This document was typeset by using SATySF_I.

Italics correction and kerning: $(F^n)(F) = \left(G\frac{Mm}{R^2}\right)^{n+1}$, Big math: $\left(\frac{\left(\frac{A}{B}+C\right)}{D^{(n-1)}}\right)$, parentheses: $\left(\left((A)+B\right)+C\right)$, $\left\{\left\{\{A\}+B\right\}+C\right\}$, radical: $2\sqrt{3}+\frac{2}{\sqrt{5}}+\frac{1}{\sqrt{x^2+1}}$. The solution of the equation $ax^2+bx+c=0$ as to x is $x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$. Multiplex radicals: $\sqrt{\sqrt{\sqrt{2}}}$, limits: $\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e$, fraction superscript: $e^{\frac{x}{2}}$, sub-superscript: $a^2_{n-1}b$, sub-superscript correction: $a^{\frac{n}{2}}_1$, f^2_1 , big operator: $\sum_{n=1}^\infty\frac{1}{n^2}=\frac{\pi^2}{6}$, integral: $\int_0^1\sqrt{1-x^2}\,\mathrm{d}x$, texts contained in formulae: $\frac{\mathrm{Hoge}}{2}+\sqrt{\mathrm{Piyo}}$, tuple: $\langle x,y,z\rangle$.

$$\frac{\int_0^a x \, dx \int_0^{\sqrt{a^2 - x^2}} r \sqrt{x^2 + r^2} \, dr}{\int_0^a dx \int_0^{\sqrt{a^2 - x^2}} r \sqrt{x^2 + r^2} \, dr} = \frac{2a}{5}$$

Script: $\mathcal{ABCMNOPQRXYZ}$, bold script: $\mathcal{ABCMNOPQRXYZ}$, Fraktur: $\mathfrak{ABCMNOPQRXYZ}$ bold Fraktur: $\mathfrak{ABCMNOPQRXYZ}$ obc.

Typing rule is defined as follows:

$$\frac{(\Gamma(x) \equiv \tau)}{\Gamma \vdash x : \tau} \qquad \frac{\Gamma[x \mapsto \tau_1] \vdash M : \tau_2}{\Gamma \vdash (\lambda x : \tau_1. \ M) : \tau_1 \to \tau_2}$$

$$\frac{\Gamma \vdash M : \tau_1 \to \tau_2 \qquad \Gamma \vdash N : \tau_1}{\Gamma \vdash MN : \tau_2}$$

$$\frac{A \qquad \frac{B \qquad C}{D}}{E}$$

quick brown fox jumps over
The the lazy dog
A table