Properties of Expectations

Multivariate Normal Random Variables [Ross S7.8]

Definition of Multivariate Normal Let Z_1, Z_2, \ldots, Z_n be independent $\sim \mathcal{N}(0, 1)$.

Then, define X_1, X_2, \ldots, X_m by

$$X_2 = a_{21}Z_1 + \dots + a_{2n}Z_n + \mu_2$$

$$\vdots \qquad \vdots$$

$$X_m = a_{m1}Z_1 + \dots + a_{mn}Z_n + \mu_m$$

 $X_1 = a_{11}Z_1 + \dots + a_{1n}Z_n + \mu_1$

We can write this in vector form as $X = AZ + \mu$:

We say that X_1, \ldots, X_m are multivariate normal (or jointly Gaussian).

$$\underbrace{\begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_m \end{pmatrix}}_{\boldsymbol{X}} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{\boldsymbol{X}} \underbrace{\begin{pmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_n \end{pmatrix}}_{\boldsymbol{\mu}} + \underbrace{\begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_m \end{pmatrix}}_{\boldsymbol{\mu}}$$
Now, let B be a $k \times m$ matrix, and $\boldsymbol{\nu}$ a column vector of length k . Then
$$\boldsymbol{Y} = B\boldsymbol{X} + \boldsymbol{\nu}$$

 $= (BA)\mathbf{Z} + (B\boldsymbol{\mu} + \boldsymbol{\nu})$

So
$$Y$$
 is multivariate Gaussian too: an affine transformation of a multivariate Gaussian is again multivariate Gaussian!

Marginal Distribution of X_i

 $Var[X_i] = Var[a_{i1}Z_1 + \dots + a_{in}Z_n + \mu_i]$ $= Var[a_{i1}Z_1 + \dots + a_{in}Z_n]$ $= a_{i1}^2 Var[Z_1] + \dots + a_{in}^2 Var[Z_n]$

Also:

 $E[X_i] = E[a_{i1}Z_1 + \dots + a_{in}Z_n + \mu_i]$

Since X_i is a sum of independent Gaussian random variables

 $= a_{i1}E[Z_1] + \dots + a_{in}E[Z_n] + \mu_i$

 $\rightarrow X_i$ is Gaussian [Proposition 26.1 in Notes #26]

Similarly:

A single Gaussian random variable
$$U$$
 is uniquely specified by:

• its mean $E[U]$

• and its variance $Var[U]$.

The joint distribution of a multivariate Gaussian (normal) depends only on: • the means $E[X_i]$ for $i = 1, \ldots, m$

- What happened to $Var[X_1]$, $Var[X_2]$, etc? $Var[X_1] = Cov[X_1, X_1]$, so these are in the second bullet.

• and the co-variances $Cov[X_i,X_j]$ for $i=1,\ldots,m$ and $j=1,\ldots,m$

Common Notation For random variables X_1, \ldots, X_m , it is common to define:

$m{X} = \left(egin{array}{c} X_1 \ X_2 \ dots \ X_m \end{array} ight)$

 $\boldsymbol{\mu} = E[\boldsymbol{X}] = \begin{pmatrix} E[X_1] \\ E[X_2] \\ \vdots \\ E[X_n] \end{pmatrix}$

$$\Sigma = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T] \quad \text{[covariance matrix]}$$

$$= E[\begin{pmatrix} (X_1 - \mu_1)(X_1 - \mu_1) & (X_1 - \mu_1)(X_2 - \mu_2) & \cdots & (X_1 - \mu_1)(X_m - \mu_m) \\ (X_2 - \mu_2)(X_1 - \mu_1)] & (X_2 - \mu_2)(X_2 - \mu_2) & \cdots & (X_2 - \mu_2)(X_m - \mu_m) \\ \vdots & & \vdots & \ddots & \vdots \\ (X_m - \mu_m)(X_1 - \mu_1) & (X_m - \mu_2)(X_m - \mu_2) & \cdots & (X_m - \mu_m)(X_m - \mu_m) \end{pmatrix}$$

$$= \begin{pmatrix} Cov[X_1, X_1] & Cov[X_1, X_2] & \cdots & Cov[X_1, X_m] \\ Cov[X_2, X_1] & Cov[X_2, X_2] & \cdots & Cov[X_2, X_m] \\ \vdots & & \vdots & \ddots & \vdots \\ Cov[X_m, X_1] & Cov[X_m, X_2] & \cdots & Cov[X_m, X_m] \end{pmatrix}$$

 $= E[\boldsymbol{X}\boldsymbol{X}^T - \boldsymbol{\mu}\boldsymbol{X}^T - \boldsymbol{X}\boldsymbol{\mu}^T + \boldsymbol{\mu}\boldsymbol{\mu}^T]$

 $= E[\boldsymbol{X}\boldsymbol{X}^T] - \boldsymbol{\mu}\boldsymbol{\mu}^T - \boldsymbol{\mu}\boldsymbol{\mu}^T + \boldsymbol{\mu}\boldsymbol{\mu}^T$

 $= E[\boldsymbol{X}\boldsymbol{X}^T] - E[\boldsymbol{\mu}\boldsymbol{X}^T] - E[\boldsymbol{X}\boldsymbol{\mu}^T] + E[\boldsymbol{\mu}\boldsymbol{\mu}^T]$ $= E[\boldsymbol{X}\boldsymbol{X}^T] - \boldsymbol{\mu}E[\boldsymbol{X}^T] - E[\boldsymbol{X}]\boldsymbol{\mu}^T + \boldsymbol{\mu}\boldsymbol{\mu}^T$

 $\Sigma = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]$

 $= E[XX^T] - \mu \mu^T$

It can be shown that if Σ is invertible, then

Say Z_1, \ldots, Z_n are independent $\sim \mathcal{N}(0, 1)$. Then

Also, note that

$$f_{\pmb{X}}(\pmb{x}) = \frac{1}{\sqrt{(2\pi)^m |\Sigma|}} e^{-\frac{1}{2}(\pmb{x}-\pmb{\mu})\Sigma^{-1}(\pmb{x}-\pmb{\mu})}$$
 Note: as expected, this depends only on $\pmb{\mu}$ and Σ .

 $\Sigma_{Z} = \begin{pmatrix} Cov[Z_1, Z_1] & Cov[Z_1, Z_2] & \cdots & Cov[Z_1, Z_n] \\ Cov[Z_2, Z_1] & Cov[Z_2, Z_2] & \cdots & Cov[Z_2, Z_n] \\ \vdots & \vdots & \ddots & \vdots \\ Cov[Z_n, Z_1] & Cov[Z_n, Z_2] & \cdots & Cov[Z_n, Z_n] \end{pmatrix}$

 $\boldsymbol{\mu}_Y = E[\boldsymbol{Y}] = E[B\boldsymbol{X} + \boldsymbol{\nu}] = BE[\boldsymbol{X}] + \boldsymbol{\nu} = B\boldsymbol{\mu}_X + \boldsymbol{\nu}$

If X_1, \ldots, X_m are jointly Gaussian with μ and Σ , we write $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, \Sigma)$.

$= \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix} = I$

Let $Y = BX + \nu$. Then

 $\Sigma_Y = E[\mathbf{Y}\mathbf{Y}^T] - \boldsymbol{\mu}_Y \boldsymbol{\mu}_Y^T$

 $=B\Sigma_X B^T$

semi-definite.

Below, is a general condition.

i) $\Sigma^T = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]^T$

 $= E[\left((\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T \right)^T]$ $= E[\left((\boldsymbol{X} - \boldsymbol{\mu}^T)^T (\boldsymbol{X} - \boldsymbol{\mu})^T \right]$

 $= E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T]$

 $= E[|(\boldsymbol{X} - \boldsymbol{\mu})^T \boldsymbol{v}|^2]$

 ≥ 0

Effect of Affine transformation on Covariance Matrix Let **X** have mean μ_X and co-variance matrix Σ_X .

Let B be a matrix, and ν a column vector.

 $= BE[\mathbf{X}\mathbf{X}^T]B^T + B\boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\nu}^T + \boldsymbol{\nu}\boldsymbol{\mu}_{\mathbf{X}}^TB^T + \boldsymbol{\nu}\boldsymbol{\nu}^T$

 $= BE[\boldsymbol{X}\boldsymbol{X}^T]B^T - B\boldsymbol{\mu}_X \boldsymbol{\mu}_X^T B^T$ $= B(E[\boldsymbol{X}\boldsymbol{X}^T] - \boldsymbol{\mu}_X \boldsymbol{\mu}_X^T) B^T$

$$= E[(BX + \nu)(BX + \nu)^{T}] - \mu_{Y}\mu_{Y}^{T}$$

$$= E[BXX^{T}B^{T} + BX\nu^{T} + \nu X^{T}B^{T} + \nu \nu^{T}] - \mu_{Y}\mu_{Y}^{T}$$

$$= BE[XX^{T}]B^{T} + BE[X]\nu^{T} + \nu E[X^{T}]B^{T} + \nu \nu^{T} - \mu_{Y}\mu_{Y}^{T}$$

$$= BE[XX^{T}]B^{T} + B\mu_{X}\nu^{T} + \nu\mu_{X}^{T}B^{T} + \nu\nu^{T} - \mu_{Y}\mu_{Y}^{T}$$

$$= BE[XX^{T}]B^{T} + B\mu_{X}\nu^{T} + \nu\mu_{X}^{T}B^{T} + \nu\nu^{T} - (B\mu_{X} + \nu)(B\mu_{X} + \nu)^{T}$$

$$= BE[XX^{T}]B^{T} + B\mu_{X}\nu^{T} + \nu\mu_{X}^{T}B^{T} + \nu\nu^{T} - (B\mu_{X} + \nu)(B\mu_{X} + \nu)^{T}$$

 $-\left(B\boldsymbol{\mu}_{X}\boldsymbol{\mu}_{X}^{T}B^{T}+B\boldsymbol{\mu}_{X}\boldsymbol{\nu}^{T}+\boldsymbol{\nu}\boldsymbol{\mu}_{X}^{T}B^{T}+\boldsymbol{\nu}\boldsymbol{\nu}^{T}\right)$

Proposition 37.1 a) A covariance matrix Σ is i) symmetric and ii) positive

b) Any matrix Σ that is symmetric and positive semi-definite is the covariance matrix of $X = AZ + \mu$ for some choice of matrix A. Why?

 $= \Sigma$ $ii) \mathbf{v}^T \Sigma \mathbf{v} = \mathbf{v}^T E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T] \mathbf{v}$ $= E[\boldsymbol{v}^T(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T \boldsymbol{v}]$

b) Since Σ is symmetric, it can be diagonalized as $\Sigma = UDU^T$ where D is

diagonal. The diagonal entries of
$$D$$
 are ≥ 0 since it Σ is positive semi-definite. Then $\Sigma = UD^{1/2}D^{1/2}U^T$. Let $A = UD^{1/2}$.

 $\Sigma_X = A\Sigma_Z A^T$ $=AA^{T}$

Then

 $= UD^{1/2}(UD^{1/2})^T$ $= UD^{1/2}(D^{1/2})^T U^T$ $= UD^{1/2}D^{1/2}U^T$ $= \Sigma$