

cond applying to energy belonce

$$0 = \dot{m} (\dot{H}_1 + \dot{H}_2) - 2\dot{m} (\ddot{H}_3)$$

of course in cancels

 $0 = \dot{H}_1 + \dot{H}_2 - 2\dot{H}_3$
 $\Rightarrow \dot{H}_3 = \frac{1}{3} (\dot{H}_1 + \dot{H}_3)$

now we need to figure out the wot% of H₂SO₄ in the final stream using component balances

 $0 = \sum_{i=1}^{3} X_{Si} \dot{m}_i = X_{Si} \dot{m}_1 + X_{S2} \dot{m}_2 - X_{S3} \dot{m}_3$

from the overall mass balance and $\dot{m}_1 = \dot{m}_2$

we know $\dot{m}_3 = 2\dot{m}_1 = 2\dot{m}_1$,

 $0 = X_{S1} + X_{S2} - 2X_{S3}$
 $X_{S3} = \frac{1}{2} (X_{S1} + X_{S2}) = 0.50$

now we may find \dot{H}_3 knowing \dot{H}_1 and \dot{H}_2 and use that and \dot{X}_{S3} to find the final temp.

for (b)

 $\dot{X}_{S3} = \frac{1}{2} (X_{S1} + X_{S2}) = 0.35$

