

What is claimed is:

1 1. A method for forming active regions of field effect transistors, comprising:
2 (a) forming at least one conductive region over an isolation layer formed on a substrate,
3 and a cap dielectric layer on the at least one conductive region;

4 (b) forming a sacrificial dielectric layer over the isolation layer and the cap dielectric
5 layer, and on sidewalls of the at least one conductive region;

6 (c) removing a portion of the sacrificial dielectric layer on the cap dielectric layer;

7 (d) removing the cap dielectric layer; and

8 (e) removing remaining portions of the sacrificial dielectric layer.

1 2. The method of claim 1, wherein the cap dielectric layer includes a first cap dielectric
2 layer and a second cap dielectric layer.

1 3. The method of claim 2, wherein step (d) comprises the step of removing the first cap
2 dielectric layer and the second cap dielectric layer.

1 4. The method of claim 3, wherein the sacrificial dielectric layer is formed to a thickness
2 at least larger than a thickness loss caused by removing the first cap dielectric layer and the
3 second cap dielectric layer.

1 5. The method of claim 1, further comprising performing a sputtering step to trim the
2 remaining portions of the sacrificial dielectric layer prior to removal thereof.

1 6. The method of claim 1, wherein the at least one conductive region has a mesa
2 structure.

1 7. The method of claim 1, wherein the sacrificial dielectric layer is formed to a thickness
2 at least larger than a thickness loss caused by step (d).

1 8. The method of claim 1, wherein step (c) is performed by a chemical mechanical polish
2 (CMP) process with a high selectivity slurry.

1 9. The method of claim 8, wherein the CMP process with the high selectivity slurry has
2 different removing rates for different regions of the sacrificial dielectric layer in response to
3 different polish pressures applied thereto.

1 10. The method of claim 9, wherein the high selectivity slurry comprises a ceria-based
2 abrasive and an electronegative surfactant.

1 11. The method of claim 1, further comprising the step of performing a cleaning process
2 after step (d), wherein said sacrificial dielectric layer has a thickness during said cleaning process
3 sufficient to substantially protect said at least one conductive region from undercut in the
4 isolation layer.

1 12. A method for forming active regions of field effect transistors, comprising:
2 (a) forming at least one conductive mesa over an isolation layer formed on a substrate,
3 and a cap dielectric layer on the at least one conductive mesa;
4 (b) forming a sacrificial dielectric layer over the isolation layer and the cap dielectric
5 layer, and on sidewalls of the at least one conductive mesa;
6 (c) removing a portion of the sacrificial dielectric layer on the cap dielectric layer by a
7 chemical mechanical polish (CMP) process with a high selectivity slurry;
8 (d) removing the cap dielectric layer, wherein the sacrificial dielectric layer is formed to a
9 thickness at least larger than a thickness loss caused by removal step (d); and
10 (e) removing remaining portions of the sacrificial dielectric layer.

1 13. The method of claim 12, wherein the cap dielectric layer includes a first cap dielectric
2 layer and a second cap dielectric layer.

1 14. The method of claim 13, wherein step (d) comprises the step of removing the first cap
2 dielectric layer and the second dielectric layer.

1 15. The method of claim 14, wherein the sacrificial dielectric layer is formed to a
2 thickness at least larger than a thickness loss caused by removing the first cap dielectric layer and
3 the second cap dielectric layer.

1 16. The method of claim 12, further comprising performing a sputtering step to trim the
2 remaining portions of the sacrificial dielectric layer prior to removal thereof.

1 17. The method of claim 12, wherein the CMP process with the high selectivity slurry has
2 different removing rates for different regions of the sacrificial dielectric layer in response to
3 different polish pressures applied thereto.

1 18. The method of claim 17, wherein the high selectivity slurry comprises a ceria-based
2 abrasive and an electronegative surfactant.

1 19. A method for forming field effect transistors, comprising:

2 (a) forming at least one conductive mesa over an isolation layer formed on a substrate,
3 and a cap dielectric layer on the at least one conductive mesa;

4 (b) forming a sacrificial dielectric layer over the isolation layer and the cap dielectric
5 layer, and on sidewalls of the at least one conductive mesa;

6 (c) removing a portion of the sacrificial dielectric layer on the cap dielectric layer by a
7 chemical mechanical polish (CMP) process with a high selectivity slurry;

8 (d) removing the cap dielectric layer;

9 (e) removing remaining portions of the sacrificial dielectric layer;

10 (f) forming a gate on the at least one conductive region; and

11 (g) forming source/drain (S/D) regions within the at least one conductive region and
12 adjacent to the gate.

1 20. The method of claim 19, wherein the cap dielectric layer includes a first cap dielectric
2 layer and a second cap dielectric layer.

1 21. The method of claim 20, wherein step (d) comprises the step of removing the first cap
2 dielectric layer and the second dielectric layer.

1 22. The method of claim 21, wherein the sacrificial dielectric layer is formed to a
2 thickness at least larger than a thickness loss caused by removing the first cap dielectric layer and
3 the second cap dielectric layer.

1 23. The method of claim 19, further comprising performing a sputtering step to trim the
2 remaining portions of the sacrificial dielectric layer prior to removal thereof.

1 24. The method of claim 19, wherein the at least one conductive region has a mesa
2 structure.

1 25. The method of claim 19, wherein the sacrificial dielectric layer is formed to a
2 thickness at least larger than a thickness loss caused by step (d).

1 26. The method of claim 19, wherein step (c) is performed by a chemical mechanical
2 polish (CMP) process with a high selectivity slurry.

1 27. The method of claim 26, wherein the CMP process with the high selectivity slurry has
2 different removing rates for different regions of the sacrificial dielectric layer in response to
3 different polish pressures applied thereto.

1 28. The method of claim 27, wherein the high selectivity slurry comprises a ceria-based
2 abrasive and an electronegative surfactant.

1 29. An integrated circuit including a field effect transistor, the field effect transistor
2 comprising:

3 a conductive region on a substrate having an isolation layer formed thereon, the isolation
4 layer being substantially without undercut at the region within the isolation layer beneath the
5 conductive region;

6 a gate on the conductive region; and
7 source/drain (S/D) regions within the conductive region and adjacent to the gate.

1 30. The integrated circuit of claim 29, wherein any undercut within the isolation layer
2 beneath the conductive region has a lateral depth no more than about 100Å.

1 31. The integrated circuit of claim 29, wherein the conductive region has a mesa
2 structure.

1 32. An integrated circuit including a plurality field effect transistors having active regions
2 formed by the process of claim 1.

1 33. A method for forming field effect transistors, comprising:
2 (a) forming at least one conductive region over an isolation layer formed on a substrate;
3 (b) forming a sacrificial dielectric layer over the isolation layer and adjacent to said at
4 least one conductive region;
5 (c) forming a gate dielectric layer over said at least one conductive region, and
6 (d) performing a cleaning process prior to forming said gate dielectric layer, wherein said
7 sacrificial dielectric layer is formed to a thickness sufficient to substantially protect said at least
8 one conductive region from undercut in the isolation layer from said cleaning process.

1 34. The method of claim 33, wherein said cleaning process utilizes a HF solution.