CS294 Homework 1

Philippe Poulin

September 19, 2017

Warmup

We first show the evolution of the loss through training a single layer model with 128 units and a relu activation layer, trained on 20 expert rollouts of 1000 steps.

Figure 1: Training loss for behavioral Cloning on Hopper-v1 environment using 20 rollouts

Behavioral Cloning

Using the same architecture as before, the performance of the trained on Ant-1 task is comparable to the expert's.

Table 1: Performance comparison on Ant-v1 task using 20 rollouts

Policy	Returns mean	Returns std
128-relu (20 rollouts)	4815	88
Expert	4828	101

However, it is significantly worse than the expert on the Humanoid-v1 task.

Table 2: Performance comparison on Humanoid-v1 task using 20 rollouts

Policy	Returns mean	Returns std
128-relu (20 rollouts)	1467	987
Expert	10417	48

Adding more rollouts to the training set seems to improve performance.

Table 3: Performance comparison on Humanoid-v1 task using 20 rollouts

Policy	Returns mean	Returns std
128-relu (20 rollouts)	1467	987
128-relu (100 rollouts)	2438	773
Expert	10417	48

DAgger

Using the DAgger training process, the trained model is competitive with the expert (when using 10 iterations).

DAgger performance comparison on Humanoid-v1

Figure 2: DAgger performance comparison (using 5 rollouts of 1000 steps at each iteration)