L16: Endomorfismi (30)

Argomenti lezione:

- Introduzione
- Endomorfismi
- Cambiamento di base
- Esercizi

Introduzione

Obiettivo lezione:

Studiare particolari omomorfismi di spazi vettoriali in cui lo spazio di partenza e lo spazio di arrivo **coincidono.**

Vedremo:

Come rappresentare questi omomorfismi per mezzo di **matrici**. Stabiliremo come variano le matrici rappresentative al **variare delle basi** scelte.

<u>Definizione</u>: Dato uno spazio vettoriale V, un **endomorfismo** di V è un omomorfismo $f: V \rightarrow V$.

Segue che possiamo utilizzare per gli endomorfismi le <u>stesse</u> definizioni e gli <u>stessi risultati</u> visti per gli omomorfismi.

<u>Definizione</u>: Sia $f: V \to V$ un endomorfismo di uno spazio vettoriale di dimensione finita. Fissata una base di V, formata dai vettori e_1, e_2, \ldots, e_n , possiamo esprimere ciascun vettore $f(e_j)$ come <u>combinazione lineare</u> dei vettori della base e_1, e_2, \ldots, e_n :

$$f(e_{1}) = a_{11} e_{1} + a_{21} e_{2} + \dots + a_{n1} e_{n}$$

$$f(e_{2}) = a_{12} e_{1} + a_{22} e_{2} + \dots + a_{n2} e_{n}$$

$$\dots$$

$$f(e_{n}) = a_{1n} e_{1} + a_{2n} e_{2} + \dots + a_{nn} e_{n}$$

$$A := \begin{cases} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{cases}$$

La matrice A di M (n, n, R) è **associata all'endomorfismo** (ovvero è **matrice rappresentativa** di) f rispetto alla base e_1, e_2, \ldots, e_n . La j-esima colonna di A è data dalle componenti del vettore $f(e_j)$ rispetto alla base formata da e_1, e_2, \ldots, e_n .

<u>Definizione</u>: Sia V uno spazio vettoriale di dimensione finita. Sia data una base per V formata dai vettori e_1, e_2, \ldots, e_n . Se A è una matrice di M (n, n, R), chiamiamo **endomorfismo associato alla matrice** A rispetto alle basi fissate l'omomorfismo f:

$$A := \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \xrightarrow{f(e_1) = a_{11} e_1 + a_{21} e_2 + \dots + a_{n1} e_n} f(e_1) = a_{11} e_1 + a_{21} e_2 + \dots + a_{n1} e_n$$

$$f(e_2) = a_{12} e_1 + a_{22} e_2 + \dots + a_{n2} e_n$$

$$\vdots & \vdots & \ddots & \vdots \\ f(e_n) = a_{1n} e_1 + a_{2n} e_2 + \dots + a_{nn} e_n$$

Vale a dire l'endomorfismo f la cui matrice rappresentativa rispetto alle basi assegnate è <u>esattamente</u> la matrice A.

Esercizio: Consideriamo l'endomorfismo $f: R^3[x] \to R^3[x]$:

$$f(a + bx + cx^2) := (3a + c) + (a + b)x + cx^2$$

Se vogliamo ora determinare la matrice rappresentativa di *f* rispetto alla base canonica, dobbiamo determinare le immagini dei vettori della base canonica e decomporli rispetto alla base canonica stessa.

$$f(1) = 3 + x = 3 + 1 + 1 + x + 0 + x^2$$

 $f(x) = x = 0 + 1 + 1 + x + 0 + x^2$
 $f(x^2) = 1 + x^2 = 1 + 1 + 0 + x + 1 + x^2$

La matrice rappresentativa di f rispetto alla base canonica è allora:

$$A := \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Esercizio: Consideriamo l'endomorfismo $f: R^3[x] \to R^3[x]$:

$$f(a+bx+cx^2) := (3a+c) + (a+b)x + cx^2$$

Ora vogliamo rappresentare f rispetto a un'altra base, ovvero quella formata dai polinomi $p_1(x) := 1 + x + x^2$, $p_2(x) := 1 + x$, $p_3(x) := 1$.

Calcolando le immagini di tali vettori, si ha: $f(p_1(x)) = 4 + 2x + x^2$.

$$[f(p_1(x)) = f(1+x+x^2) \text{ da cui } a = b = c = 1 \text{ segue } 4 + 2x + x^2]$$

Esercizio: Consideriamo l'endomorfismo $f: R^3[x] \to R^3[x]$:

$$f(a + bx + cx^2) := (3a + c) + (a + b)x + cx^2$$

Ora vogliamo rappresentare f rispetto a un'altra base, ovvero quella formata dai polinomi $p_1(x) := 1 + x + x^2$, $p_2(x) := 1 + x$, $p_3(x) := 1$.

Calcolando le immagini di tali vettori, si ha: $f(p_1(x)) = 4 + 2x + x^2$.

Decomponiamo $f(p_1(x))$ rispetto alla base: $p_1(x)$, $p_2(x)$, $p_3(x)$.

$$f(p_1(x)) = 4 + 2x + x^2 = \mathbf{1}(1 + x + x^2) + \mathbf{1}(1 + x) + \mathbf{2}$$
 1

Analogamente: $f(p_2(x)) = 3 + 2x = \mathbf{0}(1 + x + x^2) + \mathbf{2}(1 + x) + \mathbf{1}$ 1

$$f(p_3(x)) = 3 + x = \mathbf{0}(1 + x + x^2) + \mathbf{1}(1 + x) + \mathbf{2}$$
 1

Dunque la matrice rappresentativa di f rispetto alla base formata dai polinomi $p_1(x)$, $p_2(x)$, $p_3(x)$ è A':

$$A' \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$$

Esercizio: Sia $f: M(2, 2, R) \rightarrow M(2, 2, R)$ l'endomorfismo:

$$f(A) := A + {}^{t}A$$

Determinare la matrice A rappresentativa di f rispetto alla base:

$$E_1 \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 \coloneqq \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_3 \coloneqq \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_4 \coloneqq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

$$f(E_1) = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = 2E_1 + 0E_2 + 0E_3 + 0E_4,$$

$$f(E_2) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0E_1 + E_2 + E_3 + 0E_4, \quad \Box A := \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$f(E_3) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 0E_1 + E_2 + E_3 + 0E_4,$$

$$f(E_4) = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = 0E_1 + 0E_2 + 0E_3 + 2E_4.$$
 A non è una matrice diagonale

Esercizio: Sia $f: M(2, 2, R) \rightarrow M(2, 2, R)$ l'endomorfismo:

$$f(A) := A + {}^{t}A$$

Determinare la matrice A' rappresentativa di f rispetto alla base:

$$E_1' \coloneqq \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2' \coloneqq \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, E_3' \coloneqq \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, E_4' \coloneqq \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$f(E_1') = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix} = 2E_1' + 0E_2' + 0E_3' + 0E_4',$$

$$f(E_2') = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0E_1' + 0E_2' + 0E_3' + 0E_4', \quad \triangle A' := \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$
$$f(E_3') = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = 0E_1' + 0E_2' + 2E_3' + 0E_4', \quad \triangle A' := \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

$$f(E_3') = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} = 0E_1' + 0E_2' + 2E_3' + 0E_4',$$

$$f(E_4') = \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = 0E_1' + 0E_2' + 0E_3' + 2E_4'.$$

$$\begin{pmatrix} 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix}$$

A'è una matrice diagonale

Abbiamo visto nel precedente esercizio che, cambiando base, cambia la matrice rappresentativa dell'endomorfismo.

Ci chiediamo, in generale, come cambia tale matrice.

<u>Definizione</u>: Sia *V* uno spazio vettoriale di dimensione finita *n*. Si considerino due basi di *V*:

una base formata dai vettori e_1, e_2, \dots, e_n

l'altra base formata dai vettori e_1 ', e_2 ', ..., e_n '

La matrice M in M(n, n, R) la cui j-esima colonna è data dalle componenti del vettore e_j ' rispetto alla base formata dai vettori e_1, e_2, \ldots, e_n è detta **matrice di passaggio** dalla base formata da e_1, e_2, \ldots, e_n alla base formata da e_1', e_2', \ldots, e_n' .

Esercizio: Consideriamo di nuovo lo spazio vettoriale $R^3[x]$, la sua base canonica: $q_1(x) := 1$, $q_2(x) := x$, $q_3(x) := x^2$ e la base formata da $p_1(x) := 1 + x + x^2$, $p_2(x) := 1 + x$, $p_3(x) := 1$.

Per trovare la matrice M di passaggio dalla base canonica alla seconda base dobbiamo esprimere ciascuno dei $p_1(x)$, $p_2(x)$, $p_3(x)$ come combinazione lineare dei $q_1(x)$, $q_2(x)$, $q_3(x)$. Abbiamo:

$$p_{1}(x) = \mathbf{1} \ q_{1}(x) + \mathbf{1} \ q_{2}(x) + \mathbf{1} \ q_{3}(x)$$

$$p_{2}(x) = \mathbf{1} \ q_{1}(x) + \mathbf{1} \ q_{2}(x) + \mathbf{0} \ q_{3}(x)$$

$$p_{3}(x) = \mathbf{1} \ q_{1}(x) + \mathbf{0} \ q_{2}(x) + \mathbf{0} \ q_{3}(x)$$

$$M := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Teorema: La matrice di passaggio M da una base di uno spazio vettoriale V a un'altra base è <u>invertibile</u>.

<u>Dimostrazione</u>: Se M è la matrice di passaggio dalla base formata dai vettori e_1, e_2, \ldots, e_n alla base formata dai vettori e_1', e_2', \ldots, e_n' , le colonne di M danno le componenti di e_1', e_2', \ldots, e_n' rispetto alla base formata dai vettori e_1, e_2, \ldots, e_n .

Sappiamo che il rango di M è uguale alla dimensione dello spazio vettoriale generato dai vettori e_1 ', e_2 ', ..., e_n '.

Poiché i vettori e_1 ', e_2 ', ..., e_n ' formano una base per V abbiamo che $rk\ M = dim\ V$, ovvero $det\ M \neq 0$, ovvero M è invertibile.

<u>Teorema</u>: Date due basi di uno spazio vettoriale V sia M la matrice di passaggio dalla prima base alla seconda base. La matrice di passaggio dalla seconda base alla prima base è allora M^{-1} .

Esempio: Consideriamo di nuovo lo spazio vettoriale $R^3[x]$, la sua base canonica: $q_1(x) := 1$, $q_2(x) := x$, $q_3(x) := x^2$ e la base formata da $p_1(x) := 1 + x + x^2$, $p_2(x) := 1 + x$, $p_3(x) := 1$. La matrice M di passaggio dalla base canonica alla seconda base è:

$$M \coloneqq egin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

<u>Domanda</u>: Come si determina la matrice M' di passaggio dalla seconda base alla base canonica?

Esempio (seguito): base canonica: $q_1(x) := 1$, $q_2(x) := x$, $q_3(x) := x^2$ e base formata da $p_1(x) := 1 + x + x^2$, $p_2(x) := 1 + x$, $p_3(x) := 1$.

<u>Domanda</u>: Come si determina la matrice *M'* di passaggio dalla seconda base alla base canonica?

Esprimiamo i polinomi della base canonica come combinazione lineare dei polinomi $p_1(x)$, $p_2(x)$, $p_3(x)$:

- Poiché $q_1(x) = p_3(x)$ allora $q_1(x) = \mathbf{0} p_1(x) + \mathbf{0} p_2(x) + \mathbf{1} p_3(x)$.
- Per decomporre $q_2(x)$ effettuiamo i seguenti passaggi: $x = h_1(1 + x + x^2) + h_2(1 + x) + h_3(1) = (h_1 + h_2 + h_3) + (h_1 + h_2)x + h_1x^2$ $h_1 + h_2 + h_3 = 0$, $h_1 + h_2 = 1$, $h_1 = 0$ da cui: $h_1 = \mathbf{0}$, $h_2 = \mathbf{1}$, $h_3 = -\mathbf{1}$.
- Per decomporre $q_3(x)$ effettuiamo i seguenti passaggi: $x^2 = h_1(1 + x + x^2) + h_2(1 + x) + h_3(1) = (h_1 + h_2 + h_3) + (h_1 + h_2)x + h_1x^2$ $h_1 + h_2 + h_3 = 0$, $h_1 + h_2 = 0$, $h_1 = 1$ da cui: $h_1 = 1$, $h_2 = -1$, $h_3 = 0$.

Esprimiamo i polinomi della base canonica come combinazione lineare dei polinomi $p_1(x)$, $p_2(x)$, $p_3(x)$:

- Poiché $q_1(x) = p_3(x)$ allora $q_1(x) = \mathbf{0} p_1(x) + \mathbf{0} p_2(x) + \mathbf{1} p_3(x)$.
- Per decomporre $q_2(x)$ effettuiamo i seguenti passaggi:

$$x = h_1(1 + x + x^2) + h_2(1 + x) + h_3(1) = (h_1 + h_2 + h_3) + (h_1 + h_2)x + h_1x^2$$

 $h_1 + h_2 + h_3 = 0$, $h_1 + h_2 = 1$, $h_1 = 0$ da cui: $h_1 = \mathbf{0}$, $h_2 = \mathbf{1}$, $h_3 = -\mathbf{1}$.

• Per decomporre $q_3(x)$ effettuiamo i seguenti passaggi:

$$x^2 = h_1(1 + x + x^2) + h_2(1 + x) + h_3(1) = (h_1 + h_2 + h_3) + (h_1 + h_2)x + h_1x^2$$

 $h_1 + h_2 + h_3 = 0$, $h_1 + h_2 = 0$, $h_1 = 1$ da cui: $h_1 = 1$, $h_2 = -1$, $h_3 = 0$.

$$M := \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} M' := \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \end{pmatrix}$$
 Abbiamo $MM' = I$, cioè $M' = M^{-1}$

<u>Teorema</u>: Sia f un endomorfismo di V di dimensione finita. Sia A la matrice rappresentativa di f rispetto alla base formata dai vettori e_1, e_2, \ldots, e_n . Sia A' la matrice rappresentativa di f rispetto alla base formata dai vettori e_1 ', e_2 ', ..., e_n '. Sia M la matrice di passaggio dalla base formata dai vettori e_1 , e_2 , ..., e_n alla base formata dai vettori e_1 ', e_2 ', ..., e_n '. Allora si ha: $A' = M^{-1}AM$

Esercizio: Prendiamo di nuovo l'endomorfismo $f: R^3[x] \to R^3[x]:$ $f(a+bx+cx^2) := (3a+c)+(a+b)x+cx^2$. Calcolare $A'=M^{-1}AM$.

$$A \coloneqq \begin{pmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad A' \coloneqq \begin{pmatrix} 1 & 0 & 0 \\ 1 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix} \qquad M \coloneqq \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

matrice rappresentativa di f rispetto alla base canonica

matrice rappresentativa di f rispetto ad un'altra base

matrice di passaggio

Esercizio: Sia $f: R^2 \to R^2$ l'endomorfismo che rispetto alla base canonica di R^2 [ovvero $e_1 := (1, 0), e_2 := (0, 1)$] si rappresenta con la matrice $A := \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Vogliamo determinare la matrice rappresentativa A' di f rispetto alla base di R^2 formata dai vettori e_1 ' := $(1, 2), e_2$ ' := (1, -1).

Calcoliamo la matrice di passaggio dalla base canonica all'altra base:

$$e'_1 = 1e_1 + 2e_2, \\ e'_2 = 1e_1 - 1e_2.$$
 $\Longrightarrow M = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \Longrightarrow M^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix}$

$$A' = M^{-1}AM$$

$$\implies A' = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{7}{3} & \frac{2}{3} \end{pmatrix}$$

Esercizio: Sia $f: R^2 \to R^2$ l'endomorfismo che rispetto alla base canonica di R^2 [ovvero $e_1 := (1, 0), e_2 := (0, 1)$] si rappresenta con la matrice $A := \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Vogliamo *di nuovo* determinare la matrice rappresentativa A' di f rispetto alla base di R^2 formata dai vettori e_1 ' := $(1, 2), e_2$ ' := (1, -1).

• Stavolta usiamo la <u>definizione di matrice rappresentativa</u>:

$$A \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix}$$

Le componenti di
$$e_1$$
' rispetto alla base canonica sono $(1, 2)$

$$\implies f(\boldsymbol{e}_1') = \frac{1}{3}\boldsymbol{e}_1' - \frac{7}{3}\boldsymbol{e}_2'$$

Decomponiamo $f(e_1)$ rispetto alla base formata dai vettori e_1 ' e e_2 '.

Esercizio: Sia $f: R^2 \to R^2$ l'endomorfismo che rispetto alla base canonica di R^2 [ovvero $e_1 := (1, 0), e_2 := (0, 1)$] si rappresenta con la matrice $A := \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Vogliamo *di nuovo* determinare la matrice rappresentativa A' di f rispetto alla base di R^2 formata dai vettori e_1 ' := $(1, 2), e_2$ ' := (1, -1).

• Stavolta usiamo la <u>definizione di matrice rappresentativa</u>:

$$A \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

Le componenti di e_2 ' rispetto alla base canonica sono (1, -1)

Decomponiamo $f(e_2)$ rispetto alla base formata dai vettori e_1 ' e e_2 '.

Esercizio: Sia $f: R^2 \to R^2$ l'endomorfismo che rispetto alla base canonica di R^2 [ovvero $e_1 := (1, 0), \ e_2 := (0, 1)$] si rappresenta con la matrice $A := \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$

Vogliamo *di nuovo* determinare la matrice rappresentativa A' di f rispetto alla base di R^2 formata dai vettori e_1 ' := $(1, 2), e_2$ ' := (1, -1).

• Stavolta usiamo la definizione di matrice rappresentativa:

$$\Rightarrow f(e_1') = \frac{1}{3}e_1' - \frac{7}{3}e_2'$$

$$\Rightarrow f(e_2') = e_1 = \frac{1}{3}e_1' + \frac{2}{3}e_2'$$

$$\Rightarrow f(e_2') = e_1 = \frac{1}{3}e_1' + \frac{2}{3}e_2'$$

Il teorema appena visto ci dice che se due matrici A e B rappresentano lo stesso endomorfismo rispetto a <u>basi diverse</u>, allora esiste una matrice invertibile M tale che $B = M^{-1}AM$.

<u>Definizione</u>: Siano date due matrici A e B appartenenti a M (n, n, R). La matrice B si dice **simile** alla matrice A se e solo se esiste una matrice M in GL(n, R) [insieme delle matrici invertibili di M (n, n, R)] tale che $B = M^{-1}AM$.

Segue che le matrici rappresentative di uno stesso endomorfismo sono *tutte simili fra loro*.

Esercizio: Sia f l'endomorfismo di R^3 definito dalle condizioni:

$$f(e_1') = (1, 1, 1)$$

$$f(e_2') = (1, 1, 1)$$

$$f(e_3') = (1, 1, 1)$$

 $f(e'_1) = (1, 1, 1)$ Determinare la matrice rappresentativa di f $f(e_2') = (1, 1, 1)$ rispetto alla base formata da:

$$f(e_3') = (1, 1, 1)$$
 $e_1' \coloneqq (1, -1, 0), e_2' \coloneqq (1, 0, -1), e_3' \coloneqq (1, 1, 1)$

$$f(e_1') = 0e_1' + 0e_2' + 1e_3'$$

$$f(e_2') = 0e_1' + 0e_2' + 1e_3'$$

$$f(e_3') = 0e_1' + 0e_2' + 1e_3'$$

$$A := \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Esercizio: Sia f l'endomorfismo di R³ definito dalle condizioni:

$$f(e_1') = (1, 1, 1)$$
 $e_1' := (1, -1, 0), e_2' := (1, 0, -1), e_3' := (1, 1, 1)$

$$f(e'_2) = (1, 1, 1)$$
 Determinare la matrice rappresentativa di $f(e'_3) = (1, 1, 1)$ rispetto alla base canonica.

$$(1,0,0) = \frac{1}{3}e'_1 + \frac{1}{3}e'_2 + \frac{1}{3}e'_3,$$

$$(0,1,0) = -\frac{2}{3}e'_1 + \frac{1}{3}e'_2 + \frac{1}{3}e'_3, \quad \square \rangle M := \begin{pmatrix} \frac{1}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

$$(0,0,1) = \frac{1}{3}e'_1 - \frac{2}{3}e'_2 + \frac{1}{3}e'_3.$$

$$A' = M^{-1}AM$$
 \Rightarrow $A' = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$

Esercizio: Sia f l'endomorfismo di R³ definito dalle condizioni:

$$f(e_1') = (1, 1, 1)$$
 $e_1' \coloneqq (1, -1, 0), e_2' \coloneqq (1, 0, -1), e_3' \coloneqq (1, 1, 1)$

$$f(e'_2) = (1, 1, 1)$$
 Determinare la matrice rappresentativa di $f(e'_3) = (1, 1, 1)$ rispetto alla base canonica.

Per evitare di calcolare M^{-1} , possiamo (in alternativa) calcolare:

$$f(1,0,0) = \frac{1}{3}f(\mathbf{e}'_1) + \frac{1}{3}f(\mathbf{e}'_2) + \frac{1}{3}f(\mathbf{e}'_3)$$

$$= \frac{1}{3}(1,1,1) + \frac{1}{3}(1,1,1) + \frac{1}{3}(1,1,1) = (1,1,1)$$

$$f(0,1,0) = -\frac{2}{3}f(\mathbf{e}'_1) + \frac{1}{3}f(\mathbf{e}'_2) + \frac{1}{3}f(\mathbf{e}'_3)$$

$$= -\frac{2}{3}(1,1,1) + \frac{1}{3}(1,1,1) + \frac{1}{3}(1,1,1) = (0,0,0)$$

$$f(0,0,1) = \frac{1}{3}f(\mathbf{e}'_1) - \frac{2}{3}f(\mathbf{e}'_2) + \frac{1}{3}f(\mathbf{e}'_3)$$

$$= \frac{1}{3}(1,1,1) - \frac{2}{3}(1,1,1) + \frac{1}{3}(1,1,1) = (0,0,0)$$

Esercizio: Sia f l'endomorfismo di R^4 e A la matrice rispetto alla

base:
$$e_1 := (1, 1, 0, 0), e_2 := (0, 1, 2, 0), e_3 := (0, 1, 1, -1), e_4 := (0, 2, 0, 1)$$

$$A \coloneqq \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

L'<u>immagine</u> di f è generata da :

$$1e_1 + 0e_2 + 1e_3 + 0e_4 = (1, 2, 1, -1)$$

$$\Box \rangle 0\mathbf{e}_1 + 1\mathbf{e}_2 + 2\mathbf{e}_3 + 0\mathbf{e}_4 = (0, 3, 4, -2)$$
$$0\mathbf{e}_1 + 0\mathbf{e}_2 + 0\mathbf{e}_3 + 1\mathbf{e}_4 = (0, 2, 0, 1)$$

Esercizio: Sia f l'endomorfismo di R^4 e A la matrice rispetto alla

base:
$$e_1 := (1, 1, 0, 0), e_2 := (0, 1, 2, 0), e_3 := (0, 1, 1, -1), e_4 := (0, 2, 0, 1)$$

$$A \coloneqq \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Il <u>nucleo</u> di f si trova risolvendo il sistema omogeneo associato ad A:

$$\begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \text{Le soluzioni sono } (-2t, -t, -t, t) \\ \text{Per } t = 1 \text{ si ha: } (-2, -1, -1, 1) \\ \text{Una base del nucleo } \grave{\mathbf{e}}: \\ -2\mathbf{e}_1 - 1\mathbf{e}_2 - 1\mathbf{e}_3 + 1\mathbf{e}_4 = \\ = (-2, -2, -3, 2)$$