Билеты по дискретной математике, 1 модуль

Таисия Чегодаева, ПАДИИ, 1 курс

29 October 2023

1 17. Комбинаторика. Количество сюръекций. Числа Стирлинга

Определение: Отображение называется сюръективным, если для любого образа существует хотя бы один прообраз.

Пусть X,Y - множества, |X|=n, |Y|=k. Общее число отображений из X в Y равно k^n . Будем выражать k^n через число сюръекций (обозначается как $\hat{S}(n,k)$).

1. Выберем $Z \subset Y, |Z| = i$. Количество сюръекций из X в Z равно $\hat{S}(n,i)$. Тогда количество способов выбрать такое множество Z равно $\binom{k}{i}$, т.к. мы выбираем i-элементное подмножество из k-элементного множества. Значит, количество всех отображений равно:

$$k^{n} = \sum_{i=0}^{k} \hat{S}(n,i) \cdot \binom{k}{i}$$

$$\hat{S}(n,0) = 0 \ \forall n > 0$$

Утверждение: Пусть $(f_0, f_1, f_2, ...)$ и $(g_0, g_1, g_2, ...)$ - две числовые последовательности, и одна из них выаржается через вторую по формуле

$$f_k = \sum_{i=0}^k \binom{k}{i} \cdot g_i, \ k \ge 0$$

Тогда справедлива следующая формула обращения:

$$g_k = \sum_{i=0}^k {k \choose i} \cdot f_i \cdot (-1)^{k-i}, \ k \ge 0$$

Доказательство: Подставим первую формулу во вторую:

$$g_k = \sum_{i=0}^k \binom{k}{i} \cdot (-1)^{k-i} \cdot \sum_{i=0}^j \binom{i}{j} g_j$$

Дописать.

Воспользуемся формулами обращения для нахождения $\hat{S}(n,k)$:

$$\hat{S}(n,k) = \sum_{i=0}^{k} {k \choose i} \cdot i^n \cdot (-1)^{k-i}$$

В случае раскладки предметов по ящикам формула $\hat{S}(n,k)$ показывает количество способов разложить n различимых предметов по k различимым ящикам, и в каждом ящике лежит хотя бы 1 предмет.

Пусть $X = \{x_1, x_2, x_3\}, Y = \{y_1, y_2\}$. Тогда выпишем все отображения X в Y как упорядоченные пары подмножеств множества X:

$$\{\{x_1, x_2, x_3\}, \emptyset\}$$

$$\{\{x_1, x_2\}, \{x_3\}\}$$

$$\{\{x_1, x_3\}, \{x_2\}\}$$

$$\{\{x_2, x_3\}, \{x_1\}\}$$

$$\{\{x_1\}, \{x_2, x_3\}\}$$

$$\{\{x_2\}, \{x_1, x_3\}\}$$

$$\{\{x_3\}, \{x_1, x_2\}\}$$

$$\{\emptyset, \{x_1, x_2, x_3\}\}$$

Такой список представляет собой все возможные разделения множества X. Разделение - упорядоченное разбиение множества на блоки, которые могут быть пустыми.

Количество всех возможных разделений равно k^n .

Сюрьективное отображение дает нам упорядоченное разбиение множества X на k блоков, значит, количество всех упорядоченных разбиений равно $\hat{S}(n,k)$.

Утверждение: Пусть X разделено на k блоков, при этом в i-том блоке находится a_i элементов, а $a_1+a_2+...+a_k=n, a_i\geq 0$. Тогда количество всех таких k-разделений множества X равно:

$$P(n; a_1, a_2, ..., a_k) = \binom{n}{a_1} \cdot \binom{n - a_1}{a_2} \cdot ... \cdot \binom{n - a_1 - a_2 - ... - a_{k-1}}{a_k}$$
$$P(n; a_1, a_2, ..., a_k) = \frac{n!}{a_1! \cdot a_2! \cdot ... \cdot a_k!}$$

Общее количество всех k-разделений множества X равно:

$$k^{n} = \sum_{a_{1}+a_{2}+...+a_{k}=n, a_{i} \geq 0} P(n; a_{1}, a_{2}, ..., a_{k})$$

А если мы хотим найти число упорядоченных разбиений, то формула выглядит так:

$$\hat{S}(n,k) = \sum_{a_1+a_2+...+a_k=n, \ a_i>0} P(n; a_1, a_2, ..., a_k)$$

Если же мы хотим получить число неупорядоченных разбиений, нужно $\hat{S}(n,k)$ поделить на n!. Получим формулу

$$S(n,k) = \frac{1}{k!} \cdot \hat{S}(n,k)$$

S(n,k) - числа Стирлинга II рода.

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{i} \cdot {k \choose i} \cdot (k-i)^{n}$$

$$k^n = \sum_{i=0}^{n} (k)_i \cdot S(n, i)$$

Утверждение: Числа Стирлинга II рода удовлетворяют следующим рекуррентным соотношениям:

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$

$$S(0,0) = 1$$
, $S(n,0) = 0$, $S(n,k) = 0 \ \forall k > n$

Доказательство: Зафиксируем элемент x_1 множества X. Тогда первое слагаемое значит, что мы поместили x_1 в 1 блок, и теперь нужно разделить n-1 элемент на k-1 блоков. Второе слагаемое значит, что x_1 содержится в блоке размера > 1. Тогда удалим x_1 из этого блока. Получается, что можно разделить n-1 элемент на k блоков, а затем k способами разместить в каком-то блоке элемент x_1 . По правилу суммы получаем, что рекуррентное соотношение верно.

С точки зрения раскладки предметов по ящикам числа Стирлинга II рода позволяют найти число способов разложить n различимых предметов по k неразличимым ящикам, и в ящике лежит хотя бы 1 предмет.

2 Комбинаторика. Числа Белла.

Если ограничения на количество предметов отсутствуют, то n различимых предметов можно разложить на k неразличимых ящиков B(n,k) способами.

$$B(n,k) = \sum_{i=1}^{k} S(n,i)$$

Если n=k, то B(n,k)=B(n) - числа Белла. Числа Белла перечисляют все возможные разбиения множества X.

Для чисел Белла существует свое рекуррентное соотношение:

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k$$

3 Комбинаторика. Урновые схемы – раскладка предметов по ящикам.

Элементы	Элементы	Произвольное	Не более	Как минимум
множества Х	множества Y	количество предметов	1 предмета	1 предмет
(предметы)	(ящики)	в ящике	в ящике	в ящике
различимые	различимые	k^n	$(k)_n$	$\widehat{S}(n,k)$
неразличимые	различимые	$\binom{k}{n}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$
различимые	неразличимые	B(n,k)	$ \begin{array}{ll} 0, & n > k \\ 1, & n \leqslant k \end{array} $	S(n,k)