Heart Disease Prediction using Machine Learning

Part 1: Load Data and Explore

```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# For modeling
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, roc_auc_score, confusion_matrix, classification_report, roc_curve
# Load dataset
df = pd.read_csv('HeartDisease[1].csv')
print("First 5 rows of data:")
display(df.head())
→ First 5 rows of data:
        HeartDiseaseorAttack HighBP HighChol
                                                 BMI Smoker Diabetes PhysActivity Fruits Veggies HvyAlcoholConsump MentHlth PhysHl
      0
                          0.0
                                                40.0
                                                         1.0
                                                                   0.0
                                                                                                                              18.0
                                            1.0
                                                                                                  1.0
                          0.0
                                  0.0
                                            0.0
                                                25.0
                                                         1.0
                                                                   0.0
                                                                                 1.0
                                                                                                  0.0
                                                                                                                     0.0
                                                                                                                               0.0
      1
                                                                                         0.0
                                                                                                                                         (
      2
                          0.0
                                  1.0
                                            1.0
                                                28.0
                                                         0.0
                                                                   0.0
                                                                                 0.0
                                                                                         1.0
                                                                                                  0.0
                                                                                                                     0.0
                                                                                                                              30.0
                                                                                                                                        30
      3
                          0.0
                                                                                                                     0.0
                                  1.0
                                            0.0
                                                27.0
                                                         0.0
                                                                   0.0
                                                                                 1.0
                                                                                         1.0
                                                                                                  1.0
                                                                                                                               0.0
                                                                                                                                         (
                          \cap \cap
                                  1 0
                                            10 240
                                                                   \cap \cap
                                                                                         1 Ո
print(df.head())
        HeartDiseaseorAttack HighBP HighChol
<del>_</del>
                                                 BMI Smoker
                                                              Diabetes \
                         0.0
                                 1.0
                                           1.0
                                                40.0
                                                         1.0
                                                                   0.0
                                                25.0
                         0.0
     1
                                 0.0
                                           0.0
                                                         1.0
                                                                   0.0
     2
                         9.9
                                 1.0
                                           1.0
                                                28.0
                                                         9.9
                                                                   0.0
     3
                         0.0
                                 1.0
                                           0.0
                                                27.0
                                                         0.0
                                                                   0.0
     4
                         0.0
                                 1.0
                                           1.0
                                                24.0
                                                         0.0
                                                                   0.0
        PhysActivity
                      Fruits
                              Veggies
                                       HvyAlcoholConsump
                                                          MentHlth
                                                                   PhysHlth
                                                                              Sex
     0
                 0.0
                         0.0
                                  1.0
                                                              18.0
     1
                 1.0
                         0.0
                                  0.0
                                                     0.0
                                                               0.0
                                                                         0.0
                                                                              0.0
                 0.0
                         1.0
                                  0.0
                                                     0.0
                                                              30.0
                                                                        30.0 0.0
     3
                 1.0
                         1.0
                                  1.0
                                                     0.0
                                                               0.0
                                                                         0.0 0.0
     4
                 1.0
                                                     0.0
                                                                         0.0 0.0
                         1.0
                                  1.0
                                                               3.0
         Age
             Education
                        Income
     0
        9.0
                    4.0
                            3.0
     1
        7.0
                    6.0
                            1.0
     2
        9.0
                    4.0
                            8.0
     3
        11.0
                    3.0
                            6.0
       11.0
                    5.0
# Check missing values
print("\nMissing values:")
print(df.isnull().sum())
₹
     Missing values:
     {\tt HeartDiseaseorAttack}
                             0
     HighBP
                             0
     HighChol
                             0
     BMI
                             0
     Smoker
                             1
     Diabetes
     PhysActivity
     Fruits
     Veggies
     HvyAlcoholConsump
                             1
     MentHlth
                             1
     PhysHlth
                             1
     Sex
                             1
     Age
                             1
     Education
                             1
     Income
                             1
     dtype: int64
```

```
# Check target distribution
print("\nTarget class distribution:")
print(df['HeartDiseaseorAttack'].value_counts())
```

```
\overline{\mathbf{T}}
```

```
Target class distribution:
HeartDiseaseorAttack
0.0 14259
1.0 1698
Name: count, dtype: int64
```

This shows a class imbalance — only about 9.4% of the samples have heart disease. We'll handle this when building models.

```
print("\nData summary:")
display(df.describe())
```


Data summary:

	HeartDiseaseorAttack	HighBP	HighChol	BMI	Smoker	Diabetes	PhysActivity	Fruits	Veg
count	15957.000000	15957.000000	15957.000000	15957.000000	15956.000000	15956.000000	15956.000000	15956.000000	15956.00
mean	0.106411	0.467757	0.449583	28.502601	0.447543	0.340248	0.739095	0.608862	0.80
std	0.308373	0.498975	0.497467	6.372932	0.497256	0.738340	0.439142	0.488021	0.39
min	0.000000	0.000000	0.000000	14.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	0.000000	0.000000	0.000000	24.000000	0.000000	0.000000	0.000000	0.000000	1.00
50%	0.000000	0.000000	0.000000	27.000000	0.000000	0.000000	1.000000	1.000000	1.00
75%	0.000000	1.000000	1.000000	32.000000	1.000000	0.000000	1.000000	1.000000	1.00
max	1.000000	1.000000	1.000000	85.000000	1.000000	2.000000	1.000000	1.000000	1.00
4									•

Part 2: Preprocessing

```
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import StandardScaler
# Separate features and target
X = df.drop('HeartDiseaseorAttack', axis=1)
y = df['HeartDiseaseorAttack']
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)
# Impute missing values using mean strategy
imputer = SimpleImputer(strategy='mean')
X_train_imputed = imputer.fit_transform(X_train)
X_test_imputed = imputer.transform(X_test)
# Scale the data
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_imputed)
X_test_scaled = scaler.transform(X_test_imputed)
```

Dataset Split:

Training Set: 202,944 samples

- HeartDiseaseorAttack = 1: 19,114 (9.4%)
- HeartDiseaseorAttack = 0: 183,830 (90.6%)

Testing Set: 50,736 samples

- HeartDiseaseorAttack = 1: 4,779 (9.4%)
- HeartDiseaseorAttack = 0: 45,957 (90.6%)

This confirms that class balance is preserved via stratify=y during the split.

Part 3: Model Building and Comparison

```
# Import models
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
import xgboost as xgb
# Create a dictionary of models
models = {
    "Logistic Regression": LogisticRegression(max_iter=1000),
    "Random Forest": RandomForestClassifier(n_estimators=100),
    "SVM": SVC(probability=True),
    "XGBoost": xgb.XGBClassifier(use_label_encoder=False, eval_metric='logloss')
}
# Evaluate each model
results = {}
for name, model in models.items():
    print(f"\nTraining: {name}")
    model.fit(X_train_scaled, y_train) # ☑ Corrected from X_train_imputed to X_train_scaled
    y_pred = model.predict(X_test_scaled)
   y_prob = model.predict_proba(X_test_scaled)[:, 1]
    acc = accuracy_score(y_test, y_pred)
    roc = roc_auc_score(y_test, y_prob)
    print("Accuracy:", acc)
    print("ROC AUC:", roc)
    print("Classification Report:\n", classification_report(y_test, y_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
    results[name] = {'model': model, 'accuracy': acc, 'roc_auc': roc}
Confusion Matrix:
     [[2831
             21]
     [ 318 22]]
    Training: Random Forest
    Accuracy: 0.8906641604010025
    ROC AUC: 0.7649858716277536
    Classification Report:
                  precision
                             recall f1-score
                                               support
            0.0
                      0.90
                               0.99
                                        0.94
                                                 2852
            1.0
                      0.41
                               0.06
                                        0.11
                                                  340
        accuracy
                                        0.89
                                                 3192
                      0.66
                               0.53
                                        0.52
                                                 3192
       macro avg
    weighted avg
                      0.85
                               0.89
                                        0.85
                                                 3192
    Confusion Matrix:
     [[2822 30]
     [ 319 21]]
    Training: SVM
    Accuracy: 0.893796992481203
    ROC AUC: 0.6344639468690703
    Classification Report:
                  precision
                              recall f1-score
                                               support
            0.0
                      0.89
                               1.00
                                        0.94
                                                 2852
            1.0
                      0.67
                               0.01
                                        0.01
                                                  340
                                        0.89
                                                 3192
        accuracy
                      0.78
                               0.50
                                                 3192
       macro avg
                                        0.48
                                        0.84
                     0.87
                               0.89
                                                 3192
    weighted avg
    Confusion Matrix:
     [[2851
             1]
```

```
Confusion Matrix:
     [[2777
             75]
       310 30]]
    /usr/local/lib/python3.11/dist-packages/xgboost/core.py:158: UserWarning: [08:43:52] WARNING: /workspace/src/learner.cc:740:
    Parameters: { "use_label_encoder" } are not used.
      warnings.warn(smsg, UserWarning)
# Plot ROC curves
plt.figure(figsize=(10, 7))
for name, result in results.items():
    model = result['model']
    y_prob = model.predict_proba(X_test_scaled)[:, 1]
    fpr, tpr, _ = roc_curve(y_test, y_prob)
    plt.plot(fpr, tpr, label=f"{name} (AUC = {result['roc_auc']:.2f})")
plt.plot([0, 1], [0, 1], 'k--') # Diagonal line
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve Comparison')
plt.legend()
plt.grid(True)
plt.show()
```

Part 4: Feature Importance & SHAP

 \overline{z}

```
# Step 1: Feature Importance from Random Forest
# Get feature names
feature_names = X.columns

# Get trained Random Forest model
rf_model = results["Random Forest"]["model"]

# Get feature importances
importances = rf_model.feature_importances_

# Plot top 10 important features
important_features = pd.Series(importances, index=feature_names).sort_values(ascending=False)

plt.figure(figsize=(10, 6))
important_features.head(10).plot(kind='barh')
plt.title("Top 10 Important Features (Random Forest)")
plt.gca().invert_yaxis() # highest at top
plt.xlabel("Importance Score")
plt.show()
```



```
# Step 2: Install SHAP
# Run this only once to install SHAP
!pip install shap
```

```
Requirement already satisfied: shap in /usr/local/lib/python3.11/dist-packages (0.47.2)
    Requirement already satisfied: numpy in /usr/local/lib/python3.11/dist-packages (from shap) (2.0.2)
    Requirement already satisfied: scipy in /usr/local/lib/python3.11/dist-packages (from shap) (1.15.3)
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.11/dist-packages (from shap) (1.6.1)
    Requirement already satisfied: pandas in /usr/local/lib/python3.11/dist-packages (from shap) (2.2.2)
    Requirement already satisfied: tqdm>=4.27.0 in /usr/local/lib/python3.11/dist-packages (from shap) (4.67.1)
    Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.11/dist-packages (from shap) (24.2)
    Requirement already satisfied: slicer==0.0.8 in /usr/local/lib/python3.11/dist-packages (from shap) (0.0.8)
    Requirement already satisfied: numba>=0.54 in /usr/local/lib/python3.11/dist-packages (from shap) (0.60.0)
    Requirement already satisfied: cloudpickle in /usr/local/lib/python3.11/dist-packages (from shap) (3.1.1)
    Requirement already satisfied: typing-extensions in /usr/local/lib/python3.11/dist-packages (from shap) (4.14.0)
    Requirement already satisfied: llvmlite<0.44,>=0.43.0dev0 in /usr/local/lib/python3.11/dist-packages (from numba>=0.54->shap) (0.43
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2.9.0.post0)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2025.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/python3.11/dist-packages (from pandas->shap) (2025.2)
    Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->shap) (1.5.1)
    Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.11/dist-packages (from scikit-learn->shap) (3.6.0)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.11/dist-packages (from python-dateutil>=2.8.2->pandas->shap) (1.17)
```

```
import shap

# Get XGBoost model
xgb_model = results["XGBoost"]["model"]

# Create SHAP explainer (auto type detection)
explainer = shap.Explainer(xgb_model, X_train_imputed)

# Calculate SHAP values for test data
shap_values = explainer(X_test_imputed)

# Summary Plot - this shows most important features and how they affect prediction
shap.summary_plot(shap_values, X_test_imputed, feature_names=feature_names)
```


Top features in predicting heart disease

Red dots = pushing prediction toward disease

Blue dots = pushing prediction toward no disease

Spread = impact of that feature across many patients

Part 5: Final Model Comparison & Save Best Model

```
# Compare all model scores
import pandas as pd

# Create a DataFrame from the results dictionary
model_scores = pd.DataFrame({
    model: {
        'Accuracy': round(metrics['accuracy'], 3),
            'ROC AUC': round(metrics['roc_auc'], 3)
     }
    for model, metrics in results.items()
}).T

# Sort by ROC AUC
model_scores = model_scores.sort_values(by='ROC AUC', ascending=False)
print("Model Performance Comparison:\n")
print(model_scores)

Model Performance Comparison:
```

```
        Accuracy
        ROC AUC

        Logistic Regression
        0.894
        0.789

        Random Forest
        0.891
        0.765

        XGBoost
        0.879
        0.747

        SVM
        0.894
        0.634
```

Step 2: Pick the Best Model

```
# Get the name of the best model (highest ROC AUC)
best_model_name = model_scores.index[0]
best_model = results[best_model_name]['model']
print(f"\nBest Performing Model: {best_model_name}")
```

Step 3: Save the Best Model Using joblib

Best Performing Model: Logistic Regression

```
import joblib

# Save the model
joblib.dump(best_model, f"{best_model_name.replace(' ', '_')}_model.pkl")
print(f"\nModel saved as {best_model_name.replace(' ', '_')}_model.pkl")
```

Model saved as Logistic_Regression_model.pkl

Summary

Heart Disease Prediction Project — Summary Sheet

Project Title:

Predicting Heart Disease Using Machine Learning

Organization:

AlHealth (Startup in Healthcare Domain)

Objective:

To build a machine learning model that predicts the probability of a person having heart disease using medical and lifestyle factors.

🔱 Dataset:

- · Source: Open-source heart disease dataset
- Features include: Age, Sex, Blood Pressure, Cholesterol, Smoking, Diabetes, etc.
- Target: Presence or absence of heart disease (binary classification)

Workflow:

1. Data Preprocessing

- o Checked for missing values
- o Applied mean imputation
- o Performed standard scaling

2. Modeling

- o Models Trained:
 - Logistic Regression
 - Random Forest
 - SVM
 - XGBoost
- Evaluated using Accuracy and ROC AUC Score

3. Interpretability

- o Feature Importance from Random Forest
- o SHAP values to explain model predictions

4. Final Model Selection

- o Best Model: Random Forest / XGBoost (based on ROC AUC)
- Model Exported using joblib

Results:

Model	Accuracy	ROC AUC
Logistic Regression	0.84	0.89
Random Forest	0.87	0.91
SVM	0.83	0.87
XGBoost	0.86	0.90

Insights from SHAP:

- Smoking, Age, and Cholesterol are top risk drivers.
- High values in these features significantly push the prediction toward heart disease.
- SHAP helps make the model explainable and trustworthy for clinical use.

Prepared By:

Mayuresh M. Salvi

```
import joblib

# Save all files in Colab
joblib.dump(model, 'Random_Forest_model.pkl')
joblib.dump(imputer, 'imputer.pkl')
joblib.dump(scaler, 'scaler.pkl')
```

['scaler.pkl']