Anexa 1- GRAFICE SI ANALIZE

1. Analiza Componentelor Principale

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis se
Country Name*	1	67	34.00	19.49	34.00	34.00	25.20	1.00	67.00	66.00	0.00	-1.25 2.38
ER_primary	2	67	95.47	3.57	96.36	95.81	2.66	85.17	99.99	14.82	-0.90	-0.08 0.44
Repeaters_primary	3	67	1.56	1.25	1.27	1.44	1.09	0.00	4.63	4.63	0.80	-0.43 0.15
ER_secondary	4	67	96.29	13.47	97.54	96.53	13.47	67.31	129.12	61.81	-0.13	-0.27 1.65
Progression_secondary	5	67	96.48	3.45	98.01	96.90	2.33	87.54	99.97	12.43	-0.88	-0.43 0.42
Primary_completionRate	6	67	97.44	5.07	97.34	97.37	5.59	87.68	111.30	23.62	0.23	-0.16 0.62
Adolescents_OutofSchool	7	67	5.90	5.17	4.98	5.30	5.03	0.06	18.71	18.65	0.84	-0.26 0.63
Children_OutofSchool	8	67	2.96	3.08	1.85	2.53	2.12	0.00	10.42	10.42	1.11	-0.02 0.38
ER_tertiary	9	67	54.19	19.87	51.08	54.60	24.14	8.46	88.18	79.72	-0.16	-0.85 2.43
Government_expenditure	10	67	4.37	0.68	4.43	4.38	0.61	2.76	5.86	3.10	-0.13	-0.04 0.08
Compulsory_education	11	67	10.75	1.97	10.00	10.59	1.48	6.00	15.00	9.00	0.66	-0.22 0.24
ER_preprimary	12	67	73.47	21.12	73.28	74.10	24.31	22.21	112.31	90.10	-0.27	-0.25 2.58
OverAge_primary	13	67	5.92	3.93	7.09	5.58	5.01	0.01	16.43	16.42	0.57	-0.27 0.48
_ , ,												

Fig 1. Skewness&Kurtosis, Rstudio

<pre>> apply(education[,2:13],</pre>	2, cv)			
ER_primary	Repeaters_primary	ER_secondary	Progression_secondary	Primary_completionRate
3.735592	79.935549	13.984484	3.575458	5.199899
Adolescents_OutofSchool	Children_OutofSchool	ER_tertiary	Government_expenditure	Compulsory_education
87.719807	104.032496	36.676513	15.506489	18.338779
ER_preprimary	OverAge_primary			
28.751521	66.450321			
<pre>> sd(education\$ER_primary)</pre>)/mean(education\$ER_primary)			
[1] 0.03735592				

Fig 2. Coeficientul de variație, Rstudio

> round(cov(education[,						
						Adolescents_OutofSchool
ER_primary	12.720	-0.942	27.540			
Repeaters_primary	-0.942	1.554	-3.514	-2.155	-1.089	1.493
ER_secondary	27.540	-3.514	181.342	26.713	41.099	-53.885
Progression_secondary	3.969	-2.155	26.713	11.901	5.600	-11.395
Primary_completionRate	11.676	-1.089	41.099	5.600	25.671	-13.543
Adolescents_OutofSchool	-9.863	1.493	-53.885	-11.395	-13.543	26.761
Children_OutofSchool	-8.660	1.085	-28.189	-5.052	-11.439	11.200
ER_tertiary	20.155	-2.848	187.870	32.878	30.371	-72.388
Government_expenditure	0.270	-0.001	2.882	0.559	0.350	-1.181
Compulsory_education	0.027	1.023	1.570	-0.543	2.312	-0.580
ER_preprimary	3.906	-0.999	134.173	18.490	11.038	-38.876
OverAge_primary	-6.343	2.349	-16.880	-4.863	-3.608	5.303
	Children_OutofS	chool ER_terti	ary Governme	nt_expenditure Compuls	ory_education ER_prepri	mary OverAge_primary
R_primary	-	8.660 20.	155	0.270	0.027 3	.906 -6.343
Repeaters_primary		1.085 -2.	848	-0.001	1.023 -0	.999 2.349
ER_secondary	-2	8.189 187.	870	2.882	1.570 134	.173 -16.880
Progression_secondary	-	5.052 32.	878	0.559	-0.543 18	. 490 -4. 863
Primary_completionRate	-1	1.439 30.	371	0.350	2.312 11	.038 -3.608
Adolescents_OutofSchool	1	1.200 -72.	388	-1.181	-0.580 -38	. 876 5. 303
Children_OutofSchool		9.457 -26.	351	-0.695	0.065 -18	.059 3.167
ER_tertiary	-2	6.351 394.	987	3.494	-0.725 217	.810 -0.747
Government_expenditure	-	0.695 3.	494	0.460	0.253 5	.591 0.121
Compulsory_education		0.065 -0.	725	0.253	3.889 7	.352 1.688
ER_preprimary	-1	8.059 217.	810	5.591	7.352 446	.249 1.591
OverAge_primary		3.167 -0.	747	0.121	1.688 1	.591 15.457

Fig 3. Matricea de covarianță, Rstudio

P												
	ER_primary	Repeaters_pri				ion_sec			_complet	ionRate		
ER_primary		0.0771	0.000		0.0134			0.0000				
Repeaters_primary	0.0771		0.106	1	0.0000			0.1811				
ER_secondary	0.0000	0.1061			0.0000			0.0000				
Progression_secondary	0.0134	0.0000	0.000					0.0072				
Primary_completionRate	0.0000	0.1811	0.000		0.0072							
Adolescents_OutofSchool	0.0000	0.0893	0.000	0	0.0000			0.0000				
Children_OutofSchool	0.0000	0.0266	0.000	0	0.0000			0.0000				
ER_tertiary	0.0259	0.2738	0.000	0	0.0000			0.0130				
Government_expenditure	0.3719	0.9637	0.008	3	0.0245			0.2622				
Compulsory_education	0.8971	0.0003	0.724	2	0.5210			0.0628				
ER_preprimary	0.7646	0.7839	0.000	0	0.0265			0.4078				
OverAge primary	0.0002	0.0000	0.010	0	0.0082			0.1390				
	Adolescents	s_OutofSchool (Children_O	utofScho	ol ER_ter	rtiary	Governm	ent_expe	enditure	Compulsor	v_educati	on
ER_primary	0.0000		0.0000		0.0259		0.3719			0.8971	,	
Repeaters_primary	0.0893		0.0266		0.2738	3	0.9637			0.0003		
ER_secondary	0.0000		0.0000		0.0000)	0.0083			0.7242		
Progression_secondary	0.0000		0.0000		0.0000)	0.0245			0.5210		
Primary_completionRate	0.0000		0.0000		0.0130)	0.2622			0.0628		
Adolescents_OutofSchool			0.0000		0.0000)	0.0025			0.8053		
Children_OutofSchool	0.0000				0.0002	2	0.0046			0.8398		
ER_tertiary	0.0000		0.0002				0.0185			0.8023		
Government expenditure	0.0025		0.0046		0.0185	5				0.0609		
Compulsory_education	0.8053		0.8398		0.8023	3	0.0609					
ER_preprimary	0.0031		0.0172		0.0000		0.0005			0.1676		
OverAge_primary	0.0423		0.0461		0.9967	-	0.9765			0.0750		
		ary OverAge_pr										
ER_primary	0.7646	0.0002										
Repeaters_primary	0.7839	0.0000										
ER_secondary	0.0000	0.0100										
Progression_secondary	0.0265	0.0082										
Primary_completionRate	0.4078	0.1390										
Adolescents_OutofSchool	0.0031	0.0423										
Children OutofSchool	0.0172	0.0461										
ER_tertiary	0.0000	0.9967										
Government_expenditure	0.0005	0.9765										
Compulsory_education	0.1676	0.0750										
ER preprimary	-	0.7887										
OverAge_primary	0.7887											
>												

Fig 4. Funcția rcorr pe setul de date, Rstudio

Fig 5. Histograme corespunzatoare ER_primary & Children_OutofSchool

Fig 6. Densitatea de repartiție pentru rata de înscriere în ciclul primar

Fig 7. Diagrame Boxplot

Dependenta ciclul primar-secundar

Fig 8. Functia PLOT

Fig 9. Funcția ggplot

Fig 10. Funcția chart. Correlation

```
> stdev=pca$sdev
> valP=stdev^2
> procent_info=valP*100/12
> procent_cumulat=cumsum(procent_info)
> X=round(data.frame(stdev, valP, procent_info, procent_cumulat),4)
          stdev
                  valP procent_info procent_cumulat
        2.2282 4.9647
Comp.1
                              41.3722
                                               41.3722
Comp.2
        1.3913 1.9356
                              16.1299
                                                57.5021
Comp. 3
Comp. 4
                                               69.2070
        1.1852 1.4046
                              11.7049
        0.9142 0.8358
                               6.9651
                                               76.1720
        0.8397 0.7050
0.7915 0.6264
0.7337 0.5383
                                               82.0474
                               5.8754
Comp.5
                                               87.2677
Comp.6
                               5.2203
Comp.7
                               4.4857
                                               91.7534
Comp.8
Comp.9
        0.5441 0.2960
                               2.4669
                                               94.2203
        0.5103 0.2604
                               2.1698
                                               96.3901
                                               98.0787
Comp.10 0.4501 0.2026
                               1.6886
Comp.11 0.3822 0.1461
                               1.2171
                                               99.2959
Comp.12 0.2907 0.0845
                               0.7041
                                              100.0000
```

Fig 11. Statistici descriptive

Fig 12. Scree Plot

Fig 13. Realizarea tăieturii - criteriul pantei

```
> A = pca$loadings
> round(A,3)
Loadings:
                        ER_primary
                        -0.175
                                                                   0.503
Repeaters_primary
                               -0.477
                                       0.289
                                             -0.203
                                                             0.278
                                                                          0.262
                                                                                 -0.412
                                                                                                 -0.217
ER_secondary
                         0.401
                                             -0.140 -0.109
                                                            0.148
                                                                          -0.299
                                                                                -0.386
                                                                                         0.172
                                                                                                 0.697
                                                                                                         -0.124
                                                                  0.175 0.497 -0.314
-0.376 -0.351 -0.379
                                0.134 -0.279
Progression_secondary
                         0.319
                                                    -0.269 -0.509
                                                                                         0.262
                                                                                                -0.130
Primary_completionRate
                         0.312
                                       0.466
                                                            -0.209
                                                                                                -0.390
                                                                                                         0.270
Adolescents_OutofSchool
                                                                   -0.321
                        -0.393
                                              0.141
                                                                                 -0.242
                                                                                                         -0.318
                                                            0.140
Children_OutofSchool
                         -0.386
                                      -0.234
                                                    -0.344
                                                                    0.169 -0.316
                                                                                         0.206
                                                                                                         0.708
                         0.311 -0.218 -0.297
                                             -0.465
                                                                    0.149 -0.307
                                                                                        0.339
                                                                                                -0.402
ER_tertiary
                                                                                                        -0.196
                         0.173 -0.325 -0.196
-0.471 0.357
0.202 -0.359 -0.371
                                              0.675
                                                    0.484
Government_expenditure
                                                                    0.208 -0.244
                                                                                         0.112
                                              0.319 -0.586 -0.209
-0.171 0.479
                                                                                 0.338
Compulsory_education
                                                                                                         -0.178
                                                            0.479
                                                                  -0.530 0.296
                                                                                        -0.104
FR preprimary
                                      -0.371
                                                                                                         0.189
                        -0.182 -0.457
                                             -0.353 0.401
                                                           -0.474 -0.285
                                                                          0.184
                                                                                         0.110
                                                                                                 0.297
OverAge_primary
                                                                                                         0.158
               Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10 Comp.11 Comp.12
                                                                                0.999
                                                          1.000
SS loadings
                1.000
                       1.000
                             1.000
                                     1.001
                                            1.000
                                                  1.000
                                                                 1.001
                                                                        0.998
                                                                                         0.999
                                                                                                 1.000
Proportion Var
                0.083
                              0.083
                                     0.083
                                            0.083
                                                   0.083
                                                          0.083
                                                                 0.083
                                                                        0.083
                                                                                 0.083
                                                                                         0.083
                       0.083
                                                                                                 0.083
               0.083
                       0.167
                                            0.417
                                                   0.500
                                                                                         0.917
Cumulative Var
                              0.250
                                     0.333
                                                          0.583
                                                                 0.667
                                                                        0.750
                                                                                 0.833
                                                                                                 1.000
```

Fig 14. Vectorii proprii ai matricei de covarianță

```
> #verif daca sunt val proprii/vectorii proprii
  eigen(cov(ed_std))$values
[1] 4.96466135 1.93558817 1.40458561 0.83580839 0.70504335 0.62643555 0.53828568 0.29603200 0.26037473 0.20263223 0.14605598
 [1]
[12] 0.08449698
                    valP procent_info procent_cumulat
         2.2282 4.9647
1.3913 1.9356
                                                  41.3722
57.5021
Comp.1
                               41.3722
Comp. 2
                               16.1299
Comp.3
         1.1852
                 1.4046
                               11.7049
                                                   69.2070
                 0.8358
0.7050
Comp.4
         0.9142
                                6.9651
                                                   76.1720
Comp. 5
         0.8397
                                 5.8754
                                                   82.0474
Comp.6
         0.7915 0.6264
0.7337 0.5383
                                 5.2203
                                                   87.2677
Comp. 7
                                 4.4857
                                                  91.7534
                                                   94.2203
Comp.8
         0.5441
                 0.2960
                                 2.4669
Comp.9 0.5103 0.2604
Comp.10 0.4501 0.2026
                                2.1698
1.6886
                                                   96.3901
                                                  98.0787
Comp.11 0.3822 0.1461
                                                   99.2959
Comp.12 0.2907 0.0845
                                 0.7041
                                                 100,0000
> round(eigen(cov(ed_std))$vectors,3)
                        [,3]
0.413
                               [,4] [,5]
-0.015 -0.165
         [,1]
                                                   [,6]
                                                                                  [,10]
                                                 0.275 -0.089
0.278 -0.503
               0.162
-0.477
        0.325
                                                                -0.310
                                                                          0.362
                                                                                 -0.423
                                                                                          0.114
                                                                                                  0.409
                        0.289
                                 0.203
                                       -0.033
                                                                 -0.262
                                                                          -0.412
                                                                                  0.026
                                                                                          -0.217
                                                                                                 -0.012
                       -0.028
-0.279
                                                0.148 -0.083
-0.509 -0.175
 13.1
        0.401 -0.092
                                0.140
                                         0.109
                                                                 0 299
                                                                         -0 386
                                                                                 -0.172
                                                                                          0.697
                                                                                                 -0.124
        0.319
                                -0.088
                                         0.269
                                                                 -0.497
                                                                                 -0.262
                0.134
                                                                                         -0.130
 [4,]
                                                                         -0.314
                                                                                                  0.052
        0.312
               -0.010
                        0.466
                                0.078
                                         0.002
                                                -0.209
                                                         0.376
                                                                 0.351
                                                                         -0.379
                                                                                         -0.390
 [6,
       -0.393
               0.079
                        0.060
                                -0.141
                                        -0.029
                                                 0.140
                                                         0.321
                                                                 0.014
                                                                         -0.242
                                                                                 -0.723
                                                                                         -0.095
                                                                                                 -0.318
                        -0.234
                                         0.344
                                                 -0.005
       -0.386
               -0.026
                                0.031
                                                         -0.169
                                                                  0.316
                                                                         -0.039
                                                                                 -0.206
                                                                                          0.048
                               0.465
-0.675
        0.311 -0.218 -0.297
                                         0.030
                                                 0.033
                                                        -0.149
                                                                 0.307
                                                                          0.343
                                                                                 -0.339
                                                                                         -0.402
                                                                                                 -0.196
 [9.]
        0.173 - 0.325
                       -0.196
                                        -0.484
                                                -0.064
                                                         -0.208
                                                                 0.244
                                                                         -0.037
                                                                                 -0.112
                                                                                         -0.086
                                                                                                  0.094
        0.010 -0.471
                        0.357
                               -0.319
                                         0.586
                                                -0.209
                                                         0.032
                                                                 0.030
                                                                          0.338
                                                                                 -0.061
                                                                                          0.095
Γ11,]
        0.202 -0.359 -0.371
                               -0.082
                                         0.171
                                                 0.479
                                                         0.530
                                                                -0.296
                                                                         -0 075
                                                                                  0.104
                                                                                         -0.083
                                                                                                  0 189
               -0.457 -0.012
                                0.353 -0.401
                                                -0.474
       -0.182
                                                         0.285
                                                                -0.184
                                                                          0.085
                                                                                 -0.110
                                                                                          0.297
                                                                                                  0.158
```

Fig 15. Valorile proprii ale matricei de covarianță

```
[,5]
                                                                                   [,6]
                                                                                                [,7]
                                                                                                              [,8]
                                                                                                                           [,9]
                                                                                                                                      [,10]
                                                                                                                                                    [,11]
               0.325
                            0.162
                                          0.413
                                                     -0.015
                                                                  -0.165
                                                                                 0.275 -0.089
                                                                                                          -0.310
                                                                                                                         0.362
                                                                                                                                      -0.423
             -0.175 -0.477
                                         0.289
                                                       0.203 -0.033
                                                                                 0.278 -0.503 -0.262 -0.412
                                                                                                                                      0.026 -0.217
                                                                                                                                                                -0.012
               0.401 -0.092 -0.028
                                                      0.140
                                                                    0.109
                                                                                 0.148 -0.083
                                                                                                            0.299 -0.386
                                                                                                                                     -0.172
                                                                                                                                                    0.697
                                                                                                                                                                -0.124
               0.319 0.134 -0.279 -0.088
                                                                    0.269 -0.509 -0.175
                                                                                                          -0.497 -0.314 -0.262 -0.130
                                                                                                                                                                 0.052
              0.312 -0.010
                                                                                                            0.351 -0.379
                                        0.466
                                                      0.078
                                                                    0.002 -0.209
                                                                                              0.376
                                                                                                                                      0.046 - 0.390
                                                                                                                                                                 0.270
            -0.393 0.079
-0.386 -0.026
                                        0.060 -0.141 -0.029
                                                                                                            0.014 -0.242 -0.723 -0.095
                                                                                 0.140
                                                                                              0.321
                                                                                                                                                               -0.318
                                                                                -0.005
                                                                                                            0.316 -0.039 -0.206
                                                                                                                                                                 0.708
                                        -0.234
                                                      0.031
                                                                    0.344
                                                                                             -0.169
                                                                                                                                                  0.048
               0.311 -0.218 -0.297
                                                      0.465
                                                                    0.030 0.033 -0.149
                                                                                                            0.307
                                                                                                                         0.343 -0.339 -0.402
                                                                                                                                                                -0.196
    Γ8.1
               0.173 -0.325 -0.196
                                                     -0.675
                                                                   -0.484 -0.064 -0.208
                                                                                                            0.244 -0.037 -0.112 -0.086
                                                                    0.586 -0.209
   [10,]
               0.010 -0.471
                                        0.357 -0.319
                                                                                              0.032
                                                                                                            0.030 0.338 -0.061
                                                                                                                                                  0.095
                                                                                                                                                                -0.178
               0.202 -0.359 -0.371 -0.082
                                                                    0.171
                                                                                0.479
                                                                                              0.530
                                                                                                          -0.296 -0.075
                                                                                                                                     0.104 -0.083
  [12,] -0.182 -0.457 -0.012
                                                      0.353 -0.401 -0.474
                                                                                              0.285 -0.184
                                                                                                                        0.085 -0.110
                                                                                                                                                  0.297
  > write.table(round(A,3))
"Comp.1" "Comp.2" "Comp.3" "Comp.4" "Comp.5" "Comp.6" "Comp.7" "Comp.8" "Comp.9" "Comp.10" "Comp.11" "Comp.12"
  "Comp.1" "Comp.2" "Comp.3" "Comp.4" "Comp.5" "Comp.6" "Comp.7" "Comp.8" "Comp.9" "Comp.10" "Comp.11" "(
"ER_primary" 0.325 0.162 0.413 0.015 0.165 0.275 0.089 0.31 0.362 0.423 0.114 0.409
"Repeaters_primary" -0.175 -0.477 0.289 -0.203 0.033 0.278 0.503 0.262 -0.412 -0.026 -0.217 -0.012
"ER_secondary" 0.401 -0.092 -0.028 -0.14 -0.109 0.148 0.083 -0.299 -0.386 0.172 0.697 -0.124
"Progression_secondary" 0.319 0.134 -0.279 0.088 -0.269 -0.509 0.175 0.497 -0.314 0.262 -0.13 0.052
"Primary_completionRate" 0.312 -0.01 0.466 -0.078 -0.002 -0.209 -0.376 -0.351 -0.379 -0.046 -0.39 0.27
"Adolescents_outofschool" -0.393 0.079 0.06 0.141 0.029 0.14 -0.321 -0.014 -0.242 0.723 -0.095 -0.318
"Children_outofschool" -0.386 -0.026 -0.234 -0.031 -0.344 -0.005 0.169 -0.316 -0.039 0.206 0.048 0.708
  Children_outorschool -0.386 -0.026 -0.234 -0.031 -0.344 -0.005 0.169 -0.316 -0.039 0.206 0.048 0.708 "ER_tertiary" 0.311 -0.218 -0.297 -0.465 -0.03 0.033 0.149 -0.307 0.343 0.339 -0.402 -0.196 "Government_expenditure" 0.173 -0.325 -0.196 0.675 0.484 -0.064 0.208 -0.244 -0.037 0.112 -0.086 0.094 "Compulsory_education" 0.01 -0.471 0.357 0.319 -0.586 -0.209 -0.032 -0.03 0.338 0.061 0.095 -0.178 "ER_preprimary" 0.202 -0.359 -0.371 0.082 -0.171 0.479 -0.53 0.296 -0.075 -0.104 -0.083 0.189 "OverAge_primary" -0.182 -0.457 -0.012 -0.353 0.401 -0.474 -0.285 0.184 0.085 0.11 0.297 0.158
```

Fig 16. Vectorii proprii ai matricei de covarianță

```
OVELAGE_PLIMALY
> C = pca$scores[,1:3]
> rownames(C)=education$`Country Name
> head(C)
               Comp.1
                          Comp. 2
                                      Comp. 3
Albania
            0.7959296
                       0.7239091 -0.3186771
Argentina
            2.8970864 -2.0192088 0.7602075
Armenia
           -1.8560885
                       1.6239169 -0.4593074
Austria
            1.2733878 -2.8140783 -1.8654266
Azerbaijan -0.2845292
                      2.5264060 2.6001274
                      0.4895113 -2.6132113
Bulgaria
           -0.8185462
> round(C.3)
```

Fig 17. Scorurile principale pentru primele 6 țări

Fig 18. Matricea Factor

Fig 19. Cercul corelațiilor

Fig 20. Grafic reprezentarea observațiilor în planul principal W1&W2

Fig 21. GGplot reprezentarea observațiilor în planul principal

Fig~22.~Biplot-reprezentarea~observațiilor~in~planul~principal,~W1&W2

Eigenvalues						Spellcheck	J				
Ergenvaraes	Dim.1	Dim.2	Dim.3	Dim.4	Dim.5	Dim.6	Dim.7	Dim.8	Dim.9	Dim.10	Dim.11
Variance	4.832	1.647	1.404	0.799	0.672	0.557	0.326	0.265	0.220	0.186	0.093
% of var.	43.929	14.970	12.767	7.266	6.112	5.059	2.963	2.407	1.998	1.687	0.841
Cumulative % of var	43 929	58 899	71 666	78 932	85 044	90 104	93 067	95 474	97 472	99 159	100 000

```
Individuals (the 10 first)
                               Dist
                                        Dim.1
                                                         cos2
                                                                  Dim.2
                                                                                   cos 2
                                                                                            Dim.3
                                                                                                      ctr
                                                                                                             cos 2
                                                  ctr
                                                                            ctr
                                        0.808
                                                0.202
                                                                 -1.019
                                                                          0.941
                                                                                 0.344
                                                                                           -0.286
                                                                                                    0.087
                                                                                                           0.027
                              1.736
                                                        0.217
1
2
3
                              3.941
                                        3.069
                                                        0.606
                                                                                  0.191
                                                                                            0.725
                                                                                                    0.559
                                                                                                           0.034
                                                2.909
                                                                  1.721
                                                                          2.686
                                                                          1.090
                              3.646
                                       -2.093
                                                1.353
                                                        0.329
                                                                 -1.097
                                                                                  0.090
                                                                                           -0.446
                                                                                                    0.211
                                                                                                           0.015
                                                                                                    3.779
7.705
7.371
4
5
6
7
                              3.872
                                        1.715
                                                0.908
                                                        0.196
                                                                  1.838
                                                                          3.062
                                                                                  0.225
                                                                                           -1.886
                                                                                                           0.237
                              4.783
                                       -0.307
                                                0.029
                                                        0.004
                                                                 -3.052
                                                                          8.443
                                                                                           2.692
                                                                                                           0.317
                              3.579
                                                        0.082
                                                                 0.097
                                                                          0.009
                                                                                  0.001
                                                                                                           0.542
                                       -1.024
                                                0.324
                                                                                           -2.634
                                                                                            0.223
                              2.187
                                                        0.260
                                                                 -1.645
                                                                                  0.566
                                                                                                    0.053
                                                                                                           0.010
                                                                          2.453
                                        1.116
                                                0.384
8
                                       2.353
-2.724
                                                                                  0.008
                                                                                           -1.743
                                                                                                    3.231
                                                                                                           0.306
                              3.151
                                                1.711
                                                        0.558
                                                                 -0.280
                                                                          0.071
                              3.908
                                                2.291
                                                        0.486
                                                                  1.727
                                                                          2.705
                                                                                  0.195
                                                                                           -1.030
                                                                                                   1.127
                                                                                                           0.069
                                                                 -1.477
                              2.616
                                       -0.375
                                                0.043
                                                        0.021
                                                                          1.978
                                                                                  0.319
                                                                                           -0.396
                                                                                                   0.167
```

Fig 23. Extragerea componentelor principale folosind funcția PCA – INDIVIDUALS

Variables (the 10 first)					
	Dim.1 ctr	cos2 Dim.2	ctr cos2	Dim.3 ctr	cos2
ER_primary	0.703 10.226	0.494 -0.234	3.311 0.055	0.496 17.488	0.246
Repeaters_primary	-0.348 2.509	0.121 0.691	29.031 0.478	0.325 7.541	0.106
ER_secondary	0.895 16.587	0.802 0.088	0.472 0.008	-0.035 0.087	0.001
Progression_secondary	0.698 10.076	0.487 -0.236	3.379 0.056	-0.325 7.515	0.106
Primary_completionRate	0.701 10.173	0.492 -0.058	0.203 0.003	0.555 21.973	0.309
Adolescents_OutofSchool	-0.882 16.107	0.778 -0.040	0.095 0.002	0.071 0.359	0.005
Children_OutofSchool	-0.863 15.428	0.746 0.124	0.927 0.015	-0.283 5.686	0.080
ER_tertiary	0.720 10.725	0.518 0.193	2.272 0.037	-0.354 8.927	0.125
Government_expenditure	0.409 3.454	0.167 0.456	12.651 0.208	-0.245 4.264	0.060
Compulsory_education	0.054 0.060	0.003 0.730	32.376 0.533	0.403 11.569	0.162
> round(CP\svar\scos2.3)					

Fig 24. Extragerea componentelor principale folosind funcția PCA - VARIABLES

Fig 25. Extragerea componentelor principale folosind funcția PCA

2. Analiza Cluster

	Albania	Argentina	Armenia	Austria	Azerbaijan	Bulgaria	Bahrain	Belarus	Bolivia	Brunei Darussalam	Colombia	Czech Republic	Germany
Albania	0.000000	2.4059752	3.445773	3.160319	4.302529	3.910398	1.875260	2.1713272	4.260658	2.672937	2.0245800	3.055020	2.45359
Argentina	2.405975	0.0000000	4.993839	3.422266	4.871872	5.138244	2.554515	2.0403462	6.094561	4.437466	3.5524618	3.770055	3.50014
Armenia	3.445773	4.9938393	0.000000	4.658138	5.009945	2.286009	3.440010	4.4328302	2.031384	3.192325	2.9792018	4.341324	4.15594
Austria	3.160319	3.4222662	4.658138	0.000000	5.847037	4.088931	3.955895	2.2811524	5.154251	4.632819	4.0465338	1.152544	1.28398
Azerbaijan	4.302529	4.8718724	5.009945	5.847037	0.000000	6.273269	3.429149	5.8110888	6.144809	4.567567	3.6554254	5.771742	5.60846
Bulgaria	3.910398	5.1382444	2.286009	4.088931	6.273269	0.000000	4.445939	4.2952344	1.980160	4.461956	3.6749692	3.918695	3.75783
Bahrain	1.875260	2.5545146	3.440010	3.955895	3.429149	4.445939	0.000000	3.0662629	4.769660	2.543710	2.5428702	3.677462	3.54671
Belarus	2.171327	2.0403462	4.432830	2.281152	5.811089	4.295234	3.066263	0.0000000	5.243946	4.066953	3.4937163	2.538544	2.22978
Bolivia	4.260658	6.0945611	2.031384	5.154251	6.144809	1.980160	4.769660	5.2439463	0.000000	3.969395	3.5749459	4.785985	4.45340
Brunei Darussalam	2.672937	4.4374659	3.192325	4.632819	4.567567	4.461956	2.543710	4.0669532	3.969395	0.000000	3.2210531	4.114880	3.67235
Colombia	2.024580	3.5524618	2.979202	4.046534	3.655425	3.674969	2.542870	3.4937163	3.574946	3.221053	0.0000000	4.004787	3.49500
Czech Republic	3.055020	3.7700549	4.341324	1.152544	5.771742	3.918695	3.677462	2.5385442	4.785985	4.114880	4.0047866	0.000000	1.18541
Germany	2.453594	3.5001463	4.155946	1.283983	5.608463	3.757831	3.546717	2.2297804	4.453408	3.672356	3.4950052	1.185411	0.00000
Denmark	3.128009	1.8630021	5.839871	3.656383	5.858412	5.554599	3.368911	2.5021048	6.527471	4.915545	4.3014978	3.787367	3.63781
Dominican Republic	2.920821	4.3082329	2.666924	4.695670	3.630541	4.064413	3.060158	4.1738280	3.766153	3.594713	1.6164894	4.667073	4.29486
Europe & Central Asia (excluding high income)	1.888658	2.6749065	2.463772	3.206494	4.124590	3.185592	1.635120	2.5726736	3.815123	2.716557	2.2956615	3.141044	2.89927
Europe & Central Asia	1.243904	2.0460382	3.232905	2.925251	4.575810	3.622377	1.575664	1.7008739	4.273983	2.792766	2.3687162	2.818623	2.50087
Ecuador	1.548241	2.1370901	4.120261	3.607378	3.511767	4.758170	1.192161	2.8004799	5.196660	3.160988	2.5798427	3.414703	3.23128

Fig 26. Matricea de di(similaritate)

Fig 27. Dendrograma – Arbore al clasificării Metoda WARD

Fig 28. Plot – metoda cotului

Fig 29. OUTPUT Metoda statisticii GAP

Silhouette plot of (x = cutree(clust_std, k = 6), dist = e_std)

[1,]	cluster 1	neighbor 2	sil_width 0.098593435
[2,]	1	4	0.349056094
[3,] [4,]	2	5 1	-0.211032033 0.606758353
[5,]	4	2	0.194878973
[6,] [7,]	5 4	2 2	0.537765147 0.160100748
[8,]	1	3	0.216019444
[9,] [10,]	5	6 4	0.346957098 0.230252183
[11,]	2	4	0.241891563
[12,] [13,]	5 2 2 3 3	1 1	0.625552259 0.560502497
[14,]	1	3	0.328313621
[15,] [16,]	2 2	4	0.213136597 0.082269913
[17,]	1	2	0.262602889
[18,] [19,]	4	1 2	-0.009955624 0.020869231
[20,]	1	3	0.388935627
[21,]	1 1	3	0.361120943 -0.065238948
[22,] [23,]	1	3	0.399427900
[24,] [25,]	2 6	6 5	0.379359416 0.673430262
[26,]	6	2 2	0.259141687
[27,] [28,]	4	2	0.034215293 0.092434009
[29,]	1	3	0.291113481
[30,]	4	1 1	0.143431414 0.302469801
[32,]	2 2 2	1	0.307037076
[33,]	2 6	4 5	0.053091418 0.636998412
[35,]	6	5	0.673037140
[29,] [30,] [31,] [32,] [33,] [34,] [35,] [36,] [37,] [38,]	2 1	1 4	0.312459231 0.418718645
[38,]	1	3	0.343383047
[39,] [40,]	4 6	1 5	0.137910020 0.548074598
[41,]	1	3	0.188804744
[42,] [43,]	2 2	5 1	0.047804899 0.074327370
[44,]	1	3	0.233825464
[45,] [46,]	1 4	3 1	0.411708508 0.204933951
[47,]	1	4	0.293703947
Γ48.]	2	5	0.288015910

Fig 30. Silhouette PLOT & OUTPUT

>	round(centro	izi std.3)					
			Progression_secondary	Primary_completionRate	Adolescents_OutofSchool	Children_OutofSchool	ER_tertiary
1	0.639	0.887	0.422	0.408	-0.772	-0.628	0.948
2	0.056	-0.386	-0.051	-0.244	0.234	0.122	-0.391
3	-1.693	0.384	0.944	0.154	-0.813	-0.847	0.909
4	0.789	0.214	0.259	1.012	-0.336	-0.721	-0.485
5	-1.835	-0.164	0.582	-1.217	0.580	2.282	0.066
6	-1.468	-1.688	-1.749	-1.364	1.880	1.681	-1.224
	ER_preprimary	У					
1	0.804	4					
2	-0.192	2					
3	1.562	2					
4	-1.199	9					
5	0.210	0					
6	-0.685	5					
5 6							

Fig 31. Centroizii

Fig 32. Componența claselor

Cluster Dendrogram

Fig 33. Reprezentarea dendrogramei, cazul unei legături simple

Fig 34. Algoritmul de partiționare K-means

Reprezentarea claselor

Fig 35. Algoritmul de partiționare K-means – reprezentarea grafică a claselor

Reprezentarea claselor

Fig 36. Algoritmul de partiționare K-means – reprezentarea grafică a claselor

Fig 37. Reprezentarea claselor în funcție de combonentele principale

Fig 38. Evaluarea puterii de discriminarei

Anexa 2- SCRIPT R

1. Analiza Componentelor Principale

#1: PRELUCRAREA DATELOR
install.packages("Rcpp")
library(Rcpp)
library(readxl)
education <- read_excel("C:/Users/pc/Desktop/An I, sem I/SDA/education.xlsx")
View(education)
#Statistici descriptive
summary(education)
library(psych)
describe(education)
which.min(education\$ER_primary)
which.max(education\$ER_primary)
which.min(education\$Children_OutofSchool)
which.max(education\$Children_OutofSchool)
library(sp)
library(raster)
apply(education[,2:13], 2, cv)
#matricea de corelatie
round(cor(education[,2:13]), 3)
round(cov(education[,2:13]), 3)
Grafice
#Histograma
windows()

```
par(mfrow = c(1, 2))
hist(education$ER_primary,freq=FALSE, main="Histograma ratei de inscriere in ciclul primar")
lines(density(education$ER_primary), lwd = 2, col = 'red')
hist(education$Children_OutofSchool, main="Abandon scolar copii")
?hist
#Densitatea de probabilitate
d<-density(education$ER_primary)
windows()
plot(d, bw = "nrd0", frame = FALSE, col = "steelblue",
  main = "Density plot of ER_primary")
polygon(d, col = "steelblue")
#Boxplot
attach(education)
windows()
par(mfrow=c(2,2))
boxplot(education$ER_secondary, main="Diagrama Boxplot ER_primary")
boxplot(ER_preprimary, main="Diagrama Boxplot ER_preprimary")
boxplot(education$Progression_secondary, main="Diagrama Boxplot Progression_secondary")
boxplot(education$ER_tertiary, main="Diagrama Boxplot tertiary")
#Functia PLOT(abline)
plot(ER_primary, ER_secondary, main="Dependenta ciclul primar-secundar")
abline(lm(ER_primary~ER_secondary))
#ggplot
library(ggplot2)
windows()
ggplot(education, aes(x=ER_preprimary, y=ER_secondary)) +
geom_point() + # Show dots
```

```
geom_text(
  label=`Country Name`,
  nudge_x = 0.25, nudge_y = 0.25,
  check overlap = T
 )
#CORELATII
round(cor(firme[,2:12]),3)
library(Hmisc)
M=rcorr(as.matrix(firme[,2:12]))
M #probabilitatile p-value coresp coef de semnificatie
#Daca p-value < 0.05 respingem ipoteza nula <=> nu avem o relatie de corelatiw semnificativa intre cele 2 vb
library(corrplot)
P=rcorr(as.matrix(round(education[,2:13]),3))
P
windows()
corrplot(P$r, type="lower", method="square")
windows()
corrplot(P$r, type="lower", method="number", p.mat=P$P,
     sig.level = 0.05, insig="blank")
library("PerformanceAnalytics")
chart.Correlation(education[,2:13], histogram=TRUE,pch=19)
# Standardizarea Datelor-----
ed_std<- scale(education[,2:12], scale = TRUE)</pre>
apply(ed_std, 2, sd)
round(apply(ed_std, 2, mean), 3)
```

#Verificarea datelor standardizate

```
apply(ed_std, 2, sd) #1 OK
round(apply(ed_std, 2, mean), 3) #0 OK
round(cor(ed_std), 3)
round(cov(ed_std), 3) # matricea de corelatie = matricea de covarianta pt variabile standardizate (0,1) ok
#2. Funcția princomp pentru extragerea componentelor principale
pca=princomp(ed_std, cor = TRUE)
summary(pca)
stdev=pca$sdev
valP=stdev^2
procent_info=valP*100/12
procent_cumulat=cumsum(procent_info)
X=round(data.frame(stdev, valP, procent_info, procent_cumulat),4)
X
sum(valP)
#Scree Plot
windows()
scree_plot=prcomp(ed_std)
plot(scree_plot, type="1", main="ScreePlot")
#Vectorii proprii ai matricei de cov
A = pca loadings
round(A,3)
write.table(round(A,3))
#verif daca sunt val proprii/vectorii proprii
eigen(cov(ed_std))$values
X
round(eigen(cov(ed_std))$vectors,3)
write.table(round(A,3))
```

#Scorurile principale

```
C = pca\$scores[,1:3]
rownames(C)=education$`Country Name`
head(C) #primele 3 scoruri principale pt primele 6 tari
round(C,3)
View(ed_std)
ed_std
#Proprietățile CP
#1)verificam varianta totala si varianta generalizata
#varianta totala:
sum(valP) #=12 corect
cov(ed_std) # pe diag princ sa fie 1, suma tuturor sigmelor = 12 #ACEASTA ESTE MATRICEA SIGMA
round(cor(C),5)
valP
#2) Sunt corelate 2 cate 2
round(cor(C),6) #corelaatii = 0 intre doua cate 2 comp
#Matricea FACTOR
matrice_factor=cor(ed_std,C)
matrice_factor
library(corrplot)
corrplot(matrice_factor, method="number")
#Cercul corelațiilor
dev.new()
cerc = seq(0,2*pi,length=100)
plot(cos(cerc),sin(cerc),type="1",col="blue",xlab="W1",ylab="W2")
text(matrice_factor[,1],matrice_factor[,2],rownames(matrice_factor),col="red",cex=0.7)
```

```
#Reprezentarea observatiilor in planul principal
```

```
c2=data.frame(C)
dev.new()
plot(c2[,1],c2[,2],main="Plot componente - W1 si W2",xlab="W1",ylab="W2")
text(c2[,1],c2[,2],labels=rownames(c2),col="red",pos=3,cex=0.7)
dev.new()
plot(c2[,2],c2[,3],main="Plot componente - W2 si W3",xlab="W2",ylab="W3")
text(c2[,2],c2[,3],labels=rownames(c2),col="red",pos=3,cex=0.7)
install.packages("ggplot2")
library(ggplot2)
windows()
ggplot(c2,aes(x=c2[,1],y=c2[,2]))+ geom_point(shape=16,size=4,col="red") +
geom_text(label=rownames(c2),vjust=0,hjust=0,size=4)
windows()
ggplot(c2,aes(x=c2[,1],y=c2[,3]))+ geom_point(shape=16,size=4,col="red") +
geom_text(label=rownames(c2),vjust=0,hjust=0,size=4)
#Biplot
biplot(c2[,1:2], pca$loadings[,1:2], cex=c(0.6,0.9))
biplot(c2[,2:3], pca$loadings[,2:3], cex=c(0.6,0.9))
##12) extragerea comp principale folosind functia PCA
library(FactoMineR)
CP=PCA(ed_std)
summary(CP)
CP
round(CP$var$cos2,3)
X
```

#13) grafice - pachetul factoextra

```
library(factoextra)

fviz_pca_ind(pca,

col.ind = "cos2",

gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),

repel = TRUE

)

fviz_pca_var(pca,

col.var = "contrib",

gradient.cols = c("#00AFBB", "#E7B800", "#FC4E07"),

repel = TRUE

)

fviz_pca_biplot(pca,

repel=TRUE,

col.var = "#2E9FDF", col.ind = "#696969")
```

2. Analiza CLUSTER

```
library(readx1)
ed <- read_excel("ed.xlsx")
View(ed)
educatie <- ed[,2:9]
educatie_std <- scale(educatie,scale=TRUE)</pre>
rownames(educatie_std)=ed$`Country Name`
#Matricea Distantelor
e_std = dist(as.matrix(educatie_std), method = "euclidian") #method=canverra, cebasev
View(as.matrix(e_std))
e_std[1] #=dist(Argentina, Albania) = 2.4059
d_euclid_1=sqrt((educatie_std[1,1]-educatie_std[2,1])^2+
              (educatie_std[1,2]-educatie_std[2,2])^2+
              (educatie_std[1,3]-educatie_std[2,3])^2+
              (educatie_std[1,4]-educatie_std[2,4])^2+
              (educatie_std[1,5]-educatie_std[2,5])^2+
              (educatie_std[1,6]-educatie_std[2,6])^2+
              (educatie_std[1,7]-educatie_std[2,7])^2+
              (educatie_std[1,8]-educatie_std[2,8])^2) #=2.4059
e_std[3] #=dist(Austria, Albania) = 3.16
d_euclid_2=sqrt((educatie_std[1,1]-educatie_std[4,1])^2+
           (educatie_std[1,2]-educatie_std[4,2])^2+
           (educatie_std[1,3]-educatie_std[4,3])^2+
           (educatie_std[1,4]-educatie_std[4,4])^2+
           (educatie_std[1,5]-educatie_std[4,5])^2+
           (educatie_std[1,6]-educatie_std[4,6])^2+
```

```
(educatie_std[1,8]-educatie_std[4,8])^2) #=3.16
#Am preluat din matricea initiala cu datele standardizate educatie_std si am aplicat formula SQRT(()^2)
library(ggplot2)
library(reshape2)
M <- melt(as.matrix(e_std))
windows()
ggplot(data = M, aes(x=Var1, y=Var2, fill=value)) +
geom_tile() +
theme(axis.text.x = element_text(angle = 45)) +
scale_fill_gradient(low="white", high="black")
View(as.matrix(e_std))
#metoda ward
clust_std = hclust(e_std, method = "ward.D2")
cbind(clust_std$merge,clust_std$height)
windows()
plot(clust_std,labels=rownames(educatie_std))
#CRT 2
library(factoextra)
fviz_nbclust(educatie_std, hcut, method = "wss") +
geom_vline(xintercept = 6, linetype = 2)+
labs(subtitle = "Elbow method - STD")
#AL 3-LEA CRTERIU
install.packages("NbClust") #o met cu ft ft multe crt adunate >20
library(NbClust)
windows()
res<-NbClust(educatie_std, distance = "euclidean", min.nc=3, max.nc=6,
```

(educatie_std[1,7]-educatie_std[4,7])^2+

```
#+++++> vom analiza in continuare 6 clase<-CONCLUZIE
install.packages("cluster")
library(cluster)
si4_std <- silhouette(cutree(clust_std, k = 6), e_std)
windows()
plot(si4_std, cex.names = 0.5)
si4_std
library(MASS)
centroizi_std <- tapply(as.matrix(educatie_std), list(rep(cutree(clust_std, 6), ncol(educatie_std)), col(educatie_std)),
mean)
colnames(centroizi_std)=colnames(educatie_std)
round(centroizi_std,3)
centroizi_std
plot(clust_std,labels=rownames(educatie_std))
rect.hclust(clust_std,k=6, border=2:5)
#Agegare simpla - metoda celor mai apropiati vecini
clust2_std = hclust(e_std, method = "single")
windows()
plot(clust2_std,labels=rownames(educatie_std))
#Algoritmul K-means
k_std=kmeans(educatie_std,6) #K=6 clase
k\_std
clasa_std=k_std$cluster
c_std=cbind(clasa_std,round(educatie_std,6))
c_std
m_std=data.frame(c_std)
```

method = "ward.D2", index = "all")

```
plot(m_std[,3], m_std[,6], col=c("red","blue","green","black","magenta","yellow")
  [m_std$clasa_std], main="Reprezentarea claselor", xlab=colnames(m_std[3]), ylab=colnames(m_std[6]))
text(m_std[,3],m_std[,6],labels=rownames(m_std),col="magenta",pos=3,cex=0.7)
library(factoextra)
fviz_cluster(list(data = educatie_std, cluster = clasa_std))
#Descompunerea variabilitatii-----
spat_std=k_std$totss
spaw\_std=k\_stdtot.withinss
spab_std=k_std$betweenss
r_cls_std=spab_std/spaw_std
variab_std=cbind(spat_std,spaw_std,spab_std,r_cls_std)
variab_std
#spat_std spaw_std spab_std r_cls_std
#[1,]
       528 163.4311 364.5689 2.23072
k_std$withinss
sum(34.541061+14.224524+11.484663+9.956026+51.436683+41.788094)~\#=spaw=163.4311
sum(17.69180+55.29219+30.75771+9.81517) # = spaw
#Evaluarea puterii de discriminare a variabilelor
library(psych)
library(ggplot2)
medii_std=data.frame(round(k_std$centers,3))
round(k_std$centers,3)
describe(medii_std) #preiau valoarea min si max
a=describe(medii_std)$min
b=describe(medii_std)$max
c1=t(medii_std[1,]) #centroizii in fiecare clasa
c2=t(medii\_std[2,])
c3=t(medii_std[3,])
```

```
c4=t(medii\_std[4,])
c5=t(medii_std[5,])
c6=t(medii_std[6,])
data=data.frame(c1,c2,c3,c4, c5, c6,a,b)
rownames(data)=colnames(medii_std)
data #X1-X4 centroizii claselor transpusi
ggplot(data) +
 geom_segment( aes(x=rownames(data), xend=rownames(data), y=a, yend=b), color="black") +
 geom_point( aes(x=rownames(data), y=c1), color=rgb(0.9,0.1,0.1,0.5), size=5 ) +
 geom_point( aes(x=rownames(data), y=c2), color=rgb(0.1,0.9,0.1,0.9), size=5 ) +
 geom_point( aes(x=rownames(data), y=c3), color=rgb(0.1,0.1,0.9,0.9), size=5)+
geom_point( aes(x=rownames(data), y=c4), color=rgb(0.3,0.3,0.3,0.5), size=5)
#cu cat "batul" este mai mare, cu atat puterea de discriminare este mai mare
install.packages("DiscriMiner")
library(DiscriMiner)
rez=rbind(round(discPower(c_std[,2:9], c_std[,1])$F_statistic,6),round(discPower(c_std[,2:9],
c_std[,1])$p_value,6))
colnames(rez)=colnames(c_std[,2:9])
rownames(rez)=c("F_statistic","p-value")
rez
ward_std=rep(cutree(clust_std,6))
kmeans_std=c_std[,1]
solutii=cbind(kmeans_std,ward_std)
solutii
r1 <-ifelse(kmeans_std==1,"
HIGHEST_ERtertiary", ifelse(kmeans_std==2, "mediumHigh", ifelse(kmeans_std==3, "LOWEST_ERprimary",
```

```
ifelse(kmeans_std==4,"Mediumlow", ifelse(kmeans_std==5, "HIGHEST_ChildrenOut", "low"))))) #!!! #am
decodificat ce inseamna 1,2,3,4 pt k-means
r2 <-
ifelse(ward_std==1,"HIGHEST_ERtertiary",ifelse(ward_std==2,"mediumHigh",ifelse(ward_std==3,"LOWEST
_ERprimary", ifelse(ward_std==4,"Mediumlow", ifelse(ward_std==5, "HIGHEST_ChildrenOut", "low"))))) #!!! #la
fel si pentru ward
solutii2=cbind(r1,r2)
solutii2
r1
r2
#Kmeans
k=kmeans(educatie_std,6) #16, 5, 9, 5, 21, 11
k
cls=k$cluster
cls=as.numeric(cls)
cls
set_date=cbind(educatie_std,cls)
df2=data.frame(set_date)
round(df2,3)
nr = round(nrow(df2)*.70) #70% din setul de date
nr #47
a <- sample(seq_len(nrow(df2)), size = nr) #un sample din setul de date total = 24 = nr
train <- df2[a, ] #setul de antrenare
test <- df2[-a, ]#setul de testare
round(train,3)
round(test,3)
df=data.frame(train)
df$cls[df$cls ==1] <- "clasa1"
df$cls[df$cls ==2] <- "clasa2"
cbind(round(df[,1:9],3),df[,9])
\#K-NN = cel mai apropiat k vecin, k=sqrt(T), T=47
sqrt(47) #6<6.855<7
```

```
library(class)
pr <- knn(train[,-10],test[,-10],cl=train[,9],k=6) #am obtinut cls de apartenenta obtinuta pe baza clasificatorului pt
setul de testare
pr
pr2 <- knn(train[,-10],test[,-10],cl=train[,10],k=7)
pr2
c1 <- table(pr,test[,9])
c1 #matrice de confuzie - confusion matrix - pe baza careia vom calcula gradul de clasificare corect(acuratetea
modelului)
c2 < -table(pr2,test[,9])
c2
acc <- function(x) \{sum(diag(x)/(sum(rowSums(x)))) * 100\}  #acc calculeaza gradul de clasificare corect.
acc(c1) #95
acc(c2) #75.43
#Naive Bayes
install.packages("e1071", dependencies = TRUE)
install.packages("caTools", dependencies = TRUE)
install.packages("caret", dependencies = TRUE)
library(e1071)
library(caTools)
library(caret)
install.packages('tidyverse')
library(tidyverse)
install.packages('ggplot2')
library(ggplot2)
install.packages('caret')
library(caret)
install.packages('caretEnsemble')
```

```
library(caretEnsemble)
install.packages('psych')
library(psych)
install.packages('Amelia')
library(Amelia)
install.packages('mice')
library(mice)
install.packages('GGally')
library(GGally)
install.packages('rpart')
library(rpart)
install.packages('randomForest')
library(randomForest)
View(ed)
ed<-ed[1:20,]
ed<-data.frame(ed)
split <- sample.split(ed, SplitRatio = 0.75)</pre>
split
train_cl <- subset(ed, split == "TRUE")</pre>
rlang::last_error()
head(train_cl)
test_cl <- subset(ed, split == "FALSE")</pre>
head(test_cl)
train_scale <- scale(test_cl[,2:9])</pre>
head(train_scale)
test_scale <- scale(test_cl[,2:9])
set.seed(2020)
```

```
classifier_cl <- naiveBayes(Adolescents_OutofSchool ~ ., data = ed, laplace = 1)
classifier_cl

y_pred <- predict(classifier_cl, newdata = test_cl)

y_pred

u<-union(test_cl$Adolescents_OutofSchool, y_pred)

cm <- table(factor(test_cl$Adolescents_OutofSchool, u),factor(y_pred, u))

confusionMatrix(cm)</pre>
```