ÜBUNGEN ZUR VORLESUNG MITTLERER KRÜMMUNGSFLUSS

Blatt 5

Aufgabe 14. (2 Punkte)

Sei $M_0 = X_0(M)$ abgeschlossen und konvex, d.h. $h_{ij} \succeq 0$. Sei $X : M^n \times (0,T) \to \mathbb{R}^{n+1}$ eine Lösung des MCF.

Zeige, dass $h_{ij} \succ 0$ für alle $t \in (0, T)$ gilt.

Aufgabe 15. (4 Punkte)

Sei $M_0 = X_0(M)$ abgeschlossen. Sei $X: M^n \times (0,T) \to \mathbb{R}^{n+1}$ eine Lösung des MCF.

Zeige: Wenn $\varepsilon H g_{ij} \leq h_{ij} \leq \beta H g_{ij}$ und H > 0 für Konstanten $0 < \varepsilon \leq 1/n < \beta < 1$ bei t = 0 gilt, dann auch auf (0,T).

Hinweis: Betrachte den Tensor $m_{ij} = \frac{h_{ij}}{H} - \varepsilon g_{ij}$.

Aufgabe 16. (6 Punkte)

Sei M eine glatte, abgeschlossene, strikt konvexe Hyperfläche. Bis auf Translation ist die Stützfunktion gegeben durch $s(p) := \langle \nu(p), X(p) \rangle$. Wir definieren

$$\tilde{X}(z) := X(\nu^{-1}(z))$$

für $z \in \nu(M^n)$ und betrachten

$$s(z) = \langle z, \tilde{X}(z) \rangle$$
.

Sei σ_{ij} die Metrik und $\tilde{\nabla}$ der Zusammenhang auf \mathbb{S}^n .

Zeige, dass

$$\begin{split} \tilde{X} &= sz + \tilde{\nabla}s \\ \tilde{h}_{ij} &= s\sigma_{ij} + \tilde{\nabla}_{ij}s \\ \tilde{g}_{ij} &= \tilde{h}_{ik}\sigma^{kl}\tilde{h}_{lj} \\ \tilde{H} &= \tilde{a}^{ij}\sigma_{ij} \end{split}$$

gilt, wobei hier $(\tilde{a}^{ij})_{ij} = ((\tilde{h}^{ij})_{ij})^{-1}$.

Sei nun $(M_t = X(M^n, t))_{t \in [0,T)}$ eine strikt konvexe Lösung des MCF.

Zeige, dass

$$\begin{cases} \partial_t s = F(\tilde{\nabla}^2 s + \operatorname{Id} s) & \text{auf } \mathbb{S}^n \times [0, T) \\ s(\cdot, 0) = s_0 & \text{auf } \mathbb{S} \,. \end{cases}$$

gilt, wobei s_0 die Stützfunktion auf M_0 ist.

Abgabe: Bis Mittwoch, 23.01.2019, 10:00 Uhr, in die Mappe vor Büro F 402.