Assignment-3

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

Problem 3.1. (UAG 5.1) A rgular function on \mathbb{P}^1 is constant. Deduce that there are no non-constant morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ for $m \geq 1$.

Solution. Suppose $f \in k(\mathbb{P}^1)$ be a rational function, which is regular everywhere. If we restrict it to the affine piece $\mathbb{A}_{(0)}$, we get $f(x,1)=p(x)\in k[x]$ (as for the case of affine variety dom f=V iff $f\in k[V]$). Similarly, we can restrict f to another affine piece \mathbb{A}_{∞} . We get, $f(1,y)=f(1/y,1)=p(1/y)\in k[y]$. It is possible iff p is constant.

Any morphisms $\mathbb{P}^1 \to \mathbb{A}^m$ can be given by (f_1, \dots, f_m) where f_i are regular on \mathbb{P}^1 . Thus the function f is constant by the previous part.

Problem 3.2. (UAG 5.7) Let $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ be an isomorphism; identify φ as subvariety of $\mathbb{P}^1 \times \mathbb{P}^1 \subset \mathbb{P}^3$. Now do the same if $\varphi: \mathbb{P}^1 \to \mathbb{P}^1$ is given by map $(X,Y) \mapsto (X^2,Y^2)$.

Solution