

Classe: TU/TS1
Date: Julliet 2020

BTS Blanc Mathématiques

Durée: 1h 30min

EXERCICE 1: (20 points)

1. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

 $\lim_{x \to +\infty} f(x)$ est égal à :

- a) +∞
- b) −∞
- c) 0
- 2. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

En $+\infty$, la courbe C admet une asymptote d'équation :

- a) y = 0.25 x
- b) y = 0
- c) x=0
- 3. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

La dérivée de f est :

- a) $f'(x) = 0.0625(2+x)(2-x)e^{-0.125x^2}$
- b) $f'(x) = 0.0625(2+x)^2 e^{-0.125x^2}$
- c) $f'(x) = -0.0625(2+x)(2-x)e^{-0.125x}$
- 4. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

Le signe de f'(x) sur]-2;2[est :

- a) positif
- b) négatif
- 5. Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = (0,25x)e^{-0,125x^2}$ On note C sa courbe représentative dans un repère orthogonal.

La fonction f sur $]2;+\infty[$ est:

- a) croissante
- b) décroissante

Classe: TU/TS1
Date: Julliet 2020

6. Un logiciel de calcul formel fournit le développement limité, en 0, à l'ordre 3 de f:

$$f(x)=0.25 x-0.03125 x^3+x^3 \epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x)=0$.

On note *C* sa courbe représentative dans un repère orthogonal.

Une équation de la tangente T à la courbe C en son point d'abscisse 0 est :

- a) y = 0.25
- b) y = 0.25 x
- c) $y = 0.25 x 0.03125 x^3$
- 7. Un logiciel de calcul formel fournit le développement limité, en 0, à l'ordre 3 de f:

$$f(x)=0.25 x-0.03125 x^3+x^3 \epsilon(x)$$
 avec $\lim_{x\to 0} \epsilon(x)=0$.

On note *C* sa courbe représentative dans un repère orthogonal.

On note T la tangente à la courbe C en son point d'abscisse 0.

La position relative de C et T au voisinage du point d'abscisse 0, pour x positif est :

- a) C est au-dessous de T
- b) C est au-dessus de T
- 8. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

Une primitive de la fonction f sur $[0;+\infty[$ est :

- a) $F(x) = 0.25 e^{-0.125x^2}$
- b) $F(x) = 1 e^{-0.125x}$
- c) $F(x) = 1 e^{-0.125x^2}$
- 9. Soit *F* la fonction définie sur $[0;+\infty[$ par : $F(x)=1-e^{-0.125x^2}$.

 $\lim_{x \to +\infty} F(x)$ est égal à :

- a) $+\infty$
- b) 1
- c) 0
- 10. Soit f la fonction définie sur $[0;+\infty[$ par : $f(x)=(0,25x)e^{-0,125x^2}$. On note C sa courbe représentative dans un repère orthogonal.

L'intégrale $I = \int_{1}^{6} f(x) dx$ arrondie à 10^{-2} est :

- a) 0,86
- b) 0,88
- c) 0.87

Classe: TU/TS1
Date: Julliet 2020

11. Une unité de production effectue le réglage d'une machine destinée à fabriquer des axes de moteurs électriques. Un échantillon de 100 axes est prélevé lors des premiers jours de production, leurs longueurs étant mesurées (en mm), on obtient le tableau suivant.

Longueur des axes (en mm)	[89,7; 89,8 [[89,8; 89,9 [[89,9; 90,0 [[90,0; 90,1 [[90,1; 90,2 [
Nombre d'axes	3	14	36	33	13	1

En faisant l'hypothèse que, pour chaque classe, les valeurs observées sont égales à celle du centre de la classe, une valeur approchée de la moyenne (à 10⁻³ mm près) des longueurs des axes de l'échantillon est :

- a) 16,665
- b) 89,992
- c) 90,001
- 1. Une unité de production effectue le réglage d'une machine destinée à fabriquer des axes de moteurs électriques. Un échantillon de 100 axes est prélevé lors des premiers jours de production, leurs longueurs étant mesurées (en mm), on obtient le tableau suivant.

Longueur des axes (en mm)	[89,7; 89,8 [[89,8; 89,9 [[89,9; 90,0 [[90,0; 90,1 [
Nombre d'axes	3	14	36	33	13	1

En faisant l'hypothèse que, pour chaque classe, les valeurs observées sont égales à celle du centre de la classe, une valeur approchée de l'écart type (à 10⁻³ mm près) des longueurs des axes de l'échantillon est :

- a) 13,500
- b) 0,011
- c) 0,101
- 12. Anna a créé un site web. Le tableau ci-dessous présente l'évolution du nombre hebdomadaire de visiteurs du site au cours des huit premières semaines suivant sa création.

Rang de la semaine x_i	1	2	3	4	5	6	7	8
Nombre de visiteurs <i>y</i> _i	205	252	327	349	412	423	441	472
$z_i = ln(x_i)$	0	0,693		1,386	1,609		1,946	2,079

Les valeurs manquantes z_{3} et z_{6} (à $10^{\mbox{\tiny -3}}$ près) sont :

- a) $z_3 = 1,098$ et $z_6 = 1,792$
- b) $z_3 = 1,099$ et $z_6 = 1,791$
- c) $z_3 = 1,099$ et $z_6 = 1,792$

Classe : TU/TS1 Date : Julliet 2020

13. Anna a créé un site web. Le tableau ci-dessous présente l'évolution du nombre hebdomadaire de visiteurs du site au cours des huit premières semaines suivant sa création.

Rang de la semaine x_i	1	2	3	4	5	6	7	8
Nombre de visiteurs y_i	205	252	327	349	412	423	441	472
$z_i = ln(x_i)$	0	0,693		1,386	1,609		1,946	2,079

Déterminer l'équation y=ax+b de la droite d'ajustement affine de y en x, par la méthode des moindres carrés. Les coefficients a et b (arrondis à l'entier le plus proche) sont :

- a) a = 38 et b = 191
- b) a = 133 et b = 184
- c) a = 37 et b = 190
- 14. Anna a créé un site web. Le tableau ci-dessous présente l'évolution du nombre hebdomadaire de visiteurs du site au cours des huit premières semaines suivant sa création.

Rang de la semaine x_i	1	2	3	4	5	6	7	8
Nombre de visiteurs y_i	205	252	327	349	412	423	441	472
$z_i = ln(x_i)$	0	0,693		1,386	1,609		1,946	2,079

On admet que l'équation de la droite d'ajustement affine de y en z est y=133z+184. En utilisant ce résultat, le rang de la semaine au cours de laquelle le nombre de visiteurs dépassera 600 est :

- a) 22
- b) 23
- c) 22,8