积分变换

Qiuhui Chen

目录

序		2
Ι	Lecture 3 Fouier 级数敛散性	1
1	敛散性历史	2
2	求和理论初步	3
	2.1 一些和	3
	2.1.1 Fejér 求和法 (算术平均求和法)	3
	2.1.2 Abel 求和与 Poisson 核	3
	2.2 Lebesgue 定理	4
3	Fourier 级数的收敛性	5
J	3.1 基本定义与部分和	5
	3.1.1 dirichlet 核性质	6
	3.1.2 复指数的化简	6
	3.2 收敛性	7
	3.2.1 技术性处理	7
	3.2.2 奇点的处理	7
	3.2.3 Fouier 级数收敛第一充分条件 (Dini)	8
	3.2.4 Fouier 级数收敛第二充分条件 (Jordan)	10
	3.3 补充资料	11
	积分第二中值定理	11
	为什么选择 Dirichlet 核	12
	数学分析中的经典收敛定理	12
	MA MALLANDA, CL	
II	Lecture 4 Fourier 变换	14
4	级数到变换的形式推演	15
	4.1 代数运算	15
	4.2 Riemann-Lebesgue 引理	16
	4.3 Fourier 变换的性质	17
	4.3.1 线性变换,且可逆	17

		4.3.2 有界	17
		4.3.3 一致连续	18
5	调制	」、平移与 Fourier 变换	20
Ū	5.1		-0 20
	5.2		20
	5.3	伸缩性质	21
		5.3.1 一些练习	21
6	乖积	公式	23
Ů	6.1	••••	-3 23
	6.2		24
7	坐和	公 式	25
1	全形 7.1	••••	25 25
	•		$\frac{20}{26}$
	1.2		$\frac{20}{28}$
	ь.		
8	冰哥	:与算子 (时域衰减与频率光滑)	30
		ecture 6 速降函数空间 S(Especially Schwarz) 中的	
F	ouri	er 变换	33
9	凍隆	空间相关性质	34
	9.1		34
	9.2	紧支集速降函数空间 D(Schwarz 测试函数空间)	34
	9.3	逆公式	36
	9.4	${\mathcal S}$ 中的 Parseval 等式	37
		$9.4.1$ 过渡到 $L^2(\mathbb{R})$	37
10	Gaı	ıss 函数的 Fourier 变换	38
I	I L	Secture 10 DFT 和 FTT 4	! 1
11	DE		
	\mathbf{DF}'	Γ	12
			42 42
		信号	
	11.1 11.2	信号	42
	11.1 11.2 11.3	信号	42 42
	11.1 11.2 11.3	信号	42 42 43

4	E	1录
12	FFT 12.1 FFT $(N=2^2=4)$ 12.2 $FFT(N=2^3=8)$ 12.2.1 递推公式 12.2.2 计算复杂度分析 第三层 (A) 第二层 (B) 三层 (C) 12.2.3 FFT $(N=2^8, \text{ general case})$ 12.2.4 定义和基本公式 12.2.5 FFT 算法中乘法和加法次数的计算	46 46 47 48 48 49 49 49 51
\mathbf{V}	Lecture 11 一元 Fourier 变换应用	53
13	微分方程的求解 (ordinary)	54
14	The Solution of Partial Differential Equation by F 14.1 一维波动方程初值问题	58 58 60 61
T 71	I Lecture 12 多元 Fourier 变换	
V]	i Lecture 12 多几 Fourier 支快	63
15	基本定义与性质 15.1 一些工具 15.1.1 逆公式 15.1.2 偏傅里叶变换 15.2 性质 15.2.1 平移性 15.2.2 调制性 15.2.3 微分性质 15.2.4 卷积 15.2.5 多维情况 15.2.6 缩放 多元 Fourier 变换应用 16.1 二维热传导方程的初值问题 16.2 三维热传导问题	63 64 64 64 66 66 66 66 67 67 67 68 68
15	基本定义与性质 15.1 一些工具 15.1.1 逆公式 15.1.2 偏傅里叶变换 15.2 性质 15.2.1 平移性 15.2.2 调制性 15.2.3 微分性质 15.2.4 卷积 15.2.5 多维情况 15.2.6 缩放 多元 Fourier 变换应用 16.1 二维热传导方程的初值问题 16.2 三维热传导问题	64 64 64 66 66 66 66 67 67 68

目录		5

	17.4 17.5	积分性质 (Integration Property)	
18	利用	£ 变换的基本性质求 Laplace 变换	7 5
19		lace 变换与卷积	80
		卷积的性质	80
	19.2	Laplace 变换的卷积定理	81
\mathbf{V}	III	Lecture 16 Laplace 变换的逆变换	92
20		lace 变换的逆变换公式与计算	93
		逆变换公式的找寻	93
		利用留数定理计算逆变换	94
	20.3	孤立奇点与留数计算基础	96
		20.3.1 孤立奇点 (Isolated Singularities)	96 96
		20.3.3 Laurent 级数与奇点分类	
		20.3.4 留数的定义与计算	
	20.4	留数定理	
	20.5	示例: 用留数求 Laplace 变换的逆变换	104
IX	. A	appendix 1	21
	.1	附录 A Bessel 不等式的另一种证明	
	.2	附录 B 完备赋范空间中级数收敛性的证明	
	.3	常见的函数空间	
		L^p 空间与 L^∞ 空间 L^∞ 空间 L^∞ 空间 L^∞ 空间 L^∞	126
		$C^n(\Omega)$ 与 $C^\infty(\Omega)$ 光滑函数空间	
		.3.3 解析函数 $C^{\omega}(\Omega)$	
		$C_c^{\infty}(\Omega)$ 紧支撑光滑函数空间 $C_c^{\infty}(\Omega)$ 紧支撑光滑函数空间 $C_c^{\infty}(\Omega)$ 紧支撑光滑函数空间 $C_c^{\infty}(\Omega)$	
		\mathcal{S}_c (站) 家文诗记录 数至的 \mathcal{S}_c	
	.4	不同函数空间在测度有穷和无穷下的关系	
		.4.1 测度有限情形 $(\mu(X) < \infty)$	
		.4.2 测度无穷情形 $(\mu(X) = \infty)$	
		稠密关系	129

6 目录

目录

本文旨在将纸质笔记 Latex 化,方便复习

未经作者允许禁止用于商业活动

ii

Part I Lecture 3 Fouier 级数敛散性

敛散性历史

(I)**Fourier 的发现(1807 年)**: 首次提出 Fourier 级数理论,并认为其收敛性 在物理问题中是自然成立的。

(II) **Dirichlet 的贡献(1829 年)**: 提出 Dirichlet 条件,证明了满足该条件的周期函数其 Fourier 级数逐点收敛。但当时普遍误认为所有连续函数的 Fourier 级数均收敛。

(III) **Du Bois-Reymond 的反例 (1873 年)**:构造了一个连续周期函数,其 Fourier 级数在某一点发散,这一结果颠覆了当时的认知。

(IV) **Kolmogorov 的工作(1926 年)**: 证明存在 $L^1[-\pi,\pi)$ 函数,其 Fourier 级数在每一点都发散。

(V) Carleson 的突破 (1966 年): 证明了 $L^2[-\pi,\pi)$ 函数的 Fourier 级数几乎 处处收敛:

$$S_n(f,x) \to f(x)$$
, a.e. $x \in [-\pi, \pi)$.

(VI) **Hunt 的推广 (1967 年)**: 将结果扩展至 $L^p([-\pi,\pi))$ 空间 (p>1), 证明 对任意 $f \in L^p[-\pi,\pi)$, 有:

$$S_n(f,x) \to f(x)$$
, a.e. $x \in [-\pi, \pi)$.

世界性难题解决!

注: (i)Carleson 的证明极其复杂,但其结论(Carleson-Hunt 定理)奠定了现代 Fourier 分析的基石。

(ii) 连续函数的 Fourier 级数收敛性问题并非完全解决,例如是否存在连续函数 其 Fourier 级数在某个正测集上发散,仍是未解之谜。

(iii) 这些成果深刻影响了调和分析、偏微分方程及信号处理等领域。

求和理论初步

2.1 一些和

2.1.1 Fejér 求和法 (算术平均求和法)

定义 Fejér 和为:

$$\sigma_n(x) = \frac{1}{n+1} \sum_{k=0}^n S_k(f,x) = \frac{1}{n+1} \sum_{k=-n}^n \left(1 - \frac{|k|}{n+1}\right) C_k e^{ikx} = \frac{1}{n+1} \sum_{k=0}^n f * \varrho_k$$

则其积分形式可表示为:

$$\sigma_n(x) = \frac{1}{2\pi(n+1)} \int_{-\pi}^{\pi} f(x-t) \left(\frac{\sin\left(\frac{(n+1)t}{2}\right)}{\sin\left(\frac{t}{2}\right)} \right)^2 dt$$

$$\int_{-\pi}^{\pi} f(x-t) K_n(t) dt$$
Fejér 核: $K(t) = \frac{1}{2\pi(n+1)} \left(\frac{\sin\frac{(n+1)t}{2}}{\sin\frac{t}{2}} \right)^2$

2.1.2 Abel 求和与 Poisson 核

定义 Abel-Poisson 和为:

$$F(r,x) = \sum_{k=-\infty}^{\infty} C_k r^{|k|} e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) P(r,x-t) dt,$$

其中 Poisson 核为:

$$P(r,t)$$
 ^{负号变正,通分} $\frac{1}{2} \frac{1-r^2}{1-2r\cos t+r^2} = \frac{1}{2} + \sum_{r=1}^{\infty} r^n e^{int}.$

注:(i) **解析性**: 当 $r \to 1^-$ 时,F(r,x) 在单位圆内解析,边界值与原函数相关。 (ii) **收敛性**: 若 $f \in L^p(\mathbb{E})$ $(p \ge 1)$,则 $F(r,x) \to f(x)$ a.e. 当 $r \to 1^-$ 。

2.2 Lebesgue 定理

Theorem 1 (Lebesgue). 若 $f \in L^1[-\pi,\pi)$ 且 f 在 x_0 处满足 Lebesgue 条件:

$$\lim_{h \to 0} \frac{1}{h} \int_0^h |f(x_0 + t) - f(x_0)| dt = 0,$$

- (i) $\sigma_n(x_0) \to f(x_0) \ (n \to \infty)$
- (ii) 在几乎处处意义下, $\sigma_n(x) \to f(x)$ a.e. $x \in [-\pi, \pi)$.

Theorem 2 (L^p 收敛性). 若 $f \in L^p[-\pi,\pi)$ 且 $1 \le p < \infty$, 则:

$$\lim_{n \to \infty} ||f - \sigma_n(f)||_p = 0.$$

Fourier 级数的收敛性

3.1 基本定义与部分和

设 $f \in L^1[-\pi,\pi]$ 为广义周期函数, 其 Fourier 部分和为:

$$S_n(f, x) = \frac{a_0}{2} + \sum_{k=1}^n (a_k \cos kx + b_k \sin kx),$$

其中系数由积分表达式给出:

$$a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cos(ku) du, \quad b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \sin(ku) du.$$

于是:

$$S_n(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \, du + \frac{1}{\pi} \sum_{k=1}^{n} \int_{-\pi}^{\pi} f(u) \cos k(u-x) \, du.$$

进一步化简为:

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \left(\frac{1}{2} + \sum_{k=1}^{n} \cos k(u-x) \right) du.$$

利用三角恒等式:

$$\frac{1}{2} + \sum_{k=1}^{n} \cos k\theta = \frac{\sin\left((n + \frac{1}{2})\theta\right)}{2\sin\frac{\theta}{2}},$$

可得 Dirichlet 核表示:

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cdot \frac{\sin\left((n + \frac{1}{2})(u - x)\right)}{2\sin\frac{u - x}{2}} du.$$

$$S_n(f,x) = \frac{1}{\pi} \int_{-\pi-x}^{\pi-x} f(x+t) \frac{\sin((n+\frac{1}{2})t)}{2\sin\frac{t}{2}} dt.$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) \frac{\sin\left((n+\frac{1}{2})t\right)}{2\sin\frac{t}{2}} dt.$$
 (3.1)

定义 Dirichlet 核:

$$D_n(t) = \frac{1}{2\pi} \frac{\sin\left(\left(n + \frac{1}{2}\right)t\right)}{\sin\frac{t}{2}}$$
(3.2)

3.1.1 dirichlet 核性质

归一性:

$$\int_{-\pi}^{\pi} D_n(t)dt = 1.$$

偶性:

$$D_n(-t) = D_n(t).$$

正交投影: S_n 是从 $L^2(\mathbb{E})$ 到 2n+1 维三角多项式空间的投影算子,即

$$S_n: L^2(\mathbb{E}) \to \mathcal{T}_n, \quad \mathcal{T}_n = \operatorname{span}\{e^{ikx}\}_{k=-n}^n.$$

3.1.2 复指数的化简

 $f \in L^1(\mathbb{E})$ 的 Fourier 部分和可表示为:

$$S_n(f,x) = \sum_{k=-n}^{n} C_k e^{ikx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \sum_{k=-n}^{n} e^{ik(x-u)} du$$

其中复数系数为:

$$C_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u)e^{-iku}du.$$

$$S_n(f,x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \frac{e^{-in(x-u)} - e^{in(x-u)}e^{i(x-u)}}{1 - e^{-i(x-u)}} du$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u)e^{\frac{i(x-u)}{2}} \frac{e^{-i(n+\frac{1}{2})(x-u)} - e^{i(n+\frac{1}{2})(x-u)}e^{i(x-u)}}{(e^{\frac{i(x-u)}{2}})(e^{-\frac{i(x-u)}{2}} - e^{\frac{i(x-u)}{2}})} du$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(u) \frac{\sin(n+\frac{1}{2})(x-u)}{\sin(x-u)} du$$

$$= f * D_n(u)$$

3.2. 收敛性 7

3.2 收敛性

3.2.1 技术性处理

问题直接归结于 $\{S_n\}$ 的敛散性,如果存在极限,那么假设偏差量:

$$S_n(f,x) - c = \int_{-\pi}^{\pi} (f(x-t) - c) D_n(t) dt,$$

将正负分开换元得到:

$$S_n(f,x) - c = \int_0^{\pi} \left[f(x-t) + f(x+t) - 2c \right] D_n(t) dt.$$
 (3.3)

记 $\psi_x(t) = f(x+t) + f(x-t) - 2c$,且 $\psi_x(-t) = \psi_x(t)$ 。 $\psi_x(t) \in L^1(0,\pi)$ 由 f 控制,则有:

$$\int_{0}^{\pi} \psi_{x}(t) dt = \int_{0}^{\pi} f(x+t) dt + \int_{0}^{\pi} f(x-t) dt - 2c\pi.$$

$$S_{n}(f,x) - c = \int_{0}^{\pi} \psi_{x}(t) D_{n}(t) dt.$$

$$= \int_{0}^{\pi} \psi_{x}(t) \cdot \frac{\sin(nt) \cos \frac{t}{2} + \cos(nt) \sin \frac{t}{2}}{2\pi \sin \frac{t}{2}} dt.$$

$$= \int_{0}^{\pi} \psi_{x}(t) \cdot \frac{\cos \frac{t}{2} \sin nt}{2\pi \sin \frac{t}{2}} dt + \frac{1}{2\pi} \int_{0}^{\pi} \psi_{x}(t) \cos(nt) dt.$$

Riemann-Lebesgue 引理告诉我们第二项在 $n \to \infty$ 时为 o(1) 故只需关注:

$$= \frac{1}{2\pi} \int_0^{\pi} \psi_x(t) \cos \frac{t}{2} \cdot \frac{\sin nt}{\sin \frac{t}{2}} dt$$
 (3.4)

3.2.2 奇点的处理

问什么情况下 3.4趋于 0? 一个自然的想法是尽可能的运用 Riemann-Lebesgue 引理: 我们设 $\forall \delta \in (0, \frac{\pi}{2})$

$$\frac{1}{2\pi} \int_0^{\pi} \psi_x(t) \cdot \frac{\cos\frac{t}{2}\sin nt}{\sin\frac{t}{2}} dt$$

$$= \frac{1}{2\pi} \int_0^{\delta} \psi_x(t) \cdot \frac{\cos\frac{t}{2}\sin nt}{\sin\frac{t}{2}} dt + \frac{1}{2\pi} \int_{\delta}^{\pi} \psi_x(t) \cdot \frac{\cos\frac{t}{2}\sin nt}{\sin\frac{t}{2}} dt$$

因此第二项使用 Riemann-Lebesgue 引理后, 充分条件即为:

$$S_n(f,x) \to c \quad (n \to \infty) \quad \Leftrightarrow \quad \int_0^\delta \psi_x(t) \frac{\cos\frac{t}{2}}{\sin\frac{t}{2}} \sin nt \, dt \to 0 \quad (n \to \infty).$$

下面的 Dini 条件告诉我们 $\delta \in (0,\pi)$ 满足一定条件下只需要一个即可

3.2.3 Fouier 级数收敛第一充分条件 (Dini)

Theorem 3. $f \in L^1(\mathbb{E}), C \in \mathbb{C}$ 为常数。偏差函数:

$$\psi_x(t) = f(x+t) + f(x-t) - 2c,$$

若存在 $\delta > 0$ 使得:

$$\int_0^\delta \frac{|\psi_x(t)|}{t} \, dt < \infty.$$

则

$$\lim_{n \to \infty} S_n(f, x) = C.$$

Proof. 考虑

$$\int_0^\delta \psi_x(t) \frac{\cos\frac{t}{2}}{\sin\frac{t}{2}} \sin nt \, dt$$

显然

$$\frac{\psi_x(t)}{t} \subset L^1(0,\delta)$$

利用
$$\frac{t\cos\frac{t}{2}}{\sin\frac{t}{2}}$$
在 $(-\infty,\infty)$ 的连续性

使用 Riemann-Lebesgue 引理得证

Theorem 4 (推论 1). 设 $f \in L(-\pi,\pi)$, 若 f 在 x 处可微,则 $S_n(f,x) \to f(x)$ $(n \to \infty)$

Proof. 在定理 10 中, 令 c = f(x)。定义:

$$\psi_x(t) = f(x+t) + f(x-t) - 2f(x).$$

$$\Rightarrow \frac{\psi_x(t)}{t} = \frac{f(x+t) - f(x)}{t} + \frac{f(x-t) - f(x)}{t}.$$

$$= \frac{f(x+t) - f(x)}{t} - \frac{f(x-t) - f(x)}{-t}.$$

当 $t \rightarrow 0$ 时:

$$\lim_{t \to 0} \frac{\psi_x(t)}{t} = f'(x) - f'(x) = 0.$$

因此, 若:

$$\int_0^\delta \frac{|\psi_x(t)|}{t} \, dt < \infty,$$

note: $\forall \varepsilon > 0$, 存在 $\delta_1 > 0$, 当 $t \in (0, \delta_1)$ 时:

$$\left|\frac{\psi_x(t)}{t}\right| < \varepsilon.$$

3.2. 收敛性

同样的思想,第二项由 Riemann-Lebesgue 引理控制, 第一项是经典分析学的内容:

$$\int_0^{\delta} \frac{|\psi_x(t)|}{t} dt$$

$$= \int_0^{\delta_1} \frac{|\psi_x(t)|}{t} dt + \int_{\delta_1}^{\delta} \frac{|\psi_x(t)|}{t} dt$$

$$\leq \varepsilon \delta_1 + \int_{\delta_1}^{\delta} \frac{|\psi_x(t)|}{t} dt \to o(1)$$

Theorem 5 (推论 2). 设 $f \in L(-\pi,\pi)$, 若 f 在 x 处满足 Lipschitz 条件,即 存在常数 M > 0 和 $\alpha \in (0,1]$,使得:

$$|f(x+t) - f(x)| \le M|t|^{\alpha} \quad \alpha \in (0,1].$$

则
$$S_n(f,x) \to f(x) \ (n \to \infty)$$

Proof. 这是显然的: 使用 (Theorem3):

$$\psi_x(t) = f(x+t) + f(x-t) - 2f(x).$$

则:

$$\left|\frac{\psi_x(t)}{t}\right| \le \left|\frac{f(x+t) - f(x)}{t}\right| + \left|\frac{f(x-t) - f(x)}{t}\right| \le 2M|t|^{\alpha - 1}.$$

因此, 积分:

$$\int_0^\delta \frac{|\psi_x(t)|}{t} dt \le 2M \int_0^\delta |t|^{\alpha - 1} dt < \infty.$$

注:这种推论可以构造很多条件、只需要保证存在 $\delta > 0$ 使得

$$\int_0^\delta \frac{\psi_x(t)}{t} \, dt < \infty$$

再举一个例子: $f \in C^2[-\pi,\pi]$ 且满足 Hölder 条件:

$$|f(x+\epsilon) - f(x)| \le M \cdot \frac{1}{|\ln|x||^{\epsilon+1}} \quad (\epsilon > 0)$$

则

$$S_n(f,x) \to f(x) \quad (n \to \infty).$$

即 Fourier 级数在点 x 处收敛于 f(x)

9

3.2.4 Fouier 级数收敛第二充分条件 (Jordan)

先证明一个引理以便行文流畅:

Lemma 6. 对任意 $a,b \in \mathbb{R}$,有

$$\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le 6.$$

Proof. 当 $1 \le |a| \le b$ 时,由第二积分中值定理,存在 $\xi \in [a,b]$ 使得:

$$\left| \int_{a}^{b} \frac{\sin t}{t} dt \right| = \frac{1}{|a|} \left| \int_{a}^{\xi} \sin t dt \right| \le \frac{2}{|a|} \le 2.$$

当 $0 \le a \le b \le 1$ 时:

$$\left| \int_{a}^{b} \frac{\sin t}{t} dt \right| \le \int_{a}^{b} 1 dt = b - a \le 1.$$

综合两种情况可得:

对于一般情况 (a < 0 < b):

$$\left| \int_{a}^{b} \frac{\sin x}{x} dx \right| \le \int_{0}^{|a|} + \int_{0}^{|b|} \le 6.$$

note: 定理并非是必要的甚至可以直接令 $I \leq \frac{\pi}{2}$

现在来证明 Jordan 条件:

Theorem 7. 设 $f \in L^1[-\pi,\pi]$, 且 f 在点 x 的某邻域 U(x,r) 上有界变差,则 其 Fourier 级数部分和满足:

$$\lim_{n \to \infty} S_n(f, x) = \frac{1}{2} [f(x+0) + f(x-0)].$$

Proof. 设 $f \in BV(x-r,x+r)$, 则 f(x+0) 和 f(x-0) 存在 (Jordan 分解定理: 因有界变差函数在每点存在单侧极限) 换句话说:存在单调递增函数 g,h 使得:

$$\psi_x(t) = g(t) - h(t)$$

$$g(x+0) = \inf\{g\}$$

$$h(x+0) = \sup \{h\}.$$

3.3. 补充资料 11

定义:

$$c = \frac{1}{2} (f(x+0) + f(x-0))$$
则 $\psi_x(t) = f(x+t) + f(x-t) - f(x+0) - f(x-0) \in B.V(-r,r)$
⇒ 存在单调递增函数 h_1, h_2 使得: $\psi_x(t) \stackrel{\text{Jordan } \beta ff}{=} h_1(t) - h_2(t)$
且 (极限形式) $h_1(0+0) = h_2(0+0) = 0$ (∵ $\psi_x(0+0) = 0$)

$$\mathbb{M}S_n(f,x) - c = \frac{1}{2\pi} \int_0^\delta \psi_x(t) \cdot \frac{\sin\left((n + \frac{1}{2})t\right)}{\sin\left(\frac{t}{2}\right)} dt + o(1)$$
(3.5)

取
$$n$$
 足够大 $\Rightarrow |o(1)| < \varepsilon$

 $\varepsilon - \delta$ 语言告诉我们: $\forall \varepsilon > 0 \; \exists \delta < r, \;$ 使得 $t \in (0, \delta), 0 \leq h_j \leq \varepsilon$ 重新考虑 (3.5) 只需要估计 Dirichlet 核即可, 使用引理 (**Lemma**6) 和积分第二 中值定理:

$$|S_n(f,x) - C| \le \left| \frac{1}{\pi} \int_0^{\delta} h_1(t) \frac{\sin(nt)}{t} dt \right| + \left| \frac{1}{\pi} \int_0^{\delta} h_2(t) \frac{\sin(nt)}{t} dt \right| + \varepsilon$$

$$= \left| \frac{1}{\pi} h_1(\delta) \int_{\xi_1}^{\delta} \frac{\sin(nt)}{t} dt \right| + \left| \frac{1}{\pi} h_2(\delta) \int_{\xi_2}^{\delta} \frac{\sin(nt)}{t} dt \right| + \varepsilon \le \left(\frac{6+6}{\pi} \right) \varepsilon + \varepsilon$$

$$= \left(1 + \frac{12}{\pi} \right) \varepsilon$$

3.3 补充资料

积分第二中值定理

Theorem 8. 设 f 在 [a,b] 上 Riemann 可积。若 g 在 [a,b] 上递减且 $g(x) \ge 0$,则存在 $\xi \in [a,b]$,使得:

$$\int_{a}^{b} f(x)g(x) dx = g(a) \int_{a}^{\xi} f(x) dx.$$

若 g 在 [a,b] 上递增且 $g(x) \ge 0$, 则存在 $\eta \in [a,b]$, 使得:

$$\int_a^b f(x)g(x) \, dx = g(b) \int_a^b f(x) dx$$

为什么选择 Dirichlet 核

$$\int_0^\delta \psi_x(t) \cot \frac{t}{2} \sin nt \, dt$$

转换为:

$$\int_0^\delta \frac{\psi_x(t)}{t} \sin nt \, dt$$

是基于以下分析, 定义函数 g(t) 如下:

$$g(t) \stackrel{\Delta}{=} \begin{cases} \cot \frac{t}{2} - \frac{1}{t}, & t \in [-\pi, \pi] \setminus \{0\} \\ 0, & t = 0 \end{cases}$$

 $在 [-\pi,\pi]$ 上连续

证明是容易的, 注意到分母是 1 阶的, 而分子有 2 阶以上的余项

数学分析中的经典收敛定理

Theorem 9 (Dirichlet 收敛定理). (i) 设函数 f 在区间 $[-\pi,\pi]$ 上满足: 分段光滑

(ii) 在 $[-\pi,\pi]$ 上除有限个第一类间断点外连续则对任意 $x \in (-\pi,\pi)$, 其 Fourier 级数部分和满足:

$$S_n(x) \to \frac{f(x+0) + f(x-0)}{2} \quad (n \to \infty)$$

Proof. 定义偏差积分:

$$\int_0^\delta \frac{\psi_x(t)}{t} \sin(nt) dt = \int_0^\delta \frac{f(x+t) - f(x+0)}{t} \sin(nt) dt + \int_0^\delta \frac{f(x-t) - f(x-0)}{t} \sin(nt) dt$$

其中定义辅助函数:

$$\varphi_1(t) = \frac{f(x+t) - f(x+0)}{t}, \quad t \in (0, \delta]$$

$$\varphi_2(t) = \frac{f(x-t) - f(x-0)}{t}, \quad t \in (0, \delta]$$

关于正则性分析: 在 $t \to 0^+$ 时 (分段光滑保证左右导数存在)

$$\varphi_1(0^+) = \lim_{t \to 0^+} \frac{f(x+t) - f(x+0)}{t} = f'(x^+)$$

$$\varphi_2(0^+) = \lim_{t \to 0^+} \frac{f(x-t) - f(x-0)}{t} = -f'(x^-)$$

 φ_1, φ_2 在 $[0, \delta]$ 上连续(可数个第一类间断点其他都是连续点) 应用 Riemann-Lebesgue 引理

$$\int_0^\delta \varphi_i(t)\sin(nt) dt = o(1) \quad (n \to \infty), \quad i = 1, 2$$

3.3. 补充资料 13

因此原积分满足:

$$\int_0^\delta \frac{\psi_x(t)}{t} \sin(nt) dt = o(1) \quad (n \to \infty)$$

评注: 现在回顾来看观点有点低了

Part II Lecture 4 Fourier 变换

级数到变换的形式推演

4.1 代数运算

若 $f \in L^1(-\ell,\ell)$,则 $f \sim \sum_{k=-\infty}^{\infty} C_k e^{ik\frac{\pi}{\ell}x}$,其中 $C_k = \frac{1}{2\ell} \int_{-\ell}^{\ell} f(t) e^{-ik\frac{\pi}{\ell}t} dt$ 。那么

$$\begin{split} \sum_{k \in \mathbb{Z}} c_k e^{ik\frac{\pi}{\ell}x} \\ &= \sum_{k \in \mathbb{Z}} \left(\frac{1}{2\ell} \int_{-\ell}^{\ell} f(y) e^{-ik\frac{\pi}{\ell}y} dy \right) e^{ik\frac{\pi}{\ell}x} \\ &= \sum_{k \in \mathbb{Z}} \frac{1}{2\ell} \int_{-\ell}^{\ell} f(y) e^{ik\frac{\pi}{\ell}(x-y)} dy \\ &= \sum_{k \in \mathbb{Z}} \left(\frac{1}{2\pi} \int_{-\ell}^{\ell} f(y) e^{i(k\frac{\pi}{\ell})(x-y)} dy \right) \frac{\pi}{\ell} \end{split}$$

令 $t_k=k\frac{\pi}{\ell}$,则 $\Delta t_k=t_{k+1}-t_k=(k+1)\frac{\pi}{\ell}-k\frac{\pi}{\ell}=\frac{\pi}{\ell}$ 。故上述式子可写为

$$\begin{split} &= \sum_{k \in \mathbb{Z}} \left(\frac{1}{2\pi} \int_{-\ell}^{\ell} f(y) e^{it_k(x-y)} dy \right) \Delta t_k \\ &= \sum_{k \in \mathbb{Z}} g_{\ell}(t_k) \Delta t_k; \not \sqsubseteq \oplus g_{\ell} = \frac{1}{2\pi} \int_{-\ell}^{\ell} f(y) e^{it(x-y)} dy \\ &\approx \int_{-\infty}^{\infty} \left(\frac{1}{2\pi} \int_{-\ell}^{\ell} f(y) e^{it(x-y)} dy \right) dt \\ &\to \int_{-\infty}^{\infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} f(y) e^{it(x-y)} dy dt \end{split}$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-ity} dy \right) e^{itx} dt$$
$$\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y) e^{-ity} dy$$

则

令

$$f(x) \sim \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(t)e^{itx}dt$$

。以上是从傅里叶级数到非周期函数的傅里叶变换的形式推导,严格的证明将 在不同空间展开。

4.2 Riemann-Lebesgue 引理

Theorem 10 (Riemann-Lebesgue).

若
$$f \in L^1(\mathbb{R})$$
则 $\lim_{|w| \to \infty} \hat{f}(w) = 0$

即
$$\hat{f}(w) = o(1)$$
当 $|w| \to \infty$

(这暗示我们高频幅度可忽略不计)

Proof. (i) 考虑特征函数: 当 $f = \chi_{[a,b]}$ 时,直接计算其 Fourier 变换,这个积分是简单的:

$$\begin{split} \hat{f}(w) &= \frac{1}{\sqrt{2\pi}} \int_a^b e^{-iwt} dt \\ &= \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-iwb} - e^{-iwa}}{-iw} \\ &= \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-iwb} - e^{-iwa}}{-iw} \end{split}$$

取绝对值:

$$|\hat{f}(w)| \le \frac{1}{\sqrt{2\pi}} \cdot \frac{2}{|w|} \to 0 \quad (|w| \to \infty)$$

因此, $\hat{f}(w) \to 0$ 当 $|w| \to \infty$ 。

(ii) 当 f 是有限个特征函数 $\chi_{[a_i,b_i]}$ 的线性组合时,利用积分线性性和极限线性性,可知:

$$\hat{f}(w) \to 0 \quad (|w| \to \infty)$$

即紧支撑的分片 (或紧支集) 常数函数的 Fourier 变换趋于 $0(|w| \to \infty)$

(iii) $\forall f \in L^1(\mathbb{R}), \ \forall \varepsilon > 0$, 存在一个紧支撑的分片常函数 g, 使得:

$$||f - g||_1 = \int_{\mathbb{R}} |f(x) - g(x)| dx < \varepsilon$$

(iv) 对于 $f \in L^1(\mathbb{R})$, 分解其 Fourier 变换:

$$\hat{f}(w) = \hat{f}(w) - \hat{g}(w) + \hat{g}(w)$$

$$\hat{f}(w) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} (f(x) - g(x))e^{-iwx}dx + \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} g(x)e^{-iwx}dx$$

记为:

$$\hat{f}(w) = J_1(w) + J_2(w)$$

第一项:

$$|J_1(w)| \le \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} |f(x) - g(x)| dx \le \frac{1}{\sqrt{2\pi}} \varepsilon$$

第二项:由于g是紧支撑的分片常函数,根据(ii):

$$|J_2(w)| = o(1) \quad (|w| \to \infty)$$

所以:

$$|\hat{f}(w)| \le |J_1(w)| + |J_2(w)| \le \frac{1}{\sqrt{2\pi}}\varepsilon + o(1)$$

 $<math> \varepsilon \rightarrow 0 \ |w| \rightarrow \infty$ 得

$$\hat{f}(w) \to 0 \quad (|w| \to \infty)$$

4.3 Fourier 变换的性质

4.3.1 线性变换,且可逆

略

4.3.2 有界

Theorem 11.

$$\mathcal{F}$$
是: $L^1(\mathbb{R}) \to L^\infty(\mathbb{R})$ 有界线性算子 $\forall f \in L^1(\mathbb{R}) \Rightarrow |\mathcal{F}[f](\lambda)| \leq \frac{1}{\sqrt{2\pi}} ||f||_1$

Proof.

$$\left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t) e^{-i\lambda t} dt \right| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |f(t)| \cdot |e^{-i\lambda t}| dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} |f(t)| dt = \frac{1}{\sqrt{2\pi}} \|f\|_{1}$$

因此, 若 $f \in L^1(\mathbb{R})$, 则 $\mathcal{F}[f] \in L^{\infty}(\mathbb{R})$, 且:

$$\|\mathcal{F}[f]\|_{L^{\infty}} = \operatorname{ess\,sup} |\mathcal{F}[f](\lambda)| \le \frac{1}{\sqrt{2\pi}} \|f\|_1 < +\infty$$

傅里叶变换将 L^1 空间中的函数映射到 L^∞ 空间中的函数,且变换后的函数几乎处处有界

4.3.3 一致连续

Theorem 12. 若 $f \in L^1(\mathbb{R})$, 则 \hat{f} 在 $(-\infty, \infty)$ 一致连续

Proof.

$$|\hat{f}(\omega_1) - \hat{f}(\omega_2)| = \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)(e^{-it\omega_1} - e^{-it\omega_2})dt \right|$$

$$= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} f(t)e^{-it\omega_2} \left[e^{-it(\omega_1 - \omega_2)} - 1 \right] dt \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| \cdot |e^{-it(\omega_1 - \omega_2)} - 1| dt$$

而 $|e^{-ix}-1|=|(\cos x-1)-i\sin x|=\sqrt{(1-\cos x)^2+\sin^2 x}=\sqrt{2(1-\cos x)}=2|\sin\frac{x}{2}|$,所以

$$|\hat{f}(\omega_1) - \hat{f}(\omega_2)| \le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| \cdot 2 \left| \sin \frac{t(\omega_1 - \omega_2)}{2} \right| dt$$

$$\le \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| \cdot |t| \frac{|\omega_1 - \omega_2|}{2} dt \quad (\stackrel{\text{#}}{\rightleftarrows} tf(t) \in L^1(\mathbb{R}))$$

$$= \frac{1}{\sqrt{2\pi}} |\omega_1 - \omega_2| \int_{-\infty}^{\infty} |f(t)| \cdot |t| dt$$

$$= A|\omega_1 - \omega_2|$$

满足 Lipschitz 条件. 当 tf(t) 不属于 $L^1(\mathbb{R})$ 时,不能用上述推理。但注意到

$$e^{-i0} - 1 = 0$$

于是 $\forall t \in \mathbb{R}$,

$$\lim_{\omega_1 \to \omega_2} |e^{-it(\omega_1 - \omega_2)} - 1| = 0$$

则 $\forall \varepsilon > 0$, $\exists \delta(\varepsilon) > 0$, 当 $|\omega_1 - \omega_2| < \delta$,对 $\forall t \in \mathbb{R}$

$$|e^{-it(\omega_1 - \omega_2)} - 1| < \varepsilon$$

所以 $|\hat{f}(\omega_1) - \hat{f}(\omega_2)| \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| \varepsilon dt = B \cdot \varepsilon$,其中 $B = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| dt$ 所以 \hat{f} 在 \mathbb{R} 一致连续。也可以利用 Lebesgue 控制收敛理论:

$$|\hat{f}(\omega+h) - \hat{f}(\omega)| = \left| \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)(e^{-i(\omega+h)t} - e^{-i\omega t})dt \right|$$

$$= \frac{1}{\sqrt{2\pi}} \left| \int_{-\infty}^{\infty} f(t)e^{-i\omega t}(e^{-iht} - 1)dt \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |f(t)| \cdot |e^{-iht} - 1|dt$$

又因为

$$|e^{-iht} - 1| \le 2$$

$$\int_{-\infty}^{\infty} |f(t)| \cdot |e^{-iht} - 1| dt \le 2 \int_{-\infty}^{\infty} |f(t)| dt$$

而 $f \in L^1(\mathbb{R})$, 即

$$\int_{-\infty}^{\infty} |f(t)| dt < +\infty$$

由勒贝格控制收敛定理可知,

$$\lim_{h \to 0} \int_{-\infty}^{\infty} |f(t)| \cdot |e^{-iht} - 1| dt = 0$$

。这就表明对于任意给定的 $\varepsilon>0$,存在 $\delta>0$,当 $|h|<\delta$ 时,有 $|\hat{f}(\omega+h)-\hat{f}(\omega)|<\varepsilon$,对任意的 $\omega\in\mathbb{R}$ 都成立,所以 $\hat{f}(\omega)$ 在 \mathbb{R} 上一致连续。

调制、平移与 Fourier 变换

5.1 平移性质

设 $T_a:f\to f(\cdot-a)$,则 $(T_af)^\wedge(\omega)=e^{-ia\omega}\hat{f}(\omega)$,即 $\mathcal{F}(T_af)(\omega)=M_{-a}(\hat{f})(\omega)$ Proof. 根据傅里叶变换定义

$$\mathcal{F}(T_a f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x - a) e^{-i\omega x} dx$$

, \diamondsuit t = x - a ,则 x = t + a

$$\mathcal{F}(T_a f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega(t+a)} dt$$
$$= e^{-ia\omega} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$
$$= e^{-ia\omega} \hat{f}(\omega)$$

5.2 调制性质

设 $M_b: f \to e^{ib \cdot} f$, 则 $\mathcal{F}(M_b f)(\omega) = T_b(\hat{f})(\omega)$

Proof. 由傅里叶变换定义

$$\mathcal{F}(M_b f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{ibx} f(x) e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i(\omega - b)x} dx$$

这就是函数 f(x) 关于频率 $\omega-b$ 的傅里叶变换,即 $(\hat{f})(\omega-b)=T_b(\hat{f})(\omega)$ 。

5.3. 伸缩性质 21

5.3 伸缩性质

设 $D_af(x)=|a|^{-\frac{1}{2}}f(\frac{x}{a})$,则 $\mathcal{F}(D_af)(\omega)=D_{\frac{1}{a}}\hat{f}(\omega)=|a|^{\frac{1}{2}}\hat{f}(a\omega)$ (注意是对自变量位置操作)

Proof. 根据傅里叶变换定义

$$\mathcal{F}(D_a f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |a|^{-\frac{1}{2}} f(\frac{x}{a}) e^{-i\omega x} dx$$

 $\diamondsuit t = \frac{x}{a}$, 则 x = at

$$\mathcal{F}(D_a f)(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} |a|^{-\frac{1}{2}} f(t) e^{-i\omega(at)} |a| dt$$
$$= |a|^{\frac{1}{2}} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i(a\omega)t} dt$$
$$= |a|^{\frac{1}{2}} \hat{f}(a\omega) = D_{\frac{1}{a}} \hat{f}(\omega) = Df_{\frac{1}{a}}(\omega)$$

5.3.1 一些练习

(i) 计算 $\mathcal{F}\left[f\left(\frac{x-b}{a}\right)\right](w)$

(ii) 计算
$$\mathcal{F}[f(ax-b)](w)$$

只给出一种,另一种同理:
$$f(ax - b) = \frac{1}{\sqrt{|a|}} D_{\frac{1}{a}} T_b f \Rightarrow \mathcal{F} f(ax - b)$$

$$= \frac{1}{\sqrt{|a|}} D_a M_{-b} \hat{f}(w) =$$

$$\mathcal{F} [f(ax - b)](w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(ax - b) e^{-iwx} dx$$

$$\Leftrightarrow u = ax - b, \quad \text{则} \ x = \frac{u + b}{a}, \quad dx = \frac{1}{|a|} du$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(u) e^{-iw(\frac{u + b}{a})} \cdot \frac{1}{|a|} du$$

$$= \frac{1}{|a|\sqrt{2\pi}} e^{-i\frac{bw}{a}} \int_{-\infty}^{+\infty} f(u) e^{-i\frac{w}{a}u} du$$

$$= \frac{1}{|a|} e^{-i\frac{bw}{a}} \cdot \mathcal{F}[f]\left(\frac{w}{a}\right)$$

乘积公式

6.1 证明

Theorem 13. 若 $f \in L^1(\mathbb{R})$, $g \in L^1(\mathbb{R})$, 则 $\int_{-\infty}^{\infty} \hat{f}(x)g(x)dx = \int_{-\infty}^{\infty} f(x)\hat{g}(x)dx$ *Proof.* (i) 证明积分存在性 考虑

$$\left| \int_{-\infty}^{\infty} \hat{f}(x)g(x)dx \right| = \left| \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-ixt}dt \right) g(x)dx \right|$$

$$\leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(t)e^{-ixt}g(x)|dtdx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |f(t)g(x)|dtdx$$

$$= \frac{1}{\sqrt{2\pi}} ||f||_{L^{1}} ||g||_{L^{1}} < +\infty$$

所以 $\int_{-\infty}^{\infty} \hat{f}(x)g(x)dx$ 存在,同理 $\int_{-\infty}^{\infty} f(x)\hat{g}(x)dx$ 也存在。

(ii) 利用 Fubini 定理证明等式成立

$$\int_{-\infty}^{\infty} \hat{f}(x)g(x)dx = \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-ixt}dt\right)g(x)dx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t)g(x)e^{-ixt}dtdx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \left(\int_{-\infty}^{\infty} g(x)e^{-ixt}dx\right)dt$$

$$= \int_{-\infty}^{\infty} f(t)\hat{g}(t)dt$$

总结: Tonelli 定理用于在函数非负可测时判断重积分的存在性, Fubini 定理则用于在积分存在时交换积分次序, 从而得出傅里叶变换的乘法公式。

6.2 两个定理的条件

Theorem 14 (Tonelli). 设 f 为 $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$ 上的非负可测函数,则:

- (i) 对于 (a.e) $x \in \mathbb{R}^p$, $f(x,\cdot)$ 为 \mathbb{R}^q 上的非负可测函数。
- (ii) 记 $F_f(x) = \int_{\mathbb{R}^q} f(x,y) dy$,则 $F_f(x)$ 为 \mathbb{R}^p 上的非负可测函数。
- (iii) $F_f(x)$ 为 \mathbb{R}^p 上的非负可测函数。 $\int_{\mathbb{R}^p} F_f(x) dx = \int_{\mathbb{R}^p} dx \int_{\mathbb{R}^q} f(x,y) dy = \int_{\mathbb{R}^n} f(x,y) dx dy$ 。

Theorem 15 (Fubini). $f \in L(\mathbb{R}^n)$ (即 f 在 $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$ 上对于勒贝格测度可积), $(x,y) \in \mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$, 则:

- (i) 对于几乎处处的 $x \in \mathbb{R}^p$ $f(x,\cdot)$ 为 \mathbb{R}^q 上的可积函数
- (ii) $\int_{\mathbb{R}^q} f(x,y)dy$ 为 \mathbb{R}^p 上的可积函数
- (iii) $\int_{\mathbb{R}^n} f(x,y) dx dy = \int_{\mathbb{R}^p} dx \int_{\mathbb{R}^q} f(x,y) dy = \int_{\mathbb{R}^q} dy \int_{\mathbb{R}^p} f(x,y) dx$

卷积公式

7.1 定理的证明

Theorem 16. $f \in L^1(\mathbb{R})$, $g \in L^1(\mathbb{R})$, \mathfrak{N} $f * g \in L^1(\mathbb{R})$

(i) $||f * g||_{L^1} \le ||f||_{L^1} \cdot ||g||_{L^1}$

$$(ii)$$
 $(f*g)^{\wedge}(\omega) = \sqrt{2\pi}\hat{f}(\omega)\hat{g}(\omega)$ (卷积变乘积即滤波)

Proof. (i) 根据卷积定义 $(f*g)(t)=\int_{\mathbb{R}}f(t-x)g(x)dx$ 。由 Tonelli 定理有:

$$||f * g||_{L^{1}} = \int_{\mathbb{R}} \left| \int_{\mathbb{R}} f(t - x)g(x) dx \right| dt$$

$$\leq \int_{\mathbb{R}} \int_{\mathbb{R}} |f(t - x)g(x)| dx dt$$

$$= \int_{\mathbb{R}} |f(t - x)| dt \int_{\mathbb{R}} |g(x)| dx$$

$$= ||f||_{L^{1}} \cdot ||g||_{L^{1}} < +\infty$$

这表明 f*g 是 $L^1(\mathbb{R})$ 中的函数,即 $f*g\in L^1(\mathbb{R})$,同时得到范数不等式。

(ii)
$$(f*g)^{\wedge}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (f*g)(t)e^{-i\omega t}dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(t-x)g(x)dx \right) e^{-i\omega t}dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(t-x)e^{-i\omega(t-x)}g(x)e^{-i\omega x}dxdt$$

Fubini 定理交换积分次序:

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{-i\omega x} \left(\int_{-\infty}^{\infty} f(t-x)e^{-i\omega(t-x)} dt \right) dx$$
$$= \sqrt{2\pi} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(x)e^{-i\omega x} dx$$
$$= \sqrt{2\pi} \hat{f}(\omega)\hat{g}(\omega)$$

7.2 卷积范数性质

已知 $1 \le p \le +\infty$, $f \in L^p(\mathbb{R}^n)$, $g \in L^1(\mathbb{R}^n)$, 则 $f*g \in L^p(\mathbb{R}^n)$ 且 $\|f*g\|_p \le \|f\|_p \|g\|_1$ 。

Proof. (i) p = 1 根据 Tonelli 定理:

$$||f * g||_1 = \int_{\mathbb{R}^n} \left| \int_{\mathbb{R}^n} f(x - y) g(y) dy \right| dx$$

$$\leq \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x - y) g(y)| dy dx$$

$$= \int_{\mathbb{R}^n} |f(x - y)| dx \int_{\mathbb{R}^n} |g(y)| dy$$

$$= ||f||_1 ||g||_1$$

这表明 $f * g \in L^1(\mathbb{R}^n)$, 且满足 $||f * g||_1 \le ||f||_1 ||g||_1$

(ii) $p = \infty$

$$|(f * g)(x)| = \left| \int_{\mathbb{R}^n} f(x - y)g(y)dy \right|$$

$$\leq \int_{\mathbb{R}^n} |f(x - y)||g(y)|dy$$

$$\leq ||f||_{\infty} \int_{\mathbb{R}^n} |g(y)|dy$$

$$= ||f||_{\infty} ||g||_1$$

所以 $||f * g||_{\infty} \le ||f||_{\infty} ||g||_{1}$, 即 $f * g \in L^{\infty}(\mathbb{R}^{n})$

(iii) $p \in (1, +\infty)$

设 q 为 p 的共轭指数,即 $\frac{1}{p} + \frac{1}{q} = 1$ 。由 Hölder 不等式:

$$\begin{aligned} |(f*g)(x)| &= \left| \int_{\mathbb{R}^n} f(x-y)g(y)dy \right| \\ &\int_{\mathbb{R}^n} |f(x-y)||g(y)|dy \\ &= \int_{\mathbb{R}^n} |f(x-y)||g(y)|^{\frac{1}{p}}|g(y)|^{\frac{1}{q}}dy \\ &\leq \left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|dy \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^n} |g(y)|dy \right)^{\frac{1}{q}} \end{aligned}$$

对两边同时取p次幂并积分:

$$\begin{split} \|f*g\|_p^p &= \int_{\mathbb{R}^n} |(f*g)(x)|^p dx \\ &\leq \int_{\mathbb{R}^n} \left[\left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)| dy \right) \left(\int_{\mathbb{R}^n} |g(y)| dy \right)^{\frac{p}{q}} \right] dx \\ &= \left(\int_{\mathbb{R}^n} |g(y)| dy \right)^{\frac{p}{q}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)| dy dx \\ &= \|g\|_1^{\frac{p}{q}} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)| dy dx \\ F^{ubini} &= \|g\|_1^{\frac{p}{q}} \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)|^p dx \right) |g(y)| dy \\ &= \|g\|_1^{\frac{p}{q}} \|f\|_p^p \|g\|_1 \\ &= \|f\|_p^p \|g\|_1^{1+\frac{p}{q}} \end{split}$$
 因为 $\frac{1}{p} + \frac{1}{q} = 1$,所以 $1 + \frac{p}{q} = p$ 则 $\|f*g\|_p \leq \|f\|_p \|g\|_1$

 $\coprod f * g \in L^p(\mathbb{R}^n)$.

综上对于 $1 \leq p \leq +\infty$, $f \in L^p(\mathbb{R}^n)$ $g \in L^1(\mathbb{R}^n)$, 都有 $f * g \in L^p(\mathbb{R}^n)$ 且 $\|f * g\|_p \leq \|f\|_p \|g\|_1$

7.2.1 一般的 Young 不等式

Theorem 17 (Young). 已知 $1 \le p \le +\infty$, $1 \le q \le +\infty$, $\frac{1}{p} + \frac{1}{q} \ge 1$, \diamondsuit $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$ 。若 $f \in L^p(\mathbb{R}^n)$, $g \in L^q(\mathbb{R}^n)$, 则 $f * g \in L^r(\mathbb{R}^n)$, 且 $\|f * g\|_r \le \|f\|_p \|g\|_q$ 。

Proof. 首先先根据卷积定义有

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)g(y)dy$$

将其变形为

$$f * g(x) = \int_{\mathbb{R}^n} f(x - y)^{\frac{p}{r}} g(y)^{\frac{q}{r}} \cdot f(x - y)^{p(\frac{1}{p} - \frac{1}{r})} g(y)^{q(\frac{1}{q} - \frac{1}{r})} dy$$

因为 $\frac{1}{r} + \frac{1}{s} = 1$ 则

$$s = \frac{1}{1 - \frac{1}{r}}$$

$$= \frac{1}{1 - (\frac{1}{p} + \frac{1}{q} - 1)}$$

$$= \frac{1}{2 - \frac{1}{p} - \frac{1}{q}}$$

由 Hölder 不等式可得

$$f*g(x) \le \left(\int_{\mathbb{R}^n} \left(f(x-y)^{\frac{p}{r}} g(y)^{\frac{q}{r}} \right)^r dy \right)^{\frac{1}{r}} \left(\int_{\mathbb{R}^n} \left(f(x-y)^{p(\frac{1}{p}-\frac{1}{r})} g(y)^{q(\frac{1}{q}-\frac{1}{r})} \right)^s dy \right)^{\frac{1}{s}}$$

$$= \left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q dy \right)^{\frac{1}{r}} \left(\int_{\mathbb{R}^n} |f(x-y)|^{p(\frac{1}{p}-\frac{1}{r})s} |g(y)|^{q(\frac{1}{q}-\frac{1}{r})s} dy \right)^{\frac{1}{s}}$$

对两边同时取r次幂并积分:

$$\begin{split} \|f*g\|_r^r &= \int_{\mathbb{R}^n} |f*g(x)|^r dx \leq \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q dy \left(\int_{\mathbb{R}^n} |f(x-y)|^{p(\frac{1}{p}-\frac{1}{r})s} |g(y)|^{q(\frac{1}{q}-\frac{1}{r})s} dy \right)^{\frac{r}{s}} dx \\ &= \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q dy \left(\int_{\mathbb{R}^n} |f(x-y)|^{p(\frac{1}{p}-\frac{1}{r})s} |g(y)|^{q(\frac{1}{q}-\frac{1}{r})s} dy \right)^{r-1} dx \\ &= \int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q dy \left(\int_{\mathbb{R}^n} |f(x-y)|^{(\frac{r-p}{r-1})} |g(y)|^{(\frac{r-q}{r-1})} dy \right)^{r-1} dx \end{split}$$

必要的探路: $\|f*g\|_r \le \|f\|_p \|g\|_q \Leftrightarrow \|f*g\|_r^r \le \|f\|_p^r \|g\|_q^r$ 第一项 fubini 定理解决; 第二项只有 Hölder 不等式, 做一些技术处理:

 (\cdot) 只希望是 p,q-范数, 验证是否满足 Hölder 不等式的使用条件, 指数应该分别 乘以:

$$p(\frac{r-1}{r-p})和q(\frac{r-1}{r-q})(全部都大于1)$$
则 $\frac{1}{p}(\frac{r-p}{r-1}) + \frac{1}{q}(\frac{r-q}{r-1}) = (\frac{\frac{r}{p}-1}{r-1}) + (\frac{\frac{r}{q}-1}{r-1}) = 1!!$

于是使用不等式后得到

$$\leq \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} |f(x-y)|^p |g(y)|^q dy \right) \left(\int_{\mathbb{R}^n} |f(x-y)|^p dy \right)^{\frac{r}{p}-1} \left(\int_{\mathbb{R}^n} |g(y)|^q dy \right)^{\frac{r}{q}-1} dx$$

显然
$$\|f * g\|_r^r \le \|f\|_p^r \|g\|_q^r$$

两边同时开 r 次方,即 $\|f*g\|_r \le \|f\|_p \|g\|_q$,也就证明了 $f*g \in L^r(\mathbb{R}^n)$ 。当 q=1 时,就是前面证明过的卷积在 L^p 空间的范数性质结论

求导与算子 (时域衰减与频率光滑)

Theorem 18. 设 $f \in L^1(\mathbb{R})$, tf(t) $(x \in \mathbb{R})$ 也在 $L^1(\mathbb{R})$ 中,则

- (i) $\hat{f}(\omega)$ 可微。
- (ii) $\frac{d}{d\omega}(\hat{f})(\omega)=\mathcal{F}(-itf(t))(\omega)$,等价形式为 $D\hat{f}=\mathcal{F}(X(f))$,其中 X=-itf(t) 表示乘子算子。

Proof. 考虑

$$\frac{\hat{f}(\omega+h) - \hat{f}(\omega)}{h} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) \frac{e^{-i(\omega+h)t} - e^{-i\omega t}}{h} dt$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} \frac{e^{-ihx} - 1}{h} dt$$

因为

$$\int_{-\infty}^{\infty}|f(t)e^{-i\omega t}\frac{e^{-iht}-1}{h}|dt\leq \int_{-\infty}^{\infty}|f(t)|\frac{|e^{-iht}-1|}{|h|}dt$$

又已知

$$tf(t) \in L^1(\mathbb{R})$$

且

$$\lim_{h\to 0}\frac{e^{-iht}-1}{h}=\lim_{h\to 0}\frac{-ite^{-iht}}{1}=-it$$

由控制收敛定理 (Lebesgue) 可得:

$$(\hat{f}(\omega))' = \lim_{h \to 0} \frac{\hat{f}(\omega + h) - \hat{f}(\omega)}{h}$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)e^{-i\omega t} \lim_{h \to 0} \frac{e^{-iht} - 1}{h} dt$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} (-itf(t))e^{-i\omega t} dt$$
$$= \mathcal{F}(-itf(t))(\omega)$$

进一步可推广:

$$D^{n}\hat{f} = D^{n-1}(D\hat{f}) = D^{n-1}(\mathcal{F}(Xf)) = D^{n-2}(D\mathcal{F}(Xf)) = D^{n-2}(\mathcal{F}(X^{2}f)) = \dots = \mathcal{F}(X^{n}f)$$

,即
$$(\frac{d}{d\omega})^n \hat{f}(\omega) = \mathcal{F}((-ix)^n f(x))(\omega)$$
 设 P_m 为 m 次多项式,则 $P_m(\frac{d}{d\omega}) \hat{f}(\omega) = \mathcal{F}(P_m(-it)f(t))(\omega)$ 。

Theorem 19. 设 $f \in L^1(\mathbb{R})$, f 连续可微且 $f' \in L^1(\mathbb{R})$, 则 $(f')^{\wedge}(\omega) = i\omega \hat{f}(\omega)$, 等价记号表示为 $\mathcal{F}D = \tilde{X}\mathcal{F}$, 其中 $\tilde{X}: f(t) \to itf(t)$ 。

Proof. 对于任意 A > 0, B > 0, 由分部积分公式:

$$\int_{-B}^{A} f'(t)e^{-i\omega t}dt = \int_{-B}^{A} e^{-i\omega t}df(t)$$

$$= e^{-i\omega t}f(t)\Big|_{t=-B}^{A} - \int_{-B}^{A} f(t)d(e^{-i\omega t})$$

$$= e^{-i\omega A}f(A) - e^{i\omega B}f(-B) + \int_{-B}^{A} f(x)e^{-i\omega t} \cdot (i\omega)$$

下证

$$\lim_{A \to +\infty} f(A) = 0 \lim_{B \to +\infty} f(-B) = 0$$

因为

$$f(A) - f(0) = \int_0^A f'(x)dx$$

又 $f' \in L^1(\mathbb{R})$ 所以

$$\int_0^\infty f'(x)dx$$

收敛,根据下面的定理

$$\lim_{A \to +\infty} f(A) = \lim_{B \to +\infty} f(-B) = 0$$

Theorem 20 (任意数学分析书上有). 设 $\int_a^{+\infty} f(x) dx$ 收敛,且 $\lim_{x\to +\infty} f(x) = c$,则 c=0

Proof. 采用反证法。假设 $c \neq 0$,不妨设 c > 0。因为

$$\lim_{x \to +\infty} f(x) = c > 0$$

根据函数极限的定义,对于 $\varepsilon=\frac{c}{2}$,存在 M>0 ,当 x>M 时,有 $f(x)>c-\varepsilon=\frac{c}{2}$ 又

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{M} f(x)dx + \int_{M}^{+\infty} f(x)dx$$

。由于当 x > M 时, $f(x) > \frac{c}{2}$, 所以

$$\int_{M}^{+\infty} f(x)dx > \int_{M}^{+\infty} \frac{c}{2}dx$$

。而

$$\int_{M}^{+\infty} \frac{c}{2} dx = \lim_{N \to +\infty} \int_{M}^{N} \frac{c}{2} dx = \lim_{N \to +\infty} \frac{c}{2} (N - M) = +\infty$$

那么

$$\int_{a}^{+\infty} f(x)dx = \int_{a}^{M} f(x)dx + \int_{M}^{+\infty} f(x)dx > \int_{a}^{M} f(x)dx + \int_{M}^{+\infty} \frac{c}{2}dx = +\infty$$

这与已知 $\int_a^{+\infty} f(x)dx$ 收敛矛盾。所以假设不成立,即 c=0 。

注: f 有连续导数保证 $f(x) - f(0) = \int_0^x f'(t) dt$ 有的编者把这一条件弱化为局部绝对连续 (即在任何有界闭区间上绝对连续,记为 $f \in AC_{loc}$),相关结论依然成立。

高阶推广

设f满足一定条件(如f及其相应阶数导数在合适的函数空间中),则有

$$((f^{(n)})^{\wedge}(\omega) = (i\omega)^n \hat{f}(\omega)$$

从傅里叶变换的定义出发,结合分部积分法(当 n=1 时),对 f'(x) 进行傅里叶变换:

$$(f')^{\wedge}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f'(x)e^{-i\omega x} dx$$
$$= \frac{1}{\sqrt{2\pi}} \left[f(x)e^{-i\omega x} \Big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} f(x)(-i\omega)e^{-i\omega x} dx \right]$$

若 f 满足一定的衰减条件(如当 $|x|\to\infty$ 时, $f(x)\to 0$ 足够快),则 $f(x)e^{-i\omega x}\big|_{-\infty}^{\infty}=0$,进而得到 $(f')^{\wedge}(\omega)=i\omega\hat{f}(\omega)$ 。通过数学归纳法可将此结论推广到 n 阶导数的情形。

Part III

Lecture 6 速降函数空间 S(Especially Schwarz) 中的 Fourier 变换

速降空间相关性质

Definition 1. \mathcal{S} 若 $f \in C^{\infty}(\mathbb{R})$, 且 $\forall p, q \in \mathbb{Z}_{+} = \mathbb{N} \cup \{0\}$, 有

$$\lim_{|t| \to \infty} t^p f^{(q)}(t) = 0$$

即速降函数,则 $f \in S$

性质 9.1

- (i) $f \in \mathcal{S}, f(\cdot a) \in \mathcal{S}$ (平移)
- (ii) $f, g \in \mathcal{S} \ \forall \alpha, \beta \ \text{有} \ \alpha f + \beta g \in \mathcal{S} \ (线性)$
- (iii) $f \in \mathcal{S}$, $\frac{d}{dx} f \in \mathcal{S}$ (可微)

例子

- (1) $f(t) = e^{-t^2} \in \mathcal{S}$ 但是 $e^{-|t|} \notin \mathcal{S}$
- (2) 若 $P_n(t)$ 为多项式,则 $P_n(t)e^{-t^2} \in S$ 但是 $\frac{1}{1+t^2} \notin S$

同时,速降空间 $S \in L^1(\mathbb{R})$ 和 $L^2(\mathbb{R})$ 的子集,即 $S \subset L^1(\mathbb{R})$ 且 $S \subset L^2(\mathbb{R})$ 。

紧支集速降函数空间 D(Schwarz 测试函数空间) 9.2

Definition 2. f 的支集 $suppf \subset [a,b]$, 且 $f \in S$, 则 f 属于紧支集速降函

例子: 定义函数
$$h(t) = \begin{cases} e^{-\frac{1}{1-t^2}}, & |t| \le 1\\ 0, & |t| > 1 \end{cases}$$

例子: 定义函数 $h(t) = \begin{cases} e^{-\frac{1}{1-t^2}}, & |t| \leq 1 \\ 0, & |t| > 1 \end{cases}$ 其导数 $h'(t) = \begin{cases} e^{-\frac{1}{1-t^2}} \cdot \frac{2t}{(1-t^2)^2}, & |t| \leq 1 \\ 0, & |t| > 1 \end{cases}$ 这样的函数有无穷多个,构造函数

族:

$$\int_{-\infty}^{\infty} h(t)dt = c$$

令

$$a_{\lambda}(t) = \frac{1}{c\lambda} h(\frac{t}{\lambda})(\lambda > 0)$$

则

$$\int_{-\infty}^{\infty} a_{\lambda}(t)dt = 1$$

定义

$$\chi_r(x) = \begin{cases} 1, & |t| \le r \\ 0, & |t| > r \end{cases}$$

令

$$\mathbb{B}_{r,\lambda}(t) = \int_{-\infty}^{\infty} a_{\lambda}(t-y)\chi_r(y)dy \quad r > \lambda$$

可以证明 $\varphi_{r,\lambda}\in S$ 且具有紧支集。 $\forall \varphi\in C^{\infty}(\mathbb{R})\;, \varphi(t)\mathbb{B}_{r,\lambda}(t)\in S$ 且具有紧支集,即 $\varphi\in\mathbb{D}$ 相关结论

- (i) 速降空间 S 在 $L^2(\mathbb{R})$ 中稠密, 涉及 Gabor 系统、Hermite 函数等内容 (略)
- (ii) 在 S 或 \mathbb{D} 中定义极限,使其完备,由集合构成空间(参考文献《广义函数及其在调和分析中的表示》,李常和、李雅卿)

由于 S, 且 $\forall f \in S$ 时 $f \in C^{\infty}(\mathbb{R})$, 且对任意 $p, q \in \mathbb{Z}_{+} = \mathbb{N} \cup \{0\}$, 有

$$\lim_{|x| \to \infty} x^p f^{(q)}(x) = 0$$

因此 f 与 \hat{f} 的光滑性与衰减性如下论述

Theorem 21. $f \in \mathcal{S} \Longrightarrow \hat{f} \in \mathcal{S}$

Proof. (1) 对于任意

$$q \in \mathbb{Z}_+$$

因为 $f \in S$, 所以

$$t^q f \in L^1(\mathbb{R})$$

利用公式 $\mathcal{DF} = \mathcal{F}X$ (其中 $X: f \to tf(t)$), 更一般地

$$(\mathcal{D})^n \mathcal{F} = \mathcal{F} X^n$$

可得

$$\hat{f}^{(q)} = (-it^q f)^{\wedge}$$

即

$$\hat{f}^{(q)}(w) = (-it^q f)^{\wedge}(w)$$

这表明 f 无穷可微。

(2) 下证 $\forall p \in \mathbb{Z}_+$, 当 $|w| \to \infty$ 时, $|w|^p \hat{f}^{(q)} \to 0$ 。利用

$$\mathcal{DF} = \mathcal{F}\tilde{X}$$

其中
$$\tilde{X}: f \to itf(t)$$
 一般地 $(\mathcal{FD})^n = \tilde{X}^n \mathcal{F}$,即 $(f^{(n)})^{\wedge}(\omega) = (i\omega)^n \hat{f}(\omega)$ 。于是

$$\left(\frac{d^p}{dt^p}[(-it)^q f(t)]\right)^{\wedge}(\omega) = (i\omega)^p (-it^q f)^{\wedge}(\omega) = (i\omega)^p \hat{f}^{(q)}(\omega)$$

由于 $F(t)=rac{d^p}{dt^p}[(-it)^qf(t)]\in L^1(\mathbb{R})\,,$ 由 Riemann - Lebesgue 引理,

$$\mathcal{F}\left(\frac{d^p}{dt^p}[(-it)^q f(t)]\right)(\omega) \to 0 \ (\omega \to \infty)$$

即

$$(i\omega)^p \hat{f}^{(q)}(\omega) \to 0(\omega \to \infty)$$

综合上述两点,可得 $\hat{f} \in S$ 。

9.3 逆公式

若 $f \in \mathcal{S}$,

$$\hat{f}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(t)e^{-i\omega t} dt$$

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{it\omega} d\omega$$

(a.e) 记为 f^{\vee} 由

$$f^{\vee}(t) = (\hat{f})^{\wedge}(-t)$$

$$(\hat{f})^{\wedge}(w) = f(-w)$$

等可得:

$$(\mathcal{F})^{-1}\mathcal{F} = I_d, \quad (\mathcal{F})(\mathcal{F})^{-1} = I_d$$

即

$$\mathcal{F}^2f(t)=f(-t), \mathcal{F}^3f(t)=+\hat{f}(-t), \mathcal{F}^4f(t)=f(t)$$

9.4 S 中的 Parseval 等式

Theorem 22.

$$\int_{-\infty}^{\infty} f(t) \overline{g(t)} dt = \int_{-\infty}^{\infty} \hat{f}(\omega) \overline{\hat{g}(\omega)} d\omega$$

简记 $\langle f,g \rangle = \langle \hat{f},\hat{g} \rangle$ 。特别地, 当 f=g 时,

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(t)|^2 dt \quad (保能量)$$

即

$$||f||_1 = ||\hat{f}||_1$$

Proof.

$$\begin{split} g(t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{g}(\omega) e^{it\omega} d\omega \\ \overline{g(t)} &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \overline{\hat{g}(\omega)} e^{-iy\omega} d\omega = (\overline{\hat{g}})^{\wedge}(t) \end{split}$$

所以

$$\int_{-\infty}^{\infty} f(t) \overline{g(t)} dt = \int_{-\infty}^{\infty} f(t) (\overline{\hat{g}})^{\wedge}(t) dt \stackrel{\text{\rm \& ALX}}{=} \int_{-\infty}^{\infty} \hat{f}(\omega) \overline{\hat{g}}(\omega) d\omega$$

9.4.1 过渡到 $L^2(\mathbb{R})$

因为 $\mathcal{S} \subset L^2(\mathbb{R})$, \mathcal{S} 在 $L^2(\mathbb{R})$ 中稠密。对 $\forall f \in L^2(\mathbb{R}) \exists f_n \mathcal{S}$, 使得

$$\lim_{n\to\infty} f_n = f \quad (L^2(\mathbb{R}) \ \text{范数})$$

可定义 \hat{f} 为 f_n 的傅里叶变换的极限, 且 $f_n \in L^2(\mathbb{R})$ 则

$$\lim_{n \to \infty} \hat{f}_n = \hat{f} \in L^2(\mathbb{R})$$

且 $\langle f_n, g_n \rangle = \langle \hat{f}_n, \hat{g}_n \rangle$,则 $\langle f, g \rangle = \langle \hat{f}, \hat{g} \rangle$, $f, g \in L^2(\mathbb{R})$,且 $\|f\|_2 = \|\hat{f}\|_2$ (保能量)。

Gauss 函数的 Fourier 变换

示例 23. 高斯函数的傅里叶变换

方法一: 利用微分方程性质求解

(1) 已知 $g(x)=e^{-x^2}\in\mathcal{S},x\in\mathbb{R}$, 且 $g'(x)=-2xg(x),g'\in\mathcal{S}$ 。对 g'(x)=-2xg(x) 两边作 \mathcal{F} 变换,利用

$$\mathcal{F}D = \tilde{X}\mathcal{F}, \quad \tilde{X}: f \to itf(t)$$

$$\mathcal{DF} = \mathcal{F}X, \quad X: f \to -itf(t)$$

对方程两边进行傅里叶变换得到:

$$(i\omega)\hat{g}(\omega) = \mathcal{F}(-2tg(t))(\omega) = -2\mathcal{F}(tg(t))(\omega) = -2(i\hat{g}'(\omega)) = -2i\hat{g}'(\omega)$$

当 $\hat{g}(\omega) \neq 0$ 时, $\frac{\hat{g}'(\omega)}{\hat{g}(\omega)} = -\frac{\omega}{2}$ 。

$$(\ln \hat{g}(\omega))' = -\frac{\omega}{2} \Leftrightarrow \ln \hat{g}(\omega) = -\frac{\omega^2}{4} + c_1$$

$$\hat{g}(\omega) = Ce^{-\frac{\omega^2}{4}}$$

利用 $\hat{g}(0)$ 来确定常数 C:

$$\hat{g}(0) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2} e^{-i0 \cdot x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2} dx = \frac{1}{\sqrt{2\pi}} \cdot \sqrt{\pi} = \frac{1}{\sqrt{2}}$$

所以 $C = \frac{1}{\sqrt{2}}$,则

$$\hat{g}(\omega) = \frac{1}{\sqrt{2}} e^{-\frac{\omega^2}{4}}, \omega \in \mathbb{R}$$

(2) 一般地,对于 $f(t)=e^{-\beta t^2}$,其中 $\beta>0$ 。注意到 $e^{-\beta t^2}=e^{-(\sqrt{\beta}t)^2}$ 。这是一个伸缩变换。利用傅里叶变换的伸缩性质:若 h(t)=f(at),则

 $\hat{h}(\omega)=rac{1}{|a|}\hat{f}(rac{\omega}{a})$ 。令 $g(t)=e^{-t^2}$,我们已经知道 $\hat{g}(\omega)=rac{1}{\sqrt{2}}e^{-rac{\omega^2}{4}}$ 。令 $a=\sqrt{\beta}$,则 $f(t)=g(\sqrt{\beta}t)$ 。

$$\mathcal{F}(e^{-\beta t^2})(\omega) = \frac{1}{\sqrt{\beta}}\hat{g}\left(\frac{\omega}{\sqrt{\beta}}\right) = \frac{1}{\sqrt{\beta}} \cdot \frac{1}{\sqrt{2}}e^{-\frac{(\omega/\sqrt{\beta})^2}{4}} = \frac{1}{\sqrt{2\beta}}e^{-\frac{\omega^2}{4\beta}}$$

当 $\beta=\frac{1}{2}$ 时, $\mathcal{F}\left(e^{-\frac{t^2}{2}}\right)(\omega)=e^{-\frac{\omega^2}{2}}$,即 $e^{-\frac{x^2}{2}}$ 是傅里叶变换的不动点。

解法二: 用复变围道积分算高斯函数的傅里叶变换 计算 $\mathcal{F}(e^{-x^2})(\omega)$:

$$\mathcal{F}(e^{-x^2})(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2} e^{-i\omega x} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x^2 + i\omega x)} dx$$

通过配方法:

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-(x + \frac{i\omega}{2})^2 + (\frac{i\omega}{2})^2} dx = \frac{1}{\sqrt{2\pi}} e^{-\frac{\omega^2}{4}} \int_{-\infty}^{\infty} e^{-(x + \frac{i\omega}{2})^2} dx$$

令 $z=x+\frac{i\omega}{2}$,则积分路径变为从 $-\infty+\frac{i\omega}{2}$ 到 $\infty+\frac{i\omega}{2}$ 的直线。

$$= \frac{1}{\sqrt{2\pi}} e^{-\frac{\omega^2}{4}} \int_{-\infty + \frac{i\omega}{2}}^{\infty + \frac{i\omega}{2}} e^{-z^2} dz$$

考虑函数 $f(z)=e^{-z^2}$,它在整个复平面 $\mathbb C$ 上是全纯(解析)的。我们构造一个矩形围道 L,其顶点为 $-R,R,R+\frac{i\omega}{2},-R+\frac{i\omega}{2}$ 。

图 10.1: 积分路径

根据柯西积分定理, $\oint_L e^{-z^2} dz = 0$ 。即:

$$\int_{-R}^{R} e^{-x^2} dx + \int_{R}^{R+i\omega/2} e^{-z^2} dz + \int_{R+i\omega/2}^{-R+i\omega/2} e^{-z^2} dz + \int_{-R+i\omega/2}^{-R} e^{-z^2} dz = 0$$

(i) 第一项: 当
$$R \to \infty$$
 时, $\int_{-R}^R e^{-x^2} dx \to \int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}$ 。

$$(ii)$$
 第二项 (右侧竖直边): 令 $z = R + iy$, 其中 y 从 0 到 $\omega/2$ 。

$$\left| \int_0^{\omega/2} e^{-(R+iy)^2} i dy \right| = \left| \int_0^{\omega/2} e^{-R^2 + y^2 - 2iRy} i dy \right| \le \int_0^{\omega/2} e^{-R^2 + y^2} dy$$

当 $R \to \infty$ 时, e^{-R^2} 趋于 0 的速度远快于 e^{y^2} 的增长, 故此项积分为 0。

(iii) 第四项 (左侧竖直边): 同理, 当
$$R \to \infty$$
 时, 此项积分也为 0 。

(iv) 于是, 当 $R \to \infty$ 时, 我们有:

$$\int_{-\infty}^{\infty} e^{-x^2} dx + \int_{\infty}^{-\infty} e^{-(x+i\omega/2)^2} dx = 0$$

$$\sqrt{\pi} - \int_{-\infty}^{\infty} e^{-(x+i\omega/2)^2} dx = 0$$

这表明 $\int_{-\infty+i\omega/2}^{\infty+i\omega/2} e^{-z^2} dz = \sqrt{\pi}$ 。

(v) 最终:

$$\mathcal{F}(e^{-x^2})(\omega) = \frac{1}{\sqrt{2\pi}}e^{-\frac{\omega^2}{4}} \cdot \sqrt{\pi} = \frac{1}{\sqrt{2}}e^{-\frac{\omega^2}{4}}$$

Part IV Lecture 10 DFT 和 FTT

DFT

11.1 信号

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n e^{-2\pi i \frac{nk}{N}} = \frac{1}{N} \sum_{n=0}^{N-1} x_n \omega_N^{-nk}$$
 (11.1)

称 $\{y_0,\ldots,y_{N-1}\}$ 为 $\{x_0,\ldots,x_{N-1}\}$ 的 DFT, 记

$$\mathcal{F}_N: \mathbb{C}^N \to \mathbb{C}^N, \quad \mathcal{F}_N(x) = y$$

11.2 逆公式

Lemma 24.

$$x_k = \sum_{n=0}^{N-1} y_n e^{2\pi i \frac{nk}{N}} = \sum_{n=0}^{N-1} y_n \omega_N^{nk}, \, \text{PP} \mathcal{F}_N^{-1}(y) = x. \tag{11.2}$$

Proof.

$$\sum_{n=0}^{N-1} y_n \omega_N^{nk} = \sum_{n=0}^{N-1} \left(\frac{1}{N} \sum_{r=0}^{N-1} x_r \omega_N^{-rn} \right) \omega_N^{nk}$$

$$= \sum_{r=0}^{N-1} x_r \frac{1}{N} \sum_{n=0}^{N-1} \omega_N^{n(k-r)}$$

$$= \sum_{r=0}^{N-1} x_r \delta_{k,r} = x_k.$$
(11.3)

定义 Kronecker-δ 函数:

$$\delta_{k,r} = \begin{cases} 1, & k = r \\ 0, & k \neq r \end{cases}$$

$$\tag{11.4}$$

于是

$$\frac{1}{N} \sum_{n=0}^{N-1} \omega_N^{n(k-r)} = \delta_{k,r} \tag{11.5}$$

- (i) 当 k = r 时,显然成立。
- (ii) 当 $k \neq r$ 时

$$\frac{1}{N} \sum_{n=0}^{N-1} \omega_N^{n(k-r)} = \frac{1}{N} \cdot \frac{1 - \omega_N^{N(k-r)}}{1 - \omega_N^{k-r}} \cdot \omega_N^{k-r}$$

$$= \frac{1}{N} \cdot \frac{1 - \omega_N^{N(k-r)}}{1 - \omega_N^{k-r}}$$

$$= \frac{1}{N} \cdot \frac{1 - (\omega_N^N)^{k-r}}{1 - \omega_N^{k-r}} = 0(\omega_N^N = 1)$$
(11.6)

11.3 Fourier 矩阵

Definition 3. 定义矩阵 F_N

$$F_{N} = \left(\omega_{N}^{-nk}\right)_{n,k=0}^{N-1} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega_{N} & \omega_{N}^{2} & \cdots & \omega_{N}^{N-1}\\ 1 & \omega_{N}^{2} & \omega_{N}^{4} & \cdots & \omega_{N}^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega_{N}^{N-1} & \omega_{N}^{2(N-1)} & \cdots & \omega_{N}^{(N-1)^{2}} \end{bmatrix}$$

考虑变换:

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix} = F_N \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_{N-1} \end{bmatrix},$$

11.3.1 性质

(i) F_N 是酉矩阵, $F_N^*F_N = NI_{N\times N}$

$$J^{T}\overline{K} = \omega_{N}^{j \times 0} \overline{\omega_{N}^{k \times 0}} + \omega_{N}^{j \times 1} \overline{\omega_{N}^{k \times 1}} + \dots + \omega_{N}^{j(N-1)} \overline{\omega_{N}^{k(N-1)}}$$

$$= \omega_{N}^{(j-k) \times 0} + \omega_{N}^{(j-k) \times 1} + \dots + \omega_{N}^{(j-k)(N-1)}$$

$$= \sum_{m=0}^{N-1} \omega_{N}^{(j-k)m} = \frac{1 - \omega_{N}^{(j-k)N}}{1 - \omega_{N}^{j-k}} = 0(\omega_{N}^{N} = 1)$$
(11.7)

(ii) 不同行正交

Proof. 同一行 (列) 的内积为 N。

$$J^{T}\overline{J} = \omega_{N}^{j \times 0} \overline{\omega_{N}^{j \times 0}} + \omega_{N}^{j \times 1} \overline{\omega_{N}^{j \times 1}} + \dots + \omega_{N}^{j(N-1)} \overline{\omega_{N}^{j(N-1)}}$$

$$= 1 + \dots + 1 = N.$$
(11.8)

(iii) 不同列正交 由上同理可得

(iv)
$$F_N^{-1} = \frac{1}{N} F_N^* = (\omega_N^{n \times k})$$

11.4 二进制形式下的 Fourier 矩阵 $(N=2^p)$

$$F_2 = \begin{pmatrix} 1 & 1 \\ 1 & \omega_2^{-1 \times 1} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & e^{-i\frac{2\pi}{2}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
(11.9)

$$\begin{cases} y_0 = \frac{1}{2}(x_0 + x_1\omega_2^{-0 \times 1}) \\ y_1 = \frac{1}{2}(x_0 + x_1\omega_2^{-1 \times 1}) \end{cases} \Leftrightarrow \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} = \frac{1}{2}F_2\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(x_0 + x_1) \\ \frac{1}{2}(x_0 - x_1) \end{pmatrix}$$
(11.10)

表 11.1: 计算量

total cost	矩阵计算
	矩阵及计算: Add 2 ¹
加法次数 (additions): 2 次	multi 2 ²

$$F_{4} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega_{4}^{-1 \times 1} & \omega_{4}^{-2 \times 1} & \omega_{4}^{-3 \times 1} \\ 1 & \omega_{4}^{-1 \times 2} & \omega_{4}^{-2 \times 2} & \omega_{4}^{-3 \times 2} \\ 1 & \omega_{4}^{-1 \times 3} & \omega_{4}^{-2 \times 3} & \omega_{4}^{-3 \times 3} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -i & -1 & i \\ 1 & -1 & 1 & -1 \\ 1 & i & -1 & -i \end{pmatrix}$$
(11.11)

$$\omega_4 = e^{\frac{2\pi i}{4}} = i, (11.12)$$

DFT 的计算量 (cost of computation) 11.4.1

$$y_k = \frac{1}{N} \sum_{n=0}^{N-1} x_n \omega_N^{-nk}$$
 (11.13)

每个 y_k 需要 (N-1) 个乘法, N 个加法。 总乘法次数: $(N-1)^2$

总加法次数: N(N-1) 计算 y_k 时不需要乘法, 故不是 N^2 用矩阵形式 $y = F_N x$ 理解时,乘法次数为 N^2 ; 计算复杂度: $O(N^2)$!

FFT

1965 年, Cooley 和 Tukey 提出 FFT 算法。(An algorithm for the machine calculation of complex Fourier series. Mathematics of Computation 19(90): 297-301, Jan 1965. DOI: 10.1090/S0025-5718-1965-0178586-1)

12.1 FFT $(N = 2^2 = 4)$

观察到数据量 N=2d 以及 $(\omega_{2^d})^2 = \omega_{\frac{2^d}{2}}$ 定义

$$F_4: \{x_0, x_1, x_2, x_3\} \to \{y_0, y_1, y_2, y_3\}$$
 (12.1)

$$y_k = \frac{1}{4} \left(x_0 \omega_4^{-0 \times k} + x_1 \omega_4^{-1 \times k} + x_2 \omega_4^{-2 \times k} + x_3 \omega_4^{-3 \times k} \right), \quad k = 0, 1, 2, 3 \quad (12.2)$$

奇偶重排 (rearrange) 可知:

$$y_{k} = \frac{1}{4} (x_{0} \cdot w_{4}^{-0 \times k} + x_{2} w_{4}^{-2 \times k}) + \frac{1}{4} (x_{1} w_{4}^{-1 \times k} + x_{3} w_{4}^{-3 \times k})$$

$$= \frac{1}{4} (x_{0} \cdot w_{4}^{-0 \times k} + x_{2} w_{4}^{-2 \times k}) + \frac{1}{4} w_{4}^{-1 \times k} (x_{1} + x_{3} w_{4}^{-2 \times k})$$

$$= \frac{1}{4} (x_{0} w_{2}^{-0 \times k} + x_{2} w_{2}^{-2 \times k}) + \frac{1}{4} w_{4}^{-1 \times k} (x_{1} + x_{3} w_{2}^{-2 \times k})$$

$$= \frac{1}{2} \left[\frac{x_{0} + x_{2} w_{2}^{-2 \times k}}{2} + \frac{x_{1} + x_{3} w_{2}^{-2 \times k}}{2} \cdot w_{4}^{-k} \right]$$

$$\triangleq \frac{1}{2} [P_{k} + w_{4}^{-k} I_{k}]$$

$$(12.3)$$

$$P_k = \frac{x_0 + x_2 \omega_2^{-k}}{2}, \quad I_k = \frac{x_1 + x_3 \omega_2^{-k}}{2}, \quad k = 0, 1, 2, 3.$$
 (12.4)

12.2.
$$FFT(N=2^3=8)$$
 47

显然:

$$P_{k+2} = P_k, \quad k = 0, 1 \quad \text{fil} \quad I_{k+2} = I_k, \quad k = 0, 1.$$
 (12.5)

且

$$\begin{pmatrix} P_0 \\ P_1 \end{pmatrix} = F_2 \begin{pmatrix} x_0 \\ x_2 \end{pmatrix}, \quad \begin{pmatrix} I_0 \\ I_1 \end{pmatrix} = F_2 \begin{pmatrix} x_1 \\ x_3 \end{pmatrix} \tag{12.6}$$

则:

$$\begin{cases} y_k = \frac{1}{2} \left(P_k + \omega_4^{-k} I_k \right), & k = 0, 1 \\ y_{k+2} = \frac{1}{2} \left(P_{k+2} + \omega_4^{-(k+2)} I_{k+2} \right) = \frac{1}{2} \left(P_k - \omega_4^{-k} I_k \right), & k = 0, 1 \end{cases}$$
(12.7)

至此, $\{y_0, y_1, y_2, y_3\}$ 全部算出。

变量	乘法次数	加法次数	备注
$P_k \ (k=0,1)$	0 次	2 次	
$I_k \ (k=0,1)$	0 次	2 次	
$y_k \ (k=0,1)$	1 次	2 次	
$y_{k+2} \ (k=0,1)$	1 次	2 次	乘法计算量与 y_k 相同
优化的总计	·算量	乘法 1 次	加法 8 次
直接计算	算	乘法 9 次	加法 12 次

表 12.1: 计算量对比表

计算 $\{y_0,y_1,y_2,y_3\}$ 过程中的计算量: 乘法 1 次 (表面上 2 次),加法 8 次对比直接按公式计算的计算量: 乘法 $(4-1)^2=9$,加法 $4\times(4-1)=12$ 次

12.2 $FFT(N = 2^3 = 8)$

$$F_8: \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\} \to \{y_0, y_1, \dots, y_7\}$$
 (12.8)

12.2.1 递推公式

$$y_{j} = \frac{1}{8} \left(x_{0} + x_{1} \omega_{8}^{-1 \times j} + x_{2} \omega_{8}^{-2 \times j} + \dots + x_{6} \omega_{8}^{-6 \times j} + x_{7} \omega_{8}^{-7 \times j} \right)$$

$$= \frac{1}{2} \left(\frac{1}{4} \left(x_{0} + x_{2} \omega_{8}^{2 \times j} + x_{4} \omega_{8}^{4 \times j} + x_{6} \omega_{8}^{-6 \times j} \right) + \frac{1}{4} \left(x_{1} \omega_{8}^{-\times j} + x_{3} \omega_{8}^{-3 \times j} + x_{5} \omega_{8}^{-5 \times j} + x_{7} \omega_{8}^{-7 \times j} \right) \right)$$

$$= \frac{1}{2} \left(\frac{1}{4} \left(x_{0} + x_{2} \omega_{4}^{-1 \times j} + x_{4} \omega_{4}^{-2 \times j} + x_{6} \omega_{4}^{-6 \times j} + x_{1} + x_{3} \omega_{4}^{-1 \times j} + x_{5} \omega_{4}^{-2 \times j} + x_{7} \omega_{4}^{-3 \times j} \right) \omega_{8}^{-j} \right)$$

$$= \frac{1}{2} \left(P_{j}^{(3)} + I_{j}^{(3)} \omega_{8}^{j} \right)$$

$$= \frac{1}{2} \left(P_{j}^{(3)} + I_{j}^{(3)} \omega_{8}^{j} \right)$$

其中:

$$P_j^{(3)} = \frac{1}{4} \left(x_0 + x_2 \omega_4^{-2 \times j} + x_4 \omega_4^{-2 \times j} + x_6 \omega_4^{-3 \times j} \right)$$
 (12.10)

$$I_j^{(3)} = \frac{1}{4} \left(x_1 + x_3 \omega_4^{-1 \times j} + x_5 \omega_4^{-2 \times j} + x_7 \omega_4^{-3 \times j} \right)$$
 (12.11)

可证:

$$\begin{cases}
P_j^{(3)} = P_{j+4}^{(3)}, & j = 0, 1, 2, 3 \\
I_j^{(3)} = I_{j+4}^{(3)}
\end{cases}$$
(12.12)

12.2.2 计算复杂度分析

第三层 (A)

已知 $P_j^{(3)}$, $I_j^{(3)}$ (j = 0, 1, 2, 3),计算 $P_j^{(3)}$ (j = 0, 1, 2, 3) 的计算量

- (i) 乘法 3 次 (当 j = 0 时无乘法)
- (ii) 加法 8 次

49

第二层 (B)

下面讨论 $P_i^{(3)}$ 的计算量 (j=0,1,2,3) 一方面

如果已知 $P_j^{(2)}, I_j^{(2)}, j=0,1,2,3$,计算 $P_j^{(3)}$ 需要 1 次乘法,4 次加法。同样地

$$I_{j}^{(3)} = \frac{1}{4} (x_{1}, x_{3}, x_{5}, x_{7}) \cdot (1, w_{4}^{-j}, w_{4}^{-2j}, w_{4}^{-3j}) \quad (j = 0, 1, 2, 3)$$

$$= DFT(x_{1}, x_{3}, x_{5}, x_{7})$$

$$= \frac{1}{2} \left\{ \frac{1}{2} \left(x_{1} + x_{5}w_{4}^{-2j} \right) + \frac{1}{2} \left(x_{3} + x_{7}w_{4}^{-2j} \right) w_{4}^{-j} \right\}$$

$$= \frac{1}{2} \left\{ P_{j}^{(2)} + I_{j}^{(2)} w_{4}^{-j} \right\} \quad (j = 0, 1)$$

$$(12.14)$$

三层 (C)

计算 $P_j^{(2)}, I_j^{(2)}, P_j^{(2)}, I_j^{(2)}$ (j=0,1) 分别需要 0 次乘法,2 次加法。 归纳起来: (A)、(B)、(C) 三层共花费: 乘法 3+2+0=5 加法 8+8+6=24 直接计算时,乘法 (9-1)=12 次,加法 $8\times 7=56$ 次

12.2.3 FFT ($N = 2^8$, general case)

12.2.4 定义和基本公式

Definition 4.

$$F_{2^q}: \mathbb{C}^{2^q} \to \mathbb{C}^{2^q} \tag{12.15}$$

$$(x_0, x_1, \dots, x_{2^q-1}) \to (y_0, y_1, \dots, y_{2^q-1})$$
 (12.16)

CHAPTER 12. FFT

$$y_{k} = \frac{1}{2^{q}} (x_{0}, x_{1}, \dots, x_{2^{q}-1}) \cdot \left(1, w_{2^{q}}^{-k}, w_{2^{q}}^{-2k}, \dots, w_{2^{q}}^{-(2^{q}-1)k}\right)$$

$$= \frac{1}{2^{q}} \sum_{j=0}^{2^{q}-1} x_{j} (w_{2^{q}})^{-jk}, \quad k = 0, 1, \dots, 2^{q} - 1$$

$$\stackrel{\text{dign}}{=} \frac{1}{2} \left\{ \frac{1}{2^{q-1}} \sum_{j=0}^{2^{q-1}-1} x_{2j} (w_{2^{q}})^{-2jk} + \frac{1}{2^{q-1}} (w_{2^{q}})^{-k} \sum_{j=0}^{2^{q-1}-1} x_{2j+1} (w_{2^{q}})^{-2jk} \right\}$$

$$= \frac{1}{2} \left\{ \frac{1}{2^{q-1}} \sum_{j=0}^{2^{q-1}-1} x_{2j} (w_{2^{q-1}})^{-jk} + \frac{1}{2^{q-1}} (w_{2^{q}})^{-k} \sum_{j=0}^{2^{q-1}-1} x_{2j+1} (w_{2^{q-1}})^{-jk} \right\}$$

$$= \frac{1}{2} \left(P_{k}^{(q-1)} + w_{2^{q}}^{-k} I_{k}^{(q-1)} \right), \quad k = 0, 1, \dots, 2^{q} - 1$$

$$(12.17)$$

其中:

$$P_k^{(q-1)} = \frac{1}{2^{q-1}} \sum_{j=0}^{2^{q-1}-1} x_{2j} (w_{2^{q-1}})^{-jk}, \quad k = 0, 1, \dots, 2^{q-1} - 1$$
 (12.18)

$$I_k^{(q-1)} = \frac{1}{2^{q-1}} \sum_{j=0}^{2^{q-1}-1} x_{2j+1} (w_{2^{q-1}})^{-jk}, \quad k = 0, 1, \dots, 2^{q-1} - 1$$
 (12.19)

利用 $(w_{2^q})^{-(k+2^{q-1})} = -(w_{2^q})^k$,得到:

$$\begin{cases}
P_{k+2^{q-1}}^{(q-1)} = P_k^{(q-1)} \\
k = 0, 1, \dots, 2^{q-1} - 1
\end{cases}$$

$$I_{k+2^{q-1}}^{(q-1)} = I_k^{(q-1)}$$
(12.20)

因此有公式:

$$\begin{cases}
y_k = \frac{1}{2} \left[P_k^{(q-1)} + (w_{2^q})^{-k} I_k^{(q-1)} \right], & k = 0, 1, \dots, 2^{q-1} - 1 \\
y_{k+2^{q-1}} = \frac{1}{2} \left[P_k^{(q-1)} - (w_{2^q})^{-k} I_k^{(q-1)} \right], & k = 0, 1, \dots, 2^{q-1} - 1
\end{cases}$$
(12.21)

特别地:

$$P_k^{(q-1)} = \text{DFT}\left\{x_{2j}\right\}_{j=0}^{2^{q-1}-1}, \quad k = 0, 1, \dots, 2^{q-1}-1$$
 (12.22)

$$I_k^{(q-1)} = \text{DFT}\left\{x_{2j+1}\right\}_{j=0}^{2^{q-1}-1}, \quad k = 0, 1, \dots, 2^{q-1}-1$$
 (12.23)

12.2.
$$FFT(N = 2^3 = 8)$$

51

故有:

$$\begin{cases}
P_k^{(q-1)} = P_k^{(q-2)} + (w_{2^{q-1}})^{-k} I_k^{(q-2)} \\
I_k^{(q-1)} = P_k^{(q-2)} + (w_{2^{q-1}})^{-k} I_k^{(q-2)}
\end{cases} k = 0, 1, \dots, 2^{q-2} - 1$$
(12.24)

12.2.5 FFT 算法中乘法和加法次数的计算

记

- (1) M_q : 在 FFT 算法中乘法数(当数据长度为 $N=2^q$ 时)
- (2) A_q: 在 FFT 算法中加法数。

已知

$$\begin{cases} M_1 = 0 \\ M_2 = 1 \\ M_3 = 5 \end{cases} \qquad \begin{cases} A_1 = 2 \\ A_2 = 8 \\ A_3 = 24 \end{cases}$$

下面计算 M_q 与 A_q ,首先讨论 M_q 与 M_{q-1} 的关系以及 A_q 与 A_{q-1} 关系: 由 A_2 计算 $P_k^{(q-1)}$ (DFT of even) 加法数 A_{q-1}

乘法 M_{q-1} 计算 $I_k^{(q-1)}$ 加法数 A_{q-1} 非法 M_{q-1} 由公式(乘以 w_{2q}^k) 乘法数 $2^{q-1}-1$ 加法数 2^q

则有:

$$\begin{cases} M_q = 2M_{q-1} + 2^{q-1} - 1 \\ M_1 = 0 \end{cases} \qquad \begin{cases} A_q = 2A_{q-1} + 2^q \\ A_1 = 2 \end{cases}$$

Proof.

$$\begin{cases}
A_q = 2A_{q-1} + 2^q \\
A_1 = 2
\end{cases}$$
(12.25)

由(12.25)式知 $A_{q-j} = 2A_{q-j-1} + 2^{q-j}$ 则

$$2^{j}A_{q-j} = 2^{j+1}A_{q-j-1} + 2^{q} (12.26)$$

52 CHAPTER 12. FFT

$$\begin{cases}
A_q = 2A_{q-1} + 2^q \\
2A_{q-1} = 2^2 A_{q-2} + 2^q \\
2^2 A_{q-2} = 2^3 A_{q-3} + 2^q \\
\vdots \\
2^{q-2} A_2 = 2^{q-1} A_1 + 2^q
\end{cases}$$
(12.27)

由上可得

$$A_q = 2^{q-1}A_1 + (q-1)2^q (12.28)$$

则

$$A_q = 2^q + (q-1)2^q = q2^q = N\log_2 N \tag{12.29}$$

因此加法计算量为 $N \log_2 N = O(N \log N)$

$$\begin{cases}
M_q = 2M_{q-1} + 2^{q-1} - 1 \\
M_1 = 0
\end{cases}$$
(12.30)

由(12.30)式知

$$M_{q-j} = 2M_{q-j-1} + 2^{q-j-1} - 1, \quad j = 0, 1, \dots, q-2$$
 (12.31)

则

$$2^{j} M_{q-j} = 2^{j+1} M_{q-j-1} + 2^{q-1} - 2^{j}$$

$$\begin{cases} M_{q} = 2M_{q-1} + 2^{q-1} - 1 \\ 2M_{q-1} = 2^{2} M_{q-2} + 2^{q-1} - 2^{1} \\ 2^{2} M_{q-2} = 2^{3} M_{q-3} + 2^{q-1} - 2^{2} \\ \vdots \\ 2^{q-2} M_{2} = 2^{q-1} M_{1} + 2^{q-1} - 2^{q-2} \end{cases}$$
(12.32)

$$\begin{split} M_q &= 2^{q-1} M_1 + (q-1) 2^{q-1} - \sum_{j=0}^{q-2} 2^j \\ &= (q-1) 2^{q-1} - \frac{1-2^{q-1}}{1-2} \\ &= (q-1) 2^{q-1} + 1 - 2^{q-1} \\ &= (q-2) 2^{q-1} + 1 \\ &= \mathcal{O}(N \log_2 N) \end{split}$$

Part V Lecture 11 一元 Fourier 变换 应用

微分方程的求解 (ordinary)

工具:

$$\mathcal{F}D^{\alpha} = (i\omega)^{\alpha} \mathcal{F},\tag{13.1}$$

只有一个维度时:

$$(f')^{\wedge}(\omega) = (i\omega)\hat{f}(\omega)$$

$$D^{\alpha} = D_1^{\alpha_1} D_2^{\alpha_2} \cdots D_n^{\alpha_n}, \ D_j = \frac{\partial}{\partial x_j}, \ X = (x_1, \dots, x_n), \ X^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$$

示例 25.

$$\int_0^{+\infty} g(w)\sin wt dw = f(t) \tag{13.2}$$

求积分方程的解 g(w) 其中

$$f(x) = \begin{cases} \frac{\pi}{2} \frac{\sin(t)}{t}, & 0 < t > \pi \\ 0, & t \ge \pi \end{cases}$$
 (13.3)

Proof. (i) 用正弦变换 (略) 见书本 P69 ξ1.6

(ii) 由于方程中仅仅用到了 $(0,\infty)$ 的的信息,于是 g 在实负半轴可以任意规定假设 g 为奇函数,则:

$$g(w) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{g}(w)e^{-iwt}dw = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{g}(w)(-i)\sin wtdw$$

$$= \frac{-i}{\sqrt{2\pi}} \int_{0}^{\infty} g(w)\sin wtdw,$$
(13.4)

原方程化为:

$$\frac{\sqrt{2\pi}}{-2i}\hat{g}(t) = f(t) \tag{13.5}$$

又 g 为奇函数,有 $\hat{g}(-w) = -\hat{g}(w)$ 故 f 也做了相应的奇延拓,仍记为 f 于是:

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(w)e^{-iwt}dw = \frac{-2i}{\sqrt{2\pi}} \int_{0}^{+\infty} f(w)\sin wt dw$$

$$= \frac{-2i}{\sqrt{2\pi}} \int_{0}^{\pi} \frac{\pi}{2}\sin wt \sin wt dw$$

$$= \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{4} \int_{0}^{\pi} [\cos(1-t)w - \cos(1+t)w]dw$$

$$= \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{4} \left(\frac{\sin(1-t)\pi t}{1-t} + \frac{\sin(1+t)\pi t}{1+t} \right)$$

$$= \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{4} \left(\frac{\sin \pi t}{1-t} + \frac{\sin \pi t}{1+t} \right)$$

$$= \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{4} \cdot 2 \cdot \frac{\sin \pi t}{1-t^2} = \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{2} \cdot \frac{\sin \pi t}{1-t^2}$$

对 $\frac{\sqrt{2\pi}}{-2i}\hat{g}(t) = f(t)$ 两边做傅里叶变换

$$\frac{\sqrt{2\pi}}{-2i}\widehat{g(t)} = \widehat{f(t)}$$

利用 $\mathcal{F}^2 = mirror$ 的性质

$$\mathcal{F}^2\{f(t)\} = \mathcal{F}\{\mathcal{F}\{f(t)\}\} = f(-t)$$

而且 g 为奇函数可知

$$\frac{\sqrt{2\pi}}{-2i}g(-t) = \frac{-2i}{\sqrt{2\pi}} \cdot \frac{\pi}{2} \cdot \frac{\sin \pi t}{1 - t^2}$$
$$g(t) = \frac{\sin \pi t}{1 - t^2}$$

示例 26. 积分方程解

$$g(t) = h(t) + \int_{-\infty}^{\infty} f(t)g(t-x)dx$$

h、f已知,且g、h、f的傅里叶变换存在。

Proof. 由傅里叶变换的卷积公式:

$$\mathcal{F}\{f*q\} = \sqrt{2\pi} \cdot \hat{f} \cdot \hat{q}$$

原方程可化为:

$$\hat{g}(w) = \hat{h}(w) + \hat{f}(w) \cdot \hat{g}(w) \cdot \sqrt{2\pi}$$

56

解得:

$$\begin{split} \hat{g}(w) &= \frac{\hat{h}(w)}{1 - \sqrt{2\pi} \cdot \hat{f}(w)} \\ g(t) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\hat{h}(w)}{1 - \sqrt{2\pi} \cdot \hat{f}(w)} e^{iwt} dw \end{split}$$

示例 27. 常微分非齐次线性积分方程:

$$y'' - y = -f \tag{13.6}$$

其中 ƒ 为已知函数

Proof. 对两边取 Fourier 变换:

$$(iw)^{2}\hat{y}(w) - \hat{y}(w) = -\hat{f}(w)$$
(13.7)

解得:

$$\hat{y}(w) = \frac{\hat{f}(w)}{1 + w^2} \tag{13.8}$$

因此:

$$y(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\hat{f}(w)}{1+w^2} e^{iwt} dw$$
 (13.9)

将 $\frac{\hat{f}(w)}{1+w^2}$ 视为 $\hat{f}(w)$ 与 $\frac{1}{1+w^2}$ 的乘积。由卷积定理:

$$(f * h)(w) = \sqrt{2\pi} \hat{f}(w) \cdot \hat{h}(w), \quad \sharp + \hat{h}(w) = \frac{1}{1 + w^2}.$$
 (13.10)

因此:

$$\hat{y}(w) = \sqrt{2\pi}\hat{f}(w) \cdot \hat{g}(w), \quad \sharp \hat{p}(w) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{1+w^2}.$$
 (13.11)

所以:

$$y(t) = (f * g)(t), \quad \sharp rectangle g(w) = \frac{1}{2}e^{-|t|}.$$
 (13.12)

因此:

$$g(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{1}{1+w^2} e^{iwt} dw = \frac{1}{2} e^{-|t|}$$
$$y(t) = \frac{1}{2} \int_{-\infty}^{\infty} f(t) e^{-|t-x|} dx. \tag{13.13}$$

示例 28. 求解积分方程:

$$ax'(t) + bx(t) + c \int_0^t x(t)dt = h(t),$$
 (13.14)

其中 $a,b,c \in \mathbb{R}$, h 已知

Proof. 关键是通过 $\mathcal F$ 变换求解。设 G'=g,且 G 有傅里叶变换。对两边取 $\mathcal F$:

$$(iw)\hat{G}(w) = \hat{g}(w) \Rightarrow \hat{G}(w) = \frac{\hat{g}(w)}{iw}.$$

利用此公式,原方程可变换为:

$$a(iw)\hat{x}(w) + b\hat{x}(w) + c\frac{\hat{x}(w)}{iw} = h(w)$$

解得:

$$\hat{x}(w) = \frac{h(w)}{iaw + b + \frac{c}{iw}}.$$

The Solution of Partial Differential Equation by \mathcal{F}

14.1 一维波动方程初值问题

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}, & x \in \mathbb{R}, t > 0 \\ u|_{t=0} = \cos(x) \\ \frac{\partial u}{\partial t} \bigg|_{t=0} = \sin(x) \end{cases}$$

Proof. 对二元函数 u(x,t) 的 x 变量作偏 \mathcal{F}_1 ,记之为 V(w,t)。则:

$$V(w,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,t)e^{-iwx}dx$$

(I) 于是:

$$\begin{split} \frac{\partial V}{\partial t}(w,t) &= \frac{\partial}{\partial t} \mathcal{F}_1(u(x,t)) = \frac{1}{\sqrt{2\pi}} \frac{\partial}{\partial t} \int_{-\infty}^{\infty} u(x,t) e^{-iwx} dx \\ &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{\partial u}{\partial t}(x,t) e^{-iwx} dx = \mathcal{F}_1\left(\frac{\partial u}{\partial t}(x,t)\right) \end{split}$$

即微分和 F1 能够换序

$$\frac{\partial}{\partial t}(\mathcal{F}_1 u(x,t)) = \mathcal{F}_1\left(\frac{\partial u}{\partial t}\right)(w,t)$$

同样

$$\frac{\partial^2}{\partial t^2}(\mathcal{F}_1 u(x,t)) = \mathcal{F}_1\left(\frac{\partial^2 u}{\partial t^2}\right)(w,t)$$

$$\mathcal{F}_{1}\left(\frac{\partial u}{\partial t}\right)(w,t) = \frac{\partial}{\partial t}V(w,t) \quad (視 w 为常数)$$

$$\mathcal{F}_{1}\left(\frac{\partial^{2} u}{\partial t^{2}}\right)(w,t) = \frac{\partial^{2} u}{\partial t^{2}}V(w,t)$$

$$\mathcal{F}_{1}\left(\frac{\partial u}{\partial x}\right)(w,t) = (iw)V(w,t)$$

$$\mathcal{F}_{1}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)(w,t) = (iw)^{2}V(w,t)$$

$$\mathcal{F}_{1}(\sin x)(w) = \sqrt{\frac{\pi}{2}}i\left[\delta(w+1) - \delta(w-1)\right]$$

$$\mathcal{F}_{1}(\cos x)(w) = \sqrt{\frac{\pi}{2}}\left[\delta(w+1) + \delta(w-1)\right]$$

(II) 原方程在频率域可转化为常微分方程问题

$$\begin{cases} \frac{\mathbf{d}^2 V}{\mathbf{d}t^2} = -w^2 V \\ V|_{t=0} = \sqrt{\frac{\pi}{2}} \left[\delta(w+1) + \delta(w-1) \right] \\ \frac{\mathbf{d}V}{\mathbf{d}t}|_{t=0} = \sqrt{\frac{\pi}{2}} \cdot i \left[\delta(w+1) - \delta(w-1) \right] \\ V(w,t) = C_1 \sin(wt) + C_2 \cos(wt) \end{cases}$$

齐次方程特征方程为 $\lambda^2+w^2=0$,其解为 $\lambda=\pm iw$,对应的解为 $e^{\pm iwt}$,即 $\cos(wt)$ 和 $\sin(wt)$ 。由第一个边界条件:

$$C_2 = \sqrt{\frac{\pi}{2}} \left[\delta(w+1) + \delta(w-1) \right]$$

第二个边界条件:

$$C_1 = \sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \left[\delta(w+1) - \delta(w-1) \right]$$

最后得

$$V(w,t) = \sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \left[\delta(w+1) - \delta(w-1) \right] \sin(wt)$$

$$+ \sqrt{\frac{\pi}{2}} \left[\delta(w+1) + \delta(w-1) \right] \cos(wt)$$

$$= \left(\sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \sin(wt) + \sqrt{\frac{\pi}{2}} \cos(wt) \right) \delta(w+1)$$

$$+ \left(-\sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \sin(wt) + \sqrt{\frac{\pi}{2}} \cos(wt) \right) \delta(w-1)$$

$$(14.1)$$

做逆变换, 频率到时间

(III)
$$u(x,t) = \mathcal{F}_1^{-1}(V(\cdot,t))(x)$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left\{ \left[\sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \sin(wt) + \sqrt{\frac{\pi}{2}} \cos(wt) \right] \delta(w+1) \right.$$

$$+ \left[-\sqrt{\frac{\pi}{2}} \cdot \frac{i}{w} \sin(wt) + \sqrt{\frac{\pi}{2}} \cos(wt) \right] \delta(w-1) \right\} e^{iwx} dw$$

$$= \frac{1}{\sqrt{2\pi}} \left\{ \left[\sqrt{\frac{\pi}{2}} \cdot \frac{i}{-1} \sin(-t) + \sqrt{\frac{\pi}{2}} \cos(-t) \right] e^{-ix} \right.$$

$$+ \left[\sqrt{\frac{\pi}{2}} \cdot \frac{-i}{1} \sin(t) + \sqrt{\frac{\pi}{2}} \cos(t) \right] e^{ix} \right\}$$

$$= \frac{1}{2} \left\{ \left[-i \sin(t) + \cos(t) \right] e^{ix} + \left[i \sin(t) + \cos(t) \right] e^{-ix} \right\}$$

$$= \cos(t-x)$$

14.2 一维热传导问题

 $\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x, t), x \in \mathbb{R}, t > 0 \\ u|_{t=0} = \varphi(x) \end{cases}$

Proof. (1) $\diamondsuit V(w,t) = \mathcal{F}_1(u(\cdot,t))(w)$.

$$\mathcal{F}_1\left(\frac{\partial u}{\partial t}(\cdot,t)\right) = \frac{\partial}{\partial t}(\mathcal{F}_1 u(w,t)) = \frac{\partial}{\partial t}V(w,t) \stackrel{note}{=} \frac{dV}{dt}(w,t)$$
$$\mathcal{F}_1\left(\frac{\partial^2 u}{\partial x^2}\right)(w) = (iw)^2 V(w,t) = -w^2 V(w,t)$$

记

$$\hat{f}_1(w,t) = \mathcal{F}_1 f(\cdot,t)(w)$$
$$\hat{\varphi}(w) = (\mathcal{F}\varphi)(w)$$

则原方程在频域表示为:

$$\begin{cases} \frac{dV}{dt} = -a^2 w^2 V + \hat{f}_1(w, t) \\ V|_{t=0} = \hat{\varphi}(w) \end{cases}$$

一阶非齐次常微分方程可由常数变易法求解

$$V(w,t) = \hat{\varphi}(w)e^{-a^2w^2t} + \int_0^t \hat{f}_1(w,\tau)e^{-a^2w^2(t-\tau)}d\tau$$

(2) 逆变换: 利用

$$\mathcal{F}\left(e^{-\frac{(\cdot)^2}{\beta}}\right)(w) = \sqrt{\frac{\beta}{2}}e^{-\frac{\beta w^2}{4}}(\beta = \frac{1}{a^2t})$$
$$\mathcal{F}^{-1}\left(e^{-a^2w^2t}\right)(x) = \sqrt{2\pi} \cdot \frac{1}{2a\sqrt{\pi t}}e^{-\frac{x^2}{4a^2t}}$$

做平移调制

$$\mathcal{F}^{-1}\left(e^{-a^2(t-x)(\cdot)^2}\right)(y) = \frac{1}{a\sqrt{2\pi(t-x)}}e^{-\frac{(y)^2}{4a^2(t-x)}}$$

得解:

$$u(x,t) = \left(\varphi(\cdot) * \frac{1}{a\sqrt{2\pi t}} e^{-\frac{x^2}{4a^2t}}\right)(x)$$

$$+ \int_0^t \left(f(\cdot,x) * \frac{1}{a\sqrt{2\pi(t-x)}} e^{-\frac{(\cdot)^2}{4a^2(t-x)}}\right)(x)dx$$

$$(14.2)$$

14.3 关于上半平面无源静电场电势的边值问题

$$\begin{cases} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, x \in \mathbb{R}, y > 0 \\ u|_{y=0} = f(x) \end{cases}$$

Proof. 记 $V(w,y) = \mathcal{F}_1 u(x,y)(w)$ 。则原方程转化为

$$\begin{cases} -w^2 V(w,y) + \frac{\partial^2}{\partial y^2} V(w,y) = 0 \\ V(w,y)|_{y=0} = \hat{f}(w) \\ \lim_{y \to +\infty} V(w,y) = 0 \end{cases}$$

视 w 为常数,这是一个二阶常微分方程。特征方程为:

$$\lambda^2 - w^2 = 0 \implies \lambda = \pm |w|$$

通解为:

$$V(w,y) = C_1 e^{|w|y} + C_2 e^{-|w|y}$$

62CHAPTER 14. THE SOLUTION OF PARTIAL DIFFERENTIAL EQUATION BY $\mathcal F$

边值条件给出:

$$V(w,y)|_{y=0} = \hat{f}(w) \implies C_1 + C_2 = \hat{f}(w)$$

以及

$$\lim_{y \to +\infty} V(w, y) = 0 \implies C_1 = 0$$

因此:

$$V(w,y) = \hat{f}(w)e^{-|w|y}$$

利用 Fourier 逆变换:

$$\mathcal{F}^{-1}\left(e^{-|w|y}\right)(x) = \sqrt{\frac{\pi}{y}} \frac{y}{x^2 + y^2}$$

上式子可由下式得出

$$\mathcal{F}\left(e^{-\frac{1}{r}}\right)(\xi)\rightleftarrows\sqrt{\frac{\pi}{2}}\frac{r}{1+r^2\xi^2}$$

最终得解

$$u(x,y) = \frac{1}{\sqrt{2\pi}} \left(f * \sqrt{\frac{2}{\pi}} \frac{y}{(\cdot)^2 + y^2} \right) (x)$$

$$= \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{x^2 + y^2} f(x - t) dt$$
(14.3)

副产物: 上半平面 Poisson 积分核

$$P_y(x) = \frac{1}{\pi} \cdot \frac{y}{y^2 + x^2} \tag{14.4}$$

Part VI Lecture 12 多元 Fourier 变换

基本定义与性质

Definition 5.

$$\mathcal{F}f(\vec{\omega}) = \mathcal{F}f(\omega_1, \dots, \omega_m)$$

$$= \left(\frac{1}{\sqrt{2\pi}}\right)^m \int_{\mathbb{R}^m} f(x_1, \dots, x_m) e^{-i(\omega_1 x_1 + \dots + \omega_m x_m)} dx_1 \cdots dx_m$$

$$= \frac{1}{(2\pi)^{m/2}} \int_{\mathbb{R}^m} f(\vec{x}) e^{-i\vec{\omega} \cdot \vec{x}} d\vec{x}$$

15.1 一些工具

15.1.1 逆公式

$$f(\vec{x}) = \frac{1}{(2\pi)^{m/2}} \int_{\mathbb{R}^m} \hat{f}(\vec{\omega}) e^{i\vec{w}\cdot\vec{x}} d\vec{\omega}$$

15.1.2 偏傅里叶变换

$$\mathcal{F}_j f(x_1, \dots, x_{j-1}, \omega_j, x_{j+1}, \dots, x_m) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(\vec{x}) e^{-i\omega_j x_j} dx_j$$

当 $f(\vec{x}) = \prod_{j=1}^m g_j(x_j)$ 变量可分离时,则得到张量对角积

$$(\mathcal{F}f)(\vec{\omega}) = \prod_{j=1}^{m} \mathcal{F}_j g_j(\omega_j)$$

示例 29. 求函数 $f(x)=ae^{-b^2|x|^2}=ae^{-b^2(x_1^2+x_2^2)}$ 的二维傅里叶变换 $\hat{f}(w_1,w_2)$ 。 Proof. 应用二维傅里叶变换公式:

$$\hat{f}(w_1, w_2) = \frac{1}{(\sqrt{2\pi})^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} ae^{-b^2(x_1^2 + x_2^2)} e^{-i(w_1 x_1 + w_2 x_2)} dx_1 dx_2$$

15.1. 一些工具 65

$$\stackrel{fubini}{=} \hat{f}(w_1, w_2) = \frac{1}{\sqrt{2\pi}} \left(\int_{-\infty}^{\infty} a e^{-b^2 x_1^2} e^{-iw_1 x_1} dx_1 \right) \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-b^2 x_2^2} e^{-iw_2 x_2} dx_2 \right)$$

利用两者其一

$$\mathcal{F}(e^{-\beta(\cdot)^2})(w) = \sqrt{\frac{1}{2\beta}}e^{-\frac{w^2}{4\beta}}$$

$$\mathcal{F}(e^{-\frac{\cdot^2}{\beta}})(w) = \sqrt{\frac{1}{2\beta}}e^{-\beta\frac{w^2}{4}}$$

$$\hat{f}(w_1, w_2) = \frac{a}{4b^2}\exp\left(-\frac{w_1^2 + w_2^2}{4b^2}\right)$$

特别地, 当 a=1, b=1 时, 结果简化为:

$$\hat{f}(w_1, w_2) = \frac{1}{4} \exp\left(-\frac{w_1^2 + w_2^2}{4}\right)$$
 (15.1)

为算子的不动点。

示例 30. 求函数 $f(x)=e^{-x^TAx}$ 的傅里叶变换,其中 $x=(x_1,\ldots,x_m)^{'}$,且 $A=B^TB$ 为正定矩阵,B 可逆

Proof.

$$e^{-x^T A x} = e^{-x^T B^T B x} = e^{-(Bx)^T (Bx)}$$
$$\hat{f}(w_1, \dots, w_m) = \frac{1}{(\sqrt{2\pi})^m} \int_{\mathbb{R}^m} e^{-(Bx)^T (Bx)} e^{-iw^T x} dx$$

令 y = Bx,则 $x = B^{-1}y$,且雅可比行列式 $|B^{-1}|$ 。代入上式得到:

$$\hat{f}(w) = \frac{1}{(\sqrt{2\pi})^m} \int_{\mathbb{R}^m} e^{-y^T y} e^{-i\omega^T B^{-1} y} \frac{1}{|B|} dy$$
$$= \frac{1}{(\sqrt{2\pi})^m} \int_{\mathbb{R}^m} e^{-|y^2|} e^{-i(B^{-1T}\omega)^T y} \frac{1}{|B|} dy$$

利用: $\mathcal{F}(e^{-|x|^2})(\omega_1, \omega_2,\omega_m) = \frac{1}{(\sqrt{2})^m} e^{-\frac{w^T w}{4}}$

$$\begin{split} \hat{f}(w) &= \frac{1}{(\sqrt{2})^m} \frac{1}{|B|} e^{-\frac{(B^{-1}w)^T((B^{-1})^Tw)}{4}} \\ &= \frac{1}{(\sqrt{2})^m} \frac{1}{|B|} e^{-\frac{w^TB^{-1}(B^{-1})^Tw}{4}} \\ A &= B^TB \to (B^{-1})^TB^{-1} = A^{-1} \\ \hat{f}(w) &= \frac{1}{(\sqrt{2})^m} \frac{1}{|B|} e^{-\frac{w^TA^{-1}w}{4}} \end{split}$$

当 B = I 时

$$\hat{f}(w) = \frac{1}{(\sqrt{2})^m} e^{-\frac{w^T w}{4}}$$

15.2 性质

线性性, 略

15.2.1 平移性

$$\mathcal{F}(f(x-\vec{a})) = e^{-i\vec{a}\cdot\vec{\omega}}(\mathcal{F}f)(\vec{\omega})$$
 (15.2)

即

$$FT_{\vec{a}} = M_{-\vec{a}}F.$$
 (15.3)

15.2.2 调制性

$$FM_{\vec{b}} = T_{\vec{b}}F. \tag{15.4}$$

15.2.3 微分性质

$$\mathcal{F}\left(\frac{\partial}{\partial x_{j}}\right) = (iw_{j}) \cdot \mathcal{F}$$

$$\frac{\partial}{\partial w_{j}} \mathcal{F}f = \mathcal{F}\left(-ix_{j}f\right) \left\{ \mathbf{P} \frac{\partial}{\partial w_{j}} \hat{f}(\vec{w}) = \mathcal{F}\left(-ix_{j}f(x)\right)(\vec{w}) \right\}$$
一般化令 $k = (k_{1}, \dots, k_{m}), \ D = \left(\frac{\partial}{\partial x_{1}}, \dots, \frac{\partial}{\partial x_{m}}\right), \ \mathbb{M}$:
$$D^{k} = \frac{\partial^{|k|}}{\partial x_{1}^{k_{1}} \cdots \partial x_{m}^{k_{m}}} (\mathbf{其}\mathbf{P}|k| = k_{1} + \dots + k_{m})$$

则有:

$$\mathcal{F}(D^k f)(\vec{w}) = \left(i(w_1, \dots, w_m)^{(k_1, k_2, \dots k_m)}\right) (\mathcal{F}f)(\vec{w})$$

当 P_m 为 m 元多项式时:

$$\mathcal{F}(P_m(D)f)(\vec{w}) = P_m(i\vec{w})(\mathcal{F}f)(\vec{w})$$

请回忆多元微分学的多元 Taylor 公式, 特别地:

$$D^{k}\mathcal{F}f(\vec{w}) = \mathcal{F}((-ix)^{k}f)(\vec{w})$$

即:

$$P_m(D)\mathcal{F}f(\vec{w}) = \mathcal{F}(P_m(-ix)f)(\vec{w})$$

15.2.4 卷积

$$\mathcal{F}(f * g)(w) = (\sqrt{2\pi})^m (\mathcal{F}f)(w) \cdot (\mathcal{F}g)(w)$$
$$\mathcal{F}(f \cdot g)(w) = (\sqrt{2\pi})^{-m} ((\mathcal{F}f) * (\mathcal{F}g))(w)$$

15.2. 性质 67

15.2.5 多维情况

对于多维情况, 傅里叶变换具有如下性质:

$$\mathcal{F}(f_1 * f_2 * \cdots * f_n)(w) = (\sqrt{2\pi})^{m(n-1)} \prod_{j=1}^{n} (\mathcal{F}f_j)(w)$$

$$\mathcal{F}\{\prod_{j=1}^{n} (f_j)\}(w) = (\sqrt{2\pi})^{-m(n-1)} (\mathcal{F}f_1 * \mathcal{F}f_2 \cdots * \mathcal{F}f_n)(w)$$

15.2.6 缩放

$$\mathcal{F}\{f(A \cdot \vec{x})\}(w) = |A|^{-\frac{m}{2}} (\mathcal{F}f)(\{A^{-1})^T \cdot w^T\}^T)$$

简要证明:

Proof. 注意单位化和 $A \cdot \vec{x}$ 的含义

$$\mathcal{F}\{f(A\cdot\vec{x})\}(w) = \frac{1}{(\sqrt{2\pi|A|})^m} \int_{\mathbb{R}^m} f(A\cdot\vec{x}) e^{-i\vec{\omega}\cdot\vec{x}} d\{A\cdot\vec{x}\}$$
$$\vec{y} = \frac{1}{(\sqrt{2\pi|A|})^m} \int_{\mathbb{R}^m} f(\vec{y}) e^{-i\vec{\omega}\cdot A^{-1}\cdot\vec{y}} d\vec{y}$$

做转置问题得证

Chapter 16

多元 Fourier 变换应用

16.1 二维热传导方程的初值问题

考虑如下定解问题:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) \\ u|_{t=0} = \varphi(x, y) \end{cases}$$

其中 $(x,y) \in \mathbb{R}^2$, t > 0

Proof. (I) . "冻结"时间,对三元函数 u(x,y,t) 关于 (x,y) 变量施加二维傅里叶变换。

$$V(w_1, w_2, t) = \mathcal{F}[u(\cdot, \cdot, t)](w_1, w_2)$$

由 $\frac{\partial}{\partial t}$ 与 \mathcal{F} 的可交换性 (即 $\mathcal{F}(\frac{\partial}{\partial t}) = \frac{\partial}{\partial t}\mathcal{F}$), 有:

$$\mathcal{F}\left(\frac{\partial u}{\partial t}\right)(w_1,w_2,t) = \frac{\partial}{\partial t}(\mathcal{F}u)(w_1,w_2,t) = \frac{\partial}{\partial t}V(w_1,w_2,t)$$

$$\begin{cases} \mathcal{F}\left(\frac{\partial^2 u}{\partial x^2}\right)(w_1,w_2,t) = -w_1^2 V(w_1,w_2,t) \\ \mathcal{F}\left(\frac{\partial^2 u}{\partial y^2}\right)(w_1,w_2,t) = -w_2^2 V(w_1,w_2,t) \end{cases}$$

(II).则原初值问题转化为:

$$\begin{cases} \frac{dV}{dt} = -a^2(w_1^2 + w_2^2)V \\ V|_{t=0} = \hat{\varphi}(w_1, w_2) \end{cases}$$

(III) 常系数 ODE $\frac{dV}{dt} = -a^2(w_1^2 + w_2^2)V$ 的通解为:

$$V(w_1, w_2, t) = Ce^{-a^2(w_1^2 + w_2^2)t}$$

(IV) . 求 C,由初始条件 $V|_{t=0}=\hat{\varphi}$,可得 $C=\hat{\varphi}(w_1,w_2)$ 。

(V) . 所以 $V(w_1, w_2, t) = \hat{\varphi}(w_1, w_2)e^{-a^2t(w_1^2 + w_2^2)}$ 。利用二维卷积性质 $(\mathcal{F}(f * g) = (\mathcal{F}f) \cdot (\mathcal{F}g))$

$$u(x, y, t) = \mathcal{F}^{-1}[\hat{\varphi}(\cdot, \cdot)] * \mathcal{F}^{-1}[g(\cdot, \cdot, t)]$$

其中

$$g(x, y, t) = \mathcal{F}^{-1}\left(e^{-a^2t(w_1^2 + w_2^2)}\right)(x, y)$$

由于变量可分离: $e^{-a^2t(w_1^2+w_2^2)}=e^{-a^2tw_1^2}\cdot e^{-a^2tw_2^2}$ 再利用一元 $\mathcal F$ 变换:

$$\mathcal{F}\left(e^{-\frac{\beta^2}{4}}\right)(\xi) = \sqrt{\frac{\pi}{2}}e^{-\frac{\beta^2\xi^2}{4}}$$

可得:

$$g(x,y,t) = \left(\sqrt{\frac{1}{2a^2\pi t}}e^{-\frac{x^2}{4a^2t}}\right)\left(\sqrt{\frac{1}{2a^2\pi t}}e^{-\frac{y^2}{4a^2t}}\right) = \frac{1}{2a^2t}e^{-\frac{x^2+y^2}{4a^2t}}$$

于是

$$u(x,y,t) = \frac{1}{2\pi} \cdot \frac{1}{2a^2t} \iint_{\mathbb{R}^2} \varphi(x-z_1,y-z_2) e^{-\frac{x^2+y^2}{4a^2t}} dz_1 dz_2$$

向量记号:

$$u(\vec{x},t) = \frac{1}{(2a\sqrt{\pi t})^2} \iint_{\mathbb{R}^2} \varphi(\vec{x} - \vec{z}) e^{-\frac{x^2 + y^2}{4a^2t}} d\vec{z}$$

note: 考虑 *n* 维情况:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \nabla^2 u, & x_j \in \mathbb{R}, j = 1, 2, \dots, n, t > 0 \\ u(\vec{x}, t)|_{t=0} = \varphi(\vec{x}) & \end{cases}$$

其解为 $u(\vec{x},t) = \frac{1}{(2a\sqrt{\pi t})^n} \int_{\mathbb{R}^n} \varphi(\vec{x}-\vec{z}) e^{-\frac{|\vec{z}|^2}{4a^2t}} d\vec{z}$ 这里 $\nabla^2 u = \sum_{j=1}^n \frac{\partial^2 u}{\partial x_j^2}, \ \vec{z} = (\xi_1, \cdots, \xi_n), \ d\vec{z} = dz_1 \cdots dz_n$ 。

16.2 三维热传导问题

考虑三维热传导方程初值问题:

$$\begin{cases} \frac{\partial u}{\partial t} = a^2 \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \\ u|_{t=0} = e^{-(x^2 + y^2 + z^2)} \end{cases}$$

Proof. 由一般公式,

$$u(x,y,z,t) = \frac{1}{(2a\sqrt{\pi t})^3} \iiint_{\mathbb{R}^3} e^{-(x-z_1)^2 - (y-z_2)^2 - (z-z_3)^2} e^{-\frac{z_1^2 + z_2^2 + z_3^2}{4a^2t}} dz_1 dz_2 dz_3$$

注意到被积函数可分离,则

$$u(x,y,z,t) = g_1(x,t)g_2(y,t)g_3(z,t)$$
,这里 $g_1 = g_2 = g_3 = g_3$

$$g(x,t) = \int_{-\infty}^{\infty} e^{-(x-z_1)^2} e^{-\frac{z_1^2}{4a^2t}} dz_1$$
$$= \int_{-\infty}^{\infty} \exp\left[-\left(1 + \frac{1}{4a^2t}\right)z_1^2 + 2xz_1 - x^2\right] dz_1$$

计算

$$\int_{-\infty}^{\infty} e^{-\alpha t^2 + \beta t + C} dt(\alpha > 0)$$

$$= \int_{-\infty}^{\infty} e^{-\alpha \left(t^2 - \frac{\beta}{\alpha}t - \frac{C}{\alpha}\right)} dt$$

$$= \int_{-\infty}^{\infty} e^{-\alpha \left[\left(t - \frac{\beta}{2\alpha}\right)^2 - \frac{\beta^2}{4\alpha^2} - \frac{C}{\alpha}\right]} dt$$

$$= e^{\frac{\beta^2 + 4\alpha C}{4\alpha}} \int_{-\infty}^{\infty} e^{-\alpha \left(t - \frac{\beta}{2\alpha}\right)^2} dt$$

$$= e^{\frac{\beta^2 + 4\alpha C}{4\alpha}} \frac{1}{\sqrt{\alpha}} \int_{-\infty}^{\infty} e^{-s^2} d(\sqrt{\alpha}s)$$

$$= \frac{1}{\sqrt{\alpha}} e^{\frac{\beta^2 + 4\alpha C}{4\alpha}} \int_{-\infty}^{\infty} e^{-s^2} ds = \frac{1}{\sqrt{\alpha}} e^{\frac{\beta^2 + 4\alpha C}{4\alpha}} \sqrt{\pi}$$

 $\Rightarrow \alpha = 1 + \frac{1}{4a^2t}, \ \beta = 2x, \ C = -x^2, \$ 则

$$\begin{split} \frac{1}{\sqrt{\alpha}} e^{\frac{\beta^2 + 4\alpha C}{4\alpha}} \sqrt{\pi} &= \frac{1}{\sqrt{1 + \frac{1}{4a^2 t}}} e^{\frac{4x^2 + 4\left(1 + \frac{1}{4a^2 t}\right)(-x^2)}{4\left(1 + \frac{1}{4a^2 t}\right)}} \sqrt{\pi} \\ &= \frac{2a\sqrt{\pi t}}{\sqrt{1 + 4a^2 t}} \sqrt{\pi} \exp\left\{\frac{4a^2 t \left[4x^2 - 4x^2 \left(1 + \frac{1}{4a^2 t}\right)\right]}{4\left(1 + 4a^2 t\right)}\right\} \\ &= \sqrt{\pi} \frac{2a\sqrt{\pi t}}{1 + 4a^2 t} \exp\left\{\frac{-x^2}{\left(1 + 4a^2 t\right)}\right\} \end{split}$$

则

$$\begin{split} g(x,t) &= \frac{2a\sqrt{\pi t}}{\sqrt{1+4a^2t}} exp\{-\frac{x^2}{1+4a^2t}\} \\ u(x,y,z,t) &= \frac{1}{(2a\sqrt{\pi t})^3} g(x,t) g(y,t) g(z,t) \end{split}$$

总结归纳: F 求解微分方程的办法难点在于逆变换的可解性

Part VII Lecture 15 Laplace 变换性质

Chapter 17

Laplace 变换的性质

17.1 线性性质 (Linearity Property)

对于有限 $N \in \mathbb{N}$ 和常数 $c_i \in \mathbb{C}$:

$$\mathcal{L}\left\{\sum_{j=1}^{N} c_{j} f_{j}(x)\right\}(z) = \sum_{j=1}^{N} c_{j} \mathcal{L}\{f_{j}(x)\}(z)$$
(17.1)

17.2 微分性质 (Differentiation Property)

若 $\mathcal{L}{f(x)}(z)$ 存在, 且 f(x) 在 $(0,\infty)$ 上可微, $\mathcal{L}{f'(x)}(z)$ 存在, 则

$$\mathcal{L}\{f'(x)\}(z) = z\mathcal{L}\{f(x)\}(z) - f(0^{+})$$
(17.2)

note 通常简记为 f(0), 指 $x \to 0^+$ 的极限值;此性质亦称"导数变乘子".

73

Proof.

$$\mathcal{L}\{f'(x)\}(z) = \int_0^{+\infty} f'(x)e^{-zx} \, dx$$

$$= \int_0^{+\infty} e^{-zx} \, df(x) \quad (分部积分法)$$

$$= \left[f(x)e^{-zx}\right]_{0+}^{+\infty} - \int_0^{+\infty} f(x) \, d(e^{-zx})$$

$$= \left(\lim_{x \to +\infty} f(x)e^{-zx} - \lim_{x \to 0^+} f(x)e^{-zx}\right) - \int_0^{+\infty} f(x)(-ze^{-zx}) \, dx$$

$$= (0 - f(0^+)) + z \int_0^{+\infty} f(x)e^{-zx} \, dx$$

$$= z\mathcal{L}\{f(x)\}(z) - f(0^+)$$

17.3 积分性质 (Integration Property)

$$\mathcal{L}\left\{\int_{0}^{x} f(\tau) d\tau\right\}(z) = \frac{1}{z}\mathcal{L}\{f(x)\}(z)$$
(17.3)

Proof.

记 $h(x) = \int_0^x f(\tau) d\tau$. 则 h'(x) = f(x) 且 $h(0^+) = 0$.

由微分性质 (17.2) 可知:

$$\mathcal{L}\{h'(x)\}(z) = z\mathcal{L}\{h(x)\}(z) - h(0^+)$$

代入 h'(x) = f(x) 和 $h(0^+) = 0$:

$$\mathcal{L}{f(x)}(z) = z\mathcal{L}\left\{\int_0^x f(\tau) d\tau\right\}(z) - 0$$

整理得:

$$\mathcal{L}\left\{\int_0^x f(\tau) d\tau\right\}(z) = \frac{1}{z}\mathcal{L}\{f(x)\}(z)$$

17.4 位移性质 (z 域平移)

$$\mathcal{L}\lbrace e^{ax}f(x)\rbrace(z) = (\mathcal{L}\lbrace f(x)\rbrace)(z-a) \tag{17.4}$$
 (其中 ($\mathcal{L}\lbrace f(x)\rbrace)(z-a)$ 表示将 $F(z) = \mathcal{L}\lbrace f(x)\rbrace(z)$ 中的 z 替换为 $z-a$)

74

Proof.

$$\mathcal{L}\lbrace e^{ax} f(x) \rbrace (z) = \int_0^{+\infty} e^{ax} f(x) e^{-zx} dx$$
$$= \int_0^{+\infty} f(x) e^{-(z-a)x} dx$$
$$= (\mathcal{L}\lbrace f(x) \rbrace) (z-a)$$

17.5 延迟性质 (x 域平移)

设 f(x) = 0 对于 x < 0. 对于 b > 0:

$$\mathcal{L}\lbrace f(x-b)\rbrace(z) = e^{-bz}\mathcal{L}\lbrace f(x)\rbrace(z) \tag{17.5}$$

(其中 x < 0 时 f(x) = 0.) 也可记作

$$\mathcal{L}\lbrace g(x-b)u(x-b)\rbrace(z) = G(z)e^{-bz}$$

其中 u(x-b) 是单位阶跃函数。

Proof.

$$\mathcal{L}\lbrace f(x-b)\rbrace(z) = \int_0^{+\infty} f(x-b)e^{-zx} dx$$

$$= \int_{-b}^{+\infty} f(t)e^{-z(t+b)} dt$$

$$= \int_{-b}^{+\infty} f(t)e^{-zt}e^{-zb} dt$$

$$= \int_0^{+\infty} f(t)e^{-zt}e^{-zb} dt$$

$$= e^{-bz}\mathcal{L}\lbrace f(t)\rbrace(z)$$

Chapter 18

利用 L 变换的基本性质求 Laplace 变换

示例 31. 求 $f(x) = \cos(kx)$ 的 Laplace 变换

解法一 (Solution 1):

前面已利用 $\mathcal{L}\lbrace e^{kx}\rbrace(z)=\frac{1}{z-k}$ 已计算出 (通过欧拉公式)

$$\mathcal{L}\{\cos(kx)\}(z) = \frac{z}{z^2 + k^2} \quad (\operatorname{Re}(z) > 0)$$

解法二 (Solution 2 using differentiation property):

已知 Laplace 变换的微分性质:

$$\mathcal{L}\{f'(x)\}(z) = z\mathcal{L}\{f(x)\}(z) - f(0^{+})$$

$$\mathcal{L}\{f''(x)\}(z) = z\mathcal{L}\{f'(x)\}(z) - f'(0^{+})$$

$$= z(z\mathcal{L}\{f(x)\}(z) - f(0^{+})) - f'(0^{+})$$

$$= z^{2}\mathcal{L}\{f(x)\}(z) - zf(0^{+}) - f'(0^{+})$$
(18.2)

令 $f(x) = \cos(kx)$. 则 $f'(x) = -k\sin(kx)$, $f''(x) = -k^2\cos(kx)$. 初始条件为: $f(0^+) = \cos(0) = 1$. $f'(0^+) = -k\sin(0) = 0$.

对于 $f''(x) = -k^2 \cos(kx) = -k^2 f(x)$, 利用 \mathcal{L} 变换的线性性质, 有:

$$\mathcal{L}\{f''(x)\}(z) = \mathcal{L}\{-k^2 f(x)\}(z) = -k^2 \mathcal{L}\{f(x)\}(z)$$

结合公式 (18.2):

$$-k^{2}\mathcal{L}\{f(x)\}(z) = z^{2}\mathcal{L}\{f(x)\}(z) - zf(0^{+}) - f'(0^{+})$$

代入初始条件 $f(0^+) = 1, f'(0^+) = 0$:

$$-k^2 \mathcal{L}\{\cos(kx)\}(z) = z^2 \mathcal{L}\{\cos(kx)\}(z) - z$$

76

移项整理:

$$z = (z^2 + k^2)\mathcal{L}\{\cos(kx)\}(z)$$

故

$$\mathcal{L}\{\cos(kx)\}(z) = \frac{z}{z^2 + k^2}$$

示例 32. 求 $f(x) = x^m$ 的 Laplace 变换, $m \in \mathbb{N}$

解法一 (Solution 1):

前面已证(例如通过 Gamma 函数或直接积分得到)当 m > -1 时 (这里 m 是 自然数,所以满足此条件):

$$\mathcal{L}{x^m}(z) = \frac{\Gamma(m+1)}{z^{m+1}} = \frac{m!}{z^{m+1}}$$

解法二 (Solution 2 using differentiation property generalization):

将二阶微分公式 $\mathcal{L}\{f''(x)\}(z) = z^2 \mathcal{L}\{f(x)\}(z) - z f(0^+) - f'(0^+)$ 推广为 n 阶 微分公式:

$$\mathcal{L}\lbrace f^{(n)}(x)\rbrace(z) = z^n \mathcal{L}\lbrace f(x)\rbrace(z) - \sum_{i=0}^{n-1} z^{n-1-j} f^{(j)}(0^+)$$
 (18.3)

当 $m \in \mathbb{N}$ 时,令 $f(x) = x^m$. 则 $f(0^+) = 0, f'(0^+) = 0, \dots, f^{(m-1)}(0^+) = 0$. 而 $f^{(m)}(x) = m!$.

取 n = m (即求 m 阶导数的 Laplace 变换), 代入 (18.3):

$$\mathcal{L}\{f^{(m)}(x)\}(z) = z^m \mathcal{L}\{f(x)\}(z) - \sum_{j=0}^{m-1} z^{m-1-j} f^{(j)}(0^+)$$

由于 $f^{(j)}(0^+) = 0$ for j = 0, ..., m-1, 上式右边的求和项为 0.

$$\mathcal{L}\{m!\}(z) = z^m \mathcal{L}\{x^m\}(z)$$

我们知道 $\mathcal{L}\{1\}(z) = \frac{1}{z}$. 因为 m! 是常数,所以 $\mathcal{L}\{m!\}(z) = m!\mathcal{L}\{1\}(z) = m!\frac{1}{z}$. 因此:

$$m!\frac{1}{z} = z^m \mathcal{L}\{x^m\}(z)$$

故

$$\mathcal{L}\{x^m\}(z) = \frac{m!}{z^{m+1}}$$

示例 33. 已知 $\mathcal{L}\{f(x)\}(z) = \frac{1}{(z^2+4z+13)^2}$, 求 f(x)

解 (Solution):

首先,对分母进行配方:

$$z^{2} + 4z + 13 = (z^{2} + 4z + 4) + 9 = (z + 2)^{2} + 3^{2}$$

所以,

$$\mathcal{L}{f(x)}(z) = \frac{1}{((z+2)^2+3^2)^2} = \frac{1}{9} \cdot \frac{3}{((z+2)^2+3^2)} \cdot \frac{3}{((z+2)^2+3^2)}$$

因为

$$\mathcal{L}\{\sin(3x)\}(z) = \frac{3}{z^2 + 3^2}$$

利用 z 域平移性质 $\mathcal{L}\lbrace e^{ax}g(x)\rbrace(z)=G(z-a),$ 令 a=-2, $g(x)=\sin(3x),$ 则

$$\mathcal{L}\left\{e^{-2x}\sin(3x)\right\}(z) = \frac{3}{(z - (-2))^2 + 3^2} = \frac{3}{(z + 2)^2 + 3^2}$$

令 $G_1(z) = \mathcal{L}\{e^{-2x}\sin(3x)\}(z) = \frac{3}{(z+2)^2+3^2}$. 则题目给出的变换可以写作:

$$\mathcal{L}\{f(x)\}(z) = \frac{1}{9} \left(\frac{3}{(z+2)^2 + 3^2} \right) \left(\frac{3}{(z+2)^2 + 3^2} \right) = \frac{1}{9} G_1(z) \cdot G_1(z)$$

根据 Laplace 变换的卷积定理, 时域卷积对应频域相乘:

$$\mathcal{L}\{g_1(x) * g_2(x)\}(z) = G_1(z)G_2(z)$$

这里 $g_1(x) = e^{-2x} \sin(3x)$. 故

$$f(x) = \frac{1}{9} \left((e^{-2x} \sin(3x)) * (e^{-2x} \sin(3x)) \right)$$
$$= \frac{1}{9} \int_0^x e^{-2\tau} \sin(3\tau) \cdot e^{-2(x-\tau)} \sin(3(x-\tau)) d\tau$$
$$= \frac{1}{9} e^{-2x} \int_0^x \sin(3\tau) \sin(3x-3\tau) d\tau$$

利用积化和差公式 $\sin A \sin B = \frac{1}{2} [\cos(A-B) - \cos(A+B)]$:

$$\sin(3\tau)\sin(3x - 3\tau) = \frac{1}{2}[\cos(3\tau - (3x - 3\tau)) - \cos(3\tau + (3x - 3\tau))]$$
$$= \frac{1}{2}[\cos(6\tau - 3x) - \cos(3x)]$$

所以积分部分为:

$$\int_0^x \frac{1}{2} [\cos(6\tau - 3x) - \cos(3x)] d\tau = \frac{1}{2} \left[\frac{1}{6} \sin(6\tau - 3x) - \tau \cos(3x) \right]_0^x$$

$$= \frac{1}{2} \left[\left(\frac{1}{6} \sin(3x) - x \cos(3x) \right) - \left(\frac{1}{6} \sin(-3x) - 0 \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{6} \sin(3x) - x \cos(3x) + \frac{1}{6} \sin(3x) \right]$$

$$= \frac{1}{2} \left[\frac{1}{3} \sin(3x) - x \cos(3x) \right]$$

代回 f(x) 的表达式:

$$f(x) = \frac{1}{9}e^{-2x} \cdot \frac{1}{2} \left[\frac{1}{3}\sin(3x) - x\cos(3x) \right]$$
$$= \frac{1}{18}e^{-2x} \left(\frac{\sin(3x)}{3} - x\cos(3x) \right)$$
$$= \frac{1}{54}e^{-2x} (\sin(3x) - 3x\cos(3x))$$

示例 34.
$$\mathcal{L}\{f(x)\}(z) = \frac{z}{(z^2+1)^2}e^{-az}$$
 $(z>0)$, 求 $f(x)$

解 (Solution):

首先考虑没有延迟项的部分,令 $G(z) = \frac{z}{(z^2+1)^2}$. 我们知道:

$$\mathcal{L}\{\sin(x)\}(z) = \frac{1}{z^2 + 1}$$
$$\mathcal{L}\{\cos(x)\}(z) = \frac{z}{z^2 + 1}$$

G(z) 可以看作是 $\mathcal{L}\{\cos(x)\}(z)$ 与 $\mathcal{L}\{\sin(x)\}(z)$ 的乘积。或者,注意到 $\frac{d}{dz}\left(\frac{-1}{z^2+1}\right)=\frac{2z}{(z^2+1)^2}$. 以及 $-z\frac{dF(z)}{dz} \Leftrightarrow xf(x)$.

另一种思路,使用卷积:令 $H_1(z)=\frac{z}{z^2+1}$ 和 $H_2(z)=\frac{1}{z^2+1}$. 则 $h_1(x)=\cos(x)$ 和 $h_2(x)=\sin(x)$. $G(z)=H_1(z)H_2(z)$,所以 $g(x)=h_1(x)*h_2(x)$.

$$g(x) = \cos(x) * \sin(x) = \int_0^x \cos(\tau) \sin(x - \tau) d\tau$$
利用积化和差公式 $\sin A \cos B = \frac{1}{2} [\sin(A + B) + \sin(A - B)] :$
$$\sin(x - \tau) \cos(\tau) = \frac{1}{2} [\sin(x - \tau + \tau) + \sin(x - \tau - \tau)]$$
$$= \frac{1}{2} [\sin(x) + \sin(x - 2\tau)]$$

所以

$$g(x) = \int_0^x \frac{1}{2} [\sin(x) + \sin(x - 2\tau)] d\tau$$

$$= \frac{1}{2} \left[\tau \sin(x) - \frac{1}{-2} \cos(x - 2\tau) \right]_0^x$$

$$= \frac{1}{2} \left[\tau \sin(x) + \frac{1}{2} \cos(x - 2\tau) \right]_0^x$$

$$= \frac{1}{2} \left[\left(x \sin(x) + \frac{1}{2} \cos(-x) \right) - \left(0 + \frac{1}{2} \cos(x) \right) \right]$$

$$= \frac{1}{2} \left[x \sin(x) + \frac{1}{2} \cos(x) - \frac{1}{2} \cos(x) \right]$$

$$= \frac{1}{2} x \sin(x)$$

所以, $g(x)=\mathcal{L}^{-1}\left\{\frac{z}{(z^2+1)^2}\right\}(x)=\frac{1}{2}x\sin(x)$,对于 $x\geq 0$. (也可记作 $\frac{1}{2}x\sin x\mathcal{X}_{(0,+\infty)}(x)$, \mathcal{X} 是特征函数 u(x)).

题目给出的变换是 $\mathcal{L}\{f(x)\}(z)=G(z)e^{-az}$. 根据 x 域平移(延迟)性质:

$$\mathcal{L}\{g(x-a)u(x-a)\}(z) = G(z)e^{-az}$$

其中 u(x-a) 是单位阶跃函数。因此,

$$f(x) = g(x - a)u(x - a) = \frac{1}{2}(x - a)\sin(x - a)u(x - a)$$

Chapter 19

Laplace 变换与卷积

19.1 卷积的性质

(1) f,g 是因果信号 (causal signals) (即,当 t<0 时,f(t)=0,g(t)=0) 时,f*g 的形式:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$
$$= \int_{0}^{\infty} f(\tau)g(t - \tau) d\tau \qquad = \int_{0}^{t} f(\tau)g(t - \tau) d\tau$$

即,对于因果信号 f,g:

$$(f * g)(t) = \int_0^t f(\tau)g(t - \tau) d\tau$$

$$= \int_0^t f(t - \tau)g(\tau) d\tau \quad (利用卷积的交换律)$$
(19.1)

(2) 卷积的导数 (Derivative of Convolution):

$$\frac{\mathrm{d}}{\mathrm{d}t}(f * g)(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_0^t f(\tau)g(t - \tau) \,\mathrm{d}\tau \right)$$

使用 Leibniz 积分法则:

$$\frac{\mathrm{d}}{\mathrm{d}t}(f*g)(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_0^t f(\tau)g(t-\tau) \,\mathrm{d}\tau \right)$$

$$= f(t)g(t-t) \cdot \frac{\mathrm{d}(t)}{\mathrm{d}t} - f(0)g(t-0) \cdot \frac{\mathrm{d}(0)}{\mathrm{d}t} + \int_0^t f(\tau)\frac{\partial}{\partial t}(g(t-\tau)) \,\mathrm{d}\tau$$

$$= f(t)g(0) + \int_0^t f(\tau)g'(t-\tau) \,\mathrm{d}\tau$$

$$= f(t)g(0) + (f*g')(t) \tag{19.3}$$

对称地,使用 $(f * g)(t) = \int_0^t f(t-\tau)g(\tau) d\tau$:

$$\frac{\mathrm{d}}{\mathrm{d}t}(f * g)(t) = f(t - t)g(t) \cdot \frac{\mathrm{d}(t)}{\mathrm{d}t} - f(t - 0)g(0) \cdot \frac{\mathrm{d}(0)}{\mathrm{d}t} + \int_0^t \frac{\partial}{\partial t}(f(t - \tau))g(\tau) \,\mathrm{d}\tau$$

$$= f(0)g(t) + \int_0^t f'(t - \tau)g(\tau) \,\mathrm{d}\tau$$

$$= f(0)g(t) + (f' * g)(t) \tag{19.4}$$

(注: 您的笔记中分别展示了这两种形式。)

(3) 卷积的积分 (Integration of Convolution): 考虑 $\int_0^t (f*g)(\sigma) d\sigma$. (Using '' as the outer integration variable to avoid clash with 't' as upper limit)

$$\int_0^t (f * g)(\sigma) d\sigma = \int_0^t \left(\int_0^\sigma f(\tau) g(\sigma - \tau) d\tau \right) d\sigma = \int_0^t d\sigma \left(\int_0^\sigma f(\tau) g(\sigma - \tau) d\tau \right)$$

通过交换积分次序

$$\int_0^t (f * g)(\sigma) d\sigma = \int_0^t d\tau \left(\int_0^\tau f(\tau)g(\sigma - \tau) d\sigma \right)$$

对于内层积分,令 $u=\sigma-\tau$,则 $\mathrm{d}u=\mathrm{d}\sigma$. 当 $\sigma=\tau$,u=0. 当 $\sigma=t$, $u=t-\tau$.

$$\int_{\tau}^{t} g(\sigma - \tau) d\sigma = \int_{0}^{t-\tau} g(u) du$$

因此,

$$\int_{0}^{t} (f * g)(\sigma) d\sigma = \int_{0}^{t} f(\tau) \left(\int_{0}^{t-\tau} g(u) du \right) d\tau$$

$$= \left(f * \left(\int_{0}^{\cdot} g(u) du \right) \right) (t)$$
(19.5)

19.2 Laplace 变换的卷积定理

设 f(t), g(t) 为因果信号 (causal signals), $\mathcal{L}\{f(t)\}(z)$ 和 $\mathcal{L}\{g(t)\}(z)$ 存在,且 f,g 有适当的增长阶 (exponential order) (笔记中写的是"衰减性更强",应指其 绝对值被指数函数所界定,以确保 Laplace 变换收敛)。则 (卷积变乘积):

Theorem 35 (Laplace 变换的卷积定理).

$$\mathcal{L}\{(f*g)(t)\}(z) = \mathcal{L}\{f(t)\}(z) \cdot \mathcal{L}\{g(t)\}(z) = F(z)G(z)$$

形式证明 (Formal Proof).

$$\mathcal{L}\{(f * g)(t)\}(z) = \int_0^\infty (f * g)(t)e^{-zt} dt$$
$$= \int_0^\infty \left(\int_0^t f(\tau)g(t-\tau) d\tau\right)e^{-zt} dt$$

交换积分次序。积分区域为 $0 \le \tau \le t$ 和 $0 \le t < \infty$. 交换后为 $0 \le \tau < \infty$ 和 $\tau \le t < \infty$. (与上一节中卷积积分的图类似,但外层积分到 ∞)

$$\mathcal{L}\{(f*g)(t)\}(z) = \int_0^\infty f(\tau) \left(\int_\tau^\infty g(t-\tau)e^{-zt} dt \right) d\tau$$

对内层积分,令 $u=t-\tau$,则 $t=u+\tau$,d $u=\mathrm{d}t$. 当 $t=\tau,u=0$. 当 $t\to\infty,u\to\infty$.

$$\begin{split} \int_{\tau}^{\infty} g(t-\tau)e^{-zt} \, \mathrm{d}t &= \int_{0}^{\infty} g(u)e^{-z(u+\tau)} \, \mathrm{d}u \\ &= \int_{0}^{\infty} g(u)e^{-zu}e^{-z\tau} \, \mathrm{d}u \\ &= e^{-z\tau} \int_{0}^{\infty} g(u)e^{-zu} \, \mathrm{d}u \\ &= e^{-z\tau} G(z) \end{split}$$

代回外层积分:

$$\mathcal{L}\{(f * g)(t)\}(z) = \int_0^\infty f(\tau) \left(e^{-z\tau}G(z)\right) d\tau$$
$$= G(z) \int_0^\infty f(\tau)e^{-z\tau} d\tau$$
$$= G(z)F(z) = F(z)G(z)$$

示例 36.
$$\mathcal{L}\{f(t)\}(z) = \frac{1}{z^2(1+z^2)}$$
, 求 $f(t)$

解 (Solution):

 \diamondsuit $F_1(z) = \frac{1}{z^2}$ 和 $F_2(z) = \frac{1}{1+z^2}$. 已知:

$$\mathcal{L}\{t\}(z) = \frac{1}{z^2} \quad \Rightarrow \quad f_1(t) = t$$

$$\mathcal{L}\{\sin(t)\}(z) = \frac{1}{1+z^2} \quad \Rightarrow \quad f_2(t) = \sin(t)$$

根据卷积定理的逆定理, $\mathcal{L}^{-1}\{F_1(z)F_2(z)\}(t)=(f_1*f_2)(t)$. 这里 $f_1(t)=t\cdot u(t)$ 和 $f_2(t)=\sin(t)\cdot u(t)$ (视为因果信号,其中 u(t) 是单位阶跃函数)。您的笔记中写的是 $f(t)=(t*\sin t\cdot \mathcal{X}_{(0,+\infty)})(t)$.

$$f(t) = (t * \sin t)(t) = \int_0^t \tau \sin(t - \tau) d\tau$$

使用分部积分法 $\int u \, dv = uv - \int v \, du$. 令 $u_p = \tau$, $dv_p = \sin(t - \tau) \, d\tau$. Then $du_p = d\tau$, $v_p = \cos(t - \tau)$ (注意 $\sin(A - B)$ 积分时符号变化, $\int \sin(C - x) dx = \cos(C - x)$).

$$f(t) = [\tau \cos(t - \tau)]_0^t - \int_0^t \cos(t - \tau) d\tau$$

$$= (t \cos(0) - 0 \cos(t)) - [-\sin(t - \tau)]_0^t$$

$$= t - (-\sin(0) - (-\sin(t)))$$

$$= t - (0 + \sin(t))$$

$$= t - \sin(t)$$

所以 $f(t) = (t - \sin t)u(t)$.

示例 37.
$$\mathcal{L}\{f(t)\}(z) = \frac{z^2}{(z^2+1)^2}$$
, 求 $f(t)$

解 (Solution):

 $\diamondsuit F_1(z) = \frac{z}{z^2+1}$ 和 $F_2(z) = \frac{z}{z^2+1}$. 已知:

$$\mathcal{L}\{\cos(t)\}(z) = \frac{z}{z^2 + 1}$$
 \Rightarrow $f_1(t) = f_2(t) = \cos(t)$

根据卷积定理的逆定理: $f(t) = (\cos t * \cos t)(t)$. (假设 $\cos t$ 是因果信号 $\cos(t)u(t)$)

$$f(t) = \int_0^t \cos(\tau) \cos(t - \tau) d\tau$$

利用积化和差公式 $\cos A \cos B = \frac{1}{2} [\cos(A-B) + \cos(A+B)]$:

$$\cos(\tau)\cos(t-\tau) = \frac{1}{2}[\cos(\tau - (t-\tau)) + \cos(\tau + (t-\tau))]$$
$$= \frac{1}{2}[\cos(2\tau - t) + \cos(t)]$$

所以

$$f(t) = \int_0^t \frac{1}{2} [\cos(2\tau - t) + \cos(t)] d\tau$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(2\tau - t) + \tau \cos(t) \right]_0^t$$

$$= \frac{1}{2} \left[\left(\frac{1}{2} \sin(t) + t \cos(t) \right) - \left(\frac{1}{2} \sin(-t) + 0 \cos(t) \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(t) + t \cos(t) - \left(-\frac{1}{2} \sin(t) \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{2} \sin(t) + t \cos(t) + \frac{1}{2} \sin(t) \right]$$

$$= \frac{1}{2} [\sin(t) + t \cos(t)]$$

所以 $f(t) = \frac{1}{2}(\sin t + t\cos t)u(t)$.

Note: 视 $\cos t$ 为因果信号 $\cos t \cdot \mathcal{X}_{(0,+\infty)}$. 则卷积公式为 $\int_0^t f(\tau)g(t-\tau)d\tau$.

示例 38. 求 $f(t) = t\sin(kt)$ 的 Laplace 变换

解 (Solution):

回顾时域微分性质 $\mathcal{L}\left\{\frac{\mathrm{d}f}{\mathrm{d}t}\right\}(z) = z\mathcal{L}\left\{f(t)\right\}(z) - f(0^+)$ 。对应的 z 域(频域)微分性质是(当 $\mathcal{L}\left\{f(t)\right\}(z) = F(z) = \int_0^\infty f(t)e^{-zt}\,\mathrm{d}t$ 时,对 z 求导):

$$\frac{\mathrm{d}}{\mathrm{d}z}F(z) = -\mathcal{L}\{tf(t)\}(z)$$

推广形式为 (Higher-order frequency differentiation):

$$\frac{\mathrm{d}^n}{\mathrm{d}z^n}F(z) = (-1)^n \mathcal{L}\{t^n f(t)\}(z)$$
(19.6)

或者写作 $\mathcal{L}\{t^n f(t)\}(z) = (-1)^n \frac{\mathrm{d}^n F(z)}{\mathrm{d} z^n}.$ 对于本例,我们应用 n=1 的情况: $\mathcal{L}\{t\sin(kt)\}(z) = -\frac{\mathrm{d}}{\mathrm{d} z}\mathcal{L}\{\sin(kt)\}(z).$ 已 知 $\mathcal{L}\{\sin(kt)\}(z) = \frac{k}{z^2 + k^2}$.

$$\mathcal{L}\{t\sin(kt)\}(z) = -\frac{\mathrm{d}}{\mathrm{d}z}\mathcal{L}\{\sin(kt)\}(z) = -\frac{\mathrm{d}}{\mathrm{d}z}\left(\frac{k}{z^2 + k^2}\right)$$
$$= -k\frac{\mathrm{d}}{\mathrm{d}z}(z^2 + k^2)^{-1} = -k(-1)(z^2 + k^2)^{-2}(2z)$$
$$= \frac{2kz}{(z^2 + k^2)^2} \quad (\operatorname{Re}(z) > 0)$$

Note: $\mathcal{L}\{t\cos(kt)\}(z) = -\frac{\mathrm{d}}{\mathrm{d}z}\mathcal{L}\{\cos(kt)\}(z)$. 已知 $\mathcal{L}\{\cos(kt)\}(z) = \frac{z}{z^2+k^2}$.

$$\mathcal{L}\{t\cos(kt)\}(z) = -\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{z}{z^2 + k^2}\right)$$

$$= -\frac{(z^2 + k^2)(1) - z(2z)}{(z^2 + k^2)^2} = -\frac{z^2 + k^2 - 2z^2}{(z^2 + k^2)^2}$$

$$= -\frac{k^2 - z^2}{(z^2 + k^2)^2} = \frac{z^2 - k^2}{(z^2 + k^2)^2} \quad (\operatorname{Re}(z) > 0)$$

示例 39. 频域积分性质证明及其应用

笔记中提到时域积分公式 $\mathcal{L}\left\{\int_0^t f(x) \, \mathrm{d}x\right\}(z) = \frac{F(z)}{z}$. 对应的频域积分公式是:

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(z) = \int_{z}^{\infty} F(s) \,\mathrm{d}s \tag{19.7}$$

(条件是 $\lim_{t\to 0^+} \frac{f(t)}{t}$ 存在或 $\mathcal{L}\{\frac{f(t)}{t}\}$ 存在。) 证明思路 (Proof Idea):

利用 $\frac{\mathrm{d}}{\mathrm{d}z}G(z) = -\mathcal{L}\{tg(t)\}(z)$. 令 $g(t) = \frac{f(t)}{t}$. 设 $G(z) = \mathcal{L}\{g(t)\}(z) = \mathcal{L}\left\{\frac{f(t)}{t}\right\}(z)$. 则 $\frac{\mathrm{d}}{\mathrm{d}z}G(z) = -\mathcal{L}\left\{t\cdot\frac{f(t)}{t}\right\}(z) = -\mathcal{L}\{f(t)\}(z) = -F(z)$. 两边 从 z 到 ∞ 对变量 s 积分 (假设 $G(s) \to 0$ 当 $s \to \infty$):

$$\int_{z}^{\infty} \frac{dG(s)}{ds} ds = \int_{z}^{\infty} (-F(s)) ds$$
$$[G(s)]_{z}^{\infty} = -\int_{z}^{\infty} F(s) ds$$
$$G(\infty) - G(z) = -\int_{z}^{\infty} F(s) ds$$

假设 $G(\infty) = \lim_{s \to \infty} \mathcal{L}\left\{\frac{f(t)}{t}\right\}(s) = 0$. 则 $-G(z) = -\int_z^\infty F(s) \,\mathrm{d}s$,所以 $G(z) = \int_z^\infty F(s) \, \mathrm{d}s.$ $\mathbb{H} \mathcal{L}\left\{\frac{f(t)}{t}\right\}(z) = \int_z^\infty F(s) \, \mathrm{d}s.$

应用 (Application): 计算 $f(t) = \frac{\sinh(t)}{t}$ 的 Laplace 变换。其中 $\sinh(t)$ 为双曲 正弦函数, $\sinh(t) = \frac{e^t - e^{-t}}{2}$. 首先,求 $\mathcal{L}\{\sinh(t)\}(z)$,记为 H(z):

$$H(z) = \mathcal{L}\{\sinh(t)\}(z) = \frac{1}{2} \left(\mathcal{L}\{e^t\}(z) - \mathcal{L}\{e^{-t}\}(z) \right)$$
$$= \frac{1}{2} \left(\frac{1}{z-1} - \frac{1}{z+1} \right)$$
$$= \frac{1}{2} \frac{(z+1) - (z-1)}{(z-1)(z+1)} = \frac{1}{z^2 - 1}$$

则 $\mathcal{L}\left\{\frac{\sinh(t)}{t}\right\}(z) = \int_z^\infty H(s)\,\mathrm{d}s = \int_z^\infty \frac{1}{s^2-1}\,\mathrm{d}s$. 使用部分分式分解: $\frac{1}{s^2-1} = \int_z^\infty H(s)\,\mathrm{d}s$ $\frac{1}{2}\left(\frac{1}{s-1}-\frac{1}{s+1}\right).$

$$\int_{z}^{\infty} \frac{1}{2} \left(\frac{1}{s-1} - \frac{1}{s+1} \right) ds = \frac{1}{2} \left[\ln|s-1| - \ln|s+1| \right]_{z}^{\infty}$$

$$= \frac{1}{2} \left[\ln \left| \frac{s-1}{s+1} \right| \right]_{z}^{\infty}$$

$$= \frac{1}{2} \left(\lim_{s \to \infty} \ln \left| \frac{1-1/s}{1+1/s} \right| - \ln \left| \frac{z-1}{z+1} \right| \right)$$

$$= \frac{1}{2} \left(\ln|1| - \ln \left| \frac{z-1}{z+1} \right| \right)$$

$$= -\frac{1}{2} \ln \left| \frac{z-1}{z+1} \right| = \frac{1}{2} \ln \left| \frac{z+1}{z-1} \right|$$

(收敛域 Re(z) > 1)

注 (Note): 利用公式 $\mathcal{L}\left\{\frac{f(t)}{t}\right\}(z) = \int_z^\infty F(s) \,\mathrm{d}s$ 可以计算一些特殊定积分。 回顾 Laplace 变换的定义:

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(z) = \int_0^\infty \frac{f(t)}{t} e^{-zt} dt$$

所以,

$$\int_0^\infty \frac{f(t)}{t} e^{-zt} dt = \int_z^\infty F(s) ds$$

令 z=0, 若左端 $\int_0^\infty \frac{f(t)}{t} dt$ 存在 (即积分收敛),则有:

$$\int_0^\infty \frac{f(t)}{t} dt = \int_0^\infty F(s) ds$$
 (19.8)

以 $f(t) = \sin t$ 为例。则 $F(s) = \mathcal{L}\{\sin t\}(s) = \frac{1}{s^2+1}$. 故

$$\int_0^\infty \frac{\sin t}{t} dt = \int_0^\infty \frac{1}{s^2 + 1} ds$$
$$= \left[\arctan(s)\right]_0^\infty = \lim_{s \to \infty} \arctan(s) - \arctan(0)$$
$$= \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

注: Dirichlet 积分 $\int_0^\infty \frac{\sin t}{t} \, \mathrm{d}t$ 在数学分析中非常重要。笔记中提到了含参积分的方法,例如考虑积分:

$$J(p) = \int_0^\infty e^{-pt} \frac{\sin(bt) - \sin(at)}{t} dt \quad (p > 0, b > a > 0 \text{ or similar conditions})$$

这可以通过对 $\frac{\sin(xt)}{t}$ 关于 x 从 a 到 b 积分,再与 e^{-pt} 相乘后对 t 积分得到。或者利用 $\frac{\sin(bt)-\sin(at)}{t}=\int_a^b\cos(yt)\,\mathrm{d}y$. 则

$$J(p) = \int_0^\infty e^{-pt} \left(\int_a^b \cos(yt) \, \mathrm{d}y \right) \mathrm{d}t$$

若 $\int_0^\infty e^{-pt}\cos(yt)dt$ 一致收敛,积分可换序

$$= \int_{a}^{b} \left(\int_{0}^{\infty} e^{-pt} \cos(yt) dt \right) dy$$

已知 $\mathcal{L}\{\cos(yt)\}(p) = \int_0^\infty e^{-pt}\cos(yt)\,\mathrm{d}t = \frac{p}{p^2+y^2}$. 所以

$$J(p) = \int_{a}^{b} \frac{p}{p^{2} + y^{2}} dy = p \int_{a}^{b} \frac{1}{p^{2} + y^{2}} dy$$
$$= p \left[\frac{1}{p} \arctan\left(\frac{y}{p}\right) \right]_{a}^{b} = \arctan\left(\frac{b}{p}\right) - \arctan\left(\frac{a}{p}\right)$$

特别地,对于 $\int_0^\infty \frac{\sin(ax)}{x} \, \mathrm{d}x$: 令 $p \to 0^+$ (在上述 J(p) 的结果中,如果 $a=0,b=a_0>0)$

$$\int_0^\infty \frac{\sin(a_0 x)}{x} \, \mathrm{d}x = \lim_{p \to 0^+} \left(\arctan\left(\frac{a_0}{p}\right) - \arctan(0) \right)$$

如果 $a_0 > 0$, $\lim_{p\to 0^+} \arctan(a_0/p) = \arctan(+\infty) = \pi/2$. 如果 $a_0 < 0$, $\lim_{p\to 0^+} \arctan(a_0/p) = \arctan(-\infty) = -\pi/2$. 如果 $a_0 = 0$, 积分为 0. 所 以 $\int_0^\infty \frac{\sin(ax)}{x} dx = \frac{\pi}{2} \operatorname{sgn}(a)$, 其中 $\operatorname{sgn}(a)$ 是符号函数。

注: 根据傅里叶逆变换在 t=0 处的值,或者利用 Parseval 定理,可以得到 $\int_{-\infty}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x = \pi$,进而 $\int_{0}^{\infty} \frac{\sin x}{x} \, \mathrm{d}x = \pi/2$. 即傅立叶变换 $\sqrt{\frac{\pi}{2}} \frac{\sin t}{t} \Leftrightarrow \mathcal{X}_{(-1,1)}(\omega)$ 利用则有 $\int_{0}^{\infty} \frac{\sin t}{t} \, \mathrm{d}t = \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin t}{t} \, \mathrm{d}t$.

示例 40. 利用 z 域位移性质计算 $\mathcal{L}\lbrace e^{at}t^{m}\rbrace(z)$

解 (Solution):

已知 $\mathcal{L}\{t^m\}(z)=\frac{m!}{z^{m+1}}$ (或 $\frac{\Gamma(m+1)}{z^{m+1}}$ 对于非整数 m>-1)。利用 z 域位移性质 (Frequency Shifting Property): $\mathcal{L}\{e^{at}f(t)\}(z)=F(z-a)$, 其中 $F(z)=\mathcal{L}\{f(t)\}(z)$. 令 $f(t)=t^m$,则 $F(z)=\frac{m!}{z^{m+1}}$. 故

$$\mathcal{L}\{e^{at}t^m\}(z) = F(z-a) = \frac{m!}{(z-a)^{m+1}}$$

示例 41. 计算 $\mathcal{L}\lbrace e^{-at}\sin(kt)\rbrace(z)$

解 (Solution):

已知 $\mathcal{L}\{\sin(kt)\}(z) = \frac{k}{z^2+k^2}$. 令 $f(t) = \sin(kt)$, 则 $F(z) = \frac{k}{z^2+k^2}$. 应用 z 域位

$$\mathcal{L}\{e^{-at}\sin(kt)\}(z) = F(z - (-a)) = F(z + a) = \frac{k}{(z+a)^2 + k^2}$$

示例 42. 利用时域延迟性质计算 $\mathcal{L}{f(t)}(z)$, 其中 $f(t) = \begin{cases} 1, & t > \tau \\ 0, & t < \tau \end{cases}$

解 (Solution):

令单位阶跃函数 $u(t) = \begin{cases} 1, & t > 0 \\ 0, & t < 0 \end{cases}$ (在 t = 0 处的值通常定义为 1/2 或根据上 下文而定,对于 Laplace 变换通常关注 t > 0 的部分)。已知 $\mathcal{L}\{u(t)\}(z) = \frac{1}{z}$.

题目给出的函数 f(t) 可以表示为 $u(t-\tau)$. 利用时域延迟性质 (Time Shifting

Property): $\mathcal{L}\{g(t-b)u(t-b)\}(z) = e^{-bz}G(z)$, 其中 $G(z) = \mathcal{L}\{g(t)\}(z)$ 且 b > 0. 在这里,令 g(t) = u(t),则 $G(z) = \frac{1}{z}$ 。延迟 $b = \tau$. 所以

$$\mathcal{L}\{u(t-\tau)\}(z) = e^{-\tau z}\mathcal{L}\{u(t)\}(z) = e^{-\tau z}\frac{1}{z} = \frac{e^{-\tau z}}{z}$$

示例 43. 求 $f_1(t) = \cos(t - \tau)u(t - \tau)$ 和 $f_2(t) = \cos(t - \tau)$ 的 Laplace 变换 $(\tau > 0)$

解 (Solution):

(1) 求 $\mathcal{L}\{f_1(t)\}(z)$ 其中 $f_1(t) = \cos(t-\tau)u(t-\tau)$. 令 $g(t) = \cos(t)u(t)$. 则 $\mathcal{L}\{g(t)\}(z) = G(z) = \frac{z}{z^2+1}$. $f_1(t)$ 是 g(t) 延迟 τ 的结果,即 $f_1(t) = g(t-\tau)$. 根据时域延迟性质:

$$\mathcal{L}\{f_1(t)\}(z) = \mathcal{L}\{g(t-\tau)\}(z) = e^{-\tau z}G(z) = e^{-\tau z}\frac{z}{z^2 + 1}$$

(2) 求 $\mathcal{L}\{f_2(t)\}(z)$ 其中 $f_2(t) = \cos(t-\tau)$. 注意 $f_2(t) = \cos(t-\tau)$ 对于所有 t 都定义,包括 t<0 时 $\cos(t-\tau)$ 通常不为零。如果直接应用单边 Laplace 变换的定义,且我们只关心 $t\geq0$ 的部分,则需要看 $f_2(t)$ 在 t<0 时的值是否影响 $t\geq0$ 的变换。然而,单边 Laplace 变换通常假设被积函数在 t<0 时为 0。如果 $f_2(t)$ 被理解为 $\cos(t-\tau)u(t)$ (即在 t<0 时截断为 0,但在 $0< t<\tau$ 时不为 0),则不能直接用延迟性质处理 $\cos(t)u(t)$ 的延迟。

 $f_2(t) = \cos(t - \tau) = \cos t \cos \tau + \sin t \sin \tau$. 假设我们求的是 $\mathcal{L}\{\cos(t - \tau)u(t)\}(z)$:

$$\mathcal{L}\lbrace f_2(t)u(t)\rbrace(z) = \mathcal{L}\lbrace (\cos t \cos \tau + \sin t \sin \tau)u(t)\rbrace(z)$$

$$= \cos \tau \mathcal{L}\lbrace \cos t \cdot u(t)\rbrace(z) + \sin \tau \mathcal{L}\lbrace \sin t \cdot u(t)\rbrace(z)$$

$$= \cos \tau \frac{z}{z^2 + 1} + \sin \tau \frac{1}{z^2 + 1}$$

$$= \frac{z \cos \tau + \sin \tau}{z^2 + 1}$$

注: $\mathcal{L}\{\cos(t-\tau)\}(z) = e^{-\tau z}\mathcal{L}\{\cos t \cdot u(t)\}(z) = e^{-\tau z}\frac{z}{z^2+1}$ 是错误的!!! 这是与傅立叶变换平移调制不同的地方!

示例 44 (阶梯函数的 Laplace 变换). 设函数 f(t) 定义为:

$$f(t) = \begin{cases} A, & t \in [0, \tau) \\ 2A, & t \in (\tau, 2\tau] \\ 3A, & t \in (2\tau, 3\tau] \\ \vdots & \vdots \end{cases}$$

图 19.1: 阶梯函数 f(t) 的图像

解 (Solution for Example 9):

$$f(t) = A \sum_{k=0}^{\infty} u(t - k\tau)$$

利用

$$\mathcal{L}\{u(t-k\tau)\}(z) = e^{-k\tau z} \frac{1}{z}$$

则

$$\mathcal{L}{f(t)}(z) = \frac{A}{z} \sum_{k=0}^{\infty} e^{-k\tau z}$$

由于 Re(z) > 0, 则

$$\mathcal{L}\{f(t)\}(z) = \frac{A}{z(1-e^{-\tau z})}$$

示例 45. 半波正弦函数的 Laplace 变换 函数定义如下:

$$f(x) = \begin{cases} \sin\frac{2\pi}{T}x, & x \in (0, \frac{T}{2}) \\ 0, & \not\pm \dot{\Xi} \end{cases}$$
 (19.9)

图 19.2: 单个正弦半波的图像

解 (Solution for Example 10):

$$sin\frac{2\pi}{T}t+\sin\frac{2\pi}{T}\left(t-\frac{T}{2}\right)=\sin\frac{2\pi}{T}t\cdot\chi_{\left(0,\frac{T}{2}\right)}$$

故 $f(t)=\sin\left(\frac{2\pi}{T}t\right)u(t)+\sin\left(\frac{2\pi}{T}\left(t-\frac{T}{2}\right)\right)u\left(t-\frac{T}{2}\right)$. (等价于 $f(t)=\sin\left(\frac{2\pi}{T}t\right)$ for $t\in[0,T/2]$ and 0 otherwise。)

$$\mathcal{L}\left(\sin(\frac{2\pi}{T}t)\cdot u(t)\right)(s) = \mathcal{L}\left(\sin\frac{2\pi}{T}t\right)(s) = \frac{\frac{2\pi}{T}}{s^2 + \left(\frac{2\pi}{T}\right)^2}$$

利用延时性质知
$$\mathcal{L}\left(\sin\frac{2\pi}{T}\left(t-\frac{T}{2}\right)u\left(t-\frac{T}{2}\right)\right)(s)=e^{-\frac{T}{2}s}\cdot\frac{\frac{2\pi}{T}}{s^2+\left(\frac{2\pi}{T}\right)^2}$$

故
$$\mathcal{L}f(s) = \left(1 + e^{-\frac{T}{2}s}\right) \frac{\frac{2\pi}{T}}{s^2 + \left(\frac{2\pi}{T}\right)^2}$$

示例 46. f_T 为 T 周期函数。 其中 $f_{T}x_{(0,\frac{T}{2})}$ 为例 10 中的半波正弦, $\sin\frac{2\pi}{T}tx_{(0,\frac{T}{2})}$ 。求 $\mathcal{L}f_T(s)$ 。

图 19.3:

由上一个例题可知

$$\mathcal{L}\left(\sin\frac{2\pi}{T}t \cdot x_{(0,\frac{T}{2})}\right)(s) = \frac{\frac{2\pi}{T}}{s^2 + \left(\frac{2\pi}{T}\right)^2} \cdot \left(1 + e^{-\frac{T}{2}s}\right)$$

利用周期性:

$$\mathcal{L}f_T(s) = \frac{1}{1 - e^{-Ts}} \cdot \mathcal{L}\left(\sin\frac{2\pi}{T}t \cdot x_{(0,\frac{T}{2})}\right)(s)$$
$$= \frac{1}{1 - e^{-Ts}} \cdot \frac{\frac{2\pi}{T}}{s^2 + \left(\frac{2\pi}{T}\right)^2} \cdot \left(1 + e^{-\frac{T}{2}s}\right)$$

注: 当 \tilde{f}_T 为 \tilde{f}_T 周期时,

$$\mathcal{L}\tilde{f}_T(s) = \frac{1}{1 - e^{-\frac{T}{2}s}} \cdot \left[\frac{\frac{2\pi}{T}}{s^2 + \left(\frac{2\pi}{T}\right)^2} \cdot \left(1 + e^{-\frac{T}{2}s}\right) \right]$$

图 19.4:

Part VIII Lecture 16 Laplace 变换的逆 变换

Chapter 20

Laplace 变换的逆变换公式与 计算

20.1 逆变换公式的找寻

记

$$F(z) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-zt} dt, \quad z = \beta + i\omega, \ Re(z) > 0$$
$$F(z) = \int_{-\infty}^\infty \left[f(t)e^{-\beta t} \chi_{(0,+\infty)}(t) \right] e^{-i\omega t} dt \tag{20.1}$$

即

$$\mathcal{F}\left\{f(t)e^{-\beta t}\chi_{(0,+\infty)}(t)\right\}(\omega) = \frac{1}{\sqrt{2\pi}}F(\beta + i\omega). \tag{20.2}$$

由逆公式知

$$f(t)e^{-\beta t}\chi_{(0,+\infty)}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\beta + i\omega)e^{+i\omega t} d\omega$$

故

$$f(t)\chi_{(0,+\infty)}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\beta + i\omega) e^{\beta t} e^{+i\omega t} d\omega$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\beta + i\omega) e^{(\beta + i\omega)t} d\omega \qquad (20.3)$$

 $z = \beta + i\omega.$ 则 $dz = i d\omega,$ 即 $d\omega = \frac{dz}{i}.$ 当 $\omega \to -\infty, z \to \beta - i\infty.$ 当 $\omega \to +\infty, z \to \beta + i\infty.$ 积分路径是在复平面上从 $\beta - i\infty$ 到 $\beta + i\infty$ 的一条垂直直线。代入可得 (称为 Bromwich 积分):

$$f(t) = \frac{1}{2\pi} \int_{\beta - i\infty}^{\beta + i\infty} F(z)e^{zt} \frac{\mathrm{d}z}{i}$$

$$= \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} F(z)e^{zt} \,\mathrm{d}z \quad (t > 0)$$
(20.4)

这条积分路径通常记为 $Br. \beta$ 必须大于 F(z) 所有奇点的实部。

图 20.1:

20.2 利用留数定理计算逆变换

Theorem 47 (逆 Laplace 变换的留数计算法). 设 $F(z) = \mathcal{L}\{f(t)\}(z)$ 。如果 F(z) 满足以下条件:

- 1. F(z) 在复平面内除了有限个孤立奇点 z_1, z_2, \ldots, z_n 外处处解析。
- 2. 所有奇点 z_k 均位于某垂直直线 $Re(z)=\beta_0$ 的左侧 (即 $Re(z_k)<\beta_0$ for $all\ k$)。
- $3. \lim_{|z| \to \infty} F(z) = 0$ (当 z 在适当的左半圆弧上,例如 $Re(z) \le \beta_0$ 的区域内)。

则对于 t > 0, 逆 Laplace 变换可以通过以下公式计算:

$$f(t) = \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} F(z)e^{zt} dz = \sum_{k=1}^{n} Res \left[F(z)e^{zt}, z_k \right]$$

其中积分路径 $Re(z) = \beta$ 是一条位于所有奇点 z_k 右侧的垂直直线 (即 $\beta > \beta_0$)。

证明思路 (Proof Idea):

- 1) 构造闭合围线 (Constructing a closed contour $C = L_R + C_R$):
 - L_R : 从 βiR 到 $\beta + iR$ 的直线段 (Bromwich 路径的一部分)。
 - C_R : 一个位于直线 L_R 左侧的半圆弧,使得所有 F(z) 的奇点 z_1,\ldots,z_n 都被包含在由 L_R 和 C_R 组成的闭合围线 C 内部。
- 2) **选择足够大的** R (Choosing R large enough): 选择 R 足够大,使得所有奇点 z_1, \ldots, z_n 都位于闭合围线 $C = L_R + C_R$ 的内部区域。根据柯西留数定理 (Cauchy's Residue Theorem):

$$\oint_C F(z)e^{zt} dz = 2\pi i \sum_{k=1}^n \text{Res}\left[F(z)e^{zt}, z_k\right]$$
(20.5)

图 20.2:

即

$$\int_{\beta - iR}^{\beta + iR} F(z)e^{zt} dz + \int_{C_R} F(z)e^{zt} dz = 2\pi i \sum_{k=1}^n \text{Res} \left[F(z)e^{zt}, z_k \right] \quad (20.6)$$

3) Jordan 引理的应用 (Application of Jordan's Lemma):

我们需要证明当 $R \to \infty$ 时, $\int_{C_R} F(z) e^{zt} \, \mathrm{d}z \to 0$. Jordan 引理的条件通常是:

- i) F(z) 在 $Re(z) \le \beta$ (除去有限个奇点外) 解析。
- ii) 当 z 位于 C_R 上 (即 $|z-\alpha|=R'$ 或类似定义,且 $\mathrm{Re}(z)\leq \beta$) 并且 $R'\to\infty$ 时, $F(z)\to 0$ 。

则对于 t > 0,

$$\lim_{R \to \infty} \int_{C_R} F(z)e^{zt} \, \mathrm{d}z = 0$$

4) **得到逆变换公式 (Obtaining the inverse transform formula):** 当 $R \to \infty$ 时,由于 $\int_{C_R} F(z) e^{zt} \, \mathrm{d}z \to 0$ (对于 t > 0),我们得到:

$$\int_{\beta - i\infty}^{\beta + i\infty} F(z)e^{zt} dz = 2\pi i \sum_{k=1}^{n} \text{Res} \left[F(z)e^{zt}, z_k \right]$$

所以,对于 t > 0:

$$f(t) = \frac{1}{2\pi i} \int_{\beta - i\infty}^{\beta + i\infty} F(z)e^{zt} dz = \sum_{k=1}^{n} \operatorname{Res} \left[F(z)e^{zt}, z_k \right]$$
 (20.7)

求逆 ⇒ 转为求留数计算!

20.3 孤立奇点与留数计算基础

20.3.1 孤立奇点 (Isolated Singularities)

设 $a \in \mathbb{C}$ 是函数 f(z) 的一个孤立奇点,指的是存在 $\delta > 0$,使得 f(z) 在去心邻域 $U'(a,\delta) = \{z \in \mathbb{C} : 0 < |z-a| < \delta\}$ 内解析,但在点 a 本身无定义或不可导。 **分类 (Classification):**

- 1) **可去奇点 (Removable Singularity):** 如果 $\lim_{z\to a} f(z) = A$ 存在且为有限值 $(A \neq \infty)$ 。(可以通过补充定义 f(a) = A 使函数在 a 点解析。)
- 2) **极点 (Pole):** 如果 $\lim_{z\to a} f(z) = \infty$. (此时 f(z) 可以在 a 的邻域表示为 $f(z) = \frac{g(z)}{(z-a)^m}$, 其中 $g(a) \neq 0$ 且有限, $m \in \mathbb{N}^+$ 为极点的阶。)
- 3) **本性奇点 (Essential Singularity):** 如果 $\lim_{z\to a}f(z)$ 不存在 (既不趋于有限值也不趋于 ∞)。(例如 $f(z)=e^{1/z}$ 在 z=0 处。)

20.3.2 Laurent 定理

Theorem 48 (Laurent 定理). 设函数 f(z) 在圆环域 $D = \{z \in \mathbb{C} : r < |z-a| < R\}$ 内解析。则对于 D 内的任意一点 z, f(z) 可以唯一地表示为 Laurent 级数:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k = \sum_{k=0}^{\infty} c_k (z-a)^k + \sum_{k=1}^{\infty} c_{-k} (z-a)^{-k}$$
 (20.8)

其中系数 ck 由下式给出:

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{k+1}} d\zeta, \quad k = 0, \pm 1, \pm 2, \dots$$
 (20.9)

积分围道 C 是圆环域 D 内任何一条环绕点 a 的简单闭合正向曲线 (M) $|z-a|=\rho$, 其中 $r<\rho< R$)。级数的展开式是唯一的。

证明思路 (Proof Idea for Laurent's Theorem):

图 20.3:

1) 对于圆环域 D: r < |z-a| < R 内的任意一点 z, 取两个同心圆 $C_1: |\zeta-a| = R_1$ 和 $C_2: |\zeta-a| = r_1$ (逆时针为 C_1 , 顺时针为 C_2 (或 C_1 和 $-C_2$ 都逆时针)),使得 $r < r_1 < |z-a| < R_1 < R$ 。函数 $f(\zeta)$ 在由 C_1 和 C_2 界定的闭圆环域(除去 z 点的一个小邻域)内解析。根据柯西积分公式的推广(或柯西-古尔萨定理应用于多连通域): 对于圆环域 $r_1 < |\zeta-a| < R_1$ 内的 z,

$$f(z) = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} d\zeta$$
 (20.10)

(注意 C_1 和 C_2 均取逆时针方向,所以 C_2 项前有负号。)

2) **处理第一个积分 (对应级数的解析部分/正幂项):** 对于 $\zeta \in C_1$ (即 $|\zeta - a| = R_1$), 我们有 $|z - a| < R_1 = |\zeta - a|$. 所以 $\left|\frac{z - a}{\zeta - a}\right| < 1$.

$$\frac{1}{\zeta - z} = \frac{1}{(\zeta - a) - (z - a)} = \frac{1}{\zeta - a} \cdot \frac{1}{1 - \frac{z - a}{\zeta - a}}$$

利用几何级数展开 $\frac{1}{1-q} = \sum_{k=0}^{\infty} q^k$ (当 |q| < 1):

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - a} \sum_{k=0}^{\infty} \left(\frac{z - a}{\zeta - a}\right)^k = \sum_{k=0}^{\infty} \frac{(z - a)^k}{(\zeta - a)^{k+1}}$$

这个级数在 C_1 上一致收敛。逐项积分得到:

$$\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \oint_{C_1} f(\zeta) \left(\sum_{k=0}^{\infty} \frac{(z - a)^k}{(\zeta - a)^{k+1}} \right) d\zeta$$
$$= \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - a)^{k+1}} d\zeta \right) (z - a)^k$$
$$= \sum_{k=0}^{\infty} c_k (z - a)^k$$

其中 $c_k = \frac{1}{2\pi i} \oint_{C_1} \frac{f(\zeta)}{(\zeta - a)^{k+1}} d\zeta$ for $k \ge 0$.

注: 可逐项积分是由于级数 $\sum_{k=0}^{\infty} \frac{(z-a)^k}{(\zeta-a)^{k+1}}$ 在 C_1 上关于参数 z 一致收敛. 又 $f(\zeta)$ 在 C_1 上有界,则 $\sum_{k=0}^{\infty} \frac{f(\zeta)(z-a)^k}{(\zeta-a)^{k+1}}$ 在 C_1 上一致收敛.

3) **处理第二个积分 (对应级数的主要部分/负幂项)** : 对于 $\zeta \in C_2$ (即 $|\zeta - a| = r_1$), 我们有 $|\zeta - a| = r_1 < |z - a|$. 所以 $\left|\frac{\zeta - a}{z - a}\right| < 1$. 回顾:

$$-\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{\zeta - z} \, \mathrm{d}\zeta = \frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{z - \zeta} \, \mathrm{d}\zeta$$

我们展开 $\frac{1}{z-\zeta}$:

$$\frac{1}{z-\zeta} = \frac{1}{(z-a)-(\zeta-a)}$$

$$= \frac{1}{z-a} \cdot \frac{1}{1-\frac{\zeta-a}{z-a}}$$

$$= \frac{1}{z-a} \sum_{j=0}^{\infty} \left(\frac{\zeta-a}{z-a}\right)^{j} \quad (因为 \left|\frac{\zeta-a}{z-a}\right| < 1)$$

$$= \sum_{j=0}^{\infty} \frac{(\zeta-a)^{j}}{(z-a)^{j+1}}$$

这个级数在 C_2 上关于 ζ 一致收敛。逐项积分得到:

$$\frac{1}{2\pi i} \oint_{C_2} \frac{f(\zeta)}{z - \zeta} d\zeta = \frac{1}{2\pi i} \oint_{C_2} f(\zeta) \left(\sum_{j=0}^{\infty} \frac{(\zeta - a)^j}{(z - a)^{j+1}} \right) d\zeta$$
$$= \sum_{j=0}^{\infty} \left(\frac{1}{2\pi i} \oint_{C_2} f(\zeta) (\zeta - a)^j d\zeta \right) (z - a)^{-(j+1)}$$

令 k'=j+1. 当 j=0, k'=1; 当 $j\to\infty, k'\to\infty$. 再令 $c_{-k'}=\frac{1}{2\pi i}\oint_{C_2}f(\zeta)(\zeta-a)^{k'-1}\,\mathrm{d}\zeta$ for $k'\geq 1$. (这等价于 $c_k=\frac{1}{2\pi i}\oint_{C_2}\frac{f(\zeta)}{(\zeta-a)^{k+1}}\,\mathrm{d}\zeta$ for $k=-k'\leq -1$) 则此部分可以写为:

$$\sum_{k'=1}^{\infty} c_{-k'} (z-a)^{-k'} = \sum_{k=1}^{\infty} \frac{c_{-k}}{(z-a)^k}$$

注 (Note on uniform convergence): 可逐项积分是由于级数 $\sum \frac{1}{(\zeta-a)^{k+1}}(z-a)^k$ (对于第一个积分) 和 $\sum \frac{(\zeta-a)^j}{(z-a)^{j+1}}$ (对于第二个积分) 在各自的积分路 径 C_1 和 C_2 上关于 ζ 一致收敛 (因为 z 是固定的,且满足收敛半径条件),并且 $f(\zeta)$ 有界。

4) 综合步骤 1, 2, 3 (Combining steps 1, 2, and 3):

$$f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k + \sum_{k=1}^{\infty} c_{-k} (z-a)^{-k} = \sum_{k=-\infty}^{\infty} c_k (z-a)^k$$
 (20.11)

其中系数 c_k (如前所述,由于被积函数在圆环内解析) 可以用统一的积分路径 C ($r < |\zeta - a| = \rho < R$) 表示:

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{k+1}} \,\mathrm{d}\zeta, \quad \forall \rho \in (r, R), \ \exists z \ \pounds \xi. \tag{20.12}$$

注:展开式是唯一的。

5) 推论 (Corollary): Taylor 级数 (Taylor Series)

如果 f(z) 在圆盘 |z-a| < R 内解析,则 Laurent 级数中所有负幂项的系数 c_k (对于 k < 0) 均为零。即 c_{-1}, c_{-2}, \ldots 都等于零。

这是因为当 k < 0 (例如 k = -m, $m \ge 1$), $c_k = c_{-m} = \frac{1}{2\pi i} \oint_C f(\zeta)(\zeta - a)^{m-1} \,\mathrm{d}\zeta$. 由于 $f(\zeta)(\zeta - a)^{m-1}$ 在 C 内部及边界上解析 (因为 f 在 |z - a| < R 内解析,且 $m \ge 1$),根据柯西-古尔萨定理,这个积分为零。此时,Laurent 级数退化为 Taylor 级数:

$$f(z) = \sum_{k=0}^{\infty} c_k (z - a)^k$$

其中 $c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{k+1}} d\zeta = \frac{f^{(k)}(a)}{k!}$ (根据柯西高阶导数公式)

20.3.3 Laurent 级数与奇点分类

设 $a \in \mathbb{C}$ 是函数 f(z) 的一个孤立奇点。这意味着 $\exists \delta > 0$,使得 f(z) 在去心邻域 $U'(a,\delta) = \{z \in \mathbb{C} : 0 < |z-a| < \delta\}$ 内解析。在此去心邻域内,f(z) 有 Laurent 级数展开:

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k$$

其中

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{k+1}} \,\mathrm{d}\zeta$$

 $C: |\zeta - a| = \rho, 0 < \rho < \delta.$ 级数可以分为两部分:

- 解析部分 (Analytic Part) 或 Taylor 部分或正则部分: $\sum_{k=0}^{\infty} c_k (z-a)^k$
- 主要部分 (Principal Part): $\sum_{k=-\infty}^{-1} c_k (z-a)^k = \sum_{j=1}^{\infty} c_{-j} (z-a)^{-j}$

Theorem 49 (奇点与 Laurent 级数的关系). 设 a 是 f(z) 的孤立奇点。

1) $a \in f(z)$ 的**可去奇点** $\iff f(z) = \sum_{k=0}^{\infty} c_k (z-a)^k \text{ for } 0 < |z-a| < \delta$. 即 f(z) 在 a 点的 Laurent 级数的主要部分为零 (即 $c_k = 0$ for all k < 0)。

Proof. 如果 a 是可去奇点,则 $\lim_{z\to a} f(z) = A$ (有限)。这意味着 f(z) 在 a 的某个去心邻域 $U'(a,\delta_1)$ 内有界,即 $|f(z)| \leq M$ for $z \in U'(a,\delta_1)$. 对于 Laurent 级数的系数 c_{-k} $(k \geq 1)$:

$$c_{-k} = \frac{1}{2\pi i} \oint_{|\zeta - a| = \rho} f(\zeta)(\zeta - a)^{k-1} d\zeta \quad (0 < \rho < \delta_1)$$

$$|c_{-k}| \le \left| \frac{1}{2\pi i} \int_{|\zeta - a| = \rho} \frac{f(\zeta)}{(\zeta - a)^{-k+1}} d\zeta \right|$$

$$\leq \frac{M}{2\pi} \int_{|\zeta-a|=\rho} |\zeta-a|^{k-1} d\zeta$$
$$= \frac{M}{2\pi} \rho^{k-1} \int_{|\zeta-a|=\rho} |d\zeta|$$
$$= \frac{M}{2\pi} \rho^{k-1} \cdot 2\pi \rho = M \rho^k$$

由于上式对任意 $0 < \rho < \delta_1$ 成立,令 $\rho \to 0^+$. 因为 $k \ge 1$, $\rho^k \to 0$. 所以 $c_{-k} = 0$ for all $k \ge 1$. 因此,主要部分为零.

故
$$f(z) = \sum_{k=0}^{\infty} c_k(z-a)^k$$
. 此时 $c_0 = \lim_{z \to a} f(z) = A$.

2) $a \in f(z)$ 的 m 阶极点 $(m \in \mathbb{N}^+) \iff f(z) = \sum_{k=-m}^{\infty} c_k (z-a)^k$. 即 f(z) 在 a 点的 Laurent 级数的主要部分中,最低次幂为 $(z-a)^{-m}$ 且系数 $c_{-m} \neq 0$ (即 $c_k = 0$ for k < -m, and $c_{-m} \neq 0$)。

Proof. 如果 $a \in f(z)$ 的极点,则 a 不可能是 f(z) 的零点的聚点。

则 a 为 $\frac{1}{f(z)}$ 的可去奇点,且 $\lim_{z\to a} f(z) = \infty$ 。

$$\Rightarrow \lim_{z \to a} \frac{1}{f(z)} = 0$$
, $\mathbb{R} \frac{1}{f(z)} = \sum_{k=m}^{\infty} \frac{b_k}{(z-a)^k}$

设 $\phi(z)$ 在 z=a 处解析, $\phi(a)=C_m\neq 0$ 。

故
$$z = a$$
 时, $f(z) = \frac{1}{(z-a)^m} \frac{1}{\phi(z)}$ 。

$$\phi(z)^{-1}$$
 在 $z = a$ 处解析 $\Rightarrow \frac{1}{\phi(z)} = \sum_{k=0}^{\infty} b_k (z - a)^k$, 其中 $b_0 = \frac{1}{\phi(a)} = \frac{1}{C_m}$.

則
$$f(z) = \frac{1}{(z-a)^m} \cdot \frac{1}{\phi(z)} = \frac{1}{(z-a)^m} \sum_{k=0}^{\infty} b_k (z-a)^k$$
。

即

$$f(z) = \frac{b_0}{(z-a)^m} + \frac{b_1}{(z-a)^{m-1}} + \dots + b_m + \sum_{k=1}^{\infty} b_{k+m}(z-a)^k.$$

由 Laurent 级数展开式的唯一性知,f 的主要部分只有有限项。 反之,若 f 的主要部分只有有限项,则

$$f(z) = \frac{\psi(z)}{(z-a)^m}$$
 $(m \ge 1), \quad \psi(z) = \sum_{k=0}^{\infty} b_k (z-a)^k,$

其中 $b_0 = \psi(a) \neq 0$ 。

则
$$\lim_{z\to a} f(z) = \infty$$
,即 a 为极点。

3) a 是 f(z) 的本性奇点 $f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k$

,即 $\iff f(z)$ 在 a 点的 Laurent 级数的主要部分有无穷多项非零系数。

Proof. 如果 a 是本性奇点,则其 Laurent 级数中主要部分有无穷多项非零系数。这可以由排除法得到:它既不是可去奇点(主要部分不为零),也不是极点(主要部分不是有限项)。(根据 Picard 大定理,函数在本性奇点的任意小邻域内取到除至多一个值外的所有复数值。)

20.3.4 留数的定义与计算

Definition 6 (留数 (Residue)). 设函数 f(z) 在点 a 的去心邻域 $U'(a, \delta) = \{z \in \mathbb{C} : 0 < |z - a| < \delta\}$ 内解析。称积分值

$$\frac{1}{2\pi i} \oint_{|\zeta - a| = \rho} f(\zeta) \,\mathrm{d}\zeta$$

为函数 f(z) 在孤立奇点 a 处的**留数** (Residue), 其中 ρ 是任何满足 $0 < \rho < \delta$ 的实数。记作 Res[f(z),a] 或 $Res_{z=a}f(z)$.

注:

- 由柯西积分定理 (Cauchy's Integral Theorem), 留数 $\mathrm{Res}_{z=a}f(z)$ 的值与积分半径 ρ 的选取无关 (只要 $0<\rho<\delta$,且路径不跨过其他奇点)。
- 如果 f(z) 在点 a 处解析 (即 a 不是奇点,或者是可去奇点且已补充定义),则根据柯西-古尔萨定理 (Cauchy-Goursat Theorem), $\oint_{|\zeta-a|=\rho} f(\zeta) \,\mathrm{d}\zeta = 0$,因此 $\mathrm{Res}_{z=a} f(z) = 0$.

Theorem 50 (留数与 Laurent 级数系数的关系). 设 a 是 f(z) 的孤立奇点。则 f(z) 在点 a 的留数等于其在该点 Laurent 级数展开式中 $(z-a)^{-1}$ 项的系数 c_{-1} 。即

$$Res_{z=a} f(z) = c_{-1} = \frac{1}{2\pi i} \oint_C f(\zeta) \,\mathrm{d}\zeta \tag{20.13}$$

(其中 $C: |\zeta - a| = \rho, \ 0 < \rho < \delta$)

Proof. f(z) 在 a 的去心邻域内的 Laurent 级数展开为

$$f(z) = \sum_{k=-\infty}^{\infty} c_k (z-a)^k.$$

系数

$$c_k = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{k+1}} d\zeta.$$

当 k = -1 时,这正是 $\mathrm{Res}_{z=a} f(z)$ 的定义

$$c_{-1} = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - a)^{-1+1}} d\zeta = \frac{1}{2\pi i} \oint_C f(\zeta) d\zeta.$$

从 f 的 Laurent 级数也可计算得知:

$$\begin{aligned} \operatorname{Res}_{z=a} f(z) &= \frac{1}{2\pi i} \int_{|z-a|=\rho} f(z) \, dz \\ &= \frac{1}{2\pi i} \int_{|z-a|=\rho} \sum_{k=-\infty}^{\infty} c_k (z-a)^k \, dz \\ &= \frac{1}{2\pi i} \int_{|z-a|=\rho} \sum_{k=0}^{\infty} c_k (z-a)^k \, dz + \frac{1}{2\pi i} \int_{|z-a|=\rho} \sum_{k=-\infty}^{-1} c_k (z-a)^k \, dz \\ &+ \frac{1}{2\pi i} \int_{|z-a|=\rho} c_{-1} \cdot \frac{1}{z-a} \, dz \end{aligned}$$

第一个积分利用解析性(
$$(z-a)^k$$
 解析)。
第二个积分利用 $\frac{1}{2\pi i}\int_{|z-a|=\rho}\frac{1}{(z-a)^k}\,dz=\frac{d^{k-1}}{dx^{k-1}}(1)=0.$
第三个积分利用 $\int_{|z-a|=\rho}\frac{1}{z-a}\,dz=2\pi i.$

孤立奇点的留数计算:

- (i) 如果 a 是可去奇点: 由 Laurent 级数特征, $c_{-1}=0$. 所以 $\mathrm{Res}_{z=a}f(z)=0$.
- (ii) 如果 a 是 m 阶极点 $(m \ge 1)$: f(z) 的 Laurent 级数为

$$f(z) = \frac{c_{-m}}{(z-a)^m} + \dots + \frac{c_{-1}}{z-a} + c_0 + c_1(z-a) + \dots,$$

其中 $c_{-m} \neq 0$ 。

我们要求的是 c_{-1} 。

考虑函数 $\phi(z) = (z-a)^m f(z)$ 。则 $\phi(z)$ 在 a 点解析,其 Taylor 展开为:

$$\phi(z) = (z-a)^m f(z) = c_{-m} + c_{-m+1}(z-a) + \dots + c_{-1}(z-a)^{m-1} + c_0(z-a)^m + \dots$$

 c_{-1} 是 $\phi(z)$ 在 a 点 Taylor 展开式中 $(z-a)^{m-1}$ 项的系数。

根据 Taylor 级数系数公式,

$$c_{-1} = \frac{\phi^{(m-1)}(a)}{(m-1)!}.$$

因此,

$$\operatorname{Res}_{z=a} f(z) = c_{-1} = \frac{1}{(m-1)!} \lim_{z \to a} \frac{\mathrm{d}^{m-1}}{\mathrm{d}z^{m-1}} \left[(z-a)^m f(z) \right].$$

特别地, 当 m=1 (单极点) 时:

$$\operatorname{Res}_{z=a} f(z) = c_{-1} = \lim_{z \to a} [(z-a)f(z)]$$

20.4. 留数定理 103

应用 (Application): 如果 $f(z) = \frac{g(z)}{h(z)}$, 其中 $g(a) \neq 0$, h(a) = 0 且 $h'(a) \neq 0$ (即 $a \neq h(z)$ 的一阶零点,从而 $a \neq f(z)$ 的一阶极点)。则

$$\operatorname{Res}_{z=a} f(z) = \lim_{z \to a} (z - a) \frac{g(z)}{h(z)}$$

$$= \lim_{z \to a} g(z) \cdot \lim_{z \to a} \frac{z - a}{h(z) - h(a)} \quad (因为h(a) = 0)$$

$$= g(a) \cdot \frac{1}{h'(a)} = \frac{g(a)}{h'(a)}$$

(iii) **如果** a **是本性奇点:** 留数计算通常依赖于直接求出 Laurent 级数并找出 c_{-1} 项。一般没有简单的公式。

20.4 留数定理

Theorem 51 (留数定理 (Residue Theorem)). 设区域 Ω 是由有限条简单闭合曲线 $\partial\Omega$ 所围成的 (可能为多连通区域)。设函数 f(z) 在 Ω 上除去有限个孤立 奇点 $z_1, z_2, \ldots, z_m \in \Omega$ 外处处解析,并且 f(z) 在 $\overline{\Omega}$ 上连续。则

$$\oint_{\partial\Omega} f(z) \, \mathrm{d}z = 2\pi i \sum_{j=1}^m Res[f(z), z_j]$$

其中积分沿 $\partial\Omega$ 的正向 (使得区域 Ω 始终在路径的左侧)。

证明 (Proof): (由柯西多连通域积分定理直接推论) 对每一个奇点 $z_j \in \Omega$,构造一个小圆周 $C_j: |\zeta - z_j| = \delta_j$,其中 $\delta_j > 0$ 足够小,使得:

- 1. 每个闭圆盘 $\overline{U}(z_j,\delta_j)=\{\zeta\in\mathbb{C}: |\zeta-z_j|\leq \delta_j\}$ 都包含在 Ω 内部,即 $\overline{U}(z_j,\delta_j)\subset\Omega$.
- 2. 这些小圆盘互不相交,即 $\overline{U}(z_j, \delta_j) \cap \overline{U}(z_k, \delta_k) = \emptyset$ 对于 $j \neq k$.

考虑区域 $\Omega' = \Omega \setminus \bigcup_{j=1}^m U(z_j, \delta_j)$ (即从 Ω 中挖去所有包含奇点的小开圆盘)。函数 f(z) 在区域 Ω' 及其边界 $\partial \Omega' = \partial \Omega \cup (\bigcup_{j=1}^m (-C_j))$ 上解析 (这里 $-C_j$ 表示沿 C_j 的反方向积分,即顺时针)。根据柯西-古尔萨定理对于多连通区域(或柯西积分定理的推广),f(z) 在 Ω' 的正向边界上的积分为零:

$$\oint_{\partial\Omega} f(z) dz + \sum_{j=1}^{m} \oint_{-C_j} f(z) dz = 0$$

即

$$\oint_{\partial\Omega} f(z) dz - \sum_{j=1}^{m} \oint_{C_j} f(z) dz = 0$$

(因为 $\oint_{-C_i} = -\oint_{C_i}$, 且 C_i 都是逆时针正向。) 移项可得:

$$\oint_{\partial\Omega} f(z) dz = \sum_{j=1}^{m} \oint_{C_j} f(z) dz$$

根据留数的定义, $\oint_{C_j} f(z) dz = 2\pi i \text{Res}[f(z), z_j]$. 所以,

$$\oint_{\partial\Omega} f(z) dz = \sum_{j=1}^{m} 2\pi i \operatorname{Res}[f(z), z_j] = 2\pi i \sum_{j=1}^{m} \operatorname{Res}[f(z), z_j]$$

证毕。

附:一般的柯西定理 (Appendix: General Cauchy's Theorem / Cauchy-Goursat Theorem for Multiply Connected Domains)

Theorem 52 (柯西-古尔萨定理 (多连通域)). 若区域 Ω 是由有限条简单封闭曲线 $\partial\Omega$ 所围成的区域, f(z) 在 Ω 上解析且在 $\overline{\Omega}$ 上连续, 则积分 $\oint_{\partial\Omega} f(z)\,dz=0$.

图 20.4:

20.5 示例: 用留数求 Laplace 变换的逆变换

(根据留数定理, 若 F(z) 满足一定条件, 则 $f(t) = \sum_k \mathrm{Res}[F(z)e^{zt}, z_k]$ for t>0) **示例 53.** 求 $F(z) = \frac{z}{z^2+1}$ 的逆变换 f(t)

解 (Solution):

令 $H(z)=F(z)e^{zt}=\frac{ze^{zt}}{z^2+1}.$ 奇点由 $z^2+1=0\Rightarrow z^2=-1\Rightarrow z=\pm i.$ 这两个奇点都是 H(z) (也是 F(z)) 的一阶极点。

(i) 计算在 z = i 处的留数:

$$\operatorname{Res}[H(z), i] = \lim_{z \to i} (z - i) \frac{ze^{zt}}{(z - i)(z + i)}$$
$$= \lim_{z \to i} \frac{ze^{zt}}{z + i}$$
$$= \frac{ie^{it}}{i + i} = \frac{ie^{it}}{2i} = \frac{1}{2}e^{it}$$

(ii) 计算在 z = -i 处的留数:

$$\operatorname{Res}[H(z), -i] = \lim_{z \to -i} (z - (-i)) \frac{ze^{zt}}{(z - i)(z + i)}$$

$$= \lim_{z \to -i} (z + i) \frac{ze^{zt}}{(z - i)(z + i)}$$

$$= \lim_{z \to -i} \frac{ze^{zt}}{z - i}$$

$$= \frac{-ie^{-it}}{-i - i} = \frac{-ie^{-it}}{-2i} = \frac{1}{2}e^{-it}$$

故,对于t>0:

$$f(t) = \operatorname{Res}[H(z), i] + \operatorname{Res}[H(z), -i]$$
$$= \frac{1}{2}e^{it} + \frac{1}{2}e^{-it}$$
$$= \frac{e^{it} + e^{-it}}{2} = \cos(t)$$

所以 $f(t) = \cos(t)u(t)$.

示例 54. 求 $F(z) = \frac{1}{z(z-1)^2}$ 的逆变换 f(t)

解 (Solution):

令 $H(z) = F(z)e^{zt} = \frac{e^{zt}}{z(z-1)^2}$. 奇点为 z = 0 (一阶极点) 和 z = 1 (二阶极点)。
(i) 计算在 z = 0 处的留数 (一阶极点):

$$\operatorname{Res}[H(z), 0] = \lim_{z \to 0} (z - 0) \frac{e^{zt}}{z(z - 1)^2}$$
$$= \lim_{z \to 0} \frac{e^{zt}}{(z - 1)^2}$$
$$= \frac{e^0}{(-1)^2} = \frac{1}{1} = 1$$

(ii) 计算在 z=1 处的留数 (二阶极点, m=2):

$$\operatorname{Res}[H(z), 1] = \frac{1}{(2-1)!} \lim_{z \to 1} \frac{d^{2-1}}{dz^{2-1}} \left[(z-1)^2 \frac{e^{zt}}{z(z-1)^2} \right]$$

$$= \lim_{z \to 1} \frac{d}{dz} \left[\frac{e^{zt}}{z} \right]$$

$$= \lim_{z \to 1} \frac{z(te^{zt}) - e^{zt}(1)}{z^2}$$

$$= \frac{1(te^t) - e^t(1)}{1^2} = te^t - e^t$$

故,对于 t > 0:

$$f(t) = \text{Res}[H(z), 0] + \text{Res}[H(z), 1]$$

= 1 + (te^t - e^t) = 1 + te^t - e^t

所以 $f(t) = (1 + te^t - e^t)u(t)$.

示例 55. 求
$$F(z) = \frac{1}{(z+1)(z-2)(z+3)}$$
 的逆变换 $f(t)$

解 (Solution):

令 $H(z) = F(z)e^{zt} = \frac{e^{zt}}{(z+1)(z-2)(z+3)}$. 奇点为 z = -1, z = 2, z = -3,均为一阶极点。

(i) 计算在 z = -1 处的留数:

$$\operatorname{Res}[H(z), -1] = \lim_{z \to -1} (z+1) \frac{e^{zt}}{(z+1)(z-2)(z+3)}$$

$$= \lim_{z \to -1} \frac{e^{zt}}{(z-2)(z+3)}$$

$$= \frac{e^{-t}}{(-1-2)(-1+3)} = \frac{e^{-t}}{(-3)(2)} = -\frac{1}{6}e^{-t}$$

(ii) 计算在 z=2 处的留数:

$$\operatorname{Res}[H(z), 2] = \lim_{z \to 2} (z - 2) \frac{e^{zt}}{(z+1)(z-2)(z+3)}$$
$$= \lim_{z \to 2} \frac{e^{zt}}{(z+1)(z+3)}$$
$$= \frac{e^{2t}}{(z+1)(z+3)} = \frac{e^{2t}}{(3)(5)} = \frac{1}{15}e^{2t}$$

(iii) 计算在 z = -3 处的留数:

$$\operatorname{Res}[H(z), -3] = \lim_{z \to -3} (z+3) \frac{e^{zt}}{(z+1)(z-2)(z+3)}$$

$$= \lim_{z \to -3} \frac{e^{zt}}{(z+1)(z-2)}$$

$$= \frac{e^{-3t}}{(-3+1)(-3-2)} = \frac{e^{-3t}}{(-2)(-5)} = \frac{1}{10}e^{-3t}$$

故,对于 t > 0:

$$f(t) = \text{Res}[H(z), -1] + \text{Res}[H(z), 2] + \text{Res}[H(z), -3]$$
$$= -\frac{1}{6}e^{-t} + \frac{1}{15}e^{2t} + \frac{1}{10}e^{-3t}$$

所以
$$f(t) = \left(-\frac{1}{6}e^{-t} + \frac{1}{15}e^{2t} + \frac{1}{10}e^{-3t}\right)u(t).$$

示例 56. 求
$$F(z) = \frac{1}{z^2(z+1)}$$
 的逆变换 $f(t)$

解 (Solution):

令 $H(z) = F(z)e^{zt} = \frac{e^{zt}}{z^2(z+1)}$. 奇点为 z = 0 (二阶极点) 和 z = -1 (一阶极点)。
(i) 计算在 z = 0 处的留数 (二阶极点, m = 2):

$$\operatorname{Res}[H(z), 0] = \frac{1}{(2-1)!} \lim_{z \to 0} \frac{d^{2-1}}{dz^{2-1}} \left[z^2 \frac{e^{zt}}{z^2(z+1)} \right]$$

$$= \lim_{z \to 0} \frac{d}{dz} \left[\frac{e^{zt}}{z+1} \right]$$

$$= \lim_{z \to 0} \frac{(z+1)(te^{zt}) - e^{zt}(1)}{(z+1)^2}$$

$$= \frac{(0+1)(te^0) - e^0(1)}{(0+1)^2} = \frac{t-1}{1} = t-1$$

(ii) 计算在 z = -1 处的留数 (一阶极点):

$$\operatorname{Res}[H(z), -1] = \lim_{z \to -1} (z+1) \frac{e^{zt}}{z^2(z+1)}$$
$$= \lim_{z \to -1} \frac{e^{zt}}{z^2}$$
$$= \frac{e^{-t}}{(-1)^2} = e^{-t}$$

故,对于 t > 0:

$$f(t) = \text{Res}[H(z), 0] + \text{Res}[H(z), -1]$$

= $(t - 1) + e^{-t}$

所以 $f(t) = (t - 1 + e^{-t})u(t)$.

示例 57. 求 $F(z) = \ln \frac{z+1}{z-1}$ 的逆变换 f(t)

解 (Solution):

设 $F(z) = \ln(z+1) - \ln(z-1)$ 。

在 z = -1 和 z = 1 处,是复杂的无穷多值分枝奇点,不宜直接用留数定理。 我们考虑利用 Laplace 变换的性质。

已知:

$$\mathcal{L}\{tf(t)\}(z) = -\frac{\mathrm{d}F(z)}{\mathrm{d}z}.$$

令
$$G(z) = F'(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\ln \frac{z+1}{z-1} \right)$$
。则:

$$G(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\ln(z+1) - \ln(z-1) \right)$$

$$= \frac{1}{z+1} - \frac{1}{z-1}$$

$$= \frac{(z-1) - (z+1)}{(z+1)(z-1)}$$

$$= \frac{-2}{z^2 - 1}.$$

因此:

$$\mathcal{L}{tf(t)}(z) = -G(z) = \frac{2}{z^2 - 1}.$$

我们需要求:

$$g(t) = \mathcal{L}^{-1}\{G(z)\}(t) = \mathcal{L}^{-1}\left\{\frac{-2}{z^2 - 1}\right\}(t).$$

$$\mathcal{L}^{-1}\left(-\frac{2}{z^2 - 1}e^{zt}\right)(t) = \operatorname{Res}\left(-\frac{2}{z^2 - 1}e^{zt}, z = 1\right) + \operatorname{Res}\left(-\frac{2}{z^2 - 1}e^{zt}, z = -1\right)$$

$$= \lim_{z \to 1}\left(-\frac{2}{(z+1)(z-1)}e^{zt}\right) + \lim_{z \to -1}\left(-\frac{2}{(z+1)(z-1)}e^{zt}\right)$$

$$= -e^t + e^{-t}$$

由于:

$$\mathcal{L}\{tf(t)\}(z) = -G(z),$$

则:

$$tf(t) = -g(t) = -(e^{-t} - e^{t}) = e^{t} - e^{-t}.$$

所以,对于 $t \ge 0$:

$$f(t) = \frac{e^t - e^{-t}}{t} = \frac{2\sinh t}{t}.$$

因此:

$$f(t) = \frac{2\sinh t}{t} \cdot u(t).$$

示例 58. 求 $F(z) = \frac{z}{(z^2-1)^2}$ 的逆变换 f(t)

解 (Solution):

解 (Solution): 令
$$H(z) = F(z)e^{zt} = \frac{ze^{zt}}{(z^2-1)^2} = \frac{ze^{zt}}{((z-1)(z+1))^2} = \frac{ze^{zt}}{(z-1)^2(z+1)^2}$$
. 奇点为 $z=1$ (二 阶极点) 和 $z=-1$ (二阶极点)。

(i) 计算在 z=1 处的留数 (二阶极点, m=2):

$$\operatorname{Res}[H(z), 1] = \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \left[(z - 1)^2 \frac{ze^{zt}}{(z - 1)^2 (z + 1)^2} \right]$$

$$= \lim_{z \to 1} \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{ze^{zt}}{(z + 1)^2} \right]$$

$$= \lim_{z \to 1} \frac{[(1)e^{zt} + z(te^{zt})](z + 1)^2 - ze^{zt}[2(z + 1)(1)]}{(z + 1)^4}$$

$$= \lim_{z \to 1} \frac{[(1 + zt)e^{zt}](z + 1) - 2ze^{zt}}{(z + 1)^3}$$

$$= \frac{[(1 + t)e^t](1 + 1) - 2(1)e^t}{(1 + 1)^3} = \frac{2(1 + t)e^t - 2e^t}{8}$$

$$= \frac{2e^t + 2te^t - 2e^t}{8} = \frac{2te^t}{8} = \frac{1}{4}te^t$$

(ii) 计算在 z=-1 处的留数 (二阶极点, m=2):

$$\operatorname{Res}[H(z), -1] = \lim_{z \to -1} \frac{d}{dz} \left[(z+1)^2 \frac{ze^{zt}}{(z-1)^2 (z+1)^2} \right]$$

$$= \lim_{z \to -1} \frac{d}{dz} \left[\frac{ze^{zt}}{(z-1)^2} \right]$$

$$= \lim_{z \to -1} \frac{\left[(1)e^{zt} + z(te^{zt}) \right] (z-1)^2 - ze^{zt} [2(z-1)(1)]}{(z-1)^4}$$

$$= \lim_{z \to -1} \frac{\left[(1+zt)e^{zt} \right] (z-1) - 2ze^{zt}}{(z-1)^3}$$

$$= \frac{\left[(1-t)e^{-t} \right] (-1-1) - 2(-1)e^{-t}}{(-1-1)^3} = \frac{-2(1-t)e^{-t} + 2e^{-t}}{-8}$$

$$= \frac{-2e^{-t} + 2te^{-t} + 2e^{-t}}{-8} = \frac{2te^{-t}}{-8} = -\frac{1}{4}te^{-t}$$

故,对于 t > 0:

$$\begin{split} f(t) &= \mathrm{Res}[H(z), 1] + \mathrm{Res}[H(z), -1] \\ &= \frac{1}{4}te^{t} - \frac{1}{4}te^{-t} \\ &= \frac{t}{4}(e^{t} - e^{-t}) = \frac{t}{4}(2\sinh t) = \frac{1}{2}t\sinh t \end{split}$$

所以 $f(t) = \frac{1}{2}t \sinh t \cdot u(t)$.

另解:

$$\int_{z}^{\infty} \frac{s}{(s^{2}-1)^{2}} \, ds. \, \diamondsuit \, u = s^{2} - 1, \, du = 2s \, ds.$$

$$\int_{z}^{\infty} \frac{s}{(s^{2}-1)^{2}} \, \mathrm{d}s = \int_{z^{2}-1}^{\infty} \frac{1}{u^{2}} \frac{1}{2} \, \mathrm{d}u = \frac{1}{2} \left[-\frac{1}{u} \right]_{z^{2}-1}^{\infty} = \frac{1}{2} \left(0 - \left(-\frac{1}{z^{2}-1} \right) \right) = \frac{1}{2(z^{2}-1)}$$

已知:

$$\mathcal{L}\left\{\frac{f(t)}{t}\right\}(z) = \int_{z}^{\infty} F(s) \,\mathrm{d}s.$$

若 $F(z) = \frac{z}{(z^2-1)^2}$,我们可以通过积分找到其对应的拉普拉斯逆变换:

$$\mathcal{L}^{-1}\left\{ \int_{z}^{\infty} F(s) \, \mathrm{d}s \right\} (t) = \frac{f(t)}{t}.$$

而

$$\mathcal{L}^{-1}\left(\frac{1}{2} \cdot \frac{1}{(z^2 - 1)}\right)(t) = \operatorname{Res}\left(\frac{1}{2} \cdot \frac{1}{(z + 1)}e^{zt}, z = 1\right) + \operatorname{Res}\left(\frac{1}{2} \cdot \frac{1}{(z - 1)}e^{zt}, z = -1\right)$$

$$= \lim_{z \to 1} \frac{1}{2} \cdot \frac{1}{(z + 1)}e^{zt} + \lim_{z \to -1} \frac{1}{2} \cdot \frac{1}{(z - 1)}e^{zt}$$

$$= \frac{1}{4}e^t - \frac{1}{4}e^{-t}$$

$$= \frac{1}{2}\sinh t, \quad t > 0.$$

注:

$$\frac{1}{2} \cdot \frac{1}{z^2 - 1} = \int_0^{+\infty} \frac{1}{2} \sinh t \cdot e^{-zt} dt$$

$$\frac{d}{dz} \left(\frac{-2}{(z^2 - 1)^2} \right) = \int_0^{+\infty} \frac{d}{dz} \left(\frac{1}{2} \sinh t \cdot e^{-zt} \right) dt$$

$$\mathcal{L} \left(\frac{t}{2} \sinh t \right) (z) = \frac{2}{(z^2 + 1)^2}.$$

示例 59. 求 $F(z) = \frac{z^2}{(z^2 + a^2)^2}$ 的逆变换 f(t) (a > 0)

解 (Solution using residues): 令
$$H(z) = F(z)e^{zt} = \frac{z^2e^{zt}}{(z^2+a^2)^2} = \frac{z^2e^{zt}}{(z-ia)^2(z+ia)^2}$$
. 奇点为 $z=ia$ (二阶极点) 和 $z=-ia$ (二阶极点)。

(i) 计算在 z = ia 处的留数 (二阶极点, m = 2):

$$R_{1} = \operatorname{Res}[H(z), ia] = \lim_{z \to ia} \frac{d}{dz} \left[(z - ia)^{2} \frac{z^{2} e^{zt}}{(z - ia)^{2} (z + ia)^{2}} \right]$$

$$= \lim_{z \to ia} \frac{d}{dz} \left[\frac{z^{2} e^{zt}}{(z + ia)^{2}} \right]$$

$$= \lim_{z \to ia} \frac{(2z e^{zt} + z^{2} t e^{zt})(z + ia)^{2} - z^{2} e^{zt} [2(z + ia)]}{(z + ia)^{4}}$$

$$= \lim_{z \to ia} \frac{(2z + z^{2} t) e^{zt} (z + ia) - 2z^{2} e^{zt}}{(z + ia)^{3}}$$

$$= \frac{(2ia + (ia)^{2} t) e^{iat} (ia + ia) - 2(ia)^{2} e^{iat}}{(ia + ia)^{3}}$$

$$= \frac{(2ia - a^{2} t) e^{iat} (2ia) - 2(-a^{2}) e^{iat}}{(2ia)^{3}}$$

$$= \frac{(-4a^{2} - 2ia^{3} t) e^{iat} + 2a^{2} e^{iat}}{-8ia^{3}}$$

$$= \frac{(-2a^{2} - 2ia^{3} t) e^{iat}}{-8ia^{3}} = \frac{-2a^{2} (1 + iat) e^{iat}}{-8ia^{3}}$$

$$= \frac{(1 + iat) e^{iat}}{4ia} = \frac{1}{4ia} e^{iat} + \frac{t}{4} e^{iat}$$

(ii) 计算在 z=-ia 处的留数 (二阶极点, m=2): $R_2=\overline{R_1}=\frac{i}{4a}e^{-iat}+\frac{t}{4}e^{-iat}$. (直接计算过程如下):

$$R_{2} = \lim_{z \to -ia} \frac{d}{dz} \left[\frac{z^{2}e^{zt}}{(z - ia)^{2}} \right]$$

$$= \lim_{z \to -ia} \frac{(2z + z^{2}t)e^{zt}(z - ia) - 2z^{2}e^{zt}}{(z - ia)^{3}}$$

$$= \frac{(-2ia - a^{2}t)e^{-iat}(-2ia) - 2(-a^{2})e^{-iat}}{(-2ia)^{3}}$$

$$= \frac{(4i^{2}a^{2} + 2ia^{3}t)e^{-iat} + 2a^{2}e^{-iat}}{-8i^{3}a^{3}}$$

$$= \frac{(-2a^{2} + 2ia^{3}t)e^{-iat}}{8ia^{3}} = \frac{2a^{2}(-1 + iat)e^{-iat}}{8ia^{3}}$$

$$= \frac{(-1 + iat)e^{-iat}}{4ia} = \frac{i}{4a}e^{-iat} + \frac{t}{4}e^{-iat}$$

故,对于 t > 0:

$$f(t) = R_1 + R_2$$

$$= \left(\frac{1}{4ia}e^{iat} + \frac{t}{4}e^{iat}\right) + \left(\frac{i}{4a}e^{-iat} + \frac{t}{4}e^{-iat}\right)$$

$$= \frac{1}{4ia}(e^{iat} - e^{-iat}) + \frac{t}{4}(e^{iat} + e^{-iat})$$

$$= \frac{1}{4ia}(2i\sin(at)) + \frac{t}{4}(2\cos(at))$$

$$= \frac{1}{2a}\sin(at) + \frac{t}{2}\cos(at)$$

所以 $f(t) = \frac{1}{2a}(\sin(at) + at\cos(at))u(t)$.

另解 (卷积法):

Fig. (4-7)(Z):
$$F(z) = \frac{z}{z^2 + a^2} \cdot \frac{z}{z^2 + a^2}. \Leftrightarrow G(z) = \frac{z}{z^2 + a^2}, \ g(t) = \cos(at)u(t). \ f(t) = (g*g)(t) = (\cos(at)*\cos(at))(t).$$

$$f(t) = \int_0^t \cos(a\tau)\cos(a(t-\tau)) d\tau$$

$$= \int_0^t \frac{1}{2}[\cos(2a\tau - at) + \cos(at)] d\tau$$

$$= \frac{1}{2} \left[\frac{1}{2a}\sin(2a\tau - at) + \tau\cos(at) \right]_0^t$$

$$= \frac{1}{2} \left[\left(\frac{1}{2a}\sin(at) + t\cos(at) \right) - \left(\frac{1}{2a}\sin(-at) + 0 \cdot \cos(at) \right) \right]$$

$$= \frac{1}{2} \left[\frac{1}{a}\sin(at) + t\cos(at) \right]$$

$$= \frac{1}{2a}\sin(at) + \frac{t}{2}\cos(at)$$

这与留数法结果一致。

示例 60. 求
$$F(z) = \frac{e^{-\pi z}}{z(z+a)}$$
 的逆变换 $f(t)$ $(\pi > 0 \ constant, \ a \neq 0)$

解 (Solution):

令
$$H(z) = F(z)e^{zt} = \frac{e^{-\pi z}e^{zt}}{z(z+a)} = \frac{e^{(t-\pi)z}}{z(z+a)}$$
. 奇点为 $z=0$ (一阶极点) 和 $z=-a$ (一阶极点)。

(i) 计算在 z=0 处的留数:

$$\operatorname{Res}[H(z), 0] = \lim_{z \to 0} (z - 0) \frac{e^{(t-\pi)z}}{z(z+a)}$$
$$= \lim_{z \to 0} \frac{e^{(t-\pi)z}}{z+a} = \frac{e^0}{0+a} = \frac{1}{a}$$

(ii) 计算在 z = -a 处的留数:

$$\operatorname{Res}[H(z), -a] = \lim_{z \to -a} (z+a) \frac{e^{(t-\pi)z}}{z(z+a)}$$
$$= \lim_{z \to -a} \frac{e^{(t-\pi)z}}{z} = \frac{e^{(t-\pi)(-a)}}{-a} = -\frac{1}{a} e^{-a(t-\pi)}$$

故,对于 t > 0:

$$f(t) = \text{Res}[H(z), 0] + \text{Res}[H(z), -a] = \frac{1}{a} - \frac{1}{a}e^{-a(t-\pi)}$$

考虑到 $e^{-\pi z}$ 因子表示时域延迟 π ,所以逆变换的结果只在 $t>\pi$ 时有效。更准确地说,如果 $G(z)=\frac{1}{z(z+a)}$,则 $g(t)=\mathcal{L}^{-1}\{G(z)\}(t)=\frac{1}{a}(1-e^{-at})u(t)$. $F(z)=e^{-\pi z}G(z)$,所以 $f(t)=g(t-\pi)u(t-\pi)$.

$$f(t) = \frac{1}{a}(1 - e^{-a(t-\pi)})u(t-\pi)$$

当 $t>\pi,$ $f(t)=\frac{1}{a}-\frac{1}{a}e^{-a(t-\pi)}.$ 这与留数法结果一致。(您的笔记中 t>0 应该是指留数定理本身的应用条件,而实际 f(t) 的非零区间取决于 $u(t-\pi)$ 。)

示例 61. 求
$$F(z) = \frac{1}{z(z^2+1)}$$
 的逆变换 $f(t)$

解 (Solution using residues):

令 $H(z) = F(z)e^{zt} = \frac{e^{zt}}{z(z^2+1)}$. 奇点为 z = 0 (一阶极点) 和 $z = \pm i$ (均为一阶极点)。

(i) 计算在 z=0 处的留数:

$$\operatorname{Res}[H(z), 0] = \lim_{z \to 0} z \frac{e^{zt}}{z(z^2 + 1)} = \lim_{z \to 0} \frac{e^{zt}}{z^2 + 1} = \frac{e^0}{0 + 1} = 1$$

(ii) 计算在 z = i 处的留数:

$$\operatorname{Res}[H(z), i] = \lim_{z \to i} (z - i) \frac{e^{zt}}{z(z - i)(z + i)} = \lim_{z \to i} \frac{e^{zt}}{z(z + i)}$$
$$= \frac{e^{it}}{i(i + i)} = \frac{e^{it}}{i(2i)} = \frac{e^{it}}{-2} = -\frac{1}{2}e^{it}$$

(iii) 计算在 z = -i 处的留数:

$$\operatorname{Res}[H(z), -i] = \lim_{z \to -i} (z+i) \frac{e^{zt}}{z(z-i)(z+i)} = \lim_{z \to -i} \frac{e^{zt}}{z(z-i)}$$
$$= \frac{e^{-it}}{(-i)(-i-i)} = \frac{e^{-it}}{(-i)(-2i)} = \frac{e^{-it}}{-2} = -\frac{1}{2}e^{-it}$$

故,对于 t > 0:

$$\begin{split} f(t) &= \mathrm{Res}[H(z), 0] + \mathrm{Res}[H(z), i] + \mathrm{Res}[H(z), -i] \\ &= 1 - \frac{1}{2}e^{it} - \frac{1}{2}e^{-it} = 1 - \frac{1}{2}(e^{it} + e^{-it}) \\ &= 1 - \cos(t) \end{split}$$

所以 $f(t) = (1 - \cos t)u(t)$.

解 (有理分式分解):

$$F(z) = \frac{1}{z} - \frac{z}{z^2 + 1} - \frac{z}{(z^2 + 1)^2}$$

分别求各项的逆变换:

1.
$$\mathcal{L}^{-1}\left\{\frac{1}{z}\right\}(t) = u(t)$$
 (或 1 for $t > 0$).

2.
$$\mathcal{L}^{-1}\left\{\frac{z}{z^2+1}\right\}(t) = \cos(t)u(t)$$
.

3.
$$\mathcal{L}^{-1}\left\{\frac{z}{(z^2+1)^2}\right\}(t) = \frac{t}{2}\sin(t)u(t).$$

故,对于 t > 0:

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{1}{z} \right\} (t) - \mathcal{L}^{-1} \left\{ \frac{z}{z^2 + 1} \right\} (t) - \mathcal{L}^{-1} \left\{ \frac{z}{(z^2 + 1)^2} \right\} (t)$$
$$= 1 - \cos(t) - \frac{t}{2} \sin(t)$$

所以 $f(t) = (1 - \cos t - \frac{t}{2}\sin t)u(t)$.

示例 62 (求 $F(z) = \frac{z^2 - a^2}{(z^2 + a^2)^2}$ 的逆变换 f(t) (a > 0)).

解 (有理分式分解):

$$F(z) = \frac{z^2 + a^2 - 2a^2}{(z^2 + a^2)^2} = \frac{1}{z^2 + a^2} - \frac{2a^2}{(z^2 + a^2)^2}.$$

对 F(z) 有理分式分解,或者观察其结构。我们需要求这两项的逆变换。

1.

$$\mathcal{L}^{-1}\left\{G_{1}(z)\right\}(t) = \operatorname{Res}\left[\frac{e^{zt}}{z^{2} + a^{2}}, ia\right] + \operatorname{Res}\left[\frac{e^{zt}}{z^{2} + a^{2}}, -ia\right]$$

$$= \lim_{z \to ia} (z - ia) \frac{e^{zt}}{(z - ia)(z + ia)} + \lim_{z \to -ia} (z + ia) \frac{e^{zt}}{(z - ia)(z + ia)}$$

$$= \lim_{z \to ia} \frac{e^{zt}}{z + ia} + \lim_{z \to -ia} \frac{e^{zt}}{z - ia}$$

$$= \frac{e^{iat}}{ia + ia} + \frac{e^{-iat}}{-ia - ia}$$

$$= \frac{e^{iat}}{2ia} + \frac{e^{-iat}}{-2ia}$$

$$= \frac{1}{2ia} (e^{iat} - e^{-iat})$$

$$= \frac{1}{2ia} (2i\sin(at)) = \frac{1}{a}\sin(at) \quad \text{(for } t > 0)$$

2. 对于 $\mathcal{L}^{-1}\left\{\frac{1}{(z^2+a^2)^2}\right\}(t)$: 在奇点 $z=\pm ia$ 均为二阶极点。
(a) 计算 $\mathrm{Res}[H_2(z),ia]$:

Res_{z=ia}[H₂(z)] =
$$\lim_{z \to ia} \frac{d}{dz} \left[(z - ia)^2 \frac{e^{zt}}{(z - ia)^2 (z + ia)^2} \right]$$

= $\lim_{z \to ia} \frac{d}{dz} \left[\frac{e^{zt}}{(z + ia)^2} \right]$
= $\lim_{z \to ia} \frac{(te^{zt})(z + ia)^2 - e^{zt} \cdot 2(z + ia)(1)}{(z + ia)^4}$ (使用商的导数法则)
= $\lim_{z \to ia} \frac{te^{zt}(z + ia) - 2e^{zt}}{(z + ia)^3}$ (约去公因子z + ia)
= $\frac{te^{iat}(ia + ia) - 2e^{iat}}{(ia + ia)^3} = \frac{te^{iat}(2ia) - 2e^{iat}}{(2ia)^3}$
= $\frac{2iate^{iat} - 2e^{iat}}{8i^3a^3} = \frac{2e^{iat}(iat - 1)}{-8ia^3}$ (因为 $i^3 = -i$)
= $\frac{iat - 1}{-4ia^3}e^{iat} = \frac{1 - iat}{4ia^3}e^{iat}$ (分子分母同乘 - 1)

(b) 计算 $Res[H_2(z), -ia]$: 由于 $H_2(z)$ (对于实数 t, a) 的系数是实的,

$$\operatorname{Res}_{z=-ia}[H_2(z)] = \overline{\operatorname{Res}_{z=ia}[H_2(z)]}.$$

$$\operatorname{Res}_{z=-ia}[H_2(z)] = \overline{\left(\frac{1-iat}{4ia^3}e^{iat}\right)} = \frac{1-(-ia)t}{-4ia^3}e^{-iat} \quad (因为ia = -ia, i = -i, e^{iat} = e^{-iat})$$

$$= \frac{1+iat}{-4ia^3}e^{-iat}$$

(c) 留数之和:

$$\mathcal{L}^{-1} \{G_2(z)\} (t) = \operatorname{Res}_{z=ia}[H_2(z)] + \operatorname{Res}_{z=-ia}[H_2(z)]$$

$$= \frac{1 - iat}{4ia^3} e^{iat} + \frac{1 + iat}{-4ia^3} e^{-iat}$$

$$= \frac{1}{4ia^3} \left[(1 - iat)e^{iat} - (1 + iat)e^{-iat} \right]$$

$$= \frac{1}{4ia^3} \left[(e^{iat} - e^{-iat}) - iat(e^{iat} + e^{-iat}) \right]$$

$$= \frac{1}{4ia^3} \left[2i\sin(at) - iat(2\cos(at)) \right]$$

$$= \frac{2i}{4ia^3} (\sin(at) - at\cos(at))$$

$$= \frac{1}{2a^3} (\sin(at) - at\cos(at)) \quad \text{(for } t > 0)$$

所以
$$\mathcal{L}^{-1}\left\{\frac{1}{(z^2+a^2)^2}\right\}(t) = \frac{1}{2a^3}(\sin(at) - at\cos(at))u(t).$$

因此,

$$f(t) = \mathcal{L}^{-1} \left\{ \frac{1}{z^2 + a^2} \right\} (t) - 2a^2 \mathcal{L}^{-1} \left\{ \frac{1}{(z^2 + a^2)^2} \right\} (t)$$

$$= \frac{1}{a} \sin(at) - 2a^2 \left(\frac{1}{2a^3} (\sin(at) - at \cos(at)) \right)$$

$$= \frac{1}{a} \sin(at) - \frac{1}{a} (\sin(at) - at \cos(at))$$

$$= \frac{1}{a} \sin(at) - \frac{1}{a} \sin(at) + t \cos(at)$$

$$= t \cos(at)$$

所以 $f(t) = t\cos(at)u(t)$ (for t > 0).

示例 63. 求
$$F(z) = \frac{z}{(z-4)(z-2)^2}$$
 的逆变换 $f(t)$

解法一 (留数法):

令 $H(z) = F(z)e^{zt} = \frac{ze^{zt}}{(z-4)(z-2)^2}$. 奇点为 z=4 (一阶极点) 和 z=2 (二阶极点)。

(i) 计算在 z = 4 处的留数:

$$\operatorname{Res}[H(z), 4] = \lim_{z \to 4} (z - 4) \frac{ze^{zt}}{(z - 4)(z - 2)^2} = \lim_{z \to 4} \frac{ze^{zt}}{(z - 2)^2}$$
$$= \frac{4e^{4t}}{(4 - 2)^2} = \frac{4e^{4t}}{2^2} = e^{4t}$$

(ii) 计算在 z=2 处的留数 (二阶极点):

$$\operatorname{Res}[H(z), 2] = \lim_{z \to 2} \frac{\mathrm{d}}{\mathrm{d}z} \left[(z - 2)^2 \frac{ze^{zt}}{(z - 4)(z - 2)^2} \right] = \lim_{z \to 2} \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{ze^{zt}}{z - 4} \right]$$

$$= \lim_{z \to 2} \frac{(e^{zt} + zte^{zt})(z - 4) - ze^{zt}(1)}{(z - 4)^2}$$

$$= \frac{(e^{2t} + 2te^{2t})(2 - 4) - 2e^{2t}(1)}{(2 - 4)^2} = \frac{(e^{2t} + 2te^{2t})(-2) - 2e^{2t}}{(-2)^2}$$

$$= \frac{-2e^{2t} - 4te^{2t} - 2e^{2t}}{4} = \frac{-4e^{2t} - 4te^{2t}}{4} = -e^{2t} - te^{2t}$$

故,对于 t > 0:

$$f(t) = \text{Res}[H(z), 4] + \text{Res}[H(z), 2] = e^{4t} - e^{2t} - te^{2t}$$

所以
$$f(t) = (e^{4t} - (1+t)e^{2t})u(t)$$
.

解法二 (有理分式分解):

$$F(z) = \frac{z}{(z-4)(z-2)^2} = \frac{A}{z-4} + \frac{B}{z-2} + \frac{C}{(z-2)^2}$$

计算系数 A, B, C:

通分后比较系数(或代入特定值)。将部分分式通分:

$$z = A(z-2)^{2} + B(z-4)(z-2) + C(z-4)$$

代入已求得的 A = 1, C = -1:

$$z = 1(z-2)^2 + B(z-4)(z-2) - 1(z-4)$$

选择一个方便的 z 值 (不为极点), 例如今 z=0:

$$0 = 1(0-2)^{2} + B(0-4)(0-2) - 1(0-4)$$

$$0 = 1(-2)^{2} + B(-4)(-2) - (-4)$$

$$0 = 4 + 8B + 4$$

$$0 = 8 + 8B$$

$$8B = -8$$

$$B = -1$$

$$\mathcal{L}^{-1}\left\{\frac{1}{z-4}\right\}(t) = e^{4t}u(t)$$

$$\mathcal{L}^{-1}\left\{\frac{1}{z-2}\right\}(t) = e^{2t}u(t)$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(z-2)^2}\right\}(t) = te^{2t}u(t) \quad (由 \mathcal{L}\{t^ne^{at}\} = \frac{n!}{(z-a)^{n+1}}, \, \text{此处}n = 1, a = 2)$$
故 $f(t) = (e^{4t} - e^{2t} - te^{2t})u(t) = (e^{4t} - (1+t)e^{2t})u(t) \text{ (for } t > 0).}$

解法三 (卷积法):

我们将 $F(z) = \frac{z}{(z-4)(z-2)^2}$ 分解为两个函数的乘积。一种可能的分解是 $F(z) = H_1(z) \cdot H_2(z)$ 。根据笔记,我们先对 $\frac{z}{(z-4)(z-2)}$ 进行部分分式分解:

$$\frac{z}{(z-4)(z-2)} = \frac{A'}{z-4} + \frac{B'}{z-2}$$

计算系数 A' 和 B':

$$A' = \lim_{z \to 4} (z - 4) \frac{z}{(z - 4)(z - 2)} = \lim_{z \to 4} \frac{z}{z - 2} = \frac{4}{4 - 2} = \frac{4}{2} = 2$$
$$B' = \lim_{z \to 2} (z - 2) \frac{z}{(z - 4)(z - 2)} = \lim_{z \to 2} \frac{z}{z - 4} = \frac{2}{2 - 4} = \frac{2}{-2} = -1$$

所以, $\frac{z}{(z-4)(z-2)} = \frac{2}{z-4} - \frac{1}{z-2}$. 那么 F(z) 可以写作:

$$F(z) = \left(\frac{2}{z-4} - \frac{1}{z-2}\right) \cdot \frac{1}{z-2}$$

令 $H_1(z) = \frac{2}{z-4} - \frac{1}{z-2}$ 和 $H_2(z) = \frac{1}{z-2}$. 它们的逆 Laplace 变换为:

$$h_1(t) = \mathcal{L}^{-1} \{ H_1(z) \}(t) = \mathcal{L}^{-1} \left\{ \frac{2}{z-4} \right\}(t) - \mathcal{L}^{-1} \left\{ \frac{1}{z-2} \right\}(t)$$
$$= (2e^{4t} - e^{2t})u(t)$$

$$h_2(t) = \mathcal{L}^{-1}\{H_2(z)\}(t) = \mathcal{L}^{-1}\left\{\frac{1}{z-2}\right\}(t) = e^{2t}u(t)$$

根据卷积定理, $f(t) = \mathcal{L}^{-1}\{F(z)\}(t) = (h_1 * h_2)(t)$.

$$f(t) = \int_0^t h_1(\tau)h_2(t-\tau) d\tau$$

$$= \int_0^t (2e^{4\tau} - e^{2\tau})e^{2(t-\tau)} d\tau \quad (\text{ATF} 0 \le \tau \le t)$$

$$= \int_0^t (2e^{4\tau} - e^{2\tau})e^{2t}e^{-2\tau} d\tau$$

$$= e^{2t} \int_0^t (2e^{4\tau}e^{-2\tau} - e^{2\tau}e^{-2\tau}) d\tau$$

$$= e^{2t} \int_0^t (2e^{2\tau} - 1) d\tau$$

$$= e^{2t} \left[2 \cdot \frac{1}{2}e^{2\tau} - \tau \right]_0^t$$

$$= e^{2t} \left[(e^{2\tau} - \tau) - (e^{2(0)} - 0) \right]$$

$$= e^{2t}(e^{2t} - t - 1)$$

$$= e^{4t} - te^{2t} - e^{2t} = e^{4t} - (1 + t)e^{2t}$$

所以 $f(t) = (e^{4t} - (1+t)e^{2t})u(t)$ (for t > 0).

注: 书中利用 z/z-4 的 Laplace 变换,用到了 s 函数,需小心!

解法四 (查表法 (Looking up tables)): (略)

Part IX Appendix

APPENDIX

.1 附录 A Bessel 不等式的另一种证明

Proof. 考虑在 L^2 空间中,对于标准正交基 $\{e_k\}_{k=1}^\infty$ 和函数 f,我们有如下等式:

$$\left\| f - \sum_{k=1}^{n} (f, e_k) e_k \right\|_2^2 = \left(f - \sum_{k=1}^{n} (f, e_k) e_k, \ f - \sum_{k=1}^{n} (f, e_k) e_k \right)$$

$$= (f, f) - \left(f, \sum_{k=1}^{n} (f, e_k) e_k \right) - \left(\sum_{k=1}^{n} (f, e_k) e_k, f \right) + \left(\sum_{k=1}^{n} (f, e_k) e_k, \sum_{k=1}^{n} (f, e_k) e_k \right)$$

第二项:

$$\left(f, \sum_{k=1}^{n} (f, e_k) e_k\right) = \sum_{k=1}^{n} \overline{(f, e_k)} (f, e_k) = \sum_{k=1}^{n} |(f, e_k)|^2$$

第三项:

$$\left(\sum_{k=1}^{n} (f, e_k)e_k, f\right) = \sum_{k=1}^{n} (f, e_k)(f, e_k) = \sum_{k=1}^{n} |(f, e_k)|^2$$

第四项

$$\left(\sum_{k=1}^{n} (f, e_k)e_k, \sum_{k=1}^{n} (f, e_k)e_k\right)$$

由于 e_k 是标准正交基底,因此交叉项消失,只剩下两边下标相同的项

$$= \sum_{k=1}^{n} ((f, e_k)e_k, (f, e_k)e_k) = \sum_{k=1}^{n} (f, e_k)\overline{(f, e_k)}(e_k, e_k) = \sum_{k=1}^{n} |(f, e_k)|^2$$

最终得

$$\left\| f - \sum_{k=1}^{n} (f, e_k) e_k \right\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{n} |(f, e_k)|^2 \ge 0$$
$$\left(\sum_{k=1}^{n} (f, e_k) e_k, \sum_{k=1}^{n} (f, e_k) e_k \right) = \sum_{k=1}^{n} |(f, e_k)|^2$$

综合以上结果,我们得到关键不等式:

$$\left\| f - \sum_{k=1}^{n} (f, e_k) e_k \right\|_2^2 = \|f\|_2^2 - \sum_{k=1}^{n} |(f, e_k)|^2 \ge 0$$

由此直接导出 Bessel 不等式:

$$\sum_{k=1}^{n} |(f, e_k)|^2 \le ||f||_2^2$$

.1. 附录 A BESSEL 不等式的另一种证明

123

当 $n \to \infty$ 时,级数仍然收敛:

$$\lim_{n \to \infty} \sum_{k=-n}^{n} |c_k|^2 < +\infty$$

.2 附录 B 完备赋范空间中级数收敛性的证明

本部分将证明在完备赋范空间中,傅里叶级数的部分和序列收敛于原函数。基本思路分为三步:

- 1. 证明部分和序列是 Cauchy 列
- 2. 利用空间完备性得到收敛性
- 3. 验证极限函数与原函数相等

Proof. 考虑标准正交基 $\{e_k\}_{k=-\infty}^{\infty}$, 其中 $e_k(x)=\frac{1}{\sqrt{2\pi}}e^{ikx}$ (已标准化)。定义部分和:

$$S_n(f) = \sum_{k=-n}^{n} c_k \cdot e_k \qquad c_k = (f, e_k)$$

 $||S_m(f) - S_n(f)||_2^2 = ||c_{n+1}e_{n+1} + \dots + c_m e_m + c_{-m}e_{-m} + \dots + c_{-(n+1)}e_{-(n+1)}||_2^2$ $= \int_{-\pi}^{\pi} |c_{n+1}e_{n+1} + \dots + c_m e_m + c_{-m}e_{-m} + \dots + c_{-(n+1)}e_{-(n+1)}|^2 dx$

中间项正交消掉

$$= \int_{-\pi}^{\pi} |c_{n+1}e_{n+1}|^2 dx + \dots + \int_{-\pi}^{\pi} |c_m e_m|^2 dx + \dots + \int_{-\pi}^{\pi} |c_{-m}e_{-m}|^2 dx$$

$$\leq \sum_{k=n+1}^{m} |c_k|^2 + \sum_{k=-m}^{-(n+1)} |c_k|^2$$

由 Bessel 不等式

$$\sum_{k=-n}^{n} |c_k|^2 \le ||f||_2^2 < +\infty \quad f \in L_2$$

由 Cauchy 准则可知:

$$\sum_{k=n+1}^m |c_k|^2 < \frac{\varepsilon}{2}, \quad \sum_{k=-m}^{-(n+1)} |c_k|^2 < \frac{\varepsilon}{2}$$

故:

$$||S_m(f) - S_n(f)||_2^2 < \varepsilon$$

这表明 $\{S_n(f)\}$ 是 Cauchy 列。由于 L^2 空间完备,存在 $g \in L^2$ 使得:

$$\lim_{n\to\infty} S_n(f) = g$$

最后验证 g = f, 对任意基元素 e_j :

$$(g, e_j) = \left(\lim_{n \to \infty} S_n(f), e_j\right)$$

由内积的连续性,极限与内积可交换:

$$= \lim_{n \to \infty} (S_n(f), e_j) = \lim_{n \to \infty} \left(\sum_{k=-n}^n (f, e_k) e_k, e_j \right) = (f, e_j)$$

得:

$$(g, e_j) = (f, e_j) \Rightarrow (g - f, e_j) = 0 \Rightarrow g = f$$

故 f 在 L^2 空间下的傅里叶级数依 L2 范数的均方收敛,则必能按范数收敛。 \square

.3 常见的函数空间

此节简单介绍了 Lebesgue 空间 $L^p[a,b]$ 、连续可微空间 $C^n[a,b]$,光滑及紧支撑空间 $C^\infty[a,b]$ 、 $C_c^\infty[a,b]$,速降函数空间 S[a,b],以及 Sobolev 空间 $W^{k,p}[a,b]$ 的定义与相互嵌入,还增加了测试函数空间的基本概念以供阅读

.3.1 L^p 空间与 L^{∞} 空间

Definition 7. L^p 空间

对函数 $f: \mathbb{R} \to \mathbb{C}$,若积分 $\int_{-\infty}^{\infty} |f(x)|^p dx$ 有限 $(1 \le p < \infty)$,则称 f 属于 L^p 空间。其范数定义为:

$$||f||_{L^p} = \left(\int_{-\infty}^{\infty} |f(x)|^p dx\right)^{1/p}.$$

Definition 8. L^{∞} 空间

称函数 $f: \mathbb{R} \to \mathbb{C}$ 是**本质有界**的, 若存在常数 $M \geq 0$, 使得

$$|f(x)| \le M$$
 对几乎所有的 $x \in \mathbb{R}$ 成立 $(a.e.)$,

其本质确界范数定义为:

$$||f||_{L^{\infty}} := \inf \{ M \ge 0 \, | \, |f(x)| \le M \ a.e. \}.$$

所有本质有界函数构成的集合记为 $L^{\infty}(\mathbb{R})$ 。

.3.2 $C^n(\Omega)$ 与 $C^{\infty}(\Omega)$ 光滑函数空间

Definition 9. $C^n(\Omega) \neq C^{\infty}(\Omega)$

令 $\Omega \subset \mathbb{R}^d$ 为开集,则

$$C^n(\Omega) = \{ f : \Omega \to \mathbb{R} : f \text{ 具有连续的 } 0, 1, \dots, n \text{ 阶偏导数} \},$$

$$C^{\infty}(\Omega) = \bigcap_{n=0}^{\infty} C^n(\Omega).$$

在有界域 Ω 上,任意连续函数必有界,从而

$$C^n(\Omega) \subset L^p(\Omega), \quad 1 \le p \le \infty.$$

.3.3 解析函数 $C^{\omega}(\Omega)$

Definition 10. 解析函数 $C^{\omega}(\Omega)$

 $\dot{x} f: \Omega \to \mathbb{R}$ 在开集 $\Omega \subset \mathbb{R}^n$ 上可微无穷次,且任取 $x_0 \in \Omega$,函数 f 在 x_0 的泰勒级数收敛并与 f 一致,则称 f 为解析函数。

所有解析函数构成的集合记作 $C^{\omega}(\Omega)$, 有包含关系:

$$C^{\omega}(\Omega) \subsetneq C^{\infty}(\Omega)$$
.

解析函数不允许有紧支撑,除 0 函数,是因为解析函数可以泰勒展开成多项式,最多有 n 个根,即零点最多可数个,我们可知可数集的测度是 0,所以他的支集为全体实数空间,不是紧的(有界闭集)。

在拓扑意义下, $C^{\omega}(\Omega)$ 在 $C^{\infty}(\Omega)$ 中并不稠密。紧支撑光滑函数 $C_c^{\infty}(\Omega)$ 的存在正是为了替代解析函数在分布论中的不足,因为解析函数不允许有紧支撑,而 C_c^{∞} 中的 bump 函数是构造近似单位、分布作用的重要工具。

.3.4 紧支撑概念的引入

光滑函数空间 $C^{\infty}(\mathbb{R})$ 中的函数在无穷远处可能不衰减,导致其不属于 $L^p(\mathbb{R})$ 。为保证积分收敛性,引入紧支撑光滑函数空间:

$$C_c^{\infty}(\mathbb{R}) = \{ f \in C^{\infty}(\mathbb{R}) \mid \text{supp}(f) \text{ 为紧集} \},$$

显然满足 $C_c^{\infty}(\mathbb{R}) \subset L^p(\mathbb{R})$ 对任意 $1 \leq p \leq \infty$ 成立。

$C_c^{\infty}(\Omega)$ 紧支撑光滑函数空间

Definition 11. $C_c^{\infty}(\Omega)$ 紧支撑光滑函数空间

$$\mathcal{D}(\Omega) = C_c^{\infty}(\Omega) = \{ \varphi \in C^{\infty}(\Omega) : \operatorname{supp} \varphi \subset K, \ K \subset\subset \Omega \},$$

即所有支持集紧于 Ω 的光滑函数。其在分布与弱解理论中用于构造逼近序列及光滑化操作。 $Bump\ function$

.3.6 凍降函数空间 S

Definition 12. Schwartz 空间

Schwartz 空间 (速降函数空间) 是指在光滑函数上所有函数及其导数在无穷远处衰减得比任意多项式还快的光滑函数组成的集合:

$$\mathcal{S}(\mathbb{R}^n) = \Big\{ f \in C^{\infty}(\mathbb{R}^n) : \forall \alpha, \beta \in \mathbb{N}^n, \sup_{x \in \mathbb{R}^n} |x^{\alpha} D^{\beta} f(x)| < \infty \Big\}.$$

由定义可知速降函数空间 S 仅在测度无穷才存在。

Theorem 64. 求导运算和与多项式乘积运算封闭

Schwartz 空间在速降意义下定义,记作 $S = S(\mathbb{R})$ 。该空间是复数域 \mathbb{C} 上的线性空间。进一步地,若 $f \in S(\mathbb{R})$,则有

$$f'(x) = \frac{\mathrm{d}f}{\mathrm{d}x} \in \mathcal{S}(\mathbb{R}), \quad xf(x) \in \mathcal{S}(\mathbb{R}).$$

Theorem 65. $S_c(\mathbb{R}^n) = C_c^{\infty}(\mathbb{R}^n)$

由于紧支撑光滑函数在无穷远处恒为零,可得:

$$S_c(\mathbb{R}^n) = S(\mathbb{R}^n) \cap C_c^{\infty}(\mathbb{R}^n) = C_c^{\infty}(\mathbb{R}^n).$$

.4 不同函数空间在测度有穷和无穷下的关系

.4.1 测度有限情形 $(\mu(X) < \infty)$

在有限测度空间中, 若 $1 \le p < q \le \infty$, 则

$$L^q(X) \subset L^p(X)$$

Proof. 当测度空间满足 $1 \le p_1 \le p_2 < +\infty$ 且 $m(E) < +\infty$ 时: 若函数 x(t) 属于 $L^{p_2}(E)$,则

$$\left(\int_{E} |x(t)|^{p_2} dt\right)^{\frac{1}{p_2}} < +\infty$$

因此

$$\int_{E} |x(t)|^{p_2} dt < +\infty$$

设集合 $B = \{t \in E \mid |x(t)| \le 1\}$, 则

$$\int_{E} |x(t)|^{p_1} dt = \int_{B} |x(t)|^{p_1} dt + \int_{E \setminus B} |x(t)|^{p_1} dt$$

由于在 $B \perp |x(t)| \le 1$, 故 $|x(t)|^{p_1} \le 1$, 从而

$$\int_{B} |x(t)|^{p_1} dt \le m(B)$$

在 $E \setminus B$ 上 |x(t)| > 1,由于 $p_1 \le p_2$,故 $|x(t)|^{p_1} \le |x(t)|^{p_2}$,因此

$$\int_{E \setminus B} |x(t)|^{p_1} dt \le \int_{E \setminus B} |x(t)|^{p_2} dt$$

综合得:

$$\int_{E} |x(t)|^{p_1} dt \le m(B) + \int_{E \setminus B} |x(t)|^{p_2} dt \le m(E) + \int_{E} |x(t)|^{p_2} dt < +\infty$$

因此,在有限测度空间中,若 $x(t) \in L^{p_2}(E)$,则 $x(t) \in L^{p_1}(E)$ 。这表明 $L^{p_2}(E) \subseteq L^{p_1}(E)$,即 L^p 空间具有包含关系,且 L^1 是最大的。特别地,当测度有限时, $L^{\infty}(E) \subseteq L^1(E)$ 。

证明过程用到放缩测度是有限的,所以当测度无限时,即 L^p 空间不具有包含关系。

对于有界开域 Ω , 还具有

$$C^n(\Omega) \subset L^p(\Omega), \quad C^{\infty}(\Omega) \subset L^p(\Omega), \quad C_c^{\infty}(\Omega) \subset L^p(\Omega)$$

且 $C_c^{\infty}(\Omega)$ 在 $L^p(\Omega)$ 下稠密。

.4.2 测度无穷情形 $(\mu(X) = \infty)$

空间包含关系可总结为:

$$C_c^{\infty}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R}) \subset C^{\infty}(\mathbb{R})$$
$$C_c^{\infty}(\mathbb{R}) \subset \mathcal{S}(\mathbb{R}) \subset L^p(\mathbb{R}), 1 \le p \le \infty$$
$$\mathcal{S}(\mathbb{R}^n) \subsetneq \bigcap_{1 \le p < \infty} L^p(\mathbb{R}^n)$$

在下文我们将讨论不同空间下的傅里叶变换,故如果空间有包含关系,那性质子空间就可以继承大空间的性质,就不再重复说明,子空间的性质我们只讨论子空间特有的性质。

稠密关系

 $C_c^\infty(\mathbb{R})$ 在 $L^p(\mathbb{R})$ 中稠密($1 \leq p < \infty$); $\mathcal{S}(\mathbb{R})$ 在 $L^p(\mathbb{R})$ 中同样稠密($1 \leq p < \infty$),但在 $L^\infty(\mathbb{R})$ 中不稠密; $C^\infty(\mathbb{R})$ 中存在非 L^p 函数(例如常函数 $1 \notin L^p(\mathbb{R})$

参考文献

- [1] R. A. Adams, Sobolev Spaces, Academic Press, 1975.
- [2] L. C. Evans, Partial Differential Equations, AMS, 1998.
- [3] G. B. Folland, Real Analysis, Wiley, 1999.
- [4] W. Rudin, Real and Complex Analysis, McGraw-Hill, 1987.

参考文献 131

后记的代码