Supplemental material to paper 'Different strategies of fitting logistic regression for positive and unlabelled data'

Paweł Teisseyre, Jan Mielniczuk and Małgorzata Łazęcka

Lemma 1. Let $H(\lambda) = \lambda E \sigma'(\lambda Z)$, where $Z \sim N(0, a^2)$. Then $H(\lambda)$ is convex.

Proof. From Stein's lemma we have $H(\lambda) = a^{-2}E(\sigma(\lambda Z)Z)$ and thus $H''(\lambda) = a^{-2}E(\sigma''(\lambda Z)Z^3)$. As $\sigma''(s) = \sigma(s)(1-\sigma(s)(1-2\sigma(s)))$ and $\sigma(s)(1-\sigma(s))$ and density of Z are symmetric we have that $E(\sigma(\lambda Z)(1-\sigma(\lambda Z))Z^3 = 0$. Thus to prove that $H''(\lambda) \leq 0$ it is enough to prove that $E(\sigma^2(\lambda Z)(1-\sigma(\lambda Z))Z^3 \geq 0$. This follows again from the symmetry of Z and inequality $\sigma^2(-s)(1-\sigma(-s)) \leq \sigma^2(s)(1-\sigma(s))$ which is justified by checking that $e^{-2s}/(1+e^{-s})^3 \leq e^{2s}/(1+e^s)^3$ for s>0.

Table 1: AUC, known c (t = 3)

Table 2: AUC (est. c) (t = 3)

Table 3:	c _ ĉ	(+ -	3)
rabie 5:	c-c	$\iota\iota =$	O 1

	oracle	$_{ m joint}$	naive	weighted	oracle	joint	naive	weighted
breastc	0.990	0.984	0.985	0.979	0.990	0.985	0.985	0.983
diabetes	0.813	0.804	0.806	0.804	0.813	0.800	0.808	0.804
heart-c	0.847	0.828	0.833	0.832	0.847	0.826	0.829	0.830
credit-a	0.906	0.877	0.895	0.892	0.906	0.892	0.894	0.895
credit-g	0.730	0.722	0.723	0.721	0.730	0.720	0.723	0.714
adult	0.823	0.823	0.822	0.823	0.823	0.825	0.823	0.817
vote	0.972	0.971	0.968	0.969	0.972	0.970	0.968	0.974
wdbc	0.979	0.976	0.969	0.971	0.979	0.978	0.969	0.975
spambase	0.892	0.894	0.889	0.891	0.892	0.893	0.887	0.881
avg rank	3.7	2.4	2.1	1.8	3.7	2.3	2.0	2.0

EN	TI	JM
0.085	0.052	0.034
0.225	0.185	0.103
0.160	0.164	0.056
0.125	0.129	0.137
0.290	0.268	0.204
0.277	0.252	0.157
0.048	0.107	0.115
0.083	0.073	0.033
0.225	0.302	0.046
2.3	2.2	1.4

Table 4: AUC, known c (t = 5)

Table 5: AUC (est. c) (t = 5)

Table 6: $|c - \hat{c}| (t = 5)$

	oracle	joint	naive	weighted	oracle	joint	naive	weighted
breastc	0.993	0.981	0.987	0.974	0.993	0.983	0.988	0.977
diabetes	0.821	0.805	0.808	0.805	0.821	0.798	0.805	0.796
heart-c	0.879	0.847	0.849	0.850	0.879	0.843	0.850	0.853
credit-a	0.914	0.875	0.899	0.891	0.914	0.889	0.899	0.897
credit-g	0.740	0.726	0.727	0.725	0.740	0.724	0.730	0.718
adult	0.874	0.874	0.869	0.874	0.874	0.872	0.869	0.863
vote	0.973	0.974	0.968	0.970	0.973	0.972	0.968	0.977
wdbc	0.987	0.981	0.971	0.970	0.987	0.981	0.969	0.973
spambase	0.911	0.914	0.892	0.899	0.911	0.913	0.893	0.856
rank	3.8	2.4	2.1	1.7	3.8	2.2	2.2	1.8

EN	TI	joint
0.060	0.064	0.030
0.234	0.169	0.071
0.138	0.121	0.043
0.125	0.130	0.317
0.287	0.261	0.143
0.244	0.214	0.059
0.044	0.088	0.024
0.099	0.068	0.033
0.189	0.267	0.033
2.4	2.3	1.2

Table 7: AUC, known $c\ (t=10)$

Table 8: AUC (est. c) (t = 10) Table 9: $|c - \hat{c}|$ (t = 10)

	oracle	$_{ m joint}$	naive	weighted	oracle	joint	naive	weighted
breastc	0.994	0.976	0.985	0.953	0.994	0.979	0.983	0.953
diabetes	0.827	0.801	0.804	0.799	0.827	0.797	0.805	0.794
heart-c	0.899	0.837	0.844	0.849	0.899	0.835	0.842	0.869
credit-a	0.916	0.868	0.892	0.879	0.916	0.880	0.892	0.879
credit-g	0.758	0.735	0.737	0.734	0.758	0.726	0.734	0.724
adult	0.894	0.894	0.880	0.892	0.894	0.891	0.880	0.862
vote	0.970	0.968	0.956	0.962	0.970	0.965	0.958	0.974
wdbc	0.987	0.978	0.963	0.964	0.987	0.979	0.961	0.966
spambase	0.937	0.951	0.936	0.941	0.937	0.948	0.936	0.888
avg rank	3.8	2.3	2.0	1.9	3.8	2.3	2.2	1.7

EN	TI	JM
0.063	0.031	0.018
0.229	0.153	0.079
0.140	0.111	0.106
0.192	0.095	0.316
0.279	0.233	0.237
0.237	0.223	0.061
0.070	0.063	0.049
0.074	0.042	0.039
0.144	0.271	0.021
2.8	1.9	1.3

Figure 1: Approximation error for posterior wrt to c, for known c (t=3).

Figure 2: Approximation error for posterior wrt to c, for estimated c (t = 3).

Figure 3: Approximation error for posterior wrt to c, for known c (t=5).

Figure 4: Approximation error for posterior wrt to c, for estimated c (t = 5).

Figure 5: Approximation error for posterior wrt to c, for known c (t = 10).

Figure 6: Approximation error for posterior wrt to c, for estimated c (t = 10).