

«Анализ данных NGS»

Лекция #5 scRNA-Seq

Серёжа Исаев

аспирант MedUni Vienna

Tang et al., 2009 — первая работа

Бластомер. Источник: https://www.ehd.org/

Сравнение профилей экспрессии нормального бластомера и бластомера с нокаутами из Tang et al. 2009

Оплодотворённая яйцеклетка, восьмиклеточная стадия, стадия адгезии, морула, бластоцист, зона вылупления. Источник: http://nobelprize.org/

	Bulk RNA-Seq	scRNA-Seq		
Начало 2008		2009		
Экспрессия	средний уровень экспрессии	распределение уровней экспрессии		
Количество транскриптов	~15-20 000 на образец	~200-10 000 на клетку		
% Транскриптома	80-95%	10-50%		

cell

Bulk RNA-Seq

Exp Gene1 100 Gene2 5.5 ... Gene N

population density

cell cell bulk

scRNA-Seq

	Cell1	Cell2	 Cell K
Gene1	3	0	2
Gene2	0	2	1

Gene N	0	13	2

Планирование эксперимента

Сначала задайте вопросы — какое именно явление я хочу изучить? и какая у меня гипотеза? — и только потом ставьте эксперимент. Это касается не только scRNA-Seq, но и вообще любых исследований.

Contact Pachter

В ответ @lpachter

We show #scRNAseq can be used for "reverse genomics" to conduct low-cost *experiments*. Instead of sequence first ask questions later, we ask questions first & then sequence. We illustrate the approach w/ a starvation experiment using the emerging model Clytia hemisphaerica. 2/

Общая схема эксперимента RNA-Seq

Общая схема эксперимента scRNA-Seq

Общая схема эксперимента scRNA-Seq

Диссоциация клеток

В основном клетки в изучаемых тканях находятся в "сцепленном" состоянии (они соединены при помощи молекул адгезии и т. п.). Для того, чтобы их "расцепить", необходимо провести диссоциацию ткани:

- диссоциация при нагревании (напр., Multi-tissue dissociation kit 2) может вызвать активацию транскрипции генов теплового шока,
- диссоциация на холоду (с использованием протеазы Bacillus Licheniformis).

Сравнение методов диссоциации ткани из Denisenko et al., 2020. Некоторые клеточные типы не детектируются при диссоциации "горячим" методом

Создание клеточного атласа всего организма

Диссоциация ткани — это один из самых важных шагов при пробоподготовке scRNA-Seq. Во время этой процедуры клетки могут

- 1. умереть (и тогда мы увидим смещённый клеточный состав),
- **2.** изменить свой экспрессионный профиль (и тогда мы увидим тот же клеточный состав, но не в нативном состоянии),
- 3. диссоциировать неполностью (и тогда мы увидим большое количество дублетов).

Для каждой ткани используется собственный протокол диссоциации. И это является очень большой проблемой для создания пан-тканевого клеточного атласа.

scRNA-Seq vs. snRNA-Seq

- Профилирование ядер из крупных клеток (> 40 мкм), которые не проходят через микрофлюидику
- Позволяет профилировать отдельные ядра, выделенные из замороженных тканей, отделяя получение ткани от немедленной обработки образца
- snRNA-Seq может также обрабатывать образцы, которые не могут быть успешно диссоциированы, даже если они свежие, из-за хрупкости клеток

Ядра имеют меньшее количество мРНК по сравнению с клетками, и их сложнее обогатить для конкретных интересующих типов клеток.

Общая схема эксперимента scRNA-Seq

Изолирование одиночных клеток

Существует множество различных способов изолировать одиночные клетки

Как правило, стадия изолирования одиночных клеток очень тесно связана с дальнейшими стадиями подготовки библиотек, поэтому рассмотрим их вместе

История развития методов scRNA-Seq

Droplet-based (капельные) методы

Капельные методы основаны на том, что клетки изолируются друг от друга, поступая по капиллярам в масляную фракцию и образуя там отдельные компартменты, содержащие необходимые реагенты и одну клетку

Источник: http://mccarrolllab.org/dropseq/

Droplet-based (капельные) методы

Капельные методы основаны на том, что клетки изолируются друг от друга, поступая по капиллярам в масляную фракцию и образуя там отдельные компартменты, содержащие необходимые реагенты и одну клетку

Источник: https://www.elveflow.com/microfluidic-reviews/droplet-digital-microfluidics/drop-seq/#_ftn4

10x Chromium

Источник: 10xgenomics.com

Контроллер 10х Chromium является сейчас одной из самых популярных платформ для создания библиотек scRNA-Seq

Процесс пробоподготовки

3' Gene Expression ~\$1480/образец (WES ~150\$/образец)

17

Источник: 10xgenomics.com

Процесс пробоподготовки

Источник: 10xgenomics.com

18

10x v3 3' Gel Beads

К каждому шарику прикреплён уникальный праймер, который состоит из

- 1. Праймера Illumina TruSeq Read 1,
- 2. Баркода (последовательности, которая одинакова у всех праймеров данного шарика, однако различается между всеми шариками),
- **3. UMI** (последовательности, которая уникальна для всех праймеров данного шарика, но может повторяться между шариками),
- **4.** Poly(dT)-последовательности.

Template Switch Oligo (TSO)

Баркоды и UMI

Последовательность баркода, как и UMI, будет в итоге отсеквенирована

Последовательность баркода определяет клетку, к которой мы отнесём данный транскрипт

Последовательность UMI позволяет определить ПЦР-дубликаты (amplification bias — это достаточно большая проблема в случае, когда у нас мало PHK)

Подготовка библиотек для секвенирования

Подготовка библиотеки

Покрытие транскрипта ридами (3'-протокол)

Несмотря на TSO, у нас присутствует стадия фрагментации кДНК. Более того, после этой стадии пришивается только один из концов, праймер для секвенирования другого конца всегда зафиксирован на 3'-конце последовательности. Как итог у нас возникает неравномерность в покрытии транскрипта ридами.

Источник:

https://liulab-dfci.github.io/MAESTRO/example/RNA_infrastructure_10x/RNA_infrastructure_10x.html

10x v3 5' Gel Beads

Бывает так (когда? зачем?), что нам катастрофически необходимо хорошее покрытие на 5'-конце транскриптов

Элегантное решение данной проблемы — это праймер не из баркода-UMI-oligo(dT), а из баркода-UMI-TSO

Покрытие транскрипта ридами (5'-протокол)

В случае с 5'-протоколом также наблюдается неравномерность покрытия транскрипта прочтениями, однако уже в сторону 5'-конца транскрипта

Обогащение 5'-концов транскрипта необходимо тогда, когда нам нужно дополнительно обогатить библиотеку V(D)J-фрагментами для определения Т- или В-клеточных рецепторов иммунных клеток

Abugessaisa et al., 2019

Пустые капли и дублеты

Пустые капли и дублеты

Пустые капли и дублеты

Smart-seq

Разделение клеток на лунки при помощи сортера

Существует ряд методов, которые требуют изолирования одиночных клеток при помощи клеточного сортера (например, методы класса Smart-seq)

Главная проблема таких методов в ограниченном числе клеток, которые можно отсеквенировать за раз

Smart-seq2

Контроль за ПЦР-дубликатами не ведётся (**отсутствуют UMI**), а идентичность клеток определяется образец-специфичными адаптерами для секвенирования (отдельный на каждую лунку)

Smart-seq2 vs. 10x Chromium GEX

Smart-seq2 позволяет достичь более равномерного покрытия, чем 10x Chromium

Smart-seq2 охватывает экспрессию большего числа генов, чем 10x Chromium

Smart-seq2 vs. 10x Chromium GEX

Smart-seq3

Добавлены UMI, перед которыми содержится специальный тег, который позволяет распознать последовательность UMI

Как итог мы имеем как контроль за ПЦРдубликатами, так и полное покрытие "внутренними" ридами, что важно, например, в случае, когда нам хочется изучить мутации

Parse Biosciences Evercode (ex SPLiT-Seq)

Introducing The Parse Single Cell Whole Transcriptome Solution

Подсчёт экспрессии

Прочтения в формате .fastq

Выравнивание

Подсчёт экспрессии на клетку (demultiplexing — это процедура, в результате которой мы понимаем, из какой клетки прочтение)

Эти стадии обычно выполняет одна и та же программа автоматически

Cell Ranger

- Подходит только для библиотек, полученных при помощи 10x Chromium
- Автоматически определяет версию химии 10х ⇒ не нужно прописывать координаты баркода / UMI в прочтениях (это сильно облегчает работу)
- Основан на STAR, а потому **очень** требовательный к ресурсам (1 Тб дискового пространства, 128 Гб RAM, 16 ядер)
- **Очень долго** работает (один образец может рассчитываться 12 часов)
- Умеет работать с данными CITE-Seq и большим количеством иных модификаций scRNA-Seq-эксперимента
- Может вернуть .bam-файл с картированием, если попросить его это сделать

Cell Ranger

• Очень просто запускается:

```
cellranger count \
    --id={id запуска} \
    --transcriptome={путь до директории с референсным геномом}
    --fastqs={директория с прямыми прочтениями}, {директория с обратными прочтениями} \
    --sample={название образца} \
    --localcores={число ядер}
```

• Подготовленный к работе референсный геном можно найти на сайте Cell Ranger (можно сделать и свой)

Cell Ranger

- В простейшем случае аутпут содержит 4 файла:
 - 1. raw_feature_bc_matrix.tar.gz матрица со всеми "клетками" из датасета
 - a. barcodes.tsv.gz названия клеток (баркоды)
 - b. features.tsv.gz названия и id генов
 - c. matrix.mtx.gz непосредственно матрица экспрессии в sparce-виде
 - 2. filtered_feature_bc_matrix.tar.gz то же, что и пункт 1, только с уже отфильтрованными клетками (Cell Ranger фильтрует очень неплохо)
 - a. barcodes.tsv.qz
 - b. features.tsv.gz
 - c. matrix.mtx.gz
 - **3.** metrics_summary.csv таблица с основными метриками
 - **4.** web_summary.html графический веб-отчёт о качестве выравнивания и т. п.

kallisto | bustools

- Подходит для большого числа различных библиотек (в основном 10х Chromium, но не только). BUS расшифровывается как barcode | UMI | sequence, поэтому подойдут практически любые UMI-based методы
- kallisto | bustools основан на псевдовыравниваниях с использованием kallisto, поэтому он не требовательный к железу
- Работает, как правило, в **несколько раз быстрее**, чем Cell Ranger

- Умеет работать с **CITE-Seq** и некоторыми другими протоколами
- Не возвращает выравнивание!

kallisto | bustools

• Запускается очень просто:

```
kb count \
    -i {файл с индексом} \
    -g {файл с соответствием транскриптов генам} \
    -x {версия химии 10х или описание координатов баркода и UMI} \
    {прямые прочтения} {обратные прочтения}
```

- Индекс (он же референс) можно сделать самостоятельно или загрузить с сайта kallisto | bustools уже созданный
- Не делает автоматическую фильтрацию клеток! Выводит относительно мало статистики

kallisto | bustools

- В простейшем случае аутпут содержит 1 файл и 1 папку:
 - 1. counts_unfiltered матрица со всеми "клетками" из датасета
 - a. cells x genes.barcodes.txt— названия клеток (баркоды)
 - b. cells x genes.genes.txt— названия и id генов
 - c. cells x genes.mtx— непосредственно матрица экспрессии в sparce-виде
 - **2.** inspect.json .json-файл с краткой статистикой по QC клеток

kallisto | bustools и паралоги

Из-за того, что прочтения, которые были откартированы неоднозначно, просто отбрасываются при процессинге при помощи STAR (= CellRanger), то часто возникает проблема различить типы клеток, отличающиеся по экспрессии паралогичных генов

kallisto | bustools и паралоги

Из-за того, что прочтения, которые были откартированы неоднозначно, просто отбрасываются при процессинге при помощи STAR (= CellRanger), то часто возникает проблема различить типы клеток, отличающиеся по экспрессии паралогичных генов

kallisto | bustools

Картирование snRNA-Seq

Wu et al. 2018

• В snRNA-Seq большая часть прочтений ложится в интронные регионы, это необходимо учитывать при выравнивании

Сравнение пайплайнов

• Cell Ranger — это самый затратный и медленный пайплайн, однако именно он является сейчас «золотым стандартом» препроцессинга данных scRNA-Seq

Обработка данных

Обработка данных

QC клеток

QC клеток

- Для идентификации пустых капель (без клеток)
 можно использовать пакет DropletUtils с его
 функцией emptyDrops (есть только на R)
- Всегда необходимо смотреть на распределение числа UMI / генов / митохондриальной экспрессии на клетку
- Клетки с высокой митохондриальной экспрессией мы считаем плохими (их тоже имеет смысл выфильтровывать)

Влияние QC на результат

Различные типы клеток могут иметь разное количество UMI на клетку из-за биологической разницы (например, в случае с нейтрофилами это явнее всего — почему?)

Строгая фильтрация

Влияние QC на результат

Различные типы клеток могут иметь разное количество UMI на клетку из-за биологической разницы (например, в случае с нейтрофилами это явнее всего — почему?)

Нестрогая фильтрация

Scrublet (Single-Cell Remover of Doublets)

- Помимо пустых капель существует и иная проблема — дублеты клеток
- Дублеты могут мешать работе с scRNA-Seq-данными (как минимум их сложно типировать)
- Существуют эффективные методы их идентификации (например, Scrublet)