

Towards Good Practices for Recognition & Detection

Qiaoyong Zhong, Chao Li, Yingying Zhang, Haiming Sun Shicai Yang, Di Xie, Shiliang Pu

{zhongqiaoyong, sunhaiming, yangshicai, xiedi}@hikvision.com

Hikvision Research Institute

October 9, 2016

Team Members

Scene Classification:

Shicai Yang

Scene Parsing:

- Haiming Sun
- Di Xie

DET + LOC:

- Qiaoyong Zhong
- Chao Li
- Yingying Zhang
- Di Xie

Summary of Our Submissions

Scene Classification

- 1st place, 0.0901 top5 error

Scene Parsing

- 7th place, 0.53335 average mIoU & pixel accuracy

Object Detection

- 2nd place, 0.653 mAP

Object Localization

- 2nd place, 0.0874 localization error

Data Augmentation

- Color Augmentation (directly adopted from [1])
- PCA Jittering (from [2])
- Random Image Interpolation
- Crop Sampling
 - scale jittering (from [3][4])
 - scale and aspect ratio augmentation (from [5])
 - random area ratio (a = [0.08, 1])
 - random aspect ratio (s = [3/4, 4/3])
 - crop size: $W' = sqrt(W^*H^*a^*s)$; $H' = sqrt(W^*H^*a/s)$
 - random offset to pick crop center, then crop and resize

Supervised Data Augmentation

- [1] https://github.com/facebook/fb.resnet.torch/
- [2] A. Krizhevsky, et al. ImageNet Classification with Deep Convolutional Neural Networks. NIPS, 2012.
- [3] K. Simonyan, et al. Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015.
- [4] K. He, et al. Deep Residual Learning for Image Recognition. CVPR, 2016.
- [5] C. Szegedy, et al. Going Deeper with Convolutions. CVPR, 2015.

Supervised Data Augmentation (SDA)

- train a model from scratch (coarse model)
- use coarse model to generate ground truth class activation
- randomly select a location based on prob. of target class
- map this location to original image
- randomly select a crop center near that location in original image
- other steps are similar with the method in GoogLeNet paper

Inspired by: [6] B. Zhou, et al. Learning Deep Features for Discriminative Localization. CVPR, 2016.

Supervised Data Augmentation (SDA)

- train a model from scratch (coarse model)
- use coarse model to generate ground truth class activation
- randomly select a location based on prob. of target class
- map this location to original image
- randomly select a crop center near that location in original image
- other steps are similar with the method in GoogLeNet paper

Randomly Selected Crop:

Original (in red)

SDA (in green)

ima000

Imbalanced Class Problem

Balanced Sampling via Label Shuffling

	3. randperm		5.	selecting		6. concat	& shuffling			
	1. sor	ting	2. counting	4		4	img009		img003	1
			1	1		1	img006		img003	1
4	img009	2	\	0		0	img005		img008	2
3	img008	2	\	2	4. mod	2	img007		img005	2
2	img007	2	-K3 = #C2 = 5	3		3	img008		img001	0
1	img006	2	1	3		1	img004		img009	2
0	img005	2]	0		0	img003		img000	0
1	img004	1	K2 = #C1 = 2	4	ightharpoonup	0	img003	-	img004	1
0	img003	1		1		1	img004		img007	2
2	img002	0]	2		0	img003		img002	0
1	img001	0	-K1 = #C0 = 3	3		0	img000		img003	1
0	img000	0		1		1	img001		img001	0
id	name	label		2		2	img002		img006	2
			1	4		1	img001		img004	1
				101		U	i ii iigooo j		iiiigooo	U

0 ima000 l

[7] L. Shen, et al. Relay Backpropagation for Effective Learning of Deep Convolutional Neural Networks. ECCV, 2016.

label smoothing (LS) via prior label distribution

labels of similar classes used for label smoothing

[8] C. Szegedy, et al. Rethinking the Inception Architecture for Computer Vision. CVPR, 2016.

- Train and Test in Harmony
 - train in the same way as you test
 - remove augmentation for the last several epochs (+0.3%)
 - test in the same way as you train
 - test 32 random crops from scale and ratio augmentation (+0.3%)
 - multi-scale testing over multi-scale training
 - use checkpoints from the middle of training to avoid overfitting (+0.3%)

Models

- Inception v3/Inception ResNet v2, and their variants
- Wider ResNet with 50/64 layers

Results

Scene Parsing

overall architecture for scene parsing

Scene Parsing

Parsing Results

images

ground truths

our results

Object Detection Elements

Cascade RPN

Constrained NEG/POS Anchor Ratio

Naïve RPN

- Batch size: 256
- Expected N/P ratio: 1
- Real N/P ratio: usually > 10

Our RPN

- Min batch size: 32
- Max N/P ratio: 1.5

Ablation Study						
Cascade RPN		\checkmark		\checkmark		
Constrained N/P			\checkmark	\checkmark		
Recall@0.5	91.0	91.2	92.0	91.9		
Recall@0.7	70.2	77.9	74.0	79.7		
Average Recall	52.5	57.2	54.6	57.9		

5.4 AR gain

9.5 Recall@0.7 gain

Pre-trained Global Context

3.8 mAP gain over baseline!

Pre-training on LOC

0.5 mAP gain over baseline!

Balanced Sampling

Adapted from Shen et al. [7] for detection task

Performance

ImageNet DET

	Team	mAP	Rank
Cingle Model	Hikvision	63.40	1
Single Model	CUImage	63.36	2
- Francisco de la composición dela composición de la composición dela composición de la composición de	CUImage	66.3	1
Ensemble	Hikvision	65.3	2

PASCAL VOC2012

Team	mAP	Rank
Hikvision	87.9	1
ResNet Baseline	83.8	2

ImageNet CLS-LOC

	CLS	LOC	Rank
LOC (Ensemble)	3.7	8.7	2

Take Home Message

Scene Classification

- better utilize your data and model (SDA)
- label smoothing via soft label
- balanced sampling via label shuffling
- train and test in harmony

Scene Parsing

Mixed Context Net & Message Passing Net

Object Detection

- use identity mapping
- cascade RPN
- constrained NEG/POS anchor ratio
- pre-trained global context
- balanced sampling

Object Localization

– LOC = CLS + DET

Acknowledgments

- We would like to thank our HPC team:
 - Peng Wang
 - Jianfeng Peng
 - Xing Zheng
 - Zhiqiang Zhou
 - etc...

Thank you!