CMPSC 465: LECTURE I

Introduction to Algorithm Analysis

Ke Chen

Algorithm analysis

Three questions will drive us:

- 1. Is the algorithm/data structure correct?
- 2. Is it efficient? (time and space)
- 3. Can we do better?

Other important considerations: robustness, energy efficiency, cache locality, modularity, maintenance time, etc. are beyond the scope of this course.

Issue 1: Running time may depend on input size.

Idea: Parametrize running time by the size of the input.

Worst-case analysis: (usually)

 $ightharpoonup T(n) = ext{maximum time of algorithm on ANY input of size } n.$

Average-case: (sometimes)

- ightharpoonup T(n) =expected time of algorithm over all inputs of size n.
- ▶ Requires assumption on input distribution.

Amortized: (sometimes)

 $ightharpoonup T(m) = ext{total time over } m ext{ calls } / m.$

Best-case: (never)

▶ Cheat with a slow algorithm that works well on some inputs.

linear-search(A, k)

```
Input: an array A of size n, a key k to search for
Output: index of k in A, -1 if not found

i = n - 1
while i >= 0:
   if A[i] == k:
       return i
   i = i - 1
return -1
```

linear-search(A, k)

linear-search(A, k)

linear-search(A, k)

Input: an array A of size n, a key k to search for Output: index of k in A, -1 if not found

	Cost	Rounds
i = n - 1	c_1	1
while i >= 0:	c_2	n (worst-case)
if A[i] == k:	c_3	n (worst-case)
return i	c_4	1
i = i - 1	c_5	n (worst-case)
return -1	c_4	1

linear-search(A, k)

Input: an array A of size n, a key k to search for Output: index of k in A, -1 if not found

	Cost	Rounds
i = n - 1	c_1	1
while i >= 0:	c_2	n (worst-case)
if A[i] == k:	c_3	n (worst-case)
return i	c_4	1
i = i - 1	c_5	n (worst-case)
return -1	c_4	1

Worst-case running time:

$$T(n) = c_1 + c_2 n + c_3 n + c_4 + c_5 n = (c_2 + c_3 + c_5)n + c_1 + c_4.$$

linear-search(A, k)

Input: an array A of size n, a key k to search for Output: index of k in A, -1 if not found

	Cost	Rounds
i = n - 1	c_1	1
while i >= 0:	c_2	n (worst-case)
if A[i] == k:	c_3	n (worst-case)
return i	c_4	1
i = i - 1	c_5	n (worst-case)
return -1	c_4	1

Worst-case running time:

$$T(n) = c_1 + c_2 n + c_3 n + c_4 + c_5 n = \underbrace{(c_2 + c_3 + c_5)}_{\text{a}} n + \underbrace{c_1 + c_4}_{\text{b}}.$$

Issue 2: Running time may depend on implementation/hardware.

Idea: Give up on gauging the actual time and focus on scalability by considering a simplified abstract computing model:

- single processor, sequential execution
- elementary operations take constant time
 - addition, subtraction
 - multiplication, division
 - assignment, branching
 - subroutine call
 - etc.

Issue 2: Running time may depend on implementation/hardware.

Idea: Give up on gauging the actual time and focus on scalability by considering a simplified abstract computing model:

- single processor, sequential execution
- elementary operations take constant time
 - addition, subtraction
 - multiplication, division
 - assignment, branching
 - subroutine call
 - etc.

Warning: we assume operands are of constant size irrelevant to the input size n (see book chapter 1).

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow$
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow$
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow$
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow$

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow T(10n) = 150n$ (linear)
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow$
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow$
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow$

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow T(10n) = 150n$ (linear)
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow T(10n) = 30n^2$ (quadratic)
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow$
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow$

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow T(10n) = 150n$ (linear)
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow T(10n) = 30n^2$ (quadratic)
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow T(10n) = 82000n^3$ (cubic)
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow$

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow T(10n) = 150n$ (linear)
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow T(10n) = 30n^2$ (quadratic)
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow T(10n) = 82000n^3$ (cubic)
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow T(10n) = 2^{10n} = 1024^n$ (exponential)

Scalability: If the input size increases from n to 10n, will the algorithm take

- ▶ the same time? E.g., $T(n) = 42 \rightarrow T(10n) = 42$ (constant)
- ▶ 10x time? E.g., $T(n) = 15n \rightarrow T(10n) = 150n$ (linear)
- ▶ 100x time? E.g., $T(n) = 0.3n^2 \rightarrow T(10n) = 30n^2$ (quadratic)
- ▶ 1000x time? E.g., $T(n) = 82n^3 \rightarrow T(10n) = 82000n^3$ (cubic)
- ▶ much much longer? E.g., $T(n) = 2^n \rightarrow T(10n) = 2^{10n} = 1024^n$ (exponential)

How about the running time for linear search T(n) = an + b?

Asymptotic notation

For T(n) = an + b, when n approaches infinity, we have

$$\lim_{n \to \infty} \frac{T(10n)}{T(n)} = \lim_{n \to \infty} \frac{10an + b}{an + b} = 10.$$

So, asymptotically, it has the same scaling behavior as f(n) = 15n.

Asymptotic notation

For T(n) = an + b, when n approaches infinity, we have

$$\lim_{n\to\infty}\frac{T(10n)}{T(n)}=\lim_{n\to\infty}\frac{10an+b}{an+b}=10.$$

So, asymptotically, it has the same scaling behavior as f(n) = 15n.

And they both grow much slower than $g(n)=0.3n^2$, even though f(1)=15>g(1)=0.3.

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

Intuitively, the constant c allows us to ignore multiplicative factors: 15n = O(n) because we can choose c = 20.

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

- Intuitively, the constant c allows us to ignore multiplicative factors: 15n = O(n) because we can choose c = 20.
- It also helps us to focus on asymptotic growth rate, if f grows no faster than g, then we only need to pick c such that $f(n_0) \leq c \cdot g(n_0)$ for some small initial value n_0 .

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

- Intuitively, the constant c allows us to ignore multiplicative factors: 15n = O(n) because we can choose c = 20.
- ▶ It also helps us to focus on asymptotic growth rate, if f grows no faster than g, then we only need to pick c such that $f(n_0) \leq c \cdot g(n_0)$ for some small initial value n_0 .
- On the other hand, if f grows faster than g, then no matter how large c is, f(n) will eventually exceed g(n).

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

$$\diamond \quad 2^{n+1} = O(2^n);$$

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

- $\diamond \quad 2^{n+1} = O(2^n); \textit{ Proof. } 2^{n+1} = 2 \cdot 2^n; \textit{ can take } c = 2, \ n_0 = 1.$
- $\diamond \quad 2^{2n} = O(2^n);$

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

- $\diamond \quad 2^{n+1} = O(2^n); \textit{ Proof. } 2^{n+1} = 2 \cdot 2^n; \textit{ can take } c = 2, \, n_0 = 1.$
- \diamond $2^{2n} = O(2^n)$; FALSE
- $\diamond \quad (n+10)^3 = O(n^3)$

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

Examples: (All logs are in base 2 unless another base is specified.)

$$\diamond \quad 2^{n+1} = O(2^n); \textit{ Proof. } 2^{n+1} = 2 \cdot 2^n; \textit{ can take } c = 2, \, n_0 = 1.$$

$$\diamond$$
 $2^{2n} = O(2^n)$; FALSE

$$\diamond \quad (n+10)^3 = O(n^3)$$

Proof 1: $(n+10)^3 \le (11n)^3 = 11^3 n^3$, for $n_0 = 1$.

Proof 2: $(n+10)^3 \le (2n)^3 = 8n^3$, for $n_0 = 10$.

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

$$\diamond \quad 2^{n+1} = O(2^n); \textit{ Proof. } 2^{n+1} = 2 \cdot 2^n; \textit{ can take } c = 2, \, n_0 = 1.$$

$$\diamond \quad 2^{2n} = O(2^n); \text{ FALSE}$$

$$\diamond \quad (n+10)^3 = O(n^3)$$

Proof 1:
$$(n+10)^3 \le (11n)^3 = 11^3 n^3$$
, for $n_0 = 1$.

Proof 2:
$$(n+10)^3 \le (2n)^3 = 8n^3$$
, for $n_0 = 10$.

$$\diamond \quad \log(7n^5) = O(\log n)$$

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

$$\diamond$$
 $2^{n+1} = O(2^n)$; *Proof.* $2^{n+1} = 2 \cdot 2^n$; can take $c = 2$, $n_0 = 1$.

$$\diamond \quad 2^{2n} = O(2^n); \text{ FALSE}$$

$$\diamond \quad (n+10)^3 = O(n^3)$$

Proof 1:
$$(n+10)^3 \le (11n)^3 = 11^3 n^3$$
, for $n_0 = 1$.

Proof 2:
$$(n+10)^3 \le (2n)^3 = 8n^3$$
, for $n_0 = 10$.

$$\diamond \quad \log(7n^5) = O(\log n)$$

Proof:
$$\log(7n^5) \le \log 7 + 5 \log n \le 12 \log n$$
, for $n_0 = 2$.

For two functions $f,g:\mathbb{N}\to\mathbb{R}^+$, we say f=O(g) if there exist c>0 and $n_0\in\mathbb{N}$ such that $f(n)\leq c\cdot g(n)$ for all $n\geq n_0$.

$$\diamond \quad 2^{n+1} = O(2^n); \textit{ Proof. } 2^{n+1} = 2 \cdot 2^n; \textit{ can take } c = 2, \, n_0 = 1.$$

$$\diamond$$
 $2^{2n} = O(2^n)$; FALSE

$$\diamond \quad (n+10)^3 = O(n^3)$$

Proof 1:
$$(n+10)^3 \le (11n)^3 = 11^3 n^3$$
, for $n_0 = 1$.

Proof 2:
$$(n+10)^3 \le (2n)^3 = 8n^3$$
, for $n_0 = 10$.

$$\diamond \quad \log(7n^5) = O(\log n)$$

Proof:
$$\log(7n^5) \le \log 7 + 5 \log n \le 12 \log n$$
, for $n_0 = 2$.

$$n^5 + 1888n^3 + n \log n = O(n^5)$$

$$\Rightarrow$$
 $n^5 + 1888n^3 + n \log n = O(n^6)$

Fact: For any real number r > 0, $\log n = O(n^r)$.

Example: r = 0.01, $\log n = O(n^{0.01})$.

Proof. Since $\log x \le x$ for all $x \ge 1$, we have

$$\log n = \frac{1}{r} \log n^r \le \frac{1}{r} n^r.$$

The equality above holds by the property of logarithms.

Hence one can take c=1/r and $n_0=1$ and the inequality in the definition of big-O is satisfied: we have shown that there exist c>0 and $n_0 \in \mathbb{N}$ such that $\log n \le c \, n^r$ for $n \ge n_0$.

Question: What are c and n_0 in our example: $\log n = O(n^{0.01})$?

Fact: For any constants $\alpha, \beta > 0$, $\log^{\alpha} n = O(n^{\beta})$.

Example:
$$\alpha = 100$$
, $\beta = 1/10$, $\log^{100} n = O(n^{0.1})$.

Proof. Let $r = \beta/\alpha$; clearly r is a positive constant. Use the inequality from previous slide:

$$\log n = O(n^r), \text{ or }$$
 $\log n \leq c_1 n^r = c_1 n^{\beta/\alpha}, \text{ for some (constant) } c_1 > 0 \text{ and } n \geq n_0.$

Raise to the power α :

$$\log^{\alpha} n \le c_1^{\alpha} n^{\beta}$$
, for $n \ge n_0$, that is, $\log^{\alpha} n \le c n^{\beta}$, for $n \ge n_0$,

where
$$c = c_1^{\alpha}$$
.

Fact: For any fixed $k \ge 0$, $n^k = O(2^n)$.

Example: k = 1000, $n^{1000} = O(2^n)$.

Proof. Since $\lim_{x\to\infty}\frac{x}{\log x}=\infty$, there exists $n_0\in\mathbb{N}$ such that $k\leq\frac{n_0}{\log n_0}$. Hence we can write:

$$n^k \le n^{\frac{n_0}{\log n_0}} \le n^{\frac{n}{\log n}} = \left(2^{\log n}\right)^{\frac{n}{\log n}} = 2^n, \text{ for } n \ge n_0.$$

Thus one can take c=1 and n_0 as above and the inequality in the definition of O is satisfied: we have shown that there exist c>0 and $n_0 \in \mathbb{N}$ such that $n^k < c \, 2^n$ for $n > n_0$.

Question: What are c and n_0 in our example: $n^{1000} = O(2^n)$?