JLX25696G-966-BN 使用说明书

(焊接式 FPC)

目 录

序号	内 容 标 题	页码
1	概述	2
2	特点	2
3	外形及接口引脚功能	3~5
4	电路框图及背光参数	6
5	技术参数	6~7
6	时序特性	7~11
7	指令表及硬件接口、编程案例	12~末页

1. 概述

晶联讯电子专注于液晶屏及液晶模块的研发、制造。所生产 JLX25696G-966-BN 型液晶模块由于使用方便、显示清晰,广泛应用于各种人机交流面板。

JLX25696G-966-BN可以显示 256 列*96 行点阵单色或 4 灰度级的图片,或显示 8 个/行*3 行 32*32 点阵或显示 10 个/行*4 行 24*24 点阵的汉字,或显示 16 个/行*6 行 16*16 点阵的汉字。

2. JLX25696G-966-BN 图像型点阵液晶模块的特性

- 2.1 结构牢。
- 2.2 IC采用矽创公司 ST75256, 功能强大, 稳定性好
- 2.3 功耗低不带背光 1mW (3.3V*0.3mA), 带背光不大于 200mW (3.3V*60mA);
- 2.4接口简单方便:可采用4线SPI串行接口、并行接口,I²C接口。
- 2.5 工作温度宽: -20℃∽+70℃;
- 2.6 储存温度宽: -30℃∽+80℃;
- 2.7 显示内容:
 - ●256*96 点阵单色或 4 灰度级图片:
 - ●或显示 8 个×3 行 32*32 点阵的汉字;

3. 外形尺寸及接口引脚功能:

图 1. 液晶模块外形尺寸

3.1 模块的接口引脚功能

3.1.1并行时接口引脚功能

表1

引线号	符号	名 称	功 能
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容
2	V0	倍压电路	VO 与 XVO 之间接一个电容
3	XV0	倍压电路	
4	CA1P	倍压电路	CA1P 与 CA1N 之间接一个电容
5	CA1N	倍压电路	
6	VDD	供电电源正极	供电电源正极 (3.3V)
7	VSS	供电电源负极	供电电源负极
8	COMSCN	COMSCN	镜像,默认接 VDD (接 VSS 镜像)要配合扫描指令才能旋转 180
9	IF2	IF2	L:接低电平
10	IF1	IF1	H:接高电平
11	IF0	IF0	L:接低电平
12	CS	片选	低电平片选
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")
14	E (RD)	使能信号	6800 时序: 使能信号
15	RW (WR)	读/写	6800 时序: H:读数据 0:写数据
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作
17~24	D0∼D7	I/0	并行接口时,数据总线 DBO~DB7
25	EXTB	空脚	空脚
26	VPP	空脚	空脚

表 1. 模块并行接口引脚功能

3.1.2 四线串行时接口引脚功能

表 2

l <u>.2 四线串行</u>	「时接口引	脚 切能	表 2
引线号	符 号	名 称	功 能
1	VG	偏压电路	LCD 偏置驱动电压,VG 与 VSS 之间接一个电容
2	V0	倍压电路	VO 与 XVO 之间接一个电容
3	XV0	倍压电路	
4	CA1P	倍压电路	CA1P 与 CA1N 之间接一个电容
5	CA1N	倍压电路	
6	VDD	供电电源正极	供电电源正极 (3.3V)
7	VSS	供电电源负极	供电电源负极
8	COMSCN	COMSCN	镜像,默认接 VDD (接 VSS 镜像)要配合扫描指令才能旋转 180
9	IF2	IF2	L:接低电平
10	IF1	IF1	L:接低电平
11	IF0	IF0	L:接低电平
12	CS	片选	低电平片选
13	AO (RS)	寄存器选择信号	H:数据寄存器 0:指令寄存器 (IC 资料上所写为 "CD")
14	E (RD)	使能信号	悬空或接 VDD
15	RW (WR)	读、写	悬空或接 VDD
16	RST	复位	低电平复位,复位完成后,回到高电平,液晶屏开始工作
17	DO (SCK)	I/0	串行时钟
18~20	D1 ~ D3	I/0	串行数据(D1、D2、D3 短接一起作为 SDA)
	(SDA)		
21~24	D4-D7	I/0	悬空或接 VDD

电话: 0755-29784961 Http://www.jlxlcd.cn 4

晶联讯电子 液晶模块 JLX25696G-966-BN

更新日期: 2021-10-20

25	EXTB	空脚	空脚
26	VPP	空脚	空脚

表 2: 4线 SPI 串行接口引脚功能

3.1.3 I2C 总线时接口引脚功能

表 3

专 180
<u>L</u>
<u> 1</u>
作

表 3: I2C 总线接口引脚功能

4. 电路框图

A K

图 2: JLX25696G-966-BN 图像点阵型液晶模块的电路框图

4.1 背光参数

- 该型号液晶模块带 LED 背光源。它的性能参数如下:

工作温度: -20℃∽+70℃

背光颜色: 白色。

正常工作电流为: (8~15)×4=32~60mA (LED 灯数共 4 颗);

工作电压: 3.0V; (接 3.3V 串 10 欧以上电阻,接 5.0V 串 51 欧以上电阻)

5. 技术参数

5.1 最大极限参数(超过极限参数则会损坏液晶模块)

名称	符号		标准值			
		最小	典型	最大		
电路电源	VDD - VSS	-0.3	3. 3V	4. 0	V	
LCD 驱动电压	V0 - XV0	-0.3	14. 3	19	V	
静电电压			_	100	V	
工作温度		-20	_	+70	$^{\circ}\!\mathbb{C}$	
储存温度		-30	_	+80	$^{\circ}\!\mathbb{C}$	

表 4: 最大极限参数

5.2 直流 (DC) 参数

	名 称	符号	测试条件	标 准 值	单位
--	-----	----	------	-------	----

			MIN	TYPE	MAX	
工作电压	VDD		2.6	3. 3	3. 5	V
背光工作电压	VLED	_	2. 9	3. 0	3. 1	V
输入高电平	VIH		0.8VDD		VDD	V
输入低电平	VIO		0		0. 2VDD	V
输出高电平	VOH	IOH = 0.2 mA	0.8VDD		VDD	V
输出低电平	V00	100 = 1.2 mA	0		0. 2VDD	V
模块工作电流	IDD	VDD = 3.0V		0.3	1.0	mA
背光工作电流	ILED	VLED=3.0V	32	60	80	mA

表 5: 直流 (DC) 参数

6. 读写时序特性(AC参数)

6.1 4线 SPI 串行接口写时序特性(AC 参数)

图 3. 从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

表 6. 写数据到 ST75256 的时序要求

项 目 符 号		测试条件	极限值			单位
			MIN	TYPE	MAX	
4线 SPI串口时钟周期	tSCYC		80			ns
(4-line SPI Clock Period)			60			
保持SCK高电平脉宽	tSHW		30			ns
(SCL "H" pulse width)		引脚: SCL	30			
保持SCLK低电平脉宽	tSLW		30			ns
(SCL "L" pulse width)						
地址建立时间	tSAS		20			ns
(Address setup time)		 引脚: AO				
地址保持时间	tSAH	プロAP: AU	20			ns
(Address hold time)						

		6
	~~	w _
 		튭

数据建立时间	tSDS		20	 	ns
(Data setup time)		引知 CID			
数据保持时间	tSDH	引脚: SID	20	 	ns
(Data hold time)					
片选信号建立时间	tCSS		20	 	ns
(CS-SCL time)		引脚: CSB			
片选信号保持时间	tCSH	力M: CSD	20	 	ns
(CS-SCL time)					

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升和下降时间(TR, TF)在15纳秒或更少的规定。

所有的时间,用 20%和 80%作为标准规定的测定。

6.2 6800 时序并行接口的时序特性(AC参数)

表 7. 读写数据的时序要求

项 目	符号	名称		极限值		
			MIN	TYPE	MAX	
地址保持时间	A0	tAH6	20			ns
地址建立时间		tAW6	0			ns
系统循环时间	Е	tCYC6	160			ns
使能"低"脉冲宽度		tEWLW	70			ns
使能"高"脉冲宽度		tEWHW	70			ns
写数据建立时间	DB[7: 0]	tDS6	15			ns
写数据保持时间		tDH6	15			ns

VDD =1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc6-tewlw-tewhw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tewlw 指定为重叠的 CSB "H"和"L"。

R/W信号总是"H"

6.3 8080 时序并行接口的时序特性(AC参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 5. 写数据到 ST75256 的时序要求 (8080 系列 MPU)

表 8. 读写数据的时序要求

项 目	符号	名称		极限值		单位					
			MIN	TYPE	MAX						
地址保持时间	A0	tAH8	20			ns					
地址建立时间		tAW8	0			ns					
系统循环时间	/WR	tCYC8	160			ns					
使能"低"脉冲宽度		tCCLW	70			ns					
使能"高"脉冲宽度		tCCHW	70			ns					
写数据建立时间	DB	tDS8	15			ns					
写数据保持时间		tDH8	15			ns					

VDD = 1.8 $^{\circ}$ 3.3V ± 5%, Ta = -30 $^{\circ}$ 85 $^{\circ}$ C

输入信号的上升时间和下降时间(TR, TF)是在15纳秒或更少的规定。当系统循环时间非 常快,

(TR + TF) ≤ (tcyc8 - tcclw - tcchw) 指定。

所有的时间,用 20%和 80%作为参考指定的测定。

tcclw 被指定为"L"之间的重叠 CSB 和/ WR 处于"L"级

6.3 I²C接口的时序特性(AC 参数)

从 CPU 写到 ST75256 (Writing Data from CPU to ST75256)

图 6.	写数据到 9	T75256 的时序要求	(I ² C 系列 MP	לטי	I/c	10							
表 9. 读写数据的时序要求													
项 目	符号	名称		极限值		单位							
			MIN	TYPE	MAX								
SCL时钟频率	CSL	FSCLK			400	kUZ							
SCL时钟的低周期	CSL	TLOW	1.3			us							
SCL时钟周期	CSL	THIGH	0.6		_	us							
数据保持时间	SDA	TSU;Data	0.1		-	ns							
数据建立时间	SDA	THD;Data	0		0.9	us							
SCL, SDA 的上升时间	SCL	TR	20+0. 1Cb		300	ns							
SCL, SDA 下降时间	SCL	TF	20+0. 1Cb		300	ns							
每个总线为代表的电容 性负载		Cb			400	pF							
一个重复起始条件设置 时间	SDA	TSU; SUA	0.6			us							
启动条件的保持时间	SDA	THD;STA	0.6			us							
为停止条件建立时间		TSU;STO	0.6			us							
容许峰值宽度总线		TSW			50	ns							
开始和停止条件之间的 总线空闲时间	SCL	TBUF	0.1			us							

所有的时间,用 20%和 80%作为标准规定的测定。

这是推荐的操作 I C接口与 VDD1 高于 2.6V。

6.4 电源启动后复位的时序要求 (RESET CONDITION AFTER POWER UP):

图 7: 电源启动后复位的时序

表 10. 由源启动后复位的时序要求

◇ 10:电源点划点复位的时子安 次													
项	符	号		测记	式条件				•	单位			
								MIN		TYPE	MAX		
复位保持低电	电平的时间	TRW	1					100				1	ms
复位时间		T _R								100	H	ms	
												N	
												ļ .	

7. 指令功能:

7.1 指令表 表 11

7.1 34 4 4					lla.	۸	•				投 []
指令名称				1	1	令 码	i		ı		
	RS	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
(1)扩展指令1	0	0	0	0	1	1	EXT1	0	0	EXT0	扩展指令1、2、3、4
							<u> </u>				0X30:扩展指令1
Ext[1:0]=0, 0 (Extension	n Comma	ind1/扩	展指令	- 1) 0	X30 ±	广屏指	令 1 -	一定要	调用(DX30 ス	上能用扩展指令 1
(2)显示开/关	0	0	1	0	1	0	1	1	1	0	显示开/关:
(display on/off)										1	OXAE: 关, OXAF: 开
(3)正显/反显	0	0	1	0	1	0	0	1	1	0	显示正显/反显
(Inverse Display)										1	OXA6:正显,正常
											OXA7: 反显
(4)所有点阵开/关	0	0	0	0	1	0	0	0	1	0	0X22: 所有点阵关
(All Pixel ON/OFF)										1	0X23: 所有点阵开
(5) 控制液晶屏显示	0	0	1	1	0	0	1	0	1	0	OXCA:显示控制
(Display Control)	1	0	0	0	0	0	0	CLD	0	0	0X00:设置 CL 驱动频率: CLD=0
	1	0	DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0	0X7F:点空比: Duty=128
	1	0	0	0	LF4	F1	LF3	LF2	LF1	LF0	0X20:帧周期
(6)省电模式	0	0	1	0	0	1	0	1	0	SLP	0X94: SLP=0, 退出睡眠模式
(Power save)											0X95 : SLP=1,进入睡眠模式
(7)页地址设置	0	0	0	1	1	1	0	1	0	1	0X75: 页地址设置
(Set Page Address)	1	0	YS7	YS6	YS5	YS4	YS3	YS2	YS1	YS0	0X00: 起始页地址
	1	0	YE7	YE6	YE5	YE4	YE3	YE2	YE2	YE0	0X1F: 结束页地址,每4行为1页
(8)列地址设置	0	0	0	0	0	1	0	1	0	1	0X15: 列地址设置
(Set Column Address)	1	0	XS7	XS6	XS5	XS4	XS3	XS2	XS1	XS0	0X00: 起始列地址
	1	0	XE7	XE6	XE5	XE4	XE3	XE2	XE1	XE0	OXFF: 结束列地址 XE=256
(9)行列扫描 方向	0	0	1	0	1	1	1	1	0	0	OXBC: 行列扫描方向
(Data Scan Direction)	1	0	0	0	0	0	0	MV	MX	MY	0X00: MX、MY=Normal
(10)写数据到晶液屏	0	0	0	1	0	1	1	1	0	0	OX5C: 写数据
(Write Data)	1	0	D7	D6	D5	D4	D3	D2	D1	DO	8位显示数据
(11)读液晶屏显示数据	0	0	0	1	0	1	1	1	0	1	OX5D: 读数据
(Read Data)	1	1	D7	D6	D5	D4	D3	D2	D1	DO	8 位显示 数据
(12)指定区域显示数据	0	0	1	0	1	0	1	0	0	0	OXA8: 指定显示区域
(Partial In)	1	0	PTS7	PTS6	PTS5	PTS4	PTS3	PTS2	PTS1	PTS0	起始区域地址: 00h≤PTS≥A1h
	1	0	PTE7	PTE6	PTE5	PTE4	PTE3	PTE2	PTE1	PTE0	结束区域地址: 00h≤PTE≥A1h
(13) 退出指定区域显示	0	0	1	0	1	0	1	0	0	1	OXA9: 退出指定区域显示
(Partial Out)											
(14)读/改/写	0	0	1	1	1	0	0	0	0	0	OXEO: 进入读/改/写
(15)退出读/改/写	0	0	1	1	1	0	1	1	1	0	OXEE: 退出读/改/写
(16)指定显示滚动区域	0	0	1	0	1	0	1	0	1	0	OXAA: 滚动区域设置
(Scroll Area)	1	0	TL7	TL6	TL5	TL4	TL3	TL2	TL1	TL0	TL[7:0]:起始区域地址
	1	0	BL7	BL6	BL5	BL4	BL3	BL2	BL1	BL0	BL[7:0]:结束区域地址
	1	0	NSL7	NLS6	NSL5	NSL4	NSL3	NSL2	NSL1	NSL0	NSL[7:0]:指定行数
	1	0	0	0	0	0	0	0	SCM1	SCM0	SCM[1:0]:显示模式
(17)显示初始行设置	0	0	1	0	1	0	1	0	1	1	OXAB: 滚动开始初始行设置
, ,	1			<u> </u>	J			1	1	l	

ILX [®] 晶联讯	电子	<u> </u>	液晶	模块	L J	JLX2	25696	6G-90	66-B	N	更新日期: 2021-10-20
(Set Start Line)	1	0	SL7	SL6	SL5	SL4	SL3	SL2	SL1	SL0	00h≤SL≥A1h
(18)开振荡电路	0	0	1	1	0	1	0	0	0	1	OXD1: 开内部振荡电路
(19)关振荡电路	0	0	1	1	0	1	0	0	1	0	OXD2: 关内部振荡电路
(20)电源控制	0	0	0	0	1	0	0	0	0	0	0X20: 电源控制
(Power Control)	1	0	0	0	0	0	VB	0	VF	VR	OXOB: VB、VF、VR=1
(21)液晶内部电压设置	0	0	1	0	0	0	0	0	0	1	0X81:设置对比度
(Set Vop)	1	0	0	0	Vop5	Vop4	Vop3	Vop2	Vop1	Vop0	0X0a: 微调对比度,范围 0X00-0XFF
	1	0	0	0	0	0	0	Vop7	Vop6	Vop5	0X04:粗调对比度,范围 0X00-0X07
											先微调再粗调,顺序不能变
(22)液晶内部电压控制	0	0	1	1	0	1	0	1	1	VOL	OXD6: VOP 每格增加 0.04V
(Vop Control)											OXD7: VOP 每格减少 0.04V
(23)读寄存器模式	0	0	0	1	1	1	1	1	0	REG	OX7C: 读寄存器值 Vop[5:0]
											OX7D: 读寄存器值 Vop[8:6]
(24)空操作	0	0	0	0	1	0	0	1	0	1	0X25: 空操作
(25)读状态 (并行、IIC)	0	1	D7	D6	D5	D4	D3	D2	D1	DO DO	读状态字节
(26)读状态(串行接口)	0	0	1	1	1	1	1	1	1	0	读状态字节
	0	1	D7	D6	D5	D4	D3	D2	D1	D0	
(27)数据格式选择	0	0	0	0	0	0	1	D0	0	0	0X08 :数据 D7→D0
(Data Format Select)											OXOC: 数据 DO→D7
(28)显示模式	0	0	1	1	1	1	0	0	0	0	OXFO: 显示模式设置
(Display Mode)	1	0	0	0	0	1	0	0	0	DM	0X10 : 黑白模式
											0X11: 4 灰级度模式
(29)ICON设置	0	0	0	1	1	1	0	1	1	ICON	OX77: 使能 ICON RAM
		\blacksquare									OX76: 禁用 ICON RAM
(30)设置主/从模式	0	0	0	1	1	0	1	1	1	MS	0X6E: 主模式(使用主模式)
D + [1 + 0] - 0 + 1 / D +	•		1.0	OV	ىدىل 1.0	四米人		८ मा अ	# III 07	701 -	OX6F: 从模式
Ext[1:0]=0, 1 (Extense (31) 灰度设置	o on	Comman	1 a 2)	0		并指令	$\frac{\mathbf{z}}{0}$	1	旬用 U2	0	能用扩展指令 2 0X20 : 灰度级设置
(31)灰度 反直 Set Gray Level	1	0	0	0	0	0	0	0	0	0	GL[4:0]: 浅灰度级设置
Set Glay Level	1	0	0	0	0	0	0	0	0	0	GD[4:0]: 深灰度级设置
	1	0	0	0	0	0	0	0	0	0	加[4.0]、 体外及级议直
	1	0	0	0	0	GL4	GL3	GL2	GL1	GLO	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GLO GLO	
	1	0	0	0	0	GL4	GL3	GL2	GL1	GLO GLO	
		0	0				0	0	0		
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	GD4	GD3	GD2	GD1	GD0	
	1	0	0	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	0	
	0	0	0	0	1	1	0	0	1	0	
(32)LCD偏压比设置	1	0	0	0	0	0	0	0	0	0	ypg, 20 Q.E.
	1	v	Ŭ	V			Ŭ	J			

更新日期: 2021-10-20

亩 块 八	1 十二 1		71义 自日	アングラ		JLX2	,5050)U-3(ום-טנ	LN	史
	1	0	0	0	0	0	0	0	BE1	BE0	0X01: 升压电容频率
	1	0	0	0	0	0	0	BS2	BS1	BS0	0X02: 偏压比,BIAS=1/12
(33)升压倍数	0	0	0	1	0	1	0	0	0	1	0X51:内建升压倍数设置
(Booster Level)	1	0	0	1	1	1	1	0	1	BST	0X7B:10 倍
(34)电压驱动选择	0	0	0	1	0	0	0	0	0	DS	0X41: LCD 内部升压
(01)/10/2025/37/2011	0	0	1	1	0	1	0	1	1	1	XARD=0: 使能自动读
(35)自动读取控制	1	0	1	0	0	XARD	1	1	1	1	XARD=0: 不使能自动读
	0	0	1	1	1	0	0	0	0	0	0xeO: OTP 读写
 (36)控制OTP读写	1	0	0	0	ER/	0	0	0	0	0	WR/RD=0; 0x00, 使能 OTP 读
(30)江南311 英国	1		U	0	RD		U		U	U	ER/RD=1; 0x20, 使能 0TP 写
(37)控制OTP出	0	0	1	1	1	0	0	0	0	1	控制 OTP 出
(38)写OTP	0	0	1	1	1	0	0	0	1	0	写 OTP
	0	0	1				0	0	_	-	读OTP
(39)读OTP				1	1	0	_		1	1	
(40) 0.75) # 17 12 4 1	0	0	1	1	1	0	0	1	0	0	Oxe4: OTP 选择控制
(40)OTP选择控制	1	0	1	Ctrl	0	0	1	0	0	1	Ctrl=1: 0xc9,不使能 OTP
											Ctrl=0: 0x89,使能 OTP
(41)OTP程序设置	0	0	1	1	1	0	0	1	0	1	OTP 程序设置
(, , , , , , , , , , , , , , , , , , ,	1	0	0	0	0	0	1	1	1	1	
	0	0	1	1	1	1	0	0	0	0	0xf0: 帧速率设置在不同的温度范
	1	0	0	0	0	FRA4	FRA3	FRA2	FRA1	FRA0	
(42) 帧速率	1	0	0	0	0	FRB4	FRB3	FRB2	FRB1	FRB0	
	1	0	0	0	0	FRC4	FRC3	FRC2	FRC1	FRC0	
	1	0	0	0	0	FRD4	FRD3	FRD2	FRD1	FRD0	
	0	0	1	1	1	1	0	0	1	0	0xf2: 温度范围设置
(40) 油麻井田	1	0	0	TA6	TA5	TA4	TA3	TA2	TA1	TA0	
(43)温度范围	1	0	0	TB6	TB5	TB4	ТВ3	TB2	TB1	ТВ0	
	1	0	0	TC6	TC5	TC4	TC3	TC2	TC1	TC0	
	0	0	1	1	1	1	0	1	0	0	0xf4: 温度补偿系数设置
	1	0	MT13	MT12	MT11	MT10	MT03	MT02	MT01	MTOO	
	1	0	MT33	MT32	MT31	MT30	MT23	MT22	MT21	MT20	
	1	0	MT53	MT52	MT51	MT50	MT43	MT42	MT41	MT40	
(44)温度梯度补偿	1	0	MT73	MT72	MT71	MT70	MT63	MT62	MT61	MT60	
	1	0	MT93	MT92	MT91	MT90	MT83	MT82	MT81	MT80	
	1	0	MTB3	MTB2	MTB1	МТВО	MTA3	MTA2	MTA1	MTAO	
	1	0	MTD3	MTD2	MTD1	MTDO	MTC3	MTC2	MTC1	MTCO	
	1	0	MTF3	MTF2	MTF1	MTFO	MTE3	MTE2	MTE1	MTEO	
Ext[1:0]=1,0(Extension	Com	and 3) 0x38	」 3 扩屏:		一定	要调月	□ ∃ 0 X38	才能	□ 用扩展	
	0	0	1	1	0		0	1	0	1	0xd5: ID 设置
(45) ID 设置	1	0	ID7	ID6	ID5	ID4	ID3	ID2	ID1	IDO	- VA
(46)读 ID	0	0	0	1	1	1	1	1	1	RID	RID=1: 0x7f,使能
Ext[1:0]=1,1(Extension	Ů		_				•				
	0		1	1	0 18 4 4	1	女 炯/7	1	1	את עננדי	Oxd6: 使能 OTP
			•	1					•		EOTP=1;不使能 EOTP,一般不
(47) 使能 OTP											使能 EOTP
											便能 EOTP EOTP=0;使能 EOTP
					<u> </u>]					COIP=U; 使形 EUIP

请详细参考 IC 资料"ST75256.PDF"。

7.2 点阵与 DD RAM 地址的对应关系

请留意页的定义: PAGE, 与平时所讲的"页"并不是一个意思, 在此表示 8 个行就是一个"页", 一个 256*96 点阵的屏分为 12 个"页", 从第 0"页"到第 11"页"。

DB7—DB0 的排列方向:数据是从下向上排列的。最低位 D0 是在最上面,最高位 D7 是在最下面。每一位(bit)数据对应一个点阵,通常"1"代表点亮该点阵,"0"代表关掉该点阵.如下图所示:

Figure 21 DDRAM Mapping (4-Level Gray Scale Mode)

下图摘自 ST75256 IC 资料,可通过"ST75256. PDF"之第 37 页获取最佳效果。

7.3 初始化方法

用户所编的显示程序, 开始必须进行初始化, 否则模块无法正常显示, 过程请参考程序

点亮液晶模块的步骤

7.4接口方式及程序:

7.4.1 液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

图 8: 并行接口图

/* 液晶模块型号: JLX25696G-966

并行接口: 6800 时序 驱动 IC 是:ST75256

版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;

*/

#include <STC15F2K60S2.H>
#include <intrins.h>
#include <chinese_code.h>

sbit CS=P3⁴; /*对应 LCD 的 CS 引脚*/ sbit RST=P3⁵; /*对应 LCD 的 RST 引脚*/ sbit RS=P3³; /*对应 LCD 的 RS 引脚*/

}

```
sbit E=P3^0;
                      /*对应 LCD 的 E(RD) 引脚*/
sbit RW=P2^1:
                      /*对应 LCD 的 RW(WR) 引脚。另外 P1. 0~1. 7 对应 D0~D7*/
                      /*按键接口, P2.0 口与 GND 之间接一个按键*/
sbit key=P2^0;
#define uchar unsigned char
#define uint unsigned int
/*延时: 1 毫秒的 i 倍*/
void delay_ms (int i)
    int j, k;
    for(j=0;j<i;j++)
         for (k=0; k<110; k++);
}
/*延时: lus 的 i 倍*/
void delay_us(int i)
    int j, k;
    for(j=0;j<i;j++)
         for (k=0; k<1; k++);
/*等待一个按键, 我的主板是用 P2.0 与 GND 之间接一个按键*/
void waitkey()
 repeat:
    if (key==1) goto repeat;
    else delay(2000);
}
     =======transfer command to LCM=
void transfer_command_lcd(int datal)
{
    CS=0;
    RS=0:
    E=0:
    delay_us(1);
    RW=0:
    P1=data1;
    E=1:
    delay_us(1);
    CS=1:
    E=0:
```

```
//----transfer data to LCM-
void transfer_data_lcd(int data1)
     CS=0;
     RS=1:
     E=0:
     delay_us(1);
     RW=0;
     P1=data1;
     E=1;
     delay_us(1);
     CS=1:
     E=0:
}
void initial_lcd()
    RST=0;
     delay_ms(100);
     RST=1;
     delay_ms(100);
     transfer_command_lcd(0x30);
                                   //EXT=0
     transfer_command_1cd(0x94);
                                   //Sleep out
     transfer_command_lcd(0x31);
                                   //EXT=1
     transfer_command_lcd(0xD7);
                                   //Autoread disable
     transfer_data_lcd(0X9F);
     transfer_command_lcd(0x32);
                                   //Analog SET
     transfer_data_lcd(0x00);
                                      //OSC Frequency adjustment
     transfer_data_lcd(0x01);
                                      //Frequency on booster capacitors->6KHz
     transfer_data_1cd(0x03);
                                      //Bias=1/11
     transfer_command_lcd(0x20);
                                   // Gray Level
     transfer_command_lcd(0x31);
                                   //Analog SET
     transfer_command_lcd(0xf2);
                                   //温度补偿
     transfer_data_lcd(0x1e);
                                   //OSC Frequency adjustment
     transfer_data_lcd(0x28);
                                   //Frequency on booster capacitors->6KHz
     transfer_data_lcd(0x32);
                                   //
     transfer_data_lcd(0x01);
     transfer_data_lcd(0x03);
     transfer_data_lcd(0x05);
     transfer_data_lcd(0x07);
     transfer_data_lcd(0x09);
     transfer_data_lcd(0x0b);
     transfer_data_lcd(0x0d);
```

液晶模块

```
transfer_data_lcd(0x10);
    transfer_data_lcd(0x11);
    transfer_data_lcd(0x13);
    transfer_data_lcd(0x15);
    transfer_data_lcd(0x17);
    transfer_data_lcd(0x19);
    transfer_data_lcd(0x1b);
    transfer_data_lcd(0x1d);
    transfer data lcd(0x1f);
    transfer_command_lcd(0x30);
                                  //EXT=0
    transfer_command_lcd(0x75);
                                  //Page Address setting
                                  // XS=0
    transfer_data_lcd(0X00);
    transfer_data_lcd(0X14);
                                  // XE=159 0x28
    transfer_command_lcd(0x15);
                                  //Clumn Address setting
                                  // XS=0
    transfer_data_lcd(0X00);
                                  // XE=256
    transfer data lcd(0Xff);
    transfer_command_lcd(0xBC);
                                   //Data scan direction
    transfer_data_lcd(0x00);
                                      //MX. MY=Normal
    transfer_data_lcd(0xA6);
    transfer_command_lcd(0xCA);
                                   //Display Control
                                     //
    transfer_data_1cd(0X00);
                                      //Duty=160
    transfer_data_lcd(0X9F);
    transfer_data_1cd(0X20);
                                      //Nline=off
    transfer_command_lcd(0xF0);
                                   //Display Mode
    transfer_data_lcd(0X10);
                                      //10=Monochrome Mode, 11=4Gray
    transfer_command_lcd(0x81);
                                   //EV control
    transfer_data_lcd(0x0a);
                                      //VPR[5-0]
                                                 //可设置范围 0x00~0x3f, 每格电压是 0.04V
                                                 //可设置范围 0x00~0x07
                                      //VPR[8-6]
    transfer_data_lcd(0x04);
    transfer_command_lcd(0x20);
                                   //Power control
    transfer_data_lcd(0x0B);
                                      //D0=regulator ; D1=follower ; D3=booste,
                                                                                on:1 off:0
    delay_us(100);
    transfer_command_lcd(0xAF);
                                   //Display on
}
/*写 LCD 行列地址: X 为起始的列地址, Y 为起始的行地址, x_total, y_total 分别为列地址及行地址的起点到终点的差值 */
void lcd_address(int x, int y, x_total, y_total)
{
    x=x-1:
    y=y+7;
    transfer_command_lcd(0x15); //Set Column Address
    transfer_data_lcd(x);
    transfer_data_lcd(x+x_total-1);
    transfer_command_lcd(0x75); //Set Page Address
    transfer_data_lcd(y);
    transfer_data_lcd(y+y_total-1);
```

}

```
液晶模块
    transfer_command_lcd(0x30);
    transfer_command_lcd(0x5c);
}
/*清屏*/
void clear_screen()
    int i, j;
    lcd_address(1, 1, 256, 17);
    for(i=0;i<17;i++)
         for(j=0;j<256;j++)
             transfer_data_lcd(0x00);
    }
}
//写入一组 16x16 点阵的汉字字符串(字符串表格中需含有此字)
//括号里的参数: (页, 列, 汉字字符串)
void display_string_16x16(uchar column, uchar page,uchar *text)
{
    uchar i, j, k;
    uint address;
    j=0;
    while(text[j]!= '\0')
         i=0;
         address=1;
         while (Chinese_text_16x16[i]> 0x7e)
             if(Chinese_text_16x16[i] == text[j])
                  if(Chinese\_text\_16x16[i+1] == text[j+1])
                  {
                      address=i*16;
                      break;
                  }
             }
             i +=2;
         }
         if (column>255)
             column=0;
             page+=2;
```

```
if(address !=1)
          {
              lcd_address(column, page, 16, 2);
              for (k=0; k<2; k++)
               {
                   for(i=0;i<16;i++)
                        transfer_data_lcd(Chinese_code_16x16[address]);
                        address++;
                   }
              }
              j +=2;
         }
          else
          {
              lcd_address(column, page, 16, 2);
              for (k=0; k<2; k++)
                   for(i=0;i<16;i++)
                        transfer_data_lcd(0x00);
                   }
              j++;
          column+=16;
/*显示 32*32 点阵的汉字或等同于 32*32 点阵的图像*/
void disp_32x32(int x, int y, uchar *dp)
{
     int i, j;
     1cd_address(x, y, 32, 4);
     for(i=0;i<4;i++)
          for(j=0;j<32;j++)
              transfer_data_lcd(*dp);
              dp++;
         }
}
```

```
/*显示 256*96 点阵的图像*/
void disp_256x96(int x, int y, char *dp)
    int i, j;
    lcd_address(x, y, 256, 12);
    for (i=0; i<12; i++)
         for(j=0;j<256;j++)
             transfer_data_lcd(*dp);
             dp++;
    }
}
void main()
  P1M1=0x00;
    P1M0=0x00;
                 //P1 配置为准双向
    P2M1=0x00;
    P2M0=0x00;
                 //P2 配置为准双向
    P3M1=0x00:
                 //P3 配置为准双向
    P3M0=0x00;
    initial_lcd();
                                                          //对液晶模块进行初始化设置
    while(1)
                                                 //清屏
         clear_screen();
         disp_256x96(1, 1, bmp1);
                                            //显示一幅 256*96 点阵的黑白图。
         waitkey();
         disp_256x96(1, 1, bmp2);
                                            //显示一幅 256*96 点阵的黑白图。
         waitkey();
         disp_256x96(1, 1, bmp3);
                                            //显示一幅 256*96 点阵的黑白图。
         waitkey();
         disp_256x96(1, 1, bmp4);
                                            //显示一幅 256*96 点阵的黑白图。
         waitkey();
         clear_screen();
         display_string_16x16(33, 4, "深圳市晶联讯电子有限公司");
         disp_32x32((32*0+48), 8, jing2);
         disp_32x32((32*1+48),8,1ian2);
         disp_32x32((32*2+48), 8, xun2);
         disp_32x32((32*3+48), 8, dian2);
         disp_32x32((32*4+48), 8, zi2);
         waitkey();
    }
}
```


7.5 程序举例:

7.5.1 串行接口

液晶模块与 MPU(以 8051 系列单片机为例)接口图如下:

显示方向按图纸,COM接3.3V

显示方向旋转180度,COM接VSS

并行程序与串行只是接口定义、写数据和命令不一样,其它都一样

```
串行接口程序
sbit 1cd cs1 = P3^4://CS
sbit lcd_reset= P3^5;//RST
sbit lcd_sclk = P1^0;//串行时钟
sbit lcd_rs = P3^3;//RS
sbit lcd_sid = P1^1;//串行数据
             = P2^0://按键
sbit kev
//写指令到 LCD 模块
void transfer_command_lcd(int data1)
    char i;
    1cd cs1=0;
    1cd_rs=0;
    for (i=0; i<8; i++)
        lcd sc1k=0;
        if(data1&0x80) lcd_sid=1;
        else lcd sid=0;
        lcd sclk=1;
       data1<<=1;
    1cd_cs1=1;
//写数据到 LCD 模块
void transfer data lcd(int datal)
    char i;
    1cd cs1=0;
    1cd rs=1:
    for (i=0; i<8; i++)
       1cd sc1k=0;
        if (data1&0x80) lcd sid=1;
        else lcd sid=0;
        lcd sclk=1;
        data1<<=1;
    1cd cs1=1;
```

7.6、IIC 接口

图 10. IIC

7.6.1、以下为 I2C 接口方式范例程序 与串行方式相比较,只需改变接口顺序以及传送数据、传送命令这两个函数即可:

```
液晶模块型号: JLX25696G-966
    IIC 接口
    驱动 IC 是:ST75256
    版权所有: 晶联讯电子: 网址 http://www.jlxlcd.cn;
#include <reg52.H>
#include <intrins.h>
#include <chinese code.h>
sbit reset=P1^1;
     sc1=P1^3;
sbit
sbit sda=P1^2;
sbit key=P2^0;
void transfer(int data1)
    int i;
    for (i=0; i<8; i++)
        sc1=0;
        if(data1&0x80) sda=1;
        else sda=0;
        sc1=1;
        sc1=0;
        data1=data1<<1;</pre>
        sda=0;
        sc1=1;
        sc1=0;
void start_flag()
    sc1=1;
                /*START FLAG*/
                /*START FLAG*/
    sda=1;
    sda=0;
                /*START FLAG*/
void stop_flag()
    scl=1;
                /*STOP FLAG*/
                /*STOP FLAG*/
    sda=0;
    sda=1;
                /*STOP FLAG*/
//写命令到液晶显示模块
void transfer command(uchar com)
    start flag();
    transfer (0x78);
    transfer(0x80);
    transfer(com);
    stop_flag();
```

```
//写数据到液晶显示模块
void transfer_data(uchar dat)
{
    start_flag();
    transfer(0x78);
    transfer(0xC0);
    transfer(dat);
    stop_flag();
}
```

-END-

