Introduction to Möbius

Contacts

Maurizio Palmieri

Research Fellow of the Department of Information Engineering, University of Pisa

Office: Largo Lucio Lazzarino 1 - 56122 Pisa (PI), Italy

Email: maurizio.palmieri@ing.unipi.it

Overview

- 1. Brief introduction to the Möbius tool
- 2. Elements of the projects
- 3.TMR example

Atomic model

Reward models

Set study model

Simulator Solver

Brief introduction to Möbius Tool

Möbius™ is a software tool for modeling the behavior of complex systems.

It was originally developed for studying the reliability, availability, and performance of computer and network systems.

It is used for a broad range systems, from biochemical reactions within genes to the effects of malicious attackers on secure computer systems.

Möbius Features

Multiple modeling languages

Hierarchical modeling paradigm

Customized measures of system properties

Study the behavior of the system under a variety of operating conditions

Numerical solution techniques and Simulation

Möbius Features

Every project is made of 6 kinds of elements:

- 1. Atomic Model
- 2. Composed Model

- 5. Transformer
- 6. Solver

Atomic model

Each model is composed of one or more sub-models, also referred to as atomic models.

You can create and edit atomic models using different graphic editors.

These models also allow the definition of global variables, usually used to represent rate of events.

Composed Models

The Möbius tool allows for the construction of composed models from previously defined (atomic) submodels.

The Join operator is used to compose different sub-models.

The Rep operator is used to compose copies of a same submodel.

Reward model 1/2

A reward model is a set of Performance Variable(PV) that describe system properties

A PV is computed by performing certain operations(e.g. mean) on the set of values returned by an associated Reward Function(RF)

Reward model 2/2

The values of the RF can be evaluated:

- at specified times (Instant of time PV's)
- accumulated over a specified interval of time (Interval of time PV's)
- averaged over a specified interval of time (Time averaged interval of time PV's)
- or evaluated when the system has reached a steady state (Steady state PV's)

Study

A study defines sets of values that will be assigned to each global variable.

vary_num_comp_Version Number: 3

In a range study, experiments are generated for all possible combinations of variable values.

In a set study only user-defined combinations are used.

Möbius

Solvers

Möbius provides two types of solvers for obtaining solutions on measures of interest: simulation and numerical solvers.

In general, the simulation solver can be used to solve all models that were built in Möbius, whereas numerical solvers can be used on only those models that have only exponentially and deterministically distributed actions.

On the other hand, all numerical solvers in Möbius are capable of providing exact solutions (up to machine precision), whereas simulation provides statistically accurate solutions within some user-specifiable confidence interval.

Transformers

Some of the solution techniques within Möbius, such as the simulator, operate directly on the high-level model representation defined using the Atomic and Composed editors.

The numerical solvers require a different representation of the model as an input.

Instead of operating on the high-level model description, numerical solution techniques use a lower-level, state space representation, namely the Markov chain.

The transformer produces the low-level model starting from the high-level one.

TMR example

Create a project

Atomic model of TMR

Time tab for Rewards

Performance Variables Model	Variable Name: reliabilityVoter	
(Enter new variable name)	Submodels Rate Rewards Impul	se Rewards Time Simulation
Add Variable:		
Variable List	Туре	Instant of Time
reliability reliabilitySingleModule	Time Point definition method:	Incremental Range 🔻
reliabilityVoter		
	First time point in series:	1.0
	Upper Bound of series:	1000.0
	Step size in series:	50.0
	Length of time interval:	0.0
	Number of Time Measurements:	20
	Time Series:	1.0, 51.0, 101.0, 851.0, 901.0, 951.0
Rename Copy Delete Up Down	4161	Discord Changes
Rename Copy Delete Op Down	Apply Ch	anges Discard Changes

TMR reliability Function

Single module reliability Function

Voter reliability Function

Study of TMR

Analysis of simulation results

Simulation Paran	neters Network	Setup Run Simulation Simulation Info	Results
Name	Time	Mean Confidence In	terval
reliability	1.0	1.0000000000E00 +/- 0.000000000E00	
reliability	51.0	9.9276000000E-01 +/- 6.9062047280E-0	
reliability	101.0	9.7414000000E-01 +/- 1.2929239453E-0	
reliability	151.0	9.4665000000E-01 +/- 1.8306695660E-0	
reliability	201.0	9.1242000000E-01 +/- 2.3027558738E-0	
reliability	251.0	8.7383000000E-01 +/- 2.7048273990E-0	
reliability	301.0	8.3202000000E-01 +/- 3.0453954995E-0	
reliability	351.0	7.8875000000E-01 +/- 3.3251870090E-0	3
reliability	401.0	7.4450000000E-01 +/- 3.5528415029E-0	
reliability	451.0	7.0027000000E-01 +/- 3.7320366297E-0	
reliability	501.0	6.5631000000E-01 +/- 3.8688864982E-0	
reliability	551.0	6.1335000000E-01 +/- 3.9669910644E-0	3
reliability	601.0	5.7177000000E-01 +/- 4.0308557539E-0	3
reliability	651.0	5.3154000000E-01 +/- 4.0649224372E-0	3
reliability	701.0	4.9491000000E-01 +/- 4.0728229369E-0	3
reliability	751.0	4.5876000000E-01 +/- 4.0591560243E-0	3
reliability	801.0	4.2413000000E-01 +/- 4.0258700628E-0	3
reliability	851.0	3.9192000000E-01 +/- 3.9767391347E-0	3 (*)
reliability	901.0	3.6110000000E-01 +/- 3.9127150285E-0	3 (*)
reliability	951.0	3.3200000000E-01 +/- 3.8362358828E-0	3 (*)
reliabilitySingle	Module 1.0	9.9903000000E-01 +/- 1.9294493169	E-04
reliabilitySingle		9.5142000000E-01 +/- 1.3325181597	E-03
reliabilitySingle		9.0596000000E-01 +/- 1.8091270391	
reliabilitySingle		8.6132000000E-01 +/- 2.1421379006	E-03
reliabilitySingle		8.1916000000E-01 +/- 2.3855573445	E-03
reliabilitySingle		7.7945000000E-01 +/- 2.5698389342	E-03
reliabilitySingle		7.4177000000E-01 +/- 2.7126653679	
reliabilitySingle		7.0561000000E-01 +/- 2.8248938501	E-03
reliabilitySingle		6.7125000000E-01 +/- 2.9116104736	E-03
reliabilitySingle		6.3795000000E-01 +/- 2.9787622381	E-03
reliabilitySingle		6.0646000000E-01 +/- 3.0279853127	
reliabilitySingle		5.7704000000E-01 +/- 3.0620399398	
reliabilitySingle		5.4953000000E-01 +/- 3.0838048194	
reliabilitySingle		5.2270000000E-01 +/- 3.0958521383	
reliabilitySingle		4.9811000000E-01 +/- 3.0990254619	
reliabilitySingle		4.7297000000E-01 +/- 3.0945158309	
reliabilitySingle		4.5015000000E-01 +/- 3.0836067295	
reliabilitySingle	Module 851.0	4.2797000000E-01 +/- 3.0667212968	E-03

Analysis of Transient Solver results


```
Performance variable: reliability
Time
                    : 651.000000
Mean
                    : 5.322660e-01
Variance
                    : 2.489589e-01
Plot files
             (pdf) : Exp1.trs.reliability.651.000.pdf.splot
             (cdf) : Exp1.trs.reliability.651.000.cdf.splot
Performance variable : reliabilitySingleModule
Time
                    : 651.000000
Mean
                    : 5.215240e-01
Variance
                    : 2.495367e-01
Plot files
             (pdf) : Exp1.trs.reliabilitySingleModule.651.000.pdf.splot
             (cdf) : Exp1.trs.reliabilitySingleModule.651.000.cdf.splot
Performance variable : reliabilityVoter
Time
                    : 651.000000
                    : 1.000000e+00
Mean
Variance
                    : 2.220446e-16
Plot files
             (pdf) : Exp1.trs.reliabilityVoter.651.000.pdf.splot
             (cdf) : Exp1.trs.reliabilityVoter.651.000.cdf.splot
Performance variable: reliability
Time
                    : 701.000000
Mean
                    : 4.941336e-01
Variance
                    : 2.499656e-01
Plot files
             (pdf) : Exp1.trs.reliability.701.000.pdf.splot
             (cdf) : Exp1.trs.reliability.701.000.cdf.splot
Performance variable : reliabilitySingleModule
Time
                    : 701.000000
Mean
                    : 4.960890e-01
Variance
                    : 2.499847e-01
Plot files
             (pdf) : Exp1.trs.reliabilitySingleModule.701.000.pdf.splot
             (cdf) : Exp1.trs.reliabilitySingleModule.701.000.cdf.splot
Performance variable : reliabilityVoter
Time
                    : 701.000000
Mean
                    : 1.000000e+00
Variance
                    : -2.220446e-16
Plot files
             (pdf) : Exp1.trs.reliabilityVoter.701.000.pdf.splot
             (cdf) : Exp1.trs.reliabilityVoter.701.000.cdf.splot
```