Classification in Microarray Data

Motivation: A study of gene expression on breast tumours (NHGRI, J. Trent)

cDNA Microarrays

Parallel Gene Expression Analysis

- How similar are the gene expression profiles of BRCA1 and BRCA2 (+) and sporadic breast cancer patient biopsies?
- Can we identify a set of genes that distinguish the different tumor types?
- Tumors studied:
 - 7 BRCA1 +
 - 8 BRCA2 +
 - 7 Sporadic

Classification

- A predictor or classifier for K [tumor] classes partitions the space X of gene expression profiles into K disjoint subsets, $A_1, ..., A_K$, such that for a sample with expression profile $x=(x_1, ..., x_p) \in A_k$ the predicted class is K.
- Predictors are built from past experience, i.e., from observations which are known to belong to certain classes. Such observations comprise the Training set

$$L = (x_1, y_1), ..., (x_n, y_n).$$

A classifier built from a Training set L is denoted by

$$C(.,L): X \to \{1,2, ..., K\},$$

with the predicted class for observation x being C(x,L).

Supervised Warning Classification and Allocation

Training set

Components of class prediction

- Choose a method of class prediction
 - LDA, KNN, CART,: Prediction model
- Select genes on which the prediction will be base: Feature selection
 - Which genes will be included in the model?
 - Validate the model
 - Use data that have not been used to fit the predictor

Prediction methods

Choose prediction model

Prediction methods

- Fisher linear discriminant analysis (FLDA) and its variants (DLDA, Gene voting, CCP, ...)
- Logistic classification
- K-Nearest Neighbor
- Classification Trees
- Support vector machines (SVMs)
- Neural networks
- And many more ...

4 dearest neighbor classification

- Pased on a measure of distance between observations (e.g. Euclidean distance or one minus correlation).
- **k-nearest neighbor rule** (Fix and Hodges (1951)) classifies an observation **x** as follows:
 - find the k observations in the learning set closest to x
 - predict the class of x by majority vote, i.e., choose the class that is most common among those k observations.
- The number of neighbors k can be chosen by cross-validation (more on this later).

Wearest neighbor rule

Other classifiers include...

- Support vector machines () VV
- Neural networks
- Bayesian regression methods
- Projection pursuit

•

Eeature selection

- Classification rule must be based on a set of variables which contribute useful information for distinguishing the classes.
 - This set will usually be small because most variables are likely to be uninformative.
 - Some classifiers (like CART) perform automatic feature selection whereas others, like LDA or KNN, do not.

Appreaches to feature selection

- Filter methods perform explicit feature selection prior to building the classifier.
 - One gene at a time: select features based on the value of an univariate test.
 we select one feature and try to predict, is it helpful or not # checking we don't want multiple feature/column
 - The number of genes or the test p-value are the parameters of the FS method.
- Wrapper methods perform FS implicitly, as a part of the classifier building.
 - In classification trees features are selected at each step based on reduction in impurity.
 - The number of features is determined by pruning the tree using cross-validation.

Why select features

- Lead to better classification performance by removing variables that are noise with respect to the outcome
- May provide useful insights into etiology of a disease.
- Can eventually lead to the diagnostic tests (e.g., "breast cancer chip").

Why select features?

No feature selection

feature selection
Selection based on variance

Correlation plot
Data: Leukemia, 3 class
17

-1 +1

Performance assessment

Performance assessment

- Before using a classifier for prediction or prognostic one needs a measure of its accuracy.
- The accuracy of a predictor is usually measured by the Missclassification rate: The % of individuals belonging to a class which are erroneously assigned to another class by the predictor.
- An important problem arises here
 - We are not interested in the ability of the predictor for classifying current samples
 - One needs to estimate future performance based on what is available.

Estimating the error rate

- Using the same dataset on which we have built the predictor to estimate the missclassification rate may lead to erroneously low values due to overfitting.
 - This is known as the resubstitution estimator
- We should use a completely independent dataset to evaluate the classifier, but it is rarely available.
- We use alternatives approaches such as
 - Test set estimator
 - Cross validation

Performance assessment (I)

- Resubstitution estimation: Compute the error rate on the learning set.
 - Problem: downward bias
 - Test set estimation: Proceeds in two steps / nt -
 - 1. Divide learning set into two sub-sets, L and T;
 - 2. Build the classifier on L and compute error rate on T.
 - This approach is not free from problems
 - L and T must be independent and identically distributed.
 - Problem: reduced effective sample size

Diagram of performance assessment

ternin - to 4- split

Performance assessment (II)

- V-fold cross-validation (CV) estimation: Cases in learning set randomly divided into V subsets of (nearly) equal size.
 Build classifiers by leaving one set out; compute test set error rates on the left out set and averaged.
 - Bias-variance tradeoff: smaller V can give larger bias but smaller variance
 - Computationally intensive.
- Leave-one-out cross validation (LOOCV).
 - Special case for V=n.
 - Works well for stable classifiers (k-NN, LDA, SVM)

Diagram of performance assessment (II)

Performance assessment (III)

- Common practice
 - To do feature selection using the learning,
 - To do CV only for model building and classification.
- However, usually features are unknown and the intended inference includes feature selection →
 CV estimates as above tend to be downward biased.
- Features (variables) should be selected only from the learning set used to build the model (and not the entire set).
- Classification accuracy may be misleading for imbalanced classes.

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

Actual class\Predicted class -	\rightarrow C_1	¬ C ₁
\downarrow C_1	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

Actual class\Predicted class	buy_computer	buy_computer	Total
	= yes	= no	
buy_computer = yes	6954	46	7000
buy_computer = no	412	2588	3000
Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{i,j} in a confusion matrix indicates # of tuples in class *i* that were labeled by the classifier as class *j*
 - May have extra rows/columns to provide totals

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

Accuracy = (TP+TN)/(TP+TN+FP+FN)

Error rate: 1 – accuracy, or

Error rate = (FP+FN)/(TP+TN+FP+FN)

Class Imbalance Problem:

- One class may be rare, e.g. fraud, or HIV-positive
- Significant majority of the negative ciass and minority of the positive ciass
- Sensitivity: True Positive recognition rate
 - Sensitivity = TP/(TP+FN)
- Specificity: True Negative recognition rate
 - Specificity = TN/(TN+FP)

Classifier Evaluation Metrics: Precision and Recall, and F-measures

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

 Recall: completeness – what % of positive tuples did the classifier label as positive?

$$recall = \frac{TP}{TP + FN}$$

- Perfect score is 1.0
 - Inverse relationship between precision & recall
 - F measure (F_1 or F-score): harmonic mean of precision and recall, $F = \frac{2 \times precision \times recall}{precision + recall}$

Ilspe cigiuit

Classifier Evaluation Metrics: Example

Actual Class\Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (accuracy)

- Precision = 90/230 = 39.13%
- Recall = 90/300 = 30.00%

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

- Heldout method
 - Civen data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (v-fold, where v = 10 is most popular)
 - Randomly partition the data into v mutually exclusive subsets, {D1,D2,...Dv} each approximately of equal size
 - At 1-th iteration, use Di as test set and others as training set
 - Leave-one-out: v folds where v = no. of tuples, for small sized data
 - *Stratified cross-validation*: folds are stratified so that class distrtibution in each fold is approx. the same as that in the initial data

Evaluating Classifier Accuracy: Bootstrap Bootstrap

- Works well with small data sets
- Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with d tuples is sampled d times, with replacement, resulting in a training set of d samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since $(1 1/d)^d \approx e^{-1} = 0.368$)
 - Repeat the sampling procedure k times to find overall accuracy of the model: