

การพิสูจน์ยืนยันแสตมป์สุรานำเข้าโดยใช้การแปลงฮัพ และคุณสมบัติเฉพาะฮิสโตแกรม

นายภานุวัฒน์ เพชรชนมภูมิ

โครงงานศึกษาวิจัยนี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตร ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมไฟฟ้าและสารสนเทศ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าชนบุรี ปีการศึกษา 2560

สารบัญ

		หน้า
สา	ารบัญ	ii
บา	ทที่	
1.	บทนำ	1
	1.1 ความสำคัญและที่มาของโครงงานศึกษาวิจัย	1
	1.2 วัตถุประสงค์ของโครงงานศึกษาวิจัย	2
	1.3 ขอบเขตของโครงงานศึกษาวิจัย	2
	1.4 ประโยชน์จากโครงงานศึกษาวิจัย	3
	1.5 ระเบียบวิธีการคำเนินวิจัย	3
2.	ทฤษฎีที่เกี่ยวข้อง	4
	2.1 การแทนภาพคิจิทัลและการแปลงภาพ	4
	2.1.1 การบอกข้อมูลแสงของภาพสีค้วยระบบสีอาร์จีบี	4
	2.1.2 ภาพระดับสีเทา	4
	2.1.3 ภาพขาวคำ (Binary Image) และการแปลงภาพระดับสีเทาเป็นภาพขาวคำ	5
	2.2 การหาขอบของวัตถุ (Edge Detection)	6
	2.3 การแปลงฮัฟวงกลม (Circle Hough Transform)	8
	2.4 ฮิสโตแกรมของภาพ (Image Histogram)	10
3.	วิธีการตรวจสอบตราของแสตมป์ที่นำเสนอ	11
	3.1 โครงสร้างระบบเพื่อใช้ในการถ่ายภาพของแสตมป์	11
	3.2 แนวคิดของวิธีการตรวจสอบที่นำเสนอ	11
	3.3 วิธีการตัดเอาเฉพาะภาพตรานกวายุภักษ์	15
	3.4 วิธีการแยกแยะตรานกวายุภักษ์	17
	3.5 การเรียนรู้เพื่อหาเส้นแบ่งการคัดแยก	21
4.	การทดสอบและการวิจารณ์	23
	4.1 การเตรียมการในการทดสอบ	23
	4.1.1 ระบบฮาร์ดแวร์และซอฟท์แวร์ที่ใช้ในการทดสอบ	23
	4.1.2 ข้อมูลสำหรับการทดลอง	23
	4.1.3 การเรียนรู้เพื่อหาเส้นตรงที่ใช้เป็นเกณฑ์การตรวจสอบ	24
	4.2 ผลการทดสอบและการวิจารณ์	25
	4.2.1 ผลการตัดรูปนกวายุภักษ์	25
	4.2.2 ผลการแยกแยะชนิดของแสตมป์	27
5.	บทสรุป	29

บทที่ 1 บทนำ

1.1 ความสำคัญและที่มาของโครงงานศึกษาวิจัย

ภาษีสุราเป็นการจัดเก็บรายได้ภาษีสรรพสามิตที่มีการจัดเก็บเป็นเงินงบประมาณเป็นส่วนหนึ่ง ที่นำมา ใช้ในการบริหารประเทศ แต่ในปัจจุบันได้มีการลักลอบปลอมแปลงสุราชนิดต่าง ๆ โดยเฉพาะสุราต่าง ประเทศเข้ามาขายในราคาที่ถูกเพราะไม่เสียภาษี ส่งผลกระทบให้สูญเสียรายได้ของรัฐจากการจัดเก็บรายได้ไป ผู้กระทำผิดได้มีรูปแบบในการปลอมแปลงแบบต่าง ๆ โดยหนึ่งในนั้นคือการปลอมแปลงแสตมป์ ที่ใช้ปิดผนึกขวดสุรา ในปัจจุบันการตรวจว่าแสตมป์เป็นของจริงหรือของปลอมจะใช้บุคลากรของทาง ภาครัฐเป็นผู้ตรวจสอบ ทำให้ประสบกับปัญหาว่า บุคลลากรทางภาครัฐที่มีความชำนาญในการตรวจสอบ แสตมป์มีจำนวนน้อย และเครื่องมือที่ใช้ในการตรวจสอบได้มาจากความชำนาญของบุคลลากร ผู้ซึ่งมี ความเชี่ยวชาญในการตรวจสอบ ทำให้การจับกุมเป็นไปด้วยความยากลำบาก ด้วยเหตุดังกล่าวนี้โครงงาน สึกษาวิจัยนี้จึงสนใจที่จะนำหลักการทางการประมวลผลภาพมาช่วยสร้างระบบอัตโนมัติสำหรับการตรวจ สอบแสตมป์สุรา

้โครงงานศึกษาวิจัยนี้ ต้องการหาวิธีการตรวจสอบแสตมป์ภาษีสุรานำเข้าจากต่างประเทศว่าเป็นแสตมป์ ้จริงหรือปลอม โดยใช้การถ่ายภาพค้วยกล้องคิจิทัลแบบพกพา ซึ่งได้มีงานวิจัยในอดีตที่มีแนวคิดของนำ การประมวลผลภาพมาประยุกต์ใช้ในการงานการตรวจจับหาวัตถุ หรือตรวจสอบความถูกต้องอยู่จำนวน มาก ยกตัวอย่างงานของ Takeda และคณะ [?] ตั้งแต่ปี ค.ศ. 1992 (พ.ศ. 2535) ได้นำเสนอแนวคิดระบบผู้ เชี่ยวชาญ (expert system) มาใช้ในการตรวจสอบธนบัตร ในปีเดียวกัน Fukumi และคณะ [?] ได้นำเสนอ การรู้จำเหรียญในสภาวะมุมต่าง ๆ ด้วยการใช้เครือข่ายประสาทเทียมของคุณลักษณะเด่นของภาพ ในปี พ.ศ. 2541 อดิศร ลีลาสันติธรรม [?] ได้มีการนำการประมวลผลภาพมาใช้เพื่อการรู้จำและตรวจสอบธน-บัตร ซึ่ง โดยปกติแล้ว นอกจากการสังเกตข้อมูลจากรูปภาพ, ลายภาพ, สี, จำนวนเงิน ฯลฯ ซึ่งเป็นคุณสมบัติ ภายนอกของแต่ละประเภทของธนบัตรแล้ว ธนบัตรหลายประเภทมีการซ่อนภาพลายน้ำ ซึ่งสามารถเห็น เป็นภาพเงา เมื่อใช้แสงสว่างส่องที่ด้านหลังของธนบัตร ในวิทยานิพนธ์ดังกล่าว ได้นำเสนอระบบการรู้จำ ธนบัตรอัตโนมัติ โดยใช้โครงข่ายประสาทเทียมแบบแพร่กลับและใช้ภาพภายนอกบนธนบัตรซึ่งเกิดจาก การสะท้อนของแสงที่กระทบบนธนบัตรรวมกันกับภาพเงาของลายน้ำที่ซ่อนอยู่ซึ่งเกิดจากการส่องแสง สว่างด้านหลังธนบัตร ในระบบนี้ขั้นแรกทำการหาขอบภาพสองระดับของธนบัตรที่เกิดจากการสะท้อน ของแสงที่กระทบบนธนบัตร ขั้นที่สองทำการหาขอบภาพสองระดับของภาพเงาลายน้ำที่ซ่อนอยู่ ซึ่งเกิด จากการส่องแสงสว่างค้านหลังธนบัตร แล้วทำการรวมภาพกันในขั้นแรกและขั้นที่สอง ให้ไค้ภาพเงาของ ลายน้ำบนบัตรพร้อมกับภาพธนบัตร จากนั้นทำการนอร์มอลไลซ์ภาพที่ได้ดังกล่าว ให้มีมาตรฐานเดียวกัน และป้อนภาพดังกล่าวเข้าสู่โครงข่ายประสาทเทียมแบบแพร่กลับ 3 ชั้นเพื่อทำการเรียนรู้และการทดสอบ จากการทคสอบระบบที่นำเสนอข้างต้นเพื่อประเมินประสิทธิภาพของระบบ โดยใช้ตัวอย่างธนบัตรไทย 5 ชนิด (20 บาท 50 บาท 100 บาท 500 บาท และ 1000 บาท) ชนิดละ 80 ใบในการเรียนรู้ และทุกชนิด ๆ ละ 50 ใบเพื่อใช้ในการทคสอบ ผลการทคสอบโดยใช้โครงข่ายประสาทเทียมแบบแพร่กลับในการพิสูจน์ ธนบัตรจริงและจำแนกชนิคของธนบัตร มีอัตราในการรัจาใค้ทั้งหมค ในงานวิจัยของ Zhu และคณะ [?] และงานของ Micenkov และคณะ [?] ได้นำเสนอการตรวจจับการประดับตราในเอกสาร ซึ่งในงานทั้งสอง ้ชิ้นนี้มีลักษณะปัญหาการดึงเอาเฉพาะส่วนที่สนใจออกจากส่วนอื่น ๆ ในภาพ ซึ่งในปัญหาของการตรวจ ้สอบแสตมป์ในโครงงานศึกษาวิจัยนั้นมีลักษณะที่ีคล้ายกัน กล่าวคือส่วนสำคัญของแสตมป์สุราคือตรานก วายุภักษ์ จึงควรต้องมีการตัดเอาตราออกมาก่อน

แนวคิดสำคัญของการตัดเอาส่วนของภาพที่สนใจออกมาจากส่วนอื่นคือ การใช้รูปร่างของวัตถุที่ต้องการ ตัด เช่น วงกลม สี่เหลี่ยม เป็นต้น ในที่นี้เราจะสนใจเฉพาะการดึงส่วนที่เป็นวงกลมเนื่องจากตรานกวายุ ภักษ์ในแสตมป์สุรามีวงกลมล้อมรอบอยู่ วิธีการในการตรวจจับวงกลมที่นิยมใช้กันมากที่สุดคือการใช้การ แปลงฮัฟ ซึ่งในงานของ Ioannou และคณะ [?] ได้นำเสนอแนวคิดของการใช้การแปลงฮัฟแบบ 2 มิติใน การตรวจหาวงกลม การแปลงฮัฟทั่วไป (generalized hough transform) เป็นการแปลงภาพให้ไปอยู่ในโด เมนฮัฟ ซึ่งสามารถใช้การโหวตในการตรวจหาเส้นหรือส่วนโค้ง การแปลงฮัฟเพื่อการตรวจจับวงกลมเป็น กรณีพิเศษของการแปลงฮัฟทั่วไป แนวคิดอื่น ๆ ในการตรวจจับหาวงกลมได้แก่ งานของ Basalamah [?] ซึ่งนำเสนอการใช้ฮิสโตแกรมในการตรวจจับวงกลม

แม้ว่าจะมีงานวิจัยในอดีตจำนวนมากที่ได้นำเอาเทคนิคการประมวลผลภาพไปใช้แก้ปัญหาต่าง ๆ ก็ตาม ปัญหาการตรวจสอบความเป็นของจริงของแสตมป์มีลักษณะเฉพาะ และในความต้องการการใช้งานใน ลักษณะของการพกพา ในโครงงานศึกษาวิจัยนี้จึงต้องการค้นหาวิธีการที่มีความซับซ้อนน้อย แต่สามารถ ตรวจสอบแยกแยะแสตมป์จริงกับแสตมป์ปลอมได้

1.2 วัตถุประสงค์ของโครงงานศึกษาวิจัย

- 1. เพื่อพัฒนาและประยุกต์วิธีการประมวลผลภาพเชิงคิจิทัลในการคัดแยกแสตมป์จริงและปลอม
- 2. ทดสอบและหาวิธีการที่เหมาะสมในการคำนวณหาค่าเพื่อคัดแยก

1.3 ขอบเขตของโครงงานศึกษาวิจัย

- 1. คัดกรองแสตมป์รายได้ภาษีในวงกลม Hough แปลงการคัดแยกแสตมป์ด้วยการหาฮิสโตแกรม
- 2. การถ่ายภาพจะใช้กล้องตัวเคียวกันภายใต้สภาวะแวคล้อมคล้ายกัน
- 3. ใช้คอมพิวเตอร์ Window 7 64 bit core i7 CPU 2.30GHz ในการทคสอบ

1.4 ประโยชน์จากโครงงานศึกษาวิจัย

- 1. มีความรู้และความเข้าใจถึงหลักการของการประมวลผลภาพเชิงคิจิทัล
- 2. ทำให้ ได้ วิธี ในการ คัดแยกแสตมป์ จริงและ แสตมป์ ปลอม ที่ช่วย ให้การ ประมวนผล ทำได้ สะควก รวดเร็วและมีความแม่นยำสูง

1.5 ระเบียบวิธีการดำเนินวิจัย

งานวิจัยในโครงการวิจัยนี้เป็นงานวิจัยเชิงวิศวกรรมเพื่อค้นหาวิธีการทางการประมวลผลภาพที่เหมาะสม กับการตรวจสอบว่าแสตมป์เป็นของจริงหรือปลอม ขั้นตอนของวิธีการวิจัยที่นำมาใช้มีดังนี้

- 1. ศึกษาข้อมูลเกี่ยวกับแสตมป์สุราและวิธีการตรวจสอบโดยการสอบถามและสนทนากับผู้เชี่ยวชาญ การตรวจสอบ
- 2. ศึกษางานวิจัยในอดีตที่เกี่ยวข้องกับปัญหาวิจัย
- 3. ถ่ายภาพแสตมป์ตัวอย่างทั้งแสตมป์จริงและแสตมป์ปลอม
- 4. ค้นหาวิธีการประมวลผลภาพที่เหมาะสมบนฐานของการทดลอง
- 5. ทดสอบวิธีการที่ได้กับภาพแสตมป์ตัวอย่าง
- 6. วิจารณ์และสรุปผลการวิจัย

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

ใน โครงงานศึกษาวิจัยนี้ เป็นการการประยุกต์ใช้เทคนิคการประมวลผลภาพ เพื่อตรวจสอบว่าภาพของ แสตมป์สุราเป็นของแสตมป์จริงหรือปลอม ในบทนี้จะพิจารณาหลักทฤษฎีพื้นฐานที่ใช้ในวิธีการประมวล ผลภาพ [?] ในส่วนของการประมวลผลที่นำมาใช้ในโครงงานศึกษาวิจัยนี้

2.1 การแทนภาพดิจิทัลและการแปลงภาพ

ภาพคิจิทัล (digital image) จะถูกแทนด้วยเมตริกของข้อมูลบ่งบอกสี โคยการใช้หนึ่งตำแหน่งของเมตริก เพื่อแทนข้อมูลจุดหนึ่งของภาพเรียกว่า พิกเซล (pixel) จำนวนของพิกเซลต่อภาพบ่งบอกถึงความละเอียด ของภาพ เช่น ภาพที่ใช้แสดงผลในระบบโทรทัศน์ที่เรียกว่า HD เป็นภาพที่มีขนาดพิกเซลเป็น 1208×720 โดยตัวเลขแรกเป็นจำนวนคอลัมภ์ ซึ่งแปรตรงกับความยาวในแนวนอน

การบอกข้อมูลแสงของแต่ละพิกเซลมีหลายวิธี แต่เราสามารถแบ่งภาพได้เป็น 3 กลุ่มตามลักษณะของ ข้อมูลแสงคือ ภาพสี (color image) ภาพระดับสีเทา (grayscale image) และภาพขาวคำ (binary image) โดย ภาพสีสามารถแปลงไปเป็นภาพระดับสีเทา และภาพระดับสีเทาสามารถแปลงไปเป็นภาพขาวคำได้

2.1.1 การบอกข้อมูลแสงของภาพสีด้วยระบบสีอาร์จีบี

ในกรณีของภาพสี แม้ว่าจะมีหลายวิธีที่สามารถบอกข้อมูลสี แต่วิธีที่ ได้รับความนิยมสูงสุดในกล้องถ่าย ภาพดิจิทัลคือ ระบบสีอาร์จีบี (RGB color system) ทั้งนี้เนื่องจาก โดยตามธรรมชาตินั้น สีแต่ละสีเกิดจาก การผสมกันของเซตของแม่สี และแม่สีที่ได้รับความนิยมสูงสุดคือ สีแดง (Red) สีเขียว (Green) และสีน้ำ-เงิน (Blue) จึงเรียกระบบการบอกสีด้วยแม่สี 3 ตัวนี้ว่าระบบสี RGB

ภายใต้ระบบสีอาร์จีบี โดยทั่วไปจะใช้ข้อมูล 8 บิต หรือ 256 ระดับเพื่อบอกระดับแสงของแต่ละแสง ดังนั้น แต่ละพิกเซลจะต้องใช้ข้อมูลขนาด 24 บิต เพื่อบ่งบอกว่าเป็นสีอะไร กล่าวได้ว่าในระบบสีอาร์จีบี 24 บิท เช่นนี้จะมีสีที่แตกต่างกันได้ทั้งหมด เท่ากับ 16,777,216 สี กำนวณจากแต่ละสีมี 256 ระดับ (2^8) จำนวน ระดับที่แตกต่างกันทั้งหมดจึงเป็น $256\times256\times256=16,777,216$ เราเรียกจำนวนสีทั้งหมดของระบบ สีว่าเป็น ปริภูมิสี (Color Space) ซึ่งในกรณีของระบบสีอาร์จี ปริภูมิสี (Color Space) จะมีลักษณะเป็นแบบ ลูกบาศก์ดังแสดงในรูปที่ 2.1

2.1.2 ภาพระดับสีเทา

ข้อมูลแสงในแต่ละพิกเซลของภาพระดับสีเทาเป็นค่าความเข้มแสง (light intensity) ระดับความเข้มแสง แต่ละระดับแสดงผลออกมาเป็นสีเทาหนึ่งสี โดยระดับความเข้มสูงสุดจะเป็นสีขาว และระดับความเข้ม 0 จะเป็นสีดำ จำนวนระดับสีเทา (grayscale) ขึ้นอยู่กับจำนวนบิตของการบอกระดับ เช่นภาพระดับสีเทา ขนาด 8 บิต บอกระดับสีเทาได้ 256 ระดับจาก 0 ถึง 255

เราสามารถคำนวณระคับสีเทาของสีอาร์จีบีได้โดยการหาค่าเฉลี่ยแบบมีน้ำหนัก (weighted average) ของ ระดับแสงของแม่สี RGB เนื่องจากโดยธรรมชาติแล้วการมองเห็นแสงแต่ละสีไม่เท่ากัน ค่าน้ำหนักที่เป็นที่ นิยมในการคำนวณเพื่อแปลงสีอาร์จีบีเป็นระดับสีเทาเป็นไปตามสมการที่ 2.1

รูปที่ 2.1 ปริภูมิสี (Color Space) ในแบบลูกบาศก์ของพิกัคสีอาร์จีบี [?]

$$Grey = 0.299R + 0.587G + 0.114B \tag{2.1}$$

เมื่อ R,G และ B เป็นระดับแสงสีแดง สีเขียว และสีน้ำเงินตามลำดับ รูปที่ 2.2 แสดงภาพสีเทาที่ได้จาก การแปลงภาพสีอาร์จีบี

2.1.3 ภาพขาวดำ (Binary Image) และการแปลงภาพระดับสีเทาเป็นภาพขาวดำ

ข้อมูลแสงในแต่ละพิกเซลของภาพขาวคำ (Binary image) มีเพียง 2 สถานะ ซึ่งสามารถแทนค้วยข้อมูล 1 บิต โดย 0 แทนสีขาว และ 1 แทนสีคำ เราอาจพูคได้ว่าภาพขาวคำก็คือภาพระคับสีเทาที่บอกระคับแสงค้วย ข้อมูล 1 บิต

กระบวนการในการแปลงภาพระดับสีเทาเป็นภาพขาวคำ เป็นการกระทำพื้นฐาน (basic operation) ของ การประมวลผลภาพ โดยมีหลายวิธีการแปลงภาพระดับสีเทาเป็นภาพขาวคำ เช่น วิธีการหาขอบ (edge detection) แต่ไม่ว่าจะเป็นวิธีการแปลงใดก็ตาม หลักการของการแปลงภาพระดับสีเทาเป็นภาพขาวคำคือ การเปรียบเทียบกับค่าเทรซโฮลด์ตามสมการที่ (2.2)

$$B(x,y)=\left\{egin{array}{ll} 1,$$
 ถ้าเงื่อนของการแปลงเป็นจริง เช่น $I(x,y)>=I_{th} \ 0,$ กรณีอื่น ๆ
$$\end{array}
ight. \eqno(2.2)$$

เมื่อ 0 แทนส่วนสีดำ, 1 แทนส่วนสีขาว, B(x,y) และ I(x,y) เป็นค่าข้อมูลสีของพิกเซล (x,y) ในภาพ ขาวดำและภาพระดับสีเทา ตามลำดับ และในกรณีตัวอย่างนี้ I_{th} เป็นค่าระดับเทรซ โฮลที่ใช้

รูปที่ 2.2 ภาพระดับสีเทาที่ได้จากการแปลงจากภาพสีอาร์จีบี

เงื่อนใขในการแปลจุดพิกเซลของภาพให้เป็นสีขาว (1) หรือสีดำ (0) นั้นขึ้นอยู่กับจุดประสงค์ของการ แปลงภาพ ยกตัวอย่างวิธีการแปลงเป็นภาพขาวดำง่ายที่สุดคือ การใช้ระดับความเข้มแสงเป็นเทรซโฮลด์ ในการแยกเพื่อแยกภาพออกเป็น 2 ลักษณะพื้นที่ ในบางกรณี เงื่อนไขการแบ่งจะขึ้นอยู่กับข้อมูลสีของ พื้นที่รอบจุดพิกเซลที่สนใจ

จะเห็นว่าวิธีการเทรซโฮลเป็นวิธีการแบ่งพื้นที่ในภาพตามช่วงของระคับความเข้มแสง ซึ่งหลักการนี้สามารถใช้ได้กับข้อมูลระคับความเข้มแสงได้ทุกชนิด เช่น เราสามารถแบ่งภาพเป็น 2 ส่วนตามระดับสีเขียว หรือสีแดง หรือสีน้ำเงิน สีใดสีหนึ่งเพียงสีเดียวก็ได้ ด้วยหลักการเดียวกัน เราสามารถการแบ่งพื้นที่ของ ภาพออกเป็นมากกว่า 2 ส่วนก็ได้ เช่น เราอาจต้องการแบ่งพื้นที่ในภาพเป็น 4 ส่วน ซึ่งแทนด้วยข้อมูล 2 บิต ซึ่งในกรณีนี้จะต้องมีค่าเทรซโฮล 2 ตัวเพื่อการแบ่งระคับความเข้มแสงเป็น 4 ส่วน เรียกวิธีการแบ่งระคับ ที่ผลลัพธ์มีมากกว่า 2 ส่วนว่า การแบ่งหลายส่วน (multiband threshold)

2.2 การหาขอบของวัตถุ (Edge Detection)

การหาขอบ (Edge Dectection) ภายในภาพ เป็นการกระทำพื้นฐาน (basic operation) ของการประมวลผล ภาพ ที่มีการนำไปใช้จำนวนมาก เนื่องจากขอบภาพเป็นสารสนเทศพื้นฐานที่สำคัญ กล่าวคือขอบภายใน ภาพเป็นสารสนเทศพื้นฐานในการแบ่งส่วน การบอกรูปร่าง ซึ่งจะนำไปสู่การตรวจจับหาส่วนของภาพที่ สนใจ (interested region) ทำให้เกิดตัดข้อมูลภาพส่วนที่ไม่เกี่ยวข้องออกไป เช่น ในโครงงานศึกษาวิจัยนี้ ต้องการตัดเอาเฉพาะส่วนที่เป็นตราของแสตมป์เท่านั้น

การหาขอบเป็นการแปลงภาพระดับสีเทาเป็นภาพขาวคำอย่างหนึ่ง โดยต้องการให้ส่วนที่เป็นสีขาวแทน ขอบของวัตถุที่อยู่ในภาพ เทคนิคของการหาขอบมีหลายวิธี แต่สามารถแบ่งออกได้เป็น 2 กลุ่ม หลักคือ วิธีการเกรย์เดียน (Gradient method) และ วิธีการลาปาซ (Laplacian method) สำหรับการหากรอบคัวยวิธี เกรย์เดียน จะใช้การหาจุดต่ำสุดและจุดสูงสุดในรูปของอนุพันธ์อันดับหนึ่งของภาพ วิธีการหาขอบใน กลุ่มนี้ได้แก่ Sobel, Roberts, Prewitt และ Canny เป็นต้น ส่วนวิธีลาปาซ จะหาขอบโดยใช้อนุพันธ์อันดับ 2 โดยใช้จุดที่ค่าจุดสูนย์ (Zero-crossing) ของอนุพันธ์อันดับ 2 ในภาพ ตัวอย่างวิธีการหาขอบในกลุ่มนี้ ได้แก่ Laplacian of Gussian และ Marrs-Hildreth สำหรับโครงงานศึกษาวิจัยนี้ได้เลือกใช้วิธี Canny ในการหาขอบภาพ เพราะจากเอกลักษณ์ของภาพ คือ มีรูปร่างที่เด่นชัด ทำให้ไม่จำเป็นที่การหาขอบภาพจะต้อง ละเอียดมาก แต่จะต้องสามารถหาขอบภาพได้ผลลัพธ์ในระดับ ดังนั้นจึงเลือกใช้วิธี Canny

การหาขอบด้วยวิธี Canny ใช้วิธีเกรย์เคียน ซึ่งมีขั้นตอนดังนี้

- 1. กรองภาพด้วยการกรอง Gaussian
- 2. หาเวกเตอร์เกรย์เดียนของพิกเซล (x,y) ตามสมการที่ (2.3)

$$\nabla f(x,y) = \begin{bmatrix} G_x(x,y) \\ G_y(x,y) \end{bmatrix} = \begin{bmatrix} \frac{\partial}{\partial x} f(x,y) \\ \frac{\partial}{\partial y} f(x,y) \end{bmatrix}$$
 (2.3)

เมื่อ $\nabla f(x,y)$ เป็นเวคเตอร์เกรย์เดียนที่พิกเซล (x,y) ของอนุพันธ์ย่อยของความเข้มแสง f(x,y) ในแกน x และแกน y โดย G_x และ G_y เป็นอนุย่อยของ f(x,y) ในแนวแกน x และ y ตามลำดับ

3. เปรียบเทียบขนาดของเกรย์เดียน $\nabla f(x,y)$ ตามสมการที่ (2.4) กับค่าเทรซ โฮลด์ T เพื่อตัดสินว่า พิกเซล (x,y) เป็นส่วนหนึ่งของขอบหรือ ไม่ตามสมการที่ (2.6) และหาว่าขอบที่จุดพิกเซล (x,y) อยู่ในทิศทาง 0,45,90, หรือ 135 องศา จากการหามุม $\theta(x,y)$ ตามสมการ 2.5

$$G(x,y) = |\nabla f(x,y)| \sqrt{G_x(x,y)^2 + G_y(x,y)^2}$$
 (2.4)

$$\theta(x,y) = \tan^{-1} \frac{G_y}{G_x} \tag{2.5}$$

$$E(x,y) = \begin{cases} 1 & \text{if } G(x,y) > T \\ 0 & \text{otherwise} \end{cases}$$
 (2.6)

- 4. ขจัดขอบปลอมโดยวิธี non-maximum suppression
- 5. ใช้เทคนิคของ 2 เทรซโฮลด์ (Double threshold) ในการกำจัดขอบปลอม
- 6. ต่อขอบ (edge tracking) ด้วยเทคนิคฮิสเตอรีซีส (hysteresis)

รูปที่ 2.3 แสดงภาพผลลัพธ์ของการหาขอบด้วยวิธี Canny ของภาพแสตมป์ในรูปที่ 2.2

รูปที่ 2.3 ตัวอย่างของผลการหาขอบด้วยวิธี Canny ของภาพระดับสีเทาในรูปที่ 2.2

2.3 การแปลงฮัฟวงกลม (Circle Hough Transform)

การแปลงฮัฟ (Hough transform) เป็นเทคนิคสำหรับการตรวจจับส่วนของเส้นตรง (line) หรือเส้นโค้ง (curve) ภายในภาพ แม้ว่าโดยหลักการแล้ววิธีการแปลงฮัฟจะสามารถใช้กับภาพอินพุทที่เป็นภาพระดับสี เทาก็ได้ แต่เราจะใช้การแปลงฮัฟกับภาพขาวคำ หรือภาพที่เป็นผลจากการหาขอบ เพราะวิธีการแปลงฮัฟ ต้องใช้การคำนวณและหน่วยความจำสูง

รูปที่ 2.4 แนวคิดของการแปลงฮัฟวงกลม (Circle Hough Transform)

การแปลงฮัฟวงกลม เป็นกรณีพิเศษของการแปลงฮัฟ โดยมีหลักการว่า ถ้าเราสร้างวงกลมรอบจุดที่อยู่บน เส้นรอบวงของวงกลม วงกลมเหล่านี้จะไปตัดกันที่จุดศูนย์กลางของวงกลม ตามที่แสดงในรูปที่ 2.4 ด้าน ขวาจะเห็นว่า วงกลมรัศมี R 5 วงที่มีจุดศูนย์กลางที่จุด P_1 , P_2 , P_3 , P_4 , และ P_5 ซึ่งต่างเป็นเป็นจุดบนเส้น รอบวงของวงกลมรัศมี R ในภาพขาวดำ จะตัดกันที่จุด A_1 ซึ่งเป็นจุดศูนย์กลางของวงกลมในภาพขาวดำ

การแปลงฮัฟวงกลมใช้หลักการดังกล่าว ในการค้นหาจุดศูนย์กลางของวงกลมรัศมี R ดังนี้ สำหรับจุด $P_i=(x_i,y_i)$ ใด ๆ ที่เป็นจุดที่อยู่บนขอบภายในภาพ ในขั้นตอนแรกของการแปลงฮัฟวงกลมจะเป็นการ สร้างวงกลมรอบจุด P_i ทุกจุดตามสมการที่ (2.7)

$$(x - x_i)^2 + (y - y_i)^2 = R^2 (2.7)$$

โดยที่ (x_i,y_i) เป็นจุดที่อยู่บนขอบ (ค่าความเข้มแสงของจุดเท่ากับ 1) ในภาพขาวดำที่ได้จากการหาขอบ และ (x,y) เป็นจุดบนวงกลมรัศมี R ที่มีจุดศูนย์กลางงอยู่ที่ (x_i,y_i) ตามที่แสดงในรูปที่ 2.4 ด้านซ้ายมือ

ในกระบวนสร้างวงกลมตามสมการ (2.7) นั้น จะมีการนับความถี่ของการที่จุด (x,y) ใด ๆ ไปอยู่บนเส้น รอบวงของวงกลมที่สร้างตามสมการที่ (2.7) ยกตัวอย่างเช่น ในรูปที่ 2.4 ด้านขวามือมีการสร้างวงกลม 5 วง จุด A_3 เป็นจุดที่อยู่บนเส้นรอบวงของวงกลมเหล่านี้ 1 ครั้ง ในขณะที่จุด A_2 และ A_4 เป็นจุดที่อยู่บน เส้นรอบวงของวงกลม 2 ครั้ง และจุด A_1 อยู่บนเส้นรอบวงของวงกลม 5 วง ผลลัพธ์ของการกระทำดัง กล่าวนี้จะเป็นเมตริกความถี่ของการเกิด โดยที่เมตริกนี้มีค่าที่ตำแหน่ง (x,y) เป็นจำนวนครั้งที่วงกลมตาม สมการที่ (2.7) ไปตัดกันที่จุด (x,y)

ขั้นตอนต่อมาของการแปลงฮัฟวงกลม เป็นการเลือกจากเมตริกซ์ของจำนวนครั้งที่วงกลม ไปตัดกันที่จุด (x,y) ว่าจะจุดใดบ้างที่เป็นจุดศูนย์กลางของวงกลมรัศมี R โดยเกณฑ์ในการเลือกจะมาจาก 2 วิธี คือ (1) การเรียงลำดับ และ (2) การใช้เทรซ โฮลด์ หรือทั้ง 2 อย่างรวมกัน วิธีการเรียงลำดับจะใช้ได้กับภาพที่รู้ว่ามี จำนวนของวงกลมรัศมี R อยู่เท่าไร ถ้าทราบจำนวนดังกล่าว สมมุติว่าเป็น n ตัวแล้ว เราสามารถเลือกจุดที่ เป็นจุดศูนย์กลางของวงกลม จากการเรียงลำดับแล้วเลือก n ตัวแรก แต่ในกรณีที่ ไม่ทราบว่ามีวงกลมอยู่กี่ วง การใช้เทรซ โอลจะเหมาะสมกว่า กล่าวคือ ถ้าจำนวนความถี่น้อยกว่าค่าเทรซ โฮลด์แสดงว่าไม่มีวงกลม แต่ถ้ามากกว่าแสดงว่ามีวงกลม หรือส่วนของวงกลมรัศมี R อยู่

รูปที่ 2.5 ตัวอย่างฮิสโตแกรมของระดับสีเทาของภาพในรูปที่ 2.2

2.4 ฮิสโตแกรมของภาพ (Image Histogram)

ฮิสโตแกรมเป็นการนับจำนวนความถี่ของการเกิดขึ้นของค่าของตัวแปรสุ่มจากกลุ่มข้อมูลจำนวนหนึ่ง ใน กรณีของฮิสโตแกรมของภาพขนาด $c \times r$ พิกเซล ตัวแปรสุ่มคือระดับสี หรือระดับความเข้มแสง ซึ่งอาจ จะเป็นระดับสีเทา หรือระดับสีใดสีหนึ่งของอาร์จีบี หรือระดับ H ในระบบสี HSV เป็นต้น ส่วนข้อมูลที่ใช้ ในการนับคือระดับสีจากทุกพิกเซลของภาพ

ในกระบวนการนับจะต้องมีการสร้างกล่อง (Bin) ที่จะนับข้อมุลลง ไป หนึ่งกล่องจะเป็นหนึ่งช่วงของ ตัวแปรสุ่ม โดยทั่วไปแล้วช่วงทั้งหมดของตัวแปรสุ่มจะแบ่งถูกแบ่งเป็น n กล่องเท่ากัน ในกรณีของภาพ ตัวแปรสุ่มคือระดับความเข้มแสงซึ่งเป็นเลขจำนวนเต็มในช่วง 0 ถึง 255 (ในกรณีของระดับสีขนาด 8 บิท) ดังนั้นการแบ่งที่มีขนาดกล่องเล็กที่สุดคือ การใช้หนึ่งระดับสีเป็นหนึ่งกล่องรวมทั้งหมด 256 กล่อง

ในการสร้างฮิส โตแกรมของภาพ พิกเซลจะถูกตรวจสอบที่ละพิกเซลว่ามีค่าระดับสีอยู่ในกล่องใด ผลลัพธ์ การพล็อตฮิส โตแกรมจะเป็นการกระจายของโอกาสการเกิด รูปที่ 2.5 แสดงผลของฮส โตแกรมของภาพ ระดับสีเทาในรูปที่ 2.2

บทที่ 3 วิธีการตรวจสอบตราของแสตมป์ที่นำเสนอ

ในบทนี้จะเป็นการอธิบายวิธีการตรวจสอบตราของแสตมป์สุราโดยอัตโนมัติที่นำเสนอในโครงงานวิจัย นี้ โดยวิธีการที่นำเสนอใช้วิธีการทางการประมวลผลภาพ ในหัวข้อ 3.1 จะเป็นการอธิบายโครงสร้างของ ระบบเพื่อใช้ในการถ่ายภาพ หัวข้อ 3.2 อธิบายแนวคิดและภาพรวมของวิธีที่นำเสนอ ซึ่งประกอบไปด้วย 2 ขั้นตอนหลักคือการตัดภาพรูปนกวายุภักษ์ และการนำภาพรูปนกวายุภักษ์ ไปตรวจสอบว่าเป็นแสตมป์แท้ หรือปลอม ซึ่งจะอธิบายแต่ละส่วนนี้ในหัวข้อ 3.3 และ 3.4 ตามลำดับ

3.1 โครงสร้างระบบเพื่อใช้ในการถ่ายภาพของแสตมป์

ระบบตรวจสอบแสตมป์ อัตโนมัติที่นำเสนอใช้วิธีการทางการประมวลผลภาพ ดังนั้นการถ่ายภาพจึงมี ความสำคัญกับวิธีที่จะนำเสนอ โดยสำหรับในโครงงานวิจัยนี้ ได้กำหนดระบบการถ่ายภาพไว้ดังรูปที่ 3.1

รูปที่ 3.1 โครงสร้างทางฮาร์ดแวร์ของระบบการคัดแยกตราของแสตมป์

เนื่องจากแสตมป์เครื่องดื่มที่มีแอลกอฮอร์จะถูกกำหนดไว้ให้ติดไว้ที่บริเวณฝาผิดของขวด จึงได้กำหนดวิธี การถ่ายภาพไว้ให้เป็นการถ่ายจากด้านบน ด้วยกล้องถ่ายภาพสี ในพื้นที่ที่มีแสงเพียงพอ ด้วยความสูงจาก บริเวณแสตมป์ที่เหมาะสม การถ่ายภาพจะต้องให้ได้ภาพของตรานกวายุภักษ์ ที่อยู่ในแสตมป์ ดังตัวอย่าง ในรูปที่ 3.2 และ 3.3 สำหรับกรณีแสตมป์จริงและแสตมป์ปลอมตามลำดับ

3.2 แนวคิดของวิธีการตรวจสอบที่นำเสนอ

จากการพิจารณารูปแสตมป์ตัวอย่างที่ถ่ายมาจำนวนหนึ่ง พบว่าลักษณะเค่นที่แตกต่างกันระหว่างแสตมป์ จริงและแสตมป์ปลอมจะเกิดขึ้นบริเวณตรานกวายุภักษ์ โดยลักษณะที่เค่นที่สุดของความแตกต่างคือความ เข้มของสีบริเวณตรานกวายุภักษ์ ดังแสดงในรูปที่ 3.2 ซึ่งเป็นตัวอย่างรูปของแสตมป์จริง และ รูปที่ 3.3 ซึ่ง

รูปที่ 3.2 ตัวอย่างรูปของแสตมป์จริงบริเวณตรานกวายุภักษ์ ที่ได้จากการถ่ายภาพ

รูปที่ 3.3 ตัวอย่างรูปของแสตมป์ปลอมบริเวณตรานกวายุภักษ์ ที่ได้จากการถ่ายภาพ

เป็นตัวอย่างรูปของแสตมป์ปลอม จากข้อสังเกตดังกล่าวโครงงานวิจัยนี้จึงได้นำเสนอแนวคิดในการตรวจ สอบแสตมป์ดังนี้

ในขั้นแรกของวิธีการคือ การตัดเอาเฉพาะส่วนของบริเวณตรานกวายุภักษ์ ออกมา ซึ่งเนื่องจากบริเวณตรา นกวายุภักษ์ จะถูกล้อมรอบไว้ด้วยวงกลม โครงงานวิจัยนี้จึงมีแนวคิดในการนำเอาวิธีการทางการแปลง แบบวงกลมฮัฟ (Circle Hough Transform) มาใช้ในการตัดเอาบริเวณตรานกวายุภักษ์ออกมา โดยจากการ ทดลองหลายครั้ง ทำให้ขนาดรัศมีวงกลมของตรานกวายุภักษ์ที่อยู่ในแสตมป์สุราว่าอยู่ในช่วงใด เราจึง สามารถใช้วิธีการแปลงฮัฟวงกลมในการค้นหาวงกลมที่มีรัศมีอยู่ในช่วงดังกล่าวได้ โดยการเลือกเพียง วงกลมเคียวมา เพราะในภาพแสตมป์ที่ถ่ายมาจะมีตรานกวายุภักษ์เพียงตราเคียว รูปที่ 3.4 แสดงรูปตัวอย่าง ของผลของการใช้การแปลงฮัฟวงกลมในการค้นหาตรานกวายุภักษ์ และรูปที่ ?? แสดงภาพที่ตัดเฉพาะ ส่วนที่เป็นนกวายุภักษ์ออกมาโดยการเลือกเอาเฉพาะภาพที่อยู่ภายในวงของวงกลมที่ได้จากการแปลงฮัฟ วงกลม

รูปที่ 3.4 ตัวอย่างผลของการใช้การแปลงฮัฟวงกลมแสดงด้วยเส้นสีแดงเพื่อค้นหาตรานกวายุภักษ์

รูปที่ 3.5 รูปตัวอย่างของตรานกวายุภักษ์ที่ตัดจากภาพของแสตมป์ โดยการตัดเอาเฉพาะส่วนที่อยู่ใน วงกลมที่ได้จากการแปลงฮัฟวงกลม

เมื่อสังเกตตรานกวายุภักษ์ ที่ตัดออกมาจากแสตมป์จริงและแสตมป์ปลอม จะพบว่าตรานกวายุภักษ์ ของ แสตมป์จริงจะมีความเข้มมากกว่า และมีรายละเอียดมากกว่า เช่น บริเล็ปของนกในตราของจริงจะมีความ

รูปที่ 3.6 ฮิสโตแกรมของรูปนกวายุภักษ์ที่ตัดมาจากแสตมป์จริง

รูปที่ 3.7 ฮิสโตแกรมของรูปนกวายุภักษ์ที่ตัดมาจากแสตมป์ปลอม

ชัดเจนมากกว่า คำถามของเราคือจะ ใช้วิธีการทางการประมวลผลภาพอะไรสำหรับการตรวจสอบความ แตกต่างดังกล่าว แนวคิดที่นำมาใช้ในโครงงานวิจัยนี้คือ ลองพิจารณาจากใช้วิธีที่ง่ายก่อน ถ้าไม่ได้จึง พิจารณาใช้วิธีที่ยากซับซ้อนขึ้น

เนื่องจากความแตกต่างที่ชัดเจนคือความเข้มสี ดังนั้นจึงมีความเป็นไปได้ที่ฮิสโตแกรม (histogram) ของ ภาพตรานกวายุภักษ์จริงและภาพตรานกวายุภักษ์ปลอม จะบอกความแตกต่างได้ เนื่องจากสีที่ใช้พิมพ์ แสตมป์เป็นสีเขียว จึงตัดเอาเฉพาะส่วนของสีเขียวไปสร้างฮิสโตแกรมดังแสดงในรูปที่ 3.6 และ 3.7 สำหรับตรานกวายุภักษ์จริงและปลอมตามลำดับ จากการเปรียบเทียบคุณลักษณะเค่นของฮิสโตแกรม ของ ภาพส่วนสีเขียวของตรานกวายุภักษ์ของแสตมป์จริงและของแสตมป์ปลอม พบว่าลักษณะของการกระจาย ของอิสโตแกรมคล้ายคลึงกัน กล่าวคือจะมีพื้นที่ของการกระจายของความเข้มสีเขียวอย่างต่อเนื่องกัน แต่มี ลักษณะเค่นของฮิสโตแกรม 2 ประการที่แตกต่างกันคือ

- 1. ความกว้างของฮิส โตแกรมในส่วนที่ต่อเนื่องกัน ซึ่งพบว่าความกว้างของฮิส โตแกรมของตรานกวา ยุภักษ์ของแสตมป์จริงจะมากกว่า ของตรานกวายุภักษ์ของแสตมป์ปลอม สำหรับใน โครงงานวิจัยนี้ เราจะใช้สัญลักษณ์ w แทนความกว้างของอิส โตแกรมดังกล่าวนี้
- 2. ความสูงที่สูงที่สุดของฮิสโตแกรมในส่วนที่ต่อเนื่องกัน ซึ่งพบว่าความสูงของอิสโตแกรมของตรา นกวายุภักษ์ จากแสตมป์จริงจะมากกว่า ของตรานกวายุภักษ์ จากแสตมป์ปลอม สำหรับในโครง งานวิจัยนี้เราจะใช้สัญลักษณ์ h แทนความสูงของอิสโตแกรมดังกล่าวนี้

ด้วยคุณลักษณะของฮิสโตแกรมที่แตกต่างกัน 2 ข้อดังกล่าว เราสามารถนำไปใช้เป็นลักษณะเด่นในการคัด แยกว่าแสตมป์เป็นของจริงหรือปลอมได้ วิธีการคัดแยกที่นำมาใช้ใน โครงงานศึกษาวิจัยนี้ เป็นวิธีการนำ เอาลักษณะเด่นทั้งสองคือ ความกว้างของฮิสโตแกรม (w) และ ความสูงของฮิสโตแกรม (h) ไปพล็อตเป็น คู่พิกัด (w,h) บนระนาบโดย w เป็นแกน x และ h เป็นแกน y แล้วใช้เส้นตรงบนระนาบดังกล่าวเป็นเส้น แบ่งกลุ่มของจริงกับของปลอม

จากแนวคิดของการแก้ปัญหาวิจัยดังกล่าว เราจะ ได้ภาพรวมของขั้นตอนการตรวจสอบแสตมป์ที่นำเสนอ ในโครงงานศึกษาวิจัยนี้ตามบล็อกไดอะแกรม (block diagram) ดังรูปที่ 3.8 โดยรายละเอียดของขั้นตอน การตัดเอาเฉพาะตรานกวายุภักษ์และการคัดแยกจะอธิบายไว้ในหัวข้อ 3.3 และ 3.4 ตามลำดับ

3.3 วิธีการตัดเอาเฉพาะภาพตรานกวายุภักษ์

ตามที่ได้กล่าวไว้ในแนวคิดของการแก้ปัญหาแล้วว่าโครงงานวิจัยนี้ได้นำวิธีการแปลงแบบฮัฟ มาใช้เป็น เครื่องมือในการค้นหาวงกลมที่ล้อมรอบตรานกวายุภักษ์ที่อยู่ในแสตมป์ หัวข้อนี้อธิบายขั้นตอนการตัดเอา ภาพตรานกวายุภักษ์ ดังกล่าวดังนี้

ขั้นตอนที่ 1: นำเข้าภาพแสตมป์ รูปที่ 3.9 แสดงภาพตัวอย่างของภาพแสตมป์ที่นำเข้าสู่กระบวนการ สังเกต ว่าภาพอินพุทนี้มีการตัดเอาเฉพาะส่วนที่มีตราแสตมป์เท่านั้น ในโครงงานศึกษาวิจัยนี้เราจะสมมุติว่ามี ระบบตัดภาพนี้ให้แล้ว

ขั้นตอนที่ 2: แปลงภาพจากขั้นตอนที่ 1 เป็นภาพระดับเทา รูปที่ 3.10 แสดงผลของขั้นตอนนี้เมื่อใช้กับภาพ ตัวอย่างในรูปที่ 3.9

ขั้นตอนที่ 3: แปลงภาพระดับเทาเป็นภาพขาวคำ รูปที่ 3.11 แสดงผลของขั้นตอนนี้เมื่อใช้กับภาพระดับสี เทานรูปที่ 3.11

รูปที่ 3.8 บล็อกไดอะแกรมของวิธีการตรวจสอบแสตมป์อัตโนมัติ

ร**ูปที่ 3.9** ภาพของแสตมป์ที่ต้องการตรวจสอบ นำเข้าในโปรแกรมเพื่อการตัดเอาส่วนของตรานกวายุภักษ์

รูปที่ 3.10 ภาพระดับสีเทาของภาพแสตมป์ในรูปที่ 3.9

ขั้นตอนที่ 4: ใช้วิธีการหาเส้นขอบด้วยวิธี canny เพื่อการหาขอบ โดยอินพุทเป็นภาพขาวดำจากขั้นตอนที่ 3 เพราะต้องการลดจำนวนจุดขาวของภาพลงไป รูปที่ 3.12 เป็นผลของการหาขอบของภาพในรูปที่ 3.11

ขั้นตอนที่ 5: ใช้การแปลงแบบฮัฟวงกลม (Circle Hough Transform) เพื่อสร้าง Hough Space ของวงกลม ที่มีรัศมีในช่วงที่ครอบคลุม โดยใช้ขนาดของรัศมีวงนอกสุดของกรอบวงกลมที่ล้อมรอบตรานกวายุภักษ์ เป็นขอบเขตสูงสุด

ขั้นตอนที่ 6: เลือกวงกลมจาก Hough Space ในขั้นตอนที่ 5 ที่มีความถี่ของการเกิดมากที่สุด ผลที่ได้ในขั้น นี้จะอยู่ในรูปของตำแหน่งจุดศูนย์กลางและรัศมี รูปที่ 3.13 แสดงผลของวงกลมที่ได้จากภาพของแสตมป์ ตัวอย่างดังรูปที่ 3.9

ขั้นตอนที่ 7: ตัดเอาเฉพาะส่วนของภาพอินพุทที่อยู่ภายในวงกลมที่ได้ในขั้นตอนที่ 6 รูปที่ 3.14 แสดงภาพ ของการตัดสำหรับกรณีภาพตัวอย่างตามรูปที่ 3.9

3.4 วิธีการแยกแยะตรานกวายุภักษ์

ตามที่ได้กล่าวไว้ในแนวคิดของการแก้ปัญหา ในโครงงานศึกษาวิจัยนี้ จะใช้คุณสมบัติเค่นของฮิสโตแกรม ของภาพตรานกวายุภักษ์ ที่ได้จากการตัดด้วยวิธีที่นำเสนอตามหัวข้อที่ 3.3 เพื่อการตรวจสอบว่าแสตปม์ นั้นเป็นของจริงหรือปลอม จากแนวคิดที่นำเสนอพบว่าคุณลักษณะ 2 ตัวของฮิสโตแกรมดังแสดงในรูป ที่ 3.15 ที่สามารถใช้ในการแยกแยะตราวายุภักษ์ของแสตมป์จริงกับของแสตมป์ปลอมออกจากกันคือ

1. ความสูงของฮิสโตแกรมของภาพตรานกวายุภักษ์ แทนด้วย h เป็นค่าความถี่ที่ปรับให้อยู่ระหว่าง 0 ถึง 1 ที่มีค่าสูงสุด

รูปที่ 3.11 ภาพขาวดำที่ได้จากการแปลงภาพระดับสีเทาของแสตมป์จากรูปที่ 3.10

ร**ูปที่ 3.12** ภาพที่ได้จากการหาเส้นขอบด้วยวิธี canny ของภาพตัวอย่างดังรูปที่ 3.11

ร**ูปที่ 3.13** ตัวอย่างผลลัพธ์ของการค้นหาวงกลมของภาพตัวอย่างในรูปที่ 3.9 ด้วยการใช้การแปลงฮัฟ วงกลม

ร**ูปที่ 3.14** ตัวอย่างผลของการตัดภาพอินพุทเพื่อเอาเฉพาะส่วนของภายในวงกลมที่ได้จากขั้นตอนที่ 6

2. ความกว้างของฮิส โตแกรมของภาพตรานกวายุภักษ์ แทนด้วย w เป็นค่าความกว้างของฮิส โตแกรม ที่มีความถื่มากกว่า 20/

รูปที่ 3.15 นิยามของค่า w และ h ที่ใช้เป็นลักษณะเด่นในการแยกแยะตรานกวายุภักษ์

วิธีการแยกแยะที่นำมาใช้ เป็นวิธีการใช้เส้นแบ่งแบบเส้นตรง (linear classification line) ของจุดพิกัด (w,h) โดยจุดพิกัดที่ได้จากตราวายุภักษ์ของแสตมป์จริงจะอยู่ข้างล่างของเส้นแบ่ง เพราะฮิส โตแกรมของมันจะมี ค่า h (แกน y) ที่ต่ำของปลอม ในขณะที่ w (แกน x) ของตราวายุภักษณ์ของจริงจะมีค่ามากกว่าของตราวา ยุภักษ์ปลอม เส้นแบ่งดังกล่าวจะใช้วิธีการเรียนรู้ซึ่งอธิบายในหัวข้อ 3.5

วิธีการแยกแยะตราวายุภักษณ์ที่นำมีขั้นตอนดังนี้

ขั้นตอนที่ 1: นำเข้าภาพตรานกวายุภักษ์ ที่ได้จากขั้นตอนการตัดภาพตรานกวายุภักษ์ดังตัวอย่างในรูป ที่ 3.14 ไปหาฮิสโตแกรมของระดับสีเขียว ได้ผลลัพธ์ดังตัวอย่างในรูปที่ 3.16

ขั้นตอนที่ 2: ปรับความถี่ของฮิส โตแกรมให้เป็นค่าระหว่าง 0 ถึง 1 โดยการหารด้วยจำนวนจุดของภาพ

ขั้นตอนที่ 3: ตัดฮิสโตแกรมให้เหลือเฉพาะส่วนของ Bin จาก 21 ถึง 250 เพื่อให้ใต้เฉพาะส่วนของฮิสโต แกรมที่ต่อเนื่อง

ขั้นตอนที่ 4: หาความสูง h ได้โดยการหาค่าที่มากที่สุดของกราฟอิสโตแกรมจากขั้นตอนที่ 3

ขั้นตอนที่ 5: หาความกว้าง w ตามนิยามตามรูปที่ 3.15

รูปที่ 3.16 ตัวอย่างอิสโตแกรมของภาพระดับสีเขียวของตรานกวายุภักษ์จากรูปที่ 3.14

3.5 การเรียนรู้เพื่อหาเส้นแบ่งการคัดแยก

เส้นตรงที่ใช้ในการตัดสินว่าภาพตรานกวายุภักษ์เป็นของแสตมป์จริงหรือปลอมหาได้จากการเรียนรู้ โดยมี ขั้นตอนดังต่อไปนี้

- 1. เลือกเซตของภาพที่ใช้ในการเรียนรู้ โดยใช้ภาพจากแสตมป์จริงและแสตมป์ปลอมจำนวน n ภาพ เท่ากัน ให้ $r_1, r_2, \dots r_n$ เป็นภาพตรานกวายุภักษ์ที่ตัดจากแสตมป์จริงจำนวน n ภาพ และ ให้ f_1, f_2, \dots, f_n เป็นภาพตรานกวายุภักษ์ที่ตัดจากแสตมป์ปลอมจำนวน n ภาพ
- 2. ใช้วิธีการตัดตราวายุภักษ์ที่เสนอในหัวข้อ 3.3 ในการตัดภาพวายุภักษณ์ของภาพที่ใช้ในการเรียนรู้ ทั้งหมด
- 3. ใช้วิธีการหาค่า w และ h ของตราวายุภักษณ์ที่ตัดมาทุกอัน โดยให้ $w_r(i)$ และ $h_r(i)$ เป็นค่า w และ h ของภาพในการเรียนรู้ที่เป็นแสตมป์จริงลำดับที่ i และให้ $w_f(i)$ และ $h_f(i)$ เป็นค่า w และ h ของภาพในการเรียนรู้ที่เป็นแสตมป์ปลอมลำดับที่ $i, i = 1, 2, \ldots n$
- 4. หาเส้นตรงที่เป็นเส้นแบ่งกลุ่มของ $(w_r(i), h_r(i))$ ออกจากกลุ่มของ $(w_f(i), h_f(i))$

- เลือกมุมซ้ายล่างของกลุ่ม (w_{min},h_{min}) และจุดมุมขวาของกลุ่ม (w_{max},h_{max}) โดยที่
 - w_{min} เป็นค่าน้อยที่สุดของ w_f
 - h_{min} เป็นค่าน้อยที่สุดของ h_r
 - w_{max} เป็นค่าน้อยที่สุดของ w_r
 - h_{max} เป็นค่าน้อยที่สุดของ h_f
- เลือกเส้นแบ่งเป็นเส้นตรงจากจุด (w_{min},h_{min}) ซึ่งเป็นจุดด้านมุมซ้ายล่างกับจุด (w_{max},h_{max}) ซึ่งเป็นจุดมุมขวาบน

รูปที่ 4.1 แสดงตัวอย่างของผลการเรียนรู้ด้วย n=10

รูปที่ 3.17 เส้นตรงสำหรับการแยกแยะที่ได้จากการเรียนรู้ด้วยภาพแสตมป์จริงและแสตมป์ปลอมอย่าง ละ 5 ภาพ (n=5)

บทที่ 4 การทดสอบและการวิจารณ์

วิธีการตรวจสอบแสตมป์ตามที่นำเสนอในบทที่ 3 ได้รับการทวนสอบ (verification) ด้วยการทดลองกับ ภาพแสตมป์จริงและแสตมป์ปลอมอย่างละ 20 ภาพ ในหัวข้อ 4.1 จะบอกถึงข้อมูลของกล้องและระบบ กอมพิวเตอร์รวมทั้งโปรแกรมที่ใช้ในการทดสอบ หัวข้อ 4.2 จะบอกถึงผลที่ได้จากการทดสอบ และหัวข้อ 4.3 เป็นการวิจารณ์ผลการทดสอบที่ได้

4.1 การเตรียมการในการทดสอบ

4.1.1 ระบบฮาร์ดแวร์และซอฟท์แวร์ที่ใช้ในการทดสอบ

ในการทคลองเพื่อทคสอบวิธีการที่นำเสนอ ระบบการถ่ายภาพแสตมป์แบบง่าย ตามที่นำเสนอในบทที่ 3 ได้ถูกสร้างขึ้น เพื่อการถ่ายภาพแสตมป์ที่ใช้ในการทคสอบ สำหรับกล้องที่ใช้ในการถ่ายภาพเป็นกล้องดิจิ ทัลซึ่งมีข้อมูลของกล้องตามที่แสดงในตารางที่ 4.1

ตารางที่ 4.1 ข้อมูลกล้องที่ใช้ในการถ่ายภาพสแตมป์

รุ่นของกล้อง	NIKON D5200
จำนวนจุดพิกเซล	24.1 megapixels
เลนส์	18 -55 VR
ระยะ โฟกัส	Contrast Detect (sensor
ความเร็วชัตเตอร์	30 sec-1/4000 sec
การซูม	35-55 mm

วิธีการที่นำเสนอได้ถูกนำสร้างบนแพล็ตฟอร์ม Matlab โดยการเขียนเป็นโปรแกรมรันบนคอมพิวเตอร์ ส่วนบุคคล

4.1.2 ข้อมูลสำหรับการทดลอง

ภาพของแสตมป์สำหรับการทดสอบได้จากการถ่ายภาพด้วยกล้องถ่ายภาพตามหัวข้อ 4.1.1 ในการทดสอบ ระบบจำเป็นต้องมีภาพแสตปม์ทั้งที่เป็นแสตมป์จริง และแสตมป์ปลอมจำนวน 2 เซต โดยทั้งหมดเป็น สแตมป์ที่ได้จากสรรพากรเขตพื้นที่จังหวัดอุบลราชธานี โดยมีรายละเอียดของแสตมป์ตัวอย่างตามตาราง ที่ 4.2

ตารางที่ 4.2 ข้อมูลแสตมป์ที่ใช้ในการทดลอง

ชนิดของแสตมป์	เป็นแสตมป์สุราของสรรพากรเขตพื้นที่จังหวัดอุบลราชธานี
จำนวนแสตมป์ทั้งหมด	50 แสตมป์
จำนวนแสตมป์จริง	25 แสตมป์
จำนวนแสตมป์ปลอม	25 แสตมป์

4.1.3 การเรียนรู้เพื่อหาเส้นตรงที่ใช้เป็นเกณฑ์การตรวจสอบ

ตามวิธีการที่นำเสนอในบทที่ 3 การตรวจสอบว่าแสตมป์เป็นของจริงหรือของปลอม จะต้องมีการเรียน รู้เพื่อสร้างเกณฑ์สำหรับการตรวจสอบ ซึ่งเป็นเส้นตรงบนระนาบ w-h โดย w เป็นความกว้างของฮิส โตแกรมของภาพระดับสีเขียวของตรานกวายุภักษ์ในแสตมป์ และ h เป็นความสูงที่สุดของอิส โตแกรม ของภาพระดับสีเขียวของตรานกวายุภักษ์ในแสตมป์ กระบวนการในการเรียนรู้เป็นไปตามที่อธิบายไว้ใน หัวข้อ 3.5

สำหรับในการทคสอบนี้ ได้เลือกภาพแสตมป์จำนวน 10 ภาพเป็นสแสตมป์จริงและแสตมป์ปลอมอย่างไร 5 ภาพ เพื่อใช้เป็นเซตของภาพสำหรับการเรียนรู้ (training set) ผลการเรียนรู้เป็นไปตามที่แสคงในรูปที่ 4.1 ซึ่งเป็นสมการเส้นตรงตามสมการที่ 4.1

รูปที่ 4.1 กราฟจากการพล็อตจุดพิกัด (w,h) ที่ได้จากการเรียนรู้ด้วยเซตของภาพสำหรับการเรียนรู้

$$h = m * (w - w_0) + h_0$$

$$m = \frac{h_{max} - h_{min}}{w_{max} - w_{min}} = 8.881 \times 10^{-4}$$

$$w_0 = w_{min} = 100$$

$$h_0 = h_{min} = 0.0251$$
(4.1)

โดยที่

- w_{min} เป็นค่าต่ำสุดของ w ที่ได้จากชุดข้อมูลสำหรับการเรียนรู้ กลุ่มแสตมป์ปลอม จากการทดลองได้ $w_{min}=100$
- w_{max} เป็นค่าสูงสุดของ w ที่ได้จากชุดข้อมูลสำหรับการเรียนรู้ กลุ่มแสตมป์จริง จากการทดลองได้ $w_{max}=128$
- h_{min} เป็นค่าต่ำสุดของ h ที่ได้จากชุดข้อมูลสำหรับการเรียนรู้ กลุ่มแสตมป์จริง จากการทดลองได้ $h_{min}=0.0251$
- h_{max} เป็นค่าสูงสุดของ h ที่ได้จากชุดข้อมูลสำหรับการเรียนรู้ กลุ่มแสตมป์ปลอม จากการทดลองได้ $h_{max}=0.0518$
- m เป็นความชั้นของเส้นแบ่ง จากการทดลองได้
- (w_0,h_0) เป็นจุด ๆ หนึ่งบนเส้นแบ่งในที่นี้เลือกใช้จุด (w_{min},h_{min})

4.2 ผลการทดสอบและการวิจารณ์

วิธีการที่นำเสนอมี 2 ขั้นตอนหลัก คือ (1) การตัดเอาเฉพาะตรานกวายุภักษ์ และ (2) การตรวจสอบว่านกวา ยุภักษณ์ที่ตัดมาเป็นของจริงหรือของปลอม ดังนั้นในการทดสอบจึงแบ่ง 2 ขั้นตอน โดยภาพที่ที่ใช้ในการ ทดสอบเป็นภาพที่ไม่อยู่ในเซตของการเรียนรู้ โดยเป็นภาพแสตมป์จริง 20 ภาพ และภาพแสตมป์ปลอม 20 ภาพ

4.2.1 ผลการตัดรูปนกวายุภักษ์

ในขั้นตอนแรกเป็นการทคสอบเพื่อพิจารณาผลการตัดเอาเฉพาะตรานกวายุภักษ์ รูปที่ 4.2 และ ?? แสดง ผลการตัดสำหรับแสตมป์ที่เป็นแสตมป์จริง และแสตมป์ปลอมตามลำดับ

จากรูปที่ 4.2 และ 4.3 การตัดเอาภาพของนกวายุภักษ์เพื่อไปใช้ในการตรวจสอบนั้น ไม่ได้ถูกต้องทั้งหมด ภาพการตัดที่ไม่ถูกต้องจะมีลักษณะที่มีบางส่วนภายในกรอบของรูปครุฑที่หายไป และอาจจะมีบางภาพ ที่มีส่วนอื่นเพิ่มขึ้นมา ทั้งนี้เพราะตรานกวายุภักษ์ซึ่งอยู่ในกรอบวงกลม ภายในภาพแสตมป์ที่ใช้ทดลอบ นั้น ตัววงกลมส้อมรอบรูปครุฑจะไม่สมดุล กล่าวคือจะมีลักษณะเป็นวงรี ทำให้การตัดซึ่งเป็นการตัดด้วย วงกลมมีความคลาดเคลื่อนในบางส่วน เหตุผลที่ภาพเป็นวงรีนั้นมาจากขั้นตอนการถ่ายภาพ ซึ่งควบคุมให้ ภาพเป็นวงกลมทั้งหมดได้ยาก

อย่างไรก็ตามผลการตัดที่คลาดเคลื่อนดังกล่าวนี้มีผลกระทบกับการแยกแยะไม่มาก เพราะสักษณะเด่นที่ ใช้ในการวิเคราะเป็นคุณสมบัติของการกระจายของสีเขียวของส่วนที่เป็นตรานกวายุภักษ์ ซึ่งผลของการ กลาดเคลื่อนจะเป็นผลต่อจุดพิกัดของ (w,h) อยู่บ้างแต่มีไม่มากพอที่จะให้เกิดการย้ายกลุ่ม

รูปที่ 4.2 ภาพนกวายุภักษ์ที่ได้จากผลการตัดจากภาพแสตมป์จริงที่ใช้ในการทดสอบ

รูปที่ 4.3 ภาพนกวายุภักษ์ที่ได้จากผลการตัดจากภาพแสตมป์ปลอมที่ใช้ในการทดสอบ

4.2.2 ผลการแยกแยะชนิดของแสตมป์

ภาพที่ ได้จากการตัดรูป นกวายุภักษ์ จะถูกนำ ไปตรวจสอบ ว่าเป็นภาพของแสตมป์ จริงหรือของแสตมป์ ปลอม โดยการนำข้อมูลสีเขียวของภาพที่ตัด ได้ ไปหาฮิส โดแกรม แล้วปรับให้ฮิส โตแกรม ไปทำให้อยู่ใน ช่วงเดียวกันคือมีค่าระหว่าง 0 ถึง 1 เหมือนกัน ทั้งนี้เพราะภาพที่ตัดมาอาจมีขนาดภาพ ไม่เท่ากัน จากนั้น จึงหาค่า w และ h ของแต่ละภาพ นำค่า w และ h ที่ ได้ ไปเปรียบกับเส้นแบ่งที่ ได้จากการเรียนรู้ ถ้าจุด (w,h) อยู่เหนือเส้นแบ่งแสดงว่าเป็นภาพตรานกวายุภักษ์นั้นเป็นของแสตมป์ปลอม รูปที่ 4.4 แสดงผล พล็อตจุด (w,h) ของภาพทดสอบทั้งหมด โดยกากบาทเป็นจุดของภาพทดสอบที่เป็นแสตมป์ปลอม ส่วน เครื่องหมายรูปเพชรเป็นจุดของภาพทดสอบที่เป็นแสตมป์จริง

ถ้าจุดเครื่องหมายกากบาทอยู่ใต้เส้นแบ่ง แสดงว่าเป็นการตัดสินผิดจากของปลอมเป็นของจริง ซึ่งไม่พบ กรณีนี้เกิดขึ้นจากภาพตัวอย่างที่ใช้ทดสอบ ถ้าจุดรูปเพชร อยู่เหนือเส้นแบ่ง แสดงว่าเป็นการตัดสินผิดจาก ของจริงเป็นของปลอม ซึ่งไม่พบกรณีนี้เกิดจากภาพตัวอย่างที่ใช้ทดสอบ สรุปได้ว่าวิธีที่นำเสนอสามารถ ตรวจสอบแสตมป์ตัวอย่างจำนวน 40 แสตมป์ได้ทั้งหมด

จากผลการทคสอบพบว่าวิธีที่นำเสนอสามารถตรวจสอบแสตมป์ตัวอย่างที่ใช้ทคสอบทั้งหมค 40 แสตมป์ ได้ทั้งหมค ซึ่งแสดงว่าวิธีที่นำเสนอมีโอกาสที่จะถูกนำไปใช้งานได้จริง อย่างไรก็ตามแม้ยังมีประเด็นที่ ต้องให้ความสนใจดังต่อไปนี้

ร**ูปที่ 4.4** กราฟจากการพล็อตจุดพิกัด (w,h) ที่หาได้จากภาพตรานกวายุภักษ์ที่ตัดมาจากภาพแสตมป์ ที่ใช้ทดสอบ

- 1. ตามวิธีที่นำเสนอนั้น การตัดรูปครุฑมีความสำคัญอย่างยิ่งเพราะเกณฑ์ในการตัดขึ้นอยู่กับฮิสโต แกรมของรูปครุฑเท่านั้น ถ้าตัดรูปครุฑผิดฮิสโตแกรมอาจจะมีคุณสมบัติที่แตกต่าง ทำให้ตัดสิน ผิด หรือในบางกรณีตัดสินใจไม่ได้เลย แต่อย่างไรก็ตามแม้ว่าภาพที่ถ่ายมาวงกลมจะปรากฏเป็น วงรี ผลการตัดก็ยังถูกต้องในแง่ที่สามารถตัดเอาส่วนใหญ่ของรูปครุฑออกมาได้ทุกกรณีของภาพ ตัวอย่าง
- 2. ปัญหาที่อาจจะเกิดได้กับการตัดตรานกวายุภักษ์คือ กรณีที่แสตมป์ที่ติดอยู่ที่ขวดมีความไม่สมบูรณ์ เช่น มีบางส่วนหายไป หรือแสตมป์มีการขาด ซึ่งจะเป็นปัญหาวิจัยในอนาคตเพื่อทำให้สามารถนำ วิธีการที่นำเสนอไปใช้งานได้จริง
- 3. สำหรับขั้นตอนการหาจุดพิกัด (w, h) จากอิส โตแกรมของรูปครุฑ มีความเป็นไปได้ที่อาจจะเกิด ปัญหาขึ้นเมื่อในการนำวิธีที่นำเสนอไปใช้งานจริง ในกรณีที่มีความไม่เท่ากันของแสงที่ใช้ ซึ่งอาจ จะส่งผลต่อเส้นแบ่งที่ได้จากการเรียนรู้มาก่อน จึงเป็นอีกกรณีหนึ่งที่จะต้องทำการศึกษาเพื่อเพิ่ม เติม
- 4. ประเด็นสุดท้ายคือวิธีการที่นำเสนอตั้งอยู่บนฐานของแสตมป์ปลอมเพียงกลุ่มเคียว ดังนั้นจึงเป็นไป ไม่ได้ที่จะบอกว่าวิธีการที่นำเสนอนี้สามารถตรวจสอบแสตมป์ได้ทุกชนิด

บทที่ 5 บทสรุป

โครงงานศึกษาวิจัยนี้ ได้นำเสนอวิธีการตรวจสอบแสตมป์สุราว่าเป็นแสตมป์ของจริงหรือของปลอม โคย แสตมป์สุราที่สนใจเป็นแสตมป์สุราที่นำเข้า หรือเรียกอีกอย่างว่าแสตมป์สุราต่างประเทศซึ่งเป็นสุราที่มี ราคาสูง ทำให้มีการลักลอบนำเข้า แล้วนำมาติดตราแสตมป์ปลอมเพื่อหลีกเลี่ยงการเสียภาษีสรรพากร วิธี ที่กรมสรรพสามิตในเขตพื้นที่ต่าง ๆ ใช้ในการตรวจสอบแสตมป์สุรานำเข้าคือ การใช้ผู้เชี่ยวชาญในการตรวจ ซึ่งมีจำนวนคนน้อย จึงทำให้ไม่สามารถตรวจสอบการลักลอบได้อย่างทั่วถึง ปริมาณการลักลอบก็สูงขึ้นเนื่องจากผู้ลักลอบทราบว่าเจ้าหน้าที่มีน้อยจึงกล้าเสี่ยง

โครงงานศึกษาวิจัยนี้ ได้เสนอ ให้ใช้การ ประมวลผลภาพ ในการ ตรวจสอบความเป็นของแท้ของแสตมป์ สุรา โดยภาพที่ใช้ในการทดสอบเป็นภาพของแสตมป์ที่ถ่ายจากด้านบนของขวดด้วยกล้องคิจิทัล วิธีที่นำ เสนอเป็นวิธีที่ง่าย โดยใช้ฮัพวงกลมในการ ตัดเอาเฉพาะตรานกวายุภักษ์ออกมาก่อน แล้วนำ ไปหาคุณลักษณะเด่น ก่อนที่จะนำ ไปตัดสินว่าเป็นแสตมป์จริงหรือปลอม คุณลักษณะเด่นที่ใช้ในการแยกเป็นคุณลักษณะของฮิสโตแกรมของสีเขียวของภาพนกภายุภักษ์ที่ตัดมา โดยมี 2 ตัวคือ ความสูงที่มากที่สุดของฮิสโต แกรมเรียกว่า h และความกว้างของฮิสโตแกรมเรียกว่า w วิธีการแยกแยะใช้เส้นตรงในระนาบของ (w,h) ที่ได้จากการเรียนรู้แบบง่ายจากเซตของภาพแสตมป์ทั้งของจริงและของปลอม

ผลการทดสอบกับแสตมป์ที่ใด้มาจากกรมสรรพสามิตเขตพื้นที่ จังหวัดอุบลราชธานี จำนวน 40 แสตมป์ เป็นแสตมป์จริงและปลอมอย่างละ 20 แสตมป์พบว่าวิธีที่นำเสนอสามารถตรวจสอบได้อย่างถูกต้องทั้งหมด แต่มีแสตมป์จริงบางตัวที่มีคุณสมบัติใกล้เกียงกับแส้นแบ่างที่ได้จากการเรียนรู้

อย่างไรก็ตาม แม้ว่าผลการทดสอบจะมีอัตราการตรวจสอบถูกต้องที่สูงเป็นที่น่าพอใจ แต่การที่จะนำวิธี การเช่นนี้ไปใช้จริงอาจจะต้องพิจารณาประเด็นต่าง ๆ อีกหลายประเด็น ได้แก่ (1) การถ่ายภาพที่จะต้อง อยู่ในระยะที่กำหนด และอาจจะต้องควบคุมแสงให้เพียงพอ (2) ปรับปรุงวิธีการแยกแยะเช่นการใช้ SVM (support vector machine) แทนเพราะวิธีที่นำเสนอใช้หลักการเดียวกัน (3) มีการเรียนรู้ด้วยภาพที่มากกว่า 5 ภาพที่ใช้อยู่ และ (4) วิธีที่นำเสนออาจใช้ได้ดีกับการปลอมแปลงที่สีของตรานกวายุภักษ์มีความแตก ต่างกัน แต่ถ้ามีการปลอมแปลงแบบอื่นวิธีนี้อาจจะใช้ไม่ได้ อย่างไรก็ตามหลักการของการตัดเอามาเฉพาะ ตรานกวายุภักษ์ซึ่งเป็นส่วนที่มีรายละเอียดมาก จึงยากที่สุดที่จะปลอมแปลง เพื่อมาวิเคราะห์ว่าเป็นของแท้ หรือของปลอมเป็นแนวคิดที่มีโอกาสที่จะใช้ได้สูง