Домашка третья

1.

2. Для начала заметим, что $(X_{n+1}=a|X_n=b)$ не зависит от n (так как эта вероятность равна $P(\xi_{n+1} \equiv a-b)$), поэтому X_n будут образовывать постоянную марковскую цепь, запишем её матрицу перехода

$$P_X = \begin{pmatrix} \frac{1}{7} & \frac{2}{7} & \frac{3}{7} & \frac{1}{7} \\ \frac{1}{7} & \frac{1}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{3}{7} & \frac{1}{7} & \frac{1}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{1}{7} & \frac{1}{7} \end{pmatrix}$$

3. Рассмотрим координатную плоскость, где на оси X будет откладывать координату первого передатчика, а на оси Y — второго. Тогда заметим, что должны выполняться некоторые условия

1. $\frac{1}{4} + \frac{1}{3} \geqslant |x - y| \geqslant \frac{1}{4} + \frac{1}{3} - \frac{1}{6}$, так как зоны передатчиков не должны перекрываться больше, чем на $\frac{1}{6}$, иначе нам заведомо не хватит площади покрытия, и не могут стоять слишком далеко, иначе между ними будет пустое пространство (бирюзовая штриховка);

2. $\frac{1}{4} - \frac{1}{6} \leqslant x \leqslant 1 + \frac{1}{6} - \frac{1}{4}$, так как первый передатчик не может стоять у края, иначе снова не хватит зоны покрытия (красная штриховка);

3. $\frac{1}{3} - \frac{1}{6} \leqslant x \leqslant 1 + \frac{1}{6} - \frac{1}{3}$, аналогично со вторым пунктом. (зелёная штриховка).

Таким образом мы получим следующую картинку:

В силу независимости выбора x и y а также равновероятности всех выборов нам достаточно просто посчитать площать двух трапеций, которые оказались заштрихованны трижды. Упустим скучные и триваильные

вычисления и скажем, что площадь одной трапеции равняется $\frac{1}{24}$, в силу симметрии тому же равняется и площадь второй трапеции, а значит вероятность того, что передатчиками будет покрыт весь отрезок составляем $\frac{2}{24}/1=\frac{2}{24}$.