Analysis of Leading Causes of Death

By: Yiru Zheng (yz3599), Tyler Wilson (tw1614), and Angela Zheng (az1579)

Table of Contents

- I. Introduction to Mortality Data (NYC and US)
 - 1. New York City Data
 - 2. US Data
 - 3. Analysis: Leading Causes of Death
 - a. Preparation of NYC Dataset
 - b. Preparation of US Dataset
 - 4. Population Averages
 - a. NYC Population
 - b. US Population
 - 5. Visualization of Leading Deaths
 - a. Preparation of NYC Dataset
 - b. Preparation of US Dataset
 - c. Combined Visualization
 - 6. Results
- II. Analysis of Heart Disease, Influenza, and Unintentional Injuries

- 1. Heart Disease
- a. Risk Factors: Smoking
- b. Risk Factors: High Cholesterol
- c. Risk Factors: High Blood Pressure
- d. Conclusion
- 2. Influenza and Pneumonia
- a. Population Density Regression Testing
- i. Population Density Regression Test
- ii. Visualization
- iii. Conclusion
- b. Urgent Center Units per Capita Regression Testing
- c. Hospitals per Capita Regression Testing
- d. Relationship Between Influenza Analysis and COVID-19 Impact
 - i. Visualization
- 3. <u>Unintentional Injuries</u>
- a. US Death Rate for Accidental Deaths
- b. Breakdown of Unintentional Injury Mechanisms

All Mechanisms

By Age Group

Drowning

Firearms

Cut/Pierce

Fire/Hot Object or Substance

Motor Vehicle Traffic

All Other Transport

Poisoning

Suffocation

- c. Comparison of Each Mechanism
- d. Regression
- e. NYC Unintentional Injuries
- 4. Conclusions on Death Rate Disparities between New York City and National Averages

III. Effect of Race and Gender on Death Rates

- 1. NYC Visualization of Death by Gender
- 2. NYC Race Demographics
- 3. NYC Visualization by Race Ethnicity
- 4. US vs NYC Death to Population Ratio Comparison
- 5. US Demographics Dataset

IV. Conclusion

Around 3 million Americans die each year, which means that the death rate is about 860 deaths per 100,000 people. The goal of our project is to take a closer look at the causal factors for these deaths across the US and analyze this data to see what factors pose a higher risk. Additionally, we explore these factors in the smaller region of New York City and compare it with the nationwide results. https://www.cdc.gov/nchs/fastats/deaths.htm

I. Introduction to Mortality Data

```
In [1]: import pandas as pd
   import matplotlib as mpl
   import matplotlib.pyplot as plt
   import numpy as np
   import statsmodels.formula.api as smf
   import seaborn as sb
   import copy
   from IPython.display import display
   import plotly.graph_objects as go

%matplotlib inline
```

Data Sources

NYC mortality source: https://data.cityofnewyork.us/Health/New-York-City-Leading-Causes-of-Death/ib7i-dtam

US mortality source: https://catalog.data.gov/dataset/age-adjusted-death-rates-for-the-top-10-leading-causes-of-death-united-states-2013

First, we need to read and clean the csv files by changing datatypes, correcting spelling, and checking for repetitions or unique characteristics. Here, we are going through our NYC and US datasets.

New York City Data

```
In [2]: nyc = pd.read_csv("nyc.csv")
    nyc = nyc.replace(".",0)
    nyc = nyc.astype({'Deaths': 'float64', 'Death Rate': 'float64', "Age Ad justed Death Rate":"float64"})
    nyc
```

Out[2]:

Age Adjusted Death Rate	Death Rate	Deaths	Race Ethnicity	Sex	Leading Cause	Year	
23.1	18.7	228.0	Hispanic	F	Influenza (Flu) and Pneumonia (J09-J18)	2010	0
6.6	5.8	68.0	Hispanic	F	Accidents Except Drug Posioning (V01-X39, X43,	2008	1
17.9	20.1	271.0	White Non- Hispanic	М	Accidents Except Drug Posioning (V01-X39, X43,	2013	2
21.4	12.3	140.0	Hispanic	М	Cerebrovascular Disease (Stroke: I60-I69)	2010	3
30.0	30.0	255.0	Black Non- Hispanic	М	Assault (Homicide: Y87.1, X85-Y09)	2009	4

	Year	Leading Cause	Sex	Race Ethnicity	Deaths	Death Rate	Age Adjusted Death Rate	
1089	2012	Influenza (Flu) and Pneumonia (J09-J18)	F	Not Stated/Unknown	6.0	0.0	0.0	
1090	2014	Accidents Except Drug Posioning (V01-X39, X43,	F	White Non- Hispanic	169.0	11.9	7.4	
1091	2009	Malignant Neoplasms (Cancer: C00-C97)	М	White Non- Hispanic	3236.0	240.5	205.6	
1092	1092 2009 Intentional Self-Harm (Suicide: X X84, Y87			White Non- Hispanic	191.0	14.2	13.0	
1093	2013	Essential Hypertension and Renal Diseases (I10	М	Black Non- Hispanic	148.0	17.2	20.9	
1094 rows × 7 columns								
nyc.o	nyc.dtypes							

```
In [3]:
```

Out[3]: Year int64 Leading Cause object obiect Sex Race Ethnicity object Deaths float64 Death Rate float64 Age Adjusted Death Rate float64 dtype: object

In [4]: #misspelled "poisoning" nyc["Leading Cause"] = nyc["Leading Cause"].replace("Accidents Except D rug Posioning (V01-X39, X43, X45-X59, Y85-Y86)", "Accidents Except Drug Poisoning (V01-X39, X43, X45-X59, Y85-Y86)")

```
In [5]: print(nyc["Race Ethnicity"].unique())
        print(nyc['Sex'].unique())
        print(nyc['Year'].unique())
```

['Hispanic' 'White Non-Hispanic' 'Black Non-Hispanic'

'Other Race/ Ethnicity' 'Asian and Pacific Islander' 'Not Stated/Unkno wn']
['F' 'M']
[2010 2008 2013 2009 2012 2011 2014 2007]

US Data

Out[6]:

	Year	113 Cause Name	Cause Name	State	Deaths	Age-adjusted Death Rate
0	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	United States	169,936	49.4
1	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alabama	2,703	53.8
2	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Alaska	436	63.7
3	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arizona	4,184	56.2
4	2017	Accidents (unintentional injuries) (V01-X59,Y8	Unintentional injuries	Arkansas	1,625	51.8
10863	1999	Nephritis, nephrotic syndrome and nephrosis (N	Kidney disease	Virginia	1,035	16.9
10864	1999	Nephritis, nephrotic syndrome and nephrosis (N	Kidney disease	Washington	278	5.2
10865	1999	Nephritis, nephrotic syndrome and nephrosis (N	Kidney disease	West Virginia	345	16.4
10866	1999	Nephritis, nephrotic syndrome and nephrosis (N	Kidney disease	Wisconsin	677	11.9

		Year		113 Cause N	lame	Cause Name	State	Deaths	Age-adjusted Death Rate	
	10867	1999	Nephritis, r	nephrotic syndrome nephrosis		Kidney disease	Wyoming	30	6.8	
	10868 r	ows × (6 columns							
In [7]:	us.dty	ypes								
Out[7]:	113 Ca Cause State Deaths	Name S djuste	ed Death	int obje obje obje Rate obje	ect ect ect ect					
In [8]:	us['St	tate']].nunique	2()						
Out[8]:	52									
In [9]:	us["St	tate"]].unique(()						
Out[9]:	<pre>array(['United States', 'Alabama', 'Alaska', 'Arizona', 'Arkansas',</pre>									
	a', n',	'Ter	nnessee',	Texas', 'l	Jtah',	'Vermont'	, 'Virgi	nia', '	Washingto	

All 50 states are included in the dataset, additionally the District of Columbia is included along with the total for the United States, thus making the number of unique "States" equal to 52.

Analysis: Leading Causes of Death

First, an overview of the most common causes of death in New York City versus the rest of the US.

Preparation of NYC Dataset

2010 Census Data Source: https://www.census.gov/programs-surveys/popest/data/data-sets.All.html

```
In [10]: #change names of NYC causes to match US data
         #drop the rows that are not mutual
         #replace the technical cause names in the NYC dataset with the common n
         ames in the US dataset
         nyc.replace({'Influenza (Flu) and Pneumonia (J09-J18)':'Influenza and p
         neumonia',
                       'Accidents Except Drug Poisoning (V01-X39, X43, X45-X59, Y
         85-Y86)':'Unintentional injuries',
                      'Alzheimer\'s Disease (G30)':'Alzheimer\'s disease',
                      'Cerebrovascular Disease (Stroke: I60-I69)':'Stroke',
                      'Chronic Liver Disease and Cirrhosis (K70, K73)':'CLRD',
                      'Diabetes Mellitus (E10-E14)': 'Diabetes',
                       'Diseases of Heart (I00-I09, I11, I13, I20-I51)': 'Heart di
         sease',
                      'Influenza (Flu) and Pneumonia (J09-J18)':'Influenza and p
         neumonia',
                       'Intentional Self-Harm (Suicide: X60-X84, Y87.0)': 'Suicid
         e',
                       'Malignant Neoplasms (Cancer: C00-C97)': 'Cancer',
                       'Nephritis, Nephrotic Syndrome and Nephrisis (NOO-NO7, N17
```

Out[10]:

	Year	Leading Cause	Sex	Race Ethnicity	Deaths	Death Rate	Age Adjusted Death Rate
0	2010	Influenza and pneumonia	F	Hispanic	228.0	18.7	23.1
1	2008	Unintentional injuries	F	Hispanic	68.0	5.8	6.6
2	2013	Unintentional injuries	М	White Non-Hispanic	271.0	20.1	17.9
3	2010	Stroke	М	Hispanic	140.0	12.3	21.4
6	2012	Stroke	F	Asian and Pacific Islander	102.0	17.5	20.7
1088	2008	CLRD	F	Other Race/ Ethnicity	0.0	0.0	0.0
1089	2012	Influenza and pneumonia	F	Not Stated/Unknown	6.0	0.0	0.0
1090	2014	Unintentional injuries	F	White Non-Hispanic	169.0	11.9	7.4
1091	2009	Cancer	М	White Non-Hispanic	3236.0	240.5	205.6
1092	2009	Suicide	M	White Non-Hispanic	191.0	14.2	13.0

666 rows × 7 columns

Preparation of US Dataset

Our target time frame are the years 2008-2014. These years overlap in our data sets, so we will be using them to conduct our analysis to ensure accurate data.

Out[12]:

	Year	Cause Name	State	Deaths	Age-adjusted Death Rate
1716	2014	Unintentional injuries	Alabama	2,463	49.3
1717	2014	Unintentional injuries	Alaska	379	55.0
1718	2014	Unintentional injuries	Arizona	3,322	47.0
1719	2014	Unintentional injuries	Arkansas	1,458	47.4
1720	2014	Unintentional injuries	California	11,804	29.2
5715	2008	Kidney disease	Virginia	1,537	20.5
5716	2008	Kidney disease	Washington	471	7.1
5717	2008	Kidney disease	West Virginia	522	23.0
5718	2008	Kidney disease	Wisconsin	1,007	15.5
5719	2008	Kidney disease	Wyoming	56	10.8

Population Averages

First we need the average population of New York City between the years 2008-2014. We have to use two datasets from the US Census website. Sources: https://www.census.gov/programs-surveys/popest/data/tables.html

NYC population

Because our dataset is split between 2 decades, with 2008 and 2009 occurring during 2000-2010, and 2010-2014 occurring during 2010-2020, we need to merge this data to form our own dataframe for our analysis.

```
In [13]: #2008-2010 nyc population sum
    nyc_pop_00_10 = pd.read_csv("nyc_and_state_pop_00_10.csv", encoding='la
    tin-1')
    idx = nyc_pop_00_10.loc[nyc_pop_00_10["NAME"] == "New York city"].index
    [0]
    nyc_avg_population = nyc_pop_00_10["POPESTIMATE2008"][idx] + nyc_pop_00
    _10["POPESTIMATE2009"][idx] + nyc_pop_00_10["CENSUS2010POP"][idx]
```

```
In [14]: #2011 - 2014 population sum
    nyc_pop_10_18 = pd.read_csv("nyc_and_city_pop_10_18.csv")
    avg = int(nyc_pop_10_18["respop72011"][1]) + int(nyc_pop_10_18["respop72012"][1]) + int(nyc_pop_10_18["respop72013"][1]) + int(nyc_pop_10_18["respop72014"][1])
    nyc_avg_population += avg
    nyc_avg_population = round(nyc_avg_population/7)

#avg_population 2008-2014
    print("Average NYC population in the year 2008-2014: ", nyc_avg_population
```

```
ion)
nyc_pop_10_18.head()
```

Average NYC population in the year 2008-2014: 8261718.0

Out[14]:

	GEO.id	GEO.id2	GEO.display- label	GC_RANK.target- geo-id	GC_RANK.target- geo-id2	GC_RANK.rank- label	GC
0	ld	ld2	Geography	Target Geo Id	Target Geo Id2	Rank	
1	0100000US	NaN	United States	1620000US3651000	3651000	1	Uni Yc
2	0100000US	NaN	United States	1620000US0644000	644000	2	Ur
3	0100000US	NaN	United States	1620000US1714000	1714000	3	Ch
4	0100000US	NaN	United States	1620000US4835000	4835000	4	Hc
4							•

US Population

```
In [15]: #2008 - 2010 national population sum
    us_pop_00_10 = pd.read_csv("us_pop_00_10.csv")

#Census norm is to use month of July
    us_pop_00_10 = us_pop_00_10.loc[us_pop_00_10["MONTH"] == 6]
    us_pop_00_10 = us_pop_00_10.iloc[-2:]
    national_avg_population = us_pop_00_10["TOT_POP"][98] + us_pop_00_10["T
    OT_POP"][110]
    us_pop_00_10
Out[15]:
```

YEAR MONTH TOT POP

 YEAR
 MONTH
 TOT_POP

 98
 2008
 6
 303847001

 110
 2009
 6
 306541114

```
In [16]: #2010 - 2014 national population sum
us_pop_10_19 = pd.read_csv("us_and_state_pop_10_19.csv")
us_pop_10_19.drop([1,2,3,4,13,56],inplace=True)
add = us_pop_10_19["CENSUS2010POP"][0] + us_pop_10_19["POPESTIMATE2011"
][0] + us_pop_10_19["POPESTIMATE2012"][0] + us_pop_10_19["POPESTIMATE20
13"][0] + us_pop_10_19["POPESTIMATE2014"][0]
national_avg_population += add
national_avg_population = round(national_avg_population/7)

print("Average national population in the year 2008-2014: ", national_a
vg_population)
us_pop_10_19.head()
```

Average national population in the year 2008-2014: 311259463.0

Out[16]:

	SUMLEV	REGION	DIVISION	STATE	NAME	CENSUS2010POP	ESTIMATESBASE2010	POPI
0	10	0	0	0	United States	308745538	308758105	
5	40	3	6	1	Alabama	4779736	4780125	
6	40	4	9	2	Alaska	710231	710249	
7	40	4	8	4	Arizona	6392017	6392288	
8	40	3	7	5	Arkansas	2915918	2916031	

5 rows × 151 columns

Visualization of Leading Deaths

Preparation of NYC Dataset

```
In [17]: #Get per 1000 quotient
         nyc per 1000 quotient = nyc avg population / 1000
         #use us data to make dict so we can combine later
         nyc causes = dict(zip(us["Cause Name"],[0]*len(nyc)))
         del nyc causes["All causes"]
         #put leading causes in dict
         for index, row in nyc.iterrows():
             nyc causes[(nyc["Leading Cause"][index])] += nyc["Deaths"][index]
         #dividing to get per 1000 ratio
         for key in nyc causes.keys():
             nyc causes[key] = nyc causes[key]/nyc per 1000 quotient
         #plot
         figure, ax = plt.subplots(figsize=(25,15))
         mpl.pyplot.bar(x=nyc causes.keys(),height=nyc causes.values())
         ax.set title("Leading Types of Deaths per 1000 people | NYC 2008-2014",
          size = 20)
         ax.tick_params(axis='y', which='major', labelsize=20)
         ax.tick params(axis='x', which='major', labelsize=12)
```


Preparation of US Dataset

```
In [18]: #get rid of comma in us data
us["Deaths"] = us["Deaths"].str.replace(",","").astype(float)

#create quotient for per 1000 use. subtract nyc population
us_pop_minus_nyc = national_avg_population - nyc_avg_population
us_per_1000_quotient = us_pop_minus_nyc/1000
In [19]: #create dict of causes
us_causes = dict(zip(us["Cause Name"],[0]*len(us)))
del us_causes["All causes"]

#add data to dict
```

```
for index, row in us.iterrows():
    if (us["Cause Name"][index]) == "All causes" or (us["State"][index]
    == "United States"):
        continue
    us_causes[(us["Cause Name"][index])] += us["Deaths"][index]

#create per 1000 ratio
for key in us_causes.keys():
    us_causes[key] = us_causes[key]/ us_per_1000_quotient

#plot
figure, ax = plt.subplots(figsize=(25,15))
mpl.pyplot.bar(x=us_causes.keys(),height=us_causes.values(),color="r")
ax.set_title("Leading Types of Deaths per 1000 people | US 2008-2014",
size = 20)
ax.tick_params(axis='y', which='major', labelsize=20)
ax.tick_params(axis='x', which='major', labelsize=12)
```


Combined Visualization

We have successfully created our own dataframe for our time range for both NYC and the US, now to visually compare the two, we will plot them on the same graph.

```
In [20]: #plot on same figure
         figure, ax = plt.subplots(figsize=(25,15))
         N = 10
         width = .4
         ind = np.arange(N)
         p1 = mpl.pyplot.bar(ind,us causes.values(),width, color = 'r')
         p2 = mpl.pyplot.bar(ind+width,nyc causes.values(), width)
         ax.legend((p1, p2), ('National Average', 'NYC'), fontsize=15)
         labels = tuple(us causes.keys())
         ax.set xticklabels((labels[0],labels[1],labels[2],labels[3], labels[4],
         labels[5],labels[6],labels[7],labels[8],labels[9]))
         ax.set xticks(ind + width / 2)
         ax.tick params(axis='y', which='major', labelsize=20)
         ax.tick_params(axis='x', which='major', labelsize=12)
         ax.set title("Leading Causes of Death per 1000 Indivudals | NYC vs Nati
         onal Avg.", size = 20)
Out[20]: Text(0.5, 1.0, 'Leading Causes of Death per 1000 Indivudals | NYC vs Na
         tional Avg.')
```


Results

```
In [21]: print("-----\n")
    print('NYC Heart Disease Deaths per 1000 people: ', nyc_causes["Heart d isease"], "\n")
    print('US Heart Disease Deaths per 1000 people: ', us_causes["Heart disease"], "\n")
    print("----\n")
    print('NYC Influenza and Pneumonia Deaths per 1000 people: ', nyc_causes["Influenza and pneumonia"], "\n")
    print('US Influenza and pneumonia Deaths per 1000 people: ', us_causes["Influenza and pneumonia"], "\n")
    print("-----\n")
    print("NYC Accidental Deaths per 1000 people: ', nyc_causes["Unintentional injuries"], "\n")
```

```
print('US Accidental Deaths per 1000 people: ', us causes["Unintentiona
l injuries"], "\n")
print("-----\n")
NYC Heart Disease Deaths per 1000 people: 17.85960256692373
US Heart Disease Deaths per 1000 people: 13.979216247962505
NYC Influenza and Pneumonia Deaths per 1000 people: 2.2607888577170026
US Influenza and pneumonia Deaths per 1000 people: 1.243378890493063
NYC Accidental Deaths per 1000 people: 0.903807174246325
US Accidental Deaths per 1000 people: 2.909252674471224
```

From our results, we see that the leading causes of deaths are comparable across the board, however there are 3 areas we would like to emphasize: heart disease, influenza, and unintentional injuries.

According to the data, New Yorkers are more likely to die from these first two causes than the rest of the country, and less likely to die from unintentional injuries. Heart disease has a significant increase in New York, the influenza/pneumonia death rate for NYC is almost double the rest of the country, and the rate at which New Yorkers die of unintentional injuries is less than half the national average.

Concluding this section of our analysis, we will further examine these three specific causes of death.

II. Analysis of Heart Disease, Influenza & Pneumonia, and Unintentional Injuries

1. Heart Disease

Pre-existing health conditions, genetics, lifestyle, etc. are all reasons why an individual may develop heart disease. However, according to the CDC there are 3 primary risk factors for Heart Disease: 1) smoking 2) high cholesterol 3) high blood pressure.

a. Risk Factors: Smoking

Sources:

https://www.cdc.gov/heartdisease/risk_factors.htm

https://www1.nyc.gov/assets/doh/downloads/pdf/data/macroscope-smoking-factsheet.pdf

https://www.cdc.gov/tobacco/data_statistics/fact_sheets/adult_data/cig_smoking/index.htm

According to the CDC, 13.7% of all adult americans smoke cigarettes. The New York City local government reports that 15.2% of adults in New York smoke cigarettes. While slightly above the national average, this would not explain the large jump in deaths from heart disease.

b) Risk Factors: High cholesterol

Sources: https://www.health.ny.gov/statistics/brfss/reports/docs/1510 brfss high cholesterol.pdf

According to the CDC and measure in 2011 and 2013 (relevant dates to our data sets), the

difference between the number of individuals with high cholesterol nationwide and in New York City holds no significant difference. Nationwide, 38.4% of adults sampled had high cholesterol, and in New York City this number was 38.1%. So this clearly does not explain the jump in our data.

c) Risk Factors: High Blood Pressure

Sources:

https://www.health.nv.gov/statistics/brfss/reports/docs/1507 brfss high blood pressure.pdf

According to the CDC, high blood pressure is not more prevelant in New York City when compared to the rest of the country. What this means, is that the 3 primary risk factors do not explain our jump in deaths attributed to heart disease.

Conclusion

Given this information about all three primary risk factors for heart disease, this leaves us with two possibilities:

- 1) the difference in death rates between the years 2008-2014 is simply statistical variance and is not significant.
- 2) The causal factor that pushed the heart disease death rate up is unknown. While, there may or may not be other significant causal risk factors in New York that have produced the effect we see in the data, we see it more worthwhile to pursuit the other trends in the data, and leave this open ended to our audience.

Why might New Yorkers be at more risk to heart disease, given the primary risk factors are all at or below the national average? Our intuition would say this is simply variance in the data, however there maybe something there to investigate further. For now, we will turn out analysis into another trend seen in the data: Influenza.

2. Influenza and Pneumonia

Based on our previous analysis, New York City's death rate for Influenza and Pneumonia was more than double the national average in the given time frame. This information is telling of the troubles to come in the age of COVID-19. We would like to explore why NYC may have a higher death rate of influenza and pneumonia, in hopes that it may shed some light on the current pandemic.

a. Testing Population Density Regression

First we want to examine population density and its role in the mortality rate of influenza. We will use the states to perform the test, however we will include New York City as an individual state as well. The goal of this test is to identify whether or not population density has an effect on the death rate of influenza, so it is ok to widen our scope statewide. Due to limited data, we will limit the breadth of the test to the 2010 census data.

Prepare and merge data into one dataframe

Get NYC death rate

```
In [22]: # scatter plot
# x = state population density
# y = deaths per 1000 people from flu
nyc_per_1000_quotient
nat_popd = us.copy(deep=True)
nyc_popd = nyc.copy(deep=True)

nyc_popd = nyc_popd.loc[nyc_popd["Leading Cause"] == "Influenza and pne umonia"]
nyc_death_rate = nyc_popd['Deaths'].sum()/nyc_per_1000_quotient
print("Death rate of Influenza in NYC: ", nyc_death_rate)
nyc_popd
```

Death rate of Influenza in NYC: 2.2607888577170026

Out[22]:

		Year	Leading Cause	Sex	Race Ethnicity	Deaths	Death Rate	Age Adjusted Death Rate
	0	2010	Influenza and pneumonia	F	Hispanic	228.0	18.7	23.1
	21	2009	Influenza and pneumonia	М	Hispanic	183.0	16.3	30.9
	42	2009	Influenza and pneumonia	F	Black Non-Hispanic	281.0	26.8	24.5
		2009	Influenza and pneumonia	М	White Non-Hispanic	555.0	41.3	34.3
		2007	Influenza and pneumonia	F	Black Non-Hispanic	295.0	28.0	26.9
	984	2012	Influenza and pneumonia	F	Black Non-Hispanic	295.0	28.2	24.1
	987	2007	Influenza and pneumonia	М	Asian and Pacific Islander	66.0	13.6	25.7
	1011	2010	Influenza and pneumonia	М	Asian and Pacific Islander	108.0	20.7	31.7
	1031	2012	Influenza and pneumonia	F	Hispanic	209.0	16.9	19.6
	1089	2012	Influenza and pneumonia	F	Not Stated/Unknown	6.0	0.0	0.0

96 rows × 7 columns

Prepare and merge state death/population data to our nationwide dataset

In [23]: #drop DOC and UNITED STATES rows
us_per_1000_quotient

```
nat popd = nat popd.loc[nat popd["Cause Name"] == "Influenza and pneumo
         nia"l
         not states = nat popd.loc[nat popd["State"] == "District of Columbia"].
         index
         not states = not states.union(nat popd.loc[nat popd["State"] == "United")
          States"l.index)
         nat popd = nat popd.drop(not states)
         #put states and total deaths in a dictionary
         state deaths = {}
         for index, row in nat popd.iterrows():
             try:
                 state deaths[nat popd["State"][index]] += nat popd["Deaths"][in
         dex1
             except:
                 state deaths[nat popd["State"][index]] = nat popd["Deaths"][ind
         ex1
In [24]: #Get all the states in a dictionary with total populations from 2008-20
         state pops 00 10 = pd.read csv("nyc and state pop 00 10.csv",encoding=
         'latin-1')
         state pops 00 10 = state pops 00 10.drop(state pops 00 10.loc[state pop
         s 00 10["NAME"]=="District of Columbia"].index)
         states population = {}
         for index,row in state pops 00 10.iterrows():
              if state pops 00 10["NAME"][index] == state pops 00 10["STNAME"][i
         ndex1:
                     states population[state pops 00 10["NAME"][index]] = state
         pops 00 10["POPESTIMATE2008"][index] + state pops 00 10["POPESTIMATE200
         9"][index] +state pops 00 10["CENSUS2010POP"][index]
         len(states population.keys())
Out[24]: 50
In [25]: ##Get all the states in a dictionary with total populations from 2011-2
         state pops 10 19 = pd.read csv("us and state pop 10 19.csv")
```

```
state pops 10 19
         #get rid of extras
         for index,row in state pops 10 19.iterrows():
             if state pops 10 19["NAME"][index] not in states population.keys():
                 state pops 10 19.drop([index], inplace = True)
         #add to our dict
         for index,row in state pops 10 19.iterrows():
             states population[state pops 10 19["NAME"][index]] += state pops 10
          19["POPESTIMATE2011"][index] + state pops 10 19["POPESTIMATE2012"][ind
         ex] + state pops 10 19["POPESTIMATE2013"][index] + state pops 10 19["PO
         PESTIMATE2014" | [index]
         #get avg population
         for key in states population.keys():
             states population[key] = round(states population[key]/7)
In [26]: #get per 1000 death rates for each state. These are avg values for year
         s 2008-2014
         for key in state deaths.keys():
             state deaths[key] = state deaths[key] / (states population[key]/100
         0)
         state deaths
Out[26]: {'Alabama': 1.4117944627605559,
          'Alaska': 0.5714285714285714,
          'Arizona': 0.8975399973391377,
          'Arkansas': 1.7623788940534817.
          'California': 1.1541322846823119,
          'Colorado': 0.8472529542475589,
          'Connecticut': 1.2461243715942876.
          'Delaware': 1.0634171283990779,
          'Florida': 0.8972745018728858,
          'Georgia': 1.0521908082938978,
          'Hawaii': 1.7899275892929785,
          'Idaho': 0.9389873091378756,
          'Illinois': 1.3215314005219632,
          'Indiana': 1.2105206421180104.
```

```
'Iowa': 1.5400055370985604,
'Kansas': 1.5751870665616077,
'Kentucky': 1.532035246901929,
'Louisiana': 1.3312964585276361,
'Maine': 1.3325818905808056,
'Maryland': 1.2101984052766228,
'Massachusetts': 1.5020294486695955.
'Michigan': 1.2193424594100062,
'Minnesota': 0.8794081009181126,
'Mississippi': 1.5035353762941133.
'Missouri': 1.5036368581172062,
'Montana': 1.2143680176343872.
'Nebraska': 1.2005611318333569.
'Nevada': 1.3582572063905562,
'New Hampshire': 1.0893913706586051,
'New Jersey': 1.0023170918907234,
'New Mexico': 1.1321058039549134,
'New York': 1.6795959228529547,
'North Carolina': 1.2979678586974428,
'North Dakota': 1.4098417073110776,
'Ohio': 1.333531073057469,
'Oklahoma': 1.4575571416334157,
'Oregon': 0.819872891252008,
'Pennsylvania': 1.429410759094455,
'Rhode Island': 1.360069350258641,
'South Carolina': 1.1177742579476424.
'South Dakota': 1.4657757144746566,
'Tennessee': 1.6015123953495969,
'Texas': 0.8888148524110122.
'Utah': 0.8893983150941971,
'Vermont': 0.7768418024008568.
'Virginia': 1.1653041568738787,
'Washington': 0.7390895139253651,
'West Virginia': 1.7076388341164739,
'Wisconsin': 1.2466809400058476,
'Wyoming': 1.418379809029061}
```

In [27]: #fix death rate

```
#add new york to dataframe
#drop year column, using the averge population year not needed
nat popd.drop(columns=["Year"],inplace=True)
states = list(state deaths.keys())
#Change state deaths column to 1000 death rate instead of raw num of de
aths
for index,row in nat popd.iterrows():
    if nat popd["State"][index] in states:
        nat popd["Deaths"][index] = state deaths[nat popd["State"][inde
x]]
        states.remove(nat popd["State"][index])
    else:
        nat popd.drop([index], inplace=True)
#add nyc to dataframe
df nyc = pd.DataFrame([['Influenza and pneumonia', 'New York City',nyc
causes["Influenza and pneumonia"], np.nan]],columns=["Cause Name", "Sta
te", "Deaths", "Age-adjusted Death Rate"])
nat popd = nat popd.append(df nyc)
nat popd.rename(columns={"Deaths":"Death Rate"},inplace=True)
nat popd
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:11: Se
ttingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-d
ocs/stable/user guide/indexing.html#returning-a-view-versus-a-copy
```

Out[27]:

	Cause Name	State	Death Rate	Age-adjusted Death Rate
2080	Influenza and pneumonia	Alabama	1.411794	18.8
2081	Influenza and pneumonia	Alaska	0.571429	14.1

2082	Influenza and pneumonia	Arizona	0.897540	10.0
	Cause Name	State	Death Rate	Age-adjusted Death Rate
2083	Influenza and pneumonia	Arkansas	1.762379	20.7
2084	Influenza and pneumonia	California	1.154132	14.7
2085	Influenza and pneumonia	Colorado	0.847253	13.3
2086	Influenza and pneumonia	Connecticut	1.246124	13.3
2087	Influenza and pneumonia	Delaware	1.063417	13.8
2089	Influenza and pneumonia	Florida	0.897275	9.6
2090	Influenza and pneumonia	Georgia	1.052191	16.2
2091	Influenza and pneumonia	Hawaii	1.789928	22.6
2092	Influenza and pneumonia	Idaho	0.938987	11.3
2093	Influenza and pneumonia	Illinois	1.321531	16.8
2094	Influenza and pneumonia	Indiana	1.210521	14.3
2095	Influenza and pneumonia	Iowa	1.540006	13.7
2096	Influenza and pneumonia	Kansas	1.575187	18.2
2097	Influenza and pneumonia	Kentucky	1.532035	20.8
2098	Influenza and pneumonia	Louisiana	1.331296	17.5
2099	Influenza and pneumonia	Maine	1.332582	13.7
2100	Influenza and pneumonia	Maryland	1.210198	15.6
2101	Influenza and pneumonia	Massachusetts	1.502029	15.8
2102	Influenza and pneumonia	Michigan	1.219342	15.5
2103	Influenza and pneumonia	Minnesota	0.879408	9.8
2104	Influenza and pneumonia	Mississippi	1.503535	23.5
2105	Influenza and pneumonia	Missouri	1.503637	18.1
2106	Influenza and pneumonia	Montana	1.214368	13.7
2107	Influenza and nneumonia	Mahraeka	1 200561	15.1

2101	mnuenza anu pneumona	INCNIASKA	1.200001	10.1
2108	Influenza and pneumonia	Nevada	1.358257	23.8
	Cause Name	State	Death Rate	Age-adjusted Death Rate
2109	Influenza and pneumonia	New Hampshire	1.089391	11.5
2110	Influenza and pneumonia	New Jersey	1.002317	11.3
2111	Influenza and pneumonia	New Mexico	1.132106	16.1
2112	Influenza and pneumonia	New York	1.679596	19.5
2113	Influenza and pneumonia	North Carolina	1.297968	17.2
2114	Influenza and pneumonia	North Dakota	1.409842	18.5
2115	Influenza and pneumonia	Ohio	1.333531	16.9
2116	Influenza and pneumonia	Oklahoma	1.457557	16.8
2117	Influenza and pneumonia	Oregon	0.819873	9.1
2118	Influenza and pneumonia	Pennsylvania	1.429411	14.2
2119	Influenza and pneumonia	Rhode Island	1.360069	11.7
2120	Influenza and pneumonia	South Carolina	1.117774	13.9
2121	Influenza and pneumonia	South Dakota	1.465776	16.2
2122	Influenza and pneumonia	Tennessee	1.601512	22.1
2123	Influenza and pneumonia	Texas	0.888815	14.2
2125	Influenza and pneumonia	Utah	0.889398	16.2
2126	Influenza and pneumonia	Vermont	0.776842	9.3
2127	Influenza and pneumonia	Virginia	1.165304	17.1
2128	Influenza and pneumonia	Washington	0.739090	9.4
2129	Influenza and pneumonia	West Virginia	1.707639	19.6
2130	Influenza and pneumonia	Wisconsin	1.246681	13.8
2131	Influenza and pneumonia	Wyoming	1.418380	18.1
0	Influenza and pneumonia	New York City	2.260789	NaN

Load in and merge population density data.

Because population density data is difficult to find and aggregate, we will be using the data from the 2010 census.

```
In [28]: #DENSITY EXPRESSED AS PEOPLE PER SOUARE MILE.
         pop density = pd.read csv("pop density.csv")
         cols = list(pop density.columns)
         #rename our messed up column names
         for k in range(len(cols)):
             pop density.rename(columns = {cols[k]:pop density[cols[k]][2]}, inp
         lace=True)
         #drop descriptive / DOC and United States rows
         pop density.drop([0,1,2,3,12,55],inplace=True)
         #get rid of commas in values
         pop density["2010 DENSITY"] = pop density["2010 DENSITY"].str.replace(
         ",","").astype(float)
         pop density dic = {}
         for index, row in pop density.iterrows():
             pop density dic[pop density["STATE OR REGION"][index]] = float(pop
         density["2010 DENSITY"][index])
         pop density dic
Out[28]: {'Alabama': 94.4,
          'Alaska': 1.2.
          'Arizona': 56.3,
          'Arkansas': 56.0,
          'California': 239.1,
          'Colorado': 48.5,
          'Connecticut': 738.1,
          'Delaware': 460.8,
          'Florida': 350.6,
          'Coordia', 160 /
```

Georgia: 100.4, 'Hawaii': 211.8, 'Idaho': 19.0, 'Illinois': 231.1, 'Indiana': 181.0, 'Iowa': 54.5, 'Kansas': 34.9, 'Kentucky': 109.9, 'Louisiana': 104.9, 'Maine': 43.1. 'Maryland': 594.8, 'Massachusetts': 839.4, 'Michigan': 174.8, 'Minnesota': 66.6, 'Mississippi': 63.2, 'Missouri': 87.1, 'Montana': 6.8, 'Nebraska': 23.8, 'Nevada': 24.6, 'New Hampshire': 147.0, 'New Jersey': 1195.5, 'New Mexico': 17.0, 'New York': 411.2, 'North Carolina': 196.1, 'North Dakota': 9.7, 'Ohio': 282.3, 'Oklahoma': 54.7, 'Oregon': 39.9, 'Pennsylvania': 283.9, 'Rhode Island': 1018.1, 'South Carolina': 153.9, 'South Dakota': 10.7, 'Tennessee': 153.9, 'Texas': 96.3, 'Utah': 33.6, 'Vermont': 67.9, 'Virginia': 202.6, 'Washington': 101.2, 'West Virginia': 77.1, 'Wisconsin': 105.0,

```
'Wyoming': 5.8}
In [29]: #merge our data sets
         nat popd["Pop Density"] = np.nan
         for index,row in nat popd.iterrows():
             if nat popd["State"][index] == "New York City":
                 pass
                 nat popd["Pop Density"][index] = 27011.8 #hard code nyc 2010 po
         p density into our dataset
             else:
                 nat popd["Pop Density"][index] = pop density dic[nat popd["Stat
         e"l[index]]
         nat popd.columns
         /opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:8: Set
         tingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-d
         ocs/stable/user quide/indexing.html#returning-a-view-versus-a-copy
         /opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:6: Set
         tingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame
         See the caveats in the documentation: http://pandas.pydata.org/pandas-d
         ocs/stable/user quide/indexing.html#returning-a-view-versus-a-copy
Out[29]: Index(['Cause Name', 'State', 'Death Rate', 'Age-adjusted Death Rate',
                'Pop Density'],
               dtvpe='object')
```

i. Population Density Regression Test

We will be regressing population density, so our y will be the influenza death rate and x will be the population density.

```
In [30]: nat popd reg = nat popd.copy(deep=True)
         nat_popd_reg.columns = nat_popd_reg.columns.str.strip().str.lower().str
.replace(" ", "_").str.replace("-", "_")
         list(nat popd reg.columns.values)
Out[30]: ['cause name', 'state', 'death rate', 'age adjusted death rate', 'pop d
         ensity']
In [31]: reg = smf.ols("death rate ~ pop density", data = nat popd reg).fit()
         print(req.summary())
                                       OLS Regression Results
                                      death rate R-squared:
         Dep. Variable:
            0.203
         Model:
                                             0LS
                                                   Adi. R-squared:
            0.187
         Method:
                                  Least Squares F-statistic:
           12.48
                               Wed, 13 May 2020
                                                   Prob (F-statistic):
         Date:
         0.000908
         Time:
                                        20:04:28
                                                   Log-Likelihood:
         -7.6312
         No. Observations:
                                                   AIC:
                                              51
           19.26
         Df Residuals:
                                              49
                                                   BIC:
           23.13
         Df Model:
                                               1
         Covariance Type:
                                     nonrobust
```

```
std err t P>|t|
               coef
                                                    [0.025
 0.9751
             1.2345 0.041 30.189 0.000
                                                     1.152
Intercept
  1.317
pop density 3.805e-05 1.08e-05 3.533
                                          0.001
                                                 1.64e-05
5.97e-05
Omnibus:
                           1.073
                                  Durbin-Watson:
 2.032
                           0.585
Prob(Omnibus):
                                  Jarque-Bera (JB):
 1.012
Skew:
                          -0.168
                                  Prob(JB):
 0.603
Kurtosis:
                           2.397
                                  Cond. No.
3.87e + 03
```

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 3.87e+03. This might indicate that there are

strong multicollinearity or other numerical problems.

ii. Visualization of Population Density Against Influenza Death Rate

```
In [32]: import itertools
import matplotlib
#nat_popd.drop([0],inplace=True)
figure, ax = plt.subplots(figsize=(25,15))
```

```
nat_popd.plot.scatter(x="Pop Density", y = "Death Rate",ax=ax,c='g',lin
ewidths=9)
ax.set_title("State Population Density against Influenza Death Rate ",f
ontsize=30)
ax.set_ylabel("Influenza Death Rate", size = 25)
ax.set_xlabel("Population Density", size = 25)
ax.tick_params(axis='y', which='major', labelsize=20)
ax.tick_params(axis='x', which='major', labelsize=20)
ax.set_xlim(0,1250)
ax.set_ylim(0,2)
```

Out[32]: (0, 2)


```
In [33]: figure, ax = plt.subplots(figsize=(25,15))
    ax = sb.regplot(x="Pop Density", y="Death Rate", data=nat_popd)
    ax.tick_params(axis='y', which='major', labelsize=20)
    ax.tick_params(axis='x', which='major', labelsize=20)
```

```
ax.set_ylabel("Influenza Death Rate", size = 25)
ax.set_xlabel("Population Density", size = 25)
ax.set_title("State Population Density against Influenza Death Rate Fit
ted with Line of Best Fit", fontsize=30)
ax.set_xlim(0,1250)
ax.set_ylim(0,2)
```

Out[33]: (0, 2)

iii. Conclusion

Based on our linear regression test, we can observe from the p-value that our results hold some weight, but do not tel us much. The density of a population does affect the influenza death rate, however, since our R-squared value is relatively low, we know that this may not be a deterministic factor. This is also logical, although a slight trend can be seen in the graphs above,

the margin of error is high, and the correlation is very low. At this point, we are convinced that there are potentially other factors that lead to a high infuenza death rate.

From here, we would like to run another regression on the number of hospitals and the death rate of influenza. Once we have completed further analysis on this, we are curious if our results transer to the death rates of COVID-19 as well, as both death rates are viral.

b. Urgent Center Units per Capita Regression testing

sources:

https://hifld-geoplatform.opendata.arcgis.com/datasets/urgent-care-facilities https://nyshealthfoundation.org/wp-content/uploads/2017/11/united-hospital-fund-convenient-care-report.pdf

```
In [34]: #dictionary of abbreviations for all 52 regions included in the dataset
         us state abbrev = {
             'Alabama': 'AL',
             'Alaska': 'AK',
              'Arizona': 'AZ',
             'Arkansas': 'AR',
             'California': 'CA',
             'Colorado': 'CO',
             'Connecticut': 'CT',
             'Delaware': 'DE',
              'District of Columbia': 'DC',
             'Florida': 'FL',
              'Georgia': 'GA',
              'Hawaii': 'HI',
              'Idaho': 'ID',
             'Illinois': 'IL',
              'Indiana': 'IN',
              'Iowa': 'IA',
              'Kansas': 'KS',
              'Kentucky': 'KY',
              'Louisiana': 'LA',
              'Maine': 'ME',
```

```
'Maryland': 'MD',
              'Massachusetts': 'MA',
              'Michigan': 'MI',
              'Minnesota': 'MN',
              'Mississippi': 'MS',
              'Missouri': 'MO',
              'Montana': 'MT',
              'Nebraska': 'NE',
             'Nevada': 'NV',
              'New Hampshire': 'NH',
              'New Jersey': 'NJ',
              'New Mexico': 'NM',
              'New York': 'NY',
              'North Carolina': 'NC',
              'North Dakota': 'ND',
              'Ohio': 'OH',
              'Oklahoma': 'OK',
              'Oregon': 'OR',
              'Pennsylvania': 'PA',
             'Puerto Rico': 'PR',
              'Rhode Island': 'RI',
              'South Carolina': 'SC',
              'South Dakota': 'SD',
              'Tennessee': 'TN',
              'Texas': 'TX',
              'United States': 'US',
             'Utah': 'UT',
              'Vermont': 'VT',
              'Virginia': 'VA',
             'Washington': 'WA',
              'West Virginia': 'WV',
              'Wisconsin': 'WI',
              'Wyoming': 'WY'
In [35]: urgent centers = pd.read csv("Urgent Care Facilities.csv")
         #load in urgent care units
         uc states = urgent centers["STATE"].unique()
         states = nat popd["State"].unique()
```

```
#get the amount of urgent care units per state
for state in states:
    if state == "New York City":
        continue
    num_units = round(len(urgent_centers.loc[urgent_centers["STATE"] ==
    us_state_abbrev[state]]) / (states_population[state]/100000),2)
    state_units.append(num_units)

#hardcode nyc into df
state_units.append(round(103 / (8261718.0/100000),2)) #number of units
    in nyc
nat_popd["Urgent Care Units"] = state_units
nat_popd.head()
```

Out[35]:

	Cause Name	State	Death Rate	Age-adjusted Death Rate	Pop Density	Urgent Care Units
2080	Influenza and pneumonia	Alabama	1.411794	18.8	94.4	2.02
2081	Influenza and pneumonia	Alaska	0.571429	14.1	1.2	2.37
2082	Influenza and pneumonia	Arizona	0.897540	10.0	56.3	2.00
2083	Influenza and pneumonia	Arkansas	1.762379	20.7	56.0	1.19
2084	Influenza and pneumonia	California	1.154132	14.7	239.1	1.42

```
In [36]: figure, ax = plt.subplots(figsize=(25,15))
    nat_popd.plot.scatter(x="Urgent Care Units", y = "Death Rate",ax=ax,c=
'r',linewidths=9)
    ax.set_title("Urgent Care Units against Influenza Death Rate ",fontsize
    =30)
    ax.set_ylabel("Influenza Death Rate", size = 25)
    ax.set_xlabel("Urgent Care Units Per 100k Citizens", size = 25)
```

```
ax.tick_params(axis='y', which='major', labelsize=20)
ax.tick_params(axis='x', which='major', labelsize=20)
```



```
In [37]: figure, ax = plt.subplots(figsize=(25,15))
    ax = sb.regplot(x="Urgent Care Units", y="Death Rate", data=nat_popd)
    ax.tick_params(axis='y', which='major', labelsize=20)
    ax.tick_params(axis='x', which='major', labelsize=20)
    ax.set_ylabel("Influenza Death Rate", size = 25)
    ax.set_xlabel("Urgent Care Units Per 100k Citizens", size = 25)
    ax.set_title("Urgent Care Units Per 100k against Influenza Death Rate Fitted with Line of Best Fit", fontsize=30)
```


Urgent Care Units Regression

```
HOUCE.
                             ULJ MUJI IN SYUUTCUI
  0.016
                    Least Squares F-statistic:
Method:
 1.808
                 Wed, 13 May 2020
                                  Prob (F-statistic):
Date:
 0.185
                        20:04:31 Log-Likelihood:
Time:
-12.493
No. Observations:
                             51 AIC:
 28.99
Df Residuals:
                              49
                                  BIC:
 32.85
Df Model:
                              1
Covariance Type: nonrobust
==========
                    coef std err t P>|t|
                                                         [0.0]
25
      0.9751
Intercept
             1.4117 0.120 11.781 0.000 1.1
     1.652
71
urgent_care_units -0.0847 0.063 -1.345 0.185 -0.2
       0.042
11
Omnibus:
                          1.664
                                  Durbin-Watson:
 1.733
Prob(Omnibus):
                           0.435
                                  Jarque-Bera (JB):
 0.918
Skew:
                           0.281 Prob(JB):
  0.632
                           3.342 Cond. No.
Kurtosis:
  6.43
Warnings:
```

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

We can see from the regression test that while there is some correlation between the number of urgent care units and influenza dates, it is not causal with a 95% confidence interval. This implies there are other outside factors influencing the influenza death rate.

c. Hospitals per Capita Regression testing

source:

https://www.ahd.com/state statistics.html

https://www.beckershospitalreview.com/lists/62-acute-care-hospitals-in-new-york-city.html nyc hospitals

This dataset available for hospitals per state on the American Hospital Directory pulls data from each states individual webpage, so we will have to webscrape the table, since no csv is offered.

Webscrape the data

```
In [39]: import requests
from lxml import html
```

PLEASE NOTE: for the below cell to work, you may have to open the url in another tab and enter a captcha for it to work. url = https://www.ahd.com/state_statistics.html

```
In [40]: #You might have to go to this website and first enter a captcha for thi
s to work

url = "https://www.ahd.com/state_statistics.html"
page = requests.get(url)
```

```
#Store the contents of the website under doc
doc = html.fromstring(page.content)
#Parse data that are stored between ... of HTML
tr_elements = doc.xpath('//tr',remove_blank_text=True)
#get rid of wrong table
tr_elements = tr_elements[1:58]
#get the columns from the header
hosp cols = []
for \overline{i} in tr elements[0]:
    hosp cols.append((i.text content(),[]))
#extract values from the table
for row in tr elements[1:]:
    col idx = 0
    #for each column
    for col value in row.iterchildren():
        hosp cols[col idx][1].append(col value.text content())
        col idx += 1
#create dataframe
hosp cols dic = {column:value for (column,value) in hosp cols}
hospitals = pd.DataFrame(hosp_cols_dic)
hospitals.head()
```

Out[40]:

	State	NumberHospitals	StaffedBeds	TotalDischarges	PatientDays	Gross PatientRevenue (\$000)
0	AK - Alaska	10	1,235	45,209	243,272	\$5,374,320
1	AL - Alabama	89	15,330	592,368	2,818,440	\$60,726,101
2	AR - Arkansas	52	7,873	315,200	1,385,087	\$27,777,922
3	AS - American Samoa	1	0	0	0	\$0
4	AZ - Arizona	73	13,416	610,133	2,660,941	\$79,447,094

```
In [41]: #get state in correct format
         hospitals["State"] = hospitals['State'].str[5:]
         # sort the states into alphabetical order so we can merge and drop nons
         tates (american samoa, PR, etc)
         hospitals.sort_values("State",inplace=True)
         for index,row in hospitals.iterrows():
             if hospitals["State"][index] not in states:
                 hospitals.drop(index, inplace=True)
         #reset the index
         hospitals.reset index(drop=True, inplace=True)
         hospitals.head(10)
         #hardcode nyc row
         hospitals = hospitals.append({"State":"New York City", "NumberHospital")
         s":62, "StaffedBeds":0, "TotalDischarges":0, "PatientDays":0, "Gross Pa
         tientRevenue ($000)":0},ignore index=True)
         hospitals = hospitals.replace(np.nan,0)
         hospitals.head()
```

Out[41]:

	State	NumberHospitals	StaffedBeds	TotalDischarges	PatientDays	Gross PatientRevenue (\$000)
0	Alabama	89	15,330	592,368	2,818,440	\$60,726,101
1	Alaska	10	1,235	45,209	243,272	\$5,374,320
2	Arizona	73	13,416	610,133	2,660,941	\$79,447,094
3	Arkansas	52	7,873	315,200	1,385,087	\$27,777,922
4	California	343	74,624	3,084,295	14,352,052	\$484,959,610

Merge the data

```
In [42]: main_data = nat_popd.copy(deep=True)
    main_data = main_data.merge(hospitals)
```

main_data.head()

Out[42]:

	Cause Name	State	Death Rate	Age- adjusted Death Rate	Pop Density	Urgent Care Units	NumberHospitals	StaffedBeds	Tota
0	Influenza and pneumonia	Alabama	1.411794	18.8	94.4	2.02	89	15,330	
1	Influenza and pneumonia	Alaska	0.571429	14.1	1.2	2.37	10	1,235	
2	Influenza and pneumonia	Arizona	0.897540	10.0	56.3	2.00	73	13,416	
3	Influenza and pneumonia	Arkansas	1.762379	20.7	56.0	1.19	52	7,873	
4	Influenza and pneumonia	California	1.154132	14.7	239.1	1.42	343	74,624	
4									

```
In [43]: #get the amount of hospitals per 100k citizens
for index,row in main_data.iterrows():
    if main_data["State"][index] == "New York City":
        continue
    main_data["NumberHospitals"][index] = float(main_data["NumberHospitals"][index]) / round((states_population[main_data["State"][index]]/100 000),2)

#hardcode nyc into df
main_data["NumberHospitals"][50] = float(round(62 / (8261718.0/100000), 2)) #number of units in

#change hospital rows ot float
main_data["NumberHospitals"] = main_data["NumberHospitals"].astype(fload)
```

t)
main data.head()

/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:5: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:8: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

Out[43]:

	Cause Name	State	Death Rate	Age- adjusted Death Rate	Pop Density	Urgent Care Units	NumberHospitals	StaffedBeds	Tota
0	Influenza and pneumonia	Alabama	1.411794	18.8	94.4	2.02	1.857262	15,330	
1	Influenza and pneumonia	Alaska	0.571429	14.1	1.2	2.37	1.392758	1,235	
2	Influenza and pneumonia	Arizona	0.897540	10.0	56.3	2.00	1.125328	13,416	
3	Influenza and pneumonia	Arkansas	1.762379	20.7	56.0	1.19	1.774744	7,873	

```
Influenza
                   and California 1.154132
                                            14.7
                                                   239.1
                                                          1.42
                                                                      0.912016
                                                                                   74,624
              pneumonia
In [44]:
          figure, ax = plt.subplots(figsize=(25,15))
          main data.plot.scatter(x="NumberHospitals", y = "Death Rate",ax=ax,c=
           'v'.linewidths=9)
          ax.set title("Number of Hospitals against Influenza Death Rate ",fontsi
          ze=30)
          ax.set ylabel("Influenza Death Rate", size = 25)
          ax.set xlabel("Hospitals Per 100k Citizens", size = 25)
          ax.tick_params(axis='y', which='major', labelsize=20)
          ax.tick params(axis='x', which='major', labelsize=20)
                                Number of Hospitals against Influenza Death Rate
            2.25
            2.00
            1.75
          Death Rate
          Influenza
1.25
            1.00
            0.75
            0.50
                         1.0
                                          1.5
                                                                          2.5
                                                                                          3.0
                                            Hospitals Per 100k Citizens
In [45]: figure, ax = plt.subplots(figsize=(25,15))
          #sb.set(color codes=True)
```

```
x = main_data["NumberHospitals"].astype(float)
y = main_data["Death Rate"].astype(float)
ax = sb.regplot(x=x, y=y, data=main_data)
ax.tick_params(axis='y', which='major', labelsize=20)
ax.tick_params(axis='x', which='major', labelsize=20)
ax.set_ylabel("Influenza Death Rate", size = 25)
ax.set_xlabel("Urgent Care Units Per 100k Citizens", size = 25)
ax.set_title("Urgent Care Units Per 100k against Influenza Death Rate F
itted with Line of Best Fit", fontsize=30)
```


Hospitals Regression

```
In [46]: hosp reg = main data.copy(deep=True)
        hosp reg.columns = hosp reg.columns.str.strip().str.lower().str.replace
        (" ", "_").str.replace("-", "_")
        reg = smf.ols("death rate ~ numberhospitals", data = hosp reg).fit()
        print(req.summary())
                                 OLS Regression Results
                                death rate R-squared:
        Dep. Variable:
          0.078
        Model:
                                      0LS
                                           Adj. R-squared:
          0.059
                             Least Squares
        Method:
                                           F-statistic:
          4.158
        Date:
                          Wed, 13 May 2020 Prob (F-statistic):
        0.0468
                                 20:04:34 Log-Likelihood:
        Time:
        -11.340
        No. Observations:
                                       51 AIC:
          26.68
        Df Residuals:
                                           BIC:
                                       49
          30.54
        Df Model:
                                        1
        Covariance Type: nonrobust
        =========
                          coef std err t P>|t| [0.025]
             0.975]
                         1.0046 0.133 7.532 0.000
                                                                  0.737
        Intercept
              1.273
        numberhospitals
                          0.1867
                                    0.092
                                              2.039
                                                        0.047
                                                                   0.003
              0.371
```

```
Omnibus:
                                12.283
                                          Durbin-Watson:
  1.838
Prob(Omnibus):
                                          Jarque-Bera (JB):
                                 0.002
16.300
Skew:
                                          Prob(JB):
                                 0.808
0.000289
Kurtosis:
                                 5.250
                                          Cond. No.
   6.47
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Based on the regression, there is a causal correlation between the amount of hospitals in a state, and the deaths to the flu, however not in the trend we expected. The more hospitals there are in a state, the more influenza deaths there are. On top of this, the results are not strongly explanatory, holding a R-squared value of only .078.

An explanation here could be that more hospitals means people have more access to medical care for influenza. Therefore, the greater number of hospitals could increase the number of reported incidents, meanwhile, areas with fewer hospitals could have an equal or higher rate but simply fewer reported incidents.

Combined Regression

```
In [47]: reg = smf.ols("death rate ~ urgent care units + pop density + numberhos
         pitals", data = hosp reg).fit()
         print(reg.summary())
                                   OLS Regression Results
         ======
                                  death rate
                                             R-squared:
        Dep. Variable:
```

```
0.392
                                 Adj. R-squared:
Model:
                            0LS
 0.353
Method:
                    Least Squares F-statistic:
 10.09
                 Wed, 13 May 2020
                                 Prob (F-statistic):
Date:
3.02e-05
                        20:04:34 Log-Likelihood:
Time:
0.73932
No. Observations:
                             51 AIC:
 9.479
Df Residuals:
                                 BIC:
                             47
 17.21
Df Model:
                              3
Covariance Type: nonrobust
                    coef
                          std err t P>|t|
                                                        [0.0]
25
      0.9751
             0.9955 0.137 7.272
Intercept
                                              0.000
                                                         0.7
20
       1.271
urgent care units -0.0913
                            0.052
                                     -1.745
                                              0.088
                                                    -0.1
       0.014
97
pop density
              4.367e-05 9.89e-06 4.417
                                              0.000
                                                      2.38e-
    6.36e-05
05
numberhospitals
                  0.2875
                            0.079
                                     3.643
                                               0.001
                                                         0.1
29
       0.446
                                 Durbin-Watson:
Omnibus:
                           0.134
 2.110
Prob(Omnibus):
                          0.935
                                 Jarque-Bera (JB):
 0.064
                          0.076
                                 Prob(JB):
Skew:
 0.969
```

Kurtosis: 2.915 Cond. No.

1.60e+04

======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[2] The condition number is large, 1.6e+04. This might indicate that there are

strong multicollinearity or other numerical problems.

Conclusion

We ran three regression tests. None were particularly explanatory of influenza, however they did provide some food for thought. Between the three regressions we see that there is strong collinearity, which means is that the factors we are tested have high correlation between each other.

Given what we tested, we think it is safe to conclude that the larger prescence of influenza deaths in New York certainly is statistically significant, however the root causes of cannot be drawn from these variables. At this point, it is likely that there are other factors that influence the influenza death rate that were not accounted for. For example, New York City receives a large number of visitors each year, each of whom could be carriers of illness thus making it faster spread, especially with the prolific use of public transportation.

Looking at the combined regression, while it does hold some explanatory value, as shown by the R-squared value, p-value, and F-statistic, it fails to provide a thorough and robust explanation of the the root causes of high or low influenza rates. A worthwhile next step that we would like to further investigate is the relationship between these variables and the spread of COVID-19 in the United States. It would be interesting to see how these variables behave with a different virus, and if perhaps this tells an overall story about the state of viral infection in NYC vs the US, and if our variables behave in a similar way.

d. Relationship Between Influenza Analysis and COVID-19 Impact

source:

https://raw.githubusercontent.com/nytimes/covid-19-data/master/us-states.csv https://projects.thecitv.nyc/2020_03_covid-19-tracker_nyc_data

```
In [48]: #load in data
    covid = pd.read_csv("https://raw.githubusercontent.com/nytimes/covid-19
    -data/master/us-states.csv")
    #get todays statistics
    covid = covid.tail(55)

#drop nonstates
for index,row in covid.iterrows():
    if covid["state"][index] not in states:
        covid.drop(index, inplace=True)

#reset index
    covid.reset_index(inplace=True,drop=True)

covid.head()
```

Out[48]:

	date	state	fips	cases	deaths
0	2020-05-12	Alabama	1	10464	435
1	2020-05-12	Alaska	2	383	8
2	2020-05-12	Arizona	4	11736	562
3	2020-05-12	Arkansas	5	4164	95
4	2020-05-12	California	6	71150	2902

```
In [49]: #change the index to the state name, sort values
    covid = covid.set_index("state", drop=True)
    covid = covid.sort_values("deaths", ascending=True)
```

```
#plot
figure, ax = plt.subplots(figsize=(25,15))
covid["deaths"].plot.barh(ax=ax, x = "state")
ax.set_title("Total Covid-19 Deaths in Each State",fontsize=30)
ax.set_ylabel("states", size = 25)
ax.set_xlabel("probable + confirmed cases", size = 25)
ax.tick_params(axis='y', which='major', labelsize=15)
ax.tick_params(axis='x', which='major', labelsize=20)
```

Total Covid-19 Deaths in Each State New York New Jersey Massachusetts Michigan Pennsylvania Illinois Connecticut California Louisiana Florida Maryland Georgia Colorado Washington Virginia North Carolina Arizona Missouri Mississippi Rhode Island Alabama Wisconsin South Carolina lowa Oklahoma Tennessee 🛊 New Mexico New Hampshire Oregon Nebraska Arkansas West Virginia Vermont South Dakota Hawaii Montana Alaska Wyoming 5000 10000 15000 20000 25000 probable + confirmed cases

```
In [50]: #read in data
ir = pd.read_csv("agg.csv")

#drop nonstates and wrong death types
ir = ir.loc[ir["Cause Name"] == "Influenza and pneumonia"]
ir.drop(ir.loc[ir["State"]=="United States"].index,inplace=True)

#get correct years, will need for accurate test later
ir = ir.loc[ir["Year"] > 2007]
```

```
ir = ir.loc[ir["Year"] < 2015]
#turn deaths to floats
ir["Deaths"] = ir["Deaths"].str.replace(",","").astype(float)
grouped = ir.groupby(["State"],as_index=False)["Deaths"].sum()
grouped</pre>
```

Out[50]:

	State	Deaths
0	Alabama	6765.0
1	Alaska	410.0
2	Arizona	5822.0
3	Arkansas	5163.0
4	California	43406.0
5	Colorado	4336.0
6	Connecticut	4460.0
7	Delaware	965.0
8	District of Columbia	560.0
9	Florida	17141.0
10	Georgia	10305.0
11	Hawaii	2464.0
12	Idaho	1486.0
13	Illinois	16973.0
14	Indiana	7883.0
15	lowa	4717.0
16	Kansas	4510.0
17	Kentucky	6680.0
18	Louisiana	6068.0
19	Maine	1771.0

	State	Deaths
20	Maryland	7053.0
21	Massachusetts	9932.0
22	Michigan	12081.0
23	Minnesota	4701.0
24	Mississippi	4471.0
25	Missouri	9023.0
26	Montana	1212.0
27	Nebraska	2208.0
28	Nevada	3704.0
29	New Hampshire	1440.0
30	New Jersey	8828.0
31	New Mexico	2338.0
32	New York	32691.0
33	North Carolina	12512.0
34	North Dakota	975.0
35	Ohio	15403.0
36	Oklahoma	5513.0
37	Oregon	3170.0
38	Pennsylvania	18186.0
39	Rhode Island	1434.0
40	South Carolina	5225.0
41	South Dakota	1208.0
42	Tennessee	10247.0
43	Texas	22783.0
44	Utah	2497.0

	State	Deaths
45	Vermont	486.0
46	Virginia	9424.0
47	Washington	5036.0
48	West Virginia	3161.0
49	Wisconsin	7108.0
50	Wyoming	806.0

```
In [51]: #change the index to the state name, sort values, drop nonstates
grouped = grouped.set_index("State", drop=True)
grouped=grouped.sort_values("Deaths",ascending=True)
grouped.drop("District of Columbia", inplace=True)
#plot
figure, ax = plt.subplots(figsize=(25,15))
grouped["Deaths"].plot.barh(ax=ax, x = "State")
ax.set_title("Total Influenza Deaths in Each State",fontsize=30)
ax.set_ylabel("states", size = 25)
ax.set_xlabel("Influenza Deaths", size = 25)
ax.tick_params(axis='y', which='major', labelsize=15)
ax.tick_params(axis='x', which='major', labelsize=20)
```


In [52]: #top 10 states with most deaths to covid
covid.tail(10)

Out[52]:

	date	fips	cases	deaths
state				
Florida	2020-05-12	12	41915	1778
Louisiana	2020-05-12	22	32050	2281
California	2020-05-12	6	71150	2902
Connecticut	2020-05-12	9	34333	3041
Illinois	2020-05-12	17	83168	3617
Pennsylvania	2020-05-12	42	61407	3924
Michigan	2020-05-12	26	47946	4674

date fips cases deaths state Massachusetts 2020-05-12 25 79332 5141 New Jersey 2020-05-12 34 140743 9508 New York 2020-05-12 36 343705 27284

In [53]: #top 10 states with most deaths to flu
grouped.tail(10)

Out[53]:

Deaths

State	
Georgia	10305.0
Michigan	12081.0
North Carolina	12512.0
Ohio	15403.0
Illinois	16973.0
Florida	17141.0
Pennsylvania	18186.0
Texas	22783.0
New York	32691.0
California	43406.0

sources:

https://worldpopulationreview.com/states/ most populous states

Looking at the two graphs visually, the trends look incredibly similar. In fact, 7 of the top states for deaths from COVID-19, are also in the top 10 for deaths from influenza between 2008-2017. This

seems to imply that the areas hit hardest by COVID-19 are correlated with the same factors that lead to increased deaths from Influenza. While we have already explored several factors previously, there is a very obvious factor that we have not yet test, population. We test population density yes, but not yet population. Given these 7 shared states that were hit hardest by both COVID-19 and Influenze are all in the top 10 most populous states, this seems to be a likely causal factor.

Initially, this may seem like a trivial test, given that it should be obvious that a place with more people should have more viral cases, however, please consider two facts. The first being that our population density did not have a large amount of explanatory power, so it seems that perhaps population should also not be explanatory. The second fact being that if this were a one-to-one ratio, countries like China, India, and Indonesia would have the highest rates of COVID-19 deaths alongside the US, but they do not.

```
In [54]: #reset the index to merge, sort alphabetically, then rest the index aga
in after sorting
covid = covid.reset_index()
covid.sort_values("state", inplace=True)
covid.reset_index(drop=True,inplace=True)
grouped = grouped.reset_index()
grouped.sort_values("State",inplace=True)
grouped.reset_index(inplace=True,drop=True)
```

regression population vs covid and influenza deaths

```
In [55]: #merge the dataframes together
    cov_inf = pd.concat([covid,grouped["Deaths"]],axis=1)
    cov_inf = cov_inf.rename(columns={"cases": "Covid Cases", "deaths":"Cov
    id Deaths", "Deaths":"Influenza Deaths"})
    cov_inf.drop(columns= {"date", "fips"},inplace=True)
    cov_inf
Out[55]:

state Covid Cases Covid Deaths Influenza Deaths

O Alabama 10464 435 6765.0
```

	state	Covid Cases	Covid Deaths	Influenza Deaths
1	Alaska	383	8	410.0
2	Arizona	11736	562	5822.0
3	Arkansas	4164	95	5163.0
4	California	71150	2902	43406.0
5	Colorado	20103	1009	4336.0
6	Connecticut	34333	3041	4460.0
7	Delaware	6741	237	965.0
8	Florida	41915	1778	17141.0
9	Georgia	33311	1470	10305.0
10	Hawaii	624	17	2464.0
11	Idaho	2294	69	1486.0
12	Illinois	83168	3617	16973.0
13	Indiana	25676	1578	7883.0
14	Iowa	12912	289	4717.0
15	Kansas	7392	188	4510.0
16	Kentucky	7003	333	6680.0
17	Louisiana	32050	2281	6068.0
18	Maine	1477	65	1771.0
19	Maryland	34174	1756	7053.0
20	Massachusetts	79332	5141	9932.0
21	Michigan	47946	4674	12081.0
22	Minnesota	12494	614	4701.0
23	Mississippi	9908	457	4471.0
24	Missouri	10124	530	9023.0
25	Montana	461	16	1212.0

	state	Covid Cases	Covid Deaths	Influenza Deaths
26	Nebraska	8734	103	2208.0
27	Nevada	6311	321	3704.0
28	New Hampshire	3239	142	1440.0
29	New Jersey	140743	9508	8828.0
30	New Mexico	5212	219	2338.0
31	New York	343705	27284	32691.0
32	North Carolina	15402	597	12512.0
33	North Dakota	1571	38	975.0
34	Ohio	25257	1436	15403.0
35	Oklahoma	4731	278	5513.0
36	Oregon	3359	130	3170.0
37	Pennsylvania	61407	3924	18186.0
38	Rhode Island	11614	444	1434.0
39	South Carolina	7927	355	5225.0
40	South Dakota	3663	39	1208.0
41	Tennessee	15777	264	10247.0
42	Texas	42349	1169	22783.0
43	Utah	6454	73	2497.0
44	Vermont	927	54	486.0
45	Virginia	25800	891	9424.0
46	Washington	18503	972	5036.0
47	West Virginia	1378	58	3161.0
48	Wisconsin	10617	418	7108.0
49	Wyoming	675	7	806.0

In [56]: population = []
 for key in states_population.keys():
 population.append(states_population[key])
 cov_inf["population"] = population
 cov_inf

Out[56]:

	state	Covid Cases	Covid Deaths	Influenza Deaths	population
0	Alabama	10464	435	6765.0	4791774.0
1	Alaska	383	8	410.0	717500.0
2	Arizona	11736	562	5822.0	6486619.0
3	Arkansas	4164	95	5163.0	2929563.0
4	California	71150	2902	43406.0	37609207.0
5	Colorado	20103	1009	4336.0	5117716.0
6	Connecticut	34333	3041	4460.0	3579097.0
7	Delaware	6741	237	965.0	907452.0
8	Florida	41915	1778	17141.0	19103407.0
9	Georgia	33311	1470	10305.0	9793851.0
10	Hawaii	624	17	2464.0	1376592.0
11	Idaho	2294	69	1486.0	1582556.0
12	Illinois	83168	3617	16973.0	12843433.0
13	Indiana	25676	1578	7883.0	6512074.0
14	lowa	12912	289	4717.0	3062976.0
15	Kansas	7392	188	4510.0	2863152.0
16	Kentucky	7003	333	6680.0	4360213.0
17	Louisiana	32050	2281	6068.0	4557963.0
18	Maine	1477	65	1771.0	1328999.0
19	Maryland	34174	1756	7053.0	5827970.0
20	Massachusetts	79332	5141	9932.0	6612387.0

	state	Covid Cases	Covid Deaths	Influenza Deaths	population
21	Michigan	47946	4674	12081.0	9907799.0
22	Minnesota	12494	614	4701.0	5345641.0
23	Mississippi	9908	457	4471.0	2973658.0
24	Missouri	10124	530	9023.0	6000784.0
25	Montana	461	16	1212.0	998050.0
26	Nebraska	8734	103	2208.0	1839140.0
27	Nevada	6311	321	3704.0	2727024.0
28	New Hampshire	3239	142	1440.0	1321839.0
29	New Jersey	140743	9508	8828.0	8807592.0
30	New Mexico	5212	219	2338.0	2065178.0
31	New York	343705	27284	32691.0	19463610.0
32	North Carolina	15402	597	12512.0	9639684.0
33	North Dakota	1571	38	975.0	691567.0
34	Ohio	25257	1436	15403.0	11550537.0
35	Oklahoma	4731	278	5513.0	3782356.0
36	Oregon	3359	130	3170.0	3866453.0
37	Pennsylvania	61407	3924	18186.0	12722725.0
38	Rhode Island	11614	444	1434.0	1054358.0
39	South Carolina	7927	355	5225.0	4674468.0
40	South Dakota	3663	39	1208.0	824137.0
41	Tennessee	15777	264	10247.0	6398327.0
42	Texas	42349	1169	22783.0	25633010.0
43	Utah	6454	73	2497.0	2807516.0
44	Vermont	927	54	486.0	625610.0
45	Virginia	25800	891	9424.0	8087159.0

	state	Covid Cases	Covid Deaths	Influenza Deaths	population
46	Washington	18503	972	5036.0	6813789.0
47	West Virginia	1378	58	3161.0	1851094.0
48	Wisconsin	10617	418	7108.0	5701539.0
49	Wyoming	675	7	806.0	568254.0

Visualization

```
In [57]: figure, ax = plt.subplots(figsize=(25,15))

#plot
x = cov_inf["population"].astype(float)
y = cov_inf["Covid Deaths"].astype(float)
ax = sb.regplot(x=x, y=y, data=cov_inf, color="r")
ax = sb.regplot(x=x, y=cov_inf["Influenza Deaths"].astype(float), color = "b")
ax.set_title("Covid-19 and Influenza Deaths vs Population", fontsize=30)
ax.set_ylabel("Viral Deaths in Each State", size = 25)
ax.set_xlabel("State Population", size = 25)
ax.tick_params(axis='y', which='major', labelsize=20)
ax.tick_params(axis='x', which='major', labelsize=20)
ax.legend(["COVID-19", "Influenza"], fontsize = 40, loc="upper left")
Out[57]: <matplotlib.legend.Legend at 0x1a21119d90>
```


PLEASE NOTE: The above graph was obtained with usage of LIVE data, what you see might be different than what we saw when we did our testing.

```
======
Dep. Variable:
               covid_deaths
                                 R-squared:
 0.175
Model:
                                  Adj. R-squared:
                             0LS
 0.158
Method:
                    Least Squares
                                  F-statistic:
 10.16
Date:
                 Wed, 13 May 2020
                                  Prob (F-statistic):
0.00252
                        20:04:39
                                  Log-Likelihood:
Time:
-481.47
                                 AIC:
No. Observations:
                              50
 966.9
Df Residuals:
                              48
                                  BIC:
  970.8
Df Model:
                              1
Covariance Type: nonrobust
              coef std err t P>|t| [0.025]
0.9751
Intercept 102.6133 716.897 0.143 0.887 -1338.805 1
544.032
population 0.0002 7.75e-05 3.188 0.003
                                                 9.12e-05
======
Omnibus:
                          83.702 Durbin-Watson:
 2.060
Prob(Omnibus):
                      0.000
                                  Jarque-Bera (JB):
463.591
Skew:
                           4.481
                                  Prob(JB):
  0.00
                          27.944
                                  Cond. No.
Kurtosis:
1.25e+07
```

======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

strong multicollinearity or other numerical problems.

OLS Regression Results

```
======
```

Dep. Variable: influenza_deaths R-squared:

0.925

Model: OLS Adj. R-squared:

0.923

Method: Least Squares F-statistic:

590.7

Date: Wed, 13 May 2020 Prob (F-statistic):

1.25e-28

Time: 20:04:39 Log-Likelihood:

-456.22

No. Observations: 50 AIC:

916.4

Df Residuals: 48 BIC:

920.3

Df Model: 1

Covariance Type: nonrobust

0.975]	coef	std err	t	P> t	[0.025	
Intercept 331.085 population 0.001	461.2597 0.0011	432.612 4.68e-05	1.066 24.305	0.292	-408.565 0.001	1
Omnibus: 2.015 Prob(Omnibus: 150.281 Skew: 2.33e-33 Kurtosis: 1.25e+07	s):	0.		•	:	
======						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.25e+07. This might indicate that there are strong multicollinearity or other numerical problems.

Looking at the graph first, it is clear that while population nearly explains all of the rise in deaths attributed to Influenza, it fails to explain the total deaths from COVID-19. One explanation could be that the Flu season occurs every year. What this means is that people do not take much precautions with it, and merely accept that it will be back every year. Given that there are minimal precautions in place, states with more population simply have more cases and more deaths. However, the circumstances with COVID-19 are very different. The deaths that can be attributed to it are not simply because of population, but rather other factors likely to do with how well a city,

or state, or country has prepared for the virus. This explains why countries like India and Indonesia have relatively low COVID-19 deaths in comparison to the United States.

While these results likely bolster the claim that New York City's Influenza disparity is caused largely by the population of the city, along with the other factors we tested, they do give us a reason as to believe this is true for COVID-19, at least not completely.

In []:

3. Unintentional Injuries

a. US Death Rate for Accidental Deaths

First, using the file "major_causes_rates.csv", visualize the trend for age adjusted death rates for accidental deaths in the US.

Source: https://catalog.data.gov/dataset/nchs-age-adjusted-death-rates-for-selected-major-causes-of-death

```
In [60]: rates = pd.read_csv("major_causes_rates.csv")
    rates
```

Out[60]:

	Year	Cause	Age Adjusted Death Rate
0	1900	Heart Disease	265.4
1	1901	Heart Disease	272.6
2	1902	Heart Disease	285.2
3	1903	Heart Disease	304.5
4	1904	Heart Disease	331.5
600	1900	Influenza and Pneumonia	40362.0

	Year	C	Cause A	ge Adjusted Death Rate	
601	1900	Tubero	ulosis	38820.0	
602	1900	Diarrhea/Enteritis/Ulcerative	Colitis	28491.0	
603	1900	Heart Di	sease	27427.0	
604	1900	5	Stroke	21353.0	
605 r	ows ×	3 columns			
rate	es.dty	rpes			
_	e		int64 object float64	:	
rate	es['Ca	ause'].unique()			
arra s',	' <u>'</u>	Heart Disease', 'Car Influenza and Pneumo Yascular Lesions', ' Diarrhea/Enteritis/L	onia', 'Certai	'Chronic Respirat n Diseases of Int	tory Diseases', fancy', 'Tubercu
acc	= raf	dataframe of only 'Aces.loc[rates['Cause c.loc[acc['Age Adjus	e'] ==	'Accidents']	
	Year	Cause Age Adjusted D	eath Rate)	
236	1900	Accidents	90.3	3	
237	1901	Accidents	109.3	3	
238	1902	Accidents	93.6	3	

106.9

239 1903 Accidents

In [61]:

Out[61]:

In [62]:

Out[62]:

In [63]:

Out[63]:

	Year	Cause	Age Adjusted Death Rate
240	1904	Accidents	112.8
349	2013	Accidents	39.4
350	2014	Accidents	40.5
351	2015	Accidents	43.2
352	2016	Accidents	47.4
353	2017	Accidents	49.4

118 rows × 3 columns

```
In [64]: #sort based on the year in ascending order
acc = acc.sort_values('Year')
```

```
In [65]: x = acc['Year']
y = acc['Age Adjusted Death Rate']
plt.scatter(x, y)
plt.title("Accidental Death Rate in US from 1900 to Today")
```

Out[65]: Text(0.5, 1.0, 'Accidental Death Rate in US from 1900 to Today')


```
In [66]: acc = acc.loc[acc['Year'] <= 2014 ]
acc = acc.loc[acc['Year'] >= 2008 ]
acc
```

Out[66]:

	Year	Cause	Age Adjusted Death Rate
344	2008	Accidents	39.2
345	2009	Accidents	37.5
346	2010	Accidents	38.0
347	2011	Accidents	39.1
348	2012	Accidents	39.1
349	2013	Accidents	39.4
350	2014	Accidents	40.5

```
In [67]: x = acc['Year']
y = acc['Age Adjusted Death Rate']
plt.scatter(x, y)
plt.title("Accidental Death Rate in US 2008-2014")
```


As we can see from the plot, the death rate for accidents has decreased significantly since the beginning of the 20th century, however, there has been a gradual increase in the recent years.

b. Breakdown of Unintentional Injury Mechanisms

Now, let us explore the various unintentional injuries leading to death in the US. Source: https://catalog.data.gov/dataset/nchs-injury-mortality-united-states-65366

```
In [68]: injury = pd.read_csv("injury_mortality.csv")
injury
Out[68]:
```

Age Injury Injury Intent Deaths Population Specific (Years)

	Year	Sex	Age Group (Years)	Race	Injury Mechanism	Injury Intent	Deaths	Population	Ag Specifi Rat	
0	2016	Both sexes	All Ages	All races	All Mechanisms	All Intentions	231991	323127513	71.79549	
1	2015	Both sexes	All Ages	All races	All Mechanisms	All Intentions	214008	321418820	66.58228	
2	2014	Both sexes	All Ages	All races	All Mechanisms	All Intentions	199752	318857056	62.64625	
3	2013	Both sexes	All Ages	All races	All Mechanisms	All Intentions	192945	316128839	61.03366	
4	2012	Both sexes	All Ages	All races	All Mechanisms	All Intentions	190385	313914040	60.64876	
						•••				
98275	2003	Female	75+	Hispanic	Unspecified	Legal intervention/war	0	488417	0.00000	
98276	2002	Female	75+	Hispanic	Unspecified	Legal intervention/war	0	460962	0.00000	
98277	2001	Female	75+	Hispanic	Unspecified	Legal intervention/war	0	435880	0.00000	
98278	2000	Female	75+	Hispanic	Unspecified	Legal intervention/war	0	403973	0.00000	
98279	1999	Female	75+	Hispanic	Unspecified	Legal intervention/war	0	384422	0.00000	
98280 rows × 16 columns										
←										
injury.dtypes										
Year						int64				
Sex						object				
Age G	roup	(Years)				object				

In [69]:

Out[69]:

```
Race
                                                           object
          Injury Mechanism
                                                           object
          Injury Intent
                                                           object
          Deaths
                                                            int64
          Population
                                                            int64
          Age Specific Rate
                                                          float64
                                                         float64
          Age Specific Rate Standard Error
          Age Specific Rate Lower Confidence Limit
                                                         float64
                                                         float64
          Age Specific Rate Upper Confidence Limit
          Age Adjusted Rate
                                                          object
          Age Adjusted Rate Standard Error
                                                          object
          Age Adjusted Rate Lower Confidence Limit
                                                          object
          Age Adjusted Rate Upper Confidence Limit
                                                          object
          dtype: object
In [70]: injury['Injury Intent'].unique()
Out[70]: array(['All Intentions', 'Suicide', 'Unintentional', 'Undetermined',
                  'Homicide', 'Legal intervention/war'], dtype=object)
          unint = injury.loc[injury['Injury Intent'] == 'Unintentional']
          unint = unint.loc[unint['Year'] <= 2014]</pre>
          unint = unint.loc[unint['Year'] >= 2008]
          unint = unint.sort values('Year')
          unint
Out[71]:
                               Age
                                                                                     Age
                                               Injury
                                                     Injury Intent Deaths Population
                 Year
                            Group
                                      Race
                                                                                  Specific
                                           Mechanism
                             (Years)
                                                                                    Rate
           92249 2008 Female
                               75+ Hispanic
                                           Unspecified Unintentional
                                                                          631049 10.300309
                                                                   65
                        Both
           65146 2008
                             65-74 All races
                                             Poisoning Unintentional
                                                                        20505679
                                                                                 3.535606
                       sexes
```

Poisoning Unintentional

Both

sexes

75+ All races

65164 2008

18271942 3.125010

```
Age
                                                                                               Age
                                                            Injury Intent Deaths Population
                                                                                           Specific
                  Year
                           Sex Group
                                                Mechanism
                                (Years)
                                                                                              Rate
            20195 2008
                          Male
                                       All races
                                                  Drowning Unintentional
                                                                         2726
                                                                               149489951
                                                                                           1.823534
                                  Ages
                                          Non-
                           Both
                                    ΑII
            65183 2008
                                       Hispanic
                                                  Poisoning Unintentional
                                                                        24855
                                                                               199783797 12.440949
                          sexes
                                  Ages
                                          white
                                           Non-
            28415 2014 Female
                                 25–44 Hispanic
                                                       Fall Unintentional
                                                                                24387162
                                                                                         0.487962
                                          white
                                          Non-
                                                           Unintentional
                                                                                 1409606 27.667306
             2879 2014 Female
                                 65–74
                                       Hispanic
                                                Mechanisms
                                          black
            44902 2014 Female
                                       All races
                                                    Firearm Unintentional
                                                                               161920569
                                                                                          0.039526
                                          Non-
                                                  Poisoning Unintentional
            66352 2014 Female
                                 15–24 Hispanic
                                                                                 3367586
                                                                                          1.900471
                                          black
             2627 2014 Female
                                 65–74 All races
                                                           Unintentional
                                                                                14049245 31.218759
           7056 rows × 16 columns
In [72]: unint['Injury Mechanism'].unique()
Out[72]: array(['Unspecified', 'Poisoning', 'Drowning', 'All Other Transport',
                    'Fire/hot object or substance', 'Suffocation', 'Cut/pierce',
                    'Firearm', 'Fall', 'Motor vehicle traffic', 'All Mechanisms',
                    'All Other Specified'], dtype=object)
In [73]: unint['Race'].unique()
```

```
Out[73]: array(['Hispanic', 'All races', 'Non-Hispanic white',
                   'Non-Hispanic black', dtype=object)
In [74]: unint['Age Group (Years)'].unique()
Out[74]: array(['75+', '65-74', 'All Ages', '< 15', '15-24', '25-44', '45-64'],</pre>
                 dtype=object)
In [75]: all age = unint.loc[unint['Age Group (Years)'] == 'All Ages']
          all age race = all age.loc[all age['Race']=='All races']
          all age race sex = all age race.loc[all age race['Sex'] == 'Both sexes'
          all age race sex mech = all age race sex.loc[all age race sex['Injury M
          echanism'l == 'All Mechanisms'l
          all age race sex mech = all age race sex mech.sort values('Year')
          all age race sex_mech
Out[75]:
                                                                                     Age
                                                                                           Spe
                              Age
                 Year
                       Sex
                            Group
                                   Race
                                                    Injury Intent Deaths Population
                                                                                  Specific
                                         Mechanism
                                                                                     Rate Stan
                            (Years)
                       Both
                                ΑII
                                     ΑII
                                                    Unintentional 121902
           1528 2008
                                                                      304093966
                                  races Mechanisms
                              Ages
                      sexes
                       Both
                                     ΑII
           1527 2009
                                                    Unintentional 118021
                                                                      306771529 38.471954
                              Ages
                                  races
                                        Mechanisms
                      sexes
                                     ΑII
                       Both
           1526 2010
                                                    Unintentional 120859
                                                                      308745538 39.145181
                      sexes
                              Ages
                                  races
                                        Mechanisms
                       Both
                                     ΑII
           1525 2011
                                                    Unintentional 126438
                                                                       311591917 40.578074
                      sexes
                              Ages
                                  races Mechanisms
                       Both
                                     ΑII
                                                    Unintentional 127792 313914040 40.709234
           1524 2012
                      sexes
                              Ages
                                   races Mechanisms
                               ΑII
                                     ΑII
                       Both
           1523 2013
                                                    Unintentional 130557
                                                                      316128839 41.298668
                      sexes
                              Ages
                                   races Mechanisms
                                     ΑII
                       Both
                                ΑII
                                                    Unintentional 135928 318857056 42.629761
           1522 2014
                      sexes
                              Ages races Mechanisms
```

All Mechanisms

Below is a graph displaying the total accidental deaths each year for both sexes, all ages, all races, and for all injury mechanisms.

```
In [76]: x = all_age_race_sex_mech['Year']
    y1 = all_age_race_sex_mech['Deaths']
    plt.scatter(x, y1, color = 'c')
    plt.title("Number of Accidental Deaths by Year")
```

Out[76]: Text(0.5, 1.0, 'Number of Accidental Deaths by Year')


```
In [77]: all_age_race_male = all_age_race.loc[all_age_race['Sex'] == 'Male']
    all_age_race_male_mech = all_age_race_male.loc[all_age_race_male['Injur
    y Mechanism'] == 'All Mechanisms']
    all_age_race_male_mech = all_age_race_male_mech.sort_values('Year')

all_age_race_female = all_age_race.loc[all_age_race['Sex'] == 'Female']
    all_age_race_female_mech = all_age_race_female.loc[all_age_race_female[
```

```
'Injury Mechanism'] == 'All Mechanisms']
all_age_race_female_mech = all_age_race_female_mech.sort_values('Year')
```

The below graph is the same as the one above, but broken down by sex, the blue markers are for males, while the yellow color is for females.

```
In [78]: x = all_age_race_sex_mech['Year']
    y_male = all_age_race_male_mech['Deaths']
    y_female = all_age_race_female_mech['Deaths']
    plt.scatter(x, y_male, color = 'b', label='male')
    plt.scatter(x, y_female, color = 'y', label='female')
    plt.legend(loc = "center left")
    plt.title("Deaths per Year by Sex")
```

Out[78]: Text(0.5, 1.0, 'Deaths per Year by Sex')

As we can see, regardless of the year, males have a significantly higher chance of dying as a result of unintentional injuries compared to those of females.

By Age Group

Now, lets break this down by age groups, while keeping both sexes, all races, all mechanisms constant.

```
In [79]: #compare based off of age group, keep all races, both sexes, all mechan
   isms
   race = unint.loc[unint['Race']=='All races']
   mech = unint.loc[unint['Injury Mechanism'] == 'All Mechanisms']
   race_mech = race.loc[race['Injury Mechanism'] == 'All Mechanisms']
   race_sex = race.loc[race['Sex'] == 'Both sexes']
   race_sex_mech = race_sex.loc[race_sex['Injury Mechanism'] == 'All Mechanisms']
```

```
In [80]: # age = < 15
    child_race_sex_mech = race_sex_mech.loc[race_sex_mech['Age Group (Year
s)'] == '< 15']
    child_race_sex_mech = child_race_sex_mech.sort_values('Year')
    child_race_sex_mech</pre>
```

Out[80]:

	Year	Sex	Age Group (Years)	Race	Injury Mechanism	Injury Intent	Deaths	Population	Age Specific Rate	Spec R Stand E
1546	2008	Both sexes	< 15	All races	All Mechanisms	Unintentional	4643	60907384	7.623049	0.111
1545	2009	Both sexes	< 15	All races	All Mechanisms	Unintentional	4336	61087581	7.098006	0.107
1544	2010	Both sexes	< 15	All races	All Mechanisms	Unintentional	4147	61227213	6.773132	0.105
1543	2011	Both sexes	< 15	All races	All Mechanisms	Unintentional	4175	61201106	6.821772	0.105
1542	2012	Both sexes	< 15	All races	All Mechanisms	Unintentional	4072	61144098	6.659678	0.104
1541	2013	Both sexes	< 15	All races	All Mechanisms	Unintentional	3993	61089123	6.536352	0.103

```
Spec
                                 Age
                   Year
                          Sex
                               Group
                                                         Injury Intent Deaths Population Specific
                                                                                                      R
                                       Race
                                              Mechanism
                               (Years)
                                                                                             Rate
                                                                                                  Stand
                                                                                                      Εı
                         Both
             1540 2014
                                 < 15
                                                         Unintentional
                                                                        3856
                                                                               61067955 6.314277
                                                                                                  0.101
                                       races Mechanisms
                        sexes
In [81]:
           \#age = 15-24
            teen race sex mech = race sex mech.loc[race sex mech['Age Group (Year
            s)'1 == '15-24'1
            teen race sex mech = teen race sex mech.sort values('Year')
            teen race sex mech
Out[81]:
                                  Age
                                                                                              Age
                                                                                                    Spe
                                                  Injury
                   Year
                                                         Injury Intent Deaths Population
                                                                                          Specific
                               Group
                                       Race
                                              Mechanism
                               (Years)
                                                                                              Rate Stan
                                         ΑII
                         Both
                                15-24
                                                         Unintentional
                                                                       14089
             1564 2008
                                                                               43391492 32.469499
                                             Mechanisms
                        sexes
                                       races
                         Both
             1563 2009
                                15-24
                                                         Unintentional
                                                                       12458
                                                                               43576932 28.588520
                                             Mechanisms
                        sexes
                                       races
                         Both
             1562 2010
                                                         Unintentional
                                                                      12341
                                                                               43626342 28.287955
                                                                                                   0.25
                                            Mechanisms
                        sexes
                                       races
                         Both
             1561
                  2011
                                                         Unintentional
                                                                       12330
                                                                               43797875 28.152051
                                                                                                   0.25
                        sexes
                                       races
                                            Mechanisms
                         Both
             1560 2012
                                                         Unintentional
                                                                       11908
                                                                               43943905 27.098183 0.24
                                            Mechanisms
                                       races
                        sexes
                         Both
                                                         Unintentional
             1559 2013
                                15-24
                                                                       11619
                                                                               43954402 26.434212 0.24
                        sexes
                                       races
                                             Mechanisms
                         Both
            1558 2014
                                                                       11797
                                                         Unintentional
                                                                               43979821 26.823665 0.24
                        sexes
                                       races Mechanisms
```

```
In [82]:
          \#age = 25-44
          ya race sex mech = race sex mech.loc[race sex mech['Age Group (Years)']
           == '25-44']
          ya_race_sex_mech = ya_race_sex_mech.sort_values('Year')
          ya race sex mech
Out[82]:
                                                                                Age
                                                                             Specific
                         Age
                                                                        Age
                                                                                        Speci
                                       Injury Injury
             Year Sex Group
                             Race
                                                    Deaths Population Specific
                                                                                Rate
                                                                                     Rate Low
                                   Mechanism Intent
                      (Years)
                                                                       Rate Standard Confiden
                                                                               Error
                                                                                          Lir
In [83]: # age = 45-64
          a race sex mech = race sex mech.loc[race sex mech['Age Group (Years)']
          == '45-64'1
          a race sex mech = a race sex mech.sort values('Year')
          a race sex mech
Out[83]:
                                                                                Age
                                                                                           Α
                                                                             Specific
                         Age
                                                                        Age
                                                                                        Speci
                                       Injury Injury
             Year Sex Group Race
                                                    Deaths Population Specific
                                                                                     Rate Low
                                   Mechanism Intent
                      (Years)
                                                                       Rate Standard Confiden
                                                                               Error
                                                                                          Lir
In [84]: # age = 65-74
          ret race sex mech = race sex mech.loc[race sex mech['Age Group (Years)'
          1 == '65-74'1
          ret race sex mech = ret race sex mech.sort values('Year')
          ret race sex mech
Out[84]:
                                                                                           Α
                                                                                Age
                                                                             Specific
                                                                                        Speci
                         Age
                                                                        Age
                                       Injury Injury
             Year Sex Group Race
                                                    Deaths Population Specific
                                                                                Rate
                                                                                     Rate Lov
                                   Mechanism Intent
                                                                       Rate Standard
                                                                                     Confiden
                      (Years)
                                                                               Error
                                                                                          Lir
```

```
In [85]: # age = 75+
           eld race sex mech = race sex mech.loc[race sex mech['Age Group (Years)'
           ] == '75+']
           eld race sex mech = eld race sex mech.sort values('Year')
           eld race sex mech
Out[85]:
                                                                                              Spe
                               Age
                                                                                        Age
                                               Injury
                 Year
                        Sex
                             Group
                                    Race
                                                      Injury Intent Deaths Population
                                                                                     Specific
                                           Mechanism
                                                                                        Rate Stan
                             (Years)
                                                                                                Ε
                        Both
            1636 2008
                                                      Unintentional
                                                                  30365
                                                                          18271942 166.18376 0.95
                       sexes
                                          Mechanisms
                                    races
                        Both
                                                      Unintentional
            1635 2009
                                                                  30171
                                                                          18390076
                                                                                  164.06131 0.94
                                          Mechanisms
                       sexes
                                    races
                        Both
                                                      Unintentional
            1634 2010
                                                                  31893
                                                                          18554555 171.88771 0.96
                                          Mechanisms
                       sexes
                                    races
                        Both
                                                      Unintentional
            1633 2011
                                                                  33244
                                                                          18912403 175.77883 0.96
                                          Mechanisms
                       sexes
                                    races
                        Both
                                                      Unintentional
                                                                  34140
            1632 2012
                                                                          19159964 178.18405 0.96
                                    races Mechanisms
                       sexes
                        Both
            1631 2013
                                                                  34975
                                                                          19487308
                                                      Unintentional
                                                                                  179.47579
                                          Mechanisms
                       sexes
                        Both
                                       ΑII
                                                                  36381
            1630 2014
                                                      Unintentional
                                                                          19844921
                                                                                   183.32650
                                                                                              0.96
                       sexes
                                    races Mechanisms
In [86]:
           #graph with number of deaths as y-var
           x = all age race sex mech['Year']
           y child = child race sex mech['Deaths']
           y teen = teen race sex mech['Deaths']
           y eld = eld race sex mech['Deaths']
           plt.figure(figsize=(15,10))
```

```
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_child, color = 'm', label="<15")
plt.title("Death Rate by Age Group")
plt.scatter(x, y_teen, color = 'r', label="15-24")
plt.scatter(x, y_eld, color = 'g', label='75+')
plt.legend()</pre>
```

Out[86]: <matplotlib.legend.Legend at 0x1a20120dd0>


```
In [87]: #graph with death rate as y-var
x = all_age_race_sex_mech['Year']
y_child = child_race_sex_mech['Age Specific Rate']
```

```
y_teen = teen_race_sex_mech['Age Specific Rate']
y_eld = eld_race_sex_mech['Age Specific Rate']

plt.figure(figsize=(15,10))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_child, color = 'm',label="child")
plt.scatter(x, y_teen, color = 'r',label="teen")
plt.scatter(x, y_eld, color = 'g',label="elderly")
plt.scatter(x, y_eld, color = 'g',label="elderly")
plt.title("Death Rate by Age Group")
plt.legend()
```

Out[87]: <matplotlib.legend.Legend at 0x1a202ce2d0>

Based off of the previous analysis, it is evident that as the population becomes older, they are more likely to die as a result of an unintentional injury. This is based off of both the number of deaths annually along with the adjusted age specific rate for each age group. While there is data missing for both sexes of all races in the ages 25-74, it is still clear that the lderly population is more suseptible to accidental deaths.

```
In [ ]:
```

Now, let's break down each injury mechanism while we hold all ages and races constant. We will compare the death rates of each mechanism amongst females and males.

Drowning

Graph with number of deaths annually

```
In [89]: x = drown_both['Year']

y_both = drown_both['Deaths']
y_f = drown_f['Deaths']
y_m = drown_m['Deaths']

plt.figure(figsize=(15,10))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = "both sexes")
plt.scatter(x, y_f, color = 'y', label = 'female')
```

```
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Drowning # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[89]: <matplotlib.legend.Legend at 0x1a21658450>

Drowning # of Deaths by Sex


```
In [90]: x = drown_both['Year']

y_both = drown_both['Age Specific Rate']
y_f = drown_f['Age Specific Rate']
y_m = drown_m['Age Specific Rate']
```

```
plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Drowning Death Rate by Sex", fontsize = 20)
plt.legend()
```

Out[90]: <matplotlib.legend.Legend at 0x1a216d65d0>

Fall

```
In [91]: fall = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Fall']
fall = fall.sort_values('Year')
```

```
fall_both = fall.loc[fall['Sex'] == 'Both sexes']
fall_f = fall.loc[fall['Sex'] == 'Female']
fall_m = fall.loc[fall['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [92]: x = fall_both['Year']

y_both = fall_both['Deaths']
y_f = fall_f['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Fall # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[92]: <matplotlib.legend.Legend at 0x1a21708f90>


```
In [93]: x = fall_both['Year']

y_both = fall_both['Age Specific Rate']
y_f = fall_f['Age Specific Rate']
y_m = fall_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
```

```
plt.title("Fall Death Rate by Sex", fontsize=20)
plt.legend()
```

Out[93]: <matplotlib.legend.Legend at 0x1a21bc96d0>

There is not a large difference in death due to falls in terms of gender, they are actually almost equal. This is different from previous analyses.

Firearms

```
In [94]: fa = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Firearm']
    fa = fa.sort_values('Year')
    fa_both = fa.loc[fa['Sex'] == 'Both sexes']
    fa_f = fa.loc[fa['Sex'] == 'Female']
    fa_m = fa.loc[fa['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [95]: x = fa_both['Year']

y_both = fa_both['Deaths']
y_f = fa_f['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Firearm # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[95]: <matplotlib.legend.Legend at 0x1a2261a290>


```
In [96]: x = fa_both['Year']

y_both = fa_both['Age Specific Rate']
y_f = fa_f['Age Specific Rate']
y_m = fa_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
```

```
plt.title("Firearm Death Rate by Sex", fontsize = 20)
         plt.legend()
Out[96]: <matplotlib.legend.Legend at 0x1a226c9350>
                                         Firearm Death Rate by Sex
In [ ]:
         Cut/pierce
In [97]: cp = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Cut/pierce']
         cp = cp.sort values('Year')
         cp both = cp.loc[cp['Sex'] == 'Both sexes']
         cp_f = cp.loc[cp['Sex'] == 'Female']
         cp m = cp.loc[cp['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [98]: x = cp_both['Year']

y_both = cp_both['Deaths']
y_f = cp_f['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Cut/Pierce # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[98]: <matplotlib.legend.Legend at 0x1a2286b3d0>


```
In [99]: x = cp_both['Year']

y_both = cp_both['Age Specific Rate']
y_f = cp_f['Age Specific Rate']
y_m = cp_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
```

```
plt.title("Cut/Pierce Death Rate by Sex", fontsize = 20)
plt.legend()
```

Out[99]: <matplotlib.legend.Legend at 0x1a228e3b50>

Fire/hot object or substance

```
In [100]: fire = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Fire/hot o
    bject or substance']
    fire = fire.sort_values('Year')
    fire_both = fire.loc[fire['Sex'] == 'Both sexes']
    fire_f = fire.loc[fire['Sex'] == 'Female']
    fire_m = fire.loc[fire['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [101]: x = fire_both['Year']

y_both = fire_both['Deaths']
y_f = fire_f['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Fire # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[101]: <matplotlib.legend.Legend at 0x1a240c3bd0>

Graph with annual death rate

```
In [102]: x = fire_both['Year']

y_both = fire_both['Age Specific Rate']
y_f = fire_f['Age Specific Rate']
y_m = fire_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Fire Death Rate by Sex", fontsize = 20)
plt.legend()
```

Out[102]: <matplotlib.legend.Legend at 0x1a21d09910>

Motor vehicle traffic

Graph with number of deaths annually

```
In [104]: x = m_both['Year']
y_both = m_both['Deaths']
```

```
y_f = m_f['Deaths']
y_m = m_m['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Motor Vehicle Accident # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[104]: <matplotlib.legend.Legend at 0x1a21119550>


```
In [105]: x = m_both['Year']

y_both = m_both['Age Specific Rate']
y_f = m_f['Age Specific Rate']
y_m = m_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Motor Vehicle Accidents Death Rate by Sex", fontsize = 20)
plt.legend()
```

Out[105]: <matplotlib.legend.Legend at 0x1a1dd5d3d0>

All Other Transport

Graph with number of deaths annually

```
In [107]: x = o_both['Year']

y_both = o_both['Deaths']
y_f = o_f['Deaths']
y_m = o_m['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Other Transports # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[107]: <matplotlib.legend.Legend at 0x1a2414c950>


```
In [108]: x = o_both['Year']

y_both = o_both['Age Specific Rate']
y_f = o_f['Age Specific Rate']
y_m = o_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
```

```
plt.title("Other Traffice Death Rate by Sex", fontsize = 20)
plt.legend()
```

Out[108]: <matplotlib.legend.Legend at 0x1a24410710>

Poisoning

```
In [109]: p = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Poisoning']
    p = p.sort_values('Year')
    p_both = p.loc[p['Sex'] == 'Both sexes']
    p_f = p.loc[p['Sex'] == 'Female']
    p_m = p.loc[p['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [110]: x = p_both['Year']

y_both = p_both['Deaths']
y_f = p_f['Deaths']
y_m = p_m['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Poisoning # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[110]: <matplotlib.legend.Legend at 0x1a244d8790>

Graph with annual death rate

```
In [111]: x = p_both['Year']

y_both = p_both['Age Specific Rate']
y_f = p_f['Age Specific Rate']
y_m = p_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Poisoning Death Rate by Sex", fontsize = 20)
plt.legend()
Out[111]: <matplotlib.legend.Legend at 0x1a24555f50>
```

Create PDF in your applications with the Pdfcrowd HTML to PDF API

Suffocation

```
In [112]: s = all_age_race.loc[all_age_race['Injury Mechanism'] == 'Suffocation']
s = s.sort_values('Year')
s_both = s.loc[s['Sex'] == 'Both sexes']
s_f = s.loc[s['Sex'] == 'Female']
s_m = s.loc[s['Sex'] == 'Male']
```

Graph with number of deaths annually

```
In [113]: x = s_both['Year']

y_both = s_both['Deaths']
y_f = s_f['Deaths']
```

```
y_m = s_m['Deaths']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g', label = 'both')
plt.scatter(x, y_f, color = 'y', label = 'female')
plt.scatter(x, y_m, color = 'b', label = 'male')
plt.title("Suffocation # of Deaths by Sex", fontsize = 20)
plt.legend()
```

Out[113]: <matplotlib.legend.Legend at 0x1a245e4750>

Graph with annual death rate

```
In [114]: x = s_both['Year']

y_both = s_both['Age Specific Rate']
y_f = s_f['Age Specific Rate']
y_m = s_m['Age Specific Rate']

plt.figure(figsize=(25,15))
plt.ylabel('Death Rate')
plt.xlabel('Year')

plt.scatter(x, y_both, color = 'g',label='both')
plt.scatter(x, y_f, color = 'y', label='female')
plt.scatter(x, y_m, color = 'b', label='male')
plt.title("Suffocation Death Rate by Sex",fontsize=20)
plt.legend()
```

Out[114]: <matplotlib.legend.Legend at 0x1a265d5750>

As we can see from the above graphs, the results are quite consistent. Males typically have a higher death rate from each injury mechanism, which makes sense as they have a high death rate when comparing it with all injury mechanisms. However, the only mechanism that fell outside of this pattern was for falls. Females and males had a very close death rater due to falls, which was unique.

```
In [ ]:
```

c. Comparison of Each Mechanism

Comparison of all races, sexes, ages and their annual death rate for each cause of unintentional injury

```
In [115]: labels = s_both['Year']
    y_s = s_both['Age Specific Rate'] #suffocation
    y_p = p_both['Age Specific Rate'] #poisoning
    y_o = o_both['Age Specific Rate'] #all other transport
    y_m = m_both['Age Specific Rate'] #motor vehicle traffic
    y_fire = fire_both['Age Specific Rate'] #fire/hot object or substance
    y_cp = cp_both['Age Specific Rate'] #cut/pierce
    y_fa = fa_both['Age Specific Rate'] #firearm
    y_fall = fall_both['Age Specific Rate'] #fall
    y_drown = drown_both['Age Specific Rate'] #drown
```

```
In [116]: plt.figure(figsize=(25,15))
   plt.scatter(labels, y_s, s=150, label = 'suffocation')
   plt.scatter(labels, y_p, s=150, label = 'poisoning')
   plt.scatter(labels, y_o, s=150, label = 'all other transport')
   plt.scatter(labels, y_m, s=150, label = 'motor vehicle traffic')
   plt.scatter(labels, y_fire, s=150, label = 'fire/hot substance')
   plt.scatter(labels, y_cp, s=150, label = 'cut/pierce')
   plt.scatter(labels, y_fall, s=150, label = 'fall')
   plt.scatter(labels, y_drown, s=150, label = 'drowning')
   plt.legend(loc='right', prop={'size': 20})
```

```
plt.ylabel('Death Rate')
plt.xlabel('Year')
plt.title('Comparison of All Mechanisms Annually', fontsize=20)
plt.show()
```


From our analysis, we can see that poisoning, motor vehicle traffic, and falls make the top 3 highest rates of death for unintentional injuries in the US. In poisoning and falls, we can see that the rates are steadily increasing with each year. Meanwhile, the rate for death by moter vehicle transport is decreasing across this time frame. The other 5 mechanisms are significantly lower in death rate and are constant across the interval.

d. Regression

In [117]: import statsmodels.formula.api as smf

```
First, a multiple regression where we examine the factors of Age Group, Sex, and Race
```

```
In [118]: reg = smf.ols('Q("Age Specific Rate") ~ Q("Age Group (Years)") + Sex +
           Race', mech).fit()
          print(reg.summary())
                                       OLS Regression Results
          Dep. Variable:
                            Q("Age Specific Rate")
                                                     R-squared:
                0.898
                                                     Adj. R-squared:
          Model:
                                                0LS
                0.896
          Method:
                                     Least Squares
                                                     F-statistic:
                462.8
                                  Wed, 13 May 2020
                                                     Prob (F-statistic):
          Date:
            1.62e-277
          Time:
                                          20:04:57
                                                     Log-Likelihood:
              -2415.3
          No. Observations:
                                                588
                                                     AIC:
                4855.
          Df Residuals:
                                                     BIC:
                                                576
                4907.
          Df Model:
                                                11
          Covariance Type:
                                         nonrobust
                                                  coef
                                                          std err
                       [0.025
            P>|t|
                                  0.975]
          Intercept
                                               31.7009
                                                            2.124
                                                                      14.927
            0.000
                       27.530 35.872
          Q("Age Group (Years)")[T.25-44]
                                                8.6248
                                                            2.294
                                                                       3.760
                    4.119 13.130
            0.000
                                                                       C 001
```

```
0.88I
U("Age Group (Years)")[1.45-64]
                                       15./852
                                                     2.294
  0.000
             11.280
                          20.291
Q("Age Group (Years)")[T.65-74]
                                       16.9988
                                                                7.410
                                                     2.294
  0.000
             12.493
                          21.504
0("Age Group (Years)")[T.75+]
                                      118.3837
                                                     2.294
                                                               51.608
  0.000
            113.878
                         122.889
Q("Age Group (Years)")[T.< 15]
                                      -18.5772
                                                     2.294
                                                               -8.099
  0.000
            -23.083
                         -14.072
Q("Age Group (Years)")[T.All Ages]
                                        9.7909
                                                     2.294
                                                                4.268
  0.000
              5.285
                          14.296
                                                               -8.528
Sex[T.Female]
                                      -12.8072
                                                     1.502
                          -9.858
  0.000
            - 15 . 757
Sex[T.Male]
                                       14.9320
                                                     1.502
                                                                9.943
                          17.881
  0.000
             11.982
Race[T.Hispanic]
                                      -19.1519
                                                     1.734
                                                              -11.045
  0.000
            -22.558
                         -15.746
Race[T.Non-Hispanic black]
                                      -12.5577
                                                     1.734
                                                               -7.242
  0.000
            -15.963
                          -9.152
                                        5.7817
Race[T.Non-Hispanic white]
                                                                3.334
                                                     1.734
  0.001
              2.376
                           9.187
Omnibus:
                                42.813
                                         Durbin-Watson:
  1.960
Prob(Omnibus):
                                         Jarque-Bera (JB):
                                 0.000
185.118
                                 0.013
                                         Prob(JB):
Skew:
6.34e-41
Kurtosis:
                                 5.749
                                         Cond. No.
   9.34
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Next, a regression where we examine the effects of Age Group and Sex.

```
reg = smf.ols('Q("Age Specific Rate") ~ Q("Age Group (Years)") + Sex',r
In [119]:
          ace mech).fit()
          print(reg.summary())
                                         OLS Regression Results
                             Q("Age Specific Rate")
                                                       R-squared:
          Dep. Variable:
                0.989
                                                       Adj. R-squared:
          Model:
                                                 0LS
                0.988
          Method:
                                       Least Squares
                                                       F-statistic:
                1509.
          Date:
                                    Wed, 13 May 2020
                                                       Prob (F-statistic):
            2.65e-130
                                                       Log-Likelihood:
          Time:
                                            20:04:57
               -463.44
                                                       AIC:
          No. Observations:
                                                 147
                944.9
          Df Residuals:
                                                 138
                                                       BIC:
                971.8
          Df Model:
                                                   8
          Covariance Type:
                                           nonrobust
                                                    coef
                                                            std err
                                                                              t
                       [0.025
            P>ltl
                                    0.9751
                                                 27,4866
          Intercept
                                                              1.446
                                                                         19.011
                       24.628
            0.000
                                    30.345
          Q("Age Group (Years)")[T.25-44]
                                                                          5.082
                                                  9.1647
                                                              1.803
            0.000
                        5.599
                                    12.730
          Q("Age Group (Years)")[T.45-64]
                                                 15.4766
                                                              1.803
                                                                          8.583
                       11.911
            0.000
                                    19.042
          Q("Age Group (Years)")[T.65-74]
                                                 16.3885
                                                              1.803
                                                                          9.088
            0.000
                       12.823
                                    19.954
```

```
149.2280
                                                                           82.755
          Q("Age Group (Years)")[T.75+]
                                                                1.803
             0.000
                       145.662
                                    152.794
                                                  -21.2402
          0("Age Group (Years)")[T.< 15]</pre>
                                                                1.803
                                                                          -11.779
             0.000
                       -24.806
                                    -17.675
          Q("Age Group (Years)")[T.All Ages]
                                                  12.4854
                                                                1.803
                                                                            6.924
             0.000
                         8.920
                                     16.051
          Sex[T.Female]
                                                  -12.7928
                                                                1.181
                                                                          -10.837
                       -15.127
                                    -10.459
             0.000
          Sex[T.Male]
                                                  14.4907
                                                                1.181
                                                                           12.275
                                     16.825
             0.000
                        12.156
                                                    Durbin-Watson:
           Omnibus:
                                           11.847
             1.837
          Prob(Omnibus):
                                            0.003
                                                    Jarque-Bera (JB):
           30,060
           Skew:
                                           -0.138
                                                    Prob(JB):
           2.97e-07
          Kurtosis:
                                            5.198
                                                     Cond. No.
              8.70
          Warnings:
          [1] Standard Errors assume that the covariance matrix of the errors is
          correctly specified.
          Lastly, a regression where we examine the effects of Age Group
          reg = smf.ols('Q("Age Specific Rate") ~ Q("Age Group (Years)")', race se
In [120]:
          x mech).fit()
          print(reg.summary())
                                          OLS Regression Results
                              Q("Age Specific Rate")
                                                         R-squared:
           Dep. Variable:
```

```
0.997
                                           Adj. R-squared:
Model:
                                      0LS
      0.997
Method:
                           Least Squares
                                           F-statistic:
      2332.
Date:
                        Wed, 13 May 2020
                                            Prob (F-statistic):
   2.50e-51
Time:
                                20:04:57
                                            Log-Likelihood:
    -119.60
No. Observations:
                                           AIC:
                                       49
      253.2
                                            BIC:
                                       42
Df Residuals:
      266.4
                                        6
Df Model:
Covariance Type:
                                nonrobust
                                         coef
                                                 std err
                                                                 t
             [0.025
  P>|t|
                        0.9751
                                      28.2649
                                                             24.919
Intercept
                                                   1.134
             25.976
  0.000
                         30.554
Q("Age Group (Years)")[T.25-44]
                                       8.9670
                                                              5.590
                                                   1.604
  0.000
             5.730
                         12.204
Q("Age Group (Years)")[T.45-64]
                                      14.9950
                                                   1.604
                                                              9.348
  0.000
             11.758
                         18.232
Q("Age Group (Years)")[T.65-74]
                                     15.5099
                                                   1.604
                                                              9.669
  0.000
             12.273
                         18.747
Q("Age Group (Years)")[T.75+]
                                     145.8634
                                                             90.931
                                                   1.604
  0.000
            142,626
                       149.101
Q("Age Group (Years)")[T.< 15]
                                     -21.4325
                                                   1.604
                                                            -13.361
           -24.670
  0.000
                       -18.195
Q("Age Group (Years)")[T.All Ages]
                                     12.1522
                                                              7.576
                                                   1.604
              8.915
                        15.389
  0.000
Omnibus:
                              14.753
                                       Durbin-Watson:
```

```
1.682
Prob(Omnibus):
                                0.001
                                         Jarque-Bera (JB):
50.705
Skew:
                                -0.427
                                        Prob(JB):
9.76e-12
Kurtosis:
                                7.910
                                         Cond. No.
   7.87
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Based off of the three regressions, we find that age group gives the highest R squared value of 0.997, indicating that there is a large positive correlation with the death rate of unintentional injury and age.

This could be attributed to factors such as that younger people are typically in better physical health, which assists them in recovering, or that younger people are less likely to have preexisting conditions that may make one more likely to sustain injuries. However, this is all speculation, more research must be done in these areas.

e. NYC Unintentional Injuries

As seen in the analysis for the US, the top 3 unintentional injury mechanisms are poisoning, motor vehicle accidents, and falls. Now, we would like to examine these 3 mechanisms in the scope of New York City.

ui deaths is a dataset of the number of deaths from 2012 to 2014 in NYC for the poisoning, motor vehicle accidents, and falls.

ui_hos is a dataset of the number of hospitalizations from 2012 to 2014 in NYC for poisoning, motor vehicle accidents, and falls.

Source: https://www1.nyc.gov/site/doh/data/data-sets/injury.page

```
In [121]: ui_deaths = pd.read_csv("nyc_u_injury_death.csv")
ui_deaths
```

Out[121]:

	Age Group	Motor Vehicle Accident	Poisoning	Fall
0	<1	NaN	NaN	NaN
1	1-4	NaN	NaN	NaN
2	5-9	NaN	NaN	NaN
3	10-14	1	NaN	NaN
4	15-24	4	4	NaN
5	25-34	3	10	NaN
6	35-44	3	14	2
7	45-54	3	21	3
8	55-64	4	16	5
9	65+	8	3	27

```
In [122]: ui_deaths.dtypes
```

Out[122]: Age Group object
Motor Vehicle Accident object
Poisoning object
Fall object
dtype: object

```
Out[123]: Age Group
                                       object
          Motor Vehicle Accident
                                      float64
           Poisoning
                                      float64
           Fall
                                      float64
           dtype: object
In [124]: ui hos = pd.read csv("nyc u injury hospitalizations.csv")
           ui hos
Out[124]:
              Age Group Motor Vehicle Accident Poisoning
                                                   Fall
           0
                    <1
                                     NaN
                                                   188
                                               24
                                       9
           1
                   1-4
                                               45
                                                  115
           2
                    5-9
                                       23
                                                9 101
            3
                  10-14
                                       40
                                                9
                                                    79
                                      72
                  15-24
                                               27
                                                    69
                                               35
            5
                  25-34
                                       59
                                                    86
            6
                                      56
                  35-44
                                               61 124
           7
                  45-54
                                       62
                                               126
                                                   240
            8
                  55-64
                                      66
                                               107
                                                   401
            9
                   65+
                                      78
                                               84 1690
In [125]: ui hos.dtypes
Out[125]: Age Group
                                       object
           Motor Vehicle Accident
                                       object
           Poisoning
                                       int64
           Fall
                                       int64
           dtype: object
In [126]: ui_hos = ui_hos.astype({'Motor Vehicle Accident': 'float64', 'Poisonin')
           g': 'float64', "Fall":"float64"})
           ui hos.dtypes
```

```
Out[126]: Age Group object
Motor Vehicle Accident float64
Poisoning float64
Fall float64
dtype: object
```

Graphing Unintentional Injuries Resulting in Death in NYC 2012-2014

Graphing Unintentional Injuries Resulting in Hospitalization in NYC 2012-2014

```
In [128]: x = ui_hos['Age Group']

h_mva = ui_hos['Motor Vehicle Accident']
h_p = ui_hos['Poisoning']
h_f = ui_hos['Fall']

plt.figure(figsize=(25,15))
plt.ylabel('# of Deaths')
plt.xlabel('Age Group')
plt.title('Unintentional Injuries Resulting in Hospitalization in NYC 2 012-2014', fontsize=20)
```

```
plt.scatter(x, h_mva, s=150, label = 'Motor Vehicle Accidents', color =
   'b')
plt.scatter(x, h_p, s=150, label = 'Poisoning', color = 'y')
plt.scatter(x, h_f, s=150, label = 'Fall', color = 'r')
plt.legend(loc='upper left', prop={'size': 20})
plt.legend(fontsize=20)
```

Out[128]: <matplotlib.legend.Legend at 0x1a266c1c10>


```
In [129]: mva_drate = round(((d_mva.sum())/(h_mva.sum()))*100,2)
    p_drate = round(((d_p.sum())/(h_p.sum()))*100,2)
    f_drate = round(((d_f.sum())/(h_f.sum()))*100,2)
```

```
In [130]: print('These are the death rates for these hospitalized unintentional i
    njuries from these 2 datasets in NYC for 2012-2014:')
    print('Motor Vehicle Accidents:', str(mva_drate))
```

```
print('Poisoning:', str(p drate))
           print('Fall:', str(f drate))
           These are the death rates for these hospitalized unintentional injuries
           from these 2 datasets in NYC for 2012-2014:
           Motor Vehicle Accidents: 5.59
           Poisoning: 12.9
           Fall: 1.2
In [131]: m both = m both.loc[m both['Year'] >=2012]
           us m = m both['Age Specific Rate'].mean()
           p both = p both.loc[p both['Year'] >=2012]
           us p = p both['Age Specific Rate'].mean()
           fa both = fa both.loc[fa both['Year'] >=2012]
           us fa = fa both['Age Specific Rate'].mean()
In [132]: print('These are the death rates for these unintentional injuries in th
           e US for 2012-2014:')
           print('Motor Vehicle Accidents:', str(round(us m, 2)))
           print('Poisoning:', str(round(us p, 2)))
           print('Fall:', str(round(us_fa, 2)))
           These are the death rates for these unintentional injuries in the US fo
           r 2012-2014:
           Motor Vehicle Accidents: 10.8
           Poisoning: 12.35
           Fall: 0.16
           As we can see from the analysis, NYC has a similar death rate for accidental poisoning.
           However, NYC has a 50% lower death rate from motor vehicle accidents compared to that of the
           US, while NYC has about a 7 times higher death rate due to falls compared to the US.
           We can interpret this through the fact that NYC is a densely populated area. The lack of square
           footage means that buildings must grow vertically and that streets are narrow and filled with slow
           moving cars. Cars must move slowly as there are numerous pedestrians, bicyclists, and traffic
```

lights, along with the 25 mph speed limit. This could be why NYC has a significantly lower death rate for motor vehicle accidents, because even though these accidents do occur, they are not as severe due to the slower speeds vehicles must travel at in the city.

Meanwhile, the higher rate for falls is also unsurprising. NYC requires far more walking, which increases the risk of people tripping and falling on uneven sidewalks or in the plentiful construction zones in the city. Additionally, buildings in NYC are notoriously tall, with many apartment buildings lacking elevators, so falling simply from stairs is highly likely as well.

Another factor to consider is the proximity in NYC. Unlike other areas of the US, NYC is always full of people, which means that if someone is injured there is a high chance that there are witnesses who can help get the victim help quickly. That quick action could mean life saving differences.

If we look at New York State and compare its injury deaths with the US, we find that NY is actually the healthiest state in this aspect with the lowest deaths due to injury per 100,000 population. This could be attributed to several factors, such as having a low obesity rate and a high rate of primary care physicians. These factors would help explain NYC's situation as well. Because people walk frequently in New York, this could contribute to the lower obesity rates. Meanwhile, anyone in New York City could tell you about the neverending sound of sirens, and this is partially due to the numerous physicians found throughout the city.

Source:

https://www.americashealthrankings.org/explore/annual/measure/injury_deaths/state/NY?edition-year=2019

In []:

4. Conclusions on Death Rate Disparities between New York City and National Averages

After analyzing these three causes of death, we found that NYC's differences cannot be fully explained by the tests here. In the case of heart disease, we dismissed this as statistical

variance as the data suggests this.

In regards to influenza & pneumonia death rates, New Yorkers are at a higher risk to die from the flu. We have seen a combination of the city's density, as well as the amount of hospitals and urgent care units predict as much. One thing the city can do is build urgent care units (as these were stronger predictors than hospitals) in neighborhoods or areas that are hit the hardest by the virus. The disparity of deaths from the flu in New York City compared to the rest of the country is significnat, and neccessary measures can be taken to lower these needless deaths.

Meanwhile for unintentional injuries, NYC is seen to have a varying rates compared to the national mean. This could be attributed to the unique characteristics of NYC, such as being densely populated in such a small area, making motor vehicle accidents less fatal while also making falls significantly more fatal. However, there would have to be much more research conducted to reach a conclusive result.

In []:

III. Effect of Race and Gender on Death Rates

```
In [133]: # prepare data for visualization
# get number of deaths by cause and gender
nyc_gender = nyc.dropna().groupby(['Leading Cause','Year','Sex'],as_ind
ex=False)['Deaths'].sum()

#target years 2008 - 2014
nyc_gender = nyc_gender.loc[nyc_gender['Year']>2007]
nyc_gender
```

Out[133]:

	Leading Cause	Year	Sex	Deaths
1	Alzheimer's disease	2008	F	151.0
2	Alzheimer's disease	2009	F	354.0
3	Alzheimer's disease	2010	F	406.0

Create PDF in your applications with the Pdfcrowd HTML to PDF API

Out[134]: {2008: 8068.195,

```
2009: 8131.574,
           2010: 8175.133,
           2011: 8272.963,
           2012: 8348.032,
           2013: 8398.739,
           2014: 8437.387}
In [135]: # calculate deaths per 1000 people
          per1000 = [];
          for index, row in nyc gender.iterrows():
              q = quotient.get(row['Year'])
              per1000.append(row['Deaths']/q)
          nyc gender['per1000'] = per1000
          nyc_gender
```

Out[135]:

	Leading Cause	Year	Sex	Deaths	per1000
1	Alzheimer's disease	2008	F	151.0	0.018715
2	Alzheimer's disease	2009	F	354.0	0.043534
3	Alzheimer's disease	2010	F	406.0	0.049663
4	Alzheimer's disease	2011	F	435.0	0.052581
5	Alzheimer's disease	2012	F	463.0	0.055462
140	Unintentional injuries	2012	М	701.0	0.083972
141	Unintentional injuries	2013	F	261.0	0.031076
142	Unintentional injuries	2013	М	687.0	0.081798
143	Unintentional injuries	2014	F	281.0	0.033304
144	Unintentional injuries	2014	М	662.0	0.078460

127 rows × 5 columns

1. NYC Visualization of Death by Gender

```
In [136]: nyc_2014 = nyc_gender.loc[nyc_gender['Year']==2014,:].set_index('Leadin
g Cause')
In [137]: fig,ax = plt.subplots()
```

fig,ax = plt.subplots()
nyc_gender.pivot_table(values='per1000',index='Leading Cause',columns=
'Sex').plot.bar(ax=ax, figsize=(25,10))
ax.set_title("Leading Types of Deaths in NYC in 2014", size = 20)
ax.tick_params(axis='y', which='major', labelsize=12)
ax.tick_params(axis='x', which='major', labelsize=15, rotation=45)
ax.legend(prop=dict(size=18))

Out[137]: <matplotlib.legend.Legend at 0x1a2043b2d0>


```
In [138]: fig,ax = plt.subplots(nrows=2, ncols=3, figsize=(15,5))
    fig.subplots_adjust(hspace=0.5, wspace=0.2)
    cause_gender = nyc_gender.pivot_table(values='per1000',index='Year',columns=['Leading Cause','Sex'])
```

```
cause_gender.plot(y='Heart disease', ax=ax[0][0], title='Heart Disease'
)
cause_gender.plot(y='Cancer', ax=ax[0][1], title='Cancer')
cause_gender.plot(y='Influenza and pneumonia', ax=ax[0][2], title='Influenza and Pneumonia')
cause_gender.plot(y='Diabetes', ax=ax[1][0], title='Diabetes')
cause_gender.plot(y='Stroke', ax=ax[1][1], title='Stroke')
cause_gender.plot(y='Unintentional injuries', ax=ax[1][2], title='Unintentional Injuries')
```

Out[138]: <matplotlib.axes. subplots.AxesSubplot at 0x1a2682e0d0>

2. NYC Race Demographics

```
nyc_pop = nyc_pop.rename(columns={'DP-1 - New York City, New York: Prof
ile of General Population and Housing Characteristics: 2010':'Subject:
   2010','Unnamed: 2':'Population','Unnamed: 3':'Percent'})
nyc_pop = nyc_pop.astype({'Subject: 2010':str, 'Population':int, 'Perce
nt':int})
nyc_pop
```

Subject: 2010 Population Percent

Out[140]:

	Subject. 2010	Fopulation	reiceilt
121	Total population	8175133	100
122	Hispanic or Latino	2336076	28
130	Not Hispanic or Latino	5839057	71
131	White alone	2722904	33
132	Black or African American alone	1861295	22
133	American Indian and Alaska Native alone	17427	0
134	Asian alone	1028119	12
135	Native Hawaiian and Other Pacific Island	2795	0
136	Some Other Race alone	57841	0
137	Two or More Races	148676	1

'White Non-Hispanic': 2722904,

```
'Asian and Pacific Islander': 1030914,
```

3. NYC Visualization by Race Ethnicity

Out[142]:

	Leading Cause	Year	Race Ethnicity	Deaths
0	Alzheimer's disease	2007	Not Stated/Unknown	0.0
1	Alzheimer's disease	2007	White Non-Hispanic	107.0
2	Alzheimer's disease	2008	White Non-Hispanic	151.0
3	Alzheimer's disease	2009	Asian and Pacific Islander	14.0
4	Alzheimer's disease	2009	Black Non-Hispanic	79.0
380	Unintentional injuries	2014	Black Non-Hispanic	148.0
381	Unintentional injuries	2014	Hispanic	240.0
382	Unintentional injuries	2014	Not Stated/Unknown	0.0
383	Unintentional injuries	2014	Other Race/ Ethnicity	18.0
384	Unintentional injuries	2014	White Non-Hispanic	427.0

385 rows × 4 columns

```
In [143]: #remove Not Stated/Unknown
  nyc_race = nyc_race.set_index('Race Ethnicity').drop(index='Not Stated/
    Unknown').reset_index()
```

```
In [144]: nyc_race_2010 = nyc_race.loc[nyc_race['Year']==2010,:].set_index('Leadi
```

^{&#}x27;Black Non-Hispanic': 1861295, 'Other Race/ Ethnicity': 75268}

```
ratio = []
for index, row in nyc_race_2010.iterrows():
    #population per 1000 quotient
    pop = nyc_pop_10.get(row['Race Ethnicity'])/1000
    ratio.append(row['Deaths']/pop)

nyc_race_2010['ratio'] = ratio

nyc_race_2010
```

Race Ethnicity Year Deaths

ratio

Out[144]:

	rado = a mioney			
Leading Cause				
Alzheimer's disease	Black Non-Hispanic	2010	88.0	0.047279
Alzheimer's disease	Hispanic	2010	71.0	0.030393
Alzheimer's disease	White Non-Hispanic	2010	247.0	0.090712
CLRD	Asian and Pacific Islander	2010	18.0	0.017460
CLRD	Hispanic	2010	150.0	0.064210
CLRD	Other Race/ Ethnicity	2010	0.0	0.000000
Cancer	Asian and Pacific Islander	2010	940.0	0.911812
Cancer	Black Non-Hispanic	2010	3308.0	1.777257
Cancer	Hispanic	2010	2102.0	0.899799
Cancer	Other Race/ Ethnicity	2010	59.0	0.783866
Cancer	White Non-Hispanic	2010	6846.0	2.514227
Diabetes	Asian and Pacific Islander	2010	115.0	0.111551
Diabetes	Black Non-Hispanic	2010	663.0	0.356204
Diabetes	Hispanic	2010	406.0	0.173796
Diabetes	Other Race/ Ethnicity	2010	12.0	0.159430

	Race Ethnicity	Year	Deaths	ratio
Leading Cause				
Diabetes	White Non-Hispanic	2010	503.0	0.184729
Heart disease	Asian and Pacific Islander	2010	872.0	0.845851
Heart disease	Black Non-Hispanic	2010	4297.0	2.308608
Heart disease	Hispanic	2010	2670.0	1.142942
Heart disease	Other Race/ Ethnicity	2010	102.0	1.355158
Heart disease	White Non-Hispanic	2010	9846.0	3.615992
Influenza and pneumonia	Asian and Pacific Islander	2010	182.0	0.176542
Influenza and pneumonia	Black Non-Hispanic	2010	476.0	0.255736
Influenza and pneumonia	Hispanic	2010	463.0	0.198196
Influenza and pneumonia	Other Race/ Ethnicity	2010	6.0	0.079715
Influenza and pneumonia	White Non-Hispanic	2010	1321.0	0.485144
Kidney disease	Black Non-Hispanic	2010	86.0	0.046204
Stroke	Asian and Pacific Islander	2010	172.0	0.166842
Stroke	Black Non-Hispanic	2010	430.0	0.231022
Stroke	Hispanic	2010	308.0	0.131845
Stroke	Other Race/ Ethnicity	2010	0.0	0.000000
Stroke	White Non-Hispanic	2010	658.0	0.241654
Suicide	Asian and Pacific Islander	2010	63.0	0.061111
Suicide	Other Race/ Ethnicity	2010	5.0	0.066429
Suicide	White Non-Hispanic	2010	182.0	0.066840
Unintentional injuries	Asian and Pacific Islander	2010	79.0	0.076631
Unintentional injuries	Black Non-Hispanic	2010	147.0	0.078977
Unintentional injuries	Hispanic	2010	190.0	0.081333
Unintentional injuries	Other Base/ Ethnisity	2010	5 0	0 066420


```
In [145]: #plot
    fig,ax = plt.subplots()
    nyc_race_2010.pivot_table(values='ratio',index='Leading Cause',columns=
    'Race Ethnicity').plot.bar(ax=ax, figsize=(25,10))
    ax.set_title("Ratio of Deaths by Race in NYC in 2010", size = 20)
    ax.tick_params(axis='y', which='major', labelsize=12)
    ax.tick_params(axis='x', which='major', labelsize=15, rotation=45)
    ax.legend(prop=dict(size=18))
```

Out[145]: <matplotlib.legend.Legend at 0x1a26635e90>

4. US vs NYC Death to Population Ratio Comparison

```
In [146]: city = nyc.dropna().groupby(['Leading Cause','Year'],as_index=False)['D
    eaths'].sum()
    city = city.loc[city['Year']>2007]

ratio=[]
    for index, row in city.iterrows():
        q = quotient.get(row['Year'])
        ratio.append(row['Deaths']/q)

city['ratio'] = ratio
    city
```

Out[146]:

	Leading Cause	Year	Deaths	ratio
1	Alzheimer's disease	2008	151.0	0.018715
2	Alzheimer's disease	2009	354.0	0.043534
3	Alzheimer's disease	2010	406.0	0.049663
4	Alzheimer's disease	2011	435.0	0.052581
5	Alzheimer's disease	2012	463.0	0.055462
75	Unintentional injuries	2010	865.0	0.105809
76	Unintentional injuries	2011	750.0	0.090657
77	Unintentional injuries	2012	972.0	0.116435
78	Unintentional injuries	2013	948.0	0.112874
79	Unintentional injuries	2014	943.0	0.111764

70 rows × 4 columns

```
In [147]: # all deaths in the us by year and cuase
    country = us.loc[~(us['Cause Name']=='All causes')].groupby(['Cause Nam
        e','Year'])[['Deaths']].sum()
```

```
# map years to population
us pop = {
   #2007: nyc_pop_00_10["POPESTIMATE2007"][idx],
    2008: us pop 00 10["TOT POP"][98],
    2009: us_pop_00_10["TOT_POP"][110],
    2010: us_pop_10_19["CENSUS2010POP"][0],
    2011: us pop 10_19["POPESTIMATE2011"][0],
    2012: us pop 10 19["POPESTIMATE2012"][0],
    2013: us pop 10 19["POPESTIMATE2013"][0],
    2014: us pop 10 19["POPESTIMATE2014"][0]
# caluculate deaths to population ratio
ratio = [];
for index, row in country.reset index().iterrows():
    q = us pop.get(row['Year'])
    ratio.append(row['Deaths']/q)
country['ratio'] = ratio
country
```

Out[147]:

Cause Name	Year		
	2008	164870.0	0.000543
	2009	158006.0	0.000515
Alzheimer's disease	2010	166988.0	0.000541
	2011	169948.0	0.000545
	2012	167274.0	0.000533
Unintentional injuries	2010	241718.0	0.000783
	2011	252876.0	0.000812
	2012	255584.0	0.000814

Deaths

ratio

		Deaths	ratio
Cause Name	Year		
	2013	261114.0	0.000826
	2014	271856.0	0.000854

70 rows × 2 columns

Out[148]: <matplotlib.legend.Legend at 0x1a2e0f1e50>

Note that while the US data appears to remain constant, it is not, the scale is just very close to zero.

5. US Demographics Dataset

data source: https://www.census.gov/data/tables/time-series/demo/popest/2010s-state-detail.html

```
In [149]: states = pd.read_csv('us_demographics.csv')
    states.columns = states.iloc[0]
    states = states.drop(columns=['Id'])[1:].loc[states['Year'].str.contain
    s('July')]
    states['Year'] = states['Year'].str[-4:].astype(int)
    states
```

Out[149]:

	Year	Sex	Hispanic Origin	ld2	Geography	Total	Race Alone - White	Race Alone - Black or African American	Alone - American Indian and Alaska Native	A
19	2010	Female	Hispanic	NaN	United States	25000565	22059599	1199204	705953	2!
20	2010	Female	Not Hispanic	NaN	United States	132248502	100322803	19897522	1150332	774
21	2010	Female	Total	NaN	United States	157249067	122382402	21096726	1856285	799
22	2010	Male	Hispanic	NaN	United States	25746906	22790195	1143433	777621	2!
23	2010	Male	Not Hispanic	NaN	United States	126330112	97063824	18116412	1118365	70

```
Race
                                                                                Race
                                                                                        Alone -
                                                                       Race
                                                                               Alone -
                                                                                      American
                               Hispanic
                  Year
                           Sex
                                         ld2 Geography
                                                             Total
                                                                     Alone -
                                                                              Black or
                                                                                         Indian
                                 .
Origin
                                                                      White
                                                                               African
                                                                                           and
                                                                             American
                                                                                         Alaska
                                                                                         Native
                                    Not
             5144 2018
                          Male
                                          56
                                               Wyoming
                                                           263944
                                                                     245867
                                                                                 3985
                                                                                          6079
                                Hispanic
                                                                                 4492
             5145 2018
                          Male
                                   Total
                                          56
                                               Wyoming
                                                           294534
                                                                     272499
                                                                                          8004
                          Both
             5146 2018
                                Hispanic
                                          56
                                               Wyoming
                                                            58227
                                                                      50690
                                                                                 959
                                                                                          3598
                         Sexes
                          Both
                                    Not
             5147 2018
                                          56
                                               Wyoming
                                                           519510
                                                                     484253
                                                                                 6598
                                                                                         12262
                         Sexes
                                Hispanic
                          Both
             5148 2018
                                   Total
                                          56
                                               Wyoming
                                                           577737
                                                                     534943
                                                                                 7557
                                                                                         15860
                         Sexes
            4212 rows × 12 columns
In [150]:
            # plot us data
            fig,ax = plt.subplots()
            total deaths = country.pivot table(values='Deaths',index='Year',columns
            ='Cause Name')
            total deaths.plot(ax=ax, figsize=(20,10))
            ax.set ylabel('Number of Deaths')
            ax.set title('Total Number of deaths in the US', size=15)
Out[150]: Text(0.5, 1.0, 'Total Number of deaths in the US')
```


		2.2 2.	2.12.				
			Hispanic Origin	Total	Race Alone - White	Race Alone - Black c African America	
	Year	Geography					
		Alaska	Hispanic	194602055940019	136381435627994	11751144231	
		Alaska	Not Hispanic	322858351029673887	215621242341457962	9850124622231	
		Wisconsin	Not Hispanic	272539926842145409613	237112323417714712894	18860918230037090	
		Wisconsin	Total	292129528922735813568	254084525226815063526	19756119148638904	
	2018	Wyoming	Hispanic	276373059058227	240582663250690	45250795	
		Wyoming	Not Hispanic	255566263944519510	238386245867484253	26133985659	
		Wyoming	Total	283203294534577737	262444272499534943	30654492755	
	1404 ı	ows × 8 colu	ımns				
	4					•	
In [152]:	<pre>state_pop = gb_states.loc[gb_states['Hispanic Origin']=='Total']['Tota l'].astype(float) state_pop = state_pop.reset_index().rename(columns={'Total':'Total_pop' }) ratio = us.loc[us['Year']>2009].merge(state_pop.loc[state_pop['Year']<2 015], left_on=['State','Year'], right_on=['Geography','Year'], how='inn er') ratio['Death_ratio'] = ratio['Deaths']/ratio['Total_pop'] ratio</pre>						
Out[152]:							
		Year Caus	se Name	State Deaths adjus	Age- sted eath Sath	I_pop Death_ratio	

	Year	Cause Name	State	Deaths	Age- adjusted Death Rate	Geography	Total_pop	Death_ratio
0	2014	Unintentional injuries	Alabama	2463.0	49.3	Alabama	2.495006e+20	9.871719e- 18
1	2014	All causes	Alabama	50215.0	909.1	Alabama	2.495006e+20	2.012620e- 16
2	2014	Alzheimer's disease	Alabama	1885.0	35.3	Alabama	2.495006e+20	7.555091e- 18
3	2014	Stroke	Alabama	2663.0	48.3	Alabama	2.495006e+20	1.067332e- 17
4	2014	CLRD	Alabama	3050.0	53.6	Alabama	2.495006e+20	1.222442e- 17
2855	2010	Heart disease	Wyoming	962.0	169.8	Wyoming	2.766993e+17	3.476699e- 15
2856	2010	Influenza and pneumonia	Wyoming	109.0	19.5	Wyoming	2.766993e+17	3.939295e- 16
2857	2010	Suicide	Wyoming	131.0	22.4	Wyoming	2.766993e+17	4.734382e- 16
2858	2010	Cancer	Wyoming	1016.0	172.6	Wyoming	2.766993e+17	3.671856e- 15
2859	2010	Kidney disease	Wyoming	69.0	12.5	Wyoming	2.766993e+17	2.493682e- 16

2860 rows × 8 columns

```
white_ratio = white_ratio.reset_index()

#add ratio to us death rate dataset
ratio = ratio.merge(white_ratio.loc[white_ratio['Year']<2015], on=['Geo
graphy','Year'], how='inner')
ratio = ratio.rename(columns={0 :'white_ratio'})
ratio = ratio.set_index('Cause Name').drop(index='All causes').reset_in
dex()
ratio</pre>
```

Out[153]:

	Cause Name	Year	State	Deaths	Age- adjusted Death Rate	Geography	Total_pop	Death_ratio	whi
0	Unintentional injuries	2014	Alabama	2463.0	49.3	Alabama	2.495006e+20	9.871719e- 18	0
1	Alzheimer's disease	2014	Alabama	1885.0	35.3	Alabama	2.495006e+20	7.555091e- 18	0
2	Stroke	2014	Alabama	2663.0	48.3	Alabama	2.495006e+20	1.067332e- 17	0
3	CLRD	2014	Alabama	3050.0	53.6	Alabama	2.495006e+20	1.222442e- 17	0
4	Diabetes	2014	Alabama	1281.0	22.8	Alabama	2.495006e+20	5.134256e- 18	0
							•••		
2595	Heart disease	2010	Wyoming	962.0	169.8	Wyoming	2.766993e+17	3.476699e- 15	0
2596	Influenza and pneumonia	2010	Wyoming	109.0	19.5	Wyoming	2.766993e+17	3.939295e- 16	0
2597	Suicide	2010	Wyoming	131.0	22.4	Wyoming	2.766993e+17	4.734382e- 16	0
2598	Cancer	2010	Wyoming	1016.0	172.6	Wyoming	2.766993e+17	3.671856e- 15	0

```
Age-
                    Cause
                                             adjusted
                                                     Geography
                          Year
                                 State Deaths
                                                                 Total pop Death ratio whi
                     Name
                                               Death
                                                Rate
                                                                          2.493682e-
                          2010 Wyoming
           2599
                                         69.0
                                                12.5
                                                      Wyoming 2.766993e+17
                                                                                     0
                    disease
          2600 rows × 9 columns
In [154]: # ratio of hispanic only population to overall population in each state
          his ratio = qb states.loc[(qb states['Hispanic Origin']=='Hispanic')][
          'Total'].astype(float)/qb states.loc[(qb states['Hispanic Origin']=='To
          tal')]['Total'].astype(float)
          his ratio = his ratio.reset index().rename(columns={'Total':'his ratio'
          ratio = ratio.merge(his ratio.loc[his ratio['Year']<2015], on=['Geograp
          hy','Year'], how='inner')
In [155]: #ratio of Black or African American population to overall population in
           each state
          black ratio = (gb states.loc[(gb states['Hispanic Origin']=='Not Hispan
          ic')]['Race Alone - Black or African American'].astype(float)/gb states
           .loc[(gb states['Hispanic Origin']=='Total')]['Total'].astype(float)).r
          eset index()
          black ratio = black ratio.rename(columns={0 :'black ratio'})
          ratio = ratio.merge(black ratio.loc[black ratio['Year']<2015], on=['Geo
          graphy','Year'], how='inner')
          #ratio of Asian and pacific islander population to overall population i
          n each state
          asian ratio = (gb states.loc[gb states['Hispanic Origin']=='Not Hispani
          c']['Race Alone - Asian'].astype(float)/gb states.loc[(gb states['Hispa
          nic Origin']=='Total')]['Total'].astype(float)).reset index()
          asian ratio = asian ratio.rename(columns={0 :'asian ratio'})
          ratio = ratio.merge(asian ratio.loc[asian ratio['Year']<2015], on=['Geo</pre>
          graphy','Year'], how='inner')
```

```
#without United States
ratio = ratio.loc[~(ratio['Geography']=='United States')]
ratio
```

Out[155]:

		Cause Name	Year	State	Deaths	Age- adjusted Death Rate	Geography	Total_pop	Death_ratio	whi
	0	Unintentional injuries	2014	Alabama	2463.0	49.3	Alabama	2.495006e+20	9.871719e- 18	0
	1	Alzheimer's disease	2014	Alabama	1885.0	35.3	Alabama	2.495006e+20	7.555091e- 18	0
	2	Stroke	2014	Alabama	2663.0	48.3	Alabama	2.495006e+20	1.067332e- 17	0
	3	CLRD	2014	Alabama	3050.0	53.6	Alabama	2.495006e+20	1.222442e- 17	0
	4	Diabetes	2014	Alabama	1281.0	22.8	Alabama	2.495006e+20	5.134256e- 18	0
	2595	Heart disease	2010	Wyoming	962.0	169.8	Wyoming	2.766993e+17	3.476699e- 15	0
	2596	Influenza and pneumonia	2010	Wyoming	109.0	19.5	Wyoming	2.766993e+17	3.939295e- 16	0
	2597	Suicide	2010	Wyoming	131.0	22.4	Wyoming	2.766993e+17	4.734382e- 16	0
	2598	Cancer	2010	Wyoming	1016.0	172.6	Wyoming	2.766993e+17	3.671856e- 15	0
	2599	Kidney disease	2010	Wyoming	69.0	12.5	Wyoming	2.766993e+17	2.493682e- 16	0
	2550 r	ows × 12 colu	ımns							>
In [156]:	ratio	$0_2010 = ra$	atio.	loc[rat:	io['Yea	ar']==20	10]			

```
print(ratio_2010['Death_ratio'].min(),ratio_2010['Death_ratio'].max())
1.657586146147e-20 4.382618897551117e-15

In [157]: #plot
    figure, ax = plt.subplots(figsize=(30,20))
    sb.scatterplot(x='white_ratio',y='Death_ratio',data=ratio_2010, hue='Ca
    use Name', s=150, ax=ax)

ax.tick_params(labelsize=15)
    ax.set_xlabel('White population ratio',size=20)
    ax.set_ylabel('Death ratio',size=20)
    ax.set_title("Death ratio to white population ratio in 2010", size = 30
)
    ax.legend(prop={'size':20})

#set y limits based on max and min
    ax.set_ylim(0,5e-15)
    plt.show()
```



```
31.17
                   Wed, 13 May 2020 Prob (F-statistic):
Date:
2.22e-25
Time:
                                    Log-Likelihood:
                          20:05:08
85663.
No. Observations:
                              2550
                                    AIC:
                                                              -1.
713e+05
Df Residuals:
                              2545
                                    BIC:
                                                              -1.
713e+05
Df Model:
                                4
Covariance Type:
                  nonrobust
                       std err t
                                             P>|t|
                                                       [0.025
                coef
 0.975]
Intercept -4.765e-17 3.1e-17 -1.536
                                             0.125
                                                     -1.08e-16
1.32e-17
white ratio 3.716e-16 4.41e-17 8.435
                                                     2.85e-16
                                             0.000
4.58e-16
black ratio 1.208e-15 1.58e-16 7.642
                                                     8.98e-16
                                             0.000
1.52e-15
his ratio -8.36e-16 4.51e-16
                                  -1.856
                                             0.064
                                                     -1.72e-15
4.7<del>4</del>e-17
asian ratio 3.484e-15 2.34e-15 1.490
                                             0.136
                                                     -1.1e-15
8.07e-15
======
                          2413.540
                                    Durbin-Watson:
Omnibus:
 1.751
Prob(Omnibus):
                             0.000
                                    Jarque-Bera (JB):
                                                               69
766.203
Skew:
                             4.735
                                    Prob(JB):
  0.00
                            26.811
                                    Cond. No.
Kurtosis:
  223.
```

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [159]: heart d = ratio.loc[ratio['Cause Name']=='Heart disease']
          cancer = ratio.loc[ratio['Cause Name']=='Cancer']
          stroke = ratio.loc[ratio['Cause Name']=='Stroke']
          #plot
          fig,ax = plt.subplots(nrows=1, ncols=3,figsize=(15,5))
          sb.regplot(x="white ratio", y="Death ratio", data=heart d, ax=ax[0],col
          or='r')
          sb.regplot(x="white ratio", y="Death ratio", data=cancer, ax=ax[1],colo
          r='b'
          sb.regplot(x="white ratio", y="Death ratio", data=stroke, ax=ax[2],colo
          r='v')
          ax[0].set title("Heart Disease", size = 10)
          ax[1].set title("Cancer", size = 10)
          ax[2].set title("Stroke", size = 10)
          #set y limits based on max and min
          ax[0].set ylim(0,5e-15)
          ax[1].set ylim(0,5e-15)
          ax[2].set ylim(0,5e-15)
Out[159]: (0, 5e-15)
```


Based on the regression and plots, we can see that population ratio of race does not have a lot of explanatory power in the cause of deaths in the US. R squared is only 0.047 and the p values for his_ratio and asian_ratio shows that they are not significant. From the scatter plots, we can see that for heart disease, cancer, and stroke, the regression line does not really go through the points and they have a pretty similar pattern. This may be a result of same states following the same pattern for different causes of death.

IV. Conclusion

The goal of this project was to analyze the disparity between different causes of death in New York City and the rest of the country. What we discovered was the variables we found thought provoking and promising in terms of statistical significance did not paint the whole picture. If we had more time and resources, we could have investigated further into other variables that may provide a deeper explanation to the effects that we visualized. Overall, our analysis has brought us a deeper understanding of the causes of death in New York City and the rest of the country, the variables that do and do not effect them, and an idea of how further research can benefit society. Results from further research could potentially help local and federal government

In []: In []:		agencies, as well as private businesses, do a better job to create a more healthy and prepared country.
In []:	In []:	
	In []:	
In []:	In []:	