Demostraciones y definiciones para examen

Tema 1

- 1.1 Dar la definición de grupo. Sea (G,*) grupo con elemento neutro $e \in G$ y sea $a \in G$ tal que a*a=a. Demostrar que entonces: a=e.
- 1.1 Dar la definición de subgrupo. Sean (G,*) grupo y $H \subseteq G$ con $H \neq \emptyset$. Demostrar que (H,*) es subgrupo de (G,*) si y sólo si para todos $a,b \in H$ se verifica que $a*b^{-1} \in H$.
- 1.2 Dar la definición de orden de un elemento en un grupo. Sea (G,*) un grupo, $a \in G$ con |a| = n y $k \in \mathbb{N}$. Demostrar que:
 - a) $a^k = e_G \Leftrightarrow n$ divide a k.
 - b) $|a^k| = \frac{n}{\text{mcd}(n,k)}$.
- 1.3 Dar la definición de ciclo. Demostrar que los ciclos disjuntos conmutan y obtener el orden de un producto de dos ciclos disjuntos.
- 1.4 Dar la definición de producto directo interno. Sea (G, *) grupo que es producto directo interno de los subgrupos H y K. Demostrar que

$$G \approx H \times K$$

.