

Teória sietí

Opakovanie

Náhodné požiadavky

v náhodnom

čase mieste

Komunikačné prostredie

Klasifikácia prostredí

Siet' ALOHA

Spoločné komunikačné prostredie bez riadenia prístupu

Priepustnosť siete ALOHA

Klasifikácia prostredí

Klasifikácia prostredí

Spoločné komunikačné prostredie s riadením prístupu so synchrónnym prenosom s úplnou s neúplnou informáciou o stave prostredia

Sústredené komunikačné prostredie

Nulový čas šírenia

Idealne sústredené prostredie

Sústredené komunikačné prostredie

Nulový čas šírenia úplná informácia o stave prostredia

Spoločné komunikačné prostredie

s úplnou informáciou o stave synchrónneho kanála

Priepustnosť prostredia s opakovaním

$$\pi_0 = \frac{1}{1+\rho'} \qquad \pi_0 = \frac{\rho}{\rho'}$$

$$\rho = \frac{\rho'}{1 + \rho'}$$

Priepustnosť prostredia s opakovaním

Rozl'ahlé komunikačné prostredie

$$a < \tau$$

Idealne rozl'ahlé prostredie

Keby stanice vedeli o obsadení a mohli odložiť

Idealne rozl'ahlé prostredie

Klasifikácia prostredí

Spoločné komunikačné prostredie s riadením prístupu so synchrónnym prenosom s úplnou s neúplnou informáciou o stave prostredia

Ethernet

1973 Xerox - Robert Metcalfe, David Boggs

Sieťová karta

Ethernet

Logická štruktúra: zbernica

Riadenie prístupu: CSMA/CD

Carrier Sense Multiple Access with Collision Detection

Viacnásobný prístup s počúvaním nosnej a detekciou kolízií

Referencia: IEEE 802.3

Ethernet - fyzická vrstva

Rýchlosť: 10,100,1000 Mbit/s

Médium:

koaxiálny kábel

UTP

optické vlákno

Ethernet 10 Mbit/s

Max. vzdialenosť: 2500 m

Pravidlo 5-4-3:

max 5 segmentov

4 opakovače

3 segmenty so stanicami

Ethernet 10 Mbit/s

Označenie	segment	médium
10BASE-2	185m	koaxiálny kábel
10BASE-5	500m	koaxiálny kábel
10BASE-T	100m	netienená skrúcaná dvojlinka
10BASE-F	2km	optické vlákno

Ethernet 100 Mbit/s

Max. vzdialenosť (meď): 205 m

Max. počet segmentov: 2 s možnou zmenou signálu

3 bez zmeny signálu

100BASE-TX UTP kategórie 5, STP; 2 páry

100BASE-T2 UTP kategórie 3,4,5; 2 páry

100BASE-T4 UTP kategórie 3,4,5; 4 páry

100BASE-FX 2 optické vlákna

Ethernet 1 Gbit/s

Max. vzdialenosť: 200 m

Max. počet segmentov: 1

1000BASE-T UTP kategórie 5; 2 páry (max. 100m)

1000BASE-SX optické vlákno (v budove)

1000BASE-LX optický kábel (medzi budovami)

1000BASE-CX medený vodič na malé vzdialenosti

Vznik kolízie

Kolízia pre
$$0 \le x < a$$

Prostredie s čiastočnou informáciou

Priepustnost' prostredia CSMA/CD

$$1 - p_k = \frac{\lambda}{\lambda'} = e^{-\lambda' a}$$

Obsadenie zbernice pri prenose

čas obsadenia τ

Vznik kolízií 1

Hviezdicová topológia

rozbočovač

Obsadenie zbernice pri kolízii

Priepustnosť prostredia CSMA/CD

prenesená prevádzka $\rho = \lambda \tau$ prenášaná prevádzka $\rho' = \lambda' \tau'$

$$\tau' = \tau (1 - p_k) + 2ap_k$$

$$1 - p_k = \frac{\lambda}{\lambda'} = \frac{\lambda \tau}{\lambda' \tau'} \frac{\tau'}{\tau} = \frac{\rho}{\rho'} \left[(1 - p_k) + 2\frac{a}{\tau} p_k \right]$$

$$\rho = \rho' \frac{1 - p_k}{1 - p_k + 2\alpha p_k}, \quad \alpha = \frac{a}{\tau}$$

KIS – FRI ŽU

Priepustnosť prostredia CSMA/CD

$$\rho = \rho' \frac{e^{-\lambda'a}}{e^{-\lambda'a} + 2\alpha(1 - e^{-\lambda'a})}$$

$$\rho = \frac{\rho'}{1 + 2\alpha(e^{\lambda'a} - 1)} = \frac{\rho'}{1 + 2\alpha(e^{\rho'\frac{a}{\tau'}} - 1)}$$

$$\rho \approx \frac{\rho'}{1 + 2\alpha(e^{\alpha\rho'} - 1)}$$

Priepustnost' prostredia CSMA/CD

Štruktúra rámca IEEE 802.3

Ethernet 10/100 Mbit/s

počet oktetov

6	6	2	46-1500	4	
ciel'	zdroj dĺžka		dáta z	zabezpeče	

Priepustnost' Ethernetu 10 Mbit/s

Max dĺžka zbernice 2,5 km $\alpha = \frac{a}{\tau} = ? < 0,4$

$$\alpha = \frac{a}{\tau} = ? < 0,4$$

Max čas šírenia:

$$a = \frac{1}{v} \approx \frac{2,5[\text{km}]}{280000[\text{km/s}]} = 8,93.10^{-6}[\text{s}] = 8,93[\mu\text{s}]$$

Min čas vysielania rámca:

$$\tau = \frac{1}{v} = \frac{8.(22 + 46 + 4)[b]}{10^{7}[b/s]} = 57,6.10^{-6}[s] = 57,6[\mu s]$$

$$\alpha = \frac{a}{\tau} = 0.155$$

Priepustnosť Ethernetu 10 Mbit/s

Ethernet 100 Mbit/s

	Madal	Max vzdialenosť [m]		
	Model	meď	optika	
stanica	– stanica (a)	100	412	
1 opako	ovač tr. I (b)	200	272	
1 opako	vač tr. II (b)	200	320	
2 opako	vače tr. II (c)	205	228	

KIS – FRI ŽU

Priepustnost' Ethernetu 100 Mbit/s

Max dĺžka zbernice 205m=0,2 km

Max čas šírenia

$$a = \frac{1}{v} \approx \frac{0.2}{280000} = 7.14.10^{-7} [s] = 0.71 [\mu s]$$

Min čas vysielania rámca

$$\tau = \frac{l}{v} = \frac{8.(22 + 46 + 4)}{10^8} = 5,76.10^{-6} [s] = 5,76 [\mu s]$$

$$\alpha = \frac{a}{\tau} = 0,124$$

Priepustnosť Ethernetu 100 Mbit/s

Štruktúra rámca IEEE 802.3

Ethernet 10/100 Mbit/s

počet oktetov

6	6	2	46-1500	4	
cieľ	zdroj dĺžka		dáta za	zabezpečen	

Ethernet 1 Gbit/s

Priepustnost' Ethernetu 1 Gbit/s

Max dĺžka zbernice 200m=0,2 km

Max čas šírenia

$$a = \frac{1}{v} = \frac{0.2}{300000} = 6.66.10^{-7} [s] = 0.66 [\mu s]$$

Min čas vysielania rámca

$$\tau = \frac{l}{v} = \frac{8.512}{10^9} = 4,1.10^{-6} [s] = 4,1 [\mu s]$$

$$\alpha = \frac{a}{\tau} = 0.16$$

Priepustnost' Ethernetu 1 Gbit/s

Pravdepodobnosť kolízie

str. 35:
$$\rho = \rho' \frac{1 - p_k}{1 - p_k + 2\alpha p_k}, \quad \alpha = \frac{a}{\tau}$$

$$p_k = \frac{1 - G}{1 - (1 + 2\alpha)G}, \quad G = \frac{\rho}{\rho'}$$

$$p_k \approx \frac{1 - e^{-\alpha \rho'}}{1 - 2e^{-\alpha \rho'}}$$

Pravdepodobnosť kolízie v CSMA/CD

Pravdepodobnosť kolízie v Ethernete

Zvyšovanie priepustnosti Ethernetu

zmenšovanie kolíznych oblastí:

- náhrada opakovačov (repeater) a rozbočovačov (hub) smerovačmi (router) a prepínačmi (switch)
- umiestňovaním silných zdrojov-cieľov do centra siete

zhlukovanie krátkych rámcov (1Gbit/s Ethernet) oddelenie smerov komunikácie = plný duplex

KIS – FRI ŽU

Prístupová sieť KIS

Prístupová sieť FRI

KIS – FRI ŽU

Prístupová sieť ŽU

Prednáška 9

Ďakujem za pozornosť