

Intrusion Detection for Resource-Constrained Devices of the Internet of Things

Jefferson Cavalcante^{1,2}, Tiago Barros², Neuman Souza¹

¹Universidade Federal do Ceará (UFC) ²Centro de Estudos e Sistemas Avançados do Recife (CESAR)

Motivação

Problemas

1 - Infraestrutura

Problemas

- 1. Dados de network intrusion
- 2. Selecionar microcontrolador
- 3. Treinar modelos de ML
- 4. Embarcar modelos
- 5. Otimizar para hardware

- 1. Dados de network intrusion
- 2. Selecionar microcontrolador
- 3. Treinar modelos de ML
- 4. Embarcar modelos
- 5. Otimizar para hardware

Solução Proposta

Solução Proposta

LUFlow Dataset: 20 dias de monitoramento (2021/2022)

- Dispositivos IoT
- Honeypots

Recente, abrangente e realístico

Table 1. LUFlow features selected

Features	Descriptions
bytes_in	Cumulative number of bytes received
bytes_out	Cumulative number of bytes sent
dest_port	Flow's receiver port number
entropy	Flow's data entropy in bits per byte
num_pkts_out	Cumulative number of packets sent
num_pkts_in	Cumulative number of packets received
proto	Protocol number
src_port	Sender's port number
total_entropy	Entropy from all data fields of the flow in bytes
avg_ipt	Average of the flow's inter-packet transmission time

DSP para aceleração via hardware Registradores de 128 bits Single Instruction Multiple Data API em C Tensorflow Lite

ESP32-S3

Designed for AloT applications

2.4 GHz Wi-Fi and Bluetooth 5 (LE) Powerful Al acceleration Reliable security features

Figure 3. IoT device with an ESP32S3 chip.

Figure 4. Average inference time.

Figure 5. Accuracy.

Figure 6. Model sizes based on the number of parameters.

Considerações finais

- Viabilidade de Network Intrusion Detection on-device
- Árvores de decisão parecem boa escolha
 - Bom tradeoff tamanho/latência/acurácia
- Quantização e normalização são gargalos para modelos enxutos
 - Buscar evitar essa necessidade
 - Árvores de decisão não requerem normalização
- Converter de frameworks python para código nativo com aceleração por hardware nem sempre é fácil

Trabalhos futuros

- Fundir datasets para aumentar capacidade de generalização
- Acelerar árvores de decisão
- Suportar mais arquiteturas de microcontroladores

Obrigado!

Jefferson Cavalcante jrac@cesar.org.br

Tiago Barros tgfb@cesar.school

Jose Neuman neuman@ufc.br

Patrocinadores do SBSeg 2024!

nicht egibt Google 🦓 Tempest

