# Lab 1 – MATH 240 – Computational Statistics

First Author Affiliation Department email@domain

#### Abstract

This document provides a basic template for the 2-page labs we will complete each week. Here, you should provide a succinct summary about what you did and why it might be helpful.

**Keywords:** What topics does the lab cover with respect to class?

## 1 Introduction

For this lab, you will

- 1. Install R and RStudio
- 2. Install tinytex (if necessary):
   install.packages("tinytex")
- 3. Create a GitHub account here
- 4. Accept the LAB 1 assignment here
- 5. Recreate this document (except put your name/info at the top) to get used to writing in LATEX and to see the types of things we can do when creating a document to convey statistical information. Make sure to commit and push your work using GitHub desktop as you finish each section.

Remark: You will find the class Sweave cheatsheet to be *incredibly* \emph{incredibly} helpful.

# 2 Word Processing Tasks

### 2.1 Centering Text

We can center text in Sweave.

## 2.2 Bold, Italics, and Underlining

We can **bold**, italicize,  $\underline{underline}$ , and emphasize text in Sweave.

Note, I did a column break here so that the list wasn't broken across columns.

### 2.3 Lists, and Numbered Lists

We can write an unordered list in Sweave.

- first item
- second item
- third item

We can write a numbered list in Sweave.

- 1. first item
- 2. second item
- 3. third item

We can write a lettered list in Sweave.

- a. first item
- b. second item
- c. third item

### 2.4 Submissions

This part of the midterm is due Sunday November 14 by 5p. I will not accept late submissions. Note that you may use this template to help build your introduction and methods sections, and you can use the work you did as a group during the datathon. Still, I expect this submission to be your own summary and extension of that work without collaboration.

## 2.5 Typing Mathematical Equations

We can write a one line equation that is centered like this

$$\widehat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i.$$

This can be written as text, as  $\hat{y}_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \epsilon_i$  using as well.

When we need to show multiple steps, we can create a multi-line equation that is centered like this:

$$8(x-5) + x = 9(x-5) + 5$$
  
 $8x - 40 + x = 9x - 45 + 5$  (Distributing)  
 $9x - 40 = 9x - 40$  (Combining Like Terms)  
 $9x = 9x$  (Adding 40 to both sides)  
 $x = x$  (Dividing both sides by 9)

The equality holds for any x.

Note, I did a page break here so that the next section started on a clean page.

#### Running R Code 2.6

Code chunks can be entered into Sweave; e.g., here are some comments.

```
# R code goes here
\mbox{\# Output} is automatically printed in the pdf
```

Below, you can see that we can do algebra with R.

```
8*(9-5) + 9 # 8(x-5) + x for x=9
## [1] 41
```

Below, we show we can produced the code without evaluating it.

```
8*(9-5) + 9 # 8(x-5) + x for x=9
```

Alternatively, we can produced the output without the code.

```
## [1] 41
```

We can also call object values from R directly.

```
result <- 8*(9-5) + 9 \# 8(x-5) + x for x = 9
result.with.error <- result + rnorm(1, mean = 0, sd = 0.1)
result.with.error
## [1] 41.08931
```

The result is 41.089315. Note that I did not type the result, but I used the Sexpr{} command.

#### 2.7Plotting

We can also plot with R.

```
#Plot a histogram of random exponential data
hist(rexp(100))
```





Figure 1: A histogram of random exponentially distributed data, n = 100.

#### **Tables** 2.8

Below, we load and take a peek at some data about the death rates per 1000 in Virginia in 1940 (Molyneaux et al., 1947).

```
data(VADeaths)
head(VADeaths) # Take a peek of the data
         Rural Male Rural Female Urban Male Urban Female
## 50-54
               11.7
                             8.7
                                        15.4
## 55-59
               18.1
                             11.7
                                        24.3
                                                      13.6
## 60-64
               26.9
                             20.3
                                        37.0
                                                      19.3
## 65-69
               41.0
                             30.9
                                        54.6
                                                     35.1
## 70-74
               66.0
                            54.3
                                        71.1
                                                     50.0
```

If we want to print this nicely, we can do so using the xtable package (Dahl et al., 2019), which we can reference using the label (Table 1).

```
library(xtable)
sleep.table<-xtable(VADeaths )</pre>
                     label = "VADeaths.tab",
                     caption = "Death Rates per 1000 in Virginia (1940).")
```

| Rural Male | Rural Female | Urban Male | Urban Female |
|------------|--------------|------------|--------------|
| 11.70      | 8.70         | 15.40      | 8.40         |
| 18.10      | 11.70        | 24.30      | 13.60        |
| 26.90      | 20.30        | 37.00      | 19.30        |
| 41.00      | 30.90        | 54.60      | 35.10        |
| 66.00      | 54.30        | 71.10      | 50.00        |

Table 1: Death Rates per 1000 in Virginia (1940).

## References

Dahl, D. B., Scott, D., Roosen, C., Magnusson, A., and Swinton, J. (2019). xtable: Export

Tables to LaTeX or HTML. R package version 1.8-4.

Horst, A. M., Hill, A. P., and Gorman, K. B. (2020). palmerpenguins: Palmer Archipelago (Antarctica) penguin data. R package version 0.1.0.

Molyneaux, L., Gilliam, S. K., and Florant, L. (1947). Differences in virginia death rates by color, sex, age and rural or urban residence. American Sociological Review, 12(5):525–535.

# 3 Appendix

Below is a table from a paper I'm currently working on. Without the analysis object in R, I have to create this table myself.

| Term                                | SS (Type III) | df     | F     | p-value | $\epsilon_p^2$ |
|-------------------------------------|---------------|--------|-------|---------|----------------|
| (Intercept)                         | 4.95          | 1.00   | 5.37  | 0.0209  |                |
| White-Poor $(Z)$                    | 3.17          | 1.00   | 3.44  | 0.0642  | 0.02           |
| Zero-Sum (Z)                        | 17.96         | 1.00   | 19.48 | j0.0001 | 0.03           |
| Education (Z)                       | 0.39          | 1.00   | 0.42  | 0.5161  | 0.00           |
| Income (Z)                          | 0.16          | 1.00   | 0.17  | 0.6817  | 0.00           |
| Democrat                            | 9.60          | 1.00   | 10.42 | 0.0013  | 0.02           |
| Black-Poor (Z)                      | 1.92          | 1.00   | 2.08  | 0.1496  | 0.00           |
| White-Poor $(Z) \times Zero-Sum(Z)$ | 7.96          | 1.00   | 8.63  | 0.0034  | 0.01           |
| Residuals                           | 506.92        | 550.00 |       |         |                |

Table 2: ANOVA table for Case Study I.

The palmerpenguins package for R (Horst et al., 2020) provides data on adult foraging penguins near Palmer Station, Antarctica. Figure (Figure 2) is too big to fit nicely in our column-based-template above, so I've placed it here in the abstract by saving it and presenting it scaled to 0.75.

```
library(palmerpenguins)
pdf("figure/penguins.pdf", width = 8, height = 5)
plot(penguins)
dev.off()
```



Figure 2: Data on adult foraging penguins near Palmer Station, Antarctica.