

MATH-UA.120: Discrete Mathematics Midterm Exam I

Spring 2014

Name: _	Solution	NetID:	

This exam is scheduled for 110 minutes. No calculators, notes, or other outside materials are permitted. **Show all work to receive full credit, except where specified.** The exam is worth 80 points.

Please read all directions thoroughly.

Please read and sign the following statement.

I, the undersigned, hereby affirm that I will not share the contents of this exam with any person or animal, living or deceased. Furthermore, I have not received outside assistance in the midst of nor prior to taking this exam.

Problem	Problem	Points
Number	Points	Earned
1	15	
2	10	
3	20	
4	10	
5	10	
6	15	
Total	80	

1 (15 points) Evaluate each statement as true or false (write the whole word "true" or "false" on the line provided). Provide a brief (it need not be a formal proof) justification for your answer.

We define

$$B = \{X \subseteq \mathbb{Z} : |X| = 5\}$$

that is, subsets of the integers of size 5.

$$(1,2,3,4,5) \in B$$
.

(1,2,3,4,5) is a list.
B contains sets. Therefore, a list is not an element of B.

(b) False

$${3,3,3,4,5} \in B.$$

 $|\{3,3,3,4,53\}| = |\{3,4,53\}| = 3$. B contains sets of Carolinality 5,80 $\{3,3,4,53\}$ is not an element of B.

(c) True

 $\emptyset \subseteq B$.

The empty set is a subset of any set.

(d) True

 $\forall X \in B, \forall Y \in B, X \cap Y \in B \iff X = Y.$

"For all X in B and for all Y in B, XnyeB iff X=Y."

X, Y each contains 5 distinct elements.

Their intersection is in B if it also contains 5 distinct element, which could only be the case if X, Y contains exactly the same 5 elements. This means that X, Y must be equal.

(e) Falso

 $\exists X \in B, \ \prod_{x \in X} x = 2.$

There exists a set X, an element of B, such that
the product of the elements of X is equal to 2"

[X & B, then X = \(\frac{1}{2} \times_{1}, \times_{2}, \times_{3}, \times_{4}, \times_{5} \), where

X1, X2, X3, X4, X5 are distinct integers.

There are no 5 distinct integers whose product is 2, because the distinct factors of 2 are: £1, £z.

2 (10 points) Let B be defined as in question 1. Consider the subsets of B

$$B_n = \{ X \in B : \forall x \in X, 0 \le x \le n \}$$

where n is a positive integer.

(a) List out the elements of B_3 , B_4 , and B_5 .

$$B_3 = \begin{cases} 3 = \emptyset \end{cases}$$
 (there is no set $X = \begin{cases} x_1, x_2, x_3, x_4, x_5 \end{cases}$, where $x_1, x_2, x_3, x_4, x_5 \text{ are distinct integers}$ bet ween o and 3 inclusive)

 $B_4 = \begin{cases} 30,1,2,3,43 \end{cases}$
 $B_5 = \begin{cases} 30,1,2,3,43 \end{cases}$, $\begin{cases} 30,1,2,4,53 \rbrace$, $\begin{cases} 30,1,2,4,53$

One missing in B_5 : {0, 1, 2, 3, 5}. This is the only one since the formula below for $|B_n|$ is correct.

(b) Find a formula for
$$|B_n|$$
.

 $|B_n| = \text{The number of Subsets of } \{0,1,...,n\}$ containing five distinct integers

= The number of ways to choose 5 elements out of a set of not elements

- 3 (10 points each) Prove or disprove each statement.
 - (a) Here x and y are Boolean expressions.

Claim: The two expressions are not logically equivalent.

Disprove using a Truth Table:

K	9	МлХ	75	(xvy→7y)	nxnny
7	T	T	F	F	F
Ŧ	T	T	1=	F	F
F	F	F	T	T	T T
					·
	1		I		1

Since the two expressions do not always evaluate to the same value for each possible inputs, then they are not logically equivalent.

(b) Here A, B, and C are sets.

 $C\cap (A-B)=(C\cap A)-(C\cap B)$

Claim: Tme.

Proof: First, we show that $C \cap (A - B) \subseteq (C \cap A) - (C \cap B)$. Suppose $X \in C \cap (A - B)$, an arbitrary element. Then $X \in C$, $X \in A - B$. So, $X \in C$, $X \in A$, and $X \notin B$. Therefore, $X \in C \cap A$ but $X \notin C \cap B$. By the defin of set difference, $X \in (C \cap A) - (C \cap B)$ Since X denotes an arbitrary element of $C \cap (A - B)$, this shows that $C \cap (A - B) \subseteq (C \cap A) - (C \cap B)$

Next, we show that $(C \cap A) - (C \cap B) \subseteq C \cap (A - B)$.

Suppose $X \in (C \cap A) - (C \cap B)$, orbitrary element.

Then, XECOA but x & COB.

Since xe CNA, then xeC and xeA. 3

Since x & CNB, then x & C or x & B

We know that X∈C, so it must be the case that X € B.

SO, XEC, XEA, X&B.

This means that XEC, XE A-B

There fore, $X \in C \cap (A-B)$.

Hence, we have shown that (CNA)-(CNB) = CN(A-B)

Since the two sets one subsets of one amother, then they are equal: $(C \cap A) - (C \cap B) = C \cap (A - B)$.

4 (10 points) Let A be a finite set. Explain, using English sentences, what is meant by, and the main idea behind, the proof of the statement $|2^A| = 2^{|A|}$.

(We wish to show that the cardinality of the power set of a finite set is 2141.)

· Suppose A has n elements (that is, let n = IAI), neill.

The power set of A contains all subsets of A. So, we want to count the number of subsets of A.

For a given subset of A, each of the n elements of A is either in this set or not in this set.

So, there are 2 possibilities for each elument of A.

By the multiplication principle, the total number of possibilities is 2.2....2=21.

Therefore, there are 2 subsets of A.

 $S_{D} |2^{A}| = 2^{|A|}$

5 (10 points)

Consider the sets

$$X = \{(x-1, x-x^2) : x \in \mathbb{Z}\} \text{ and } Y = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : x + y \le 0\}.$$

Show that $X \subseteq Y$ but $X \neq Y$.

Proof that XSY:

Consider an arbitrary element of X, call it (a,b).

Since $(a,b) \in X$, this means that a = X - 1 and $b = X - X^2$ for some integer x.

This means that a and b are both integers as well, 80 (9,16) $\in \mathbb{Z} \times \mathbb{Z}$.

Note that
$$a+b = x-1 + x - x^2$$

= $2x-1 - x^2$
= $(-1)(x^2-2x+1)$
= $(-1)(x-1)^2$

Since $(x-1)^2 > 0$ for any integer x, then $a+b = (-i)(x-i)^2 \le 0$.

Since (a,b) e ZxZ and a+b <0, then (a,b) ∈ y.

Therefore, X ⊆ Y, as desired. []

To show $X \neq Y$, we need to find an element of Y that is not contained in X.

For example, consider (0,-1). Since $(0,-1) \in \mathbb{Z} \times \mathbb{Z}$ and $0 + (-1) \leq 0$, then $(0,-1) \in \mathbb{Y}$. However, $(0,-1) \notin \mathbb{X}$.

If (0,-1) were in X, then 0=X-1=X=1.

 $(0,-1) \neq (x-1,x-x^2)$

But if X=1, then X-X=0 = 1. So, (0,-1) \ne X

6 (15 points) Let R be the relation "is divisible by" on the set of integers \mathbb{Z} . That is to say,

$$(a,b) \in R \iff a|b.$$

Determine if this relation is each of reflexive, symmetric, and transitive. Write a formal proof or disproof for each. (Feel free to use more than one page.)

Reflexive: Yes.

Consider any integer a. $a = 1 \cdot a$. So ala.

There fore, (asa) ER for each a E Z.

Los Rs reflexive.

Symmetric: No

Counterexample: (1,3) & R since 1/3

However, (3,1) ER since 3 mos not

Mivide 1. minor error: (3, 1) is not in R.

Transitive: Yes.

Suppose (a16) ER and (b,c) ER.

Then, ab and bc.

So, there one integers x, y such that

b= x: a and c= y.b.

This means that C = y. (x.a)

where xiyeZ.

So, a/c. There fore (a,c) ER.

This shows that R is transitive.

 \prod

(Use this space for extra work as needed.)