

# Next Generation OP07 Ultralow Offset Voltage Operational Amplifier

**NP77** 

#### **FEATURES**

Outstanding gain linearity Ultrahigh gain, 5000 V/mV min Low  $V_{OS}$  over temperature, 55  $\mu$ V max Excellent TCV<sub>OS</sub>, 0.3  $\mu$ V/°C max High PSRR, 3  $\mu$ V/V max Low power consumption, 60 mW max Fits OP07, 725,108A/308A, 741 sockets Available in die form



Figure 1. 8-Pin Hermetic DIP\_Q-8 (Z Suffix)



#### **GENERAL DESCRIPTION**

The OP77 significantly advances the state-of-the-art in precision op amps. The outstanding gain of 10,000,000 or more for the OP77 is maintained over the full 10 V output range. This exceptional gain-linearity eliminates incorrectable system nonlinearities common in previous monolithic op amps and provides superior performance in high closed-loop gain applications. Low initial  $V_{\rm OS}$  drift and rapid stabilization time, combined with only 50 mW of power consumption, are significant improvements over previous designs. These characteristics, plus the exceptional  $TCV_{\rm OS}$  of 0.3  $\mu V/^{\circ}C$  maximum and the low  $V_{\rm OS}$  of 25  $\mu V$  maximum, eliminates the

need for  $V_{\text{OS}}$  adjustment and increases system accuracy over temperature.

A PSRR of 3  $\mu V/V$  (110 dB) and CMRR of 1.0  $\mu V/V$  maximum virtually eliminate errors caused by power supply drifts and common-mode signals. This combination of outstanding characteristics makes the OP77 ideally suited for high resolution instrumentation and other tight error budget systems.

# **OP77**

# **TABLE OF CONTENTS**

| Features                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin Connections                                                                                                                                                                                                                                                                                        |
| General Description                                                                                                                                                                                                                                                                                    |
| Revision History                                                                                                                                                                                                                                                                                       |
| Electrical Specifications                                                                                                                                                                                                                                                                              |
| Wafer Test Limits4                                                                                                                                                                                                                                                                                     |
| Typical Electrical Characteristics                                                                                                                                                                                                                                                                     |
| Absolute Maximum Ratings                                                                                                                                                                                                                                                                               |
| REVISION HISTORY                                                                                                                                                                                                                                                                                       |
| 4/10—Rev. D to Rev. E                                                                                                                                                                                                                                                                                  |
| Removed Figure 33 and Two Subsequent Paragraphs12                                                                                                                                                                                                                                                      |
| 6/09—Rev. C to Rev. D                                                                                                                                                                                                                                                                                  |
| Changes to Figure 1 and Figure 2       1         Changes to Table 1       3         Removed Endnote 1 and Endnote 2 in Table 3       4         Changes to Figure 16       9         Changes to Figure 31 and Figure 32       12         Changes to Figure 38       14         Moved Figure 39       14 |
| 10/02—Rev. B to Rev. C                                                                                                                                                                                                                                                                                 |
| Edits to Specifications2Figure 2 Caption Changed10Figure 3 Caption Changed10Edits to Figure 1011Updated Outline Dimensions15                                                                                                                                                                           |
| 2/02—Rev. A to Rev. B                                                                                                                                                                                                                                                                                  |
| Remove 8-Lead SO PIN Connection Diagrams                                                                                                                                                                                                                                                               |

| Thermal Resistance                  | t  |
|-------------------------------------|----|
| ESD Caution                         | θ  |
| Typical Performance Characteristics |    |
| Test Circuits                       | 10 |
| Applications                        | 11 |
| Precision Current Sinks             | 12 |
| Outline Dimensions                  | 15 |
| Ordering Guide                      | 16 |

#### **ELECTRICAL SPECIFICATIONS**

@  $V_S = \pm 15$  V,  $T_A = 25$ °C, unless otherwise noted.

Table 1.

|                                    |                       |                                              |       | OP77E  |      |       | OP77F |      |                   |
|------------------------------------|-----------------------|----------------------------------------------|-------|--------|------|-------|-------|------|-------------------|
| Parameter                          | Symbol                | Conditions                                   | Min   | Тур    | Max  | Min   | Тур   | Max  | Unit              |
| INPUT OFFSET VOLTAGE               | Vos                   |                                              |       | 10     | 25   |       | 20    | 60   | μV                |
| LONG-TERM STABILITY <sup>1</sup>   | V <sub>os</sub> /time |                                              |       | 0.3    |      |       | 0.4   |      | μV/Mo             |
| INPUT OFFSET CURRENT               | los                   |                                              |       | 0.3    | 1.5  |       | 0.3   | 2.8  | nA                |
| INPUT BIAS CURRENT                 | I <sub>B</sub>        |                                              | -0.2  | +1.2   | +2.0 | -0.2  | +1.2  | +2.8 | nA                |
| INPUT NOISE VOLTAGE <sup>2</sup>   | e <sub>np-p</sub>     | 0.1 Hz to 10 Hz                              |       | 0.35   | 0.6  |       | 0.38  | 0.65 | $\mu V_{p-p}$     |
| INPUT NOISE VOLTAGE DENSITY        | e <sub>n</sub>        | f <sub>0</sub> = 10 Hz                       |       | 10.3   | 18.0 |       | 10.5  | 20.0 | nV/√Hz            |
|                                    |                       | $f_0 = 100 \text{ Hz}^2$                     |       | 10.0   | 13.0 |       | 10.2  | 13.5 |                   |
|                                    |                       | $f_0 = 1000 \text{ Hz}$                      |       | 9.6    | 11.0 |       | 9.8   | 11.5 |                   |
| INPUT NOISE CURRENT <sup>2</sup>   | i <sub>np-p</sub>     | 0.1 Hz to 10 Hz                              |       | 14     | 30   |       | 15    | 35   | pA <sub>p-p</sub> |
| INPUT NOISE CURRENT DENSITY        | in                    | $f_0 = 10 \text{ Hz}$                        |       | 0.32   | 0.80 |       | 0.35  | 0.90 | pA√Hz             |
|                                    |                       | $f_0 = 100 \text{ Hz}^2$                     |       | 0.14   | 0.23 |       | 0.15  | 0.27 |                   |
|                                    |                       | $f_0 = 1000 \text{ Hz}$                      |       | 0.12   | 0.17 |       | 0.13  | 0.18 |                   |
| INPUT RESISTANCE                   |                       |                                              |       |        |      |       |       |      |                   |
| Differential Mode <sup>3</sup>     | R <sub>IN</sub>       |                                              | 26    | 45     |      | 18.5  | 45    |      | ΜΩ                |
| Common Mode                        | RINCM                 |                                              |       | 200    |      |       | 200   |      | GΩ                |
| INPUT VOLTAGE RANGE                | IVR                   |                                              | ±13   | ±14    |      | ±13   | ±14   |      | V                 |
| COMMON-MODE REJECTION RATIO        | CMRR                  | $V_{CM} = \pm 13 \text{ V}$                  |       | 0.1    | 1.0  |       | 0.1   | 1.6  | μV/V              |
| POWER SUPPLY REJECTION RATIO       | PSRR                  | $V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$ |       | 0.7    | 3.0  |       | 0.7   | 3.0  | μV/V              |
| LARGE-SIGNAL VOLTAGE GAIN          | A <sub>vo</sub>       | $R_L \ge 2 k\Omega$                          | 5000  | 12,000 |      | 2000  | 6000  |      | V/mV              |
|                                    |                       | $V_0 = \pm 10 \text{ V}$                     |       |        |      |       |       |      |                   |
| OUTPUT VOLTAGE SWING               | Vo                    | $R_L \ge 10 \ k\Omega$                       | ±13.5 | ±14.0  |      | ±13.5 | ±14.0 |      | V                 |
|                                    |                       | $R_L \geq 2 \; k\Omega$                      | ±12.5 | ±13.0  |      | ±12.5 | ±13.0 |      |                   |
|                                    |                       | $R_L \geq 1 \ k\Omega$                       | ±12.0 | ±12.5  |      | ±12.0 | ±12.5 |      |                   |
| SLEW RATE <sup>2</sup>             | SR                    | $R_L \ge 2 \ k\Omega$                        | 0.1   | 0.3    |      | 0.1   | 0.3   |      | V/µs              |
| CLOSED-LOOP BANDWIDTH <sup>2</sup> | BW                    | A <sub>VCL</sub> + 1                         | 0.4   | 0.6    |      | 0.4   | 0.6   |      | MHz               |
| OPEN-LOOP OUTPUT RESISTANCE        | Ro                    |                                              |       | 60     |      |       | 60    |      | Ω                 |
| POWER CONSUMPTION                  | P <sub>d</sub>        | $V_S = \pm 15 \text{ V, no load}$            |       | 50     | 60   |       | 50    | 60   | mW                |
|                                    |                       | $V_s = \pm 3 \text{ V, no load}$             |       | 3.5    | 4.5  |       | 3.5   | 4.5  |                   |
| OFFSET ADJUSTMENT RANGE            |                       | Rp = 20 kn                                   |       | ±3     |      |       | ±3    |      | mV                |

 $<sup>^1</sup>$  Long-term input offset voltage stability refers to the averaged trend line of  $V_{OS}$  vs. time over extended periods after the first 30 days of operation. Excluding the initial hour of operation, changes in  $V_{OS}$  during the first 30 operating days are typically 2.5  $\mu$ V.  $^2$  Sample tested.

<sup>&</sup>lt;sup>3</sup> Guaranteed by design.

# **OP77**

@  $V_S = \pm 15$  V,  $-25^{\circ}$ C  $\leq T_A \leq +85^{\circ}$ C for OP77FJ and OP77E/OP77F, unless otherwise noted.

Table 2.

|                                                 |                  |                                              |       | OP77E |      |       | OP77F |      |       |
|-------------------------------------------------|------------------|----------------------------------------------|-------|-------|------|-------|-------|------|-------|
| Parameter                                       | Symbol           | Conditions                                   | Min   | Тур   | Max  | Min   | Тур   | Max  | Unit  |
| INPUT OFFSET VOLTAGE                            | Vos              |                                              |       | 10    | 45   |       | 20    | 100  | μV    |
| AVERAGE INPUT OFFSET VOLTAGE DRIFT <sup>1</sup> | TCVos            |                                              |       | 0.1   | 0.3  |       | 0.2   | 0.6  | μV/°C |
| INPUT OFFSET CURRENT                            | los              |                                              |       | 0.5   | 2.2  |       | 0.5   | 4.5  | nA    |
| AVERAGE INPUT OFFSET CURRENT DRIFT <sup>2</sup> | TClos            |                                              |       | 1.5   | 4.0  |       | 1.5   | 85   | pA/°C |
| INPUT BIAS CURRENT                              | I <sub>B</sub>   |                                              | -0.2  | +2.4  | +4.0 | -0.2  | +2.4  | +6.0 | nA    |
| AVERAGE INPUT BIAS CURRENT DRIFT <sup>2</sup>   | TCI <sub>B</sub> |                                              |       | 8     | 40   |       | 15    | 60   | pA/°C |
| INPUT VOLTAGE RANGE                             | IVR              |                                              | ±13.0 | ±13.5 |      | ±13.0 | ±13.5 |      | V     |
| COMMON-MODE REJECTION RATIO                     | CMRR             | $V_{CM} = \pm 13 \text{ V}$                  |       | 0.1   | 1.0  |       | 0.1   | 3.0  | pV/V  |
| POWER SUPPLY REJECTION RATIO                    | PSRR             | $V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$ |       | 1.0   | 3.0  |       | 1.0   | 5.0  | μV/V  |
| LARGE-SIGNAL VOLTAGE GAIN                       | Avo              | $R_L \ge 2 \ k\Omega$                        | 2000  | 6000  |      | 1000  | 4000  |      | V/mV  |
|                                                 |                  | $V_0 = \pm 10 \text{ V}$                     |       |       |      |       |       |      |       |
| OUTPUT VOLTAGE SWING                            | Vo               | $R_L \ge 2 \ k\Omega$                        | ±12   | ±13.0 | •    | ±12   | ±13.0 |      | V     |
| POWER CONSUMPTION                               | P <sub>d</sub>   | $V_S = \pm 15 \text{ V, no load}$            |       | 60    | 75   |       | 60    | 75   | mW    |

 $<sup>^{\</sup>rm 1}$  OP77E: TCV  $_{\rm OS}$  is 100% tested on J and Z packages.  $^{\rm 2}$  Guaranteed by end-point limits.

#### **WAFER TEST LIMITS**

@  $V_S$  = ±15 V,  $T_A$  = 25°C, for OP77NBC devices, unless otherwise noted.

Table 3.

| Parameter                    | Symbol          | Conditions                                   | OP77NBC Limit | Unit     |
|------------------------------|-----------------|----------------------------------------------|---------------|----------|
| INPUT OFFSET VOLTAGE         | Vos             |                                              | 40            | μV max   |
| INPUT OFFSET CURRENT         | los             |                                              | 2.0           | nA max   |
| INPUT BIAS CURRENT           | I <sub>B</sub>  |                                              | ±2            | nA max   |
| INPUT RESISTANCE             |                 |                                              |               |          |
| Differential Mode            | R <sub>IN</sub> |                                              | 26            | MΩ min   |
| INPUT VOLTAGE RANGE          | IVR             |                                              | ±13           | V min    |
| COMMON-MODE REJECTION RATIO  | CMRR            | $V_{CM} = \pm 13 \text{ V}$                  | 1             | μV/V max |
| POWER SUPPLY REJECTION RATIO | PSRR            | $V_S = \pm 3 \text{ V to } \pm 18 \text{ V}$ | 3             | μV/V max |
| OUTPUT VOLTAGE SWING         | Vo              | $R_L = 10 \text{ k}\Omega$                   | ±13.5         | V min    |
|                              |                 | $R_L = 2 k\Omega$                            | ±12.5         |          |
|                              |                 | $R_L = 1 \text{ k}\Omega$                    | ±12.0         |          |
| LARGE-SIGNAL VOLTAGE GAIN    | A <sub>VO</sub> | $R_L = 2 k\Omega$                            | 2000          | V/mV min |
|                              |                 | $V_0 = \pm 10 \text{ V}$                     |               |          |
| DIFFERENTIAL INPUT VOLTAGE   |                 |                                              | ±30           | V max    |
| POWER CONSUMPTION            | P <sub>d</sub>  | $V_O = 0 V$                                  | 60            | mW max   |

#### **TYPICAL ELECTRICAL CHARACTERISTICS**

@  $V_S = \pm 15$  V,  $T_A = 25$ °C, unless otherwise noted.

#### Table 4.

| Parameter                          | Symbol             | Conditions                             | OP77NBC Limit | Unit  |
|------------------------------------|--------------------|----------------------------------------|---------------|-------|
| AVERAGE INPUT OFFSET VOLTAGE DRIFT | TCVos              | $R_S = 50 \Omega$                      | 0.1           | μV/°C |
| NULLED INPUT OFFSET VOLTAGE DRIFT  | TCV <sub>OSn</sub> | $R_S = 50 \Omega$ , $R_P = 20 k\Omega$ | 0.1           | μV/°C |
| AVERAGE INPUT OFFSET CURRENT DRIFT | TClos              |                                        | 0.5           | pA/°C |
| SLEW RATE                          | SR                 | $R_L \ge 2 \ k\Omega$                  | 0.3           | V/µs  |
| BANDWIDTH                          | BW                 | A <sub>VCL</sub> + 1                   | 0.6           | MHz   |

## **ABSOLUTE MAXIMUM RATINGS**

Table 5.

| Parameter <sup>1</sup>                 | Detin a         |
|----------------------------------------|-----------------|
| Parameter .                            | Rating          |
| Supply Voltage                         | ±22 V           |
| Differential Input Voltage             | ±30 V           |
| Input Voltage <sup>2</sup>             | ±22 V           |
| Output Short-Circuit Duration          | Indefinite      |
| Storage Temperature Range              | −65°C to +150°C |
| Operating Temperature Range            | −25°C to +85°C  |
| Junction Temperature (T <sub>J</sub> ) | −65°C to +150°C |
| Lead Temperature (Soldering, 60 sec)   | 300°C           |

<sup>&</sup>lt;sup>1</sup>Absolute Maximum Ratings apply to both dice and packaged parts, unless otherwise noted.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

#### THERMAL RESISTANCE

Table 6.

| Package Type                          | $\theta_{JA}^1$ | θις | Unit |
|---------------------------------------|-----------------|-----|------|
| 8-Pin TO-99 H-08 (J Suffix)           | 150             | 18  | °C/W |
| 8-Lead Hermetic CERDIP Q-8 (Z Suffix) | 148             | 16  | °C/W |

 $<sup>^{1}\</sup>theta_{JA}$  is specified for worst-case mounting conditions, i.e.,  $\theta_{JA}$  is specified for a device in socket for the TO-99 and CERDIP packages.

#### **ESD CAUTION**



**ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 $<sup>^2\</sup>text{For}$  supply voltages less than  $\pm 22$  V, the absolute maximum input voltage is equal to the supply voltage.

## TYPICAL PERFORMANCE CHARACTERISTICS



Figure 3. Gain Linearity (Input Voltage vs. Output Voltage)



Figure 4. Open-Loop Gain vs. Temperature



Figure 5. Open-Loop Gain vs. Power Supply Voltage



Figure 6. Untrimmed Offset Voltage vs. Temperature



Figure 7. Warm-Up Drift



Figure 8. Offset Voltage Change Due to Thermal Shock



Figure 9. Closed-Loop Response for Various Gain Configurations



Figure 10. Open-Loop Gain/Phase Response



Figure 11. CMRR vs. Frequency



Figure 12. PSRR vs. Frequency



Figure 13. Input Bias Current vs. Temperature



Figure 14. Input Offset Current vs. Temperature



Figure 15. Input Wideband Noise vs. Bandwidth (0.1 Hz to Frequency Indicated)



Figure 16. Total Input Noise Voltage vs. Frequency



Figure 17. Maximum Output Swing vs. Frequency



Figure 18. Power Consumption vs. Power Supply



Figure 19. Maximum Output Voltage vs. Load Resistance



Figure 20. Output Short-Circuit Current vs. Time

## **TEST CIRCUITS**



Figure 21. Typical Offset Voltage Test Circuit



Figure 22. Typical Low-Frequency Noise Test Circuit



Figure 23. Optional Offset Nulling Circuit



Figure 24. Burn-In Circuit



- 1. GAIN NOT CONSISTANT. CAUSES NONLINEAR ERRORS.
- 2. A<sub>VO</sub> SPEC IS ONLY PART OF THE SOLUTION.
- 3. CHECK SPECIFICATION TABLE 1 AND TABLE 2 FOR PERFORMANCE.

Figure 25. Open-Loop Gain Linearity

Actual open-loop voltage gain can vary greatly at various output voltages. All automated testers use endpoint testing and therefore only show the average gain. This causes errors in high closed-loop gain circuits. Because this is difficult for manufacturers to test, users should make their own evaluations. This simple test circuit makes it easy. An ideal op amp would show a horizontal scope trace.



Figure 26. Output Gain Linearity Trace

This is the output gain linearity trace for the new OP77. The output trace is virtually horizontal at all points, assuring extremely high gain accuracy. The average open-loop gain is truly impressive—approximately 10,000,000.

## **APPLICATIONS**



Figure 27. Precision High-Gain Differential Amplifier

The high gain, gain linearity, CMRR, and low  $TCV_{OS}$  of the OP77 make it possible to obtain performance not previously available in single-stage, very high-gain amplifier applications.

For best CMR,  $\frac{R1}{R2}$  must equal  $\frac{R3}{R4}$ . In this example, with a 10 mV differential signal, the maximum errors are as listed in Table 7.

**Table 7. Maximum Errors** 

| Туре                       | Amount    |
|----------------------------|-----------|
| Common-Mode Voltage        | 0.01%/V   |
| Gain Linearity, Worst Case | 0.02%     |
| TCVos                      | 0.003%/°C |
| TClos                      | 0.008%/°C |



Figure 28. Isolating Large Capacitive Loads

This circuit reduces maximum slew rate but allows driving capacitive loads of any size without instability. Because the boon resistor is inside the feedback loop, its effect on output impedance is reduced to insignificance by the high open-loop gain of the OP77.



Figure 29. Basic Current Source



Figure 30. 100 mA Current Source

These current sources can supply both positive and negative current into a grounded load.

Note that

$$Z_{O} = \frac{R5\left(\frac{R4}{R2} + 1\right)}{\frac{R5 + R4}{R2} \frac{R3}{R1}}$$

And that for 
$$Z_0$$
 to be infinite  $\frac{R5 + R4}{R2}$  must =  $\frac{R3}{R1}$ 

#### **PRECISION CURRENT SINKS**



Figure 31. Positive Current Sink



Figure 32. Positive Current Source

The simple high-current sinks, shown Figure 31 and Figure 32, require the load to float between the power supply and the sink.

In these circuits, the high gain, high CMRR, and low  $TCV_{OS}$  of the OP77 ensure high accuracy.

The high gain and low  $TCV_{OS}$  ensure accurate operation with inputs from microvolts to volts. In Figure 33, the signal always appears as a common-mode signal to the op amps. The OP77EZ CMRR of 1  $\mu$ V/V ensures errors of less than 2 ppm.



Figure 33. Precision Absolute Value Amplifier



Figure 34. Low Noise Precision Reference

Figure 34 relies upon low  $TCV_{OS}$  of the OP77 and noise combined with very high CMRR to provide precision buffering of the averaged REF-01 voltage outputs.

In Figure 35,  $C_H$  must be of polystyrene, Teflon\*, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of  $C_H$  and the bias current of the AD820.

\*Teflon is a registered trademark of the Dupont Company



Figure 35. Precision Positive Peak Detector



Figure 36. Precision Threshold Detector/Amplifier

When  $V_{\rm IN}$  <  $V_{\rm TH}$ , amplifier output swings negative, reversing the biasing diode D1.  $V_{\rm O}$  =  $V_{\rm TH}$  if  $R_{L}$ =  $\infty$  when  $V_{\rm IN}$  >  $V_{\rm TH}$ , the loop closes,

$$V_O = V_{TH} + \left(V_{IN} - V_{TH}\right) \left(1 + \frac{R_F}{R_S}\right)$$

 $C_{\mbox{\scriptsize C}}$  is selected to smooth the response of the loop.



Figure 37. Precision Temperature Sensor

#### **Table 8. Resistor Values**

| TCV <sub>OUT</sub> Slope (S)    | 10 mV/°C              | 100 mV/°C           | 10 mV/°F             |
|---------------------------------|-----------------------|---------------------|----------------------|
| Temperature Range               | −55°C to<br>+125°C    | −55°C to<br>+125°C  | −67°F to<br>+257°C   |
| Output Voltage<br>Range         | -0.55 V to<br>+1.25 V | −5.5 V to<br>+12.5V | -0.67 V to<br>+2.57V |
| Zero-Scale                      | 0 V @ 0°C             | 0 V @ 0°C           | 0 V @ 0°F            |
| R <sub>a</sub> (±1% Resistor)   | 9.09 kΩ               | 15 kΩ               | 7.5 kΩ               |
| R <sub>b1</sub> (±1% Resistor)  | 1.5 kΩ                | 1.82 kΩ             | 1.21 kΩ              |
| R <sub>bp</sub> (Potentiometer) | 200 Ω                 | 500 Ω               | 200 Ω                |
| R <sub>c</sub> (±1% Resistor)   | 5.11 kΩ               | 84.5 kΩ             | 8.25 kΩ              |



<sup>1</sup>R2A AND R2B ARE ELECTRONICALLY ADJUSTED ON CHIP AT FACTORY.

Figure 38. Simplified Schematic

## **OUTLINE DIMENSIONS**



CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 39. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Dimensions shown in inches and (millimeters)



COMPLIANT TO JEDEC STANDARDS MO-002-AK
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 40. 8-Pin Metal Header [TO-99] (H-08)

Dimensions shown in inches and (millimeters)

# **OP77**

#### **ORDERING GUIDE**

| Model <sup>1</sup> | Temperature Range | Package Description                          | Package Option  |
|--------------------|-------------------|----------------------------------------------|-----------------|
| OP77FJ             | −25°C to +85°C    | 8-Pin Metal Header [TO-99]                   | H-08 (J Suffix) |
| OP77FJZ            | −25°C to +85°C    | 8-Pin Metal Header [TO-99]                   | H-08 (J Suffix) |
| OP77EZ             | −25°C to +85°C    | 8-Lead Ceramic Dual In-Line Package [CERDIP] | Q-8 (Z Suffix)  |
| OP77FZ             | −25°C to +85°C    | 8-Lead Ceramic Dual In-Line Package [CERDIP] | Q-8 (Z Suffix)  |
| OP77NBC            |                   | Die                                          |                 |

<sup>&</sup>lt;sup>1</sup> Z = RoHS Compliant Part.