Elementos de Cálculo Numérico/Cálculo Numérico

Clase 13

Primer Cuatrimestre 2021

Dada $f: \mathbb{R} \to \mathbb{R}$ queremos resolver

Dada $f: \mathbb{R} \to \mathbb{R}$ queremos resolver f(x) = 0

Dada $f: \mathbb{R} \to \mathbb{R}$ queremos resolver f(x) = 0

En general: si $f: \mathbb{R}^n \to \mathbb{R}^n$

Dada
$$f: \mathbb{R} \to \mathbb{R}$$
 queremos resolver $f(x) = 0$

En general: si
$$f:\mathbb{R}^n \to \mathbb{R}^n$$
 buscamos ${\boldsymbol x}=(x_1,\dots,x_n)$

$$\begin{cases} f_1(x_1, \dots, x_n) = 0 \\ \vdots \\ f_n(x_1, \dots, x_n) = 0 \end{cases}$$

Si en el intervalo $\left[a,b\right]$ que verifica $f(a)\,f(b)<0$ y f(x) es continua

Si en el intervalo [a,b] que verifica $f(a)\,f(b)<0$ y f(x) es continua Por el teorema de Bolzano:

Si en el intervalo [a,b] que verifica $f(a)\,f(b)<0$ y f(x) es continua Por el teorema de Bolzano: existe $x_*\in(a,b)$ solución de $f(x_*)=0$

Si en el intervalo [a,b] que verifica $f(a)\,f(b)<0$ y f(x) es continua Por el teorema de Bolzano: existe $x_*\in(a,b)$ solución de $f(x_*)=0$ Tomando $c=\frac{a+b}{2}$

Si en el intervalo [a,b] que verifica $f(a)\,f(b)<0$ y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

• Si
$$f(c) = 0$$

Si en el intervalo [a,b] que verifica f(a) f(b) < 0 y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

$$\blacksquare$$
 Si $f(c) = 0 \Rightarrow x_* = c$

Si en el intervalo [a,b] que verifica $f(a)\,f(b)<0$ y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

- $\bullet \mathsf{Si}\ f(c) = 0 \Rightarrow x_* = c$
- Si f(a) f(c) < 0

Si en el intervalo [a,b] que verifica f(a) f(b) < 0 y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

- $\bullet \mathsf{Si}\ f(c) = 0 \Rightarrow x_* = c$
- Si $f(a) f(c) < 0 \Rightarrow a = a, b = c$

Si en el intervalo [a,b] que verifica f(a) f(b) < 0 y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

- \blacksquare Si $f(c) = 0 \Rightarrow x_* = c$
- Si $f(a) f(c) < 0 \Rightarrow a = a, b = c$
- Si f(a) f(c) > 0

Si en el intervalo [a,b] que verifica f(a) f(b) < 0 y f(x) es continua

Tomando
$$c = \frac{a+b}{2}$$

- \blacksquare Si $f(c) = 0 \Rightarrow x_* = c$
- Si $f(a) f(c) < 0 \Rightarrow a = a, b = c$
- Si $f(a) f(c) > 0 \Rightarrow a = c, b = b$

Método de bisección: ejemplo

Si
$$f(x) = 1.75 x^3 - 3 x - 1$$
, $[a, b] = [-2, 2]$

Método de bisección: ejemplo

Si
$$f(x) = 1.75 x^3 - 3 x - 1$$
, $[a, b] = [-2, 2]$

Se verifica $f(-2) < 0 < f(2) \Rightarrow x_* = -1.09114, -0.360711, 1.45185$

Método de bisección: ejemplo

Si
$$f(x) = 1.75 x^3 - 3 x - 1$$
, $[a,b] = [-2,2]$
Se verifica $f(-2) < 0 < f(2) \Rightarrow x_* = -1.09114, -0.360711, 1.45185$

n	a	b	c
0	-2.00000	2.000 00	0.00000
1	0.00000	2.000 00	1.000 00
2	1.000 00	2.000 00	1.500 00
3	1.000 00	1.500 00	1.250 00
4	1.250 00	1.500 00	1.375 00
5	1.375 00	1.500 00	1.437 50
6	1.437 50	1.500 00	1.46875
7	1.437 50	1.468 75	1.453 13
8	1.437 50	1.453 13	1.445 31
9	1.445 31	1.453 13	1.449 22

Paso
$$n$$
: $b_n - a_n = 2^{-n} (b_0 - a_0)$

Paso
$$n$$
: $b_n - a_n = 2^{-n} (b_0 - a_0)$

Ejemplo: si
$$n=10$$
, $b_n-a_n\cong 0.001\,(b_0-a_0)$

Paso
$$n$$
: $b_n - a_n = 2^{-n} (b_0 - a_0)$

Ejemplo: si
$$n = 10$$
, $b_n - a_n \cong 0.001 (b_0 - a_0)$

En cada paso hay que evaluar una vez f(x)

Paso
$$n$$
: $b_n - a_n = 2^{-n} (b_0 - a_0)$

Ejemplo: si
$$n = 10$$
, $b_n - a_n \cong 0.001 (b_0 - a_0)$

En cada paso hay que evaluar una vez f(x)

El método converge pero muy lento

Se parte de un punto x_0

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0$$

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Continuamos con x_1 :

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Continuamos con x_1 :

$$f(x_1) + f'(x_1)(x_2 - x_1) = 0$$

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Continuamos con x_1 :

$$f(x_1) + f'(x_1)(x_2 - x_1) = 0 \Longrightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Continuamos con x_1 :

$$f(x_1) + f'(x_1)(x_2 - x_1) = 0 \Longrightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

En forma iterativa:

Se parte de un punto $x_0 \Longrightarrow x_1$ anula la recta tangente

$$f(x_0) + f'(x_0)(x_1 - x_0) = 0 \Longrightarrow x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Continuamos con x_1 :

$$f(x_1) + f'(x_1)(x_2 - x_1) = 0 \Longrightarrow x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

En forma iterativa: $x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}$

Ecuación: $e^x = 45$

Ecuación: $e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$

Ecuación:
$$e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$$

$$\mathsf{Si}\ f(x) = e^x - 45$$

Ecuación:
$$e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$$

Si
$$f(x) = e^x - 45 \implies f'(x) = e^x$$

Ecuación:
$$e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$$

Si
$$f(x) = e^x - 45 \implies f'(x) = e^x$$

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{e^{x_{n-1}} - 45}{e^{x_{n-1}}} = x_{n-1} - 1 + 45e^{-x_{n-1}}$$

Ecuación:
$$e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$$

Si
$$f(x) = e^x - 45 \implies f'(x) = e^x$$

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{e^{x_{n-1}} - 45}{e^{x_{n-1}}} = x_{n-1} - 1 + 45e^{-x_{n-1}}$$

Error del paso n: $\epsilon = x_* - x_n$

Ecuación:
$$e^x = 45 \implies x_* = \ln 45 \cong 3.8066624898$$

Si
$$f(x) = e^x - 45 \implies f'(x) = e^x$$

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})} = x_{n-1} - \frac{e^{x_{n-1}} - 45}{e^{x_{n-1}}} = x_{n-1} - 1 + 45e^{-x_{n-1}}$$

Error del paso n: $\epsilon = x_* - x_n$

n	x_n	ϵ_n	$\epsilon_n/\epsilon_{n-1}^2$
0	6.000 000 000 0	-2.193	
1	5.111 543 847 9	-1.305	-0.271
2	4.382 748 557 3	-0.576	-0.338
3	3.944 842 622 4	-0.138	-0.416
4	3.815 784 415 0	-0.912×10^{-2}	-0.478
5	3.806 703 968 3	-0.415×10^{-4}	-0.498
6	3.806 662 490 6	-0.860×10^{-9}	-0.500

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

$$c_1 = \min_{x \in [x_* - r, x_* + r]} |f'(x)|$$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

$$c_1 = \min_{x \in [x_* - r, x_* + r]} |f'(x)|$$

$$c_2 = \max_{x \in [x_* - r, x_* + r]} |f''(x)|$$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0| < r \quad \mathsf{y} \quad c_2 \, r \le 2 \, c_1$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0| < r \quad \mathsf{y} \quad c_2 \, r \le 2 \, c_1$

Entonces:

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0| < r \quad \text{y} \quad c_2 \, r \le 2 \, c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0| < r \quad \mathsf{y} \quad c_2 \, r \le 2 \, c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$, $|\epsilon_n| \to 0$

Existe ξ en el intervalo que contiene a x_* y x_{n-1}

$$\epsilon_n = -\frac{f''(\xi)}{2f'(x_{n-1})}\epsilon_{n-1}^2$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0| < r \quad \mathsf{y} \quad c_2 \, r \le 2 \, c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$, $|\epsilon_n| \to 0$ y $\frac{|\epsilon_n|}{|\epsilon_{n-1}|^2} \to \left| \frac{f''(x_*)}{2f'(x_*)} \right|$

$$f(x) = \tanh(x) - 0.25$$

$$f(x) = \tanh(x) - 0.25 \Longrightarrow \text{solución } x = 0.255413$$

$$f(x) = \tanh(x) - 0.25 \Longrightarrow \text{solución } x = 0.255413$$

$$f(x) = \tanh(x) - 0.25 \Longrightarrow \text{solución } x = 0.255413$$

n	x_n	ϵ_n	$\epsilon_n/\epsilon_{n-1}^2$
0	1.200 000	-0.944587	
1	-0.713496	0.968 909	1.085 920
2	0.668 420	-0.413007	-0.439938
3	0.161 694	$0.937186 imes 10^{-1}$	0.549 427
4	0.253760	$0.165250 imes 10^{-2}$	0.188 144
5	0.255 412	$0.679682 imes 10^{-6}$	0.248 899
6	0.255 413	0.115519×10^{-12}	0.250 058

$$f(x) = \tanh(x) - 0.25 \Longrightarrow \text{solución } x = 0.255413$$

n	x_n	ϵ_n	$\epsilon_n/\epsilon_{n-1}^2$
0	1.200 000	-0.944587	
1	-0.713496	0.968 909	1.085 920
2	0.668 420	-0.413007	-0.439938
3	0.161694	$0.937186 imes 10^{-1}$	0.549 427
4	0.253 760	$0.165250 imes 10^{-2}$	0.188 144
5	0.255 412	0.679682×10^{-6}	0.248 899
6	0.255 413	0.115519×10^{-12}	0.250 058

$$\frac{f''(x)}{2f'(x)} = -\tanh(x)$$

$$f(x) = \tanh(x) - 0.25 \Longrightarrow \text{solución } x = 0.255413$$

n	x_n	ϵ_n	$\epsilon_n/\epsilon_{n-1}^2$
0	1.200 000	-0.944587	
1	-0.713496	0.968 909	1.085 920
2	0.668 420	-0.413007	-0.439938
3	0.161694	$0.937186 imes 10^{-1}$	0.549 427
4	0.253 760	$0.165250 imes 10^{-2}$	0.188 144
5	0.255 412	0.679682×10^{-6}	0.248 899
6	0.255 413	0.115519×10^{-12}	0.250 058

$$\frac{f''(x)}{2f'(x)} = -\tanh(x) \Longrightarrow \frac{f''(x_*)}{2f'(x_*)} = -\tanh(x_*) = -0.25$$

$$f(x) = \tanh(x) - 0.25$$

$$f(x) = \tanh(x) - 0.25$$

$$f(x) = \tanh(x) - 0.25$$

$$x_1 = -1.01592$$

$$f(x) = \tanh(x) - 0.25$$

- $x_1 = -1.01592$
- $x_2 = 1.4683$

$$f(x) = \tanh(x) - 0.25$$

- $x_1 = -1.01592$
- $x_2 = 1.4683$
- $x_3 = -1.92482$

$$f(x) = \tanh(x) - 0.25$$

- $x_1 = -1.01592$
- $x_2 = 1.4683$
- $x_3 = -1.92482$
- $x_4 = 12.8762$

$$f(x) = \tanh(x) - 0.25$$

- $x_1 = -1.01592$
- $x_2 = 1.4683$
- $x_3 = -1.92482$
- $x_4 = 12.8762$
- $x_5 = -2.86493 \times 10^{10}$

$$f(x) = \tanh(x) - 0.25$$

- (a) Iteraciones a partir de $x_0 = 1.2$.
- (b) Iteraciones a partir de $x_0 = 1.285$.

Condiciones suficientes

Condiciones suficientes

Condiciones suficientes

• f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)

Condiciones suficientes

- f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)
- $\blacksquare x_*$ no es mínimo de f(x)

Condiciones suficientes

- f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)
- $\blacksquare x_*$ no es mínimo de f(x)
- $\blacksquare x_0$ no es mínimo de f(x)

Condiciones suficientes

- f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)
- $\blacksquare x_*$ no es mínimo de f(x)
- $\blacksquare x_0$ no es mínimo de f(x)

 x_n converge a x_* solución de f(x) = 0

Condiciones suficientes

- f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)
- $\blacksquare x_*$ no es mínimo de f(x)
- $\blacksquare x_0$ no es mínimo de f(x)

 x_n converge a x_* solución de f(x) = 0

Si
$$x_0 > x_1 > x_*$$

Condiciones suficientes

- f''(x) > 0 (f''(x) < 0) $\Longrightarrow f(x)$ estrictamente convexa (cóncava)
- $\blacksquare x_*$ no es mínimo de f(x)
- $\blacksquare x_0$ no es mínimo de f(x)

 x_n converge a x_* solución de f(x) = 0

Si $x_0 > x_1 > x_* \implies x_n$ decrece a x_*

Método de punto fijo: ejemplo

La ecuación $0 = x^2 - 4$ tiene soluciones:

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

La ecuación $0=x^2-4$ tiene soluciones: $x=\pm 2$

Es equivalente a:

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

Si $x_0 = 1.9$, las iteraciones sucesivas resultan:

 $x_1 = 1.51$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

- $x_1 = 1.51$
- $x_2 = -0.2099$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

- $x_1 = 1.51$
- $x_2 = -0.2099$
- $x_3 = -4.16584$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

- $x_1 = 1.51$
- $x_2 = -0.2099$
- $x_3 = -4.16584$
- $x_4 = 9.1884$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

- $x_1 = 1.51$
- $x_2 = -0.2099$
- $x_3 = -4.16584$
- $x_4 = 9.1884$
- $x_5 = 89.615$

La ecuación $0 = x^2 - 4$ tiene soluciones: $x = \pm 2$

Es equivalente a: $x = \phi_1(x) = x^2 + x - 4$

- $x_1 = 1.51$
- $x_2 = -0.2099$
- $x_3 = -4.16584$
- $x_4 = 9.1884$
- $x_5 = 89.615$
- $x_6 = 8116.47$

La ecuación $0=x^2-4$ es equivalente a

La ecuación $0=x^2-4$ es equivalente a $x=\phi_2(x)=\left(x^2/2+2\right)^{1/2}$

La ecuación $0=x^2-4$ es equivalente a $x=\phi_2(x)=\left(x^2/2+2\right)^{1/2}$

n	x_n	ϵ_n	$\epsilon_n/\epsilon_{n-1}$
0	8.000 00	-6.00000	
2	4.358 90	-2.35890	0.615 747
4	2.78388	-0.78388	0.563 472
6	2.222 05	-0.22205	0.523 897
8	2.057 76	$-0.57759 imes 10^{-1}$	0.506 923
10	2.01460	$-0.14595 imes 10^{-1}$	0.501 805
12	2.003 66	$-0.36588 imes 10^{-2}$	0.500 456
14	2.000 92	-0.91532×10^{-3}	0.500 114
16	2.000 23	-0.22887×10^{-3}	0.500 029
18	2.000 06	$-0.57219 imes 10^{-4}$	0.500 007
20	2.000 01	-0.14305×10^{-4}	0.500 002

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y \in [a,b]$ entonces $|\phi(x)-\phi(y)| \leq \gamma |x-y|$, con $0 \leq \gamma < 1$

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

■ Hay un único punto fijo $x_* \in [a,b]$

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

■ Hay un único punto fijo $x_* \in [a,b] \Longrightarrow \phi(x_*) = x_*$

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

- Hay un único punto fijo $x_* \in [a,b] \Longrightarrow \phi(x_*) = x_*$
- lacksquare Para cualquier $x_0 \in [a,b]$, la sucesión $x_1 = \phi(x_0), \dots, x_n = \phi(x_{n-1})$

$$|x_* - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0| \to 0$$

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

- Hay un único punto fijo $x_* \in [a,b] \Longrightarrow \phi(x_*) = x_*$
- lacksquare Para cualquier $x_0 \in [a,b]$, la sucesión $x_1 = \phi(x_0), \dots, x_n = \phi(x_{n-1})$

$$|x_* - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0| \to 0$$

$$\max_{x \in [a,b]} |\phi'(x)| = \gamma$$

Si $\phi:[a,b]\to\mathbb{R}$ satisface las condiciones:

- **1** Si $x \in [a, b]$, entonces $\phi(x) \in [a, b]$
- 2 Si $x,y\in [a,b]$ entonces $|\phi(x)-\phi(y)|\leq \gamma\,|x-y|$, con $0\leq \gamma <1$

verifica:

- Hay un único punto fijo $x_* \in [a,b] \Longrightarrow \phi(x_*) = x_*$
- lacksquare Para cualquier $x_0 \in [a,b]$, la sucesión $x_1 = \phi(x_0), \dots, x_n = \phi(x_{n-1})$

$$|x_* - x_n| \le \frac{\gamma^n}{1 - \gamma} |x_1 - x_0| \to 0$$

 $\max_{x \in [a,b]} |\phi'(x)| = \gamma \Longrightarrow \text{la condición 2}$

$$R_n = \phi(R_{n-1}) = r_1 + \frac{r_2 R_{n-1}}{r_2 + R_{n-1}}$$

$$R_n = \phi(R_{n-1}) = r_1 + \frac{r_2 R_{n-1}}{r_2 + R_{n-1}} \Longrightarrow R_* = \frac{r_1 + \sqrt{r_1^2 + 4 r_1 r_2}}{2}$$

$$R_n = \phi(R_{n-1}) = r_1 + \frac{r_2 R_{n-1}}{r_2 + R_{n-1}} \Longrightarrow R_* = \frac{r_1 + \sqrt{r_1^2 + 4 r_1 r_2}}{2}$$

$$\phi: [r_1, r_1 + r_2] \to [r_1, r_1 + r_2]$$

$$R_n = \phi(R_{n-1}) = r_1 + \frac{r_2 R_{n-1}}{r_2 + R_{n-1}} \Longrightarrow R_* = \frac{r_1 + \sqrt{r_1^2 + 4 r_1 r_2}}{2}$$

$$\phi: [r_1, r_1 + r_2] \to [r_1, r_1 + r_2] \text{ y } |\phi'(r)| \le \left(\frac{r_2}{r_1 + r_2}\right)^2 < 1$$

Similar al método de Newton usando aproximación por interpolación

Similar al método de Newton usando aproximación por interpolación

$$f(x_{n-1}) + \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}} (x - x_{n-1}) = 0$$

Similar al método de Newton usando aproximación por interpolación

$$f(x_{n-1}) + \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}} (x - x_{n-1}) = 0$$

Despejando:

Similar al método de Newton usando aproximación por interpolación

$$f(x_{n-1}) + \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}} (x - x_{n-1}) = 0$$

Despejando:
$$x_n = \frac{x_{n-2} f(x_{n-1}) - x_{n-1} f(x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

Similar al método de Newton usando aproximación por interpolación

$$f(x_{n-1}) + \frac{f(x_{n-1}) - f(x_{n-2})}{x_{n-1} - x_{n-2}} (x - x_{n-1}) = 0$$

Despejando:
$$x_n = \frac{x_{n-2} f(x_{n-1}) - x_{n-1} f(x_{n-2})}{f(x_{n-1}) - f(x_{n-2})}$$

Método de la secante: error

Si $\epsilon_n = x_* - x_n$, el error verifica:

Método de la secante: error

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

$$c_1 = \min_{x \in [x_* - r, x_* + r]} |f'(x)|$$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

$$c_1 = \min_{x \in [x_* - r, x_* + r]} |f'(x)|$$

$$c_2 = \max_{x \in [x_* - r, x_* + r]} |f''(x)|$$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0|, |\epsilon_1| < r \quad \mathsf{y} \quad c_2 \, r \le 2 \, c_1$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0|, |\epsilon_1| < r \text{ y } c_2 r \le 2 c_1$

Entonces:

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0|, |\epsilon_1| < r \text{ y } c_2 r \le 2 c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0|, |\epsilon_1| < r \text{ y } c_2 r \le 2 c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$, $|\epsilon_n| \to 0$

Si $\epsilon_n = x_* - x_n$, el error verifica:

$$\epsilon_n = -\frac{f''(\xi_{n-1})}{2f[x_{n-1}, x_{n-2}]} \epsilon_{n-1} \epsilon_{n-2}$$

Si r > 0 verifica

- $c_1 = \min_{x \in [x_* r, x_* + r]} |f'(x)|$
- $c_2 = \max_{x \in [x_* r, x_* + r]} |f''(x)|$
- $|\epsilon_0|, |\epsilon_1| < r \text{ y } c_2 r \le 2 c_1$

Entonces: $x_n \in [x_* - r, x_* + r]$, $|\epsilon_n| \to 0$ y $\frac{|\epsilon_n|}{|\epsilon_{n-1}|^{\varphi}} \to \left| \frac{f''(x^*)}{2 f'(x^*)} \right|^{\varphi - 1}$

Método de la secante: ejemplo

$$f(x) = e^x - 45$$
, $x_0 = 6$, $x_1 = 5$

n	x_n	ϵ_n	$ \epsilon_n / \epsilon_{n-1} ^{\varphi}$
0	6.000 000 000 0	-2.193	
1	5.0000000000	-1.193	0.335
2	4.594 483 062 4	-0.788	0.592
3	4.152 404 516 2	-0.346	0.509
4	3.919 965 344 9	-0.113	0.632
5	3.8248131138	-0.182×10^{-1}	0.615
6	3.807 668 397 8	$ -0.101 \times 10^{-2}$	0.660
7	3.806 671 589 6	-0.910×10^{-5}	0.644
8	3.806 662 494 3	-0.458×10^{-8}	0.656
9	3.806 662 489 8	-0.209×10^{-13}	0.650

Método de la secante: ejemplo

$$f(x) = e^x - 45$$
, $x_0 = 6$, $x_1 = 5$

n	x_n	ϵ_n	$ \epsilon_n / \epsilon_{n-1} ^{\varphi}$
0	6.000 000 000 0	-2.193	
1	5.000 000 000 0	-1.193	0.335
2	4.594 483 062 4	-0.788	0.592
3	4.152 404 516 2	-0.346	0.509
4	3.919 965 344 9	-0.113	0.632
5	3.8248131138	-0.182×10^{-1}	0.615
6	3.807 668 397 8	-0.101×10^{-2}	0.660
7	3.806 671 589 6	-0.910×10^{-5}	0.644
8	3.806 662 494 3	-0.458×10^{-8}	0.656
9	3.806 662 489 8	-0.209×10^{-13}	0.650

$$\frac{f''(x)}{2f(x)} = 0.5$$

Método de la secante: ejemplo

$$f(x) = e^x - 45$$
, $x_0 = 6$, $x_1 = 5$

n	x_n	ϵ_n	$ \epsilon_n / \epsilon_{n-1} ^{\varphi}$
0	6.000 000 000 0	-2.193	
1	5.0000000000	-1.193	0.335
2	4.594 483 062 4	-0.788	0.592
3	4.152 404 516 2	-0.346	0.509
4	3.919 965 344 9	-0.113	0.632
5	3.8248131138	-0.182×10^{-1}	0.615
6	3.807 668 397 8	-0.101×10^{-2}	0.660
7	3.806 671 589 6	-0.910×10^{-5}	0.644
8	3.806 662 494 3	-0.458×10^{-8}	0.656
9	3.806 662 489 8	-0.209×10^{-13}	0.650

$$\frac{f''(x)}{2 f(x)} = 0.5 \Longrightarrow (0.5)^{\varphi - 1} = 0.651558$$

El número de oro

La ecuación: $x^2 - x - 1 = 0$

El número de oro

La ecuación:
$$x^2-x-1=0 \implies x=\frac{1\pm\sqrt{5}}{2}, \ \varphi=\frac{1+\sqrt{5}}{2}\cong 1.61803$$

El número de oro

$$\text{La ecuación: } x^2-x-1=0 \implies x=\frac{1\pm\sqrt{5}}{2}, \ \varphi=\frac{1+\sqrt{5}}{2}\cong 1.61803$$

Si n=2 planteamos

Si n=2 planteamos

$$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

Si n=2 planteamos

$$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

Desarrollo de Taylor de f_1, f_2 en $\boldsymbol{x}_0 = (x_{1,0}, x_{2,0})$

Si n=2 planteamos

$$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

Desarrollo de Taylor de f_1, f_2 en $\boldsymbol{x}_0 = (x_{1,0}, x_{2,0})$

$$\begin{cases} f_1(\boldsymbol{x}_0) + \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) (x_{1,1} - x_{1,0}) + \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) (x_{2,1} - x_{2,0}) = 0 \\ f_2(\boldsymbol{x}_0) + \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) (x_{1,1} - x_{1,0}) + \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) (x_{2,1} - x_{2,0}) = 0 \end{cases}$$

Si n=2 planteamos

$$\begin{cases} f_1(x_1, x_2) = 0 \\ f_2(x_1, x_2) = 0 \end{cases}$$

Desarrollo de Taylor de f_1, f_2 en $\boldsymbol{x}_0 = (x_{1,0}, x_{2,0})$

$$\begin{cases} f_1(\boldsymbol{x}_0) + \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) (x_{1,1} - x_{1,0}) + \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) (x_{2,1} - x_{2,0}) = 0 \\ f_2(\boldsymbol{x}_0) + \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) (x_{1,1} - x_{1,0}) + \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) (x_{2,1} - x_{2,0}) = 0 \end{cases}$$

Despejamos $x_1 = (x_{1,1}, x_{2,1})$ del sistema lineal

Si definimos

Si definimos
$$oldsymbol{u}_0 = oldsymbol{x}_1 - oldsymbol{x}_0$$
, $oldsymbol{b}_0 = f(oldsymbol{x}_0)$ y

$$Df(oldsymbol{u}_0) = \mathrm{A}_0 = egin{bmatrix} rac{\partial f_1}{\partial x_1}(oldsymbol{x}_0) & rac{\partial f_1}{\partial x_2}(oldsymbol{x}_0) \ rac{\partial f_2}{\partial x_1}(oldsymbol{x}_0) & rac{\partial f_2}{\partial x_2}(oldsymbol{x}_0) \end{pmatrix}$$

Si definimos
$$oldsymbol{u}_0 = oldsymbol{x}_1 - oldsymbol{x}_0$$
 , $oldsymbol{b}_0 = f(oldsymbol{x}_0)$ y

$$Df(\boldsymbol{u}_0) = A_0 = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) \end{bmatrix}$$

$$A_0.\boldsymbol{u}_0 + \boldsymbol{b}_0 = \boldsymbol{0} \text{ y } \boldsymbol{x}_1 = \boldsymbol{x}_0 + \boldsymbol{u}_0$$

Si definimos $oldsymbol{u}_0 = oldsymbol{x}_1 - oldsymbol{x}_0$, $oldsymbol{b}_0 = f(oldsymbol{x}_0)$ y

$$Df(\boldsymbol{u}_0) = A_0 = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) \end{bmatrix}$$

$$A_0.\boldsymbol{u}_0 + \boldsymbol{b}_0 = \boldsymbol{0} \text{ y } \boldsymbol{x}_1 = \boldsymbol{x}_0 + \boldsymbol{u}_0$$

En general:

Si definimos $oldsymbol{u}_0 = oldsymbol{x}_1 - oldsymbol{x}_0$, $oldsymbol{b}_0 = f(oldsymbol{x}_0)$ y

$$Df(\boldsymbol{u}_0) = A_0 = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) \end{bmatrix}$$

$$A_0.\boldsymbol{u}_0 + \boldsymbol{b}_0 = \mathbf{0} \text{ y } \boldsymbol{x}_1 = \boldsymbol{x}_0 + \boldsymbol{u}_0$$

En general: $\boldsymbol{b}_{n-1} = f(\boldsymbol{x}_{n-1})$

$$Df(\boldsymbol{x}_{n-1}) = \mathbf{A}_{n-1} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_{n-1}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_{n-1}) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_{n-1}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_{n-1}) \end{bmatrix}$$

Si definimos $oldsymbol{u}_0 = oldsymbol{x}_1 - oldsymbol{x}_0$, $oldsymbol{b}_0 = f(oldsymbol{x}_0)$ y

$$Df(\boldsymbol{u}_0) = A_0 = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_0) \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_0) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_0) \end{bmatrix}$$

$$A_0.\boldsymbol{u}_0 + \boldsymbol{b}_0 = \boldsymbol{0} \text{ y } \boldsymbol{x}_1 = \boldsymbol{x}_0 + \boldsymbol{u}_0$$

En general: $\boldsymbol{b}_{n-1} = f(\boldsymbol{x}_{n-1})$

$$Df(\boldsymbol{x}_{n-1}) = \mathbf{A}_{n-1} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\boldsymbol{x}_{n-1}) & \frac{\partial f_1}{\partial x_2}(\boldsymbol{x}_{n-1}) \\ \\ \frac{\partial f_2}{\partial x_1}(\boldsymbol{x}_{n-1}) & \frac{\partial f_2}{\partial x_2}(\boldsymbol{x}_{n-1}) \end{bmatrix}$$

 $\mathbf{A}_{n-1}.u_{n-1}+b_{n-1}=\mathbf{0}$ y $x_n=x_{n-1}+u_{n-1}$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

$$\begin{cases} f_1(x_1, x_2) = x_1^3 - 3x_1x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = 3x_1^2x_2 - x_2^3 = 0 \end{cases}$$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

$$\begin{cases} f_1(x_1, x_2) = x_1^3 - 3x_1x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = 3x_1^2x_2 - x_2^3 = 0 \end{cases}$$

Soluciones:

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

$$\begin{cases} f_1(x_1, x_2) = x_1^3 - 3x_1x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = 3x_1^2x_2 - x_2^3 = 0 \end{cases}$$

Soluciones : $(1,0), (-1/2, \sqrt{3}/2), (-1/2, -\sqrt{3}/2)$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

$$\begin{cases} f_1(x_1, x_2) = x_1^3 - 3x_1x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = 3x_1^2x_2 - x_2^3 = 0 \end{cases}$$

Soluciones : $(1,0), (-1/2, \sqrt{3}/2), (-1/2, -\sqrt{3}/2)$

$$Df(\mathbf{x}) = \begin{pmatrix} 3x_1^2 - 3x_2^2 & -6x_1x_2 \\ 6x_1x_2 & 3x_1^2 - 3x_2^2 \end{pmatrix}$$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

$$\begin{cases} f_1(x_1, x_2) = x_1^3 - 3x_1x_2^2 - 1 = 0 \\ f_2(x_1, x_2) = 3x_1^2x_2 - x_2^3 = 0 \end{cases}$$

Soluciones : $(1,0), (-1/2, \sqrt{3}/2), (-1/2, -\sqrt{3}/2)$

$$Df(\mathbf{x}) = \begin{pmatrix} 3x_1^2 - 3x_2^2 & -6x_1x_2 \\ 6x_1x_2 & 3x_1^2 - 3x_2^2 \end{pmatrix}$$

$$x_n = x_{n-1} - Df(x_{n-1})^{-1} \cdot f(x_{n-1})$$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

Ejemplo:
$$(x_1 + i x_2)^3 = 1$$

n	x_1	x_2	x_1	x_2	x_1	x_2
0	2.0	1.0	-2.0	1.0	-2.0	-1.0
1	1.3733	0.6133	-1.2933	0.72	-1.2933	-0.72
2	1.0139	0.2992	-0.7821	0.6093	-0.7821	-0.6093
3	0.9264	0.0375	-0.4384	0.7350	-0.4384	-0.7350
4	1.0041	-0.0063	-0.5085	0.8904	-0.5085	-0.8904
5	1.0	0.0	-0.5001	0.8666	-0.5001	-0.8667
6	1.0	0.0	-0.5	0.8660	-0.5	-0.8660

Región verde: puntos que convergen a (1,0)

Región verde: puntos que convergen a $\left(1,0\right)$

Región azul: puntos que convergen a (-0.5, 0.8660)

Región verde: puntos que convergen a (1,0)

Región azul: puntos que convergen a $\left(-0.5, 0.8660\right)$

Región roja: puntos que convergen a (-0.5, -0.8660)

Región verde: puntos que convergen a (1,0)

Región azul: puntos que convergen a $\left(-0.5, 0.8660\right)$

Región roja: puntos que convergen a (-0.5, -0.8660)

