Question 1:

- (a) The complex numbers $z_1 = \frac{a}{1+i}$ and $z_2 = \frac{b}{1+2i}$ where a and b are real, satisfy the condition $z_1 + z_2 = 1$. Find the value of a and b.
- 3
- (b) The complex number z has modulus r and argument θ where $0 \le \theta \le \pi$. Find in terms of r and θ the modulus and arguments of
 - (i) z^2 1
 - (ii) $\frac{1}{z}$
 - (iii) iz 1
- (c) (i) Sketch (without using calculus) the curve $y = \frac{x^2 + 2x 3}{x 2}$ clearly showing its intercepts with the coordinate axes and the position of all its asymptotes.
 - (ii) Find the area bounded by the curve $y = \frac{x^2 + 2x 3}{x 2}$ and the x-axis.

Question 2: (START A NEW PAGE)

- (a) Evaluate:
 - (i) $\int_{0}^{\frac{\pi}{6}} \cos \theta \sin^{3} \theta \ d\theta.$
 - (ii) $\int_0^3 \frac{\sqrt{x}}{1+x} dx$. (Let $u^2 = x$).
 - (iii) $\int_0^{\frac{\pi}{2}} \frac{1}{5 + 3\cos\theta} \ d\theta$
- (b) Given that $I_n = \int_0^{\frac{\pi}{2}} x^n \sin x \ dx$.
 - (i) Prove that $I_n + n(n-1)I_{n-2} = n\left(\frac{\pi}{2}\right)^{n-1}$.
 - (ii) Evaluate $\int_{0}^{\frac{\pi}{2}} x^4 \sin x \ dx$.

Question 3: (START A NEW PAGE)

(a) Sketch the ellipse $9x^2 + 25y^2 = 225$ clearly showing:

4

- (i) the coordinates of the intercepts with the x and y-axes,
- (ii) the coordinates of the foci,
- (iii) the equation of the directrices.
- (b) Prove that the curves $x^2 y^2 = c^2$ and $xy = c^2$ meet at right angles.

4

3

2

2

3

4

- (c) The point $P(a\cos\theta, b\sin\theta)$ lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the ellipse meets the x-axis at the points A and A'.
 - (i) Prove that the tangent at P has the equation $\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$.
 - (ii) The tangent at P meets the tangents from A and A' at points Q and Q' respectively. Find the coordinates of Q and Q'.
 - (iii) Prove that the product $AQ \times A'Q'$ is independent of the position of P.

Question 4: (START A NEW PAGE)

- (a) Prove that $\frac{d}{dx} \left[\sqrt{bx x^2} + \frac{b}{2} \cos^{-1} \left(\frac{2x b}{b} \right) \right] = -\sqrt{\frac{x}{b x}}$ for $x \ge 0$.
- (b) A particle of mass m is attracted towards the origin by a force of magnitude $\frac{\mu m}{x^2}$ for $x \neq 0$, where the distance from the origin is x and μ is a positive constant.
 - (i) If the particle starts from rest at a distance b to the right of the origin, show that its velocity v is given by $v^2 = 2\mu \left(\frac{b-x}{bx}\right)$.
 - (ii) Find the time required for the particle to reach a point halfway towards the origin.
- (c) Using the Principle of mathematical induction, prove that $(x+1)^n nx 1$ is divisible by x^2 for all integer $n \ge 2$.

- (a) (i) Using the substitution $x = 2\sin\theta$, prove that $\int_{0}^{2} (4-x^{2})^{\frac{3}{2}} dx = 16 \int_{0}^{\frac{\pi}{2}} \cos^{4}\theta \ d\theta$
 - (ii) A solid (see diagram) sits on a semi-circular base of radius 2 units. Vertical cross-sections perpendicular to the diameter of the semi-circle are right-angled triangles with their heights being bounded by the parabola $y = 4 x^2$. By slicing the solid perpendicular to the *x*-axis, show that the volume $(V unit^3)$ of the solid formed is given by

$$V = \int_{0}^{2} \left(4 - x^{2}\right)^{\frac{3}{2}} dx$$

2

5

1

5

- (iii) Find the volume of the solid.
- (b) A tourist is walking along a straight road. At one point he observes a vertical tower standing on a large flat plain. The tower is on a bearing 053° with an angle of elevation of 21°. After walking 230 metres, the tower is on a bearing 342° with an angle of elevation of 26°.
 - (i) Draw a neat diagram showing the above information.
 - (ii) Find the height of the tower correct to the nearest metre.

Question 6: (START A NEW PAGE)

- (a) The tangent to the hyperbola $xy = c^2$ at the point $T\left(ct, \frac{c}{t}\right)$ meets the x and y axes at F and G respectively and the normal at T meets the line y = x at H.
 - (i) Show that the tangent at *T* is $x + t^2y = 2ct$.
 - (ii) Show that the normal at T is $t^3x ty = c(t^4 1)$.
 - (iii) Prove that $FH \perp HG$.
- (b) The area bounded by the curve $y = \frac{\ln x}{\sqrt{x}}$ and the *x*-axis for $1 \le x \le e$ is rotated through one revolution about the *y*-axis. Using the method of cylindrical shells, find the volume of the solid formed.

Question 7: (START A NEW PAGE)

with no restrictions.

(i)

(a) In a state swimming championships, 12 swimmers (including the Jones twins) are chosen to represent their club and are divided into three teams of four swimmers to form 3 relay teams. Find the number of ways this can be done:

2

(ii) if the Jones twins (Angela and Bethany) are not to be in the same relay team.

3

(b) The ends of a light string are fixed at 2 points A and B with B directly below A, as shown in the diagram. The string passes through a small ball of mass m which is then fastened to the string at point P. The angle PAB is θ and the distance from P to AB is r.

ball r

Suppose now that the ball revolves in a horizontal circle about the vertical through AB with constant angular velocity ω and while this happens both sections (AP and BP) of the string are taut and the angle APB is a right angle.

(i) Draw a diagram showing the forces acting on the ball.

2

В

(ii) Show that the tensions T_1 and T_2 in the sections of the string AP and BP respectively are $T_1 = m(r\omega^2 \sin \theta + g \cos \theta)$ and $T_2 = m(r\omega^2 \cos \theta - g \sin \theta)$.

4

(iii) Given that AB = 100cm and AP = 80cm, show that $\omega^2 > \frac{25g}{16}$.

2

2

(iv) Suppose that the ball is free to slide on the string. Show that the condition for the ball to remain at point P on the string is $\omega^2 = \frac{175g}{12}$.

Question 8: (START A NEW PAGE)

(a) (i) If
$$t = \tan x$$
 prove that $\tan 4x = \frac{4t(1-t^2)}{t^4-6t^2+1}$.

- (ii) If $\tan x \tan 4x = 1$ deduce that $5t^4 10t^2 + 1 = 0$.
- (iii) Prove that $x = 18^{\circ}$ and $x = 54^{\circ}$ satisfy the equation $\tan x \tan 4x = 1$.
- (iv) Deduce that $\tan 54^\circ = \sqrt{\frac{5+2\sqrt{5}}{5}}$.
- (b) ABCD is a cyclic quadrilateral and E is on BD such that $\angle DAE = \angle BAC$.

- (i) Copy the diagram onto your answer sheet and prove that \triangle ABE and \triangle ADC are similar.
- (ii) Prove that $AB \times CD = AC \times BE$.
- (iii) Hence by proving that another pair of triangles are similar, deduce that $AB \times CD + AD \times BC = AC \times BD$.

THE END

(b) Given that x, y and z are distinct positive numbers, prove that

$$(i) x+y>2\sqrt{xy}.$$

(ii)
$$(x+y)(y+z)(z+x) > 8xyz$$
.

(iii)
$$\frac{x+y}{z} + \frac{y+z}{x} + \frac{z+x}{y} > 6$$
.

(a) (i) Prove that
$$2\sin\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right) = \sin A + \sin B$$
.

(ii) Write down a result similar to (i) for $\cos A + \cos B$.

(iii) Prove that
$$\frac{\sin A + \sin B}{\cos A + \cos B} = \tan \left(\frac{A+B}{2}\right)$$
.

(iv) If A, B and C are the angles of a triangle, prove that $\frac{\sin A + \sin B}{\cos A + \cos B} = \cot \left(\frac{C}{2}\right).$