### NASA TM X-63293

# A SECOND ORDER THEORY OF MOTION IN THE VICINITY OF THE EARTH-MOON LIBRATION POINT L<sub>2</sub>, WITH THE EFFECT OF SOLAR PERTURBATION

#### URIEL DOMB

| GPO PRICE \$        | <u>-</u> 1 |
|---------------------|------------|
| CFSTI PRICE(S) \$   |            |
| Hard copy (HC)      | JUNE 1968  |
| Microfiche (MF) ,65 | -          |
| #653 July 65        |            |





## GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

| g        | N68-311                                    | 89         |
|----------|--------------------------------------------|------------|
| 8        | (ACCESSION NUMBER)                         | (THRU)     |
| <b>₹</b> | 69                                         | /          |
| 7        | (PAGES)                                    | (CODE)     |
| 5        | TAY-63293<br>(NASA CR OR TMX OR AD NUMBER) | 30         |
| ×        | (NASA CR OR TMX OR AD NUMBER)              | (CATEGORY) |

#### 

bу

Uriel Domb

Prepared Under Contract No. NAS5-9870

bу

BENDIX FIELD ENGINEERING CORPORATION Owings Mills, Maryland

for

Mission and Trajectory Analysis Division

Goddard Space Flight Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

#### ABSTRACT

This paper presents the development of a second order theory for trajectories in the vicinity of the lunar libration point  $\mathbf{L}_2$ . This development is based on a four-body model including the sun, earth, moon, and a satellite, all assumed to move in the same plane.

As a result we obtain a system of two simultaneous second order differential equations with time dependent coefficients. Some selected solutions of interest are derived here, including a first order periodic solution and a second order quasi-periodic solution. Various trajectories around  $L_{\rm p}$  are plotted and computations of the velocity, acceleration, range, range rate and flight path angle are presented.

#### TABLE OF CONTENTS

|                                                   | <u>Page</u> |
|---------------------------------------------------|-------------|
| List of Tables                                    | iii         |
| List of Figures                                   | iv          |
| Acknowledgement                                   | vi          |
| Table of Symbols                                  | vii         |
| 1. Introduction                                   | 1           |
| 2. Derivation of the Equations of Motion          | 3           |
| 3. Analytical Solution of the Equations of Motion | 22          |
| 3.1 First Order Solution ( $\epsilon^{\circ}$ )   | 23          |
| 3.2 Second Order Solution $(\epsilon^1)$          | 26          |
| 3.3 Complete Second Order Solution                | 30          |
| 3.4 Tabulations and Graphs of Sample Trajectories | 31          |
| References                                        | 60          |

#### LIST OF TABLES

| <u>Table</u> |                                                                                                    | Page |
|--------------|----------------------------------------------------------------------------------------------------|------|
| 1            | Perturbative Acceleration of Satellite at $L_{\text{2}}$                                           | 13   |
| 2            | Perturbative Acceleration of Satellite Near $L_2$ (x = 1 kilometer)                                | 14   |
| 3            | Perturbative Acceleration of a Satellite Near $L_2$ (x = -1 kilometer)                             | 15   |
| 4            | Perturbative Acceleration of a Satellite Near $L_2$ (x = 0.5 kilometers)                           | 16   |
| 5            | Perturbative Acceleration of a Satellite Near $L_2$ (x = -0.5 kilometers)                          | 17   |
| 6            | Perturbative Acceleration of a Satellite Near $L_2$ (x = 50 kilometers)                            | 18   |
| 7            | Perturbative Acceleration of a Satellite Near $L_2$ (x = -50 kilometers)                           | 19   |
| 8            | First Order Solution with Periodic Initial Conditions $x(0)$ and $y(0) = 1.6$ kilometers           | 32   |
| 9            | First Order Solution with Periodic Initial Conditions $x(0)$ and $y(0) = 0.805$ kilometers         | 38   |
| 10           | First Order Solution with Periodic Initial Conditions $x(0)$ and $y(0) = 0$ kilometers             | 45   |
| 11           | Complete Second Order Solution with Quasi-Periodic Initial Conditions x(0) and y(0) = 0 kilometers | 53   |

#### LIST OF FIGURES

| Figure |                                                                                                               | Page |
|--------|---------------------------------------------------------------------------------------------------------------|------|
| 1      | Coordinate Systems                                                                                            | 3    |
| 2      | Location of L <sub>2</sub>                                                                                    | 4    |
| 3      | 4-Body Configuration                                                                                          | 5    |
| 4      | Perturbative Acceleration of Satellite $x \le 0$                                                              | 20   |
| 5      | Perturbative Acceleration of Satellite $x \ge 0$                                                              | 21   |
| 6      | Trajectory of Satellite Around $L_2$ (x(0) and y(0) = 1.6 kilometer) First Order Solution                     | 34   |
| 7      | Velocity of Satellite Versus Time $(x(0) \text{ and } y(0) = 1.6 \text{ kilometer})$ First Order Solution     | 35   |
| 8      | Acceleration of Satellite Versus Time $(x(0) \text{ and } y(0) = 1.6 \text{ kilometer})$ First Order Solution | 36   |
| 9      | Range of Satellite From $L_2$ Versus Time $(x(0))$ and $y(0) = 1.6$ kilometer) First Order Solution           | 37   |
| 10     | Trajectory of Satellite Around $L_2$ (x(0) and y(0) = 0.8 kilometers) First Order Solution                    | 40   |
| 11     | Velocity of Satellite Versus Time $(x(0))$ and $y(0) = 0.8$ kilometers) First Order Solution                  | 41   |
| 12     | Acceleration of Satellite Versus Time $(x(0))$ and $y(0) = 0.8$ kilometers) First Order Solution              | 42   |
| 13     | Range of Satellite From $L_2$ Versus Time $(x(0))$ and $y(0) = 0.8$ kilometers) First Order Solution          | 43   |
| 14     | Range Rate of Satellite Versus Time $(x(0))$ and $y(0) = 0.8$ kilometers) First Order Solution                | 44   |
| 15     | Trajectory of Satellite Around $L_2(x(0))$ and $y(0) = 0$ kilometers) First Order Solution                    | 47   |
| 16     | Velocity of Satellite Versus Time $(x(0) \text{ and } y(0) = 0$<br>kilometers) First Order Solution           | 48   |
| 17     | Acceleration of Satellite Versus Time $(x(0) \text{ and } y(0) = 0$<br>kilometers) First Order Solution       | 49   |
| 18     | Range of Satellite from L <sub>2</sub> Versus Time $(x(0))$ and $y(0) = 0$                                    | 50   |

#### LIST OF FIGURES (Continued)

| Figure |                                                                                                                    | Page |
|--------|--------------------------------------------------------------------------------------------------------------------|------|
| 19     | Range Rate of Satellite Versus Time $(x(0) \text{ and } y(0) = 0 \text{ kilometers})$ First Order Solution         | 51   |
| 20     | Flight Path Angle Versus Time $(x(0))$ and $y(0) = 0$ kilometers) First Order Solution                             | 52   |
| 21     | Trajectory of Satellite Around $L_2$ (x(0) and y(0) = 0 kilometers) Complete Second Order Solution                 | 55   |
| 22     | Velocity of Satellite Versus Time $(x(0) \text{ and } y(0) = 0 \text{ kilometers})$ Complete Second Order Solution | 56   |
| 23     | Acceleration of Satellite Versus Time $(x(0) \text{ and } y(0) = 0$<br>kilometers) Complete Second Order Solution  | 57   |
| 24     | Range of Satellite from $L_2$ Versus Time $(x(0))$ and $y(0) = 0$ kilometers) Complete Second Order Solution       | 58   |
| 25     | Trajectory of Satellite Around $L_2$ (x(0) and y(0) = 0.8 kilometers) Numerical Integration                        | 59   |

#### ACKNOWLEDGEMENT

The following individuals have been most helpful to me in preparation of this report. I owe them my gratitude. They are: R. T. Groves and E. J. Lefferts of the Goddard Space Flight Center; and J. H. Davis,

H. S. Gohrband, C. K. Lambert, D. P. Muhonen, J. A. Shumaker and

N. A. Snow of Bendix Field Engineering Corporation.

#### TABLE OF SYMBOLS

Ε earth M moon S sun satellite P M<sub>E</sub> mass of earth mass of moon M<sub>M</sub>  $M_{S}$ mass of sun gravitational potential of earth  $\mu_{\mathbf{E}}$ gravitational potential of moon gravitational potential of sun  $\mu_{\mathbf{c}}$ ω angular velocity of earth-moon system angular velocity of sun w.r.t. inertial system K gravitational constant position vector of moon w.r.t. earth τ̈<sub>PE</sub> position vector of satellite w.r.t. earth r<sub>ES</sub> position vector of sun w.r.t. earth position vector of satellite w.r.t. moon position vector of sun w.r.t. moon position vector of sun w.r.t. satellite position vector of L, w.r.t. earth distance between moon and  $\mathbf{L}_{\mathrm{S}}$  divided by  $\mathbf{r}_{\mathbf{EM}}$ 

unit of time (days)

t

#### 1. INTRODUCTION

The general three body problem is known to admit only one solution, the one found by Lagrange. This solution is satisfied at the five libration points of the earth-moon system. The libration point, L<sub>p</sub>, located at the far side of the moon is of special interest to scientists lately because it could provide an "anchor" for a communications satellite behind the moon.

However, the three body model yields only a rough first order approximation to the motion of a satellite in the vicinity of  $L_{\rm p}$ . Even this solution demonstrates that  $L_{\rm p}$  is an unstable "anchor" or, in other words, a satellite will not stay in orbit around  $L_{\rm p}$  unless forced to by an onboard variable thrust engine.

It is precisely for this reason that we are interested in finding out an improved approximation to the motion about  $L_2$ . The relevant factors that do not appear in this earth-moon model include the gravitational field of the sun, the oblateness of the earth, the eccentricity of the moon's orbit, and the inclination of the moon's orbit to the earth's equatorial plane. Two other factors that are also excluded are the pressure of solar radiation and meteoroid disturbances. Of all of these external perturbative forces, the gravitational field of the sun is the most important.

In this analysis we will consider first and second order effects of the sun on the motion of a body around  $L_2$ ; these effects introduce a non-homogeneous forcing function. We construct a four body model consisting of the sun, earth, moon and a satellite stationed initially at  $L_2$  or its immediate vicinity. The sun and the moon are assumed to move in circular coplanar orbits with respective constant angular velocities  $\phi$  and  $\omega$ . By assuming  $\omega$  to be constant, we clearly neglect the eccentricity of the moon's orbit. An expression for a generalized acceleration, including solar perturbation, is then developed. Its components are the force functions of the equations of motion.

The complete solution is given in terms of first and second order solutions derived by the method of regular perturbations. Furthermore, the initial conditions are chosen in such a way as to eliminate the dominant unstable contribution. This effect can be implemented in practice during the injection of the satellite into its orbit around  $L_2$ . One has to specify an injection

location and then the injection velocity. Although the second order solution is unbounded in time, its rate of growth is small and can be corrected by an onboard engine. Various computations such as velocity, acceleration, perturbative acceleration, range, range rate, etc., are presented here as related to the trajectory. These computations, which include the effect of solar perturbation on the motion, give sufficient information to design a mechanical correction for the unstable effect of the motion.

It should be noted that a first order analysis with solar perturbation has been done before for a satellite near the collinear libration points, but, as our paper will show, second order effects in solar perturbation are of great importance since  $L_2$  is an unstable point. Thus, these effects must be included to give a good analytic approximation to the motion, as was done here.

#### 2. DERIVATION OF THE EQUATIONS OF MOTION

The following derivation is for a 3-body system in 2 dimensions, describing a planar motion. The effect of solar perturbation will be added later.



Figure 1. Coordinate Systems

Let  $(X_E, Y_E)$  be a set of inertial coordinates referenced at the earth's center. In terms of the rotating coordinates (X, Y), centered at the earthmoon barycenter, the equations of motion for a satellite, P, due to the gravity field of the earth and the moon are:

$$\ddot{X} - 2\omega\dot{Y} = \omega^2 X - \mu_E \frac{(X - X_1)}{r_1^3} - \mu_M \frac{(X - X_2)}{r_2^3}$$
 (1a)

$$\ddot{Y} + 2\omega \dot{X} = \omega^2 Y - \mu_E \frac{Y}{r_1^3} - \mu_M \frac{Y}{r_2^3}$$
 (1b)

where  $\omega$  denotes the rate of rotation of the earth-moon system, and the terms  $2\omega X$ ,  $2\omega Y$  are the Coriolis accelerations, whereas the terms  $\omega^2 X$ ,  $\omega^2 Y$  are the centrifugal accelerations.

At the five "libration points" the right hand side of equations (la) and (lb) is identically zero, and thus the solutions at these points are X = constant, Y = constant. Let the coordinates of the  $L_2$  libration point be given by X =  $X_C$ , Y =  $Y_C$ . Then in order to study the small motion near  $(X_C, Y_C)$ , let X =  $X_C$  + x and Y =  $Y_C$  + y in (la) and (lb), and expand the r.h.s. about  $(X_C, Y_C)$ . If we expand only up to and including the first two terms of the Taylor series, we will obtain the following set of linear differential equations in (x, y), centered at  $L_2$ .

$$\ddot{x} - 2\omega \dot{y} - (1 + 2A) \omega^2 x = 0$$
 (2a)

$$\ddot{y} + 2\omega\dot{x} - (1 - A)\omega^2 y = 0$$
 (2b)

where 
$$A = \frac{1}{\mu_E + \mu_M} \left[ \frac{\mu_E}{(1+\rho)^3} + \frac{\mu_M}{\rho^3} \right]$$
 (3)



Figure 2. Location of  $L_2$ 

To include solar perturbation we must develop an expression for the acceleration of the satellite P, relative to the acceleration of the libration point  $L_{\text{p}}$ . That is:

$$\ddot{\vec{r}}_{PL_2} = \ddot{\vec{r}}_{PE} - \ddot{\vec{r}}_{L_2E} \tag{4}$$

Then the equations of motion will read:

$$\ddot{x} - 2\omega \dot{y} - (1 + 2A) \omega^2 x = a'_{x}$$
 (5a)

$$\ddot{y} + 2\omega \dot{x} - (1 - A) \omega^2 y = a_y$$
 (5b)

where  $a_x$ ,  $a_y$  denote respectively the x and y components of  $\overline{r}_{PL_2}$ .

So we proceed to develop expressions for  $\vec{r}_{PE}$  and  $\vec{r}_{L_pE}$  in terms of known parameters.



Figure 3. 4-Body Configuration

The acceleration with respect to earth, of the moon, M, due to the gravitational attraction of the earth, E, and the sun, S, is given by:

$$\vec{r}_{EM} = -\frac{\mu_E}{r_{EM}^3} \vec{r}_{EM} - \frac{\mu_M}{r_{EM}^3} \vec{r}_{EM} + \frac{\mu_S}{r_{MS}^3} \vec{r}_{MS} - \frac{\mu_S}{r_{ES}^3} \vec{r}_{ES}$$
(6)

The only vector in ( $\hat{\mathbf{e}}$ ) that is not known directly is  $\hat{\mathbf{r}}_{MS}$ .

But 
$$\vec{r}_{MS} = \vec{r}_{ES} - \vec{r}_{EM}$$

and  $r_{MS}^2 = r_{ES}^2 - 2\vec{r}_{ES} \cdot \vec{r}_{EM} + r_{EM}^2 = r_{ES}^2 \left[ 1 - \frac{2\vec{r}_{ES} \cdot \vec{r}_{EM}}{r_{ES}^2} + \frac{r_{EM}^2}{r_{ES}^2} \right]$ 

(7)

Using the binomial expansion and retaining only second order terms in  $\frac{1}{r_{ES}}$  , we obtain:

$$\mathbf{r}_{MS}^{3} \approx \mathbf{r}_{ES}^{3} \left[ 1 + 3 \frac{\mathbf{r}_{ES} \cdot \mathbf{r}_{EM}}{\mathbf{r}_{ES}^{2}} - \frac{3}{2} \frac{\mathbf{r}_{EM}^{2}}{\mathbf{r}_{ES}^{2}} + \frac{15}{2} \frac{(\mathbf{r}_{ES} \cdot \mathbf{r}_{EM})^{2}}{\mathbf{r}_{ES}^{4}} \right]$$
(8)

Substituting (7) and (8) into (6) and rearranging terms, retaining only fourth order terms in  $\frac{1}{r_{\rm EC}}$ :

$$\ddot{\vec{r}}_{EM} \approx -\frac{\mu_{E} + \mu_{M}}{r_{EM}^{3}} \quad \ddot{\vec{r}}_{EM} + \frac{\mu_{S}}{r_{ES}^{3}} \left[ -\vec{r}_{EM} + \frac{3(\vec{r}_{ES} \cdot \vec{r}_{EM})}{r_{ES}^{2}} \right] \quad \dot{\vec{r}}_{ES} - \frac{3(\vec{r}_{ES} \cdot \vec{r}_{EM})}{r_{ES}^{2}} \quad \dot{\vec{r}}_{EM}$$

$$-\frac{3}{2} \frac{r_{EM}^{2}}{r_{ES}^{2}} \quad \dot{\vec{r}}_{ES} + \frac{15}{2} \frac{(\vec{r}_{ES} \cdot \vec{r}_{EM})^{2}}{r_{ES}^{4}} \quad \dot{\vec{r}}_{ES} \quad (9)$$

Now,  $\vec{r}_{L_0E} = (1 + 0) \vec{r}_{EM}$  as can be seen from Figure 2, then  $\vec{r}_{L_0E} = (1 + 0) \vec{r}_{EM}$  (10)

and:

$$\vec{r}_{L_{p}E} \approx -(1+o)\frac{\mu_{E} + \mu_{M}}{r_{EM}^{3}} \vec{r}_{EM} + (1+o)\frac{\mu_{S}}{r_{ES}^{3}} \left[ -\vec{r}_{EM} + \frac{3(\vec{r}_{ES} \cdot \vec{r}_{EM})}{r_{ES}^{2}} \vec{r}_{ES} \right] - \frac{3(\vec{r}_{ES} \cdot \vec{r}_{EM})}{r_{ES}^{2}} \vec{r}_{ES} - \frac{3}{2} \frac{r_{EM}^{2}}{r_{ES}^{2}} \vec{r}_{ES} + \frac{15}{2} \frac{(\vec{r}_{ES} \cdot \vec{r}_{EM})^{2}}{r_{ES}^{4}} \vec{r}_{ES} \right]$$
(11)

The acceleration of the satellite, P, with respect to the earth, due to the attraction of the earth, moon, and sun, is:

$$\ddot{\vec{r}}_{PE} = -\frac{\mu_E}{r_{PE}^3} \quad \dot{\vec{r}}_{PE} + \frac{\mu_M}{r_{MP}^3} \quad \dot{\vec{r}}_{MP} - \frac{\mu_M}{r_{EM}^3} \quad \dot{\vec{r}}_{EM} + \frac{\mu_S}{r_{PS}^3} \quad \dot{\vec{r}}_{PS} - \frac{\mu_S}{r_{ES}^3} \quad \dot{\vec{r}}_{ES}$$
(12)

where  $\vec{r}_{PE}$  is the distance vector from the earth to the satellite. To obtain a good approximation for  $\vec{r}_{PE}$  we perturb the satellite along the earth-moon axis by a distance x measured from  $L_p$ . The motion is not perturbed in the normal direction since the dominant gravity effect is along the earth-moon axis. Since the motion is confined to the neighborhood of  $L_p$ , due to the linearization of the equations of motion, x is small compared to  $r_{EM}$ ; but the inclusion of x gives rise to a few large terms in the equation of motion as will be seen now.

Thus let 
$$\vec{r}_{PE} = (1 + \rho) \vec{r}_{EM} + x \vec{i}$$
 (13)

where i denotes a unit vector along the x-axis.

It then follows that:

$$\vec{\mathbf{r}}_{\mathbf{MP}} = \alpha \vec{\mathbf{r}}_{\mathbf{EM}} + \mathbf{x} \dot{\mathbf{i}} \tag{14}$$

and 
$$\vec{r}_{PS} = \vec{r}_{ES} - \vec{r}_{PE}$$
 (15)

From (13), (14) and (15) we now obtain the corresponding scalars:

$$r_{PE}^{2} = (1 + \rho)^{2} \quad r_{EM}^{2} \left[ 1 + \frac{2}{1 + \rho} \frac{x}{r_{EM}} + \frac{1}{(1 + \rho)^{2}} \frac{x^{2}}{r_{EM}^{2}} \right]$$

$$r_{MP}^{2} = \rho^{2} \quad r_{EM}^{2} \left[ 1 + \frac{2}{\rho} \frac{x}{r_{EM}} + \frac{1}{\rho^{2}} \frac{x^{2}}{r_{EM}^{2}} \right]$$

$$r_{PS}^{2} = r_{ES}^{2} \left[ 1 + \frac{r_{PE}^{2}}{r_{ES}^{2}} - \frac{2(\hat{r}_{ES} \cdot \hat{r}_{PE})}{r_{ES}^{2}} \right]$$

Applying the binomial expansion and neglecting second-order and higher terms in  $x/r_{EM}$ , we obtain:

$$r_{PE}^{-3} \approx (1 + \rho)^{-3} r_{EM}^{-3} \left[ 1 - \frac{3}{1+\rho} \frac{x}{r_{EM}} \right]$$
 (16)

$$\mathbf{r}_{\mathrm{MP}}^{-3} \approx \rho^{-3} \ \mathbf{r}_{\mathrm{EM}}^{-3} \left[ 1 - \frac{3}{\rho} \ \frac{\mathbf{x}}{\mathbf{r}_{\mathrm{EM}}} \right] \tag{17}$$

$$\mathbf{r}_{PS}^{-3} = \mathbf{r}_{ES}^{-3} \left[ 1 - \frac{3}{2} \frac{\mathbf{r}_{PE}^{2}}{\mathbf{r}_{ES}^{2}} + \frac{3(\mathbf{r}_{ES} \cdot \mathbf{r}_{PE})}{\mathbf{r}_{ES}^{2}} + \frac{15}{2} \frac{(\mathbf{r}_{ES} \cdot \mathbf{r}_{PE})^{2}}{\mathbf{r}_{ES}^{4}} \right]$$
(18)

Substituting (18) in (12) and neglecting fifth-order and higher terms in  $1/r_{\rm ES}$  we obtain for  $\ddot{\vec{r}}_{\rm pE}$ :

$$\vec{r}_{PE} = -\frac{\mu_{E}}{r_{PE}^{3}} \vec{r}_{PE} + \frac{\mu_{M}}{r_{MP}^{3}} \vec{r}_{MP} - \frac{\mu_{M}}{r_{EM}^{3}} \vec{r}_{EM} + \frac{\mu_{S}}{r_{ES}^{3}} \left[ -\vec{r}_{PE} - \frac{3}{2} \frac{r_{PE}^{2}}{r_{ES}^{2}} \vec{r}_{ES} + \frac{3(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{2}} \vec{r}_{ES} \right] 
- \frac{3(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{2}} \vec{r}_{PE} + \frac{15}{2} \frac{(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{4}} \vec{r}_{ES} \right]$$
(19)

Substituting (11) and (19) in (4), we get the expression for the net acceleration of the satellite P with respect to  $L_{\text{s}}$ :

$$\ddot{\vec{r}}_{PL_{p}} \approx -\frac{\mu_{E}}{r_{PE}^{3}} \vec{r}_{PE} + \frac{\mu_{M}}{r_{MP}^{3}} \vec{r}_{MP} - \frac{\mu_{M}}{r_{EM}^{3}} \vec{r}_{EM} + (1+\rho) \frac{\mu_{E}^{+} + \mu_{M}^{+}}{r_{EM}^{3}} \vec{r}_{EM} + \frac{\mu_{S}^{-}}{r_{ES}^{3}} \left[ -\vec{r}_{PE} + (1+\rho) \vec{r}_{EM} + \frac{\mu_{S}^{-}}{r_{EM}^{3}} \vec{r}_{EM} + \frac{\mu_{S}^{-}}{r_{ES}^{3}} \vec{r}_{ES} \right] - \vec{r}_{PE}$$

$$+ (1+\rho) \vec{r}_{EM} - \frac{3}{2} \frac{r_{PE}^{2}}{r_{ES}^{2}} \vec{r}_{ES} + \frac{3}{2} (1+\rho) \frac{r_{EM}^{2}}{r_{ES}^{2}} \vec{r}_{ES} + \frac{3(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{2}} \vec{r}_{ES}$$

$$- 3 (1+\rho) \frac{(\vec{r}_{ES} \cdot \vec{r}_{EM})}{r_{ES}^{2}} \vec{r}_{ES} - \frac{3(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{2}} \vec{r}_{PE} + 3 (1+\rho) \frac{(\vec{r}_{ES} \cdot \vec{r}_{PE})}{r_{ES}^{2}} \vec{r}_{EM}$$

$$+ \frac{15}{2} \frac{(\vec{r}_{ES} \cdot \vec{r}_{PE})^{2}}{r_{ES}^{4}} \vec{r}_{ES} - \frac{15}{2} (1+_{0}) \frac{(\vec{r}_{ES} \cdot \vec{r}_{EM})^{2}}{r_{ES}^{4}} \vec{r}_{ES}$$
 (20)

Let 
$$\vec{r}_{ES} = x_{ES} \vec{i} + y_{ES} \vec{j}$$
  
$$\vec{r}_{EM} = r_{EM} \vec{i}$$

then  $(\vec{r}_{ES} \cdot \vec{r}_{EM}) = x_{ES} r_{EM}$ 

$$(\mathbf{r}_{ES} \cdot \mathbf{r}_{PE}) = (1+\rho) \mathbf{x}_{ES} \mathbf{r}_{EM} + \mathbf{x}_{ES} \mathbf{x}$$

Using these relations in addition to (13), (14), (16) and (17), we obtain a simplified version of (20):

$$\vec{r}_{PL_{p}} \approx -\frac{\mu_{E}}{(1+\rho)^{3}} \frac{1}{r_{EM}^{3}} \left[ 1 - \frac{3}{1+\rho} \frac{x}{r_{EM}} \right] \left[ (1+\rho) \vec{r}_{EM} + x \vec{i} \right] + \frac{\mu_{M}}{\rho^{3}} \vec{r}_{EM}^{3} \left[ 1 - \frac{3}{1+\rho} \frac{x}{r_{EM}} \right] \left[ (1+\rho) \vec{r}_{EM} + x \vec{i} \right] + \frac{\mu_{M}}{\rho^{3}} \vec{r}_{EM}^{3} \right] \left[ 1 - \frac{3}{\rho} \frac{x}{r_{EM}} \right] \left[ \rho \vec{r}_{EM} + x \vec{i} \right] - \frac{\mu_{M}}{r_{EM}^{3}} \vec{r}_{EM} + (1+\rho) \frac{\mu_{E} + \mu_{M}}{r_{EM}^{3}} \vec{r}_{EM} \right] + \frac{\mu_{S}}{r_{ES}^{2}} \left\{ -x \vec{i} - \frac{3}{2} \frac{\vec{r}_{ES}}{r_{ES}^{2}} r_{EM}^{2} \left[ \rho (1+\rho) + 2 (1+\rho) \frac{x}{r_{EM}} \right] + 3 \frac{\vec{r}_{ES}}{r_{ES}^{2}} x_{ES}^{2} \right\} + \frac{3}{r_{ES}^{2}} \left[ -\rho (1+\rho) x_{ES}^{2} r_{EM} \vec{r}_{EM} - (1+\rho) x_{ES}^{2} r_{EM} \vec{i} + (1+\rho) x_{ES}^{2} \vec{r}_{EM} \right] + \frac{15}{2} \frac{\vec{r}_{ES}}{r_{EM}^{2}} \left[ \rho (1+\rho) x_{ES}^{2} r_{EM}^{2} + 2 (1+\rho) x_{ES}^{2} r_{EM}^{2} \right] \right\} \tag{21}$$

At x=0 the contribution to  $\ddot{r}_{PL_2}$  of the moon and the earth is zero since a libration point in the three body system is a point where the sum of the forces is zero. That is:

at 
$$x = 0$$
  $\vec{r}_{PL_2} \Big|_{moon} = -\frac{\mu_E}{(1+\rho)^2 r_{EM}^3} \vec{r}_{EM} + \frac{\mu_M}{\rho^2 r_{EM}^3} \vec{r}_{EM} - \frac{\mu_M}{r_{EM}^3} \vec{r}_{EM}$ 

$$+ (1+\rho) \frac{\mu_E + \mu_M}{r_{EM}^3} \vec{r}_{EM} = 0$$
(22)

With (22) taken into account, (21) now becomes:

$$\frac{\ddot{r}}{PL_{2}} \approx \frac{1}{r_{EM}^{3}} \left[ \frac{\mu_{M}}{\rho^{3}} - \frac{\mu_{E}}{(1+\rho)^{3}} \right] \left[ \vec{i} - 3 \frac{\vec{r}_{EM}}{r_{EM}} \right] \times + \frac{\mu_{S}}{r_{ES}^{3}} \\
\left\{ -x\vec{i} - \frac{3}{2} \frac{\vec{r}_{ES}}{r_{ES}^{2}} r_{EM}^{2} \left[ \rho (1+\rho) + 2 (1+\rho) \frac{x}{r_{EM}} \right] + 3 \frac{\vec{r}_{ES}}{r_{ES}^{2}} x_{ES} \right. \\
+ \frac{3}{r_{ES}^{2}} \left[ -\rho (1+\rho) x_{ES} r_{EM} \vec{r}_{EM} - (1+\rho) x_{ES} r_{EM} \vec{x} \vec{i} + (1+\rho) x_{ES} \vec{r}_{EM} \right] \\
+ \frac{15}{2} \frac{\vec{r}_{ES}}{r_{ES}^{4}} \left[ \rho (1+\rho) x_{ES}^{2} r_{EM}^{2} + 2 (1+\rho) x_{ES}^{2} r_{EM} \vec{x} \right] \right\}$$
(23)

With x=0 the above expression for  $\ddot{r}_{PL_2}$  reduces to that developed by F. T. Nicholson (ref. 4 ). However, in our case first and second order terms in solar perturbation appear in the acceleration, and the contributions of the earth and the moon are also included.

In accordance with eqs.(5a) and (5b) we are looking for the rectangular components of  $\ddot{\vec{r}}_{PL_o}$ .

Let 
$$\ddot{\vec{r}}_{PL_2} = a_x \dot{\vec{i}} + a_y \dot{\vec{j}}$$
 (24)

and break  $r_{PL_2}$  into its components to obtain  $a_x$  and  $a_y$ .

$$a_{x} \approx \frac{2}{r_{EM}^{3}} \left[ \frac{\mu_{E}}{(1+\rho)^{3}} - \frac{\mu_{M}}{\rho^{3}} \right] \times + \frac{\mu_{S}}{r_{ES}^{3}} \left\{ -x - \frac{3}{2} \frac{x_{ES}}{r_{ES}^{2}} r_{EM}^{2} \left[ -(1+\rho) + 2(1+\rho) \frac{x}{r_{EM}} \right] \right.$$

$$+ 3 \frac{x_{ES}^{2}}{r_{ES}^{2}} \times + \frac{3}{r_{ES}^{2}} \left[ -\rho (1+\rho) x_{ES}^{2} r_{EM}^{2} \right] + \frac{15}{2} \frac{x_{ES}}{r_{ES}^{4}} \left[ \rho (1+\rho) x_{ES}^{2} r_{EM}^{2} \right]$$

$$+ 2 (1+\rho) x_{ES}^{2} r_{EM}^{2} \right]$$

$$+ 2 (1+\rho) x_{ES}^{2} r_{EM}^{2} \right]$$

Rearranging and neglecting terms in x of order  $\frac{x}{r_{ES}}$  and higher, we obtain the final expression for  $a_x$ .

$$a_{x} \approx \frac{2}{r_{EM}^{3}} \left[ \frac{\mu_{E}}{(1+\rho)^{3}} - \frac{\mu_{M}}{\rho^{3}} \right] x + \frac{3}{2} \rho (1+\rho) \frac{\mu_{S}}{r_{ES}^{4}} r_{EM}^{2} \left[ 5 \left( \frac{x_{ES}}{r_{ES}} \right)^{3} - 3 \left( \frac{x_{ES}}{r_{ES}} \right) \right] + \frac{\mu_{S}}{r_{ES}^{3}} \left[ 3 \left( \frac{x_{ES}}{r_{ES}} \right)^{2} - 1 \right] x$$
(25)

Similarly:

$$\mathbf{a}_{\mathbf{y}} \approx \frac{\mu_{\mathbf{S}}}{\mathbf{r}_{\mathbf{ES}}^3} \left\{ -\frac{3}{2} \frac{\mathbf{y}_{\mathbf{ES}}}{\mathbf{r}_{\mathbf{ES}}^2} \mathbf{r}_{\mathbf{EM}}^2 \left[ \rho(1+\rho) + 2 (1+\rho) \frac{\mathbf{x}}{\mathbf{r}_{\mathbf{EM}}} \right] + 3 \frac{\mathbf{y}_{\mathbf{ES}}^{\mathbf{x}} \mathbf{ES}}{\mathbf{r}_{\mathbf{ES}}^2} \mathbf{x} \right.$$
$$\left. + \frac{15}{2} \frac{\mathbf{y}_{\mathbf{ES}}}{\mathbf{r}_{\mathbf{ES}}^4} \left[ \rho(1+\rho) \mathbf{x}_{\mathbf{ES}}^2 \mathbf{r}_{\mathbf{EM}}^2 + 2 (1+\rho) \mathbf{x}_{\mathbf{ES}}^2 \mathbf{r}_{\mathbf{EM}} \right] \right\}$$

Rearranging as previously:

$$a_{y} \approx \frac{3}{2} \rho(1+\rho) \frac{\mu_{S}}{r_{ES}^{4}} r_{EM}^{2} \left[ 5 \left( \frac{x_{ES}}{r_{ES}} \right)^{2} \left( \frac{y_{ES}}{r_{ES}} \right) - \left( \frac{y_{ES}}{r_{ES}} \right) \right] + 3 \frac{\mu_{S}}{r_{ES}^{3}} \left( \frac{x_{ES}}{r_{ES}} \right) \left( \frac{y_{ES}}{r_{ES}} \right) \times$$
(26)

As can be seen, a contains only solar terms. This is an expected result since we assumed perturbations only along the x-axis. As stated before, the earth and the moon do not exert large forces on the satellite normal to their axis as long as the satellite is in the neighborhood of  $L_2$ . We simplify the equations by introducing the following constants.

$$K_{1} = \frac{2}{r_{EM}^{3}} \left[ \frac{\mu_{E}}{(1+\rho)^{3}} - \frac{\mu_{M}}{\rho^{3}} \right]$$

$$K_{2} = \frac{3}{2} \rho (1+\rho) \frac{\mu_{S}}{r_{ES}^{4}} r_{EM}^{2}$$

$$K_{3} = \frac{\mu_{S}}{r_{ES}^{3}}$$

where

$$\mu_{E} = K \frac{M_{E}}{M_{E} + M_{M}} = \omega^{2} r_{EM}^{3} \frac{M_{E}}{M_{E} + M_{M}}$$
 (27)

$$\mu_{M} = K \frac{M_{E}}{M_{E} + M_{M}} = \mathcal{O} r_{EM}^{3} \frac{M_{E}}{M_{E} + M_{M}}$$
 (28)

$$\mu_{S} = K \frac{M_{S}}{M_{E} + M_{M}} = \omega^{2} r_{EM}^{3} \frac{M_{S}}{M_{E} + M_{M}}$$
 (29)

and 
$$\frac{r_{ES}}{r_{EM}} = 388.9237$$

Thus

$$K_1 = 2\omega^2 \left[ \frac{M_E / (M_E^{+M}_M)}{(1+\rho)^3} - \frac{M_M / (M_E^{+M}_M)}{\rho^3} \right]$$
 (30a)

$$K_2 = \frac{3}{2} \rho (1+\rho) \frac{\omega^2 r_{EM}^M s / (M_E + M_M)}{(388.9237)^4}$$
 (30b)

$$K_3 = \frac{\omega_2 M_S / (M_E + M_M)}{(388.9237)^3}$$
 (30c)

and 
$$A = \frac{M_E/(M_E + M_M)}{(1+o)^3} + \frac{M_M/(M_E + M_M)}{o^3}$$
 (30d)

We adopt the units of kilometers and days so that most of our computations will be of the order of one. Furthermore, since we are dealing with long missions, the units of days are quite appropriate. The constants used are defined below:

$$M_{M}/(M_{E} + M_{M}) = 0.0121$$

$$M_{E}/(M_{E} + M_{M}) = 0.9879$$

$$M_S / (M_E + M_M) = 328,430$$

o = 0.167832

 $\omega = 0.22997 \text{ radians/day}$ 

 $\phi = -0.2128 \text{ radians/day}$ 

 $r_{EM} = 384,752.7 \text{ kilometers}$ 

A = 3.17979

 $K_1 = -0.20512 \text{ radians}^2/\text{day}^2$ 

 $K_2 = 0.8587319 \times 10^{-1} \text{ (kilometers)/day}^2$ 

 $K_3 = 0.29525 \times 10^{-3} \text{ radians}^2/\text{day}^2$ 

Now, suppose that the sun moves in a circular orbit, coplanar with the moon's orbit in the (x, y) plane, with an angular velocity  $\phi$ . Then:

$$x_{ES} = r_{ES} \cos \phi t$$

$$y_{ES} = r_{ES} \sin \phi t$$
(31)

Substituting (31) into (28) and (29) we obtain expressions for the acceleration in terms of x and t.

$$a_{x} \approx K_{1}x + K_{2}$$
 [5 cos<sup>3</sup> $\phi$ t - 3 cos $\phi$ t] +  $K_{3}$  [3 cos<sup>2</sup> $\phi$ t-1]  $x$ 

$$\mathbf{a_y} \approx \mathbf{K_2} \left[ 5 \cos^2 \! \phi \mathbf{t} \, \sin \! \phi \mathbf{t} \, + \, \sin \! \phi \mathbf{t} \, \right] + 3 \, \mathbf{K_3} \left[ \cos \! \phi \mathbf{t} \, \sin \! \phi \mathbf{t} \, \right] \mathbf{x}$$

A further rearrangement leads to a simpler mathematical form with double and triple angles.

$$a_{x} \approx K_{1}x + \frac{1}{4}K_{p} \left[3 \cos\phi t + 5 \cos3\phi t\right] + \frac{1}{2}K_{3} \left[1 + 3 \cos2\phi t\right]x \tag{32a}$$

$$a_{y} \approx \frac{1}{4} K_{2} \left[ \sin \phi t + 5 \sin 3\phi t \right] + \frac{3}{2} K_{3} \left[ \sin 2\phi t \right] x \tag{32b}$$

The resultant acceleration is:

$$a = a(x,t) = \sqrt{a_x^2 + a_y^2}$$
 (33)

at x=0, which coincides with the location of  $L_2$ :

$$a = \frac{K_{2}}{4} \left[ 26 + 8 \cos^{2} \phi t + 30 \cos 3 \phi t \cos \phi t + 10 \sin 3 \phi t \sin \phi t \right]^{1/2}$$
 (34)

and the maximum acceleration at x=0 is:

$$a_{\text{max}} = 2 K_2 = 0.171746 \text{ kilometers/day}^2$$

In Figures 4 and 5 (pages 20 and 21) a (x, t) is plotted as a function of t for fixed values of x.

Substituting (32a) and (32b) in the equations of motion for the satellite (5a) and (5b), we obtain:

$$\ddot{x} - 2\omega \dot{y} - (1+2A) \ \omega^2 x = K_1 x + \frac{1}{4} K_2 \left[ 3 \cos\phi t + 5 \cos 3\phi t \right]$$

$$+ \frac{1}{2} K_3 \left[ 1 + 3 \cos 2\phi t \right] x$$
(35a)

$$\ddot{y} + 2u\dot{x} - (1-A) \omega^2 y = \frac{1}{4} K_2 \left[ \sin\phi t + 5 \sin 3\phi t \right] + \frac{3}{2} K_3 \left[ \sin 2\phi t \right] x$$
 (35b)

These are the linearized equations of motion for a satellite in the vicinity of  $L_{\scriptscriptstyle 2}$ , including both first and second order effects of solar perturbation.

 $\label{eq:Table 1} \mbox{Perturbative Acceleration of Satellite at $L_{\rm p}$}$ 

| t (days) | a <sub>x</sub> (kilome-<br>ters/day <sup>2</sup> ) | a <sub>y</sub> (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|----------------------------------------------------|----------------------------------------------------|---------------------------------------|
| .00      | .17175                                             | 00000                                              | .17175                                |
| 1.00     | .14915                                             | 68500 x 10 <sup>-1</sup>                           | .16413                                |
| 2.00     | .89765 x 10 <sup>-1</sup>                          | 11160                                              | .14322                                |
| 3.00     | .15478 x 10 <sup>-1</sup>                          | 11383                                              | .11488                                |
| 4.00     | 46866 x 10 <sup>-1</sup>                           | 75687 x 10 <sup>-1</sup>                           | .89022 x 10 <sup>-1</sup>             |
| 5.00     | 75944 x 10 <sup>-1</sup>                           | 13361 x 10 <sup>-1</sup>                           | .77111 x 10 <sup>-1</sup>             |
| 6.00     | 64205 x 10 <sup>-1</sup>                           | $.47681 \times 10^{-1}$                            | .79973 x 10 <sup>-1</sup>             |
| 7.00     | 20666 x 10 <sup>-1</sup>                           | .82775 x 10 <sup>-1</sup>                          | $.85316 \times 10^{-1}$               |
| 8.00     | .32836 x 10 <sup>-1</sup>                          | .77801 x 10 <sup>-1</sup>                          | .84446 x 10 <sup>-1</sup>             |
| 9.00     | .70455 x 10 <sup>-1</sup>                          | .34758 x 10 <sup>-1</sup>                          | .78563 x 10 <sup>-1</sup>             |
| 10.00    | .72738 x 10 <sup>-1</sup>                          | 29024 x 10 <sup>-1</sup>                           | .78315 x 10 <sup>-1</sup>             |
| 11.00    | .34490 x 10 <sup>-1</sup>                          | $87729 \times 10^{-1}$                             | $.94265 \times 10^{-1}$               |
| 12.00    | 32981 x 10 <sup>-1</sup>                           | 11725                                              | .12180                                |
| 13.00    | 10615                                              | 10474                                              | .14913                                |
| 14.00    | 15841                                              | $53721 \times 10^{-1}$                             | .16727                                |
| 15.00    | 17044                                              | .17252 x 10 <sup>-1</sup>                          | .17131                                |
| 16.00    | 13777                                              | .81807 x 10 <sup>-1</sup>                          | .16023                                |
| 17.00    | 72519 x 10 <sup>-1</sup>                           | .11609                                             | .13688                                |
| 18.00    | .13288 x 10 <sup>-2</sup>                          | .10807                                             | .10808                                |
| 19.00    | .57311 x 10 <sup>-1</sup>                          | .62245 x 10 <sup>-1</sup>                          | .84611 x 10 <sup>-1</sup>             |
| 20.00    | .76783 x 10 <sup>-1</sup>                          | 22258 × 10 <sup>-2</sup>                           | .76815 x 10 <sup>-1</sup>             |

Table 2  $\label{eq:perturbative Acceleration of Satellite Near L_p}$  (x = 1 kilometer)

| t (days) | a <sub>x</sub> (kilome-<br>ters/day <sup>2</sup> ) | ay (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|----------------------------------------------------|----------------------------------------|---------------------------------------|
| .00      | 33082 x 10 <sup>-1</sup>                           | 00000                                  | .33082 x 10 <sup>-1</sup>             |
| 1.00     | $55689 \times 10^{-1}$                             | 68683 x 10 <sup>-1</sup>               | .88423 x 10 <sup>-1</sup>             |
| 2.00     | 11511                                              | 11193                                  | .16056                                |
| 3.00     | 18946                                              | 11426                                  | .22124                                |
| 4.00     | 25186                                              | 76126 x 10 <sup>-1</sup>               | .26311                                |
| 5.00     | 28100                                              | 13737 x 10 <sup>-1</sup>               | .28133                                |
| 6.00     | 26930                                              | .47435 x 10 <sup>-1</sup>              | .27345                                |
| 7.00     | <b></b> 22579                                      | $.82703 \times 10^{-1}$                | .24046                                |
| 8.00     | 17228                                              | .77916 x 10 <sup>-1</sup>              | .18908                                |
| 9.00     | 13463                                              | $.35040 \times 10^{-1}$                | .13912                                |
| 10.00    | 13230                                              | 28627 x 10 <sup>-1</sup>               | .13536                                |
| 11.00    | <b></b> 17049                                      | $87286 \times 10^{-1}$                 | .19154                                |
| 12.00    | 23790                                              | 11684                                  | .26505                                |
| 13.00    | 31102                                              | 10444                                  | .32809                                |
| 14.00    | 36325                                              | 53580 x 10 <sup>-1</sup>               | .36718                                |
| 15.00    | 37527                                              | .17208 x 10 <sup>-1</sup>              | .37566                                |
| 16.00    | 34262                                              | .81585 x 10 <sup>-1</sup>              | .35220                                |
| 17.00    | 27741                                              | .11573                                 | .30058                                |
| 18.00    | 20362                                              | .10764                                 | .23032                                |
| 19.00    | 14770                                              | $.61814 \times 10^{-1}$                | .16011                                |
| 20.00    | 12828                                              | 25762 x 10 <sup>-2</sup>               | .12831                                |

Table 3  $\label{eq:perturbative Acceleration of a Satellite Near L_{\text{p}} }$  (x = -1 kilometer)

| t (days) | a <sub>X</sub> (kilome-<br>ters/day <sup>2</sup> ) | ay (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|----------------------------------------------------|----------------------------------------|---------------------------------------|
| .00      | .37657                                             | .00000                                 | .37657                                |
| 1.00     | .35399                                             | 68317 x 10 <sup>-1</sup>               | .36053                                |
| 2.00     | .29464                                             | 11127                                  | .31495                                |
| 3.00     | .22041                                             | 11341                                  | .24788                                |
| 4.00     | .15813                                             | $75248 \times 10^{-1}$                 | .17512                                |
| 5.00     | .12911                                             | 12985 x 10 <sup>-1</sup>               | .12976                                |
| 6.00     | .14089                                             | .47927 x 10 <sup>-1</sup>              | .14882                                |
| 7.00     | .18446                                             | .82847 x 10 <sup>-1</sup>              | .20221                                |
| 8.00     | .23795                                             | .77686 x 10 <sup>-1</sup>              | .25031                                |
| 9.00     | .27555                                             | .34477 x 10 <sup>-1</sup>              | .27769                                |
| 10.00    | .27778                                             | 29422 x 10 <sup>-1</sup>               | .27933                                |
| 11.00    | .23947                                             | 88172 x 10 <sup>-1</sup>               | .25519                                |
| 12.00    | .17194                                             | 11766                                  | .20834                                |
| 13.00    | .98716 x 10 <sup>-1</sup>                          | 10505                                  | .14415                                |
| 14.00    | .46425 x 10 <sup>-1</sup>                          | 53863 x 10 <sup>-1</sup>               | .71109 x 10 <sup>-1</sup>             |
| 15.00    | .34389 x 10 <sup>-1</sup>                          | .17297 x 10 <sup>-1</sup>              | .38494 x 10 <sup>-1</sup>             |
| 16.00    | .67081 x 10 <sup>-1</sup>                          | $.82030 \times 10^{-1}$                | .10597                                |
| 17.00    | .13237                                             | .11645                                 | .17630                                |
| 18.00    | .20628                                             | .10851                                 | .23307                                |
| 19.00    | .26232                                             | .62676 x 10 <sup>-1</sup>              | .26970                                |
| 20.00    | .28185                                             | 18754 x 10 <sup>-2</sup>               | .28186                                |

| t (days) | a (kilome-<br>x<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|--------------------------------------------|---------------------------------------|---------------------------------------|
|          |                                            |                                       | .69332 x 10 <sup>-1</sup>             |
| .00      | .69322 x 10 <sup>-1</sup>                  | 00000                                 |                                       |
| 1.00     | .46732 x 10 <sup>-1</sup>                  | 68591 x 10 <sup>-1</sup>              | .82998 x 10 <sup>-1</sup>             |
| 2.00     | 12675 x 10 <sup>-1</sup>                   | 11177                                 | .11248                                |
| 3.00     | 86988 x 10 <sup>-1</sup>                   | 11404                                 | .14343                                |
| 4.00     | 14936                                      | 75907 x 10 <sup>-1</sup>              | .16755                                |
| 5.00     | 17847                                      | 13549 x 10 <sup>-1</sup>              | .17898                                |
| 6.00     | 16675                                      | .47558 x 10 <sup>-1</sup>             | .17340                                |
| 7.00     | 12323                                      | .82739 x 10 <sup>-1</sup>             | .14843                                |
| 8.00     | 69724 x 10 <sup>-1</sup>                   | .77859 x 10 <sup>-1</sup>             | .10451                                |
| 9.00     | 32090 x 10 <sup>-1</sup>                   | .34899 x 10 <sup>-1</sup>             | .47410 x 10 <sup>-1</sup>             |
| 10.00    | 29782 x 10 <sup>-1</sup>                   | 28825 x 10 <sup>-1</sup>              | .41447 x 10 <sup>-1</sup>             |
| 11.00    | 68000 x 10 <sup>-1</sup>                   | $87508 \times 10^{-1}$                | .11082                                |
| 12.00    | 13544                                      | <b></b> 11705                         | .17901                                |
| 13.00    | <b></b> 20859                              | 10459                                 | .23334                                |
| 14.00    | <b></b> 26083                              | 53651 x 10 <sup>-1</sup>              | .26629                                |
| 15.00    | <b></b> 27285                              | .17230 x 10 <sup>-1</sup>             | .27340                                |
| 16.00    | 24019                                      | .81696 x 10 <sup>-1</sup>             | .25371                                |
| 17.00    | 17496                                      | .11591                                | .20987                                |
| 18.00    | 10114                                      | .10785                                | .14786                                |
| 19.00    | 45194 x 10 <sup>-1</sup>                   | $.62030 \times 10^{-1}$               | .76748 x 10 <sup>-1</sup>             |
| 20.00    | 25750 x 10 <sup>-1</sup>                   | 24010 x 10 <sup>-2</sup>              | .25862 x 10 <sup>-1</sup>             |

| t (days) | a (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|---------------------------------------|---------------------------------------|---------------------------------------|
| .00      | .27416                                | .00000                                | .27416                                |
| 1        |                                       |                                       |                                       |
| 1.00     | .25157                                | 68409 x 10 <sup>-1</sup>              | .26071                                |
| 2.00     | .19220                                | 11143                                 | .22217                                |
| 3.00     | .11794                                | <b></b> 11362                         | .16377                                |
| 4.00     | $.55632 \times 10^{-1}$               | 75468 x 10 <sup>-1</sup>              | $.93756 \times 10^{-1}$               |
| 5.00     | .26583 x 10 <sup>-1</sup>             | 13173 x 10 <sup>-1</sup>              | $.29668 \times 10^{-1}$               |
| 6.00     | .38344 x 10 <sup>-1</sup>             | .47804 x 10 <sup>-1</sup>             | .61282 x 10 <sup>-1</sup>             |
| 7.00     | .81895 x 10 <sup>-1</sup>             | .82811 x 10 <sup>-1</sup>             | .11647                                |
| 8.00     | .13539                                | .77743 x 10 <sup>-1</sup>             | .15613                                |
| 9.00     | .17300                                | .34617 x 10 <sup>-1</sup>             | .17643                                |
| 10.00    | .17526                                | 29223 x 10 <sup>-1</sup>              | .17768                                |
| 11.00    | .13698                                | 87950 x 10 <sup>-1</sup>              | .16279                                |
| 12.00    | .69479 x 10 <sup>-1</sup>             | 11746                                 | .13647                                |
| 13.00    | 37179 x 10 <sup>-2</sup>              | 10490                                 | .10496                                |
| 14.00    | 55993 x 10 <sup>-1</sup>              | 53792 x 10 <sup>-1</sup>              | .77645 x 10 <sup>-1</sup>             |
| 15.00    | $68025 \times 10^{-1}$                | .17275 x 10 <sup>-1</sup>             | .70184 x 10 <sup>-1</sup>             |
| 16.00    | $35343 \times 10^{-1}$                | .81919 x 10 <sup>-1</sup>             | .89218 x 10 <sup>-1</sup>             |
| 17.00    | .29926 x 10 <sup>-1</sup>             | .11627                                | .12006                                |
| 18.00    | .10380                                | .10829                                | .15000                                |
| 19.00    | .15982                                | .62461 x 10 <sup>-1</sup>             | .17159                                |
| 20.00    | .17932                                | 20506 x 10 <sup>-2</sup>              | .17933                                |

| t (days) | a <sub>X</sub> (kilome-<br>ters/day <sup>2</sup> ) | a <sub>y</sub> (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|----------------------------------------------------|----------------------------------------------------|---------------------------------------|
| .00      | 10070 x 10 <sup>2</sup>                            | 00000                                              | .10070 x 10 <sup>2</sup>              |
| 1.00     | $10093 \times 10^{2}$                              | $77643 \times 10^{-1}$                             | .10093 x 10 <sup>2</sup>              |
| 2.00     | 10154 x 10 <sup>2</sup>                            | 12825                                              | .10155 x 10 <sup>2</sup>              |
| 3.00     | 10231 x 10 <sup>2</sup>                            | 13503                                              | .10232 x 10 <sup>2</sup>              |
| 4.00     | 10297 x 10 <sup>2</sup>                            | $97640 \times 10^{-1}$                             | .10297 x 10 <sup>2</sup>              |
| 5.00     | 10329 x 10 <sup>8</sup>                            | $32156 \times 10^{-1}$                             | .10329 x 10 <sup>2</sup>              |
| 6.00     | 10319 x 10 <sup>2</sup>                            | .35398 x 10 <sup>-1</sup>                          | .10319 x 10 <sup>2</sup>              |
| 7.00     | 10277 x 10 <sup>2</sup>                            | $.79195 \times 10^{-1}$                            | .10277 x 10 <sup>2</sup>              |
| 8.00     | $10223 \times 10^{2}$                              | .83562 x 10 <sup>-1</sup>                          | .10223 x 10 <sup>2</sup>              |
| 9.00     | 10184 x 10 <sup>2</sup>                            | .48833 x 10 <sup>-1</sup>                          | .10184 x 10 <sup>2</sup>              |
| 10.00    | 10179 x 10 <sup>2</sup>                            | 91466 x 10 <sup>-2</sup>                           | .10179 x 10 <sup>2</sup>              |
| 11.00    | 10215 x 10 <sup>2</sup>                            | 65596 x 10 <sup>-1</sup>                           | .10215 x 10 <sup>2</sup>              |
| 12.00    | 10279 x 10 <sup>2</sup>                            | 96813 x 10 <sup>-1</sup>                           | .10279 x 10 <sup>2</sup>              |
| 13.00    | 10350 x 10 <sup>2</sup>                            | 89644 x 10 <sup>-1</sup>                           | $.10350 \times 10^{2}$                |
| 14.00    | 10400 x 10 <sup>2</sup>                            | 46655 x 10 <sup>-1</sup>                           | .10400 x 10 <sup>2</sup>              |
| 15.00    | 10412 x 10 <sup>2</sup>                            | $.15024 \times 10^{-1}$                            | $.10412 \times 10^{2}$                |
| 16.00    | 10380 x 10 <sup>2</sup>                            | $.70681 \times 10^{-1}$                            | .10380 x 10 <sup>2</sup>              |
| 17.00    | 10317 x 10 <sup>2</sup>                            | $.98049 \times 10^{-1}$                            | .10317 x 10 <sup>2</sup>              |
| 18.00    | 10246 x 10 <sup>2</sup>                            | $.86339 \times 10^{-1}$                            | .10246 x 10 <sup>2</sup>              |
| 19.00    | 10193 x 10 <sup>2</sup>                            | $.40697 \times 10^{-1}$                            | .10193 x 10 <sup>2</sup>              |
| 20.00    | 10177 x 10 <sup>2</sup>                            | 19746 x 10 <sup>-1</sup>                           | .10177 x 10 <sup>2</sup>              |

Table 7

Perturbative Acceleration of a Satellite Near  $L_2$ (x = -50 kilometers)

| t (days) | a <sub>x</sub> (kilome-<br>ters/day <sup>2</sup> ) | a <sub>y</sub> (kilome-<br>ters/day <sup>2</sup> ) | a (kilome-<br>ters/day <sup>2</sup> ) |
|----------|----------------------------------------------------|----------------------------------------------------|---------------------------------------|
|          |                                                    |                                                    |                                       |
| .00      | $.10413 \times 10^{2}$                             | .00000                                             | .10413 x 10 <sup>2</sup>              |
| 1.00     | $.10391 \times 10^{2}$                             | $59358 \times 10^{-1}$                             | $.10391 \times 10^{2}$                |
| 2.00     | .10334 x 10 <sup>2</sup>                           | 94946 x 10 <sup>-1</sup>                           | $.10334 \times 10^{2}$                |
| 3.00     | $.10262 \times 10^{2}$                             | $92637 \times 10^{-1}$                             | $.10263 \times 10^{2}$                |
| 4.00     | $.10203 \times 10^{2}$                             | 53735 x 10 <sup>-1</sup>                           | .10203 x 10 <sup>2</sup>              |
| 5.00     | .10177 x 10 <sup>2</sup>                           | .54331 x 10 <sup>-2</sup>                          | .10177 x 10 <sup>2</sup>              |
| 6.00     | .10191 x 10 <sup>2</sup>                           | .59964 x 10 <sup>-1</sup>                          | .10191 x 10 <sup>2</sup>              |
| 7.00     | $.10235 \times 10^{2}$                             | .86355 x 10 <sup>-1</sup>                          | .10236 x 10 <sup>2</sup>              |
| 8.00     | .10289 x 10 <sup>2</sup>                           | $.72040 \times 10^{-1}$                            | .10289 x 10 <sup>2</sup>              |
| 9.00     | $.10325 \times 10^{2}$                             | .20683 x 10 <sup>-1</sup>                          | .10325 x 10 <sup>2</sup>              |
| 10.00    | $.10325 \times 10^{2}$                             | 48902 x 10 <sup>-1</sup>                           | .10325 x 10 <sup>2</sup>              |
| 11.00    | $.10284 \times 10^{2}$                             | 10986                                              | .10284 x 10 <sup>2</sup>              |
| 12.00    | $.10213 \times 10^{2}$                             | 13769                                              | .10214 x 10 <sup>2</sup>              |
| 13.00    | $.10137 \times 10^{2}$                             | 11985                                              | .10138 x 10 <sup>2</sup>              |
| 14.00    | .10083 x 10 <sup>2</sup>                           | 60787 x 10 <sup>-1</sup>                           | .10084 x 10 <sup>2</sup>              |
| 15.00    | .10071 x 10 <sup>2</sup>                           | .19481 x 10 <sup>-1</sup>                          | .10071 x 10 <sup>2</sup>              |
| 16.00    | .10105 x 10 <sup>2</sup>                           | .92933 x 10 <sup>-1</sup>                          | .10105 x 10 <sup>2</sup>              |
| 17.00    | $.10172 \times 10^{2}$                             | .13412                                             | .10173 x 10 <sup>2</sup>              |
| 18.00    | $.10249 \times 10^{2}$                             | .12980                                             | .10250 x 10 <sup>2</sup>              |
| 19.00    | $.10308 \times 10^2$                               | .83794 x 10 <sup>-1</sup>                          | .10308 x 10 <sup>2</sup>              |
| 20.00    | .10330 x 10 <sup>2</sup>                           | .15295 x 10 <sup>-1</sup>                          | .10330 x 10 <sup>2</sup>              |



Figure 4. Perturbative Acceleration of Satellite  $\, \times \le 0 \,$ 

- 20 -



Figure 5. Perturbative Acceleration of Satellite  $\times \geq 0$ 

#### 3. ANALYTICAL SOLUTION OF THE EQUATIONS OF MOTION

Since no closed form solution is known to exist for equations (35a) and (35b), we will develop approximate analytic solutions of first and second order. The constant  $K_3$ , which appears on the right hand side of equations (35a) and (35b), is far smaller than  $K_1$  and  $K_2$  as can be seen from the numerical values of these constants given in this report. Therefore, it is logical to express both x and y in powers of  $K_3$  and then solve the equations of motion by the method of regular perturbations.

For conformity, let  $\epsilon = K_3$ . Then:

$$x = x_1 + \epsilon x_2 + \epsilon^2 x_3 + \dots$$
 (36a)

$$y = y_1 + \epsilon y_2 + \epsilon^2 y_3 + \dots$$
 (36b)

where the subscripts denote the order of solution.

The initial conditions will be taken as

$$x_{1}(0) = x(0)$$
  
 $\dot{x}_{1}(0) = \dot{x}(0)$   
 $y_{1}(0) = y(0)$   
 $\dot{y}_{1}(0) = \dot{y}(0)$   
 $x_{2}(0) = x_{3}(0) = \dots = 0$   
 $\dot{x}_{2}(0) = \dot{x}_{3}(0) = \dots = 0$   
 $y_{2}(0) = y_{3}(0) = \dots = 0$   
 $\dot{y}_{2}(0) = \dot{y}_{3}(0) = \dots = 0$ 

In this section we will derive the solutions corresponding to  $\epsilon^0$  and  $\epsilon^1$ . There is little point in going to higher order terms since the equations of motion are linearlized, and are valid only in the vicinity of  $L_2$ .

Substituting the expansions (36a, b) in (35a, b) we obtain two sets of differential equations corresponding respectively to  $\epsilon^{\circ}$  and  $\epsilon^{1}$ .

For  $\epsilon^{\circ}$ :

$$\ddot{\mathbf{x}}_{1} - 2\omega \dot{\mathbf{y}}_{1} - \alpha \dot{\mathbf{x}}_{1} = \frac{1}{4} K_{2} \left[ 3 \cos\phi t + 5 \cos 3\phi t \right]$$
 (38a)

$$\ddot{y}_1 + 2_0 \dot{x}_1 - \beta y_1 = \frac{1}{4} K_2 \left[ \sin \phi t + 5 \sin 3 \phi t \right]$$
 (38b)

where  $\alpha = (1+2A)\omega^2 + K_1 = 0.184100$ and  $\beta = (1-A)\omega^2 = -0.115282$ 

Similarly, for  $\epsilon^1$ :

$$\ddot{\mathbf{x}}_{2} - 2\omega\dot{\mathbf{y}}_{2} - \alpha\mathbf{x}_{2} = \frac{1}{2}\left[1 + 3\cos 2\phi t\right]\mathbf{x}_{1}$$
 (39a)

$$\ddot{\mathbf{y}}_{2} + 2e\dot{\mathbf{x}}_{2} - \beta\mathbf{y}_{2} = \frac{3}{2} \left[ \sin 2\phi t \right] \mathbf{x}_{1}$$
 (39b)

The complete second-order solution will then be given by

$$\mathbf{x} = \mathbf{x}_1 + \mathbf{K}_3 \mathbf{x}_2 \tag{40a}$$

$$y = y_1 + K_3 y_2 (40b)$$

#### 3.1 FIRST ORDER SOLUTION ( $\epsilon^{\circ}$ )

This section will deal strictly with the system (38a, b). We first solve the set of homogeneous equations, which gives rise to a fourth-order characteristic equation:

$$D^{4} + D^{2} (4w^{2} - \alpha - \beta) + \alpha\beta = 0$$
 (41)

which has two equal and opposite real roots denoted by  $\pm$  p , and two equal and opposite imaginary roots denoted by  $\pm$  in.

$$p = \frac{1}{\sqrt{2}} \left[ -(2-A)\omega^2 + K_1 + \sqrt{\omega^4 (9A^2-8A)} + \omega^2 K_1 (6A-8) + K_1^2 \right]^{1/2}$$

$$= 0.301427$$
(42)

$$\Omega = \frac{1}{\sqrt{2}} \left[ (2-A)\omega^2 - K_1 + \sqrt{\omega^4 (9A^2-8A)} + \omega^2 K_1 (6A-8) + K_1^2 \right]^{1/2}$$

$$= 0.483308$$
(43)

The homogeneous solution is, therefore:

$$x_{1}$$
<sub>1</sub>(t) =  $A_1$  sin $\Omega$ t +  $A_2$  cos $\Omega$ t +  $A_3$  sinh pt +  $A_4$  cosh pt (44a)

$$y_{1H}(t) = B_1 \sin \Omega t + B_2 \cos \Omega t + B_3 \sinh pt + B_4 \cosh pt$$
 (44b)

The B's are related to the A's as follows:

$$B_{1} = -\gamma A_{2}$$

$$B_{2} = \gamma A_{1}$$

$$B_{3} = \delta A_{4}$$

$$B_{4} = \delta A_{3}$$

$$(45)$$

where:

$$\gamma = \frac{1}{2\omega\Omega} \left[ \Omega^2 + (1+2A)\omega^2 + K_1 \right] = 1.878986 \tag{46}$$

and:

$$\delta = \frac{1}{2\omega p} \lceil p^2 - (1+2A)\omega^2 + K_1 \rceil = -3.631650 \tag{47}$$

The particular solution is found to be:

$$x_{1n}(t) = A_5 \cos \alpha t + A_6 \cos 3\alpha t \tag{48a}$$

$$y_{1p}(t) = B_6 \sin \phi t + B_6 \sin 3\phi t \tag{48b}$$

where:

$$A_5 = \frac{K_2}{4} \frac{2\omega \alpha - 3(x^2 + \beta)}{(\alpha + \alpha^2)(\beta + \alpha^2) - 4\omega^2 \alpha^2}$$

$$\tag{49a}$$

$$A_{\beta} = \frac{5K_2}{4} \frac{6\omega\phi - (9^{2}+\beta)}{(\alpha^{2}+\beta^{2})(\beta^{2}+\beta^{2}) - 36\omega^{2}\phi^{2}}$$
(49b)

$$B_{5} = -\frac{1}{200} \left[ \frac{3}{4} K_{2} + (\alpha + \phi^{2}) A_{5} \right]$$
 (49c)

$$B_{6} = -\frac{1}{6\omega\phi} \left[ \frac{5}{4} K_{2} + (\alpha + 9\phi^{2}) A_{6} \right]$$
 (49d)

The remaining four constants can be determined in terms of the four given initial conditions. Namely:

$$A_1 = \frac{py(0) - \delta \dot{x}(0)}{p_V - \Omega \delta}$$
 (50a)

$$A_{p} = \frac{\delta p \left[ x(0) - A_{5} - A_{6} \right] + \phi \left[ B_{5} + 3 B_{6} \right] - \dot{y}(0)}{\delta y + p \delta}$$
 (50b)

$$A_3 = \frac{1}{p} \left[ \dot{\mathbf{x}}(0) - \Omega \mathbf{A}_1 \right] \tag{50c}$$

$$A_4 = x(0) - A_2 - A_5 - A_6 \tag{50d}$$

The general first order solution is given by:

$$x_1$$
 (t) =  $A_1 \sin\Omega t + A_2 \cos\Omega t + A_3 \sinh pt + A_4 \cosh pt + A_5 \cos\phi t$  +  $A_6 \cos3\phi t$  (51a)

$$y_1$$
 (t) =  $B_1 \sin\Omega t + B_2 \cos\Omega t + B_3 \sinh pt + B_4 \cosh pt + B_5 \sin\phi t$  +  $B_6 \sin3\phi t$  (51b)

where all the constants have been defined either explicitly or in terms of the initial conditions. It is evident that this solution is unbounded due to the presence of the hyperbolic functions. Even for small values of t the exponential terms are larger than the sinuosoidal terms. Consequently, this solution demonstrates little, if any, periodic behavior even in the initial phase of the trajectory. The source of the instability can be eliminated, however, by a proper choice of initial conditions. That is, we want the coefficients of the hyperbolic terms  $A_3$ ,  $A_4$ ,  $B_3$ ,  $B_4$ , to vanish. As a matter of fact, we must only require that  $A_3 = A_4 = 0$  since  $B_3$  and  $B_4$  are multiples of  $A_4$  and  $A_3$  respectively (see (45)). By letting  $A_3 = 0$  and  $A_4 = 0$  (in (50c) and (50d)) we determine new expressions for  $A_1$  and  $A_2$ , namely:

$$A_1 = \frac{\dot{x}(0)}{\Omega} \tag{52a}$$

$$A_{g} = x(0) - A_{5} - A_{6}$$
 (52b)

Substituting the above in (50a) and (50b) we come up with the necessary relationship among the initial conditions:

$$\dot{\mathbf{x}}(0) = \frac{\Omega}{\gamma} \, \mathbf{y}(0) \tag{53a}$$

$$\dot{y}(0) = \phi(B_5 + 3B_6) + \gamma\Omega (A_5 + A_6) - \gamma\Omega x(0)$$
 (53b)

These two relations can be implemented in practice during the injection into an orbit around L<sub>p</sub>. Thus we have a periodic first order solution, namely:

$$x_1 (t) = A_1 \sin\Omega t + A_2 \cos\Omega t + A_5 \cos\phi t + A_6 \cos 3\phi t$$
 (54a)

$$y_1(t) = B_1 \sin\Omega t + B_2 \cos\Omega t + B_5 \sin\phi t + B_6 \sin3\phi t$$
 (54b)

where:

 $A_6 = -.09389$ 

 $A_6 = -.72532$ 

 $B_5 = 0.43798$ 

 $B_6 = -1.09595$ 

and:

$$A_1 = y(0)/\gamma = 0.53220 y(0)$$

$$A_2 = x(0) - A_5 - A_6 = 0.81922 + x(0)$$

$$B_1 = -\gamma A_2 = -1.53930 - 1.87896 x(0)$$

$$B_2 = y(0)$$

Using the first order solution we can then compute, in addition to the trajectory, the velocity, acceleration, range to  $L_2$ , range rate, and flight path angle. Namely:

$$v(t) = \sqrt{\dot{x}_1^2(t) + \dot{y}_1^2(t)}$$
 (55)

$$a(t) = \sqrt{\ddot{x}_1^2(t) + \ddot{y}_1^2(t)}$$
 (56)

$$R(t) = \sqrt{x_1^2(t) + y_1^2(t)}$$
 (57)

$$\dot{R}(t) = \frac{x_1(t) \dot{x}_1(t) + y_1(t) \dot{y}_1(t)}{R(t)}$$
(58)

$$\triangle(t) = \tan^{-1} \left[ \frac{\dot{y}_1(t)}{\dot{x}_1(t)} \right]$$
 (59)

#### 3.2 SECOND ORDER SOLUTION ( $\epsilon^1$ )

Having found the first-order solution, we can proceed to determine the second-order solution using equations (39a, b). Substituting  $x_1(t)$  from equation (54a) into equations (39a, b), we obtain the following system:

$$\ddot{\mathbf{x}}_{2} - 2\omega\dot{\mathbf{y}}_{2} - \alpha\mathbf{x}_{2} = \frac{1}{2}\left[1+3\cos2\phi\mathbf{t}\right]\left[\mathbf{A}_{1}\sin\Omega\mathbf{t} + \mathbf{A}_{2}\cos\Omega\mathbf{t} + \mathbf{A}_{5}\cos\phi\mathbf{t}\right]$$

$$+ \mathbf{A}_{6}\cos3\phi\mathbf{t}$$
(60a)

$$\ddot{y}_2 + 2\omega \dot{x}_2 - \beta y_2 = \frac{3}{2} \left[ \sin 2\phi t \right] \left[ A_1 \sin \Omega t + A_2 \cos \Omega t + A_5 \cos \phi t \right]$$

$$+ A_6 \cos 3\phi t$$
(60b)

Expanding the right hand sides of the above equations and separating all cross products of trigonometric functions, we obtain a simplified version which is easily solved.

$$\ddot{\mathbf{x}}_{2} - 2u\dot{\mathbf{y}}_{2} - \alpha \mathbf{x}_{2} = \frac{1}{2} \mathbf{A}_{1} \sin\Omega t + \frac{1}{2} \mathbf{A}_{2} \cos\Omega t + \frac{1}{4} [5 \mathbf{A}_{5} + 3 \mathbf{A}_{6}] \cos\phi t$$

$$+ \frac{1}{4} [2 \mathbf{A}_{6} + 3 \mathbf{A}_{5}] \cos3\phi t + \frac{3}{4} \mathbf{A}_{6} \cos5\phi t$$

$$+ \frac{3}{4} \mathbf{A}_{1} \sin(2\phi + \Omega) t - \frac{3}{4} \mathbf{A}_{1} \sin(2\phi - \Omega) t$$

$$+ \frac{3}{4} \mathbf{A}_{2} \cos(2\phi + \Omega) t + \frac{3}{4} \mathbf{A}_{2} \cos(2\phi - \Omega) t \tag{61a}$$

$$\ddot{y}_{2} + 2\omega\dot{x}_{2} - \beta y_{2} = \frac{3}{4} \left[ A_{5} - A_{6} \right] \sin\phi t + \frac{3}{4} A_{5} \sin3\phi t + \frac{3}{4} A_{6} \sin5\phi t$$

$$+ \frac{3}{4} A_{1} \cos(2\phi - \Omega) t - \frac{3}{4} A_{1} \cos(2\phi + \Omega) t$$

$$+ \frac{3}{4} A_{2} \sin(2\phi + \Omega) t + \frac{3}{4} A_{2} \sin(2\phi - \Omega) t$$
(61b)

The homogeneous solution is unchanged from the first-order solution except for the coefficients. That is:

$$\mathbf{x}_{2H}(t) = \mathbf{A}_{1}' \sin\Omega t + \mathbf{A}_{2}' \cos\Omega t + \mathbf{A}_{3}' \cosh pt + \mathbf{A}_{4}' \sinh pt$$
 (62a)

$$y_{P_H}(t) = B_1' \sin\Omega t + B_2' \cos\Omega t + B_3' \cosh pt + B_4' \sinh pt$$
 (62b)

where:

$$B_{1}' = -\gamma A_{2}'$$

$$B_{2}' = \gamma A_{1}'$$

$$B_{3}' = \delta A_{4}'$$

$$B_{4}' = \delta A_{3}'$$
(63)

The particular solution is found to be:

$$x_{2p}(t) = C_1 \cos \phi t + C_2 \cos 3\phi t + C_3 \cos 5\phi t + C_4 \sin (2\phi + \Omega)t$$
 
$$+ C_5 \sin (2\phi - \Omega)t + C_6 \cos (2\phi + \Omega)t + C_7 \cos (2\phi - \Omega)t$$
 
$$+ C_8 \sin \Omega t + C_9 \cos \Omega t$$
 (64a)

$$y_{2p}(t) = D_1 \sin\phi t + D_2 \sin3\phi t + D_3 \sin5\phi t + D_4 \sin(2\phi + \Omega)t$$

$$+ D_5 \sin(2\phi - \Omega)t + D_6 \cos(2\phi + \Omega)t + D_7 \cos(2\phi - \Omega)t$$

$$+ D_8 \sin\Omega t + D_9 \cos\Omega t \tag{64b}$$

It should be noted that the sinuosoidal part of the homogeneous solution appears in the particular solution without causing resonance. This is due to the particular way in which the differential equations are coupled. The constants are defined below.

$$C_1 = \frac{3/2 \, \omega \phi \, (A_5 - A_6) - 1/4 \, (\phi^2 + \beta) (5A_5 + 3A_8)}{(\phi^2 + \alpha) (\phi^2 + \beta) - 4\omega^2 \, \phi^2}$$
(65a)

$$C_{2} = \frac{9/2 \, \omega \phi \, A_{5} - 1/4 \, (9 \phi^{2} + \beta) \, (3A_{5} + 2A_{6})}{(9 \phi^{2} + \alpha) \, (9 \phi^{2} + \beta) - 36 \omega^{2} \, \phi^{2}}$$
(65b)

$$C_3 = \frac{3/4 A_6 (10\omega\phi - 25\phi^2 - \beta)}{(25\phi^2 + \alpha)(25\phi^2 + \beta) - 100\omega^2 \phi^2}$$
(65c)

$$C_4 = -\frac{3/4}{\left[ (2\phi + \Omega)^2 - 2\omega (2\phi + \Omega) + \beta \right]}$$

$$(65d)$$

$$C_{5} = \frac{3/4 \operatorname{A}_{1} \left[ (2 - \Omega)^{2} - 2 w \left( 2 - \Omega \right) + \beta^{7} \right]}{\left[ (2 - \Omega)^{2} + 2 \right] \left[ (2 - \Omega)^{2} + \beta^{7} - 4 w^{2} \left( 2 - \Omega \right)^{2}}$$

$$(65e)$$

$$C_{\epsilon} = \frac{3/4 \text{ A}_{\epsilon} \left[ \left( 2\phi + \Omega \right)^{2} - 2\psi \left( 2\phi + \Omega \right) + \beta \right]}{4\psi^{2} \left( 2\phi + \Omega \right)^{2} - \left[ \left( 2\phi + \Omega \right)^{2} + \alpha \right] \left[ \left( 2\phi + \Omega \right)^{2} + \beta \right]}$$

$$(65f)$$

$$C_{\gamma} = \frac{3/4 \text{ A} \cdot \left[ (2\phi - \Omega)^{2} - 2\omega (2\phi - \Omega) + \beta \right]}{4\omega^{2}(2\phi - \Omega)^{2} - \left[ (2\phi - \Omega)^{2} + \alpha \right] \left[ (2\phi - \Omega)^{2} + \beta \right]}$$
(65g)

$$C_8 = -\frac{1}{2} \frac{(\beta + \Omega^2) A_1}{[(\alpha + \Omega^2) (\beta + \Omega^2) - 4\alpha^2 \Omega^2]}$$
(65h)

$$C_{\theta} = -\frac{1}{2} \frac{(\beta + \Omega^{2}) A_{2}}{[(\alpha + \Omega^{2}) (\beta + \Omega^{2}) + 4 \omega^{2} \Omega^{2}]}$$
(65i)

$$D_1 = -\frac{2\omega\phi C_1 + 3/4 (A_5 - A_6)}{(\phi^2 + \beta)}$$
 (66a)

$$D_{2} = -\frac{6\omega\phi C_{2} + 3/4 A_{5}}{(9\phi^{2} + \beta)}$$
 (66b)

$$D_3 = -\frac{10\omega\phi C_3 + 3/4 A_6}{25\phi^2 + \beta}$$
 (66c)

$$D_4 = -\frac{2w(2\phi + \Omega) C_6 + 3/4 A_2}{(2\phi + \Omega)^2 + \beta}$$
(66d)

$$D_{S} = \frac{2w(2\phi - \Omega) C_{7} + 3/4 A_{2}}{(2\phi - \Omega)^{2} + \beta}$$
 (66e)

$$D_{\rm g} = \frac{2_{(1)} (2\phi + \Omega) C_4 + 3/4 A_1}{(2\phi + \Omega)^2 + \beta}$$
 (66f)

$$D_{\gamma} = \frac{2\omega (2\phi - \Omega) C_5 - 3/4 A_1}{(2\phi - \Omega)^2 + \beta}$$
 (66g)

$$D_{g} = -\frac{1/2 A_{2} + (\alpha + \Omega^{2}) C_{9}}{2\omega\Omega}$$
 (66ħ)

$$D_{9} = \frac{1/2 A_{1} + (\alpha + \Omega^{2}) C_{8}}{2 m \Omega}$$
 (66i)

$$A_{1}' = \frac{1}{\sqrt{p-\Omega^{5}}} \left\{ \delta \left[ C_{4} (2\phi+\Omega) + C_{5} (2\phi-\Omega) + C_{8}\Omega \right] - p \left[ D_{6} + D_{7} + D_{9} \right] \right\}$$
(67a)

$$A_{2}' = \frac{1}{\gamma \Omega^{+} p \delta} \left\{ D_{1} \phi + 3 D_{2} \phi + 5 D_{3} \phi + (2 \phi + \Omega) D_{4} + (2 \phi - \Omega) D_{5} + D_{8} \Omega \right\}$$

$$- \delta p \left[ C_{1} + C_{2} + C_{3} + C_{6} + C_{7} + C_{9} \right]$$
(67b)

$$A_{3}^{\prime} = - [C_{1} + C_{2} + C_{3} + C_{6} + C_{7} + C_{9}] - A_{2}^{\prime}$$
(67c)

$$A_{4}' = -\frac{1}{8} \left[ D_{6} + D_{7} + D_{9} \right] - \frac{Y}{8} A_{1}'$$
 (67d)

The second order solution is thus given by:

$$y_{2}(t) = (B_{1}' + D_{8}) \sin \Omega t + (B_{2}' + D_{9}) \cos \Omega t + B_{3}' \cosh pt + B_{4}' \sinh pt$$

$$+ D_{1} \sin \phi t + D_{2} \sin 3\phi t + D_{3} \sin 5\phi t + D_{4} \sin (2\phi + \Omega)t$$

$$+ D_{5} \sin (2\phi - \Omega)t + D_{6} \cos (2\phi + \Omega)t + D_{7} \cos (2\phi - \Omega)t$$
(68b)

In the case of this solution the hyperbolic terms are left intact to demonstrate the increasing instability of the solution.

## 3.3 COMPLETE SECOND ORDER SOLUTION

The complete second order solution is given by:

$$x(t) = x_1(t) + K_3 x_2(t)$$
 (69a)

$$y(t) = y_1(t) + K_3 y_2(t)$$
 (69b)

where  $x_1(t)$ ,  $x_2(t)$ ,  $y_1(t)$  and  $y_2(t)$  are given by (54a), (54b), (68a) and (68b), respectively.

Thus the complete solution becomes:

$$x(t) = [A_1 + K_3 (A_1' + C_8)] \sin\Omega t + [A_2 + K_3 (A_2' + C_9)] \cos\Omega t$$

$$+ K_3 A_3' \cosh pt + K_3 A_4' \sinh pt + [A_5 + K_3 C_1] \cos\phi t + [A_6 + K_3 C_2] \cos3\phi t$$

$$+ K_3 C_3 \cos5\phi t + K_3 C_4 \sin(2\phi + \Omega)t + K_3 C_5 \sin(2\phi - \Omega)t$$

$$+ K_3 C_6 \cos(2\phi + \Omega)t + K_3 C_7 \cos(2\phi - \Omega)t$$

$$(70a)$$

$$y(t) = [B_{1} + K_{3} (B_{1}' + D_{g})] \sin\Omega t + [B_{2} + K_{3} (B_{2}' + D_{g})] \cos\Omega t$$

$$+ K_{3} B_{3}' \cosh pt + K_{3} B_{4}' \sinh pt + [B_{g} + K_{3} D_{1}] \sin\phi t + [B_{g} + K_{3} D_{2}] \sin3\phi t$$

$$+ K_{3} D_{3} \sin5\phi t + K_{3} D_{4} \sin(2\phi + \Omega)t + K_{3} D_{5} \sin(2\phi - \Omega)t$$

$$+ K_{3} D_{6} \cos(2\phi + \Omega)t + K_{3} D_{7} \cos(2\phi - \Omega)t$$

$$(70b)$$

The numerical values of the coefficients will be given here for a typical trajectory originating at  $L_{\rm p}$ .

Since the initial conditions chosen are periodic only as far as the first order solution is concerned, we will rename them quasi-periodic for the complete solution. Thus, the quasi-periodic initial conditions for a start at  $L_2$  are:

x(0) = 0 y(0) = 0  $\dot{x}(0) = 0$  $\dot{y}(0) = -.13750$ 

Then:

| $A_1$                     | = 0        | $\mathtt{B_{z}}'$        | = | 0        | $D^{S}$      | = 1.9471              |
|---------------------------|------------|--------------------------|---|----------|--------------|-----------------------|
| Α <sub>2</sub>            | = 0.81922  | $\mathbf{B_3}'$          | = | 0        | $D_3$        | = 0.89387             |
| As                        | = -0.09389 | ${\mathtt B_4}^{\prime}$ | = | 18.2830  | $D_4$        | = 4.5579              |
| A <sub>6</sub>            | = -0.72532 | $C_1$                    | = | 3.6139   | $D_5$        | = -1.6151             |
| $B_1$                     | = -1.53929 | $C^{S}$                  | = | 1.6983   | $D_{e}$      | = 0                   |
| BS                        | = 0        | Сз                       | = | 0.74566  | $D_{\gamma}$ | = 0                   |
| $B_5$                     | = 0.43798  | $C_4$                    | = | 0        | De           | = -0.92132            |
| $B_{G}$                   | = -1.09595 | Cs                       | = | 0        | $D_{\Theta}$ | = 0                   |
| ${\tt A_1}'$              | = 0        | Ce                       | = | -3.9235  | $K_3$        | $= 0.29525 \ 10^{-3}$ |
| $\mathbf{A_{2}}^{\prime}$ | = 4.6669   | C <sub>7</sub>           | = | -1.2766  | Ω            | = 0.4833081           |
| $\mathbf{A_3}^{'}$        | = -5.0343  | Ca                       | = | 0        | φ            | = -0.2128             |
| ${\bf A_4}'$              | = 0        | C9                       | = | -0.49033 |              |                       |
| $\mathbf{B_1}'$           | = -8.7691  | $D_1$                    | = | 1.7124   |              |                       |

## 3.4 TABULATIONS AND GRAPHS OF SAMPLE TRAJECTORIES

The results of our computations will be tabulated and plotted in the following pages. First, the first order solution will be presented with periodic initial conditions for a few different cases. Then the complete second order solution, with quasi-periodic initial conditions, will be given. The instability of the motion will be demonstrated in this solution. However, it may be noted, the divergence of the motion commences only after 23 days for a motion initiating at  $L_2$ , with quasi-periodic initial conditions. Thus the rate of growth of the divergence from the periodic motion is rather slow and probably could be corrected with the aid of an onboard engine.

Table 8

First Order Solution with Periodic Initial Conditions

| y(0) = -1.59899<br>5 x 10 <sup>1</sup>                 | $B_4 = 0$ $B_5 = .43798$ $B_6 = -1.09595$        |
|--------------------------------------------------------|--------------------------------------------------|
| $\dot{\mathbf{x}}(0) = .41395$<br>$\gamma = 0.1878986$ | $B_1 = -4.56323$<br>$B_2 = 1.60934$<br>$B_3 = 0$ |
| y(0) = 1.609<br>$\Omega = 0.4833081$                   | $A_4 = 0$ $A_5 =09389$ $A_6 =72532$              |
| x(0) = 1.609<br>$\phi = -0.2128000$                    | $A_1 = .85650$ $A_2 = 2.42856$ $A_3 = 0$         |

|          | x (kilo- | y (kilo- | v (kilome- | a (kilome- | R (kilo- |
|----------|----------|----------|------------|------------|----------|
| t (days) | meters)  | meters)  | ters/day)  | ters/day~) | meters)  |
| 00.      | 1,60934  | 1.60934  | 1.65171    | .46133     | 2.27596  |
| 1.00     | 1.87418  | 13498    | 1.84632    | .36746     | 1.87903  |
| •        | 1.78880  | -1.97305 | 1.79699    | 67997      | 2.66322  |
| 3.00     | 1.31257  | -3.56529 | 1.50523    | .70506     | 3,79923  |
| 4.00     | .48143   | -4.55886 | 1,13681    | .92590     | 4.58421  |
| 2.00     | 57085    | -4.66891 | 1,16181    | 1.02809    | 4.70367  |
| 00.9     | -1.62015 | -3.77076 | 1.68654    | .96341     | 4.10409  |
| 7.00     | -2.39561 | -1.97113 | 2.22052    | .77185     | 3,10231  |
|          | -2.65254 | .37504   | 2,44877    | 87029.     | •        |
| 00.6     | -2.25358 | 2.72216  | 2.26370    | .88874     | 3,53395  |
|          | -1,22986 | 4,46237  | 1,78951    | 1.20773    | 4.62874  |
| 11.00    | .20367   | 5.09379  | 1.52778    | 1.37872    | 5.09786  |
| 12.00    | 1.69091  | 4,37881  | 1.94940    | 1.30519    | 4.69394  |
| 13.00    | 2.82813  | 2,43878  | 2,56134    | 1.04107    | 3.73443  |
| 14.00    | 3.28208  | 25247    | 2.84093    | .86181     | 3.29178  |
| 15.00    | 2,89559  | -2.98347 | 2,61752    | 1.07069    | 4.15759  |
| 16.00    | 1.74486  | -4.99976 | 2.04372    | 1.40878    | 5.29549  |
| 17.00    | .12692   | -5.72150 | 1.71217    | 1.56330    | 5.72291  |
| 18.00    | -1.52175 | -4.91686 | 2.15506    | •          | 5.14697  |
| 19.00    | -2.75163 | -2.77578 | 2.79379    | 1.10449    | •        |
| 20.00    | -3.23215 | .14078   | 3,05435    | .88641     | 3.23521  |
| 21.00    | -2.84751 | 3.06123  | 2,77230    | 1.08244    | •        |
|          | -1.72663 | 5.22411  | 2.10337    | 1.39119    | •        |
| 23.00    | 19865    | 6.09095  | 1.59611    | 1.50476    | •        |
| •        | 1,30961  | 5.48736  | 1.87657    | 1.34779    | 9        |
| 25.00    | 2,40050  | 3,63307  | 2.44919    | 1.00902    | 4.35449  |
|          |          |          |            |            |          |

Table 8 (Continued)
First Order Solution with Periodic Initial Conditions

|       | x (kilo- | y (kilo- | v (kilome- | a (kilome-            | R (kilo- |
|-------|----------|----------|------------|-----------------------|----------|
| days) | meters)  | meters)  | ters/day)  | ters/day <sup>2</sup> | meters)  |
| 00    | 2.81586  | 1.05772  | 2.71378    | .75127                | 3.00796  |
| 00    | 2,49833  | -1.56455 | 2,50981    | .85012                | 2.94780  |
| 00    | 1.58865  | -3.60669 | 1,94385    | 1.07436               | 3,94107  |
| 00    | .36583   | -4.64747 | 1,35445    | 1.15777               | 4.66185  |
| 00    | 84509    | -4.55507 | 1.27090    | 1.04307               | 4.63280  |
| 00    | -1.76548 | -3.48113 | 1,62055    | . 78887               | 3,90323  |
| 00    | -2.22744 | -1,78057 | 1.87994    | .53643                | 2,85166  |
| 00    | -2.19510 | .10675   | 1.85536    | .48331                | 2.19769  |
| 00    | -1.74473 | 1.77120  | 1.56718    | .60175                | 2.48620  |
| 00.   | -1.01941 | 2,91338  | 1,14939    | .69955                | 3.08658  |
| 00.   | 17958    | 3,37659  | .85377     | .71080                | 3,38136  |
| 00.   | .63260   | 3,13837  | .94836     | 69079*                | 3.20150  |
| 00    | 1.30724  | 2.28100  | 1.25961    | .51625                | 2.62904  |
| 00    | 1.76317  | .96119   | 1.51959    | .37953                | 2.00814  |
| 00    | 1.93890  | 60945    | 1,61406    | .32603                | 2,03242  |
| 00    | 1.79100  | -2.17511 | 1.50322    | 86277                 | 2.81758  |
| 00    | 1,30638  | -3,45034 | 1.21811    | .65258                | 3,68938  |
| 00    | . 52474  | -4.15247 | .95885     | .83016                | 4.18550  |
| 00    | 44177    | -4.05767 | 1,13803    | . 90773               | 4.08164  |
| 00    | -1.40736 | -3.07149 | 1.67358    | .84610                | 3,37856  |
| 00    | -2.14094 | -1.29040 | 2.16070    | .67840                | 2.49975  |
| 00    | -2.42302 | .97530   | 2,35652    | 68009.                | 2.61194  |
| 00    | -2.11655 | 3.23987  | 2,16558    | .82220                | 3.86996  |
| 00    | -1.22748 | 4.94558  | 1,69013    | 1.14082               | 5.09563  |
| 00    | .07055   | 5.61048  | 1,40668    | 1.32909               | 5.61092  |
|       |          |          |            |                       |          |



Figure 6. Trajectory of Satellite Around L<sub>2</sub>
First Order Solution

Periodic
Initial Conditions
x=1.61 km
y=1.61 km
x=0.414 km/day
y=-1.60 km/day





Figure 8. Acceleration of Satellite Versus Time First Order Solution



-37 -

Table 9

First Order Solution with Periodic Initial Conditions

| y(0) = -0.86825<br>$36 \times 10^{1}$ | $B_4 = 0$ $B_5 = 0.43798$ $B_6 = -1.09595$       |
|---------------------------------------|--------------------------------------------------|
| $\frac{y}{10^1}$                      | <b>ക്</b> മ                                      |
| x(0) = 0.20698<br>y = 0.1878986 x     | $B_1 = -3.05126$<br>$B_2 = 0.80467$<br>$B_3 = 0$ |
| y(0) = 0.805<br>$\Omega = 0.4833081$  | $A_4 = 0$ $A_5 = -0.09389$ $A_6 = -0.72532$      |
| x(0) = 0.805<br>$\phi = -0.2128000$   | $A_1 = 0.42825$ $A_2 = 1.62389$ $A_3 = 0$        |

| R (kilo- dR (kilome- dt ers) ters/day) | .1379846759 | 97350 . 24875 | 53792 .75294 | 91       | 88318 .41242 | 0743304553 | 7910850238 | 1663265693 | 76640 .01883 | 23573 .77308 | .00306 .64942 | 39377   .09629 | 1888847418 | 6007956918 | 38507 .26012 | 02922 86129 | 79817 .56508 | 0225114592 | 5237380091 | 6385178428 | 41444 46309 | 30594 1.08067 | .65375      | 4950813727  | 9730986555 | 010-1 |
|----------------------------------------|-------------|---------------|--------------|----------|--------------|------------|------------|------------|--------------|--------------|---------------|----------------|------------|------------|--------------|-------------|--------------|------------|------------|------------|-------------|---------------|-------------|-------------|------------|-------|
| a (kilome- R ters/day²) me             | .20407      | . 17110       | 1.           | •        | •            | .65756 3.0 | 2.         | .56540 2.1 | •            | •            | .83330   3.0  | •              | 3.         | •          | .64910 2.3   | •           | 1.05895 3.7  | •          | —          | 2.         | .68660 2.4  | •             | 1.09440 4.2 | 1.13571 4.4 | .96885 3.9 | 0,000 |
| v (kilome-<br>ters/day)                | 89258       | 1.02055       | 1.04280      | .92705   | .72195       | .68883     | 1.01798    | 1.41941    | 1.64368      | 1.58217      | 1.28945       | 1.09173        | 1.36418    | 1.80370    | 2.01323      | 1.85589     | 1.45555      | 1,28265    | 1,66236    | 2,11732    | 2.25231     | 1.97603       | 1,45735     | 1.19248     | 1.51274    |       |
| y (kilo-<br>meters)                    | .80467      | 14486         | -1.18587     | -2.16138 | -2.85982     | -3.06394   | •          | -1.55152   | 02509        | 1.59395      | •             | 3,39233        | 2.96350    | ٠.         | 26266        | -2.19657    | -3.59603     | -4.02250   | -3.31179   | -1.63232   | . 56069     | 2.66140       | 4.09613     | 4.49321     | 3,78587    | (11)  |
| x (kilo-<br>meters)                    | .80467      | .96266        | .97925       | . 79042  | 36630        | 25259      | 94140      | -1.51186   | -1.76623     | -1.56774     | 90161         | .09914         | 1.17755    | 2.02353    | 2.37056      | 2.08596     | 1.22258      | .01163     | -1.20364   | -2.07299   | -2.34843    | -1.96116      | -1.04068    | .12975      | 1.20525    | 00100 |
| t (days)                               | 00.         | 1.00          | •            | 3.00     | 4.00         | 5.00       | 00.9       | 7.00       | 8.00         | 9.00         | 10.00         | 11.00          | 12.00      | 13.00      | 14.00        | 15.00       | 16.00        | 17.00      | 18.00      | 19.00      | 20.00       | 21.00         | 22.00       | 23.00       | 24.00      | 000   |

Table 9 (Continued)
First Order Solution with Periodic Initial Conditions

| x (ki    | cilo-<br>ers) | y (kilo-<br>meters) | v (kilome-<br>ters/day) | a (kilome-<br>ters/day <sup>2</sup> ) | R (kilo-<br>meters) | dR (kilome-<br>dt (kilome-<br>ters/day) |
|----------|---------------|---------------------|-------------------------|---------------------------------------|---------------------|-----------------------------------------|
| 2.01     | 1134          | .25251              | 1,98983                 | . 58065                               | 2.02713             | 41201                                   |
| 1.58     | 8682          | -1.57505            | 1.72486                 | .71676                                | 2.23579             | .66017                                  |
| .7.      | 7894          | -2.82007            | 1,25316                 | .85243                                | 2.92567             | .57840                                  |
| 15       | .5659         | -3,24391            | 76806.                  | .84123                                | 3.24769             | .04030                                  |
| 96       | 6054          | -2.85610            | .99190                  | .68524                                | 3.01330             | 48283                                   |
| -1.44    | 4752          | -1.87595            | 1.20561                 | .47271                                | 2,36949             | 74508                                   |
| -1.54    | 16859         | 63688               | 1.25477                 | .35536                                | 1.67474             | 55376                                   |
| -1.31    | 11143         | .52696              | 1.09837                 | .39574                                | 1,41334             | .04285                                  |
| . 8      | 5834          | 1,37167             | .81692                  | .44668                                | 1.61809             | .26816                                  |
| . 33     | 3336          | 1.78564             | .55359                  | .42962                                | 1.81649             | .09536                                  |
| .17      | 8684          | 1.77896             | .47656                  | .35362                                | 1.78519             | 15492                                   |
| .52      | 2840          | 1,43684             | .57262                  | .25544                                | 1.53092             | 33390                                   |
| .79      | 9415          | .86535              | .68754                  | .16923                                | 1.17452             | 33781                                   |
| <u>.</u> | 5873          | .15570              | .76306                  | .11477                                | .97129              | 00483                                   |
| 1.02     | 02.738        | 62025               | . 78635                 | .11321                                | 1.20009             | .42044                                  |
| 36.      | 8121          | -1.38875            | .74290                  | .18568                                | 1.70041             | .53279                                  |
| .78      | 8383          | -2.04696            | .62679                  | .30879                                | 2.19191             | .41996                                  |
| .40      | 0912          | -2,45355            | .51531                  | .44260                                | 2.48742             | .14846                                  |
| 12       | 2397          | -2.45238            | .64036                  | .53834                                | 2.45551             | 22037                                   |
| 72       | 7894          | -1.92756            | .99838                  | .55127                                | 2.06079             | 53923                                   |
| -1.25    | 5731          | 68698               | 1,36005                 | .47432                                | 1.52890             | 37873                                   |
| -1.53    | 3659          | .57607              | 1.55494                 | .40598                                | 1.64103             | .64110                                  |
| -1,43    | 3040          | 2.11235             | 1,48936                 | . 53099                               | 2,55109             | 1.02299                                 |
| - 89     | 1877          | 3,34806             | 1.19740                 | .76856                                | 3,46660             | .73227                                  |
| 03       | 3349          | 3,90891             | . 97707                 | .93615                                | 3,90906             | .12011                                  |



Figure 10. Trajectory of Satellite Around L<sub>2</sub>
First Order Solution





Figure 12. Acceleration of Satellite Versus Time First Order Solution



Range of Satellite from L<sub>2</sub> Versus Time First Order Solution

Figure 13.

-43 -



Table 10

First Order Solution with Periodic Initial Conditions

|                                           |                                                     |                                             | - θ<br>ay) (degrees)                  |        | 117.09098 | •      | 97.77431 | 104.51576 | 145.11177 | 202.75391 | 238.49011 | 260.17972 | 279.61738 | 304.84759 | 346.26523 | 34.52215 | 66.07344 | 91.74314 | 111.22027 | 145.88709 | 196.42372 | 234.62371 | 7.       | •        | 6             | 337,77861 | 31.40882 | ۷.      | 87.84663 |
|-------------------------------------------|-----------------------------------------------------|---------------------------------------------|---------------------------------------|--------|-----------|--------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|-----------|-----------|----------|----------|---------------|-----------|----------|---------|----------|
|                                           |                                                     |                                             | dR (kilo-<br>meters/day)              | 00000  | .20867    | .32961 | .39605   | 35042     | .17492    | 08834     | 31504     | 23409     | .28427    | .40916    | .15733    | 15452    | 18731    | .25329   | 76067     | .24790    | 20935     | 53900     | /        | .66527   | $\infty$      | .23281    | 136      | 75318   | 5.53     |
| al Conditions                             |                                                     | )<br>,43798<br>,09595                       | R (kilo-<br>meters)                   | 00000  | .16297    | 43330  | 80358    | 1.18764   | 1,46045   | •         | 1.29450   | .97727    | . 99733   | 1,39039   | 1.69087   | 1.68465  | 1.47407  | 1.48434  | 1.90162   | 2.30143   | .3258     | 1.92277   | 1.47756  | 1.76266  | 2,50398       | 2.98928   | 2.93149  | .3572   | 5910     |
| eriodic Initia                            | 3750<br>x 10 <sup>1</sup>                           | B <sub>5</sub> 1.                           | a (kilome-<br>ters/day <sup>2</sup> ) | .10850 | .11918    | .12488 | .13016   | .20351    | .31612    | .39114    | .38477    | .32125    | .33243    | 746967    | .59233    | .60575   | .51072   | .43660   | .54347    | .70913    | .76956    | .67941    | .52035   | .51145   | .68091        | .80636    | .77827   | .61476  | 45895    |
| Solution with Periodic Initial Conditions | $\dot{y}(0) = -0.13750$<br>$y = 0.1878986 \times 1$ | $B_1 = -1.53929$<br>$B_2 = -0$<br>$B_3 = 0$ | v (kilome-<br>ters/day)               | .13750 | .21115    | ,32964 | .40450   | .39233    | .32725    | .40121    | 67079     | .85072    | .90911    | .79912    | .67138    | .78841   | 1.04866  | 1.18563  | 1.09561   | .87814    | 87336     | 1.17914   | 1,44689  | 1,45881  | 1.20029       | .87635    | .90118   | 1,20676 | 1 39036  |
| First Order S                             | $\dot{x}(0) = 0$ 4833081                            | 0<br>-0.09389<br>-0.72532                   | y (kilo-<br>meters)                   | 00000. | 15474     | 39869  | 75747    | -1.16078  | -1.45897  | -1.48430  | -1.13190  | 42522     | .46574    | 1.26667   | •         | 1.54819  | .82889   | 27284    | •         | •         | -2.32349  | •         | 48885    | 09086    | •             | 2.96815   | 2.89547  | •       | 80210    |
| <b>124</b>                                | . 0<br>0                                            | A <sub>2</sub> = A <sub>5</sub> = =         | x (kilo-<br>meters)                   | 00000  | .05114    | 69691. | .26828   | .25117    | 959       | 26265     | 62811     | 87992     | 88191     | 57336     | 00539     | . 66419  | 1.21894  | 1,45905  | 1.27633   | .70029    | 10366     | 88552     | -1.39435 | -1.46472 | -1.07482      | 35474     | .45815   | 1.10089 | 1,37405  |
|                                           | $x(0) = 0$ $y(0) = 0$ $\phi = -0.2128000$           | $A_1 = -0$ $A_2 = 0.8192$ $A_3 = 0$         | t (days)                              | 00.    | 1.00      | 2.00   | 3.00     | 4.00      | 2.00      | 00.9      | 7.00      | 8,00      | 9.00      | 10.00     | 11.00     | 12.00    | 13.00    | 14.00    | 15.00     | v         | 17.00     | 18.00     | σ        | 0        | $\overline{}$ | $\sim$    | 23.00    | 24.00   | C        |

Table 10 (Continued)
First Order Solution with Periodic Initial Conditions

| θ<br>(degrees)                        | 106,60482 | 130,52464 | 189,38277 | 221,09855 | 254.64338 | 262,38639 | 300,74380 | 334,10055 | 22,36023 | 61.97305 | 87.05333 | 107.04667 | 128,86104 | 165.36021 | 108.24108 | 179,00860 | 132,35666 | 101.67359 | 167,79464 | 211.64738 | 236,41056 | 285.40441 | 272.25199 | Š       | 337.22652 |
|---------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|---------|-----------|
| dR (kilo-<br>meters/dav)              | .18192    | 67677     | .12899    | 25875     | 45734     | -,31958   | 00687     | .01478    | 15643    | 27033    | 15048    | .10213    | .09843    | .00207    | 03844     | .02233    | .10669    | .10508    | 00215     | 16574     | 16775     | . 39442   | .64317    | .52489  | .18944    |
| R (kilo-<br>meters)                   | 1.32737   | 1.72336   | 2.03367   | 1.96162   | 1.58011   | 1.16156   | 1.00718   | 1.03928   | .97254   | .74646   | .51080   | .50001    | .61793    | 98/99     | .64160    | .62631    | 09769     | 69608     | 86898     | .78527    | .58444    | .67379    | 1.23442   | 1.84103 | 2.21163   |
| a (kilome-<br>ters/day <sup>2</sup> ) | .50129    | .62887    | .66189    | .56537    | .40935    | .34175    | .39722    | .42909    | .37429   | .26443   | .18758   | .19271    | .19542    | .15400    | .10008    | 。08551    | ,09774    | 13806     | .21885    | .29144    | .30698    | .26778    | .27929    | .41254  | .55085    |
| v (kilome-<br>ters/day)               | 1,30675   | 1.01072   | .72493    | .72708    | .86974    | .88799    | .73972    | .53086    | 44238    | .48623   | .49101   | .39675    | .24122    | .09264    | .04380    | 68980.    | .11372    | .12519    | .18053    | ,35351    | .58491    | .77436    | .83150    | ,72588  | . 27581   |
| y (kilo-<br>meters)                   | 55271     | -1.58555  | -2.03344  | -1.84036  | -1.15714  | 27077     | .50681    | .94718    | .97213   | .65789   | .18133   | 26469     | 55031     | 62679     | 63106     | 60240     | 64358     | 75462     | 60248     | 78364     | 44938     | .17684    | .98484    | 1.75055 | 2.20735   |
| x (kilo-<br>meters)                   | 1.20682   | .67530    | 03077     | 67901     | -1.07600  | -1.12956  | 87038     | 42775     | .02805   | .35269   | .47753   | .42420    | .28106    | .15429    | .11586    | .17143    | .26128    | .29350    | .19384    | 05051     | 37367     | 65017     | 74424     | 90025   | 13752     |
| t (days)                              | 9         |           |           | 29.00     | 0         | •         | 32.00     | 33.00     | •        | •        | 36.00    | 37.00     | 38.00     | 39.00     | 40.00     | 41.00     | 42.00     | 43.00     | 00.44     | 45.00     | 00.94     | 47.00     | 78.00     | 00.65   | 50.00     |











Figure 19. Range Rate of Satellite Versus Time First Order Solution



Table 11

Complete Second Order Solution with Quasi-Periodic Initial Conditions

 $\dot{y}(0) = -0.13750$  $y = .1878986 \times 10^{1}$ x(0) = 0 y(0) = 0 x(0) = 0  $\phi = -0.2128000$   $\Omega = 0.4833081$ 

| t (days) | x (kilometers)            | y (kilometers)           | v (kilo-<br>ters/day)    | a (kilome-<br>ters/day <sup>2</sup> ) | R (kilometers)           |
|----------|---------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|
| 0        | 00000                     | 0000                     | 20201                    | 10700                                 | 00000                    |
| 00.0     |                           | •                        | .13/83                   | .10/69                                | 0,000                    |
| 1.00     | ×                         | 15465                    | .21080                   | .11843                                | . 16280                  |
| 2.00     | .16860                    | 39799                    | .32814                   | .12400                                | .,43223                  |
| 3.00     | .26601                    | 75522                    | .40189                   | .12990                                | 69008.                   |
| 4.00     | .24748                    | $11558 \times 10^{1}$    | .37622                   | .20439                                | $.11820 \times 10^{1}$   |
| 5.00     | .60392 x 10 <sup>-1</sup> | 14498 x 10 <sup>1</sup>  | .18240                   | .31762                                | ×                        |
| 00*9     | 26964                     | $14693 \times 10^{1}$    | .16156                   | .39293                                | .14938 x 10 <sup>1</sup> |
| 7.00     | 63684                     | $11092 \times 10^{1}$    | .55446                   | .38654                                | .12791 x 10 <sup>1</sup> |
| 8.00     | 89043                     | 39308                    | .84889                   | .32221                                | .97334                   |
| 00.6     | 89452                     | .50936                   | .92147                   | .33089                                | $10294 \times 10^{1}$    |
| 10.00    |                           | $13243 \times 10^{1}$    | .81006                   | .46541                                | $.14494 \times 10^{1}$   |
| 11.00    | 25808 x 10 <sup>-1</sup>  | .17666 x 10 <sup>1</sup> | .67082                   | .58571                                | .17667 x 10 <sup>1</sup> |
| 12.00    | .63647                    | $.16482 \times 10^{1}$   | .76546                   | .59714                                | $.17669 \times 10^{1}$   |
| 13.00    | $11809 \times 10^{1}$     | .96271                   | $10077 \times 10^{1}$    | .50292                                | $.15236 \times 10^{1}$   |
| 14.00    | $.14074 \times 10^{1}$    | 92276 x10 <sup>-1</sup>  | .11305 x 10 <sup>1</sup> | .43950                                | $.14104 \times 10^{1}$   |
| 15.00    | .12068 x 101              | 11652 x 10 <sup>1</sup>  | .94712                   | .56273                                | $.16775 \times 10^{1}$   |
| 16.00    | .60722                    | 18614 x 10 <sup>1</sup>  | .39333                   | .74010                                | ×                        |
| 17.00    | 22856                     | $18760 \times 10^{1}$    | ,38355                   | .81009                                | .18898 x 10 <sup>1</sup> |
| 18.00    | ×                         | $11015 \times 10^{1}$    | $11451 \times 10^{1}$    | . 72459                               | ×                        |
| 19.00    | × 9                       |                          | $16632 \times 10^{1}$    | .54534                                | ×                        |
| 20,00    | $17715 \times 10^{1}$     | $.20889 \times 10^{1}$   | .17861 x 10 <sup>1</sup> | .45586                                | $.27390 \times 10^{1}$   |
| 21.00    | 14886 x 101               | $.37608 \times 10^{1}$   | $15695 \times 10^{1}$    | .54633                                | $.40447 \times 10^{1}$   |
| 22,00    | 91255                     | $.49949 \times 10^{1}$   | $.11412 \times 10^{1}$   | .61968                                | $.50775 \times 10^{1}$   |
| 23,00    | 29443                     | ×                        | .64828                   | .56628                                | .56414 x 10 <sup>1</sup> |
| 24.00    | .84371 x 10 <sup>-1</sup> | $.57835 \times 10^{1}$   | .17599                   | .49617                                | .57841 x 10 <sup>1</sup> |
| 25.00    | 20027 x 10 <sup>-4</sup>  | .57998 x 101             | .37999                   | .69323                                | .57998 x 10 <sup>1</sup> |
|          |                           |                          |                          |                                       |                          |

Table 11 (Continued)

Complete Second Order Solution with Quasi-Periodic Initial Conditions

| t (days) | x (kilometers)          | y (kilometers)           | v (kilome-<br>ters/day)  | a (kilome-<br>ters/day <sup>2</sup> ) | R (kilometers)           |
|----------|-------------------------|--------------------------|--------------------------|---------------------------------------|--------------------------|
|          |                         |                          |                          |                                       |                          |
| 26.00    | 65104                   | 2011 x                   | 6237                     | 20 ×                                  | 2352 x                   |
|          | $18366 \times 10^{1}$   | 5428 x                   | 224 x                    | 4891 x                                | 7632 x                   |
| 28.00    | ×                       | .10305 x 10 <sup>2</sup> | 7431 x                   | $17971 \times 10^{1}$                 | x 09                     |
| 29.00    | ×                       | .14838 x 10 <sup>2</sup> | 6758 x                   | 0236 x                                | 2746 x                   |
| 30.00    | $72826 \times 10^{1}$   | 1388 x                   | $\infty$                 | $.22641 \times 10^{1}$                | $.22594 \times 10^{2}$   |
| 31.00    | ×                       | ×                        | 352 x                    | 6903 x                                | ×                        |
|          | 15 x                    | 1706 x                   | ×                        | $34970 \times 10^{1}$                 | 3458 x                   |
|          | x 491                   | ×                        | ×                        | ×                                     | ×                        |
| 34.00    | 03 ×                    | .76261 x 10 <sup>2</sup> | ×                        | ×                                     | 90                       |
|          | 27671 x 10 <sup>2</sup> | ×                        | ×                        | ×<br>•                                | 0610 x                   |
|          | ×                       | ×                        | ×                        | 9<br>×                                | 275 x                    |
| 37.00    | $50782 \times 10^{2}$   | 8571 x                   | $.57775 \times 10^{2}$   | $17713 \times 10^{2}$                 | 52 x                     |
| 38.00    | ×                       | ×                        | $.78413 \times 10^{8}$   | ×                                     | × 71                     |
| 39.00    | 93417 x                 | $.33917 \times 10^3$     | 22 x                     | ×                                     | $35180 \times 10^{3}$    |
| 70.00    | ×                       | 5874 x                   | ×                        | ×                                     | 33 ×                     |
| 41.00    |                         | 2036 x                   | 9412 x                   | $.58437 \times 10^{2}$                | 4345 x                   |
| 42.00    | ×                       | ന                        | 6234 x                   | ×                                     | 37 ×                     |
| 43.00    | 1216 x                  | .11340 x 104             | $35465 \times 10^{3}$    | × 66                                  | 1761 x                   |
| •        | ×                       | 5330 x                   | 7953 x                   | 75 x                                  | 901 × 10                 |
| 45.00    | 100 ×                   | ,20727 x 104             | ×                        | $.19570 \times 10^3$                  | $.21499 \times 10^4$     |
| 76.00    | 18 x                    | 8025 x                   | 79 x 10                  | 949                                   | 69 × 1                   |
|          | x 0550                  | 7891 x 10                | 853 x 1                  | 21 x                                  | 9303 x 10                |
| •        | 14111 x 104             | .51229 x 10 <sup>4</sup> | 21 x 10                  | 8257 x 1                              | $3136 \times 10$         |
| •        | 19071 x                 | 25                       | .21652 x 10 <sup>4</sup> | $11 \times 1$                         | 1832 x 10                |
|          | 257                     |                          | .29262 x 10 <sup>4</sup> | $.88147 \times 10^{3}$                | .97098 x 10 <sup>4</sup> |
|          |                         |                          |                          |                                       |                          |



Figure 21. Trajectory of Satellite Around L<sub>2</sub>
Complete Second Order Solution



Figure 22. Velocity of Satellite Versus Time Complete Second Order Solution



Figure 23. Acceleration of Satellite Versus Time Complete Second Order Solution



Figure 24. Range of Satellite from L<sub>2</sub> Versus Time Complete Second Order Solution



## REFERENCES

- 1. Danby, J. M. A., "Inclusion of Extra Forces in Problem of Three Bodies", Astronomical Journal, Vol. 70, No. 3, 1965.
- DeVries, J. P., "The Sun's Perturbing Effect on Motion near a Triangular Lagrange Point", XIII International Astronautical Congress Proceedings, 1962.
- 3. Farquhar, Robert W., "Station Keeping in the Vicinity of Collinear Libration Points", Space Flight Mechanics Conference Proceedings, 1966.
- 4. Moulton, Forest R., Celestial Mechanics, MacMillan Company, 1962.
- 5. Nicholson, F. T., 'The Effect of Solar Perturbation on Motion near the Collinear Earth-Moon Libration Points', Proceedings of AIAA Fifth Aerospace Sciences Meeting, No. 67-24, 1967.
- 6. Raithel, W., "The Role of the Cis-Lunar Libration Point in Lunar Operations", NASA Report N66-36556, 1966.
- 7. Seifert, Howard S., Space Technology, John Wiley & Sons, Inc., 1959.
- 8. Steg, L. and DeVries, J. P., "Earth-Moon Libration Points: Theory, Existence and Applications", Space Sciences Reviews, No. 5., 1966.
- 9. Szebehely, Victor, Theory of Orbits, Academic Press, 1967.
- 10. Szebehely, Victor and Williams, Carol A., Collinear Libration Points, Astronomical Journal, Vol. 69, No. 7, 1964.
- 11. Vonbun, F. O., "A 'Hummingbird' for the L<sub>2</sub> Lunar Libration Point", Goddard Space Flight Center Technical Report, NASA X-507-67-167, 1967.