# Algoritmos Evolutivos TP3 Juan Pablo Schamun

## Ejercicio1

- a) Se intenta utilizando PSO con restricciones maximizar la siguiente función:
  - f(A, B, C, D) = 375\*A + 275\*B + 475\*C + 325\*D

#### Sujeto a:

- g1(X) = 2.5\*A + 1.5\*B + 2.75\*C + 2\*D <= 640
- g2(X) = 3.5\*A + 3\*B + 3\*C + 2\*D <= 960
- A, B, C, D >= 0.

El algoritmo se encuentra en el git

- b) Solución encontrada:
  - Solución óptima: X = [52.6250, 40.8868,120.7945, 57.4612]
  - Valor óptimo: y = 107030.5
- c) URL GitHub:

https://github.com/juanpsch/AEIV/blob/main/TP3/TP3 1.ipynb

d) Grafico:



- e) Si se reduce en una unidad el tiempo de acabado de la parte b, se cambia la restricción dos por:
  - 3.5\*A + **2**\*B + 3\*C + 2\*D <= 960

Dando como solución:

- Solución óptima: X = [84.1278, 71.2885,81.9580, 48.6816]
- Valor óptimo: y = 105903.8

Se ve que aumentan las cantidades de B de la solución óptima.

Igual el algoritmo tiene cierta variabilidad

f) Gráfico de BoxPlots con 3 métodos de inercia



g) Mínimamente funciona con 4 partículas. Menos que eso, el algoritmo es muy variable

## Ejercicio2

- a) Se intenta utilizando PSO con restricciones maximizar la siguiente función:
- f(X) = 500\*x1 + 400\*x2

#### Sujeto a:

- $g1(X) = 300*x1 + 400*x2 \le 127000$
- g2(X) = 20\*x1 + 10\*x2 <= 960
- x1, x 2>= 0

El algoritmo se encuentra en el git

- b) Solución encontrada:
  - Solución óptima: X = [52.6250, 40.8868,120.7945, 57.4612]

- Valor óptimo: y = 107030.5
- c) URL GitHub:

https://github.com/juanpsch/AEIV/blob/main/TP3/TP3\_2.ipynb

d) Grafico:



- e) Si se reduce en una unidad el tiempo de acabado de la parte b, se cambia la restricción dos por:
  - 3.5\*A + **2**\*B + 3\*C + 2\*D <= 960

Dando como solución:

- Solución óptima: X = [84.1278, 71.2885,81.9580, 48.6816]
- Valor óptimo: y = 105903.8

Se ve que aumentan las cantidades de B de la solución óptima.

Igual el algoritmo tiene cierta variabilidad

f) Gráfico de BoxPlots con 3 métodos de inercia



g) Con menos de 6 partículas, el algoritmo tiene mucha variabilidad en la solución óptima encontrada