

Autores: Ianca Miranda e Gescilam Sousa

Disciplina: SHS5960 - Análise de Sistemas Aplicada aos Recursos Hídricos e Saneamento 1

Docente: Dra. Maria Gamboa

INTRODUÇÃO

O trabalho proposto na disciplina de Análise de Sistemas Aplicada aos Recursos Hídricos, tem o intuito de modelar um sistema de rede de distribuição de água e descrever seu comportamento hidráulico.

SITUAÇÃO PROBLEMA

A Figura 1 mostra a planta da rede, com as cotas e vazão de consumo nos nós. Para esse problema o diâmetro foi considerado 50mm (DN50) e comprimento dos trechos de 100m. O material da tubulação é PVC novo.

Figura 1: Esquema da rede de distribuição de água

Diante do problema descrito foi desenvolvido um modelo matemático, em linguagem Python com o intuito de simular o funcionamento hidráulico da rede. A fim de conferir os resultados o Excel e o EPANET foram usados como suporte.

MEMORIAL DE CÁLCULO

Como supracitado, foi utilizado o método de Hardy-Cross para simular hidraulicamente a rede. No método em questão, há duas condições a serem satisfeitas:

- 1. A somatória das vazões em cada nó tem que resultar em zero;
- 2. A somatória das perdas de carga em cada malha tem que resultar em zero.

Partindo dessas duas condições, seguem as equações e passo-a-passo utilizados nesse trabalho:

O método de Hardy-Cross é um processo iterativo, ao final de cada "rodado" um acréscimo nas vazões é calculado até chegar nas condições estabelecidas. Esse acréscimo é dado pela equação 1

$$\Delta Qi = -\frac{\sum_{j=1}^{NP(i)} k_{ij} Q_j |Q_j|^{n-1}}{\sum_{j=1}^{NP(i)} n k_{ij} |Q_j|^{n-1}}$$
(1)

Perda de carga (h)

Para calcular a perda de carga, foi utilizado Equação Universal, conforme descrito na equação 2:

$$h = f \frac{L \cdot v^2}{D \cdot 2g} \tag{2}$$

D = 50cm - definido no problema

 $g = 9.81 \text{ m/s}^2$ - Aceleração da gravidade

L = 100 m - Definido no problema

Fator de atrito (f)

Foi utilizada a equação 3 completa de Swamee válida para escoamento laminares, turbulento lise e turbulento rugoso.

$$f = \left\{ \left(\frac{64}{Re} \right)^8 + 9.5 \left[ln \left(\frac{\varepsilon}{3.7D} + \frac{5.74}{Re^{0.9}} \right) - \left(\frac{2500}{Re} \right)^{-16} \right] \right\}^{0.125}$$
(3)

 $\epsilon = 0.0015 - valor tabelado para PVC novo$

Número de Reynolds (Re)

$$Re = \frac{D.v}{V}$$
 (4)

Para facilitar o cálculo, as equações que necessitavam da velocidade foram redefinidas em termo das vazões, levando em consideração a equação da continuidade:

$$Q = A.v : v = Q/A$$

A = área conhecida em detrimento do diâmetro

Portanto, com as equações ficaram em função das vazões e a rede de estudo em questão tem 3 malhas, foram feitos 3 loops iterativo e a condição de parada se deu-se pela seguinte condição:

$$\triangle$$
 total > desvio máximo

Sendo:

Desvio máximo = 10^{-6}

$$\triangle total = \Delta Q1 + \Delta Q2 + \Delta Q3$$

Para iniciar a rede em questão, e respeitando a equação da continuidade, foi proposto o "chute inicial" conforme demonstra a Figura 2.

Em relação aos acrescimentos de vazões para os trechos em comum considerou-se os dois acrescimentos dos anéis que compartilham esse trecho. Além disso, esse cálculo foi realizado após a iteração dos três anéis como pode ser visto no código Python em anexo.

Figura 2: Esquema da rede de distribuição de água no momento T=0 (chute inicial)

PRESSÃO NOS NÓS

Para calcular a pressão nos nós, em mca, foram calculadas as perdas de carga distribuída e a diferença de cota entre os nós e o reservatório.

RESULTADOS

Tabela 01 - Resulto do código Python – Vazões nos trechos

TRECHO	Q (L/s)
Tubulação 1-2	32.770
Tubulação 2-3	27.870
Tubulação 3-4	11.588
Tubulação 4-5	6.788
Tubulação 5-6	-8.768
Tubulação 6-7	-16.968
Tubulação 7-8	-24.468
Tubulação 8-1	-32.368
Tubulação 1-9	28.261
Tubulação 9-10	21.061
Tubulação 10-11	18.261
Tubulação 11-12	11.761
Tubulação 3-13	16.643
Tubulação 13-14	9.843
Tubulação 14-15	31.435
Tubulação 15-16	-0.856
Tubulação 16-17	-4.556
Tubulação 17-5	-12.856

Tabela 02 - Resulto do código Python – Pressões nos Nós

	Pressão (mca)
Nó 1	-2.910,03
Nó 2	-3.267,52
Nó 3	-3.527,03
Nó 4	-3.574,00
Nó 5	-3.594,00
Nó 6	-3.561,00
Nó 7	-3.459,00
Nó 8	-3.257,00
Nó 9	-3.175,00
Nó 10	-3.317,00
Nó 11	-3.450,00
Nó 12	-3.501,00
Nó 13	-3.614,00
Nó 14	-3.652,00
Nó 15	-3.653,00
Nó 16	-3.647,00
Nó 17	-3.651,00

Tabela 03 - Resultados EPANET – Vazões nos trechos

Flow Link ID LPS Pipe 1 100.00 Pipe 2 32.77 Pipe 3 27.87 Pipe 4 11.59 Pipe 5 6.79 Pipe 6 -8.77 Pipe 7 -16.97 Pipe 8 -24.47 Pipe 9 -32.37 Pipe 10 28.26 Pipe 11 21.06 Pipe 12 18.26 Pipe 13 11.76 Pipe 14 6.56 Pipe 15 16.64 Pipe 16 9.84 Pipe 17 3.14 Pipe 18 -0.86 Pipe 19 -4.56 Pipe 20 -12.86

Fonte: EPANET

Tabela 04 – Resultados EPANET – Pressões nos Nós

Node ID	Pressure m
Junc 1	-2914.95
Junc 2	-3268.48
Junc 3	-3528.42
Junc 4	-3581.09
Junc 5	-3599.93
Junc 6	-3572.02
Junc 7	-3471.43
Junc 8	-3275.41
Junc 9	-3177.97
Junc 10	-3337.68
Junc 11	-3450.86
Junc 12	-3508.17
Junc 13	-3635.69
Junc 14	-3671.81
Junc 15	-3671.67
Junc 16	-3683.07
Junc 17	-3674.52
Resvr R	0.00

NOVO CENÁRIO

Conforme proposto em sala, um novo cenário foi considerado. D = 300 mm para o trecho entre o reservatório e o Nó 1, no anel 01 foi considerado D=100 mm e para os demais D=150mm.

Os resultados do código para o novo cenário estão na tabela 5 a seguir:

Tabela 5: Resultados hidráulicos para a nova configuração de rede

Anel 01	Pressões nos nós
Tubulação - 1-2 vazão: 32.770404 l/s	
Tubulação - 2-3 vazão: 27.870404 1/s	Pressão no Nó 1 é -2910.032764 mca
Tubulação - 3-4 vazão: 11.588059 l/s	Pressão no Nó 2 é -3267.518837 mca
Tubulação - 4-5 vazão: 6.788059 l/s	Pressão no Nó 3 é -3527.029301 mca
Tubulação - 5-6 vazão: -8.768354 l/s	Pressão no Nó 4 é -3574.235300 mca
Tubulação - 6-7 vazão: -16.968354 l/s	Pressão no Nó 5 é -3594.112652 mca
Tubulação - 7-8 vazão: -24.468354 l/s	Pressão no Nó 6 é -3561.614803 mca
Tubulação - 8-1 vazão: -32.368354 l/s	Pressão no Nó 7 é -3459.758895 mca
Anel 02	Pressão no Nó 8 é -3257.426624 mca
Tubulação - 1-9 vazão: 28.261242 l/s	Pressão no Nó 9 é -3181.379958 mca
Tubulação - 9-10 vazão: 21.061242 l/s	Pressão no Nó 10 é -3329.667541 mca
Tubulação - 10-11 vazão: 18.261242 l/s	Pressão no Nó 11 é -3452.523476 mca
Tubulação - 11-12 vazão: 11.761242 l/s	Pressão no Nó 12 é -3498.371891 mca
Tubulação - 12-3 vazão: 6.561242 l/s	Pressão no Nó 13 é -3623.695969 mca
Tubulação - 3-2 vazão: -27.870404 l/s	Pressão no Nó 14 é -3667.689913 mca
Tubulação - 2-1 vazão: -32.770404 l/s	Pressão no Nó 15 é -3669.724332 mca
Anel 03	Pressão no Nó 16 é -3664.132845 mca
Tubulação - 3-13 vazão: 16.643587 l/s	Pressão no Nó 17 é -3666.415670 mca
Tubulação - 13-14 vazão: 9.843587 l/s	
Tubulação - 14-15 vazão: 3.143587 l/s	
Tubulação - 15-16 vazão: -0.856413 l/s	
Tubulação - 16-17 vazão: -4.556413 l/s	
Tubulação - 17-5 vazão: -12.856413 l/s	
Tubulação - 5-4 vazão: -6.788059 l/s	
Tubulação - 4-3 vazão: -11.588059 l/s	

As tabelas 6 e 7, mostram os resultados obtidos no EPANET para as novas características da rede

Tabela 06 - Resultado EPANET - Vazões nos trechos (Novo cenário)

Tabela 07 - Resultado EPANET – Pressões nos Nós (Novo cenário)

Link ID	Flow LPS
Pipe 1	100.00
Pipe 2	22.50
Pipe 3	17.60
Pipe 4	10.57
Pipe 5	5.77
Pipe 6	-1.10
Pipe 7	-9.30
Pipe 8	-16.80
Pipe 9	-24.70
Pipe 10	46.19
Pipe 11	38.99
Pipe 12	36.19
Pipe 13	29.69
Pipe 14	24.49
Pipe 15	25.33
Pipe 16	18.53
Pipe 17	11.83
Pipe 18	7.83
Pipe 19	4.13
Pipe 20	-4.17

Node ID	Pressure m
Junc 1	24.04
Junc 2	22.78
Junc 3	24.04
Junc 4	22.37
Junc 5	22.84
Junc 6	19.17
Junc 7	15.11
Junc 8	6.54
Junc 9	29.82
Junc 10	25.46
Junc 11	31.39
Junc 12	26.65
Junc 13	17.86
Junc 14	20.14
Junc 15	24.97
Junc 16	12.94
Junc 17	11.80
Resvr R	0.00

Fonte: EPANET

CONSIDERAÇÕES FINAIS

Apesar dos valores do EPANET e do código Python não serem os mesmos, os desvios foram em torno de 0.06 %. Tal diferença pode ser explicada pelos desvios números diferentes de ambos os métodos, e da hipótese para o cálculo do fator de atrito.

Além do mais, o arquivo Excel nos permitiu avaliar o passo a passo do código com as 15 primeiras interações, e os valores foram exatamente iguais.

REFERÊNCIAS

CHIN, David A.. Fundamentals of Flow in Closed Conduits. In: CHIN, David A.. **WATER-RESOURCES ENGINEERING**. Saddle River: Pearson, 2014. p. 9-62.

PORTO, Rodrigo de Melo. Redes de distribuição de água. In: PORTO, Rodrigo de Melo. **HIDRÁULICA BÁSICA**. 4. ed. São Carlos: EESC USP, 2006. p. 169-184.

KASPRZYK, Joseph. Hardy Cross Pipe Networks in Python. **Youtube**, 29 de set. de 2017. Disponível em: < https://www.youtube.com/watch?v=xkxp6TwSX3E >