Quantum superposition at the half-metre scale

16.04.19

Jinuk Kim

Quantum-Field Laser Laboratory

Department of Physics and Astronomy

Seoul National University, Korea

LETTER

doi:10.1038/nature16155

Quantum superposition at the half-metre scale

T. Kovachy¹, P. Asenbaum¹, C. Overstreet¹, C. A. Donnelly¹, S. M. Dickerson¹, A. Sugarbaker¹, J. M. Hogan¹ & M. A. Kasevich¹

530 | NATURE | VOL 528 | 24/31 DECEMBER 2015

B.A., Physics, Dartmouth College, 1985 M.A., Physics and Philosophy, Merton College, Oxford University, 1987 Ph.D., Applied Physics, Stanford University, June 1992 (Thesis: "Atom interferometry in an atomic fountain")

Professor, Physics Dept., Stanford University, 2002-present Professor, Physics Dept., Yale University, 2001-2002 Associate Professor, Physics Dept., Yale University, 1997-2001 Assistant Professor, Physics Dept., Stanford University, 1992-1997

https://physics.stanford.edu/people/faculty/mark-kasevich

Research Interest

- Atom Interferometric Test of the Equivalence Principle
- Measurement of gravitational waves

Eötvös-parameter

$$\eta = \left| \frac{\Delta a}{\bar{a}} \right| = \frac{|a_1 - a_2|}{\frac{1}{2} |a_1 + a_2|}$$

Contents

Principle of the atom interferometer

Preparation of the state of atoms

Large momentum transfer Beam splitter

Experimental result

VOLUME 67, NUMBER 2

PHYSICAL REVIEW LETTERS

8 JULY 1991

Atomic Interferometry Using Stimulated Raman Transitions

Mark Kasevich and Steven Chu

Departments of Physics and Applied Physics, Stanford University, Stanford, California 94305 (Received 23 April 1991)

The mechanical effects of stimulated Raman transitions on atoms have been used to demonstrate a matter-wave interferometer with laser-cooled sodium atoms. Interference has been observed for wave packets that have been separated by as much as 2.4 mm. Using the interferometer as an inertial sensor, the acceleration of a sodium atom due to gravity has been measured with a resolution of 3×10^{-6} after 1000 sec of integration time.

Energy diagram and Raman transition

 ^{87}Rb

A. Sugarbaker, Ph.D. thesis, Stanford University, (2014)

Raman Mach-Zehnder interferometer

Raman Mach-Zehnder interferometer

Gravitational effect

https://www.rtg1729.uni-hannover.de/fileadmin/grk1729/pdf/Colloquium_WS_13/hoganRTGLecture1.pdf

Preparation of the atomic state

A. Sugarbaker, Ph.D. thesis, Stanford University, (2014)

2.6 kHz trap

$$t = t_{lens}$$

$$\frac{T_f}{T_i} = \left(\frac{\Delta x_i}{\Delta x_f}\right)^2$$

subnanokelvin 10⁵ 87Rb atoms

Optical lattice launch

$$V(x,t) = \frac{V_0(t)}{2} (1 + \cos(2kx + \delta(t)t))$$

J Hecker Denschlag et al, J. Phys. B: At. Mol. Opt. Phys. **35** ,3095 (2002).

Sequential Raman transition

Large momentum transfer atomic beamsplitter

T. Kovachy *et al,* Nature **528** ,530-533 (2015).

Fluorescence images of outputports

90ħk interferometer

T. Kovachy et al, Nature **528** ,530-533 (2015).

Loss of atoms and Contrast

T. Kovachy *et al,* Nature **528** ,530-533 (2015).

Q&A

A. Sugarbaker, Ph.D. thesis, Stanford University, (2014)

Supplementary materials

Raman transition

22

Raman beam configuration

Atomic lens

Refocusing lens:

https://www.rtg1729.uni-hannover.de/fileadmin/grk1729/pdf/Colloquium_WS_13/hoganRTGLecture2.pdf

Atomic lens

https://www.rtg1729.uni-hannover.de/fileadmin/grk1729/pdf/Colloquium_WS_13/hoganRTGLecture2.pdf

Coherece time

Sequential Raman transitions

https://www.rtg1729.uni-hannover.de/fileadmin/grk1729/pdf/Colloquium_WS_13/hoganRTGLecture2.pdf

Spatial interference fringes

Light Pulse Atom Interferometry

https://www.rtg1729.uni-hannover.de/fileadmin/grk1729/pdf/Colloquium_WS_13/hoganRTGLecture1.pdf

Lagrangian of atoms

Lagrangian of atoms

Each of these terms depends on the trajectory of the atom through the interferometer, as determined by the optical pulses and the atom's free evolution with Lagrangian

$$L = \frac{1}{2}m(\dot{\mathbf{r}} + \mathbf{\Omega} \times (\mathbf{r} + \mathbf{R}_e))^2 - m\phi(\mathbf{r} + \mathbf{R}_e) \pm \frac{1}{2}\hbar\alpha\mathbf{B}(\mathbf{r})^2$$
(1.6)

where m and \mathbf{r} are the mass and position of the atom, and \mathbf{R}_e and Ω are Earth's radius and rotation rate. The gravitational potential is $\phi(\mathbf{r} + \mathbf{R}_e) = -(\mathbf{g} \cdot \mathbf{r} + \frac{1}{2!}(T_{ij})r_ir_j + \ldots)$, where \mathbf{g} is Earth's local gravitational field and $T_{ij} \equiv \partial_j g_i$ is the gravity gradient tensor. The magnetic field \mathbf{B} affects the atoms only through their second-order Zeeman shift α since they are kept in $|m_F = 0\rangle$ states throughout the interferometer.

arm (AC and CE). The phase shift is

$$\Delta\phi_{\text{prop}} = \frac{1}{\hbar} \left((\tilde{S}_{AC} + \tilde{S}_{CE}) - (\tilde{S}_{AB} + \tilde{S}_{BD}) \right)$$
 (1.7)

where $\tilde{S}_{ij} = \int_{t_i}^{t_j} (L - E_f) dt$ accounts for both the classical action and the atom's internal energy $(E_f \text{ in state } |f\rangle)$ along the segment connecting vertices \mathbf{r}_i and \mathbf{r}_j .