1.

$$2n = O(n^2), O(n^2) + O(n^2) = O(n^2)$$

$$2n + O(n^2) = O(n^2)$$

2.

假设
$$\theta(g(n)) \cap o(g(n)) \neq \emptyset$$

则
$$\exists c_1, c_2, n_0 \in R_+$$
, $s.t.$ $= n_0$ 时, $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \dots \dots$ ①

$$\forall c > 0, \exists n > n_1, s.t. \not\exists n > n_1 \not\exists f, 0 \le f(n) < cg(n) \dots 2$$

取 $N = max(n_0, n_1)$, 当 n > N 时, 对 $\forall c$ ①②式同时成立

但是, 当
$$c < c_1$$
 时, $\theta(g(n)) \cap o(g(n)) = \emptyset$

这与假设条件矛盾

$$:: \theta(g(n)) \cap o(g(n)) = \emptyset$$

3.

假设
$$\theta(g(n)) \cup o(g(n)) = O(g(n))$$

即 $\exists c_1, c_2, c, c_3, n_0, n_1, n_2 \in R_+$,使得 $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \cup 0 \le f(n) < c g(n) = 0$

$$\leq f(n) \leq c_3 g(n)$$
成立

取
$$c_{\rm m} = \max(c_2, c_3)$$

: c 的取值是任意的,当 $c > c_m$ 时,上式的左边与右边不成立

∴假设
$$\theta(g(n)) \cup o(g(n)) \neq O(g(n))$$

4.

$$\Leftrightarrow f(n) = \max(f(n), g(n))$$

即证 $0 \le c_1(f(n) + g(n)) \le f(n) \le c_2(f(n) + g(n))$, 当 $ac_1, c_2, n_0 \in R^+$,

$$\Re c_1 = \frac{1}{2}, c_2 = 1, \quad \because 0 \le g(n) \le f(n)$$

$$\therefore 0 \le c_1 (f(n) + g(n)) = \frac{1}{2} (f(n) + g(n)) \le \frac{1}{2} (f(n) + f(n)) = f(n)$$

$$0 \le c_1 (f(n) + g(n)) = \frac{1}{2} (f(n) + g(n)) \le \frac{1}{2} (f(n) + f(n)) = f(n)$$

$$c_2 (f(n) + g(n)) = f(n) + g(n) \ge f(n)$$

即当 $c_1 = \frac{1}{2}$, $c_2 = 1$ 时,对 $n_0 > 0$,当 n_0 取定时,对n > n0,①式成立,

反过来, 当 $g(n) = \max(f(n), g(n))$ 时, 也能找到对应的 c_1, c_2, n_0 使得不等式成立

综上, 有
$$max(f(n),g(n)) = \Theta(f(n) + g(n))$$

5.

$$\diamondsuit m = lgn, \therefore n = 2^m$$

6.

假设
$$T(1) = \theta(1)$$

猜测
$$T(n) = O(1)$$

假设
$$T(k) = 1$$
, $k < n$

$$\therefore T(n) = \frac{n-2}{n}T(n-1) + \frac{2}{n}$$

$$= \frac{n-2}{n} + \frac{2}{n} = 1 \le 1$$
$$\therefore T(n) = O(1)$$

7.

a.

a		
g1	2 ^{2ⁿ⁺¹}	
g2	2^{2^n}	
g3	(n + 1)!	
g4	n!	
g5	e ⁿ	
g6	n * 2n	
g7	2 ⁿ	
g8	$\left(\frac{3}{2}\right)^n$	
g9 g10	$(\lg n)^{\lg n} n^{\lg \lg n}$	
g11	(lgn)!	
g12	n ³	
g13 g14	n² 4 ^{lgn}	
g15 g16	lg(n!) nlgn	
g17 g18	n 2 ^{lgn}	
g19	$\left(\sqrt{2} ight)^{\mathrm{lgn}}$	
g20	$2^{\sqrt{2lgn}}$	
g21	lg² n	
g22	lnn	
g23	$\sqrt{ m lgn}$	
g24	lnlnn	
g25	$2^{\lg^* n}$	
g26 g27	lg* n lg* lgn	
g28	lg (lg* n)	
g29 g30	$n^{\frac{1}{lgn}}$ 1	

b.f(x) =
$$\begin{cases} 2^{2^{n+2019214540}}, n = 2k \\ 0, n = 2k+1 \end{cases}$$
 k=0,1,2,3.....