

第五章 集成触发器

§ 5.1 电路的组成及动作特点

功能:记忆二进制的0、1—两个状态

特点:

1.必须具有两个稳态,分别记忆0、1

2.两个稳态可以预置 电路的现时刻状态——称为现态Qⁿ 电路的下一刻的状态——称为次态Qⁿ⁺¹

一.基本RS触发器

1. 状态转换真值表/功能表

$\overline{S}_{\!\scriptscriptstyle D}\overline{R}_{\!\scriptscriptstyle D}$	Q^n	Q^{n+1}	特点
0 0 0	<i>0</i> 1	×	状态不定
0 1 0 1	0	1 1	置 1
1 0 1 0	0	0	置 0
1 1	<i>0</i> 1	0 1	状态保持

置佐、复佐触发器— 基本RS触发器

2.状态方程/特征方程

$$\left\{ \begin{array}{l} Q^{n+1} = S_D + \overline{R}_D \cdot Q^n \\ \overline{S}_D + \overline{R}_D = 1 \end{array} \right.$$

二. 肘钟脉冲控制的RS触发器/同步RS触发器

特点:

- 1.必须具有两个稳态,分别记忆0、1值
- 2.两个稳态可以预置
- 3.与节拍(肘钟)同步,且可以加控制信号

1.状态真值表

基本RS触发器触发器

_			
$\overline{S}_D \overline{R}_D$	Q^n	Q^{n+1}	特点
0 0 0	0	×	状态不定
0 1 0 1	0	1	置 1
1 0 1 0	0	0	置 0
1 1 1 1	0 1	<i>0</i> 1	状态保持

同步RS触发器

s R	Q^n	Q^{n+1}	特点
0 0	0	0	状态保持
0 1 0 1	0	0	置 0
1 0 1 0	0	1	置 1
1 1 1 1	0	×	状态不定

2.状态方程

$$\begin{cases} Q^{n+1} = S^{+} \overline{R} Q^{n} \\ \overline{S}_{D} \overline{R}_{D} = 1 \\ SR = 0 \end{cases}$$

3.状态转换图

s R	Q^n	Q^{n+1}	特点
0 0 0 0	0	0	状态保持
0 1 0 1	0	0	置 0
1 0 1 0	0	1 1	置 1
1 1 1 1	0	×	状态不定

4.激励表:反映已知现态、次态、如何加外部控制信号。

Q^n	Q^{n+1}	S	R
0	0	0	×
0	1	1	0
1	0	0	1
1	1	×	0

三.计数型触发器

二分频或÷2电路

四.JK触发器

四.JK触发器

1.状态转换真值表

J K	Q^n	Q^{n+1}	特点
0 0	0 1	0 1	状态保持
0 1 0 1	0 1	0	置 0
1 0 1 0	0	1	置 1
1 1 1 1	0	1 0	状态翻转

J=K=0 状态保持 J=K=1 状态翻转 $J\neq K$ 状态跟随J

1.状态转换真值表

JK	Q^n	Q^{n+1}	特点
0 0	0	0	状态保持
0 1 0 1	0	0	置 0
1 0 1 0	0	1	置 1
1 1	0	1 0	状态翻转

3.状态转换图

2.状态方程

$$\begin{cases} Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n \\ \overline{S}_D \overline{R}_D = 1 \end{cases}$$

4.激励表

J=k=T T触发器

T=0 状态保持

T=1 状态转换

T≡1 计数型触发器或T'触发器

 $J \neq K$ $J = \overline{K} = D$ D触发器

触发器的控制信号

- 1.控制信号 \overline{S}_D 、 \overline{R}_D ——置位,复位。
- 2. 肘钟信号 CP 决定 何 附翻

第二节 集成触发器

一.主从型RS触发器

1、电路结构

2、工作过程

CP=1 主触发器的7、8门开启。接收R、S控制信号,来决定5、6门的输出。从触发器门3、4 关闭,1、2门的输出(原状态)不变.

CP=0 主触发器7、8门关闭,隔离了RS的控制作用。从触发器门3、4开启,将5、6门的输出接收送入从触发器进而决定1、2门的输出——即整级触发器的状态.——— 翻转

3、工作波形

R	S	Q^{n+1}
0	0	Q n
0	1	1
1	0	0
1	1	X

从主从RS触发器整体来看:

Q状态取决于在CP下降 沿作用前一瞬间RS的输入信 号。

和果:在CP=1期间输入信号RS发生变化,会出现什么情况?

CP由0→1,及CP=1期间,主接收,从不变。设初态为**0**:

$$RS=01$$
 $Q_{\pm}=1$,Q保持不变。

$$RS=10$$
 $Q_{\pm}=0$,Q保持不变。

$$RS=00$$
 $Q_{\pm}=Q^{n}$, Q保持不变。

$$RS=01$$
 $Q_{\pm}=1$, Q保持不变。

CP = 0, 主不变, 从接收主,

CP = 1, 从不变, 主接收

$$RS=10$$
 $Q_{\pm}=0$,Q保持不变。

$$RS=01$$
 $Q_{\pm}=1$,Q保持不变。

$$RS=10$$
 $Q_{\pm}=0$,Q保持不变。

CP = 0, 主不变, 从接收主。

在CP=1期间,由于输入信号RS有多次变化,使Q_主发生多次跳变。而输出Q只随下降沿前一瞬Q_主的变化而改变。

R	S	Qn+1
0	0	Q n
0	1	1
1	0	0
1	1	X

4、功能描述

主从RS触发器功能描述同钟控RS触发器完全一样。

特征方程为: $Q^{n+1} = S + \overline{R}Q^n$

5、逻辑符号

二、主从型JK触发器

1、电路结构

$$Q^{n+1} = S + \overline{R}Q^{n}$$

$$Q^{n+1} = J\overline{Q^{n}} + \overline{KQ^{n}} \cdot Q^{n}$$

$$= J\overline{Q^{n}} + (\overline{K} + \overline{Q^{n}}) \cdot Q^{n}$$

$$= J\overline{Q^{n}} + \overline{KQ^{n}}$$

$$= J\overline{Q^{n}} + \overline{KQ^{n}}$$

$$= J\overline{Q^{n}} + \overline{KQ^{n}}$$

$$= \overline{Q^{n}} + \overline{Q^{n}}$$

主触发器的作用是接收控制信号从触发器的作用是决定状态

工作波形

一次翻转现象

主从触发器有效克服了空翻现象,但主从JK触发器还存在一次翻转现象,因而限制了它的应用。

所谓一次翻转:在CP=1期间,输入信号发生了变化,主触发器只能翻转一次(O→1或1→O不含保持状态),此后,若输入信号再发生变化,主触发器状态也不会变化。

cp=1射

1. J和K上的负向变化不起作用

 $2.Q^n=0$, J上的正向变化起作用 (K上的正向变化不起作用), $Q^{n+1}=1$

 $3. Q^{n}=1$,K上的正向变化起作用 (J上的正向变化不起作用), $Q^{n+1}=0$

主从JK触发器功能分析和波形画法:

电路次态和输入信号JK的关系:

CP=1期间, JK输入信号没有发生变化时:

初态**Q=0**:
$$J=1$$
时, $Q^{n+1}=1$
 $J=0$ 时, $Q^{n+1}=0$ 和**K**信号无关

$$J=0$$
时, $Q^{n+1}=0$ 初态**Q=1** $K=0$ 时, $Q^{n+1}=1$ 和**J**信号无关 $K=1$ 时, $Q^{n+1}=0$

CP=1期间, JK输入信号发生变化时:

- 1. J和K上的负向变化不起作用
- 2. $Q^{n} = 0$, J上的正向变化起作用, $Q^{n+1} = 1$.
- 3. $Q^{n}=1$, K上的正向变化起作用, $Q^{n+1}=0$.

上升沿采样,下降沿翻转+JK触发器的三句话

例. 若主从型JK触发器的CP、J、K 波形如图所示,试画出 Q 端对应的电压波形。设初始状态为0。

若主从型JK触发器的输入波形如图所示, 试画出 Q 端对应的电压波形。设初态为1

二.边沿触发器

维持-阻塞正边沿触发器 — D触发器.

1.维持逻辑.

2.阻塞逻辑

在CP上升沿采 样,上升沿翻转

第三节 触发器功能转换和应用

1. 触发器功能转换

♦ DFF→**JK**

JK:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

D:
$$Q^{n+1} = D$$

$$D = J\overline{Q}^{n} + \overline{K}Q^{n}$$
$$= \overline{J}\overline{\overline{Q}^{n}} \cdot \overline{\overline{K}Q^{n}}$$

♦ DFF→**SRFF**

$$RS: \quad Q^{n+1} = S + \overline{R}Q^n$$

D:
$$Q^{n+1} = D$$

$$D = S + \overline{R}Q^n = \overline{\overline{S} \cdot \overline{\overline{R}Q^n}}$$

♦ JKFF→DFF/TFF/T'FF

$$D: J = \overline{K} = D$$

$$T: J=K=T$$

$$T'$$
: $J=K=1$

♦ JKFF→SRFF

JK:
$$Q^{n+1} = J\overline{Q}^n + \overline{K}Q^n$$

RS: $Q^{n+1} = S + \overline{R}Q^n$
 $= S(Q^n + \overline{Q}^n) + \overline{R}Q^n$
 $= S\overline{Q}^n + (S + \overline{R})Q^n$
 $= S\overline{Q}^n + \overline{SR}Q^n$

$$J = S,$$
 $K = \overline{S}R$ $SR = 0$

$$= \overline{S}R + SR = R$$

2. FF 应用

