

Сборщик мусора (Garbage Collector)

После урока обязательно

Повторите этот урок в видео формате на ITVDN.com

Проверьте как Вы усвоили данный материал на TestProvider.com

Сборщик мусора (Garbage Collector)

Garbage Collection

Специальный механизм, называемый *сборщиком мусора* (*garbage collector*), периодически освобождает память, удаляя объекты, которые уже не будут востребованы приложением — то есть производит «сбор мусора».

Сборка мусора была впервые применена Джоном Маккарти в 1959 году в среде программирования на разработанном им функциональном языке программирования Lisp. Впоследствии она применялась в других системах программирования и языках, преимущественно — в функциональных и логических.

Garbage Collection

Любая программа использует ресурсы - файлы, буферы в памяти, пространство экрана, сетевые подключения, базы данных и т. п.

В объектно-ориентированной среде каждый тип идентифицирует некий доступный этой программе ресурс.

Чтобы им воспользоваться, должна быть выделена память для представления этого типа.

Garbage Collection

Для доступа к ресурсу вам нужно:

- 1. Выделить память для типа, представляющего ресурс.
- 2. Инициализировать выделенную память, установив начальное состояние ресурса.
- 3. Использовать ресурс, обращаясь к членам его типа.
- 4. Ликвидировать состояние ресурса.
- 5. Освободить память.

Garbage Collection

Сборка мусора (garbage collection) полностью освобождает разработчика от необходимости следить за использованием и своевременным освобождением памяти.

Garbage Collection

CLR требует выделять память для всех ресурсов из так называемой управляемой кучи (managed heap).

От кучи исполняющей среды языка С она отличается лишь тем, что разработчику из управляемой кучи удалять объекты не нужно.

Став ненужными приложению, они удаляются автоматически.

Garbage Collection

При инициализации процесса CLR резервирует непрерывную область адресного пространства, которая изначально не соответствует никакой физической памяти. Это и есть управляемая куча.

Она также поддерживает указатель, который называется NextObjPtr. Он определяет, где в куче будет выделена память для следующего объекта, и изначально указывает на базовый адрес этой зарезервированной области адресного пространства.

Garbage Collection

Команда С# new (IL newobj) создает объект.

После получения этой команды CLR:

- 1. Подсчитывает количество байтов, необходимых для размещения полей типа
- 2. Прибавляет к полученному значению количество байтов, необходимых для размещения системных полей объекта.
- 3. Если в управляемой куче достаточно места для объекта, ему выделяется память, начиная с адреса, на который ссылается указатель NextObjPtr, а занимаемые им байты обнуляются.
- 4. Вызывается конструктор типа, и IL-команда newobj возвращает адрес объекта (также перемещается NextObjPtr).

Garbage Collection

При вызове оператора new в области, выделяемой под объект, может не хватать свободного адресного пространства.

Куча выясняет объем недостающей памяти и добавляет байты, необходимые для объекта, к адресу, заданному указателем NextObjPtr.

Если результирующее значение выходит за пределы адресного пространства, значит, куча заполнена и следует выполнить сборку мусора.

Garbage Collection

Garbage Collection

Сборщик мусора проверяет наличие в куче больше не используемых приложеннем объектов, чтобы освободить занятую ими память.

Garbage Collection

Сборщик переходит к этапу сборки мусора, называемому маркировкой (marking).

Он проходит по стеку потока и проверяет все корни маркируя объекты.

После маркировки корня и объекта, сборщик мусора проверяет следующий корень и продолжает маркировать объекты.

Встретив уже маркированный объект, сборщик мусора останавливается.

Garbage Collection

Затем сборщик переходит к следующему этапу сборки мусора, называемому сжатием.

Теперь он проходит кучу линейно в поисках непрерывных блоков немаркированных объектов, тоесть мусора.

Небольшие блоки сборщик не трогает, а в больших непрерывных блоках он перемешает вниз все немусорные объекты, сжимая при этом кучу.

Q&A

Информационный видеосервис для разработчиков программного обеспечения

