## **Binomial heaps**

- Last time
  - Heaps
- Today
  - Binomial heaps

#### **Motivation**

- Heap
  - Merging two heaps takes time O(n)
  - Insertion takes time O(log n)
- Binomial heap
  - Merging two binomial heaps takes time O(log n)
  - Insertion takes amortized time O(1)

### **Binomial trees**

- A binomial tree, B<sub>k</sub>, is an ordered tree defined recursively
  - B<sub>0</sub> consists of a single node
  - $B_k$  consists of two binomial trees,  $B_{k-1}$ , that are linked together
    - The root of one is the leftmost child of the other



#### **Binomial tree: the other view/definition**

The Binomial tree, B<sub>k</sub>, consists of a root node with k children, where the i-th (1 <= i <= k) child is in turn the root of a binomial tree B<sub>k-i</sub>





 $B_{\scriptscriptstyle 1}$ 

#### **Properties of binomial trees**

- The binomial tree  $B_k$ 
  - Its height is k
  - It has 2<sup>k</sup> nodes,
    - · Proof by induction

The name "binomial" comes from here



• Proof by induction using  $\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r}$ 

## **Binomial heap**

- A binomial heap is
  - a set of binomial trees of distinct sizes,
  - and each binomial tree satisfies the heap property:
    - Max\_heap: the key of any node is no smaller than its children
    - Min\_heap: the key of any node is no bigger than its children
- A binomial heap of size n has at most  $\lfloor \lg n \rfloor + 1$  binomial trees
- A practical representation of the binomial heap
  - The trees are sorted by their sizes in ascending order.
  - The roots are organized as a linked list for easy insertion and deletion of a binomial tree.
  - Maintaining a pointer pointing to a root with the maximum/minimum key of the binomial heap.
    - · This is not implemented in the textbook
  - Each binomial tree use left-child, right sibling representation



#### **Unite two equal size binomial trees**

```
BinomialTree uniteBinomialTrees(B1, B2){

// B1, B2 are the same size: B1.degree = B2.degree

if (B1.root().key < B2.root().key) {

B.copy(B1);

B.setDegree(B1.degree()+1);

B2.root().setParent(B1.root());

B2.root().setSibling(B1.child());

B.setChild(B2);

} else {

// link in the other way

...

}
```

It takes a time in O(1).

## Unite two binomial heaps

```
binomialHeapsUnion(H1, H2)
{
   while (simultaneously following the links in H1 and H2) {
      if there are three degree i trees{ // one from the carry-on merge two of them and set it as carry-on; add the remainder to H;
   } else if there are two degree i trees {
      merge the two trees; set it as carry on;
   } else if there is one degree i tree {
      add it to H;
   }
  }
  add the carry-on if exists to H.
```

Assume the result binomial heap contains n nodes. The construction can be done in  $\lfloor \lg n \rfloor + 1$  stages. Time in  $O(\log n)$ 

#### minimum()

- Return the node pointed by the *min* pointer.
  - Cost O(1)
- Without the *min* pointer
  - Traverse the link to find the min
  - Cost O(lg n)

#### extractMin(): remove the minimum node

```
extractMin(H)
{
   take the min binomial tree B out (H/B);
   remove the root of B;
   join the subtrees of B into a new binomial heap H';
   unite H/B and H';
}
Cost: O(log n)
```



















## deleteKey

```
public void deleteKey(Node x)
{
    decreaseKey(x, -\infty);
    extractMin();
}
```

Cost?

# <u>insert</u>

```
insert(v, H)
{
   make a 1 node binomial tree B0;
   Build a binomial heap H0 that contains B0;
   merge H0 and H;
}
```

#### <u>insert</u>

```
\label{eq:continuous_series} \begin{split} &\inf \{ \\ &1. \text{ make a 1 node binomial tree } B_0^*; \\ &2. \ i = 0; \\ &3. \ \text{while (1) } \{ \\ &\text{ if (H include a } B_i) \ \{ \\ &\text{ remove } B_i \text{ from H; } \\ &\text{ merge } B_i^* \text{ and } B_i \text{ into a binomial tree } B_{i+1}^*; \\ &\text{ i++; } \\ &\text{ } \text{ else } \\ &\text{ break; } \\ &\text{ } \} \\ &4. \ \text{insert } B_i^* \text{ into the list of roots of H. } \end{split}
```

#### **Amortized cost**

- What is the amortized cost of insertion when we build a binomial heap of size *n*?
- Accounting trick
  - Deposit a token when creating a tree
  - Withdraw one when deleting a tree
    - Note that we delete a tree at each loop iteration

## **Priority List**

- Use a BinomialHeap H to implement the priority list
  - insert(S, x)
    - H.insert(x)
  - minimum(S)
    - H.minimum()
  - extractMin(L)
    - H.extractMin()
  - decreaseKey(S, x, k)
    - H.decreaseKey(x, k);