DT505G: Algorithms, Data Structures and Complexity

Introduction to Problem Complexity

Federico Pecora

federico.pecora@oru.se

Center for Applied Autonomous Sensor Systems (AASS)

Örebro University, Sweden

© 2014 Sofya Raskhodnikova / Penn State University

Tractable Problems

- Most of the algorithms we have seen run in $O(n^k)$ time
 - n is the size of the input
 - k is a constant
- Each algorithm solves a problem in polynomial time
- Are all problems solvable in polynomial time?

Tractable Problems

- Most of the algorithms we have seen run in $O(n^k)$ time
 - \blacksquare *n* is the size of the input
 - k is a constant
- Each algorithm solves a problem in polynomial time
- Are all problems solvable in polynomial time?
- No, some require more time
- Problems that can be solved in polynomial time are called tractable

Tractable Problems

- Most of the algorithms we have seen run in $O(n^k)$ time
 - n is the size of the input
 - k is a constant
- Each algorithm solves a problem in polynomial time
- Are all problems solvable in polynomial time?
- No, some require more time
- Problems that can be solved in polynomial time are called tractable
- \blacksquare Are problems that can be solved in O(f(n)) somehow equivalent?

Polynomial Time vs. Polynomial Space

- All the algorithms we have seen require $O(n^k)$ space
 - \blacksquare *n* is the size of the input
 - k is a constant
- The data structure maintained by the algorithm does not occupy more than a polynomial amount of space in the size of the input
- Are all problems solvable in polynomial space?

Polynomial Time vs. Polynomial Space

- All the algorithms we have seen require $O(n^k)$ space
 - \blacksquare *n* is the size of the input
 - k is a constant
- The data structure maintained by the algorithm does not occupy more than a polynomial amount of space in the size of the input
- Are all problems solvable in polynomial space?
- No, some require more space

Polynomial Time vs. Polynomial Space

- \blacksquare All the algorithms we have seen require $O(n^k)$ space
 - \blacksquare *n* is the size of the input
 - k is a constant
- The data structure maintained by the algorithm does not occupy more than a polynomial amount of space in the size of the input
- Are all problems solvable in polynomial space?
- No, some require more space
- Are problems that require $O(n^k)$ space harder than problems requiring $O(n^k)$ time?

Intractable Problems

- (Let's leave space complexity aside for now)
- Given a problem π , can we **prove that it cannot be solved** in time $O(n^k)$ for any constant k?

Intractable Problems

- (Let's leave space complexity aside for now)
- Given a problem π , can we **prove that it cannot be solved** in time $O(n^k)$ for any constant k?
- There exist many problems for which we cannot prove this
 - lacktriangle we know of algorithms that require more than polynomial time to solve π
 - lacktriangle we do not know whether a polynomial-time algorithm exists for solving π
- One set of such problems is the class of NP-Complete problems

Intractable Problems: Example

- Shortest vs. longest simple paths in a graph G = (V, E) from source $s \in V$
 - **a** can compute a **shortest simple path** $s \rightsquigarrow v$ for all $v \in V$ in O(VE) time
 - finding a longest simple path between two vertices is difficult
 - \blacksquare determining whether G contains a simple path of at least k edges is NP-Complete

Intractable Problems: Example

- Shortest vs. longest simple paths in a graph G = (V, E) from source $s \in V$
 - **a** can compute a **shortest simple path** $s \rightsquigarrow v$ for all $v \in V$ in O(VE) time
 - finding a longest simple path between two vertices is difficult
 - determining whether G contains a simple path of at least k edges is NP-Complete
- Hamiltonian cycle of G: a simple cycle containing all $v \in V$
 - determining whether G has a Hamiltonian cycle is NP-Complete

Decision Problems

A question in some formal system that can be posed as a yes-no question

Decision Problems

- A question in some formal system that can be posed as a ves-no question
- **Problem:** "Find a shortest path in G from s to v"
- Decision problem: "Is there a path of at most length k in G from s to v?"

Decision Problems

- A question in some formal system that can be posed as a ves-no question
- **Problem:** "Find a shortest path in *G* from *s* to *v*"
- **Decision problem:** "Is there a path of at most length *k* in *G* from *s* to *v*?"
- **Problem:** "Find a negative cycle in G"
- **Decision problem:** "Is there a negative cycle in *G*?"

Alan Turing

- British computer scientist (1912–1954)
- Developed techniques for speeding the breaking of German ciphers in WWII
- Introduced a computational model that is used for studying the complexity of problems
- Considered a founder of Computer Science

Turing Machines

Trantable and Intractable Problems

- A hypothetical machine whose program is a transition function δ
 - states Q: states
 - states $F \subseteq Q$: final/accepting states ($Q \setminus F$ = all non-final states)
 - alphabet Σ : symbols read/written by the head
 - transitions: $\delta: Q \setminus F \times \Sigma \mapsto Q \times \{\text{write(s)} \mid \text{s} \in \Sigma\} \times \{\text{moveL, moveR}\}\$

Turing Machines: Example

Transition function δ

Trantable and Intractable Problems

State	Symbol read	Write instruction	Move instruction	Next state
А	1	write(1)	moveR	Α
	0	write(0)	moveR	Α
	blank	write(blank)	moveL	В
В	0	write(1)	moveR	Α
	1	write(0)	moveL	В
	blank	write(1)	moveR	Α

- $Q = \{A, B\}, F = \emptyset, \Sigma = \{0, 1\}$
- Implements a binary counter (continuously increments binary number on tape by one)

References

Trantable and Intractable Problems Turing Machines Complexity Classes P and NP Hardness and Completeness Complexity Class PSPACE References

Turing Machines: Example

© 2010 Mike Davey — http://aturingmachine.com

- A TM can comupte anything a real computer can compute
- A TM can manipulate unbouded data (the tape is infinite)
- TMs describe algorithms independently of how much memory they use

- A TM can comupte anything a real computer can compute
 - limitation of TM is also a limitation of a computer
- A TM can manipulate unbouded data (the tape is infinite)
- TMs describe algorithms independently of how much memory they use

- A TM can comupte anything a real computer can compute
- limitation of TM is also a limitation of a computer
- A TM can manipulate unbouded data (the tape is infinite)
 - given a finite amount of time, a TM will use finite space
- TMs describe algorithms independently of how much memory they use

- A TM can comupte anything a real computer can compute
 - limitation of TM is also a limitation of a computer
- A TM can manipulate unbouded data (the tape is infinite)
 - given a finite amount of time, a TM will use finite space
- TMs describe algorithms independently of how much memory they use
 - conclusions independent of advances in conventional computing machinery

- A TM can solve any problem studied in this course \rightarrow encode algorithm as transition function δ
- Will a TM run an algorithm less efficiently than a RAM?

- A TM can solve any problem studied in this course \rightarrow encode algorithm as transition function δ
- Will a TM run an algorithm less efficiently than a RAM?
- If a RAM requires time $\Theta(n)$, there is a TM that requires time $\Theta(n^6)$ [Rich, 2008]

- A TM can solve any problem studied in this course \rightarrow encode algorithm as transition function δ
- Will a TM run an algorithm less efficiently than a RAM?
- If a RAM requires time $\Theta(n)$, there is a TM that requires time $\Theta(n^6)$ [Rich, 2008]
- So, if our algorithm runs in polynomial time on a RAM, it can run in polynomial time on a TM

P = the set of all problems that can be solved by a TM in polynomial time

All the problems we have studied are in P

Non-Deterministic Turing Machines

Trantable and Intractable Problems

- A hypothetical machine whose program is a relation δ
 - states Q: states
 - states $F \subseteq Q$: final/accepting states ($Q \setminus F$ = all non-final states)
 - alphabet Σ : symbols read/written by the head
 - relation: $\delta \subset (Q \setminus F \times \Sigma) \times (Q \times \{\text{write(s)} \mid \text{s} \in \Sigma\} \times \{\text{moveL, moveR}\})$

Transition relation δ

Trantable and Intractable Problems

State	Symbol read	Write instruction	Move instruction	Next state	
А	1	write(1)	moveR	Α	
	0	write(1)	moveL	В	
	0	write(0)	moveR	Α	
В	0	write(1)	moveR	С	

- $Q = \{A, B, ...\}, \Sigma = \{0, 1\}$
- Relation can prescribe more than one (state, write, move) tuple for a given situation

■ What does a NDTM do in a situation with > 1 action?

- What does a NDTM do in a situation with > 1 action?
- NDTMs branch into many copies, each following one possible transition
- TMs have a single computation path
- NDTMs have multiple computation paths

- What does a NDTM do in a situation with > 1 action?
- NDTMs branch into many copies, each following one possible transition
- TMs have a single computation path
- NDTMs have multiple computation paths
- Can NDTMs solve problems that TMs cannot?

- What does a NDTM do in a situation with > 1 action?
- NDTMs branch into many copies, each following one possible transition
- TMs have a single computation path
- NDTMs have multiple computation paths
- Can NDTMs solve problems that TMs cannot?

No, NDTMs are only more efficient

Complexity Classes P and NP

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a NDTM

Note: Solving vs. Verifying

- A NDTM can be seen as TM that "always guesses one course of action, but always guesses right"
- Verifying can be seen as "guessing post-facto"
- Proving that $\pi \in NP$ can be done by proving that you can verify a solution to π in polynomial time

Complexity Classes P and NP

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare sol(π) can be verified in polynomial time by a TM

The Traveling Salesperson Problem (TSP)

■ Given a set of n cities C and a pairwise distance function $d: C^2 \mapsto \mathbb{R}$, is there a tour of length $\leq d_{\min}$?

All 13509 cities in US with a population of at least 500 — http://www.tsp.gatech.edu

The Traveling Salesperson Problem (TSP)

■ Given a set of n cities C and a pairwise distance function $d: C^2 \mapsto \mathbb{R}$, is there a tour of length $\leq d_{\min}$?

Optimal tour — http://www.tsp.gatech.edu

The Traveling Salesperson Problem (TSP)

■ Given a set of n cities C and a pairwise distance function $d: C^2 \mapsto \mathbb{R}$, is there a tour of length $\leq d_{\min}$?

11849 holes to drill in a programmed logic array — http://www.tsp.gatech.edu

The Traveling Salesperson Problem (TSP)

■ Given a set of n cities C and a pairwise distance function $d: C^2 \mapsto \mathbb{R}$, is there a tour of length $\leq d_{\min}$?

Optimal tour — http://www.tsp.gatech.edu

Proving that TSP \in NP (Method 1)

■ We can show a non-determininstic algorithm for solving TSP in polynomial time

```
TSP-DECIDE(C, d: C^2 \mapsto \mathbb{R}, d_{\min})
      Create an empty sequence s
      W = C
      while W \neq \emptyset
           c = \mathsf{CHOOSE}(W)
 5
           W = W \setminus \{c\}
           Add c to sequence s
      // The sequence s = \langle c_1, c_2, \dots c_{|C|} \rangle now contains all cities
      // Does it connect all of them in a loop with weight less than d_{\min}?
     if \sum_{i=1}^{|C|-1} d(c_i, c_{i+1}) + d(c_{|C|}, c_1) \leq d_{\min}
10
           return TRUE
11
      return FALSE
```

Proving that $TSP \in NP$ (Method 2)

- Assume we have a **certificate** $p = \langle C, d : C^2 \mapsto \mathbb{R}, d_{\min}, c_1, c_2, \dots, c_n \rangle$ for a given TSP
- \blacksquare We can show a determininstic algorithm for verifying p in polynomial time

$\mathsf{TSP}\text{-}\mathsf{VERIFY}(p)$

- 1 **if** $n \neq |C|$ or $c_1 \neq c_n$ or $\sum_{i=1}^{n-1} d(v_i, v_{i+1}) + d(v_n, v_1) > d_{\min}$
- 2 **return** False
- 3 return TRUE

Complexity Classes P and NP

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare sol(π) can be verified in polynomial time by a TM

P vs. NP

- Temporal complexity is strongly curtailed by non determinism
- However, we cannot prove that $P \neq NP$
- We strongly believe that $P \neq NP$
- \blacksquare The consequences of proving P = NP would be huge
 - efficient algorithms would exist for all problems in NP
 - most cryptography systems would break
 - we could automatically prove any theorem which has a proof of reasonable length
 - many of the complexity classes would collapse into one

Complexity Classes P and NP

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare sol(π) can be verified in polynomial time by a TM
- $\pi \in \mathsf{NP}\text{-Hard iff}$
 - all problems in NP can be reduced to π in polynomial time

Polynomial Time Reduction

- Problem π polynomial-time reduces to problem π' if arbitrary instances of π can be solved using
 - polynomial number of standard computational steps, plus
 - polynomial number of calls to an algorithm that solves problem π' in polynomial time
- In other words, we can solve π in polynomial time if we can solve π' in polynomial time

Polynomial Time Reduction

- Problem π polynomial-time reduces to problem π' if arbitrary instances of π can be solved using
 - polynomial number of standard computational steps, plus
 - polynomial number of calls to an algorithm that solves problem π^\prime in polynomial time
- In other words, we can solve π in polynomial time if we can solve π' in polynomial time
- Hence, π' is at least as hard as π

Polynomial Time Reduction: Example

- Hamiltonian Cycle (HC): Given a graph G = (V, E), does there exists a simple cycle that contains every node in V?
- HC polynomial-time reduces to TSP:
 - Given G = (V, E), create n cities with distance function

$$d(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E \\ 2 & \text{if } (u, v) \notin E \end{cases}$$

- TSP has tour of length $\leq n$ iff G has a HC
- Hence, we can solve HC with an algorithm that solves TSP
- Hence, TSP is at least as hard as HC

Complexity Classes P and NP

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare sol(π) can be verified in polynomial time by a TM
- $\pi \in \mathsf{NP}\text{-Hard iff}$
 - all problems in NP can be reduced to π in polynomial time

Trantable and Intractable Problems

- $\pi \in P$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial time by a TM
- $\pi \in \mathsf{NP}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare sol(π) can be verified in polynomial time by a TM
- $\pi \in \mathsf{NP}\text{-Hard iff}$
 - all problems in NP can be reduced to π in polynomial time
- $\pi \in \mathsf{NP}\text{-}\mathsf{Complete}$ iff
 - $\pi \in NP$ and $\pi \in NP$ -Hard

Polynomial Time vs. Polynomial Space

- All the algorithms we have seen require $O(n^k)$ space
 - \blacksquare *n* is the size of the input
 - k is a constant
- The data structure maintained by the algorithm does not occupy more than a polynomial amount of space in the size of the input
- Are all problems solvable in polynomial space?
- No, some require more space

Complexity Class PSPACE

- $\pi \in \mathsf{PSPACE}$ iff
 - \blacksquare π is a decision problem
 - \blacksquare π can be solved in polynomial space by a TM
- $\pi \in \mathsf{PSPACE}\text{-Hard iff}$
 - all problems in PSPACE can be reduced to π in polynomial time
- $\pi \in \mathsf{PSPACE}\text{-}\mathsf{Complete}$ iff
 - $\pi \in \mathsf{PSPACE}$ and $\pi \in \mathsf{PSPACE}$ -Hard

Spatial vs. Temporal Space Gians with NDTMs

- Spatial complexity is not strongly curtailed by non determinism
- It can be shown that PSPACE = NPSPACE
 - if a NDTM can solve π using f(n) space, a TM can solve π using $(f(n))^2$ space
 - \blacksquare if f(n) is a polynomial, so is $(f(n))^2$
 - see [Savitch, 1970]
- However, the same cannot be shown for P and NP, that is, the question $P \stackrel{?}{=} NP$ remains open to this day

NP vs. PSPACE

- We can also show that NP ⊂ PSPACE
 - a NDTM cannot use more than polynomial space in polynomial time, hence NP ⊂ NPSPACE
 - since NPSPACE = PSPACE, then NP \subseteq PSPACE
 - see [Rich, 2008]

NP vs. PSPACE

- We can also show that NP ⊂ PSPACE
 - a NDTM cannot use more than polynomial space in polynomial time, hence NP ⊂ NPSPACE
 - since NPSPACE = PSPACE, then NP ⊆ PSPACE
 - see [Rich, 2008]
- Are problems that require $O(n^k)$ space harder than problems requiring $O(n^k)$ time?
- In other words, $NP \stackrel{?}{\subset} PSPACE$

NP vs. PSPACE

- We can also show that NP ⊂ PSPACE
 - a NDTM cannot use more than polynomial space in polynomial time, hence NP ⊂ NPSPACE
 - since NPSPACE = PSPACE, then NP \subseteq PSPACE
 - see [Rich, 2008]
- Are problems that require $O(n^k)$ space harder than problems requiring $O(n^k)$ time?
- In other words, NP [?] PSPACE
- We suspect that this is true, but nobody has proved it
- Problems that require more space seem harder than problems that require more time

Complexity Class PSPACE

- $\pi \in \mathsf{PSPACE}$ iff
 - \blacksquare π is a decision problem
 - π can be solved in polynomial space by a TM
- $\pi \in \mathsf{PSPACE}\text{-Hard iff}$
 - all problems in PSPACE can be reduced to π in polynomial time
- $\pi \in \mathsf{PSPACE}\text{-}\mathsf{Complete}$ iff
 - $\pi \in \mathsf{PSPACE}$ and $\pi \in \mathsf{PSPACE}$ -Hard

A Glimpse of the Wider Complexity Landscape

Trantable and Intractable Problems

Class	Computational model M	Time/Space requirement	Example(s)
L	TM	$\operatorname{spacereq}(M) \in O(\log n)$	Majority
NL	NDTM	$\operatorname{spacereq}(M) \in O(\log n)$	Path existence
Р	TM	$\operatorname{timereq}(M) \in O(n^k)$	Sorting, SSSP, APSP
NP	NDTM	$\operatorname{timereq}(M) \in O(n^k)$	TSP, Sudoku
PSPACE	TM	$\operatorname{spacereq}(M) \in O(n^k)$	Mahjong, Reversi
EXP	TM	$\operatorname{timereq}(M) \in O(2^{(n^k)})$	Chess, Checkers, Go
NEXP	NDTM	$\operatorname{timereq}(M) \in O(2^{(n^k)})$	
EXPSPACE	TM	$\operatorname{spacereq}(M) \in O(2^{(n^k)})$	

A Glimpse of the Wider Complexity Landscape

- PSPACE = NPSPACE
- EXPSPACE = NEXPSPACE
- $NL \subseteq P \subseteq NP \subseteq PSPACE$
- PSPACE \subseteq EXP \subseteq EXPSPACE
- NL ⊂ PSPACE ⊂ EXPSPACE
- ightharpoonup P \subset EXP

Thank you!

References

Rich, E. (2008).

Automata, computability and complexity: theory and applications.

Savitch, W. J. (1970).

Relationships between nondeterministic and deterministic tape complexities. Journal of computer and system sciences, 4(2):177–192.