Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet A is a set consisting of one (arbitrary) vertex of V.

• T is an empty set of edges.

7/13

Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet *A* is a set consisting of one (arbitrary) vertex of *V*.

• T is an empty set of edges.

One Iteration :• Take an edge $\{u, v\}$ of minimum weight such that $u \in A$ and $v \in Q$.

- Add the edge $\{u, v\}$ to T.
- Move v from Q to A.

Prim Algorithm (1957) [Jarník (1930), Dijkstra (1959)]

Start : \bullet *A* is a set consisting of one (arbitrary) vertex of *V*.

• T is an empty set of edges.

One Iteration :• Take an edge $\{u, v\}$ of minimum weight such that $u \in A$ and $v \in Q$.

- Add the edge $\{u, v\}$ to T.
- Move v from Q to A.

Repeat until A = V (i.e. $Q = \{ \})!$

Input: G = (V, E)

Output: A minimum spanning tree of G.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

Input: G = (V, E)

Output: A minimum spanning tree of *G*.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$?

Input: G = (V, E)

Output: A minimum spanning tree of *G*.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$? By brute force, it takes O(|E|) time.

Input: G = (V, E)

Output: A minimum spanning tree of G.

- 1: Let $r \in V$ be an arbitrary vertex.
- 2: $A = \{r\}$
- 3: $T = \{ \}$
- 4: while $A \neq V$ do
- 5: find an edge $\{u, v\} \in E$ of minimum weight such that $u \in A$ and $v \in V \setminus A$.
- 6: $A = A \cup \{v\}$
- 7: $T = T \cup \{\{u, v\}\}\}$
- 8: end while
- 9: **return** *X*

How to find such an edge $\{u, v\}$?

By brute force, it takes O(|E|) time.

So the total running time becomes $O(|V| \cdot |E|)$.

To improve the running time, we maintain extra information.

To improve the running time, we maintain extra information.

For each vertex y in Q,

minweight(y): minimum weight of any edge between y and a vertex of A closest(y): vertex x in A for which wt(x,y) = minweight(y)

To improve the running time, we maintain extra information.

For each vertex y in Q,

minweight(y): minimum weight of any edge between y and a vertex of A closest(y): vertex x in A for which wt(x,y) = minweight(y)

Observe that: a shortest edge $\{u, v\}$ connecting A and Q has weight

$$\min_{y \in Q} \{ minweight(y) \}.$$

What happens if we move v from Q to A?

What happens if we move v from Q to A?

We update minweight(w) and closest(w) for w = x, y, z.


```
Input: G = (V, E)
Output: A minimum spanning tree of G.
   1: Let r \in V be an arbitrary vertex
      A = \{r\}
      T = \{ \}
      for each vertex y \neq r do
   5:
           minweight(y) = \infty
  6:
           closest(y) = NIL
   7:
      end for
      for each edge \{r, y\} do
           minweight(y) = wt(r, y)
  9:
  10:
           closest(y) = r
  11:
      end for
      Q = V \setminus \{r\}
  13:
      k = 1
                         // Stores the size of A
  14:
      while k \neq n do
  15:
           Let v be the vertex of Q for which minweight(v) is minimum
  16:
           u = closest(v)
           A = A \cup \{v\}
  17:
  18:
           Q = Q \setminus \{v\}
  19:
           T = T \cup \{\{u, v\}\}\
  20:
           k = k + 1
  21:
           for each edge \{v, y\} do
  22:
               if y \in Q and wt(v, y) < minweight(y) then
  23:
                   minweight(y) = wt(y, y)
  24:
                   closest(y) = v
  25:
               end if
  26:
           end for
      end while
```

return T

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

Running time:

 Up to the while loop: O(n) time (this includes the time to build the heap).

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

Running time:

- Up to the while loop: O(n) time (this includes the time to build the heap).
- One iteration of the while-loop:
 - $extract_min: O(\log(n))$ time
 - At most degree(v) many $decrease_key$ operations: $O(degree(v) \cdot \log(n))$ time

- Store the vertices of Q in a min-heap. For each vertex $v \in Q$, the key of v is minweight(v).
- Store T in a list.
- With each vertex of V, store one bit indicating whether the vertex belongs to A or to Q.

Running time:

- Up to the while loop: O(n) time (this includes the time to build the heap).
- One iteration of the while-loop:
 - $extract_min: O(\log(n))$ time
 - At most degree(v) many decrease_key operations:
 O(degree(v) · log(n)) time
- Total time for the while-loop:

$$O\left(\sum_{v \in V} degree(v) \cdot \log(n)\right) = O(2m \log(n)) = O(m \log(n))$$

4 D > 4 D > 4 E > 4 E > E 9 Q C

Conclusion: Prim computes an MST in $O(m \log(n))$ time.