

Licence EEA 2ème année

Unité d'enseignement HAE302 Circuits et Composants Capacitifs et Inductifs

Partie Circuits et Composants Capacitifs

P. CHRISTOL

VII- Energie Electrostatique

Soit 2 charges q₁ en M₁ et q₂ en M₂ séparées par une distance r₁₂.

Au point M_2 règne le potentiel $V_2 = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{r_{12}}$ induit par la charge q_1 en M_1 .

 $\mbox{Le travail (ou l'énergie)} \quad \mbox{W} = \mbox{q_2V$}_2 = \mbox{$q_1$} \frac{1}{4\pi \epsilon_0} \frac{\mbox{q_1}}{\mbox{r_{12}}}$

De même au point M_1 on a, avec V_1 le potentiel au point M_1 induit par q_2 : $W = q_1 V_1 = q_1 \frac{1}{4\pi\varepsilon_0} \frac{q_2}{r}$

On a donc $W=q_2V_2=q_1V_1$; et l'énergie totale $q_2V_2+q_1V_1=2W$ d'où $W=\frac{1}{2}(q_1V_1+q_2V_2)$.

⇒ Si N charges ponctuelles :

 $\ \ \, \text{- Energie de la charge } q_j: \ W = \sum_i q_j V_j^* \qquad \text{avec } V_j^* \text{ le potentiel créé par les autres charges que } q_j$

- Energie totale : $W = \frac{1}{2} \sum_{i} \sum_{j} q_{j} V_{i}$ avec V_{i} le potentiel créé **en j** par toutes les autres charges que q_{j}

VII-1. Calcul de l'Energie Electrostatique d'une répartition de charges

Trouver l'énergie d'un système de quatre charges ponctuelles identiques $\underline{Q} = 4n\underline{C}$, placées aux quatre coins d'un carré de 1m de coté.

VII-2 Energie dans le cas d'un conducteur unique de capacité C = Q/V: $W = \frac{1}{2}VQ = \frac{1}{2}CV^2 = \frac{1}{2}\frac{Q^2}{C}$

VII-3 Densité d'énergie dans le cas d'un condensateur plan isolé dans le vide

III Emergie Electrostolique

de mome

$$2W = q_1V_1 + q_2V_2 \longrightarrow W = \frac{1}{2}(q_1V_1 + q_2V_2)$$

(energia)
energia

N charge pontuelle

Efall = 1 E & gg Vi

III-1 Reportion de 4 change

$$\frac{2}{6} \int_{0}^{2} | \frac{1}{2} \int_{0}^{2} | \frac{1}{2} \int_{0}^{2} \frac{1}{4\pi \xi_{0}} | \frac{1}{4\pi \xi_{0}$$

VII -2

VII-3 donité d'energie noté W

$$\frac{V_1}{V_2}$$
 $\frac{+\alpha}{E_0}$
 $\frac{+\alpha}{E_0}$
 $\frac{+\alpha}{E_0}$
 $\frac{+\alpha}{E_0}$
 $\frac{-\alpha}{E_0}$

$$W = \frac{1}{2} G(V_1 - V_2) = \frac{1}{2} (V_1 - V_2)^2$$

$$= \frac{1}{2} \frac{E_0 S}{e} E^2 e^2$$

J/m3

densité d'Emryie electrique en enryie por units de Volume