

# 第三章 逻辑代数 第四章 组合逻辑电路

- 一、小规模组合逻辑电路初探(4.1)
- 二、逻辑代数(3)
- 三、小规模组合逻辑电路分析和设计(4.1)
- 四、常用组合逻辑电路芯片(4.2)





## 四、常用组合逻辑电路芯片





- 4.2.2 数值比较器
- 4.2.3 编码器
- 4.2.4 译码器
- 4.2.5 数据选择器和数据分配器





#### 加法器(Adders)

#### 实现二进制加法运算的电路





#### 半加器(Half Adder)

实现两个一位二进制数相加,不考虑来自低位的进位。

两个输入: A, B表示两个同位相加的数

两个输出:  $\begin{cases} \sum - 表示半加和 \\ Cout - 表示向高位的进位 \end{cases}$ 

#### 逻辑符号



#### 真值表

| $\boldsymbol{A}$ | В | Cout | Σ |
|------------------|---|------|---|
| 0                | 0 | 0    | 0 |
| 0                | 1 | 0    | 1 |
| 1                | 0 | 0    | 1 |
| 1                | 1 | 1    | 0 |



#### 全加器 (Full Adder)

实现两个一位二进制数相加,且考虑来自低位的进位

 $\{ egin{aligned} A \ & & \\ B \ & & \\ C_{\mathrm{in}} \ & & \\ \hline \end{array} \}$ 表示两个同位相加的数 $\left\{ egin{aligned} C \ & \\ C_{\mathrm{in}} \ & & \\ \hline \end{array} \right.$ 

真值表

| $\overline{A}$ | В | $C_{\rm in}$ | Cout | Σ |
|----------------|---|--------------|------|---|
| 0              | 0 | 0            | 0    | 0 |
| 0              | 0 | 1            | 0    | 1 |
| 0              | 1 | 0            | 0    | 1 |
| 0              | 1 | 1            | 1    | 0 |
| 1              | 0 | 0            | 0    | 1 |
| 1              | 0 | 1            | 1    | 0 |
| 1              | 1 | 0            | 1    | 0 |
| 1              | 1 | 1            | 1    | 1 |



#### 用全加器实现四位二进制加法







工作特点:任意一位的加法运算,都必须等到低位加法完成送来进位时才能进行 串行进位加法器



## 超前进位加法器——速度快,结构复杂



(a) Pin diagram of 74LS283

(b) 74LS283 logic symbol

Department of Electrical & Electronic Technology, SAEE, USTB

#### Application of adder: A voting system





#### 比较器(Comparators)



四位二进制比较器



## more-Bit Comparator

## **Comparing principle:**

- 1. 先从高位比起,高位大的数值一定大,不 需要看低位。
- 2. 若高位相等,则再比较低位数,最终结果 由低位的比较结果决定。
- 3. 比较结果先看谁? 低位or高位?



## Truth table for four-bit comparator

|             | input                         | t                               |                               | output |       |              |  |  |  |
|-------------|-------------------------------|---------------------------------|-------------------------------|--------|-------|--------------|--|--|--|
| $a_3b_3$    | $\mathbf{a_2}\mathbf{b_2}$    | $\mathbf{a_1}  \mathbf{b_1}$    | $\mathbf{a}_0  \mathbf{b}_0$  | (A>B)  | (A=B) | $(A \leq B)$ |  |  |  |
| $a_3 > b_3$ | ×                             | ×                               | ×                             | 1      | 0     | 0            |  |  |  |
| $a_3 < b_3$ | ×                             | ×                               | ×                             | 0      | 0     | 1            |  |  |  |
| $a_3 = b_3$ | $a_2 > b_2$                   | ×                               | ×                             | 1      | 0     | 0            |  |  |  |
| $a_3 = b_3$ | $a_2 < b_2$                   | ×                               | ×                             | 0      | 0     | 1            |  |  |  |
| $a_3 = b_3$ | $\mathbf{a}_2 = \mathbf{b}_2$ | $a_1 > b_1$                     | ×                             | 1      | 0     | 0            |  |  |  |
| $a_3=b_3$   | $a_2 = b_2$                   | a <sub>1</sub> <b<sub>1</b<sub> | ×                             | 0      | 0     | 1            |  |  |  |
| $a_3 = b_3$ | $\mathbf{a}_2 = \mathbf{b}_2$ | $a_1 = b_1$                     | $a_0 > b_0$                   | 1      | 0     | 0            |  |  |  |
| $a_3=b_3$   | $\mathbf{a}_2 = \mathbf{b}_2$ | $\mathbf{a}_1 = \mathbf{b}_1$   | $a_0 < b_0$                   | 0      | 0     | 1            |  |  |  |
| $a_3=b_3$   | $a_2 = b_2$                   | $a_1 = b_1$                     | $\mathbf{a}_0 = \mathbf{b}_0$ | 0      | 1 5   | 1959         |  |  |  |



#### 芯片74HC85



AB不等时,比较器的输出可以不用看低位送过来的 cascading inputs

AB相等时,比较器的输出需要看cascading inputs 来给出最后判断

#### A=B:

$$\mathbf{E} = \overline{\mathbf{A} \oplus \mathbf{B}}$$

$$= (\overline{a_3 \oplus b_3})(\overline{a_2 \oplus b_2})(\overline{a_1 \oplus b_1})(\overline{a_0 \oplus b_0})I_{A=B}$$

## **A<B**:

$$\mathbf{S} = \overline{\mathbf{a}_3} \ \mathbf{b}_3 + (\overline{\mathbf{a}_3} \oplus \overline{\mathbf{b}_3}) \overline{\mathbf{a}_2} \ \mathbf{b}_2 + (\overline{\mathbf{a}_3} \oplus \overline{\mathbf{b}_3}) (\overline{\mathbf{a}_2} \oplus \overline{\mathbf{b}_2}) \overline{\mathbf{a}_1} \ \mathbf{b}_1$$

$$+ (\overline{a_3} \oplus \overline{b_3}) (\overline{a_2} \oplus \overline{b_2}) (\overline{a_1} \oplus \overline{b_1}) \overline{a_0} \ b_0$$

$$+ (\overline{a_3} \oplus \overline{b_3}) (\overline{a_2} \oplus \overline{b_2}) (\overline{a_1} \oplus \overline{b_1}) (\overline{a_0} \oplus \overline{b_0}) I_{A < R}$$

## **A>B**:

$$L = E + S$$



## 芯片级联: 用两片74HC85实现两个八位二进制数的比较





#### 编码器 (Encoder)

编码:就用数字或某种文字符号来表示某一对象或信号的过程

如: 电话号码、邮编、学号

#### 二进制编码器

将一系列信号状态编制成二进制代码





## 一般编码器

每次只允许一个输入 端有信号(只有一个 有效信号 )

#### 8421BCD码编码

| <del></del> | Τ     | 输出    |       |       |  |  |  |  |  |
|-------------|-------|-------|-------|-------|--|--|--|--|--|
| 输入          | $Y_3$ | $Y_2$ | $Y_1$ | $Y_0$ |  |  |  |  |  |
| $0 (I_0)$   | 0     | 0     | 0     | 0     |  |  |  |  |  |
| $1(I_1)$    | 0     | 0     | 0     | 1     |  |  |  |  |  |
| $2(I_{2})$  | 0     | 0     | 1     | 0     |  |  |  |  |  |
| $3(I_3)$    | 0     | 0     | 1     | 1     |  |  |  |  |  |
| $4(I_4)$    | 0     | 1     | 0     | 0     |  |  |  |  |  |
| $5(I_5)$    | 0     | 1     | 0     | 1     |  |  |  |  |  |
| $6(I_6)$    | 0     | 1     | 1     | 0     |  |  |  |  |  |
| $7(I_7)$    | 0     | 1     | 1     | 1     |  |  |  |  |  |
| $8(I_8)$    | 1     | 0     | 0     | 0     |  |  |  |  |  |
| $9(I_0)$    | 1     | 0     | 0     | 1     |  |  |  |  |  |



#### 优先编码器

允许几个输入信号同时有效,但电路只 对其中优先级别高的信号进行编码,对 其它优先级别低的信号不予理睬。

#### 74LS147集成优先编码器(10线-4线)





#### 74LS147 优先编码器功能表——学会读

|                  | 输 入              |                  |                  |                  |                  |                  |                  |                  | 输                | 出                |                  |                  |
|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| $\overline{I_9}$ | $\overline{I}_8$ | $\overline{I_7}$ | $\overline{I_6}$ | $\overline{I_5}$ | $\overline{I_4}$ | $\overline{I_3}$ | $\overline{I_2}$ | $\overline{I_1}$ | $\overline{A}_3$ | $\overline{A}_2$ | $\overline{A}_1$ | $\overline{A}_0$ |
| 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                |
| 0                | ×                | ×                | ×                | ×                | ×                | ×                | ×                | ×                | 0                | 1                | 1                | 0                |
| 1                | 0                | ×                | ×                | ×                | ×                | ×                | ×                | ×                | 0                | 1                | 1                | 1                |
| 1                | 1                | 0                | ×                | ×                | ×                | ×                | ×                | ×                | 1                | 0                | 0                | 0                |
| 1                | 1                | 1                | 0                | ×                | ×                | ×                | ×                | ×                | 1                | 0                | 0                | 1                |
| 1                | 1                | 1                | 1                | 0                | ×                | ×                | ×                | ×                | 1                | 0                | 1                | 0                |
| 1                | 1                | 1                | 1                | 1                | 0                | ×                | ×                | ×                | 1                | 0                | 1                | 1                |
| 1                | 1                | 1                | 1                | 1                | 1                | 0                | ×                | ×                | 1                | 1                | 0                | 0                |
| 1                | 1                | 1                | 1                | 1                | 1                | 1                | 0                | ×                | 1                | 1                | 0                | 1                |
| 1                | 1                | 1                | 1                | 1                | 1                | 1                | 1                | 0                | 1                | 1                | 1                | 0                |





## 单选题 1分

已知()内数字为芯片管脚号,如果管脚1,4和13为低电平,其它输入端均为高电平,请问四个输出端的状态应为\_\_\_? (A<sub>0</sub>为LSB)

- A 0111
- **B** 1000
- **c** 1001
- 以上均不对



## 单选题 1分

若所有输入均为低电平,四个输出端的状态应为\_\_\_\_\_?  $(A_0)$ 为LSB)

- **(A)** 0110
- **B** 1000
- **c** 1001
- D 以上均不对



某病房呼叫显示系统中开关[A][B][C][D]分别用来模拟来自四个房间的呼叫信号,有呼叫信号时输入为低电平。 当所有开关输入均位于高电平时,数码管显示数字为



- B 1
- **c** 7
- **D** 8





#### 译码器(Decoder)

译码是编码的逆过程,即将某代码翻译成电路的某种状态 (二进制译码器,显示译码器.....)





#### 74LS139 双2线/4线译码器

## 逻辑符号



| $\overline{EN}$ | $A_1$ | $A_0$ | $\overline{Y}_3$ | $\overline{Y}_2$ | $\overline{Y}_1$ | $\overline{Y}_0$ |
|-----------------|-------|-------|------------------|------------------|------------------|------------------|
| 1               | X     | X     | 1                | 1                | 1                | 1                |
| 0               | 0     | 0     | 1                | 1                | 1                | 0                |
| 0               | 0     | 1     | 1                | 1                | 0                | 1                |
| 0               | 1     | 0     | 1                | 0                | 1                | 1                |
| 0               | 1     | 1     | 0                | 1                | 1                | 1                |



## 74LS138 3线/8线译码器——会读功能表

#### 逻辑符号



| ,           | 使能               | 1                |       | 输入             |                |                             | 输                           | 出 (                         | 低日                          | 电平:                         | 有效                          | ()                          |                           |
|-------------|------------------|------------------|-------|----------------|----------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|---------------------------|
| $S_1$       | $\overline{S_2}$ | $\overline{S_3}$ | $A_2$ | $\mathbf{A_1}$ | $\mathbf{A_0}$ | $\overline{\mathbf{Y}}_{0}$ | $\overline{\mathbf{Y}}_{1}$ | $\overline{\mathbf{Y}}_{2}$ | $\overline{\mathbf{Y}}_{3}$ | $\overline{\mathbf{Y}}_{4}$ | $\overline{\mathbf{Y}}_{5}$ | $\overline{\mathbf{Y}}_{6}$ | $\overline{\mathbf{Y}}_7$ |
| 0<br>×<br>× | X<br>1<br>X      | ×<br>×<br>1      | ×     | ×              | ×              | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 0     | 0              | 0              | 0                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 0     | 0              | 1              | 1                           | 0                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 0     | 1              | 0              | 1                           | 1                           | 0                           | 1                           | 1                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 0     | 1              | 1              | 1                           | 1                           | 1                           | 0                           | 1                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 1     | 0              | 0              | 1                           | 1                           | 1                           | 1                           | 0                           | 1                           | 1                           | 1                         |
| 1           | 0                | 0                | 1     | 0              | 1              | 1                           | 1                           | 1                           | 1                           | 1                           | 0                           | 1                           | 1                         |
| 1           | 0                | 0                | 1     | 1              | 0              | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 0                           | 1                         |
| _1          | 0                | 0                | 1     | 1              | 1              | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 1                           | 0                         |



#### 74HC42 BCD译码器

## 逻辑符号



| 十进制 | _     | 二进位   | 制输    | ì入    |   |   |   |   | 输 | 出 |   |   |   |   |
|-----|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---|
| 数   | $A_3$ | $A_2$ | $A_1$ | $A_0$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| 0   | 0     | 0     | 0     | 0     | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1   | 0     | 0     | 0     | 1     | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 2   | 0     | 0     | 1     | 0     | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 3   | 0     | 0     | 1     | 1     | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 4   | 0     | 1     | 0     | 0     | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 5   | 0     | 1     | 0     | 1     | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 6   | 0     | 1     | 1     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 7   | 0     | 1     | 1     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 8   | 1     | 0     | 0     | 0     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 9   | 1     | 0     | 0     | 1     | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |



#### 译码器在计算机寻址中的应用



Department of Electrical & Electronic Technology, SAEE, USTB



#### 七段数码管显示驱动电路的设计

设计一个电路将用BCD码表示的数字通过七段数码管以十进制数值形式显示出来





#### 显示译码器





#### 74LS47的功能表

|    |    |                | 输入     |                | 输出                                                                                     | 显示  |
|----|----|----------------|--------|----------------|----------------------------------------------------------------------------------------|-----|
|    | ĪΤ | <del>RBI</del> | BI/RBO | $A_3A_2A_1A_0$ | $\overline{a}\overline{b}\overline{c}\overline{d}\overline{e}\overline{f}\overline{g}$ |     |
| 试灯 | 0  | ×              | 1      | ××××           | 000000                                                                                 | 8   |
| 灭灯 | X  | ×              | 0      | ××××           | 1 111111                                                                               | 全灭  |
| 灭零 | 1  | 0              | 1      | 0 0 0 0        | 1 111111                                                                               | 全灭  |
|    | 1  | 1              | 1      | 0 0 0 0        | 0000001                                                                                | 0   |
|    | 1  | ×              | 1      | BCD 码          | 译码                                                                                     | 1~9 |

BI/RBO (Blanking Input/Ripple Blanking Output) 为复用端子

作为输入端子用时为 $\overline{BI}$ ,是灭灯信号

作为输出端子用时为RBO为,用来传递"灭零信号"



## 灭0应用举例

## $\overline{RBI}$ 为灭零输入端子 $\overline{RBI}$ 为 $\overline{00000}$ 时, $\overline{RBO}$ 为零





#### 数据选择器(Multiplexer/Data Selector)

#### 从多路数据中选择其中一路数据输出

#### 四选一数据选择器



| 数据说   | <b>选择端</b> | 数据输出  |
|-------|------------|-------|
| $S_1$ | $S_0$      | Y     |
| 0     | 0          | $D_0$ |
| 0     | 1          | $D_1$ |
| 1     | 0          | $D_2$ |
| 1     | 1          | $D_3$ |

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$



#### 常用芯片

74LS151 8选1数据选择器



| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 能端   | 数据    | 选择    | 端     | 输出    |
|-----------------------------------------------------|------|-------|-------|-------|-------|
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | able | $S_2$ | $S_1$ | $S_0$ | Y     |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 1    | ×     | ×     | ×     | 0     |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0    | 0     | 0     | 0     | $D_0$ |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0    | 0     | 0     | 1     | $D_1$ |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0    | 0     | 1     | 0     | $D_2$ |
| $egin{array}{c ccccccccccccccccccccccccccccccccccc$ | 0    | 0     | 1     | 1     | $D_3$ |
| $\begin{bmatrix} 0 & 1 & 1 & 0 & D \end{bmatrix}$   | 0    | 1     | 0     | 0     | $D_4$ |
|                                                     | 0    | 1     | 0     | 1     | $D_5$ |
|                                                     | 0    | 1     | 1     | 0     | $D_6$ |
| $0 \mid 1 \mid 1 \mid D$                            | 0    | 1     | 1     | 1     | $D_7$ |



## 74HC153 双四选一数据选择器





#### 74HC157

四二选一数据选择器

G1:数据选择输入端

高电平:选通数据B

低电平:选通数据A



#### 应用举例: 七段显示译码器复用电路



若A<sub>3</sub>A<sub>2</sub>A<sub>1</sub>A<sub>0</sub>=1001, B<sub>3</sub>B<sub>2</sub>B<sub>1</sub>B<sub>0</sub>=0001, 数码管显示结果为\_\_\_\_?



- B 1
- **G** 19
- **D** 91



提交



## 数据分配器(DeMultiplexer)

## 将数据分配到对应的输出端口



| 使能        | 选     | 泽端    | 输出端   |                  |       |       |  |
|-----------|-------|-------|-------|------------------|-------|-------|--|
| <u>EN</u> | $S_1$ | $S_0$ | $Y_3$ | $Y_2$            | $Y_1$ | $Y_0$ |  |
| 1         | ×     | ×     | 0     | 0                | 0     | 0     |  |
| 0         | 0     | 0     | 0     | 0                | 0     | D     |  |
| 0         | 0     | 1     | 0     | 0                | D     | 0     |  |
| 0         | 1     | 0     | 0     | $\boldsymbol{D}$ | 0     | 0     |  |
| 0         | 1     | 1     | D     | 0                | 0     | 0     |  |
|           |       |       |       |                  |       |       |  |







### 基于译码器的组合逻辑设计——重点

### 二进制译码器

每一项输出对应一个最小项所有输出包含所有的最小项

| 输入    | —————————————————————————————————————           |                                                  |
|-------|-------------------------------------------------|--------------------------------------------------|
| A B C | $Y_0$ $Y_1$ $Y_2$ $Y_3$ $Y_4$ $Y_5$ $Y_6$ $Y_7$ | 最小项译码器                                           |
| 0 0 0 | 1 0 0 0 0 0 0 0                                 | $Y_0 = \overline{A}\overline{B}\overline{C}$ 用来实 |
| 0 0 1 | 0 1 0 0 0 0 0 0                                 | $Y_1 = \overline{A}\overline{B}C$                |
| 0 1 0 | 0 0 1 0 0 0 0 0                                 | $Y_2 = \overline{A}B\overline{C}$ 逻辑表            |
| 0 1 1 | 0 0 0 1 0 0 0 0                                 | 达式!                                              |
| 1 0 0 | 0 0 0 0 1 0 0 0                                 |                                                  |
| 1 0 1 | 0 0 0 0 0 1 0 0                                 |                                                  |
| 1 1 0 | 0 0 0 0 0 0 1 0                                 |                                                  |
| 1 1 1 | 0 0 0 0 0 0 1                                   | $Y_7 = ABC$                                      |



# 译码器是低电平有效输出,

## 因此输出与最小项之间的关系为:

| INPUTS         |       | rs | DECODING                                     | OUTPUTS |   |   |   |   |   |   |   |
|----------------|-------|----|----------------------------------------------|---------|---|---|---|---|---|---|---|
| A <sub>2</sub> | $A_1$ | Ao | FUNCTION                                     | 0       | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 0              | 0     | 0  | $\overline{A}_2\overline{A}_1\overline{A}_0$ | 0       | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0              | 0     | 1  | $\overline{A}_2\overline{A}_1A_0$            | 1       | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0              | 1     | 0  | $\overline{A}_2A_1\overline{A}_0$            | 1       | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
| 0              | 1     | 1  | $\overline{A}_2A_1A_0$                       | 1       | 1 | 1 | 0 | 1 | 1 | 1 | 1 |
| 1              | 0     | 0  | $A_2\overline{A}_1\overline{A}_0$            | 1       | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1              | 0     | 1  | $A_2\overline{A}_1A_0$                       | 1       | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
| 1              | 1     | 0  | $A_2A_1\overline{A}_0$                       | 1       | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
| 1              | 1     | 1  | $A_2A_1A_0$                                  | 1       | 1 | 1 | 1 | 1 | 1 | 1 | 0 |

$$\overline{Y_i} = \overline{m_i}$$

$$\overline{Y_0} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_0}$$

$$\overline{Y_1} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_1}$$

$$\overline{Y_2} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_2}$$

$$\overline{Y_3} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_3}$$

$$\overline{Y_4} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_4}$$

$$\overline{Y_5} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_5}$$

$$\overline{Y_6} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_6}$$

$$\overline{Y_7} = \overline{A_2}\overline{A_1}\overline{A_0} = \overline{m_7}$$

Department of Electrical & Electronic Technology, SAEE, USTB

#### 例:用译码器和门电路实现下面的组合逻辑函数

$$Z=AB+BC+CA$$

## 1) 选用芯片

## 三变量函数用74LS138

## 2) 将表达式写成最小项形式

$$Z = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

$$= m_3 + m_5 + m_6 + m_7$$

$$= \overline{\overline{Y_3}\overline{Y_5}\overline{Y_6}\overline{Y_7}}$$





$$\mathbf{Z} = \overline{\overline{Y}_3 \overline{Y}_5 \overline{Y}_6 \overline{Y}_7}$$

#### 3) 画线路图

将输入变量A,B,C分 别接到对应输入端

让使能端有效

将  $\overline{Y}_3, \overline{Y}_5, \overline{Y}_6, \overline{Y}_7$ 

输出给与非门,与 非门输出为Z,即 可得到输出



#### 注意ABC接入的高低位顺序!



### 练习: 写出电路的逻辑关系



解: 
$$Z_1(A,B,C) = \overline{\overline{Y_3}\overline{Y_4}\overline{Y_5}\overline{Y_6}} = \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + AB\overline{C}$$
  
化简得  $= \overline{A}BC + A\overline{B} + A\overline{C}$ 

$$Z_2 = \bar{A}\bar{B}\bar{C} + \bar{A}BC + ABC = \bar{A}\bar{B}\bar{C} + BC$$



#### 基于数据选择器的组合逻辑设计

#### 逻辑符号



#### 功能表

| 数据说   | <b>选择端</b> | 数据输出  |
|-------|------------|-------|
| $S_1$ | $S_0$      | Y     |
| 0     | 0          | $D_0$ |
| 0     | 1          | $D_1$ |
| 1     | 0          | $D_2$ |
| 1     | 1          | $D_3$ |

$$Y = D_0 \overline{S}_1 \overline{S}_0 + D_1 \overline{S}_1 S_0 + D_2 S_1 \overline{S}_0 + D_3 S_1 S_0$$

# 类似三变量函数的表达式!



#### 举例说明基于数据选择器的组合逻辑设计

## 例:利用数据选择器151实现如下逻辑函数

|       | 输入    | 输出    |   |  |
|-------|-------|-------|---|--|
| $A_2$ | $A_1$ | $A_0$ | Υ |  |
| 0     | 0     | 0     | 0 |  |
| 0     | 0     | 1     | 1 |  |
| 0     | 1     | 0     | 0 |  |
| 0     | 1     | 1     | 1 |  |
| 1     | 0     | 0     | 0 |  |
| 1     | 0     | 1     | 1 |  |
| 1     | 1     | 0     | 1 |  |
| 1     | 1     | 1     | 0 |  |



$$Y = \bar{A}_2 \bar{A}_1 A_0 + \bar{A}_2 A_1 A_0 + A_2 \bar{A}_1 A_0 + A_2 A_1 \bar{A}_0$$

## 例:利用数据选择器151实现如下逻辑函数

| DECIMAL | INPUTS |       | OUTPU | UT MUX |   |                                                                                                                                                                        |   |
|---------|--------|-------|-------|--------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| DIGIT   | $A_3$  | $A_2$ | $A_1$ | $A_0$  | Υ |                                                                                                                                                                        |   |
| 0       | 0      | 0     | 0     | 0      | 0 | $Y = A_0$                                                                                                                                                              |   |
| 1       | 0      | 0     | 0     | 1      | 1 | $Y = A_0$ $-  G_{\overline{7}}^0$                                                                                                                                      |   |
| 2       | 0      | 0     | 1     | 0      | 1 | $\sqrt{\frac{1}{4}}$                                                                                                                                                   |   |
| 3       | 0      | 0     | 1     | 1      | 0 | $Y = \overline{A}_0$                                                                                                                                                   |   |
| 4       | 0      | 1     | 0     | 0      | 0 | -1                                                                                                                                                                     | _ |
| 5       | 0      | 1     | 0     | 1      | 1 | $Y = A_0$                                                                                                                                                              |   |
| 6       | 0      | 1     | 1     | 0      | 1 | - 3<br>V 1                                                                                                                                                             |   |
| 7       | 0      | 1     | 1     | 1      | 1 | Y=1 4                                                                                                                                                                  |   |
| 8       | 1      | 0     | 0     | 0      | 1 | - 5                                                                                                                                                                    |   |
| 9       | 1      | 0     | 0     | 1      | 0 | $Y = \overline{A}_0$                                                                                                                                                   |   |
| 10      | 1      | 0     | 1     | 0      | 1 | _ 7                                                                                                                                                                    |   |
| 11      | 1      | 0     | 1     | 1      | 0 | $Y = \overline{A}_0$ 74LS151                                                                                                                                           |   |
| 12      | 1      | 1     | 0     | 0      | 1 |                                                                                                                                                                        |   |
| 13      | 1      | 1     | 0     | 1      | 1 | $Y = 1$ $Y = A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0$                                                                                                      |   |
| 14      | 1      | 1     | 1     | 0      | 0 | $ + A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0 + A_3 \overline{A}_2 A_1 \overline{A}_0 + A_3 A_2 \overline{A}_1 \overline{A}_0 + A_3 A_2 \overline{A}_1 A_0 $ |   |
| 15      | 1      | 1     | 1     | 1      | 1 | $Y = A_0 + A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0 + A_3 A_2 A_1 A_0$                                                                                                        |   |



# 第四章 作业

- 4.4 从波形进行组合电路设计
- 4.7 实际问题使用与非门组合电路设计
- 4.14 译码器设计
- 4.19 数选器设计实际问题
- 10月15日周五交作业