Resolução do 2º Teste de **Lógica EI**

Lic. Eng. Informática Duração: 2 horas

Este teste é constituído por 5 questões. Justifique adequadamente cada uma das suas respostas.

- 1. Sejam φ e ψ fórmulas, Γ e Δ conjuntos de fórmulas do Cálculo Proposicional. Mostre que:
 - (a) $\vdash \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi);$
 - **R:** Pelo Teorema da Completude, para provar que a fórmula $\neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ é um teorema basta provar que é uma tautologia, ou seja, para provar $\vdash \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ basta mostrar

$$\models \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi).$$

Ora esta afirmação, de que a fórmula $\neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ é uma tautologia, pode ser deduzida: ou como uma consequência imediata da lei de De Morgan $\neg(\varphi \lor \psi) \Leftrightarrow (\neg \varphi \land \neg \psi)$; ou por construção da tabela de verdade de $\neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ e verificação de que toda a valoração atribui o valor de verdade 1 a esta fórmula.

Alternativamente, poder-se-ia provar que a fórmula $\neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$ é um teorema construindo uma derivação em DNP dela. A árvore seguinte é uma tal derivação.

$$\frac{\varphi^{(2)}}{\frac{\varphi \vee \psi}{\sqrt{\psi}}} \vee_{1} I \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\frac{\psi^{(3)}}{\varphi \vee \psi}} \vee_{2} I \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\varphi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} \neg E \xrightarrow{\psi} (1) \xrightarrow{\gamma(\varphi \vee \psi)(1)} \neg E \xrightarrow{\psi} \neg E \xrightarrow$$

Conclui-se assim que $\vdash \neg(\varphi \lor \psi) \leftrightarrow (\neg \varphi \land \neg \psi)$.

- (b) se $\Gamma \vdash \varphi \lor \psi$, $\Gamma \vdash \neg \varphi$ e $\Gamma \subseteq \Delta$, então $\Delta \vdash \psi$.
- **R:** Suponhamos que $\Gamma \vdash \varphi \lor \psi$, $\Gamma \vdash \neg \varphi$ e $\Gamma \subseteq \Delta$. De $\Gamma \vdash \varphi \lor \psi$ e $\Gamma \vdash \neg \varphi$, deduzimos a existência de derivações D_1 e D_2 de $\varphi \lor \psi$ e $\neg \varphi$, respectivamente, a partir de Γ . Então

é uma derivação de ψ em que as hipóteses não canceladas pertencem a Γ , e portanto a Δ pois $\Gamma \subseteq \Delta$. Mostrou-se assim que $\Delta \vdash \psi$.

Alternativamente, apresentamos uma outra resolução que utiliza os teoremas da Correcção e da Completude. De $\Gamma \vdash \varphi \lor \psi$ e $\Gamma \vdash \neg \varphi$, deduzimos pelo Teorema da Correcção que $\Gamma \models \varphi \lor \psi$ e $\Gamma \models \neg \varphi$. Com o objectivo de mostrar que $\Delta \models \psi$, consideremos uma valoração v que satisfaz Δ . Dado que $\Gamma \subseteq \Delta$, tem-se então que $v \models \Gamma$. Agora, de $\Gamma \models \varphi \lor \psi$ e $\Gamma \models \neg \varphi$ resulta que $v(\varphi \lor \psi) = v(\neg \varphi) = 1$. Logo $v(\varphi) = 0$ e portanto $v(\psi) = 1$, o que prova que $\Delta \models \psi$. Então, usando o Teorema da Completude, conclui-se que $\Delta \vdash \psi$.

- 2. Considere o tipo de linguagem $L=(\{0,\cup,\cap,\backslash\},\{=,\subseteq\},\mathcal{N})$ em que $\mathcal{N}(0)=0,\ \mathcal{N}(\cup)=\mathcal{N}(\cap)=\mathcal{N}(\backslash)=2$ e $\mathcal{N}(=)=\mathcal{N}(\subseteq)=2$.
 - (a) Das seguintes palavras de \mathcal{A}_L^+ verifique se algumas são L-termos ou L-fórmulas e, nesses casos, construa as respectivas árvores de formação.
 - (i) $((x_1 \cap x_2) \cup 0) \setminus x_3$;
 - (ii) $x_1 \cap (0 \cup x_3 \subseteq x_1)$;
 - (iii) $(x_1 \cup x_2) \cap x_3 = (x_1 \cap x_3) \cup (x_2 \cap x_3);$
 - (iv) $\forall_{x_1}((x_1 = x_3) \subseteq (x_1 \cap x_2)).$

R: (i) A palavra $((x_1 \cap x_2) \cup 0) \setminus x_3$ é um L-termo. A sua árvore de formação é a seguinte

$$\frac{\overline{x_1 \in \mathfrak{T}_L} \quad x_1 \quad \overline{x_2 \in \mathfrak{T}_L} \quad x_2}{\underbrace{(x_1 \cap x_2) \in \mathfrak{T}_L} \quad \cap \quad 0} \quad 0 \quad 0 \in \mathfrak{T}_L \quad 0 \quad \overline{((x_1 \cap x_2) \cup 0) \in \mathfrak{T}_L} \quad 0 \quad \overline{x_3 \in \mathfrak{T}_L} \quad x_3 \in \mathfrak{T}_L \quad 0 \in \mathfrak{T}_L$$

(iii) A palavra $(x_1 \cup x_2) \cap x_3 = (x_1 \cap x_3) \cup (x_2 \cap x_3)$ é uma L-fórmula atómica. A sua árvore de formação é portanto

$$(x_1 \cup x_2) \cap x_3 = (x_1 \cap x_3) \cup (x_2 \cap x_3) \in \mathcal{F}_L$$
 At_L

- (ii) e (iv) As palavras $x_1 \cap (0 \cup x_3 \subseteq x_1)$ $e \forall_{x_1} ((x_1 = x_3) \subseteq (x_1 \cap x_2))$ não são L-termos nem L-fórmulas.
- (b) Considere a *L*-estrutura $E = (\mathcal{P}(\mathbb{N}), \overline{})$ onde:
 - $\overline{0} = \emptyset$ é o conjunto vazio;
 - $\overline{\cup} = \cup$ é a união de conjuntos;
 - $\overline{\cap} = \cap$ é a intersecção de conjuntos;
 - $\overline{\ } = \$ é a complementação de conjuntos $(A \setminus B$ é o complementar de B em A);
 - $\bullet \equiv$ é a igualdade de conjuntos;
 - $\overline{\subseteq} = \subseteq$ é a inclusão de conjuntos.

Seja a a atribuição em E tal que $a(x_i) = \{n \in \mathbb{N} \mid n > i\}$. Calcule:

- (i) $((x_1 \cup x_2) \setminus x_{20})[a]$;
- **R:** O valor do L-termo $((x_1 \cup x_2) \setminus x_{20})$ para a atribuição a é o elemento de $\mathfrak{P}(\mathbb{N})$, domínio de E, obtido pelos seguintes cálculos recursivos:

$$((x_{1} \cup x_{2}) \setminus x_{20})[a] = (x_{1} \cup x_{2})[a] \overline{\setminus} x_{20}[a]$$

$$= (x_{1}[a] \overline{\cup} x_{2}[a]) \overline{\setminus} a(x_{20})$$

$$= (a(x_{1}) \overline{\cup} a(x_{2})) \overline{\setminus} a(x_{20})$$

$$= (\{n \in \mathbb{N} \mid n > 1\} \cup \{n \in \mathbb{N} \mid n > 2\}) \setminus \{n \in \mathbb{N} \mid n > 20\}$$

$$= \{n \in \mathbb{N} \mid n > 1\} \setminus \{n \in \mathbb{N} \mid n > 20\}$$

$$= \{n \in \mathbb{N} \mid 1 < n \leq 20\}$$

$$= \{2, 3, 4, \dots, 19, 20\}.$$

(ii) $((x_1 \setminus (x_2 \cup x_4)) = ((x_1 \setminus x_2) \cup (x_1 \setminus x_4)))[a].$

R: De forma análoga à apresentada na alínea anterior, obtém-se

$$(x_1 \setminus (x_2 \cup x_4))[a] = a(x_1) \overline{\setminus} \left(a(x_2) \overline{\cup} a(x_4) \right)$$

$$= \{ n \in \mathbb{N} \mid n > 1 \} \setminus \left(\{ n \in \mathbb{N} \mid n > 2 \} \cup \{ n \in \mathbb{N} \mid n > 4 \} \right)$$

$$= \{ n \in \mathbb{N} \mid n > 1 \} \setminus \{ n \in \mathbb{N} \mid n > 2 \}$$

$$= \{ 2 \}$$

$$((x_1 \setminus x_2) \cup (x_1 \setminus x_4))[a] = \{n \in \mathbb{N} \mid 1 < n \le 2\} \cup \{n \in \mathbb{N} \mid 1 < n \le 4\}$$
$$= \{n \in \mathbb{N} \mid 1 < n \le 4\}$$
$$= \{2, 3, 4\}.$$

Logo, por definição de valor lógico de uma L-fórmula, tem-se

$$((x_1 \backslash (x_2 \cup x_4)) = ((x_1 \backslash x_2) \cup (x_1 \backslash x_4)))[a] = 1$$
 se e só se
$$(x_1 \backslash (x_2 \cup x_4))[a] \equiv ((x_1 \backslash x_2) \cup (x_1 \backslash x_4))[a]$$
 se e só se
$$\{2\} = \{2, 3, 4\}.$$

Como esta última condição não é válida conclui-se que

$$((x_1 \setminus (x_2 \cup x_4)) = ((x_1 \setminus x_2) \cup (x_1 \setminus x_4)))[a] = 0.$$

(c) Sejam E a L-estrutura e a a atribuição da alínea (b), e considere o seguinte conjunto de L-fórmulas

$$\Gamma = \{ \neg (x_2 \cap x_5 \subseteq x_9), \ \forall_{x_1} (x_1 \cup 0 = x_1) \}.$$

Verifique se (E, a) é uma realização de Γ .

R: Denotemos os elementos de Γ por γ_1 e γ_2 respectivamente. Isto é,

$$\gamma_1 = \neg (x_2 \cap x_5 \subseteq x_9)$$
 $e \quad \gamma_2 = \forall_{x_1} (x_1 \cup 0 = x_1).$

O par (E,a) é uma realização de Γ pois $E \models \gamma_1[a]$ e $E \models \gamma_2[a]$, ou seja, $\gamma_1[a]_E = \gamma_2[a]_E = 1$, como mostramos de seguida. De facto, tem-se

$$\gamma_1[a]_E = 1 \quad sse \quad (x_2 \cap x_5 \subseteq x_9)[a]_E = 0$$

$$sse \quad \{n \in \mathbb{N} \mid n > 2\} \cap \{n \in \mathbb{N} \mid n > 5\} \not\subseteq \{n \in \mathbb{N} \mid n > 9\}$$

$$sse \quad \{n \in \mathbb{N} \mid n > 5\} \not\subseteq \{n \in \mathbb{N} \mid n > 9\}$$

e

$$\gamma_2[a]_E = 1 \quad sse \quad \forall_{N_1 \in \mathcal{P}(\mathbb{N})} \ (x_1 \cup 0 = x_1)[a\binom{x_1}{N_1}]_E = 1$$
$$sse \quad \forall_{N_1 \in \mathcal{P}(\mathbb{N})} \ N_1 \cup \emptyset = N_1.$$

Como as afirmações $\{n \in \mathbb{N} \mid n > 5\} \not\subseteq \{n \in \mathbb{N} \mid n > 9\}$ e $\forall_{N_1 \in \mathcal{P}(\mathbb{N})} N_1 \cup \emptyset = N_1$ são verdadeiras, deduz-se que $\gamma_1[a]_E = \gamma_2[a]_E = 1$, o que prova que (E, a) é uma realização de Γ .

(d) Determine uma L-fórmula logicamente equivalente à L-fórmula

$$\forall_{x_2}(\neg(x_2=0) \land (x_1 \subseteq x_2))$$

que não use o conectivo \wedge nem o quantificador universal.

R: *Tem-se*

$$\begin{split} &\forall_{x_2}(\neg(x_2=0) \land (x_1 \subseteq x_2)) \\ \Leftrightarrow &\forall_{x_2}\neg((x_2=0) \lor \neg(x_1 \subseteq x_2)) \quad \textit{pelas leis de De Morgan} \\ \Leftrightarrow &\neg \exists_{x_2}((x_2=0) \lor \neg(x_1 \subseteq x_2)) \quad \textit{por uma propriedade da equivalência lógica}. \end{split}$$

Portanto, a L-fórmula

$$\neg \exists_{x_2} ((x_2 = 0) \lor \neg (x_1 \subseteq x_2))$$

está nas condições pedidas já que não tem ocorrências do conectivo \land nem do quantificador universal.

- 3. Sejam L um tipo de linguagem do Cálculo de Predicados, φ e ψ L-fórmulas e x uma variável. Verifique quais das seguintes afirmações são verdadeiras:
 - (a) $\models (\varphi \rightarrow \neg \psi) \rightarrow (\neg \varphi \lor \neg \psi);$

R: Mostremos que esta afirmação é verdadeira. Seja σ a fórmula do Cálculo Proposicional

$$\sigma = (p_0 \to \neg p_1) \to (\neg p_0 \vee \neg p_1).$$

Note-se que σ é uma tautologia. Para provar este facto poder-se-ia construir a tabela de verdade de σ , ou recordar que a equivalência lógica $\theta_1 \to \theta_2 \Leftrightarrow \neg \theta_1 \lor \theta_2$ é válida para quaisquer fórmulas θ_1 e θ_2 do Cálculo Proposicional, daqui resultando que $(p_0 \to \neg p_1) \leftrightarrow (\neg p_0 \lor \neg p_1)$ é uma tautologia e portanto que σ também o é.

Por outro lado, a L-fórmula $\gamma = (\varphi \rightarrow \neg \psi) \rightarrow (\neg \varphi \lor \neg \psi)$ é uma instância de σ pois

$$\gamma = \sigma[\varphi/p_0; \psi/p_1],$$

ou seja, γ é obtida de σ pela substituição simultânea de p_0 por φ e de p_1 por ψ . Pode-se agora concluir que γ é uma L-fórmula válida pois é uma instância da tautologia σ , o que prova a afirmação.

- (b) $\models (\exists_x \neg (\varphi \lor \psi)) \to (\neg (\forall_x \psi)).$
- R: Esta afirmação é verdadeira. De facto, sejam $E = (D, \overline{})$ uma L-estrutura e a uma atribuição em E, arbitrárias. Queremos provar que

$$E \models (\exists_x \neg (\varphi \lor \psi)) \to (\neg (\forall_x \psi))[a],$$

ou seja, que

$$((\exists_x \neg (\varphi \lor \psi)) \to (\neg (\forall_x \psi)))[a] = 1.$$

Ora, tem-se

$$((\exists_x \neg (\varphi \lor \psi)) \to (\neg (\forall_x \psi)))[a] = 1$$

$$se \ e \ so's \ se \ (\exists_x \neg (\varphi \lor \psi))[a] = 0 \quad ou \quad (\neg (\forall_x \psi))[a] = 1$$

$$(por \ def. \ de \ valor \ l\'{o}gico \ de \ uma \ L-f\'{o}rmula \ \sigma_1 \to \sigma_2)$$

$$se \ e \ so's \ se \ \forall_{d \in D} \ (\neg (\varphi \lor \psi))[a \binom{x}{d}] = 0 \quad ou \quad (\forall_x \psi)[a] = 0$$

$$(por \ def. \ de \ valor \ l\'{o}gico \ de \ L-f\'{o}rmulas \ \exists_x \sigma_1 \ e \ \neg \sigma_2 \)$$

$$se \ e \ so's \ se \ \forall_{d \in D} \ (\varphi \lor \psi)[a \binom{x}{d}] = 1 \quad ou \quad \exists_{d' \in D} \ \psi[a \binom{x}{d'}] = 0$$

$$(por \ def. \ de \ valor \ l\'{o}gico \ de \ L-f\'{o}rmulas \ \neg \sigma_1 \ e \ \forall_x \sigma_2 \)$$

$$se \ e \ so's \ se \ \forall_{d \in D} \ (\varphi[a \binom{x}{d}]) = 1 \quad ou \ \psi[a \binom{x}{d}] = 1) \quad ou \quad \exists_{d' \in D} \ \psi[a \binom{x}{d'}] = 0$$

$$(por \ def. \ de \ valor \ l\'{o}gico \ de \ L-f\'{o}rmulas \ \sigma_1 \lor \sigma_2 \).$$

Analisando a validade da afirmação (*), dir-se-ia que:

- $se \ \forall_{d \in D} \ \varphi[a {x \choose d}] = 1 \ ou \ \psi[a {x \choose d}] = 1 \ \'e \ verdadeira, \ ent\~ao \ a \ afirmaç\~ao \ (*) \ \'e \ verdadeira;$
- $sen\~ao$, $\exists_{d\in D} \varphi[a\binom{x}{d}] = 0$ $e \psi[a\binom{x}{d}] = 0$, $pelo \ que$, $em \ particular \ \exists_{d'=d\in D} \psi[a\binom{x}{d'}] = 0$, e $ent\~ao \ a \ afirma\~a\~ao$ (*) $\acute{e} \ verdadeira$;

Assim, em qualquer caso a afirmação (*) é verdadeira pelo que a prova está concluída.

4. Considere uma estrutura E cujo domínio é o conjunto $\mathbb R$ e onde estão definidas a constante 1, as funções

e as relações usuais de igualdade e de menor ou igual em \mathbb{R} .

- (a) Determine o tipo de linguagem L_0 adequado para esta estrutura.
- **R:** Consideremos o tipo de linguagem $L_0 = (\{1, g, h\}, \{=, \leq\}, \mathbb{N})$ em que $\mathbb{N}(1) = 0$, $\mathbb{N}(g) = 1$, $\mathbb{N}(h) = \mathbb{N}(=) = \mathbb{N}(\leq) = 2$. Então a estrutura E pode ser considerada uma L_0 -estrutura $E = (\mathbb{R}, \overline{})$ em que $\overline{s} = s$ para cada símbolo $s \in \{1, g, h, =, \leq\}$.
- (b) Escreva uma L_0 -fórmula que represente a afirmação: "a função g tem um ponto de mínimo absoluto".
- **R:** A afirmação "a função g tem um ponto de mínimo absoluto" significa que existe um elemento $a \in \mathbb{R}$ tal que para todo o elemento $b \in \mathbb{R}$ se verifica $g(a) \leq g(b)$. Logo a firmação pode ser representada pela seguinte L_0 -fórmula:

$$\exists_{x_0} \forall_{x_1} \ (g(x_0) \le g(x_1)).$$

- (c) Verifique se E é modelo da fórmula que determinou na alínea anterior.
- **R:** Sim, $E \notin um \mod lo \ da \ L_0$ -fórmula $\varphi = \exists_{x_0} \forall_{x_1} (g(x_0) \leq g(x_1))$. Para demonstrar esta proposição, temos de provar que $E \models \varphi[a]$ para toda a atribuição a em E. Ora, sendo a uma atribuição em E, tem-se

$$E \models \varphi[a]$$
 se e só se $\exists_{n_0 \in \mathbb{R}} \forall_{n_1 \in \mathbb{R}} (g(n_0) \leq g(n_1)).$

Como é evidente tem-se $2 \le n_1^2 + 2$, ou seja, $g(0) \le g(n_1)$, para todo o $n_1 \in \mathbb{R}$. Logo, basta tomar $n_0 = 0$, para concluir que a afirmação

$$\exists_{n_0 \in \mathbb{R}} \forall_{n_1 \in \mathbb{R}} \ (g(n_0) \le g(n_1))$$

é verdadeira e, portanto, que E é um modelo de φ .

- 5. Seja L um tipo de linguagem do Cálculo de Predicados.
 - (a) Defina por recursão estrutural a função LIV : $\mathfrak{F}_L \to \mathfrak{P}(\mathcal{V})$, que a cada L-fórmula φ associa o conjunto LIV(φ) das variáveis que têm ocorrências livres em φ .
 - **R:** O conjunto LIV (φ) das variáveis que têm ocorrências livres em φ é definido, por recursão estrutural em φ , como:
 - i) LIV(\perp) = \emptyset ;
 - ii) Para todo o símbolo de relação R de aridade n e para todos os $t_1, \ldots, t_n \in \mathcal{T}_L$,

$$LIV(R(t_1, ..., t_n)) = VAR(t_1) \cup \cdots \cup VAR(t_n);$$

- iii) Para cada $\psi \in \mathfrak{F}_L$, LIV $(\neg \psi) = \text{LIV}(\psi)$;
- iv) Para quaisquer $\psi, \sigma \in \mathfrak{F}_L \ e \ \Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}, \ \mathrm{LIV}(\psi \Box \sigma) = \mathrm{LIV}(\psi) \cup \mathrm{LIV}(\sigma).$
- v) Para cada $\psi \in \mathfrak{F}_L$ e cada $x \in \mathcal{V}$,

$$LIV(\exists_x \psi) = LIV(\psi) \setminus \{x\} \quad e \quad LIV(\forall_x \psi) = LIV(\psi) \setminus \{x\}.$$

(b) Seja φ uma L-fórmula e sejam a_1 e a_2 atribuições numa L-estrutura $E = (D, \overline{})$. Prove por indução estrutural sobre φ que, se $a_1(x) = a_2(x)$ para toda a variável $x \in LIV(\varphi)$, então

$$E \models \varphi[a_1]$$
 se e só se $E \models \varphi[a_2]$.

R: Mostremos então por indução estrutural em φ que, se $a_1(x) = a_2(x)$ para toda a variável $x \in \text{LIV}(\varphi)$, então

$$E \models \varphi[a_1]$$
 se e só se $E \models \varphi[a_2]$. (1)

Suponhamos que a_1 e a_2 são atribuições numa L-estrutura $E = (D, \overline{})$ tais que $a_1(x) = a_2(x)$ para toda a variável $x \in LIV(\varphi)$.

- i) Caso $\varphi = \bot$. Então, $E \not\models \varphi[a_1]$ e $E \not\models \varphi[a_2]$, donde a condição (1) é imediata.
- ii) Caso $\varphi = R(t_1, \dots, t_n)$, onde R é um símbolo de relação de aridade n e $t_1, \dots, t_n \in \mathfrak{T}_L$. Por hipótese, $a_1(x) = a_2(x)$ para toda a variável $x \in \mathrm{LIV}(\varphi) = \mathrm{VAR}(t_1) \cup \dots \cup \mathrm{VAR}(t_n)$. Logo, por um resultado provado nas aulas, tem-se $t_1[a_1] = t_1[a_2], \dots, t_n[a_1] = t_n[a_2]$. Agora,

$$E \models \varphi[a_1]$$
 sse $(t_1[a_1], \dots, t_n[a_1]) \in \overline{R}$
sse $(t_1[a_2], \dots, t_n[a_2]) \in \overline{R}$
sse $E \models \varphi[a_2],$

o que prova a condição (1).

iii) Caso $\varphi = \neg \psi$. Então, LIV $(\varphi) = \text{LIV}(\psi)$. Suponhamos por hipótese de indução que o resultado é válido para ψ , pelo que $E \models \psi[a_1]$ see $E \models \psi[a_2]$. Tem-se

$$E \models \varphi[a_1]$$
 sse $E \not\models \psi[a_1]$
sse $E \not\models \psi[a_2]$ por hipótese de indução
sse $E \models \varphi[a_2]$.

- iv) Caso $\varphi = \psi \Box \sigma$, onde $\Box \in \{\land, \lor, \rightarrow, \leftrightarrow\}$. Então, LIV $(\varphi) = \text{LIV}(\psi) \cup \text{LIV}(\sigma)$, donde $a_1(x) = a_2(x)$ para toda a variável $x \in \text{LIV}(\psi) \cup \text{LIV}(\sigma)$. Suponhamos por hipótese de indução que o resultado é válido para ψ e para σ , pelo que $E \models \psi[a_1]$ see $E \models \psi[a_2]$ e $E \models \sigma[a_1]$ see $E \models \sigma[a_2]$. Vamos verificar que $E \models (\psi \Box \sigma)[a_1]$ see $E \models (\psi \Box \sigma)[a_2]$.
 - $Caso \square = \land$. Neste caso tem-se

$$E \models \varphi[a_1]$$
 sse $E \models \psi[a_1]$ e $E \models \sigma[a_1]$
sse $E \models \psi[a_2]$ e $E \models \sigma[a_2]$ por hipótese de indução
sse $E \models \varphi[a_2]$.

• $Caso \square = \lor$. $Neste \ caso \ tem-se$

$$E \models \varphi[a_1] \quad sse \quad E \models \psi[a_1] \ ou \ E \models \sigma[a_1]$$

$$sse \quad E \models \psi[a_2] \ ou \ E \models \sigma[a_2] \quad por \ hip\acute{o}tese \ de \ induç\~{a}o$$

$$sse \quad E \models \varphi[a_2].$$

• $Caso \square = \rightarrow$, tem-se

$$E \models \varphi[a_1]$$
 sse $E \not\models \psi[a_1]$ ou $E \models \sigma[a_1]$
sse $E \not\models \psi[a_2]$ ou $E \models \sigma[a_2]$ por hipótese de indução
sse $E \not\models \varphi[a_2]$.

• $Caso \square = \leftrightarrow, tem-se$

$$E \models \varphi[a_1]$$
 sse $\psi[a_1]_E = \sigma[a_1]_E$
sse $\psi[a_2]_E = \sigma[a_2]_E$ por hipótese de indução
sse $E \models \varphi[a_2]$.

v) Caso $\varphi = Q_y \psi$, onde $Q \in \{\exists, \forall\}$. Então, LIV $(\varphi) = \text{LIV}(\psi) \setminus \{y\}$, donde $a_1(x) = a_2(x)$ para toda a variável $x \in \text{LIV}(\psi) \setminus \{y\}$. Logo, sendo a_1' e a_2' as atribuições $a_1\binom{y}{d}$ e $a_2\binom{y}{d}$, respectivamente, tem-se $a_1'(x) = a_2'(x)$ para toda a variável $x \in \text{LIV}(\psi)$. Suponhamos por hipótese de indução que o resultado é válido para ψ , pelo que $E \models \psi[a_1']$ see $E \models \psi[a_2']$. Então

$$E \models \varphi[a_1]$$
 sse $Q_{d \in D} E \models \psi[a'_1]$
sse $Q_{d \in D} E \models \psi[a'_2]$ por hipótese de indução
sse $E \models \varphi[a_2]$.

Das condições i)-v) e do Princípio de Indução Estrutural para \mathfrak{F}_L conclui-se o resultado pretendido.

(FIM)

Cotações	1.	2.	3.	4.	5.
	1.5 + 1.5	1.5 + 1.5 + 1.5 + 1.5	1.5+1.5	1.5 + 1.5 + 1.5	1.5 + 2