Switch Mode Schottky Power Rectifier

DPAK Power Surface Mount Package

The MBRD1035CTL employs the Schottky Barrier principle in a large area metal-to-silicon power diode. State of the art geometry features epitaxial construction with oxide passivation and metal overlay contact. Ideally suited for low voltage, high frequency switching power supplies, free wheeling diode and polarity protection diodes.

Features

- Highly Stable Oxide Passivated Junction
- Guardring for Stress Protection
- Matched Dual Die Construction –
 May be Paralleled for High Current Output
- High dv/dt Capability
- Short Heat Sink Tap Manufactured Not Sheared
- Very Low Forward Voltage Drop
- Epoxy Meets UL 94 V-0 @ 0.125 in
- SBRD8 Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb-Free and are RoHS Compliant*

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 0.4 Gram (Approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- ESD Rating:
 - ◆ Human Body Model = 3B (> 8 kV)
 - Machine Model = C > 400 V

ON Semiconductor®

http://onsemi.com

SCHOTTKY BARRIER RECTIFIER 10 AMPERES 35 VOLTS

DPAK CASE 369C

MARKING DIAGRAM

Y = Year

WW = Work Week

B1035CL = Device Code

G = Pb-Free Package

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

ON

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	35	V	
Average Rectified Forward Current (At Rated V _R , T _C = 115°C) Per Leg Per Package	Io	5.0 10	A	
Peak Repetitive Forward Current (At Rated V _R , Square Wave, 20 kHz, T _C = 115°C) Per Leg	I _{FRM}	10	А	
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, halfwave, single phase, 60 Hz) Per Package	I _{FSM}	50	А	
Storage / Operating Case Temperature	T _{stg,} T _c	-55 to +150	°C	
Operating Junction Temperature (Note 1)	TJ	-55 to +150	°C	
Voltage Rate of Change (Rated V _R , T _J = 25°C)	dv/dt	10,000	V/μs	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case Per Leg	$R_{ heta JC}$	3.0	°C/W
Thermal Resistance, Junction–to–Ambient (Note 2) Per Leg	$R_{ hetaJA}$	137	°C/W

^{2.} Rating applies when using minimum pad size, FR4 PC Board

ELECTRICAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Maximum Instantaneous Forward Voltage (Note 3) (See Figure 2) Per Leg	V _F		V
$(I_F = 5 \text{ Amps}, T_J = 25^{\circ}\text{C})$		0.47	
$(I_F = 5 \text{ Amps}, T_J = 100^{\circ}\text{C})$ $(I_F = 10 \text{ Amps}, T_J = 25^{\circ}\text{C})$		0.41 0.56	
$(I_F = 10 \text{ Amps}, T_J = 100^{\circ}\text{C})$		0.55	
Maximum Instantaneous Reverse Current (Note 3) (See Figure 4) Per Lea	I _R		mA
$(V_R = 35 \text{ V}, T_J = 25^{\circ}\text{C})$		2.0	
$(V_R = 35 \text{ V}, T_J = 100^{\circ}\text{C})$ $(V_R = 17.5 \text{ V}, T_J = 25^{\circ}\text{C})$		30 0.20	
$(V_R = 17.5 \text{ V}, T_J = 100^{\circ}\text{C})$		5.0	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 3. Pulse Test: Pulse Width \leq 250 μ s, Duty Cycle \leq 2.0%

^{1.} The heat generated must be less than the thermal conductivity from Junction–to–Ambient: $dP_D/dT_J < 1/R_{\theta JA}$.

ORDERING INFORMATION

Device	Package	Shipping [†]
MBRD1035CTLG	DPAK (Pb-Free)	75 Units / Rail
SBRD81035CTLG*		75 Units / Rail
MBRD1035CTLT4G		2,500 Units / Tape & Reel
SBRD81035CTLT4G*		2,500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TYPICAL CHARACTERISTICS

100

IF, INSTANTANEOUS FORWARD CURRENT (AMPS) 10 $T_J = 125^{\circ}C$ $T_{.I} = 25^{\circ}C$ 1.0 $T_J = 100^{\circ}C$ 0.10 0.50 0.70 0.90 V_E, MAXIMUM INSTANTANEOUS FORWARD VOLTAGE (VOLTS)

Figure 1. Typical Forward Voltage Per Leg

Figure 2. Maximum Forward Voltage Per Leg

Figure 3. Typical Reverse Current Per Leg

Figure 4. Maximum Reverse Current Per Leg

^{*}SBRD8 Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

Figure 5. Current Derating Per Leg

Figure 6. Forward Power Dissipation Per Leg

Figure 7. Capacitance Per Leg

Figure 8. Typical Operating Temperature
Derating Per Leg *

r(t) = thermal impedance under given conditions,

Pf = forward power dissipation, and

Pr = reverse power dissipation

This graph displays the derated allowable T_J due to reverse bias under DC conditions only and is calculated as $T_J = T_{Jmax} - r(t)Pr$, where r(t) = Rthja. For other power applications further calculations must be performed.

^{*} Reverse power dissipation and the possibility of thermal runaway must be considered when operating this device under any reverse voltage conditions. Calculations of T_J therefore must include forward and reverse power effects. The allowable operating T_J may be calculated from the equation: $T_J = T_{Jmax} - r(t)(Pf + Pr)$ where

Figure 9. Thermal Response Junction to Case (Per Leg)

Figure 10. Thermal Response Junction to Ambient (Per Leg)

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE) CASE 369C ISSUE D

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.18005	0 25 21507	014557	5(708002	D2928 6364 (4(46461)90905(DB9 355M 1E1-35
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
Е	0.250	0.265	6.35	6.73	
е	0.090	BSC	2.29	BSC	
- 1		1			