Table of Contents

Práctica 02	1
Función randn	1
Función rand	2
Comparativa randn y rand	3
Modificar los valores utilizando randn	
Suma de dos distribuciones con mism amplitud	5
Suma de dos distribuciones con distinta amplitud	6
Producto de dos distribuciones con distinta amplitud	7
Media y Varianza	

Práctica 02

```
% Universidad Nacional Autónoma de México
% Facultad de Ingeniería
% Aguilar Enriquez Paul Sebastian
% 415028130
% Temas Selectos de Sistemas Inteligentes - 2020-1
clear variables;
clear global;
close all;
```

Función randn

Devuelve una matriz de 1x3000 con valores aleatorios de una distribución normal estandar

```
x1 = randn(1,5);
x2 = randn(1,3000);

% Graficamos las matrices
figure;
subplot(1,2,1);
plot(x1); title("randn(1,5)");
subplot(1,2,2)
plot(x2); title("randn(1,3000)");
```


Función rand

Devuelve una matriz de 1x5 con valores aleatorios entre 0 y 1

```
x1 = rand(1,5);
x2 = rand(1,3000);

% Graficamos las matrices
figure;
subplot(1,2,1);
plot(x1); title("rand(1,5)");
subplot(1,2,2)
plot(x2); title("rand(1,3000)");
```


Comparativa randn y rand

```
x1 = randn(1,30000);
x2 = rand(1,30000);

% Graficamos las matrices
figure;
subplot(1,2,1);
plot(x1); title("randn(1,30000)");
subplot(1,2,2)
plot(x2); title("rand(1,30000)");

% Mostramos un histograma de las matrices
figure;
subplot(1,2,1);
histogram(x1); title("Histograma de randn");
subplot(1,2,2)
histogram(x2); title("Histograma de rand");
```


Modificar los valores utilizando randn

```
% Modificamos la amplitud
x1 = 5 * randn(1,3000);

% Modificamos la media
x2 = 5 * randn(1,3000) - 10;

% Mostramos un histograma de las matrices
figure;
subplot(1,2,1);
histogram(x1); title("5 * randn(1,3000)");
subplot(1,2,2)
histogram(x2); title("5 * randn(1,3000) - 10");
```


Suma de dos distribuciones con mism amplitud

```
x1 = randn(1,3000);
x2 = randn(1,3000);
x3 = x1 + x2;
% Mostramos un histograma de las matrices
figure;
```

```
subplot(1,3,1);
histogram(x1); title("randn(1,3000)");
subplot(1,3,2)
histogram(x2); title("randn(1,3000)");
subplot(1,3,3)
histogram(x3); title("Suma");
```


Suma de dos distribuciones con distinta amplitud

```
x1 = randn(1,3000);
x2 = 5 * randn(1,3000);
x3 = x1 + x2;

% Mostramos un histograma de las matrices
figure;
subplot(1,3,1);
histogram(x1); title("randn(1,3000)");
subplot(1,3,2)
histogram(x2); title("5 * randn(1,3000)");
subplot(1,3,3)
histogram(x3); title("Suma");
```


Producto de dos distribuciones con distinta amplitud

```
x1 = randn(1,3000);
x2 = 5 * randn(1,3000) - 10;
x3 = x1 .* x2;

% Mostramos un histograma de las matrices
figure;
subplot(1,3,1);
histogram(x1); title("randn(1,3000)");
subplot(1,3,2)
histogram(x2); title("5 * randn(1,3000) - 10");
subplot(1,3,3)
histogram(x3); title("Producto (.*)");
```


Media y Varianza

```
% Distribución Gaussiana
x = randn(1,3000);

% Media
m = mean(x);

% Desviación Estandar
s = std(x);

% Varianza
v = s * s;
```

Published with MATLAB® R2019a