MATH2621 — Higher Complex Analysis. III Sketching complex functions

This lecture?

We look at ways to represent complex functions graphically.

Just as we often write y = f(x) for a real function, it is common to consider a function in the form w = f(z), and write z = x + iy and w = u + iv.

Typically, we draw "elementary" curves in the z plane, such as lines parallel to the axes, or concentric circles around and rays exiting from the origin, and then examine their images in the w plane, or we draw similar elementary curves in the w plane and then examine their preimages.

Linear mappings

Consider the map $z \mapsto az$; this mapping is 1-1.

We write a = c + id and z = x + iy; then

$$az = (c + id)(x + iy) = (cx - dy) + i(cy + dx).$$

In Cartesian coordinates, the map may be written

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}.$$

More on linear mappings

Note that, if $a \neq 0$, then

$$\begin{pmatrix} c & -d \\ d & c \end{pmatrix} = r \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix},$$

where $r = \sqrt{c^2 + d^2}$, while $\cos \theta = c/r$ and $\sin \theta = d/r$. Hence multiplying by the matrix

$$\begin{pmatrix} c & -d \\ d & c \end{pmatrix}$$

is the same as rotating through the angle θ and then dilating by the real number r. This corresponds to the representation of a in the form $re^{i\theta}$, where r=|a| and $\theta={\rm Arg}(a)$.

An affine mapping of the complex plane is a map of the form $z\mapsto az+b$; such a mapping is also 1-1. We may also represent this as a map from \mathbb{R}^2 to \mathbb{R}^2 . We write a=c+id and b=e+if. Then in Cartesian coordinates, we have

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}.$$

An affine mapping of the complex plane is a map of the form $z\mapsto az+b$; such a mapping is also 1-1. We may also represent this as a map from \mathbb{R}^2 to \mathbb{R}^2 . We write a=c+id and b=e+if. Then in Cartesian coordinates, we have

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}.$$

It is straightforward exercise in algebra to see that the image of a line under an affine mapping is a line, and the image of a circle under an affine mapping is a circle.

An affine mapping of the complex plane is a map of the form $z\mapsto az+b$; such a mapping is also 1-1. We may also represent this as a map from \mathbb{R}^2 to \mathbb{R}^2 . We write a=c+id and b=e+if. Then in Cartesian coordinates, we have

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}.$$

It is straightforward exercise in algebra to see that the image of a line under an affine mapping is a line, and the image of a circle under an affine mapping is a circle.

The inverse of an affine mapping is an affine mapping; hence the preimages of lines are lines and preimages of circles are circles.

An affine mapping of the complex plane is a map of the form $z\mapsto az+b$; such a mapping is also 1-1. We may also represent this as a map from \mathbb{R}^2 to \mathbb{R}^2 . We write a=c+id and b=e+if. Then in Cartesian coordinates, we have

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} c & -d \\ d & c \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} e \\ f \end{pmatrix}.$$

It is straightforward exercise in algebra to see that the image of a line under an affine mapping is a line, and the image of a circle under an affine mapping is a circle.

The inverse of an affine mapping is an affine mapping; hence the preimages of lines are lines and preimages of circles are circles. In particular, the preimage of a grid parallel to the axes is another grid, but not necessarily parallel to the axes.

Sketch of the translation $z \mapsto z + 1$

Sketch of the multiplication $z \mapsto (1+i)z$

Pros and cons

This is a good representation of the function, but it uses a lot of space and may be ambiguous. We might just draw a very asymetrical figure in the z plane and its image in the w plane.

Pros and cons

This is a good representation of the function, but it uses a lot of space and may be ambiguous. We might just draw a very asymetrical figure in the z plane and its image in the w plane.

Sometimes we just draw the right hand figure of the two drawn above, labelling the curves with the corresponding curve in the domain of the function.

Pros and cons

This is a good representation of the function, but it uses a lot of space and may be ambiguous. We might just draw a very asymetrical figure in the z plane and its image in the w plane.

Sometimes we just draw the right hand figure of the two drawn above, labelling the curves with the corresponding curve in the domain of the function.

Level curves

We can look for curves in the xy plane whose images in the uv plane are the lines u=c and v=d: we are finding the level curves of the real and imaginary parts of the function. Interpreting level curves is like reading a contour map.

Quadratic functions

Consider the function $z \mapsto z^2$, which is 2-1 in $B^{\circ}(0, \infty)$.

First, we find the images in the uv plane of the lines x = a and y = b in the xy plane.

Quadratic functions

Consider the function $z \mapsto z^2$, which is 2-1 in $B^{\circ}(0, \infty)$.

First, we find the images in the uv plane of the lines x=a and y=b in the xy plane.

If x = a and y = t, where a is fixed and t varies, then

$$w = z^2 = (a + it)^2 = a^2 - t^2 + 2iat.$$

That is, $u = a^2 - t^2$ and v = 2at. We eliminate t to find

$$u=a^2-\frac{v^2}{4a^2}.$$

Alternatively, if y = b and x = t, where b is fixed and t varies, then

$$w = z^2 = (t + ib)^2 = t^2 - b^2 + 2ibt.$$

That is, $u = t^2 - b^2$ and v = 2bt. We eliminate t to find

$$u = \frac{v^2}{4h^2} - b^2.$$

Cartesian sketch of a quadratic function

Cartesian sketch of a quadratic function

What are the foci of the parabolae?

A quadratic function in polar coordinates

Again we consider the function $z \mapsto z^2$.

We find the images in the uv plane of the curves in the xy plane given by r=a and $\theta=b$.

Here is the corresponding sketch using polar coordinates.

Level curves for a quadratic

On the other hand, we can look for the values of x and y so that $Re(z^2)$ or $Im(z^2)$ takes a fixed value. For instance, if $Re(z^2) = a$, then

$$x^2 - y^2 = a,$$

and this is a hyperbola opening to the left and right, or up and down, depending on the sign of a. Similarly, if $Im(z^2) = b$, then

$$2xy = b$$
,

and this is a right hyperbola in the first and third quadrants, or in the second and fourth quadrants, depending on the sign of b.

The level curves for $Re(z^2)$ and $Im(z^2)$

The level curves for $Re(z^2)$ and $Im(z^2)$

Often we just present the left hand picture, labelling the curves to make it clear what they represent.

Exercise 1

How would you understand the function $w = (z - 1)^2 - 1$?

Answer.

Exercise 1

How would you understand the function $w = (z - 1)^2 - 1$?

Answer. Taking first $z \mapsto z - 1$, then composing with $w = z^2$, and finally shifting to the left by 1.

The function w = 1/z

The function w = 1/z is 1-1. It sends lines through the origin to lines through the origin. This is easy to see using polar coordinates.

The function w = 1/z

The function w = 1/z is 1-1. It sends lines through the origin to lines through the origin. This is easy to see using polar coordinates.

As r varies in \mathbb{R}^+ , the point $z=re^{i\theta}$ varies along a ray from the origin. Now $w=(1/r)e^{-i\theta}$, and 1/r also varies in \mathbb{R}^+ and this point too varies along a ray. However the new ray is the reflection of the old ray in the real axis.

The function w = 1/z

The function w = 1/z is 1-1. It sends lines through the origin to lines through the origin. This is easy to see using polar coordinates.

As r varies in \mathbb{R}^+ , the point $z=re^{i\theta}$ varies along a ray from the origin. Now $w=(1/r)e^{-i\theta}$, and 1/r also varies in \mathbb{R}^+ and this point too varies along a ray. However the new ray is the reflection of the old ray in the real axis. Diametrically opposed rays are mapped to diametrically opposed rays.

Similarly, as θ varies, the point $re^{i\theta}$ moves around a circle centred at the origin. Now $w=(1/r)e^{-i\theta}$, and this point moves around the cricle centred at the origin of radius 1/r, but in the opposite direction.

Images of curves r = c and $\theta = d$ for w = 1/z

More on w = 1/z

Lemma

- 1. The image of a line through 0 (with the origin removed) is a line through 0 (with the origin removed).
- 2. The image of a line that does not pass though 0 is a circle (with the origin removed). If p is the closest point on the line to 0, then the line between 0 and 1/p is a diameter of the circle.
- 3. The image of a circle that passes through 0 is a line. If q is the furthest point on the circle from 0, then the closest point on the line to 0 is 1/q.
- 4. The image of a circle that does not pass through 0 is a circle. If p and q are the closest and the furthest point on the circle from 0, then the closest and furthest point on the image circle to 0 are 1/q and 1/p.

The exponential function

The exponential function $w=e^z$ is ∞ to 1; that is, infinitely many different points in the xy plane are sent to the same point in the uv plane.

The exponential function

The exponential function $w=e^z$ is ∞ to 1; that is, infinitely many different points in the xy plane are sent to the same point in the uv plane.

More on graphical representations of complex functions

There are many good web-sites that explore different ways to represent complex functions.