Espacios vectoriales de dimensión finita

1.A Span e independencia lineal

1.2 Notación Lista of vectores.

Por lo general, escribiremos listas de vectores sin paréntesis alrededor.

Combinaciones lineales y Span

1.3 Definición Combinación lineal.

Una **combinación lineal** de una lista v_1, \ldots, v_m de vectores en V es un vector de la forma

$$a_1v_1+\cdots+a_mv_m$$

donde $a_1, \ldots a_m \in \mathbf{F}$.

1.2 Definición Span.

El conjunto de todas las combinaciones lineales de una lista de vectores v_1, \ldots, v_m en V se denomina **span** de v_1, \ldots, v_m . En otras palabras,

$$\mathrm{span}(v_1,\ldots,v_m) = \{a_1v_1 + \cdots + a_mv_m : a_1,\ldots,a_m \in \mathbf{F}\}.$$

El span de la lista vacía () es definida por $\{0\}$.

1.3 Teorema Span es el subespacio más pequeño que lo contiene. El span de una lista de vectores en V es el subespacio más pequeño de V que contiene todos los vectores de la lista.

Demostración.-