Вариант 11

Задача

Администрации театра нужно решить, сколько заказать программок для представлений. Стоимость заказа 200 ф. ст. плюс 30 пенсов за штуку. Программки продаются по 60 пенсов за штуку, и к тому же доход от рекламы составит дополнительные 300 ф. ст. Из прошлого опыта известна посещаемость театра:

Посещаемость	4000	4500	5000	5500	6000
Ее вероятность	0,1	0,3	0,3	0,2	0,1

Ожидается, что 40% зрителей купят программки.

Решение

Построим матрицу выигрышей:

	П1	П2	П3	П4	П5
A 1	48100	60100	72100	84100	96100
A2	42100	54100	66100	78100	90100
А3	36100	48100	60100	72100	84100
A4	30100	42100	54100	66100	78100
A5	24100	36100	48100	60100	72100

Вычислим матрицу рисков. Так как в данном примере a_{ij} представляет выигрыш, то применятся максимальный критерий:

Для П1: β_i = 48100

Для П2: β_i = 60100

Для ПЗ: β_i = 72100

Для П4: β_j = 84100

Для П5: β_i = 96100

Матрица рисков выглядит следующим образом:

	П1	П2	П3	П4	П5
A1	0	6000	12000	18000	24000
A2	6000	0	6000	12000	18000
А3	12000	6000	0	6000	12000
A4	18000	12000	6000	0	6000
A5	24000	18000	12000	6000	0

Критерий Вальда

По критерию Вальда за оптимальную принимается чистая стратегия, которая в наихудших условиях гарантирует максимальный выигрыш, т. e. $a = max(min \ a_{ij})$.

Выбираем из (48100; 42100; 36100; 30100; 24100) максимальный элемент max = 48100.

Вывод: выбираем стратегию 1.

Критерий Сэвиджа

• Для A1: max r_{ij} = 24000

• Для A2: max r_{ij} = 18000

• Для А3: max r_{ii} = 12000

• Для A4: max r_{ij} = 18000

• Для А5: max r_{ij} = 24000

Выбираем минимальный элемент min = 12000.

Вывод: выбираем стратегию 3.

Критерий Гурвица

Положим значение коэффициента пессимизма р = 0,5.

Так как в данном примере а представляет выигрыш, то применятся критерий:

$$H_A = \max \{ p \max a_{ij} + (1 - p) \min a_{ij} \}.$$

			P max aij + (1-p) min
	min a ij	max a ij	aij
A1	48100	96100	72100
A2	42100	90100	66100
A3	36100	84100	60100
A4	30100	78100	54100
A5	24100	72100	48100

Оптимальное решение заключается в выборе стратегии А1.

Рассчитаем оптимальную стратегию применительно к матрице рисков

$$H_R = \min\{p \max r_{ij} + (1 - p) \min r_{ij}\}.$$

	min r _{ij}	max r _{ij}	P max r _{ii} + (1 - p) min r _{ii}
A1	0	24000	12000
A2	0	18000	9000
A3	0	12000	6000
A4	0	18000	9000
A5	0	24000	12000

Оптимальное решение заключается в выборе стратегии АЗ.

Вывод

В примере предстоит сделать выбор, какое из возможных решений предпочтительнее:

- по критерию Вальда выбор стратегии А1;
- по критерию Сэвиджа выбор стратегии АЗ;
- по критерию Гурвица выбор стратегии А1 или А3.