

Texas Instruments

Battery Management Solutions

Battery Management Topics

Battery Protection

- Potential Safety issues with Li-ion batteries used for consumer apps
- TI Value: Reliable UCC3952/11/57 for Li-Ion people protection
- Target Market: Li-Ion/Polymer Battery Packs

Battery Monitoring

- Accurate "fuel gauge" (gas gauge) for indicating battery state of charge.
- TI Value: All integrated intelligent "fuel gauge" in bq2060; also low cost coulomb counter in bq2018 (works with processor+A/D)
- Target Market: Battery Packs, Consumer Handhelds, Industrial Power-tools

Battery Charging

- Chemistry-specific and Multi-Chemistry battery charging solutions
- TI Value: Range of battery charging know-how through bq2002/00/31 (NiCd; NiMH/Li-Ion/LeadAcid) chargers
- Target Market: Handheld end-eqpt or handheld accessories

Battery Chargers -- e.g. bq2000

Device	Comments				
Multi Chemistry					
bq2000	NIMH/NiCD/LilOn Sw Mode				
Li-lon					
bq2057	Linear, 1-2cell				
bq2954	Sw.Mode				
NiMH/NICE)				
bq2002	Linear,				
bq2004	Sw.Mode+ LED display				
Lead Acid					
UC3906	Linear				
bq2031	Sw.Mode + LED display				

Constant Voltage (Li-Ion)

Battery Chemistry Characteristics

TYPICAL, GENERIC VALUES!	<u>Alkaline</u>	<u>NiCd</u>	<u>NiMH</u>	<u>Li-lon</u>	<u>Lead-</u> <u>Acid</u>
Relative Cost (NiCd = 1)	0.5	1	1.4	1.8	0.6
Self-Discharge (per month @ 25° C)	0.3%	18%	27%	1.75%	3%
Cycle Life	50% @ 25 cycles	80% @ 500 cycles	80% @ 1000 cycles	TBD (~500 – 1000)	50% @ 500 cycles
Overcharge Tolerance	medium	medium	low	very low	high
Energy by volume (watts/liter)	220	100	135	230	70
Energy by weight (watts/kg)	80	45	55	90	30
Look for continuing improvement in the green figures					

lide # 4

Gas Gauge IC —What and Why?

- What is a Gas Gauge IC?
 - Battery capacity monitor
 - State-of-charge measuring device
 - Battery status monitor
 - Voltage, current, and temperature measurement
- Why use a gas gauge IC?
 - Inform user of accurate state-of-charge
 - Increased confidence of use near empty
 - LED indication of state-of-charge when out of system
 - No guessing whether battery is charged
 - Overcharge and over-temperature warnings

Lithium-Ion Battery "Gas Gauges"

Battery "State of Charge"

Li-lon Gauges	Comments
<u>General</u>	
bq2050(H)	Basic Gas Gauge
NotePC	
bq2040	SMBus 1.0
bq2060	SMBus 1.1 (RTP 2Q00)
<u>Cellular</u>	
bq2018	Analog gas gauge circuitry
	works with uC

"Coulomb Counting"

State of charge LED indicators

battery protection ic

Typical Battery Pack with Gas Gauge IC

Gas Gauge System Implementation

bq2040/2060 SMBus Gas Gauge in Typical Computer Battery Pack

- ♦ 8-series cells
- ◆ 5-terminal connector (minimum connector)
 - Pack +
 - Pack -
 - SMB Clock
 - SMB Data
 - Safety Signal
- Typical capacity between 37 and 40 Wh

Battery Pack, 3S2P Li-Ion

- Complicated interconnect
- Safety devices
 - PTC
 - Limits current
 - Safety IC
 - Limits charge V
 - Limits discharge V
 - GG for redundancy
 - Disables charge on overvoltage

PTC

Cell connections

Li-Ion Battery Protection -- e.g. UCC3952

What

- Safety issues with Li-Ion or Li-Polymer batteries commonly used in consumer apps (e.g. Venting)
- UCC3952/11/57 for people protection
- Provides Short-circuit and over-current protection, and prevents battery overcharge or over-discharge.
- Low 5uA quiescent current for long battery life

Target Market

Battery pack manufacturers

Device	#Cells	Comments
UCC3952	1	Integrated FET reduces external
UCC3911	2	components and size (Important!)
UCC3957	3, 4	External FET

Li-Ion: 50% the weight, +50% longer use time vs NiMH

What does the Battery Protector do?

- Monitors all cell voltages
- ◆ Stops charge current if a cell reaches *over-voltage*
- ◆ Stops discharge current if a cell is *over discharged*
- Goes into "sleep" mode during over discharge
- Wakes-up when a charger is applied
- Responds rapidly to an *overcurrent* by opening circuit
- Draws very little current from the battery during operation

UCC3952 Single Cell Protector

- ◆ Integrated 50 mOhm FET No external FETs required!
 - The only part on the market with internal FET
- Built-in filter and time delay before declaring a fault
- ◆ Bypass cap provides hold-up in case of hard short
- Controlled FET turn-off time to minimize inductive effects
- ◆ 3 Amp capability (steady-state)
- ◆ Proven short circuit protection
- Thermal Shutdown
- 5μA supply current
- ◆ Test clock input speeds up customer testing

Li-Protector Comparison: Competitor Solution vs TI solution

Single-Cell Li-Ion Safety Circuit

PTC

Dual FET -

Large Capacitor-

Safety IC

Integrated_____ Safety/Dual FET

Competition solution -- large solution size

TI solution -few components,
good reliability

UCC3952 Application Circuit

TI solution: TSSOP-16 device, with 1 to 3 small capacitors

