Fundamentos de Processamento Paralelo e Distribuído

Aula de Introdução e Revisão APD

Prof. César A. F. De Rose

Roteiro

- Histórico e evolução das arquiteturas usadas por estes sistemas
- Revisão das classes de arquiteturas paralelas e distribuídas
- Semelhanças, diferenças e o escopo de aplicação de sistemas concorrentes, paralelos e distribuídos
- Métricas para avaliação destes sistemas

Histórico e Evolução

- Arquitetura Tradicional
 - · uma única unidade ativa

- Unidades de E/S autônomas (Ex: DMA)
 - multiprogramação

Hierarquia de Memória

- acelerar alimentação da CPU
- problema fundamental I/O

Pipeline

- De instrução (superescalar)
- De dados (máquinas vetoriais)

- Memórias não voláteis
 - Reduzir latencias de "I/O"
 - SSD, memória única

- Hyperthreading
 - Melhor aproveitar os pipelines superescalares
 - Video Animação Intel

Essenciais

Coleção de produtos Processadores Intel® Core™ i9 da 11ª Geração

Codinome Produtos com denominação anterior Tiger Lake

Segmento vertical Desktop

Número do processador i9-11900KB

Status Launched

Data de introdução ? Q2'21

Litografia 🔞 10 nm

Preço recomendado para o cliente ③ \$539.00

Condições de uso ③ PC/Client/Tablet

Especificações da CPU

Número de núcleos 3 8

Nº de threads ② 16

Frequência baseada em processador ③ 3.30 GHz

Frequência turbo max 3 4.90 GHz

Cache ② 24 MB

Velocidade do barramento 3 8 GT/s

Frequência da Tecnologia Intel® Turbo Boost Max 3.0 [‡] 4.90 GHz

?

Multicore

- · Motivação: energia
- Video Animação Intel

- Manycore
 - GPU
 - Unidade geral GP/GPU
 - Intel Phi

Objetivo desta Evolução

- Acelerar processamento dos dados por parte da CPU
 - Liberando CPU (delegando tarefas)
 - controle do barramento
 - tratamento de E/S
 - Acelerando alimentação da CPU
 - · hierarquia de memória
 - Sobrepondo ciclos da CPU
 - pipeline de instrução
- Próximo passo?

Replicação da CPU

- Acelerar processamento dos dados construindo arquiteturas com múltiplas CPU's
- Arquiteturas Paralelas
- Arquiteturas Distribuídas

Supercomputadores Vetorial/SMP/NUMA

Clusters of Workstations

Gric

Escala / Poder Computacional

Acoplamento

Complexidade de uso

- Dispositivos móveis
 - Rede Wi-fi
 - Rede 4G/5G

- IoT/Edge Computing
 - Big Data
 - Smart Cities

Classes de Arquiteturas Paralelas e Distribuídas

Por que estudar classificações?

- Identificar o critério da classificação
 - por que é importante e quais são as suas implicações
- Analisar todas as possibilidades
 - mesmo as classes que não foram implementadas ou as implementações que não deram certo
- Como se deu a evolução da área
 - como pode evoluir

- Classificação genérica (1970)
- Diferencia se o fluxo de instruções (instruction stream) e o fluxo de dados (data stream) são múltiplos ou não

Classificação de Flynn

	Single Data	Multiple Data
Single Instruction	SISD	SIMD
Multiple Instruction	MISD	MIMD

Classificaçã o Segundo o Compartilha mento de Memória A partir da arquitetura de barramentos que existia

Como construir máquinas com vários

processadores?

- Compartilho uma memória central
 - Arquitetura tradicional com vários processadores
 - · Comunico através da memória
 - Variáveis compartilhadas

Multiprocessador

- Não compartilho memória
 - Interligação de várias arquiteturas tradicionais
 - Cada uma possui sua memória local
 - Comunico por troca de mensagens

Multicomputador

Espaço de Endereçamento

- · Área de memória visível ao processador
- Memória compartilhada
 - único espaço de endereçamento
- Memória não compartilhada
 - múltiplos espaços de endereçamento privados
- Memória distribuída
 - · localização física da memória
 - · oposto: memória centralizada

Implementação da Memória

- Em um multiprocessador a memória é disputada pelos processadores
 - Muitas vezes endereços são diferentes
 - Posso quebrar memória em diferentes módulos para permitir múltiplos acessos
 - Memória Entrelaçada (interleaved)

Múltiplas Transações

- Não adianta a memória suportar múltiplos acessos se a rede não suportar
- Barramento suporta só uma transação por vez
- Ideal seria rede n\u00e3o bloqueante com suporte a v\u00e1rias transa\u00e7\u00f3es
- Ex: Matriz de Chaveamento (crossbar)

Classificação Segundo o Tipo de Acesso à Memória

- Multiprocessadores
 - UMA
 - NCC-NUMA
 - CC-NUMA
 - SC-NUMA
 - COMA

Classificação Segundo o Tipo de Acesso à Memória -Multiprocessa dores

UMA

- Uniform Memory Access
- Memória centralizada (mesma distância de todos os processadores)
- · Custo único de acesso
- Preciso tratar coerência das caches

Classificação Segundo o Tipo de Acesso à Memória -Multiprocessa dores

NUMA

- Non Uniform Memory Access
- Único espaço de endereçamento
- Memória distribuída (distâncias diferentes)
- Custo não uniforme de acesso à memória

Classificação Segundo o Tipo de Acesso à Memória -Multiprocessa dores - NUMA

- Em relação ao tratamento do problema de coerência de cache
 - NCC-NUMA
 - non cache-coherent NUMA
 - CC-NUMA
 - cache-coherent NUMA
 - implementada em hardware
 - SC-NUMA
 - software-coherent NUMA
 - implementada em software
 - DSM (Distributed Shared Memory)

Classificaçã o Segundo o Tipo de Acesso à Memória -Multiproces sadores

COMA

- Cache-only Memory Architecture
- Memórias locais são caches (coma caches)
- Gerência de caches na MMU

Classificação Segundo o Tipo de Acesso à Memória

- Multicomputadores
 - NORMA (non-remote memory access)
 - · Apenas acesso local à memória

Plataformas tradicionais para PPD

- PVP Processadores Vetoriais
- SMP Multiprocessadores Simétricos com memória compartilhada
- MPP Multicomputadores
 Massiçamente Paralelos com múltiplas
 memórias locais
- NOW Redes de Estações de Trabalho
- COW Cluster of Workstations

Diferenças e semelhanças entre PP e PD

Sistemas Concorrentes

- Tanto SP quanto SD s\u00e3o sistemas concorrentes
 - Compartilham características comportamentais
 - Mas tem objetivos diferentes!

Sistema Concorrente

· Concorrência:

"ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or at the same time simultaneously, without affecting the final outcome"

Objetivo principal

*Lamport

- Melhor aproveitamento dos recursos e ganho de responsividade
- Objetivos secundários
 - Facilidade de Modelagem

Sistema Concorrente

Sistema Distribuído

Sistema Distribuído*:

"Coleção de computadores independentes entre si que se apresenta ao usuário como um sistema único e coerente"

*Tanenbaum

- Objetivo principal
 - Escalabilidade e Tolerância a Falhas
- Objetivos secundários
 - Compartilhamento de Recursos
 - Transparência

Sistema Distribuído

Sistema Paralelo

Programação Paralela:

"Divisão de um problema em partes a fim de que estas partes possam ser executadas em paralelo em hardware dedicado para que o problema seja resolvido em menos tempo"

*De Rose

- Objetivo principal
 - Ganho de Desempenho
- Objetivos secundários
 - · Tolerância à Falhas

Sistema Paralelo

Métricas para Avaliação Destes Sistemas

Sistemas Concorrentes

- Separação (modelagem)
- Responsividade
- Corretude
 - Safety
 - não vai acontecer nada de ruim
 - Liveness
 - Eventualmente vai acontecer algo de bom

Sistemas Distribuídos

- Tempo de resposta
 - Latência (cliente)
- Transações por segundo
 - Provedor do serviço
- Tolerância a falhas
- Segurança

Sistemas Paralelos

- Fator de aceleração
 - Speed-up
- Eficiência

Fator de Aceleração (Speed-Up)

- Indica quantas vezes o programa paralelo ficou mais rápido que a versão sequencial
- É calculado pela razão entre o melhor tempo sequencial e o tempo da versão paralela)

•
$$SU_p(w) = \frac{T(w)}{T_p(w)}$$

 Onde p é o número de unidades ativas utilizadas e w o trabalho que foi calculado

Eficiência

- Indica como foi a taxa de utilização média das unidades ativas utilizadas
- Mostra se os recursos foram bem aproveitados
- É calculado pela razão entre o Speed-Up e o número de unidades ativas utilizadas

•
$$E_p(w) = \frac{SU_p(w)}{p}$$

 Onde p é o número de unidades ativas utilizadas e w o trabalho que foi calculado

Dúvidas?