Prima Verifica AESO 21-22

marco.danelutto@unipi.it Cambia account

Bozza ripristinata

Il tuo indirizzo email verrà registrato quando invierai questo modulo

D1

Avendo a disposizione solo porte AND da due ingressi, con ritardo pari a T, con quale ritardo possiamo implementare una rete combinatoria che calcoli l'AND di 15 ingressi?

- 1T
- \bigcirc 21
- 3T
- \otimes 4T $|_{2}$ 15 $|_{2}$ = $|_{2}$ 16 = 4
- 5T
- più di 5T

D2

Quale delle seguenti affermazioni sono vere ?

- Il numero di interi diversi rappresentabili su n bit in complemento a 2 è (2 alla n) meno 1 ho, see 2th
- Il numero di interi diversi rappresentabili su n bit in complemento a 2 è (2 alla n)
 - Il numero di interi positivi diversi da 0 rappresentabili su N bit in complemento a due
 è pari al numero degli interi negativi Mo, c e un Numero postivo (‡0) in meno
- Nella rappresentazione in modulo e segno, la rappresentazione di un numero positivo inizia sempre con uno 0

ŀ

D3

Un demultiplexer

- Passa uno dei 2 alla k ingressi sull'unica uscita. L'ingresso è quello indicato dai k bit dell'ingresso di controllo
- Passa l'unico ingresso su una delle 2 alla k uscite. L'uscita è quella indicata dai k bit dell'ingresso di controllo
- ha solo un ingresso da k bit e 2 alla k uscite da 1 bit e mette a 1 solo l'uscita indicata dai k bit di ingresso

D4

La rete in figura:

- E' una rete di Mealy Z dipende de A, che a un ingreno
- E' una rete di Moore
- O Dalla figura non si può evincere se sia di Mealy o di Moore

0

-

D5

Qual'è il numero minimo di implicanti (termini AND da porre in OR) che servono per definire la funzione specificata dalla seguente mappa di Karnaugh?

- \bigcirc
- ≥ 2 se consider i har specificati colhe "1"
 - O 3
- O 4
- O 5
- O più di 5
- Opzione 5

D6

Si considerino interi senza segno, rappresentati utilizzando 9 bit. Il numero massimo rappresentabile è:

- 127
- 255
- ≥ 511 on to bot sometime (1024-1)
 - nessuno di questi

H

3 of 8 10/15/21, 11:21

ט/	Per dividere per 8 (2 alla 3)un numero intero positivo mi servono 3 sottrattori in cascata mi servono 3 blocchi "shift logico a destra di una posizione" in cascata							
	mi servono 3 blocchi "shift aritmetico a destra di una posizione" in cascata pero borli ha esere a ordanetico han cerve m numeri peri tri							
D8	Quale delle seguenti stringhe di bit rappresenta il numero -7 su 8 bit in complemento a 2?							
	0 10000111							
	X 11111001 7 0000 01/1							
	11111000 Augsts 11111000 +1 11111001							
D9	Quale delle seguenti espressioni non può generare un'alea?							
	(a and not(c)) or (b and c)							
	(a and not(c)) or (b and c) or (a and b)							
	(a and not(c)) or (b and c) or (a and b and c) or (a and b and not(c))							

Prima Verifica AESO 21-22

D10

Quale delle seguenti espressioni esprimono la funzione definita dalla seguente mappa di Karnaugh

- (a and not(c)) or (b and c)
- (a and c) or (b and not(c))
- 26(c+c)=26

\boxtimes	(a and not((c)) or	(a and b ar	nd c) or (b and c) or (a and b and	not(c))	1	©
	ac	+(2bc)	+	bc + ((8P2) =	& <u>c</u>	+bc+

D11

Una rete sequenziale di Moore di tipo generale è formata:

- Da una rete combinatoria per il calcolo del prossimo stato interno e da un registro di no, manco rete × uscito
- Da due reti combinatorie e un registro di stato
- Da una rete combinatoria per il calcolo del prossimo stato interno, da un registro di stato e da un collegamento per copiare il contenuto del registro di stato sull'uscita no, patrebbe esserci maf...

D12

Per calcolare la parità di una sequenza di bit:

- Serve una rete sequenziale di Moore
- Serve una rete sequenziale di Mealy
- Serve una rete sequenziale
- Serve una rete combinatoria

No, mance le state

D13	Un full adder da 1 bit ha						
	Due ingressi e tre uscite X y Tip-mixele Tre ingressi e due uscite	z rúp-fivolo					
	Tre ingressi e tre uscite						
D14	Quale dei seguenti dispositivi assicura che l'ingresso venga copiato sull'uscita in corrispondenza al fronte di salita del segnale di clock						
	O D-latch						
	SR-latch						

X Flip-Flop D vedi leafs

D16

L'automa in figura

Emette un 1 quando vede la sequenza "bba"

- Emette un 1 quando dopo una sequenza di un numero qualunque (maggiore o uguale a 0) di "b" vede una singola "a" No, per la mega o e vegue
- emette un 1 quando vede la sequenza "aba"

 emette un 1 quando vede la sequenza "aba"

 emette un 2 quando vede la sequenza "aba"

Quali dei seguenti dispositivi necessita, per funzionare, di un segnale di clock

- O SR-latch has c'a segrele di clock
- D-latch
- O Demultiplexer ue rete comb

H

Google Moduli