

- 01 研究背景
- 02 理论基础
- 03 网络模型搭建
- 04 仿真实验分析

01 研究背景

1. 研究背景

传统的空间谱估计

基于模型驱动、需提前建模

模型失配 动态环境适应差

基于深度学习的空间谱估计

基于数据驱动、自动学习

性能可靠 模型适应性强

02 理论基础

分类型神经网络 十

空间谱估计

2.1 阵列模型

2.2 神经网络

2.3 网络的输入与输出

2.1 阵列模型

线性阵列:

K个入射信号 M 个阵元

阵列接收信号: X(t) = AS(t) + N(t)

$$= \begin{bmatrix} e^{-j\omega_{0}\tau_{1,1}} & e^{-j\omega_{0}\tau_{1,2}} & \cdots & e^{-j\omega_{0}\tau_{1,K}} \\ e^{-j\omega_{0}\tau_{2,1}} & e^{-j\omega_{0}\tau_{2,2}} & \cdots & e^{-j\omega_{0}\tau_{2,K}} \\ \vdots & \vdots & \ddots & \vdots \\ e^{-j\omega_{0}\tau_{M,1}} & e^{-j\omega_{0}\tau_{M,2}} & \cdots & e^{-j\omega_{0}\tau_{M,K}} \end{bmatrix} \begin{bmatrix} s_{1}(t) \\ s_{2}(t) \\ \vdots \\ s_{K}(t) \end{bmatrix} + \begin{bmatrix} n_{1}(t) \\ n_{2}(t) \\ \vdots \\ n_{M}(t) \end{bmatrix}$$

$$\begin{bmatrix} s_1(t) \\ s_2(t) \\ \vdots \\ s_K(t) \end{bmatrix} + \begin{bmatrix} n_1(t) \\ n_2(t) \\ \vdots \\ n_M(t) \end{bmatrix}$$

协方差矩阵

$$\boldsymbol{R} \approx \hat{\boldsymbol{R}} = \frac{1}{L} \sum_{i=1}^{L} \boldsymbol{X} \boldsymbol{X}^{H}$$

(包含信号空间谱信息)

2.2 神经网络

网络输出,激活函数+前向传播 → 网络输出 → 损失函数

梯度下降,反向传播 \rightarrow 调整网络参数 w、b

重复更新参数 y = f(x; w; b) (输入与输出映射关系) 得到最优模型

2.3 确定输入与输出

03 网络模型

3.1 模型1D-CNN

3.2 模型2D-CNN

3.3 2D-CNN-OG

3.1 模型1D-CNN

激活函数: ReLU

损失函数: MSE (均方误差)

优化算法: Adam算法

训练次数: 20次

模型1D-CNN训练表现:

输入:

输出:

3.2 模型2D-CNN

激活函数: ReLU (前六层) , sigmoid (最后一层)

损失函数: BCE (二元交叉熵)

优化算法: Adam算法

训练次数: 100次

模型2D-CNN训练表现:

输入:

输出:

3.3 2D-CNN-OG

基于2D-CNN模型

小数标签

$$p_i = \begin{cases} \theta_k - \lceil \theta_k \rceil, & \exists \exists \theta_k, & \exists \lceil \theta_k \rceil = \Theta_i \\ -1, & 其他 \end{cases}$$

有信号处 [-0.5, 0.5] 无信号处 -1

激活函数: ReLU (前四层), sigmoid (后两层)

最后输出再经过 tanh函数激活 s = tanh(z)

损失函数: 改进BCE: $L(z, p) = -\frac{1}{N} \sum_{i=1}^{N} \left[\mathbf{1}_{[p_i \neq 1]} \ln(\frac{1}{1 + e^{g(z_i)}}) + \mathbf{1}_{[p_i = 1]} \ln(\frac{e^{-z_i}}{1 - e^{-z_i}}) \right]$

正则化函数: $g(z_i) = \left| \frac{z_i + \varepsilon}{p_i + \varepsilon} - 1 \right|, p_i \neq -1$

训练次数: 200次

模型2D-CNN-OG训练表现:

输入:

输出:

04 仿真实验分析

- 4.1 仿真测向结果
- 4.2 网络估计误差分析
- 4.3 综合性能分析

单信号10°

两信号 0°和30°

三信号 -30°、0°和30°

----- 1D-CNN

* 真实角度

1D-CNN 信号个数泛化能力:

2D-CNN 信号个数泛化能力:

模型的超分辨能力分析:测试样本为两远场窄带信号

真实信号角度间隔为2度,均信噪比为0dB

可见2D-CNN的分辨能力最好

2D-CNN-OG模型离网格输出谱:

整数信息 + 小数信息 即为信号的入射角度估计值,估计结果见表

 DOA 信息↩	信号 1 ↩	信号 2↩	←
——信号的真实 DOA←	-39.2814° ←	-11.0455° ←	<u>.</u>
2D-CNN 输出 DOA↩	-39.2126° ←	-11.0928° ←	÷.

DOA 信息↩

信号的真实 DOA←

2D-CNN-OG 输出 DOA←

自动修正后 DOA←

针对2D-CNN-OG离网格输出分类错误:

信号 1↩

-31.5837° ←

-32.1545° ←

-31.5796° ←

信号 2↩

-8.4129° ←

-8.4403° ←

-8.4403° ←

加权平均算法修正式:

$$\hat{\theta}_i = \frac{(s_i + 1)P_i + (s_{i+1} + 1)P_{i+1}}{s_i + s_{i+1} + 2}$$

误差自动修正程序:

4.2 网络误差分析

-60°~60°全角度测向与误差分析

样本都为两信号输入 分3组,每组角度间隔为5.5°、15.6°、30.7° 信噪比都为0dB

2D-CNN输出误差集中在-1°~1°之间 2D-CNN-OG输出误差集中在-0.5°~0.5°之间

4.3 综合性能分析

(a) 不同信噪比对DOA估计性能的影响

(b) 不同快拍数对DOA估计性能的影响

16×300次 测试实验

估计方法↩	MUSIC 算法↩	1D-CNN ←	2D-CNN←	2D-CNN-OG←
模型训练时间↩	/←⊐	249.83 s↩	2119.81 s [←]	4278.12 s←
总测试时间↩	19.02 s↩	450.44 s↩	456.06 s←	454.36 s [←]
平均单次时间↩	3.96 <u>ms</u> ←	93.8 <u>ms</u> ←	95.01 <u>ms</u> ←	94.65 <u>ms</u> ←