8: Frequency, Severity & Aggregate Models

8. Frequency, Severity & Aggregate Models			
Ordinary Deductible		Franchise Deductible	
Left-censored & Shifted (LCS), Y ^L	Excess Loss, YP	Per-Payment, YP	Per-Loss, Y ^L
$Y_{L} = (X - d)_{+} = \begin{cases} 0 & X \le d \\ X - d & X > d \end{cases}$	$Y_{p} = \begin{cases} undefined & X \le d \\ X - d & X > d \end{cases}$		$Y^{L} = \begin{cases} 0, & X \le d \\ X & X > d \end{cases}$
$f_{Y^{L}}(y) = f_{X}(y+d), y > 0$ $F_{Y^{L}}(y) = F_{X}(y+d)$	$f_{Y^{P}}(y) = \frac{f_{X}(y+d)}{S_{X}(d)}, y > 0$	$f_{y^{p}}(y) = \frac{f_{X}(y)}{S_{X}(d)}$ $F_{y^{p}}(y) = \begin{cases} 0 & 0 \le y \le d \\ \frac{F_{X}(y+d) - F_{X}(d)}{S_{X}(d)} & y > d \end{cases}$	$f_{Y^{L}}(y) = \begin{cases} F_{X}(d) & , y = 0 \\ f_{X}(y) & , y > d \end{cases}$
	$F_{Y^{P}}(y) = \frac{F_{X}(y+d) - F_{X}(d)}{S_{X}(d)}$	$F_{y^{p}}(y) = \begin{cases} \frac{F_{X}(y+d) - F_{X}(d)}{S_{X}(d)} & y > d \end{cases}$	$F_{Y^{L}}(y) = \begin{cases} F_{X}(d) & , 0 \le y \le d \\ F_{X}(y) & , y > d \end{cases}$
Expected Cost per Loss	Expected Cost per Payment	Expected Cost per Payout	Expected Cost per Loss
$E[Y^{L}] = E(X) - E(X \wedge d)$ $E[(Y^{L})^{k}] = \int_{d}^{\infty} (x - d)^{k} f(x) dx$	$E[Y^{P}] = \frac{E(X) - E(X \wedge d)}{S_{X}(d)}$	$E[Y^{P}] = \frac{E(X) - E(X \wedge d)}{S_{X}(d)} - d$	$E[Y^{L}] = E(X) - E(X \wedge d) + d[S_{X}(d)]$

applicable to Ordinary Deductibles)		
ow some policy limit <i>u</i> , and <i>u</i> otherwise. N/A to franchise		
body would buy a policy that pays nothing above the policy limit.		
$y \le u$		
$y \le u$ $(u), y = u$		
(u), y = u		
$, y \leq u$		
$ y \le u \\ y > u $		
FIVAUL		
Expected Cost, with Inflation and Ordinary Deductibles Expected Cost, with Inflation and Ordinary Deductibles		
- / d \		
$X - E X \wedge \frac{a}{1 + a}$		
$\frac{1+r}{r}$		
$\frac{X] - E\left(X \wedge \frac{d}{1+r}\right)}{1 - F_X\left(\frac{d}{r}\right)}$		
^\(1+r)		
Expected Cost, with Inflation and Limits		
$(X \wedge \frac{u}{u})$		
(1+r)		
$\frac{X \wedge \frac{u}{1+r}}{F_X\left(\frac{u}{1+r}\right)}$		
$\Gamma_X(\overline{1+r})$		
$LER = \frac{E[X \land d]}{E[X]} = \frac{\sum \min(x_i, d)}{\sum x_i}$		
i v		

95 Madifiana: Ondinany Daductible Coincurance	QC Impact of Dadystibles on Claim Engagement	
8.5 – Modifiers: Ordinary Deductible, Coinsurance,	8.6 – Impact of Deductibles on Claim Frequency	
Inflation & Policy Limits		
Putting deductible, coinsurance and inflation together from ground-up loss X, to	Back Matter: (Discrete) Compound Frequency Models	
construct Y ^L :	The <i>compound distribution</i> is a random sum of random variables, both discrete in this	
$0, X < \frac{d}{1+r}$	case: $G_S(z) = G_N[G_M(z)]$	
$f_{Y^{L}}(y) = \begin{cases} 0, & X < \frac{d}{1+r} \\ \alpha \left[(1+r)X - d \right], & d \le X < \frac{u}{1+r} \\ \alpha \left(u - d \right), & X \ge \frac{u}{1+r} \end{cases}$	Thm. 6.8 If the primary distribution G_N can be written as:	
$ \left(\alpha \left(u - d \right), X \ge \frac{u}{1 + r} \right) $	$G_N(z;\theta) = B[\theta(z-1)]$	
Moments	For some parameter θ of the primary distribution, and some function B that is	
$E[Y^L] = \alpha(1+r)[E(X \wedge u) - E(X \wedge d)]$	independent of θ , then:	
	$P_{S}(z) = B[\nu\theta(z-1)] = P_{N}(z;\nu\theta)$	
$E\left[\left(Y^{L}\right)^{2}\right] = \alpha^{2}\left(1+r\right)^{2}\left\{E\left(X\wedge u^{*}\right)^{2}-E\left(X\wedge d^{*}\right)^{2}-2d\left[E\left(X\wedge u^{*}\right)-E\left(X\wedge d^{*}\right)\right]\right\}$	Where: $v = P(X > d)$	
Where: $u^* = \frac{u}{1+r}$, $d = \frac{d}{1+r}$		
$E[Y^P] = \frac{E[Y^L]}{1 - F_X[d^*]}$		