

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesores: Constanza del Campo, Camilo Sánchez

AYUDANTES: AGUSTÍN GILBERT, MARTINA RUZ,

Santiago Marcano, Omar Neyra

Introducción al Álgebra y Geometría - MAT1207 Ayudantía 8

7 de Mayo, 2024

Ejercicio 1: Considere la siguiente figura

Calcule $\tan(\gamma)$ y simplifique lo más posible.

Ejercicio 2: Sea $\alpha \in \mathbb{R}$ tal que $\alpha \neq \frac{\pi}{2} + \pi k$ y $\alpha \neq n\pi$, siendo k y n enteros. Demuestre que:

$$\frac{(\csc^2 \alpha - 1) \cos(-2\alpha + 2\pi) \tan 2\alpha}{2\cos \alpha \cot^2 \alpha} = \sec \alpha$$

Ejercicio 3: Demuestre que si $|\beta - \alpha| = \frac{\pi}{2}$ entonces sen² $(x + \alpha) - \cos^2(x + \beta) = 0 \ \forall x \in \mathbb{R}$

Ejercicio 4: Si $\alpha + \beta = \frac{\pi}{3}$, calcular

$$\frac{\sin \alpha - \sin \beta}{\cos \beta - \cos \alpha}$$

Ejercicio 5: Demuestre las siguientes identidades:

a)
$$3 \operatorname{sen}^3 \alpha \csc \alpha + \cos^2 \alpha + 2 \cos(-\alpha) \cos \alpha = 3$$

b)
$$\operatorname{sen}(\frac{\alpha}{2}) \cos(\frac{\alpha}{2}) = \frac{1}{2} \operatorname{sen} \alpha$$

c)
$$\frac{\cos \alpha - \cos \beta}{\cos \alpha + \cos \beta} = -\tan(\frac{\alpha + \beta}{2}) \tan(\frac{\alpha - \beta}{2})$$

d)
$$\frac{\sin 5\alpha - \sin 3\alpha}{\cos 5\alpha + \cos 3\alpha} = \tan \alpha$$

e)
$$\sin^4 \alpha = \frac{3}{8} - \frac{\cos 2\alpha}{2} + \frac{\cos 4\alpha}{8}$$

Ejercicio 6: (Propuesto) Descendiendo por una colina, inclinada en un ángulo α respecto al suelo, una persona observa una piedra situada en el suelo con un ángulo de depresión de β . A mitad del descenso, el ángulo de depresión es γ . Demuestre que:

$$\cot \alpha = 2 \cot \beta - \cot \gamma$$