Assignment-14-Decision-Tree

Q1). Use decision trees to prepare a model on fraud data treating those who have taxable_income <= 30000 as "Risky" and others are "Good"

In [1]:

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import classification_report
from sklearn import preprocessing
```

In [2]:

data=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Fraud_check.csv")
data.head()

Out[2]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban
0	NO	Single	68833	50047	10	YES
1	YES	Divorced	33700	134075	18	YES
2	NO	Married	36925	160205	30	YES
3	YES	Single	50190	193264	15	YES
4	NO	Married	81002	27533	28	NO

In [3]:

data.shape

Out[3]:

(600, 6)

In [4]:

```
data.columns
```

Out[4]:

In [5]:

data.describe()

Out[5]:

	Taxable.Income	City.Population	Work.Experience
count	600.000000	600.000000	600.000000
mean	55208.375000	108747.368333	15.558333
std	26204.827597	49850.075134	8.842147
min	10003.000000	25779.000000	0.000000
25%	32871.500000	66966.750000	8.000000
50%	55074.500000	106493.500000	15.000000
75%	78611.750000	150114.250000	24.000000
max	99619.000000	199778.000000	30.000000

In [6]:

```
data.loc[data['Taxable.Income']>=30000, 'Income']='Good'
data.loc[data['Taxable.Income']<=30000, 'Income']='Risky'</pre>
```

In [7]:

data

Out[7]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban	Incom
0	NO	Single	68833	50047	10	YES	Goo
1	YES	Divorced	33700	134075	18	YES	Goo
2	NO	Married	36925	160205	30	YES	Goo
3	YES	Single	50190	193264	15	YES	Goo
4	NO	Married	81002	27533	28	NO	Goo
595	YES	Divorced	76340	39492	7	YES	Goo
596	YES	Divorced	69967	55369	2	YES	Goo
597	NO	Divorced	47334	154058	0	YES	Goo
598	YES	Married	98592	180083	17	NO	Goo
599	NO	Divorced	96519	158137	16	NO	Goo

600 rows × 7 columns

In [8]:

```
label_encoder= preprocessing.LabelEncoder()
data['Income']= label_encoder.fit_transform(data['Income'])
data['Undergrad']= label_encoder.fit_transform(data['Undergrad'])
data['Urban']= label_encoder.fit_transform(data['Urban'])
data['Marital.Status']= label_encoder.fit_transform(data['Marital.Status'])
```

In [9]:

data

Out[9]:

	Undergrad	Marital.Status	Taxable.Income	City.Population	Work.Experience	Urban	Incom
0	0	2	68833	50047	10	1	
1	1	0	33700	134075	18	1	
2	0	1	36925	160205	30	1	
3	1	2	50190	193264	15	1	
4	0	1	81002	27533	28	0	
595	1	0	76340	39492	7	1	
596	1	0	69967	55369	2	1	
597	0	0	47334	154058	0	1	
598	1	1	98592	180083	17	0	
599	0	0	96519	158137	16	0	

600 rows × 7 columns

In [10]:

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599

Data columns (total 7 columns):

#	Column	Non-Null Count	Dtype
0	Undergrad	600 non-null	int32
1	Marital.Status	600 non-null	int32
2	Taxable.Income	600 non-null	int64
3	City.Population	600 non-null	int64
4	Work.Experience	600 non-null	int64
5	Urban	600 non-null	int32
6	Income	600 non-null	int32

dtypes: int32(4), int64(3)
memory usage: 23.6 KB

In [11]:

```
#Droping the Taxable income variable - we taken that as Income description
data.drop(["Taxable.Income"],axis=1,inplace=True)
```

In [12]:

```
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 600 entries, 0 to 599
Data columns (total 6 columns):
 #
     Column
                      Non-Null Count Dtype
     Undergrad
                      600 non-null
                                      int32
 0
 1
     Marital.Status
                      600 non-null
                                      int32
 2
     City.Population 600 non-null
                                      int64
 3
     Work.Experience 600 non-null
                                      int64
     Urban
                      600 non-null
 4
                                      int32
 5
     Income
                      600 non-null
                                      int32
```

dtypes: int32(4), int64(2) memory usage: 18.9 KB

No Null values

In [13]:

```
data['Income'].value_counts()

Out[13]:
0     476
1     124
Name: Income, dtype: int64

In [14]:

#diving data for traing and test
x = data.iloc[:,0:5]
y = data.iloc[:,5]
```

```
In [15]:
```

Out[15]:

	Undergrad	Marital.Status	City.Population	Work.Experience	Urban
0	0	2	50047	10	1
1	1	0	134075	18	1
2	0	1	160205	30	1
3	1	2	193264	15	1
4	0	1	27533	28	0
595	1	0	39492	7	1
596	1	0	55369	2	1
597	0	0	154058	0	1
598	1	1	180083	17	0
599	0	0	158137	16	0

600 rows × 5 columns

```
In [16]:
```

array([0, 1])

```
У
Out[16]:
       0
0
       0
1
2
       0
3
       0
595
596
       0
597
       0
       0
598
599
Name: Income, Length: 600, dtype: int32
In [17]:
data['Income'].unique()
Out[17]:
```

In [18]:

```
# Splitting data into training and testing data
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y, test_size = 0.20, random_state=40)
```

In [19]:

```
print(x_train.shape, x_test.shape, y_train.shape, y_test.shape)
```

(480, 5) (120, 5) (480,) (120,)

Building Decision Tree Clasifier using Entropy Criteria

In [20]:

```
model= DecisionTreeClassifier(criterion='entropy', max_depth=3)
model.fit(x_train, y_train)
```

Out[20]:

DecisionTreeClassifier(criterion='entropy', max_depth=3)

In [21]:

```
tree.plot_tree(model);
```


In [22]:


```
In [23]:
model.fit(x_train, y_train)
model.score(x_train, y_train)
Out[23]:
0.8041666666666667
In [24]:
model.feature_importances_
Out[24]:
                              , 0.71003667, 0.28996333, 0.
array([0.
                 , 0.
                                                                   ])
In [25]:
y_pred= model.predict(x_test)
In [26]:
# Here first column is for 'Good', & second is for 'Risky'
model.predict_proba(x_test)
Out[26]:
array([[0.75
                  , 0.25
                  , 0.
       [1.
       [0.74876847, 0.25123153],
       [0.82248521, 0.17751479],
       [0.74876847, 0.25123153],
                  , 0.
       [1.
                  , 0.
       [0.74876847, 0.25123153],
       [0.91111111, 0.08888889],
       [0.9111111, 0.08888889],
       [0.82248521, 0.17751479],
                  , 0.25
       [0.75
       [0.82248521, 0.17751479],
       [0.91111111, 0.08888889],
       [0.82248521, 0.17751479],
       [0.82248521, 0.17751479],
       [0.82248521, 0.17751479],
       [0.82248521. 0.17751479].
```

Building Decision Tree Classifier(CART) using Gini Criteria

```
In [27]:
```

```
from sklearn.tree import DecisionTreeClassifier
model_gini = DecisionTreeClassifier(criterion = 'gini', max_depth=3)
```

```
In [28]:
```

```
model_gini.fit(x_train, y_train)
```

Out[28]:

DecisionTreeClassifier(max_depth=3)

In [29]:

```
# Prediction and computing the accuracy

pred = model.predict(x_test)
pred

np.mean(pred == y_test)
```

Out[29]:

0.766666666666667

In [30]:

```
# Decision Tree Regression Example
from sklearn.tree import DecisionTreeRegressor
```

In [31]:

```
array = data.values
X = array[:,0:3]
Y = array[:,3]
```

```
In [32]:
```

```
Υ
```

```
Out[32]:
```

```
array([10, 18, 30, 15, 28, 0, 8,
                                  3, 12, 4, 19, 6, 14, 16, 13, 29, 29,
           6, 30, 26,
                      7, 14, 12, 30, 27, 15, 12,
                                                  5, 30, 0, 21, 23, 21,
                  5, 3, 16, 26, 1, 12, 10, 22, 14, 27,
       1, 30,
               5,
                                                          2, 12, 15,
               7, 23, 16, 25, 13, 15, 11, 23, 8, 13, 9, 15, 29, 12, 24,
       30, 23,
                                              0, 7, 26, 24, 26, 18,
               3, 22, 27, 2, 17, 19, 11, 26,
       5, 29,
      12, 29, 23, 24, 20, 29, 10, 13, 3, 6, 28, 17, 19, 18, 12, 25, 20,
           5, 14, 15, 20, 6, 10, 8, 19, 11, 26, 7, 7, 21, 12, 29, 10,
      30, 11, 16, 26, 26, 13, 11,
                                  3, 28, 27, 26, 7, 16, 12, 14, 28, 19,
                       4, 23, 26, 11, 29,
                                          2, 28, 28, 21, 25, 28, 10, 16,
           6, 25, 20,
                       5, 11, 1,
                                  0, 30, 21, 15, 28, 23, 22, 25, 30,
      28, 29,
               7,
                   3,
       10, 24, 23, 16,
                       8, 13, 28, 13, 15, 22, 19, 20, 4, 30, 15,
       5, 10, 11, 19,
                       7, 10, 25, 28, 13, 21, 4, 28,
                                                      9, 17, 27,
                                  8, 14, 13, 16, 22, 22, 19, 19,
       14, 20, 16, 28,
                       3, 25, 13,
      14, 27, 17, 25,
                       0, 28, 17,
                                  9, 10, 14, 2, 2, 19, 14,
                                                             9,
                                                                  3,
                                                                     3,
                       2, 10, 27, 24, 25,
                                          1, 17, 0, 16,
       9, 26, 30, 18,
                                                          7, 28, 29, 26,
                      7, 28, 7, 21, 21,
                                          5,
       8, 14, 17, 28,
                                              4, 17, 11,
                                                          3, 13,
       1, 20, 25, 0, 17, 11, 11, 12,
                                      1,
                                          7, 29, 22, 22, 10,
                                                              6,
                                                                  1, 21,
                  1, 21, 2, 10, 26, 15, 21, 7, 30, 11, 27, 13, 23, 29,
      14, 30, 26,
      12, 25, 30, 20, 22, 19, 18, 2, 4, 19, 25, 23, 14, 24, 11,
                                                                  6, 24,
                       7, 12, 10, 29, 15,
                                          1, 13, 13, 15,
      13, 15, 16, 19,
                                                          5,
                                                              7, 23,
          8,
                          6, 30, 0, 2, 30, 25, 12, 16, 29, 27, 17, 27,
              7, 17,
                      5,
       28, 24, 11,
                   5, 20, 17, 7, 17, 10, 30, 24, 14, 28,
                                                          5,
           2, 26, 30, 6, 13,
                              2, 4, 29,
                                          5, 25, 27, 27,
                                                          9,
                                                              4,
                                                                  5, 17,
                       5, 21, 14,
                                  2, 21, 16, 20, 11, 27, 21, 28,
       1, 15, 30, 21,
          1, 27, 19, 11, 11, 1, 21, 30,
                                          2, 18, 20,
                                                     2, 13, 14, 19,
      27, 25, 10, 24, 30, 8, 25, 11, 14, 19, 4, 4, 20, 14, 8, 13, 24,
          9, 14, 12, 28, 5, 28, 11, 8, 10, 10, 26, 15, 23, 23, 24, 18,
               6, 17, 3, 16, 21, 16, 20, 18, 13, 26, 21, 11, 16,
       21, 10,
               6, 21, 26, 13, 12, 10, 28, 23, 29, 13, 10, 6, 24, 10, 18,
       7, 29,
                   5, 3, 24, 2, 11, 4, 1, 17, 19, 15,
      29, 13, 24,
                                                          8, 24, 19, 27,
                     6, 13, 18, 26, 26, 25, 8, 15, 10, 12, 27, 23, 12,
           5, 22, 10,
      27, 10, 14, 17, 14, 16, 19, 13, 3, 14,
                                             6, 12,
                                                     8, 22, 30, 27, 13,
           8,
               6, 25, 9, 11, 2, 0, 5, 13, 27, 10, 12, 10, 12, 26, 24,
               6, 11, 28, 28, 30, 22, 12, 29, 7, 13, 20, 29, 13, 15,
       29, 12,
               1, 10, 12, 19, 4, 2, 30, 26, 27, 10, 14, 18, 16, 10,
           7,
               0, 17, 16], dtype=int64)
```

In [33]:

```
X_train, X_test, y_train, y_test= train_test_split(X,y, test_size=0.33, random_state=1)
```

In [34]:

```
model1 = DecisionTreeRegressor()
model.fit(X_train, y_train)
```

Out[34]:

DecisionTreeClassifier(criterion='entropy', max_depth=3)

```
In [35]:
```

```
# Find the accuracy
model.score(X_test, y_test)
```

Out[35]:

0.7878787878787878

In []:

Q2.) A decision tree can be built with target variable Sale (we will first convert it in categorical variable) & all other variable will be independent in the analysis.

In [36]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
from sklearn.metrics import classification_report
from sklearn import preprocessing
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
```

In [37]:

company=pd.read_csv("C:/Users/LENOVO/Documents/Custom Office Templates/Company_Data.csv")

In [38]:

company.head()

Out[38]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urba
0	9.50	138	73	11	276	120	Bad	42	17	Yı
1	11.22	111	48	16	260	83	Good	65	10	Υı
2	10.06	113	35	10	269	80	Medium	59	12	Υı
3	7.40	117	100	4	466	97	Medium	55	14	Υı
4	4.15	141	64	3	340	128	Bad	38	13	Yı
4										•

In [39]:

```
company.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 400 entries, 0 to 399
Data columns (total 11 columns):
Column Non-Null Count Dty

#	Column	Non-Null Count	Dtype			
0	Sales	400 non-null	float64			
1	CompPrice	400 non-null	int64			
2	Income	400 non-null	int64			
3	Advertising	400 non-null	int64			
4	Population	400 non-null	int64			
5	Price	400 non-null	int64			
6	ShelveLoc	400 non-null	object			
7	Age	400 non-null	int64			
8	Education	400 non-null	int64			
9	Urban	400 non-null	object			
10	US	400 non-null	object			
<pre>dtypes: float64(1), int64(7), object(3)</pre>						

memory usage: 34.5+ KB

In [40]:

company.describe()

Out[40]:

	Sales	CompPrice	Income	Advertising	Population	Price	Age	E
count	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	400.000000	40
mean	7.496325	124.975000	68.657500	6.635000	264.840000	115.795000	53.322500	1
std	2.824115	15.334512	27.986037	6.650364	147.376436	23.676664	16.200297	
min	0.000000	77.000000	21.000000	0.000000	10.000000	24.000000	25.000000	1
25%	5.390000	115.000000	42.750000	0.000000	139.000000	100.000000	39.750000	1
50%	7.490000	125.000000	69.000000	5.000000	272.000000	117.000000	54.500000	1
75%	9.320000	135.000000	91.000000	12.000000	398.500000	131.000000	66.000000	1
max	16.270000	175.000000	120.000000	29.000000	509.000000	191.000000	80.000000	1
4								•

In [41]:

Duplicates
company[company.duplicated()].shape

Out[41]:

(0, 11)

In [42]:

```
company.isnull().sum()
```

Out[42]:

Sales 0 CompPrice 0 Income 0 Advertising 0 Population 0 Price 0 0 ShelveLoc 0 Age 0 Education Urban 0 0 US dtype: int64

In [43]:

Scatter plot and Correlation Analysis
sns.pairplot(company)

Out[43]:

<seaborn.axisgrid.PairGrid at 0x4046b38fa0>

In [44]:

```
company.corr()
```

Out[44]:

	Sales	CompPrice	Income	Advertising	Population	Price	Age	Ed
Sales	1.000000	0.064079	0.151951	0.269507	0.050471	-0.444951	-0.231815	-0
CompPrice	0.064079	1.000000	-0.080653	-0.024199	-0.094707	0.584848	-0.100239	0
Income	0.151951	-0.080653	1.000000	0.058995	-0.007877	-0.056698	-0.004670	-0
Advertising	0.269507	-0.024199	0.058995	1.000000	0.265652	0.044537	-0.004557	-0
Population	0.050471	-0.094707	-0.007877	0.265652	1.000000	-0.012144	-0.042663	-0
Price	-0.444951	0.584848	-0.056698	0.044537	-0.012144	1.000000	-0.102177	0
Age	-0.231815	-0.100239	-0.004670	-0.004557	-0.042663	-0.102177	1.000000	0
Education	-0.051955	0.025197	-0.056855	-0.033594	-0.106378	0.011747	0.006488	1

•

In [45]:

```
company_df= company.copy()
```

In [46]:

```
# Converting the sales data in to Categorical
company_df.loc[company['Sales']>=8, 'Sale']='1' # High=1 Taken based on the mean value
company_df.loc[company['Sales']<=8, 'Sale']='0' # Low=0</pre>
```

In [47]:

```
company_df.head()
```

Out[47]:

	Sales	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Age	Education	Urba
0	9.50	138	73	11	276	120	Bad	42	17	Yı
1	11.22	111	48	16	260	83	Good	65	10	Yı
2	10.06	113	35	10	269	80	Medium	59	12	Yı
3	7.40	117	100	4	466	97	Medium	55	14	Yı
4	4.15	141	64	3	340	128	Bad	38	13	Yı
4										•

In [48]:

```
company_df= company_df.drop('Age', axis=1)
company_df= company_df.drop('Education', axis=1)
company_df= company_df.drop('Urban', axis=1)
company_df= company_df.drop('US', axis=1)
company_df=company_df.drop('Sales', axis=1)
```

```
In [49]:
```

```
company_df.head()
```

Out[49]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Sale
0	138	73	11	276	120	Bad	1
1	111	48	16	260	83	Good	1
2	113	35	10	269	80	Medium	1
3	117	100	4	466	97	Medium	0
4	141	64	3	340	128	Bad	0

In [50]:

```
label_encoder= preprocessing.LabelEncoder()
company_df['ShelveLoc']=label_encoder.fit_transform(company_df['ShelveLoc'])
```

In [51]:

```
company_df.head()
```

Out[51]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Sale
0	138	73	11	276	120	0	1
1	111	48	16	260	83	1	1
2	113	35	10	269	80	2	1
3	117	100	4	466	97	2	0
4	141	64	3	340	128	0	0

Note- ShelveLoc= Bad=0, Good=1, Medium=2 and Sales= High=1, Low=0

```
In [52]:
```

```
company_df=company_df.astype({'Sale':'int'})
```

Normalization Function

```
In [53]:
```

```
def norm_func(i):
    x=(i-i.min())/(i.max()-i.min())
    return(x)
```

```
In [54]:
```

```
company_df=norm_func(company_df)
```

In [55]:

```
company_df.head()
```

Out[55]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Sale
0	0.622449	0.525253	0.379310	0.533066	0.574850	0.0	1.0
1	0.346939	0.272727	0.551724	0.501002	0.353293	0.5	1.0
2	0.367347	0.141414	0.344828	0.519038	0.335329	1.0	1.0
3	0.408163	0.797980	0.137931	0.913828	0.437126	1.0	0.0
4	0.653061	0.434343	0.103448	0.661323	0.622754	0.0	0.0

In [56]:

```
company_df1=company_df.astype({"ShelveLoc":'int',"Sale":'int'})
```

In [57]:

```
company_df.head()
```

Out[57]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc	Sale
0	0.622449	0.525253	0.379310	0.533066	0.574850	0.0	1.0
1	0.346939	0.272727	0.551724	0.501002	0.353293	0.5	1.0
2	0.367347	0.141414	0.344828	0.519038	0.335329	1.0	1.0
3	0.408163	0.797980	0.137931	0.913828	0.437126	1.0	0.0
4	0.653061	0.434343	0.103448	0.661323	0.622754	0.0	0.0

In [58]:

```
x= company_df1.iloc[:,0:6]
y= company_df1.iloc[:,6]
```

In [59]:

Χ

Out[59]:

	CompPrice	Income	Advertising	Population	Price	ShelveLoc
0	0.622449	0.525253	0.379310	0.533066	0.574850	0
1	0.346939	0.272727	0.551724	0.501002	0.353293	0
2	0.367347	0.141414	0.344828	0.519038	0.335329	1
3	0.408163	0.797980	0.137931	0.913828	0.437126	1
4	0.653061	0.434343	0.103448	0.661323	0.622754	0
395	0.622449	0.878788	0.586207	0.386774	0.622754	0
396	0.632653	0.020202	0.103448	0.054108	0.574850	1
397	0.867347	0.050505	0.413793	0.717435	0.808383	1
398	0.234694	0.585859	0.241379	0.549098	0.425150	0
399	0.581633	0.161616	0.000000	0.034068	0.574850	0

400 rows × 6 columns

```
In [60]:
    # Sale - High=1, Low=0
Out[60]:
0
1
       1
2
       1
3
       0
       0
395
       1
396
397
       0
398
399
Name: Sale, Length: 400, dtype: int32
In [61]:
company_df1['Sale'].unique()
Out[61]:
```

array([1, 0])

```
In [62]:
```

```
company_df1.Sale.value_counts()
```

Out[62]:

0 2361 164

Name: Sale, dtype: int64

Splitting data into Training and Testing Dataset

```
In [63]:
```

```
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2, random_state=40)
```

Building Decision Tree Classifier using Entropy Criteria

```
In [64]:
```

```
model= DecisionTreeClassifier(criterion='entropy', max_depth=3)
model.fit(x_train,y_train)
```

Out[64]:

DecisionTreeClassifier(criterion='entropy', max_depth=3)

In [65]:

```
# Plot the Decision tree
tree.plot_tree(model);
```


In [66]:


```
In [67]:
```

```
# Predict on tesst data
preds= model.predict(x test)
pd.Series(preds).value_counts()
Out[67]:
0
 51
 29
1
dtype: int64
In [68]:
pred
Out[68]:
0, 0, 0, 0, 0, 0, 0, 0, 0])
```

Confusion Matrix

```
In [69]:
```

Accuracy

```
In [70]:
np.mean(preds==y_test)
Out[70]:
0.725
In [ ]:
```