Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εργασία Συστημάτων Αυτομάτου Ελέγχου

Αξιμιώτης Δημήτρης 10622 Νοέμβριος 2024

1 Τμήμα Γ

1.1 Ερώτημα πρώτο

Το δωθέν σύστημα είναι τετραγωνικό 2x2 σύστημα με εξίσωση:

$$H(q)\ddot{q} + C(q, \dot{q})\dot{q} + g(q) = u$$

με το q να είναι διάνυσμα $R^{2 \times 1}$. Ορίζουμε μεταβλητές κατάστασης, $x_1 = q$, $x_2 = \dot{q}$. Το σύστημα σε μορφή εξισώσεων κατάστασης περιγράφεται ως εξής,

$$\dot{x_1} = x_2,$$

 $\dot{x_2} = -H(x_1)^{-1}(C(x_1, x_2)x_2 + g(x_1)) + H(x_1)^{-1}u$

όπου μπορούμε να αντιστρέψουμε τον πίνακα H καθώς είναι θετικά ορισμένος άρα και αντιστρέψιμος. Για να διευκολύνουμε την ανάλυση θα θέσουμε $f(x)=-H(x_1)^{-1}(C(x_1,x_2)x_2+g(x_1))$ και $G(x)=H(x_1)^{-1}$. Θα εφαρμόσουμε την τεχνική ολίσθησης ορίζοντας πρώτα το σφάλμα παρακολούθησης με,

 $e=q-q_d$ αλλιώς $e=x_1-x_d$ οπότε η τροχιά ολίσθησης δίνεται από

$$s = \dot{e} + \lambda e$$

. Το διάνυσμα e είναι διάνυσμα σφάλματος 2 διαστάσεων και η επιθυμητή θέση είναι $x_d = [\pi/2, \pi/3]$, οπότε ισχύει ότι $\dot{x}_d = [0,0]$ και $\ddot{x}_d = [0,0]$ οπότε για να βρούμε τον νόμο ελέγχου θέλουμε $\dot{s} = 0$, καθώς για $\dot{s} = 0$ το s θα πάει στο s0 οπότε θα είμαστε πάνω στην τροχιά ολίσθησης και το σφάλμα e θα μειώνεται εκθετικά με ρυθμό s0. Άρα:

$$\dot{s} = 0 \Longrightarrow \ddot{e} + \lambda \dot{e} = 0.$$

 $\dot{x}_2 - \ddot{x}_d + \lambda(x_2 - \dot{x}_d) = 0$, όπως αναφέραμε παραπάνω $\dot{x}_d = [0,0]$ και $\ddot{x}_d = [0,0]$, οπότε θα υπολογίσουμε το u_{eq} μέσω της $\dot{x}_2 + \lambda x_2 = 0$. Αντικαθιστώντας από την εξίσωση κατάστασης.

$$f(x) + G(x)u + \lambda x_2 = 0$$

ο G είναι αντιστρέψιμος πίνακας οπότε

$$u_{eq} = -G(x)^{-1}(\lambda x_2 + f(x))$$

, καθώς δεν ξέρουμε τις ακριβής εκτιμήσεις των παραμέτρων στον πίνακα G και το διάνυσμα f θα χρησιμοποιήσουμε εκτιμήσεις αυτών οπότε

$$\hat{u}_{eq} = -\hat{G}(x)^{-1}(\lambda x_2 + \hat{f}(x))$$

. Σύμφωνα με την θεωρία η τελική μορφή της επιλογής ελεγκτή u θα είναι

$$u = \hat{u}_{eq} - \rho(x)sign(s)$$

, όπου $\rho(x)$ βαθμωτή συνάρτηση 2 μεταβλητών που θα προκύψει από την συνάρτηση Lyapunov.

Επιλέγουμε συνάρτηση Lyapunov $V=\frac{1}{2}s^TG(x)^{-1}s$ είναι θετικά ορισμένη συνάρτηση αφού ο πίνακας G είναι θετικά ορισμένος πίνακας και η V μηδενίζεται μόνο για s=0.Παίρνουμε την παράγωγο της και έχουμε ,

$$\dot{V} = s^T G(x)^{-1} \dot{s} + \frac{1}{2} s^T \dot{G}(x)^{-1} s$$

$$\dot{V} = s^{T} (G(x)^{-1} f(x) - \hat{G}(x)^{-1} \hat{f}(x) + G(x)^{-1} \lambda x_{2} - \hat{G}(x)^{-1} \lambda x_{2} - \rho(x) sign(s)) + \frac{1}{2} s^{T} \dot{G}(x)^{-1} sign(s) + \frac{1}{2} sign(s)$$

$$\dot{V} = s^{T}(-\hat{G}(x)^{-1}\hat{f}(x) + G(x)^{-1}\lambda x_{2} - \hat{G}(x)^{-1}\lambda x_{2} - \rho(x)sign(s)) + \frac{1}{2}s^{T}\dot{G}(x)^{-1}s + s^{T}G(x)^{-1}f(x)$$

αντικαθιστούμε την f(x) και για την πράξη $y(x)=\frac{1}{2}s^T\dot{G}(x)^{-1}s+s^TG(x)^{-1}f(x)$ έχουμε

$$y(x) = -s^{T}C(x_{1}, x_{2})s + s^{T}C(x_{1}, x_{2})\lambda(x_{1} - x_{d}) - s^{T}g(x_{1}) + \frac{1}{2}s^{T}\dot{G}(x)^{-1}s$$

,ισχύει ότι $G(x)^{-1}=H(x)$ και έχουμε ιδιότητα για τον πίνακα αδρανείας με τον πίνακα C ότι ο $\frac{1}{2}\dot{H}-C$ είναι αντισυμμετρικός πίνακας το οποίο μπορεί εύκολα να αποδειχθεί άρα $-s^TC(x_1,x_2)s+\frac{1}{2}s^T\dot{G}(x)^{-1}s=0$

$$y(x) = s^T C(x_1, x_2) \lambda(x_1 - x_d) - s^T g(x_1)$$

. ,αντικαθιστώντας την y(x) στην παράγωγο V έχουμε τελικά

$$\dot{V} = s^{T} (C(x_1, x_2)\lambda(x_1 - x_d) - g(x_1) - \hat{G}(x)^{-1}\hat{f}(x) + G(x)^{-1}\lambda x_2 - \hat{G}(x)^{-1}\lambda x_2 - \rho(x)sign(s))$$

μπορούμε να θέσουμε τους παραπάνω όρους με $\delta(\mathbf{x})=C(x_1,x_2)\lambda(x_1-x_d)-g(x_1)-\hat{G}(x)^{-1}\hat{f}(x)+G(x)^{-1}\lambda x_2-\hat{G}(x)^{-1}\lambda x_2$ οπότε τελικά έχουμε

$$\dot{V} = s^{T}(\delta(x) - \rho(x)sign(s))$$

Στόχος είναι να φτάσουμε σε $\dot{V}<0$ δηλαδή σε κάποια μορφή $\dot{V}=-c||s||$. Εάν θεωρήσουμε ότι η νόρμα του $\delta(\mathbf{x})$ φράσεται απο συνάρτηση $\mathbf{n}(\mathbf{x})$ και ότι $sign(s)=\frac{s}{||s||}$ έχουμε

$$\dot{V} \le ||s||n(x) - ||s||\rho(x)$$

, μπορούμε επιλέγοντας $\rho(x)=n(x)+c$ με c>0 να κάνουμε το s=0 ασυμπτωτικά ευσταθές σημείο ισορροπίας αφού $\dot{V}\leq -c||s||<0$ μηδενίζεται μόνο για s=0.

1.1.1 Υλοποίηση ελεγκτή

Όπως αναφέραμε ο ελεγκτής \mathbf{u} θα έχει μορφή $u=\hat{u}_{eq}-\rho(x)sign(s)$ με $\hat{u}_{eq}=-\hat{G}(x)^{-1}(\lambda x_2+\hat{f}(x))$. Για τα $\hat{G}(x)^{-1}$ και $\hat{f}(x)$ μπορούμε να επίλεξουμε τις άγνωστες παραμέτρους μέσω γραμμικής παρεμβολής δηλαδή:

$$\hat{l}_{c1} = \frac{0.4 + 0.1}{2} = 0.25$$

$$\hat{l}_{c2} = \frac{0.3 + 0.05}{2} = 0.175$$

$$\hat{I}_1 = \frac{0.02 + 0.5}{2} = 0.26$$

$$\hat{I}_2 = \frac{0.15 + 0.01}{2} = 0.08$$

$$\hat{m}_l = \frac{0 + 2}{2} = 1$$

. Για την επιλογή του $\rho(x)$ γνωρίζουμε ότι $\rho(x)=n(x)+c$, με $||\delta(x)||\leq n(x)$. Οπότε αρχεί να βρούμε ένα φράγμα της νόρμας της δ όχι όμως αρχετά μεγάλο ώστε το s να τείνει ασυμπτωτικά στο 0.Έχουμε

$$\delta(x) = C(x_1, x_2)\lambda(x_1 - x_d) - g(x_1) - \hat{G}(x)^{-1}\hat{f}(x) + G(x)^{-1}\lambda x_2 - \hat{G}(x)^{-1}\lambda x_2$$

Για τον όρο $y1(x)=G(x)^{-1}\lambda x_2-\hat{G}(x)^{-1}\lambda x_2$ γνωρίζουμε ότι $H(x_1)=G(x_1)^{-1}$ αλλά η Η μπορεί να φραχθεί από τις εκτιμήσεις των παραμέτρων ως εξής $H_{min}<||H||< H_{max}. Συνεπώς$ επιλέγουμε εκτίμηση του Η πίνακα ώστε να ελαχιστοποίησουμε την μέγιστη διαφορά. Οπότε για το H_{min} μπορούμε για τις άγνωστες μεταβλητές να αντικαταστήσουμε τις ελάχιστες τιμές του και για τους όρους που έχουν όρο συνημιτόνου να βάλουμε το -1 ώστε να διευκολύνουμε τις πράξεις.

Για το H_{max} :

Θεωρούμε στην χειρότερη περίπτωση ότι τα συνημίτονα παίρνουν τιμή ίση με αυτή της μονάδας.

l_{c1}	l_{c2}	I_1	I_2	m_l
0.25	0.175	0.26	0.08	1
οπότε				

$$h_{11_{max}} = 5.37$$

 $h_{12_{max}} = 1.83$
 $h_{22_{max}} = 0.83$

$$H_{max} = \begin{bmatrix} 5.37 & 1.83 \\ 1.83 & 0.83 \end{bmatrix}$$

και για τον πίνακα της εκτίμησης μπορούμε να αντικαταστήσουμε τις τιμές που έχουμε θεωρήσει παραπάνω

$$\hat{H} = \begin{bmatrix} 3.3475 & 0.9125 \\ 0.9125 & 0.3625 \end{bmatrix}$$

Οπότε $max||y1|| = ||H_{max} - \hat{H}|| * ||\lambda x_2|| =$

$$|| \begin{bmatrix} 2.0225 & 0.9125 \\ 0.9125 & 0.4675 \end{bmatrix} || * || \lambda x_2 || = 2.935 * \lambda || x_2 ||$$

για το $g(x_1)$

$$\hat{g} = [50.0310, 10.791]$$
 жа
і $g_{max} = [72.594, 19.62]$
$$||g_{max} - \hat{g}|| = 24.229$$

Για τον πίνακα C πάλι θα χρησιμοποιήσουμε τις παραπάνω εκτιμώμενες τιμές μπορεί αλλιώς να γραφθεί ως

$$C = l_1(m_2l_{c2} + m_ll_2)sin(q_2)\dot{q}_2(\begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}) + l_1(m_2l_{c2} + m_ll_2)sin(q_2)\dot{q}_1(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix})$$

$$\hat{C} = 0.55sin(q_2)\dot{q}_2(\begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}) + 0.55sin(q_2)\dot{q}_1(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix})$$

$$C_{max} = 1sin(q_2)\dot{q}_2(\begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix}) + 1sin(q_2)\dot{q}_1(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix})$$

$$||C_{max}|| \le |\dot{q}_2| + |\dot{q}_1|$$

$$||\hat{C}|| \le 0.55(|\dot{q}_2| + |\dot{q}_1|)$$

Θεωρώντας $x_{11}=q_1$, $x_{12}=q_2$, $x_{21}=\dot{q}_1$, $x_{22}=\dot{q}_2$, μια σίγουρη επιλογή για το $\rho(x)$ ώστε ο ελεγκτής να εγγυάται την σύγκλιση του βραχίωνα στις επιθυμητές θέσεις είναι με επιλογή $\lambda{=}10$:

$$\rho(x) = 29.35(\sqrt{x_{21}^2 + x_{22}^2}) + 24.23 + 10(|x_{21}| + |x_{22}|)\sqrt{(x_{11} - pi/2)^2 + (x_{12} + pi/3)^2} + 0.55(|x_{21}| + |x_{22}|)\sqrt{x_{21}^2 + x_{22}^2}.$$

Όπως έχουμε αναφέρει παραπάνω $u=\hat{u}_{eq}-\rho(x)sgn(s)$. Το $\rho(x)$ το έχουμε υπολογίσει παραπάνω για το s ισχύει ότι είναι διάνυσμα 2 διαστάσεων για το οποίο ξέρουμε για επιθυμητό στόχο $q_d=\left[\pi/2,-\pi/3\right]$, $s=x_2+\lambda*(x_1-x_d)$ όπου $\lambda{=}10$, και $x_d=q_d$. Τέλος στο $\hat{u}_{eq}=-\hat{G}(x)^{-1}(\lambda x_2+\hat{f}(x))$ αντικαθιστούμε τις εκτιμώμενες τιμές των παραμέτρων που έχουνε προκύψει με γραμμική παρεμβολή. Μέσω προσομοίωσης στο matlab λαμβάνουμε τα παρακάτω διαγράμματα.

Figure 1: Διάγραμμα θέσης q_1, q_2

Figure 2: Διάγραμμα ταχύτητας \dot{q}_1 , \dot{q}_2

Η συγκεκριμένη επιλογή ελεγκτή με τεχνική ολίσθησης φαίνεται πως πληρεί τον στόχο ελέγχου αφού τα q_1 και q_2 τείνουν ασυμπτωτικά στις επιθυμητές τιμές όπως φαίνεται και από το διάγραμμα θέσης. Το ίδιο ισχύει και για την ταχύτητας καθώς η τελική τιμή της είναι ίση με το [0,0].

Figure 3: Φασικό πορτραίτο για q_1 , \dot{q}_1

Figure 4: Φασικό πορτραίτο q_2 , \dot{q}_2

Και στα 2 διαγράμματα γίνεται ξεκάθαρη η επιλογή του ελεγκτή μέσω sliding αφού μέσω των ισοβαρών καμπύλων $[q_1,\dot{q}_1]$ και $[q_2,\dot{q}_2]$ οδηγούμαστε στην τροχιά $s{=}0$ και έπειτα με κλίση $\lambda{=}10$ (αρνητική καθώς για $s{=}0$, $\dot{e}+\lambda e=0$) η σχέση του σφάλματος με την παράγωγο του γίνεται γραμμική και οδηγούμαστε σε πεπερασμένο χρόνο στην επιθυμητή θέση,πράγμα που φαίνεται και από τις ετικέτες επάνω στα διαγράμματα.

Figure 5: Γραφική παράσταση σφάλματος e

Εφόσον οι καταστάσεις τείνουν στις επιθυμητές τιμές το σφάλμα τείνει στο 0.

1.2 Δεύτερο ερώτημα

Το μόνο που θα αλλάξουμε στην ανάλυση μας σε σχέση με το προηγούμενο ερώτημα είναι ότι τώρα ο επιθυμητός στόχος έχει χρονικά μεταβαλλόμενα στοιχεία οπότε για σφάλμα $e=x_1-x_d$, $\dot{e}=x_2-\dot{x}_d$, καθώς η επιθυμητή τροχιά είναι η ,

 $q_d = [\pi/4 + \pi/6 * sin(0.2 * \pi * t), -\pi/3 + \pi/3 * cos(0.2 * \pi * t)]$. Μέσω της τεχνικής ολίσθησης θα βρούμε τον εκτιμώμενο έλεγχο \hat{u}_{eq} μέσω $\dot{s} = 0$.

 $e=q-q_d$ αλλιώς $e=x_1-x_d$ οπότε η τροχιά ολίσθησης δίνεται από

$$s = \dot{e} + \lambda e$$

. Το διάνυσμα ε είναι διάνυσμα σφάλματος 2 διαστάσεων και η επιθυμητή θέση είναι $x_d = [\pi/4+\pi/6sin(0.2\pi t), -\pi/3+\pi/3cos(0.2\pi t)]$, οπότε ισχύει ότι $\dot{x}_d = [\pi^2/30cos(0.2\pi t), -\pi^2/15sin(0.2\pi t)]$ και $\ddot{x}_d = -\pi^3/150sin(0.2\pi t), -\pi^3/75cos(0.2\pi t)$ οπότε για να βρούμε τον νόμο ελέγχου θέλουμε $\dot{s}=0$, καθώς για $\dot{s}=0$ το s θα πάει στο s οπότε θα είμαστε πάνω στην τροχιά ολίσθησης και το σφάλμα ε θα μειώνεται εκθετικά με ρυθμό s. Άρα:

$$\dot{s}=0 \Rightarrow \ddot{e}+\lambda\dot{e}=0$$

 $\dot{x}_2 - \ddot{x}_d + \lambda(x_2 - \dot{x}_d) = 0$, οι όροι \ddot{x}_d και \dot{x}_d μεταβάλονται χρονικά και μπορούμε για ευκολία να αντικαταστήσουμε τον όρο με $\mathbf{h}(\mathbf{t}) = -\ddot{x}_d - \lambda \dot{x}_d$. Αντικαθιστώντας από την εξίσωση κατάστασης.

$$f(x) + G(x)u + \lambda x_2 + h(t) = 0$$

ο G είναι αντιστρέψιμος πίνακας οπότε

$$u_{eq} = -G(x)^{-1}(\lambda x_2 + f(x) + h(t))$$

, καθώς δεν ξέρουμε τις ακριβής εκτιμήσεις των παραμέτρων στον πίνακα G και το διάνυσμα f θα χρησιμοποιήσουμε εκτιμήσεις αυτών οπότε

$$\hat{u}_{eq} = -\hat{G}(x)^{-1}(\lambda x_2 + \hat{f}(x) + h(t))$$

. Σύμφωνα με την θεωρία η τελική μορφή της επιλογής ελεγκτή u θα είναι

$$u = \hat{u}_{eq} - \rho(x)sign(s)$$

, όπου $\rho(x)$ βαθμωτή συνάρτηση 2 μεταβλητών που θα προκύψει από την συνάρτηση Lyapunov. Θα χρησιμοποίησουμε ίδια συνάρτηση Lyapunov με πριν.

$$\dot{V} = s^T G(x)^{-1} \dot{s} + \frac{1}{2} s^T \dot{G}(x)^{-1} s$$

 $\dot{V} = s^T (G(x)^{-1} f(x) - \hat{G}(x)^{-1} \hat{f}(x) + (G(x)^{-1} - \hat{G}(x)^{-1}) \lambda x_2 + (G(x)^{-1} - \hat{G}(x)^{-1}) h(t) - \rho(x) sign(s)) + \frac{1}{2} s^T \dot{G}(x)^{-1} s$

$$\dot{V} = s^T (-\hat{G}(x)^{-1} \hat{f}(x) + (G(x)^{-1} - \hat{G}(x)^{-1}) \lambda x_2 + (G(x)^{-1} - \hat{G}(x)^{-1}) h(t) - \rho(x) sign(s)) + \frac{1}{2} s^T \dot{G}(x)^{-1} s + s^T G(x)^{-1} f(x)$$

αντικαθιστούμε την f(x) και για την πράξη $y(x)=\frac{1}{2}s^T\dot{G}(x)^{-1}s+s^TG(x)^{-1}f(x)$ έχουμε

$$y(x) = -s^{T}C(x_{1}, x_{2})s + s^{T}C(x_{1}, x_{2})(\dot{x}_{d} + \lambda(x_{1} - x_{d})) - s^{T}g(x_{1}) + \frac{1}{2}s^{T}\dot{G}(x)^{-1}s$$

,ισχύει ότι $G(x)^{-1}=H(x)$ και έχουμε ιδιότητα για τον πίνακα αδρανείας με τον πίνακα C ότι ο $\frac{1}{2}\dot{H}-C$ είναι αντισυμμετρικός πίνακας το οποίο μπορεί εύκολα να αποδειχθεί άρα $-s^TC(x_1,x_2)s+\tfrac{1}{2}s^T\dot{G}(x)^{-1}s=0$

$$y(x) = s^{T} C(x_1, x_2)(\dot{x}_d + \lambda(x_1 - x_d)) - s^{T} g(x_1)$$

. ,αντικαθιστώντας την y(x) στην παράγωγο V έχουμε τελικά

$$\dot{V} = s^{T}(C(x_{1}, x_{2})(\dot{x}_{d} + \lambda(x_{1} - x_{d})) - g(x_{1}) - \hat{G}(x)^{-1}\hat{f}(x) + (G(x)^{-1} - \hat{G}(x)^{-1})\lambda x_{2} + (G(x)^{-1} - \hat{G}(x)^{-1})h(t) - \rho(x)sign(s))$$

μπορούμε να θέσουμε τους παραπάνω όρους με $\delta(\mathbf{x},\mathbf{t})=C(x_1,x_2)(\dot{x}_d+\lambda(x_1-x_d))-g(x_1)-\hat{G}(x)^{-1}\hat{f}(x)+(G(x)^{-1}-\hat{G}(x)^{-1})\lambda x_2+(G(x)^{-1}-\hat{G}(x)^{-1})h(t)$ οπότε τελικά έχουμε

$$\dot{V} = s^{T}(\delta(x, t) - \rho(x)sign(s))$$

Στόχος είναι να φτάσουμε σε $\dot{V}<0$ δηλαδή σε κάποια μορφή $\dot{V}=-c||s||$. Εάν θεωρήσουμε ότι η νόρμα του $\delta(\mathbf{x},t)$ φράσεται απο συνάρτηση $\mathbf{n}(\mathbf{x})$ και ότι $sign(s)=\frac{s}{||s||}$ έχουμε

$$\dot{V} \le ||s||n(x) - ||s||\rho(x)$$

, μπορούμε επιλέγοντας $\rho(x)=n(x)+c$ με c>0 να κάνουμε το s=0 ασυμπτωτικά ευσταθές σημείο ισορροπίας αφού $\dot{V}\leq -c||s||<0$ μηδενίζεται μόνο για s=0.

1.2.1 Υλοποίηση ελεγκτή

Για τις άγνωστες παραμέτρους θα κάνουμε την ίδια επιλογή με πριν οπότε έχουμε τα ίδια φράγματα για τις νόρμες πινάκων που είχαν προκύψει. Ο μόνος όρος που μένει να περιορίσουμε είναι ο χρονικός όρος h(t).

$$\dot{x}_d = [\pi^2/30cos(0.2\pi t), -\pi^2/15sin(0.2\pi t)]$$

χαι

$$\ddot{x}_d = -\pi^3/150sin(0.2\pi t), -\pi^3/75cos(0.2\pi t)$$

με λ=10

$$h(t) = \left[\pi^2/30cos(0.2\pi t) - \pi^3/150sin(0.2\pi t), -2\pi^2/3sin(0.2\pi t) - 2\pi^3/15cos(0.2\pi t)\right]$$

Εφόσον $|cos(0.2\pi t)| \leq 1$ και $|sin(0.2\pi t)| \leq 1$ μπορούμε να απλοποιήσουμε τις πράξεις και θεωρήσουμε οτι $||h(t)|| < \sqrt{(\pi^2/30 + \pi^3/150)^2 + (2\pi^2/3 + 2\pi^3/15)} = 3.3168.$ Ο χρονικός όρος πολλαπλασιάζεται με τον πίνακα $H-\hat{H}$ οπότε θα λάβουμε υπόψη την μέγιστη απόλυτη διαφορά με νόρμα που υπολογίσαμε ότι είναι $||H_{max} - \hat{H}|| = 2.935$

Επομένως σε παρόμοια λογική με το προηγουμένο θα προκύψει

$$\rho(x) = 29.35(\sqrt{x_{21}^2 + x_{22}^2}) + 24.23 + 2.935 * 3.3168 + 10(|x_{21}| + |x_{22}|)||(\dot{x}_d + 10 * (x_1 - x_d))|| + 0.55(|x_{21}| + |x_{22}|)\sqrt{x_{21}^2 + x_{22}^2}.$$

Figure 6: Διάγραμμα θέσης q_1, q_2

Figure 7: Διάγραμμα ταχύτητας \dot{q}_1, \dot{q}_2

Η συγχεχριμένη επιλογή ελεγχτή με τεχνική ολίσθησης φαίνεται πως πληρεί τον στόχο ελέγχου αφού τα q_1 και q_2 τείνουν ασυμπτωτικά στις επιθυμητές τροχιές όπως φαίνεται και από το διάγραμμα θέσης. Το ίδιο ισχύει και για την ταχύτητας καθώς η τελική τιμή της είναι ίση με το [0,0]. Παρακάτω γίνεται πιο καθαρή η παρακολούθηση της επιθυμητής τροχιάς επέλεξα μικρό χρονικό διάστημα ώστε να φαίνεται το μεταβατικό στάδιο.

Figure 8: Φασικό πορτραίτο για e_1 , \dot{e}_1

Figure 9: Φασικό πορτραίτο e_2 , \dot{e}_2

Και στα 2 διαγράμματα γίνεται ξεκάθαρη η επιλογή του ελεγκτή μέσω sliding αφού μέσω των ισοβαρών καμπύλων $[q_1,\dot{q}_1]$ και $[q_2,\dot{q}_2]$ οδηγούμαστε στην τροχιά $s{=}0$ και έπειτα με κλίση $\lambda{=}10$ (αρνητική καθώς για $s{=}0$, $\dot{e}+\lambda e=0$) η σχέση του σφάλματος με την παράγωγο του γίνεται γραμμική και οδηγούμαστε σε πεπερασμένο χρόνο στην επιθυμητή θέση,πράγμα που φαίνεται και από τις ετικέτες επάνω στα διαγράμματα.

Figure 10: Γραφική παράσταση σφάλματος e

Figure 11: Διάγραμμα θέσης q_1, q_2

Figure 12: Διάγραμμα ταχύτητας $\dot{q}_1,\,\dot{q}_2$

Όπως φαίνεται από τα παραπάνω διαγράμματα η θέση και η ταχύτητα του βραχίωνα ακολουθεί την επιθυμητή θέση με μεγάλη ακρίβεια καθώς έχουμε μηδενίσει το σφάλμα μέσω τεχνικής ολίσθησης.