B задачах **1-8** составить уравнение касательной к кривой в точке с абсциссой x_0 .

1.
$$y = x - \frac{1}{x}$$
, $x_0 = 1$.

$$2. y = 2 - x - x^2, x_0 = 2.$$

3.
$$y = \sqrt[3]{x-1}$$
, $x_0 = 1$.

4.
$$y = \sqrt{x^3 + 3x^2}$$
, $x_0 = 1$.

5.
$$y = x^3 + x$$
, $x_0 = 1$.

6.
$$y = x^3 + 2x^2 - 4x - 3$$
, $x_0 = -2$.

7.
$$y = \operatorname{tg} 2x$$
, $x_0 = 1$.

8.
$$y = x \ln x, x_0 = e$$
.

В задачах **9-12** записать уравнение касательной к графику функции в заданной точке.

9.
$$y = x^2 + 5x$$
, $M(1; 5)$.

10.
$$y = \sqrt{5 - x^2}$$
, $M(1; 2)$.

11.
$$y = \frac{\ln x}{x}$$
, $M(1; 0)$.

12.
$$x^3 - 2x^2y^2 + 5x + y - 5 = 0$$
, $M(1; 1)$.

В задачах 13-16 определить, под каким углом кривая пересекает ось абсцисс.

$$13. y = \frac{x-1}{1+x^2}.$$

14.
$$y = 1 - e^x$$
.

15.
$$\begin{cases} x = \frac{3at}{1+t^3}, \\ y = \frac{3at^2}{1+t^3}, \end{cases} -1 < t < \frac{1}{2}.$$

16.
$$x^2 + y^2 + 2y - 9 = 0$$
.

В задачах 17-20 найти точки, в которых касательная к графику функции параллельна оси абсцисс.

17.
$$y = 2x^3 - 3x^2 - 12x + 7$$
.

18.
$$y = (3 - x^2)e^x$$
.

19.
$$\begin{cases} x = \frac{t^3}{1+t^2}, \\ y = \frac{t^3 - 2t^2}{1+t^2}. \end{cases}$$

20.
$$x^2 + 2y^2 + 4x - 4y = 0$$
.

21. Составить уравнение той касательной к графику функции $y = x + e^{-2x}$, которая параллельна прямой y = -x.

22. Прямая y = 4x + 8 параллельна касательной к графику функции $y = x^2 - 5x + 7$. Найти абсциссу точки касания.

23. При каких значениях независимой переменной касательные к кривым $y = x^2$ и $y = x^3$ параллельны?

24. В каких точках касательная к кривой $y = 2x^3 - 5$ параллельна прямой 4y - 6x + 6 = 0?

25. На параболе $y = x^2 - 2x - 8$ найти точку M, в которой касательная к ней параллельна прямой 4x + y + 4 = 0.

26. На линии $\begin{cases} x = t^2 + 1, \\ y = 2t^3 - t^2 \end{cases}$ найти точку M, в которой касательная параллельна прямой y = 2x.

- **27.** Прямая y = 9x - 8является касательной графику К функции $y = x^3 + x^2 + 8x - 9$. Найти абсциссу точки касания.
- 28. Найти расстояние от начала координат нормали линии $y = e^{2x} + x^2$, проведенной в точке с абсциссой x = 0.
- 29. Определить, в каких точках и под каким углом пересекаются кривые $y = x^2 - 4x + 4$ и $y = 6x - x^2 - 4$.
 - 30. Найти угол между кривыми в точке их пересечения:

а)
$$y = 2x^2$$
 и $y = x^3 + 2x^2 - 1$;

a)
$$y=2x^2$$
 и $y=x^3+2x^2-1$; **6)** $y=(x-2)^2$ и $y=4x-x^2+4$;

B)
$$y = \sin x$$
 u $y = \cos x$, $x \in [0; 2\pi]$; **r)** $y = \frac{1}{x}$ u $y = \sqrt{x}$.

- **31.** Свободно падающее тело движется по закону $s = \frac{gt^2}{2}$, $(g = 9.8 \text{ m/c}^2)$.
- **а)** Найти среднюю скорость движения тела за промежуток времени от t = 5 с до $(t + \Delta t)$ с, где $\Delta t = 1$ с, 0,05 с, 0,01 с.
- б) Найти скорость тела в конце 5-й секунды.
- <u>32.</u> Материальная точка движется по закону: $x(t) = -15t^5 + t^4 t^3 + 5t$. Найти скорость точки (в м/с) в момент времени t=2 с.
 - **33.** Материальная точка движется по закону: $x(t) = \frac{1}{2}t^3 4t^2 + 19t 11$.

В какой момент времени ее скорость была равна 3 м/с?

34. Материальная точка движется по закону: $x(t) = t^2 - 13t + 23$. В какой момент времени ее скорость была равна 3 м/с?

В задачах 35-76 вычислить предел, применяя правило Лопиталя.

$$\underline{\mathbf{35.}} \lim_{x \to 0} \frac{e^{3x} - 3x - 1}{\sin^2 5x}.$$

$$\underline{36.} \lim_{x\to 0} \frac{x-\sin x}{x^3}.$$

37.
$$\lim_{x\to 1} \frac{\sqrt[5]{x}-1}{\sqrt[3]{x}-1}$$
.

38.
$$\lim_{x\to 0} \frac{1-\cos x}{e^x - e^{-x}}$$
.

$$\underline{39.} \lim_{x \to 1} \frac{x^3 - 3x^2 + 2}{x^3 - 4x^2 + 3}.$$

$$\underline{40.} \lim_{x\to 1} \frac{x^2-5x+4}{x-1}.$$

41.
$$\lim_{x\to\infty} \frac{x^3 + 4x - 5}{x^2 - 6x}$$
.

$$42. \lim_{x\to 0} \frac{\sin 7x}{x^2}.$$

$$\underline{\mathbf{43.}} \lim_{x \to +0} \frac{\ln \sin x}{\ln \lg x}$$

$$\underline{\textbf{45.}} \lim_{x \to +\infty} \frac{\pi - 2\operatorname{arctg} x}{e^{3/x} - 1}.$$

47.
$$\lim_{x \to 1} \frac{x^2 - 1 + \ln x}{e^x - e}.$$

$$\underline{\mathbf{49.}} \lim_{x \to \pm \infty} \frac{2^x}{x^2}.$$

$$\underline{51.} \lim_{x \to \pm \infty} \frac{3^x + x}{3^x + x^2}.$$

$$\underline{\mathbf{53.}} \lim_{x \to 0} \left(\frac{1}{x} - \operatorname{ctg} x \right).$$

55.
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \operatorname{ctg} 2x \right)$$
.

57.
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{1}{\ln x} \right)$$
.

59.
$$\lim_{x\to 0} \left(\frac{2}{x} - \frac{3}{e^x - 1}\right)$$
.

$$\underline{61.} \lim_{x \to \infty} x \left(e^{\frac{1}{x}} - 1 \right).$$

 $\underline{\mathbf{63.}}$ $\lim_{x\to 0} \arcsin x \cdot \operatorname{ctg} x$.

65.
$$\lim_{x \to +0} x^2 \ln x$$
.

67.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x}}$$
.

69.
$$\lim_{x\to 0} (1+x)^{\ln x}$$
.

71.
$$\lim_{x \to \frac{\pi}{2}} (\operatorname{tg} x)^{2\cos x}$$
.

$$73. \lim_{x\to +0} \left(\sin x\right)^x.$$

75.
$$\lim_{x \to +0} (\sin x)^{\lg 2x}$$
.

$$\underline{44.} \lim_{x \to a+0} \frac{\ln(x-a)}{\ln(e^x - e^a)}.$$

$$\underline{46.} \lim_{x\to 0} \frac{x-\operatorname{tg} x}{x-\sin x}.$$

48.
$$\lim_{x\to 0} \frac{e^x - e^{-x}}{\ln(x+1)}$$
.

$$\underline{50.} \lim_{x \to \pm \infty} \frac{5^x}{3x^3}.$$

52.
$$\lim_{x \to +\infty} \frac{x e^{\frac{x}{3}}}{e^x + x}$$
.

$$\mathbf{54.} \lim_{x \to 0} \left(\operatorname{ctg} x - \frac{1}{\sin x} \right).$$

$$\underline{\mathbf{56.}} \lim_{x \to 0} \left(\frac{1}{\operatorname{tg} x} - \frac{1}{x} \right).$$

$$\mathbf{58.} \lim_{x \to 1} \left(\frac{1}{\ln x} - \frac{x}{\ln x} \right).$$

60.
$$\lim_{x\to 0} \left(\frac{e^x}{\sin x} - \frac{e^{-x}}{\sin x} \right)$$
.

62.
$$\lim_{x \to \infty} x \sin\left(\frac{5}{x}\right).$$

$$\underline{64.} \lim_{x \to 0} (1 - \cos x) \operatorname{ctg} x.$$

66.
$$\lim_{x \to 1-0} \ln x \cdot \ln (1-x)$$
.

68.
$$\lim_{x\to 0} (\cos x)^{\frac{1}{x^2}}$$
.

70.
$$\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}}$$
.

$$\underline{72.} \lim_{x \to +\infty} \left(x + e^x \right)^{\frac{1}{x}}.$$

74.
$$\lim_{x\to +0} (1+x)^{\ln x}$$
.

$$\underline{\mathbf{76.}} \lim_{x \to +0} (\operatorname{tg} x)^{x}.$$

В задачах 77-80 проверить, что предел существует, но не может быть

вычислен по правилу Лопиталя:

$$\frac{77.}{1} \lim_{x \to +\infty} \frac{x + \sin x}{2x}.$$

$$\underline{79.} \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\operatorname{tg} x}.$$

$$78. \lim_{x \to +\infty} \frac{e^x - \sin x}{e^x - \cos x}.$$

80.
$$\lim_{x\to 0} \frac{x^3 \sin \frac{1}{x}}{\sin^2 x}$$
.

В задачах 81-98 найти промежутки монотонности и экстремумы функции, если они существуют; построить схематически график функции.

81.
$$y=2x^3+3x^2-12x+1$$
.

83.
$$y = \frac{1}{4x^3 - 9x^2 + 6x}$$
.

85.
$$y = \sqrt{2x - x^2}$$
.

87.
$$y = 1 - \sqrt[5]{(x-2)^4}$$
.

89.
$$y = \frac{\ln^2 x}{x}$$
.

91.
$$y = x \ln^2 x$$
.

93.
$$y = x - e^x$$
.

95.
$$y = xe^{-\frac{x^2}{2}}$$
.

97.
$$y = x - \arctan x$$
.

82.
$$y = (4-x)(x-1)^2$$
.

84.
$$y = (x-2)^3(2x+1)^2$$
.

86.
$$y = \sqrt[3]{x^2 - 6x + 5}$$
.

88.
$$y = 2x^2 - \ln x$$
.

90.
$$y = x - \ln(1 + x^2)$$
.

92.
$$y = x \ln^2 x$$
.

94.
$$y = e^{x^2 - 4x + 3}$$
.

96.
$$v = x^2 e^{-x}$$
.

98.
$$y = x - \cos x$$
.

В задачах 99-106 исследовать функцию на экстремум с помощью второй производной.

99.
$$y=x^3+3x^2-9x-3$$
.

101.
$$y = x^3 - 6x^2 + 9x + 1$$
.

103.
$$y = x + \cos x$$
.

105.
$$y = x + \frac{1}{x}$$
.

100.
$$y = 3x - x^3$$
.

102.
$$y = e^{3-6x-x^2}$$
.

104.
$$y = \frac{1}{2}x - \sin x$$
.

106.
$$y = x e^{-x^2}$$
.

В задачах **107-112** найти наибольшее и наименьшее значения функции на отрезке.

107.
$$y = x^3 - 6x^2 + 9$$
, $x \in [-1, 2]$.

108.
$$v = x^4 - 8x^2 + 5$$
; $x \in [-3; 3]$.

$$y = x \qquad \forall x \in [3, x$$

111.
$$y = x - \ln x, x \in [1; e].$$

113.
$$y = xe^{\frac{-x^2}{2}}, x \in [-2; 2].$$

108.
$$y=x^4-6x^3+12x^2+2; x \in [-1; 2].$$

110.
$$y=x^5-5x^4+5x^3+1; x \in [-1; 2].$$

112.
$$y = x + \frac{1}{x}, x \in [1; 2].$$

114.
$$y = x - 2\sqrt{x}, \ x \in [0; 5].$$

115.
$$y = x + \sqrt{3 - x}$$
, $x \in [0; 3]$. **116.** $y = (x - 3) e^x$, $x \in [-1; 4]$.

- **117.** Число 36 разложить на два таких множителя, чтобы сумма их квадратов была наименьшей.
 - **118.** Найти наибольший член последовательности $a_n = \frac{n^2}{n^3 + 200}$.
- **119.** Из листа, который имеет форму круга радиуса R, вырезать такой сектор, чтобы воронка, скрученная из него, имела наибольшую вместительность.
- <u>120.</u> Определить размеры открытого бассейна с квадратным дном объемом 32 м^3 так, чтобы на облицовку его стен и дна пошло наименьшее количество материала.
- **121.** Бревно длиной 20 м имеет форму усеченного конуса, диаметры оснований которого равны соответственно 2 м и 1 м. Требуется вырезать из бревна балку с квадратным поперечным сечением, ось которой совпадала бы с осью бревна и объем которой был бы наибольшим. Определить размеры балки.
- **122.** Ряд опытов привел к n различным значениям $x_1, x_2, ..., x_n$ исследуемой величины A. Часто принимают в качестве A такое значение x, что сумма квадратов отклонений его от $x_1, x_2, ..., x_n$ имеет наименьшее значение. Найти x, удовлетворяющее этому требованию.

В задачах 123-134 найти интервалы выпуклости, вогнутости и точки перегиба графика функции.

123.
$$y = x^4 - 2x^2 + 3x + 7$$
.
125. $y = \frac{x^2 - 2x + 2}{x + 1}$.
126. $y = \frac{x}{x^2 + 1}$.
127. $y = e^{-x^2}$.
128. $y = e^{\arctan x}$.
129. $y = \ln(1 + x^2)$.
130. $y = x^4(\ln x - 2)$.
131. $y = \sqrt[3]{x + 3}$.
132. $y = \frac{x^3}{2(x - 1)^2}$.
134. $y = (x + 6)e^{\frac{1}{x}}$.

В задачах 135-148 исследовать функцию на непрерывность; в случае существования точек разрыва установить их характер; найти асимптоты и точки экстремума; построить схематически график функции.

135.
$$y = \frac{x-1}{x^2-1}$$
. **136.** $y = \frac{1+x^3}{1+x}$.

137.
$$y = \frac{(x+1)^2}{x+3}$$
.

139.
$$y = \frac{x^2 - 2}{x^2 - 2x}$$
.

141.
$$y = 2^{\frac{1}{x+1}} + 1$$
.

$$143. y = \frac{4}{1 + 2^{\frac{1}{x-1}}}.$$

$$\underline{145.} \ \ y = \frac{27}{9 - 3^x}.$$

147.
$$y = e^{x + \frac{1}{x}}$$
.

138.
$$y = \frac{x^2 + 2x + 8}{x - 2}$$
.

140.
$$y = \frac{x^2 - 4x + 3}{x^2 + 3x - 4}$$
.

142.
$$y = 1 + 3^{\frac{1}{(x-4)^2}}$$
.

144.
$$y = \frac{2^{\frac{1}{x}} - 1}{2^{\frac{1}{x}} + 1}$$
.

146.
$$y = \frac{3}{3 - \ln x}$$
.

148.
$$y = \frac{e^{-x^2}}{x-1}$$
.

В задачах 149-170 найти асимптоты графика функции.

149.
$$y = \frac{x^2 - 4x - 8}{x + 2}$$
.

151.
$$y = \frac{x+2}{x^2-4x+3}$$
.

153.
$$y = \frac{4x^3}{x^2 - 9}$$
.

155.
$$y = \frac{x}{\sqrt{1-x^2}}$$
.

157.
$$y = \frac{\ln(2x-1)}{x-1}$$
.

159.
$$y = \frac{\ln x}{\sqrt{x}}$$
.

161.
$$y = e^{4-3x-x^2}$$
.

163.
$$y = e^{\frac{1}{x}} - x$$
.

165.
$$y = \frac{x}{3} - \arctan x$$
.

150.
$$y = \frac{2x-7}{x+4}$$
.

152.
$$y = \frac{6(x^2 + 4)}{3x^2 + 8}$$
.

154.
$$y = \frac{x^3}{(x+1)^2}$$
.

156.
$$y = \sqrt{\frac{x^3}{x-1}}$$
.

158.
$$y = \frac{\ln(2x+1)}{x+1}$$
.

160.
$$y = \frac{\ln x^4}{x - 4}$$
.

162.
$$y = xe^{\frac{1}{x}}$$
.

164.
$$y = 2 \ln \left(\frac{x}{x+1} \right) - 1$$
.

166.
$$y = x \arctan x$$
.

167.
$$y = \arctan \frac{1}{x-3}$$
.

168.
$$y = x - \arccos\left(\frac{1}{x}\right)$$
.

169.
$$y = \frac{1}{\cos x}$$
.

170.
$$y = \frac{\sin(x+1)}{x^2-1}$$
.

171. Исследовать функцию $y = \frac{x^2 + px + q}{x + 1}$ на существование асимптот в зависимости от p и q.

В задачах 172-191 исследовать функцию и построить ее график.

172.
$$y = x^4 - 4x^3 + 18x^2 + 4$$
.

173.
$$y=x^3-12x^2+5$$
.

174.
$$y = (x+2)^2(x-1)^2$$
.

175.
$$y = \sqrt{2x - x^2}$$
.

176.
$$y = \frac{1}{x^2 + 4}$$
.

177.
$$y = \frac{x}{x^2 - 9}$$
.

178.
$$y = \frac{x^2 + 1}{x^2 - 1}$$
.

179.
$$y = \frac{x^2 - 1}{x^2 + 1}$$
.

180.
$$y = x^2 + \frac{1}{x^2}$$
.

181.
$$y = \frac{x^2 - 6x + 13}{x - 3}$$
.

182.
$$y = \ln \cos x$$
.

183.
$$v = x + e^{-x}$$
.

184.
$$y = 3\sqrt[3]{x} - x$$
.

185.
$$v = (x-1)\sqrt{x}$$
.

186.
$$v = e^{-x^2}$$
.

187.
$$v = x^2 e^{-x^2}$$
.

188.
$$y = x e^{-2x}$$
.

189.
$$y = \ln(4x - x^2)$$
.

190.
$$y = (x-2)e^{-\frac{1}{x}}$$
.

191.
$$y = x + \sin x$$
.

Ответы. 1. 2x - y - 2 = 0. 2. 5x + y - 6 = 0. 3. x - 1 = 0. 4. 4y - 9x + 1 = 0.

5.
$$y=4x-2$$
. **6.** $y-5=0$. **7.** $y-2x=0$. **8.** $2x-y-e=0$. **9.** $7x-y-2=0$.

10.
$$x + 2y - 5 = 0$$
. **11.** $x - y - 1 = 0$. **12.** $4x - 3y - 1 = 0$. **13.** $\arctan \frac{1}{2}$. **14.** $\frac{3\pi}{4}$. **15.** 0.

16.
$$\arctan 3 \text{ при } x = -3; \pi - \arctan 3 \text{ при } x = 3.$$
 17. $(-1; 14), (2; 13).$ **18.** $(1; 2e)$

$$(-3; -6e^{-3})$$
. **19.** $(0,5; -0,5)$. **20.** $(-2; 1 \pm \sqrt{3})$. **21.** $y = 1 - x$. **22.** $x = 4,5$.

23.
$$x_1 = 0$$
, $x_2 = \frac{2}{3}$. **24.** $\left(\frac{1}{2}; -4\frac{3}{4}\right)$, $\left(-\frac{1}{2}; -5\frac{1}{4}\right)$. **25.** $M(-1; -5)$. **26.** $M(2; 1)$.

27.
$$x_0 = -1$$
. **28.** $\frac{2\sqrt{5}}{5}$. **29.** $(1;1)$, $(4;4)$, $\operatorname{tg} \alpha_1 = \operatorname{tg} \alpha_2 = \frac{6}{7}$. **30. a)** $\operatorname{arctg} \frac{3}{29}$;

6)
$$\arctan \frac{8}{5}$$
; **B)** $\arctan 2\sqrt{2}$; **r)** $\varphi = \frac{\pi}{2}$. **31. a)** $v_{cp} = 53.9$ M/c; $v_{cp} = 49.245$ M/c;

 $v_{cp} = 49,049$ M/c; **6)** v = 49 M/c. **32.** v = 9 M/c. **33.** t = 4 c. **34.** t = 8 c. **35.** $\frac{9}{50}$. 36. $\frac{1}{6}$. 37. $\frac{3}{5}$. 38. 0. 39. 1. 40. -3. 41. ∞ . 42. ∞ . 43. 1. 44. 1. 45. $\frac{2}{3}$. 46. -2. 47. $\frac{3}{2}$. **48.** 2. **49.** $+\infty$ при $x \to +\infty$; 0 при $x \to -\infty$. **50.** $+\infty$ при $x \to +\infty$; 0 при $x \to -\infty$. **51.** 1 при $x \to +\infty$; 0 при $x \to -\infty$. **52.** 0. **53.** 0. **54.** 0. **55.** $-\frac{1}{4}$. **56.** 0. **57.** $-\frac{1}{2}$. **58.** -1. **59.** 1. **60.** 2. **61.** 1. **62.** 5. **63.** 1. **64.** 0. **65.** 0. **66.** 0. **67.** 1. **68.** $e^{-\frac{1}{2}}$. **69.** 1. **70.** $e^{-\frac{1}{6}}$. **71.** 1. **72.** e. **73.** 1. **74.** 1. **75.** 1. **76.** 1. **77.** $\frac{1}{2}$. **78.** 1. **79.** 0. **80.** 0. **81.** Функция возрастает на $(-\infty; -2) \cup (1; +\infty)$, убывает $y_{\max}(-2)=21;$ $y_{\min}(1)=-6.$ **82.** Функция убывает на $(-\infty;1)\cup(3;+\infty),$ возрастает на (1;3); $y_{\min}(1)=0;$ $y_{\max}(3)=4.$ **83.** Функция убывает на $(-\infty;0) \cup (0;\frac{1}{2}) \cup (1;+\infty)$, возрастает на $(\frac{1}{2};1)$; $y_{\text{max}}(1) = 1$; $y_{\text{min}}(\frac{1}{2}) = \frac{4}{5}$. **84.** Функция возрастает на $\left(-\infty; -\frac{1}{2}\right) \cup \left(\frac{1}{2}; +\infty\right)$, убывает на $\left(-\frac{1}{2}; \frac{1}{2}\right)$; $y_{\text{max}}\left(-\frac{1}{2}\right) = 0; \quad y_{\text{min}}\left(\frac{1}{2}\right) = -\frac{27}{2}.$ **85.** Функция возрастает на [0;1), убывает на (1;2]; $y_{\text{max}}(1) = 1$. **86.** Функция убывает на $(-\infty;3)$, возрастает на $(3;+\infty)$; $y_{\min}(3) = -\sqrt[3]{4} \approx 1,58$. 87. Функция возрастает на $(-\infty; 2)$, убывает на $(2; +\infty)$; $y_{\text{max}}(2) = 1$. **88.** Функция убывает на $\left(0; \frac{1}{2}\right)$, возрастает на $\left(\frac{1}{2}; +\infty\right)$; $y_{\min}\left(\frac{1}{2}\right) = \frac{1}{2} + \ln 2$. **89.** Функция убывает на $(0;1) \cup (e^2;+\infty)$, возрастает на $y_{\min} = y(1) = 0;$ $y_{\max} = y(e^2) = 4e^{-2}$. **90.** Функция возрастает на $(-\infty; +\infty)$; экстремумов нет. **91.** Функция возрастает на $(0; \frac{1}{e})$, убывает на $\left(\frac{1}{e}; +\infty\right); y_{\min}\left(\frac{1}{e}\right) = -\frac{1}{e}$. 92. Функция возрастает на $\left(0; \frac{1}{e^2}\right) \cup (1; +\infty)$, убывает на $\left(\frac{1}{e^2};1\right)$; $y_{\text{max}}\left(\frac{1}{e^2}\right) = \frac{4}{e^2}$; $y_{\text{min}}(1) = 0$. **93.** Функция убывает на $(-\infty;0)$, $(0;+\infty);$ $y_{\max}(0) = -1.$ **94.** Функция убывает на $(-\infty;2),$ возрастает на $(2;+\infty); \ y_{\min}(2) = e^{-1}$. **95.** Функция убывает на $(-\infty;-1) \cup (1;+\infty)$,

возрастает на (-1;1); $y_{\min}(-1) = -\frac{1}{\sqrt{g}}$; $y_{\max}(1) = \frac{1}{\sqrt{g}}$. 96. Функция убывает на $(-\infty;0)\cup(2;+\infty)$, возрастает на (0;2); $y_{\text{max}}(2)=\frac{4}{2}$; $y_{\text{min}}(0)=0$. 97. Функция возрастает на $(-\infty; +\infty)$; экстремумов нет. **98.** Функция возрастает на на $(-\infty; +\infty)$; экстремумов нет. **99.** $y_{\text{max}}(-3) = 24$; $y_{\text{min}}(1) = -8$. **100.** $y_{\text{max}}(1) = 2$; $y_{\min}(-1) = 2$. **101.** $y_{\max}(1) = 5$; $y_{\min}(3) = 1$. **102.** $y_{\min}(-3) = e^{-24}$. **103.** Here экстремумов. **104.** $y_{\text{max}} \left(-\frac{\pi}{3} + 2\pi n \right) = \frac{1}{2} - \frac{\pi}{6} + \pi n; \quad y_{\text{min}} \left(\frac{\pi}{3} + 2\pi n \right) = -\frac{1}{2} + \frac{\pi}{6} + \pi n.$ **105.** $y_{\text{max}}(-1) = 0$, $y_{\text{min}}(1) = 2$. **106.** $y_{\text{max}}\left(\frac{1}{\sqrt{2}}\right) \approx 0,428$, $y_{\text{min}}\left(-\frac{1}{\sqrt{2}}\right) \approx -0,428$. **107.** $y_{\text{наиб}} = y(0) = 9;$ $y_{\text{наим}} = y(2) = -7.$ **108.** $y_{\text{наиб}} = y(-1) = 21;$ $y_{\text{наим}} = y(0) = 2.$ **110.** $y_{\text{наиб}} = y(1) = 2;$ $y_{\text{наим}} = y(1) = 1.$ **109.** $y_{\text{наим}} = y(\pm 3) = 14;$ $y_{\text{наим}} = y(\pm 2) = -19.$ $y_{\text{наим}} = y(-1) = -10.$ **111.** $y_{\text{наиб}} = y(e) = e - 1;$ **112.** $y_{\text{наиб}} = y(2) = 2.5$; $y_{\text{наим}} = y(1) = 2$. **113.** $y_{\text{наиб}} = y(2) = \frac{2}{6}$; $y_{\text{наим}} = y(-2) = -\frac{2}{6}$. **114.** $y_{\text{наиб}} = y(5) = 5 - 2\sqrt{5};$ $y_{\text{наим}} = y(1) = -1.$ **115.** $y_{\text{наиб}} = y\left(-\frac{11}{4}\right) = 3,25;$ $y_{\text{наим}} = y(0) = \sqrt{3}$. 116. $y_{\text{наиб}} = y(4) = 2e^2$; $y_{\text{наим}} = y(2) = -e^2$. 117. 6 и 6. **118.** $a_7 = \frac{49}{543}$. **119.** $\alpha = 2\pi \sqrt{\frac{2}{3}}$. **120.** a = 4, h = 2. **121.** $\frac{2}{3}\sqrt{2} \times \frac{40}{3}(M)$. **122.** $x = \frac{x_1 + x_2 + \ldots + x_n}{x_n}$ — среднее арифметическое. **123.** График выпуклый при $x \in \left(-\infty; -\frac{1}{\sqrt{3}}\right) \cup \left(\frac{1}{\sqrt{3}}; +\infty\right)$, вогнутый при $x \in \left(-\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}\right)$; $\left(\pm \frac{1}{\sqrt{2}}; 6\frac{4}{9} \pm \sqrt{3}\right)$ — точки перегиба. **124.** График вогнутый $x \in (-\infty; -\sqrt{3}) \cup (\sqrt{3}; 3),$ выпуклый при $x \in (-\sqrt{3}; \sqrt{3}) \cup (3; +\infty);$ $(\pm\sqrt{3};\mp21\sqrt{3}-225),\ (3;-432)$ — точки перегиба. **125.** График вогнутый при $x \in (-\infty; -1)$, выпуклый при $x \in (-1; +\infty)$; точек перегиба нет. **126.** График выпуклый при $x \in (-\infty; -\sqrt{3}) \cup (0; \sqrt{3})$, вогнутый при $x \in (-\sqrt{3}; 0) \cup (\sqrt{3}; +\infty)$; $\left(-\sqrt{3};-\frac{\sqrt{3}}{10}\right)$, $\left(0;0\right)$, $\left(\sqrt{3};\frac{\sqrt{3}}{10}\right)$ — точки перегиба. **127.** График выпуклый при $x \in \left(-\infty; -\frac{1}{\sqrt{2}}\right) \cup \left(\frac{1}{\sqrt{2}}; +\infty\right),$ вогнутый при $x \in \left(-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}\right);$

 $\left(-\frac{1}{\sqrt{2}};\frac{1}{\sqrt{g}}\right), \left(\frac{1}{\sqrt{2}};\frac{1}{\sqrt{g}}\right)$ — точки перегиба. **128.** График выпуклый при $x \in (-\infty;0,5)$, вогнутый при $x \in (0,5;+\infty)$; $(0,5;e^{\operatorname{arctg}0,5})$ — точка перегиба. **129.** График вогнутый при $x \in (-\infty; -1) \cup (1; +\infty)$, выпуклый при $x \in (-1; 1)$; $(\pm 1; \ln 2)$ — точки перегиба. **130.** График вогнутый при $x \in \left(0; e^{\frac{17}{12}}\right)$, выпуклый при $x \in \left(e^{\frac{17}{12}}; +\infty\right); \left(e^{\frac{17}{12}}; -\frac{7}{12}e^{\frac{17}{3}}\right)$ – точка перегиба. **131.** График выпуклый при $x \in (-\infty; -3)$, вогнутый при $x \in (-3; +\infty)$; (-3; 0) — точка перегиба. **132.** График вогнутый при $x \in (-\infty;0)$, выпуклый при $x \in (0;1) \cup (1;+\infty)$; (0;0) – точка перегиба. **133.** График вогнутый при $x \in (-\infty;0)$, выпуклый при $x \in (0;+\infty)$; (0;0) — точка перегиба. **134.** График вогнутый при $x \in \left(-\infty; -\frac{6}{13}\right)$, выпуклый при $x \in \left(-\frac{6}{13};0\right) \cup \left(0;+\infty\right); \left(-\frac{6}{13};\frac{30}{13}e^{\frac{-13}{6}}\right)$ — точка перегиба. **135.** x = -1 — точка устранимого разрыва $(\lim_{x\to 1} y(x) = 0.5)$, x = 1 – точка бесконечного разрыва; экстремумов нет, функция x = 1, y = 0; $(-\infty; -1) \cup (-1; 1) \cup (1; +\infty)$. **136.** x = -1 — точка устранимого разрыва асимптот нет; $y_{\min}(0,5) = 0,75$. **137.** x = -3бесконечного разрыва; асимптоты x = -3, y = x - 1; $y_{max}(-5) = -8$; $y_{min}(-1) = 0$. **138.** x = 2 — точка бесконечного разрыва; асимптоты x = 2, y = x + 4; $y_{\text{max}}(-2) = -2;$ $y_{\text{min}}(6) = 14.$ **139.** x = 0, x = 2 — точки бесконечного разрыва; асимптоты x = 0, x = 2, y = 1; экстремумов нет, функция убывает на $(-\infty; 0) \cup (0; 2) \cup (2; +\infty)$. **140.** x = -4 — точка бесконечного разрыва; x = 1 точка устранимого разрыва $(\lim_{x\to 1} y(x) = -0,4)$; асимптоты x = -4, y = 1; на $(-\infty; -4) \cup (-4; 1) \cup (1; +\infty).$ экстремумов нет, функция возрастает **141.** x = -1 — точка бесконечного разрыва $(\lim_{x \to -1-0} y(x) = 1; \lim_{x \to -1+0} y(x) = +\infty);$ асимптоты x = -1, y = 2; экстремумов нет, функция убывает $(-\infty; -1) \cup (-1; +\infty)$. **142.** x = 4 — точка бесконечного разрыва $(\lim_{x \to 4\pm 0} y(x) = +\infty);$ асимптоты x = 4, y = 2; экстремумов нет, функция возрастает на $(-\infty; 4)$, на $(4;+\infty)$. **143.** x=1– точка конечного $(\lim_{x\to 1} y(x) = 4; \lim_{x\to 1} y(x) = 0);$ асимптота y = 2; экстремумов нет, функция возрастает на $(-\infty; 1) \cup (1; +\infty)$. **144.** x = 0 — точка конечного разрыва

 $(\lim_{x\to -0} y(x) = -1; \lim_{x\to +0} y(x) = 1);$ асимптота y=0; экстремумов нет, функция убывает на $(-\infty; 0) \cup (0; +\infty)$. **145.** x = 2 – точка бесконечного разрыва ($\lim y(x) = \mp \infty$); вертикальная асимптота x = 2; правосторонняя горизонтальная асимптота y = 0; левосторонняя горизонтальная асимптота $(-\infty; 2) \cup (2; +\infty).$ экстремумов нет, функция возрастает на **146.** Функция определена и непрерывна при $x \in (0; e^3) \cup (e^3; +\infty)$; $\lim_{x \to +0} y(x) = 0$; $x=\mathrm{e}^3$ — точка бесконечного разрыва $(\lim_{x\to\mathrm{e}^3\pm0}y(x)=\mp\infty);$ вертикальная $x = e^{3}$; правосторонняя горизонтальная асимптота y = 0; экстремумов нет, функция возрастает на $(0; e^3) \cup (e^3; +\infty)$. **147.** x = 0 — точка бесконечного разрыва ($\lim_{x\to -0} y(x) = 0$; $\lim_{x\to +0} y(x) = +\infty$); вертикальная асимптота левосторонняя горизонтальная асимптота y = 0; $\lim_{x \to +\infty} y(x) = +\infty$; $y_{\text{max}}(-1) = e^{-2};$ $y_{\text{min}}(1) = e^{2}.$ **148.** x = 1 — точка бесконечного разрыва; асимптоты x = 1, y = 0; экстремумов нет, функция убывает на $(-\infty; 1) \cup (1; +\infty)$. **149.** x = -2, y = x - 6. **150.** x = -3, x = 3, y = 4x. **151.** x = 1, x = 3, y = 0. **152.** y = 2. **153.** x = -4, y = 2. **154.** x = 1, y = x - 2. **155.** $x = \pm 1$. **156.** Вертикальная асимптота x = 1, левосторонняя наклонная асимптота y = -x - 0.5, правосторонняя наклонная асимптота v = x + 0.5. **157.** Вертикальные асимптоты x = 0, 5, x = 1, правосторонняя горизонтальная асимптота y = 0. **158.** Вертикальная асимптота x = -0.5, правосторонняя горизонтальная асимптота y = 0. **159.** Вертикальная асимптота правосторонняя горизонтальная асимптота y = 0. **160.** x = 0, x = 4, y = 0. **161.** y = 0. **162.** x = 0, y = x + 1. **163.** x = 0, y = -x + 1. **164.** x = -1 (график функции приближается к асимптоте только слева), x = 0 (график функции приближается к асимптоте только справа), y = -1. **165.** Левосторонняя наклонная асимптота $y = \frac{x}{3} + \frac{\pi}{2}$, правосторонняя наклонная асимптота $y = \frac{x}{3} - \frac{\pi}{2}$. **166.** Левосторонняя наклонная асимптота $y = -\frac{\pi}{2}x - 1$, правосторонняя наклонная асимптота $y = \frac{\pi}{2}x - 1$. **167.** y = 0. **168.** $y = x - \frac{\pi}{2}$. **169.** $x = \frac{\pi}{2} + \pi \kappa, \kappa \in \mathbb{Z}$. **170.** x = 1, y = 0. **171.** y = x + p - 1, x = -1 при $p-q \neq -1$. 172. $x \in \mathbb{R}$; асимптот нет; $y_{\min}(0) = 4;$ точки перегиба: (-1;27), (3;49). 173. $x \in \mathbb{R}$; асимптот нет; $y_{\text{max}}(0) = 5; y_{\text{min}}(8) = -251;$ точка

перегиба (4; -123). **174.** $x \in \mathbb{R}$; асимптот нет; $y_{\min}(-2) = 0; y_{\min}(1) = 0; y_{\max}\left(-\frac{1}{2}\right) = \frac{81}{16};$ точки перегиба $\left(\frac{1}{2}(-1 \pm \sqrt{3}); \frac{9}{4}\right)$.

175. Функция определена, непрерывна и принимает неотрицательные значения на отрезке [0;2]. На концах отрезка значения функции равны нулю. Асимптот нет. Точки экстремума: x=1 — точка максимума, y(1)=1. Точек перегиба нет, график функции всюду вогнут. **176**. Функция четная, $x \in \mathbb{R}$; горизонтальная асимптота y=0; $y_{\max}(0)=\frac{1}{4}$; точки перегиба $\left(\pm\frac{2}{3\sqrt{3}};\frac{27}{112}\right)$.

177. Функция нечетная, определена непрерывна И при $x \in (-\infty; -3) \cup (-3; 3) \cup (3; \infty);$ $x=\pm 3$; вертикальные асимптоты горизонтальная асимптота y = 0; экстремумов нет, везде убывает; точка перегиба (0;0). **178.** Функция четная, определена и непрерывна при $x \in (-\infty; -1) \cup (-1; 1) \cup (1; +\infty);$ вертикальные $x=\pm 1$; асимптоты горизонтальная асимптота y = 1; $y_{\text{max}}(0) = -1$; точек перегиба нет; график функции вогнутый при $x \in (-\infty; -1) \cup (1; +\infty)$, выпуклый при $x \in (-1; 1)$. **179.** Функция четная, определена и непрерывна при $x \in \mathbb{R}$; горизонтальная асимптота y=1; $y_{\min}(0)=-1;$ точки перегиба $\left(\pm \frac{1}{\sqrt{3}}; -\frac{1}{2}\right)$. **180.** Функция

четная, определена и непрерывна при $x \in (-\infty; 0) \cup (0; +\infty)$; вертикальная асимптота x=0; $y_{\min}(0)=-1$; точек перегиба нет; график функции везде вогнутый. **181.** $x \in (-\infty; 3) \cup (3; +\infty)$; асимптоты x=3, y=x-3; $y_{\max}(1)=-4$, $y_{\min}(5)=4$; точек перегиба нет; график функции выпуклый при $x \in (-\infty; 3)$, вогнутый при $x \in (3; +\infty)$. **182.** Функция четная, определена и непрерывна

при $x \in \bigcup_{n \in \mathbb{Z}} \left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n \right);$ вертикальные асимптоты

 $x = \pm \frac{\pi}{2} + 2\pi n, n \in \mathbb{Z}; \ y_{\text{max}}(2\pi n) = 0, n \in \mathbb{Z};$ точек перегиба нет; график функции

выпуклый при $x \in \bigcup_{n \in \mathbb{Z}} \left(-\frac{\pi}{2} + 2\pi n; \frac{\pi}{2} + 2\pi n \right)$. **183.** $x \in (-\infty; +\infty)$; правостороння наклонная асимптота y = x, левосторонней наклонной асимптоты нет; $y_{\min}(0) = 1$; точек перегиба нет, график функции везде вогнут. **184.** Функция четная, определена и непрерывна при $x \in [0; +\infty)$; асимптот нет; $y_{\min}(-1) = -2$, $y_{\max}(1) = 2$; точка перегиба (0; 0). **185.** Функция определена и

непрерывна при $x \in \mathbb{R}$; асимптот нет; $y_{\min}\left(\frac{1}{3}\right) = \frac{-2}{3\sqrt{3}} \approx -0,385$; точек перегиба

нет, график функции везде вогнут. **186.** Функция четная, определена и непрерывна при $x \in (-\infty; +\infty)$; горизонтальная асимптота y = 0; $y_{\text{max}}(0) = 1$; точки перегиба $\left(\pm\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{e}}\right)$. **187.** Функция четная, определена и непрерывна при $x \in (-\infty; +\infty)$; горизонтальная асимптота y = 0; $y_{\text{min}}(0) = 0$, $y_{\text{max}}(\pm 1) = \frac{1}{e} \approx 0,370$; точки перегиба: $\left(\pm\sqrt{\frac{5+\sqrt{17}}{4}}; \frac{5+\sqrt{17}}{4}e^{-\frac{5+\sqrt{17}}{4}}\right)$, $\left(\pm\sqrt{\frac{5-\sqrt{17}}{4}}; \frac{5-\sqrt{17}}{4}e^{-\frac{5-\sqrt{17}}{4}}\right)$. **188.** $x \in (-\infty; +\infty)$; правосторонняя

горизонтальная асимптота y=0, левосторонней наклонной асимптоты нет; точка максимума $y_{\max}\left(\frac{1}{2}\right) = \frac{1}{2e}$; точка перегиба $\left(1;\frac{1}{e^2}\right)$. **189.** Функция определена и непрерывна при $x\in(0;4)$; вертикальные асимптоты x=0 (график функции приближается к асимптоте только справа), x=4 (график функции приближается к асимптоте только слева), наклонных асимптот нет; $y_{\max}(2) = \ln 4$; точек перегиба нет, график функции везде вогнут. **190.** Функция определена и непрерывна при $x\in(-\infty;0)\cup(0;+\infty)$; асимптоты x=0 ($\lim_{x\to -0}y(x)=-\infty$; $\lim_{x\to +0}y(x)=0$), y=x-3; $y_{\max}(-2)=-4\sqrt{e}$; $y_{\min}(1)=-e^{-1}$;

точка перегиба $\left(\frac{2}{5}; -\frac{8}{5}e^{-\frac{5}{2}}\right)$. **191.** Функция нечетная, определена и

непрерывна при $x \in (-\infty; +\infty)$; асимптот нет; экстремумов нет, возрастает везде; точки перегиба $(\pm \pi n; \pm \pi n)$.