Regulatory Sequence Analysis

Sequence models (Bernoulli and Markov models)

Jacques van Helden https://orcid.org/0000-0002-8799-8584

Aix-Marseille Université, France Theory and Approaches of Genome Complexity (TAGC)

> Institut Français de Bioinformatique (IFB) http://www.france-bioinformatique.fr

Why do we need random models?

- Any pattern discovery relies on an underlying model to estimate the random expectation.
 - This model can be simple (succession of independent and equiprobable nucleotides) or more elaborate (differences in oligonucleotide composition).
 - The choice of an inappropriate model can lead to false conclusions.
 - In practice, a sequence model can be used to generate random sequences, which will serve to validate some theoretical assumptions.
- Example: comparison of observed and expected occurrences with the binomial distribution, as applied with oligo-analysis:
 - Relies on an assumption that successive oligonucleotides are independent from each other.
 - This is clearly not the case: each k-letter word depends on the k-1 neighbour words on both sides. How far does it affect the conclusions?
 - We could test it by generating random sequences, counting words, and fitting the distribution of observed occurrences with a binomial distribution.

Probability of a sequence segment

- What is the probability for a given sequence segment (oligonucleotide, "word") to be found at a given position of a DNA sequence?
- Different models can be chosen
 - Bernoulli model
 - Assumes independence between successive nucleotides.
 - The probability of each residue is fixed a priori (prior residue probability)
 - **Example:** P(A) = 0.35; P(T) = 0.32; P(C) = 0.17; P(G) = 0.16
 - Particular case: equiprobable residues
 - P(A) = P(T) = P(C) = P(G) = 0.25
 - Simple, but NOT realistic!
 - Markov model
 - The probability of each residue depends on the *m* preceding residues.
 - The parameter m is called the order of the Markov model
 - Remark: a Markov model of order 0 is a Bernoulli model.

Independent and equiprobable nucleotides

The simplest model: Bernoulli with identically and independently (i.i.d.) distributed nucleotides.

$$p = P(A) = P(C) = P(G) = P(T) = 0.25$$

 $P(S) = p^L$

- The probability of a sequence
 - Is the product of its residue probabilities (independence)
 - Equiprobability: since all residues have the same probability, it is simply computed as the residue proba (p) to the power of the sequence length (L)
 - S is a sequence segment (e.g. an oligonucleotide)
 - L length of the sequence segment
 - p nucleotide probability
 - *P(S)* is the probability to observe this sequence segment at given position of a larger sequence
- Example
 - Arr P(CACGTG) = 0.25⁶ = 2.44e⁻⁴

Bernoulli model : independently distributed nucleotides

- A more refined model consists in using residue-specific probabilities. The probability of each residue is assumed to be constant on the whole sequence (Bernoulli schema).
- The probability of a sequence is the product of its residue probabilities.
 - i = 1..k is the index of nucleotide positions
 - ho is the residue found at position I
- Example: non-coding sequences in the yeast genome

$$P(A) = P(T) = 0.325$$

$$P(C) = P(G) = 0.175$$

□ P(CACGTG) = P(C) P(A) P(C) P(G) P(T) P(G)
=
$$0.325^2 * 0.175^4$$

= $9.91E^{-5}$

$$P(S) = \prod_{i=1}^{L} P(r_i)$$

Bernoulli models

- A Bernoulli model assumes that
 - each residue has a specific prior probability
 - this probability is constant over the sequence (no context dependencies)
- The heat-maps below depict the nucleotide frequencies in non-coding upstream sequences of various organisms.
- The frequencies of AT versus CG show strong inter-organism differences.

Markov chains and transition matrices

Transition matrix, order 1

	а	C	g	τ
Α	P(A A)	P(C A)	P(G A)	P(T A)
C	P(A C)	P(C C)	P(G C)	P(T C)
G	P(A G)	P(C G)	P(G G)	P(T G)
Т	P(A T)	P(C T)	P(G T)	P(T T)

Transition matrix, order 2

			,	_
Pref	Α	С	G	Т
AA	P(A AA)	P(C AA)	P(G AA)	P(T AA)
AC	P(A AC)	P(C AC)	P(G AC)	P(T AC)
AG	P(A AG)	P(C AG)	P(G AG)	P(T AG)
ΑT	P(A AT)	P(C AT)	P(G AT)	P(T AT)
CA	P(A CA)	P(C CA)	P(G CA)	P(T CA)
CC	P(A CC)	P(C CC)	P(G CC)	P(T CC)
CG	P(A CG)	P(C CG)	P(G CG)	P(T CG)
CT	P(A CT)	P(C CT)	P(G CT)	P(T CT)
GA	P(A GA)	P(C GA)	P(G GA)	P(T GA)
GC	P(A GC)	P(C GC)	P(G GC)	P(T GC)
GG	P(A GG)	P(C GG)	P(G GG)	P(T GG)
GT	P(A GT)	P(C GT)	P(G GT)	P(T GT)
TA	P(A TA)	P(C TA)	P(G TA)	P(T TA)
TC	P(A TC)	P(C TC)	P(G TC)	P(T TC)
TG	P(A TG)	P(C TG)	P(G TG)	P(T TG)
TT	P(A TT)	P(C TT)	P(G TT)	P(T TT)

$$P(r_i \mid S_{i-m,i-1})$$

- In a Markov model, the probability to find a letter at position i depends on the residues found at the m preceding residues.
- The tables represent the transition matrices for Markov chain models of order m=1 (top) and m=2 (bottom).
- Each row specifies one *prefix*, each column one suffix.
- The values indicate the probability to observe a given residue (suffix r_i) at position (i) of the sequence, as a function of the m preceding residues (the prefix $S_{i-m,i-1}$)
- Particular case
 - A Bernoulli model is a Markov model of order 0.

Markov model estimation ("training")

 Transition frequencies for a Markov model of order m can be estimated from the frequencies observed for oligomers (k-mers) of length k=m+1 in a reference sequence set.

Example

- The upper table shows dinucleotide frequencies (k=2) computed from the whole set of upstream sequences of the yeast *Saccharomyces cerevisiae*.
- This table can be used to estimate a Markov model of order m = k-1 = 1.

Dinucleotide frequencies					
Sequences	Dccurrences	requency			
S	N(S)	F(S)			
AA	526 149	0.112			
AC	251 377	0.054			
AG	275 056	0.059			
AT	414 453	0.088			
CA	294 423	0.063			
CC	178 324	0.038			
CG	146 052	0.031			
СТ	275 859	0.059			
GA	277 343	0.059			
GC	184 367	0.039			
GG	173 404	0.037			
GT	239 569	0.051			
TA	369 980	0.079			
TC	280 475	0.060			
TG	279 932	0.060			
TT	521 236	0.111			

Markov model estimation ("training")

Transition frequencies for a Markov model of order *m* can be estimated from the frequencies observed for oligomers (*k*-mers) of length *k=m+1* in a reference sequence set.
 Example

- 5 The
 - The upper table shows dinucleotide frequencies (k=2) computed from the whole set of upstream sequences of the yeast *Saccharomyces cerevisiae*.
 - □ This table can be used to estimate a Markov model of order m = k-1 = 1.

P(Suffix)

N(Suffix)

0.313

1,467,895

$$r_{i} \mid S_{1..m} = \frac{F_{bg}(r_{i} \mid S_{1..m})}{\sum_{j \in A} F_{bg}(r_{j} \mid S_{1..m})} = \frac{F_{bg}(S_{1..m}r_{i})}{\sum_{j \in A} F_{bg}(S_{1..m}r_{j})}$$

$$P(G \mid T) = \frac{F(G \mid T)}{\sum_{j \in A} F(j \mid T)} = \frac{F(TG)}{F(T *)}$$
$$= \frac{0.060}{0.079 + 0.060 + 0.060 + 0.111}$$
$$= \frac{0.060}{0.310} = 0.194$$

				C	T	275,859	
				G	iΑ	277,343	
-	(C 10)			G	iC	184,367	
g١	$(S_{1m}r_i)$			G	iG	173,404	
_	(a)			G	ìΤ	239,569	
b	$g(S_{1m}r_j)$			Т	Ά	369,980	
,	8 (1) /				C	280,475	
_				Т	G	279,932	
				<u>T</u>	Т	521,236	
	Transition	matrix, o	raer 1				
	Transition Prefix \ Suffix		raer 1 C	G	T	P(Prefix)	
				G 0.187	T 0.283	P(Prefix) 0.313	
	Prefix \ Suffix	Α	С		-	_ `	•
	Prefix \ Suffix A	A 0.359	C 0.171	0.187	0.283	0.313	:
	Prefix \ Suffix A C	A 0.359 0.329	0.171 0.199	0.187 0.163	0.283 0.308	0.313 0.191	

0.191

894,543

0.187

874,444

0.310

1,451,117

Dinucleotide frequencies

Seauences

AA

AC

AG

AT

CA

CC

CG

Occurrences Frequency

F(S)

0.112

0.054

0.059

0.088

0.063

0.038

0.031

0.059

0.059 0.039 0.037 0.051 0.079 0.060 0.060 0.111

N(Suffix) 1,467,035

894,658

874,683 1,451,623

N(S)

526,149

251,377

275,056

414,453

294,423

178,324

146,052

Examples of transition matrices

- The two tables show the transition matrices for a Markov model of order 1 (top) and 2 (bottom), respectively.
- Trained with the whole set of non-coding upstream sequences of the yeast Saccharomyces cerevisiae.
- Notice the high probability of transitions from AA to A and TT to T.

Pre/Suffix	Α	С	G	Т	P(Prefix)
a	0.371	0.165	0.178	0.285	0.321
С	0.327	0.190	0.167	0.316	0.183
g	0.312	0.214	0.189	0.285	0.177
t	0.273	0.179	0.173	0.375	0.320
Sym	1.283	0.748	0.708	1.261	
P(suffix)	0.321	0.183	0.176	0.320	

Prefix/Suffix	Α	С	G	т	P(Prefix)
aa	0.416	0.151	0.187	0.246	0.119
ac	0.352	0.181	0.171	0.297	0.053
ag	0.339	0.202	0.193	0.267	0.057
at	0.346	0.166	0.162	0.326	0.092
ca	0.344	0.185	0.180	0.291	0.060
сс	0.305	0.200	0.171	0.324	0.035
cg	0.282	0.232	0.193	0.294	0.031
ct	0.241	0.189	0.184	0.385	0.058
ga	0.411	0.144	0.187	0.257	0.055
gc	0.334	0.192	0.182	0.293	0.038
gg	0.315	0.220	0.194	0.271	0.033
gt	0.307	0.156	0.200	0.338	0.050
ta	0.304	0.184	0.160	0.352	0.087
tc	0.313	0.192	0.152	0.343	0.057
tg	0.300	0.214	0.180	0.307	0.05
tt	0.218	0.194	0.164	0.423	0.120
Sum					
	5.127	3.000	2.860	5.013	
P(suffix)	0.321	0.183	0.176	0.319	

ā	ø	Ü	0.0	4
a	0.371	0.165	0.178	0.285
С	0.327	0.190	0.167	0.316
g	0.312	0.214	0.189	0.285
t	0.273	0.179	0.173	0.375

占	ю	o	0.0	ب
aa	0.416	0.151	0.187	0.246
ac	0.352	0.181	0.171	0.297
ag	0.339	0.202	0.193	0.267
at	0.346	0.166	0.162	0.326
ca	0.344	0.185	0.180	0.291
cc	0.305	0.200	0.171	0.324
cg	0.282	0.232	0.193	0.294
ct	0.241	0.189	0.184	0.385
ga	0.411	0.144	0.187	0.257
gc	0.334	0.192	0.182	0.293
gg	0.315	0.220	0.194	0.271
gt	0.307	0.156	0.200	0.338
ta	0.304	0.184	0.160	0.352
tc	0.313	0.192	0.152	0.343
tg	0.300	0.214	0.180	0.307
tt	0.218	0.194	0.164	0.423

Markov chains and Bernoulli models

- By extension of the concept of Markov chain, Bernoulli models can be qualified as Markov models of order 0 (the order 0 means that there is no dependency between a residue and the preceding ones).
- The prior probabilities of a Makov model of order m=0 can be estimated from the residue of single nucleotides (k=m+1=1) in a background sequence set.
- The table below shows the residue frequencies in the genomes of the yeast Saccharomyces cerevisiae and the bacteria Escherichia coli K12, respectively.
- Notice the strong differences between these genomes.

Markov order 0 = Bernouli

Α	C	G	T Genome
0.310	0.191	0.191	0.309 Saccharomyces cerevisiae
0.246	0.254	0.254	0.246 Escherichia coli K12

Scoring a sequence segment with a Markov model

Exercise: compute the probability P(S|B) of a sequence segment S with a background Markov model B of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.
Sequence probability given the background model

S = CCTACTATATGCCCAGAATT

Background model B

Transition matrix, order 2

Prefix/Suffix	Α	С	G	T	P(Prefix	N(Prefix
AA	0.388	0.161	0.200	0.251	0.112	525,000
AC	0.339	0.198	0.173	0.290	0.054	251,072
AG	0.345	0.204	0.196	0.255	0.059	274,601
AT	0.311	0.184	0.182	0.323	0.088	413,946
CA	0.347	0.178	0.189	0.286	0.063	293,750
CC	0.341	0.190	0.161	0.309	0.038	178,110
CG	0.293	0.221	0.196	0.290	0.031	145,876
СТ	0.229	0.195	0.205	0.371	0.059	275,634
GA	0.394	0.155	0.187	0.264	0.059	277,053
GC	0.330	0.205	0.169	0.297	0.039	184,192
GG	0.318	0.217	0.187	0.277	0.037	173,266
GT	0.285	0.175	0.204	0.336	0.051	239,384
TA	0.300	0.193	0.168	0.339	0.079	369,426
TC	0.313	0.203	0.152	0.332	0.060	280,131
TG	0.302	0.209	0.208	0.282	0.060	279,783
TT	0.210	0.208	0.189	0.392	0.111	520,906
P(Suffix)	0.313	0.191	0.187	0.310		
N(suffix)	1,466,075	893,444	873,260	1,449,351		

	L
$P(S \mid B) = P(S_{1,m} \mid B)$	$\prod P(r_i \mid S_{i-m,i-1},B)$
	m +1

Scoring a sequence segment with a Markov model

Exercise: compute the probability **P(S|B)** of a sequence segment S with a background Markov model **B** of order 2, estimated from 3nt frequencies on the yeast non-coding upstream sequences.

Sequence probability given the background model

S = CCTACTATATGCCCAGAATT

Background model B

Transition matrix, order 2

Transition matrix, order 2					
Prefix/Suffix	Α	С	G	Т	P(Prefix N(Prefix
AA	0.388	0.161	0.200	0.251	0.112 525,000
AC	0.339	0.198	0.173	0.290	0.054 251,072
AG	0.345	0.204	0.196	0.255	0.059 274,601
AT	0.311	0.184	0.182	0.323	0.088 413,946
CA	0.347	0.178	0.189	0.286	0.063 293,750
CC	0.341	0.190	0.161	0.309	0.038 178,110
CG	0.293	0.221	0.196	0.290	0.031 145,876
СТ	0.229	0.195	0.205	0.371	0.059 275,634
GA	0.394	0.155	0.187	0.264	0.059 277,053
GC	0.330	0.205	0.169	0.297	0.039 184,192
GG	0.318	0.217	0.187	0.277	0.037 173,266
GT	0.285	0.175	0.204	0.336	0.051 239,384
TA	0.300	0.193	0.168	0.339	0.079 369,426
TC	0.313	0.203	0.152	0.332	0.060 280,131
TG	0.302	0.209	0.208	0.282	0.060 279,783
TT	0.210	0.208	0.189	0.392	0.111 520,906
P(Suffix)	0.313	0.191	0.187	0.310	
N(suffix)	1,466,075	893,444	873,260	1,449,351	

$P(S \mid B) = P(S_{1,m} \mid B)$	
	m +1

pos	P(R W))	wR	S	P(S)
1	P(CC)	0.038	СС	CC	3.80E-02
2	P(T CC)	0.309	ссТ	CCT	1.17E-02
3	P(A CT)	0.229	ctA	CCTA	2.69E-03
4	P(C TA)	0.193	taC	CCTAC	5.19E-04
5	P(T AC)	0.290	acT	CCTACT	1.50E-04
6	P(A CT)	0.229	ctA	CCTACTA	3.45E-05
7	P(T TA)	0.339	taT	CCTACTAT	1.17E-05
8	P(A AT)	0.311	atA	CCTACTATA	3.63E-06
9	P(T TA)	0.339	taT	CCTACTATAT	1.23E-06
10	P(G AT	0.182	atG	CCTACTATATG	2.25E-07
11	P(C TG	0.209	tgC	CCTACTATATGC	4.69E-08
				CCTACTATATGCC	9.61E-09
13	P(C CC	0.190	ccC	CCTACTATATGCCC	1.82E-09
14	P(A CC	0.341	ссА	CCTACTATATGCCCA	6.21E-10
15	P(G CA	0.189	caG	CCTACTATATGCCCAG	1.17E-10
16	P(A AG	0.345	agA	CCTACTATATGCCCAGA	4.04E-11
17	P(A GA	0.394	gaA	CCTACTATATGCCCAGAA	1.59E-11
18	P(T AA)	0.251	aaT	CCTACTATATGCCCAGAA	4.00E-12
19	P(T AT)	0.323	atT	CCTACTATATGCCCAGAA	1.29E-12

Background sequences

- The frequencies observed for a *k*-letter word in a reference sequence set (background sequence) can be used to estimate the expected frequencies of the same *k*-letter word in the sequences to be analyzed.
- Typical background models:
 - Whole genome
 - But this will bias the estimates towards coding frequencies, especially in microbial organisms, where the majority of the genome is coding.
 - Whole set of intergenic sequences
 - More accurate than whole-genome estimates, but still biased because intergenic sequences include both upstream and downstream sequences
 - Whole set of upstream sequences, same sizes as the sequences to be analyzed
 - Requires a calibration for each sequence size
 - Whole set of upstream sequences, fixed size (default on the web site)
 - Reasonably good estimate for microbes, NOT for higher organisms.

Nucleotide composition of the Plasmodium upstream sequences

- The genome shows a strong richness in A and T residues (80%AT).
- This enrichment is even stronger in upstream non-coding sequences (86%AT).

Frequencies Plasmodium-falciparum 1nt frequencies 0.45 0.4 0.35 All upstream frequencies (2000bp) 0.25 0.1 0.05 0.05 0.35 0.1 0.15 0.25 0.4 0.45 Genome frequencies

Upstream frequencies

Residue	Genome	Upstream
		(max 2kb)
a	0.40	0.42
С	0.10	0.07
g	0.10	0.07
t	0.40	0.44

Dinucleotide composition of the Plasmodium upstream sequences

Dinucleotide frequencies reflect the AT-richness.

Residue	Genome	Upstream (max 2 kb)
AT	0.175	0.207
TA	0.159	0.199
TT	0.109	0.120
AA	0.109	0.111
TG	0.044	0.033
CA	0.044	0.031
GT	0.035	0.028
AC	0.035	0.027
GA	0.039	0.025
TC	0.039	0.024
AG	0.032	0.021
CT	0.032	0.021
CC	0.013	0.007
GG	0.013	0.007
GC	0.009	0.006
CG	0.007	0.004

Markov order m=1 (derived from dinucleotides k=2)

4	ø	o	0.0	ب
a	0.39983	0.06522	0.05243	0.48253
С	0.47917	0.13198	0.06745	0.32140
g	0.36686	0.08719	0.12634	0.41961
t	0.44833	0.05728	0.07758	0.41681

Transition frequencies

- On the basis of oligonucleotide frequencies, one can compute Markov models, which indicate the probability to osberve a certain residue (suffix) after a certain oligonucleotide (prefix).
- The Markov model can be represented in the form of a transition table.

Markov order m=1 (based on dinucleotides k=2)

Markov order m=2 (based on trinucleotides k=3)

Markov models show strong variations between organisms

Saccharomyces cerevisiae (Fungus)

ā	<u> </u>	ن	യ	4
a	0.37000	0.16588	0.17908	0.28504
С	0.32610	0.19058	0.16818	0.31514
g	0.31163	0.21456	0.18957	0.28424
t	0.27256	0.17991	0.17364	0.37389

Mycoplasma genitalium (Firmicute, intracellular)

4	ø	O	900	4
a	0.45565	0.11743	0.13602	0.29091
С	0.39457	0.13008	0.06403	0.41132
g	0.31505	0.18738	0.12047	0.37710
t	0.32450	0.09573	0.11934	0.46044

Plasmodium falciparum (Aplicomplexa, intracellular)

ᇫ	ø	Ü	0.0	ب
a	0.39821	0.06446	0.05206	0.48527
С	0.47798	0.13336	0.06695	0.32171
g	0.36764	0.08587	0.12431	0.42217
t	0.44739	0.05676	0.07673	0.41912

Escherichia coli K12 (Proteobacteria)

占	ø	o	0.0	4
a	0.34491	0.18156	0.17676	0.29677
С	0.30806	0.21557	0.22129	0.25507
g	0.27123	0.25972	0.21545	0.25360
t	0.24080	0.19176	0.21144	0.35599

Bacillus subtilis (Firmicute, extracellular)

ቯ	æ	ပ	900	ب
a	0.38159	0.13935	0.18767	0.29139
С	0.33699	0.19499	0.16508	0.30293
g	0.34249	0.18100	0.23541	0.24110
t	0.25122	0.17199	0.19402	0.38278

Anopheles gambiae (Insect)

늄	æ	ပ	0.0	ىد
a	0.34603	0.21388	0.18890	0.25119
С	0.31499	0.21232	0.24159	0.23109
g	0.26036	0.25414	0.20275	0.28275
t	0.20368	0.20710	0.24970	0.33951

Mycobacterium leprae (Actinobacteria)

ᇫ	ø	O	0.0	ب
a	0.23239	0.28694	0.25692	0.22375
С	0.24574	0.24601	0.30574	0.20252
g	0.21748	0.29238	0.25535	0.23479
t	0.18806	0.26081	0.31784	0.23329

Homo sapiens (Mammalian)

ᇫ	ø	ပ	0.0	4
a	0.29760	0.19031	0.28856	0.22353
С	0.28019	0.30209	0.11692	0.30080
g	0.24408	0.24738	0.30309	0.20545
t	0.18589	0.23061	0.27491	0.30859

Chaos representation - upstream frequencies

- The chaos representation (Jeffrey, 1990) permits to visualize oligonucleotide frequencies and detect enrichment in particular ones.
- Plasmodium upstream sequences are particularly rich for the following motifs
 - A, T nucleotides
 - Oligonucleotides made of As and Ts only (last rw pf each chaos map)
 - Poly-A and poly-T oligos (bottom corners of the maps)
 - (TA){n} motifs (the darkest boxes from dinucleotides to tetranucleotides.

- Goldman. Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences. Nucleic Acids Res (1993) vol. 21 (10) pp. 2487-91
- Jeffrey. Chaos game representation of gene structure. Nucleic Acids Res (1990) vol. 18 (8) pp. 2163-70

Hexanucleotide frequencies in Plasmodium – Genome versus upstream (2Kb)

 Hexanucleotides show a very wide range of frequencies in the whole genome (X axis) as well as in the subset of upstream sequences (max 2kb, Y axis).

Linear scales

Logarithmic scales

