Pontificia Universidad Católica de Chile

Facultad de Matemáticas

Profesor: Héctor Pastén Vásquez

Curso: Álgebra abstracta II

Fecha: 29 de mayo de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2244

Tensores

1. Calculando tensores

A la hora de «calcular» un tensor $M \otimes_A N$, el lector debe sólo tener en mente que un homomorfismo $M \otimes_A N \to T$ es lo mismo que una aplicación A-bilineal $M \times N \to T$ (i.e., lineal en cada coordenada).

En un tensor $M \otimes_A N$, los elementos de la forma $m \otimes n$ (con $m \in M$, $n \in N$) se dicen **tensores puros**. No todos los elementos del producto tensorial son tensores puros, pero sí todo elemento es suma de tensores puros.

1. Pruebe que $(\mathbb{Z}/m\mathbb{Z}) \otimes_{\mathbb{Z}} (\mathbb{Z}/n\mathbb{Z}) = 0$ para m, n coprimos, y que $(\mathbb{Z}/n\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ en general.

Solución: Como todo módulo de tensores $M \otimes N$ está generado por los tensores puros, bastará probar que estos últimos son cero.

Sean $[a] \in \mathbb{Z}/m\mathbb{Z}$ y $[b] \in \mathbb{Z}/n\mathbb{Z}$, entonces $a \otimes b = a(1 \otimes b) = ab(1 \otimes 1)$, así que bastará probar que $1 \otimes 1 = 0$. Por la identidad de Bézout, 1 = um + vn, de modo que

$$1 \otimes 1 = (um + vn) \otimes 1 = vn \otimes 1 = n(v \otimes 1) = v \otimes n = v \otimes 0 = 0,$$

donde empleamos la Z-bilinealidad en los cálculos.

Similarmente dados $[a] \in \mathbb{Z}/n\mathbb{Z}$ y $b \in \mathbb{Q}$, tenemos que

$$a \otimes b = a \otimes \left(n \cdot \frac{b}{n}\right) = n(a \otimes b/n) = (na) \otimes b/n = 0 \otimes b/n = 0.$$

2. Sea M un A-módulo.

 \odot

a) Pruebe que toda sucesión exacta $N_1 \xrightarrow{f} N_2 \xrightarrow{g} N_3 \rightarrow 0$ da lugar a una sucesión exacta

$$M \otimes_A N_1 \longrightarrow M \otimes_A N_2 \longrightarrow M \otimes_A N_3 \longrightarrow 0.$$
 (1)

Solución: Para probar exactitud en $M \otimes_A N_3$ basta ver que $\mathrm{Id}_M \otimes g$ es sobreyectivo. Para ello, sea $\sum_{j=1}^r m_j \otimes c_j \in M \otimes_A N_3$, donde cada $m_j \in M$ y $c_j \in N_3$. Como g es sobreyectivo, existen $b_j \in N_2$ tales que $g(b_j) = c_j$, de modo que

$$(\mathrm{Id}_M \otimes g) \left(\sum_{j=1}^r m_j \otimes b_j \right) = \sum_{j=1}^r m_j \otimes g(b_j) = \sum_{j=1}^r m_j \otimes c_j.$$

Por otro lado, una sucesión $T \xrightarrow{f} N \to Q \to 0$ es exacta syss $Q \cong N/\operatorname{Img} f$ (por abuso de notación Q = N/T), así que para probar exactitud en $M \otimes N_2$ vamos a ver que el tensor respeta cocientes. Nótese que, en este contexto, $N \otimes_A M \to (N/T) \otimes_A M$ se anula en $T \otimes_A M$ (pues $t \otimes m \mapsto (t \mod T) \otimes m = 0$), por lo que,

$$\varphi \colon \frac{N \otimes_A M}{T \otimes_A M} \longrightarrow (N/T) \otimes_A M, \qquad n \otimes m \longmapsto (n \mod T) \otimes m$$

es un homomorfismo bien definido.

Recíprocamente, la función

$$\psi \colon (N/T) \otimes_A M \longrightarrow \frac{N \otimes_A M}{T \otimes_A M}, \qquad (n \mod T) \otimes m \longmapsto n \otimes m \pmod{T \otimes M}$$

está bien definida ya que si n' = n + t para algún $t \in T$, entonces $\psi(n' \otimes m) = n \otimes m + t \otimes m \equiv n \otimes m$. Es directo ver que φ y ψ son inversas una de la otra.

b) Pruebe, sin embargo, que si $f: N_1 \to N_2$ es inyectiva, entonces $\mathrm{Id}_M \otimes_A f: M \otimes_A N_1 \to M \otimes_A N_2$ no lo es en general.

Solución: Una manera fácil de construir un contraejemplo sería un submódulo $N_1 \leq N_2$ tal que $N_1 \otimes M \neq 0 = N_2 \otimes M$. Un ejemplo de esto es $\mathbb{Z} \hookrightarrow \mathbb{Q}$ tensorizado con $M = \mathbb{Z}/2\mathbb{Z}$. Otro ejemplo es considerar el homomorfismo $\times 2 \colon \mathbb{Z} \to \mathbb{Z}$ que al tensorizar por $\mathbb{Z}/2\mathbb{Z}$ nos da el homomorfismo nulo.

c) No obstante, pruebe que dados los A-módulos M,N,P se cumple que

$$(M \oplus N) \otimes_A P \cong (M \otimes_A P) \oplus (N \otimes_A P).$$

En consecuencia, si $0 \to M \to M \oplus N \to N \to 0$ es una sucesión exacta escindida, entonces $0 \to M \otimes_A P \to (M \oplus N) \otimes_A P \to N \otimes_A P \to 0$ también es exacta escindida.

Solución: Empleando la propiedad universal del tensor, basta ver que darse una función bilineal desde $(M \oplus N) \times P$ es lo mismo que darse dos funciones bilineales desde $M \times P$ y $N \times P$.

Dada $\varphi \colon (M \oplus N) \times P \to T$ bilineal, construimos

$$\psi_{\varphi} \colon M \times P \longrightarrow T, \qquad (m,p) \longmapsto \varphi((m,0),p),$$

$$\theta_{\varphi} \colon N \times P \longrightarrow T, \qquad (n,p) \longmapsto \varphi((0,n),p).$$

Recíprocamente, dados ψ, θ bilineales, construimos

$$\varphi \colon (M \oplus N) \times P \longrightarrow T, \qquad ((m, n), p) \longmapsto \varphi(m, p) + \theta(n, p).$$

Y queda al lector verificar que las construcciones son una la inversa de la otra.

- 3. Sean M, N un par de A-módulos.
 - a) (Examen de lucidez) Pruebe que si N está generado por un solo elemento, entonces todos los elementos del tensor $M \otimes_A N$ son tensores puros.

Solución: Sea $n \in N$ que genera. Ahora los elementos de $M \otimes_A N$ son de la forma $\sum_{j=1}^r m_j \otimes n_j$ donde cada $m_j \in M, n_j \in N$; luego existen $a_j \in A$ tales que $n_j = a_j n$ y

$$\sum_{j=1}^r m_j \otimes n_j = \sum_{j=1}^r a_j(m_j \otimes n) = \sum_{j=1}^r (a_j m_j \otimes n) = \left(\sum_{j=1}^r a_j m_j\right) \otimes n.$$

b) Pruebe que, dado un ideal $\mathfrak{a} \subseteq A$, se cumple que $M \otimes_A A/\mathfrak{a} \cong M/\mathfrak{a}M$.

Solución: Aquí hay dos posibles soluciones. La primera más funtorial es emplear la sucesión exacta $0 \to \mathfrak{a} \to A \to A/\mathfrak{a} \to 0$, tensorizar con M y demostrar que $\mathfrak{a} \otimes_A M = \mathfrak{a} M$. La segunda es probar el isomorfismo $M \otimes A/\mathfrak{a} \cong M/\mathfrak{a} M$ directamente empleando la propiedad universal del tensor, es decir, probando que dar una aplicación bilineal $\beta \colon M \times A/\mathfrak{a} \to N$ es lo mismo que darse un homomorfismo $\varphi \colon M/\mathfrak{a} M \to N$.

Dado β , basta definir $\varphi_{\beta}(m \mod \mathfrak{a}M) := \beta(m,1)$; y dado φ , basta definir $\beta_{\varphi}(m,a \mod \mathfrak{a}) := \varphi(am)$. Ambos están bien definidos ya que si $a \in \mathfrak{a}$, entonces $\varphi_{\beta}(m+am') = \beta(m,1) + \beta(m',a) = \beta(m,1)$ y $\beta_{\varphi}(m,a) = \varphi(0) = 0$.

- 4. Sea A un anillo y sea B un A-álgebra (i.e., un anillo con un homomorfismo $\varphi \colon A \to B$ de anillos fijo).
 - a) Pruebe que si M es un A-módulo (resp. si $\psi \colon A \to C$ es un A-álgebra), entonces $M \otimes_A B$ (resp. $C \otimes_A B$) posee estructura de B-módulo (resp. de B-álgebra).

Solución: En ambos casos, nos piden dar una definición de «multiplicar por escalares en B». Para agilizar notación, escribamos $M_B := M \otimes_A B$.

Sea $b' \in B$ fijo, para ver que $M_B \to M_B$ dado por $m \otimes b \mapsto m \otimes bb'$ está bien definido empleamos la propiedad universal del tensor para notar que la función

$$(m,b) \longmapsto m \otimes bb'$$

es A-bilineal. Con ello, será claro que M_B admite un producto escalar, el cual es asociativo. Para ver distributividad basta notar que

$$(b' + b'')(m \otimes b) = m \otimes (b(b' + b'')) = m \otimes (bb' + bb'')$$

= $m \otimes bb' + m \otimes bb'' = b'(m \otimes b) + b''(m \otimes b)$,

y $b'(m \otimes b + m'' \otimes b'') = b'(m \otimes b) + b'(m'' \otimes b'')$ es trivial del que $\times b' \colon M_B \to M_B$ sea A-lineal.

b) (Propiedad universal del producto tensorial de álgebras) Pruebe que si D es un anillo con homomorfismos de anillos $f: B \to D$ y $g: C \to D$, tales que $f \circ \varphi = g \circ \psi \colon A \to D$, entonces existe un único homomorfismo de anillos $B \otimes_A C \to D$ tal que el siguiente diagrama conmuta:

c) Pruebe que si M es un A-módulo finitamente generado, entonces $M \otimes_A B$ es un B-módulo finitamente generado.

Solución: Como M es finitamente generado, existe un epimorfismo de A-módulos $\varphi \colon A^r \to M$, de modo que formamos la sucesión exacta

$$0 \longrightarrow \ker \varphi \longrightarrow A^r \stackrel{\varphi}{\longrightarrow} M \longrightarrow 0,$$

ahora tensorizamos por B y concluimos que $A^r \otimes_A B \to M \otimes_A B$ es, en particular, sobreyectiva. Finalmente, como el tensor respeta sumas directas, note que

$$A^{\oplus r} \otimes_A B = (A \otimes_A B)^{\oplus r} = B^r.$$

d) Calcule quién es la \mathbb{C} -álgebra $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$.

 \odot

Solución: Aquí hay dos soluciones. Podemos emplear el ejercicio 3b para calcular que, en $\mathsf{Alg}_{\mathbb{C}}$:

$$\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \otimes_{\mathbb{R}} \frac{\mathbb{R}[x]}{(x^2 + 1)} = \frac{\mathbb{C}[x]}{(x^2 + 1)} = \frac{\mathbb{C}[z]}{(z + i)} \times \frac{\mathbb{C}[z]}{(z - i)} = \mathbb{C} \times \mathbb{C},$$

donde en el penúltimo paso empleamos el teorema chino del resto.

Otra solución es que, para probar que $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C} = \mathbb{C} \times \mathbb{C}$, habría que encontrar un idempotente e distinto del $1 = 1 \otimes 1$ y el 0. Como $\mathbb{C} \cong \mathbb{R} \oplus i\mathbb{R}$ (en $\mathsf{Vect}_{\mathbb{R}}$), vemos que los elementos son de la forma

$$e = 1 \otimes z + i \otimes w \in \mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}.$$

Ahora, expandir la ecuación e(e-1) = 0 nos da

$$1 \otimes (z^2 - z - w^2) + i \otimes (w(2z - 1)) = 0,$$

lo que nos da el sistema de ecuaciones

$$\begin{cases} z^2 - z - w^2 = 0, \\ w(2z - 1) = 0. \end{cases}$$

La solución w=0 nos obliga z=0 o z=1 (que corresponde a e=0 y e=1 resp.); mientras que si $w\neq 0$, obtenemos $e=1\otimes \frac{1}{2}+i\otimes \frac{i}{2}$.

e) Sea K/k una extensión finita separable. ¿Qué condición debe satisfacer una extensión L/k para que $L \otimes_k K \cong L^{[K:k]}$ como L-álgebras?

Solución: Como K/k es finita y separable, el teorema del elemento primitivo dice que existe $\alpha \in K$ tal que $K = k(\alpha)$. Con $f(x) \in k[x]$ el polinomio minimal de α , vemos que

$$L \otimes_k K = L \otimes_k \frac{k[x]}{(f(x))} \cong \frac{L[x]}{(f(x))}.$$

Así, para que $L \otimes_k K \cong L^{[K:k]}$ queremos que f se factorice en factores lineales en L[x], es decir, queremos que L contenga al cuerpo de escisión de f.

A. Ejercicios propuestos

- 1. Sea G un grupo abeliano finitamente generado. En virtud del teorema de clasificación, $G \cong \mathbb{Z}^r \oplus F$, donde F es un grupo abeliano finito; a tal r le llamamos el rango de G.
 - a) Pruebe que $G \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}^r$.
 - b) Pruebe además que existen infinitos primos p para los cuales $G \otimes_{\mathbb{Z}} (\mathbb{Z}/p\mathbb{Z}) \cong (\mathbb{Z}/p\mathbb{Z})^r$.

REFERENCIAS

- 1. Aluffi, P. Algebra. Chapter 0 (American Mathematical Society, 1960).
- 2. Atiyah, M. F. y MacDonald, I. G. Introduction to Commutative Algebra (Addison-Wesley, 1969).

 $Correo\ electr\'onico: \verb"josecuevas" btos@uc.cl"$

URL: https://josecuevas.xyz/teach/2025-1-ayud/