Quantum Computing

Lecture |02>

The Quantum Bit

Paolo Zuliani

Outline

- Probabilistic algorithms
- The Quantum Bit (qubit)
- Qubit operations

- Most of the algorithms you've seen so far are deterministic
- For a given input they'll produce the same output
 - (assuming your code doesn't crash or hangs ©)

- **Note**: multiple input values *α*, *b*, *c*, *etc*. can "map" to the same output value
 - This is OK think about a program for a simple calculator!

 With stochastic (probabilistic) algorithms it can be that

- We assume that the number of possible outputs is finite (say N)
 - but not necessarily so the number of inputs

 For any input i we have at most N possible outputs, and they satisfy

- The program will output something with probability 1
 - Essentially, we are asking for (probabilistic) termination!

- Classical (non-quantum) algorithms introduce probabilistic behaviour via *pseudo-random number generators* (PRNGs)
 - PRNGs produce, say, a sequence of integers such that given an element of the sequence it is difficult to predict the next one (*i.e.*, the best one can do is "to guess" randomly)
 - **Note:** PRNGs necessarily produce <u>finite</u> sequences: after *many* elements are produced, the sequence repeats itself (*i.e.*, it is no longer random!)

Probabilities sum up to 1

- A classical bit is a <u>bi</u>nary digi<u>t</u>: it's either "0" or "1".
- The quantum equivalent are given by the vectors

$$"0"=|0\rangle = {1 \choose 0} \qquad "1"=|1\rangle = {0 \choose 1}$$

• There's more! The "true" state of a qubit is the *superposition*

$$\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$

where α , β are **complex numbers** and satisfy $|\alpha|^2 + |\beta|^2 = 1$.

$$\alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$$

 α, β are **probability amplitudes**. (Recall that $|\alpha|^2 + |\beta|^2 = 1$.)

Example:

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

- The "true" state of a qubit *CANNOT* be observed
 - We cannot in principle find out precisely the value of α , β
- Qubits are <u>measured</u>

• We know <u>for sure</u> that after measurement the qubit is (*a multiple*) either |0⟩ or |1⟩.

- Note that for any complex α , $|i\alpha| = |\alpha|$.
- In general, $|z\alpha| = |\alpha|$ if |z| = 1. (Easy to prove.)
- But this means that for any complex |z| = 1, the qubit states

$$z\alpha|0\rangle + z\beta|1\rangle \qquad (|\alpha|^2 + |\beta|^2 = 1)$$

CANNOT be distinguished by any measurement!!!

Qubit Operations

Quantum transformations (except measurements) are <u>linear</u>

$$T(\alpha|0\rangle + \beta|1\rangle) = \alpha T(|0\rangle) + \beta T(|1\rangle)$$

- Any linear transformation (on a vector space) can be represented by a matrix
- The "do nothing" transformation is the 2x2 identity matrix

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad I|0\rangle = |0\rangle \qquad I|1\rangle = |1\rangle$$

(Check that $I|\Phi\rangle = |\Phi\rangle$, where $|\Phi\rangle$ is the general qubit state above.)

Qubit Operations: NOT

The equivalent of the NOT gate on classical bits

$$NOT = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \sigma_{x}$$

is one of the three Pauli matrices (much used in quantum physics and computation!)

NOT
$$|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

NOT $|1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$

Qubit Operations: more Pauli Matrices

$$\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$\sigma_y|0\rangle = i|1\rangle$$
 $\sigma_y|1\rangle = -i|0\rangle$

$$\sigma_z |0\rangle = |0\rangle$$
 $\sigma_z |1\rangle = -|1\rangle$

- Verify the equalities above!
- Exercise: What are σ_x^2 , σ_y^2 , σ_z^2 ?

Qubit Operations: Hadamard Transform

Critically important in quantum computing:

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left[\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right] = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

- From a classical state we obtain a <u>superposition</u>!
- What happens if we measure it?

Qubit Operations: Hadamard Transform

A "true", random bits generator!

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

with probability $\frac{1}{2}$

with probability $\frac{1}{2}$

(Exercise: try $H|1\rangle$.)

Quantum Evolution

- Is any matrix an allowed quantum transformation?
- NO! Matrices must preserve the *norm* of their input vectors

$$v = \alpha |0\rangle + \beta |1\rangle$$
 $||v|| = \sqrt{|\alpha|^2 + |\beta|^2}$ is the norm of v

- In quantum computing we already have $|\alpha|^2 + |\beta|^2 = 1$, so ||v|| = 1 for any qubit state v.
- Intuitively, after a measurement the qubit is in some state with probability 1.

Quantum Evolution

These norm-preserving matrices are called <u>unitary</u>.
 Definition: A matrix is called <u>unitary</u> if and only if

$$||Uv|| = ||v||$$
 for any qubit state v

- Intuitively, unitary transforms "preserve the <u>probabilities</u>" (not necessarily the amplitudes!)
- (Check that the Pauli and Hadamard matrices are unitary.)

"Picturing" Qubits

- $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$ with α, β complex and $|\alpha|^2 + |\beta|^2 = 1$
- [Polar coordinates: any complex number z can be written as $z = |z|(\cos\theta + i\sin\theta)$ for some angle θ .]
- By rewriting α and β in polar coordinates our qubit becomes

$$|\psi\rangle = e^{i\gamma}(\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$$

where γ , φ and θ are *real* numbers.

• $|e^{i\gamma}| = 1$, so it has no observable effect and we may write

$$|\psi\rangle = (\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$$

"Picturing" Qubits: the Bloch Sphere

$$|\psi\rangle = (\cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle)$$

where $0 < \theta < \pi$ and $0 < \varphi < 2\pi$

There is no simple Block sphere equivalent for two or more qubits...

https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg

