Introduction to Machine Learning Decision Trees

Prof. Chang-Chieh Cheng
Information Technology Service Center
National Chiao Tung University

Guess-who game

Man	Long Hair	Glasses	Name
Yes	No	Yes	Brian
Yes	No	No	John
No	Yes	No	Aphra
No	No	No	Aoife

- Guess-who game
 - Build a decision tree from a set of observed data
 - Decision tree is not unique for the same dataset

- For example, a sample of an iris
 - petal width = 1.2cm
 - petal length = 5.0cm
 - sepal length = 7.0cm
 - sepal width = 2.4cm
 - → versicolor

- A decision tree consists of:
 - a root node (or starting node),
 - interior nodes
 - leaf nodes (or terminating nodes).
- Each of the non-leaf nodes (root and interior) in the tree specifies a test to be carried out on one of the query's descriptive features.
- Each of the leaf nodes specifies a predicted classification for the query.
- The height of a decision tree should be low
 - A shallow decision tree is good

- The main essential of building a decision
 - Find a key feature for each node such that each separated subgroups has lowest information complexity
 - For example, an ideal situation of IRIS:

- How to decide the information complexity of a dataset?
 - Entropy

- In physics, entropy is a measurement to describe that how chaotic of a system.
 - $Entropy = K \ln R$
 - K: a constant of the system
 - R: a state of the system
- In computer science, entropy is a measurement to describe that the complexity of a set of data

$$H(X) = -\sum_{i=1}^{n} p(x_i) \log_b p(x_i)$$

- $X = \{x_1, x_2, ..., x_n\}$, set of random variables, types of data, or features.
- b: the base of log, commonly b is 2 or e

- H(X) = 0.81
 - p(spare) = 9/12 = 0.75
 - $\log_2 p(\text{spare}) = -0.415$
 - 0.75 * (-0.415) =-0.3113
 - p(king) = 3/12 = 0.25
 - $\log_2 p(\text{spare}) = -2$
 - 0.25 * (-0.2) =-0.5
 - -((-0.5) + (-0.3113)) = 0.81

- H(X) = 0
 - p(spare) = 12/12 = 1.0
 - $\log_2 p(\text{spare}) = 0.0$

- H(X) = 1.5
 - p(spare) = 6/12 = 0.5
 - $\log_2 p(\text{spare}) = -1$
 - 0.5 * (-1) = -0.5
 - p(king) = 3/12 = 0.25
 - $\log_2 p(\text{spare}) = -2$
 - 0.25 * (-0.2) =-0.5
 - p(Diamond) = 3/12 = 0.25
 - $\log_2 p(Diamond) = -2$
 - 0.25 * (-0.2) =-0.5
 - -((-0.5) + (-0.5) + (-0.5)) = 1.5

- High entropy:
 - Chaotic information
 - Many different kinds of information in a dataset
- Low entropy
 - Monotonous information
 - The data content near to invariance

Entropy of training data

$$H(T,D) = -\sum_{t \in T} p(t) \log_b p(t)$$

• where T is the target set, D is the training dataset, and

$$p(t) = \frac{|\{D_t \subseteq D \mid \forall d \in D_t, T(d) = t\}|}{|D|}$$

Example: The vegetation classification dataset.

ID	STREAM	SLOPE	ELEVATION	VEGETATION
1	false	steep	high	chaparral
2	true	moderate	low	riparian
3	true	steep	medium	riparian
4	false	steep	medium	chaparral
5	false	flat	high	conifer
6	true	steep	highest	conifer
_ 7	true	steep	high	chaparral

- p(chaparral) = 3 / 7 = 0.42857
- $\log_2 p(\text{chaparral}) = -1.22239$
- 0.42857 * (-1.22239) =-0.52388
- p(riparian) = p(conifer) 2 / 7 = 0.286
- $\log_2 p(\text{riparian}) = \log_2 p(\text{conifer}) = -1.80735$
- 0.286 * (-1.80735) =-0.51639
- H(Vegetation, D) = -((-0.52388) + (-0.51639) + (-0.51639)) = 1.5567

Information Gain

- The definition:
 - Select a feature F from the training dataset D, the definition of information gain G as follows:

$$G(F,D) = H(T,D) - R(F,D)$$

where R is called the remainder that is defined as follows:

$$R(F,D) = \sum_{f \in F} \frac{\left| \left\{ D_f \subseteq D \middle| \forall d \in D_f, F(d) = f \right\} \right|}{|D|} H(T,D_f)$$

Example: The vegetation classification dataset.

ID	STREAM SLOPE		ELEVATION	VEGETATION
1	false	steep	high	chaparral
2	true	moderate	low	riparian
3	true	steep	medium	riparian
4	false	steep	medium	chaparral
5	false	flat	high	conifer
6	true	steep	highest	conifer
7	true	steep	high	chaparral

$$-(\frac{2}{4}\log_2\frac{2}{4} + 2\left(\frac{1}{4}\log_2\frac{1}{4}\right)) = 1.5$$

Split By				Partition		Info.
Feature	Level	Part.	Instances	Entropy	Rem.	Gain
STREAM	'true'	\mathcal{D}_{1}	d_2, d_3, d_6, d_7	1.5	1.2507	0.3060
STREAM	'false'	\mathcal{D}_{2}	$\boldsymbol{d}_{1},\boldsymbol{d}_{4},\boldsymbol{d}_{5}$	0.9183	1.2307	0.3000
	'flat'	\mathcal{D}_3	d ₅	0		
SLOPE	'moderate'	\mathcal{D}_{4}	d_2	0	0.9793	0.5774
	'steep'	\mathcal{D}_5	$\boldsymbol{d_1,d_3,d_4,d_6,d_7}$	1.3710		
	'low'	\mathcal{D}_6	d_2	0		
ELEVATION	'medium'	\mathcal{D}_7	$\mathbf{d}_3,\mathbf{d}_4$	1.0	0.6793	0.8774
ELEVATION	'high'	\mathcal{D}_{8}	$\mathbf{d}_1, \mathbf{d}_5, \mathbf{d}_7$	0.9183	0.0793	0.6774
	'highest'	\mathcal{D}_9	d ₆	0		

$$1.5 \times \frac{4}{7} + 0.9183 \times \frac{3}{7} = 1.2507$$

$$1.5567 - 1.2507 = 0.3060$$

$$-\left(\left(\frac{2}{3}\log_2\frac{2}{3}\right) + \left(\frac{1}{3}\log_2\frac{1}{3}\right)\right) = 0.9183$$

 Select ELEVATION as the key feature to split data such that the information gain is the maximum.

• Splitting D_7

•
$$H(Vegetation, D_7) = -\left(\left(\frac{1}{2}\log_2\frac{1}{2}\right) + \left(\frac{1}{2}\log_2\frac{1}{2}\right)\right) = 1.0$$

Information gains:

Split By				Partition		Info.
Feature	Level	Part.	Instances	Entropy	Rem.	Gain
CTDEAM	'true'	\mathcal{D}_{10}	d ₃	0	0	1.0
STREAM	'false'	\mathcal{D}_{11}	d_4	0	U	1.0
	'flat'	\mathcal{D}_{12}		0		
SLOPE	'moderate'	\mathcal{D}_{13}		0	1.0	0
	'steep'	\mathcal{D}_{14}	$\boldsymbol{d_3},\boldsymbol{d_4}$	1.0		

• Splitting D_7

Splitting D₈

•
$$H(Vegetation, D_8) = -\left(\left(\frac{2}{3}\log_2\frac{2}{3}\right) + \left(\frac{1}{3}\log_2\frac{1}{3}\right)\right) = 0.9183$$

Information gains:

Split By				Partition		Info.
Feature	Level	Part.	Instances	Entropy	Rem.	Gain
CTDEAN	'true'	\mathcal{D}_{15}	d_7	0	0.6666	0.2517
STREAM	'false'	\mathcal{D}_{16}	d_1, d_5	1.0	0.0000	0.2317
	'flat'	\mathcal{D}_{17}	d ₅	0		
SLOPE	'moderate'	\mathcal{D}_{18}		0	0	0.9183
	'steep'	\mathcal{D}_{19}	$\boldsymbol{d_1},\boldsymbol{d_7}$	0		

• Splitting D₈

The final result

- What prediction will this decision tree model return for thefollowing query?
 - STREAM = 'true', SLOPE='Moderate', ELEVATION='High'
 - → VEGETATION = 'Chaparral'

Information Gain Ratio

- Information gain ratio, GR
- GR is also called weighted information gain
- GR can be considered as normalized information gain
- Select a feature F from the training dataset D, the definition of GR as follows:

$$GR(F,D) = \frac{G(F,D)}{H(F,D)}$$

Information Gain Ratio

• Example:

Split By				Partition		Info.
Feature	Level	Part.	Instances	Entropy	Rem.	Gain
STREAM	'true'	\mathcal{D}_1	$\mathbf{d_2},\mathbf{d_3},\mathbf{d_6},\mathbf{d_7}$	1.5	1.2507	0.3060
OTTLAN	'false'	\mathcal{D}_{2}	$\mathbf{d_1},\mathbf{d_4},\mathbf{d_5}$	0.9183	1.2007	0.0000
	'flat'	\mathcal{D}_3	d ₅	0		
SLOPE	'moderate'	\mathcal{D}_{4}	d_2	0	0.9793	0.5774
	'steep'	\mathcal{D}_5	$\boldsymbol{d_1,d_3,d_4,d_6,d_7}$	1.3710		
	'low'	\mathcal{D}_{6}	d_2	0		
ELEVATION	'medium'	\mathcal{D}_7	d_3,d_4	1.0	0.6793	0.8774
ELEVATION	'high'	\mathcal{D}_8	$\mathbf{d}_1, \mathbf{d}_5, \mathbf{d}_7$	0.9183	0.0793	0.6774
	'highest'	\mathcal{D}_9	d ₆	0		

$$H(STREAM, D) = -\left(\left(\frac{4}{7}\log_2\frac{4}{7}\right) + \left(\frac{3}{7}\log_2\frac{3}{7}\right)\right) = 0.9852$$

$$H(SLOPE, D) = -\left(2\left(\frac{1}{7}\log_2\frac{1}{7}\right) + \left(\frac{5}{7}\log_2\frac{5}{7}\right)\right) = 1.1488$$

$$H(\text{ELEVATION}, D) = -\left(2\left(\frac{1}{7}\log_2\frac{1}{7}\right) + \left(\frac{2}{7}\log_2\frac{2}{7}\right) + \left(\frac{3}{7}\log_2\frac{3}{7}\right)\right) = 1.8424$$

Information Gain Ratio

Example:

$$GR(\mathsf{STREAM}, \mathcal{D}) = \frac{0.3060}{0.9852} = 0.3106$$

$$GR(\mathsf{SLOPE}, \mathcal{D}) = \frac{0.5774}{1.1488} = 0.5026$$

$$GR(\mathsf{ELEVATION}, \mathcal{D}) = \frac{0.8774}{1.8424} = 0.4762$$

Gini Index

 Given a training dataset D with target set T, the definition of Gini index, GI, is as follows:

$$GI(T,D) = 1 - \sum_{t \in T} p(t)^2$$

- The Gini index can be thought of as calculating how often you would misclassify an instance in the dataset if you classified it based on the distribution of classifications in the dataset.
- Information gain can be calculated using the Gini index by replacing the entropy measure with the Gini index.

Gini Index

Example:

ID	STREAM	SLOPE	ELEVATION	VEGETATION
1	false	steep	high	chaparral
2	true	moderate	low	riparian
3	true	steep	medium	riparian
4	false	steep	medium	chaparral
5	false	flat	high	conifer
6	true	steep	highest	conifer
7	true	steep	high	chaparral

$$GI(VEGETATION, D) = 1 - \left(\left(\frac{3}{7} \right)^2 + \left(\frac{2}{7} \right)^2 + \left(\frac{2}{7} \right)^2 \right) = 0.6531$$

Gini Index

Computing the information gain by Gini index

$$0.625 \times \frac{4}{7} + 0.4444 \times \frac{3}{7} = 0.5476$$

Split by				Partition		Info.
Feature	Level	Part.	Instances	Gini Index	Rem.	Gain
STREAM	'true'	\mathcal{D}_{1}	d_2, d_3, d_6, d_7	0.625	0.5476	0.1054
STREAM	'false'	\mathcal{D}_{2}	$\mathbf{d_1},\mathbf{d_4},\mathbf{d_5}$	0.4444	0.5476	0.1034
	'flat'	\mathcal{D}_{3}	d_5	0		
SLOPE	'moderate'	\mathcal{D}_{4}	d_2	0	0.4	0.2531
	'steep'	\mathcal{D}_{5}	$\mathbf{d_1},\mathbf{d_3},\mathbf{d_4},\mathbf{d_6},\mathbf{d_7}$	0.56		
	'low'	\mathcal{D}_{6}	d_2	0		
ELEVATION	'medium'	\mathcal{D}_{7}	d_3, d_4	0.5	0.3333	0.3198
ELEVATION	'high'	\mathcal{D}_{8}	$\mathbf{d_1}, \mathbf{d_5}, \mathbf{d_7}$	0.4444	0.3333	0.3196
	'highest'	\mathcal{D}_9	d_6	0		

$$0.6531 - 0.5476 = 0.1054$$

Continuous Features

• What if ELEVATION is a continuous feature?

ID	STREAM	SLOPE	ELEVATION	VEGETATION
2	true	moderate	300	riparian
4	false	steep	1 200	chapparal
3	true	steep	1 500	riparian
7	true	steep	3 000	chapparal
1	false	steep	3 900	chapparal
5	false	flat	4 450	conifer
6	true	steep	5 000	conifer

Split by			Partition		Info.	
Threshold	Part.	Instances	Entropy	Rem.	Gain	
>750	\mathcal{D}_1	d ₂	0.0	1.2507	0.3060	
≥750	\mathcal{D}_{2}	$\bm{d_4}, \bm{d_3}, \bm{d_7}, \bm{d_1}, \bm{d_5}, \bm{d_6}$	1.4591	1.2307	0.5000	
>1 350	\mathcal{D}_3	$\mathbf{d_2},\mathbf{d_4}$	1.0	1.3728	0.1839	
≥1330	\mathcal{D}_{4}	$\boldsymbol{d_{3}},\boldsymbol{d_{7}},\boldsymbol{d_{1}},\boldsymbol{d_{5}},\boldsymbol{d_{6}}$	1.5219	1.0720	0.1009	
>2 250	\mathcal{D}_5	$\mathbf{d}_2,\mathbf{d}_4,\mathbf{d}_3$	0.9183	0.9650	0.5917	
<u> </u>	\mathcal{D}_{6}	d_7, d_1, d_5, d_6	1.0	0.9030	0.5317	
>4 175	\mathcal{D}_7	$\mathbf{d_2},\mathbf{d_4},\mathbf{d_3},\mathbf{d_7},\mathbf{d_1}$	0.9710	0.6935	0.8631	
≥41/5	\mathcal{D}_8 d ₅ ,	d_5, d_6	0.0	0.0933	0.0031	

Continuous Features

 Finding a threshold for a continuous feature such the information gain is maximum

A dataset listing the number of bike rentals per day

ID	SEASON	Work Day	RENTALS	ID	SEASON	Work Day	RENTALS
1	winter	false	800	7	summer	false	3 000
2	winter	false	826	8	summer	true	5800
3	winter	true	900	9	summer	true	6 200
4	spring	false	2100	10	autumn	false	2910
5	spring	true	4740	11	autumn	false	2880
6	spring	true	4 900	12	autumn	true	2820

Variance, V

$$V(T,D) = \frac{\sum_{i=1}^{n} (t_i - \bar{t})^2}{n-1}$$

- where D is the training dataset with m data instances, T is the target set, $T = \{t_1, t_2, \dots, t_n\}$
- Weighted variance, U

$$U(T, F, D) = \sum_{f \in F} \frac{\left| \left\{ D_f \subseteq D \middle| \forall d \in D_f, F(d) = f \right\} \right|}{|D|} V(T, D_f)$$

selecting the feature that minimizes the weighted variance

Computing the variance for each value of each feature

ID	SEASON	Work Day	RENTALS	ID	SEASON	Work Day	RENTALS
1	winter	false	800	7	summer	false	3 000
2	winter	false	826	8	summer	true	5 800
3	winter	true	900	9	summer	true	6 200
4	spring	false	2100	10	autumn	false	2910
5	spring	true	4740	11	autumn	false	2880
6	spring	true	4 900	12	autumn	true	2820

			$ \mathcal{D}_{d=l} $		Weighted
Level	Part.	Instances	$ \mathcal{D} $	$\mathit{var}\left(t,\mathcal{D} ight)$	Variance
'winter'	\mathcal{D}_{1}	d_1, d_2, d_3	0.25	2 692	
'spring'	\mathcal{D}_{2}	$\mathbf{d}_4,\mathbf{d}_5,\mathbf{d}_6$	0.25	$2472533\frac{1}{3}$	1 379 331 1/3
'summer'	\mathcal{D}_3	$\mathbf{d}_7,\mathbf{d}_8,\mathbf{d}_9$	0.25	3 040 000	
'autumn'	\mathcal{D}_{4}	$\mathbf{d}_{10}, \mathbf{d}_{11}, \mathbf{d}_{12}$	0.25	2 100	
'true'	\mathcal{D}_5	$d_3, d_5, d_6, d_8, d_9, d_{12}$	0.50	$4026346\frac{1}{3}$	0.551.0101
'false'	\mathcal{D}_{6}	$\bm{d}_1, \bm{d}_2, \bm{d}_4, \bm{d}_7, \bm{d}_{10}, \bm{d}_{11}$	0.50	1 077 280	$2551813\frac{1}{3}$
	'winter' 'spring' 'summer' 'autumn' 'true'	'winter' \mathcal{D}_1 'spring' \mathcal{D}_2 'summer' \mathcal{D}_3 'autumn' \mathcal{D}_4 'true' \mathcal{D}_5	'winter' \mathcal{D}_1 $\mathbf{d}_1, \mathbf{d}_2, \mathbf{d}_3$ 'spring' \mathcal{D}_2 $\mathbf{d}_4, \mathbf{d}_5, \mathbf{d}_6$ 'summer' \mathcal{D}_3 $\mathbf{d}_7, \mathbf{d}_8, \mathbf{d}_9$ 'autumn' \mathcal{D}_4 $\mathbf{d}_{10}, \mathbf{d}_{11}, \mathbf{d}_{12}$ 'true' \mathcal{D}_5 $\mathbf{d}_3, \mathbf{d}_5, \mathbf{d}_6, \mathbf{d}_8, \mathbf{d}_9, \mathbf{d}_{12}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

The minimum *U*

- For D_1 , SEASON = 'winter'
 - $\bar{t} = \frac{800 + 826 + 900}{3} = 842$
 - $V(T, D_1) = \frac{(800-842)^2 + (826-842)^2 + (900-842)^2}{3} = 2692$

Selecting the feature that minimizes U

Tree Pruning

- Overfitting in decision tree
 - A wrong splitting caused by some noisy data
 - The height of tree too high
 - An inaccurate decision tree built
- Tree pruning
 - Pre-pruning
 - Early stopping
 - If the entropy of subset is lower than a threshold → stop splitting
 - χ^2 pruning
 - use statistical significance tests to determine the importance of subtrees
 - Post-pruning

- Pruning a built decision tree by a validation dataset.
- Example:
 - A decision tree for the post-operative patient routing task.
 - Target: ICU(intensive care unit), GEN(general ward for recovery)

Example: The validation data

	Core-	STABLE-		
ID	TEMP	TEMP	GENDER	DECISION
1	high	true	male	gen
2	low	true	female	icu
3	high	false	female	icu
4	high	false	male	icu
5	low	false	female	icu
6	low	true	male	icu

- Core-Temp = Low
 - The error of Gender node: 0
 - The error of male: 0
 - The error of female: 2
 - Gender node has a child with larger error
 - →Remove!

- Core-Temp = high
 - The error of Stable-Temp: 2
 - The error of true: 0
 - The error of false: 0
 - Stable-Temp node doesn't have a child with larger error
 - → Keep!

- The error of Core-Temp: 1
 - Core-Temp node doesn't have a leave child with larger error
 - → Keep!

Random Forest

Random forest creation

- 1. Randomly select *k* data instances from total *m* data instances, where *k* << *m*.
- 2. Create a decision tree for the *k* instances.
- 3. Repeat step 1 and 2 until *n* decision trees are created.

Random forest prediction

- Given a query q.
- Each decision tree predicts a target for q
- Calculate the votes for each predicted target.
- The high voted predicted target is the final prediction

Random Forest

- Sampling with replacement
 - Randomly choose a ball from a box and then put it back to the box
- Bootstrap sample
 - For a training data set D
 - D' = Applying sampling with replacement from D, and |D'| = D
 - The fraction of the unique samples of D' is $1 1/e \approx 0.632$
 - Using D' to create a decision tree
- Out-of-bag error (OOB error)
 - The mean prediction error on each training sample x_i , using only the trees that did not have x_i in their bootstrap sample.

Decision Tree in scikit-learn

- DecisionTreeClassifier
 - https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
- RandomForestClassifier
 - https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html