CS711008Z Algorithm Design and Analysis

Lecture 7. Kruskal's algorithm for Minimum Spanning Tree ¹

Dongbo Bu

Institute of Computing Technology Chinese Academy of Sciences, Beijing, China

 $^{^1} The$ slides were made based on Chapter 5 of Algorithms, and Data Structure by Ellis Horowitz.

Kruskal's MST algorithm

Kruskal's algorithm [1956]

 Basic idea: during the execution, F is always an acyclic forest, and the safe edge added to F is always a least-weight edge connecting two distinct components.

Figure 1: Joseph Kruskal

Kruskal's algorithm [1956]

```
MST-Kruskal(G, W)
 1: F = \{\};
 2: for all vertex v \in V do
 3: MakeSet(v);
 4: end for
 5: sort the edges of E into nondecreasing order by weight W;
 6: for each edge (u,v) \in E in the order do
    if FINDSet(u) \neq FINDSet(v) then
   F = F \cup \{(u, v)\};
    Union (u, v);
10: end if
11: end for
```

Here, Union-Find structure is used to detect whether a set of edges form a cycle.

Step 1

Step 1

Step 1

Step 1

Step 2

Step 2

Step 2

Step 2

Step 3

Step 3

Step 3

Step 3

Step 4

Step 4

Step 4

Step 4

Step 5

Step 5 Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44 Disjoint sets: $\{a,s\},\{b\},\{c\},\{d,e,f,t\}$

Step 5

Step 5

Step 6

Step 6

Step 6

 $\begin{array}{c} {\bf Step~6}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

Step 7
Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44
Disjoint sets: $\{a,s,b,c\},\{d,e,f,t\}$

 $\begin{array}{c} {\rm Step~7} \\ {\rm Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44} \\ {\rm Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

Step 8

 $\begin{array}{c} {\bf Step~8}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

 $\begin{array}{c} {\bf Step~8}\\ {\bf Edge~weight:}~~2,6,9,11,14,15,16,18,19,20,24,30,44\\ {\bf Disjoint~sets:}~~\{a,s,b,c\},\{d,e,f,t\} \end{array}$

Step 8 Edge weight: 2,6,9,11,14,15,16,18,19,20,24,30,44 Disjoint sets: $\{a,s,b,c,d,e,f,t\}$

Time complexity of KRUSKAL'S MST algorithm

Operation	Array	Tree	Link-by-size	Link-by-size +
				path compression
MakeSet	1	1	1	1
FIND	1	n	$\log n$	lg^*n
Union	n	1	$\log n$	lg^*n
Kruskal's MST	$O(n^2)$	O(mn)	$O(m \log n)$	$O(mlg^*n)$

Kruskal's MST algorithm: n MakeSet, n-1 Union, and m Find.