $y = e^{-bx} [C_1 + C_2x]$.

Case III. If $a^2 - b^2 < 0$, let $n = \sqrt{b^2 - a^2}$. Solution:

$$y = C_1 e^{-bx} \sinh (nx + C_2)$$
 or $y = C_3 e^{-(b+n)x} + C_4 e^{-(b-n)x}$

(13) $\frac{d^2y}{dx^2} + 2b\frac{dy}{dx} + a^2y = c.$ Solution: $y = \frac{c}{a^2} + y_1$, where y_1 = the solu-

tion of the corresponding equation with second member zero [see (12) above].

(14)
$$\frac{d^2y}{dx^2} + 2b\frac{dy}{dx} + a^2y = c\sin(kx).$$
 Solution:

$$y = R \sin(kx - S) + y_1$$
, where $R = c/\sqrt{(a^2 - k^2)^2 + 4b^2k^2}$,

 $\tan S = \frac{2bk}{a^2 - k^2}$, and y_1 = the solution of the corresponding equation with second member zero [see (12) above].

(15)
$$\frac{d^2y}{dx^2} + 2b\frac{dy}{dx} + a^2y = f(x)$$
. Solution: $y = y_0 + y_1$, where $y_0 = \text{any}$

particular solution of the given equation, and y_1 = the general solution of the corresponding equation with second member zero [see (12) above].

If
$$b^2 > a^2$$
, $y_0 = \frac{1}{2\sqrt{b^2 - a^2}} \left\{ e^{m_1 x} \int e^{-m_1 x} f(x) dx - e^{m_2 x} \int e^{-m_2 x} f(x) dx \right\}$

where $m_1 = -b + \sqrt{b^2 - a^2}$ and $m_2 = -b - \sqrt{b^2 - a^2}$.

If $b^2 < a^2$, let $m = \sqrt{a^2 - b^2}$; then $y_0 = \frac{1}{m}e^{-bx} \left\{ \sin(mx) \int e^{bx} \cos(mx) f(x) dx - \cos(mx) \int e^{bx} \sin(mx) f(x) dx \right\}$.

If
$$b^2 = a^2$$
, $y_0 = e^{-bx} \left\{ x \int e^{bx} f(x) dx - \int x \cdot e^{bx} f(x) dx \right\}$.

GRAPHICAL REPRESENTATION OF FUNCTIONS

For graphical methods in statistics, etc., see W. C. Brinton's "Graphical Methods for Presenting Facts"

EQUATIONS INVOLVING TWO VARIABLES

The Curve y = f(x). To represent graphically any function, y, of a single variable, x, lay off the values of x as abscissae along a uni-

formly graduated horizontal axis, whose positive direction (as usually chosen) runs to the right, and at each point on this x-axis erect a perpendicular (called an ordinate) whose length represents the value of y at that point. The unit of measurement for the y-scale, whose positive direction (as usually chosen) runs upward, need not be the same as the unit for the x-scale. Draw a

Fig. 1.

smooth curve through the extremities of the ordinates; this is the graph of the given function in rectangular co-ordinates, or the curve of the function.

To measure graphically the rate of change of the function at any point P (Fig. 1), draw the tangent at P; then **rate of change** at P = RT/PR, where RT and PR are measured in units of the y-axis and x-axis, respectively. This ratio, which is positive if RT runs upward, negative if RT runs downward, is equal to the derivative of the function at the point P (see p. 157).

Graphs of Important Functions. Figs. 2-9 show the graphs (in rectangular co-ordinates) of the most important elementary functions, namely: The linear function, y = mx + b (Fig. 2).

The power functions, $y = x^n$ [n positive (parabolic type); n negative (hyperbolic type)] (Fig. 3).

The exponential function, $y = 10^x$ or $y = e^x$, and the logarithmic

function, $y = \log_{10} x$ or $y = \log_e x$ (Fig. 4). The trigonometric functions (Fig. 5), and the inverse trigonometric functions (Fig. 6).

The hyperbolic functions (Figs. 7 and 8) and the inverse hyperbolic functions (Fig. 9).

Various special functions (Figs. 10-12).

By a slight modification, each of these diagrams may be made to represent a somewhat more general function than that for which it is primarily intended. For, if x is replaced by x-a in the equation, this merely requires re-numbering the x-axis so that each number is moved a units to the left; and similarly, if y is replaced by y-b in the equation, this merely requires re-numbering the y-axis so that each number is moved b units downward. (Such a change is called a translation of the curve to the right, or upward.) Further, if x is replaced by x/c [or y by y/c] in the equation, it is merely necessary to multiply each of the numbers written along the x-axis [or y-axis] by c, in order to adapt the graph to the new equation. (Such a change is called a "stretching" of the curve along one of the axes.)

Empirical Curves. Any set of values of two variables x and y can be represented by plotting the points (x,y) on rectangular co-ordinate paper, and drawing a smooth curve through these points. The points which correspond to actual data should be clearly indicated by small circles or crosses, intermediate points being spoken of as interpolated points. While this process of graphically interpolating a continuous series of points between given values is usually fairly safe, the process of extrapolation—that is, extending the curve beyond the range of the given values, is dangerous.

To Find a Mathematical Equation to Fit a Given Empirical Curve. This problem is one which in general requires much patience and ingenuity. Only the simplest cases can be mentioned here.

Case 1. If the given empirical curve is a straight line, then the law connecting the given values of x and y is y = mx + b, where m = the slope of the line, and b = the value of y at the point where the line crosses the y-axis. If

the points lie only approximately on a straight line, the best position for this line can usually be found by stretching a black thread among the points; or, assume a law of the form y = mx + b, and, by substituting in this formula n pairs of values of x and y, obtain n equations connecting the coefficients m and b; various pairs of these equations may then be solved for m and b, and the average of the results taken. Or, if great accuracy is required, all n of the equations may be solved for m and b by the method of least squares (p. 121).

If any law of the form $f(x,y) = m \cdot F(x,y) + b$ is suspected, where f(x,y) and F(x,y) are any expressions involving either x or y or both x and y, such a law may be tested by plotting F(x,y) instead of x, and f(x,y) instead of y, on rectangular cross-section paper, and seeing whether or not the points lie on a straight line. If they do, the form of the law is verified, and the values of m and b can be read from the figure as before. For example, if $y^2 = mxy + b$, a straight line will be obtained by plotting y^2 against xy. Again, if xy = bx + my, a straight line will be obtained by plotting y against y/x, since the equation may be written y = b + m(y/x).

Casm 2. If a law of the form $y = cx^n$ is suspected, plot the points (x,y) on

logarithmic paper (see below).

Case 3. If a law of the form $y = c \cdot 10^{mx}$ [or $y = c \cdot e^{mx}$] is suspected, plot the points (x,y) on semi-logarithmic paper (see below).

Case 4. If the given curve resembles the logarithmic curve, $y = \log x$.

interchange x and y and proceed as in Case 3.

CASE 5. If the given curve is a wavy line, resembling a sine or cosine curve, try an equation of the form $y = a \sin bx$ or $y = a \cos bx$. If the heights of the waves diminish as x increases, try an equation of the form $y = ae^{-nx} \sin bx$. [Note. Any periodic function (satisfying certain simple conditions) can be expressed by a Fourier's series (p. 162)].

Case 6. A great variety of functions can be represented approximately by a polynomial of the form $y = a + bx + cx^2 + dx^3 + cx^4 + \dots$, the first three or four terms being usually sufficient. To determine the coefficients a, b, c, \dots , most accurately, substitute in the formula all the given pairs of values of x and y, and solve the resulting equations for a,b,c,\dots by the

method of least squares (p. 121).

CASE 7. Many simple curves can be represented approximately by an equation of the hyperbolic form, xy = c + bx + ay, where a, b, and c are determined by substituting the co-ordinates of three conspicuous points of the curve. The lines x = a and y = b are the asymptotes of the hyperbola. The equation may also be written (x - a)(y - b) = k, where k = ab + c.

Logarithmic Cross-section Paper. In this form of cross-section paper (Fig. 13), the distance from the origin to any point on the x- or y-axis is equal to the logarithm of the number written against that point. Thus, in Fig. 13 the distances (shown for clearness on two auxiliary scales X and Y) are the logarithms of the numbers written along x and y.

Accurately made logarithmic paper can be obtained from the principal dealers in draftmen's supplies. Logarithmic paper can be easily constructed, in case of need, by copying the logarithmic scale from any ordinary slide rule. The actual figures along the x- and y-axes are usually left for the user to insert; in so doing, notice that the numbers . . ., 0.01, 0.1, 1, 10, 100, . . ., or such of them as may be needed to cover any given range of values, must be placed at the points of division which separate the main squares. It is often convenient, however, to omit the decimal point, num-

bering each square independently from 1 to 10. The length of the side of one square is called the *unit* or *base* of the logarithmic paper; the larger the unit, the finer the possible subdivisions of the scale.

To plot a point (x,y) on logarithmic paper, for example, the point (3,5), means to find the point of intersection of the vertical line marked x=3 and the horizontal line marked y=5. In interpolating between two lines, account should be taken of the fact that the divisions are not of uniform length.

Any equation of the form $y = cx^n$ when plotted on logarithmic paper will be represented by a straight line whose slope is n. For, if $y_1 = cx_1^n$ and $y_2 = cx_2^n$, then $y_1/y_2 = (x_1/x_2)^n$, or $(\log y_1 - \log y_2)/(\log x_1 - \log x_2) = n$. The slope must be measured by aid of an auxiliary uniform scale.

EXAMPLE. Let $y = x^{3/2}$. When x = 1, y = 1; plot this point A on the logarithmic paper, and draw the straight line AE with a slope equal to $\frac{5}{2}$ (Fig. 13). By the aid of this line, the value of y for any value of x between 1 and 100 can be read off directly; for example, if x = 2.50, y = 3.95, as shown by dotted lines, so that $(2.50)^{3/2} = 3.95$. To find the value of y for any value of x outside this range, note that moving the decimal point 2 places in x is equivalent to moving it 3 places in y. The line shown in Fig. 13 is thus equivalent to a complete table of three-halves powers.

It will be noticed that this line crosses four squares of the logarithmic paper. By superposing these four squares the whole diagram may be condensed into a single square (Fig. 14), in which, however, the scales for x and y now give only the sequence of digits in the answer, the position of the decimal point having to be determined by inspection.

To determine whether a given set of values, x and y, satisfies a law of the form $y = cx^n$, plot the values on logarithmic paper, and see whether they lie on a straight line; if they do, then the given values satisfy a law of this form; moreover, the slope of the line gives the value of n, and the value of y when x = 1 gives the value of c.

If the plotted points fail to lie exactly in line, but form a curve slightly concave upward, try subtracting some constant b from all the y's, that is, move each point downward a distance equal to b units of the y-scale at that point. If it proves possible to choose b so that the resulting points lie in line, then the original values obey a law of the form $y-b=cx^n$, where n is again the slope of the line, and c is the value of y-b when x=1. (Conversely, if the curve is concave downward, try adding b to all the y's; that is, move each point upward; if the new points lie in line, the original values obey a law of the form $y+b=cx^n$.) Another method of "straightening" the curve consists of adding some constant, $\pm a$, to all the values of x, which has the effect of shifting all the points to the right or left (by varying amounts); if this method succeeds, the original values obey a law of the form $y=c(x+a)^n$.

Semi-logarithmic Cross-section Paper*. This form of paper (Fig. 15) has a logarithmic scale along y and a uniform scale along x. The "scale value," k, of the paper is the number which stands, on the x-axis, at a distance from the origin equal to the width of one of the main horizontal strips. Thus, in Fig. 15, each number shown along the auxiliary scale Y is the logarithm of the corresponding number along y, and each number shown along the auxiliary scale X is 1/kth of the corresponding number along x (here k = 5). The number k, which may be chosen at pleasure, should be taken equal to some simple integer, as 1, 2, or 5, or some integral power of 10.

In preparing the paper for use it is important to notice that the numbers \dots , 0.01, 0.1, 1, 10, 100, \dots (or such of them as may be needed in any given case) must be placed along the y-axis at the points which mark the main lines of division between the horizontal strips; while the numbers \dots , -2k, -k, 0, +k, +2k, \dots (or such of them as may be needed) must be placed along the x-axis at uniform intervals, each interval (from 0 to k, from k to 2k, etc.) being equal to the width of one of the main horizontal strips. The width of one of these strips is called the unit or base of the semi-

^{*} Made by the Educational Exhibition Co.. 26 Custom House St., Providence, R. I.

logarithmic paper; the larger the unit, the finer the possible subdivisions of the scale.

To plot a point (x,y), as x=3, y=5, on semi-logarithmic paper means to find the point of intersection of the vertical line marked x = 3 with the horizontal line marked y = 5.

Any equation of the form y = $c \cdot 10^{mx}$ [or $y = c \cdot e^{mx}$] when plotted on semi-logarithmic paper with scale value k, will be represented by a straight line whose slope is km [or 0.4343 km.l. By a suitable choice of the scale value k, any given range of values of x can be brought within the size of the paper. Note that e =100.4343

Example. Given $y = 4.10^{-0.1x}$ [or y = $4 \cdot e^{-0.1x}$]. In Fig. 15, when x = 0, y = 4. By plotting this point (A) on the semilogarithmic paper, with scale value 5, and drawing through it a straight line with

Fig. 16.

slope equal to -0.5 [or -0.217] a graphical representation is obtained from which, for any value of x, the corresponding value of y can be read off. If it is desired to condense the figure, several horizontal strips may be superposed on a single strip; this of course renders the decimal point in the y-scale undetermined (unless a separate y-scale is provided for each section of the graph).

In order to determine whether a given set of values of x and y satisfy a law of the form $y = c \cdot 10^{mx}$ [or $y = c \cdot e^{mx}$], plot the values of x and y on semi-logarithmic paper, with a suitable scale value k, and see whether they lie on a straight line; if they do so, the law is satisfied, and the values of m and c may be found as follows: m = the slope of the line divided by k [or the slope of the line divided by 0.4343k, and c = the value of y when x = 0.

If the plotted points fail to lie exactly in line, but form a curve slightly concave upward, try subtracting some constant b from all the y's, and plot the values thus modified; if b can be so chosen that the revised points lie in line, then the original values obey a law of the form $y - b = c \cdot 10^{mx}$ [or y - b =

 $c \cdot e^{mz}$, where m and c are to be found as before. If the curve is concave downward, add b, instead of subtracting; and replace y - b by

y + b in the law.

Curves in Polar Co-ordinates. Any function, r, of a single variable, θ , can be represented by a curve in polar co-ordinates (p. 137). Lay off the given values of θ as angles, the initial line Ox running toward the right, and the counterclockwise direction about the origin being taken as positive. Along the terminal side of each angle θ ,

lay off the corresponding value of r, forward if r is positive, backward if r is negative; and pass a smooth curve through the points thus determined.

The rate of change of r with respect to θ at a given point P is represented graphically as follows (Fig. 16): On the tangent at P drop a perpendicular OM from the origin; then r(MP/OM) represents the rate of change, $dr/d\theta$, provided θ is measured in radians. Specially ruled polar co-ordinate paper is supplied by dealers in drafting supplies.

EQUATIONS INVOLVING THREE VARIABLES

The Surface z = f(x, y). Any function, z, of two variables, x and y, may be represented by a surface, as follows: Plot the given pairs of values of x and y as points in a horizontal x, y plane, called the base plane; at each of these points erect an ordinate, parallel to a vertical axis z, and representing by its length the value of z at that point. Then conceive a smooth surface passed through the extremities of these ordinates: this surface is said to represent the function. In practice, the ordinates may be made by implanting stiff vertical rods in a horizontal board of soft wood which serves as the base plane; the surface may then be constructed by filling in the spaces with plaster of Paris. Or, more simply, pieces of cardboard may be cut out to represent parallel plane sections of the surface, and then stood on edge in slots cut in the board to receive them. The units employed along x, y, and z need not be equal to each other.

Contour-line Charts. All the points of a surface z = f(x, y) which are at any given height above the base plane form a curve on the surface, called a contour line of the surface. If each of these contour lines be projected on the base plane, and each labeled with the value of z to which it corresponds, a complete representation of the function z = f(x, y) is obtained, all in one plane. A topographical map, with contour lines showing elevations above the sea, and a weather map, with contour lines showing barometric pressure, are familiar examples. If there are several values of z corresponding to any given point (x, y), there will be several contour lines whose projections pass through that point.

Contour-line Charts for Simultaneous Equations [of the form z =f(x,y), w = F(x,y). In Fig. 17, plot the function z = f(x,y) by contour lines on an x,y plane, and plot the function w = F(x,y)

by contour lines on the same x,y plane. Then every point on the diagram (either directly or by interpolation) is the intersection of four curves—an x-curve, a y-curve, a z-curve, and a w-curve. Here, by "curve" is meant any line, straight or curved. the aid of such a diagram, when the values of any two of these four variables are given, the values of the other two can be found. The method of use consists simply in entering the diagram along the two given curves (or lines), tracing them to their point of intersection, and then coming out again along the

two curves (or lines) whose values are required. The best manner of numbering the curves is indicated in the figure.

Alignment Charts for Three Variables, t, u, v. Any relation between three variables, t, u, v, which can be thrown into one of the forms listed in later paragraphs, can be represented graphically by a very convenient form of diagram called an alignment chart. In the simplest form of an alignment chart for three variables there are three scales (straight or curved), along which the values of the three variables, t, u, v, are marked in such a way that any three values of t, u, v which satisfy the given equation are represented by three points which lie in line. Hence, if the values of any two of the variables are given, the corresponding value of the third can be found by simply drawing a straight line through the two given points and reading the value of the point where it crosses the third scale.

The most important methods of constructing alignment charts for three variables are described below. Where several methods are applicable in a given case, the best one must be determined largely by trial. For further information see M. d'Ocagne, "Traité de Nomographie" (Gauthier-Villars, Paris); Carl Runge, "Graphical Methods" (Columbia University Press); J. B. Peddle, "Construction of Graphical Charts" (McGraw-Hill); see also page 185.

Notation. In each of the equations which follow, U stands for any function of u alone, V for any function of v alone, and $F_1(t)$, $F_2(t)$ for any functions of t alone. Any of these functions may reduce to a constant. The axes of x, y, and y' which are mentioned are of merely temporary use in constructing the diagram, and the letters x, y, y' should not be written on the chart. It is not necessary that the axes be at right angles, provided the x of a point is always measured parallel to the x-axis, and its y parallel to the y-axis.

Method 1. Given, an equation which can be thrown into the form $U \cdot F_1(t) + V \cdot F_2(t) = 1$,

where, for the given range of values of u and v, the largest variations in U and V are less than a certain number m.

Draw a pair of (temporary) x,y axes (Fig. 18), and through the point x = 1 draw a third axis, which may be called the axis of y', parallel to the axis of y. In ordinary cases, the unit of measurement along x should be nearly equal to the full width of the paper. Now choose a unit for y and y' such that m times this unit will about equal the height of the paper, and plot, in the usual way, the points (x,y) given by

$$x = \frac{F_2(t)}{F_1(t) + F_2(t)}, \quad y = \frac{1}{F_1(t) + F_2(t)},$$

labeling each point with the value of t to which it corresponds. Connect these points by a smooth curve, which gives the t-scale of the diagram. [If $F_1(t)/F_2(t) = a$ constant, the t-scale will prove to be a straight line parallel

to the y-axis.]

Then, using the same units as above, plot along y the points given by y = U, labeling each point with the corresponding value of u; and plot along y' the points given by y' = V, labeling each of these points with the corresponding value of v. This gives the u- and v-scales of the diagram. The three scales being thus constructed, the x-axis may now be erased, and the diagram is ready for use. Any three points t, u, v which lie in line correspond to three values of t, u, v, which satisfy the given equation. The numbering on each scale should be shown at sufficiently frequent intervals to permit of easy interpolation.

Example 1 (Fig. 19). Let $uv^{1,4} = t$. By taking the logarithm of both sides, and dividing through by $\log t$, reduce the equation to the form $(\log u) (1/\log t) + (\log v) \times (1.41/\log t) = 1$. Here $U = \log u$, $V = \log v$, $F_1(t) = 1/\log t$, $F_2(t) = 1.41/\log t$, and x = 1.41/2.41 = 0.585, $y = (1/2.41)\log t$.

EXAMPLE 2 (Fig. 20). Let $v = ut + 16t^2$, which reduces to the form $(-u/16)(1/t) + (v/16)(1/t^2) = 1$. Here U = -u/16, V = v/16, $F_1(t) = 1/t$, $F_2(t) = 1/t^2$ and x = 1/(1+t), $y = t^2/(1+t)$.

NOTE. If $m=\infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper. In such cases, the chart may be supplemented by a second chart, made according to Method 2, below.

Method 2. Given, an equation which can be thrown into the form

$$\frac{F_1(t)}{U} + \frac{F_2(t)}{V} = 1,$$

where, for the given range of values of u and v, the largest variation in U is less than a certain number m, and the largest variation in V is less than a certain number n.

Draw a pair of temporary x,y axes, and having chosen a unit for the x-axis equal to about (1/m)th of the width of the paper, and a unit for the y-axis equal to about (1/n)th of the height, plot the points (x,y) given by

$$x = F_1(t), y = F_2(t),$$

labeling each point of this curve with the value of t to which it corresponds. Connect these points by a smooth curve, which gives the t-scale of the diagram. [If $F_1(t)/F_2(t) = a$ constant, the t-scale will be a straight line through the origin.]

Then, using the same units as above, plot along x the values of U, labeling each point with the corresponding value of u; and plot along y the values of V, labeling each point with the corresponding value of v. This gives the u- and v-scales of the diagram. On the chart as thus completed, any three points t, u, v which lie in line correspond to three values of t, u, v which satisfy the given equation.

Example (Fig. 21). Let t=(uv)/(u+v), which may be written in the form t/u+t/v=1. Here $U=u,\ V=v,\ F_1(t)=t,\ F_2(t)=t$.

NOTE. If $m=\infty$ and $n=\infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper. In such cases the chart may be supplemented by a second chart, made according to Method 1, above.

Method 3. Given, an equation which can conveniently be thrown into the form

$$F_2(t) = V \cdot F_1(t) + U,$$

where, for the given range of values of t, the largest variation in $F_1(t)$ is less than a certain number m, and the largest variation in $F_2(t)$ is less than a certain number n.

Draw a pair of temporary x,y axes, and, having chosen a unit for x equal to about (1/m)th of the width of the paper and a unit for y equal to about (1/n)th of the height, plot the points (x,y) given by

$$x = F_1(t), y = F_2(t),$$

labeling each point of the curve with the value of t to which it corresponds. Connect these points by a smooth curve, which forms the t-scale. Next, using the same unit for y as above, plot along the y-axis the values of U, labeling each point with the corresponding value of u. This gives the u-scale. Finally, with the origin as center, and any convenient radius, draw a circle cutting the x-axis in A. Along this circular arc, starting from A in the counterclockwise direction, lay off the angles whose slopes are equal to V, labeling each point of the arc with the value of v to which it corresponds.

This gives the v-scale, which in this case, however, plays a peculiar rôle, since, in using this form of chart, two straight lines are required instead of one.

Thus:

In order to determine whether three values, t, u, v, satisfy the given equation, lay one straight line through the points t and u, and another straight line through the point v and the origin; if these lines are parallel, the three values of t, u, v satisfy the equation. It will be noticed that the function of the v-scale here is to measure, in a certain sense, the slope of the line joining t and u. A chart of this type may be called "an alignment chart with a sliding scale for one of the variables."

sinu-sin 60'sint-cos 60'cost cosv

EXAMPLE (Fig. 22). Let $\sin u = \sin 60^{\circ} \sin t - \cos 60^{\circ} \cos t$ cos v, which may be put in the form

 $(\sin 60^{\circ} \sin t) = \cos v (\cos 60^{\circ} \cos t) + \sin u.$

Here $F_1(t) = \cos 60^{\circ} \cos t$, $F_2(t) = \sin 60^{\circ} \sin t$, $U = \sin u$, $V = \cos v$.

Method 4. Given, an equation which can be reduced to the form

d'y'

$$U \cdot F(t) + V = 0,$$

where, for the given range of values of u and v, the largest variations in U and V are less than a certain number m.

In Fig. 23, draw temporary axes x, y, and y', and choose the units as in Method 1. To construct the t-scale, which will now coincide with the x-axis, plot along x the points for which

$$x=\frac{1}{1+F(t)},$$

labeling each point with the value of t to which it corresponds. The u-scale, along the axis of y, and v-scale, along the axis of y', are constructed exactly as in Method 1, and the finished chart is used in the same way.

Example (Fig. 24). Let $v = 0.196 \ t^3 u$, where u is to range from 0 to 15,000 and v from 0 to 150,000. The equation may be written in the form $(-10 \ u) \ (0.0196 t^3) + v = 0$. Here $U = -10 \ u$, V = v, $F(t) = 0.0196 t^3$.

NOTE. If $m = \infty$, values of u and v which give large values of U and V cannot be shown within the limits of the paper.

EQUATIONS INVOLVING FOUR VARIABLES

[For simultaneous equations of the form z = f(x,y), w = F(x,y), see p. 179.]

Alignment Charts for Four Variables. The extension of the methods of the alignment chart to the case of four variables, say r, s, u, v, consists essentially in replacing the t-scale of the earlier diagram by a network of two scales, one for r and one for s. The point where a curve $r = r_1$ and a curve $s = s_1$ intersect may be spoken of as the point (r_1, s_1) . In the following equations, U denotes as before any function of u alone, V any function of v alone; while $F_1(r,s)$ and $F_2(r,s)$ represent any functions of r and s.

Method 1a. Given, an equation of the form

$$U \cdot F_1(r,s) + V \cdot F_2(r,s) = 1.$$

Draw axes x, y, and y' as in Method 1, and plot the network of curves given by the equations

[To do this (Fig. 25), find the point (x,y) that corresponds to each given pair of values of r and s, by direct substitution in the equations for x and y. nect all the points for which r=1 by a curve, and label it r=1: connect all the points for which r = 2 by another curve, and label it r = 2; etc. gives the family of r-curves. Similarly, through all the points for which s = 1 draw a curve labeled s = 1; through all the points for which s = 2draw a curve labeled s = 2; etc. This gives the family of s-curves, intersecting the family of r-curves. Note, however, that if it is possible to eliminate s (or r) from the equations that give x and y, the resulting equation in x, y, and r (or x, y, and s) can often be plotted directly for each given value of r(or of s).1

Next, construct the u- and v-scales along the axes of y and y' as in Method 1. [The letters x, y, and y', and the units used in plotting along these axes, should

be omitted from the finished diagram, as should also the axis of x.]

In the chart, as thus completed, any three points, (r,s), u, and v which lie in a straight line, correspond to values of r, s, u, v which satisfy the given equation. Hence, when any three of these four values are given, the fourth can be found from the chart.

Fig. 26.

Method 2a. Given, an equation of the form $\frac{F_1(r,s)}{II} + \frac{F_2(r,s)}{V} = 1.$

$$\frac{F_1(r,s)}{U} + \frac{F_2(r,s)}{V} = 1.$$

Draw axes of x and y as in Method 2, and plot the network of curves given by $x = F_1(r,s), y = F_2(r,s).$

To do this, follow the plan outlined for a similar case under Method 1a. labeling each curve of the r-family (Fig. 26) with the corresponding value of r, and each curve of the s-family with the corresponding value of s. Next, construct the u- and v-scales along the x- and y-axes, precisely as in Method 2. Then any three points, (r,s), u, and v, which lie in a straight line correspond to values of r, s, u, v which satisfy the given equation.

Method 3a. Given, an equation of the form

$$F_2(r,s) = V \cdot F_1(r,s) + U.$$

Draw axes of x and y, as in Method 3, and plot the network of curves given by $x = F_1(r,s)$, $y = F_2(r,s)$, following the plan outlined for a similar case under Method 1a, and labeling each curve of the r-family (or s-family) with the value of r (or s) to which it corresponds. Next, construct the u-scale along the y-axis, and the v-scale along a circular arc, precisely as in Method 3. Then any three points, (r,s) u, and v, which are so related that the line through (r,s) and u is parallel to the line joining v with the origin, will correspond to values of r, s, u, v which satisfy the given equation.

Example for Method 3a (Fig. 27). Let $\cot v = \cot r \cos s + \csc r \sin s \cot u$, which may be written $(\cos r \cot s) = \cot v (\sin r \csc s) - \cot u$. Here $U = -\cot u$, $V = \cot v$, $F_1(r,s) = \sin r \csc s, F_2(r,s) = \cos r \cot s, \text{ whence } \frac{x^2}{\csc^2 s} + \frac{y^2}{\cot^2 s} = 1, \frac{x^2}{\sin^2 r} - \frac{y^2}{\cos^2 r}$

so that the s-curves are ellipses and the r-curves hyperbolas.

Parallel Charts, or Proportional Charts, for Four Variables. In the following methods of representation there are four scales, one for each of the four variables, and the method of using the

diagram consists in connecting two pairs of points by parallel lines.

Method A. Given, an equation of the form R - S = U - V

where R, S, U, V are any functions of the variables r, s, u, v, respectively. [It will be noted that any proportion R/S = U/V can at once be thrown into this form by taking the

logarithm of both sides.

In Fig. 28, draw four vertical axes, y_1 , y_2 , y'_1 , y'_2 , such that the distance between y_1 and y'_1 (which may be zero) is equal to the distance beween y2 and y'2, and so that the four zero points lie in line. Along these axes, using the same unit for all, plot the points given by $y_1 = R$, $y'_1 = S$, $y_2 = U$, $y'_2 = V$, and label each point with the value of r, s, u, or v to which it cor-(The letters y_1, y_2, y'_1, y'_2 are temporary, and should not appear on the diagram.) Then if the line joining two points r and u is parallel to the line joining two points s and v, the four values of r, s, u, v will satisfy the given equation. In this and the following methods, a parallel ruler, or a pair of draftman's triangles, will be useful in reading the chart. A "key" stating which points are to be joined with which, should be clearly given on the diagram.

cot v = cot r cos s + cscr sin s cot u Key: Connect ((r,s) andu by Parallel Lines. Fig. 27.

Example (Fig. 28). Let 32.2 $vr = us^2$, or $\log r - 2 \log s = \log u - \log (32.2 v)$. Here $R = \log r$, $S = 2 \log s$, $U = \log u$, $V = \log (32.2 v)$.

Method B. Given, an equation of the form

$$\frac{R}{S} = \frac{U}{V}$$

In Fig. 29, draw a pair of axes, x,y, and parallel to them (or coinciding with them) a second pair of axes, x_1, y_1 . Using any convenient horizontal unit, plot along x and x_1 the points given by x = R, $x_1 = U$, and using any convenient vertical unit, plot along y and y_1 the points given by y = S, $y_1 = V$. Label each point with the value of r, s, u, v, to which it corresponds. (The letters x, y, x_1, y_1 should not appear on the diagram.) Then if the line joining two points r and s is parallel to the line joining two points u and v, the four values r, s, u, v will satisfy the given equation.

Method C. Given, an equation of the form

$$R - S = \frac{V}{U}$$

In Fig. 30, take a pair of axes, x,y, and through the point x = 1 draw a third axis, y', parallel to y. Also, take a second pair of axes, x_2,y_2 , parallel to (or coinciding with) the axes of x and y. Having chosen a suitable unit for x and x_2 , and a suitable unit for y, y', and y_2 , lay off the values of R and

S along y and y', respectively, labeling each point with the value of r or s to which it corresponds; and lay off the values of U and V along x_2 and y_2 , labeling each point with the value of u or v to which it corresponds. Then if the line joining two points r and s is parallel to the line joining two points u and v, the four values r, s, u, v will satisfy the given equation. This form of chart is sometimes called a "Z-chart."

For further examples, see R. C. Strachan, "Nomographic Solutions for Formulas of Various Types," Trans. Am. Soc. Civil Engineers, vol. 78, 1915.

VECTOR ANALYSIS

Many problems involving directed magnitudes can be advantageously treated by the methods of vector analysis. The following is a brief summary of the principal definitions and formulæ.

A set of arrows, each arrow having a given length and pointing in a given direction, is called a set of **vectors**, provided they combine by addition according to the parallelogram law (see below). Notation: a or \bar{a} for a vector \bar{a} or |a| for its length. Two "free" vectors are equal if they have the same length and point in the same direction; two "sliding" vectors are equal if they have the same length and direction, and also lie in the same line.

A scalar is any real number, positive, negative, or zero.

Addition of vectors.—If an arrow **a** is immediately followed, tip to tail, by a second arrow **b**, then the arrow which runs from the beginning of **a** to the end of **b** is called the **sum** of **a** and **b**, denoted by **a** + **b**. Conversely, if $\mathbf{a} + \mathbf{x} = \mathbf{b}$, then $\mathbf{x} = \mathbf{b} - \mathbf{a}$. The laws of operation for + and - are the same as in ordinary algebra (pp. 112, 124). If m is a scalar, then $m\mathbf{a}$ means a vector having the same direction as **a**, and m times its length.

Multiplication of vectors is of two kinds, as follows:

The scalar product, or dot product, of two vectors \mathbf{a} and \mathbf{b} , denoted by $\mathbf{a} \cdot \mathbf{b}$ —or sometimes by Sab, or by $(\mathbf{a}\mathbf{b})$ in round parentheses—is defined as the scalar quantity $ab \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

EXAMPLE. If **F** is a force whose point of application moves along a vector distance \mathbf{x} , then $\mathbf{F} \cdot \mathbf{x} = work$ done by **F** during this displacement.

Peculiarities of scalar products: (1) Since $\mathbf{a} \cdot \mathbf{b}$ is not a vector, expressions like $(\mathbf{a} \cdot \mathbf{b}) \cdot \mathbf{c}$, will not occur; (2) from $\mathbf{a} \cdot \mathbf{x} = \mathbf{a} \cdot \mathbf{y}$ we cannot infer that $\mathbf{x} = \mathbf{y}$, hence, quotients will not occur; (3) from $\mathbf{a} \cdot \mathbf{b} = 0$, it follows that \mathbf{a} is perpendicular to \mathbf{b} (unless \mathbf{a} or \mathbf{b} is zero).

On the other hand, scalar products are like ordinary products in the following respects: $\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$, and $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{c} + \mathbf{d}) = \mathbf{a} \cdot \mathbf{c} + \mathbf{a} \cdot \mathbf{d} + \mathbf{b} \cdot \mathbf{c} + \mathbf{b} \cdot \mathbf{d}$;

also, $m(\mathbf{a} \cdot \mathbf{b}) = (m\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (m\mathbf{b})$, where m is any scalar.

The vector product, or cross product, of two vectors \mathbf{a} and \mathbf{b} , denoted by $\mathbf{a} \times \mathbf{b}$ —or sometimes by \mathbf{Vab} , or by $[\mathbf{ab}]$ in square brackets—is defined as the vector whose length is $ab \sin \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} , and whose direction is perpendicular to the plane of \mathbf{a} and \mathbf{b} (in such a sense that a right-handed screw advancing along $\mathbf{a} \times \mathbf{b}$ would turn \mathbf{a} toward \mathbf{b}).

EXAMPLE. If \mathbf{F} is a force acting on a particle whose radius vector is \mathbf{r} , then $\mathbf{r} \times \mathbf{F}$ = the *torque* of \mathbf{F} about the origin.

Peculiarities of vector products: (1) $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$, so that the order of the factors is always important; (2) $\mathbf{a} \times \mathbf{a} = 0$; (3) it is not true that $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$; (4) from $\mathbf{a} \times \mathbf{x} = \mathbf{a} \times \mathbf{y}$ it does not follow that $\mathbf{x} = \mathbf{y}$; hence, quotients will not occur; (5) from $\mathbf{a} \times \mathbf{b} = 0$, it follows that \mathbf{a} and \mathbf{b} are parallel (unless \mathbf{a} or \mathbf{b} is zero).

On the other hand, as in ordinary algebra

$$(a + b) \times (c + d) = a \times c + a \times d + b \times c + b \times d,$$

provided the order of factors in each product is preserved; also, $m(\mathbf{a} \times \mathbf{b}) = (m\mathbf{a}) \times \mathbf{b} = \mathbf{a} \times (m\mathbf{b})$, where m is any scalar. Further laws are:

 $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = \mathbf{b} \cdot (\mathbf{c} \times \mathbf{a}) = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b});$ and $\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$

Vector Differentiation. If $\mathbf{r} = \mathbf{f}(t)$ gives a vector \mathbf{r} as a function of a scalar t, then $d\mathbf{r}/dt = \lim \{ [\mathbf{f}(t + \Delta t) - \mathbf{f}(t)]/\Delta t \}$ as Δt approaches zero.

$$d(\mathbf{a} + \mathbf{b}) = d\mathbf{a} + d\mathbf{b}, \quad d(m\mathbf{a}) = m(d\mathbf{a}) + (dm)\mathbf{a},$$

 $d(\mathbf{a} \cdot \mathbf{b}) = (d\mathbf{a}) \cdot \mathbf{b} + \mathbf{a} \cdot (d\mathbf{b}), \quad d(\mathbf{a} \times \mathbf{b}) = (d\mathbf{a}) \times \mathbf{b} + \mathbf{a} \times (d\mathbf{b}).$

EXAMPLE. If $\mathbf{r} = \mathbf{f}(t)$ gives the position-vector of a moving particle as a function of the time t, then $d\mathbf{r}/dt = \text{its}$ vector velocity, \mathbf{v} , and $d\mathbf{v}/dt = \text{its}$ vector acceleration, a. If \mathbf{m} and \mathbf{n} are unit vectors in the direction of the tangent and normal to the path at the time t, then $\mathbf{v} = v\mathbf{m}$, where v = ds/dt = the (scalar) path-velocity, and $d\mathbf{m} = [(ds/R)]\mathbf{n}$, where R = the (scalar) radius of curvature of the path. Then

$$\mathbf{a} = \frac{d(v\mathbf{m})}{dt} = \frac{dv}{dt}\mathbf{m} + v\frac{d\mathbf{m}}{dt} = \frac{dv}{dt}\mathbf{m} + \frac{v^2}{R}\mathbf{n}.$$

Here dv/dt and v^2/R are the familiar expressions for the components of acceleration along the tangent and normal.

INDEX

Abscissa, 173 Absolute value, 112 Acceleration of gravity, 73, 84 Adding machines, 97 Addition, algebraic, 112 arithmetical, 88 of complex quantities, 124 of vectors, 185 of vectors, 150 Algebra, elementary, 112–123 of complex quantities, 124–127 of vectors, 185 Alignment charts, 179, 182 Amortization (sinking fund), 67 Analytical geometry, 136-156 Anchor ring, 111 Angles, bisection of, 102 complementary, 128 degrees and radians, table, 44 dihedral and solid, 110 in a circle, 99 in analytical geometry, 136 in trigonometry, 128-132 minutes and seconds, table, 69 supplementary, 128 units of, 128 Annuity tables, 65, 67, 68 Annulus, area of, 106 contiguous circles in, 105 Anti-friction curve, 155 Anti-gudermannian, 135 Anti-hyperbolic functions, 135 graphs, 175; series, 161 Anti-logarithms, 92 Anti-sines, etc., 132 graphs, 174; series, 161 Apothecaries' weight, 71 Arc, length of circular, 102, 106 Archimedian spiral, 154 Arcsin, etc., see Anti-sines, etc. Area, units of, 70, 76, 77 Areas, approximate methods, 106, 170 of similar figures, 99 of various figures, 105 Arithmetic, 88-98 Arithmetical mean, 115 progression, 114 Astroid, 153 Asymptote, of hyperbola, 145, 146 of hyperbolic spiral, 154

Ball-bearing (annulus), 105
Barrels, volume of, 110
Baumé scale, 85
Bessel's formula, 121
Binomial coefficients, tables of, 39, 116
series, 114
theorem, 114
Bisection, of a line, 101
of an angle, 102
Bisectors (in triangle), 99, 134
Board measure, 71

of tractrix, 155

Briggsian logarithms, 113 B.t.u., 74, 75, 82 Bushel, 70

Calculating machines, 98 Calculus, 157-172 rules for differentiation, 157 table of integrals, 164 Calendar, 83 Cardioid, 153 Casks, volume of, 110 Catenary, 147 Cavalieri's theorem, 111 Centesimal measure of angles, 128 Chaining up hill, 150 Characteristic of logarithm, 92 fractional, 94 Charts, alignment, 179, 182 construction of, 173 contour line, 179 parallel and proportional, 184 Circle, constructions for, 102-105 equation of, 137 involute of, 153 tables of areas, 30, 32 of circumferences, 28, 32 of segments, 34, 35 theorems on the, 99, 106 Circles, circumscribed, 99, 105, 134 great, on a sphere, 100 inscribed, 99, 105, 134 radical axis of, 100, 137 Circular measure of angles, 128 table, 44 mil, 70 Cissoid, 155 Coins, value of foreign, 82 Cologarithms, 93 Combinations, 116 Complex quantities, 124–127 Compound interest tables, 64, 66 Computation, graphical methods in, 174-185 machines for, 97 numerical, 88 Cones, area and volume of, 108, 109 Conic sections, 138–147 Contour line charts, 179 Conversion tables, 74–82 Coördinates, polar, 137, 178 rectangular, 136, 173 Cosecant, 129; tables, 51 Cosecant, 129; tables, 51 graph, 174 Cosine, 129; tables, 46, 52 graph, 174; series, 161 Cotangent, 129; tables, 47, 52 graph, 174; series, 161 Coversed sine, 129 Cross-section paper, 173, 178 logarithmic, 176 semi-logarithmic, 177 Cube 'in geometry), 100, 110

Cube roots, 90 of $1\pm x$, 91 table of, 16 Cubes, summation of, 115 table of, 8 Cubic equation, 117 Curvature, 163 Curves, empirical, 173 of various functions, 174 in analytical geometry, 151 Cycloid, 151 Cylinder, area and volume, 107, 108

Decimal equivalents, tables, 33, 69 point, position of, 89, 90 Definite integrals, 169 Degrees, and minutes, table, 69 and radians, tables, 44, 45 De Moivre's theorem, 126 Denary logarithms, 113 Density, 81, 84 Derivatives, 157, 158 of complex quantities, 127 of definite integrals, 170 of vectors, 186 partial, 159 Determinants, 123 Diameters, conjugate, 141, 146 Differences, 115, 159 Differential calculus, 157–164 equations, 171 Dihedral angles, 100 Directrix, of catenary, 147 of ellipse, 140 of hyperbola, 144 of parabola, 138 Division, algebraic, 112 arithmetical, 89 by logarithms, 93 by slide rule, 95 of a line, 101, 102 of complex quantities, 124 Distance formula, 136 Dodecahedron, 100, 110 Dyne, 73

Eccentric angle, 141
Eccentricity, of ellipse, 140
of hyperbola, 144
Ellipse, area and perimeter of, 107
constructions for, 142
properties of, 140
Ellipsoid, volume of, 110
Elliptic integrals, 170
Empirical curves, 173
Energy, units of, 79, 80
Epicycloid, 152
Epitrochoid, 153
Equations, algebraic, 116
differential, 171
empirical, 174
exponential, 118
normal, 122
simultaneous, 119, 121, 179
solution of, by trial, 118
trigonometric, 118
types of, 116
Errors, absolute and relative, 88
mean square, 122
probable, 121; table, 63

Evolutes, 164
Evolution, in algebra, 90
Expansion in series, 114, 160
Exponential equations, 118
function, 178
graph, 174; series, 160
in complex algebra, 126, 127
table, 57
Exponents, in algebra, 113
in complex algebra, 126, 127
Exsecant, 129
Extreme and mean ratio, 102

Factorials, 112
Feet and inches, table, 33
Figures, significant, 88
similar, 99
Financial arithmetic, 98
Focus, of ellipse, 140
of hyperbola, 144
of parabola, 138
Force, unit of, 72, 74
Fourier's series, 162
Fractions, in algebra, 112
Frustum of cone, 108, 109
Functions, defined by integrals, 170
graphs of, 174
implicit, 159
of a complex variable, 127
of two variables, 159, 160, 178

Gallon, 70
Gamma function, 170
Geometrical mean, 113, 115
construction for, 102
progression, 115
Geometry, analytical, 136-156
elementary, 99-111
Golden section, 102
Gram, 71
-calorie, 74, 75, 82
Graphs, empirical, 174
in computation, 174-185
of functions, 173
Gravity, acceleration of, 73, 84
specific, 84
Gudermannian, 135

Hardness, scale of, 85
Harmonic mean, 115
Heat units, 74, 75, 79, 80
Helix, 156
Hexagon, 103
Huyghen's approximation, 106
Hyperbola, area of, 107
as type of power function, 174
conjugate, 146
constructions for, 147
equilateral, 146
properties of, 144
Hyperbolic logarithms, 114
table, 58
sines, etc., 135
graphs, 175
series, 161
tables, 60-62
of a complex variable, 127

Hyperbolic (continued) spiral, 154 Hypocycloid, 152 Hypotrochoid, 153

i = \sqrt{-1}, 125
Losahedron, 100, 110
Identity, 116
Imaginary quantities, 124-127
roots of equations, 118
Implicit functions, 159
Inches, and feet, table, 33
and millimeters, table, 75
miner's, 71
Increment, 157
Indeterminate forms, 163
Inflection-point, 160
Integral calculus, 164-170
Integrals, approximate methods for, 170
definite, 169
double, 170
elliptic, 170
probability, 170
table of, 164
Integraph, 170
Interest, tables, 64, 66
Interpolation, 115
in logarithm tables, 91, 92
Intersection of lines, 102
Inverse sine, etc., 132
graphs, 174; series, 161
sinh, etc., 135
graphs, 175; series, 161

Joule, 73

Kilogram, 73 Kilowatt, 73

Involute, 164

of a circle, 153

Latus rectum, of ellipse, 140
of hyperbola, 145
of parabola, 138
Least squares, 121
Lemniscate, 155
Length, units of, 70, 74, 75
Line, equation of, 136
geometrical, 101
Linear, differential equation, 171
equation, 117
function, graph of, 174
Liter, 71
Logarithmic cross-section paper, 176
function, 173
graph, 174; series, 160
spiral, 155
Logarithms, tables (base e), 58
tables (common), 40
theory of, 113
use in computation, 91
Lune, 110

Maclaurin's theorem, 161 Mannheim slide rule, 96 Mantissa of a logarithm, 92 negative, 93

Mass, units of, 77, 78 Mathematics (contents), 87 tables (contents), 1 Maxima and minima, 159, 160 Mean, arithmetical, 115 geometrical, 102, 113, 115 harmonic, 115 proportional, 113, 115 construction for, 102 value theorem, 169 Measures, weights and, 70-85 Medians of a triangle, 99, 134 Mensuration, 105 Metric system, 72 Minima and maxima, 160 Minutes and seconds, table, 69 Mohs's scale, 85 Money, foreign, 82 Multiples, of π , table, 28 of 0.4343 and 2.3026, table, 62 Multiplication, algebraic, 112 arithmetical, 89 by logarithms, 93 by slide rule, 95 of complex quantities, 124 of vectors, 186 tables (list of), 89

Napierian logarithms, 114 table, 58 Natural functions, tables, 46, 52 logarithms, 113; table, 58 Nomography, 179 Normal equations, 122 Notation, algebraic, 112 by powers of ten, 90 Numerical computation, 88

Obelisk, volume of, 109 Octagon, 103 Octahedron, 100, 110 Ordinate, 173 Orthocenter of a triangle, 99

Pappus, theorems of, 111
Parabola, area of, 107
constructions for, 139
properties of, 138
as type of power function, 174
Paraboloid, volume of, 110
Parallel charts, 184
lines, 101, 136
Parallelogram, area of, 105
Parameter, 137, 170
Partial derivatives, 159
Permutations, 116
Perpendicular lines, 101, 136
Peters's formula, 121
Planimeter, 170
Polar coördinates, 137, 178
triangles on a sphere, 101
Polygons, 103; table, 39
Polyhedra, 100, 110
Polynomial, 118
Pound and poundal, 70, 73
Power function, 177
graph, 174
units of, 73, 80, 81

Powers, algebraic, 113
arithmetical, 90
by logarithms, 93, 94
by slide rule, 94
in complex algebra, 125, 126, 127
of ten, notation by, 90
Pressure, units of, 79, 80
Prism, area and volume, 107, 108
Prismoidal formula, 111
Probability integral, 170
Probable error, 121, 122
table, 63
Progression, arithmetical, 114
geometrical, 115
Proportion, in algebra, 113
Proportional charts, 184
Pyramids, area and volume, 108, 109

Quadrant, 128, 130 Quadratic equations, 117 Quadrature, 170 Quadrilateral, area of, 106

Radian measure of angles, 128 tables, 44, 45
Radical axis, 100, 137
Radicals and exponents, 113
Ratio, in algebra, 113
extreme and mean, 102
Real and imaginary, 124
Reciprocals, 90
in complex algebra, 125
of 1 ± x, 90
table of, 24
Rectangle, area of, 105
Residuals, 121
table, 63
Rhombus, area of, 105
Ribbon, area of, 106
Roots, see Powers.
of an equation, 116

Sag, in the catenary, 150

Scalars, 185
Schiele's curve, 155
Sceant of an angle, 129
tables, 50, 52; graph, 174
Sector, circular, 106
spherical, 109
Segments, circular, 106
tables, 34, 35
of paraboloid, 110
spherical, 109; table, 38
Semi-logarithmic paper, 177
Series, expansion in, 114, 160
Fourier's, 162
Maclaurin's and Taylor's, 161
summation of, 115
Sexagesimal measure, 128
Significant figures, 98
Similar figures, 98
Simpson's rule, 106, 111
Simultaneous equations, 119
by determinants, 123
by least squares, 121
contour line charts for, 179
Sine, 129; tables, 46, 52
graph, 174; series, 161
Sinking fund table, 67

Slide rule, use of, 94 types of, 97 Slope, 157 Solid angle, 110 Solids, areas and volumes, 107 Specific gravity, 84 Sphere, area and volume, 109 table of segments, 38 of volumes, 36 theorems on the, 100, 109 Spherical segments, 109 table, 38 sector, 109; wedge, 110 triangles, 134 area of, 110, 134 excess of, 134 Spheroid, volume, 110 Spiral, hyperbolic, 154 involute, 153 logarithmic, 155 of Archimedes, 154 Square roots, 90 of $1 \pm x$, 90 table of, 12 Squares, summation of, 115 table of, 2 Steradian, steregon, 110 Submultiples, 124 Subnormal, subtangent, 138 Subtraction, algebraic, 112 arithmetical, 88 of complex quantities, 124 of logarithms, 93 of vectors, 185 Summation of series, 115 Surface for f(x, y), 178 Surfaces, areas of, 107 Symbols, algebraic, 112 Symmetrical triangles, 101

Tables, list of, 1 Tangent of an angle, 129 graph, 174; series, 161 tables, 48, 52 to circle, 99 construction of, 103 Tape, sag of, 150 Taylor's theorem, 161 Tens, notation by, 90 Tetrahedron, 100, 110 Therm, 74 Three-halves powers, 20, 22 Time, 83 Torus, area and volume, 111 Tractrix, 155 Trapezoid, area of, 105 Trial and error method, 118 Triangles, plane, 99, 105, 134 solution of, 132 polar, 101 spherical, 110, 134 solution of, 134 Trigonometric equations, 118 functions, 128 graphs, 174; series, 161 of a complex variable, 127 tables, 44, 46, 52 Trigonometry, 128-135 Trochoid, 152 Troy weight, 71 Truncated prism, 107, 108

Ungula, 108 Units, 72

Variable, change of, 169 Vector analysis, 185 Velocity, units of, 78, 80 Versed sine, 129; graph, 174 Volume, units of, 70, 71, 76, 77 Volumes, of solids, 107 of similar figures, 99 Watt, 73 Wedge, 109 spherical, 119 Weight, units of, 71, 77, 78 Weights and measures, 70–85 Work, units of, 73, 79, 80

Yard, 70 Year, 83

Zone of a sphere, 109

UNIVERSITY OF CALIFORNIA LIBRARY

This book is DUE on the last date stamped below.

Fine schedule: 25 cents on first day overdue
50 cents on fourth day overdue
One dollar on seventh day overdue.

M171600

TAIS!
H'8
Engin.

THE UNIVERSITY OF CALIFORNIA LIBRARY

