

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 3821558 A1

FE

⑮ Int. Cl. 4:
B 24 B 27/00

B 24 B 5/08
B 24 B 29/08
F 16 L 55/00

⑯ Anmelder:

Wüstenberg, Dieter, Prof. Dr.-Ing., 6750
Kaiserslautern, DE

⑯ Erfinder:

gleich Anmelder

⑯ Schleif- und Polieranlage

Die Erfindung befaßt sich mit einem Verfahren zum Schleifen oder Polieren von Rohren und Rohrleitungsteilen an der Innenoberfläche. Zu diesem Zweck werden mit einem Fluid elastische, mit abrasivem Material versehene Körper wiederholt durch die zu schleifenden bzw. zu polierenden Bauteile geschickt.

DE 3821558 A1

DRUCKEREI

DE 3821558 A1

Beschreibung

Die Erfindung betrifft eine Anlage zum Schleifen bzw. Polieren von Rohrleitungen und Rohrleitungsteilen auf der Innenseite, wobei die Schleifwirkung weitgehend unabhängig von Gravitations- oder Fliehkräften ist.

Es ist bekannt, Rohrleitungen und Rohrleitungsteile mit Hilfe eines Fluids, dem man ein körniges Schleif- bzw. Poliermittel beifügt, innen zu schleifen bzw. zu polieren. Weiterhin ist bekannt, Rohre von Wärmeausstauschern (z.B. von Kondensatoren im Kraftwerksbereich) mit Hilfe von speziell behandelten, abbrassiven Schaumgummikugeln zu reinigen.

Die Aufgabe der Erfindung besteht darin, die Mängel, die sich beim Schleifen bzw. Polieren mit einem Fluid und einem körnigen Schleifpoliermittel ergeben, abzustellen. Da sich die Schleif- oder Poliermittel aufgrund von Gravitationskräften im unteren Rohrbereich und bei Einwirkung von Fliehkräften (z.B. in Rohrbögen) bevorzugt oder ausschließlich am Außenradius anreichern, führt das zu ungleichen Abtragungsraten und damit zu einer unterschiedlichen Oberflächengüte entlang des Rohrumfangs. Um diesen Nachteil auszuschließen, werden z.B. Rohrbögen häufig einzeln von Hand über einem Schleifdorn feinbearbeitet. Dieser Vorgang ist sehr zeitaufwendig und stellt eine hohe physische Belastung des Schleifers dar.

Die Aufgabe wird erfahrungsgemäß dadurch gelöst, daß im Prinzip Schleifkörper wie für das Reinigen von Kondensatoren verwendet werden, bei denen die abbrassiven Stoffe auf oder in elastischen Grundkörpern angebracht oder eingelagert sind. Während jedoch bei dem Reinigungsverfahren die kugelförmigen Schleifkörper kleiner als der Rohrdurchmesser sind, haben die Schleif- oder Polierkörper zur Oberflächenbearbeitung gegenüber dem lichten Rohrquerschnitt ein gewisses Übermaß. Dieses Übermaß bewirkt, daß das Schleif- bzw. Poliermittel beim Durchgang durch die Rohre und Rohrleitungsteile – nahezu unabhängig von Gravitations- oder Fliehkräften – gleichmäßig am Umfang wirkt. Durch die Wahl des Anpreßdrucks, der sich aus dem Übermaß und der Elastizität des Schleif- bzw. Poliermittelträgers ergibt, sowie die Art, Körnung und Verarbeitung des Schleif- oder Poliermittels, kann nahezu jede geforderte (Innen-)Oberflächenrauhheit bei beliebigen Werkstoffen erzielt werden. Die Art des Fluids (Gas oder Flüssigkeit) spielt bei dem Prozeß eine untergeordnete Rolle. Der Schleifmittelträger ist bevorzugt kugelig; er kann aber auch die Form eines Ellipsoiden oder Zylinders mit speziellen, abgestimmten Eigenschaften haben (z.B. unterschiedliches Übermaß oder unterschiedliche Körnung entlang der Länge oder eingearbeitete Spirale zwecks Rotation des Schleif- bzw. Polierkörpers). Da ein einmaliger Durchgang eines Schleif- bzw. Polierkörpers in der Regel nicht ausreicht, die gewünschte Oberflächengüte zu erzielen, bietet es sich an, das Verfahren im geschlossenen Kreislauf zu betreiben, wobei die Schleif- bzw. Polierkörper mehrfach das zu bearbeitende Rohrleitungsteil passieren. Der erforderliche Differenzdruck zum Transport der Körper kann durch ein vorhandenes Druckgefälle, eine Pumpe oder ein Gebläse erzeugt werden. Gleichzeitig ermöglicht das Verfahren z.B. das gleichzeitige Innen-schleifen bzw. -polieren von mehreren Rohrbögen, die noch vom Biegeprozeß als Rohrschlange aneinanderhängen und erst nach dem Innenbearbeiten getrennt werden.

In Fig. 1 ist ein Ausschnitt aus einer innen zu bearbei-

tenden Rohrleitung mit Krümmer dargestellt.

Fig. 2 stellt Beispiele von Schleifmittelkörpern im Rohr dar a) Kugel, b) Ellipsoid und c) Zylinder (Außenansicht mit Spirale für die Rotation), wobei (1) den abbrassiven Stoff und (2) den elastischen Grundkörper darstellt.

In Fig. 3 ist schematisch das Beispiel einer Anlage mit einem geschlossenen Fluid-Kreislauf dargestellt. Eine Pumpe oder ein Gebläse (1) drücken ein Fluid (2), z.B. Wasser oder Luft, dem die Schleif- bzw. Polierkörper (3) beigegeben sind, durch ein Rohrsystem (4) mit den zu schleifenden bzw. polierenden Rohrteilen, z.B. bestehend aus einem geraden Rohrstück (5a) und einer Rohrschlange aus zusammenhängenden Rohrkrümmern (5b). Eine Schleuse zum Einschleusen frischer und Ausschleusen verbrauchter Schleif- bzw. Polierkörper (6) kann vorgesehen werden. Bei der im Bild dargestellten Anlage müssen die Schleif- bzw. Polierkörper durch die Druckerhöhungseinrichtung (z.B. gummierte Pumpe oder gummierte Gebläse) gefördert werden, was jedoch erfahrungsgemäß keine größeren Probleme mit sich bringt.

Patentansprüche

1. Verfahren zum mechanischen Bearbeiten der Innenseite von Rohrleitungen und Rohrleitungsteilen mit Hilfe von elastischen Schleif- bzw. Polierkörpern, die gegenüber dem lichten Querschnitt über ein gewisses Übermaß verfügen.
2. Verfahren nach Anspruch 1, wobei die Schleif- bzw. Polierkörper in ihren Eigenschaften (z.B. Elastizität, Abrassivität, Werkstoff, Form) der gewünschten Oberflächengüte unter Berücksichtigung der Rohrleitungswerkstoffe angepaßt sind.
3. Verfahren nach Anspruch 1, wobei das Fluid flüssig oder gasförmig sein kann.
4. Verfahren nach Anspruch 1, 2 und 3, wobei mehrere, auch unterschiedliche Rohrleitungsteile, in einem Bearbeitungsprozeß innen geschliffen oder poliert werden.

- Leerseite -

S*

Fig. 1Fig. 2Fig. 3

908 852/373