Misura della caratteristica I-V di un transistor BJT

Matteo Bonazzi

November 29, 2022

Abstract

Misura della caratteristica I-V di un transistor BJT in configurazione emettitore comune, in due valori differenti della corrente di base

Dal fit lineare dei dati nella regione attiva, si ottengono i parametri $V_{Early} =$ e R =.

1 Introduzione

2 Dati

$V_{ce} (\mathrm{mV})$	Errore V	Risoluzione (mV)	Fondo scala (mV/div)
4000	160	200	1000
3800	150	200	1000
3600	150	200	1000
3400	143	200	1000
3200	139	200	1000
3000	135	200	1000
2900	100	200	1000
2700	95	200	1000
2500	90	100	500
2400	88	100	500
2200	83	100	500
2000	78	100	500
1900	76	100	500
1700	71	100	500
1500	67	100	500
1400	65	100	500
1200	41	40	200
1120	39	40	200
1000	36	40	200
800	31	40	200
720	29	40	200
500	18	20	100
400	16	20	100
300	10	10	50
200	7.8	10	50
50	5.2	10	50

I_c	errore I_c	Risoluzione (mA)	Fondo scala (mA)
36.9	0.18	0.1	200
36.5	0.18	0.1	200
36	0.18	0.1	200
35.6	0.18	0.1	200
35.1	0.18	0.1	200
34.7	0.17	0.1	200
34.6	0.17	0.1	200
34.2	0.17	0.1	200
33.6	0.17	0.1	200
33.6	0.17	0.1	200
33.1	0.17	0.1	200
32.5	0.16	0.1	200
32.5	0.16	0.1	200
32	0.16	0.1	200
31.4	0.16	0.1	200
31.2	0.16	0.1	200
30.8	0.15	0.1	200
30.6	0.15	0.1	200
30.2	0.15	0.1	200
29.8	0.15	0.1	200
28.9	0.14	0.1	200
26.5	0.13	0.1	200
24.4	0.12	0.1	200
22	0.11	0.1	200
17.08	0.085	0.01	20
4.5	0.0225	0.01	20

3 Analisi dati