Examen Théorie des Langages

Partie 1

Exercice 01:

- 1) Soit $X = \{a, b\}$ un alphabet. Quels sont les mots $w \in X^*$ pour lesquels $w^2 = w^3$?
- 2) Quels sont les deux langages dont la fermeture étoile donne le langage uniquement composé du

Exercice 02:

Sur l'alphabet $X = \{0, 1\}$, on considère les langages L_1 et L_2 définis par

$$L_1 = \{01^n / n \in N\}$$

$$L_2 = \{0^n 1 / n \in N\}$$

Définir les langages $L_1.L_2$, $L_1 \cap L_2$ et L_1^2

Exercice 03:

Soit un langage $L \subseteq X^*$, démontrer les égalités suivantes :

$$L^*L{\cup}\{\epsilon\}=L^*=LL^*{\cup}\{\epsilon\}$$

$$(L^*)^* = L^*$$

$$L*L* = L*$$

Partie 2

Exercice 01:

1) Proposer une grammaire pour chacun des langages représentés par les expressions régulières suivantes:

$$(a/b)^*$$
 $(a/b)^*$ $(a/b)^*$ $(a/b)^*$ $(a/b)^*$ $(a/b)^*$ $(a/b)^*$ $(a/b)^*$ $(a/b)^*$

Exercice 02 :

1) Donner l'expression régulière du langage reconnu par chaque automate d'états finis :

2) Proposer un automate d'états finis pour chacun des langages et expressions ci-dessous :

$$L_1 = \{a^n b^m / n, m \ge 0\}$$

$$E_1 = (aab)^* a(ab)^* (b + bb)$$

$$L_2 = \{a^n b^n / n \ge 0\}$$

$$E_2 = (aba)^* + (bab)^*$$

$$L_3 = \{a^n b^m / n + m \text{ est pair}\}\$$

$$E_2 = (aba)^* + (bab)^*$$

 $E_3 = zxy^* + zxy^*xx^* + xx^*yx^* + yx^*$

Partie 3

1) Trouver l'expression régulière du langage reconnu par cet AEF.

