-B2

Aim:- 1. Implement logistic regression using Python/R to perform classification on Social_Network_Ads.csv dataset.

2. Compute Confusion matrix to find TP, FP, TN, FN, Accuracy, Error rate, Precision, Recall on the given dataset.

In [1]:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import confusion_matrix,accuracy_score,precision_score,recall_score

In [2]

df=pd.read_csv('Social_Network_Ads.csv')

df

Out[2]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0
395	15691863	Female	46	41000	1
396	15706071	Male	51	23000	1
397	15654296	Female	50	20000	1
398	15755018	Male	36	33000	0
399	15594041	Female	49	36000	1

400 rows × 5 columns

In [3]:

df

 $df["Gender"].replace(\{'Male':0,'Female':1\},inplace=True)\\$

In [4]:

df

Out[4]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	0	19	19000	0
1	15810944	0	35	20000	0
2	15668575	1	26	43000	0
3	15603246	1	27	57000	0
4	15804002	0	19	76000	0
					•••
395	15691863	1	46	41000	1
396	15706071	0	51	23000	1
397	15654296	1	50	20000	1
398	15755018	0	36	33000	0
399	15594041	1	49	36000	1

400 rows × 5 columns

In [5]:

x=df[['User ID','Gender','Age','EstimatedSalary']]

In [6]:

y=df['Purchased']

. In [7]

 $x_train, x_test, y_train, y_test=train_test_split(x, y, test_size=0.25, random_state=14)$

In [8]:

```
x_train,x_test,y_train,y_test
Out[8]:
( User ID Gender Age EstimatedSalary
379 15749381 1 58
369 15624755 1 54
                        26000
368 15779744 0 38
                        71000
185 15814816 0 31
                        66000
203 15809347 1 41
                        71000
249 15753102 1 35
                        97000
             1 42
327 15785170
                        75000
             1 47
268 15746203
                        144000
344 15729908 0 47
                        105000
107 15789863 0 27
                        89000
[300 rows x 4 columns],
User ID Gender Age EstimatedSalary
                    118000
85 15663939 1 31
20 15649487 0 45
                       22000
1 15810944 0 35
                     20000
346 15646936 0 53
                       72000
69 15595324 1 31
                        68000
.. ... ... ...
245 15722061 1 51
                        146000
343 15629739 1 47
                        51000
349 15721835 0 38
                        61000
291 15596522 0 49
                        89000
254 15724161 1 50
                        44000
[100 rows x 4 columns],
379 1
369 1
368 0
185 0
203 0
249 1
327 0
268 1
344 1
107 0
Name: Purchased, Length: 300, dtype: int64,
85 1
20 1
346 1
69 0
245 1
343 1
349 0
291 1
254 0
Name: Purchased, Length: 100, dtype: int64)
In [9]:
model=LogisticRegression()
In [10]:
model.fit(x_train,y_train)
Out[10]:
LogisticRegression()
```

In [11]:

Out[11]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	0	19	19000	0
1	15810944	0	35	20000	0
2	15668575	1	26	43000	0
3	15603246	1	27	57000	0
4	15804002	0	19	76000	0
	•••				
395	15691863	1	46	41000	1
396	15706071	0	51	23000	1
397	15654296	1	50	20000	1
398	15755018	0	36	33000	0
399	15594041	1	49	36000	1

400 rows × 5 columns

```
In [12]:
```

y_predict=model.predict(x_test)

In [13]: y_predict

Out[13]:

0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1,

0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], dtype=int64)

In [14]:

model.score(x,y)

Out[14]:

0.77

cm=confusion_matrix(y_test,y_predict)

In [16]:

cm

Out[16]:

array([[55, 4],

[20, 21]], dtype=int64)

In [17]:

print(confusion_matrix.__doc__)

Compute confusion matrix to evaluate the accuracy of a classification.

By definition a confusion matrix :math: 'C' is such that :math: 'C_{i, j}' is equal to the number of observations known to be in group :math:'i' and predicted to be in group :math:'j'.

Thus in binary classification, the count of true negatives is :math:`C_{0,0}`, false negatives is :math:`C_{1,0}`, true positives is :math: $^C_{\{1,1\}}$ and false positives is :math: $^C_{\{0,1\}}$.

Read more in the :ref:'User Guide <confusion_matrix>'.

Parameters

y_true : array-like of shape (n_samples,) Ground truth (correct) target values.

y_pred : array-like of shape (n_samples,) Estimated targets as returned by a classifier.

```
labels : array-like of shape (n_classes), default=None
List of labels to index the matrix. This may be used to reorder
or select a subset of labels.
If "None" is given, those that appear at least once
in "y_true" or "y_pred" are used in sorted order.
sample_weight : array-like of shape (n_samples,), default=None
Sample weights.
.. versionadded:: 0.18
normalize: {'true', 'pred', 'all'}, default=None
Normalizes confusion matrix over the true (rows), predicted (columns)
conditions or all the population. If None, confusion matrix will not be
normalized.
Returns
C: ndarray of shape (n_classes, n_classes)
Confusion matrix whose i-th row and j-th
column entry indicates the number of
samples with true label being i-th class
and predicted label being j-th class.
See Also
ConfusionMatrixDisplay.from_estimator : Plot the confusion matrix
given an estimator, the data, and the label.
ConfusionMatrixDisplay.from_predictions: Plot the confusion matrix
given the true and predicted labels.
ConfusionMatrixDisplay: Confusion Matrix visualization.
References
.. [1] 'Wikipedia entry for the Confusion matrix
<a href="https://en.wikipedia.org/wiki/Confusion_matrix">\_</a>
(Wikipedia and other references may use a different
convention for axes).
Examples
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
In the binary case, we can extract true positives, etc as follows:
>>> tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
>>> (tn, fp, fn, tp)
```

```
(0, 2, 1, 1)
In [18]:
tn,fp,fn,tp=confusion_matrix(y_test,y_predict).ravel()
In [20]:
print("Tp:",tn)
print("Fp:",fp)
print("TN:",tn)
print("Fp:",fn)
Tp: 55
Fp: 4
TN: 55
Fp: 20
In [21]:
a=accuracy_score(y_test,y_predict)
In [22]:
print("Accuracy Value:",a)
Accuracy Value: 0.76
In [24]:
e=1-a
In [25]:
print("Error Rate:",e)
Error Rate: 0.24
precision=precision_score(y_test,y_predict)
print("precision:",precision)
precision: 0.84
Recall=recall_score(y_test,y_predict)
print("Recall value:",Recall)
Recall value: 0.5121951219512195
In[]:
```