第3章 集成门电路

华东理工大学电子与通信工程系

内容

- ❖概述
- ❖半导体二极管和 三极管的开关特性
- **❖**分立元件门电路
- ❖TTL门电路
- **❖ CMOS**门电路

门电路是用以实现逻辑关系的电子电路。

门电路

分立元件门电路

集成门电路

双极型集成门 (DTL、TTL)

MOS集成门

NMOS

PMOS

CMOS

3.1 概法 一、正逻辑与负逻辑

正逻辑:用高电平表示逻辑1,用低电平表示逻辑0

负逻辑:用低电平表示逻辑1,用高电平表示逻辑0

在数字系统的逻辑设计中,若采用NPN晶体管和NMOS管,电源电压是正值,一般采用正逻辑。若采用的是PNP管和PMOS管,电源电压为负值,则采用负逻辑比较方便。

今后除非特别说明,一律采用正逻辑。

3.1 概试

二、逻辑电平

S断开, Vo为高电平; S接通, Vo为低电平。

3.1 概法

逻辑电平

- ❖ 高电平U_H:
 - 输入高电平U_{IH}
 - 输出高电平U_{OH}
- ❖ 低电平UL:
 - 输入低电平U_{IL}
 - 输出低电平UoL
- ❖逻辑"0"和逻辑"1"对应的电压范围宽,因此在数字电路中,对电子元件、器件参数精度的要求及其电源的稳定度的要求比模拟电路要低。

3.2.1 半导体二极管的开关特性

硅 PN 结伏安特性

二极管的单向导电性:

- ①外加正向电压(>U_{th}),二极管导通,导通压降约为0.7V;
- ②外加反向电压,二极管截止。

二、二极管开关特性

利用二极管的单向导电 性,相当于一个受外加电压 极性控制的开关。

假定: U_{IH}=V_{CC}, U_{IL}=0

- 3.3.2 双极型三极管的开关特性
- 一、双极型三极管结构

因有电子和空穴两种载流子参与导电过程,故称为双极型三极管。

、双极型三极管输入特性

双极型三极管的应用中,通常是通过b, e间的电流i_B控制 c, e间的电流i_C实现其电路功能的。因此,以b, e间的回路作为输入回路, c, e间的回路作为输出回路。

硅料 NPN 型三极管

输入回路实质是一个PN结,其输入特性基本等同于 二极管的伏安特性。

三、双极型三极管输出特性

放大区:发射结正偏,集电结反偏; ube uT, ubc 0; 起放大作用。

截止区:发射结、集电极均反偏, $u_{bc}<0V$, $u_{be}<0V$;一般地, $u_{be}<0$.7V时, $i_{b}\approx0V$, $i_{c}\approx0V$;即认为三极管截止。

饱和区:发射结、集电极均正偏; $u_{be}>V_T$, $u_{bc}>V_T$; 深度饱和状态下, 饱和压降 U_{CEs} 约为0.2V。

四、双极型三极管开关特性

三极管开关电路

假定: U_{IH}=V_{CC}, U_{IL}=0

利用三极管的饱和与截止两种状态,合理选择电路参数,可产生类似于开关的闭合和断开的效果,用于输出高、低电平,即开关工作状态。

3.2.3 MOS管的开关特性

一、MOS管结构

MOS管是金属—氧化物—半导体场效应管的简称。 (Metal-Oxide-Semiconductor Field-Effect Transistor) 由于只有多数载流子参与导电,故也称为单极型三极管。

NMOS管电路符号

PMOS管电路符号

1、MOS管开关特性

NMOS管的基本开关电路

选择合适的电路参数,则可以保证

当u_I=U_{IH}时,MOS管导通,u_o=0=U_{OL} 当u_I=U_{IL}时,MOS管截止,u_o=V_{DD}=U_{OH}

- 一 开关闭合
- 一 开关断开

3.3 分立元件门电路

、二极管与门

$u_{\rm A} u_{\rm B}$	u_{Y}	$VD_1 VD_2$
0V 0V	0.7V	导通 导通
0V 5V	0.7V	导通 截止
5V 0V	0.7V	截止 导通
5V 5V	5V	截止 截止

A	B	Y
0	0	0
0	1	О
1	O	О
1	1	1

3.3 分立元件门电路

二、二极管或门

$u_{\rm A} u_{\rm B}$	u_{Y}	$VD_1 VD_2$
0V 0V	0V	截止 截止
0V 5V	4.3V	截止 导通
5V 0V	4.3V	导通 截止
5V 5V	4.3V	导通 导通

A	\boldsymbol{B}	Y
O	O	О
О	1	1
1	О	1
1	1	1

3.3 分立元件门电路

三、三极管非门

利用二极管的压降为0.7V,保证 输入电压在1V以下时,开关电路 可靠地截止。

输	0	1
	1	0

A(V)	Y(V)	
<0.8	5	
>2	0.2	

$$Y = \overline{A}$$

集成逻辑门电路的特点(1)

◆集成逻辑电路的发展

路

小规模集 中规模集 大规模集 超大规模集 成电路 成电路 成电路 成电路 SSI . **MSI** LSI VLSI (Very (Small (Middle (Large Large Scale Scale Scale Scale Integration) Integration) Integration) Integration) 专用系统 逻辑门电路 典型组合逻辑 可编程器件 与时序逻辑电

NEX.

来成逻辑门电路的特点(2)

条风空饵厂电路的分类

集成逻辑门——把晶体管、电阻及电路连线等制作在一块半导体的基片上,并封装在一个壳体内的逻辑门电路。

按基本组成元件可分为:

TTL (Transistor-Transistor Logic):

以双极型三极管作为开关器件

CMOS (Complementary Metal-oxide-Semiconductor):

由NMOS和PMOS互补组合而成 两者性能比较:

TTL: 电路速度快, 功耗较大 CMOS: 电路速度慢, 功耗很低

来成逻辑门电路的特点(3)

◆TTL集成电路的分类

◆TTL产品系列: 74XX, 74HXX, 74SXX, 74LSXX

「不同: 平均传输延迟时间和平均功耗有差异。

相同: 其他参数和外引线彼此相容, 结构特点相同, 电气参数基本相同。

来成逻辑门电路的特点(4)

A, B**有一个**为低[`] 电平时:

T₁ 导通

T, 截止

T₄ 导通

T, 截止

F为高电平

A, B均为高电平时:

T₁ 截止

T, 导通

T₄ 截止

T, 导通

F为低电平

逻辑门电路的特点(5)

TIL"与非"门工作原理

TTL川电路的主要参数 (1)

◆TTL川电路的极限参数:

----用以保证芯片能够安全的工业——般取5V

名称	符号	最大变化范围	单位
电源电压	V _{CC}	4.5~5.5	V
输入电压	V _{IN}	-0.5~5.5	V
输入电流	I	-3.0~+5.0	mA
环境温度	T _A	-55~+125	°C

TTL门电路的主要参数 (2)

- ◆TTL/T电路的电气参数:
 - ◆电压传输特性与静态参数
 - ◆ 输入特性
 - ◆输出特性
 - ◆扇出系数
 - ◆平均传输延迟时间

TTL门电路的主要参数(4)

静心参数

(1) 输入、输出电平:

名称	符号	额定值(V)
最大输入低电平	V _{IL(max)}	0.8
最小输入高电平	$V_{IH(\min)}$	2.0
最大输出低电平	$V_{OL({ m max})}$	0.4
最小输出高电平	$V_{OH(ext{min})}$	2.4

典型值: $\begin{cases} V_H = 3.4V \\ V_L = 0.2V \end{cases}$ "低"电平是一个离散的概念。

注意:在逻辑电路中, "高"、

TTL厂电路的主要参数(5)

(2) 直流噪声容限 ---表明电路抗干扰能力的大小。

高电平噪声容限: $V_{NH} = V_{OH(\min)} - V_{IH(\min)}$

低电平噪声容限: $V_{NL} = V_{IL(\max)} - V_{OL(\max)}$

TTL门电路的主要参数 (6)

典型值:

$$I_{IH(\max)} = 40 \mu A$$

$$I_{IS} = 1.6 mA$$

输入短路电流

TTL门电路的主要参数(7)

◆輸入负载特性

关门电阻 Rog

保证门的输入为逻辑"0"的最大电阻值。

典型值: 0.8KΩ

开门电阻 R_{ON}

保证门的输入为逻辑"1"的最小电阻值。

典型值: 2KΩ

若输入端"是空", 等效为什么?

例: 來下图所示各电路的输出F

解:

(1) **若**R<0.8ΚΩ

$$\therefore F_1 = A \cdot 0 = 1$$

(2) 若R>2KΩ

$$\therefore F_1 = \overline{A \cdot 1} = \overline{A}$$

解:

(1) 若R<0.8KΩ

$$\therefore F_2 = \overline{A+0} = \overline{A}$$

(2) 若R>2KΩ

$$\therefore F_2 = \overline{A+1} = 0$$

TTL门电路的主要参数 (9)

- ◆输出特性 ---输出特性显示电路驱动负载能力的大小
 - (1) 高电平输出特性

高电平输出电流 I_{OH}典型值一般为400 μA

TTL厂电路的主要参数 (10)

为保证输出低电平为逻辑"0", TTL电路允许的低电平输出电流,最大值为16mA.

TTL厂电路的主要参数 (11)

◆扇出系数 ----表明数字集成电路驱动负载能力的大小。

通常以电路的一个输出端能驱动同类门的入端数来表示。

(1)输出为高电平时

$$N_{OH} = \frac{I_{OH(\text{max})}}{I_{IH(\text{max})}} = \frac{400 \mu A}{40 \mu A} = 10$$

(2)输出为低电平时

$$N_{OL} = \frac{I_{OL(\text{max})}}{I_{IL(\text{max})}} = \frac{16mA}{1.6mA} = 10$$

TTL厂电路的主要参数 (12)

平均传输延迟时间

----表明集成电路输出对输入信号变化的响应速度。

实际"与非"门输入与输出的响应关系如图:

平均传输延迟时间

$$t_{pd} = \frac{1}{2}(t_{pdL} + t_{pdH})$$

TTL厂电路的主要参数 (13)

例:分析图示电路的输出波形

集电极开路"与非"门(1)

"与非"门的输出端可以联接在一起吗?

\boldsymbol{F}_1	\boldsymbol{F}_2	F
0	0	0
0	1	0
1	0	0
1	1	1

注意:普通"与非"门的输出

端却不可以联接在一起

来电极开路"与非"门(2)

- (1) 电流过大可能损坏
- 2) 输出逻辑混乱

集电极开路"与非"门(3)

◆0C汀的结构 (Open Collector)

集电极开路《与非" 门(4)

OC川的特点: 可以"线与"联接

OC门的应用

- ①实现线与。 可以简化电路,节省器件。
- ②实现电平转换。 如图所示,可使输出高电平变为10V。

 $\frac{\&}{\Diamond}$

+10V

③用做驱动器。 如图是用来驱动发光二极管的电路。

三态门(1)

◆三巻ょう (Tristate Logic)

----翰出不但有"0","1"二个状态;还具有"高阻态"的第三状态.

三态输出门电路(TS门)

1. 三态门的电路结构和逻辑符号

三态输出非门(高电平有效)电路结构

控制端或 使能端

了三种状态:

高电平、低电平、高阻态。

功能表

EN=0	Y高阻态
EN=1	$Y = \overline{A}$

两种控制模式:

高电平有效

低电平有效

三态门的应用

①数据总线结构

只要控制各个门的EN端轮流为1,且任何时刻仅有一个为1,就可以实现各个门分时地向总线传输。

②实现数据双向传输 EN=1,G1工作,G2高阻,A经 G1反相送至总线; EN=0,G1高阻,G2工作,总 线数据经G2反相从Y端送出。

TTL门电路多余输入端的处理

1. 与非门的处理

$$Y = AB$$

3. 或非门、与或非门的处理

$$Y = A + B$$

$$\begin{array}{c|c} A \\ B \\ \hline \end{array} > 1$$

CMOS汀电路(1)

CMOS汀电路 (2)

igllack以CMOS反相器为例,说明参数特点。

(1) 工作电压:-CMOS工作电源电压 V_{DD} 为3V $\sim 18V$

 V_{DD1}

(2) 电压传输特性:

特斯区变化率很大, $V_{TH}=1/2V_{DD}$ 具有对称性

(3) 输入、输出电压:

$$V_{OL(max)} = +0.05V$$
 $V_{IL(max)} = 0.3V_{DD}$

$$V_{OH(min)} = V_{DD} - 0.05V \quad V_{IH(min)} = 0.7V_{DD}$$

CMOS기电路(3) 来提高抗干扰能力

可通过提高电源电压

(4) 输入噪声容限:

高电平噪声容限
$$V_{NH}$$
: $V_{NH} = V_{OH(min)} - V_{IH(min)} = 0.3V_{DD}$

- 低电平噪声容限
$$V_{NL}$$
: $V_{NL} = V_{IL(max)} - V_{OL(max)} = 0.3V_{DD}$

- (5) 扇出系数在一定频率范围内,几乎为 ∞ 。
- (6) 传输延迟时间tp典型值为60nS。

CMOS汀的特点

电压工作范围大 功耗低、集成度高 抗干扰能力强 扇出系数大 工作频率较低

CMOS汀电路 (4)

◆ COMS 门输入端接电阻时如何等效?

结论: CMOS 门的输入端接电阻时相当于输入"0"

CMOS广电路 (5)

◆ CMOS **を輸ご

CMOSバマモ時(6)

例1:写出图示CMOS电路的输出表达式

解: "传输灯的 $C=V_{DD}=1$, $C=\overline{0}$

· 传输门输出为A

$$\therefore F = A \oplus 1 = A \cdot \overline{1} + \overline{A} \cdot 1 = \overline{A}$$

CMOS电路的特点:

- (1) CMOS电路的工作速度比TTL电路的低。
- (2) CMOS带负载的能力比TTL电路强。
- (3) CMOS电路的电源电压允许范围较大,约在3~18V, 抗干扰能力比TTL电路强。
- (4) CMOS电路的功耗比TTL电路小得多。门电路的功耗只有几个μW,中规模集成电路的功耗也不会超过100μW。
 - (5) CMOS集成电路的集成度比TTL电路高。
- (6) CMOS电路容易受静电感应而击穿,在使用和存放时应注意静电屏蔽,焊接时电烙铁应接地良好,尤其是CMOS电路多余不用的输入端不能悬空,应根据需要接地或接高电平。

常用CMOS逻辑门器件系列:

- ① 4000系列;
- ②74HC系列——高速CMOS系列。

输入低电平,NMOS管截止; 输入高电平,NMOS管导通。 输入低电平,PMOS管导通; 输入高电平,PMOS管截止。

CMOS门电路

100 Marie 1100
— 🔼

A(V)	Y(V)
0	$V_{ m DD}$
$ m V_{DD}$	0

\boldsymbol{A}	Y
0	1
1	O

CMOS非门电压传输特性

CMOS非门电流传输特性

CMOS反相器的传输特性接近理想开关特性, 因而 其噪声容限大,抗干扰能力强。

CMOS门电路

\boldsymbol{A}	В	Y
0	0	1
0	1	1
1	0	1
1_	1	0

$$Y = \overline{AB}$$

\boldsymbol{A}	\boldsymbol{B}	$oldsymbol{Y}$
0	0	1
0	1	0
1	0	0
1	1	0

$$Y = A + B$$

特点: 需外接上拉电阻。

应用:与OC门类似,

输出端可以并接,实现"线与"功能;

实现电平转换。

①C=0、 $\overline{C}=1$, T_N 和 T_P 截止,相当于开关断开。 ②C=1、 $\overline{C}=0$, T_N 和 T_P 导通,相当于开关接通, $u_o=u_i$ 。

由于T₁、T₂管的结构形式是对称的,即漏极和源极可互易使用,因而CMOS传输门属于双向器件,它的输入端和输出端也可互易使用。

- ① $\overline{EN} = 1$ 时, T_{P2} 、 T_{N2} 均 截止,Y与地和电源都断开 了,输出端呈现为高阻态。
- ② $\overline{EN} = 0$ 时, T_{P2} 、 T_{N2} 均导通, T_{P1} 、 T_{N1} 构成反相器。 $Y = \overline{A}$

电路的输出有高阻态、高电平和低电平3种状态,是一种三态门。

CMOS三态门之二

- $\overline{EN} = 1$ 时,TG截止,输出端呈现高阻态。
- $\overline{EN} = 0$ 时, TG导通, $Y = \overline{A}$ 。

第3章 小结

- ①利用半导体器件的开关特性,可以构成与门、或门、非门、与非门、或非门、与或非门、异或门等各种逻辑门电路,也可以构成在电路结构和特性两方面都别具特色的三态门、OC门、OD门和传输门。
- ②随着集成电路技术的飞速发展,分立元件的数字电路已被集成电路所取代。
- ③TTL电路的优点是开关速度较高,抗干扰能力较强,带负载的能力也比较强,缺点是功耗较大。
- ④CMOS电路具有制造工艺简单、功耗小、输入阻抗高、 集成度高、电源电压范围宽等优点,其主要缺点是工作速度 稍低,但随着集成工艺的不断改进,CMOS电路的工作速度已 有了大幅度的提高。