

Information Processing and Retrieval

Instituto Superior Técnico 2024

LAB 3: TOPIC MODELING AND CONCEPT ANALYSIS

This lab is dedicated to **project support** and to further explore strategies for improving our IR system. First, we will identify the major topics on a document. Second, we will discover formal and coherent concepts to aid document categorization, naviagation, and retrieval.

To these ends, we will continue to use the *CFC* collection, loaded from the file pri_cfc.txt¹.

1 Topic modeling

Topics capture the hidden content structure of a collection. More intuitively they can be used as a way of tagging documents, unraveling hidden knowledge, and reducing the high dimensionality of vector space models whereby a document is seen as a weighted mixture of topics. Amidst diverse topic modeling algorithms, we will focus on Latent Dirichlet Allocation (LDA).

LDA is a probabilistic model that considers each topic to be a mixture of terms, and each document to be a mixture of topics. Given n documents, m terms and k topics, LDA identifies:

- ψ the distribution of terms per topic
- ϕ the distribution of topics per document

These distributions are controlled by:

- β parameter to control topic-word density (high β leads to a higher number of terms per topic)
- α parameter to control document-topic density (high α leads to a higher number of topics per document)

1.1. Create a word cloud from the given collection.

1.2. Find the top 10 topics in the CFC collection. Plot the top 10 terms per topic. Consider $\alpha = 0.2$ and $\beta = 0.5$ as default values to LDA, yet change them to assess their impact.

from sklearn.decomposition import LatentDirichletAllocation as LDA from sklearn.feature_extraction.text import CountVectorize

¹https://fenix.tecnico.ulisboa.pt/disciplinas/RGI/2023-2024/2-semestre/labs

1.3 PRI 2023/24 @ IST

- **1.3.** Let us now visualize the properties of the found topics. We can use pyLDAvis pack to:
 - select the top terms for a given topic using different thresholds;
 - understand the relationships between the topics (Intertopic Distance Plot).

```
from pyLDAvis import sklearn as sklearn_lda
import pickle, pyLDAvis

LDAvis_data_filepath = os.path.join('./ldavis_'+str(number_topics))

LDAvis_prepared = sklearn_lda.prepare(lda,doc_term_matrix,count_vectorizer)

with open(LDAvis_data_filepath, 'w') as f:
    pickle.dump(LDAvis_prepared, f)

#load the prepared pyLDAvis data from disk

with open(LDAvis_data_filepath) as f:
    LDAvis_prepared = pickle.load(f)
    pyLDAvis.save_html(LDAvis_prepared,'./ldavis_'+str(number_topics)+'.html')
```

2 Formal concept analysis (FCA)

Concepts in collections capture relationships between terms/topics and documents. Concepts support document categorization, guide document navigation, and aid document retrieval.

A formal concept is a subset of terms/topics relevant to a subset of documents. Relevance either corresponds to term presence or scoring above a predefined threshold (Boolean stance on relevance). Generally, the *extension* of a set of terms/topics corresponds to the set of documents where they occur, while the *intension* of a set of documents is the set of shared terms/topics. The set of all formal concepts – *concept lattice* – can be used to characterize the corpus.

```
Package: https://github.com/xflr6/concepts
Installation: you can install concepts using pip install concepts
```

2.1. Create a document-topic incidence matrix from the weighted topics per document in 1.3.

doc_topic_incidence_matrix= Ida.transform(doc_term_matrix)

2.2 PRI 2023/24 @ IST

2.2. Binarize the previous real-valued matrix by considering a threshold of θ =1E-2.

```
bool_data = np.where(topic_data > 0.01, 1, 0)
```

2.3. Run formal concept analysis on the previously binarized document-topic incidence matrix.

```
matrix = np.where(bool_data==0, '', bool_data)
matrix = np.where(matrix=='1', 'X', matrix)
pd.DataFrame(data=matrix, columns=["topic_"+str(i) for i in range(number_topics)]).head()
df.to_csv("df.csv", index=True, header=True, sep=',')
dc = concepts.Context.fromfile("df.csv", frmat="csv")
```

2.4. Explore the extension of specific topic sets and intension of specific document sets.

```
dc.extension(['topic_1', 'topic_2'])
dc.intension(['doc_1', 'doc_2'])
```

2.5. Discover the set of all formal concepts present in the collection.

```
for extent, intent in dc.lattice:
print('%r %r' % (extent, intent))
```

2.6. Visualize the concept lattice associated with the given collection.

```
dc.lattice.graphviz()
```

3 (optional) Coherent concepts

In contrast with formal concepts, coherent concepts are sensitive to the relevance of each term on a given document, surpassing the need for discretization. To explore the pros and cons of coherent concept analysis, we suggest you to use the BicPAMS tool on a pre-prepared document-topic relevance matrix to this end.

```
BicPAMS GUI: https://www.dropbox.com/scl/fo/so1ld7tgh1ctnz4svqli6/h?rlkey=c00nj1shceyqhkujt92h99jxz&dl=0 (with accompanying tutorials)

Document-topic file: doc_topic_relevance.csv (in the webpage)
```

3.1. Open BicPAMS, load the doc_topic_relevance file, and preserving default parameters find concepts with varying coherence: constant assumption (3, 4 and 6 symbols) and order-preserving assumption (20 symbols). Visualize the found concepts.