Deep Learning for Medical Image Analysis

COMP5423

Hao CHEN

Dept. of CSE, CBE&LIFS, HKUST

jhc@cse.ust.hk

Our Team

Instructor

Dr. Hao CHEN, Assistant Professor

Email: jhc@cse.ust.hk

Tel: +852-2358 8346

Office: RM 3524 (via lifts 25-26), Dept. of CSE, HKUST

Teaching Assistant

Ms. Hongmei Wang, PhD student, CSE, HKUST

Email: hwangfy@connect.ust.hk

About me

- Instructor: Dr. Hao CHEN
- Assistant Professor of CSE at HKUST, Director of Smart Lab

https://cse.hkust.edu.hk/~jhc/

Research interest:

Trustworthy AI for Healthcare, etc.

- Experience in both academia (google scholar) and industry (e.g., Siemens and startup).
- Collaboration

If you are interested in medical image analysis, welcome to discuss with me.

COMP5423 DLMIA

• Lecture:

Tue and Thurs, 9:00-10:20am, Rm 5583, Lift 29-30.

Lecture notes will be available online in HKUST Canvas.

Class Dates:

Feb 1, 2024-May 9, 2024

- Office Hours: by appointment.
- No tutorial/lab sessions.

Pre-requisites

- Basic Math including calculus, linear algebra, geometry, probability, statistics.
- Image Processing and Machine Learning

We will cover some fundamentals, thus no worries.

Programming Skills

You may use Pytorch or Tensorflow in assignments and Final Project.

Deep learning shapes medical imaging

From imaging to prognosis

Safer, Faster, Better

See the Invisible, Accurate, Quantitative

Decision Support, Minimize Risk

Syllabus (tentative)

- 1. Introduction to Medical Image Analysis
- 2. Fundamentals of Deep Learning
- 3. Medical Image Classification
- 4. Medical Image Segmentation
- 5. Medical Image Registration
- 6. Label-efficient Learning in MIA
- 7. Anomaly Detection in MIA
- 8. Attention Mechanism in MIA
- 9. Explainability in MIA
- 10. Domain Adaptation in MIA
- 11. Federated Learning in MIA
- 12. Multimodal Learning for Precision Oncology
- 13. Foundation Models in MIA
- 14. Advances and Applications

Textbooks

- No official textbooks.
- Some useful books:

Toennies, Klaus D. **Guide to medical image analysis**. Springer London, 2017.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. **Deep learning**. MIT press, 2016.

Dhawan, Atam P. **Medical image analysis**. Vol. 31. John Wiley & Sons, 2011.

Zhou, S. Kevin, Hayit Greenspan, and Dinggang Shen, eds. **Deep learning for medical image analysis**. Academic Press, 2017.

Grading Scheme

Assignments (20%)

2 assignments (each 10%), including paper presentation and survey report, etc.

Final Project (60%)

Final presentation and Project report.

Details will be released later.

• Final Exam (20%)

All the content covered in class.

Policies

Late policies

20% penalty per day, maximum of one day.

Honor academic integrity

We will follow university's policy for penalty if improper actions identified.

Goals for this Course

- Obtain the basic knowledge of medical imaging techniques and various medical image analysis tasks.
- Learn the fundamentals in deep learning methods for medical imaging and analysis.
- Master and apply the skills of deep learning technologies in medical image analysis tasks, including computer-aided detection, diagnosis and prognosis, etc.
- Gain the current research and development trends in both academia and industry in the domain of medical imaging and analysis.

Topic 1: Introduction to MIA

• Why medical imaging is unique?

Topic 2: Fundamentals of Deep Learning

- Machine learning basics
- **Deep learning** models and optimization, including CNN, RNN, Autoencoder, etc.

Topic 3: Medical Image Classification

 How to build and evaluate a medical image classifier with deep learning?

- Transfer learning with limited medical dataset
- 3D deep learning for volumetric image modality
- Multi-task learning, etc.

Topic 4: Medical Image Segmentation

- Semantic vs instance segmentation
- Context vs localization
- Volumetric medical image segmentation
- Interactive segmentation
- Challenges and directions

Topic 5: Medical Image Registration

- Medical image registration and evaluation
- Deep similarity metric
- Supervised image registration
- Unsupervised image registration
- Challenges and future directions

Topic 6: Label-efficient Learning in MIA

- What's label-efficient learning?
- Semi-supervised learning
- Multi-instance learning
- Self-supervised learning
- Active learning
- Annotation-efficient learning

Labeled

data

Future directions

Topic 7: Anomaly Detection in MIA

- What's anomaly detection?
- Reconstruction-based methods
- Self-supervised methods
- Challenge and future direction

Topic 8: Attention Mechanism in MIA

- What's attention?
- Spatial and channel attention
- Transformer
- Challenge and future direction

Topic 9: Explainability in MIA

- What's explainability?
- Categories of explainable AI
- Ante-hoc vs Post-hoc methods

Topic 10: Domain Adaptation in MIA

- What's domain adaptation?
- Shallow domain adaptation
- Deep domain adaptation
- Challenge and future direction

Source

Target

Topic 11: Federated Learning in MIA

- What's federated learning?
- Federated learning for predicting clinical outcomes
- Federated domain generalization
- Federated semi-supervised learning
- Challenge and future direction

Topic 12: Multimodal Learning for Precision Oncology

- What's multimodal learning?
- Multimodal information fusion
- Multimodal data interconnection
- Challenge and clinical adoption

Topic 13: Foundation Models in MIA

- What's foundation model?
- Foundation model pre-training
- Foundation model adaption

Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

Topic 14: Advances and Applications

Computational Pathology

Topic 14: Advances and Applications

 Breast Cancer 100-Mammogram **Low Risk Score High Risk Score** Survival Ultrasound 20-Time **Screening Prognosis** MRI Chemotherapy **Good Response** Surgery **Pathology** Radiotherapy **Poor Response** Reports **Treatment Response Diagnosis Prediction**

Topic 14: Advances and Applications

Ophthalmology

Any questions?

Learn state-of-the-art technologies and get hands on a practical project!