TABLE 1.1. Comparison of Combinatorial Techniques Related to The Refactoring Problem

Reproducibility Medium	Hard	Hard	Hard	Hard	Hard	Hard	Hard
Behavior Preservation Domain specific pre- conditions based on the object oriented structure and design patterns.	Static program analysis on an unknown pre/post-conditions. There is no evidence of how the refactoring is executed on the AST	NA NA	NA	Pre and post con- ditions described by Opdyke (not clear how authors performed behavior preservation).	NA	Opdyke's functions. However, these conditions are unclear in the implementa- tion of the approach.	Opdyke's functions (defining pre/post conditions). How- ever, these conditions are unclear in the implementation of the approach.
Supported Refactorings Move Method	14 Refactorings from Fowler's Catalog.	Maven Move Method	Gamma design patterns and mini- transformations.	9 Refactorings from Fowler's Catalog	23 Refactorings from Fowler's Catalog	11 Refactorings from Fowler's Catalog.	10 Refactorings from Fowler's Catalog.
Analyzed Systems J.HotDraw	SpecCheck, Beaver, EAOP, Mango and Grammatica.	JHotDraw, Maven and Xom	The use of RE-MODEL on published models and real-world case study.	Xerces-j, JPreeChart.	GanttProject, JHot- Draw, JFreeChart, JDI-Ford.	Xerces-J, GanttPro- ject, JHotDraw, JFreeChart.	Xerces-J, JFreeChart, Ganthr-Poject, ApadeAnt, JHot- Draw, Rhino, Logal, Nutch and JDl-Ford.
Dimension Analysis Evaluation Method Fitness convergence analysis and an ex- ample code develop- ment.	Mean analysis on fit- ness values and exe- cution time for each search technique.	Pareto front analysis. However, without concrete type solutions or outcome examples, the analysis is hard to inter-	Exploratory analysis on fitness values. However, the analysis are very informal and no concrete solutions is decombed.		Execution time analysis and a manual validation of the refactorings. There are comparison with other reported		Hypervolume, Inverse Generational Distance, Number of Fixed Code-Smells, Severity of Fixed Code-Smells, Correctness of the suggested Refactorings and Computational Time.
Type of solution A list of model refac- torings. The list is ordered according to established pre/post conditions of refac- torings.	The refactorings are applied to the AST, then the outputs are the refactored input code (unclear solution example).	Sequences of refac- torings, although, it is unclear how the so- lution is configured.	The individual is composed of a pair that includes a transformation tree and design graph (UML place diagrams)	vetor-based repre- sentation. A set of reflectoring is config- uncd and sorted using dominance principle and a comparison operator based on crowfulng distance. The order of the operations inside the	vector is important. A set of Non domi- nated refractoring so- lutions. The set of refractorings are ranked.	A sequence of refactorings in a vector representation (unclear how it is the appearance of the suggested refactoring)	ms). Vector-based repre- sentation of refactor- ing operations. The order depends on the position of the refactoring inside the array.
Objective(s) Maximize features such as complexity, stability, coupling and cobesion by means of a weighted sum of seven metrics whee. The input is the source code.	An implementation of the unserstandability function from QMOOD model. The input is an Abstract Syntax Tree	trongly coupling between classes (CBO) and the standard deviation of methods per class (SDMPC).	A proposed fitness function composed of the QMOOD model, specific penalties, and number of modifica-	Maximize design quality, semantic coherence and the re-use of the history of changes.	Improve software quality, reduce the number of refactor- ings and increase semantic coherence.	One objective that minimize the number of bad smells.	Maximize quality improvements and the respectively uncertainties associated with severity and importance of refactorings opportunities.
Optimization Technique Single Objective EA (unclear technique).	Multiple-ascent hill climbing, simu- lated annealing and genetic algorithms.	Variant of hill climbing (unclear).	Genetic programming.	NSGA-II (unclear how the refactorings were executed).	NSGA-II (unclear how authors execute the 23 refactorings).	Chemical Reaction Optimization. Al- though, there is no evidence or concrete example of how the reflectorings are	executed on the con- NGA-II (unclear how the refactorings are executed).
Google Scholar Citation Count 232	101	173	52	24	81	G	NA
Journal/Venue G GECCO 2006	Journal of Software Maintenance and Evolution	GECCO 2007	GECCO 2010	GECCO 2013) ASE 2014	Software Quality Journal	Engineering
Authors Seng & Stammel (2006)	Koefte, Mark O Cinnéide, Mel Ó (2007)	Harman & Tratt (2007)	Jensen & Cheng (2010)	Ouni & Kessentini (2013)	Misouer & Kessentini (2014) ASE 2014	Ouni & Kessentini (2015)	Maouer & Kessentini (2016) Empirical Software Engineering