	Item	Serving.size	Calories	Fat.Cal	Protein(g)	Fat(g)	Sat.Fat(g)	Trans.fat(g)	Chol(mg)	Sodium(mg)
0	Hamburger	109.0	260	90.0	13	10.0	4.0	0.0	35	490
1	Cheeseburger	121.0	300	130.0	16	14.0	6.0	0.0	45	710
2	Double_Hamburger	146.0	360	160.0	22	18.0	8.0	0.0	70	520
3	Double_Cheeseburger	171.0	450	230.0	26	26.0	12.0	1.0	95	960
4	Buck_Double	158.0	410	200.0	24	22.0	10.0	0.5	85	740


```
# single GMM
X = bk[["Calories", "Sodium(mg)"]]
z = StandardScaler()
X[["Calories", "Sodium(mg)"]] = z.fit_transform(X)
gmm = GaussianMixture(n_components = 3)
gmm.fit(X)
X["cluster"] = gmm.predict(X)
(ggplot(X, aes(x = "Calories", y = "Sodium(mg)", color = "factor(cluster)")) + geom_point() + theme_minimal() + labs(title = "Calories vs. Sodium Clusters") + scale_color_discrete(name = "Cluster"))
```


<ggplot: (8731392970599)>

Multiple Dimensions

```
# sugar protein fat
features = ["Sugar(g)", "Protein(g)", "Fat(g)"]
X = bk[features]
z = StandardScaler()
X[features] = z.fit_transform(X[features])
gmm = GaussianMixture(n_components = 3)
gmm.fit(X[features])
       GaussianMixture
   GaussianMixture(n_components=3)
# predictions
cluster = gmm.predict(X[features])
cluster
  silhouette_score(X[features], cluster)
  0.41269446652563374
# probabilities
```

gmm.predict_proba(X[features])

```
[3.4//02831e-01/, 1.00000000e+000, 4.95858193e-010],
[5.71207524e-033, 1.00000000e+000, 3.49702092e-086],
[5.27520202e-020, 1.00000000e+000, 3.81787443e-087],
[1.04101950e-054, 1.00000000e+000, 8.68560032e-316],
[5.12977701e-073, 1.00000000e+000, 8.68560032e-310],
[1.64241012e-030, 1.00000000e+000, 2.01447666e-059],
[4.77551251e-024, 1.00000000e+000, 5.27405603e-060],
[9.28935335e-001, 7.10646648e-002, 2.56688884e-085],
[2.05639557e-018, 1.00000000e+000, 1.86891823e-165],
[3.44131978e-082, 1.00000000e+000, 0.00000000e+000],
[5.68247232e-122, 1.00000000e+000, 0.00000000e+000],
[1.19723118e-117, 1.00000000e+000, 0.00000000e+000]])
```

```
# graph
X["cluster"] = cluster

(ggplot(X, aes(x = "Sugar(g)", y = "Fat(g)", color = "factor(cluster)")) + geom_point() +
theme_minimal() + labs(title = "Cluster Membership") + scale_color_discrete(name = "Cluster"))
```


<ggplot: (8731328348599)>

```
(ggplot(X, aes(x = "Sugar(g)", y = "Protein(g)", color = "factor(cluster)")) + geom_point() +
theme_minimal() + labs(title = "Cluster Membership") + scale_color_discrete(name = "Cluster"))
```


<ggplot: (8731322565029)>

```
(ggplot(X, aes(x = "Protein(g)", y = "Fat(g)", color = "factor(cluster)")) + geom_point() +
theme_minimal() + labs(title = "Cluster Membership") + scale_color_discrete(name = "Cluster"))
```


<ggplot: (8731322502211)>

✓ 1s completed at 00:41

• x