

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

ИНСТИТУТ информационных систем и технологий

Кафедра информационных систем

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование информационных систем»

на тему: Разработка системы автоматизированного учета операционной деятельности производства электротехнического оборудования.

Направление 09.03.02 Информационные системы и технологии

Студент		
группы ИДБ-16-07		Казюканов Е.А.
	подпись	
Руководитель		
ст. преподаватель	полпись	Овчинников П.Е.

ОГЛАВЛЕНИЕ

Введение	3
Глава 1. Функциональная модель (IDEF0)	4
Глава 2. Модель потоков данных (DFD)	8
Глава 3. Диаграммы классов (ERD)	13
Заключение	14

ВВЕДЕНИЕ

Система автоматизированного учета операционной деятельности производства электротехнического оборудования позволяет перевести бумажную работу в компьютерное пространство, ускорить и автоматизировать работу предприятий, специализирующихся на производстве электронной продукции.

Данная система представляет собой desktop приложение, которое помогает решать следующие задачи:

- 1. Ведение учета комплектующих.
- 2. Ведение учета производимой продукции.
- 3. Управление комплектацией производимой продукции.
- 4. Регистрация договоров с поставщиками и заказчиками.

Объектом исследования являются desktop приложения автоматизации и управления операционным учетом.

Исследования выполняются путем построения следующих моделей:

- 1. функциональной (IDEF0);
- 2. потоков данных (DFD);
- 3. реляционной базы данных (ERD).

Функциональная модель разрабатывается с точки зрения директора.

Целью моделирования является определение процессов, на основе которых будут созданы средства автоматизированного учета.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Внешними входными информационными потоками процесса являются:

- 1. Поставщики.
- 2. Заказчики.
- 3. Поставляемые комплектующие.

Внешним выходным информационным потоком процесса является:

1. Прибыль

Внешними управляющими потоками процесса являются:

- 1. Техническое задание.
- 2. Производственные стандарты.
- 3. Нормативно-правовая база по учету продаж.

Основными механизмами процесса являются:

- 1. Администратор.
- 2. Директор предприятия.
- 3. Рабочий персонал.
- 4. Менеджер по сбыту.
- 5. Работники службы доставки.

На рисунках 1.1-1.5 представлены IDEF0-диаграммы для данной модели.

Рис. 1.1. Блок A0 – Деятельность производителя электротехнического оборудования

Рис. 1.2. Деятельность производителя электротехнического оборудования

Рис. 1.3. Управление производственными процессами

Рис. 1.4. Производство электротехнического оборудования

Рис. 1.5. Сбыт готовой продукции заказчикам

ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Основным средством автоматизации являются рабочие станции (ПК). Для хранения всей необходимой информации используется база данных, обращение к которой происходит при помощи СУБД Microsoft Server. Допустимами видами хранилищ являются ПО и память на рабочих станциях. В состав технических средств входят ПК клиента и сервер БД. На рисунках 2.1-2.5 представлены DFD-диаграммы для данной модели.

Рис. 2.1. Учет комплектующих

Рис. 2.2. Введение в производство новой продукции

Рис. 2.3. Комплектация производимой продукции

Рис. 2.4. Заключение контрактов с поставщиками и заказчиками

Рис. 2.5. Сбор информации о продукте

Определение числовых показателей для цели потенциального проекта автоматизации

Проектируемая система следует паттерну «автоматизация снижает время обслуживания (ожидания).

Данный паттерн прямо следует из понятия "мура" (неравномерность) и связан, как правило, с совершенствованием процессов диспетчерского управления, т.е. с качеством распределения потоков поступающих заданий на выполнение определенных операций по исполнителям.

Средства информационной поддержки позволяют пользователю наиболее удобным образом получать нужную информацию и оперативно получать ответы на вопросы и оформлять заявку на услуги и товары.

Таблица 2.1. Сравнение времени поиска информации

	Без системы	С помощью системы
Получение информации о	Затрачивается время на поиск вручную и	Система мгновенно находит информацию
комплектации производимого продукта	поднятие всей документации (~5-10 мин).	при помощи встроенной функции поиска (~5-10 сек).
Изменение комплектации	Необходимо вносить изменения в бумажную документацию и подтверждать этот процесс на всех уровнях (может занять от часа до нескольких часов).	Пользователь вносит изменения в форму, а администратору необходимо лишь подтвердить изменения (весь процесс занимает до 10 минут).

Если изначально на поиск документации о комплектации производимой продукции и ее изменение занимало минимум 1 час, то использование автоматизированной системы позволяет сократить это время до 10 минут. Таким образом получается, что затрачиваемое время сократилось в 6 раз, поэтому количество рабочего времени сократилось с 8 часов до 80 минут (~1,3 часа).

В долгосрочной перспективе при ежедневной занятости 20 сотрудников при 8-ми часовом рабочем дне ежемесячная экономия времени составит -6 чел/мес, так как изначально трудоемкость имела значение -(10*8)/(20*8) = 1 чел/мес, а после автоматизации -(20*1,3)/(20*8)/=1/6 чел/мес.

При этом время, затрачиваемое на рассматриваемый процесс сократилось в 6 раз, поэтому появилось 6,7 «свободных» часов. За это время каждый сотрудник успеет проделать ту же процедуру еще 40 раз, поэтому для всех сотрудников предприятия получается 20 * 40 = 800 циклов повторения процедуры.

Возникает возможность сократить штат сотрудников с учетом сохранения трудоемкости до 4 человек.

Можно сделать вывод, что внедрение данной системы позволяет сократить количество рабочего персонала с сохранением времени, затрачиваемого на логистические процессы.

Определение числовых показателей для трудозатрат на разработку программных средств

Таблица 2.2. Определение числа и сложности функциональных точек для модулей и хранилищ

Номер	Наименование	Форм	Данных	UFP
A0	Деятельность			
	производителя			
AU	электротехнического			
	оборудования			
A1	Управление			
	производственными	8	3	53
	процессами			
	Производство			
A2	электротехнического	0	0	0
	оборудования			
A3	Сбыт готовой	0	0	0
	продукции заказчикам			U
				53

Расчет сложности разработки методом FPA/IFPUG.

VAF:	0,95
UFP:	53
DFP:	50
SLOC:	2518
KLOC:	3

Таблица 2.4.

Расчет трудозатрат на разработку «с нуля» методом СОСОМО II.

SF:	17,15
E:	1,08
EM:	0,39
PM:	3 ч/мес
TDEV:	5 мес

ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)

Рис. 3.1. Диаграмма потоков

Рис. 3.2. Диаграмма ролей

Рис. 3.3. Диаграмма модулей

ЗАКЛЮЧЕНИЕ

В ходе данной работы был исследован процесс работы системы автоматизированного учета операционной деятельности производства электротехнического оборудования путем выполнения функционального моделирования системы, а также построения модели потоков данных и диаграммы классов.

Определены показатели для поставленной цели моделирования и для цели потенциального проекта автоматизации.

Были определены числовые показатели для трудозатрат на разработку программных средств, а именно: определены число и сложность функциональных точек для модулей и хранилищ, рассчитана сложность разработки методом FPA/IFPUG, рассчитаны трудозатраты на разработку «с нуля» методом СОСОМО II.