Package 'biokNN'

November 26, 2021

```
Type Package
Title Bi-Objective k-Nearest Neighbors Imputation for Multilevel Data
Version 0.1.1
Depends R (>= 2.10)
Maintainer Maximiliano Cubillos <mcub@econ.au.dk>
Description The bi-objective k-nearest neighbors method (biokNN) is an imputation method de-
      signed to estimate missing values on data with a multilevel structure. The original algo-
      rithm is an extension of the k-nearest neighbors method proposed by Bertsi-
      mas et al. (2017) (<a href="https://jmlr.org/papers/v18/17-073.html">https://jmlr.org/papers/v18/17-073.html</a>) using a bi-objective ap-
      proach. A brief description of the method can be found in Cubil-
      los (2021) (<a href="https://pure.au.dk/portal/files/214627979/biokNN.pdf">https://pure.au.dk/portal/files/214627979/biokNN.pdf</a>). The 'biokNN' package pro-
      vides an R implementation of the method for datasets with continuous variables (e.g. em-
      ployee productivity, student grades) and a categorical class variable (e.g. depart-
      ment, school). Given an incomplete dataset with such structure, this package produces com-
      plete datasets using both single and multiple imputation, including visualization tools to bet-
      ter understand the pattern of the missing values.
License GPL (>= 2)
URL https://github.com/mcubillos3/biokNN
BugReports https://github.com/mcubillos3/biokNN/issues
Suggests knitr,
      rmarkdown,
      testthat
Encoding UTF-8
LazyData true
Imports dplyr,
      cluster,
      mice,
      stats,
      magrittr,
      ggplot2,
      tidyr,
      desc,
      lme4,
      mitml
RoxygenNote 7.1.1
```

2 biokNN_impute

R topics documented:

biokNN_impute	
biokNN_impute_mi	
calibrate	
create_multilevel	:
data_example	
missing_plot	
normalize	
pattern_plot	'
target_boxplot	

 ${\tt biokNN_impute}$

Impute multilevel dataset

Description

Index

This function returns a dataframe with a complete dataset, where the missing values are imputed using a bi-objective kNN method. It assumes that the class variable is complete and its name is known, and the rest of the variables are numerical.

Usage

```
biokNN_impute(
  data,
  className,
  varNames,
  nIter = 10,
  alpha = 0.5,
  k = 10,
  distance = "gower"
)
```

Arguments

data	A dataframe with missing values
className	name of the variable that contains the classes
varNames	vector with the names of the variables to be imputed
nIter	number of iterations, default = 10
alpha	weight of the kNN values in the objective function, default = 0.5
k	number of nearest neighbours, default = 10
distance	distance function used to get the k-nearest neighbors

Value

A dataframe with the imputed data

biokNN_impute_mi 3

Examples

biokNN_impute_mi

Multiple imputation for a multilevel dataset

Description

This function returns a list of m complete datasets, where the missing values are imputed using a bi-objective kNN method. It assumes that the class variable name is known, and the rest of the variables are numerical.

Usage

```
biokNN_impute_mi(
  data,
  className,
  varNames,
  m = 5,
  nIter = 10,
  alpha = 0.5,
  k = 10,
  distance = "gower"
)
```

Arguments

data	A dataframe with missing values
className	name of the variable that contains the classes
varNames	vector with the names of the variables to be imputed
m	number of imputations
nIter	number of iterations, default = 10
alpha	weight of the kNN values in the objective function, default = 0.5
k	number of nearest neighbours, default = 10
distance	distance function used to get the k-nearest neighbors

Value

A dataframe with the imputed data

4 calibrate

Examples

calibrate

Calibrate parameters

Description

This function returns a vector with the two parameters requiered by the biokNN method where the first value is the weighting parameter and the second the number of neighbors

Usage

```
calibrate(
  data,
  className,
  varNames,
  prop_valid = 0.1,
  nIter = 10,
  distance = "gower",
  alpha_space = NULL,
  k_space = NULL,
  print = FALSE
)
```

Arguments

data	A dataframe with missing values
className	name of the variable that contains the classes
varNames	vector with the names of the variables to be imputed
prop_valid	proportion of missing values
nIter	number of iterations, default = 10
distance	distance function used to get the k-nearest neighbors
alpha_space	vector with the calibration values to test for the weight parameter
k_space	vector with the calibration values to test for the number of neighbors
print	option to print the RMSE values of the parameters used for calibration (print = TRUE).

create_multilevel 5

Value

A dataframe with the imputed data

Examples

create_multilevel

Generate multilevel dataset

Description

This function returns a dataframe with a multilevel structure. It generates a dataframe using a varying intercepts/varying slopes linear regression with a single target variable y.

Usage

```
create_multilevel(
    nClass = 10,
    nVars = 1,
    classMean = 10,
    classSD = 0,
    beta0 = 0,
    tau0 = 1,
    beta = c(1),
    tau = c(1),
    sigma2 = 1
)
```

Arguments

nClass	number of classes
nVars	number of independent variables (X)
classMean	average number of observations per class
classSD	standard deviation of the number of observations per class
beta0	intercept parameter
tau0	variance of the parameter between classes
beta	vector with the slope parameters, one for each independent variable
tau	vector with the variance of the slope parameters, one for each independent variable
sigma2	error variance

6 missing_plot

Value

A dataframe with the multilevel dataset

Examples

data_example

Example data set with missing values and multilevel struture

Description

This is a generated dataset containing a class variable, a dependent variable y, and an independent variable X. The data contains missing values in both y and X, assuming a Missing Completely at Random (MCAR) pattern and a 30

Usage

```
data_example
```

Format

An object of class data. frame with 100 rows and 3 columns.

Fields

```
y: Object of class "numeric", dependent variable
X: Object of class "numeric", independent variable
class: Object of class "Factor", class variable
```

missing_plot

Plot number of missing values by class

Description

This function returns a dataframe with a multilevel structure. It generates a dataframe using a varying intercepts/varying slopes linear regression with a single target variable y.

Usage

```
missing_plot(df, class)
```

Arguments

df dataframe with missing values

class name of the variable containing classes

normalize 7

Value

A barplot with the number of missing values by class, by variable

Examples

```
data(data_example)
missing_plot(data_example, "class")
```

normalize

Normalize dataset

Description

This function returns a dataset with normalized values for numerical variables

Usage

```
normalize(df_miss)
```

Arguments

data

A dataframe with missing values

Value

A dataframe with normalized values for the numerical variables

Examples

```
data(data_example)
normalize(data_example)
```

pattern_plot

Plot pattern of missing values by class

Description

This function returns a dataframe with a multilevel structure. It generates a dataframe using a varying intercepts/varying slopes linear regression with a single target variable y.

Usage

```
pattern_plot(df, class)
```

Arguments

df dataframe with missing values

class name of the variable containing classes

8 target_boxplot

Value

A plot with the patter of missing values by class, by variable

Examples

```
data(data_example)
pattern_plot(data_example, "class")
```

target_boxplot

Plot pattern of missing values by class

Description

This function returns a dataframe with a multilevel structure. It generates a dataframe using a varying intercepts/varying slopes linear regression with a single target variable y.

Usage

```
target_boxplot(df, y, class)
```

Arguments

df dataframe with missing values

y target variable

class name of the variable containing classes

Value

A boxplot for each class of the target variable

Examples

```
data(data_example)
target_boxplot(data_example, y, "class")
```

Index

```
*Topic datasets
data_example, 6

biokNN_impute, 2
biokNN_impute_mi, 3

calibrate, 4
create_multilevel, 5

data_example, 6

missing_plot, 6

normalize, 7

pattern_plot, 7

target_boxplot, 8
```