## **Listing of Claims**

1. (Currently Amended) An apparatus, comprising:

optical pick-up means for recording data;

driver circuit means for generating a driving signal for driving the optical pick-up

means to adjust an optical power level of the optical pick-up means; and

control circuit means for generating a main pulse for the driving signal and a sub

pulse having a prescribed width that at least partially overlaps the main pulse, wherein the sub

pulse is being generated at a prescribed amount of time prior to generating the main pulse, the

prescribed amount of time corresponding to a predetermined portion of a duty ratio of said sub

pulse, and wherein the driving signal rises substantially to a first level during the prescribed

amount of time prior to when the main pulse is generated, and the driving signal maintains

substantially said first level for a remaining time of the prescribed width of the sub pulse.

2. (Currently Amended) The apparatus as set forth in claim 1, wherein the sub pulse

overlaps is overlapped with the main pulse for approximately the prescribed amount of time.

3. (Original) The apparatus as set forth in claim 1, wherein the sub pulse has

substantially the same signal level as that of the main pulse.

- 4. (Currently Amended) The apparatus as set forth in claim 1, wherein the driver circuit means is driven by signals indicative of a magnitude and ON/OFF timings of the main pulse and signals indicative of a magnitude and ON/OFF timings of the sub pulse.
- 5. (Currently Amended) The apparatus as set forth in claim 1, further comprising:

  a storage circuit means for storing variables indicative of respective start and end times and respective magnitudes of the main pulse and the sub pulse according to sizes of respective recording pits, wherein the control circuit means generates the main pulse and the sub pulse using a subset of the variables corresponding to each size of the recording pits.
  - 6. (Canceled)
- 7. (Currently Amended) The apparatus as set forth in claim 1, further comprising:

  a storage circuit means for storing variables indicative of respective start and end times and respective magnitudes of the main pulse and the sub pulse according to individual disk manufacturers, wherein the control means generates the main pulse and the sub pulse using corresponding variables of the variables for each disk manufacturer.

8. (Currently Amended) A method for driving an LD (Laser Diode) for recording data on an optical disk, comprising:

checking pre-stored variables according to respective manufacturers and respective recording pits of the optical disk;

generating a main pulse based on the checked variables and a sub pulse having a prescribed width that at least partially overlaps the main pulse, the sub pulse being generated at a prescribed amount of time prior to generating the main pulse, the prescribed amount of time corresponding to a predetermined portion of a duty ratio of said sub pulse;

outputting a driving signal for driving an LD contained in an optical pick-up unit based on upon receiving the main pulse and the sub pulse, wherein the driving signal rises substantially to a first level during the prescribed amount of time prior to when the main pulse is generated, and the driving signal maintains substantially said first level for a remaining time of the prescribed width of the sub pulse; and

recording the data on the optical disk at an optical power level adjusted by the driving signal.

9. (Original) The method as set forth in claim 8, wherein the sub pulse has substantially the same signal level as the main pulse, and has a pulse width less than a drive period of the LD for a smallest recording pit.

- 10. (Original) The method as set forth in claim 8, wherein the checked pre-stored variables are indicative of a magnitude and ON/OFF timings of the main pulse, and variables indicative of a magnitude and ON/OFF timings of the sub-pulse.
- 11. (Currently Amended) A method for recording information on an optical storage medium, comprising:

generating a sub-pulse for driving a recording unit;

generating a main pulse for driving the recording unit; and

controlling the recording unit for recording data based on the sub-pulse and main pulse, wherein the sub-pulse is generated before the main pulse, wherein the sub-pulse is generated a predetermined amount of time before the main pulse which corresponds to a predetermined portion of a duty ratio of the sub-pulse, said main pulse and sub-pulse forming a driving signal that rises substantially to a first level during the prescribed amount of time prior to when the main pulse is generated and the driving signal maintains substantially said first level for a remaining time of the prescribed width of the sub pulse.

- 12. (Canceled)
- 13. (Original) The method of claim 12, wherein the duty ratio is 50%.

- 14. (Original) The method of claim 12, further comprising:

  detecting the duty ratio based on timing data stored on the optical storage medium.
- 15. (Currently Amended) The method of claim 11, wherein the sub-pulse is generated based on a predetermined time before the main pulse, and wherein said predetermined time is based on a type of optical storage medium or a width of the sub-pulse.
- 16. (Original) The method of claim 15, wherein said width is equal to T/32, wherein T corresponds to a drive period of the recording unit for a smallest recording pit.
  - 17. (Original) The method of claim 15, further comprising:detecting said width based on timing data stored on the optical storage medium.
- 18. (Original) The method of claim 11, further comprising:
  reading information from the optical storage medium; and
  determining a manufacturer of the optical storage medium based on said
  information.

- 19. (Original) The method of claim 18, wherein said information includes a start time of a lead-out area, a start time of a lead-in area or disc id from a table of contents stored on the medium.
- 20. (Original) The method of claim 18, further comprising:

  retrieving timing information corresponding to said manufacturer; and

  generating the sub-pulse a predetermined amount of time before generation of the
  main pulse based on the timing information.
  - 21. (Currently Amended) An apparatus, comprising:a processor configured to generate a sub-pulse for driving a recording unit before

a main pulse for driving the recording unit; and

a driver configured to drive the recording unit to record data for an optical storage medium based on the sub-pulse and main pulse, wherein the processor generates the sub-pulse a predetermined amount of time before the main pulse, said predetermined amount of time based on a duty ratio of the sub-pulse, and

wherein the driver generating a driving signal for driving the recording unit based on the main pulse and sub-pulse, the driving signal rising substantially to a first level during the predetermined amount of time prior to when the main pulse is generated and the driving signal maintaining substantially said first level for at least a remaining time of said overlap.

- 22. (Canceled)
- 23. (Currently Amended) The apparatus of claim <u>21</u> <del>22</del>, wherein the processor determines the duty ratio based on timing data stored on the optical storage medium.
- 24. (Currently Amended) The apparatus of claim 21, wherein the processor generates the sub-pulse a predetermined time before the main pulse, said predetermined amount of time is based on a type of optical storage medium or a width of the sub-pulse.
- 25. (Currently Amended) The apparatus of claim 24, wherein the processor determines a said width of the sub-pulse based on timing data stored on the optical storage medium.
- 26. (Original) The apparatus of claim 21, further comprising:

  a reading unit that reads information from the optical storage medium,

  wherein the processor determines a manufacturer of the optical storage medium based on said information.
  - 27. (Original) The apparatus of claim 26, further comprising:

a memory that stores timing information corresponding to said manufacturer; wherein the processor generates the sub-pulse a predetermined amount of time before generation of the main pulse based on the tinting information retrieved from memory.