Asymptotic notation

- Need a formal way to talk about relationship between running time and size of inputs
- Mostly interested in what happens as size of inputs gets very large, i.e. approaches infinity

Example

```
def f(x):
    for i in range(1000):
        ans = i
    for i in range(x):
        ans += 1

    for i in range(x):
        for j in range(x):
        ans += 1
```

Complexity is $1000 + 2x + 2x^2$, if each line takes one step

Example

- $1000 + 2x + (2x^2)$
- If x is small, constant term dominates
 - E.g., x = 10 then 1000 of 1220 steps are in first loop
- If x is large, quadratic term dominates
 - E.g. x = 1,000,000, then first loop takes
 0.00000005% of time, second loop takes
 0.0001% of time (out of 2,000,002,001,000 steps)!

Example

- So really only need to consider the nested loops (quadratic component)
- Does it matter that this part takes 2x² steps, as opposed to say x² steps?
 - For our example, if our computer executes 100 million steps per second, difference is 5.5 hours versus 2.25 hours
 - On the other hand if we can find a linear algorithm, this would run in a fraction of a second
 - So multiplicative factors probably not crucial, but order of growth is crucial

Rules of thumb for complexity

- Asymptotic complexity
 - Describe running time in terms of number of basic steps
 - If running time is sum of multiple terms, keep one with the largest growth rate
 Problem size → ∞
 - If remaining term is a product, drop any multiplicative constants
- Use "Big O" notation (aka Omicron)
 - Gives an upper bound on asymptotic growth of a function