Lecture 2:

The classic and the predictive paradigms Decision Theory

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

August 12, 2021

Agenda

- 1 Review
- 2 Shifting Paradigms
- 3 How to Evaluate Estimators?
- 4 Statistical Decision Theory
- 5 Linear Regression
- 6 Recap

Review

Motivation

- We discussed the examples of Google Flu and Facebook face detection

 - Take away, the success was driven by an empiric approach
 Given data estimate a function f(x) that predicts y from x
- ► This is basically what we do as economists everyday so:
 - Are these algorithms merely applying standard techniques to novel and large datasets?
 - ▶ If there are fundamentally new empirical tools, how do they fit with what we know?
 - As empirical economists, how can we use them?

Big vs Small, Classic vs Predictive

- Classical Stats (small data?)
 - ► Get the most of few data (Gosset)
 - Lots of structure, e.g. $X_1, X_2, ..., X_n \sim t_v$
 - Carefully curated → approximates random sampling (expensive, slow) but very good and reliable
- ▶ Big Data (the 4 V's)
 - ▶ Data Volume
 - Data Variety
 - Data Velocity
 - ▶ Data Value

42 VIS of by Loto

x, x, - 1(9)

The Classic Paradigm

$$Y = f(X) + u$$

$$y = \frac{1 + \beta x}{f(x)} + u$$

$$(1)$$

- Interest lies on inference
- ightharpoonup "Correct" f() to understand how Y is affected by X
- ► Model: Theory, experiment
- Hypothesis testing (std. err., tests)

The Predictive Paradigm

$$f(x) = XI_3$$

$$Y = \underline{f(X)} + u \tag{2}$$

- ► Interest on predicting *Y*
- "Correct" f() to be able to predict (no inference!)
- 450 milloches

- -> predocer bon)

 -> predocer bon

 -> (R)

How to choose f(.)

How to choose f(.)

 $\blacktriangleright \operatorname{Linear} f(X) = X\beta$

Source: simulated data, see figures folder for scripts

How to choose f(.)

▶ Spline f(X) = g(X), where g is a spline

Source: simulated data, see figures folder for scripts

- ▶ We need a bit of theory to give us a framework for choosing *f*
- ► A decision theory approach involves an **action space** (A)
- \blacktriangleright The action space \mathcal{A} specify the possible "actions we might take"
- Some examples

Table 1: Action Spaces

Inference	Action Space
Estimation θ , $g(\theta)$	$\mathcal{A}=\Theta$
Prediction	$A = space of X_{n+1}$
Model Selection	$\mathcal{A} = space \ of \ X_{n+1}$ $\mathcal{A} = \{Model \ I, Model \ II,\}$
Hyp. Testing	$\mathcal{A} = \{Reject Accept H_0\}$

- ► After the data X = x is observed, where $X \sim f(X|\theta)$, $\theta \in \Theta$
- ► A decision is made
- ▶ The set of allowable decisions is the action space (A)
- The loss function in an estimation problem reflects the fact that if an action a is close to θ ,
 - ▶ then the decision *a* is reasonable and little loss is incurred.
 - ▶ if it is far then a large loss is incurred

$$(1) \underbrace{A} \rightarrow [0, \infty]$$
 (3)

Sarmiento-Barbieri (Uniandes)

Loss Function

- \triangleright If θ is real valued, two of the most common loss functions are
 - Squared Error Loss:

$$L(a,\theta) = (a-\theta)^2 \tag{4}$$

Absolute Error Loss:

$$L(a,\theta) = |a - \theta| \quad = \quad \bigcirc \tag{5}$$

- ▶ These two are symmetric functions. However, there's no restriction. For example in hypothesis testing a "0-1" Loss is common.
- Loss is minimum if the action is correct

Risk Function

In a decision theoretic analysis, the quality of an estimator is quantified by its risk function, that is, for an estimator $\delta(x)$ of θ , the risk function is

$$R(\theta, \delta) = E_{\theta}(L(\theta, \delta(X))) \tag{6}$$

at a given θ , the risk function is the average loss that will be incurred if the estimator $\delta(X)$ is used

- Since θ is unknown we would like to use an estimator that has a small value of $R(\theta, \delta)$ for all values θ
- Loss is minimum if the action is correct
- ▶ If we need to compare two estimators (δ_1 and δ_2) then we will compare their risk functions
- ▶ If $R(\delta_1, \theta) < R(\delta_2, \theta)$ for all $\theta \in \Theta$, then δ_1 is preferred because it performs better for all θ

Example: Binomial Risk Function

- ► Let $X_1, X_2, ... X_n \sim Bernoulli(p)$
- Consider 2 estimators for p: $\hat{p}^1 = \frac{1}{n} \sum X_i$ and $\hat{p}^2 = \frac{\sum X_i + \sqrt{n/4}}{n + \sqrt{n}}$ By Their risks are: $R(\hat{p}^1, p) = \frac{n}{n}$ and $R(\hat{p}^2, p) = \frac{n}{4(n + \sqrt{n})^2}$

How to choose f?

- In a prediction problem we want to predict Y from f(X) in such a way that the loss is minimum
- Assume also that $X \in \mathbb{R}^p$ and $Y \in \mathbb{R}$ with joint distribution Pr(X,Y)

$$R(Y,f(X)) = E[(Y - f(X))^{2}]$$

$$= \int (y - f(x))^{2} Pr(dx, dy)$$
(8)

conditioning on X we have that

$$R(Y,f(X)|X) = E_X E_{Y|X}[(Y - f(X))^2|X]$$

(9)

this risk is also know as the **mean squared (prediction) error** MSE(f)

It suffices to minimize the MSE(f) point wise so

$$f(x) = argmin_m E_{Y|X}[(Y - m)^2 | X = x)$$
(10)

Y a random variable and m a constant (predictor)

$$min_m E(Y-m)^2 = \int (y-m)^2 f(y) dy$$
(11)

Result: The best prediction of Y at any point X = x is the conditional mean, when best is measured using a square error loss

Sarmiento-Barbieri (Uniandes)

Proof

FOC

$$\int 2(y-m)f(y)dy = 0 \tag{12}$$

Dividing by -2 and reorganizing

$$\int y \, f(y) \, dy - \int m \, f(y) \, dy = \int y \, f(y) \, dy$$

$$= \int y \, f(y) \, dy$$

$$= \int x \,$$

$$m\int(y)dy = \int yf(y)dy \tag{14}$$

$$m = E(Y|X=x)$$
 (15)

The best prediction of Y at any point X = x is the conditional expectation function (CEF), when best is measured using a square error loss

- What shape does the CEF take?
- Linear
 - \triangleright (*y*, *X*) are jointly normal
 - ▶ When models are saturated.

Linear Regression

Note the following from the *Regression-CEF Theorem* The function $X'\beta$ provides the minimum risk linear approximation to E(Y|X), that is

$$\beta = \underset{b}{\operatorname{argmin}} E\left\{ (E(Y|X) - X'b)^2 \right\} \tag{16}$$

Proof

$$(Y - X'b)^{2} = (Y - E(Y|X)) + (E(Y|X) - X'b)^{2}$$

$$= (Y - E(Y|X))^{2} + (E(Y|X) - X'b)^{2} + 2(Y - E(Y|X))(E(Y|X) - X'b)$$

$$= (Y - E(Y|X))^{2} + (E(Y|X) - X'b)^{2} + 2(Y - E(Y|X))(E(Y|X) - X'b)$$

$$= (Y - E(Y|X))^{2} + (E(Y|X) - X'b)^{2} +$$

► The CEF approximation problem then has the same solution as the population least square problems

◆ロト ◆個 > ◆意 > ◆意 > 意 り < ②</p>

Linear Regression

- ▶ Regression provides the best linear predictor for the dependent variable in the same way that the CEF is the best unrestricted predictor of the dependent variable.
- ▶ The fact that Regression approximates the CEF is useful because it helps describe the essential features of statistical relationships, without necessarily trying to pin them down exactly.
- ► Linear regression is the "work horse" of econometrics and (supervised) machine learning.
- Very powerful in many contexts.
- ▶ Big 'payday' to study this model in detail.

Linear Regression Model

$$f(X) = X\beta$$
, estimating $f(.)$ boils down to estimating β
$$y = X\beta + u \tag{19}$$

where

- \triangleright y is a vector $n \times 1$ with typical element y_i
- ightharpoonup X is a matrix $n \times k$
 - Note that we can represent it as a column vector $X = \begin{bmatrix} X_1 & X_2 & \dots & X_k \end{bmatrix}$
- \triangleright *β* is a vector *k* × 1 with typical element *β*_{*i*}

Thus

$$y_i = X_i'\beta + u_i$$
$$= \sum_{j=1}^k \beta_j X_{ji} + u_i$$

Linear Regression Model

How do we estimate β ?

- ► Method of Moments (for HW)
- ► MLE (more on this later)
- ▶ OLS: minimize risk squared error loss \rightarrow minimizes SSR (e'e)
 - where $e = Y \hat{Y} = Y X\hat{\beta}$
 - In the HW, you will show that min SSR same as max R^2

OLS solution: $\hat{\beta} = (X'X)^{-1}X'y$

Gauss Markov Theorem

Gauss-Markov Theorem says that

$$\hat{\beta} = (X'X)^{-1}X'y \tag{21}$$

- The OLS estimator $(\hat{\beta})$ is BLUE, the more efficient than any other linear unbiased estimator,
- ▶ Efficiency in the sense that $Var(\tilde{\beta}) Var(\hat{\beta})$ is positive semidefinite matrix.

Proof: HW. Tip: a matrix $M_{p \times p}$ is positive semi-definite iff $c'Mc \geq 0 \ \forall x \in \mathbb{R}^p$

Gauss Markov Theorem

- ► Gauss Markov Theorem that says OLS is BLUE is perhaps one of the most famous results in statistics.
 - $\triangleright E(\hat{\beta}) = \beta$
 - $V(\hat{\beta}) = \sigma^2(X'X)^{-1}$
- ▶ However, it is essential to note the limitations of the theorem.
 - Correctly specified with exogenous Xs,
 - ► The term error is homoseedastic
 - No serial correlation.
 - Nothing about the OLS estimator being the more efficient than any other estimator one can imagine.

Prediction vs Estimation

- ightharpoonup Predicting well in this context \rightarrow estimating well
 - Note that the prediction of *y* will be given by $\hat{y} = X\hat{\beta}$
 - Under Gauss-Markov framework
 - \triangleright $E(\hat{y}) = X\beta$
 - $V(\hat{y}) = \sigma^2 X'(X'X)^{-1} X$
- ► Then if $\hat{\beta}$ is unbiased and of minimum variance,
- ▶ then \hat{y} is an unbiased predictor and minimum variance, from the class of unbiased linear estimators/predictors
 - Proof: for HW similar to $\hat{\beta}$ proof

Recap

- We start shifting paradigms
- ► Tools are not that different (so far)
- ightharpoonup Decision Theory: Risk with square error loss ightarrow MSE
- ▶ OLS is a "work horse" approximates the E[Y|X] quite well
- Next Class:
 - ► Next Class: OLS, Geometry, Properties

Further Readings

- ▶ Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics. Princeton university press.
- ► Casella, G., & Berger, R. L. (2002). Statistical inference (Vol. 2, pp. 337-472). Pacific Grove, CA: Duxbury.
- ► Tom Shaffer The 42 V's of Big Data and Data Science. https://www.kdnuggets.com/2017/04/42-vs-big-data-data-science.html