Corrigé 5 du mardi 18 octobre 2016

Exercice 1.

Soit $(a_n)_{n\geq 0}$ une suite de nombres réels. Montrons que

$$\sum_{n=0}^{\infty} (a_{n+1} - a_n) < +\infty \quad \Leftrightarrow \quad \exists \ell \in \mathbb{R}, \text{ tel que } \lim_{n \to \infty} a_n = \ell.$$

Démonstration : Développons les sommes partielles de la série:

$$S_n = \sum_{k=0}^n (a_{k+1} - a_k) = a_1 - a_0 + a_2 - a_1 + \dots + a_n - a_{n-1} + a_{n+1} - a_n = a_{n+1} - a_0.$$

En passant à la limite, on a

$$\sum_{n=0}^{\infty} (a_{n+1} - a_n) = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (a_{n+1}) - a_0.$$

Ainsi, on a bien que la limite de S_n existe si et seulement si la limite de la suite $(a_n)_{n\geq 0}$ existe.

Exercice 2.

Soit $(a_n)_{n\geq 0}$ une suite de nombres réels positifs ou nuls. Montrons que $\sum_{n=0}^{\infty} \frac{a_n}{1+n^2a_n} < +\infty$.

 $D\acute{e}monstration$: Pour tout n>0 on a

• Si
$$a_n = 0$$
, on a,

$$0 = \frac{a_n}{1 + n^2 a_n} < \frac{1}{n^2};$$

• Si
$$a_n > 0$$
 on a

$$0 \le \frac{a_n}{1 + n^2 a_n} < \frac{a_n}{n^2 a_n} = \frac{1}{n^2}.$$

Par comparaison avec $\sum_{n=1}^{\infty} \frac{1}{n^2}$, on conclut à la convergence de la série.

Exercice 3.

Etudions la convergence de $\sum_{n=0}^{\infty} \left(\frac{1}{(2n+1)!} + \frac{(-1)^n}{n^2 + n + 1} \right).$

1.) Montrons que $\sum_{n=0}^{\infty} \frac{1}{(2n+1)!}$ converge. $D\acute{e}monstration:$ On a

$$x_n = \frac{1}{(2n+1)!}$$
 et $\frac{x_{n+1}}{x_n} = \frac{(2n+1)!}{(2n+3)!}$

et donc

$$\left|\frac{x_{n+1}}{x_n}\right| = \frac{1}{(2n+3)(2n+2)} \underset{n \to \infty}{\to} 0.$$

Le critère de d'Alembert nous permet de conclure que la série converge.

2.) Montrons que
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2 + n + 1}$$
 converge.

Démonstration : Si on pose

$$x_n = \frac{(-1)^n}{n^2 + n + 1},$$

on vérifie aisément que

$$\lim_{n \to \infty} x_n = 0, \quad x_n \cdot x_{n+1} < 0 \quad \text{et} \quad |x_{n+1}| < |x_n|.$$

Le critère des séries alternées nous permet de conclure que la série converge.

Puisque, par les points 1.) et 2.), les deux séries convergent séparemment, leur somme converge également.

Exercice 4.

Identifions les trois constantes α, β et μ telles que pour tout entier $n \geq 3$:

$$\frac{n^3}{n!} = \frac{\alpha}{(n-1)!} + \frac{\beta}{(n-2)!} + \frac{\mu}{(n-3)!}.$$

On a

$$\frac{n^3}{n!} = \frac{\alpha}{(n-1)!} + \frac{\beta}{(n-2)!} + \frac{\mu}{(n-3)!}$$
$$= \frac{n\alpha + n(n-1)\beta + n(n-1)(n-2)\mu}{n!}$$

Les coefficients α , β et μ vérifient donc le système suivant:

$$\begin{cases} \mu = 1 \\ \beta - 3\mu = 0 \\ \alpha - \beta + 2\mu = 0 \end{cases} \Leftrightarrow \begin{cases} \alpha = 1 \\ \beta = 3 \\ \mu = 1 \end{cases}$$

Ainsi, si $n \geq 3$,

$$\frac{n^3}{n!} = \frac{1}{(n-1)!} + \frac{3}{(n-2)!} + \frac{1}{(n-3)!}.$$

A présent considérons les sommes partielles

$$S_p = \sum_{n=1}^p \frac{n^3}{n!}$$
, avec $p \ge 3$.

Par ce qui précède nous pouvons écrire

$$\begin{split} S_p &= \sum_{n=1}^p \frac{n^3}{n!} &= \sum_{n=1}^2 \frac{n^3}{n!} + \sum_{n=3}^p \left[\frac{1}{(n-1)!} + \frac{3}{(n-2)!} + \frac{1}{(n-3)!} \right] \\ &= \frac{1^3}{1!} + \frac{2^3}{2!} + \sum_{n=3}^p \frac{1}{(n-1)!} + 3 \sum_{n=3}^p \frac{1}{(n-2)!} + \sum_{n=3}^p \frac{1}{(n-3)!} \\ &= 1 + 4 + \sum_{n=2}^{p-1} \frac{1}{n!} + 3 \sum_{n=1}^{p-2} \frac{1}{n!} + \sum_{n=0}^{p-3} \frac{1}{n!} \\ &= 5 + \sum_{n=0}^{p-3} \frac{1}{n!} - \frac{1}{0!} - \frac{1}{1!} + \frac{1}{(p-2)!} + \frac{1}{(p-1)!} + 3 \left(\sum_{n=0}^{p-3} \frac{1}{n!} - \frac{1}{0!} + \frac{1}{(p-2)!} \right) + \sum_{n=0}^{p-3} \frac{1}{n!} \\ &= 5 \sum_{n=0}^{p-3} \frac{1}{n!} + 4 \frac{1}{(p-2)!} + \frac{1}{(p-1)!}. \end{split}$$

En passant à la limite nous obtenons:

$$\sum_{n=1}^{\infty} \frac{n^3}{n!} = \lim_{p \to \infty} S_p = \lim_{p \to \infty} \left[5 \sum_{n=0}^{p-3} \frac{1}{n!} + 4 \frac{1}{(p-2)!} + \frac{1}{(p-1)!} \right]$$
$$= 5 \sum_{n=0}^{\infty} \frac{1}{n!} = 5e.$$

Г