

Efficient Nearest Neighbor Queries on Non-point Data

Poster Id: 02

Achilleas Michalopoulos¹ Dimitrios Tsitsigkos¹

Panagiotis Bouros²

Nikos Mamoulis¹ Manolis Terrovitis³

¹ University of Ioannina, Greece
² Johannes Gutenberg University Mainz, Germany
³ Athena RC, Greece

Nearest Neighbor Search

- Fundamental data operation
 - GIS, data analysis tasks, scientific applications etc.
 - Find the 3 nearest cities to a query point q

Using Two-Layer Partitioning

- Two-Layer Partitioning [Tsitsigkos et al. 2021]
 - Suitable for SOP indices
- Decompose tiles into classes
 - On the projections of the objects
 - ➤ 4 cases per axis
 - ➤ Overall, 16 classes

Type 6	Type 7	Type 8
Type 3	Type 4	Type 5
Type 0	Type 1	Type 2

tile types	ile types sets of classes	
Type 0	{0000,0010,1000,1010}	
Type 1	{0000,0010,0100,0110,1000,1010,1100, 1110}	
Type 2	{0000,0010,0100,0110}	
Type 3 ♦	{0000,0001,0010,0011,1000,1001,1010,1011}	

Type 4 🔘	ALL CLASSES
Type 5 🔘	{0000,0001,0010,0011,0100,0101,0110,0111}
Type 6 🔷	{0000,0001,1000,1001}
Type 7	{0000,0001,0100,0101,1000,1001,1100,1101}
Type 8	{0000,0001,0100,0101}

- Incremental and k-NN search
 - Examine tiles around the one containing query q [Mouratidis et al. 2005]
 - > Tile categorization
 - Duplicate avoidance
 - Reducing comparisons