[Aula 11] Pipeline do MIPS 2 – Caminho de dados e controle

Prof. João F. Mari joaof.mari@ufv.br

- Divisão de uma instrução em cinco estágios
 - Cinco níveis de pipeline
 - Cinco instruções executadas em paralelo (durante o mesmo ciclo de clock)
 - IF (Instruction Fetch): Busca de instruções
 - **ID** (*Instruction Decode*): Decodificação de instruções e leitura do banco de registradores
 - EX: Execução ou calculo de endereço
 - MEM: Acesso à memória de dados
 - WB (Write Back): Escrita do resultado

- IF/ID (64 bits) instrução (32 bits) + endereço do PC++ (32 bits)
- ID/EX (128 bits) PC++ (32 bits) + Dado da leitura 1 (32 bits) + Dado da leitura 2 (32 bits) + Offset estendido (32 bits)
- EX/MEM (97 bits) PC++ + desvio (32 bits) + Flag zero (1 bit) + Resultado da ALU (32 bits) + Dado da leitura 2 (32 bits)
- MEM/WB (64 bits) Dados lidos da memória (32 bits) + Resultado da ALU (32 bits)
 - Os registradores ainda serão expandidos no futuro!!!

Instrução LW (load word)

- Etapa 1:
 - IF Busca da instrução
- Etapa 2:
 - ID Decodificação de instruções e leitura do banco de registradores
- Etapa 3:
 - EX Execução ou calculo de endereço
- Etapa 4:
 - MEM Acesso a memória
- Etapa 5:
 - WB Escrita de resultado

Etapa 1: IF – Busca da instrução

Etapa 2: ID – Decodificação da instrução

Etapa 3: EX – Execução da instrução (LW)

Etapa 4: MEM – Acesso à memória (LW)

Etapa 5: WB – Escreve nos registradores (LW)

Store Word (SW)

- Etapa 1:
 - IF Busca de instruções
- Etapa 2:
 - ID Decodificação de instruções e leitura do banco de registradores
- Etapa 3:
 - EX Execução ou calculo de endereço
- Etapa 4:
 - MEM Acesso a memória
- Etapa 5:
 - WB Escrita de resultado

Etapa 3: EX – Execução (SW)

Etapa 4: MEM – Acesso à memória (SW)

Etapa 5: WB – Escrita nos registradores (SW)

Caminho de dados corrigido – Load Word

Partes do caminho de dados usado pela instrução LW (cinco estágios)

Representando pipelines graficamente

Representando pipelines graficamente

O caminho de dados em um ciclo de clock (CC5)

CONTROLE DE UM PIPELINE

O caminho de dados em pipeline com sinais de controle identificados.

Bits de controle da ALU

Opcode da instrução OpALU		Operação da instrução	Campo funct	Ação da ALU desejada	Entrada do controle da ALU	
LW	00	load word		add	0010	
SW	00	store word	XXXXXX	add	0010	
Branch equal	01	branch equal	XXXXXX	subtract	0110	
tipo R	10	add	100000	add	0010	
tipo R	10	subtract	100010	subtract	0110	
tipo R	10	AND	100100	AND	0000	
tipo R	10 OR 100		100101	OR	0001	
tipo R	10	set on less than	101010	set on less than	0111	

Sinais de controle

Nome do sinal	Efeito quando inativo	Efeito quando ativo			
RegDst	O número do registrador destino para a entrada Registrador para escrita vem do campo rt (bits 20:16).	O número do registrador destino para a entrada Registrador para escrita vem do campo rd (bits 15:11).			
EscreveReg	Nenhum.	O registrador na entrada Registrador para escrita é escrito com o valor na entrada Dados para escrita.			
OrigALU	O segundo operando da ALU vem da segunda saída do banco de registradores (Dados da leitura 2).	O segundo operando da ALU consiste nos 16 bits mais baixos da instrução com sinal estendido.			
OrigPC	O PC é substituído pela saída do somador que calcula o valor de PC + 4.	O PC é substituído pela saída do somador que calcula o destino do desvio.			
LeMem	Nenhum.	O conteúdo da memória de dados designado pela entrada Endereço é colocado na saída Dados da leitura.			
EscreveMem	Nenhum.	O conteúdo da memória de dados designado pela entrada Endereço é substituído pelo valor na entrada Dados para escrita.			
MemparaReg	O valor enviado para a entrada Dados para escrita do banco de registradores vem da ALU.	O valor enviado para a entrada Dados para escrita do banco de registradores vem da memória de dados.			

Bits de controle da ALU

Instrução	Linhas de controle do estágio de execução/cálculo de endereço				Linhas de controle do estágio de acesso à memória			Linhas de controle do estágio de escrita do resultado	
	RegDst	OpALU1	OpALU0	OrigALU	Branch	LeMem	EscreveMem	EscreveReg	MemparaReg
Formato R	1	1	0	0	0	0	0	1	0
1w	0	0	0	1	0	1	0	1	1
SW	Χ	0	0	1	0	0	1	0	Х
beq	Х	0	1	0	1	0	0	0	Х

Controle

- Busca de instruções
- Decodificação de instruções e leitura do banco de registradores
- Execução ou calculo de endereço
 - RegDst, OpALU, OrigALU
- Acesso a memória
 - EscreveMem, LeMem, Branch
- Escrita de resultado
 - MemparaReg, EscreveReg

Bibliografia

- 1. PATTERSON, D.A; HENNESSY, J.L. Organização e Projeto de Computadores: A Interface Hardware/Software. 3a. Ed. Elsevier, 2005.
 - Capítulo 5.
- 2. Notas de aula do prof. Luciano J. Senger:
 - http://www.ljsenger.net/classroom.html
- 3. Notas de aula da Profa. Mary Jane Irwin
 - CSE 331 Computer Organization and Design
 - http://www.cse.psu.edu/research/mdl/mji/mjicourses

FIM

- FIM:
 - Aula 11 Pipeline do MIPS 2 Caminho de dados
- Próxima aula:
 - Aula 12 Pipeline do MIPS 3 Solucionando hazards de dados