WHAT IS CLAIMED IS:

1	1.	A fiber amplifier system comprising:
2		a pulsed laser configured to generate light pulses characterized by a pulse length T_{pulse}
3		and a repetition rate;
4		a fiber amplifier optically coupled to the pulsed laser; and
5		a nonlinear frequency converting element optically coupled to the fiber amplifier,
6		wherein the pulse length T _{pulse} is less than about 1.7 nsec and sufficiently large that a
7		frequency bandwidth of the pulses after they emerge from the fiber amplifier is less
8		than an acceptance bandwidth of the nonlinear frequency converting element;
9		wherein the repetition rate is sufficiently large that amplified spontaneous emission in
10		the fiber amplifier between pulses does not extract more than 50% of the total power
11		from the fiber amplifier.
1		
1	2.	The fiber amplifier system of claim 1 wherein the repetition rate is greater than about
2		100 kHz.
1	3.	The fiber amplifier system of claim 2 wherein the pulse length T _{pulse} is greater than
2	٥.	about 100 psec.
2		about 100 piec.
1	4.	The fiber amplifier system of claim 2 wherein the pulsed laser is a passively Q-
2		switched laser (PQSL).
1	5.	The fiber amplifier system of claim 4, further comprising a PQSL pump source
2	٥.	optically coupled to the PQSL.
_		opinomity complete to the experience
1	6.	The fiber amplifier system of claim 1, further comprising a fiber pump source
2		optically coupled to the fiber amplifier.
1	7.	The fiber amplifier system of claim 1, wherein the fiber amplifier is characterized by
2	,.	a figure of merit z that is greater than about 0.1, wherein z is given by $z = (0.037) \beta$
3		(dB/m) A_{mode} (μ m ²), where β (dB/m) is the absorption of the fiber amplifier in
4		dB/meter and A_{mode} is the mode area of light to be amplified by the fiber amplifier.
- ₹		and motor and rimode is the mode area of light to be uniprimed by the riber amplifier.

- 1 8. The fiber amplifier system of claim 7 wherein the figure of merit z is greater than about 0.5.
- 9. The fiber amplifier system of claim 7 wherein the fiber amplifier uses a claddingpumped fiber with an air cladding.
- 10. The fiber amplifier system of claim 7 wherein the fiber amplifier includes a core of
 refractive index n_c, a depressed cladding of refractive index n' and an outer cladding
 of refractive index n_{oc}, wherein n' < n_{oc} < n_c.
- 11. The fiber amplifier system of claim 7 wherein the fiber amplifier has a core with an
 elliptical cross-section.
- 1 12. The fiber amplifier system of claim 7 wherein the fiber amplifier has a W-shaped 2 refractive index profile characterized by a core with a refractive index n_{core} and a 3 radius r_c, a tunnel cladding surrounding the core, the tunnel cladding having a 4 refractive index n' and a cladding region surrounding the tunnel cladding, the 5 cladding region having a refractive index n_{cl}, wherein n'<n_{cl}<n_{core} 6 wherein the core is a single-mode core characterized by a cutoff V-number V_{c1} greater than about 3.0, where $V_{cl}=\frac{2\pi r_c}{\lambda_{cl}}\sqrt{n_{core}^2-n_{cl}^2}$, and where λ_{cl} is a cutoff wavelength for 7 8 a second mode of the core.
 - 13. The fiber amplifier system of claim 1 wherein the fiber amplifier amplifies a primary signal having a wavelength ranging from about 860 nm to about 1100 nm.
- 1 14. The fiber amplifier system of claim 13 wherein the nonlinear element converts the 2 primary signal to an output signal having a wavelength ranging from about 430 nm to 3 about 550 nm.
- 1 15. An image projection system, comprising:

1

2

- a pulsed laser configured to generate light pulses characterized by a pulse length T_{pulse}
 and a repetition rate;
- a fiber amplifier optically coupled to the pulsed laser;
- 5 a nonlinear frequency converting element optically coupled to the fiber amplifier;
- an image generator optically coupled to the nonlinear frequency converting element;

7	and
8	a scanner optically coupled to the image generator,
9	wherein the pulse length T_{pulse} is less than about 1.7 nsec and sufficiently large that a
10	frequency bandwidth of the pulses after they emerge from the fiber amplifier is less
11	than an acceptance bandwidth of the nonlinear frequency converting element;
12	wherein the repetition rate is sufficiently large that amplified spontaneous emission in
13	the fiber amplifier between pulses does not extract more than 50% of the total power
14	from the fiber amplifier.
15	
1	16. The image projection system of claim 15 wherein the pulsed laser is configured to
2	generate light pulses at a repetition rate of greater than about 100 kHz.
1	17. The image projection system of claim 16 wherein the pulse length T _{pulse} is greater than
2	about 100 psec.
1	18. The image projection system of claim 16 wherein the pulsed laser is a passively Q-
2	switched laser (PQSL).
1	19. The image projection system of claim 18 further comprising a PQSL pump source
2	optically coupled to the PQSL.
1	20. The image projection system of claim 15 further comprising a fiber pump source
2	optically coupled to the fiber amplifier.
3	21. The image projection system of claim 15 wherein the fiber amplifier is characterized
4	by a figure of merit z that is greater than about 0.1, wherein z is given by $z = (0.037)$
5	β (dB/m) A_{mode} (μm^2), where β (dB/m) is the absorption of the fiber amplifier in
6	dB /meter and A_{mode} is the mode area of light to be amplified by the fiber amplifier.
7	22. The image projection system of claim 21 wherein the figure of merit z is greater than
2	about 0.5.
1	23. The image projection system of claim 21 wherein the fiber amplifier uses a cladding
2	pumped fiber with an air cladding.

- 24. The image projection system of claim 21 wherein the fiber amplifier includes a core
 of refractive index n_c, a depressed cladding of refractive index n' and an outer
 cladding of refractive index n_{oc}, wherein n' < n_{oc} < n_c.
- 25. The image projection system of claim 21 wherein the fiber amplifier has a core with
 an elliptical cross-section.
- 26. The image projection system of claim 15 wherein the fiber amplifier amplifies a
 primary signal having a wavelength ranging from about 860 nm to about 1100 nm.
- 27. The image projection system of claim 26 wherein the nonlinear element converts the primary signal to an output signal having a wavelength ranging from about 430 nm to about 550 nm.
 - 28. A light source comprising:
- 2 means for generating light pulses characterized by a pulse length T_{pulse} and a
- 3 repetition rate;

1

- 4 means for amplifying the light pulses; and
- nonlinear means for frequency converting light pulses that have been amplified by the amplifying means,
- 7 wherein the pulse length T_{pulse} is less than about 1.7 nsec and sufficiently large that a
- 8 frequency bandwidth of the pulses after they emerge from the fiber amplifier is less
- 9 than an acceptance bandwidth of the nonlinear frequency converting element;
- wherein the repetition rate is sufficiently large that amplified spontaneous emission in
- the fiber amplifier between pulses does not extract more than 50% of the total power
- from the fiber amplifier.
- 29. For an apparatus having a fiber amplifier optically coupled to the pulsed laser; and a
- 2 nonlinear frequency converting element optically coupled to the fiber amplifier, a
- method for optimizing the fiber amplifier, the method comprising:
- 4 determining a conversion efficiency $\delta(p)$ of the nonlinear frequency converting
- 5 element as a function of a peak power of an input signal coupled into the fiber
- 6 amplifier;
- 7 calculating an average power of output radiation B(z, p) from the nonlinear frequency
- 8 converting element as a function of the peak power p and a figure of merit z, where

9 $z=(0.037)\beta A_{mode}$, where β is a rate of absorption of pump radiation by the fiber amplifier in dB/m, and A_{mode} is a mode area of radiation to be amplified by the fiber 10 amplifier in um², and where 11 $\mathbf{B}(\mathbf{z}, \mathbf{p}) = \delta(\mathbf{p}) \varepsilon \mathbf{P} \left(1 - e^{-\frac{\mathbf{z}}{\mathbf{p}}} \right)$, where ε is a conversion efficiency of the fiber amplifier, P 12 is an average power of a pump radiation coupled into the fiber amplifier; 13 determining one or more best values po of the peak power p for one or more 14 corresponding values of z by solving $\frac{\partial B(z,p)}{\partial p}\Big|_{p_0} = 0$; 15 substituting the best values p_0 into B(z, p) to determine one or more best values 16 B_{best}(z) of the average power of the output radiation from the nonlinear frequency 17 converting element as a function of the figure of merit z 18 determining a desired value B_d of the average power of output radiation from the 19 nonlinear frequency converting element from requirements of an application for 20 21 which the apparatus is to be used; from B_d and the one or more values of B_{best}(z) determining a minimum value z_{min} of 22 the figure of merit for the fiber; and 23 from z_{min} selecting a fiber amplifier characterized by values of β and A_{mode} such that 24 for the fiber amplifier z is greater than or equal to z_{min}. 25