2.19 Consider an endomorphism $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ whose transformation matrix (with respect to the standard basis in \mathbb{R}^3) is

$$\mathbf{A}_{\Phi} = \left[egin{array}{ccc} 1 & 1 & 0 \ 1 & -1 & 0 \ 1 & 1 & 1 \end{array}
ight]$$

a. Determine $ker(\Phi)$ and $Im(\Phi)$.

Solution.

 $ker(\Phi)$ is the solution space of $\mathbf{A}_{\Phi}\mathbf{x} = \mathbf{0}$ and $Im(\Phi)$ is the column space of \mathbf{A}_{Φ} .

$$Im(\Phi) = \mathrm{span} \; \left[\left[\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right], \left[\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right], \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right] \right]$$

To find the kernel, we get reduced row echelon form of \mathbf{A}_{Φ} :

$$\begin{bmatrix}
1 & 1 & 0 \\
1 & -1 & 0 \\
1 & 1 & 1
\end{bmatrix} -R_1$$

$$\Longrightarrow ker(\mathbf{A}_{\Phi}) = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right\}$$

b. Determine the transformation matrix $\tilde{\mathbf{A}}_{\Phi}$ with respect to the basis

$$B = \left(\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \right),$$

i.e., perform a basis change toward the new basis B.

Solution.

From 2.113 in the book, we know that

$$\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S}$$

Here, T is a transformation matrix that maps coordinates w.r.t basis

B onto coordinates w.r.t standard basis, and S is a transformation matrix that maps coordinates w.r.t basis B onto coordinates w.r.t standard basis. So, S = T.

Let $\tilde{\mathbf{B}}$ be the matrix formed by the basis vectors of B such that

$$\tilde{\mathbf{B}} = \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{array} \right]$$

Let $\hat{\mathbf{x}}$ represent the coordinates w.r.t standard basis and $\hat{\mathbf{y}}$ represent the coordinates w.r.t B.

Then,

$$\mathbf{I}_3\hat{\mathbf{x}} = \tilde{\mathbf{B}}\hat{\mathbf{y}}$$

$$\Longrightarrow \hat{\mathbf{x}} = \tilde{\mathbf{B}}\hat{\mathbf{y}}$$

This implies that $\tilde{\mathbf{B}}$ is the transformation matrix that maps coordinates w.r.t basis B (represented by $\hat{\mathbf{y}}$) onto coordinates w.r.t standard basis (represented by $\hat{\mathbf{x}}$).

$$\Longrightarrow \mathbf{T} = \tilde{\mathbf{B}} = \mathbf{S}$$

To find \mathbf{T}^{-1} , we can perform Gauss-Jordan reduction to convert the left side of $[\mathbf{T}|\mathbf{I}_3]$ to \mathbf{I}_3 .

$$\left[\begin{array}{ccc|cccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 0 & 1
\end{array}\right] -R_1$$

$$\Longrightarrow \mathbf{T}^{-1} = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix}$$

Therefore,

$$\tilde{\mathbf{A}}_{\Phi} = \mathbf{T}^{-1} \mathbf{A}_{\Phi} \mathbf{S} = \begin{bmatrix} 0 & -1 & 2 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 9 & 1 \\ -3 & -5 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$

$$\tilde{\mathbf{A}}_{\Phi} = \begin{bmatrix} 6 & 9 & 1 \\ -3 & -5 & 0 \\ -1 & -1 & 0 \end{bmatrix}$$