In [1]:

```
import numpy as ny
import pandas as pd
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [2]:

```
df=pd.read_csv(r"C:\Users\chait\Downloads\drug200.csv")
df
```

Out[2]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	HIGH	25.355	drugY
1	47	М	LOW	HIGH	13.093	drugC
2	47	М	LOW	HIGH	10.114	drugC
3	28	F	NORMAL	HIGH	7.798	drugX
4	61	F	LOW	HIGH	18.043	drugY
195	56	F	LOW	HIGH	11.567	drugC
196	16	М	LOW	HIGH	12.006	drugC
197	52	М	NORMAL	HIGH	9.894	drugX
198	23	М	NORMAL	NORMAL	14.020	drugX
199	40	F	LOW	NORMAL	11.349	drugX

200 rows × 6 columns

In [3]:

```
df.info()
```

```
RangeIndex: 200 entries, 0 to 199
Data columns (total 6 columns):
 #
    Column
                 Non-Null Count Dtype
                 -----
                                 int64
0
    Age
                 200 non-null
 1
    Sex
                 200 non-null
                                 object
 2
                 200 non-null
                                 object
 3
    Cholesterol 200 non-null
                                 object
 4
                                 float64
    Na_to_K
                 200 non-null
 5
                 200 non-null
    Drug
                                 object
dtypes: float64(1), int64(1), object(4)
```

<class 'pandas.core.frame.DataFrame'>

memory usage: 9.5+ KB

```
In [7]:
```

```
df['BP'].value_counts()
```

Out[7]:

ВР

HIGH 77 LOW 64 NORMAL 59

Name: count, dtype: int64

In [9]:

```
df['Drug'].value_counts()
```

Out[9]:

Drug

drugY 91
 drugX 54
 drugA 23
 drugC 16
 drugB 16

Name: count, dtype: int64

In [10]:

```
convert={"Cholesterol":{"HIGH":1,"NORMAL":0}}
df=df.replace(convert)
df
```

Out[10]:

	Age	Sex	BP	Cholesterol	Na_to_K	Drug
0	23	F	HIGH	1	25.355	drugY
1	47	М	LOW	1	13.093	drugC
2	47	М	LOW	1	10.114	drugC
3	28	F	NORMAL	1	7.798	drugX
4	61	F	LOW	1	18.043	drugY
195	56	F	LOW	1	11.567	drugC
196	16	М	LOW	1	12.006	drugC
197	52	М	NORMAL	1	9.894	drugX
198	23	М	NORMAL	0	14.020	drugX
199	40	F	LOW	0	11.349	drugX

200 rows × 6 columns

In [11]:

```
convert ={"BP":{"LOW":1,"HIGH":2,"NORMAL":3}}
df=df.replace(convert)
df
```

Out[11]:

	Age	Sex	ВР	Cholesterol	Na_to_K	Drug
0	23	F	2	1	25.355	drugY
1	47	М	1	1	13.093	drugC
2	47	М	1	1	10.114	drugC
3	28	F	3	1	7.798	drugX
4	61	F	1	1	18.043	drugY
195	56	F	1	1	11.567	drugC
196	16	М	1	1	12.006	drugC
197	52	М	3	1	9.894	drugX
198	23	М	3	0	14.020	drugX
199	40	F	1	0	11.349	drugX

200 rows × 6 columns

In [17]:

```
x=["BP","Cholesterol"]
y=["drugC","drugX","drugA","drugB"]
all_inputs=df[x]
all_classes=df["Drug"]
```

In [18]:

```
(x_train,x_test,y_train,y_test)=train_test_split(all_inputs,all_classes,test_size=0.2)
```

In [19]:

```
clf=DecisionTreeClassifier(random_state=0)
```

In [20]:

```
clf.fit(x_train,y_train)
```

Out[20]:

DecisionTreeClassifier(random_state=0)

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [21]:	
<pre>score=clf.score(x_test,y_test) print(score)</pre>	
0.525	
In []:	