Assignment

Section 3.4: 2(fj), 8, 11, 14, 15; Section 4.1: 10; Section 4.2: 23, 29, 30; Section 4.3: 10, 11, 12, 15

Work

3.4

2.

8. Let W denote the subspace of R⁵ consisting of all vectors having coordinates that sum to zero. The vectors

$$u_1 = (2, -3, 4, -5, 2),$$
 $u_2 = (-6, 9, -12, 15, -6),$
 $u_3 = (3, -2, 7, -9, 1),$ $u_4 = (2, -8, 2, -2, 6),$
 $u_5 = (-1, 1, 2, 1, -3),$ $u_6 = (0, -3, -18, 9, 12),$
 $u_7 = (1, 0, -2, 3, -2),$ $u_8 = (2, -1, 1, -9, 7)$

generate W. Find a subset $\{u_1, u_2, \dots, u_8\}$ that is a basis for W.

$$\mathsf{R}^{5} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} : x_{1} + x_{2} + x_{3} + x_{4} + x_{5} = 0, x_{1}, \dots, x_{5} \in \mathbb{R} \right\}$$
 (1)

$$\begin{pmatrix}
2 & -6 & 3 & 2 & -1 & 0 & 1 & 2 \\
-3 & 9 & -2 & -8 & 1 & -3 & 0 & -1 \\
4 & -12 & 7 & 2 & 2 & -18 & -2 & 1 \\
-5 & 15 & -9 & -2 & 1 & 9 & 3 & -9 \\
2 & -6 & 1 & 6 & -3 & 12 & -2 & 7
\end{pmatrix}$$
(2)

It follows that $\{u_1, u_3, u_5, u_7\}$ is linearly independent by theorem 3.16. Therefore $\{u_1, u_3, u_5, u_7\}$ is a basis for W.

11.

14.

15.

4.1

10.

4.2

- 23.
- 29.
- 30.

4.3

- 10.
- 11.
- 12.