# Sex allocation in hermaphroditic metapopulations

Camille Roux<sup>2</sup>, Charles Mullon<sup>1</sup>, Samuel Neuenschwander<sup>1</sup>, Jérôme Goudet<sup>1</sup> and John R. Pannell<sup>1</sup>

> <sup>1</sup> DEE, University of Lausanne, Switzerland <sup>2</sup> UMR 8198 - Evo-Eco-Paleo, University of Lille, France Website: https://github.com/popgenomics/quantiSex

#### A. Sex allocation in dioecious or gonochoristic species

- 1. Sex allocation  $\approx$  Proportion of  $\circlearrowleft$  and  $\circlearrowleft$  produced by mothers (weighted by the relative sex-specific cost of raising offspring).
- 2. In panmictic populations  $\Rightarrow$  sex-ratios are balanced.



Selection for the minority sex

3. Non-random mating  $\Rightarrow$  sex-ratios are biased.

Competitions among sons for mating (=Local Mate Competition) favours the selection for strategies that bias the sex-ratio towards the production of fewer  $\sigma$  and more  $\varphi$ .



Strong LMC  $\Rightarrow$  bias toward daughters Decreased LMC  $\Rightarrow$  production of sons closer to 50%

# B. Sex allocation in demographically stable hermaphrodite (\$\varphi\$) populations

- 1. Sex allocation = Relative investment made to O versus Q functions by of individuals.
- 2. If random mating + large dispersion  $\Rightarrow \mathbf{Q}'$  individuals favour equal investment in both  $\circlearrowleft$  and  $\circlearrowleft$  functions (=50% of  $\circlearrowleft$  allocation).
- 3. If limited dispersal  $\Rightarrow$  Sib competition  $\Rightarrow$  Selection for increased investment in the sex that shows the **smaller degree of competition** between siblings.



Relation between selfing rate in  $\mathbf{Q}^{\prime}$  and optimal Pallocation.

- A)  $Q_{allocation} = \frac{1+s}{2}$  (with symetrical cost and no inbreeding depression) B)  $F_{IS} = \frac{s}{2-s}$
- C)  $Q_{allocation}$  is difficult to measure directly from phenotypical traits, but can be estimated by  $F_{IS}$  from neutral molecular markers.

#### C. Questions

High levels of inbreeding can also emerge in outcrossers from metapopulation dynamics (local extinctions and recolonisations).

- 1. How rapid must population turnover be to expect a strong biased sex allocation in a metapopulation of Q?
- 2. What index of inbreeding would be the best predictor of the sex allocation selected?

## D. Quantitative genetic simulations of \( \varphi \) metapopulations

#### Model:

- Multi-deme metapopulation made up of  $\mathbf{Q}'$ .
- Sex allocation is a function of the additive effects of alleles at a single locus subject to recurrent mutations that alter the allelic effects.
- Mating within demes and seed production depends on the sex allocations of individuals.
- Demes are subject to recurrent stochastic extinction, following which their sites are recolonized through seed dispersal from the rest of the metapopulation.
- Population genetics statistics  $F_{ST}$ ,  $F_{IS}$ ,  $G'_{ST}$  and  $D_{Jost}$  were computed at 20 unlinked neutral loci.



- $Q_{allocation}$  varies from 0.5 to 1 and  $\nearrow$  if: migration  $\searrow$  or extinction  $\nearrow$  (A).
- Increased gene flow progessively  $\searrow$  the equilibrium  $Q_{allocation}$  to values expected for single partial selfing populations  $(\mathbf{B})$ .

## E. Predicting $Q_{allocation}$ from neutral molecular markers



- No positive association between  $Q_{allocation}$  and  $(F_{IS}$  (Pearson's  $R^2 = 0.0006$ ; p - value = 0.5494).
- $Q_{allocation}$  is most associated with  $F_{ST}$  (Pearson's  $R^2 = 0.84$ ;  $p-value < 2.2x10^{16}$ ).
- New indices of differentiation  $G'_{ST}$  and  $D_{Jost} \searrow$  when migration  $\nearrow$ , but also when extinction  $\nearrow$ .
- Low  $D_{Jost}$  can thus describe two opposite situations: no population turnover or extreme population turnover.

#### Conclusions

- 1. Population turnover should select for Q-biased allocation if migration is insufficiently strong to erase the genetic signatures of inbreeding brought about by colonisation.
- 2. In metapopulations:  $F_{ST}$  is a much better predictor of the sex allocation selected than  $F_{IS}$ .

#### References

Düsing, K (1883) Die Factoren, welche die Sexualität entscheiden (Dissertation vorgelegt) Fisher, R.A (1930) The Genetical Theory of Natural Selection (Clarendon Press, Oxford).

Hamilton, WD (1967) Extraordinary sex ratios. Science, 156 (3774): 477–88.

Charlesworth, D. and Charlesworth, B. (1981) Allocation of resources to male and female functions in hermaphrodites. Biological

Journal of the Linnean Society, 15 (1): 57-74. Herre, E. A. (1985) Sex ratio adjustment in fig wasps. *Science*, **228** (4701): 896-898.

David, P., Pujol, B., Viard, F., Castella, V., and Goudet, J. (2007) Reliable selfing rate estimates from imperfect population

genetic data.  $Molecular\ ecology,\ \mathbf{16}(12)$ : 2474-2487. Whitlock, M. C. (2011).  $G'_{ST}$  and  $D_{Jost}$  do not replace  $F_{ST}$ . Molecular ecology, **20**(6), 1083-1091.