Practice Exam 3

- 1. (a) Give an example of a 2×2 matrix which is NOT positive definite. Justify your answer.
 - (b) Find the 3×3 symmetric matrix A associated with quadratic form defined by

$$\langle A\mathbf{x}, \mathbf{x} \rangle = 3x_1^2 + 2x_1x_2 - x_3^2.$$

- 2. Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function such that $\frac{\partial f}{\partial x_n}(\mathbf{x}) = c$ for all $\mathbf{x} \in \mathbb{R}^n$ and for some constant $c \in \mathbb{R}$. Show that we will not be able to find any extreme points using the second derivative test.
- 3. Determine whether the following functions $F: \mathbb{R}^3 \to \mathbb{R}^3$ are linear. When they are linear, find their corresponding matrix.
 - (a) $F(x_1, x_2, x_3) = (x_1, x_1 x_2, x_2 + x_3),$
 - (b) $F(x_1, x_2, x_3) = (x_1, x_2, x_2x_3),$
 - (c) $F(x_1, x_2, x_3) = (x_1, 0, 0),$
 - (d) $F(x_1, x_2, x_3) = (1, 0, 0),$
 - (e) $F(x_1, x_2, x_3) = (3x_1 + 2x_2, x_3, |x_2|),$
 - (f) $F(x_1, x_2, x_3) = (x_1 x_2, x_1 + x_2, x_3)$.
- 4. Define $F(x,y)=(e^{xy}+2x,y^2+\sin(x-y))$ for $(x,y)\in\mathbb{R}^2$. Find the derivative matrix of the mapping $F:\mathbb{R}^2\to\mathbb{R}^2$ at the points (0,0) and $(\pi,0)$.
- 5. Suppose that $F: \mathbb{R}^2 \to \mathbb{R}^2$ is continuously differentiable and that the derivative matrix $DF(\mathbf{x})$ has all entries equal to 0 for all $\mathbf{x} \in \mathbb{R}^2$. Prove that $F: \mathbb{R}^2 \to \mathbb{R}^2$ is constant, i.e. there is some $\mathbf{c} \in \mathbb{R}^2$ such that $F(\mathbf{x}) = \mathbf{c}$. (Feel free to assume anything from your previous calculus courses, but state what you are assuming.)