

Sieving for shortest vectors in lattices using (angular) locality-sensitive hashing

Thijs Laarhoven

mail@thijs.com
http://www.thijs.com/

Crypto 2015, Santa Barbara (CA), USA (August 17, 2015)

TU/e

Lattices

What is a lattice?

TU/e

Lattices

What is a lattice?

TU/e Lattices What is a lattice?

TU/e Lattices Shortest Vector Problem (SVP)

Lattices
Exact SVP algorithms

	Algorithm	$log_2(Time)$	$log_2(Space)$
SVP	Enumeration [Poh81, Kan83,, GNR10]	$\Omega(n \log n)$	$O(\log n)$
	AKS-sieve [AKS01, NV08, MV10, HPS11]	3.398 <i>n</i>	1.985 <i>n</i>
	ListSieve [MV10, MDB14]	3.199 <i>n</i>	• 1.327 <i>n</i>
ble	AKS-sieve-birthday [PS09, HPS11]	2.648 <i>n</i>	1.324n
Provable	ListSieve-birthday [PS09]	2.465 <i>n</i>	1.233n
Pro	Voronoi cell algorithm [MV10b]	2.000 <i>n</i>	1.000n
•	Discrete Gaussian sampling [ADRS15]	1.000 <i>n</i>	• 1.000 <i>n</i>
	Nguyen-Vidick sieve [NV08]	0.415 <i>n</i>	0.208 <i>n</i>
	GaussSieve [MV10,, IKMT14, BNvdP14]	0.415 <i>n</i> ?	0.208 <i>n</i>
SVP	Two-level sieve [WLTB11]	0.384 <i>n</i>	0.256 <i>n</i>
S	Three-level sieve [ZPH13]	0.3778 <i>n</i>	0.283 <i>n</i>
Heuristic	Overlattice sieving [BGJ14]	0.3774 <i>n</i>	0.293 <i>n</i>
		۰	•

Lattices
Exact SVP algorithms

•	Algorithm	$log_2(Time)$	$log_2(Space)$
Provable SVP	Enumeration [Poh81, Kan83,, GNR10]	$\Omega(n \log n)$	$O(\log n)$
	AKS-sieve [AKS01, NV08, MV10, HPS11]	3.398 <i>n</i>	1.985 <i>n</i>
	ListSieve [MV10, MDB14]	3.199 <i>n</i>	• 1.327 <i>n</i>
	AKS-sieve-birthday [PS09, HPS11]	2.648 <i>n</i>	1.324 <i>n</i>
	ListSieve-birthday [PS09]	2.465 <i>n</i>	1.233n
	Voronoi cell algorithm [MV10b]	2.000 <i>n</i>	1.000 <i>n</i>
•	Discrete Gaussian sampling [ADRS15]	1.000 <i>n</i>	• 1.000 <i>n</i>
euristic SVP	Nguyen-Vidick sieve [NV08]	0.415 <i>n</i>	0.208 <i>n</i>
	GaussSieve [MV10,, IKMT14, BNvdP14]	0.415 <i>n</i> ?	0.208 <i>n</i>
	Two-level sieve [WLTB11]	0.384 <i>n</i>	0.256 <i>n</i>
	Three-level sieve [ZPH13]	0.3778 <i>n</i>	0.283 <i>n</i>
	Overlattice sieving [BGJ14]	0.3774 <i>n</i>	0.293 <i>n</i>
	Hyperplane LSH [Laa15]	0.337 <i>n</i>	0.208 <i>n</i>
Ŧ			

Lattices
Exact SVP algorithms

	Algorithm	$\log_2(Time)$	$log_2(Space)$
	Enumeration [Poh81, Kan83,, GNR10]	$\Omega(n \log n)$	$O(\log n)$
SVP	AKS-sieve [AKS01, NV08, MV10, HPS11]	3.398 <i>n</i>	1.985 <i>n</i>
S	ListSieve [MV10, MDB14]	3.199 <i>n</i>	◦ 1.327 <i>n</i>
ble	AKS-sieve-birthday [PS09, HPS11]	2.648 <i>n</i>	1.324 <i>n</i>
Provable	ListSieve-birthday [PS09]	2.465 <i>n</i>	1.233 <i>n</i>
Pro	Voronoi cell algorithm [MV10b]	2.000 <i>n</i>	1.000 <i>n</i>
•	Discrete Gaussian sampling [ADRS15]	1.000 <i>n</i>	• 1.000 <i>n</i>
	Nguyen-Vidick sieve [NV08]	0.415 <i>n</i>	0.208 <i>n</i>
	GaussSieve [MV10,, IKMT14, BNvdP14]	0.415 <i>n</i> ?	0.208 <i>n</i>
SVP	Two-level sieve [WLTB11]	0.384 <i>n</i>	0.256 <i>n</i>
	Three-level sieve [ZPH13]	0.3778 <i>n</i>	0.283 <i>n</i>
Heuristic	Overlattice sieving [BGJ14]	0.3774 <i>n</i>	0.293 <i>n</i>
. <u>E</u>	Hyperplane LSH [Laa15], [MLB15]	0.337 <i>n</i>	0.208 <i>n</i>
Ē	May and Ozerov's NNS method [BGJ15]	0.311n	0.208 <i>n</i>
•	Spherical LSH [LdW15]	0.298 <i>n</i>	0.208 <i>n</i>
	Cross-polytope LSH [BL15]	0.298 <i>n</i>	0.208 <i>n</i>

TU/e Nguyen-Vidick sieve

TU/e

Nguyen-Vidick sieve

1. Sample a list L of random lattice vectors

Nguyen-Vidick sieve

Overview

 Heuristic assumption: Normalized vectors are uniformly distributed on the unit sphere

Nguyen-Vidick sieve

- Heuristic assumption: Normalized vectors are uniformly distributed on the unit sphere
- Space complexity: $(\sqrt{4/3})^n \approx 2^{0.208n+o(n)}$ vectors
 - ► Each center covers $(\sin \frac{\pi}{3})^{-n} = (\sqrt{3/4})^n$ of the space
 - ▶ Need $(\sqrt{4/3})^{n+o(n)}$ vectors to cover all corners of \mathbb{R}^n

Nguyen-Vidick sieve

- Heuristic assumption: Normalized vectors are uniformly distributed on the unit sphere
- Space complexity: $(\sqrt{4/3})^n \approx 2^{0.208n+o(n)}$ vectors
 - ► Each center covers $(\sin \frac{\pi}{3})^{-n} = (\sqrt{3/4})^n$ of the space
 - ▶ Need $(\sqrt{4/3})^{n+o(n)}$ vectors to cover all corners of \mathbb{R}^n
- Time complexity: $(4/3)^n \approx 2^{0.415n+o(n)}$

Nguyen-Vidick sieve

Overview

- Heuristic assumption: Normalized vectors are uniformly distributed on the unit sphere
- Space complexity: $(\sqrt{4/3})^n \approx 2^{0.208n+o(n)}$ vectors
 - ► Each center covers $(\sin \frac{\pi}{3})^{-n} = (\sqrt{3/4})^n$ of the space
 - ▶ Need $(\sqrt{4/3})^{n+o(n)}$ vectors to cover all corners of \mathbb{R}^n
- Time complexity: $(4/3)^n \approx 2^{0.415n + o(n)}$

Theorem (Nguyen and Vidick, J. Math. Crypt. '08)

The Nguyen-Vidick sieve heuristically solves SVP in time $2^{0.415n+o(n)}$ and space $2^{0.208n+o(n)}$.

Nguyen-Vidick sieve

GaussSieve

Two-level sieve

Three-level sieve

Overlattice sieving

Hyperplane LSH

1. Sample a list L of random lattice vectors

Hyperplane LSH

- Two parameters to tune
 - ▶ k = O(n): Number of hyperplanes, leading to 2^k regions ▶ $t = 2^{O(n)}$: Number of different, independent "hash tables"

Hyperplane LSH

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.337n+o(n)}$
 - Number of vectors: $2^{0.208n+o(n)}$
 - Number of hash tables: $2^{0.129n+o(n)}$
 - ► Each hash table contains all vectors

Hyperplane LSH

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.337n+o(n)}$
 - Number of vectors: $2^{0.208n+o(n)}$
 - Number of hash tables: $2^{0.129n+o(n)}$
 - Each hash table contains all vectors
- Time complexity: $2^{0.337n+o(n)}$
 - Cost of computing hashes: $2^{0.129n+o(n)}$
 - Candidate nearest vectors: $2^{0.129n+o(n)}$
 - ▶ Repeat this for each list vector: $2^{0.208n+o(n)}$

Hyperplane LSH

Overview

- Two parameters to tune
 - k = O(n): Number of hyperplanes, leading to 2^k regions
 - $t = 2^{O(n)}$: Number of different, independent "hash tables"
- Space complexity: $2^{0.337n+o(n)}$
 - Number of vectors: $2^{0.208n+o(n)}$
 - Number of hash tables: $2^{0.129n+o(n)}$
 - Each hash table contains all vectors
- Time complexity: $2^{0.337n+o(n)}$
 - Cost of computing hashes: $2^{0.129n+o(n)}$
 - Candidate nearest vectors: $2^{0.129n+o(n)}$
 - Repeat this for each list vector: $2^{0.208n+o(n)}$

$\mathsf{Theorem}$

Sieving with hyperplane LSH heuristically solves SVP in time and space $2^{0.337n+o(n)}$.

Hyperplane LSH

Hyperplane LSH

Hyperplane LSH

1. Sample a list L of random lattice vectors

Hyperplane LSH

Hyperplane LSH

Spherical LSH

May and Ozerov's NNS method

Cross-polytope LSH

TU/e Questions? [vdP'12]