

## TrenchT2™ GigaMOS™ **Power MOSFET**

## IXTN600N04T2

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode



| ٩D       |  |
|----------|--|
|          |  |
| ( المالي |  |

miniBLOC, SOT-227 E153432



**40V** 600A

 $1.3 m\Omega$ 

G = Gate S = Source D = Drain

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

### **Features**

- International Standard Package
- miniBLOC, with Aluminium Nitride Isolation
- 175°C Operating Temperature
- Isolation Voltage 2500 V~
- High Current Handling Capability
- Fast Intrinsic Diode
- Avalanche Rated
- Low R<sub>DS(on)</sub>

#### **Advantages**

- Easy to Mount
- Space Savings
- High Power Density

#### **Applications**

- DC-DC Converters and Off-Line UPS
- Primary-Side Switch
- High Speed Power Switching Applications

| Symbol                                                                                                                                                             | <b>Test Conditions</b>                                      | Maximum F                                                                    | Ratings                     |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------|------------------------|
| V <sub>DSS</sub>                                                                                                                                                   | T <sub>J</sub> = 25°C to 175°                               | °C                                                                           | 40                          | V                      |
| V <sub>DGR</sub>                                                                                                                                                   | $T_{J} = 25^{\circ}\text{C to } 175^{\circ}$                | $^{\circ}$ C, $R_{GS} = 1M\Omega$                                            | 40                          | V                      |
| V <sub>GSM</sub>                                                                                                                                                   | Transient                                                   |                                                                              | ±20                         | V                      |
| I <sub>D25</sub>                                                                                                                                                   | T <sub>c</sub> = 25°C (Chip C                               | Capability)                                                                  | 600                         | А                      |
| $egin{array}{ll} {f I}_{L(RMS)} & {f External Lead Current Limit} \\ {f I}_{DM} & {f T}_{C} = 25^{\circ}{C}, { m Pulse Width Limited by T}_{ m JM} \\ \end{array}$ |                                                             | External Lead Current Limit $T_{C} = 25$ °C, Pulse Width Limited by $T_{JM}$ |                             | A<br>A                 |
| I <sub>A</sub><br>E <sub>AS</sub>                                                                                                                                  | $T_c = 25^{\circ}C$<br>$T_c = 25^{\circ}C$                  |                                                                              | 200<br>3                    | A<br>J                 |
| $\overline{P_{D}}$                                                                                                                                                 | T <sub>C</sub> = 25°C                                       |                                                                              | 940                         | W                      |
| T <sub>J</sub><br>T <sub>JM</sub><br>T <sub>stg</sub>                                                                                                              |                                                             |                                                                              | -55 +175<br>175<br>-55 +175 | ე°<br>ე°<br>0°         |
| T <sub>L</sub> T <sub>SOLD</sub>                                                                                                                                   | 1.6mm (0.062 in.) from Case for 10s<br>Plastic Body for 10s |                                                                              | 300<br>260                  | °C<br>°C               |
| V <sub>ISOL</sub>                                                                                                                                                  | 50/60 Hz, RMS<br>I <sub>ISOL</sub> ≤ 1mA                    | t = 1 minute<br>t = 1 second                                                 | 2500<br>3000                | V~<br>V~               |
| M <sub>d</sub>                                                                                                                                                     | Mounting Torque<br>Terminal Connecti                        | ion Torque                                                                   | 1.5/13<br>1.3/11.5          | Nm/lb.in.<br>Nm/lb.in. |
| Weight                                                                                                                                                             |                                                             |                                                                              | 30                          | g                      |

| Symbol Test Conditions Chara (T <sub>1</sub> = 25°C, Unless Otherwise Specified) Min. |                                      |         | cteristic Values |       |          |
|---------------------------------------------------------------------------------------|--------------------------------------|---------|------------------|-------|----------|
| $(1_{J} - 25 \text{ C}, 1)$                                                           | Offices Office wise Specified)       | IVIIII. | тур.             | IVIAA | <u> </u> |
| BV <sub>DSS</sub>                                                                     | $V_{GS} = 0V, I_{D} = 250\mu A$      | 40      |                  |       | V        |
| V <sub>GS(th)</sub>                                                                   | $V_{DS} = V_{GS}, I_{D} = 250\mu A$  | 1.5     |                  | 3.5   | V        |
| GSS                                                                                   | $V_{GS} = \pm 20V, V_{DS} = 0V$      |         |                  | ±200  | nA       |
| I <sub>DSS</sub>                                                                      | $V_{DS} = V_{DSS}, V_{GS} = 0V$      |         |                  | 10    | μΑ       |
|                                                                                       | $T_J =$                              | 150°C   |                  | 1     | mA       |
| R <sub>DS(on)</sub>                                                                   | $V_{GS} = 10V, I_{D} = 100A, Note 1$ |         |                  | 1.3   | mΩ       |





| •                     |                                                                         |      | cteristic Values |           |  |
|-----------------------|-------------------------------------------------------------------------|------|------------------|-----------|--|
| $(T_J = 25^{\circ}C)$ | Unless Otherwise Specified)                                             | Min. | Тур.             | Max.      |  |
| g <sub>fs</sub>       | $V_{DS} = 10V, I_{D} = 60A, \text{ Note 1}$                             | 90   | 150              | S         |  |
| C <sub>iss</sub>      |                                                                         |      | 40               | nF        |  |
| C <sub>oss</sub>      | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$                                   |      | 6400             | pF        |  |
| C <sub>rss</sub>      |                                                                         |      | 1470             | pF        |  |
| $\mathbf{R}_{GI}$     | Gate Input Resistance                                                   |      | 1.32             | Ω         |  |
| t <sub>d(on)</sub>    | Resistive Switching Times                                               | 40   | ns               |           |  |
| t <sub>r</sub>        | $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 200A$                |      | 20               | ns        |  |
| t <sub>d(off)</sub>   | $\begin{cases} R_{G} = 10 \text{ (External)} \end{cases}$               | 90   | ns               |           |  |
| t <sub>f</sub>        |                                                                         |      | 250              | ns        |  |
| $Q_{g(on)}$           | $ V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{DSS} $ |      | 590              | nC        |  |
| Q <sub>gs</sub>       |                                                                         |      | 127              | nC        |  |
| $\mathbf{Q}_{gd}$     |                                                                         | 163  | nC               |           |  |
| R <sub>thJC</sub>     |                                                                         |      |                  | 0.16 °C/W |  |
| R <sub>thCS</sub>     |                                                                         |      | 0.05             | °C/W      |  |

### SOT-227B (IXTN) Outline (M4 screws (4x) supplied) MILLIMETERS MYZ MAX 1.255 .323 MIN 31.50 7.80 4.09 4.09 MAX 31.88 8.20 4.29 .161 .161 .169 .169 4.29 .161 30.12 38.00 11.68 .481 .378 .033 .506 1.001 .084 1.045 26.90 4.42 4.85 25.07 -.002 .004 -0.05 0.1

#### Source-Drain Diode

| Symbol                   |                                                                                                                                      | Characteristic Values |                   |      |               |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------|------|---------------|
| $(T_J = 25^{\circ}C, L)$ | Inless Otherwise Specified)                                                                                                          | /lin.                 | Тур.              | Max. |               |
| <b>I</b> s               | $V_{GS} = 0V$                                                                                                                        |                       |                   | 600  | A             |
| I <sub>SM</sub>          | Repetitive, Pulse Width Limited by $T_{JM}$                                                                                          |                       |                   | 1800 | Α             |
| V <sub>SD</sub>          | $I_F = 100A, V_{GS} = 0V, \text{ Note 1}$                                                                                            |                       |                   | 1.2  | V             |
| t <sub>rr</sub>          | $I_{_{\rm F}} = 150 {\rm A}, \ V_{_{\rm GS}} = 0 {\rm V}$ $-{\rm di}/{\rm dt} = 100 {\rm A}/{\rm \mu s}$ $V_{_{\rm R}} = 20 {\rm V}$ |                       | 100<br>3.3<br>165 |      | ns<br>A<br>nC |

Note 1. Pulse test,  $t \le 300 \mu s$ , duty cycle,  $d \le 2\%$ .



Fig. 1. Output Characteristics @  $T_J = 25^{\circ}C$ 



Fig. 2. Extended Output Characteristics @ T<sub>J</sub> = 25°C



Fig. 3. Output Characteristics @ T<sub>J</sub> = 150°C



Fig. 4. Normalized R<sub>DS(on)</sub> vs. Junction Temperature



Fig. 5. Normalized  $R_{DS(on)}$  vs. Drain Current



Fig. 6. Drain Current vs. Case Temperature



# IXTN600N04T2













 $\ensuremath{\mathsf{IXYS}}$  Reserves the Right to Change Limits, Test Conditions, and Dimensions.



Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature



Fig. 14. Resistive Turn-on Rise Time vs. Drain Current



Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance



Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature



Fig. 17. Resistive Turn-off Switching Times



Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance





Fig. 19. Maximum Transient Thermal Impedance

