Seminar course Quantum Software Systems

(aka "qc-systems-seminar")
Preliminary meeting
https://dse.in.tum.de/

Emmanouil (Manos) Giortamis Francisco Romão Prof. Pramod Bhatotia

Course instructors

Chair of Distributed Systems & Operating Systems

https://dse.in.tum.de/team/

Francisco Romão

Prof. Pramod Bhatotia

Quantum Computing (QC)

Applications of QC

ΑI

Source: https://icon-library.com/

QC hardware & cloud

IBM **Q**™

Challenges

Current state: Noisy Intermediate-Scale Quantum era (NISQ)

- Noisy:
 - Prone to environmental noise
 - Prone to decoherence errors and cross-talk noise
 - Limited error mitigation/correction
- Intermediate-Scale:
 - Up to a few 100s of qubits
 - Low quantum-volume
 - 10.000s needed for quantum supremacy

Existing QC hardware is limited in terms of quantity and quality

Can we scale NISQ computing? What software tools should be developed?

Example #1: Qubit mapping

Example #1: Qubit mapping

How to optimally map logical qubits to physical qubits? (NP-hard problem)

Example #2: Circuit-to-QPU mapping

Tentative topics

Papers from top conferences (e.g., ASPLOS, HPCA, MICRO, PLDI)

Tentative topics
Transpilation (qubit mapping)
Quantum resource management
Quantum error mitigation
Circuit cutting & knitting
Circuit multiprogramming
Circuit optimization

Format

Bird's eyes view

Team (2 students per team)

Research papers
(Top systems conferences)

Understand

Research ideas

1 presentation

1 short report

Peer-reviewing

Overview

Phase I

Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design Implement (Bonus)

Report Peer-review

Phase I: Kick-off meeting

Format and motivation (all participants meeting)

2

Team formation (2 students per team)

Paper selection (Top systems conferences)

The first week

NOTE

- 1. A list of papers will be provided for FCFS bidding
- 2. Paper presentation guidelines will be provided for the next phase

Phase II: Understand & explore

Understand the paper(s)

Focus

- Understand the paper and related work
- 2. Also **explore** a "laundry list" of research ideas/directions

Paper presentation

Focus

- Explain the work/related work ("why?" and "how?")
- 2. Explain and discuss all possible research directions
- 3. Pick a research direction

Phase III: Research

Research work

Focus:

Indepth research work to nail-down the problem and detailed approach to solve it!

Research prototype

Bonus:

(Optional)

"Build the system to solve it!" and show us the working idea and associated results

Phase IV: Report & review

Prepare a single "short & sweet" report summarizing

- (a) Paper
- (b) Research work

Peer-review

Focus

Give constructive (positive and critical) feedback for

- (a) Paper summary
- (b) Research work

Overall timeline

Phase I Phase II: Understand & explore

Phase III: Research

Phase IV: Report & review

Kick-off

Understand Presentation

Design

Implement (optional)

Report

Peer-review

1

3 weeks

2 weeks

Milestone #2:

Paper

presentations

3 weeks

2 weeks

Meeting

Meeting

Milestone #4:
Report
submission

Milestone #5: Peer-reviewing

Organization

- Format
 - Team-based seminar course (2 students per team)
- Communication
 - Slack for announcements and information sharing
 - Hotcrp for report submission and peer-reviewing
- Meetings (in-person, attendance is compulsory)
 - **Meeting #1:** Kick-off
 - **Meeting #2:** Paper presentation

Learning goals

- Learn about the cutting-edge research in quantum computing systems
- Promote critical thinking
- Cultivate an environment for innovation
 - To push the boundaries by advancing the state-of-the-art
- Improve scientific skills
 - Presentation
 - Writing
 - Communication: discussion and arguing
 - Mentorship: giving feedback and moderating discussion
- Encourage system building and evaluation
 - Learn by building, breaking, and benchmarking systems
- Importantly, to have fun!

Code of conduct

University plagiarism policy

https://www.in.tum.de/en/current-students/administrative-matters/student-code-of-conduct/

Decorum

- Promote freedom of thoughts and open exchange of ideas
- Cultivate dignity, understanding and mutual respect, and embrace diversity
- Racism and bullying will not be tolerated

Interested?

Sign up on the TUM matching platform

Contact

- Manos Giortamis
 - <u>emmanouil.giortamis@in.tum.de</u>
- Francisco Romão
 - francisco.romao@tum.de
- Prof. Pramod Bhatotia
 - pramod.bhatotia@in.tum.de
- All seminar-related info: https://github.com/TUM-DSE/seminars

Communication:

Join us with TUM email address (@tum.de) ls1-courses-tum.slack.com #ss-23-qc-systems-seminar