Habits

John Doe

March 22, 2005

Module 1: Technology

Overview

Overall structure of Sequencing Experiments

Figure 1:

Computer Stuff

- All the stuff in the middle involves heavy use of computers
 - ► No way to avoid it
- ▶ But to many that stuff in the middle is impenetrable
 - And often computer/math/physics types are not all that helpful

Obtuse and Obfuscated

Complicated Computer Stuff

"I think you should be more explicit here in step two."

Figure 2:

Here to help

► Or at least try

Manditory Growth Slide

Figure 3:

Multiple technologies

- ► Illumina
- ► SOLiD
- ▶ 454 (successor Ion Torrent)
- PacBio

Technology comparison

Figure 4: 3 major sequencing techs

Illumina

Sequencing by synthesis

Cyclic reversible termination

DNA synthesis is terminated after adding single nucleotide

SOLiD

Sequencing by ligation

Sequencing by ligation

454/IonTorrent

Pyrosequencing (H+ sequencing)

Pyrosequencing

Metzker et al, 2010

PacBio

Single molecule sequencing (sequencing by video)

Real-time sequencing

"strobe sequencing"

Accuracy

- ► Sanger > SOLiD > Illumina >> 454/IonTorrent >> PacBio
 - ▶ 454/IonTorrent problem with homopolymers
 - ► However with the exception of Sanger read length goes up as you move to the right. Less accuracy but longer reads

pyrosequencing homopolymer problem

- Affects 454 and IonTorrent
- Because it reads multiple runs of the same base in one cycle there is a signal to noise issue;
 - ▶ Need to discriminate (N-1)/N
 - ▶ threshold is like (1/N)
 - ▶ This gets very hard as N gets large
 - Practical limit 5-8 mers
 - But when 2mers are issues

Paired End Sequencing

Figure 9: Various Paired End (Mate Pair) formats

Paired End Sequencing, II

Figure 1-2-1 Pipeline of paired-end sequencing (www.illumina.com)

Figure 10:

Applications of NGS

- RNAseq
- ChIPseq
- other not discussed
 - Whole Exome (targeted) sequencing (WES)
 - Whole Genome Sequencing (WGS)
 - BiSulfite
 - Target PCR based

RNAseq library types (for ChIPSeq guys)

- ► From a bioinformatics view you need to know (you really do)
 - Poly-A unstranded (Illumina TruSeq Poly-A Selection)
 - Unstranded
 - SMARTer Amplification
 - Strand Forward, FIRST_READ_TRANSCRIPTION_STRAND
 - KAPA mRNA Stranded
 - Strand Reverse,
 SECOND READ TRANSCRIPTION STRAND
 - Ribo-minus (Illumina TruSeq RiboDeplete)
 - Strand Reverse, SECOND_READ_TRANSCRIPTION_STRAND

Illumina True Seq RNAseq

Illumina Tru-Seq RNA-seq protocol

Library prep begins from 100ng-1ug of Total RNA which is poly-A selected (A) with magnetic beads. Double-stranded cDNA (B) is phosphorylated and A-tailed (C) ready for adapter ligation. The library is PCR amplified (D) ready for clustering and sequencing.

Figure 11:

Two different ChIP libraries

- From a bioformatics view you know
 - ▶ Focal Binding ChIP: le protein binding is strongly localized
 - Transcription Factors
 - Diffuse Binding ChIP: binding is weak-localized
 - Histone (chromotin) or Methyl binding factors
- MACS calls there model and non-model cases

ChIPseq library prep (for RNAseq guys)

- Cross-link DNA and proteins
- Isolate DNA & fragmentation
- Chromatin Immunoprecipitation
- Reverse cross-links and purify DNA
- Add adapters & sequence

- Cross-link DNA and proteins
- Isolate DNA & fragmentation
- Chromatin Immunoprecipitation
- Reverse cross-links and purify DNA
- Add adapters & sequence

- Cross-link DNA and proteins
- Isolate DNA & fragmentation
- Chromatin Immunoprecipitation
- Reverse cross-links and purify DNA
- Add adapters & sequence

Cross-link DNA and proteins

- Isolate DNA & fragmentation
- Chromatin Immunoprecipitation
- Reverse cross-links and purify DNA

- Cross-link DNA and proteins
- Isolate DNA & fragmentation
- Chromatin Immunoprecipitation
- Reverse cross-links and purify DNA
- Add adapters & sequence

Figure 16:

Sequencing data file formats: FASTA/FASTQ

Original format: FASTA

- ► For both xNA (nucleotides) and AA (proteins)
- Basic structure:

>gi|31563518|ref|NP_852610.1| microtubule-associated MKMRFFSSPCGKAAVDPADRCKEVQQIRDQHPSKIPVIIERYKGEKQ LPVLDKTKFLVPDHVNMSELVKIIRRRLQLNPTQAFFLLVNQHSMVS VSTPIADIYEQEKDEDGFLYMVYASQETFGFIRENE

FASTA, cont.

Can encode multiple sequences

>SEQUENCE 1

MTEITAAMVKELRESTGAGMMDCKNALSETNGDFDKAVQLLREKGL LVSVKVSDDFTIAAMRPSYLSYEDLDMTFVENEYKALVAELEKENE IPQFASRKQLSDAILKEAEEKIKEELKAQGKPEKIWDNIIPGKMNS MGQFYVMDDKKTVEQVIAEKEKEFGGKIKIVEFICFEVGEGLEKKT >SEQUENCE 2

SATVSEINSETDFVAKNDQFIALTKDTTAHIQSNSLQSVEELHSST ATTGENLVVRRFATLKAGANGVVNGYTHTNGRVGVVTAAACDSAEV

Extension to store quality of reads: FASTQ

 Change delimiter and add an additional line of quality information

```
@SEQ_ID
GATTTGGGGTTCAAAGCAGTATCGATCAAATAGTAAATCCATTTGTT
+
!''*((((***+))%%%++)(%%%%).1***-+*''))**55CCF>>
```

▶ the 4th line encodes the Quality value (Q) for each base

Q value / PHRED scale

▶ The q value is defined to be

$$Q = -10\log_{10}(P_{err})$$

where P_{err} is the probability the base is *incorrect*

Q	Perr	Nerr		
10	0.1	1 in 10		
20	0.01	1 in 100		
30	0.001	1 in 1,000		
40	0.0001	1 in 10,000		

Q encoding

▶ The Q value has over time been encoded in different ways

```
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ `abcdefghijklmnopqrstuvwxyz{|}~
33
                                       104
                                                    126
0.2.....41
S - Sanger
      Phred+33, raw reads typically (0, 40)
X - Solexa
          Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 40)
  with 0=unused, 1=unused, 2=Read Segment Ouality Control Indicator (bold)
  (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
```

Figure 17:

Q encoding

- ▶ ord(c)-33 ==> Q / ord is the ascii value for a character
- ightharpoonup chr(Q+33) ==> Character

Quality Control (Manipulating FASTA files)

- FastQC toolkit: (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/)
- Show Samples

Unix Crash Course

History

- ► First shell, Ken Thompson, 1971 (44yr)
- ► First (?) UNIX shell, Bourne Shell [SH], Stephan Bourne, 1977
- C-Shell [TCSH], Bill Joy, 1978
- People (especially scientist) have been using some from of a shell to talk to computers for longer that most of people in this room were alive.
- Probably will still be using it after we are gone.
- Might be good idea to learn it (before SKYNET takes over)

Where to start

► Most Commonly Used Commands

fgrep	10.81%	cd	10.11%	ls	8.06%
more	7.77%	cat	6.39%	rm	3.53%
find	3.23%	xargs	2.69%	cut	2.67%
egrep	2.41%	mkdir	1.86%	sort	1.76%
git	1.66%	awk	1.66%	WC	1.58%
head	1.32%	mv	1.26%	bjobs	1.23%
sed	1.22%	uniq	1.19%	history	1.00%
vi	0.97%	pwd	0.90%	ср	0.90%
tr	0.86%	perl	0.77%	du	0.75%
samtools	0.68%	listCols	0.56%	zcat	0.56%
hg	0.54%	parseLSFLogs.py	0.49%	tee	0.48%
chmod	0.45%	rsync	0.43%	In	0.43%
sudo	0.43%	diff	0.42%	bedtools	0.38%

Unix I/O conventions

- files / directories
- commands
- ▶ I/O redirection, pipes

Basic unix commands:

file / directory

- ▶ Is, cd, pwd, cat (more/less), rm, mv, mkdir, rmdir
- wild cards / glob patterns

Home directory:

```
# Go home
cd
# Show home directry
cd
pwd
# better (leaves you in where you are)
echo $HOME
```

history

- list and rerun commands
- !! usually replaced by up-arrow (^p)
- history editting replaced with cut-and-paste

man

- make sure to go over man
 - ▶ man -k == apropos

locate

- make sure to explain caveat that database is **not** updated continuously (usually everyday)
- typically configure to not index user space
 - ▶ **NOT** like spotlight
- Mostly useful for system stuff
- works best with grep

fgrep, egrep, grep

- ▶ fgrep == fast grep (grep -F)
- ▶ egrep == extended grep (grep -E)
 - regular expression crash course
 - like wild cards but different syntax

From man page:

Direct invocation as either egrep or fgrep is deprecated, but is provided to allow historical applications that rely on them to run unmodified.

i.e., for old people

Unix cautions

mv semantics can be deceptive

mv file1 file2

This renames file1 to file file2 but if file2 exists it also deletes file2

many people uses alias to redefine defaults to something more forgiving.

For beginners strongly suggest

alias mv="mv -n"

Probably should also do alias rm="rm -i", but gets tedious pretty quickly

Parting thought

Beware

Figure 18: