Question 1 (36p)

(a) (18p) A sinusoidal voltage $v(t) = 150 \sin(1000\pi t + 45^{\circ})$ is depicted in Fig. 1. Evaluate the time t_1 when the sinusoid crosses the t-axis (**Hint:** a standard representation of a sinusoid is $a(t) = A_{\rm m} \sin(2\pi f t + \phi)$), where $A_{\rm m}$ is the amplitude, f is the cyclic frequency, and ϕ is the phase. Moreover, the period, T, can be calculated as T = 1/f.

Figure 1: Figure for Question 1 (a)

(b) (18p) Mathematically show that the integral of v(t) is transformed to the phasor domain as \mathbf{V}/jw , such that

$$\int v \ dt \qquad \Leftrightarrow \qquad \frac{\mathbf{V}}{j\omega},$$

where $v(t) = V_m \cos(\omega t + \phi) = \text{Re}(V_m e^{j(\omega t + \phi)}) = \text{Re}(\mathbf{V}e^{j\omega t})$ and $\mathbf{V} = V_m e^{j\phi}$.