## ALGPROG – Primeira Lista de Exercícios do Laboratório

### **Regras**

- A data limite de entrega do trabalho é domingo, 31 de Maio de 2015 até as 23:59:59.
- O trabalho deve ser realizado em dupla ou trios (não serão aceitos trabalhos individuais, nem em grupos com mais de três alunos).
- Os programas-fonte (apenas os fontes executáveis são rejeitados por programas de anti-vírus para email) devem ser entregues por correio eletrônico para seu professor com cópia para si mesmo.
- Trabalhos iguais de grupos diferentes receberão nota zero.
- A lista é composta de 5 exercícios.
- No campo do assunto deve-se colocar a turma a que o grupo pertence (por exemplo: 2BEPN).
- NO CORPO DO EMAIL, DEVE CONSTAR OS NOMES E R.A.S DOS MEMBROS DO GRUPO.
- No programa, deve constar os nomes e R.A.s dos membros do grupo como comentário nas primeiras linhas.
- Cada um dos programas que for aceito no SPOJ poderá ser premiado com pontuação extra, a critério do professor.

Sistema de avaliação de alunos de um curso.

Os alunos são identificados em números sequenciais de 10000 a 10020.

O sistema armazena duas notas: P1 e P2 com valores válidos entre 0.0 e 10.0.

A média considerada deve ser: 0,4P1 + 0,6P2 e deve totalizar 6,0 para aprovação.

## O sistema deverá ter as opções:

- 1 Receber notas P1 de todos os alunos.
- 2 Receber notas P2 de todos os alunos.
- 3 Receber nota P1 de um aluno.
- 4- Receber nota P2 de um aluno.
- 5 Verificar a condição de um aluno.
- 6 Listar alunos em intervalo.
- 7 Listar todos os alunos.
- 0 Termina o programa.

As ações são as seguintes:

Opção 1 – Recebe sequencialmente cada nota. O programa deve apresentar a identificação do aluno para o qual está recebendo a nota, e deve ter a opção de finalizar a entrada a qualquer momento.

Opção 2 – Recebe sequencialmente cada nota. O programa deve apresentar a identificação do aluno para o qual está recebendo a nota, e deve ter a opção de finalizar a entrada a qualquer momento .

Opção 3 – Recebe a nota de um aluno, para isso o sistema solicita o número do aluno e verifica se o aluno existe.

Opção 4 – Recebe a nota de um aluno, para isso o sistema solicita o número do aluno e verifica se o aluno existe.

Opção 5 – Solicita o número do aluno, apresenta todas as suas notas, a média e diz se o aluno foi aprovado ou reprovado.

Opção 6 – O sistema solicita um intervalo de números e apresenta todos os alunos, suas médias e situação.

Opção 7 – Faz o mesmo para todos os alunos, COM PAGINAÇÃO.

Opção 0 – Termina o programa.

TODOS os elementos devem ter entrada consistida/validada, isto é:

- as notas devem ser fornecidas em intervalos válidos
- a lista dos alunos devem ser fornecidas com intervalos válidos
- os erros devem ser informados ao usuário

Valores aproximados para "e"," $\pi$ " e  $\sqrt{2}$ .

a. A aproximação da função e<sup>x</sup> em série de Taylor é dada pela expressão:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \quad -\infty < x < \infty$$

O valor de "e" pode ser obtido calculando a série para o valor de x = 1.0

$$e = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$$

b. A aproximação da função arctan(x) em série de Taylor é dada por:

$$\tan^{-1}(x) = \sum_{k=0}^{\infty} \frac{(-1)^k x^{1+2k}}{1+2k} \quad \text{for } |x| < 1$$

O valor de " $\pi$ " pode ser obtido calculando a série para o valor de x = 1.0

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \dots + \frac{(-1)^n}{2n+1}$$

c. O valor de  $\sqrt{A}$  pode ser obtido através da fórmula:

$$x_{n+1} = \frac{A - x_n^2}{2 \cdot x_n}$$

O valor de  $\sqrt{2}$  pode ser obtido calculando a série para A = 2 e o valor de  $x_0$  = 1.0.

Escreva um programa em linguagem C que determine o valor mínimo de "n" para os valores de "e"," $\pi$ " e  $\sqrt{2}$  utilizando as fórmulas acima que apresente um erro inferior a  $10^{-5}$ . Utilize, como referência, os valores dados por M\_E, M\_PI e M\_SQRT2 da biblioteca math.h.

### SPOJ Problem Set (obi)

#### 812. Bits Trocados

Problema: BIT

As Ilhas Weblands formam um reino independente nos mares do Pacífico. Como é um reino recente, a sociedade é muito influenciada pela informática. A moeda oficial é o Bit; existem notas de B\$ 50,00, B\$10,00, B\$5,00 e B\$1,00. Você foi contratado(a) para ajudar na programação dos caixas automáticos de um grande banco das Ilhas Weblands.

#### **Tarefa**

Os caixas eletrônicos das Ilhas Weblands operam com todos os tipos de notas disponíveis, mantendo um estoque de cédulas para cada valor (B\$ 50,00, B\$10,00, B\$5,00 e B\$1,00). Os clientes do banco utilizam os caixas eletrônicos para efetuar retiradas de um certo número inteiro de Bits.

Sua tarefa é escrever um programa que, dado o valor de Bits desejado pelo cliente, determine o número de cada uma das notas necessário para totalizar esse valor, de modo a minimizar a quantidade de cédulas entregues. Por exemplo, se o cliente deseja retirar B\$50,00, basta entregar uma única nota de cinquenta Bits. Se o cliente deseja retirar B\$72,00, é necessário entregar uma nota de B\$50,00, duas de B\$10,00 e duas de B\$1,00.

### **Entrada**

A entrada é composta de vários conjuntos de teste. Cada conjunto de teste é composto por uma única linha, que contém um número inteiro positivo v, que indica o valor solicitado pelo cliente. O final da entrada é indicado por v=0.

### Saída

Para cada conjunto de teste da entrada seu programa deve produzir três linhas na saída. A primeira linha deve conter um identificador do conjunto de teste, no formato "Teste n", onde n é numerado a partir de 1. Na segunda linha devem aparecer quatro inteiros I, J, K e L que representam o resultado encontrado pelo seu programa: I indica o número de cédulas de B\$50,00, J indica o número de cédulas de B\$10,00, K indica o número de cédulas de B\$5,00 e L indica o número de cédulas de L indica o

# **Exemplo**

## Entrada:

1 72

0

### Saída:

Teste 1

0 0 0 1

Teste 2

1 2 0 2

# Restrições

0 <= V <= 10000 (V = 0 apenas para indicar o fim da entrada)

Adicionado por: Wanderley Guimarães

Data: 2006-04-19

Tempo limite: 1s

Tamanho do fonte: 50000B Memory limit: 256MB

Cluster: Pyramid (Intel Pentium III 733 MHz)

Linguagem Todas exceto: AWK CLOJ ERL F# GÓ JS NODEJS PERL 6 PYTH 3.2.3 n

permitida: SCALA SED TCL

Origem: Olimpiada Brasileira de Informatica 2000

## SPOJ Problem Set (regionais)

3240. Dama

Problema: DAMA

O jogo de xadrez possui várias peças com movimentos curiosos: uma delas é a dama, que pode se mover qualquer quantidade de casas na mesma linha, na mesma coluna, ou em uma das duas diagonais, conforme exemplifica a figura abaixo:



O grande mestre de xadrez  $Kary\ Gasparov\$ inventou um novo tipo de problema de xadrez: dada a posição de uma dama em um tabuleiro de xadrez vazio (ou seja, um tabuleiro  $8\times 8$ , com  $64\$ casas), de quantos movimentos, no mínimo, ela precisa para chegar em outra casa do tabuleiro?

Kary achou a solução para alguns desses problemas, mas teve dificuldade com outros, e por isso pediu que você escrevesse um programa que resolve esse tipo de problema.

### **Entrada**

A entrada contem vários casos de teste. A primeira e única linha de cada caso de teste contém quatro inteiros x1, y1, x2 e y2 (1 <= x1, y1, x2, y2 <= 8). A dama começa na casa de coordenadas (x1, y1), e a casa de destino é a casa de coordenadas (x2, y2). No tabuleiro, as colunas são numeradas da esquerda para a direita de 1 a 8 e as linhas de cima para baixo também de 1 a 8. As coordenadas de uma casa na linha X e coluna Y são (x, y).

O final da entrada é indicado por uma linha contendo quatro zeros.

#### Saída

Para cada caso de teste da entrada seu programa deve imprimir uma unica linha na saída, contendo um número inteiro, indicando o menor número de movimentos necessários para a dama chegar em sua casa de destino.

# **Exemplo**

### Entrada

4 4 6 2 3 5 3 5 5 5 4 3

# 0 0 0 0

Saída 1

0 2

Adicionado por: Wanderley Guimarães

Data: 2008-10-25

Tempo limite: 1s
Tamanho do fonte: 50000B
Memory limit: 256MB

Cluster: Pyramid (Intel Pentium III 733 MHz)

Linguagem Todas exceto: AWK CLOJ ERL F# GO JS NODEJS PERL 6 PYTH 3.2.3 n

permitida: SCALA SED TCL

Origem: Primeira fase da Maratona de Programação - 2008

SPOJ Problem Set (obi)

3828. Primo

Problema: PRIMO

### **Tarefa**

Dado um inteiro N, verifique se N é primo.

### **Entrada**

A entrada é composta por um único caso de teste, composto por uma única linha que contém o inteiro N.

### Saída

Seu programa deve produzir uma única linha, contendo a palavra "sim", se N for primo, e "nao", caso contrário (note a ausência de acentuação).

# Restrições

 $|N| < 2^{31}$ 

## **Exemplo**

Entrada

7

Saída

sim

Entrada

10

Saída

nao

Adicionado por: Wanderley Guimarães

Data: 2009-02-07

Tempo limite: 1s
Tamanho do fonte: 50000B
Memory limit: 256MB

Cluster: Pyramid (Intel Pentium III 733 MHz)

Linguagem Todas exceto: AWK CLOJ ERL F# GO JS NODEJS PERL 6 PYTH 3.2.3 n

permitida: SCALA SED TCL

Origem: Treino para OBI de 2006 - Fábio Moreira & Daniel Fleischman