

Ejercicio 4:

Inducción Estructural y Relaciones

Profesores: Alejando Hevia, Federico Olmedo Auxiliares: Ismael Correa, Nahuel Gómez, Nelson Marambio, Javier Oliva, Fernanda Sanchirico, Lucas Torrealba, Ayudantes: Felix Avilés, Daniel Báez

Definiciones

Definición 1 (Conjunto de palabras sobre un alfabeto Σ) El conjunto Σ^* de palabras sobre el alfabeto finito Σ , se define inductivamente como sigue:

- Regla Base: $\epsilon \in \Sigma^*$ (con ϵ la palabra vacía).
- Regla Inductiva: Dado un símbolo $x \in \Sigma$, y una palabra $w \in \Sigma^*$, luego $wx \in \Sigma^*$.

Definición 2 (Orden Lexicográfico sobre strings) Dado un alfabeto finito Σ , parcialmente ordenado de acuerdo a la relación de orden $<_{\Sigma}$, entonces un orden lexicográfico \preceq es una relación de orden parcial sobre Σ^* definida recursivamente como sigue:

- Regla Base: $\forall w \in \Sigma^*, \epsilon \leq w \ (con \ \epsilon \ la \ palabra \ vacía).$
- Regla Recursiva: $\forall w_1, w_2 \in \Sigma^* \setminus \{\epsilon\} \text{ tales que } w_1 = x_1 x_2 ... x_n \text{ y } w_2 = z_1 z_2 ... z_m : w_1 \leq w_2 \text{ ssi } x_1 <_{\Sigma} z_1 \quad \forall \quad (x_1 = z_1 \land x_2 ... x_n \leq z_2 ... z_m)$

Definición 3 (Operador de inversión de palabras) Dado un alfabeto finito Σ , y una palabra $w \in \Sigma^*$, se define la inversión de w como la palabra w^R construida con los mismos símbolos que w pero en orden inverso.

Definición 4 (Isomorfismo de strings) Dadas dos palabras en Σ^* , $w_1 = x_1x_2...x_n$ y $w_2 = z_1z_2...z_n$, decimos que w_1 es isomorfa con w_2 , denotado por $w_1 \cong w_2$, si existe una biyección $f: \Sigma \to \Sigma$ tal que $w_2 = f(x_1)f(x_2)...f(x_n)$.

Definición 5 (Relaciones bien fundadas) Dado un conjunto parcialmente ordenado (X, \prec) , este se dice bien fundado ssi no posee una secuencia de elementos infinitamente descendiente. Esto es, si no existe una secuencia $(x_i)_{i\in\mathbb{N}}$ tal que $x_{i+1} \leq x_i \ \forall i \in \mathbb{N}$.

Definición 6 (Relaciones densas) Asimismo, dado un conjunto parcialmente ordenado (X, \prec) , este se dice denso ssi $\forall x_1, x_2 \in X$ tales que $x_1 \prec x_2$, $\exists y \in X$ tal que $x_1 \prec y \prec x_2$.

Ejercicio 4:

P1.-

- 1. De una definición recursiva del operador de inversión
- 2. Muestre que $\forall w_1, w_2 \in \Sigma^*$, se tiene que $(w_1 w_2)^R = w_2^R w_1^R$

P2.-

- 1. Demuestre que la relación de isomorfismo de string
s \cong es relación de equivalencia.
- 2. Demuestre que, para cualquier alfabeto finito Σ con más de un símbolo, el conjunto de palabras Σ^* ordenado según el orden lexicográfico, no es ni bien fundado ni denso.

Asuma que el alfabeto Σ está bien ordenado de acuerdo a una relación de orden $<_{\Sigma}$.

Ejercicio 4: