Teoría de juegos Estrategias Mixtas y EN

TEORÍA DE LAS DECISIONES

M. PAULA BONEL

mpaulabonel@gmail.com

¿Consultas clase anterior?

Temas de la clase de hoy

- Introducción a Estrategias Mixtas.
- Cálculo de pagos en Estrategias Mixtas: valor esperado.
- Propiedad de Indiferencia del Oponente.
- Equilibrio de Nash y Funciones de Mejor Respuesta.

Aplicación: Penales

¿Adónde irá el próximo? El "Pulga" Rodríguez contó su secreto para no fallar los penales: "Trato de pegarle adonde no se tira el arquero"

El jugador que más brilló en el campeonato no se lamenta por las oportunidades perdidas y se tiene fe para la final con Racing: "El fútbol es de oportunidades y ahora tenemos una oportunidad más. Queremos salir campeón y vamos a ir por eso".

Nota Clarín (Mayo 2021)

Penales en la vida real:

•Ignacio Palacios-Heurta en "Professionals Play Minimax" (Review of Economic Studies, 2003) analizó 1417 tiros penales de juegos de la FIFA y calculó los porcentajes en los cuales se realizaba un gol.

		ARQUERO	
		IZQ	DER
	IZQ	58,42	95,5
JUGADOR	DER	93,7	70,30

•Es un juego asimétrico, en el cual jugador tiene cierta ventaja.

Penales en la vida real:

¿Qué estrategia jugarías si fueras el jugador?

		ARQUERO	
		IZQ	DER
	IZQ	58,42	95,5
JUGADOR	DER	93,7	70,30

Randomización de estrategias puras

- •Cualquier elección sistemática de alguno de los jugadores podría ser utilizada en beneficio propio por el otro jugador.
- •Y, si se trata de un juego de suma cero, esto perjudicará al primer jugador.
- •Para evitar que las elecciones sean aprovechadas por el rival:
 - Jugar una estrategia mixta, o sea randomizar la elección entre estrategias puras (elección no sistemática).

Elección aleatoria

- •¿Alternar el tiro? → ¡sistemático!
- ¿Porcentaje que se juega cada estrategia? ¿50-50, 40-60, 10-90?
- Estrategias mixtas: cualquier mezcla aleatoria de estrategias puras.
- Debemos encontrar la mejor combinación de estrategias puras.
- •¿Cuál es la mejor? → aquella que brinde el mayor pago, la mayor utilidad.

Estrategias mixtas

Behaving erratically

Playing a mixed strategy

Estrategias mixtas

- Nosotros ya conocemos el concepto de **estrategias puras**. Con las herramientas que estamos viendo ahora podemos definir una estrategia pura como:
 - Jugador elije con una probabilidad de 1 (o el 100% de las veces) a la estrategia IZQ, mientras que asigna una probabilidad de 0 a DER.
 - $P(IZQ) = 1 \rightarrow IZQ$ en estrategias puras
 - $P(IZQ) = 0 \rightarrow DER$ en estrategias puras

Estrategias mixtas

• La generalización de estrategias mixtas nos dice que: Jugador elije con una probabilidad de p a la estrategia IZQ, mientras que asigna una probabilidad de 1 - p a DER.

- P(IZQ) = p
- P(DER) = 1 p
- **p** y **1-p** pueden tomar cualquier valor siempre que se cumpla que p = [0,1] (continuidad).
- A la decisión de **p** y **1-p** la llamaremos el **p-mix** del jugador.
- Pago en presencia de estrategias mixtas → valor o pago esperado (promedio ponderado de los pagos de las estrategias puras).

Por ejemplo:

р	1 - p
0.1	0.9
0.37	0.63
0.5	0.5
0.8	0.2

Penales en la vida real:

¿Qué estrategia jugarías si fueras el jugador?

		ARQUERO	
		IZQ (q)	DER (1-q)
	IZQ (p)	58,42	95,5
JUGADOR	DER (1-p)	93,7	70,30

Propiedad de indiferencia del oponente

• En un juego de suma cero, como el tenis o los penales, mi mejor respuesta va a estar en el punto en el que el

otro jugador (mi rival):

- no tiene una estrategia pura preferida
- está indiferente entre todas sus estrategias mixtas

Teniendo esto en cuenta vamos a buscar el EN en mixtas

Al igual que antes, un EN es una intersección de las funciones de MR (no hay incentivos al desvío).

EN: Intersección de Mejores Respuestas

$MR_{AR}(pmix_{JUG})$

```
Si p < 0.383: Mejor respuesta es q=0 (DER pura)
```

Si p = 0.383: Cualquier q - mix le es indiferente

Si p > 0.383: Mejor respuesta es q = 1 (IZQ puro)

$MR_{JUG}(qmix_{AR})$

Si q < 0.417: Mejor respuesta es p = 1 (IZQ puro)

Si q = 0.417: Cualquier p-mix le es indiferente

Si q > 0.417: Mejor respuesta es p = 0 (DER puro)

El punto de intersección de las líneas de MR es el **Equilibrio de Nash en Estrategias Mixtas** del juego

Propiedad de Indiferencia y EN en Mixtas

• La intersección de los puntos de indiferencia de los jugadores constituyen el EN en estrategias mixtas.

• Con sólo calcular los puntos de indiferencia, encontramos el EN en estrategias mixtas.

Escribimos el Equilibrio: $EN = \{(p = 0.383; 1 - p = 0.617); (q = 0.417; 1 - q = 0.583)\}$

Existencia de Equilibrio de Nash

No lo vamos a demostrar en clase pero sabemos que*:

Todo juego finito (que tiene un número finito de jugadores y un espacio de estrategias finito)

tiene al menos un equilibrio de Nash en puras o mixtas.

^{*}Demostración matemática en el Apéndice B del libro Watson.

Procedimiento para encontrar equilibrios de estrategias mixtas:

- Calcule el conjunto de estrategias racionalizables realizando el procedimiento de Eliminación Sucesiva de Estrategias Estrictamente Dominadas (ESEED).
- 2. Restringiendo la atención a estrategias racionalizables, escribir ecuaciones para cada jugador para caracterizar las probabilidades de mezcla que hacen al otro jugador indiferente entre las estrategias puras relevantes.
- 3. Resuelva estas ecuaciones para determinar la mezcla (p-mix) de equilibrio.

¿En la vida real se juegan estrategias mixtas?

- Si hacemos las cuentas, encontramos que aproximadamente p=0.38 y que q=0.42.
- Palacios-Heurta analizó con que frecuencia los jugadores y el arquero optaban por derecha o izquierda y los comparó con la p y q que sugiere en EN. Encontró los siguientes resultados:

	Arquero a la izquierda	Arquero a la derecha	Jugador a la izquierda	Jugador a la derecha
EN (pyq)	0.42	0.58	0.38	0.62
Frecuencias observadas	0.42	0.58	0.40	0.60

Lectura recomendada

• Dixit, Avinash K. (2015). Games of strategy. Fourth Edition. New York: W.W. Norton & Company (Capitulo 7).