

딥러닝 시작하기

01 퍼셉트론

딥러닝에 대한 전반적인 이해

딥러닝을 처음 접하는 사람에게 퍼셉트론부터 CNN, RNN 까지 딥러닝에 대한 전반적인 내용을 학습

이미지 및 자연어 처리를 위한 딥러닝 모델 학습

이미지 및 자연어 데이터를 다루기 위한 전 처리 방식과 딥러닝 모델을 학습

파이썬 기반 딥러닝 코딩 능력

이론적인 딥러닝뿐만 아니라 코딩으로 수행할 수 있는 능력을 함양

커리큘럼

○ 퍼셉트론

인공 신경망으로 알려진 딥러닝의 개념을 이해하고 신경망의 가장 기본 단위인 퍼셉트론에 대해서 학습합니다.

텐서플로우와 신경망

가장 많이 사용되고 있는 딥러닝 프레임워크인 텐서플로우 사용법을 익히고 신경망을 구현하는 것을 학습합니다.

커리큘럼

○ 다양한 신경망

이미지 및 자연어 처리에서 사용하는 CNN, RNN 모델에 대해서 학습합니다.

딥러닝 입문자!

딥러닝의 원리부터 구현까지 전반적인 내용을 학습합니다.

이미지 및 자연어 데이터 처리에 관심 있는 사람

이미지 및 자연어 처리를 위한 데이터 처리 및 딥러닝 모델을 학습합니다.

직접 코딩하며 배우고 싶은 사람

이론뿐만 아니라 코딩으로 직접 딥러닝을 수행하며 학습할 수 있습니다.

- 01. 딥러닝 개론
- 02. 퍼셉트론(Perceptron)
- 03. 다층 퍼셉트론

딥러닝 개론

Confidential all rights reserved

❷ 인공지능, 머신러닝, 딥러닝의 관계

인공지능 (Artificial Intelligence) 머신러닝 (Machine Learning) 딥러닝 (Deep Learning)

01 딥러닝 개론

머신러닝의 여러 방법론 중 하나

인공신경망에 기반하여 컴퓨터에게 사람의 사고방식을 가르치는 방법 01 딥러닝 개론 /* elice */

❷ 인공신경망이란

생물학의 신경망에서 영감을 얻은 학습 알고리즘 사람의 신경 시스템을 모방함 01 딥러닝 개론 /* elice */

❷ 인공신경망이란

생물학의 신경망에서 영감을 얻은 학습 알고리즘 사람의 신경 시스템을 모방함 01 딥러닝 개론

❷ 현대의 다양한 딥러닝 기술 적용 사례

얼굴 인식 카메라

기계 번역 모델

알파고 제로

퍼셉트론(Perceptron)

Confidential all rights reserved

❷ 신경망 이전의 연구

얼굴 인식

```
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 5 6 7 8 9
```

숫자 및 문자 인식

☑ 1958년 초기 신경망 퍼셉트론의 등장

♥ 초기 형태의 신경망, 퍼셉트론

☑ 퍼셉트론의 기본 구조

변수	의미		
x_1, x_2	입력 값		
W_1, W_2	가중치		
w_0	bias		
y	출력 값		
$y = activation(w_0 + w_1x_1 + w_2x_2)$			

활성화 함수(Activation function)

$$activation(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

엘리스 학습 여부를 예측하기 위한 데이터

오늘 나온 신작 드라마 수 (X_1)	확보한 여가 시간 (X ₂)	엘리스 학습 여부 (Y)	
2	4	1	
5	4	1	
7	1	0	
3	0	0	
0	2	1	
4	1 0		
• •	• • •	•	

X_1	X_2	Y	
2	4	1	
5	4	1	
7	1	0	
3	0	0	
0	2	1	
4	1	0	
•	•	•	

퍼셉트론 모델

$$w_0$$
: -5, w_1 : -1, w_2 : 5

X_1	X_2	$w_0 + w_1 X_1 + w_2 X_2$	예측 <i>Y</i>	Y
2	4	-5+(-2)+20=13	1	1
5	4	-5+(-5)+20=10	1	1
7	1	-5+(-7)+5=-7	0	0
3	0	-5+(-3)+0=-8	0	0
0	2	-5+0+10=5	1	1
4	1	-5+(-4)+5=-4	0	0
•	•	• •	•	•

☑ 퍼셉트론를 활용한 선형 분류기

퍼셉트론은 선형 분류기로써 데이터 분류 가능함

♥ 하나의 선으로 분류 할 수 없는 문제의 등장

강아지와 고양이를 분류하는 문제

Confidential all rights reserved

☑ 1986년 첫 번째 빙하기의 끝

♥ 비 선형적인 문제 해결

단층 퍼셉트론은 입력층과 출력층만 존재

☑ 단층 퍼셉트론을 여러 층으로 쌓아보기

☑ 다층 퍼셉트론(Multi Layer Perceptron)

이렇게 단층 퍼셉트론을 여러 개 쌓은 것을 다층 퍼셉트론(Multi Layer Perceptron)이라고 부름

히든층(Hidden Layer)

입력층과 출력층 사이의 모든 Layer

♥ 히든층의 개수와 딥러닝

히든층이 많아진다면,

깊은 신경망이라는 의미의 Deep Learning 단어 사용

크레딧

/* elice */

코스 매니저 이해솔

콘텐츠 제작자 이해솔

강사 이해솔

감수자

_

디자이너 강혜정

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

