1.46 Prove that the following languages are not regular. You may use the pumping lemma and the closure of the class of regular languages under union, intersection, and complement.

(a)
$$L = \{0^n 1^m 0^n \mid m, n \ge 0\}$$

Solution.

Proof: Assume that L is regular. Then by the Pumping Lemma for regular languages, there exists a pumping length, p, for L such that for any string $s \in L$ where $|s| \ge p$, s = xyz subject to the following conditions:

1)
$$|y| > 0$$

2) $|xy| \le p$
3) $xy^{i}z \in L$, $\forall i \ge 0$

Let $s = 0^p 10^p$. $|s| \ge p$ and $s \in L$. By condition 2, it follows that x and y are composed of only zeros. By condition 1, it follows that $y = 0^k$ for some k > 0. By condition 3, we can take i = 0 and the resulting string will still be in L. Thus, xy^0z should be in L. $xy^0z = xz = 0^{p-k}10^p$. But this is not in L because p - k < k, which is a contradiction with the pumping lemma. Therefore our assumption that L is regular is false, and L is not a regular language.

D:20231017010158Z