Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Лабораторная работа №6 «Работа с системой компьютерной вёрстки Т_ЕX» по предмету «Информатика»

Вариант № 77 Группа: Р3108

Студент: Закусов К. Я.

Преподаватель: Балакшин П. В.

ции на сфере. Интересно отметить, что "аксиомами" I' - V' оно определяется однозначно.)

Пусть \vec{p} - вектор. Введем вспомогательную функцию p следующим образом: для любой точки A нашей сферы обозначим через p(A) проекцию вектора \vec{p} на ось, определяемую вектором \vec{OA} .

Рассмотрим среднее значение M (|p|) функции $A \longrightarrow |p(A)|$ на сфере. Покажем существование такого $k \neq 0$, что для любого вектора \vec{p} выполняется (6). Для этого, ввиду свойства Π' , достаточно доказать, что $|\vec{p}| = |\vec{q}|$. Обозначим через R какой-нибудь поворот пространства вокруг оси, проходящей через точку O, который переводит луч с направляющим вектором \vec{q} в луч с направляющим вектором \vec{p} . Тогда для любой точки A сферы q(A) = p(R(A)). Из V' вытекает M(|q|) = M(|p|).

Дальнейнее решение задачи 3 дословно повторяет решение задачи 2. (Упражнение 5 и задачи 2, 3 исчерпывают задачу МЗ94.)

4. Длина через ширину

Идею, на которой основано решение задач 2 и 3, можно использовать для вычисления длины плоской замкнутой выпуклой ломаной.

Пусть Л - такая ломанная, $a_1, a_2, ..., a_n$ - ее звенья. Фиксируем некоторую ось l_0 . Пусть l_α - ось, образующая с осью l_0 угол α . Обозначим через (α) "ширину"нашей ломаной в направлении оси l_α , т. к. длину ее проекции на ось l_α . Оказывается, если знать "ширину"ломаной в произвольном направлении, т. е. уметь вычислять "ширину"ломаной в произвольном направлении, т. у. уметь вычислять функцию $\alpha \to (\alpha)$, то можно найти ее длину L. Покажем, как это сденать

Обозначим через $a_i(\alpha)$ длину проекции звена a_i на ось l_a .

Упражнение 8. Докажите, что $\text{III}(\alpha) = \frac{1}{2}[a_1(\alpha) + a_2(\alpha) + ... +$

 $a_n(\alpha)$ В решении задачи 2 было показано, что среднее значение функции $\alpha \to i(\alpha)$ пропорционально $|a_i|$. Из (5) и (7) коэффициент пропорциональности равен $\frac{1}{2\pi}\int\limits_0^{2\pi}$. Из упражнения 8 и свойств I', II' среднее значение M() функции III равно полусумме средних значений функций $\alpha \to i(\alpha)$. Следовательно,

$$M(\mathrm{III})=\frac{1}{2}(\frac{2}{\pi}|a_1|$$

$$+\frac{2}{\pi}|a_2|+...+\frac{2}{\pi}|a_n|)=$$

$$=\frac{1}{\pi}(|a_1|+|a_2|+...+|a_n|)=\frac{1}{\pi}L$$
 Отсюда и из (2)

$$L = n * M(\coprod) = \pi * \frac{1}{2\pi} =$$

$$=\frac{1}{2}\int_{0}^{2\pi} \mathrm{III}(\alpha) \ d\alpha \qquad (9)$$

Таким образом, знаю функцию Шб мы можем найти длину L ломанной Π .

Упражнение 9. Докажите, что если длины всех сторон и диагоналей выпуклого многоугольника меньше d, то его периметр меньше πd .

Формула (9) справедлива для любой плоской замкнутой выпуклой кривой. Изложенный метод определения длины "через ширину"предложил в 1930 году известный польский математик Г. Штейнгауз.

5. Длина суммы

Задача 4. На плоскости даны векторы $\vec{a_1}$, $\vec{a_2}$, ..., $\vec{a_n}$, сумма длин которых равна 1. Докажите, что среди них можно выбрать несколько векторов, длина суммы которых не меньше $\frac{1}{\pi}$

Решите эту задачу, следуя предлагаемому ниже плану. Пусть 3 - подмножество множества $\vec{a_1}, \vec{a_2}, \dots$