선형대수학 2 (2018. 10. 27.)

- 1-4. F^n 에는 dot product 가 주어져 있다고 가정한다.
 - 1. (10점) \mathbb{R}^2 의 두 벡터 $Y = (-3, \sqrt{3})^t$, $Z = (-3, -\sqrt{3})^t$ 에 대하여,
 - (가) 두 reflection S_Y, S_Z 에 $S_Y \circ S_Z \leftarrow \mathbb{R}^2$ 의 rotation 임을 보여라.
 - (나) $S_Y \circ S_Z = R_\theta$ 인 θ 를 구하라.
 - 2. (10점) (7) $W = \langle (-1,1,0)^{\mathbf{t}}, (1,0,-1)^{\mathbf{t}} \rangle < \mathbb{R}^3$ 일 때, Gram-Schmidt Orthogonalization Process 를 이용하여 W 의 orthonormal basis $\mathfrak{C} = \{X_1, X_2\}$ 를 구하라.
 - (나) $\mathfrak C$ 를 포함하는 $\mathbb R^3$ 의 orthonormal basis $\mathfrak B=\{X_1,X_2,X_3\}$ 를 구하라.
 - (다) $Y=(2,3,4)^{\mathbf{t}}\in\mathbb{R}^3$ 와 가장 가까운 W 의 vector 를 구하라.
 - 3. (10점) $S: \mathbb{R}^n \to \mathbb{R}^n$ 이 reflection 이면, $\det S = -1$ 임을 보여라.
 - 4. (10점) diag(1,-1,-1,-1) 은 \mathbb{R}^4 의 reflection 인가? Rotation 인가?
 - 5. (10점) $A \in \mathfrak{M}_{m,n}(F)$ 일 때, $\operatorname{rk}(A^* \cdot A) = \operatorname{rk}(A)$ 임을 보여라.
 - **6.** (10점) $A, B \in \mathcal{M}_{2,2}(F)$ 일 때, $\langle A, B \rangle = \operatorname{tr}(A^{\mathbf{t}} \cdot \overline{B})$ 로 정의하자.
 - (Υ) \langle , \rangle 는 $\mathcal{M}_{2,2}(F)$ 의 inner product 임을 보여라.
 - (나) 위에서 정의한 inner product space $(\mathcal{M}_{2,2}(F), \langle , \rangle)$ 와 dot product 가 주어진 F^4 가 inner product space 로서 isomorphic 함을 구체적인 isomorphism 을 통하여 증명하라.
 - 7. (10점) $\mathbf{V}_n(F) = \{(a_{ij}) \in \mathbf{GL}_n(F) | a_{ij} = 0 \text{ if } i > j, a_{ii} = 1 \text{ for all } i\}$ 라고 표기할 때, F^3 가 $\mathbf{V}_3(F)$ 와 isomorphic 한 group 이 되도록 F^3 에 이항연산을 정의하라. (증명 필요 없음.)
 - 8. (10점) Cayley's Theorem 을 쓰고 증명하라.
 - 9. (10점) $N \subseteq G$ 일 때, quotient group G/N 의 이항연산을 정의하고, 이 연산이 well-defined 되어 있음을 보여라.
 - 10. (10점) First Isomorphism Theorem 과 '학부 대수학의 반'을 이용하여, cyclic group을 (모두) 분류하라.