Лекция 4: Крайни разлики. Интерполационни формули с крайни разлики

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Крайни разлики. Свойства
- Формула на Нютон за интерполиране напред
- Формула на Нютон за интерполиране назад

Крайни разлики

Често използвани в практиката са равноотдалечените възли при интерполиране на функции. В този случай е налице значително по-проста схема за построяване на интерполационния полином. Това става с използването на така наречените крайни разлики. Ще въведем това понятие и представим някои негови елементарни свойства. Нека е дадена една редица от числа $f_0, f_1, f_2, \ldots, f_m, \ldots$ Ще интерпретираме тези числа като стойности на функция f в

Определение

Крайна разлика на f в x_i от ред k се бележи с $\Delta^k f_i$ и се определя индуктивно с рекурентната връзка

$$\Delta^k f_i := \Delta^{k-1} f_{i+1} - \Delta^{k-1} f_i, \quad k = 1, 2, \dots,$$

където $\Delta^1 f_i = \Delta f_i := f_{i+1} - f_i$ за всяко i.

някакви точки $X_0, X_1, X_2, \dots, X_m, \dots$

Връзка между крайни и разделени разлики

В случай, че точките $\{x_i\}$ са равноотдалечени, съществува проста връзка между разделените и крайните разлики. Тя е представена в следната лема.

Лема 1

Нека $x_j = x_0 + jh, j = 0, \dots, k$, и функцията f(x) е определена в тези точки. Тогава

$$f[x_0,\ldots,x_k] = \frac{\Delta^k f_0}{k! \, h^k}.\tag{1}$$

Доказателство. Ще приложим индукция по броя на точките. За две точки имаме

$$f[x_i, x_{i+1}] = \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = \frac{f_{i+1} - f_i}{h} = \frac{\Delta f_i}{1! h}$$

и следователно твърдението е вярно.

Доказателство на Лема 1

Да допуснем, че връзката (1) е в сила за произволни k равноотдалечени точки. Нека $x_j = x_0 + jh, j = 0 \dots, k$, са произволни k+1 точки. Като приложим рекурентната връзка за разделени разлики и индукционното предположение получаваме

$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

$$= \frac{1}{x_k - x_0} \left(\frac{\Delta^{k-1} f_1}{(k-1)! h^{k-1}} - \frac{\Delta^{k-1} f_0}{(k-1)! h^{k-1}} \right) = \frac{\Delta^k f_0}{k! h^k}.$$

Лемата е доказана.

Свойства на крайните разлики

Чрез връзката (1) много от свойствата на разделената разлика се пренасят върху крайните разлики. Да отбележим някои от тях.

• Крайната разлика е линеен функционал, т.е.

$$\Delta^n(f+\alpha g)_i=\Delta^n f_i+\alpha \Delta^n g_i$$

за всеки две функции f, g и число α .

Нека $f(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$. Тогава

$$\Delta^n f_0 = n! h^n a_0$$

при всеки избор на h > 0 и точките $x_j = x_0 + jh$, $j = 0, \dots, n$.

® Крайната разлика от n-ти ред анулира всички полиноми от степен n-1.

Представяне на крайните разлики

Съгласно определението, $\Delta f_i = f_{i+1} - f_i$. Оттук и рекурентната връзка следва, че всяка крайна разлика (от произволен ред) може да се представи като линейна комбинация на стойностите $\{f_i\}$. Например,

$$\Delta^{2} f_{0} = \Delta f_{1} - \Delta f_{0} = (f_{2} - f_{1}) - (f_{1} - f_{0}) = f_{2} - 2f_{1} + f_{0},$$

$$\Delta^{3} f_{0} = \Delta^{2} f_{1} - \Delta^{2} f_{0} = f_{3} - 3f_{2} + 3f_{1} - f_{0}.$$

От тези примери се вижда, че коефициентите в разглежданото представяне са биномните коефициенти с алтернативно сменящи се знаци. Оказва се, че това наистина е така и то може да бъде строго доказано, например по индукция, като се използва рекурентната връзка за крайни разлики и свойствата на биномните коефициенти. Ние ще дадем тук едно друго доказателство, което се основава на връзката между разделена и крайна разлика.

Представяне на крайните разлики

Теорема 1. За всяко естествено число *п* е в сила формулата

$$\Delta^n f_0 = \sum_{i=0}^n (-1)^{n-i} \binom{n}{i} f_i.$$

Доказателство. Нека $x_j = x_0 + jh$, $j = 0, \ldots, n$ и $f_i = f(x_i)$, $i = 0, \ldots, n$. Тогава по Лема 1, $\Delta^n f_0 = n! \ h^n f[x_0, \ldots, x_n]$. От представянето на разделената разлика получаваме

$$\Delta^{n} f_{0} = n! h^{n} \sum_{i=0}^{n} \frac{f(x_{i})}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_{i} - x_{j})} = n! h^{n} \sum_{i=0}^{n} \frac{f(x_{i})}{\prod_{\substack{j=0 \ j \neq i}}^{n} (ih - jh)}$$

$$= n! \sum_{i=0}^{n} (-1)^{n-i} \frac{f_{i}}{i!(n-i)!} = \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} f_{i},$$

което е исканото равенство.

Формула на Нютон за интерполиране напред

Тези сведения за крайните разлики са достатъчни за да се справим с нашата първоначална задача – представянето на интерполационния полином. И така, нека възлите $\{x_i\}_{i=0}^n$ са равноотдалечени и функцията f е определена в тях. Търсим полинома $L_n(f;x)$ от π_n , който интерполира f в x_0,\ldots,x_n . Съгласно интерполационната формула на Нютон,

$$L_n(f;x) = \sum_{k=0}^n f[x_0,\ldots,x_k](x-x_0)\cdots(x-x_{k-1}).$$

Нека $x_i = x_0 + i \, h, \, i = 0, \dots, n$. Да направим смяна на променливата x с t по формулата $x = x_0 + t h$. Тогава

$$(x-x_0)\cdots(x-x_{k-1})=\prod_{i=0}^{k-1}(x_0+th-x_0-ih)=h^kt(t-1)\cdots(t-k+1).$$

Формула на Нютон за интерполиране напред

Сега, като използваме и връзката между разделена и крайна разлика, получаваме

$$L_n(f;x) = L_n(f;x_0+th) = \sum_{k=0}^n \frac{\Delta^k f_0}{k!} t(t-1) \cdots (t-k+1).$$

В литературата се среща означението $\binom{t}{k}$ при произволни реални стойности на параметъра t. С него се означава биномната функция, която се определя с равенството:

$$\begin{pmatrix} t \\ k \end{pmatrix} := \begin{cases} \frac{t(t-1)\cdots(t-k+1)}{k!} & \text{при } k > 0 \\ 1 & \text{при } k = 0. \end{cases}$$

Така получихме формулата на Нютон за интерполиране напред:

$$L_n(f; x_0 + th) = \sum_{k=0}^n {t \choose k} \Delta^k f_0.$$

Формула на Нютон за интерполиране напред

Тя се нарича така, защото възлите се привличат в нарастващ ред при изчисляване на коефициентите пред полиномите $\binom{t}{k}$. Да забележим, че във формулата на Нютон за интерполиране напред стойността $f(x_0) = f_0$ участва във всички коефициенти, стойността в следващия възел X₁ участва във всички от втория до последния и т.н., стойността $f(x_n)$ участва само в последния коефициент. Следователно, ако искаме да изчислим приближено стойността на f в точка X, която е близко до X_0 , то добре е да използваме формулата на Нютон за интерполиране напред, защото в тази формула участват съществено стойностите на f в точки близки до x_0 и като такива, те носят най-пълна информация за стойността на f в x. Следвайки тази логика, би трябвало при приближаване на f(x) за точки x, близки до последния възел X_n да използваме интерполационна формула, в която възлите се привличат в обратен ред: $X_n, X_{n-1}, \ldots, X_0$.

Формула на Нютон за интерполиране назад

Да изведем и тази формула. По формулата на Нютон, приложена за възлите $x_n, x_{n-1}, \ldots, x_0$ (в този ред), имаме

$$L_n(f;x) = \sum_{k=0}^n f[x_n, x_{n-1}, \dots, x_{n-k}](x-x_n) \cdots (x-x_{n-k+1}).$$

Като приложим смяната $x = x_n + th$ получаваме

$$L_n(f;x) = L_n(f;x_n + th) = \sum_{k=0}^n \frac{\Delta^k f_{n-k}}{k! \ h^k} \prod_{i=0}^{k-1} (x_n + th - x_n + ih)$$

и следователно

$$L_n(f;x_n+th)=\sum_{k=0}^n\binom{t+k-1}{k}\Delta^kf_{n-k}.$$

Това е формулата на Нютон за интерполиране назад.

Други интерполационни формули с крайни разлики

По аналогичен начин могат да бъдат изведени интерполационни фомули, при които възлите се привличат в произволен друг ред. Например, ако точката \boldsymbol{x} е близко до $\boldsymbol{x_i}$, то добре е възлите да се подредят по следния начин: $\boldsymbol{x_i}, \boldsymbol{x_{i+1}}, \boldsymbol{x_{i-1}}, \boldsymbol{x_{i+2}}, \boldsymbol{x_{i-2}}, \dots$

Пресмятането на коефициентите на интерполационния полином с равноотдалечени възли се свежда към пресмятане на крайни разлики. Изчисленията могат да се организират по следната проста схема:

Схема за пресмятане на крайни разлики

Край на лекцията!